



## **McElhanney**

# Regional Transportation Model – Stakeholders Meeting Model Application and Key Findings

October 30th, 2018



**Strategic Transportation Planning** 

## Who Are We?

- Basse Clement, Division Manager
  - +20 yrs. experience in transportation planning and modelling
  - 10 yrs. at TransLink, 10 yrs. in consulting
- Harvey Harrison, Senior Modeller/Planner
  - 12 yrs. experience in modelling and simulation
- Manvir Sohi, Senior Transportation Planner
  - 5 yrs. experience in transportation planning and modelling





#### **Presentation Outline**

- History of RTM Application
- Project Examples:
  - Regional level application
  - Corridor level application
  - Neighbourhood level application
- For each example:
  - Project background/context
  - Problem statement what were the key issues and questions that were asked
  - RTM3 model application
  - Outcomes and lessons learned
- Suggestions for Future Model Enhancements



# **History of RTM Development**

Metro Vancouver has had a regional EMME model since early 1980's





#### Beyond Arbutus Rapid Transit Study

- Millennium Line Broadway Extension to Arbutus has committed funding from Federal and Provincial governments
- Study to determine technology and alignment alternatives to provide rapid transit service between Arbutus St and UBC
- Regional mode share target of 50% walk/bike/transit by 2020, 2/3 by 2040





#### Key Issues

- 99 B-Line currently has overcrowding and reliability problems.
- Other parallel corridors have similar issues
- UBC enrollment is expected to continue growing significantly
- Limiting local economy to develop technology and medical research hub between UBC and Central Broadway

#### Key Questions

- Which technology provides the best travel time, capacity and reliability?
- Which technology helps to achieve regional and local mode share and VKT targets?
- Which alignment minimizes costs and is acceptable by host communities?
- Which option is most cost effective?
- Is there net positive benefits to the region with rapid transit investment?





## Modelling Approach

- Validate auto and transit volumes and travel times within study area
- Confirm land use assumptions (pop, hhld, emp, enroll) and future forecasts
- Code and run technology and alignment alternatives
- Benchmark ridership forecasts with similar systems elsewhere





#### **Model Outcomes**

- RTM3 is a reliable tool to forecast travel demand and ridership for trips connecting to UBC
- Accurate travel times in model helpful in determine route choice and mode choice
- Rapid transit on its own marginally improves regional transit mode share
- Significant diversion of transit from parallel corridors
  - Route alternatives are similar in terms of network costs
  - Potential for significant user benefits based on initial findings



#### Lessons Learned

- Students have unique trip making patterns (time of day, distribution, etc)
- Congested and capacitated transit assignment is useful to evaluate technology alternatives
  - Have to use the converged transit volumes from the capacitated assignment, not just the final iteration volumes
- Traffic zone disaggregation helpful for walk access to rapid transit stations
- zones)
- Vehicle volumes on some arterials were somewhat overestimated



- Maplewood Village & North Shore Innovation District
- New development proposed in the District of North Vancouver
- Understand the impacts to the local and regional transportation network





### Key Issues:

- Significant growth and development
  - Lower Lynn Interchanges and Marine Dr. B-Line
- Developments can not be evaluated in isolation
  - Must take into consideration background traffic and anticipated regional growth
  - Cumulative impact of development on traffic congestion (1+1 ≥ 2)

## Key Questions:

- What is the impact of the development to local and regional roads?
  - Traffic Volumes; Traffic Congestion; Travel Time
- What are the impacts of sensitivity scenarios?







## Modelling Approach

- Model validation (within study area):
  - Auto Volumes,
  - Auto Travel Time
- Increase detailing for study area
  - Split 1 RTM3 zone to 3 subzones
  - Add local and collector roads
- Review land use assumptions for study area
  - Discussion with District staff
  - Comparison to ITE Trip Generation
- Integration with Vissim
  - Traversal Assignment (Emme)







#### Outcomes / Lessons Learned

- Zone Splitting
  - Single zone splitting is now practical
  - Allocate development to each zone
  - Optimize the zone detail for each project
- Integration with Vissim
  - Traversal Assignment (Emme)
  - Outputs from Emme can be processed as inputs for Vissim (microsimulation) model
  - Operational analysis
  - Visualizations





#### Outcomes / Lessons Learned

- ITE Trip Generation Backcheck
  - Employment/households (EMME) vs floor space and units (ITE Trip Generation)
  - ITE Trip Generation provides a very wide range
  - Region tends to fall in the low to medium range
  - Validation of land use assumption
  - Development of sensitivity scenarios
  - Ex: Mixed-use development with employee housing programs may warrant higher internalization sensitivity scenarios





# **Regional Town Centre Level Application**

- Coquitlam City Centre Area Plan Update (CCAPU)
- Validate and assess current conditions
- Evaluate proposed roadway servicing plan and future development





# **Regional Town Centre Level Application**

#### Key Issues:

- Significant growth and changes in land use
- Regional access patterns servicing town centre
- Impacts to regional roadways

## Key Questions:

- Current Level of Service
- Performance of proposed town centre network
- Identify operational issues to refine proposed road network





# Regional Town Center Level Application

## Modelling Approach

- Validate present travel time and volumes accessing study area
  - Recent toll removal has had significant impacts to regional travel patterns
- Detail Sub-area zone system reflecting future development and road infrastructure
- Updated land use forecasts
- Visum & Synchro integration for level of service





# **Regional Town Center Level Application**

#### Lessons Learned

- Ease of adding zones allows finer-grained control over network loading
  - Level of detail finer in CCAPU area than previous Coquitlam sub-area model
  - Land use categories changing from current uses (mall site redevelopment)
- At-grade rail crossings not well represented in RTM
- Fixes to corridor travel times improved fit to counts
- Additional zone detail can be added incrementally for future projects
- Feeding back fixes early made transition from RTM 3.1 to 3.2 easier





## RTM3 Useful Enhancements

- Text-based model inputs simplify subarea model development
  - Allows for version tracking
  - Simplifies traffic zone splitting
- Time of day representation, i.e. Midday and PM Peak
- Peak directional travel characteristics well represented
  - AM Inbound vs PM Outbound
- Compass data validation





# **Suggestions for Future Model Enhancements**

- Special Generators
  - University of British Columbia (and maybe other universities)
  - Sea Island/YVR
- At-Grade Rail Crossings
  - Representation through special volume-delay function
- Simplified representation of bus priority lanes
  - Customized transit time function
- Adoption of New Technologies
  - Ridesharing (Uber/Lyft)
  - Connected & Autonomous Vehicles (CAVs)

