# ISQA 8160 Cheat Sheet

Brian Detweiler

Summer, 2016

#### Distributions 1

| Distribution | $\mathrm{pmf}/\mathrm{pdf}$                                                                                                                                                                                                | $\operatorname{cdf}$                                                                                                                                  | $\mu$                           | $\sigma^2$                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|
| Bernoulli    | p(0) = (1 - p), p(1) = p                                                                                                                                                                                                   | 0, (1- p), p†                                                                                                                                         | p                               | p(1 - p)                                                          |
| Normal       | $\frac{\frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\frac{1}{d-c} \text{ for } c \le x \le d}$ $\frac{\frac{1}{\frac{\nu}{2}\Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2}} e^{-\frac{x}{2}}, x > 0}$      | $\frac{1}{\sqrt{2\pi}} \int_{-x}^{x} e^{-t^2} dt$                                                                                                     | $\mu$                           | $\sigma^2$                                                        |
| Uniform      | $\frac{1}{d-c}$ for $c \le x \le d$                                                                                                                                                                                        | $\frac{x-a}{b-a}$ for $x \in [a,b)$                                                                                                                   | $\frac{c+d}{2}$                 | $\frac{1}{12}(d-c)^2$                                             |
| Chi-Squared  | $\frac{1}{\frac{\nu}{2}\Gamma(\frac{\nu}{2})}x^{\frac{\nu}{2}}e^{-\frac{x}{2}}, x > 0$                                                                                                                                     | $\frac{1}{\Gamma(\frac{\nu}{2})}\gamma(\frac{k}{2},\frac{x}{2})$                                                                                      | $\nu$                           | $2\nu$                                                            |
| Student's t  | $\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$                                                                                                   | $\frac{1}{2} + x\Gamma(\frac{\nu+1}{2}) \frac{2F_1(\frac{1}{2}, \frac{\nu+1}{2}; \frac{3}{2}; -\frac{x^2}{\nu})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})}$ | 0*                              | $\frac{\nu}{\nu-2}$ **                                            |
| Fisher       | $\frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} f^{\frac{\nu_1}{2} - 1} (1 + \frac{\nu_1}{\nu_2} f)^{\frac{-\nu_1 + \nu_2}{2}}$ |                                                                                                                                                       | $\frac{\nu_2}{\nu_2-2}$ ***     | $\frac{2\nu_2^2(\nu_1+\nu_2-2)}{\nu_1(\nu_2-2)^2(\nu_2-4)} ****$  |
| Binomial     | $\binom{n}{x}p^x(1-p)^{n-x}$                                                                                                                                                                                               | $\frac{\sum_{i=0}^{\lfloor x \rfloor} \binom{n}{i} p^i (1-p)^{n-i}}{1 - (1-p)^x}$                                                                     | np                              | np(1-p)                                                           |
| Geometric    | $(1-p)^{x-1}p$                                                                                                                                                                                                             | $1 - (1 - p)^x$                                                                                                                                       | $\frac{1}{p}$                   | $\frac{1-p}{p^2}$                                                 |
| H-geometric  | $\frac{\binom{X}{x}\binom{N-X}{n-x}}{\binom{N}{n}}$                                                                                                                                                                        |                                                                                                                                                       | $n\frac{x}{N}$                  | $n\frac{X}{N}\frac{N-K}{N}\frac{N-n}{N-1}$                        |
| Beta         | $\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$ $\lambda e^{-\lambda x}$                                                                                                                                             | $I_X(\alpha,\beta) = \int_0^x t^{\alpha-1} (1-t)^{\beta-1} dt$                                                                                        | $\frac{\alpha}{\beta + \alpha}$ | $\left(\frac{\alpha\beta}{\alpha+\beta}\right)^2(\alpha+\beta+1)$ |
| Exponential  |                                                                                                                                                                                                                            | $1 - e^{-\lambda x}$                                                                                                                                  | $\frac{1}{\lambda}$             | $\frac{1}{\lambda^2}$                                             |
| Gamma        | $\frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}$                                                                                                                                                   | $\frac{1}{\Gamma(\alpha)}\gamma(\alpha,\lambda x)$                                                                                                    | $\frac{lpha}{\lambda}$          | $rac{lpha}{\lambda^2}$                                           |
| Multinom     | $\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}$                                                                                                                                                                     |                                                                                                                                                       | $np_i$                          |                                                                   |
| Poisson      | $\frac{\frac{\lambda e^{-\lambda x}(\lambda x)^{\alpha-1}}{\Gamma(\alpha)}}{\frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_k^{x_k}}$ $\frac{\frac{\lambda^x}{x!} e^{-\lambda}}{\frac{x!}{x!}}$                               | $e^{-\lambda} \sum_{i=0}^{\lfloor x \rfloor} \frac{\lambda^i}{i!}$                                                                                    | λ                               | λ                                                                 |

<sup>† 0</sup> for x < 0, (1 - p) for 0 < x < 1, and 1 for  $x \ge 1$ 

<sup>\*</sup>  $\nu > 0$ , undefined elsewhere

<sup>\*\*</sup> for  $\nu > 2$ ,  $\infty$  for  $1 < \nu \le 2$ 

<sup>\*\*\*</sup>  $\nu_2 > 2$ \*\*\*\*  $\nu_2 > 4$ 

### 2 Means and Variances

$$E[X] = \sum_{\forall x} x \cdot P(x) \text{ or } \int_{-\infty}^{\infty} x P(x) dx$$

$$Var(X) = E[X^2] - (E[X])^2$$

$$\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$$

$$S^2 = E[(X - \mu)^2]$$

$$= \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$E[\overline{X}] = E\left[\frac{1}{n} \sum_{i=1}^n X_i\right] = \frac{1}{n} E\left[\sum_{i=1}^n X_i\right] = \frac{1}{n} \sum_{i=1}^n \mu = \mu$$

$$Var[\overline{X}] = Var\left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{1}{n^2} Var(\sigma^2) = \frac{n\sigma^2}{n} = \frac{\sigma^2}{n}$$

$$E[S^2] = \sigma^2$$

$$Var(S^2) = Var\left(\frac{(n-1)S^2}{\sigma^2} \cdot \frac{\sigma^2}{(n-1)}\right)$$

$$= \left[\frac{\sigma^2}{(n-1)}\right]^2 Var\left(\frac{(n-1)S^2}{\sigma^2}\right)$$

$$= \frac{\sigma^4}{(n-1)^2} \cdot 2\nu$$

$$= \frac{2\sigma^4}{(n-1)}$$

### 3 PDF and CDF Definitions

$$F_X(x) = P(X \le x)$$

$$= \int_{-\infty}^x f(t)dt$$

$$P(a \le X \le b) = \int_a^b f(t)dt$$

$$F'_X(x) = f_X(x)$$

# 4 Moment Generating Functions

$$M_X(t) = E[e^{tX}] = \sum_{x=1}^{\infty} e^{tx} f(x)$$
or
$$= \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

# 5 Normal Distribution

Z-scores located in Table III. The larger the score, the farther from  $\mu$ .

$$z = \frac{x - \mu}{\sigma}$$

# 6 t-Distribution

 $\sigma$  is unknown, but we know s.

 $(\nu - 1)$  degrees of freedom.

If 1-degree of freedom, then Cauchy Distribution.

If the area of the tails is more than 0.10 (0.05 + 0.05, due to symmetry), then we do not have sufficient evidence to reject the claim (null hypothesis).

$$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$$
$$P(T < -t) + P(T > t)$$

# $\chi^2$ -Distribution

Assumes a normal distribution. Squares a normal.

Interested in  $\sigma^2$ .

 $\nu$  degrees of freedom.

If  $X_1, X_2, \ldots, X_n$  are chi-squared i.i.d. with pdf N(0,1), then  $Y = X_1^2 + X_2^2 + \ldots + X_n^2 \sim \chi^2(n)$ . Sum of  $\chi^2$ 's are still  $\chi^2$ . If  $S^2$  exceeds a particular value (if  $S^2 \geq \alpha$ ), we reject claim.  $P(\text{Rejecting claim when in fact it is true}) = P(\text{error}) = \alpha$ .

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$



# f-Distribution

Let  $U \sim \chi^2(\nu_1), V \sim \chi^2(\nu_2)$  be independent r.v.s. Then  $F = \frac{\frac{U}{\nu_1}}{\frac{V}{\nu_2}}$  is an f-dist with  $(\nu_1, \nu_2)$  degrees of freedom.  $F = \frac{\frac{S_1^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_2^2}} \sim F(n_1 - 1, n_2 - 2)$   $P(F \le f) = P(\frac{1}{F} \ge \frac{1}{f})$ If F(a, b), then  $\frac{1}{F} = F(b, a)$ .

$$P(F < f) = P(\frac{1}{2} > \frac{1}{2})$$



# 9 Chebyshev's Inequality

$$P(|\overline{X} - \mu| < k \frac{\sigma}{\sqrt{n}}) \ge 1 - \frac{1}{k^2}$$

### 10 CLT

$$\begin{split} Z &= \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \\ P(\frac{a - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < \frac{b - \mu}{\frac{\sigma}{\sqrt{n}}}) \end{split}$$

where a and b are the values we are testing and  $\sigma$  and n are given.

# 11 Incomplete Beta Function

$$B(x; a, b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$$

$$I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}$$

$$I_0(a, b) = 0$$

$$I_1(a, b) = 1$$

$$I_x(a, 1) = x^a$$

$$I_x(1, b) = 1 - (1-x)^b$$

$$I_x(a, b) = 1 - I_{1-x}(b, a)$$

$$I_x(a + 1, b) = I_x(a, b) - \frac{x^a (1-x)^b}{aB(a, b)}$$

$$I_x(a, b + 1) = I_x(a, b) + \frac{x^a (1-x)^b}{bB(a, b)}$$

### 12 Order Statistics

$$P(Y_i \le y) = \sum_{k=i}^n \binom{n}{k} (F(y))^{k-1} (1 - F(y))^{n-k}$$

$$g_{Y_k}(y) = \frac{n!}{(k-1)!(n-k)!} [F(y)]^{k-1} \cdot [1 - F(y)]^{n-k} \cdot f(y)$$

$$g_{Y_1}(y) = n \cdot [1 - F(y)]^{n-1} \cdot f(y)$$

$$g_{Y_n}(y) = n [F(y)]^{n-1} \cdot f(y)$$

# 13 Maximum Likelihood Estimators

#### PROCEDURE TO FIND MLE

- 1. Define the likelihood function,  $L(\theta)$ .
- 2. Often it is easier to take the natural logarithm (ln) of  $L(\theta)$ .
- 3. When applicable, differentiate  $\ln L(\theta)$  with respect to  $\theta$ , and then equate the derivative to zero.

- 4. Solve for the parameter  $\theta$ , and we will obtain  $\hat{\theta}$ .
- 5. Check whether it is a maximizer or global maximizer. Geometric:

$$\theta(1-\theta)^{x-1}$$
,  $\hat{\theta} = \frac{1}{\overline{X}}$ 

Normal:

$$\frac{1}{\sqrt{2\pi\theta}} e^{-\frac{(x-\mu)^2}{2\theta}} , \hat{\theta} = \overline{X}$$

$$\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\theta)^2}{2\sigma^2}} , \hat{\theta} = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

$$\frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(x-\theta_1)^2}{2\theta_2^2}} , \hat{\theta_1} = \overline{X} , \hat{\theta_2} = \frac{n-1}{n} S^2$$

Uniform:

$$\frac{1}{\theta}$$
,  $\hat{\theta} = X_{(n)}$ 

Poisson:

$$\frac{\theta^x e^{-\theta}}{x!} \ , \ \hat{\theta} = \overline{X}$$

# 14 Natural Log Properties

$$\ln (x \cdot y) = \ln x + \ln y$$

$$\ln \frac{x}{y} = \ln x - \ln y$$

$$\ln x^{y} = y \cdot \ln x$$

$$\ln x \frac{d}{dx} = \frac{1}{x}$$

$$\int \ln x dx = x \cdot (\ln x - 1) + c$$

$$\ln -x = \text{ undefined}$$

$$\ln 0 = \text{ undefined}$$

$$\ln 1 = 0$$

$$\lim_{x \to \infty} \ln x = \infty$$

$$\ln \frac{1}{(\theta \sqrt{2\pi})^{n}} = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \theta$$

# 15 Gamma Function

$$\begin{split} \Gamma(\alpha) &= \int_0^{infty} e^{-x} x^{\alpha-1} dx \\ \Gamma(\alpha+1) &= \alpha \Gamma(\alpha) \\ \Gamma(n+1) &= n! \\ \Gamma(\frac{1}{2}) &= \sqrt{\pi} \\ \Gamma(\frac{3}{2}) &= \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2} \end{split}$$

# 16 Beta Function

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt \text{ for } x > 0, y > 0$$
 
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \text{ for } x, y \in \mathbf{I}, x > 0, y > 0$$

# 17 Method of Moments

$$m_k'=\frac{1}{n}\sum_{i=1}^n x_i^k$$
 
$$m_k=\mu_k \text{ NOTE: May need to find the kth moment}$$
 
$$m_1=\mu_1$$
 
$$\overline{x}=\mu$$
 
$$\frac{1}{n}\sum_{i=1}^n X_i^2=\mu^2+\sigma^2$$

After solving parameter, plug it back into the distribution  $f(x;\theta)$ ).

### 18 Unbiased Estimators

For a normal population  $N(\mu, \sigma^2)$ ,

$$\hat{\mu} = \overline{X}$$

$$\hat{\sigma^2} = \frac{n-1}{n}S^2$$

$$E[\hat{\mu}] = E[\overline{X}] = \mu \text{ (this is unbiased)} \checkmark$$

$$E[\hat{\sigma^2}] = E\left[\frac{n-1}{n}S^2\right]$$

$$= E\left[\frac{(n-1)S^2}{\sigma^2} \cdot \frac{\sigma^2}{n}\right] \text{ (first term is } \chi^2(n-1) \text{ and second is constant)}$$

$$= \frac{\sigma^2}{n}E\left[\frac{(n-1)S^2}{\sigma^2}\right]$$

$$= \frac{\sigma^2}{n}(n-1) \neq \sigma^2 \text{ biased } \boxtimes$$

$$E[S^2] = \sigma^2 \text{ (this is unbiased)} \checkmark$$

### 18.1 Asymptotically Unbiased Estimators

Unbiased for large samples.  $\lim_{n\to\infty} \frac{n}{n+1}\theta = \theta$ 

#### 18.2 Consistent Estimators

If  $Var(\hat{\theta}) \to 0$  as  $n \to \infty$ , then  $\hat{\theta}$  is a consistent estimator of  $\theta$ .

#### 18.3 Fisher Information

$$I(\theta) = -E\left[\frac{\partial}{\partial \theta^2} \ln f(x;\theta)\right]$$

#### 18.4 Cramér-Rao Lower Bound

Let  $\hat{\theta}$  be an unbiased estimator of  $\theta$ . Then,

$$Var(\hat{\theta}) \ge \frac{1}{n} \cdot \frac{1}{I(\theta)}$$

is the minimum possible value of variance (Cramér-Rao lower bound).

#### 18.5 Minimum Variance Unbiased Estimator (MVUE)

If  $Var(\hat{\theta}) = \frac{1}{n} \frac{1}{I(\theta)}$  then  $\hat{\theta}$  is the MVUE.

#### 18.6 Efficient Estimators

Smaller variance is more efficient. The ratio of the C-R bound,  $\frac{C-R}{Var(\hat{\theta})}\epsilon[0,1]$  is called the efficiency of  $\hat{\theta}$ . If  $\frac{C-R}{Var(\hat{\theta})}=\frac{1}{2}\Longleftrightarrow 2\cdot C-R=Var(\hat{\theta})$ , we we need twice as many observations to do as well an estimation as can be done with the MVUE.

The ratio  $\frac{Var(\hat{\theta}_1}{Var(\hat{\theta}_2)}$  is the efficiency of  $\hat{\theta}_2$  relative to  $\hat{\theta}_1$ .

#### 18.7 Sufficient Estimators

Let  $f(x_1, x_2, ..., x_n; \theta) = f(x_1; \theta) f(x_2; \theta) ... f(x_n; \theta)$  be the joint pdf of  $(x_1, ..., x_n)$ . The statistic  $\hat{\theta}$  is a **sufficient estimator** of  $\theta$  iff  $f(x_1, x_2, ..., x_n; \theta)$  can be written as  $f(x_1, x_2, ..., x_n; \theta) = \phi(\hat{\theta}, \theta) \cdot h(x_1, x_2, ..., x_n)$  where  $\phi$  depends only on  $\hat{\theta}, \theta$  and h doesn't depend on  $\theta$ .

# 19 Estimation of Means

### 19.1 $\sigma^2$ is known

Start with  $N(\mu, \sigma^2)$ .  $\overline{X}$  is a "nice" estimate of  $\mu$ . By normalizing it, we can say  $\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$ . If  $1 - \alpha$  is the area of the "body" of our distribution, then  $\frac{\alpha}{2}$  are the tails.

$$P\left(-Z_{\frac{\alpha}{2}} < \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < Z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\left(\overline{x} - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{x} + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \text{ is a } (1 - \alpha)100\% \text{ CI for } \mu$$

$$Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \text{ is called the "max error"}$$

$$Z_{\frac{0.10}{2}}=Z_{0.05}=1.645$$
 is 90% Confidence  $Z_{\frac{0.05}{2}}=Z_{0.025}=1.96$  is 95% Confidence  $Z_{\frac{0.01}{2}}=Z_{0.005}=2.575$  is 99% Confidence

Given the error, find the sample size needed

$$E = Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow E\sqrt{n} = Z_{\frac{\alpha}{2}}\sigma$$

$$\Rightarrow (\sqrt{n})^2 = \left(\frac{Z_{\frac{\alpha}{2}}\sigma}{E}\right)^2$$

$$\Rightarrow n \ge \left[\left(\frac{Z_{\frac{\alpha}{2}}\sigma}{E}\right)^2\right]$$

### 19.2 $\sigma^2$ is unknown

$$\begin{split} & \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim T(n-1) \text{ for n small} \\ & \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim N(0,1) \text{ for n large} \end{split}$$

$$\left(\overline{X} - t_{\frac{\alpha}{2}, n-1} \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}, n-1} \cdot \frac{S}{\sqrt{n}}\right)$$

## 20 Estimation of Differences between Means

# **20.1** $\sigma_1^2, \sigma_2^2$ Are Known

With  $n_1, n_2$  large,  $\overline{X}_1, \overline{X}_2$  are point estimates for  $\mu_1, \mu_2$ .

$$\overline{X}_{1} \sim N(\mu_{1}, \frac{\sigma_{1}^{2}}{n_{1}})$$

$$\overline{X}_{2} \sim N(\mu_{2}, \frac{\sigma_{2}^{2}}{n_{2}})$$

$$(\overline{X}_{1} - \overline{X}_{2}) \sim N(\mu_{1} - \mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}})$$

$$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1)$$

$$\left((\overline{X}_{1} - \overline{X}_{2}) - Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}, (\overline{X}_{1} - \overline{X}_{2}) + Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}\right) \text{ is a } (1 - \alpha)100\% \text{ CI for } (\mu_{1} - \mu_{2})$$

$$\left((\overline{X}_{1} - \overline{X}_{2}) - Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}, (\overline{X}_{1} - \overline{X}_{2}) + Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}\right) \text{ is a } (1 - \alpha)100\% \text{ CI for } (\mu_{1} - \mu_{2})$$

# **20.2** $\sigma_1^2, \sigma_2^2$ Are Unknown

Assume  $\sigma_1^2 = \sigma_2^2$ . The following "pooled estimate", is an unbiased estimate of  $\sigma^2$ 

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
$$= \frac{n_1 - 1}{n_1 + n_2 - 2}S_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2}S_2^2$$

$$\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim T(n_1 + n_2 - 2)$$

The  $(1-\alpha)100\%$  CI for  $\mu_1 - \mu_2$  is

$$\left( (\overline{X}_1 - \overline{X}_2) - t_{\frac{\alpha}{2}, n_1 + n_2 - 2} \cdot S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, (\overline{X}_1 - \overline{X}_2) + t_{\frac{\alpha}{2}, n_1 + n_2 - 2} \cdot S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) \right)$$

# 21 Estimation of Proportions

### 21.1 Normal Approximation to the Binomial

 $\hat{\theta} = \frac{X}{n}$  is a *nice* estimator.

$$\begin{split} E[\hat{\theta}] &= E\bigg[\frac{X}{n}\bigg] = \frac{n\theta}{n} = \theta \checkmark \\ Var(\hat{\theta}) &= Var\bigg(\frac{X}{n}\bigg) = \frac{1}{n^2}n\theta(1-\theta) = \frac{\theta(1-\theta)}{n} \to_{n\to\infty} 0 \checkmark \end{split}$$

$$\frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}} \sim N(0, 1) \text{ if } n\theta \ge 5, n(1 - \theta) \ge 5$$

$$\Rightarrow \frac{\frac{X}{n} - n\theta}{\sqrt{\frac{\theta(1 - \theta)}{n}}} \sim N(0, 1)$$

$$\left(\hat{\theta} - Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}, \hat{\theta} + Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}\right), \text{ With } \hat{\theta} = \frac{X}{n}$$

### 21.2 Differences in Normal Approximations to the Binomial

 $\hat{\theta}_1 = \frac{X_1}{n_1}, \hat{\theta}_2 = \frac{X_2}{n_2}$  are *nice* estimators, so we construct  $\hat{\theta}_1 - \hat{\theta}_2$ .

$$E[\hat{\theta}_1 - \hat{\theta}_2] = E\left[\frac{X_1}{n_1}\right] - E\left[\frac{X_2}{n_2}\right] = \frac{1}{n_1}n_1\theta_1 - \frac{1}{n_1}n_1\theta_1 = \theta_1 - \theta_2.$$

$$Var(\hat{\theta}_1 - \hat{\theta}_2) = Var(\hat{\theta}_1) + Var(\hat{\theta}_2) = \frac{\hat{\theta}_1(1 - \hat{\theta}_1)}{n_1} + \frac{\hat{\theta}_2(1 - \hat{\theta}_2)}{n_2}.$$

We use the statistic constructed by normalizing,

$$\frac{(\hat{\theta}_1 - \hat{\theta}_2) - (\theta_1 - \theta_2)}{\sqrt{\frac{\hat{\theta}_1(1 - \hat{\theta}_1}{n_1} + \frac{\hat{\theta}_2(1 - \hat{\theta}_2}{n_2})}}$$

So the  $(1-\alpha)100\%$  CI for  $\theta_1-\theta_2$  is given by

$$\left((\hat{\theta_1} - \hat{\theta_2}) - Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{\theta_1}(1 - \hat{\theta_1})}{n_1} + \frac{\hat{\theta_2}(1 - \hat{\theta_2})}{n_2}}, (\hat{\theta_1} - \hat{\theta_2}) + Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{\theta_1}(1 - \hat{\theta_1})}{n_1} + \frac{\hat{\theta_2}(1 - \hat{\theta_2})}{n_2}}\right), \text{ With } \hat{\theta_1} = \frac{X_1}{n_1}, \hat{\theta_2} = \frac{X_2}{n_2}$$

### 22 Estimation of Variances

Starting with a normal population  $N(\mu, \sigma^2)$ ,

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$\begin{split} P\bigg(\frac{(n-1)S^2}{b} < \sigma^2 < \frac{(n-1)S^2}{a}\bigg) \\ \bigg(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},(n-1)}}, \frac{(n-1)S^2}{\chi^2_{\frac{1-\alpha}{2},(n-1)}}, \bigg) \end{split}$$

NOTE: take the square root to get Standard Deviation

## 22.1 Proportions of Variances

Recall,

$$F \sim F(n_1 - 1, n_2 - 1)$$
  
 $\frac{1}{F} \sim F(n_2 - 1, n_1 - 1)$ 

$$\left(\frac{\frac{S_1^2}{S_2^2}}{f_{\frac{\alpha}{2},n_1-1,n_2-1}}, \left(\frac{S_1^2}{S_2^2}\right) f_{\frac{\alpha}{2},n_2-1,n_1-1}\right)$$

# 23 Hypothesis Testing

1.) Start with a normal population,  $N(\mu, \sigma^2)$ . Want to test validity of a claim on value of  $\mu$ .

### 2.) Null Hypothesis

 $H_0: \mu = \mu_0$ , where  $\mu_0 =$  some value.

### Alternative Hypothesis

 $H_1: \mu \neq \mu_0$  (Two Sided / Simple Hypothesis), or  $\mu < \mu_0$ , or  $\mu > \mu_0$  (One Sided / Composite Hypotheses).

3.) Test statistic

$$\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

**4.)** Critical region of size  $\alpha$ .  $P\left(\left|\frac{\overline{X}-\mu_0}{\frac{\sigma}{\sqrt{n}}}\right| < Z_{\frac{\alpha}{2}}\right) = \alpha$ 

$$C = \left\{ \overline{x} \left| \left| \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \right| \ge Z_{\frac{\alpha}{2}} \right. \right\}$$

#### **5.)** Variations

- Table valid for non-normal populations with large samples
- $\sigma$  unknown; replace  $\sigma \to s$ . For large samples use the normal statistic above. For small samples, use the T-distribution.

$$\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim T(n-1)$$

#### 23.1 P-Values

Proceed as normal with other hypothesis testing, but then when we get our actual Z-value, find the corresponding probability from the tables to get the critical region.

For instance, if we are measuring against an  $\alpha$  of 0.05, then the Z-value we are measuring against is 1.96 (two-tailed). If our test statistic produces 2.60, then finding the Z-value from Table III gives us 0.4953. Since it is a two-tailed test, we multiply by two and subtract the whole thing from 1. This is our P-value (the area in the critical region).

## 23.2 Hypothesis Tests Concerning Means

| $H_0$         | $H_1$            | С                                                                                              |
|---------------|------------------|------------------------------------------------------------------------------------------------|
| $\mu = \mu_0$ | $\mu \neq \mu_0$ | $\left  \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \right  \ge z_{\frac{\alpha}{2}}$ |
| $\mu = \mu_0$ | $\mu < \mu_0$    | $\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \le -z_{\alpha}$                           |
| $\mu = \mu_0$ | $\mu > \mu_0$    | $\frac{\overline{x}-\mu_0}{\frac{\sigma}{\sqrt{n}}} \ge z_{\alpha}$                            |

Table is valid for  $N(\mu, \sigma^2)$ , where  $\sigma$  is known and non-normal populations w/ large samples.

If  $\sigma$  is unknown, replace it by s.

If  $n \geq 30$ , use Normal.

If n < 30 use T-distribution and assume normality.

# 23.3 Hypothesis Tests Concerning Differences of Means

| $H_0$                    | $H_1$                       | С                                                                                                                                       |
|--------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| $\mu_0 - \mu_1 = \delta$ | $\mu_0 - \mu_1 \neq \delta$ | $\left  \frac{\overline{x}_1 - \overline{x}_2 - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \right  \ge Z_{\frac{\alpha}{2}}$ |
| $\mu_0 - \mu_1 = \delta$ | $\mu_0 - \mu_1 < \delta$    | $\frac{\overline{x}_1 - \overline{x}_2 - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} < -Z_{\alpha}$                           |
| $\mu_0 - \mu_1 = \delta$ | $\mu_0 - \mu_1 > \delta$    | $\frac{\overline{x_1} - \overline{x_2} - \delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > Z_{\alpha}$                            |

Consider two independent normal populations,  $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ .

Assume  $\sigma_1^2, \sigma_2^2$  are known.

Sample sizes are  $n_1, n_2$ .

# Hypothesis Tests Concerning One Variance

1.) Assume a Normal population  $N(\mu, \sigma^2)$ .

$$H_0: \sigma^2 = \sigma_0^2$$

2.) We want to test 
$$\begin{split} H_0: \sigma^2 &= \sigma_0^2 \\ H_1: \sigma^2 &\neq \sigma_0^2, \sigma^2 < \sigma_0^2, \sigma^2 > \sigma_0^2 \end{split}$$

3.) Get our test statistic

$$\frac{(n-1)s^2}{\sigma^{2^*}} \sim \chi^2(n-1)$$

\* Here, the  $\sigma^2$  will be replaced by  $\sigma_0^2$ .

| $H_0$                   | $H_1$                      | С                                                               |
|-------------------------|----------------------------|-----------------------------------------------------------------|
| $\sigma^2 = \sigma_0^2$ | $\sigma^2 \neq \sigma_0^2$ | $\frac{(n-1)s^2}{\sigma_0^2} < \chi_{1-\frac{\alpha}{2},n-1}^2$ |
|                         | OR                         | $\frac{(n-1)s^2}{\sigma_0^2} > \chi^2_{\frac{\alpha}{2},n-1}$   |
| $\sigma^2 = \sigma_0^2$ | $\sigma^2 > \sigma_0^2$    | $\frac{(n-1)s^2}{\sigma_0^2} > \chi_{\alpha,n-1}^2$             |
| $\sigma^2 = \sigma_0^2$ | $\sigma^2 < \sigma_0^2$    | $\frac{(n-1)s^2}{\sigma_0^2} < \chi_{1-\alpha, n-1}^2$          |

#### Hypothesis Tests Concerning Two Variances 23.5

1.) Assume independent Normal populations  $N(\mu_1, \sigma_1^2)$ ,  $N(\mu_2, \sigma_2^2)$  with sample sizes  $n_1, n_2$ .

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$\begin{array}{l} \text{2.) We want to test} \\ H_0: \sigma_1^2 = \sigma_2^2 \\ H_1: \sigma_1^2 \neq \sigma_2^2, \sigma_1^2 < \sigma_2^2, \sigma_1^2 > \sigma_2^2 \end{array}$$

3.) Get our test statistic

$$\frac{\frac{s_1^2}{\sigma_1^2}}{\frac{s_2^2}{\sigma_2^2}} \sim F(n_1 - 1, n_2 - 1)$$

\* Here, the  $\sigma^2$  will be replaced by  $\sigma_0^2$ .

| $H_0$                     | $H_1$                        | С                                                              |
|---------------------------|------------------------------|----------------------------------------------------------------|
| $\sigma_1^2 = \sigma_2^2$ | $\sigma_1^2 \neq \sigma_2^2$ | $\frac{s_1^2}{s_2^2} > f_{\frac{\alpha}{2}, n_1 - 1, n_2 - 1}$ |
|                           | OR                           | $\frac{s_2^2}{s_1^2} > f_{\frac{\alpha}{2}, n_2 - 1, n_1 - 1}$ |
| $\sigma_1^2 = \sigma_2^2$ | $\sigma_1^2 > \sigma_2^2$    | $\frac{s_1^2}{s_2^2} > \frac{1}{f_{\alpha, n_2 - 1, n_1 - 1}}$ |
| $\sigma_1^2 = \sigma_2^2$ | $\sigma_1^2 < \sigma_2^2$    | $\frac{s_1^2}{s_2^2} < f_{\alpha, n_1 - 1, n_2 - 1}$           |

# 23.6 Hypothesis Tests Concerning Proportions

1.) If n > 30, use normal approximation to the binomial.

$$\frac{X - n\theta}{\sqrt{n\theta(1 - \theta)}} = \frac{\frac{X}{n} - \theta}{\sqrt{\frac{\theta(1 - \theta)}{n}}} \sim N(0, 1)$$

| $H_0$               | $H_1$                  | С                                                                                                              |
|---------------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| $\theta = \theta_0$ | $\theta \neq \theta_0$ | $\left  \frac{\frac{X}{n} - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} \right  > Z_{\frac{\alpha}{2}}$ |
| $\theta = \theta_0$ | $\theta > \theta_0$    | $\frac{\frac{X}{n} - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} > Z_{\alpha}$                          |
| $\theta = \theta_0$ | $\theta < \theta_0$    | $\frac{\frac{X}{n} - \theta_0}{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}} < -Z_{\alpha}$                         |

2.) If n < 30, we have to get the *P*-value using the binomial pdf.

$$2P(X \le x) = 2\left[\sum_{i=0}^{x} \binom{n}{i} \theta^{i} (1-\theta)^{n-i}\right]$$

# 23.7 Hypothesis Tests Concerning Differences among K-Proportions

|   | < 30k             | ≥ 30k             | Total |
|---|-------------------|-------------------|-------|
| A | $f_{11}$ $e_{11}$ | $f_{12}$ $e_{12}$ | $n_1$ |
| В | $f_{21} = e_{21}$ | $f_{22} = e_{22}$ | $n_2$ |
|   | $f_{\cdot 1}$     | $f_{\cdot 2}$     | f     |

Where

$$f_{i1} = x_i$$

$$f_{i2} = n_i - x_i$$

$$e_{i1} = n_i \hat{\theta}$$

$$e_{i2} = n_i (1 - \hat{\theta})$$

Case 1. Known value

1.) Hypothesis

$$H_0: \theta_1 = \theta_2 = \ldots = \theta_0$$
 known value  $H_1: \exists i \in \{1, 2, \ldots, k\}, \theta_i \neq \theta_0$ 

2.) Test statistic chi-squared

$$\sum_{i=1}^{k} \left( \frac{x_i - n_i \theta_i}{\sqrt{n_i \theta_i (1 - \theta_i)}} \right)^2 \sim \chi^2(k)$$

3.) Critical region is determined by

$$\chi^2 > \chi^2_{\alpha,k}$$

Case 2. No known value

1.) Hypothesis

$$H_0: \theta_1 = \theta_2 = \ldots = \theta_k$$
 no known value  $H_1:$  not all are equal

2.) Pooled Estimate  $\hat{\theta}$ .

$$\hat{\theta} = \frac{x_1 + x_2 + \ldots + x_k}{n_1 + n_2 + \ldots + n_k}$$

3.) Statistic

$$\sum_{i=1}^{k} \left( \frac{x_i - n_i \hat{\theta}}{\sqrt{n_i \hat{\theta}(1-\hat{\theta})}} \right)^2 \sim \chi^2(k-1)$$

4.) Critical region given by

$$\chi^{2} > \chi_{\alpha,k-1}^{2}$$

$$\sum_{i=1}^{k} \sum_{j=1}^{2} \frac{(f_{ij} - e_{ij})^{2}}{e_{ij}} > \chi_{\alpha,k-1}^{2}$$

### 23.8 Contingency Tables / rXc Tables (Multinomial)

We want  $\theta_{ij}$ , which is the probability of the jth outcome for the ith population.

$$i: r \text{ (row)}$$

$$j: c \text{ (column)}$$

$$H_0: \theta_{1j} = \theta_{2j} = \dots = \theta_{rj}, j = 1, 2, \dots, c$$

$$H_1: \text{ not all equal}$$

$$\theta_{ij} = \text{ probability of falling in cell (i, j)}$$

$$\hat{\theta}_{i.} = \frac{f_{i.}}{f}$$

$$\hat{\theta}_{.j} = \frac{f_{.j}}{f}$$

$$\hat{\theta}_{ij} = \hat{\theta}_{i.} \cdot \hat{\theta}_{.j}$$

$$= \frac{f_{i.}}{f} \cdot \frac{f_{.j}}{f}$$

$$= \frac{(f_{i.}) \cdot (f_{.j})}{f^2}$$

$$\chi^2: \sum \frac{(F - E)^2}{E} > \chi^2_{\alpha,(r-1)(c-1)}$$

|   | Poor              | Fair              | Good              | Total   |
|---|-------------------|-------------------|-------------------|---------|
| A | $f_{11}$ $e_{11}$ | $f_{12}$ $e_{12}$ | $f_{12}$ $e_{12}$ | $f_1$ . |
| В | $f_{21}$ $e_{21}$ | $f_{22} = e_{22}$ | $f_{12}$ $e_{12}$ | $f_2$ . |
| С | $f_{21} = e_{21}$ | $f_{22} = e_{22}$ | $f_{12}$ $e_{12}$ | $f_3$ . |
|   | $f_{\cdot 1}$     | $f_{\cdot 2}$     | $f_{\cdot 3}$     | f       |

Make the following table:

| Rays | (F) Occur | P(X=x)        | Е           | $\frac{(F-E)^2}{E}$ |
|------|-----------|---------------|-------------|---------------------|
| 0    | 19        | 0.09071795329 | 20.86512926 | 0.1667234888        |
| 1    | 54        | 0.2177230879  | 50.07631022 | 0.08608989148       |
| 2    | 58        | 0.2612677055  | 60.09157226 | 0.5809386751        |
| 3    | 23        | 0.2090141644  | 48.07325781 | 40.40608318         |
| 4    | 6         | 0.1254084986  | 28.84395468 | 7.963738403         |
| 5    | 6         | 0.06019607934 | 13.84509825 | 32.3240659          |
| 6    | 6         | 0.02407843174 | 5.538039299 | 3.594971472         |
| 7+   | 6         | 0.01159407926 | 2.66663823  | 0.6667022138        |
|      | 230       | 1             | 230         | 85.78931322         |

First column is the measurement

Second is the frequency

Third is based on the assumed distribution's PDF

Fourth is the expected value obtained by taking the probability \* total frequency Last is summed to get the  $\chi^2$  statistic in the bottom right cell

#### Finding degrees of freedom

s = total number of cells

t = number of estimated parameters

$$s-t-1 = r \cdot c - (r+c-2) - 1$$

$$= r \cdot c - r - c + 2 - 1$$

$$= r \cdot c - r - c + 1$$

$$= r(c-1) - (c-1)$$

$$= (r-1)(c-1)$$

### 23.9 Goodness of Fit

| # Sold | # Days | P(X=x) | E     | $\frac{(F-E)^2}{E}$           |
|--------|--------|--------|-------|-------------------------------|
| 0      | 1      | 0.001  | 0.3   | $\frac{(1-0.3)^2}{0.3}$       |
| 1      | 16     | 0.027  | 8.1   | $\frac{(16-8.1)^2}{8.1}$      |
| 2      | 55     | 0.243  | 72.9  | $\frac{(55-72.9)^2}{72.9}$    |
| 3      | 228    | 0.729  | 218.7 | $\frac{(228-218.7)^2}{218.7}$ |
|        | 300    | 1      | 300   | $\chi^2 = 14.1289$            |

Goal: Determine if a dataset may be looked upon as a random sample having a given distribution.

Need to estimate  $\theta$ .

Find the expected frequencies of E for the given values  $0, 1, 2, \ldots$ 

Find 
$$\chi^2 = \sum \frac{(F-E)^2}{E} > \chi^2_{\alpha, s-t-1}$$
.

Find  $\hat{\theta}^{1}$ 

<sup>&</sup>lt;sup>1</sup>Note: If PDF of population is given and we don't have to estimate a parameter, t = 0.

# 24 Nonparametric Statistics

# 24.1 3.1) Binomial Test

1.) Want to test validity of a claim on value of p.

# **2.**) $n \le 20$

## 3.) Null Hypothesis

 $H_0: p = p^*$ , where  $p^* =$ some value.

#### Alternative Hypothesis

 $H_1: p \neq p^*$  (Two Sided / Simple Hypothesis), or  $p < p^*$ , or  $p > p^*$  (One Sided / Composite Hypotheses).

### **4.)** Critical region of size $\alpha$ .

Left-tailed tests:  $P(y \le t) = \alpha$ Right-tailed tests:  $P(y \le t) = 1 - \alpha$ 

Double-tailed tests:  $P(y \le t_1) = \alpha_1$  or  $P(y \le t_2) = \alpha_2$ 

| $H_0$       | $H_1$        | Critical Region                             | P-value                                         |
|-------------|--------------|---------------------------------------------|-------------------------------------------------|
| $p = p^*$   | $p \neq p^*$ | $c = \{T : T \le t_1 \text{ or } T > t_2\}$ | $min\{2 \cdot P(y \le T), 2 \cdot P(y \ge T)\}$ |
| $p \ge p^*$ | $p < p^*$    | $c = \{T : T \le t\}$                       | $P(y \le T)$                                    |
| $p \le p^*$ | $p > p^*$    | $c = \{T : T \ge t\}$                       | $P(y \ge T)$                                    |

# 24.2 3.1) Binomial Test (Normal Approximation)

1.) Want to test validity of a claim on value of p.

# 2.) n > 20

### 3.) Null Hypothesis

 $H_0: p = p^*$ , where  $p^* =$ some value.

## Alternative Hypothesis

 $H_1: p \neq p^*$  (Two Sided / Simple Hypothesis), or  $p < p^*$ , or  $p > p^*$  (One Sided / Composite Hypotheses).

**4.)** Critical region of size  $\alpha$ .

Left-tailed tests:  $P(y \le t) = \alpha$ Right-tailed tests:  $P(y \le t) = 1 - \alpha$ 

Double-tailed tests:  $P(y \le t_1) = \alpha_1$  or  $P(y \le t_2) = \alpha_2$ 

| $H_0$        | $H_1$        | Critical Region                                                                                                                      | P-Value                                                                                                                                                                              |
|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p = p^*$    | $p \neq p^*$ | $c = \{T : T \le np^* + z_{\frac{\alpha}{2}} \sqrt{np^*(1 - p^*)} $ or $T > np^* + z_{1 - \frac{\alpha}{2}} \sqrt{np^*(1 - p^*)} \}$ | $\min \left\{ 2P \left( z \le \frac{T - np^* + 0.5}{\sqrt{np^*(1 - p^*)}} \right), 2 \left( 1 - P \left( z \le \frac{T - np^* + 0.5}{\sqrt{np^*(1 - p^*)}} \right) \right) \right\}$ |
| $p \ge p^*$  | $p < p^*$    | $c = \{T : T \le np^* + z_{\alpha} \sqrt{np^*(1-p^*)}$                                                                               | $P\left(z \le \frac{T - np^* + 0.5}{\sqrt{np^*(1 - p^*)}}\right)$                                                                                                                    |
| $p \leq p^*$ | $p > p^*$    | $c = \{T : T > np^* + z_{1-\alpha} \sqrt{np^*(1-p^*)}$                                                                               | $1 - P\left(z \le \frac{T - np^* + 0.5}{\sqrt{np^*(1 - p^*)}}\right)$                                                                                                                |

# 24.3 3.2) Quantile Test

1.) Want to test validity of a claim on value of  $x^*$ , which is the  $*^{th}$  population quantile.

2.) 
$$n \le 20$$

**3.)** 
$$T_1 = \# \text{ of } x_i \le x^*$$
  $T_2 = \# \text{ of } x_i < x^*$ 

| $H_0$                                                          | $H_1$        | Critical Region                                                                                                                                  | P-Value                               |
|----------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| The $p^*$ quantile of $X = x^*$ $P(X \le x^*) = p^*$ $p = p^*$ | $p \neq p^*$ | $c = \{T_1 \le t_1 \text{ or } T_2 > t_2\}$ find $t_1, t_2 \text{ s.t.}$ $P(y \le t_1) = \frac{\alpha}{2}$ $P(y \le t_2) = 1 - \frac{\alpha}{2}$ | $min\{2P(y \le T_1), 2P(y \ge T_2)\}$ |
| $p \geq p^*$                                                   | $p < p^*$    | $c = \{T_1 : T_1 \le t_1\}$<br>find $t_1$ s.t.<br>$P(y \le t_1) = \alpha$                                                                        | $P(y \le T_1)$                        |
| $p \le p^*$                                                    | $p > p^*$    | $c = \{T_2 : T_2 > t_2\}$ find $t_2$ s.t. $P(y \le t_2) = 1 - \alpha$                                                                            | $P(y \ge T_2)$                        |

# 24.4 3.2) Quantile Test (Normal Approximation)

1.) Want to test validity of a claim on value of  $x^*$ , which is the  $*^{th}$  population quantile.

## 2.) n > 20

**3.)** 
$$T_1 = \# \text{ of } x_i \le x^*$$
  $T_2 = \# \text{ of } x_i < x^*$ 

| $H_0$                                                | $H_1$        | Critical Region                                                                                      | P-Value                                                                             |
|------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| The $p^*$ quantile of $X = x^*$ $P(X \le x^*) = p^*$ | $p \neq p^*$ | 2 7                                                                                                  | $\min\{2P(y \le T_1), 2P(y \ge T_2)\}$                                              |
| $p = p^*$                                            |              | and $t_2 = np^* + z_{1-\frac{\alpha}{2}} \sqrt{np^*(1-p^*)}$                                         |                                                                                     |
| $p \geq p^*$                                         | $p < p^*$    | $c = \{T_1 : T_1 \le t_1\}$ find $t_1$ s.t. $t_1 = np^* + z_{\frac{\alpha}{2}} \sqrt{np^*(1 - p^*)}$ | $P(y \le T_1) = P\left[z \le \frac{T_1 - np^* + 0.50}{\sqrt{np^*(1 - p^*)}}\right]$ |
| $p \le p^*$                                          | $p > p^*$    | $c = \{T_2 : T_2 > t_2\}$ find $t_2$ s.t. $t_2 = np^* + z_{1-\frac{\alpha}{2}} \sqrt{np^*(1-p^*)}$   | $P(y \ge T_1)$ = 1 - P\[z \le \frac{T_2 - np^* + 0.50}{\sqrt{np^*(1-p^*)}}\]        |

### 24.5 3.3) Tolerance Limits

**Method A.** To find n when q is known.

How large n should be with  $1 - \alpha\%$  confidence that greater than or equal to q% of the population will be from  $x^{(1)}$  (lowest) and  $x^{(n)}$  (highest) or,

$$X^{(r)} \leq \text{ at least } q\% \text{ of the population } \leq x^{(n+1-m)}$$
 
$$n \cong \frac{1}{4}\chi^2_{1-\alpha,2(r+m)} \frac{1+q}{1-q} + \frac{1}{2}(r+m-1)$$

Note: If either r = 0 or m = 0, it will be a one-sided Tolerance Limit.

#### **Method B.** To find q when n is known.

Given we know n, what proportion q of the population (at least) are within a sample range with  $1 - \alpha\%$  confidence.

from 
$$x^{(r)}$$
 and  $x^{(n+1-m)}$ 

$$q = \frac{4n - 2(r + m - 1) - \chi^{2}_{1-\alpha,2(r+m)}}{4n - 2(r + m - 1) + \chi_{1-\alpha,2(r+m)}}$$

Note: If either r = 0 or m = 0, it will be a one-sided Tolerance Limit.

# **24.6 3.4**) The Sign Test $(n \le 20)$

### 1.) $n \le 20$

| $H_0$           | $H_1$                              | Critical Region                                   | P-Value                               |
|-----------------|------------------------------------|---------------------------------------------------|---------------------------------------|
| P(+) = P(-)     | $P(+) \neq P(-)$                   | $c = \{T : T \le t \text{ or } T \ge n - t\}$     | $min\{2P(y \le T_1), 2P(y \ge T_2)\}$ |
| $P(+) \ge P(-)$ | P(+) < P(-) or                     | $c = \{T : T \le t\}$ where $T = \#$ of '+' signs | $P(y \le T)$                          |
|                 | $P \ge 0.50 \text{ and } P < 0.50$ | and $t: P(y \le t) = \alpha$                      |                                       |
|                 | P(+) > P(-)                        | $c = \{T : T \ge n - t\}$                         |                                       |
| $P(+) \le P(-)$ | or                                 | where $n = \text{excluding } \# \text{ of ties}$  | $P(y \le T)$                          |
|                 | $P \ge 0.50 \text{ and } P < 0.50$ | and $t: P(y \le n - t) = 1 - \alpha$              |                                       |

# **24.7 3.4**) The Sign Test (n > 20)

#### 1.) n > 20

| $H_0$           | $H_1$            | Critical Region                                                                                         | P-Value                                                            |
|-----------------|------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| P(+) = P(-)     | $P(+) \neq P(-)$ | $c = \{T : T \le t \text{ or } T \ge n - t\}$ where $t = \frac{1}{2}(n + z_{\frac{\alpha}{2}}\sqrt{n})$ | $\min\{2P(y\leq T), 2P(y\geq T)\}$                                 |
| $P(+) \ge P(-)$ | P(+) < P(-)      | $c = \{T : T \le t\}$ where $t = \frac{1}{2}(n + z_{\alpha}\sqrt{n})$                                   | $P(y \le T) = P\left(z \le \frac{2T - n + 1}{\sqrt{n}}\right)$     |
| $P(+) \le P(-)$ | P(+) > P(-)      | $c = \{T : T \ge n - t\}$ where $t = \frac{1}{2}(n + z_{\alpha}\sqrt{n})$                               | $P(y \ge T) = 1 - P\left(z \le \frac{2T - n + 1}{\sqrt{n}}\right)$ |

# 24.8 3.5) McNemar Test for Significance of Changes

|   |   | $\begin{vmatrix} y_i \\ 0 \end{vmatrix}$ | 1 |
|---|---|------------------------------------------|---|
| X | 0 | a                                        | b |
|   | 1 | c                                        | d |

- 1.)  $n = b + c \le 20$
- 2.)  $T_2 = b$

| $H_0$                     | $H_1$                        | Critical Region                                       | P-Value                               |
|---------------------------|------------------------------|-------------------------------------------------------|---------------------------------------|
| $P(x_i = 0) = P(y_i = 0)$ | $P(x_i = 0) \neq P(y_i = 0)$ | $c = \{T_2 : T_2 \le t_1 \text{ or } T_2 \ge n - t\}$ | $min\{2P(y \le T_2), 2P(y \ge T_2)\}$ |

- 3.) n = b + c > 20
- 4.)  $T_1 = \frac{(b-c)^2}{b+c}$

| $H_0$                     | $H_1$                        | Critical Region                           | P-Value                                      |
|---------------------------|------------------------------|-------------------------------------------|----------------------------------------------|
| $P(x_i = 0) = P(y_i = 0)$ | $P(x_i = 0) \neq P(y_i = 0)$ | $c = \{T_1 : T_1 > \chi^2_{1-\alpha,1}\}$ | $min\{2P(z<-\sqrt{T_1}), 2P(z>\sqrt{T_1})\}$ |

# 24.9 3.5) Cox and Stuart Test for Trend (like regression)

- 1.) Split data in half, and pair elements.
- 1a.) n = Even number of elements split evenly then pair:

$$[1,2,3,4,5,6,7,8] \rightarrow [1,2,3,4], [5,6,7,8] \rightarrow [(1,5),(2,6),(3,7),(4,8)]$$

**1b.**) n = Odd number of elements, drop the median, then split and pair:  $x_0.50 = \frac{n+1}{2}$ 

 $[5,6,7,8,9,10,11,12,13] \rightarrow \frac{9+1}{2} = \text{ 5th element} = 9 \\ \rightarrow [5,6,7,8], \\ 9 -, [10,11,12,13] \rightarrow [(5,10),(6,11),(7,12),(8,13)] \\ \rightarrow [10,11,12,13] \rightarrow [10,11,12,13] \\ \rightarrow [10,11,12,13] \rightarrow [10,11,12,13] \\ \rightarrow [10,11,12] \\ \rightarrow [10,11,12]$ 

- 2.) T = # of '+'s
- 3.) n = total excluding # of ties

| $H_0$            | $H_1$            | Critical Region                                                                                                             | P-Value                            |
|------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| $\beta_1 = 0$    | $\beta_1 \neq 0$ | $c = \{T : T \le t \text{ or } T \ge n - t\}$ where $P(y \le t) = \frac{\alpha}{2}$ $P(y \le n - t) = 1 - \frac{\alpha}{2}$ | $\min\{2P(y\leq T), 2P(y\geq T)\}$ |
| $\beta_1 \ge 0$  | $\beta_1 < 0$    | $c = \{T : T \le t\}$ where $P(y \le t) = \alpha$                                                                           | $P(y \le T)$                       |
| $\beta_1 \leq 0$ | $\beta_1 > 0$    | $c = \{T : T \ge n - t\}$ where $P(y \le n - t) = 1 - \alpha$                                                               | $P(y \ge T)$                       |

# 24.10 4.1) 2x2 Contingency Table

1.) Random Sample (rows), Random Results (columns)

|               | Class 1  | Class 2  |       |
|---------------|----------|----------|-------|
| Population 1. | $O_{11}$ | $O_{12}$ | $n_1$ |
| Population 2. | $O_{21}$ | $O_{22}$ | $n_2$ |
|               | $c_1$    | $c_2$    | N     |

2.) Test Statistic

$$T_1 = \frac{\sqrt{N}(O_{11}O_{12} - O_{21}O_{22})}{\sqrt{n_1 n_2 c_1 c_2}}$$

| $H_0$         | $H_1$          | Critical Region                                                                      | P-Value                                                                   |
|---------------|----------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $p_1 = p_2$   | $p_1 \neq p_2$ | $c = \{T_1 : T_1 < z_{\frac{\alpha}{2}} \text{ or } T_1 > z_{1-\frac{\alpha}{2}} \}$ | $min\{2P(z_{\frac{\alpha}{2}} < T_1), 2P(z_{1-\frac{\alpha}{2}} > T_1)\}$ |
| $p_1 \ge p_2$ | $p_1 < p_2$    | $c = \{T : T < z_{\alpha}\}$                                                         | $P(z_{\alpha} < T_1)$                                                     |
| $p_1 \le p_2$ | $p_1 > p_2$    | $c = \{T_1 : T_1 > z_{1-\alpha}\}$                                                   | $P(z_{1-\alpha} > T_1)$                                                   |

### 24.11 4.1) Fisher's Exact Test

1.) Fixed Sample (rows), Fixed Results (columns)

| Class 1 | Class 2 |                                                                       |
|---------|---------|-----------------------------------------------------------------------|
| x       | r-x     | r                                                                     |
| c-x     | N-r-c+x | N-r                                                                   |
| c       | N-c     | N                                                                     |
|         | x       | $ \begin{array}{c cccc} x & r-x \\ \hline c-x & N-r-c+x \end{array} $ |

- 2.)  $n \le 20$
- 3.) Test Statistic

$$P(T_2 = x) = \begin{cases} P(T_2 \le x) = \frac{\binom{r}{x} \binom{N-r}{c-x}}{\binom{N}{c}} & x = 0, 1, \dots, \min\{r_1, c\}) \\ 0 & \text{for all other values of } x \end{cases}$$

| $H_0$          | $H_1$          | Critical Region | P-Value                               |
|----------------|----------------|-----------------|---------------------------------------|
| $p_1 = p_2$    | $p_1 \neq p_2$ |                 | $min\{2P(T_2 \le x), 2P(T_2 \ge x)\}$ |
| $p_1 \ge p_2$  | $p_1 < p_2$    |                 | $P(T_2 \le x)$                        |
| $p_1 \leq p_2$ | $p_1 > p_2$    |                 | $P(T_2 \ge x)$                        |

- 2.) n > 20
- 3.) Test Statistic

$$T_{3} = \frac{x - \frac{rc}{N}}{\sqrt{\frac{rc(N-r)(N-c)}{N^{2}(N-1)}}}$$

$$(P-value) T_{3} = \frac{x - \frac{rc}{N} \pm 0.5}{\sqrt{\frac{rc(N-r)(N-c)}{N^{2}(N-1)}}}$$

| $H_0$          | $H_1$          | Critical Region                                                                       | P-Value                                                                     |
|----------------|----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| $p_1 = p_2$    | $p_1 \neq p_2$ | $c = \{T_3 : T_3 \le z_{\frac{\alpha}{2}} \text{ or } T_3 > z_{1-\frac{\alpha}{2}}\}$ | $min\{2P(z_{T_3\leq \frac{\alpha}{2}}, 2P(z_{\frac{\alpha}{2}}\geq T_3))\}$ |
| $p_1 \ge p_2$  | $p_1 < p_2$    | $c = \{T_3 : T_3 \le z_\alpha\}$                                                      | $P(z_{\alpha} \leq T_3)$                                                    |
| $p_1 \leq p_2$ | $p_1 > p_2$    | $c = \{T_3 : T_3 \ge z_\alpha\}$                                                      | $P(z_{1-\alpha} \ge T_3)$                                                   |

# 24.12 4.1) Mantel-Haenszel Test

|       | Class 1     | Class 2                 |             |
|-------|-------------|-------------------------|-------------|
| Row 1 | $x_i$       | $r_i - x_i$             | $r_i$       |
| Row 2 | $c_i - x_i$ | $N_i - r_i - c_i + x_i$ | $N_i - r_i$ |
|       | $c_i$       | $N_i - c_i$             | $N_i$       |

- 1.) Fixed Sample (rows), Fixed Results (columns)
- 2.) Test Statistic

$$T_4 = \frac{\sum x_i - \sum \frac{r_i c_i}{N_i}}{\sqrt{\sum \frac{r_i c_i (N_i - r_i)(N_i - c_i)}{N_i^2 (N_i - 1)}}}$$

| $H_0$               | $H_1$                                                                       | Critical Region                                                        | P-Value                                           |
|---------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------|
| $p_{1i} = p_{2i}$   | $p_{1i} > p_{2i}$ for some i or $p_{1i} < p_{2i}$ for some i (but not both) | $c = \{T_4 : T_4 < z_{\alpha}\}$ or $c = \{T_4 : T_4 > z_{1-\alpha}\}$ | $min\{2P(z < (T_4 + 0.5)), 2P(z > (T_4 - 0.5))\}$ |
| $p_{1i} \ge p_{2i}$ | $p_{1i} < p_{2i}$                                                           | $c = \{T_4 : T_4 < z_\alpha\}$                                         | $P(z_{\alpha} < (T_4 + 0.5))$                     |
| $p_{i1} \le p_{i2}$ | $p_{i1} > p_{i2}$                                                           | $c = \{T_4 : T_4 > z_\alpha\}$                                         | $P(z_{1-\alpha} > (T_4 - 0.5))$                   |

- 3.) Random Sample (rows), Random Results (columns)
- 4.) Test Statistic

$$T_5 = \frac{\sum x_i - \sum \frac{r_i c_i}{N_i}}{\sqrt{\sum \frac{r_i c_i (N_i - r_i)(N_i - c_i)}{N_i^3}}}$$

| $H_0$               | $H_1$                                                                       | Critical Region                                                        | P-Value                                               |
|---------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|
| $p_{1i} = p_{2i}$   | $p_{1i} > p_{2i}$ for some i or $p_{1i} < p_{2i}$ for some i (but not both) | $c = \{T_5 : T_5 < z_{\alpha}\}$ or $c = \{T_5 : T_5 > z_{1-\alpha}\}$ | $min\{2P(z_{\alpha} < T_5), 2P(z_{1-\alpha} > T_5)\}$ |
| $p_{1i} \ge p_{2i}$ | $p_{1i} < p_{2i}$                                                           | $c = \{T_5 : T_5 < z_\alpha\}$                                         | $P(z_{\alpha} < T_5)$                                 |
| $p_{i1} \le p_{i2}$ | $p_{i1} > p_{i2}$                                                           | $c = \{T_5 : T_5 > z_\alpha\}$                                         | $P(z_{1-\alpha} > T_5)$                               |

# 24.13 4.2) Chi-squared Test for Differences in Probabilities, rxc

|              | Class 1  | Class 2  | <br>Class $c$ | Totals   |
|--------------|----------|----------|---------------|----------|
| Population 1 | $O_{11}$ | $O_{12}$ | <br>$O_{1c}$  | $n_1$    |
| Population 2 | $O_{21}$ | $O_{22}$ | <br>$O_{2c}$  | $n_2$    |
|              |          |          | <br>          |          |
| Population r | $O_{r1}$ | $O_{r2}$ | <br>$O_{rc}$  | $n_{rc}$ |
| Totals       | $C_1$    | $C_2$    | <br>$C_C$     | N        |
|              |          |          |               |          |

- 1.) Fixed Sample (rows), Fixed Results (columns)
- 2.) Test Statistic

$$T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
, where  $E_{ij} = \frac{n_i C_j}{N}$