Fragen und Lösungen zur Vorlesung Theo II

Luc Kusters

WS 19/20

Die Lösungen die hier zusammengefasst wurden, kommen von mir und aus die Theo II Whatsappgruppe. Weder Vollständichkeit noch Korrektheit kann garrantiert werden! Bei Anmerkungen, Fragen, Korrektionen oder sonstiges, könnt ihr mich gerne per email erreichen: ljbkusters@gmail.com

Vielen Dank an jedem, der mitgeholfen hat! Insbesondere:

- Prof. Honerkamp / Dr. Mück für die Fragen
- "Der Andere" für Seine Bilder mit Lösungen in der Whatsappgruppe

Inhaltsverzeichnis

1	Grundkentnisse Elektrostatik I	2
2	Grundkenntinsse Elektrostatik II / Magnetostatik	5
3	Grundkenntinsse Elektrodynamik	7

1 Grundkentnisse Elektrostatik I

Frage	Sicherheitsgrad	Frage	Sicherheitsgrad	Frage	Sicherheitsgrad
1	Sehr sicher	6	Sicher	11	Sehr sicher
2	Sehr sicher	7	Sehr sicher	12	Sehr sicher
3	Sehr sicher	8	Sehr sicher	13	Sehr sicher
4	Sehr sicher	9	Sehr sicher	14	Sehr sicher
5	Sehr sicher	10	Sicher	15	Eher unsicher

1. Man berechne $\nabla \frac{1}{|\mathbf{r} - \mathbf{r}'|}$.

$$\mathbf{\nabla} \frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \quad \left(= -\mathbf{\nabla}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right)$$

2. Was ergibt $\Delta \frac{1}{|\mathbf{r} - \mathbf{r}'|}$?

$$\Delta \frac{1}{|\mathbf{r} - \mathbf{r}'|} = -4\pi \delta(\mathbf{r} - \mathbf{r}')$$

3. Wie lauten die beiden Feldgleichungen für das elektrische Feld in der Elektrostatik?

$$\nabla \cdot \mathbf{E} = 4\pi k \rho(\mathbf{r})$$
 $\nabla \times \mathbf{E} = 0$ $\left(\text{SI: } k = \frac{1}{4\pi\epsilon_0} \right)$

4. Wie lautet die Bestimmungsgleichung für das elektrostatische Potential bei gegebener Ladungsdichte $\rho(\mathbf{r})$?

$$\phi(\mathbf{r}) = \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

5. Wie berechnet sich das elektrische Feld $\mathbf{E}(\mathbf{r})$ aus dem Potential $\Phi(\mathbf{r})$?

$$\mathbf{E}(\mathbf{r}) = -\mathbf{\nabla}\Phi(\mathbf{r})$$

6. Wie Berechnet man den Potentialunterschied [**Spannung**] zwischen den Orten \mathbf{r}_2 und \mathbf{r}_1 bei gegebenem Feld $\mathbf{E}(\mathbf{r})$?

$$U(\mathbf{r}_1, \mathbf{r}_2) = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{E}(\mathbf{r}) \cdot d\mathbf{s} = \Phi(\mathbf{r}_2) - \Phi(\mathbf{r}_1)$$

Notiz: Wegen $\mathbf{E} = -\nabla \Phi$ ist \mathbf{E} ein reines Gradientenfeld. Dies heißt, daß das Integral über \mathbf{E} wegunabhängig ist (nur Gültig in der Elektrostatik!!!).

7. Was besagt der satz von Gauß als mathematische Aussage?

$$\int_{V} d^{3}r [\mathbf{\nabla \cdot F(r)}] = \int_{\partial V} d\mathbf{A} \cdot \mathbf{F(r)}$$

Notiz: In 3 Dimensionen, wobei V ein Volumen darstellt, und ∂V dessen Randfläche darstellt.

2

8. Welche Aussage erhält man mit dem Satz von Gauß in der Elektrostatik in Anwesenheit von Ladungen in einem Volumen V?

$$\left. \mathbf{E}(\mathbf{r}) \right|_{|\mathbf{r}| > R} \propto Q_{\mathrm{ges}} \in V_R$$

Oder in Wörter: Das Elektrische Feld außerhalb einem Volumen V_R^1 ist proportional zur Gesammtladung $Q_{\rm ges}$ im Volumen V_R

9. Was besagt der Satz von Stokes Mathematisch?

$$\int_{A} d\mathbf{A} \cdot [\mathbf{\nabla} \times \mathbf{F}(\mathbf{r})] = \int_{\partial A} d\mathbf{s} \cdot \mathbf{F}(\mathbf{r})$$

Notiz: In 3 Dimensionen, wobei A eine Fläche darstellt, und ∂A dessen Rand darstellt.

10. Wann ist die Lösung der Poisson-Gleichung eindeutig?

Falls die Randbedingungen vorgegeben sind.

Notiz:
$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{|\mathbf{r} - \mathbf{r}'|} + F(\mathbf{r}, \mathbf{r}')$$
 ist wegen $F(\mathbf{r}, \mathbf{r}')$ nicht eindeutig!

11. Man gebe das infinitesimale Flächenelement auf der Oberfläche einer Kugel mit Radius Ran.

$$dA = R^2 \sin \theta d\theta d\phi$$

Notiz:
$$\int_{\partial B_R(0)} dA = \int \delta(r-R)dV = \int \delta(r-R)r^2 \sin\theta d\theta d\phi = R^2 \int \sin\theta d\theta d\phi$$

12. Man berechne das Volumen einer Kugel mit Radius R in Kugelkoordinaten

$$V_k = \int_{\sqrt{x^2 + y^2 + z^2} \le R} 1 \cdot dx dy dz = \int_0^{2\pi} \int_0^{\pi} \int_0^R 1 \cdot r^2 dr \sin\theta d\theta d\phi$$
$$V_k = \int_0^R r^2 dr \int_{-1}^1 d\cos\theta \int_0^{2\pi} d\phi = \left[\frac{1}{3} R^3 \right] [2] [2\pi] = \frac{4\pi}{3} R^3$$

13. Wie sieht die Enwicklung einer Funktkion $f(\theta, \phi)$ in Kugelflächenfunkionen aus und wie bestimmt man die Entwicklungskoffizienten?

$$f(\theta,\phi) = \sum_{lm} f_{lm} Y_{lm}(\theta,\phi) \qquad l \in \mathbb{N}_0; \quad |m| \le l; \quad m \in \mathbb{Z}$$

$$f_{lm} = const. = \int_{-1}^{1} d\cos\theta \int_{0}^{2\pi} d\phi Y_{lm}^{*}(\theta, \phi) f(\theta, \phi) = \int d\Omega Y_{lm}^{*}(\Omega) f(\Omega)$$

14. Wie lautet der Ansatz für die Lösung der Laplace-Gleichung in Kugelfächenfunktionen?

$$f(r,\theta,\phi) = \sum_{lm} \left(a_{lm} r^l + b_{lm} r^{-(l+1)} \right) Y_{lm}(\theta,\phi)$$

¹Volumen mit maximale Radius R, d.h. $V_R \subset B_R(\mathbf{r}_0)$ wobei B_R ein Kugel mit Radius R zentriert um \mathbf{r}_0 ist.

- 15. Welche zwei wichtigen Gleichungen erfüllt die Dirichlet-Green'sche Funktion $G_D(\mathbf{r}, \mathbf{r}')$?
 - a) $G_D(\mathbf{r}, \mathbf{r}') = G_D(\mathbf{r}', \mathbf{r})$ (für reine Dirichlet Randbedingungen)

b)
$$\Phi(\mathbf{r}) = k \int_V d^3r' G_D(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}) - \frac{1}{4\pi} \int_{\partial V} d\mathbf{A}' \cdot \phi(r') \nabla G_D(\mathbf{r}, \mathbf{r}')$$

Notiz: Ob ich diese Frage richtig interpretiert habe weiß ich nicht. Die Formeln kommen allerdings direkt aus dem Skript und sollten richtig sein. (Siehe Skript $\S1.5.6$ S.37)

2 Grundkenntinsse Elektrostatik II / Magnetostatik

Frage	Sicherheitsgrad	Frage	Sicherheitsgrad	Frage	Sicherheitsgrad
1	Sicher	6	Sicher	11	
2	Sicher	7	Eher unsicher	12	
3	Sicher	8	Eher unsicher	13	
4	Eher unsicher	9	Eher unsicher	14	
5	Sicher	10		15	

1. Wie lautet die Taylor-Entwicklung von $\frac{1}{|\mathbf{r}-\mathbf{r}'|}$ in den Komponenten von \mathbf{r}' bei $\mathbf{r}'=0$ bis einschließlich der Zweiten Ordnung?

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} \approx \frac{1}{r} + \frac{\mathbf{r} \cdot \mathbf{r}'}{r^3} + \frac{1}{2} \sum_{i,j=1}^{3} \frac{3r_{ij} - \delta_{ij}r^2}{r^5} r_i' r_j'$$

Notiz: Dies ist eine "Fernfeld" Näherung, d.h. eine Gute Näherung für $r\gg 0$

2. Man drücke das elektrostatische Potential $\Phi(\mathbf{r})$ einer räumlich begrenzte Ladungsverteilung $\rho(\mathbf{r}')$ mittels Monopol, den Dipolvektor und den Quadrupoltensor aus.

$$\Phi \approx k \frac{Q_{\text{ges}}}{r} + k \frac{\mathbf{r} \cdot \mathbf{p}}{r^3} + \frac{k}{2} \sum_{ij} \frac{r_i r_j}{r^5} Q_{ij}$$

3. Man gebe Formel für das Monopolmoment, den Dipolvektor und den Quadrupoltensor an.

Monopol:
$$Q_{\text{ges}} = \int d^3r \rho(\mathbf{r})$$

Dipol: $p_i = \int d^3r \rho(\mathbf{r}) r_i \quad \mathbf{p} = p_i \hat{\mathbf{e}}_i$
Quadruopl: $Q_{ij} = \int d^3r \rho(\mathbf{r}) r_i$

Notiz 1: Q_{ij} hat nur 5 Freiheitsgraden! D.h. man kann mit nur 5 Rechnungen alle (9) Quadrupol Elemente berechnen! Es gilt zwar $Q_{ij} = Q_{ji}$ und $\operatorname{sp}(\mathbf{Q}) = \sum_i Q_{ii} = 0$. Notiz 2: Die hier nicht gefragte Kugelkoordinaten Entwicklung ist auch sehr wichtig! (Siehe Skript §1.6.6 S.42)

4. Wie koppeln Monopol und Dipol an ein externes elektrostatisches Potential bzw. Feld?

$$E_{\text{pot}} = \Phi(0)Q - \mathbf{E}(0) \cdot \mathbf{p} \quad \left(+\frac{1}{6} \sum_{ij} \frac{\partial}{\partial x_j} E_i(0) Q_{ij} + \ldots \right)$$

Notiz 1: Energie minimierung für $\mathbf{p} \parallel \mathbf{E}$ und gegengerichtet (also $\hat{\mathbf{e}}_{\mathbf{p}} = -\hat{\mathbf{e}}_{\mathbf{E}}$).

Notiz 2: Frage richtig verstanden?

5. Wie lautet die elektrostatische Energie einer Ladungsverteilung? Man gebe zwei Äquivalente Ausdrücke, einerseits mit $\rho(\mathbf{r})$ und andersseits mit $\mathbf{E}(\mathbf{r})$.

mit
$$\rho$$
 $E_{\text{WW}} = \frac{1}{2} \int d^3 r \rho(\mathbf{r})$ (Skript 1.7.9)
mit \mathbf{E} $E_{\text{WW}} = \frac{1}{8k\pi} \int d^3 r \rho(\mathbf{r})$ (Skript 1.7.15)

5

6. Wie ist die elektrische Suszeptibilität χ in einem linearen, isotropen Medium definiert?

Definition:
$$\mathbf{P} = \hat{\chi}(\mathbf{E}) \cdot \mathbf{E}$$
 ($\hat{\chi}$ ist ein Tensor) (Skript 1.8.1)
Falls linear, isotrop: $\hat{\chi}(\mathbf{E}) = \mathbb{1}\chi(\mathbf{E})$ (Skript 1.8.2)
Mit schwache abh. von \mathbf{E} : $\chi(\mathbf{E}) \approx \chi \quad \chi = const. \in \mathbb{R}$ (Skript 1.8.3)

7. Wie lautet der Zusammenhang zwischen elektrischem Feld, dielektrischer Verschiebung und Polarisation?

$$\mathbf{D} = \mathbf{E} + 4\pi k \mathbf{P} \quad \text{(Skript 1.8.17)}$$

Notiz 1: Alternativ gilt $\mathbf{D} = \epsilon \mathbf{E} = \epsilon_0 \epsilon_r \mathbf{E}$ mit $\epsilon = 1 + 4\pi k \chi$ (Skript 1.8.17)

Notiz 2: Hier kann ich etwas nicht ganz einigen mit dem Skript, indem man SI Werte einsetzen soll und rauskommen soll daß $\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}$ (welches defnitiv stimmt) (Skript 1.8.20)

8. Welche Feldgleichung erfüllt die dielektrische Verschiebung?

$$\nabla \cdot \mathbf{D} = 4\pi k \rho_f(\mathbf{r})$$
 (Skript 1.8.4)

$$(\nabla \cdot \mathbf{P} = -\rho_P(\mathbf{r}))$$
 (Skript 1.8.6)

9. Was geschieht mit dem 1/r-Potential von Punktladungen in Metallen?

Die Punktladungen werden abgeschirmt (Potential fällt exponentiell ab) (Skript 1.8.30)

[MAGNETOSTATIK]

- 10. Man scheibe die Konitinuitätsgleichung in differentieller Form und mit Integralen über ein Volumen V bzw. dessen Oberfläche ∂V .
- 11. Man schreibe Ladungsdichte $\rho(\mathbf{r})$ und Stromdichte $\mathbf{j}(\mathbf{r})$ für i = 1, ..., N Punktladungen q_i mit Trajektorioen $\mathbf{r}_i(t)$.
- 12. Wie lautet das Biot-Savart'sche Gesetz für $\mathbf{A}(\mathbf{r})$ und $\mathbf{B}(\mathbf{r})$?
- 13. Wie lauten die zwei Feldgleichungen der Magnetostatik?
- 14. Man berechne das magnetische Dipolmoment für eine Punktladung auf einer Kreisbahn mit Radius R sowie Drehimpuls L.
- 15. Wie lauten die Zusammenhänge zwischen B, H und M in einem Paramagneten?

3 Grundkenntinsse Elektrodynamik

Frage	Sicherheitsgrad	Frage	Sicherheitsgrad	Frage	Sicherheitsgrad
1		6		11	
2		7		12	
3		8		13	
4		9		14	
5		10		15	

- 1. Wie lauten die vollen, makroskopischen Maxwell-Gleichungen für die Felder $\mathbf{E}(\mathbf{r},t)$ und $\mathbf{B}(\mathbf{r},t)$
- 2. Welche Gleichung legt das Verhalten der aus Punktladungen zusammen gesetzten Quellen $\rho(\mathbf{r},t)$ und $\mathbf{j}(\mathbf{r},t)$ in den Feldern $\mathbf{E}(\mathbf{r},t)$ und $\mathbf{B}(\mathbf{r},t)$ fest?
- 3. Man zeige mittels Kontinuitätsgleichung und Ampère-Gesetz, dass der Maxwell'sche Verschibungsstrom für Ladungserhaltung notwendig ist.
- 4. Wie lauten die Wellengleichungen für $\mathbf{E}(\mathbf{r},t)$ und $\mathbf{B}(\mathbf{r},t)$ im Vakuum?
- 5. Wie sehen Ebene-Wellen-Lösungen im Vakuum aus? Was weiß man über die Richtungen der Felder bezüglich der Ausbreitungsrichtung?
- 6. Wie erhällt man die Dispersionsrelation und wie lautet sie für elektromagnetische Wellen im Vakuum?
- 7. Man gebe die Formeln für die Fourier-Hin- und Rücktransformation für eine Funktion f(t) auf der t-Achse auf ω -Achse und zurück an.
- 8. Man berechne die Fouriertransformation von $\delta(t-t_0)$.
- 9. Wie berechnet sich der Poynting-Vektor für reelle Felder? Was ist seine physikalische Bedeutung?
- 10. Wie lauten die inhomogenen Maxwell-Gleichungen in Materie, charakterisiert durc Dielektrizitätskonstante ϵ_r und Permeabilität μ_r ?
- 11. Durch welche drei Sachverhalte unterscheiden sich elektromagnetische Wellen in eienem Wellenleiter mit einfach zusammenhängenden rechteckigem Querschnitt von denen im Vakuum?
- 12. Wie sind Phasen- und Gruppengeschwindigkeit definiert und was ist ihre physikalische Bedeutung?
- 13. Man gebe zwei Formen für das Ohm'sche Gesetz an. Wie ist die Beziehung zwischen Leitfähigkeit σ und Widerstand R für einen homogenen Leiter der länge l und mit Querschnitt A?
- 14. Wie entsteht eine komplexe, frequenzabhängige Dielektrizitätskonstante $\epsilon(\omega)$ in einem Metal?
- 15. Wie verhält sich die Dielektrizitätskonstante $\epsilon(\omega)$ bei der Plasmafrequenz ω_P ? Was passiert physikalisch bei $\omega = \omega_P$ und bei $\omega > \omega_P$?