Teoría de Números y Criptografía

F. J. Lobillo

2021/2022

Parte II

Criptografía y Curvas Elípticas

Índice general

II	Cr	riptografía y Curvas Elípticas	2
1.	Com	plejidad algorítmica	6
	1.1.	Introducción	6
	Ejero	cicios de Complejidad algorítmica	11
2.	Crip	otografía simétrica	13
	2.1.	Cifrado y secreto	13
	2.2.	Objetivos de la criptografía	14
	2.3.	Ataques	15
	2.4.	Ataques	16
	2.5.	Criptografía simétrica	17
	2.6.	Criptografía simétrica	18
	2.7.	Cifrados de bloque	20
		2.7.1. Modos de operación	20
	2.8.	Apéndice: Sistemas de numeración	23
	Ejerc	cicios de Criptosistemas simétricos	24
	Ejerc	cicios de evaluación de Criptosistemas simétricos	29

3.	RSA	<u>L</u>	30
	3.1.	Función unidireccional	30
	3.2.	Descripción de RSA	38
	3.3.	Ataques	42
	Ejero	cicios de RSA	58
	Ejero	cicios de evaluación del Criptosistema RSA	59
4.	Loga	aritmo discreto	60
	4.1.	Problema del logaritmo discreto	60
		4.1.1. Paso de bebé – Paso de gigante	61
		4.1.2. El algoritmo de Silver-Pohlig-Hellman	64
		4.1.3. Cálculo de índices en cuerpos primos	67
		4.1.4. Cálculo de índices en cuerpos finitos	70
	4.2.		75
	4.3.	Criptosistema de ElGamal	77
	4.4.	Digital Signature Algorithm	79
	Ejero	cicios de logaritmo discreto	83
	Ejero	cicios de evaluación de logaritmo discreto	85
5.	Cur	vas elípticas	86
	5.1.		86
	5.2.	Curvas elípticas proyectivas	93
	5.3.	Aritmética de una curva elíptica	95
	5.4.	Teoremas de Hasse y Rück	116
		Orden de puntos y curvas	117
		5.5.1. Puntos de la curva	
		5.5.2. Orden de puntos	131
		5.5.3. Cardinal de la curva	134

	Curvas elípticas	137
	Ejercicios de evaluación de curvas elípticas	140
6.	Criptosistemas basados en curvas elípticas	141
	6.1. Aritmética en característica $p > 3$	141
	6.2. Aritmética en característica 2	142
	6.3. Complejidad de la aritmética en EC	144
	6.4. Parámetros para uso criptográfico	145
	6.5. Protocolo ECDH	147
	6.6. Criptosistema ElGamal en EC	148
	6.7. ECDSA	149
	6.8. Codificación de mensajes	151
	6.9. Criptosistema de Menezes-Vanstone	152
	6.10. Curvas en OpenSSL	153
	Curvas elípticas	159
	Ejercicios de evaluación de criptosistemas basados en curvas	
	elípticas	160

Capítulo 1

Complejidad algorítmica

Introducción

1.1

Notación big- \mathcal{O} . Sean f, q : $\mathbb{N}^r \to \mathbb{R}$. Decimos que f = $\mathcal{O}(q)$ si existe una constante $c \in \mathbb{R}^+$ tal que $f(n_1, \ldots, n_r) \leq cg(n_1, \ldots, n_r)$ para cualquier $(n_1, \ldots, n_r) \in \mathbb{N}^r$.

Esta notación se emplea para analizar el tiempo esperado que va a tardar un algoritmo en realizar una tarea.

Hay una primera propiedad que es inmediata: capa cualquier $\lambda \in$ \mathbb{R}^+ y g : $\mathbb{N}^r \to \mathbb{R}$, tenemos que

$$\mathcal{O}(g) = \mathcal{O}(\lambda g)$$
.

 $\mathcal{O}(g) = \mathcal{O}(\lambda g).$ Número de dígitos. Todo entero $b^{k-1} \le n < b^k$ tiene exactamente k dígitos en base b. Por tanto, el número de dígitos en base b de un entero positivo n viene dado por la fórmula

$$\lfloor \log_b n \rfloor + 1 = \left\lfloor \frac{\log n}{\log b} \right\rfloor + 1.$$

Este valor indica el tamaño de un entero. 🗸

Complejidad de la aritmética. Sean $n, m \in \mathbb{N}$. Para calcular n+m empleamos la representación en alguna base de numeración de ambos números. El algoritmo escolar va calculando los dígitos de la suma uno a uno. Para cada dígito hay que emplear un máximo de dos sumas, los dígitos correspondientes más el posible acarreo de la suma anterior. El caso de la resta es análogo.

Proposición 1.1. Si t(n, m) es la función que mide el tiempo necesario para calcular $n \pm m$, entonces

$$t = \mathcal{O}(\max(\log n, \log m))$$
.

La complejidad del producto es también sencilla de calcular.

Proposición 1.2. Si t(n, m) es la función que mide el tiempo necesario para calcular nm, entonces

$$t = \mathcal{O}\left((\log n)(\log m)\right)$$
.

Demostración. Para multiplicar n por un dígito en base b, hay que realizar $\lfloor \log_b n \rfloor + 1$ multiplicaciones de un dígito más $\lfloor \log_b n \rfloor$ sumas correspondientes al acarreo. Para multiplicar por un m cualquiera hay que realizar la tarea anterior $\lfloor \log_b m \rfloor + 1$ veces, más $\lfloor \log_b m \rfloor$ sumas de números con $\lfloor \log_b n \rfloor + \lfloor \log_b m \rfloor + 1$ dígitos. Por tanto

$$\begin{split} t &= \mathcal{O}\left(2(\lfloor \log_b n \rfloor + 1)(\lfloor \log_b m \rfloor + 1) \\ &+ \lfloor \log_b n \rfloor + \lfloor \log_b m \rfloor + 1\right) = \mathcal{O}\left((\log n)(\log m)\right). \end{split}$$

Proposición 1.3. Sean $n \ge m \in \mathbb{N}$. Si t(n, m) es la función que mide el tiempo necesario para calcular cociente y resto de la división de n entre m escritos en binario, entonces

$$t = \mathcal{O}((\log n)(\log m))$$
.

Demostración. Durante $\lfloor \log_2 \mathfrak{n} \rfloor - \lfloor \log_2 \mathfrak{m} \rfloor$ veces debemos hacer un máximo de $\lfloor \log_2 \mathfrak{m} \rfloor$ comparaciones de bits y la resta de un número de $\lfloor \log_2 \mathfrak{m} \rfloor + 1$ dígitos y otro de $\lfloor \log_2 \mathfrak{m} \rfloor$. Por tanto

$$t = \mathcal{O}\left(\left(\left\lfloor \log_2 \mathfrak{n} \right\rfloor - \left\lfloor \log_2 \mathfrak{m} \right\rfloor\right) \left\lfloor \log_2 \mathfrak{m} \right\rfloor\right),\,$$

lo que implica $t = \mathcal{O}\left((\log n)(\log m)\right)$

Corolario 1.4. El tiempo empleado en representar un número n en binario a una base b es $\mathcal{O}((\log n)^2))$.

Demostración. Debemos realizar

$$\lfloor \log_b n \rfloor + 1 = \left\lfloor \frac{\log n}{\log b} \right\rfloor + 1$$

divisiones de números menores o iguales que n entre b. Por la Proposición 1.3, cada una de estas divisiones tiene, por la Proposición 1.3, un coste $\mathcal{O}((\log n)(\log b))$, de donde se obtiene el resultado ya que log b es constante.

Corolario 1.5. El tiempo empleado en pasar a binario un entero n escrito en base b es $\mathcal{O}((\log n)^2)$.

Demostración. Calcular cociente y resto obtenidos al dividir n en base b entre 2 requiere $\lfloor \log_b n \rfloor + 1$ multiplicaciones y restas. Esta tarea hay que repetirla con los cocientes, cuyo tamaño siempre es menor que el de n, y hay a lo sumo $\lfloor \log_b n \rfloor$ divisiones.

Corolario 1.6. El tiempo empleado sumar dos elementos de \mathbb{Z}_n es $\mathcal{O}(\log n)$. El producto de dos elementos en \mathbb{Z}_n puede hacerse en tiempo $\mathcal{O}((\log n)^2)$.

Proposición 1.7. Sean $n \ge m \in \mathbb{N}$. Si t(n,m) es la función que mide el tiempo necesario para calcular d, u, v tales que d = (n, m) y d = un + vm mediante el algoritmo extendido de Euclides, entonces

$$t = \mathcal{O}\left((\log n)^3\right)$$
.

Demostración. Recordemos que el algoritmo extendido de Euclides puede presentarse de la siguiente forma:

Input: $n \ge m$.

Output: d, u, v tales que un + vm = d = (n, m).

- 1: $\mathbf{r}_0 \leftarrow \mathbf{n}, \mathbf{r}_1 \leftarrow \mathbf{m}$
- 2: $u_0 \leftarrow 1, u_1 \leftarrow 0$
- 3: $v_0 \leftarrow 0, v_1 \leftarrow 1$
- 4: repeat
- 5: $q \leftarrow r_0 \div r_1, r \leftarrow r_0 \mod r_1$ {Cociente y resto de la división euclídea}
- 6: $u \leftarrow u_0 qu_1, v \leftarrow v_0 qv_1$
- 7: $\mathbf{r}_0 \leftarrow \mathbf{r}_1, \mathbf{r}_1 \leftarrow \mathbf{r}$
- 8: $u_0 \leftarrow u_1, u_1 \leftarrow u$
- 9: $v_0 \leftarrow v_1, v_1 \leftarrow v$

10: **until** r = 0

11: **return** r_0, u_0, v_0 .

Cada iteración realiza una división euclídea que, por la Proposición 1.3, tiene un coste $\mathcal{O}\left((\log n)^2\right)$. Nos queda acotar el número de repeticiones que realiza el algoritmo. Observemos que $r<\frac{r_0}{2}$: si $r_1\leq\frac{r_0}{2}$, obviamente $r< r_1\leq\frac{r_0}{2}$; si $r_1>\frac{r_0}{2}$, tenemos que q=1 y $r=r_0-r_1< r_0-\frac{r_0}{2}=\frac{r_0}{2}$. Por tanto, el número de repeticiones viene acotado por $2\log_2 n$. En consecuencia, el algoritmo extendido de Euclides es $\mathcal{O}\left((\log n)^3\right)$.

Proposición 1.8. El tiempo empleado en calcular $b^m \mod n$ está en $\mathcal{O}(\max\{(\log n)^2(\log m), (\log m)^2\})$.

Demostración. Describamos el método de los cuadrados iterados para calcular b^m mod n. Para ello, si $m=m_tm_{t-1}\dots m_1m_0)_2$ es su escritura binaria, que puede ser calculada en $\mathcal{O}((\log m)^2)$ por el Corolario 1.5, tenemos que

$$b^{\mathfrak{m}} = ((\cdots((b^{\mathfrak{m}_{\mathfrak{t}}})^{2}b^{\mathfrak{m}_{\mathfrak{t}-1}})^{2}b^{\mathfrak{m}_{\mathfrak{t}-2}}\cdots)^{2}b^{\mathfrak{m}_{1}})^{2}b^{\mathfrak{m}_{0}},$$

luego hay que realizar un máximo de $3\log_2 m$ multiplicaciones en \mathbb{Z}_n , cada una de ellas con un coste $\mathcal{O}((\log n)^2))$ por el Corolario 1.6.

Ejercicios de Complejidad algorítmica

Ejercicio 1.1. Supongamos que $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lambda\in\mathbb{R}$. Demuestra que $f=\mathcal{O}(g)$. Como consecuencia demuestra que $\log n=\mathcal{O}(n^{\epsilon})$ para cualquier $\epsilon>0$.

Ejercicio 1.2. Sean $f_1 \in \mathcal{O}(g_1)$ y $f_2 \in \mathcal{O}(g_2)$. Calcula una cota para la complejidad de $f_1 + f_2$ y f_1f_2 .

Ejercicio 1.3. Estudia la complejidad de la suma y el producto de dos polinomios de grados n_1 y n_2 con coeficientes en \mathbb{Z}_m .

Ejercicio 1.4. Sabemos que

$$\sum_{i=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}.$$

Estudia la complejidad del cálculo de cada uno de los términos de la fórmula anterior.

Ejercicio 1.5. Supongamos que n es un primo escrito en binario. Comprueba que el algoritmo escolar calcula $|\sqrt{n}|$ en $\mathcal{O}((\log n)^2)$.

Ejercicio 1.6 (Algoritmo de Karatsuba). Sea $x = x_0 + x_1 \beta + \cdots + x_{n-1} \beta^{n-1}$ con n par. En base $\beta^{\frac{n}{2}}$ se representa:

$$x=x_{(0)}+x_{(1)}\beta^{\frac{n}{2}}$$

Sean a, b enteros de n dígitos en base β. El producto clásico se describe como

$$a \cdot b = a_{(0)} \cdot b_{(0)} + (a_{(1)} \cdot b_{(0)} + a_{(0)} \cdot b_{(1)}) \cdot \beta^{\frac{n}{2}} + a_{(1)} \cdot b_{(1)} \cdot \beta^{n}$$

La idea de Karatsuba:

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= \mathbf{a}_{(0)} \cdot \mathbf{b}_{(0)} \\ &+ (\mathbf{a}_{(0)} \cdot \mathbf{b}_{(0)} + \mathbf{a}_{(1)} \cdot \mathbf{b}_{(1)} + (\mathbf{a}_{(1)} - \mathbf{a}_{(0)}) \cdot (\mathbf{b}_{(0)} - \mathbf{b}_{(1)})) \cdot \beta^{\frac{n}{2}} \\ &+ \mathbf{a}_{(1)} \cdot \mathbf{b}_{(1)} \cdot \beta^{n} \end{aligned}$$

Útil para $n=2^m$ dígitos. El algoritmo podemos escribirlo como sigue.

```
KARATSUBA(\alpha, b, m, \beta):

Input: \alpha, b, m, \beta

Output: \alpha b

if m=0 then

return \alpha \cdot b

else

\alpha 1 \leftarrow 2^{m-1} dígitos más significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos més significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos més significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos més significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos menos significativos de \alpha
\alpha 0 \leftarrow 2^{m-1} dígitos \alpha
\alpha 0 \leftarrow 2^{m-1} dí
```

Bibliografía

- [1] Gregory V. Bard. *Algebraic Cryptanalysis*. Springer Science and Business Media, 2009.
- [2] Hans Delfs and Helmut Knebl. *Introduction to Cryptography*. Information Security and Cryptography. Springer-Verlag Berlin Heidelberg, 2015.
- [3] Andreas Enge. *Elliptic curves and their applications to crypto-graphy. An Introduction.* Kluwer Academic Publishers, 1999.
- [4] G. H. Hardy and E. M. Wright. *An Introduction to the Theory of Numbers*. Oxford University Press, fourth edition, 1960.
- [5] Nathan Jacobson. *Basic Algebra: I.* W.H. Freeman & Company, second edition, 1985.
- [6] Neal Koblitz. A Course in Number Theory and Cryptography, volume 114 of Graduate Texts in Mathematics. Springer-Verlag New York, 2 edition, 1994.
- [7] National Institute of Standards and Technology (NIST). Digital Signature Standard (DSS), July 2013.

BIBLIOGRAFÍA 163

[8] Harald Niederreiter and Arne Winterhof. *Applied Number Theory*. Springer International Publishing, 2015.

- [9] Nigel P. Smart. *Cryptography Made Simple*. Information Security and Cryptography. Springer International Publishing, 2016.
- [10] Joachim von zur Gathen. *CryptoSchool*. Springer-Verlag Berlin Heidelberg, 2015.

