# A First Look at DDG: Discrete Curves

Eitan Grinspun, Columbia University

## Part I: plane curves



#### **Secant**

A line through two points on the curve.



#### **Secant**

A line through two points on the curve.



## Tangent, the first approximant

The limiting secant as the two points come together.



#### Circle of curvature

Consider the circle passing through three points on the curve...



#### Circle of curvature

...the limiting circle as three points come together.



## Radius of curvature, r



# Radius of curvature, $r=1/\kappa$



## Signed curvature



# Gauß map, $\widehat{\mathbf{n}}(\mathbf{x})$

Point on curve maps to point on unit circle.



#### **Shape operator**

Change in normal as we slide along curve

$$S(\mathbf{v}) = -D_{\mathbf{v}}\hat{\mathbf{n}}$$

describes curvature



## Turning number, k

Number of orbits in Gaussian image.



#### Turning number theorem

$$+2\pi$$

$$\int_{\Omega} \kappa ds = 2\pi k$$



For a closed curve, the integral of curvature is an integer multiple of  $2\pi$ .





## Part II: discrete plane curves



## Inscribed polygon, p

Finite number of vertices each lying on the curve, connected by straight edges.

#### The length of a discrete curve

$$len(p) = \sum_{i=1}^{n} d_i$$
 Sum of edge lengths. 
$$d_1$$

#### The length of a continuous curve

Length of longest of all inscribed polygons.



#### The length of a continuous curve

...or take limit over refinement sequence.



### **Total signed curvature**



#### Discrete Gauß Map

Edges map to points, vertices map to arcs.



#### Discrete Gauß Map

Turning number well-defined for discrete



#### Discrete Turning Number Theorem

$$tsc(p) = \sum_{i=1}^{n} \alpha_i = 2\pi k$$

For a closed curve, the total signed curvature is an integer multiple of  $2\pi$ .

proof: sum of exterior angles



#### Structure-preservation

#### Arbitrary discrete curve

- total signed curvature obeys discrete turning number theorem
- even coarse mesh
- which continuous theorems to preserve?
  - that depends on the application
  - fast-forward to last lecture:
    - Euclidian motions? triangle mesh is fine
    - Conformal maps? use circle-based mesh

#### Structure-preservation

#### Arbitrary discrete curve

- discrete analogue of continuous theorem total signed curvature obeys discrete turning number theorem
- even coarse mesh
- which continuous theorems to preserve?
  - that depends on the application
  - fast-forward to last lecture:
    - Euclidian motions? triangle mesh is fine
    - Conformal maps? use circle-based mesh

### Convergence

#### Consider refinement sequence

- length of inscribed polygon approaches length of smooth curve
- in general, discrete measure approaches continuous analogue
- which refinement sequence?
  - depends on discrete operator
  - pathological sequences may exist
- in what sense does the operator converge? (point-wise, L<sub>2</sub>; linear, quadratic)

#### Recall:

#### Total signed curvature

$$tsc(p) = \sum_{i=1}^{n} \alpha_i$$



#### Other definitions for curvature

"Curvature normal"







Use this to define discrete curvature!















#### Recap

#### Structurepreservation

For an arbitrary (even coarse) discrete curve, the discrete measure of curvature obeys the discrete turning number theorem.

#### Convergence

In the limit of a refinement sequence, discrete measures of length and curvature agree with continuous measures.