Stukan 12

Ordkunskap: Se till att du förstår vad följande begrepp innebär:

bas (för ett vektorrum)

koordinatvektor

koordinater (med avseende på en viss bas)

basbytesmatris (synonym: övergångsmatris)

Övning 1. Betrakta delrummet V (av \mathbb{R}^4) som spänns upp av vektorerna $\vec{a} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 4 \end{bmatrix}$ och $\vec{b} = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$.

- a) Visa att $\mathcal{B} = \{ \overrightarrow{a}, \overrightarrow{b} \}$ är en bas för V.
- b) Givet $\vec{v} = \begin{bmatrix} 2 \\ -10 \\ 0 \\ 3 \end{bmatrix}$. Visa att $\vec{v} \in V$.
- c) Bestäm koordinatvektorn för \vec{v} med avseende på basen \mathcal{B} .

Alternativt talesätt: Bestäm koordinatvektorn för \vec{v} i basen \mathcal{B} .

Övning 2. Betrakta vektorrummet \mathbb{R}^2 med två baser \mathcal{S} och \mathcal{B} . Låt \mathcal{S} vara standardbasen $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$, där $\overrightarrow{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ och $\overrightarrow{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Låt \mathcal{B} vara $\{\overrightarrow{b_1}, \overrightarrow{b_2}\}$, där $\overrightarrow{b_1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ och $\overrightarrow{b_2} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Betrakta vektorn $\vec{v} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$ i \mathbb{R}^2 .

- a) Bestäm $[\vec{v}]_{\mathcal{S}}$, dvs. koordinatvektorn för \vec{v} med avseende på basen \mathcal{S} .
- b) Bestäm $[\vec{v}]_{\mathcal{B}}$, dvs. koordinatvektorn för \vec{v} med avseende på basen \mathcal{B} .
- c) Bestäm $P_{\mathcal{S}\leftarrow\mathcal{B}}$, dvs. basbytesmatrisen (synonym: övergångsmatrisen) från \mathcal{B} till \mathcal{S} .
- d) Bestäm $P_{\mathcal{B}\leftarrow\mathcal{S}}$, dvs. basbytesmatrisen från \mathcal{S} till \mathcal{B} .

Övning 3. Låt $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\} = \{\begin{bmatrix}3\\4\end{bmatrix}, \begin{bmatrix}1\\2\end{bmatrix}\}$ och $\mathcal{C} = \{\overrightarrow{c_1}, \overrightarrow{c_2}\} = \{\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}-1\\1\end{bmatrix}\}$ vara två baser för \mathbb{R}^2 .

- a) Låt $\overrightarrow{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Bestäm $[\overrightarrow{v}]_{\mathcal{B}}$ respektive $[\overrightarrow{v}]_{\mathcal{C}}$.
- b) Bestäm $P_{\mathcal{B}\leftarrow\mathcal{C}}$, dvs. basbytesmatrisen från \mathcal{C} till \mathcal{B} .

Facit: Se nästa sida.

Övning 1. a) Vi vill alltså visa att \vec{a} och \vec{b} är linjärt oberoende. Vi inser lätt att \vec{a} och \vec{b} inte är parallella, dvs. det inte finns någon skalär $c \in \mathbb{R}$ sådan att $c\vec{a} = \vec{b}$. Således är \vec{a} och \vec{b} är linjärt oberoende och utgör en bas för V.

b) Vi vill alltså visa att $\vec{v} \in \text{span } \{\vec{a}, \vec{b}\}\$, dvs. \vec{v} kan skrivas som en linjärkombination av \vec{a} och \vec{b} .

Betrakta ekvationen
$$k_1\vec{a}+k_2\vec{b}=\vec{v}$$
, dvs. $k_1\begin{bmatrix}1\\0\\0\\4\end{bmatrix}+k_2\begin{bmatrix}0\\2\\0\\1\end{bmatrix}=\begin{bmatrix}2\\-10\\0\\3\end{bmatrix}$. Låt oss finna k_1 och k_2 med

hjälp av gausseliminering:

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & -10 \\ 0 & 0 & 0 \\ 4 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 - 4R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & -10 \\ 0 & 0 & 0 \\ 0 & 1 & -5 \end{bmatrix} \sim \begin{bmatrix} R_1 \\ R_4 \\ R_2 \\ R_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -5 \\ 0 & 2 & -10 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} R_1 \\ R_2 \\ R_3 - 2R_1 \\ R_4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Nu kan vi se att $k_1 = 2$ och $k_2 = -5$, dvs. vi kan skriva \vec{v} som $2\vec{a} - 5\vec{b}$, där \vec{a} och \vec{b} är vektorer som spänner upp V. Vi har härmed visat att $\vec{v} \in V$.

c) Enligt beräkningarna på delfråga (b) är $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ koordinatvektorn för \vec{v} med avseende på basen \mathcal{B} .

Svar:
$$[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$$
.

Anmärkning: Lägg märke till att \vec{v} har två koordinater med avseende på basen \mathcal{B} (nämligen 2 och

-5) trots att $\vec{v} = \begin{bmatrix} 2 \\ -10 \\ 0 \\ 3 \end{bmatrix}$ har fyra komponenter. Antalet koordinater, med avseende på en viss bas, till

en vektor är alltså lika med antalet vektorer i basen.

Övning 2. a) Vi vill alltså bestämma vektorn $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ som uppfyller $c_1 \overrightarrow{e_1} + c_2 \overrightarrow{e_2} = \overrightarrow{v}$, dvs.

$$c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$$

Vi kan se direkt att $c_1 = 3$ och $c_2 = 11$. Koordinatvektorn för $\vec{v} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$ med avseende på standardbasen \mathcal{S} är alltså $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$, vilket stämmer överens med det som vi på gymnasiet brukade säga: "Koordinaterna av punkten (3, 11) är 3 och 11".

Svar:
$$[\vec{v}]_{\mathcal{S}} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$$
.

b) Vi vill alltså bestämma vektorn $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$ som uppfyller $k_1 \overrightarrow{b_1} + k_2 \overrightarrow{b_2} = \vec{v}$, dvs.

$$k_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$$

Detta är som att lösa det ekvationssystem som representeras av matrisen

$$\begin{bmatrix} 3 & 2 & 3 \\ 1 & 4 & 11 \end{bmatrix} \sim \begin{bmatrix} R_2 \\ R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 11 \\ 3 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} R_1 \\ R_2 - 3R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 11 \\ 0 & -10 & -10 \end{bmatrix} \sim \begin{bmatrix} R_1 \\ -\frac{1}{10}R_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 11 \\ 0 & 1 & 3 \end{bmatrix} \\
\sim \begin{bmatrix} R_1 - 4R_2 \\ R_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -11 \\ 0 & 1 & 3 \end{bmatrix}$$

vilket innebär att $k_1 = -1$ och $k_2 = 3$. Koordinatvektorn för $\vec{v} = \begin{bmatrix} 3 \\ 11 \end{bmatrix}$ med avseende på basen \mathcal{B} är alltså $\begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

Svar: $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

c) Eftersom $\mathcal{S} = \{\overrightarrow{e_1}, \overrightarrow{e_2}\} = \{\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\1\end{bmatrix}\} \text{ och } \mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\} = \{\begin{bmatrix}3\\1\end{bmatrix}, \begin{bmatrix}2\\4\end{bmatrix}\}$, gäller enligt en känd teori att $P_{\mathcal{S} \leftarrow \mathcal{B}} = \begin{bmatrix}\overrightarrow{b_1}, \overrightarrow{b_2}\} \\ \overrightarrow{b_1} \end{bmatrix}_{\mathcal{S}} = \begin{bmatrix}\overrightarrow{b_2} \end{bmatrix}_{\mathcal{S}}$.

Gör som vi gjorde på delfråga (a) och vi finner att $[\overrightarrow{b_1}]_{\mathcal{S}} = \overrightarrow{b_1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, ty $3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, samt att $[\overrightarrow{b_2}]_{\mathcal{S}} = \overrightarrow{b_2} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, ty $2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Svar: $P_{\mathcal{S}\leftarrow\mathcal{B}} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$.

Anmärkning: Minns att $P_{S \leftarrow \mathcal{B}}$ har egenskapen $[\vec{u}]_{S} = P_{S \leftarrow \mathcal{B}}[\vec{u}]_{\mathcal{B}}$, för <u>alla</u> $\vec{u} \in \mathbb{R}^{2}$. Vi att kontrollera om $P_{S \leftarrow \mathcal{B}} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ kan stämma genom att testa om $[\vec{v}]_{S} = P_{S \leftarrow \mathcal{B}}[\vec{v}]_{\mathcal{B}}$, där $[\vec{v}]_{S}$ och $[\vec{v}]_{\mathcal{B}}$ fås från delfrågor (a) och (b). En enkel matrismultiplikation ger $P_{S \leftarrow \mathcal{B}}[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \end{bmatrix} = [\vec{v}]_{S}$. Det stämmer!

d) **Metod 1:** Eftersom $\mathcal{S} = \{\overrightarrow{e_1}, \overrightarrow{e_2}\} = \{\begin{bmatrix}1\\0\end{bmatrix}, \begin{bmatrix}0\\1\end{bmatrix}\}$ och $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\} = \{\begin{bmatrix}3\\1\end{bmatrix}, \begin{bmatrix}2\\4\end{bmatrix}\}$, gäller enligt en känd teori att $P_{\mathcal{B} \leftarrow \mathcal{S}} = \begin{bmatrix}|\\|\overrightarrow{e_1}|_{\mathcal{B}} & |\overrightarrow{e_2}|_{\mathcal{B}}\\|&&|\end{bmatrix}$.

Gör som vi gjorde på delfråga (b) och vi finner att $[\overrightarrow{e_1}]_{\mathcal{B}} = \begin{bmatrix} \frac{2}{5} \\ -\frac{1}{10} \end{bmatrix}$, ty $\frac{2}{5} \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \frac{1}{10} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, samt att $[\overrightarrow{e_2}]_{\mathcal{B}} = \begin{bmatrix} -\frac{1}{5} \\ \frac{3}{10} \end{bmatrix}$, ty $-\frac{1}{5} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \frac{3}{10} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Härmed fås $P_{\mathcal{B} \leftarrow \mathcal{S}} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{10} & \frac{3}{10} \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$, då vi

bryter ut $\frac{1}{10}$ från den jobbiga matrisen $\begin{bmatrix} \frac{2}{5} & -\frac{1}{5} \\ -\frac{1}{10} & \frac{3}{10} \end{bmatrix}$.

Metod 2: Enligt en känd teori gäller att $P_{\mathcal{B} \leftarrow \mathcal{S}}$ är den inversa matrisen av $P_{\mathcal{S} \leftarrow \mathcal{B}}$. Om vi inte lärt oss att invertera matriser (vilket tillhör **Modul 4**) kan denna metod vara knepig att använda.

Har du tjuvläst vet du säkert att $P_{\mathcal{B}\leftarrow\mathcal{S}} = (P_{\mathcal{S}\leftarrow\mathcal{B}})^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}^{-1} = \frac{1}{3\cdot 4 - 1\cdot 2} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$.

Svar:
$$P_{\mathcal{B} \leftarrow \mathcal{S}} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$
.

Anmärkning: Minns att $P_{\mathcal{B}\leftarrow\mathcal{S}}$ har egenskapen $[\vec{u}]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{S}}[\vec{u}]_{\mathcal{S}}$, för <u>alla</u> $\vec{u} \in \mathbb{R}^2$. Vi att kontrollera om $P_{\mathcal{B}\leftarrow\mathcal{S}} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$ kan stämma genom att testa om $[\vec{v}]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{S}}[\vec{v}]_{\mathcal{S}}$, där $[\vec{v}]_{\mathcal{S}}$ och $[\vec{v}]_{\mathcal{B}}$ fås från delfrågor (a) och (b). En enkel matrismultiplikation ger $P_{\mathcal{B}\leftarrow\mathcal{S}}[\vec{v}]_{\mathcal{S}} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 11 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -10 \\ 30 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} = [\vec{v}]_{\mathcal{B}}$. Det stämmer!

Övning 3. a) Att bestämma $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$ är som att lösa ekvationen $k_1 \overrightarrow{b_1} + k_2 \overrightarrow{b_2} = \overrightarrow{v}$, dvs. $k_1 \begin{bmatrix} 3 \\ 4 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Med hjälp gausseliminering eller skarp syn finner vi att $k_1 = 1$ och $k_2 = -1$, dvs. $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

På samma sätt finner vi att $[\vec{v}]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

Svar: $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, medan $[\vec{v}]_{\mathcal{C}} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

b) **Metod 1:** Eftersom $\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\} = \{\begin{bmatrix}3\\4\end{bmatrix}, \begin{bmatrix}1\\2\end{bmatrix}\}$ och $\mathcal{C} = \{\overrightarrow{c_1}, \overrightarrow{c_2}\} = \{\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}-1\\1\end{bmatrix}\}$, gäller enligt en känd teori att $P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix}|&&&\\|\overrightarrow{c_1}|_{\mathcal{B}}&|&\\|&&&\\|&&&\\|&&&\\|&&&\\|&&&&\\$

Gör som vi gjorde på **Övning 2**, delfråga (b) och vi finner att $[\overrightarrow{c_1}]_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$, ty $\frac{1}{2} \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$,

samt att
$$[\overrightarrow{c_2}]_{\mathcal{B}} = \begin{bmatrix} -\frac{3}{2} \\ \frac{7}{2} \end{bmatrix}$$
, ty $-\frac{3}{2} \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \frac{7}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Härmed fås $P_{\mathcal{B} \leftarrow \mathcal{C}} = \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{7}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix}$.

Metod 2: Låt oss tillämpa kedjeregeln som säger att $P_{\mathcal{B}\leftarrow\mathcal{C}}=P_{\mathcal{B}\leftarrow\mathcal{S}}P_{\mathcal{S}\leftarrow\mathcal{C}}$, där \mathcal{S} är standardbasen $\{\overrightarrow{e_1},\overrightarrow{e_2}\}$, där $\overrightarrow{e_1}=\begin{bmatrix}1\\0\end{bmatrix}$ och $\overrightarrow{e_2}=\begin{bmatrix}0\\1\end{bmatrix}$. Lösningen blir en aning kortare ty matrisen $P_{\mathcal{S}\leftarrow\mathcal{C}}$ kan enkelt bestämmas som vi gjorde på **Övning 2**, delfråga (c).

Minns att
$$\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\} = \{\begin{bmatrix}3\\4\end{bmatrix}, \begin{bmatrix}1\\2\end{bmatrix}\}$$
 och $\mathcal{C} = \{\overrightarrow{c_1}, \overrightarrow{c_2}\} = \{\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}-1\\1\end{bmatrix}\}$.

Vi ser direkt att
$$P_{\mathcal{S}\leftarrow\mathcal{C}} = \begin{bmatrix} 1 & 1 \\ [\overrightarrow{c_1}]_{\mathcal{S}} & [\overrightarrow{c_2}]_{\mathcal{S}} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \overrightarrow{c_1} & \overrightarrow{c_2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Vidare gäller att $P_{\mathcal{B} \leftarrow \mathcal{S}} = \begin{bmatrix} | & | \\ [\overrightarrow{e_1}]_{\mathcal{B}} & [\overrightarrow{e_2}]_{\mathcal{B}} \\ | & | \end{bmatrix}$. Gör som vi gjorde på **Övning 2**, delfråga (b) och vi finner

att $[\overrightarrow{e_1}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, ty $1 \begin{bmatrix} 3 \\ 4 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, samt att $[\overrightarrow{e_2}]_{\mathcal{B}} = \begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{bmatrix}$, ty $-\frac{1}{2} \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Härmed fås

$$P_{\mathcal{B}\leftarrow\mathcal{S}} = \begin{bmatrix} 1 & -\frac{1}{2} \\ -2 & \frac{3}{2} \end{bmatrix}.$$

Äntligen kan vi beräkna $P_{\mathcal{B}\leftarrow\mathcal{C}} = P_{\mathcal{B}\leftarrow\mathcal{S}}P_{\mathcal{S}\leftarrow\mathcal{C}} = \begin{bmatrix} 1 & -\frac{1}{2} \\ -2 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1-\frac{1}{2} & -1-\frac{1}{2} \\ -2+\frac{3}{2} & 2+\frac{3}{2} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & -1 & -\frac{1}{2} \\ -1 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{7}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix}.$$

Metod 3: Låt oss tillämpa kedjeregeln igen, fast på ett lite annorlunda sätt. Istället för att skriva $P_{\mathcal{B}\leftarrow\mathcal{C}}=P_{\mathcal{B}\leftarrow\mathcal{S}}P_{\mathcal{S}\leftarrow\mathcal{C}}$, där \mathcal{S} är standardbasen $\{\overrightarrow{e_1},\overrightarrow{e_2}\}=\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\}$, kan vi skriva $P_{\mathcal{S}\leftarrow\mathcal{C}}=P_{\mathcal{S}\leftarrow\mathcal{B}}P_{\mathcal{B}\leftarrow\mathcal{C}}$. Matriserna $P_{\mathcal{S}\leftarrow\mathcal{C}}$ och $P_{\mathcal{S}\leftarrow\mathcal{B}}$ kan enkelt bestämmas som vi gjorde på **Övning 2**, delfråga (c).

Minns att
$$\mathcal{B} = \{\overrightarrow{b_1}, \overrightarrow{b_2}\} = \{\begin{bmatrix}3\\4\end{bmatrix}, \begin{bmatrix}1\\2\end{bmatrix}\}$$
 och $\mathcal{C} = \{\overrightarrow{c_1}, \overrightarrow{c_2}\} = \{\begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}-1\\1\end{bmatrix}\}$.

Vi ser direkt att
$$P_{\mathcal{S}\leftarrow\mathcal{C}} = \begin{bmatrix} 1 & 1 \\ [\overrightarrow{c_1}]_{\mathcal{S}} & [\overrightarrow{c_2}]_{\mathcal{S}} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \overrightarrow{c_1} & \overrightarrow{c_2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Vi ser också direkt att
$$P_{\mathcal{S}\leftarrow\mathcal{B}} = \begin{bmatrix} | & | \\ [\overrightarrow{b_1}]_{\mathcal{S}} & [\overrightarrow{b_2}]_{\mathcal{S}} \end{bmatrix} = \begin{bmatrix} | & | \\ \overrightarrow{b_1} & \overrightarrow{b_2} \\ | & | \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}.$$

Ansätt $P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix} p_1 & p_3 \\ p_2 & p_4 \end{bmatrix}$. Notera att $P_{\mathcal{B}\leftarrow\mathcal{C}}$ måste vara en 2 × 2-matris, annars är matrismultiplikationen $P_{\mathcal{S}\leftarrow\mathcal{C}} = P_{\mathcal{S}\leftarrow\mathcal{B}}P_{\mathcal{B}\leftarrow\mathcal{C}}$ odefinierad.

Eftersom
$$P_{\mathcal{S}\leftarrow\mathcal{C}} = P_{\mathcal{S}\leftarrow\mathcal{B}}P_{\mathcal{B}\leftarrow\mathcal{C}}$$
 gäller att $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} p_1 & p_3 \\ p_2 & p_4 \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3p_1 + p_2 & 3p_3 + p_4 \\ 4p_1 + 2p_2 & 4p_3 + 2p_4 \end{bmatrix}, \text{ vilket innebär } \begin{cases} 3p_1 + p_2 = 1 \\ 4p_1 + 2p_2 = 1 \end{cases} \text{ och } \begin{cases} 3p_3 + p_4 = -1 \\ 4p_3 + 2p_4 = 1 \end{cases}$$

Lös varje system med valfri metod (till exempel gymnasiematematik) och vi får $p_1 = \frac{1}{2}$, $p_2 = -\frac{1}{2}$

$$p_3 = -\frac{3}{2} \operatorname{samt} p_4 = \frac{7}{2}$$
. Då erhålls $P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix} p_1 & p_3 \\ p_2 & p_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{7}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix}$.

Anmärkning: Minns att $P_{\mathcal{B}\leftarrow\mathcal{C}}$ har egenskapen $[\vec{u}]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{C}}[\vec{u}]_{\mathcal{C}}$, för <u>alla</u> $\vec{u} \in \mathbb{R}^2$. Vi att kontrollera om $P_{\mathcal{B}\leftarrow\mathcal{C}} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix}$ kan stämma genom att testa om $[\vec{v}]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{C}}[\vec{v}]_{\mathcal{C}}$, där $[\vec{v}]_{\mathcal{C}}$ och $[\vec{v}]_{\mathcal{B}}$ fås från delfråga (a). En enkel matrismultiplikation ger $P_{\mathcal{B}\leftarrow\mathcal{C}}[\vec{v}]_{\mathcal{C}} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ = $\frac{1}{2} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = [\vec{v}]_{\mathcal{B}}$. Det stämmer!