МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Вопрос по выбору

Измерение удельного заряда электрона методами магнитной фокусировки и магнетрона

выполнили студенты 2 курса Белостоцкий Артемий Петрова София

Цель работы

Определение отношения заряда электрона к его массе методом магнитной фокусировки и методом магнетрона.

В работе используются

- Электронно-лучевая трубка
- Соленоид
- Вольтметр
- Милливеберметр
- Электронная лампа с цилиндрическим анодом
- Соленоид
- Вольтметр
- Два амперметра

Ход работы

Метод магнитной фокусировки

Проведем измерение зависимости магнитного поля в соленоиде от тока в его обмотке с помощью милливеберметра. Будем переводить стрелку милливеберметра в удобное для измерений начальное положение, а затем, размыкая ключ в цепи, по величине отклонения стрелки определим магнитный поток. Данные занесем в Таблицу 1.

Таблица 1:

Φ_0 м B б	2	3	3	4	5	6	7
Φ , м B б	1,3	1,55	0,85	1,2	1,35	1,65	1,85
$\Delta\Phi$, м B б	0,7	1,45	2,15	2,8	3,65	4,35	5,15

,где Φ_0 - начальное положение стрелки милливеберметра, Φ - конечное, $\Delta\Phi=\Phi_0-\Phi$

Разделив $\Delta\Phi$ на SN=0,3 м 2 можно рассчитать индукция поля B в соленоиде. Данные занесем в Таблицу 2.

Таблица 2:

B, м T л	2,33	4,83	7,17	9,33	12,17	14,50	17,17	0
<i>I</i> , <i>A</i>	0,7	1,4	2,1	2,8	3,5	4,2	4,9	0

Оценим погрешности измеренных величин:

 $\sigma_\Phi = \sigma_{\Phi_0} = 0,01$ мВб — cистематическая погрешность милливеберметра

$$\sigma_{\Delta\Phi}=\sqrt{\sigma_{\Phi}^2+\sigma_{\Phi_0}^2}pprox 0,01$$
 мВб $\sigma_B=rac{\sigma_{\Delta\Phi}}{SN}pprox 0,05$ мТл

По полученным данным построим калибровочный график B(I).

Рис. 1: Зависимость B(I)

По МНК рассчитаем коэффициента наклона:

$$k \approx 3,46 \pm 0,02 \frac{\text{MT} \text{J}}{\text{A}}$$

Включим осциллограф. Постепенно увеличивая ток через соленоид будем фиксировать силу тока I_{Φ} , при которой линия на осциллографе стягивается в точку и с помощью зависимости B(I) определим индукцию поля для этих значений тока B_{Φ} . Данные занесем в Таблицу 3.

Таблица 3:

n	1	2	3	4	5
I_{Φ}, A	0,62	1,28	1,92	2,61	3,31
B_{Φ} , м T л	2,15	4,43	6,64	9,03	11,45
$\sigma_{B_{\Phi}}$, м T л	0,01	0,03	0,04	0,05	0,07

По данным Таблицы 3 построим график зависимости $B_{\Phi}(n)$.

Рис. 2: Зависимость $B_{\Phi}(n)$

По МНК рассчитаем коэффициента наклона:

$$k \approx 2,22 \pm 0,02 \text{ мТл}$$

Рассчитаем удельный заряд электрона и оценим погрешность:

$$\frac{e}{m} = \frac{8\pi^2 U}{k^2 L^2} \approx 1,78 * 10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{F}}},$$

где U = 780 L = 0.265 м

$$\sigma_{\frac{e}{m}} = \frac{e}{m} \frac{2\sigma_k}{k} \approx 0,03 * 10^{11} \frac{\mathrm{K}}{\mathrm{K}}$$

Окончательно:

$$\frac{e}{m} = (1,78 \pm 0,03) * 10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{\Gamma}}}$$

Метод магнетрона

Установим потенциал на аноде $U_a=72~{\rm B}$. Измерим зависимость анодного тока I_a от тока через соленоид I_m . Используя коэффициент пропорциональности $K=0,035\frac{{\rm T}_A}{{\rm A}}$ между током через соленоид и величиной магнитной индукции получим зависимость $I_a(B)$. Измерения проведем для 5 разных значений анодного напряжения. Полученные данные занесем в таблицы.

Таблица 4:

U=72B			U=80B			$U=\it 90B$		
$Im, \ {\it MA}$	Ia, MA	В, м Тл	Im, MA	Ia, MA	В, мТл	Im, MA	Ia, MA	B, м T л
0	240	0	0	232	0	0	250	0
20	236	0,7	20	238	0,7	20	246	0,7
40	236	1,4	40	238	1,4	40	246	1,4
60	236	2,1	60	238	2,1	60	244	2,1
80	232	2,8	80	240	2,8	80	242	2,8
100	234	3,5	100	242	3,5	100	242	3,5
120	228	4,2	120	240	4,2	120	242	4,2
124	220	4,34	124	236	4,34	140	240	4,9
128	218	4,48	128	238	4,48	144	238	5,04
130	206	4,55	132	246	4,62	146	208	5,11
132	178	4,62	136	228	4,76	148	96	5,18
134	68	4,69	138	132	4,83	152	36	5,32
136	38	4,76	140	54	4,9	156	22	5,46
140	20	4,9	144	30	5,04	160	14	5,6
144	12	5,04	148	16	5,18			
148	8	5,18						

Таблица 5:

U=100B			U=110B			
Im, м A	Ia, MA	B, м T л	Im, MA	Ia, MA	В, м Тл	
0	244	0	0	246	0	
20	244	0,7	20	242	0,7	
40	242	1,4	40	242	1,4	
60	240	2,1	60	242	2,1	
80	240	2,8	80	242	2,8	
100	242	3,5	100	242	3,5	
120	242	4,2	120	244	4,2	
136	240	4,76	140	242	4,9	
140	240	4,9	160	228	5,6	
144	234	5,04	162	140	5,67	
148	244	5,18	164	98	5,74	
152	236	5,32	168	46	5,88	
156	144	5,46	172	24	6,02	
160	54	5,6	176	16	6,16	
164	26	5,74				
168	16	5,88				

Оценим погрешности:

$$\sigma_{I_m}=2$$
 мA — систематическая погрешность амперметра $\sigma_{I_a}=1$ мA — систематическая погрешность амперметра $\sigma_{U_a}=1$ В — систематическая погрешность вольтметра
$$\sigma_B=K*\sigma_{I_m}=0,07 \text{ мТл}$$
 $\sigma_{B^2}=2*\sigma_B=0,14 \text{ мТл}$

Построим семейство зависимостей анодного тока от магнитного $I_a(B)$

Рис. 3: Зависимость I(B) для $U_a=72\mathrm{B}$

Рис. 4: Зависимость I(B) для $U_a=80\mathrm{B}$

Рис. 5: Зависимость I(B) для $U_a=90\mathrm{B}$

Рис. 6: Зависимость I(B) для $U_a=100\mathrm{B}$

Рис. 7: Зависимость I(B) для $U_a=110\mathrm{B}$

Рис. 8: Семейство зависимостей I(B)

По участкам графика с максимальном значении, для каждого U_a определим критическое значение индукции магнитного поля $B_{\rm kp}$. Занесем данные в таблицу.

Таблица 6:

$B_{\kappa p}$, м T л	$U_{\rm a},{ m B}$	$B_{\rm \kappa p}^2$, м ${\rm T}{\rm \pi}^2$
4,62	72	21,34
4,83	80	23,33
5,11	90	26,11
5,46	100	29,81
5,67	110	32,15

Построим график зависимости $B_{\kappa p}^2(U_a)$ по данным таблицы:

Рис. 9: Зависимостьё $B^2_{\kappa p}(U_a)$

Из МНК найдем коэффициент наклона k и оценим погрешность:

$$k \approx 0,294 \pm 0,002 \frac{{}_{
m M}{
m T}{}_{
m J}{}^2}{
m R}$$

Рассчитаем удельный заряд электрона и оценим погрешность:

$$\frac{e}{m} = \frac{8}{kr_a^2} \approx 1,88*10^{11} \frac{{\rm K}_{\rm J}}{{\rm K}_{\rm F}}$$

где $r_a = 12$ мм - радиус анода

$$\sigma_{\frac{e}{m}} = \frac{e}{m} \frac{\sigma_k}{k} \approx 0,01*10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{\Gamma}}}$$

Окончательно:

$$\frac{e}{m} = (1,88 \pm 0,01) * 10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{\Gamma}}}$$

Выводы

- 1.Для метода магнитной фокусировки получен удельный заряд электрона $\frac{e}{m}=(1,78\pm0,03)*10^{11}\frac{\mathrm{K}\pi}{\mathrm{Kr}},$ что в пределах погрешности совпадает с табличный значением $\frac{e}{m}=1,76*10^{11}\frac{\mathrm{K}\pi}{\mathrm{Kr}}$
- $10^{11}\frac{\text{Km}}{\text{кr}}$ 2.Для метода магнетрона также получен удельный заряд электрона $\frac{e}{m}=(1,88\pm0,01)*$ $10^{11}\frac{\text{Kn}}{\text{kr}}$, что по порядку величины совпадает с табличным значением, но не совпадает численно. Расхождение составляет примерно 6 % от табличного.
- 3.Данное расхождение может быть вызвано неточным измерением зависимости B(I), из-за резкого спада для зависимости B(I)