

Block cipher

The AES block cipher

人们逐渐认识到DES和三重DES并不适合加密现代硬件,速度慢,达不到要求

AES

- •块大小—128bit
- •三种秘钥: 128bit, 192bit, 256bit
- •秘钥越大,密码安全性越高,速度越慢
- •使用SPN代换置换网络,而非Faist网络

AES is a Subs-Perm network (not Feistel)

Dan Bone

AES加密

- •轮密钥加密
- •字节代换
- •行移位
- •列混合

AES-128 schematic

• AES加密:轮密钥加是将128位轮密钥Ki同状态矩阵中的数据进行逐位异或操作

- 秘钥扩展:
- 递归产生新矩阵
- -a.字循环: 将1个字中的4个字节循环左移1个字节。即将输入字[b0, b1, b2, b3]变换成 [b1,b2,b3,b0]
- -b.字节代换:对字循环的结果使用S盒进行字节代换
- -c.轮常量异或:将前两步的结果同轮常量Rcon[j]进行异或

j	1	2	3	4	5
Rcon[j]	01 00 00 00	02 00 00 00	04 00 00 00	08 00 00 00	10 00 00 00
j	6	7	8	9	10
Rcon[j]	20 00 00 00	40 00 00 00	80 00 00 00	1B 00 00 00	36 00 00 00

The round function

ByteSub: a 1 byte S-box. 256 byte table (easily computable)

ShiftRows:

MixColumns:

7 疾法 - ヲ 俎台的務企运算、看情 兄 見(00011011)进行等效运货 男. [00000010]*(Q7 Q6 -・・・ Q0) = {(46 45 -・・ Q6 0) | 97 = 0

(0605 - ... 00) \$ (000 | 101) K7=

逆变换矩阵同正变换矩阵的乘积恰好为单位矩阵。

AES解密

•逆过程

Code size/performance tradeoff

	Code size	Performance
Pre-compute round functions (24KB or 4KB)	largest	fastest: table lookups and xors
Pre-compute S-box only (256 bytes)	smaller	slower
No pre-computation	smallest	slowest

Dan Boneh

AES in hardware

acsence: Byte Sub. Shift Row. Mix Column

aesenclast: Bytesub, shiftkaw

AES instructions in Intel Westmere:

- aesenc, aesenclast: do one round of AES qx aesenc + Ix aesenclast
 128-bit registers: xmm1=state, xmm2=round key
 aesenc xmm1, xmm2; puts result in xmm1
- aeskeygenassist: performs AES key expansion
- Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer

Attacks

Best key recovery attack:

four times better than ex. search [BKR'11]

Related key attack on AES-256: [BK'09] Given 2^{99} inp/out pairs from **four related keys** in AES-256 can recover keys in time $\approx 2^{99}$

Dan Boneh

- •相关秘钥攻击(秘钥间汉明距离小)对AES加密造成的实用局限性影响不大
- •因为相关秘钥攻击,key要相关,因此随机选取秘钥,保证系统秘钥不会相互关联

Block cipher

Block ciphers from PRGs

Can we build a PRF from a PRG?

Let G: K → K² be a secure PRG
means: 編出与 K² 备 钥 空间 个 真正 随 机 元素无法 区 划

Define 1-bit PRF F: $K \times \{0,1\} \longrightarrow K$ as

$$F(k, x \in \{0,1\}) = G(k)[x]$$

Thm: If G is a secure PRG then F is a secure PRF

Can we build a PRF with a larger domain?

Extending a PRG

Let $G: K \longrightarrow K^2$.

define
$$G_1: K \longrightarrow K^4$$
 as $G_1(k) = G(G(k)[0]) \parallel G(G(k)[1])$

We get a 2-bit PRF:

$$F(k, x \in \{0,1\}^2) = G_1(k)[x]$$

Dan Boneh

Extending more

Let $G: K \longrightarrow K^2$.

Extending even more: the GGM PRF

Let $G: K \longrightarrow K^2$. define PRF $F: K \times \{0,1\}^n \longrightarrow K$ as

For input $x = x_0 x_1 ... x_{n-1} \in \{0,1\}^n$ do:

Security: G a secure PRG \Rightarrow F is a secure PRF on $\{0,1\}^n$.

Not used in practice due to slow performance.

Dan Boneh

• 工作速度慢,实际中不应用

Secure block cipher from a PRG?

Can we build a secure PRP from a secure PRG?

- No, it cannot be done
- **→**
- Yes, just plug the GGM PRF into the Luby-Rackoff theorem
- It depends on the underlying PRG
- \bigcirc

Thanks for listening