9. Теория чисел и числовые алгоритмы

- 1. Имеются окрашенные прямоугольные таблички трёх типов: черный квадрат размера 2×2 , белый квадрат того же размера и серый прямоугольник 2×1 (последний можно поворачивать на 90°). Нужно подсчитать число способов F_n замостить полосу размера $2 \times n$. Найдите явную аналитическую формулу для F_n и вычислите F_{30000} по модулю 31.
- 2. Решите предыдущую задачу по модулю 29.
- 3 (все по 0.5).
- а) Делится ли $4^{1356} 9^{4824}$ на 35? Делится ли $5^{30000} 6^{123456}$ на 31?
- б) Найдите обратные 20 (mod 79), 3 (mod 62).
- в) Найдите все решения уравнения $35x = 10 \pmod{50}$.
- г) Имеет ли решение сравнение $x^2 = 1597 \mod 2011$
- д) Найдите наименьшее натуральное число, имеющее остатки 2, 3, 1 от деления на 5, 13 и 7 соответственно.
- **4.** Найти все генераторы для $(\mathbb{Z}/19\mathbb{Z})^{\times}$.
- **5.** Предложите полиномиальный алгоритм нахождения количества натуральных решений диофантова уравнения ax + by = c.
- **6** (Доп). Пусть язык $L \in \mathcal{NP}$. Покажите, что он полиномиально сводится (по Карпу) к языку STOP описаний пар (M, ω) машин Тьюринга и входов таких, что M останавливается на входе ω .
- 7. Постройте NP-сертификат простоты числа $p=3911,\ g=13.$ Известными простыми считаются только числа $2,\ 3,\ 5.$