R Textbook Companion for Introductory Statistics by Sheldon M. Ross¹

Created by
Jasleen Sondhi
BSc. Physics, Mathematics and Computer Science
Computer Science and Engineering
Mount Carmel College
Cross-Checked by
R TBC Team

July 9, 2021

¹Funded by a grant from the National Mission on Education through ICT - http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R codes written in it can be downloaded from the "Textbook Companion Project" section at the website - https://r.fossee.in.

Book Description

Title: Introductory Statistics

Author: Sheldon M. Ross

 ${\bf Publisher:} \ \, {\bf Elservier} \ \, {\bf Inc., \, Uk.}$

Edition: 3

Year: 2010

ISBN: 978-0-12-374388-6

R numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means an R code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of R Codes	
2	Describing Data Sets	5
3	Using Statistics to Summarize Data Sets	9
4	Probability	19
5	Discrete Random Variables	30
6	Normal Random Variables	39
7	Distributions of Sampling Statistics	43
8	Estimation	46
9	Testing Statistical Hypotheses	53
10	Hypothesis Tests Concerning Two Populations	57
11	Analysis of Variance	62
12	Linear Regression	65
13	Chi Squared Goodness of Fit Tests	71
14	Nonparametric Hypotheses Tests	76
15	Quality Control	83

List of R Codes

Exa 2.1	Sick Leave	b
Exa 2.2	Golf Tournament	5
Exa 2.3	Birth Rate	6
Exa 2.4	Blood Pressure	6
Exa 2.5	Income	7
Exa 2.6	Minority	8
Exa 2.7	Sporting Convention	8
Exa 3.1	Fuel Efficiency	9
Exa 3.2	Masters Golf Tournament	9
Exa 3.3	Suits	9
Exa 3.4	Motorcycle Accidents	10
Exa 3.5	Deviations	10
Exa 3.6	Drivers License	11
Exa 3.7	Smoking	11
Exa 3.8	NBA	11
Exa 3.9	Percentile	11
Exa 3.10	Assets	12
Exa 3.11	Bowling Tournament	12
Exa 3.12	Dresses	13
Exa 3.13	Day Care	13
Exa 3.14	Dice	13
Exa 3.15	Variance of Data	14
Exa 3.16	Variance	14
Exa 3.17	Identity	14
Exa 3.18	Law Enforcement Officers	15
Exa 3.19	Miller Analogies Test	15
Exa 3.20	History Exam	16
Exa 3.21	Stem and Leaf	16

Exa 3.22	Milk	17
Exa 3.23	Correlation Coefficient	18
Exa 3.24	Sample Correlation Coefficient	18
Exa 4.1	Probability	19
Exa 4.2	Boy Girl	19
Exa 4.3	AE VISA	20
Exa 4.4	Retirement Centre	21
Exa 4.5	Two Dice	21
Exa 4.6	Married Couples	21
Exa 4.7	Spanish or French	21
Exa 4.8	Earnings	22
Exa 4.9	Conditional Probability	22
Exa 4.10	Parent Daughter Dinner	22
Exa 4.11	California State College	23
Exa 4.12	Man or Woman	23
Exa 4.13	Dice	24
Exa 4.14	Female Student	24
Exa 4.15	Children	24
Exa 4.16	Insurance Company	25
Exa 4.17	Blood Test	25
Exa 4.18	Different Choices	26
Exa 4.19	Group of Married Couples	26
Exa 4.20	Four People in a Room	26
Exa 4.21	Probability	26
Exa 4.22	Random Sample	27
Exa 4.23	Committee	28
Exa 4.24	Compare	29
Exa 4.25	Possible Arrangements	29
Exa 5.1	NBA	30
Exa 5.2	Sexes of 3 Children	31
Exa 5.3	Random Variable	31
Exa 5.4	Saleswoman	32
Exa 5.5	Die	32
Exa 5.6	Variable	32
Exa 5.7	Insurance Company	33
Exa 5.8	Christmas Bonus	33
Exa 5.9	Annual Incomes	33
Exa 5.10	Law Enforcement Employees	34

Exa 5.11	Bids	34
Exa 5.12	VarX	34
Exa 5.13	Investment	35
Exa 5.14	Dice	35
Exa 5.15	Gross Earnings	35
Exa 5.16	Coins	36
Exa 5.17	Genes	36
Exa 5.18	Binomial Random Variable	37
Exa 5.19	Screws	37
Exa 5.20	Hypergeometric Random Variable	37
Exa 5.21	Poisson Random Variable	38
Exa 5.22	Items	38
Exa 5.23	Accidents	38
Exa 6.1	SAT	39
Exa 6.2	P	39
Exa 6.3	P Value	39
Exa 6.4	PZ	40
Exa 6.5	Determine P	40
Exa 6.6	IQ	40
Exa 6.7	Standard Deviation	41
Exa 6.8	Light Bulb	41
Exa 6.9	US Department of Agriculture	41
Exa 6.10	Normal Random Variables	41
Exa 6.11	IQ Test	42
Exa 7.1	Population	43
Exa 7.2	Insurance Company	43
Exa 7.3	Blood Cholesterol Levels	44
Exa 7.4	Astronomer	44
Exa 7.5	Students	44
Exa 7.6	Election	45
Exa 7.7	Candidates	45
Exa 8.1	Amount of Damages	46
Exa 8.2	Level of Potassium	46
Exa 8.3	Dress Code	46
Exa 8.4	Nine Electronic Components	47
Exa 8.5	Signal	47
Exa 8.6	Confidence Interval Estimate	47
Exa 8.7	Population Standard Deviation	48

Exa 8.8	Weights of Salmon	48
Exa 8.9		49
Exa 8.10	Salmon	49
Exa 8.11	Upper Confidence Bound	49
Exa 8.13	EPA	50
Exa 8.14	PCB	50
Exa 8.15	Nonsmokers	51
Exa 8.16	The New York Times	51
Exa 8.17		51
Exa 8.18		52
Exa 9.1		53
Exa 9.2		53
Exa 9.3	Null Hypothesis	53
Exa 9.4		54
Exa 9.5		54
Exa 9.6		54
Exa 9.7		55
Exa 9.8		55
Exa 9.9		55
Exa 9.10		56
Exa 9.11		56
Exa 10.1		57
Exa 10.2		57
Exa 10.3		58
Exa 10.4	· · · · · · · · · · · · · · · · · · ·	58
Exa 10.5		59
Exa 10.6		59
Exa 10.8		59
Exa 10.9		60
Exa 10.10	0	60
Exa 10.11	9	61
Exa 10.13		61
Exa 11.1	1	62
Exa 11.4	1	62
Exa 11.5	0	63
Exa 12.1		65
Exa 12.1		65
Exa 12.2		იი ჩჩ

Exa 12.4	Fuel Consumption
Exa 12.5	Galtons Thesis
Exa 12.6	Motor Vehicle Deaths
Exa 12.7	Adult Height
Exa 12.8	Hamburger Concession
Exa 12.9	Height
Exa 12.10	Football Game
Exa 12.13	Suicide Rate
Exa 13.2	Stomach Cancer Patients
Exa 13.3	Accidents
Exa 13.4	Gregor Mendel
Exa 13.8	Level of Significance
Exa 13.9	Public Health Scientist
Exa 13.10	Lung Cancer
Exa 13.11	Female Office Workers
Exa 14.1	Shoe Store
Exa 14.2	Sunscreen Lotions
Exa 14.3	Bank
Exa 14.4	Four Paired Sample Values
Exa 14.5	Psychology
Exa 14.6	Normal Approximation
Exa 14.7	Symmetric
Exa 14.8	Reflex Reaction Time
Exa 14.9	Sum of the Ranks
Exa 14.10	Vocabulary
Exa 14.11	Like ex 9
Exa 14.12	Softball
Exa 14.13	Approximate p value
Exa 14.14	
Exa 14.15	Fahrenheit
	Basketball Team
Exa 14.17	Wines
Exa 14.18	Null Hypothesis
Exa 14.19	DVD Players
Exa 15.1	Computer Servicing Firm
Exa 15.2	Video Rental Store
Exa 15.3	Automobile Air Conditioners
Exa 15.4	Steel Shafts 84

Exa 15.5	Automatic Screw Machine	85
Exa 15.6	Repair Shop	85
Exa 15.7	Subgroup Average	86

Chapter 2

Describing Data Sets

R code Exa 2.1 Sick Leave

```
1 # Page No. 18
2 sick_days<-c(0,1,2,3,4,5,6,7,8,9)
3 frequency<-c(12,8,5,4,5,8,0,5,2,1)
4 leave<-data.frame(sick_days,frequency)
5 View(leave)
6 total_workers=sum(leave$frequency)
7 print(total_workers -leave[1,2])
8 print(sum(leave$frequency[4:6]))
9 print(sum(leave$frequency[7:10]))</pre>
```

R code Exa 2.2 Golf Tournament

R code Exa 2.3 Birth Rate

R code Exa 2.4 Blood Pressure

R code Exa 2.5 Income

```
1 # Page No.44
2 income <-c (30941,25128,32151,26183,23512,32996,
3
             33276,42706,32779,42120,29596,28821,30001,25057,
             33404, 28240, 28280, 29141, 25579, 25446, 27744, 36298,
4
5
             39244,30296,34071,22372,28936,25020,29771,30180,
6
             34334,39543,23941,36043,27711,26962,29406,25575,
7
             28731,31727,31319,25400,26894,27671,28551,24306,
             29567,32922,32677,23688,29923,30578)
9 d = sort(income)
10 \, n = 3
11 d2 = sapply(split(d, trunc(d/10^n)), function(x){
     before = trunc(x[1]/10^n)
12
     fmt = paste0("\%0", n, "d")
13
     after = toString(sprintf(fmt, sort(x %% 10^n)))
14
     paste(before, after, sep = " | ")
15
16 })
```

```
17 for(x in d2){
18  cat(x)
19  cat("\n")
20 }
```

R code Exa 2.6 Minority

R code Exa 2.7 Sporting Convention

Chapter 3

Using Statistics to Summarize Data Sets

R code Exa 3.1 Fuel Efficiency

```
1 # Page No. 73
2 fuel_efficiencies<-c(28.2, 28.3, 28.4, 28.5, 29.0)
3 print(mean(fuel_efficiencies))</pre>
```

R code Exa 3.2 Masters Golf Tournament

R code Exa 3.3 Suits

```
1 # Page No. 75
2 value<-c(3,4,5)
3 frequency<-c(2,1,3)
4 suits<-data.frame(value,frequency)
5 View(suits)
6 print(mean((value*frequency))/2)
7 # The answer provided in the textbook is wrong</pre>
```

R code Exa 3.4 Motorcycle Accidents

```
1 # Page No. 76
2 classification <-c(0,1,2,3,4,5,6)
3 f1 <-sum(freq_with_helmet <-c(248,58,11,3,2,8,1))
4 v1 <-sum(val_with_helmet <-c(classification*freq_with_helmet))
5 f2 <-sum(freq_without_helmet <-c(227,135,33,14,3,21,6))
6 v2 <-sum(val_without_helmet <-c(classification*freq_without_helmet))
7 cat("Wearing Helmet=",round(v1/f1, digits = 4))
8 cat("\nNot Wearing Helmet=",round((v2/f2),digits = 3))</pre>
```

R code Exa 3.5 Deviations

```
1 # Page No. 79
2 fuel_efficiency<-c(28.2, 28.3, 28.4, 28.5, 29.0)
3 mean=28.48
4 deviation<-c(fuel_efficiency-mean)
5 View(deviation)
6 print(all.equal(sum(deviation),0))</pre>
```

R code Exa 3.6 Drivers License

```
1 # Page No. 83
2 weeks <-c(2, 110, 5, 7, 6, 7, 3)
3 print(median(weeks))</pre>
```

R code Exa 3.7 Smoking

```
1 # Page No. 84
2 no_of_days<-c(1, 2, 3, 5, 8, 100)
3 print(median(no_of_days))</pre>
```

R code Exa 3.8 NBA

R code Exa 3.9 Percentile

```
1 # Page No. 91
2 sample1=8
3 sample2=16
4 sample3=100
```

```
5 print(0.9*sample1)
6 print(0.9*sample2)
7 print(0.9*sample3)
```

R code Exa 3.10 Assets

R code Exa 3.11 Bowling Tournament

R code Exa 3.12 Dresses

```
1 # Page No. 97
2 mode <- function(value){
3 unique_value <- unique(value)
4 unique_value[which.max(tabulate(match(value, unique_value)))]
5 }
6 dresses<-c(8, 10, 6, 4, 10, 12, 14, 10)
7 print(mode(dresses))</pre>
```

R code Exa 3.13 Day Care

```
1 # Page No. 97
2 library(modeest)
3 ages<-c(2, 5, 3, 5, 2, 4)
4 print(mfv(ages))</pre>
```

R code Exa 3.14 Dice

```
1 # Page No. 97
2 library(modeest)
3 Value<-c(1,2,3,4,5,6)
4 Freq<-c(6,4,5,8,3,4)
5 ValxFreq<-c(Value*Freq)
6 Dice<-data.frame(Value,Freq,ValxFreq)
7 View(Dice)
8 cat("\nMode=",mfv(Freq))
9 cat("\nMedian=",median(ValxFreq),"value.Median=",(Value[3]+Value[4])/2)</pre>
```

```
10 cat("\nMean=",(sum(ValxFreq)/30))
```

R code Exa 3.15 Variance of Data

```
1 # Page No. 100
2 xi<-c(1,2,5,6,6)
3 m=mean(xi)
4 xm<-c(m,m,m,m,m)
5 xi_xm<-c(xi-xm)
6 xi_xm_sq<-c(xi_xm^2)
7 variance<-data.frame(xi,xm,xi_xm,xi_xm_sq)
8 View(variance)
9 var=sum(xi_xm_sq)/4
10 print(var)</pre>
```

R code Exa 3.16 Variance

```
1 # Page No. 100
2 xi<-c(-40, 0, 5, 20, 35)
3 m=mean(xi)
4 xm<-c(m,m,m,m,m)
5 xi_xm<-c(xi-xm)
6 xi_xm_sq<-c(xi_xm^2)
7 variance<-data.frame(xi,xm,xi_xm,xi_xm_sq)
8 View(variance)
9 var=sum(xi_xm_sq)/4
10 print(var)</pre>
```

R code Exa 3.17 Identity

```
1 # Page No. 101
2 xi<-c(1,2,5,6,6)
3 xi2<-c(sum(xi^2))
4 n=5
5 x_mean=4
6 summation=xi2-n*(x_mean^2)
7 print(summation)
8 xi_xm<-c(xi-x_mean)
9 xi_xm_sq<-c(sum(xi_xm^2))
10 print(all.equal(summation,xi_xm_sq))</pre>
```

R code Exa 3.18 Law Enforcement Officers

R code Exa 3.19 Miller Analogies Test

R code Exa 3.20 History Exam

R code Exa 3.21 Stem and Leaf

```
1 # Page No.112
 2 \text{ stem_women} < -"16 | 0, 5
 3 \quad 15 \mid \quad 0 \;, \quad 1 \;, \quad 1 \;, \quad 5
 4 \quad 14 \quad 0, \quad 0, \quad 1, \quad 2, \quad 3, \quad 4, \quad 6, \quad 7, \quad 9
   13 0, 0, 1, 1, 2, 2, 2, 3, 4, 5, 5, 6, 6, 6,
       7, 8, 8, 8, 9, 9, 9
  12 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6,
       6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9
   11 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 9,
8 10 | 2, 3, 3, 3, 4, 4, 5, 7, 7, 8
9 \ 9 \ 0, \ 0, \ 9
10 8 6"
11 rows < -strsplit(stem_women, "\n")[[1]]
12 rows.lst <- strsplit(rows,"\\|")
13 tens<-as.numeric(sapply(rows.lst, "[", 1)) * 10</pre>
14 ones <- sapply (strsplit (sapply (rows.lst, "[", 2), ",")
       , as.numeric)
15 vals <-unlist (mapply ("+", tens, ones))
16 vals <- vals [!is.na(vals)]
```

```
17 cat("Mean Women=", signif(mean(vals), digits=4))
18 cat("\nSD Women=", signif(sd(vals), digits=4))
19 stem_men < - "24| 9
20 \ 23
21 \quad 22
       1
22 \ 21
        7
        2, 2, 5, 5, 6, 9, 9, 9
23 \quad 20
24 19 0, 0, 0, 0, 0, 1, 1, 2, 4, 4, 5, 8
   18 0, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6,
25
      6, 7, 9, 9, 9
  17 \mid 1, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7,
      7, 7, 7, 9
27
  16 0, 1, 1, 1, 1, 2, 4, 5, 6, 6, 8, 8, 8
28 \ 15 | \ 1, \ 1, \ 1, \ 5, \ 5, \ 6, \ 6, \ 6, \ 7, \ 7, \ 8, \ 9
29 \quad 14 \mid 0, 5, 7, 7, 8, 9
30 \quad 13 \quad 0, \quad 1, \quad 2, \quad 3, \quad 7
31 12 | 9"
32 \text{ rows1} \leftarrow \text{strsplit}(\text{stem\_men}, "\n")[[1]]
33 rows1.lst \leftarrow strsplit(rows1,"\\|")
34 \text{ tens1} < -as.numeric(sapply(rows1.lst, "[", 1)) * 10
35 ones1<-sapply(strsplit(sapply(rows1.lst, "[", 2), ",
      "), as.numeric)
36 vals1<-unlist(mapply("+", tens1, ones1))
37 vals1<-vals1[!is.na(vals1)]
38 cat("\nMean Men=", signif(mean(vals1), digits=4))
39 cat("\nSD Men=", signif(sd(vals1), digits=4))
```

R code Exa 3.22 Milk

```
1 # Page No. 124
2 x <-c(17.1, 14.7, 12.8)
3 y <-c(10.6, 11.5, 13.2)
4 xi <-c(x-12.8)
5 yi <-c(y-10.6)
6 cat("r=", signif(cor(xi, yi, method = "pearson", use</pre>
```

```
= "complete.obs"),digits=2))
```

R code Exa 3.23 Correlation Coefficient

```
1 # Page No. 125
2 xi<-c(18,32,25,60,12,25,50,15,22,30 )
3 yi<-c(202,644,411,755,144,302,512,223,183,375)
4 cat("r=",cor(xi, yi, method = "pearson", use = "complete.obs"))</pre>
```

R code Exa 3.24 Sample Correlation Coefficient

```
1 # Page No. 126
2 xi<-c(12,16,13,18,19,12,18,19,12,14)
3 yi<-c(73,67,74,63,73,84,60,62,76,71)
4 cat("r=",cor(xi, yi, method = "pearson", use = "complete.obs"))</pre>
```

Chapter 4

Probability

R code Exa 4.1 Probability

```
1 # Page No. 146
2 library(prob)
3 library(permutations)
4 s<-c('g,b')
5 print(s)
6 print(tosscoin(2))
7 print(permn(7))
8 print(rolldie(2))</pre>
```

R code Exa 4.2 Boy Girl

```
1 # Page No. 147
2 library(venneuler)
3 library(permutations)
4 library(prob)
5 library(dplyr)
6 library(permute)
7 s<-c('g,b')</pre>
```

```
8 print(s)
9 df <-data.frame(tosscoin(2))
10 print(df %>% slice(1,3))
11 setA<-df %>% slice(1)
12 setB\leftarrowdf %>% slice(3)
13 s1=as.numeric(count(setA))
14 s2=as.numeric(count(setB))
15 per <- data.frame(matrix(unlist(permn(7)), nrow=
      length(permn(7)), byrow=TRUE))
16 print(filter(per, X1==2))
17 perA<-filter(per, X1==4)
18 perB<-filter(per, X2==2)</pre>
19 perC<-filter(per,X1==3)</pre>
20 c1=as.numeric(count(perB))
21 c2=as.numeric(count(perC))
22 AunionB<-rbind(perA, perB)
23 print (AunionB)
24 res <-subset (rolldie(2), X1+X2==7)
25 print(res)
26 vd1 <- venneuler(c(A=c1, B=c2, "A\&B"=100))
27 vd1$colors<-c(0.8,0.8)
28 plot(vd1)
29 vd2 <- venneuler(c(A=s1, B=s2, "A\&B"=1))
30 plot(vd2)
31 vd3 <- venneuler(c(A=c1, B=c2, "A&B"=0))
32 plot(vd3)
```

R code Exa 4.3 AE VISA

```
1 # Page No. 155
2 p_A=22/100
3 p_B=58/100
4 pAintB=14/100
5 pAunionB=p_A+p_B-pAintB
6 print(pAunionB)
```

R code Exa 4.4 Retirement Centre

```
1 # Page No. 161
2 library(MASS)
3 p_smoker=144/420
4 print(fractions(p_smoker))
```

R code Exa 4.5 Two Dice

```
1 # Page No. 162
2 library(MASS)
3 A <-c(1,5,2,4,3,3,4,2,5,1)
4 B <-c(1,6,2,5,3,4,4,3,5,2,6,1)
5 p_A=5/36
6 p_B=6/36
7 print(fractions(p_A))
8 print(fractions(p_B))</pre>
```

R code Exa 4.6 Married Couples

```
1 # Page No. 162
2 library(MASS)
3 p_couple=1/10
4 print(fractions(p_couple))
```

R code Exa 4.7 Spanish or French

```
1 # Page No. 162
2 library(MASS)
3 pA=32/120
4 pB=36/120
5 pAintB=8/120
6 pAunionB=pA+pB-pAintB
7 print(fractions(pAunionB))
```

R code Exa 4.8 Earnings

```
1 # Page No. 163
2 totalworkers=(31340000 + 49678000)
3 prob_woman=31340000/totalworkers
4 print(signif(prob_woman,digits=4))
5 prob_man=1-prob_woman
6 print(round(prob_man,digits=4))
7 man_under30K=548+358+889+1454+5081
8 p=man_under30K/(totalworkers/1000)
9 print(signif(p,digits=4))
10 woman_over50K=(8255 + 947)/(totalworkers/1000)
11 print(round(woman_over50K,digits=4))
```

R code Exa 4.9 Conditional Probability

```
1 # Page No. 169
2 library(MASS)
3 pBA=(1/36)/(6/36)
4 print(fractions(pBA))
```

R code Exa 4.10 Parent Daughter Dinner

```
1 # Page No. 169
2 library(MASS)
3 pB_A=(1/4)/(3/4)
4 print(fractions(pB_A))
```

R code Exa 4.11 California State College

```
# Page No. 170
p_woman=6663/12544
print(round(p_woman,digits=4))
p_man_over35=684/5881
print(signif(p_man_over35,digits=4))
p_woman_over35=1339/6663
print(round(p_woman_over35,digits=4))
p_w_35=1339/(684+1339)
print(round(p_w_35,digits=4))
p_man_20_21=1089/(1089+1135)
print(round(p_man_20_21,digits=4))
```

R code Exa 4.12 Man or Woman

```
# Page No. 172
library(MASS)
p_women=4/10
p_remaining=3/9
p_womenintremaining=p_women*p_remaining
print(fractions(p_womenintremaining))
p_men=6/10
p_men_remaining=4/9
p_man_then_woman=p_men*p_men_remaining
print(fractions(p_man_then_woman))
p_woman_then_man=p_women*6/9
print(fractions(p_woman_then_man))
```

```
13 p_1man_1woman=4/15+4/15
14 print(fractions(p_1man_1woman))
```

R code Exa 4.13 Dice

```
1 # Page No. 174
2 prob_a_int_b=1/36
3 prob_a=6/36
4 prob_b=5/36
5 print(all.equal(prob_a_int_b,(prob_a*prob_b)))
6 cat("Not independent.\n")
7 prob_a_int_c=1/36
8 prob_a_1=1/6
9 prob_c=6/36
10 print(all.equal(prob_a_int_c,(prob_a_1*prob_c)))
11 cat("Independent.")
```

R code Exa 4.14 Female Student

```
1 # Page No. 175
2 p_m_22_24=1080/5881
3 print(signif(p_m_22_24, digits=4))
4 p_w_22_24=968/6663
5 print(signif(p_w_22_24, digits=4))
6 p_both=p_m_22_24*p_w_22_24
7 print(round(p_both, digits=3)*100)
```

R code Exa 4.15 Children

```
1 # Page No. 176
```

```
2 library(MASS)
3 p_girls=(1/2)*(1/2)*(1/2)
4 print(fractions(p_girls))
5 p_allboys=1/8
6 p_atleastone=1-p_allboys
7 print(fractions(p_atleastone))
```

R code Exa 4.16 Insurance Company

```
1 # Page No.186
2 library(MASS)
3 p_ah=0.1
4 p_h=0.2
5 p_ahc=0.05
6 p_hc=0.8
7 pa=(p_ah*p_h)+(p_ahc*p_hc)
8 print(pa)
9 p_ha=p_ah*p_h/pa
10 print(fractions(p_ha))
```

R code Exa 4.17 Blood Test

```
1 # Page No. 187
2 p_ed=0.99
3 p_d=0.005
4 p_edc=0.02
5 p_dc=0.995
6 p_de=(p_ed*p_d)/((p_ed*p_d)+(p_edc*p_dc))
7 print(signif(p_de,digits=3))
```

R code Exa 4.18 Different Choices

```
1 # Page No. 190
2 possible_outcomes=12*8
3 print(possible_outcomes)
```

R code Exa 4.19 Group of Married Couples

```
1 # Page No. 190
2 library(MASS)
3 outcomes=20*19
4 outcomes_couples=2*10
5 prob_married=outcomes_couples/outcomes
6 print(fractions(prob_married))
```

R code Exa 4.20 Four People in a Room

```
1 # Page No. 191
2 n=4
3 diff_out=1
4 possible_outcomes=365^n
5 for (i in seq(from=0, to=3, by=1)){
6  diff_out<-diff_out*(365-i)
7 }
8 prob_notsamebday=diff_out/possible_outcomes
9 print(prob_notsamebday,round(6))</pre>
```

R code Exa 4.21 Probability

```
1 # Page No. 193
```

```
2 out=1
3 \text{ out } 1=1
4 \text{ gp}=1
5 \text{ gp1=1}
6 g = 1
7 g1=1
8 for (i in seq(from=0, to=1, by=1)){
     out \leftarrow out * (3-i)
10
     out1<-out1*(2-i)
      gp <- gp * (6-i)
11
12
      gp1 \leftarrow gp1 * (2-i)
13 }
14 for (i in seq(from=0, to=2, by=1)){
      g1 < -g1 * (3-i)
15
      g < -g * (6-i)
16
17 }
18 groups_selected=out/out1
19 print(groups_selected)
20 groups_size2=gp/gp1
21 print(groups_size2)
22 groups_size3=g/g1
23 print(groups_size3)
```

R code Exa 4.22 Random Sample

```
1 # Page No. 193
2 library(MASS)
3 grp_c=1
4 grp_c1=1
5 grp_ch=1
6 grp_ch1=1
7 for (i in seq(from=0, to=1, by=1)){
8  grp_c<-grp_c*(9-i)
9  grp_c1<-grp_c1*(2-i)
10 }</pre>
```

```
for (i in seq(from=0, to=2, by=1)){
   grp_ch<-grp_ch*(10-i)
   grp_ch1<-grp_ch1*(3-i)

for (i in seq(from=0, to=2, by=1)){
   grp_ch<-grp_ch*(10-i)
   grp_ch1<-grp_ch1*(3-i)

for (i in seq(from=0, to=2, by=1)){
   grp_ch<-grp_ch1*(3-i)
   grp_ch1</pre>

for grp_ch1

for (i in seq(from=0, to=2, by=1)){
   grp_ch<-grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
  grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3-i)
   grp_ch1*(3
```

R code Exa 4.23 Committee

```
1 # Page No. 194
2 library(MASS)
3 pwomen=1
4 pwomen1=1
5 \text{ pom}=1
6 \text{ pom } 1 = 1
7 po=1
8 po1=1
9 for (i in seq(from=0, to=1, by=1)){
10
    pwomen <- pwomen * (5-i)
11
     pwomen1 <- pwomen1 * (2-i)</pre>
12
     pom \leftarrow pom * (7-i)
13
     pom1 \leftarrow pom1 * (2-i)
14 }
15
16 for (i in seq(from=0, to=3, by=1)){
17
     po<-po*(12-i)
18
     po1<-po1*(4-i)
19 }
20 possible_outcomes=po/po1
21 possible_2men=pom/pom1
22 possible_2women=pwomen/pwomen1
23 desired_probability=(possible_2men*possible_2women)/
      possible_outcomes
```

R code Exa 4.24 Compare

```
1 # Page No. 194
2 n=1
3 n1=1
4 r=1
5 r1=1
6 for (i in seq(from=0, to=2, by=1)){
     n < -n * (8-i)
8
     n1 < -n1 * (3-i)
9 }
10 for (i in seq(from=0, to=1, by=1)){
     r < -r * (12 - i)
11
12
     r1 < -r1 * (2-i)
13 }
14 n1r1=n/n1
15 print(n1r1)
16 n2r2=r/r1
17 print(n2r2)
```

R code Exa 4.25 Possible Arrangements

```
1 #Page No. 195
2 n=2
3 m=1
4 print(factorial(n+m)/factorial(n))
```

Chapter 5

Discrete Random Variables

R code Exa 5.1 NBA

```
1 # Page No. 211
2 library(MASS)
3 total_balls=66
4 p < -c (11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1)
5 p1=fractions(p[1]/total_balls)
6 print(p1)
7 p2=fractions(p[2]/total_balls)
8 print(p2)
9 p3=fractions(p[3]/total_balls)
10 print(p3)
11 p4=fractions(p[4]/total_balls)
12 print(p4)
13 p5=fractions(p[5]/total_balls)
14 print(p5)
15 p6=fractions(p[6]/total_balls)
16 print(p6)
17 p7=fractions(p[7]/total_balls)
18 print(p7)
19 p8=fractions(p[8]/total_balls)
20 print(p8)
21 p9=fractions(p[9]/total_balls)
```

```
22 print(p9)
23 p10=fractions(p[10]/total_balls)
24 print(p10)
25 p11=fractions(p[11]/total_balls)
26 print(p11)
27 # The answer may vary due to difference in representation
```

R code Exa 5.2 Sexes of 3 Children

```
1 # Page No. 212
2 library(MASS)
3 p<-c(1,3,3,1)
4 outcomes=8
5 p0=fractions(p[1]/outcomes)
6 print(p0)
7 p1=fractions(p[2]/outcomes)
8 print(p1)
9 p2=fractions(p[3]/outcomes)
10 print(p2)
11 p3=fractions(p[4]/outcomes)
12 print(p3)</pre>
```

R code Exa 5.3 Random Variable

```
1 # Page No. 213
2 p1=0.4
3 p2=0.1
4 p3=1-(p1+p2)
5 cat("P(X=3)=",p3)
6 p<-c(p1,p2,p3)
7 plot(p,xlab=" i ",ylab = "P(X=i)")</pre>
```

R code Exa 5.4 Saleswoman

```
1 # Page No. 214
2 px0=(1-0.3)*(1-0.6)
3 cat("P(X=0)=",px0)
4 px1=0.3*(1-0.6) +(1-0.3)*0.6
5 cat("\nP(X=1)=",px1)
6 px2=0.3*0.6
7 cat("\nP(X=2)=",px2)
8 cat("\n",all.equal((px0+px1+px2),1))
```

R code Exa 5.5 Die

```
1 # Page No. 219
2 library(prob)
3 ex=0
4 sample_space<-(rolldie(1))
5 print(sample_space)
6 len<-(sum(table(sample_space)))
7 p =1/6
8 for (i in 1:len){
9 ex=(i*p)+ex
10 }
11 print(ex)</pre>
```

R code Exa 5.6 Variable

```
1 # Page No. 220
2 library(rSymPy)
```

```
3 p <- Var("p")
4 p1=p
5 p2=1-p
6 ex= 1*p1 + 0*p2
7 print(ex)</pre>
```

R code Exa 5.7 Insurance Company

```
1 # Page No. 220
2 library(rSymPy)
3 A <- Var("A")
4 ex= A*(1-0.02)+(A-200)*(0.02)
5 print(ex)</pre>
```

R code Exa 5.8 Christmas Bonus

```
1 # Page No. 221
2 ewife=1500
3 ehusband=0.8*ewife
4 cat("E[X]=",ehusband)
5 ehusband_bonus=ewife+1000
6 cat("\nE[with bonus]=",ehusband_bonus)
```

R code Exa 5.9 Annual Incomes

```
1 # Page No. 222
2 men <-c(33.5,25.0,28.6,41.0,30.5,29.6, 32.8)
3 women <-c(24.2, 19.5,27.4,28.6,32.2,22.4,21.6)
4 emen = (1/7) * sum (men)
5 cat("E[Men]=", signif(emen, digits=5))</pre>
```

```
6 ewomen=(1/7)*sum(women)
7 cat("\nE[Women]=",round(ewomen,digits=3))
8 cat("\nE[Men+Women]=",(emen+ewomen))
```

R code Exa 5.10 Law Enforcement Employees

```
1 # Page No. 223
2 library(MASS)
3 law_emp<-c(105,155,149,195,290,357,246,178)
4 ex=fractions((1/8)*sum(law_emp))
5 cat("E[X]=",ex)
6 exy=sum(law_emp)/4
7 cat("\nE[X+Y]=",exy)</pre>
```

R code Exa 5.11 Bids

```
1 # Page No. 224
2 px20=0.3
3 pxneg2=1-px20
4 ex1=20*px20-2*pxneg2
5 ex2=25*(0.6)-2*(0.4)
6 ex3=40*(0.2)-2*(0.8)
7 ex=ex1+ex2+ex3
8 cat("E[total profit]=",ex)
```

R code Exa 5.12 VarX

```
1 # Page No.232
2 library(rSymPy)
3 p <- Var("p")</pre>
```

```
4 varx= p-p*p
5 print(varx)
```

R code Exa 5.13 Investment

```
1 # Page No. 232
2 pxneg1=0.7
3 px4=0.2
4 px8=0.1
5 ex=(-1*pxneg1)+(4*px4)+(8*px8)
6 exsq=1*pxneg1+16*px4+64*px8
7 varx=exsq-(ex^2)
8 print(varx)
```

R code Exa 5.14 Dice

```
1 # Page No. 234
2 library(MASS)
3 ex=7/2
4 a<-c(1,2,3,4,5,6)
5 a_sq<-sum(a^2)
6 exsq=(1/6)*a_sq
7 print(fractions(exsq))
8 varx=exsq-(7/2)^2
9 print(fractions(varx))
10 varxplusy=varx+varx
11 print(fractions(varxplusy))</pre>
```

R code Exa 5.15 Gross Earnings

```
1 # Page No. 235
2 x=400000
3 ex=15/100*x
4 print(ex)
5 sd=80000
6 varx=15/100*sd
7 print(varx)
```

R code Exa 5.16 Coins

```
1 # Page No. 240
2 library(MASS)
3 n=3
4 p = 0.5
5 px0=(factorial(n)/(factorial(0)*factorial(n-0)))*(p
     ^{0} * (1-p)^{(n-0)}
6 px1=(factorial(n)/(factorial(1)*factorial(n-1)))*(p
      ^1)*(1-p)^(n-1)
7 px2=(factorial(n)/(factorial(2)*factorial(n-2)))*(p
     ^2)*(1-p)^(n-2)
8 px3=(factorial(n)/(factorial(3)*factorial(n-3)))*(p
      ^3)*(1-p)^(n-3)
9 print(fractions(px0))
10 print(fractions(px1))
11 print(fractions(px2))
12 print(fractions(px3))
```

R code Exa 5.17 Genes

```
1 # Page No. 240
2 library(MASS)
3 p_gene=(1/2)*(1/2)
4 print(fractions(p_gene))
```

```
5 n=4
6 px1=(factorial(n)/(factorial(1)*factorial(n-1)))*(p_gene^1)*(1-p_gene)^(n-1)
7 print(fractions(px1))
```

R code Exa 5.18 Binomial Random Variable

```
1 # Page No. 242
2 print(round(pbinom(12,20,0.4),digits=3))
3 print(signif((1-(pbinom(9,16,0.5))),digits=4))
```

R code Exa 5.19 Screws

```
1 # Page No. 244
2 total_no_of_screws=1000
3 prob_of_defectiveness=0.01
4 no_of_defectives=(total_no_of_screws*prob_of_defectiveness)
5 variance_of_screws=(total_no_of_screws*prob_of_defectiveness*0.99)
6 print(no_of_defectives)
7 print(variance_of_screws)
```

R code Exa 5.20 Hypergeometric Random Variable

```
1 # Page No. 248
2 n=6
3 N=20
4 p=8/20
5 ex=n*p
```

```
6  print(ex)
7  varx=(N-n)/(N-1)*n*p*(1-p)
8  print(signif(varx, digits=4))
```

R code Exa 5.21 Poisson Random Variable

```
1 # Page No. 250
2 mean_val=2
3 p=exp(-mean_val)
4 print(signif(p,digits=4))
```

R code Exa 5.22 Items

```
1 # Page No. 251
2 n=10
3 p=0.1
4 px0=exp(-1)
5 px1=exp(-1)
6 print(round(px0+px1,digits=4))
```

R code Exa 5.23 Accidents

```
1 # Page No. 252
2 mean_val=1.2
3 p=1-exp(-mean_val)
4 print(round(p*100))
```

Normal Random Variables

R code Exa 6.1 SAT

```
1 # Page No. 268
2 x <- seq(252, 756, by = .1)
3 y <- dnorm(x, mean=mean(x), sd=sd(x))
4 plot(x, y, type="l", lwd=1)
5 prob=0.68/2
6 print(prob)</pre>
```

R code Exa 6.2 P

```
1 # Page No. 273
2 pza=pnorm(1.5)
3 pzb=(1-pnorm(0.8))
4 print(signif(pza),digits=4)
5 print(signif(pzb),digits=4)
```

R code Exa 6.3 P Value

```
1 # Page No. 274
2 pza=pnorm(2)-pnorm(1)
3 pzb=pnorm(2.5)-(1-pnorm(1.5))
4 print(signif(pza), digits=4)
5 print(signif(pzb), digits=4)
```

R code Exa 6.4 PZ

```
1 # Page No. 275
2 pz=2*(1-pnorm(1.8))
3 print(signif(pz),digits=4)
```

R code Exa 6.5 Determine P

```
1 # Page No. 276
2 pz=pnorm(0.84)
3 print(signif(1-pz),digits=3)
```

R code Exa 6.6 IQ

```
1 # Page No. 278
2 za=pnorm(130,100,14.2,lower.tail = FALSE)
3 print(signif(za),digits=2)
4 zb=pnorm(1.056)-pnorm(-0.7042)
5 print(signif(zb), digits=3)
6 # The answer may slightly vary due to rounding off values.
```

R code Exa 6.7 Standard Deviation

R code Exa 6.8 Light Bulb

```
1 # Page No. 280
2 z=pnorm(750,800,sqrt(3200),lower.tail = FALSE)
3 print(signif(z, digits=2))
```

R code Exa 6.9 US Department of Agriculture

```
1 # Page No. 281
2 Z=pnorm(0.17,0.8,4.669,lower.tail = FALSE)
3 cat("Probabilty=",1-Z)
4 # The answer may slightly vary due to rounding off values.
```

R code Exa 6.10 Normal Random Variables

```
1 # Page No. 286
```

```
print(signif(1-pnorm(0.67),digits=2))
print(signif(pnorm(0.67),digits=2))
mean=40
sd=5
x=(1.645*sd)+mean
print(x)
zx=pnorm(x,40,5,lower.tail = FALSE)
cat("Value at percentile",round(zx,3))
```

${f R}$ code ${f Exa}$ 6.11 ${f IQ}$ ${f Test}$

```
1 # Page No. 288
2 x=(14.2*2.33)+100
3 zx=pnorm(x,100,14.2,lower.tail = FALSE)
4 cat("Range=",x)
5 cat("\nProbabilty=",round(zx, digits=3))
```

Distributions of Sampling Statistics

R code Exa 7.1 Population

```
1 # Page No. 301
2 library(MASS)
3 px1=1/2
4 px2=1/2
5 mu=1*(1/2)+2*(1/2)
6 print(mu)
7 varx=(1-mu)^2*(px1)+(2-mu)^2*px2
8 print(fractions(varx))
9 p1=1/4
10 p_half=1/2
11 p2=1/4
12 ex=(1*p1)+(1.5*p_half)+(2*p2)
13 print(ex)
14 vx=((1-mu)^2*p1)+((1.5-mu)^2*p_half)+((2-mu)^2*p2)
15 print(fractions(vx))
```

R code Exa 7.2 Insurance Company

```
1 # Page No. 304
2 pz=pnorm(2.8*10^6,2.6*10^6,8*10^4,lower.tail = FALSE
    )
3 print(signif(pz),digits=2)
```

R code Exa 7.3 Blood Cholesterol Levels

```
1 # Page No. 308
2 Zworkers1=pnorm(206,202,(7/3))-pnorm(198,202,(7/3))
3 Zworkers2=pnorm(206,202,(7/4))-pnorm(198,202,(7/4))
4 print(signif(Zworkers1),digits=3)
5 print(signif(Zworkers2),digits=3)
```

R code Exa 7.4 Astronomer

```
1 # Page No. 309
2 Zworkers=2*pnorm(0.527)-1
3 print(signif(Zworkers), digits=3)
```

R code Exa 7.5 Students

```
1 #Page No.313
2 n=900
3 left_handed=60
4 p=left_handed/n
5 print(p)
6 px2=400/1000
7 print(px2)
```

```
8 px2x1=399/1000

9 print(px2x1)

10 px2px1_0=400/999

11 print(px2px1_0)
```

R code Exa 7.6 Election

```
1 # Page No. 316
2 ex=0.50
3 standard_deviation=sqrt((ex*(1-ex))/100)
4 print(standard_deviation)
```

R code Exa 7.7 Candidates

```
1 # Page No. 317
2 Z_candidate=pnorm(99.5,92,7.0484,lower.tail = FALSE)
3 print(signif(Z_candidate),digits=3)
```

Estimation

R code Exa 8.1 Amount of Damages

```
1 # Page No. 333
2 amounts<-c(121, 55, 63, 12, 8, 141, 42, 51, 66, 103)
3 print(mean(amounts)*1000)</pre>
```

R code Exa 8.2 Level of Potassium

```
1 # Page No. 334
2 potassium_readings<-c(3.6, 3.9, 3.4, 3.5)
3 n=4
4 sd=0.3
5 print(mean(potassium_readings))
6 print(sd/sqrt(n))</pre>
```

R code Exa 8.3 Dress Code

```
1 # Page No. 337
```

```
2 students=50
3 in_favour=20
4 p=in_favour/students
5 print(p)
6 print(round(sqrt(p*(1-p)/50),digits=4))
```

R code Exa 8.4 Nine Electronic Components

${f R}$ code ${f Exa}$ 8.5 Signal

```
1 # Page No.349
2 n=10
3 signal <-c(17, 21, 20, 18, 19, 22, 20, 21, 16, 19)
4 mean_signal=mean(signal)
5 cat("Mean=",mean_signal)
6 sd=3
7 cat("\nActual Intensity=",19.3-1.9*sd/sqrt(n),",",19.3+1.9*sd/sqrt(n))
8 # The answer may slightly vary due to rounding off values.</pre>
```

R code Exa 8.6 Confidence Interval Estimate

```
1 # Page No. 350
```

```
2  n = 10
3  X = 19.3
4  sig= 3
5  z90=1.645
6  z99=2.576
7  cie90=X+z90*(sig/sqrt(n))
8  cie90m=X-z90*(sig/sqrt(n))
9  print(cie90)
10  print(cie90m)
11  cie99=X+z99*(sig/sqrt(n))
12  cie99m=X-z99*(sig/sqrt(n))
13  print(cie99)
14  print(cie99m)
15  # The answer may slightly vary due to rounding off values.
```

R code Exa 8.7 Population Standard Deviation

```
1 # Page No. 352
2 sigma=2
3 b=0.1
4 n=(3.92*sigma/b)^2
5 print(round(n))
```

R code Exa 8.8 Weights of Salmon

```
1 # Page No. 353
2 b=0.2
3 n=(2*1.645*0.3/b)^2
4 print(signif(n,digits=4))
5 n1=(2*2.576*0.3/b)^2
6 print(signif(n1,digits=4))
```

R code Exa 8.9 Average Nicotine Content

```
1 # Page No. 354
2 n=44
3 X=1.74
4 sig=0.7
5 z95=1.96
6 cie95=X+z95*(sig/sqrt(n))
7 cie95m=X-z95*(sig/sqrt(n))
8 print(cie95)
9 print(cie95m)
10 n=(2*z95*sig/0.3)^2
11 print(round(n,digits=1))
12 # The answer may slightly vary due to rounding off values.
```

R code Exa 8.10 Salmon

```
1 # Page No. 356
2 z=1.645
3 sig=0.3
4 n=50
5 x=5.6
6 lcb=x-z*(sig/sqrt(n))
7 print(signif(lcb,digits=3))
```

R code Exa 8.11 Upper Confidence Bound

```
1 # Page No. 357
```

```
2 z=1.645
3 sig=0.7
4 n=44
5 x=1.74
6 lcb=x+z*(sig/sqrt(n))
7 print(round(lcb,digits=3))
```

R code Exa 8.13 EPA

```
1 # Page No. 362
2 pcb<-c(16, 0, 0, 2, 3, 6, 8, 2, 5, 0, 12, 10, 5, 7, 2, 3, 8, 17, 9, 1)
3 x_mean=mean(pcb)
4 sd=sd(pcb)
5 n=20
6 t1=2.093
7 t2=2.861
8 cle95=x_mean+t1*(sd/sqrt(n))
9 print(cle95)
10 cle99=x_mean+t2*(sd/sqrt(n))
11 print(cle99)
12 # The answer may slightly vary due to rounding off values.</pre>
```

R code Exa 8.14 PCB

```
1 # Page No. 365
2 n=20
3 X=5.8
4 sig=5.085
5 z1=1.729
6 z2=2.539
7 ucb95=X+z1*(sig/sqrt(n))
```

```
8 print(round(ucb95,digits=2))
9 ucb99=X-z2*(sig/sqrt(n))
10 print(round(ucb99,digits=2))
```

R code Exa 8.15 Nonsmokers

```
1 # Page No. 371
2 p=0.82
3 n=100
4 z=2.576
5 print(p+z*sqrt((p*(1-p))/100))
6 print(p-z*sqrt((p*(1-p))/100))
```

R code Exa 8.16 The New York Times

```
1 # Page No. 372
2 p=0.46
3 z=1.96
4 n=((z)^2*p*(1-p))/(0.03)^2
5 print(round(n,digits=1))
```

R code Exa 8.17 Confidence Interval Estimate

```
1 # Page No. 374

2 p=0.01

3 z=1.645

4 n=(z/p)^2

5 print(n)
```

${f R}$ code ${f Exa}$ 8.18 Working Conditions

```
1 # Page No. 376
2 p=42/125
3 n=125
4 z=1.645
5 lb=p-z*sqrt(p*(1-p)/n)
6 print(signif(lb,digits=4))
```

Testing Statistical Hypotheses

R code Exa 9.1 Star

R code Exa 9.2 Absolute Value

```
1 # Page No. 398
2 test_statistic=sqrt(20)/4*(10.8-10)
3 print(test_statistic)
4 print((dnorm(test_statistic)))
5 # The answer provided in the textbook is wrong.
```

R code Exa 9.3 Null Hypothesis

```
1 # Page No. 399
```

```
2 m=9.2
3 sd=0.894
4 p1=pnorm(11.753,m,sd,lower.tail = FALSE)
5 p2=1-pnorm(8.247,m,sd,lower.tail = FALSE)
6 P=signif(p1,4)+round(p2,4)
7 print(round(P,digits=4))
```

R code Exa 9.4 Cigarettes

```
1 # Page No. 405
2 t=sqrt(20)*((1.42-1.5)/0.7)
3 print(signif(t,digits=3))
4 P=pnorm(t)
5 print(signif(P,digits=3))
```

R code Exa 9.5 Clinic Patients

```
1 # Page No. 412
2 n=40
3 m=6.8
4 sd=12.1
5 t=sqrt(n)*(m/sd)
6 print(signif(t,digits=4))
7 P=2*pt(t,39, lower.tail = FALSE)
8 print(round(P,3))
9 print("Null Hypothesis Rejected")
10 #The answer provided in the textbook is wrong.
```

R code Exa 9.6 pH

R code Exa 9.7 Fiberglass Tire

```
1 # Page No. 415
2 t=sqrt(8)*((47.2-50)/3.1)
3 print(round(t,digits=2))
```

R code Exa 9.8 US Population

```
1 # Page No. 422
2 P=pnorm(477.5,460,sqrt(203),lower.tail = FALSE)
3 print(P)
4 # The answer may slightly vary due to rounding off values.
```

R code Exa 9.9 Computer Chip Manufacturer

```
1 # Page No. 423
2 P=pnorm(12.5,8,sqrt(8*0.98),lower.tail = FALSE)
3 print(signif(P,digits = 2))
```

R code Exa 9.10 Manufacturing Facility

```
1 # Page No. 426
2 P=2*pnorm(16,20,4.38)
3 print(P)
4 # The answer provided in the textbook is wrong.
```

R code Exa 9.11 DNA

```
1 # Page No. 427
2 p=2*pnorm(-2.630)
3 print(signif(p,digits=2))
4 # The answer may slightly vary due to rounding off values.
```

Hypothesis Tests Concerning Two Populations

R code Exa 10.1 Tire

```
1 # Page No. 447
2 x_mean=62.2444
3 y_mean=58.2714
4 n= 9
5 m = 7
6 sigmax = 3
7 sigmay = 4
8 ts=(x_mean-y_mean)/sqrt((sigmax^2)/n+(sigmay^2)/m)
9 print(round(ts,digits=3))
10 print(round(2*(1-pnorm(ts)),digits=4))
```

R code Exa 10.2 Set of Tires

```
1 # Page No. 449
2 x_mean=62.2444
3 y_mean=59.2714
```

R code Exa 10.3 New Cholesterol Lowering Medication

```
1 # Page No. 455
2 x_mean=8.8
3 y_mean=8.2
4 n=50
5 m=50
6 sigmax = 4.5
7 sigmay = 5.4
8 ts=(x_mean-y_mean)/sqrt((sigmax)/n+(sigmay)/m)
9 print(ts)
10 print(round((1-pnorm(ts)),digits=3))
```

R code Exa 10.4 Placebo Effect

```
1 # Page No. 456
2 x_mean = 242
3 y_mean = 234
4 n = 30
5 m = 20
6 sigmax = 62.2
7 sigmay = 58.4
8 ts = (x_mean - y_mean) / sqrt((sigmax) / n + (sigmay) / m)
9 print(signif(ts, digits = 3))
10 print(signif((1-pnorm(ts)), digits = 3))
```

11 # The answer may slightly vary due to rounding off values.

R code Exa 10.5 H₀

```
1 # Page No. 458
2 x <-c(22, 21, 25, 29, 31, 18, 28, 33, 28, 26, 32,35, 27, 29, 26)
3 y <-c(14, 17, 22, 18, 19, 21, 24, 33, 28, 22, 27, 18, 21, 19, 33, 31)
4 x_mean=mean(x)
5 y_mean=mean(y)
6 n=15
7 m=16
8 sigmax = 21.238
9 sigmay = 34.329
10 ts=(x_mean-y_mean)/sqrt((sigmax)/n+(sigmay)/m)
11 print(round(ts,digits=2))
12 print(round((1-pnorm(ts)),digits=3))</pre>
```

R code Exa 10.6 Cold Research Institute

R code Exa 10.8 Gasoline

```
1 # Page No. 473
2 data_diff<-c(0.7, 0.8, 0.4, 2.2,-0.3,-0.5, 1.6)
3 d=mean(data_diff)
4 sd=sd(data_diff)
5 n=7
6 ts=(sqrt(n)*d)/sd
7 print(ts)
8 print(t.test(data_diff))</pre>
```

R code Exa 10.9 Management

```
1 # Page No. 475
2 first_week<-c(46,54,74,60,63,45)
3 second_week<-c(54,60,96,75,80,50)
4 d<-c(second_week-first_week)
5 print(t.test(d))
6 # The answer provided in the textbook is wrong.</pre>
```

R code Exa 10.10 Criminal Proceedings

```
1 # Page No. 483
2 n1=142
3 n2=72
4 p1=74/142
5 p2=61/72
6 p=(74 + 61)/(n1+n2)
7 ts=(p1-p2)/sqrt((1/n1+1/n2)*(p*(1-p)))
8 print(signif(ts,digits=3))
9 print(round(2*(1-pnorm(abs(ts)))))
```

R code Exa 10.11 Gender of Future Children

```
1 # Page No. 485
2 n1=36694
3 n2=42212
4 p1=0.496
5 p2=0.523
6 p=((n1*p1)+(n2*p2))/(n1+n2)
7 ts=(p1-p2)/sqrt(((1/n1)+(1/n2))*(p*(1-p)))
8 print(signif(ts,digits=4))
9 pval=pnorm(ts)
10 print(round(pval))
```

R code Exa 10.13 Computer Chips

```
1 # Page No. 487
2 n1=360
3 n2=320
4 p1=94/360
5 p2=76/320
6 p=(94 + 76)/(n1+n2)
7 ts=(p1-p2)/sqrt((1/n1+1/n2)*(p*(1-p)))
8 print(signif(ts,digits=4))
9 print(round((1-pnorm(ts)),digits=3))
10 # The answer may slightly vary due to rounding off values.
```

Analysis of Variance

R code Exa 11.1 Consumer Cooperative

```
1 # Page No. 508
2 m=3
3 n=5
4 \times 1 < -c (220, 251, 226, 246, 260)
5 \text{ x2} < -c (244, 235, 232, 242, 225)
6 \times 3 < -c (252, 272, 250, 238, 256)
7 x1_{mean} = mean(x1)
8 x2_{mean} = mean(x2)
9 x3_{mean} = mean(x3)
10 sample_mean = (x1_mean + x2_mean + x3_mean)/3
11 sample_variance=((x1_mean-sample_mean)^2+(x2_mean-
      sample_mean)^2+(x3_mean-sample_mean)^2)/2
12 numerator_estimate=5*sample_variance
13 denominator_estimate=(var(x1)+var(x2)+var(x3))/3
14 ts=numerator_estimate/denominator_estimate
15 print(signif(ts), digits=3)
16 cat("HO Accepted")
```

R code Exa 11.4 Reading Tests

```
1 # Page No.517
2 xi<-c(72.8,75,73.2,75)
3 xj<-c(76.5,70,62.25, 73, 88.25)
4 mu=74
5 a1=xi[1]-mu
6 b1=xj[2]-mu
7 est=mu+a1+b1
8 print(est)</pre>
```

R code Exa 11.5 Defective Items

```
1 # Page No. 525
   2 \text{ machine} \leftarrow c(1,2,3)
   3 \text{ worker1} < -c(41,35,42)
  4 worker2<-c(42,42,39)
  5 \text{ worker3} < -c(40, 43, 44)
   6 worker4<-c(35,36,47)
   7 defective_items <-data.frame(machine, worker1, worker2,
                         worker3, worker4)
  8 View(defective_items)
  9 m=3
10 \quad n=4
11 \text{ xr1} = (41 + 42 + 40 + 35)/4
12 \text{ xc1} = (41 + 35 + 42)/3
13 \text{ xr2} = (35 + 42 + 43 + 36)/4
14 \text{ xc2} = (42 + 42 + 39)/3
15 \text{ xr3} = (42 + 39 + 44 + 47)/4
16 \text{ xc3} = (40 + 43 + 44)/3
17 \text{ xc4} = (35 + 36 + 47)/3
18 xrsumcsum = (xr1+xr2+xr3)/3
19 \operatorname{cat}("\nX=", xrsumcsum)
20 ssr=4*((xr1-xrsumcsum)^2+(xr2-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+(xr3-xrsumcsum)^2+
                         xrsumcsum)^2)
21 cat("\nSSr=",ssr)
```

Linear Regression

R code Exa 12.1 Washing Machine

```
1 # Page no. 541
2 x <-c (280 ,290,300,310,320,330,340,350,360,370,380)
3 y <-c (44,41,34,38,33,30,32,26,28,23,20)
4 plot(x,y)</pre>
```

R code Exa 12.2 Midwestern Bank

R code Exa 12.3 Additional Statistics

```
1 # Page No. 555
2 ssr=5.336772
3 sigma_sq=ssr/6
4 print(round(sigma_sq,digits=4))
5 # The answer may slightly vary due to rounding off values.
```

R code Exa 12.4 Fuel Consumption

```
1 # Page No. 558
2 speed <-c (45,50,55,60,65,70,75)
3 miles <-c (24.2,25.0,23.3,22.0,21.5,20.6,19.8)
4 sxx <-sum (speed^2) -sum (speed)^2/7
5 print (sxx)
6 syy <-sum (miles^2) -sum (miles)^2/7
7 print (signif (syy,digits=5))
8 sxy <-sum (speed*miles) - (sum (speed)*sum (miles))/7
9 print (sxy)
10 ssr <- ((sxx*syy) - (sxy)^2) / sxx
11 print (signif (ssr,digits=4))
12 b=sxy/sxx
13 print (b)
14 ts=sqrt (5*sxx/ssr)*b</pre>
```

```
15 print(round(ts, digits=3))
```

R code Exa 12.5 Galtons Thesis

```
1 # Page No. 565
2 father_hght <-c (60,62,64,65,66,67,68,70,72,74)
3 son_hght <-c
      (63.6,65.2,66,65.5,66.9,67.1,67.4,68.3,70.1,70)
4 plot(father_hght,son_hght)
5 sxx<-sum(father_hght^2)-sum(father_hght)^2/10
6 syy<-sum(son_hght^2)-sum(son_hght)^2/10
7 sxy <-sum (father_hght*son_hght) -(sum (father_hght)*sum
      (son_hght))/10
8 \operatorname{ssr} < -((\operatorname{sxx} * \operatorname{syy}) - (\operatorname{sxy})^2) / \operatorname{sxx}
9 b1 < -sxy/sxx
10 b0 <-mean (son_hght)-b1 *mean (father_hght)
11 print(b0)
12 print(b1)
13 cat(b0,"+x*",b1)
14 ts=sqrt(((8*sxx)/ssr))*(b1-1)
15 cat("n",ts)
16 p=pnorm(ts)
17 cat("\n", round(p, digits=1))
18 # The answer may slightly vary due to rounding off
      values.
```

R code Exa 12.6 Motor Vehicle Deaths

```
4 plot(deaths_1988, deaths_1989)
5 multi<-data.frame(deaths_1988, deaths_1989)
6 model <- lm(deaths_1989 ~ deaths_1988, data = multi)
7 print(summary(model)$coefficient)
8 b1=74.5893904
9 b0=0.2760844
10 cat(b0,"+x*",b1)</pre>
```

R code Exa 12.7 Adult Height

```
1 # Page No. 574
2 t8=2.306
3 w=0.4659
4 pi95=68.497+(t8*w)
5 pi95m=68.497-(t8*w)
6 print(pi95)
7 print(pi95m)
```

R code Exa 12.8 Hamburger Concession

```
13 pi95=val+(t4*W)
14 pi95m=val-(t4*W)
15 print(pi95)
16 print(pi95m)
17 # The answer may slightly vary due to rounding off values.
```

R code Exa 12.9 Height

```
1 # Page No.579
2 syy=38.521
3 ssr=1.497
4 r=1-(ssr/syy)
5 print(round(r*100))
```

R code Exa 12.10 Football Game

```
1 # Page No. 579
2 syy=19.440
3 ssr=0.390
4 r=1-(ssr/syy)
5 print(round(r*100))
```

R code Exa 12.13 Suicide Rate

```
1 # Page No. 588
2 divorce <-c (30.4,34.1,17.2,26.8,29.1,18.7,32.6,32.5)
3 suicide <-c (11.6,16.1,9.3,9.1,8.4,7.7,11.3,8.4)
4 population <-c (679,1420, 1349,296,3975,323,2200,633)
5 multi <-data frame (population, divorce, suicide)</pre>
```

Chapter 13

Chi Squared Goodness of Fit Tests

R code Exa 13.2 Stomach Cancer Patients

```
1 # Page No. 611
2 N1=92
3 N2=20
4 N3=4
5 N4=84
6 np1=200*0.41
7 np2=200*0.09
8 np3=200*0.04
9 np4 =200*0.46
10 ts=(N1-np1)^2/np1+(N2-np2)^2/np2+(N3-np3)^2/np3+(N4-np4)^2/np4
11 print(signif(ts,digits=4))
```

R code Exa 13.3 Accidents

```
1 # Page No. 612
```

```
2 n = 250
    3 N1 = 62
    4 N2 = 47
    5 N3 = 44
    6 N4 = 45
    7 N5 = 52
    8 p1 = (1/5)
    9 p2 = (1/5)
10 p3 = (1/5)
11 p4 = (1/5)
12 p5 = (1/5)
13 e1=n*p1
14 e2=n*p2
15 e3=n*p3
16 \text{ e}4 = n * p4
17 e5 = n * p5
18 ts = ((N1-e1)^2/e1) + ((N2-e2)^2/e2) + ((N3-e3)^2/e3) + ((N4-e1)^2/e1) + ((N4-e1)^2/e1
                                        -e4)^2/e4)+((N5-e5)^2/e5)
19 print(ts)
20 print(signif(2*pt(-abs(ts),df=0.4125),digits=3))
21 print ("Null Hypothesis Accepted")
```

R code Exa 13.4 Gregor Mendel

```
1 # Page No. 613
2 N1=6022
3 N2=2001
4 n=8023
5 p1=3/4
6 p2=1/4
7 e1=n*p1
8 e2=n*p2
9 ts=((N1-e1)^2/e1)+((N2-e2)^2/e2)
10 print(signif(ts,digits=3))
11 print(round(pchisq(2.747609, df=1, lower.tail=FALSE))
```

R code Exa 13.8 Level of Significance

```
1 # Page No. 624
2 e11=156*120/300
3 e12=156*128/300
4 e13=156*52/300
5 e21=144*120/300
6 e22=144*128/300
7 e23=144*52/300
8 ts=((68-e11)^2/e11)+((56-e12)^2/e12)+((32-e13)^2/e13)+((52-e21)^2/e21)+((72-e22)^2/e22)+((20-e23)^2/e23)
9 print(signif(ts,digits=4))
10 print("Null Hypothesis Rejected")
```

R code Exa 13.9 Public Health Scientist

```
1 # Page No. 625
2 e11=57*69/159
3 e12=57*54/159
4 e13=57*36/159
5 e21=76*69/159
6 e22=76*54/159
7 e23=76*36/159
8 e31=26*69/159
9 e32=26*54/159
10 e33=26*36/159
11 ts=(22-e11)^2/e11+(16-e12)^2/e12+(19-e13)^2/e13+(33-e21)^2/e21+(29-e22)^2/e22+(14-e23)^2/e23+(14-e31)^2/e31+(9-e32)^2/e32+(3-e33)^2/e33
12 print(signif(ts,digits=3))
```

```
13 print(signif(2*pt(-abs(ts),df=0.75),digits=3))
14 # The answer may slightly vary due to rounding off
     values.
```

R code Exa 13.10 Lung Cancer

```
1 #Page No. 632
2 affect <-c ("Lung Cancer", "No lung Cancer", "Total")
3 \text{ smokers} < -c (62,9938,10000)
4 non_smokers <-c (14,19968,20000)
5 total <-c (76,29924,30000)
6 Smoking_Cancer <-data.frame(affect, smokers, non_
      smokers,total)
7 View(Smoking_Cancer)
8 e11=(total[1]*smokers[3])/total[3]
9 e12=(total[1]*non_smokers[3])/total[3]
10 e21=(total[2]*smokers[3])/total[3]
11 e22=(total[2]*non_smokers[3])/total[3]
12 \text{ cat} (" \setminus ne11 = ", e11)
13 cat(" ne12=", e12)
14 \operatorname{\mathtt{cat}}("\ \ ne21=",e21)
15 cat(" ne22=", e22)
16 \text{ ts} = ((smokers[1] - e11)^2/e11) + ((non\_smokers[1] - e12)^2/e11)
      e12)+((smokers[2]-e21)^2/e21)+((non_smokers[2]-
      e22)^2/e22)
17 cat("\nTS=",ts)
18 cat("\nWe reject the hypothesis.")
19 # The answer may slightly vary due to rounding off
      values
```

R code Exa 13.11 Female Office Workers

```
1 # Page No. 633
```

```
2 e11=171*500/2000
3 e12=171*500/2000
4 e13=171*500/2000
5 e14=171*500/2000
6 e21=1829*500/2000
7 e22=1829*500/2000
9 e24=1829*500/2000
10 ts=(28-e11)^2/e11+(30-e12)^2/e12+(58-e13)^2/e13+(55-e14)^2/e14+(472-e21)^2/e21+(470-e22)^2/e22+(442-e23)^2/e23+(445-e24)^2/e24
11 print(signif(ts,digits=3))
12 print(2*pt(-abs(ts),df=3))
13 # The answer may slightly vary due to rounding off values.
```

Chapter 14

Nonparametric Hypotheses Tests

R code Exa 14.1 Shoe Store

```
1 # Page No. 651
2 p=2*pnorm(35.5,25,sqrt(12.5),lower.tail = FALSE)
3 print(round(p,digits=4))
```

R code Exa 14.2 Sunscreen Lotions

R code Exa 14.3 Bank

```
1 # Page No. 654
2 p=pbinom(28,80,1/2)
3 print(round(p,digits=4))
```

R code Exa 14.4 Four Paired Sample Values

```
1 # Page No. 658
2 xi<-c(4.6,3.8,6.0,6.6)
3 yi<-c(6.2,1.5,2.1,11.7)
4 difference<-c(xi-yi)
5 View(difference)
6 View(sort(abs(difference)))
7 df<-match(c(-1.6,-5.1),difference,nomatch = 1)
8 ts=sum(df)
9 print(ts)</pre>
```

R code Exa 14.5 Psychology

```
1 # Page No. 660
2 a <-c(763, 419, 586, 920, 881, 758, 262, 332, 717, 909, 940, 835)
3 b <-c(797, 404, 576, 855, 762, 707, 195, 341, 728, 817, 947, 849)
4 difference <-c(a-b)
5 View(difference)
6 difference_sort <-sort(abs(difference))
7 View(difference_sort)
8 df <-match(c(7,9,11,14,34),difference_sort,nomatch = 1)
9 ts=sum(df)
10 print(ts)</pre>
```

R code Exa 14.6 Normal Approximation

```
1 # Page No. 661
2 p=2*pnorm(-1.530)
3 print(signif(p,digits=3))
```

R code Exa 14.7 Symmetric

```
1 # Page No. 662
2 p=pnorm(237.5,162.5,37.165,lower.tail = FALSE)
3 print(round((2*p),digits=4))
```

R code Exa 14.8 Reflex Reaction Time

R code Exa 14.9 Sum of the Ranks

R code Exa 14.10 Vocabulary

```
1 # Page No. 670
2 ts=(47*49)+(107*11)+(127*5)+(139*4)+147+151
3 n=71
4 m=84
5 mu=((n+m+1)*n)/2
6 sd=(n+m+1)*(n*m)/12
7 p=2*(1-pnorm(ts,mu,sqrt(sd),lower.tail = FALSE))
8 print(signif(p,digits=3))
```

R code Exa 14.11 Like ex 9

R code Exa 14.12 Softball

```
1 # Page No. 677
2 n=8
3 m=16
4 mu=((2*n*m)/(n+m))+1
5 sd=sqrt(((2*n*m)*(2*n*m-n-m))/((n+m)^2*(n+m-1)))
6 p=2*pnorm(15.77,mu,sd,lower.tail = FALSE)
7 print(signif(p,digits=3))
8 print("Hypothesis of Randomness accepted")
9 # The answer may slightly vary due to rounding off values.
```

R code Exa 14.13 Approximate p value

```
1 # Page No. 678
2 mu=2*8*16/24+1
3 sd=sqrt((256*(256-24))/(24*24*23))
4 p=2*pnorm(15.5,mu,sd,lower.tail = FALSE)
5 print(signif(p,digits=2))
```

R code Exa 14.14 Normal Approximation

```
1 # Page No. 679
2 mu=(2*20*20)/40+1
3 sd=sqrt((2*20*20*760)/(40*40*39))
4 p=2*pnorm(26.5,mu,sd,lower.tail = FALSE)
5 print(signif(p,digits=2))
```

R code Exa 14.15 Fahrenheit

```
1 # Page No. 680
2 mu=200/20+1
3 sd=sqrt((200*180)/(400*19))
4 p=2*pnorm(mu,10.5,sd,lower.tail = FALSE)
5 print(signif(p,digits=3))
```

R code Exa 14.16 Basketball Team

```
1 # Page No. 661
2 p=2*pnorm(-1.530)
3 print(signif(p,digits=3))
```

R code Exa 14.17 Wines

```
1 # Page No. 684
2 ra=176
3 rb=175
4 rc=114
5 ts=(12/(30*31))*((ra)^2+(rb)^2+(rc)^2)/10-93
6 print(signif(ts,digits=4))
7 print(signif(pchisq(3.254, df=2, lower.tail=FALSE), digits=4))
```

R code Exa 14.18 Null Hypothesis

```
1 # Page No. 687
2 a <-c(1,1,3,2,1,1,3,2,1,3)
3 ra=sum(a)
4 b <-c(3,2,1,1,3,2,1,1,3,1)
5 rb=sum(b)</pre>
```

${f R}$ code ${f Exa}$ 14.19 DVD Players

```
1 # Page No. 690
2 p1=pnorm(-2.757)
3 print(signif(p1,digits=2))
4 p2=pnorm(-1.514)
5 print(signif(p2,digits=3))
6 p3=pnorm(-0.565)
7 print(signif(p3,digits=3))
```

Chapter 15

Quality Control

R code Exa 15.1 Computer Servicing Firm

R code Exa 15.2 Video Rental Store

```
1 # Page No. 704
2 video_rental_mean=52
```

```
3 video_rental_sd=10
4 n=4
5 l=video_rental_mean-(3*video_rental_sd/sqrt(n))
6 u=video_rental_mean+(3*video_rental_sd/sqrt(n))
7 print(l)
8 print(u)
9 video_rental<-c( 32, 38, 28, 30)
10 cat("Recent subgroup average=",mean(video_rental))</pre>
```

R code Exa 15.3 Automobile Air Conditioners

R code Exa 15.4 Steel Shafts

```
1 # Page No. 711
```

R code Exa 15.5 Automatic Screw Machine

```
1 # Page No. 716
2 n = 200
3 p = 0.07
4 np=n*p
5 lcl=np-3*sqrt(np*(1-p))
6 print(signif(lcl), digits=4)
7 ucl=np+3*sqrt(np*(1-p))
8 print(signif(ucl), digits=5)
```

R code Exa 15.6 Repair Shop

```
4 x=3*sqrt(0.25/1.75)*(24/sqrt(4))
5 print(x)
6 ucl=62+13.61
7 lcl=62-13.61
8 print(lcl)
9 print(ucl)
```

${f R}$ code ${f Exa}$ 15.7 Subgroup Average

```
1 #Page No. 723
2 mean=30
3 sd=8
4 b=5
5 control_limit=b*sd
6 print(control_limit)
```