

ECEN 758 Data Mining and Analysis: Lecture 8, Gaussian Mixture Models

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #1 grades available
 - Please revise any grade discrepancies within a week (COB, 09/23)
 - Email Dr. Peeples (do not contact Grader) and/or stop by office hours
- Assignment #2 will be released this Wednesday (09/18)
 - Please upload submission as single PDF
 - Please share Python code (e.g., Jupyter Notebooks, Google Colab)

Assignment 1 Observations

- Make sure to clearly label your figures and tables
 - Communication is important
- Please have a clear discussion
 - Formal writing (i.e., no contractions)
- Show your work
 - State equations and show your steps
- Disclose if you use AI (e.g., ChatGPT, Copilot) for code development
 - Do not use for your discussions
- Ask questions if clarification is needed

Last Lecture

Representative Clustering II

Gif from: D. Sheehan, Clustering with Scikit with GIFs

Today

- Gaussian Mixture Models
- Reading: ZM Chapter 13

Clustering Overview

- We will discuss several variants of clustering
 - Representative-based Clustering
 - Hierarchical Clustering
 - Density-Based Clustering

What disadvantages of k-means?

k-Means Disadvantages

- Linear boundaries between clusters
- Only uses Euclidean distance
 - Assumes spherical clusters
 - Sensitive to outliers
- Non-symmetrical clusters
- Initialization
- Batch processing
- Selecting number of clusters (k)
- "Crisp"/Hard clustering

k-Means Disadvantage: "Crisp"/Hard Clustering

- Points can only "belong" to one cluster
- Different applications may require "soft" clustering
 - Points may belong to more than one group

Input Image

(h) FLICM Cluster 1

(k) K-Means Cluster 1

(i) FLICM Cluster 2

(1) K-Means Cluster 2

(j) FLICM Cluster 3

(m) K-Means Cluster 3

Gaussian Mixture Models

Gaussian/Normal Distribution (1D)

- > Two parameters, mean (μ) and variance (σ^2)
- Probability density decreases exponentially as a function of the distance from mean
- \triangleright Maximum value when $x = \mu$

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Gaussian Mixture Models

- Model clusters as Gaussians
- "Soft" clustering approach
 - Assign probability of belonging to clustering
- Generative model

- Three parameters to describe clusters:
 - Mean (μ_k)
 - Variance (σ_k^2)
 - Mixture parameters (π_k)
 - Weights, "size", prior probability
 - Sum to one constraint

- Three parameters to describe clusters:
 - Mean (µ_k)
 - Variance (σ_k^2)
 - Mixture parameters (π_k)
 - Weights, "size", prior probability
- Probability distribution:

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

Probability distribution:

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

• Select mixture component with probability π_k

$$p(z=k)=\pi_k$$

Probability distribution:

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

• Select mixture component with probability π_k

$$p(z=k)=\pi_k$$

 Sample from that component's Gaussian

$$p(x|z=k) = \mathcal{N}(x|\mu_k, \sigma_k)$$

Gaussian Mixture Models: Multivariate

Multivariate Gaussian Distribution

- Parameters: mean vector(μ) and covariance matrix(Σ)
- |Σ| determinant of covariance matrix
- Numerator in exponential referred to as
 Mahalanobis distance

$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(\sqrt{2\pi})^d \sqrt{|\boldsymbol{\Sigma}|}} \exp\left\{-\frac{(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2}\right\}$$

Mixtures of Gaussians

- Three parameters to describe clusters:
 - Mean vector (µ_i)
 - Covariance matrix (Σ_i^2)
 - Mixture parameters $(\pi_i \ or \ P(C_i))$
 - Weights, "size", prior probability
 - Sum to one constraint

$$\sum_{i=1}^k P(C_i) = 1$$

ith Cluster:

$$f_i(x) = f(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left\{-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}\right\}$$

Probability Density function of **x** as GMM:

$$f(x) = \sum_{i=1}^{k} f_i(x) P(C_i) = \sum_{i=1}^{k} f(x|\mu_i, \Sigma_i) P(C_i)$$

Gaussian Mixture Models Algorithm

GMM Algorithm: Objective

 Parameters of model represented as **O**

$$\boldsymbol{\theta} = \{\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, P(C_1), \dots, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, P(C_k)\}$$

- Maximum likelihood estimation (MLE)
- Usually maximize loglikelihood function

Likelihood:

$$P(\mathbf{D}|\boldsymbol{\theta}) = \prod_{j=1}^{n} f(\mathbf{x}_{j})$$

MLE:

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \{ \ln P(\boldsymbol{D}|\boldsymbol{\theta}) \}$$

Log-likelihood:

$$\ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\boldsymbol{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\boldsymbol{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

GMM Algorithm: Objective

- Directly maximizing log-likelihood over **\textbf{\textit{\textit{\textit{O}}}}** is hard
- Alternative approach: Expectation-Maximization (EM)
- Two steps:
 - Expectation: Assignment of points
 - Maximization: Estimation of parameters
- We will do a deep dive into EM next lecture!

Gif from: Expectation-maximization algorithm, Wikipedia

GMM Expectation-Maximization (1D)

- Initialize cluster parameters
- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters

For each cluster:

$$f_i(x) = f(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}$$

- Initialize cluster parameters
- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^k f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters
- Higher probability will be assigned to Gaussian that is more likely

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

- Maximization (M-Step)
 - Update parameters using (weighted) data points

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

Mean:

$$\mu_i = \frac{\sum_{j=1}^n w_{ij} \cdot x_j}{\sum_{j=1}^n w_{ij}}$$

Variance:

$$\sigma_i^2 = \frac{\sum_{j=1}^n w_{ij} (x_j - \mu_i)^2}{\sum_{j=1}^n w_{ij}}$$

Mixture Weight/Prior Probability:

$$P(C_i) = \frac{\sum_{j=1}^n w_{ij}}{n}$$

GMM EM 1D Example

GMM EM 1D Example

GMM EM 1D Example

GMM Expectation-Maximization (d-dimensions)

EM in d Dimensions

- Each cluster will have d x d covariance matrix
- Expensive to calculate and may be unreliable estimation
- Can use diagonal covariance
 - Assumes dimensions are independent

Full Covariance:

$$\Sigma_{i} = \begin{pmatrix} (\sigma_{1}^{i})^{2} & \sigma_{12}^{i} & \dots & \sigma_{1d}^{i} \\ \sigma_{21}^{i} & (\sigma_{2}^{i})^{2} & \dots & \sigma_{2d}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1}^{i} & \sigma_{d2}^{i} & \dots & (\sigma_{d}^{i})^{2} \end{pmatrix}$$

Diagonal Covariance:

$$\Sigma_{i} = \begin{pmatrix} (\sigma_{1}^{i})^{2} & 0 & \dots & 0 \\ 0 & (\sigma_{2}^{i})^{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & (\sigma_{d}^{i})^{2} \end{pmatrix}$$

Full vs Diagonal

GMM in Scikit-learn

- Additional options for covariance matrices include:
 - Spherical: Each cluster has a single variance (isotropic covariance)
 - Tied: All clusters share same covariance matrix

Image from: Scikit-learn, 2.1.1. Gaussian Mixture.

GMM Number of Parameters

- Given k clusters, n samples, and d features, what are the total number of parameters for a tied covariance matrix (i.e., all clusters share the same covariance matrix) GMM?
- Break into pairs
- 5 minutes for activity

Image from: Scikit-learn, 2.1.1. Gaussian Mixture.

GMM Number of Parameters

- Given *k* clusters, *n* samples, and *d* features, what are the total number of parameters for a **tied covariance matrix** (i.e., all clusters share the same covariance matrix) GMM?
- Solution:
 - $k^*d + d^2 + k$
 - k mean vectors (d by 1), single covariance (d by d), and k mixture parameters (1x1, scalers)

Image from: Scikit-learn, 2.1.1. Gaussian Mixture.

EM in d Dimensions

Expectation step:

$$w_{ij} = P(C_i|\mathbf{x}_j) = \frac{f_i(\mathbf{x}_j) \cdot P(C_i)}{\sum_{a=1}^k f_a(\mathbf{x}_j) \cdot P(C_a)}$$

Maximization step:

$$\mu_{i} = \frac{\sum_{j=1}^{n} w_{ij} \cdot \mathbf{x}_{j}}{\sum_{j=1}^{n} w_{ij}} \qquad \Sigma_{i} = \frac{\sum_{j=1}^{n} w_{ij} (\mathbf{x}_{j} - \mu_{i}) (\mathbf{x}_{j} - \mu_{i})^{T}}{\sum_{i=1}^{n} w_{ij}} \qquad P(C_{i}) = \frac{\sum_{j=1}^{n} w_{ij}}{n}$$

GMM EM Algorithm

- Each step maximizes loglikelihood
- Iterate until convergence
 - Set maximum iterations or set threshold for changes in parameters
 - May converge to local optima

MLE:

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \{ \ln P(\boldsymbol{D}|\boldsymbol{\theta}) \}$$

Log-likelihood:

$$\ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\boldsymbol{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\boldsymbol{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

GMM EM Algorithm Pseudocode

Expectation-Maximization (D, k, ϵ) :

```
1 t \leftarrow 0
  2 Randomly initialize \mu_1^t, \dots, \mu_k^t
 \Sigma_i^t \leftarrow I, \forall i = 1, \dots, k
 4 repeat
  5 t \leftarrow t+1
  6 | for i = 1, ..., k and j = 1, ..., n do
 P^{t}(C_{i}|\mathbf{x}_{i})
        for i = 1, \dots, k do
 9 \mu_i^t \leftarrow \frac{\sum_{j=1}^n w_{ij} \cdot \mathbf{x}_j}{\sum_{j=1}^n w_{ii}} // re-estimate mean
10 \sum_{i}^{t} \leftarrow \frac{\sum_{j=1}^{n} w_{ij} (\mathbf{x}_{j} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{j} - \boldsymbol{\mu}_{i})^{T}}{\sum_{i=1}^{n} w_{ii}} \text{ // re-estimate covariance}
                 matrix
     P^{t}(C_{i}) \leftarrow \frac{\sum_{j=1}^{n} w_{ij}}{n} // \text{ re-estimate priors}
12 until \sum_{i=1}^{k} \left\| \boldsymbol{\mu}_{i}^{t} - \boldsymbol{\mu}_{i}^{t-1} \right\|^{2} \leq \epsilon
```

Next class

Expectation-Maximization

Supplemental Slides

Useful Links

- Gaussian Mixture Models and EM
- Gaussian Mixture Models Google Colab