Distributed Computing III

Murphy was an optimist

CSSE6400

Richard Thomas

May 9, 2022

What communication faults may occur?

What communication faults may occur?

Answer

Message not delivered

What communication faults may occur?

- Message not delivered
- Message delayed

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed
- Receiver busy

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed
- Receiver busy
- Reply not received

What communication faults may occur?

- Message not delivered
- Message delayed
- Receiver failed
- Receiver busy
- Reply not received
- Reply delayed

How do we detect faults?

How do we detect faults?

Answer

No listener on port – RST or FIN packet

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure
- IP address not reachable unreachable packet

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure
- IP address not reachable unreachable packet
- Query switches

How do we detect faults?

- No listener on port RST or FIN packet
- Process crashes Monitor report failure
- IP address not reachable unreachable packet
- Query switches
- Timeout

What to do if fault is detected?

What to do if fault is detected?

- Retry
- Restart

Definition 1. Idempotency

Repeating an operation does not change receiver's state.

Byzantine Generals Problem

- n generals need to agree on plan
- Can only communicate via messenger
- Messenger may be delayed or lost
- Some generals are traitors
 - Send dishonest messages
 - Pretend to have not received message

Definition 2. Poison Message

A message that causes the receiver to fail.

Normal Message Flow

Poison Message

What causes a message to be poisonous?

What causes a message to be poisonous?

- Content is invalid
 - e.g. Invalid product id sent to purchasing service
 - Error handling doesn't cater for error case

What causes a message to be poisonous?

- Content is invalid
 - e.g. Invalid product id sent to purchasing service
 - Error handling doesn't cater for error case
- System state is invalid
 - e.g. Add item to shopping cart that has been deleted
 - Logic doesn't handle out of order messages
 - Insidious asynchronous faults

Detecting Poison Messages

Retry counter – with limit

- Where is counter stored?
 - Memory What if server restarts?
 - DB Slow
 - Must ensure counter is reset, regardless of how message is handled
 - e.g. Message is manually deleted

Detecting Poison Messages

Retry counter – with limit

- Where is counter stored?
 - Memory What if server restarts?
 - DB Slow
 - Must ensure counter is reset, regardless of how message is handled
 - e.g. Message is manually deleted

Message service may have a timeout property

- Message removed from queue
 - Pending messages get older while waiting for poison message
 - Transient network faults may exceed timeout

Detecting Poison Messages

Monitoring service

- Trigger action if message stays at top of queue for too long
- Can check for queue errors
 - No messages are being processed
 - Restart message service

Handling Poison Messages

Discard message

- System must not require guarantee of message delivery
- Suitable when message processing speed is most important

Handling Poison Messages

Discard message

- System must not require guarantee of message delivery
- Suitable when message processing speed is most important

Always retry

- Requires mechanism to fix message
 - Often requires manual intervention
- Suitable when message delivery is most important
- Very long delays in processing

Handling Poison Messages

Dead-letter queue

- Long transient failures result in adding many messages
 - e.g. Network failure
- Requires manual monitoring and intervention
- System must not require strict ordering of messages
- Suitable when message processing speed is important

Handling Poison Messages

Retry queue

- Transient failures also added
- Use a previous strategy to deal with poison messages
- System must not require strict ordering of messages
- Suitable when message processing speed is very important
 - Main queue is never blocked
 - Receivers need to process from two message queues

Definition 3. Poison Pill Message

Special message used to notify receiver it should no longer wait for messages.

Why use a poison pill message?

Why use a poison pill message?

Answer

Graceful shutdown of system.

How to order asynchronous messages?

How to order asynchronous messages?

Answer

- Timestamps?
 - Can't keep clocks in sync
 - Limited clock precision

Consistency

Eventual Consistency weak guarantee Linearisability strong guarantee Causal Ordering strong guarantee

- Once value is written, all reads see same value
 - Regardless of replica read from

- Once value is written, all reads see same value
 - Regardless of replica read from
- Single-leader replication
 - Read from leader
 - Read from synchronous follower

- Once value is written, all reads see same value
 - Regardless of replica read from
- Single-leader replication
 - Read from leader
 - Read from synchronous follower
- Multi-leader replication can't be linearised

- Once value is written, all reads see same value
 - Regardless of replica read from
- Single-leader replication
 - Read from leader
 - Read from synchronous follower
- Multi-leader replication can't be linearised
- Leaderless replication
 - Lock value on quorum before writing

Causal Order

- Order is based on causality
 - What event needs to happen before another
 - Allows concurrent events

Causal Order

- Order is based on causality
 - What event needs to happen before another
 - Allows concurrent events
- Single-leader replication
 - Record sequence number of writes in log
 - Followers read log to execute writes

Causal Order

- Order is based on causality
 - What event needs to happen before another
 - Allows concurrent events
- Single-leader replication
 - Record sequence number of writes in log
 - Followers read log to execute writes
- Lamport timestamps

Definition 4. Consensus

A set of nodes in the system agree on some aspect of the system's state.

Consensus Properties

Uniform Agreement All nodes must agree on the decision

Integrity Nodes can only vote once

Validity Result must have been proposed by a node

Termination Every node that doesn't crash must decide

Definition 5. Atomic Commit

All nodes participating in a distributed transaction need to form consensus to complete the transaction.

Two-Phase Commit

Prepare Confirm nodes can commit transaction

Commit Finalise commit once consensus is reached

Abort if consensus can't be reached

