CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 15 · Solutions

Posted Wednesday 18 September 2013. Due 5pm Wednesday 25 September 2013.

15. [25 points]

Suppose \mathcal{V} is a vector space with an associated inner product (\cdot, \cdot) : $\mathcal{V} \times \mathcal{V} \to \mathbb{R}$ and norm $\|\cdot\|$: $\mathcal{V} \to \mathbb{R}$ defined by $\|w\| = \sqrt{(w, w)}$. The angle $\angle(u, v)$ between $u \in \mathcal{V}$ and $v \in \mathcal{V}$ is defined via the equation

$$(u, v) = ||u|| ||v|| \cos \angle (u, v).$$

Let $\mathcal{V}=C[0,1]$ and let the inner product $(\cdot,\cdot):C[0,1]\times C[0,1]\to\mathbb{R}$ be defined by $(u,v)=\int_0^1 u(x)v(x)\,dx$. Let m and n be nonnegative integers.

- (a) Compute (x^n, x^m) .
- (b) Compute $||x^m||$ and $||x^n||$.
- (c) Compute $\cos \angle (x^n, x^m)$ between x^n and x^m .
- (d) Compute $\cos \angle (x^n, x^{n+1})$ between x^n and x^{n+1} .
- (e) What happens to $\angle(x^n, x^{n+1})$ as $n \to \infty$?

Solution.

(a) [5 points] We have

$$(x^n, x^m) = \int_0^1 x^{n+m} dx = \frac{1}{n+m+1}.$$

(b) [5 points] We also have

$$||x^n|| = \sqrt{(x^n, x^n)} = \frac{1}{\sqrt{2n+1}}$$

and

$$||x^m|| = \sqrt{(x^m, x^m)} = \frac{1}{\sqrt{2m+1}}.$$

(c) [5 points] Altogether, we have the following formula for $\cos \angle (x^n, x^m)$ between x^n and x^m :

$$\cos \angle(x^n, x^m) = \frac{(x^n, x^m)}{\|x^n\| \|x^m\|} = \frac{\sqrt{(2n+1)(2m+1)}}{n+m+1}.$$

(d) [5 points] If m = n + 1 we have the following formula for $\cos \angle (x^n, x^{n+1})$ between x^n and x^{n+1} :

$$\cos \angle (x^n, x^{n+1}) = \frac{\sqrt{(2n+1)(2n+3)}}{2n+2}.$$

(e) [5 points] As $n \to \infty$, we see that $\cos \angle (x^n, x^{n+1}) \to 1$, implying that the angle between x^n and x^{n+1} shrinks to zero as $n \to \infty$.