Lattice Theory

May 12, 2025

Contents

1	Ordered Sets	2
2	Title of Chapter 3	5

1 Ordered Sets

An ordering is a binary relation on a set of objects.

Definition 1.1. Let P be a set. An order (or partial order) on P is a binary relation \leq on P such that for all $x, y, z \in P$.

- $(reflexivity) x \le x$
- $(antisymmetry) \ x \le y \land y \le x \implies x = y$
- $(transitivity) \ x \le y \land y \le z \implies x \le z$

 $\langle \boldsymbol{P}; \leq \rangle$:= "ordered set" or "partially ordered set", poset. := A set \boldsymbol{P} equipped with an order relation \leq .

discrete order := "=" is an order on any set.

guasi-order or pre-order ≔

induced order $:= x, y \in \mathbf{Q}, x \leq y \iff x \leq y \in \mathbf{P}$, where $\mathbf{Q} \subseteq \mathbf{P}$.

Definition 1.2. Let P be an ordered set. Then P is a **chain** if for all $y \in P$, either $x \leq y$ or $y \leq x$.

Chain can be called, linearly ordered set, or totally ordered set.

Antichain := if $x \leq y$ in P only if x = y. Hence, any set S may be converted into an antichain \bar{S} by giving S the discrete order.

Definition 1.3. Order-isomorphisms $P \cong Q$, if there exists a map φ from P onto Q such that $x \leq y$ in $P \iff \varphi(x) \leq \varphi(y)$ in Q. Then φ is called an "order-isomorphism".

Note: order-isomorphism \Rightarrow bijection (one-to-one and onto). Hence,

$$arphi\colon oldsymbol{P} o oldsymbol{Q},\quad arphi^{-1}\colon oldsymbol{Q} o oldsymbol{P}$$

Definition 1.4. Powerset $\wp(X)$, consisting of all subsets of x, is ordered by set inclusion: for $A, B \in \wp(X)$, we define: $A \leq B \iff A \subseteq B$.

Note: any subset of $\wp(X)$ inherits the inclusion order.

Predicate := A statement taking value T(true) or value F(false).:= $x \to \{T, F\}.$

Example 1.5.

$$p \colon \mathbb{R} \to \{T, F\}$$
$$p(x) = \begin{cases} T, & \text{if } x \ge 0 \\ F, & \text{if } x < 0 \end{cases}$$

 $\mathbb{P}(X) := \text{The set of predicates on } X.$

Let p and q are predicate. Then we denote by

$$p \Rightarrow q \iff \{x \in \mathbf{X} \mid p(x) = T\} \subseteq \{x \in \mathbf{X} \mid g(x) = T\}.$$

Definition 1.6. The convering relation Let P be an ordered set, $x, y \in P$

$$\left\{\begin{array}{l} x \text{ is covered by } y \\ y \text{ covers } x \end{array}\right\}.$$

$$x \prec y \text{ or } y > -x$$

Note: $x < y \land x \le z < y \rightarrow x = z$.

Note: if *P* is finite,

Example 1.7. In the chain \mathbb{N} , we have $m \prec n \iff n = m + 1$.

Example 1.9. In $\wp(X)$, we have

$$A - \!\!\!< B \iff B = A \cup \{b\},$$

for same $b \in X \setminus A$.

Diagrams Rules: (Hasse diagram)

1. To each point $x \in \mathbf{P}$, associate a point p(x) of the Euclidean plane \mathbb{R}^2 , depicted by a small circle with centre at p(x).

- 2. For each covering pair $x \prec y$ in P, take a line segment $\ell(x,y)$ joining the circle at p(x) to the circle at p(y).
- 3. Carry out 1. and 2. in such a way that:
 - (a) if $x \prec y$, then p(x) is "lower" than p(y).
 - (b) the circle at p(z) does not intersect the line segment $\ell(x,y)$ if $z \neq x \land z \neq y$.

By diagram,

 $x < y \iff$ there is a sequence of connected line segments moving upwards from x to y.

Lemma 1.10. Let P and Q be finite ordered sets and let $\varphi \colon P \to Q$ be a bijective map. Then the following are equivalent:

- 1. φ is an order-isomorphism.
- 2. x < y in $\mathbf{P} \iff \varphi(x) < \varphi(y)$ in \mathbf{Q} .
- 3. $x \prec y$ in $\mathbf{P} \iff \varphi(x) \prec \varphi(y)$ in \mathbf{Q} .

Proposition 1. Two finite ordered sets P and Q are order-isomorphic iff they can be drawn with identical diagrams.

Definition 1.11. The dual of an ordered set Given any ordered set \mathbf{P} , we can form a new ordered set \mathbf{P}^{∂} (the dual of \mathbf{P}) by defining $x \leq y$ to hold in $\mathbf{P}^{\partial} \iff y \leq x$ holds in \mathbf{P} .

The Duality Principle:

Given a statement Φ about ordered sets which is true in all ordered sets, the dual statement Φ^{∂} is also true in all ordered set.

Note:

$$\bot \in \mathbf{P}$$
: bottom, if $\bot \le x, \forall x \in \mathbf{P}$. $\top \in \mathbf{P}$: top, if $\top \ge x, \forall x \in \mathbf{P}$.

PS \perp and \top are unique, by duality principle and antisymmetry.

Definition 1.12. Maximal (MaxQ) Let P be an ordered set and let $Q \subseteq P$. Then $a \in Q$ is a maximal element of Q if $a \le x \land x \in Q \implies a = x$.

Definition 1.13. Minimal (MinQ) Let P be an ordered set and let $Q \subseteq P$. Then $a \in Q$ is a minimal element of Q if $a \ge x \land x \in Q \implies a = x$.

Definition 1.14. Maximum $(\top_Q = maxQ)$ If Q (with the order inherited from P) has a top element, \top_Q , then $MaxQ = \{\top_Q\}$.

Definition 1.15. Minimum $(\perp_Q = minQ)$ If Q (with the order inherited from P) has a bottom element, \perp_Q , then $MinQ = \{\perp_Q\}$.