

planetmath.org

Math for the people, by the people.

rational transducer

Canonical name RationalTransducer Date of creation 2013-03-22 18:59:29 Last modified on 2013-03-22 18:59:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771)
Entry type Definition
Classification msc 03D05
Classification msc 68Q45

Related topic GeneralizedSequentialMachine

Defines rational transduction

Definition

A rational transducer is a generalization of a generalized sequential machine (gsm). Recall that a gsm M is a quadruple $(S, \Sigma, \Delta, \tau)$ where S is a finite set of states, Σ and Δ are the input and output alphabets respectively, and τ is the transition function taking an input symbol from one state to an output word in another state. A rational transducer has all of the components above, except that the transition function τ is more general: its domain consists of a pair of a state and an input word, rather than an input symbol.

Formally, a rational transducer M is a quadruple $(S, \Sigma, \Delta, \tau)$ where S, Σ, Δ are defined just as those in a gsm, except that the transition function τ has domain a finite subset of $S \times \Sigma^*$ such that $\tau(s, u)$ is finite for each $(s, u) \in \text{dom}(\tau)$. One can think of τ as a finite subset of $S \times \Sigma^* \times S \times \Delta^*$, or equivalently a finite relation between $S \times \Sigma^*$ and $S \times \Delta^*$.

Like a gsm, a rational transducer can be turned into a language acceptor by fixing an initial state $s_0 \in S$ and a non-empty set F of finite states $F \subseteq S$. In this case, a rational transducer turns into a 6-tuple $(S, \Sigma, \Delta, \tau, s_0, F)$. An input configuration (s_0, u) is said to be *initial*, and an output configuration (t, v) is said to be *final* if $t \in F$. The language accepted by a rational transducer M is defined as the set

$$L(M) := \{ u \in \Sigma^* \mid \tau(s_0, u) \text{ contains an final output configuration.} \}.$$

Rational Transductions

Additionally, like a gsm, a rational transducer can be made into a language translator. The initial state s_0 and the set F of final states are needed. Given a rational transducer M, for every input word u, let

$$RT_M(u) := \{ v \in \Delta^* \mid (t, v) \in \tau(s_0, u) \text{ is a final output configuration.} \}.$$

Thus, RT_M is a function from Σ^* to $P(\Delta^*)$, and is called the rational transduction (defined) for the rational transducer M. The rational transduction for M can be extended: for any language L over the input alphabet Σ ,

$$RT_M(L) := \bigcup \{RT_M(u) \mid u \in L\}.$$

In this way, RT_M may be thought of as a language translator.

As with GSM mappings, one can define the inverse of a rational transduction, given a rational transduction RT_M :

$$RT_M^{-1}(v) := \{ u \mid v \in RT_M(u) \} \text{ and } RT_M^{-1}(L) := \bigcup \{ RT_M^{-1}(v) \mid v \in L \}.$$

Here are some examples of rational transductions

- Every GSM mapping is clearly a rational transduction, since every gsm is a rational transducer. As a corollary, any homomorphism, as well as intersection with any regular language, is a rational transduction.
- The inverse of a rational transduction is a transduction. Given any rational transducer $M = (S, \Sigma, \Delta, \tau, s_0, F)$, define a rational transducer $M' = (S', \Delta, \Sigma, \tau', t_0, F')$ as follws: $S' = S \cup \{t_0\}$ (where \cup denotes disjoint union), $F' = \{s_0\}$, and $\tau' \subseteq S \times \Delta^* \times S \times \Sigma^*$ is given by

$$\tau'(t,v) = \begin{cases} \{(s,v) \mid (s,v) \text{ is a final output configuration of } M \} & \text{if } t = t_0 \\ \{(s,u) \mid (t,v) \in \tau(s,u) \} & \text{otherwise.} \end{cases}$$

As τ is finite, so is τ' , so that M' is well-defined. In addition, $RT_{M'} = RT_M^{-1}$. As a corollary, the inverse homomorphism is a rational transduction.

• The composition of two rational transductions is a rational transduction. To see this, suppose $M_1 = (S_1, \Sigma_1, \Delta_1, \tau_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma_2, \Delta_2, \tau_2, s_2, F_2)$ are two rational transducers such that $\Delta_1 \subseteq \Sigma_2$. Define $M = (S, \Sigma_1, \Delta_2, \tau, s_1, F_2)$ as follows: $S = S_1 \cup S_2$, and $\tau \subseteq S \times \Sigma_1^* \times S \times \Delta_2^*$ is given by

$$\tau(s,u) = \begin{cases} \tau_1(s,u) & \text{if } (s,u) \in S_1 \times \Sigma_1^* \\ \tau_2(s,u) & \text{if } (s,u) \in S_2 \times \Sigma_2^* \\ \{(s_2,u)\} & \text{if } (s,u) \text{ is a final output configuration of } M_1 \\ \varnothing & \text{otherwise.} \end{cases}$$

Again, since both τ_1 and τ_2 are finite, so is τ , and thus M well-defined. In addition, $RT_M = RT_{M_2} \circ RT_{M_1}$.

A family \mathscr{F} of languages is said to be closed under rational transduction if for every $L \in \mathscr{F}$, and any rational transducer M, we have $\mathrm{RT}_M(L) \in \mathscr{F}$. The three properties above show that if \mathscr{F} is closed under rational transduction,

it is a cone. The converse is also true, as it can be shown that every rational transduction can be expressed as a composition of inverse homomorphism, intersection with a regular language, and homomorphism. Thus, a family of languages being closed under rational transduction completely characterizes a cone.

References

[1] A. Salomaa Computation and Automata, Encyclopedia of Mathematics and Its Applications, Vol. 25. Cambridge (1985).