1. Influence of d(x) and r(x) on the offset of the round-off error

We investigate the benchmark Poisson equation. We consider $||d||_2$ of order 1[1]. If not stated otherwise, P_2 elements are used for the standard FEM, and P_4/P_3^{disc} elements are used for the mixed FEM.

1.1. $d=1+0.5\sin(cx)$, r=0

For c being 1, 10 and 100, shapes of d are shown in Fig. 1, and $||d||_2$ are 1.23, 1.14 and 1.06, respectively. The analytical order of convergence can be reached within a number of h-refinements, and α_R are shown in Fig. 2, which are independent of d.

Fig. 1. Shape of $d = 1 + 0.5\sin(cx)$ for c being 1, 10, 100.

1.2. $d=1+0.5\sin(x)$, r(x) = c

Here, c is chosen to be 1, 10 and 100. It is found that both the truncation error $E_{\rm T}$ and round-off error $E_{\rm R}$ are independent of c.

Fig. 2. Influence of d(x) and r(x) on α_R for $p = e^{-(x-0.5)^2}$.

References

[1] Alexander S Chernetsky, Henk M Schuttelaars, and Stefan A Talke. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. *Ocean Dynamics*, 60(5):1219–1241, 2010.