

Chapter 8: IP Addressing

Introduction to Networks

Cisco | Networking Academy® | Mind Wide Open™

8.1 IPv4 Network Addresses

Cisco Networking Academy® Mind Wide Open®

IPv4 Address IP Address and Address Space

- The identifier used in the IP layer of the TCP/IP protocol suite to identify the connection of each device to the Internet.
- An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a host or a router to the Internet.
- The IP address is the address of the connection, not the host or the router because if the device is moved to another network, the IP address may be changed.
- Address Space: An address space is the total number of addresses used by the protocol.
- If a protocol uses b bits to define an address, the address space is 2^b because each bit can have two different values (0 or 1).
- IPv4 uses 32-bit addresses, which means that the address space is 2³² or 4,294,967,296 (more than four billion)

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv4 Address Structure Binary Notation

- Binary notation refers to the fact that computers communicate in 1s and 0s
- For ease of use by people, binary patterns representing IPv4 addresses are expressed as dotted decimals.
- This is first accomplished by separating each byte (8 bits) of the 32-bit binary pattern, called an octet, with a dot.

192.168.10.10 is an IP address that is assigned to a computer.

IPv4 Subnet Mask Hierarchy in Addressing

IPv4 Subnet Mask Network Portion and Host Portion of an IPv4 Address

- To define the network and host portions of an address, a device uses a separate 32-bit pattern called a subnet mask
- The subnet mask does not actually contain the network or host portion of an IPv4 address, it just says where to look for these portions in a given IPv4 address

Classful Addressing

- The whole Address space was divided into five classes (Class A, B, C, D and E)
- The unicast address classes A, B, and C defined specifically-sized networks and specific address blocks for these networks.
- A company or organization was assigned an entire network from class A, class B, or class C address block.
- This use of address space is referred to as classful addressing.
- It also defined class D (multicast) and class E (experimental) addresses, as previously presented.

Types of IPv4 Address occupation of the address space in Classful Addressing

Class	Prefixes	First byte
A	n = 8 bits	0 to 127
В	n = 16 bits	128 to 191
С	n = 24 bits	192 to 223
D	Not applicable	224 to 239
Е	Not applicable	240 to 255

From Forouzan's book

Classful Addressing

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

Classless Addressing

Limits to the Class-based System

- Not all organizations' requirements fit well into one of these three classes.
- Classful allocation of address space often wasted many addresses, which exhausted the availability of IPv4 addresses.
- For example, a company that had a network with 260 hosts would need to be given a class B address with more than 65,000 addresses.

Classless Addressing/Prefix length

- Formal name is Classless Inter-Domain Routing (CIDR, pronounced "cider")
- Created a new set of standards that allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C address

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Prefix Length

- The prefix length is another way of expressing the subnet mask.
- The prefix length is the number of bits set to 1 in the subnet mask.
- It is written in "slash notation", a "/" followed by the number of bits set to1.
- For example, if the subnet mask is 255.255.25.0, there are 24 bits set to 1 in the binary version of the subnet mask, so the prefix length is 24 bits or /24.
- The prefix and the subnet mask are different ways of representing the same thing the network portion of an address.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1'

IPv4 Subnet Mask **Examining the Prefix Length**

Let's examine an example in Section 8.1.2.3.

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 12

Examining the Prefix Length

	Dotted Decimal	Significant bits shown in binary
Network Address	10.1.1.0/24	10.1.1.00000000
First Host Address	10.1.1.1	10.1.1.00000001
Last Host Address	10.1.1.254	10.1.1.11111110
Broadcast Address	10.1.1.255	10.1.1.11111111
Number of hosts: 2^8 – 2 =	254 hosts	

Network Address	10.1.1.0/25	10.1.1.0 0000000	
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001	
Last Host Address	10.1.1.126	10.1.1.01111110	
Broadcast Address	10.1.1.127	10.1.1.01111111	
Number of hosts: 2^7 – 2 = 126 hosts			

Network Address	10.1.1.0/26	10.1.1.00 0000000	
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001	
Last Host Address	10.1.1 <mark>.62</mark>	10.1.1.00111110	
Broadcast Address	10.1.1.63	10.1.1.00111111	
Number of hosts: 2^6 – 2 = 62 hosts			

Examining the Prefix Length (cont.)

	Dotted Decimal	Significant bits shown in binary
Network Address	10.1.1.0/27	10.1.1.000 00000
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001
Last Host Address	10.1.1.30	10.1.1.00011110
Broadcast Address	10.1.1 <mark>.31</mark>	10.1.1.00011111
Number of hosts: 2^5 - 2 =	30 hosts	

Network Address	10.1.1.0/28	10.1.1.0000 0000	
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001	
Last Host Address	10.1.1.14	10.1.1.00001110	
Broadcast Address	10.1.1 <mark>.15</mark>	10.1.1.00001111	
Number of hosts: 2^4 – 2 = 14 hosts			

IPv4 Subnet Mask

Bitwise AND Operation

$$1 \text{ AND } 1 = 1$$
 $1 \text{ AND } 0 = 0$ $0 \text{ AND } 1 = 0$ $0 \text{ AND } 0 = 0$

	11000000	10101000	00001010	00000000
Network Address	192 .	168 .	. 10	. 0
	11111111	11111111	11111111	00000000
Subnet Mask	255 .	255	255	. 0
	11000000	10101000	00001010	00001010
IPv4 Address	192 .	168 .	. 10	. 10

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv4 Unicast, Broadcast, and Multicast Unicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: **Unicast**, Broadcast, and Multicast

#1 Unicast – the process of sending a packet from one host to an individual host.

Let's see the animation (Section 8.1.3.3).

IPv4 Unicast, Broadcast, and Multicast

Broadcast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, **Broadcast**, and Multicast.

#2 Broadcast – the process of sending a packet from one host to all hosts in the network.

Directed broadcast

- Destination 172.16.4.255
- Hosts within the 172.16.4.0/24 network

Limited broadcast

- Destination 255.255.255.255
- NOTE: Routers do not forward a limited broadcast!

Multicast Transmission

In an IPv4 network, the hosts can communicate one of three different ways: Unicast, Broadcast, and **Multicast**.

#3 Multicast – The process of sending a packet from one host to a selected group of hosts, possibly in different networks.

- Reduces traffic
- Some examples: Video and audio broadcasts, Routing information exchange, Distribution of software, Remote gaming
- Reserved for addressing multicast groups 224.0.0.0 to 239.255.255.255.
- Link local 224.0.0.0 to 224.0.0.255 (Example: routing information exchanged by routing protocols)
- Globally scoped addresses 224.0.1.0 to 238.255.255.255 (Example: 224.0.1.1 has been reserved for Network Time Protocol)

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1

Public and Private IPv4 Addresses

Private address blocks are:

- Hosts that do not require access to the Internet can use private addresses
 - 10.0.0.0 to 10.255.255.255 (10.0.0.0/8)
 - 172.16.0.0 to 172.31.255.255 (172.16.0.0/12)
 - 192.168.0.0 to 192.168.255.255 (192.168.0.0/16)

Shared address space addresses:

- Not globally routable
- Intended only for use in service provider networks
- Address block is 100.64.0.0/10

Public and Private IPv4 Addresses

Private addresses cannot be routed over the Internet

Public and Private IPv4 Addresses

Public address:

- Public IP address of a system is the IP address which is used to communicate outside the network.
- Public IP address is basically assigned by the ISP (Internet Service Provider).
- Besides private IP addresses, rest are public.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Special Use IPv4 Addresses

- Network and Broadcast addresses within each network the first and last addresses cannot be assigned to hosts
- **Loopback address** 127.0.0.1 a special address that hosts use to direct traffic to themselves (addresses 127.0.0.0 to 127.255.255.255 are reserved)
- Link-Local address 169.254.0.0 to 169.254.255.255
 (169.254.0.0/16) addresses can be automatically assigned to the local host
- **TEST-NET addresses** 192.0.2.0 to 192.0.2.255 (192.0.2.0/24) set aside for teaching and learning purposes, used in documentation and network examples
- Experimental addresses 240.0.0.0 to 255.255.255.254 are listed as reserved for future use. Currently using for research and experimental use.