

NAVAL Postgraduate School

Analyzing NFL Spending by Position

Ace Padilla | Andrew Tamez

Matthew Thoms | Richard Viehdorfer

OA3802 – Fall 2024

- American Football Overview
- Web Scraping
- Statistical Analysis
- Simulation Model
- Results
- Web Dashboard
- Conclusion

What is American Football?

- 2 Teams
- 11 Players on the field at each time
- Attempt to advance the ball down the field by passing it or running it
- If you don't advance 10 yards in 4 plays, turn the ball over to the other team
- 6 points for a touchdown (PAT, 2 Point Conversion)
- 3 points for a field goal
- 2 points for a safety

American Football Positions

American Football Positions

American Football Positions

Punter

Long Snapper

Kicker

Salary Cap

- Reflects the total amount a team can spend on its players per year
- 48% of total NFL revenue, divided by 32 teams
- Increasing salary cap results in increased player salary
- General Manager: role is to <u>build and</u> <u>manage a team's roster</u> and oversee the football operations.
 - Player signings
 - Contract Negotiations
- Working within the salary cap, how much do you pay which players to get the best chance of success?

YEAR	CAP MAXIMUM	CAP \$ +/-	CAP % +/-
2024	\$255,400,000	\$30,600,000	13.61% 🕇
2023	\$224,800,000	\$16,600,000	7.97% 👚
2022	\$208,200,000	\$25,700,000	14.08% 🕇
2021	\$182,500,000	\$-15,700,000	-7.92% 🖶
2020	\$198,200,000	\$10,000,000	5.31% 🕇
2019	\$188,200,000	\$11,000,000	6.21% 🕇
2018	\$177,200,000	\$10,200,000	6.11% 🕈
2017	\$167,000,000	\$11,730,000	7.55% 👚
2016	\$155,270,000	\$11,990,000	8.37% 🕇
2015	\$143,280,000	\$10,280,000	7.73% 🕈
2014	\$133,000,000	\$9,400,000	7.61% 🕈
2013	\$123,600,000	\$3,000,000	2.49% 🕇
2012	\$120,600,000	\$225,000	0.19% 🕇
2011	\$120,375,000		
2010	Uncapped		
2009	\$123,000,000	\$7,000,000	6.03% 🕈
2008	\$116,000,000	\$7,000,000	6.42% 🕇
2007	\$109,000,000	\$7,000,000	6.86% ↑
2006	\$102,000,000	\$16,500,000	19.30% 🕇
2005	\$85,500,000	\$4,918,000	6.10% 🕈
2004	\$80,582,000	\$5,575,000	7.43% 🕇

WWW.NPS.EDU

Source: overthecap.com/salarycap

NFL Quarterback Salaries

Player	Team	Average Salary per Year	Super Bowl Wins	Playoff Wins
<u>Dak Prescott</u>	Cowboys	\$60,000,000		
Joe Burrow	<u>Bengals</u>	\$55,000,000		5
<u>Jordan Love</u>	<u>Packers</u>	\$55,000,000		1
<u>Trevor Lawrence</u>	<u>Jaguars</u>	\$55,000,000		1
<u>Tua Tagovailoa</u>	<u>Dolphins</u>	\$53,100,000		
<u>Jared Goff</u>	<u>Lions</u>	\$53,000,000		5
Justin Herbert	Chargers	\$52,500,000		
<u>Lamar Jackson</u>	Ravens	\$52,000,000		2
<u>Jalen Hurts</u>	<u>Eagles</u>	\$51,000,000		2
Kyler Murray	<u>Cardinals</u>	\$46,100,000		
Deshaun Watson	<u>Browns</u>	\$46,000,000		1
Kirk Cousins	<u>Falcons</u>	\$45,000,000		
Patrick Mahomes	<u>Chiefs</u>	\$45,000,000	3	15
Josh Allen	<u>Bills</u>	\$43,000,000		5
Matt Stafford	Rams	\$40,000,000	1	4
<u>Daniel Jones</u>	<u>Giants</u>	\$40,000,000		1
Aaron Rodgers	<u>Jets</u>	\$37,500,000	1	12
<u>Derek Carr</u>	<u>Saints</u>	\$37,500,000		
Baker Mayfield	Buccaneers	\$33,333,333		2
Geno Smith	<u>Seahawks</u>	\$25,000,000		
Gardner Minshew	<u>Raiders</u>	\$12,500,000		2

Source: overthecap.com/position/quarterback

Web Scraping

Key tools: requests, bs4 python packages

- Sources (no API with all the data needed):
 - Team Spending: https://www.spotrac.com/nfl/position/ /year/2024
 - Superbowl Winners (1966-Current):
 https://www.topendsports.com/events/super-bowl/winners-list.htm
 - Conference Champions: https://www.foxsports.com/stories/nfl/nfc-champions-complete-list-winners-year
 - Playoff Teams: https://en.wikipedia.org/wiki/NFL_playoff_results#All-time_playoff_records_(NFL/AFL)

```
url = 'https://www.topendsports.com/events/super-bowl/winners-list.htm'
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
```


Statistical Analysis

Team	OFF	QB	RB	WR	TE
DET	0.52525	0.075417	0.060167	0.205417	0.047
PHI	0.46475	0.157667	0.015083	0.102833	0.0295
CAR	0.535833	0.045583	0.091083	0.112	0.05375
ATL	0.543833	0.135833	0.07775	0.112333	0.0805
NYG	0.478167	0.15075	0.099333	0.062833	0.012667

Total	Year	Wins	SuperBow	CC_Win	Playoffs
1.02225	2011	10	0	0	1
0.99675	2011	8	0	0	0
0.989333	2011	6	0	0	0
0.972333	2011	10	0	0	1
0.959667	2011	9	1	1	1

Data

Independent Variables: Positions

Dependent Variables: Wins

Super Bowl, Conference Championships, Playoffs

Data Balance (0,1)

SB: 410 vs. 13

- CC: 397 vs. 26

Playoffs: 268 vs. 155

- R: Smote Package: SMOTE function RDocumentation
 - "Artificially generate new examples of the minority class using the nearest neighbors of these cases."
 - "Majority class examples are also under-sampled, leading to a more balanced dataset."
 - Increases bias aligned with winning team particular features.

Emsemble Model per Independent Variable –

- Balanced and Unbalanced avg of (6) total
 - Ridge Regression
 - Logarithmic General Linear Model
 - Random Forest Classifier

	ENSEMBLE
Position 💌	Overall_Weighted_Average
QB	0.133950041
TE	0.129747766
DL	0.121430187
OL	0.116630561
Р	0.115268535
LB	0.08733053
SEC	0.072290829
WB	0.068452959
LS	0.063114955
K	0.057982732
RB	0.033800904

Simulation

- Attempted HPC.
- Randomize Spending Percentages
- Utilize our calculated weights

$$\pi(\mathbf{X}) = \frac{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)}{1 + \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)}$$

$$= \frac{\exp(\mathbf{X}\beta)}{1 + \exp(\mathbf{X}\beta)}$$

$$= \frac{1}{1 + \exp(-\mathbf{X}\beta)},$$

- Determine the probability of win using binary logistic regression
- Look at the top 10% of probabilities
- What do we get?
- Image courtesy of https://online.stat.psu.edu/stat462/node/207/

- Before we get to our results
- Over 3 million data points. Best way to determine the values we want: pandas dataframe, excel, SQL?
- With so many data points, let's go with SQL
 - Allows storage of more data within the database in a memory-efficient manner
 - Easy and efficient to query for the results we need
- Looking for the mean/max is easy:

```
query =
    SELECT
        AVG(QB) AS avg_QB,
        AVG(TE) AS avg_TE,
        AVG(DL) AS avg_DL,
        AVG(P) AS avg_P,
        AVG(OL) AS avg_OL,
        AVG(LB) AS avg_LB,
        AVG(WR) AS avg_WR,
        AVG(SEC) AS avg_SEC,
        AVG(K) AS avg_K,
        AVG(LS) AS avg_LS,
        AVG(RB) AS avg_RB,
        AVG(predicted_probability) AS avg_predicted_probability
    FROM SuperBowl
   WHERE predicted_probability >= 0.56221 AND predicted_probability <= 0.59018
```


Results: SuperBowl

Results: Conference Champ. Wins

Results: Make the Playoffs

Dashboard

- Recommendations: Pay QB twice as much as RB, OL = DL spending, QB = TE spending
- Investing most of your money on a specific position doesn't result to wins; you need to balance the ratio between positions.
- Future research:
 - Salary versus specific players stats that contribute toward wins
 - Analyze coach spending

Questions?