Compilers: Assignment #3

Due on Sunday, December 3, 2016

Genafl: Task 2

Mirza Hasanbasic

Indhold

Task 1					 , .																	2
Task 2					 	 	_						_									_

Task 1

Det skal siges, at jeg har vedhæftet en .txt fil, så du lettere kan afprøve koden som er skrevet. Det der står i dokumentet er til det visuelle.

a)

Vi har

```
1 vtable = [a \rightarrow v, b \rightarrow w];

2 while (b != 0) && (a/b != 0)

4 if b < a then \{a := a - b\}

6 else \{b := b - a\}
```

Hvor intermediate koden er

```
1
  t_0 = v
2 \mid t_{1} = w
3 LABEL LoopStart
4 | IF t_1 != 0 then NEXTO else END (Brug rigtig syntax i tex filen !=)
5 LABEL NEXTO
6 \quad t_2 = t_0 \mod t_1
7 | IF t_2 != 0 then NEXT1 else END
8 LABEL NEXT1
9 \mid t_3 = t_1 - t_0
10 IF t_3 < 0 then NEXT2 else NEXT3
11 LABEL NEXT2
12 \mid t_0 = t_0 - t_1
13 GOTO LoopStart
14 LABE NEXT3
15 \mid t_1 = t_1 - t_0
16 GOTO LoopStart
17 LABEL END
```

og MIPS koden vil være

```
. data
1
2
           a: .word 8
3
           b: .word 33
4
  . text
5
  main:
6 lw $t0, a
                                   \# load 8
7
  lw $t1, b
                                   \# load 33
8 LoopStart:
                                   \# LABEL
  beg $t1, $0, END
                                   \# Checking if t1 == 0
  div $t0, $t1
                                   \# dividing to get modulus
10
                                   \# Getting the remainder, moving to $t2
11 mfhi $t2
12 beq $t2, $0, END
                                   \# checking if t2 == 0
13 | sub $t3, $t1, $t0
                                   \t 13 = t1 - t0
14 bgez $t3, ELSE
                                   sub $t0, $t0, $t1
                                   \# first then statement a = a - b
15
16 j LoopStart
                                   \# jumping to loopstart
17 ELSE:
                                      \# Now else statement
18 sub $t1, $t1, $t0
                                   19
   j LoopStart
  END:
20
                                   \# tinyurl.com/neve79o
21
                                \# printer udregnet variable ud.
22
  li $v0, 1
23
   add $a0, $t0, $zero
   syscall
24
25
26 | li $v0, 11
  li $a0, 10
27
28
   syscall
29
30 | 1i $v0, 1
31 add $a0, $t1, $zero
32
  syscall
```

b)

```
1 Li t0, x
2 Li t1, y
3 Li t2, 1
4 Slt t3, t1, t0
5 Slt t4, t3, t2
```

Task 2

a)

i	succ[i]	gen[i]	kill[i]
1	2		
2	7,3	a,b	
3	4		
4	5	a	t
5	6	b	a
6	7	t	b
7	8		
8	9		Z
9	10	b,a	b
10	1,11	b,z	
11			
12		a	

b)

FIX:

	Initial		Iterat	tion 1	Iterat	ion 2	Iteration 3			
i	out[i]	in[i]	out[i]	in[in]	out[i]	in[in]	out[i]	in[in]		
1			a,b	a,b	a,b	a,b	a,b	a,b		
2			a,b	a,b	a,b	a,b	a,b	a,b		
3			a,b	a,b	a,b	a,b	a,b	a,b		
4			b,t	a,b	b,t	a,b	b,t	a,b		
5			a,t	b,t	a,t	b,t	a,t	b,t		
6			a,b	a,t	a,b	a,t	a,b	a,t		
7			a,b	a,b	a,b	a,b	a,b	a,b		
8			a,b,z	a,b	a,b,z	a,b	a,b,z	a,b		
9			b,z,a	a,b,z	a,b,z	a,b,z	a,b,z	a,b,z		
10			a	a, b,z	a,b	a,b,z	a,b	a,b,z		
11			a	a	a	a	a	a		
12				a		a		a		

c)

i	left	interferes with
4	t	a,b
5	a	b,t
6	b	a,t
8	Z	a,b
9	b	a,z

d)

FIX:

node	Neighbours	color
a		1
b	a	2
t	a, b	3
Z	a,b	3

e)


```
gcd(a,b) {
1
2
       M[address_a] := a
3
        LABEL start
        a_i := M[address_a]
4
5
        IF a_i < b THEN next ELSE swap
6
        LABEL swap
7
        a_i := M[address_a]
8
        t := a_i
9
        a_i := b
        M[address_a] = a_i
10
11
        b := t
        LABEL next
12
        z := 0
13
14
        a_i = M[address_a]
15
        b := b \mod a_i
        IF b = z THEN end ELSE start
16
        LABEL end
17
        a := M[address_a]
18
        RETURN a
19
20
```

og dette vil være med 2 registre

FIX:

