

Maths En Jeans
Andernos
21/12/2023

Olivier Beaumont
Directeur de Recherche Inria
Equipe Topal

01

Inria

Inria

Inria est l'institut public de recherche dans le numérique (informatique, automatique, mathématiques appliquées)

Créé en 1967, c'est un EPST avec une double mission : produire une recherche d'excellence et jouer un rôle moteur pour l'innovation

Inria Bordeaux - Sud-Ouest

Créé en 2008 après six années d'incubation dans Inria Futurs

Aujourd'hui:

- 19 équipes-projets et 1 équipe (17+1 à Bordeaux, 2 à Pau)
- 330 personnes, 195 agents Inria dont 130 scientifiques
- 508 dépôts sur hal.inria.fr en 2018, dont 39% avec au moins une institution étrangère
- budget total > 18 M€ en 2018 (4 M€ de ressources propres)

En dix ans

- une centaine de partenaires : 3 FUI, 77 ANR, 26 projets EU, 7 ERC
- 12 (quasi-)startups: Siderion Technologies, Rhoban Systems, IQSpot, Matchable, Pollen Robotics, RealityTech, Ullo, (Nenuphar), UT4H, Nurea, Atoptima, TouchSensity

Modélisation, calcul haute-performance et architectures parallèles

- Passage du phénomène naturel aux lois physiques et équations mathématiques
- Passage de lois mathématiques à des relations algébriques discrètes
- Simplification et amélioration de modèles
- Méthodes et outils algorithmiques pour une résolution efficace et robuste
- Exécution rapide sur des architectures hétérogènes

Gestion des incertitudes et optimisation

- Probabilités et statistiques
- Identification de motifs dans des données floues
- Etude de phénomènes multi-échelles
- Optimisation déterministe et stochastique

Modélisation et simulation pour la santé biologique

- Modélisation, calcul haute-performance, apprentissage, big data
- Oncologie, électrophysiologie cardiaque, immunologie, neurosciences, biodiversité
- Partenariats forts avec des établissements de Santé

Humain et numérique biologique

- Apprentissage et développement, robotique
- Interaction Homme-Machine, interfaces cerveauordinateur
- Réalité virtuelle et réalité augmentée ; reconstruction, modélisation et rendu 3D

02

Quelques mots sur le métier

Parcours

Le mien:

- → Bac scientifique
- → CPGE (maths) (2 ans)
- Ecole Normale Supérieure Lyon (en maths puis en info) (3 ans)
- → Thèse à Rennes (info) (3 ans)
- → Maitre de conférences: ENS Lyon (3 ans) puis Enseirb Bordeaux (3 ans)
- → Directeur de Recherche (Inria)

Beaucoup d'autres parcours...

Dans l'équipe Topal (16 personnes)

- 5 nationalités (Algérie, Russie, Turquie, Chine, Inde)
- Parcours variés dans le supérieur (CPGE, Université, IUT)
- De plus en plus de diversité

HPC: High Performance Computing

To speed up computations: increase the number of resources

Frontier 10¹⁸ operations / s, 10⁷ computing cores, 20 Mwatts (+ 10 cooling)

Where does MeJ problem comes from?

Use of 10⁷ cores

- Impossible to describe the activity of each core
- Use of « libraries »: bricks / parallel codes optimized to solve 1 class of problems
- Write your code (training of DNNs / Numerical Simulations) with these bricks

Think parallel!

- How to compute the sum of n numbers?
- How to compute the maximum of n numbers?
- Takeaway: maximize the number of computations in parallel + minimize communications / synchronizations

The problem you will consider comes from Linear Algebra (matrices)

Major Brick: Linear Systems

Example: Solve, i.e. find x, y ,z s.t.
$$\begin{cases} 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\frac{1}{2}y-z=0 \end{cases}$$

In general
$$egin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ dots\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m, \end{cases}$$

$$A\mathbf{x} = \mathbf{b}$$

where A is an $m \times n$ matrix, **x** is a column vector with n entries, and **b** is a column vector with m entries.

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}, \quad \mathbf{b} = egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix}.$$

LU Factorization (Tadeusz Banachiewicz 1938)

Theorem A can be written as A= L U, L is Lower triangular, U is Upper triangular

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix} = egin{bmatrix} \ell_{11} & 0 & 0 \ \ell_{21} & \ell_{22} & 0 \ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} egin{bmatrix} u_{11} & u_{12} & u_{13} \ 0 & u_{22} & u_{23} \ 0 & 0 & u_{33} \end{bmatrix}.$$

Ax=b can be solved as (LU) x = b or equivalently L (Ux) = b

First solve L y = b (easy) and then U x = y (easy)

Question: How to compute L and U ?
$$\begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}.$$

Important special case: Cholesky Decomposition (1924)

If A is symmetric, than A can be written A= L L^t

$$egin{pmatrix} 4 & 12 & -16 \ 12 & 37 & -43 \ -16 & -43 & 98 \end{pmatrix} = egin{pmatrix} 2 & 0 & 0 \ 6 & 1 & 0 \ -8 & 5 & 3 \end{pmatrix} egin{pmatrix} 2 & 6 & -8 \ 0 & 1 & 5 \ 0 & 0 & 3 \end{pmatrix}.$$

LU factorization (algorithm)

Order: red – blue – green – red – blue – green...

LU factorization in parallel (P=8 processors)

Pattern:

At each step, blue processors communicate

- To all processors in their row
- To all processors in their column

Cholesky Factorization (in parallel)

Α

ColRow 5

M

LU factorization

Problem:

- P processors 1, 2, 3,..., P: P is given
- Find a Rectangular Pattern a x b filled with 1 ... P.
 Find a & b and how to fill the pattern

Constraints:

- Same number of 1, 2, 3,..., P in the pattern (load balancing, same work for all)
- Minimize the maximal number of different processors in any column / row

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23		

G-2DBC: a 20 × 23 pattern Each node appears 20 times. 5 nodes in each row, 4 or 5 in each column.

Cholesky Factorization

Problem:

- P processors 1, 2, 3,..., P: P is given
- Find a Square Pattern a x a filled with 1 ... P. Find a and how to fill the pattern

Constraints:

- Same number of 1, 2, 3,..., P in the pattern (load balancing, same work for all)
- Minimize the maximal number of different processors in any colrow

Don't forget: This is a research topic

- Very different from a traditional math exam
- I don't know (all the) answers
- Some might be very simple, maybe some are very difficult!
- A (clever, not necessarily optimal) solution for a given (even small) p (procs), a,b (pattern size), class of p values is very useful
- Usually, that's how you get an intuition on how it works !!
- Play with it, get familiar with objects and tools

A few problems

Non-Symmetric case

- If $P=r^2$ why do we need at least r processors per row/column, whatever the size of the pattern?
- Find good solutions (full patterns) for p=5, 6, 7, 12, 14, 15, 17...

Symmetric case

- Find very good patterns for P=8, P=18
- Are these patterns optimal? What is the lower bound?
- Find good patterns for some values of P

Merci!

Suivez-nous sur www.inria.fr

