bq40z80

Technical Reference

Literature Number: SLUUBT5A November 2018

Contents

Prefa	асе		 12
1	Intro	uction	 13
2	Syste	m Multifunction Pin Configurations	14
_	2.1	Introduction	
	2.2	RC2 (Pin 12) Multifunctions	
		2.2.1 Cell-7 Input (VC7SENSE)	
		2.2.2 Thermistor Input (TS3)	
		2.2.3 ADC Input (ADCIN1)	
		2.2.4 General Purpose Input Output (GPIO)	
	2.3	RC3 (Pin 13) Multifunctions	
	2.5	2.3.1 LED Display Button (DISP)	
		2.3.2 Thermistor Input (TS4)	
		2.3.3 ADC Input (ADCIN2)	
		2.3.4 General Purpose Input Output (GPIO)	
	2.4	RH2 (Pin 15) Multifunctions	
	2.4	2.4.1 Cell-7 Enable (VC7EN)	
		2.4.2 LED Display Button (DISP)	
		2.4.3 General Purpose Input Output (GPIO)	
	2.5	RH1 (Pin 16) Multifunctions	
	2.5	2.5.1 Cell-7 Balance Enable (CB7EN)	
		· · · · · · · · · · · · · · · · · · ·	
		3 ()	
	2.0	2.5.3 General Purpose Input Output (GPIO)	
	2.6	RH0 (Pin 17) Multifunctions	
		2.6.1 System Present (PRES)	
		2.6.2 Emergency FET Shutdown (SHUTDN)	
		2.6.3 LED Display Button (DISP)	
		2.6.4 Pre-Discharge (PDSG)	
	0.7	2.6.5 General Purpose Input Output (GPIO)	
	2.7	RLX (Pins 20, 21, 22) Multifunctions	
		2.7.1 LEDs	
		2.7.2 General Purpose Input Output (GPIO)	
		2.7.3 General Purpose Input Out (GPIO) and Pre-Discharge (PDSG)	
3	Prote	ctions	
	3.1	Introduction	
	3.2	Cell Undervoltage Protection	
	3.3	Cell Undervoltage Compensated Protection	 19
	3.4	Cell Overvoltage Protection	
	3.5	Overcurrent in Charge Protection	 21
	3.6	Overcurrent in Discharge Protection	 21
	3.7	Hardware-Based Protection	 22
		3.7.1 Overload in Discharge Protection	 23
		3.7.2 Short Circuit in Charge Protection	 23
		3.7.3 Short Circuit in Discharge Protection	 24
	3.8	Temperature Protections	 24
	3.9	Overtemperature in Charge Protection	 25

2

	3.10	Overtemperature in Discharge Protection	25
	3.11	Overtemperature FET Protection	
	3.12	Undertemperature in Charge Protection	
	3.13	Undertemperature in Discharge Protection	26
	3.14	SBS Host Watchdog Protection	
	3.15	Precharge Timeout Protection	27
	3.16	Fast Charge Timeout Protection	27
	3.17	Overcharge Protection	
	3.18	Overcharging Voltage Protection	
	3.19	Overcharging Current Protection	
	3.20	OverPrecharging Current Protection	
4	Perm	anent Fail	30
	4.1	Introduction	30
		4.1.1 Black Box Recorder	31
	4.2	Safety Cell Undervoltage Permanent Fail	31
		4.2.1 SUV Check Option	
	4.3	Safety Cell Overvoltage Permanent Fail	
	4.4	Safety Overcurrent in Charge Permanent Fail	
	4.5	Safety Overcurrent in Discharge Permanent Fail	
	4.6	Safety Overtemperature Cell Permanent Fail	
	4.7	Safety Overtemperature FET Permanent Fail	
	4.8	QMax Imbalance Permanent Fail	
	4.9	Cell Balancing Permanent Fail	
	4.10	Impedance Permanent Fail	
	4.11	Capacity Degradation Permanent Fail	
	4.12	Voltage Imbalance At Rest Permanent Fail	
	4.13	Voltage Imbalance Active Permanent Fail	
	4.14	Charge FET Permanent Fail	
	4.15	Discharge FET Permanent Fail	
	4.16	Chemical Fuse Permanent Fail	
	4.17	AFE Register Permanent Fail.	
	4.18	AFE Communication Permanent Fail	
	4.19	Second Level Protection Permanent Fail	
	4.20	Instruction Flash (IF) Checksum Permanent Fail	
	4.21	Data Flash (DF) Permanent Fail	
	4.22	Open Thermistor Permanent Fail (TS1, TS2, TS3, TS4)	
5		nced Charge Algorithm	
•	5.1	Introduction	
	5.2	Charge Temperature Ranges	
	5.3	Voltage Range	
	0.0	5.3.1 RelativeStateofCharge() Range	
	5.4	Charging Current	
	5.5	Charging Voltage	
	5.6	Valid Charge Termination	
	5.7	Charge and Discharge Termination Flags	
	5.8	Terminate Charge and Discharge Alarms	
	5.9	Precharge	
	5.9 5.10	Maintenance Charge	
	5.10	Charge Control SMBus Broadcasts	
	5.11 5.12	Charge Disable and Discharge Disable	
	5.12	Charge Inhibit	
	5.13	Charge Suspend	
	5.14 5.15	ChargingVoltage() Rate of Change	
	5.15	Onarying voltage() Nate or Onarige	41

	5.16	ChargingCurrent()	Rate of Change	47
	5.17	Charging Loss Co	ompensation	48
	5.18	Cycle Count/SOH	Based Degradation of Charging Voltage and Current	48
		5.18.1 Cycle Co	unt Based Degradation	48
		5.18.2 SOH Bas	ed Degradation	48
		5.18.3 Charging	Voltage Degradation Process	49
		5.18.4 Optional 0	Charging Current Degradation	49
			Current Degradation Process	
	5.19	•	· IR Drop in BMU	
	5.20	Cell Swelling Con	trol (via Charging Voltage Degradation)	50
6	Powe	r Modes		52
	6.1	Introduction		52
	6.2	NORMAL Mode		52
		6.2.1 BATTERY	PACK REMOVED Mode/System Present Detection	52
	6.3	SLEEP Mode		52
		6.3.1 Device Sle	eep	52
		6.3.2 IN SYSTE	M SLEEP Mode	53
		6.3.3 Manufactu	ırerAccess() MAC Sleep	54
		6.3.4 Wake Fun	ction	54
	6.4	SHUTDOWN Mod	de	54
			BASED SHUTDOWN	
			ırerAccess() MAC Shutdown	
			ed Shutdown	
			ve Shutdown	
	6.5		Unintended Wakeup from Shutdown	
	6.6		Shutdown (EMSHUT)	
			ergency FET Shutdown Through SHUTDN	
			ergency FET Shutdown Through MFC	
	0.7	•	gency FET Shutdown	
	6.7	ŭ		
7	_			
	7.1			
	7.2	•	Configuration	
	7.3	•	S	
	7.4			
			al Values	
		•	date Conditions	
			x Update Conditions	
			Fast Qmax Update Boundary Check	
			Initial Values	
			Update Conditions n of Resistance Scaling	
	7.5		ity(FCC), RemainingCapacity(RemCap), and RelativeStateOfCharge(RSOC)	
	7.5 7.6		Configuration Options	
		•	Configuration Options	
	7.7 7.8)	
	7.6 7.9		nt (BTP)	
	7.9 7.10	•	IR Compensation Scheme (to Prevent Premature Cell EDV Detection)	
	7.10 7.11		Option	
		•		
8		•		
	8.1		4	
	8.2	Cell Balancing Se	tup	72

	8.3 8.4	Alancing Multiple Cells
9	LED I	play
	9.1	troduction
		1.1 LED Display of State-of-Charge79
		1.2 LED Display of PF Error Code
		1.3 LED Display on Exit of a Reset
		1.4 LED Display Control Through ManufacturerAccess()
		1.5 LED Operation Under CUV Conditions
		1.6 LED Blinking Option for State of Charge
10	IATA	pport 82
	10.1	itiating IATA Shutdown (Before Shipping)82
	10.2	ter Wakeup (Charging Is Connected for a Short Period to Wake)
	10.3	TA Charging Control83
11	PRE-	SCHARGE Mode 84
	11.1	ardware Considerations84
	11.2	e-Discharge Function84
12	Paral	Protection FET85
	12.1	escription85
13	Gene	Purpose Input Output (GPIO) Capability86
	13.1	escription
	13.2	PIO Interrupt
14	Lifeti	Data Collection
• •	14.1	escription
15		Security 90
13	15.1	troduction
	15.1	HA-1 Description90
	10.2	5.2.1 HMAC Description 90
		5.2.2 SHA-1 Authentication 90
	15.3	liptic Curve Cryptography (ECC) Description
		5.3.1 ECC Authentication
	15.4	ecurity Modes91
		5.4.1 FULL ACCESS or UNSEALED to SEALED
		5.4.2 SEALED to UNSEALED92
		5.4.3 UNSEALED to FULL ACCESS
16	Manu	eture Production93
	16.1	anufacture Testing93
	16.2	alibration93
		S.2.1 Calibration Data Flash
17	Devic	SMBus Address 102
18	SBS	mmands
	18.1	00 ManufacturerAccess() and 0x44 ManufacturerBlockAccess()
		3.1.1 ManufacturerAccess() 0x0000
		3.1.2 ManufacturerAccess() 0x0001 Device Type
		3.1.3 ManufacturerAccess() 0x0002 Firmware Version
		3.1.4 ManufacturerAccess() 0x0003 Hardware Version
		3.1.5 ManufacturerAccess() 0x0004 Instruction Flash Signature
		3.1.6 ManufacturerAccess() 0x0005 Static DF Signature
		3.1.7 ManufacturerAccess() 0x0006 Chemical ID
		3.1.8 ManufacturerAccess() 0x0008 Static Chem DF Signature
		3.1.9 ManufacturerAccess() 0x0009 All DF Signature

18.1.10	ManufacturerAccess() 0x0010 SHUTDOWN Mode	106
18.1.11	ManufacturerAccess() 0x0011 SLEEP Mode	106
18.1.12	ManufacturerAccess() 0x0013 AutoCCOffset	107
18.1.13	ManufacturerAccess() 0x001C PDSG FET Toggle	107
18.1.14	ManufacturerAccess() 0x001D Fuse Toggle	
18.1.15	ManufacturerAccess() 0x001E PCHG FET Toggle	
18.1.16	ManufacturerAccess() 0x001F CHG FET Toggle	
18.1.17	ManufacturerAccess() 0x0020 DSG FET Toggle	
18.1.18	ManufacturerAccess() 0x0021 Gauging	
18.1.19	ManufacturerAccess() 0x0022 FET Control	
18.1.20	ManufacturerAccess() 0x0022 LET Control ManufacturerAccess() 0x0023 Lifetime Data Collection	
18.1.21	ManufacturerAccess() 0x0023 Ellerime Data Collection ManufacturerAccess() 0x0024 Permanent Failure	
18.1.22	ManufacturerAccess() 0x0024 Fermanent Failure	
18.1.23	V	
	ManufacturerAccess() 0x0026 Fuse	
18.1.24	ManufacturerAccess() 0x0027 LED DISPLAY Enable	
18.1.25	ManufacturerAccess() 0x0028 Lifetime Data Reset	
18.1.26	ManufacturerAccess() 0x0029 Permanent Fail Data Reset	
18.1.27	ManufacturerAccess() 0x002A Black Box Recorder Reset	
18.1.28	ManufacturerAccess() 0x002B LED TOGGLE	
18.1.29	ManufacturerAccess() 0x002C LED DISPLAY PRESS	
18.1.30	ManufacturerAccess() 0x002D CALIBRATION Mode	
18.1.31	ManufacturerAccess() 0x002E Lifetime Data Flush	
18.1.32	ManufacturerAccess() 0x002F Lifetime Data SPEED UP Mode	
18.1.33	ManufacturerAccess() 0x0030 Seal Device	
18.1.34	ManufacturerAccess() 0x0035 Security Keys	
18.1.35	ManufacturerAccess() 0x0037 Authentication Key	110
18.1.36	ManufacturerAccess() 0x0041 Device Reset	
18.1.37	ManufacturerAccess() 0x0050 SafetyAlert	
18.1.38	ManufacturerAccess() 0x0051 SafetyStatus	113
18.1.39	ManufacturerAccess() 0x0052 PFAlert	115
18.1.40	ManufacturerAccess() 0x0053 PFStatus	117
18.1.41	ManufacturerAccess() 0x0054 OperationStatus	119
18.1.42	ManufacturerAccess() 0x0055 ChargingStatus	
18.1.43	ManufacturerAccess() 0x0056 GaugingStatus	123
18.1.44	ManufacturerAccess() 0x0057 ManufacturingStatus	
18.1.45	ManufacturerAccess() 0x0058 AFE Register	
18.1.46	ManufacturerAccess() 0x005A No Load Rem Cap	
18.1.47	ManufacturerAccess() 0x0060 Lifetime Data Block 1	
18.1.48	ManufacturerAccess() 0x0061 Lifetime Data Block 2	
18.1.49	ManufacturerAccess() 0x0062 Lifetime Data Block 3	
18.1.50		
18.1.51	ManufacturerAccess() 0x0064 Lifetime Data Block 5	129
18.1.52	ManufacturerAccess() 0x0004 Ellerine Data Block 3	129
18.1.53	ManufacturerAccess() 0x0070 Manufactureriii0	129
18.1.54	ManufacturerAccess() 0x0071 DAStatus1	130
	V	
18.1.55	ManufacturerAccess() 0x0073 GaugingStatus1	130
18.1.56	ManufacturerAccess() 0x0074 GaugingStatus2	131
18.1.57	ManufacturerAccess() 0x0075 GaugingStatus3	132
18.1.58	ManufacturerAccess() 0x0076 CBStatus	132
18.1.59	ManufacturerAccess() 0x0077 State-of-Health	133
18.1.60	ManufacturerAccess() 0x0078 FilterCapacity	133
18.1.61	ManufacturerAccess() 0x0079 RSOCWrite	133
18.1.62	ManufacturerAccess() 0x007A ManufacturerInfoB	133

	18.1.63 ManufacturerAccess() 0x007B DAStatus3	134
	18.1.64 ManufacturerAccess() 0x007C GaugingStatus4	134
	18.1.65 ManufacturerAccess() 0x007D GaugingStatus5	135
	18.1.66 ManufacturerAccess() 0x0080 ManufacturerInfoC	135
	18.1.67 ManufacturerAccess() 0x0081 ManufacturerInfoD	135
	18.1.68 ManufacturerAccess() 0x0082 CurrentLong	
	18.1.69 ManufacturerAccess() 0x00F0 IATA_Shutdown	
	18.1.70 ManufacturerAccess() 0x00F1 IATA_Rm	
	18.1.71 ManufacturerAccess() 0x00F2 IATA_FCC	
	18.1.72 ManufacturerAccess() 0x00F3 IATA_Charge	
	18.1.73 ManufacturerAccess() 0x0F00 ROM Mode	
	18.1.74 ManufacturerAccess() 0x3008 WriteTemp	
	18.1.75 0x4000–0x5FFF DataFlashAccess	
	18.1.76 ManufacturerAccess() 0xF080 ExitCalibrationOutputMode	
	" · · · · · · · · · · · · · · · · · · ·	
	18.1.77 ManufacturerAccess() 0xF081 OutputCADCCal	
	18.1.78 ManufacturerAccess() 0xF082 OutputShortedCCADCCal	
	18.1.79 ManufacturerAccess() 0xF083 OutputCCADCCal	
18.2	0x01 RemainingCapacityAlarm()	
18.3	0x02 RemainingTimeAlarm()	
18.4	0x03 BatteryMode()	
18.5	0x04 AtRate()	
18.6	0x05 AtRateTimeToFull()	
18.7	0x06 AtRateTimeToEmpty()	141
18.8	0x07 AtRateOK()	141
18.9	0x08 Temperature()	141
18.10	0x09 Voltage()	142
18.11	0x0A Current()	142
18.12	0x0B AverageCurrent()	142
18.13	0x0C MaxError()	142
18.14	0x0D RelativeStateOfCharge()	142
18.15	0x0E AbsoluteStateOfCharge()	142
18.16	0x0F RemainingCapacity()	143
18.17	0x10 FullChargeCapacity()	143
18.18	0x11 RunTimeToEmpty()	143
18.19	0x12 AverageTimeToEmpty()	143
18.20	0x13 AverageTimeToFull()	144
18.21	0x14 ChargingCurrent()	144
	0x15 ChargingVoltage()	144
	0x16 BatteryStatus()	
	0x17 CycleCount()	
18.25	0x18 DesignCapacity()	
18.26	0x19 DesignVoltage()	146
18.27	0x1A SpecificationInfo()	146
18.28	0x1B ManufacturerDate()	147
18.29	0x1C SerialNumber()	147
18.30	"	147
18.31	V	147
	0x22 DeviceChemistry()	147
	0x23 ManufacturerData()	147
	0x27 AuthChallenge()	147
	·	148
	0x2F Authenticate()	
18.37	UX.5G CERVORAGE411	148

18.38	0x3D CellVoltage3()	148
18.39	0x3E CellVoltage2()	148
18.40	0x3F CellVoltage1()	148
18.41	0x46 ADC1Read()	149
18.42	0x47 ADC2Read()	149
18.43	V	
18.44	· ·	
18.45	"	
_	v.	
	·	
	· · · · · · · · · · · · · · · · · · ·	
	v ·	
	<u>v</u>	
	 "	
	"	
	V	
18.59	V	
18.60	·	
18.61	v	
18.62	v.	
18.63	0x5F SusTurboCurr()	153
18.64	0x60 LifetimeDataBlock1()	153
18.65	0x61 LifetimeDataBlock2()	153
18.66	0x62 LifetimeDataBlock3()	153
18.67	0x63 LifetimeDataBlock4()	153
18.68	0x64 LifetimeDataBlock5()	153
18.69	0x70 ManufacturerInfo()	154
18.70	0x71 DAStatus1()	154
18.71	0x72 DAStatus2()	154
18.72	0x73 GaugingStatus1()	154
18.73	,	
18.74	0 0 0	
18.75		155
	· ·	
	V	
	· · · · · · · · · · · · · · · · · · ·	155
	u .	155
	V	
	"	
	"	
		157
19.1		
	19.1.1 Unsigned Integer	
	19.1.2 Integer	157
	19.1.3 Floating Point	
	18.39 18.40 18.41 18.42 18.43 18.44 18.45 18.46 18.47 18.48 18.49 18.50 18.51 18.52 18.53 18.54 18.55 18.56 18.57 18.58 18.59 18.60 18.61 18.62 18.63 18.64 18.65 18.66 18.67 18.68 18.69 18.70 18.71 18.72 18.73 18.74 18.75 18.78 18.79 18.80 18.81 18.82 18.83 18.84 Data	8.40 0x3F CellVoltage1()

	19.1.5 String	158
19.2	Settings	158
	19.2.1 Configuration	158
	19.2.2 Fuse	175
	19.2.3 BTP	179
	19.2.4 Protection	
	19.2.5 Permanent Failure	
	19.2.6 AFE	
	19.2.7 ZVCHG Exit Threshold	
19.3	Manufacturing	
19.5	19.3.1 Manufacturing Status Init	
19.4	Current Scaling	
19.4		
40.5		
19.5	Advanced Charging Algorithm	
	19.5.1 Temperature Ranges	
	19.5.2 Low Temp Charging	
	19.5.3 Standard Temp Low Charging	
	19.5.4 Standard Temp High Charging	
	19.5.5 High Temp Charging	
	19.5.6 Rec Temp Charging	
	19.5.7 PreCharging	
	19.5.8 Maintenance Charging	
	19.5.9 Voltage Range	192
	19.5.10 Termination Config	192
	19.5.11 Charging Rate of Change	193
	19.5.12 Charge Loss Compensation	193
	19.5.13 Cell Balancing Config	193
	19.5.14 Degrade Mode 1	195
	19.5.15 Degrade Mode 2	196
	19.5.16 Degrade Mode 3	197
	19.5.17 IR Correction	197
	19.5.18 CS Degrade	
19.6	Power	199
	19.6.1 Power	
	19.6.2 Shutdown	
	19.6.3 Sleep	
	19.6.4 Ship	
	19.6.5 Power Off	
	19.6.6 Manual FET Control	
	19.6.7 PDSG Timeout	
	19.6.8 PDSG Level	
	19.6.9 IATA	
	19.6.10 IATA STORE	
	19.6.11 Unintended Wakeup	
19.7	LED Support	
19.7	19.7.1 LED Config	
10.0	G	
19.8	System Data	
	19.8.1 Manufacturer Info	
	19.8.2 Manufacturer Info B	
	19.8.3 Manufacturer Info C	
	19.8.4 Manufacturer Info D	
	19.8.5 Static DF Signature	
	19.8.6 Static Chem DF	208

	19.8.7 A	All DF Signature	208
19.9	Lifetimes		209
	19.9.1 V	/oltage	209
	19.9.2 C	Current	211
	19.9.3 T	- emperature	212
	19.9.4	Safety Events	213
	19.9.5 C	Charging Events	216
		Gauging Events	
		Power Events	
		Cell Balancing	
		ime	
19.10		ns	
		CUV—Cell Undervoltage	
		CUVC—Cell Undervoltage	
		COV—Cell Overvoltage	
		OCC1—Overcurrent In Charge 1	
		OCC2—Overcurrent In Charge 2	
		OCC—Overcurrent In Charge Recovery	
		OCD1—Overcurrent In Discharge 1	
		OCD2—Overcurrent In Discharge 2	
		OCD—Overcurrent In Discharge Recovery	
		AOLD—Overload in Discharge	
	19.10.10	ASCC—Short Circuit In Charge	
		ASCD—Short Circuit in Charge	
	19.10.12	•	
	19.10.14	· · · · · · · · · · · · · · · · · · ·	
	19.10.15		
	19.10.16		
	19.10.17		
	19.10.18	HWD—Host Watchdog	
	19.10.19		
	19.10.20	S	
	19.10.21	OC—Overcharge	
		CHGV—ChargingVoltage	
		CHGC—ChargingCurrent	
	_	PCHGC—Pre-ChargingCurrent	
19.11		nt Fail	234
		SUV—Safety Cell Undervoltage	
		SOV—Safety Cell Overvoltage	
		SOCC—Safety Overcurrent in Charge	
		SOCD—Safety Overcurrent in Discharge	
		SOT—Overtemperature Cell	
		SOTF—Overtemperature FET	
		Open Thermistor—NTC Thermistor Failure	
		QIM—QMax Imbalance	
	19.11.9	CB—Cell Balance	237
	19.11.10	VIMR—Voltage Imbalance At Rest	237
	19.11.11	VIMA—Voltage Imbalance Active	
	19.11.12	IMP—Impedance Imbalance	239
	19.11.13	1 , 5	239
	19.11.14	CFET—CHG FET Failure	240
	19.11.15	DFET—DFET Failure	240
	19.11.16	FUSE—FUSE Failure	240

evision	ı History	310
Sa	ample Filter Settings	309
Α.:	,	307
A.:	3 ()	307
A.		306
	,	306
10	.17 Data Flash Summary	282
13	19.16.1 Data	279
19	.16 SBS Configuration	279
	19.15.14 R_a6x	279
	19.15.13 R_a5x	278
	19.15.12 R_a4x	277
	19.15.11 R_a3x	
	19.15.10 R_a2x	
	19.15.9 R_a1x	
	19.15.8 R_a0x	
	19.15.7 R_a6	
	19.15.6 R_a5	
	19.15.5 R_a4	
	19.15.4 R_a3	
	19.15.3 R_a2	
	19.15.2 R_a1	
	19.15.1 R_a0	269
19	.15 RA Table	269
	19.14.14 Turbo Cfg	268
	19.14.13 SOH	268
	19.14.12 Max Error	267
	19.14.11 Condition Flag	267
	19.14.10 IT Config	
	19.14.9 Cycle Count	
	19.14.8 State	
	19.14.7 TC	
	19.14.6 TD	
	19.14.5 FC	
	19.14.4 FD	
	19.14.3 Cycle	
	19.14.2 Design	
	19.14.1 Current Thresholds	
19	.14 Gas Gauging	
	19.13.2 PF Status	
	19.13.1 Safety Status	252
19	.13 Black Box	252
	19.12.6 AFE Regs	
	19.12.5 Device Gauging Data (at the Time of PF Event)	
	19.12.4 Device Temperature Data (at the Time of PF Event)	
	19.12.3 Device Current Data	
	19.12.2 Device Voltage Data (at the Time of PF Event)	
	19.12.1 Device Status Data	
19	.12 PF Status	
	19.11.19 2LVL—2nd Level OV	
	19.11.18 AFEC—AFE Communication.	
	19.11.17 AFER—AFE Register	

Preface

Read this First

This manual discusses the bq40z80 device's modules and peripherals, and how each is used to build a complete battery pack gas gauge and protection solution. See the *bq40z80 2-Series to 7-Series Li-Ion Battery Pack Manager Data Sheet* (SLUSBV4) for bq40z80 electrical specifications.

Notational Conventions

The following notation is used if SBS commands and data flash values are mentioned within a text block:

- SBS commands: italics with parentheses and no breaking spaces; for example, RemainingCapacity()
- Data flash: italics, bold, and breaking spaces; for example, Design Capacity
- Register bits and flags: italics and brackets; for example, [TDA]
- Data flash bits: italics and bold; for example, [LED1]
- Modes and states: ALL CAPITALS; for example, UNSEALED

The reference format for SBS commands is: SBS:Command Name(Command No.): Manufacturer Access(MA No.)[Flag]; for example:

SBS:Voltage(0x09), or SBS:ManufacturerAccess(0x00): Seal Device(0x0020)

The bq40z80 pinout is shown below, mapped to the generic I/O names used in this document.

bq40z80 Pin Mapping Reference

Pin Number	bq40z80 Pin Name	TRM Pin Reference
10	TS1	RC0 or AD0
11	TS2	RC1 or AD1
12	V7SENSE/TS3/ADCIN1/GPIO	RC2 or AD2
13	DISP/TS4/ADCIN2/GPIO	RC3 or AD3
15	VC7EN/DISP/GPIO	RH2
16	CB7EN/PDSG/GPIO	RH1
17	PRES/SHUTDN/DISP/GPIO	RH0
20	LEDCNTLA/PDSG/GPIO	RL0
21	LECDNTLB/GPIO	RL1
22	LEDCNTLC/GPIO	RL2

Trademarks

Impedance Track is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

Glossary

TI Glossary—This glossary lists and explains terms, acronyms, and definitions.

Introduction

The bq40z80 device provides a feature-rich gas gauging solution for 2-series cell to 7-series cell battery-pack applications. The bq40z80 device has extended capabilities, including:

- Fully Integrated 2-Series to 7-Series Li-Ion or Li-Polymer Cell Battery Pack Manager and Protection
- Next-Generation Patented Impedance Track[™] Technology Accurately Measures Available Charge in Li-Ion and Li-Polymer Batteries
- High-Side N-CH Protection FET Drive
- · Integrated Cell Balancing While Charging or At Rest
- Low Power Modes
 - LOW POWER
 - SLEEP
- Full Array of Programmable Protection Features
 - Voltage
 - Current
 - Temperature
 - Charge Timeout
 - CHG/DSG FETs
 - Cell Imbalance
- Sophisticated Charge Algorithms
 - JEITA
 - Advanced Charging Algorithm
- Diagnostic Lifetime Data Monitor
- Black Box Event Recorder
- Supports Two-Wire SMBus v1.1 Interface
- Elliptic Curve Cryptography (ECC) Authentication
- SHA-1 Authentication
- Ultra-Compact Package: 32-Lead QFN

System Multifunction Pin Configurations

2.1 Introduction

The bq40z80 device includes several multifunction pins that can accommodate different system and feature configurations. The multifunction pins' functionality is configured in **Settings:Pin Configuration**. Table 2-1 shows examples of the combinations of the multifunction pins' capabilities.

Number of Cells	Number of Thermistors	LEDs	LED Button	Pre-Discharge FET	System Present
1 s–6 s	4	Yes	Yes	Yes	Yes
7 s	3	Yes	Yes	No	No
7 s	2	Yes	Yes	No	Yes
7 s	2	Yes	Yes	Yes	No
7 s	3	Yes	No	Yes	No
7 s	3	Yes	No	Yes	Yes
7 s	3	No	No	Yes	Yes

Table 2-1. Example Multifunction Pins Usage

2.2 RC2 (Pin 12) Multifunctions

The RC2 pin (pin 12) in the bq40z80 device supports four multifunctions. Configure **Settings:Pin Configuration[MFP12_SEL0][MFP12_SEL1][MFP12_SEL2]** to select one of the following four options for this pin.

2.2.1 Cell-7 Input (VC7SENSE)

Set **Settings:Pin Configuration[MFP12_SEL0][MFP12_SEL1][MFP12_SEL2]** = 000 to select VC7SENSE. When this mode is selected, the pin is used as an ADC input to digitize the output of an external divider from the top of the stack when a 7-s cell configuration is used. For the best ADC performance, the voltage at this pin should be limited to between 0 V and 1.0 V. In this mode, the top of the stack can be a maximum of 32 V, so a divider of approximately 32:1 or larger is required. The external divider is enabled by an NFET switch controlled using the VC7EN signal from the bq40z80 device.

2.2.2 Thermistor Input (TS3)

Set **Settings:Pin Configuration[MFP12_SEL0][MFP12_SEL1][MFP12_SEL2]** = 001 to select TS3. When this mode is selected, the pin is used as a third thermistor input to measure the temperature.

2.2.3 ADC Input (ADCIN1)

Set **Settings:Pin Configuration[MFP12_SEL0][MFP12_SEL1][MFP12_SEL2]** = 010 to select ADCIN1. When this mode is selected, the pin is used as a general purpose ADC input using V_{REF1} as reference with an allowed range of 0 V to 1.0 V. When this mode is selected, the read-only command ADC1Read() (0x46) returns raw ADC data from the last measurement. The ADC measurement is performed every 250 ms.

2.2.4 General Purpose Input Output (GPIO)

Set **Settings:Pin Configuration[MFP12_SEL0][MFP12_SEL1][MFP12_SEL2]** = 011 to select GPIO (default setting). When this mode is selected, the pin can be used as a general purpose input or output pin. The level of the pin is shown in the data returned by the read-only command *GPIORead()* (0x48). If the pin is used as an output, then it can be configured as an output driven low, an output driven high, or to the HIGH-Z state by writing to the command *GPIOWrite()* (0x49).

NOTE

Settings:Pin Configuration[MFP12_SEL0][MFP12_SEL1][MFP12_SEL2] = 1xx are unused settings and cause the pin to be configured as input in the HIGH-Z state.

2.3 RC3 (Pin 13) Multifunctions

The RC3 pin (pin 13) in bq40z80 supports four multifunctions. Configure **Settings:Pin Configuration[MFP13_SEL0][MFP13_SEL1][MFP13_SEL2]** to select one of the following four options for this pin.

2.3.1 LED Display Button (DISP)

Set **Settings:Pin Configuration[MFP13_SEL0][MFP13_SEL1][MFP13_SEL2]** = 000 to select $\overline{\text{DISP}}$. When this mode is selected, the pin is used for an LED display button function. In this mode, a normally opened switch button is connected between this pin and VSS. When the button is pressed, the pin is shorted to VSS. This pin includes an internal 18-k Ω pullup resistor to the internal LDO, which biases the pin high when the button is not pressed. The gauge monitors the pin periodically to detect when the button has been pressed, and then enables the LEDs while it is held.

2.3.2 Thermistor Input (TS4)

Set **Settings:Pin Configuration[MFP13_SEL0][MFP13_SEL1][MFP13_SEL2]** = 001 to select TS4. When this mode is selected, the pin is used as a fourth thermistor input to measure the temperature.

2.3.3 ADC Input (ADCIN2)

Set **Settings:Pin Configuration[MFP13_SEL0][MFP13_SEL1][MFP13_SEL2]** = 010 to select ADCIN2. When this mode is selected, the pin is used as a general purpose ADC input using V_{REF1} as reference with an allowed range of 0 V to 1.0 V. When this mode is selected, the read-only command ADC2Read() (0x47) returns raw ADC data from the last measurement. The ADC measurement is performed every 250 ms.

2.3.4 General Purpose Input Output (GPIO)

Set **Settings:Pin Configuration[MFP13_SEL0][MFP13_SEL1][MFP13_SEL2]** = 011 to select GPIO (default setting). When this mode is selected, the pin can be used as a general purpose input or output pin. The level of the pin is shown in the data returned by the read-only command *GPIORead()* (0x48). If the pin is used as an output, then it can be configured as an output driven low, an output driven high, or in the HIGH-Z state by writing to the command *GPIOWrite()* (0x49).

NOTE

Settings:Pin Configuration[MFP13_SEL0][MFP13_SEL1][MFP13_SEL2] = 100, 101, 110, or 111 are unused settings and cause the pin to be configured as input in the HIGH-Z state.

2.4 RH2 (Pin 15) Multifunctions

The RH2 pin (pin 15) in the bq40z80 device supports three multifunctions. Configure **Settings:Pin Configuration[MFP15 SEL0][MFP15 SEL1]** to select one of the following three options for this pin.

2.4.1 Cell-7 Enable (VC7EN)

Set **Settings:Pin Configuration[MFP15_SEL0][MFP15_SEL1]** = 00 to select VC7EN. When this mode is selected, the pin is used as an enable pin to control an NFET gate. The NFET enables/disables the external resistor divider, which translates the cell-7 positive terminal to a voltage between 0 V and 1.0 V to be digitized by the VC7SENSE pin. This pin is driven high to turn on the NFET and enable the divider. It is driven low to turn off the NFET and to disable the divider. The pulldown resistor to VSS ensures that the NFET gate turns off when the pin is driven high-Z (when the device is in SHUTDOWN).

2.4.2 LED Display Button (DISP)

Set **Settings:Pin Configuration[MFP15_SEL0][MFP15_SEL1]** = 01 to select DISP. When this mode is selected, the pin is used for an LED display button function. In this mode, a normally opened switch button is connected between this pin and VSS, and when the button is pressed, the pin is shorted to VSS. This pin includes an internal weak pullup capability, which biases the pin high when the button is not pressed. The gauge detects when the button is pressed and enables the LEDs while it is pressed.

2.4.3 General Purpose Input Output (GPIO)

Set **Settings:Pin Configuration[MFP15_SEL0][MFP15_SEL1]** = 10 to select GPIO (default setting). When this mode is selected, the pin can be used as a general purpose input or output pin. The level of the pin is shown in the data returned by the read-only command *GPIORead()* (0x48). If the pin is used as an output, then it can be configured as an output driven low, an output driven high, or to the HIGH-Z state by writing to the command *GPIOWrite()* (0x49).

NOTE: Settings:Pin Configuration[MFP15_SEL0][MFP15_SEL1] = 11 is an unused setting and causes the pin to be configured as input in the HIGH-Z state.

2.5 RH1 (Pin 16) Multifunctions

The RH1 pin (pin 16) supports three multifunctions. Configure **Settings:Pin Configuration[MFP16 SEL0][MFP16 SEL1]** to select one of the following three options for this pin.

2.5.1 Cell-7 Balance Enable (CB7EN)

Set **Settings:Pin Configuration[MFP16_SEL0][MFP16_SEL1]** = 00 to select CB7EN. When this mode is selected, the pin is used as an enable pin to cause an NFET to pull down a PFET gate. The PFET enables/disables the external cell balancing circuit for Cell 7. This pin is driven high to turn on the NFET and PFET and to enable cell balancing. This pin is driven low to turn off the NFET and to let the PFET gate be pulled high, disabling the divider. A pullup resistor from the PFET gate to BAT ensures that the PFET gate turns off when the pin is driven low and the NFET is off. A pulldown resistor from the NFET gate to VSS ensures that the NFET turns off while the gauge is in SHUTDOWN (and this pin is high-Z).

2.5.2 Pre-Discharge (PDSG)

Set **Settings:Pin Configuration[MFP16_SEL0][MFP16_SEL1]** = 01 to select PDSG. When this mode is selected, the pin is used as an enable pin to cause an NFET to pull down a PFET gate. The PFET enables/disables PRE-DISCHARGE mode to slowly charge up the load before the DSG FET is turned on. This pin is driven low to turn off the NFET and to let the PFET gate be pulled high, disabling PRE-DISCHARGE mode. It is driven high to turn on the NFET and PFET and to enable PRE-DISCHARGE mode. A pullup resistor from the PFET gate to BAT ensures that the PFET gate turns off when the pin is driven low and the NFET is off. A pulldown resistor from the NFET gate to VSS ensures that the NFET turns off while the gauge is in SHUTDOWN (and this pin is high-Z).

2.5.3 General Purpose Input Output (GPIO)

Set Settings:Pin Configuration[MFP16 SEL0][MFP16 SEL1] = 10 to select GPIO (default setting). When this mode is selected, the pin can be used as a general purpose input or output pin. The level of the pin is shown in the data returned by the read-only command GPIORead() (0x48). If the pin is used as an output, then it can be configured as an output driven low, an output driven high, or to the HIGH-Z state by writing to the command GPIOWrite() (0x49).

NOTE: Settings:Pin Configuration[MFP16_SEL0][MFP16_SEL1] = 11 is an unused setting and cause the pin to be configured as input in HIGH-Z state.

2.6 **RH0 (Pin 17) Multifunctions**

The RH0 pin (pin 17) supports five multifunctions. Configure Settings:Pin Configuration[MFP17 SEL0][MFP17 SEL1][MFP17 SEL2] to select one of the following five options for this pin.

2.6.1 System Present (PRES)

Set **Settings:Pin Configuration[MFP17_SEL0][MFP17_SEL1][MFP17_SEL2]** = 000 to select PRES. When this mode is selected, the pin is used to determine whether the battery pack is inserted in a system. The PRES pin is sampled four times per second, and if PRES is high for four samples (one second), OperationStatus[PRES] is cleared. If PRES is low for four samples (one second), OperationStatus[PRES] is set, indicating the system is present (the battery is inserted).

2.6.2 Emergency FET Shutdown (SHUTDN)

Set Settings:Pin Configuration[MFP17_SEL0][MFP17_SEL1][MFP17_SEL2] = 001 to select. When this mode is selected, the pin is used to put the bq40z80 device into an emergency FET SHUTDOWN state. When a high-to-low transition on the SHUTDN pin is detected with a debounce delay of about 1 s for the low level threshold, the gauge turns off the CHG and DSG FETs immediately.

2.6.3 LED Display Button (DISP)

Set Settings:Pin Configuration[MFP17 SEL0][MFP17 SEL1][MFP17 SEL2] = 010 to select DISP. When this mode is selected, the pin is used for an LED display button function. In this mode, a normally opened switch button is connected between this pin and VSS, and when the button is pressed, the pin is shorted to VSS. This pin includes an internal weak pullup capability, which biases the pin high when the button is not pressed. The gauge detects when the button is pressed and enables the LEDs while it is held.

2.6.4 Pre-Discharge (PDSG)

Set Settings:Pin Configuration[MFP17 SEL0][MFP17 SEL1][MFP17 SEL2] = 011 to select PDSG. When this mode is selected, the pin is used as an enable pin to cause an NFET to pull down a PFET gate. The PFET enables/disables PRE-DISCHARGE mode to slowly charge up the load before the DSG FET is turned on. This pin is driven low to turn off the NFET and to let the PFET gate to be pulled high, disabling PRE-DISCHARGE mode. It is driven high to turn on the NFET and PFET and to enable PRE-DISCHARGE mode. A pullup resistor from the PFET gate to BAT ensures that the PFET gate turns off when the pin is driven low and the NFET is off. A pulldown resistor from the NFET gate to VSS ensures that the NFET turns off while the gauge is in SHUTDOWN (and the pin is high-Z).

2.6.5 General Purpose Input Output (GPIO)

Set Settings:Pin Configuration[MFP17 SEL0][MFP17 SEL1][MFP17 SEL2] = 100 to select GPIO (default setting). When this mode is selected, the pin can be used as a general purpose input or output pin. The level of pin is reflected in the data returned by the read-only command GPIORead() (0x48). If the pin is used as an output, then it can be configured as an output driven low, an output driven high or HIGH-Z state by writing to command *GPIOWrite()* (0x49).

NOTE: Settings:Pin Configuration[MFP17_SEL0][MFP17_SEL1][MFP17_SEL2] = 101, 110, or 111 are unused settings and cause the pin to be configured as input in HIGH-Z state.

RLX (Pins 20, 21, 22) Multifunctions 2.7

The RL0, RL1 and RL2 pins (pins 20, 21, 22) support three multifunctions. Configure Settings:Pin Configuration[MFP20 SEL0][MFP20 SEL1][MFP20 SEL2] to select the following three options for this

2.7.1 LEDs

Set Settings:Pin Configuration[MFP20 SEL0][MFP20 SEL1][MFP20 SEL2] = 000 to select LEDs. When this mode is selected, the pins LEDCNTLA (pin-20), LEDCNTLB(pin-21), LEDCNTLC(pin-22) are used as LED pins.

2.7.2 General Purpose Input Output (GPIO)

Set Settings:Pin Configuration[MFP20 SEL0][MFP20 SEL1][MFP20 SEL2] = 001 to select GPIO (default setting). When this mode is selected, the pin can be used as a general purpose input or output pin. The level of pin is reflected in the data returned by read-only command GPIORead() (0x48). If the pin is used as an output, then it can be configured as an output driven low, an output driven high, or to the HIGH-Z state by writing to command *GPIOWrite()* (0x49).

2.7.3 General Purpose Input Out (GPIO) and Pre-Discharge (PDSG)

Set Settings:Pin Configuration[MFP20 SEL0][MFP20 SEL1][MFP20 SEL2] = 010 to select GPIO or PDSG. When this mode is selected, the LEDCNTLB and LEDCNTLC pins can be used as general purpose single-bit inputs or outputs and LEDCNTLA is used as PDSG. When PDSG mode is selected, the LEDCNTLA pin is used as an enable pin to control a PFET gate. The PFET enables/disables a PRE-DISCHARGE mode to slowly charge up the load before the DSG FET is turned on. This pin is driven low to turn on the PFET and to enable PRE-DISCHARGE mode. It is driven high to turn off the PFET. The PFET will need a resistive pullup to keep it turned off while the gauge is in SHUTDOWN (then the pin is in HIGH-Z mode).

Settings:Pin Configuration[MFP20 SEL0][MFP20 SEL1][MFP20 SEL2] = 011 or 1xx NOTE: are unused settings and cause the pin to be configured as input in HIGH-Z state.

All three RLX pins must be selected together as (1) LED pins or (2) GPIO or (3) GPIO+PDSG. It is not possible for a subset of the pins to be used for a LED drive (in charlieplexing mode) and the remainder to be used as GPIO. However, if they are used as GPIO, it is possible for a subset of the pins to be configured as inputs, while the remaining pins are configured as outputs. It is also possible for a pin to be configured as GPIO and used to power an LED (just not using charlieplexing). The LED support is expanded to allow up to six LEDs.

Protections

3.1 Introduction

The bq40z80 provides recoverable protection. When the protection is triggered, charging and/or discharging is disabled. This is indicated by the *OperationStatus()[XCHG]* = 1 when charging is disabled, and/or the *OperationStatus()[XDSG]* = 1 when discharging is disabled. Once the protection is recovered, charging and discharging resume. All protection items can be enabled or disabled under **Settings:Enabled Protections A**, **Settings:Enabled Protections B**, **Settings:Enabled Protections C**, and **Settings:Enabled Protections D**.

When the protections and permanent fails are triggered, the *BatteryStatus()[TCA][TDA][FD][OCA][OTA]* is set according to the type of safety protections. A summary of the set conditions of the various alarms flags is available in Section 5.8.

NOTE: A delay setting with 1-s granularity can have an average trigger delay equal to the delay setting plus 1.5 s.

3.2 Cell Undervoltage Protection

The bq40z80 device can detect cell undervoltage in batteries and protect cells from damage by preventing further discharge.

Status	Condition	Action
Normal	Min cell voltage17 > CUV:Threshold	SafetyAlert()[CUV] = 0 BatteryStatus()[TDA] = 0
Alert	Min cell voltage17 ≤ <i>CUV:Threshold</i>	SafetyAlert()[CUV] = 1 BatteryStatus()[TDA] = 1
Trip	Min cell voltage17 ≤ CUV:Threshold for CUV:Delay duration	SafetyAlert()[CUV] = 0 SafetyStatus()[CUV] = 1 BatteryStatus()[FD] = 1, [TDA] = 0 OperationStatus()[XDSG] = 1
	Condition 1: SafetyStatus()[CUV] = 1 AND Min cell voltage17 ≥ CUV:Recovery AND Protection Configuration[CUV_RECOV_CHG] = 0	SafetyStatus()[CUV] = 0
Recovery	OR Condition 2: SafetyStatus()[CUV] = 1 AND Min cell voltage17 ≥ CUV:Recovery AND Protection Configuration[CUV_RECOV_CHG] = 1 AND Charging detected (that is, BatteryStatus()[DSG] = 0)	BatteryStatus()[FD] = 0, [TDA] = 0 OperationStatus()[XDSG] = 0

3.3 Cell Undervoltage Compensated Protection

The bq40z80 device can detect cell undervoltage in batteries and protect cells from damage by preventing further discharge. The protection is compensated by the *Current()* × Cell Resistance1..7.

Status	Condition	Action
Normal	Min cell voltage17 – Current() × Cell Resistance > CUVC: Threshold	SafetyAlert()[CUVC] = 0 BatteryStatus()[TDA] = 0
Alert	Min cell voltage17 – Current() × Cell Resistance ≤ CUVC: Threshold	SafetyAlert()[CUVC] = 1 BatteryStatus()[TDA] = 1

Status	Condition	Action
Trip	Min cell voltage17 – Current() × Cell Resistance ≤ CUVC: Threshold for CUVC:Delay duration	SafetyAlert()[CUVC] = 0 SafetyStatus()[CUVC] = 1 BatteryStatus()[FD] = 1, [TDA] = 0 OperationStatus()[XDSG] = 1
	Condition 1: SafetyAlert()[CUVC] = 1 AND Min cell voltage17 – Current() × Cell Resistance > CUVC: Recovery AND Protection Configuration[CUV_RECOV_CHG] = 0	SafetyStatus()[CUVC] = 0
Recovery	OR Condition 2: SafetyAlert()[CUVC] = 1 AND Min cell voltage17 - Current() × Cell Resistance > CUVC: Recovery AND Protection Configuration[CUV_RECOV_CHG] = 1 AND Charging detected (that is, BatteryStatus()[DSG] = 0)	BatteryStatus()[FD] = 0, [TDA] = 0 OperationStatus()[XDSG] = 0

3.4 **Cell Overvoltage Protection**

The bq40z80 device can detect cell overvoltage in batteries and protect cells from damage by preventing further charging.

NOTE: The protection detection threshold may be influenced by the temperature settings of the advanced charging algorithm and the measured temperature. Additionally, this protection feature can be enabled to create a PF by setting the [COVL] bit in the Enabled PF A register.

Status	Condition	Action	
Normal, ChargingStatus()[UT] or [LT] = 1	Max cell voltage17 < COV:Threshold Low Temp		
Normal, ChargingStatus()[STL] = 1	Max cell voltage17 < COV:Threshold Standard Temp Low	SafetyAlert()[COV] = 0	
Normal, ChargingStatus()[STH] = 1	Max cell voltage17 < COV:Threshold Standard Temp High	7 < COV:Threshold Standard Temp High Decrement COVL counter by one after each COV:Counter Dec Delay	
Normal, ChargingStatus()[RT] = 1	Max cell voltage17 < COV:Threshold Rec Temp		
Normal, ChargingStatus()[HT] or [OT] = 1	Max cell voltage17 < COV:Threshold High Temp		
Alert, ChargingStatus()[UT] or [LT] = 1	Max cell voltage17 ≥ COV:Threshold Low Temp		
Alert, ChargingStatus()[STL] = 1	Max cell voltage17 ≥ COV:Threshold Standard Temp Low		
Alert, ChargingStatus()[STH] = 1	Max cell voltage17 ≥ COV:Threshold Standard Temp High	SafetyAlert()[COV] = 1 BatteryStatus()[TCA] = 1	
Alert, ChargingStatus()[RT] = 1	Max cell voltage17 ≥ COV:Threshold Rec Temp		
Alert, ChargingStatus()[HT] or [OT] = 1	Max cell voltage17 ≥ COV:Threshold High Temp		
Trip, ChargingStatus()[UT] or [LT] = 1	Max cell voltage17 ≥ COV:Threshold Low Temp for COV:Delay duration		
Trip, ChargingStatus()[STL] = 1	Max cell voltage17 ≥ COV:Threshold Standard Temp Low for COV:Delay duration	SafetyAlert()[COV] = 0	
Trip, ChargingStatus()[STH] = 1	Max cell voltage17 ≥ COV:Threshold Standard Temp High for COV:Delay duration	SafetyStatus()[COV] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1	
Trip, ChargingStatus()[RT] = 1	Max cell voltage17≥ COV:Threshold Rec Temp for COV:Delay duration	Increment COVL counter	
Trip, ChargingStatus()[HT] or [OT] = 1	Max cell voltage17 ≥ COV:Threshold High Temp for COV:Delay duration		

Status	Condition	Action
Recovery, ChargingStatus()[UT] or [LT] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage17 ≤ COV:Recovery Low Temp	
Recovery, ChargingStatus()[STL] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage17 ≤ COV:Recovery Standard Temp Low	
Recovery, ChargingStatus()[STH] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage17 ≤ COV:Recovery Standard Temp High	SafetyStatus()[COV] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0
Recovery, ChargingStatus()[RT] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage17 ≤ COV:Recovery Rec Temp	oporation ciataoty promoti
Recovery, ChargingStatus()[HT] or [OT] = 1	SafetyStatus()[COV] = 1 AND Max cell voltage17 ≤ COV:Recovery High Temp	
Latch Alert	COVL counter > 0	SafetyAlert()[COVL] = 1 if EnabledProtections[COVL] is set. PFAlert()[COVL] = 1 if EnabledPF[COVL] is set.
Latch Trip	COVL counter ≥ COV:Latch limit	SafetyStatus()[COVL] = 1 if EnabledProtections[COVL] is set. PFStatus()[COVL] = 1 if EnabledPF[COVL] is set. PFAlert()[COVL] = 0 SafetyAlert()[COVL] = 0 OperationStatus()[XCHG] = 1
Latch Reset([NR]=0)	SafetyStatus()[COVL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[COVL] = 0 Reset COVL counter. OperationStatus[XCHG] = 0 if SafetyStatus()[COV] = 0
Latch Reset([NR]=1)	(SafetyStatus()[COVL] = 1 AND DA Configuration[NR] = 1 for OCD:Reset time	SafetyStatus()[COVL] = 0 Reset COVL counter. OperationStatus[XCHG] = 0 if SafetyStatus()[COV] = 0

3.5 Overcurrent in Charge Protection

The bq40z80 device has two independent overcurrent in charge protections that can be set to different current and delay thresholds to accommodate different charging behaviors.

Status	Condition	Action
Normal	Current() < OCC1:Threshold	SafetyAlert()[OCC1] = 0
Normal	Current() < OCC2:Threshold	SafetyAlert()[OCC2] = 0
Alert	Current() ≥ OCC1:Threshold	SafetyAlert()[OCC1] = 1 BatteryStatus()[TCA] = 1
Alert	Current() ≥ OCC2:Threshold	SafetyAlert()[OCC2] = 1 BatteryStatus()[TCA] = 1
Trip	Current() continuous ≥ OCC1:Threshold for OCC1:Delay duration	SafetyAlert()[OCC1] = 0 SafetyStatus()[OCC1] = 1 BatteryStatus()[TCA] = 0 Charging is not allowed. OperationStatus()[XCHG] = 1
Trip	Current() continuous ≥ OCC2:Threshold for OCC2:Delay duration	SafetyAlert()[OCC2] = 0 SafetyStatus()[OCC2] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[OCC1] = 1 AND Current() continuous ≤ OCC:Recovery Threshold for OCC:Recovery Delay time	SafetyStatus()[OCC1] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0
Recovery	SafetyStatus()[OCC2] = 1 AND Current() continuous ≤ OCC:Recovery Threshold for OCC:Recovery Delay time	SafetyStatus()[OCC2] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

3.6 Overcurrent in Discharge Protection

The bq40z80 device has two independent overcurrent in discharge protections that can be set to different current and delay thresholds to accommodate different load behaviors. Additionally, this protection feature can be enabled to create a PF by setting the **[OCDL]** bit in Enabled PF C register.

Hardware-Based Protection www.ti.com

Status	Condition	Action
Normal	Current() > OCD1:Threshold	SafetyAlert()[OCD1] = 0 SafetyAlert()[OCDL] = 0 PFAlert()[OCDL] = 0 Decrement OCDL1 counter by one after each OCD:Counter Dec Delay period, if OCDL1 counter > 0
Normal	Current() > OCD2:Threshold	SafetyAlert()[OCD2] = 0 SafetyAlert()[OCDL] = 0 PFAlert()[OCDL] = 0 Decrement OCDL2 counter by one after each OCD:Counter Dec Delay period if OCDL2 counter > 0
Alert	Current() ≤ OCD1:Threshold	SafetyAlert()[OCD1] = 1 BatteryStatus()[TDA] = 1
Alert	Current() ≤ OCD2:Threshold	SafetyAlert()[OCD2] = 1 BatteryStatus()[TDA] = 1
Trip	Current() continuous ≤ OCD1:Threshold for OCD1:Delay duration	SafetyAlert()[OCD1] = 0 SafetyStatus()[OCD1] = 1 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 1 Increment OCDL1 counter
Trip	Current() continuous ≤ OCD2:Threshold for OCD2:Delay duration	SafetyAlert()[OCD2] = 0 SafetyStatus()[OCD2] = 1 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 1 Increment OCDL2 counter
Recovery	SafetyStatus()[OCD1] = 1 AND Current() continuous ≥ OCD:Recovery Threshold for OCD:Recovery Delay time	SafetyStatus()[OCD1] = 0 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 0
Recovery	SafetyStatus()[OCD2] = 1 AND Current() continuous ≥ OCD:Recovery Threshold for OCD:Recovery Delay time	SafetyStatus()[OCD2] = 0 BatteryStatus()[TDA] = 0 OperationStatus()[XDSG] = 0
Recovery	SafetyStatus()[OCD2] = 1 AND Current() continuous ≥ OCD:Recovery Threshold for OCD:Recovery Delay time	SafetyStatus()[OCD2] = 0 OperationStatus()[XDSG] = 0 BatteryStatus()[TDA] = 0
Latch Alert	OCDL counter > 0	SafetyAlert()[OCDL] = 1 if Enabled Protections D[OCDL] is set. PFAlert()[SOCDL] = 1 if Enabled PF C()[AOCDL] is set.
Latch Trip	OCDL counter ≥ <i>OCD:Latch limit</i>	SafetyStatus()[OCDL] = 1 if Enabled Protections D[OCDL] is set. PFStatus()[OCDL] = 1 if Enabled PF()[OCDL] is set. SafetyAlert()[OCDL] = PFAlert()[OCDL] = 0
Latch Reset([NR] = 0)	SafetyStatus()[OCDL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[OCDL] = 0 Reset OCDL counter. OperationStatus[XDSG] = 0 if SafetyStatus()[OCD1] = 0 and SafetyStatus()[OCD2] = 0
Latch Reset([NR] = 1)	SafetyStatus()[OCDL] = 1 AND DA Configuration[NR] = 1 for OCD:Reset time	SafetyStatus()[OCDL] = 0 Reset OCDL counter. OperationStatus[XDSG] = 0 if SafetyStatus()[OCD1] = 0 and SafetyStatus()[OCD2] = 0

3.7 Hardware-Based Protection

The bq40z80 device has three main hardware-based protections—AOLD, ASCC, and ASCD1,2—with adjustable current and delay time. Setting *AFE Protection Configuration[RSNS]* divides the threshold value in half. The *Threshold* settings are in mV; therefore, the actual current that triggers the protection is based on the R_{SENSE} used in the schematic design.

In addition, setting the *AFE Protection Configuration*[SCDDx2] bit provides an option to double all of the SCD1,2 delay times for maximum flexibility towards the application's needs.

For details on how to configure the AFE hardware protection, refer to the tables in Appendix A.

All of the hardware-based protections provide a Trip/Latch Alert/Recovery protection. The latch feature stops the FETs from toggling on and off continuously on a persistent faulty condition.

In general, when a fault is detected after the *Delay* time, the CHG and DSG FETs will be disabled (Trip stage), and an internal fault counter will be incremented (Alert stage). Since both FETs are off, the current will drop to 0 mA. After *Recovery* time, the CHG and DSG FETs will be turned on again (Recovery stage).

www.ti.com Hardware-Based Protection

If the alert is caused by a current spike, the fault count will be decremented after *Counter Dec Delay* time. If this is a persistent faulty condition, the device will enter the Trip stage after *Delay* time, and repeat the Trip/Latch Alert/Recovery cycle. The internal fault counter is incremented every time the device goes through the Trip/Latch Alert/Recovery cycle. Once the internal fault counter hits the *Latch Limit*, the protection enters a Latch stage and the fault will only be cleared through the Latch Reset condition.

The Trip/Latch Alert/Recovery/Latch stages are documented in each of the following hardware-based protection sections.

The recovery condition for removable pack ([NR] = 0) is based on the transition on the \overline{PRES} pin, while the recovery condition for embedded pack ([NR] = 1) is based on the **Reset** time.

3.7.1 Overload in Discharge Protection

The bq40z80 device has a hardware-based overload in discharge protection with adjustable current and delay. Additionally, this protection feature can be enabled to also create a PF by setting the **[AOLDL]** bit in Enabled PF B register.

Status	Condition	Action
Normal	Current() > (OLD Threshold[3:0] /R _{SENSE})	SafetyAlert()[AOLDL] = 0, if OLDL counter = 0 PFAlert()[AOLDL] = 0 Decrement AOLDL counter by one after each OLD:Counter Dec Delay period, if AOLDL counter > 0
Trip	Current() continuous ≤ (OLD Threshold[3:0]/R _{SENSE}) for OLD Threshold[7:4] duration	SafetyStatus()[AOLD] = 1 OperationStatus()[XDSG] = 1 Increment AOLDL counter
Recovery	SafetyStatus()[AOLD] = 1 for OLD:Recovery time	SafetyStatus()[AOLD] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[AOLDL] = 0.
Latch Alert	AOLDL counter > 0	SafetyAlert()[AOLDL] = 1 PFAlert()[AOLDL] = 1, if PFEnable()[SAOLDL] is set.
Latch Trip	AOLDL counter ≥ <i>OLD:Latch Limit</i>	SafetyAlert()[AOLDL] = 0 SafetyStatus()[AOLDL] = 1 OperationStatus()[XDSG] = 1 PFAlert()[AOLDL] = 0 PFStatus()[AOLDL] = 1, if PFEnable()[AOLDL] is set.
Latch Reset ([NR] = 0)	SafetyStatus()[AOLDL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[AOLDL] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[AOLD] = 0.
Latch Reset ([NR] = 1)	SafetyStatus()[AOLDL] = 1 AND DA Configuration[NR] = 1 for OLD:Reset time	SafetyStatus()[AOLDL] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[AOLD] = 0.

3.7.2 Short Circuit in Charge Protection

The bq40z80 device has a hardware-based short circuit in charge protection with adjustable current and delay. Additionally, this protection feature can be enabled to also create a PF by setting the **[ASCCL]** bit in Enabled PF B register.

Status	Condition	Action
Normal	Current() < (SCC Threshold[2:0]/R _{SENSE})	SafetyAlert()[ASCCL] = 0, if ASCCL counter = 0 PFAlert()[ASCCL] = 0 Decrement ASCCL counter by one after each SCC:Counter Dec Delay period, if ASCCL counter > 0
Trip	Current() continuous ≥ (SCC Threshold[2:0]/R _{SENSE}) for SCC Threshold[7:4] duration	SafetyStatus()[ASCC] = 1 BatteryStatus()[TCA] = 1 OperationStatus()[XCHG] = 1 increment ASCCL counter
Recovery	SafetyStatus()[ASCC] = 1 for SCC:Recovery time	SafetyStatus()[ASCC] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0 if SafetyStatus()[ASCCL] = 0.
Latch Alert	ASCCL counter > 0	SafetyAlert()[ASCCL] = 1 PFAlert()[ASCCL] = 1, if PFEnable()[ASCCL] is set.
Latch Trip	ASCCL counter ≥ SCC:Latch Limit	SafetyAlert()[ASCCL] = 0 SafetyStatus()[ASCCL] = 1 OperationStatus()[XCHG] = 1 PFAlert()[ASCCL] = 0 PFStatus()[ASCCL] = 1, if PFEnable()[ASCCL] is set.

Hardware-Based Protection www.ti.com

Status	Condition	Action
Latch Reset ([NR] = 0)	SafetyStatus()[ASCCL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[ASCCL] = 0 OperationStatus()[XCHG] = 0 if SafetyStatus()[ASCC] = 0
Latch Reset ([NR] = 1)	SafetyStatus()[ASCCL] = 1 AND DA Configuration[NR] = 1 for SCC:Reset time	SafetyStatus()[ASCCL] = 0 OperationStatus()[XCHG] = 0 if SafetyStatus()[ASCC] = 0

3.7.3 Short Circuit in Discharge Protection

The bq40z80 device has a hardware-based short circuit in discharge protection with adjustable current and delay. Additionally, this protection feature can be enabled to also create a PF by setting the **[ASCDL]** bit in Enabled PF B register.

Status	Condition	Action
Normal	Current() > (SCD1 Threshold[2:0]/R _{SENSE}) AND Current() > (SCD2 Threshold[2:0]/R _{SENSE})	SafetyAlert()[ASCDL] = 0 if ASCDL counter = 0 PFAlert()[ASCDL] = 0 Decrement ASCDL counter by one after each SCD:Counter Dec Delay period, if ASCDL counter > 0
Trip	$\label{eq:current} \begin{aligned} & \textit{Current()} \; \text{continuous} \leq (\textit{SCD1} \; \textit{Threshold[2:0]/} R_{\text{SENSE}}) \; \text{for} \; \textit{SCD1} \; \textit{Threshold[7:4]} \; \\ & \text{duration} & \text{OR} & \\ & \text{Current()} \; \text{continuous} \leq (\textit{SCD2} \; \textit{Threshold[2:0]/} R_{\text{SENSE}}) \; \text{for} \; \textit{SCD2} \; \textit{Threshold[7:4]} \; \\ & \text{duration} \end{aligned}$	SafetyStatus()[ASCD] = 1 OperationStatus()[XDSG] = 1 Increment ASCDL counter
Recovery	SafetyStatus()[ASCD] = 1 for SCD:Recovery time	SafetyStatus()[ASCD] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[ASCDL] = 0.
Latch Alert	ASCDL counter > 0	SafetyAlert()[ASCDL] = 1 PFAlert()[ASCDL] = 1, if PFEnable()[ASCDL] is set.
Latch Trip	SCD counter ≥ SCD:Latch Limit	SafetyStatus()[ASCD] = 0 SafetyStatus()[ASCDL] = 1 OperationStatus()[XDSG] = 1 SafetyAlert()[ASCDL] = 0 PFAlert()[ASCDL] = 0 PFStatus()[ASCDL] = 1, if PFEnable()[ASCDL] is set.
Latch Reset ([NR] = 0)	SafetyStatus()[ASCDL] = 1 AND DA Configuration[NR] = 0 AND Low-high-low transition on PRES pin	SafetyStatus()[ASCDL] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[ASCD] = 0
Latch Reset ([NR] = 1)	SafetyStatus()[ASCCL] = 1 AND DA Configuration[NR] = 1 for SCD:Reset time	SafetyStatus()[ASCDL] = 0 OperationStatus()[XDSG] = 0 if SafetyStatus()[ASCD] = 0

3.8 Temperature Protections

The bq40z80 device provides overtemperature and undertemperature protections, based on cell temperature measurement and FET temperature measurements. The cell temperature based protections are further divided into a protection-in-charging direction and discharging directions. This section describes in detail each of the protection functions.

For temperature reporting, the device supports a maximum of four external thermistors and one internal temperature sensor. Unused temperature sensors must be disabled by clearing the corresponding flag in **Settings:Temperature Enable[TS4][TS3][TS2][TS1][TSInt]**.

Each of the external thermistors and the internal temperature sensor can be set up individually as a source for cell temperature or FET temperature reporting. Setting the corresponding flag to 1 in **Settings:Temperature Mode[TS4 Mode][TS3 Mode][TS2 Mode][TS1 Mode][TS1 Mode]** configures that temperature sensor to report for FET temperature. Clearing the corresponding flag sets that temperature sensor to report for cell temperature. The **Settings:DA Configuration[FTEMP]** enables users to use the maximal (setting the corresponding flag to 0) or the average (setting the corresponding flag to 1) of the source temperature sensors for FET temperature reporting.

The **Settings:DA Configuration[CTEMP1][CTEMP0]** enables users to define which temperature sensor's output is displayed by the SBS *Temperature()* command (a setting of 1, 0 allows the temperature sensor with the lowest temperature to be displayed, while a setting of 0, 1 displays an average of all the sensors, and a setting of 0, 0 displays the temperature sensor with the highest temperature). Cell temperature protections will work automatically such that for the under temperature check, only the MIN cell temperature will be used, while for over temperature check only the MAX cell temperature will be used.

The *Temperature()* command returns the cell temperature measurement. The MAC and extended command *DAStatus2()* also returns the temperature measurement from the internal temperature sensor, the external thermistors TS1, TS2, TS3, and TS4, and the cell and FET temperatures.

If set, the **Settings:SBS Configuration[SMB_CELL_TEMP]** bit enables the host to write via the MAC command 0x3008 to the temperature register (this is the register from which the *Temperature()* command returns a read). On power up, if **[SMB_CELL_TEMP]** = 1, the temperature register is written to 293°K (that is, 20°C). When this feature is used, the temperature must be written in 0.1°K. Additionally, since the gauge's TS inputs are not being used, then the TS1 through TS4 settings (in register **Temperature Enable**) are irrelevant (as are CTEMP1 and CTEMP0). This feature is helpful on PCBs that do not have the area or height to include thermistors, but do have a host that is capable of using its own onboard measurement of cell temperature (as well as bypassing the gauge's cell temperature inputs, TS1 through TS4, and setting it using an SMBus command).

The cell temperature based overtemperature and undertemperature safety provides protections in charge and discharge conditions. The battery pack is in CHARGE mode when <code>BatteryStatus()[DSG] = 0</code>, where <code>Current() > Chg Current Threshold</code>. The overtemperature and undertemperature in charging protections are active in this mode. <code>BatteryStatus()[DSG]</code> is set to 1 in a non-CHARGE mode condition, which includes <code>RELAX</code> and <code>DISCHARGE</code> modes. The overtemperature and undertemperature in discharge protections are active in these two modes. See <code>Section 7.3</code> for detailed descriptions of the gas gauge modes.

3.9 Overtemperature in Charge Protection

The bq40z80 device has an overtemperature protection for cells under charge.

Status	Condition	Action
Normal	Max Cell Temp < OTC:Threshold OR not charging	SafetyAlert()[OTC] = 0
Alert	Max Cell Temp ≥ OTC:Threshold AND charging	SafetyAlert()[OTC] = 1 BatteryStatus()[TCA] = 1
Trip	Max Cell Temp ≥ OTC:Threshold AND Charging for OTC:Delay duration	SafetyAlert()[OTC] = 0 SafetyStatus()[OTC] = 1 BatteryStatus()[OTA] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1 if FET Options[OTFET] = 1
Recovery	SafetyStatus()[OTC] AND Max Cell Temp ≤ OTC:Recovery	SafetyStatus()[OTC] = 0 BatteryStatus()[OTA] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

3.10 Overtemperature in Discharge Protection

The bq40z80 device has an overtemperature protection for cells in the DISCHARGE or RELAX state (that is, non-charging state with *BatteryStatus[DSG]* = 1).

Status	Condition	Action
Normal	Max Cell Temp < OTD:Threshold OR charging	SafetyAlert()[OTD] = 0
Alert	Max Cell Temp ≥ OTD:Threshold AND Not charging (that is, BatteryStatus[DSG] = 1)	SafetyAlert()[OTD] = 1 BatteryStatus()[TDA] = 1
Trip	Max Cell Temp ≥ OTD:Threshold AND Not charging (that is, BatteryStatus[DSG] = 1) for OTD:Delay duration	SafetyAlert()[OTD] = 0 SafetyStatus()[OTD] = 1 BatteryStatus()[OTA] = 1 OperationStatus()[XDSG] = 1 if FET Options[OTFET] = 1 BatteryStatus()[TDA] = 0

Status	Condition	Action
Recovery	SafetyStatus()[OTD] AND Max Cell Temp ≤ OTD:Recovery	SafetyStatus()[OTD] = 0 BatteryStatus()[OTA] = 0 OperationStatus()[XDSG] = 0 BatteryStatus()[TDA] = 0

3.11 Overtemperature FET Protection

The bq40z80 device has an overtemperature protection to limit the FET temperature.

Status	Condition	Action
Normal	FET Temperature in DAStatus2() < OTF:Threshold	SafetyAlert()[OTF] = 0
Alert	FET Temperature in <i>DAStatus2()</i> ≥ <i>OTF:Threshold</i>	SafetyAlert()[OTF] = 1 BatteryStatus()[TDA] = 1, [TCA] = 1
Trip	FET Temperature in <i>DAStatus()</i> ≥ <i>OTF:Threshold</i> for <i>OTF:Delay</i> duration	SafetyAlert()[OTF] = 0 SafetyStatus()[OTF] = 1 BatteryStatus()[OTA] = 1 BatteryStatus()[TDA] = 0, [TCA] = 0 OperationStatus()[XCHG][XDSG] = 1,1 if FET Options[OTFET] = 1
Recovery	SafetyStatus()[OTF] AND FET Temperature in DAStatus2() ≤ OTF:Recovery	SafetyStatus()[OTF] = 0 BatteryStatus()[OTA] = 0 BatteryStatus()[TDA] = 0, [TCA] = 0 OperationStatus()[XCHG][XDSG] = 0,0

3.12 Undertemperature in Charge Protection

The bq40z80 device has an undertemperature protection for cells in charge direction.

Status	Condition	Action
Normal	Min Cell Temp > UTC:Threshold OR not charging	SafetyAlert()[UTC] = 0
Alert	Min Cell Temp ≤ UTC:Threshold AND charging	SafetyAlert()[UTC] = 1
Trip	Min Cell Temp ≤ UTC:Threshold AND Charging for UTC:Delay duration	SafetyAlert()[UTC] = 0 SafetyStatus()[UTC] = 1 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[UTC] AND Min Cell Temp ≥ UTC:Recovery	SafetyStatus()[UTC] = 0 OperationStatus()[XCHG] = 0

3.13 Undertemperature in Discharge Protection

The bq40z80 device has an undertemperature protection for cells in the DISCHARGE or RELAX state (that is, non-charging state with *BatteryStatus[DSG]* = 1).

Status	Condition	Action
Normal	Min Cell Temp > UTD:Threshold OR charging	SafetyAlert()[UTD] = 0
Alert	Min Cell Temp ≤ UTD:Threshold AND Not charging (that is, BatteryStatus[DSG] = 1)	SafetyAlert()[UTD] = 1
Trip	Min Cell Temp ≤ UTD:Threshold AND Not charging (that is, BatteryStatus[DSG] = 1) for UTD:Delay duration	SafetyAlert()[UTD] = 0 SafetyStatus()[UTD] = 1 OperationStatus()[XDSG] = 1
Recovery	SafetyStatus()[UTD] AND Min Cell Temp ≥ UTD:Recovery	SafetyStatus()[UTD] = 0 OperationStatus()[XDSG] = 0

3.14 SBS Host Watchdog Protection

The bq40z80 device can check periodic communication over SBS and prevent usage of the battery pack if no valid communication is detected.

Status	Condition	Action
Trip	No valid SBS transaction for <i>HWD:Delay</i> duration	SafetyStatus()[HWD] = 1 OperationStatus()[XCHG] = 1
Recovery	Valid SBS transaction detected	SafetyStatus()[HWD] = 0 OperationStatus()[XCHG] = 0

3.15 Precharge Timeout Protection

The bq40z80 device can measure the precharge time and stop charging if it exceeds the adjustable period.

Status	Condition	Action
Enable	Current() > PTO:Charge Threshold AND ChargingStatus()[PV] = 1	Start PTO timer SafetyAlert()[PTOS] = 0
Suspend or Recovery	Current() < PTO:Suspend Threshold	Stop PTO timer SafetyAlert()[PTOS] = 1
Trip	PTO timer > PTO:Delay	Stop PTO timer SafetyStatus()[PTO] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Reset	SafetyStatus()[PTO] = 1 AND DA Configuration[NR] = 0 AND (Discharge by an amount of PTO:Reset OR low-high-low transition on PRES)	Stop and reset PTO timer SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0
Reset	SafetyStatus()[PTO] = 1 AND DA Configuration[NR] = 1 AND (Discharge by an amount of PTO:Reset)	Stop and reset PTO timer SafetyAlert()[PTOS] = 0 SafetyStatus()[PTO] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

3.16 Fast Charge Timeout Protection

The bq40z80 device can measure the charge time and stop charging if it exceeds the adjustable period.

Status	Condition	Action
Enable	Current() > CTO:Charge Threshold AND (ChargingStatus()[LV] = 1 OR ChargingStatus()[MV] = 1 OR ChargingStatus()[HV] = 1)	Start CTO timer SafetyAlert()[CTOS] = 0
Suspend or Recovery	Current() < CTO:Suspend Threshold	Stop CTO timer SafetyAlert()[CTOS] = 1
Trip	CTO time > CTO:Delay	Stop CTO timer SafetyStatus()[CTO] = 1 OperationStatus()[XCHG] = 1
Reset	SafetyStatus()[CTO] = 1 AND DA Configuration[NR] = 0 AND (Discharge by an amount of CTO:Reset OR low-high-low transition on PRES)	Stop and reset CTO timer SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 OperationStatus()[XCHG] = 0
Reset	SafetyStatus()[CTO] = 1 AND DA Configuration[NR] = 1 AND (Discharge by an amount of CTO:Reset)	Stop and reset CTO timer SafetyAlert()[CTOS] = 0 SafetyStatus()[CTO] = 0 OperationStatus()[XCHG] = 0

3.17 Overcharge Protection

The bq40z80 device can prevent continuing charging if the pack is charged in excess over *FullChargeCapacity()*.

Status	Condition	Action
Normal	RemainingCapacity() < FullChargeCapacity()	SafetyAlert()[OC] = 0
Alert	RemainingCapacity() ≥ FullChargeCapacity() AND Internal charge counter > 0	SafetyAlert()[OC] = 1 BatteryStatus()[TCA] = 1
Trip	RemainingCapacity() ≥ FullChargeCapacity() AND Internal charge counter ≥ OC:Threshold	SafetyAlert()[OC] = 0 SafetyStatus()[OC] = 1 BatteryStatus()[TCA] = 0, [OCA] = 1 if the device is in charge state (that is, BatteryStatus[DSG] = 0). OperationStatus()[XCHG] = 1
Recovery, [NR] = 0	SafetyStatus()[OC] = 1 AND DA Configuration[NR] = 0 AND (Low-high-low transition on PRES pin)	SafetyStatus()[OC] = 0 BatteryStatus()[TCA] = 0, [OCA] = 0 OperationStatus()[XCHG] = 0
Recovery	Condition 1: SafetyStatus()[OC] = 1 AND DA Configuration[NR] = 1 AND continuous discharge of Recovery	SafetyStatus()[OC] = 0 BattervStatus()[TCA] = 0, [OCA] = 0
<i>[NR]</i> = 1	OR Condition 2: SafetyStatus()[OC] = 1 AND DA Configuration[NR] = 1 AND RelativeStateOfCharge() < OC:RSOC Recovery	OperationStatus()[XCHG] = 0

3.18 Overcharging Voltage Protection

The bq40z80 device can stop charging if it measures a difference between the requested Charging Voltage() and the delivered voltage from the charger. This feature only operates when the device is in CHARGE mode.

NOTE: Charging Voltage() will be set to 0 mV when the protection is tripped. The Charging Voltage() for the recovery is the intended or targeted charging voltage, not the 0 mV that was set due to the trip of protection.

Status	Condition	Action
Normal	PACK voltage in DAStatus1() < ChargingVoltage() + CHGV:Threshold × Number of series cells	SafetyAlert()[CHGV] = 0
Alert	PACK voltage in <i>DAStatus1()</i> ≥ <i>ChargingVoltage()</i> + <i>CHGV:Threshold</i> × Number of series cells	SafetyAlert()[CHGV] = 1 BatteryStatus()[TCA] = 1
Trip	PACK voltage in <i>DAStatus1()</i> continuous ≥ ChargingVoltage() + CHGV:Threshold × Number of series cells for CHGV:Delay period	SafetyAlert()[CHGV] = 0 SafetyStatus()[CHGV] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[CHGV] = 1 AND PACK voltage in DAStatus1() ≤ intended ChargingVoltage() + CHGV Recovery × Number of series cells	SafetyStatus()[CHGV] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

3.19 Overcharging Current Protection

The bq40z80 device can stop charging if it measures a difference between the requested ChargingCurrent() and the delivered current from the charger. This protection is designed to recover by a discharge event; therefore, CHGC:Recovery should be set to a negative value in data flash.

Status	Condition	Action
Normal	Current() < ChargingCurrent() + CHGC:Threshold	SafetyAlert()[CHGC] = 0
Alert	Current() ≥ ChargingCurrent() + CHGC:Threshold	SafetyAlert()[CHGC] = 1 BatteryStatus()[TCA] = 1
Trip	Current() continuous ≥ ChargingCurrent() + CHGC:Threshold for CHGC:Delay period	SafetyAlert()[CHGC] = 0 SafetyStatus()[CHGC] = 1 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[CHGC] = 1 AND Current() ≤ CHGC:Recovery Threshold for CHGC:Recovery Delay time	SafetyStatus()[CHGC] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

3.20 OverPrecharging Current Protection

The bq40z80 device can stop charging if it measures a difference between the requested *ChargingCurrent()* and the delivered current from the charger during precharge. This protection is designed to recover by a discharge event; therefore, *PCHGC:Recovery* should be set to a negative value in data flash.

Status	Condition	Action
Normal	Current() < ChargingCurrent() + PCHGC:Threshold AND ChargingStatus()[PV] = 1	SafetyAlert()[PCHGC] = 0
Alert	Current() ≥ ChargingCurrent() + PCHGC:Threshold AND ChargingStatus()[PV] = 1	SafetyAlert()[PCHGC] = 1 BatteryStatus()[TCA] = 1
Trip	Current() continuous ≥ ChargingCurrent() + PCHGC:Threshold for PCHGC:Delay period AND ChargingStatus()[PV] = 1	SafetyAlert()[PCHGC] = 0 SafetyStatus()[PCHGC] = 1 If charging, BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 1
Recovery	SafetyStatus()[PCHGC] = 1 AND Current() ≤ PCHGC:Recovery Threshold for PCHGC:Recovery Delay time	SafetyStatus()[PCHGC] = 0 BatteryStatus()[TCA] = 0 OperationStatus()[XCHG] = 0

29

Permanent Fail

4.1 Introduction

The bq40z80 device can permanently disable the use of the battery pack in case of a significant failure. The permanent failure checks, except for IFC and DFW, can be enabled or disabled individually by setting the appropriate bit in **Settings:Enabled PF A**, **Settings:Enabled PF B**, **Settings:Enabled PF C**, and **Settings:Enabled PF D**. All permanent failure checks, except for IFC and DFW, are disabled until *ManufacturingStatus()*[PF] is set. When any PFStatus() bit is set, the device enters PERMANENT FAIL mode and the following actions are taken in sequence:

- 1. Precharge, charge, and discharge FETs are turned off.
- 2. OperationStatus()[PF] = 1, [XCHG] = 1, [XDSG] = 1
- 3. The following SBS data is changed: BatteryStatus()[TCA] = 1, BatteryStatus()[TDA] = 1, ChargingCurrent() = 0, and ChargingVoltage() = 0.
- 4. A backup of the internal AFE hardware registers are written to data flash: AFE Interrupt Status, AFE FET Status, AFE RXIN, AFE Latch Status, AFE Interrupt Enable, AFE FET Control, AFE RXIEN, AFE RLOUT, AFE RHOUT, AFE RHINT, AFE Cell Balance, AFE AD/CC Control, AFE ADC Mux, AFE LED Output, AFE State Control, AFE LED/Wake Control, AFE Protection Control, AFE OCD, AFE SCC, AFE SCD1, and AFE SCD2.
- 5. The black box data of the last three *SafetyStatus()* changes leading up to PF with the time difference is written into the black box data flash along with the 1st *PFStatus()* value.
- 6. The following SBS values are preserved in data flash for failure analysis:
 - SafetyAlert()
 - SafetyStatus()
 - PFAlert()
 - PFStatus()
 - OperationStatus()
 - ChargingStatus()
 - GaugingStatus()
 - Voltages in DAStatus1()
 - Current()
 - TSINT, TS1, TS2, TS3, and TS4 from DAStatus2()
 - Cell DOD0 and passed charge
- 7. Data flash writing is disabled (except to store subsequent *PFStatus()* flags).
- 8. The FUSE pin is driven high if configured for specific failures and *Voltage()* is above *Min Blow Fuse Voltage* or there is a CHG FET (CFETF) or DSG FET (DFETF) failure. The FUSE pin will remain asserted until the *Fuse Blow Timeout* expired.

NOTE: If [PACK_FUSE] = 0, Voltage() is used to check for **Min Blow Fuse Voltage**, indicating the fuse is connected to the BAT side.

If **[PACK_FUSE]** = 1 (that is, the fuse is connected to the PACK side and is required to have a charger connected in order to blow the fuse), then the PACK voltage is used to check for **Min Blow Fuse Voltage** threshold.

www.ti.com Introduction

While the device is in PERMANENT FAIL mode, any new *SafetyAlert()*, *SafetyStatus()*, *PFAlert()*, and *PFStatus()* flags that are set are added to the permanent fail log. Any new *PFStatus()* flags that occur during PERMANENT FAIL mode can trigger the FUSE pin. In addition, new *PFStatus()* flags are recorded in the Black Box Recorder 2nd and 3rd PF Status entries.

4.1.1 Black Box Recorder

The Black Box Recorder maintains the last three updates of *SafetyStatus()* in memory. When entering PERMANENT FAIL mode, this information is written to data flash together with the first three updates of *PFStatus()* after the PF event.

NOTE: This information is useful in failure analysis, and can provide a full recording of the events and conditions leading up to the permanent failure.

If there were less than three safety events before PF, then some information will be left blank.

4.2 Safety Cell Undervoltage Permanent Fail

The bq40z80 device can permanently disable the battery in the case of significant undervoltage in any of the cells.

Status	Condition	Action
Normal	Min cell voltage17 > SUV:Threshold	PFAlert()[SUV] = 0 BatteryStatus()[TDA] = 0
Alert	Min cell voltage17 ≤ SUV:Threshold	PFAlert()[SUV] = 1 BatteryStatus()[TDA] = 1
Trip	Min cell voltage17 continuous ≤ <i>SUV:Threshold</i> for <i>SUV:Delay</i> duration	PFAlert()[SUV] = 0 PFStatus()[SUV] = 1 BatteryStatus()[FD] = 1

4.2.1 SUV Check Option

When **Protection Configuration[SUV_MODE]** is set, the SUV PF check only applies when the gauge wakes up from shutdown. The CHG and DSG FETs are disabled for the duration of the test (**SUV:Delay**) to prevent an applied charge voltage from masking a copper deposition condition.

4.3 Safety Cell Overvoltage Permanent Fail

The bq40z80 device can permanently disable the battery in the case of significant overvoltage in any of the cells.

	Status	Condition	Action
Ī	Normal	Max cell voltage17 < SOV:Threshold	PFAlert()[SOV] = 0
	Alert	Max cell voltage17 ≥ SOV:Threshold	PFAlert()[SOV] = 1 BatteryStatus()[TCA] = 1

Status	Condition	Action
Trip	Max cell voltage17 continuous ≥ SOV:Threshold for SOV:Delay duration	PFAlert()[SOV] = 0 PFStatus()[SOV] = 1

4.4 Safety Overcurrent in Charge Permanent Fail

The bq40z80 device can permanently disable the battery in the case of significant overcurrent in CHARGE state.

Status	Condition	Action
Normal	Current() < SOCC:Threshold	PFAlert()[SOCC] = 0
Alert	Current() ≥ SOCC:Threshold	PFAlert()[SOCC] = 1
Trip	Current() ≥ SOCC:Threshold for SOCC:Delay duration	PFAlert()[SOCC] = 1 PFStatus()[SOCC] = 1

4.5 Safety Overcurrent in Discharge Permanent Fail

The bq40z80 device can permanently disable the battery in the case of significant overcurrent in the DISCHARGE or RELAX state.

Status	Condition	Action
Normal	Current() > SOCD:Threshold	PFAlert()[SOCD] = 0
Alert	Current() ≤ SOCD:Threshold	PFAlert()[SOCD] = 1 BatteryStatus()[TDA] = 1
Trip	Current() ≤ SOCD:Threshold for SOCD:Delay duration	PFAlert()[SOCD] = 1 PFStatus()[SOCD] = 1

4.6 Safety Overtemperature Cell Permanent Fail

The bq40z80 device can permanently disable the battery pack in case of significant overtemperature of the cells detected using the external TS1..4 temperature sensor(s), which are configured to report as cell temperature, *Temperature()*. For **Safety Overtemperature Cell Permanent Fail**, the temperature sensor with the highest (Max) temperature is used.

Status	Condition	Action
Normal	Max Cell Temp < SOT:Threshold	PFAlert()[SOT] = 0
Alert	Max Cell Temp ≥ SOT:Threshold	PFAlert()[SOT] = 1 BatteryStatus()[OTA] = 0
Trip	Max Cell Temp continuous ≥ SOT:Threshold for SOT:Delay duration	PFAlert()[SOT] = 0 PFStatus()[SOT] = 1 BatteryStatus()[OTA] = 1

4.7 Safety Overtemperature FET Permanent Fail

The bq40z80 device can permanently disable the battery pack in case of significant overtemperature on the power FET. The temperature sensor(s) can be configured to report as FET temperature in *DAStatus2()* by setting the corresponding flag in *Temperature Mode* and *DA Configuration[FTEMP]*.

Status	Condition	Action
Normal	FET Temperature in DAStatus2() < SOTF:Threshold	PFAlert()[SOTF] = 0
Alert	FET Temperature in <i>DAStatus2()</i> ≥ SOTF:Threshold	PFAlert()[SOTF] = 1 BatteryStatus()[OTA] = 0
Trip	FET Temperature in <i>DAStatus2()</i> continuous ≥ SOTF:Threshold for SOTF:Delay duration	PFAlert()[SOTF] = 0 PFStatus()[SOTF] = 1 BatteryStatus()[OTA] = 1

4.8 **QMax Imbalance Permanent Fail**

The bq40z80 device can permanently disable the battery pack in case the capacity of one of the cells is much lower than the others.

Status	Condition	Action
Normal	[Max(QMax Cell 17) – Min(QMax17)]/Qmax Pack × 100 < QIM:Delta Threshold	PFAlert()[QIM] = 0
Alert	[Max(QMax Cell 17) – Min(QMax17)]/Qmax Pack × 100 > QIM:Delta Threshold	PFAlert()[QIM] = 1
Trip	[Max(QMax Cell 17) – Min(QMax17)]/Qmax Pack × 100 continuous ≥ QIM:Delta Threshold for number of QIM:Delay ⁽¹⁾ updates	PFAlert()[QIM] = 0 PFStatus()[QIM] = 1

⁽¹⁾ The delay for this check is counted each time **QMax Cycle Count** is updated.

4.9 **Cell Balancing Permanent Fail**

The bq40z80 device can permanently disable the battery pack in case one of the cells in the stack is cellbalanced much more than the others.

Status	Condition	Action
Normal	Δ(CB Time Cell 17) < CB:Delta Threshold	PFAlert()[CB] = 0
Alert	∆(CB Time Cell 17) ≥ CB:Delta Threshold	PFAlert()[CB] = 1
Trip	∆(CB Time Cell 17) continuous ≥ CB:Delta Threshold for CB:Delay ⁽¹⁾ cycles	PFAlert()[CB] = 0 PFStatus()[CB] = 1 BatteryStatus()[TCA] = 1 BatteryStatus()[TDA] = 1
Trip	Max (CB Time Cell 17) ≥ CB:Max Threshold	PFAlert()[CB] = 0 PFStatus()[CB] = 1

⁽¹⁾ The delay for this check is counted each time **QMax Cycle Count** is updated.

4.10 Impedance Permanent Fail

The bq40z80 device can permanently disable the battery pack in case the impedance of one of the cells is much higher than the others.

NOTE: Reference Grid is configurable from 0 (resistance at fully charged cell) to 14 (resistance at fully discharged cell). The default setting of Reference Grid = 4 is a good typical value to use because it is close to the average in the range of 20% to 100% SOC. Design Resistance is automatically calculated and updated during the learning cycle and is part of the golden image).

This check is only performed when the gauge updates the Ra data for the Reference Grid directly. If a selected grid point is typically being scaled rather than directly updated by the gauge (for example, grid point 0 or grid point 14), this check is effectively disabled. It is recommended to use the default Design Resistance setting.

Status	Condition	Action
Normal	Δ(Cell 17 R_a at IT Cfg:Reference Grid) < (IMP:Delta Threshold × IT Cfg:Design Resistance)	PFAlert()[IMP] = 0
Alert	∆(Cell 17 R_a at IT Cfg:Reference Grid) ≥ (IMP:Delta Threshold × IT Cfg:Design Resistance)	PFAlert()[IMP] = 1
Trip	∆(Cell 17 R_a at IT Cfg:Reference Grid) ≥ (IMP:Delta Threshold × IT Cfg:Design Resistance) for IMP:Ra Update Counts	PFAlert()[IMP] = 0 PFStatus()[IMP] = 1 BatteryStatus()[TCA] = 1 BatteryStatus()[TDA] = 1

Status	Condition	Action
Trip	△(Cell 17 R_a at IT Cfg:Reference Grid) ≥ (IMP:Max Threshold × IT Cfg:Design Resistance)	PFAlert()[IMP] = 0 PFStatus()[IMP] = 1

4.11 Capacity Degradation Permanent Fail

The bq40z80 device can permanently disable the battery pack in case the capacity of the battery is degraded below a threshold.

Status	Condition	Action
Normal	QMax pack > CD:Threshold	PFAlert()[CD] = 0
Alert	QMax pack ≤ CD:Threshold	PFAlert()[CD] = 1
Trip	QMax pack continuous ≤ <i>CD:Threshold</i> for <i>CD:Delay</i> ⁽¹⁾ cycles	PFAlert()[CD] = 0 PFStatus()[CD] = 1

⁽¹⁾ The delay for this check is counted each time **QMax Cycle Count** is updated.

4.12 Voltage Imbalance At Rest Permanent Fail

The bq40z80 device can permanently disable the battery pack in case of a voltage difference between the cells in a stack while at rest.

Status	Condition	Action
Normal	Max cell voltage17 < VIMR:Check Voltage OR Current() > VIMR:Check Current OR Max cell voltage17 - Min cell voltage17 < VIMR:Delta Threshold	PFAlert()[VIMR] = 0
Alert	(Max cell voltage17 ≥ VIMR:Check Voltage AND Current() < VIMR:Check Current) for VIMR:Duration AND Max cell voltage17 – Min cell voltage17 ≥ VIMR:Delta Threshold	PFAlert()[VIMR] = 1
Trip	(Max cell voltage17 ≥ VIMR:Check Voltage AND Current() < VIMR:Check Current) for VIMR:Duration AND Max cell voltage17 – Min cell voltage17 ≥ VIMR:Delta Threshold for VIMR:Delta Delay	PFAlert()[VIMR] = 0 PFStatus()[VIMR] = 1

4.13 Voltage Imbalance Active Permanent Fail

The bq40z80 device can permanently disable the battery pack in case of a voltage difference between the cells in a stack while active.

Status	Condition	Action
Normal	Max cell voltage17 < VIMA:Check Voltage OR Current() < VIMA:Check Current OR Max cell voltage17 – Min cell voltage17 < VIMA:Delta Threshold	PFAlert()[VIMA] = 0
Alert	Max Cell voltage ≥ VIMA:Check Voltage AND Current() > VIMA:Check Current AND Max cell voltage17 – Min cell voltage17 ≥ VIMA:Delta Threshold	PFAlert()[VIMA] = 1
Trip	(Max cell voltage17 ≥ VIMA:Check Voltage AND Current() > VIMA:Check Current AND Max cell voltage17 – Min cell voltage17 ≥ VIMA:Delta Threshold) for VIMA:Delay	PFAlert()[VIMA] = 0 PFStatus()[VIMA] = 1

4.14 Charge FET Permanent Fail

The bq40z80 device can permanently disable the battery pack in case the charge FET is not working properly.

Status	Condition	Action
Normal	CHG FET off AND Current() < CFET:OFF Threshold	PFAlert()[CFETF] = 0
Alert	CHG FET off AND Current() ≥ CFET:OFF Threshold	PFAlert()[CFETF] = 1
Trip	CHG FET off AND Current() continuously ≥ CFET:OFF Threshold for CFET:OFF Delay duration	PFAlert()[CFETF] = 0 PFStatus()[CFETF] = 1

4.15 Discharge FET Permanent Fail

The bq40z80 device can permanently disable the battery pack in case the discharge FET is not working properly.

Status	Condition	Action
Normal	DSG FET off AND Current() > DFET:OFF Threshold	PFAlert()[DFETF] = 0
Alert	DSG FET off AND Current() ≤ DFET:OFF Threshold	PFAlert()[DFETF] = 1
Trip	DSG FET off AND <i>Current()</i> continuously ≤ <i>DFET:OFF Threshold</i> for <i>DFET:OFF Delay</i> duration	PFAlert()[DFETF] = 0 PFStatus()[DFETF] = 1

4.16 Chemical Fuse Permanent Fail

The bq40z80 device can detect a non-working fuse. It cannot disable the battery pack permanently, but can record this event for analysis.

Status	Condition	Action
Normal	FUSE pin = high AND Current() < FUSE:Threshold	PFAlert()[FUSE] = 0
Alert	FUSE pin = high AND Current() ≥ FUSE:Threshold	PFAlert()[FUSE] = 1
Trip	FUSE pin = high AND Current() continuous ≥ FUSE:Threshold for FUSE:Delay duration	PFAlert()[FUSE] = 0 PFStatus()[FUSE] = 1

4.17 AFE Register Permanent Fail

The bq40z80 device compares the AFE hardware register periodically with a RAM backup and corrects any errors. If any errors are found during the check, the device increments the AFE register fail counter. If the comparison fails too many times, the device disables the pack permanently.

Status	Condition	Action
Normal	AFE register fail counter = 0	PFAlert()[AFER] = 0 Compare AFE register and RAM backup every AFER:Compare Period
Alert	AFE register fail counter > 0	PFAlert()[AFER] = 1 Decrement AFE register fail counter by one after each AFER:Delay Period Compare AFE register and RAM backup every AFER:Compare Period
Trip	AFE register fail counter ≥ AFER:Threshold	PFAlert()[AFER] = 0 PFStatus()[AFER] = 1

4.18 AFE Communication Permanent Fail

The bq40z80 device monitors the internal communication to the AFE hardware and increments the AFE read/write fail counter on any communication error. If the read or write fails exceed a limit within a configurable timeframe, the device disables the pack permanently.

35

Status	Condition	Action
Normal	AFE read/write fail counter = 0	PFAlert()[AFEC] = 0
Alert	AFE read/write fail counter > 0	PFAlert()[AFEC] = 1 Decrement AFE read/write fail counter by one after each AFEC:Delay Period
Trip	Read and Write Fail counter ≥ AFEC:Threshold	PFAlert()[AFEC] = 0 PFStatus()[AFEC] = 1

4.19 Second Level Protection Permanent Fail

The bq40z80 device can detect an external trigger of the chemical fuse by an external protection circuit such as a 2nd-level protector by monitoring the FUSE pin state.

If the device detects a FUSE pin high state, the CHG and DSG FETs are turned off.

Setting **Enabled PF C[2LVL]** = 0 will not prevent the second level protector from triggering and blowing the fuse, setting **[2LVL]** = 0 will only prevent the gauge from detecting the FUSE state.

Status	Condition	Action
Normal	Reset AFE and FUSE pin = low AND No FUSE trigger by firmware	PFAlert()[2LVL] = 0
Alert	FUSE pin = high AND No FUSE trigger by firmware	PFAlert()[2LVL] = 1 Reset AFE FUSE bit
Trip	FUSE pin continuously high for 2LVL:Delay period AND No FUSE trigger by firmware	PFAlert()[2LVL] = 0 PFStatus()[2LVL] = 1

4.20 Instruction Flash (IF) Checksum Permanent Fail

The bq40z80 device can permanently disable the battery if it detects a difference between the stored IF checksum and the calculated IF checksum only following a device reset.

Status	Condition	Action
Normal	Stored and calculated IF checksum match	_
Trip	Stored and calculated IF checksum after reset does not match	PFStatus()[IFC] = 1

4.21 Data Flash (DF) Permanent Fail

The bq40z80 device can permanently disable the battery in case a data flash write fails.

NOTE: A DF write failure causes the gauge to disable further DF writes.

Status	Condition	Action
Normal	Data flash write OK	_
Trip	Data flash write not successful	PFStatus()[DFW] = 1

4.22 Open Thermistor Permanent Fail (TS1, TS2, TS3, TS4)

The bq40z80 device can permanently disable the battery if it detects an open thermistor on TS1, TS2, TS3, or TS4. The state of TS1..4 and the internal temperature sensor is available in *DAStatus2()*.

Status	Condition	Action
Normal, TS1	TS1 Temperature > <i>Open Thermistor:Threshold</i> OR Internal Temperature ≤ TS1 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS1 Mode]</i> = 0 OR	<i>PFAlert()[TS1]</i> = 0
	Internal Temperature ≤ TS1 Temperature + FET Delta if Temperature Mode[TS1 Mode] = 1	
Normal, TS2	TS2 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS2 Temperature + Cell Delta if Temperature Mode[TS2 Mode] = 0 OR Internal Temperature ≤ TS2 Temperature + FET Delta if Temperature Mode[TS2 Mode] = 1	<i>PFAlert()[TS2]</i> = 0
Normal, TS3	TS3 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS3 Temperature + Cell Delta if Temperature Mode[TS3 Mode] = 0 OR Internal Temperature ≤ TS3 Temperature + FET Delta if Temperature Mode[TS3 Mode] = 1	<i>PFAlert()[TS3]</i> = 0
Normal, TS4	TS4 Temperature > Open Thermistor:Threshold OR Internal Temperature ≤ TS4 Temperature + Cell Delta if Temperature Mode[TS4 Mode] = 0 OR Internal Temperature ≤ TS4 Temperature + FET Delta if Temperature Mode[TS4 Mode] = 1	<i>PFAlert()[TS4]</i> = 0
Alert,	Condition 1: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS1 Mode]</i> = 0	PFAlert()[TS1] = 1
TS1	OR Condition 2: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS1 Mode]</i> = 1	11 Aleit()[131] = 1
Alert,	Condition 1: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS2 Mode]</i> = 0	— PFAlert()[TS1] = 1
TS2	OR Condition 2: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS2 Mode]</i> = 1	
Alert,	Condition 1: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS3 Mode]</i> = 0	
TS3	OR Condition 2: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS3 Mode]</i> = 1	77 Alon()(101) = 1
Alert, TS4	Condition 1: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>Cell Delta</i> if <i>Temperature Mode[TS4 Mode]</i> = 0	PFAlert()[TS1] = 1
	OR Condition 2: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>FET Delta</i> if <i>Temperature Mode[TS4 Mode]</i> = 1	- FFAIett()[131] = 1

Status	Condition	Action
Trip,	Condition 1: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if <i>Temperature Mode[TS1 Mode]</i> = 0	<i>PFAlert()[TS1]</i> = 0
TS1	OR Condition 2: TS1 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS1 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS1 Mode]</i> = 1	PFStatus()[TS1] = 1
Trip,	Condition 1: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if <i>Temperature Mode[TS2 Mode]</i> = 0	<i>PFAlert()[TS2]</i> = 0
TS2	OR Condition 2: TS2 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS2 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS2 Mode]</i> = 1	PFStatus()[TS2] = 1
Trip,	Condition 1: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if <i>Temperature Mode[TS3 Mode]</i> = 0	<i>PFAlert()[TS3]</i> = 0
TS3	OR Condition 2: TS3 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS3 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS3 Mode]</i> = 1	PFStatus()[TS3] = 1
Trip, TS4	Condition 1: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>Cell Delta</i> for <i>Open Thermistor:Delay</i> duration if <i>Temperature Mode[TS4 Mode]</i> = 0	<i>PFAlert()[TS4]</i> = 0
	OR Condition 2: TS4 Temperature ≤ <i>Open Thermistor:Threshold</i> AND Internal Temperature > TS4 Temperature + <i>FET Delta</i> for <i>OpenThermistor:Delay</i> duration if <i>Temperature Mode[TS4 Mode]</i> = 1	PFStatus()[TS4] = 1

Advanced Charge Algorithm

5.1 Introduction

The bq40z80 device can change the values of *ChargingVoltage()* and *ChargingCurrent()* based on *Temperature()* and cell voltage1..7 or *RelativeStateofCharge()*. Its flexible charging algorithm is JEITA compatible and can also meet other specific cell manufacturer charge requirements. The *ChargingStatus()* register shows the state of the charging algorithm.

5.2 Charge Temperature Ranges

The measured temperature is segmented into several temperature ranges. The charging algorithm adjusts ChargingCurrent() and ChargingVoltage() according to the temperature range. The temperature ranges set in data flash should adhere to the following format:

 $T1 \le T2 \le T5 \le T6 \le T3 \le T4$.

Voltage Range www.ti.com

5.3 Voltage Range

The measured cell voltage is segmented into several voltage ranges. The charging algorithm adjusts ChargingCurrent() according to the temperature range and voltage range. The voltage ranges set in data flash need to adhere to the following format:

Charging Voltage Low ≤ Charging Voltage Med ≤ Charging Voltage High ≤ x Temp Charging: Voltage

where x is Standard or Rec. Depending on the specific charging profile, the **Low Temp Charging:Voltage** and **High Temp Charging:Voltage** settings do not necessarily have the highest setting values.

www.ti.com Voltage Range

5.3.1 RelativeStateofCharge() Range

If **[SOC_CHARGE]** in **Charging Configuration** is set, then the voltages threshold control, as described in Section 5.3, is replaced with **RelativeStateOfCharge()** control.

With this method, the following changes in control transitions occur:

- a. [LV] state and RelativeStateOfCharge() > Charging SOC Mid; move to [MV].
- b. [MV] state and RelativeStateOfCharge() > Charging SOC High; move to [HV].
- c. [MV] state [DSG] = 1, and RelativeStateOfCharge() < Charging SOC Mid SOC Hysteresis; move to [LV].
- d. [HV] state [DSG] = 1, and RelativeStateOfCharge() < Charging SOC High Charging SOC Hysteresis; move to [MV].

Class	Subclass	Name	Туре	Min Value	Max Value	Default Value	Unit
Advanced Charge Algorithm	SOC Range	Charging SOC Mid	U1	0	100	50	%
Advanced Charge Algorithm	SOC Range	Charging SOC High	U1	0	100	75	%
Advanced Charge Algorithm	SOC Range	Charging SOC Hysteresis	U1	0	100	1	%

Table 5-1. RelativeStateofCharge() Range

5.4 Charging Current

The *ChargingCurrent()* value changes depending on the detected temperature and voltage per the charging algorithm.

The **Charging Configuration[CRATE]** flag provides an option to adjust the **ChargingCurrent()** based on FullChargeCapacity()/DesignCapacity().

For example, with **[CRATE]** = 1, if FullChargeCapacity()/DesignCapacity() = 90% and **Rec Temp** Charging: Current Med is active per the charging algorithm, the ChargeCurrent() = **Rec Temp** Charging: Current Med × 90%.

NOTE: Table priority is top to bottom.

Temp Range	Voltage Range	Condition	Action
Any	Any	OperationStatus()[XCHG] = 1	ChargingCurrent() = 0
UT or OT	Any	_	ChargingCurrent() = 0
Any	PV	_	ChargingCurrent() = Pre-Charging:Current
Any	LV, MV, or HV	ChargingStatus()[MCHG] = 1	ChargingCurrent() = Maintenance Charging:Current
	LV	_	ChargingCurrent() = Low Temp Charging:Current Low
LT	MV	_	ChargingCurrent() = Low Temp Charging:Current Med
	HV	_	ChargingCurrent() = Low Temp Charging:Current High
	LV	_	ChargingCurrent() = Standard Temp Low Charging:Current Low
STL	MV	_	ChargingCurrent() = Standard Temp Low Charging:Current Med
	HV	_	ChargingCurrent() = Standard Temp Low Charging:Current High

Charging Voltage www.ti.com

Temp Range	Voltage Range	Condition	Action
	LV	_	ChargingCurrent() = Standard Temp High Charging:Current Low
STH	MV	_	ChargingCurrent() = Standard Temp High Charging:Current Med
	HV	_	ChargingCurrent() = Standard Temp High Charging:Current High
	LV	_	ChargingCurrent() = Rec Temp Charging:Current Low
RT	MV	_	ChargingCurrent() = Rec Temp Charging:Current Med
	HV	_	ChargingCurrent() = Rec Temp Charging:Current High
	LV	_	ChargingCurrent() = High Temp Charging:Current Low
нт	MV	_	ChargingCurrent() = High Temp Charging:Current Med
	HV	_	ChargingCurrent() = High Temp Charging:Current High

5.5 Charging Voltage

The Charging Voltage() changes depending on the detected temperature per the charge algorithm.

NOTE: Table priority is top to bottom.

Temp Range	Condition	Action
Any	OperationStatus()[XCHG] = 1	ChargingVoltage() = 0
UT or OT	_	ChargingVoltage() = 0
LT	_	ChargingVoltage() = Low Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)
STL	_	ChargingVoltage() = STL:Voltage × (DA Configuration[CC1:CC0] + 1)
STH	_	ChargingVoltage() = STH:Voltage × (DA Configuration[CC1:CC0] + 1)
RT	_	ChargingVoltage() = Rec Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)
HT	_	ChargingVoltage() = High Temp Charging:Voltage × (DA Configuration[CC1:CC0] + 1)

5.6 Valid Charge Termination

The charge termination condition must be met to enable valid charge termination. The bq40z80 device has the following actions at charge termination, based on the flags settings:

- If SBS Gauging Configuration[CSYNC] = 1, RemainingCapacity() = FullChargeCapacity().
- If **SBS Gauging Configuration[RSOCL]** = 1, RelativeStateOfCharge() and RemainingCapacity() are held at 99% until charge termination occurs. Only on entering charge termination is 100% displayed.
- If **SBS** Gauging Configuration[RSOCL] = 0, RelativeStateOfCharge() and RemainingCapacity() are not held at 99% until charge termination occurs. Fractions of % greater than 99% are rounded up to display 100%.

Status	Condition	Action
Charging	GaugingStatus()[DSG] = 0	Charge Algorithm active
Valid Charge Termination	All of the following conditions must occur for two consecutive 40-s periods: Charging (that is, <i>BatteryStatus[DSG]</i> = 0) AND AverageCurrent() < Charge Term Taper Current AND Max cell voltage17 + Charge Term Voltage ≥ ChargingVoltage() / number of cells in series AND The accumulated change in capacity > 0.25 mAh.	ChargingStatus()[VCT] = 1 ChargingStatus()[MCHG] = 1 ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm BatteryStatus()[FC] = 1 and GaugingStatus()[FC] = 1 if SOCFlagConfig A[FCSETVCT] = 1 BatteryStatus()[TCA] = 1 and GaugingStatus()[TCA] = 1 if SOCFlagConfig B[TCASETVCT] = 1

5.7 **Charge and Discharge Termination Flags**

The [TC] and [FC] bits in GaugingStatus() can be set at charge termination as well as based on RSOC or cell voltages. If multiple set and clear conditions are selected, then the corresponding flag will be set whenever a valid set or clear condition is met. If both set and clear conditions are true at the same time, the flag will clear. The same functionality is applied to the [TD] and [FD] bits in GaugingStatus().

NOTE: GaugingStatus()[TC][TD][FC][FD] are the status flags based on the gauging conditions only. These flags are set and cleared based on SOC Flag Config A and SOC Flag Config B.

The BatteryStatus()[TAC][FC][TDA][FD] flags will be set and cleared according to the GaugingStatus()[TC][FC][TD][FD] flags, as well as the safety and permanent failure protections status. For more information, see Section 5.8.

When GaugingStatus()[TC] is set AND FET Options[CHGFET] = 1, the CHG FET turns off.

The [FC] flag is identical between gauging status and battery status, but not [TD]. The table below summarizes the options to set and clear the [TC] and [FC] flags in GaugingStatus().

Flag	Set Criteria	Set Condition	Enable
	cell voltage	Max cell voltage17 ≥ TC: Set Voltage Threshold	SOC Flag Config A[TCSetV] = 1
[TC]	RSOC	RelativeStateOfCharge() ≥ TC: Set % RSOC Threshold	SOC Flag Config A[TCSetRSOC] = 1
	Valid Charge Termination (enable by default)	When ChargingStatus[VCT] = 1	SOC Flag Config A[TCSetVCT] = 1
	cell voltage	Max cell voltage17 ≥ FC: Set Voltage Threshold	SOC Flag Config B[FCSetV] = 1
[FC]	RSOC	RelativeStateOfCharge() ≥ C: Set % RSOC Threshold	SOC Flag Config B[FCSetRSOC] = 1
	Valid Charge Termination (enable by default)	When ChargingStatus[VCT] = 1	SOC Flag Config A[FCSetVCT] = 1

Flag	Clear Criteria	Clear Condition	Enable
[TC]	cell voltage	Max cell voltage17 ≤ <i>TC: Clear Voltage Threshold</i>	SOC Flag Config A[TCClearV] = 1
[10]	RSOC (enable by default)	RelativeStateOfCharge() ≤ TC: Clear % RSOC Threshold	SOC Flag Config A[TCClearRSOC] = 1
[FC]	cell voltage	Max cell voltage17 ≤ FC: Clear Voltage Threshold	SOC Flag Config B[FCClearV] = 1
[FC]	RSOC (enable by default)	RelativeStateOfCharge() ≤ FC: Clear % RSOC Threshold	SOC Flag Config B[FCClearRSOC] = 1

[TD] and [FD] both have extra conditions. If gauging status [FD] is set, then battery status is always set, but clearing also depends on some safety conditions (CUV/SUV).

The table below summarizes the various options to set and clear the [TD] and [FD] flags in GaugingStatus().

Flag	Set Criteria	Set Condition	Enable
(TD)	cell voltage	Min cell voltage17 ≤ <i>TD</i> : Set Voltage <i>Threshold</i>	SOC Flag Config A[TDSetV] = 1
[TD]	RSOC (enable by default)	RelativeStateOfCharge() ≤ TD : Set % RSOC Threshold	SOC Flag Config A[TDSetRSOC] = 1
(ED)	cell voltage	Min cell voltage17 ≤ FD: Set Voltage Threshold	SOC Flag Config B[FDSetV] = 1
[FD]	RSOC (enable by default)	RelativeStateOfCharge() ≤ FD: Set % RSOC Threshold	SOC Flag Config B[FDSetRSOC] = 1

Flag	Clear Criteria	Clear Condition	Enable
(TD)	cell voltage	Min cell voltage17 ≥ <i>TD: Clear Voltage Threshold</i>	SOC Flag Config A[TDClearV] = 1
RSOC (enable by default)	RelativeStateOfCharge() ≥ TD: Clear % RSOC Threshold	SOC Flag Config A[TDClearRSOC] = 1	
(ED)	cell voltage	Min cell voltage17 ≥ <i>FD: Clear Voltage Threshold</i>	SOC Flag Config B[FDClearV] = 1
[FD]	RSOC (enable by default)	RelativeStateOfCharge() ≥ FD: Clear % RSOC Threshold	SOC Flag Config B[FDClearRSOC] = 1

5.8 Terminate Charge and Discharge Alarms

When the protections and permanent fails are triggered, <code>BatteryStatus()[TCA][TDA][FD][OCA][OTA][FC]</code> will be set according to the type of safety protections. Here is a summary of the set conditions of the various alarms flags.

[TCA] = 1 if

- SafetyAlert()[OCC1], [OCC2], [COV], [OTC], [OTF], [OC], [CHGC], [CHGV], or [PCHGC] = 1 OR
- PFAlert()[SOV] or [SOCC] = 1 OR
- Any PFStatus() = 1 OR
- OperationStatus()[PRES] = 0 OR
- GaugingStatus()[TC] = 1 AND in CHARGE mode

[FC] = 1

• if GaugingStatus()[FC] = 1

[OCA] = 1 if

• SafetyStatus()[OC] = 1 AND in CHARGE mode

[TDA] = 1 if

- SafetyAlert()[OCD1], [OCD2], [CUV], [CUVC], [OTD], or [OTF] = 1 OR
- PFAlert()[SUV] or [SOCD] = 1 OR
- Any PFStatus() = 1 OR
- OperationStatus()[PRES] = 0
- GaugingStatus()[TD] = 1 AND in DISCHARGE mode

[FD] = 1 if

• SafetyStatus()[CUV] = 1 OR

www.ti.com Precharge

- PFStatus()[SUV] = 1 OR
- GaugingStatus()[FD]

[OTA] = 1 if

- SafetyStatus()[OTC], [OTD], or [OTF] = 1 OR
- PFStatus()[SOT] or [SOTF] = 1

5.9 Precharge

The gauge enters PRECHARGE mode if,

- 1. Min cell voltage1..7 < Precharge Start Voltage OR
- Max cell voltage1..7 < Charging Voltage Low Charging Voltage Hysteresis and not in CHARGE mode

Depending on the *FET Options[PCHG_COMM]* settings, the external precharge FET or CHG FET can be used in PRECHARGE mode. Setting *Precharge Start Voltage* and *Charging Voltage Low* = 0 mV disables the precharge function.

[PCHG_COMM] = 0	[PCHG_COMM] = 1
FET USED: external precharge FET	FET USED: CHG FET

The bq40z80 device also supports 0-V charging using either an external precharge FET or CHG FET. If **[PCHG_COMM]** = 1, the gauge enables the hardware 0-V charging circuit automatically when the battery stack voltage is below the minimum operation voltage of the device (see the *bq40z80 2-Series to 7-Series Li-lon Battery Pack Manager Data Sheet* [SLUSBV4] for bq40z80 electrical specifications).

5.10 Maintenance Charge

Maintenance charge can be configured to provide charge current after charge termination is reached.

If overcharge protection is enabled, *Enabled Protections C[OC]* = 1, an extra margin may be needed for *OC:Threshold* to prevent triggering the OC protection by the maintenance charging.

Status	Condition	Action
Set	ChargingStatus()[IN] = 0 AND ChargingStatus()[SU] = 0 AND ChargingStatus()[PV] = 0 AND GaugingStatus()[TCA] = 1	ChargingStatus()[MCHG] = 1 ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm
Clear	ChargingStatus()[IN] = 1 OR ChargingStatus()[SU] = 1 OR ChargingStatus()[PV] = 1 OR GaugingStatus()[TCA] = 0	ChargingStatus()[MCHG] = 0 ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm

5.11 Charge Control SMBus Broadcasts

If the **[HPE]** bit is enabled, MASTER mode broadcasts to the host address are PEC enabled. If the **[CPE]** bit is enabled, MASTER mode broadcasts to the smart-charger address are PEC enabled. The **[BCAST]** bit enables all broadcasts to a host or a smart charger. When the **[BCAST]** bit is enabled, the following broadcasts are sent:

- ChargingVoltage() and ChargingCurrent() broadcasts are sent to the smart-charger device address (0x12) every 10 s to 60 s.
- If any of the [OCA], [TCA], [OTA], [TDA], [RCA], [RTA] flags are set, the AlarmWarning() broadcast is sent to the host device address (0x14) every 10 s. Broadcasts stop when all flags above have been cleared.
- If any of the [OCA], [TCA], [OTA], [TDA] flags are set, the AlarmWarning() broadcast is sent to a smart-charger device address every 10 s. Broadcasts stop when all flags above have been cleared.

5.12 Charge Disable and Discharge Disable

The bq40z80 device can disable charging if certain safety conditions are detected, setting the OperationStatus()[XCHG] = 0.

Status	Condition	Action
Normal	ALL PFStatus() = 0 AND SafetyStatus()[COV] = 0 AND SafetyStatus()[OCC1][OCC2] = 0,0 AND SafetyStatus()[ASCC] = 0 AND SafetyStatus()[ASCCL] = 0 AND SafetyStatus()[CTO] = 0 AND SafetyStatus()[PTO] = 0 AND OperationStatus()[PRES] = 1 AND GaugingStatus()[TCA] = 0 if FET Options[CHGFET] = 1	ChargingVoltage() = Charging Algorithm ChargingCurrent() = Charging Algorithm OperationStatus()[XCHG] = 0
Trip	ManufacturingStatus()[FET_EN] = 0 OR ANY PFStatus()[] = 1 OR SafetyStatus()[OCC1] = 1 OR SafetyStatus()[OCC2] = 1 OR SafetyStatus()[OCC2] = 1 OR SafetyStatus()[ASCC] = 1 OR SafetyStatus()[ASCCL] = 1 OR SafetyStatus()[CTO] = 1 OR SafetyStatus()[PTO] = 1 OR SafetyStatus()[PTO] = 1 OR SafetyStatus()[OC] = 1 OR SafetyStatus()[CHGC] = 1 OR SafetyStatus()[CHGC] = 1 OR SafetyStatus()[CHGC] = 1 OR SafetyStatus()[DTC] = 1 If [OTFET] = 1 OR ChargingStatus()[N] = 1 if [CHGIN] = 1 OR ChargingStatus()[SU] = 1 if [CHGSU] = 1 OR OperationStatus()[SLEEP] = 1 if [NR] = 1 AND [SLEEPCHG] = 0 OR OperationStatus()[PRES] = 0 OR GaugingStatus()[TCA] = 1 if FET Options[CHGFET] = 1	ChargingVoltage() = 0 ChargingCurrent() = 0 OperationStatus()[XCHG] = 1

Similarly, the device can disable discharge if any of the following conditions are detected, setting the OperationStatus()[XDSG] = 1.

- ManufacturingStatus()[FET_EN] = 0 OR
- Any PFStatus() set OR
- SafetyStatus()[OCD1] or [OCD2] or [CUV] or [CUVC] or [AOLD] or [AOLDL] or [ASCD] or [ASCDL] or [UTD] = 1 OR
- SafetyStatus()[OTD] or [OTF] = 1 if [OTFET] = 1 OR
- OperationStatus()[PRES] = 0 OR
- OperationStatus()[EMSHUT] = 1 OR
- OperationStatus()[SDM] = 1 AND delay time > FET Off Time OR
- OperationStatus()[SDV] = 1 AND low voltage time ≥ **Shutdown Time**

5.13 Charge Inhibit

The bq40z80 device can inhibit the start of charging at high and low temperatures to prevent damage of the cells. This feature prevents the start of charging when the temperature is at the inhibit range; therefore, if the device is already in the charging state when the temperature reaches the inhibit range, a FET action will not take place even if **FET Options[CHGIN]** = 1.

www.ti.com Charge Suspend

Status	Condition	Action
Normal	ChargingStatus()[LT] = 1 OR ChargingStatus()[STL] = 1 OR ChargingStatus()[RT] = 1 OR ChargingStatus()[STH] = 1	ChargingStatus()[IN] = 0 ChargingVoltage() = charging algorithm ChargingCurrent() = charging algorithm
Trip	Not charging AND (ChargingStatus()[HT] = 1 OR ChargingStatus()[OT] = 1 OR ChargingStatus()[UT] = 1	ChargingStatus()[IN] = 1 ChargingStatus()[SU] = 0 ChargingVoltage() = 0 ChargingCurrent() = 0 OperationStatus()[XCHG] = 1 if FET Options[CHGIN] = 1

5.14 Charge Suspend

The bq40z80 device can stop charging at high and low temperatures to prevent damage of the cells.

The ChargingStatus()[SU] condition is only active in the CHARGING mode. Once CHARGE SUSPEND is triggered, the gauge will exit CHARGING mode after **Chg Relax Time** and the CHARGE SUSPEND will change to CHARGE INHIBIT.

Status	Condition	Action
Normal	ChargingStatus()[LT] = 1 OR ChargingStatus()[STL] = 1 OR ChargingStatus()[RT] = 1 OR ChargingStatus[STH] = 1 OR ChargingStatus()[HT] = 1	ChargingStatus()[SU] = 0 ChargingVoltage() = charging algorithm ChargingCurrent() = charging algorithm
Trip	ChargingStatus()[UT] = 1 OR ChargingStatus()[OT] = 1	ChargingStatus()[SU] = 1 ChargingVoltage() = 0 ChargingCurrent() = 0 OperationStatus()[XCHG] = 1 if FET Options[CHGSU] = 1

5.15 ChargingVoltage() Rate of Change

The bq40z80 device can slope the value changes from one range to another to avoid jumping between different voltage ranges. Setting the *Voltage Rate* to 1 disables this feature, because the *ChargingVoltage()* changes in one step. The gauge will not apply any voltage stepping if *Voltage Rate* is set to 1.

NOTE: The host needs to read *ChargingVoltage()* at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Trip		ChargingStatus()[CVR] = 1 ChargingVoltage() = Old + $n \times (New - Old)/Voltage Rate$, where Old = present ChargingVoltage() New = the target ChargingVoltage() that the device will change to $n = 1Voltage Rate$, increments in steps of one per second.

5.16 ChargingCurrent() Rate of Change

The bq40z80 device can slope the value changes from one range to another to avoid jumping between different current ranges. Setting the *Current Rate* to 1 disables this feature because the *ChargingCurrent()* changes in one step. The gauge will not do any current stepping if *Current Rate* is set to 1.

NOTE: The host needs to read *ChargingCurrent()* at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Trip		ChargingStatus()[CCR] = 1 ChargingCurrent() = Old + n × (New – Old)/Current Rate, where Old = present ChargingCurrent() New = the target ChargingCurrent() that the device will change to $n = 1$ Current Rate, increment in steps of 1 per second.

5.17 Charging Loss Compensation

The bq40z80 device can modify *ChargingVoltage()* and *ChargingCurrent()* to compensate losses caused by the FETs, the fuse, and the sense resistor by measuring the cell voltages directly and adjusting *ChargingCurrent()* and *ChargingVoltage()* accordingly.

In CONSTANT CURRENT mode, the device can increase the *ChargingVoltage()* value to compensate the drop losses. This feature can be enabled by setting *Configuration[CCC]* = 1 and configuring the *CCC Current Threshold*.

NOTE: The host must read *ChargingVoltage()* and/or *ChargingCurrent()* at least once a second during charging to adjust the charger accordingly.

Status	Condition	Action
Normal	Current() > CCC Current Threshold AND Voltage() = Charging algorithm voltage	ChargingStatus()[CCC] = 0 ChargingVoltage() = Charging Algorithm
Active	Current() > CCC Current Threshold AND Voltage() < Charging algorithm voltage	ChargingStatus()[CCC] = 1 ChargingVoltage() = Charging Algorithm + (PACK voltage – Voltage())
Limit	(PACK voltage in DAStatus1() – Voltage()) > CCC Voltage Threshold	Charging Voltage() = Charging Algorithm + CCC Voltage Threshold

5.18 Cycle Count/SOH Based Degradation of Charging Voltage and Current

This feature, if enabled by setting either [Cycle_Based_Degrade] or [SOH_Based_Degrade] in the charging configuration register, reduces the ChargingVoltage() and/or ChargingCurrent() levels based on cycle count or SOH. This helps to reduce the ChargingVoltage() and/or ChargingCurrent() as the battery pack ages in order to increase the longevity of the battery pack. These degradations are at the cell level. Additionally, these degradations can be selected to trigger off either specific cycle counts or specific SOH values.

5.18.1 Cycle Count Based Degradation

There are three programmable stages/levels entered using *Cycle Count* (when enabled by setting *[Cycle_Degrade]*).

NORMAL mode (Cycle Count is equal to or more than Cycle Threshold for Mode 1.)

Cycle Count Mode 1 (Cycle Threshold for Mode 1 with default 50 cycles is reached.)

Cycle Count Mode 2 (Cycle Threshold for Mode 2 with default 150 cycles is reached.)

Cycle Count Mode 3 (Cycle Threshold for Mode 3 with default 350 cycles is reached.)

5.18.2 SOH Based Degradation

In addition, when using the configuration bit **[SOH_Degrade]**, SOH can be used as a selector (like **Cycle Count**) for voltage degradation. There are four programmable stages/levels of SOH entered:

NORMAL mode (SOH is equal to or lower than SOH Threshold for Mode 1.)

SOH Mode 1 (SOH Threshold for Mode 1 with SOH of default 95%)

SOH Mode 2 (**SOH Threshold** for Mode 2 with SOH of default 80%)

SOH Mode 3 (**SOH Threshold** for Mode 3 with SOH of default 60%)

5.18.3 Charging Voltage Degradation Process

The following is the charging voltage degradation process (using *Cycle Count* as an example, although it would be the same for SOH):

In NORMAL mode, no *ChargingVoltage()* adjustment, moving to Cycle Count Mode 1, *ChargingVoltage()* is reduced by CV Degradation Mode 1 (assuming the Cycle Count 1 entry conditions are met), then moving to Cycle Count Mode 2, *ChargingVoltage()* is further reduced by *CV Degradation* Mode 2 (assuming Cycle Count 2 entry conditions are met). It is similar for Cycle Count Mode 3. The charging voltage mode transition is a one-way transition. The gauge only goes from Normal \rightarrow Lvl1 \rightarrow Lvl2 \rightarrow Lvl3. The three degradation points each occur one time when that level is reached with the amount of voltage degradation based on the related register.

- Charging voltage degradation on reaching CC/SOH Mode 1 (Degrade Mode 1: Voltage Degradation with default 10 mV / cell)
- Charging voltage degradation on reaching CC/SOH Mode 2 (Degrade Mode 2: Voltage Degradation with default 40 mV / cell)
- Charging voltage degradation on reaching CC/SOH Mode 3 (Degrade Mode 3: Voltage Degradation with default 70 mV / cell)

This charging voltage degradation scheme (if enabled) will need to work in conjunction with any other existing degradation/increments (such as charging loss compensation).

5.18.4 Optional Charging Current Degradation

Optionally (with cycle count and SOH based degradations), by setting the configuration bit **[Degrade_CC]**, charging current can also be degraded (in addition to charging voltage degrading). The level of degradation can be programmed using the following data flash:

- Charging current degradation on reaching CC/SOH Mode 1 (Degrade Mode 1: Current Degradation with default 10%)
- Charging Current degradation on reaching CC/SOH Mode 2 (Degrade Mode 2: Current Degradation with default 20%)
- Charging Current degradation on reaching CC/SOH Mode 3 (Degrade Mode 3: Current Degradation with default 40%)

5.18.5 Charging Current Degradation Process

The following is the charging current degradation process (using *Cycle Count* as an example, although it would be the same for SOH).

In NORMAL mode (no *ChargingCurrent()* adjustment), *ChargingCurrent()* is reduced by CC Degradation Mode 1 (assuming the Cycle Count 1 entry conditions are met), then moving to Cycle Count Mode 2, *ChargingCurrent()* is further reduced by CC Degradation Mode 2 (assuming Cycle Count 2 entry conditions are met). This is similar for Cycle Count Mode 3.

The charging current mode transition is a one-way transition. The gauge only goes from Normal \rightarrow Lvl1 \rightarrow Lvl2 \rightarrow Lvl3. The three degradation points each occur one time when that level is reached, with the amount of voltage degradation based on the related register.

This charging current degradation scheme (if enabled) must work in conjunction with any other existing degradation/increments (such as charge loss compensation).

The following table shows how charging voltage and charging current are degraded at different points:

Cycle Count (in counts)/SOH (in %) (One or the other must be enabled. ⁽¹⁾)	Charging Voltage (CV) (CV degradation is available by default.)	Charging Current (CC) (CC degradation is available if enabled [Degrade_CC]. (2)
Normal	No CV Degradation	No CC Degradation

Only SOH or *Cycle Count* can be used at a time. Both must not be enabled together.

Only [Degrade CC] or [CRATE] can be used at a time. Both must not be enabled together.

Cycle Count (in counts)/SOH (in %) (One or the other must be enabled. (1))	Charging Voltage (CV) (CV degradation is available by default.)	Charging Current (CC) (CC degradation is available if enabled [Degrade_CC].(2))
Mode 1	CV Degradation (default 10 mV / cell)	CC Degradation (default 10%)
Mode 2	CV Degradation (default 40 mV / cell)	CC Degradation (default 20%)
Mode 3	CV Degradation (default 70 mV / cell)	CC Degradation (default 40%)

5.19 Compensation for IR Drop in BMU

A voltage compensation scheme is required to handle system level IR drops to ensure the correct voltage level required for a specific charging voltage at the battery terminals. Where 'R' is the added "system level" resistance, the user would program in the **System Resistance** register. This feature is enabled by setting the configuration bit **[COMP_IR]** in (default 0) the **Charging Configuration** register.

This scheme will work as follows:

SBS.ChargingVoltage = Nominal Charging Voltage + IR

5.20 Cell Swelling Control (via Charging Voltage Degradation)

It is possible that cell swelling can occur when the cell temperature and cell voltage are above certain thresholds. In these situations, the charging voltage can be stepped down gradually until the cell temperature and cell voltage move back down.

This scheme works (as shown in Figure 5-1) when enabled by setting **[CS_CV]** = 1 (default 0) in the **Charging Configuration** register. When the max cell voltage1..7 and cell temperature are above the **Voltage Threshold** and **Temperature Threshold**, respectively, for the period defined by **Time Interval**, then the charging voltage is stepped down by **Delta Voltage**. This step down continues until either the max cell voltage1..7 and cell temperature conditions go away (that is, cell swelling reduces) or the step down reaches **Min CV**.

The charging voltage reduction/degradation resulting from this feature is reset when exiting CHARGE mode.

Figure 5-1. Cell Swelling Control

Power Modes

6.1 Introduction

To enhance battery life, the bq40z80 device supports several power modes to minimize power consumption during operation.

6.2 NORMAL Mode

In NORMAL mode, the device takes voltage, current, and temperature readings every 250 ms, performs protection and gauging calculations, updates SBS data, and makes status decisions at 1-s intervals. Between these periods of activity, the device is in a reduced power state.

6.2.1 BATTERY PACK REMOVED Mode/System Present Detection

6.2.1.1 System Present

PRES is sampled four times per second, and if PRES is high for 4 samples (one second), the OperationStatus[PRES] flag is cleared. If PRES is low for 4 samples (one second), the OperationStatus [PRES] flag is set, indicating the system is present (the battery is inserted).

If the **[NR]** bit is set, the **PRES** input is not monitored. If **[NR]** is set and **[EMSHUT_EN]** is cleared, the **PRES** pin should be tied to VSS. If **[NR]** and **[EMSHUT_EN]** are set, then the **PRES** input must be configured correctly for that function.

6.2.1.2 Battery Pack Removed

The bq40z80 device detects the BATTERY PACK REMOVED mode if the **[NR]** bit is set to 0 AND the PRES input is high (**[PRES]** = 0).

On entry to the BATTERY PACK REMOVED mode, the [TCA] and [TDA] flags are set, ChargingCurrent() and ChargingVoltage() are set to 0, the CHG and DSG FETs are turned off, and the precharge FET is turned off (if used).

Polling of the PRES pin continues at a rate of once every 1 s.

The bq40z80 exits the BATTERY PACK REMOVED state if the **[NR]** flag is set to 0 AND the PRES input is low (**[PRES]** = 1). When this occurs, the **[TCA]** and **[TDA]** flags are reset.

6.3 SLEEP Mode

6.3.1 Device Sleep

When the sleep conditions are met, the device goes into SLEEP mode with periodic wakeups for voltage, temperature, and current measurements to reduce power consumption.

OperationStatus()[SLPAD] is set when the gauge wakes to measure voltage and temperature. Similarly, the [SLPCC] is set when the gauge wakes for current measurement. In general, it is not possible to read these flags because an SMBus communication will wake up the gauge.

The bq40z80 device returns to NORMAL mode if any exit sleep condition is met.

SLEEP Mode www.ti.com

Status	Condition	Action	
Activate	SMBus low for Bus Timeout ⁽¹⁾ if [IN_SYSTEM_SLEEP] = 0, or no communication for Bus Timeout if [IN_SYSTEM_SLEEP] = 1 AND DA Config[SLEEP] = 1 (1) AND Current() \leq Sleep Current AND Voltage Time > 0 AND (OperationStatus()[PRES] = 0 OR DA Config[NR] = 1) AND OperationStatus()[SDM] = 0 AND No PFAlert() bits set AND (2) No PFStatus() bits set AND No SafetyAlert() bits set AND No SafetyAlert() [AOLDL], [ASCC], [ASCCL], [ASCD], [ASCDL] set in SafetyStatus()	Turn off CHG FET and PCHG FET if <i>FET Options[SLEEPCHG]</i> = 0. ⁽³⁾ The device goes to sleep. The device wakes up every <i>Sleep:Voltage Time</i> period to measure voltage and temperature. The device wakes up every <i>Sleep:Current Time</i> period to measure current.	
Exit	SMBus connected (1)OR SMBus command received (4) OR DA Config[SLEEP] = 1 (1) OR Current() > Sleep Current OR Wake comparator activates (5) OR Voltage Time = 0 OR (OperationStatus()[PRES] = 1 AND DA Config[NR] = 0) OR OperationStatus()[SDM] = 1 OR PFAlert() bits set OR PFStatus() bits set OR [AOLD], [AOLDL], [ASCC], [ASCCL], [ASCD], [ASCDL] set in SafetyStatus()	Return to NORMAL mode SLEEPWKCHG estimates an accumulated charge on exit from SLEEP mode if not by the Wake Function for the duration of <i>Current Time</i> preceding the last current measurement when <i>Current Time</i> is greater than 2 s. The current read upon exit of SLEEP mode is assumed to have been present for half of the <i>Current Time</i> interval, when enabled. This feature does not have any effect when <i>Current Time</i> is less than or equal to 2 s.	

DA Config[SLEEP] and SMBus low are not checked if the ManufacturerAccess() SLEEP mode command is used to enter

- SafetyAlert()[PTO], [PTOS], [CTO], [CTOS] or PFAlert()[QIM], [OC], [IMP], [CB] will not prevent the gauge to enter SLEEP mode.
- For [NR] = 0, the CHG FET and PCHG FET remains on in SLEEP mode if [SLEEPCHG] = 1, but if the battery pack is removed from the system, the CHG FET is off because the system present takes higher priority than [SLEEPCHG].
- Wake on SMBus command is only possible when the gas gauge is put to sleep using the ManufacturerAccess() SLEEP mode command or [IN_SYSTEM_SLEEP] is enabled with Bus Timeout = 0. Otherwise, the gas gauge wakes on an SMBus connection (clock or data high).
- The wake comparator threshold is set through *Power.WakeComparator[WK1,WK0]* (see Section 6.3.4).

6.3.2 IN SYSTEM SLEEP Mode

The bq40z80 device provides an option for removable packs (that is, **DA Config[NR]** = 0) to enter SLEEP mode in-system. When the **DA Config[IN SYSTEM SLEEP]** = 1, the device will enter SLEEP mode even if the OperationStatus()[PRES] = 1. This option ignores the PRES pin status only. Additionally, in this option, the SMBus low state is not a condition to enter SLEEP mode (instead, no communication must occur for **Bus Timeout** to enter SLEEP). All the other sleep conditions must be met for the device to enter SLEEP mode.

In IN SYSTEM SLEEP mode, it is possible to read the [SLPAC] and [SLPCC] flags if [IN_SYSTEM_SLEEP] = 1 and Bus Timeout = 0. This setting allows the gauge to enter SLEEP mode with active communication in progress.

NOTE: Setting the Bus Timeout = 0 with [IN SYTEM SLEEP] can be used for testing purposes, but it is not recommended to set the **Bus Timeout** = 0 in the field. If **Bus Timeout** = 0, the device's sleep and wake conditions are strictly controlled by current detection. If the host system performs a low load operation periodically (for example, wireless detection in a tablet application), this small load current may be missed, introducing an error into remaining capacity tracking. Having a non-zero Bus Timeout setting enables the gauge to wake up by a communication and capture the current measurement.

SLEEP Mode www.ti.com

6.3.3 ManufacturerAccess() MAC Sleep

The SLEEP MAC command can override the requirement for bus low to enter sleep. In this case, the bq40z80 clock and data high condition is ignored for sleep to exit, though sleep will also exit if there is any further SMBus communication. The bq40z80 device can be sent to sleep with *ManufacturerAccess()* if specific sleep entry conditions are met.

6.3.4 Wake Function

The bq40z80 device can exit SLEEP mode if enabled by the presence of a voltage across SRP and SRN. The voltage threshold needed for the device to wake from SLEEP mode is programmed in *Power:Wake Comparator*. This allows the gauge to wake up quickly in response to a higher current detection.

Otherwise, the gauge only wakes up every *Sleep Current Time* to detect if |*Current()*| is > Sleep Current.

Reserved (Bits 7-4, 1-0): Reserved. Do not use.

WK1,0 (Bits 3-2): Wake Comparator Threshold

WK1	WK0	Voltage
0	0	±0.625 mV
0	1	±1.25 mV
1	0	±2.5 mV
1	1	±5 mV

6.4 SHUTDOWN Mode

6.4.1 VOLTAGE BASED SHUTDOWN

To minimize power consumption and to avoid draining the battery, the device can be configured to shut down at a programmable stack voltage threshold. This function also works in PERMANENT FAILURE mode. When the device is in PERMANENT FAILURE mode, the parameters **PF Shutdown Voltage** and **PF Shutdown Time** configure the shutdown threshold.

Status	Condition	Action
Enable	Min cell voltage < Shutdown Voltage	OperationStatus()[SDV] = 1
Trip	Min cell voltage continuous < Shutdown Voltage for Shutdown Time	Turn DSG FET off
Shutdown	Voltage at PACK pin < Charger Present Threshold	Send device into SHUTDOWN mode
Exit	Voltage at PACK pin > V _{STARTUP}	OperationStatus()[SDV] = 0 Return to NORMAL mode

Table 6-1. PF Shutdown Voltage

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PF Shutdown Voltage	Int	2	0	32767	1750	mV

Table 6-2. PF Shutdown Time

(Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
F	Power	Shutdown	PF Shutdown Time	Unsigned Int	1	0	255	10	S

SHUTDOWN Mode www.ti.com

NOTE: The bq40z80 device goes through a full reset when exiting from SHUTDOWN mode, which means the device will reinitialize. On power up, the gauge will check some special memory locations. If the memory checksum is incorrect, or if the gauge or the AFE watchdog has been triggered, the gauge will do a full reset.

If the memory checksum is good, for example, in a case of a short power glitch, the gauge will do a partial reset. The initialization is faster in a partial reset, and certain memory data will not be reinitialized (for example, all SBS registers, last known FET state, last ADC and CC readings, and so on), and so a partial reset is usually transparent to the host.

6.4.2 ManufacturerAccess() MAC Shutdown

In SHUTDOWN mode, the device turns off the FETs after FET Off Time, and then shuts down to minimize power consumption after Delay time. FET Off Time and Delay time are referenced to the time the gauge receives the command. Thus, the Delay time must be set longer than FET Off Time. The bq40z80 device returns to NORMAL mode when the voltage at the PACK pin > V_{STARTUP}. The bq40z80 device can be sent to this mode with the ManufacturerAccess() Shutdown command. Charger voltage must not be present for the device to enter SHIP SHUTDOWN mode.

NOTE: If the gauge is sealed and the MAC *Shutdown()* command is sent twice in a row, the gauge will execute the shutdown sequence immediately and skip the normal delay sequence.

6.4.3 Time Based Shutdown

The bq40z80 device can be configured to shut down after staying in SLEEP mode without communication for a preset time interval specified in Auto Ship Time. Setting the PowerConfig[AUTO SHIP EN] = 1 enables this feature. Any communication to the device restarts the timer. When the timer reaches Auto Ship Time, the time-based shutdown effectively triggers the MAC shutdown command to start the shutdown sequence. The bq40z80 device returns to NORMAL mode when voltage at PACK pin > V_{STARTUP}.

6.4.4 Power Save Shutdown

Power Save Shutdown is enabled when [PWR_SAVE_VSHUT] is set. The bq40z80 enters Power Save Shutdown when the lowest cell voltage is below PS Shutdown Voltage and when: NoLoadRemCap() ≤ PS No Load Res Cap Threshold.

Status	Condition	Action
Enable	Min cell voltage < PS Shutdown Voltage	OperationStatus()[PSSHUT] = 1
Trip	Min cell voltage continuous < <i>PS Shutdown Voltage</i> AND <i>NoLoadRemCap()</i> ≤ <i>PS No Load Res Cap</i> AND RSOC = 0% AND the <i>[REST]</i> bit must be set.	Turn DSG FET off
Shutdown	Voltage at PACK pin < Charger Present Threshold	Send device into SHUTDOWN mode.
Exit	Voltage at PACK pin > V _{STARTUP}	OperationStatus()[PSSHUT] = 0 Return to NORMAL mode

Table 6-3. PS Shutdown Voltage

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PS Shutdown Voltage	Int	2	0	32767	2500	mV

Table 6-4. PS No Load Res Cap

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Power	Shutdown	PS No Load Res Cap	Unsigned Int	2	0	32767	0	mAh

6.5 **Option to Manage Unintended Wakeup from Shutdown**

In some user systems, there can be glitches on the supply line during mass production. This can result in a glitch getting to the PACK pin (V_{PACK}), which can then unintentionally wake up a device that was in SHUTDOWN.

The feature to manage an unintended wakeup from shutdown, if enabled (with the *[CHECK WAKE]* bit), manages a shutdown of the gauge by any allowed shutdown process (except for VOLTAGE BASED SHUTDOWN and POWER SAVE SHUTDOWN, both of which are excluded from this feature). This feature does not function on a wake/start up from a reset.

When this feature is active on wake up from shutdown, the gauge starts a *Unintended Wakeup:Delay* timer (with the default of 2 s) and looks for communication to the gauge during this time—with CHG and DSG FETs remaining off. If during the *Unintended Wakeup:Delay* timer period there is no valid communication with the device, then the device goes back into shutdown (with FETs turned off). If there is valid communication within the Unintended Wakeup: Delay timer period, then the device stays in wake and continues like a normal wakeup. Valid communication means the gauge receives a valid address and a command. (It does not matter if the command is invalid. Invalid commands are OK with a valid address.)

One variant to this is the wake up from an IATA shutdown. In this case, each time the gauge wakes up, the IATA function will be called as usual. However, if the gauge then goes back into shutdown (because it was an unintended wakeup from shutdown), then the [IATA SHUT] bit will be set before going into shutdown again and the FCC and RemCap stored during the original IATA shutdown will still be kept for the next wakeup.

Additionally, the number of times the gauge wakes up from shutdown unintentionally is recorded. This "unintentional wakeup" counter is reset when the gauge wakes up and sees valid communication. If this count exceeds a threshold (Count, with the default of 3), then the next time the gauge wakes up from shutdown, it will execute a normal wakeup without looking for valid communication (and the counter recording wakeup will be reset). If the *Count* is set to 0, then no threshold exists and the gauge will only wake up with valid communications.

NOTE: If this feature is enabled ([CHECK_WAKE] set high), then by default the CHG and DSG FETs are off on wake up from SHUTDOWN (during the *Delay* timer period); thus, the FETs will turn on only if the gauge enters a normal wakeup. However, if the ICHECK WAKE FETI bit is set (default it is low), then the FETs will not be forced off during the **Delay** timer period.

6.6 **Emergency FET Shutdown (EMSHUT)**

The Emergency FET Shutdown function provides an option to disable the battery power to the system by opening up the CHG and DSG FETs before removing an embedded battery pack. There are two ways to enter the EMERGENCY FET SHUTDOWN state:

- a. Use an external signal (for example, a push-button switch) to detect a low-level threshold signal on the SHUTDN pin.
- b. Send a Manual FET Control (MFC) sequence to ManufacturerAccess().

When the gauge is in the EMERGENCY FET SHUTDOWN state, the OperationStatus()[EMSHUT] = 1.

6.6.1 Enter Emergency FET Shutdown Through SHUTDN

When a high-to-low transition on the SHUTDN pin is detected with a debounce delay of about 1 s for the low level threshold, the gauge will turn off the CHG and DSG FETs immediately. This entry method only applies if **[NR]** = 1 and **DA Configuration[EMSHUT]** = 1. If **[NR]** = 0, the SHUTDN pin will restore to the regular system present detection.

6.6.2 Enter Emergency FET Shutdown Through MFC

Alternatively, sending a manual FET control (MFC) sequence using the steps below also puts the gauge to the EMERGENCY FET SHUTDOWN state. This entry method applies to **[NR]** = 0 and **[NR]** = 1.

- a. Send word 0x270C to ManufacturerAccess() (0x00) to enable the MFC.
- b. Within 4 s, send word 0x043D to ManufacturerAccess() (0x00) to turn off CHG and DSG FETs.
- c. The CHG and DSG FETs will be off after Manual FET Control Delay.

6.6.3 Exit Emergency FET Shutdown

Regardless of which EMSHUT entry method is used, the gauge can exit the EMSHUT mode by turning on the CHG and DSG FETs with any one of the following conditions:

- A high-to-low transition on the SHUTDN pin is detected with a debounce delay of 1 s for the low level threshold. For example, a push button is pressed again. This exit condition can be disabled by setting the [EMSHUT_PEXIT_DIS] bit in the DA Configuration register.
- Send word 0x23A7 to ManufacturerAccess() (0x00).
- Voltage at Pack pin > Charger Present Threshold for two sample periods (that is, ~500 ms). This exit condition requires the [EMSHUT_EXIT_VPACK] bit to be set.
- Valid SMBus communication is received. Valid SMBus communication means a valid gauge address
 and any command is received (that is, an invalid command with a valid address is OK). This exit
 condition requires the [EMSHUT_EXIT_COMM] bit to be set. When using this exit option, the Manual
 FET Control (MFC) Delay should be set to a minimum of 4 seconds.

In addition to these exit conditions, if the gauge enters EMSHUT (via a push button, for example), it can exit the EMSHUT mode after a shutdown restore timeout defined by the *Timeout* parameter. When setting the timeout is equal to 0, it will not exit EMSHUT mode.

For the case of [NR] = 0, a battery insertion will also exit the EMERGENCY FET SHUTDOWN mode.

In EMSHUT mode, to detect the voltage level at the PACK pin quickly (even while in SLEEP), the AD conversion will occur every second.

6.7 Current Scaling

The device can natively support pack capacities up to 29 000 mAh and battery currents up to 32 767 mA. Current scaling is required to support higher capacities and currents. To support large battery configurations where current can exceed 32767 mA, the current data can be scaled to ensure accurate reporting through the SMBus. The data reported is scaled based on the setting of the *Scale Factor*. The value of *Scale Factor* can be set between 0–100. Setting 0 (default) disables the scaling. *Scale Factor* should be selected based on the battery size and current magnitudes expected. The *Scale Factor* should be calculated for both parameters and the largest scale factor should be used to meet both requirements.

First, the data flash configuration must scale the capacity to ensure that the maximum capacity does not exceed 29 000 mAh. As an example, if the maximum pack capacity is 100 Ah, then the *Scale Factor* is set to 100 000 mAh / 29 000 mAh = 3.45x or rounded up to 4x. The *DesignCapacity mAh* and *Design Capacity cWh* must be scaled in data flash, and all current and capacity parameters in the data flash are divided by 4x.

Current Scaling www.ti.com

Second, the data flash configuration must consider scaling the current to ensure that the maximum current does not exceed 32 767 mA. As an example, if the maximum discharge current is 64 A, then the *Scale Factor* is set to 64 000 mA / 32 767 mA = 1.95x or is rounded up to 2x. To ensure accurate current measurement, the input voltage generated across the current-sense resistor should not exceed ±100 mV. The value of the sense resistor must be set to ensure that this voltage is not exceeded at the maximum charge and discharge current. The current calibration is automatically adjusted based on the *Scale Factor* during the calibration phase. For example, if a 4 A discharge current is used to calibrate the pack, then –4000 mA is entered as the actual current, so this value does not need to be scaled.

Finally, the larger of the two calculated *Scale Factors* should be used. When considering both examples, where the capacity resulted in a *Scale Factor* of 4, and the current resulted in a *Scale Factor* of 2, the *Scale Factor* of 4 should be used. All current and capacity parameters entered into data flash should be divided by 4 if *Scale Factor* is set to 4, and the host must multiply these parameters by the *Scale Factor* to calculate the true value.

The MAC command *CurrentLong()* (0x0082) is provided to report current greater than 32767 mA in mA resolution. All other currents and capacities are reported as scaled values, and the host must multiply the value by the Scale Factor. All protections must also be divided by the *Scale Factor*

Gauging

7.1 Introduction

The bq40z80 measures individual cell voltages, pack voltage, temperature, and current. It determines battery state-of-charge by analyzing individual cell voltages when a certain relax time has passed since the last charge or discharge activity of the battery.

The bq40z80 measures charge and discharge activity by monitoring the voltage across a small-value series sense resistor (1-m Ω typical) between the negative terminal of the cell stack and the negative terminal of the battery pack. The battery state-of-charge is subsequently adjusted during a load or charger application using the integrated charge passed through the battery. The bq40z80 device is capable of natively supporting a battery pack capacity of 29 Ah. To support charge and discharge currents greater than 32 A and capacities greater than 29 Ah, see Current Scaling.

The default for Impedance Track gauging is *off*. To enable the gauging function, set *Manufacturing Status[GAUGE_EN]* = 1. The gauging function will be enabled after a reset or a seal command is set. Alternatively, the *Gauging()* MAC command can be used to turn on and off the gauging function. The *Gauging()* command will take effect immediately and the *[GAUGE_EN]* will be updated accordingly.

The GaugingStatus1(), GaugingStatus2(), and GaugingStatus3() commands return various gauging related information that is useful for problem analysis.

7.2 Impedance Track Configuration

Load Mode — During normal operation, the battery-impedance profile compensation of the Impedance Track algorithm can provide more accurate full-charge and remaining state-of-charge information if the typical load type is known. The two selectable options are constant current (**Load Mode** = 0) and constant power (**Load Mode** = 1).

Load Select — To compensate for the I × R drop near the end of discharge, the bq40z80 must be configured for the current (or power) that will flow in the future. While it cannot be exactly known, the bq40z80 can use load history, such as the average current of the present discharge, to make a sufficiently accurate prediction.

The bq40z80 can be configured to use several methods of this prediction by setting the **Load Select** value. Because this estimate has only a second-order effect on remaining capacity accuracy, different measurement-based methods (methods 0–3 and method 7) result in only minor differences in accuracy. However, methods 4–6, where an estimate is arbitrarily user-assigned, can result in a significant error if a fixed estimate is far from the actual load. For highly variable loads, selection 7 provides the most conservative estimate and is preferable.

Constant Current (Load M	lode = 0	1)
--------------------	--------	-----------------	----

0 = Avg I Last Run

1 = Present average discharge current

2 = Current()

3 = AverageCurrent()

4 = Design Capacity/5

5 = AtRate() (mA)

6 = User Rate-mA

7 = **Max Avg I Last Run** (default)

Constant Power (*Load Mode* = 1)

Avg P Last Run

Present average discharge power

 $Current() \times Voltage()$

AverageCurrent() × average Voltage()

Design Capacity cWh/5

AtRate() (10 mW)

User Rate-mW

Max Avg P Last Run

Gas Gauge Modes www.ti.com

Pulsed Load Compensation and Termination Voltage — To take into account pulsed loads while calculating remaining capacity until *Term Voltage* threshold is reached, the bq40z80 monitors not only average load but also short load spikes. The maximum voltage deviation during a load spike is continuously updated during discharge and stored in *Delta Voltage*.

Reserve Battery Capacity — The bq40z80 allows an amount of capacity to be reserved in either mAh (Reserve Cap-mAh, Load Mode = 0) or cWh (Reserve Cap-cWh, Load Mode = 1) units between the point where the RemainingCapacity() function reports zero capacity and the absolute minimum battery stack voltage, Term Voltage. This enables a system to report zero energy, but still have enough reserve energy to perform a controlled shutdown or provide an extended sleep period for the host system.

The reserve capacity is compensated at the present discharge rate as selected by Load Select.

No Load Reserve Capacity — The **PS No Load Res Cap** threshold is programmed to a value in mAh based on how much capacity to reserve for powering the RTC for a period of time after RSOC is 0%.

Class	Subclass	Name	Format	Size in Bytes	Min	Max	Default	Unit
Power	Shutdown	PS No Load Res Cap	Unsigned Int	2	0	32767	0	mAh

Table 7-1. PS No Load Res Cap

NOTE: There is no requirement to change *Term Voltage*, and this can remain set to the minimum system operation voltage.

Stack-Based and Cell-Based Termination — The bq40z80 forces RemainingCapacity() to 0 mAh when the battery stack voltage reaches the *Term Voltage* for a period of *Term V Hold Time*. If *IT Gauging Configuration[CELL_TERM]* = 1, the battery can terminate based on cell voltage or battery stack voltage. When the cell-based termination is used, the *Term Min Cell V* threshold is checked for the termination condition. The cell-based termination can provide an option to enable the gauge to reach 0% before the device triggers CUV for a pack imbalance.

Table 7-2. Term V Hold Time

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Gas Gauging	IT Cfg	Term V Hold Time	Unsigned Int	1	0	255	1	s

7.3 Gas Gauge Modes

Resistance updates take place only in DISCHARGE mode, while open circuit voltage (OCV) and QMax updates only take place in RELAX mode. If *Fast Qmax* is enabled, the Qmax also updates at the end of discharge given a minimum of 37% delta change of charge. Entry and exit of each mode is controlled by data flash parameters in the subclass *Gas Gauging: Current Thresholds* section. When the device is determined to be in RELAX mode and OCV is taken, the *GaugingStatus()[REST]* flag is set. In RELAX mode or DISCHARGE mode, the DSG flag in *BatteryStatus()* is set.

www.ti.com Gas Gauge Modes

Figure 7-1. Gas Gauge Operating Modes

- CHARGE mode is exited and RELAX mode is entered when current goes below Quit Current for a period of Chg Relax Time.
- DISCHARGE mode is entered when current goes below (-)Dsg Current Threshold.

QMax and Ra www.ti.com

 DISCHARGE mode is exited and RELAX mode is entered when current goes above (-)Quit Current threshold for a period of Dsg Relax Time.

Figure 7-2. Gas Gauge Operating Mode Example

7.4 QMax and Ra

The total battery capacity is found by comparing states of charge before and after charge and discharge with the amount of charge passed. When an applications load is applied, the impedance of each cell is measured by comparing the open circuit voltage (OCV) obtained from a predefined function for present state-of-charge with the measured voltage under load.

Measurements of OCV and charge integration determine chemical state-of-charge and chemical capacity (*QMax*).

The bq40z80 acquires and updates the battery-impedance profile during normal battery usage. It uses this profile, along with state-of-charge and the *QMax* values, to determine *FullChargeCapacity* and *RelativeStateOfCharge* specifically for the present load and temperature. *FullChargeCapacity* reports a capacity or energy available from a fully charged battery reduced by *Reserve Cap-mAh* or *Reserve Cap-cWh* under the present load and present temperature until voltage reaches the *Term Voltage*.

7.4.1 QMax Initial Values

The initial *QMax Pack*, *QMax Cell 0*, *QMax Cell 1*, *QMax Cell 2*, *QMax Cell 3*, *QMax Cell 4*, *QMax Cell 5* and *QMax Cell 6* values should be taken from the cell manufacturers' data sheet multiplied by the number of parallel cells, and are also used for the *DesignCapacity* function value in the *Design Capacity* data flash value.

See the Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm in bq20zxx Product Family Application Report (SLUA364) for further details.

www.ti.com QMax and Ra

7.4.2 QMax Update Conditions

A QMax update is enabled when gauging is enabled. This is indicated by the GaugingStatus()[QEN] flag. The bq40z80 updates the no-load full capacity (QMax) when two open circuit voltage (OCV) readings are taken. These OCV readings are taken when the battery is in a relaxed state before and after charge or discharge activity. A relaxed state is achieved if the battery voltage has a dV/dt of < 4 μ V/s. Typically, it takes 2 hours in a charged state and 5 hours in a discharged state to ensure that the dV/dt condition is satisfied. If 5 hours is exceeded, a reading is taken even if the dV/dt condition was not satisfied. The GaugingStatus()[REST] flag is set when a valid OCV reading occurs. If a valid DOD0 (taken at the previous QMax update) is available, then QMax will also be updated when a valid charge termination is detected.

The flag is cleared at the exit of a relaxed state. A QMax update is disqualified under the following conditions:

Temperature — If *Temperature()* is outside of the range 10°C to 40°C.

Delta Capacity — If the capacity change between suitable battery rest periods is less than 37%.

Voltage — If *CellVoltage1..7()* is inside a flat voltage region. (See the *Support of Multiple Li-Ion Chemistries with Impedance Track Gas Gauges Application Report* (SLUA372) for the voltage ranges of other chemistries.) This flat region is different with different chemistry. The *GaugingStatus()[OCVFR]* flag indicates if the cell voltage is inside this flat region.

Offset Error — If offset error accumulated during time passed from previous OCV reading exceeds 1% of Design Capacity, update is disqualified. Offset error current is calculated as **CC Deadband** / sense resistor value.

Several flags in *ITStatus()* are helpful to track for QMax update conditions. The *[REST]* flag indicates an OCV is taken in RELAX mode. The *[VOK]* flag indicates the last OCV reading is qualified for the QMax update. The *[VOK]* is set when charge or discharge starts. It clears when the QMax update occurs, when the offset error for a QMax disqualification is met, or when there is a full reset. The *[QMax]* flag will be toggled when the QMax update occurs. *GaugingStatus3()* returns the QMax and DOD (depth of discharge, corresponding to the OCV reading) data.

The bq40z80 device includes a check in which, during discharge, there must be a minimum change in *Voltage()* programmed in *Min Delta Voltage*. There is also a maximum change set in *Max Delta Voltage*.

Table	7-3.	Min	DeltaV

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Gas Gauging	IT Cfg	Min Delta Voltage	Int	2	-32768	32767	0	mV

Table 7-4. Max DeltaV

Class	Subclass	Name	Format	Min Value	Max Value	Default Value	Unit
Gas Gauging	IT Cfg	Max Delta Voltage	12	-32768	32767	200	mV

7.4.3 Fast Qmax Update Conditions

The Fast Qmax update conditions are very similar to the QMax update conditions with the following differences:

- Instead of taking two OCV readings for QMax update, a Fast Qmax update requires only one OCV reading AND
- The battery pack should discharge below 10% RSOC.

QMax and Ra www.ti.com

The differences in requirements allow the Fast Qmax feature to have a QMax update at the end of discharge (given one OCV reading is already available and discharge below 10% RSOC) without a longer relax time after a discharge event. Typically, it can take up to 5 hours in a discharge state to ensure the $dV/dt < 4 \,\mu V/s$ condition is satisfied. The temperature, delta capacity, voltage, and offset error requirements for QMax update are still required for the Fast Qmax update.

This feature is particularly useful for reducing production QMax learning cycle time or for an application that is mostly in charge or discharge stage with infrequent relaxation. Setting *IT Gauging Configuration[FAST_QMAX_LRN]* = 1 enables Fast Qmax during production learning only (that is, *Update Status* = 6). When setting *IT Gauging Configuration[FAST_QMAX_FLD]* = 1, Fast Qmax is enabled when Impedance Track is enabled and *Update Status* ≥ 6.

7.4.4 QMax and Fast Qmax Update Boundary Check

The bq40z80 implements a QMax and Fast Qmax check prior to saving the value to data flash. This improves the robustness of the QMax update in case of potential QMax corruption during the update process.

The verifications are as follows:

- 1. Verify that the updating QMax or Fast Qmax value is within **Qmax Delta Percent**, which is the maximum allowed QMax change for each update. If the updating value is outside of this data flash parameter, the bq40z80 caps the change to **Qmax Delta Percent** of the **Design Capacity**.
- 2. Bound the absolute QMax value, **Qmax Upper Bound**. This is the maximum allowed QMax value over the lifetime of the pack.
- 3. Ensure that QMax is greater than 0 before saving to data flash.

7.4.5 Ra Table Initial Values

The Ra table is part of the impedance profile that updates during discharge when gauging is enabled. The initial *Cell 0 R_a0...14*, *Cell 1 R_a0...14*, *Cell 2 R_a0...14*, *Cell 3 R_a0...14*, *Cell 4 R_a0...14*, *Cell 5 R_a0...14*, *Cell 6 R_a0...14* values should be programmed by selecting the correct chemistry data during data flash configuration. A chemistry database is constantly updating, and can be downloaded from the Gas Gauge Chemistry Updater product web page (http://www.ti.com/tool/gasgaugechem-sw). The initial *xCell 0 R_a0...14*, *xCell 1 R_a0...14*, *xCell 2 R_a0...14*, *xCell 3 R_a0...14*, *xCell 4 R_a0...14*, *xCell 5 R_a0...14*, *xCell 5 R_a0...14*, *xCell 6 R_a0...14* values are a copy of the non-x data set. Two sets of Ra tables are used alternatively when gauging is enabled to prevent wearing out the data flash.

The Cell 0 R_a Flag, Cell 1 R_a Flag, Cell 2 R_a Flag, Cell 3 R_a Flag, Cell 4 R_a Flag, Cell 5 R_a Flag, Cell 6 R_a Flagand the xCell 0 R_a Flag, xCell 1 R_a Flag, xCell 2 R_a Flag, xCell 3 R_a Flag, xCell 4 R_a Flag, xCell 5 R_a Flag, xCell 6 R_a Flag indicate the validity of the cell impedance table for each cell.

NOTE: FW updates these values: It is not recommended to change them manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table is not used and QMax updated.
0x05	RELAX mode and QMax update in progress	0x05	RSVD
0x55 DISCHARGE mode and cell impedance updated		0x55	Table is used.
0xFF			A Fast Qmax update without OCV read will also clear the R_DIS flag. Table is never used, no QMax or cell impedance update.

www.ti.com QMax and Ra

7.4.6 Ra Table Update Conditions

The impedance is different across different DOD states. Each cell has 15 Ra grid points presenting the impedance from 0%–100% DOD. In general, the Ra table is updated during discharge. The *GaugingStatus()[RX]* flag will toggle when the Ra grid point is updated. The Ra update is disabled if any of the following conditions are met. The *GaugingStatus()[R_DIS]* is set to indicate the Ra update is disabled.

- During the optimization cycle, the Ra update is disabled until QMax is updated (that is, Ra will not be updated if *Update Status* = 4) OR
- Ra update is disabled if the charge accumulation error > 2% of Design Capacity OR
- During a discharge, a bad Ra value is calculated:
 - A negative Ra is calculated or
 - A bad RaScale value is calculated.

A valid OCV reading during RELAX mode or a Fast Qmax update without an OCV read will clear the [R_DIS] flag.

7.4.7 Application of Resistance Scaling

As a part of the Impedance Track algorithm, the bq40z80 calculates an RScale value. The RScale value can be applied in two ways:

- When DOD_RSCALE_EN = 0 in *IT Gauging Configuration* and when the new RScale is calculated, it
 is applied across all DODs.
- When DOD_RSCALE_EN = 1 in IT Gauging Configuration, the new RScale is only applied to DODs higher than the DOD where the new RScale was calculated.

This can prevent early termination of certain simulations, as the RScale will not be applied in computing voltages at DODs below RScale DOD. As a result, sensitivity to passed charge error is drastically decreased for low resistance and high resistance cells.

7.5 FullChargeCapacity(FCC), RemainingCapacity(RemCap), and RelativeStateOfCharge(RSOC)

The Impedance Track algorithm applies QMax, impedance, temperature, voltage, and current data to predict the runtime *FullChargeCapacity()*, *RemainingCapacity()*, and *RelativeStateOfCharge()*. These values are updated if any of the following conditions are met, reflecting the battery capacity at real time.

- QMax update occurs
- · Ra update occurs
- At onset of charge and discharge
- At exit of discharge
- Every 5 hours in RELAX mode
- If temperature changes more than 5°C

7.6 Impedance Track Configuration Options

The bq40z80 provides several Impedance Track (IT) configuration options to fine-tune the gauging performance. These configurations can be turned on or off through the corresponding flags in **SBS** *Gauging Configuration* or *IT Gauging Configuration*.

[LOCK0]: After a discharge event, cell voltage will usually recover to a slightly higher voltage during RELAX state. A new OCV reading during this time can result in a slightly higher state-of-charge. This flag provides an option to keep *RemainingCapacity()* and *RelativeStateOfCharge()* jumping back during relaxation after 0% and FD are reached during discharge.

[RSOC_HOLD]: An IT simulation will run at the onset of discharge. If charge terminates at a low temperature and a discharge occurs at a higher temperature, the difference in temperature could cause a small rise of RSOC for a short period of time at the beginning of discharge. This flag option prevents RSOC rises during discharge. RSOC will be held until the calculated value falls below the actual state.

[RSOC_HOLD] should not be used when [SMOOTH] is set.

[RSOCL]: When set, RSOC will be held at 99% until charge termination is detected. When the device exits reset and **[RSOCL]** = 1, then even if the battery is fully charged (**[FC]** = 1), only a value of \leq 99% is reported by *RelativeStateOfCharge()* until a valid charge termination is detected. See Section 5.6 for more details.

[RFACTSTEP]: The gauge keeps track of an Ra factor of the (old Ra)/(new Ra) during the Ra update. This factor is used for Ra scaling. It is limited to 3 max. During an Ra update, if (old Ra)/(new Ra) is > 3, the gauge can take on two different actions based on the setting of this flag.

If this flag is set to 1 (default), the gauge allows Ra to update once using the max factor of 3, then disables the Ra update. If this flag is set to 0, the gauge will not update Ra and also disables the Ra update. It is recommended to keep the default setting.

[OCVFR]: An OCV reading is taken when a dV/dt condition is met. This is not the case if charging stops within the flat voltage region.

By default, this flag is set. The bq40z80 device will take a 48-hour wait before taking an OCV reading if charge stops below the FlatVoltMax. A discharge will not cancel this 48-hour wait. The 48-hour wait will only be cleared if charging stops above the FlatVoltMax level. Setting this flag to 0 removes the 48-hour wait requirement, and OCV is taken when the dV/dt condition is met. Removing the 48-hour requirement can be useful sometimes to reduce test time during evaluation.

[DOD0EW]: DOD0 readings have an associated error based on the elapsed time since the reading, the conditions at the time of the reading (reset, charge termination, and so on), the temperature, and the amount of relax time at the time of the reading, among others. This flag provides an option to take into account both the previous and new calculated DOD0, which are weighted according to their respective accuracies. This can result in improved accuracy and in a reduction of RSOC jumps after relaxation.

[LFP_RELAX]: This is an option for LiFePO4 chemistry. This flag can be enabled even if non-LiFePO4 chemistry is programmed. The bq40z80 device will check for the chemistry ID (that is, ChemID = 4xx series) before activating this function.

The LiFePO4 has a unique slow Configuration relaxation near full charge. Detailed, in-house test data suggests that the relaxation after a full charge takes a few days to settle. The slow decaying voltage causes RSOC to continue to drop every 5 hours. Depending on the full charge taper current, the fully settled voltage could be close to or even below FlatVoltMax in some cases. For the chemID 4xx (LiFePO4) series, the condition to exit the long RELAX mode is if the pack had previously charged to full or near full state, and then either a significant long relaxation or a non-trivial discharge has happened, such that when in relaxation, the OCV < FlatVoltMax.

The QMax update is disabled because DOD will not be taken as long as it is in LFP_RELAX mode. By the time the gas gauge exits the LFP_RELAX mode, the OCV is already in the flat zone. Therefore, the QMax update takes an alternative approach: Once full charge occurs (*[FC]* bit set), DOD0 = Dod_at_EOC is automatically assigned and valid for a QMax update. *[VOK]* is set if there is no QMax update. If QMax is updated, *[VOK]* is cleared. The DOD error as a result of this action is zero or negligible because in the LiFePO4 table, OCV voltage corresponding to DOD= 0 is much lower.

[Fast_QMAX_LRN] and **[Fast_QMAX_FLD]**: The first flag enables Fast Qmax during the learning cycle when **Update Status** = 06. The second flag enables Fast Qmax in the field when **Update Status** ≥ 06. See Section 7.4.3 for more details.

[RSOC_CONV]: This function is also called fast scaling. It is an option to address the convergence of RSOC to 0% at a low temperature and a very high rate of discharge. Under such conditions, it is possible to have a drop of RSOC to 0%, especially if the termination voltage is reached at the DOD region with a higher Ra grid interval. To account for the error caused by the high granularity of the impedance grid interval, the **[RSOC_CONV]**, when enabled, applies a scale factor to impedance, allowing more frequent impedance data updates used for RemCap simulation leading up to 0% RSOC.

If *[RSOC_CONV]* is enabled, it is recommended to start this function around the knee region of the discharge curve. This is usually around 10% of RSOC or around 3.3 V–3.5 V. This function will check for the cell voltage and RSOC status and start the function when either condition is met. The RSOC and cell voltage setting can be configured through *Fast Scale Start SOC* or *Term Voltage Delta*.

[FF_NEAR_EDV]: Fast Filter Near EDV. If this flag is set, the gauge applies an alternative filter, **Near EDV Ra Param Filter**, for an Ra update in the fast scaling region (starting around 10% RSOC). This flag should be kept to 1 as default. When this flag is 0, the gauge uses the regular Ra filter, **Resistance Parameter Filter**. Both of the DF filters should not be changed from the default.

[SMOOTH]: A change in temperature or current rate can cause a significant change in remaining capacity (RemCap) and full charge capacity (FCC), resulting in a jump or drop in the Relative State-of-Charge (RSOC). This function provides an option to prevent an RSOC jump or drop during charge and discharge.

If a jump or drop of RSOC occurs, the device examines the amount of RSOC jump or drop versus the expected end point (that is, the charge termination for the charging condition or the EDV for the discharge condition) and automatically smooths the change of RSOC, and always converges with the filtered (or smoothed) value to the actual charge termination or EDV point. The actual and filtered values are always available. The **[SMOOTH]** flag selects either the actual or filtered values are returned by the SBS commands.

[RELAX_JUMP_OK] and **[RELAX_SMOOTH_OK]**: When the battery enters RELAX mode from CHARGE or DISCHARGE mode, the transient voltage may change to RSOC as the battery goes into its RELAX state. Once the battery is in RELAX mode, a change in temperature or self-discharge may also cause a change in RSOC.

If **[RELAX_JUMP_OK]** = 1, this allows the RSOC jump to occur during RELAX mode. Otherwise, RSOC holds constant during RELAX mode and any RSOC jump will be passed into the onset of the charge or discharge phase.

If **[RELAX_SMOOTH_OK]** = 1, this allows the amount of the RSOC jump to be smoothed out over a period of **Smooth Relax Time**. Otherwise, the additional RSOC jump amount will be passed into the onset of charge or discharge phase.

If both flags are set to 1, the **[RELAX_JUMP_OK]** = 1 takes higher priority and the RSOC jump is allowed during RELAX mode.

[TDELAV]: This flag setting defines how the **Delta Voltage** is calculated. By setting this flag to 1, the gauge will calculate **Delta Voltage** that corresponds to the power spike defined in **Min Turbo Power**. This flag must be set to 1 if TURBO BOOST mode is used. Otherwise, leaving this flag set to 0 as default enables the gauge to calculate **Delta Voltage** by using the maximal difference between instantaneous and average voltage.

[CELL_TERM]: This flag provides an option to have a cell voltage based discharge termination. If the minimum cell voltage reaches **Term Min Cell V**, RemainingCapacity() will be forced to 0 mAh. For more details, see the **Pack Based and Cell Based Termination** section in **Section 7.2**.

[CSYNC]: This flag, if set to 1, will synchronize *RemainingCapacity()* to *FullChargeCapacity()* at valid charge termination.

[CCT]: This flag provides an option to use FullChargeCapacity() ([CCT] = 1) or DesignCapacity() ([CCT] = 0) for cycle count threshold calculation. If FullChargeCapacity() is selected for cycle count threshold calculation, the minimum cycle count threshold is always 10% of **Design Capacity**. This is to avoid any erroneous cycle count increment caused by extremely low FullChargeCapacity().

[CHG_100_SMOOTH_OK]: This handles smoothing in the charge direction to 100%. For jumps to 100% during charge, this feature uses the taper termination detection logic to predict when charge termination will occur. The taper termination logic requires two consecutive 40-s windows that meet all taper conditions. After the first 40-s window is satisfied, time-based smoothing will be initiated, smoothing RemCap to smoothed FCC over the next 40-s window. It is important to note that smoothed RemCap will converge to smoothed FCC and not True RemCap.

[TS1, TS0]: These two flags together provide an option to select which one of the individual temperature sensors (TS 1...4) is used by the IT algorithm.

State of Health www.ti.com

[DSG 0 SMOOTH OK]: Allows smoothing in the discharge direction when there is a jump to 0%. For preventing jumps to 0% during discharge, two DF parameters are used: Term Smooth Start Cell V Delta and Term Smooth Time. Once battery stack voltage is below Term Smooth Start Cell V Delta and discharging, time-based smoothing is initiated. This smooths RemCap to 0 mAh over the next *Term* Smooth Time seconds. Term Smooth Start Cell V Delta is a per cell voltage delta. This value is multiplied by the number of cells, added to Terminate Voltage, and checked against Voltage(). Smoothing will continue to 0% unless charging starts (even in RELAX mode).

To assure that the gauge reports 0% in low voltage situations, the DF Term Smooth Final Cell V Delta is used. This value is multiplied by the number of cells, subtracted from Terminate Voltage, and checked against Voltage(). Once voltage passes this threshold, 0% will be forced even if smoothing was not completed.

NOTE: Term Smooth Final Cell V Delta can be disabled by setting to 0 and is typically expected to be set low enough to enable the system to shut down properly (without brownout).

7.7 State of Health

The bq40z80 implements a new state-of-health (SOH) function. Previously, the SOH of a battery was typically represented by the actual runtime FullChargeCapacity/Design Capacity (or FCC/DC). Using the runtime FCC, however, was not a very good representation for the state-of-health because the runtime FCC reflects the usable capacity under load. A high current load reduces the runtime FCC. If using just the FCC/DC calculation for SOH, the SOH under high load will be worse than the SOH under typical load. However, a smaller usable capacity at high load does not mean the SOH of a battery is degraded. This is the same when FCC is reduced at a lower temperature.

The bq40z80 implementation of state-of-health addresses these issues. It provides the SOH of the battery through an SBS command, SOH(). The SOH() is calculated using the FCC simulated at 25°C with current specified by SOH Load Rate. The SOH Load Rate can be set to the typical current of the application, and it is specified in hour-rate (that is, Design Capacity/SOH Load Rate will be the current used for the SOH simulation). This data flash setting is used for SOH() calculation only. This SOH FCC is updated at the same time ASOC and RSOC are updated. Since this implementation removes the variation of current or temperature, it is a better representation of a battery's state-of-health. The SOH FCC is available on MAC StateofHealth().

7.8 **TURBO Mode 2.0**

A system with TURBO Mode 2.0 applies short high-power load pulses (for example, up to 4 C-rate for as long as 10 ms). In addition, 10-s load pulses of 2 C-rate can occur in some cases prior to 10-ms pulses, resulting in a combined effect during the turbo boost operation. The 10-s pulse support is new (relative to TURBO Mode 1.0).

These high-power pulses may drop down battery voltage. If the battery voltage drops below the Shutdown Voltage, the system will shut down. To avoid shutting down the system during turbo boost operation, the system should never apply a pulse that would cause the system voltage to drop below the termination voltage (or exceed the recommended current threshold) that could result in a shutdown, reducing the total available run time.

The TURBO Mode in the bq40z80 helps the system to adjust the power level by providing information about maximal power, depending on the battery state-of-charge, temperature, and present battery impedance. In particular, the gauge informs the system about the power level above which would either cause the system voltage to drop below termination after the 10-s pulse, called the sustained peak power (SPP). In addition, the gauge also reports the maximum power for the combined 10-s and 10-ms pulses called the maximum peak power (MPP).

The SPP is computed using a 10-s effective resistance that is temperature- and DOD-dependent. The computation of MPP uses the high frequency resistance along with the 10-s effective resistance. Both of these resistances are chemistry-specific. In addition, the Pack Resistance and System Resistance are important parameters used in the calculation of these two powers. The computed TURBO mode currents, the sustained peak current, and the maximum peak current are capped to their respective maximum

www.ti.com Ba¢ttery Trip Point (BTP)

discharge rates. Depending on how often the system polls the peak power data and how fast the system can switch to a lower power mode, it is possible to exceed the reported peak power levels during the present power consumption. To avoid any system shutdown, the gauge provides a *Reserve Energy* % setting, which can serve as a buffer to ensure there is available energy at the present average discharge rate.

7.9 Ba¢ttery Trip Point (BTP)

Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has depleted to a certain value set in a DF register.

The BTP feature allows a host to program two capacity-based thresholds that govern the setting or clearing of the *OperationStatus()[BTP_INT]* on the basis of *RemainingCapacity()*.

- OperationStatus()[BTP_INT] is set when:
 - Current > 0 and RemCap > "clear" threshold ("charge set threshold"). This threshold is initialized at reset from Settings.BTP.Init Charge Set.
 - Current ≤ 0 and RemCap < "set" threshold ("discharge set threshold"). This threshold is initialized at reset from Settings.BTP.Init Discharge Set.
- When OperationStatus()[BTP_INT] is set, if Settings.Configuration.IO Config[BTP_EN] is set.
- When either BTPDischargeSet() or BTPChargeSet() commands are received, OperationStatus()[BTP_INT] will clear. The new threshold is written to either BTPDischargeSet() or BTPChargeSet().

7.10 Cell Interconnect IR Compensation Scheme (to Prevent Premature Cell EDV Detection)

The gauge forces RemainingCapacity() to 0 mAh when the battery stack voltage reaches the **Term Voltage** for a period of **Term V Hold Time**. If **IT Gauging Configuration[CELL_TERM]** = 1 or 0, the battery can terminate based on either cell voltage or battery stack voltage. When the cell-based termination is used, the **Term Min Cell V** threshold is checked for the termination condition. The cell-based termination can provide an option to enable the gauge to reach 0% before the device triggers CUV for a pack imbalance.

However, there may be scenarios where (when using cell-based termination), due to varying cell interconnect differences, EDV detection could happen earlier than necessary. For example, if Cell 1 and Cell 3 have $0-\Omega$ cell interconnect, while Cell 2 has $200-m\Omega$ interconnect, Cell 2 would always cause EDV detection early because it has $200-m\Omega$ extra resistance to it, while the cell itself was actually not that low.

A solution to handle this potential premature cell-based EDV detection is to use the *Cell 1..7 Interconnect Resistance* (values entered by the user) to calculate the related IR drop and adjust in firmware either the *Term Min Cell V* (or measured cell voltage) when doing the comparison of *Term Min Cell V* to cell voltages, thus preventing premature EDV detection. This choice to "add back" the interconnect related IR drop to the cell voltage (or lower the *Term Min Cell V*) can be made optional with a configuration bit *[CELL_INTER_IR]*. Additionally, IT simulation would also need to include this IR drop in the calculation so that the simulation does not estimate the EDV too early.

69

RSOC Rounding Option www.ti.com

7.11 RSOC Rounding Option

By default, if there is an RSOC of 20.1 through 20.9, then the RSOC becomes 21 (ceiling function). However, the following shows how the RSOC rounding feature works when enabled by setting **[RSOC_RND_OFF]** = 1 (default is 0) in the **SBS Gauging Configuration** register:

Round-off applies to charging and discharging between an RSOC 0% to 99% if, for example: There is an RSOC of 20.1 through 20.4, then the RSOC becomes 20 (round off). There is an RSOC of 20.5 through 20.9, then the RSOC becomes 21 (round off).

Round-down applies for charging and discharging between an RSOC of 99% to 99.9% if: There is an RSOC of 99.1 or 99.9, then the RSOC becomes 99 (round down).

In charge, RSOC is set to 100% only when FC is set.

Cell Balancing

8.1 Introduction

The bq40z80 can determine the chemical state-of-charge of each cell using the Impedance Track algorithm. The cell balancing algorithm used in the device decreases the differences in imbalanced cells in a fully charged state gradually, which prevents fully charged cells from becoming overcharged, causing excessive degradation. This increases overall pack energy by preventing premature charge termination.

The algorithm determines the amount of charge needed to fully charge each cell. There is a bypass FET in parallel with each cell connected to the gas gauge. The FET is enabled for each cell with a charge greater than the lowest charged cell to reduce charge current through those cells. Each FET is enabled for a precalculated time as calculated by the cell balancing algorithm. When any bypass FET is turned on, then the *OperationStatus()[CB]* operation status flag is set; otherwise, the *[CB]* flag is cleared.

The gas gauge balances the cells by balancing the SOC difference. Thus, a field updated QMax (*Update Status* = 0E) is required prior to any attempt of cell balance time calculation. This ensures the accurate SOC delta is calculated for the cell balancing operation. If the Qmax update has only occurred once (*Update Status* = 06), then the gauge will only attempt to calculate the cell balance time if a fully charged state is reached, *GaugingStatus*()[FC] = 1.

The cell balancing is enabled if **Settings:Balancing Configuration [CB]** = 1. The cell balancing at rest can be enabled separately by setting **Balancing Configuration [CBR]** = 1. If **Settings:Balancing Configuration [CB]** = 0, both cell balancing at charging and at rest are disabled.

The cell balancing at rest can be configured by determining the data flash *Min Start Balance Delta*, *Relax Balance Interval*, and *Min RSOC for Balancing*. For the data flash setting description, see Section 19.5.13. The gas gauge balances cells by bypassing the energy. It is recommended to perform cell balancing at rest when there is capacity in the battery pack.

Cell Balancing Setup www.ti.com

8.2 Cell Balancing Setup

The bq40z80 is required to be in RELAX mode before it can determine if the cells are unbalanced and how much balancing is required. The bq40z80 enters RELAX mode when:

|Current()|< Quit Current for at least Dsg Relax Time when coming from DISCHARGE mode or Chg Relax Time when coming from CHARGE mode.

Figure 8-1. Entering CHARGE or RELAX Mode

Once in RELAX mode, the bq40z80 waits until an OCV measurement is taken, which occurs after:

- 1. A dV/dt condition of $< 4 \mu V/s$ is satisfied,
- 2. Five hours from when | Current()| < Quit Current,
- 3. Upon gas gauge reset,
- 4. An IT Enable command is issued.

The determination of when to update the OCV data is part of the normal Impedance Track algorithm and is not specific to the cell balancing algorithm.

www.ti.com Cell Balancing Setup

Figure 8-2. OCV Measurement

The bq40z80 then calculates the amount of charge difference between cells with a higher state-of-charge than the lowest cell SOC. The value, dQ, is determined for each cell based by converting the measured OCV to Depth-of-Discharge (DOD) percentages using a temperature-compensated DOD versus OCV table lookup table. If the measured OCV does not coincide with a specific table entry, then the DOD value is linearly interpolated from the two adjacent DODs of the respective table adjacent OCVs.

The delta in DOD% between each cell and the cell of lowest SOC is multiplied by the respective cells QMax to create dQ: for example, dQ = CellnDOD - CellLOWEST_SOC DOD x CellnQMax (mAh).

Cell Balancing Setup www.ti.com

Figure 8-3. AQ Calculation

The bq40z80 calculates the required balancing time using dQ and **Bal Time/mAh Cell 1** (for Cell 1) or **Bal Time/mAh Cell 2–6** (for cells 2–6) or **Bal Time/mAh Cell 7** (for cell 7). The value of **Bal Time/mAh Cell 1**, **Bal Time/mAh Cell 2–6** and **Bal Time/mAh Cell 7** are fixed value determined based on key system factors and is calculated by:

Internal Cell Balancing:

Balance Time per mAh Cell 1 =
$$\frac{3600 \text{ mAs} \times (RVCx + Rcb)}{Vcell \times Duty}$$

Balance Time per mAh Cell
$$2 - 6 = \frac{3600 \text{ mAs} \times (2 \times RVCx + Rcb)}{Vcell \times Duty}$$

External Cell Balancing:

Balance Time per mAh Cell 1 =
$$\frac{3600 \text{ mAs} \times (RVCx + Rcb) || Rext}{Vcell \times Duty}$$

Balance Time per mAh Cell 2 – 7 =
$$\frac{3600 \text{ mAs} \times (2 \times RVCx + Rcb) || Rext}{Vcell \times Duty}$$

Where:

V_{CELL} = average cell voltage (for example, 3700 mV for most chemistries)

RVCx = resistor value in series to VCx input (for example, 1 k Ω , based on the reference schematic)

 R_{cb} = cell balancing FET R_{dson} , which is 200 Ω (Max)

DUTY = cell balancing duty cycle, which is 75% typ

www.ti.com Balancing Multiple Cells

The cell balancing time for each cell to be balanced is calculated by: dQCelln × *Bal Time/mAh Cell 1* for Cell 1, dQCelln × *Bal Time/mAh Cell 2–6* for Cells 2–6, and dQCelln × *Bal Time/mAh Cell 7* for Cell 7. The cell balancing time is stored in the 16-bit RAM register *CellnBalanceTimer*, providing a maximum calculated time of 65535 s (or 18.2 hrs). This update only occurs if a valid QMax update has been made; otherwise, they are all set to 0.

Figure 8-4. External Cell Balancing Example Schematic

8.3 Balancing Multiple Cells

The bq40z80 can balance multiple cells simultaneously if internal cell balancing is selected, **Balancing Configuration[CBM]** = 0.

If external cell balancing is selected, **[CBM]** = 1, the gauge will perform a rotation cell balancing with only one cell to be balanced at a time, starting on the cell with highest dQ. For example, at time 0, Cell 1 has the highest dQ while Cell 2 has the second highest dQ on a 3-series pack. Cell balancing will start to balance Cell 1 first. As time progresses, the dQ in the cell reduces, and Cell 2 becomes the cell with the highest dQ. The gauge then switches to balance Cell 2. The cell balancing rotation between Cell 1 and Cell 2 continues until all the cells are balanced.

8.4 Cell Balancing Operation

Figure 8-5. Cell Balance Mode Detection

The bq40z80 calls the cell balancing algorithm every 1 s during normal operation. Cell balancing is not called when the device is in SLEEP mode. All algorithm decisions are made on this same 1-s timer.

In RELAX mode, if cell balancing at rest is enabled, **Balancing Configuration[CBR]** = 1, the gauge will verify if the dv/dt condition is met at the entry of the RELAX mode. If so, then the cell balance at rest will start when all of the conditions below are met:

- Any of the precalculated cell balance timer is non-zero AND
- RelativeStateofCharge() > Min RSOC for Balancing

The gauge will attempt to recalculate the cell balancing time in RELAX mode every **Relax Balance Interval**. The cell balancing time is updated if the conditions below are met:

- The Relax Balance Interval has passed AND
- A OCV measurement is taken AND
- The max cell voltage delta > Min Start Balance Delta

On exit of the RELAX mode, cell balancing time is recalculated as long as a valid OCV update is available.

NOTE: Cell balancing is paused during OCV measurement.

Figure 8-6. Cell Balance Operation in RELAX Mode

When the bq40z80 is in CHARGE mode, it follows these steps during cell balancing:

- a. Check if any of the precalculated cell balance timers are > 0.
- b. The cell balance FETs are turned ON for the corresponding cell balance timers that are $\neq 0$.

NOTE: There are no SOC restrictions controlling the enabling of cell balancing in CHARGE mode.

Figure 8-7. Cell Balance Operation in CHARGE Mode

Cell balancing in sleep can be enabled, by setting **Balancing Configuration[CBS]** = 1.

Once enabled, then cell balancing in sleep will start under the following conditions:

- A. The bq40z80 device has been in SLEEP for a duration > Start Time for Bal in Sleep (default 100 hrs) AND
- B. The value of RSOC > **Start Rsoc for Bal in Sleep** (default 95%).

Once the cell balancing in sleep is started, it will end when:

A. The value of RSOC < **End Rsoc for Bal in Sleep** (default 60%).

LED Display

9.1 Introduction

The bq40z80 device has an LED display that shows various status information when a high-to-low transition of the DISP pin is detected. The LED display is available in SLEEP mode, but is disabled during device shutdown or under CUV conditions (assuming neither charging nor PFs are active). However, under PF conditions, if **[LEDPFON]** is set, then LED functionality is available. Additionally, even under CUV conditions, if the charger is connected and charging is active, then the LED functionality is allowed.

9.1.1 LED Display of State-of-Charge

When the DISP pin is pressed and a high-to-low transition of the pin is detected, the LED display shows the state-of-charge for **LED Hold Time**. The state-of-charge can display the *RelativeStateOfCharge()* or *AbsoluteStateOfCharge()*, based on the **[LEDMODE]** setting.

The state-of-charge threshold can be set according to the number of LEDs available. The following table shows an example for data flash setting with 6-LED display.

	State-of-C	Charge ⁽¹⁾⁽²⁾
	Current() > 0	Current() ≤ 0
LED1	CHG Thresh 1 to 100%	DSG Thresh 1 to 100%
LED2	CHG Thresh 2 to 100%	DSG Thresh 2 to 100%
LED3	CHG Thresh 3 to 100%	DSG Thresh 3 to 100%
LED4	CHG Thresh 4 to 100%	DSG Thresh 4 to 100%
LED5	CHG Thresh 5 to 100%	DSG Thresh 5 to 100%
LED6	CHG Thresh 6 to 100%	DSG Thresh 6 to 100%

⁽¹⁾ If [LEDCHG] = 1, then the LED display will stay on (that is, no DISP pin press is needed), showing the state-of-charge during charging while Current() > Charge Current Threshold.

If SOC drops below the flash alarm thresholds in charge or discharge, then the LED display will also flash with *LED Flash Period* per the *CHG Flash Alarm* or *DSG Flash Alarm* setting shown below.

	State-of-	Charge ⁽¹⁾
	Current() > 0	Current() ≤ 0
Flash Alert	0% to CHG Flash Alarm	0% to DSG Flash Alarm

⁽¹⁾ If [LEDRCA] = 1, then the LED will also flash at LED Flash Period when remaining capacity < RemainingCapacityAlarm() while in DISCHARGE or RELAX mode (that is, the RCA bit is set).</p>

9.1.2 LED Display of PF Error Code

If **[LEDPF1, LEDPF0]** = 0,1, then the LED display shows each PF code for $2 \times$ the **LED Hold Time** after showing the state-of-charge information.

The following table shows each PF error code. Each code is shown with the lowest to highest priority order.

Typically, once full charge (FC) is achieved, the LEDs are turned-off. If the [LEDONFC] bit is set, then the LEDs will be allowed to remain on after FC is achieved, if the charger remains connected. The LEDs will remain on after FC for a period defined by LED FC Time. It is not recommended to leave the LED on for extended periods after FC because of the potential for short charge / discharge cycling.

Introduction www.ti.com

PF Flag	Priority	LED3	LED2	LED1
No PF	0	LED Blink Period	off	off
SUV	0	LED Blink Period	on	off
SOV	1	LED Blink Period	LED Flash Period	off
SOCC	2	LED Blink Period	off	on
SOCD	3	LED Blink Period	on	on
SOT	4	LED Blink Period	LED Flash Period	on
COVL	5	LED Blink Period	off	LED Flash Period
SOTF	6	LED Blink Period	on	LED Flash Period
QIM	7	LED Blink Period	LED Flash Period	LED Flash Period
СВ	8	LED Blink Period	off	LED Blink Period
IMP	9	LED Blink Period	on	LED Blink Period
CD	10	LED Flash Period	LED Blink Period	off
VIMR	11	off	LED Blink Period	off
VIMA	12	on	LED Blink Period	off
OLDL	13	LED Flash Period	LED Blink Period	on
SCCL	14	off	LED Blink Period	on
SCDL	15	on	LED Blink Period	on
CFETF	16	LED Flash Period	LED Blink Period	LED Flash Period
DFETF	17	off	LED Blink Period	LED Flash Period
OCDL	18	on	LED Blink Period	LED Flash Period
FUSE	19	LED Flash Period	LED Blink Period	LED Blink Period
AFER	20	off	LED Blink Period	LED Blink Period
AFEC	21	on	off	LED Blink Period
2LVL	22	LED Flash Period	off	LED Blink Period
PTC	23	off	off	LED Blink Period
IFC	24	on	on	LED Blink Period
DF	26	off	on	LED Blink Period
Reserved	27	on	LED Flash Period	LED Blink Period
Open Therm TS1	28	LED Flash Period	LED Flash Period	LED Blink Period
Open Therm TS2	29	off	LED Flash Period	LED Blink Period
Open Therm TS3	30	on	LED Blink Period	LED Blink Period
Open Therm TS4	31	LED Flash Period	LED Blink Period	LED Blink Period

If **[LEDPF1, LEDPF0]** = 1,0, then under PF conditions, if the $\overline{\text{DISP}}$ button is pressed (high-to-low transition of the $\overline{\text{DISP}}$ pin is detected), the LED display immediately shows each PF code for 2 × the **LED Hold Time** (without showing the state-of-charge information).

9.1.3 LED Display on Exit of a Reset

If the **[LEDR]** = 1 and a reset occurs, then on exit from reset, the LED display shows the state-of-charge for **LED Hold Time**. Additionally, if **[LEDPF1, LEDPF0]** = 0,1, the LED display also shows each of the PF error code for 2×0 of the **LED Hold Time** afterward.

9.1.4 LED Display Control Through ManufacturerAccess()

The gauge provides the *ManufacturerAccess()* command (MAC) for testing purposes. The MAC *LED Toggle()* command can toggle the LED display on and off. The MAC *LED Display Press()* command can trigger the LED display and simulate 100% RSOC to demonstrate with all LEDs in actions.

www.ti.com Introduction

9.1.5 LED Operation Under CUV Conditions

Typically under CUV (Cell Undervoltage) conditions, the LED operation is not allowed to preserve remaining battery charge. However, under certain situations even under CUV conditions, the LED operation will be allowed; that is, either with PF active with the **[LEDPFON]** bit set or with the charger connected with charging active. Additionally, an option is provided to turn on the LED even under CUV without the charger present by setting the **[LEDIFCUV]** bit in the LED configuration register. This option must be used with care so as to not run the battery too low.

9.1.6 LED Blinking Option for State of Charge

This LED feature enables LED blinking until the midpoint of each LED segment. The blinking occurs between the bottom and the midway point of each programmed segment level; thus, providing more granularity as to where the charge level is within that LED segment. If the LED configuration bit **[BLINKMIDPT]** is set, then this blinking feature will work as indicated below:

With this feature disabled, as the charging or discharging occurs (assuming the segments programmed are 0%, 20%, 40%, 60%, 80%, and 90% of SOC), the LED display of state-of-charge ranges are as follows:

```
90 to 100% LED6 on solid, else LED 6 off, if SOC is lower %.
80 to 90% LED5 on solid, else LED 5 off, if SOC is lower %.
60 to 80% LED4 on solid, else LED 4 off, if SOC is lower %.
40 to 60% LED3 on solid, else LED 3 off, if SOC is lower %.
20 to 40% LED2 on solid, else LED 2 off, if SOC is lower %.
0 to 20% LED1 on solid
```

With the blinking feature enabled, as either charge or discharge occurs (assuming the segments programmed are 0%, 20%, 40%, 60%, 80%, and 90% of RSOC), the state-of-charge ranges are as follows:

```
LED6 on Blink, else LED6 off, if SOC is lower %
95 to 100%
90 to 95%
                LED6 on solid
                LED5 on solid
85 to 90%
80 to 85%
                LED5 on Blink, else LED5 off, if SOC is lower %.
70 to 80%
                LED4 on solid
60 to 70%
                LED4 on Blink, else LED4 off, if SOC is lower %.
50 to 60%
                LED3 on solid
                LED3 on Blink, else LED3 off, if SOC is lower %.
40 to 50%
30 to 40%
                LED2 on solid
20 to 30%
                LED2 on Blink, else LED2 off, if SOC is lower %.
10 to 20%
                LED1 on solid
0 to 10%
                LED1 on Blink
```

The blinking occurs between the bottom and the midway point of each of the programmed segments during charge or discharge. In this example, the segments programmed are 0%, 20%, 40%, 60%, 80%, and 90%; the midway points are 10%, 30%, 50%, 70%, 85%, and 95%. If the range is defined differently, then the midpoint where the blinking occurs is accordingly different. If the segments are programmed such that the midway point is a decimal point, then it rounds down to get to the next whole number. The blinking follows the *LED Blink Period*. If this feature is enabled, it will work when *[LEDCHG]* is set or cleared. When the LED is operating due to the DISP being pressed, the LEDs are on for *LED Hold Time* (default is 4 s, so at a default a blink period of ~500 ms, there would be at least 7 to 8 blinks in the 4 s—if *[BLINKMIDPT]* is set).

IATA Support

The gauge provides International Air Transport Association (IATA) support with the following commands and procedures.

10.1 Initiating IATA Shutdown (Before Shipping)

- 1. Initiate IATA shutdown through either a) a separate IATA SHUTDOWN() MAC command, or b) the standard ShutdownMode() MAC command (works in SEALED and UNSEALED modes):
 - a. With the IATA_SHUTDOWN() MAC command, the device sets the [IATA_SHUT] bit.
 - b. With the standard ShutdownMode() MAC command, the [IATA SHUT] bit must be set to enable IATA SHUTDOWN.
 - c. The IATA_SHUTDOWN() MAC command is ignored if IATA Delay Time has not expired.
- 2. Check if true RSOC is below (less than or equal to) a certain IATA RSOC Threshold, then continue to Step 3. If not, then stop shutdown and clear the [IATA_SHUT] bit.
 - a. If IATA RSOC Threshold = 0%, then the gauge will not check or care about the condition of the true RSOC. It clears the [IATA_SHUT] bit and enters the normal command shutdown (Step 4).
- 3. Store the true remaining capacity and FCC in the data flash registers IATA RM and IATA FCC, respectively.
- 4. Enter the device command shutdown procedure.
- 5. Shut down the gauge (same as before).

10.2 After Wakeup (Charging Is Connected for a Short Period to Wake)

- 1. Check if the [IATA SHUT] bit is set. If it is, continue with Step 2. If not, then True FCC and RC are used.
 - 1. The **[IATA SHUT]** bit should always be cleared in this step.
- 2. Check the following conditions: If all are true (AND), continue with Step 3. If ANY are NOT True, then True FCC and RC are used.
 - a. The delta cell voltage difference between max cell voltage and min cell voltage is within an IATA DeltaV Threshold (The default is 50 mV. If this threshold is set to 0 V, this delta cell voltage check is disabled.) AND
 - b. The temperature is greater than or equal to (≥) *IATA MIN Temperature* (default 10C) and less than or equal to (≤) IATA MAX Temperature (default 40C) AND
 - c. Min cell voltage is greater than or equal to (≥) IATA Min Voltage (default 3000 mV) and less than or equal to (≤) *IATA MAX Voltage* (default 3600 mV).
- 3. Display the remaining capacity and FCC from the DF registers IATA RM and IATA FCC, respectively ([ISTORE_FCC], [ISTORE_RM] bits are set [the default]). Must be ready before the INIT (battery status) is ready. The [ISTORE_FCC] and [ISTORE_RM] configuration bits, when set, define whether the stored value or true value is displayed during the IATA Delay Time period. However, the IATA Delay Time can be set to zero OR to a value greater than zero.
 - a. If **IATA Delay Time** > 0:
 - On wake up from IATA shutdown, the remaining capacity and FCC will be displayed from IATA RM and IATA FCC, respectively, for the duration programmed in IATA Delay Time. At the end of this period, the displayed values will be transitioned from stored value to the true value of remaining capacity and FCC using the smoothing engine. Smoothing must be enabled. If it is not, the display will jump to the true values immediately.

www.ti.com IATA Charging Control

b. If **IATA Delay Time** = 0:

- On wake up from IATA shutdown, if true RSOC ≤ IATA Wake AbsRSOC (default 10%), then
 the true value of remaining capacity and FCC will only be displayed.
- On wake up from IATA shutdown, if true RSOC > *IATA Wake AbsRSOC* (default 10%), then the remaining capacity and FCC will be displayed from *IATA RM* and *IATA FCC*. Subsequently, the Delta true RSOC (change in true RSOC from wakeup) is monitored. The display will switch from the *IATA RM* and *IATA FCC* values to the true value of remaining capacity and FCC only if Delta true RSOC ≥ *IATA Delta RSOC* (default 3%).

At this point, if smoothing is not enabled, the display will jump to the true values immediately. However, if smoothing is enabled, the displayed values will transition from the stored value to the true value of remaining capacity and FCC using the smoothing engine.

4. There are two additional MAC commands, IATA_RM() and IATA_FCC(), that read IATA RM and IATA FCC, respectively, and that work in SEALED and UNSEALED modes.

10.3 IATA Charging Control

IATA charge control is a useful feature in production to enable the device to charge until True RSOC is below *IATA RSOC Threshold*, and then to restrict charging by disabling the CHG FET. The host sends the MAC command *IATA_Charge()* (0x00F3) to start the charging event and the restriction only holds for the charging event immediately after the command is sent. The CHG FET is enabled and charging is allowed again when the device detects discharge current greater than *Dsg Current Threshold*.

OperationStatus[IATA CTERM] is set when IATA charge control is active.

PRE-DISCHARGE Mode

The bq40z80 supports a PRE-DISCHARGE mode in which, when the DSG FET is determined to be turned on from the OFF state, the pre-discharge (PDSG) FET is turned on first for a predefined time or until pack voltage is charged to a level near that of the top of the cell stack (BAT voltage), whichever happens first. PRE-DISCHARGE mode is enabled by setting **FET Options[PDSG]** = 1.

11.1 Hardware Considerations

When a pin is selected as PDSG to control pre-discharge, the associated pin (except for LEDCNTLA) is used to drive an external NFET, which pulls down the PDSG PFET gate. The exception is if the PDSG functionality is selected using the LEDCNTLA pin (RL0, pin 20), which has an internal high-voltage drive capability and can drive the PFET gate directly (in which case the polarity of the pin signal changes). The NFET should have a pulldown resistor on its gate to keep it turned off in SHUTDOWN mode, because in SHUTDOWN mode, most pins are in HIGH-Z mode.

The PFET implements a PRE-DISCHARGE mode to slowly charge up the load before the DSG FET is turned on. The pullup resistor from the PFET gate to PACK+ ensures that the PFET gate turns off when the gate is in SHUTDOWN.

11.2 Pre-Discharge Function

When the device determines that the DSG FET should turn on from the OFF state, the device enters into PRE-DISCHARGE mode first, and then the PDSG FET is turned on. The gauge stays in this mode until any one of the following requirements is completed.

- 1. PACK+ voltage is within **PDSG Level** percent of the top of the cell stack (BAT voltage).
- 2. If PDSG Timeout is not set to 0 and the gauge has been in this mode for PDSG Timeout.

Once the gauge is out of PRE-DISCHARGE mode, the PDSG FET is turned off and the DSG FET is turned on.

Parallel Protection FET

12.1 Description

The bq40z80 device includes support for a circuit configuration where the CHG and DSG FETs are in parallel rather than in series.

- 1. In a series-circuit configuration, if the CHG FET is off and the DSG FET is on, then if discharge current greater than *Charge Current Threshold* is detected, the CHG FET is turned on quickly to protect the CHG FET body diode from discharge current flowing through it. If the FETs are configured in series, select *FET Options[PARALLEL_FETS]* = 0.
- 2. In a parallel-circuit configuration, if the CHG FET is off and the DSG FET is on, then the CHG FET is not turned on if discharge current is detected. If FETs are configured in parallel, select *FET Options[PARALLEL FETS]* = 1.

General Purpose Input Output (GPIO) Capability

13.1 Description

The bq40z80 supports GPIO capability on up to eight pins (RC2, RC3, RH0, RH1, RH2, RL0, RL1, RL2). To use any or all of these pins as GPIO, *Pin Configuration* must be configured.

- · GPIOs can be selected as input or out.
- GPIO Sealed Access Config determines whether the GPIOs can be controlled or read only when the gauge is SEALED.
- The read-only command GPIORead()(0x48) returns the level of pins configured as GPIO, in read-back data.
- The write-only command *GPIOWrite()*(0x49) can be used to configure them as outputs driven low, outputs driven high, or high-Z.

GPIO pins can also be used to generate interrupts.

13.2 **GPIO** Interrupt

The bq40z80 supports generating interrupts on pins configured as GPIOs. It includes a flag mapping function for these pins, which is a bank of eight control registers, *FlagMapSetUp0..8*, that enable up to eight separate flags in the device to be mapped to one or more GPIO pins. Flags may be OR'ed or AND'ed together to trigger an interrupt on a particular GPIO pin. For example, up to eight different flags can be OR'ed onto a single GPIO pin or up to seven flags are OR'ed together then AND with the 8th flag to trigger an interrupt. An example is provided below to demonstrated it:

Example: Configure *FlagMapSetUp0.2* to trigger the active high interrupt on RC2 (pin 12) only when battery is inserted *OperationStatus()[PRES]* and either *OperationStatus()[XCHG]* is set or *BatteryMode()[CF]* is set.

- Configure the first control register FlagMapSetUp0 to map OperationStatus()[XCHG].
 - Set FlagMapSetUp0[FLAG_EN] = 1 to enable the control.
 - Set FlagMapSetUp0[FLAG_REG2:0] = 0x02 for OperationStatus().
 - Set FlagMapSetUp0[FLAG BIT4:0] = 0x0E for OperationStatus()[XCHG].
 - Set *FlagMapSetUp0[FLAG_POL:0]* = 0 for no change in the polarity of the flag.
 - Set FlagMapSetUp0[FLAG_GPIO2:0] = 0x7 for the RC2 pin.
 - Set FlagMapSetUp0[FLAG_OR] = 1 for the OR operation.
 - Set FlagMapSetUp0[FLAG_OD] = 0 for driven-high/driven low.
- Configure the second control register FlagMapSetUp1 to map BatteryMode()[CF].
 - Set FlagMapSetUp0[FLAG_EN] = 1 to enable the control.
 - Set FlagMapSetUp0[FLAG_REG2:0] = 0x00 for BatteryMode().
 - Set FlagMapSetUp0[FLAG BIT4:0] = 0x07 for BatteryMode()[CF].
 - Set *FlagMapSetUp0[FLAG_POL:0]* = 0 for no change in the polarity of the flag.
 - Set FlagMapSetUp0[FLAG_GPIO2:0] = 0x7 for the RC2 pin.
 - Set FlagMapSetUp0[FLAG_OR] = 1 for the OR operation.
 - Set FlagMapSetUp0[FLAG_OD] = 0 for driven-high/driven low.
- Configure the third control register FlagMapSetUp2 to map OperationStatus()[PRES].
 - Set FlagMapSetUp0[FLAG_EN] = 1 to enable the control.

www.ti.com GPIO Interrupt

- Set FlagMapSetUp0[FLAG_REG2:0] = 0x02 for OperationStatus().
- Set FlagMapSetUp0[FLAG_BIT4:0] = 0x00 for OperationStatus()[PRES].
- Set *FlagMapSetUp0[FLAG_POL:0]* = 0 for no change in the polarity of the flag.
- Set *FlagMapSetUp0[FLAG_GPIO2:0]* = 0x7 for the RC2 pin.
- Set FlagMapSetUp0[FLAG_OR] = 0 for the OR operation.
- Set FlagMapSetUp0[FLAG_OD] = 0 for driven-high/driven-low.

Lifetime Data Collection

14.1 Description

Useful for analysis, the device has extensive capabilities for logging events over the life of the battery. The Lifetime Data Collection is enabled by setting *ManufacturingStatus()[LF_EN]* = 1. The data is collected in RAM and only written to data flash under the following conditions to avoid wear out of the data flash:

- · Every 10 hours if RAM content is different from flash.
- In permanent fail, before data flash updates are disabled.
- A reset counter increments. The lifetime RAM data is reset; therefore, only the reset counters are updated to data flash.
- Before scheduled shutdown
- Before the low voltage shutdown and the voltage is above the Valid Update Voltage.

The Lifetime Data stops collecting under the following conditions:

- After permanent fail
- Lifetime Data Collection is disabled by setting ManufacturingStatus()[LF_EN] = 0.

When the gauge is unsealed, the following ManufacturingStatus() can be used for testing Lifetime Data.

- Lifetime Data Reset() can be used to reset the Lifetime Data.
- Lifetime Data Flush() can be used to flush out RAM Lifetime Data to data flash.
- Lifetime Data Speedup Mode() can be used to increase the rate the Lifetime Data is incremented.

Total firmware runtime starts when Lifetime Data is enabled.

- Voltage
 - Max/Min Cell Voltage each cell
 - Max Delta Cell Voltage at any given time (that is, the max cell imbalance voltage)
- Current
 - Max charge/discharge current
 - Max average discharge current
 - Max average discharge power
- Safety events that trigger the SafetyStatus() (The 12 most common are tracked.)
 - Number of safety events
 - Cycle count at last safety event(s)
- Charging Events
 - Number of valid charge terminations (That is, the number of times [VCT] is set.)
 - Cycle Count at Last Charge Termination
- Gauging Events
 - Number of QMax updates
 - Cycle Count at Last QMax update
 - Number of RA updates and disable
 - Cycle Count at Last RA update and disable
- Power Events

www.ti.com Description

- Number of resets, partial resets, and watchdog resets
- Number of shutdowns
- Cell balancing (This data is stored with a resolution of 2 hours up to a limit of 510 hours.)
 - Cell balancing time each cell
- Temperature
 - Max/Min Cell Temp
 - Delta Cell Temp (max delta cell temperature across the thermistors that are used to report cell temperature)
 - Max/Min Int Temp Sensor
 - Max FET Temp
- Time (This data is stored with a resolution of 2 hours.)
 - Total runtime
 - Time spent different temperature ranges

Device Security

15.1 Introduction

There are three levels of secured operation within the device. To switch between the levels, different operations are needed with different keys. The three levels are SEALED, UNSEALED, and FULL ACCESS. The device also supports Elliptic Curve Cryptography (ECC) and SHA-1 HMAC authentication with the host system.

- SHA-1 authentication is used If **Auth Config Register [LEGACY_SHA1]** = 1.
- ECC authentication is used if **Auth Config Register [LEGACY_SHA1]** = 0.

15.2 SHA-1 Description

As of March 2012, the latest revision is FIPS 180-4. SHA-1, or secure hash algorithm, is used to compute a condensed representation of a message or data also known as hash. For messages < 2⁶⁴, the SHA-1 algorithm produces a 160-bit output called a digest.

In a SHA-1 one-way hash function, there is no known mathematical method of computing the input given, only the output. The specification of SHA-1, as defined by FIPS 180-4, states that the input consists of 512-bit blocks with a total input length less than 264 bits. Inputs that do not conform to integer multiples of 512-bit blocks are padded before any block is input to the hash function. The SHA-1 algorithm outputs the 160-bit digest.

The bq40z80 device generates a SHA-1 input block of 288 bits (total input = 160-bit message + 128-bit key). To complete the 512-bit block size requirement of the SHA-1 function, the device pads the key and message with a 1, followed by 159 0s, followed by the 64-bit value for 288 (000...00100100000), which conforms to the pad requirements specified by FIPS 180-4.

Detailed information about the SHA-1 algorithm can be found here:

- 1. http://www.nist.gov/itl/
- 2. http://csrc.nist.gov/publications/fips
- 3. www.faqs.org/rfcs/rfc3174.html

15.2.1 HMAC Description

The SHA-1 engine calculates a modified HMAC value. Using a public message and a secret key, the HMAC output is considered to be a secure fingerprint that authenticates the device used to generate the HMAC.

To compute the HMAC: Let H designate the SHA-1 hash function, M designate the message transmitted to the device, and KD designate the unique 128-bit Unseal/Full Access/Authentication key of the device. HMAC(M) is defined as:

H[KD || H(KD || M)], where || symbolizes an append operation.

The message, M, is appended to the unseal/full access/authentication key, KD, and padded to become the input to the SHA-1 hash. The output of this first calculation is then appended to the unseal/full access/authentication key, KD, padded again, and cycled through the SHA-1 hash a second time. The output is the HMAC digest value.

15.2.2 SHA-1 Authentication

1. Generate 160-bit message M using a random number generator that meets approved random number generators described in FIPS PUB 140–2.

- 2. Generate SHA-1 input block B1 of 512 bytes (total input = 128-bit authentication key KD + 160-bit message M + 1 + 159 0s + 100100000).
- 3. Generate SHA-1 hash HMAC1 using B1.
- 4. Generate SHA-1 input block B2 of 512 bytes (total input = 128-bit authentication key KD + 160-bit hash HMAC1 + 1 + 159 0s + 100100000).
- 5. Generate SHA-1 hash HMAC2 using B2.
- 6. With no active *Authenticate()* data waiting, write 160-bit message M to *Authenticate()* in the format: 0xAABBCCDDEEFFGGHHIJJKKLLMMNNOOPPQQRRSSTT, where AA is LSB.
- 7. Wait 250 ms, then read Authenticate() for HMAC3.
- 8. Compare host HMAC2 with device HMAC3. If it matches, both host and device have the same key KD and the device is authenticated.

15.3 Elliptic Curve Cryptography (ECC) Description

The hardware supports 163-bit EC-KCDSK Elliptic Curve Cryptography (ECC) authentication, using the hardware authentication engine.

ECC authentication assumes the ECC key pair (private and public keys) is stored in secure memory. If the ECC key is not programmed in secure memory, the authentication response always returns 0.

The challenge length can vary from 1 byte to 20 bytes. TI recommends sending at least a 10-byte challenge to provide a certain level of randomness. The response is always 42 bytes in length.

The challenge should be sent via *Authenticate()* (0x2F). The response is returned via *Authenticate()* (0x2F). The device can return all 42 bytes in a single block read if *Auth Config[SPLIT_RESPONSE]* = 0. If *[SPLIT_RESPONSE]* = 1, the response is split into two blocks: The first block of the response is 31 bytes and the second block of the response is 11 bytes. Both blocks are returned via *Authenticate()*. The response data is available until the next authentication challenge is sent.

Additionally, an ECC test option is available:

- Where the ECC test feature is enabled when Configuration Register [ECC_TEST] = 1 and the device is UNSEALED. Static keys can be used to test the ECC.
- See the release notes for the programmed test keys.
- New test keys can be set with the MAC block 0x38 with the private key followed by the public key.
- The public key can be read on the MAC block 0x36, in which the first byte is the ECC key status followed by the public key. Bit 7 of the first byte is set if it is in TEST mode.

15.3.1 ECC Authentication

The ECC-based authentication is believed to be more robust than SHA-1. One of the other benefits of ECC is that the private key resides only in the gauge in secure memory. The authentication process involves the host sending an authentication challenge (up to 20 bytes long) to the gauge via *Authenticate()*. The gauge responds with a signature pair (R,S), each is 21 bytes long (total 42 bytes), via *Authenticate()*. The host then verifies that the response is valid. Note that the gauge will NACK on the *Authenticate()* cmd until its ECC calculation is complete and is ready to respond.

15.4 Security Modes

15.4.1 FULL ACCESS or UNSEALED to SEALED

The MAC Seal Device() command instructs the device to limit access to the SBS functions and data flash space, and sets the [SEC1][SEC0] flags. In SEALED mode, standard SBS functions have access (per the Smart Battery Data Specification). Most of the extended SBS functions and data flash are not accessible. Refer to Chapter 18 where each command has documented the accessibility information. Once in SEALED mode, the gauge can never permanently return to UNSEALED or FULL ACCESS modes.

Security Modes www.ti.com

15.4.2 SEALED to UNSEALED

SEALED to UNSEALED instructs the device to extend access to the SBS and data flash space and clears the [SEC1][SEC0] flags. In UNSEALED mode, all data, SBS, and DF have read/write access. Note that although writing to most of the SBS commands are accepted by the gauge, the written data will be immediately overwritten by the gauge and the write action is ignored. Unsealing is a two-step command performed by writing the first word of the unseal key to ManufacturerAccess() (MAC), followed by the second word of the unseal key to ManufacturerAccess(). The two words must be sent within 4 s. The unseal key can be read and changed via the MAC SecurityKey() command when in the FULL ACCESS mode. To return to the SEALED mode, either a hardware reset is needed or the MAC Seal Device() command is needed to transit from FULL ACCESS or UNSEALED to SEALED.

The default UNSEAL key is 0x0414 and 0x3672. To go from SEALED to UNSEALED, these two words must be sent to ManufacturerAccess() (MAC), first 0x0414 followed by 0x3672, both sent sequentially with the second word sent within 4 seconds of the first.

15.4.3 UNSEALED to FULL ACCESS

UNSEALED to FULL ACCESS instructs the device to allow full access to all SBS commands and data flash. The device is shipped from TI in this mode. The keys for UNSEALED to FULL ACCESS can be read and changed via the MAC command SecurityKey() when in FULL ACCESS mode. Changing from UNSEALED to FULL ACCESS is performed by using the ManufacturerAccess() command, by writing the first word of the Full Access Key to ManufacturerAccess(), followed by the second word of the Full Access Key to ManufacturerAccess(). The two words must be sent within 4 s. In FULL ACCESS mode, the command to go to boot ROM can be sent.

NOTE: If the gauge is sealed, it will always return to the SEALED state after POR even if the gauge is unsealed prior to a POR. If the SREC of a sealed gauge is extracted and then programmed into another gauge, the other gauge will also power up in the SEALED state. The only way to permanently restore the UNSEALED state is to reflash the gauge with an unsealed SREC.

Manufacture Production

16.1 Manufacture Testing

To improve the manufacture testing flow, the gas gauge device allows certain features to be toggled on or off through ManufacturerAccess() commands; for example, the PCHG FET(), PDSG FET(), CHG FET(), DSG FET(), Lifetime Data Collection(), Calibration(), among others. Enabling only the feature under test can simplify the test flow in production by avoiding any feature interference. The ManufacturerAccess() commands that toggle the ManufacturingStatus()[CAL_EN], [LT_TEST], [DSG_TEST], [CHG_TEST], [PDSG_TEST], and [PCHG_TEST] will only set the RAM data, meaning the conditions set by these commands will be cleared if a reset or seal is issued to the gauge. The ManufacturerAccess() commands that toggle the ManufacturingStatus()[LED_EN], [FUSE_EN], [BBR_EN], [PF_EN], and [LF_EN], [FET_EN], [GAUGE_EN] will be updated to data flash and synchronized between ManufacturingStatus() and Mfg Status Init. The ManufacturingStatus() keeps track of the status (enabled or disabled) of each feature.

The *Mfq Status Init* provides the option to enable or disable individual features for normal operation. Upon a reset or a seal command, ManufacturingStatus() will be reloaded from data flash Mfg Status Init. This means if an update is made to Mfg Status Init to enable or disable a feature, the gauge will only take the new setting if a reset or seal command is sent.

16.2 Calibration

Refer to the bq40z80 Manufacture, Production, and Calibration Application Note (SLUA868) for the detailed calibration procedure.

The bq40z80 device has integrated routines that support calibration of current, voltage, and temperature readings, accessible after writing 0xF081 or 0xF082 or 0xF083 to ManufacturerAccess() when the ManufacturingStatus()[CAL] bit is ON. While the calibration is active, the raw ADC data is available on ManufacturerData(). The bq40z80 device stops reporting calibration data on ManufacturerData() if any other MAC commands are sent or the device is reset or sealed.

NOTE: The ManufacturingStatus()[CAL] bit must be turned OFF after calibration is completed. The ManufacturingStatus()[CAL] bit is set by default when the Manufacturing Status Init is set to 0. This bit is cleared at reset or after sealing.

ManufacturerAccess()	Description
0x002D	Enables/Disables ManufacturingStatus()[CAL]
0xF080	Disables raw ADC data output on ManufacturerData()
0xF081	Outputs raw ADC data of voltage, current, and temperature on ManufacturerData()
0xF082	Outputs raw ADC data of voltage, current, and temperature on <i>ManufacturerData()</i> . This mode enables an internal short on the coulomb counter inputs (SRP, SRN).
0xF083	Outputs raw ADC Cell7 voltage and current data on ManufacturerData()

Calibration www.ti.com

The *ManufacturerData()* output format is: ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKLLIIMMmmNNnnOOoo,

where:

Value	Format	Description
ZZ	byte	8-bit counter, increments when raw ADC values are refreshed (every 250 ms)
YY	byte	Output status ManufacturerAccess() = 0xF081 or 0xF083: 1 ManufacturerAccess() = 0xF082: 2
AAaa	2's comp	Current (coulomb counter)
BBbb	2's comp	Cell Voltage 1
CCcc	2's comp	Cell Voltage 2
DDdd	2's comp	Cell Voltage 3
EEee	2's comp	Cell Voltage 4
FFff	2's comp	Cell Voltage 5
GGgg	2's comp	Cell Voltage 6
HHhh	2's comp	PACK Voltage
Ilii	2's comp	BAT Voltage
JJjj	2's comp	Cell Current 1
KKkk	2's comp	Cell Current 2
LLII	2's comp	Cell Current 3
MMmm	2's comp	Cell Current 4
NNnn	2's comp	Cell Current 5
0000	2's comp	Cell Current 6

16.2.1 Calibration Data Flash

16.2.1.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Calibration	Voltage	Cell Gain	12	-32767	32767	12101 ⁽¹⁾	_	VC[n]-VC[n-1] gain
Calibration	Voltage	PACK Gain	U2	0	0 65535 37582 ⁽¹⁾ — PACK-\		PACK-VSS gain	
Calibration	Voltage	VC6-VSS Gain	U2	0	65535	37582 ⁽¹⁾	_	VC6-VSS gain
Calibration	Ext Cell Voltage	VC7 Sense Gain	U2	0	65535	41660	_	VC7-VSS gain

 $^{^{\}left(1\right)}$ Setting this value to 0 causes the gauge to use the internal factory calibration default.

16.2.1.2 Current

Class	Subclass	Name	Туре	Min	Max	Default	Description
Calibration	Current	CC Gain	F4	1.00E-001	4.00E+000	3.58422	Coulomb Counter Gain
Calibration	Current	Capacity Gain	F4	2.98E+004	1.19E+006	1069035.256	Capacity Gain

www.ti.com Calibration

16.2.1.3 Current Offset

16.2.1.3.1 CC Offset

	Class	Subclass	Name	Type	Min	Max	Default	Unit
Ī	Calibration	Current Offset	CC Offset	12	-32767	32767	0	_

Description: Coulomb counter offset. This offset is used for *Current()* and *AverageCurrent()* measurement.

16.2.1.3.2 Coulomb Counter Offset Samples

	Class	Subclass	Name	Type	Min	Max	Default	Unit
C	Calibration	Current Offset	Coulomb Counter Offset Samples	U2	0	65535	64	_

Description: Coulomb Counter Offset Samples is used for averaging.

16.2.1.3.3 Board Offset

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Current Offset	Board Offset	12	-32768	32767	0	_

Description: PCB board offset

16.2.1.4 CC Auto Config

Class	Subclass	Name	Туре	Min	Max	Default	Units
Calibration	Current Offset	CC Auto Config	H1	0x00	0x07	0x03	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	OFFSET_ TAKEN	AUTO_ NESTON	AUTO_ CAL_EN

SpecificationInformation() values

RSVD (Bits 7-3): Reserved. Do not use.

OFFSET TAKEN (Bit 2): CC Auto Offset is taken.

- 1 = **CC Auto Offset** has been measured.
- 0 = **CC Auto Offset** has not been measured.

AUTO_NESTON (Bit 1): NEST Circuit ON

- 1 = When **[OFFSET_TAKEN]** = 1, FW automatically controls the HW NEST circuit for best current and cell current measurements.
- 0 = HW NEST circuit is always on. Individual cell current measurement may have error relative to *Current()*, but the *Current()* accuracy is not impacted.

AUTO_CAL_EN (Bit 0): CC Auto Offset calibration enable

- 1 = FW performs auto CC calibration on entry into SLEEP mode. A min auto CC calibration interval is set to 10 hours to prevent flash wear out. The result is saved to *CC Auto Offset*.
- 0 = **CC** Auto Offset calibration is disabled.

Calibration www.ti.com

16.2.1.5 CC Auto Offset

Class	Subclass	Name	Type	Min	Max	Default
Calibration	Current Offset	CC Auto Offset	12	-10000	10000	0

Description: **CC Offset** collected via **CC Auto Offset Calibration**. This offset is used for cell current measurement and is different than **CC Offset**.

16.2.1.6 Temperature

16.2.1.6.1 Internal Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	Internal Temp Offset	I1	-128	127	0	0.1°C

Description: Internal temperature sensor reading offset

16.2.1.6.2 External 1 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 1 Temp Offset	I 1	-128	127	0	0.1°C

Description: TS1 temperature sensor reading offset

16.2.1.6.3 External 2 Temp Offset

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Temperature	External 2 Temp Offset	I 1	-128	127	0	0.1°C

Description: TS2 temperature sensor reading offset

16.2.1.6.4 External 3 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 3 Temp Offset	I1	-128	127	0	0.1°C

Description: TS3 temperature sensor reading offset

16.2.1.6.5 External 4 Temp Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Temperature	External 4 Temp Offset	I 1	-128	127	0	0.1°C

Description: TS4 temperature sensor reading offset

www.ti.com Calibration

16.2.1.7 Internal Temp Model

16.2.1.7.1 Int Gain

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Gain	12	-32768	32767	-12143	_

Description: Internal temperature gain

16.2.1.7.2 Int Base Offset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Base Offset	12	-32768	32767	6232	_

Description: Internal temperature base offset

16.2.1.7.3 Int Minimum AD

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Minimum AD	12	-32768	32767	0	_

Description: Minimum AD count used for calculation

16.2.1.7.4 Int Maximum Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Internal Temp Model	Int Maximum Temp	12	-32768	32767	6232	0.1 °K

Description: Maximum Temperature boundary

16.2.1.8 Cell Temp Model

16.2.1.8.1 Coefficient a1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a1	12	-32768	32767	-11130	

Description: Cell temperature calculation polynomial a1

16.2.1.8.2 Coefficient a2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a2	12	-32768	32767	19142	

Description: Cell temperature calculation polynomial a2

Calibration www.ti.com

16.2.1.8.3 Coefficient a3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a3	12	-32768	32767	-19262	_

Description: Cell temperature calculation polynomial a3

16.2.1.8.4 Coefficient a4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a4	12	-32768	32767	28203	_

Description: Cell temperature calculation polynomial a4

16.2.1.8.5 Coefficient a5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient a5	12	-32768	32767	892	_

Description: Cell temperature calculation polynomial a5

16.2.1.8.6 Coefficient b1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b1	12	-32768	32767	328	-

Description: Cell temperature calculation polynomial b1

16.2.1.8.7 Coefficient b2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b2	12	-32768	32767	-605	-

Description: Cell temperature calculation polynomial b2

16.2.1.8.8 Coefficient b3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b3	12	-32768	32767	-2443	-

Description: Cell temperature calculation polynomial b3

16.2.1.8.9 Coefficient b4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Coefficient b4	12	-32768	32767	4969	_

Description: Cell temperature calculation polynomial b4

www.ti.com Calibration

16.2.1.8.10 Rc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Rc0	12	-32768	32767	11703	Ω

Description: Resistance at 25°C

16.2.1.8.11 Adc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Adc0	12	-32768	32767	11703	_

Description: ADC reading at 25°C

16.2.1.8.12 Rpad

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Rpad	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pad Resistance (0 to use factory calibration)

16.2.1.8.13 Rint

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Cell Temp Model	Rint	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pullup resistor resistance (0 to use factory calibration)

16.2.1.9 FET Temp Model

16.2.1.9.1 Coefficient a1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a1	12	-32768	32767	-11130	-

Description: FET temperature calculation polynomial a1

16.2.1.9.2 Coefficient a2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a2	12	-32768	32767	19142	_

Description: FET temperature calculation polynomial a2

16.2.1.9.3 Coefficient a3

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a3	12	-32768	32767	-19262	_

Description: FET temperature calculation polynomial a3

Calibration www.ti.com

16.2.1.9.4 Coefficient a4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a4	12	-32768	32767	28203	_

Description: FET temperature calculation polynomial a4

16.2.1.9.5 Coefficient a5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient a5	12	-32768	32767	892	_

Description: FET temperature calculation polynomial a5

16.2.1.9.6 Coefficient b1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b1	12	-32768	32767	328	_

Description: FET temperature calculation polynomial b1

16.2.1.9.7 Coefficient b2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b2	12	-32768	32767	-605	

Description: FET temperature calculation polynomial b2

16.2.1.9.8 Coefficient b3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b3	12	-32768	32767	-2443	_

Description: FET temperature calculation polynomial b3

16.2.1.9.9 Coefficient b4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Coefficient b4	12	-32768	32767	4969	1

Description: FET temperature calculation polynomial b4

16.2.1.9.10 Rc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Rc0	12	-32768	32767	11703	Ω

Description: Resistance at 25°C

www.ti.com Calibration

16.2.1.9.11 Adc0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Adc0	12	-32768	32767	11703	_

Description: ADC reading at 25°C

16.2.1.9.12 Rpad

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Rpad	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pad Resistance (0 to use factory calibration)

16.2.1.9.13 Rint

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	FET Temp Model	Rint	12	-32768	32767	0 ⁽¹⁾	Ω

⁽¹⁾ Setting this value to 0 causes the gauge to use the internal factory calibration default.

Description: Pullup resistor resistance (0 to use factory calibration)

16.2.1.10 Current Deadband

16.2.1.10.1 Deadband

Class	Subclass	Name	Type	Min	Max	Default	Unit
Calibration	Current Deadband	Deadband	U1	0	255	3	mA

Description: Pack-based Deadband to report 0 mA

16.2.1.10.2 Coulomb Counter Deadband

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Calibration	Current Deadband	Coulomb Counter Deadband	U1	0	255	9	116 nV

Description: Coulomb counter deadband to report 0 charge (This setting should not be modified.)

Device SMBus Address

The bq40z80 SMBus address (default 0x16) can be changed. The target address should be programmed in *Address* and the 2's complement of that value should be programmed in *Address Check*.

The bq40z80 will check these values upon exit from POR, and if the two data flash values are not valid or the programmed address is 0x00 or 0xFF, then the device defaults to 0x16.

Table 17-1. Address

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Settings	SMBus	Address	Hex	1	0x00	0xFF	0x16	_

Table 17-2. Address Check

Class	Subclass	Name	Format	Size in Bytes	Min Value	Max Value	Default Value	Unit
Settings	SMBus	Address Check	Hex	1	0x00	0xFF	0xEA	

For details on SMBus specifications, visit http://www.smbus.org/specs/.

SBS Commands

18.1 0x00 ManufacturerAccess() and 0x44 ManufacturerBlockAccess()

ManufacturerBlockAccess() provides a method of reading and writing data in the Manufacturer Access System (MAC). This block MAC access method is standard for the bq40zxy family. The MAC command is sent via ManufacturerBlockAccess() by the SMBus block protocol. The result is returned on ManufacturerBlockAccess() via an SMBus block read.

Example: Send a MAC Gauging() to enable IT via ManufacturerBlockAccess().

- 1. With Impedance Track disabled, send Gauging() (0x0021) to ManufacturerBlockAccess()
 - a. SMBus block write. Command = 0x44. Data = 21 00 (data must be sent in little endian)
- 2. IT is enabled, ManufacturingStatus()[GAUGE_EN] = 1.

Example: Read Chemical ID() (0x0006) via ManufacturerBlockAccess().

- 1. Send Chemical ID() to ManufacturerBlockAccess().
 - a. SMBus block write. Command = 0x44. Data sent = 06 00 (data must be sent in little endian)
- 2. Read the result from ManufacturerBlockAccess().
 - a. SMBus block read. Command = 0x44. Data read = 06 00 00 01 (each data entity is returned in little endian).
 - b. The first 2 bytes, "06 00", is the MAC command.
 - c. The second 2 bytes, "00 01", is the chem ID returning in little endian. That is 0x0100, chem ID 100.

For backwards compatibility with the bq30zxy families, sending MAC commands via *ManufacturerAccess()* (0x00) as well as the returning data on *ManufacturerData()* are supported in bq40z80. Note that MAC commands are sent through *ManufacturerAccess()* (0x00) by an SMBus write word protocol. The result reading from *ManufacturerData()* does not include the MAC command.

Example: Send a MAC Gauging() to enable IT via ManufacturerAccess().

- 1. With Impedance Track disabled, send Gauging() (0x0021) to ManufacturerAccess().
 - a. SMBus word write. Command = 0x00. Data = 00 21 (Data to address 0x00 is not little endian.)
- 2. IT is enabled, ManufacturingStatus()[GAUGE_EN] = 1.

Example: Read Chemical ID() (0x0006) via ManufacturerAccess().

- 1. Send Chemical ID() to ManufacturerAccess().
 - a. SMBus word write. Command = 0x00. Data sent = 00 06 (Data to address 0x00 is not little endian.)
- 2. Read the result from ManufacturerData().
 - a. SMBus block read. Command = 0x23. Data read = 00 01 (Each data entity is returned in little endian.)
 - b. That is 0x0100, chem ID 100.

The ManufacturerAccess() and ManufacturerBlockAccess() are interchangeable. The result can be read from ManufacturerData() or ManufacturerBlockAccess(), regardless of how the MAC command is sent.

Table 18-1. ManufacturerAccess() Command List

Command	Function	Access	Format	Data Read on 0x44 or 0x23	Data Read on 0x2F	Available in SEALED Mode	Туре	Unit
0x0001	DeviceType	R	Block	Yes	_	Yes	Hex	_
0x0002	FirmwareVersion	R	Block	Yes	_	Yes	Hex	_
0x0003	HardwareVersion	R	Block	Yes	_	Yes	Hex	_
0x0004	IFChecksum	R	Block	Yes	_	Yes	Hex	_
0x0005	StaticDFSignature	R	Block	Yes	_	Yes	Hex	_
0x0006	ChemID	R	Block	Yes	_	Yes	Hex	_
0x0008	StaticChemDFSignature	R	Block	Yes	_	Yes	Hex	_
0x0009	AllDFSignature	R	Block	Yes	_	Yes	Hex	_
0x0010	ShutdownMode	W	_	_	_	Yes	Hex	_
0x0011	SleepMode	W	_	_	_	_	Hex	_
0x0013	AutoCCOfset	W	_	_	_	_	Hex	_
0x001C	PreDischargeFETToggle	W	_	_	_	_	Hex	_
0x001D	FuseToggle	W	_	_	_	_	Hex	_
0x001E	PrechargeFETToggle	W	_	_	_	_	Hex	_
0x001F	ChargeFETToggle	W	_	_	_	_	Hex	_
0x0020	DischargeFETToggle	W	_	_	_	_	Hex	_
0x0020	Gauging	W	_		_	_	Hex	_
0x0021	FETControl	W		_	_	_	Hex	
	LifetimeDataCollection	W			_	_	Hex	
0x0023								
0x0024	PermanentFailure	W	_	_	_	_	Hex	_
0x0025	BlackBoxRecorder	W	_	_	_	_	Hex	_
0x0026	Fuse	W	_	_	_	_	Hex	_
0x0027	LEDDisplayEnable	W	_	_	_	_	Hex	_
0x0028	LifetimeDataReset	W	_	_	_	_	Hex	_
0x0029	PermanentFailureData Reset	W	_	_	_	_	Hex	_
0x002A	BlackBoxRecorderReset	W	_	_	_	_	Hex	_
0x002B	LEDToggle	W	_	_	_	_	Hex	_
0x002C	LEDDisplayPress	W	_	_	_	_	Hex	_
0x002D	CalibrationMode	W	_	_	_	_	Hex	_
0x002E	LifetimeDataFlush	W	_	_	_	_	Hex	_
0x002F	LifetimeDataSpeedUp Mode	W	_	_	_	_	Hex	_
0x0030	SealDevice	W	_	_	_	_	Hex	_
0x0035	SecurityKeys	R/W	Block	Yes	_	_	Hex	_
0x0037	AuthenticationKey	R/W	Block	_	Yes	_	Hex	_
0x0041	DeviceReset	W	_	_	_		Hex	_
0x0050	SafetyAlert	R	Block	Yes	_	Yes	Hex	_
0x0051	SafetyStatus	R	Block	Yes	_	Yes	Hex	_
0x0052	PFAlert	R	Block	Yes	_	Yes	Hex	_
0x0053	PFStatus	R	Block	Yes	_	Yes	Hex	_
0x0054	OperationStatus	R	Block	Yes	_	Yes	Hex	_
0x0055	ChargingStatus	R	Block	Yes	_	Yes	Hex	_
0x0056	GaugingStatus	R	Block	Yes	_	Yes	Hex	_
0x0057	ManufacturingStatus	R	Block	Yes	_	Yes	Hex	_
0x0058	AFERegister	R	Block	Yes	_	Yes	Hex	_
0x005A	NoLoadRemCap	R	Block	Yes	_	Yes	Mixed	Mixed
0x0060	LifetimeDataBlock1	R	Block	Yes	_	Yes	Mixed	Mixed
0x0061	LifetimeDataBlock2	R	Block	Yes	_	Yes	Mixed	Mixed
0x0061	LifetimeDataBlock3	R	Block	Yes	_	Yes	Mixed	Mixed
000002		R	Block	Yes	_	Yes	Mixed	Mixed
0x0063	LifetimeDataBlock4							

Table 18-1. ManufacturerAccess() Command List (continued)

Command	Function	Access	Format	Data Read on 0x44 or 0x23	Data Read on 0x2F	Available in SEALED Mode	Туре	Unit
0x0070	ManufacturerInfo	R	Block	Yes	_	Yes	Hex	_
0x0071	DAStatus1	R	Block	Yes	_	Yes	Mixed	Mixed
0x0072	DAStatus2	R	Block	Yes	_	Yes	Mixed	Mixed
0x0073	GaugingStatus1	R	Block	Yes	_	Yes	Mixed	Mixed
0x0074	GaugingStatus2	R	Block	Yes	_	Yes	Mixed	Mixed
0x0075	GaugingStatus3	R	Block	Yes	_	Yes	Mixed	Mixed
0x0076	CBStatus	R	Block	Yes	_	Yes	Mixed	Mixed
0x0077	StateofHealth	R	Block	Yes	_	Yes	Mixed	Mixed
0x0078	FilterCapacity	R	Block	Yes	_	Yes	Mixed	Mixed
0x0079	RSOC_Write	W	_	_	_	_	Hex	_
0x007A	ManufacturerInfoB	R	Block	Yes	_	Yes	Hex	_
0x007B	DAStatus3	R	Block	Yes	_	Yes	Mixed	Mixed
0x007C	GaugingStatus4	R	Block	Yes	_	Yes	Mixed	Mixed
0x007D	GaugingStatus5	R	Block	Yes	_	Yes	Mixed	Mixed
0x0080	ManufacturerInfoC	R	Block	Yes	_	Yes	Hex	_
0x0081	ManufacturerInfoD	R	Block	Yes	_	Yes	Hex	_
0x0082	CurrentLong	R	Block	Yes	_	Yes	Mixed	mA
0x00F0	IATA_SHUTDOWN	W	_	_	_	_	Hex	_
0x00F1	IATA_RM	W		_	_	_	Hex	_
0x00F2	IATA_FCC	W	_	_	_	_	Hex	_
0x00F3	IATA_Charge	W	_	_	_	Yes	Hex	_
0x0F00	ROMMode	W	_	_	_	_	Hex	_
0xF080	ExitCalibrationOutput	R/W	Block	Yes	_	_	Hex	_
0xF081	Output CCADC Cal	R/W	Block	Yes	_	_	Hex	_
0xF082	OutputShortedCCADCCal	R/W	Block	Yes	_	_	Hex	_
0xF083	Output Cell-7 CCADC cal	R/W	Block	Yes	_	_	Hex	_

18.1.1 ManufacturerAccess() 0x0000

A read word on this command returns the lowest 16 bits of the OperationStatus() data.

18.1.2 ManufacturerAccess() 0x0001 Device Type

The bq40z80 device can be checked for the IC part number. The IC part number returns on a subsequent read on <code>ManufacturerBlockAccess()</code> or <code>ManufacturerData()</code> in the following format: aaAA, where:

Value	Description
AAaa	Device Type

18.1.3 ManufacturerAccess() 0x0002 Firmware Version

The bq40z80 device can be checked for the firmware version of the IC. The firmware revision returns on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: DDddVVvvBBbbTTZZzzRREE, where:

Value	Description
DDdd	Device Number
VVvv	Version
BBbb	Build Number
TT	Firmware Type
ZZzz	Impedance Track Version

Value	Description
RR	Reserved
EE	Reserved

18.1.4 ManufacturerAccess() 0x0003 Hardware Version

The bq40z80 device can be checked for the hardware version of the IC. The hardware revision returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*.

18.1.5 ManufacturerAccess() 0x0004 Instruction Flash Signature

The bq40z80 device can return the instruction flash signature. The IF signature returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*.

18.1.6 ManufacturerAccess() 0x0005 Static DF Signature

The bq40z80 device can return the data flash checksum. The signature of all static DF returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*. MSB is set to 1 if the calculated signature does not match the signature stored in DF.

18.1.7 ManufacturerAccess() 0x0006 Chemical ID

This command returns the chemical ID of the OCV tables used in the gauging algorithm. The chemical ID returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*.

18.1.8 ManufacturerAccess() 0x0008 Static Chem DF Signature

The bq40z80 device can return the data flash checksum. The signature of all static chemistry DF returns on subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*. MSB is set to 1 if the calculated signature does not match the signature stored in DF.

18.1.9 ManufacturerAccess() 0x0009 All DF Signature

The bq40z80 device can return the data flash checksum. The signature of all DF parameters returns on a subsequent read on *ManufacturerBlockAccess()* or *ManufacturerData()*. MSB is set to 1 if the calculated signature does not match the signature stored in DF. It is expected that this signature will change due to updates of lifetime, gauging, and other information.

18.1.10 ManufacturerAccess() 0x0010 SHUTDOWN Mode

To reduce power consumption, the device can be sent to SHUTDOWN mode before shipping. After sending this command, the *OperationStatus()[SDM]* = 1, an internal counter will start, and the CHG and DSG FETs will be turned off when the counter reaches **Ship FET Off Time**. When the counter reaches Ship Delay time, the device will enter SHUTDOWN mode if no charger present is detected.

If the device is SEALED, this feature requires the command to be sent twice in a row within 4 seconds (for safety purposes). If the device is in UNSEALED or FULL ACCESS mode, sending the command the second time will cancel the delay and enter shutdown immediately.

To wake up the device, a voltage > **Charger Present Threshold** must apply to the PACK pin. The bq40z80 device will power up and a full reset is applied.

18.1.11 ManufacturerAccess() 0x0011 SLEEP Mode

If the sleep conditions are met, the device can be sent to sleep with ManufacturerAccess().

Status	Condition	Action
Enable	0x0011 to ManufacturerAccess()	OperationStatus()[SLEEPM] = 1
Activate	DA Configuration[NR] = 0 AND OperationStatus()[PRES] = 0 AND Current() < Power:Sleep Current	Turn off CHG FET, DSG FET, PCHG FET The device goes to sleep. The device wakes up every Power: Sleep Voltage Time period to measure voltage and temperature. The device wakes up every Power: Sleep Current Time period to measure current.
Activate	DA Configuration[NR] = 1 AND Current() < Power:Sleep Current	Turn off PCHG FET Turn off CHG FET if FET Options[SLEEPCHG] = 0 The device goes to sleep. The device wakes up every Power:Sleep Voltage Time period to measure voltage and temperature. The device wakes up every Power:Sleep Current Time period to measure current.
Exit	DA Configuration[NR] = 0 AND OperationStatus()[PRES] = 1	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode
Exit	Current() > Configuration:Sleep Current	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode
Exit	Wake Comparator trips	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode
Exit	SafetyAlert() flag or PFAlert() flag set	OperationStatus()[SLEEPM] = 0 Return to NORMAL mode

18.1.12 ManufacturerAccess() 0x0013 AutoCCOffset

This command manually starts an CC Auto Offset calibration. The calibration takes about 16 s.

This value is updated to *CC Auto Offset*, and is used for cell current measurement when the device is in CHARGING or DISCHARGING state. This offset is not used during RELAX mode. The cell current measurement is a current measurement taken simultaneously as the cell voltage measurement.

18.1.13 ManufacturerAccess() 0x001C PDSG FET Toggle

This command turns on/off the PDSG FET drive function to ease testing during manufacturing. If the *ManufacturingStatus()[PDSG_TEST]* = 0, sending this command will turn on the PDSG FET and the *ManufacturingStatus()[PDSG_TEST]* = 1 and vice versa. This toggling command is only enabled if *ManufacturingStatus()[FET_EN]* = 0, indicating an FW FET control is not active and manual control is allowed. A reset clears the *[PDSG_TEST]* flag and turns off the PDSG FET.

18.1.14 ManufacturerAccess() 0x001D Fuse Toggle

This command manually activates/deactivates the FUSE output to ease testing during manufacturing. If the *OperationStatus()[FUSE]* = 0 indicates the FUSE output is low. Sending this command toggles the FUSE output to be high and the *OperationStatus()[FUSE]* = 1.

18.1.15 ManufacturerAccess() 0x001E PCHG FET Toggle

This command turns on/off the PCHG FET drive function to ease testing during manufacturing. If the *ManufacturingStatus()[PCHG_TEST]* = 0, sending this command will turn on the PCHG FET and the *ManufacturingStatus()[PCHG_TEST]* = 1 and vice versa. This toggling command is only enabled if *ManufacturingStatus()[FET_EN]* = 0, indicating an FW FET control is not active and manual control is allowed. A reset clears the *[PCHG_TEST]* flag and turns off the PCHG FET.

18.1.16 ManufacturerAccess() 0x001F CHG FET Toggle

This command turns on/off the CHG FET drive function to ease testing during manufacturing. If the *ManufacturingStatus()[CHG_TEST]* = 0, sending this command turns on the CHG FET and the *ManufacturingStatus()[CHG_TEST]* = 1 and vice versa. This toggling command is only enabled if *ManufacturingStatus()[FET_EN]* = 0, indicating an FW FET control is not active and manual control is allowed. A reset clears the *[CHG_TEST]* flag and turns off the CHG FET.

18.1.17 ManufacturerAccess() 0x0020 DSG FET Toggle

This command turns on/off DSG FET drive function to ease testing during manufacturing. If the ManufacturingStatus()[DSG_TEST] = 0, sending this command turns on the DSG FET and the ManufacturingStatus()[DSG_TEST] = 1 and vice versa. This toggling command is only enabled if ManufacturingStatus()[FET_EN] = 0, indicating an FW FET control is not active and manual control is allowed. A reset clears the [DSG_TEST] flag and turns off the DSG FET.

18.1.18 ManufacturerAccess() 0x0021 Gauging

This command enables or disables the gauging function to ease testing during manufacturing. The initial setting is loaded from *Mfg Status Init[GAUGE_EN]*. If the *ManufacturingStatus()[GAUGE_EN]* = 0, sending this command will enable gauging and the *ManufacturingStatus()[GAUGE_EN]* = 1 and vice versa. In UNSEALED mode, the *ManufacturingStatus()[GAUGE_EN]* status is copied to *Mfg Status Init[GAUGE_EN]* when the command is received by the gauge. The bq40z80 device remains on its latest gauging status prior to a reset.

18.1.19 ManufacturerAccess() 0x0022 FET Control

This command disables/enables control of the CHG, DSG, and PCHG FET by the firmware. The initial setting is loaded from *Mfg Status Init[FET_EN]*. If the *ManufacturingStatus()[FET_EN]* = 0, sending this command allows the FW to control the PCHG, CHG, and DSG FETs and the *ManufacturingStatus()[FET_EN]* = 1 and vice versa.

In UNSEALED mode, the *ManufacturingStatus()[FET_EN]* status is copied to *Mfg Status Init[FET_EN]* when the command is received by the gauge. The bq40z80 device remains on its latest FET control status prior to a reset.

18.1.20 ManufacturerAccess() 0x0023 Lifetime Data Collection

This command disables/enables *Lifetime Data Collection* to help streamline production testing. The initial setting is loaded from *Mfg Status Init[LF_EN]*. If the *ManufacturingStatus()[LF_EN]* = 0, sending this command starts the *Lifetime Data Collection* and the *ManufacturingStatus()[LF_EN]* = 1 and vice versa.

In UNSEALED mode, the *ManufacturingStatus()[LF_EN]* status is copied to *Mfg Status Init[LF_EN]* when the command is received by the gauge. The bq40z80 device remains on its latest *Lifetime Data Collection* setting prior to a reset.

18.1.21 ManufacturerAccess() 0x0024 Permanent Failure

This command disables/enables **Permanent Failure** to help streamline production testing.

The initial setting is loaded from *Mfg Status Init[PF_EN]*. If the *ManufacturingStatus()[PF_EN]* = 0, sending this command enables Permanent Failure protections and the *ManufacturingStatus()[PF_EN]* = 1 and vice versa.

In UNSEALED mode, *ManufacturingStatus()[PF_EN]* status is copied to *Mfg Status Init[PF_EN]* when the command is received by the gauge. The bq40z80 device remains on its PF enable/disable setting prior to a reset

18.1.22 ManufacturerAccess() 0x0025 Black Box Recorder

This command enables/disables Black Box Recorder function to help streamline production testing. The initial setting is loaded from *Mfg Status Init[BBR_EN]*. If the *ManufacturingStatus()[BBR_EN]* = 0, sending this command enables the Black Box Recorder and the *ManufacturingStatus()[BBR_EN]* = 1 and vice versa.

In UNSEALED mode, the *ManufacturingStatus()[BBR_EN]* status is copied to *Mfg Status Init[BBR_EN]* when the command is received by the gauge. The bq40z80 device remains on its latest Black Box Recorder enable/disable setting prior to a reset.

18.1.23 ManufacturerAccess() 0x0026 Fuse

This command disables/enables firmware-based fuse activation to ease testing during manufacturing. The initial setting is loaded from *Mfg Status Init[FUSE_EN]*. If the *ManufacturingStatus()[FUSE_EN]* = 0, sending this command allows the FW to control the FUSE output and the *ManufacturingStatus()[FUSE_EN]* = 1 and vice versa.

In UNSEALED mode, the *ManufacturingStatus()[FUSE_EN]* status is copied to *Mfg Status Init[FUSE_EN]* when the command is received by the gauge. The bq40z80 device remains on its latest Fuse Control setting prior to a reset.

18.1.24 ManufacturerAccess() 0x0027 LED DISPLAY Enable

This command enables or disables the LED display function to ease testing during manufacturing. The initial setting is loaded from *Mfg Status Init[LED_EN]*. If the *ManufacturingStatus()[LED_EN]* = 0, sending this command will enable the LED display and the *ManufacturingStatus()[LED_EN]* = 1 and vice versa. In UNSEALED mode, the *ManufacturingStatus()[LED_EN]* status is copied to *Mfg Status Init[LED_EN]* when the command is received by the gauge. The bq40z80 device remains on its latest setting prior to a reset.

18.1.25 ManufacturerAccess() 0x0028 Lifetime Data Reset

Sending this command resets *Lifetime Data* in data flash to help streamline production testing.

18.1.26 ManufacturerAccess() 0x0029 Permanent Fail Data Reset

Sending this command resets PF data in data flash to help streamline production testing.

18.1.27 ManufacturerAccess() 0x002A Black Box Recorder Reset

Sending this command resets the Black Box Recorder data in data flash to help streamline production testing.

18.1.28 ManufacturerAccess() 0x002B LED TOGGLE

This command toggles the LED display on or off to help streamline testing during manufacturing. When the LED display is off, the *OperationStatus()[LED]* = 0. Sending this command turns on all LED displays with *OperationStatus()[LED]* set to 1, and vice versa.

18.1.29 ManufacturerAccess() 0x002C LED DISPLAY PRESS

This command simulates a low-high-low detection of the DISP pin, activating the LED display according to the LED Support data flash setting. This command forces RSOC to 100% in order to demonstrate all LEDs in use, the full speed, and the brightness.

18.1.30 ManufacturerAccess() 0x002D CALIBRATION Mode

This command disables/enables entry into CALIBRATION mode. Status is indicated by the *ManufacturingStatus()[CAL_EN]* flag. CALIBRATION mode is disabled upon a reset.

Status	Condition	Action
Disable	ManufacturingStatus()[CAL_EN] = 1 AND 0x002D to ManufacturerAccess()	ManufacturingStatus()[CAL_EN] = 0 Disable output of ADC and CC raw data on ManufacturingData()
Enable	ManufacturingStatus()[CAL_EN] = 0 AND 0x002D to ManufacturerAccess()	ManufacturingStatus()[CAL_EN] = 1 Enable output of ADC and CC raw data on ManufacturingData(), controllable with 0xF081, 0xF082, and 0xF083 on ManufacturerAccess()

18.1.31 ManufacturerAccess() 0x002E Lifetime Data Flush

This command flushes the RAM Lifetime Data to data flash to help streamline evaluation testing.

18.1.32 ManufacturerAccess() 0x002F Lifetime Data SPEED UP Mode

For ease of evaluation testing, this command enables a lifetime SPEED UP mode where every 1 s in real time counts as 2 hours in FW time. When the lifetime SPEED UP mode is enabled, the ManufacturingStatus()[LT_TEST] = 1.

The SPEED UP mode will be disabled if this command is sent again when [LT TEST] = 1, the MAC LifetimeDataReset() command is sent, the MAC SealDevice() command is sent, or the device is reset.

18.1.33 ManufacturerAccess() 0x0030 Seal Device

This command seals the device for the field, disabling certain SBS commands and access to data flash. See Table 18-1 and Chapter 18 for details.

When the device is sealed, the OperationStatus()[SEC1, SEC0] = 1,1. All the test features in ManufacturingStatus() will also be disabled.

18.1.34 ManufacturerAccess() 0x0035 Security Keys

This is a read/write command for 2-word UNSEAL and FULL ACCESS keys.

When reading the keys, data can be read from ManufacturerData() or ManufacturerBlockAccess(). The keys are returned in the following format: aaAAbbBBccCCddDD, where:

Value	Description
AAaa	First word of the UNSEAL key
BBbb	Second word of the UNSEAL key
CCcc	First word of the FULL ACCESS key
DDdd	Second word of the FULL ACCESS key

The default UNSEAL key is 0x0414 and 0x3672. The default FULL ACCESS key is 0xFFFF and 0xFFFF.

It is highly recommended to change the UNSEAL and FULL ACCESS keys from default.

The keys can only be changed through the ManufacturerBlockAccess().

Example: Change UNSEAL key to 0x1234, 0x5678, and leave the FULL ACCESS as default. Send an SMBus block write with Command = 0x44.

```
Data = MAC command + New UNSEAL key + New FULL ACCESS KEY
     = 35 00 34 12 78 56 FF FF FF FF
```

NOTE: The first word of the keys cannot be the same. That means an UNSEAL key with 0xABCD 0x1234 and FULL ACCESS key with 0xABCD 0x5678 are not valid because the first word is the same.

This is because the first word is used as a "detection" for the right command. This also means the first word cannot be the same as any existing MAC command.

18.1.35 ManufacturerAccess() 0x0037 Authentication Key

This command enables the update of the authentication key into the device. The ba40z80 device must be in FULL ACCESS mode for the authentication key to update.

To update a new authentication key:

- Send the AuthenticationKey() + the new 128-bit authentication key to ManufacturerBlockAccess() OR
- Send the AuthenticationKey() to ManufacturerAccess(), then send the 128-bit authentication key to

Authenticate().

There is no direct read access to the authentication key. After writing the new authentication to the gauge, the gauge will generate an all-zero challenge and provide the corresponding response for verification.

To verify the new authentication key:

- Read the response from ManufacturerBlockAccess() after updating the new authentication key OR
- Read the response from Authenticate() after updating the new authentication key.

18.1.36 ManufacturerAccess() 0x0041 Device Reset

This command resets the device.

NOTE: Command 0x0012 also resets the device (for backwards compatibility with the bq30zxy device).

18.1.37 ManufacturerAccess() 0x0050 SafetyAlert

This command returns the SafetyAlert() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RSVD	RSVD	OCDL	COVL	UTD	UTC	PCHG C	CHGV	CHGC	ОС	CTOS	СТО	PTOS	РТО	RSVD	OTF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

RSVD (Bits 31-30): Reserved. Do not use.

OCDL (Bit 29): Overcurrent in Discharge

1 = Detected

0 = Not Detected

COVL (Bit 28): Cell Overvoltage Latch

1 = Detected

0 = Not Detected

UTD (Bit 27): Undertemperature During Discharge

1 = Detected

0 = Not Detected

UTC (Bit 26): Undertemperature During Charge

1 = Detected

0 = Not Detected

PCHGC (Bit 25): Over-Precharge Current

1 = Detected

0 = Not Detected

CHGV (Bit 24): Overcharging Voltage

1 = Detected

0 = Not Detected

CHGC (Bit 23): Overcharging Current

1 = Detected

0 = Not Detected

OC (Bit 22): Overcharge

- 1 = Detected
- 0 = Not Detected

CTOS (Bit 21): Charge Timeout Suspend

- 1 = Detected
- 0 = Not Detected

CTO (Bit 20): Charge Timeout

- 1 = Detected
- 0 = Not Detected

PTOS (Bit 19): Precharge Timeout Suspend

- 1 = Detected
- 0 = Not Detected

PTO (Bit 18): Precharge Timeout

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 17): Reserved. Do not use.

OTF (Bit 16): Overtemperature FET

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 15): Reserved. Do not use.

CUVC (Bit 14): Cell Undervoltage Compensated

- 1 = Detected
- 0 = Not Detected

OTD (Bit 13): Overtemperature During Discharge

- 1 = Detected
- 0 = Not Detected

OTC (Bit 12): Overtemperature During Charge

- 1 = Detected
- 0 = Not Detected

ASCDL (Bit 11): Short-Circuit During Discharge Latch

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 10): Reserved. Do not use.

ASCCL (Bit 9): Short-Circuit During Charge Latch

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 8): Reserved. Do not use.

AOLDL (Bit 7): Overload During Discharge Latch

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 6): Reserved. Do not use.

OCD2 (Bit 5): Overcurrent During Discharge 2

- 1 = Detected
- 0 = Not Detected

OCD1 (Bit 4): Overcurrent During Discharge 1

1 = Detected

0 = Not Detected

OCC2 (Bit 4): Overcurrent During Charge 2

1 = Detected

0 = Not Detected

OCC1 (Bit 2): Overcurrent During Charge 1

1 = Detected

0 = Not Detected

COV (Bit 1): Cell Overvoltage

1 = Detected

0 = Not Detected

CUV (Bit 0): Cell Undervoltage

1 = Detected

0 = Not Detected

18.1.38 ManufacturerAccess() 0x0051 SafetyStatus

This command returns the SafetyStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
RSVD	RSVD	OCDL	COVL	UTD	UTC	PCHG C	CHGV	CHGC	ОС	RSVD	сто	RSVD	РТО	RSVD	OTF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

RSVD (Bits 31-30): Reserved. Do not use.

OCDL (Bit 29): Overcurrent in Discharge

1 = Detected

0 = Not Detected

COVL (Bit 28): Cell Overvoltage Latch

1 = Detected

0 = Not Detected

UTD (Bit 27): Undertemperature During Discharge

1 = Detected

0 = Not Detected

UTC (Bit 26): Undertemperature During Charge

1 = Detected

0 = Not Detected

PCHGC (Bit 25): Over-Precharge Current

1 = Detected

0 = Not Detected

CHGV (Bit 24): Overcharging Voltage

1 = Detected

0 = Not Detected

CHGC (Bit 23): Overcharging Current

1 = Detected

0 = Not Detected

OC (Bit 22): Overcharge

1 = Detected

0 = Not Detected

RSVD (Bit 21): Reserved. Do not use.

CTO (Bit 20): Charge Timeout

1 = Detected

0 = Not Detected

RSVD (Bit 19): Reserved. Do not use.

PTO (Bit 18): Precharge Timeout

1 = Detected

0 = Not Detected

RSVD (Bit 17): Reserved. Do not use.

OTF (Bit 16): Overtemperature FET

1 = Detected

0 = Not Detected

RSVD (Bit 15): Reserved. Do not use.

CUVC (Bit 14): Cell Undervoltage Compensated

1 = Detected

0 = Not Detected

OTD (Bit 13): Overtemperature During Discharge

1 = Detected

0 = Not Detected

OTC (Bit 12): Overtemperature During Charge

1 = Detected

0 = Not Detected

ASCDL (Bit 11): Short-circuit During Discharge Latch

1 = Detected

0 = Not Detected

ASCD (Bit 10): Short-circuit During Discharge

1 = Detected

0 = Not Detected

ASCCL (Bit 9): Short-circuit During Charge Latch

1 = Detected

0 = Not Detected

ASCC (Bit 8): Short-circuit During Charge

1 = Detected

0 = Not Detected

AOLDL (Bit 7): Overload During Discharge Latch

1 = Detected

0 = Not Detected

AOLD (Bit 6): Overload During Discharge

1 = Detected

0 = Not Detected

OCD2 (Bit 5): Overcurrent During Discharge 2

1 = Detected

0 = Not Detected

OCD1 (Bit 4): Overcurrent During Discharge 1

1 = Detected

0 = Not Detected

OCC2 (Bit 3): Overcurrent During Charge 2

1 = Detected

0 = Not Detected

OCC1 (Bit 2): Overcurrent During Charge 1

1 = Detected

0 = Not Detected

COV (Bit 1): Cell Overvoltage

1 = Detected

0 = Not Detected

CUV (Bit 0): Cell Undervoltage

1 = Detected

0 = Not Detected

18.1.39 ManufacturerAccess() 0x0052 PFAlert

This command returns the PFAlert() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TS4	TS3	TS2	TS1	RSVD	RSVD	RSVD	RSVD	RSVD	2LVL	AFEC	AFER	FUSE	OCDL	DFE TF	CFE TF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ASC DL	ASC CL	AOL DL	VIMA	VIMR	CD	IMP	СВ	QIM	SOTF	COVL	SOT	SOCD	socc	SOV	SUV

TS4 (Bit 31): Open Thermistor-TS4 Failure

1 = Detected

0 = Not Detected

TS3 (Bit 30): Open Thermistor-TS3 Failure

1 = Detected

0 = Not Detected

TS2 (Bit 29): Open Thermistor-TS2 Failure

1 = Detected

0 = Not Detected

TS1 (Bit 28): Open Thermistor-TS1 Failure

1 = Detected

0 = Not Detected

RSVD (Bits 27-23): Reserved. Do not use.

2LVL (Bit 22): Second Level Protector Failure

- 1 = Detected
- 0 = Not Detected

AFEC (Bit 21): AFE Communication Failure

- 1 = Detected
- 0 = Not Detected

AFER (Bit 20): AFE Register Failure

- 1 = Detected
- 0 = Not Detected

FUSE (Bit 19): Chemical Fuse Failure

- 1 = Detected
- 0 = Not Detected

OCDL (Bit 18): Overcurrent in Discharge

- 1 = Detected
- 0 = Not Detected

DFETF (Bit 17): Discharge FET Failure

- 1 = Detected
- 0 = Not Detected

CFETF (Bit 16): Charge FET Failure

- 1 = Detected
- 0 = Not Detected

ASCDL (Bit 15): Short Circuit in Discharge

- 1 = Detected
- 0 = Not Detected

ASCCL (Bit 14): Short Circuit in Charge

- 1 = Detected
- 0 = Not Detected

AOLDL (Bit 13): Overload in Discharge

- 1 = Detected
- 0 = Not Detected

VIMA (Bit 12): Voltage Imbalance While Pack Is Active Failure

- 1 = Detected
- 0 = Not Detected

VIMR (Bit 11): Voltage Imbalance While Pack Is At Rest Failure

- 1 = Detected
- 0 = Not Detected

CD (Bit 10): Capacity Degradation Failure

- 1 = Detected
- 0 = Not Detected

IMP (Bit 9): Impedance Failure

- 1 = Detected
- 0 = Not Detected

CB (Bit 8): Cell Balancing Failure

1 = Detected

0 = Not Detected

QIM (Bit 7): QMax Imbalance Failure

1 = Detected

0 = Not Detected

SOTF (Bit 6): Safety Overtemperature FET Failure

1 = Detected

0 = Not Detected

COVL (Bit 5): Cell Overvoltage Latch

1 = Detected

0 = Not Detected

SOT (Bit 4): Safety Overtemperature Cell Failure

1 = Detected

0 = Not Detected

SOCD (Bit 3): Safety Overcurrent in Discharge

1 = Detected

0 = Not Detected

SOCC (Bit 2): Safety Overcurrent in Charge

1 = Detected

0 = Not Detected

SOV (Bit 1): Safety Cell Overvoltage Failure

1 = Detected

0 = Not Detected

SUV (Bit 0): Safety Cell Undervoltage Failure

1 = Detected

0 = Not Detected

18.1.40 ManufacturerAccess() 0x0053 PFStatus

This command returns the PFStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
TS4	TS3	TS2	TS1	RSVD	DFW	RSVD	IFC	PTC	2LVL	AFEC	AFER	FUSE	OCDL	DFE TF	CFE TF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ASC DL	ASC CL	AOL DL	VIMA	VIMR	CD	IMP	СВ	QIM	SOTF	COVL	SOT	SOCD	socc	SOV	SUV

TS4 (Bit 31): Open Thermistor-TS4 Failure

1 = Detected

0 = Not Detected

TS3 (Bit 30): Open Thermistor-TS3 Failure

1 = Detected

0 = Not Detected

TS2 (Bit 29): Open Thermistor-TS2 Failure

1 = Detected

0 = Not Detected

TS1 (Bit 28): Open Thermistor-TS1 Failure

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 27): Reserved. Do not use.

DFW (Bit 26): Data Flash Wearout Failure

- 1 = Detected
- 0 = Not Detected

RSVD (Bit 25): Reserved. Do not use.

IFC (Bit 24): Instruction Flash Checksum Failure

- 1 = Detected
- 0 = Not Detected

PTC (Bit 23): PTC Failure

- 1 = Detected
- 0 = Not Detected

2LVL (Bit 22): Second Level Protector Failure

- 1 = Detected
- 0 = Not Detected

AFEC (Bit 21): AFE Communication Failure

- 1 = Detected
- 0 = Not Detected

AFER (Bit 20): AFE Register Failure

- 1 = Detected
- 0 = Not Detected

FUSE (Bit 19): Chemical Fuse Failure

- 1 = Detected
- 0 = Not Detected

OCDL (Bit 18): Overcurrent in Discharge

- 1 = Detected
- 0 = Not Detected

DFETF (Bit 17): Discharge FET Failure

- 1 = Detected
- 0 = Not Detected

CFETF (Bit 16): Charge FET Failure

- 1 = Detected
- 0 = Not Detected

ASCDL (Bit 15): Short Circuit in Discharge

- 1 = Detected
- 0 = Not Detected

ASCCL (Bit 14): Short Circuit in Charge

- 1 = Detected
- 0 = Not Detected

AOLDL (Bit 13): Overload in Discharge

- 1 = Detected
- 0 = Not Detected

VIMA (Bit 12): Voltage Imbalance While Pack Is Active Failure

- 1 = Detected
- 0 = Not Detected

VIMR (Bit 11): Voltage Imbalance while Pack At Rest Failure

- 1 = Detected
- 0 = Not Detected

CD (Bit 10): Capacity Degradation Failure

- 1 = Detected
- 0 = Not Detected

IMP (Bit 9): Impedance Failure

- 1 = Detected
- 0 = Not Detected

CB (Bit 8): Cell Balancing Failure

- 1 = Detected
- 0 = Not Detected

QIM (Bit 7): QMax Imbalance Failure

- 1 = Detected
- 0 = Not Detected

SOTF (Bit 6): Safety Overtemperature FET Failure

- 1 = Detected
- 0 = Not Detected

COVL (Bit 5): Cell Overvoltage Latch

- 1 = Detected
- 0 = Not Detected

SOT (Bit 4): Safety Overtemperature Cell Failure

- 1 = Detected
- 0 = Not Detected

SOCD (Bit 3): Safety Overcurrent in Discharge

- 1 = Detected
- 0 = Not Detected

SOCC (Bit 2): Safety Overcurrent in Charge

- 1 Detected
- 0 Not Detected

SOV (Bit 1): Safety Cell Overvoltage Failure

- 1 = Detected
- 0 = Not Detected

SUV (Bit 0): Safety Cell Undervoltage Failure

- 1 = Detected
- 0 = Not Detected

18.1.41 ManufacturerAccess() 0x0054 OperationStatus

This command returns the OperationStatus() flags on ManufacturerBlockAccess() or ManufacturerData().

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IATA_ CTER M	RSVD	EM SHUT	СВ	SLP CC	SLP AD	SMBL CAL	INIT	SLEE PM	XL	CAL_ OFFS ET	CAL	AUTO CALM	AUTH	LED	SDM
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SLEE P	XCHG	XDSG	PF	SS	SDV	SEC1	SEC0	BTP_ INT	RSVD	FUSE	PDSG	PCHG	CHG	DSG	PRES

IATA_CTERM (Bit 31): IATA Charge Control

1 = Active

0 = Inactive

RSVD (Bits 30): Reserved. Do not use.

EMSHUT (Bit 29): Emergency FET Shutdown

1 = Active

0 = Inactive

CB (Bit 28): Cell balancing status

1 = Active

0 = Inactive

SLPCC (Bit 27): CC Measurement in SLEEP mode

1 = Active

0 = Inactive

SLPAD (Bit 26): ADC Measurement in SLEEP mode

1 = Active

0 = Inactive

SMBLCAL (Bit 25): Auto CC calibration when the bus is low. This bit may not be read by the host because the FW will clear it when a communication is detected.

1 = Auto CC calibration starts

0 = When the bus is high or communication is detected for the case of **[IN_SYSTEM_SLEEP]** = 1.

INIT (Bit 24): Initialization after full reset

1 = Active

0 = Inactive

SLEEPM (Bit 23): SLEEP mode triggered via command

1 = Active

0 = Inactive

XL (Bit 22): 400-kHz SMBus mode

1 = Active

0 = Inactive

CAL_OFFSET (Bit 21): Calibration Output (raw CC offset data)

- 1 = Active when MAC *OutputShortedCCADCCal()* is sent and the raw shorted CC data for calibration is available.
- 0 = When the raw shorted CC data for calibration is not available.

CAL (Bit 20): Calibration Output (raw ADC and CC data)

- 1 = Active when either the MAC *OutputCCADCCal()* or *OutputShortedCCADCCal()* is sent and the raw CC and ADC data for calibration is available.
- 0 = When the raw CC and ADC data for calibration is not available.

AUTOCALM (Bit 19): Auto CC Offset Calibration by MAC AutoCCOffset()

- 1 = The gauge receives the MAC *AutoCCOffset()* and starts the *CC Auto Offset* calibration.
- 0 = Clear when the calibration is completed.

AUTH (Bit 18): Authentication in progress

- 1 = Active
- 0 = Inactive

LED (Bit 17): LED Display

- 1 = LED display is on.
- 0 = LED display is off.

SDM (Bit 16): Shutdown triggered via command

- 1 = Active
- 0 = Inactive

SLEEP (Bit 15): SLEEP mode conditions met

- 1 = Active
- 0 = Inactive

XCHG (Bit 14): Charging disabled

- 1 = Active
- 0 = Inactive

XDSG (Bit 13): Discharging disabled

- 1 = Active
- 0 = Inactive

PF (Bit 12): PERMANENT FAILURE mode status

- 1 = Active
- 0 = Inactive

SS (Bit 11): SAFETY status. This is the ORd value of all the Safety Status bits.

- 1 = Active
- 0 = Inactive

SDV (Bit 10): Shutdown triggered via low battery stack voltage

- 1 = Active
- 0 = Inactive

SEC1, SEC0 (Bits 9-8): SECURITY mode

- 0, 0 = Reserved
- 0, 1 = Full Access
- 1, 0 = Unsealed
- 1, 1 = Sealed

BTP_INT (Bit 7): Battery Trip Point Interrupt. Setting and clearing this bit depends on various conditions. See Section 7.9 for details.

RSVD (Bit 6): Reserved. Do not use.

FUSE (Bit 5): Fuse status

- 1 = Active
- 0 = Inactive

PDSG (Bit 4): Pre-discharge FET status

- 1 = Active
- 0 = Inactive
- PCHG (Bit 3): Precharge FET status

1 = Active

0 = Inactive

CHG (Bit 2): CHG FET status

1 = Active

0 = Inactive

DSG (Bit 1): DSG FET status

1 = Active

0 = Inactive

PRES (Bit 0): System present low

1 = Active

0 = Inactive

18.1.42 ManufacturerAccess() 0x0055 ChargingStatus

This command returns the *ChargingStatus()* and Temperature Range flags on *ManufacturerBlockAccess()* or *ManufacturerData()*.

								23	22	21	20	19	18	17	16
								RSVD	RSVD	RSVD	RSVD	NCT	CCC	CVR	CCR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VCT	MCHG	SU	IN	HV	MV	LV	PV	RSVD	OT	HT	STH	RT	STL	LT	UT

Charging Status Flags (Bits 23-8):

RSVD (Bits 23-20): Reserved. Do not use.

NCT (Bit 19): Near Charge Termination. This flag indicates the pack may be within 40 seconds of charge termination. When smoothing is enabled and while NCT is high, *RemainingCapacity()* will be smoothed to 100% over the next 40 seconds.

1 = Active

0 = Inactive

CCC (Bit 18): Charging Loss Compensation

1 = Active

0 = Inactive

CVR (Bit 17): Charging Voltage Rate of Change

1 = Active

0 = Inactive

CCR (Bit 16): Charging Current Rate of Change

1 = Active

0 = Inactive

VCT (Bit 15): Charge Termination

1 = Active

0 = Inactive

MCHG (Bit 14): Maintenance Charge

1 = Active

0 = Inactive

SU (Bit 13): Suspend Charge

1 = Active

0 = Inactive

IN (Bit 12): Charge Inhibit

- 1 = Active
- 0 = Inactive

HV (Bit 11): High Voltage Region

- 1 = Active
- 0 = Inactive

MV (Bit 10): Mid Voltage Region

- 1 = Active
- 0 = Inactive

LV (Bit 9): Low Voltage Region

- 1 = Active
- 0 = Inactive

PV (Bit 8): Precharge Voltage Region

- 1 = Active
- 0 = Inactive

Temperature Range Flags (Bits 7-0):

RSVD (Bit 7): Reserved. Do not use.

OT (Bit 6): Overtemperature Region

- 1 = Active
- 0 = Inactive

HT (Bit 5): High Temperature Region

- 1 = Active
- 0 = Inactive

STH (Bit 4): Standard Temperature High Region

- 1 = Active
- 0 = Inactive

RT (Bit 3): Recommended Temperature Region

- 1 = Active
- 0 = Inactive

STL (Bit 2): Standard Temperature Low Region

- 1 = Active
- 0 = Inactive

LT (Bit 1): Low Temperature Region

- 1 = Active
- 0 = Inactive

UT (Bit 0): Undertemperature Region

- 1 = Active
- 0 = Inactive

18.1.43 ManufacturerAccess() 0x0056 GaugingStatus

This command returns the *GaugingStatus()* flags on *ManufacturerBlockAccess()* or *ManufacturerData()*. Bits 15-0 are sometimes referred to as *ITStatus()* in bqStudio or in this document.

								23	22	21	20	19	18	17	16
								RSVD	RSVD	RSVD	OCV FR	LDMD	RX	QMax	VDQ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NSFM	RSVD	SLP QMax	QEN	VOK	R_DIS	RSVD	REST	CF	DSG	EDV	BAL_ EN	TC	TD	FC	FD

RSVD (Bits 23-21): Reserved. Do not use.

OCVFR (Bit 20): Open Circuit Voltage in Flat Region (during RELAX)

1 = Detected

0 = Not Detected

LDMD (Bit 19): LOAD mode

1 = Constant Power

0 = Constant Current

RX (Bit 18): Resistance Update (toggles after every resistance update)

QMax (Bit 17): QMax Update (toggles after every QMax update)

VDQ (Bit 16): Discharge Qualified for Learning (opposite of the R_DIS flag)

1 = Detected

0 = Not Detected

NSFM (Bit 15): Negative Scale Factor Mode

1 = Negative Ra Scaling Factor Detected

0 = Negative Ra Scaling Factor Not Detected

RSVD (Bit 14): Reserved. Do not use.

SLPQMax (Bit 13): OCV update in SLEEP mode

1 = Active. OCV reading in process

0 = Inactive. Completed OCV reading

QEN (Bit 12): Impedance Track Gauging (Ra and QMax updates are enabled.)

1 = Enabled

0 = Disabled

VOK (Bit 11): Voltages are OK for QMax update. This flag is updated at exit of the RELAX mode.

1 = A DOD is saved for next QMax update.

0 = No DOD saved and QMax update is not possible.

R_DIS (Bit 10): Resistance Updates

1 = Disabled

0 = Enabled

RSVD (Bit 9): Reserved. Do not use.

REST (Bit 8): Rest

1 = OCV Reading Taken

0 = OCV Reading Not Taken or Not in RELAX

CF (Bit 7): Condition Flag

1 = MaxError() > Max Error Limit (condition cycle needed)

0 = MaxError() < Max Error Limit (condition cycle not needed)

DSG (Bit 6): Discharge/Relax

1 = Charging Not Detected

0 = Charging Detected

EDV (Bit 5): End-of-Discharge Termination Voltage

1 = Termination voltage reached during discharge

0 = Termination voltage not reached, or not in DISCHARGE mode

BAL_EN (Bit 4): Cell Balancing

1 = Cell balancing is possible if enabled.

0 = Cell balancing is not allowed.

TC (Bit 3): Terminate Charge

1 = Detected

0 = Not Detected

TD (Bit 2): Terminate Discharge

1 = Detected

0 = Not Detected

FC (Bits 1): Fully Charged

1 = Detected

0 = Not Detected

FD (Bit 0): Fully Discharged

1 = Detected

0 = Not Detected

18.1.44 ManufacturerAccess() 0x0057 ManufacturingStatus

This command returns the *ManufacturingStatus()* flags on *ManufacturerBlockAccess()* or *ManufacturerData()*.

15	14	13	12	11	10	9	8
CAL_EN	LT_TEST	PDSG_EN	RSVD	RSVD	RSVD	LED_EN	FUSE_EN
7	0	_	4	0	0	4	•
	6	5	4	3	2	1	0
BBR_EN	PF_EN	LF_EN	FET_EN	GAUGE_EN	DSG_EN	CHG_EN	PCHG_EN

CAL_EN (Bit 15): CALIBRATION mode

1 = Enabled

0 = Disabled

LT_TEST (Bit 14): LIFETIME SPEED UP mode

1 = Enabled

0 = Disabled

PDSG_EN (Bit 13): Pre-discharge FET test

1 = Pre-discharge FET test activated

0 = Disabled

RSVD (Bits 12-10): Reserved. Do not use.

LED EN (Bit 9): LED display is enabled with the push button.

1 = LED display is on when the push button is pressed.

0 = LED display is off when the push button is pressed.

FUSE EN (Bit 8): Fuse action

1 = Enabled

0 = Disabled

BBR_EN (Bit 7): Black Box Recorder

1 = Enabled

0 = Disabled

PF_EN (Bit 6): Permanent Failure

1 = Enabled

0 = Disabled

LF EN (Bit 5): Lifetime Data Collection

1 = Enabled

0 = Disabled

FET_EN (Bit 4): All FET Action

1 = Enabled

0 = Disabled

GAUGE_EN (Bit 3): Gas Gauging

1 = Enabled

0 = Disabled

DSG_EN (Bit 2): Discharge FET test

1 = Discharge FET test activated

0 = Disabled

CHG_EN (Bit 1): Charge FET test

1 = Charge FET test activated

0 = Disabled

PCHG_EN (Bit 0): Precharge FET test

1 = Precharge FET test activated

0 = Disabled

18.1.45 ManufacturerAccess() 0x0058 AFE Register

This command returns the *AFERegister()* values on *ManufacturerBlockAccess()* or *ManufacturerData()*. These are the AFE hardware registers and are intended for internal debug use only.

Status	Condition
Activate	0x0058 to ManufacturerAccess()

Action: Output AFE Register values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: AABBCCDDEEFFGGHHIJJKKLLMMNNOOPPQQRRSSTTUU where:

Value	Description
AA	AFE Interrupt Status. AFE Hardware interrupt status (for example, wake time, push-button, and so on)
BB	AFE FET Status. AFE FET status (for example, CHG FET, DSG FET, PCHG FET, FUSE input, and so on)
CC	AFE RXIN. AFE I/O port input status
DD	AFE Latch Status. AFE protection latch status
EE	AFE Interrupt Enable. AFE interrupt control settings
FF	AFE Control. AFE FET control enable setting
GG	AFE RXIEN. AFE I/O input enable settings
НН	AFE RLOUT. AFE I/O pins output status
II	AFE RHOUT. AFE I/O pins output status
IJ	AFE RHINT. AFE I/O pins interrupt status
KK	AFE Cell Balance. AFE cell balancing enable settings and status
LL	AFE ADC/CC Control. AFE ADC/CC Control settings

Value	Description
MM	AFE ADC Mux Control. AFE ADC channel selections
NN	AFE LED Control
00	AFE Control. AFE control on various HW based features
PP	AFE Timer Control. AFE comparator and timer control
QQ	AFE Protection. AFE protection delay time control
RR	AFE OCD. AFE OCD settings
SS	AFE SCC. AFE SCC settings
TT	AFE SCD1. AFE SCD1 settings
UU	AFE SCD2. AFE SCD2 settings

18.1.46 ManufacturerAccess() 0x005A No Load Rem Cap

This read-only word command returns the equivalent of RemainingCapacity() under a no load condition.

- a. *RemainingCapacity()* is calculated by the device with compensation based on Load Select (for example, max, average, current last run, and so on).
- b. Because the RTC power consumption is expected to be relatively small, the new parameter provides a better representation of how much actual capacity is available when only powering the RTC circuit.

Figure 18-1. No Load

18.1.47 ManufacturerAccess() 0x0060 Lifetime Data Block 1

This command returns the *Lifetime Data* with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKIILLmmMMnnNNooOO.

Value	Description
AAaa	Cell 1 Max Voltage
BBbb	Cell 2 Max Voltage
CCcc	Cell 3 Max Voltage
DDdd	Cell 4 Max Voltage
EEee	Cell 5 Max Voltage
FFff	Cell 6 Max Voltage
GGgg	Cell 7 Max Voltage
HHhh	Cell 1 Min Voltage
Ilii	Cell 2 Min Voltage
JJjj	Cell 3 Min Voltage
KKkk	Cell 4 Min Voltage
LLII	Cell 5 Min Voltage

Value	Description
MMmm	Cell 6 Min Voltage
NNnn	Cell 7 Min Voltage
0000	Max Delta Cell Voltage

18.1.48 ManufacturerAccess() 0x0061 Lifetime Data Block 2

This command returns the *Lifetime Data* with the following format: aaAAbbBBccCCddDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSSTTUU.

Value	Description
AAaa	Max Charge Current
BBbb	Max Discharge Current
CCcc	Max Avg Dsg Current
DDdd	Max Avg Dsg Power
EE	Max Temp Cell
FF	Min Temp Cell
GG	Max Delta Cell Temperature
HH	Max Temp Int Sensor
II	Min Temp Int Sensor
JJ	Max Temp FET
KK	No. of Shutdowns
LL	No. of Partial Resets
MM	No. of Full Resets
NN	No. of WDT resets
00	CB Time Cell 1
PP	CB Time Cell 2
QQ	CB Time Cell 3
RR	CB Time Cell 4
SS	CB Time Cell 5
TT	CB Time Cell 6
UU	CB Time Cell 7

18.1.49 ManufacturerAccess() 0x0062 Lifetime Data Block 3

This command returns the *Lifetime Data* with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHH.

Value	Description
AAaa	Total FW Runtime
BBbb	Time Spent in UT
CCcc	Time Spent in LT
DDdd	Time Spent in STL
EEee	Time Spent in RT
FFff	Time Spent in STH
GGgg	Time Spent in HT
HHhh	Time Spent in OT

18.1.50 ManufacturerAccess() 0x0063 Lifetime Data Block 4

This command returns the *Lifetime Data* with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHIILLmmMMnnNNooOOppPP.

Value	Description
AAaa	No. of COV Events
BBbb	Last COV Event
CCcc	No. of CUV Events
DDdd	Last CUV Event
EEee	No. of OCD1 Events
FFff	Last OCD1 Event
GGgg	No. of OCD2 Events
HHhh	Last OCD2 Event
Ilii	No. of OCC1 Events
JJjj	Last OCC1 Event
KKkk	No. of OCC2 Events
LLII	Last OCC2 Event
MMmm	No. of AOLD Events
NNnn	Last AOLD Event
0000	No. of ASCD Events
PPpp	Last ASCD Event

18.1.51 ManufacturerAccess() 0x0064 Lifetime Data Block 5

This command returns the *Lifetime Data* with the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHIILLmmMMnnNNooOOppPP.

Value	Description
AAaa	No. of ASCC Events
BBbb	Last ASCC Event
CCcc	No. of OTC Events
DDdd	Last OTC Event
EEee	No. of OTD Events
FFff	Last OTD Event
GGgg	No. of OTF Events
HHhh	Last OTF Event
Ilii	No. Valid Charge Term
JJjj	Last Valid Charge Term
KKkk	No. of Qmax Updates
LLII	Last Qmax Update
MMmm	No. of Ra Updates
NNnn	Last Ra Update
0000	No. of Ra Disable
PPpp	Last Ra Disable

18.1.52 ManufacturerAccess() 0x0070 ManufacturerInfo

This command returns ManufacturerInfo on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition	Action
Activate	0x0070 to ManufacturerAccess()	Output 32 bytes of ManufacturerInfo on ManufacturerBlockAccess() or ManufacturerData() in the following format: AABBCCDDEEFFGGHHIIJJKKLLMMNN OOPPQQRRSSTTUUVVWWXXVVZZ112233 445566

18.1.53 ManufacturerAccess() 0x0071 DAStatus1

This command returns the cell voltages, pack voltage, bat voltage, cell currents, cell powers, power, and average power on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x0071 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of data on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKIILLmmMMnnNNooOOppPP where:

Value	Description	Unit
AAaa	Cell Voltage 1	mV
BBbb	Cell Voltage 2	mV
CCcc	Cell Voltage 3	mV
DDdd	Cell Voltage 4	mV
EEee	BAT Voltage. Voltage at the BAT pin. This is different than Voltage(), which is the sum of all the cell voltages.	mV
FFff	PACK Voltage. Voltage at the PACK+ pin.	mV
GGgg	Cell Current 1. Simultaneous current measured during Cell Voltage 1 measurement	mA
HHhh	Cell Current 2. Simultaneous current measured during Cell Voltage 2 measurement	mA
Ilii	Cell Current 3. Simultaneous current measured during Cell Voltage 3 measurement	mA
JJjj	Cell Current 4. Simultaneous current measured during Cell Voltage 4 measurement	mA
KKkk	Cell Power 1. Calculated using Cell Voltage1 and Cell Current 1 data	mA
LLII	Cell Power 2. Calculated using Cell Voltage2 and Cell Current 2 data	cW
MMmm	Cell Power 3. Calculated using Cell Voltage3 and Cell Current 3 data	cW
NNnn	Cell Power 4. Calculated using Cell Voltage4 and Cell Current 4 data	cW
0000	Power calculated by Voltage() × Current()	cW
PPpp	Average Power	cW

18.1.54 ManufacturerAccess() 0x0072 DAStatus2

This command returns the internal temperature sensor, TS1, TS2, TS3, TS4, Cell Temp, and FET Temp on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0072 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 14 bytes of temperature data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGG where:

Value	Description	Unit
AAaa	Int Temperature	0.1°K
BBbb	TS1 Temperature	0.1°K
CCcc	TS2 Temperature	0.1°K
DDdd	TS3 Temperature	0.1°K
EEee	TS4 Temperature	0.1°K
FFff	Cell Temperature	0.1°K
GGgg	FET Temperature	0.1°K

18.1.55 ManufacturerAccess() 0x0073 GaugingStatus1

This command instructs the device to return Impedance Track related gauging information on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x0073 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHliilIjjJJkkKKllLLmmMMnnNNooOOppPPqqQQ whore:

Value	Description	Unit
AAaa	True Rem Q. True remaining capacity in mAh from IT simulation before any filtering or smoothing function. This value can be negative or higher than FCC.	mAh
BBbb	True Rem E. True remaining energy in cWh from IT simulation before any filtering or smoothing function. This value can be negative or higher than FCC.	cWh
CCcc	Initial Q. Initial capacity calculated from IT simulation	mAh
DDdd	Initial E. Initial energy calculated from IT simulation	cWh
EEee	True FCC Q. True full charge capacity from IT simulation without the effects of any smoothing function	mAh
FFff	True FCC E. True full charge energy from IT simulation without the effects of any smoothing function	cWh
GGgg	T_sim. Temperature during the last simulation run.	0.1°K
HHhh	T_ambient. Current assumed ambient temperature used by the IT algorithm for thermal modeling	0.1°K
Ilii	RaScale 0. Ra table scaling factor of Cell 1	_
JJjj	RaScale 1. Ra table scaling factor of Cell 2	_
KKkk	RaScale 2. Ra table scaling factor of Cell 3	_
LLII	RaScale 3. Ra table scaling factor of Cell 4	_
MMmm	CompRes 0. Last temperature compensated Resistance of Cell 1	2 ⁻¹⁰ Ω
NNnn	CompRes 1. Last temperature compensated Resistance of Cell 2	2 ⁻¹⁰ Ω
0000	CompRes 2. Last temperature compensated Resistance of Cell 3	$2^{-10} \Omega$
PPpp	CompRes 3. Last temperature compensated Resistance of Cell 4	2 ⁻¹⁰ Ω

18.1.56 ManufacturerAccess() 0x0074 GaugingStatus2

This command instructs the device to return Impedance Track related gauging information on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x0074 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: AABBCCDDEEFFggGGhhHHiilIjjJJkkKKIILLmmMMnnNNooOOppPPqqQQrrRRssSS where:

Value	Description	Unit
AA	Pack Grid. Active pack grid point (minimum of CellGrid0 to Cell Grid3). This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
ВВ	BB: LStatus—Learned status of resistance table Bit 3 Bit 2 Bit 1 Bit 0 QMax ITEN CF1 CF0 CF1, CF0: QMax Status 0,0 = Battery OK 0,1 = QMax is first updated in learning cycle. 1,0 = QMax and resistance table updated in learning cycle ITEN: IT enable 0 = IT disabled 1 = IT enabled QMax: QMax update in field 0 = QMax has not been updated in the field. 1= QMax updated in the field.	_
CC	Cell Grid 0. Active grid point of Cell 1. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
DD	Cell Grid 1. Active grid point of Cell 2. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_
EE	Cell Grid 2. Active grid point of Cell 3. This data is only valid during DISCHARGE mode when $[R_DIS] = 0$. If $[R_DIS] = 1$ or not discharging, this value is not updated.	_

Value	Description	Unit
FF	Cell Grid 3. Active grid point of Cell 4. This data is only valid during DISCHARGE mode when [R_DIS] = 0. If [R_DIS] = 1 or not discharging, this value is not updated.	_
GGggHHhh	State Time. Time passed since last state change (DISCHARGE, CHARGE, REST)	s
Ilii	DOD0_0. Depth of discharge for Cell 1	_
JJjj	DOD0_1. Depth of discharge for Cell 2	
KKkk	DOD0_2. Depth of discharge for Cell 3	_
LLII	DOD0_3. Depth of discharge for Cell 4	
MMmm	DOD0 Passed Q. Passed capacity since the last DOD0 update	mAh
NNnn	DOD0 Passed E. Passed energy since last DOD0 update	cWh
0000	DOD0 Time. Time passed since the last DOD0 update	hr/16
PPpp	DODEOC 0. Depth of discharge at end of charge of Cell 1	
QQqq	DODEOC 1. Depth of discharge at end of charge of Cell 2	
RRrr	DODEOC 2. Depth of discharge at end of charge of Cell 3	_
SSss	DODEOC 3. Depth of discharge at end of charge of Cell 4	_

18.1.57 ManufacturerAccess() 0x0075 GaugingStatus3

This command instructs the device to return Impedance Track related gauging information on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x0075 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 32 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHIiiIIjjJJkkKKIILL where:

Value	Description	Unit
AAaa	QMax 0. QMax of Cell 1	mAh
BBbb	QMax 1. QMax of Cell 2	mAh
CCcc	QMax 2. QMax of Cell 3	mAh
DDdd	QMax 3. QMax of Cell 4	mAh
EEee	QMax DOD0_0. DOD0 saved to be used for next QMax update of Cell 1. The value is only valid when [VOK] = 1.	_
FFff	QMax DOD0_1. DOD0 saved to be used for next QMax update of Cell 2. The value is only valid when [VOK] = 1.	_
GGgg	QMax DOD0_2. DOD0 saved to be used for next QMax update of Cell 3 . The value is only valid when [VOK] = 1.	_
HHhh	QMax DOD0_3. DOD0 saved to be used for next QMax update of Cell 4. The value is only valid when [VOK] = 1.	_
Ilii	QMax Passed Q. Pass capacity since last QMax DOD value is saved.	mAh
JJjj	QMax Time. Time passed since last QMax DOD value is saved.	hr/16
KKkk	Temp k. Thermal Model temperature factor	_
LLII	Temp a. Thermal Model temperature	_
MMmm	Raw DOD0_0. Raw Depth of discharge for Cell 1	_
NNnn	Raw DOD0_1. Raw Depth of discharge for Cell 2	_
0000	Raw DOD0_2. Raw Depth of discharge for Cell 3	_
PPpp	Raw DOD0_3. Raw Depth of discharge for Cell 4	_

18.1.58 ManufacturerAccess() 0x0076 CBStatus

This command instructs the device to return cell balance time information on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x0076 to ManufacturerBlockAccess() or ManufacturerAccess()
	encor or to international recession of international recession

Action: Output 14 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGG where:

Value	Description	Unit
AAaa	Cell balance time 0. Calculated cell balancing time of Cell 1	S
BBbb	Cell balance time 1. Calculated cell balancing time of Cell 2	S
CCcc	Cell balance time 2. Calculated cell balancing time of Cell 3	S
DDdd	Cell balance time 3. Calculated cell balancing time of Cell 4	S
EEee	Cell balance time 4. Calculated cell balancing time of Cell 5	S
FFff	Cell balance time 5. Calculated cell balancing time of Cell 6	S
GGgg	Cell balance time 6. Calculated cell balancing time of Cell 7	S

18.1.59 ManufacturerAccess() 0x0077 State-of-Health

This command returns the state-of-health FCC in mAh and energy in cWh with the following format: aaAAbbBB.

Value	Description	Unit
AAaa	State-of-Health FCC	mAh
BBbb	State-of-Health energy	cWh

18.1.60 ManufacturerAccess() 0x0078 FilterCapacity

This command instructs the device to return the filtered remaining capacity and full charge capacity even if **[SMOOTH]** = 0 on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x0078 to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 8 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDD where:

Value	Description	Unit
AAaa	Filtered remaining capacity	mAh
BBbb	Filtered remaining energy	mWh
CCcc	Filtered full charge capacity	mAh
DDdd	Filtered full charge energy	mWh

18.1.61 ManufacturerAccess() 0x0079 RSOCWrite

This command is typically used for testing purposes and will allow a specific value to be loaded into RSOC. However, subsequent IT simulation can overwrite this value. This command works only in UNSEALED mode. Additionally, this command will work with or without smoothing enabled.

18.1.62 ManufacturerAccess() 0x007A ManufacturerInfoB

This command returns *ManufacturerInfoB* on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition	Action
Activate		Output 32 bytes of ManufacturerInfo2 on ManufacturerBlockAccess() or ManufacturerData() in the following format: AABBCCDD

18.1.63 ManufacturerAccess() 0x007B DAStatus3

This command returns the cell voltages, cell currents, and cell powers for cells 5–7 on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x007B to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 18 bytes of data on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjj where:

Value	Description	Unit
AAaa	Cell Voltage 5	mV
BBbb	Cell Current 5. Simultaneous current measured during Cell Voltage 5 measurement	mA
CCcc	Cell Power 5. Calculated using Cell Voltage 5 and Cell Current 5 data	cW
DDdd Cell Voltage 6		mV
EEee Cell Current 6. Simultaneous current measured during Cell Voltage 6 measurement		mA
FFff	Cell Power 6. Calculated using Cell Voltage 6 and Cell Current 6 data	cW
GGgg Cell Voltage 7		mV
HHhh	Cell Current 7	mA
Ilii	Cell Power 7. Calculated using Cell Voltage 7 and Cell Current 7 data	cW

18.1.64 ManufacturerAccess() 0x007C GaugingStatus4

This command instructs the device to return Impedance Track related gauging information on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition
Activate	0x007C to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 30 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGHHliilIjjJJkkKKIILLmmMMnnNNooOOPP where:

Value	Description	Unit
AAaa	RaScale 4. Ra table scaling factor of Cell 5	_
BBbb	CompRes 4. Last temperature compensated Resistance of Cell 5	2 ⁻¹⁰ Ω
CCcc	DOD0_4. Depth of discharge for Cell 5	_
DDdd	DODEOC 4. Depth of discharge at end of charge of Cell 5	_
EEee	QMax 4. QMax of Cell 5	mAh
FFff	QMax DOD0_4. DOD0 saved to be used for next QMax update of Cell 5 The value is only valid when [VOK] = 1.	_
GGgg	Cell Raw DOD0_4. Raw depth of discharge for Cell 5	_
НН	Cell Grid 4. Active grid point of Cell 5. This data is only valid during DISCHARGE mode when [R_DIS] = 0. If [R_DIS] = 1 or not discharging, this value is not updated.	_
Ilii	RaScale 5. Ra table scaling factor of Cell 6	_
JJjj	CompRes 5. Last temperature compensated Resistance of Cell 6	$2^{-10} \Omega$
KKkk	DOD0_5. Depth of discharge for Cell 6	_
LLII	DODEOC 5. Depth of discharge at end of charge of Cell 6	_
MMmm	QMax 5. QMax of Cell 6	mAh
NNnn	QMax DOD0_5. DOD0 saved to be used for next QMax update of Cell 6. The value is only valid when [VOK] = 1.	_
0000	Cell Raw DOD0_5. Raw depth of discharge for Cell 6	_
PP	Cell Grid 5. Active grid point of Cell 6. This data is only valid during DISCHARGE mode when [R_DIS] = 0. If [R_DIS] = 1 or not discharging, this value is not updated.	_

18.1.65 ManufacturerAccess() 0x007D GaugingStatus5

This command instructs the device to return Impedance Track related gauging information on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition
Activate	0x007D to ManufacturerBlockAccess() or ManufacturerAccess()

Action: Output 15 bytes of IT data values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the following format: aaAAbbBBccCCddDDeeEEffFFggGGHH where:

Value	Description	Unit
AAaa	RaScale 6. Ra table scaling factor of Cell 7	
BBbb	CompRes 6. Last temperature compensated Resistance of Cell 7	$2^{-10} \Omega$
CCcc	DOD0_6. Depth of discharge for Cell 7	_
DDdd	DODEOC 6. Depth of discharge at end of charge of Cell 7	
EEee	QMax 6. QMax of Cell 7	mAh
FFff	QMax DOD0_6. DOD0 saved to be used for next QMax update of Cell 7. The value is only valid when [VOK] = 1.	_
GGgg	Cell Raw DOD0_6. Raw depth of discharge for Cell 7	_
НН	Cell Grid 6. Active grid point of Cell 7. This data is only valid during DISCHARGE mode when [R_DIS] = 0. If [R_DIS] = 1 or not discharging, this value is not updated.	_

18.1.66 ManufacturerAccess() 0x0080 ManufacturerInfoC

This command returns ManufacturerInfoC on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition	Action
Activate	0x0080 to ManufacturerAccess()	Output 32 bytes of <i>ManufacturerInfoC</i> on <i>ManufacturerBlockAccess()</i> or <i>ManufacturerData()</i> in the following format: AABBCCDD

18.1.67 ManufacturerAccess() 0x0081 ManufacturerInfoD

This command returns ManufacturerInfoD on ManufacturerBlockAccess() or ManufacturerData().

Status	Condition	Action
Activate	0x0081 to ManufacturerAccess()	Output 32 bytes of <i>ManufacturerInfoD</i> on <i>ManufacturerBlockAccess()</i> or <i>ManufacturerData()</i> in the following format: AABBCCDD

18.1.68 ManufacturerAccess() 0x0082 CurrentLong

This command returns current in mA resolution for large capacity batteries on *ManufacturerBlockAccess()* or *ManufacturerData()*.

Status	Condition	Action
Activate	0x0082 to ManufacturerAccess()	Output 4 bytes of current in mA resolution on ManufacturerBlockAccess() or ManufacturerData()

18.1.69 ManufacturerAccess() 0x00F0 IATA Shutdown

This command, when used in conjunction with the [IATA_SHUT] bit in the IATA Flag register, enables the gauge to enter IATA shutdown (provided certain other requirements are met).

18.1.70 ManufacturerAccess() 0x00F1 IATA_Rm

This command is used in relation to IATA to read out the stored IATA_Rm value.

18.1.71 ManufacturerAccess() 0x00F2 IATA_FCC

This command is used in relation to IATA to read out the stored IATA_FCC value.

18.1.72 ManufacturerAccess() 0x00F3 IATA_Charge

This command is used in relation to IATA to activate the IATA charging.

18.1.73 ManufacturerAccess() 0x0F00 ROM Mode

This command sends the device into ROM mode in preparation for firmware reprogramming. To enter ROM mode, the device must be in FULL ACCESS mode. To return from ROM mode to FW mode, issue the SMBus command 0x08.

NOTE: Command 0x0033 also puts the device in ROM mode (for backwards compatibility with the bq30zxy device).

18.1.74 ManufacturerAccess() 0x3008 WriteTemp

This command, available in SEALED and UNSEALED modes, is used to write the temperature register (when enabled by setting **[SMB_CELL_TEMP]** = 1 in the SBS Configuration register. In this case, the gauge's cell temperature inputs (TS1 through TS3) are ignored.

NOTE: When this feature is used, the temperature must be written in 0.1°K.

18.1.75 0x4000-0x5FFF DataFlashAccess

Accessing data flash (DF) is only supported by the *ManufacturerBlockAccess()* by addressing the physical address.

To write to the DF, send the starting address, followed by the DF data block. The DF data block is the intended revised DF data to be updated to DF. The size of the DF data block ranges from 1 byte to 32 bytes. All individual data must be sent in little endian.

Write to DF example:

Assuming: data1 locates at address 0x4000 and data2 locates at address 0x4002.

Both data1 and data2 are U2 type.

To update data1 and data2, send an SMBus block write with command = 0x44

block = starting address + DF data block

 $= \ 0x00 + 0x40 + data1_LowByte + data1_HighByte + data2_LowByte + data2_HighByte$

To read the DF, send an SMBus block write to the *ManufacturerBlockAccess()*, followed by the starting address, then send an SMBus block read to the *ManufacturerBlockAccess()*. The return data contains the starting address followed by 32 bytes of DF data in little endian.

Read from DF example:

Taking the same assuming from the read DF example, to read DF,

- a. Send SMBus write block with command 0x44, block = 0x00 + 0x40
- b. Send SMBus read block with command 0x44

```
The returned block = a starting address + 32 bytes of DF data = 0x00 + 0x40 + data1_LowByte + data1_HighByte + data2_LowByte + data2_HighByte.... data32_LowByte + data32_HighByte
```

The gauge supports an auto-increment on the address during a DF read. This greatly reduces the time required to read out the entire DF. Continue with the read from the DF example. If another SMBus read block is sent with command 0x44, the gauge returns another 32 bytes of DF data, starting with address 0x4020.

18.1.76 ManufacturerAccess() 0xF080 ExitCalibrationOutputMode

This command stops the output of calibration data to the *ManufacturerBlockAccess()* or *ManufacturerData()* command. Any other MAC command sent to the gauge will also stop the output of the calibration data.

Status	Condition	Action
Activate	ManufacturerBlockAccess() OR ManufacturerData() = 1 AND 0xF080 to ManufacturerAccess()	Stop output of ADC or CC data on ManufacturerBlockAccess() or ManufacturerData()

18.1.77 ManufacturerAccess() 0xF081 OutputCADCCal

This command instructs the device to output the raw values for calibration purposes on ManufacturerBlockAccess() or ManufacturerData(). All values are updated every 250 ms and the format of each value is 2's complement, MSB first.

Status	Condition
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 0, [CAL_OFFSET] = 0 Stop output of ADC and CC data on ManufacturerBlockAccess() or ManufacturerData()

Status	Condition
Enable	0xF081 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 1, [CAL_OFFSET] = 0

Outputs the raw CC and AD values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the format of ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKIlLLmmMMnnNNooOO:

Value	Description
ZZ	Rolling 8-bit counter, increments when values are refreshed.
YY	Status, 1 when ManufacturerAccess() = 0xF081 or 0xF083, 2 when ManufacturerAccess() = 0xF082
AAaa	Current (coulomb counter)
BBbb	Cell Voltage 1
CCcc	Cell Voltage 2
DDdd	Cell Voltage 3
EEee	Cell Voltage 4
FFff	Cell Voltage 5
GGgg	Cell Voltage 6
HHhh	PACK Voltage
Hii	BAT Voltage

Value	Description
JJjj	Cell Current 1
KKkk	Cell Current 2
LLII	Cell Current 3
MMmm	Cell Current 4
NNnn	Cell Current 5
0000	Cell Current 6

18.1.78 ManufacturerAccess() 0xF082 OutputShortedCCADCCal

This command instructs the device to output the raw values for calibration purposes on *ManufacturerBlockAccess()* or *ManufacturerData()*. All values are updated every 250 ms and the format of each value is 2's complement, MSB first. This mode includes an internal short on the coulomb counter inputs for measuring offset.

Status	Condition
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 0, [CAL_OFFSET] = 0 Stop output of ADC and CC data on ManufacturerBlockAccess() or ManufacturerData()

Status	Condition
Enable	0xF082 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 1, [CAL_OFFSET] = 1

Outputs the raw CC and AD values on *ManufacturerBlockAccess()* or *ManufacturerData()* in the format of ZZYYaaAAbbBBccCCddDDeeEEffFFggGGhhHHiilIjjJJkkKKIlLLmmMMnnNNooOO:

Value	Description						
ZZ	Rolling 8-bit counter, increments when values are refreshed.						
YY	Status, 1 when ManufacturerAccess() = 0xF081 or 0xF083, 2 when ManufacturerAccess() = 0xF082						
AAaa	Current (coulomb counter)						
BBbb	Cell Voltage 1						
CCcc	Cell Voltage 2						
DDdd	Cell Voltage 3						
EEee	Cell Voltage 4						
FFff	Cell Voltage 5						
GGgg	Cell Voltage 6						
HHhh	PACK Voltage						
Ilii	BAT Voltage						
JJjj	Cell Current 1						
KKkk	Cell Current 2						
LLII	Cell Current 3						
MMmm	Cell Current 4						
NNnn	Cell Current 5						
0000	Cell Current 6						

18.1.79 ManufacturerAccess() 0xF083 OutputCCADCCal

This command instructs the device to output the raw values for calibration purposes on *ManufacturerBlockAccess()* or *ManufacturerData()*. All values are updated every 250 ms and the format of each value is 2's complement, MSB first.

Status	Condition
Disable	ManufacturingStatus()[CAL] = 1 AND 0xF080 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 0, [CAL_OFFSET] = 0

Stops output of ADC and CC data on ManufacturerBlockAccess() or ManufacturerData()

Status	Condition
Enable	0xF083 to ManufacturerAccess()

Action: OperationStatus()[CAL] = 1, [CAL_OFFSET] = 0

Outputs the raw CC and AD values on ManufacturerBlockAccess() or ManufacturerData() in the format of ZZYYaaAAbbBB:

Value	Description
ZZ	Rolling 8-bit counter, increments when values are refreshed.
YY	Status, 1 when ManufacturerAccess() = 0xF081 or 0xF083, 2 when ManufacturerAccess() = 0xF082
AAaa	Cell Voltage 7
BBbb	Cell Current 7

18.2 0x01 RemainingCapacityAlarm()

This read/write word function sets a low capacity alarm threshold for the cell stack.

SBS	Name	Access		Proto-	D- Type	Min	Max	Default	Unit
Cmd		SE	US	FA	col	Type		Wax	Delault
0x01	RemainingCanacityAlarm()	R/W		Word	U2	0	700	300	mAh
0.001	RemainingCapacityAlarm()				vvoid	02	J	700	300

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in cWh.

18.3 0x02 RemainingTimeAlarm()

This read/write word function sets a low remaining time-to-fully discharge alarm threshold for the cell stack.

SBS Cmd Name	Access		Proto-	Туре	Min	Max	Default	Unit		
	Hallic	SE	US	FA	col	Туре	141111	WIGA	Delault	Ome
0x02	RemainingTimeAlarm()	R/W			Word	U2	0	30	10	min

18.4 0x03 BatteryMode()

This read/write word function sets various battery operating mode options.

SBS	Name	Access		Protocol	Туре	Min	Max	Unit	
Cmd		SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAA	Offic
0x03	BatteryMode()	R/W		Word	H2	0x0000	0xFFFF	-	

0x04 AtRate() www.ti.com

15	14	13	12	11	10	9	8
CAPM	CHGM	AM	RSVD	RSVD	RSVD	PB	CC
7	6	5	4	3	2	1	0
CF	RSVD	RSVD	RSVD	RSVD	RSVD	PBS	ICC

CAPM (Bit 15): CAPACITY Mode (R/W)

- 0 = Report in mA or mAh (default)
- 1 = Report in 10 mW or cWh

CHGM (Bit 14): CHARGER Mode (R/W)

- 0 = Enables ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger
- 1 = Disables ChargingVoltage() and ChargingCurrent() broadcasts to host and smart battery charger (default)

AM (Bit 13): ALARM Mode (R/W)

- 0 = Enables AlarmWarning broadcasts to host and smart battery charger (default)
- 1 = Disables Alarm Warning broadcasts to host and smart battery charger

RSVD (Bits 12-10): Reserved. Do not use.

PB (Bit 9): Primary Battery

- 0 = Battery operating in its secondary role (default)
- 1 = Battery operating in its primary role
- CC (Bit 8): Charge Controller Enabled (R/W)
 - 0 = Internal charge controller disabled (default)
 - 1 = Internal charge controller enabled

CF (Bit 7): Condition Flag (R)

- 0 = Battery OK
- 1 = Conditioning cycle requested

RSVD (Bits 6-2): Reserved. Do not use.

- PBS (Bit 1): Primary Battery Support (R)
 - 0 = Function not supported (default)
 - 1 = Primary or Secondary Battery Support

ICC (Bit 0): Internal Charge Controller (R)

- 0 = Function not supported (default)
- 1 = Function supported

18.5 0x04 AtRate()

This read/write word function sets the value used in calculating *AtRateTimeToFull()* and *AtRateTimeToEmpty()*.

SBS Cmd	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	Willi	WIGA	Delauit	Ollic
0x04	AtRate()		R/W		Word	12	-32768	32767	0	mA 10 mW

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mA.

If BatteryMode()[CAPM] = 1, then the data reports in 10 mW.

18.6 0x05 AtRateTimeToFull()

This word read function returns the remaining time-to-fully charge the battery stack.

	SBS Cmd	Name		Access		Protocol	Туре	Min	Max	Unit
			SE	US	FA		Туре	IVIII I	IVIAX	Oille
	0x05	AtRateTimeToFull()	R		Word	U2	0	65535	min	

NOTE: 65535 indicates not being charged.

18.7 0x06 AtRateTimeToEmpty()

This word read function returns the remaining time-to-fully discharge the battery stack.

SBS Cmd	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd		SE	US	FA	11010001	туре	Willi	IVIAX	Oilit
0x06	AtRateTimeToEmpty()	R		Word	U2	0	65535	min	

NOTE: 65535 indicates not being charged.

18.8 0x07 AtRateOK()

This read-word function returns a Boolean value that indicates whether the battery can deliver AtRate() for at least 10 s.

SBS	Name		Access		Protocol	Typo	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре			Oille
0x07	AtRateOK()		R		Word	U2	0	65535	_

NOTE: 0 = False. The gauge cannot deliver energy for 10 s, based on the discharge rate indicated in AtRate().

> than 0 = True. The gauge can deliver energy for 10 s, based on the discharge rate indicated in AtRate().

18.9 0x08 Temperature()

This read-word function returns the temperature in units 0.1°K. The source of this temperature is configured by TSx Mode and [CTEMP1], [CTEMP0] bits in the DA Configurtion. This temperature is used for all cell-related protections, permanent fail, and the advanced charging algorithm.

The temperature used for FET-related Protections and Permanent Fail is FET Temperature configured by TSx Mode and FTEMP bits in DA Configuration and is read with DAStatus2().

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd		SE	US	FA	FIOLOCOI		IVIII.	IVIAA	Oilit
0x08	Temperature()		R		Word	U2	0	65535	0.1°K

Ox09 Voltage() www.ti.com

18.10 0x09 Voltage()

This read-word function returns the sum of the measured cell voltages.

SBS Cmd	Name		Access	1	Protocol	Туре	Min	Max	Unit
		SE	US	FA			141111	IVIAA	Onic
0x09	Voltage()		R		Word	U2	0	65535	mV

18.11 0x0A Current()

This read-word function returns the measured current from the coulomb counter. If the input to the device exceeds the maximum value, the value is clamped at the maximum and does not roll over.

	SBS Cmd	Name	Access			Protocol	Туре	Min	Max	Unit
			SE	US	FA	FIOLOCOI	Туре	Willi	IVIAA	Oilit
	0x0A	Current()		R		Word	12	-32767	32768	mA

18.12 0x0B AverageCurrent()

SE	SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd	md		SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Oilit
0x	:0B	AverageCurrent()	R		Word	12	-32767	32768	mA	

18.13 **0x0C** MaxError()

This read-word function returns the expected margin of error, in %, in the state-of-charge calculation with a range of 1 to 100%.

	SBS	Name	Access			Protocol	Туре	Min	Max	Unit
	Cmd		SE	US	FA	FIOLOCOI	туре	Willi	IVIAX	J
Ī	0x0C	MaxError()		R		Word	U1	0	100	%

Condition	Action
Full device reset	MaxError() = 100%
RA-table only updated	MaxError() = 5%
QMax only updated	MaxError() = 3%
RA-table and QMax updated	MaxError() = 1%
Each CycleCount() increment after last valid QMax update	MaxError() increment by 0.05%
The Configuration:Max Error Time Cycle Equivalent period passed since the last valid QMax update	MaxError() increment by 0.05%.

18.14 0x0D RelativeStateOfCharge()

This read-word function returns the predicted remaining battery capacity as a percentage of *FullChargeCapacity()*.

SBS Cmd	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd		SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Onit
0x0D	RelativeStateOfCharge()		R		Word	U1	0	100	%

18.15 0x0E AbsoluteStateOfCharge()

This read-word function returns the predicted remaining battery capacity as a percentage.

	SBS	Name		Access		Protocol	Туре	Min	Max	Unit
	Cmd	SE	US	FA						
ĺ	0x0E	AbsoluteStateOfCharge()	R		Word	U1	0	100	%	

18.16 0x0F RemainingCapacity()

This read-word function returns the predicted remaining battery capacity.

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd		SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Offic
0x0F	PomainingCanacity()	D	D	D	Word	U2	0	65535	mAh
UXUF	RemainingCapacity()	K	ĸ	K	vvoid	02	U	00000	cWh

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in cWh.

18.17 0x10 FullChargeCapacity()

This read-word function returns the predicted battery capacity when fully charged. The value returned will not be updated during charging.

SBS	BS	Name	Access			Protocol	Туре	Min	Max	Unit
Cr	nd		SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Oilit
Ov	:10	FullChargeCapacity()	D	D	D	Word	U2	0	65535	mAh
UX.	.10	FullChargeCapacity()	IX.	ĸ	K	vvoid	02	U	00030	cWh

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in cWh.

18.18 0x11 RunTimeToEmpty()

This read-word function returns the predicted remaining battery capacity based on the present rate of discharge.

SBS	Namo	Name			Protocol	Туре	Min	Max	Unit	
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Oint	
0x11	RunTimeToEmpty()	R	R	R	Word	U2	0	65535	min	

NOTE: 65535 = Battery is not being discharged.

18.19 0x12 AverageTimeToEmpty()

This read-word function returns the predicted remaining battery capacity based on AverageCurrent().

SBS	Name	Access			Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAX	Oill
0x12	AverageTimeToEmpty()	R	R	R	Word	U2	0	65535	min

NOTE: 65535 = Battery is not being discharged.

18.20 0x13 AverageTimeToFull()

This read-word function returns the predicted time-to-full charge based on AverageCurrent().

SBS	Name Access		Protocol	Туре	Min	Max	Unit		
Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAA	Oilit
0x13	AverageTimeToFull()	R	R	R	Word	U2	0	65535	min

NOTE: 65535 = Battery is not being discharged.

18.21 0x14 ChargingCurrent()

This read-word function returns the desired charging current.

	SBS	Name		Access		Protocol	Type	Type Min		Unit
	Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	Max	Oilit
Ī	0x14	ChargingCurrent()	R	R	R	Word	U2	0	65535	mA

NOTE: 65535 = Request maximum current

18.22 0x15 ChargingVoltage()

This read-word function returns the desired charging voltage.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII		
0x15	ChargingVoltage()	R	R	R	Word	U2	0	65535	mV

NOTE: 65535 = Request maximum voltage

18.23 0x16 BatteryStatus()

This read-word function returns various battery status information.

	SBS	Name	Access			Protocol	Type	Min	Max
	Cmd		SE	US	FA	Protocor	Type	Willi	WIGA
ĺ	0x16	BatteryStatus()	R	R	R	Word	H2	_	_

15	14	13	12	11	10	9	8
OCA	TCA	RSVD	OTA	TDA	RSVD	RCA	RTA
7	6	5	4	3	2	1	0
INIT	DSG	FC	FD	EC3	EC2	EC1	EC0

OCA (Bit 15): Overcharged Alarm

1 = Detected

0 = Not Detected

TCA (Bit 14): Terminate Charge Alarm

1 = Detected

0 = Not Detected

www.ti.com Ox17 CycleCount()

RSVD (Bit 13): Undefined

OTA (Bit 12): Overtemperature Alarm

1 = Detected

0 = Not Detected

TDA (Bit 11): Terminate Discharge Alarm

1 = Detected

0 = Not Detected

RSVD (Bit 10): Undefined

RCA (Bit 9): Remaining Capacity Alarm

1 = RemainingCapacity() < RemainingCapacityAlarm() when in DISCHARGE or RELAX mode

0 = RemainingCapacity() ≥ RemainingCapacityAlarm()

RTA (Bit 8): Remaining Time Alarm

1 = AverageTimeToEmpty() < RemainingTimeAlarm() or

0 = AverageTimeToEmpty() ≥ RemainingTimeAlarm()

INIT (Bit 7): Initialization

1 = Gauge initialization is complete.

0 = Initialization is in progress.

DSG (Bit 6): Discharging or Relax

1 = Battery is in DISCHARGE or RELAX mode.

0 = Battery is in CHARGE mode.

FC (Bit 5): Fully Charged

1 = Battery fully charged when GaugingStatus()[FC] = 1

0 = Battery not fully charged

FD (Bit 4): Fully Discharged

1 = Battery fully depleted

0 = Battery not depleted

EC3,EC2,EC1,EC0 (Bits 3-0): Error Code

0x0 = OK

0x1 = Busy

0x2 = Reserved Command

0x3 = Unsupported Command

0x4 = AccessDenied

0x5 = Overflow/Underflow

0x6 = BadSize

0x7 = UnknownError

18.24 0x17 CycleCount()

This read-word function returns the number of discharge cycles the battery has experienced. The default value is stored in the data flash value *Cycle Count*, which is updated in runtime.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit	
Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAX	Oille	
0x17	CycleCount()	R	R/W	R/W	Word	U2	0	65535	cycles	

0x18 DesignCapacity() www.ti.com

18.25 0x18 DesignCapacity()

This read-word function returns the theoretical pack capacity. The default value is stored in the data flash value **Design Capacity mAh** or **Design Capacity cWh.**

SBS	Name		Access	Protocol Type Min		Min	Max	Default	Unit	
Cmd	Name	SE	US	FA	11010001	туре	Willi	IVICA	Delauit	Oilit
0x18	DesignCapacity()	D	R/W	R/W	Word	U2	0	65535	4400	mAh
0.00	DesignCapacity()	IX.	IX/VV	IN/ VV	vvoiu	02	U	03333	6336	cWh

NOTE: If BatteryMode()[CAPM] = 0, then the data reports in mAh.

If BatteryMode()[CAPM] = 1, then the data reports in cWh.

18.26 0x19 DesignVoltage()

This read-word function returns the theoretical pack voltage. The default value is stored in data flash value **Design Voltage**.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	11010001	Туре	Willi	WIGA	Delauit	Omi
Ī	0x19	DesignVoltage()	R	R/W	R/W	Word	U2	7000	18000	14400	mV

18.27 0x1A SpecificationInfo()

	SBS	Name		Access		Protocol	Туре	Min	Max
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	Willi	IVIAX
Ī	0x1A	SpecificationInfo()	R	R/W	R/W	Word	H2	0x0000	0xFFFF

15	14	13	12	11	10	9	8
IPScale	IPScale	IPScale	IPScale	VScale	VScale	VScale	VScale
7	6	5	4	3	2	1	0
Version	Version	Version	Version	Revision	Revision	Revision	Revision

IPScale (Bits 15-12): IP Scale Factor

Not supported by the gas gauge MUST be set to 0, 0, 0, 0.

VScale (Bits 11-8): Voltage Scale Factor

Not supported by the gas gauge

MUST be set to 0, 0, 0, 0.

Version (Bits 7-4): Version

0,0,0,1 = Version 1.0

0,0,1,1 = Version 1.1

0,0,1,1 = Version 1.1 with optional PEC support

Revision (Bits 3-0): Revision

0,0,0,1 = Version 1.0 and 1.1 (default)

18.28 0x1B ManufacturerDate()

This read-word function returns the pack's manufacturer date.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault
ĺ	0x1B	ManufacturerDate()	R	R/W	R/W	Word	U2		65535	0

NOTE: ManufacturerDate() value in the following format: Day + Month*32 + (Year–1980)*512

18.29 0x1C SerialNumber()

This read-word function returns the assigned pack serial number.

SBS	Name	Access		Protocol	Туре	Min	Max	Default	Unit	
Cmd	Name	SE	US	FA	11010001	туре	IVIIII	IVIGA	Delault	Oilit
0x1C	SerialNumber()	R	R/W	R/W	Word	H2	0x0000	0xFFFF	0x0001	

18.30 0x20 ManufacturerName()

This read-block function returns the pack manufacturer's name.

SBS	Name	Access			Protocol	Typo	Min	Max	Default	Unit
Cmc	Name	SE	US	FA	Protocol	Туре	IVIIII	IVIAA	Delault	Oilit
0x20	ManufacturerName()	R	R	R	Block	S20+1		_	Texas Inst.	ASCII

18.31 0x21 DeviceName()

This read-block function returns the assigned pack name.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delault	Oille
0x21	DeviceName()	R	R	R	Block	S20+1	_	_	bq40z80	ASCII

18.32 0x22 DeviceChemistry()

This read-block function returns the battery chemistry used in the pack.

SBS	Name		Access	•	Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FA	Type	IVIIII	IVIAA	Delault	Oille
0x22	DeviceChemistry()	R	R	R	Block	S4+1	l	_	LION	ASCII

18.33 0x23 ManufacturerData()

This read-block function returns *ManufacturerInfo* by default. The command also returns a response to MAC command in order to maintain compatibility of the MAC system in bq30zxy family.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US FA	FIOLOCOI	Type	IVIIII	IVIAA	Oilit	
0x23	ManufacturerData()	R	R	R	Block	Mixed	_		_

18.34 0x27 AuthChallenge()

This write-block function is used to send a challenge to the ECC Authentication.

147

0x28 AuthResponse() www.ti.com

SBS	Name	Access		Protocol	Туре	Min	Max	Unit	
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAX	Oilit
0x27	AuthChallenge()	W	W	W	Block	H20+1	_	_	_

18.35 0x28 AuthResponse()

This read-block function is used to return a response from the ECC Authentication. The response will be available until next challenge is sent.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Offic
0x28	AuthResponse()	R	R	R	Block	H42+1	_	_	_

18.36 0x2F Authenticate()

This read/write block function provides ECC authentication to send the challenge and read the response in the default mode. It is also used to input a new authentication key when the MAC *AuthenticationKey()* is used.

SBS	Name		Access		Protocol	Туре	Min	Max	Unit
Cmd	Hame	SE	US	FA	11010001	Турс		INICA	Oint
0x2F	Authenticate()	R/W	R/W	R/W	Block	H20+1	1	_	_

18.37 0x3C CellVoltage4()

This read-word function returns the Cell 4 voltage.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oliit
0x3C	CellVoltage4()	R	R	R	Word	U2	_	65535	0	mV

18.38 0x3D CellVoltage3()

This read-word function returns the Cell 3 voltage.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oilit
0x3D	CellVoltage3()	R	R	R	Word	U2		65535	0	mV

18.39 0x3E CellVoltage2()

This read-word function returns the Cell 2 voltage.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Турс	IVIIII	IVIGA	Delauit	Oille
0x3E	CellVoltage2()	R	R	R	Word	U2		65535	0	mV

18.40 0x3F CellVoltage1()

This read-word function returns the Cell 1 voltage.

SBS	Name		Access		Protocol	Type	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAA	Delault	Oilit
0x3F	CellVoltage1()	R	R	R	Word	U2	_	65535	0	mV

www.ti.com 0x46 ADC1Read()

18.41 0x46 ADC1Read()

This read-only command returns raw ADC data on RC2 (pin 12) if configured as ADC input pin.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oilit
Ī	0x46	ADC1Read()	R	R	R	Word	U2	_	65535	0	_

18.42 0x47 ADC2Read()

This read-only command returns raw ADC data on RC3 (pin 13) if configured as ADC input pin.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oilit
0x47	ADC2Read()	R	R	R	Word	U2	_	65535	0	_

18.43 0x48 GPIORead()

This read-only command returns an 8-bit field, with each bit providing the input level read from each of the eight pins that can be configured as GPIOs. The command returns valid data for all pins configured as GPIO, including those configured to drive an output.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Oilit
Ī	0x48	GPIORead()	R	R	R	Word	U2	_	65535	0	_

18.44 0x49 GPIOWrite()

This write-only command is used to set the output drive of each GPIO pin configured as a GPIO. The data associated with pins not configured as GPIOs is not impacted. The format of the command is a 16-bit field, with 2-bits associated with each GPIO pin. These two bits set the output drive status as: 00 = drive output low, 01 = drive output high, 10 = set output high-Z, and 11 = set output high-Z.

SBS	Name		Access		Protocol	Type	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAA	Delault	Onic
0x49	GPIOWrite()	W	W	W	Word	U2	_	65535	0	_

18.45 0x4A BTPDischargeSet()

This read/write word command updates the BTP set threshold for DISCHARGE mode for the next BTP interrupt, and clears the *OperationStatus()[BTP_INT]* bit.

SBS	Name		Access		Format	Size in	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Tornat	Bytes	IVIIII	WIGA	Delauit	Oille
0x4A	BTPDischargeSet()	R/W	R/W	R/W	Signed Int	2		65535	150	mAh

0x4B BTPChargeSet() www.ti.com

18.46 0x4B BTPChargeSet()

The read/write word command updates the BTP set threshold for CHARGE mode for the next BTP interrupt, and clears the *OperationStatus()[BTP_INT]* bit.

SBS	Name		Access		Format	Size in	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Tomat	Bytes	Willi	WIGA	Delauit	Oille
0x4B	BTPChargeSet()	R/W	R/W	R/W	Signed Int	2	1	65535	175	mAh

18.47 0x4F StateofHealth()

This read word command returns the SOH information of the battery in percentage of **Design Capacity** and **Design Capacity** cWh.

18.48 0x50 SafetyAlert()

This command returns the SafetyAlert() flags. For a description of each bit flag, see the ManufacturerAccess() version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAX	Delault	Ollic
0x50	SafetyAlert()	-	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	

18.49 0x51 SafetyStatus()

This command returns the *SafetyStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oilit
0x51	SafetyStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

18.50 0x52 PFAlert()

This command returns the *PFAlert()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	Wax	Delauit	Oille
0x52	PFAlert()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

18.51 0x53 PFStatus()

This command returns the *PFStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oill
0x53	PFStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

www.ti.com 0x54 OperationStatus()

18.52 0x54 OperationStatus()

This command returns the *OperationStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delault	Oilit
Ī	0x54	OperationStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

18.53 0x55 ChargingStatus()

This command returns the *ChargingStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delauit	Olik
0x55	ChargingStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

18.54 0x56 GaugingStatus()

This command returns the *GaugingStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oliit
0x56	GaugingStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	_

18.55 0x57 ManufacturingStatus()

This command returns the *ManufacturingStatus()* flags. For a description of each bit flag, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS Cmd	Name	Access		Protocol	Туре	Min	Max	Default	Unit		
	Name	SE	US	FA	11010001	Туре	IVIII	IVIAX	Delault	Onic	
	0x57	ManufacturingStatus()	_	R	R	Block	H4	0x000000 00	0xFFFFF FFF	_	1

18.56 0x58 AFE Register()

This command returns a snapshot of the AFE register settings. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Ivaille	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oilit
0x58	AFERegister()	_	R	R	Block	_	_	_	_	_

This command reads the maximal peak power value for 10-ms pulse occurring on top of 10-s 2 C-rate pulse.

Ox5A SusTurboPwr() www.ti.com

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Delault	Oilit
0x59	MaxTurboPwr()	R/W	R/W	R/W	Word	_	_	_	_	cW

18.58 0x5A SusTurboPwr()

This command reads the maximal peak power value for 10-s pulse, sustained turbo power, in cW.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Onic
0x5A	SusTurboPwr()	R/W	R/W	R/W	Word	_	_	_	_	cW

18.59 0x5B TurboPackR()

TURBO_PACK_R() sets the **Pack Resistance** value of the battery pack serial resistance, including resistance associated with FETs, traces, sense resistors, and so on TURBO_PACK_R() accesses to the data flash value **Pack Resistance**.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAX	Delauit	Oilit
0x5B	TurboPackR()	R/W	R/W	R/W	Word					mΩ

18.60 0x5C TurboSysR()

This command sets the **System Resistance** value of the system serial resistance along the path from battery to system power converter input that includes FETs, traces, sense resistors, and so on.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delauit	Oille
0x5C	TurboSysR()	R/W	R/W	R/W	Word					mΩ

18.61 0x5D TurboEdv()

This command sets the minimal voltage at the system power converter input at which the system will still operate. This command writes to the data flash value **Min System Voltage**. Write it once on the first use to adjust for possible changes in the system design from the time the battery pack was designed.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Турс	IVIIII	WIGA	Delauit	Oille
0x5D	TurboEdv()	R/W	R/W	R/W	Word					mV

18.62 0x5E MaxTurboCurr()

This command reads the maximal peak current value, max turbo current, in mA. The gauge computes a new RAM value of max turbo current every second. Max turbo current is initialized to present the value of max turbo current on reset or power up.

SB			Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	d	SE	US	FA	Protocoi	Type	IVIIII	IVIAA	Delault	Onit
0x5	MaxTurboCurr()	R/W	R/W	R/W	Word	_			_	mA

www.ti.com Ox5F SusTurboCurr()

18.63 0x5F SusTurboCurr()

This command reads the sustained peak current value, sustained turbo current, in mA. The gauge computes a new RAM value sustained turbo current every second. Sustained turbo current is initialized to the present value of max turbo current on reset or power up.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	Wax	Delault	Oilit
Ī	0x5F	SusTurboCurr()	_	R/W	R/W	Word	_	_	_	_	mA

18.64 0x60 LifetimeDataBlock1()

This command returns the first block of *Lifetime Data*. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	BS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
С	md	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Onic
0:	x60	LifeTimeDataBlock1()	_	R	R	Block	_	_	_	_	

18.65 0x61 LifetimeDataBlock2()

This command returns the second block of *Lifetime Data*. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Olik
0x61	LifeTimeDataBlock2()	_	R	R	Block	_	_	_	_	

18.66 0x62 LifetimeDataBlock3()

This command returns the third block of *Lifetime Data*. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Protocol	i ype		INIUX	Derault	Oille
0x62	LifeTimeDataBlock3()	_	R	R	Block	_	_	_	_	_

18.67 0x63 LifetimeDataBlock4()

This command returns the third block of *Lifetime Data*. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Protocol	Type	IVIIII	IVIAA	Delauit	Oilit
0x63	LifeTimeDataBlock4()	_	R	R	Block	_			_	_

18.68 0x64 LifetimeDataBlock5()

This command returns the third block of *Lifetime Data*. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	BS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	Piolocoi	Type	IVIIII	IVIAA	Derauit	Onic	
0>	6 4	LifeTimeDataBlock5()	_	R	R	Block	_			_	_

0x70 ManufacturerInfo() www.ti.com

18.69 0x70 ManufacturerInfo()

This command returns manufacturer information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	SBS	Name		Access		Protocol	Type	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAX	Delault	Oille	
	0x70	ManufacturerInfo()	R	R/W	R/W	Block	_	1	1	_	_

18.70 0x71 DAStatus1()

This command returns the Cell Voltages, PACK voltage, BAT voltage, cell currents, cell powers, power, and average power. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	туре	IVIIII	IVIAA	Delault	Oliit
0x71	DAStatus1()	_	R	R	Block	_	_	_	_	

18.71 0x72 DAStatus2()

This command returns the internal temperature sensor, TS1, TS2, TS3, TS4, cell, FET, and gauging temperatures. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oille
0x72	DAStatus2()	_	R	R	Block	_	1	1	_	_

18.72 0x73 GaugingStatus1()

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	11010001	Турс		WIGA	Delauit	Oilit
Ī	0x73	GaugingStatus1()	_	R	R	Block	_	_	_	_	_

18.73 0x74 GaugingStatus2()

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	SBS	Name		Access		Protocol	Type Min	Max	Default	Unit	
Cmc	Cmd	d Name	SE	US	FA	FIOLOCOI		Willi	IVIAA	Delault	Oilit
	0x74	GaugingStatus2()	_	R	R	Block	_		_	_	_

18.74 0x75 GaugingStatus3()

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

www.ti.com 0x76 CBStatus()

	SBS	Name		Access		Protocol	Type	Type Min	Max	Default	Unit
С	Cmd	Name	SE	US	FA	FIOLOCOI	Type		IVIAA	Delault	Oliit
ĺ	0x75	GaugingStatus3()	_	R	R	Block	_	_	_	_	_

18.75 0x76 CBStatus()

This command instructs the device to return cell balance time information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name	Access		Protocol	Туре	Min	Max	Default	Unit	
Cmd	Name	SE	US	FA	FIOLOCOI	Туре	IVIIII	IVIAA	Delault	Ollic
0x76	CBStatus()	_	R	R	Block	_	_	_	_	

18.76 0x77 StateofHealth()

This command instructs the device to return the state-of-health full charge capacity and energy. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delauit	Oilit
0x77	StateofHealth()	_	R	R	Block	_	_	_	_	_

18.77 0x78 FilteredCapacity()

This command instructs the device to return the filtered capacity and energy even if **[SMOOTH]** = 0. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Oilit
ſ	0x78	FilteredCapacity()	_	R	R	Block	_	_	_	_	_

18.78 0x7A ManufacturerInfoB()

This command returns manufacturer information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Oilit
0x7A	ManufacturerInfoB()	R	R/W	R/W	Block	_	_	_	_	_

18.79 0x7B DAStatus3()

This command returns the cell voltages, cell currents, and cell powers. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SE		Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cr	md	Name	SE US FA	FIOLOCOI	Type	IVIIII	IVIAA	Delault	Oilit		
0x	7B	DAStatus3()	_	R	R	Block	_		_	_	_

0x7C GaugingStatus4() www.ti.com

18.80 0x7C GaugingStatus4()

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Type	Type Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oilit
0x7C	GaugingStatus4()	_	R	R	Block	_			_	_

18.81 0x7D GaugingStatus5()

This command instructs the device to return Impedance Track related gauging information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delauit	Oilit
0x7D	GaugingStatus5()	_	R	R	Block	_	_		_	_

18.82 0x80 ManufacturerInfoC()

This command returns manufacturer information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

	SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
	Cmd	Name	SE	US	FA	FIOLOCOI	Type	IVIIII	IVIAX	Delault	Oille
ſ	08x0	ManufacturerInfoC()	R	R/W	R/W	Block	_	1	1	_	_

18.83 0x81 ManufacturerInfoD()

This command returns manufacturer information. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS	Name		Access		Protocol	Туре	Min	Max	Default	Unit
Cmd	Cmd Name		US	FA	11010001	туре	IVIIII	IVIAX	Delault	Oille
0x81	ManufacturerInfoD()	R	R/W	R/W	Block	_	l		_	

18.84 0x82 CurrentLong()

This command returns current in mA resolution, useful for systems with large capacity batteries. For a description of returned data values, see the *ManufacturerAccess()* version of the same command in Section 18.1.

SBS		Name	Access		Protocol	Туре	Min	Max	Default	Unit	
Cmd	Cmd	Name	SE	US	FA	11010001	Туре	IVIIII	WIGA	Delault	Oilit
	0x82	ManufacturerInfoD()	R	R	R	Block	_			_	_

Data Flash Values

19.1 Data Formats

19.1.1 Unsigned Integer

Unsigned integers are stored without changes as 1-byte, 2-byte, or 4-byte values in little endian byte order

19.1.2 Integer

Integer values are stored in 2's-complement format in 1-byte, 2-byte, or 4-byte values in little endian byte order.

19.1.3 Floating Point

Floating point values are stored using the IEEE754 Single Precision 4-byte format in little endian byte order.

Data Formats www.ti.com

Where:

Exp: 8-bit exponent stored with an offset bias of 127. The values 00 and FF have unique meanings.

Fract: 23-bit fraction. If the exponent is > 0, then the mantissa is 1.fract. If the exponent is zero, then the mantissa is 0.fract.

The floating point value depends on the unique cases of the exponent:

- If the exponent is FF and the fraction is zero, this represents +/- infinity.
- If the exponent is FF and the fraction is non-zero this represents "not a number" (NaN).
- If the exponent is 00 then the value is a subnormal number represented by $(-1)^{\text{sign}} \times 2^{-126} \times 0$.fraction.
- Otherwise, the value is a normalized number represented by $(-1)^{\text{sign}} \times 2^{(\text{exponent 127})} \times 1$.fraction.

19.1.4 Hex

Bit register definitions are stored in unsigned integer format.

19.1.5 String

String values are stored with length byte first, followed by a number of data bytes defined with the length byte.

0	1	 N
Length	Data0	 DataN

19.2 Settings

19.2.1 Configuration

19.2.1.1 FET Options

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	FET Options	H2	0x00	0xFFFF	0x20	Hex

15	14	13	12	11	10	9	8
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	PDSG
7	6	5	4	3	2	1	0
PACK_FUSE	SLEEPCHG	CHGFET	CHGIN	CHGSU	OTFET	PARALLEL_ FETS	PCHG_COMM

RSVD (Bit 15-9): Reserved. Do not use.

PDSG (Bit 8): PRE-DISCHARGE mode is enabled.

1 = Enable

0 = Disabled

PACK_FUSE (Bit 7): Source of voltage to check for Min Blow Fuse Voltage

1 = PACK voltage

0 = Battery stack voltage

SLEEPCHG (Bit 6): CHG FET enabled during sleep

1 = CHG FET remains on during sleep

0 = CHG FET off during sleep (default)

CHGFET (Bit 5): FET action on setting of *GaugingStatus()[TC]*

1 = Charging and Precharging disabled, FET off

0 = FET active (default)

CHGIN (Bit 4): FET action in CHARGE INHIBIT mode

- 1 = Charging and Precharging disabled, FETs off
- 0 = FET active (default)

CHGSU (Bit 3): FET action in CHARGE SUSPEND mode

- 1 = Charging and Precharging disabled, FETs off
- 0 = FET active (default)

OTFET (Bit 2): FET action in OVERTEMPERATURE mode

- 1 = CHG and DSG FETs will be turned off for overtemperature conditions
- 0 = No FET action for overtemperature condition (default)

PARALLEL_FETS (Bit 1) Series or Parallel circuit configuration for FETs

- 1 = Parallel FET configuration
- 0 = Series FET configuration (default)

PCHG_COMM (Bit 0): Precharge FET selection

- 1 = CHG FET
- 0 = PCHG FET (default)

19.2.1.2 SBS Gauging Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SBS Gauging Configuration	H1	0x00	0xFF	0x04	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSOC_ RND_OFF	LOCK0	RSOC_HOLD	RSOCL

RSVD (Bits 7-4): Reserved. Do not use.

RSOC_RND_OFF (Bit 3): Enables a round-off option of RSOC (instead of a ceiling function available by default)

- 1 = Enables RSOC round-off
- 0 = Disables RSOC round-off (A ceiling function is used instead.)

LOCK0 (Bit 2): Keep *RemainingCapacity()* and *RelativeStateOfCharge()* jumping back during relaxation after 0 was reached during discharge.

- 1 = Enabled (default)
- 0 = Disabled

RSOC_HOLD (Bit 1): Prevent RSOC from increasing during discharge

- 1 = RSOC not allowed to increase during discharge
- 0 = RSOC not limited (default)

RSOCL (Bit 0): RelativeStateOfCharge() and RemainingCapacity() behavior at end of charge

- 1 = Held at 99% until valid charge termination. On entering valid charge termination update to 100%
- 0 = Actual value shown (default)

19.2.1.3 SBS Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SBS Configuration	H1	0x7F	0xFF	0x20	Hex

7	6	5	4	3	2	1	0
FLASH_ BUSY_WAIT	SMB_CELL _TEMP	BLT1	BLT0	XL	HPE	CPE	BCAST

FLASH_BUSY_WAIT (Bit 7): This allows the clock stretching during a flash program or erase operation.

- 1 = The bq40z80 device will clock stretch (up to the timeout for SMBus devices) during flash operations.
- 0 = The bq40z80 device will NACK any SMBus engine interrupt that occurs during a flash operation (program or erase).

Note: There is some potential for read errors with this bit. For example, when the master is reading data from the device, there is no NACK from the gauge; therefore, the "NACK" in the hardware releases the bus without writing new data to the SMBDA register, which means the read is whatever is present at the time. PECs should catch this error.

SMB_CELL_TEMP (Bit 6): Enables the host to write the temperature register via MAC command *WriteTemp()*. This enables bypassing the gauge's cell temperature inputs (TS1...TS4).

- 1 = Host can set the temperature (and bypass TS1...TS4).
- 0 = Host cannot set the temperature (temperature is set by the gauge's thermistors).

BLT1 (Bit 5): Bus low timeout

0.0 = No SBS bus low timeout

0.1 = 1-s SBS bus low timeout

1,0 = 2-s SBS bus low timeout (default)

1,1 = 3-s SBS bus low timeout

BLT0 (Bit 4): Bus low timeout

0.0 = No SBS bus low timeout

0,1 = 1-s SBS bus low timeout

1,0 = 2-s SBS bus low timeout (default)

1,1 = 3-s SBS bus low timeout

XL (Bit 3): Enables 400-kHz COM mode

1 = 400-kHz bus speed

0 = Normal SBS bus speed (default)

HPE (Bit 2): PEC on host communication

1 = Enabled

0 = Disabled (default)

CPE (Bit 1): PEC on charger broadcast

1 = Enabled

0 = Disabled (default)

BCAST (Bit 0): Enables alert and charging broadcast from device to host

1 = Enabled

0 = Disabled (default)

19.2.1.4 Auth Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Auth Config	H1	0x00	0x07	0x00	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	SHA1_ SECURE	SPLIT_ RESPONSE	LEGACY_ SHA1

RSVD (Bits 7-3): Reserved. Do not use.

SHA1_SECURE (Bit 2): Enables secure memory usage for encryption key storage

- 1 = Enables secure memory usage
- 0 = Enables secure memory usage

SPLIT_RESPONSE (Bit 1): 42 bytes ECC response is returned in single block or 2 blocks

- 1 = Response is split into two blocks: first block is 31 bytes and second block is 11 bytes
- 0 = Response is single block of 42 bytes

LEGACY_SHA1 (Bit 0): ECC or SHA-1 authentication is enabled

- 1 = Enables SHA-1 authentication
- 0 = Enables ECC authentication

19.2.1.5 Power Config

Settings Configuration Power Config H2 0x00 0x01	Class	Subclass	Name	Туре	Min	Max	Default	Unit
Comings Comings Tile SACO SACT	Settings	Configuration	Power Config	П2	0x00	0x01	0x00	Hex

15	14	13	12	11	10	9	8
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	SLEEPWKCHG	SLP_ACCUM
7	6	5	4	3	2	1	0
RSVD	RSVD	CHECK_ WAKE_FET	CHECK_ WAKE	EMSHUT _EXIT_COMM	EMSHUT _EXIT_VPACK	PWR_SAVE _VSHUT	AUTO_SHIP _EN

RSVD (Bits 15-10): Reserved. Do not use.

SLEEPWKCHG (Bit 9): Enables the sleep wake charge feature

- 1 = Enables sleep wake charge feature
- 0 = Disables sleep wake charge feature

SLP_ACCUM (Bit 8): Enables charge accumulation while in SLEEP mode

- 1 = Enables charge accumulation in SLEEP mode
- 0 = Disables charge accumulation in SLEEP mode

RSVD (Bits 7-6): Reserved. Do not use.

CHECK_WAKE_FET (Bit 5): Enables the CHG and DSG FETs not to be forced off during the *Delay* timer period

- 1 = FETs are not to be forced off during the *Delay* timer period.
- 0 = FETs are forced off during the *Delay* timer period.

CHECK_WAKE (Bit 4): Enables option to manage unintended wakeup from SHUTDOWN.

- 1 = Enables this option for unintended wakeup
- 0 = Disables this option for unintended wakeup

EMSHUT_EXIT_COMM (Bit 3): Enables exit from Emergency FET Shutdown if valid SMBus communication is received. Valid SMBus communication means a valid gauge address and any command is received (that is, an invalid command with a valid address is OK).

- 1 = Enables valid communication reception based exit from EMSHUT
- 0 = Disables valid communication reception based exit from EMSHUT

EMSHUT_EXIT_VPACK (Bit 2): Enables exit from Emergency FET Shutdown if voltage at PACK pin > Charger Present Threshold for two samples (~2 seconds).

- 1 = Enables PACK voltage based exit from EMSHUT
- 0 = Disables PACK voltage based exit from EMSHUT

PWR_SAVE_VSHUT (Bit 1): Enables POWER SAVE SHUTDOWN when specific thresholds have been reached.

- 1 = Enables POWER SAVE SHUTDOWN
- 0 = Disables POWER SAVE SHUTDOWN

AUTO_SHIP_EN (Bit 0): Automatically Shut Down for Shipment

- 1 = Enables auto shutdown after the device is in SLEEP mode without communication for a set period of time.
- 0 = Disables auto shutdown feature

19.2.1.6 IO Config

Class	Subcla	ass	Name	Туре	Min	Max	Default	Unit
Setting	gs Configur	ation	IO Config	H1	0x0	0x03	0x00	Hex
7	6	5	4	3	2		1	0
RSVD	RSVD	RSVD	RSVD	RSVD	RSV	D BTF	P_POL	BTP_EN

RSVD (Bits 7-2): Reserved. Do not use.

BTP_POL (Bit 1): Controls polarity of the BTP pin

- 1 = The BTP pin is asserted high when BTP is triggered.
- 0 = The BTP pin is asserted low when BTP is triggered (default).

BTP_EN (Bit 0): Enables assertion of the BTP pin

- 1 = Enables assertion of the BTP pin when BTP is triggered.
- 0 = Disables assertion of the BTP pin when BTP is triggered (default).

LEDPF0

19.2.1.7 LED Configuration

	Class	Subcla	ss	Name	Туре	Min	Max	Default	Unit
	Settings	Configura	ation	LED Configuration	H1	0x0000	0xFFFF	0x00D0	Hex
1	5	14	13	12	11	10		9	8
RS	VD	RSVD	RSVD	RSVD	LED ONFC	BLIN MIDP		EDIF	LED PFON

LEDMODE

LEDCHG

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

5

LEDPF1

6

LEDC0

7

LEDC1

LEDRCA

0

LEDR

RSVD (Bits 15-12): Reserved. Do not use.

LEDONFC (Bit 11): Enables the LED display to stay on showing charge even after full charge (FC) has been achieved. With this bit set, the LED will stay on after FC until the LED FC Time has expired.

- 1 = Enables LED display functionality after FC until the LED FC Time has expired
- 0 = Disables LED display functionality after FC until the LED FC Time has expired

BLINKMIDPT (Bit 10): Enables LED blinking until the midpoint of each LED segment. The blinking occurs between the bottom and the midway point of each programmed segment level, thus providing more granularity as to where the charge level is within that LED segment.

- 1 = Enables LED blinking until the midway point of each segment charge levels
- 0 = Disables LED blinking until the midway point of each segment charge levels

LEDIFCUV (Bit 9): Enables LED display functionality even under CUV conditions without a charger connected (no charging occurring). This option should be used with care so as to not discharge the battery to low.

- 1 = Enables LED display functionality even under CUV conditions without a charger connected
- 0 = Disables LED display functionality even under CUV conditions without a charger connected

LEDPFON (Bit 8): LED in PF Mode Enable

- 1 = Display available in PF Mode
- 0 = Display not available in PF mode (default)

LEDC1, LEDC0 (Bit 7, Bit 6): LED Current sink

- 0, 0 = 0.94 mA average LED current (default)
- 0, 1 = 1.87 mA average LED current
- 1, 0 = 2.81 mA average LED current
- 1, 1 = 3.75 mA average LED current

LEDPF1, LEDPF0 (Bit 5, Bit 4): LED Display PF Error Code

- 0, 0 = PF Error Code not available
- 0, 1 = PF Error Code shown after SOC if DISP is held low for LED Hold Time (default)
- 1, 0 = PF Error code shown if the DISP button is pressed (high-to-low transition of the pin is detected).
- 1, 1 = PF Error Code shown after SOC

LEDMODE (Bit 3): LED Display Capacity Selector

- 1 = Display ASOC/DC
- 0 = Display RSOC (default)

LEDCHG (Bit 2): LED Display During Charging

- 1 = Enabled
- 0 = Disabled

LEDRCA (Bit 1): Flashing of LED Display when [RCA] is set.

- 1 = Enabled
- 0 = Disabled

LEDR (Bit 0): LED Display activation at exit of device reset

- 1 = Enabled
- 0 = Disabled

19.2.1.8 SOC Flag Config A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SOC Flag Config A	H2	0x0	0xFFF	0x0C8C	Hex

15	14	13	12	11	10	9	8
RSVD	RSVD	RSVD	RSVD	TCSETVCT	FCSETVCT	RSVD	RSVD
7	6	5	4	3	2	1	0
TCCLEAR RSOC	TCSETRSOC	TCCLEARV	TCSETV	TDCLEAR RSOC	TDSETRSOC	TDCLEARV	TDSETV

RSVD (Bits 15-12): Reserved. Do not use.

TCSETVCT (Bit 11): Enables the TC flag set by primary charge termination

1 = Enabled (default)

0 = Disabled

FCSETVCT (Bit 10): Enables the FC flag set by primary charge termination

1 = Enabled (default)

0 = Disabled

RSVD (Bits 9-8): Reserved. Do not use.

TCCLEARRSOC (Bit 7): Enables the TC flag clear by RSOC threshold

1 = Enabled (default)

0 = Disabled

TCSETRSOC (Bit 6): Enables the TC flag set by RSOC threshold

1 = Enabled

0 = Disabled (default)

TCCLEARV (Bit 5): Enables the TC flag clear by cell voltage threshold

1 = Enabled

0 = Disabled (default)

TCSETV (Bit 4): Enables the TC flag set by cell voltage threshold

1 = Enabled

0 = Disabled (default)

TDCLEARRSOC (Bit 3): Enables the TD flag clear by RSOC threshold

1 = Enabled (default)

0 = Disabled

TDSETRSOC (Bit 2): Enables the TD flag set by RSOC threshold

1 = Enabled (default)

0 = Disabled

TDCLEARV (Bit 1): Enables the TD flag clear by cell voltage threshold

1 = Enabled

0 = Disabled (default)

TDSETV (Bit 0): Enables the TD flag set by cell voltage threshold

1 = Enabled

0 = Disabled (default)

19.2.1.9 SOC Flag Config B

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	SOC Flag Config B	H1	0x00	0xFF	0x8C	Hex

7	6	5	4	3	2	1	0
FCCLEAR RSOC	FCSETRSOC	FCCLEARV	FCSETV	FDCLEAR RSOC	FDSETRSOC	FDCLEARV	FDSETV

FCCLEARRSOC (Bit 7): Enables the FC flag clear by RSOC threshold

1 = Enabled (default)

0 = Disabled

FCSETRSOC (Bit 6): Enables the FC flag set by RSOC threshold

1 = Enabled

0 = Disabled (default)

FCCLEARV (Bit 5): Enables the FC flag clear by cell voltage threshold

1 = Enabled

0 = Disabled (default)

FCSETV (Bit 4): Enables the FC flag set by cell voltage threshold

1 = Enabled

0 = Disabled (default)

FDCLEARRSOC (Bit 3): Enables the FD flag clear by RSOC threshold

1 = Enabled (default)

0 = Disabled

FDSETRSOC Bit 2: Enables the FD flag set by RSOC threshold

1 = Enabled (default)

0 = Disabled

FDCLEARV (Bit 1): Enables the FD flag clear by cell voltage threshold

1 = Enabled

0 = Disabled (default)

FDSETV (Bit 0): Enables the FD flag set by cell voltage threshold

1 = Enabled

0 = Disabled (default)

19.2.1.10 IT Gauging Configuration

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Configuration	IT Gauging Configuration	H2	0x0	0xFFFF	0xD0FE	Hex

15	14	13	12	11	10	9	8
DOD_R SCALE_EN	RELAX_ SMOOTH_OK	TDELTAV	SMOOTH	RELAX_ JUMP_OK	DELAY_ DROP_TO_0	CELL_TERM	FAST_ QMAX_FLD
7	6	5	4	3	2	1	0
FAST_QMAX_ LRN	RSOC_CONV	LFP_RELAX	DOD0EW	OCVFR	RFACTSTEP	CSYNC	ССТ

DOD_RSCALE_EN (Bit 15): Configures which DOD the new RScale is to be applied.

- 1 = The RScale is only applied to DODs higher than the DOD where the RScale was calculated.
- 0 = The RScale is applied to all DODs during IT simulations.

RELAX_SMOOTH_OK (Bit 14): Smooth RSOC during RELAX mode

- 1 = Enabled (default)
- 0 = Disabled

TDELTAV (Bit 13): TURBO Mode Delta Voltage

- 1 = Calculate **DeltaVoltage** that corresponds to the power spike defined in **Min Turbo Power**. Must set this flag to 1 to support TURBO mode.
- 0 = Use of **DeltaVoltage** learned as the maximal difference between instantaneous and average voltage (default).

SMOOTH (Bit 12): Smooth RSOC

- 1 = Smoothed FullChargeCapacity() and RemainingCapacity() is used (default).
- 0 = True FullChargeCapacity() and RemainingCapacity() is used.

RELAX JUMP OK (Bit 11): Allows RSOC jump during RELAX mode

- 1 = Enabled
- 0 = Disabled (default)

DELAY_DROP_TO_0 (Bit 10): Delay

- 1 = Enabled
- 0 = Disabled (default)

CELL_TERM (Bit 9): Cell Based Termination

- 1 = Cell based termination
- 0 = Stack voltage based termination (default)

FAST_QMAX_FLD (Bit 8): Fast Qmax Update in Field

- 1 = Enabled
- 0 = Disabled (default)

FAST QMAX LRN (Bit 7): Fast Qmax Update in Learning

- 1 = Enabled (default)
- 0 = Disabled

RSOC CONV (Bit 6): RSOC Convergence (Fast Scaling)

- 1 = Enabled (default)
- 0 = Disabled

LFP RELAX (Bit 5): Lithium Iron Phosphate Relax

- 1 = Enabled (default)
- 0 = Disabled

DOD0EW (Bit 4): DOD0 Error Weighting

- 1 = Enabled (default)
- 0 = Disabled

OCVFR (Bit 3): Open Circuit Voltage Flat Region

1 = Enabled (default)

0 = Disabled

RFACTSTEP (Bit 2): Ra Factor Step

1 = Enabled (default).

0 = Disabled

CSYNC (Bit 1): Sync RemainingCapacity() with FullChargeCapacity() at valid charge termination

1 = Synchronized (default)

0 = Not synchronized

CCT (Bit 0): Cycle Count Threshold

1 = Use CC % of FullChargeCapacity()

CELL_

INTER IR

0 = Use CC % of DesignCapacity() (default)

19.2.1.11 IT Gauging Ext

TS1

	Class	Subcl	ass	Name	Type	Min	Max	Default	Unit
	Settings	Configu	ation	IT Gauging Ext	H2	0x0000	0x00FF	0X001A	Hex
	15	14	13	12	11	10		9	8
RS	SVD	RSVD	RSVD	RSVD	RSVD	RSV	D R	RSVD	RSVD
	7	6	5	4	3	2		1	0

THERM

RSVD (Bits 15-8): Reserved. Do not use.

TS1 (Bit 7), **TS0** (Bit 6): These two bit s are used in conjunction to select which one of the individual temperature sensors (TS 1...4) is used by the IT algorithm.

1.1 = Not used

TS0

- 1,0 = Min Temperature is used (IT uses the temperature sensor with the lowest temperature).
- 0,1 = Avg Temperature is used (IT uses the average temperature of all 4 temperature sensors).

THERM

0,0 = Max Temperature is used (IT uses the temperature sensor with the highest temperature). (Default)

CELL_INTER_IR (Bit 5): Enables the Cell interconnect resistance to be used to compensate the cell voltage when cell-based EDV detection is selected (Vs Pack based EDV detection)

- 1 = Enables cell interconnect resistance usage to compensate cell voltage in relation to cell EDV detection
- 0 = Disables cell interconnect resistance usage to compensate cell voltage in relation to cell EDV detection

THERM SAT (Bit 4): Thermal saturation enables adjustment of the IT thermal model

- 1 = Enables adjustment of the IT thermal model
- 0 = Disables adjustment of the IT thermal model

THERM_IV (Bit 3): Enables freeze of the temperature model at certain points in IT to prevent overestimation by the thermal model

- 1 = Enables Freeze of the temperature model
- 0 = Disables Freeze of the temperature model

AMB PRED (Bit 2): Enables ambient temperature prediction in modes other than RELAX

CHG_100_

SMOOTH OK

AMB PRED

DSG_0_

SMOOTH OK

- 1 = Enables ambient temperature prediction
- 0 = Disables ambient temperature prediction

CHG_100_SMOOTH_OK (Bit 1): Allows smoothing in the charge direction when there is a jump to 100%

- 1 = Enables smoothing to 100%
- 0 = Disables smoothing to 100%

DSG_0_SMOOTH_OK (Bit 0): Allows smoothing in the discharge direction when there is a jump to 0%. When enabled, this smoothing option must be used in conjunction with *Term Smooth Start Cell V Delta*, *Term Smooth Time*, and *Term Smooth Final Cell V Delta*. If not configured properly, this smoothing option can result in causing remaining capacity to 0 early.

- 1 = Enables smoothing to 0%
- 0 = Disables smoothing to 0%

19.2.1.12 Charging Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Charging Configuration	H1	0x0	0x3F	0x0	Hex

7	6	5	4	3	2	1	0	
CYCLE_ DEGRADE	SOH_ DEGRADE	DEGRADE _CC	COMP_IR	CS_CV	SOC_CHARGE	CCC	CRATE	

CYCLE_DEGRADE (Bit 7): Cycle count based charging current or charging voltage degradation

- 1 = Degradation CC/CV based on cycle count
- 0 = No degradation of CC/CV based on cycle count

SOH DEGRADE (Bit 6): SOH based charging current or charging voltage degradation

- 1 = Degradation CC/CV based on SOH
- 0 = No degradation of CC/CV based on SOH

DEGRADE CC (Bit 5): Enables charging current degradation based on cycle count or SOH

- 1 = Enables charging current degradation
- 0 = Disables charging current degradation

COMP_IR (Bit 4): Allows IR compensation at the system level to ensure the correct voltage level required for a specific charging voltage at the battery terminals

- 1 = Enables system level IR compensation
- 0 = Disables system level IR compensation

CS_CV (Bit 3): This enables the cell swelling control under specific cell voltage and cell temperature thresholds by reducing the charging voltage.

- 1 = Enables cell swelling control
- 0 = Disables cell swelling control

SOC_CHARGE (Bit 2)

- 1 = Enables SOC threshold to replace voltage thresholds (CLV, CMV, and CHV) in **Advanced Charging Algorithm**
- 0 = Uses voltage thresholds (CLV, CMV, and CHV) in Advanced Charging Algorithm

CCC (Bit 1)

- 1 = Enables Charging Loss Compensation feature
- 0 = Charging Loss Compensation disabled (default)

CRATE (Bit 0): ChargeCurrent rate

1 = ChargingCurrent() adjusted based on FullChargeCapacity() / DesignCapacity()

0 = No adjustment to ChargingCurrent() (default)

19.2.1.13 Temperature Enable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Temperature Enable	H1	0x0	0x1F	0x6	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	TS4	TS3	TS2	TS1	TSint

RSVD (Bits 7–5): Reserved. Do not use.

TS4 (Bit 4): Enable TS4

1 = Enables TS4 (default)

0 = Disables TS4

TS3 (Bit 3): Enable TS3

1 = Enables TS3 (default)

0 = Disables TS3

TS2 (Bit 2): Enable TS2

1 = Enables TS2 (default)

0 = Disables TS2

TS1 (Bit 1): Enable TS1

1 = Enables TS1 (default)

0 = Disables TS1

TSint (Bit 0): Enable internal TS

1 = Enables internal TS

0 = Disables internal TS (default)

19.2.1.14 Temperature Mode

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Temperature Mode	H1	0x0	0x1F	0x4	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	TS4 Mode	TS3 Mode	TS2 Mode	TS1 Mode	TSInt Mode

RSVD (Bits 7-5): Reserved. Do not use.

TS4 Mode (Bit 4): Cell temperature or FET temperature

1 = FET temperature

0 = Cell temperature (default)

TS3 Mode (Bit 3): Cell temperature or FET temperature

1 = FET temperature

0 = Cell temperature (default)

TS2 Mode (Bit 2): Cell temperature or FET temperature

- 1 = FET temperature (default)
- 0 = Cell temperature

TS1 Mode (Bit 1): Cell temperature or FET temperature

- 1 = FET temperature
- 0 = Cell temperature (default)

TSInt Mode (Bit 0): Cell temperature or FET temperature

1 = FET temperature

Subclass

0 = Cell temperature (default)

19.2.1.15 DA Configuration

Class

	Class		233	Name	Type	141111	IVIAA	Delaui	t Onn
	Settings	Configur	ation	DA Configuration	H1	0x0	0xFF	0x12	Hex
	15 14 13								
1	5	14	13	12	11	10		9	8
CTE	MP1	CTEMP0	RSVD RSVD RSVD RSVD		D R	SVD	EMSHUT_ PEXIT_DIS		
	7	6	5	4	3	2		4	0
	,	6	ე	4	ა			1	0
FTE	EMP	RSVD	EMSHUT_EN	SLEEP	IN_SYSTEM _SLEEP	NR	(CC1	CC0

Type

Min

CTEMP (Bits 15–14): Defines which temperature sensor's output is displayed by the SBS *Temperature()* command

- 1, 1 = Not used
- 1, 0 = Minimum temperature
- 0, 1 = Average temperature
- 0, 0 = Maximum temperature

RSVD (Bits 13-9): Reserved. Do not use.

EMSHUT_PEXIT_DIS (Bit 8): Disables the SHUTDN pin exit option of the Emergency FET Shutdown feature (when a high-to-low transition on the SHUTDN pin is detected)

- 1 = Prevents usage of SHUTDN pin as exit option
- 0 = Allows usage of SHUTDN pin as an exit option (default)

FTEMP (Bit 7): FET temperature protection source

- 1 = Average
- 0 = MAX (default)

RSVD (Bit 6): Reserved. Do not use.

EMSHUT_EN (Bit 5): Emergency FET Shutdown Enable

- 1 = Enables
- 0 = Disables

SLEEP (Bit 4): SLEEP mode

- 1 = Enables SLEEP mode (default)
- 0 = Disables SLEEP mode

IN_SYSTEM_SLEEP (Bit 3): In-system SLEEP mode

- 1 = Enables
- 0 = Disables (default)

NR (Bit 2): Use PRES in system detection

1 = NON-REMOVABLE mode

0 = Use PRES, REMOVABLE mode (default)

RSVD (Bits 1-0): Reserved. Do not use.

19.2.1.16 Cell Configuration

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	Cell Configuration	H1	0x0	0x07	0x6	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	CC2	CC1	CC0

RSVD (Bits 7-3): Reserved. Do not use.

CC2, CC1, CC0 (Bits 2-0):Cell Count

1, 1, 1 = 7 Cell

1, 1, 0 = 6 Cell

1, 0, 1 = 5 Cell

1, 0, 0 = 4 Cell

0, 1, 1 = 3 Cell

0, 1, 0 = 2 Cell

0, 0, 1 = 1 Cell

0, 0, 0 = No Cell

19.2.1.17 Balancing Configuration

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Configuration	Balancing Configuration	H1	0x0	0xFF	0x01	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	CBS	CB_RLX_DOD 0EW	CB_CHG_DOD 0EW	CBR	СВМ	СВ

RSVD (Bits 7-6): Reserved. Do not use.

CBS (Bit 5): Cell balancing in sleep

1 = Enables CBS

0 = Disables CBS

CB_RLX_DOD0EW (Bit 4):

- 1 = Enables Error Weighted DOD0 for cell balancing time updates when in RELAX mode
- 0 = Uses DOD0 for cell balancing time updates when in RELAX mode

CB_CHG_DOD0EW (Bit 3):

- 1 = Enables Error Weighted DOD0 for cell balancing time updates when in CHARGE mode
- 0 = Use DOD0 for cell balancing time updates when in CHARGE mode

CBR (Bit 2): Cell balancing at rest

1 = Enables cell balancing at rest

0 = Disables cell balancing at rest (default)

CBM (Bit 1): Internal versus external cell balancing

1 = Enables external cell balancing enabled

0 = Enables internal cell balancing (default)

CB (Bit 0): Cell balancing

11

1 = Cell balancing enabled (default)

12

0 = Cell balancing disabled

19.2.1.18 Pin Configuration

15

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Configuration	Pin Configuration	H2	0x0	0xFFFF	0x77E4	Hex

11

10

10	17	10	12		10	3	O
MFP20_SEL2	MFP20_SEL1	MFP20_SEL0	MFP17_SEL2	MFP17_SEL1	MFP17_SEL0	MFP16_SEL1	MFP16_SEL0
7	6	5	4	3	2	1	0
MFP15 SFL1	MEP15 SELO	MFP13 SFL2	MFP13 SFL1	MEP13 SELO	MFP12 SFL2	MFP12 SFL1	MFP12 SFL0

12

MFP20_SEL0.2 (Bits 15-13): Selects multifunction pin feature on pins 20, 21, and 22 (RL0, RL1, RL2)

0, 0, 0 = LED pins

0, 0, 1 = GPIO pins

0, 1, 0 = GPIO pins + Pre-discharge (PDSG) FET control pin

0, 1, 1 = Unused

1, x, x = Unused

MFP17_SEL0.2 (Bits 12–10): Selects multifunction pin feature on pin 17 (RH0)

0, 0, 0 = System Present Pin

0, 0, 1 = Emergency Shutdown pin

0, 1, 0 = LED button

0, 1, 1 = Pre-discharge (PDSG) FET control pin

1, 0, 0 = GPIO pin

1, 0, 1 = Unused

1, 1, x = Unused

MFP16_SEL1.0 (Bits 9–8): Selects multifunction pin feature on pin 16 (RH1)

0, 0 = Cell balancing PFET control pin for Cell-7

0, 1 = Pre-discharge (PDSG) FET control pin

1, 0 = GPIO pin

1, 1 = Unused

MFP15_SEL1.0 (Bits 7–6): Selects multifunction pin feature on pin 15 (RH2)

0, 0 = Cell-7 voltage measurement enable pin

0, 1 = LED button

1, 0 = GPIO pin

1, 1 = Unused

MFP13_SEL2.0 (Bits 5-3): Selects multifunction pin feature on pin 13 (RC3)

0, 0, 0 = LED button

0, 0, 1 = TS4 input

0, 1, 0 = General purpose ADC input2

0, 1, 1 = GPIO pin

1, x, x = Unused

MFP12_SEL2.0 (Bits 2–0): Selects multifunction pin feature on pin 12 (RC2)

0, 0, 0 = Cell-7 ADC input

0, 0, 1 = TS3 input

0, 1, 0 = General purpose ADC input1

0, 1, 1 = GPIO pin

1, x, x = Unused

19.2.1.19 GPIO Sealed Access Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	GPIO Sealed Access Config	H1	0x0	0xFF	0x00	Hex

7	6	5	4	3	2	1	0
GPIO_PIN22	GPIO_PIN21	GPIO_PIN20	GPIO_PIN15	GPIO_PIN16	GPIO_PIN17	GPIO_PIN13	GPIO_PIN12

GPIO_PIN22 (Bit 7): GPIO Multifunction pin 22 (RL2)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO_PIN21 (Bit 6): GPIO Multifunction pin 21 (RL1)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO_PIN20 (Bit 5): GPIO Multifunction pin 20 (RL0)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO_PIN15 (Bit 4):GPIO Multifunction pin 15 (RH2)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO_PIN16 (Bit 3): GPIO Multifunction pin 16 (RH1)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO_PIN17 (Bit 2): GPIO Multifunction pin 17 (RH0)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO PIN13 (Bit 1): GPIO Multifunction pin 13 (RC3)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

GPIO_PIN12 (Bit 0): GPIO Multifunction pin 12 (RC2)

- 1 = The GPIO pin can be controlled and read when the gauge is SEALED.
- 0 = The GPIO pin cannot be controlled or read when the gauge is SEALED.

19.2.1.20 FlagMapSetUp0...7

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Configuration	FlagMapSetUp07	H2	0x0	0xFFFF	0x0	Hex

15	14	13	12	11	10	9	8
FLAG_EN	RSVD	FLAG_OD	FLAG_OR	FLAG_GPIO2	FLAG_GPIO1	FLAG_GPIO0	FLAG_POL

7	6	5	4	3	2	1	0
FLAG_BIT3	FLAG_BIT2	FLAG_BIT1	FLAG_BIT0	FLAG_REG3	FLAG_REG2	FLAG_REG1	FLAG_REG0

FLAG_EN (Bit 15) Enables/disables the control

- 0 = Disable
- 1 = Enable

RSVD (Bit 14): Reserved. Do not use

Flag_OD (Bit 13): Sets whether the GPIO pin is driven between two levels as high-Z/driven-low (that is, open-drain) or as driven-high/driven-low (that is, active-high). **Note:** The **[FLAG_OD]** bit cannot be set differently by separate controls when mapped to the same GPIO pin.

- 0 = Driven-high/Driven-low
- 1 = High-Z/Driven-low

FLAG_OR (Bit 12): Flag OR'ed vs AND'ed with other flags mapped to the same GPIO pin. This OR/AND operation takes place after the polarity from *FLAG_POL* is evaluated.

- 0 = AND Operation
- 1 = OR Operation

FLAG_GPIO2, FLAG_GPIO1, FLAG_GPIO0 (Bits 11-9): Flag mapped to GPIO pin

- 0, 0, 0 = Pin 12 (RC2)
- 0, 0, 1 = Pin 13 (RC3)
- 0, 1, 0 = Pin 17 (RH0)
- 0, 1, 1 = Pin 16 (RH1)
- 1, 0, 0 = Pin 15 (RH2)
- 1, 0, 1 = Pin 20 (RL0)
- 1, 1, 0 = Pin 21 (RL1)
- 1, 1, 1 = Pin 22 (RL2)

FLAG_POL (Bit 8): Polarity of the flag when mapped to a GPIO pin

- 0 = No change to flag polarity
- 1 = Invert flag polarity

FLAG_BIT3, FLAG_BIT1, FLAG_BIT0 (Bits 7–4): Bit position within the 16-bit register of the flag

- 0, 0, 0, 0 = Bit 0
- 0, 0, 0, 1 = Bit 1
- 0, 0, 1, 0 = Bit 2
- 0, 0, 1, 1 = Bit 3
- 0, 1, 0, 0 = Bit 4
- 0, 1, 0, 1 = Bit 5
- 0, 1, 1, 0 = Bit 6
- 0, 1, 1, 1 = Bit 7
- 1, 0, 0, 0 = Bit 8

- 1, 0, 0, 1 = Bit 9
- 1, 0, 1, 0 = Bit 10
- 1, 0, 1, 1 = Bit 11
- 1, 1, 0, 0 = Bit 12
- 1, 1, 0, 1 = Bit 13
- 1, 1, 1, 0 = Bit 14
- 1, 0, 0, 1 = Bit 15

FLAG_REG3, FLAG_REG2, FLAG_REG1, FLAG_REG0 (Bits 3–0): Address of the register that contains the flag. Note that *ITStatus()* is the least significant 16 bits of *GaugingStatus()*.

- 0, 0, 0, 0 = BatteryMode()
- 0, 0, 0, 1 = BatteryStatus()
- 0, 0, 1, 0 = OperationStatusA(), lower 16-bits of OperationStatus()
- 0, 0, 1, 1 = OperationStatusB(), higher 16-bits of OperationStatus()
- 0, 1, 0, 0 = ChargingStatus()
- 0, 1, 0, 1 = TempStatus()
- 0, 1, 1, 0 = GaugingStatus()
- 0, 1, 1, 1 = ITStatus()
- 1, 0, 0, 0 = SafetyStatusAB(), lower 16-bits of SafetyStatus()
- 1, 0, 0, 1 = SafetyStatusCD(), higher 16-bits of SafetyStatus()
- 1, 0, 1, 0 = Any Safety Status bit in SafetyStatus()
- 1, 0, 1, 1 = PFStatusAB(), lower 16-bits of PFStatus()
- 1, 1, 0, 0 = PFStatusCD(), higher 16-bits of PFStatus()
- 1, 1, 0, 1 = Any PF Status bit in *PFStatus()*
- 1, 1, 1, 0 = Unused
- 1, 0, 0, 1 = Unused

19.2.2 Fuse

19.2.2.1 Permanent Fail Fuse A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Fuse	Permanent Fail Fuse A	H1	0x0	0xFF	0x0	

7	6	5	4	3	2	1	0
QIM	SOTF	RSVD	SOT	SOCD	SOCC	SOV	SUV

Fuse blow action for PFStatus() bits:

QIM (Bit 7): QMax Imbalance

- 1 = Enabled
- 0 = Disabled (default)

SOTF (Bit 6): Safety Overtemperature FET

- 1 = Enabled
- 0 = Disabled (default)

RSVD (Bit 5): Reserved. Do not use.

SOT (Bit 4): Safety Overtemperature

1 = Enabled

0 = Disabled (default)

SOCD (Bit 3): Safety Overcurrent in Discharge

1= Enabled

0 = Disabled (default)

SOCC (Bit 2): Safety Overcurrent in Charge

1= Enabled

0 = Disabled (default)

SOV (Bit 1): Safety Cell Overvoltage

1 = Enabled

0 = Disabled (default)

SUV (Bit 0): Safety Cell Undervoltage

1 = Enabled

0 = Disabled (default)

19.2.2.2 Permanent Fail Fuse B

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Fuse	Permanent Fail Fuse B	H1	0x0	0xFF	0	Hex
			•		•		

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VIMA	VIMR	CD	IMP	СВ

Fuse blow action for PFStatus() bits:

RSVD (Bits 7-5): Reserved. Do not use.

VIMA (Bit 4): Voltage Imbalance Active

1 = Enabled

0 = Disabled (default)

VIMR (Bit 3): Voltage Imbalance At Rest

1 = Enabled

0 = Disabled (default)

CD (Bit 2): Capacity Degradation

1 = Enabled

0 = Disabled (default)

IMP (Bit 1): Cell impedance

1 = Enabled

0 = Disabled (default)

CB (Bit 0): Cell balancing

1 = Enabled

0 = Disabled (default)

19.2.2.3 Permanent Fail Fuse C

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Fuse	Permanent Fail Fuse C	H1	0x0	0xFF	0	Hex

7		6	5	4	3	2	1	0
PTC	,	2LVL	AFEC	AFER	FUSE	RSVD	DFETF	CFETF

Fuse blow action for PFStatus() bits:

PTC (Bit 7): Permanent Fail flag Display

- 1 = Enables **PFStatus[PTC]** = 1 when PTC fault is triggered. Function should be enabled/disabled by the PTCEN pin connection.
- 0 = Disables the **PFStatus[PTC]** = 1 when PTC fault is triggered. Function should be enabled/disabled by the PTCEN pin connection.

2LVL (Bit 6): FUSE input indicating fuse trigger by external 2nd level protection

- 1 = Enabled
- 0 = Disabled (default)

AFEC (Bit 5): AFE Communication

- 1 = Enabled
- 0 = Disabled (default)

AFER (Bit 4): AFE Register

- 1 = Enabled
- 0 = Disabled (default)

FUSE (Bit 3): Fuse input to indicate chemical fuse failure

- 1 = Enabled
- 0 = Disabled (default)

RSVD (Bit 2): Reserved. Do not use.

DFETF (Bit 1): Discharge FET

- 1 = Enabled
- 0 = Disabled (default)

CFETF (Bit 0): Charge FET

- 1 = Enabled
- 0 = Disabled (default)

19.2.2.4 Permanent Fail Fuse D

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Fuse	Permanent Fail Fuse D	H1	0x0	0xFF	0x0	Hex

7	6	5	4	3	2	1	0
TS4	TS3	TS2	TS1	RSVD	DFW	RSVD	IFC

Fuse blow action for PFStatus() bits:

TS4 (Bit 7)

1 = Enabled

0 = Disabled (default)

TS3 (Bit 6)

1 = Enabled

0 = Disabled (default)

TS2 (Bit 5)

1 = Enabled

0 = Disabled (default)

TS1 (Bit 4)

1 = Enabled

0 = Disabled (default)

RSVD (Bit 3): Reserved. Do not use.

DFW (Bit 2): DF wearout

1 = Enabled

0 = Disabled (default)

RSVD (Bit 1): Reserved. Do not use.

IFC (Bit 0)

1 = Enabled

0 = Disabled (default)

19.2.2.5 Min Blow Fuse Voltage

Class	Subclass	Name	Туре	Min	Max	Default
Settings	Fuse	Min Blow Fuse Voltage	12	0	65535	3500

Description: Minimum voltage required to attempt fuse blow, pack based, FET failures bypass this requirement to blow the fuse.

19.2.2.6 Fuse Blow Timeout

Class	Subclass	class Name		Min	Max	Default
Settings	Fuse	Fuse Blow Timeout	U1	0	255	30

Description: Minimum time to keep the fuse blow voltage high

19.2.3 BTP

19.2.3.1 Init Discharge Set

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	BTP	Init Discharge Set	12	0	32767	150	mAh

Description: Initial value for BTPDischargeSet()

19.2.3.2 Init Charge Set

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	BTP	Init Discharge Set	12	0	32767	175	mAh

Description: Initial value for BTPChargeSet()

19.2.4 Protection

19.2.4.1 Protection Configuration

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Protection	Protection Configuration	H1	0x00	0x07	0x00	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	CUDEP_REQ_ CHG	CUV_RECOV_ CHG	SUV_MODE

RSVD (Bits 7-3): Reserved. Do not use.

CUDEP_REQ_CHG (Bit 2): Forces the charge request to be non-zero during copper deposition check for *PFStatus()[CUV]*

- 1 = Enabled
- 0 = Disabled (default)

CUV_RECOV_CHG (Bit 1): Requires the charge to recover SafetyStatus()[CUV]

- 1 = Enabled
- 0 = Disabled (default)

SUV_MODE (Bit 0): Checks copper Deposition for PFStatus()[CUV]

- 1 = Enabled
- 0 = Disabled (default)

19.2.4.2 Enabled Protections A

Class	Subclass	Name	Type	Min	Max	Default	Unit
Settings	Protection	Enabled Protections A	H1	0x00	0xFF	0xFF	Hex

7	6	5	4	3	2	1	0
AOLDL	RSVD_ONE	OCD2	OCD1	OCC2	OCC1	COV	CUV

AOLDL (Bit 7): Overload in Discharge latch

1 = Enabled (default)

0 = Disabled

RSVD_ONE (Bit 6): Reserved and programmed to 1. Do not use.

OCD2 (Bit 5): Overcurrent in Discharge 2nd Tier

1 = Enabled (default)

0 = Disabled

OCD1 (Bit 4): Overcurrent in Discharge 1st Tier

1 = Enabled (default)

0 = Disabled

OCC2 (Bit 3): Overcurrent in Charge 2nd Tier

1 = Enabled (default)

0 = Disabled

OCC1 (Bit 2): Overcurrent in Charge 1st Tier

1 = Enabled (default)

0 = Disabled

COV (Bit 1): Cell Overvoltage

1 = Enabled (default)

0 = Disabled

CUV (Bit 0): Cell Undervoltage

1 = Enabled (default)

0 = Disabled

19.2.4.3 Enabled Protections B

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Enabled Protections B	H1	0x00	0xFF	0xFF	1

7	6	5	4	3	2	1	0
RSVD	CUVC	OTD	OTC	ASCDL	RSVD_ONE	ASCCL	ASCC

RSVD (Bit 7): Reserved. Do not use.

CUVC (Bit 6): I*R compensated CUV

1 = Enabled (default)

0 = Disabled

OTD (Bit 5): Overtemperature in discharge

1 = Enabled (default)

0 = Disabled

OTC (Bit 4): Overtemperature in charge

1 = Enabled (default)

0 = Disabled

www.ti.com Settings

ASCDL (Bit 3): Short circuit in discharge latch

1 = Enabled (default)

0 = Disabled

RSVD_ONE (Bit 2): Reserved and programmed to 1. Do not use.

ASCCL (Bit 1): Short circuit in charge latch

1 = Enabled (default)

0 = Disabled

ASCC (Bit 0): Short circuit in charge

1 = Enabled (default)

0 = Disables the SafetyAlert() and SafetyStatus() flag only and does NOT disable the FET actions.

19.2.4.4 Enabled Protections C

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Enabled Protections C	H1	0x00	0xFF	0xFF	Hex

7	6	5	4	3	2	1	0	
CHGC	OC	RSVD	СТО	RSVD	PTO	HWDF	OTF	

CHGC (Bit 7): ChargingCurrent() higher than requested

1 = Enabled (default)

0 = Disabled

OC (Bit 6): Overcharge

1 = Enabled (default)

0 = Disabled

RSVD (Bit 5): Reserved. Do not use.

CTO (Bit 4): Charging timeout

1 = Enabled (default)

0 = Disabled

RSVD (Bit 3): Reserved. Do not use.

PTO (Bit 2): Precharging timeout

1 = Enabled (default)

0 = Disabled

HWDF (Bit 1): SBS Host watchdog timeout

1 = Enabled (default)

0 = Disabled

OTF (Bit 0): FET overtemperature

1 = Enabled (default)

0 = Disabled

Settings www.ti.com

19.2.4.5 Enabled Protections D

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Protection	Enabled Protections D	H1	0x00	0xFF	0xFF	Hex

7	6	5	4	3	2	1	0
RSVD	RSVD	OCDL	COVL	UTD	UTC	PCHGC	CHGV

RSVD (Bits 7-6): Reserved. Do not use.

OCDL (Bit 5): Overcurrent in Discharge related PF

1 = Enabled (default)

0 = Disabled

COVL (Bit 4): Cell Overvoltage Latch related PF

1 = Enabled (default)

0 = Disabled

UTD (Bit 3): Undertemperature While Not Charging

1 = Enabled (default)

0 = Disabled

UTC (Bit 2): Undertemperature While Charging

1 = Enabled (default)

0 = Disabled

PCHGC (Bit 1): ChargingCurrent() higher than requested in precharge

1 = Enabled (default)

0 = Disabled

CHGV (Bit 0): Charging Voltage() higher than requested

1 = Enabled (default)

0 = Disabled

19.2.5 Permanent Failure

19.2.5.1 Enabled PF A

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF A	H1	0x00	0xFF	0x00	Hex

7	6	5	4	3	2	1	0
QIM	SOTF	COVL	SOT	SOCD	SOCC	SOV	SUV

QIM (Bit 7): QMax Imbalance

1 = Enabled

0 = Disabled (default)

OTF (Bit 6): Overtemperature FET

1 = Enabled

0 = Disabled (default)

COVL (Bit 5): Cell Overvoltage Latch

www.ti.com Settings

1 = Enabled

0 = Disabled

SOT (Bit 4): Safety Overtemperature

1 = Enabled

0 = Disabled (default)

SOCD (Bit 3): Safety Overcurrent in Discharge

1= Enabled

0 = Disabled (default)

SOCC (Bit 2): Safety Overcurrent in Charge

1= Enabled

0 = Disabled (default)

SOV (Bit 1): Safety Cell Overvoltage

1 = Enabled

0 = Disabled (default)

SUV (Bit 0): Safety Cell Undervoltage

1 = Enabled

0 = Disabled (default)

19.2.5.2 Enabled PF B

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF B	H1	0x00	0xFF	0x00	_
			•				
7		4	0	0		4	0

1	O	5	4	3	2	1	U
ASCDL	ASCCL	AOLDL	VIMA	VIMR	CD	IMP	СВ

ASCDL (Bit 7): Short Circuit in Discharge—PF Enable

1 = Enabled

0 = Disabled

ASCCL (Bit 6): Short Circuit in Charge—PF Enable

1 = Enabled

0 = Disabled

AOLDL (Bit 5): Overload in Discharge—PF Enable

1 = Enabled

0 = Disabled

VIMA (Bit 4): Voltage Imbalance Active

1 = Enabled

0 = Disabled

VIMR (Bit 3): Voltage Imbalance At Rest

1 = Enabled

0 = Disabled

CD (Bit 2): Capacity Degradation

1 = Enabled

0 = Disabled

Settings www.ti.com

IMP (Bit 1): Cell impedance

1 = Enabled

0 = Disabled

CB (Bit 0): Cell balancing

1 = Enabled

0 = Disabled

19.2.5.3 Enabled PF C

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF C	H1	0x00	0xFF	0x00	Hex

7	6	5	4	3	2	1	0
PTC	2LVL	AFEC	AFER	FUSE	OCDL	DFET	CFETF

PTC (Bit 7): Permanent Fail Flag Display

1 = Enables **PFStatus[PTC]** = 1 when PTC fault is triggered. The function should be enabled/disabled by the PTCEN pin connection.

0 = Disables the **PFStatus[PTC]** = 1 when PTC fault is triggered. The function should be enabled/disabled by the PTCEN pin connection.

2LVL (Bit 6): FUSE input indicating fuse trigger by external 2nd level protection

1 = Enabled (default)

0 = Disabled

AFEC (Bit 5): AFE Communication

1 = Enabled (default)

0 = Disabled

AFER (Bit 4): AFE Register

1 = Enabled (default)

0 = n/a

FUSE (Bit 3): Fuse

1 = Enabled (default)

0 = Disabled

OCDL (Bit 2): Overcurrent in Discharge—PF Enable

1 = Enabled

0 = Disabled

DFET (Bit 1): Discharge FET

1 = Enabled (default)

0 = Disabled

CFETF (Bit 0): Charge FET

1 = Enabled (default)

0 = Disabled

www.ti.com Settings

19.2.5.4 Enabled PF D

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Permanent Failure	Enabled PF D	H1	0x00	0xFF	0x00	Hex

7	6	5	4	3	2	1	0
TS4	TS3	TS2	TS1	RSVD	RSVD	RSVD	RSVD

TS4 (Bit 7)

1 = Enabled (default)

0 = Disabled

TS3 (Bit 6)

1 = Enabled (default)

0 = Disabled

TS2 (Bit 5)

1 = Enabled (default)

0 = Disabled

TS1 (Bit 4)

1 = Enabled (default)

0 = Disabled

RSVD (Bits 3-0): Reserved. Do not use.

19.2.6 AFE

19.2.6.1 AFE Protection Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Configuration	AFE	AFE Protection Control	H1	0x00	0xFF	0x70	Hex

7	6	5	4	3	2	1	0
RSTRIM	RSTRIM	RSTRIM	RSTRIM	RSVD	RSVD	SCDDx2	RSNS

RSTRIM (Bits 7–4): *Unsupport* function. Should leave the default setting 0x7. Changing this setting may cause an error to the AFE current protection accuracy.

RSVD (Bits 3-2): Reserved. Do not use.

SCDDx2 (Bit 1): Double SCD Delay Times

 $1 = 2 \times SCD$ delay times

0 = Normal SCD delay times (default)

RSNS (Bit 0): AOLD, ASCC, ASCD1, ASCD2 Thresholds

1 = Normal AFE Protection Thresholds

 $0 = 0.5 \times AFE$ Protection Thresholds (default)

Settings www.ti.com

19.2.7 ZVCHG Exit Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Configuration	AFE	ZVCHG Exit Threshold	12	0x0	0xFFFF	0x0000	mV

Description: Voltage() threshold where the gauge will exit ZVCHG mode when CFET is used for precharging.

19.3 Manufacturing

19.3.1 Manufacturing Status Init

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Manufacturing	Manufacturing Status Init	H2	0x0	0xFFFF	0x0000	Hex

15	14	13	12	11	10	9	8
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	LED_EN	FUSE_EN
7	6	5	4	2	2	1	0
	U	J	4	J	۷	<u> </u>	
BBR_EN	PF_EN	LF_EN	FET_EN	GAUGE_EN	RSVD	RSVD	RSVD

RSVD (Bits 15-10): Reserved. Do not use.

LED_EN (Bit 9): LED Display

1 = Enabled

0 = Disabled

FUSE_EN (Bit 8): FUSE action

1 = Enabled

0 = Disabled (default)

BBR_EN (Bit 7): Black Box Recorder

1 = Enabled

0 = Disabled (default)

PF_EN (Bit 6): Permanent Fail

1 = Enabled

0 = Disabled (default)

LF_EN (Bit 5): Lifetime Data Collection

1 = Enabled

0 = Disabled

FET_EN (Bit 4): FET action

1 = Enabled

0 = Disabled (default)

GAUGE_EN (Bit 3): Gauging

1 = Enabled

0 = Disabled (default)

RSVD (Bits 2–0): Reserved. Do not use.

www.ti.com Current Scaling

19.4 Current Scaling

19.4.1 Scale Factor

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Settings	Current Scaling	Scale Factor	U1	0	100	0	

Description Scale down the current to support large current greater than 32767 mA.

19.5 Advanced Charging Algorithm

19.5.1 Temperature Ranges

19.5.1.1 T1 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	T1 Temp	I1	-128	127	0	°C

Description: T1 low temperature range lower limit

19.5.1.2 T2 Temp

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	T2 Temp	I1	-128	127	12	°C

Description: T2 low temperature range to standard temperature range

19.5.1.3 T5 Temp

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	T5 Temp	l1	-128	127	20	°C

Description: T5 recommended temperature range lower limit

19.5.1.4 T6 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	T6 Temp	I1	-128	127	25	°C

Description: T6 recommended temperature range upper limit

19.5.1.5 T3 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	T3 Temp	I1	-128	127	30	°C

Description: T3 standard temperature range to high temperature range

19.5.1.6 T4 Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	T4 Temp	I1	-128	127	55	°C

Description: T4 high temperature range upper limit

19.5.1.7 Hysteresis

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Temperature Ranges	Hysteresis Temp	l1	-128	127	1	°C

Description: Temperature Hysteresis, applied when temperature is decreasing.

19.5.2 Low Temp Charging

19.5.2.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Low Temp Charging	Voltage	12	0	32767	4000	mV

Description: Low temperature range *ChargingVoltage()*

19.5.2.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Low Temp Charging	Current Low	12	0	32767	132	mA

Description: Low temperature range low voltage range *ChargingCurrent()*

19.5.2.3 Current Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Low Temp Charging	Current Med	12	0	32767	352	mA

Description: Low temperature range medium voltage range *ChargingCurrent()*

19.5.2.4 Current High

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Low Temp Charging	Current High	12	0	32767	264	mA

Description: Low temperature range high voltage range *ChargingCurrent()*

19.5.3 Standard Temp Low Charging

19.5.3.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp Low Charging	Voltage	12	0	32767	4200	mV

Description: Standard temperature range *ChargingVoltage()*

19.5.3.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp Low Charging	Current Low	12	0	32767	1980	mA

Description: Standard temperature range low voltage range *ChargingCurrent()*

19.5.3.3 Current Med

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp Low Charging	Current Med	12	0	32767	4004	mA

Description: Standard temperature range medium voltage range *ChargingCurrent()*

19.5.3.4 Current High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp Low Charging	Current High	12	0	32767	2992	mA

Description: Standard temperature range high voltage range ChargingCurrent()

19.5.4 Standard Temp High Charging

19.5.4.1 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp High Charging	Voltage	12	0	32767	4200	mV

Description: Standard temperature range *ChargingVoltage()*

19.5.4.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp High Charging	Current Low	12	0	32767	1980	mA

Description: Standard temperature range low voltage range *ChargingCurrent()*

19.5.4.3 Current Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp High Charging	Current Med	12	0	32767	4004	mA

Description: Standard temperature range medium voltage range *ChargingCurrent()*

19.5.4.4 Current High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Standard Temp High Charging	Current High	12	0	32767	2992	mA

Description: Standard temperature range high voltage range *ChargingCurrent()*

19.5.5 High Temp Charging

19.5.5.1 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	High Temp Charging	Voltage	12	0	32767	4000	mV

Description: High temperature range *ChargingVoltage()*

19.5.5.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	High Temp Charging	Current Low	12	0	32767	1012	mA

Description: High temperature range low voltage range *ChargingCurrent()*

19.5.5.3 Current Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	High Temp Charging	Current Med	12	0	32767	1980	mA

Description: High temperature range medium voltage range *ChargingCurrent()*

19.5.5.4 Current High

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	High Temp Charging	Current High	12	0	32767	1496	mA

Description: High temperature range high voltage range *ChargingCurrent()*

19.5.6 Rec Temp Charging

19.5.6.1 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Rec Temp Charging	Voltage	12	0	32767	4100	mV

Description: Recommended temperature range *ChargingVoltage()*

19.5.6.2 Current Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Rec Temp Charging	Current Low	12	0	32767	2508	mA

Description: Recommended temperature range low voltage range ChargingCurrent()

19.5.6.3 Current Med

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Rec Temp Charging	Current Med	12	0	32767	4488	mA

Description: Recommended temperature range medium voltage range ChargingCurrent()

19.5.6.4 Current High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Rec Temp Charging	Current High	12	0	32767	3520	mA

Description: Recommended temperature range high voltage range ChargingCurrent()

19.5.7 PreCharging

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	PCHG	Current	12	0	32767	88	mA

Description: Precharge ChargingCurrent()

19.5.8 Maintenance Charging

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	MCHG	Current	12	0	32767	44	mA

Description: Maintenance *ChargingCurrent()*

19.5.9 Voltage Range

19.5.9.1 Precharge Start Voltage

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
Α	dvanced Charging Algorithm	Voltage Range	Precharge Start Voltage	12	0	32767	2500	mV

Description: Min cell voltage to enter PRECHARGE mode

19.5.9.2 Charging Voltage Low

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Voltage Range	Charging Voltage Low	12	0	32767	2900	mV

Description: Precharge Voltage range to Charging Voltage Low range

19.5.9.3 Charging Voltage Med

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Voltage Range	Charging Voltage Med	12	0	32767	3600	mV

Description: Charging Voltage Low range to Charging Voltage Med range

19.5.9.4 Charging Voltage High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Voltage Range	Charging Voltage High	12	0	32767	4000	mV

Description: Charging Voltage Med to Charging Voltage High range

19.5.9.5 Charging Voltage Hysteresis

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Voltage Range	Charging Voltage Hysteresis	U1	0	255	0	mV

Description: *Charging Voltage Hysteresis* applied when voltage is decreasing.

19.5.10 Termination Config

19.5.10.1 Charge Term Taper Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Termination Config	Charge Term Taper Current	12	0	32767	250	mA

Description: Valid charge termination taper current qualifier threshold

19.5.10.2 Charge Term Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Termination Config	Charge Term Voltage	12	0	32767	75	mV

Description: Valid charge termination delta voltage qualifier, max cell-based

19.5.11 Charging Rate of Change

19.5.11.1 Current Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Charging Rate of Change	Current Rate	U1	1	255	1	steps/s

Description: Number of steps to add between any two *ChargingCurrent()* settings

19.5.11.2 Voltage Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Charging Rate of Change	Voltage Rate	U1	1	255	1	steps/s

Description: Number of steps to add between any two *ChargingVoltage()* settings

19.5.12 Charge Loss Compensation

19.5.12.1 CCC Current Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Charge Loss Compensation	CCC Current Threshold	12	0	32767	3520	mA

Description: CONSTANT CURRENT CHARGE mode *ChargingCurrent()* threshold to activate Charge Loss Compensation

19.5.12.2 CCC Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Charge Loss Compensation	CCC Voltage Threshold	12	0	32767	4200	mV

Description: CONSTANT CURRENT CHARGE mode max ChargingVoltage() increase limit

19.5.13 Cell Balancing Config

19.5.13.1 Balance Time per mAh Cell 1

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
,	Advanced Charging Algorithm	Cell Balancing Config	Balance Time per mAh Cell 1	U2	0	65535	367	s/mAh

Description: Required balance time per mAh for Cell 1. For information on how to calculate balancing time, see Section 8.1.

19.5.13.2 Balance Time per mAh Cell 2-4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Cell Balancing Config	Balance Time per mAh Cell 2–4	U2	0	65535	514	s/mAh

Description: Required balance time per mAh for Cells 2 to 4. For information on how to calculate balancing time, see Section 8.1.

19.5.13.3 Min Start Balance Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Cell Balancing Config	Min Start Balance Delta	U1	0	255	3	mV

Description: Minimum cell voltage delta to start cell balancing during *Relax Balance Interval* checks. This condition is checked in RELAX mode and so it only applies if cell balancing at rest is enabled.

19.5.13.4 Start Rsoc for Bal in Sleep

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charge Algorithm	Cell Balancing Config	Start Rsoc for Bal in Sleep	U1	0	100	95	%

Description: This sets the RSOC threshold below which cell balancing in sleep (if enabled) will be permitted to start. This works in conjunction with the **Start time for Bal in Sleep** requirement.

19.5.13.5 End Rsoc for Bal in Sleep

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	Cell Balancing Config	End Rsoc for Bal in Sleep	U1	0	100	60	%

Description: This sets the RSOC threshold below which cell balancing in sleep (if enabled) if active will be terminated.

19.5.13.6 Start Time for Bal in Sleep

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	Cell Balancing Config	Start Time for Bal in Sleep	U2	0	65520	100	h

Description: This sets the minimum time threshold the gauge must be in sleep to allow below cell balancing in sleep (if enabled) to start. This works in conjunction with the **Start Rsoc for Bal in Sleep** requirement.

19.5.13.7 Relax Balance Interval

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Cell Balancing Config	Relax Balance Interval	U4	0	4294967295	18000	S

Description: Interval during RELAX mode to check for cell imbalance. This parameter applies to cell balancing at rest only.

19.5.13.8 Min RSOC for Balancing

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
Ad	dvanced Charging Algorithm	Cell Balancing Config	Min RSOC for Balancing	U1	0	100	80	%

Description: Minimum *RelativeStateOfCharge()* threshold for cell balancing. This condition is checked during relaxation and so it only applies if cell balancing at rest is enabled.

19.5.14 Degrade Mode 1

19.5.14.1 Cycle Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 1	Cycle Threshold	U2	0	65535	50	

Description: This sets the cycle count related threshold at/above which the first Level (Mode 1) CV and CC degradations can begin if CYCLE_DEGRADE is set.

19.5.14.2 SOH Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 1	SOH Threshold	U1	0	100	95	%

Description: This sets the SOH-related threshold at/above which the first Level (Mode 1) CV and CC degradations can begin if SOH_DEGRADE is set.

19.5.14.3 Voltage Degradation

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 1	Voltage Degradation	12	0	32767	40	mV

Description: This sets the amount of voltage degradation from the charging voltage that will occur at the Mode 1 level if this feature is enabled.

19.5.14.4 Current Degradation

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 1	Current Degradation	12	0	100	10	%

Description: This sets the percentage of current degradation from the charging current that will occur at the Mode 1 level if this feature is enabled.

19.5.15 Degrade Mode 2

19.5.15.1 Cycle Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 2	Cycle Threshold	U2	0	65535	150	_

Description: This sets the cycle count related threshold at/above which the first Level (Mode 2) CV and CC degradations can begin if CYCLE_DEGRADE is set.

19.5.15.2 SOH Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 2	SOH Threshold	U1	0	100	80	%

Description: This sets the SOH related threshold at/above which the first Level (Mode 2) CV and CC degradations can begin if SOH_DEGRADE is set.

19.5.15.3 Voltage Degradation

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 2	Voltage Degradation	12	0	32767	10	mV

Description: This sets the amount of voltage degradation from the charging voltage that will occur at the Mode 2 level if this feature is enabled.

19.5.15.4 Current Degradation

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 2	Current Degradation	12	0	100	20	%

Description: This sets the percentage of current degradation from the charging current that will occur at the Mode 2 level if this feature is enabled.

19.5.16 Degrade Mode 3

19.5.16.1 Cycle Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 3	Cycle Threshold	U2	0	65535	350	

Description: This sets the cycle count related threshold at/above which the first Level (Mode 3) CV and CC degradations can begin if CYCLE_DEGRADE is set.

19.5.16.2 SOH Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 3	SOH Threshold	U1	0	100	60	%

Description: This sets the SOH related threshold at/above which the first Level (Mode 3) CV and CC degradations can begin if SOH_DEGRADE is set.

19.5.16.3 Voltage Degradation

Class	Subclass	Name	Type	Min	Max	Default	Unit	
Advanced Charging Algorithm	Degrade Mode 3	Voltage Degradation	12	0	32767	70	mV	

Description: This sets the amount of voltage degradation from the charging voltage that will occur at the Mode 3 level if this feature is enabled.

19.5.16.4 Current Degradation

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charging Algorithm	Degrade Mode 3	Current Degradation	12	0	100	40	%

Description: This sets the percentage of current degradation from the charging current that will occur at the Mode 3 level if this feature is enabled.

19.5.17 IR Correction

19.5.17.1 Averaging Interval

Class	Subclass	Name	Type	Min	Max	Default	Unit
Advanced Charge Algorithm	IR Correction	Averaging Interval	U1	1	255	12	s

Description: To prevent overcharging by the IR compensation scheme (in case the **System Resistance** is set too high) the IT algorithm runs an averaging calculation to reduce the charging voltage if needed. This averaging calculation is averaged over the averaging interval defined in this register.

19.5.18 CS Degrade

19.5.18.1 Temperature Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	CS Degrade	Temperature Threshold	l2	0	32767	3232	0.1°K

Description: This sets the temperature threshold that the cell temperature is compared to in the cell swelling control feature.

19.5.18.2 Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	CS Degrade	Voltage Threshold	12	0	32767	4200	mV

Description: This sets the voltage threshold that the max cell voltage is compared to in the cell swelling control feature.

19.5.18.3 Time Interval

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	CS Degrade	Time Interval	U2	0	14400	300	s

Description: This sets the time period that the cell swelling control feature compares with how long the max cell voltage and cell temperature have been above their thresholds. After which the charging voltage is stepped down.

19.5.18.4 Delta Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	CS Degrade	Delta Voltage	12	0	32767	25	mV

Description: This sets the voltage level that the charging voltage will be stepped down as part of the swelling control feature.

19.5.18.5 Min CV

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Advanced Charge Algorithm	CS Degrade	Min CV	12	0	32767	3000	mV

Description: This sets the lowest level that the charging voltage will be allowed to step down to as part of the swelling control feature.

www.ti.com

19.6 Power

19.6.1 Power

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Power	Valid Update Voltage	12	0	32767	3500	mV

Description: Min stack voltage threshold for Flash update

19.6.2 Shutdown

19.6.2.1 Shutdown Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Shutdown	Shutdown Voltage	12	0	32767	1750	mV

Description: Cell-based shutdown voltage trip threshold

19.6.2.2 Shutdown Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Shutdown	Shutdown Time	U2	0	255	10	s

Description: Cell-based shutdown voltage trip delay

19.6.2.3 Charger Present Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Shutdown	Charger Present Threshold	12	0	32767	3000	mV

Description: PACK pin charger present detect threshold for shutdown hardware. This value should not be greater than 3 V, unless the charger output is less than 3 V.

19.6.3 Sleep

19.6.3.1 Sleep Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Sleep Current	12	0	32767	10	mA

Description: |Current()| threshold to enter SLEEP mode. If this parameter is set to 0, then the **deadband** will effectively become the **Sleep Current** setting, because any current below the **deadband** will set the Current() = 0 mA.

19.6.3.2 Bus Timeout

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Bus Timeout	U1	0	255	5	S

Description: Bus low or no communication time to enter SLEEP mode

Power

Power www.ti.com

19.6.3.3 Voltage Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Voltage Time	U1	0	255	5	s

Description: Voltage() sampling period in SLEEP mode

19.6.3.4 Current Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Current Time	U1	0	255	20	s

Description: Current() sampling period in SLEEP mode

19.6.3.5 Wake Comparator

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Sleep	Wake Comparator	H1	0x00	0xFF	0x00	_

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	WK1	WK0	RSVD	RSVD

RSVD (Bits 7-4): Reserved. Do not use.

WK1, WK0 (Bits 3-2): Wake Comparator Threshold

 $1,1 = \pm 5 \text{ mV}$

 $1.0 = \pm 2.5 \text{ mV}$

 $0,1 = \pm 1.25 \text{ mV}$

 $0.0 = \pm 0.625 \text{ mV}$

RSVD (Bits 1-0): Reserved. Do not use.

19.6.4 Ship

19.6.4.1 FET Off Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Ship	FET Off Time	U1	0	127	10	s

Description: Delay time to turn off FETs prior to entering SHUTDOWN mode. This setting should not be longer than the **Ship Delay** setting.

19.6.4.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Ship	Delay	U1	0	254	20	s

Description: Delay time to enter SHUTDOWN mode after FETs are turned off.

www.ti.com Power

19.6.4.3 Auto Ship Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Ship	Auto Ship time	U2	0	65535	1440	min

Description: The bq40z80 device will automatically enter SHUTDOWN mode after staying in SLEEP mode without communication for this amount of time when **Power Config[AUTO_SHIP_EN]** = 1.

19.6.5 Power Off

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Power Off	Timeout	U2	0	65535	30	min

Description: Timeout to exit the Emergency FET Shutdown condition

19.6.6 Manual FET Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit	
Power	Manual FET Control	MFC Delay	U1	0	255	60	0.25 s	

Description: Delay time to turn off FETs through MFC

19.6.7 PDSG Timeout

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Pre-Discharge	PDSG Timeout	U2	0	16384	10	0.25 s

Description: Timeout to come out of PRE-DISCHARGE mode

19.6.8 PDSG Level

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Pre-Discharge	PDSG Level	U1	0	100	60	0%

Description: Percent level of BAT voltage, PACK+ voltage should be to come out of PRE-DISCHARGE mode

19.6.9 IATA

19.6.9.1 IATA Config

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA Config	H1	0	0xFF	0x03	_

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	ISTORE_RM	ISTORE_FCC

RSVD (Bits 7-2): Reserved. Do not use.

ISTORE_RM (Bit 1): This bit defines whether the stored value of RM (*IATA RM*) or the true value is displayed during the *IATA Delay Time* period.

1 = Stored value of RM (IATA RM) is displayed during the *IATA Delay Time* period. (default)

Power www.ti.com

0 = True (present) value of RM is displayed.

ISTORE_FCC (Bit 0): This bit defines whether the stored value of FCC (*IATA FCC*) or the true value is displayed during the *IATA Delay Time* period.

- 1 = Stored value of FCC (IATA FCC) is displayed during the IATA Delay Time period. (default)
- 0 = True (present) value of FCC is displayed.

19.6.9.2 IATA Delay Time

Cla	ss	Subclass	Name	Туре	Min	Max	Default	Unit
Pov	er	IATA	IATA Delay Time	U2	0	65535	10	S

Description: *IATA Delay Time* holds the time that the stored RM and FCC values are displayed initially on wake up from IATA shutdown.

19.6.9.3 IATA RSOC Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA RSOC Threshold	U1	0	100	30	%

Description: *IATA RSOC Threshold* holds the RSOC threshold above which IATA shutdown will not be allowed.

19.6.9.4 IATA DeltaV Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA DeltaV Threshold	U1	0	255	50	mV

Description: Holds the Delta threshold allowed between the max cell voltage and the min cell voltage in the pack. If this threshold is exceeded, only the True (that is, present) value of FCC and RC are displayed on wake up from IATA shutdown.

19.6.9.5 IATA Wake AbsRSOC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA Wake AbsRSOC	U1	0	100	10	%

Description: On wake up from *IATA* shutdown, if *IATA Delay Time* = 0, and if true RSOC is ≤ *IATA Wake AbsRSOC*, then the true value of remaining capacity and FCC will be immediately displayed on wake up.

19.6.9.6 IATA Delta RSOC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA Delta RSOC	U1	0	100	3	%

Description: On wake up from IATA shutdown, if *IATA Delay Time* = 0 and if true RSOC is > *IATA Wake AbsRSOC*, then only after a change in true RSOC ≥ *IATA Delta RSOC* is detected, will the display switch from the stored *IATA RM* and *IATA FCC* values to the true value of remaining capacity and FCC.

www.ti.com

19.6.9.7 IATA MIN Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA MIN Temperature	12	-32767	32767	100	0.1C

Description: *IATA MIN Temperature* holds the min temperature below which, on wake up from IATA, only the true (present) value of FCC and RM is displayed.

19.6.9.8 IATA MAX Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA	IATA MAX Temperature	12	0	32767	400	0.1C

Description: *IATA MAX Temperature* holds the max temperature above which, on wake up from IATA, only the true (present) value of FCC and RM is displayed.

19.6.9.9 IATA MIN Voltage

(Class	Subclass	Name	Туре	Min	Max	Default	Unit
ı	Power	IATA	IATA MIN Voltage	12	0	32767	3000	mV

Description: *IATA MIN Voltage* holds the min voltage below which, on wake up from IATA, only the true (present) value of FCC and RM is displayed.

19.6.9.10 IATA MAX Voltage

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
ſ	Power	IATA	IATA MAX Voltage	12	0	32767	3600	mV

Description: *IATA MAX Voltage* holds the max voltage above which, on wake up from IATA, only the true (present) value of FCC and RM is displayed.

19.6.10 IATA STORE

19.6.10.1 IATA Flag

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA STORE	IATA Flag	H1	0	0xFF	0x03	_

7	6	5	4	3	2	1	0
RSVD	IATA_SHUT						

RSVD (Bits 7-1): Reserved. Do not use.

IATA_SHUT (Bit 0): Enables the IATA shutdown to proceed. This bit is automatically set if the IATA_SHUTDOWN() MAC command is used. This bit needs to be manually set if the normal ShutdownMode() MAC command is expected to do an IATA shutdown.

1 = IATA shutdown is enabled.

0 = IATA shutdown is disabled.

Power

Power www.ti.com

19.6.10.2 IATA RM mAH

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA STORE	IATA RM mAH	12	0	32767	0	mAh

Description: *IATA RM mAH* stores the remaining capacity (in mAh) at the time an IATA shutdown occurs.

19.6.10.3 IATA RM cWH

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA STORE	IATA RM cWH	12	0	32767	0	cWh

Description: IATA RM cWH stores the remaining capacity (in cWh) at the time an IATA shutdown occurs.

19.6.10.4 IATA FCC mAH

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA STORE	IATA FCC mAH	12	0	32767	0	mAh

Description: *IATA FCC mAH* stores the value of FCC (in mAh) at the time an IATA shutdown occurs.

19.6.10.5 IATA FCC cWH

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	IATA STORE	IATA FCC cWH	12	0	32767	0	cWh

Description: *IATA FCC cWH* stores the value of FCC (in cWh) at the time an IATA shutdown occurs.

19.6.11 Unintended Wakeup

19.6.11.1 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Unintended Wakeup	Delay	U1	0	240	2	S

Description: This sets the time in which communication is checked. If during this **Delay** timer period there is no valid communication with the device, then the device goes back into shutdown (with FETs turned off). If there is valid communication within the **Delay** timer period, then the device stays in wake and continues like a normal wakeup.

19.6.11.2 Count

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Power	Unintended Wakeup	Count	U1	0	255	3	_

Description: The number of times the gauge wakes up from shutdown unintentionally is recorded. This "unintentional wakeup" counter is reset when the gauge wakes up and sees valid communication. If this count exceeds the threshold set by this register (*Count* with the default of 3), then the next time the gauge wakes up from shutdown, it will execute a normal wakeup without looking for valid communication (and the counter recording wakeup will be reset). If *Count* is set to 0, then no threshold exists and the gauge will only wake up with valid communications.

www.ti.com LED Support

19.7 LED Support

19.7.1 **LED Config**

19.7.1.1 LED Flash Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Flash Period	U2	32	65535	512	488 µs

Description: LED Flashing period for alarm display

19.7.1.2 LED Blink Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Blink Period	U2	32	65535	1024	488 µs

Description: LED Blinking period for state-of-charge display

19.7.1.3 LED Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED Delay	U2	16	65535	100	488 µs

Description: Delay time from LED to LED for state-of-charge display

19.7.1.4 LED Hold Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Sup	port LED Config	LED Hold Time	U1	1	63	16	0.25 s

Description: LED display active time

19.7.1.5 LED FC Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	LED FC Time	U1	0	94	4	15 min

Description: This threshold sets the time the LED will be left on after FC is achieved (assuming the *[LEDONFC]* bit is set). It is set in segments of 15 min. It is not recommended to leave the LED on for extended periods after FC is achieved due to the potential of short charge / discharge cycling, which can reduce the battery life.

19.7.1.6 CHG Flash Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Flash Alarm	I1	0	100	10	%

Description: RelativeStateOfCharge() alarm threshold during charging

LED Support www.ti.com

19.7.1.7 CHG Thresh 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 1	I1	0	100	0	%

Description: RelativeStateOfCharge() threshold for LED1 during charging

19.7.1.8 CHG Thresh 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 2	I1	0	100	20	%

Description: RelativeStateOfCharge() threshold for LED2 during charging

19.7.1.9 CHG Thresh 3

Class	Subclass	Name	Type	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 3	I1	0	100	40	%

Description: RelativeStateOfCharge() threshold for LED3 during charging

19.7.1.10 CHG Thresh 4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 4	I1	0	100	60	%

Description: RelativeStateOfCharge() threshold for LED4 during charging

19.7.1.11 CHG Thresh 5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 5	I1	0	100	80	%

Description: RelativeStateOfCharge() threshold for LED5 during charging

19.7.1.12 CHG Thresh 6

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	CHG Thresh 6	I1	0	100	90	%

Description: RelativeStateOfCharge() threshold for LED6 during charging

19.7.1.13 DSG Flash Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Flash Alarm	I1	0	100	10	%

Description: RelativeStateOfCharge() alarm threshold during discharging

www.ti.com System Data

19.7.1.14 DSG Thresh 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 1	I1	0	100	0	%

Description: RelativeStateOfCharge() threshold for LED1 during discharging

19.7.1.15 DSG Thresh 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 2	I1	0	100	20	%

Description: RelativeStateOfCharge() threshold for LED2 during discharging

19.7.1.16 DSG Thresh 3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 3	I1	0	100	40	%

Description: RelativeStateOfCharge() threshold for LED3 during discharging

19.7.1.17 DSG Thresh 4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 4	I1	0	100	60	%

Description: RelativeStateOfCharge() threshold for LED4 during discharging

19.7.1.18 DSG Thresh 5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 5	I1	0	100	80	%

Description: RelativeStateOfCharge() threshold for LED5 during discharging

19.7.1.19 DSG Thresh 6

Class	Subclass	Name	Туре	Min	Max	Default	Unit
LED Support	LED Config	DSG Thresh 6	I1	0	100	90	%

Description: RelativeStateOfCharge() threshold for LED6 during discharging

19.8 System Data

19.8.1 Manufacturer Info

Class	Subclass	Name	Type	Min	Max	Default	Units
System Data	Manufacturer Data	ManufacturerInfo	S33	-	-	abcdefghijklmnopqrstu vwzxy012345	_

Description: ManufacturerInfo() value

System Data www.ti.com

19.8.2 Manufacturer Info B

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Manufacturer Info B	ManufacturerInfoB	S33	_	_	abcdefghijklmnopqrstu vwzxy012345	_

Description: ManufacturerInfoB() value

19.8.3 Manufacturer Info C

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Manufacturer Info C	ManufacturerInfoC	S33	_	_	abcdefghijklmnopqrstu vwzxy012345	_

Description: ManufacturerInfoC() value

19.8.4 Manufacturer Info D

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Manufacturer Info D	ManufacturerInfoD	S33	_	_	abcdefghijklmnopqrstu vwzxy012345	_

Description: ManufacturerInfoD() value

19.8.5 Static DF Signature

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Integrity	Static DF Signature	H2	0x0	0x7FFF	0x0	Hex

Description: Static data flash signature. Use MAC *StaticDFSignature()* (with MSB set to 0) to initialize this value.

19.8.6 Static Chem DF

Class	Subclass	Name	Type	Min	Max	Default	Units
System Data	Integrity	Static Chem DF Signature	H2	0x0	0x7FFF	0x0	Hex

Description: Static chemistry data signature. Use MAC *StaticChemDFSignature()* (with MSB set to 0) to initialize this value.

19.8.7 All DF Signature

Class	Subclass	Name	Туре	Min	Max	Default	Units
System Data	Integrity	All DF Signature	H2	0x0	0x7FFF	0x0	Hex

Description: Static data flash signature. Use MAC *AllDFSignature()* (with MSB set to 0) to initialize this value.

www.ti.com Lifetimes

19.9 Lifetimes

19.9.1 Voltage

19.9.1.1 Cell 1 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 1 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 1

19.9.1.2 Cell 2 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 2 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 2

19.9.1.3 Cell 3 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 3 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 3

19.9.1.4 Cell 4 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 4 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 4

19.9.1.5 Cell 5 Max Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 5 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 5

19.9.1.6 Cell 6 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 6 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 6

Lifetimes www.ti.com

19.9.1.7 Cell 7 Max Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 7 Max Voltage	12	0	32767	0	mV

Description: Maximum reported cell voltage 7

19.9.1.8 Cell 1 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 1 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 1

19.9.1.9 Cell 2 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 2 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 2

19.9.1.10 Cell 3 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 3 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 3

19.9.1.11 Cell 4 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 4 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 4

19.9.1.12 Cell 5 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 5 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 5

19.9.1.13 Cell 6 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 6 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 6

www.ti.com Lifetimes

19.9.1.14 Cell 7 Min Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Voltage	Cell 7 Min Voltage	12	0	32767	32767	mV

Description: Minimum reported cell voltage 7

19.9.1.15 Max Delta Cell Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Voltage	Max Delta Cell Voltage	12	0	32767	0	mV

Description: Maximum reported delta between cell voltages 1..4

19.9.2 Current

19.9.2.1 Max Charge Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Charge Current	12	0	32767	0	mA

Description: Maximum reported *Current()* in charge direction

19.9.2.2 Max Discharge Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Discharge Current	12	-32768	0	0	mA

Description: Maximum reported *Current()* in discharge direction

19.9.2.3 Max Avg Dsg Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Avg Dsg Current	12	-32768	0	0	mA

Description: Maximum reported *AverageCurrent()* in discharge direction

19.9.2.4 Max Avg Dsg Power

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Current	Max Avg Dsg Power	12	-32768	0	0	cW

Description: Maximum reported Power in discharge direction

Lifetimes www.ti.com

19.9.3 Temperature

19.9.3.1 Max Temp Cell

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Temp Cell	I1	-128	127	-128	°C

Description: Maximum reported cell temperature

19.9.3.2 Min Temp Cell

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Min Temp Cell	I 1	-128	127	127	°C

Description: Minimum reported cell temperature

19.9.3.3 Max Delta Cell Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Delta Cell Temp	I1	-128	127	0	°C

Description: Maximum reported temperature delta for TSx inputs configured as cell temperature

19.9.3.4 Max Temp Int Sensor

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Max Temp Int Sensor	I1	-128	127	-128	°C

Description: Maximum reported internal temperature sensor temperature

19.9.3.5 Min Temp Int Sensor

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Temperature	Min Temp Int Sensor	I1	-128	127	127	°C

Description: Minimum reported internal temperature sensor temperature

19.9.3.6 Max Temp Fet

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Temperature	Max Temp Fet	I 1	-128	127	-128	°C

Description: Maximum reported FET temperature

www.ti.com Lifetimes

19.9.4 Safety Events

19.9.4.1 No Of COV Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of COV Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[COV]* events

19.9.4.2 Last COV Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last COV Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[COV] event in CycleCount() cycles

19.9.4.3 No Of CUV Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of CUV Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[CUV] events

19.9.4.4 Last CUV Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last CUV Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[CUV] event in CycleCount() cycles

19.9.4.5 No Of OCD1 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCD1 Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[OCD1]* events

19.9.4.6 Last OCD1 Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCD1 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCD1] event in CycleCount() cycles

19.9.4.7 No Of OCD2 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCD2 Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OCD2] events

Lifetimes www.ti.com

19.9.4.8 Last OCD2 Event

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCD2 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCD2] event in CycleCount() cycles

19.9.4.9 No Of OCC1 Events

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCC1 Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OCC1] events

19.9.4.10 Last OCC1 Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCC1 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCC1] event in CycleCount() cycles

19.9.4.11 No Of OCC2 Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OCC2 Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OCC2] events

19.9.4.12 Last OCC2 Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OCC2 Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OCC2] event in CycleCount() cycles

19.9.4.13 No Of AOLD Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of AOLD Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OLD] events

19.9.4.14 Last AOLD Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last AOLD Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OLD] event in CycleCount() cycles

www.ti.com Lifetimes

19.9.4.15 No Of ASCD Events

Class	Subclass	Name	Type	Min	Max	Default	Unit	l
Lifetimes	Safety Events	No Of ASCD Events	U2	0	32767	0	events	

Description: Total number of SafetyStatus()[SCD] events

19.9.4.16 Last ASCD Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last ASCD Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[SCD] event in CycleCount() cycles

19.9.4.17 No Of ASCC Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of ASCC Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[SCC] events

19.9.4.18 Last ASCC Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last ASCC Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[SCC] event in CycleCount() cycles

19.9.4.19 No Of OTC Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OTC Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OTC] events

19.9.4.20 Last OTC Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OTC Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OTC] event in CycleCount() cycles

19.9.4.21 No Of OTD Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OTD Events	U2	0	32767	0	events

Description: Total number of *SafetyStatus()[OTD]* events

Lifetimes www.ti.com

19.9.4.22 Last OTD Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OTD Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OTD] event in CycleCount() cycles

19.9.4.23 No Of OTF Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	No Of OTF Events	U2	0	32767	0	events

Description: Total number of SafetyStatus()[OTF] events

19.9.4.24 Last OTF Event

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Safety Events	Last OTF Event	U2	0	32767	0	cycles

Description: Last SafetyStatus()[OTF] event in CycleCount() cycles

19.9.5 Charging Events

19.9.5.1 No Valid Charge Term

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Charging Events	No Valid Charge Term	U2	0	32767	0	events

Description: Total number of valid charge termination events

19.9.5.2 Last Valid Charge Term

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Charging Events	Last Valid Charge Term	U2	0	32767	0	cycles

Description: Last valid charge termination in CycleCount() cycles

19.9.6 Gauging Events

19.9.6.1 No Of Qmax Updates

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Gauging Events	No Of Qmax Updates	U2	0	32767	0	events

Description: Total number of *GaugingStatus()[QMax]* toggles

www.ti.com Lifetimes

19.9.6.2 Last Qmax Update

Class	Subclass	Name	Type	Min	Max	Default	Unit	l
Lifetimes	Gauging Events	Last Qmax Update	U2	0	32767	0	cycles	

Description: The CycleCount() cycles made at the last event of GaugingStatus()[QMax] update

19.9.6.3 No Of Ra Updates

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	No Of Ra Updates	U2	0	32767	0	events

Description: Total number of *GaugingStatus()[RX]* toggles

19.9.6.4 Last Ra Update

Class	Subclass	Name	Type	Min	Max	Default	Unit
Lifetimes	Gauging Events	Last Ra Update	U2	0	32767	0	cycles

Description: Last GaugingStatus()[RX] toggle in CycleCount() cycles

19.9.6.5 No Of Ra Disable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	No Of Ra Disable	U2	0	32767	0	events

Description: Total number of *GaugingStatus()[R_DIS]* = 1 event

19.9.6.6 Last Ra Disable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Gauging Events	Last Ra Disable	U2	0	32767	0	cycles

Description: The CycleCount() cycles of the last update event of GaugingStatus()[R_DIS] = 1

19.9.7 Power Events

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Power Events	No of Shutdowns	U1	0	255	0	events

Description: Total number of shutdown events

19.9.8 Cell Balancing

19.9.8.1 CB Time Cell 1

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 1	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 0

Lifetimes www.ti.com

19.9.8.2 CB Time Cell 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 2	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 1

19.9.8.3 CB Time Cell 3

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 3	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 2

19.9.8.4 CB Time Cell 4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 4	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 3

19.9.8.5 CB Time Cell 5

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 5	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 4

19.9.8.6 CB Time Cell 6

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 6	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 5

19.9.8.7 CB Time Cell 7

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Cell Balancing	CB Time Cell 7	U1	0	255	0	2 h

Description: Total performed cell balancing bypass time Cell 6

19.9.9 Time

19.9.9.1 Total Firmware Runtime

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Total Firmware Runtime	U2	0	65535	0	2 h

Description: Total firmware runtime between resets

www.ti.com Lifetimes

19.9.9.2 Time Spent in UT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in UT	U2	0	65535	0	2 h

Description: Total firmware runtime spent below T1

19.9.9.3 Time Spent in LT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in LT	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T1 and T2

19.9.9.4 Time Spent in STL

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in STL	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T2 and T5

19.9.9.5 Time Spent in RT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in RT	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T5 and T6

19.9.9.6 Time Spent in STH

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in STH	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T6 and T3

19.9.9.7 Time Spent in HT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in HT	U2	0	65535	0	2 h

Description: Total firmware runtime spent between T3 and T4

19.9.9.8 Time Spent in OT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Lifetimes	Time	Time Spent in OT	U2	0	65535	0	2 h

Description: Total firmware runtime spent above T6

Protections www.ti.com

19.10 Protections

19.10.1 CUV—Cell Undervoltage

19.10.1.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUV	Threshold	12	0	32767	2500	mV

Description: Cell undervoltage trip threshold

19.10.1.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUV	Delay	U1	0	255	2	S

Description: Cell undervoltage trip delay

19.10.1.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUV	Recovery	12	0	32767	3000	mV

Description: Cell undervoltage recovery threshold

19.10.2 CUVC—Cell Undervoltage

19.10.2.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUVC	Threshold	12	0	32767	2400	mV

Description: Cell undervoltage trip threshold

19.10.2.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUVC	Delay	U1	0	255	2	s

Description: Cell undervoltage trip delay

19.10.2.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CUVC	Recovery	12	0	32767	3000	mV

Description: Cell undervoltage recovery threshold

www.ti.com Protections

19.10.3 COV—Cell Overvoltage

19.10.3.1 Threshold Low Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Low Temp	12	0	32767	4300	mV

Description: Cell overvoltage low temperature range trip threshold

19.10.3.2 Threshold Standard Temp Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Standard Temp Low	12	0	32767	4300	mV

Description: Cell overvoltage standard temperature low range trip threshold

19.10.3.3 Threshold Standard Temp High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Standard Temp High	12	0	32767	4300	mV

Description: Cell overvoltage standard temperature high range trip threshold

19.10.3.4 Threshold High Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold High Temp	12	0	32767	4300	mV

Description: Cell overvoltage high temperature range trip threshold

19.10.3.5 Threshold Rec Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Threshold Rec Temp	12	0	32767	4300	mV

Description: Cell overvoltage recommended temperature range trip threshold

19.10.3.6 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Delay	U1	0	255	2	S

Description: Cell overvoltage trip delay

19.10.3.7 Recovery Low Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery Low Temp	12	0	32767	3900	mV

Description: Cell overvoltage low temperature range recovery threshold

Protections www.ti.com

19.10.3.8 Recovery Standard Temp Low

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery Standard Temp Low	12	0	32767	3900	mV

Description: Cell overvoltage standard temperature low recovery range threshold

19.10.3.9 Recovery Standard Temp High

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery Standard Temp High	12	0	32767	3900	mV

Description: Cell overvoltage standard temperature high recovery range threshold

19.10.3.10 Recovery High Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery High Temp	12	0	32767	3900	mV

Description: Cell overvoltage high temperature range recovery threshold

19.10.3.11 Recovery Rec Temp

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Recovery Rec Temp	12	0	32767	3900	mV

Description: Cell overvoltage recommended temperature range recovery threshold

19.10.3.12

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Latch Limit	12	0	255	0	_

Description: Cell overvoltage latch counter trip threshold

19.10.3.13

Clas	3	Subclass	Name	Туре	Min	Max	Default	Unit
Protecti	ons	COV	Counter Dec Delay	12	0	255	10	s

Description: Cell overvoltage counter decrement delay

19.10.3.14

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	COV	Reset	12	0	255	15	S

Description: Cell overvoltage latch reset time

www.ti.com Protections

19.10.4 OCC1—Overcurrent In Charge 1

19.10.4.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC1	Threshold	12	-32768	32767	6000	mA

Description: Overcurrent in Charge 1 trip threshold

19.10.4.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC1	Delay	U1	0	255	6	S

Description: Overcurrent in Charge 1 trip delay

19.10.5 OCC2—Overcurrent In Charge 2

19.10.5.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC2	Threshold	12	-32768	32767	8000	mA

Description: Overcurrent in Charge 2 trip threshold

19.10.5.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC2	Delay	U1	0	255	3	S

Description: Overcurrent in Charge 2 trip delay

19.10.6 OCC—Overcurrent In Charge Recovery

19.10.6.1 Recovery Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC	Recovery Threshold	12	-32768	32767	-200	mA

Description: Overcurrent in Charge 1 and 2 recovery threshold

19.10.6.2 Recovery Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCC	Recovery Delay	U1	0	255	5	S

Description: Overcurrent in Charge 1 and 2 recovery delay

Protections www.ti.com

19.10.7 OCD1—Overcurrent In Discharge 1

19.10.7.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD1	Threshold	12	-32768	32767	-6000	mA

Description: Overcurrent in Discharge 1 trip threshold

19.10.7.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD1	Delay	U1	0	255	6	S

Description: Overcurrent in Discharge 1 trip delay

19.10.8 OCD2—Overcurrent In Discharge 2

19.10.8.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD2	Threshold	12	-32768	32767	-8000	mA

Description: Overcurrent in Discharge 2 trip threshold

19.10.8.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD2	Delay	U1	0	255	3	S

Description: Overcurrent in Discharge 2 trip delay

19.10.9 OCD—Overcurrent In Discharge Recovery

19.10.9.1 Recovery Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCD	Recovery Threshold	12	-32768	32767	200	mA

Description: Overcurrent in Discharge 1 and 2 recovery threshold

19.10.9.2 Recovery Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OCD	Recovery Delay	U1	0	255	5	s

Description: Overcurrent in Discharge 1 and 2 recovery delay

www.ti.com Protections

19.10.9.3 Latch Limit

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD	Latch Limit	12	0	255	0	

Description: Overcurrent in Discharge (OCD) latch counter trip threshold

19.10.9.4 Counter Dec Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD	Counter Dec Delay	12	0	255	10	s

Description: Overcurrent in Discharge (OCD) counter decrement delay

19.10.9.5 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OCD	Reset	12	0	255	15	s

Description: Overcurrent in Discharge (OCD) latch reset time

19.10.10 AOLD—Overload in Discharge

19.10.10.1 Latch Limit

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Latch Limit	U1	0	255	0	counts

Description: Overload latch counter trip threshold

19.10.10.2 Counter Dec Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Counter Dec Delay	U1	0	255	10	S

Description: Overload latch counter decrement delay

19.10.10.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Recovery	U1	0	255	5	S

Description: Overload recovery time

19.10.10.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	AOLD	Reset	U1	0	255	15	S

Description: Overload latch reset time

Protections www.ti.com

19.10.10.5 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	AOLD	Threshold	H1	0x0	0xFF	0xF4	Hex

Description: AOLD:Threshold Setting

Bits 7–4: OLDD: AOLD delay time Bits 3–0: OLDV: AOLD threshold

19.10.11 ASCC—Short Circuit In Charge

19.10.11.1 Latch Limit

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCC	Latch Limit	U1	0	255	0	_

Description: Short Circuit in Charge Latch counter trip threshold

19.10.11.2 Counter Dec Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	ASCC	Counter Dec Delay	U1	0	255	10	s

Description: Short Circuit in Charge counter decrement delay

19.10.11.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	ASCC	Recovery	U1	0	255	5	s

Description: Short Circuit in Charge recovery time

19.10.11.4 Reset

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	ASCC	Reset	U1	0	255	15	S

Description: Short Circuit in Charge latch reset time

19.10.11.5 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	ASCC	Threshold	H1	0x0	0xFF	0x77	Hex

Description: ASCC:Threshold Setting

Bits 7-4: SCCD: SCC delay time

Bit 3: Reserved

Bits 2-0: SCCV: SCC threshold

www.ti.com Protections

19.10.12 ASCD—Short Circuit in Discharge

19.10.12.1 Latch Limit

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
F	Protections	ASCD	Latch Limit	U1	0	255	0	_

Description: Short Circuit in Discharge Latch counter trip threshold

19.10.12.2 Counter Dec Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Counter Dec Delay	U1	0	255	10	s

Description: Short Circuit in Discharge counter decrement delay

19.10.12.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Recovery	U1	0	255	5	s

Description: Short Circuit in Discharge recovery time

19.10.12.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Reset	U1	0	255	15	s

Description: Short Circuit in Discharge latch reset time

19.10.12.5 Thresholds 1 and 2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	ASCD	Threshold 1	H1	0x0	0xFF	0x77	Hex
Protections	ASCD	Threshold 2	H1	0x0	0xFF	0xE7	Hex

Threshold 1 Description: ASCD: Threshold 1 Setting

Bits 7-4: SCD1D-SCD1 delay time

Bit 3: Reserved

Bits 2-0: SCD1V: SCD1 threshold

Threshold 2 Description: ASCD: Threshold 2 Setting

Bits 7-4: SCD2D-SCD2 delay time

Bit 3: Reserved

Bits 2-0: SCD2V: SCD2 threshold

Protections www.ti.com

19.10.13 OTC—Overtemperature in Charge

19.10.13.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTC	Threshold	12	-400	1500	550	0.1°C

Description: Overtemperature in Charge trip threshold

19.10.13.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTC	Delay	U1	0	255	2	s

Description: Overtemperature in Charge Cell trip delay

19.10.13.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OTC	Recovery	12	-400	1500	500	0.1°C

Description: Overtemperature in Charge Cell recovery threshold

19.10.14 OTD—Overtemperature in Discharge

19.10.14.1 Threshold

	Class	Subclass	Name	Type	Min	Max	Default	Unit
F	rotections	OTD	Threshold	12	-400	1500	600	0.1°C

Description: Overtemperature in Discharge trip threshold

19.10.14.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OTD	Delay	U1	0	255	2	s

Description: Overtemperature in Discharge trip delay

19.10.14.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OTD	Recovery	12	-400	1500	550	0.1°C

Description: Overtemperature in Discharge recovery threshold

www.ti.com Protections

19.10.15 OTF—Overtemperature FET

19.10.15.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTF	Threshold	12	-400	1500	800	0.1°C

Description: Overtemperature FET trip threshold

19.10.15.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	OTF	Delay	U1	0	255	2	s

Description: Overtemperature FET trip delay

19.10.15.3 Recovery

	Class	Subclass	Name	Туре	Min	Max	Default	Unit
F	Protections	OTF	Recovery	12	-400	1500	650	0.1°C

Description: Overtemperature FET recovery threshold

19.10.16 UTC—Under Temperature in Charge

19.10.16.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTC	Threshold	12	-400	1500	0	0.1°C

Description: Undertemperature in Charge trip threshold

19.10.16.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTC	Delay	U1	0	255	2	s

Description: Undertemperature in Charge Cell trip delay

19.10.16.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTC	Recovery	12	-400	1500	50	0.1°C

Description: Undertemperature in Charge Cell recovery threshold

Protections www.ti.com

19.10.17 UTD—Under Temperature in Discharge

19.10.17.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTD	Threshold	12	-400	1500	0	0.1°C

Description: Under Temperature in Discharge trip threshold

19.10.17.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	UTD	Delay	U1	0	255	2	s

Description: Under Temperature in Discharge trip delay

19.10.17.3 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	UTD	Recovery	12	-400	1500	50	0.1°C

Description: Under Temperature in Discharge recovery threshold

19.10.18 HWD—Host Watchdog

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	HWD	Delay	U1	0	255	10	s

Description: SBS Host watchdog trip delay

19.10.19 PTO—PRECHARGE Mode Time Out

19.10.19.1 Charge Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Charge Threshold	12	-32768	32767	2000	mA

Description: Precharge Timeout Current Threshold

19.10.19.2 Suspend Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Suspend Threshold	12	-32768	32767	1800	mA

Description: Precharge Timeout Suspend Threshold

www.ti.com Protections

19.10.19.3 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Delay	U2	0	65535	1800	s

Description: Precharge Timeout trip delay

19.10.19.4 Reset

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PTO	Reset	12	-32768	32767	2	mAh

Description: Precharge Timeout Reset Threshold

19.10.20 CTO—Fast Charge Mode Time Out

19.10.20.1 Charge Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Charge Threshold	12	-32768	32767	2500	mA

Description: Fast-Charge Timeout Current Threshold

19.10.20.2 Suspend Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Suspend Threshold	12	-32768	32767	2000	mA

Description: Fast-Charge Timeout Suspend Threshold

19.10.20.3 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	СТО	Delay	U2	0	65535	54000	s

Description: Fast-Charge Timeout trip delay

19.10.20.4 Reset

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	СТО	Reset	12	0	32767	2	mAh

Description: Fast-Charge Timeout Reset Threshold

Protections www.ti.com

19.10.21 OC—Overcharge

19.10.21.1 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OC	Threshold	12	-32768	32767	300	mAh

Description: Overcharge trip threshold

19.10.21.2 Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OC	Recovery	12	-32768	32767	2	mAh

Description: Overcharge recovery threshold

19.10.21.3 RSOC Recovery

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	OC	RSOC Recovery	U1	0	100	90	%

Description: Overcharge RelativeStateOfCharge() recovery threshold

19.10.22 CHGV—ChargingVoltage

19.10.22.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGV	Threshold	12	-32768	32767	500	mV

Description: Charging Voltage() delta trip threshold

19.10.22.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGV	Delay	U1	0	255	30	S

Description: Charging Voltage() delta trip delay

19.10.22.3 Recovery

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGV	Recovery	12	-32768	32767	-500	mV

Description: Charging Voltage() delta recovery threshold

www.ti.com Protections

19.10.23 CHGC—ChargingCurrent

19.10.23.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Threshold	12	-32768	32767	500	mA

Description: ChargingCurrent() delta trip threshold

19.10.23.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Delay	U1	0	255	2	S

Description: ChargingCurrent() delta trip delay

19.10.23.3 Recovery Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Recovery Threshold	12	-32768	32767	100	mA

Description: ChargingCurrent() delta recovery threshold

19.10.23.4 Recovery Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	CHGC	Recovery Delay	U1	0	255	2	S

Description: ChargingCurrent() delta recovery delay

19.10.24 PCHGC—Pre-ChargingCurrent

19.10.24.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Threshold	12	-32768	32767	50	mA

Description: Pre-ChargingCurrent() trip threshold

19.10.24.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Delay	U1	0	255	2	s

Description: Pre-ChargingCurrent() trip delay

Permanent Fail www.ti.com

19.10.24.3 Recovery Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Protections	PCHGC	Recovery Threshold	12	-32768	32767	10	mA

Description: Pre-ChargingCurrent() recovery threshold

19.10.24.4 Recovery Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Protections	PCHGC	Recovery Delay	U1	0	255	2	S

Description: Pre-ChargingCurrent() recovery delay

19.11 Permanent Fail

19.11.1 SUV—Safety Cell Undervoltage

19.11.1.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SUV	Threshold	12	0	32767	2200	mV

Description: Safety Cell Undervoltage trip threshold

19.11.1.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SUV	Delay	U1	0	255	5	s

Description: Safety Cell Undervoltage trip delay

19.11.2 SOV—Safety Cell Overvoltage

19.11.2.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOV	Threshold	12	0	32767	4500	mV

Description: Safety Cell Overvoltage trip threshold

19.11.2.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	SOV	Delay	U1	0	255	5	s

Description: Safety Cell Overvoltage trip delay

www.ti.com Permanent Fail

19.11.3 SOCC—Safety Overcurrent in Charge

19.11.3.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOCC	Threshold	12	-32768	32767	10000	mA

Description: Safety Overcurrent in Charge trip threshold

19.11.3.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOCC	Delay	U1	0	255	5	s

Description: Safety Overcurrent in Charge trip delay

19.11.4 SOCD—Safety Overcurrent in Discharge

19.11.4.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fai	SOCD	Threshold	12	-32768	32767	-10000	mA

Description: Safety Overcurrent in Discharge trip threshold

19.11.4.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	SOCD	Delay	U1	0	255	5	s

Description: Safety Overcurrent in Discharge trip delay

19.11.5 SOT—Overtemperature Cell

19.11.5.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOT	Threshold	12	-400	1500	650	0.1°C

Description: Overtemperature cell trip threshold

19.11.5.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOT	Delay	U1	0	255	5	S

Description: Overtemperature cell trip delay

Permanent Fail www.ti.com

19.11.6 SOTF—Overtemperature FET

19.11.6.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOTF	Threshold	12	-400	1500	1000	0.1°C

Description: Overtemperature FET trip threshold

19.11.6.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	SOTF	Delay	U1	0	255	5	S

Description: Overtemperature FET trip delay

19.11.7 Open Thermistor—NTC Thermistor Failure

19.11.7.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	Threshold	12	0	32767	2232	0.1 °K

Description: Temperature threshold for open thermistor

19.11.7.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	Delay	U1	0	255	5	S

Description: Trip delay for open thermistor

19.11.7.3 FET Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	FET Delta	12	0	-400	1500	0.1 °K

Description: Delta from internal temperature to enable open thermistor check for FET thermistors

19.11.7.4 Cell Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	Open Thermistor	Cell Delta	12	0	-400	1500	0.1 °K

Description: Delta from internal temperature to enable open thermistor check for cell thermistors

www.ti.com Permanent Fail

19.11.8 QIM—QMax Imbalance

19.11.8.1 Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	QIM	Threshold	12	0	32767	100	0.10%

Description: QMax imbalance trip threshold

19.11.8.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit	
Permanent Fail	QIM	Delay	U1	0	255	2	updates	

Description: QMax imbalance trip delay

19.11.9 CB—Cell Balance

19.11.9.1 Max Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	СВ	Max Threshold	12	0	32767	120	2 h

Description: Cell balance max trip threshold

19.11.9.2 Delta Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	СВ	Delta Threshold	U1	0	255	20	2 h

Description: Cell balance cell delta trip threshold

19.11.9.3 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	СВ	Delay	U1	0	255	2	cycles

Description: Cell balance trip delay

19.11.10 VIMR—Voltage Imbalance At Rest

19.11.10.1 Check Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Check Voltage	12	0	5000	3500	mV

Description: Voltage imbalance at rest check voltage

Permanent Fail www.ti.com

19.11.10.2 Check Current

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Check Current	12	0	32767	10	mA

Description: Voltage imbalance at rest check current

19.11.10.3 Delta Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMR	Delta Threshold	12	0	5000	200	mV

Description: Voltage imbalance at rest trip threshold

19.11.10.4 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMR	Delay	U1	0	255	5	s

Description: Voltage imbalance at rest check trip delay

19.11.10.5 Duration

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMR	Duration	U2	0	65535	100	s

Description: Voltage imbalance at rest check duration

19.11.11 VIMA—Voltage Imbalance Active

19.11.11.1 Check Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMA	Check Voltage	12	0	5000	3700	mV

Description: Voltage imbalance active check voltage

19.11.11.2 Check Current

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMA	Check Current	12	0	32767	50	mA

Description: Voltage imbalance active check current

19.11.11.3 Delta Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	VIMA	Delta Threshold	12	0	5000	300	mV

Description: Voltage imbalance active trip threshold

www.ti.com Permanent Fail

19.11.11.4 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	VIMA	Delay	U1	0	255	5	S

Description: Voltage Imbalance active check trip delay

19.11.12 IMP—Impedance Imbalance

19.11.12.1 Delta Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	IMP	Delta Threshold	12	0	32767	300	%

Description: Impedance Imbalance delta threshold

19.11.12.2 Max Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	IMP	Max Threshold	12	0	32767	400	%

Description: Impedance Imbalance max threshold

19.11.12.3 Ra Update Counts

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	IMP	Ra Update Counts	U1	0	255	2	counts

Description: Impedance Imbalance trip delay

19.11.13 CD—Capacity Degradation

19.11.13.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CD	Threshold	12	0	32767	4200	mAh

Description: Capacity degradation threshold

19.11.13.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CD	Delay	U1	0	255	2	cycles

Description: Capacity degradation trip delay

Permanent Fail www.ti.com

19.11.14 CFET—CHG FET Failure

19.11.14.1 OFF Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CFET	OFF Threshold	12	0	500	5	mA

Description: CHG FET OFF current trip threshold

19.11.14.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	CFET	Delay	U1	0	255	5	s

Description: CHG FET OFF trip delay

19.11.15 DFET—DFET Failure

19.11.15.1 OFF Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	DFET	OFF Threshold	12	-500	0	- 5	mA

Description: DSG FET OFF current trip threshold

19.11.15.2 Delay

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	DFET	Delay	U1	0	255	5	S

Description: DSG FET OFF trip delay

19.11.16 FUSE—FUSE Failure

19.11.16.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	FUSE	Threshold	12	0	255	5	mA

Description: FUSE activation fail trip threshold

19.11.16.2 Delay

Class	Subclass	Name	Type	Min	Max	Default	Unit
Permanent Fail	FUSE	Delay	U1	0	255	5	S

Description: FUSE activation fail trip delay

www.ti.com Permanent Fail

19.11.17 AFER—AFE Register

19.11.17.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFER	Threshold	U1	0	255	100	_

Description: AFE register comparison fail trip threshold

19.11.17.2 Delay Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFER	Delay Period	U1	0	255	5	s

Description: AFE register comparison counter decrement period

19.11.17.3 Compare Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFER	Compare Period	U1	0	255	5	s

Description: AFE register comparison compare period

19.11.18 AFEC—AFE Communication

19.11.18.1 Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFEC	Threshold	U1	0	255	100	1

Description: AFE communication fail trip threshold

19.11.18.2 Delay Period

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	AFEC	Delay Period	U1	0	255	5	s

Description: AFE communication counter decrement period

19.11.19 2LVL—2nd Level OV

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Permanent Fail	2LVL	Delay	U1	0	255	5	s

Description: 2nd level protector trip detection delay

PF Status www.ti.com

19.12 PF Status

The data in this class is saved at the time of the PF event.

19.12.1 Device Status Data

19.12.1.1 Safety Alert A

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.2 Safety Status A

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.3 Safety Alert B

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.4 Safety Status B

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.5 Safety Alert C

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.6 Safety Status C

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

www.ti.com PF Status

19.12.1.7 Safety Alert D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Alert D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.8 Safety Status D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Safety Status D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated safety flags since PF event

19.12.1.9 PF Alert A

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.10 PF Status A

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Status A	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.11 PF Alert B

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.12 PF Status B

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	PF Status B	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.13 PF Alert C

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

PF Status www.ti.com

19.12.1.14 PF Status C

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Status C	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.15 PF Alert D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Alert D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.16 PF Status D

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	PF Status D	H1	0x0	0xFF	0x0	Hex

Description: Accumulated PF flags since PF event

19.12.1.17 Fuse Flag

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Fuse Flag	H2	0x0	0xFFFF	0x0	Hex

Description: Flag set to indicate fuse blow

19.12.1.18 Operation Status A

Class	Subclass	Name	Туре	Min	Max	Default	Units	
PF Status	Device Status Data	Operation Status A	H2	0x0	0xFFFF	0x0	Hex	

Description: OperationStatus() data at the time of the PF event

19.12.1.19 Operation Status B

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Operation Status B	H2	0x0	0xFFFF	0x0	Hex

Description: OperationStatus() data at the time of the PF event

19.12.1.20 Temp Range

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Temp Range	H1	0x0	0xFF	0x0	Hex

Description: Temperature range status at the time of the PF event. The temperature range information returned by *ChargingStatus()*

www.ti.com PF Status

19.12.1.21 Charging Status A

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Charging Status A	H1	0x0	0xFF	0x0	Hex

Description: The charging status at the time of the PF event. See *ManufacturerAccess() 0x0055 ChargingStatus* for the bit definitions.

7	6	5	4	3	2	1	0
VCT	MCHG	SU	IN	HV	MV	LV	PV

19.12.1.22 Charging Status B

Class	Subclass	Name	Type	Min	Max	Default	Units
PF Status	Device Status Data	Charging Status B	H1	0x0	0xFF	0x0	Hex

Description: The charging status at the time of the PF event. See *ManufacturerAccess() 0x0055 ChargingStatus* for the bit definitions.

7	6	5	4	3	2	1	0
VCT	RSVD	RSVD	RSVD	RSVD	CCC	CVR	CCR

19.12.1.23 Gauging Status

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	Gauging Status	H1	0x0	0xFF	0x0	Hex

Description: The gauging status at the time of the PF event. See *ManufacturerAccess() 0x0056 GaugingStatus* for bit definitions.

7	6	5	4	3	2	1	0
CF	DSG	EDV	BAL_EN	TCA	TDA	FC	FD

19.12.1.24 IT Status

Class	Subclass	Name	Туре	Min	Max	Default	Units
PF Status	Device Status Data	IT Status	H2	0x0	0xFFFF	0x0	Hex

Description: The Impedance Track status at the time of the PF event. See *ManufacturerAccess() 0x0056 GaugingStatus* for the bit definitions.

PF Status www.ti.com

15	14	13	12	11	10	9	8
RSVD	RSVD	SLPQ MAX	QEN	VOK	RDIS	RSVD	REST
7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	OCVFR	LDMD	RX	QMAX	VDQ

19.12.2 Device Voltage Data (at the Time of PF Event)

19.12.2.1 Cell 1 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 1 Voltage	12	-32768	32767	0	mV

Description: Cell 1 voltage

19.12.2.2 Cell 2 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 2 Voltage	12	-32768	32767	0	mV

Description: Cell 2 voltage

19.12.2.3 Cell 3 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 3 Voltage	12	-32768	32767	0	mV

Description: Cell 3 voltage

19.12.2.4 Cell 4 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 4 Voltage	12	-32768	32767	0	mV

Description: Cell 4 voltage

19.12.2.5 Cell 5 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 5 Voltage	12	-32768	32767	0	mV

Description: Cell 5 voltage

19.12.2.6 Cell 6 Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 6 Voltage	12	-32768	32767	0	mV

Description: Cell 6 voltage

www.ti.com PF Status

19.12.2.7 Cell 7 Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Voltage Data	Cell 7 Voltage	12	-32768	32767	0	mV

Description: Cell 7 voltage

19.12.2.8 Battery Direct Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Battery Direct Voltage	12	-32768	32767	0	mV

Description: Battery voltage

19.12.2.9 Pack Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Voltage Data	Pack Voltage	12	-32768	32767	0	mV

Description: PACK voltage

19.12.3 Device Current Data

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Current Data	Current	12	-32768	32767	0	mV

Description: Current()

19.12.4 Device Temperature Data (at the Time of PF Event)

19.12.4.1 Internal Temperature

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Temperature Data	Internal Temperature	12	-32768	32767	0	0.1°K

Description: Internal temperature sensor temperature

19.12.4.2 External 1 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 1 Temperature	12	-32768	32767	0	0.1°K

Description: External TS1 temperature

PF Status www.ti.com

19.12.4.3 External 2 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 2 Temperature	12	-32768	32767	0	0.1°K

Description: External TS2 temperature

19.12.4.4 External 3 Temperature

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 3 Temperature	12	-32768	32767	0	0.1°K

Description: External TS3 temperature

19.12.4.5 External 4 Temperature

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Temperature Data	External 4 Temperature	12	-32768	32767	0	0.1°K

Description: External TS4 temperature

19.12.5 Device Gauging Data (at the Time of PF Event)

19.12.5.1 Cell 1DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 1DOD0	12	-32768	32767	0	I

Description: Cell 1 depth of discharge

19.12.5.2 Cell 2 DOD0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 2 DOD0	12	-32768	32767	0	_

Description: Cell 2 depth of discharge

19.12.5.3 Cell 3 DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 3 DOD0	12	-32768	32767	0	_

Description: Cell 3 depth of discharge

www.ti.com PF Status

19.12.5.4 Cell 4 DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 4 DOD0	12	-32768	32767	0	

Description: Cell 4 depth of discharge

19.12.5.5 Cell 5 DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 5 DOD0	12	-32768	32767	0	_

Description: Cell 5 depth of discharge

19.12.5.6 Cell 6 DOD0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 6 DOD0	12	-32768	32767	0	_

Description: Cell 6 depth of discharge

19.12.5.7 Cell 7 DOD0

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Cell 7 DOD0	12	-32768	32767	0	

Description: Cell 7 depth of discharge

19.12.5.8 Passed Charge

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	Device Gauging Data	Passed Charge	12	-32768	32767	0	mAh

Description: Passed charge since last QMax update

19.12.6 AFE Regs

The AFE Regs data is intended for Texas Instruments' use to help with internal firmware diagnostics.

19.12.6.1 AFE Interrupt Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Interrupt Status	H1	0x00	0xFF	0x00	Hex

Description: AFE Interrupt Status Register Contents

19.12.6.2 AFE FET Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE FET Status	H1	0x00	0xFF	0x00	Hex

Description: AFE FET Status Register Contents

PF Status www.ti.com

19.12.6.3 AFE RXIN

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RXIN	H1	0x00	0xFF	0x00	Hex

Description: AFE Rxin Register Contents

19.12.6.4 AFE Latch Status

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Latch Status	H1	0x00	0xFF	0x00	Hex

Description: AFE Latch Status Register Contents

19.12.6.5 AFE Interrupt Enable

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Interrupt Enable	H1	0x00	0xFF	0x00	Hex

Description: AFE Interrupt Enable Register Contents

19.12.6.6 AFE FET Control

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE FET Control	H1	0x00	0xFF	0x00	Hex

Description: AFE FET Control Register Contents

19.12.6.7 AFE RXIEN

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RXIEN	H1	0x00	0xFF	0x00	Hex

Description: AFE RXIEN Register Contents

19.12.6.8 AFE RLOUT

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RLOUT	H1	0x00	0xFF	0x00	Hex

Description: AFE RLOUT Register Contents

19.12.6.9 AFE RHOUT

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RHOUT	H1	0x00	0xFF	0x00	Hex

Description: AFE RHOUT Register Contents

www.ti.com PF Status

19.12.6.10 AFE RHINT

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE RHINT	H1	0x00	0xFF	0x00	Hex

Description: AFE RHINT Register Contents

19.12.6.11 AFE Cell Balance

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Cell Balance	H1	0x00	0xFF	0x00	Hex

Description: AFE Cell Balance Register Contents

19.12.6.12 AFE AD/CC Control

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE AD/CC Control	H1	0x00	0xFF	0x00	Hex

Description: AFE AD/CC Control Register Contents

19.12.6.13 AFE ADC Mux

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE ADC Mux	H1	0x00	0xFF	0x00	Hex

Description: AFE ADC Mux Register Contents

19.12.6.14 AFE LED Output

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE LED Output	H1	0x00	0xFF	0x00	Hex

Description: AFE LED Output Register Contents

19.12.6.15 AFE State Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE State Control	H1	0x00	0xFF	0x00	Hex

Description: AFE State Control Register Contents

19.12.6.16 AFE LED/Wake Control

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE LED/Wake Control	H1	0x00	0xFF	0x00	Hex

Description: AFE LED/Wake Control Register Contents

Black Box www.ti.com

19.12.6.17 AFE Protection Control

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE Protection Control	H1	0x00	0xFF	0x00	Hex

Description: AFE Protection Control Register Contents

19.12.6.18 AFE OCD

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE OCD	H1	0x00	0xFF	0x00	Hex

Description: AFE OCD Register Contents

19.12.6.19 AFE SCC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE SCC	H1	0x00	0xFF	0x00	Hex

Description: AFE SCC Register Contents

19.12.6.20 AFE SCD1

Class	Subclass	Name	Type	Min	Max	Default	Unit
PF Status	AFE Regs	AFE SCD1	H1	0x00	0xFF	0x00	Hex

Description: AFE SCD1 Register Contents

19.12.6.21 AFE SCD2

Class	Subclass	Name	Туре	Min	Max	Default	Unit
PF Status	AFE Regs	AFE SCD2	H1	0x00	0xFF	0x00	Hex

Description: AFE SCD2 Register Contents

19.13 Black Box

19.13.1 Safety Status

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Black Box	Safety Status	1st Status Status A	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Status Status B	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Safety Status C	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Safety Status D	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	1st Time to Next Event	U1	0	255	0	s	Time from 1st event to 2nd event
Black Box	Safety Status	2nd Status Status A	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Status Status B	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data

www.ti.com Black Box

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Black Box	Safety Status	2nd Safety Status C	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Safety Status D	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	2nd Time to Next Event	U1	0	255	0	S	Time from 2nd event to 3rd event
Black Box	Safety Status	3rd Status Status A	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Status Status B	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Safety Status C	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Safety Status D	H1	0x0	0xFF	0x0	Hex	SafetyStatus() data
Black Box	Safety Status	3rd Time to Next Event	U1	0	255	0	S	Time since 3rd event

19.13.2 PF Status

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Black Box	PF Status	1st PF Status A	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st PF Status B	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st PF Status C	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st PF Status D	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	1st Time to Next Event	U1	0	255	0	S	Time from 1st event to 2nd event
Black Box	PF Status	2nd PF Status A	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd PF Status B	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd PF Status C	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd PF Status D	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	2nd Time to Next Event	U1	0	255	0	s	Time from 2nd event to 3rd event
Black Box	PF Status	3rd PF Status A	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd PF Status B	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd PF Status C	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd PF Status D	H1	0x0	0xFF	0x0	Hex	PFStatus() data
Black Box	PF Status	3rd Time to Next Event	U1	0	255	0	S	Time since 3rd event

19.14 Gas Gauging

19.14.1 Current Thresholds

19.14.1.1 Dsg Current Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Dsg Current Threshold	12	-32768	32767	100	mA

Description: DISCHARGE mode Current() threshold

19.14.1.2 Chg Current Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Chg Current Threshold	12	-32768	32767	50	mA

Description: CHARGE mode Current() threshold

19.14.1.3 Quit Current

С	lass	Subclass	Name	Туре	Min	Max	Default	Unit
Gas	Gauging	Current Thresholds	Quit Current	12	0	32767	10	mA

Description: |Current()| threshold to enter RELAX mode

19.14.1.4 Dsg Relax Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Dsg Relax Time	U1	0	255	1	s

Description: Discharge to relax timeout. When discharge is stopped, the device will exit the DISCHARGE mode after this time is passed.

19.14.1.5 Chg Relax Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Current Thresholds	Chg Relax Time	U1	0	255	60	s

Description: Charge to relax timeout. When charging is stopped, the device will exit the CHARGE mode after this time is passed.

19.14.2 Design

19.14.2.1 Design Capacity mAh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Design	Design Capacity mAh	12	0	32767	4400	mAh

Description: Design Capacity in mAh. This is reported by DesignCapacity() if [CAPM] = 0.

www.ti.com Gas Gauging

19.14.2.2 Design Capacity in cWh

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	Design	Design Capacity cWh	12	0	32767	6336	cWh

Description: Design Capacity in cWh. This is reported by DesignCapacity() if [CAPM] = 1.

19.14.2.3 Design Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Design	Design Voltage	12	0	32767	14400	mV

Description: Design Voltage. This is reported by *DesignVoltage()*.

19.14.3 Cycle

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Cycle	Cycle Count Percentage	U1	0	100	90	%

Description: This is a threshold to increment the cycle count if the accumulated discharge is more than this set percentage of FullChargeCapacity() (if [CCT] = 1) or DesignCapacity() (if [CCT] = 0).

NOTE: A minimum of 10% of DesignCapacity() change of the accumulated discharge is required for cycle count increment. This is to prevent an erroneous cycle count increment due to extremely low FullChargeCapacity().

19.14.4 FD

19.14.4.1 Set Voltage Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FD	Set Voltage Threshold	12	0	5000	3000	mV

Description: GaugingStatus()[FD] and BatteryStatus()[FD] cell voltage set threshold

19.14.4.2 Clear Voltage Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FD	Clear Voltage Threshold	12	0	5000	3100	mV

Description: GaugingStatus()[FD] and BatteryStatus()[FD] cell voltage clear threshold

19.14.4.3 Set RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FD	Set RSOC % Threshold	U1	0	100	0	%

Description: GaugingStatus()[FD] and BatteryStatus()[FD] RelativeStateOfCharge() set threshold

19.14.4.4 Clear RSOC % Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	FD	Clear RSOC % Threshold	U1	0	100	5	%

Description: GaugingStatus()[FD] and BatteryStatus()[FD] RelativeStateOfCharge() clear threshold

19.14.5 FC

19.14.5.1 Set Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FC	Set Voltage Threshold	12	0	5000	4200	mV

Description: GaugingStatus()[FC] and BatteryStatus()[FC] cell voltage set threshold

19.14.5.2 Clear Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FC	Clear Voltage Threshold	12	0	5000	4100	mV

Description: GaugingStatus()[FC] and BatteryStatus()[FC] cell voltage clear threshold

19.14.5.3 Set RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	FC	Set RSOC % Threshold	U1	0	100	100	%

Description: GaugingStatus()[FC] and BatteryStatus()[FC] RelativeStateOfCharge() set threshold

19.14.5.4 Clear RSOC % Threshold

Class		Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gaugi	g	FC	Clear RSOC % Threshold	U1	0	100	95	%

Description: GaugingStatus()[FC] and BatteryStatus()[FC] RelativeStateOfCharge() clear threshold

19.14.6 TD

GaugingStatus()[TD] sets BatteryStatus()[TDA] when in DISCHARGE mode.

19.14.6.1 Set Voltage Threshold

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	TD	Set Voltage Threshold	12	0	5000	3200	mV

Description: GaugingStatus()[TD] cell voltage set threshold

www.ti.com Gas Gauging

19.14.6.2 Clear Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TD	Clear Voltage Threshold	12	0	5000	3300	mV

Description: GaugingStatus()[TD] cell voltage clear threshold

19.14.6.3 Set RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TD	Set RSOC % Threshold	U1	0	100	6	%

Description: GaugingStatus()[TD] RelativeStateOfCharge() set threshold

19.14.6.4 Clear RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TD	Clear RSOC % Threshold	U1	0	100	8	%

Description: GaugingStatus()[TD] RelativeStateOfCharge() clear threshold

19.14.7 TC

GaugingStatus()[TC] sets BatteryStatus()[TCA] when in CHARGE mode

19.14.7.1 Set Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Set Voltage Threshold	12	0	5000	4200	mV

Description: GaugingStatus()[TC] cell voltage set threshold

19.14.7.2 Clear Voltage Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Clear Voltage Threshold	12	0	5000	4100	mV

Description: GaugingStatus()[TC] cell voltage clear threshold

19.14.7.3 Set RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Set RSOC % Threshold	U1	0	100	100	%

Description: GaugingStatus()[TC] RelativeStateOfCharge() set threshold

19.14.7.4 Clear RSOC % Threshold

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	TC	Clear RSOC % Threshold	U1	0	100	95	%

Description: GaugingStatus()[TC] RelativeStateOfCharge() clear threshold

19.14.8 State

19.14.8.1 QMax

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
Gas Gauging	State	QMax Cell 1	12	0	32767	4400	mAh	QMax Cell 1
Gas Gauging	State	QMax Cell 2	12	0	32767	4400	mAh	QMax Cell 2
Gas Gauging	State	QMax Cell 3	12	0	32767	4400	mAh	QMax Cell 3
Gas Gauging	State	QMax Cell 4	12	0	32767	4400	mAh	QMax Cell 4
Gas Gauging	State	QMax Cell 5	12	0	32767	4400	mAh	QMax Cell 5
Gas Gauging	State	QMax Cell 6	12	0	32767	4400	mAh	QMax Cell 6
Gas Gauging	State	QMax Cell 7	12	0	32767	4400	mAh	QMax Cell 7
Gas Gauging	State	QMax Pack	12	0	32767	4400	mAh	QMax of the whole stack
Gas Gauging	State	Qmax Cycle Count	U2	0	65535	0	_	The CycleCount() when Qmax updated

19.14.8.2 Update Status

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Update Status	H1	0x00	0x0E	0x00	_

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	RSVD	QMax	Enable	Update1	Update0

RSVD (Bits 7-4): Reserved. Do not use.

QMax update in the field (Bit 3)

1 = Updated

0 = Not updated

Enable (Bit 2): Impedance Track gauging and lifetime updating enable

1 = Enabled

0 = Disabled

Update1, Update0 (Bits 1-0): Update Status

0,0 = Impedance Track gauging and lifetime updating is disabled.

0,1 = QMax updated

1,0 = QMax and Ra table have been updated.

www.ti.com Gas Gauging

19.14.8.3 Cell 1-4 Chg Voltage at EoC

19.14.8.3.1 Cell 1Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 1Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 1 voltage value at end of charge

19.14.8.3.2 Cell 2 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 2 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 2 voltage value at end of charge

19.14.8.3.3 Cell 3 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 3 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 3 voltage value at end of charge

19.14.8.3.4 Cell 4 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 4 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 4 voltage value at end of charge

19.14.8.3.5 Cell 5 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 5 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 5 voltage value at end of charge

19.14.8.3.6 Cell 6 Chg Voltage at EoC

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	State	Cell 6 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 6 voltage value at end of charge

19.14.8.3.7 Cell 7 Chg Voltage at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Cell 7 Chg Voltage at EoC	12	0	32767	4200	mV

Description: Cell 7 voltage value at end of charge

19.14.8.4 Current at EoC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Current at EoC	12	0	32767	250	mA

Description: Current at end of charge

19.14.8.5 Average Last Run

19.14.8.5.1 Avg I Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Avg I Last Run	12	-32768	32767	-2000	mA

Description: Average current last discharge cycle

19.14.8.5.2 Avg P Last Run

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	State	Avg P Last Run	12	-32768	32767	-3022	10 mW

Description: Average power last discharge cycle

19.14.8.6 Delta Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Delta Voltage	12	-32768	32767	0	mV

Description: Voltage() delta between normal and short load spikes to optimize run time calculation

19.14.8.7 Temp

19.14.8.7.1 Temp k

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Temp k	12	0	32767	100	0.1°C/ 2560 mW

Description: Initial thermal model temperature factor

19.14.8.7.2 Temp a

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Temp a	12	0	32767	1000	_

Description: Initial thermal model temperature

www.ti.com Gas Gauging

19.14.8.8 Max Avg Last Run

19.14.8.8.1 Max Avg I Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Max Avg I Last Run	I2	-32768	32767	-2000	mA

Description: Max current last discharge cycle

19.14.8.8.2 Max Avg P Last Run

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	State	Max Avg P Last Run	12	-32768	32767	-3022	cW

Description: Max power last discharge cycle

19.14.9 Cycle Count

Clas	Subcla	ss Name	Type	Min	Max	Default	Unit	Description
Gas Gau	ging State	Cycle Count	U2	0	65535	0	_	Cycle Count

Description: Value reported by *CycleCount()*. Updated by the gauge automatically when accumulated discharge exceeds the threshold set by *Cycle Count Percentage*

19.14.10 IT Config

19.14.10.1 Load Select

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Load Select	U1	0	7	7	

Description: Defines Load compensation mode used by the gauging algorithm

19.14.10.2 Fast Scale Load Select

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Fast Scale Load Select	U1	0	7	3	_

Description: Defines Load compensation mode used by the gauging algorithm in the fast scaling region

19.14.10.3 Load Mode

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Load Mode	U1	0	1	0	_

Description: Defines unit used by the gauging algorithm:

0 = Constant Current1 = Constant Power

19.14.10.4 Design Resistance

Class	Subclass	Name	Type	Min	Max	Default	Unit	
Gas Gauging	IT Cfg	Design Resistance	12	1	32767	42	mΩ	l

Description: Averaged cell resistance at **Reference Grid** point. Automatically updated when **Update Status** is set to 0x6 by the gauge. To automatically update again, set **Update Status** to 0x4 or manually set when **Update Status** is set to 0x6.

19.14.10.5 User Rate-mA

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	User Rate-mA	12	-9000	0	0	mA

Description: Discharge rate used for capacity calculation selected by **Load Select** = 6

19.14.10.6 User Rate-cW

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	IT Cfg	User Rate-cW	12	-32768	0	0	cW

Description: Discharge rate used for capacity calculation selected by **Load Select** = 6

19.14.10.7 Reserve Cap-mAh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Reserve Cap-mAh	12	0	9000	0	mAh

Description: Capacity reserved as available when the gauging algorithm reports 0% RelativeStateOfCharge(). The gauge will target to report a capacity of 0 when approximately Reserve Cap-mAh remains. This parameter is used when Load Mode = 0 and predictions are made assuming a constant current load.

19.14.10.8 Reserve Cap-cWh

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Reserve Cap-cWh	12	0	32000	0	cWh

Description: Capacity reserved as available when the gauging algorithm reports 0% *RelativeStateOfCharge()*. The gauge will target to report a capacity of 0 when approximately Reserve Cap-cWh remains. This parameter is used when Load Mode = 1 and predictions are made using a constant power load.

19.14.10.9 Ra Filter

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Ra Filter	U2	0	999	500	%

Description: Filter value used in Ra Updates and specifies what percentage or Ra update is from the new value (100% setting) versus old value (setting). The recommended setting is 80% if the **[RSOC_CONV]** feature is enabled. Otherwise, the setting should be 50% as default.

www.ti.com Gas Gauging

19.14.10.10 Ra Max Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Ra Max Delta	U1	0	255	15	%

Description: Maximum value of allowed Ra change

19.14.10.11 Reference Grid

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Reference Grid	U1	0	14	4	_

Description: **Reference Grid** point used by **Design Resistance**. The default setting should be used if the **[RSOC_CONV]** feature is enabled. Otherwise, grid point 11 should be used to ensure resistance updates fast enough at the grid where discharge termination occurs.

19.14.10.12 Resistance Parameter Filter

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Resistance Parameter Filter	U2	1	65535	65142	_

Description: This is one of the filters used for resistance update. Reducing this filter setting can improve low temperature performance at high rates. The default setting is 41 s.

It is recommended to keep this filter within the range of 4 s (DF setting = 61680) up to the default 41 s (DF setting = 65142). Examining the *Term Voltage Delta* setting and *Fast Scale Start SOC* should be done prior to adjusting this parameter when trying to improve the RSOC performance.

The following is the formula to convert the DF setting into the actual filter time constant in units of seconds:

Filter time constant = $[0.25 / (1 - (DF_Value / 65536))] - 0.25$.

19.14.10.13 Near EDV Ra Param Filter

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Near EDV Ra Param Filter	U2	1	65535	59220	1

Description: Ra filter used in the fast scaling region if **[FF_NEAR_EDV]** = 1. Default value should be used.

19.14.10.14 Cell 1..4 Interconnect Resistance

19.14.10.14.1 Cell 1 Interconnect Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Cell 1 Interconnect Resistance	12	0	32767	0	mΩ

Description: This is the interconnect resistance value entered by the user that represents the interconnect resistance between the negative rail and the bottom of Cell 1, plus the interconnect resistance of the connection from the bottom of the first cell to the gauge.

19.14.10.14.2 Cell 2 Interconnect Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Cell 2 Interconnect Resistance	12	0	32767	0	mΩ

Description: This is the interconnect resistance value entered by the user that represents the interconnect resistance between the top of Cell 1 and the bottom of the Cell 2, plus the interconnect resistance of the connection from the bottom of Cell 2 to the gauge.

19.14.10.14.3 Cell 3 Interconnect Resistance

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Cell 3 Interconnect Resistance	12	0	32767	0	mΩ

Description: This is the interconnect resistance value entered by the user that represents the interconnect resistance between the top of Cell 2 and the bottom of the Cell 3, plus the interconnect resistance of the connection from the bottom of Cell 3 to the gauge

19.14.10.14.4 Cell 4 Interconnect Resistance

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Cell 4 Interconnect Resistance	12	0	32767	0	mΩ

Description: This is the interconnect resistance value entered by the user that represents the interconnect resistance between the top of Cell 3 and the bottom of the Cell 4, plus the interconnect resistance of the connection from the bottom of Cell 4 to the gauge

19.14.10.15 Max Current Change %

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Max Current Change %	U1	0	100	10	%

Description: Close to the end of discharge, if the change in current exceeds this threshold, the resistance update and Ra scale update are not allowed to prevent incorrect FCC drops.

19.14.10.16 Qmax Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Qmax Delta	U1	3	100	5	%

Description: Maximum allowed Qmax change from its previous value. The Qmax change will be capped by this setting if the delta from the previous Qmax is larger than **Qmax Delta**. **Qmax Delta** is a percentage of **Design Capacity**.

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Qmax Upper Bound	U1	100	255	130	%

www.ti.com Gas Gauging

Description: Maximum Qmax value over the lifetime of the pack. If the updated Qmax value is larger than this setting, the updated Qmax will be capped to **Qmax Upper Bound**. **Qmax Upper Bound** is a percentage of **Design Capacity**.

19.14.10.18 Term Voltage

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Term Voltage	12	0	32767	9000	mV

Description: Min stack voltage to be used for capacity calculation

19.14.10.19 Term Voltage Delta

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Term Voltage Delta	12	0	32767	300	mV

Description: Controls when the **[RSOC_CONV]** feature becomes active. The recommended setting is 3.3 – **Term Voltage**/Number Cells.

The default setting is 300 mV, which is assuming a typical 3-V termination voltage per cell. If a different termination voltage is used, this parameter should be adjusted accordingly.

19.14.10.20 Term Min Cell V

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Term Min Cell V	12	0	32767	2800	mV

Description: Minimum cell termination voltage used when **[CELL_TERM]** = 1. This is intended to enable the IT algorithm to reach 0% before CUV is triggered; therefore, this value should be set at or above **CUV:Threshold**.

19.14.10.21 Fast Scale Start SOC

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Fast Scale Start SOC	U1	0	100	10	%

Description: Controls the start of convergence when **[RSOC_CONV]** = 1 based on RSOC %. Raising this setting can improve the RSOC drop at the end of discharge. However, the RSOC % chosen for this setting must be kept after the sharp drop of the discharge curve (the knee of the discharge curve).

19.14.10.22 Pack Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Pack Resistance	12	0	32767	30	mΩ

Description: Pack-side resistance value accessed using *TURBO_PACK_R()*

19.14.10.23 Max Simulation Iterations

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	Max Simulation Iterations	U1	20	50	30	_

Description: *Max Simulation Iterations* enables the user to set the max number of simulation iterations IT is allowed to do. If the user finds that the watchdog is tripping, this number can be lowered. The default is set at the optimal setting of 25. For 7-series cell applications, a setting of 50 is not recommended.

19.14.10.24 System Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	System Resistance	12	0	32767	0	mΩ

Description: System side resistance value accessed using *TURBO_SYS_R()*

19.14.10.25 DeltaV Max Voltage Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	IT Cfg	DeltaV Max Voltage Delta	12	-32767	32767	10	mV

Description: This sets the maximum bound of how much DeltaV can change.

19.14.10.26 Resistance Update Voltage

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	Smoothing	Resistance Update Voltage	12	0	32767	50	mV

Description: The difference between the voltage based on DoD and the measured voltage is estimated as the IR drop. If this IR drop is less than the value in this register, then the resistance calculation is not done and the resistance table is not updated.

19.14.10.27 Smoothing

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Smoothing	Smooth Relax Time	12	1	32767	1000	s

Description: If **[RELAX_SMOOTH_OK]** = 1, the delta remaining capacity and full charge capacity are smoothed over this set period of time. It is recommended to use the default setting.

19.14.10.28 Term Smooth Start Cell V Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Smoothing	Term Smooth Start Cell V Delta	12	0	32767	150	mV

Description: If the config bit **[DSG_0_SMOOTH_OK]** is set, then during discharge and once the pack voltage is below the threshold defined in this register, time-based smoothing is initiated. This will smooth RemCap to 0 mAh over the next **Term Smooth Time** seconds. **Term Smooth Start Cell V Delta** is a per cell voltage delta. This value is multiplied by the number of cells, added to **Terminate Voltage**, and checked against **Voltage**(). Smoothing will continue to 0% unless charging starts (even in RELAX mode).

www.ti.com Gas Gauging

19.14.10.29 Term Smooth Time

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Smoothing	Term Smooth Time	U1	1	32767	20	s

Description: If the config bit [DSG_0_SMOOTH_OK] is set, then during discharge and once the pack voltage is below the threshold defined in Term Smooth Start Cell V Delta, time-based smoothing is initiated. This will smooth RemCap to 0 mAh over the next Term Smooth Time seconds.

19.14.10.30 Term Smooth Final Cell V Delta

Class	Subclass	Name	Type	Min	Max	Default	Unit
Gas Gauging	Smoothing	Term Smooth Final Cell V Delta	12	0	32767	100	mV

Description: If the config bit **[DSG_0_SMOOTH_OK]** is set, then during discharge and once the conditions for smoothing are reached, smoothing to 0 is initiated. To assure that the gauge reports 0% in low voltage situations, Term Smooth Final Cell V Delta is used. This value is multiplied by the number of cells, subtracted from Terminate Voltage, and checked against Voltage(). Once voltage passes this threshold, 0% will be forced even if smoothing has not completed.

NOTE: This DF can be disabled by setting it to 0, and is typically expected to be set low enough to enable the system to shut down properly (without brownout).

19.14.11 Condition Flag

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Condition Flag	Max Error Limit	U1	0	100	100	%

Description: Max Error Limit Percentage

19.14.12 Max Error

19.14.12.1 Time Cycle Equivalent

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Max Error	Time Cycle Equivalent	U1	1	255	12	2 h

Description: After valid QMax update, each passed time period of *Time Cycle Equivalent* will increment of MaxError() by Cycle Delta.

19.14.12.2 Cycle Delta

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Max Error	Cycle Delta	U1	0	255	5	0.01%

Description: Each increment of *CvcleCount()* after a valid QMax update will increment of *MaxError()* by Cycle Delta. Setting this parameter to 0 disables the MaxError() increment by time or cycle increment.

19.14.13 SOH

Class	Subclass	Subclass Name		Min	Max	Default	Unit
Gas Gauging	SOH	SOH Load Rate	U1	1	255	50	0.1 h rate

Description: Current rate used in SOH simulation specified in hour-rate (that is, current = C/**SOH Load Rate**)

19.14.14 Turbo Cfg

19.14.14.1 Min Turbo Power

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Min Turbo Power	12	-32768	32767	0	cW

Description: This is the minimal turbo power for the TURBO BOOST mode used by the system toward the end of discharge. This value is used to avoid unnecessary SOC jumps when the system is switching from higher to lower TURBO mode levels, reducing its power approaching the end of discharge.

19.14.14.2 Ten Second Max C-Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Ten Second Max C-Rate	I1	-127	0	-20	0.1 C-rate

Description: This value specifies the maximal discharge current for 10 s.

19.14.14.3 Ten Millisecond Max C-Rate

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Ten Millisecond Max C-Rate	I1	-127	0	-40	0.1 C-rate

Description: This value specifies the maximal discharge current for 10 ms.

19.14.14.4 Turbo Adjustment Factor

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Turbo Adjustment Factor	U1	0.5	1.5	1.00	_

Description: This is a resistance correction factor that, if used, would be a one-time adjustment the user computes from a 10-s pulse test.

19.14.14.5 Reserve Energy %

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	Reserve Energy %	I1	0	100	2	%

www.ti.com RA Table

Description: This is the remaining energy at present average discharge rate (as defined in **Load Select**) until the maximal peak power reaches the value reported by **MaxPeakPower()**.

19.14.14.6 High Frequency Resistance

Class	Subclass	Name	Туре	Min	Max	Default	Unit
Gas Gauging	Turbo Cfg	High Frequency Resistance	12	0	32767	20	mΩ

Description: This is the high-frequency resistance related to the specific cell chemistry and pack configuration.

19.15 RA Table

19.15.1 R_a0

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a0	Cell 0 R_A Flag	H2	0x0000	0xFFFF	0xFF55	$2^{-10} \Omega$

Description:

This value indicates the validity of the cell impedance table for *Cell 1*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	Table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 1*, as shown in the following table:

Class	Subclass	Name	Type	Min	Max	Default	Unit	Description
RA Table	R_a0	Cell 0 R_A 0	12	0	32767	38	$2^{-10} \Omega$	Cell 0 resistance at grid point 0
RA Table	R_a0	Cell 0 R_A 1	12	0	32767	41	$2^{-10} \Omega$	Cell 0 resistance at grid point 1
RA Table	R_a0	Cell 0 R_A 2	12	0	32767	43	2-10 Ω	Cell 0 resistance at grid point 2
RA Table	R_a0	Cell 0 R_A 3	12	0	32767	44	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 3
RA Table	R_a0	Cell 0 R_A 4	12	0	32767	42	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 4
RA Table	R_a0	Cell 0 R_A 5	12	0	32767	42	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 5
RA Table	R_a0	Cell 0 R_A 6	12	0	32767	45	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 6
RA Table	R_a0	Cell 0 R_A 7	12	0	32767	48	2-10 Ω	Cell 0 resistance at grid point 7
RA Table	R_a0	Cell 0 R_A 8	12	0	32767	49	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 8
RA Table	R_a0	Cell 0 R_A 9	12	0	32767	52	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 9
RA Table	R_a0	Cell 0 R_A 10	12	0	32767	56	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 10
RA Table	R_a0	Cell 0 R_A 11	12	0	32767	64	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 11
RA Table	R_a0	Cell 0 R_A 12	12	0	32767	74	2-10 Ω	Cell 0 resistance at grid point 12
RA Table	R_a0	Cell 0 R_A 13	12	0	32767	128	2-10 Ω	Cell 0 resistance at grid point 13
RA Table	R_a0	Cell 0 R_A 14	12	0	32767	378	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 14

RA Table www.ti.com

19.15.2 R_a1

Class	Class Subclass Name		Туре	Min	Max	Default	Unit
RA Table	R_a1	Cell 1 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell 2. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 2*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a1	Cell 1 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 0
RA Table	R_a1	Cell 1 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 1
RA Table	R_a1	Cell 1 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 2
RA Table	R_a1	Cell 1 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 3
RA Table	R_a1	Cell 1 R_A 4	12	-32768	32768	42	$2^{-10} \Omega$	Cell 1 resistance at grid point 4
RA Table	R_a1	Cell 1 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 5
RA Table	R_a1	Cell 1 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 6
RA Table	R_a1	Cell 1 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 7
RA Table	R_a1	Cell 1 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 8
RA Table	R_a1	Cell 1 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 9
RA Table	R_a1	Cell 1 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 10
RA Table	R_a1	Cell 1 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 11
RA Table	R_a1	Cell 1 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 12
RA Table	R_a1	Cell 1 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 13
RA Table	R_a1	Cell 1 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 14

19.15.3 R_a2

Class	Subclass	Name	Type	Min	Max	Default	Unit
RA Table	R_a2	Cell 2 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell 3. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.

www.ti.com RA Table

High Byte Low Byte

0xFF Cell impedance never updated

The gauge stores and updates the impedance profile for Cell 3, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a2	Cell 2 R_A 0	12	-32768	32768	38	$2^{-10} \Omega$	Cell 2 resistance at grid point 0
RA Table	R_a2	Cell 2 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 1
RA Table	R_a2	Cell 2 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 2
RA Table	R_a2	Cell 2 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 3
RA Table	R_a2	Cell 2 R_A 4	12	-32768	32768	42	$2^{-10} \Omega$	Cell 2 resistance at grid point 4
RA Table	R_a2	Cell 2 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 5
RA Table	R_a2	Cell 2 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 6
RA Table	R_a2	Cell 2 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 7
RA Table	R_a2	Cell 2 R_A 8	12	-32768	32768	49	$2^{-10} \Omega$	Cell 2 resistance at grid point 8
RA Table	R_a2	Cell 2 R_A 9	12	-32768	32768	52	$2^{-10} \Omega$	Cell 2 resistance at grid point 9
RA Table	R_a2	Cell 2 R_A 10	12	-32768	32768	56	$2^{-10} \Omega$	Cell 2 resistance at grid point 10
RA Table	R_a2	Cell 2 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 11
RA Table	R_a2	Cell 2 R_A 12	12	-32768	32768	74	$2^{-10} \Omega$	Cell 2 resistance at grid point 12
RA Table	R_a2	Cell 2 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 13
RA Table	R_a2	Cell 2 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 14

19.15.4 R_a3

Class	Subclass	Subclass Name		Type Min		Default	Unit
RA Table	R_a3	Cell 3 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell 4. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell 4, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a3	Cell 3 R_A 0	12	-32768	32768	38	$2^{-10} \Omega$	Cell 3 resistance at grid point 0
RA Table	R_a3	Cell 3 R_A 1	12	-32768	32768	41	2-10 Ω	Cell 3 resistance at grid point 1
RA Table	R_a3	Cell 3 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 2
RA Table	R_a3	Cell 3 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 3
RA Table	R_a3	Cell 3 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 4
RA Table	R_a3	Cell 3 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 5
RA Table	R_a3	Cell 3 R_A 6	12	-32768	32768	45	2-10 Ω	Cell 3 resistance at grid point 6
RA Table	R_a3	Cell 3 R_A 7	12	-32768	32768	48	2-10 Ω	Cell 3 resistance at grid point 7
RA Table	R_a3	Cell 3 R_A 8	12	-32768	32768	49	2-10 Ω	Cell 3 resistance at grid point 8

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a3	Cell 3 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 9
RA Table	R_a3	Cell 3 R_A 10	12	-32768	32768	56	2-10 Ω	Cell 3 resistance at grid point 10
RA Table	R_a3	Cell 3 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 11
RA Table	R_a3	Cell 3 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 12
RA Table	R_a3	Cell 3 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 13
RA Table	R_a3	Cell 3 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 14

19.15.5 R_a4

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a4	Cell 4 R_A Flag	H2	0x0000	0xFFFF	0xFF55	-

Description:

This value indicates the validity of the cell impedance table for Cell 5. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell 5, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a4	Cell 4 R_A 0	12	-32768	32768	38	2-10 Ω	Cell 4 resistance at grid point 0
RA Table	R_a4	Cell 4 R_A 1	12	-32768	32768	41	2-10 Ω	Cell 4 resistance at grid point 1
RA Table	R_a4	Cell 4 R_A 2	12	-32768	32768	43	2-10 Ω	Cell 4 resistance at grid point 2
RA Table	R_a4	Cell 4 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 4resistance at grid point 3
RA Table	R_a4	Cell 4 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 4
RA Table	R_a4	Cell 4 R_A 5	12	-32768	32768	42	2-10 Ω	Cell 4 resistance at grid point 5
RA Table	R_a4	Cell 4 R_A 6	12	-32768	32768	45	2-10 Ω	Cell 4 resistance at grid point 6
RA Table	R_a4	Cell 4 R_A 7	12	-32768	32768	48	2-10 Ω	Cell 4 resistance at grid point 7
RA Table	R_a4	Cell 4 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 8
RA Table	R_a4	Cell 4 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 9
RA Table	R_a4	Cell 4 R_A 10	12	-32768	32768	56	2-10 Ω	Cell 4 resistance at grid point 10
RA Table	R_a4	Cell 4 R_A 11	12	-32768	32768	64	2-10 Ω	Cell 4 resistance at grid point 11
RA Table	R_a4	Cell 4 R_A 12	12	-32768	32768	74	2-10 Ω	Cell 4 resistance at grid point 12
RA Table	R_a4	Cell 4 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 13
RA Table	R_a4	Cell 4 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 14

www.ti.com RA Table

19.15.6 R_a5

Class	Subclass	Name	Type	Min	Max	Default	Unit
RA Table	R_a5	Cell 5 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell 6. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for Cell 6, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a5	Cell 5 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 0
RA Table	R_a5	Cell 5 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 1
RA Table	R_a5	Cell 5 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 2
RA Table	R_a5	Cell 5 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 3
RA Table	R_a5	Cell 5 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 4
RA Table	R_a5	Cell 5 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 5
RA Table	R_a5	Cell 5 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 6
RA Table	R_a5	Cell 5 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 7
RA Table	R_a5	Cell 5 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 8
RA Table	R_a5	Cell 5 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 9
RA Table	R_a5	Cell 5 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 10
RA Table	R_a5	Cell 5 R_A 11	I2	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 11
RA Table	R_a5	Cell 5 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 12
RA Table	R_a5	Cell 5 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 13
RA Table	R_a5	Cell 5 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 14

19.15.7 R_a6

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a6	Cell 6 R_A Flag	H2	0x0000	0xFFFF	0xFF55	_

Description:

This value indicates the validity of the cell impedance table for Cell 7. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.

RA Table www.ti.com

High Byte Low Byte

0xFF Cell impedance never updated

The gauge stores and updates the impedance profile for Cell 7, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a6	Cell 6 R_A 0	12	-32768	32768	38	$2^{-10} \Omega$	Cell 6 resistance at grid point 0
RA Table	R_a6	Cell 6 R_A 1	12	-32768	32768	41	2-10 Ω	Cell 6 resistance at grid point 1
RA Table	R_a6	Cell 6 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 2
RA Table	R_a6	Cell 6 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 3
RA Table	R_a6	Cell 6 R_A 4	12	-32768	32768	42	2-10 Ω	Cell 6 resistance at grid point 4
RA Table	R_a6	Cell 6 R_A 5	12	-32768	32768	42	2-10 Ω	Cell 6 resistance at grid point 5
RA Table	R_a6	Cell 6 R_A 6	12	-32768	32768	45	2-10 Ω	Cell 6 resistance at grid point 6
RA Table	R_a6	Cell 6 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 7
RA Table	R_a6	Cell 6 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 8
RA Table	R_a6	Cell 6 R_A 9	12	-32768	32768	52	2-10 Ω	Cell 6 resistance at grid point 9
RA Table	R_a6	Cell 6 R_A 10	12	-32768	32768	56	2-10 Ω	Cell 6 resistance at grid point 10
RA Table	R_a6	Cell 6 R_A 11	12	-32768	32768	64	2-10 Ω	Cell 6 resistance at grid point 11
RA Table	R_a6	Cell 6 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 12
RA Table	R_a6	Cell 6 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 13
RA Table	R_a6	Cell 6 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 14

19.15.8 R_a0x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a0x	xCell 0 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for *Cell 1*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 1*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a0x	xCell 0 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 0
RA Table	R_a0x	xCell 0 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 1
RA Table	R_a0x	xCell 0 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 2
RA Table	R_a0x	xCell 0 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 3
RA Table	R_a0x	xCell 0 R_A 4	12	-32768	32768	42	2-10 Ω	Cell 0 resistance at grid point 4
RA Table	R_a0x	xCell 0 R_A 5	12	-32768	32768	42	2-10 Ω	Cell 0 resistance at grid point 5
RA Table	R_a0x	xCell 0 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 6
RA Table	R_a0x	xCell 0 R_A 7	12	-32768	32768	48	$2^{-10} \Omega$	Cell 0 resistance at grid point 7

www.ti.com RA Table

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a0x	xCell 0 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 8
RA Table	R_a0x	xCell 0 R_A 9	12	-32768	32768	52	2-10 Ω	Cell 0 resistance at grid point 9
RA Table	R_a0x	xCell 0 R_A 10	12	-32768	32768	56	2-10 Ω	Cell 0 resistance at grid point 10
RA Table	R_a0x	xCell 0 R_A 11	12	-32768	32768	64	2-10 Ω	Cell 0 resistance at grid point 11
RA Table	R_a0x	xCell 0 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 12
RA Table	R_a0x	xCell 0 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 0 resistance at grid point 13
RA Table	R_a0x	xCell 0 R_A 14	12	-32768	32768	378	2-10 Ω	Cell 0 resistance at grid point 14

19.15.9 R_a1x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a1x	xCell 1 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for *Cell 2*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 2*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a1x	xCell 1 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 0
RA Table	R_a1x	xCell 1 R_A 1	12	-32768	32768	41	2-10 Ω	Cell 1 resistance at grid point 1
RA Table	R_a1x	xCell 1 R_A 2	12	-32768	32768	43	2-10 Ω	Cell 1 resistance at grid point 2
RA Table	R_a1x	xCell 1 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 3
RA Table	R_a1x	xCell 1 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 4
RA Table	R_a1x	xCell 1 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 5
RA Table	R_a1x	xCell 1 R_A 6	12	-32768	32768	45	2-10 Ω	Cell 1 resistance at grid point 6
RA Table	R_a1x	xCell 1 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 7
RA Table	R_a1x	xCell 1 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 8
RA Table	R_a1x	xCell 1 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 9
RA Table	R_a1x	xCell 1 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 10
RA Table	R_a1x	xCell 1 R_A 11	12	-32768	32768	64	2-10 Ω	Cell 1 resistance at grid point 11
RA Table	R_a1x	xCell 1 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 12
RA Table	R_a1x	xCell 1 R_A 13	12	-32768	32768	128	2 ⁻¹⁰ Ω	Cell 1 resistance at grid point 13
RA Table	R_a1x	xCell 1 R_A 14	12	-32768	32768	378	$2^{-10} \Omega$	Cell 1 resistance at grid point 14

RA Table www.ti.com

19.15.10 R_a2x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a2x	xCell 2 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for Cell 3. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance update.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 3*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a2x	xCell 2 R_A 0	12	-32768	32768	38	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 0
RA Table	R_a2x	xCell 2 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 1
RA Table	R_a2x	xCell 2 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 2
RA Table	R_a2x	xCell 2 R_A 3	12	-32768	32768	44	$2^{-10} \Omega$	Cell 2 resistance at grid point 3
RA Table	R_a2x	xCell 2 R_A 4	12	-32768	32768	42	$2^{-10} \Omega$	Cell 2 resistance at grid point 4
RA Table	R_a2x	xCell 2 R_A 5	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 5
RA Table	R_a2x	xCell 2 R_A 6	12	-32768	32768	45	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 6
RA Table	R_a2x	xCell 2 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 7
RA Table	R_a2x	xCell 2 R_A 8	12	-32768	32768	49	$2^{-10} \Omega$	Cell 2 resistance at grid point 8
RA Table	R_a2x	xCell 2 R_A 9	12	-32768	32768	52	$2^{-10} \Omega$	Cell 2 resistance at grid point 9
RA Table	R_a2x	xCell 2 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 10
RA Table	R_a2x	xCell 2 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 11
RA Table	R_a2x	xCell 2 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 2 resistance at grid point 12
RA Table	R_a2x	xCell 2 R_A 13	12	-32768	32768	128	$2^{-10} \Omega$	Cell 2 resistance at grid point 13
RA Table	R_a2x	xCell 2 R_A 14	12	-32768	32768	378	$2^{-10} \Omega$	Cell 2 resistance at grid point 14

19.15.11 R_a3x

Class	Subclass	Subclass Name		Min	Max	Default	Unit
RA Table	R_a3x	xCell 3 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for *Cell 4*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.

www.ti.com RA Table

High Byte	Low Byte
-----------	----------

0xFF Cell impedance never updated

The gauge stores and updates the impedance profile for *Cell 4*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a3x	xCell 3 R_A 0	12	-32768	32768	38	$2^{-10} \Omega$	Cell 3 resistance at grid point 0
RA Table	R_a3x	xCell 3 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 1
RA Table	R_a3x	xCell 3 R_A 2	12	-32768	32768	43	$2^{-10} \Omega$	Cell 3 resistance at grid point 2
RA Table	R_a3x	xCell 3 R_A 3	12	-32768	32768	44	$2^{-10} \Omega$	Cell 3 resistance at grid point 3
RA Table	R_a3x	xCell 3 R_A 4	12	-32768	32768	42	$2^{-10} \Omega$	Cell 3 resistance at grid point 4
RA Table	R_a3x	xCell 3 R_A 5	12	-32768	32768	42	$2^{-10} \Omega$	Cell 3 resistance at grid point 5
RA Table	R_a3x	xCell 3 R_A 6	12	-32768	32768	45	$2^{-10} \Omega$	Cell 3 resistance at grid point 6
RA Table	R_a3x	xCell 3 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 7
RA Table	R_a3x	xCell 3 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 8
RA Table	R_a3x	xCell 3 R_A 9	12	-32768	32768	52	$2^{-10} \Omega$	Cell 3 resistance at grid point 9
RA Table	R_a3x	xCell 3 R_A 10	12	-32768	32768	56	$2^{-10} \Omega$	Cell 3 resistance at grid point 10
RA Table	R_a3x	xCell 3 R_A 11	12	-32768	32768	64	$2^{-10} \Omega$	Cell 3 resistance at grid point 11
RA Table	R_a3x	xCell 3 R_A 12	12	-32768	32768	74	$2^{-10} \Omega$	Cell 3 resistance at grid point 12
RA Table	R_a3x	xCell 3 R_A 13	12	-32768	32768	128	$2^{-10} \Omega$	Cell 3 resistance at grid point 13
RA Table	R_a3x	xCell 3 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 3 resistance at grid point 14

19.15.12 R_a4x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a4x	xCell 4 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for *Cell 5*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 5*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a4x	xCell 4 R_A 0	I2	-32768	32768	38	$2^{-10} \Omega$	Cell 4 resistance at grid point 0
RA Table	R_a4x	xCell 4 R_A 1	12	-32768	32768	41	$2^{-10} \Omega$	Cell 4 resistance at grid point 1
RA Table	R_a4x	xCell 4 R_A 2	12	-32768	32768	43	$2^{-10} \Omega$	Cell 4 resistance at grid point 2
RA Table	R_a4x	xCell 4 R_A 3	12	-32768	32768	44	$2^{-10} \Omega$	Cell 4 resistance at grid point 3
RA Table	R_a4x	xCell 4 R_A 4	12	-32768	32768	42	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 4
RA Table	R_a4x	xCell 4 R_A 5	12	-32768	32768	42	$2^{-10} \Omega$	Cell 4 resistance at grid point 5
RA Table	R_a4x	xCell 4 R_A 6	12	-32768	32768	45	$2^{-10} \Omega$	Cell 4 resistance at grid point 6
RA Table	R_a4x	xCell 4 R_A 7	I2	-32768	32768	48	$2^{-10} \Omega$	Cell 4 resistance at grid point 7

RA Table www.ti.com

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a4x	xCell 4 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 8
RA Table	R_a4x	xCell 4 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 9
RA Table	R_a4x	xCell 4 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 10
RA Table	R_a4x	xCell 4 R_A 11	12	-32768	32768	64	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 11
RA Table	R_a4x	xCell 4 R_A 12	I2	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 12
RA Table	R_a4x	xCell 4 R_A 13	12	-32768	32768	128	$2^{-10} \Omega$	Cell 4 resistance at grid point 13
RA Table	R_a4x	xCell 4 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 4 resistance at grid point 14

19.15.13 R_a5x

Class	Subclass	Subclass Name		Min	Max	Default	Unit
RA Table	R_a5x	xCell 5 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for *Cell 6*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 6*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a5x	xCell 5 R_A 0	12	-32768	32768	38	$2^{-10} \Omega$	Cell 5 resistance at grid point 0
RA Table	R_a5x	xCell 5 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 1
RA Table	R_a5x	xCell 5 R_A 2	12	-32768	32768	43	$2^{-10} \Omega$	Cell 5 resistance at grid point 2
RA Table	R_a5x	xCell 5 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 3
RA Table	R_a5x	xCell 5 R_A 4	12	-32768	32768	42	$2^{-10} \Omega$	Cell 5 resistance at grid point 4
RA Table	R_a5x	xCell 5 R_A 5	12	-32768	32768	42	$2^{-10} \Omega$	Cell 5 resistance at grid point 5
RA Table	R_a5x	xCell 5 R_A 6	12	-32768	32768	45	$2^{-10} \Omega$	Cell 5 resistance at grid point 6
RA Table	R_a5x	xCell 5 R_A 7	12	-32768	32768	48	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 7
RA Table	R_a5x	xCell 5 R_A 8	12	-32768	32768	49	$2^{-10} \Omega$	Cell 5 resistance at grid point 8
RA Table	R_a5x	xCell 5 R_A 9	12	-32768	32768	52	$2^{-10} \Omega$	Cell 5 resistance at grid point 9
RA Table	R_a5x	xCell 5 R_A 10	12	-32768	32768	56	$2^{-10} \Omega$	Cell 5 resistance at grid point 10
RA Table	R_a5x	xCell 5 R_A 11	12	-32768	32768	64	$2^{-10} \Omega$	Cell 5 resistance at grid point 11
RA Table	R_a5x	xCell 5 R_A 12	12	-32768	32768	74	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 12
RA Table	R_a5x	xCell 5 R_A 13	12	-32768	32768	128	$2^{-10} \Omega$	Cell 5 resistance at grid point 13
RA Table	R_a5x	xCell 5 R_A 14	12	-32768	32768	378	2 ⁻¹⁰ Ω	Cell 5 resistance at grid point 14

www.ti.com RA Table

19.15.14 R_a6x

Class	Subclass	Name	Туре	Min	Max	Default	Unit
RA Table	R_a6x	xCell 6 R_A Flag	H2	0x0000	0xFFFF	0xFFFF	_

Description:

This value indicates the validity of the cell impedance table for *Cell 7*. It is recommended not to change this value manually.

High Byte		Low Byte	
0x00	Cell impedance and QMax updated	0x00	The table is not used and QMax is updated.
0x05	RELAX mode and QMax update in progress	0x55	Table is used.
0x55	DISCHARGE mode and cell impedance updated	0xFF	Table is never used; no QMax or cell impedance is updated.
0xFF	Cell impedance never updated		

The gauge stores and updates the impedance profile for *Cell 7*, as shown in the following table:

Class	Subclass	Name	Туре	Min	Max	Default	Unit	Description
RA Table	R_a6x	xCell 6 R_A 0	12	-32768	32768	38	2-10 Ω	Cell 6 resistance at grid point 0
RA Table	R_a6x	xCell 6 R_A 1	12	-32768	32768	41	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 1
RA Table	R_a6x	xCell 6 R_A 2	12	-32768	32768	43	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 2
RA Table	R_a6x	xCell 6 R_A 3	12	-32768	32768	44	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 3
RA Table	R_a6x	xCell 6 R_A 4	12	-32768	32768	42	$2^{-10} \Omega$	Cell 6 resistance at grid point 4
RA Table	R_a6x	xCell 6 R_A 5	12	-32768	32768	42	$2^{-10} \Omega$	Cell 6 resistance at grid point 5
RA Table	R_a6x	xCell 6 R_A 6	12	-32768	32768	45	$2^{-10} \Omega$	Cell 6 resistance at grid point 6
RA Table	R_a6x	xCell 6 R_A 7	12	-32768	32768	48	$2^{-10} \Omega$	Cell 6 resistance at grid point 7
RA Table	R_a6x	xCell 6 R_A 8	12	-32768	32768	49	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 8
RA Table	R_a6x	xCell 6 R_A 9	12	-32768	32768	52	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 9
RA Table	R_a6x	xCell 6 R_A 10	12	-32768	32768	56	2 ⁻¹⁰ Ω	Cell 6 resistance at grid point 10
RA Table	R_a6x	xCell 6 R_A 11	12	-32768	32768	64	$2^{-10} \Omega$	Cell 6 resistance at grid point 11
RA Table	R_a6x	xCell 6 R_A 12	12	-32768	32768	74	$2^{-10} \Omega$	Cell 6 resistance at grid point 12
RA Table	R_a6x	xCell 6 R_A 13	12	-32768	32768	128	$2^{-10} \Omega$	Cell 6 resistance at grid point 13
RA Table	R_a6x	xCell 6 R_A 14	12	-32768	32768	378	$2^{-10} \Omega$	Cell 6 resistance at grid point 14

19.16 SBS Configuration

19.16.1 Data

19.16.1.1 Remaining Capacity Alarm

19.16.1.1.1 Remaining Ah Capacity Alarm

Class	Subclass	Name	Type	Min	Max	Default	Unit
SBS Configuration	Data	Remaining Ah Capacity Alarm	U2	0	700	300	mAh

Description: RemainingCapacityAlarm() value in mAh

SBS Configuration www.ti.com

19.16.1.1.2 Remaining Wh Capacity Alarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Remaining Wh Capacity Alarm	U2	0	1000	432	cWh

Description: RemainingCapacityAlarm() value in cWh

19.16.1.2 RemainingTimeAlarm

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Remaining Time Alarm	U2	0	30	10	min

Description: RemainingTimeAlarm() value

19.16.1.3 Initial Battery Mode

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Initial Battery Mode	H2	0x0000	0xFFFF	0x0081	_
•							

15	14	13	12	11	10	9	8
CAPM	CHGM	AM	RSVD	RSVD	RSVD	PB	CC
7	6	5	4	3	2	1	0
CF	RSVD	RSVD	RSVD	RSVD	RSVD	PBS	ICC

CAPM (Bit 15): Capacity_Mode (R/W)

1 = Report in 10 mW or cWh

0 = Report in mA or mAh (default)

CHGM (Bit 14): Charger_Mode (R/W)

- 1 = Disables ChargingVoltage() and ChargingCurrent() broadcasts to the host and smart battery charger (default)
- 0 = Enables ChargingVoltage() and ChargingCurrent() broadcasts to the host and smart battery charger

AM (Bit 13): ALARM Mode (R/W)

- 1 = Disables AlarmWarning() broadcasts to host and smart battery charger
- 0 = Enables AlarmWarning() broadcasts to host and smart battery charger (default)

RSVD (Bits 12-10): Reserved. Do not use.

PB (Bit 9): Primary_Battery (R/W)

1 = Battery operating in its primary role

0 = Battery operating in its secondary role (default)

CC (Bit 8): Charge_Controller_Enabled (R/W)

1 = Internal charge control enabled

0 = Internal charge control disabled (default)

CF (Bit 7): Condition_Flag (R)

1 = Conditioning cycle requested

0 = Battery OK

RSVD (Bits 6-2): Reserved. Do not use.

www.ti.com SBS Configuration

PBS (Bit 1): Primary_Battery_Support (R)

1 = Primary or secondary battery support

0 = Function not supported (default)

ICC (Bit 0): Internal_Charge_Controller (R)

1 = Function supported

0 = Function not supported (default)

19.16.1.4 Specification Information

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Specification Information	H2	0x0000	0xFFFF	0x0031	_

15	14	13	12	11	10	9	8
IPScale	IPScale	IPScale	IPScale	VScale	VScale	VScale	VScale
7	6	5	4	3	2	1	0
\/a==:a=	V	V		Davisias	Davisias	Davisias	Davisias
Version	Version	Version	Version	Revision	Revision	Revision	Revision

SpecificationInformation() values

IPScale (Bits 15-12): IP Scale Factor

0,0,0,0 = Reported currents and capacities scaled by 10E0 except *ChargingVoltage()* and *ChargingCurrent()*

0,0,0,1 = Reported currents and capacities scaled by 10E1 except ChargingVoltage() and ChargingCurrent()

0,0,1,0 = Reported currents and capacities scaled by 10E2 except *ChargingVoltage()* and *ChargingCurrent()*

0,0,1,1 = Reported currents and capacities scaled by 10E3 except *ChargingVoltage()* and *ChargingCurrent()*

VScale (Bits 11-8): Voltage Scale Factor

0,0,0,0 = Reported voltages scaled by 10E0

0,0,0,1 = Reported voltages scaled by 10E1

0,0,1,0 = Reported voltages scaled by 10E2

0,0,1,1 = Reported voltages scaled by 10E3

Version (Bits 7-4): Version

0.0.0.1 = Version 1.0

0,0,1,1 = Version 1.1

0,0,1,1 = Version 1.1 with optional PEC support

Revision (Bits 3-0): Revision

0,0,0,1 = Version 1.0 and 1.1 (default)

19.16.1.5 Manufacturer Date

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Manufacturer Date	U2	0	65535	01/01/80	_

Description: ManufacturerDate() value in the following format: Day + Month*32 + (Year-1980) * 512

Data Flash Summary www.ti.com

19.16.1.6 Serial Number

Class	Subclass	Name	Туре	Min	Max	Default	Unit
SBS Configuration	Data	Serial Number	H2	0x0000	0xFFFF	0x0001	_

Description: SerialNumber() value

19.16.1.7 Manufacturer Name

Class Subclass		Name	Name Type		Max	Default	Unit
SBS Configuration	Data	Manufacturer Name	S20+1	_		Texas Instruments	ASCII

Description: ManufacturerName() value

19.16.1.8 Device Name

Class	ss Subclass Name		Туре	Min	Max	Default	Unit
SBS Configuration	Data	Device Name	S20+1	_	_	bq40z80	ASCII

Description: DeviceName() value

19.16.1.9 Device Chemistry

Class	Subclass	Name	Type	Min	Max	Default	Unit
SBS Configuration	Data	Device Chemistry	S4+1		_	LION	ASCII

Description: DeviceChemistry() value

19.17 Data Flash Summary

Table 19-1. Data Flash Table

Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Calibration	Voltage	0x4000	Cell Gain	12	-32767	32767	12101	_
Calibration	Voltage	0x4002	Pack Gain	U2	0	65535	42237	_
Calibration	Voltage	0x4004	Vc6-Vss Gain	U2	0	65535	37582	_
Calibration	Current	0x4006	CC Gain	F4	1.00E-01	4.00E+00	3.58422	_
Calibration	Current	0x400A	Capacity Gain	F4	2.98262E+0 4	1.193046E +06	1069035. 256	_
Calibration	Current Offset	0x400E	CC Offset	12	-32767	32767	0	_
Calibration	Current Offset	0x4010	Coulomb Counter Offset Samples	U2	0	65535	64	_
Calibration	Current Offset	0x4012	Board Offset	12	-32768	32767	0	_
Calibration	Current Offset	0x4100	CC Auto Config	H1	0x00	0x07	0x03	Hex
Calibration	Current Offset	0x4101	CC Auto Offset	12	-10000	10000	0	_
Calibration	Temperature	0x4014	Internal Temp Offset	I1	-128	127	0	0.1°C
Calibration	Temperature	0x4015	External1 Temp Offset	I1	-128	127	0	0.1°C
Calibration	Temperature	0x4016	External2 Temp Offset	I1	-128	127	0	0.1°C
Calibration	Temperature	0x4017	External3 Temp Offset	I1	-128	127	0	0.1°C
Calibration	Temperature	0x4018	External4 Temp Offset	I1	-128	127	0	0.1°C
Calibration	Ext Cell Voltage	0x4019	VC7 Sense Gain	U2	0	65535	41660	_
Calibration	Internal Temp Model	0x4840	Int Gain	12	-32768	32767	-12143	_
Calibration	Internal Temp Model	0x4842	Int base offset	12	-32768	32767	6232	_

www.ti.com Data Flash Summary

Г		I abic	19-1. Data Flasii Tabit	, (6011611	iucu,			
Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units
Calibration	Internal Temp Model	0x4844	Int Minimum AD	l2	-32768	32767	0	_
Calibration	Internal Temp Model	0x4846	Int Maximum Temp	12	0	32767	6232	0.1°K
Calibration	Cell Temperature Model	0x4848	Coeff a1	12	-32768	32767	-11130	_
Calibration	Cell Temperature Model	0x484A	Coeff a2	12	-32768	32767	19142	_
Calibration	Cell Temperature Model	0x484C	Coeff a3	12	-32768	32767	-19262	_
Calibration	Cell Temperature Model	0x484E	Coeff a4	12	-32768	32767	28203	_
Calibration	Cell Temperature Model	0x4850	Coeff a5	12	-32768	32767	892	_
Calibration	Cell Temperature Model	0x4852	Coeff b1	12	-32768	32767	328	_
Calibration	Cell Temperature Model	0x4854	Coeff b2	12	-32768	32767	-605	_
Calibration	Cell Temperature Model	0x4856	Coeff b3	12	-32768	32767	-2443	_
Calibration	Cell Temperature Model	0x4858	Coeff b4	12	-32768	32767	4696	_
Calibration	Cell Temperature Model	0x485A	Rc0	12	-32768	32767	11703	_
Calibration	Cell Temperature Model	0x485C	Adc0	12	-32768	32767	11703	_
Calibration	Cell Temperature Model	0x485E	Rpad	12	-32768	32767	0	_
Calibration	Cell Temperature Model	0x4860	Rint	12	-32768	32767	0	_
Calibration	Fet Temperature Model	0x4862	Coeff a1	12	-32768	32767	-11130	_
Calibration	Fet Temperature Model	0x4864	Coeff a2	12	-32768	32767	19142	_
Calibration	Fet Temperature Model	0x4866	Coeff a3	12	-32768	32767	-19262	_
Calibration	Fet Temperature Model	0x4868	Coeff a4	12	-32768	32767	28203	_
Calibration	Fet Temperature Model	0x486A	Coeff a5	12	-32768	32767	892	_
Calibration	Fet Temperature Model	0x486C	Coeff b1	12	-32768	32767	328	_
Calibration	Fet Temperature Model	0x486E	Coeff b2	12	-32768	32767	-605	_
Calibration	Fet Temperature Model	0x4870	Coeff b3	12	-32768	32767	-2443	_
Calibration	Fet Temperature Model	0x4872	Coeff b4	12	-32768	32767	4696	_
Calibration	Fet Temperature Model	0x4874	Rc0	12	-32768	32767	11703	_
Calibration	Fet Temperature Model	0x4876	Adc0	12	-32768	32767	11703	_
Calibration	Fet Temperature Model	0x4878	Rpad	12	-32768	32767	0	_
Calibration	Fet Temperature Model	0x487A	Rint	12	-32768	32767	0	_
Calibration	Current Deadband	0x4889	Deadband	U1	0	255	3	mA
Calibration	Current Deadband	0x488A	Coulomb Counter Deadband	U1	0	255	9	116 nV
Settings	Protection	0x4B7B	Protection Configuration	H1	0x0	0x07	0x0	Hex
Settings	Protection	0x4B7C	Enabled Protections A	H1	0x0	0xFF	0xFF	Hex
Settings	Protection	0x4B7D	Enabled Protections B	H1	0x0	0xFF	0x7F	Hex

Data Flash Summary www.ti.com

Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Settings	Protection	0x4B7E	Enabled Protections C	H1	0x0	0xFF	0xD5	Hex
Settings	Protection	0x4B7F	Enabled Protections D	H1	0x0	0xFF	0x0F	Hex
Settings	Permanent Failure	0x4C03	Enabled PF A	H1	0x0	0xFF	0x0	Hex
Settings	Permanent Failure	0x4C04	Enabled PF B	H1	0x0	0xFF	0x0	Hex
Settings	Permanent Failure	0x4C05	Enabled PF C	H1	0x0	0xFF	0x0	Hex
Settings	Permanent Failure	0x4C06	Enabled PF D	H1	0x0	0xFF	0x0	Hex
Settings	Configuration	0x4A87	FET Options	H2	0x0	0xFFFF	0x0020	Hex
Settings	Configuration	0x4A89	Sbs Gauging Configuration	H1	0x0	0x0F	0x04	Hex
Settings	Configuration	0x4A8A	Sbs Configuration	H1	0x0	0xFF	0x20	Hex
Settings	Configuration	0x4A8B	Auth Config	H1	0x0	0xFF	0x00	Hex
Settings	Configuration	0x4A8C	Power Config	H2	0x0	0x03BF	0x0000	Hex
Settings	Configuration	0x4A8E	IO Config	H1	0x0	0x03	0x00	Hex
Settings	Configuration	0x4A93	Pin Configuration	H2	0x0000	0xFFFF	0x0009	Hex
Settings	Configuration	0x4A95	GPIO Sealed Access Config	H1	0x0	0xFF	0x00	Hex
Settings	Configuration	0x4A96	FlagMapSetUp0	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4A98	FlagMapSetUp1	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4A9A	FlagMapSetUp2	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4A9C	FlagMapSetUp3	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4A9E	FlagMapSetUp4	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4AA0	FlagMapSetUp5	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4AA2	FlagMapSetUp6	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4AA4	FlagMapSetUp7	H2	0x0000	0xFFFF	0x0000	Hex
Settings	Configuration	0x4ACC	LED Configuration	H2	0x0	0x0FFF	0x00D0	Hex
Settings	Configuration	0x4B31	SOC Flag Config A	H2	0x0	0x0FFF	0x0C8C	Hex
Settings	Configuration	0x4B33	SOC Flag Config B	H1	0x0	0xFF	0x8C	Hex
Settings	Configuration	0x4B4C	Balancing Configuration	H1	0x0	0xFF	0x01	Hex
Settings	Configuration	0x4B5B	IT Gauging Configuration	H2	0x0	0xFFFF	0xD0FE	Hex
Settings	Configuration	0x4B5F	IT Gauging Ext	H2	0x0000	0x00FF	0x001A	Hex
Settings	Configuration	0x4C4E	Charging Configuration	H1	0x0	0xFF	0x0	Hex
Settings	Configuration	0x4CBF	Temperature Enable	H1	0x0	0x1F	0x06	Hex
Settings	Configuration	0x4CC0	Temperature Mode	H1	0x0	0x1F	0x04	Hex
Settings	Configuration	0x4CC1	DA Configuration	H2	0x0	0xFFFF	0x0010	Hex
Settings	Configuration	0x4CC3	Cell Configuration	H1	0x0	0x07	0x05	Hex
Settings	AFE	0x4CC5	AFE Protection Control	H1	0x0	0xFF	0x70	Hex
Settings	AFE	0x4CCB	ZVCHG Exit Threshold	12	0	8000	2200	mV
Settings	Fuse	0x4A80	PF Fuse A	H1	0x0	0xFF	0x0	Hex
Settings	Fuse	0x4A81	PF Fuse B	H1	0x0	0xFF	0x0	Hex
Settings	Fuse	0x4A82	PF Fuse C	H1	0x0	0xFF	0x0	Hex
Settings	Fuse	0x4A83	PF Fuse D	H1	0x0	0xFF	0x0	Hex
Settings	Fuse	0x4A84	Min Blow Fuse Voltage	12	0	65535	3500	mV
Settings	Fuse	0x4A86	Fuse Blow Timeout	U1	0	255	30	s
Settings	BTP	0x4A8F	Init Discharge Set	12	0	32767	150	mAh
Settings	BTP	0x4A91	Init Charge Set	12	0	32767	175	mAh
Settings	SMBus	0x4AA6	Address	H1	0x0	0xFF	0x16	
Settings	SMBus	0x4AA7	Address Check	H1	0x0	0xFF	0xEA	
Settings	Current Scaling	0x4AA8	Scale Factor	U1	0	100	0	
Settings	Manufacturing	0x4800	Mfg Status init	H2	0x0	0xFFFF	0x0000	Hex
Protections	CUV	0x4B80	Threshold	12	0	32767	2500	mV
Protections	CUV	0x4B80 0x4B82	Delay	U1	0	255	2	S
	CUV	0x4B83	Recovery	12	0	32767	3000	mV
Protections		UNT DOU	I VECOVEI A	14		UZ101	0000	1117

www.ti.com Data Flash Summary

				-				
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Protections	CUVC	0x4B87	Delay	U1	0	255	2	s
Protections	CUVC	0x4B88	Recovery	12	0	32767	3000	mV
Protections	COV	0x4B8A	Threshold Low Temp	12	0	32767	4300	mV
Protections	COV	0x4B8C	Threshold Standard Temp Low	I2	0	32767	4300	mV
Protections	COV	0x4B8E	Threshold Standard Temp High	12	0	32767	4300	mV
Protections	COV	0x4B90	Threshold High Temp	12	0	32767	4300	mV
Protections	COV	0x4B92	Threshold Rec Temp	12	0	32767	4300	mV
Protections	COV	0x4B94	Delay	U1	0	255	2	S
Protections	COV	0x4B95	Recovery Low Temp	12	0	32767	3900	mV
Protections	COV	0x4B97	Recovery Standard Temp Low	12	0	32767	3900	mV
Protections	COV	0x4B99	Recovery Standard Temp High	12	0	32767	3900	mV
Protections	COV	0x4B9B	Recovery High Temp	12	0	32767	3900	mV
Protections	COV	0x4B9D	Recovery Rec Temp	12	0	32767	3900	mV
Protections	COV	0x4B9F	Latch Limit	U1	0	255	0	
Protections	COV	0x4BA0	Counter Dec Delay	U1	0	255	10	s
Protections	COV	0x4BA1	Reset	U1	0	255	15	s
Protections	OCC1	0x4BA2	Threshold	12	-32768	32767	6000	mA
Protections	OCC1	0x4BA4	Delay	U1	0	255	6	S
Protections	OCC2	0x4BA5	Threshold	12	-32768	32767	8000	mA
Protections	OCC2	0x4BA7	Delay	U1	0	255	3	S
Protections	OCC	0x4BA8	Recovery Threshold	12	-32768	32767	-200	mA
Protections	OCC	0x4BAA	Recovery Delay	U1	0	255	5	S
Protections	OCD1	0x4BAB	Threshold	12	-32768	32767	-6 000	mA
Protections	OCD1	0x4BAD	Delay	U1	0	255	6	S
Protections	OCD2	0x4BAE	Threshold	12	-32768	32767	-8000	mA
Protections	OCD2	0x4BB0	Delay	U1	0	255	3	S
Protections	OCD	0x4BB0 0x4BB1	Recovery Threshold	12	-32768	32767	200	mA
Protections	OCD	0x4BB3	· · · · · · · · · · · · · · · · · · ·	U1		255	5	
			Recovery Delay		0			S
Protections	OCD	0x4BB4	Latch Limit	U1	0	255	0	
Protections	OCD	0x4BB5	Counter Dec Delay	U1	0	255	10	S
Protections	OCD	0x4BB6	Reset	U1	0	255	15	S
Protections	AOLD	0x4BB7	Latch Limit	U1	0	255	0	
Protections	AOLD	0x4BB8	Counter Dec Delay	U1	0	255	10	S
Protections	AOLD	0x4BB9	Recovery	U1	0	255	5	S
Protections	AOLD	0x4BBA	Reset	U1	0	255	15	S
Protections	AOLD	0x4CC6	Threshold	H1	0x0	0xFF	0xF4	Hex
Protections	ASCC	0x4BBB	Latch Limit	U1	0	255	0	
Protections	ASCC	0x4BBC	Counter Dec Delay	U1	0	255	10	S
Protections	ASCC	0x4BBD	Recovery	U1	0	255	5	S
Protections	ASCC	0x4BBE	Reset	U1	0	255	15	S
Protections	ASCC	0x4CC7	Threshold	H1	0x0	0xFF	0x77	Hex
Protections	ASCD	0x4BBF	Latch Limit	U1	0	255	0	
Protections	ASCD	0x4BC0	Counter Dec Delay	U1	0	255	10	S
Protections	ASCD	0x4BC1	Recovery	U1	0	255	5	S
Protections	ASCD	0x4BC2	Reset	U1	0	255	15	S
Protections	ASCD	0x4CC8	Threshold 1	H1	0x0	0xFF	0x77	Hex
Protections	ASCD	0x4CC9	Threshold 2	H1	0x0	0xFF	0xE7	Hex
Protections	OTC	0x4BC3	Threshold	12	2332	3932	3282	0.1°k
Protections	OTC	0x4BC5	Delay	U1	0	255	2	s

Data Flash Summary www.ti.com

			Tala Fiasii Tab					
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Protections	OTC	0x4BC6	Recovery	I2	2332	3932	3232	0.1°K
Protections	OTD	0x4BC8	Threshold	I2	2332	3932	3332	0.1°K
Protections	OTD	0x4BCA	Delay	U1	0	255	2	S
Protections	OTD	0x4BCB	Recovery	12	2332	3932	3282	0.1°K
Protections	OTF	0x4BCD	Threshold	I2	2332	3932	3532	0.1°K
Protections	OTF	0x4BCF	Delay	U1	0	255	2	S
Protections	OTF	0x4BD0	Recovery	12	2332	3932	3382	0.1°K
Protections	UTC	0x4BD2	Threshold	12	2332	3932	2732	0.1°K
Protections	UTC	0x4BD4	Delay	U1	0	255	2	s
Protections	UTC	0x4BD5	Recovery	12	2332	3932	2782	0.1°K
Protections	UTD	0x4BD7	Threshold	I2	2332	3932	2732	0.1°K
Protections	UTD	0x4BD9	Delay	U1	0	255	2	s
Protections	UTD	0x4BDA	Recovery	12	2332	3932	2782	0.1°K
Protections	HWD	0x4BDC	Delay	U1	0	255	10	S
Protections	PTO	0x4BDD	Charge Threshold	12	-32768	32767	2000	mA
Protections	PTO	0x4BDF	Suspend Threshold	12	-32768	32767	1800	mA
Protections	PTO	0x4BE1	Delay	U2	0	65535	1800	S
Protections	PTO	0x4BE3	Reset	12	0	32767	2	mAh
Protections	СТО	0x4BE5	Charge Threshold	12	-32768	32767	2500	mA
Protections	СТО	0x4BE7	Suspend Threshold	12	-32768	32767	2000	mA
Protections	СТО	0x4BE9	Delay	U2	0	65535	54000	s
Protections	СТО	0x4BEB	Reset	12	0	32767	2	mAh
Protections	ОС	0x4BED	Threshold	12	-32768	32767	300	mAh
Protections	OC	0x4BEF	Recovery	12	-32768	32767	2	mAh
Protections	OC	0x4BF1	RSOC Recovery	U1	0	100	90	%
Protections	CHGV	0x4BF2	Threshold	12	-32768	32767	300	mV
Protections	CHGV	0x4BF4	Delay	U1	0	255	30	S
Protections	CHGV	0x4BF5	Recovery	12	-32768	32767	-500	mV
Protections	CHGC	0x4BF7	Threshold	12	-32768	32767	500	mA
Protections	CHGC	0x4BF9	Delay	U1	0	255	2	s
Protections	CHGC	0x4BFA	Recovery Threshold	12	-32768	32767	100	mA
Protections	CHGC	0x4BFC	Recovery Delay	U1	0	255	2	S
Protections	PCHGC	0x4BFD	Threshold	12	-32768	32767	50	mA
Protections	PCHGC	0x4BFF	Delay	U1	0	255	2	s
Protections	PCHGC	0x4C00	Recovery Threshold	12	-32768	32767	10	mA
Protections	PCHGC	0x4C02	Recovery Delay	U1	0	255	2	s
Permanent Fail	SUV	0x4C07	Threshold	12	0	32767	2200	mV
Permanent Fail	SUV	0x4C09	Delay	U1	0	255	5	s
Permanent Fail	SOV	0x4C0A	Threshold	12	0	32767	4500	mV
Permanent Fail	SOV	0x4C0C	Delay	U1	0	255	5	s
Permanent Fail	SOCC	0x4C0D	Threshold	12	-32768	32767	10000	mA
Permanent Fail	SOCC	0x4C0F	Delay	U1	0	255	5	S
Permanent Fail	SOCD	0x4C10	Threshold	12	-32768	32767	-10000	mA
Permanent Fail	SOCD	0x4C12	Delay	U1	0	255	5	S
Permanent Fail	SOT	0x4C13	Threshold	12	2332	3932	3382	0.1°K
Permanent Fail	SOT	0x4C15	Delay	U1	0	255	5	S
Permanent Fail	SOTF	0x4C16	Threshold	12	2332	3932	3732	0.1°K
Permanent Fail	SOTF	0x4C18	Delay	U1	0	255	5	S
Permanent Fail	Open Thermistor	0x4C19	Threshold	12	0	32767	2232	0.1°K
			·		-			
Permanent Fail	Open Thermistor	0x4C1B	Delay	U1	0	255	5	s

www.ti.com Data Flash Summary

				`	,			
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Permanent Fail	Open Thermistor	0x4C1E	Cell Delta	12	0	1500	200	0.1°K
Permanent Fail	QIM	0x4C20	Delta Threshold	12	0	32767	150	0.1%
Permanent Fail	QIM	0x4C22	Delay	U1	0	255	2	updates
Permanent Fail	СВ	0x4C23	Max Threshold	12	0	32767	120	2 h
Permanent Fail	СВ	0x4C25	Delta Threshold	U1	0	255	20	2 h
Permanent Fail	СВ	0x4C26	Delay	U1	0	255	2	cycles
Permanent Fail	VIMR	0x4C27	Check Voltage	12	0	5000	3500	mV
Permanent Fail	VIMR	0x4C29	Check Current	12	0	32767	10	mA
Permanent Fail	VIMR	0x4C2B	Delta Threshold	12	0	5000	500	mV
Permanent Fail	VIMR	0x4C2D	Delta Delay	U1	0	255	5	s
Permanent Fail	VIMR	0x4C2E	Duration	U2	0	65535	100	S
Permanent Fail	VIMA	0x4C30	Check Voltage	12	0	5000	3700	mV
Permanent Fail	VIMA	0x4C32	Check Current	12	0	32767	50	mA
Permanent Fail	VIMA	0x4C34	Delta Threshold	12	0	5000	200	mV
Permanent Fail	VIMA	0x4C36	Delay	U1	0	255	5	s
Permanent Fail	IMP	0x4C37	Delta Threshold	12	0	32767	300	%
Permanent Fail	IMP	0x4C39	Max Threshold	12	0	32767	400	%
Permanent Fail	IMP	0x4C3B	Ra Update Counts	U1	0	255	2	Counts
Permanent Fail	CD	0x4C3C	Threshold	12	0	32767	0	mAh
Permanent Fail	CD	0x4C3E	Delay	U1	0	255	2	cycles
Permanent Fail	CFET	0x4C3F	OFF Threshold	12	0	500	5	mA
Permanent Fail	CFET	0x4C41	OFF Delay	U1	0	255	5	S
Permanent Fail	DFET	0x4C42	OFF Threshold	12	-500	0	- 5	mA
Permanent Fail	DFET	0x4C44	OFF Delay	U1	0	255	5	S
Permanent Fail	FUSE	0x4C45	Threshold	12	0	255	5	mA
Permanent Fail	FUSE	0x4C47	Delay	U1	0	255	5	s
Permanent Fail	AFER	0x4C48	Threshold	U1	0	255	100	_
Permanent Fail	AFER	0x4C49	Delay Period	U1	0	255	2	S
Permanent Fail	AFER	0x4C4A	Compare Period	U1	0	255	5	S
Permanent Fail	AFEC	0x4C4B	Threshold	U1	0	255	100	_
Permanent Fail	AFEC	0x4C4C	Delay Period	U1	0	255	5	S
Permanent Fail	2LVL	0x4C4D	Delay	U1	0	255	5	S
Advanced Charge Algorithm	Temperature Ranges	0x4C4F	T1 Temp	12	2332	3932	2732	0.1°K
Advanced Charge Algorithm	Temperature Ranges	0x4C51	T2 Temp	12	2332	3932	2852	0.1°K
Advanced Charge Algorithm	Temperature Ranges	0x4C53	T5 Temp	12	2332	3932	2932	0.1°K
Advanced Charge Algorithm	Temperature Ranges	0x4C55	T6 Temp	12	2332	3932	2982	0.1°K
Advanced Charge Algorithm	Temperature Ranges	0x4C57	T3 Temp	12	2332	3932	3032	0.1°K
Advanced Charge Algorithm	Temperature Ranges	0x4C59	T4 Temp	12	2332	3932	3282	0.1°K
Advanced Charge Algorithm	Temperature Ranges	0x4C5B	Hysteresis Temp	12	0	150	10	0.1°K
Advanced Charge Algorithm	Low Temp Charging	0x4C5D	Voltage	12	0	32767	4000	mV
Advanced Charge Algorithm	Low Temp Charging	0x4C5F	Current Low	12	0	32767	132	mA
Advanced Charge Algorithm	Low Temp Charging	0x4C61	Current Med	12	0	32767	352	mA
Advanced Charge Algorithm	Low Temp Charging	0x4C63	Current High	12	0	32767	264	mA

Data Flash Summary www.ti.com

		Table	19-1. Dala Fiasii Tabi	, (0011tii	iaca,			
Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units
Advanced Charge Algorithm	Standard Temp Low Charging	0x4C65	Voltage	12	0	32767	4200	mV
Advanced Charge Algorithm	Standard Temp Low Charging	0x4C67	Current Low	12	0	32767	1980	mA
Advanced Charge Algorithm	Standard Temp Low Charging	0x4C69	Current Med	12	0	32767	4004	mA
Advanced Charge Algorithm	Standard Temp Low Charging	0x4C6B	Current High	12	0	32767	2992	mA
Advanced Charge Algorithm	Standard Temp High Charging	0x4C6D	Voltage	12	0	32767	4200	mV
Advanced Charge Algorithm	Standard Temp High Charging	0x4C6F	Current Low	12	0	32767	1980	mA
Advanced Charge Algorithm	Standard Temp High Charging	0x4C71	Current Med	12	0	32767	4004	mA
Advanced Charge Algorithm	Standard Temp High Charging	0x4C73	Current High	12	0	32767	2992	mA
Advanced Charge Algorithm	High Temp Charging	0x4C75	Voltage	12	0	32767	4000	mV
Advanced Charge Algorithm	High Temp Charging	0x4C77	Current Low	12	0	32767	1012	mA
Advanced Charge Algorithm	High Temp Charging	0x4C79	Current Med	12	0	32767	1980	mA
Advanced Charge Algorithm	High Temp Charging	0x4C7B	Current High	12	0	32767	1496	mA
Advanced Charge Algorithm	Rec Temp Charging	0x4C7D	Voltage	12	0	32767	4100	mV
Advanced Charge Algorithm	Rec Temp Charging	0x4C7F	Current Low	12	0	32767	2508	mA
Advanced Charge Algorithm	Rec Temp Charging	0x4C81	Current Med	12	0	32767	4488	mA
Advanced Charge Algorithm	Rec Temp Charging	0x4C83	Current High	12	0	32767	3520	mA
Advanced Charge Algorithm	Pre-Charging	0x4C85	Current	12	0	32767	88	mA
Advanced Charge Algorithm	Maintenance Charging	0x4C87	Current	12	0	32767	44	mA
Advanced Charge Algorithm	Voltage Range	0x4C89	Precharge Start Voltage	12	0	32767	2500	mV
Advanced Charge Algorithm	Voltage Range	0x4C8B	Charging Voltage Low	12	0	32767	2900	mV
Advanced Charge Algorithm	Voltage Range	0x4C8D	Charging Voltage Med	12	0	32767	3600	mV
Advanced Charge Algorithm	Voltage Range	0x4C8F	Charging Voltage High	12	0	32767	4000	mV
Advanced Charge Algorithm	Voltage Range	0x4C91	Charging Voltage Hysteresis	U1	0	255	0	mV
Advanced Charge Algorithm	SoC Range	0x4C92	Charging SoC Med	U1	0	100	50	%
Advanced Charge Algorithm	SoC Range	0x4C93	Charging SoC High	U1	0	100	75	%
Advanced Charge Algorithm	SoC Range	0x4C94	Charging SoC Hysteresis	U1	0	100	1	%
Advanced Charge Algorithm	Degrade Mode 1	0x4C95	Cycle Threshold	U2	0	65535	50	
Advanced Charge Algorithm	Degrade Mode 1	0x4C97	SOH Threshold	U1	0	100	95	%
Advanced Charge Algorithm	Degrade Mode 1	0x4C98	Voltage Degradation	12	0	32767	10	mV
Advanced Charge Algorithm	Degrade Mode 1	0x4C9A	Current Degradation	U1	0	100	10	%
Advanced Charge Algorithm	Degrade Mode 2	0x4C9B	Cycle Threshold	U2	0	65535	150	
			-		-			

				•	•			
Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units
Advanced Charge Algorithm	Degrade Mode 2	0x4C9D	SOH Threshold	U1	0	100	80	%
Advanced Charge Algorithm	Degrade Mode 2	0x4C9E	Voltage Degradation	l2	0	32767	40	mV
Advanced Charge Algorithm	Degrade Mode 2	0x4CA0	Current Degradation	U1	0	100	20	%
Advanced Charge Algorithm	Degrade Mode 3	0x4CA1	Cycle Threshold	U2	0	65535	350	1
Advanced Charge Algorithm	Degrade Mode 3	0x4CA3	SOH Threshold	U1	0	100	60	%
Advanced Charge Algorithm	Degrade Mode 3	0x4CA4	Voltage Degradation	12	0	32767	70	mV
Advanced Charge Algorithm	Degrade Mode 3	0x4CA6	Current Degradation	U1	0	100	40	%
Advanced Charge Algorithm	CS Degrade	0x4CA7	Temperature Threshold	12	0	32767	3232	0.1°K
Advanced Charge Algorithm	CS Degrade	0x4CA9	Voltage Threshold	12	0	32767	4200	mV
Advanced Charge Algorithm	CS Degrade	0x4CAB	Time Interval	U2	0	14400	300	s
Advanced Charge Algorithm	CS Degrade	0x4CAD	Delta Voltage	12	0	32767	25	mV
Advanced Charge Algorithm	CS Degrade	0x4CAF	Min CV	12	0	32767	3000	mV
Advanced Charge Algorithm	Termination Config	0x4CB1	Charge Term Taper Current	12	0	32767	250	mA
Advanced Charge Algorithm	Termination Config	0x4CB5	Charge Term Voltage	12	0	32767	75	mV
Advanced Charge Algorithm	Charging Rate of Change	0x4CB8	Current Rate	U1	1	255	1	steps
Advanced Charge Algorithm	Charging Rate of Change	0x4CB9	Voltage Rate	U1	1	255	1	steps
Advanced Charge Algorithm	Charge Loss Compensation	0x4CBA	CCC Current Threshold	12	0	32767	3520	mA
Advanced Charge Algorithm	Charge Loss Compensation	0x4CBC	CCC Voltage Threshold	12	0	32767	4200	mV
Advanced Charge Algorithm	IR Correction	0x4CBE	Averaging Interval	U1	1	255	12	s
Advanced Charge Algorithm	Cell Balancing Config	0x4B4D	Bal Time/mAh Cell 1	U2	0	65535	367	s/mAh
Advanced Charge Algorithm	Cell Balancing Config	0x4B4F	Bal Time/mAh Cell 2-4	U2	0	65535	514	s/mAh
Advanced Charge Algorithm	Cell Balancing Config	0x4B51	Min Start Balance Delta	U1	0	255	3	mV
Advanced Charge Algorithm	Cell Balancing Config	0x4B52	Relax Balance Interval	U4	0	429496729 5	18000	s
Advanced Charge Algorithm	Cell Balancing Config	0x4B56	Min Rsoc for Balancing	U1	0	100	80	%
Advanced Charge Algorithm	Cell Balancing Config	0x4B57	Start Rsoc for Bal in Sleep	U1	0	100	95	%
Advanced Charge Algorithm	Cell Balancing Config	0x4B58	End Rsoc for Bal in Sleep	U1	0	100	60	%
Advanced Charge Algorithm	Cell Balancing Config	0x4B59	Start Time for Bal in Sleep	U2	0	65520	100	hrs
Gas Gauging	Current Thresholds	0x4CCE	Dsg Current Threshold	12	-32768	32767	100	mA
Gas Gauging	Current Thresholds	0x4CD0	Chg Current Threshold	12	-32768	32767	50	mA
Gas Gauging	Current Thresholds	0x4CD2	Quit Current	12	0	32767	10	mA
Gas Gauging	Current Thresholds	0x4CD4	Dsg Relax Time	U1	0	255	1	S

Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units
	Current		1. 1					
Gas Gauging	Thresholds	0x4CD5	Chg Relax Time	U1	0	255	60	S
Gas Gauging	Design	0x4B29	Design Capacity mAh	12	100	32767	4400	mAh
Gas Gauging	Design	0x4B2B	Design Capacity cWh	12	144	32767	6336	cWh
Gas Gauging	Design	0x4B2D	Design Voltage	12	0	32767	14400	mV
Gas Gauging	Cycle	0x4B2F	Cycle Count Percentage	U1	0	100	90	%
Gas Gauging	FD	0x4B34	Set Voltage Threshold	12	0	5000	3000	mV
Gas Gauging	FD	0x4B36	Clear Voltage Threshold	12	0	5000	3100	mV
Gas Gauging	FD	0x4B38	Set % RSOC Threshold	U1	0	100	0	%
Gas Gauging	FD	0x4B39	Clear % RSOC Threshold	U1	0	100	5	%
Gas Gauging	FC	0x4B3A	Set Voltage Threshold	12	0	5000	4200	mV
Gas Gauging	FC	0x4B3C	Clear Voltage Threshold	12	0	5000	4100	mV
Gas Gauging	FC	0x4B3E	Set % RSOC Threshold	U1	0	100	100	%
Gas Gauging	FC	0x4B3F	Clear % RSOC Threshold	U1	0	100	95	%
Gas Gauging	TD	0x4B40	Set Voltage Threshold	12	0	5000	3200	mV
Gas Gauging	TD	0x4B42	Clear Voltage Threshold	12	0	5000	3300	mV
Gas Gauging	TD	0x4B44	Set % RSOC Threshold	U1	0	100	6	%
Gas Gauging	TD	0x4B45	Clear % RSOC Threshold	U1	0	100	8	%
Gas Gauging	TC	0x4B46	Set Voltage Threshold	12	0	5000	4200	mV
Gas Gauging	TC	0x4B48	Clear Voltage Threshold	12	0	5000	4100	mV
Gas Gauging	TC	0x4B4A	Set % RSOC Threshold	U1	0	100	100	%
Gas Gauging	TC	0x4B4B	Clear % RSOC Threshold	U1	0	100	95	%
Gas Gauging	State	0x44C6	Qmax Cell 1	12	0	32767	4400	mAh
Gas Gauging	State	0x44C8	Qmax Cell 2	12	0	32767	4400	mAh
Gas Gauging Gas Gauging	State	0x44C8 0x44CA	Qmax Cell 3	12	0	32767	4400	mAh
0 0				12	0			
Gas Gauging	State	0x44CC	Qmax Cell 4			32767	4400	mAh
Gas Gauging	State	0x44CE	Qmax Cell 5	12	0	32767	4400	mAh
Gas Gauging	State	0x44D0	Qmax Cell 6	12	0	32767	4400	mAh
Gas Gauging	State	0x44D2	Qmax Cell 7	12	0	32767	4400	mAh
Gas Gauging	State	0x44D4	Qmax Pack	I2	0	32767	4400	mAh
Gas Gauging	State	0x44D6	Qmax Cycle Count	U2	0	65535	0	_
Gas Gauging	State	0x44D8	Update Status	H1	0x0	0x0E	0x0	_
Gas Gauging	State	0x44D9	Cell 1 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44DB	Cell 2 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44DD	Cell 3 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44DF	Cell 4 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44E1	Cell 5 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44E3	Cell 6 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44E5	Cell 7 Chg Voltage at EoC	12	0	32767	4200	mV
Gas Gauging	State	0x44E7	Current at EoC	12	0	32767	250	mA
Gas Gauging	State	0x44E9	Avg I Last Run	12	-32768	32767	-2000	mA
Gas Gauging	State	0x44EB	Avg P Last Run	12	-32768	32767	-3022	cW
Gas Gauging	State	0x44ED	Delta Voltage	12	-32768	32767	0	mV
Gas Gauging	State	0x44EF	Temp k	12	0	32767	100	0.1°C/256 cW
Gas Gauging	State	0x44F1	Temp a	12	0	32767	1000	s
Gas Gauging Gas Gauging	State	0x44F3	Max Avg I Last Run	12	-32768	32767	-2000	mA
Gas Gauging Gas Gauging	State	0x44F5	Max Avg P Last Run	12	-32768	32767	-3022	cW
			-					CVV
Gas Gauging	State Cfa	0x4500	Cycle Count	U2	0	65535	0	
Gas Gauging	Turbo Cfg Turbo Cfg	0x46C0 0x46C2	Min Turbo Power Ten Second Max C Rate	l2 l1	-32768	0	-20	cW
Gas Gauging					-127	0		0.1°C

Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Gas Gauging	Turbo Cfg	0x46C4	High Frequency Resistance	12	0	32767	36	mΩ
Gas Gauging	Turbo Cfg	0x46C6	Reserve Energy %	I1	0	100	0	%
Gas Gauging	Turbo Cfg	0x46C7	Turbo Adjustment Factor	U1	50	150	100	%
Gas Gauging	IT Cfg	0x44C0	Design Resistance	12	1	32767	96	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x44C2	Pack Resistance	12	0	32767	0	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x44C4	System Resistance	12	0	32767	0	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x4A0E	Ra Filter	U2	0	999	800	0.1%
Gas Gauging	IT Cfg	0x4A11	Ra Max Delta	U1	0	255	15	%
Gas Gauging	IT Cfg	0x4A13	Reference Grid	U1	0	14	4	_
Gas Gauging	IT Cfg	0x4A14	Resistance Parameter Filter	U2	1	65535	65142	_
Gas Gauging	IT Cfg	0x4A16	Near EDV Ra Param Filter	U2	1	65535	59220	_
Gas Gauging	IT Cfg	0x4A18	Cell 1 Interconnect Resistance	12	0	32767	0	2-10 Ω
Gas Gauging	IT Cfg	0x4A1A	Cell 2 Interconnect Resistance	12	0	32767	0	2-10 Ω
Gas Gauging	IT Cfg	0x4A1C	Cell 3 Interconnect Resistance	12	0	32767	0	2 ⁻¹⁰ Ω
Gas Gauging	IT Cfg	0x4A1E	Cell 4 Interconnect Resistance	12	0	32767	0	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x4A20	Cell 5 Interconnect Resistance	12	0	32767	0	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x4A22	Cell 6 Interconnect Resistance	12	0	32767	0	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x4A24	Cell 7 Interconnect Resistance	12	0	32767	0	$2^{-10} \Omega$
Gas Gauging	IT Cfg	0x4A26	Max Current Change %	U1	0	100	10	%
Gas Gauging	IT Cfg	0x4A27	Resistance Update Voltage	12	0	32767	50	mV
Gas Gauging	IT Cfg	0x4A4E	Qmax Delta	U1	3	100	5	%
Gas Gauging	IT Cfg	0x4A4F	Qmax Upper Bound	U1	100	255	130	%
Gas Gauging	IT Cfg	0x4A50	Term Voltage	12	0	32767	9000	mV
Gas Gauging	IT Cfg	0x4A52	Term V Hold Time	U1	0	255	1	S
Gas Gauging	IT Cfg	0x4A53	Term Voltage Delta	12	0	32767	300	mV
Gas Gauging	IT Cfg	0x4A55	Term Min Cell V	l2	0	32767	2800	mV
Gas Gauging	IT Cfg	0x4A5E	Max Simulation Iterations	U1	20	50	30	
Gas Gauging	IT Cfg	0x4A71	Fast Scale Start SOC	U1	0	100	10	%
Gas Gauging	IT Cfg	0x4A79	Min Delta Voltage	l2	-32768	32767	0	mV
Gas Gauging	IT Cfg	0x4A7B	Max Delta Voltage	12	-32768	32767	200	mV
Gas Gauging	IT Cfg	0x4A7D	DeltaV Max Voltage Delta	12	-32768	32767	10	mV
Gas Gauging	IT Cfg	0x4B61	Load Select	U1	0	7	7	
Gas Gauging	IT Cfg	0x4B62	Fast Scale Load Select	U1	0	7	3	
Gas Gauging	IT Cfg	0x4B63	Load Mode	U1	0	1	0	
Gas Gauging	IT Cfg	0x4B64	User Rate-mA	12	-9000	0	0	mA
Gas Gauging	IT Cfg	0x4B66	User Rate-cW	12	-32768	0	0	cW
Gas Gauging	IT Cfg	0x4B68	Reserve Cap-mAh	12	0	9000	0	mAh
Gas Gauging	IT Cfg	0x4B6A	Reserve Cap-cWh	I2	0	32000	0	cWh
Gas Gauging	IT Cfg	0x4B79	Predict Ambient Time	U2	0	65535	2000	S
Gas Gauging	Smoothing	0x4B6C	Smooth Relax Time	l2	1	32767	1000	S
Gas Gauging	Smoothing	0x4B6E	Term Smooth Start Cell V Delta	l2	0	32767	150	mV
Gas Gauging	Smoothing	0x4B70	Term Smooth Final Cell V Delta	12	0	32767	100	mV
Gas Gauging	Smoothing	0x4B72	Term Smooth Time	U1	1	32767	20	S
Gas Gauging	Condition Flag	0x4B73	Max Error Limit	U1	0	100	100	%

Table 19-1. Data Flash Table (continued)									
Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units	
Gas Gauging	Max Error	0x4B78	Cycle Delta	U1	0	255	5	0.01%	
Gas Gauging	SoH	0x4A7F	SoH Load Rate	U1	0	255	50	0.1 Hr rate	
Power	Power	0x4AA9	Valid Update Voltage	12	0	32767	3500	mV	
Power	Shutdown	0x4AAB	Shutdown Voltage	12	0	32767	1750	mV	
Power	Shutdown	0x4AAD	Shutdown Time	U1	0	255	10	s	
Power	Shutdown	0x4AAE	PF Shutdown Voltage	12	0	32767	1750	mV	
Power	Shutdown	0x4AB0	PF Shutdown Time	U1	0	255	10	S	
Power	Shutdown	0x4AB1	PS Shutdown Voltage	12	0	32767	2500	mV	
Power	Shutdown	0x4AB3	PS NoLoadResCap Threshold	12	0	32767	0	mAh	
Power	Shutdown	0x4AB5	Charger Present Threshold	12	0	32767	3000	mV	
Power	Sleep	0x4AB8	Sleep Current	12	0	32767	10	mA	
Power	Sleep	0x4ABA	Bus Timeout	U1	0	255	5	s	
Power	Sleep	0x4ABF	Voltage Time	U1	1	20	5	s	
Power	Sleep	0x4AC0	Current Time	U1	1	60	20	s	
Power	Sleep	0x4AC1	Wake Comparator	H1	0x0	0xFF	0x0	Hex	
Power	Ship	0x4AC2	FET Off Time	U1	0	127	10	s	
Power	Ship	0x4AC3	Delay	U1	0	254	20	S	
Power	Ship	0x4AC4	Auto Ship Time	U2	0	65535	1440	min	
Power	Power Off	0x4AC6	Timeout	U2	0	65535	30	min	
Power	Manual FET Control	0x4AC8	MFC Delay	U1	0	255	60	0.25 s	
Power	Pre-Discharge	0x4AC9	PDSG Timeout	U2	0	16384	10	250 ms	
Power	Pre-Discharge	0x4ACB	PDSG Level	U1	0	100	60	%	
Power	IATA	0x4AEE	IATA Config	H1	0x0	0xFF	0x03	_	
Power	IATA	0x4AEF	IATA Delay Time	U2	0	65535	10	s	
Power	IATA	0x4AF1	IATA RSOC Threshold	U1	0	100	30	%	
Power	IATA	0x4AF2	IATA DeltaV Threshold	U1	0	255	50	mV	
Power	IATA	0x4AF3	IATA Delta RSOC	U1	0	100	3	%	
Power	IATA	0x4AF4	IATA Wake AbsRsoc	U1	0	100	10	%	
Power	IATA	0x4AF5	IATA Min Temperature	12	2332	3932	2832	0.1°K	
Power	IATA	0x4AF7	IATA Max Temperature	12	2332	3932	3132	0.1°K	
Power	IATA	0x4AF9	IATA Min Voltage	12	0	32767	3000	mV	
Power	IATA	0x4AFB	IATA Max Voltage	12	0	32767	3600	mV	
Power	IATA STORE	0x4700	IATA RM mAh	12	0	32767	0	mAh	
Power	IATA STORE	0x4702	IATA RM cWh	12	0	32767	0	cWh	
Power	IATA STORE	0x4704	IATA FCC mAh	12	0	32767	0	mAh	
Power	IATA STORE	0x4706	IATA FCC cWh	12	0	32767	0	cWh	
Power	IATA STORE	0x4708	IATA Flag	H1	0x0	0xFF	0x0	_	
PF Status	Device Status Data	0x4640	Safety Alert A	H1	0x0	0xFF	0x0	Hex	
PF Status	Device Status Data	0x4641	Safety Status A	H1	0x0	0xFF	0x0	Hex	
PF Status	Device Status Data	0x4642	Safety Alert B	H1	0x0	0xFF	0x0	Hex	
PF Status	Device Status Data	0x4643	Safety Status B	H1	0x0	0xFF	0x0	Hex	
PF Status	Device Status Data	0x4644	Safety Alert C	H1	0x0	0xFF	0x0	Hex	
PF Status	Device Status Data	0x4645	Safety Status C	H1	0x0	0xFF	0x0	Hex	
PF Status	Device Status Data	0x4646	Safety Alert D	H1	0x0	0xFF	0x0	Hex	

Class Subclass Address Name Type Min Value Max Value Default Units PF Status Dovice Status 0x4647 Safety Status D H1 0x0 0xFF 0x0 Hex PF Status Dovice Status 0x4649 PF Status A H1 0x0 0xFF 0x0 Hex PF Status Dovice Status 0x464A PF Alort B H1 0x0 0xFF 0x0 Hex PF Status Dovice Status 0x464B PF Alort B H1 0x0 0xFF 0x0 Hex PF Status Dovice Status 0x464C PF Alort C H1 0x0 0xFF 0x0 Hex PF Status Dovice Status 0x464E PF Alort D H1 0x0 0xFF 0x0 Hex PF Status Dovice Status 0x465E PF Status D H1 0x0 0xFFF 0x0 Hex PF Status Dovice Status 0x465E Operation Status A H2 <t< th=""><th></th><th></th><th>Table</th><th>19-1. Dala Fiasii Tabi</th><th>c (contin</th><th>iucuj</th><th></th><th></th><th></th></t<>			Table	19-1. Dala Fiasii Tabi	c (contin	iucuj			
PF Status	Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
PF Status	PF Status		0x4647	Safety Status D	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x4648	PF Alert A	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x4649	PF Status A	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x464A	PF Alert B	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x464B	PF Status B	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x464C	PF Alert C	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x464D	PF Status C	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x464E	PF Alert D	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x464F	PF Status D	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x4650	Fuse Flag	H2	0x0	0xFFFF	0x0	Hex
PF Status	PF Status		0x4652	Operation Status A	H2	0x0	0xFFFF	0x0	Hex
PF Status	PF Status		0x4654	Operation Status B	H2	0x0	0xFFFF	0x0	Hex
PF Status Data Device Status Data 0x4658 Charging Status B H1 0x0 0xFF 0x0 Hex Data PF Status Device Status Data 0x4659 Gauging Status H1 0x0 0xFF 0x0 Hex PF Status Device Status Data 0x465A IT Status H2 0x0 0xFFFF 0x0 Hex PF Status Device Voltage Data 0x465C Cell 1 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x465C Cell 2 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4660 Cell 3 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4660 Cell 4 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4664 Cell 5 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data	PF Status		0x4656	Temp Range	H1	0x0	0xFF	0x0	Hex
PF Status Data 0x4658 Charging Status B H1 0x0 0xFF 0x0 Hex PF Status Device Status Data 0x4659 Gauging Status H1 0x0 0xFFF 0x0 Hex PF Status Device Status Data 0x465A IT Status H2 0x0 0xFFFF 0x0 Hex PF Status Device Voltage Data 0x465C Cell 1 Voltage I2 -32768 32767 0 mV PF Status Device Voltage Data 0x466D Cell 2 Voltage I2 -32768 32767 0 mV PF Status Device Voltage Data 0x4660 Cell 3 Voltage I2 -32768 32767 0 mV PF Status Device Voltage Data 0x4664 Cell 4 Voltage I2 -32768 32767 0 mV PF Status Device Voltage Data 0x4666 Cell 6 Voltage I2 -32768 32767 0 mV PF Status Device Voltage Data 0x4668	PF Status		0x4657	Charging Status A	H1	0x0	0xFF	0x0	Hex
PF Status Data Device Status Data 0x4659 Gauging Status Status Fil. 0x0 0xFF 0x0 Hex PF Status Device Voltage Data 0x465C Cell 1 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x465E Cell 2 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4660 Cell 3 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4662 Cell 4 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4664 Cell 5 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4666 Cell 6 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4668 Cell 7 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data	PF Status		0x4658	Charging Status B	H1	0x0	0xFF	0x0	Hex
PF Status Data 0x465A Ti Status H2 0x0 0xFFFF 0x0 Hex PF Status Device Voltage Data 0x465C Cell 1 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466E Cell 3 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4660 Cell 3 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4662 Cell 4 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4664 Cell 5 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4666 Cell 6 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466A Battery Direct Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466C <td>PF Status</td> <td></td> <td>0x4659</td> <td>Gauging Status</td> <td>H1</td> <td>0x0</td> <td>0xFF</td> <td>0x0</td> <td>Hex</td>	PF Status		0x4659	Gauging Status	H1	0x0	0xFF	0x0	Hex
PF Status	PF Status		0x465A	IT Status	H2	0x0	0xFFFF	0x0	Hex
PF Status	PF Status		0x465C	Cell 1 Voltage	12	-32768	32767	0	mV
PF Status Data Da	PF Status		0x465E	Cell 2 Voltage	12	-32768	32767	0	mV
PF Status Data Data 0x4662 Data Cell 4 Voltage 12 -32768 32767 0 mIV PF Status Device Voltage Data 0x4664 Cell 5 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4666 Cell 6 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4668 Cell 7 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466A Battery Direct Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466C Pack Voltage 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data	PF Status		0x4660	Cell 3 Voltage	12	-32768	32767	0	mV
PF Status Data 0x4664 Cell 8 Voltage 12 -32768 32767 0 IIIV PF Status Device Voltage Data 0x4666 Cell 6 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466A Battery Direct Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466C Pack Voltage 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K	PF Status		0x4662	Cell 4 Voltage	12	-32768	32767	0	mV
PF Status Data 0x4666 Cell 6 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x4668 Cell 7 Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466A Battery Direct Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466C Pack Voltage 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Device Temperature Data 0x4674 External 2 Temperature 12 -1 32767 0 0.1°K	PF Status		0x4664	Cell 5 Voltage	12	-32768	32767	0	mV
PF Status Data 0x4668 Cell / Voltage 12 -32768 32767 0 IIIV PF Status Device Voltage Data 0x466A Battery Direct Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466C Pack Voltage 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4674 External 2 Temperature 12 -1 32767 0 0.1°K	PF Status		0x4666	Cell 6 Voltage	12	-32768	32767	0	mV
PF Status Data 0x466A Battery Direct Voltage 12 -32768 32767 0 mV PF Status Device Voltage Data 0x466C Pack Voltage 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4676 External 2 Temperature 12 -1 32767 0 0.1°K	PF Status		0x4668	Cell 7 Voltage	12	-32768	32767	0	mV
PF Status Data 0x466C Pack Voltage 12 -32768 32767 0 mV PF Status Device Current Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4676 External 3 Temperature 12 -1 32767 0 0.1°K	PF Status		0x466A	Battery Direct Voltage	12	-32768	32767	0	mV
PF Status Data 0x466E Current 12 -32768 32767 0 mA PF Status Device Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4674 External 2 Temperature 12 -1 32767 0 0.1°K	PF Status		0x466C	Pack Voltage	12	-32768	32767	0	mV
PF Status Temperature Data 0x4670 Internal Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4674 External 2 Temperature 12 -1 32767 0 0.1°K	PF Status		0x466E	Current	12	-32768	32767	0	mA
PF Status Temperature Data 0x4672 External 1 Temperature 12 -1 32767 0 0.1°K PF Status Device Temperature Data 0x4674 External 2 Temperature 12 -1 32767 0 0.1°K PF Status Device 0x4676 External 3 Temperature 12 -1 32767 0 0.1°K	PF Status		0x4670	Internal Temperature	12	-1	32767	0	0.1°K
PF Status Temperature Data	PF Status		0x4672	External 1 Temperature	12	-1	32767	0	0.1°K
	PF Status		0x4674	External 2 Temperature	12	-1	32767	0	0.1°K
	PF Status		0x4676	External 3 Temperature	I2	-1	32767	0	0.1°K

			13-1. Dala Fiasii Tabil	(00				
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
PF Status	Device Temperature Data	0x4678	External 4 Temperature	12	-1	32767	0	0.1°K
PF Status	Device Gauging Data	0x467A	Cell 1 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x467C	Cell 2 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x467E	Cell 3 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x4680	Cell 4 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x4682	Cell 5 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x4684	Cell 6 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x4686	Cell 7 Dod0	12	-32768	32767	0	_
PF Status	Device Gauging Data	0x4688	Passed Charge	12	-32768	32767	0	mAh
PF Status	AFE Regs	0x468A	AFE Interrupt Status	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x468B	AFE FET Status	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x468C	AFE RXIN	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x468D	AFE Latch Status	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x468E	AFE Interrupt Enable	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x468F	AFE FET Control	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4690	AFE RXIEN	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4691	AFE RLOUT	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4692	AFE RHOUT	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4693	AFE RHINT	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4694	AFE Cell Balance	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4695	AFE AD/CC Control	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4696	AFE ADC Mux	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4697	AFE LED Output	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4698	AFE State Control	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x4699	AFE LED/Wake Control	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x469A	AFE Protection Control	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x469B	AFE OCD	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x469C	AFE SCC	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x469D	AFE SCD1	H1	0x0	0xFF	0x0	Hex
PF Status	AFE Regs	0x469E	AFE SCD2	H1	0x0	0xFF	0x0	Hex
System Data	Manufacturer Data	0x4040	Manufacturer Info A Length	U1	1	32	32	
System Data	Manufacturer Data	0x4040 0x4041	Manufacturer Info Block A01	H1	0x0	0xFF	0x61	Hex
	Manufacturer Data					0xFF		
System Data System Data		0x4042 0x4043	Manufacturer Info Block A02 Manufacturer Info Block A03	H1 H1	0x0 0x0	0xFF 0xFF	0x62	Hex
	Manufacturer Data						0x63	Hex
System Data	Manufacturer Data	0x4044	Manufacturer Info Block A04	H1	0x0	0xFF	0x64	Hex
System Data	Manufacturer Data	0x4045	Manufacturer Info Block A05	H1	0x0	0xFF	0x65	Hex
System Data	Manufacturer Data	0x4046	Manufacturer Info Block A06	H1	0x0	0xFF	0x66	Hex
System Data	Manufacturer Data	0x4047	Manufacturer Info Block A07	H1	0x0	0xFF	0x67	Hex
System Data	Manufacturer Data	0x4048	Manufacturer Info Block A08	H1	0x0	0xFF	0x68	Hex
System Data	Manufacturer Data	0x4049	Manufacturer Info Block A09	H1	0x0	0xFF	0x69	Hex
System Data	Manufacturer Data	0x404A	Manufacturer Info Block A10	H1	0x0	0xFF	0x6A	Hex
System Data	Manufacturer Data	0x404B	Manufacturer Info Block A11	H1	0x0	0xFF	0x6B	Hex
System Data	Manufacturer Data	0x404C	Manufacturer Info Block A12	H1	0x0	0xFF	0x6C	Hex
System Data	Manufacturer Data	0x404D	Manufacturer Info Block A13	H1	0x0	0xFF	0x6D	Hex
System Data	Manufacturer Data	0x404E	Manufacturer Info Block A14	H1	0x0	0xFF	0x6E	Hex

Table 19-1. Data Flash Table (continued)									
Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units	
System Data	Manufacturer Data	0x404F	Manufacturer Info Block A15	H1	0x0	0xFF	0x6F	Hex	
System Data	Manufacturer Data	0x4050	Manufacturer Info Block A16	H1	0x0	0xFF	0x70	Hex	
System Data	Manufacturer Data	0x4051	Manufacturer Info Block A17	H1	0x0	0xFF	0x71	Hex	
System Data	Manufacturer Data	0x4052	Manufacturer Info Block A18	H1	0x0	0xFF	0x72	Hex	
System Data	Manufacturer Data	0x4053	Manufacturer Info Block A19	H1	0x0	0xFF	0x73	Hex	
System Data	Manufacturer Data	0x4054	Manufacturer Info Block A20	H1	0x0	0xFF	0x74	Hex	
System Data	Manufacturer Data	0x4055	Manufacturer Info Block A21	H1	0x0	0xFF	0x75	Hex	
System Data	Manufacturer Data	0x4056	Manufacturer Info Block A22	H1	0x0	0xFF	0x76	Hex	
System Data	Manufacturer Data	0x4057	Manufacturer Info Block A23	H1	0x0	0xFF	0x77	Hex	
System Data	Manufacturer Data	0x4058	Manufacturer Info Block A24	H1	0x0	0xFF	0x7A	Hex	
System Data	Manufacturer Data	0x4059	Manufacturer Info Block A25	H1	0x0	0xFF	0x78	Hex	
System Data	Manufacturer Data	0x405A	Manufacturer Info Block A26	H1	0x0	0xFF	0x79	Hex	
System Data	Manufacturer Data	0x405B	Manufacturer Info Block A27	H1	0x0	0xFF	0x30	Hex	
System Data	Manufacturer Data	0x405C	Manufacturer Info Block A28	H1	0x0	0xFF	0x31	Hex	
System Data	Manufacturer Data	0x405D	Manufacturer Info Block A29	H1	0x0	0xFF	0x32	Hex	
System Data	Manufacturer Data	0x405E	Manufacturer Info Block A30	H1	0x0	0xFF	0x33	Hex	
System Data	Manufacturer Data	0x405F	Manufacturer Info Block A31	H1	0x0	0xFF	0x34	Hex	
System Data	Manufacturer Data	0x4060	Manufacturer Info Block A32	H1	0x0	0xFF	0x35	Hex	
System Data	Manufacturer Info B	0x4061	Manufacturer Info B Length	U1	4	4	32	_	
System Data	Manufacturer Info B	0x4062	Manufacturer Info Block B01	H1	0x0	0xFF	0x01	Hex	
System Data	Manufacturer Info B	0x4063	Manufacturer Info Block B02	H1	0x0	0xFF	0x23	Hex	
System Data	Manufacturer Info B	0x4064	Manufacturer Info Block B03	H1	0x0	0xFF	0x45	Hex	
System Data	Manufacturer Info B	0x4065	Manufacturer Info Block B04	H1	0x0	0xFF	0x67	Hex	
System Data	Manufacturer Info B	0x4066	Manufacturer Info Block B05	H1	0x0	0xFF	0x65	Hex	
System Data	Manufacturer Info B	0x4067	Manufacturer Info Block B06	H1	0x0	0xFF	0x66	Hex	
System Data	Manufacturer Info B	0x4068	Manufacturer Info Block B07	H1	0x0	0xFF	0x67	Hex	
System Data	Manufacturer Info B	0x4069	Manufacturer Info Block B08	H1	0x0	0xFF	0x68	Hex	
System Data	Manufacturer Info B	0x406A	Manufacturer Info Block B09	H1	0x0	0xFF	0x69	Hex	
System Data	Manufacturer Info B	0x406B	Manufacturer Info Block B10	H1	0x0	0xFF	0x6A	Hex	
System Data	Manufacturer Info B	0x406C	Manufacturer Info Block B11	H1	0x0	0xFF	0x6B	Hex	
System Data	Manufacturer Info B	0x406D	Manufacturer Info Block B12	H1	0x0	0xFF	0x6C	Hex	
System Data	Manufacturer Info B	0x406E	Manufacturer Info Block B13	H1	0x0	0xFF	0x6D	Hex	
System Data	Manufacturer Info B	0x406F	Manufacturer Info Block B14	H1	0x0	0xFF	0x6E	Hex	
System Data	Manufacturer Info B	0x4070	Manufacturer Info Block B15	H1	0x0	0xFF	0x6F	Hex	
System Data	Manufacturer Info B	0x4071	Manufacturer Info Block B16	H1	0x0	0xFF	0x70	Hex	
System Data	Manufacturer Info B	0x4072	Manufacturer Info Block B17	H1	0x0	0xFF	0x71	Hex	
System Data	Manufacturer Info B	0x4073	Manufacturer Info Block B18	H1	0x0	0xFF	0x72	Hex	
System Data	Manufacturer Info B	0x4074	Manufacturer Info Block B19	H1	0x0	0xFF	0x73	Hex	

System Data Manufacturer Info Dx4076 Manufacturer Info Block B20 H1 Dx0 DxFF Dx74 Hex		T	Table	19-1. Dala Fiasii Tabil	, (0011111				
System Data B Owton's Mentioacturer into Block B21 H1 Ox6 OxFF Ox75 Hex System Data B 0x40776 Manufacturer into Block B21 H1 0x6 OxFF Ox76 Hex System Data B 0x4078 Manufacturer into Block B22 H1 0x6 OxFF Ox77 Hex System Data B 0x4079 Manufacturer into Block B24 H1 0x0 OxFF Ox77 Hex System Data B 0x407A Manufacturer into Block B28 H1 0x0 OxFF Ox78 Hex System Data B 0x407A Manufacturer into Block B28 H1 0x0 OxFF Ox78 Hex System Data B 0x407C Manufacturer into Block B28 H1 0x0 OxFF Ox33 Hex System Data Manufacturer into Biock B28 H1 0x0 OxFF Ox33 Hex System Data Manufacturer into Biock B31 H1 0x0 OxFF	Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units
System Data B Over10 Manufacturer into Block B21 FIT OW OWFF OWFF OWFR Hex System Data Manufacturer Info 0x4077 Manufacturer Info Block B22 H1 Ox0 OxFF Ox76 Hex System Data Manufacturer Info 0x4070 Manufacturer Info Block B23 H1 Ox0 OxFF Ox7A Hex System Data Manufacturer Info 0x407A Manufacturer Info Block B25 H1 Ox0 OxFF Ox78 Hex System Data Manufacturer Info 0x407C Manufacturer Info Block B25 H1 Ox0 OxFF Ox79 Hex System Data Manufacturer Info 0x407C Manufacturer Info Block B25 H1 Ox0 OxFF Ox30 Hex System Data Manufacturer Info 0x407C Manufacturer Info Block B28 H1 Ox0 OxFF Ox31 Hex System Data Manufacturer Info 0x407F Manufacturer Info Block B30 H1 Ox0 OxFF Ox33	System Data		0x4075	Manufacturer Info Block B20	H1	0x0	0xFF	0x74	Hex
System Data	System Data	В	0x4076	Manufacturer Info Block B21	H1	0x0	0xFF	0x75	Hex
System Data B	System Data		0x4077	Manufacturer Info Block B22	H1	0x0	0xFF	0x76	Hex
System Data B	System Data		0x4078	Manufacturer Info Block B23	H1	0x0	0xFF	0x77	Hex
System Data B	System Data		0x4079	Manufacturer Info Block B24	H1	0x0	0xFF	0x7A	Hex
System Data	System Data		0x407A	Manufacturer Info Block B25	H1	0x0	0xFF	0x78	Hex
System Data	System Data		0x407B	Manufacturer Info Block B26	H1	0x0	0xFF	0x79	Hex
System Data B Ox40/D Manufacturer Info Block B29 H1 Ox0 OxFF Ox31 Pex	System Data		0x407C	Manufacturer Info Block B27	H1	0x0	0xFF	0x30	Hex
System Data B Ox40/F Manufacturer Info Block B29 H1 Ox0 OxFF Ox33 Hex	System Data		0x407D	Manufacturer Info Block B28	H1	0x0	0xFF	0x31	Hex
System Data B	System Data		0x407E	Manufacturer Info Block B29	H1	0x0	0xFF	0x32	Hex
System Data B	System Data		0x407F	Manufacturer Info Block B30	H1	0x0	0xFF	0x33	Hex
System Data B	System Data		0x4080	Manufacturer Info Block B31	H1	0x0	0xFF	0x34	Hex
System Data C 0x4062 Manufacturer Info Electrigit 01 1 32 32 — System Data Manufacturer Info C 0x4083 Manufacturer Info Block C01 H1 0x0 0xFF 0x61 Hex System Data Manufacturer Info C 0x4084 Manufacturer Info Block C02 H1 0x0 0xFF 0x62 Hex System Data Manufacturer Info C 0x4085 Manufacturer Info Block C03 H1 0x0 0xFF 0x63 Hex System Data Manufacturer Info C 0x4086 Manufacturer Info Block C04 H1 0x0 0xFF 0x64 Hex System Data Manufacturer Info C 0x4087 Manufacturer Info Block C05 H1 0x0 0xFF 0x65 Hex System Data Manufacturer Info C 0x4088 Manufacturer Info Block C06 H1 0x0 0xFF 0x67 Hex System Data Manufacturer Info C 0x408A Manufacturer Info Block C08 H1 0x0 0xFF 0x68 Hex	System Data		0x4081	Manufacturer Info Block B32	H1	0x0	0xFF	0x35	Hex
System Data C 0x4085 Manufacturer Info Block CO1 H1 0x0 0xFF 0x61 Hex System Data Manufacturer Info C 0x4084 Manufacturer Info Block CO2 H1 0x0 0xFF 0x62 Hex System Data Manufacturer Info C 0x4085 Manufacturer Info Block CO3 H1 0x0 0xFF 0x63 Hex System Data Manufacturer Info C 0x4086 Manufacturer Info Block CO4 H1 0x0 0xFF 0x64 Hex System Data Manufacturer Info C 0x4087 Manufacturer Info Block CO5 H1 0x0 0xFF 0x65 Hex System Data Manufacturer Info C 0x4088 Manufacturer Info Block CO6 H1 0x0 0xFF 0x66 Hex System Data Manufacturer Info C 0x408A Manufacturer Info Block CO7 H1 0x0 0xFF 0x68 Hex System Data Manufacturer Info C 0x408B Manufacturer Info Block CO9 H1 0x0 0xFF 0x69 H	System Data		0x4082	Manufacturer Info C Length	U1	1	32	32	-
System Data C 0x4084 Manufacturer Info Block C02 H1 0x0 0xFF 0x62 Hex System Data Manufacturer Info C C 0x4086 Manufacturer Info Block C03 H1 0x0 0xFF 0x64 Hex System Data Manufacturer Info C C 0x4087 Manufacturer Info Block C05 H1 0x0 0xFF 0x65 Hex System Data Manufacturer Info C C 0x4088 Manufacturer Info Block C06 H1 0x0 0xFF 0x66 Hex System Data Manufacturer Info C C C 0x4089 Manufacturer Info Block C06 H1 0x0 0xFF 0x66 Hex System Data Manufacturer Info C C C C C C C C C C C C C C C C C C C	System Data		0x4083	Manufacturer Info Block C01	H1	0x0	0xFF	0x61	Hex
System Data C Ox4086 Manufacturer Info Block C03 H1 Ox0 OxFF Ox63 Hex System Data Manufacturer Info C Ox4086 Manufacturer Info Block C04 H1 Ox0 OxFF Ox64 Hex System Data Manufacturer Info C Ox4087 Manufacturer Info Block C05 H1 Ox0 OxFF Ox65 Hex System Data Manufacturer Info C Ox4088 Manufacturer Info Block C06 H1 Ox0 OxFF Ox66 Hex System Data Manufacturer Info C Ox4089 Manufacturer Info Block C07 H1 Ox0 OxFF Ox67 Hex System Data Manufacturer Info C Ox408A Manufacturer Info Block C08 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C09 H1 Ox0 OxFF Ox69 Hex System Data Manufacturer Info C Ox408C Manufacturer Info Block C10 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C11 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C11 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C12 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C12 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info Ox4093 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex	System Data		0x4084	Manufacturer Info Block C02	H1	0x0	0xFF	0x62	Hex
System Data C	System Data		0x4085	Manufacturer Info Block C03	H1	0x0	0xFF	0x63	Hex
System Data C Ox4087 Manufacturer Info Block C05 H1 Ox0 OxFF Ox66 Hex System Data Manufacturer Info C Ox4088 Manufacturer Info Block C06 H1 Ox0 OxFF Ox66 Hex System Data Manufacturer Info C Ox4089 Manufacturer Info Block C07 H1 Ox0 OxFF Ox67 Hex System Data Manufacturer Info C Ox408A Manufacturer Info Block C08 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C09 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408C Manufacturer Info Block C10 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C11 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info C Ox408E Manufacturer Info Block C12 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF Ox71 Hex System Data Manufacturer Info Ox4093 Manufacturer Info Block C16 H1 Ox0 OxFF Ox71 Hex	System Data		0x4086	Manufacturer Info Block C04	H1	0x0	0xFF	0x64	Hex
System Data C Ox4088 Manufacturer Info Block C06 H1 Ox0 OxFF Ox60 Hex System Data Manufacturer Info C Ox4089 Manufacturer Info Block C07 H1 Ox0 OxFF Ox67 Hex System Data Manufacturer Info C Ox408A Manufacturer Info Block C08 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C09 H1 Ox0 OxFF Ox69 Hex System Data Manufacturer Info C Ox408C Manufacturer Info Block C10 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info C Ox408D Manufacturer Info Block C11 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408E Manufacturer Info Block C12 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4093 Manufacturer Info Block C16 H1 Ox0 OxFF Ox6F Ox71 Hex	System Data		0x4087	Manufacturer Info Block C05	H1	0x0	0xFF	0x65	Hex
System Data C Ox4089 Manufacturer Info Block C07 H1 Ox0 OxFF Ox67 Hex System Data Manufacturer Info C Ox408A Manufacturer Info Block C08 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C09 H1 Ox0 OxFF Ox69 Hex System Data Manufacturer Info C Ox408C Manufacturer Info Block C10 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info C Ox408D Manufacturer Info Block C11 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408E Manufacturer Info Block C12 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF OxFF Ox70 Hex	System Data		0x4088	Manufacturer Info Block C06	H1	0x0	0xFF	0x66	Hex
System Data C Ox408A Manufacturer Info C Ox408B Manufacturer Info Block C09 H1 Ox0 OxFF Ox60 Hex System Data Manufacturer Info C Ox408C Manufacturer Info Block C10 Manufacturer Info C Ox408D Manufacturer Info Block C11 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info C Ox408D Manufacturer Info Block C11 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408E Manufacturer Info Block C12 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4093 Manufacturer Info Block C16 H1 Ox0 OxFF Ox6F Ox71 Hex	System Data		0x4089	Manufacturer Info Block C07	H1	0x0	0xFF	0x67	Hex
System Data C Ox408B Manufacturer Info Block C09 H1 Ox0 OxFF Ox69 Hex System Data Manufacturer Info C Ox408C Manufacturer Info Block C10 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info C Ox408B Manufacturer Info Block C11 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408E Manufacturer Info Block C12 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF Ox70 Hex System Data Manufacturer Info Ox4093 Manufacturer Info Block C17 H1 Ox0 OxFF Ox71 Hex	System Data		0x408A	Manufacturer Info Block C08	H1	0x0	0xFF	0x68	Hex
System Data C Ox408C Manufacturer Info Block C10 H1 Ox0 OXFF Ox6A Hex System Data Manufacturer Info C Ox408D Manufacturer Info Block C11 H1 Ox0 OXFF Ox6B Hex System Data Manufacturer Info C Ox408E Manufacturer Info Block C12 H1 Ox0 OXFF Ox6C Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OXFF Ox6C Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OXFF Ox6E Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OXFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OXFF Ox6F Hex System Data Manufacturer Info Ox4093 Manufacturer Info Block C17 H1 Ox0 OXFF OXFF OXFF OXFF OXFT Hex	System Data		0x408B	Manufacturer Info Block C09	H1	0x0	0xFF	0x69	Hex
System Data C Ox408D Manufacturer Info Block C11 H1 Ox0 OXFF Ox6B Hex System Data C Ox408E Manufacturer Info Block C12 H1 Ox0 OXFF Ox6C Hex System Data Manufacturer Info C Ox408F Manufacturer Info Block C13 H1 Ox0 OXFF Ox6C Hex System Data Manufacturer Info Ox408F Manufacturer Info Block C13 H1 Ox0 OXFF Ox6D Hex System Data Manufacturer Info Ox4090 Manufacturer Info Block C14 H1 Ox0 OXFF Ox6E Hex System Data Manufacturer Info Ox4091 Manufacturer Info Block C15 H1 Ox0 OXFF Ox6F Hex System Data Manufacturer Info Ox4092 Manufacturer Info Block C16 H1 Ox0 OXFF OXFF OX70 Hex System Data Manufacturer Info Ox4093 Manufacturer Info Block C17 H1 Ox0 OXFF OXFF OXFF OX71 Hex	System Data		0x408C	Manufacturer Info Block C10	H1	0x0	0xFF	0x6A	Hex
System Data C Ox408E Manufacturer Info Block C12 H1 Ox0 OxFF Ox6C Hex System Data C Ox408F Manufacturer Info Block C13 H1 Ox0 OxFF Ox6D Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6D Hex System Data Manufacturer Info Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF Ox70 Hex	System Data		0x408D	Manufacturer Info Block C11	H1	0x0	0xFF	0x6B	Hex
System Data C Ox4090 Manufacturer Info Block C13 H1 Ox0 Ox11 Ox05 Hex System Data Manufacturer Info C Ox4090 Manufacturer Info Block C14 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info C Ox4091 Manufacturer Info Block C15 H1 Ox0 OxFF Ox6F Hex System Data Manufacturer Info C Ox4092 Manufacturer Info Block C16 H1 Ox0 OxFF Ox70 Hex System Data Manufacturer Info Ox4093 Manufacturer Info Block C17 H1 Ox0 OxFF Ox71 Hex	System Data		0x408E	Manufacturer Info Block C12	H1	0x0	0xFF	0x6C	Hex
System Data C 0x4090 Manufacturer Info Block C14 H1 0x0 0xFF 0x6E Hex System Data Manufacturer Info C 0x4091 Manufacturer Info Block C15 H1 0x0 0xFF 0x6F Hex System Data Manufacturer Info C 0x4092 Manufacturer Info Block C16 H1 0x0 0xFF 0x70 Hex System Data Manufacturer Info 0x4093 Manufacturer Info Block C17 H1 0x0 0xFF 0x71 Hex	System Data		0x408F	Manufacturer Info Block C13	H1	0x0	0xFF	0x6D	Hex
System Data Manufacturer Info C 0x4091 Manufacturer Info Block C15 H1 0x0 0xFF 0x6F Hex System Data Manufacturer Info C 0x4092 Manufacturer Info Block C16 H1 0x0 0xFF 0x70 Hex System Data Manufacturer Info 0x4093 Manufacturer Info Block C17 H1 0x0 0xFF 0x71 Hex	System Data		0x4090	Manufacturer Info Block C14	H1	0x0	0xFF	0x6E	Hex
System Data Manufacturer Info C 0x4092 Manufacturer Info Block C16 H1 0x0 0xFF 0x70 Hex System Data Manufacturer Info 0x4093 Manufacturer Info Block C17 H1 0x0 0xFF 0x71 Hex	System Data	Manufacturer Info	0x4091	Manufacturer Info Block C15	H1	0x0	0xFF	0x6F	Hex
	System Data		0x4092	Manufacturer Info Block C16	H1	0x0	0xFF	0x70	Hex
	System Data	Manufacturer Info	0x4093	Manufacturer Info Block C17	H1	0x0	0xFF	0x71	Hex

System Data Manufacturer Info 0x4094 Manufacturer Info Block C18 H1 0x0 0xFF 0x72 Mex				13 1. Data Flash Table	(() () ()	,			
System Data	Class		Address	Name	Туре	Min Value	Max Value	Default	Units
System Data C	System Data	_	0x4094	Manufacturer Info Block C18	H1	0x0	0xFF	0x72	Hex
System Data C	System Data		0x4095	Manufacturer Info Block C19	H1	0x0	0xFF	0x73	Hex
System Data C	System Data		0x4096	Manufacturer Info Block C20	H1	0x0	0xFF	0x74	Hex
System Data C 0x4099 Manufacturer Info 0x4090 Manufacturer Inf	System Data		0x4097	Manufacturer Info Block C21	H1	0x0	0xFF	0x75	Hex
System Data C	System Data	_	0x4098	Manufacturer Info Block C22	H1	0x0	0xFF	0x76	Hex
System Data	System Data		0x4099	Manufacturer Info Block C23	H1	0x0	0xFF	0x77	Hex
System Data	System Data		0x409A	Manufacturer Info Block C24	H1	0x0	0xFF	0x7A	Hex
System Data C	System Data		0x409B	Manufacturer Info Block C25	H1	0x0	0xFF	0x78	Hex
System Data C	System Data		0x409C	Manufacturer Info Block C26	H1	0x0	0xFF	0x79	Hex
System Data C	System Data		0x409D	Manufacturer Info Block C27	H1	0x0	0xFF	0x30	Hex
System Data C 0x409F Manufacturer info Block C29 H1 0x0 0xFF 0x32 Hex System Data Manufacturer Info 0x40A0 Manufacturer Info Block C30 H1 0x0 0xFF 0x33 Hex System Data Manufacturer Info 0x40A2 Manufacturer Info Block C32 H1 0x0 0xFF 0x34 Hex System Data Manufacturer Info D Ox40A3 Manufacturer Info D Length U1 1 32 32 — System Data Manufacturer Info D Ox40A4 Manufacturer Info Block D01 H1 0x0 0xFF 0x61 Hex System Data Manufacturer Info D Ox40A5 Manufacturer Info Block D02 H1 0x0 0xFF 0x62 Hex System Data Manufacturer Info D Ox40A6 Manufacturer Info Block D03 H1 0x0 0xFF 0x63 Hex System Data Manufacturer Info D Ox40A6 Manufacturer Info Block D04 H1 0x0 0xFF 0x63 Hex System Data Manufacturer Info D Ox40AA <td>System Data</td> <td></td> <td>0x409E</td> <td>Manufacturer Info Block C28</td> <td>H1</td> <td>0x0</td> <td>0xFF</td> <td>0x31</td> <td>Hex</td>	System Data		0x409E	Manufacturer Info Block C28	H1	0x0	0xFF	0x31	Hex
System Data C	System Data		0x409F	Manufacturer Info Block C29	H1	0x0	0xFF	0x32	Hex
System Data C	System Data		0x40A0	Manufacturer Info Block C30	H1	0x0	0xFF	0x33	Hex
System Data C	System Data		0x40A1	Manufacturer Info Block C31	H1	0x0	0xFF	0x34	Hex
System Data D	System Data		0x40A2	Manufacturer Info Block C32	H1	0x0	0xFF	0x35	Hex
System Data D D D D D D D D D D D D D	System Data		0x40A3	Manufacturer Info D Length	U1	1	32	32	_
System Data D D D D D D D D D D D D D	System Data		0x40A4	Manufacturer Info Block D01	H1	0x0	0xFF	0x61	Hex
System Data D D D D D D D D D D D D D	System Data		0x40A5	Manufacturer Info Block D02	H1	0x0	0xFF	0x62	Hex
System Data D D D D D D D D D D D D D	System Data		0x40A6	Manufacturer Info Block D03	H1	0x0	0xFF	0x63	Hex
System Data D Ox40A8 Manufacturer Info Block D05 H1 Ox0 OxFF Ox65 Hex System Data Manufacturer Info D Ox40A9 Manufacturer Info Block D06 H1 Ox0 OxFF Ox66 Hex System Data Manufacturer Info D Ox40AA Manufacturer Info Block D07 H1 Ox0 OxFF Ox67 Hex System Data Manufacturer Info D Ox40AB Manufacturer Info Block D08 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info D Ox40AC Manufacturer Info Block D09 H1 Ox0 OxFF Ox68 Hex System Data Manufacturer Info D Ox40AD Manufacturer Info Block D10 H1 Ox0 OxFF Ox6A Hex System Data Manufacturer Info D Ox40AE Manufacturer Info Block D11 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info D Ox40AF Manufacturer Info Block D12 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info D Ox40B0 Manufacturer Info Block D13 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info D Ox40B1 Manufacturer Info Block D14 H1 Ox0 OxFF Ox6B Hex System Data Manufacturer Info D Ox40B1 Manufacturer Info Block D14 H1 Ox0 OxFF Ox6E Hex	System Data		0x40A7	Manufacturer Info Block D04	H1	0x0	0xFF	0x64	Hex
System Data Manufacturer Info D Manufacturer Info	System Data		0x40A8	Manufacturer Info Block D05	H1	0x0	0xFF	0x65	Hex
System Data D D D D D D D D D D D D D	System Data		0x40A9	Manufacturer Info Block D06	H1	0x0	0xFF	0x66	Hex
System Data D D D D D D D D D D D D D	System Data		0x40AA	Manufacturer Info Block D07	H1	0x0	0xFF	0x67	Hex
System Data D D D D D D D D D D D D D	System Data		0x40AB	Manufacturer Info Block D08	H1	0x0	0xFF	0x68	Hex
System Data D 0x40AD Manufacturer Info Block D10 H1 0x0 0xFF 0x6A Hex System Data Manufacturer Info D 0x40AE Manufacturer Info Block D11 H1 0x0 0xFF 0x6B Hex System Data Manufacturer Info D 0x40AF Manufacturer Info Block D12 H1 0x0 0xFF 0x6C Hex System Data Manufacturer Info D 0x40B0 Manufacturer Info Block D13 H1 0x0 0xFF 0x6C Hex System Data Manufacturer Info D 0x40B1 Manufacturer Info Block D14 H1 0x0 0xFF 0x6E Hex System Data Manufacturer Info D Manufacturer Info Block D15 H1 0x0 0xFF 0x6E Hex	System Data		0x40AC	Manufacturer Info Block D09	H1	0x0	0xFF	0x69	Hex
System Data D 0x40AE Manufacturer Info D 0x40AF Manufacturer Info Block D12 H1 0x0 0xFF 0x6C Hex System Data Manufacturer Info D 0x40B0 Manufacturer Info Block D13 H1 0x0 0xFF 0x6C Hex System Data Manufacturer Info D 0x40B0 Manufacturer Info Block D13 H1 0x0 0xFF 0x6C Hex System Data Manufacturer Info D 0x40B1 Manufacturer Info Block D14 H1 0x0 0xFF 0x6E Hex System Data Manufacturer Info D Manufacturer Info Block D15 H1 0x0 0xFF 0x6E Hex	System Data		0x40AD	Manufacturer Info Block D10	H1	0x0	0xFF	0x6A	Hex
System Data D Ox40AF Manufacturer Info D Ox40B0 Manufacturer Info Block D12 H1 Ox0 OxFF Ox6C Hex System Data Manufacturer Info D Ox40B0 Manufacturer Info Block D13 H1 Ox0 OxFF Ox6D Hex System Data Manufacturer Info D M	System Data		0x40AE	Manufacturer Info Block D11	H1	0x0	0xFF	0x6B	Hex
System Data D Ox40B0 Manufacturer Info Block D13 H1 Ox0 OxFF Ox6E Hex System Data Manufacturer Info D Manufacturer Info Block D14 H1 Ox0 OxFF Ox6E Hex	System Data		0x40AF	Manufacturer Info Block D12	H1	0x0	0xFF	0x6C	Hex
System Data Manufacturer Info 0x40B1 Manufacturer Info Block D14 H1 0x0 0xFF 0x6E Hex	System Data		0x40B0	Manufacturer Info Block D13	H1	0x0	0xFF	0x6D	Hex
	System Data		0x40B1	Manufacturer Info Block D14	H1	0x0	0xFF	0x6E	Hex
, D 1 1 1 1 1 1 1 1 1	System Data	Manufacturer Info D	0x40B2	Manufacturer Info Block D15	H1	0x0	0xFF	0x6F	Hex

System Data Manufacturer Info Block D16 H1			I abic	19-1. Dala Fiasii Tabii	, (00::::::	iaca,			
System Data	Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
System Data	System Data		0x40B3	Manufacturer Info Block D16	H1	0x0	0xFF	0x70	Hex
System Data D	System Data		0x40B4	Manufacturer Info Block D17	H1	0x0	0xFF	0x71	Hex
System Data D	System Data		0x40B5	Manufacturer Info Block D18	H1	0x0	0xFF	0x72	Hex
System Data D Ox40BK Manufacturer Info Ox40BK Manufacturer Inf	System Data		0x40B6	Manufacturer Info Block D19	H1	0x0	0xFF	0x73	Hex
System Data D	System Data		0x40B7	Manufacturer Info Block D20	H1	0x0	0xFF	0x74	Hex
System Data D	System Data		0x40B8	Manufacturer Info Block D21	H1	0x0	0xFF	0x75	Hex
System Data D	System Data		0x40B9	Manufacturer Info Block D22	H1	0x0	0xFF	0x76	Hex
System Data D	System Data		0x40BA	Manufacturer Info Block D23	H1	0x0	0xFF	0x77	Hex
System Data	System Data		0x40BB	Manufacturer Info Block D24	H1	0x0	0xFF	0x7A	Hex
System Data	System Data		0x40BC	Manufacturer Info Block D25	H1	0x0	0xFF	0x78	Hex
System Data	System Data		0x40BD	Manufacturer Info Block D26	H1	0x0	0xFF	0x79	Hex
System Data	System Data		0x40BE	Manufacturer Info Block D27	H1	0x0	0xFF	0x30	Hex
System Data	System Data		0x40BF	Manufacturer Info Block D28	H1	0x0	0xFF	0x31	Hex
System Data	System Data		0x40C0	Manufacturer Info Block D29	H1	0x0	0xFF	0x32	Hex
System Data	System Data		0x40C1	Manufacturer Info Block D30	H1	0x0	0xFF	0x33	Hex
System Data D	System Data		0x40C2	Manufacturer Info Block D31	H1	0x0	0xFF	0x34	Hex
System Data Integrity 0x40C6 Static Chem DF Signature H2 0x0 0x7FFF 0x73B5 Hex System Data Integrity 0x40C8 All DF Signature H2 0x0 0x7FFF 0x0 Hex SBS Configuration Data 0x40CA Manufacture Date U2 0 65535 0 date SBS Configuration Data 0x40CE Serial Number H2 0x0 0xFFFF 0x0001 Hex SBS Configuration Data 0x40CE Manufacturer Name S21 x x Instrumen Instrumen Its — SBS Configuration Data 0x40E3 Device Name S21 x x bq40z80 — SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm 12 0 32767 300 mAh SBS Configuration Data 0x4AE8 Remainin	System Data		0x40C3	Manufacturer Info Block D32	H1	0x0	0xFF	0x35	Hex
System Data Integrity 0x40C8 All DF Signature H2 0x0 0x7FFF 0x0 Hex SBS Configuration Data 0x40CA Manufacture Date U2 0 65535 0 date SBS Configuration Data 0x40CC Serial Number H2 0x0 0xFFFF 0x0001 Hex SBS Configuration Data 0x40CE Manufacturer Name S21 x x bq40z80 — SBS Configuration Data 0x40E3 Device Name S21 x x bq40z80 — SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm I2 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm I2 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm	System Data	Integrity	0x40C4	Static DF Signature	H2	0x0	0x7FFF	0x0	Hex
SBS Configuration Data 0x40CA Manufacture Date U2 0 65535 0 date SBS Configuration Data 0x40CC Serial Number H2 0x0 0xFFFF 0x0001 Hex SBS Configuration Data 0x40CE Manufacturer Name S21 x x by 40280 — SBS Configuration Data 0x40F8 Device Name S21 x x by 40280 — SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm 12 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining Time Alarm 12 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode	System Data	Integrity	0x40C6	Static Chem DF Signature	H2	0x0	0x7FFF	0x73B5	Hex
SBS Configuration Data 0x40CC Serial Number H2 0x0 0xFFFF 0x0001 Hex SBS Configuration Data 0x40CE Manufacturer Name S21 x x Instrumen Its — SBS Configuration Data 0x40E3 Device Name S21 x x bq40280 — SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm I2 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm I2 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification	System Data	Integrity	0x40C8	All DF Signature	H2	0x0	0x7FFF	0x0	Hex
SBS Configuration Data 0x40CE Manufacturer Name S21 x x Texas Instrumen ts SBS Configuration Data 0x40E3 Device Name S21 x x bq40z80 — SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm 12 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm 12 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex SBS Configuration Data 0x4ACE LED Flash Perio	SBS Configuration	Data	0x40CA	Manufacture Date	U2	0	65535	0	date
SBS Configuration Data 0x40CE Manufacturer Name S21 x x Instrumen ts SBS Configuration Data 0x40E3 Device Name S21 x x bq40z80 — SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm I2 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm I2 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4AD0 LED Blink Period <td>SBS Configuration</td> <td>Data</td> <td>0x40CC</td> <td>Serial Number</td> <td>H2</td> <td>0x0</td> <td>0xFFFF</td> <td>0x0001</td> <td>Hex</td>	SBS Configuration	Data	0x40CC	Serial Number	H2	0x0	0xFFFF	0x0001	Hex
SBS Configuration Data 0x40F8 Device Chemistry S5 x x LION — SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm I2 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm I2 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 µs LED Support LED Config 0x4AD0 LED Blink Period U2 32 65535 1024 488 µs LED Support LED Config 0x4AD2	SBS Configuration	Data	0x40CE	Manufacturer Name	S21	х	х	Instrumen	_
SBS Configuration Data 0x4AE4 Remaining AH Cap. Alarm I2 0 32767 300 mAh SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm I2 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 μs LED Support LED Config 0x4AD2 LED Blink Period U2 32 65535 100 488 μs LED Support LED Config	SBS Configuration	Data	0x40E3	Device Name	S21	х	х	bq40z80	_
SBS Configuration Data 0x4AE6 Remaining WH Cap. Alarm I2 0 32767 432 cWh SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0081 Hex LED Support LED Config 0x4ACE Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 μs LED Support LED Config 0x4AD2 LED Blink Period U2 32 65535 1024 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD6	SBS Configuration	Data	0x40F8	Device Chemistry	S5	х	х	LION	_
SBS Configuration Data 0x4AE8 Remaining Time Alarm U2 0 65535 10 min SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 μs LED Support LED Config 0x4AD0 LED Blink Period U2 32 65535 1024 488 μs LED Support LED Config 0x4AD2 LED Delay U2 16 65535 100 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Thresh 1<	SBS Configuration	Data	0x4AE4	Remaining AH Cap. Alarm	12	0	32767	300	mAh
SBS Configuration Data 0x4AEA Initial Battery Mode H2 0x0 0xFFFF 0x0081 Hex SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 μs LED Support LED Config 0x4AD0 LED Blink Period U2 32 65535 1024 488 μs LED Support LED Config 0x4AD2 LED Delay U2 16 65535 100 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1	SBS Configuration	Data	0x4AE6	Remaining WH Cap. Alarm	12	0	32767	432	cWh
SBS Configuration Data 0x4AEC Specification Information H2 0x0 0xFFFF 0x0031 Hex LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 μs LED Support LED Config 0x4AD0 LED Blink Period U2 32 65535 1024 488 μs LED Support LED Config 0x4AD2 LED Delay U2 16 65535 100 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1	SBS Configuration	Data	0x4AE8	Remaining Time Alarm	U2	0	65535	10	min
LED Support LED Config 0x4ACE LED Flash Period U2 32 65535 512 488 μs LED Support LED Config 0x4AD0 LED Blink Period U2 32 65535 1024 488 μs LED Support LED Config 0x4AD2 LED Delay U2 16 65535 100 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	SBS Configuration	Data	0x4AEA	Initial Battery Mode	H2	0x0	0xFFFF	0x0081	Hex
LED Support LED Config 0x4AD0 LED Blink Period U2 32 65535 1024 488 μs LED Support LED Config 0x4AD2 LED Delay U2 16 65535 100 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	SBS Configuration	Data	0x4AEC	Specification Information	H2	0x0	0xFFFF	0x0031	Hex
LED Support LED Config 0x4AD2 LED Delay U2 16 65535 100 488 μs LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	LED Support	LED Config	0x4ACE	LED Flash Period	U2	32	65535	512	488 μs
LED Support LED Config 0x4AD4 LED Hold Time U1 1 63 16 0.25 s LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	LED Support	LED Config	0x4AD0	LED Blink Period	U2	32	65535	1024	488 μs
LED Support LED Config 0x4AD5 LED FC Time U1 0 96 4 15 mins LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	LED Support	LED Config	0x4AD2	LED Delay	U2	16	65535	100	488 μs
LED Support LED Config 0x4AD6 CHG Flash Alarm I1 0 100 10 % LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	LED Support	LED Config	0x4AD4	LED Hold Time	U1	1	63	16	0.25 s
LED Support LED Config 0x4AD7 CHG Thresh 1 I1 0 100 0 % LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	LED Support	LED Config	0x4AD5	LED FC Time	U1	0	96	4	15 mins
LED Support LED Config 0x4AD8 CHG Thresh 2 I1 0 100 20 %	LED Support	LED Config	0x4AD6	CHG Flash Alarm	I1	0	100	10	%
	LED Support	LED Config	0x4AD7	CHG Thresh 1	I1	0	100	0	%
LED Support LED Config 0x4AD9 CHG Thresh 3 11 0 100 40 %	LED Support	LED Config	0x4AD8	CHG Thresh 2	I1	0	100	20	%
Copposition 11 0 100 40 /6	LED Support	LED Config	0x4AD9	CHG Thresh 3	I1	0	100	40	%

Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
LED Support	LED Config	0x4ADA	CHG Thresh 4	I1	0	100	60	%
LED Support	LED Config	0x4ADB	CHG Thresh 5	I1	0	100	80	%
LED Support	LED Config	0x4ADC	CHG Thresh 6	I1	0	100	90	%
LED Support	LED Config	0x4ADD	DSG Flash Alarm	I1	0	100	10	%
LED Support	LED Config	0x4ADE	DSG Thresh 1	I1	0	100	0	%
LED Support	LED Config	0x4ADF	DSG Thresh 2	I1	0	100	20	%
LED Support	LED Config	0x4AE0	DSG Thresh 3	I1	0	100	40	%
LED Support	LED Config	0x4AE1	DSG Thresh 4	I1	0	100	60	%
LED Support	LED Config	0x4AE2	DSG Thresh 5	I1	0	100	80	%
LED Support	LED Config	0x4AE3	DSG Thresh 6	I1	0	100	90	%
Black Box	Safety Status	0x4600	1st Status Status A	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x4601	1st Status Status B	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x4602	1st Safety Status C	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x4602	1st Safety Status D	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x4604	1st Time to Next Event	U1	0	255	0	S
Black Box	Safety Status	0x4605	2nd Status Status A	H1	0x0	0xFF	0x0	Hex
Black Box	-	0x4606	2nd Status Status B	H1	0x0	0xFF	0x0 0x0	Hex
	Safety Status							
Black Box	Safety Status	0x4607	2nd Safety Status C	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x4608	2nd Safety Status D	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x4609	2nd Time to Next Event	U1	0	255	0	S
Black Box	Safety Status	0x460A	3rd Status Status A	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x460B	3rd Status Status B	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x460C	3rd Safety Status C	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x460D	3rd Safety Status D	H1	0x0	0xFF	0x0	Hex
Black Box	Safety Status	0x460E	3rd Time to Next Event	U1	0	255	0	S
Black Box	PF Status	0x460F	1st PF Status A	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4610	1st PF Status B	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4611	1st PF Status C	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4612	1st PF Status D	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4613	1st Time to Next Event	U1	0	255	0	S
Black Box	PF Status	0x4614	2nd PF Status A	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4615	2nd PF Status B	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4616	2nd PF Status C	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4617	2nd PF Status D	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x4618	2nd Time to Next Event	U1	0	255	0	S
Black Box	PF Status	0x4619	3rd PF Status A	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x461A	3rd PF Status B	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x461B	3rd PF Status C	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x461C	3rd PF Status D	H1	0x0	0xFF	0x0	Hex
Black Box	PF Status	0x461D	3rd Time to Next Event	U1	0	255	0	s
Lifetimes	Voltage	0x4540	Cell 1 Max Voltage	12	0	32767	0	mV
Lifetimes	Voltage	0x4542	Cell 2 Max Voltage	12	0	32767	0	mV
Lifetimes	Voltage	0x4544	Cell 3 Max Voltage	I2	0	32767	0	mV
Lifetimes	Voltage	0x4546	Cell 4 Max Voltage	12	0	32767	0	mV
Lifetimes	Voltage	0x4548	Cell 5 Max Voltage	12	0	32767	0	mV
Lifetimes	Voltage	0x454A	Cell 6 Max Voltage	12	0	32767	0	mV
Lifetimes	Voltage	0x454C	Cell 7 Max Voltage	12	0	32767	0	mV
Lifetimes	Voltage	0x454E	Cell 1 Min Voltage	12	0	32767	32767	mV
Lifetimes	Voltage	0x4550	Cell 2 Min Voltage	12	0	32767	32767	mV
Lifetimes	Voltage	0x4552	Cell 3 Min Voltage	12	0	32767	32767	mV
Lifetimes	Voltage	0x4554	Cell 4 Min Voltage	12	0	32767	32767	mV

		Table	19-1. Data Flash Tabi	e (contin	iueuj			
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Lifetimes	Voltage	0x4556	Cell 5 Min Voltage	12	0	32767	32767	mV
Lifetimes	Voltage	0x4558	Cell 6 Min Voltage	12	0	32767	32767	mV
Lifetimes	Voltage	0x455A	Cell 7 Min Voltage	12	0	32767	32767	mV
Lifetimes	Voltage	0x455C	Max Delta Cell Voltage	12	0	32767	0	mV
Lifetimes	Current	0x455E	Max Charge Current	12	0	32767	0	mA
Lifetimes	Current	0x4560	Max Discharge Current	12	-32768	0	0	mA
Lifetimes	Current	0x4562	Max Avg Dsg Current	12	-32768	0	0	mA
Lifetimes	Current	0x4564	Max Avg Dsg Power	12	-32768	0	0	cW
Lifetimes	Temperature	0x4566	Max Temp Cell	I1	-128	127	-128	°C
Lifetimes	Temperature	0x4567	Min Temp Cell	I1	-128	127	127	°C
Lifetimes	Temperature	0x4568	Max Delta Cell Temp	I1	-128	127	0	°C
Lifetimes	Temperature	0x4569	Max Temp Int Sensor	I1	-128	127	-128	°C
Lifetimes	Temperature	0x456A	Min Temp Int Sensor	I1	-128	127	127	°C
Lifetimes	Temperature	0x456B	Max Temp Fet	I1	-128	127	-128	°C
Lifetimes	Safety Events	0x456C	No Of COV Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x456E	Last COV Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4570	No Of CUV Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x4570	Last CUV Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4572 0x4574	No Of OCD1 Events	U2	0	32767	0	
								events
Lifetimes	Safety Events	0x4576	Last OCD1 Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4578	No Of OCD2 Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x457A	Last OCD2 Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x457C	No Of OCC1 Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x457E	Last OCC1 Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4580	No Of OCC2 Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x4582	Last OCC2 Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4584	No Of AOLD Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x4586	Last AOLD Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4588	No Of ASCD Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x458A	Last ASCD Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x458C	No Of ASCC Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x458E	Last ASCC Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4590	No Of OTC Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x4592	Last OTC Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4594	No Of OTD Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x4596	Last OTD Event	U2	0	32767	0	cycles
Lifetimes	Safety Events	0x4598	No Of OTF Events	U2	0	32767	0	events
Lifetimes	Safety Events	0x459A	Last OTF Event	U2	0	32767	0	cycles
Lifetimes	Charging Events	0x459C	No Valid Charge Term	U2	0	32767	0	events
Lifetimes	Charging Events	0x459E	Last Valid Charge Term	U2	0	32767	0	cycles
Lifetimes	Gauging Events	0x45A0	No Of Qmax Updates	U2	0	32767	0	events
Lifetimes	Gauging Events	0x45A2	Last Qmax Update	U2	0	32767	0	cycles
Lifetimes	Gauging Events	0x45A4	No Of Ra Updates	U2	0	32767	0	events
Lifetimes	Gauging Events	0x45A6	Last Ra Update	U2	0	32767	0	cycles
Lifetimes	Gauging Events	0x45A8	No Of Ra Disable	U2	0	32767	0	events
Lifetimes	Gauging Events	0x45AA	Last Ra Disable	U2	0	32767	0	cycles
Lifetimes	Power Events	0x45AC	No Of Shutdowns	U1	0	255	0	events
Lifetimes							0	
	Cell Balancing	0x45B0	Cb Time Cell 1	U1	0	255		2 h
Lifetimes	Cell Balancing	0x45B1	Cb Time Cell 2	U1	0	255	0	2 h
Lifetimes	Cell Balancing	0x45B2	Cb Time Cell 3	U1	0	255	0	2 h
Lifetimes	Cell Balancing	0x45B3	Cb Time Cell 4	U1	0	255	0	2

Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Lifetimes	Cell Balancing	0x45B4	Cb Time Cell 5	U1	0	255	0	2 h
Lifetimes	Cell Balancing	0x45B5	Cb Time Cell 6	U1	0	255	0	2 h
Lifetimes	Cell Balancing	0x45B6	Cb Time Cell 7	U1	0	255	0	2 h
Lifetimes	Time	0x45B7	Total Fw Runtime	U2	0	65535	0	2 h
Lifetimes	Time	0x45B9	Time Spent In UT	U2	0	65535	0	2 h
Lifetimes	Time	0x45BB	Time Spent In LT	U2	0	65535	0	2 h
Lifetimes	Time	0x45BD	Time Spent In STL	U2	0	65535	0	2 h
Lifetimes	Time	0x45BF	Time Spent In RT	U2	0	65535	0	2 h
Lifetimes	Time	0x45C1	Time Spent In STH	U2	0	65535	0	2 h
Lifetimes	Time	0x45C3	Time Spent In HT	U2	0	65535	0	2 h
Lifetimes	Time	0x45C5	Time Spent In OT	U2	0	65535	0	2 h
Ra Table	R_a0	0x4140	Cell0 R_a flag	H2	0x0	0xFFFF	0xFF55	_
Ra Table	R_a0	0x4142	Cell0 R_a 0	12	0	32767	67	$2^{-10} \Omega$
Ra Table	R_a0	0x4144	Cell0 R_a 1	12	0	32767	71	$2^{-10} \Omega$
Ra Table	R_a0	0x4146	Cell0 R_a 2	12	0	32767	83	$2^{-10} \Omega$
Ra Table	R_a0	0x4148	Cell0 R_a 3	12	0	32767	110	2-10 Ω
Ra Table	R_a0	0x414A	Cell0 R_a 4	12	0	32767	96	2-10 Ω
Ra Table	R_a0	0x414C	Cell0 R_a 5	12	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x414E	Cell0 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4150	Cell0 R_a 7	12	0	32767	86	2-10 Ω
Ra Table	R_a0	0x4152	Cell0 R_a 8	12	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4154	Cell0 R_a 9	12	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4156	Cello R_a 10	12	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x4158	Cello R_a 11	12	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a0	0x415A	Cell0 R_a 12	12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	_	0x415C		12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a0		Cello R_a 13	12	0			2 ⁻¹⁰ Ω
	R_a0	0x415E	Cello R_a 14	H2		32767	658	2 . 0
Ra Table Ra Table	R_a1	0x4180	Cell1 R_a flag	12	0x0 0	0xFFFF	0xFF55 67	
	R_a1	0x4182	Cell1 R_a 0			32767		2-10 Ω
Ra Table	R_a1	0x4184	Cell1 R_a 1	12	0	32767	71	
Ra Table	R_a1	0x4186	Cell1 R_a 2	12	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4188	Cell1 R_a 3	12	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x418A	Cell1 R_a 4	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x418C	Cell1 R_a 5	I2	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x418E	Cell1 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4190	Cell1 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4192	Cell1 R_a 8	12	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x4194	Cell1 R_a 9	I2	0	32767	82	$2^{-10} \Omega$
Ra Table	R_a1	0x4196	Cell1 R_a 10	12	0	32767	81	$2^{-10} \Omega$
Ra Table	R_a1	0x4198	Cell1 R_a 11	12	0	32767	92	$2^{-10} \Omega$
Ra Table	R_a1	0x419A	Cell1 R_a 12	12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a1	0x419C	Cell1 R_a 13	12	0	32767	123	$2^{-10} \Omega$
Ra Table	R_a1	0x419E	Cell1 R_a 14	12	0	32767	658	$2^{-10} \Omega$
Ra Table	R_a2	0x41C0	Cell2 R_a flag	H2	0x0	0xFFFF	0xFF55	_
Ra Table	R_a2	0x41C2	Cell2 R_a 0	12	0	32767	67	$2^{-10} \Omega$
Ra Table	R_a2	0x41C4	Cell2 R_a 1	12	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x41C6	Cell2 R_a 2	12	0	32767	83	2-10 Ω
Ra Table	R_a2	0x41C8	Cell2 R_a 3	12	0	32767	110	2-10 Ω

Table 19-1. Data Flash Table (continued)								
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Ra Table	R_a2	0x41CA	Cell2 R_a 4	12	0	32767	96	$2^{-10} \Omega$
Ra Table	R_a2	0x41CC	Cell2 R_a 5	12	0	32767	77	$2^{-10} \Omega$
Ra Table	R_a2	0x41CE	Cell2 R_a 6	12	0	32767	96	$2^{-10} \Omega$
Ra Table	R_a2	0x41D0	Cell2 R_a 7	12	0	32767	86	$2^{-10} \Omega$
Ra Table	R_a2	0x41D2	Cell2 R_a 8	12	0	32767	84	$2^{-10} \Omega$
Ra Table	R_a2	0x41D4	Cell2 R_a 9	12	0	32767	82	$2^{-10} \Omega$
Ra Table	R_a2	0x41D6	Cell2 R_a 10	12	0	32767	81	$2^{-10} \Omega$
Ra Table	R_a2	0x41D8	Cell2 R_a 11	12	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a2	0x41DA	Cell2 R_a 12	12	0	32767	103	2-10 Ω
Ra Table	R_a2	0x41DC	Cell2 R_a 13	12	0	32767	123	2-10 Ω
Ra Table	R_a2	0x41DE	Cell2 R_a 14	12	0	32767	658	2-10 Ω
Ra Table	R_a3	0x4200	Cell3 R_a flag	H2	0x0	0xFFFF	0xFF55	_
Ra Table	R_a3	0x4202	Cell3 R_a 0	12	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x4204	Cell3 R_a 1	12	0	32767	71	2-10 Ω
Ra Table	R_a3	0x4206	Cell3 R_a 2	12	0	32767	83	2-10 Ω
Ra Table	R_a3	0x4208	Cell3 R_a 3	12	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x420A	Cell3 R_a 4	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x420C	Cell3 R_a 5	12	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x420E	Cell3 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x4210	Cell3 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x4212	Cell3 R_a 8	12	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x4214	Cell3 R_a 9	12	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x4216	Cell3 R_a 10	12	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x4218	Cell3 R_a 11	12	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x421A	Cell3 R_a 12	12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x421A	Cell3 R_a 13	12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a3	0x421C 0x421E	Cell3 R_a 13	12	0			$2^{-10} \Omega$
Ra Table	R_a3	0x421E	Cell4 R_a flag	H2	0x0	32767 0xFFFF	658 0xFF55	2 " ()
Ra Table	R_a4	0x4240	Cell4 R_a 0	12	0	32767	67	2-10 Ω
Ra Table	R_a4	0x4244	Cell4 R_a 1	12	0	32767	71	2 ⁻¹⁰ Ω
Ra Table				12	0			2 ⁻¹⁰ Ω
	R_a4	0x4246	Cell4 R_a 2			32767 32767	83	2-10 Ω
Ra Table	R_a4	0x4248	Cell4 R_a 3	12	0		110	
Ra Table	R_a4	0x424A	Cell4 R_a 4	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x424C	Cell4 R_a 5	12	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x424E	Cell4 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x4250	Cell4 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x4252	Cell4 R_a 8	12	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x4254	Cell4 R_a 9	12	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x4256	Cell4 R_a 10	12	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x4258	Cell4 R_a 11	12	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x425A	Cell4 R_a 12	I2	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x425C	Cell4 R_a 13	12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a4	0x425E	Cell4 R_a 14	12	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x4280	Cell5 R_a flag	H2	0x0	0xFFFF	0xFF55	_
Ra Table	R_a5	0x4282	Cell5 R_a 0	12	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x4284	Cell5 R_a 1	12	0	32767	71	$2^{-10} \Omega$
Ra Table	R_a5	0x4286	Cell5 R_a 2	12	0	32767	83	$2^{-10} \Omega$
Ra Table	R_a5	0x4288	Cell5 R_a 3	12	0	32767	110	$2^{-10} \Omega$

Table 19-1. Data Flash Table (continued)

	ı		19-1. Dala Fiasii Tabi	`	,			
Class	Subclass	Address	Name	Type	Min Value	Max Value	Default	Units
Ra Table	R_a5	0x428A	Cell5 R_a 4	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x428C	Cell5 R_a 5	12	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x428E	Cell5 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x4290	Cell5 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x4292	Cell5 R_a 8	12	0	32767	84	$2^{-10} \Omega$
Ra Table	R_a5	0x4294	Cell5 R_a 9	12	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a5	0x4296	Cell5 R_a 10	I2	0	32767	81	$2^{-10} \Omega$
Ra Table	R_a5	0x4298	Cell5 R_a 11	12	0	32767	92	$2^{-10} \Omega$
Ra Table	R_a5	0x429A	Cell5 R_a 12	12	0	32767	103	$2^{-10} \Omega$
Ra Table	R_a5	0x429C	Cell5 R_a 13	12	0	32767	123	$2^{-10} \Omega$
Ra Table	R_a5	0x429E	Cell5 R_a 14	12	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42C0	Cell6 R_a flag	H2	0x0	0xFFFF	0xFF55	_
Ra Table	R_a6	0x42C2	Cell6 R_a 0	12	0	32767	67	$2^{-10} \Omega$
Ra Table	R_a6	0x42C4	Cell6 R_a 1	12	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42C6	Cell6 R_a 2	12	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42C8	Cell6 R_a 3	12	0	32767	110	$2^{-10} \Omega$
Ra Table	R_a6	0x42CA	Cell6 R_a 4	12	0	32767	96	$2^{-10} \Omega$
Ra Table	R_a6	0x42CC	Cell6 R_a 5	12	0	32767	77	$2^{-10} \Omega$
Ra Table	R_a6	0x42CE	Cell6 R_a 6	12	0	32767	96	2-10 Ω
Ra Table	R_a6	0x42D0	Cell6 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42D2	Cell6 R_a 8	12	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42D4	Cell6 R_a 9	12	0	32767	82	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42D6	Cell6 R_a 10	12	0	32767	81	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42D8	Cell6 R_a 11	12	0	32767	92	2-10 Ω
Ra Table	R_a6	0x42DA	Cell6 R_a 12	12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42DC	Cell6 R_a 13	12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a6	0x42DE	Cell6 R_a 14	12	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4300	xCell0 R_a flag	H2	0x0	0xFFFF	0xFFFF	
Ra Table	R_a0x	0x4302	xCell0 R_a 0	12	0	32767	67	2-10 Ω
Ra Table	R_a0x	0x4304	xCell0 R_a 1	12	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4306	xCell0 R_a 2	12	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4308	xCell0 R_a 3	12	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x430A	xCell0 R_a 4	12	0	32767	96	2-10 Ω
Ra Table	R a0x	0x430C	xCell0 R_a 5	12	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x430E	xCell0 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x4310	xCell0 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R a0x	0x4312	xCell0 R_a 8	12	0	32767	84	2-10 Ω
Ra Table	R a0x	0x4314	xCell0 R_a 9	12	0	32767	82	2-10 Ω
	R_a0x		_					
Ra Table Ra Table	_	0x4316	xCell0 R_a 10	12	0	32767	81	$2^{-10} \Omega$ $2^{-10} \Omega$
	R_a0x	0x4318	xCell0 R_a 11	12	0	32767	92	
Ra Table	R_a0x	0x431A	xCell0 R_a 12	12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x431C	xCell0 R_a 13	12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a0x	0x431E	xCell0 R_a 14	I2	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4340	xCell1 R_a flag	H2	0x0	0xFFFF	0xFFFF	0-10 0
Ra Table	R_a1x	0x4342	xCell1 R_a 0	12	0	32767	67	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4344	xCell1 R_a 1	12	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4346	xCell1 R_a 2	12	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a1x	0x4348	xCell1 R_a 3	12	0	32767	110	$2^{-10} \Omega$

96 77 96 86	Units 2 ⁻¹⁰ Ω 2 ⁻¹⁰ Ω
77 96	2 ⁻¹⁰ Ω
96	
86	$2^{-10} \Omega$
	$2^{-10} \Omega$
84	$2^{-10} \Omega$
82	$2^{-10} \Omega$
81	$2^{-10} \Omega$
92	$2^{-10} \Omega$
103	$2^{-10} \Omega$
123	$2^{-10} \Omega$
658	$2^{-10} \Omega$
0xFFFF	_
67	$2^{-10} \Omega$
71	$2^{-10} \Omega$
83	$2^{-10} \Omega$
110	$2^{-10} \Omega$
96	$2^{-10} \Omega$
77	2 ⁻¹⁰ Ω
96	$2^{-10} \Omega$
86	2 ⁻¹⁰ Ω
84	2 ⁻¹⁰ Ω
82	2 ⁻¹⁰ Ω
81	2 ⁻¹⁰ Ω
92	2-10 Ω
103	2-10 Ω
123	2 ⁻¹⁰ Ω
658	2 ⁻¹⁰ Ω
0xFFFF	_
67	2 ⁻¹⁰ Ω
71	2 ⁻¹⁰ Ω
83	2 ⁻¹⁰ Ω
110	2-10 Ω
96	2-10 Ω
77	2-10 Ω
96	2 ⁻¹⁰ Ω
86	2 ⁻¹⁰ Ω
84	2 ⁻¹⁰ Ω
82	2-10 Ω
81	2-10 Ω
92	2 ⁻¹⁰ Ω
103	2 ⁻¹⁰ Ω
123	2 ⁻¹⁰ Ω
658	2 ⁻¹⁰ Ω
0xFFFF	_
67	2 ⁻¹⁰ Ω
71	2 ⁻¹⁰ Ω
83	2 ⁻¹⁰ Ω
110	2 ⁻¹⁰ Ω
	81 92 103 123 658 0xFFFF 67 71 83 110 96 77 96 86 84 82 81 92 103 123 658 0xFFFF 67 71 83 110 96 77 71 83 123 658 0xFFFF 67 71 83 110 96 77 71 83 110 96 77 71 83 110 96 77 71 83 110 96 77 71 83 110 96 77 71 83 86 84 82 81 92 103 123 658 0xFFFF 67 71 83 123 658 0xFFFF 67 71 83 123 658

				•	-			
Class	Subclass	Address	Name	Туре	Min Value	Max Value	Default	Units
Ra Table	R_a4x	0x440A	xCell4 R_a 4	12	0	32767	96	2-10 Ω
Ra Table	R_a4x	0x440C	xCell4 R_a 5	12	0	32767	77	2-10 Ω
Ra Table	R_a4x	0x440E	xCell4 R_a 6	12	0	32767	96	$2^{-10} \Omega$
Ra Table	R_a4x	0x4410	xCell4 R_a 7	12	0	32767	86	$2^{-10} \Omega$
Ra Table	R_a4x	0x4412	xCell4 R_a 8	12	0	32767	84	2-10 Ω
Ra Table	R_a4x	0x4414	xCell4 R_a 9	12	0	32767	82	2-10 Ω
Ra Table	R_a4x	0x4416	xCell4 R_a 10	12	0	32767	81	2-10 Ω
Ra Table	R_a4x	0x4418	xCell4 R_a 11	12	0	32767	92	$2^{-10} \Omega$
Ra Table	R_a4x	0x441A	xCell4 R_a 12	12	0	32767	103	$2^{-10} \Omega$
Ra Table	R_a4x	0x441C	xCell4 R_a 13	12	0	32767	123	2-10 Ω
Ra Table	R_a4x	0x441E	xCell4 R_a 14	I2	0	32767	658	2-10 Ω
Ra Table	R_a5x	0x4440	xCell5 R_a flag	H2	0x0	0xFFFF	0xFFFF	_
Ra Table	R_a5x	0x4442	xCell5 R_a 0	12	0	32767	67	$2^{-10} \Omega$
Ra Table	R_a5x	0x4444	xCell5 R_a 1	12	0	32767	71	2-10 Ω
Ra Table	R_a5x	0x4446	xCell5 R_a 2	12	0	32767	83	2-10 Ω
Ra Table	R_a5x	0x4448	xCell5 R_a 3	12	0	32767	110	2 ⁻¹⁰ Ω
Ra Table	R_a5x	0x444A	xCell5 R_a 4	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a5x	0x444C	xCell5 R_a 5	I2	0	32767	77	2 ⁻¹⁰ Ω
Ra Table	R_a5x	0x444E	xCell5 R_a 6	12	0	32767	96	2-10 Ω
Ra Table	R_a5x	0x4450	xCell5 R_a 7	12	0	32767	86	2-10 Ω
Ra Table	R_a5x	0x4452	xCell5 R_a 8	12	0	32767	84	2 ⁻¹⁰ Ω
Ra Table	R_a5x	0x4454	xCell5 R_a 9	I2	0	32767	82	2-10 Ω
Ra Table	R_a5x	0x4456	xCell5 R_a 10	12	0	32767	81	2-10 Ω
Ra Table	R_a5x	0x4458	xCell5 R_a 11	12	0	32767	92	2-10 Ω
Ra Table	R_a5x	0x445A	xCell5 R_a 12	12	0	32767	103	2-10 Ω
Ra Table	R_a5x	0x445C	xCell5 R_a 13	12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a5x	0x445E	xCell5 R_a 14	12	0	32767	658	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x4480	xCell6 R_a flag	H2	0x0	0xFFFF	0xFFFF	_
Ra Table	R_a6x	0x4482	xCell6 R_a 0	12	0	32767	67	2-10 Ω
Ra Table	R_a6x	0x4484	xCell6 R_a 1	12	0	32767	71	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x4486	xCell6 R_a 2	12	0	32767	83	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x4488	xCell6 R_a 3	12	0	32767	110	2-10 Ω
Ra Table	R_a6x	0x448A	xCell6 R_a 4	I2	0	32767	96	2-10 Ω
Ra Table	R_a6x	0x448C	xCell6 R_a 5	12	0	32767	77	2-10 Ω
Ra Table	R_a6x	0x448E	xCell6 R_a 6	12	0	32767	96	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x4490	xCell6 R_a 7	12	0	32767	86	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x4492	xCell6 R_a 8	12	0	32767	84	2-10 Ω
Ra Table	R_a6x	0x4494	xCell6 R_a 9	12	0	32767	82	2-10 Ω
Ra Table	R_a6x	0x4496	xCell6 R_a 10	12	0	32767	81	2-10 Ω
Ra Table	R_a6x	0x4498	xCell6 R_a 11	12	0	32767	92	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x449A	xCell6 R_a 12	12	0	32767	103	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x449C	xCell6 R_a 13	12	0	32767	123	2 ⁻¹⁰ Ω
Ra Table	R_a6x	0x449E	xCell6 R_a 14	12	0	32767	658	2-10 Ω

AFE Threshold and Delay Settings

A.1 Overload in Discharge Protection (AOLD)

Table A-1. Overload in Discharge Protection Threshold (Settings: AFE: AFE Protection Control [RSNS] = 0)⁽¹⁾

	OLD Threshold ([RSNS] = 0)							
Setting	Threshold	Setting	Threshold					
0x00	−8.30 mV	0x08	−30.54 mV					
0x01	–11.08 mV	0x09	–33.32 mV					
0x02	–13.86 mV	0x0A	–36.10 mV					
0x03	-16.64 mV	0x0B	–38.88 mV					
0x04	–19.42 mV	0x0C	–41.66 mV					
0x05	−22.20 mV	0x0D	–44.44 mV					
0x06	–24.98 mV	0x0E	–47.22 mV					
0x07	−27.76 mV	0x0F	–50.00 mV					

The data flash setting *Protection:AFE Thresholds:OLD Threshold[3:0]* sets the voltage threshold.

Table A-2. Overload in Discharge Protection Threshold (Settings:AFE:AFE Protection Control [RSNS] = 1)⁽¹⁾

	OLD Threshold ([RSNS] = 1)							
Setting	Threshold	Setting	Threshold					
0x00	–16.60 mV	0x08	–61.08 mV					
0x01	–22.16 mV	0x09	–66.64 mV					
0x02	−27.72 mV	0x0A	−72.20 mV					
0x03	−33.28 mV	0x0B	–77.76 mV					
0x04	−38.84 mV	0x0C	–83.32 mV					
0x05	–44.40 mV	0x0D	–88.88 mV					
0x06	–49.96 mV	0x0E	–94.44 mV					
0x07	−55.52 mV	0x0F	-100.00 mV					

⁽¹⁾ The data flash setting **Protection:AFE Thresholds:OLD Threshold[3:0]** sets the voltage threshold.

Table A-3. Overload in Discharge Protection Delay(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	1 ms	0x04	9 ms	0x08	17 ms	0x0C	25 ms
0x01	3 ms	0x05	11 ms	0x09	19 ms	0x0D	27 ms
0x02	5 ms	0x06	13 ms	0x0A	21 ms	0x0E	29 ms
0x03	7 ms	0x07	15 ms	0x0B	23 ms	0x0F	31 ms

⁽¹⁾ The data flash setting **Protection:AFE Thresholds:OLD Threshold[7:4]** sets the delay time.

A.2 Short Circuit in Charge (ASCC)

Table A-4. Short Circuit in Charge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 0)⁽¹⁾

Setting	Threshold	Setting	Threshold
0x00	22.2 mV	0x04	66.65 mV
0x01	33.3 mV	0x05	77.75 mV
0x02	44.4 mV	0x06	88.85 mV
0x03	55.5 mV	0x07	100 mV

The data flash setting *Protection:AFE Thresholds:SCC Threshold*[2:0] sets the voltage threshold.

Table A-5. Short Circuit in Charge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 1)⁽¹⁾

Setting	Threshold	Setting	Threshold
0x00	44.4 mV	0x04	133.3 mV
0x01	66.6 mV	0x05	155.5 mV
0x02	88.8 mV	0x06	177.7 mV
0x03	111.1 mV	0x07	200 mV

⁽¹⁾ The data flash setting Protection: AFE Thresholds: SCC Threshold[2:0] sets the voltage threshold.

Table A-6. Short Circuit in Charge Delay(1)

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	80x0	488 µs	0x0C	732 µs
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0D	793 µs
0x02	122 µs	0x06	366 µs	0x0A	610 µs	0x0E	854 µs
0x03	183 µs	0x07	427 µs	0x0B	671 µs	0x0F	915 µs

⁽¹⁾ The data flash setting Protection: AFE Thresholds: SCC Threshold[7:4] sets the delay time.

A.3 Short Circuit in Discharge (ASCD1 and ASCD2)

Table A-7. Short Circuit in Discharge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 0)⁽¹⁾

Setting	Threshold	Setting	Threshold
0x00	−22.2 mV	0x04	−66.65 mV
0x01	−33.3 mV	0x05	–77.75 mV
0x02	–44.4 mV	0x06	–88.85 mV
0x03	−55.5 mV	0x07	–100 mV

⁽¹⁾ The data flash setting *Protection:AFE Thresholds:SCD1 Threshold[2:0]* and *Protection:AFE Thresholds:SCD2 Threshold[2:0]* sets the voltage thresholds.

Table A-8. Short Circuit in Discharge Threshold (Settings:AFE:AFE Protection Control [RSNS] = 1)⁽¹⁾

Setting	Threshold	Setting	Threshold
0x00	–44.4 mV	0x04	–133.3 mV
0x01	-66.6 mV	0x05	−155.5 mV
0x02	-88.8 mV	0x06	–177.7 mV
0x03	–111.1 mV	0x07	–200 mV

The data flash setting Protection:AFE Thresholds:SCD1 Threshold[2:0] and Protection:AFE Thresholds:SCD2 Threshold[2:0] sets the voltage thresholds.

Table A-9. Short Circuit in Discharge 1 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 0)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	0x08	488 µs	0x0C	732 µs
0x01	61 µs	0x05	305 µs	0x09	549 µs	0x0D	793 µs
0x02	122 µs	0x06	366 µs	0x0A	610 µs	0x0E	854 µs
0x03	183 µs	0x07	427 µs	0x0B	671 µs	0x0F	915 µs

⁽¹⁾ The data flash setting Protection: AFE Thresholds: SCD1Threshold[7:4] sets the delay time.

Table A-10. Short Circuit in Discharge 1 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 1)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	488 µs	0x08	976 µs	0x0C	1464 µs
0x01	122 µs	0x05	610 µs	0x09	1098 µs	0x0D	1586 µs
0x02	244 µs	0x06	732 µs	0x0A	1220 µs	0x0E	1708 µs
0x03	366 µs	0x07	854 µs	0x0B	1342 µs	0x0F	1830 µs

⁽¹⁾ The data flash setting **Protection: AFE Thresholds: SCD1 Threshold[7:4]** sets the delay time.

Table A-11. Short Circuit in Discharge 2 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 0)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	122 µs	80x0	244 µs	0x0C	366 µs
0x01	31 µs	0x05	153 µs	0x09	275 µs	0x0D	396 µs
0x02	61 µs	0x06	183 µs	0x0A	305 µs	0x0E	427 µs
0x03	92 µs	0x07	214 µs	0x0B	335 µs	0x0F	458 µs

⁽¹⁾ The data flash setting Protection: AFE Thresholds: SCD2 Threshold[7:4] sets the delay time.

Table A-12. Short Circuit in Discharge 2 Delay (Settings:AFE:AFE Protection Control [SCDDx2] = 1)⁽¹⁾

Setting	Time	Setting	Time	Setting	Time	Setting	Time
0x00	0 µs	0x04	244 µs	80x0	488 µs	0x0C	732 µs
0x01	62 µs	0x05	306 µs	0x09	550 µs	0x0D	792 µs
0x02	122 µs	0x06	366 µs	0x0A	610 µs	0x0E	854 µs
0x03	184 µs	0x07	428 µs	0x0B	670 µs	0x0F	916 µs

⁽¹⁾ The data flash setting Protection: AFE Thresholds: SCD2 Threshold[7:4] sets the delay time.

Sample Filter Settings

Table B-1. Sample V/I/P Filter Settings and Associated Low-Pass Filter Time Constants⁽¹⁾

Average V/I/P Filter	Effective Low-Pass Time Constant		
10	0.25 seconds		
50	0.5 seconds		
145	1 second		
200	3 seconds		

The data flash setting *Calibration:Filter:Average V/I/P* sets this threshold.

Revision History www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Date	Revision	Notes
November 2018	A	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated