Maschinelles Lernen Aufgabenblatt 01b

Prof. Dr. Christoph Böhm Hochschule München

5. April 2024

Aufgabe 1.1. Ihre Aufgabe ist es den klassischen (vorbereitenden) Workflow eines Data Scientists nachzuvollziehen. Konkret beinhaltet dies, die folgenden Aufgaben.

1. Laden der Daten:

Laden Sie die Daten aus adult.data in einen Pandas DataFrame. Verfügbar über https://archive.ics.uci.edu/dataset/2/adult

2. Datenaufbereitung:

- (a) In den nominalen Daten sind noch unbekannte Werte gekennzeichnet durch '?' vorhanden. Bereinigen Sie die Daten, indem Sie alle Zeilen entfernen, die unbekannte Werte enthalten.
- (b) Entfernen Sie die Spalten fnlwgt und income als Features. Löschen Sie zudem kategoriale Features mit sehr vielen Kategorien.
- (c) Als Target soll das Feature income dienen, jedoch kommt nicht jeder Algorithmus mit nominalen Features klar. Konvertieren Sie das Target daher, sodass income den Wert 1 annimmt, falls das income ursprünglich den Wert '>50K' hat und 0 andernfalls. Speichern Sie dies in einem eigenen DataFrame oder Array y.
- (d) Wieviel Prozent der Personen haben ein Einkommen von mehr als 50.000\$?
- (e) Was ist die Genauigkeit eines naiven Klassifikation-Modells, welches unabhängig von den tatsächlichen Features immer weniger als 50.000\$ Einkommen zuweist? Dies ist das Mindestmaß an Genauigkeit, an dem sich ihre späteren Modelle messen müssen.
- 3. Wählen Sie geeignete Visualisierungen um interessante Aspekte im Datensatz zu beschreiben und zu plausibilisieren.

4. Datentransformation:

Schreiben Sie eine Methode transform(X) welche einen Feature-DataFrame X als Parameter erhält und einen transformierten DataFrame zurückgibt, bei dem

• Die im Wertebereich verzerrten Features capital_gain und capital_loss sollten durch Logarithmierung normalisiert werden. Verwenden Sie hierfür die Funktion

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \log(x+1)$$

- Anschließend sollen alle numerischen Features, d.h. age, education_num, capital_gain, capital_loss, hours_per_week auf den Wertebereich [0, 1] normalisiert werden.
- Transformieren Sie alle nominalen Features via *one-hot-encoding*. Informieren Sie sich hierzu über die Methode get_dummies (von Pandas).
- Transformieren Sie ihre Features mit Hilfe der Methode transform.
- Splitten Sie den Datensatz in einen Trainings- und Testdatensatz, wobei der Testdatensatz eine relative Größe von 20% haben soll. Verwenden Sie für die Reproduzierbarkeit einen random_state=0.