Segundo Examen Parcial

Primavera 2024

Sube tu archivo resultado a Canvas → Examen Parcial 2 antes de las 11:30 horas.

Cada pregunta vale 5 puntos.

Aseguráte de que tus resultados se despliegan en el archivo que subas.

Las funciones que utilices deben estar al final del script y no deben estar comentadas.

Los exámenes son trabajos individuales. Está estrictamente prohibido dar o recibir ayuda de cualquier persona.

Recuerda salvar frecuentemente tu archivo.

Puede ser conveniente limpiar periódicamente el espacio de trabajo (comando clear).

1. Sistemas tridiagonales de ecuaciones lineales

Resuelve de la manera más *eficiente* posible los siguientes sistemas A x = b, donde

a) A es una matriz triangular inferior. Nota que la matriz no tiene diagonal unitaria.

$$\begin{bmatrix} 3 & 0 & 0 \\ -1 & 2 & 0 \\ -4 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \\ 9 \end{bmatrix}$$

```
ATI = [3,0,0; -1,2,0; -4,1,4];
b = [-3;-5;9];
x = forwardSubstitution(ATI, b);
x
```

b) A es una matriz triangular superior.

$$\begin{bmatrix} 2 & -1 & 3 & -3 \\ 0 & -1 & 5 & 2 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -9 \\ -3 \\ 9 \end{bmatrix}$$

```
Х
```

```
x = 4×1
14.5000
12.0000
-3.0000
-3.0000
```

2. Matrices siméticas positivas definidas

Considera la siguiente matrizA:

$$\begin{bmatrix} 1 & -1 & 1 \\ -1 & 5 & -5 \\ 1 & -5 & 6 \end{bmatrix}$$

a) Usando funciones de MATLAB, muestra en una línea que A es es simétrica y positiva definida (**todos** sus eigenvalores son positivos).

```
A = [1,-1,1; -1,5,-5; 1,-5,6];
all(eig(A) > 0)
ans = logical
```

- b) Escribe la función cholesky al final del script. La función debe utilizar solo un ciclo.
- c) Utiliza tu función *cholesky* para encontrar la factorización A = L*L'. Comprueba tu resultado.

```
L = cholesky(A);
```

d) Utilizando L, calcula el determinante de A.

```
d = 2*prod(diag(L));
d
```

d = 4

e) Utilizando L y L', calcula la inversa de A.

```
invA = backslashSubstitution(L, L', eye(size(A)));
invA
```

```
invA = 3×3
1.2500 0.2500 0
0.2500 1.2500 1.0000
0 1.0000 1.0000
```

3. Sistema de ecuaciones no lineales.

Encuentra *tres* soluciones diferentes del siguiente sistema de ecuaciones no lineales:

$$f_1(x, y) = x^2 - x + y - 0.75 = 0$$

```
f_2(x, y) = x^2 - 5xy - y = 0
```

```
f1 = @(x1, x2) x1.^2 - x1 + x2 - 0.75;
f2 = @(x1, x2) x1.^2 - 5.*x1.*x2 - x2;
fimplicit(f1, [-1 1])
hold on
fimplicit(f2, [-1 1])
hold off
```



```
f = @(x) [x(1).^2 - x(1) + x(2) - 0.75; x(1).^2 - 5.*x(1).*x(2) - x(2)];
x0 = [-1; -0.5];
x1 = [-0.2; 0];
x2 = [1; 1.5];
[x, i] = newtonRaphsonMult(f, x0);
fprintf('El resutado es: %f, %f en %d iteraciones', x(1), x(2), i)
```

El resutado es: -0.585274, -0.177819 en 5 iteraciones

```
[x, i] = newtonRaphsonMult(f, x1);
fprintf('El resutado es: %f, %f en %d iteraciones', x(1), x(2), i)
```

El resutado es: -0.186792, 0.528317 en 5 iteraciones

```
[x, i] = newtonRaphsonMult(f, x2);
fprintf('El resutado es: %f, %f en %d iteraciones', x(1), x(2), i)
```

4. Algoritmos iterativos: Jacobi y Gauss-Seidel.

Considera la siguiente matriz A:

```
\begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}
```

```
A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-2];
```

a) ¿Es diagonal estrictamente dominante?

```
dd = strictDominantDiagonal(A);
if dd, fprintf('Si');
else, fprintf('No'); end
```

No

b) ¿Las matrices de transición T para Jacobi y Gauss-Seidel tienen radio espectral menor a 1?

Si λ_i , ..., λ_i son los valores propios de una matriz A, entonces su radio espectral se define como:

```
\rho(A) = \max(|\lambda_i|) \max
```

Recuerda que las matrices de transición son:

Gauss-Seidel $T = -(L+D)^{-1}U$

Jacobi $T = -D^{-1}(L+U)$

```
[L, U] = lup(A);
D = diag(diag(A));
[m, n] = size(A)
```

```
m = 4
n = 4
```

```
I = eye(m, n);

% Gauss Seidel
invLD = forwardSubstitutionMat(L+D, I);

Tgs = -invLD*U;
[~, eigTgs] = powerMethod(Tgs);
eigTgs < 1</pre>
```

```
ans = logical
1
```

```
% Jacobi
```

```
invD = I/D;
Tjb = invD*(L+U);
[~, eigTjb] = powerMethod(Tjb);
eigTjb < 1</pre>
```

ans = logical
1

c) Resuelve el sistema usando Gauss-Seidel, si

$$b = \begin{bmatrix} -1\\0\\0\\0 \end{bmatrix}$$

```
b = [-1; 0; 0; 0];
x = gaussSeidel(A, b);
```

Warning: Matrix doesnt have a strict dominant diagonal

```
x = 4×1

0.8000

0.6000

0.4000

0.2000
```

5. Formato comprimido por columna.

Resuelve el problema anterior usando el método de Jacobi y la representación comprimida de A.

```
A;
b;
x = [-2,1, 1,-2,1, 1,-2];
i = [1,2, 1,2,3, 2,3,4, 3,4];
p = [1,3,6,9,11];
X = jacobi(A, b);
```

Warning: The matrix does not have a strict dominant diagonal

0

```
X

X = 4×1
0.5000
0
0
```

a) Encuentra las dimensiones de A y el número de elementos diferentes de cero (nzz).

```
[m, idx] = max(i);
```

b) Obten de *x* los elementos de la diagonal de *A*. Supón que *A* es invertible y que no tiene ceros en la diagonal.

```
d = zeros(1, n);
j = 1;
k = 1;
while j < n
    if k == j
        d(j)= x(k);
        j = j+1;
    end
    k = k+1;
end
d</pre>
```

```
d = 1 \times 4
-2
1
1
0
```

c) Resuelve el sistema de ecuaciones con la fórmula

```
x_{i+1} = x_i + D^{-1}r, donde r = Ax_i - b
```

Recuerda que Ax_i puede expresarse como una combinación lineal de las columnas de A:

$$A * x_i = \sum_{j=1}^{n} x_i(j) * A(:, j)$$

```
x = formula(A, b);
x
```

```
x = 4×1
-8
0
0
```

```
function [x, i] = formula(A, b)
    rTol = 0.5e-5;
    itMax = 150;
    [m, n] = size(A);
    invD = diag(diag(A))/eye(m, n);
```

```
x = zeros(m, 1);
    i = 0;
    condicion = true;
    while condicion
        xp = x;
        r = xp(1)*A(:,1) - b;
        for j = 2:n
            r = r + xp(j)*A(:,j) - b;
        end
        for j = 1:n
            x = xp + invD*r;
        end
        i = i + 1;
        condicion = norm((x-xp)./x, Inf) > rTol && i < itMax;
    end
end
```

Métodos utilizados

```
function x = forwardSubstitution(L, b)
    [m,n] = size(L);
    if m~=n, error('Matrix A must be square'), end
    if m~=length(b), error('Wrong dimension on b'), end
   x = zeros(size(b));
   x(1) = b(1)/L(1,1);
   for i = 2:n
        x(i) = (b(i) - L(i, 1:i-1)*x(1:i-1))/L(i, i);
    end
end
function x = backwardSubstitution(U, b)
    [m,n] = size(U);
    if m~=n, error('Matrix A must be square'), end
    if m~=length(b), error('Wrong dimension on b'), end
   x = zeros(size(b));
   x(n) = b(n)/U(n,n);
    for i = n-1:-1:1
        x(i) = (b(i) - U(i, i+1:end)*b(i+1:end))/U(i,i);
    end
end
function X = forwardSubstitutionMat(L, B)
    [m, n] = size(B);
   X = zeros(m, n);
   X(1, :) = B(1, :)/L(1, 1);
```

```
for i = 2:m
        X(i, :) = (B(i, :) - L(i, 1:i-1)*X(1:i-1, :))/L(i, i);
    end
end
function X = backslashSubstitution(L, U, B)
    [m, n] = size(B);
   Y = zeros(m, n);
   Y(1, :) = B(1, :)/L(1, 1);
   for i = 2:m
        Y(i, :) = (B(i, :) - L(i, 1:i-1)*Y(1:i-1, :))/L(i, i);
    end
   X = zeros(m, n);
   X(m, :) = Y(m, :)/U(m, m);
    for i = m-1:-1:1
        X(i, :) = (Y(i, :) - U(i, i+1:end)*X(i+1:end, :))/U(i, i);
    end
end
function L = cholesky(A)
    if ~issymmetric(A), error('Matrix must be symmetric'); end
    n = length(A);
    L = zeros(n, n);
    L(1, 1) = sqrt(A(1, 1));
   L(:, 1) = A(:, 1)/L(1, 1);
   for i = 2:n-1
        L(i, i) = sqrt(A(i, i) - L(i, 1:i-1).^2);
    end
   for j = 2:n
        for i = j+1:n
            L(i, j) = (A(i, j) - L(i, 1:j-1)*L(j, 1:j-1)')/L(j, j);
        end
    end
    L(n, n) = sqrt(A(n, n) - sum(L(n, 1:n-1).^2));
    if ~(isreal(diag(L))), error('Matrix is not positive definite'); end
end
function pd = strictDominantDiagonal(A)
    [m, n] = size(A);
    if m ~= n, error('Matrix is not square'); end
    pd = abs(A(1, 1)) > abs(sum(A(1, 2:end)));
    i = 2;
```

```
while i < n && pd
        pd = sum(abs([A(i, i+1:n) A(i, 1:i-1)])) < abs(A(i, i));
        i = i+1;
    end
end
function [x, i] = gaussSeidel(A, b, x0, rTol, itMax)
    if ~strictDominantDiagonal(A), warning('Matrix doesnt have a strict dominant
diagonal'); end
    n = length(A);
    if ~exist("rTol", "var"), rTol = 0.5e-5; end
    if ~exist("itMax", "var"), itMax = 100; end
    if ~exist("x0","var"), x0 = zeros(size(b)); end
   x = x0;
    i = 0;
    condition = true;
    while condition
       xp = x;
       x(1) = (b(1) - A(1, 2:n)*x(2:n))/A(1, 1);
       for j = 2:n-1
            x(j) = (b(j) - A(j, 1:j-1)*x(1:j-1) - A(j, j+1:n)*x(j+1:n))/A(j, j);
       end
       x(n) = (b(n) - A(n, 1:n-1)*x(1:n-1))/A(n, n);
        i = i + 1;
        condition = norm((x-xp)./x, Inf) > rTol && i < itMax;
    end
end
function [x, i] = jacobi(A, b, x0, rTol, itMax)
    if ~strictDominantDiagonal(A), warning('The matrix does not have a strict
dominant diagonal'); end
    [n, m] = size(b);
    if ~exist("x0", "var"), x0 = zeros([n m]); end
    if ~exist("rTol", "var"), rTol = 0.5e-5; end
    if ~exist("itMax", "var"), itMax = 100; end
   x = x0;
    i = 1;
    condition = true;
    while condition
       xp = x;
       x(1) = (b(1) - A(1, 2:n)*xp(2:n))/A(1, 1);
       for j = 2:n-1
            x(j) = (b(j) - A(j, 1:j-1)*xp(1:j-1) - A(j, j+1:n)*xp(j+1:n))/A(j, j);
        end
```

```
x(n) = (b(n) - A(n, 1:n-1)*xp(1:n-1))/A(n, n);
        i = i + 1;
        condition = norm((x-xp)./x, Inf) > rTol && i < itMax;
    end
end
function [L, U, p, s] = lup(A)
    [m,n] = size(A);
    if m~=n, error('Matrix A must be square'), end
   U = A;
    L = eye(n);
    p = 1:n;
    s = 1;
   for j = 1 : n-1
        [\sim, r] = \max(abs(U(j:n, j)));
        mayorI = j + r - 1;
        if mayorI ~= j
            L([j, mayorI], 1:j-1) = L([mayorI, j], 1:j-1);
            U([j, mayorI], j:n) = U([mayorI, j], j:n);
            p([j, mayorI]) = p([mayorI, j]);
            s = -s;
        end
        for i = j+1:n
            mult = U(i, j)/U(j, j);
            U(i, j+1:n) = U(i, j+1:n) - mult*U(j, j+1:n);
            U(i, 1:j) = 0;
            L(i, j) = mult;
        end
    end
end
function [x, lambda] = powerMethod(A, itMax, rTol)
    [m, n] = size(A);
    if m ~= n, error('Matrix is not square'), end
    if ~exist('itMax', 'var'), itMax = 150; end
    if ~exist('rTol', 'var'), rTol = 0.5e-5; end
   x = rand([m 1]);
   x = x/norm(x, 2);
    i = 0;
    condition = true;
    while condition
        xp = x;
```

```
ax = A*x;
        x = (ax)/norm(ax);
        e = norm(x-xp./x, Inf);
        i = i+1;
        condition = e > rTol && i < itMax;</pre>
    lambda = dot(x, A*x)/dot(x, x);
end
function [x, i] = newtonRaphsonMult(f, x0, J, rTol, itMax)
    if ~exist('rTol', 'var'), rTol = 0.5e-5; end
    if ~exist('itMax', 'var'), itMax = 150; end
   x = x0;
    i = 0;
    condition = true;
   while condition
       xp = x;
        x = xp - jacobianNR(f, xp)\f(xp);
        i = i + 1;
        condition = norm((x-xp)./x, Inf) > rTol && i < itMax;
    end
    if i == itMax
        warning('newtonRaphsonMult:IterationLimitReached', 'The iteration limit was
reached')
    end
end
function J = jacobianNR(f, x, h)
    if ~exist('h', 'var'), h = 1e-6; end
    n = length(x);
    J = zeros(n, n);
   Dx = h*eye(n);
    for i = 1:n
        J(:, i) = (f(x + Dx(:, i)) - f(x - Dx(:, i)))/(2*h);
    end
end
```