## COMP424 Assignment 2

Name: Ryan Sowa ID: 260886668

## Question 1: Planning in STRIPS [30]

a. The Initial state description is given by:

```
\begin{array}{l} At(Monkey,\,A) \, \wedge \, At(Bananas,\,B) \, \wedge \, At(Box,\,C) \, \wedge \, Height(Monkey,\,Low) \\ \wedge \, Height(Box,\,Low) \, \wedge \, Height(Box,\,High) \end{array}
```

b. The six action schemas are given by:

Go(x,y)

 $Preconditions = At(Monkey, \, x) \, \land \, Height \, (Monkey, \, Low)$ 

 $Effect = At(Monkey, y) \land \neg At(Monkey, x)$ 

Push(b, x, y)

Preconditions = At(Monkey, x)  $\land$  At (b, x)  $\land$  Height (Monkey, Low)  $\land$  Height(b, Low)

Effect = At(b, y)  $\land \neg$ At(b, x)  $\land$  At(Monkey, y)  $\land \neg$ At(Monkey, x)

ClimbUp(x, b)

Preconditions = At(Monkey, x)  $\wedge$  At (b, x)  $\wedge$  Height(Monkey, Low)  $\wedge$  Height(b, Low)

Effect =  $On(Monkey, b) \land \neg Height(Monkey, Low) \land Height(Monkey, High)$ 

ClimbDown(b, x)

 $\begin{aligned} & Preconditions = On(Monkey, \, b) \wedge At(Monkey, \, x) \wedge At \, (b, \, x) \wedge Height(Monkey, \, High) \, \wedge \, Height(b, \, Low) \end{aligned}$ 

Effect =  $\neg$ On(Monkey, b)  $\land \neg$ Height(Monkey, High)  $\land$  Height(Monkey, Low)

Grasp(x, b, h)

Preconditions = At(Monkey, x)  $\land$  At(b, x)  $\land$  Height(Monkey, h)  $\land$  Height (b, h)

 $Effect = Holds(b, Monkey) \land \neg At(b, x) \neg Height(b, h)$ 

Ungrasp(x, b, h)

 $Preconditions = At(Monkey, x) \land Height(Monkey, h) \land Holds(b, Monkey)$ 

 $Effect = At(b, x) \land Height(b, h) \land \neg Holds(b, Monkey)$ 

c. The goal is given by:

 $Holds(Bananas, Monkey) \wedge At(Box, C)$ 

## Question 2: Designing a Bayesian Network [30]

a. The Bayesian network for this domain is shown below:



b. The conditional probability table associated with R is given by:

| $P(R \mid B)$ |     |       |  |  |  |
|---------------|-----|-------|--|--|--|
|               | R=1 | R = 0 |  |  |  |
| B=0           | y   | 1-y   |  |  |  |
| B=1           | x   | 1-x   |  |  |  |

c. The conditional probability table associated with E is given by:

| $P(E \mid R, S)$ |     |       |  |  |  |  |
|------------------|-----|-------|--|--|--|--|
|                  | E=1 | E = 0 |  |  |  |  |
| R = 0, S = 0     | 0   | 1     |  |  |  |  |
| R = 0, S = 1     | 0.5 | 0.5   |  |  |  |  |
| R = 1, S = 0     | 1   | 0     |  |  |  |  |
| R = 1, S = 1     | 1   | 0     |  |  |  |  |

d. We are looking for  $P(R=1 \mid C=1) = \frac{P(R=1,C=1)}{P(C=1)}$ . Now, we know the following:

$$\frac{P(R=1,C=1)}{P(C=1)} = \frac{\sum_{b,s,e} P(B)P(S)P(R=1 \mid B)P(E \mid R=1,S)P(C=1 \mid B,E)}{\sum_{b,s,r,e} P(B)P(S)P(R \mid B)P(E \mid R,S)P(C=1 \mid B,E)}$$

.

## Question 3: Inference in Bayesian Networks [40]

a. We calculate  $P(a, \neg r)$  as follows:

$$P(a, \neg r) = \sum_{B,T,S} P(\neg r)P(B)P(T \mid \neg r, B, a)P(a \mid B)P(S \mid a)$$

Factoring out  $P(\neg r)$ :

$$= P(\neg r) \sum_{B,T,S} P(B) P(T \mid \neg r,B,a) P(a \mid B) P(S \mid a)$$

Expanding for the random variable S:

$$= P(\neg r)(P(s \mid a) + P(\neg s \mid a))(\sum_{B,T} P(B)P(T \mid \neg r, B, a)P(a \mid B))$$

We know that  $P(s \mid a) + P(\neg s \mid a) = 1$ :

$$= P(\neg r) \sum_{B,T} P(B) P(T \mid \neg r, B, a) P(a \mid B)$$

Expanding the sum:

$$= P(\neg r)[(P(b)P(t \mid \neg r, b, a)P(a \mid b)) + (P(b)P(\neg t \mid \neg r, b, a)P(a \mid b))$$

$$+ (P(\neg b)P(t \mid \neg r, \neg b, a)P(a \mid \neg b)) + (P(\neg b)P(\neg t \mid \neg r, \neg b, a)P(a \mid \neg b))]$$

Plugging in the values:

$$= 0.9[(0.5*0.60*0.15) + (0.5*0.4*0.15) + (0.5*0.65*0.05) + (0.5*0.35*0.05)]$$
$$= 0.09$$

b. We calculate P(b, a) as follows:

$$P(b,a) = \sum_{R,T,S} P(R)P(b)P(T \mid R,b,a)P(a \mid b)P(S \mid a)$$

Factoring out P(b) and  $P(a \mid b)$ :

$$= P(b)P(a \mid b) \sum_{R \mid T \mid S} P(R)P(T \mid R, b, a)P(S \mid a)$$

Expanding for the random variable S:

$$= P(b)P(a \mid b)(P(s \mid a) + P(\neg s \mid a))(\sum_{R,T} P(R)P(T \mid R, b, a))$$

We know that  $P(s \mid a) + P(\neg s \mid a) = 1$ :

$$= P(b)P(a \mid b) \sum_{R,T} P(R)P(T \mid R,b,a)$$

Expanding the sum:

$$= P(b)P(a \mid b)[(P(r)P(t \mid r, b, a)) + (P(r)P(\neg t \mid r, b, a)) + (P(\neg r)P(t \mid \neg r, b, a)) + (P(\neg r)P(\neg t \mid \neg r, b, a))]$$

Plugging in the values:

$$= 0.5 * 0.15[(0.1 * 0.95) + (0.1 * 0.05) + (0.9 * 0.6) + (0.9 * 0.4)]$$
$$= 0.075$$

c. We calculate  $P(t \mid b)$  as follows:

$$P(t \mid b) = \frac{P(t, b)}{P(b)}$$

We first calculate P(t, b):

$$P(t,b) = \sum_{R,A,S} P(R)P(b)P(t \mid R,b,A)P(A \mid b)P(S \mid A)$$

Factoring out P(b):

$$= P(b) \sum_{R,A,S} P(R)P(t \mid R,b,A)P(A \mid b)P(S \mid A)$$

We use the following table to calculate the sum:

|                        | P(R) | $P(t \mid R, b, A)$ | $P(A \mid b)$ | $P(S \mid A)$ | Π         |
|------------------------|------|---------------------|---------------|---------------|-----------|
| r $a$ $s$              | 0.1  | 0.95                | 0.15          | 0.75          | 0.0106875 |
| $r \ a \ \neg s$       | 0.1  | 0.95                | 0.15          | 0.25          | 0.0035625 |
| $r \neg a s$           | 0.1  | 0.8                 | 0.85          | 0.05          | 0.0034    |
| $r \neg a \neg s$      | 0.1  | 0.8                 | 0.85          | 0.95          | 0.0646    |
| $\neg r \ a \ s$       | 0.9  | 0.6                 | 0.15          | 0.75          | 0.06075   |
| $\neg r \ a \ \neg s$  | 0.9  | 0.6                 | 0.15          | 0.25          | 0.02025   |
| $\neg r \ \neg a \ s$  | 0.9  | 0.3                 | 0.85          | 0.05          | 0.011475  |
| $\neg r \neg a \neg s$ | 0.9  | 0.3                 | 0.85          | 0.95          | 0.218025  |

We therefore know that:

$$P(t,b) = P(b)(0.0106875 + 0.0035625 + 0.0034 + 0.0646$$
$$+0.06075 + 0.02025 + 0.011475 + 0.218025)$$
$$= P(b)(0.39275)$$

We now know that

$$P(t \mid b) = \frac{P(t,b)}{P(b)} = \frac{P(b)(0.39275)}{P(b)} = 0.39275$$

d. We calculate  $P(r \mid \neg t, \neg s)$  as follows:

$$P(r \mid \neg t, \neg s) = \frac{P(r, \neg t, \neg s)}{P(\neg t, \neg s)}$$

. We first calculate  $P(r, \neg t, \neg s)$  as:

$$P(r, \neg t, \neg s) = \sum_{B.A} P(r)P(B)P(\neg t \mid r, B, A)P(A \mid B)P(\neg s \mid A)$$

Factoring out P(r):

$$=P(r,\neg t,\neg s)=P(r)\sum_{B}{_A}P(B)P(\neg t\mid r,B,A)P(A\mid B)P(\neg s\mid A)$$

Expanding the sum:

$$=P(r)[(P(b)P(\neg t\mid r,b,a)P(a\mid b)P(\neg s\mid a))+(P(b)P(\neg t\mid r,b,\neg a)P(\neg a\mid b)P(\neg s\mid \neg a))\\ +(P(\neg b)P(\neg t\mid r,\neg b,a)P(a\mid \neg b)P(\neg s\mid a))+(P(\neg b)P(\neg t\mid r,\neg b,\neg a)P(\neg a\mid \neg b)P(\neg s\mid \neg a))]$$

We therefore know that

$$P(r, \neg t, \neg s) = 0.1[(0.5 * 0.05 * 0.15 * 0.25) + (0.5 * 0.2 * 0.85 * 0.95)$$
$$+(0.5 * 0.1 * 0.95 * 0.25) + (0.5 * 0.3 * 0.95 * 0.95)]$$
$$= 0.1 * 0.2289375 = 0.02289375$$

We now calculate  $P(\neg t, \neg s)$  as:

$$P(\neg t, \neg s) = \sum_{R.B.A} P(R)P(B)P(\neg t \mid R, B, A)P(A \mid B)P(\neg s \mid A)$$

We use the following table to calculate the sum:

|                            | P(R) * P(B) | $P(\neg t \mid R, B, A)$ | $P(A \mid B)$ | $P(\neg s \mid A)$ | П          |
|----------------------------|-------------|--------------------------|---------------|--------------------|------------|
| r $b$ $a$                  | 0.05        | 0.05                     | 0.15          | 0.25               | 0.00009375 |
| $r \ b \ \neg a$           | 0.05        | 0.2                      | 0.85          | 0.95               | 0.008075   |
| $r \neg b \ a$             | 0.45        | 0.1                      | 0.05          | 0.25               | 0.0005625  |
| $r \neg b \neg a$          | 0.45        | 0.3                      | 0.95          | 0.95               | 0.1218375  |
| $\neg r \ b \ a$           | 0.05        | 0.4                      | 0.15          | 0.25               | 0.00075    |
| $\neg r \ b \ \neg a$      | 0.05        | 0.7                      | 0.85          | 0.95               | 0.0282625  |
| $\neg r \ \neg b \ a$      | 0.45        | 0.35                     | 0.05          | 0.25               | 0.00196875 |
| $\neg r \ \neg b \ \neg a$ | 0.45        | 0.95                     | 0.95          | 0.95               | 0.38581875 |

We therefore know that

$$P(\neg t, \neg s) = 0.00009375 + 0.008075 + 0.0005625 + 0.1218375$$

$$+0.00075+0.0282625+0.00196875+0.38581875=0.54736875\\$$

Finally, we know that

$$P(r \mid \neg t, \neg s) = \frac{P(r, \neg t, \neg s)}{P(\neg t, \neg s)} = \frac{0.02289375}{0.54736875} = .0418250951$$