Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

7. Time series regression models

7.3 Evaluating the regression model OTexts.org/fpp3/

Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- $\mathbf{\varepsilon}_t$ are uncorrelated and zero mean
- ε_t are uncorrelated with each $x_{i,t}$.

Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- $\mathbf{\varepsilon}_t$ are uncorrelated and zero mean
- lacksquare ε_t are uncorrelated with each $x_{j,t}$.

It is **useful** to also have $\varepsilon_t \sim N(0, \sigma^2)$ when producing prediction intervals or doing statistical tests.

Residual plots

Useful for spotting outliers and whether the linear model was appropriate.

- Scatterplot of residuals ε_t against each predictor $x_{j,t}$.
- Scatterplot residuals against the fitted values ŷ_t
- Expect to see scatterplots resembling a horizontal band with no values too far from the band and no patterns such as curvature or increasing spread.

Residual patterns

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)