MATH 321 WEEK 7 UNCLAIMED PROBLEM SOLUTIONS

KENAN INCE

- (1) 2.3.6: Consider the sequence given by $b_n = n \sqrt{n^2 + 2n}$. Taking $1/n \to 0$ as given and using both the ALT and Exercise 2.3.1, show that $\lim b_n$ exists and find its value.
 - (a) Because we're told we need to use $1/n \to 0$, it makes sense to try to rewrite b_n in a way that introduces a denominator. Let's try multiplying by the conjugate $n + \sqrt{n^2 - 2n}$ on the top and bottom:

$$b_n = \frac{(n - \sqrt{n^2 + 2n})(n + \sqrt{n^2 + 2n})}{n + \sqrt{n^2 + 2n}}$$
$$= \frac{n^2 - (n^2 + 2n)}{n + \sqrt{n^2 + 2n}}$$
$$= \frac{-2n}{n + \sqrt{n^2 + 2n}}.$$

Dividing the numerator and denominator by n yields

$$b_n = \frac{-2}{1 + \sqrt{1 + \frac{2}{n}}}.$$

Since the denominator is nonzero, we can use the Algebraic Limit Theorem and Exercise 2.3.1 to conclude that

$$\lim b_n = \frac{\lim(-2)}{\lim(1) + \lim\sqrt{1 + \frac{2}{n}}}$$

$$= \frac{-2}{1 + \sqrt{\lim(1 + \frac{2}{n})}}$$

$$= \frac{-2}{1 + \sqrt{\lim(1) + \lim(\frac{2}{n})}} = \frac{-2}{2} = -1.$$

- (2) 2.4.2:
 - (a) Consider the recursively defined sequence $y_1 = 1$, $y_{n+1} = 3 y_n$, and set $y = \lim y_n$. Because (y_n) and (y_{n+1}) have the same limit, taking the limit across the recursive equation gives y=3-y. Solving for y, we conclude $\lim y_n = 3/2$. What is wrong with this argument?
 - The problem is that $\lim y_n$ does not exist, hence any reasoning about its value is invalid. To see this, note that the first few terms of the sequence are

$$1, 2, 1, 2, 1, 2, \dots$$

- (b) This time set $y_1 = 1$ and $y_{n+1} = 3 \frac{1}{y_n}$. Can the strategy in (a) be applied to compute the limit of this sequence?
 - Yes; we use the Monotone Convergence Theorem. First, we show inductively that y_n is monotone increasing.

 - Base case: $y_1=1,\ y_2=3-\frac{1}{1}=2.$ Hence $y_1\leq y_2.$ Inductive step: suppose that $y_{n-1}\leq y_n.$ Then $\frac{1}{y_n}\leq \frac{1}{y_{n-1}},$ and hence

$$y_{n+1} = 3 - \frac{1}{y_n} \ge 3 - \frac{1}{y_{n-1}} = y_n$$

1

as desired.

- We now show inductively that $y_n \ge 1$ for all n. In the next step, this will be used to show that $y_n \le 3$ for all n as well.
 - Base case: $y_1 = 1 \ge 1$.
 - Inductive step: suppose that $y_n \ge 1$. Then

$$y_{n+1} = 3 - \frac{1}{y_n} \ge 3 - \frac{1}{1} = 2 \ge 1$$

as desired.

- Finally, we show that $y_n \leq 3$ for all n.
 - Base case: $y_1 = 1 \le 3$.
 - Inductive step: suppose $y_n \leq 3$. Then

$$y_{n+1} = 3 - \frac{1}{y_n} \le 3 - \frac{1}{3} \le 3$$

as desired.

• Now, applying the Monotone Convergence Theorem to y_n shows that $\lim y_n$ exists; call it y. By the reasoning above, $\lim y_{n+1} = y$ as well. Thus, taking the limit of both sides of the recursive definition of y_{n+1} yields

$$y = 3 - \frac{1}{y} \implies y^2 - 3y - 1 = 0$$
$$y = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm \sqrt{13}}{2}.$$

But $\sqrt{13} > \sqrt{9} = 3$, hence $(3 + \sqrt{13})/2 > (3 + 3)/2 = 3$. And the Order Limit Theorem says that, since $y_n \le 3$ for all n, $\lim y_n = y \le 3$ as well. Therefore,

$$y = \lim y_n = \frac{3 - \sqrt{13}}{2}.$$

- (3) 2.4.3
 - (a) Show that $\sqrt{2}$, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$,... converges and find the limit.
 - First, note that this sequence can be defined recursively as $y_1 = \sqrt{2}$, $y_{n+1} = \sqrt{2 + y_n}$ for all n. We prove inductively that this sequence is monotone increasing and bounded above by 2. Then the MCT would imply that $y = \lim y_n$ exists.
 - Base case: $y_1 = \sqrt{2} < \sqrt{2 + \sqrt{2}} = y_2$ because adding a positive number under the square root can only increase the value. Moreover, $y_1 = \sqrt{2} \le 2$.
 - Inductive step: suppose that $y_n > y_{n-1}$. Then

$$y_{n+1} = \sqrt{2 + y_n} > \sqrt{2 + y_{n-1}} = y_n$$

as desired. Moreover, assume that $y_n \leq 2$. Then

$$y_{n+1} = \sqrt{2 + y_n} \le \sqrt{2 + 2} = 2$$

as desired.

• Taking the limit of both sides of our recursive definition of y_{n+1} , using the Algebraic Limit Theorem to bring the limit inside the square root, we see that

$$y = \sqrt{2+y}$$

$$y^2 = 2+y$$

$$y^2 - y - 2 = 0$$

$$(y-2)(y+1) = 0$$

$$y = 2 \text{ or } -1.$$

Since all of the terms of the sequence are positive, the OLT implies that the limit y cannot be negative. Therefore, $\lim y_n = 2$.