正誤情報

このたびは森北出版株式会社発行の書籍をお買い求めいただき、誠にありがとうございました. 下記の書籍につきまして誤りのある箇所がございましたので、お詫びし訂正させていただきます.

2020年4月23日 森北出版株式会社 生産マネジメント部

タイトル

新編 高専の数学3 第2版・新装版

正誤対象

お手持ちの書籍の刷数をお調べのうえ、下の表をご覧下さい. 正誤表内の一番左に「対応刷数」という列がございます. 該当する刷数の訂正情報をご参照下さい.

なお, 刷数につきましては下記「刷数の調べ方」をご参照ください.

お持ちの 本の刷数	ご参照いただく対応刷数			お持ちの 本の刷数	ご参照いただく対応刷数					
1	対応刷数	1	から	8	6-7	対応刷数	7	から	8	
2	対応刷数	2	から	8	8	対応刷数	8			
3	対応刷数	3	から	8						
4	対応刷数	4	から	8						
5	対応刷数	5	から	8						
					それ以降	現在把握し	ている	5訂正情	報はござ	いません

刷数の調べ方

本の一番後ろのページ(広告等除く)に下図のようなページがございます. ご参照いただき, お持ちの本の刷数をお調べください.

日付の最も新しい行に記載された数字がお持ちの本の刷数となります

対応刷数	頁	行数,図・ 表・式番号	誤	正
3	10	下から 5 行目	それぞれ次の定義域、値城および・・・	それぞれ次の定義域,値域および・・・
3	17	例題 1.3 解 2 行目	$\cdots = -\sqrt{3}, \left(\frac{dy}{dx}\right)_{t=\frac{\pi}{6}} = \cdots$	$\cdots = -\sqrt{3}, \left(\frac{dy}{dt}\right)_{t=\frac{\pi}{6}} = \cdots$
1	37	15 行目	$\sin 61^{\circ} = \cdots$	sin 61° <u>≒</u> · · ·
2	62	問題 5.2 (9)	$\int_1^2 \frac{dx}{\sqrt{x^2 - 1}}$	$\int_0^2 \frac{dx}{\sqrt{x^2 + 1}}$
2	64	例題 5.4 解(1) 最下行	$=6\sqrt{2}-\log(3+\sqrt{8})$	$=6\sqrt{2}-\log\left(3+2\sqrt{2}\right)$
1	114	9行目	となる. この左辺に置喚積分を適用すれば,	となる.この左辺に置 <mark>換</mark> 積分を適用すれば,
8	165	14 行目	$n = _{5} C_{3} = \frac{5 \cdot 4}{1 \cdot 2} = 10$	$n = {}_{5} C_{2} = \frac{5 \cdot 4}{1 \cdot 2} = 10$
4	165	下から 3 行目	このうち、4個の赤球から…	このうち, 4個の赤 <u>玉</u> から…
4	179	例 13.3 4 行目	$\sigma = V(X) = 1.71$	$\sigma = \sqrt{V(X)} = 1.71$
4	179	問題 13.3 表	P(X)	確率
1	180	8 行目 表	表 2 行目,左から 6 列目 $_{n}$ C $_{x}p^{x}q^{n-x}$	${}_{n}C_{r}p^{r}q^{n-r}$
4	180	下から 8 行目	…確率 p_r はちょうど右辺の各項である。…	…確率 p_r はちょうど <u>左</u> 辺の各項である.…
4	180	例題 13.1 解の表	X	X

4	189	下から 6 行目	例 14.1(2)の度数分布表に従って,例 14.3(1)の方法で計算すれば,…	例 <u>14.3(2)</u> の度数分布表に従って, <u>[14.1](2)</u> , <u>[14.2](2)</u> の方法で計算すれば,
3	190	[14.3] (1)2 行目	$=\frac{1}{n}\sum_{i=1}^{k}(x_i-\overline{x})^2$	$=\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2$
4	190	[14.3] (2)1 行目	$s^{2} = \frac{1}{n} \left\{ \left(x_{1} - \overline{x} \right)^{2} f_{1} + \left(x_{2} - \overline{x} \right)^{2} f_{2} + \dots + \left(x_{n} - \overline{x} \right)^{2} f_{n} \right\}$	$s^{2} = \frac{1}{n} \left\{ \left(x_{1} - \overline{x} \right)^{2} f_{1} + \left(x_{2} - \overline{x} \right)^{2} f_{2} + \dots + \underbrace{\left(x_{k} - \overline{x} \right)^{2} f_{k} \right\}}_{}$
4	190	[14.3] (2)2 行目	$=\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2 f_i$	$=\frac{1}{n}\sum_{i=1}^{k}(x_i-\overline{x})^2 f_i$
5	191	4 行目	平力和	平 <u>方</u> 和
4	195	10 行目	…任意の値 x に対して $P(X \le x) \ge 0$ であるから、…	…任意の値 $\underline{a,b(a < b)}$ に対して $\underline{P(X \le a)} \le P(X \le b)$ であるから、…
2	199	下から 5 行目	\cdots , 縦軸方向に $(1,\sigma)$ 倍したものを \cdots	\cdots ,縦軸方向に $1/\sigma$ 倍したものを \cdots
4	201	最下行	$2 \times 0.4773 = 0.9546$	$2 \times 0.4772 = 0.9544$
1	204	8行目	…, 例 9.6 の公式により	…, 例題 8.6 の公式により
2	204	9 行目	$\int_0^\infty e^{-\frac{z^2}{2}} dx = \cdots$	$\int_0^\infty e^{-\frac{z^2}{2}} d\underline{z} = \cdots$
3	225	下から 5 行目	$\cdots x = \frac{1}{e} \cdot f''\left(\frac{1}{x}\right) = \cdots$	$\cdots x = \frac{1}{e} \cdot f'' \left(\frac{1}{e} \right) = \cdots$
1	225	1.3(2)	$\cdots, y'' = \frac{8}{\left(x^2 - 4\right)^3}$, $y'' = \frac{6x^2 + 8}{(x^2 - 4)^3}$
3	226	1.3(2)表	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x $-\infty$ -2 0 2 ∞ y' + 0 + 1 y'' + $-\infty$ $-\infty$ $-\infty$ $+\infty$ $-\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+$

3	226	1.5(3)	右のように修正	
2	227	1.13 (2)	(2) $x^2 + y^2 - 2x = 0$, \Box	(2) $x^2 + y^2 - 2x = 0$, $\exists z \in (x,y) \neq (0,0)$
1	228	練習問題 1 [1](4)	$y'' = \frac{4\cos 2x}{\sin^2 2x}$	$y'' = -\frac{4\cos 2x}{\sin^2 2x}$
3	229	2.3	$y' = e^{-x}(1-x), y'' = \underline{x} e^{-x}(x-2).$	$y' = e^{-x}(1-x), y'' = e^{-x}(x-2).$
3	231	3.4(2)の下 2 行目	$\frac{\sqrt{3}}{4} h^2 \cdot h = 2^\circ = \frac{2 \cdot \pi}{180} \doteq 0.034906$	$\frac{\sqrt{3}}{4} h^2 \cdot h = 2^\circ = \frac{2 \cdot \pi}{180} = 0.0349 \frac{07}{1}$
3	231	3.7(2)	$+\cdots+(-1)^n\frac{1\cdot 3\cdots (2n-3)}{2\cdot 4\cdots (2n)}x^n+\cdots$	$+\cdots+\left(-\frac{1}{2}\right)^{n-1}\frac{1\cdot 3\cdots \cdot (2n-3)}{2\cdot 4\cdots \cdot (2n)}x^{n}+\cdots$
3	232	1 行目	$\cdots \binom{p}{3} = \frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \frac{1}{3!} = (-1) \frac{1 \cdot 3}{2 \cdot 4 \cdot 6}, \cdots,$	$\binom{p}{3} = \frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \frac{1}{3!} = \frac{(-1)^2}{2 \cdot 4 \cdot 6}, \dots,$
3	232	3.8(2)	2.0327	2.0328
3	232	3.8 3 行目	$\sqrt[3]{8(1+0.05)} = 2(1+0.05)^{\frac{1}{3}} = 2\left(1+\frac{1}{3}\mathbf{h} - \frac{2}{2\cdot 3^2}\mathbf{h}^2 + \frac{2\cdot 5}{3!3^3}\mathbf{h}^3\right), \mathbf{h} = 0.05$	$\sqrt[3]{8(1+0.05)} = 2(1+0.05)^{\frac{1}{3}} = 2\left(1+\frac{1}{3}h - \frac{2}{2\cdot 3^2}h^2 + \frac{2\cdot 5}{3!3^3}h^3\right), h = 0.05$
3	232	練習問題 3 [1]3 行目	$\frac{(n!)^2}{(2n)!} = \frac{n!}{(n+1)(n+2)\cdot(n+n)}$	$\frac{(n!)^2}{(2n)!} = \frac{n!}{(n+1)(n+2)\cdots(n+n)}$
3	232	練習問題 3 2	$(n-1)!$ $\left\{\frac{(-1)^n}{(1+x)^n} - \frac{1}{(1-x)^n}\right\}$	$(n-1)! \left\{ \frac{(-1)^{n-1}}{(1+x)^n} - \frac{1}{(1-x)^n} \right\}$
3	232	練習問題 3 [2]2 行目	$, y' = \frac{1}{1+x} + \frac{1}{1-x}, \cdots$	$y' = \frac{1}{1+x} - \frac{1}{1-x},$

3	232	練習問題 3 [4]3 行目	…, $h = \frac{2}{180}\pi = 0.034906$ を代入する	…, $h = \frac{2}{180} \pi \stackrel{\rightleftharpoons}{=} 0.034907$ を代入する
3	232	練習問題 3 [4]4 行目	$\cdots x = \frac{62}{180}\pi = 1.082104$ を代入する…	$\cdots x = \frac{62}{180} \pi = 1.082104$ を代入する…
1	233	4.2(4)	$\frac{e^{-x}}{5} \left(\sin 2x - \cos 2x \right)$	$\frac{e^{-x}}{5}\left(2\sin 2x - \cos 2x\right)$
3	235	練習問題 4 [2]2 行目	$[(1)問題4.10(1)と同様にして (i) \int \frac{1}{1-\sin x} = \cdots$	$[(1)問題 4.10(2) と 同様に して (i) \int \frac{1}{1-\sin x} \frac{dx}{} = \cdots$
3	235	練習問題 4 [2]3 行目	$(ii)\int \frac{1}{1-\sin x} = \int \frac{1+\sin x}{\cos^2 x} ds = \cdots$	$(ii) \int \frac{1}{1 - \sin x} dx = \int \frac{1 + \sin x}{\cos^2 x} dx = \cdots$
3	236	2 行目	$\cdots(2)(i) \int \frac{\cos x}{1 + \cos x} = \cdots$	$\cdots (2)(i) \int \frac{\cos x}{1 + \cos x} \frac{dx}{1 + \cos x} = \cdots$
3	236	5.1 2 行目	$\sum_{i=1}^{n} \left(c \frac{1}{n} \right) \frac{c}{n} = \cdots$	$\sum_{i=1}^{n} \left(\underbrace{\frac{i}{n}}_{n} \underbrace{c}_{n} = \cdots \right)$
2	236	5.2(9)	$(9) \log\left(2+\sqrt{3}\right)$	$(9) \log\left(2 + \sqrt{5}\right)$
2	237	5 行目	(9) $\int_{1}^{2} \frac{dx}{\sqrt{x^{2}-1}} = \left[\log \left x + \sqrt{x^{2}-1} \right \right]_{1}^{2}$	$(9) \int_0^2 \frac{dx}{\sqrt{x^2+1}} = \left[\log \left x + \sqrt{x^2+1} \right \right]_0^2$
3	239	4 行目	$\begin{array}{c ccc} x & 0 & \to & 1 \\ \hline t & 0 & \to & \frac{\pi}{4} \end{array}$	$ \begin{array}{c ccc} x & 0 & \to & 1 \\ \hline \theta & 0 & \to & \frac{\pi}{4} \end{array} $
1	239	練習問題 5 [2](1)	(1) $ = \lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{n} \frac{1}{\sqrt{1 + \frac{k}{n}}} = \cdots $	$(1) 与式 = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} = \cdots$
1	239	練習問題 5 2	(2) $ \not= \overrightarrow{x} = \lim_{n \to \infty} \frac{1}{n} \sum_{n=1}^{n} \left(1 + \frac{1}{n} \right)^2 = \cdots $	(2) $ \exists \vec{x} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(1 \underbrace{\frac{k}{n}}^{2} = \cdots \right) $

3	239	練習問題 5 [4]3 行目	$\cdots = 12\left(\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} - \frac{5}{6} \cdot \cdots\right)$	$\cdots = 12 \underline{a^2} \left(\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} - \frac{5}{6} \cdot \cdots \right)$
3	239	練習問題 5 [4] 5~6 行目	$2\pi^{2} \int_{-\frac{\pi}{2}}^{0} \sin^{6} t \cdot 3\cos^{2} t \cdot (-\sin t) dt = 6\pi a^{2} \int_{0}^{\frac{\pi}{2}} \sin^{7} t \cos^{2} t dt = 6\pi a^{2} \int_{0}^{\frac{\pi}{2}} (\sin^{7} t - \sin^{9} t) dt = 6\pi a^{2} \left(\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} - \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \right) = \frac{32}{105} \pi a^{2} \cdots$	$2\pi a^{3} \int_{-\frac{\pi}{2}}^{0} \sin^{6} t \cdot 3\cos^{2} t \cdot (-\sin t) dt = 6\pi a^{3} \int_{0}^{\frac{\pi}{2}} \sin^{7} t \cos^{2} t dt = 6\pi a^{3} \int_{0}^{\frac{\pi}{2}} (\sin^{7} t - \sin^{9} t) dt = 6\pi a^{3} \left(\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} - \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \right) = \frac{32}{105} \pi a^{3} \cdot $
3	240	2 行目	$(2) \int_{a}^{1} \frac{\log x}{\sqrt{x}} = \left[2\sqrt{x} \log x \right]_{a}^{1} - 2 \int_{a}^{1} \frac{1}{\sqrt{x}} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log a - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1} = -2\sqrt{a} \log x - \frac{1}{2} \left[-2\sqrt{a} \log x \right]_{a}^{1$	$(2) \int_{a}^{1} \frac{\log x}{\sqrt{x}} dx = \left[2\sqrt{x} \log x \right]_{a}^{1} - 2 \int_{a}^{1} \frac{1}{\sqrt{x}} dx = -2\sqrt{a} \log a - \frac{1}{2} \left[2\sqrt{x} \log x \right]_{a}^{1} - \frac{1}{2}$
3	250	9.5 3 行目	$\cdots \log y = \log x + A. y = Cx(C = e^x).$	$\log y = \log x + A. \ y = Cx \left(C = e^A\right).$
3	250	9.7 3 行目	$\left[\frac{y}{x} = u, y = xu \ge 3 \le \frac{dy}{dx} = u + \frac{du}{dx} \cdots\right]$	$\left[\frac{y}{x} = u, y = xu \geq \Rightarrow < \frac{dy}{dx} = u + \underline{x} \frac{du}{dx} \cdots\right]$
3	251	9.8 13 行目	$\cdots y = \frac{1}{x} \left(\int \log x dx + C = \cdots \right)$	$\cdots y = \frac{1}{x} \left(\int \log x dx + C \right) = \cdots$
3	253	練習問題 9 [3] 8 行目	これは線形. $-\int \frac{2}{x} dx = -2\log u$	これは線形. $-\int \frac{2}{x} dx = -2\log \underline{x}$
3	254	1 行目	$\left(\frac{R}{mg}v^2\right).k = \sqrt{\frac{r}{mg}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\left(\frac{R}{mg}v^2\right).k = \sqrt{\frac{R}{mg}} $ $\geq $
3	254	10.2 4 行目	$ \left[(1) \frac{y''}{y'} = 1 \cdot \log y' = \underline{\log} x + C \cdot \cdots \right] $	$[(1)\frac{y''}{y'}=1.\log y'=x+C.\cdots]$
3	256	12 行目	$\cdots y_1 = -\frac{1}{4}x\cos x$	$\cdots y_1 = -\frac{1}{4} x \cos 2x$
3	256	練習問題 10 [1](10) 2 行目	$[(1)y' = -xe^{-x} + e^{-x} + A\cdots]$	$[(1)y' = -xe^{-x} - e^{-x} + A \cdots]$
3	256	下から 2 行目	$E.y^3 + A = Be^x \left(A = \frac{C}{3}, B = 3e^E \right), \cdots$	$E.y^3 + A = Be^x (A = \underline{3C}, B = 3e^E) \cdots$
3	257	9 行目	$y_1' = 2a(x^2 + x)e^{2x}, y_1'' = 2a(4x^2 + x)e^{2x}$	$\cdots y_1' = 2a(x^2 + x)e^{2x}, y_1'' = 2a(2x^2 + 4x + 1)e^{2x}.\cdots$

3	257	[2] 11 行目	$[(1)P = x, Q = -1 \succeq \bigcup \top \cdots$	$[(1)P = \frac{1}{\underline{x}}, Q = -\frac{1}{\underline{x^2}} \succeq \bigcup \top \cdots$
3	257	下から 6 行目	$-\frac{A}{x^2} + B\left(A = \frac{e^C}{2}\right)$	$\frac{A}{x^2} + B \left(A = -\frac{e^C}{2} \right)$
3	259	11.3 1 行目	$\cdots \overline{\alpha} \overline{\beta} = (a-bi)(c-di) = ac - (ad+bc)i + bd = (ac+bd) -$	$\cdots \overline{\alpha}\overline{\beta} = (a-bi)(c-di) = ac - (ad+bc)i - bd = (ac-bd) -$
3	259	11.11 2 行目	$=18\left(-\frac{\sqrt{3}}{2}+i\frac{1}{2}i\right)=\cdots$	$=18\left(-\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)=\cdots$
3	259	11.11 4 行目	$\cdots, \frac{z}{z'} = 4(\cos(-\pi) + \sin(-\pi)) = -4$	$\frac{z}{z'} = 4(\cos(-\pi) + i\sin(-\pi)) = -4$
3	260	2 行目	$2^{-\frac{5}{2}} \left(\cos \frac{5}{4} \pi + i \sin \frac{5}{4} \pi \right) = 2^{-6} \sqrt{2} \cdots$	$2^{-\frac{5}{2}} \left(\cos \frac{5}{4} \pi + i \sin \frac{5}{4} \pi \right) = 2^{-3} \sqrt{2} \cdots$
3	260	11.17 3 行目	$\cdots 8z\overline{z} - 8iz + 8i\overline{z} = 0. \cdots$	$\cdots 8z\overline{z} + 8iz - 8i\overline{z} = 0.\cdots$
7	261	練習問題 11[8](4)	$\frac{\pi}{4} \left[(4)\gamma - \alpha = 1 + 3i, \ \beta - \alpha = -1 + 2i. \ \frac{\gamma - \alpha}{\beta - \alpha} = \frac{1 + 3i}{-1 + 2i} = \frac{1}{5} (1 + 3i)(-1 - 2i) \right]$ $= \frac{1}{5} (5 - 5i) = 1 - i. \arg \frac{\gamma - \alpha}{\beta - \alpha} = -\frac{\pi}{4} $	$\frac{\pi}{4} \left[(4)\gamma - \alpha = 1 + 3\mathbf{i}, \ \beta - \alpha = 2 + \mathbf{i}. \ \frac{\gamma - \alpha}{\beta - \alpha} = \frac{1 + 3\mathbf{i}}{2 + \mathbf{i}} = \frac{1}{5} (1 + 3\mathbf{i})(2 - \mathbf{i}) \right]$ $= \frac{1}{5} (5 + 5\mathbf{i}) = 1 + \mathbf{i}. \arg \frac{\gamma - \alpha}{\beta - \alpha} = \frac{\pi}{4} $
4	262	12.8(1)	独立でない	$P(A) = \frac{1}{3}, P(A \cap B) = \frac{1}{3} \cdot \frac{3}{11} = \frac{1}{11},$ $P(\overline{A} \cap B) = \frac{2}{3} \cdot \frac{4}{11} = \frac{8}{33},$ $P(B) = P(A \cap B) + P(\overline{A} \cap B) = \frac{11}{33} = \frac{1}{3}.$
4	264	[1]	$V(X) = \frac{35}{4}$	$\underline{V(W)} = \frac{35}{4}$