TCP & UDP Performance

Metrics

- Latency
 - time required to transmit a packet across a network
- Throughput
 - quantity of data being sent/received by unit of time
- Packet loss
 - number of packets lost per 100 packets sent by a host

TCP Flow Control

- The receptor adds reception window size in ACK packets
- The sender adjust its window size as reception window size, in order to not overload to receptor buffer

TCP Congestion Window

- Manage the number of packets that may be sent before receiving the corresponding acknowledgement packet.
- The transmisor have 3 pointers

TCP Congestion Window

Escenario TCP

Variación de la Ventana de congestión de TCP

Flags: 0x002 (SYN) Window size value: 29200 [Calculated window size: 29200] Checksum: 0xd6c5 [unverified] [Checksum Status: Unverified]

Ürgent pointer: 0

▼ Options: (20 bytes), Maximum segment size, SACK permitte

Pasos:

- 1. Con Wireshark analizar la interfaz loopback
- Configurar wireshark con el filtro "tcp"
- 3. Iniciar python server.py
- 4. Iniciar python client.py
- 5. Esperar que la ventana en Wireshark alcance a cero y dejar que corra al menos 30 segundos así
- 6. Detener los scripts y analizar los resultados

https://gist.github.com/NatiTomattis/85a36e75dc79960c5ca7119bd546e83e

Escenario 2: Transmisión de un stream de bytes sobre TCP

UDP

- Protocolo "best-effort"
- No orientado a la conexión
- Checksum?

Performance UDP. Cuando se prefiere UDP?

Escenarios donde la velocidad importe más que la fiabilidad.

16				
UDP SOURCE PORT	UDP DESTINATION PORT			
UDP MESSAGE LENGTH	UDP CHECKSUM			
PAYLOAD (DATA IN THE MESSAGE)				

Escenario UDP

- Envío de imagen por UDP.
- Remoto y local.

Rendimientos comparación

Iperf:

- Rendiemito : transfer
- Bandwidth: velocidad de transferencia

```
Siperf -i 1 --bandwidth 10M -c www.portal.efn.uncor.edu -p 80 --udp
     $iperf -i 1 --bandwidth 10M -c www.portal.efn.uncor.edu -p 80
                                                                          Client connecting to www.portal.efn.uncor.edu, UDP port 80
Client connecting to www.portal.efn.uncor.edu, TCP port 80
                                                                          Sending 1470 byte datagrams, IPG target: 1121.52 us (kalman adjust)
TCP window size: 85.0 KByte (default)
                                                                          JDP buffer size: 208 KByte (default)
   3] local 172.16.0.94 port 48070 connected with 200.16.19.6 port 80
                                                                            3] local 172.16.0.94 port 37562 connected with 200.16.19.6 port 80
  ID] Interval
                     Transfer
                                  Bandwidth
                                                                                             Transfer
                                                                                                         Bandwidth
                                                                           ID] Interval
  3] 0.0- 1.0 sec 1.12 MBytes 9.44 Mbits/sec
                                                                            3] 0.0- 1.0 sec 1.25 MBytes 10.5 Mbits/sec
                                                                            3] 1.0- 2.0 sec 1.25 MBytes 10.5 Mbits/sec
  3] 1.0- 2.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 2.0- 3.0 sec 1.25 MBytes 10.5 Mbits/sec
   3] 2.0- 3.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 3.0- 4.0 sec 1.25 MBytes 10.5 Mbits/sec
   3] 3.0- 4.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                               4.0- 5.0 sec 1.25 MBytes 10.5 Mbits/sec
   3] 4.0- 5.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 5.0- 6.0 sec 1.25 MBytes 10.5 Mbits/sec
   3] 5.0- 6.0 sec 1.12 MBytes 9.44 Mbits/sec
                                                                            3] 6.0- 7.0 sec 1.25 MBytes 10.5 Mbits/sec
     6.0- 7.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 7.0- 8.0 sec 1.25 MBytes 10.5 Mbits/sec
     7.0- 8.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 8.0- 9.0 sec 1.25 MBytes 10.5 Mbits/sec
   3] 8.0- 9.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 9.0-10.0 sec 1.25 MBytes 10.5 Mbits/sec
      9.0-10.0 sec 1.00 MBytes 8.39 Mbits/sec
                                                                            3] 0.0-10.0 sec 12.5 MBytes 10.5 Mbits/sec
       0.0-10.0 sec 10.2 MBytes 8.56 Mbits/sec
                                                                            3] Sent 8918 datagrams
                                                                            3] WARNING: did not receive ack of last datagram after 10 tries.
```


DNS

- ¿Qué es y cuál es la motivación del DNS?
 - Usos
- ¿Cómo funciona?
 - Base de datos jerárquica y distribuida
 - DNS cache
 - Tipos de registros

DNS - Usos

Referir un host

Referir un alias

- Balanceo de cargas
- Otros

- Capa de aplicacion. Puerto 53.
- UDP como transporte. ¿Y entre servidores DNS?
- Registros. ¿Que son? ¿Para qué sirven?
 A, AAAA, MX, NS, CNAME, PTR, etc.

nombre	clase	tipo	valor
lb.unc.edu.ar.	IN	A	200.16.16.60
www.unc.edu.ar.	IN	CNAME	lb.unc.edu.ar
unc.edu.ar.	IN	MX	valor1 valor2
unc.edu.ar.	IN	NS	ns1.unc.edu.ar ns2.unc.edu.ar

O DNS, servicio centralizado? Qué sucede si mi resolver DNS no tiene la respuesta a mi consulta?

- Se consulta a uno de los DNS Servers ROOT.
 - Tiene información de servidores TLD.

- Se consulta ahora a un TLD.
 - Tiene información de Name Servers.
- Finalmente, el Name Server me da la dir IP.

- Las consultas las realiza mi host o las resuelve por completo mi DNS resolver?
 - Consultas Iterativas y Consultas recursivas.
- Time-to-Live en registros, caché, etc.
- dig, dig +trace, nslookup


```
; <<>> DiG 9.10.3-P4-Ubuntu <<>> A unc.edu.ar @1.1.1.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<-- opcode: QUERY, status: NOERROR, id: 48852
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1452
;; QUESTION SECTION:
;unc.edu.ar. IN A
;; ANSWER SECTION:
unc.edu.ar. 126 IN A 200.16.16.60
;; Query time: 22 msec
;; SERVER: 1.1.1.1#53(1.1.1.1)
;; WHEN: Mon Apr 22 15:45:42 -03 2019
;; MSG SIZE rcvd: 55
```


HTTP

- The protocol used for communication between a browser and a web server on TCP
- Characteristics:
 - Request / Response, Stateless, Bi-Directional Transfer, Support For Caching and Intermediaries.
- Methods
 - HTTP/1.0
 - GET, HEAD, POST
 - HTTP/1.1
 - PUT, DELETE, OPTIONS, etc
- HTTP/1.1 cookies to allow HTTP to move from being a stateless protocol
- HTTP/2

HTTPS

- HTTPS is the secure version of HTTP that encrypts messages in transit by using the Transport Layer Security (TLS) protocol or Secure Sockets Layer (SSL).
- HTTPS adds three important concepts to HTTP messages
 - Encryption, Integrity and Authentication

Lab

Using developer tools in web browsers

You launch developer tools by pressing a keyboard shortcut (F12) ->
 Network -> headers

Lab

Timing

Bibliografia

- Douglas E. Commer Internetworking with TCP-IP Volume One 6ta Edición. Capítulo 23
- James F. Kurose and Keith W. Ross Computer Networking A Top-Down Approach - 6ta Edición. Capítulo 2. Sección 5.
- https://howdns.works/

