	This mark is dependent on BOTH previous M marks.
A1	For a conclusion. A simple # sign, 'shown', 'QED' or underlining is
	sufficient.

Question number	Scheme	Marks
8	$\alpha + \beta = 4k\sqrt{2}$ and $\alpha\beta = 2k^4 - 1$	B1 B1
	$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta \Rightarrow (4k\sqrt{2})^2 = 66 + 2(2k^4 - 1)$	M1 A1
	$k^4 - 8k^2 + 16 = 0$	M1
	$\left(k^2 - 4\right)^2 = 0 \Longrightarrow k = 2$	M1 A1
	$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$ or $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$	M1
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$ or $\alpha^{3} + \beta^{3} = (\alpha + \beta)(66 - \alpha\beta)$	A1
	$\alpha^3 + \beta^3 = (8\sqrt{2})^3 - 3 \times 31 \times 8\sqrt{2} = 280\sqrt{2}$	
	or $8\sqrt{2}(66-31) = 280\sqrt{2}$	M1
	p=280	A1
		(11)
Total 11 marks		

Mark	Notes		
B1	For either $\alpha + \beta = 4k\sqrt{2}$ or $\alpha\beta = 2k^4 - 1$		
B1	For both $\alpha + \beta = 4k\sqrt{2}$ and $\alpha\beta = 2k^4 - 1$		
M1	For the correct algebra on $\alpha^2 + \beta^2$ (in any order) and substitution of their values of $\alpha\beta$ and $\alpha+\beta$ providing both sum and product are in terms of k . $(\alpha+\beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta \Rightarrow \alpha^2 + \beta^2 = (4k\sqrt{2})^2 - 2(2k^4 - 1)$		
A1	For obtaining $\left(4k\sqrt{2}\right)^2 = 66 + 2\left(2k^4 - 1\right)$ in any order.		
M1	For simplifying to form a 3TQ in k^4 i.e., $4k^4 - 32k^2 + 64 = 0$ oe Accept as a minimum $4k^4 - 32k^2 \pm Q = (0)$ $Q \ne 0$		
M1	For factorising or solving the 3TQ using any valid method. See General Guidance.		
A1	For $k = 2$ If they also give $k = -2$ withhold this mark.		

Method 1				
M1	For expanding $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$			
	or $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$			
A1	For obtaining $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ or			
	$\alpha^3 + \beta^3 = (\alpha + \beta)(66 - \alpha\beta)$			
	This must be such that $\alpha\beta$ and $\alpha+\beta$ can be substituted in directly.			
24	For substitution of $\alpha + \beta$ and $\alpha\beta$ for their positive value of k into a			
	correct expansion of $\alpha^3 + \beta^3$			
	NOTE: If they do not obtain $k = 2$, then full substitution of their numerical			
M1	value for k into $\alpha + \beta$ and $\alpha\beta$ must be seen for the award of this mark.			
	For example:			
	$\alpha^3 + \beta^3 = \left(4 \times \text{'their } k \text{'} \sqrt{2}\right)^3 - 3 \times \left(2 \times \text{'their } k^4 \text{'} - 1\right) \times \left(4 \times \text{'their } k \text{'} \sqrt{2}\right)$			
A1	For $p = 280$			
Method	Method 2			
	Finds the exact value of α and β			
	Solves the equations $(\alpha\beta = 2k^4 - 1 \text{ and } \alpha + \beta = 4k\sqrt{2})$ simultaneously to give			
M1	a value for α and β			
1411	$\alpha = \frac{31}{\beta} \Rightarrow \alpha + \beta = \frac{31}{\beta} + \beta = 8\sqrt{2} \Rightarrow \beta^2 - 8\sqrt{2}\beta + 31 = 0$			
	$\Rightarrow \beta = \dots \alpha = \dots$			
A1	For $\alpha = 1 + 4\sqrt{2}$ $\beta = -1 + 4\sqrt{2}$ OR $\beta = 1 + 4\sqrt{2}$ $\alpha = -1 + 4\sqrt{2}$			
	Substitutes these values into $\alpha^3 + \beta^3 = p\sqrt{2}$ to find a value for p			
M1	$(1+4\sqrt{2})^3 + (-1+4\sqrt{2})^3 = 24\sqrt{2} + 256\sqrt{2} = 280\sqrt{2} \Rightarrow p = \dots$			
A1	p = 280			