Differentievergelijkingen

Isidoor Pinillo Esquivel

juni 2022

Rijen

Definition (Rij)

Een afbeelding uit \mathbb{Z} .

Notatie (Rij)

$$(a_i)_{i\in\mathbb{Z}}=(a_i)=a_i.$$

Fibonacci 1

$$f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n, \forall n \in \mathbb{Z}.$$

 f_{-2}	f_{-1}	f_0	f_1	f_2	f_3	f_4	f_5	f_6	
 -1	1	0	1	1	2	3	5	8	

Operatoren

Definition (E, Δ)

$$E:(G)_{\mathbb{Z}} \to (G)_{\mathbb{Z}}:(f_i) \to (f_{i+1})$$

$$\Delta: (G)_{\mathbb{Z}} \to (G)_{\mathbb{Z}}: (f_i) \to (f_{i+1} - f_i).$$

Fibonacci 2

$$f_{i+2} - f_{i+1} - f_i = 0 \Leftrightarrow$$

 $(E^2 - E - 1)(f_i) = 0$

Fibonacci 2

$$f_{i+2} - f_{i+1} - f_i = 0 \Leftrightarrow$$

 $(E^2 - E - 1)(f_i) = 0$

Lineaire differentievergelijkingen:

$$(a_i^0 E^k + ... + a_i^k E^0)(f_i) = g_i$$

Notatie

Notatie

- \bullet (G,+) een groep
- F een lichaam
- End(G)
- Aut(*G*)

End(G), End(F)

Theorem

End(G) is een bijna ring voor de uitgebreide optelling en compositie.

End(G), End(F)

Theorem

End(G) is een bijna ring voor de uitgebreide optelling en compositie.

Theorem

$$\forall A, B, C \in End(G) : A(B+C) = AB + AC.$$

End(G), End(F)

Theorem

End(G) is een bijna ring voor de uitgebreide optelling en compositie.

Theorem

$$\forall A, B, C \in End(G) : A(B+C) = AB + AC.$$

$$M_f: F \to F: x \to fx, M_f \in End(F).$$

Differentievergelijkingen

 $\Delta VG = DifferentieVerGelijking$

Differentievergelijkingen

 $\Delta VG = DifferentieVerGelijking$

Definition (Δ VG)

$$\triangle VG \Leftrightarrow (E^2 + c_i E - 1)(f_i) = g_i$$

met $g_i \in (G)_{\mathbb{Z}}$ de forceerterm en $c_i \in (\operatorname{End}(G))_{\mathbb{Z}}$.

Theorem (uniciteitsvoorwaarde)

Als $\triangle VG$ en gegeven f_l , f_{l+1} dan is f_i uniek bepaald.

Theorem (uniciteitsvoorwaarde)

Als $\triangle VG$ en gegeven f_l , f_{l+1} dan is f_i uniek bepaald.

Bewijs.

Inductie en **AVG**

$$\Leftrightarrow \begin{cases} f_{i+2} = g_i - c_i f_{i+1} + f_i \\ f_i = f_{i+2} + c_i f_{i+1} - g_i \end{cases}.$$

Algemeen geval ...

Algemeen geval ... 1ste orde geval:

$$(a_iE+b_i)$$
 met $a_i,b_i\in (\operatorname{\mathsf{Aut}}(G))_{\mathbb{Z}}$

Algemeen geval ...

1ste orde geval:

$$(a_iE+b_i)$$
 met $a_i,b_i\in (\operatorname{\mathsf{Aut}}(G))_{\mathbb{Z}}$

$$(a_i E + b_i) \leftarrow 1$$
ste orde lineaire operator

Algemeen geval ...

1ste orde geval:

$$(a_iE+b_i)$$
 met $a_i,b_i\in (\operatorname{\mathsf{Aut}}(G))_{\mathbb{Z}}$

$$(a_iE+b_i) \leftarrow 1$$
ste orde lineaire operator

Theorem (Variatie op integrerende factor)

$$\exists s_i, h_i \in (Aut(G))_{\mathbb{Z}} : a_iE + b_i = s_i\Delta h_i.$$

$$a_i E + b_i = s_i \Delta h_i$$

$$a_i E + b_i = s_i \Delta h_i$$

= $s_i (E - 1) h_i$

$$a_i E + b_i = s_i \Delta h_i$$

= $s_i (E - 1) h_i$
= $s_i E h_i - s_i h_i$

$$a_i E + b_i = s_i \Delta h_i$$

 $= s_i (E - 1) h_i$
 $= s_i E h_i - s_i h_i$
 $= s_i h_{i+1} E - s_i h_i$

$$a_iE + b_i = s_ih_{i+1}E - s_ih_i$$

$$a_i E + b_i = s_i h_{i+1} E - s_i h_i$$
 $\Leftarrow \begin{cases} a_i = s_i h_{i+1} \\ b_i = -s_i h_i \end{cases}$

$$a_{i}E + b_{i} = s_{i}h_{i+1}E - s_{i}h_{i}$$

$$\Leftarrow \begin{cases} a_{i} = s_{i}h_{i+1} \\ b_{i} = -s_{i}h_{i} \end{cases}$$

$$\Leftrightarrow \begin{cases} h_{i}^{-1} = (-1)^{i}\prod_{j=1}^{n} \left(b_{i}a_{i}^{-1}\right)h_{0}^{-1} \\ s_{i} = -b_{i}h_{i}^{-1} \end{cases}$$

Technieken voor ΔVG

- Companion matrix (geen tijd voor)
- Operatorfactorisatie

Technieken voor ΔVG

- Companion matrix (geen tijd voor)
- Operatorfactorisatie

Operatorfactorisatie:

$$E^2 + c_i E - 1 = (E - n_i^{-1})(E + n_i)$$

Theorem (Equivalente voorwaarde)

$$E^2 + c_i E - 1 = (E - n_i^{-1})(E + n_i) \Leftrightarrow$$

 $n_{i+1} = c_i + n_i^{-1}.$

Theorem (Equivalente voorwaarde)

$$E^{2} + c_{i}E - 1 = (E - n_{i}^{-1})(E + n_{i}) \Leftrightarrow n_{i+1} = c_{i} + n_{i}^{-1}.$$

Definition (Ricatti Δ VG)

$$n_{i+1} = c_i + n_i^{-1}$$
.

L/F een lichaamextensie en $y \in F$

L/F een lichaamextensie en $y \in F$

Definition (Ricatti transformatie)

$$R_{y}: L-F \rightarrow L-F: x \rightarrow y+x^{-1}$$

$$R_y^{-1}: L-F \to L-F: x \to (x-y)^{-1}.$$

L/F een lichaamextensie en $y \in F$

Definition (Ricatti transformatie)

$$R_y: L-F \rightarrow L-F: x \rightarrow y+x^{-1}$$

$$R_y^{-1}: L-F \to L-F: x \to (x-y)^{-1}.$$

Vermoeden (Ricatti groep)

 $R_{L/F} = \langle R_y | y \in F \rangle$ is een groepactie?

Definition $(R_{(y_i)})$

$$R_{(y_i)} = \prod R_{y_i} = R_{y_{i-1}} R_{y_{i-2}} ... R_{y_0}.$$

Definition $(R_{(y_i)})$

$$R_{(y_i)} = \prod R_{y_i} = R_{y_{i-1}} R_{y_{i-2}} ... R_{y_0}.$$

$$R_{(y_i)}(x) = y_{i-1} + \frac{1}{y_{i-2} + \frac{1}{\dots + \frac{1}{y_0 + \frac{1}{x}}}}$$

Oplossingen Ricatti $\approx R_{(c_i)}(n_0)$

Oplossingen Ricatti $\approx R_{(c_i)}(n_0)$

Theorem (Factorisatie stelling)

$$\forall c_i \in (F)_{\mathbb{Z}}, \forall n_0 \in L - F :$$

 $E^2 + c_i E - 1 = (E - (R_{(c_i)}(n_0))^{-1})(E + R_{(c_i)}(n_0)).$

 ΔVG in \mathbb{F}_2 met operatorfactorisatie

 ΔVG in \mathbb{F}_2 met operatorfactorisatie

$$(E^2+1)(f_i)=g_i\Leftrightarrow \ (E+1)^2(f_i)=g_i\Leftrightarrow \ \Delta^2(f_i)=g_i\Leftrightarrow$$

 ΔVG in \mathbb{F}_2 met operatorfactorisatie

$$(E^2+1)(f_i)=g_i \Leftrightarrow \ (E+1)^2(f_i)=g_i \Leftrightarrow \ \Delta^2(f_i)=g_i \Leftrightarrow$$

$$f_i = \sum \left(\sum (g_i) + f_1 - f_0\right) + f_0$$

$$E^2 + E + 1$$
 factoriseert niet in $\mathbb{F}_2[E] \simeq \mathbb{F}_2[X]$

$$E^2 + E + 1$$
 factoriseert niet in $\mathbb{F}_2[E] \simeq \mathbb{F}_2[X]$ wel in $\mathbb{F}_4[E] \simeq \mathbb{F}_2(\alpha)[E]$ met $\alpha^2 = \alpha^{-1} = \alpha + 1$

$$E^2+E+1$$
 factoriseert niet in $\mathbb{F}_2[E]\simeq \mathbb{F}_2[X]$ wel in $\mathbb{F}_4[E]\simeq \mathbb{F}_2(lpha)[E]$ met $lpha^2=lpha^{-1}=lpha+1$ $E^2+E+1=(E+lpha^{-1})(E+lpha)$

Factorisatie stelling \rightarrow $E^2 + c_i E + 1$ factoriseert in $(\mathbb{F}_2(\alpha))_{\mathbb{Z}}[E]$

Factorisatie stelling \rightarrow $E^2 + c_i E + 1$ factoriseert in $(\mathbb{F}_2(\alpha))_{\mathbb{Z}}[E]$ $\mathbb{F}_2(\alpha) - \mathbb{F}_2 = \{\alpha, \alpha^2\}$

$\triangle VG$ in $\mathbb{F}_4/\mathbb{F}_2$ 3

Factorisatie stelling \rightarrow $E^2 + c_i E + 1$ factoriseert in $(\mathbb{F}_2(\alpha))_{\mathbb{Z}}[E]$ $\mathbb{F}_2(\alpha) - \mathbb{F}_2 = \{\alpha, \alpha^2\}$

$$E^{2} + c_{i}E + 1$$

$$= (E - (R_{(c_{i})}(\alpha))^{-1})(E + R_{(c_{i})}(\alpha))$$

$$= (E - (R_{(c_{i})}(\alpha^{2}))^{-1})(E + R_{(c_{i})}(\alpha^{2}))$$

$$R_{(c_i)}(\alpha) = R_{c_{i-1}}R_{c_{i-2}}...R_{c_0}(\alpha) = ???$$

$$R_{(c_i)}(\alpha) = R_{c_{i-1}}R_{c_{i-2}}...R_{c_0}(\alpha) = ???$$

 R_V inverteerbaar : $\{\alpha, \alpha^2\} \rightarrow \{\alpha, \alpha^2\}$

$$R_{(c_i)}(\alpha) = R_{c_{i-1}}R_{c_{i-2}}...R_{c_0}(\alpha) = ???$$

 R_y inverteerbaar : $\{\alpha, \alpha^2\} \rightarrow \{\alpha, \alpha^2\}$
 $\Rightarrow R_{\mathbb{F}_4/\mathbb{F}_2}$ abels.

$$R_{(c_i)}(\alpha) = R_{c_{i-1}}R_{c_{i-2}}...R_{c_0}(\alpha) = ???$$
 R_y inverteerbaar : $\{\alpha, \alpha^2\} \rightarrow \{\alpha, \alpha^2\}$
 $\Rightarrow R_{\mathbb{F}_4/\mathbb{F}_2}$ abels.

Vervolg ...

$$R_{(c_i)}(\alpha) = R_{c_{i-1}}R_{c_{i-2}}...R_{c_0}(\alpha) = ???$$
 R_y inverteerbaar : $\{\alpha, \alpha^2\} \rightarrow \{\alpha, \alpha^2\}$
 $\Rightarrow R_{\mathbb{F}_4/\mathbb{F}_2}$ abels.
Vervolg ...

Algemeen: $R_{(c_i)}(n_0), \sum, \prod$

$$E^2 + cE - 1$$
 reduciebel (triviaal)

$$E^2 + cE - 1$$
 reduciebel (triviaal)
 $E^2 + cE - 1$ irreduciebel

ΔVG met constante coef

$$E^2 + cE - 1$$
 reduciebel (triviaal)
 $E^2 + cE - 1$ irreduciebel \rightarrow
 $L = \frac{F[X]}{(X^2 - cX - 1)}$

$$E^2 + cE - 1$$
 reduciebel (triviaal)
 $E^2 + cE - 1$ irreduciebel \rightarrow
 $L = \frac{F[X]}{(X^2 - cX - 1)} \Rightarrow$
 $R_c(X) = X \Rightarrow R_{(c)}(X) = X$

$$E^2 + cE - 1$$
 reduciebel (triviaal)
 $E^2 + cE - 1$ irreduciebel \rightarrow
 $L = \frac{F[X]}{(X^2 - cX - 1)} \Rightarrow$
 $R_c(X) = X \Rightarrow R_{(c)}(X) = X$
opl met $\sum, \prod ... g_i$

$$E^2 + cE - 1$$
 reduciebel (triviaal)
 $E^2 + cE - 1$ irreduciebel \rightarrow
 $L = \frac{F[X]}{(X^2 - cX - 1)} \Rightarrow$
 $R_c(X) = X \Rightarrow R_{(c)}(X) = X$
opl met $\sum, \prod ... g_i$