MAT 4410 Advanced Linear Analysis.

December 13, 2016

SOLUTIONS.

PROBLEM 1. Let $F: \mathbb{R} \to \mathbb{R}$ be the right continuous function defined by

(1)
$$F(t) = \begin{cases} 2 - \frac{1}{(1+t)^2}, & \text{if } t \ge 0\\ 0, & \text{if } t < 0 \end{cases}$$

and let μ_F be the Borel measure on \mathbb{R} associated to F.

(a) $\mu_F(a,b] = F(b) - F(a) = \begin{cases} \frac{1}{(1+a)^2} - \frac{1}{(1+b)^2}, & b > a \ge 0\\ 2 - \frac{1}{(1+b)^2}, & b \ge 0, a < 0\\ 0, & a < 0, b < 0 \end{cases}$

Here the Lebesgue decomposition of $\mu = \mu_F$ can be written as

$$\mu = \mu_1 + \mu_2, \qquad \mu_1 \perp \lambda, \, \mu_2 << \lambda$$

Now, for each $E \in \mathcal{B}(\mathbb{R})$,

$$\mu_F(E \cap (-\infty, 0)) = 0, \ \mu_F\{0\} = \lim_{n \to \infty} \mu_F(0, 1/n] = \lim_{n \to \infty} \left[-\frac{1}{(1+n)^2} + 1 \right] = 1,$$

and

$$\mu_F(E \cap (0, \infty)) = \int_{E \cap (0, \infty)} F' d\lambda = \int_E \chi_{[0, \infty)}(t) \frac{1}{(1+t)^3} d\lambda(t).$$

(As an alternative, $\mu_F\{0\} = 1$ follows from the second formula for $\mu_F(a, b]$.) Moreover, $\mu_F(E) = \mu_F(E \cap \{0\}) + \mu_F(\{0\}^c)$. By uniqueness of the Lebesgue decomposition it follows that $\mu_1 = \delta_0$ is the point mass at 0 and

$$\mu_2(E) = \int_E \chi_{[0,\infty)}(t) \frac{1}{(1+t)^3} \,\mathrm{d}\lambda(t) \quad (E \in \mathcal{B}(\mathbb{R})).$$

(b) Hence

$$\int_{\mathbb{R}} g \, d\mu_F = \int_{\mathbb{R}} g \, d\mu_1 + \int_{\mathbb{R}} g \, d\mu_2 = g(0) + \int_0^{\infty} g(t) \frac{2}{(1+t)^3} \, d\lambda(t)$$

for all g such that $t \mapsto g(t) \frac{1}{(1+t)^3}$ is integrable.

PROBLEM 2. Let λ denote Lebesgue measure on the Borel σ -algebraen $\mathcal{B}(\mathbb{R})$ on \mathbb{R} and let $f \in \mathcal{L}^1(\lambda)$. We define

$$f^*(x) = \sup_{r>0} \frac{1}{2r} \int_{x-r}^{x+r} |f(t)| \, \mathrm{d}\lambda(t), \quad x \in \mathbb{R}$$

and

$$U_t = \{x \in \mathbb{R} : f^*(x) > t\}, \quad t > 0.$$

For every r > 0 and every $x \in \mathbb{R}$ we denote by $I_r(x)$ the open interval $I_r(x) = (x - r, x + r)$.

(a) Let $z \in I_{r_2-r_1}(x)$. Then

$$-(r_2 - r_1) < x - z < r_2 - r_1, \quad x + r_1 < z + r_2 \text{ and } x - r_1 > z - r_2,$$

and hence

$$\int_{x-r_1}^{x+r_1} |f| \, \mathrm{d}\lambda \le \int_{z-r_2}^{z+r_2} |f| \, \mathrm{d}\lambda.$$

(b) Let $x \in U_t$. Then there is an $r_1 > 0$ such that

$$J_1 = \frac{1}{2r_1} \int_{r-r_1}^{x+r_1} |f| \, \mathrm{d}\lambda > t.$$

Hence we can find an $r_2 > r_1$ such that

$$J_1 > \frac{1}{2r_2} \int_{x-r_1}^{x+r_1} |f| \, \mathrm{d}\lambda > t$$

Now let $z \in I_{r_2-r_1}(x)$. Then by (a)

$$t < \frac{1}{2r_2} \int_{x-r_1}^{x+r_1} |f| \, d\lambda \le \frac{1}{2r_2} \int_{z-r_2}^{z+r_2} |f| \, d\lambda$$

Consequently, $z \in U_t$. We have shown that $I_{r_2-r_1}(x) \subset U_t$. Therefore, all points of U_t are interior points, hence U_t is open.

(c) Assume that $\lambda(K) \leq \frac{3}{t}||f||_1$ for all compact sets K contained in U_t . Let $\epsilon > 0$ be arbitrary. Since λ is (inner) regular we can find a compact $K \subset U_t$ such that $\lambda(U_t) \leq \lambda(K) + \epsilon$. Hence

$$\lambda(U_t) < \lambda(K) + \epsilon \le \frac{3}{t}||f||_1 + \epsilon$$

As ϵ was arbitrary we conclude that $\lambda(U_t) \leq \frac{3}{t}||f||_1$

(d) Let K be compact and $K \subset U_t$. For each $x \in K$ there is an interval $I_r(x)$ such that

$$(*) \qquad \frac{1}{2r} \int_{I_r(x)} |f| \, \mathrm{d}\lambda > t, \quad \text{ that is, } \lambda(I_r(x)) = 2r < \frac{1}{t} \int_{I_r(x)} |f| \, \mathrm{d}\lambda$$

Now the family

$$\{I_r(x): r > 0, x \in K, \text{ and } (*) \text{ holds}\}\$$

forms an open cover of K in U_t . Hence, as K is compact, we can find a finite subcover which we denote by $\{I_1, \ldots, I_N\}$. As is given above in this problem, we can choose a finite subfamily $\{I'_1, \ldots, I'_M\}$ of pairwise disjoint intervals such that

$$\lambda(\bigcup_{1}^{N} I_j) \le 3 \sum_{1}^{M} \lambda(I'_k)$$

Therefore,

$$\lambda(K) \le \lambda(\bigcup_{1}^{N} I_j) \le 3 \sum_{1}^{M} \lambda(I_k') \le \frac{3}{t} \sum_{1}^{M} \int_{I_k'} |f| \, d\lambda$$
$$= \frac{3}{t} \int_{\bigcup_{1}^{M} I_k'} |f| \, d\lambda \le \frac{3}{t} \int_{\mathbb{R}} |f| \, d\lambda$$

Hence the proof is complete.

PROBLEM 3.

(a) Let X be a normed linear space, X^* the dual of X. For all $x \in X$, there is a natural linear functional $l_x: X^* \to \mathbb{C}$ such that $l_x(g) = g(x), \ g \in X^*$. Then $|l_x(g)| \leq ||g|| \cdot ||x||$ and hence $||l_x|| \leq ||x||$. To prove the reverse inequality it suffices to find $g \in X^*$ such that $||g|| \leq 1$ and $|l_x(g)| = ||x||$. On the subspace $\mathbb{C}x$ we define a linear functional g_0 of norm less than or equal to 1 by $g_0(\alpha x) = \alpha ||x||$. By the Hahn-Banach Extension Theorem there is an extension g of g_0 to all of X with $||g|| = ||g_0||$. Now $|l_x(g)| = g(x) = ||x||$ and the argument is complete. Thus $||l_x|| = ||x||$.

(b) Suppose $\mathcal{F} \subset \mathcal{L}^p(\mu)$, and $||f||_p \leq M$, for all $f \in \mathcal{F}$. Let $f \in \mathcal{F}$. For all $g \in \mathcal{L}^q$ we have from the hypothesis:

$$|\int gf \, d\mu| \le ||g||_q ||f||_p \le M||g||_q$$

Hence, for all $g \in \mathcal{L}^q$, $\sup_{f \in \mathcal{F}} |\int gf \, d\mu| \le M||g||_q < \infty$.

Conversely, assume that for all $g \in \mathcal{L}^q$,

$$\sup_{f \in \mathcal{F}} \left| \int gf \, \mathrm{d}\mu \right| = \sup_{f \in \mathcal{F}} |l_f(g)| \le M||g||_q$$

Then $\{l_f\}_{f\in\mathcal{F}}$ is a pointwise bounded family of continuous linear functionals defined on the Banach space \mathfrak{L}^q . By the Principle of Uniform Boundedness for linear maps there is an $M < \infty$ such that $||f||_p = ||l_f|| \leq M$, for all f in \mathcal{F} . Hence the argument is complete.

PROBLEM 4.

For all $n \in \mathbb{N}$, $|f'_n| \leq F \in \mathcal{L}^1(\lambda)$. Therefore, the Dominated Convergence Theorem yields

$$\lim_{n\to\infty} \int_0^x f_n' \, \mathrm{d}\lambda = \int_0^x g \, \mathrm{d}\lambda$$

In particular, $g \in \mathcal{L}^1(\lambda)$. Let $E = \{t : \lim_{n \to \infty} f_n(t) = g(t)\}$. Then $\lambda(E^c) = 0$. Since each f_n is absolutely continuous (ac),

$$f_n(x) - f_n(0) = \int_0^x f'_n(t) d\lambda(t) \xrightarrow[n \to \infty]{} \int_0^x g d\lambda.$$

Hence $\lim_{n\to\infty} [f_n(x) - f_n(0)]$ exists. If $x\in E$ then $\lim_{n\to\infty} f_n(x) = g(x)$. Hence there is a c_0 such that $\lim_{n\to\infty} f_n(0) = c_0$. Accordingly,

$$f(x) = c_0 + \int_0^x g \, d\lambda$$
, for all $x \in E$.

Set $h(x) = c_0 + \int_0^x g \, d\lambda$, for all $x \in [0, 1]$. As $g \in \mathcal{L}^1$, the First Fundamental Theorem yields that h is differentiable ae and h' = g ae. In addition, h is ac by its definition. Hence f is equal to the ac function h on E thus f = h ae. Moreover, f' = h' = g ae on [0, 1].

[Actually f=h on all of [0,1], hence f is ac on [0,1]. To see this, let k=f-h and suppose $k(x)\neq 0$ for some $x\in [0,1]$. Notice that k is continuous, hence there is an open interval I_x containing x such that $k(y)\neq 0$ for all $y\in I_x$. This contradicts that k=0 ae. Thus k(x)=0 for all $x\in [0,1]$, as claimed.]

THE END