

FACULDADE DE ENGENHARIA DEPARTAMENTO DE CADEIRAS GERAIS

TESTE I DE Física II

Cursos: Licenciaturas em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente,
Civil e Gestão Idustrial

Ano: 1º Período: Laboral 1 Duração: 120 minutos Data: 01 de Outubro de 2022

1. Cinco cargas iguais a Q, igualmente espaçadas sobre uma semicircunferência de raio R, como ilustra a figura. Calcular a força sobre uma carga q localizada no centro do arco do circulo (P). [4.0 Valores]

- 2. Uma distribuição de cargas esfericamente simétricas, porém não uniformes, possui uma densidade de carga $\rho(r)$ dada por: $\rho(r) = \rho_0 \left(1 + \left(\frac{r}{R}\right)^2\right)$ para $r \leq R$ & $\rho(r) = 0$ para r > R, onde ρ_0 é uma constante. (a) Determine a carga total contida na distribuição. (b) Determine o campo eléctrico na região $r \geq R$. (c) Obtenha a expressão para o campo eléctrico para $r \leq R$. (d) Faça o gráfico do modulo do campo eléctrico em função de r. (e) Encontre o ponto para o qual o campo eléctrico e máximo e calcule o valor desse campo eléctrico máximo. [5.0 Valores]
- 3. Um cilindro infinito e ôco, de raio R e comprimento L, esta uniformemente carregado com densidade superficial de caraga σ . Determine a energia potencial eléctrica no espaço que circunda o cilindro. Sugestão: encontre a distribuição do campo eléctrico, depois a densidade de energia e finalmente a energia. [4.0 Valores]
- **4.** O espaço entre as placas de um capacitor plano esta preenchido com dieléctricos diferentes $(\varepsilon_1, \varepsilon_2 \ e \ \varepsilon_3)$. (a) Determine a capacitância equivalente do sistema. (b) A energia no circuito, se $\phi_{AB} = V$. [4.0 Valores]

 $\boldsymbol{\varepsilon_1}$

 ε_2

5. Desenhe um dipolo eléctrico e um ponto P localizado a uma distância r do CM do sistema. (a) Calcule o potencial eléctrico do dipolo no ponto P, em função do mometo dipolar \vec{p} e da distância P. (b) Calcule o modulo do vector campo eléctrico para $\theta = \frac{\pi}{2}$. [3.0 Valores]