ECE 133A HW 1

Lawrence Liu

October 11, 2022

Exercise A1.7

For the optimal coefficients we have:

$$J = \frac{1}{n} ||c_{1}\mathbf{1} + c_{2}a - b||^{2}$$

$$= \frac{1}{n} ||(m_{b} - m_{a}c_{2})\mathbf{1} + c_{2}a - b||^{2}$$

$$= \frac{1}{n} \sum_{k=1}^{n} ((m_{b} - m_{a}c_{2}) + c_{2}a_{k} - b_{k})^{2}$$

$$= \frac{1}{n} \sum_{k=1}^{n} (c_{2}(a_{k} - m_{a}) - (b_{k} - m_{b}))^{2}$$

$$= \frac{1}{n} \left(c_{2}^{2} \sum_{k=1}^{n} (a_{k} - m_{a})^{2} - c_{2} \sum_{k=1}^{n} (a_{k} - m_{a})(b_{k} - m_{b}) + \sum_{k=1}^{n} (b_{k} - m_{b})^{2}\right)$$

$$= c_{2}^{2} s_{a}^{2} - \frac{2c_{2}}{n} (a - m_{a}\mathbf{1})^{T} (b - m_{b}\mathbf{1}) + s_{b}^{2}$$

$$= \rho^{2} s_{b}^{2} - 2 \frac{\rho s_{b}}{s_{a}} \rho s_{a} s_{b} + s_{b}^{2}$$

$$= s_{b}^{2} - \rho^{2} s_{b}^{2}$$

$$= \left[(1 - \rho^{2}) s_{b}^{2}\right]$$

Exercise A1.8

(a)

We want to maximize J with respect to c_1 , so we take the derivative of J with respect to c_1 and find the value of c_1 that makes the derivative equal to zero:

$$\frac{\partial J}{\partial c_1} = \frac{2}{n} \sum_{k=1}^n \frac{c_1 + c_2 a_k - b_k}{1 + c^2} = 0$$

$$\frac{1}{n} \sum_{k=1}^n (c_1 + c_2 a_k - b_k) = 0$$

$$c_1 + \frac{1}{n} \sum_{k=1}^n (c_2 a_k - b_k) = 0$$

$$c_1 + c_2 m_a - m_b = 0$$

$$c_1 = m_b - c_2 m_a$$

(b)

We have for the optimal c_1 ,

$$J = \frac{||c_2(a - m_a \mathbf{1}) - (b - m_b \mathbf{1})||^2}{n(1 + c_2^2)}$$

$$= \frac{1}{n(1 + c_2^2)} \left(\sum_{k=1}^n (c_2 a_k - m_a c_2 - b_k + m_b)^2 \right)$$

$$= \frac{1}{(1 + c_2^2)} \left(c_2^2 s_a^2 + s_b^2 - 2\rho s_a s_b c_2 \right)$$

Taking the derivative with respect to c_2 and setting it equal to zero gives us that the optimal value of c_2 must satisfy:

$$\rho c_2^2 + \left(\frac{s_a}{s_b} - \frac{s_b}{s_a}\right) = 0$$

When $\rho \neq 0$ the optimal solution is one with the same sign as ρ , since that makes $-2\rho s_a s_b c_2$ negative.

(c)

TODO

Exercise A2.4

Expanding $(1+A)^{n-1}$, we get

$$(1+A)^{n-1} = \sum_{k=1}^{n-1} A^k$$

Since $A_{i,j}^k$ represents whether a path of length exists from j to i, (with $A_{i,j}^k > 0$ representing that such a path exist) we can see that the sum of the A^k matrices for $1 \le k \le n-1$ represents all the paths that can possibly exists. Therefore A is irreducible if it possible to travel to one node to any other node, ie that G_A is strongly connected.

Exercise A2.8

We can start by multiplying each x_i subvectors with B, each of these operations takes (2n-1)n flops, so for the n subvectors it will cost us $(2n-1)n^2$ flops.

Now we get that for the ith output subvector $y_i = \sum_{j=1}^n A_{i,j}Bx_j$. Multiplying Ai, j with Bx_j costs us n flops, therefore repeating this n times for $1 \le i \le n$ results in n^2 flops. Summing these vectors $A_{i,j}Bx_j$ costs n(n-1) flops. So in total computing this subvector costs us 2n(n-1) flops. We will need to repeat this for each of the n output subvectors, so it will cost use

$$2n^2(n-1).$$

Therefore in total, this algorithm will cost us $2n^2(n-1) + (2n-1)n^2$ flops, so approximately $4n^3$ flops for large n. Compared with $(2n^2-1)n^2$, or $2n^4$ approximately for large n.

Exercise A2.10

(a)

For any k that satisfy $i \leq k < j$, we have that we can rearange the multiplication of $A_i A_{i+1} ... A_j$ to $(A_i ... A_k)(A_{k+1} ... A_j)$.

We have that multiplying the matrices from i to k will cost us $c_{i,k}$ flops and result in a matrix of size (n_{i-1}, n_k) , likewise multiplying the matrices from k+1 to j will cost us $c_{k+1,j}$ flops and result in a matrix of size (n_k, n_j) .

Multiplying these two matrices together will cost us $2n_{i-1}n_kn_j$. Therefore if we split up the computation of $A_iA_{i+1}...A_j$ into two parts, one from i to k the other from k+1 to j, we will have that the total cost of computing $A_iA_{i+1}...A_j$ is:

$$c_{i,k} + c_{k+1,i} + 2n_{i-1}n_kn_i$$

Therefore the minimum of the cost of computing $A_iA_{i+1}...A_j$ is when k is the value that minimizes the above expression. In otherwords:

$$c_{i,j} = \min_{k=i,i+1,\dots,j-1} (c_{i,k} + c_{k+1,j} + 2n_{i-1}n_k n_j)$$

(b)

We have that the triangular table of $c_i j$ for $A_1 A_2 A_3 A_4$ is:

$$\begin{array}{ccccc} 0 & 1.00 \cdot 10^{10} & 1.20 \cdot 10^{10} & 1.21 \cdot 10^9 \\ & 0 & 1.00 \cdot 10^{11} & 1.20 \cdot 10^9 \\ & & 0 & 2.00 \cdot 10^8 \\ & & 0 & \end{array}$$

Therefore the optimal cost of computing $A_1A_2A_3A_4$ is multiply A_1 with the product of A_2 multiplied with the product of A_3 and A_4 , which takes us $1.21 \cdot 10^9$ flops.

Likewise since the triangular table of $c_i j$ for $A_1 A_2 A_3$ is:

$$\begin{array}{ccc} 0 & 1.00 \cdot 10^{10} & 1.20 \cdot 10^{10} \\ & 0 & 1.00 \cdot 10^{11} \\ & & 0 \end{array}$$

The optimal cost of $A_1A_2A_3$ is to multiply (A_1A_2) with A_3 , which takes us $1.20 \cdot 10^{10}$ flops. So interestingly the optimal flops to compute $A_1A_2A_3A_4$ less than the optimal flops to compute $A_1A_2A_3$, despite the fact that $A_1A_2A_3A_4$ involves one more matrix multiplication. Likewise the optimal order for the multiplication also changes when we try to compute $A_1A_2A_3A_4$ compared to $A_1A_2A_3$.