El valor optimo del indice de comportamiento

Irasema Pedroza Meza

2024-08-12

Table of contents

Preface		3
1	Introduction	4
2	Formulación del Proceso de Decisión de Markov	5
3	Dinámica del Modelo	6
4	Summary	7
References		8

Preface

En este libro se desarrollara el proyecto de la clase de Aprendizaje Reforzado.

1 + 1

2

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

2

2 Formulación del Proceso de Decisión de Markov

Los estados de nuestro proceso de decisión de Markov representarán la proporción de la población en cada categoría del modelo propuesto por XXX:

- S_t : Fracción de susceptibles en el tiempo t.
- V_{+t} : Fracción de vacunados inmunes en el tiempo t.
- V_{-t} : Fracción de vacunados no inmunes en el tiempot.
- I_t : Fracción de infectados en el tiempo t.
- R_t : Fracción de recuperados en el tiempo t.

El estado global del sistema en el tiempo t se presenta como

$$x_t = (S_t, V_{+t}, V_{-t}, I_t, R_t)$$

El escenario que consideraremos para cada $t \in 0, 1, ..., N$ para el proceso de Markov:

- x_t : representa la dinámica de la enfermedad en el tiempo t.
- a_t : representa en qué escenario del índice de comportamiento se encuentra la población en el tiempo t.

Algunos supuestos que estaremos considerando para nuestro proceso son:

- Las personas cambian su comportamiento en el tiempot de forma instantánea.
- Las únicas personas que pueden cambiar su comportamiento son los vacunados no inmunes.
- Supondremos que las personas cambian su comportamiento bajo una distribución uniforme [0.5, 2].

Bajo los supuestos anteriormente mencionados, consideramos el siguiente Modelo de Control de Markov.

$$(X, A, \{A(x) : x \in X\}, P, C)$$

donde X es el espacio de los

3 Dinámica del Modelo

La dinámica del sistema evoluciona en el tiempo t e

4 Summary

In summary, this book has no content whatsoever.

1 + 1

2

References

Knuth, Donald E. 1984. "Literate Programming." Comput.~J.~27~(2):~97-111.~https://doi.org/10.1093/comjnl/27.2.97.