Detection of Antibiotic resistance genes in human gut microbiota

- Al-Hassan Mohamed
- Ahmed Saleh
- Abdallah Sayed
- Sarah Ahmed
- Gamila Mohamed
- Shahd Wael
- Heba Allah Mohamed

Summary

We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans' age.

Meta-genomic DNA from fecal samples of 123 healthy volunteers of four different age groups:

- preschool Children (CH)
- School Children (SC)
- High School Students (HSS)
- Adults (AD)

The results showed that

- 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD.
- Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent.

Data resource

• https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54070

Dataset description

IMAGE_ID =	GENE_EXPR_OPTION	\$ SEQ_ID	PROBE_ID	POSITION	X ÷	Y ÷	MATCH_INDEX ÷	SEQ_URL	₽ PM 	мм
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00101	101	359	315	725640	NA	656	C
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00160	160	53	375	725641	NA	606	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00162	162	240	402	725642	NA	522	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00165	165	307	97	725643	NA	1116	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00168	168	289	553	725644	NA	435	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00171	171	413	309	725645	NA	656	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00174	174	51	445	725646	NA	996	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00177	177	210	202	725647	NA	897	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00180	180	453	475	725648	NA	610	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00183	183	210	192	725649	NA	990	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00303	303	428	306	725650	NA	446	0
388797A03_100121_532_532	BLOCK1	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00429	429	127	243	725651	NA	1644	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00101	101	152	324	863244	NA	1218	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00160	160	416	188	863245	NA	588	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00162	162	141	391	863246	NA	703	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00165	165	379	389	863247	NA	462	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00168	168	49	121	863248	NA	962	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00171	171	390	304	863249	NA	627	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00174	174	304	426	863250	NA	338	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00177	177	131	139	863251	NA	994	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00180	180	46	208	863252	NA	1215	0
388797A03_100121_532_532	BLOCK2	AAC2IA_L06156_264_797	AAC2IA_L06156_264_797P00183	183	123	375	863253	NA	1057	C
388797A03 100121 532 532	BLOCK2	AAC2IA L06156 264 797	AAC2IA L06156 264 797P00303	303	15	7	863254	NA	1141	0

Data attributes:

- o Image ID
- Gene_exp_option => Block or subarray: a group of spots, typically made in one print round
- Seq_id
- Probe_id
- Position
- o X
- o **Y**
- Match_index
- Seq_url
- o PM
- MM
- Number of samples: 123
- Number of records: 825624

T-test

- We used the mean of pre_school group as a standard value
- Then calculated t-test for each of the following groups based on it.

```
t = -900.55, df = 275207, p-value < 2.2e-16
                                        alternative hypothesis: true mean is not equal to 11.3309
School Children (SC) =>
                                        95 percent confidence interval:
                                         10.07840 10.08384
                                        sample estimates:
                                        mean of x
                                         10.08112
                                        t = -637.79, df = 275207, p-value < 2.2e-16
                                        alternative hypothesis: true mean is not equal to 11.3309
                                         95 percent confidence interval:
High School Students (HSS) =>
                                         10.73427 10.73793
                                         sample estimates:
                                         mean of x
                                          10.7361
                                        t = -739.78, df = 275207, p-value < 2.2e-16
Adults (AD) =>
                                        alternative hypothesis: true mean is not equal to 11.3309
                                        95 percent confidence interval:
                                         10.04998 10.05675
                                        sample estimates:
                                         mean of x
                                         10.05337
```

Visualizations - Sample

Box-plot

to show the distribution of data.

```
> summary(Npre_school)
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.164 11.152 11.298 11.331 11.462 16.000
> summary(Nschool)
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.475 9.724 9.916 10.081 10.165 15.925
> summary(Nhigh_school)
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.50 10.46 10.66 10.74 10.89 15.90
> summary(Nadult)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.022 9.443 9.948 10.053 10.536 16.000
```


Visualizations - Sample

Expression value distribution to

Visualizations - Sample

Variance of the mean

calculates how much the data points spread around the regression line.

· Thanks!

Do you have any questions?