UNIVERZA NA PRIMORSKEM FAKULTETA ZA MATEMATIKO, NARAVOSLOVJE IN INFORMACIJSKE TEHNOLOGIJE

Zaključna naloga

Razpoznavanje gibanja na osnovi elektroencefalografije

(Movement recognition based on electroencephalography)

Ime in priimek: Marko Rozman

Študijski program: Računalništvo in informatika

Mentor: doc. dr. Peter Rogelj

Ključna dokumentacijska informacija

Ime in PRIIMEK: Marko ROZMAN

Naslov zaključne naloge: Razpoznavanje gibanja na osnovi elektroencefalografije

Kraj: Koper

Leto: 2024

Število referenc: 14

Mentor: doc. dr. Peter Rogelj

Ključne besede: elektroencefalografija, Grangerjev index vzročnosti, kompleksni Pearsonov korelacijski koeficient, nevronska mreža, klasifikacija

Izvleček:

Namen naloge je spoznati metode za razpoznavanje gibanja na osnovi elektroencefalografije. Gibanje smo razpoznavali iz podatkov EEG Motor Movement/Imagery Dataset in podatkov ki smo jih posneli sami na napravi Cognionics Quick-20. Iz posnetkov smo izračunali matrice povezljivosti z Grangerjevim indexom vzorčnosti in kompleksnim Pearsonovim korelacijskim koeficientom ki smo jih nato klasificirali z različnimi algorimi, vključno z nevronskimi mrežami. Naši rezultati kažejo da je v določenih primerih klasifikacija bolj točena z uporabo kompleksnega Pearsonovega korelacijskega koeficienta.

Key words documentation

Name and SURNAME:			
Title of final project paper:			
Place:			
Year:			
Number of pages:	Number of figures:	Number of tables:	
Number of appendices:	Number of appendix pages:	Number of references:	
Mentor: title First Name Last Name, PhD			
Co-Mentor:			
Keywords:			
Math. Subj. Class. (2010):			
Abstract:			

Zahvala

Iskreno se zahvaljujem svojemu mentorju, doc. dr. Petru Roglju, za neprecenljivo podporo in vodenje pri pisanju diplomske naloge. Njegova strokovna pomoč pri izbiri metod, implementaciji ter pisanju je bila ključnega pomena na vsakem koraku. Hvaležen sem za priložnost dela s fizično napravo in za redne konzultacije ob sredah, ki so pripomogle k jasnosti in uspešnosti mojega dela.

Prav tako se iz srca zahvaljujem prijateljem in družini za njihovo neomajno podporo in spodbudo skozi celoten proces.

Kazalo vsebine

1	Uvo	$^{ m od}$		1
	1.1	Elektr	roencefalografija	2
		1.1.1	Mednarodni sitem 10-20 pozicioniranja elektrod	3
		1.1.2	Cognionics Quick-20	4
	1.2	Povez	ljivost	4
2	Met	tode		6
	2.1	Razvo	jno okolje MATLAB	6
		2.1.1	EEGLAB	7
		2.1.2	Lab streaming layer	7
		2.1.3	Classification learner	8
	2.2	EEG 1	Motor Movement/Imagery Dataset	8
	2.3	Metod	le povezljivosti	9
		2.3.1	Grangerjev index vzročnosti	9
		2.3.2	Kompleksni Pearsonov korelacijski koeficient	11
	2.4	Klasifi	ikacija	11
		2.4.1	Classification learner	11
		2.4.2	Arhitektura nevronska mreža	11
3	Rez	ultati		13
	3.1	Delite	v podatkov	13
	3.2	Izbira	metode povezljivosti	13
		3.2.1	Primerjava filtrov	15
	3.3	Rezult	tati na MMID	18
		3.3.1	Classification learner	18
		3.3.2	Nevronska mreža	20
	3.4	Rezult	tati na lastnih podatkih	20
	3.5	Preizk	cus v realnem času	21
4	Zak	ljučki		22

Kazalo tabel

1	Naloge in opisi nalog, ki jih prostovoljci opravljajo v posnetkih zbirke	
	podtakov MMID	9
2	Točnost vseh testiranih klasifikacijskih metod v aplikaciji Clasification	
	Learner	10

Kazalo slik

1	Prvih 8 sekund EEG signala elektrode C3, osebe S001 serije R03. Od zgoraj navzdol po področjih: vsa skupaj, delta, theta, alpha, beta, gamma.	2
2	Prikaz pozicije elektrod po mednarodnem sitemu 10-20. Nameščene v mrežo od naziona do iniona in od levevega do desnega sluhovoda v pre-	
	sledkih 10 in 20 odstotkov. [11]	3
3	EEG naprava Cognionics Quick-20. [9]	4
4	Programsko okolje MATLAB. Od leve proti desni: podokno z datote- kami, podokno s kodo, podokno s spremenljivkami. Zgoraj zavihki za	
	orodjarno, aplikacije in prikaz podatkov.	6
5	Orodjarna eeglab. Zgoraj zavihki za delo z datotekami, urejanje, orodja,	O
	prikaz podatkov, delo z zbirkami podatkov in pomoč. Naložen podat-	_
C	kovni niz dolžine 124 sekund z 30 dogodki	7
6	Aplikacija classification learner. Na levi strani podokno z različnimi	
	metodami klasifikacije, na sredini prikaz podrobnosti izbrane metode.	0
7	Zgoraj zavihki za učenje, testiranje in razlago.	8
7	Postavitev elektrod po mednarodnem sistemu 10-10 brez elektrod Nz,	
	F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, in P10, ki je blia uporablicne za gnemenja skiske MMID. [12]	1.0
0	bljena za snemanje zbirke MMID. [12]	10
8	Arhitektura nevronske mreže v MATLAB alikaciji Deep Network Desi-	
	gner. Od zgoraj navzdol: plast za slike, polno povezana, Leaky ReLU,	10
	dropout, polno povezana, GELU, dropout, polno povezana in Softmax.	12
9	Primerjava točnosti po območij in epohah za CPCC in GC. Od zgoraj	
	navzdol CPCC po pasovih delta, theta, alpha, beta in gamma. Spodnja	
	vrstica Grangerjev index vzorčnosti. Epohe od leve proti desni: prva	
	sekunda, prvi dve sekundi, drugi dve sekundi, prve štiri sekunde	14
10	Primerjava točnosti klasifikacije glede na tip filtra. Uporabljena me-	
	toda CPCC za epoho prvih štirih sekund za frekvenčne pasove delta,	
	theta, alpha, beta in gamma. Klasificirano z zgoraj navedeno nevronsko	
	mrežo. Modra predstavlja Butterwothov filter, oranžna predstavlja filter	
	z ničelno fazo	15

11	Matrika zmede nevronske mreže naučene na podatkih fitriranih s filtrom	
	z ničelno fazo. Uporabljena metoda CPCC za epoho prvih štirih sekund	
	za frekvenčni pas beta. V zelenih poljih vidna točnost za posamezna	
	stanja. Od zgoraj navzdol: skrčena desna pest, skrečena leva pest, stanje	
	mirovanja	16
12	Matrika zmede nevronske mreže naučene na podatkih fitriranih z But-	
	terworthovim filtrom. Uporabljena metoda CPCC za epoho prvih štirih	
	sekund za frekvenčni pas beta. V zelenih poljih vidna točnost za po-	
	samezna stanja. Od zgoraj navzdol: skrčena desna pest, skrečena leva	
	pest, stanje mirovanja.	17
13	Matrika zmede metode Quadratic SVM. V poljih vidno število klasifici-	
	ranih stanj. Od zgoraj navzdol: skrčena desna pest, skrčena leva pest,	
	stanje mirovanja.	18
14	Matrika zmede nevronske mreže. V zelenih poljih vidna točnost za po-	
	samezna stanja. Od zgoraj navzdol: skrčena desna pest, skrčena leva	
	pest, stanje mirovanja.	20
15	Matrika zmede nevronskih mrež dodatno naučenih na naših podatkih	21

Kazalo prilog

Seznam kratic

EEGelectroencephalography MMM0tor Movement/Imagery Dataset PLI phase lag index wPLI6weighted phase lag index k —k nearest neighbours NN SVM5upport vector machine CPC60mplex Pearson correlation coefficient GC Granger causality

1 Uvod

Motivacija za raziskavo je bilo ugotoviti do kakšne mere je mogoča razpoznavanje gibanja v živo na osnovi analize možganske aktivnosti z EEG meritvami. Najprej smo podatke iz prosto dostopne zbirke podatkov s pomočjo knjižnice EEGLAB razdelili na nekaj različno dolgih epoh po dogodkih in jim zožili frekvenčne pasove. Iz vsake pridobljene zbirke podatkov smo pridobili matrike povezljivosti Grangerjevega indexa vzročnosti in matrike povezljivosti kompleksnega Pearsonovega korelacijskega koeficienta. Na pridobljenih podatkih smo naučili nevronsko mrežo. Iz pridobljenih rezultatov smo se odločili za nadaljevanje razvoja na zbirki, ki je obetala najboljšo točnost. Da bi omogočili delovanje v realnem času smo sami implementirali nekaj že obstoječih funkcij iz knjižnice. Posneli smo podatke na Cognionics Quick-20 in dodatno naučili nevronsko mrežo na naših podatkih za boljšo klasifikacijo.

1.1 Elektroencefalografija

Elektroencefalografija(EEG) je metoda za merjenje možganske električne aktivnosti. Meri električne potenciale na površini temena ki jih deloma generira možganska aktivnost. V zadnjem stoletju so znanstveniki s pomočjo EEG pridobili vpogled v različne nevrološke bolezni. V zadnjem času pa se pojavlja interes v modeliranju eeg signalov in uporabo le teh za nadzor fizičnih naprav. EEG signali so običajno razdeljeni v območja ki odražajo različne spektralne vrhove. Ta območja so običajno določena kot delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-20 Hz), in gamma (<20 Hz). [7]

Slika 1: Prvih 8 sekund EEG signala elektrode C3, osebe S001 serije R03. Od zgoraj navzdol po področjih: vsa skupaj, delta, theta, alpha, beta, gamma.

1.1.1 Mednarodni sitem 10-20 pozicioniranja elektrod

Mednarodni sistem 10-20 standardizira mesta elektrod tako, da so te nameščene v mrežo od naziona do iniona ter od desnega do levega sluhovoda v presledkih 10 in 20 odstotkov razdalje. Vsaka elektroda je označena z črko lokacijo: T-Temporal, F-Frontal, P-Parietal, C-Central in O-Occipital, ter z črko z za elektrode na sredini glave, lihimi številkami za levo polovico glave in sodimi za desno. [1]

Slika 2: Prikaz pozicije elektrod po mednarodnem sitemu 10-20. Nameščene v mrežo od naziona do iniona in od levevega do desnega sluhovoda v presledkih 10 in 20 odstotkov. [11]

1.1.2 Cognionics Quick-20

Cognionics Quick-20 je brezžična suha EEG naprava za raziskovalne namene. Ima 21 elektrod postavljenih po mednarodnem sitemu 10-20 za pozicionire elektrod. Naparava je suhega tipa kar pomeni, da pri uporabi elektrode ne potrebujejo gela. Suhi tipi naprav so v primerjavi z mokrimi enostavni in udobni za uporabu in omogočajo hitro nastavitev. Naprava je brezžična, z računalnikom jo povežemo preko USB vmesnika. [9]

Slika 3: EEG naprava Cognionics Quick-20. [9]

1.2 Povezljivost

Povezljivost se nananaša na vzorce nastale zaradi anatomskih povezav možganov, statistične odvisnosti ali interakcij med posameznimi deli možganov. Enote med katerimi se meri povezljivost so lahko različne: posamezni nevroni, nevronske populacije, v našem primeru pa regije možganske skorje. Možganska aktivnost je omejena s povezljivostjo, le ta pa je zato ključnega pomena za razumevanje delovanja možganov. V grobem poznamo dve vrsti povezljivosti: strukturno in funkcijsko. Strukturna povezanost se nanaša na to kako so deli možganov med seboj fizično povezani. Funkcijska povezljivost pa se nanaša na to kako različni deli možganov med seboj komunicrajo oziroma sodelujejo.[4] Funkcijsko povezljivost lahko nadaljno delimo na usmerjeno in neusmerjeno. V našem primeru je metoda Grangerjevega indexa vzročnosti usmerjena saj je vpliv elektrode A na elektrodo B drugačen kot vpliv elektrode B na elektrodo A. Metoda kompleksnega Pearsonovega korelacijskega koeficienta pa je neusmerjena saj nam

njegova vrednost pove le o povezanosti para elektrod.

2 Metode

2.1 Razvojno okolje MATLAB

Ves razvoj je potekal v programskem okolju MATLAB. Ta poleg samega programskega jezika vsebuje velik nabor že implementiranh funkcij, napredne aplikacije za strojno učenje in knjžnice ki omogočajo povezave z laboratorjskimi napravami. V njem sta ustvarjeni funkciji za računanje matrik Grangerjevega indexa vzročnosti in matrik Kompleksnega Pearsonov korelacijskega koeficienta, prav tako so v njem ustvarjene nevronske mreže in uporabljeno je za ostale klasifikatorje in funkcijo za zajemanje podatkov iz naprave Cognionics Quick-20 ter funkcijo ki v realnem času razpoznava gibanje. [14]

Slika 4: Programsko okolje MATLAB. Od leve proti desni: podokno z datotekami, podokno s kodo, podokno s spremenljivkami. Zgoraj zavihki za orodjarno, aplikacije in prikaz podatkov.

2.1.1 **EEGLAB**

EEGLAB je interaktivna matlab orodjarna, za procesiranje in obdelavo elektrofizioloških podatkov. Omogoča rereferenciranje EEG signalov, izbiro določenih elektrod, deljenje podatkov na epohe glede na dogodke in filtriranje frekvenc. Omogoča interakcijo preko uporabniškega vmesnika. Vse akcije v vmesniku se prevedejo v ukaze ki jih lahko uporabimo v svoji kodi. Pri izdelavi naloge smo največ uporabljali funkcije branja .edf datotek, filtriranja frekvenc signalov in deljanja posnetkov na manjše dele.[10]

Slika 5: Orodjarna eeglab. Zgoraj zavihki za delo z datotekami, urejanje, orodja, prikaz podatkov, delo z zbirkami podatkov in pomoč. Naložen podatkovni niz dolžine 124 sekund z 30 dogodki.

2.1.2 Lab streaming layer

Lab streaming layer je odprtokodna vmesna programska oprema ki omogoča pošiljanje, prejemanje, sinhronizacijo in snemanje tokov podatkov. Omogoča enostavno povezovanje EEG naprave z programsko opremo MATLAB. Knjižnjico je potrebno prenesti in nato zgraditi na svojem računalniku. [13]

2.1.3 Classification learner

Classification learner je aplikacija v okolju MATLAB za enostavno klasifikacijo podatkov. Podpira različne metode klasifikacije, prečno preverjanje in uporabo različnih podatkov za gradnjo in testiranje modela. Aplikacija podpira klasifikacijo podatkov iz dvo dimenzionalnih matrik kjer vrstice ali stolpci predstavljajo spremenjlivke. Oznake podatkov lahko podamo kot določeno vrstico ali stolpce matrike ali v ločeni spremenljivki. Zaradi omejitev aplikacije smo pred klasifikacijo matrike povezljivosti prevorili v vektorje in te združili v matriko podatkov. Z aplikacijo smo lahko hitro ocenili uspešnost računanja matrik povezljivosti in primerjali delovanje različnih klasifikatorjev v primerjavi z našo nevronsko mrežo.

Slika 6: Aplikacija classification learner. Na levi strani podokno z različnimi metodami klasifikacije, na sredini prikaz podrobnosti izbrane metode. Zgoraj zavihki za učenje, testiranje in razlago.

2.2 EEG Motor Movement/Imagery Dataset

EEG Motor Movement/Imagery Dataset(MMID) je prosto dostopna zbirka več kot 1500 eno in dve minutnih posnetkov 109 prostovoljcev. Zbirka za vsakega prostovoljca

vsebuje dva izhodiščna posnetka in po tri posnetke opravljajanja štiri različnh nalog: stiskanje in sproščanje leve ali desne pesti(naloga 1), namišljeno stiskanje in sproščanje leve ali desne pesti(naloga 2), stiskanje in sproščanje obeh pesti ali obeh stopal(naloga 3), namišljeno stiskanje in sproščanje obeh pesti ali obeh stopal(naloga 4). Za nas relevantni so posnetki serij 3, 7 in 11 v katerih prostovoljci opravljajo prvo nalogo. Posnetki so shranjeni v formatu EDF+ ki vsebuje posnetke EEG in oznake dogodkov. Snemanje je bilo opravljeno z sistemom BCI2000 z 64 elektrodami postavljenimi po mednarodnem sistemu 10-10 brez elektrod Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, in P10.[2, 5]

Številka serije	Naloga	Opis naloge
1	izhodišče	odpte oči
2	izhodišče	zaprte oči
3	naloga 1	stiskanje in sproščanje leve ali desne pesti
4	naloga 2	namišljeno stiskanje in sproščanje leve ali desne pesti
5	naloga 3	stiskanje in sproščanje obeh pesti ali obeh stopal
6	naloga 4	namišljeno stiskanje in sproščanje obeh pesti ali obeh stopal
7	naloga 1	stiskanje in sproščanje leve ali desne pesti
8	naloga 2	namišljeno stiskanje in sproščanje leve ali desne pesti
9	naloga 3	stiskanje in sproščanje obeh pesti ali obeh stopal
10	naloga 4	namišljeno stiskanje in sproščanje obeh pesti ali obeh stopal
11	naloga 1	stiskanje in sproščanje leve ali desne pesti
12	naloga 2	namišljeno stiskanje in sproščanje leve ali desne pesti
13	naloga 3	stiskanje in sproščanje obeh pesti ali obeh stopal
14	naloga 4	namišljeno stiskanje in sproščanje obeh pesti ali obeh stopal

Tabela 1: Naloge in opisi nalog, ki jih prostovoljci opravljajo v posnetkih zbirke podtakov MMID.

2.3 Metode povezljivosti

2.3.1 Grangerjev index vzročnosti

Grangerjev index vzročnosti je statistična metoda za preverjanje ali ena časovna vrsta nosi informacije o drugi. Metoda je bila razvita v šestdesedih letih devetnajstega stoletja za uporabo ekonomiji.[6]

Za dve časovni vrsti X_1 in X_2 , in p kot število prejšnjih vrednosti ki jih upoštevamo pri računanju, lahko izračunamo E_1 in E_1 ki so napake pri predvidevanju naslednje

Slika 7: Postavitev elektrod po mednarodnem sistemu 10-10 brez elektrod Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, in P10, ki je blia uporabljena za snemanje zbirke MMID. [12]

vrednosti v vrsti X_1 . V kolikor je varianca vrednosti E_2 manjša kot varianca vrednosti E_1 lahko predvidevamo da časovna vrsta X_2 nosi informacije o časovni vrsti X_1 . A_1 , A_2 in A_3 so koeficienti avto-regresivnega modela. [3]

$$X_1(t) = \sum_{j=1}^{p} A_{1,j} X_1(t-j) + E_1(t)$$

$$X_1(t) = \sum_{j=1}^{p} A_{2,j} X_1(t-j) + \sum_{j=1}^{p} A_{3,j} X_2(t-j) + E_2(t)$$

2.3.2 Kompleksni Pearsonov korelacijski koeficient

Pearsonov korelacijski koeficient je najpogosteje uporabljen linearni korelacijski koeficient. Zanj smo se odločili saj v članku »Complex Pearson Correlation Coefficient for EEG Connectivity Analysis« avtorji pokažejo da vsebuje informacije PLI in wPLI ki sta dve najbolj pogosto uporabljeni metodi povezljivosti. V praksi nam pove, v kakšni meri sta fazi dveh signalov linearno povezani.[8]

Ker želimo opazovati faze EEG signala, ga potrebujemo pretvoriti v analitični signal ki vsebuje informacijo o fazi. Zaradi sledeče transformacijo, ki je definirana samo na ozkih frekvenčnih pasovih potrebujemo signale EEG predhodno filtrirati. Analitični signal X_a kjer HT(X(t)) označuje hilbertovo transformacijo signala X.[8]

$$X_a(t) = X(t) + i \cdot HT(X(t))$$

Za računanje Kompleksnega Pearsonovega korelacijskega koeficienta v našem primer lahko uporabimo naslednjo enačbo kjer sta X_1 in X_2 analitična signal dolžine N. $\overline{X_2(n)}$ pa konjugirana vrednost $X_2(n)[8]$

$$r(X_1, X_2) = \frac{\sum\limits_{n=1}^{N} (X_1(n) \cdot \overline{X_2(n)})}{\sqrt{\sum\limits_{n=1}^{N} |X_1(n)|^2} \cdot \sqrt{\sum\limits_{n=1}^{N} |X_2(n)|^2}}$$

2.4 Klasifikacija

Zeleli smo preizkusiti kako uspešno bi klasifikacija delovala na podatkih zbirke in kako uspešno bi delovala na naših podatkih, zato smo klasifikacijo izvajali dvakrat. Enkrat na podatkih zbirke in enkrat na naših podatkih. Ker nevronska mreža za učenje potrebuje več podatkov kot jih lahko zagotovimo iz naših posnetkov smo jo za namene klasifikacije naših posnetkov naučili na podatkih MMID in nato dodatno naučili na naših podatkih.

2.4.1 Classification learner

Na matrikah povezljivosti pridobljenih iz podatkov zbirke in naših posnetkov smo izvedli več različnih vrst klasifikacije in sicer: odločitvena drevesa, metodo k najbližjih sosedov (k-NN), logistično regresijo, podporne vektorske stroje (SVM), ansabelske metode in nevronske mreže.

2.4.2 Arhitektura nevronska mreža

Nevronska mreža je sestavljena iz vhodne plasti za slike dimenzij 19x19x1, polno povezane plasti s 100 nevroni, Leaky ReLU plasti, dropout plasti z 50% verjetnostjo

opustitve nevronov, polno povezane plasti z 10 nevroni, GELU plasti, dropout plasti z 50% verjetnostjo opustitve nevronov, polno povezane plasti s tremi nevroni in Softmax plasti. Mreža je realizirana z pomočjo MATLAB orodjarne Deep Learning Toolbox.

Slika 8: Arhitektura nevronske mreže v MATLAB alikaciji Deep Network Designer. Od zgoraj navzdol: plast za slike, polno povezana, Leaky ReLU, dropout, polno povezana, GELU, dropout, polno povezana in Softmax.

3 Rezultati

3.1 Delitev podatkov

Za končno raziskavo smo izbrali posnetke serij 3, 7 in 11 iz MMID. Vsaka serija vsebuje 109 posnetkov, vsak posnetk 30 primerov stanj, vse skupaj smo jih pridobili 9854. Primere stanj smo skrčili na enakomerno razporeditev, z 2456 primeri vsakega stanja. Sami smo posneli neka minut posnetkov. Vse skupaj 250 primerov stanj, ki smo jih skrčili na enakomerno razporeditev, 62 primerov vsakega stanja. Za učenje nevronskih mrež smo uporabljali množice za učenje z 75% podatkov in množice za testiranje z 25% podatkov. Podatki so bili naključno razporejeni med učno in testno množico. Ker smo podatke delili naključno, se lahko posnetki stanj enega prostovoljca pojavijo v učni in testni množici. Pri dodatnem učenju mreže smo uporabili posnetke ene osebe za učenje in testiranje. To skupaj pomeni da sistem ne deluje medosebno.

3.2 Izbira metode povezljivosti

Ker je kompleksni Pearsonov korelacijski koeficient(CPCC) izračunan iz analitičnih signalov ga lahko definiramo samo za ozke frekvenčne pasove. Pri računanju Grangerjevega indexa vzročnosti(GC) te omejitve ni, tako da smo ga lahko računali na celotnem frekvenčnem območju do 45Hz. Prav tako se je pojavilo vprašanje koliko dolgo epoho EEG signala bomo potrebovali za uspešno klasifikacijo. Kot možnosti smo vzeli prvo sekundo, prvi dve sekundi, drugi dve sekundi in prve štiri sekunde po dogodku. Točnost klasifikacije smo ocenili z zgoraj navedeno nevronsko mrežo. Za najboljšo metodo se je izkazal kompleksni Pearsonov korelacijski koeficient na območju 13-30Hz z najdalšimi epohami, 4s. Celotno območje primerjav razvidno iz slike 9.

Slika 9: Primerjava točnosti po območij in epohah za CPCC in GC. Od zgoraj navzdol CPCC po pasovih delta, theta, alpha, beta in gamma. Spodnja vrstica Grangerjev index vzorčnosti. Epohe od leve proti desni: prva sekunda, prvi dve sekundi, drugi dve sekundi, prve štiri sekunde.

Slika 10: Primerjava točnosti klasifikacije glede na tip filtra. Uporabljena metoda CPCC za epoho prvih štirih sekund za frekvenčne pasove delta, theta, alpha, beta in gamma. Klasificirano z zgoraj navedeno nevronsko mrežo. Modra predstavlja Butterwothov filter, oranžna predstavlja filter z ničelno fazo.

3.2.1 Primerjava filtrov

Knjižnica EEGLAB vsebuje samo filtre z ničelno fazo, ki filtrirajo naprej in nato nazaj po času, kar v našem primeru ni primerno saj podatke prejemamo sekvenčno, zato smo podatke filtrirali s pomočjo Butterworthovega filtra ki vsebuje stanja. Stanja nam omogočajo filtriranje sekvenčnih podatkov saj preprečijo napako na začetku filtra kjer le ta potrebuje predpostaviti začetno staje vseh signalov 0. Ker filtra nista enakovredna saj prvi ne spreminja faz drugi pa jih zamakne, uporabljena metoda CPCC pa deluje na zamikih faz, smo izvedli dodatno testiranje, da smo preverili če pristop deluje enako učinkovito. Klasifikacija matrik pridobljenih z Butterwothovim filtrom(slika 12) v primerjavi z filtrom z ničelno fazo(slika 11) je bila primerljivo točna za frekvenčni pas beta(slika 10) iz česar lahko sklepamo, da je filtriranje z Butterwithovim filtrom primerno.

Slika 11: Matrika zmede nevronske mreže naučene na podatkih fitriranih s filtrom z ničelno fazo. Uporabljena metoda CPCC za epoho prvih štirih sekund za frekvenčni pas beta. V zelenih poljih vidna točnost za posamezna stanja. Od zgoraj navzdol: skrčena desna pest, skrečena leva pest, stanje mirovanja.

Slika 12: Matrika zmede nevronske mreže naučene na podatkih fitriranih z Butterworthovim filtrom. Uporabljena metoda CPCC za epoho prvih štirih sekund za frekvenčni pas beta. V zelenih poljih vidna točnost za posamezna stanja. Od zgoraj navzdol: skrčena desna pest, skrečena leva pest, stanje mirovanja.

Slika 13: Matrika zmede metode Quadratic SVM. V poljih vidno število klasificiranih stanj. Od zgoraj navzdol: skrčena desna pest, skrčena leva pest, stanje mirovanja.

3.3 Rezultati na MMID

3.3.1 Classification learner

Z uporabo aplikacije clasifiacation learner smo testirali več načinov klasifikacije. Iz rezultatov predstavljenih v tabeli 2 lahko razberemo, da so se za najbolj uspešne izkazale metode podpornih vekotrjev(SVM), vendar so te metode računsko zahtevne kar otežuje izvedbo v realnem času. Dober kandidat bi lahko bila odločitvena drevesa saj so enostavna za treniranje in iterpretacijo, vendar so le ta dosegla 41% točnost. Nevronske mreže ki jih podpira aplikacija so enostavne, vendar pa je njihova interpretacija težja. Ker ne omogočajo klasifikacije matrik izgubimo prostorske povezave med posameznimi elektrodami. Je to res? Dosegle so 49% točnost.

vrsta klasifikacije	metoda	točnost [%]
SVM	Quadratic SVM	53
SVM	Linear SVM	53
SVM	Medium Gaussian SVM	53
Ensemble	Subspace Discriminant	53
SVM	Cubic SVM	52
Kernel	SVM Kernel	52
Kernel	Logistic Regression Kernel	52
SVM	Coarse Gaussian SVM	50
Efficient Logistic Regression	Efficient Logistic Regression	49
Neural Network	Wide Neural Network	49
Neural Network	Medium Neural Network	47
Efficient Linear SVM	Efficient Linear SVM	46
Neural Network	Trilayered Neural Network	45
Neural Network	Bilayered Neural Network	45
Naive Bayes	Kernel Naive Bayes	45
Neural Network	Narrow Neural Network	45
Ensemble	Bagged Trees	44
KNN	Coarse KNN	44
Ensemble	Boosted Trees	43
Ensemble	RUSBoosted Trees	42
Tree	Medium Tree	41
Tree	Fine Tree	41
KNN	Cosine KNN	41
Tree	Coarse Tree	41
KNN	Medium KNN	40
KNN	Weighted KNN	40
Ensemble	Subspace KNN	40
KNN	Cubic KNN	40
KNN	Fine KNN	38
SVM	Fine Gaussian SVM	37

Tabela 2: Točnost vseh testiranih klasifikacijskih metod v aplikaciji Clasification Learner.

Slika 14: Matrika zmede nevronske mreže. V zelenih poljih vidna točnost za posamezna stanja. Od zgoraj navzdol: skrčena desna pest, skrčena leva pest, stanje mirovanja.

3.3.2 Nevronska mreža

Nato smo poskusili z zgoraj navedeno nevronsko mrežo, ki klasificira matrike povezljivosti. Mreža je dosegla malo višjo točnost kot metode iz aplikacije clasification learner. V primerjavi z najbolšo metodo aplikaije SVM, ki je dosegla 53% točnost, je mreža dosegla 56% točnost. Če primerjamo matriko zmede nevronske mreže z matriko zmede metode SVM (sliki 14 in 13), opazimo, da obe metodi bolj natančno razlikujeta stanje mirovanja od obeh stanj gibanja, medtem ko je razlikovanje med stanji gibanja med seboj manj natančno.

3.4 Rezultati na lastnih podatkih

Da bi se približali pogojem v realnem času, smo nevronsko mrežo dodatno naučili na naših podatkih. Zaradi različnih pogojev snemanja in natančnosti naprav na katerih

Slika 15: Matrika zmede nevronskih mrež dodatno naučenih na naših podatkih.

so podatki snemani je točnost klasifikacije pričakovano padla. Ker nimamo velikega števila posnetkov smo podatke razdelili na pet delov in mrežo natrenirali petkrat. Vsakič smo uporabili en del za testiranje in štiri za učenje. Predstavljeni podatki so seštevek vseh teh testiranj.

3.5 Preizkus v realnem času

4 Zaključki

V nalogi smo uspešno razpoznali gibanje iz EEG signalov. Uspešno smo razpoznali gibanje iz podatkovne zbirke MMID posnete po mednarodnem sistemu 10-10 in iz podatkov posnetih na napravi Cognionics Quick-20. Posnete signale smo obdelali z različnimi pristopi. Signale smo rerefernecirali, filtrirali z filtrom z ničelno fazo in butterworthovim filtrom na običanja območja zanimanja pri analizi EEG signalov. Nato smo signale razdelili na različno dolge epohe in izbrali najustreznejše. Obdelane signale smo pretvorili v matrice povezljivosti s pomočjo Granjgerjevega indexa vzorčnosti in kompleksnega Pearsonovega korelacijskega koeficienta. Pridobljene matrice smo klasificirali z aplikacijo Clasification Learner in z nevronsko mrežo ki smo jo implementirali sami. Dosegli smo zadovoljive natančnosti na podatkih MMID in podatkih posnetih z napravo Cognionics Quick-20. Metode ki smo jih uporabljali omogočajo boljše razumevanje možganskih aktivnosti kot direktna klasifikacija signalov, z uporabo kompleksnega Pearsonovega korelacijskega koeficienta smo demostrirali da je razpoznavanje gibanja mogoče iz krajših epoh območja beta. Ugotovili smo, da kompleksni Pearsonov korelacijski koeficient zagotavlja boljšo metodo za izračun povezljivosti kot tradicionalno uporabljeni Grangerjev index vzročnosti. Za delo v realnem času smo sami implementirali in ocenili primernost filtrov ki jih knjižnica EEGLAB ne podpira.

Glavne omejitve ki nam onemogočajo natančenjšo klasifikacijo z uporabljenimi metodami so omejena velikost posnetkov in omejena natnčnost naprav EEG. Prav tako naloga vsebuje omejitev pri učenju klasifikatorjev, saj sitema nismo preizkusili pri klasifikacijah EEG signalov oseb na čigar signalih kalsifikator ni bil učen.

Klasifikacija gibanja iz signalov EEG ima potenciale aplikacije v medicini, zlasti pri razvoju sitemov za nadzor protez inrehabilitacijskih naprav. Metode povezljivosti, uporabljene v nalogi pa nam lahko poglobijo razumevanje možganske aktivnosti med različnimi fizičnimi nalogami.

Literatura

- [1] G. H. Klem in sod. »The Ten-Twenty Electrode System of the International Federation. The International Federation of Clinical Neurophysiology«. V: *Electroencephalography and Clinical Neurophysiology*. Supplement 52 (1999), str. 3–6. ISSN: 0424-8155. pmid: 10590970.
- [2] Gerwin Schalk in sod. »BCI2000: A General-Purpose Brain-Computer Interface (BCI) System«. V: *IEEE transactions on bio-medical engineering* 51.6 (jun. 2004), str. 1034–1043. ISSN: 0018-9294. DOI: 10.1109/TBME.2004.827072. pmid: 15188875.
- [3] Anil Seth. »Granger Causality «. V: Scholarpedia 2.7 (6. jul. 2007), str. 1667. ISSN: 1941-6016. DOI: 10.4249/scholarpedia.1667. URL: http://www.scholarpedia.org/article/Granger_causality (pridobljeno 16.6.2024).
- [4] Olaf Sporns. »Brain Connectivity «. V: Scholarpedia 2.10 (28. okt. 2007), str. 4695.

 ISSN: 1941-6016. DOI: 10.4249/scholarpedia.4695. URL: http://www.scholarpedia.

 org/article/Brain_connectivity (pridobljeno 16.6.2024).
- [5] Gerwin Schalk in sod. *EEG Motor Movement/Imagery Dataset.* physionet.org, 2009. DOI: 10.13026/C28G6P. URL: https://physionet.org/content/eegmmidb/(pridobljeno 13.6.2024).
- [6] Mike X Cohen. Analyzing Neural Time Series Data: Theory and Practice. The MIT Press, 17. jan. 2014. ISBN: 978-0-262-31955-3. DOI: 10.7551/mitpress/ 9609.001.0001.
- [7] Michael Nunez, Paul Nunez in Ramesh Srinivasan. »Electroencephalography (EEG): Neurophysics, Experimental Methods, and Signal Processing«. V: 1. jan. 2016, str. 175–197. ISBN: 978-1-4822-2097-1. DOI: 10.13140/RG.2.2.12706. 63687.
- [8] Zoran Šverko in sod. »Complex Pearson Correlation Coefficient for EEG Connectivity Analysis«. V: Sensors (Basel, Switzerland) 22.4 (14. feb. 2022), str. 1477. ISSN: 1424-8220. DOI: 10.3390/s22041477. pmid: 35214379. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879969/ (pridobljeno 17.6.2024).

- [9] Dry EEG Headset / Quick-20r. CGX. URL: https://www.cgxsystems.com/quick-20r-v2 (pridobljeno 20.6.2024).
- [10] EEGLAB. URL: https://sccn.ucsd.edu/eeglab/index.php (pridobljeno 13.6.2024).
- [11] Electrode Arrangement According to the International 10/20 System. URL: https://www.ternimed.de/EEG-Electrode-arrangement-according-to-the-international-10/20-system (pridobljeno 20.6.2024).
- [12] https://www.physionet.org/content/eegmmidb/1.0.0/64_channel_sharbrough.pdf.
 URL: https://www.physionet.org/content/eegmmidb/1.0.0/64_channel_
 sharbrough.pdf (pridobljeno 26.6.2024).
- [13] Lsl-Website. URL: https://labstreaminglayer.org/#/ (pridobljeno 13.6.2024).
- [14] MATLAB. URL: https://www.mathworks.com/products/matlab.html (pridobljeno 2.7.2024).