MATH355 2017-11-10

EIGENSTUFF

Just to be clear, let us spell out once again the difference between an R-linear and a C-linear map. Recall, if V, W are vector spaces, then $f: V \to W$ is *linear* if

- $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$ for all $\vec{v}_1, \vec{v}_2 \in V$
- $f(\alpha \vec{v}) = \alpha f(\vec{v})$ for all $\vec{v} \in V$ and $\alpha \in \mathbb{R}$.

Since we are using that our scalars α live in **R**, we should really be calling this **R**-linear.

Analogously, say V, W are complex vector spaces. Then $g: V \to W$ is C-linear if

- $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$ for all $\vec{v}_1, \vec{v}_2 \in V$
- $f(\alpha \vec{v}) = \alpha f(\vec{v})$ for all $\vec{v} \in V$ and $\alpha \in C$.

So the only difference is whether I allow to pull out i or not.

Example 1. Let $\phi: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $\phi \begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} \Re z + \Im w \\ z + w \end{pmatrix}$. Check that ϕ is **R**-linear but not C-linear.

OK, let's go back to similarity. Recall that two matrices A, B are similar if there exists an invertible matrix P such that $PAP^{-1} = B$. We say A is diagonalizable, if it is similar to a diagonal matrix. When we need to be precise, we will distinguish between being R-diagonalizable and **C**-diagonalizable, i.e. whether I can find the matrix P in $M_{n\times n}(\mathbf{R})$ or in $M_{n\times n}(\mathbf{C})$.

We like to rephrase the existence of the matrix P, by viewing it as a change of basis matrix.

Remark 2. A is diagonalizable if and only if there exist n linearly independent vectors $\vec{v}_1, \dots, \vec{v}_n$ and n scalars $\lambda_1, \ldots, \lambda_n$ such that

$$A\vec{v}_i = \lambda_i \vec{v}_i$$

for all $j = 1, \ldots, n$.

Of course, depending on whether we want diagonalizability over **R** or **C** we will require $\vec{v}_i \in \mathbf{R}^n$ and $\lambda_i \in \mathbf{R}$ or $\vec{v}_i \in \mathbf{C}^n$ and $\lambda_i \in \mathbf{C}$.

We've already seen examples:

- $\begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$ is **R**-diagonalizable (and hence **C**-diagonalizable); $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ is **C**-diagonalizable but *not* **R**-diagonalizable.

Let's see another example.

Date: John Calabrese, November 24, 2017.

EIGENSTUFF

Example 3. Let $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ We will now show that N is neither diagonalizable over **R** or over **C**.

OK, say we can find two linearly independent vectors $\vec{v} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, $\vec{w} = \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$, two scalars λ, μ such that

$$N\vec{v} = \lambda \vec{v}, N\vec{w} = \mu \vec{w}.$$

Let us try and solve these two equations.

$$\begin{pmatrix} \lambda \alpha \\ \lambda \beta \end{pmatrix} = \lambda \vec{v} = N \vec{v} = \begin{pmatrix} \beta \\ 0 \end{pmatrix}$$

so

$$\begin{cases} \lambda \alpha = \beta \\ \lambda \beta = 0 \end{cases}$$

If
$$\lambda = 0$$
, then $\beta = 0$, so that $\vec{v} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \text{Span} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

If $\lambda \neq 0$, then I can divide by it in the second equation to obtain $\beta = 0$. But then I can divide again in the first equation, obtaining $\alpha = 0$.

So what have we learned? If $\lambda \neq 0$ there is no nonzero vector that satisfies that equation (and same goes if I had written μ instead of λ and \vec{w} instead of \vec{v}).

This means that if N is similar to a matrix $D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ we would have $\lambda = 0 = \mu$. But rk N = 1, so that's impossible.

More explicitly, a vector satisfying $N\vec{v} = 0\vec{v} = \vec{0}$ must live in Span $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, which is one-dimensional. So I cannot find two linearly independent vectors in it!

Notice that in the example just now, it didn't matter whether we used real or complex numbers: that matrix is simply never diagonalizable!

Let us introduce some terminology which will be useful later.

Definition 4. Let $f: V \to V$ be a linear map. An *eigenvalue* is a scalar λ such that there exists a nonzero vector \vec{v} such that

$$f(\vec{v}) = \lambda \vec{v}$$
.

Such a \vec{v} is called a λ -eigenvector for f.

We emphasize once more: λ is allowed to be whatever it wants, but \vec{v} cannot be the zero vector. Why? Well, the equation $f(\vec{0}) = \lambda \vec{0}$ is always true, no matter what λ is. So that's not very helpful.

Remark 5. f is diagonalizable if and only if there exists a basis of eigenvectors for f

OK, say we have a matrix A, which we view as representing some linear map f. How do we find eigenvectors and eigenvalues for A? Let us start with eigenvalues. We are trying to find λ and \vec{v} such that

$$A\vec{v} = \lambda \vec{v}$$

Let us rewrite this as $A\vec{v} - \lambda\vec{v} = \vec{0}$. But this is the same as

$$(A - \lambda I)\vec{v} = \vec{0}$$

In other words,

 \vec{v} is a λ -eigenvector if and only if \vec{v} belongs to the kernel of the matrix $A - \lambda I$.

So, λ is an eigenvalue if and only if the matrix $A - \lambda I$ has a non-zero kernel. We can rephrase this by saying λ is an eigenvalue if and only if the matrix $A - \lambda I$ is *not* invertible. But a square matrix is non-invertible if and only if it has zero determinant! To rephrase this yet again

 λ is an eigenvalue for A if and only if $det(A - \lambda I) = 0$.

The next few lectures will be devoted to studying precisely the quation $det(A - \lambda I) = 0$.

To conclude, let x be an indeterminate. It can be shown that det(A - xI) is a polynomial, called $p_A(x)$ the *characteristic polynomial* of A. To rephrase once more:

The *eigenvalues* of A correspond precisely to the *mots* of the characteristic polynomial of A.