Chapter 4

矩阵的广义逆

Matrix Theory

December 15, 2014

黄正华, 数学与统计学院, 武汉大学

4.1

Contents

1	Moore-Penrose 广义逆矩阵	2
2	广义逆矩阵 $A^{(1)}$	4
	2.1 广义逆 $m{A^{(1)}}$ 的定义和构造	4
	2.2 广义逆 A⁽¹⁾ 的性质	7
	2.3 广义逆 $A^{(1)}$ 应用于解线性方程组	9
3	广义逆矩阵 $A^{(1,2)}$	11
	3.1 广义逆 $A^{(1,2)}$ 的定义及存在性	11
	3.2 广义逆 $A^{(1,2)}$ 的性质	12
	3.3 广义逆 A^(1,2) 的构造	14
4	广义逆矩阵 $A^{(1,3)}$	17
	4.1 广义逆 $m{A^{(1,3)}}$ 的定义和构造 \dots	17
	4.2 广义逆 $A^{(1,3)}$ 应用于解方程组	19
5	广义逆矩阵 $A^{(1,4)}$	22
	5.1 广义逆 $m{A^{(1,4)}}$ 的定义和构造 $\dots\dots\dots\dots\dots$	22
	5.2 广义逆 $A^{(1,4)}$ 应用于解方程组	23
6	M-P 广义逆矩阵	24
	6.1 M-P 广义逆的存在及性质	24
	6.2 M-P 广义逆的几种显式表示	26
	6.3 M-P 广义逆用于解线性方程组	28

1 Moore-Penrose 广义逆矩阵

源起

设 \mathbf{A} 是 $n \times n$ 可逆方阵, \mathbf{b} 是任意一个 n 维向量, 则方程组

$$Ax = b$$

总有解, 且解 x 可表为

$$\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b}.$$

现设 A 是任意 $m \times n$ 阵, b 是一个 m 维向量, 是否存在 $n \times m$ 矩阵 G, 使得只要方程 Ax = b 有解, 则

$$x = Gb$$

就是解?

这样的矩阵 G 就涉及到广义逆的概念.

广义逆 (generalized inverse), 也称伪逆(pseudoinverse), 一般是指 Moore—Penrose 广义逆矩阵 (Moore—Penrose pseudoinverse).

F. H. Moore¹ 于 1920 年给出了矩阵的广义逆的概念.

Definition 1 (Moore 广义逆矩阵). 设 $A \in \mathbb{C}^{m \times n}$, 如果 $G \in \mathbb{C}^{n \times m}$ 满足

$$\mathbf{AG} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}, \qquad \mathbf{GA} = P_{R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A})},$$
 (1)

其中 $P_{R(A),N(A^{\rm H})}$ 表示沿子空间 $N(A^{\rm H})$ 向子空间 R(A) 上的正交投影算子, $P_{R(A^{\rm H}),N(A)}$ 表示沿子空间 N(A) 向子空间 $R(A^{\rm H})$ 上的正交投影算子,则称 G 为 A 的 Moore 广义逆矩阵.

公式 (1) 含义不容易理解和应用, 因此 Moore 给出的广义逆矩阵一直未被重视. 直到 1955 年剑桥大学的博士研究生 Roger Penrose 给出了广义逆矩阵的另一个等价定义, 才使得广义逆矩阵的研究获得迅速发展.

广义逆矩阵的基本概念

Definition 2 (Penrose 广义逆矩阵). 设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 如果 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{AGA} = \mathbf{A},$
- (2) GAG = G,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 Penrose 广义逆矩阵,简称为 Penrose 广义逆,记为 A^+ ,或 A^\dagger . 矩阵的 Moore 广义逆与 Penrose 广义逆是等价的,并且是唯一的,故也称为 M-P 广义逆.

4.3

4.6

4.7

若矩阵 G 满足条件 (1), (2), (3), (4) 中的部分或全部, 则称 G 为 A 的广义 逆矩阵, 简称为广义逆.

若 G 只满足条件 (1), 则 G 为 A 的 {1}-逆, 记为 $G \in A$ {1}.

若 G 只满足条件 (1), (2), 则 G 为 A 的 {1,2}-逆, 记为 $G \in A$ {1,2}.

满足条件 (1), (2), (3), (4) 的部分或全部的广义逆矩阵共有 15 类, 即

$$C_4^1 + C_4^2 + C_4^3 + C_4^4 = 15.$$

常用的广义逆是以下 5 类:

$$A\{1\}, A\{1,2\}, A\{1,3\}, A\{1,4\}, A^+.$$

以有 A^+ 是唯一的, 而其他各种广义逆矩阵都不是唯一的. 当 A 是可逆矩阵时, 它的所有广义逆矩阵都等于 A^{-1} .

以下将重点讨论这5类广义逆.

Example 3. 设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, 则

$$G = \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix}, \quad \forall a \in \mathbb{C},$$

是 A 的 $\{1\}$ -逆. 可见 $\{1\}$ -逆不是唯一确定的.

但 A^+ 是唯一的, 这里

$$\boldsymbol{A}^+ = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}.$$

Sir Roger Penrose (born 8 August 1931), is an English mathematical physicist, recreational mathematician and philosopher. He is the Emeritus Rouse Ball Professor of Mathematics at the Mathematical Institute of the University of Oxford, as well as an Emeritus Fellow of Wadham College.

Penrose is internationally renowned for his scientific work in mathematical physics, in particular for his contributions to general relativity and cosmology. He has received a number of prizes and awards, including the 1988 Wolf Prize for physics, which he shared with **Stephen Hawking** for their contribution to our understanding of the universe.

 $^{^1}$ Eliakim Hastings Moore (1862-1932), 美国数学家, 是二十世纪初美国数学的奠基人, 曾任美国数学会主席.

2 广义逆矩阵 $A^{(1)}$

2.1 广义逆 $A^{(1)}$ 的定义和构造

Definition 4. 对于 $A \in \mathbb{C}^{m \times n}$, 如果 $G \in \mathbb{C}^{n \times m}$ 满足

$$AGA = A$$
.

则 G 称为 A 的 $\{1\}$ -逆, 也称为 A 的减号逆 (或称为 A 的 g 逆). 记为 $A^{(1)}$, 或 A^- .

矩阵 A 所有 $\{1\}$ -逆的全体记为 $A\{1\}$, 即

$$A\{1\} = \{G \mid AGA = A\}.$$

☞ 注意表达式:

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{A}.$$

4.9

4.10

Lemma 5. 设 A, $B \in \mathbb{C}^{m \times n}$, 且 P, Q 分别为 m 阶和 n 阶非奇异方阵, 满足 PAQ = B, 则

$$A{1} = {QB^{(1)}P \mid B^{(1)} \in B{1}}.$$

证: 任取 $B^{(1)} \in B\{1\}$,

$$A(QB^{(1)}P)A = (P^{-1}BQ^{-1})(QB^{(1)}P)(P^{-1}BQ^{-1})$$
 $(A = P^{-1}BQ^{-1})$
= $P^{-1}BB^{(1)}BQ^{-1}$
= $P^{-1}BQ^{-1}$ $(BB^{(1)}B = B)$
= A .

所以 $QB^{(1)}P \in A\{1\}$.

反之, 任取 $A^{(1)} \in A\{1\}$, 则有 $AA^{(1)}A = A$. 代入 $A = P^{-1}BQ^{-1}$, 即

$$(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1})\mathbf{A}^{(1)}(\mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}) = \mathbf{P}^{-1}\mathbf{B}\mathbf{Q}^{-1}.$$

两端左乘 P, 右乘 Q, 得

$$BQ^{-1}A^{(1)}P^{-1}B = B,$$

则

$$Q^{-1}A^{(1)}P^{-1} \in B\{1\}.$$

因而存在 $B^{(1)} \in B\{1\}$, 使得

$$Q^{-1}A^{(1)}P^{-1}=B^{(1)}$$
.

故 $A^{(1)}$ 可表示为

$$A^{(1)} = QB^{(1)}P.$$

证毕.

Theorem 6. 设 $A \in \mathbb{C}_r^{m \times n}$,且 P,Q 分别为 m 阶和 n 阶非奇异方阵,满足 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$,则有

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{2}$$

4.12

4.13

其中 G_{12} , G_{21} , G_{22} 分别是 $r \times (m-r)$, $(n-r) \times r$, $(n-r) \times (m-r)$ 阶的任意 矩阵.

注意 $\begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$ 是 A 的标准形, 此定理表明, 只要找到将 A 化为标准形的可逆矩阵 P, Q, 依公式 (2) 即可得到广义逆 $A^{(1)}$.

特别地, 当 $A \in \mathbb{C}_n^{n \times n}$ 时, 存在 n 阶可逆矩阵 P, Q, 使 $PAQ = I_n$, 从而有

$$A^{(1)} = QI_nP = QP = A^{-1}.$$

可见满秩矩阵的 $\{1\}$ -逆是唯一的, 且等于 A^{-1} .

证: 记 $B = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$, 对照引理 5, 只需证明 B 的 $\{1\}$ -逆有且仅有形式

$$egin{bmatrix} m{I}_r & m{G}_{12} \ m{G}_{21} & m{G}_{22} \end{bmatrix}$$
即可. 设

$$oldsymbol{G} = egin{bmatrix} oldsymbol{G}_{11} & oldsymbol{G}_{12} \ oldsymbol{G}_{21} & oldsymbol{G}_{22} \end{bmatrix},$$

代入 BGB = B, 得

$$egin{bmatrix} egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix} egin{bmatrix} m{G}_{11} & m{G}_{12} \ m{G}_{21} & m{G}_{22} \end{bmatrix} egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix} = egin{bmatrix} m{I}_r & m{O} \ m{O} & m{O} \end{bmatrix}.$$

从而, 当且仅当 $G_{11}=I_r$, 而 G_{12} , G_{21} , G_{22} 为任意矩阵时, $G\in B\{1\}$.

解: 将 A 化为标准形, 在 A 的右边放上单位矩阵 I_2 , 在 A 的下方放上单位矩阵 I_3 , 当 A 变成标准形时, 则 I_2 就变成 P, 而 I_3 就变成 Q.

$$\begin{bmatrix} \boldsymbol{A} & \boldsymbol{I}_2 \\ \boldsymbol{I}_3 & \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & 2 & 3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{\begin{array}{c} c_2 + c_1 \\ c_3 - 2c_1 \end{array}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 2 & 4 & -1 & 0 & 1 \\ 1 & 1 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

4.15

4.16

�

$$P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$
 $Q = \begin{bmatrix} -3 & -2 & -7 \\ 0 & 0 & 1 \\ 2 & 1 & 4 \end{bmatrix}.$

则有

$$PAQ = [I_2, O],$$

于是

$$\boldsymbol{A}\{1\} = \left\{ \boldsymbol{Q} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ x_1 & x_2 \end{bmatrix} \boldsymbol{P} \middle| \forall x_1, x_2 \in \mathbb{C} \right\}. \quad \Box$$

若 $x_1 = x_2 = 0$, 则

$$m{A}^{(1)} = m{Q} egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} m{P} = egin{bmatrix} -3 & 2 \\ 0 & 0 \\ 2 & -1 \end{bmatrix}.$$

这只不过是其中的一个 {1}-逆.

如果求得了某个 $A^{(1)}$,则由下述定理可以得到 $A\{1\}$ 的通式.

Theorem 8. 设 $A \in \mathbb{C}^{m \times n}$, $A^{(1)} \in A\{1\}$, 则

1.
$$A\{1\} = \{A^{(1)} + U - A^{(1)}AUAA^{(1)} \mid U \in \mathbb{C}^{n \times m}$$
 为任意矩阵 $\};$

2.
$$A\{1\} = \{A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U \mid U, V \in \mathbb{C}^{n \times m}$$
 为任意矩阵 $\}.$

证: 记 $Y = A^{(1)} + U - A^{(1)}AUAA^{(1)}$, 因

$$AYA = A(A^{(1)} + U - A^{(1)}AUAA^{(1)})A$$

= $AA^{(1)}A + AUA - AA^{(1)}AUAA^{(1)}A$
= $A + AUA - AUA$
= $A,$

故 $Y \in A\{1\}$.

记
$$Z = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$$
, 因

$$(I_m - AA^{(1)})A = A - AA^{(1)}A = O,$$
 (3)

$$\mathbf{A}(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}) = \mathbf{A} - \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \mathbf{O},\tag{4}$$

故 AZA = A, 即 $Z \in A\{1\}$.

反之, 任取 $X \in A\{1\}$, 取

$$\boldsymbol{U} = \boldsymbol{X} - \boldsymbol{A}^{(1)}, \tag{5}$$

则
$$\boldsymbol{X} = \boldsymbol{A}^{(1)} + \boldsymbol{U} - \boldsymbol{A}^{(1)} \boldsymbol{A} \boldsymbol{U} \boldsymbol{A} \boldsymbol{A}^{(1)}$$
.

取

$$V = X - A^{(1)}, \qquad U = XAA^{(1)},$$
 (6)

则 $X = A^{(1)} + V(I_m - AA^{(1)}) + (I_n - A^{(1)}A)U$.

故 $A\{1\}$ 的任何元素都可以用表达式 $A^{(1)}+U-A^{(1)}AUAA^{(1)}, A^{(1)}+V(I_m-AA^{(1)})+(I_n-A^{(1)}A)U$ 给出. 得证.

4.17

4.18

2.2 广义逆 $A^{(1)}$ 的性质

Theorem 9. 设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\lambda \in \mathbb{C}$, 则有

- 1. $(\mathbf{A}^{(1)})^{\mathrm{H}} \in \mathbf{A}^{\mathrm{H}}\{1\}$.
- 2. $\lambda^{+} \mathbf{A}^{(1)} \in (\lambda \mathbf{A})\{1\}$, 其中 $\lambda^{+} = \begin{cases} \lambda^{-1}, & \lambda \neq 0, \\ 0, & \lambda = 0. \end{cases}$
- 3. rank $A^{(1)} \geqslant \operatorname{rank} A$.
- 4. $\mathbf{A}\mathbf{A}^{(1)}$ 与 $\mathbf{A}^{(1)}\mathbf{A}$ 都是幂等阵,且满足 $\operatorname{rank}\left(\mathbf{A}\mathbf{A}^{(1)}\right) = \operatorname{rank}\left(\mathbf{A}^{(1)}\mathbf{A}\right) = \operatorname{rank}\mathbf{A}$.

证: (1) 由 $AA^{(1)}A = A$, 有

$$A^{\mathrm{H}}(A^{(1)})^{\mathrm{H}}A^{\mathrm{H}}=A^{\mathrm{H}},$$

故 $(\boldsymbol{A}^{(1)})^{\mathrm{H}} \in \boldsymbol{A}^{\mathrm{H}}\{1\}.$

郊照: $(\mathbf{A}^{\mathrm{H}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{H}}$.

(2) 当 $\lambda \neq 0$ 时, 因

$$(\lambda \mathbf{A})(\lambda^{-1}\mathbf{A}^{(1)})(\lambda \mathbf{A}) = \lambda \mathbf{A}\mathbf{A}^{(1)}\mathbf{A} = \lambda \mathbf{A},$$

所以 $\lambda^{-1} \mathbf{A}^{(1)} \in (\lambda \mathbf{A}) \{1\}.$

当 $\lambda = 0$ 时, 因 $(0\mathbf{A})(0\mathbf{A}^{(1)})(0\mathbf{A}) = 0\mathbf{A}$, 故 $0\mathbf{A}^{(1)} \in (0\mathbf{A})\{1\}$. 综合得 $\lambda^+\mathbf{A}^{(1)} \in (\lambda\mathbf{A})\{1\}$.

対照: $(\lambda \mathbf{A})^{-1} = \lambda^{-1} \mathbf{A}^{-1}, \lambda \neq 0.$

(3) 由 $AA^{(1)}A = A$, 得

$$\operatorname{rank} \mathbf{A} = \operatorname{rank}(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A}) \leqslant \operatorname{rank}(\mathbf{A}^{(1)}\mathbf{A}) \leqslant \operatorname{rank} \mathbf{A}^{(1)}.$$

即证 $\operatorname{rank} \boldsymbol{A}^{(1)} \geqslant \operatorname{rank} \boldsymbol{A}$.

(4) 因

$$(AA^{(1)})^2 = AA^{(1)}AA^{(1)} = AA^{(1)},$$

从而 $AA^{(1)}$ 是幂等阵, 同理得 $A^{(1)}A$ 是幂等阵.

由

$$\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) \leqslant \operatorname{rank} \boldsymbol{A},$$

得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A})$. 同理得 $\operatorname{rank} \boldsymbol{A} = \operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)})$. 即证 $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}) = \operatorname{rank}(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{A}$.

4.20

4.19

Theorem 10. 设 $A \in \mathbb{C}_r^{m \times n}$, 则

1.
$$A^{(1)}A = I_n$$
 当且仅当 $r = n$;

2.
$$AA^{(1)} = I_m$$
 当且仅当 $r = m$.

或者表达为

1. $A^{(1)}$ 是 A 的左逆 $\Leftrightarrow A$ 列满秩;

2. $A^{(1)}$ 是 A 的右逆 $\Leftrightarrow A$ 行满秩.

证: (1) 若 $\boldsymbol{A}^{(1)}\boldsymbol{A} = \boldsymbol{I}_n$, 则 rank $(\boldsymbol{A}^{(1)}\boldsymbol{A}) = \operatorname{rank}\boldsymbol{I}_n = n$. 则

$$r = \operatorname{rank} \mathbf{A} = \operatorname{rank} (\mathbf{A}^{(1)} \mathbf{A}) = n,$$

即 r=n.

反之, 若 r = n, 则

$$\operatorname{rank}\left(\boldsymbol{A}^{(1)}\boldsymbol{A}\right) = \operatorname{rank}\boldsymbol{A} = n,$$

而 $A^{(1)}A$ 为 n 阶方阵, 故 $(A^{(1)}A)^{-1}$ 存在. 所以

$$A^{(1)}A = (A^{(1)}A)^{-1}(A^{(1)}A)(A^{(1)}A)$$

$$= (A^{(1)}A)^{-1}(A^{(1)}A) \qquad (A^{(1)}A)$$

$$= I_n.$$

同理可证 (2) 成立.

Theorem 11. 设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 则

1.
$$R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A});$$

2.
$$N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A});$$

3.
$$R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}) = R(\mathbf{A}^{\mathrm{H}}).$$

证: (1) 设 $\mathbf{u} \in R(\mathbf{A}\mathbf{A}^{(1)})$, 则存在 $\mathbf{x} \in \mathbb{C}^m$, 使得

$$\boldsymbol{u} = \boldsymbol{A}\boldsymbol{A}^{(1)}\boldsymbol{x}.$$

记 $z = A^{(1)}x$, 则 u = Az, 因此 $u \in R(A)$, 从而

$$R(\mathbf{A}\mathbf{A}^{(1)}) \subseteq R(\mathbf{A}).$$

又 $\operatorname{rank}(\boldsymbol{A}\boldsymbol{A}^{(1)}) = \operatorname{rank}\boldsymbol{A}$,故

$$\dim R(\mathbf{A}\mathbf{A}^{(1)}) = \dim R(\mathbf{A}),$$

因此 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A}).$

(2) 设 $y \in N(A)$, 则 Ay = 0, 故 $A^{(1)}Ay = 0$, 从而 $y \in N(AA^{(1)})$, 因此

$$N(\mathbf{A}) \subseteq N(\mathbf{A}^{(1)}\mathbf{A}).$$

任取 $x \in N(A^{(1)}A)$, 则 $A^{(1)}Ax = 0$, 从而 $A^{(1)}Ax = 0$, 即 Ax = 0, 因此

$$N(\mathbf{A}^{(1)}\mathbf{A}) \subseteq N(\mathbf{A}).$$

8

4.21

4.22

综上得 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A}).$

☞ 事实上, 易知以下的一般形式成立:

$$R(\mathbf{AB}) \subseteq R(\mathbf{A}),\tag{7}$$

$$N(\mathbf{A}) \subseteq R(\mathbf{B}\mathbf{A}). \tag{8}$$

(3) 用 $R(AB) \subseteq R(A)$ 说明结论成立.

由
$$(\mathbf{A}\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{\mathrm{H}},$$
即

$$(\boldsymbol{A}^{(1)}\boldsymbol{A})^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}}=\boldsymbol{A}^{\mathrm{H}}.$$

故

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}\mathbf{A}^{\mathrm{H}}) \subseteq R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$
$$= R(\mathbf{A}^{\mathrm{H}}(\mathbf{A}^{(1)})^{\mathrm{H}}) \subseteq R(\mathbf{A}^{\mathrm{H}}).$$

得证
$$R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}) = R(\mathbf{A}^{\mathrm{H}}).$$

2.3 广义逆 $A^{(1)}$ 应用于解线性方程组

在线性代数里, 若线性方程组 Ax = b 有解, 则称此方程组为相容方程组; 若无解, 则称之为不相容方程组或者矛盾方程组.

矩阵 G 是否为 $A^{(1)}$, 与 Gb 是否为相容性方程 Ax = b 的解密切相关, 这就是下面的定理.

Theorem 12. 设 $A \in \mathbb{C}^{m \times n}$, 则对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解的充分必要条件是 $G \in A\{1\}$.

证: 充分性. 设 $G \in A\{1\}$, 则 AGA = A. 对任何 $b \in R(A)$, 必存在 $y \in \mathbb{C}^n$, 使得

$$Ay = b$$
.

则

$$AGb = AGAy = Ay = b,$$

故 x = Gb 是方程 Ax = b 的解.

必要性. 记 $A = [a_1, a_2, \dots, a_n],$ 则 $a_i \in R(A), i = 1, 2, \dots, n.$

已知对任何 $b \in R(A)$, x = Gb 都是相容性方程 Ax = b 的解, 故对 $a_i \in R(A)$, $x = Ga_i$ 也是方程 $Ax = a_i$ 的解, 即

$$AGa_i = a_i, \qquad i = 1, 2, \cdots, n.$$

从而

$$AG[a_1, a_2, \cdots, a_n] = [a_1, a_2, \cdots, a_n].$$

即
$$AGA = A$$
, 所以 $G \in A\{1\}$.

4.27

4.26

4.24

Theorem 13 (非齐次线性方程组的相容性定理). 非齐次线性方程组 Ax = b 有解的充分必要条件是

$$AA^{(1)}b = b.$$

证: 设 Ax = b 有解, 则存在 $y \in \mathbb{C}^n$, 使得 Ay = b. 则

$$\mathbf{A}\mathbf{A}^{(1)}\mathbf{b} = \mathbf{A}\mathbf{A}^{(1)}\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{y} = \mathbf{b}.$$

反之, 设 $AA^{(1)}b = b$, 则 $y = A^{(1)}b$ 为方程组 Ax = b 的解.

ত 直观的解释是: 注意到 $AA^{(1)}$ 为投影算子, 故

$$AA^{(1)}b = b \Leftrightarrow b \in R(AA^{(1)})$$

$$\Leftrightarrow b \in R(A) \qquad (因 R(AA^{(1)}) = R(A))$$

$$\Leftrightarrow Ax = b$$
有解.

Theorem 14 (齐次线性方程组的解的结构定理). n 元齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的通解为

$$\boldsymbol{x} = (\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},\tag{9}$$

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证:将 (9)式代入方程组 Ax = 0,得

$$A(I_n - A^{(1)}A)y = (A - AA^{(1)}A)y = (A - A)y = 0,$$

故 (9) 是 Ax = 0 的解.

反之, 设 η 是 Ax = 0 的一个解, 则

$$(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{\eta} = \boldsymbol{\eta} - \boldsymbol{A}^{(1)}\boldsymbol{A}\boldsymbol{\eta} = \boldsymbol{\eta},$$

故 (9) 是 Ax = 0 的通解.

方程组 Ax = 0 的通解 $x = (I_n - A^{(1)}A)y$ 的直观解释: 因 $A^{(1)}A$ 是幂等矩阵, 故

$$N(\boldsymbol{A}^{(1)}\boldsymbol{A}) = R(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A}).$$

又 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A})$, 得

$$N(\mathbf{A}) = R(\mathbf{I}_n - \mathbf{A}^{(1)}\mathbf{A}).$$

而 $N(\mathbf{A}) = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$, 故方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的全部解为

$$\{(\boldsymbol{I}_n - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{C}^n\}.$$

4.30

4.29

Theorem 15 (非齐次线性方程组的解的结构定理). 若 n 元非齐次线性方程组 Ax = b 有解,则其通解为

$$A^{(1)}b + (I_n - A^{(1)}A)y$$
,

其中 y 为 \mathbb{C}^n 中的任意向量, $A^{(1)}$ 为 A 的任意给定的一个 $\{1\}$ - 逆.

证: 对非齐次方程组 Ax = b, 因 $A^{(1)}b$ 是其一个特解, 而 $(I_n - A^{(1)}A)y$ 是其对 应齐次方程 Ax = 0 的通解, 故 Ax = b 通解为

$$A^{(1)}b + (I_n - A^{(1)}A)y$$

其中 y 为 \mathbb{C}^n 中的任意向量.

3 广义逆矩阵 $A^{(1,2)}$

3.1 广义逆 $A^{(1,2)}$ 的定义及存在性

Definition 16. 设 $A \in \mathbb{C}^{m \times n}$, 若 $G \in \mathbb{C}^{n \times m}$ 满足

$$(1) \quad \mathbf{AGA} = \mathbf{A},$$

(2)
$$GAG = G$$
,

则称 G 为 A 的 $\{1,2\}$ -逆, 记为 $A^{(1,2)}$.

记 A 的 $\{1,2\}$ -逆的全体为 $A\{1,2\}$, 即

$$A{1,2} = {G \mid AGA = A, GAG = G}.$$

类似地, 若 $G \in \mathbb{C}^{n \times m}$ 只满足

$$GAG = G$$
.

则称 G 为 A 的 $\{2\}$ -逆, 记为 $A^{(2)}$, 且记

$$A\{2\} = \{G \mid GAG = G\}.$$

对于逆矩阵 A^{-1} 有 $(A^{-1})^{-1} = A$, 但这对 $A^{(1)}$ 一般不成立. 如

$$m{A} = egin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \qquad m{A}^{(1)} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

但

$$A^{(1)}AA^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \neq A^{(1)}.$$

即 $(A^{(1)})^{(1)} \neq A$.

在 $\{1,2\}$ -逆的定义 (1), (2) 两式中, \mathbf{A} 与 \mathbf{G} 的地位是对称的, 故 \mathbf{A} 与 \mathbf{G} 互为 $\{1,2\}$ -逆. 所以又把 $\{1,2\}$ -逆叫做自反广义逆.

即若 G 是 A 的一个 $\{1,2\}$ -逆, 则 A 也是 G 的一个 $\{1,2\}$ -逆, 或者说形式上有

4.31

4.32

"
$$(\mathbf{A}^{(1,2)})^{(1,2)} = \mathbf{A}$$
."

当然, 严格的写法应该是:

$$A \in A^{(1,2)}\{1,2\}.$$

Theorem 17. 设 $Y, Z \in A\{1\}$, 且令 X = YAZ, 则 $X \in A\{1, 2\}$.

证: 由 AYA = A, AZA = A, 得

$$AXA = AYAZA \qquad (X = YAZ)$$

$$= AZA \qquad \qquad (AYA = A)$$

= A,

$$XAX = YAZAYAZ \qquad (X = YAZ)$$

$$= Y(AZA)YAZ = YAYAZ \qquad (AZA = A)$$

$$= Y(AYA)Z = YAZ \qquad (AYA = A)$$

= X,

所以 $X \in A\{1,2\}$.

☞ 由 **A** 的 {1}-逆存在, 可以推得 **A** 的 {1,2}-逆也存在.

3.2 广义逆 $A^{(1,2)}$ 的性质

Theorem 18. 设 $A \in \mathbb{C}^{m \times n}$, 已知 $X \in A\{1\}$, 则

$$\boldsymbol{X} \in \boldsymbol{A}\{1,2\} \Leftrightarrow \operatorname{rank} \boldsymbol{X} = \operatorname{rank} \boldsymbol{A}.$$

证: 必要性. 若 $X \in A\{1,2\}$, 则 AXA = A, XAX = X, 因为

$$\operatorname{rank} \mathbf{A} = \operatorname{rank}(\mathbf{A} \mathbf{X} \mathbf{A}) \leqslant \operatorname{rank} \mathbf{X},$$

$$\operatorname{rank} \boldsymbol{X} = \operatorname{rank}(\boldsymbol{X} \boldsymbol{A} \boldsymbol{X}) \leqslant \operatorname{rank} \boldsymbol{A},$$

所以 $\operatorname{rank} X = \operatorname{rank} A$.

充分性. 己知 $X \in A\{1\}$, 要证明 $X \in A\{1,2\}$, 只需要证明 $X \in A\{2\}$.

由 $X \in A\{1\}$, 则

$$rank(XA) = rank A.$$

又己知 $\operatorname{rank} X = \operatorname{rank} A$, 故

$$rank(\boldsymbol{X}\boldsymbol{A}) = rank \boldsymbol{X}.$$

即

$$\dim R(\mathbf{X}\mathbf{A}) = \dim R(\mathbf{X}).$$

显然又有 $R(XA) \subseteq R(X)$, 从而有

$$R(\boldsymbol{X}\boldsymbol{A}) = R(\boldsymbol{X}).$$

4.33

4.34

从而 X 的列向量可以由 XA 的列向量线性表示, 即存在矩阵 $Y \in \mathbb{C}^{n \times m}$, 使

$$XAY = X$$
.

所以

$$XAX = XA(XAY) = X(AXA)Y = XAY = X.$$

故 $X \in A\{2\}$, 从而 $X \in A\{1,2\}$.

从上述定理可知,下列三个表述中的任何两个都蕴含着第三个成立: (1) $X \in A\{1\}$; (2) $X \in A\{2\}$; (3) rank $X = \operatorname{rank} A$.

此定理给出了一个判断 $A^{(1)}$ 是否是 $A^{(1,2)}$ 的一个简单方法: 只需检查 A 与 $A^{(1)}$ 的秩是否相等.

比如,由 $A^{(1)}$ 的通式

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{10}$$

取

$$oldsymbol{A}^{(1)} = oldsymbol{Q} egin{bmatrix} oldsymbol{I_r} & oldsymbol{O} \ oldsymbol{O} & oldsymbol{O} \end{bmatrix} oldsymbol{P},$$

即为 A 的一个 $\{1,2\}$ -逆.

得到求某个 $A^{(1,2)}$ 的一个方法:

- (1) 将 A 化为标准形 Φ , 即有可逆矩阵 P, Q, 使得 $PAQ = \Phi$;
- (2) 则 $Q\Phi^{T}P$ 为 A 的一个 $\{1,2\}$ -逆.

Theorem 19. 设 $A \in \mathbb{C}^{m \times n}$, 则

1. $AA^{(1,2)}$ 和 $A^{(1,2)}A$ 都是幂等阵, 且

$$rank(\mathbf{A}\mathbf{A}^{(1,2)}) = rank(\mathbf{A}^{(1,2)}\mathbf{A}) = rank \mathbf{A}.$$

2. rank $\mathbf{A} = \operatorname{rank} \mathbf{A}^{(1,2)}$.

 $A^{(1,2)}$ 当然满足 $A^{(1)}$ 的相关性质. 再比如:

- 1. $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A});$
- 2. $N(\mathbf{A}^{(1,2)}\mathbf{A}) = N(\mathbf{A}).$

Theorem 20. 设 $A \in \mathbb{C}^{m \times n}$, 则

- 1. $R(\mathbf{A}) \oplus N(\mathbf{A}^{(1,2)}) = \mathbb{C}^m$.
- 2. $N(\mathbf{A}) \oplus R(\mathbf{A}^{(1,2)}) = \mathbb{C}^n$.

证: (1) 由 $AA^{(1,2)} \in \mathbb{C}^{m \times m}$ 为幂等矩阵, 即为 \mathbb{C}^m 中的投影算子, 所以

$$\mathbb{C}^m = R(\mathbf{A}\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}\mathbf{A}^{(1,2)}).$$

由 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 知 $R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A})$. 下证 $N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})$.

4.36

4 37

由 {1}-逆的性质 $N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A})$, 有

$$N(\mathbf{A}^{(1,2)}\mathbf{A}) = N(\mathbf{A}),$$

因 $A^{(1,2)}$ 与 A 互为 $\{1,2\}$ -逆, 故上式中 $A^{(1,2)}$ 与 A 可以互换, 即

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

№ 即言对 {1,2}-逆, 不仅有与 {1}-逆相同的结果

$$N(\mathbf{A}^{(1,2)}\mathbf{A}) = N(\mathbf{A}),$$

而且有

$$N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)}).$$

根本原因在于 {1,2}-逆的自反性.

同理, 由
$$R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$$
, 知

$$R(\mathbf{A}\mathbf{A}^{(1,2)}) = R(\mathbf{A}).$$

由 {1,2}-逆的自反性, 有

$$R(\mathbf{A}^{(1,2)}\mathbf{A}) = R(\mathbf{A}^{(1,2)}).$$

(2) 由 $\mathbf{A}^{(1,2)}\mathbf{A} \in \mathbb{C}^{n \times n}$ 为幂等矩阵, 即为 \mathbb{C}^n 中的投影算子, 所以

$$\mathbb{C}^n = R(\mathbf{A}^{(1,2)}\mathbf{A}) \oplus N(\mathbf{A}^{(1,2)}\mathbf{A}) = R(\mathbf{A}^{(1,2)}) \oplus N(\mathbf{A}).$$

得证 $\mathbb{C}^n = N(\mathbf{A}) \oplus R(\mathbf{A}^{(1,2)}).$

3.3 广义逆 $A^{(1,2)}$ 的构造

前述提到, 若 rank $\mathbf{A}^{(1)} = \operatorname{rank} \mathbf{A}$, 则 $\mathbf{A}^{(1)} \in \mathbf{A}$ 的一个 $\{1, 2\}$ -逆. 从而, 若 $\mathbf{A} \in \mathbb{C}_r^{m \times n}$ 的 $\{1\}$ -逆为

$$\boldsymbol{A}^{(1)} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{I}_r & \boldsymbol{G}_{12} \\ \boldsymbol{G}_{21} & \boldsymbol{G}_{22} \end{bmatrix} \boldsymbol{P}, \tag{11}$$

令

$$G=Qegin{bmatrix} I_r & O \ O & O \end{bmatrix} P,$$

则 $\operatorname{rank} \boldsymbol{G} = \operatorname{rank} \boldsymbol{A}$,故 $\boldsymbol{G} \in \boldsymbol{A}\{1, 2\}$.

Theorem 21. 设 $A \in \mathbb{C}_r^{m \times n}$,及 P,Q 分别为 m 阶和 n 阶非奇异方阵,且 $PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$,则有

$$A^{(1,2)} = Q \begin{bmatrix} I_r & G_{12} \\ G_{21} & G_{21}G_{12} \end{bmatrix} P,$$
 (12)

其中 G_{12} , G_{21} , 分别是 $r \times (m-r)$, $(n-r) \times r$ 阶的任意矩阵.

4.39

4.40

☞ 事实上

$$egin{bmatrix} egin{bmatrix} egin{matrix} egin{matrix$$

故 $m{Q}egin{bmatrix} m{I_r} & m{G_{12}} \\ m{G_{21}} & m{G_{21}G_{12}} \end{bmatrix} m{P}$ 的秩为 r, 又该式为 $m{A}$ 的一个 $\{1\}$ -逆, 从而为 $m{A}$ 的一个 $\{1,2\}$ -逆.

4.42

4.43

4.44

Theorem 22. 设 $A \in \mathbb{C}_r^{m \times n}$ 的满秩分解式为

$$oldsymbol{A} = oldsymbol{B} oldsymbol{C}, \qquad oldsymbol{B} \in \mathbb{C}_{oldsymbol{r}}^{m imes r}, \ oldsymbol{C} \in \mathbb{C}_{oldsymbol{r}}^{r imes n}.$$

则 $G = C_{\mathrm{R}}^{-1}B_{\mathrm{L}}^{-1}$ 是 A 的一个 $\{1,2\}$ -逆, 即可取

$$A^{(1,2)} = C_{\rm R}^{-1} B_{\rm L}^{-1}$$

证: 注意到 $B_L^{-1}B = I$, $CC_R^{-1} = I$, 取 $G = C_R^{-1}B_L^{-1}$, 则

$$AGA = {}^{BC}C_{
m R}^{-1}B_{
m L}^{-1}{}^{BC} = BC = A,$$
 $GAG = C_{
m R}^{-1}B_{
m L}^{-1}{}^{BC}C_{
m R}^{-1}B_{
m L}^{-1} = C_{
m R}^{-1}B_{
m L}^{-1} = G,$

故 $G \in A^{(1,2)}$.

☞ (1) 若 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 是行满秩的,则 $\mathbf{A} = \mathbf{I}_m \mathbf{A}$,从而 $\mathbf{G} = \mathbf{A}_{\mathrm{R}}^{-1} \mathbf{I}_{\mathrm{L}}^{-1} = \mathbf{A}_{\mathrm{R}}^{-1}$ 是 \mathbf{A} 的一个 {1,2}-逆.

(2) 若 $\mathbf{A} \in \mathbb{C}^{m \times n}$ 是列满秩的, 则 \mathbf{A}_{L}^{-1} 是 \mathbf{A} 的一个 $\{1, 2\}$ -逆.

Example 23. 设 $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$, 试求 \mathbf{A} 的一个 $\{1,2\}$ -逆.

解: 因 $\mathbf{A} \in \mathbb{R}_2^{3 \times 2}$, 故

$$\mathbf{A}^{(1,2)} = \mathbf{A}_{L}^{-1} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} -4 & 7 & 1 \\ 7 & -4 & 1 \end{bmatrix}.$$

Example 24. 设 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix}$, 试求 \mathbf{A} 的一个 $\{1,2\}$ -逆.

解: 因为 rank A = 2 < 3, 所以 A 既非行满秩矩阵也非列满秩矩阵, 先求 A 的满秩分解. 对矩阵 A 进行初等行变换, 得到其行最简形矩阵.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 4 & 0 \end{bmatrix} \xrightarrow[r_2 \times \frac{1}{2}]{r_2 \times \frac{1}{2}} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

取此矩阵的前两行构成矩阵 C、取 A 的第 1 列和第 3 列构成矩阵 B、即

$$m{B} = \left[egin{array}{ccc} 1 & 0 \\ 0 & 2 \\ 2 & 0 \end{array}
ight], \qquad m{C} = \left[egin{array}{ccc} 1 & 2 & 0 \\ 0 & 0 & 1 \end{array}
ight].$$

则 A 的满秩分解为 A = BC.

于是

$$C_{\mathbf{R}}^{-1} = C^{\mathbf{T}} (CC^{\mathbf{T}})^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 5 \end{bmatrix},$$

 $\mathbf{B}_{R}^{-1} = (\mathbf{B}^{T}\mathbf{B})^{-1}\mathbf{B}^{T} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \\
= \frac{1}{10} \begin{bmatrix} 2 & 0 & 4 \\ 0 & 5 & 0 \end{bmatrix},$

因此

$$m{A}^{(1,2)} = m{C}_{
m R}^{-1} m{B}_{
m L}^{-1} = rac{1}{50} egin{bmatrix} 2 & 0 & 4 \ 4 & 0 & 8 \ 0 & 25 & 0 \end{bmatrix}. \quad \Box$$

因为 \boldsymbol{A} 的满秩分解不是唯一的, 所以由上述方法得到的 $\boldsymbol{A}^{(1,2)}$ 不唯一. 或者取

$$oldsymbol{A}^{(1,2)} = oldsymbol{Q} egin{bmatrix} oldsymbol{I}_r & O \ O & O \end{bmatrix} oldsymbol{P}.$$

即,由

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 2 & 4 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & -2 & 0 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

得

$$m{A}^{(1,2)} = egin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & rac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \\ 0 & rac{1}{2} & 0 \\ -2 & 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & rac{1}{2} & 0 \end{bmatrix}.$$

4.48

4.45

4.46

4 广义逆矩阵 $A^{(1,3)}$

4.1 广义逆 $A^{(1,3)}$ 的定义和构造

Definition 25. 设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- (1) AGA = A,
- $(3) \quad (\boldsymbol{A}\boldsymbol{G})^{\mathrm{H}} = \boldsymbol{A}\boldsymbol{G},$

则称 G 为 A 的 $\{1,3\}$ -逆, 记为 $A^{(1,3)}$.

记 A 的 $\{1,3\}$ -逆的全体为 $A\{1,3\}$, 即

$$A{1,3} = {G \mid AGA = A, (AG)^{H} = AG}.$$

$^{\text{CF}}$ 此时 AG 是正交投影算子.

因 $AA^{(1)}$ 是幂等阵, 则 AG 是幂等矩阵; 又 AG 是 Hermite 矩阵, 故 AG 是正交投影算子.

Definition 26. 设 $A \in \mathbb{C}^{m \times n}$, 若 $G \in \mathbb{C}^{n \times m}$ 满足

- (1) AGA = A,
- (2) GAG = G,
- $(3) \quad (\mathbf{A}\mathbf{G})^{\mathrm{H}} = \mathbf{A}\mathbf{G},$

则称 G 为 A 的 $\{1,2,3\}$ -逆, 记为 $A^{(1,2,3)}$.

记 A 的 $\{1,2,3\}$ -逆的全体为 $A\{1,2,3\}$, 即

$$A{1,2,3} = {G \mid AGA = A, GAG = G, (AG)^{H} = AG}.$$

下面先证明 A 的 $\{1,2,3\}$ -逆存在, 从而也就证明了 A 的 $\{1,3\}$ -逆存在.

Theorem 27 (Urguhart). 对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$oldsymbol{Y} = oldsymbol{\left(A^{\mathrm{H}}A\right)^{(1)}A^{\mathrm{H}}} \in oldsymbol{A}\{1,2,3\}.$$

 $\overline{\mathbf{u}}$: 依次证明 \mathbf{Y} 满足定义的 3 个条件.

(1) 由教材 P.116 定理 3.1.8 知, $\operatorname{rank}(\mathbf{A}^{H}\mathbf{A}) = \operatorname{rank}\mathbf{A}^{H}$, 故

$$\dim R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) = \dim R(\mathbf{A}^{\mathrm{H}}).$$

又 $R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) \subseteq R(\mathbf{A}^{\mathrm{H}})$, 所以

$$R(\mathbf{A}^{\mathrm{H}}\mathbf{A}) = R(\mathbf{A}^{\mathrm{H}}).$$

故 A^{H} 的列向量是 $A^{H}A$ 的列向量的线性组合, 则存在矩阵 $U \in \mathbb{C}^{n \times m}$, 使得

$$A^{\mathrm{H}} = A^{\mathrm{H}}AU$$
.

4.49

$$A = U^{\mathrm{H}} A^{\mathrm{H}} A.$$

从而

$$AYA = \mathbf{U}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A} (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{(1)} \mathbf{A}^{\mathrm{H}} \mathbf{A} \qquad (\mathbf{A} = \mathbf{U}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A}, \ Y = (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{(1)} \mathbf{A}^{\mathrm{H}})$$

$$= \mathbf{U}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A} \qquad (\mathbf{A}^{\mathrm{H}} \mathbf{A})^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A} = \mathbf{A}^{\mathrm{H}} \mathbf{A})$$

$$= \mathbf{A}. \qquad (\mathbf{A} = \mathbf{U}^{\mathrm{H}} \mathbf{A}^{\mathrm{H}} \mathbf{A})$$

故 $Y \in A\{1\}$.

(2) 由 $A^{(1)}$ 的性质知, rank $Y \ge \operatorname{rank} A$. 又

$$\operatorname{rank} \boldsymbol{Y} = \operatorname{rank} \left(\left(\boldsymbol{A}^{\operatorname{H}} \boldsymbol{A} \right)^{(1)} \boldsymbol{A}^{\operatorname{H}} \right) \leqslant \operatorname{rank} \boldsymbol{A}^{\operatorname{H}} = \operatorname{rank} \boldsymbol{A},$$

所以

$$\operatorname{rank} \boldsymbol{Y} = \operatorname{rank} \boldsymbol{A}.$$

由定理 18 知 $Y \in A\{1,2\}$.

(3) 又因为

$$AY = U^{H}A^{H}A(A^{H}A)^{(1)}A^{H}$$
 $(A = U^{H}A^{H}A, Y = (A^{H}A)^{(1)}A^{H})$
 $= U^{H}A^{H}A(A^{H}A)^{(1)}A^{H}AU$ $(A^{H} = A^{H}AU)$
 $= U^{H}A^{H}AU$ $(A^{H}A)^{H}A^{H}A = A^{H}AU$
 $= (AU)^{H}(AU),$

从而

$$(\boldsymbol{A}\boldsymbol{Y})^{\mathrm{H}} = ((\boldsymbol{A}\boldsymbol{U})^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{U}))^{\mathrm{H}} = (\boldsymbol{A}\boldsymbol{U})^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{U}) = \boldsymbol{A}\boldsymbol{Y}.$$

所以 $Y \in A\{1,2,3\}$.

☞ 由 $Y \in A\{1,2,3\}$ 有 $Y \in A\{1,3\}$, 即任一矩阵 A 的 $\{1,3\}$ -逆是存在的.

Theorem 28. 设 $G \in A\{1,3\}$, 则

$$A\{1,3\} = \{G + (I - GA)Y \mid Y$$
 是任意的 $n \times m$ 阶矩阵 $\}$.

证: 记 Z = G + (I - GA)Y. 任意 $G \in A\{1\}$, 有

$$A(I - GA) = A - AGA = O.$$

故 AZ = AG. 从而

$$AZA = AGA = A$$

所以 $Z \in A\{1\}$.

又因为

$$(\boldsymbol{A}\boldsymbol{Z})^{\mathrm{H}} = (\boldsymbol{A}\boldsymbol{G})^{\mathrm{H}}$$
 $(\boldsymbol{A}\boldsymbol{Z} = \boldsymbol{A}\boldsymbol{G})$

4.51

4.52

$$=AG$$
 $\left((AG)^{\mathrm{H}}=AG\right)$ $=AZ,$ $\left(AZ=AG\right)$

所以 $Z \in A\{1,3\}$.

反过来, 任取 $X \in A\{1,3\}$, 令 Y = X - G, 则

$$G + (I - GA)Y$$
= $G + (I - GA)(X - G)$
= $G + X - G - GAX - GAG$
= $X - GAX - GAG$
= $X - GAGAX - GAG$
= $X - GAGAX - GAG$
= $X - G(AG)^{H}(AX)^{H} - GAG$
($AG = (AG)^{H}, AX = (AX)^{H}$)
= $X - GG^{H}A^{H}X^{H}A^{H} - GAG$
= $X - GG^{H}A^{H} - GAG$
($AXA = A$)
= $X - G(AG)^{H} - GAG$
= $X - G(AG)^{H} - GAG$
($AXA = A$)

故任意 $X \in A\{1,3\}$, 都可以用 G + (I - GA)Y 表达. 得证.

4.2 广义逆 $A^{(1,3)}$ 应用于解方程组

最小二乘法

 $Example\ 29$. 已知某种材料在生产过程中的废品率 y 与某种化学成分 x 有关. 下列表中记载了某工厂生产中 y 与相应的 x 的几组数值:

$$y(\%)$$
 1.00
 0.9
 0.9
 0.81
 0.60
 0.56
 0.35

 $x(\%)$
 3.6
 3.7
 3.8
 3.9
 4.0
 4.0
 4.2

我们想找出 y 对 x 的一个近似公式.

解: 把表中数值画出图来看,发现它的变换趋势近于一条直线. 因此我们选取 x的一次式 ax + b 来表达. 当然最好能选到适当的 a, b 使得下面的等式

$$3.6a + b - 1.00 = 0,$$

$$3.7a + b - 0.9 = 0,$$

$$3.8a + b - 0.9 = 0,$$

$$3.9a + b - 0.81 = 0,$$

$$4.0a + b - 0.60 = 0,$$

$$4.1a + b - 0.56 = 0,$$

$$4.2a + b - 0.35 = 0$$

都成立. 实际上是不可能的 (rank $\mathbf{A} = 2 \neq \text{rank}[\mathbf{A}, \mathbf{b}] = 3$), 任何 a, b 代入上面各式都有误差. 于是想找到 a, b 使得上面各式的误差的平方和最小, 即找 a, b 使

$$(3.6a + b - 1.00)^2 + (3.7a + b - 0.9)^2 + (3.8a + b - 0.9)^2 + (3.9a + b - 0.81)^2$$

4.55

4.54

$$+(4.0a+b-0.60)^2+(4.1a+b-0.56)^2+(4.2a+b-0.35)^2$$

最小. 这里讨论的是误差的平方即二乘方, 故称为最小二乘法.

矛盾方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 是没有解的, 但希望找到近似解 \mathbf{x}_0 使误差 $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ 为最小. 若 $\mathbf{x}_0 \in \mathbb{C}^n$ 满足

$$\|Ax_0 - b\| = \min_{x \in \mathbb{C}^n} \|Ax - b\|,$$

即

$$||Ax_0-b|| \leqslant ||Ax-b||,$$

则称近似解 x_0 为矛盾方程 Ax = b 的最小二乘 (least squares) 解, 简称为 L-S 解.

矛盾方程无解, 故最小二乘解并不是矛盾方程 Ax = b 的解, 只是其近似解.

Theorem 30. 设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 任取 $G \in A\{1,3\}$, 则 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

证: 由 $\|Ax - b\|^2 = \|AGb - b + Ax - AGb\|^2 = \|(AG - I)b + A(x - Gb)\|^2$,又因为

$$egin{aligned} \left(oldsymbol{A}(oldsymbol{x} - oldsymbol{G} oldsymbol{b}
ight) &= oldsymbol{b}^{ ext{H}} (oldsymbol{A} oldsymbol{G} - oldsymbol{I})^{ ext{H}} oldsymbol{A} (oldsymbol{x} - oldsymbol{G} oldsymbol{b}) &= oldsymbol{b}^{ ext{H}} (oldsymbol{A} oldsymbol{G} - oldsymbol{I}) oldsymbol{A} (oldsymbol{x} - oldsymbol{G} oldsymbol{b}) &= 0, \end{aligned}$$

故 $A(x-Gb) \perp (AG-I)b$. 所以

$$||Ax - b||^2 = ||AGb - b||^2 + ||Ax - AGb||^2,$$

故对任意 $x \in \mathbb{C}^n$ 都有

$$\|AGb - b\|^2 \le \|Ax - b\|^2$$
,

因此 $x_0 = Gb$ 是方程组 Ax = b 的最小二乘解.

(1) 对 $A(x - Gb) \perp (AG - I)b$ 的说明. 事实上, 对任意 $\alpha \in \mathbb{C}^m$, $\beta \in \mathbb{C}^n$, 都有

$$A\alpha \perp (AG - I_n)\beta$$
.

其中 $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{G} \in \mathbf{A}\{1,3\}$.

证: 注意到 AG 是正交投影算子, 从而

$$R(\mathbf{AG}) \perp N(\mathbf{AG}).$$

又
$$R(\mathbf{AG}) = R(\mathbf{A}), N(\mathbf{AG}) = R(\mathbf{I} - \mathbf{AG}) = R(\mathbf{AG} - \mathbf{I}),$$
 故
$$R(\mathbf{A}) \perp R(\mathbf{AG} - \mathbf{I}).$$

得 $A\alpha \perp (AG - I)\beta$.

② (2) "对任意 $x \in \mathbb{C}^n$ 都有 $\|AGb - b\|^2 \leq \|Ax - b\|^2$ " 的几何意义. 假定 Ax = b 是矛盾方程, 故 $b \notin R(A)$.

4.58

4.57

4.60

前述已证 $R(\mathbf{A}) \perp R(\mathbf{AG} - \mathbf{I})$, 故

$$(\boldsymbol{A}\boldsymbol{G} - \boldsymbol{I}_n)\boldsymbol{b} \perp R(\boldsymbol{A}).$$

故对任意 $x \in \mathbb{C}^n$ 都有 $||AGb - b||^2 \leqslant ||Ax - b||^2$.

又 AGb 是 b 沿 N(AG) 方向在 R(A) 的正交投影, 故 Ax = AGb 时, $\|Ax - b\|^2$ 最小. (注意 N(A) 不一定垂直于 R(A).)

Corollary 31. 设 $G \in A\{1,3\}$, 则 $x_0 \in \mathbb{C}^n$ 是方程组 Ax = b 的最小二乘解的充分必要条件为: x_0 是方程组

$$Ax = AGb$$

的解.

证: 若 $G \in A\{1,3\}$, 则对任意 $x \in \mathbb{C}^n$ 都有

$$\|Ax - b\|^2 = \|AGb - b\|^2 + \|Ax_0 - AGb\|^2.$$

如果 x_0 是方程组 Ax = b 的最小二乘解, 则应有

$$\|Ax_0 - b\|^2 = \|AGb - b\|^2.$$

所以

$$\|\boldsymbol{A}\boldsymbol{x}_0 - \boldsymbol{A}\boldsymbol{G}\boldsymbol{b}\|^2 = 0$$

则

$$Ax_0 - AGb = 0,$$

 $\mathbb{P} Ax_0 = AGb.$

反之, 若 x_0 满足 Ax = AGb, 则必有

$$\|Ax_0 - b\|^2 = \|AGb - b\|^2.$$

即 x_0 也是方程组 Ax = b 的最小二乘解.

Corollary 32. 方程组 Ax = b 的最小二乘解的通式为

$$x = Gb + (I - GA)y,$$

其中 $G \in A\{1,3\}$, y 是 \mathbb{C}^n 中的任意向量.

21

4.61

4.62

4.63

证: 由推理 31 知, $x \in \mathbb{C}^n$ 是方程组 Ax = b 的最小二乘解的充分必要条件为: x是方程组

$$Ax = AGb$$

的解,也就是方程组

$$A(x - Gb) = 0 (13)$$

的解. 注意到齐次方程组 Ax = 0 的通解为 $(I_n - A^{(1)}A)y$ (由定理 15 知), 故 (13) 式的通解为

$$\boldsymbol{x} - \boldsymbol{G}\boldsymbol{b} = (\boldsymbol{I} - \boldsymbol{A}^{(1)}\boldsymbol{A})\boldsymbol{y},$$

即 $x = Gb + (I - A^{(1)}A)y$, 其中 y 是 \mathbb{C}^n 中的任意向量. 显然上述通解也可以写成

 $x = Gb + (I - GA)y, \qquad G \in A\{1, 3\},$

其中 y 是 \mathbb{C}^n 中的任意向量.

₩ 从通式可以看出, 只有 A 是列满秩时, 最小二乘解才是唯一的, 且为 $x_0 = (A^H A)^{-1} A^H b$. 否则, 便有无穷多个最小二乘解.

 $Example\ 33.$ 求矛盾方程组 $\begin{cases} x_1+2x_2=1, \\ 2x_1+x_2=0, \text{ 的最小二乘解.} \\ x_1+x_2=0 \end{cases}$ 解: 系数矩阵 $\mathbf{A}=\begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$ 为列满秩矩阵, 故

$$\mathbf{A}^{(1,3)} = (\mathbf{A}^{\mathrm{H}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{H}} = \frac{1}{11} \begin{bmatrix} -4 & 7 & 1 \\ 7 & -4 & 1 \end{bmatrix},$$

最小二乘解为

$$\boldsymbol{x}_0 = \boldsymbol{A}^{(1,3)} \boldsymbol{b} = \frac{1}{11} \begin{bmatrix} -4 \\ 7 \end{bmatrix}. \quad \Box$$

广义逆矩阵 $A^{(1,4)}$

5.1 广义逆 $A^{(1,4)}$ 的定义和构造

Definition 34. 设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

$$(1) \quad \mathbf{AGA} = \mathbf{A},$$

$$(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$$

则称 G 为 A 的 $\{1,4\}$ -逆, 记为 $A^{(1,4)}$.

4.64

4.65

记 A 的 $\{1,4\}$ -逆的全体为 $A\{1,4\}$, 即

$$A\{1,4\} = \{G \mid AGA = A, (GA)^{H} = GA\}.$$

GA 是正交投影算子.

Definition 35. 设 $\mathbf{A} \in \mathbb{C}^{m \times n}$, 若 $\mathbf{G} \in \mathbb{C}^{n \times m}$ 满足

- $(1) \quad \mathbf{AGA} = \mathbf{A},$
- (2) GAG = G,
- $(4) \quad (\mathbf{G}\mathbf{A})^{\mathrm{H}} = \mathbf{G}\mathbf{A},$

则称 G 为 A 的 $\{1,2,4\}$ -逆, 记为 $A^{(1,2,4)}$.

记 A 的 $\{1,2,4\}$ -逆的全体为 $A\{1,2,4\}$, 即

$$\boldsymbol{A}\{1,2,4\} = \{\boldsymbol{G} \mid \boldsymbol{A}\boldsymbol{G}\boldsymbol{A} = \boldsymbol{A}, \boldsymbol{G}\boldsymbol{A}\boldsymbol{G} = \boldsymbol{G}, (\boldsymbol{G}\boldsymbol{A})^{\mathrm{H}} = \boldsymbol{G}\boldsymbol{A}\}.$$

下面先证明 A 的 $\{1,2,4\}$ -逆存在, 从而也就证明了 A 的 $\{1,4\}$ -逆存在.

Theorem 36. 对任一矩阵 $A \in \mathbb{C}^{m \times n}$, 都有

$$\boldsymbol{X} = \boldsymbol{A}^{\mathrm{H}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}})^{(1)} \in \boldsymbol{A} \{1, 2, 4\}.$$

Theorem 37. 设 $G \in A\{1,4\}$, 则

$$A{1,4} = {G + Z(I - AG) \mid Z}$$
 是任意的 $n \times m$ 阶矩阵}.

5.2 广义逆 $A^{(1,4)}$ 应用于解方程组

问题: 若方程组 Ax = b 相容, 其解可能有无穷多个, 怎样求具有最小范数的解, 即求满足

$$\min_{\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}} \lVert \boldsymbol{x} \rVert_2$$

的解 x, 其中 $\|\cdot\|_2$ 是欧氏范数. 可以证明, 满足该条件的解是唯一的, 称之为最小范数 (least-norm) 解, 简称 L-N 解.

Lemma 38. 设 $A \in \mathbb{C}^{m \times n}$, 则有

$$(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A}).$$

证: 因 $A^{(1,4)}A \in \mathbb{C}^{n \times n}$, 且为幂等的 Hermite 矩阵, 故其可看成 \mathbb{C}^n 上的正交投 影算子. 从而有

$$\left(R(\mathbf{A}^{(1,4)}\mathbf{A})\right)^{\perp} = N(\mathbf{A}^{(1,4)}\mathbf{A}).$$

又由定理 11 的结论 $R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}}) = R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A}^{(1)}\mathbf{A}) = N(\mathbf{A}),$ 可知

$$R(\mathbf{A}^{(1,4)}\mathbf{A}) = R((\mathbf{A}^{(1,4)}\mathbf{A})^{\mathbf{H}}) = R(\mathbf{A}^{\mathbf{H}}),$$

$$N(\mathbf{A}^{(1,4)}\mathbf{A}) = N(\mathbf{A}).$$

所以

$$(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A}). \quad \Box$$

4.71

4.67

4.68

4.69

Lemma 39. 设 $A \in \mathbb{C}^{m \times n}$, $b \in R(A)$, 则相容性方程 Ax = b 在且仅在 $R(A^{H})$ 上有唯一的最小范数解 x_0 .

几何解释: $(R(\mathbf{A}^{\mathrm{H}}))^{\perp} = N(\mathbf{A})$, 但 $R(\mathbf{A})$ 不一定与 $N(\mathbf{A})$ 正交. 方程 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解, 故 $\mathbf{b} \in R(\mathbf{A})$.

 \boldsymbol{A} 是平行于 $N(\boldsymbol{A})$ 向 $R(\boldsymbol{A})$ 的投影, l 过点 \boldsymbol{b} 且平行于 $N(\boldsymbol{A})$, \boldsymbol{x} 连接零点和 l 上任意一点, 则 \boldsymbol{x} 的投影一定是 \boldsymbol{b} .

 x_0 是 l 与 $R(A^H)$ 的交点, 显然 x_0 满足 Ax = b, 且具有最小范数.

Theorem 40. 设方程组 Ax=b 有解,则 x_0 是其最小范数解的充分必要条件是 $x_0=A^{(1,4)}b$.

6 M-P 广义逆矩阵

6.1 M-P 广义逆的存在及性质

Theorem 41. 对任意 $A \in \mathbb{C}^{m \times n}$. A^+ 存在且唯一.

证: 设 A = O, 则可取 G = O. 现设 $A \neq O$, 则 A 有奇异值分解:

$$oldsymbol{A} = oldsymbol{U} egin{bmatrix} oldsymbol{S} & \ O \end{bmatrix} oldsymbol{V}^{\mathrm{H}},$$

其中 U, V 分别为 n 阶和 m 阶酉矩阵, $S = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_r)$, $\delta_1 \ge \delta_2 \ge \dots \ge \delta_r > 0$ 为 A 的正奇异值, r 为 A 的秩.

令

$$oldsymbol{G} = oldsymbol{V} egin{bmatrix} oldsymbol{S}^{-1} & \ & oldsymbol{O} \end{bmatrix} oldsymbol{U}^{ ext{H}},$$

因为

$$\begin{aligned} \boldsymbol{A}\boldsymbol{G}\boldsymbol{A} &= \boldsymbol{U} \begin{bmatrix} \boldsymbol{S} & \\ & \boldsymbol{O} \end{bmatrix} \boldsymbol{V}^{\mathrm{H}} \boldsymbol{V} \begin{bmatrix} \boldsymbol{S}^{-1} & \\ & \boldsymbol{O} \end{bmatrix} \boldsymbol{U}^{\mathrm{H}} \boldsymbol{U} \begin{bmatrix} \boldsymbol{S} & \\ & \boldsymbol{O} \end{bmatrix} \boldsymbol{V}^{\mathrm{H}} &= \boldsymbol{A}, \\ \boldsymbol{G}\boldsymbol{A}\boldsymbol{G} &= \boldsymbol{V} \begin{bmatrix} \boldsymbol{S}^{-1} & \\ & \boldsymbol{O} \end{bmatrix} \boldsymbol{U}^{\mathrm{H}} \boldsymbol{U} \begin{bmatrix} \boldsymbol{S} & \\ & \boldsymbol{O} \end{bmatrix} \boldsymbol{V}^{\mathrm{H}} \boldsymbol{V} \begin{bmatrix} \boldsymbol{S}^{-1} & \\ & \boldsymbol{O} \end{bmatrix} \boldsymbol{U}^{\mathrm{H}} &= \boldsymbol{G}, \end{aligned}$$

又

4.74

4.72

$$egin{aligned} oldsymbol{AG} & = oldsymbol{U} egin{bmatrix} oldsymbol{S}^{-1} & O \end{bmatrix} oldsymbol{V}^{ ext{H}} & = oldsymbol{U} egin{bmatrix} oldsymbol{I}_r & O \end{bmatrix} oldsymbol{U}^{ ext{H}} & O \end{bmatrix} oldsymbol{U}^{ ext{H}} & O \end{bmatrix} oldsymbol{V}^{ ext{H}} & = oldsymbol{V} oldsymbol{I}_r & O \end{bmatrix} oldsymbol{V}^{ ext{H}}, \end{aligned}$$

易知 $(\mathbf{AG})^{\mathrm{H}}=\mathbf{AG}, (\mathbf{GA})^{\mathrm{H}}=\mathbf{GA},$ 则 \mathbf{G} 满足 Penrose 方程, 所以 \mathbf{A}^+ 总是存在的.

设G与Y均是A的M-P广义逆,则

$$G = GAG$$

$$= GG^{H}A^{H} \qquad (AG = (AG)^{H})$$

$$= GG^{H}A^{H}Y^{H}A^{H} \qquad (A = AYA)$$

$$= GAGAY \qquad (G^{H}A^{H} = AG, Y^{H}A^{H} = AY)$$

$$= GAY \qquad (GAG = G)$$

$$= A^{H}G^{H}YAY \qquad (GA = A^{H}G^{H}, Y = YAY)$$

$$= A^{H}G^{H}A^{H}Y^{H}Y \qquad (A^{H}G^{H}A^{H} = A^{H})$$

$$= YAY \qquad (A^{H}Y^{H} = YA)$$

$$= Y,$$

因此, A^+ 是唯一的.

Theorem 42. 读 $A \in \mathbb{C}^{m \times n}$. 则

(1)
$$(A^+)^+ = A$$
;

(2)
$$(A^{H})^{+} = (A^{+})^{H}, (A^{T})^{+} = (A^{+})^{T};$$

(3)
$$(A^{H}A)^{+} = A^{+}(A^{H})^{+}, (AA^{H})^{+} = (A^{H})^{+}A^{+};$$

(4)
$$A^{+} = (A^{H}A)^{+}A^{H} = A^{H}(AA^{H})^{+}$$
:

(5) rank $\mathbf{A}^+ = \operatorname{rank} \mathbf{A}$;

Example~43. 任意非零向量 $m{x}$ 的 M-P 广义逆为 $\dfrac{m{x}^{\mathrm{H}}}{m{x}^{\mathrm{H}}m{x}}$. 特别地, 单位向量 $m{x}$ 的 M-P 广义逆为 $m{x}^{\mathrm{H}}$.

Example~44. 矩阵 $m{A}=\begin{bmatrix}1&0\\0&0\end{bmatrix}$ 的 M-P 广义逆为自身. 矩阵 $m{B}=\begin{bmatrix}0&1&0\\0&0&0\end{bmatrix}$ 的 M-P 广义逆为 $m{B}^{\mathrm{T}}.$

Example 45. 设
$$\mathbf{A} = [1,0], \mathbf{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, 则 (\mathbf{A}\mathbf{B})^+ = 1 而 \mathbf{B}^+\mathbf{A}^+ = \frac{1}{2},$$
 因此
$$(\mathbf{A}\mathbf{B})^+ \neq \mathbf{B}^+\mathbf{A}^+.$$

4.76

4.77

4.79

4.78

Theorem 46. 设 $A \in \mathbb{C}^{m \times n}$, 则

(1)
$$R(\mathbf{A}^{+}) = R(\mathbf{A}^{H});$$

(2)
$$N(\mathbf{A}^{+}) = N(\mathbf{A}^{H}).$$

证: (1) 由 {1}-逆的性质 $R(\mathbf{A}^{H}) = R((\mathbf{A}^{(1)}\mathbf{A})^{H})$, 有

$$R(\mathbf{A}^{\mathrm{H}}) = R((\mathbf{A}^{(1)}\mathbf{A})^{\mathrm{H}})$$

$$= R((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}}) \qquad (\mathbf{A}^{+} \in \mathbf{A}\{1\})$$

$$= R(\mathbf{A}^{+}\mathbf{A}) \qquad ((\mathbf{A}^{+}\mathbf{A})^{\mathrm{H}} = \mathbf{A}^{+}\mathbf{A})$$

$$\subseteq R(\mathbf{A}^{+}). \qquad (R(\mathbf{A}\mathbf{B}) \subseteq R(\mathbf{A}))$$

又 rank A^+ = rank A = rank A^H , 从而有 dim $R(A^+)$ = dim $R(A^H)$. 故 $R(A^+)$ = $R(A^H)$.

(2) 注意到一般地有 $N(\mathbf{A}) \subseteq N(\mathbf{B}\mathbf{A})$, 又 $\mathbf{A}^+ = (\mathbf{A}^H \mathbf{A})^+ \mathbf{A}^H$, 故

$$N(\mathbf{A}^{+}) = N((\mathbf{A}^{H}\mathbf{A})^{+}\mathbf{A}^{H}) \subseteq N(\mathbf{A}^{H}),$$

又
$$\operatorname{rank} \mathbf{A}^+ = \operatorname{rank} \mathbf{A} = \operatorname{rank} \mathbf{A}^H$$
,从而 $N(\mathbf{A}^+) = N(\mathbf{A}^H)$.

6.2 M-P 广义逆的几种显式表示

Theorem 47 (A^+ 的满秩算法). 1. 设 A 为列满秩矩阵, 则 $A^+ = (A^H A)^{-1} A^H$;

- 2. 设 \mathbf{A} 为行满秩矩阵, 则 $\mathbf{A}^+ = \mathbf{A}^{\mathrm{H}}(\mathbf{A}\mathbf{A}^{\mathrm{H}})^{-1}$;
- 3. 设 $A = LR \in \mathbb{C}^{m \times n}$, 其中 L 为列满秩矩阵, R 为行满秩矩阵. 则

$$\boldsymbol{A}^+ = \boldsymbol{R}^+ \boldsymbol{L}^+ = \boldsymbol{R}^{\mathrm{H}} (\boldsymbol{R} \boldsymbol{R}^{\mathrm{H}})^{-1} (\boldsymbol{L}^{\mathrm{H}} \boldsymbol{L})^{-1} \boldsymbol{L}^{\mathrm{H}}.$$

Example 48. 已知 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$, 用满秩分解求 \mathbf{A}^+ .

 \mathbf{m} : 将 \mathbf{A} 化为行最简形,

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_2 - 2r_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_3 - r_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

故 A 的满秩分解为

$$\boldsymbol{A} = \boldsymbol{L}\boldsymbol{R} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

则

$$oldsymbol{R}oldsymbol{R}^{\mathrm{H}} = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & 1 \ 1 & 1 \end{bmatrix} = egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix},$$

4.82

4.81

4.83

4 84

$$(\mathbf{R}\mathbf{R}^{\mathrm{H}})^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix},$$

$$\mathbf{R}^{+} = \mathbf{R}^{\mathrm{H}} (\mathbf{R}\mathbf{R}^{\mathrm{H}})^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}.$$

$$\begin{split} \boldsymbol{L}^{\mathrm{H}}\boldsymbol{L} &= \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 2 \end{bmatrix}, \\ & (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1} &= \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}, \\ \boldsymbol{L}^{+} &= (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1}\boldsymbol{L}^{\mathrm{H}} &= \frac{1}{6} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 2 & -2 \\ -2 & 1 & 5 \end{bmatrix}. \end{split}$$

所以

$$\mathbf{A}^{+} = \mathbf{R}^{+} \mathbf{L}^{+} = \frac{1}{18} \begin{bmatrix} 2 & -1 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & -2 \\ -2 & 1 & 5 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 & 1 & -3 \\ -2 & 0 & 4 \\ 0 & 1 & 1 \end{bmatrix}. \quad \Box$$

Theorem 49. 设 $A \in \mathbb{C}_r^{m \times n}$, r > 0, 且 A 有如下的奇异值分解

$$oldsymbol{A} = oldsymbol{U} egin{bmatrix} oldsymbol{S}_r & \ & oldsymbol{O} \end{bmatrix} oldsymbol{V}^{\mathrm{H}},$$

其中 $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ 为酉矩阵, 且 $S_r = \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_r)$, $\delta_1 \geqslant \delta_2 \geqslant \dots \geqslant \delta_r > 0$ 为 A 的正奇异值. 则有

$$oldsymbol{A}^+ = oldsymbol{V} egin{bmatrix} oldsymbol{S}_r^{-1} & \ O \end{bmatrix} oldsymbol{U}^{ ext{H}}$$

译 注意一个细节: $\begin{bmatrix} S_r & \\ & O \end{bmatrix}$ 的阶数是 $m \times n$, 而 $\begin{bmatrix} S_r^{-1} & \\ & O \end{bmatrix}$ 的阶数是 $n \times m$.

 $Example\ 50.$ 设 $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$,用奇异值分解求 \mathbf{A}^+ .

解: 由

$$\boldsymbol{A}^{\mathrm{H}}\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

故 $\mathbf{A}^{\mathrm{H}}\mathbf{A}$ 的特征值为 $\lambda_1=2,\,\lambda_2=1$. 对应的单位特征向量为

$$oldsymbol{v}_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}, \qquad oldsymbol{v}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}.$$

4.85

4.86

则 AA^{H} 的 3 个特征值为 $\lambda_{1} = 2$, $\lambda_{2} = 1$, $\lambda_{3} = 0$.

由 $S = \operatorname{diag}(\delta_1, \delta_2) = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}) = \operatorname{diag}(\sqrt{2}, 1)$, 得

$$m{U}_1 = m{A} m{V}_1 m{S}^{-1} = egin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} egin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \end{bmatrix} = egin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

故 $\boldsymbol{A}\boldsymbol{A}^{\mathrm{H}}$ 的 2 个非零特征值 $\lambda_1=2,\,\lambda_2=1$ 对应的特征向量分别为

$$m{u}_1 = egin{bmatrix} rac{1}{\sqrt{2}} \\ 0 \\ rac{1}{\sqrt{2}} \end{bmatrix}, \qquad m{u}_2 = egin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

因 $\lambda_3 = 0$ 对应的特征向量与 \mathbf{u}_1 正交, 故可设其为 $(1, y, -1)^{\mathrm{T}}$. 又需要和 \mathbf{u}_2 正交, 故 y = 0. 从而 $\lambda_3 = 0$ 对应的单位特征向量为

$$oldsymbol{u}_3 = \left[egin{array}{c} rac{1}{\sqrt{2}} \\ 0 \\ -rac{1}{\sqrt{2}} \end{array}
ight].$$

记

$$m{U} = egin{bmatrix} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \ 0 & 1 & 0 \ rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \end{bmatrix}, \qquad m{S} = egin{bmatrix} \sqrt{2} & 0 \ 0 & 1 \end{bmatrix} \qquad m{V} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix},$$

得矩阵 A 的奇异值分解为

$$oldsymbol{A} = oldsymbol{U} egin{bmatrix} oldsymbol{S} \ oldsymbol{O} \end{bmatrix} oldsymbol{V}^{ ext{H}},$$

所以

$$m{A}^{+} = m{V}[m{S}^{-1}, m{O}] m{U}^{ ext{H}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} rac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} rac{1}{\sqrt{2}} & 0 & rac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ rac{1}{\sqrt{2}} & 0 & -rac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} rac{1}{2} & 0 & rac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}. \quad \Box$$

6.3 M-P 广义逆用于解线性方程组

一般来说,矛盾方程组

$$Ax = b$$

的最小二乘解是不唯一的, 但在最小二乘解的集合中, 具有最小范数的解, 即

$$\min_{\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|}\|\boldsymbol{x}\|_2$$

的解 x 是唯一的, 称之为最小范数二乘解, 并简记为 L-S-N 解.

4.89

4.88

4.91

Lemma 51 (Urguhart). 对任一 $A \in \mathbb{C}^{m \times n}$, 都有

$$A^+ = A^{(1,4)}AA^{(1,3)}$$
.

证: $\diamondsuit Y = A^{(1,4)}, Z = A^{(1,3)}, X = YAZ.$ 从而 $Y, Z \in A\{1\},$ 故 $X \in A\{1,2\}.$ 又

$$AX = AYAZ = AZ$$
, $(AX)^{H} = (AZ)^{H} = AZ = AX$,

故

$$X \in A\{3\}.$$

又 XA = YAZA = YA, 从而 $(XA)^{H} = XA$, 故

$$X \in A{4}$$
.

综上有
$$X = A^+$$
.

Theorem 52. 设 $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$, 则 x_0 是方程组 Ax = b 的 L-S-N 解的 充分必要条件是:

$$\boldsymbol{x}_0 = \boldsymbol{A}^+ \boldsymbol{b}.$$

证: 必要性. 由推论 31 可知, 方程组 Ax = b 的 L-S 解即为方程组 $Ax = AA^{(1,3)}b$ 的解, 因此, 方程组 Ax = b 的 L-S-N 解即是方程组 $Ax = AA^{(1,3)}b$ 的 L-N 解. 由定理 40 得, 这个解为

$$x_0 = A^{(1,4)}AA^{(1,3)}b,$$

又 $A^{(1,4)}AA^{(1,3)} = A^+$, 故方程组的 Ax = b 的 L-S-N 解为 $x_0 = A^+b$.

充分性. 设 $x_0 = A^+b$, 则 $Ax_0 = AA^+b$, 而 $A^+ \in A\{1,3\}$, 故由推论 31 可知 x_0 为方程组 Ax = b 的 L-S 解. 又因为 $x_0 = A^+b$, 故 $x_0 \in R(A^+) = R(A^H)$, 从而 x_0 是方程组 Ax = b 的 L-S-N 解.

Example 53. 已知方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$, 其中

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 1 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

问方程组是否有解? 若有解, 求最小范数解; 若无解, 求最小范数二乘解.

解: 因为

$$[\boldsymbol{A}, \boldsymbol{b}] = \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 2 & 4 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{r_3 - r_1 - r_2} \begin{bmatrix} 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix},$$

即 $\operatorname{rank} \mathbf{A} = 2$, $\operatorname{rank}[\mathbf{A}, \mathbf{b}] = 3$, 所以方程组无解.

4.94

4.93

由

$$A \xrightarrow{r_3-r_1-r_2} \left[egin{array}{cccc} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}
ight],$$

得满秩分解 A = LR, 其中

$$L = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}, \qquad R = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

则

$$m{R}m{R}^{\mathrm{H}} = egin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = egin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix},$$

4.95

4.96

4.97

$$(\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}})^{-1} = \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{bmatrix},$$

$$\boldsymbol{R}^{+} = \boldsymbol{R}^{\mathrm{H}}(\boldsymbol{R}\boldsymbol{R}^{\mathrm{H}})^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 6 \\ 1 & 0 \end{bmatrix}.$$

$$\begin{split} \boldsymbol{L}^{\mathrm{H}}\boldsymbol{L} &= \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 3 & 2 \end{bmatrix}, \\ & (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1} &= \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix}, \\ \boldsymbol{L}^{+} &= (\boldsymbol{L}^{\mathrm{H}}\boldsymbol{L})^{-1}\boldsymbol{L}^{\mathrm{H}} &= \frac{1}{3} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix}. \end{split}$$

从而

$$\boldsymbol{A}^{+} = \boldsymbol{R}^{+} \boldsymbol{L}^{+} = \frac{1}{18} \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -3 & 3 & 0 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 2 & -1 & 1 \\ 4 & -2 & 2 \\ -18 & 18 & 0 \\ 2 & -1 & 1 \end{bmatrix}.$$

所以方程组的最小范数二乘解是 $x_0 = A^+b = \frac{1}{9}[1,2,0,1]^{\mathrm{T}}$.

为什么 Moore 广义逆与 Penrose 广义逆等价?

设 $A \in \mathbb{C}^{m \times n}$, 如果 $G \in \mathbb{C}^{n \times m}$ 满足

$$\mathbf{AG} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}, \qquad \mathbf{GA} = P_{R(\mathbf{A}^{\mathrm{H}}), N(\mathbf{A})},$$
 (14)

其中 $P_{R(A),N(A^{\rm H})}$ 表示沿子空间 $N(A^{\rm H})$ 向子空间 R(A) 上的正交投影算子, $P_{R(A^{\rm H}),N(A)}$ 表示沿子空间 N(A) 向子空间 $R(A^{\rm H})$ 上的正交投影算子,则称 G 为 A 的 Moore 广义逆矩阵.

一方面, 若 G 是 A 的 Moore 广义逆, 则 AG, GA 都是正交投影算子, 从而 AG, GA 是 Hermite 矩阵, 即满足 Penrose 广义逆定义的 (3) 与 (4).

对任意的 n 维向量 α , $\mathbf{A}\alpha \in R(\mathbf{A})$, 而投影算子 $\mathbf{A}\mathbf{G} = P_{R(\mathbf{A}),N(\mathbf{A}^{\mathrm{H}})}$ 在 $R(\mathbf{A})$ 上为恒等变换, 故

$$AG(A\alpha) = A\alpha$$
.

即 $(AGA)(\alpha) = A\alpha$, 由 α 的任意性, 知 AGA = A. 同理 GAG = G.

另一方面,若 G 是 A 的 Penrose 广义逆,则 AG, GA 都是正交投影算子,且

$$AG = P_{R(AG),N(AG)}, \qquad GA = P_{R(GA),N(GA)}.$$

由性质 $R(\mathbf{A}\mathbf{A}^{(1)}) = R(\mathbf{A})$, 得

$$R(\mathbf{AG}) = R(\mathbf{A}). \tag{15}$$

4.98

又

$$N(\mathbf{A}\mathbf{G}) = N(\mathbf{G})$$

$$\left(N(\mathbf{A}\mathbf{A}^{(1,2)}) = N(\mathbf{A}^{(1,2)})\right)$$
$$= N(\mathbf{A}^{\mathrm{H}}). \qquad \left(N(\mathbf{A}^{+}) = N(\mathbf{A}^{\mathrm{H}})\right)$$

故

$$\mathbf{AG} = P_{R(\mathbf{AG}), N(\mathbf{AG})} = P_{R(\mathbf{A}), N(\mathbf{A}^{\mathrm{H}})}.$$

同理可证 $GA = P_{R(GA),N(GA)} = P_{R(A^H),N(A)}$.