机器学习 课程笔记

酥雨

zusuyu@stu.pku.edu.cn

 $\mathrm{June}\ 7,\ 2022$

目录

1	Inec	qualities	2
2	\mathbf{vc}	Theory	5
3	Gan	ne Theory	7
4	Lag	range Duality, Linear Seperation, SVM and more	8
5	Boo	osting	9
6	PAC	C-Bayesian Theory	11
	6.1	PAC-Bayesian Bound for SVM	12
7	Alge	orithmic Stability	13
8	Uns	supervised Learning	15
	8.1	Clustering	15
		8.1.1 K-means	15
		8.1.2 K-means++	15
	8.2	Dimensionality Reduction	15
9	Online Learning		
	9.1	Online Learning with Expert Advice	16
		9.1.1 Weighted Majority Vote	16
		9.1.2 Randomized Weighted Updating	17
		9.1.3 Hedge Algorithm	17
	9.2	Proof of Minimax Theorem via Online Learning	18
		9.2.1 The \geqslant Direction	18
		9.2.2 The \leq Direction	18
	9.3	Multi-arm Bandits (MAB) Problem	19
		9.3.1 UCB Algorithm	19
		9.3.2 Thompson Sampling	21
10	Diff	Gerential Privacy	22
	10.1	Laplace Mechanism	22
		BLR Mechanism	23
11	Rei	nforcement Learning	25
	11.1	Finding Optimal Policy	25

1 Inequalities

定理 1.1 (Markov Inequality). 如果非负随机变量 X 期望存在,则对于任意 k > 0,

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \frac{\mathbb{E}\left[X\right]}{k}$$

进一步地, 如果 r 阶矩 $\mathbb{E}[X^r]$ 存在, 则对于任意 k > 0,

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \min_{j \leqslant r} \frac{\mathbb{E}\left[X^{j}\right]}{k^{j}}$$

定理 1.2 (Chebyshev Inequality). 如果随机变量 X 方差存在,则对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right| \geqslant \varepsilon\right] \leqslant \frac{\operatorname{Var}\left[X\right]}{\varepsilon^{2}}$$

定义 1.1 (矩生成函数, Moment Generating Function, MGF). 如果随机变量 X 的任意 $n \in \mathbb{N}$ 阶矩存在,则定义其矩生成函数为

$$M_X(t) = \mathbb{E}\left[e^{tX}\right] = \sum_{i \ge 0} t^i \frac{\mathbb{E}\left[X^i\right]}{i!}$$

定理 1.3 (Chernoff Inequality).

$$\mathbb{P}\left[X \geqslant k\right] \leqslant \inf_{t>0} e^{-tk} M_X(t)$$

定理 1.4. $X_1, X_2, \dots, X_n \sim \text{ i.i.d. } \mathcal{B}(1,p),$ 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

其中 $D_B(p||q)$ 是两个 Bernoulli distribution P=(p,1-p), Q=(q,1-q) 之间的相对熵. 证明.

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right] = \mathbb{P}\left[\sum_{i=1}^{n}X_{i}\geqslant n(p+\varepsilon)\right]$$

$$\leqslant \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^{n}X_{i}}\right]$$

$$= \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}\prod_{i=1}^{n}\mathbb{E}\left[\mathrm{e}^{tX_{i}}\right]$$

$$= \inf_{t>0}\mathrm{e}^{-tn(p+\varepsilon)}(p\mathrm{e}^{t}+1-p)^{n}$$

$$= \inf_{t>0}\left(\frac{p\mathrm{e}^{t}+1-p}{\mathrm{e}^{t(p+\varepsilon)}}\right)^{n}$$

通过"简单"求导, 取 $t=\ln\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}$ 时上式右边取最小值, 从而有

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\left(\frac{\frac{(1-p)(p+\varepsilon)}{1-p-\varepsilon}+1-p}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n}=\left(\frac{\frac{1-p}{1-p-\varepsilon}}{\left(\frac{(1-p)(p+\varepsilon)}{p(1-p-\varepsilon)}\right)^{p+\varepsilon}}\right)^{n}\\ =\left(\left(\frac{p}{p+\varepsilon}\right)^{p+\varepsilon}\left(\frac{1-p}{1-p-\varepsilon}\right)^{1-p-\varepsilon}\right)^{n}=\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

定理 1.5. $X_1, X_2, \dots, X_n \in [0, 1]$ 是 n 个期望相同的独立随机变量, $\mathbb{E}[X_i] = p$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

证明. 注意到指数函数是下凸的, 根据 Jensen Inequality, 有

$$\mathbb{E}\left[\mathbf{e}^{tX}\right] \leqslant \mathbb{E}\left[X\mathbf{e}^{t} + (1 - X)\mathbf{e}^{0}\right] = p\mathbf{e}^{t} + 1 - p$$

从而

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] \leqslant (pe^{t}+1-p)$$

沿用定理 1.4 的证明即可.

定理 1.6 (Chernoff Bound). $X_1, X_2, \dots, X_n \in [0,1]$ 是 n 个独立随机变量, $\mathbb{E}[X_i] = p_i$, 记 $p = \frac{1}{n} \sum_{i=1}^n p_i$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-nD_{B}(p+\varepsilon\parallel p)}$$

证明. 注意到对数函数是上凸的, 从而函数 $f(x) = \ln(xe^t + 1 - x)$ 也是上凸的, 同样根据 Jensen Inequality, 有

$$\frac{1}{n} \sum_{i=1}^{n} \ln(p_i e^t + 1 - p_i) \leqslant \ln(p e^t + 1 - p)$$

从而

$$\mathbb{E}\left[e^{t\sum_{i=1}^{n}X_{i}}\right] \leqslant \prod_{i=1}^{n}(p_{i}e^{t}+1-p_{i}) \leqslant (pe^{t}+1-p)^{n}$$

定理 1.7 (Additive Chernoff Bound). $X_1, X_2, \dots, X_n \in [0,1]$ 是 n 个独立随机变量, $\mathbb{E}[X_i] = p_i$, 记 $p = \frac{1}{n} \sum_{i=1}^{n} p_i$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}}$$

证明. 只需要证明 $D_B(p+\varepsilon||p) \ge 2\varepsilon^2$ 即可. 听说可以暴力求导.

定理 1.8 (Hoeffding Bound). X_1, X_2, \dots, X_n 是 n 个独立随机变量, $X_i \in [a_i, b_i]$, 记 $p = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{n} \sum_{i=1}^n \frac{a_i + b_i}{2}$, 对于任意 $\varepsilon > 0$,

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-\frac{2n\varepsilon^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}b_{i}-a_{i}\right)^{2}}}\leqslant\mathrm{e}^{-\frac{2n^{2}\varepsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}}$$

定理 1.9 (McDiarmid Inequality). $X_1, X_2, \dots, X_n \in \mathcal{X}$ 是 n 个独立随机变量, 如果对于 $f: \mathcal{X}^n \to \mathbb{R}$ 存在 常数 c_1, c_2, \dots, c_n 使得

$$|f(x_1,\cdots,x_i,\cdots,x_n)-f(x_1,\cdots,x_i',\cdots,x_n)|\leqslant c_i$$

对于任意 $i \in [n], x_1, \dots, x_n, x_i'$ 成立, 则对于任意 $\varepsilon > 0$, 有

$$\mathbb{P}\left[f(x_1,\dots,x_n) - \mathbb{E}\left[f(x_1,\dots,x_n)\right] \geqslant \varepsilon\right] \leqslant \exp\left(\frac{-2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

定理 1.10 (Draw with/without Replacement). 有 m 个数 $a_1, \dots, a_m \in \{0, 1\}$, 记 $p = \frac{1}{m} \sum_{i=1}^m a_i$. X_1, \dots, X_n 为从 $\{a_1, \dots, a_m\}$ 中的随机放回抽样, Y_1, \dots, Y_n 为从 $\{a_1, \dots, a_m\}$ 中的随机不放回抽样, 则对于任意 $\varepsilon > 0$ 有

$$\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}},\qquad\mathbb{P}\left[\frac{1}{n}\sum_{i=1}^{n}Y_{i}-p\geqslant\varepsilon\right]\leqslant\mathrm{e}^{-2n\varepsilon^{2}}$$

证明. 对于随机放回抽样, 显然每次抽样是独立的, 从而结论是 Chernoff Bound 的平凡推论.

对于随机不放回抽样, 注意到 $\mathbb{E}\left[\prod_{i\in I}Y_i\right]\leqslant\mathbb{E}\left[\prod_{i\in I}X_i\right]$ 对任意指标集 $I\subseteq\{1,\cdots,n\}$ 成立, 从而可以证明 $\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^nY_i}\right]\leqslant\mathbb{E}\left[\mathrm{e}^{t\sum_{i=1}^nX_i}\right].$

2 VC Theory

对一个分类器 f, 通常有两种评价指标: training error $err_S(f) = \mathbb{P}_{(x,y)\in S}[y \neq f(x)]$ 与 generalization error $err_D(f) = \mathbb{P}_{(x,y)\sim D}[y \neq f(x)]$. 接下来可能会不加声明地用 S 表示从数据集 D 中 sample 出来的训练集.

称 $err_D(f) - err_S(f)$ 为分类器 f 的 generalization gap. 我们提出<u>一致收敛 (uniformly converge)</u> 的概念,它表示随着训练集 S 的增大,hypothesis space F 中的所有分类器 f 的 generalization gap 都会"一致"地被 bound 住.

定理 2.1 (Uniform Convergence when $|\mathcal{F}| < \infty$). S 是从数据集 D 中随机采样的训练集, |S| = n, 有

$$\mathbb{P}\left[\forall f \in \mathcal{F}, err_D(f) - err_S(f) \geqslant \varepsilon\right] \leqslant |\mathcal{F}| e^{-2n\varepsilon^2}$$

证明. 对于某个确定的 $f \in \mathcal{F}$, 注意到 $err_S(f) = \frac{1}{n} \sum_{i=1}^n [y_i \neq f(x_i)]$, $\mathbb{E}[y_i \neq f(x_i)] = err_D(f)$, 故根据 Chernoff Bound 有 $\mathbb{P}[err_D(f) - err_S(f) \geq \varepsilon] \leq e^{-2n\varepsilon^2}$. 再结合 Union Bound 即得结论.

定理 2.2 (VC Theorem). 对于 VC-dimension (会在接下来定义) 为 d 的 hypothesis space \mathcal{F} , 从数据集 D 中随机采样大小为 n 的训练集 S, 则

$$\mathbb{P}\left[\sup_{f\in\mathcal{F}}|err_D(f) - err_S(f)| \geqslant \varepsilon\right] \leqslant 4\left(\frac{2\mathrm{e}n}{d}\right)^d \mathrm{e}^{-n\varepsilon^2/8}$$

或者等价地, 有至少 $1-\delta$ 的概率, 对所有 $f \in \mathcal{F}$ 有

$$err_D(f) \leqslant err_S(f) + O\left(\sqrt{\frac{d \ln n + \ln(1/\delta)}{n}}\right)$$

为了接下来的叙述方便, 我们引入一些记号:

- 对于分类器 $f \in \mathcal{F}$ 以及数据点 $z = (x, y) \sim D$, 定义 $\phi_f(z) = \mathbb{1}[y \neq f(x)]$, 即每个 ϕ_f 是一个 "长度为 |D|" 的 01 串, 1 表示 f 会在这一位对应的数据点上出错.
- 定义 $\Phi_F = \{\phi_f | f \in \mathcal{F}\}$. 由于以下不会超过一个 hypothesis space, 故省略角标简记为 Φ .

如此一来, 对于 $S=\{z_1=(x_1,y_1),\cdots,z_n=(x_n,y_n)\}$, 两种错误率 $err_S(f)$ 和 $err_D(f)$ 就分别等价于 $\frac{1}{n}\sum_{i=1}^{n}\phi_f(z_i)$ 和 $\mathbb{E}_{z\sim D}\phi_f(z)$, 而我们需要限制的概率也变成了

$$\mathbb{P}_{S \sim D^n} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \mathbb{E}_{z \sim D}[\phi(z)] \right| \geqslant \varepsilon \right]$$

引理 2.1 (Double Sampling). 取 $n \geqslant \frac{\ln 2}{\varepsilon^2}$, 有

$$\mathbb{P}_{S \sim D^n} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \mathbb{E}_{z \sim D}[\phi(z)] \right| \geqslant \varepsilon \right] \leqslant 2 \mathbb{P}_{S \sim D^{2n}} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_i) \right| \geqslant \frac{\varepsilon}{2} \right]$$

通过 Double Sampling, 我们只需要限制 $\frac{1}{n}\sum_{i=1}^n\phi(z_i)$ 与 $\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_i)$ 的差. 考虑一种新的抽样方式, 先随机抽取 $\{z_1,\cdots,z_{2n}\}$, 再对其随机排列, 这样显然是与原先等价的, 即

$$\mathbb{P}_{S \sim D^{2n}} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_i) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_i) \right| \geqslant \varepsilon \right] = \mathbb{E}_{S \sim D^n} \left[\mathbb{P}_{\sigma} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_{\sigma(i)}) \right| \geqslant \varepsilon \right] \right]$$

这么做的意义是什么?意义是可以先只考虑内层的 \mathbb{P}_{σ} 而不管 $S \sim D^n$ 的选取. 看似强行取的随机排列 σ 是为了内层可以被 bound, 不然 $\mathbb{1}\left[\left|\frac{1}{n}\sum_{i=1}^n\phi(z_i)-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_i)\right|\geqslant\varepsilon\right]$ 还不太方便处理.

记 $N^{\Phi}(z_1,\cdots,z_n)$ 表示 # $\{(\phi(z_1),\cdots,\phi(z_n))|\phi\in\Phi\}$, 即 Φ 中的所有 01 串在数据点 z_1,\cdots,z_n 上有多少种不同的. 从这个角度想, 其实 $\sup_{\phi\in\Phi}$ 只是在对有限项求 \max , 故根据 Union Bound 可以得到

$$\mathbb{P}_{\sigma}\left[\sup_{\phi\in\Phi}\left|\frac{1}{n}\sum_{i=1}^{n}\phi(z_{\sigma(i)})-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_{\sigma(i)})\right|\geqslant\varepsilon\right]\leqslant N^{\Phi}(z_{1},\cdots,z_{2n})\mathbb{P}_{\sigma}\left[\left|\frac{1}{n}\sum_{i=1}^{n}\phi(z_{\sigma(i)})-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_{\sigma(i)})\right|\geqslant\varepsilon\right]$$

其实这里写得不太严谨,右边应该是对 $N^{\Phi}(z_1,\cdots,z_{2n})$ 个不同的 ϕ 分别求概率再相加,但我们接下来会对任意 ϕ 限制 $\mathbb{P}_{\sigma}\left[\left|\frac{1}{n}\sum_{i=1}^{n}\phi(z_{\sigma(i)})-\frac{1}{n}\sum_{i=n+1}^{2n}\phi(z_{\sigma(i)})\right|\geqslant\varepsilon\right]$,所以应该也无伤大雅.

对于一个特定的 $\phi \in \Phi$, 考虑 $\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)})$ 其实就是在 $\{\phi(z_1), \cdots, \phi(z_{2n})\}$ 这 2n 个数中做不放回抽样, 故根据定理 1.10, 有

$$\mathbb{P}_{\sigma} \left[\left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_{\sigma(i)}) \right| \geqslant \varepsilon \right] = 2\mathbb{P}_{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_{\sigma(i)}) \geqslant \varepsilon \right] \\
= 2\mathbb{P}_{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - \frac{1}{2n} \sum_{i=1}^{2n} \phi(z_{\sigma(i)}) \geqslant \frac{\varepsilon}{2} \right] \\
= 2\mathbb{P}_{\sigma} \left[\frac{1}{n} \sum_{i=1}^{n} \phi(z_{\sigma(i)}) - p \geqslant \frac{\varepsilon}{2} \right] \\
\leqslant 2e^{-\frac{n\varepsilon^{2}}{2}}$$

从而我们得到了

$$\mathbb{P}_{S \sim D^{2n}} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^{n} \phi(z_i) - \frac{1}{n} \sum_{i=n+1}^{2n} \phi(z_i) \right| \geqslant \varepsilon \right] \leqslant 2e^{-\frac{n\varepsilon^2}{2}} \mathbb{E}_{S \sim D^{2n}} \left[N^{\Phi}(z_1, \dots, z_{2n}) \right]$$

于是我们只需要限制 Growth Function $N^{\Phi}(n) = \max_{S \sim D^n} N^{\Phi}(z_1, \cdots, z_n)$ 即可. 除去 $N^{\Phi}(n) \equiv 2^n$ 这种 平凡的情况 (这种情况意味着这种场景是 somehow not learnable 的), 我们指出 $N^{\Phi}(n)$ 是多项式增长的.

引理 2.2. 假设
$$N^{\Phi}(d+1) < 2^{d+1}$$
 成立,则对于任意 $n \ge d+1$,都有 $N^{\Phi}(n) \le \sum_{k=0}^{d} \binom{n}{k}$.

证明. $N^{\Phi}(d+1) < 2^{d+1}$ 说明存在一种 $w \in \{0,1\}^{d+1}$ 无法被 Φ 表示, 我们将其称为 <u>forbidden pattern</u>. 对于 $n \ge d+1$,考虑指标集 $\mathcal{I} = \{i_1, i_2, \cdots, i_{d+1}\} \subseteq [n]$,用 $w_{\mathcal{I}} \in \{0, 1, *\}^n$ 表示在 \mathcal{I} 指标上填 w,其余位置填通配符 * 得到的 n 位 01 串模式. 用 $E(w_{\mathcal{I}})$ 表示能被 $w_{\mathcal{I}}$ 模式匹配的 n 位 01 串集合, 我们需要做的是限制 $|\bigcup_{\mathcal{I}} E(w_{\mathcal{I}})|$ 的上界 (从而限制其补集的下界).

如果 $w=0^{d+1}$, 那么这个问题是好办的, 因为相当于 $\bigcup_{\mathcal{I}} E(w_{\mathcal{I}})$ 中包含了所有有至少 d+1 个 0 的 01 串, 答案就恰好是 $\sum_{k=d+1}^{n} \binom{n}{k}$. 如果 $w\neq 0^{d+1}$, 直观来看 $\bigcup_{\mathcal{I}} E(w_{\mathcal{I}})$ 的大小不会减小, 因此结论依然成立. 详细证明则是对于每个 $i\in [n]$, 把所有 $w_{\mathcal{I}}$ 在这一位上的 1 变成 0, 验证并不会使集合大小变大.

推论 2.1. 考虑 $\sum_{k=0}^d \binom{n}{k} \leqslant \left(\frac{en}{d}\right)^d = O(n^d)$, 我们最终得到了

$$\mathbb{P}_{S \sim D^n} \left[\sup_{\phi \in \Phi} \left| \frac{1}{n} \sum_{i=1}^n \phi(z_i) - \mathbb{E}_{z \sim D}[\phi(z)] \right| \geqslant \varepsilon \right] \leqslant 4 \left(\frac{2en}{d} \right)^d e^{-\frac{n\varepsilon^2}{8}}$$

其中 $d = \max\{n|N^{\Phi}(n) = 2^n\}$ 被定义为 hypothesis space \mathcal{F} 的 VC dimension.

3 Game Theory

Game theory is the study of mathematical models of strategic interactions among rational agents, cited from Wikipedia.

我们引入"双人矩阵博弈"作为对博弈论最基础的介绍. 注意, 接下来我们考虑的所有问题都是零和的.

定义 3.1 (Two-player Matrix Game). 有一个 $M \in \mathbb{R}^{m \times n}$ 的矩阵. 两名玩家 Alice 和 Bob 参加了这场博弈. Alice, the row player 选择一行 $i \in [m]$, 相应的, Bob, the column player 选择一列 $j \in [n]$, 此时 Alice 获得收益 $-M_{ij}$, Bob 获得收益 M_{ij} .

我们首先探讨纯策略 (pure strategy) 的情景, 指的是 Alice 和 Bob 必须分别选择某个确定的行或列.

当 Alice 先做出选择时, 当她选出第 i 行后, 她会认为 Bob 会选择第 $j_i = \arg\max_j M_{ij}$ 列, 因此她会选择第 $\arg\min_i \max_j M_{ij}$ 行, 导致最终的博弈结果为 $\min_i \max_j M_{ij}$.

同理, 当 Bob 先做选择时, 他会选择第 $\arg\max_{j} \min_{i} M_{ij}$ 列, 导致最终的博弈结果为 $\max_{j} \min_{i} M_{ij}$. 我们指出在纯策略的情境下, 后手是有优势的, 即

定理 3.1. $\min_i \max_j M_{ij} \geqslant \max_j \min_i M_{ij}$ 对于任意 $M \in \mathbb{R}^{m \times n}$ 都成立,同时存在 M',使 $\min_i \max_j M'_{ij} > \max_j \min_i M'_{ij}$.

证明. 记 $i_0 = \arg\min_i \max_j M_{ij}, j_0 = \arg\max_j \min_i M_{ij},$ 有

$$\min_i \max_j M_{ij} = \max_j M_{i_0j} \geqslant M_{i_0j_0} \geqslant \min_i M_{ij_0} = \max_j \min_i M_{ij}$$

考虑
$$M' = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
,有 $\min_i \max_j M'_{ij} = -1$, $\max_j \min_i M'_{ij} = 1$.

接着我们研究**混合策略 (mixed strategy)**, 其意味着玩家做出的决策可以不是确定的行列选择, 而是一个概率分布. 相应地, 得到的收益也就变成了期望收益.

形式化地, Alice 选择给出概率分布 $p=(p_1,\cdots,p_m)\in[0,1]^m$, Bob 给出概率分布 $q=(q_1,\cdots,q_n)\in[0,1]^n$. 合法的概率分布需要满足 $\|p\|_1=\|q\|=1$, 而此时两人的收益也分别是 $-p^{\mathrm{T}}Mq$ 与 $p^{\mathrm{T}}Mq$.

与纯策略的情境同理, 当 Alice 先手时, 博弈结果为 $\min_{p \in [0,1]^m, \|p\|_1 = 1} \max_{q \in [0,1]^n, \|q\|_1 = 1} p^{\mathrm{T}} M q$, 当 Bob 先手时, 博弈结果为 $\max_{q \in [0,1]^n, \|q\|_1 = 1} \min_{p \in [0,1]^m, \|p\|_1 = 1} p^{\mathrm{T}} M q$. 在接下来的叙述中, 我们默认 p,q 应取合法的概率分布, 而忽略在 \min , \max 记号下的明确限制.

我们想要知道混合策略下后手还有没有优势. John von Neuman 告诉我们, 没有.

定理 3.2 (von Neuman Minimax Theorem).

$$\min_{p} \max_{q} p^{\mathrm{T}} M q = \max_{q} \min_{p} p^{\mathrm{T}} M q$$

4 Lagrange Duality, Linear Seperation, SVM and more

开摆了.

5 Boosting

Boosting 做的事情就是把一堆 classifier 放在一起,从而得到一个更准确的 classifier.

以下算法中, γ -weak learning algorithm 表示其可以对于任意输入的带权训练集 D, 都能给出一个 classifier, 能在至少 $\frac{1+\gamma}{2}$ 的数据上得到正确的结果.

 $\triangleright \gamma_t \geqslant \gamma$

Algorithm 1 AdaBoost

Require: training set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}, \gamma$ -weak learning algorithm \mathcal{A}

1:
$$D_1(i) \leftarrow \frac{1}{n}, \forall i \in [n].$$

2: for
$$t = 1 \rightarrow T$$
 do

Use \mathcal{A} to learn a classifier h_t based on D_t .

4:
$$\varepsilon_t \leftarrow \sum_{i=1}^n D_t(i) \mathbb{1}[y_i \neq h_t(x_i)]$$

5: $\gamma_t \leftarrow 1 - 2\varepsilon_t$

$$i=1$$

6:
$$\alpha_t \leftarrow \frac{1}{2} \ln \frac{1+\gamma_t}{1-\gamma_t}$$

7:
$$Z_t \leftarrow \sum_i D_t(i) \exp(-y_i \alpha_t h_t(x_i)) \left(=2\sqrt{\varepsilon_t(1-\varepsilon_t)}\right)$$

8:
$$D_{t+1}(i) \leftarrow \frac{1}{Z_t} D_t(i) \exp(-y_i \alpha_t h_t(x_i))$$

9: end for

10: **return** a classifier
$$F$$
, $F(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right) = \operatorname{sgn}(f(x))$

我们陈述以下命题:

1.
$$\alpha_t = \arg\min_{\alpha} Z_t = \arg\min_{\alpha} \sum_{i=1}^n D_t(i) \exp(-\alpha y_i h_t(x_i)).$$

2.
$$\prod_{t=1}^{T} Z_t = \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(x_i)\right) = \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i f(x_i)\right).$$

3. $\sum_{i=1}^{n} D_{t+1}(i)\mathbb{I}[y_i \neq h_t(x_i)] = \frac{1}{2}$. (与证明最终结果无关, 在此是为了指明每一轮中训练得到的 h_t 的优化方向

4.
$$\mathbb{P}_{(x_i,y_i)\sim S}[F(x_i)\neq y_i] \leqslant (1-\gamma^2)^{T/2}$$
.

注意到 $\mathbb{P}_{(x_i,y_i)\sim S}\left[F(x_i)\neq y_i\right]$ 的最小非零结果应为 $\frac{1}{n}$, 故我们只需要限制 $(1-\gamma^2)^{T/2}<\frac{1}{n}$, 即 $T=\Omega(\log n)$, 就能将 error 降为 0.

1. Recall that $\varepsilon_t = \sum_{i=1}^n D_t(i)\mathbb{I}[y_i \neq h_t(x_i)]$, by applying **AM-GM inequality** we have

$$Z_t = \sum_{i=1}^n D_t(i) \exp(-\alpha y_i h_t(x_i)) = \varepsilon_t \exp(\alpha) + (1 - \varepsilon) \exp(-\alpha) \geqslant 2\sqrt{\varepsilon_t (1 - \varepsilon_t)}$$

where the equality holds if and only if

$$\varepsilon_t e^{\alpha} = (1 - \varepsilon_t) e^{-\alpha} \Leftrightarrow \alpha = \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t} = \frac{1}{2} \ln \frac{1 + \gamma_t}{1 - \gamma_t} = \alpha_t$$

where $\gamma_t = 1 - 2\varepsilon$ in the assignment of α_t . This suggests that $\alpha_t = \arg\min_{t \in S} Z_t$ as desired.

2. Notice that $D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$, by iteratively substitute the term of $D_t(i)$ in the expression

of Z_T $(Z_T = \sum_{i=1}^n D_T(i) \exp(-\alpha_T y_i h_T(x_i)))$, we can eventually obtain the following equality.

$$\prod_{t=1}^{T} Z_{t} = \prod_{t=1}^{T-1} Z_{t} \sum_{i=1}^{n} D_{T}(i) \exp(-\alpha_{T} y_{i} h_{T}(x_{i}))$$

$$= \prod_{t=1}^{T-2} Z_{t} \sum_{i=1}^{n} D_{T-1}(i) \exp(-\alpha_{T} y_{i} h_{T}(x_{i}) - \alpha_{T-1} y_{i} h_{T-1}(x_{i}))$$

$$= \cdots$$

$$= \sum_{i=1}^{n} D_{0}(i) \exp\left(-y_{i} \sum_{t=1}^{T} \alpha_{t} h_{t}(x_{i})\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \exp(-y_{i} f(x_{i}))$$

3.

$$\begin{split} \sum_{i=1}^n D_{t+1}(i)\mathbb{I}[y_i \neq h_t(x_i)] &= \sum_{i=1}^n \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \mathbb{I}[y_i \neq h_t(x_i)] \\ &= \frac{\sum_{i=1}^n D_t(i) \exp(\alpha_t) \mathbb{I}[y_i \neq h_t(x_i)]}{\sum_{i=1}^n D_t(i) \exp(\alpha_t) \mathbb{I}[y_i \neq h_t(x_i)] + \sum_{i=1}^n D_t(i) \exp(-\alpha_t) \mathbb{I}[y_i = h_t(x_i)]} \\ &= \frac{\varepsilon_t \mathrm{e}^{\alpha_t}}{\varepsilon_t \mathrm{e}^{\alpha_t} + (1 - \varepsilon_t) \mathrm{e}^{-\alpha_t}} \end{split}$$

Since α_t is chosen so that $\varepsilon_t e^{\alpha_t} = (1 - \varepsilon_t)e^{-\alpha_t}$, we can prove that $\sum_{i=1}^n D_{t+1}(i)\mathbb{I}[y_i \neq h_t(x_i)] = \frac{1}{2}$.

4.

$$\mathbb{P}_{(x_i, y_i) \sim S}[F(x_i) \neq y_i] = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[y_i f(x_i) \leqslant 0] \leqslant \frac{1}{n} \sum_{i=1}^n \exp(-y_i f(x_i)) = \prod_{t=1}^T Z_t$$

$$= \prod_{t=1}^T 2\sqrt{\varepsilon_t (1 - \varepsilon_t)} = \prod_{t=1}^T \sqrt{1 - \gamma_t^2} \leqslant (1 - \gamma^2)^{T/2}$$

6 PAC-Bayesian Theory

定理 6.1 (PAC-Bayesian Theorem). 对于给定的 prior distribution of classifiers \mathcal{P} , 从数据集 D 中随机抽取 大小为 n 的训练集 S, 有至少 $1-\delta$ 的概率, 对于任意 distribution of classifiers \mathcal{Q} 有如下不等式成立

$$\mathbb{E}_{h \sim \mathcal{Q}}[err_D(h)] \leqslant \mathbb{E}_{h \sim \mathcal{Q}}[err_S(h)] + \sqrt{\frac{D_{KL}(\mathcal{Q}||\mathcal{P}) + \log(3/\delta)}{n}}$$

其中 $err_X(f)$ 表示 classifier f 在数据集 X 上的错误率,即 $\mathbb{P}_{(x,y)\in X}[y\neq f(x)]$, $D_{KL}(\mathcal{Q}||\mathcal{P})=\mathbb{E}_{h\sim\mathcal{Q}}\left[\ln\frac{\mathcal{Q}_h}{\mathcal{P}_h}\right]$ 为概率分布 \mathcal{Q} 与 \mathcal{P} 的 KL 散度.

引理 6.1. 对于任意在 hypothesis space \mathcal{F} 上的概率分布 \mathcal{P}, \mathcal{Q} , 以及任意函数 $f: \mathcal{F} \to \mathbb{R}$, 都有

$$\mathbb{E}_{h \sim Q}[f(h)] \leqslant \ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + D_{KL}(\mathcal{Q}||\mathcal{P})$$

证明.

RHS – LHS =
$$\ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + D_{KL}(\mathcal{Q}||\mathcal{P}) - \mathbb{E}_{h \sim Q}[f(h)]$$

= $\ln \mathbb{E}_{h' \sim P}[\exp(f(h'))] + \mathbb{E}_{h \sim \mathcal{Q}}\left[\ln \frac{\mathcal{Q}_h}{\mathcal{P}_h}\right] - \mathbb{E}_{h \sim Q}[f(h)]$
= $\mathbb{E}_{h \sim Q}\left[\ln \frac{\mathcal{Q}_h}{\frac{\mathcal{P}_h \exp(f(h))}{\mathbb{E}_{h' \sim \mathcal{P}}[\exp(f(h'))]}}\right]$
= $\mathbb{E}_{h \sim Q}\left[\ln \frac{\mathcal{Q}_h}{\mathcal{R}_h}\right]$
= $D_{KL}(\mathcal{Q}||\mathcal{R})$
 $\geqslant 0$

其中 \mathcal{R} 也是一个 \mathcal{F} 上的概率分布, $\mathcal{R}_h = \frac{\mathcal{P}_h \exp(f(h))}{\mathbb{E}_{h' \sim \mathcal{P}}[\exp(f(h'))]}$.

引理 6.2. 对于任意 $\delta > 0$, 有

$$\mathbb{P}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n(err_D(h) - err_S(h))^2}] \geqslant 3/\delta \right) \leqslant \delta$$

证明. 先证明对于某个固定的 $h \sim \mathcal{P}$, 有

$$\mathbb{E}_{S \sim D^n} \left[e^{n(err_D(h) - err_S(h))^2} \right] \leqslant 3$$

记 $\Delta = |err_D(h) - err_S(h)|$, 根据 Chernoff bound, 有

$$\mathbb{P}_{S \sim D^n}(\Delta \geqslant \varepsilon) \leqslant 2 \exp(-2n\varepsilon^2)$$

于是

$$\mathbb{E}_{S \sim D^n} \left[e^{n\Delta^2} \right] = \int_0^{+\infty} \mathbb{P}_{S \sim D^n} \left(e^{n\Delta^2} \ge t \right) dt$$
$$= \int_1^{+\infty} \mathbb{P}_{S \sim D^n} \left(\Delta \ge \sqrt{\frac{\ln t}{n}} \right) dt + 1$$
$$\le \int_1^{+\infty} 2e^{-2\ln t} dt + 1$$
$$= 3$$

随后, 使用 Markov Inequality 得到

$$\mathbb{P}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n\Delta^2}] \geqslant 3/\delta \right) \leqslant \frac{\mathbb{E}_{S \sim D^n} \left(\mathbb{E}_{h \sim \mathcal{P}} [e^{n\Delta^2}] \right)}{3/\delta} = \frac{\mathbb{E}_{h \sim \mathcal{P}} \left(\mathbb{E}_{S \sim D^n} [e^{n\Delta^2}] \right)}{3/\delta} \leqslant \frac{\mathbb{E}_{h \sim \mathcal{P}} \left(3 \right)}{3/\delta} = \delta$$

我们利用上述两个引理证明定理 6.1. 有至少 $1-\delta$ 的概率,

$$(\mathbb{E}_{h \sim \mathcal{Q}}[err_D(h) - err_S(h)])^2 \leqslant \mathbb{E}_{h \sim \mathcal{Q}}[\Delta^2]$$

$$= \frac{1}{n} \mathbb{E}_{h \sim \mathcal{Q}}[n\Delta^2]$$

$$\leqslant \frac{1}{n} \left(\ln \mathbb{E}_{h \sim P} \left[e^{n\Delta^2} \right] + D_{KL}(\mathcal{Q} \| \mathcal{P}) \right)$$

$$\leqslant \frac{1}{n} \left(\ln(3/\delta) + D_{KL}(\mathcal{Q} \| \mathcal{P}) \right)$$

其中第一行等号使用了 Cauchy Inequality, 第三行使用了引理 6.1 代入 $f(h) = n\Delta^2$, 第四行使用了引理 6.2, with probability at least $1 - \delta$.

6.1 PAC-Bayesian Bound for SVM

命题 6.1. 对于任意的 distribution of classifiers Q, 令 g_Q 为一个确定性二分类器, $g_Q(x) = \operatorname{sgn}(\mathbb{E}_{h\sim Q}h(x))$, 则

$$err_D(g_Q) \leqslant 2\mathbb{E}_{h \sim Q}[err_D(h)]$$

证明. 如果 $g_{\mathcal{Q}}$ 在一个数据点 x 上出错, 则说明 \mathcal{Q} 中至少一半的 classifier 都在 x 上出错.

考虑两个 distribution of classifiers $\mathcal{P} = \mathcal{N}(\mathbf{0}, I_d), \mathcal{Q} = \mathcal{N}(\mu \mathbf{w}, I_d)$, 其中 $\|\mathbf{w}\|_2 = 1$, μ 是缩放系数. 此时 $g_{\mathcal{Q}}$ 就是传统理解下的 linear classifier \mathbf{w} (这里不考虑常数 b).

根据定理 6.1 的结论, 我们有

$$err_D(g_Q) \leqslant 2 \left[\mathbb{E}_{h \sim Q} err_S(h) + \sqrt{\frac{D_{KL}(Q \| \mathcal{P}) + \log(3/\delta)}{n}} \right]$$

$$\begin{split} D_{KL}(\mathcal{Q}||\mathcal{P}) &= \int_{\mathbb{R}^d} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} \|\mathbf{x} - \mu \mathbf{w}\|^2\right] \frac{1}{2} \left(\|\mathbf{x}\|^2 - \|\mathbf{x} - \mu \mathbf{w}\|^2\right) d\mathbf{x} \\ &= \int_{\lambda} \int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} \|\lambda \mathbf{w} + \mathbf{y} - \mu \mathbf{w}\|^2\right] \frac{1}{2} \left(\|\lambda \mathbf{w} + \mathbf{y}\|^2 - \|\lambda \mathbf{w} + \mathbf{y} - \mu \mathbf{w}\|^2\right) d\lambda d\mathbf{y} \\ &= \int_{\lambda} \int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{d/2}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2 - \frac{1}{2} \|\mathbf{y}\|^2\right] \frac{1}{2} \left(\lambda^2 + \|\mathbf{y}\|^2 - (\lambda - \mu)^2 - \|\mathbf{y}\|^2\right) d\lambda d\mathbf{y} \\ &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] \frac{1}{2} (2\lambda \mu - \mu^2) d\lambda \left[\int_{\mathbf{y} \in \mathbb{R}^{d-1}, \mathbf{y} \perp \mathbf{w}} \frac{1}{(2\pi)^{(d-1)/2}} \exp\left(-\frac{1}{2} \|\mathbf{y}\|^2\right) d\mathbf{y}\right] \\ &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] (\lambda \mu - \mu^2) d\lambda + \frac{\mu^2}{2} \\ &= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (\lambda - \mu)^2\right] \mu d\frac{(\lambda - \mu)^2}{2} + \frac{\mu^2}{2} \\ &= \frac{\mu^2}{2} \end{split}$$

7 Algorithmic Stability

定义 7.1 (一致稳定, Uniform Stability). A 是输入训练集 $S = (z_1, \dots, z_n)$, 输出一个分类器 A(S) 的学习算法. 记 $S^i = (z_1, \dots, z_{i-1}, z'_i, z_{i+1}, \dots, z_n)$ 是与 S 只相差第 i 个数据点的相邻训练集, $\ell(\cdot, \cdot)$ 是损失函数, 即 $\ell(f, z)$ 是在分类器 f 下, 数据点 z 产生的损失.

称学习算法 A 关于 $\ell(\cdot,\cdot)$ 满足 $\beta(n)$ -一致稳定性, 如果对于任意大小为 n 的训练集 S 及其相邻训练集 S^i , 以及任意数据点 z, 都有

$$|\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)| \le \beta(n)$$

定义 7.2 (Risk & Empirical Risk). 分别类似于 test error 与 training error, 定义 risk 与 empirical risk 为

$$R(\mathcal{A}(S)) = \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z)]$$

$$R_{emp}(\mathcal{A}(S)) = \frac{1}{n} \sum_{i=1}^{n} \ell(\mathcal{A}(S), z_i)$$

以下讨论中不会出现超过一个学习算法, 故简记 $\Phi(S) = R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S))$.

定理 7.1 (一致稳定能说明泛化). 对于一个关于 $\ell(\cdot,\cdot)$ 满足 $\beta(n)$ -一致稳定性的学习算法 \mathcal{A} , 其中 $|\ell(\cdot,\cdot)| \leq M$ 有上界, 有

$$\mathbb{P}\left[\Phi(S) \leqslant \varepsilon + \beta(n)\right] \leqslant \exp\left(-\frac{n\varepsilon^2}{2(n\beta(n) + M)^2}\right)$$

或者等价的,有至少 $1-\delta$ 的概率下式成立

$$R(\mathcal{A}(s)) \leqslant R_{emp}(\mathcal{A}(s)) + \beta(n) + (n\beta(n) + M)\sqrt{\frac{2\ln(1/\delta)}{n}}$$

证明. 先证明两个引理.

引理 7.1. 假设 A 是对称的, 即对于任意 n 元置换 σ , 有 $A(\{z_1, \dots, z_n\}) = A(\{z_{\sigma_1}, \dots, z_{\sigma_n}\})$, 则

$$\mathbb{E}_S[\Phi(S)] \leqslant \beta(n)$$

证明.

$$\mathbb{E}_{S}[\Phi(S)] = \mathbb{E}_{S,z}[\ell(\mathcal{A}(S),z)] - \mathbb{E}_{S}[\ell(\mathcal{A}(S),z_1)] = \mathbb{E}_{S,S^1}[\ell(\mathcal{A}(S^1),z_1) - \ell(\mathcal{A}(S),z_1)] \leqslant \beta(n)$$

引理 7.2. 如果 $|\ell(\cdot,\cdot)| \leq M$ 有上界, 则对于任意 S,S^i , 有

$$|\Phi(S) - \Phi(S^i)| \leqslant 2\left(\beta(n) + \frac{M}{n}\right)$$

证明. 除了 $\ell(A(S), z_i) - \ell(A(S^i), z_i')$ 一项外, 其余所有项都可以被 $\beta(n)$ -稳定性限制住.

$$\begin{split} |\Phi(S) - \Phi(S^i)| &= |R(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S)) - R(\mathcal{A}(S^i)) + R_{emp}(\mathcal{A}(S^i))| \\ &\leqslant |R_{emp}(\mathcal{A}(S)) - R_{emp}(\mathcal{A}(S^i))| + |R(\mathcal{A}(S)) - R(\mathcal{A}(S^i))| \\ &= \frac{1}{n} |\ell(\mathcal{A}(S), z_i) - \ell(\mathcal{A}(S^i), z_i')| + \frac{1}{n} \sum_{j \neq i} |\ell(\mathcal{A}(S), z_j) - \ell(\mathcal{A}(S^i), z_j)| + \left| \mathbb{E}_{z \sim D}[\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S^i), z)] \right| \\ &\leqslant \frac{2M}{n} + \frac{n-1}{n} \beta(n) + \beta(n) \\ &\leqslant 2\left(\beta(n) + \frac{M}{n}\right) \end{split}$$

考虑 McDiarmid Inequality (定理 1.9), 把 Φ 视作一个关于 z_1,\cdots,z_n 的多元函数, 则引理 7.1 与引理 7.2 分别给出了 Φ 的期望以及在相邻输入上的差的上界. 于是

$$\mathbb{P}\left[\Phi(S) \geqslant \beta(n) + \varepsilon\right] \leqslant \mathbb{P}\left[\Phi(S) - \mathbb{E}\left[\Phi(S)\right] \geqslant \varepsilon\right] \leqslant \exp\left(-\frac{2n\varepsilon^2}{\sum_{i=1}^n c_i^2}\right) = \exp\left(-\frac{n\varepsilon^2}{2(n\beta(n) + M)^2}\right)$$

8 Unsupervised Learning

前面讨论的都是监督学习. 现在我们讨论一下无监督学习.

无监督学习其实主要在做两件事情: Clustering, 以及 Dimensionality Reduction.

8.1 Clustering

对于一组 $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$, 需要把这些数据点划分成 k 个 cluster S_1, \cdots, S_k . 可以如下定义一种划分的损失函数: 记 $\mu_i = \frac{1}{|S_i|} \sum_{j \in S_i} \mathbf{x}_j$ 为第 i 个 cluster 的中心, 损失函数为

$$L(\{S_1, \dots, S_k\}) = \sum_{i=1}^k \sum_{j \in S_i} \|\mathbf{x}_j - \mu_i\|^2$$

8.1.1 K-means

Algorithm 2 K-means

- 1: Choose k points as cluster centers μ_1, \dots, μ_k uniformly at random.
- 2: repeat
- 3: $S_i \leftarrow \{j : \|\mathbf{x}_j \mu_i\|^2 \leqslant \|\mathbf{x}_j \mu_k\|^2, \forall k \in [m]\}$
- 4: $\mu_i \leftarrow \frac{1}{|S_i|} \sum_{j \in S_i} \mathbf{x}_j$
- 5: **until** k cluster centers do not change
- 6: **return** $\{\mu_1, \cdots, \mu_k\}$

8.1.2 K-means++

Algorithm 3 K-means++

- 1: Choose a point as the cluster center μ_1 uniformly at random.
- 2: for $i:2 \rightarrow n$ do
- 3: Choose a point as the cluster center μ_i , with probability proportional to $\min_{1 \le k < i} \|\mathbf{x}_j \mu_k\|^2$.
- 4: end for
- 5: **return** $\{\mu_1, \cdots, \mu_k\}$

定理 8.1. K-means++ 算法给出的损失 L 与最优解 L_{opt} 满足

$$\mathbb{E}[L] \leqslant 8(\ln k + 2)L_{opt}$$

8.2 Dimensionality Reduction

wlw 不讲了.

9 Online Learning

在在线学习的设定下,数据是以流的形式给出的,在每次得到一个数据点之后,都需要以恰当的方式更新预测器,以优化将来的预测.

相比监督学习, 在线学习主要区别在于: (1) 不再区分 training 与 test, (2) 没有对数据的分布假设, 因而不存在 generalization 的概念. 相应的, mistake model 以及 regret 的概念会被用于衡量在线学习算法的表现效果.

9.1 Online Learning with Expert Advice

有 n 位专家. 预测会持续 T 轮, 每轮中每位专家都会给出各自的预测 $y_{t,i} \in \{0,1\}$, 学习者需要根据此前得到的所有信息给出预测 $\tilde{y_t} \in \{0,1\}$, 同时也会获得正确结果 $y_t \in \{0,1\}$. 学习者的目标是让自己的预测结果与最好的专家尽量接近, 即最小化 $\sum\limits_{t=1}^{T}\mathbbm{1}[\tilde{y_t} \neq y_t]$ 与 $\min\limits_{i \in [n]} \sum\limits_{t=1}^{T}\mathbbm{1}[y_{t,i} \neq y_t]$ 的差 (这就是 regret).

9.1.1 Weighted Majority Vote

Algorithm 4 Weighted Majority Vote

- 1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$
- 2: Choose parameter $\beta \in (0,1)$
- 3: for $t = 1 \rightarrow T$ do

4: Make the Weighted Majority Vote
$$\tilde{y_t} = \begin{cases} 0, & \sum \\ y_{\tilde{t},i}=0 \end{cases} > \sum \\ 1, & \text{otherwise} \end{cases}$$

- 5: if $\tilde{y_t} = y_t$ then
- 6: $w_{t+1,i} \leftarrow w_{t,i}, \forall i \in [n]$
- 7: else

8:
$$w_{t+1,i} \leftarrow \begin{cases} \beta \cdot w_{t,i}, & \tilde{y_{t,i}} \neq y_t \\ w_{t,i}, & \tilde{y_{t,i}} = y_t \end{cases}, \forall i \in [n]$$

- 9: end if
- 10: end for

即每轮选择 \tilde{y}_t 为 n 位专家预测的加权 marjority, 如果出错了, 就把所有导致自己出错的专家的权值乘上 β 作为惩罚.

定理 9.1. 记 $L_T = \sum_{t=1}^T \mathbb{1}[\tilde{y}_t \neq y_t]$ 为学习者的 loss, $m_T^* = \min_{i \in [n]} \sum_{t=1}^T \mathbb{1}[y_{\tilde{t},i} \neq y_t]$ 为最好的专家的 loss, 则在 Weighted Majority Vote 算法下, 有

$$L_T \leqslant \frac{m_T^* \log(1/\beta) + \log n}{\log(2/(1+\beta))}$$

证明. 注意到 (1) T 轮结束后, 所有专家剩余的总权值至少还有 $\beta^{m_T^*}$, (2) 每次学习者出错都会导致总权值乘上不大于 $\frac{1+\beta}{2}$ 的系数, 故

$$\beta^{m_T^*} \leqslant n \left(\frac{1+\beta}{2}\right)^{L_T} \Rightarrow L_T \leqslant \frac{m_T^* \log(1/\beta) + \log n}{\log(2/(1+\beta))}$$

注 9.1. 考虑 $\beta \to 1$, 由 L'Hospital Rule 可知 $\frac{\log(1/\beta)}{\log(2/(1+\beta))} \to 2$, 即 Weighted Majority Vote 算法给出的最好的界中, m_T^* 前的系数至少是 2. 接下来的 Randomized Weighted Updating 算法会给出更好的界.

Algorithm 5 Randomized Weighted Updating

- 1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$
- 2: Choose parameter $\beta \in [\frac{1}{2}, 1)$
- 3: for $t = 1 \rightarrow T$ do
- 4: Chooes $\tilde{y}_t = \tilde{y}_{t,i}$ with probability proportional to $w_{t,i}$

5:
$$w_{t+1,i} \leftarrow \begin{cases} \beta \cdot w_{t,i}, & \tilde{y_{t,i}} \neq y_t \\ w_{t,i}, & \tilde{y_{t,i}} = y_t \end{cases}, \forall i \in [n]$$

6: end for

9.1.2 Randomized Weighted Updating

定理 9.2. 在 Randomized Weighted Updating 算法下, 有

$$\mathbb{E}\left[L_T\right] \leqslant (2 - \beta)m_T^* + \frac{\ln n}{1 - \beta}$$

证明. 注意到权值的更新无关于每轮有没有答错, 因此 $\mathbb{1}[\tilde{y_t} \neq y_t]$ 是独立随机变量.

第 i 轮结束后, 总权值的变化一定是 $W \to W(1-(1-\beta)\mathbb{P}[\tilde{y}_t \neq y_t])$, 由于 $\mathbb{E}[L_T] = \sum_{t=1}^T \mathbb{P}[\tilde{y}_t \neq y_t]$, 因此

$$\beta^{m_T^*} \leqslant n \prod_{t=1}^T (1 - (1 - \beta) \mathbb{P} [\tilde{y_t} \neq y_t]) \leqslant n \prod_{t=1}^T e^{-(1 - \beta) \mathbb{P} [\tilde{y_t} \neq y_t]} = n e^{-(1 - \beta) \mathbb{E} [L_T]}$$

从而得到了

$$\mathbb{E}\left[L_T\right] \leqslant \frac{\ln(1/\beta)m_T^* + \ln n}{1 - \beta}$$

只需要进一步证明 $\frac{\ln(1/\beta)}{1-\beta} \leqslant 2-\beta$. 考虑函数 $f(\beta) = \ln \beta + (1-\beta)(2-\beta), f'(\beta) = \frac{(1-\beta)(1-2\beta)}{\beta},$ 当 $\beta \in [\frac{1}{2},1)$ 时恒有 $f'(\beta) \leqslant 0$, 从而 $f(\beta) \geqslant f(1) = 0$, 说明了 $\ln(1/\beta) \leqslant (1-\beta)(2-\beta), \frac{\ln(1/\beta)}{1-\beta} \leqslant 2-\beta$.

9.1.3 Hedge Algorithm

我们再提出一种叫做 Hedge Algorithm 的算法, 它其实只是 Randomized Weighted Updating 的推广, 但这个结果可以为后续证明定理 3.2 的工作做准备.

在 Hedge Algorithm 的设定下, loss 不再是"答错了几次", 而是每一轮每一位专家的回答都有一个 loss $g_t(i) \in [0,1]$, 记学习者在第 t 轮的 loss 为 l_t , 则 l_t 的期望就是 n 位专家的加权平均:

$$\mathbb{E}\left[l_{t}\right] = \left(\sum_{i=1}^{n} w_{t,i} g_{t}(i)\right) / \left(\sum_{i=1}^{n} w_{t,i}\right)$$

Algorithm 6 Hedge Algorithm

- 1: Initialize $w_{1,i} \leftarrow 1, \forall i \in [n]$
- 2: Choose parameter $\beta \in (0,1)$
- 3: for $t = 1 \rightarrow T$ do
- 4: Chooes $i_t \in [n]$ with probability proportional to $w_{t,i}$, and obtain the loss $l_t = g_t(i_t)$
- 5: $w_{t+1,i} \leftarrow w_{t,i} \cdot \beta^{g_t(i)}, \forall i \in [n]$
- 6: end for

定理 9.3. 重新定义 $L_T = \sum_{t=1}^T l_t$, 在 Hedge Algorithm 下, 有

$$\mathbb{E}\left[L_T\right] - \min_{i \in [n]} \sum_{t=1}^{T} g_t(i) = O(\sqrt{T \log n})$$

证明. 仍然注意到 l_t 是独立随机变量.

第 i 轮结束后, 总权值的变化是 $W \to W \cdot \mathbb{E}[\beta^{l_t}]$, 从而有

$$\begin{split} \mathrm{e}^{-\ln(1/\beta)m_T^*} &= \beta^{m_T^*} \leqslant n \prod_{t=1}^T \mathbb{E}\left[\beta^{l_t}\right] = n \prod_{t=1}^T \mathbb{E}\left[\mathrm{e}^{-\ln(1/\beta)l_t}\right] \\ &\leqslant n \prod_{t=1}^T \mathbb{E}\left[1 - \ln(1/\beta)l_t + \ln^2(1/\beta)l_t^2\right] \\ &\leqslant n \prod_{t=1}^T \left(1 - \ln(1/\beta)\mathbb{E}\left[l_t\right] + \ln^2(1/\beta)\right) \\ &\leqslant n \prod_{t=1}^T \mathrm{e}^{-\ln(1/\beta)\mathbb{E}\left[l_t\right] + \ln^2(1/\beta)} \\ &= n \mathrm{e}^{-\ln(1/\beta)\mathbb{E}\left[l_t\right] + T \ln^2(1/\beta)} \end{split}$$

其中 $m_T^* = \min_{i \in [n]} \sum_{t=1}^T g_t(i)$. 两边取对数得到

$$\mathbb{E}\left[L_T\right] - \min_{i \in [n]} \sum_{t=1}^T g_t(i) \leqslant \frac{\ln n}{\ln(1/\beta)} + T\ln(1/\beta) \leqslant 2\sqrt{T\ln n} = O(\sqrt{T\log n})$$

9.2 Proof of Minimax Theorem via Online Learning

在 Game Theory 一章中, 我们陈述了 Minimax Theorem (定理 3.2), 其表明在混合策略的双人零和博弈下, 先后手并不会影响博弈的最终结果. 接下来我们利用在线学习的技术来证明这个结论.

$$\min_{p} \max_{q} p^{\mathrm{T}} M q = \max_{q} \min_{p} p^{\mathrm{T}} M q$$

9.2.1 The \geqslant Direction

这个方向的结论应该是平凡的, 直观上来说就是"后手总不劣于先手".

形式化地, 记 $p^* = \arg\min_p \max_q p^{\mathrm{T}} Mq$ 为 row player 后手时选择的最优的 $p, q^* = \arg\max_q \min_p p^{\mathrm{T}} Mq$ 为 column player 后手时选择的最优的 q, p

$$\min_{p} \max_{q} p^{\mathrm{T}} M q = \max_{q} {p^*}^{\mathrm{T}} M q \geqslant {p^*}^{\mathrm{T}} M q^* \geqslant \min_{p} p^{\mathrm{T}} M q^* = \max_{q} \min_{p} p^{\mathrm{T}} M q$$

9.2.2 The \leq Direction

row player 对应在线学习中的学习者, column player 对应 adversary, 收益矩阵 M 的 m 行分别是一位专家. 在第 t 轮中,学习者选择列向量 p_t 满足 $(p_t)_i = \frac{w_{t,i}}{\sum_{i=1}^m w_{t,i}}$, 其中 $w_{t,i}$ 表示第 t 轮时第 i 位专家的权值. 给出了 p_t 后,adversary 可以很容易地给出 $q_t = \max_q p_t^T M q$. 第 i 位专家建议选第 i 行,他这样的方案对应的 loss是 $g_t(i) = (Mq_t)_i$. 显然学习者此时的 loss 的期望恰好等于 m 为专家各自损失的加权平均,即

$$\mathbb{E}\left[l_{t}\right] = \left(\sum_{i=1}^{n} w_{t,i} g_{t}(i)\right) / \left(\sum_{i=1}^{n} w_{t,i}\right) = p_{t}^{\mathrm{T}} M q_{t}$$

由 Hedge Algorithm 以及定理 9.3, 我们知道了

$$\mathbb{E}[L_T] - \min_{i \in [n]} \sum_{t=1}^{T} g_t(i) = \sum_{t=1}^{T} p_t^{\mathrm{T}} M q_t - \min_{i \in [n]} \left(M \sum_{t=1}^{T} q_t \right)_i \leqslant O(\sqrt{T \log m})$$

由此得到

$$\begin{split} \frac{1}{T} \sum_{t=1}^{T} p_t^{\mathrm{T}} M q_t &\leqslant \min_{i \in [n]} \left(M \sum_{t=1}^{T} q_t \right)_i + O\left(\sqrt{\frac{\log m}{T}}\right) \\ &= \min_{p} \left(p^{\mathrm{T}} M \left(\frac{1}{T} \sum_{t=1}^{T} q_t \right) \right) + o(1) \\ &\leqslant \max_{q} \min_{p} p^{\mathrm{T}} M q + o(1) \end{split}$$

(其中 $O\left(\sqrt{\frac{\log m}{T}}\right) = o(1)$ 因为我们视 m 为常数) 而又注意到

$$\min_{p} \max_{q} p^{\mathrm{T}} M q \leqslant \max_{q} \left(\frac{1}{T} \sum_{t=1}^{T} p_{t}^{\mathrm{T}} \right) M q \leqslant \frac{1}{T} \sum_{t=1}^{T} \max_{q} p_{t}^{\mathrm{T}} M q = \frac{1}{T} \sum_{t=1}^{T} p_{t}^{\mathrm{T}} M q_{t}$$

因此 $\min_p \max_q p^{\mathrm{T}} M q \leqslant \max_q \min_p p^{\mathrm{T}} M q + o(1)$, 即 $\min_p \max_q p^{\mathrm{T}} M q \leqslant \max_q \min_p p^{\mathrm{T}} M q$.

9.3 Multi-arm Bandits (MAB) Problem

有一台多臂老虎机, 它有 k 个拉杆, 第 i 个拉杆拉动后会返回一个服从分布 \mathcal{D}_i 的随机变量 loss, 其中 \mathcal{D}_i 的值为 μ_i . 需要最小化拉 T 轮后得到的 loss 之和.

记第 t 轮中选择拉动了第 a_t 个拉杆, 我们可以定义 T 轮操作后的 regret 为

$$R_T = \mathbb{E}_{\mathcal{A}} \left[\sum_{t=1}^T \mu_{a_t} - \mu^* \right]$$

其中 $A = (a_1, \dots, a_T)$ 为选择拉动的拉杆编号序列, $\mu^* = \min_{1 \leq i \leq k} \mu_i$ 为最优的期望 loss. 概率源自于 A 中 a_t 的选取会基于之前随机变量 $l_1 \sim \mathcal{D}_{a_1}, \dots, l_{t-1} \sim \mathcal{D}_{t-1}$ 的实际取值.

由于在 MAB 问题中我们并不先验地知道每个分布的均值, 因此这是一个在 exploration (调查每个拉杆) 和 exploitation (对着"最好"的薅) 之间权衡的过程.

9.3.1 UCB Algorithm

Algorithm 7 UCB Algorithm

- 1: $n_t(a)$ represents # of times arm a has been pulled at time t
- 2: $\mu_t(a)$ represents the empirical loss of arm i at time t
- 3: Initialize $n_0(a) \leftarrow 0, \mu_0(a) \leftarrow 0$
- 4: for $t = 1 \rightarrow T$ do
- 5: For each arm a, compute $UCB_t(a) \leftarrow \mu_{t-1}(a) \sqrt{\frac{\ln T}{n_{t-1}(a)}}$
- 6: Pull the arm $a_t = \arg\min_{1 \leq a \leq k} UCB_t(a)$
- 7: Update $n_t(a)$ and $\mu_t(a)$ for each $1 \le a \le k$
- 8: end for

特别地, 当 $n_{t-1}(a) = 0$ 时, 记 UCB_t $(a) = -\infty$.

定理 9.4. 不失一般性假设 $\mu_1 \leq \min\{\mu_2, \cdots, \mu_k\}$, UCB Algorithm 得到的 regret 可以被限制为

$$R_T = \mathbb{E}_{\mathcal{A}} \left[\sum_{t=1}^T \mu_{a_t} - \mu_1 \right] \leqslant \sum_{\Delta_s > 0} \left(\frac{16 \ln T}{\Delta_a} + 2\Delta_a \right)$$

其中 $\Delta_a = \mu_a - \mu_1$.

证明, 注意到

$$R_T = \mathbb{E}_{\mathcal{A}} \left[\sum_{t=1}^T \mu_{a_t} - \mu_1 \right] = \sum_{a=1}^k \Delta_a \cdot \mathbb{E}_{\mathcal{A}}[n_T(a)]$$

只需要证明对于每个 $\Delta_a > 0$ 的拉杆 a,都有

$$\mathbb{E}_{\mathcal{A}}[n_T(a)] \leqslant \frac{16 \ln T}{\Delta_a^2} + 2$$

对于任意正整数 m, 我们有

$$\mathbb{E}_{\mathcal{A}}[n_{T}(a)] = \sum_{t=1}^{T} \mathbb{P}\left[a_{t} = a\right]$$

$$= \sum_{t=1}^{T} \mathbb{P}\left[a_{t} = a \wedge n_{t-1}(a) < m\right] + \sum_{t=1}^{T} \mathbb{P}\left[a_{t} = a \wedge n_{t-1}(a) \geqslant m\right]$$

$$\leqslant m + \sum_{t=m+1}^{T} \mathbb{P}\left[a_{t} = a \wedge n_{t-1}(a) \geqslant m\right]$$

命题 9.1. 假如某个 $\Delta_a>0$ 的拉杆 a 在第 t 轮被拉动了, 则要么 $\mathrm{UCB}_t(1)>\mu_1$, 要么 $\mathrm{UCB}_t(a)<\mu_1=\mu_a-\Delta_a$. 证明. 否则 $\mathrm{UCB}_t(1)\leqslant\mu_1\leqslant\mathrm{UCB}_t(a)$, 拉动 a 不如拉动 1.

利用上述命题,

$$\mathbb{P}\left[a_{t} = a \wedge n_{t-1}(a) \geqslant m\right] = \mathbb{P}\left[\left(\mathrm{UCB}_{t}(1) > \mu_{1} \vee \mathrm{UCB}_{t}(a) < \mu_{1}\right) \wedge n_{t-1}(a) \geqslant m\right]$$

$$\leq \mathbb{P}\left[\mathrm{UCB}_{t}(1) > \mu_{1} \wedge n_{t-1}(a) \geqslant m\right] + \mathbb{P}\left[\mathrm{UCB}_{t}(a) < \mu_{1} \wedge n_{t-1}(a) \geqslant m\right]$$

$$\leq \mathbb{P}\left[\mathrm{UCB}_{t}(1) > \mu_{1}\right] + \mathbb{P}\left[\mathrm{UCB}_{t}(a) < \mu_{1} \wedge n_{t-1}(a) \geqslant m\right]$$

对于前一部分,

$$\mathbb{P}\left[\mathrm{UCB}_{t}(1) > \mu_{1}\right] = \sum_{k=1}^{T} \mathbb{P}\left[\mu_{t-1}(1) - \sqrt{\frac{\ln T}{k}} > \mu_{1} \wedge n_{t-1}(1) = k\right]$$

$$\leqslant \sum_{k=1}^{T} \mathbb{P}\left[\mu_{t-1}(1) - \mu_{1} > \sqrt{\frac{\ln T}{k}} \middle| n_{t-1}(1) = k\right]$$

$$\leqslant \sum_{k=1}^{T} \exp\left(-2k\left(\sqrt{\frac{\ln T}{k}}\right)^{2}\right)$$

$$= \sum_{k=1}^{T} \frac{1}{T^{2}} = \frac{1}{T}$$

其中第三行用到了 Chernoff Bound (定理 1.7).

对于第二个, 取 m 满足 $2\sqrt{\frac{\ln T}{m}} \leqslant \Delta_a \leqslant 4\sqrt{\frac{\ln T}{m}}$, 有 $m \leqslant \frac{16 \ln T}{\Delta_a^2}$,

$$\mathbb{P}\left[\mathrm{UCB}_{t}(a) < \mu_{1} \wedge n_{t-1}(a) \geqslant m\right] = \mathbb{P}\left[\mu_{t-1}(a) - \mu_{a} < \sqrt{\frac{\ln T}{n_{t-1}(a)}} - \Delta_{a} \wedge n_{t-1}(a) \geqslant m\right]$$

$$\leqslant \mathbb{P}\left[\mu_{t-1}(a) - \mu_{a} < -\sqrt{\frac{\ln T}{m}}\right] \leqslant \frac{1}{T}$$

结合上述结果, 我们得到

$$\mathbb{E}_{\mathcal{A}}[n_{T}(a)] \leqslant m + \sum_{t=m+1}^{T} \mathbb{P}\left[a_{t} = a \wedge n_{t-1}(a) \geqslant m\right] \leqslant m + \sum_{t=m+1}^{T} \frac{2}{T} \leqslant \frac{16 \ln T}{\Delta_{a}^{2}} + 2$$

完成了证明.

注 9.2. 上述结论是 instance-dependent 的, 因为其限制中包含了 Δ_a 项. 如果我们把 Δ_a 视作常数, 那么 R_T 就是 $O(k \ln T)$ 级别, 这比 Online Learning with Expert Advice 的 $O(\sqrt{T \log n})$ 要厉害. 不过, 如果 Δ_a 很小, 上述结论给出的界就会很差. 接下来我们给出一个更精细化的结论.

定理 9.5. 假设 Δ_a 有界 (存在 M > 0 使得 $\Delta_a \leq M$ 成立), 则最坏情况下 UCB Algorithm 得到的 regret 为

$$R_T = O(\sqrt{kT \ln T})$$

证明. 取 $\delta = \sqrt{\frac{k \ln T}{T}}$, 将所有 a 按照 Δ_a 与 δ 的大小关系分为两组:

$$R_T^{(1)} = \sum_{t=1}^T \sum_{0 < \Delta_a < \delta} \Delta_a \cdot \mathbb{P}\left[a_t = a\right] \leqslant T \cdot \delta \leqslant \sqrt{kT \ln T}$$

$$R_T^{(2)} = \sum_{\Delta_a \geqslant \delta} \left(\frac{16 \ln T}{\Delta_a} + 2\Delta_a\right) = O\left(\frac{kT}{\delta} + k\right) = O(\sqrt{kT \ln T})$$

$$R_T = R_T^{(1)} + R_T^{(2)} = O(\sqrt{kT \ln T})$$

9.3.2 Thompson Sampling

定义 9.1 (Beta 分布). Beta 分布是在区间 (0,1) 上的连续分布, 对于参数 $\alpha, \beta > 0$, 分布 $Beta(\alpha, \beta)$ 的概率密 度函数为

$$f(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

在 Thompson Sampling 中, 我们假设所有 loss 都是 [0,1] 的.

Algorithm 8 Thompson Sampling

- 1: Initialize $S_a \leftarrow 0, F_a \leftarrow 0$
- 2: for $t = 1 \rightarrow T$ do
- 3: For each arm a, sample $\Theta_a(t) \sim Beta(S_a + 1, F_a + 1)$
- 4: Pull the arm $a_t = \arg \max_{1 \leq a \leq k} \Theta_a(t)$, and obtain the loss $l_t \sim \mathcal{D}_{a_t}$ $\triangleright l_t \in [0, 1]$
- 5: Sample $\tilde{l_t} \sim \mathcal{B}(1, l_t)$

 $\triangleright \tilde{l_t} \in \{0,1\}$

- 6: $S_{a_t} \leftarrow S_{a_t} + \tilde{l}_t, F_{a_t} \leftarrow F_{a_t} + 1 \tilde{l}_t$
- 7: end for

定理 9.6. 不失一般性假设 $\mu_1 \leq \min\{\mu_2, \cdots, \mu_k\}$, 对于任意 $\varepsilon > 0$, Thompson Sampling 得到的 regret 都满足

$$R_T \leqslant (1+\varepsilon) \sum_{\mu_a \neq \mu_1} \frac{\Delta_a \log T}{D(\mu_a \| \mu_1)} + O\left(\frac{k}{\varepsilon^2}\right) \leqslant (1+\varepsilon) \sum_{\mu_a \neq \mu_1} \frac{\log T}{2\Delta_a} + O\left(\frac{k}{\varepsilon^2}\right)$$

证明太长了,就不讲了.

10 Differential Privacy

设计差分隐私的主要目的,是在不透露过多个体信息 (privacy) 的前提下,提供尽量多,或者尽量准确的整体统计信息 (non-privacy). 有一种简单的想法,就是给输出的整体信息加 noise.

定义 10.1 (相邻数据集). 考虑 $D = \{x_1, x_2, \dots, x_n\}, x_i \in \mathcal{X}$ 是单个数据点, 则 $D \in \mathcal{X}^n$ 是大小为 n 的数据集. 两个数据集 D, D' 被称为相邻的, 如果其只存在一位不同.

定义 10.2 (统计查询). 一个依据 $h: \mathcal{X} \to \{0,1\}$ 定义的统计查询 $Q \in \mathcal{X}^n \to \mathbb{Q}$ 的映射, 满足

$$Q(D) = \frac{1}{|D|} \sum_{i} h(x_i)$$

定义 10.3 (差分隐私). 令 A 为一个在输入数据集 D 上运行的随机算法, 称 A 满足 ε -差分隐私, 如果对于任意相邻数据集 $D, D' \in \mathcal{X}^n$, 任意 $S \subseteq \text{im } A$, 都有

$$\mathbb{P}\left[A(D) \in S\right] \leqslant e^{\varepsilon} \mathbb{P}\left[A(D') \in S\right]$$

定义 10.4 ((α, β) -精确). 称随机算法 A 对于统计查询 Q 满足 (α, β) -精确, 如果对于任意 $D \in \mathcal{X}^n$,

$$\mathbb{P}\left[|A(D) - Q(D)| \geqslant \alpha\right] \leqslant \beta$$

10.1 Laplace Mechanism

定义 10.5 (拉普拉斯分布). 随机变量 X 服从参数为 μ,σ 的拉普拉斯分布 (记作 $X \sim \text{Lap}(\mu,\sigma)$), 其密度函数 为

$$f_X(x) = \frac{1}{2\sigma} \exp\left(\frac{|x-\mu|}{\sigma}\right)$$

定义 10.6 (Laplace Mechanism, or Additive noise mechanism). Laplace Mechanism 就是在一个统计查询 $Q: \mathcal{X}^n \to \mathbb{Q}$ 的基础上, 添加一个服从分布 $\operatorname{Lap}(\mu = 0, \sigma)$ 的 noise, 得到 $A: \mathcal{X}^n \to \mathbb{R}$, $A(D) = Q(D) + Z, Z \sim \operatorname{Lap}(0, \sigma)$.

定理 10.1. Laplace Mechanism 满足 ε-差分隐私以及 (α, β) -精确, 其中 (假设 β 是常数) $\varepsilon = \frac{1}{n\sigma}, \alpha = \sigma \ln \frac{1}{\beta}$.

证明. 对于任意 $a \in \text{im } A = \mathbb{R}$, 有

$$\frac{\mathbb{P}\left[A(D) = a\right]}{\mathbb{P}\left[A(D') = a\right]} = \frac{f_Z(a - Q(D))}{f_Z(a - Q(D'))} = \frac{\frac{1}{2\sigma} \exp\left(-\frac{a - Q(D)}{\sigma}\right)}{\frac{1}{2\sigma} \exp\left(-\frac{a - Q(D')}{\sigma}\right)} \leqslant \exp\left(\frac{|Q(D) - Q(D')|}{\sigma}\right) \leqslant \exp\left(\frac{1}{n\sigma}\right)$$

¹故 $\varepsilon = \frac{1}{n\sigma}$. 至于 α ,

$$\mathbb{P}\left[|A(D) - Q(D)| \geqslant \alpha\right] = \int_{-\infty}^{-a} \frac{1}{2\sigma} \exp\left(-\frac{t}{\sigma}\right) \mathrm{d}t + \int_{a}^{\infty} \frac{1}{2\sigma} \exp\left(-\frac{t}{\sigma}\right) \mathrm{d}t = \exp\left(-\frac{\alpha}{\sigma}\right) = \beta \Rightarrow \alpha = \sigma \ln\frac{1}{\beta}$$

定义 10.7 (多组查询下的精确). 记 $Q = (Q_1, \dots, Q_k) : \mathcal{X}^n \to \mathbb{Q}^k$ 是 k 次统计查询,令 $A = (A_1, \dots, A_k)$ 为针对每个查询,用 Laplace Mechanism 构造的随机算法, $A_i(D) - Q_i(D) \sim \text{i.i.d. Lap}(0, \sigma)$. 称 A 对于 Q 满足 (α, β) -精确,如果对于任意 $D \in \mathcal{X}^n$,

$$\mathbb{P}\left[\|A(D) - Q(D)\|_{\infty} \geqslant \alpha\right] \leqslant \beta$$

定理 10.2. 当每个 Laplace Mechanism A_i 都满足 ε -差分隐私和 (α, β) -精确时, $A = (A_1, \dots, A_k)$ 满足 $k\varepsilon$ -差分 隐私和 $(\alpha, k\beta)$ -精确.

□ +

¹这里 A(D) = a 实际上想表达的是 $a \leq A(D) < a + dt$.

证明. • $k\varepsilon$ -差分隐私: 注意到 noise 是 i.i.d. 的, 故联合分布密度等于各自相乘, 由 $f_{A_i(D)}(x_i) \leq \mathrm{e}^{\varepsilon} f_{A_i(D')}(x_i)$ 可以很容易得到 $f_{A_i(D)}(\vec{x}) \leq \mathrm{e}^{k\varepsilon} f_{A_i(D')}(\vec{x})$.

• $(\alpha, k\beta)$ -精确: 使用 Union Bound 即可.

推论 10.1. 对于多组查询 $Q=(Q_1,\cdots,Q_k)$, Laplace Mechanism 满足 $\frac{k}{n\sigma}$ -差分隐私以及 $(\sigma \ln \frac{k}{\beta},\beta)$ -精确.

注意到在多组查询的 Laplace Mechanism 下, 如果要求 $\varepsilon = O(1), \alpha = o(1), \beta$ 是常数, 则不得不有 $k = o\left(\frac{n}{\ln n}\right)$. 换句话说, 隐私泄露 ε 是关于查询次数 k 线性的, 从某种程度上说, 这是不能接受的.

接下来我们将介绍一种 highly-nontrivial 的机制设计, 使得可以在保证隐私与精确的前提下做到 k >> n 的 查询次数.

10.2 BLR Mechanism

不妨假设样本空间是有限大的, 即 $|\mathcal{X}| = N$. 此外沿用之前的一些记号, k 表示查询次数, n = |D| 表示单个数据集大小, ε 表示隐私性, (α, β) 表示精确性. 额外记 $\sigma = \frac{2}{n\varepsilon}$.

该机制采用的随机算法 \mathcal{A} 不再返回一个 \mathbb{R}^d 向量, 取而代之的是返回 \mathcal{X}^m 即 m 个样本, 其中 $m = \frac{2\log(2k)}{\alpha^2}$. 对于 $D \in \mathcal{X}^n$, $\mathcal{A}(D)$ 返回 $\hat{D} \in \mathcal{X}^m$ 的概率 $\mathbb{P}\left[\mathcal{A}(D) = \hat{D}\right]$ 正比于 $\exp\left(\frac{u(D,\hat{D})}{\sigma}\right)$, 其中 u 是**效用函数 (utility function)**, 用于衡量「在输入 D 时返回 \hat{D} 有多好」, 在这里定义为

$$u(D, \hat{D}) = -\max_{i=1}^{k} |Q_i(D) - Q_i(\hat{D})|$$

其中 Q_i 表示第 i 个统计查询.

定理 10.3. BLR Mechanism 满足 ε -差分隐私以及 (α, β) -精确, 其中

$$\alpha = O\left(\left(\frac{\log k \log N + \log(1/\beta)}{n\varepsilon}\right)^{1/3}\right)$$

证明. 记 $\Delta u = \max_{D,D',\hat{D}} |u(D,\hat{D}) - u(D',\hat{D})|$,可以观察到 $\Delta u \leqslant \frac{1}{n}$. 考虑

$$\mathbb{P}\left[\mathcal{A}(D) = \hat{D}\right] = \frac{\exp\left(\frac{u(D,\hat{D})}{\sigma}\right)}{\sum_{\hat{D}} \exp\left(\frac{u(D,\hat{D})}{\sigma}\right)}$$
$$\mathbb{P}\left[\mathcal{A}(D') = \hat{D}\right] = \frac{\exp\left(\frac{u(D',\hat{D})}{\sigma}\right)}{\sum_{\hat{D}} \exp\left(\frac{u(D',\hat{D})}{\sigma}\right)}$$

从而得到

$$\begin{split} \frac{\mathbb{P}\left[\mathcal{A}(D) = \hat{D}\right]}{\mathbb{P}\left[\mathcal{A}(D') = \hat{D}\right]} \leqslant \frac{\sum_{\hat{D}} \exp\left(\frac{u(D', \hat{D})}{\sigma}\right)}{\sum_{\hat{D}} \exp\left(\frac{u(D, \hat{D})}{\sigma}\right)} \exp\left(\frac{u(D, \hat{D}) - u(D', \hat{D})}{\sigma}\right) \\ \leqslant \frac{\sum_{\hat{D}} \exp\left(\frac{\Delta u}{\sigma}\right) \exp\left(\frac{u(D, \hat{D})}{\sigma}\right)}{\sum_{\hat{D}} \exp\left(\frac{u(D, \hat{D})}{\sigma}\right)} \exp\left(\frac{\Delta u}{\sigma}\right) \\ \leqslant \exp\left(\frac{2\Delta u}{\sigma}\right) \leqslant e^{\varepsilon} \end{split}$$

至于 (α, β) -精确, 事实上在 A 的返回值不是实数后我们还没有定义 (α, β) -精确到底是什么, 所以在这里重新定义一下: 称 A 满足 (α, β) -精确, 如果

$$\mathbb{P}\left[u(D, \mathcal{A}(D)) \leqslant u^* - \alpha\right] \leqslant \beta$$

其中 $u^* = \max_{D,\hat{D}} u(D,\hat{D})$. 在 BLR Mechanism 中有 $u^* = 0$.

考虑 A 的像空间 \mathcal{X}^m 中的一个元素 \hat{D} , 称 $\hat{D} \in G$ 如果 $u(D,\hat{D}) \geqslant u^* - \frac{\alpha}{2}$, 称 $\hat{D} \in B$ 如果 $u(D,\hat{D}) \leqslant u^* - \alpha$. G 和 B 分别表示 good 和 bad.

引理 10.1. 如果能证明 $G \neq \emptyset$, 则

证明.

$$\mathbb{P}\left[u(D, \mathcal{A}(D)) \leqslant u^* - \alpha\right] = \mathbb{P}\left[\mathcal{A}(D) \in B\right] \leqslant \frac{\mathbb{P}\left[\mathcal{A}(D) \in B\right]}{\mathbb{P}\left[\mathcal{A}(D) \in G\right]} \leqslant \frac{\exp\left(\frac{u^* - \alpha}{\sigma}\right) \cdot |B|}{\exp\left(\frac{u^* - \frac{\alpha}{2}}{\sigma}\right) \cdot |G|}$$
$$\leqslant \exp\left(-\frac{\alpha}{2\sigma}\right) |\mathcal{X}|^m = \exp\left(-\frac{\alpha n\varepsilon}{4}\right) |\mathcal{X}|^m \leqslant \beta$$

剩下的开摆了.

11 Reinforcement Learning

定义一些记号

- S: state space
- A: actione space
- $S_t \in \mathcal{S}, A_t \in \mathcal{A}, R_t \in \mathbb{R}$: state, action, and rewrad at time t
- $P_{s,s'}^a = \mathbb{P}(S_{t+1} = s' | S_t = s, A_t = a)$: transition probability
- $R(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$: reward function
- $\gamma \in (0,1)$: discount factor
- $\pi: \mathcal{S} \to \Delta(\mathcal{A})$: policy, where $\Delta(\mathcal{A})$ denotes the space of probability distribution over \mathcal{A}
- $v^{\pi}(s) = \mathbb{E}\left[\sum_{k\geqslant 0} \gamma^k R_{t+k} \middle| S_t = s\right]$: (state) value function, where probability is over (i) the policy π , (2) the transition probability $P_{s,s'}^a$.

命题 11.1 (Bellman Expectation Equation).

$$v^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a} v^{\pi}(s') \right]$$

考虑在固定 policy π 下的 Bellman Expectation Operator $\Phi: \mathbb{R}^N \to \mathbb{R}^N$, 满足

$$\Phi(\mathbf{v})(s) = \mathbb{E}_{a \sim \pi(s)} \left[R(s, a) + \gamma \sum_{s' \in S} P_{s, s'}^a \mathbf{v}(s') \right]$$

则可以证明 Φ 是一个无穷范数下的 γ -压缩映射 (contraction mapping).

这说明随便找一个 $\mathbf{v}_0 \in \mathbb{R}^N$, 不断对它做 Φ 这个 operator, 它都会收敛到唯一的不动点, 这个点就是 π 的 value function v^{π} .

11.1 Finding Optimal Policy

定义 11.1 (Bellman Operator). 无关 policy π , 定义 Bellman Operator $\Phi^* : \mathbb{R}^N \to \mathbb{R}^N$, 满足

$$\Phi(\mathbf{v})(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a} \mathbf{v}(s') \right]$$

定理 11.1. Bellman Operator Φ* 是无穷范数下的 γ-压缩映射.

证明. 考虑 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^N$, 记

$$a_{\mathbf{u}} = \arg \max_{a} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a} \mathbf{u}(s') \right]$$
$$a_{\mathbf{v}} = \arg \max_{a} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a} \mathbf{v}(s') \right]$$

此时有 (不妨设 $\Phi^*(\mathbf{v})(s) \geqslant \Phi^*(\mathbf{u})(s)$)

$$\begin{split} \Phi^*(\mathbf{v})(s) - \Phi^*(\mathbf{u})(s) &= \left[R(s, a_{\mathbf{v}}) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a_{\mathbf{v}}} \mathbf{v}(s') \right] - \left[R(s, a_{\mathbf{u}}) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a_{\mathbf{u}}} \mathbf{u}(s') \right] \\ &\leqslant \left[R(s, a_{\mathbf{v}}) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a_{\mathbf{v}}} \mathbf{v}(s') \right] - \left[R(s, a_{\mathbf{v}}) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a_{\mathbf{v}}} \mathbf{u}(s') \right] \\ &= \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a_{\mathbf{v}}} (\mathbf{v}(s') - \mathbf{u}(s')) \\ &\leqslant \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a_{\mathbf{v}}} \|\mathbf{v} - \mathbf{u}\|_{\infty} \\ &= \gamma \|\mathbf{v} - \mathbf{u}\|_{\infty} \end{split}$$

从而也有 $\|\Phi^*(\mathbf{v}) - \Phi^*(\mathbf{u})\|_{\infty} \leq \gamma \|\mathbf{v} - \mathbf{u}\|_{\infty}$

定理 11.2. 对于任意的 policy π_0 , 记 v^{π_0} 为其 value function, 则 $\Phi^*(v^{\pi_0})(s) \geqslant v^{\pi_0}(s)$ 对任意 $s \in \mathcal{S}$ 成立. 证明.

$$v^{\pi_0}(s) = \mathbb{E}_{a \sim \pi_0(s)} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^a v^{\pi_0}(s') \right]$$
$$\Phi^*(v^{\pi_0})(s) = \max_{a \in \mathcal{A}} \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^a v^{\pi_0}(s') \right]$$

一目了然了属于是.

现在有一个问题: 我们有一个 policy π_0 , 我们可以对 π_0 的 value function v^{π_0} 作用 Φ^* 得到 $\Phi^*(v^{\pi_0})$, 但是 $\Phi^*(v^{\pi_0})$ 可能不是任何一个 policy 的 value function.

可以从两个层面入手: 首先, 考虑 Φ^* 的唯一不动点 \mathbf{v}^* , 它必然是某个 optimal policy π^* 的 value function, 因为只要取 $\pi^*(s) = \arg\max_{a \in \mathcal{A}} \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{s,s'} \mathbf{v}^*(s') \right]$ 即可.

其次,对于任意的 $\mathbf{v} \in \mathbb{R}^N$, 我们都可以定义关于 \mathbf{v} 的 greedy policy π , $\pi(s) = \arg\max_{a \in \mathcal{A}} \left[R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^a \mathbf{v}(s') \right]$. 现在, 我们从初始 policy π_0 出发, 记 $\mathbf{v}_0 = v^{\pi_0}$ 为 π_0 的 value function, 迭代计算 $\mathbf{v}_{k+1} = \Phi^*(\mathbf{v}_k)$, 再记 π_k 为 \mathbf{v}_k 诱导的 greedy policy, v^{π_k} 为 π_k 的 value function.

定理 11.3. $\|v^{\pi_k} - \mathbf{v}^*\|_{\infty} \leqslant \frac{\gamma}{1-\gamma} \|\mathbf{v}_k - \mathbf{v}^*\|_{\infty}$.