14 TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2072 Magh

Eran.	New Bank 20	66-KLaherB	aigh)
Level	BE	Full Marks	80
Programme	BEL, BEX, BCT. B. Agri, BGE	Pass Marks	32
Year/Part	II / II	Time	3 hrs.

Subject: - Numerical Method (SH553)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- √ Assume suitable data if necessary.

[4]

[6]

[8]

[4]

- 1. Discuss the necessity of numerical methods in the field of Science and Engineering in this modern age of computers.
- 2. Find a real root of the equation xtanu-1 = 0 using bisection method correct up to three (3) significant digits.
- 3 Write Psudocode for solving a Non-Linear equation using the secant method. [6]
- 4. Find the inverse of the matrix $A = \begin{bmatrix} 2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 1 & 1 \end{bmatrix}$ using Gauss Jordan method. [8]
- 5. Find the largest eigen value and the corresponding eigen vector of the following matrix. [8]
 - $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$
- 6. Using the least square method, determine the exponential fit of the form $y = ae^{bx}$ for the following data:

X	0	1	2	3	4	5
У	1.5	2.5	3.5	5.0	7.5	11.25

7. Compute y(6) from the following data using Cubic Spline Interpolation.

X	1	3	5	7	9
У	3	5	4	2	3

- 8. Derive an expression for evaluating first and second derivatives using Newton forward difference interpolation formula.
- 9. Evaluate $\int_0^3 (\sin x + \cos x + 2) dx$ using Simpson's -3/8 rule taking h = 0.5. Determine the percentage error by comparing the result with exact solution. [4+2]
- Using Finite difference method solve the BVP: $y'' = 4y' 4y + e^{2x}$, y(0) = 0, y(1) = 2 for three internal points in (0,1).
- Write algorithm for solving an initial value problem of first order using RK-4 method. [4]
- 12. Solve the equation $\nabla^2 u = -10(x^2 + xy + 10)$ over the square with sides x = y = 0, x = y = 3 with u = 10 on the boundary and mesh length 1.

[10]