Ejercicios 16-31

Arruti, Sergio

Lema 1. Sea f un morfismo en Sets, entonces

- a) $f:A\hookrightarrow B$ es un mono en Sets si y sólo si f es inyectiva;
- b) $f: A \rightarrow B$ es un epi en Sets si y sólo si f es suprayectiva.

Demostración. a) Notemos primeramente que una función vacía \varnothing_C , $C \in Sets$, es inyectiva por la vacuidad de su dominio. Más aún, es un mono en Sets, en efecto: si $g,h \in Sets$ son tales que $\varnothing_C f = \varnothing_A g$, entonces necesariamente $D = \varnothing_A g$ y así, dado que existe una única función de \varnothing en \varnothing , f = g. Con lo cual la afirmación es válida para funciones vacía y podemos suponer sin pérdida de generalidad que $A \neq \varnothing$ (y en consecuencia que $B \neq \varnothing$).

a) \Longrightarrow Sean $a, b \in A$ tales que f(a) = f(b), entonces las funciones

$$g: A \to A$$
$$x \mapsto a,$$
$$h: A \to A$$
$$x \mapsto b.$$

satisfacen que fg = fh, luego g = h por ser f mono y por tanto a = b. a bSupongamos que $g, h \in \text{son tales que } fg = fh$. Si $A' = \emptyset$ entonces

 $\overline{g=\varnothing_A}=h;$ en caso contrario sea $a\in A',$ así

$$\begin{split} f\left(g\left(a\right)\right) &= fg\left(a\right) = fh\left(a\right) = f\left(h\left(a\right)\right) \\ &\implies g\left(a\right) = h\left(a\right), & f \text{ es inyectiva} \\ &\implies g = h. \end{split}$$

- b) Verificaremos primero que la función \varnothing_\varnothing i.e. la única función cuyo dominio y contradominio es \varnothing es epi y suprayectiva. Si $g,h\in$ son tales que $g\varnothing_\varnothing=h\varnothing_\varnothing$, entonces $g=\varnothing_Z=h$; por su parte la suprayectividad de \varnothing_\varnothing se sigue por la vacuidad de su contradominio. Así, en adelante podemos suponer sin pérdida de generalidad que $B\neq\varnothing$.
- $b) \implies$ Notemos que necesariamente $A \neq \emptyset$, pues en caso contrario las apli-

caciones

$$\phi: B \to \{0, 1\}$$

$$x \mapsto 0,$$

$$\psi: B \to \{0, 1\}$$

$$x \mapsto 1,$$

son funciones bien definidas, pues $B \neq \emptyset$, las cuales satisfacen que $\phi \neq \psi$ y sin embargo $\phi f = \emptyset_{\{0,1\}} = \psi f$, lo cual contradeciría que f es epi. Así $1_B|_{f(A)}$ no es una función vacía y más aún satisface que

$$\begin{aligned} \mathbf{1}_{B}|_{f(A)}\,f &= f = \mathbf{1}_{B}f\\ &\Longrightarrow \,\mathbf{1}_{B} = \mathbf{1}_{B}|_{f(A)}\,, & f \text{ es epi}\\ &\Longrightarrow \,f\left(A\right) = B\\ &\Longrightarrow \,f \text{ es suprayectiva}. \end{aligned}$$

b) \Leftarrow Sean $g, h \in Hom_{Sets}(B, C)$ tales que gf = hf y $b \in B$. Como f es suprayectiva $\exists a \in A \ f(a) = b$, así

$$g(b) = gf(a) = hf(a) = h(b)$$

$$\implies g = h.$$

Ej 16. La categoría Sets tiene uniones.

 $\begin{array}{l} \textit{Demostración.} \ \text{Sea} \ \{u_i: A_i \hookrightarrow A\} \ \text{una familia de subobjetos de un conjunto} \ A \ y \ U := \bigcup_{i \in I} \Im \left(u_i\right) . \ \text{Si} \ I = \varnothing \ \text{entonces} \ U = \varnothing \ y \ \text{la función vacía} \\ \varnothing_A : \varnothing \to A \ \text{es un subobjeto de} \ A \ \text{que satisface por vacuidad que} \ \forall \ i \in I \end{array}$

 $\varnothing_A:\varnothing\to A$ es un subobjeto de A que satisface por vaculdad que $\forall\ t\in I$ $u_i\le\varnothing_A$. Resta verificar que \varnothing_A satisface la propiedad universal de la unión, para lo cual por vaculdad basta con verificar que si $f\in Hom\left(Sets\right)$ y $\mu\in Mon_{Sets}\left(-,A\right)$, entonces \varnothing_A es llevado a μ vía f. Si consideramos la función vacía $\varnothing_B:\varnothing\to B$, entonces el siguiente diagrama

$$\begin{array}{ccc} \varnothing_A & \xrightarrow{\varnothing_B} & B' \\ \varnothing_A & & \downarrow^{\mu} \\ A & \xrightarrow{f} & B \end{array}$$

conmuta en Sets puesto que $f\varnothing_A, \mu\varnothing_B \in Hom_{Sets}(\varnothing, B)$ y existe una única función de \varnothing en B.

En adelante supondremos que $I \neq \emptyset$. Si $U = \emptyset$ entonces $\forall i \in I$ $A_i = \emptyset$ y por lo tanto cada u_i coincide con la función vacía \emptyset_A . De modo que se satisface que $\forall i \in I$ $u_i \leq \emptyset_A$ y en forma análoga al caso $I = \emptyset$ se verifica

que si $f: A \to B$ y $\mu: B' \hookrightarrow B$ son tales que cada u_i es llevado a μ vía f, entonces \emptyset_A es llevado a μ vía f, y así \emptyset_A es una unión para la familia $\{u_i\}_{i\in I}$.

Finalmente si $U \neq \emptyset$ entonces necesariamente $\exists i \in I$ tal que $A_i \neq \emptyset$. Así consideremos inc la inclusión de U en A, la cual es un mono en Sets y para cada $i \in I$ las funciones dadas por

$$\gamma_i: A_i \to U$$

$$a \mapsto u_i(a),$$

en caso que $A_i \neq \emptyset$, o bien $\gamma_i := \emptyset_U$ si $A_i = \emptyset$. Así, si $A_i = \emptyset$, como \emptyset_A es la única función de \emptyset en A, entonces

$$u_i = \varnothing_A = inc \varnothing_U = inc \gamma_i.$$

Si ahora $A_i \neq \emptyset$, entonces

$$u_i(a) = inc\gamma_i(a),$$
 $\forall a \in A_i$
 $\implies u_i = inc\gamma_i.$

Con lo cual se ha verificado que $\forall i \in I \ u_i \leq inc$. Supongamos ahora que $f: A \to B \ y \ \mu: B' \hookrightarrow B$ son funciones tales que cada u_i es llevado a μ vía f, es decir para cada $i \in I$ el siguiente diagrama conmuta en Sets

$$\begin{array}{ccc}
A_i & \xrightarrow{\exists g_i} B' \\
u_i & & \downarrow^{\mu} . \\
A & \xrightarrow{f} B
\end{array}$$

Notemos que para cada $y \in U \ \exists \ i \in I \ y \ x \in A_i$ tales que $y = u_i(x)$, así consideremos la aplicación

$$h: U \to B'$$

 $u_i(x) \mapsto g_i(x)$.

Sea $y \in U$ con $i, j \in I$ y $x \in A_i, z \in A_j$ tales que $u_i(x) = y = u_j(z)$, entonces de la conmutatividad de los diagramas anteriores se tiene que

$$\mu(g_j(z)) = fu_j(b) = f(x) = f(u_i(x))$$

= $fu_i(x) = \mu(g_i(x))$.

Lo anterior, en conjunto a que μ es inyectiva por ser un mono en Sets, garantiza que $g_j(z) = g_i(x)$ y así h está bien definida. Sea $y \in U$, con $i \in I$ y $x \in A_i$ tales que $y = u_i(x)$. Se tiene que

$$finc(y) = f(y) = f(u_i(x)) = \mu g_i(x) = \mu(h(y))$$
$$= \mu h(y)$$
$$\implies finc = \mu h.$$

Con lo cual inc es llevado a μ vía f y por tanto es una unión para la familia $\{u_i\}_{i\in I}$.

- Ej 17.
- Ej 18.
- **Ej 19.** Si $f:A\hookrightarrow B$ está en una categoría \mathscr{C} , entonces $f:A\hookrightarrow B$ es una imagen de f.

Demostración. Se tiene que f es un subobjeto y que $f = f1_A$. Si $g: C \hookrightarrow B$ es un subobjeto para el cual $\exists h: A \to C$ tal que f = gh, entonces $f \leq g$ y por tanto $Im(f) \simeq f$ en $Mon_{Sets}(-,B)$.

Ej 20. Mod(R) y Sets tienen imágenes epimórficas.

Demostración. Sea $f:A\to B$ en Sets. Si f es la función vacía \varnothing_B entonces por el Lema 1 se tiene que f es mono y por tanto es una imagen para sí mismo. Así supongamos sin pérdida de generalidad que $A\neq\varnothing$. Luego $B\neq\varnothing$ y se tiene que $inc:f(A)\to B$ es una función no vacía e inyectiva, por tanto un mono en Sets, la cual satisface que, si

$$g: A \to F(A)$$

 $a \mapsto f(A)$,

f = incg.

Ahora supongamos que $\mu: C \hookrightarrow B$ y $h: A \to C$ son tales que $f=\mu h$. Notemos que para cada $y \in f(A) \exists a \in A$ tal que y=f(a), así consideremos la aplicación

$$\begin{aligned} k:f\left(A\right) &\to C\\ f\left(a\right) &\mapsto h\left(a\right). \end{aligned}$$

Si $a, b \in A$ son tales que x = f(a) = f(b), entonces

$$\mu h(a) = f(a) = x = f(b) = \mu h(b)$$
 $\Rightarrow h(a) = h(b),$ μ es mono

con lo cual k es una función bien definida y satisface que, dados $y \in f(A)$ y $x \in A$ tal que y = f(x),

$$\mu k(y) = \mu(h(x)) = f(x) = y = inc(y)$$
$$\implies inc = \mu k.$$

Con lo anterior se ha verificado que Sets tiene imágenes, más aún, tiene imágenes epimórficas puesto que la función g así construida es suprayectiva

y por tanto epi.

Dado que todo R-módulo es en partícular un conjunto no vacío, en forma análoga a lo anterior se verifica que Mod(R) tiene imágenes epimórficas, puesto que si ahora $f:A\to B$ en Mod(R) entonces la inclusión de módulos es un morfismo de R-módulos, g también lo es al serlo f, y k lo es al serlo f y h.

Ej 21.

Ej 22.

Ej 23. Sean \mathscr{C} una categoría balanceada, con imágenes epimórficas y

$$A \xrightarrow{f} B \xrightarrow{g} C$$

en \mathscr{C} . Si $\mu: A' \hookrightarrow A$ en \mathscr{C} , entonces g(f(A')) = gf(A') en $\overline{Mon_{\mathscr{C}}(-,C)}$.

Demostración. Dado que \mathscr{C} tiene imágenes epimórficas existen subobjetos

$$u: Im(f\mu) \hookrightarrow B,$$
 $\eta: Im(g\nu) \hookrightarrow B,$
 $\psi: Im((gf)\mu) \hookrightarrow B,$

que son imágenes respectivamente de $f\mu, g\nu$ y $(gf)\mu$, y existen epimorfismos $\alpha_1: A' \twoheadrightarrow Im(f\mu)$ y $\alpha_2: Im(f\mu) \twoheadrightarrow Im(g\nu)$ tales que

$$f\mu = \nu\alpha_1, g\nu = \eta\alpha_2.$$
 (*)

Notemos que por ser ν imagen de $f\mu$ y subobjeto de B se tiene que $g\left(f\left(A'\right)\right)=g\left(Im\left(f\mu\right)\right)=Im\left(g\nu\right)$, mientras que $gf\left(A'\right)=Im\left((gf)\mu\right)$. Así pues basta con verificar que η es una imagen para $(gf)\mu$, ya que en tal caso $Im\left(g\nu\right)\simeq Im\left((gf)\mu\right)$ en $Mon_{\mathscr{C}}\left(-,C\right)$. De (*) se tiene que

$$gf(\mu) = g(f\mu) = g(\nu\alpha_1) = (\eta\alpha_2)\alpha_1 = \eta(\alpha_2\alpha_1).$$

En la última igualdad η es un mono, mientras que $\alpha_2\alpha_1$ es un epi al serlo α_1 y α_2 , de modo que al ser $\mathscr C$ balanceada (ver Proposición 1.4.3) se tiene que η es una imagen para $(gf)\mu$.

Ej 24. Sea el siguiente diagrama

conmutativo en una categoría \mathscr{C} , con μ y α subobjetos. Si β_1 es una imagen inversa por f de α_1 , entonces también lo es de $\alpha\mu$.

Demostración. Notemos que de la conmutatividad del diagrama anterior se tiene que

$$(\alpha \mu) f' = \alpha (\mu f') = \alpha \beta_2$$

= $f \beta_1$,

i.e. el siguiente cuadrado conmuta

$$P \xrightarrow{f'} B''$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \alpha \mu .$$

$$A \xrightarrow{f} B$$

$$(*)$$

Sean $\gamma_1:P'\to A$ y $\gamma_2:P'\to B''$ tales que $f\gamma_1=(\alpha\mu)\,\gamma_2=\alpha\,(\mu\gamma_2).$ Como

$$P \xrightarrow{\beta_2} B'$$

$$\beta_1 \downarrow \qquad \qquad \downarrow \alpha$$

$$A \xrightarrow{f} B$$

$$(**)$$

es un pull-back por ser β_1 imagen inversa por f de α , de la propiedad universal del pull-back se sigue que $\exists !\ \delta:P'\to P$ tal que el siguiente diagrama conmuta

De modo que δ es tal que $\gamma_1=\beta_1\delta$ y además

$$(\alpha\mu)(f'\delta) = \alpha(\beta_2)\delta = \alpha(\mu\gamma_2) = (\alpha\mu)\gamma_2$$

 $\implies \gamma_2 = f'\delta.$ $\alpha\mu$ es mono

Sea $\delta':P'\to P$ en ${\mathscr C}$ tal que el diagrama

conmuta, luego δ' es tal que $\gamma_1 = \beta_1 \delta'$ y

$$\mu \gamma_2 = (\mu f') \, \delta' = \beta_2 \delta'.$$

Por lo tantto, aplicando la propiedad universal del pull-back a (**) se tiene que $\delta'=\delta$, con lo cual se tien que existe un único morfismo δ tal que el siguiente diagrama conmuta

i.e. (*) es un pull-back y así se tiene lo deseado.

Ej 25.

Ej 26.

Ej 27. Sea $\mathscr C$ una categoría con objeto cero. Entonces $\bigcup_{i\in I}A_i\simeq 0,$ si $I=\varnothing.$

Demostración. Afirmamos que en este caso el morfismo $0_{0,A}$ en \mathscr{C} (el cual existe y es único por ser 0 un objeto cero de la categoría \mathscr{C}) es una unión para la familia de subobjetos $\mu_i:A_i\to A$. En efecto:

Notemos que $0_{A,0}0_{0,A}, 0_{0,A}0_{A,0}, Id_0 \in Hom_{\mathscr{C}}(0,0)$ y que $|Hom_{\mathscr{C}}(0,0)|$, luego $0_{A,0}0_{0,A} = Id_0 = 0_{0,A}0_{A,0}$ y por tanto μ es un iso en \mathscr{C} , así que en partícular es un subobjeto de A.

Sean $f:A\to B$ y $\mu:B'\hookrightarrow B$ en $\mathscr C$, por ser $I=\varnothing$ basta con verificar que $0_{0,A}$ es llevado a μ vía f. Se tiene que

$$f0_{0,A} = 0_{0,B} = \mu 0_{0,B'},$$

con lo cual el diagrama

$$\begin{array}{ccc}
0 & \xrightarrow{0_{0,B'}} B' \\
\downarrow^{0_{0,A}} & & \downarrow^{\mu} \\
a & \xrightarrow{f} B
\end{array}$$

conmuta y así se tiene lo deseado.

Ej 28. Mod(R) es una categoría con objeto cero, en tanto que Sets no lo es.

Demostración. Mod(R) Sea R un anillo. Consideremos un conjunto de la forma $A=\{*\}$, i.e. un conjunto de un sólo elemento. Notemos que por medio de las operaciones

$$+: A \times A \rightarrow A$$
 $(*,*) \mapsto *,$
 $\cdot: R \times A \rightarrow R$
 $(r,*) \mapsto *,$

se tiene que $(A, +, \cdot) \in Mod(R)$.

Sea $M \in Mod(R)$. Como $\forall B \in Sets | Hom_{Sets}(B,A)| = 1$, y todo morfismo de R-módulos en partícular es una función, se tiene que $|Hom_{Mod(R)}(M,A)| \leq 1$. Así pues para verificar que A es objeto inicial en Mod(R) resta verificar que existe un morfismo de R-módulos de M en A. Sean $r \in R$, $m, n \in M$ y

$$f_M: M \to A$$

 $m \mapsto *,$

entonces $f(rm+n)=*=*+*=r\cdot *+*=rf(m)+f(n),$ y así $f_{M}\in Hom_{Mod(R)}\left(M,A\right).$

Por otro lado, si 0_M es el neutro aditivo de M, entonces la función

$$g_M: A \to M$$

 $* \mapsto 0_M$

satisface $g_M \in Hom_{Mod(R)}(A, M)$. Más aún, si $h \in Hom_{Mod(R)}(A, M)$, entonces necesariamente h es un morfismo de grupos y así

$$h(0_A) = h(*) = 0_M = g_M(*)$$

$$\implies h = g_M.$$

$$A = \{*\}$$

Por lo tanto A también es un objeto final y así es un objeto cero para $Mod\left(R\right).$

Sets Supongamos que existe un conjunto A tal qu A es objeto cero de Sets. Luego $\exists ! \ f \in Hom_{Sets} (A, \emptyset)$, y así necesariamente $A = \emptyset$, lo cual es absurdo ya que \emptyset no es un objeto final en Sets, puesto que si $B \neq \emptyset$ no existen funciones cuyo dominio sea B y contradominio sea \emptyset .

Ej 29.

Ej 30.

Ej 31. Sets y Mod(R) son categorías localmente pequeñas.

Demostración. Sea $A \in Sets$. Afirmamos que si $\varphi : B \hookrightarrow A$, $\psi : C \hookrightarrow A \in Mon_{Sets}(-, A)$ entonces

$$\varphi \simeq \psi \text{ en } Mon_{Sets}\left(-,A\right) \iff Im\left(\varphi\right) = Im\left(\psi\right).$$
 (A)

 \implies Se tiene que $\psi \leq \varphi$ y $\varphi \leq \psi,$ luego $\exists~g:C \to B$ y $h:B \to C$ tales que

$$\psi = \varphi g, \tag{*}$$

$$\varphi = \psi g \tag{**}$$

De (*) se sigue que

$$\psi\left(C\right) = \varphi\left(g\left(C\right)\right) \subseteq \varphi\left(B\right)$$

$$\implies Im\left(\psi\right) \subseteq Im\left(\varphi\right).$$

Análogamente, de (**) se obtiene que $Im(\varphi) \subseteq Im(\psi)$.

Keeping Notemos que si $B = \emptyset$, entonces $Im(\psi) = Im(\varphi) = \emptyset$, y por lo tanto $C = \emptyset$, con lo cual $\varphi = \emptyset_A = \psi$; similarmente en caso que $C = \emptyset$. Por lo tanto en adelante supondremos que $B \neq \emptyset \neq C$.

Afirmamos que $\forall c \in C \exists ! b_c \in B$ tal que $\psi(c) = \varphi(b)$. En efecto la existencia se sigue de que en partícular $Im(\psi) \subseteq Im(\varphi)$, mientras que la unicidad se sigue del hecho que φ es un mono y por tanto inyectiva (ver Lema 1). Lo previamente demostrado garantiza que la aplicación

$$g: C \to B$$

 $c \mapsto b_C$

está bien definida y satisface que $\psi=\varphi g$. En forma análoga, empleando ahora que $Im\left(\psi\right)\supseteq Im\left(\varphi\right)$ y el que ψ es un mono en Sets, se verifica que $\exists\ h:B\to C$ tal que $\varphi=\psi h$ y así $\psi\simeq\varphi$ en $Mon_{Sets}\left(-,A\right)$.

La caracterización dada por (A) garantiza que la aplicación dada por

$$f: \overline{Mon_{Sets}(-, A)} \to \mathscr{P}(A)$$

 $[\varphi] \mapsto Im(\phi)$.

está bien definida y es inyectiva. Más aún, f es biyectiva puesto que si $D \subseteq A$ e i es la inclusión conjuntista de B en A, entonces $i \in Mon_{Sets}(-,A)$. La inyectividad de f garantiza que la clase $\overline{Mon_{Sets}(-,A)}$ es un conjunto, puesto que $\mathscr{P}(A)$ lo es. Por tanto Sets es localmente pequeña.

Por su parte, el que Mod(R) sea localmente pequeña se sigue de que si $M \in Mod(R)$, entonces

$$k_{M}: \overline{Mon_{Mod(R)}\left(-,M\right)} \to \overline{Mon_{Mod(R)}\left(-,M\right)}$$

$$\left[\varphi\right] \mapsto \left[\varphi\right]$$

está bien definida y es inyectiva.

10