

HOW YOU - YES, YOU! - CAN TRAIN AN LLM*

Sam Bowyer

dreamstime.com

ID 250915344 © Seventyfourimages

Basic neural network layer

$$f(x; W, \mathbf{b}) = \sigma(Wx + \mathbf{b})$$

Basic neural network layer

$$f(x; W, \mathbf{b}) = \sigma(Wx + \mathbf{b})$$

• Compose L layers $f = f_1 \circ f_2 \cdots \circ f_L$

Basic neural network layer

$$f(x; W, b) = \sigma(Wx + b)$$

• Compose L layers $f = f_1 \circ f_2 \cdots \circ f_L$

• View the function as a distribution over outputs $p(y|x;\theta) = f(x;\theta)$

Basic neural network layer

$$f(x; W, b) = \sigma(Wx + b)$$

• Compose L layers $f = f_1 \circ f_2 \cdots \circ f_L$

- View the function as a distribution over outputs p(y|x; heta) = f(x; heta)
- Parameters $\theta = \{W_l, b_l | l = 1, \dots, L\}$ trained via maximum likelihood

$$\theta^* = \arg \max_{\theta} p(\mathcal{Y}|\mathcal{X}; \theta)$$

Basic neural network layer

$$f(x; W, b) = \sigma(Wx + b)$$

• Compose L layers $f = f_1 \circ f_2 \cdots \circ f_L$

- View the function as a distribution over outputs $p(y|x;\theta) = f(x;\theta)$
- Parameters $\theta = \{W_l, b_l | l = 1, \dots, L\}$ trained via maximum likelihood

$$\theta^* = \arg \max_{\theta} p(\mathcal{Y}|\mathcal{X}; \theta)$$

- Via gradient ascent-type optimisation $\theta \leftarrow \theta + \eta \nabla_{\theta} p(\mathcal{Y}|\mathcal{X};\theta)$

Basic neural network layer

$$f(x; W, b) = \sigma(Wx + b)$$

• Compose L layers $f = f_1 \circ f_2 \cdots \circ f_L$

- View the function as a distribution over outputs p(y|x; heta) = f(x; heta)
- Parameters $\theta = \{W_l, b_l | l = 1, \dots, L\}$ trained via maximum likelihood

$$\theta^* = \arg \max_{\theta} p(\mathcal{Y}|\mathcal{X}; \theta)$$

- Via gradient ascent-type optimisation $\theta \leftarrow \theta + \eta \nabla_{\theta} p(\mathcal{Y}|\mathcal{X};\theta)$
- In an LLM: x start of some text; y the rest of the text bristol.ac.uk

TONS of parameters

Attention Is All You Need. Vaswani et al. (2017)

- TONS of parameters
- Incredibly flexible learners

- TONS of parameters
- Incredibly flexible learners
- ...but also a pain to train, requiring:

- TONS of parameters
- Incredibly flexible learners
- ...but also a pain to train, requiring:
 - Gigantic training set \mathcal{D}

- TONS of parameters
- Incredibly flexible learners
- ...but also a pain to train, requiring:
 - Gigantic training set \mathcal{D}
 - Top of the range hardware

- TONS of parameters
- Incredibly flexible learners
- ...but also a pain to train, requiring:
 - Gigantic training set \mathcal{D}
 - Top of the range hardware
 - Lots of memory

- TONS of parameters
- Incredibly flexible learners
- ...but also a pain to train, requiring:
 - Gigantic training set \mathcal{D}
 - Top of the range hardware
 - Lots of memory
 - Lots of time

Attention Is All You Need. Vaswani et al. (2017)

- TONS of parameters
- Incredibly flexible learners
- ...but also a pain to train, requiring:
 - Gigantic training set T
 - Top of the range hardware
 - Lots of memory
 - Lots of time
 - Lots of skilled (and patient!) engineers

2021-11-28 1:50am ET [Stephen]: 12.27

Looks like 26 tried to immediately upload a checkpoint and failed its cp commands! Then it took another step, lowered its scalar, and tried uploading again! And again! The humanity! We're already at loss scale 0.25.

bristol.ac.uk

So you don't actually want to train one from scratch...

bristol.ac.uk

So you don't actually want to train one from scratch...

• Instead, take a pretrained 'foundation model' and finetune it on your specific data \mathcal{D}_{FT}

So you don't actually want to train one from scratch... ChatGPT

- Instead, take a pretrained 'foundation model' and *finetune* it on your specific data \mathcal{D}_{FT}
- Full Finetuning $\theta^* = \arg\max_{\theta} p(\mathcal{Y}_{\mathrm{FT}}|\mathcal{X}_{\mathrm{FT}};\theta)$

Model size 8.03B params Tensor type BF16 7

Safetensors ©

So you don't actually want to train one from scratch...

- Instead, take a pretrained 'foundation model' and finetune it on your specific data \mathcal{D}_{FT}
- Full Finetuning $\theta^* = \arg\max_{\theta} p(\mathcal{Y}_{\mathrm{FT}}|\mathcal{X}_{\mathrm{FT}};\theta)$
- Partial Finetuning: freeze some parameters $\theta_{\text{frozen}} \subset \Theta$ and not others $\theta_{\text{FT}} \subset \Theta$

$$\theta_{\text{FT}}^* = \arg \max_{\theta_{\text{FT}}} p(\mathcal{Y}_{\text{FT}} | \mathcal{X}_{\text{FT}}; \theta_{\text{frozen}} \cup \theta_{\text{FT}})$$

• Most parameters $W \in \mathbb{R}^{d \times d}$ only need a small nudge in the right direction

- Most parameters $W \in \mathbb{R}^{d \times d}$ only need a small nudge in the right direction
- **LoRA**: freeze all parameters and train some additive low-rank matrices $A, B^T \in \mathbb{R}^{r \times d}, r \ll d$

$$W = W_{\text{frozen}} + BA$$

LoRA: Low-Rank Adaptation of Large Language Models. Hu et al. (2021)

- Most parameters $W \in \mathbb{R}^{d \times d}$ only need a small nudge in the right direction
- **LoRA**: freeze all parameters and train some additive low-rank matrices $A, B^T \in \mathbb{R}^{r \times d}, r \ll d$

$$W = W_{\text{frozen}} + BA$$

– Only requires training 2dr parameters instead of d^2

LoRA: Low-Rank Adaptation of Large Language Models. Hu et al. (2021)

bristol.ac.uk

 Finetuning often makes models overconfident

- Finetuning often makes models overconfident
- Potential solution: rather than just a point estimate

$$\theta_{\text{FT}}^* = \arg \max_{\theta_{\text{FT}}} p(\mathcal{Y}_{\text{FT}} | \mathcal{X}_{\text{FT}}; \theta_{\text{FT}})$$

find the whole posterior distribution

$$p(\theta_{\mathrm{FT}}|\mathcal{Y}_{\mathrm{FT}},\mathcal{X}_{\mathrm{FT}})$$

- Finetuning often makes models overconfident
- Potential solution: rather than just a point estimate

$$\theta_{\text{FT}}^* = \arg\max_{\theta_{\text{FT}}} p(\mathcal{Y}_{\text{FT}}|\mathcal{X}_{\text{FT}}; \theta_{\text{FT}})$$

find the whole posterior distribution

$$p(\theta_{\mathrm{FT}}|\mathcal{Y}_{\mathrm{FT}},\mathcal{X}_{\mathrm{FT}})$$

 Use knowledge of this distribution to correct the model's overconfidence

