

Tables, Recodes, Regexps

~/> previously ...

Reasonable Grad Students: We want practical data skills applicable both in research and outside of academia.

Me: OK, here is git and how to use it.

Reasonable Grad Students:

More details on each named argument. This will tell you what class of thing each argument has to be—an object, a number, a data frame, a logical value, etc.

What the function returns—i.e., the result of whatever operation or calculation it performs. This can be a single number, as here, or a multi-part object such as a list, a data frame, a plot, or a model.

Usage mean(x, ...)## Default S3 method: mean(x, trim = 0, na.rm = FALSE, ...) Arguments

The function's name, and in the parentheses the named arguments it expects, in the order it expects them. If an argument has a default value, it is shown. Arguments without default values (e.g. x) must be provided by you.

- An R object. Currently there are methods for numeric/logical vectors and date, date-time and time interval objects. Complex vectors are allowed for trim = 0, only.
- trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are taken as the nearest endpoint.
- a logical value indicating whether NA values should be stripped before the computation proceeds.
- further arguments passed to or from other methods.

The ellipsis allows other arguments to be passed to and from the function.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or complex vector of length one. If x is not logical (coerced to numeric), numeric (including integer) or complex, NA_real_ is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observations deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

Visit the package's Index [Package base version 3.4.3 Index] page to look for Demos and Vignettes detailing how it works.

WORKING WITH DPLYR

```
data %>%
    select(start_year, job_type1) %>%
    group_by(start_year, job_type1) %>%
    summarize(n = n()) %>%
    mutate(pct = (n/sum(n))*100)
```

```
data %>%
    select(start_year, job_type1) %>%
    group_by(start_year, job_type1) %>%
    summarize(n = n()) %>%
    mutate(pct = (n/sum(n))*100) %>%
    group_by(start_year) %>%
    top n(3, wt = pct)
```

```
data %>%
    select(start_year, job_type1) %>%
    group_by(start_year, job_type1) %>%
    summarize(n = n()) %>%
    mutate(pct = (n/sum(n))*100) %>%
    group_by(start_year) %>%
    top n(3, wt = pct)
```

```
data %>%
    select(start_year, job_type1) %>%
    group_by(start_year, job_type1) %>%
    summarize(n = n()) %>%
    mutate(pct = (n/sum(n))*100) %>%
    group_by(start_year) %>%
    top_n(3, wt = pct) %>%
```

arrange(desc(pct))

```
data %>%
    select(start_year, job_type1) %>%
    group_by(start_year, job_type1) %>%
    summarize(n = n()) %>%
    mutate(pct = (n/sum(n))*100) %>%
    group_by(start_year) %>%
    top n(3, wt = pct) %>%
```

arrange(desc(pct), .by group = TRUE)

TIDY DATA

ANALYSISIS GLEANING &

```
library(socviz)
library(gapminder)
gapminder
```

gdp	lifexp	pop	continent
340	65	31	Euro
227	51	200	Amer
909	81	80	Euro
126	40	20	Asia

country	year	cases	population
Afghanstan	1300	45	18:57071
Afghanistan	2000	2666	20! 95360
Brazil	1999	37737	172006362
Brazil	2000	80488	174904898
China	1999	212258	1272915272
Chin	2 0	21 66	1280 28583

variables

country	year	cases	population
/ Inamistan	1000	740	155576
/ Indinotali	2000	2000	200000
L II	1000	07707	1720000
L IIZII	2000	00400	1743040
Пи	1000	212200	12720102
C IIIIa	2000	210700	12004203

observations

values

Α	В	С	D	Е	F	G	Н	I	J	К	L	М	N 4	▶ P	Q
		2018 Cook					Other				Dem	2016 Clinton	Swing vs.	Raw Votes	
State	CD#		2018 Winner		Dem Votes		Votes	Dem %			Margin	Margin	2016 Prez	vs. 2016	Final?
		•	R, 1 Not Certified	D	60,619,428	50,896,244	1,978,795	53.4%	44.8%	1.7%	8.6%	2.1%	6.5%	83.3%	
Compiled by: Da	vid Wa	sserman & All	y Flinn, Cook Political Report.	@Red	istrict/@Cook	Political. <i>Italia</i>	s denotes fre	eshman, B	old denot	es party cl	nange.				
Alabama	1	R+15	Bradley Byrne	R	89,226	153,228	163	36.8%	63.2%	0.1%	-26.4%	-29.2%	2.8%	79.3%	X
Alabama	2	R+16	Martha Roby	R	86,931	138,879	420	38.4%	61.4%	0.2%	-23.0%	-31.7%	8.7%	78.7%	X
Alabama	3	R+16	Mike Rogers	R	83,996	147,770	149	36.2%	63.7%	0.1%	-27.5%	-33.0%	5.5%	79.6%	X
Alabama	4	R+30	Robert Aderholt	R	46,492	184,255	222	20.1%	79.8%	0.1%	-59.6%	-62.5%	2.9%	78.9%	X
Alabama	5	R+18	Mo Brooks	R	101,388	159,063	222	38.9%	61.0%	0.1%	-22.1%	-32.9%	10.8%	82.8%	X
Alabama	6	R+26	Gary Palmer	R	85,644	192,542	142	30.8%	69.2%	0.1%	-38.4%	-43.8%	5.4%	82.8%	X
Alabama	7	D+20	Terri Sewell	D	185,010	0	4,153	97.8%	0.0%	2.2%	97.8%	41.2%	N/A	64.2%	X
Alaska	AL	R+9	Don Young	R	131,199	149,779	1,188	46.5%	53.1%	0.4%	-6.6%	-14.7%	8.1%	88.6%	Х
Arizona	1	R+2	Tom O'Halleran	D	143,240	122,784	65	53.8%	46.1%	0.0%	7.7%	-1.1%	8.8%	92.0%	X
Arizona	2	R+1	Ann Kirkpatrick	D	161,000	133,102	50	54.7%	45.2%	0.0%	9.5%	4.8%	4.7%	91.5%	Х
Arizona	3	D+13	Raul Grijalva	D	114,650	64,868	0	63.9%	36.1%	0.0%	27.7%	29.5%	-1.8%	84.8%	X
Arizona	4	R+21	Paul Gosar	R	84,521	188,842	3,672	30.5%	68.2%	1.3%	-37.7%	-39.4%	1.7%	91.1%	Х
Arizona	5	R+15	Andy Biggs	R	127,027	186,037	0	40.6%	59.4%	0.0%	-18.8%	-20.5%	1.7%	91.7%	Х
Arizona	6	R+9	David Schweikert	R	140,559	173,140	0	44.8%	55.2%	0.0%	-10.4%	-9.8%	-0.6%	91.2%	Х
Arizona	7	D+23	Ruben Gallego	D	113,044	301	18,706	85.6%	0.2%	14.2%	85.4%	48.3%	N/A	79.0%	Х
Arizona	8	R+13	Debbie Lesko	R	135,569	168,835	13	44.5%	55.5%	0.0%	-10.9%	-20.8%	9.9%	91.5%	X
Arizona	9	D+4	Greg Stanton	D	159,583	101,662	0	61.1%	38.9%	0.0%	22.2%	15.9%	6.3%	90.0%	X
Arkansas	1	R+17	Rick Crawford	R	57,907	138,757	4,581	28.8%	68.9%	2.3%	-40.2%	-34.8%	-5.4%	77.2%	Х
Arkansas	2	R+7	French Hill	R	116,135	132,125	5,193	45.8%	52.1%	2.0%	-6.3%	-10.7%	4.4%	82.6%	Х
Arkansas	3	R+19	Steve Womack	R	74,952	148,717	6,039	32.6%	64.7%	2.6%	-32.1%	-31.4%	-0.7%	78.6%	Х
Arkansas	4	R+17	Bruce Westerman	R	63,984	136,740	4,168	31.2%	66.7%	2.0%	-35.5%	-32.8%	-2.7%	75.7%	Х
California	1	R+11	Doug LaMalfa	R	131,506	160,006	0	45.1%	54.9%	0.0%	-9.8%	-19.4%	9.6%	91.6%	
California	2	D+22	Jared Huffman	D	243,051	72,541	0	77.0%	23.0%	0.0%	54.0%	45.2%	8.8%	90.5%	
California	3	D+5	John Garamendi	D	132,983	96,106	0	58.0%	42.0%	0.0%	16.1%	12.5%	3.6%	86.8%	
California	4	R+10	Tom McClintock	R	156,253	184,401	0	45.9%	54.1%	0.0%	-8.3%	-14.5%	6.2%	94.6%	
California	5	D+21	Mike Thompson	D	203,012	0	53,836	79.0%	0.0%	21.0%	79.0%	44.6%	N/A	83.8%	
California	6	D+21	Doris Matsui	D	201,939	0	0	100.0%	0.0%	0.0%	100.0%	44.0%	N/A	81.4%	
California	7	D+3	Ami Bera	D	155,016	126,601	0	55.0%	45.0%	0.0%	10.1%	11.2%	-1.1%	91.0%	
California	8	R+9	Paul Cook	R	0	170,785	0	0.0%	100.0%	0.0%	-100.0%	-15.1%	N/A	73.3%	
California	9	D+8	Jerry McNerney	D	113,240	87,263	0	56.5%	43.5%	0.0%	13.0%	18.2%	-5.2%	82.4%	
0.17	40	C) /C) I		_	445 000	105.010	^	F0 00/	47 00/	0.007	4 50/	2 22/	4 =0/	24 22/	

readx 1 part of the tidyverse

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

table1

	country y	/ear	cases	population
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

country	year	key	value
Afghaistan	199	cases	745
Afghanistan	1999	population	>987071
Afghanistan	2000	cases	256
Afghanistan	2000	population	595360
Brazil	1999	cases	37.37
Brazil	1999	population	1, 1006362
Brazil	2000	cases	80. 38
Brazil	2000	population	1, 504898
China	1999	cases	212.58
China	1999	population	127 915272
China	2000	cases	213, 38
Chin	20	population	1285428583

country	year	key	value
Afghanist	1000	Cases-	745
Afghanistan	1999	Julation	19987071
Afghaniet	2000	oacco	2666
Afghanistan	2000	Duration	20595360
Brazil	1000	00.00	37737
Brazil	1005	Schattorr	37737
Brazil	0000		80488
Brazil	2005	- Juliation	80488
China	1000		212258
China	1008		1272915272
China	2000	00000	213766
China	2002	4	1200428583

table2 variables observations

	country y	/ear	key	value
1	Afghanistan	1999	cases	745
2	Afghanistan	1999	population	19987071
3	Afghanistan	2000	cases	2666
4	Afghanistan	2000	population	20595360
5	Brazil	1999	cases	37737
6	Brazil	1999	population	172006362
7	Brazil	2000	cases	80488
8	Brazil	2000	population	174504898
9	China	1999	cases	212258
10	China	1999	population	1272915272
11	China	2000	cases	213766
12	China	2000	population	1280428583

country	year	key	value
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488
Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

country	year	key	value
Afghaistan	199	cases	745
Afghanistan	1999	population	>987071
Afghanistan	2000	cases	256
Afghanistan	2000	population	595360
Brazil	1999	cases	37.37
Brazil	1999	population	1, 1006362
Brazil	2000	cases	80. 38
Brazil	2000	population	1, 504898
China	1999	cases	212.58
China	1999	population	127 915272
China	2000	cases	213, 38
Chin	20	population	1285428583

country	year	key	value
Afghanist	1000	Cases-	745
Afghanistan	1999	Julation	19987071
Afghaniet	2000	oacco	2666
Afghanistan	2000	Duration	20595360
Brazil	1000	00.00	37737
Brazil	1005	Schattorr	37737
Brazil	0000		80488
Brazil	2005	- Juliation	80488
China	1000		212258
China	1008	-	1272915272
China	2000	00000	213766
China	2002	4	1200428583

table2 variables observations

	country y	/ear	key	value		
1	Afghanistan	1999	cases	745		
2	Afghanistan	1999	population	19987071		
3	Afghanistan	2000	cases	2666		
4	Afghanistan	2000	population	20595360		
5	Brazil	1999	cases	37737		
6	Brazil	1999	population	172006362		
7	Brazil	2000	cases	80488		
8	Brazil	2000	population	174504898		
9	China	1999	cases	212258		
10	China	1999	population	1272915272		
11	China	2000	cases	213766		
12	China	2000	population	1280428583		

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

table3

variables values

	country y	/ear	rate
1	Afghanistan	1999	745/19987071
2	Afghanistan	2000	2666/20595360
3	Brazil	1999	37737/172006362
4	Brazil	2000	80488/174504898
5	China	1999	212258/1272915272
6	China	2000	213766/1280428583

country	1999	2000				
Afghanistan	745	2666				
Brazil	37737	80488				
China	212258	213766				
table4						

country	1999	2000
Afghanistan	19987071	20595360
Brazil	172006362	174504898
China	1272915272	1280428583

table5

country Afghanistan Brazil China 212258 213766 country Afghanistan Brazil

China 1272915272 1280428583

Table A-1. Years of School Completed by People 25 Years and Over, by Age and Sex: Selected Years 1940 to 2016

(Numbers in thousands. Noninstitutionalized population except where otherwise specified.)

Age, sex,			Years of School Completed							
and years		Eleme	entary	High school		College				
							4 years or			
	Total	0 to 4 years	5 to 8 years	1 to 3 years	4 years	1 to 3 years	more	Median		

25 YEARS AND OLDER

Male								
2016	103,372	1,183	3,513	7,144	30,780	26,468	34,283	(NA)
2015	101,887	1,243	3,669	7,278	30,997	25,778	32,923	(NA)
2014	100,592	1,184	3,761	7,403	30,718	25,430	32,095	(NA)
2013	99,305	1,127	3,836	7,314	30,014	25,283	31,731	(NA)
2012	98,119	1,237	3,879	7,388	30,216	24,632	30,766	(NA)
2011	97,220	1,234	3,883	7,443	30,370	24,319	29,971	(NA)
2010	96,325	1,279	3,931	7,705	30,682	23,570	29,158	(NA)
2009	95,518	1,372	4,027	7,754	30,025	23,634	28,706	(NA)
2008	94,470	1,310	4,136	7,853	29,491	23,247	28,433	(NA)
2007	93,421	1,458	4,249	8,294	29,604	22,219	27,596	(NA)
2006	92,233	1,472	4,395	7,940	29,380	22,136	26,910	(NA)
2005	90,899	1,505	4,402	7,787	29,151	21,794	26,259	(NA)

edu

```
# A tibble: 366 x 11
##
                    year total elem4 elem8 hs3
##
                                                     hs4 coll3 coll4 median
      age
             sex
      <chr> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
                                         468
                    2016 21845
                                   116
                                                            6015
                                                                  7432
##
    1 25-34 Male
                                               1427
                                                     6386
                                                                             NA
##
    2 25-34 Male
                    2015 21427
                                   166
                                         488
                                               1584
                                                     6198
                                                            5920
                                                                   7071
                                                                             NA
    3 25-34 Male
                                  151
                                         512
                                                     6323
                                                                  6710
##
                    2014 21217
                                               1611
                                                            5910
                                                                             NA
##
    4 25-34 Male
                    2013 20816
                                   161
                                         582
                                                                   6519
                                               1747
                                                     6058
                                                            5749
                                                                             NA
    5 25-34 Male
                    2012 20464
                                   161
                                         579
                                                            5619
                                                                   6270
##
                                               1707
                                                     6127
                                                                             NA
    6 25-34 Male
##
                                   190
                                         657
                    2011 20985
                                               1791
                                                     6444
                                                            5750
                                                                   6151
                                                                             NA
    7 25-34 Male
                    2010 20689
                                   186
                                         641
                                                                   5951
##
                                               1866
                                                     6458
                                                            5587
                                                                             NA
    8 25-34 Male
                    2009 20440
                                   184
                                         695
                                                                   5752
##
                                               1806
                                                     6495
                                                            5508
                                                                             NA
    9 25-34 Male
                    2008 20210
                                   172
                                         714
                                                     6356
                                                            5277
                                                                   5816
                                                                             NA
##
                                               1874
   10 25-34 Male
                                  246
                                         757
                                                                  5593
                                                                             NA
##
                    2007 20024
                                               1930
                                                     6361
                                                            5137
   # ... with 356 more rows
##
```

```
year total median school
##
                                              freq
##
     <chr> <chr> <int> <int>
                               <dbl> <chr>
                                             <dbl>
  1 25-34 Male
                                  NA elem4
##
                  2016 21845
                                               116
## 2 25-34 Male
                                  NA elem4
                  2015 21427
                                               166
## 3 25-34 Male
                  2014 21217
                                  NA elem4
                                               151
## 4 25-34 Male
                  2013 20816
                                  NA elem4
                                               161
## 5 25-34 Male
                                  NA elem4
                  2012 20464
                                               161
## 6 25-34 Male
                  2011 20985
                                  NA elem4
                                               190
```

tail(edu_t)

```
## # A tibble: 6 x 7
               year total median school
##
     age
           sex
                                              freq
##
     <chr> <chr>
                  <int> <int>
                               <dbl> <chr>
                                             <dbl>
           Female
                  1959 16263
                                8.30 coll4
                                               688
##
  1 55>
                                8.20 coll4
           Female
                  1957 15581
                                               630
## 2 55>
## 3 55>
           Female 1952 13662
                                7.90 coll4
                                               628
           Female 1950 13150
                                8.40 coll4
## 4 55>
                                               436
                   1947 11810
## 5 55>
           Female
                                7.60 coll4
                                               343
## 6 55>
           Female
                  1940
                        9777
                                8.30 coll4
                                               219
```


TABLE JOINS

Spiffy Join Animatations courtesy Garrick Aden-Buie:

github.com/gadenbuie/join-animations-with-gganimate.R

All rows from x, and all columns from x and y. Rows in x with no match in y will have NA values in the new columns.

LEFT JOIN

If there are multiple matches between x and y, all combinations of the matches are returned.

LEFT JOIN

All rows from x where there are matching values in y, and all columns from x and y.

INNER JOIN

All rows and all columns from both x and y. Where there are not matching values, returns NA for the one missing.

FULLJOIN

All rows from x where there are matching values in y, keeping just columns from x.

SEMI JOIN

All rows from x where there are not matching values in y, keeping just columns from x.

ANTIJOIN

sen_and_house <- inner_join(senate, house, by = "pid")

```
str_detect(string, pattern)
str replace(string, pattern, replacement)
```


Joseph Roso 9:30 AM

I've got a tangential question: we used the following code to create the full_name variable:

Untitled ▼

```
1 mutate(full_name = paste(first, last, suffix))
```

However, I noticed that when the suffix is NA, that is pasted onto the end of the name. So the full_name variable is filled with "Jon Doe NA." Is there a clever way to tell paste() to paste nothing if the suffix is NA?

kjhealy 9:34 AM Hm.

```
str_detect(string, pattern)
str replace(string, pattern, replacement)
```

```
mutate(full_name = paste(first, last, suffix),
    full_name = str_remove(full_name, " NA$")
```