

Gymnázium Evolution Academic year 2024/2025 Maths Seminar, 6.AB/4.C

Linear Algebra Second Written Exam Vector Spaces & Homomorphisms

Name:						
-------	--	--	--	--	--	--

Question	1	2	3	Total
Points	4	6	9	19
Grade				

Throughout the exam, you're allowed to use any tools at your disposal. Write your answers thoroughly.

1. In each of the following groups, answer **YES** next to each statement if the statement is (4 points) always true. Otherwise answer NO. Each group is worth 1 point if all statements in that group are evaluated correctly.

Representation of a vector with respect to a linearly independent set is always unique.	YES	NO
Representation of a vector with respect to a spanning set is always unique.	YES	NO
Representation of a vector with respect to a basis is always unique.	YES	NO
The maximum number of linearly independent columns of a matrix of rank n is n .	YES	NO
If a matrix $A \in \mathbb{R}^{m \times n}$ has rank n , then every linear system with left side A has a unique solution.	YES	NO
If the row space of a matrix $A \in \mathbb{R}^{m \times n}$ has dimension n and $m \ge n$, then any linear system with left side A has $m - n$ free variables.	YES	NO
The matrix $\begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}$ can have rank 1 or 2 depending on the choice of a .	YES	NO
For every $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{v} \in \mathbb{R}^n$, the vector $A \cdot \boldsymbol{v}$ lies in the row space of A .	YES	NO
If $A \in \mathbb{R}^{3\times 3}$ has rank 2, then $(A \cdot \pmb{e}_1, A \cdot \pmb{e}_2)$ is a basis of the column space of A .	YES	NO
In \mathbb{R}^2 , the reflection over any line is a homomorphism $\mathbb{R}^2 \to \mathbb{R}^2$.	YES	NO
If $f,g \in \text{Hom}(\mathbb{R}^n,\mathbb{R}^m)$ and $f(e_i) = g(e_i)$ for every $i \leq n$, then $f = g$.	YES	NO
Given $f \in \operatorname{Hom}(V,W)$ and any subspace $U \leq V$, the image $f(U)$ is a subspace of W .	YES	NO

- 2. Solve the following problems. Include important steps of your calculations. Each problem is worth $2\ \text{points}$.
 - (a) Compute some basis of the row space of the matrix

(2 points)

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & -2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

and determine the matrix's rank.

(b) (2 points)

(c) Prove that the quadruple $B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -2 & 2 \end{pmatrix}$ is a basis of $\mathbb{R}^{2 \times 2}$, the (2 points) vector space of 2×2 real matrices.

- 3. Prove the following statements. If you base your proof upon another result, refer to the latter as precisely as you can. Of course, you may not refer to the given statement directly, or to propositions whose proofs use the statement.
 - (a) Prove that the linear system

(2 points)

$$ax + y = a^2$$
$$x + ay = 1$$

has a unique solution as long as $a \notin \{-1, 1\}$.

(b) The generalised triangle inequality states that

(3 points)

$$\|\mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_k\| \le \|\mathbf{v}_1\| + \|\mathbf{v}_2\| + \dots + \|\mathbf{v}_k\|$$

for all $v_1, v_2, ..., v_k \in \mathbb{R}^n$ and $k, n \ge 1$. Prove it by induction on the number of vectors, k.

(c) Let $V, W \leq \mathbb{R}^n$. Prove that if dim $V + \dim W > n$, then dim $(V \cap W) > 0$.

(4 points)