Chapter 5: Probability

Yu Yang

School of Statistics University of Minnesota

September 19, 2022

Randomness

Random Phenomenon

A phenomenon is *random* if individual outcomes are uncertain but there is a long-term regularity in the outcomes.

Random does not mean haphazard!

Probability

We use probability to quantify randomness.

Probability

The *probability* of an outcome of a random phenomenon is the proportion of times the outcome occurs in a very long series of repetitions (i.e., the "long-run proportion")

Use coin flipping to illustrate the idea of probability as a long-run proportion. Suppose we keep flipping the **fair** coin and keep track of the proportion of rolls that have turned up heads.

Flip	Result	Cumulative Proportion of Heads				
1	Т	0				
2	Н	0.5				
3	Н	0.67				
4	${ m T}$	0.50				
5	Т	0.40				
6	Т	0.33				
÷	:	<u>:</u>				

And you can keep doing this for 5000 tosses, to get a table like:

Flip	Result	Cumulative Proportion of Heads		
1	Т	0.0000000		
2	H	0.5000000		
3	H	0.666667		
:	:	<u>:</u>		
4998	H	0.5004002		
4999	T	0.5005001		
5000	H	0.5004000		

We can simulate this in R and plot the cumulative proportion of heads.

As the number of flips (x axis) increases, the proportion of heads converges to 0.5.

Probability Models

A probability model for a random phenomenon has two parts:

- 1. A list of all possible outcomes
- 2. The probability for each outcome

Sample Space and Event

Sample Space

A *sample space* is the collection of all possible outcomes of an experiment or random phenomenon. Usually denoted as S.

Event

An event is any subset of the sample space. Usually denoted as A, B, C.

Sample Space (S): A sample space is the collection of all possible outcomes of an experiment or random phenomenon.

Suppose we randomly select a student from class and ask a question. Describe the sample space for these experiments.

1. How much time (in hours) did the student spend studying in the last 24 hours?

Sample Space (S): A sample space is the collection of all possible outcomes of an experiment or random phenomenon.

Suppose we randomly select a student from class and ask a question. Describe the sample space for these experiments.

1. How much time (in hours) did the student spend studying in the last 24 hours?

$$S = [0,24]$$
. Event can be $A = [0,2]$

2. In what state was the student born if it is known that they were born in the US?

Sample Space (S): A sample space is the collection of all possible outcomes of an experiment or random phenomenon.

Suppose we randomly select a student from class and ask a question. Describe the sample space for these experiments.

1. How much time (in hours) did the student spend studying in the last 24 hours?

$$S = [0,24]$$
. Event can be $A = [0,2]$

2. In what state was the student born if it is known that they were born in the US?

```
S = \{AL, AK, AZ, ..., WY\}. Event can be B = \{MN, NJ\}
```

3. How many friends does the student have?

Sample Space (S): A sample space is the collection of all possible outcomes of an experiment or random phenomenon.

Suppose we randomly select a student from class and ask a question. Describe the sample space for these experiments.

1. How much time (in hours) did the student spend studying in the last 24 hours?

$$S = [0,24]$$
. Event can be $A = [0,2]$

2. In what state was the student born if it is known that they were born in the US?

```
S = \{AL, AK, AZ, ..., WY\}. Event can be B = \{MN, NJ\}
```

3. How many friends does the student have?

$$S = \{ 0, 1, 2, 3, ... \}$$
. Event can be $C = \{2,3,4\}$

Suppose we toss a fair coin 3 times.

1. What is the sample space, S?

Suppose we toss a fair coin 3 times.

- 1. What is the sample space, S? $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- 2. Let A be the event that we get **exactly** 2 heads on the 3 tosses. Write down A.

Suppose we toss a fair coin 3 times.

- 1. What is the sample space, S? $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- 2. Let A be the event that we get **exactly** 2 heads on the 3 tosses. Write down A.

$$A = \{HHT, HTH, THH\}$$

3. Let B be the event that **at most** one tail is flipped. Write down B.

Suppose we toss a fair coin 3 times.

- 1. What is the sample space, S? $S = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$
- 2. Let A be the event that we get **exactly** 2 heads on the 3 tosses. Write down A.

$$A = \{HHT, HTH, THH\}$$

3. Let B be the event that at most one tail is flipped. Write down B. $B = \{HHH, HHT, HTH, THH\}$

Special Events

- Complimentary Event: A^c = "not A"
 A^c = collection of all outcomes in S that are not in A.
 NOTE: A U A^c = S
- Intersection: A ∩ B = "A and B"
 A ∩ B = all outcomes that are in both A and B
- Union: $A \cup B = "A \text{ or } B \text{ or both"}$ $A \cup B = \text{all outcomes that are in either } A \text{ or } B \text{ (or both)}$

Event Relations

Disjoint

Two events A and B are *disjoint* if they have no outcomes in common.

Independent

Two events are *independent* if knowing one occurs does not change the probability that the other occurs. For example,

- The event that it rains today is independent of the event than 7 was one of the lottery numbers chosen last night.
- The event that it rains today is not independent of the event that it was cloudy this morning.

Roll a fair die (one time)

Roll a fair die (one time)

- 1. Write down the sample space.
 - $S = \{1, 2, 3, 4, 5, 6\}$
- 2. Let A be the event that you roll an even number and B be the event you roll a number bigger than 2. Write down the following events.
 - (a) A, B:

Roll a fair die (one time)

$$S = \{1, 2, 3, 4, 5, 6\}$$

- 2. Let A be the event that you roll an even number and B be the event you roll a number bigger than 2. Write down the following events.
 - (a) $A, B: A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}$
 - (b) A^c:

Roll a fair die (one time)

$$S = \{1, 2, 3, 4, 5, 6\}$$

- 2. Let A be the event that you roll an even number and B be the event you roll a number bigger than 2. Write down the following events.
 - (a) $A, B: A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}$
 - (b) A^c : $A^c = \{1,3,5\}$
 - (c) $A \cap B$:

Roll a fair die (one time)

$$S = \{1, 2, 3, 4, 5, 6\}$$

- 2. Let A be the event that you roll an even number and B be the event you roll a number bigger than 2. Write down the following events.
 - (a) $A, B: A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}$
 - (b) A^c : $A^c = \{1,3,5\}$
 - (c) $A \cap B$: $A \cap B = \{4, 6\}$
 - (d) $A \cup B$:

Roll a fair die (one time)

$$S = \{1, 2, 3, 4, 5, 6\}$$

- 2. Let A be the event that you roll an even number and B be the event you roll a number bigger than 2. Write down the following events.
 - (a) $A, B: A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}$
 - (b) A^c : $A^c = \{1,3,5\}$
 - (c) $A \cap B$: $A \cap B = \{4, 6\}$
 - (d) $A \cup B$: $A \cup B = \{2, 3, 4, 5, 6\}$
 - (e) $(A \cup B)^c$:

Roll a fair die (one time)

$$S = \{1, 2, 3, 4, 5, 6\}$$

- 2. Let A be the event that you roll an even number and B be the event you roll a number bigger than 2. Write down the following events.
 - (a) $A, B: A = \{2, 4, 6\}, B = \{3, 4, 5, 6\}$
 - (b) A^c : $A^c = \{1,3,5\}$
 - (c) $A \cap B$: $A \cap B = \{4, 6\}$
 - (d) $A \cup B$: $A \cup B = \{2, 3, 4, 5, 6\}$
 - (e) $(A \cup B)^c$: $(A \cup B)^c = \{1\}$

- $C = \{1, 2\}$
- $A \cap B =$

- $C = \{1, 2\}$
- $A \cap B = \{4, 6\}$
- $A \cap C =$

- $C = \{1, 2\}$
- $A \cap B = \{4, 6\}$
- $A \cap C = \{2\}$
- $B \cap C =$

- $C = \{1, 2\}$
- $A \cap B = \{4, 6\}$
- $A \cap C = \{2\}$
- $B \cap C = \emptyset$ (empty set)
- Which ones are disjoint?

- $C = \{1, 2\}$
- $A \cap B = \{4, 6\}$
- $A \cap C = \{2\}$
- $B \cap C = \emptyset$ (empty set)
- Which ones are disjoint? B and C are disjoint, the rest are not.

Venn Diagrams

Venn diagrams allow us to visualize events, their intersections, and their unions.

Probability Rules

Let A and B be events and let P(A) and P(B) denote the probabilities of these events occurring. The following statements are **always true**:

- 1. $0 \le P(A) \le 1$
 - P(A) = 0 ⇒ A will never occur.
 Ex: Roll a die. A = get a number larger than 7.
 - P(A) = .0001 ⇒ A is very unlikely to occur but will occur in a long series of trials.
 Ex: Out of 10,000 tickets there is 1 golden ticket. A = Charlie gets the golden ticket.
 - P(A) = 0.6 ⇒ A will be observed more often.
 Ex: Record the temperature in the summer. A = the highest temperature is above 80F.
 - P(A) = 1 ⇒ A is certain to occur.
 Ex: Roll a die. A = get a number smaller than 7.

Probability Rules

- 2. Law of Total Probability: P(S) = 1 where S is the sample space.
- 3. Complement Rule: $P(A^c) = 1 P(A)$
- 4. General Addition Rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 5. Partitioning of Probability: $P(A) = P(A \cap B) + P(A \cap B^c)$

Probability Rules

6. If A and B are disjoint, then

- $P(A \cap B) = 0$
- $P(A \cup B) = P(A) + P(B)$
- 7. If A and B are independent, then $P(A \cap B) = P(A) \times P(B)$.

Applying Probability Rules - Example 1

A survey of students found that in the last month:

- 68% had gone to see a movie (A)
- 52% had attended a sporting event (B)
- 35% had done both $(A \cap B)$
- (a) Draw a Venn diagram of these events.
- (b) What is the probability that a randomly selected student has been to either a movie or a sporting event (or both) in the last month? $P(A \cup B) = P(A) + P(B) P(A \cap B) = .68 + .52 .35 = .85$
- (c) What is the probability that a randomly selected student has been to a movie but **not** a sporting event in the last month? $P(A \cap B^c) = P(A) P(A \cap B) = 0.68 0.35 = 0.33$.
- (d) What is the probability that a randomly selected student has been to neither a movie nor a sporting event in the last month? $P((A \cup B)^c) = 1 P(A \cup B) = 1 .85 = .15.$

Applying Probability Rules - Example 2

SurveyUSA polled 451 Americans regarding their opinion on federal gun control laws:

			Opinion			
		Too Restrictive	Not Restrictive Enough	About Right	Not Sure	Total
	18-34	31	67	49	6	153
Age	35 - 54	36	82	59	3	180
	55+	21	60	33	4	118
	Total	88	209	141	13	451

Applying Probability Rules - Example 2 (cont.)

Select one person at random from the sample and define events A and B as follows:

- A = they think that federal gun control laws are too restrictive.
- B =they are under the age of 55.
- (a) Find P(A) and P(B). P(A) = 88/451 = 0.195P(B) = (153 + 180)/451 = 0.738.
- (b) What is the probability that the person does **not** think federal gun control laws are too restrictive. $P(A^c) = 1 P(A) = 1 0.195 = 0.805$.
- (c) What is the probability that the person is under the age of 55 and thinks federal gun control laws are too restrictive? $P(A \cap B) = (31 + 36)/451 = 0.149$.

Applying Probability Rules - Example 3

According to an organization called Student Monitor, 83% of American college students own a laptop, 24% own a desktop, and 8% own neither a laptop nor a desktop.

- (a) What is the probability that a randomly selected student owns either a laptop or a desktop or both? P(laptop or desktop) = 1 P(neither) = 0.92
- (b) What is the probability that a randomly selected student owns both a desktop and a laptop?

```
P(\text{laptop or desktop}) = P(\text{laptop}) + P(\text{desktop}) - P(\text{both}).

\Rightarrow P(\text{both}) = P(\text{laptop}) + P(\text{desktop}) - P(\text{laptop or desktop}) = 0.83 + 0.24 - 0.92 = 0.15
```

(c) Are owning a desktop and owning a laptop independent for the population of American students? $P(\text{laptop}) \times P(\text{desktop}) = 0.83 \times 0.24 = 0.1992 \neq 0.15 = P(\text{both})$. Therefore they are not independent.

Conditional Probability: Motivating Example

Suppose I take a handful of M&Ms and get 5 red, 4 blue and 7 brown. I randomly pick one of the M&Ms and eat it. We can see that:

$$P(red) = 5/16$$
, $P(blue) = 4/16$, and $P(brown) = 7/16$

Now, suppose I tell you that the M&M was **not** brown. What is the probability that the M&M was blue *given that* (or knowing that) it was not brown.

Since it was not brown, that leaves 9 M&Ms: 4 blue and 5 red. I could have chosen any of the 4 blue out of the 9. So

$$P(\text{blue given not brown}) = 4/9$$

Conditional Probability

The conditional probability of event A given event B is the probability that A occurs given the knowledge that B has already occurred. When P(B) > 0, the conditional probability of A given B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Back to M&Ms

We can apply this formula to the M&M example. Let

- A =the M&M is blue
- B = the M&M is not brown.

We see that

$$P(\text{blue}|\text{not brown}) = \frac{P(\text{blue} \cap \text{not brown})}{P(\text{not brown})} = \frac{\frac{4}{16}}{1 - \frac{7}{16}} = \frac{4}{9}.$$

Another Multiplication Rule

By the definition of condition probability,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 and $P(B|A) = \frac{P(A \cap B)}{P(A)}$.

Consequently,

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A).$$

Conditional Probability and Independence

Recall that if A and B are independent, knowing that B has happened does **not** change the probability that A also occurs. Therefore, when A and B are independent,

$$P(A|B) = P(A)$$
.

Three Ways to Check Independence

A and B are independent if any of the following holds

1.
$$P(A \cap B) = P(A)P(B)$$

- 2. P(A|B) = P(A)
- 3. P(B|A) = P(B)

These three statements are equivalent. If any of these conditions do not hold, then none of them hold and the events are **NOT** independent.

According to an organization called Student Monitor, 83% of American college students own a laptop, 24% own a desktop, and 8% own neither a laptop nor a desktop. Define events as follows.

L = own a laptop

D = own a desktop

(a) What is the probability that a student with a desktop also owns a laptop?

$$P(L|D) = \frac{P(L \cap D)}{P(D)} = \frac{.15}{.24} = .625.$$

Interpretation: 62.5% of desktop owners also owns a laptop.

(b) Find the conditional probability that a student owns desktop given that they own a laptop.

$$P(D|L) = \frac{P(L \cap D)}{P(L)} = \frac{.15}{.83} = .18.$$

Interpretation: 18% of students with a laptop also owns a desktop.

(c) Find the conditional probability that a student does NOT own a desktop given that the student owns a laptop. $P(D^c|L) = 1 - P(D|L) = 1 - .18 = .82$.

(d) Are owning a desktop and owning a laptop independent? $P(D|L) \neq P(D) \Rightarrow$ not independent.

Intersection vs. Conditional probability

In Example 5.5,

- what is the proportion of student own both a laptop and a desktop? Intersection: $P(L \cap D)$.
- what is the proportion of students who own a laptop also own a desktop?
 - Conditional probability: P(D|L).