Geodesics For Face Recognition Anne Jorstad Advisor: David Jacobs

Mentor: Alain Trouvé, Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan, France

THESIS PROBLEM

Develop a metric that assigns a similarity cost to faces in the presence of changes in expression and lighting based on dense correspondences.

Stage 1: Use the metric in a new framework for face recognition.

Stage 2: Update correspondences through a series of morphings considering the metric on the manifold of faces.

Dense Correspondences for Image Deformation

Goal: Compute the lowest cost deformation and intensity changes relating two face images, and use these for recognition.

Poor results are achieved when the traditional Black and Anandan flow is used:

w: the flow from I_1 to I_2

 I_2^w : I_2 warped backwards along w to match I_1

Results from our proposed method are more stable:

Expression change: The top lip has been correctly matched while keeping the overall flow smooth.

Lighting change: In spite of significant change in lighting there has been no deformation, and the flow is small.

A Deformation and Lighting Insensitive Metric

Goal: Define a metric on face image flows that is insensitive to changes in expression and lighting.

$$E_{\text{DLI}}(w) = (1 - \lambda)E_b(w) + \lambda E_r(w),$$

where w is the flow from I_1 to I_2 .

Photometric Term:

$$E_b(w) = \frac{1}{2} \sum_{ij} \frac{\|\nabla (I_2^w - I_1)\|^2}{\|\nabla I_1\|^2 + \epsilon^2} = \frac{1}{2} \sum_{ij} (E_{b_{ij}}^x)^2 + (E_{b_{ij}}^y)^2$$

- ▶ Invariant to multiplication by a scalar and addition by a constant.
- ▶ Insensitive to changes caused by the effects of lighting variation in 3D scenes. (ex: Moving a light can greatly change the gradient at the edge of a polyhedron, as the two faces are exposed to light differently.)

Regularization Term:

$$E_r(w) = \frac{1}{2} \langle K^{-1}w, w \rangle_G = \frac{1}{2} \sum_{ij} (E_{r_{ij}}^x)^2 + (E_{r_{ij}}^y)^2$$

- ightharpoonup K: a symmetric positive definite matrix (eg a gaussian)
- G: a generalized inner product defined on $M \times N \times 2$ structures (dimensions of the flow)

CALCULATING FLOWS

Find the optimal flow between images:

- Minimize $E_{DLI}(w)$ with modified Gradient Descent.
- Sobolev Gradient: $\nabla_{\kappa} E = K \nabla E$, smoother, superior convergence rates¹.
- Optimize over dual variable α :

$$w_n = K\alpha_n$$
 (a convolution)
 $\alpha_{n+1} = \alpha_n - \Delta t \cdot \nabla E(w_n)$

LEARNING FOR IMPROVED RESULTS

Given pixel matching costs for known image pairs,

- Learn typical Gaussian distributions through 4D cost vectors $[E_{b_{ii}}^x E_{b_{ii}}^y E_{r_{ii}}^x E_{r_{ij}}^y]$ (assume pixel independence).
- Train separate models for same-person and different-person image pairs.

GEODESICS ON THE FACE MANIFOLD

Goal: Slowly introduce changes in face images over several steps for increased robustness.

Consider face images as points on a high-dimensional manifold:

- Curves on manifold describe face transformations through time.
- ▶ Define similarity as length of geodesic (shortest path) connecting two faces.

Require a metric to give local structure to the manifold:

$$E_{\text{DLI}} = \sum_{t=1}^{T} \sum_{i=1,j=1}^{M,N} (1-\lambda)E_b + \lambda E_r$$

- Geodesic parameterized by time *t*.
- $\delta I_t = I_{t+1} I_t$ replaces $I_2^w I_1$ in E_b .

GEODESIC OPTIMIZATION

Optimize over $M \times N \times T$ variables: too big!

Gradient Descent stepsize choice: line search schemes regularly fail long before a minimum is reached.

 1^{st} order approximation often poor, but 2^{nd} order methods too computationally intensive; considering Preconditioned Conjugate Gradient.

Use lower dimensional representation of image path: Splines or wavelets.

- Reduces redundancy and numerical error.
- Gradient calculation more complicated.

PRELIMINARY RESULTS

From a pose change study³ (note: pose has 3 degrees of freedom, expression change has infinite degrees of freedom):

Calculating geodesics on the manifold of faces should provide a robust method for face recognition across changes in expression and lighting.

- ► The final similarity measure:

FLOW EXPERIMENTS

Identity of unknown face determined by gallery image resulting in lowest matching cost.

Images from the AR Face Database² with variations in expression and lighting.

Variation	Accuracy	Variation	Accuracy
Smile	97.6%	Left light	98.8%
Frown	91.6%	Right light	99.6%
Scream	79.6%	Both lights	98.4%

Expression	Lighting	Overall
82.0%	96.0%	89.0%
89.6%	98.9%	94.3%
86.8%	91.2%	89.0%
85.1%	96.4%	90.7%
	82.0% 89.6% 86.8%	82.0% 96.0% 89.6% 98.9% 86.8% 91.2%