# Exercice 1

Tracer une courbe susceptible de représenter une fonction f sachant que :

- 1. la fonction f est définie sur l'intervalle [-5;4];
- 2. la fonction f admet un minimum -3 et un maximum 5 qui ne sont atteints ni en -5 ni en 4;
- 3. l'image de -5 est négative;
- 4. 0 possède trois antécédents.

### **Exercice 2**

On considère une fonction f dont la représentation graphique est donnée ci-dessous.



- 1. Déterminer l'ensemble de définition  $D_f$  de la fonction f .
- 2. Déterminer le tableau de variation de la fonction f .
- 3. Préciser le minimum et le maximum de f sur  $D_f$  et pour quelles valeurs sont-ils atteints?

#### **Exercice 3**

On considère une fonction f dont le tableau de variation est :



- 1. Quel est l'ensemble de définition  $D_f$  de la fonction f ?
- 2. Préciser le minimum et le maximum de la fonction f sur  $D_f$  .
- 3. Préciser le minimum et le maximum de la fonction f sur l'intervalle [-10;9].
- 4. Compléter le plus précisément possible les inégalités suivantes :
  - a. .... $\leq f(-5) \leq ....$
  - b. ..... $\leq f(20) \leq .....$

#### Exercice 4

On considère une fonction f dont le tableau de variation est le suivant :



- 1. Quel est l'ensemble de définition de la fonction f ?
- 2. a. Quel est le maximum de la fonction f sur l'intervalle  $]-\infty;10]$  ?
  - b. Quel est le signe de f(x) sur l'intervalle  $]-\infty;10]$  ?
- 3. a. Quel est le maximum de la fonction f sur  $\mathbb{R}$  ?
  - b. En déduire le nombre de solution de l'équation f(x)=2.

# Exercice 5

On considère une fonction f définie sur l'intervalle [-4;5] dont le tableau de variation est donné ci-dessous.



Les affirmations suivantes sont-elles vraies ou fausses? Justifier votre réponse.

Affirmation 1:  $f(4) \ge 0$ .

Affirmation 2 : La courbe représentant la fonction f coupe l'axe des abscisses en un seul point.

#### Exercice 6

On considère une fonction f dont le tableau de variation est donné ci-dessous :



- 1. Quel est l'ensemble de définition de la fonction f?
- 2. Combien d'antécédents le nombre 5 possède-t-il par la fonction *f* sur son ensemble de définition?
- 3. Compléter le plus précisément possible les inégalités suivantes :
  - a. .... $\leq f(3) \leq ....$
  - b. .... $\leq f(-2) \leq ....$

# **Correction Exercice 1**

Voici une proposition (il en existe une infinité).



# **Correction Exercice 2**

- 1. La fonction est f définie sur  $D_f = [-2; 6]$ .
- 2. Le tableau de variation de la fonction f est :



3. Le minimum de la fonction f sur  $D_f$  est -4 . Il est atteint en -1 et 3 . Le maximum de la fonction f sur  $D_f$  est 5 . Il est atteint en 6 .

# **Correction Exercice 3**

- 1. La fonction f est définie sur  $D_f = [-10; 30]$ .
- 2. Le minimum de la fonction f sur l'intervalle  $D_f$  est -52 . Le maximum de la fonction f sur l'intervalle  $D_f$  est 33 .
- 3. Le minimum de la fonction f sur l'intervalle [-10;9] est -25. Le maximum de la fonction f sur l'intervalle [-10;9] est 33.
- 4. a.  $-25 \le f(-5) \le 33$ b.  $-52 \le f(20) \le 20$

#### **Correction Exercice 4**

1. La fonction f est définie sur  $\mathbb{R}$  .

- 2. a. Le maximum de la fonction f sur l'intervalle  $]-\infty;10]$  est 0 pour x=10. b. Sur l'intervalle  $]-\infty;10]$  le maximum est 0. On a donc  $f(x) \le 0$  pour tout réel  $x \in ]-\infty;10]$ . f(x) est donc négatif ou nul sur cet intervalle.
- 3. a. Le maximum de la fonction f sur  $\mathbb{R}$  est  $\frac{13}{7}$  pour x=16 .
  - b. Donc, pour tout réel x, on a  $f(x) \le \frac{13}{7} < 2$ . 2 ne possède donc pas d'antécédent par la fonction f et l'équation f(x) = 2 ne possède pas de solution sur  $\mathbb{R}$ .

## **Correction Exercice 5**

D'après le tableau de variation on sait que  $-2 \le f(4) \le 1$ .

On ne peut donc pas déterminer le signe de f(4).

Affirmation 1 fausse.

D'après le tableau de variation on sait que f(-1)=0. La courbe représentant la fonction f coupe donc l'axe des abscisses au point d'abscisses -1.

On sait également que la fonction f est strictement décroissante sur l'intervalle [3;5] et qu'elle prend des valeurs comprises entre -2 et 1 . Elle prendra donc une nouvelle fois sur cet intervalle la valeur 0 .

Affirmation 2 fausse.

### **Correction Exercice 6**

- 1. L'ensemble de définition de la fonction est  $D_f = [-10; +\infty[$  .
- 2. Sur l'intervalle  $D_f = [-10;0]$  le maximum de la fonction f est 1 . Par conséquent 5 ne possède pas d'antécédent sur cet intervalle.

Sur l'intervalle  $[0;+\infty[$  le maximum de la fonction f est 5 , atteint pour x=2 . Par conséquent 5 possède un unique antécédent sur cet intervalle.

Le nombre 5 possède donc un unique antécédent par la fonction f sur  $D_f$  .

- 3. a.  $-1 \le f(3) \le 5$ 
  - b.  $-7 \le f(-2) \le 1$