

A. Course Handout

Institute/School/College Name	Chitkara University Institute of Engineering & Technology				
Department/Centre Name	Department of Computer So	Department of Computer Science & Engineering			
Programme Name	Bachelor of Engineering- Computer Science & Engineering				
	(Artificial Intelligence)				
Course Name	Optimization Techniques	Session	2024-25		
Course Code	22AI011	Semester/Batch	4 th /2023		
Lecture/Tutorial (Per Week)	3-0-0 Course Credit 3				
Course Coordinator Name	Dr. Reetu Malhotra				

1. Objectives of the Course:

The purpose of the course is to make the students familiar with concepts, theories, and changing realities in the field of operations research. The course will enable students to take decisions with the optimum utilisation of resources with minimum loss, under utilisation or waste. Its purpose is to give administration, a basis for predicting quantitatively the most effective results of an operation under given set of variable conditions and thereby to provide a sound basis for "decision-making. The main objectives of the course are:

- To make the students understand the basic concepts, theories and principles of operations research.
- To apply the concepts of scientific approach to decision making which seeks to determine how best to design and operate a system.
- To understand concepts and computational techniques.
- To manage resources efficiently, maximize profits and/or minimize costs

2. <u>Course Learning Outcomes</u>:

CLO-PO Mapping grid | Program outcomes (POs) are available as a part of Academic Program Guide

CLO	Course Outcomes	POs	CL *	KC*	Lectures
CLO01	Identify and critically assess the concepts of operation research and tools to problems involving the operations of a system so as to provide those in the control of the system with optimum solutions to the problems.	PO1,PO2,P11	K2	Factual Conceptual	15
CLO02	Recognise and appreciate the connections between theory and applications.	PO1,PO2,PO4	K2	Factual Conceptual	10
CLO03	Formulate the real world problems into mathematical models.	PO2,PO3	К3	Fundamental Conceptual	10
CLO04	Analyse, conceive, and apply different optimization techniques to provide better quantitative information's for making decision. Analyse the given business problem analytically.	PO1,PO2,PO3	К3	Fundamental Conceptual	10
Total Con	tact Hours				45

Revised Bloom's Taxonomy Terminology

*CL = Cognitive Level

*KC = Knowledge Categories

CLO-PO-PSO Mapping grid |Program outcomes (POs) and Program Specific Outcomes (PSOs) are available as a part of Academic Program Guide

Course	P01	P0	P1	P1	P1	PS0	PS0	PS0							
Learning		2	3	4	5	6	7	8	9	0	1	2	1	2	3
Outcome															
S															
CLO01	Н	Н									Н		M		
CLO02	Н	Н		M									M		
CLO03		Н	M											M	Н
CLO04	Н	M	Н											M	Н

H=High, M=Medium, L=Low

3. ERISE Grid Mapping

Feature Enablement	Level (1-5, 5 being highest)
Entrepreneurship	3
Research	5
Innovation	4
Skills	4
Employability	4

4. Recommended Books (Reference Books/Textbooks):

B01: Linear Programming: An introduction to finite improvement algorithms; Daniel Solow; 2nd Edition, Elsevier Science Ltd

B02: Linear Programming: Methods and applications; Saul I. Gass, 5th Edition, Dover Publications Inc.

B03: Project planning and control with PERT and CPM; B C Punmia 4th Edition, Laxmi Publications

B04: Introduction to Operation Research, Hilier and Liebermann, 11th Edition, McGraw-Hill

B05: Operation Research: Applications and Algorithms; Winston W., 4th Edition, Duxbury Press

B06: Introductory Operation Research: Theory and Applications; Kasana, H.S., 2004th Edition, Springer Verlag

B07: Operation Research: An Introduction; Taha H., 8th Edition Prentice -Hall

5. Other readings & relevant websites:

S. No.	Link of Journals, Magazines, websites and Research Papers
1.	[PDF] Project Planning and Control with PERT and CPM By Dr. B.C Punmia and K.K
	Khandelwal Book Free Download – EasyEngineering
2.	Linear Programming and the Simplex Method, Volume 54, Number 3 (ams.org)
3.	An Illustrated Guide to Linear Programming - Saul I. Gass - Google Books
4.	Project management-critical path method (CPM) and PERT simulated with ProcessModel IEEE
	Conference Publication IEEE Xplore

6. Recommended Tools and Platforms

Python, VS Code, Anaconda

7. <u>Course Plan:</u> a. Lecture Plan

Lecture Number	Topics	Recommend ed Books
1-3	Formulation of linear programming problems	B01, B02
4-7	How to solve LPP using a graphical method (maximization, minimization)	B01, B02
8-9	How to solve LPP using the simplex method (maximization, minimization)	B01, B02
	Formative Assessment-1 (1-9 Lectures)	
10-12	Degeneracy problem-solving in simplex method	B01, B02
13-14	Unbounded solution problem-solving in the simplex method	B01, B02
15-17	Big M method (Maximization and minimization)	B01, B02
18-20	Big M method for no feasible solution	B01, B02
21-24	Two phase method (maximization and minimization)	B01, B02
25-26	Two phase method for no feasible region	B01, B02
	Sessional Test-1 (1 – 26 Lectures)	
27-30	Primal to dual conversion	B01, B02
31-32	Dual Simplex method	B01, B02
33-36	Transportation problem (Northwest corner rule, unbalanced transportation, least cost method or matrix minima method, Vogel's Approximation, Modi Method)	B01, B02
37-38	Assignment (Hungarian Method)	B02, B01
	Sessional Test-2 (27 – 36 Lectures)	
39	Sensitivity Analysis	B01, B02
40-42	СРМ	B03
43-45	Project evaluation and review technique (PERT)	В03
	END-TERM EXAM (FULL SYLLABUS)	

8. Delivery/Instructional Resources

8. <u>Del</u> Lecture	ivery/Instructional Resou Topics	PPT	Industry Expert	Web References	Audio-
Number	-	(Link of ppts on the central server)	Session (If yes: link of ppts on the central server)	Web References	Video
1-3	Formulation of linear programming problems			https://www.whit man.edu/Documen ts/Academics/Mat hematics/lewis.pdf	
4-7	How to solve LPP using a graphical method (maximization, minimization)	http://www.slideshare.n et/unemployedmba/lp- graphical-solution https://www.slideshare.n et/KamelAttar/linear- programming-graphical- method-246144965		https://www.geeks forgeeks.org/graph ical-solution-of- linear- programming- problems/	
8-9	How to solve LPP using the simplex method (maximization, minimization)			https://www.youtu be.com/watch?v= W6rLf47plMQ	
10-12	Degeneracy problem- solving in simplex method	https://www.slideshare.n et/derejeslide/chapter-4- simplex-method-ppt			
13-14	Unbounded solution problem-solving in the simplex method	https://www.slideshare.n et/itsmedv91/special- cases-in-simplex			
15-17	Big M method (Maximization and minimization)	https://www.slideshare.n et/NiteshSinghPatel/big- m-32360766			
18-20	Big M method for no feasible solution	https://www.slideserve.c om/salena/the-big-m- method			
21-24	Two phase method (maximization and minimization)			https://www.youtu be.com/watch?v=e wjy2NxzjRs	
25-26	Two phase method for no feasible region			https://www.mate m.unam.mx/~omar /math340/2- phase.html	
27-30	Primal to dual conversion			https://www.youtu be.com/watch?v=1 6ecu-Ks3I4	
31-32	Dual Simplex method	https://www.slideshare.n et/HishamAlKurdi1/ope rations-research-the- dual-simplex-method			

33-36	Transportation problem (Northwest corner rule, unbalanced transportation, least cost method or matrix minima method, Vogel's approximation, modi method)		http://businessman agementcourses.or g/Lesson14Transp ortationModels.pdf http://www.univer salteacherpublicati ons.com/univ/eboo ks/or/Ch5/tranship. htmhttps://www.ge eksforgeeks.org/tra velling-salesman- problem-set-1/	
37-38	Assignment (Hungarian Method)	https://www.slideshare.n et/rajajntu/algorithm- for-hungarian-method- of-assignment	https://www.geeks forgeeks.org/hung arian-algorithm- assignment- problem-set-1- introduction/	
39	Sensitivity Analysis	https://www.slideshare.n et/cndu05/sensitivity- analysis-43087683		
40-42	СРМ	https://www.geeksforge eks.org/difference- between-pert-and-cpm/		
43-45	Project evaluation and review technique (PERT)	https://www.geeksforge eks.org/difference- between-pert-and-cpm/		

9. Action plan for different types of learners:

Slow Learners	Average Learners	Fast Learners
Understand the concepts and practice	Doubt-sessions, and practice	Extra Assignments
questions	questions	

10. Evaluation Scheme & Components:

Evaluation Component	Type of Component	No. of Assessment s	Weightage of Component	Mode of Assessments
Component 1	Formative Assessments (FAs)	01*	10%	Offline
Component 2	Subjective Test/Sessional Tests (STs)	02**	30%	ST1: Online (remotely) ST2: Online (remotely)
Component 3	End Term Examinations	01	60%	Online
		100%		

^{*}ERP system automatically picks the average of the 02 STs Marks for evaluation of the STs as final marks.

11. Details of Evaluation Components:

Evaluation	Type of	No. of	Weightage of	Mode of
Component	Component	Assessments	Component	Assessment
Component 1	Formative	FA1	10%	Offline
Component 1	assessment			
Component 2	Sessional	ST1	30%	Online
Component 2	Tests(STs)	ST2		

_	Evaluation Component	Description	Syllabus Covered (%)	Timeline of Examination	Weightage (%)
Co	omponent 1	FA1	Upto 15%	Week 5	10%
Component 2		ST1	Upto 30%	Week 6	30%
		ST2	Upto 60%	Week 12	
Co	Component 3 End Term Examination*		100%	To be notified by Dean Examination	60%
		End Term Examination	01	60%	Online
	Total	ı	100%	1	ı

Evaluation Components

Type of Assessment	Timeline of Conduct	Total Marks	Question Paper Format			
			1 Marks	2 Marks	5 Marks	10 Marks
Formative Assessment-I	Week 5	10			2	
Sessional Test 1	Week 6	30	10	10		
Sessional Test 2	Week 18	30	10	10		
End Term Examination		60	20	15	2	

B. Syllabus of the Course:

Subject: Optimization Techniques		Subject Code: 22AI011		
S. No.	Topic (s)		No. of Lectures	Weightage %
1.	Formulation of linear programming problems		3	10
2.	How to solve LPP using a graphical meminimization)	ethod (maximization,	4	12

^{*} As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination

3.	How to solve LPP using the simplex method (maximization, minimization)	2	12	
4.	Degeneracy, Unbounded solution problem-solving in simplex method,	5		
5.	Big M method (Maximization and minimization), Big M method for no feasible solution	6	12	
6.	Two phase method (maximization and minimization)	4	10	
7.	Two phase method for no feasible region	2	12	
8.	Primal to dual conversion	4	12	
9.	Dual Simplex method	2	12	
10.	Transportation problem (Northwest corner rule, unbalanced transportation, least cost method or matrix minima method, Vogel's approximation, modi method)	4	10	
11.	Assignment (Hungarian Method)	2	10	
12.	Sensitivity Analysis	1	5	
13.	CPM, Project evaluation and review technique (PERT)	6	15	

This Document is approved by:

Designation	Name	Signature
Course Coordinator	Dr. Reetu Malhotra	
Program Head	Dr. Kamal Deep Garg	
Dean (CSE-AI)	Dr. Sushil Kumar Narang	
Date		