Módulo 3: Introducción a Modelos de Deep Learning 🧠 💡

Duración Estimada: 3 Horas

1. Redes Neuronales Profundas: Fundamentos y Funcionamiento

El Deep Learning (DL) es un subcampo del Machine Learning que se basa en las Redes Neuronales Profundas (DNNs). Estas redes están inspiradas en la estructura del cerebro humano.

La Neurona Artificial (Perceptrón)

La unidad básica de una red. Recibe múltiples entradas, las procesa (sumándolas con pesos asignados) y aplica una función de activación para decidir si activa y pasa la señal a la siguiente neurona.

La Profundidad (Deep)

Una red es considerada "profunda" cuando tiene múltiples capas ocultas entre la capa de entrada y la capa de salida.

Capa	Función Principal
Capa de Entrada	Recibe los datos brutos (ej. píxeles de una imagen, palabras de un texto).
Capas Ocultas	Extraen características y patrones complejos de forma jerárquica. Cuantas más capas, más profundo es el aprendizaje.
Capa de Salida	Genera el resultado final (ej. la clase predicha, la siguiente palabra).

Funcionamiento Jerárquico: En Visión por Computadora (DL), las primeras capas aprenden a detectar bordes simples, las capas intermedias detectan formas y texturas, y las capas finales identifican objetos completos (rostros, animales, etc.). **El modelo aprende las características por sí mismo**, sin intervención humana.

2. Entrenamiento de Modelos: Proceso de Aprendizaje

El entrenamiento es el proceso clave donde una red neuronal profunda ajusta sus miles o millones de **pesos** para mejorar su precisión.

El Ciclo de Entrenamiento:

- 1. **Propagación Hacia Adelante (Forward Pass):** Los datos de entrenamiento pasan por la red desde la capa de entrada hasta la de salida, generando una **predicción**.
- 2. Cálculo del Error (Loss Function): El modelo compara su predicción con la etiqueta real (la "verdadera respuesta") y calcula el error o pérdida.
- 3. **Propagación Hacia Atrás (***Backpropagation***):** El error se propaga **hacia atrás** a través de la red (de la capa de salida a la de entrada). Este es el mecanismo central del DL.
- 4. **Optimización (***Gradient Descent***):** El algoritmo **ajusta los pesos** de cada neurona en función de cuánto contribuyeron al error, buscando el camino más eficiente para **minimizar la pérdida**.

Objetivo: Iterar este proceso millones de veces (épocas) hasta que la red encuentre el conjunto de pesos óptimo que minimice el error de forma consistente.

3. Aplicaciones Prácticas: DL en IA Generativa

El Deep Learning es la base tecnológica de las herramientas generativas más avanzadas, ya que son excelentes para manejar y crear datos no estructurados.

A. Modelos de Lenguaje Grande (LLMs) - Texto 🗣

- Arquitectura Clave: Transformer (basada en el mecanismo de Atención).
- Casos de Uso (ChatGPT, Gemini, etc.):
 - **Traducción y Resumen:** Los modelos comprenden y reestructuran el lenguaje natural a un nivel que el ML tradicional no puede igualar.
 - o Generación de Código: El modelo "aprende" las reglas y sintaxis del código a partir de miles de repositorios.

• **Dialogo Coherente:** El mecanismo de *atención* permite al modelo mantener la coherencia a lo largo de largas conversaciones, ponderando la importancia de las palabras anteriores.

B. Modelos de Difusión - Imágenes y Multimedia 🛂

- Arquitectura Clave: Modelos de Difusión (un tipo avanzado de DL).
- Casos de Uso (DALL-E, Midjourney, etc.):
 - **Creación de Imágenes:** Estos modelos aprenden a generar una imagen añadiendo "ruido" aleatorio y luego invirtiendo el proceso para "des-ruidificar" gradualmente hasta formar la imagen solicitada por el usuario (el *prompt*).
 - o Transferencia de Estilo: Pueden aplicar el estilo artístico de una pintura famosa a una fotografía personal.

4. Deep Learning en Creación de Contenido

El DL se destaca por su capacidad de generar resultados que parecen haber sido creados por humanos.

Generación de Texto 🦽

- El Proceso: Los LLMs (basados en DL) funcionan prediciendo la palabra más probable que sigue a una secuencia de palabras dada.
- Control Creativo: Los parámetros como la temperatura (que influye en la aleatoriedad de la predicción) permiten al usuario ajustar si quiere un texto predecible y preciso (baja temperatura) o un texto creativo y original (alta temperatura).
- Ejemplo:
 - o Input: "El futuro de la IA se basa en la..."

o LLM: "... capacidad de los modelos para aprender de datos no estructurados."

Generación de Imágenes 🎨

- Entrenamiento: Los modelos de difusión son entrenados con miles de millones de pares de imágenes y sus descripciones de texto asociadas.
- **Síntesis:** Cuando un usuario introduce un *prompt* (ej. "Un perro astronauta en Marte, estilo óleo"), el modelo utiliza su comprensión de texto (PLN/DL) y su conocimiento visual (Visión por Computadora/DL) para sintetizar una imagen completamente nueva y única que cumple con ambas condiciones.

Ejercicio Práctico (30 min)

Instrucción: Utiliza Gemini, ChatGPT-4, o cualquier otra herramienta de IA Generativa con capacidad para crear imágenes o texto.

Opción A: Generación de Imagen (Si la herramienta lo permite)

• **Prompt de Imagen:** "Crea una imagen de un robot de los años 50 estudiando un libro de *Deep Learning* en una biblioteca futurista, con iluminación *neon*."

Opción B: Generación de Texto (Si la herramienta es solo de texto)

• **Prompt de Texto:** "Explica en 150 palabras, usando una metáfora simple (como un chef o un arqueólogo), el proceso de *Backpropagation* en el entrenamiento de una red neuronal profunda."

Objetivo: Experimentar de primera mano la capacidad de las arquitecturas de Deep Learning para interpretar instrucciones complejas y generar resultados creativos y originales.