Divisible Tree

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Today is Frikha's birthday, so we all decided to gift him an undirected tree, but not a usual tree, it's tree consisting of n nodes and n-1 edges, (a tree is a connected graph which contains no cycle and no loops), the node 1 is the root of the tree and it's represented by n-1 integers which represents the parents of the nodes 2, 3, ... and n (each node and his parent are connected by one edge, and for simplicity $parent[i] \le i-1$ for all i from 2 to n).

A connected components of the tree , is a set S of nodes of the tree , such for every x , y in S , there exists p nodes in S n_1 , n_2 ... n_p for some p such that there are edges between x and n_1 , n_1 and n_2 ... n_p and y .

Let's suppose the i'th node in the tree has value a_i .

We call a connected components set S is divisible by x if for each node i in the set S we have a_i is divisible by x.

To have more fun in the birthday party , Mtaylor challenged Frikha to find the maximum size of a connected components divisible by some x $(2 \le x)$, if there are many that have the same size you have to print minimum x possible and the size of the set .

Input

The first line contains one integer n ($1 \le n \le 3500$).

The second line contains n integers a_i ($2 \le a_i \le 20000$).

The third line contains n-1 integers p_i $(1 \le p_i \le i)$, the *i*'th integer represents the parents of the node i+1.

Output

Print two integers in one line , the minmum x which has the maximum size of connected components divisible by x and the size of such a set .

Examples

standard input	standard output
4	2 1
2 3 2 3	
1 2 3	
4	3 3
2 3 3 3	
1 2 3	