Capstone Project Title:

"Optimizing Walmart Store Operations Using Machine Learning"

Objective:

Leverage classical ML techniques to **segment stores**, **predict key performance indicators**, and **detect operational anomalies** using Walmart store-level data.

Dataset Description:

You can provide a dummy or publicly available dataset with the following (or similar) structure:

Store Weekly_ Store_ Reg Avg_In Holiday Foot Inventory_ Promo Da _ID Sales Size Flag Level Spend ion come fall te

(You may simulate this with dummy data in CSV or use the Walmart Sales Forecasting dataset on Kaggle for realism.)

Project Phases:

Phase 1: Exploratory Data Analysis & Problem Framing

- Perform EDA to understand trends in sales, promotions, and footfall.
- Identify missing values, outliers, and basic statistical summaries.
- Define the business problems:
 - Sales forecasting (regression)

- Store segmentation (clustering)
- Anomaly detection (monitoring unusual store behavior)

Phase 2: Supervised Learning - Regression & Classification

1. Regression Task:

- Objective: Predict weekly sales based on store attributes and promotions.
- o Apply: Linear Regression, Random Forest Regressor
- o Evaluate: RMSE, MAE, R² Score

2. Classification Task:

- Objective: Predict whether a store will have a high sales week (binary classification).
- o Convert weekly sales into binary target using a threshold.
- Apply: Logistic Regression, Decision Trees
- o Evaluate: Accuracy, Precision, Recall, F1-Score, Confusion Matrix

Phase 3: Unsupervised Learning – Clustering

- Objective: Segment stores based on Store_Size, Region, Avg_Income, Footfall, etc.
- Techniques:
 - o K-Means, DBSCAN
 - PCA for dimensionality reduction before clustering
- Visualize clusters and describe common characteristics of each segment.

• **Business Goal**: Recommend regional marketing or stocking strategies per segment.

Phase 4: Anomaly Detection

- **Objective**: Detect anomalous store behavior such as:
 - Sudden drop in sales
 - Unusual footfall
 - Promo budget overspending
- Techniques:
 - Z-Score/Box Plot for statistical anomalies
 - o Isolation Forest or One-Class SVM for multivariate anomalies
- Output: List of flagged stores and explanation of detected anomalies.

Deliverables

Participants must submit the following:

- 1. Jupyter Notebook or Python scripts with:
 - Data loading and cleaning
 - o EDA and visualizations
 - Model training, evaluation, and interpretation
 - Cluster visualizations and anomaly explanations
- 2. Capstone Report/Presentation (optional):
 - Business insights from model results

- o Recommendations for Walmart's operations team
- Challenges faced and how they were addressed

a Tools/Frameworks to Use

- Python, Pandas, NumPy
- scikit-learn, matplotlib, seaborn
- Jupyter Notebook or VS Code

Mark Optional Bonus Extension

"Deploy a simple REST API to serve the weekly sales prediction model using Flask or FastAPI."