Determination of Light Attenuation of Various Materials

Katie Brown Lindsey Simpson Aidan Sirbu Harold Smith-Perez Bhapushon Thayalan

Team Contribution

Aidan Sirbu: Lead Engineer; Lux Meter Calibration; Arduino Coder; Presenter

Katie Brown: Lead Researcher; Light Attenuation Data Collection; Presenter

Harold Smith-Perez: Data Analyst; Co-researcher; Experimental design

Lindsey Simpson: Spokesperson; Presentation format and design; Co-researcher

Bhapushon Thayalan: Oversaw experiment progress; Presentation format and design; Co-researcher

Background

Light Attenuation: the reduction in light intensity as it travels through a medium as a result of the scattering and absorption of photons

Linear Attenuation Coefficient: Quantifies the degree to which a volume of material can be penetrated by a wave or particle

The greater the μ value, the more rapidly the intensity decreases as it travels through the medium.

Photoresistor Calibration

Question

→ Which circuit variable should we measure?

Relation

→ Lux expected to vary exponentially with resistance of photoresistor

Limitation

→ Positioning of Lux meter

Photoresistor Calibration

Circuit Variable Chosen

 \rightarrow Voltage across 10k Ω resistor

Challenges

- → Converting analog input to voltage
 - ◆ **Problem:** Produced truncation error
 - ◆ **Solution:** Took raw analog input instead
- Quickly varying analog input
 - ◆ Problem: Flooded serial monitor with large range of values
 - ◆ **Solution:** Took average over 100 iterations

Experiment

- → Performed in dark room
- → Bowl with white interior (good reflectivity) placed over circuit

Photoresistor Calibration

Relation derivation

$$\ln(lux) = c_1 + c_2 \ln(input)$$

$$\ln(lux) = -1.6453 + 1.5974 \ln(input)$$

$$lux = e^{(-1.6453 + 1.5974 \ln(input))}$$

$$lux = e^{-1.6453} \times input^{1.5974}$$

Plot of Data

Attenuation Factor: Experiment

Experimental Design

- → Photoresistor calibrated to measure illuminance facing 6 LED's
- → Placed layers of material in between
- → Measured the fraction of light that was transmitted through the material
- → Repeated for printer paper, tissue paper and sheet protectors

Attenuation Factor Results

Data Analysis

- → Measured illuminances were plotted against material thickness
- → Python Scipy was used to optimize curve of best fit
- → Semilog plot was generated in order to determine the attenuation factor, which is the slope

Material	Light Attenuation Factor			
Printer Paper	μ = 7860 m ⁻¹			
Sheet Protectors	μ = 7076 m ⁻¹			
Tissue Paper	μ = 465 m ⁻¹			

Attenuation Factor Results

Uncertainty Propagation in Illuminance

$$\begin{split} \delta(input) = &0.01 \\ \frac{\delta(input^{1.5974})}{(input^{1.5974})} = &1.5974 \frac{\delta(input)}{input} \\ \delta(input^{1.5974}) = &(input^{1.5974}) \cdot 1.5974 \frac{0.01}{input} \\ \delta(ux) = &\delta(e^{-1.6453}(input)^{1.5974}) \\ \delta(ux) = &e^{-1.6453}(input^{1.5974}) \cdot \frac{1.5974 \times 10^{-2}}{input} \end{split}$$

Conclusion & Key Takeaways

Applications of Light Attenuation

- → Sunlight decreasing with depth of water determines where photosynthetic algae can live
- → Attenuation decreases strength of signals in fibre optic cables
- → Seismic waves from Earthquakes are attenuated by the ground

Appendices :

Plot Code:

```
import numpy as np
 import matplotlib.pvplot as plt
 import scipy.optimize as scop
def get_data(filename):
       df = np.loadtxt(filename, skiprows=2,dtype=float)
      thickness = df[:,1]; err_th = df[:,5]
lux = df[:,2]; err_lx = df[:,4]
return thickness, err_th, lux, err_lx
def fit_data(thickness, err_th, lux, err_lx):
       func2fit = lambda x, mu: -mu*x
       loglux = np.log(lux/I0)
      mu, err = scop.curve_fit(func2fit, thickness, loglux,sigma=err_lx)
      err = np.sgrt(np.diag(err))
      logerr = abs(np.log((lux+err)/I0) - loglux)
      return mu, err, loglux, logerr
x1, err_x1, I1, err_I1 = get_data('printer_pape.txt')
x2, err_x2, I2, err_I2 = get_data('sheet_pros.txt')
x3, err_x3, I3, err_I3 = get_data('tissue_pape.txt')
mu1, std1, log11, err_log11 = fit_data(x1, err_x1, I1, err_I1);print(mu1, std1) mu2, std2, log12, err_log12 = fit_data(x2, err_x2, I2, err_I2);print(mu2, std2) mu3, std3, log13, err_log13 = fit_data(x3, err_x3, I3, err_I3);print(mu3, std2)
plt.scatter(x1, I1, c='b')
plt.errorbar(x1, I1, yerr=err_I1, xerr=err_x1, ls='None', c='b')
plt.scatter(x2, I2,c='g')
plt.errorbar(x2, 12, yerr=err_12, xerr=err_x2, ls='None',c='g')
plt.scatter(x3, 13,c='r')
plt.ercorbar(x3, 13, yerr=err_13, xerr=err_x3, ls='None',c='r')
x = np.linspace(0, 0.0015)
^ - me...suspanse.vo.vo.vo.z)

plt.ploit.v.loenp.exp(-mul*x),ls='--', label='Printer paper \u038C=7.7/mm', c='b')

plt.ploit.x.l0enp.exp(-mul*x),ls='--', label='Sheet Protector \u038C=7.7/mm', c='g')

plt.ploit.x.l0enp.exp(-mul*x),ls='--', label='Tissue paper \u038C=7.1/mm', c='r')
plt.xlabel('Thickness [mm]')
tix = plt.xticks()[0][1:-1]
plt.xticks(ticks=tix,labels=[str(round(i,2)) for i in tix*1000])
plt.ylabel('Intensity [lm/m^2]')
plt.title('Intensity curves of some materials')
plt.legend()
plt.show()
plt.scatter(x1, logI1, c='b')
#plt.errorbar(x1, log11,xerr=err_x1,yerr=err_log11, ls='None',c='b')
plt.plot(x, -mu1*x,label='Printer paper \u03BC=7.7/mm',c='b')
plt.scatter(x2, log12, c='g')
#plt.scrorbar(x2, log12, xsrr=err_x2, ysrr=err_log12, ls='None', c='g')
plt.plot(x, -mu2*x, label='5heet Protector \u038C=0.47/mm', c='g')
plt.scatter(x3, logI3, c='r')
#plt.errorbar(x3, logI3,xerr=err_x3,yerr=err_logI3, ls='None',c='r')
plt.plot(x, -mu3*x, label='Tissue paper \u03BC=7.1/mm',c='r')
plt.title('Semilog plot of I/I0')
plt.xlabel('Thickness [mm]')
 plt.ylabel('log(I/I0)')
 tix = plt.xticks()[0][1:-1]
 plt.xticks(ticks=tix,labels=[str(round(i,2)) for i in tix*1000])
 plt.legend()
 plt.show()
```

Error Code:

Experiment 1. Printer Paper

Experiment	: I: Printe	r Paper						
Sheets	Thickness	(m)	Illuminand	ce (lx)	Input	Error	in Illuminance	Error in Thickness
1	0.000104	16.5	16.19882	1.6271002	222.00E-06			
2	0.000208	8.76	10.89786	1.2840342	144.00E-06			
3	0.000312	4.12	6.796004	0.9684055	726.00E-06			
4	0.000416	1.84	4.102966	0.7163638	068.00E-06			
5	0.00052	1	2.801027	0.5702907	731.00E-05			
6	0.000624	0.49	1.792152	0.4367521	3 1.20E-05			
_								
-	2: Sheet 1					_		
Sheets		. ,		ce (lx)	1	Error	in Illuminance	Error in Thickness
1	0.00021	47.98		2.0262723				
2	0.00042			1.9643677				
3		40.23	20.94516		441.25E-05			
4		35.35	19.3164		621.67E-05			
5		32.89		1.7594057				
6		30.71		1.7148545				
7	0.00147	28.26	16.79061	1.6623545	352.92E-05			
	3: Tissue	P						
Sheets			Illuminano	(3)	T		/	Error in Thickness
Sneets 1	0.000029			1.9011231	Input	Error	in illuminance	Error in Inickness
2		33.42		1.7699557				
3			16.50273		627.89E-05			
4		27.49 22.37		1.5232181				
		19.18	13.17325		591.32E-04			
5								
O		16.02	11.76921	1.3444148	0 1.38E-U4			
7	0.000203	13.82	10.72964	1.2721567				