Chapter 06 데이터 모델링

02. ER 모델

- 1. 개체와 개체 타입
- 2. 속성
- 3. 관계와 관계 타입
- 4. 약한 개체 타입과 식별자
- 5. IE 표기법

ER 모델

■ ER(Entity Relationship) 모델

■ 세상의 사물을 개체(entity)와 개체 간의 관계(relationship)로 표현함

■ 개체

- 독립적인 의미를 지니고 있는 유무형의 사람 또는 사물
- 개체의 특성을 나타내는 속성(attribute)에 의해 식별됨. 개체끼리 서로 관계를 가짐

그림 6-8 ER 모델의 기본 개념

ER 모델

❖ ER 다이어그램

ER 모델은 개체와 개체 간의 관계를 표준화된 그림으로 나타냄

그림 6-9 ER 다이어그램

1. 개체와 개체 타입

❖ 개체(entity)란?

- 사람, 사물, 장소, 개념, 사건과 같이 유무형의 정보를 가지고 있는 독립적인 실체
- 데이터베이스에서 주로 다루는 개체는 낱개로 구성된 것, 낱개가 각각 데이터 값을 가지는 것,
 데이터 값이 변하는 것 등이 있음.
- 비슷한 속성의 개체 타입(entity type)을 구성하며, 개체 집합(entity set)으로 묶임.

그림 6-10 개체, 개체 타입, 개체 집합

1. 개체와 개체 타입

❖ 개체 타입의 ER 다이어그램 표현

■ ER 다이어그램상에서 개체 타입은 직사각형으로 나타냄

표 6-1 개체 타입의 ER 다이어그램 표현

기호	의미
직원	강한 개체 타입(보통 개체 타입이라고 하면 강한 개체 타입을 말한다)
부양 가족	약한 개체 타입

■ 개체 타입의 유형

- 강한 개체(strong entity) : 다른 개체의 도움 없이 독자적으로 존재할 수 있는 개체
- 약한 개체(weak entity) : 독자적으로는 존재할 수 없고 반드시 상위 개체 타입을 가짐

2. 속성

■ 속성(attribute) : 개체가 가진 성질

개체 타입	속성
도서	도서이름, 출판사, 도서단가

표 6-2 개체 타입과 속성

■ 속성의 ER 다이어그램 표현

- 속성은 기본적으로 타원으로 표현. 개체 타입을 나타내는 직사각형과 실선으로 연결됨
- 속성의 이름은 타원의 중앙에 표기함
- 속성이 개체를 유일하게 식별할 수 있는 키일 경우 속성 이름에 밑줄을 그음

그림 6-11 도서 개체 타입

2. 속성

❖ 속성의 유형

기호	의미	설명
도서이름	속성	• 일반적인 속성을 나타냄 • 속성의 이름은 타원 중앙에 표시
도서번호	키(key) 속성	• 속성이 개체를 유일하게 식별할 수 있는 키일 경우 속성 이름에 밑줄을 그음
부양가족	약한 개체의 식별자	• 약한 개체는 키를 갖지 못하고 대신 식별자를 가짐 • 식별자의 이래에 점선을 그음
취미	다중값 속성	• 취미(수영 자전거)와 같이 여러 개의 값을 갖는 속성 • 이중 타원으로 표현
나이	유도 속성	• 나이와 같이 출생년도로 유도가 가능한 속성 • 점선 타원으로 표현
지 동 번지	복합 속성	• 주소(시, 동, 번지)와 같이 여러 속성으로 구성된 속성 • 큰 타원 아래 작은 타원으로 연결

표 6-3 속성의 ER 다이어그램 표현

- 관계(relationship) : 개체 사이의 연관성을 나타내는 개념
- 관계 타입(relationship type) : 개체 타입과 개체 타입 간의 연결 가능한 관계를 정의한 것이며, 관계 집합(relationship set)은 관계로 연결된 집합을 의미함

그림 6-15 관계, 관계 타입, 관계 집합

❖ 관계 타입의 ER 다이어그램 표현

표 6-4 관계 타입의 ER 다이어그램 표현

기호	의미
주문	관계 타입

그림 6-16 관계의 예

❖ 관계 타입의 유형

■ **차수에 따른 유형**관계 집합에 참가하는 개체 타입의 수를 관계 타입의 차수(degree)라고 함

표 6-5 차수에 따른 관계 타입의 유형

기호	의미	설명
개체 관계	1진 관계	한 개의 개체가 자기 자신과 관계를 맺음
개체 관계 개체	2진 관계	두 개의 개체가 관계를 맺음
개체 관계 개체 개체	3진 관계	세 개의 개체가 관계를 맺음

❖ 관계 타입의 유형

10 10 관계(recursive relationship): 한 개의 개체가 자기 자신과 관계를 맺는 경우

❷ 2진 관계(binary relationship) : 두 개의 개체가 관계를 맺는 경우

그림 6-18 2진 관계의 예

❖ 관계 타입의 유형

③ 3진 관계(ternary relationship) : 세 개의 개체가 관계를 맺는 경우

그림 6-19 3진 관계의 예

❖ 관계 타입의 유형

■ 관계 대응수(cardinality) : 두 개체 타입의 관계에 실제로 참여하는 개별 개체 수

표 6-6 관계 대응수에 따른 관계 타입의 유형

기호 1	의미	설명
- 1 관계 N	일대일 관계	하나의 개체가 하나의 개체에 대응
관계 N 1	일대다 관계	하나의 개체가 여러 개체에 대응
관계 N	다대일 관계	여러 개체가 하나의 개체에 대응
관계 관계	다대다 관계	여러 개체가 여러 개체에 대응

❖ 관계 타입의 유형

● 일대일(1:1)관계

좌측 개체 타입에 포함된 개체가 우측 개체 타입에 포함된 개체와 일대일로 대응하는 관계

그림 6-20 일대일 관계의 예

❖ 관계 타입의 유형

❷ 일대다(1:N), 다대일(N:1) 관계

실제 일상생활에서 가장 많이 볼 수 있는 관계로, 한쪽 개체 타입의 개체 하나가 다른 쪽 개체 타입의 여러 개체와 관계를 맺음

그림 6-21 일대다(1:N), 다대일(N:1) 관계의 예

❖ 관계 타입의 유형

❸ 다대다(N:M) 관계

각 개체 타입의 개체들이 서로 임의의 개수의 개체들과 서로 복합적인 관계를 맺고 있는 관계

그림 6-22 다대다(N:M) 관계의 예

❖ 관계 대응수의 최솟값과 최댓값

- 관계 대응수 1:1, 1:N, M:N에서 1, N, M은 각 개체가 관계에 참여하는 최댓값을 의미함
- 관계에 참여하는 개체의 최솟값을 표시하지 않는다는 단점을 보완하기 위해 다이어그램에서는 대응수 외에 최솟값과 최댓값을 관계실선 위에 (최솟값, 최댓값)으로 표기함

그림 6-23 관계 대응수의 최솟값과 최댓값의 표기

표 6-6 관계 대응수에 따른 관계 타입의 유형

관계	(min1,max1)	(min2,max2)
1:1	(0, 1)	(0, 1)
1:N	(0, *)	(0, 1)
M:N	(0, *)	(0, *)

그림 6-24 (최솟값, 최댓값) 표기의 예

❖ ISA 관계

■ 상위 개체 타입의 특성에 따라 하위 개체 타입이 결정되는 형태

표 6-8 ISA 관계 (ISA => is-a)

그림 6-25 ISA 관계의 예

❖ 참여 제약 조건

- 개체 집합 내 모든 개체가 관계에 참여하는지 유무에 따라 전체 참여와 부분 참여로 구분 가능
- 전체 참여는 개체 집합의 모든 개체가, 부분 참여는 일부만 참여함
- 전체 참여를 (최솟값, 최댓값)으로 표현할 경우 최솟값이 1 이상으로 모두 참여한다는 뜻이고, 부분 참여는 최솟값이 0 이상임

표 6-9 관계의 참여 제약 조건

기호	의미
	전체 참여
	부분 참여

그림 6-26 부분 참여와 전체 참여의 예

❖ 역할

■ 개체 타입 간의 관계를 표현할 때 각 개체들은 고유한 역할(role) 담당

그림 6-27 역할의 예

❖ 순환적 관계

■ 순환적 관계(recursive relationship) : 하나의 개체 타입이 동일한 개체 타입(자기자신)과 순환적으로 관계를 가지는 형태.

그림 6-28 순환적 관계의 예

4. 약한 개체 타입과 식별자

- 약한 개체(weak entity) 타입 : 상위 개체 타입이 결정되지 않으면 개별 개체를 식별할 수 없는 종속된 개체 타입
- 약한 개체 타입은 독립적인 키로는 존재할 수 없지만 상위 개체 타입의 키와 결합하여 약한 개체 타입의 개별 개체를 고유하게 식별하는 속성을 식별자(discriminator) 혹은 부분키(partial key)라고 함

표 6-10 식별자와 약한 개체 타입

기호	의미	설명
가족	약한 개체 타입	강한 개체 타입이 있어야 존재할 수 있음이중 직사각형으로 표현
부양	식별 관계 타입	 강한 개체 타입과 약한 개체 타입의 관계를 나타냄 강한 개체 타입의 기본키를 상속받아 사용함 이중 마름모꼴로 표현
	7	• 강한 개체 타입의 키 속성
	식별자	약한 개체 타입에서 개별 개체를 구분하는 속성키라고 하지 않고 식별자라고 부름

4. 약한 개체 타입과 식별자

그림 6-29 약한 개체 타입과 식별자의 예

5. IE 표기법

- ER 다이어그램을 더 축약하여 쉽게 표현하면 Erwin 등 소프트웨어에서 사용함
- IE(Information Engineering) 표기법에서 개체 타입과 속성은 직사각형으로 표현함

그림 6-31 Peter Chen 표기법과 IE 표기법

5. IE 표기법

■ IE 표기법에서 관계는 실선 혹은 점선으로 표기함

그림 6-11 IE 표기법 – 관계와 관계 대응수

기호	의미	
	• 비식별자 관계(non-identifying relationship) : 강한 개체 타입 • 부모 개체의 키가 일반 속성으로 포함되는 관계	
	• 식별자 관계(identifying relationship) : 약한 개체 타입 • 부모 개체의 키가 주식별자로 포함되는 관계	
	• 일대다(1:N)의 관계 : N 쪽에 새발을 표시	
O_	• 0(선택 참여), 최소 참여가 0일 경우	
	• 1(필수 참여), 최소 참여가 1일 경우	

5. IE 표기법

■ IE 표기법에서 관계(강한관계, 비식별자 관계)는 점선으로 표기함

(b) IE 표기법으로 작성한 직원-부서 관계

그림 6-31 IE 표기법의 예(비식별자 관계)

● IE 표기법에서 관계(약한관계, 식별자 관계) 는 실선으로 표기함

그림 6-32 IE 표기법의 예(식별자 관계)