III. kolo kategorie Z9

Z9-III-1

Pavel si zvolil dvě přirozená čísla $a, b \ (a \ge b)$ a vypočítal rozdíl jejich druhých mocnin. Vyšlo mu 2007. Které dvojice čísel si mohl Pavel zvolit?

Řešení.

$$a^{2} - b^{2} = (a - b)(a + b) = 2007 = 3^{2} \cdot 223.$$

Možní dělitelé čísla 2007 jsou: 1; 3; 9; 223; 669; 2007. Sestavíme tabulku. (Čísla ve třetím řádku získáme např. podle vztahu $a = \frac{1}{2}((a-b)+(a+b))$, čísla ve čtvrtém pak snadno dopočítáme.)

a-b	1	3	9
a+b	2007	669	223
a	1004	336	116
b	1 003	333	107

Pavel mohl zvolit dvojice 1004 a 1003 nebo 336 a 333 nebo 116 a 107.

[rozklad a² - b² na součin - 1 b., nápad hledat dělitele čísla 2007 - 1 b., výpočet a, b - po 1 b. za každou dvojici, správná odpověď se všemi řešeními - 1 b.]

Z9-III-2

V laboratoři na polici stojí uzavřená skleněná nádoba ve tvaru kvádru. Nachází se v ní 2,4 litru destilované vody, avšak objem nádoby je větší. Voda sahá do výšky 16 cm. Když kvádrovou nádobu postavíme na jinou její stěnu, bude hladina ve výšce 10 cm. Kdybychom ji postavili ještě na jinou stěnu, voda by sahala jen do výšky 9,6 cm. Určete rozměry nádoby.

ŘEŠENÍ. Rozměry nádoby označíme a, b, c. Pro každou polohu nádoby sestavíme rovnici, v níž vyjádříme objem vody:

$$a \cdot b \cdot 16 = 2400,\tag{1}$$

$$a \cdot c \cdot 10 = 2400,\tag{2}$$

$$b \cdot c \cdot 9.6 = 2400. \tag{3}$$

Řešíme soustavu tří rovnic o třech neznámých:

$$a \cdot b = 150,\tag{1}$$

$$a \cdot c = 240, \tag{2}$$

$$b \cdot c = 250. \tag{3}$$

Z rovnice (1) vypočítáme b, z rovnice (2) vypočítáme c a dosadíme do rovnice (3), čímž dostaneme rovnici

$$\frac{150}{a} \cdot \frac{240}{a} = 250.$$

Tato rovnice má jediné řešením (v množině kladných čísel) a=12. Dosazením do výše uvedených vztahů vypočítáme b, c.

Rozměry nádoby jsou tedy 12 cm, 12,5 cm a 20 cm.

```
[sestavení soustavy rovnic – 1 b.,
výpočet jedné neznámé – 2 b.,
výpočet druhé a třetí neznámé – 1 + 1 b.,
správná odpověď – 1 b.]
```

Z9-III-3

Přečtěte si výsledky ankety konané v Peci pod Sněžkou, při níž bylo osloveno 1 240 lidí: "V existenci Krakonoše věří 46 % dotázaných (zaokrouhleno na celé číslo), 31 % v jeho existenci nevěří (zaokrouhleno na celé číslo). Ostatní dotazovaní odmítli na tuto otázku jakkoli reagovat."

- a) Kolik nejméně lidí mohlo v anketě odpovědět, že věří v existenci Krakonoše?
- b) Kolik nejvíce lidí mohlo odmítnout na anketu odpovědět? Uveďte konkrétní počty, nikoli procenta.

ŘEŠENÍ. Počet lidí, kteří odpověděli kladně, označíme x. Počet lidí, kteří odpověděli záporně, označíme y. Pro tyto počty platí:

$$0,455 \cdot 1240 \leqq x < 0,465 \cdot 1240,$$

$$564,2 \leqq x < 576,6,$$

$$0,305 \cdot 1240 \leqq y < 0,315 \cdot 1240,$$

$$378,2 \leqq y < 390,6.$$

Kladně odpovědělo nejméně 565 lidí (otázka a). Záporně odpovědělo nejméně 379 lidí. Tedy reagovat odmítlo maximálně 1240 - 565 - 379 = 296 lidí (otázka b).

[otázka a) za 2 b.; otázka b) za 4 b. Za nesprávnou úvahu, že maximálně odmítlo reagovat 100 – 45,5 – 30,5 = 24 %, tj. 297 lidí, protože 0,24 · 1 240 = 297,6, lze udělit 1 b.]

Z9-III-4

Na obrázku jsou znázorněny tři shodné, navzájem se překrývající rovnostranné trojúhelníky. Určete obsah každého z nich, když víte, že současně platí:

- \triangleright Průnikem trojúhelníku T_1 a trojúhelníku T_2 je rovnostranný trojúhelník s obsahem $\sqrt{3}\,\mathrm{cm}^2$.
- ightharpoonup Průnikem trojúhelníku T_2 a trojúhelníku T_3 je rovnostranný trojúhelník s obsahem $\frac{9}{7}\sqrt{3}\,\mathrm{cm}^2$.
- ightharpoonup Průnikem trojúhelníku T_1 a trojúhelníku T_3 je rovnostranný trojúhelník s obsahem $\frac{1}{4}\sqrt{3}\,\mathrm{cm}^2$.

ŘEŠENÍ. Označme UT (obr.) stranu rovnostranného trojúhelníku, který je průnikem T_1 a T_3 . Pro obsah tohoto trojúhelníku platí

$$\frac{|UT|^2\cdot\sqrt{3}}{4} = \frac{\sqrt{3}}{4},$$

tedy |UT|=1 (cm). Dále označme VT stranu rovnostranného trojúhelníku, který je průnikem T_1 a T_2 . Pro obsah tohoto trojúhelníku platí

$$\frac{|VT|^2 \cdot \sqrt{3}}{4} = \sqrt{3},$$

tedy |VT| = 2 (cm).

Konečně označme YZ stranu rovnostranného trojúhelníku, který je průnikem T_2 a T_3 , přitom $YZ \parallel VT$. Pro obsah tohoto trojúhelníku platí

$$\frac{|YZ|^2 \cdot \sqrt{3}}{4} = \frac{9}{4}\sqrt{3},$$

tedy |YZ| = 3 (cm). Označme XZ stranu trojúhelníku T_2 , která je rovnoběžná s VT.

$$|XZ| = |XY| + |YZ|.$$

Čtyřúhelník XYUV je rovnoběžník, proto |XY| = |VU|. Zároveň platí |VU| = |VT| - |UT|. Tedy

$$|XZ| = |VU| + |YZ| = |VT| - |UT| + |YZ| = 2 - 1 + 3 = 4$$
 (cm).

Obsah trojúhelníku T_2 je

$$\frac{|XZ|^2 \cdot \sqrt{3}}{4} = \frac{4^2 \sqrt{3}}{4} = 4\sqrt{3} \text{ (cm}^2).$$

 $[výpočet\ UT,\ VT,\ YZ-3\times 1\ b.,\ výpočet\ XZ-1\ b.,\ obsah\ trojúhelníku\ T_2-2\ b.]$