Assignment - 2

Email: sohamc@cmi.ac.in Roll: BMC202175
Course: Analysis 2 Date: April 4, 2022

Problem 1 Rudin Chapt. 9 Problem 6

If f(0,0) = 0 and

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$

prove that $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exist at every point of \mathbb{R}^2 , although f is not continuous at (0,0).

Solution: When $(x,y) \neq (0,0)$ then

$$(D_1 f)(x,y) = \frac{y(y^2 - x^2)}{(x^2 + y^2)^2}$$
 and $(D_2 f)(X,y) = \frac{x(x^2 - y^2)}{(x^2 + y^2)^2}$

Now at (0,0)

$$(D_1 f)(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{|h|}$$

$$= \lim_{h \to 0} \frac{\frac{h \times 0}{h^2 + 0} - 0}{|h|}$$

$$= \lim_{h \to 0} \frac{\frac{0 \times k}{h^2 + 0} - 0}{|h|}$$

$$= \lim_{k \to 0} \frac{0}{|h|}$$

$$= \lim_{k \to 0} \frac{0}{|h|}$$

$$= \lim_{k \to 0} \frac{0}{|h|}$$

$$= 0$$

Hence $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exists at every point of \mathbb{R}^2 .

Now if we approach (0,0) along the line then it approaches to 0. But if we approach (0,0) along the line y=x then

$$\lim_{h \to 0} f(h,h) = \lim_{h \to 0} \frac{h^2}{2h^2} = \frac{1}{2}$$

Hence f is not continuous at (0,0)

Problem 2 Rudin Chapt. 9 Problem 7

Suppose that f is a real-valued function defined in an open set $E \subset \mathbb{R}^n$, and that the partial derivatives $D_1 f, \ldots, D_n f$ are bounded in E. Prove that f is continuous in E.

Hint: Proceed as in the proof of Theorem 9.21.

Solution: Let a is any arbitrary point in E. Since E is an open set there exists an open ball $B_r(a)$ centered at a of radius r > 0 inside E. We have to show that $\forall \epsilon > 0 \exists \delta > 0 |f(a+h) - f(a)| < \epsilon$ wherever $||h|| < \delta$ where $a + h \in B_r(a)$.

Now any open ball $B_r(a)$ centered at a of radius r > 0 in \mathbb{R}^n is a convex set. Because if we take any two points $x, y \in B_r(a)$ then for any $\theta \in (0, 1)$

$$\|(\theta x + (1 - \theta)y) - a\| = \|\theta(x - a) + (1 - \theta)(y - a)\| \le \theta \|x - a\| + (1 - \theta)\|y - a\| < \theta r + (1 - \theta)r = r$$

and henceforth $\theta x + (1 - \theta)y \in B_r(a)$. Therefore any open ball in \mathbb{R}^n is a convex set.

Now. Let $h = \sum_{i=1}^{n} h_i e_i$ where e_i is the *i*-th vector of the standard basis of \mathbb{R}^m .

$$f(a+h) - f(a) = f\left(a + \sum_{i=1}^{n} h_i e_i\right) - f(a)$$

$$= \left[f\left(a + \sum_{i=1}^{n} h_i e_i\right) - f\left(a + \sum_{i=1}^{n-1} h_i e_i\right)\right] + \left[f\left(a + \sum_{i=1}^{n-1} h_i e_i\right) - f\left(a + \sum_{i=1}^{n-2} h_i e_i\right)\right] + \dots + \left[f\left(a + h_1 e_1\right) - f\left(a\right)\right]$$

$$= \sum_{k=1}^{n} \left[f\left(a + \sum_{i=1}^{k} h_i e_i\right) - f\left(a + \sum_{i=1}^{k-1} h_i e_i\right)\right]$$

Now each $f\left(a + \sum_{i=1}^{k} h_i e_i\right) - f\left(a + \sum_{i=1}^{k-1} h_i e_i\right)$ is a one-variable function from \mathbb{R} to \mathbb{R} . By Mean Value Theorem $\exists \theta_k \in (0,1)$ such that

$$f\left(a + \sum_{i=1}^{k} h_i e_i\right) - f\left(a + \sum_{i=1}^{k-1} h_i e_i\right) = \left.\frac{\partial f}{\partial x_k}\right|_{v_k} h_k$$

where $v_k = a + \sum_{i=1}^{k-1} h_i e_i + \theta_k h_k e_k$. Hence

$$f(a+h) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \Big|_{v_i} h_i = \sum_{i=1}^{n} D_i f(v_i) h_i$$

Since all $D_i f$ are bounded in, Let $D_i f$ is bounded by M_i where $M_i > 0$. Then take $M = \max\{M_i \mid 1 \le i \ leq n\}$ Hence $|D_1(v_i)h_i| < M|h_i|$. Hence

$$|f(a+h) - f(a)| = \left| \sum_{i=1}^{n} D_i f(v_i) h_i \right| = \sum_{i=1}^{k} M|h_i| = M||h||_1$$

Now as $h \to 0$ we can say $||h||_1 \to 0$. Hence $M||h||_1 \to 0$ Therefore $|f(a+h) - f(a)| \to 0$. Hence $\forall \epsilon > 0$ $\exists \delta > 0$ such that $||h||_1 < \delta$ whenever $|f(a+h) - f(a)| < \epsilon$. Therefore f is continuous in E

Problem 3 Rudin Chapt. 9 Problem 8

Suppose that f is a differentiable real function in an open set $E \subset \mathbb{R}^n$, and that f has a local maximum at a point $x \in E$. Prove that f'(x) = 0.

Solution: Let $u \in \mathbb{R}^n$ and u is nonzero. Then consider the function g(t) = x + tu which is a function from \mathbb{R} to \mathbb{R}^n . Now $h = f \circ g$ is a $\mathbb{R} \to \mathbb{R}$ function and $h(t) = (f \circ g)(t) = f(x + ut)$. Hence h has a maximum at t = 0. Therefore h'(0) = 0. Now by Chain Rule h'(t) = f'(g(t))g'(t) = f'(g(t))u. Hence h'(0) = f'(g(0))u = f'(x)u. Hence h'(0) = f'(x)u = 0 since u is nonzero h'(x) = 0

Problem 4 Rudin Chapt. 9 Problem 10

If f is a real function defined in a convex open set $E \subset \mathbb{R}^n$, such that $(D_1 f)(x) = 0$ for every $x \in E$, prove that f(x) depends only on x_2, \ldots, x_n .

Show that the convexity of E can be replaced by a weaker condition, but that some condition is required. For example, if n=2 and E is shaped like a horseshoe, the statement may be false.

Solution: To prove f(x) depends only on x_2, x_3, \dots, x_n it is enough to show that $f(x, x_2, \dots, x_n) = f(y, x_2, \dots, x_n)$ where $(x, x_2, \dots, x_n), (y, x_2, \dots, x_n) \in E$. Hence for any $u \in (x, y)$ $(u, x_2, \dots, x_n) \in E$ as E is convex. Now by Mean Value Theorem $f(x, x_2, \dots, x_n) - f(y, x_2, \dots, x_n) = (x - y)D_i f(z, x_2, \dots, x_n)$ for some $z \in (x, y)$. Given that $D_i f(x) = 0$ Hence $f(x, x_2, \dots, x_n) - f(y, x_2, \dots, x_n) = 0$. Therefore f(x) depends only on x_2, \dots, x_n .

We need the property where for fixed x_2, \dots, x_n if (x, x_2, \dots, x_n) and (y, x_2, \dots, x_n) are in E then E must contain the line segment joining (x, x_2, \dots, x_n) and (y, x_2, \dots, x_n) . Hence we can say that if E intersects any line parallel to X-axis then it should be an interval on that line.

Problem 5 Rudin Chapt. 9 Problem 13

Suppose f is a differentiable mapping of R^1 into R^3 such that |f(t)| = 1 for every t. Prove that $f'(t) \cdot f(t) = 0$.

Interpret this result geometrically.

Solution: Let
$$f = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$
 Given that $|f(t)| = 1 \implies f_1^2(t) + f_2^2(t) + f_3^2(t) = 1$ for all $t \in \mathbb{R}$. Now

$$0 = \frac{d}{dt}|f(t)|^2 = \frac{d}{dt}(f_1(t) + f_2(t) + f_3(t)) = 2(f_1(t)f_1(t) + f_2(t)f_2(t) + f_3(t)f_3(t)) = 2f'(t) \cdot f(t)$$

Hence $f'(t) \cdot f(t) = 0$ for all $t \in \mathbb{R}$.

 $f'(t) \cdot f(t)$ means the vector f'(t) is perpendicular to f(t). If f(t) is the radius vector of a point on an unit sphere then f'(t) is tangent vector on that point to the sphere