Análisis Funcional I – 2024 Práctico 1

- (1) Un espacio métrico (X, d) es un conjunto no vacío X junto con una aplicación $d: X \times X \to \mathbb{R}$ que satisface las siguentes propiedades para todo x, y, z en X:
 - (D1) $d(x,y) \ge 0$ (positividad)
 - (D2) d(x,y) = 0 si y sólo si x = y.
 - (D3) d(x,y) = d(y,x) (simetría)
 - (D4) $d(x,y) \le d(x,z) + d(z,y)$ (designal dad triangular)

Dicha función d se llama métrica. Probar que (D2), (D3) y (D4) implican (D1).

- (2) Sea X un EV. Decimos que un conjunto \mathcal{B} de vectores de X es linealmente independiente si todo subconjunto finito de \mathcal{B} es linealmente independiente. Un conjunto \mathcal{B} de vectores de X genera el espacio vectorial X si todo vector en X se puede escribir como combinación lineal finita de elementos de \mathcal{B} . Una base algebraica de X es un conjunto \mathcal{B} de vectores que generan X y que son linealmente independientes. Probar que todo espacio vectorial X tiene base algebraica.
- (3) Sea \mathcal{X} un espacio normado. Demostrar que el espacio \mathcal{X} es de Banach si y sólo si dada $\{x_n\}$ una sucesión en \mathcal{X} , la condición $\sum_{n=1}^{\infty} ||x_n|| < \infty$ implica que existe $\sum_{n=1}^{\infty} x_n = \lim_{k \to \infty} \sum_{n=1}^k x_n$.
- (4) Sea $\ell^2(\mathbb{N})$ el espacio vectorial de las sucesiones de cuadrado sumable. Probar lo siguiente:
 - (a) Probar que $\ell^2(\mathbb{N})$ es un espacio de Banach.
 - (b) $\ell^2(\mathbb{N})$ tiene dimensión infinita.
 - (c) $\ell^2(\mathbb{N})$ es separable.
 - (d) $\{x \in \ell^2(\mathbb{N}) : ||x||_2 = 1\}$ es cerrado pero no compacto.
 - (e) $\{x \in \ell^2(\mathbb{N}) : x_i = 0 \text{ salvo un número finito de } i$'s $\}$ es denso.
- (5) Definimos

$$\ell^{p}(\mathbb{N}) := \{x = \{x_{i}\}_{i=1}^{\infty} : ||x||_{p} = \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{\frac{1}{p}} < \infty\}$$
$$\ell^{\infty}(\mathbb{N}) := \{x = \{x_{i}\}_{i=1}^{\infty} : ||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_{i}| < \infty\}.$$

- (a) Dar ejemplos de:
 - una sucesión $\{x^n\} \subset \ell^2(\mathbb{N})$ que converja en $(\ell^{\infty}(\mathbb{N}), \|\cdot\|_{\infty})$ pero que no converja en $(\ell^2(\mathbb{N}), \|\cdot\|_2)$.
 - una sucesión $\{x^n\} \subset \ell^1(\mathbb{N})$ que converja en $(\ell^2(\mathbb{N}), \|\cdot\|_2)$ pero que no converja en $(\ell^1(\mathbb{N}), \|\cdot\|_1)$.
- (b) Probar que $\ell^1(\mathbb{N})$ y $\ell^{\infty}(\mathbb{N})$ son de Banach con las normas $||\cdot||_1$ y $||\cdot||_{\infty}$ respectivamente, pero $\ell^1(\mathbb{N})$ no es de Banach con la norma $||\cdot||_{\infty}$ (i.e. $\ell^1(\mathbb{N})$ no es subespacio cerrado de $\ell^{\infty}(\mathbb{N})$.)

- (c) $\ell^1(\mathbb{N})$ es subespacio vectorial denso (propio) de $\ell^2(\mathbb{N})$ (por lo tanto no es completo con la $||\cdot||_2$).
- (d) Probar que a clausura de $\ell^1(\mathbb{N})$ y $\ell^2(\mathbb{N})$ en $\ell^\infty(\mathbb{N})$ es $c_0 := \{x = \{x_i\}_{i=1}^\infty : \lim_{i \to \infty} |x_i| = 0\}.$ Deducir que c_0 es de Banach con la $||\cdot||_{\infty}$.
- (e) Mostrar que

$$\ell^1(\mathbb{N}) \subsetneq \ell^2(\mathbb{N}) \subsetneq c_0 \subsetneq c := \{x = \{x_i\}_{i=1}^{\infty} : \exists \lim_{i \to \infty} x_i\} \subsetneq \ell^{\infty}(\mathbb{N}).$$

- (f) ¿Es c cerrado en $\ell^{\infty}(\mathbb{N})$?
- (g) Probar que $||x||_q \le ||x||_p$ para todo $x \in \ell^p(\mathbb{N})$ para todo $1 \le p \le q \le \infty$. (Ayuda: Primero suponer que $||\cdot||_p = 1$.)
- (6) (a) Sea \mathcal{H} un espacio vectorial sobre \mathbb{R} o \mathbb{C} con un producto interno (\cdot, \cdot) . Definimos $||x|| = (\cdot, \cdot)^{\frac{1}{2}}$. Probar que $||\cdot||$ es una norma.
 - (b) En todo pre-Hilbert (espacio vectorial con producto interno, no necesariamente completo) vale la "regla del paralelogramo" $2||x||^2 + 2||y||^2 = ||x y||^2 + ||x + y||^2$. Además vale

$$(x,y) = \frac{1}{4}\{||x+y||^2 - ||x-y||^2\},$$
 si $\mathbb{K} = \mathbb{R}$,
$$(x,y) = \frac{1}{4}\{||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2\},$$
 si $\mathbb{K} = \mathbb{C}$.

Nota: El producto escalar se rescata a partir de la norma y está determinado por sus valores en la diagonal o sea por $(x, x) = ||x||^2$.

- (c) Las normas $||\cdot||_1$ y $||\cdot||_{\infty}$ no cumplen con la regla del paralelogramo y por lo tanto $\ell^1(\mathbb{N})$ y $\ell^{\infty}(\mathbb{N})$ no son de Hilbert. Pero $\ell^1(\mathbb{N})$ es pre-Hilbert con la $||\cdot||_2$. ¿Son $\ell^1(\mathbb{N})$, c y c_0 espacios pre-Hilbert con la norma $||\cdot||_{\infty}$?
- (7) (a) Probar que $(f,g) = \int f(x)\overline{g(x)}\,dx$ es un producto escalar y notar que $(f,f)^{\frac{1}{2}} = ||f||_2$.
 - (b) Probar que ||f+g|| = ||f|| + ||g||, donde $||\cdot||$ viene dada por un producto escalar, si y sólo si $f = \alpha g$ para algún $\alpha \ge 0$. Deducir que $||\cdot||_1$ y $||\cdot||_{\infty}$ no vienen dadas por ningún producto escalar.
 - (c) Consideramos (X, μ) un espacio de medida tal que $\mu(X) < \infty$. Probar que $L^q(X) \subseteq L^p(X)$ y que $||f||_p \le \mu(X)^{\frac{1}{p} \frac{1}{q}} ||f||_q$, si $1 \le p \le q \le \infty$.
 - (d) Si (X,μ) un espacio de medida tal que $\mu(X)<\infty$ y $\frac{1}{p}+\frac{1}{p'}=1$, probar que

$$||f||_1 \le \mu(X)^{\frac{1}{p'}} ||f||_p \le \mu(X) ||f||_{\infty}$$

$$y ||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

- (e) Si $r \leq p \leq s$ entonces $L^p(X) \subset L^r(X) + L^s(X)$, donde el conjunto de la derecha es $\{f + g : f \in L^r(X) \text{ y } g \in L^s(X)\}$. Dar una descomposición no trivial (f = f + 0).
- (f) Probar que $||\cdot||_p$ cumple la regla del paralelogramo si y sólo si p=2. Luego $||\cdot||_2$ es la única que viene de un producto escalar.
- (8) Sea $f_{\alpha}(x) = x^{-\alpha}, 0 \le \alpha < \infty$
 - (a) Si X = [0,1] con la medida de Lebesgue, ¿Para qué valores de α , $f_{\alpha} \in L^{p}(X)$?
 - (b) Si $X = [1, \infty)$ con la medida de Lebesgue, ¿Para qué valores de α , $f_{\alpha} \in L^{p}(X)$?
- (9) Construir una sucesión de funciones en C([0,1]) que converja a 0 pero que diverja respecto de la norma $\|\cdot\|_1$.
- (10) Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones en C([0,1]) que converge uniformemente a una función f. Mostrar que f es continua y que a su vez $\{f_n\}_{n\in\mathbb{N}}$ converge a f respecto de la $\|\cdot\|_1$.
- (11) (a) Probar que en todo espacio vectorial existe una norma.
 - (b) Si X es un espacio normado entonces
 - $|||x|| ||y||| \le ||x y||$.
 - $||x_1 + x_2 + \dots + x_n|| \le ||x_1|| + ||x_2|| + \dots + ||x_n||.$

EJERCICIOS ADICIONALES

- (12) Sea $(X, ||\cdot||)$ un espacio vectorial normado de dimensión finita. Entonces $(X, ||\cdot||)$ es un espacio de Banach.
- (13) (a) Probar que, si $f \in L^p(\mathbb{R}^n)$ y $g \in L^{p'}(\mathbb{R}^n)$ con $\frac{1}{p} + \frac{1}{p'} = 1$, entonces

$$(f * g)(x) = \int_{\mathbb{D}_n} f(x - y)g(y)dy$$

está en $L^{\infty}(\mathbb{R}^n)$ y es continua.

(b) Demostrar que, si $f \in L^1(\mathbb{R}^n)$ y $g \in L^p(\mathbb{R}^n)$, entonces $f * g \in L^p(\mathbb{R}^n)$ y $||f * g||_p \le ||f||_1 ||g||_p$.