Probabilidades - 2

Johan Van Horebeek

1. Construcción

Punto de partida: **un experimento**

- Resultado del experimento es $\omega \in \Omega$.
- Interés en ciertos eventos $A \subset \Omega$.
- \bullet Una probabilidad P es una función sobre ciertos eventos: $P:A\to P(A)\in [0,1]$

1. Construcción

Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega$.
- Interés en ciertos eventos $A \subset \Omega$.
- \bullet Una probabilidad P es una función sobre ciertos eventos: $P:A\to P(A)\in [0,1]$

2. Caso $\#\Omega$ finito

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

1. Distribución de conteo o distribución uniforme

Corresponde a elegir un elemento al azar,

para cada
$$A \subset \Omega$$
: $P(A) = \frac{\# A}{\# \Omega}$.

2. Caso general:

para cada
$$A \subset \Omega$$
: $P(A) = \sum_{\omega_i \in A} p_i$, con $p_i \ge 0$, $\sum_i p_i = 1$

Ejemplo 1 Calcula la probabilidad que en un grupo de n personas hay al menos una que cumple años el 12 de octubre.

Ejemplo 2 Calcula la probabilidad que en un grupo de n personas hay al menos dos personas que cumplen en el mismo dia.

tamaño del grupo	15	25	35	45	55
P(al menos dos cumpleaños coinciden)	0.25	0.56	0.8	0.94	0.98
Tabla 1.					

tamaño del grupo	15	25	35	45	55	
P(al menos un compleaños coincide con el tuyo)	0.03	0.06	0.08	0.11	0.13	
Tabla 2.						

- **3.** Caso $\Omega \subset \mathcal{R}^d$
- 1. Distribución uniforme

3. Caso $\Omega \subset \mathcal{R}^d$

1. Distribución uniforme

Experimento: elegir al azar un número de [0, 2].

$$\Omega = [0, 2]$$

$$A = [0, 1]$$
 $P(A) = 0.5 = \frac{1}{2}$
 $A = [0.4, 1]$ $P(A) = 0.3 = \frac{0.6}{2}$

3. Caso $\Omega \subset \mathcal{R}^d$

1. Distribución uniforme

Experimento: elegir al azar un número de [0, 2].

$$\Omega = [0, 2]$$

$$A = [0, 1]$$
 $P(A) = 0.5 = \frac{1}{2}$
 $A = [0.4, 1]$ $P(A) = 0.3 = \frac{0.6}{2}$

En general: $A \subset \Omega$

$$P(A) = \frac{\int_A dx}{\int_\Omega dx} \qquad \text{requiere } \int_\Omega dx < \infty$$

Tenemos que limitarnos a ciertos conjuntos A: requiere $\int_A dx$ existe.

3. Caso $\Omega \subset \mathcal{R}^d$ con $\int_{\Omega} dx < \infty$

1. Distribución uniforme

En general: $A \subset \Omega$:

$$P(A) = \frac{\int_A dx}{\int_{\Omega} dx}$$
 donde $\int_A dx$ existe.

Propiedades

Para cada A y B eventos,

- 1. $P(A) \in [0, 1];$
- 2. $P(\Omega) = 1$
- 3. Si $\{A_i\}$ es una sucesión de conjuntos ajenos, i.e. $A_i \cap A_j = \emptyset$, $\forall i \neq j$, se tiene:

$$P(\cup A_i) = \sum_i P(A_i); \tag{1}$$

4.
$$P(A) = 1 - P(A^c)$$
.

3. Caso
$$\Omega \subset \mathcal{R}^d$$
 con $\int_{\Omega} dx < \infty$

1. Distribución uniforme

En general: $A \subset \Omega$:

$$P(A) = \frac{\int_A dx}{\int_{\Omega} dx} \qquad \text{donde } \int_A dx \text{ existe.}$$

Ejemplo 1 Se elige al azar un punto en un cuadrado con lado 4 cm.

Calcula la probabilidad de que esté a una distancia menor de uno cm. de alguna de las esquinas.

Ejemplo 2

Dos estudiantes quieren ir a comer juntos. Se citan entre las 7 y las 8 de la noche y están dispuestos a esperar a lo más 10 minutos. ¿Cuál es la probabilidad de que puedan ir a comer si sus horas de llegada son uniformes entre las 7 y las 8?

Cuidado: elegir algo al azar no siempre está bien definido.

3. Caso $\Omega \subset \mathcal{R}^d$ con $\int_{\Omega} dx < \infty$

1. Distribución uniforme

En general: $A \subset \Omega$:

$$P(A) = \frac{\int_A dx}{\int_{\Omega} dx}$$
 donde $\int_A dx$ existe.

2. Caso general

Ver más tarde.

4. Interpretar P()

- 1. A partir del experimento elegir algo al azar.
- 2. Probabilidades como limite de frecuencias relativas de ocurrencia (enfoque frequentista)
- 3. Por medio de apuestos: probabilidades como creencias (base de enfoque Bayesiano)
- 4. Sistema axiomático (Kolmogorov, 1933).
 - I.A. se distingue por haber elaborado otros sistemas axiomáticos (fuzzy sets, dempster-Shaffer, ...)

5. Nota histórica (y un consuelo)

El área de probabilidad es relativamente joven.

Verano 1654

En un juego al azar, el ganador recibe 1 punto, el perdedor 0 puntos.

El ganador es el que acumula como primero 12 puntos y recibe 100pesos.

Si un jugador tiene 10 puntos y el otro 11 puntos: ¿Cómo dividir el premio si ya no pueden seguir jugando?

Fermat

Christiaan Huygens escribe por parte en base de este problema libro de probabilidad en 1657.

- ¿. Por qué la probabilidad tardó tanto desarrollarse?
 - 1618 John Napier publishes the first references to e in a work on logarithms.
 - <u>1619</u> <u>René Descartes</u> discovers <u>analytic geometry</u> (<u>Pierre de Fermat</u> claimed that he also discovered it independently),
 - <u>1619</u> <u>Johannes Kepler</u> discovers two of the <u>Kepler-Poinsot polyhedra</u>.
 - 1629 Pierre de Fermat develops a rudimentary <u>differential calculus</u>,
 - <u>1634</u> <u>Gilles de Roberval</u> shows that the area under a <u>cycloid</u> is three times the area of its generating circle,
 - 1637 Pierre de Fermat claims to have proven <u>Fermat's last theorem</u> in his copy of Diophantus' Arithmetica,
 - 1637 First use of the term <u>imaginary number</u> by <u>René Descartes</u>, it was meant to be derogatory.
 - 1654 Blaise Pascal and Pierre de Fermat create the theory of probability,
 - <u>1655</u> <u>John Wallis</u> writes Arithmetica Infinitorum,
 - <u>1658</u> <u>Christopher Wren</u> shows that the length of a <u>cycloid</u> is four times the diameter of its generating circle,
 - <u>1665</u> <u>Isaac Newton</u> works on the <u>fundamental theorem of calculus</u> and develops his version of <u>infinitesimal calculus</u>,
 - 1668 Nicholas Mercator and William Brouncker discover an infinite series for the logarithm

6. Conceptos derivados: probabilidad condicional

Experimento:

Elegimos al azar una persona de:

¿Cuál es la probabilidad que sea una persona con lentes?

6. Conceptos derivados: probabilidad condicional

Experimento:

Elegimos al azar una persona de:

¿Cuál es la probabilidad que sea una persona con lentes?

Alguien dice que es un hombre: ¿cuál es ahora la probabilidad que sea una persona con lentes?

6. Conceptos derivados: probabilidad condicional

Experimento:

Elegimos al azar una persona de:

¿Cuál es la probabilidad que sea una persona con lentes?

Alguien dice que es un hombre: ¿cuál es ahora la probabilidad que sea una persona con lentes?

Definición

Si
$$P(B) > 0$$
,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Lo llamamos la probabilidad condicional de A dado B

Definición

Si
$$P(B) > 0$$
,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Lo llamamos la probabilidad condicional de A dado B

 $P(\cdot|B)$ es como una nueva función de probabilidad sobre $\Omega = B$.

Por consecuencia $P(A^c|B) = 1 - P(A|B)$.

Observa que no hay ninguna relación directa entre P(A|B) y $P(A|B^c)$.

Experimento:

Elegir al azar dos letras consecutivas de alguna palabra con alfabeto $T=\{a,b,c,d,e\}$. Suponemos la siguiente distribución

	a	b	С	d	е
a	0.1	0.05	0.1	0.04	0
b	0.01	0.01	0.1	0.01	0.04
С	0.02	0.05	0.05	0.1	0.01
d	0.04	0.1	0.01	0.01	0.02
е	0	0.1	0	0.01	0.02

Tabla 3.

¿ Cuál es la probabilidad que la segunda letra seleccionada sea la "b" dado que sabemos que la anterior fue una "e"?