Einfuehrung in die Theoretische Informatik

HS 2014

Contents

1	Erst	te Woche	1
	1.1	Sprachen	1
	1 2	Endliche Automaten DFA	3

1 Erste Woche

1.1 Sprachen

Alphabet Σ : nichtleere endliche Menge (von Zeichen)

Wort ueber Σ : endliche Folge von Zeichen aus Σ

Leeres Wort: ϵ (epsilon)

Menge aller Woerter ueber Σ : Σ^*

Konkatenation von Woertern x, y ueber Σ :

$$\begin{array}{ll} x = x_1 x_2 ... x_n & , x_i \in \Sigma \\ y = y_1 y_2 ... y_n & , y_i \in \Sigma \end{array}$$

$$x \cdot y = xy = x_1 x_2 \dots x_n y_1 y_2 \dots y_n$$

Java: + ""
$$(\epsilon)$$

Haskell: ++ "" (ϵ)

Monoid: Sei *M* eine Menge und

 $\overline{\ \circ : M \times M \rightarrow^{total} M}$ eine Verknuepfung

Das Paar (M, \circ) heisst ein Monoid, falls gilt:

1)
$$a \circ (b \circ c) = (a \circ b) \circ c$$
 , $\forall a, b, c \in M$

2) Es gibt ein
$$e \in M$$
 mit $a \circ e = a = e \circ a$, $\forall a \in M$

Beispiel 1

$$M = \Sigma^*, \circ = \cdot$$

 (Σ^*,\cdot) ist ein Monoid mit ϵ als neutralem Element

Beispiel 2

$$\{\{x = 5; y = 6; \}z = 7; \} \equiv \{x = 5; \{y = 6; z = 7; \}\}$$

Komposition von Anweisungen assoziativ

Neutrales Element: ; (Java) skip, NOP (no operation)

$$(x = 2 * x; x = x + 1;) \not\equiv (x = x + 1; x = 2 * x)$$

Sprache ueber Σ :

Menge von Woerter ueber Σ

Beispiele

{} 0 Woerter

$$\{0,1,01,10\}$$
 Sprache uber $\Sigma=\{0,1\}$

 Σ^*

 $\{\epsilon\}$ 1 Wort

$$\{\epsilon, 0, 00, 000, ...\}$$
 uber $\Sigma = \{0\}$

Bem

 $\overline{\text{Spra}}$ che kann ∞ viele Woerter enthalten

Jedes Wort ist aber endlich

Bem

 $\overline{\epsilon \in \Sigma}^*$

 Σ^* immer ∞ gross

Operationen auf Sprachen

Seien L_1, L_2 Sprachen

 $L_1 \cup L_2$ Vereinigungsmenge

$$L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$$
 (Kreuzprodukt)

Sei (M, \circ) ein Monoid. Dann def.

$$\begin{array}{ll} a^0=e & ,a\in M \\ a^n=a\circ a^{n-1} & ,n>0 \end{array}$$

$$L^0 = \{\epsilon\}$$

$$L^n = L \cdot L^{n-1} \qquad , n > 0$$

Kleen' scher Stern

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots$$

$$= \{x_1, x_2, ..., x_k \mid k \geqslant 0, x_i \in L\}$$

Aufgabe

$$\Sigma = \{a, b, ..., z\}, L_1 = \{good, bad\}, L_2 = \{cat, dog\}$$

$$L_1 \cup L_2 = \{bad, cat, dog, good\}$$

 $L_1 \cdot L_2 = \{goodcat, gooddog, badcat, baddog\}$

$$L_1^0 = \{\epsilon\}$$

$$L_1^1 = \{good, bad\} = L_1 \cdot L_1^0 = L_1$$

 $L_1^2 = \{goodgood, goodbad, badgood, badbad\}$

 $L_1^3 = \{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, badgoodgood, badgoodbad, badbadgood, badbadbad\}$

$$\begin{split} L_1^* &= L_1^0 \cup L_1^1 \cup L_1^2 \cup L_1^3 \cup \dots \\ &= \{x_1, x_2, \dots, x_k \mid k \geqslant 0, x_i \in L_1\} = \{\epsilon, \dots\} \end{split}$$

 $L_1 \cdot L_2 = \{goodcat, gooddog, badcat, baddog\} \neq L_2 \cdot L_1$

|M| =Anzahl Elemente von M

1.2 Endliche Automaten DFA

deterministic finite automator

Statisch

Dynamisch

 $\underline{\text{Verarbeitung}} \qquad \text{Input: } \xrightarrow{1101}$

- 1. Start in q_1 Startzustand
- 2. Lese (1)101 , $q_1 \to q_2$
- 3. Lese 1(1)01 , $q_2 \to q_2$
- 4. Lese 1101 , $q_2 \to q_3$
- 5. Lese 110(1) , $q_3 \to q_2$
- 6. Fertig + akzeptiere, da q_2 akzeptierender Zustand ist und die Eingabe fertig gelesen ist.

Liefert accept oder fertig

Terminiert immer!

Def DFA : Ein DFA ist ein 5-Tupel $(Q, \Sigma, \delta, q_0, F)$ mit:

- 1. Q ist eine endliche nichtleere Menge von Zustaenden
- 2. Σ ist das Eingabealphabet (z.B. 1101)

- 3. $\delta: Q \times \Sigma \rightarrow^{total} Q$ Transitionsfunktion
- 4. q_0 Startzustand
- 5. $F\subseteq Q$ Menge der akzeptierende Zustaende