Méthode du pompage = Méthode des oscillations entretenues

Cette méthode s'applique-t-elle à un procédé naturellement stable (auto-stable) ou à un procédé naturellement instable (intégrateur)?.....

Un essai permet de déterminer le gain critique du régulateur G_{rc} amenant à la juste instabilité ainsi que la période des oscillations su système T_{osc} .

Doit-il se faire en boucle ouverte ou en boucle fermée?

Détailler les différentes étapes de l'essai :

Noter la valeur de	G _{rc}
--------------------	-----------------

Déterminer sur l'enregistrement joint à la copie la valeur de la période de l'oscillation

T_{osc}

Le tableau qui suit traduit le choix de ZIEGLER-NICHOLS pour les paramètres du régulateur.

$\begin{array}{ c c c c c c c c }\hline \textbf{G_r} & \frac{\textbf{G}_{rc}}{2} & \frac{\textbf{G}_{rc}}{2,2} & \frac{\textbf{G}_{rc}}{2,2} & \frac{\textbf{G}_{rc}}{3,3} & \frac{\textbf{G}_{rc}}{1,7} & \frac{\textbf{G}_{rc}}{1,7} \\ \hline \textbf{T_i} & \text{Maximum} & \frac{\textbf{T}_{osc}}{1,2} & \frac{2.\textbf{T}_{osc}}{\textbf{G}_{rc}} & \frac{\textbf{T}_{osc}}{4} & \frac{0.85\textbf{T}_{osc}}{\textbf{G}_{rc}} & \frac{\textbf{T}_{osc}}{2} \\ \hline \textbf{T} & \textbf{T} & \textbf{G} & \textbf{T} \\ \hline \end{array}$		P	PI série	PI //	PID série	PID //	PID mixte
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	G _r	$\frac{\mathrm{G}_{\mathrm{rc}}}{2}$	$\frac{G_{rc}}{2,2}$	$\frac{G_{rc}}{2,2}$		$\frac{G_{rc}}{1,7}$	$\frac{G_{rc}}{1,7}$
T T.G T	Ti	Maximum	1 _{osc}		$\frac{T_{\text{osc}}}{4}$	G	$\frac{T_{\text{osc}}}{2}$
$\begin{bmatrix} 1 \mathbf{d} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{2 \cos^2 \theta}{8} \\ \frac{2 \cos^2 \theta}{13,3} \end{bmatrix} = \begin{bmatrix} \frac{2 \cos^2 \theta}{8} \\ \frac{2 \cos^2 \theta}{13,3} \end{bmatrix}$	$T_{\mathbf{d}}$	0	0	0	$\frac{T_{\text{osc}}}{8}$	$\frac{\mathrm{T}_{\mathrm{osc}}.G_{rc}}{13,3}$	$\frac{T_{\text{osc}}}{8}$

Rappeler ici le type de régulateur utilisé: et déterminer les valeurs qui ont été prises comme base pour les réglages de

- de la bande proportionnelle X_p =.....
- du temps d'intégrale $T_{\rm I}$ =.....
- du temps de dérivée T_D =.....