Топология I, листочек 3

1. Докажите, что $\mathbb{R}/\mathbb{Z} \simeq S^1$.

Утверждение 1. Элементы базы топологии на X после индуцирования на $Y \subseteq X$ образуют базу топологии на Y.

По определению элемент базы останется открытым после индуцирования. Покажем теперь, что все индуцированные элементы базы составят базу. Пусть $U\subseteq Y$ – открытое множество. Тогда существует такое открытое $V\subseteq X$, что $V\cap Y=U$. Раз V открыто, то существуют элементы базы $B_i\in \tau_X, i\in I$, что $\bigcup_{i\in I}B_i=V$. Тогда $U=V\cap Y=Y\cap\bigcup_{i\in I}B_i=\bigcup_{i\in I}Y\cap B_i$ открытое множество представимо как объединение индуцированных элементов базы на топологии X, а значит, что множество всех таких индуцированных элементов составят базу топологии на Y.

Утверждение 2. Если в топологии пространства X/\sim образ элемента базы топологии на X при канонической проекции открыт, то объединение этих образов составит базу топологии на фактор пространства.

Пусть $U \in X/\sim$ открыто, тогда $\pi_{\sim}^{-1}[U]$ открыто и представимо как $\bigcup_{i\in I} B_i$ где B_i – элемент базы топологии на X. Тогда $U=\pi_{\sim}[\bigcup_{i\in I} B_i]=\bigcup_{i\in I} \pi_{\sim}[B_i]$. А значит образ элементов базы топологии на X составит базу топологии на фактор пространстве.

Утверждение 3. Если биекция $X \to Y$ переводит элементы базы в открытые множества и прообразами элементов базы тоже являются открытые множества, то биекция является гомеоморфизмом.

Пусть $U\subseteq X$ открыто, тогда существуют такие элементы базы $B_i\subseteq X, i\in I$, что $U=\bigcup_{i\in I}B_i$. Тогда $f^{-1}[U]=\bigcup_{i\in I}f^{-1}[B_i]$ – объединение открытых, а значит само открыто и f непрерывно. В обратную сторону доказывается также.

Базой пространства S^1 являются всевозможные пересечения окружности и открытых кругов, то есть открытые дуги. Найдем теперь базу пространства \mathbb{R}/\mathbb{Z} . Пусть (a,b) – элемент базы топологии на \mathbb{R} . Прообраз образа этого интервала равен $\bigcup_{n\in\mathbb{Z}}(a+n,b+n)$ и открыт, а значит образы интервалов составят базу топологии на фактор пространстве. Если классы эквивалентности отождествить с точками на [0,1), то образом интервала (a,b) будет $(\{a\},\{b\})$, если изначальный интервал не содержал целых точек, $[0,\{b\}) \cup (\{a\},1)$, если изначальный интервал содержал 1 целую точку и [0,1), если изначальный интервал содержал 2 и более целые точки. Пусть $f:[x]\mapsto e^{i2\pi\{x\}}$ биекция из \mathbb{R}/\mathbb{Z} в S^1 . Тогда очевидно, что она однозначно сопоставляет элементам базы топологии на фактор пространстве открытые дуги, а значит пространства гомеоморфны.

2. Докажите, что $\mathbb{D}^n/S^{n-1} \simeq S^n$.

Пусть I=(-1,1) интервал. Тогда положим $B^n=I^n$, $\mathbb{D}^n=\overline{B^n}$ и $S^n=\partial\mathbb{D}^{n+1}$. Заметим, что ещё $S^n=\{(x_1,...,x_n)\in\mathbb{R}^n|\max_i|x_i|=1\}$, тогда в силу того, что максимум из конечного набора чисел всегда выбирается, то $\mathbb{D}^n=\bigcup_{r\in[0,1]}rS^{n-1}$. \mathbb{D}^n/S^{n-1} – это диск в котором все точки его границы положили в один класс. Построим отображения из диска в шар, что уважает это отождествление. Пусть $x=(x_1,...,x_n)$ и пусть $|x|=max_i|x_i|$, тогда

$$f(x) = \begin{cases} (-1, 4x_1, ..., 4x_n) & ,0 \leq |x| < 1/4 \\ (4|x| - 2, x_0/|x|, ..., x_n/|x|) & ,1/4 \leq |x| \leq 3/4 \\ (1, 4(1 - |x|)\frac{4}{3}x_0, 4(1 - |x|)\frac{4}{3}x_n) & ,3/4 < |x| < 1 \\ (1, 0, ..., 0) & x = \partial \mathbb{D}^n \end{cases}$$

Обратным ему будет сопоставлять каждому $y=(y_0,...,y_n)$

$$f^{-1}(y) = \begin{cases} \partial \mathbb{D}^n &, x = (1, 0, ..., 0) \\ (x_1/4, ..., x_n/4), & \end{cases}$$

Отображение f непрерывно, так как непрерывна каждая композиция $pr_i \circ f$. Отображение f построено так, что оно делит шар на сферы. Для $r \in [0, 1/4)$ сферы этих радиусов по

возрастающи устилают основания, затем для $r \in [1/4,3/4]$ устилают боковые грани, а для $r \in (3/4,1]$ устилают верхнее основание, причем окружность при приближении к границе диска стягивается в точку, а сама граница переходит в середину верхней грани. По этому это отображение после факторизации диска становится биекцией. До факторизации открытыми множествами диска были всевозможные пересечения диска с открытыми объемлющего пространства, после факторизации, если открытое не содержало точек границы, то оно так и останется открытым, так как его прообраз он сам. Если некое открытое множество профакторезованного диска содержит класс границы, то его прообара...

3. Верно ли, что фактор хаусдорфова пространства является хаусдорфовым? Регулярного – регулярным? Нормального – нормальным?

Возьмём отрезок [0,1] с канонической топологией. Он компактен и хаусдорфов, а значит нормален и регулярен. Профакторизуем его так, что его внутренность попадёт в один класс эквивалентности, 0 в другой, а 1 в третий обозначим их за i, 0, 1 соответственно. Тогда из всех подмножеств только \emptyset , $\{i\}$, $\{0,i\}$, $\{1,i\}$, $\{0,1,i\}$ будут открытыми. Заметим, что $\{0\}$ и $\{1\}$ будут замкнутыми в такой топологии, но при этом у этих синглтонов нет непересекающихся окрестностей, а значит, что полученное фактор пространства ни хаусдорфово, ни регулярно, ни нормально. Тогда ответ на все вопросы – нет.

4. Приведите пример хаусдорфова нерегулярного топологического пространства.

Положим $K = \{1/n|n \in \mathbb{N}\}$. Это множество не открыто в стандартной топологии прямой \mathbb{R} , так как любая окрестность 1 не лежит в K. С другой стороны оно не замкнуто, так как не содержит предельную точку 0. Возьмём множество S всех интервалов вместе со всеми интервалами без K. Оно покрывает прямую и пересечение двух элементов либо интервал, либо интервал без K, а значит S – база некой топологии, в которой открытые множества - это канонические открытые множества без некого подмножества в K. Это означает, что любая окрестность 0 содержит отрезок без некого количества элементов из K. Тогда между границами этого отрезка лежит некое число вида 1/p и любая окрестность K будет содержать шар радиусом меньшим 1/p - 1/(p-1) вокруг 1/p и 1/p содержащий. Тогда этот шар пересекается с K только по своему центру, а значит это шар в привычном нам смысле. Тогда он пересекается с изначальной окрестностью 0. В итоге у K и 0 нет непересекающихся окрестностей.

- 5. Приведите пример регулярного ненормального топологического пространства.
- 6. Приведите пример связного, но не линейно связного топологического пространства. Обозначим за L_n отрезок между (0,0) и (1,1/n) в \mathbb{R}^n . Он связен и открыт.

Утверждение 4. Если $C_{\alpha} \subseteq X$ – связные пространства для всяких индексов и $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$, то $\bigcup_{\alpha} C_{\alpha}$ связно.

Пусть $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$, но при этом $\bigcup_{\alpha} C_{\alpha} = U \sqcup V$, где U и V дизъюнктивные открыты непустые множества. Если бы ни одно из C_{α} не одержало одновременно элементы этих двух открытых множеств, то тоже было бы справедливым относительно их непустого пересечения и тогда все C_{α} были бы подмножествами одного из открытых, а значит второе открытое множество оказалось бы пустым, что противоречит с нашим предположением. Пусть C_{α_0} содержит элементы из обоих множеств. Тогда $C_{\alpha_0} = (U \cap C_{\alpha_0}) \sqcup (U \cap C_{\alpha_0})$ – несвязно, а значит мы вновь пришли к противоречию. Тогда $\bigcap_{\alpha} C_{\alpha}$ обязано быть связным.

В нашем случае множества $B=\bigcup_{n=1}^{+\infty}L_n$ и $\overline{B}=B\cup([0,1]\times\{0\})$ в силу этого утверждения связны, так как их связные части-отрезки пересекаются по (0,0).

Утверждение 5. Если множества $\mathcal C$ и $\overline{\mathcal C}$ связны, то и всякое лежащее между ними тоже связно.

Пусть C и \overline{C} связны и $C \subset X \subset \overline{C}$. Если бы $X = U \sqcup V$ было несвязно, то если бы оба имели элементы из C, то $C = (U \cap C) \sqcup (V \cap C)$ было бы несвязно, что ведёт к противоречию. Иначе одно из открытых, пусть без потери общности им будет V, полностью бы находилось в $\overline{C} \backslash C$. Тогда $\overline{C} \backslash V$ было бы замкнутым в объемлющем пространстве и содержало бы C, а значит замыкания не было бы минимальным по включению замкнутым надмножеством C, что опять ведет к противоречию. В итоге X обязано быть связным.

- 7. Определите естественную топологию на пространства невырожденных матриц $\mathrm{GL}(n,\mathbb{R})$. Является ли оно связным?
- 8. Докажите, что функции расстояния d_1, d_2, d_∞ задают структуру метрического пространства на \mathbb{R}^n . Нарисуйте открытые шары B_0^1 в метриках d_i при n=2.

9. Докажите, что топология на \mathbb{R}^n , индуцированная метриками d_i и выше, совпадает с топологией произведения, определённой на лекции.

Обозначим за au_{∞} топологию порожденную метрикой d_{∞} и за au_{\times} топологию произведения. Базой τ_{∞} являются многомерные кубы, то есть множества вида $r(-1,1)^n + a$, где $r \in \mathbb{R}$ и $a \in \mathbb{R}^n$. Базой топологии произведения являются всевозможные произведения интервалов. Заметим, что база метрической топологии вкладывается в базу топологии произведение, а значит $au_\infty\subseteq au_ imes$. Пусть теперь $U=\prod_{i=1}^n(a_i,b_i)$ – элемент базы $au_ imes$. Тогда каждая его точка $x=(x_1,...,x_n)\in U$ лежит вместе с шаром $\min\{|a_i-x_i|i\in\{1,...,n\}\}\cap\{|b_i-x_i|i\in\{1,...,n\}\}$ $\{1,...,n\}\}(-1,1)^n+x$, а значит база топологии произведения является семейством открытых множеств из τ_{∞} . Это означает, что $\tau_{\times} \subseteq \tau_{\infty}$, и учитывая прошлое утверждение $\tau_{\times} = \tau_{\infty}$. Теперь пусть $S_i = \{x \in \mathbb{R}^n | d_i(x,0) = 1\}.$ $x \mapsto d_i(x,0)$ - это непрерывное отображение в смысле $(\mathbb{R}^n, \tau_{\times}) \to (\mathbb{R}, \tau_c)$, где τ_c – каноническая топология прямой, так как $d_i(\cdot, 0)$ является і-м корнем из суммы непрерывный отображений. Тогда исходя из 2 задачи 2 листочка множество S_i замкнуто, так как (\mathbb{R}, τ_c) – хаусдорфово. Нетрудно также видеть, что $S_i \subset$ $[-1,1]^n$, подмножество произведения компактных по лемме Бореля – Лебега отрезков, что само компактно. Тогда S_i – замкнутое подмножество компакта, а значит S_i компактно в топологии τ_{\times} . Очевидно, что $d_{\infty}(\cdot,0):(\mathbb{R}^n,\tau_{\times})\to(\mathbb{R},\tau_c)$ тоже является непрерывным отображением. Тогда $d_{\infty}(S_i,0)$ – образ сферы при непрерывном отображении тоже компактен. Более того, так как каноническая топология прямой хаусдорфова, то компактный образ сферы замкнут, а значит содержит все свои предельные точки. Теперь так, как функция расстояния имеет неотрицательные значения и сфера не содержит нуль векторного пространства, то она и не может содержать сколь угодно близкие к нулю с точки зрения d_{∞} точки, в силу замкнутости образа. Это означает, что образ имеет ненулевую нижнюю грань m>0, то есть минимальное расстояния от нуля до некоторой точки сферы. Тогда имеет место следующее соотношения для шаров $B_i(a,r)$ метрики d_i . $B_{\infty}(a,rm)\subseteq B_i(a,r)\subseteq B_{\infty}(a,r)$ для любых точек a и радиусов r. Это значит, что в любой шар пространства с метрикой d_i можно вписать куб и вокруг него же можно описать куб, а значит открытые множества одного пространства открыты и в другом. Тогда $au_i = au_{\infty} = au_{\times}$, что и завершает доказательство.

- 10. Пусть X, Y метрические пространства. Определите естественную метрику на их произведении $X \times Y$.
- 11. Предположим, что в метрическом пространстве X выполнено $B_x^{\varepsilon_1} = B_y^{\varepsilon_2}$ для некоторых точек x, y и некоторых $\varepsilon_1, \varepsilon_2 > 0$. Верно ли, что $x = y, \varepsilon_1 = \varepsilon_2$?
- 12. Определим топологию Зариского на \mathbb{C}^n следующим образом: замкнутыми множествами назовем множества нулей произвольного набора многочленов из $\mathbb{C}[x_1,...,x_n]$. Проверьте, что это действительно топология. Является ли она хаусдорфовой? Совпадает ли топология Зариского на \mathbb{C}^2 с топологией произведения, полученной из топологии Зариского на C?