Fitting_GARCH

Sarah-Katharina Umek

2022-10-25

Considering a time series observations $y_t, t = 1, ..., T$ of your choice and investigate, if predictability in the conditional mean and/or the conditional variance is present:

```
getSymbols("GOOG", from = "2015-10-30", to = "2022-10-30", warnings = FALSE,
    auto.assign = TRUE)
```

[1] "GOOG"

```
google <- Cl(na.omit(GOOG))
google <- na.omit(diff(log(google)))
plot(google, col = "black", main = "Daily GOOG Return", xlab = "Time")</pre>
```



```
par(mfrow = c(1, 2))
acf(google)
acf(google^2)
```

Series google

Series google^2

Hannan-Quinn -5.443091

Continuing by estimating an ARMA-GARCH model for this time series and choosing an appropriate model orders.

```
model_specs <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,</pre>
    1)), mean.model = list(armaOrder = c(1, 1), include.mean = FALSE),
    distribution.model = "norm")
fit <- ugarchfit(data = google, spec = model_specs)</pre>
infocriteria(fit)
##
## Akaike
                 -5.445242
## Bayes
                 -5.429700
## Shibata
                 -5.445258
## Hannan-Quinn -5.439498
model_specs2 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,</pre>
    1)), mean.model = list(armaOrder = c(0, 0), include.mean = FALSE),
    distribution.model = "norm")
fit2 <- ugarchfit(data = google, spec = model_specs2)</pre>
infocriteria(fit2)
##
## Akaike
                 -5.446536
## Bayes
                -5.437212
## Shibata
                -5.446542
```

```
model_specs2_t <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,</pre>
    1)), mean.model = list(armaOrder = c(0, 0), include.mean = FALSE),
    distribution.model = "std")
fit2_t <- ugarchfit(data = google, spec = model_specs2_t)</pre>
infocriteria(fit2_t)
                -5.582260
## Akaike
## Bayes
                -5.569827
## Shibata
                -5.582271
## Hannan-Quinn -5.577666
model_specs3 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,</pre>
    1)), mean.model = list(armaOrder = c(0, 1), include.mean = FALSE),
    distribution.model = "norm")
fit3 <- ugarchfit(data = google, spec = model_specs3)</pre>
infocriteria(fit3)
##
## Akaike
                -5.446131
                -5.433698
## Bayes
## Shibata
                -5.446141
## Hannan-Quinn -5.441536
model_specs4 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,</pre>
    1)), mean.model = list(armaOrder = c(1, 0), include.mean = FALSE),
    distribution.model = "norm")
fit4 <- ugarchfit(data = google, spec = model_specs4)</pre>
infocriteria(fit4)
##
## Akaike
                -5.446134
## Bayes
                -5.433701
## Shibata
                -5.446144
## Hannan-Quinn -5.441539
model_specs5 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,</pre>
    1)), mean.model = list(armaOrder = c(2, 2), include.mean = FALSE),
    distribution.model = "norm")
fit5 <- ugarchfit(data = google, spec = model_specs5)</pre>
infocriteria(fit5)
##
## Akaike
                -5.445923
## Bayes
                -5.424166
## Shibata
                -5.445955
## Hannan-Quinn -5.437883
```

```
model_specs6 <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(2,</pre>
    2)), mean.model = list(armaOrder = c(1, 1), include.mean = FALSE),
    distribution.model = "norm")
fit6 <- ugarchfit(data = google, spec = model_specs5)</pre>
infocriteria(fit6)
##
                -5.445923
## Akaike
## Bayes
                -5.424166
## Shibata
                -5.445955
## Hannan-Quinn -5.437883
model_specs6_t <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(2,</pre>
    2)), mean.model = list(armaOrder = c(0, 0), include.mean = FALSE),
    distribution.model = "std")
fit6_t <- ugarchfit(data = google, spec = model_specs2_t)</pre>
infocriteria(fit6_t)
##
## Akaike
                -5.582260
## Bayes
                -5.569827
## Shibata
                -5.582271
## Hannan-Quinn -5.577666
plot(fit2_t, which = 10)
plot(fit6_t, which = 10)
```

ACF of Standardized Residuals

Using AIC and BIC to compare the models, we end up choosing an ARMA(0,0) GARCH(1,1) (no significant improvement for higher order ARMA models), however there is an improvement sung student-t distributions. Checking the standardized residuals for the selected model, we see that the ACF looks okay so we proceed with the Thus our model looks as follows:

$$r_t = \mu_t + X_t$$
, with $X_t = \sigma_t \varepsilon_t$
 $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \gamma_1 \sigma_{t-1}^2$

Next we discuss predictability in the light of the estimated parameters for the selected model.

fit2_t

Lag[1]

```
##
            GARCH Model Fit
## *----*
## Conditional Variance Dynamics
## -----
## GARCH Model : sGARCH(1,1)
## Mean Model : ARFIMA(0,0,0)
## Distribution : std
##
## Optimal Parameters
##
##
          Estimate Std. Error t value Pr(>|t|)
                     0.000004
## omega
          0.000004
                              1.0621 0.288169
## alpha1
          0.094106
                     0.023190
                               4.0581 0.000049
## beta1
          0.904893
                     0.022690
                             39.8807 0.000000
## shape
          4.062921
                     0.433332
                               9.3760 0.000000
##
## Robust Standard Errors:
          Estimate Std. Error t value Pr(>|t|)
##
## omega
          0.000004
                     0.000011 0.34598 0.72936
## alpha1
          0.094106
                     0.058206 1.61678
                                     0.10593
## beta1
          0.904893
                     0.063002 14.36286
                                      0.00000
          4.062921
                     0.535657 7.58493 0.00000
## shape
##
## LogLikelihood: 4919.18
##
## Information Criteria
##
##
## Akaike
              -5.5823
## Bayes
              -5.5698
## Shibata
              -5.5823
## Hannan-Quinn -5.5777
##
## Weighted Ljung-Box Test on Standardized Residuals
  -----
##
                        statistic p-value
```

0.3450 0.5569

```
## Lag[2*(p+q)+(p+q)-1][2] 0.3674 0.7593
## Lag[4*(p+q)+(p+q)-1][5] 1.9506 0.6302
## d.o.f=0
## HO : No serial correlation
## Weighted Ljung-Box Test on Standardized Squared Residuals
## -----
##
                      statistic p-value
                       0.09009 0.7641
## Lag[1]
## Lag[2*(p+q)+(p+q)-1][5] 0.48225 0.9604
## Lag[4*(p+q)+(p+q)-1][9] 1.21506 0.9755
## d.o.f=2
## Weighted ARCH LM Tests
   Statistic Shape Scale P-Value
## ARCH Lag[3] 0.01345 0.500 2.000 0.9077
## ARCH Lag[5] 0.03221 1.440 1.667 0.9974
## ARCH Lag[7] 0.52528 2.315 1.543 0.9760
## Nyblom stability test
## -----
## Joint Statistic: 5.2604
## Individual Statistics:
## omega 2.5110
## alpha1 0.6511
## beta1 0.6115
## shape 0.7207
##
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic: 1.07 1.24 1.6
## Individual Statistic: 0.35 0.47 0.75
## Sign Bias Test
## -----
                 t-value prob sig
             0.7281 0.4666
## Sign Bias
## Negative Sign Bias 0.4708 0.6378
## Positive Sign Bias 0.1384 0.8900
## Joint Effect 0.5943 0.8977
##
##
## Adjusted Pearson Goodness-of-Fit Test:
## -----
## group statistic p-value(g-1)
## 1 20 43.51 0.001104
## 2
                  0.066634
      30 41.16
## 3 40 56.22 0.036520
## 4 50 65.49 0.057690
##
## Elapsed time : 0.167475
```

```
sd_sample <- sd(google)
sd_sample</pre>
```

[1] 0.01743161

```
sd_estimates \leftarrow as.data.frame(tail(sigma(fit2_t), n = 1))[, 1] sd_estimates
```

[1] 0.0349866

Conditional SD (vs |returns|)

plot(sigma(fit2_t))

plot(forecast_model, which = 1)

Forecast Series w/th unconditional 1–Sigma bands

