Algebra Linear Aula 06 23/12/2021

138.(UF–GO) Um polígono pode ser representado por uma matriz $F_{2\times n}$, onde n é o número de vértices e as coordenadas dos seus vértices são as colunas dessa matriz. Assim, a

matriz
$$F_{2\times 6} = \begin{bmatrix} 0 & 2 & 6 & 6 & 4 & 2 \\ 2 & 6 & 4 & -2 & -4 & -2 \end{bmatrix}$$
 representa o polígono da figura abaixo.

Em computação gráfica utiliza-se de transformações geométricas para realizar movimentos de figuras e objetos na tela do computador. Essas transformações geométricas podem ser representadas por uma matriz $T_{2\times 2}$. Fazendo-se o produto das matrizes $T_{2\times 2}\times F_{2\times n}$ obtém-se uma matriz que representa a figura transformada, que pode ser uma simetria, translação, rotação ou dilatação da figura original.

Considerando a transformação geométrica representada

pela matriz
$$T_{2\times 2} = \begin{bmatrix} \frac{3}{2} & 0\\ 0 & -\frac{3}{2} \end{bmatrix}$$

qual é a figura transformada do polígono representado pela matriz $F_{2\times 6}$ dada anteriormente?

a)

d)

e)

c)

143. (Fatec–SP) Sendo A uma matriz quadrada, define-se $A^n = A \cdot A \dots A$. No caso de A ser a matriz

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, é correto afirmar que a soma A + A² + A³ + A⁴ + ... + A³⁹ + A⁴⁰ é igual à matriz:

- a) $\begin{bmatrix} 20 & 20 \\ 20 & 20 \end{bmatrix}$ c) $\begin{bmatrix} 40 & 40 \\ 40 & 40 \end{bmatrix}$

e) $\begin{bmatrix} 0 & 20 \\ 20 & 0 \end{bmatrix}$

- b) $\begin{bmatrix} 20 & 0 \\ 0 & 20 \end{bmatrix}$ d) $\begin{bmatrix} 0 & 40 \\ 40 & 0 \end{bmatrix}$

152.(ITA-SP) Sejam A e B matrizes quadradas de ordem n tais que AB = A e BA = B. Então $[(A + B)^{-}]^{2}$ é igual a:

- a) $(A + B)^2$ b) $2(A^t \cdot B^t)$ c) $2(A^t + B^t)$ d) $A^t + B^t$ e) A^tB^t

157. (UF-GO) Uma técnica para criptografar mensagens utiliza a multiplicação de matrizes. Um codificador transforma sua mensagem numa matriz M, com duas linhas, substituindo

cada letra pelo número correspondente à sua ordem no alfabeto, conforme modelo apresentado a seguir.

Letra	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N
Número	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Letra	0	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	-	
Número	15	16	17	18	19	20	21	22	23	24	25	26	27	

Por exemplo, a palavra SENHAS ficaria assim:

$$M = \begin{bmatrix} S & E & N \\ H & A & S \end{bmatrix} = \begin{bmatrix} 19 & 5 & 14 \\ 8 & 1 & 19 \end{bmatrix}$$

Para codificar, uma matriz 2×2 , A, é multiplicada pela matriz M, resultando na matriz $E = A \times M$, que é a mensagem codificada a ser enviada.

Ao receber a mensagem, o decodificador precisa reobter M para descobrir a mensagem original. Para isso, utiliza uma matriz 2×2 , B tal que $B \times A = I$, onde I é a matriz identidade (2×2). Assim, multiplicando B por E, obtém-se $B \times E = B \times A \times M = M$.

Uma palavra codificada, segundo esse processo, por uma matriz $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ resultou na

matriz
$$E = \begin{bmatrix} 47 & 30 & 29 \\ 28 & 21 & 22 \end{bmatrix}$$
.

Calcule a matriz B, decodifique a mensagem e identifique a palavra original.

$$\textbf{189.} (\text{UF-AM}) \; \text{Sendo A} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -5 & 0 & 1 & 3 & 2 \\ 6 & 3 & 0 & 2 & 1 \\ 9 & 1 & 0 & 2 & 0 \\ -1 & -1 & 0 & 1 & 0 \\ \end{pmatrix} \; \text{uma matriz real, então o det A \'e:}$$

- a) -3 b) 3 c) 10 d) -10 e) 24

199. (ITA–SP) Se
$$\det\begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix} = -1$$
, então o valor do $\det\begin{bmatrix} -2a & -2b & -2c \\ 2p+x & 2q+y & 2r+z \\ 3x & 3y & 3z \end{bmatrix}$ é igual a:

Lembre que sis femas equivalents têm mesma matrit depois de escalonados A

232. (UE–PB) Se os dois sistemas lineares
$$\begin{cases} 2x - y = 0 \\ x + y = 3 \end{cases}$$
 e
$$\begin{cases} mx + ny = -1 \\ mx - ny = 1 \end{cases}$$
 são equivalentes, os

valores de *m* e *n* são, respectivamente:

