Herding Cycles

Edouard Schaal CREI, ICREA, UPF, BGSE and CEPR Mathieu Taschereau-Dumouchel Cornell University

Motivation

- Many historical recessions can be described as bubble-like "boom-bust" cycles:
 - Expansion accompanied by massive investments into one sector (new technologies, finance, etc.)
 - ► Followed by a sharp contraction in macro aggregates
 - E.g.: IT-led boom in late 1990s

Motivation

- Many historical recessions can be described as bubble-like "boom-bust" cycles:
 - Expansion accompanied by massive investments into one sector (new technologies, finance, etc.)
 - ► Followed by a sharp contraction in macro aggregates
 - E.g.: IT-led boom in late 1990s
- A prominent view is that these cycles are expectation driven (Pigou, 1927)
 - ▶ "News"-driven business cycles (Beaudry and Portier, 2004, 2006, 2014; etc.)
 - ► Limitation: many aspects of the cycle is exogenous (timing, sequence of shocks)
 - ▶ What drives the belief dynamics remains unknown

Motivation

- Many historical recessions can be described as bubble-like "boom-bust" cycles:
 - Expansion accompanied by massive investments into one sector (new technologies, finance, etc.)
 - ► Followed by a sharp contraction in macro aggregates
 - E.g.: IT-led boom in late 1990s
- A prominent view is that these cycles are expectation driven (Pigou, 1927)
 - ▶ "News"-driven business cycles (Beaudry and Portier, 2004, 2006, 2014; etc.)
 - ► Limitation: many aspects of the cycle is exogenous (timing, sequence of shocks)
 - ▶ What drives the belief dynamics remains unknown
- We provide an endogenous theory of the phenomenon based on herding:
 - ► Generate a full boom-and-bust cycle out of a single impulse shock
 - ▶ Important quantitative and policy implications

The Story

- We embed a model of rational herding into a business cycle framework:
 - ► Agents learn from observing the investment behavior of others (social learning)
 - People can sometimes collectively fool themselves into thinking they're in a boom until they realize their mistake (bust)

3

The Story

- We embed a model of rational herding into a business cycle framework:
 - Agents learn from observing the investment behavior of others (social learning)
 - People can sometimes collectively fool themselves into thinking they're in a boom until they realize their mistake (bust)
- Boom-bust cycles as false-positives:
 - ► Technological innovations arrive exogenously with uncertain qualities
 - ▶ Agents have private information and observe aggregate investment rates
 - ▶ Importantly, we assume that there is common noise in private signals
 - correlation of beliefs due to agents having similar sources of information
 - allows for variation in average beliefs independent from fundamentals
 - ► High investment indicates either:
 - · state with good technology, or
 - state with bad technology but where agents hold optimistic beliefs.

The Story

- Development of a boom-bust cycle:
 - Unusually large realizations of common noise may send the economy on self-confirming boom:
 - agents mistakenly attribute high investment to technology being good
 - · leads agents to take actions that seemingly confirm their assessment
 - investment rises...
 - However, agents are rational and information keeps arriving, so probability of false-positive state rises
 - at some point, most pessimistic agents stop investing
 - suddenly, high beliefs are no longer confirmed by experience
 - sharp reversal in beliefs and collapse of investment ⇒ bust
 - · truth is learned in the long run

Preview of Results

Results

- ▶ Unique-equilibrium model that can produce an endogenous boom-bust
 - Above and below trend
- ▶ Theory has a range of predictions on bubble-like phenomena over the business cycle:
 - When/why they arise, under what conditions, at what frequency
 - When/why they burst without exogenous shock
- ► Since cycle is endogenous, policies are particularly powerful
 - Policies can affect the boom duration/amplitude and timing of the burst
 - Optimal policies (tax) leans against the wind, monetary policy ill-suited
- ► Quantification:
 - Theory can generate realistic, sizable boom-bust cycles

Related Literature

Bubbles

- Macro: rational bubbles (Tirole, 1985; Martin and Ventura, 2012; Galí, 2014...), financial frictions (Kocherlakota, 1992; Miao and Wang, 2013, 2015...)
 - ⇒ specific sequence of exogenous sunspots
- Finance: agency problem (Allen and Gale, 2000;...), heterogeneous beliefs (Harrison and Kreps, 1978;
 Allen et al., 1993), asymmetric information (Abreu and Brunnermeier, 2003;...)
 - \Rightarrow price \neq fundamental, dynamics not the focus

News/noise-driven cycle

- Beaudry and Portier (2004, 2006, 2014), Jaimovich and Rebelo (2009), Lorenzoni (2009), Schmitt-Grohé and Uribe (2012), Blanchard, Lorenzoni and L'Huillier (2013), etc.
- \Rightarrow Our theory can endogenize the information process that leads to news-driven cycles

Herding

- ▶ Banerjee (1992), Bikhchandani et al. (1992), Avery and Zemsky (1998), Chamley (2004)
- ► Drawbacks of early herding models:
 - Rely crucially on agents moving sequentially and making binary decisions
 - Boom-busts only arise for specific sequence of events and particular ordering of people

This paper:

- Relax sequentiality of moves and binarity of decisions (⇒easier intro to standard models)
- Boom-bust cycles arise endogenously after a single impulse shock (

 natural evolution of beliefs in the presence of common noise)

Plan

- 1. Simplified learning model
- 2. Business-cycle model with herding

Learning Model

- Simple, abstract model
- Time is discrete $t = 0, 1, ..., \infty$
- ullet Unit continuum of risk neutral agents indexed by $j \in [0,1]$

8

Learning Model: Technology

- Agents choose whether to invest or not, $i_{it} = 1$ or 0
 - ► Investing requires paying the cost c
- Investment technology has common return

$$R_t = \theta + u_t$$

with:

- ▶ Permanent component $\theta \in \{\theta_H, \theta_L\}$ with $\theta_H > \theta_L$, drawn once-and-for-all
- ▶ Transitory component $u_t \sim \text{iid } F^u$

Learning Model: Private Information

- ullet Agents receive a private signal s_j drawn from distributions with pdf $f_{ heta+arepsilon}^s\left(s_j
 ight)$
 - \blacktriangleright ξ is some common noise drawn from CDF F^{ξ}
 - captures the fact that agents learn from common sources (media, govt)
- Example: $f_{\theta+\xi}^{s} \sim \mathcal{N}\left(\theta+\xi,\sigma_{s}^{2}\right)$

$$s_{j} = \theta + \xi + v_{j}$$
 where $v_{j} \sim \text{iid } \mathcal{N}\left(0, \sigma_{s}^{2}\right)$

Learning Model: Public Information

- In addition, all agents observe public signals
 - ► return on investment R_t
 - ightharpoonup measure of investors m_t (social learning)
- Measure of investors is

$$m_t = \int_0^1 i_{jt} dj + \varepsilon_t$$

where $\varepsilon_t \sim \mathrm{iid}\ F^m$ captures informational noise or noise traders

- Measure m_t is an endogenous nonlinear aggregator of private information
 - ▶ how much information is released varies over time

Learning Model: Timing

Simple timing:

- At date t=0: θ , ξ and the s_i 's are drawn once and for all
- At date $t \ge 0$,
 - 1. Agent j chooses whether to invest or not
 - 2. Production takes place
 - 3. Agents observe $\{R_t, m_t\}$ and update their beliefs

Learning Model: Information Sets

- Beliefs are heterogeneous
- Denote public information to an outside observer at beginning of period t

$$\mathcal{I}_t = \{R_{t-1}, m_{t-1}, \dots, R_0, m_0\}$$
$$= \{R_{t-1}, m_{t-1}\} \cup \mathcal{I}_{t-1}$$

 Multiple sources of uncertainty so must keep track of joint distribution of public beliefs:

$$\Lambda_{t}\left(\tilde{\theta},\tilde{\xi}\right) = Pr\left(\theta = \tilde{\theta},\xi = \tilde{\xi} \,|\, \mathcal{I}_{t}\right)$$

• The information set of agent j is

$$\mathcal{I}_{jt} = \mathcal{I}_t \cup \left\{ s_j \right\}$$

ullet Recover individual beliefs Λ_{jt} using Bayes' law over Λ_t and s_j

Learning Model: Characterizing Beliefs

· For ease of exposition, simplify aggregate uncertainty to three states

$$\omega = (\theta, \xi) \in \left\{ \underbrace{(\theta_L, 0)}_{\text{bad}}, \underbrace{(\theta_H, 0)}_{\text{good}}, \underbrace{\left(\theta_L, \overline{\xi}\right)}_{\text{false-positive}} \right\} \text{ with } \theta_L < \theta_L + \overline{\xi} < \theta_H$$

- $\omega = \left(\theta_L, \overline{\xi}\right)$ is the false-positive state: technology is low, but agents receive unusually positive news
- Just need to keep track of two state variables (p_t, q_t) :

$$p_{t} \equiv \Lambda_{t}\left(heta_{H},0
ight)$$
 and $q_{t} \equiv \Lambda_{t}\left(heta_{L},\overline{\xi}
ight)$

• Can recover private beliefs $p_{jt} \equiv p_j \left(p_t, q_t, s_j\right)$ and $q_{jt} \equiv q_j \left(p_t, q_t, s_j\right)$ from Bayes' law

Learning Model: Investment Decision

• Agents invests iff

$$E_{jt}\left[R_t|\mathcal{I}_{jt}\right]\geqslant c$$

• Under Inder for f^s , optimal investment decision is a cutoff rule $s^*(p_t, q_t)$:

$$i_{jt} = 1 \Leftrightarrow s_j \geqslant s^* (p_t, q_t)$$

Learning Model: Endogenous Learning

• The measure of investing agents is

$$m_{t}=\overline{F}_{\theta+\xi}^{s}\left(s^{*}\left(p_{t},q_{t}
ight)
ight)+arepsilon_{t}$$

- $lackbox{}\overline{F}_{\theta+arepsilon}^{s}\left(s_{j}
 ight)$ is complementary CDF of private signal s_{j}
- lacktriangle Since s^* (p_t,q_t) and $\left\{\overline{F}^s_\omega\right\}_{\omega\in\Omega}$ known to all agents, m_t is a noisy signal about $\theta+\xi$

▶ Bayesian updating

Endogenous Learning: 3-state example

ullet In the 3-state example, only three measures m_t are possible (up to $arepsilon_t$):

• Distributions of $m_t = \overline{F}^s\left(\hat{s}_t\right) + \varepsilon_t$ in the 3 states of the world:

Information Cascades

- Informativeness of m_t varies over time:
 - lacktriangle When $F^s_{\theta+\xi}\left(s^*\right)$ are close, the states are hard to distinguish
 - ⇒ the signal-to-noise ratio is low
- Markets reveal little information when people herd on same action (s^* high/low)
 - ► Most people invest (or not) in all states
 - Few people use their private information to go against the crowd
 - ► Hard to detect them so learning is slow
 - ⇒ smooth form of information cascades
- Implications:
 - ► Slow boom when few people invest
 - ▶ Persistent "bubble" situations when many invest

Simulations

Parametrization

Fundamentals: $\theta_h = 1.0$, $\theta_l = 0.5$, $\overline{\xi} = 0.4$, c = 0.80

▶ Priors:
$$P(\theta_h, 0) = 0.25$$
, $P(\theta_l, \overline{\xi}) = 0.05$, $P(\theta_l, 0) = 0.7$

► Signals: Gaussian, e.g.:

$$s_{j} = \theta + \xi + v_{j} \text{ with } v_{j} \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right)$$

with
$$\sigma_s = 0.5$$
 (private), $\sigma_\varepsilon = 0.2$ (m_t), $\sigma_u = 2.5$ (R_t)

► True negative ► True positive

• Boom phase:

- ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
- for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

• Boom phase:

- ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
- for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

• Boom phase:

- ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
- for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

• Boom phase:

- ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
- for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

• Boom phase:

- ▶ high investment rates consistent with true and false positive ⇒ p and q rise progressively
- \blacktriangleright for initial q_0 sufficiently low, most of it is attributed to high state (p dominates)

• Bursting phase:

- ightharpoonup when q high enough, some investors leave the market, releasing more information
- lacktriangledown early exit of investors incompatible with high state \Rightarrow quick collapse of investment

• Bursting phase:

- ightharpoonup when q high enough, some investors leave the market, releasing more information
- $\,\blacktriangleright\,$ early exit of investors incompatible with high state \Rightarrow quick collapse of investment

• Bursting phase:

• Mechanism:

- ightharpoonup when q high enough, some investors leave the market, releasing more information
- lacktriangledown early exit of investors incompatible with high state \Rightarrow quick collapse of investment

- Mechanism:
 - ightharpoonup is so high that almost everyone invests, releasing close to no information
 - lacktriangle because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup is so high that almost everyone invests, releasing close to no information
 - lacktriangle because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup p is so high that almost everyone invests, releasing close to no information
 - lacktriangle because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup is so high that almost everyone invests, releasing close to no information
 - $\,\blacktriangleright\,$ because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup is so high that almost everyone invests, releasing close to no information
 - $\,\blacktriangleright\,$ because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup p is so high that almost everyone invests, releasing close to no information
 - $\,\blacktriangleright\,$ because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup p is so high that almost everyone invests, releasing close to no information
 - $\,\blacktriangleright\,$ because information not exactly 0, q slowly rises in the background

- Mechanism:
 - ightharpoonup p is so high that almost everyone invests, releasing close to no information
 - $\,\blacktriangleright\,$ because information not exactly 0, q slowly rises in the background

Additional results in the paper

- Allow ξ to take a continuum of values \bigcirc Go
 - ► Results survive
 - ▶ **Proposition**: there always exists a threshold $\underline{\xi}$ such that $\xi \geqslant \underline{\xi}$ triggers a boom and bust episode.
- Planner's problem Go
 - ► The equilibrium is inefficient
 - ► Planner adopts lean-against-the-wind policies

Plan

- 1. Learning model
- 2. Business-cycle model with herding

Herd-driven Business Cycle Model

• Objective:

- How do boom-and-bust in beliefs lead to general macroeconomic expansion, followed by a below-trend contraction?
- ► Full-fledge macro model amenable for quantification and policy analysis
- Parsimonious NK DSGE model with: Details
 - 1. Dynamic arrival of new technologies and technology choice
 - 2. Entrepreneurs choose new vs. old technology and learn from measure of tech adopters
 - 3. Two types of capital: Traditional (T) and Information Technology (IT)
 - IT investment is required to enjoy the new technology
 - 4. Nominal rigidities
 - Study impact of monetary policy
- Mechanism:
 - Entrepreneurs choose new vs. old technology and agents learn from measure of tech adopters
 - Boom fueled by build-up of IT capital and positive wealth effect on consumption
 - ▶ Belief reversal causes sudden realization of misallocation in investments
 - ⇒ negative wealth effect and collapse of IT investment causing recession

IRF to False-Positive

- Calibration: Details
 - ▶ Based on the dot-com boom-bust episode
 - ▶ Uses data from the Survey of Professional Forecaster to discipline beliefs

IRF to False-Positive

- Calibration: Details
 - ▶ Based on the dot-com boom-bust episode
 - ▶ Uses data from the Survey of Professional Forecaster to discipline beliefs
- Impulse response: false positive $(\theta, \xi) = (\theta_I, 0.75 (\theta_h \theta_I))$

Summary of results

• Mechanism:

- ► Positive wealth effect *c* / ,
- ▶ Build-up of future IT capital i^{IT} >
- lacktriangle Anticipation of future productivity growth $\Rightarrow \pi \searrow$, $r \searrow$
- ▶ Aggregate demand $\nearrow \Rightarrow y \nearrow h \nearrow$

Quantitative:

- ► Endogenous boom-bust with positive comovement between c, i, h and y
- \blacktriangleright But boom-bust may arise at high probability (benchmark 15% $\gg 10^{-6}$ (Avery and Zemsky, 1998)

Policy Analysis: Summary

- Govt policies are powerful in this setup:
 - ▶ Learning externality: agents do not internalize that investment affects release of info
 - ► Since cycle is endogenous, policies can substantially dampen boom-busts
- Monetary policy that leans-against-the-wind: Details
 - ► May succeed in dampening fluctuations
 - But barely affects the new vs. old technology trade-off to take care of learning externality
 - ▶ Stabilizes boom-bust in the new technology at the expense of other sector

Conclusion

- Introduce herding phenomena as a potential source of business cycles
- We have proposed a business cycle model with herding
 - people can collectively fool themselves for extended period of time
 - endogenous boom-bust cycles patterns after unusually large noise shocks
 - ▶ the model has predictions on the timing and frequency of such phenomena
- Quantitatively, such crises can arise with relatively high probability despite fully rational agents
- Provides rationale for leaning-against-the-wind policies which can substantially dampen fluctuations

Learning Model: Characterizing Beliefs

• Private beliefs (p_{jt}, q_{jt}) are given by Bayes' law:

$$\begin{split} p_{jt} &\equiv p_{j} \left(p_{t}, q_{t}, s_{j} \right) = \frac{p_{t} f_{\theta_{H}}^{s} \left(s_{j} \right)}{p_{t} f_{\theta_{H}}^{s} \left(s_{j} \right) + q_{t} f_{\theta_{L} + \overline{\xi}}^{s} \left(s_{j} \right) + \left(1 - p_{t} - q_{t} \right) f_{\theta_{L}}^{s} \left(s_{j} \right)} \\ q_{jt} &\equiv q_{j} \left(p_{t}, q_{t}, s_{j} \right) = \frac{q_{t} f_{\theta_{L} + \overline{\xi}}^{s} \left(s_{j} \right)}{p_{t} f_{\theta_{H}}^{s} \left(s_{j} \right) + q_{t} f_{\theta_{L} + \overline{\xi}}^{s} \left(s_{j} \right) + \left(1 - p_{t} - q_{t} \right) f_{\theta_{L}}^{s} \left(s_{j} \right)} \end{split}$$

ullet Under MLRP, individual beliefs p_j are monotonic in s_j

$$\frac{\partial p_{j}}{\partial s_{j}}\left(p_{t},q_{t},s_{j}\right)\geqslant0$$

Return

Monotone Likelihood Ratio Property

- Assumption: F_x^s satisfies monotone likelihood ratio property (MLRP)
 - lacktriangleright i.e.: a higher s signals a higher $\theta+\xi$

$$x_2>x_1 \text{ and } s_2>s_1 \quad \Rightarrow \quad \frac{f_{x_2}^s\left(s_2\right)}{f_{x_1}^s\left(s_2\right)}\geqslant \frac{f_{x_2}^s\left(s_1\right)}{f_{x_1}^s\left(s_1\right)} \quad \left(\mathsf{MLRP}\right)$$

• Satisfied by many standard distributions like $f^s_{\theta} \sim N\left(\theta, \sigma^2\right)$, etc.

√ Return

Learning Model: Updating public beliefs

• After observing m_t , public beliefs are updated

$$ho_{t+1} = rac{p_t f^m \left(m_t - \overline{F}^s_{\theta_H}\left(s^*_t
ight)
ight)}{\Omega}$$

and

$$q_{t+1} = \frac{q_t f^m \left(m_t - \overline{F}^s_{\theta_L + \overline{\xi}}\left(s^*_t\right)\right)}{\Omega}$$

 $\begin{array}{l} \text{where} \\ \Omega = \rho_{t}f^{m}\left(m_{t} - \overline{F}_{\theta_{H}}^{s}\left(s_{t}^{*}\right)\right) + q_{t}f^{m}\left(m_{t} - \overline{F}_{\theta_{L}+\overline{\xi}}^{s}\left(s_{t}^{*}\right)\right) + (1 - \rho_{t} - q_{t})f^{m}\left(m_{t} - \overline{F}_{\theta_{L}}^{s}\left(s_{t}^{*}\right)\right) \end{array}$

ullet Similar updating rule with exogenous signal $R_t= heta+u_t$

◀ Return

Simulations: True Negative $(\theta_I, 0)$

Simulations: True Positive $(\theta_h, 0)$

Simulations: Continuous ξ

- Previous simulations may look knife-edge
 - require state $(\theta_I, \overline{\xi})$ to be infrequent and resemble $(\theta_H, 0)$
- ullet We now allow ξ to take a continuum of values
- Take-away:
 - ▶ small shocks (<1 SD) are quickly learned,
 - ▶ but unusually large shocks lead to boom-bust pattern

Simulations: Continuous ξ

• True fundamental $(\theta_I = 0, \xi = \text{multiple of } \sigma_{\xi})$

Boom-and-Busts in Continuous Case

Proposition

In the Gaussian case, for θ and ξ independent and R_t sufficiently uninformative, there always exists a threshold $\underline{\xi}$ such that $\xi \geqslant \underline{\xi}$ triggers a boom and bust episode.

Welfare

- Information externality: agents do not internalize how investment affects the release of information
 - ► They invest too much in a boom (too little in a negative boom)
- We study the constrained-efficient planning problem Go
 - ▶ Optimal policy leans against the wind to maximize collect of information
 - ► Implementation with investment tax/subsidy
 - ▶ Stabilizing "bubbles" comes at the cost of slowing good booms

∢ Return

Welfare

• We adopt the welfare criterion from Angeletos and Pavan (2007)

$$V\left(p,q
ight) = \max_{\hat{s}} \, E_{ heta,\xi} \left[\int_{\hat{s}} E\left[heta - c | \mathcal{I}_j
ight] dj + \gamma V\left(p',q'
ight) | \mathcal{I}
ight]$$

where \mathcal{I} is public info and \mathcal{I}_i is individual info

• Crucially, the planner understands how \$\hat{s}\$ affects evolution of beliefs

∢ Return

Business Cycle Model: Summary

- Four types of agents:
 - ► Households, Entrepreneurs, Retailers and Monetary Authority
- Three sectors: entrepreneur sector, retail sector and final good
- Two types of capital: IT vs. traditional
- Entrepreneurs choose between two technologies: new vs. old
 - ▶ new technology more intensive in IT capital

$$Y_{it} = A_{it} \left(\omega_i \left(K_i^{IT} \right)^{\frac{\zeta-1}{\zeta}} + \left(1 - \omega_i \right) \left(K_i^T \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{it} \right)^{1-\alpha}, i \in \{n, o\}$$

- Herding in technology adoption:
 - lacktriangledown $heta \in \{ heta_H, heta_L\}$ is drawn and entrepreneurs receive private signals (+ common noise ξ)
 - Initially $A_{nt} = A_{ot}$ until technology matures (prob. λ) then $A_{nt} = \theta$.
 - ► Measure of entrepreneurs using new technology

$$m_t = (1 - \mu) \overline{F}_{\theta + \xi}^s \left(s_t^* \right) + \mu \varepsilon_t$$

where $\mu =$ measure of noise entrepreneurs

ightharpoonup Entrepreneurs learn from observing m_t

Business Cycle Model: Population

- Agents:
 - ► Households ► Details

 - ► Entrepreneurs
- Three sectors: entrepreneur sector, retail sector and final good
 - ▶ Entrepreneur sector: technology choice, no nominal rigidities
 - ▶ Retail sector: buys the bundle of goods from entrepreneurs, subject to nominal rigidities
 - ▶ Final good: bundle of retail goods used for consumption and investment

Business Cycle Model: Entrepreneurs

- ullet Unit measure of entrepreneurs indexed by $j \in [0,1]$
 - ► monopolistic producers of a single variety
- At any date, there is a traditional technology ("old") to produce varieties

$$Y_{jt}^{o} = A^{o} \left(\omega_{o} \left(K_{o}^{IT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_{o}) \left(K_{o}^{T} \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{jt}^{o} \right)^{1-\alpha}$$

• With probability η , an innovative technology arrives ("new")

$$Y_{jt}^{n} = A_{t}^{n} \left(\omega_{n} \left(K_{n}^{IT} \right)^{\frac{\zeta-1}{\zeta}} + (1 - \omega_{n}) \left(K_{n}^{T} \right)^{\frac{\zeta-1}{\zeta}} \right)^{\alpha \frac{\zeta}{\zeta-1}} \left(L_{jt}^{n} \right)^{1-\alpha}$$

where

$$\omega_n > \omega_o$$

Business Cycle Model: Entrepreneurs

• The new technology needs to mature to become fully productive

$$A_t^n = \begin{cases} A^o & \text{before maturation} \\ \theta & \text{after} \end{cases}$$

- ullet The new technology matures with probability λ per period
- The true productivity θ is high or low $\theta \in \{\theta_H, \theta_L\}$ with $\theta_H > \theta_L$

Business Cycle Model: Technology Choice

- Each period, entrepreneurs choose which technology to use
 - ▶ for simplicity, assume no cost of switching so problem is static
 - \blacktriangleright denote m_t the measure of entrepreneurs that adopt the new technology
- ullet A fraction μ of entrepreneurs is clueless when it comes to technology adoption
 - "noise entrepreneurs"
 - \blacktriangleright random fraction ε_t adopts the new technology

Business Cycle Model: Information

- At t=0, all entrepreneurs receive a private signal about θ from pdf $f_{\theta+\xi}^s$ same assumptions as before (MLRP, etc.)
- Social learning takes place through economic aggregates which reveal

$$m_t = (1 - \mu) \overline{F}_{\theta+\varepsilon}^s (s_t^*) + \mu \varepsilon$$

- Assume public signal $S_t = \theta + u_t$ which capture media, statistical agencies, etc.
- No additional uncertainty, hence information evolves identically to learning model

Business Cycle Model: Households

- Households live forever, work, consume and save in capital
- Preferences

$$E\left[\sum \beta^t \log \left(C_t - \frac{L_t^{1+\frac{1}{\psi}}}{1+\frac{1}{\psi}}\right)\right], \quad \sigma \geqslant 1, \psi \geqslant 0,$$

where $C_t=\left(\int_0^1 C_{jt}^{rac{\sigma-1}{\sigma}}dj
ight)^{rac{\sigma}{\sigma-1}}$ is the final good

• Law of motion for the two capitals

$$K_{jt+1} = (1 - \delta) K_{jt} + I_{jt}, j = o, n$$

Budget constraint

$$C_t + \sum_{j=o,n} I_{jt} + \frac{B_t}{P_t} = W_t L_t + \sum_{j=o,n} R_{jt} K_{jt} + \frac{1 + r_{t-1}}{1 + \pi_t} \frac{B_{t-1}}{P_{t-1}} + \Pi_t$$

Return

Business Cycle Model: Others

- Retail sector:
 - ▶ buys the bundle of goods produced by entrepreneurs
 - ▶ differentiates it one-for-one without additional cost
 - lacktriangle subject to Calvo-style nominal rigidity ightarrow standard NK Phillips curve
- Monetary authority follows the Taylor rule

$$r_t = \phi_\pi \pi_t + \phi_y y_t$$

Calibration: Standard Parameters

Parameter	Value	Target
α	.36	Labor share
β	.99	4% annual interest rate
θ_p	.75	1 year price duration
σ	10	Markups of about 11%
ϕ_y	.125	Clarida, Gali and Gertler (2000)
ϕ_{π}	1.5	Clarida, Gali and Gertler (2000)
ψ	2	Frisch elasticity of labor supply
ζ	1.71	Elas. between types of K (Boddy and Gort, 1971)

Calibration: Non-Standard Parameters

Objective: target moments from the late 90s Dot com bubble

Parameter	Value	Target
ω_o	.11	Share IT capital 1991
ω_n	.26	Share IT capital 2007
λ	1/22	Duration of NASDAQ boom-bust 1995Q4-2001Q1
θ_h	1.099	SPF's highest growth forecast over 1995-2001
θ_I	.912	SPF's lowest growth forecast over 1995-2001
sj	N (0, .156)	SPF's avg. dispersion in forecasts over 1995-2001
μ	15%	Fraction of noise traders
ε	Beta(2, 2)	Non-uniform distribution over $[0,1]$
<i>P</i> 0	0.20	See below
90	0.15	See below

Tricky parameters:

- ullet Noise traders μ and ε : little guidance in the literature (David, et al. 2016)
 - ▶ Sensitivity $\mu \in [0.02, 0.2]$: agents learn too fast if $\mu < 0.02$, too slowly if $\mu > 0.2$ (no quick collapse)
- p₀, q₀: hard to tell with a single historical episode
 - ► The paper offers sensitivity over these two parameters

Monetary Policy

• Taylor rule that leads against the wind:

$$r_t = \phi_{\pi} \pi_t + \phi_y (y_t - \overline{y}) + \phi_i (i_t^{T} - \overline{i}^{T})$$

- A leaning-against-the-wind monetary policy:
 - ► Dampens fluctuations in output (welfare +0.002%)
 - ▶ But fails to improve tech adoption threshold and info collection
 - ► Other more directed tools (tech subsidies/taxes) more promising

▶ Return