4CCS1DBS – Database Systems Functional Dependencies and Normalisation

for Relational Databases

4CCS1DBS – Learning Objectives

- Main concepts in the design and implementation of database systems
 - Entity-Relationship Modelling
 - The Relational Data Model and Relational Database Constraints
 - Structured Query Language (SQL) schema definition, constraints and queries
 - Relational Algebra
 - Functional Dependencies and Normalisation for Relational Databases

Purpose

- Develop measures for quality in database design
 - why is one grouping of attributes better than another?
- Two levels at which to discuss 'goodness' of design
 - Logical or conceptual level
 - How users interpret the relation schemas and meaning of attributes?
 - Implementation or storage level
 - How the tuples in a database are stored and updated?

Outline (1)

- Informal Design Guidelines for Relational Databases
 - Semantics of the Relation Attributes
 - Redundant Information in Tuples and Update Anomalies
 - Null Values in Tuples
 - Spurious Tuples
- Functional Dependencies (FDs)
 - Definition of FD
 - Inference Rules for FDs

Outline (2)

- Normal Forms Based on Primary Keys
 - Normalisation of Relations
 - Practical Use of Normal Forms
 - Definitions of Keys and Attributes Participating in Keys
 - First Normal Form
 - Second Normal Form
 - Third Normal Form
- General Normal Form Definitions (For Multiple Keys)
- BCNF (Boyce-Codd Normal Form)

Informal Design Guidelines for Relational Databases

- What is relational database design?
 - The grouping of attributes to form "good" relation schemas
- Two levels of relation schemas
 - The logical "user view" level
 - The storage "base relation" level
- Design is concerned mainly with base relations
- What are the criteria for "good" base relations?

Informal Design Guidelines for Relational Databases (contd)

- We first discuss informal guidelines for good relational design
- Then we discuss formal concepts of functional dependencies and normal forms
 - 1NF (First Normal Form)
 - 2NF (Second Normal Form)
 - 3NF (Third Normal Form)
 - BCNF (Boyce-Codd Normal Form)

Semantics of Relation Attributes

- Semantics: how to interpret the attribute values stored in a tuple of the relation, i.e. how the attribute values in a tuple relate to one another.
- Generally, the easier to explain the semantics of a relation, the better the relation schema design.
 - The ease with which the meaning of relation attributes can be explained, is an *informal* measure of relation design quality.

Semantics of Relation Attributes: Examples

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn
Research	5	333445555
Administration	4	987654321
Headquarters	1	888665555

DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

<u>Ssn</u>	<u>Pnumber</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	Null

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

Semantics of Relation Attributes: Examples

Semantics of Relation Attributes: Examples

Semantics of Relation Attributes: Overall

- GUIDELINE 1: Informally, each tuple in a relation should represent one entity or relationship instance. (Applies to individual relations and their attributes).
 - Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs) should not be mixed in the same relation
 - Only foreign keys should be used to refer to other entities
 - Entity and relationship attributes should be kept apart as much as possible.
- Note: Design a schema that can be explained easily relation by relation. The semantics of attributes should be easy to interpret.

Redundant Information in Tuples and Update Anomalies

- When information is stored redundantly:
 - Wastes storage
 - Causes problems with update anomalies
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies

Redundant Information in Tuples: example

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	
Research	5	333445555	
Administration	4	987654321	
Headquarters	1	888665555	

						Redun	dancy
	EMP_DEPT						
1	Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
+	Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
	Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
	Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
١	Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
	Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
	English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
	Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
	Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnumber
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1

PROJECT

Pname	<u>Pnumber</u>	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

		Redundancy	Redunda	ancy	
EMP_PROJ					
Ssn	Pnumber	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

Insertion Anomalies: example

- Consider the relation:
 - EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)

Insertion Anomalies: example

- Consider the relation:
 - EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)
- Insert Anomaly:
 - Cannot insert a *new* project unless an employee is assigned to it.
- Conversely
 - Cannot insert an employee unless a he/she is assigned to a project.
- Also: consistency problems when assigning projects to every employee

Deletion Anomalies: example

- Consider the relation:
 - EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)
- Deletion Anomaly:
 - When a project is deleted, it will result in deleting all the employees who work on that project.
 - Alternatively, if an employee is the sole employee on a project, deleting that employee would result in deleting the corresponding project.

Update Anomalies: example

- Consider the relation:
 - EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)
- Update Anomaly:
 - Changing the name of project number P1 (e.g from "Billing" to "Customer-Accounting") may cause this update to be made for all 100 employees working on project P1.
 - If we fail to update some tuples, inconsistencies are introduced.

Two Relation Schemas Suffering from Update Anomalies

Base Relations EMP_DEPT and EMP_PROJ formed after a Natural Join with redundant information

					Redun	dancy
EMP_DEPT						
Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 FireOak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

Redundancy

				Nedulida	шсу
EMP_PROJ				<u> </u>	
Ssn	<u>Pnumber</u>	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

Redundancy

Guideline to Redundant Information in Tuples and Update Anomalies

GUIDELINE 2:

- Design a schema that does not suffer from the insertion, deletion and update anomalies.
- If there are any anomalies present, then note them so that applications can be made to take them into account.

Null Values in Tuples

- When grouping attributes in an enlarged relation:
 - End up with many nulls
 - Waste of storage
 - Problems in understanding meanings of attributes
 - Problems with aggregate functions (SUM etc)
- Reasons for nulls:
 - Attribute not applicable or invalid
 - Attribute value unknown (may exist)
 - Value known to exist, but unavailable

Null Values in Tuples (contd)

GUIDELINE 3:

- Relations should be designed such that their tuples will have as few NULL values as possible
- Attributes that are NULL frequently could be placed in separate relations (with the primary key)
- Example: if 10% of employees have individual offices, attribute should not be included in EMPLOYEE relation. Instead, use separate relation: EMP_OFFICES (ESSN, OFFICE-NUMBER).

EMP_PROJ1

(b)

EMP_LOCS

Ename	Plocation
Smith, John B.	Bellaire
Smith, John B.	Surgarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Surgarland
Wong, Franklin T.	Surgarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zelaya, Alicia J.	Stafford
Jabbar, Ahmad V.	Stafford
Wallace, Jennifer S.	Stafford
Wallace, Jennifer S.	Houston
Borg, James E.	Houston

EMP_PROJ1

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
333445555	20	10.0	Reorganization	Houston
999887777	30	30.0	Newbenefits	Stafford
999887777	10	10.0	Computerization	Stafford
987987987	10	35.0	Computerization	Stafford
987987987	30	5.0	Newbenefits	Stafford
987654321	30	20.0	Newbenefits	Stafford
987654321	20	15.0	Reorganization	Houston
888665555	20	NULL	Reorganization	Houston

EMP_PROJ					
<u>Ssn</u>	<u>Pnumber</u>	Hours	Ename	Pname	Plocation
123456789	1	32.5	Smith, John B.	ProductX	Bellaire
123456789	2	7.5	Smith, John B.	ProductY	Sugarland
666884444	3	40.0	Narayan, Ramesh K.	ProductZ	Houston
453453453	1	20.0	English, Joyce A.	ProductX	Bellaire
453453453	2	20.0	English, Joyce A.	ProductY	Sugarland
333445555	2	10.0	Wong, Franklin T.	ProductY	Sugarland
333445555	3	10.0	Wong, Franklin T.	ProductZ	Houston
333445555	10	10.0	Wong, Franklin T.	Computerization	Stafford
333445555	20	10.0	Wong, Franklin T.	Reorganization	Houston
999887777	30	30.0	Zelaya, Alicia J.	Newbenefits	Stafford
999887777	10	10.0	Zelaya, Alicia J.	Computerization	Stafford
987987987	10	35.0	Jabbar, Ahmad V.	Computerization	Stafford
987987987	30	5.0	Jabbar, Ahmad V.	Newbenefits	Stafford
987654321	30	20.0	Wallace, Jennifer S.	Newbenefits	Stafford
987654321	20	15.0	Wallace, Jennifer S.	Reorganization	Houston
888665555	20	Null	Borg, James E.	Reorganization	Houston

How can EMP_PROJ be generated from EMP_PROJ1 and EMP_LOCS?

Can we recover the information in EMP_PROJ from EMP_PROJ1 and EMP_LOCS?

Why?

	Ssn	Pnumber	Hours	Pname	Plocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	2	10.0	ProductY	Sugarland	Smith, John B.
*	333445555	2	10.0	ProductY	Sugarland	English, Joyce A.
	333445555	2	10.0	ProductY	Sugarland	Wong, Franklin T.
*	333445555	3	10.0	ProductZ	Houston	Narayan, Ramesh K.
	333445555	3	10.0	ProductZ	Houston	Wong, Franklin T.
	333445555	10	10.0	Computerization	Stafford	Wong, Franklin T.
*	333445555	20	10.0	Reorganization	Houston	Narayan, Ramesh K.
	333445555	20	10.0	Reorganization	Houston	Wong, Franklin T.

Spurious Tuples

 Bad designs for a relational database may result in erroneous results for certain JOIN operations.

GUIDELINE 4:

- Design relation schemas that can be joined with equality conditions on attributes that are either primary keys or foreign keys in a way that guarantees that no spurious tuples will be generated.
- Avoid relations that contain matching attributes that are not (foreign key, primary key) combinations, as joining on such attributes will produce spurious tuples.

Summary of Design Guidelines

- Problems pointed out stemming from sub-optimal database design:
 - Anomalies that cause redundant work during insertion or modification, as well as accidental loss of information during deletion.
 - Waste of storage space due to nulls, difficulty in join or aggregation functions due to null values.
 - Generation of invalid or spurious data during joins or improperly related base relations.
- Next, discuss formal methods to determine quality of database design.

Functional Dependencies

- Functional dependencies (FDs)
 - Used to specify formal measures of how good a relational database design is
 - Keys are used to define normal forms for relations
 - Constraints are derived from the meaning and interrelationships of the data attributes
- A set of attributes X functionally determines a set of attributes Y if the value of X determines a unique value for Y

Functional Dependencies (contd)

- Functional dependency (FD) between attributes X and Y of relations R:
 - For any two tuples t1 and t2 in any relation instance r(R): If t1[X]=t2[X], then t1[Y]=t2[Y]
 - X → Y, if whenever two tuples have the same value for X, they must have the same value for Y
- X → Y in R specifies a constraint on all relation instances
 r(R)
- Written as X → Y; can be displayed graphically on a relation schema as in Figures (denoted by an arrow).
- FDs are derived from the real-world constraints on the attributes
- X: left-hand side, Y: right-hand side

Schema Showing Foreign Keys

Functional Dependency Example

What are the functional dependencies in this relation?

Functional Dependency Example

EMP_DEPT

Ename <u>Ssn</u> Bdate Address	Dnumber Dname Dmgr_ssn
--------------------------------	------------------------

What are the functional dependencies in this relation?

Examples of FD Constraints

- Social security number determines employee name
 - SSN → ENAME
- Project number determines project name and location
 - PNUMBER → {PNAME, PLOCATION}
- Employee ssn and project number determine the hours per week that the employee works on the project
 - {SSN, PNUMBER} → HOURS

Examples of FD Constraints

- An FD is a property of the attributes in the schema R
- The constraint must hold on every relation instance r(R)
- If K is a key of R, then K functionally determines all attributes in R
 - as we never have two distinct tuples with t1[K]=t2[K]

What is the Functional Dependency in this Example?

TEACH

Teacher	Course	Text
Smith	Data Structures	Bartram
Smith	Data Management	Martin
Hall	Compilers	Hoffman
Brown	Data Structures	Horowitz

FD's are a property of the meaning of data and hold at all times - certain FD's can be ruled out based on a given state of the database

Functional Dependency in TEACH Database

TEACH

Teacher	Course	Text
Smith	Data Structures	Bartram
Smith	Data Management	Martin
Hall	Compilers	Hoffman
Brown	Data Structures	Horowitz

Inference Rules for FDs (1)

- Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold
- Armstrong's inference rules:
 - IR1. (Reflexive) If Y subset-of X, then X → Y
 - IR2. (Augmentation) If $X \rightarrow Y$, then $XZ \rightarrow YZ$
 - (Notation: XZ stands for X U Z)
 - IR3. (**Transitive**) If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- IR1, IR2, IR3 form a sound and complete set of inference rules
 - These are rules hold and all other rules that hold can be deduced from these

Inference Rules for FDs (contd)

- Some additional inference rules that are useful:
 - Decomposition:
 - If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Union:
 - If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
 - Pseudotransitivity:
 - If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$
- The last three inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

Some Proofs

- Decomposition:
 - If $X \rightarrow YZ$, then $X \rightarrow Y$
- Proof:
 - X→ YZ (given)
 - using reflexive rule and knowing that YZ is-subset-of
 Y: YZ → Y
 - $X \to Y$

Some Proofs

- Pseudotransitivity:
 - If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$
- Proof:
 - X → Y (given)
 - WY \rightarrow Z (given)
 - WX → WY (using augmentation rule)
 - WX → Z (using transitive rule)

Inference Rules for FDs (3)

 Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F

- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X
- X⁺ can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F

Summary

- Informal Design Guidelines for Relational Databases
- Functional Dependencies (FDs)
 - Definition, Inference Rules, Equivalence of Sets of FDs, Minimal Sets of FDs
- Next:
- Normal Forms Based on Primary Keys
- General Normal Form Definitions (For Multiple Keys)
- BCNF (Boyce-Codd Normal Form)