1 Řady

1.1 Úvod

Definice 1.1

Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost. Číslo $s_m=a_1+a_2+\ldots+a_m$ nazveme m-tým částečným součtem řady $\sum a_n$. Součtem nekonečné řady $\sum_{n=1}^\infty a_n$ nazveme limitu posloupnosti $\{s_m\}_{m\in\mathbb{N}}$, pokud tato limita existuje. Je-li tato limita konečná, pak řekneme, že řada je konvergentní. Je-li tato limita nekonečná nebo neexistuje, pak řekneme, že řada je divergentní. Tuto limitu budeme značit $\sum_{n=1}^\infty a_n$.

Věta 1.1 (Nutná podmínka konvergence)

Jestliže je $\sum_{n=1}^{\infty} a_n$ konvergentní, pak $\lim_{n\to\infty} a_n = 0$.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n \text{ konverguje} \implies \exists \lim_{m \to \infty} s_m = s \in \mathbb{R}. \ a_n = s_n - s_{n-1}. \lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty$

Pozor

Tato věta je pouze a jen implikace.

Věta 1.2 (konvergence součtu řad)

Necht $\alpha \in \mathbb{R} \setminus \{0\}$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

Nechť $\sum_{n=1}^{\infty} a_n$ konverguje a $\sum_{n=1}^{\infty} b_n$ konverguje, pak

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n$ konverguje \exists limita z $s_m \to s \in \mathbb{R}$ a to je z AL právě tehdy, když konverguje $\alpha s_m \to \alpha \cdot s \in \mathbb{R}$, tedy $\sum_{n=1}^{\infty} \alpha \cdot a_n$ konverguje.

 $\sum_{n=1}^\infty a_n=s\in\mathbb{R}$ i $\sum_{n=1}^\infty b_n=\sigma\in\mathbb{R}$ konvergují, tedy i $s_m+\sigma_m\to s+\sigma\in\mathbb{R}$ konverguje. \Box

1.2 Řady s nezápornými členy

Pozorování

Nechť $\{a_n\}_{n=1}^{\infty}$ je řada s nezápornými členy. Pak $\sum_{n=1}^{\infty} a_n$ konverguje, nebo má součet $+\infty$.

$D\mathring{u}kaz$

$$s_m=a_1+\ldots+a_m\leq a_1+\ldots+a_{m+1}=s_{m+1}.\ s_m\geq 0$$
neklesající $\Longrightarrow \exists \lim_{m\to\infty}s_m\in [0,\infty].$

Věta 1.3 (Srovnávací kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy a nechť $\exists n_0 \in \mathbb{N}$ tak, že $\forall n \in \mathbb{N}$, $n \geq n_0$ platí $a_n \leq b_n$. Pak

- a) $\sum_{n=1}^{\infty} b_n$ konverguje $\implies \sum_{n=1}^{\infty} a_n$ konverguje,
- b) $\sum_{n=1}^{\infty} a_n$ diverguje $\implies \sum_{n=1}^{\infty} b_n$ diverguje.

Důkaz

L

a) Označme $s_n=a_1+\ldots+a_n$ a $\sigma_n=b_1+\ldots+b_n.$ Pro každ
é $n\in\mathbb{N},\,n\geq n_0$ platí

$$s_n = a_1 + \ldots + a_{n_0} + a_{n_0+1} + \ldots + a_n \le a_1 + \ldots + a_{n_0} + b_{n_0+1} + \ldots + b_n \le a_1 + \ldots + a_{n_0} + a_{n_0+1} + \ldots + a_{n_0+1} + a_{n_0+1$$

$$\leq a_1 + \ldots + a_{n_0} + \sigma_n \leq a_1 + \ldots + a_{n_0} + \sigma$$

A to je konečné, neboť $\sum_{n=1}^{\infty} b_n$ konverguje, tedy $\sigma \in \mathbb{R}$. s_n neklesající a omezená $\Longrightarrow \exists \lim_{n \to \infty} s_n \in \mathbb{R}$.

b) Nepřímím důkazem z a).

Věta 1.4 (Limitní srovnávací kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy a nechť $\lim_{n\to\infty} \frac{a_n}{b_n} = A \in \mathbb{R}^*$. Jestliže $A \in (0,\infty)$, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže A = 0, pak $\sum_{n=1}^{\infty} b_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} a_n$ konverguje. Jestliže $A = \infty$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Rightarrow \sum_{n=1}^{\infty} b_n$ konverguje.

 $\sum_{n=1}^{\infty} b_n \text{ konverguje} \stackrel{\text{k. součtu řad}}{\Longrightarrow} \sum_{n=1}^{\infty} \frac{3}{2} K \cdot b_n \text{ konverguje } \wedge a_n \leq \frac{3}{2} K \cdot b_n \stackrel{\text{Srov. kritérium}}{\Longrightarrow} \sum_{n=1}^{\infty} a_n \text{ konverguje.}$

 $\sum_{n=1}^{\infty} a_n$ konverguje $\wedge \frac{K}{2} \cdot b_n \leq a_n \implies \sum_{n=1}^{\infty} \frac{K}{2} \cdot b_n$ konverguje $\implies \sum_{n=1}^{\infty} b_n$ konverguje.

(ii) $Z \lim_{n\to\infty} \frac{a_n}{b_n} = 0$ plyne, $k \varepsilon = 1 \exists n_0 \ \forall n \ge n_0 : \left| \frac{a_n}{b_n} - K \right| < \varepsilon = 1$, tedy $a_n < b_n$, a pokud $\sum_{n=1}^{\infty} b_n$ konverguje, tak $\sum_{n=1}^{\infty} a_n$ konverguje podle srovnávacího kritéria.

Věta 1.5 (Cauchyovo odmocninové kritérium)

 $Necht \sum_{n=1}^{\infty} a_n \ je \ \check{r}ada \ s \ nezápornými \ \check{c}leny, \ potom$

$$(i)\exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \sqrt[n]{a_n} < q \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \sqrt[n]{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii)$$
 $\lim_{n\to\infty} \sqrt[n]{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$

$$(iv) \limsup_{n \to \infty} \sqrt[n]{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje,$$

$$(v) \lim_{n \to \infty} \sqrt[n]{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \text{ diverguje.}$$

 $(i)\ b_n = q^n.$ Víme, že $a_n < b_n \ \forall n \geq n_0,$ tedy použijeme srovnávací kritérium.

 $(i) \implies (ii): b_n = \left\{ \sqrt[n]{a_n}, \sqrt[n+1]{a_n}, \ldots \right\}. \lim_{n \to \infty} b_n = \limsup_{n \to \infty} \sqrt[n]{a_n} < 1. \text{ Nalezneme } q \in \left(\limsup_{n \to \infty} \sqrt[n]{a_n}, 1\right). \text{ Z definice } \lim_{n \to \infty} b_n \text{ pro } \varepsilon = q - \limsup_{n \to \infty} \sqrt[n]{a_n} \text{ je } \exists n_0 \ \forall n \ge n_0: b_n < q, \text{ tedy } \forall n \ge n_0: \sqrt[n]{a_n} < q, \text{ tedy podle } (i) \sum_{n=1}^{\infty} a_n \text{ konverguje.}$

 $(ii) \implies (iii): \exists \lim_{n\to\infty} \sqrt[n]{a_n} \implies \limsup_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{a_n} < 1$, tedy podle (ii) $\sum_{n=1}^{\infty} a_n$ konverguje.

(iv): podobně jako v $(i) \Longrightarrow (ii)$ dostaneme $\forall n_0 > n_k : b_{n_0} > q > 1$, tedy $\forall n_0 \exists n > n_0 : \sqrt[n]{a_n} > q > 1 \Longrightarrow a_n > 1 \Longrightarrow \lim_{n \to \infty} a_n \neq 0$, tedy podle nutné podmínky konvergence $\sum_{n=1}^{\infty} a_n$ diverguje.

$$(iv) \implies (v) : \lim_{n \to \infty} \sqrt[n]{a_n} = \limsup_{n \to \infty} \sqrt[n]{a_n}.$$

Věta 1.6 (d'Alambertovo podílové kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ je řada s kladnými členy. Potom:

$$(i) \exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < q \implies \sum_{n=1}^{\infty} a_n \ konverguje,$$

$$(ii) \limsup_{n \to \infty} \frac{a_{n+1}}{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \text{ konverguje},$$

$$(iii)$$
 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1 \implies \sum_{n=1}^{\infty} a_n \ konverguje,$

$$(iv) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1 \implies \sum_{n=1}^{\infty} a_n \ diverguje,$$

- (i) Víme indukcí $a_{n_0+k} < q^k a_{n_0}$ a z konvergence geometrické řady $\sum_{k=1}^{\infty} q^k a_n$ konverguje $\Longrightarrow \sum_{k=1}^{\infty} a_{n_0+k}$ konverguje $\Longrightarrow \sum_{n=1}^{\infty} a_n$ konverguje.
- $\begin{array}{lll} (i) & \Longrightarrow & (ii) \colon b_n = \sup \left\{ \frac{a_{n+1}}{a_n}, \frac{a_{n+2}}{a_{n+1}}, \ldots \right\} \colon \lim_{n \to \infty} b_n = \limsup \frac{a_{n+1}}{a_n} < 1. \text{ Zvolíme} \\ q \in (\lim_{n \to \infty} b_n, 1). \text{ Tedy } \exists n_0 \ \forall n \geq n_0 : b_n < q \implies \forall n \geq n_0 : \frac{a_{n+1}}{a_n} < q \text{, tudíž podle } (i) \\ \sum_{n=1}^{\infty} a_n \text{ konverguje.} \end{array}$
 - $(ii) \implies (iii) \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \limsup_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, tedy podle $(ii) \sum_{n=1}^{\infty} a_n$ konverguje.
- (iv): Z $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$ definicí limity pro $\varepsilon < \lim_{n\to\infty} \frac{a_{n+1}}{a_n} 1$ vyplývá $\exists n_0 \ \forall n \geq n_0$: $\frac{a_{n+1}}{a_n} > 1 \implies a_{n+1} > a_n$. Máme rostoucí posloupnost kladných čísel $\implies \lim_{n\to\infty} a_n \neq 0$, tedy podle nutné podmínky konvergence $\sum_{n=1}^{\infty} a_n$ diverguje.

Věta 1.7 (Kondenzační kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ je řada s nezápornými členy splňující $a_n \geq a_{n+1}$, $\forall n \in \mathbb{N}$. Pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} 2^n \cdot a_{2^n}$ konverguje.

 $D\mathring{u}kaz$

Pro $k \in \mathbb{N}$: $s_k = \sum_{j=1}^k a_j \ t_k = \sum_{j=0}^k 2^j \cdot a_{2^j}$.

 \iff : Označme $A=\sum_{j=0}^{\infty}2^j\cdot a_{2^j},$ pak $A\in\mathbb{R}.$ Nechť $m\in\mathbb{N}$ a nalezneme $k\in\mathbb{N},$ $m<2^k.$ Pak $t_k\leq A$ a:

$$s_m \le a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \dots + (a_{2^{k-1}} + \dots + a_{2^k-1}) \le t_{k-1} \le A.$$

Tedy s_m je shora omezená a rostoucí $\Longrightarrow \exists \lim_{m \to \infty} s_m \in \mathbb{R} \implies \sum_{n=1}^{\infty} a_n$ konverguje.

 \implies : Označme $B=\sum_{n=1}^\infty a_n\in\mathbb{R}.$ Zvolme $k\in\mathbb{N}$ a nalezneme $m\in\mathbb{N},$ aby $2^k\leq m.$ Pak $s_m\leq B$ a platí:

$$s_m \ge a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k}) \ge$$

 $\ge a_1 + \frac{1}{2}(t_k - 1 \cdot a_1) \ge \frac{1}{2}t_k \implies t_k \le 2 \cdot B.$

 t_k je shora omezená rostoucí posloupnost $\implies \sum_{n=1}^{\infty} 2^n a_{2^n}$ konverguje.

1.3 Neabsolutní konvergence řad

Definice 1.2

Nechť pro řadu $\sum_{n=1}^{\infty} a_n$ platí, že $\sum_{n=1}^{\infty} |a_n|$ konverguje. Pak říkáme, že $\sum_{n=1}^{\infty} a_n$ konverguje absolutně.

Věta 1.8 (Bolzano-Cauchyova podmínka pro konvergenci řad)

 $\check{R}ada \sum_{n=1}^{\infty} a_n$ konverguje právě tehdy, když je splněna následující podmínka:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m \ge n_0, n \ge n_0 : \left| \sum_{n=i}^m a_n \right| < \varepsilon.$$

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} a_n \text{ konverguje} \Leftrightarrow \exists \lim_{n \to \infty} s_n \in \mathbb{R} \stackrel{\text{BC}}{\Leftrightarrow} \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m \ge n_0, n \ge n_0 : |s_m - s_{n-1}| < \varepsilon. \text{ Což je přesně výraz (po odečtení } s_m - s_{n-1}) \text{ ve větě.}$

Věta 1.9 (Vztah konvergence a absolutní konvergence)

Nechť řada $\sum_{n=1}^{\infty} a_n$ konverguje absolutně, pak řada $\sum_{n=1}^{\infty} a_n$ konverguje.

Důkaz

Z BC podmínky: $\sum_{n=1}^{\infty} a_n$ konverguje $\Longrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N}, m \geq n_0, n \geq n_0 : \sum_{j=n}^{m} |a_j| < \varepsilon$. Chceme dokázat, že $\sum_{n=1}^{\infty} a_n$ konverguje. Stačí ověřit BC podmínku.

K $\varepsilon > 0$ volme n_0 jako výše, pak $\forall m, n \geq n_0 : \left| \sum_{j=n}^m a_j \right| \leq \sum_{j=n}^m |a_j| \leq \varepsilon \implies \sum_{n=1}^\infty a_n$ konverguje.

Věta 1.10 (Leibnitzovo kritérium (T5.10))

Nechť $\{a_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel, pak $\sum_{n=1}^{\infty} (-1)^n a_n$ konverguje $\Leftrightarrow \lim_{n\to\infty} a_n = 0$.

Důkaz

 \implies : z nutné podmínky (V5.1) $\lim_{n\to\infty} (-1)^n \cdot a_n = 0 \implies \lim_{n\to\infty} a_n = 0$.

 $\Longleftrightarrow: s_{2k+2} - s_{2k} = (-1)^{2k+2} \cdot a_{2k+2} + (-1)^{2k+1} \cdot a_{2k+1} = a_{2k+2} - a_{2k+1} \leq 0 \implies s_{2k}$ je nerostoucí. Obdobně $s_{2k+1} - s_{2k-1} = a_{2k+1} - a_{2k} \geq 0 \implies s_{2k+1}$ je neklesající. Navíc $s_2k = (-a_1 + a_2) + \ldots + (-a_{2k-1} + a_{2k}) \leq 0 + \ldots + 0 = 0$. Analogicky $s_{2k+1} \geq -a_1$.

Nyní $0 \ge s_{2k} = s_{2k+1} + a_{2k+1} \ge -a_1 + a_{2k+1} \ge -a_1$. Analogicky $-a_1 \le s_{2k+1} \le 0$. Tedy obě vybrané podposloupnosti jsou omezené a monotónní, tedy konvergují. $\lim_{n\to\infty} s_{2k} = S_1 \in \mathbb{R}$ a $\lim_{n\to\infty} s_{2n+1} = S_2 \in \mathbb{R}$. Navíc

$$S_2 = \lim_{n \to \infty} s_{2k+1} = \lim_{n \to \infty} s_{2k} - a_{2k+1} \stackrel{\text{AL}}{=} S_1 - 0 = S_1.$$

Tedy jelikož existuje limita sudých i lichých členů a rovnají se, existuje i limita s_n . \square

Lemma 1.11 (Abelova parciální sumace)

Necht $m, n \in \mathbb{N}$ a $m \leq n$ a necht $a_m, \ldots, a_n, b_m, \ldots, b_n \in \mathbb{R}$. Označme $s_k = \sum_{i=m}^k a_i$. Pak

platí

$$\sum_{i=m}^{n} a_i \cdot b_i = \sum_{i=m}^{n} s_i \cdot (b_i - b_{i+1}) + s_n \cdot b_n.$$

Důkaz

L

$$= a_m \cdot b_m + a_{m+1} \cdot b_{m+1} + \dots + a_n \cdot b_n = s_m \cdot b_m + (s_{m+1} - s_m) \cdot b_{m+1} + \dots + (s_n - s_{n-1}) \cdot b_n =$$

$$= \sum_{i=m}^n s_i \cdot (b_i - b_{i+1}) + s_n \cdot b_n.$$

Věta 1.12 (Abel-Dirichletovo kritérium)

Necht $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálných čísel a $\{b_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Nechť je splněna alespoň jedna z následujících podmínek:

(A) $\sum_{n=1}^{\infty} a_n$ je konvergentní. (D) $\lim_{n\to\infty} b_n = 0$ a $\sum_{n=1}^{\infty} a_n$ má omezené částečné součty (tj. $\exists K > 0 \ \forall m \in \mathbb{N} : |s_m| = |\sum_{n=1}^m a_n| < K$).

Pak je $\sum_{n=1}^{\infty} a_n \cdot b_n$ konvergentní.

Podle V 5.8 budeme ověřovat BC podmínku pro $\sum_{n=1}^{\infty} a_n \cdot b_n$. Označme $s_k = \sum_{n=m}^k a_n$. b_n je nerostoucí a $b_n > 0 \implies \forall i : b_i - b_{i+1} \ge 0$ a $\exists K \ \forall n : |b_n| \le K$.

(A): $\sum_{n=1}^{\infty} a_n$ konverguje

$$\implies \forall \varepsilon > 0 \ \exists n_0 \ \forall i \ge m \ge n_0 : |\sum_{n=m}^i a_n| = |s_i| < \varepsilon.$$

Nyní k $\varepsilon > 0$ volme n_0 jako výše a nechť $n \geq m \geq n_0$:

$$\left|\sum_{i=m}^{n} a_{i} \cdot b_{i}\right| \stackrel{\text{Abel PS}}{\leq} \sum_{i=m}^{n-1} \left|s_{i} \cdot (b_{i} - b_{i+1})\right| + \left|s_{n}\right| \cdot \left|b_{n}\right| \leq \varepsilon \cdot \sum_{n=1}^{\infty} (b_{i} - b_{i+1}) + \varepsilon \cdot b_{n} = \varepsilon \cdot (b_{m} - b_{n}) + \varepsilon \cdot b_{n}$$

$$\leq \varepsilon \cdot K$$

A podle BC podmínky máme $\sum_{n=1}^{\infty} a_n \cdot b_n$ konverguje.

(D) Z předpokladů víme, že $\exists M>0 \ \forall i\geq m: |s_i|=|\sum_{n=1}^i a_n-\sum_{n=1}^{m-1} a_n|\leq M$ (volme M=2K). Z $\lim_{n\to\infty}b_n=0$ k $\varepsilon>0$ $\exists n_0 \ \forall n\geq n_0: |b_n|<\varepsilon$. Nyní

$$\forall n \ge m \ge n_0 : \left| \sum_{i=m}^n a_i \cdot b_i \right| \le \sum_{i=m}^{n-1} \left| s_i(b_i - b_{i+1}) \right| + \left| s_n \right| \cdot \left| b_n \right| \le \sum_{i=m}^{n-1} M \cdot (b_i - b_{i+1}) + M \cdot b_n = 0$$

$$= M \cdot (b_m - b_n) + M \cdot b_n \le M \cdot \varepsilon.$$

A podle BC podmínky máme $\sum_{n=1}^{\infty} a_n \cdot b_n$ konverguje.

Příklad

 $\sin n$ a $\cos n$ má omezené částečné součty.

Buď sečtením $\sin 1 + \sin 2 + \ldots + \sin n = \text{vzoreček}.$

Nebo dokážeme dokonce $\forall x \neq 2k\pi \sin nx$ a $\cos nx$ má omezené částečné součty.

$$e^{i}x = \cos x + i \cdot \sin x \implies \sum_{k=0}^{n} e^{i \cdot k \cdot x} = \sum_{k=0}^{n} \cos k \cdot x + i \cdot \sum_{k=0}^{n} \sin k \cdot x.$$

Z geometrické řady ale víme, že

$$\sum_{k=0}^{n} e^{i \cdot k \cdot x} = \frac{1 - (e^{ix})^{n+1}}{1 - e^{ix}} = \frac{1 - \cos x \cdot (n+1) - i \cdot \sin x \cdot (n+1)}{1 - \cos x - i \sin x} \cdot \frac{1 - \cos x + i \cdot \sin x}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - e^{ix}} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x - i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - \cos x + i \cdot \sin x} = \frac{1 - (e^{ix})^{n+1}}{1 - e^{ix}} = \frac{1 - (e^{ix})^{n+1$$

$$= \frac{A_n \cdot B}{(1 - \cos x)^2 + (\sin x)^2}.$$

Zřejmě $|A_n| \leq 3$ a $|B| \leq 3$, jmenovatel je nenulový a není závislý na n, tedy pro všechna n je výraz omezen konstantou.

1.4 Přerovnání a součin řad

Definice 1.3 (Přerovnání řady)

Nechť $\sum_{n=1}^{\infty} a_n$ je řada a $p: \mathbb{N} \to \mathbb{N}$ bijekce. Řadu $\sum_{n=1}^{\infty} a_{p(n)}$ nazýváme přerovnáním řady $\sum_{n=1}^{\infty} a_n$.

Věta 1.13 (O přerovnání absolutně konvergentní řady)

Nechť $\sum_{n=1}^{\infty} a_n$ je absolutně konvergentní řada a $\sum_{n=1}^{\infty} a_{p(n)}$ je její přerovnání. Potom $\sum_{n=1}^{\infty} a_{p(n)}$ je absolutně konvergentní a má stejný součet.

 $D\mathring{u}kaz$

 $\sum_{n=1}^{\infty} |a_n|$ konverguje \Longrightarrow splňuje BC podmínku. Tedy

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n \ge m \ge n_0 | \sum_{i=n}^m a_i | < \varepsilon \implies \sum_{i=n_0}^\infty |a_i| \le \varepsilon.$$

Zvolme $n_0' = \max\{p^{-1}(1), p^{-1}(2), \dots, p^{-1}(n_0)\}$. Pak $\forall n' \geq n_0' : p^{-1}(n') \geq n_0$. Tedy

$$\forall n' \ge m' > n'_0 : \sum_{i=m'}^{n'} |a_{p(i)}| \le \sum_{i=n_0}^{\infty} |a_i| < \varepsilon.$$

Tedy podle BC podmínky $\sum_{n=1}^{\infty}|a_{p(n)}|$ konverguje, tedy i $\sum_{n=1}^{\infty}a_{p(n)}$ konverguje.

Konverguje přerovnání k tomu samému? $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} a_{p(n)} = A'$. K $\varepsilon > 0$ $\exists n_0 \sum_{i=n_0}^{\infty} |a_i| \leq \varepsilon$. Zvolme $n_0' \geq \max_{i \leq n_0} p(i)$, aby $\sum_{i=n_0'}^{\infty} |a_{p(i)}| \leq \varepsilon$. Pak $|\sum_{i=1}^{n_0} a_i - A| \leq \varepsilon$ a $|\sum_{i=1}^{n_0'} a_{p(i)} - A'| \leq \varepsilon$. Nyní

$$|A - A'| \le |\sum_{i=1}^{n_0} a_i - A| + |\sum_{i=1}^{n_0'} a_{p(i)} - A'| + |\sum_{i=1}^{n_0} a_i - \sum_{i=1}^{n_0'} a_{p(i)}| \le \varepsilon + \varepsilon + \sum_{i=n_0}^{\infty} |a_i| \le 3\varepsilon$$

Věta 1.14 (Riemann)

Neabsolutně konvergentní řadu lze přerovnat k libovolnému součtu $s \in \mathbb{R}^*$.

 $D\mathring{u}kaz$

Bez důkazu (idea: rozdělíme na kladné a záporné členy (mají součty $+\infty$ a $-\infty$) a jdeme nahoru dolu nahoru dolu (vždy alespoň o 1 prvek), abychom se co nejvíce blížili s). \square

Definice 1.4 (Cauchyovský součin)

Necht $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady. Cauchyovským součinem těchto řad nazveme řadu $\sum_{k=2}^{\infty} \sum_{i=1}^{k-1} (a_{k-i} \cdot b_i)$.

Věta 1.15 (O součinu řad)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ konvergují absolutně. Pak

$$\left(\sum_{n=1}^{\infty} a_n\right) \cdot \left(\sum_{n=1}^{\infty} b_n\right) = \sum_{k=2}^{\infty} \sum_{i=1}^{k-1} (a_{k-i} \cdot b_i).$$

Důkaz
At $s_n = \sum_{i=1}^n a_i \to A \in \mathbb{R}$, $\sigma_n = \sum_{i=1}^n b_i \to B \in \mathbb{R}$ a $\varrho_n = \sum_{k=2}^n \left(\sum_{i=1}^{k-1} a_{k-i} b_i\right) \overset{\text{Chceme}}{\to} A \cdot B \in \mathbb{R}$. Necht $\varepsilon > 0$. Pak $\exists n_0 : \sum_{i=n_0}^{\infty} |a_i| < \varepsilon$ a $\sum_{j=n_0}^{\infty} |b_j| < \varepsilon$ (z BC podmínky) a zároveň $|s_{n_0} \cdot \sigma_{n_0} - A \cdot B| < \varepsilon$. Necht $n \geq 2n_0$, pak $|\varrho_n - A \cdot B| \leq |\varrho_n - s_{n_0} \cdot \sigma_{n_0}| + |s_{n_0} \cdot \sigma_{n_0} - A \cdot B| \leq$ $\leq |(a_1b_1) + (a_1b_2 + a_2b_1) + \ldots + (a_{n-1} \cdot b_1 + \ldots + a_1 \cdot b_{n-1}) - (a_1 + \ldots + a_{n_0}) \cdot (b_1 + \ldots + b_{n_0})| + \varepsilon \leq$ $\leq \sum_{i \geq n_0 \lor j \geq n_0} |a_ib_j| + \varepsilon \leq \sum_{i=1}^{\infty} |a_i| \cdot \sum_{j=n_0}^{\infty} |b_j| + \sum_{i=n_0}^{\infty} |a_i| \cdot \sum_{j=1}^{\infty} |b_j| + \varepsilon \leq A\varepsilon + B\varepsilon + \varepsilon = \varepsilon \cdot \text{konst.}$

1.5 Limita posloupnosti a součet řady v \mathbb{C}

Definice 1.5

Nechť $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě reálné posloupnosti. Pak $c_n=a_n+ib_n$ je komplexní posloupnost.

Řekneme, že $\lim_{n\to\infty} c_n = A + iB$, pokud existují $\lim_{n\to\infty} a_n = A \in \mathbb{R}$ a $\lim_{n\to\infty} b_n = B \in \mathbb{R}$.

Definice 1.6

Necht $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ jsou dvě reálné posloupnosti a $c_n = a_n + ib_n$. Řekneme, že komplexní řada $\sum_{n=1}^{\infty} c_n$ konverguje k A + iB, pokud konvergují řady $\sum_{n=1}^{\infty} a_n = A$ a $\sum_{n=1}^{\infty} b_n = B$.

Věta 1.16 (Vztah konvergence a absolutní konvergence pro komplexní řady)

Nechť $\{c_n\}_{n=1}^{\infty}$ je komplexní posloupnost a řada $\sum_{n=1}^{\infty} |c_n|$ konverguje. Pak řada $\sum_{n=1}^{\infty} c_n$ konverguje.

Z BC podmínky pro konvergenci $\sum_{n=1}^{\infty} |c_n|$ dostaneme

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall m \ge n \ge n_0 : \sum_{j=n}^m |c_j| < \varepsilon.$$

Víme $c_n = a_n + ib_n$. Nyní $\forall m \ge n \ge n_0$:

$$\sum_{j=n}^{m} |a_j| \le \sum_{j=n}^{m} |c_j| < \varepsilon \wedge \sum_{j=n}^{m} |b_j| \le \sum_{j=n}^{m} |c_j| < \varepsilon.$$

Tedy $\sum_{n=1}^{\infty} |a_n|$ a $\sum_{n=1}^{\infty} |b_n|$ splňují BC podmínku, tedy konvergují. Podle V5.9 (vztah K a AK), tedy $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ konvergují, tedy konverguje i $\sum_{n=1}^{\infty} c_n$.

2 Primitivní funkce

2.1 Základní vlastnosti

Definice 2.1 (Primitivní funkce, integrál)

Nechť je funkce f definována na otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k funkci f, pokud pro každé $x \in I$ existuje F'(x) a F'(x) = f(x).

Množinu všech primitivních funkcí kf na Iznačíme $\int f(x)\,dx$

Věta 2.1 (O jednoznačnosti primitivní funkce až na konstantu)

Nechť F a G jsou primitivní funkce k f na otevřeném intervalu I. Pak existuje $c \in \mathbb{R}$ tak, že F(x) = G(x) + c pro všechna $x \in I$.

 $D\mathring{u}kaz$

Označme H(x) = F(x) - G(x). Pak (H(x))' = (F(x) - G(x))' = f(x) - f(x) = 0. Tedy (např. z Lagrangeovy věty) $\exists c \in \mathbb{R} : H(x) = c$ na I.

Poznámka

Značíme $\int f(x) dx = F(x) + C$. Necht F je primitivní funkce k f. Pak F je spojitá (protože má všude vlastní derivaci).

Věta 2.2 (O vztahu spojitosti a existence primitivní funkce)

Nechť I je otevřený interval a f je spojitá funkce na I. Pak f má na I primitivní funkci.

 $D\mathring{u}kaz$ Později.

Věta 2.3 (Linearita primitivní funkce)

Necht f má primitivní funkci F a g má primitivní funkci G na otevřeném intervalu I a necht $\alpha, \beta \in \mathbb{R}$. Pak $\alpha \cdot f + \beta \cdot g$ má primitivní funkci $\alpha F + \beta G$.

Důkaz

$$(\alpha \cdot F(x) + \beta \cdot G(x))' \stackrel{\text{AD}}{=} \alpha \cdot F'(x) + \beta \cdot G'(x) = \alpha \cdot f + \beta \cdot g.$$

Poznámka (Tabulkové integrály)

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, ((x \in \mathbb{R} \land n \in \mathbb{N}) \lor (x \in \mathbb{R} \setminus \{0\} \land n \in \mathbb{Z} \setminus \{1\})).$$

•
$$\int \frac{1}{x} dx = \log|x| + C, (x \in \mathbb{R} \setminus \{0\}).$$

•
$$\int e^x dx = e^x + C, (x \in \mathbb{R}).$$

•
$$\int \sin x \, dx = -\cos x + C, \, (x \in \mathbb{R}).$$

•
$$\int \cos x \, dx = \sin x + C, (x \in \mathbb{R}).$$

•
$$\int \frac{1}{\cos^2 x} dx = \tan x + C, (x \in (-\frac{\pi}{2}, \frac{\pi}{2}) + k\pi, k \in \mathbb{Z}).$$

•
$$\int \frac{1}{-\sin^2 x} dx = \cot x + C$$
, $(x \in (0, \pi) + k\pi, k \in \mathbb{Z})$.

•
$$\int \frac{1}{1+x^2} dx = \arctan x + C, (x \in \mathbb{R}).$$

•
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C, (x \in (-1,1)).$$

•
$$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x + C, (x \in (-1,1)).$$

Věta 2.4 (Nutná podmínka existence primitivní funkce)

Nechť f má na otevřeném intervalu I primitivní funkci. Pak f má na I Darbouxovu vlastnost, tedy pro každý interval $J \subseteq I$ je f(J) interval.

 $D\mathring{u}kaz$

Necht $J \in I$ je interval. Necht $y_1, y_2 \in f(J)$ a $y_1 < z < y_2$. Chceme ukázat $z \in f(J)$. Necht F je primitivní funkce k funkci f na intervalu I. Definujeme $H(x) = F(x) - z \cdot x$ pro $x \in I$. Pak H je spojitá na I a $\forall x \in I : (H(x))' = f(x) - z$. Nalezneme $x_1, x_2 \in J$ tak, že $f(x_1) = y_1$ a $f(x_2) = y_2$. Necht $x_1 < x_2$, v opačném případě je důkaz analogický. Funkce H je spojitá na $[x_1, x_2]$, a tedy tam nabývá minima.

Víme $H'(x_1) = f(x_1) - z < f(x_1) - y_1 = 0$, tedy $\exists \delta > 0$, že $\forall x \in [x_1, x_1 + \delta], H(x) < H(x_1)$, tedy v x_1 není minimum. Obdobně v x_2 není minimum. Tedy minimum je v $x_0 \in (x_1, x_2) \stackrel{\text{Fermat}}{\Longrightarrow} 0 = H'(x_0) = f(x_0) - z$, tj. $f(x_0) = z$.

Věta 2.5 (Integrace per partes)

Nechť I je otevřený interval a funkce f a g jsou spojité na I. Nechť F je primitivní k f a G je primitivní k g na I. Pak platí $\int g(x) \cdot F(x) dx = G(x) \cdot F(x) - \int G(x) \cdot f(x) dx$ na I.

 $D\mathring{u}kaz$

G je spojitá, tedy $G(x) \cdot f(x)$ je spojitá (tedy integrál vpravo existuje). Mějme funkci $G \cdot F - H$, kde H je primitivní k $G \cdot f$, pak

$$(G(x) \cdot F(x) - H(x))' = g(x) \cdot F(x) + G(x) \cdot f(x) - G(x) \cdot f(x) = g(x) \cdot F(x),$$

neboli $\int g(x) \cdot F(x) dx = G(x) \cdot F(x) - H(x)$.

Věta 2.6 (1. o substituci)

Nechť F je primitivní funkce k f na a,b. Nechť φ je funkce definovaná na (α, β) s hodnotami v intervalu (a,b), která má v každém bodě (α,β) vlastní derivaci. Pak $\int f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(t))$ na (α,β) .

 $D\mathring{u}kaz$

Podle věty o derivaci složené funkce

$$(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t) \ \forall t \in (\alpha, \beta).$$

Věta 2.7 (2. o substituci)

Nechť funkce φ má v každém bodě intervalu α, β vlastní nenulovou derivaci a $\varphi((\alpha, \beta)) = (a, b)$. Nechť funkce f je definována na intervalu (a, b) a platí $\int f(\varphi(t)) \cdot \varphi'(t) dt = G(t)$ ne (α, β) . Pak $\int f(x) dx = G(\varphi^{-1}(x))$ na (a, b).

 $D\mathring{u}kaz$

Podle V6.4 φ' nabývá mezihodnot (a je všude nenulová), tudíž φ' je na (α, β) buď kladná nebo záporná a φ je tím pádem ryze monotónní a spojitá. Tedy lze použít větu o derivaci inverzní funkce a dostaneme $(\varphi^{-1}(x)) = \frac{1}{\varphi'(\varphi(x))}$. Nyní na (a, b)

$$(G(\varphi^{-1}(x)))' = G'(\varphi^{-1}(x)) \cdot (\varphi^{-1}(x))' = f(\varphi(\varphi^{-1}(x))) \cdot \varphi'(\varphi^{-1}(x)) \cdot \frac{1}{\varphi'(\varphi^{-1}(x))} = f(x).$$

2.2 Integrace racionálních funkcí

Definice 2.2 (Racionální funkce)

Racionální funkcí rozumíme podíl dvou polynomů $\frac{P}{Q}$, kde Q není nulový polynom.

Věta 2.8 (Základní věta algebry)

Necht $P(x) = a_n x^n + \ldots + a_0 x^0$, $a_i \in \mathbb{R}$, $a_n \neq 0$. Pak existují $x_1, \ldots, x_n \in \mathbb{C}$ tak, že $P(x) = a_n \cdot (x - x_1) \cdot \ldots \cdot (x - x_n)$, $x \in \mathbb{R}$.

Lemma 2.9 (O komplexních kořenech polynomu)

Nechť P je polynom s reálnými koeficienty a $z \in \mathbb{C}$ je kořen P násobnosti $k \in \mathbb{N}$. Pak i \overline{z} je kořen násobnosti k.

 $D\mathring{u}kaz$

Nejprve pozorování: $(\overline{z})^k = \overline{z^k}$ (dokážeme přes goniometrický tvar).

 $\frac{\mathrm{D}\mathring{\mathrm{u}}\mathrm{kaz}\ \mathrm{provedeme}\ \mathrm{matematickou}\ \mathrm{indukc}\acute{\mathrm{u}}\ \mathrm{podle}\ k.\ k=1:\ z\ \mathrm{je}\ \mathrm{ko\check{r}en},\ \mathrm{tj}.\ P(z)=0=}{P(z)=\overline{a_n\cdot z^n+\ldots+a_0z^0}=a_n\overline{z^n}+\ldots+a_0\overline{z^0}=P(\overline{z})\ \Longrightarrow\ \overline{z}\ \mathrm{je}\ \mathrm{ko\check{r}en}.\ \mathrm{D\acute{a}le}\ \mathrm{p\check{r}edpokl\acute{a}-dejme},\ \check{z}\in\ z\notin\mathbb{R}\ (\mathrm{jinak}\ \mathrm{je}\ \mathrm{d\mathring{u}kaz}\ \mathrm{trivi\acute{a}ln\acute{l}}.)$

Nyní nechť tvrzení platí pro k-1 a z je kořen násobnosti alespoň k, potom z IP víme, že \overline{z} je k-1násobný kořen. Tedy $P(x)=(x-z)^{k-1}\cdot(x-\overline{z})^{k-1}\cdot Q(x)=(x^2-(z+\overline{z})\cdot x+z\cdot\overline{z})^{k-1}\cdot Q(x)$, tedy Q má reálně koeficienty a Q(z)=0. Podle 1. kroku indukce je tudíž \overline{z} kořenem Q, tedy knásobným kořenem k.

Věta 2.10 (O rozkladu na parciální zlomky)

Nechť P a Q jsou polynomy s reálnými koeficienty takové, že stupeň P je ostře menší než stupeň Q a $Q(x) = a_n \cdot (x - x_1)^{p_1} \cdot \ldots \cdot (x - x_k)^{p_k} \cdot (x^2 + \alpha_1 x + \beta_1)^{q_1} \cdot \ldots \cdot (x^2 + \alpha_l x + \beta_l)^{q_l}$, kde $a_n, x_1, \ldots, x_k, \alpha_1, \ldots, \alpha_l, \beta_1, \ldots, \beta_l \in \mathbb{R}, a_n \neq 0, p_1, \ldots, p_k, q_1, q_l \in \mathbb{N}$, žádné dva z mnohočlenů nemají společný kořen a mnohočleny $x^2 + \alpha_i x + \beta_i$ nemají reálný kořen.

Pak existují jednoznačně určená čísla $A^i_j \in \mathbb{R}, \ i \in [k], \ j \in [p_i] \ a \ B^i_j, C^i_j \in \mathbb{R}, \ i \in [l],$

 $j \in [q_i]$ tak, že platí:

$$\frac{P(x)}{Q(x)} = \frac{A_1^1}{x - x_1} + \ldots + \frac{A_{p_1}^1}{(x - x_1)^{p_1}} + \ldots + \frac{A_1^k}{x - x_k} + \ldots + \frac{A_{p_k}^k}{(x - x_k)^{p_k}} + \frac{B_1^1 x + C_1^1}{(x^2 + \alpha_1 x + \beta_1)^1} + \ldots$$

 $D\mathring{u}kaz$

Bez důkazu (velmi obtížný a docela zbytečný).

Poznámka (Postup při integraci racionální funkce)

- 1. Vydělit polynomy.
- 2. Rozklad na parciální zlomky podle předchozí věty.
- 3. Integrace parciálních zlomků.

2.3 Substituce, převádějící na racionální funkce

Viz přednáška. $(R(e^{ax}) \to t = e^{ax}, R(\log x) \cdot \frac{1}{x} \to t = \log(x)).$

2.4 Integrace trigonometrických funkcí

Definice 2.3 (Racionálni funkce 2 proměnných)

Racionální funkcí dvou proměnných rozumíme podíl dvou polynomů $R(a,b) = \frac{P(a,b)}{Q(a,b)}$, kde P(a,b) a Q(a,b) jsou polynomy dvou proměnných a Q není identicky nulový.

Poznámka

Při integraci funkcí $R(\sin x, \cos x)$ používáme substituce:

- Pokud $R(-\sin x, \cos x) = -R(\sin x, \cos x)$, pak používáme $t = \cos x$.
- Pokud $R(\sin x, -\cos x) = -R(\sin x, \cos x)$, pak používáme $t = \sin x$.
- Pokud $R(-\sin x, -\cos x) = R(\sin x, \cos x)$, pak používáme $t = \tan x$.
- Vždy funguje $t = \tan \frac{x}{2}$. (Nepoužívat není-li nutné, těžký výpočet!)

2.5 Integrace funkcí obsahujících odmocniny

Viz přednáška. $(q \in \mathbb{N}, ad \neq bc, R(x, \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}) \to t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{q}}).$

Poznámka (Eulerovy substituce)

Nechť $a \neq 0$. Při integraci funkcí typu $R(x, \sqrt{ax^2 + bx + c})$ používáme substituce:

- polynom $ax^2 + bx + c$ má dvojnásobný kořen a a > 0, pak $\sqrt{ax^2 + bx + c} = \sqrt{a}|x \alpha|$ a řešíme na $x > \alpha$ a $x < \alpha$ jako racionální funkce.
- polynom $ax^2 + bx + c$ má dva reálné kořeny α_1 a α_2 . Pak úpravou převedeme na tvar $\sqrt{a\frac{x-\alpha_1}{x-\alpha_2}}$ nebo $\sqrt{a\cdot\frac{\alpha_1-x}{x-\alpha_2}}$.
- polynom $ax^2 + bx + c$ nemá reálný kořen a a > 0. Pak používáme substituci

$$\sqrt{ax^2 + bx + c} = \sqrt{a} \cdot x + t.$$

Pozor

Substituce $\tan x$, $\tan \frac{x}{2}$ a poslední předchozí jsou substituce 2. druhu a je vždy potřeba ověřit, že vnitřní funkce je monotónní a na.

3 Určitý integrál

3.1 Riemannův integrál

Definice 3.1 (Dělení, zjemnění dělení)

Konečnou posloupnost $\{x_j\}_{j=0}^n$ nazýváme dělením intervalu [a,b], jestliže $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$.

Řekneme, že dělení D' intervalu [a,b] zjemňuje dělení D intervalu [a,b], jestliže každý bod dělení D je i bodem dělení D'.

Definice 3.2 (Horní a dolní součty, Riemanovy integrály)

Nechť f je omezená funkce definovaná na intervalu [a,b] a D je dělení [a,b], definujme horní a dolní součty

$$S(f, D) = \sum_{i=1}^{n} \sup \{ f(x) | x \in [x_{i-1}, x_i] \} \cdot (x_i - x_{i-i}),$$

$$s(f, D) = \sum_{i=1}^{n} \inf \{ f(x) | x \in [x_{i-1}, x_i] \} \cdot (x_i - x_{i-i}).$$

Horní a dolní Riemannův integrál definujeme jako

$$(R)\overline{\int_a^b}f(x)\,dx=\inf\left\{S(f,D)|D\text{ je dělení }[a,b]\right\},$$

$$(R) \underline{\int_{\underline{a}}^{b}} f(x) dx = \sup \{ s(f, D) | D \text{ je dělení } [a, b] \}.$$

Definice 3.3

Řekneme, že f je Riemanovsky integrovatelná, jestliže $(R)\underline{\int_a^b}f(x)\,dx=(R)\overline{\int_a^b}f(x)\,dx$. Tuto hodnotu pak označujeme $(R)\int_a^bf(x)\,dx$.

Množinu funkcí mající Riemannův integrál značíme R([a, b]).

Poznámka

Omezenost f je nutnou podmínkou.

Věta 3.1 (O zjemnění dělení)

Nechť f je omezená funkce na [a,b], D a D' jsou dělení intervalu [a,b] a D' zjemňuje D. $Pak\ s(f,D) \leq s(f,D') \leq S(f,D') \leq S(f,D)$.

 $D\mathring{u}kaz$

Prostřední nerovnost je triviální z sup \geq inf.

Předpokládejme, že $D=\{x_0,x_1,\ldots,x_n\}$ a $D'=\{x_0,x_1,\ldots,x_{j-1},z,x_{x_j},\ldots,x_n\}$. Pak

$$\inf \{ f(x), x \in [x_{j-1}, x_j] \} \le \inf \{ f(x), x \in [x_{j-1}, z] \},\,$$

$$\inf \{ f(x), x \in [x_{j-1}, x_j] \} \le \inf \{ f(x), x \in [z, x_j] \}.$$

Vynásobením $(z - x_{j-1})$ a $(x_j - z)$ dostaneme

$$\inf \{ f(x), x \in [x_{j-1}, x_j] \} \cdot (x_j - x_{j-1}) \le$$

$$\leq \inf \left\{ f(x), x \in [x_{j-1}, z] \right\} \cdot (z - x_{j-1}) + \inf \left\{ f(x), x \in [z, x_j] \right\} \cdot (x_j - z) \implies s(f, D) \leq s(f, D').$$

Pokud se Da D'liší o více bodů, pak postupujeme indukcí. Analogicky pro horní součty. $\hfill \Box$

Věta 3.2 (O dvou děleních)

Nechť f je omezená funkce na [a,b] a D_1,D_2 jsou dělení intervalu [a,b]. Pak $s(f,D_1) \leq S(f,D_2)$.

 $D\mathring{u}kaz$

Nechť D zjemňuje D_1 i D_2 ($D=D_1\cup D_2$). Potom D je jemnější než D_1 i D_2 a podle předchozí věty:

$$s(f, D_1) \le s(f, D) \le S(f, D) \le S(f, D_2).$$

Důsledek

Nechť f je omezená na [a,b], D_1 a D_2 jsou dělení [a,b], $m=\inf\{f(x)|x\in[a,b]\}$ a $M=\sup\{f(x)|x\in[a,b]\}$. Pak:

$$m \cdot (b-a) \le s(f, D_1) \le \int_a^b f(x) \, dx \le \overline{\int_a^b} f(x) \, dx \le S(f, D_2) \le M \cdot (b-a).$$

Definice 3.4 (Norma dělení)

Nechť D je dělení [a, b]. Číslo $\nu(D) = \max_{j=1,\dots,n} |x_j - x_{j-1}|$ nazveme normou dělení D.

Věta 3.3 (Aproximace R. integrálu pomocí součtů)

Nechť f je omezená funkce na [a,b] a $\{D_n\}_{n=1}^{\infty}$ je posloupnost dělení [a,b] taková, že $\lim_{n\to\infty}\nu(D_n)=0$. Pak $(R)\overline{\int_a^b}f(x)\,dx=\inf_{n\in\mathbb{N}}S(f,D_n)$ a $(R)\underline{\int_a^b}f(x)\,dx=\sup_{n\in\mathbb{N}}s(f,D_n)$.

 $D\mathring{u}kaz$

BÚNO $f \geq 0$ (jinak přičteme k f konstantu). Stačí dokázat druhá rovnost, první je analogická. Nechť D je libovolné dělení a $\varepsilon > 0$. Stačí dokázat, že $\exists n_0 : s(f, D_{n_0}) \geq s(f, D) - \varepsilon$. Pak

$$(R)\underline{\int_{\underline{a}}^{b}}f(x)\,dx = \sup_{D}S(f,D) \ge \sup_{D_{n}}s(f,D_{n}) \ge \sup_{D}(s(f,D) - \varepsilon) = (R)\underline{\int_{\underline{a}}^{b}}f(x)\,dx - \varepsilon.$$

Nechť $0 \leq f \leq K$ a zvolme n_0 , aby $\nu(D_{n_0}) \leq \frac{\varepsilon}{K \cdot 4 \cdot \# \text{intervalů } D}$. Označme $H = \text{intervaly vzniklé dělením } P = D \cup D_{n_0}$ a $\gamma = \text{intervaly z } P$, v kterých není žádný bod dělení D. P je jemnější než D, a proto z věty výše dostáváme

$$s(f,D) \leq s(f,P) = \sum_{L \in H} \inf_L f \cdot \text{délka } L = \sum_{L \in \gamma} \inf_L f \cdot \text{délka } L + \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} \inf_L f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash \gamma} f \cdot \text{délka } L \leq \sum_{L \in H \backslash$$

$$\leq s(f, D_{n_0}) + 2 \cdot \#$$
intervalů $D \cdot (K \cdot \nu(D_{n_0})) < s(f, D_{n_0}) + \varepsilon$.

Věta 3.4 (Kritérium existence R integrálu)

Necht f je omezená funkce na [a,b]. Pak $f \in R([a,b]) \Leftrightarrow \forall \varepsilon > 0 \; \exists \; dělení \; D \; intervalu \; [a,b]$, že $S(f,D) - s(f,D) < \varepsilon$.

 \Longrightarrow : Zvolme libovolnou posloupnost dělení, že $\ni |D_n| \to 0$ $(D_{n+1}$ je jemnější než $D_n)$.

Pak

$$\lim_{n \to \infty} S(f, D_n) = (R) \overline{\int_a^b} f(x) \, dx = (R) \int_a^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(f, D_n) = (R) \int_a^b f(x) \, dx = (R) \int_a^b f(x) \, dx.$$

Tedy $\exists n_0 \ \forall n \geq n_0 : S(f, D_n) - s(f, D_n) < \varepsilon.$

 \Longleftarrow : Zvolme $\varepsilon>0$ a k němu nalezneme Dz předpokladu.

$$0 \le (R) \overline{\int_a^b} f(x) \, dx - (R) \underline{\int_a^b} f(x) \, dx \le S(f, D) - s(f, D) < \varepsilon \implies$$

$$\implies (R) \overline{\int_a^b} f(x) \, dx = (R) \underline{\int_a^b} f(x) \, dx.$$

Definice 3.5 (Stejnoměrná spojitost)

Řekneme, že funkce f je stejnoměrně spojitá na intervalu I, jestliže

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in I : |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Věta 3.5 (O vztahu spojitosti a stejnoměrné spojitosti)

Nechť f je spojitá na omezeném uzavřeném intervalu [a,b], pak f je stejnoměrně spojitá na [a,b].

Sporem. Nechť f je spojitá na [a, b], ale

$$\exists \varepsilon > 0 \ \forall \delta = \frac{1}{n} \ \exists x_n, y_n \in I : |x_n - y_n| < \frac{1}{n} \land |f(x_n) - f(y_n)| \ge \varepsilon.$$

Interval a, b je omezený, tedy z x_n lze vybrat konvergentní posloupnost podle Weirstrassovy věty. Tedy $\lim_{k\to\infty} x_{n_k} = x_0$. Dále $\lim_{k\to\infty} y_{n_k} = x_0$, neboť

$$|y_{n_k} - x_0| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - x_0| < \frac{1}{n_k} + |x_{n_k} - x_0| \to 0.$$

Víme, že f je spojitá v x_0 (vzhledem k [a,b]). Tedy k našemu $\varepsilon > 0 \; \exists \delta > 0 \; \text{tak}$, že $\forall z \in (x_0 - \delta, x_0 + \delta) \cap [a,b] : |f(z) - f(x_0)| < \frac{\varepsilon}{3}$. Nalezneme $j \in \mathbb{N}$, aby $x_{n_k}, y_{n_k} \in (x_0 - \delta, x_0 + \delta)$. Nyní

$$\varepsilon \leq |f(x_{n_k} - f(y_{n_k}))| \leq |f(x_{n_k} - f(x_0))| + |f(x_0) - f(y_{n_k})| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} < \varepsilon.4.$$

Věta 3.6 (O vztahu spojitosti a Riemannovské integrovatelnosti)

Nechť f je spojitá na omezeném intervalu [a,b], pak $f \in R([a,b])$.

 $D\mathring{u}kaz$

Podle věty ze zimy je spojitá funkce na omezeném intervalu otevřená. Z předchozí věty víme, že f je dokonce stejnoměrně spojitá na [a,b]. Pak

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x,y \in [a,b] : |x-y| < \delta \implies |f(x)-f(y)| < \varepsilon.$$

Zvolme dělení D intervalu [a,b] tak, že $\nu(D) < \delta$. Nechť $D = \{x_j\}_{j=0}^n$. Označme $M_j = \sup_{x_j,x_{j+1}} f$, $m_j = \inf_{x_j,x_{j+1}} f$. Pak platí $M_j \leq m_j + \varepsilon \ \forall j \in [n]$.

$$S(f,D) - s(f,D) = \sum_{j=1}^{n} M_j(x_j - x_{j-1}) - \sum_{j=1}^{n} m_j(x_j - x_{j-1}) = \sum_{j=1}^{n} (M_j - m_j) \cdot (x_j - x_{j-1}) \le \sum_{j=1}^{n} M_j(x_j - x_{j-1}) = \sum_$$

$$\leq \varepsilon \cdot \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon \cdot (b - a).$$

Podle věty výše tedy $f \in R([a, b])$.

Věta 3.7 (Vztah monotonie a Riemanovské integrovatelnosti)

 $Necht\ f\ je\ (omezená)\ monotonní\ funkce\ na\ intervalu\ [a,b].\ Pak\ f\in R([a,b]).$

BÚNO f je neklesající. Budeme dokazovat kritérium existence R integrálu. Nechť $\varepsilon>0$. Zvolme ekvidistantní dělení $D=\left\{a+(b-a)\frac{j}{n}\right\}_{j=0}^n$ a volíme n, aby $n>\frac{1}{\varepsilon}(b-a)\cdot(f(b)-f(a))$. Nyní

$$S(f,D) = \sum_{j=1}^{n} \sup_{[x_{j-1},x_j]} f \cdot (x_j - x_{j-1}) = \sum_{j=1}^{n} f(x_j) \cdot (x_j - x_{j-1}) = \frac{b-a}{n} \sum_{j=1}^{n} f(x_j),$$

$$s(f,D) = \sum_{j=1}^{n} \inf_{[x_{j-1},x_j]} f \cdot (x_j - x_{j-1}) = \sum_{j=1}^{n} f(x_{j-1}) \cdot (x_j - x_{j-1}) = \frac{b-a}{n} \sum_{j=1}^{n} f(x_{j-1}).$$

Odtud

$$S(f, D) - s(f, D) = \frac{b - a}{n} \sum_{j=1}^{n} f(x_j) - f(x_{j-1}) \le \frac{b - a}{n} (f(b) - f(a)) < \varepsilon.$$

Věta 3.8 (Vlastnosti R integrálu)

a) Linearita: $f, g \in R([a, b]), \alpha \in \mathbb{R} \implies f + g \in R([a, b]) \land \alpha f \in R([a, b])$ a

$$(R)\int_a^b f + g = (R)\int_a^b f + (R)\int_a^b g \wedge (R)\int_a^b \alpha \cdot f = \alpha \cdot (R)\int_a^b g.$$

b) Monotonie: $f, g \in R([a, b]), f \leq g$, pak $(R) \int_a^b f \leq (R) \int_a^b g$.

c) Aditivita vzhledem k intervalům: Nechť a < c < b. Pak $f \in R([a,b]) \Leftrightarrow f \in R([a,c]) \land f \in R([c,b])$ a platí $(R) \int_a^b f(x) \, dx = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx$.

Důkaz (a)

 $f,g\in R([a,b])\implies f$ a g jsou omezené na $[a,b]\implies f+g$ je omezená a αf je omezená na [a,b]. Je-li $I\subseteq [a,b]$ interval, pak $\sup_I (f+g)\le \sup_I f+\sup_I g$, $\inf_I (f+g)\le \inf_I f+\inf_I g$. Proto pro libovolné dělení D intervalu [a,b] platí

$$s(f, D) + s(g, D) \le s(f + g, D) \le S(f + g, D) \le S(f, D) + S(g, D).$$

Zvolme posloupnost dělení $\{D_n\}$ intervalu [a,b] tak, že $\ni (D_n) \to 0$ (a D_{n+1} jemnější než D_n). Podle věty výše

$$\lim_{n \to \infty} S(f, D_n) + S(g, D_n) = (R) \int_a^b f(x) \, dx + (R) \int_a^b g(x) \, dx,$$

$$\lim_{n \to \infty} s(f, D_n) + s(g, D_n) = (R) \int_a^b f(x) \, dx + (R) \int_a^b g(x) \, dx.$$

Spolu s nerovností výše je to

$$\lim_{n \to \infty} s(f+g, D_n) = \lim_{n \to \infty} S(f+g, D_n) \stackrel{\text{POLICIE}}{=} (R) \int_a^b f(x) \, dx + (R) \int_a^b g(x) \, dx.$$

Tedy podle věty výše $f+g\in R([a,b])$ a $(R)\int_a^b f+g=(R)\int_a^b f+(R)\int_a^b g.$

Je-li $f \in R([a,b]), \alpha \geq 0$, je $\alpha \cdot f$ omezená na [a,b]. Pro každý interval $I \subseteq [a,b]$

$$\sup_{I} \alpha \cdot f = \alpha \cdot \sup_{I} f, \qquad \inf_{I} \alpha \cdot f = \alpha \cdot \inf_{I} f \implies$$

$$S(\alpha f, D) = \alpha \cdot S(f, D), \qquad s(\alpha \cdot f, D) = \alpha \cdot s(f, D).$$

Necht $\{D_n\}$ je posloupnost dělení [a,b], že $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n . Pak

$$\lim_{n \to \infty} S(\alpha f, D_n) = \lim_{n \to \infty} \alpha \cdot S(f, D_n) = \alpha \cdot (R) \int_a^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(\alpha f, D_n) = \lim_{n \to \infty} \alpha \cdot s(f, D_n) = \alpha \cdot (R) \int_a^b f(x) \, dx.$$

Podle věty výše je pro $\alpha f: \alpha f \in R([a,b])$ a $(R) \int_a^b \alpha f = \alpha(R) \int_a^b f$.

Zbývá $\alpha < 0$. Stačí $\alpha = -1$ (jelikož pak můžeme násobit kladným). Pak \forall interval $I \sup_{I} (-f) = -\inf_{I} f$ a $\inf_{I} (-f) = -\sup_{I} f$. Tedy \forall posloupnost dělení $\{D_n\}$, kde $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n :

$$\lim_{n \to \infty} S(-f, D_n) = \lim_{n \to \infty} -s(f, D_n) = -(R) \int_a^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(-f, D_n) = \lim_{n \to \infty} -S(f, D_n) = -(R) \int_a^b f(x) dx,$$

tudíž
$$-f \in R([a,b])$$
 a $(R) \int_a^b (-f) = -(R) \int_a^b f$.

Důkaz (b)

Nechť D_n je posloupnost dělení, $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n . Pak $\sup_I f \le \sup_I g$. Tedy víme, že

$$\int_a^b f(x) dx = \lim_{n \to \infty} S(f, D_n) \le \lim_{n \to \infty} S(g, D_n) = (R) \int_a^b g(x) dx.$$

Důkaz (c)

Nechť $\{D_n^1\}$ a $\{D_n^2\}$ jsou posloupnosti dělení [a,c] respektive [c,b] splňující $\nu(D_n^1) \to 0$ a $\nu(D_n^2) \to 0$ a D_{n+1}^1 je jemnější než D_n^1 a D_{n+1}^2 je jemnější než D_n^2 . Nechť $D_n = D_n^1 \cup D_n^2$. Pak D_n je dělení [a,b] a $\nu(D_n) \to 0$ a D_{n+1} je jemnější než D_n .

Necht $f \in R([a,c])$ a $f \in R([c,b])$. Pak podle věty výše

$$\lim_{n\to\infty} S(f, D_n^1) = \lim_{n\to\infty} s(f, D_n^1) = (R) \int_a^c f(x) \, dx,$$

$$\lim_{n\to\infty} S(f, D_n^2) = \lim_{n\to\infty} s(f, D_n^2) = (R) \int_c^b f(x) \, dx.$$

Tedy

$$\lim_{n \to \infty} S(f, D_n) = \lim_{n \to \infty} S(f, D_n^1) + S(f, D_n^2) = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx,$$

$$\lim_{n \to \infty} s(f, D_n) = \lim_{n \to \infty} s(f, D_n^1) + s(f, D_n^2) = (R) \int_a^c f(x) \, dx + (R) \int_a^b f(x) \, dx.$$

Podle věty výše je $f \in R([a,b])$ a $(R) \int_a^b f(x) dx = (R) \int_a^c f(x) dx + (R) \int_c^b f(x) dx$.

Nechť $f \in R([a,b])$. Pak

$$0 \le S(f, D_n^1) - s(f, D_n^1) \le S(f, D_n^1) - s(f, D_n^1) + S(f, D_n^2) - s(f, D_n^2) = S(f, D_n) - s(f, D_n)$$
$$S(f, D_n) - s(f, D_n) \to 0 \implies \lim_{n \to \infty} S(f, D_n^1) - s(f, D_n^1) = 0 \implies f \in R([a, c]).$$

Analogicky $f \in R([c,b])$. Rovnost $(R) \int_a^b f(x) \, dx = (R) \int_a^c f(x) \, dx + (R) \int_c^b f(x) \, dx$ plyne z předchozí části důkazu.

Poznámka (Úmluva)

1. Necht b < a, pak definujeme $\int_a^b f(x) dx = - \int_b^a f(x) dx$.

Věta 3.9 (O derivaci integrálu podle horní meze)

Nechť J je neprázdný interval a $f \in R([\alpha, \beta])$ pro každé $\alpha, \beta \in J$. Nechť $c \in J$ je libovolný pevný bod. Definujme na J funkci $F(x) = (R) \int_c^x f(t) dt$. Pak platí: 1) F je spojitá na J,

2) je-li f spojitá v $x_0 \in J$, pak $F'(x_0) = f(x_0)$.

Důsledek

Je-li f spojitá na (a,b), pak má na (a,b) primitivní funkci.

Důsledek

Nechť f je spojitá na $[\alpha, \beta], \alpha, \beta \in \mathbb{R}$. Pak

$$(R) \int_{a}^{b} f(t) dt = \lim_{x \to \beta^{-}} F(x) - \lim_{x \to a^{+}} F(x),$$

kde F je primitivní funkce k f na (α, β) .

Důkaz (Věty o defivaci integrálu ...)

1) Nechť $y_0 \in J$ není pravým krajním bodem J. Chceme dokázat $\lim_{y \to y_0 +} F(y) = F(y_0)$. Nyní

$$F(y) - F(y_0) = (R) \int_c^y f(t) dt - (R) \int_c^{y_0} f(t) dt = (R) \int_{y_0}^y f(t) dt \le |y - y_0| K \to 0,$$

jelikož f je Riemannovsky integrovatelná, tedy je omezená f(t) < K. Policií dokážeme $F(y) - F(y_0) \to 0$. Analogicky pro limitu zleva.

2) Víme

$$F'(x_0) = \lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = \lim_{h \to 0} \frac{(R) \int_0^{x_0 + h} f(t) dt - (R) \int_0^{x_0} f(t) dt}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \int_{x_0}^{x_0 + h} f(t) dt.$$

Nyní

$$\frac{1}{h} \cdot \int_{x_0}^{x_0+h} f(t) dt - f(x_0) = \frac{1}{h} \cdot \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt.$$

Zvolme $\varepsilon > 0$. K němu nalezneme $\delta > 0$ tak, že $\forall t \in [x_0 - \delta, x_0 + \delta]$ platí $|f(t) - f(x_0)| < \varepsilon$. Pak platí

$$\left| \frac{1}{h} \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right| \le \frac{1}{h} \cdot \varepsilon \cdot h = \varepsilon.$$

Tedy $F'(x_0) - f(x_0) = 0$ z policie.

3.2 Newtonův integrál

Definice 3.6 (Newtonův integrál)

Řekneme, že funkce f má na intervalu (a,b) Newtonův integrál, jestliže má na (a,b) primitivní funkci F a existují $\lim_{x\to a+} F(x)$ a $\lim_{x\to b-} F(x)$ vlastní. Hodnotou Newtonova integrálu rozumíme číslo

$$(N) \int_{a}^{b} f(t) dt = \lim_{x \to b-} F(x) - \lim_{x \to a+} F(x).$$

Množinu funkcí mající Newtonův integrál značíme N(a, b).

Dusledek

Je-li f spojitá na [a, b], pak existují oba (v budoucnu všechny) integrály a rovnají se.

Existují i funkce integrovatelné pouze N a pouze R: $\int_0^1 \frac{1}{\sqrt{x}} dx$ a $\int_{-1}^1 \operatorname{sgn} x dx$.

Věta 3.10 (Per partes pro určitý integrál)

Necht f, f', g, g' jsou spojité na intervalu [a,b]. Pak $\int_a^b f(x)g'(x)dx = [f \cdot g]_a^b - \int_a^b f'(x)g(x)dx$, $kde \ [fg]_a^b = f(b)g(b) - f(a)g(a)$ a obecněji $\lim_{x \to b_+} f(x)g(x) - \lim_{x \to a_-} f(x)g(x)$.

Důkaz

Víme, že f je primitivní k f' a g je primitivní k g'. Tedy pro primitivní funkci platí $\int f \cdot g' = f \cdot g - \int f' \cdot g$. Dále $\int_a^b f(x) \cdot g'(x) \, dx = Primit(b) - Primit(a) = f(b) \cdot g(b) - f(a) \cdot g(a) - \int_a^b f'(x)g(x) \, dx$. Všechny integrály existují ze spojitosti.

Věta 3.11 (O substituci pro určitý integrál)

Nechť f je spojitá na intervalu [a,b] a $\varphi:[\alpha,\beta] \to [a,b]$ je funkce, která má na $[\alpha,\beta]$ spojitou první derivaci. Pak

$$\int_{\alpha}^{\beta} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

Nechť f je spojitá na intervalu [a,b] a $\varphi:[\alpha,\beta] \to [a,b]$ je na a má na $[\alpha,\beta]$ vlastní spojitou nenulovou derivaci. Pak

$$\int_{a}^{b} f(x) dx = [\Phi(\varphi^{-1}(t))]_{a}^{b} = [\Phi(t)]_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \cdot \varphi'(t) dt,$$

 $kde \Phi je primitivni funkce k (f \circ \varphi) \cdot \varphi'.$

 $D\mathring{u}kaz$

Bez důkazu.

Pozorování

Nechť f je spojitá na (a, b) a a < c < b. Pak

$$1)f \in N(a,c) \land f \in N(c,b) \implies f \in N(a,b).$$

$$2)f \in N(a,b) \implies f \in N(a,c).$$

3.3 Konvergence integrálu

Věta 3.12 (Srovnávací kritérium pro konvergenci integrálů)

Nechť $a \in \mathbb{R}, b \in \mathbb{R}^*$ a a < b. Nechť jsou funkce $f, g : [a, b) \to \mathbb{R}$ spojité na [a, b) a nechť $0 \le f(x) \le g(x) \ \forall x \in [a, b)$. Pak $g \in N(a, b) \implies f \in N(a, b)$.

 $D\mathring{u}kaz$

Zvolme $c \in (a,b)$ a označme G a F primitivní funkce k f a g. BÚNO G(c) = F(c) (jinak odečti konstantu). $(G-F)'(x) = (g-f)(x) \ge 0$ na $[c,b) \implies G-F$ je neklesající na [c,b). Dále $G(c) = F(c) \implies \forall x \in [c,b) : G(x) \ge F(x)$. Dále $G' = g \ge 0$ a $F' = f \ge 0$, tedy jsou neklesající. $g \in N(a,b) \implies \lim_{x\to b_-} G(x) \in \mathbb{R}$. F je neklesající a omezená $\lim_{x\to b_-} G(x)$, tedy $\lim_{x\to b_-} F(x) \in \mathbb{R} \implies f \in N(c,b)$. f je spojitá na [a,c], tj. $f \in N(a,c)$. Tudíž $f \in N(a,b)$.

Poznámka

Platí analogie pro (a, b].

Věta 3.13 (Limitní srovnávací kritérium pro konvergenci integrálu)

Nechť $a \in \mathbb{R}, b \in \mathbb{R}^*$ a a < b. Nechť jsou funkce $f, g : [a, b) \to \mathbb{R}$ spojité a nezáporné na [a, b). Jestliže existuje $\lim_{x \to b-} \frac{f(x)}{g(x)} \in (0, \infty)$, pak $g \in N(a, b) \Leftrightarrow f \in N(a, b)$.

 $D\mathring{u}kaz$

Označme $A = \lim_{x \to b_-} \frac{f(x)}{g(x)}$. Z definice limity pro

$$\varepsilon = \frac{A}{2} \exists \delta > 0 \ \forall x \in P_{-}(b, \delta) : \left| \frac{f(x)}{g(x)} - A \right| < \varepsilon = \frac{A}{2}.$$

Neboli $\exists x_0 \in (a,b) \ \forall x \in [x_0,b] : \frac{3}{2}A \geq \frac{f(x)}{g(x)} \geq \frac{1}{2}A$. Tudíž $\frac{3}{2}A \cdot g(x) \geq f(x) \geq \frac{1}{2}A \cdot g(x)$. $g \in N(a,b) \implies \frac{3}{3}A \cdot g(x) \in N(a,b) \implies f \in N(x_0,b)$ podle předchozí věty. f je spojitá na $[a,x_0]$, tedy $f \in N(a,x_0) \implies f \in N(a,b)$.

Pokud naopak $f \in N(a,b)$, pak $f(x) \in N(x_0,b) \implies \frac{1}{2}A \cdot g(x) \in N(x_0,b) \implies g(x) \in N(x_0,b)$. g je spojitá na $[a,x_0]$, tedy $g \in N(a,x_0) \implies g \in N(a,b)$.

Poznámka

Platí i analogie pro (a, b].

Lemma 3.14 (Odhad Newtonova integrálu součinu dvou funkcí)

Nechť $a,b \in \mathbb{R}$ a a < b. Nechť f je spojitá funkce na [a,b] a $g:[a,b] \in \mathbb{R}$ je nerostoucí, nezáporná a spojitá. Potom $g(a) \cdot \inf_{x \in [a,b]} \int_a^x f(t) \, dt \le \int_a^b f(t) \cdot g(t) \, dt \le g(a) \cdot \sup_{x \in [a,b]} \int_a^x f(t) \, dt$.

Speciálně platí $|\int_a^b f(t) \cdot g(t) dt| \le g(a) \cdot \sup_{x \in [a,b]} |\int_a^x f(t) dt|$.

Věta 3.15 (Abelovo-Dirichletovo kritérium konvergence integrálu)

Nechť $a \in \mathbb{R}, b \in \mathbb{R}^*$ a a < b. Nechť $f : [a,b) \to \mathbb{R}$ je spojitá a F je primitivní funkce k f na (a,b). Dále nechť $g : [a,b) \to \mathbb{R}$ je na [a,b] monotónní a spojitá. Pak platí:

- (A) Je-li $f \in N(a,b)$ a g je omezená, pak $f \cdot g \in N(a,b)$.
- (D) Je-li F(x) omezená na (a,b) a $\lim_{x\to b_-} g(x) = 0$, pak $f\cdot g\in N(a,b)$.

Důkaz (Odhad Newtonova integrálu součinu dvou funkcí)

Dokážeme druhou nerovnost (první je analogická). Nechť $\varepsilon > 0$. Z V7.5 (spojitost na kompaktu a stejnoměrná spojitost) plyne stejnoměrná spojitost f a $f \cdot g$ na [a, b].

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x,y \in [a,b] : |x-y| < \delta \implies |f(x)-f(y)| < \varepsilon \wedge |f(x)\cdot g(x)-f(y)\cdot g(y)| < \varepsilon.$$

Označme $F(x) = \int_a^x f(t) \, dt, x \in [a,b]$. Pak F(a) = 0. Zvolme dělení D intervalu [a,b] s normou $<\delta$. Ze stejnoměrné spojitosti $\forall i \in \{1,\ldots,n\} \ \forall t \in [x_{i-1},x_i]: f(t) \geq f(x_{i-1}) - \varepsilon$. Tedy $\int_{x_{i-1}^x f(t) \, dt \geq f(x_{i-1} \cdot (x_i - x_{i-1}) - \varepsilon \cdot (x_i - x_{i-1}))}$. Analogicky z $f(t) \cdot g(t) \leq f(x_{i-1}) \cdot g(x_{i-1}) + \varepsilon$ dostaneme $\int_{x_{i-1}}^{x_i} f(t) g(t) \, dt \leq f(x_{i-1}) \cdot g(x_{i-1}) \cdot (x_i - x_{i-1}) + \varepsilon \cdot (x_i - x_{i-1})$. Nyní aplikujeme předchozí nerovnost:

$$\leq g(x_{i-1}) \cdot \left(\int_{x_{i-1}}^{x_i} f(t) \, dt + \varepsilon \cdot (x_i - x_{i-1}) \right) + \varepsilon \cdot (x_i - x_{i-1}) \leq$$

g nerostoucí

$$\leq g(x_{i-1}) \cdot \left(\int_{x_{i-1}}^{x_i} f(t) dt \right) + g(a) \cdot \varepsilon \cdot (x_i - x_{i-1}) + \varepsilon \cdot (x_i - x_{i-1}) \leq$$

$$\leq g(x_{i-1}) \cdot \left(\int_{x_{i-1}}^{x_i} f(t) dt \right) + \frac{x_i - x_{i-1}}{a - b} \tilde{\varepsilon},$$

kde $\tilde{\varepsilon} = \varepsilon(g(a) + 1) \cdot (b - a)$.

Nyní

$$\int_{a}^{b} f(t) \cdot g(t) dt = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(t) \cdot g(t) dt \le \sum_{i=1}^{n} g(x_{i-1}) \cdot \int_{x_{i-1}}^{x_{i}} + \tilde{\varepsilon} =$$

$$\sum_{i=1}^{n} g(x_{i-1}) \cdot (F(x_i) - F(x_{i-1})) + \tilde{\varepsilon}.$$

Přes Abelovu parciální sumaci:

$$= \sum_{i=1}^{n-1} F(x_i) \cdot (g(x_{i-1} - g(x_i))) + g(x_{n-1}) \cdot F(x_n) + \tilde{\varepsilon} \le$$

$$\leq \sup_{t \in [a,b]} F(t) \cdot \sum_{i=1}^{n-1} (g(x_{i-1}) - g(x_i) + g(x_{n-1})) + \tilde{\varepsilon} = g(a) \cdot \sup_{t \in [a,b]} F(t) + \varepsilon \cdot (g(a) + 1) \cdot (b - a).$$

Toto platí $\forall \varepsilon > 0$, tedy požadovaná nerovnost platí.

Důkaz (Abelovo-Dirichletovo kritérium konvergence integrálu)

 $f \cdot g$ spojitá na $(a,b) \Longrightarrow \exists$ primitivní funkce H. BÚNO je g nerostoucí. Jinak vezmeme -g a konvergence $\int f \cdot g$ se nezmění.

(A) BÚNO $g \ge 0$: víme, že g je omezená $\exists K > 0 \ \forall x \in [a,b) : |g(x)| < K$. Vezmeme funkci $g(x)+K \ge 0$ a konvergence se nám nezmění. $g \ge 0$ omezená, tedy $\exists c > 0 \ \forall x \in [a,b) : 0 \le g(x) < c$. $f \in N(a,b) \implies \lim_{x \to b_-} F(x) \in \mathbb{R}$. Nechť $\varepsilon > 0$. Z Bolzano-Cauchyovy podmínky pro limitu funkce k tomuto

$$\varepsilon > 0 \; \exists \delta > 0 \; \forall x, y \in P_{-}(b, \delta) : -\varepsilon < F(x) - F(y) < \varepsilon.$$

Necht $x, y \in P_{-}(b, \delta)$, podle lemmatu:

$$H(y) - H(x) = \int_{x}^{y} f(t) \cdot g(t) \, dt \le g(x) \cdot \sup_{z \in [x,y]} \int_{x}^{s} f(t) \, dt = g(x) \cdot \sup_{z \in [x,y]} (F(z) - F(x)) \le g(x) \cdot \sup_{z \in [x,y]} (F(z) - F(z))$$

$$< q(x) \cdot \varepsilon < c \cdot \varepsilon.$$

$$H(y) - H(x) = \int_{x}^{y} f(t) \cdot g(t) dt \ge g(x) \cdot \inf_{z \in [x,y]} \int_{x}^{s} f(t) dt = g(x) \cdot \inf_{z \in [x,y]} (F(z) - F(x)) \ge$$

$$> -g(x) \cdot \varepsilon > -c \cdot \varepsilon.$$

Tedy $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in P_{-}(b, \delta) : |H(x) - H(y)| < c \cdot \varepsilon$. Tedy z BC podmínky pro limitu funkce $\exists \lim_{x \to b_{-}} H(x)$. Nechť $u \in (a, b), \; f \cdot g$ je spojitá na $[a, u] \implies f \cdot g \in N(a, c)$. H je spojitá v $u \implies \exists \lim_{x \to u_{-}} H(x) \implies f \cdot g \in N(u, b)$. Tudíž $f \cdot g \in N(a, b)$.

(D) Víme g nerostoucí a $\lim_{x\to b_-} g(x)=0 \implies g\geq 0$. F(x) omezená, tj. $\exists K>0 \ \forall x\in (a,b): |F(x)|\leq K$. Nechť $\varepsilon>0$:

$$Z \lim_{x \to b} g(x) = 0 \ \exists \delta > 0 \ \forall x \in P_{-}(b, \delta) : |g(x)| < \varepsilon.$$

Nyní $\forall x, y \in P_{-}(b, \delta), x < y$ platí

$$H(y) - H(x) = \int_{x}^{y} f(t)g(t) dt \le g(x) \cdot \sup_{z \in [x,y]} \int_{x}^{z} f(t) dt = g(x) \cdot \sup_{z \in [x,y]} (F(z) - F(x)) \le f(x) + f(x) = f(x) = f(x) + f(x) = f(x$$

$$\leq \varepsilon \cdot \sup_{z \in [x,y]} F(z) - F(x) \leq \varepsilon \cdot 2K.$$

Analogicky

$$H(y) - H(x) = \int_{x}^{y} f(t)g(t) dt \ge g(x) \cdot \inf_{z \in [x,y]} \int_{x}^{z} f(t) dt = g(x) \cdot \inf_{z \in [x,y]} (F(z) - F(x)) \ge$$
$$\ge \varepsilon \cdot \inf_{z \in [x,y]} F(z) - F(x) \ge -\varepsilon \cdot 2K.$$

Tedy H splňuje BC podmínku a $\exists \lim_{x\to b_-} H(x)$. A z toho dostaneme $f\cdot g\in N(a,b)$. \square

Věta 3.16 (O střední hodnotě integrálního počtu)

Nechť $a,b \in \mathbb{R}, a < b$. Nechť f je spojitá funkce na intervalu [a,b], g je nezáporná na $[a,b], g \in N(a,b)$ a $f \cdot g \in (a,b)$. Potom existuje $c \in [a,b]$ tak, že $\int_a^b f(x) \cdot g(x) \, dx = f(c) \cdot \int_a^b g(x) \, dx$.

Důkaz

f je spojité na [a,b], tedy nabývá mezihodnot. Také je na [a,b] omezená. Označme $m=\min_{x\in[a,b]}f(x)$ a $M=\max_{x\in[a,b]}f(x)$. Pak $m\cdot g(x)\leq f(x)\cdot g(x)\leq M\cdot g(x)$. Je-li $\int_a^b g=0$, volíme c libovolně. Necht $\int_a^b g(x)\,dx>0$. Pak

$$m \le \frac{\int_a^b f(x) \cdot g(x) \, dx}{\int_a^b g(x) \, dx} \le M.$$

f nabývá mezihodnot, a proto $\exists c \in [a, b]$ tak, že $f(c) = \frac{\int_a^b g(x) \cdot f(x) \, dx}{\int_a^b g(x) \, dx}$.

3.4 Aplikace určitého integrálu

Definice 3.7 (Obsah)

Nechť $f:[a,b]\to\mathbb{R}$ je nezáporná spojitá funkce, pak obsahem plochy pod grafem funkce nazveme

$$Obsah(f, [a, b]) = (R) \int_{a}^{b} f(x) dx = (N) \int_{a}^{b} f(x) dx.$$

Definice 3.8 (Délka křivky)

Nechť $f:[a,b]\to\mathbb{R}$ je spojitá funkce a nechť $D=\{x_j\}_{j=0}^n$ je dělením intervalu [a,b]. Označme $L(f,D)=\sum_{j=1}^n\sqrt{(x_j-x_{j-1})^2+(f(x_j)-f(x_{j-1}))^2}$. Délkou křivky f nazveme $L(f,[a,b])=\sup_D L(f,D)$.

Věta 3.17

Necht f má na intervalu [a, b] spojitou první derivaci. Pak $L(f, [a, b]) = \int_a^b \sqrt{1 + (f'(x))^2} dx$.

 $D\mathring{u}kaz$

Označme $g(x) = \sqrt{1 + (f'(x))^2}$. Mějme dělení $D = \{x_j\}_{j=0}^n$. Pak

$$L(f, [a, b]) = \sum_{j=1}^{n} \sqrt{(x_j - x_{j-1})^2 + (f(x_j) - f(x_{j-1}))^2} =$$

$$= \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + \left(\frac{f(x_j) - f(x_{j-1})}{x_j - x_{j-1}}\right)^2} = \sum_{j=1}^{n} (x_j - x_{j-1}) \sqrt{1 + (f'(\zeta_j))^2},$$

podle Lagrangeovy věty o střední hodnotě, kde $\zeta_j \in (x_{j-1}, x_j)$. Odtud snadno odvodíme, že $s(g, D) \leq L(f, D) \leq S(g, D)$. Tedy $\sup_D s(g, D) = \int_a^b g \leq \sup_D L(f, D) = L(f)$.

Sporem: Nechť $L(f) > \int_a^b g(x) \, dx$. Tedy \exists dělení D, že $L(f,D) > \int_a^b g(x) \, dx$. Zvolme posloupnost dělení $\{D_n\}$ tak, že D_1 zjemňuje D, D_{n+1} zjemňuje D_n a $\lim_{n\to\infty} \nu(D_n) = 0$. Pak $L(f,D) \leq L(f,D_1) \leq L(f,D_2) \leq \dots$ (jemnější dělení dává delší "délku"). Z nerovnosti v prvním odstavci je $L(f,D_n) \leq S(g,D_n)$, tedy $\lim_{n\to\infty} S(g,D_n) \geq L(f,D)$. 4. \square

Věta 3.18 (Délka křivky v \mathbb{R}^n)

 $Necht \varphi : [a, b] \to \mathbb{R}^n$ je spojitá a má spojitou první derivaci. Pak

$$L(\varphi([a,b])) = \int_a^b \sqrt{(\varphi'_1(x))^2 + \ldots + (\varphi'_n(x))^2} dx.$$

 $D\mathring{u}kaz$

Bez důkazu.

Poznámka

Délka křivky nezávisí na parametrizaci.

Věta 3.19 (Objem a povrch rotačního tělesa)

Nechť $f:[a,b] \to \mathbb{R}$ je spojitá a nezáporná. Označme

$$T = \left\{ [x, y, z] \in \mathbb{R}^2 | x \in [a, b] \land \sqrt{y^2 + z^2} \le f(x) \right\}.$$

Pak Objem $(T) = \pi \cdot \int_a^b (f^x)^2 dx$.

Je-li navíc f spojitá na [a,b], pak Obsahpovrchu $(T)=2\pi\cdot\int_a^b f(x)\cdot\sqrt{1+(f'(x))^2}\,dx$.

 $D\mathring{u}kaz$

Bez důkazu.

Věta 3.20 (Integrální kritérium konvergence řad)

Nechť f je nezáporná, nerostoucí a spojitá na $n_0 - 1, \infty$ pro nějaké $n_0 \in \mathbb{N}$. Nechť pro posloupnost a_n platí $a_n = f(n)$ pro všechna $n \geq n_0$. Pak

$$(N)$$
 $\int_{n_0}^{\infty} f(x) dx < +\infty \Leftrightarrow \sum_{n=1}^{\infty} a_n \text{ konverguje.}$

Důkaz

Nechť $n_1 \ge n_0$ a mějme $D = \{n_0, n_0 + 1, \dots, n_1\}$ intervalu $[n_0, n_1]$. Funkce f je nerostoucí, a tedy

$$S(f,D) = a_{n_0} + \ldots + a_{n_1-1} = \sum_{i=n_0}^{n_1-1} a_i,$$

$$s(f, D) = a_{n_0+1} + \ldots + a_{n_1} = \sum_{i=n_0+1}^{n_1} a_i.$$

Protože f je spojitá na $[n_0, n_1]$, platí

$$\sum_{i=n_0+1}^{n_1} a_i = s(f,D) \le (R) \int_{n_0}^{n_1} f(x) \, dx = (N) \int_{n_0}^{n_1} f(x) \, dx \le S(f,D) = \sum_{i=n_0}^{n_1-1} a_i.$$

Necht $\int_{n_0}^{\infty} f(x) dx$ konverguje. Pak je $F(x) = \int_{n_0}^{x} f(t) dt$, $t \in [n_0, \infty)$ je primitivní k f(x) na (n_0, ∞) (z derivace integrálu podle mezí). Tedy $\forall n_1 \geq n_0$ (z nerovnosti výše):

$$\int_{n_0}^{\infty} f(x) dx = \lim_{x \to \infty} F(x) - F(n_0) = \lim_{x \to \infty} \int_{n_0}^{x} f(t) dt \ge$$

$$\geq \lim_{n\to\infty} \sum_{i=n_0+1}^n a_i = \sum_{i=n_0+1}^\infty a_i \implies \sum_{n=1}^\infty a_n \text{konverguje}.$$

Obráceně: Nechť $\sum_{i=1}^{\infty} a_i$ konverguje $\implies \sum_{i=n_0+1}^{\infty} a_i$ konverguje. Z nerovnosti výše:

$$\sum_{i=n_0+1}^{\infty} a_i = \lim_{n \to \infty} \sum_{i=n_0+1}^{n} a_i \ge \lim_{n \to \infty} \int_{n_0}^{\infty} f(t) dt = \lim_{n \to \infty} F(n) = \lim_{x \to \infty} F(x).$$

Tedy
$$\lim_{x\to\infty} F(x) \in \mathbb{R} \implies \int_{n_0}^{\infty} f(x) dx$$

Příklad (Stirlingova formule, nezkouší se)

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n} = 1.$$

Důkaz (Nástřel)

Vytknout konstanty, zlogaritmovat, upravit a použít Abelovu parciální sumaci. Následně použít Lagrangeův tvar zbytku TP. Následně podle předchozí věty dokážeme konvergenci. Následně si pomocí Wallisovy formule (Per partes na $\sin^n x$, $\frac{1}{2n+1}$.

 $\left(\frac{(2n)!!}{(2n-1)!!}\right)^2 \to \frac{\pi}{2}$) "odvodíme" hodnotu π . Potom si do Wallisovy formule dosadíme limitu Stirlingovi (jako nějaké a) a dopočítáme.

4 Obyčejné diferenciální rovnice

4.1 Řešení, existence a jednoznačnost

Definice 4.1 (ODR)

Nechť $\Phi: \Omega \subseteq \mathbb{R}^{n+2} \to \mathbb{R}$. Obyčejnou diferenciální rovnicí (ve zkratce ODR) *n*-tého řádu nazveme $\Phi(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$.

Definice 4.2 (Řešení ODR)

Řešení ODR na intervalu $I\subseteq \mathbb{R}$ je funkce y(x) splňující:

- Existuje $y^{(k)}(x)$ vlastní pro $k=1,\ldots,n$ v I a všechna $x\in I.$
- Rovnice ODR platí pro všechna $x \in I$.

Definice 4.3

Řekneme, že (\tilde{y}, \tilde{I}) je rozšířením řešení (y, I), pokud \tilde{y} je řešení na $\tilde{I}, I \subset \tilde{I}, y = \tilde{y}$ na I.

Řekneme, že (y, I) je maximální řešení, pokud nemá rozšíření.

Definice 4.4 (Otevřený interval)

Řekneme, že $I\subseteq\mathbb{R}^n$ je otevřený interval, pokud existují otevřené intervaly I_1,I_2,\ldots,I_n tak, že $I=I_1\times\ldots\times I_n$.

Definice 4.5 ((Otevřená) koule)

Nechť $c \in \mathbb{R}^n$ a r > 0. Definujeme (otevřenou) kouli jako

$$B(c,r) = \left\{ x \in \mathbb{R} |||x - c|| = \sqrt{\sum_{i=1}^{n} (x_i - c_1)^2} < r \right\}.$$

Definice 4.6

Necht $I \subseteq \mathbb{R}^n$ je otevřený interval a $f: I \to \mathbb{R}$ je funkce. Řekneme, že f je spojitá v bodě $x_0 \in I$, pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B(x_0, \delta) \cap I : |f(x) - f(x_0)| < \varepsilon.$$

Řekneme, že f je spojitá na I, pokud je spojitá ve všech bodech I.

Věta 4.1 (Peano s $y^{(n)}$)

Nechť $I \subset \mathbb{R}^{n+1}$ otevřený interval, $f: I \to \mathbb{R}$ je spojitá. $[x_0, y_0, \dots, y_{n-1}] \in I$. Pak existuje $\delta > 0$ a okolí x_0 a funkce y(x) definovaná na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)) \ \forall x \in (x_0 - \delta, x_0 + \delta)$$

s počáteční podmínkou $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$

 $D\mathring{u}kaz$

Později.

Pozor

Tato věta je lokální a nedává jednoznačnost řešení.

Definice 4.7

Nechť $I \subseteq \mathbb{R}^2$ je otevřený interval. Řekneme, že funkce $f: I \to \mathbb{R}$ je lokálně lipschitzovská vůči y, pokud $\forall U \subseteq I$ omezené existuje $K \in \mathbb{R}$ tak, že

$$|f(x,y) - f(x,\tilde{y})| \le K \cdot (y - \tilde{y}) \ \forall [x,y] \in U \land [x,\tilde{y}] \in U.$$

Věta 4.2 (Picard)

Nechť $I \subseteq \mathbb{R}^2$ je otevřený interval a $[x_0, y_0] \in I$. Nechť $f: I \to \mathbb{R}$ je spojitá a lokálně lipschitzovská vůči y. Pak existuje $(x_0 - \delta, x_0 + \delta)$ a funkce y(x) definována na $(x_0 - \delta, x_0 + \delta)$ tak, že y(x) splňuje ODR y'(x) = f(x, y(x)) pro $x \in (x_0 - \delta, x_0 + \delta)$ s počáteční podmínkou $y(x_0) = y_0$. Navíc y je jediné řešení na $(x_0 - \delta, x_0 + \delta)$.

 $D\mathring{u}kaz$ Později.

4.2 Rovnice prvního řádu

Definice 4.8

Nechť $\Omega \subseteq \mathbb{R}^2$ je otevřený interval a $f:\Omega \to \mathbb{R}$ je spojitá, kde $\omega \subseteq \mathbb{R}$. V této kapitole studujeme pouze rovnice typu y'(x) = f(x,y(x)).

Poznámka (Speciální tvary)

$$y' = f(x) \implies y(x) = c + \int_{x_0}^x f(t) dt,$$
$$y'(x) = g(y(x)),$$

 $y'(x) = g(y(x)) \cdot h(x)$ (separované proměnné),

 $y'(x) = h\left(\frac{y(x)}{x}\right)$ (homogenní rovnice) (substitucí převedeme na předchozí),

$$y'(x) = a(x) \cdot y + b(x)$$
 (lineární rovnice 1. řádu),

 $y'(x) = a(x) \cdot y(x) + b(x) \cdot y^{\alpha}(x)$ (Bernouliho rovnice) (substitucí převedeme na předchozí).

Věta 4.3 (O existenci řešení separované rovnice)

Nechť $h:(a,b)\to\mathbb{R}$ je spojitá, $g:(c,d)\to\mathbb{R}$ je spojitá a nenulová. Potom každým bodem $[x_0,y_0]\in(a,b)\times(c,d)$ prochází právě jedno řešení rovnice $y'(x)=g(y(x))\cdot h(x)$.

g je spojitá a nenulová \Longrightarrow nemění znaménko. Můžeme definovat $H(x)=\int_{x_0}^x h(t)\,dt$ a $G(y)=\int_{y_0}^y \frac{1}{g(s)}\,ds.$ g nemění znaménko, tedy G je monotónní, tj. $\exists G^{-1}$. Chceme ukázat, že $y(x)=G^{-1}(H(x))$ je řešení. h,g spojité $\Longrightarrow H',G',(G^{-1})'$ je spojitá. Podle derivace složené funkce a derivace inverzní funkce

$$y'(x) = (G^{-1}(H(x)))' = (G^{-1})'(H(x)) \cdot H'(x) =$$

$$= \frac{1}{G'(G^{-1}(H(x)))} \cdot h(x) = \frac{1}{\frac{1}{g(y(x))}} h(x) = g(y(x)) \cdot h(x).$$

Ověříme, že splňuje počáteční podmínku:

$$H(x_0) = 0,$$
 $G(y_0) = 0,$ $y(x_0) = G^{-1}(H(x_0)) = G^{-1}(0) = y_0.$

Jednoznačnost: Nechť y(x) a a(x) jsou řešení: $y'(x) = g(y(x)) \cdot h(x)$, $a'(x) = g(a(x)) \cdot h(x)$, $y(x_0) = y_0 = a(x_0) \implies (g \text{ nenulov\'e}) \frac{y'(x)}{g(y(x))} = h(x) = \frac{a'(x)}{g(a(x))}$.

$$G(y(x)) - G(y(x_0)) = \int_{x_0}^x \frac{y'(x)}{g(y(x))} dx = \int_{x_0}^x \frac{a'(x)}{g(a(x))} = G(a(x)) - G(a(x_0)) \implies$$

$$\implies G(y(x)) = G(a(x)) \stackrel{G \text{ monotónní}}{\Longrightarrow} y(x) = a(x).$$

Věta 4.4 (O řešení lineární diferenciálni rovnice prvního řádu)

Nechť $(c,d) \subseteq \mathbb{R}$ je interval, $x_0 \in (c,d)$ a $a,b:(c,d) \to \mathbb{R}$ jsou spojité funkce. Maximální řešení rovnice $y'(x) = a(x) \cdot y(x) + b(x)$ s počáteční podmínkou $y(x_0) = y_0$ má tvar

$$y(x) = \left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt\right) \cdot e^{A(x)} + y_0 \cdot e^{A(x)},$$

pro $x \in (c,d)$, kde A je primitivní k a splňující $A(x_0) = 0$.

Zřejmě $y(x_0) = 0 \cdot e^{A(x_0)} + y_0 \cdot e^{A(x_0)} = y_0$. Z věty o derivaci podle horní meze

$$\left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt\right)' = b(x) \cdot e^{-A(x)},$$

tedy

$$y'(x) = b(x) \cdot e^{-A(x)} \cdot e^{A(x)} + \left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt \right) \cdot e^{A(x)} \cdot a(x) + y_0 \cdot e^{A(x)} \cdot a(x),$$

$$a(x) \cdot y(x) + b(x) = a(x) \cdot \left(\int_{x_0}^x b(t) \cdot e^{-A(t)} dt \right) \cdot e^{A(x)} + a(x) \cdot y_0 \cdot e^{A(x)} + b(x).$$

Tyto výrazy se rovnají, tudíž y řeší naši ODR s počáteční podmínkou $y(x_0) = y_0$ na celém (c,d).

Jednoznačnost: Nechť y(x) a z(x) řeší naši ODR, pak u(x) = y(x) - z(x). Dosazením y, z do ODR a odečtením dostaneme $u'(x) = a(x) \cdot u(x), u(x_0) = 0$. Tj.

$$\frac{u'(x)}{u(x)} = (\ln u(x))' = a(x) \implies \ln u(x) = A(x) + C \implies e^{A(x)} \cdot \tilde{C}.$$

$$Z u(x_0) = 0$$
 je $\tilde{C} = 0$, tedy $u \equiv 0 = y(x) - z(x)$.

4.3 Systémy lineárních ODR a lineární rovnice n-tého řádu

Definice 4.9

Nechť I je interval a mějme funkce $a_0,a_1,\dots,a_{n-1},b:I\to\mathbb{R}.$ Lineární ODR řádu n nazveme rovnici

$$y^{(n)} + a_{n-1}(x) \cdot y^{(n-1)} + \ldots + a_1(x) \cdot y' + a_0 \cdot y = f(x), \qquad x \in I.$$

Je-li $b \equiv 0$ na I, pak se rovnice nazývá homogenní.

Definice 4.10

Nechť $I \subseteq \mathbb{R}$ je interval. Mějme funkce $\mathbf{b}, \mathbf{y}: I \to \mathbb{R}^n$ a mějme maticovou funkci $A: I \to \mathbb{R}^{n^2}$. Systémem ODR prvního řádu rozumíme systém rovnic

$$y_i' = a_{i,1} \cdot y_1 + \ldots + a_{i,n} \cdot y_n + b_i.$$

Neboli v maticovém zápisu $\mathbf{y}' = A \cdot \mathbf{y} + \mathbf{b}$.

Je-li $\mathbf{b} \equiv \mathbf{o}$, pak se systém nazývá homogenní.

Poznámka

Řešení jedné rovnice řádu n lze převést na řešení systému n rovnic řádu 1 (zavedeme si funkce $u_i = y^{(i-1)}$ a řekneme, že musí splňovat $u'_i = u_{i+1}$, poslední rovnice pak vznikne z původní rovnice).

Věta 4.5 (O existenci řešení systému ODR 1. řádu)

Nechť $I \subseteq \mathbb{R}$ je interval a mějme spojité funkce $b_j, a_{ij} : I \to \mathbb{R}$ pro $i, j \in [n]$. Nechť $x_0 \in I$, $\mathbf{y}^0 \in \mathbb{R}^n$ a $A = (a_{ij})_{i,j=1}^n$ je spojitá maticová funkce. Pak existuje právě jedno řešení rovnice $\mathbf{y}' = A\mathbf{y} + \mathbf{b}$ s počáteční podmínkou $\mathbf{y}(x_0) = \mathbf{y}^0$ definované na celém I.

Důkaz

Později.

Definice 4.11

 $C^1(I,\mathbb{R}^n):=\{\mathbf{y}:I\to\mathbb{R}^n:\mathbf{y}_i'\text{ je spojitá funkce z }I\text{ do }\mathbb{R}\text{ }\forall i\in[n]\}$

Věta 4.6 (Prostor řešení ODR 1. řádu)

Nechť $I \subseteq \mathbb{R}$ je interval a mějme spojité funkce $b_j, a_{ij} : I \to \mathbb{R}$, pro $i, j \in [n]$. Označme

$$L(\mathbf{y}) = \mathbf{y}' - A\mathbf{y}, \qquad H = \operatorname{Ker} L = \left\{ \mathbf{y} \in C^1(I, \mathbb{R}^n) : L(\mathbf{y}) = 0 \ na \ I \right\}.$$

Pak H je vektorový prostor dimenze n. Označme M množinu všech řešení nehomogenního systému rovnic $L(\mathbf{y}) = \mathbf{y}' - A\mathbf{y} = \mathbf{b}$ a nechť \mathbf{y}_0 je jedno pevné řešení $L(\mathbf{y}_0) = \mathbf{b}$. Pak $M = \mathbf{y}_0 + \operatorname{Ker} L$.

 $D\mathring{u}kaz$

Nechť $x_0 \in I$. Podle předchozí věty existuje řešení $\mathbf{y}_1, \ldots, \mathbf{y}_n$ rovnice $\mathbf{y}' = A\mathbf{y}$ takové, že $\mathbf{y}_i(x_0) = \mathbf{e}_i$. Tvrdíme, že $\mathbf{y}_1, \ldots, \mathbf{y}_n$ tvoří bázi H. Zřejmě jsou to řešení. Jsou lineárně nezávislé, protože kdyby ne, pak $\exists c_1, \ldots, c_n \in \mathbb{R}$ tak, že $c_1\mathbf{y}_1(x) + \ldots + c_n\mathbf{y}_n(x) \equiv \mathbf{o}$. Speciálně pro $x = x_0 : c_1\mathbf{e}_1 + c_2\mathbf{e}_2 + \ldots + c_n\mathbf{e}_n = \mathbf{o}$, tedy $c_i = 0 \forall i \in [n]$.

Navíc tvoří bázi: Nechť $y \in M$ tj. $\mathbf{y}' = A\mathbf{y}$. Pak $\mathbf{y}(x_0) = [\alpha_1, \dots, \alpha_n] = \alpha_1 \mathbf{y}_1(x_0) + \dots + \alpha_n \mathbf{y}_n(x_0)$. Podle předchozí věty existuje právě jedno řešení $\mathbf{y}' = A\mathbf{y}$ s počáteční podmínkou $\mathbf{y}(x_0) = [\alpha, \dots, \alpha_n]$. Ale $\alpha_1 \mathbf{y}_1(x) + \dots + \alpha_n \mathbf{y}_n(x)$ řeší $\mathbf{y}' = A\mathbf{y}$. Z jednoznačnosti řešení $\mathbf{y}(x) = \alpha_1 \mathbf{y}_1(x) + \dots + \alpha_n \mathbf{y}_n(x)$.

Podle předchozí věty existuje řešení \mathbf{y}_0 rovnice $\mathbf{y}' = A\mathbf{y} + \mathbf{b}$. $\mathbf{y}_0 + \operatorname{Ker} L \subseteq M$: Necht $\mathbf{y} \in H$, pak $(\mathbf{y}_0 + \mathbf{y})' = A\mathbf{y}_0 + \mathbf{b} + A\mathbf{y} = A \cdot (\mathbf{y}_0 + \mathbf{y}) + \mathbf{b} \implies \mathbf{y}_0 + \mathbf{y} \in M$. $\mathbf{y}_0 + \operatorname{Ker} L \supseteq M$: Necht $\mathbf{y}_1 \in M$, \mathbf{y}_1 řeší $\mathbf{y}_1' = A \cdot \mathbf{y}_1 + \mathbf{b}$. Označme $\mathbf{y} = \mathbf{y}_1 - \mathbf{y}_0$. Pak $\mathbf{y}' = \mathbf{y}_1' - \mathbf{y}_0' = A\mathbf{y}_1 + \mathbf{b} - (A\mathbf{y}_0 + \mathbf{b}) = A(\mathbf{y}_1 - \mathbf{y}_0) = A\mathbf{y} \implies \mathbf{y} \in H$.

Definice 4.12 (Fundamentální systém řešení)

Libovolnou bázi $\{\mathbf{y}_1, \dots, \mathbf{y}_n\}$ prostoru $H = \operatorname{Ker}(\mathbf{y}' - A\mathbf{y})$ (tj. libovolných n lineárně nezávislých řešení homogenní rovnice $\mathbf{y}' = A\mathbf{y}$) nazýváme fundamentálním systémem řešení (FSŘ) homogenní rovnice $\mathbf{y}' = A\mathbf{y}$.

4.4 Rovnice n-tého řádu s konstantními koeficienty

Definice 4.13 (Charakteristický polynom)

Nechť $a0, a_1, \ldots, a_{n-1} \in \mathbb{R}$. Pak $\lambda^n + a_{n-1} \cdot \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0$ nazveme charakteristickým polynomem rovnice $y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0$.

Věta 4.7 (FSŘ pro rovnici *n*-tého řádu s konstantními koeficienty)

Mějme zadány $a_0, \ldots, a_{n-1} \in \mathbb{R}$ a nechť $\lambda_1, \ldots, \lambda_k$ jsou kořeny charakteristického polynomu s násobností s_1, \ldots, s_k . Pak funkce

$$e^{\lambda_1 x}, x \cdot e^{\lambda_1 x}, \dots, x^{s_1 - 1} \cdot e^{\lambda_1 x}, \dots, e^{\lambda_k x}, \dots, x^{s_k - 1} \cdot e^{\lambda_k x}$$

tvoří fundamentální systém řešení $y^{(n)} + \ldots + a_1 y' + a_0 y = 0$ na \mathbb{R} .

 $D\mathring{u}kaz$

Podle věty výše stačí ukázat, že tyto funkce řeší ODR a jsou lineárně nezávislé. 1. krok: Označme $L(y) = y^{(n)} + \ldots + a_1 y' + a_0 y$ a $Q(\lambda)$ charakteristický polynom. Chceme $Q(\lambda) = 0 \implies L(e^{\lambda x}) = e^{\lambda}Q(\lambda) = 0$. To dostaneme snadno z derivace $(e^{\lambda x})' = \lambda \cdot e^{\lambda x}$ atd.

- 2. krok: Nechť $\lambda=0$ je s-násobný kořen $Q(\lambda)$. Chceme ukázat, že $1,x,\ldots,x^{s-1}$ patří do FSŘ. 0 je s-násobný kořen $\Longrightarrow Q(\lambda)=\lambda^s P(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+\ldots+a_s\lambda^s+0+\ldots+0$. Derivace $1,\ldots,x^{s-1}$ řádu s a vyšší jsou $0\Longrightarrow$ tyto funkce jsou řešením L(y)=0.
- 3. krok: Nechť λ_0 je s-násobný kořen Q(x). Chceme $e^{\lambda_0 x}, \ldots, x^{s-1} e^{\lambda_0 x}$ jsou řešení. Napišme řešení ve tvaru $y(x) = a(x) \cdot e^{\lambda_0 x}$. Potom $y'(x) = a'(x) e^{\lambda_0 x} + a(x) \lambda_0 e^{\lambda_0 x}, \ y''(x) = a''(x) e^{\lambda_0 x} + \ldots$ Obecně $L(y) = L(a \cdot e^{\lambda_0 x}) = e^{\lambda_0 x} \cdot M(a)$, kde M je lineární diferenciální operátor řádu n s konstantními koeficienty, tedy $M(a) = b_n a^{(n)} + \ldots + b_1 a' + b_0 \cdot a, \ b_j \in \mathbb{R}$. Označme Q_1 charakteristický polynom M(a).

Z bodu 1 víme, že $L(e^{\lambda x})=e^{\lambda x}\cdot Q(\lambda)$ a analogicky $M(e^{\lambda x})=e^{\lambda x}Q_1(\lambda)$. Nyní trochu magie:

$$Q_1(\lambda) = \frac{M(e^{\lambda x})}{e^{\lambda x}} = \frac{L(e^{\lambda x}e^{\lambda_0 x})}{e^{\lambda_0 x}e^{\lambda x}} = \frac{L(e^{\lambda x + \lambda_0 x})}{e^{\lambda_0 x + \lambda x}} = Q(\lambda + \lambda_0).$$

Víme, že $Q(\lambda)$ má λ_0 jako s-násobný kořen $\Longrightarrow Q_1(\lambda)$ má 0 jako s-násobný kořen. Podle 2. kroku $1, x, \ldots, x^{s-1}$ je řešením M(a) = 0, tedy $y = a \cdot e^{\lambda_0 x}$ pro $a = 1, x, \ldots, x^{s-1}$ jsou řešení.

4. krok Funkce … jsou lineárně nezávislé. Nechť pro spor existují polynomy p_1, \ldots, p_k (deg $p_i \leq s_i - 1$) tak, že $\sum_{j=1}^k P_j(x)e^{\lambda_j x} = 0$. BÚNO $P_j \not\equiv 0$. Vynásobíme předchozí rovnici $e^{-\lambda_k x}$:

$$0 = P_1(x)e^{(\lambda_1 - \lambda_k)x} + \ldots + P_2(x)e^{(\lambda_2 - \lambda_k)x} + \ldots + P_k(x)$$

Toto s krát zderivujeme (pozorování: derivací $P_j e^{\lambda_j x}$ nesnižujeme stupeň polynomu):

$$0 = R_1(x)e^{\lambda_1 - \lambda_k} + \ldots + R_{k-1}(x)e^{(\lambda_{k-1} - \lambda_k)x}.$$

Toto provedeme (k-1)krát, až nám zbude $S(x)e^{\tilde{\lambda}x}\equiv 0$, kde deg $S=\deg P_1$. Ale $S\equiv 0$, což je spos s $P_1\not\equiv 0$.

Věta 4.8 (O speciální pravé straně pro rovnici *n*-tého řádu)

Mějme zadány $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$, nechť $P_m(x)$ je polynom m-tého řádu a $(\alpha + i\beta)$ je k-násobný kořen charakteristického polynomu (lze i $k = 0, \alpha = 0, \beta = 0$). Pak rovnice $y^{(n)} + \ldots + a_1 y' + a_0 y = P_m(x) e^{\alpha x} \cdot \cos \beta x$ (případně se sin místo cos) má na \mathbb{R} řešení ve tvaru

$$y_0(x) = x^k Q_m(x)e^{\alpha x} \cos \beta x + x^k R_m(x)e^{\alpha x} \sin \beta x,$$

 $kde Q_m \ a \ R_m \ jsou \ polynomy \ stupně m.$

 $D\mathring{u}kaz$

Bez důkazu.

Poznámka

Není-li pravá strana rovnice ve tvaru kvazipolynomu, pak lze řešení nehomogenní rovnice najít metodou variace konstant ve tvaru

$$y(x) = \sum_{i=1}^{n} c_i(x)y_i(x),$$

kde $\{y_1, \ldots, y_n\}$ tvoří FSŘ rovnice

$$y^{(n)} + \ldots + a_1 y' + a y = 0.$$

4.5 Systémy rovnic s konstantními koeficienty

Věta 4.9 (FSŘ pro soustavu rovnic s konstantními koeficienty)

Nechť má matice A všechna vlastní čísla $\lambda_1, \ldots, \lambda_n$ různá a nechť $\mathbf{v}_1, \ldots, \mathbf{v}_n$ jsou příslušné vlastní vektory. Pak vektorové funkce $\mathbf{v}_1 \cdot e^{\lambda_1 x}, \ldots, \mathbf{v}_n e^{\lambda_n x}$ tvoří fundamentální systém řešení $\mathbf{y}' = A \cdot \mathbf{y}$ na \mathbb{R} .

 $D\mathring{u}kaz$

Je to řešení: Nechť $y(x) = \mathbf{v}_1 \cdot e^{\lambda_1 x}$, pak $\mathbf{y}'(x) = \mathbf{v}_i \lambda_1 e^{\lambda_1 x}$, neboli $\mathbf{y}'(x) = A \cdot \mathbf{v}_1 \cdot e^{\lambda_1 x} = A \cdot \mathbf{y}(x)$.

Je to lineárně nezávislé (že je jich n víme...): Nechť pro spor $\exists C_i \in \mathbb{R} : C_1 \mathbf{v}_1 e^{\lambda_1 x} + \ldots + C_n \cdot \mathbf{v}_n \cdot e^{\lambda_n x} = 0$. BÚNO $C_1 \neq 0$. Vydělíme poslední exponencielou a zderivujeme:

$$C_1 \cdot \mathbf{v}_{11} \cdot e^{(\lambda_1 - \lambda_n)x} + \ldots + C_n \cdot \mathbf{v}_n = 0,$$

$$C_1(\lambda_1 - \lambda_n)\mathbf{v}_1 \cdot e^{(\lambda_1 - \lambda_n)x} + \ldots + C_{n-1}(\lambda_1 - \lambda_n)\mathbf{v}_{n-1}e^{(\lambda_{n-1} - \lambda_n)x} = 0.$$

(n-1)-krát zopakujeme a dostaneme $C_1 \cdot \mathbf{v}_1 = 0 \implies C_1 = 0, 4.$

Poznámka

Nemá-li matice A všechna vlastní čísla různá, pak lze FSŘ také algoritmicky sestrojit. Nechť λ je k-násobné vlastní číslo. Pokud existuje k lineárně nezávislých vlastních vektorů $\mathbf{v}_1, \dots, \mathbf{v}_k$, pak do FSŘ dáme funkce $\mathbf{v}_1 \cdot e^{\lambda x}, \dots, \mathbf{v}_k e^{\lambda x}$. Pokud existuje pouze jeden vlastní vektor, tak nalezneme řetězce vektorů $\mathbf{v}_2, \dots, \mathbf{v}_k$, aby $(A - \lambda I) \cdot \mathbf{v}_1 = 0$, $(A - \lambda I)\mathbf{v}_2 = \mathbf{v}_1$, \dots a do FSŘ dáme funkce $\mathbf{v}_1 e^{\lambda x}$, $\mathbf{v}_1 \cdot x \cdot e^{\lambda x} + \mathbf{v}_2 e^{\lambda x}$, \dots

Pokud existuje více vlastních vektorů, ale ne k, pak provedeme něco mezi. Záleží na Jordanově tvaru matice $A=R^{-1}JR$.

Definice 4.14

Nechť $\mathbf{y}^1, \mathbf{y}^2, \dots, \mathbf{y}^n$ tvoří FSŘ $\mathbf{y}' = A \cdot \mathbf{y}$. Pak matici $\varphi(x) = (\mathbf{y}_1(x)|\mathbf{y}_2|\dots|\mathbf{y}_n)$ nazýváme fundamentální maticí soustavy $\mathbf{y}' = A \cdot \mathbf{y}$. (Tj. $\varphi'(x) = A \cdot \varphi(x)$.)

Lemma 4.10

Necht φ je fundamentální matice soustavy $\mathbf{y}' = A \cdot \mathbf{y}$ na intervalu I. Pak $\varphi(x)$ je regulární pro každé $x \in I$.

 $D\mathring{u}kaz$

Sporem. Nechť $\exists c_i \in \mathbb{R}$ a $\exists x_0 \in I$, $c_1 \cdot \mathbf{y}^1(x_0) + \ldots + c_n \cdot \mathbf{y}^n(x_0) = \mathbf{o}$. Podle věty o existenci řešení systému ODR 1. řádu $\exists !$ řešení splňující $\mathbf{y}(x_0) = \mathbf{o}$. Toto řešení je ale $\mathbf{y} \equiv 0$. Ale i funkce $\mathbf{y}(x)$ je řešení a splňuje $\mathbf{y}(x_0) = 0$. Z jednoznačnosti $\mathbf{y}(x) \equiv \mathbf{o}$, což je ale spor s nezávislostí $\mathbf{y}^1, \mathbf{y}^2, \ldots, \mathbf{y}^n$.

Věta 4.11 (Tvar řešení pro soustavu ODR)

Nechť I je interval, $A: I \to \mathbb{R}^{n \times n}$ a $b: I \to \mathbb{R}^n$ jsou spojité funkce, $x_0 \in I$ a $\mathbf{y}^0 \in \mathbb{R}^n$. Pak maximální řešení rovnice $\mathbf{y}' = A\mathbf{y} + \mathbf{b}$ s počáteční podmínkou $\mathbf{y}(x_0) = \mathbf{y}^0$ má tvar

$$\mathbf{y}(x) = \varphi(x) \cdot \varphi^{-1}(x_0) \cdot \mathbf{y}^0 + \varphi(x) \cdot \int_{x_0}^x \varphi^{-1}(t) \cdot \mathbf{b}(t) dt,$$

 $kde \varphi je fundamentální matice soustavy.$

 $D\mathring{u}kaz$

Z lemmatu víme, že $\varphi(x)$ je regulární $\forall x \in I$. Díky Kramerově pravidlu je $\varphi^{-1}(t)$ spojitá, tedy $\int_{x_0}^x \varphi^{-1}(t) \cdot \mathbf{b}(t) dt$ má smysl. Označme $\mathbf{y}(x)$ jako ve větě. Podle věty o derivaci podle horní meze dostaneme

$$\mathbf{y}'(x) = \varphi'(x) \cdot \varphi^{-1}(x_0) \cdot \mathbf{y}^0 + \varphi'(x) \cdot \int_{x_0}^x \varphi^{-1}(t) \cdot \mathbf{b}(t) dt + \varphi(x) \cdot \varphi^{-1}(x) \cdot \mathbf{b}(x) = \varphi'(x) \cdot \varphi^{-1}(x) \cdot \mathbf{b}(x) = \varphi'(x) \cdot \varphi^{-1}(x) \cdot \mathbf{b}(x)$$

$$A \cdot \left(\varphi(x) \cdot \varphi^{-1}(x_0) \cdot \mathbf{y}^0 + \varphi(x) \cdot \int_{x_0}^x \varphi^{-1}(t) \mathbf{b}(t) dt \right) + \mathbf{b}(x) = A \cdot \mathbf{y}(x) + \mathbf{b}(x).$$

Z věty výše máme navíc jednoznačnost.

Důsledek

Jako důsledek předchozí věty lze odvodit větu o pravé straně ve tvaru kvazipolynomu i následující větu.

${f V\'eta}$ 4.12 (O speciální pravé straně pro soustavu n-tého řádu)

Nechť $A \in \mathbb{R}^{n \times n}$ je matice a \mathbf{p}, \mathbf{q} jsou $n \times 1$ vektory polynomů. Pak soustava

$$\mathbf{y}' = A \cdot \mathbf{y} + \mathbf{p}(x) \cdot e^{ax} \cdot \cos bx + \mathbf{q}(x) \cdot e^{ax} \cdot \sin bx$$

má řešení ve tvaru

$$\mathbf{y}(x) = \tilde{\mathbf{p}}(x) \cdot e^{ax} \cdot \cos bx + \tilde{\mathbf{q}}(x) \cdot e^{ax} \cdot \sin bx,$$

 $kde\ \tilde{\mathbf{p}},\ \tilde{\mathbf{q}}\ jsou\ vektory\ polynomů\ a\ \max\{\deg\tilde{\mathbf{p}},\deg\tilde{\mathbf{q}}\} = \max\{\deg\mathbf{p},\deg\mathbf{q}\} + n\acute{a}sobnost\ (a+ib)\ jako\ vlastního\ \check{c}ísla\ A.$

Důkaz Bez důkazu.

Poznámka

Není-li pravá strana ve tvaru kvazipolynomu, pak lze řešení nehomogenní rovnice najít metodou variace konstant ve tvaru $\mathbf{y}(x) = \sum_{i=1}^{n} c_i(x) \cdot \mathbf{y}_i(x)$, kde $\{\mathbf{y}_1, \dots, \mathbf{y}_n\}$ tvoří FSŘ rovnice $\mathbf{y}' = A\mathbf{y}$.

5 Metrické prostory

5.1 Základní pojmy

Definice 5.1 (Metrický prostor (MP))

Metrickým prostorem budeme rozumět dvojici (\mathbb{P}, ϱ) , kde \mathbb{P} je množina bodů a $\varrho : \mathbb{P} \times \mathbb{P} \to \mathbb{R}$ splňuje:

$$(i)\forall x,y\in\mathbb{P}:\varrho(x,y=0)\Leftrightarrow x=y,$$

$$(ii)\forall x,y\in\mathbb{P}:\varrho(x,y)=\varrho(y,x), \text{(symetrie)}$$

$$(iii)\forall x,y,z\in\mathbb{P}:\varrho(x,z)\leq\varrho(x,y)+\varrho(y,z).(\triangle\text{-nerovnost})$$

Poznámka

Z(i) a (iii) (volba x = z) vyplývá $\varrho(x, y) \ge 0$.

Tvrzení 5.1 (Cauchyova nerovnost)

 $n \in \mathbb{N}, a_1, \dots, a_n, b_1, \dots, b_n \in \mathbb{R}. Pak$

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

 $a_i = 0, \forall i \implies \text{jasn\'e. Jinak } \sum_{i=1}^n a_i^2 > 0.$

$$0 \le \sum_{i=1}^{n} (a_i \cdot x + b_i)^2 = \left(\sum_{i=1}^{n} a_i^2\right) \cdot x^2 + 2\left(\sum_{i=0}^{n} a_i b_i\right) \cdot x + \left(\sum_{i=1}^{n} b_i^2\right).$$

Kvadratická funkce, která je na $\mathbb R$ nezáporná a $\sum_{i=1}^n a_i^2>0 \implies$ má nejvýše 1 kořen \Longrightarrow

$$\implies 0 \ge D = 4\left(\sum_{i=1}^n a_i b_i\right)^2 - 4\left(\sum_{i=1}^n a_i^2\right) \cdot \left(\sum_{i=1}^n b_i^2\right).$$

Tvrzení 5.2 (Trojúhelníková nerovnost v \mathbb{R}^n)

Buď $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$. Potom $\varrho_e(\mathbf{x}, \mathbf{z}) \leq \varrho_e(\mathbf{x}, \mathbf{z}) = \varrho(\mathbf{y}, \mathbf{z})$.

 $D\mathring{u}kaz$

Rozepíšeme:

$$\sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}.$$

Označme $a_i = x_i - y_i$, $b_i = (y_i - z_i)$ a přepišme:

$$\sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}.$$

Umocníme na druhou (druhé mocniny pod odmocninami jsou jistě kladné, takže i jejich součet):

$$\sum_{i=1}^{n} a_i^2 + 2\sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} b_i^2 \le \sum_{i=1}^{n} a_i^2 + \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} + \sum_{i=1}^{n} b_i^2.$$

Po odečtení správných členů nám zbude Cauchyova nerovnost.

Definice 5.2 (Otevřená a uzavřená koule)

Nechť (\mathbb{P},ϱ) je MP, $x\in\mathbb{P}, r>0.$

Otevřenou koulí se středem x a poloměrem r nazveme $\mathrm{B}(x,r) = \{y \in \mathbb{P} | \varrho(x,y) < r\}.$

Uzavřenou koulí nazveme $\overline{\mathrm{B}(x,r)}=\{y\in\mathbb{P}|\varrho(x,y)\leq r\}.$

Definice 5.3 (Otevřená, uzavřená)

Nechť (\mathbb{P}, ϱ) je metrický prostor. Řekneme, že množina $G \subseteq \mathbb{P}$ je otevřená (v (\mathbb{P}, ϱ)), jestliže pro každý bod $x \in G$ existuje r > 0, že $B(x, r) \subseteq G$.

Řekneme, že množina $F \subseteq \mathbb{P}$ je uzavřená (v (\mathbb{P}, ϱ)), pokud je $\mathbb{P} \setminus F$ otevřená.

Věta 5.3 (Vlastnosti otevřených množin)

 $Necht'(\mathbb{P},\varrho)$ je metrický prostor. $Pak \emptyset \ a \ \mathbb{P}$ jsou otevřené, průnik konečně mnoha otevřených je otevřená, sjednocení libovolně mnoha otevřených je otevřená.

 $D\mathring{u}kaz$

Zřejmé, zvolíme minimum z okolí v každé z nich, najdeme $U\ni x$ a okolí v ní. Viz MetPro.

Věta 5.4 (Vlastnosti uzavřených množin)

 $Necht'(\mathbb{P}, \varrho)$ je metrický prostor. $Pak \emptyset a \mathbb{P}$ jsou uzavřené, konečné sjednocení uzavřených je uzavřená, libovolný průnik uzavřených je uzavřena.

Důkaz

Přes doplňky, viz MetPro.

Definice 5.4 (Vnitřní bod, vnitřek)

Nechť (\mathbb{P}, ϱ) je metrický prostor, $A \subseteq \mathbb{P}$ a $x \in \mathbb{P}$. Řekneme, že x je vnitřním bodem množiny A, jestliže existuje r > 0 tak, že $B(x, r) \subseteq A$. Množinu všech vnitřních bodů A nazýváme vnitřkem A a značíme int A.

Věta 5.5 (Charakterizace vnitřku)

Nechť (\mathbb{P}, ϱ) je metrický prostor a $A \subseteq \mathbb{P}$. Potom int A je největší (vzhledem k inkluzi) otevřená množina obsažená v A.

 $D\mathring{u}kaz$

int A je otevřená: Podle definice $\forall x \in \text{int } A \ \exists r > 0 : B(x,r) \subseteq A$. Tvrdíme, že $B(x,r) \subseteq A$. $\forall y \in B(x,r)$ zvolme $\tilde{r} = r - \varrho(x,y)$. Pak $B(y,\tilde{r}) \subseteq B(x,r) \subseteq A \implies y \in \text{int } A$. $\forall x \in \text{int } A \ \exists r > 0 : B(x,r) \subseteq \text{int } A \implies \text{int } A \text{ je otevřená}$.

int $A\subseteq A$ jasné. int A je největší otevřená množina v A: Sporem. Nechť $\exists G$ otevřená, int $A\subsetneq G\subseteq A$. Pak $\exists x\in G\setminus \operatorname{int} A$, ale G otevřená, tedy $\exists r>0$, že $\operatorname{B}(x,r)\subseteq G\subseteq A\Longrightarrow x\in\operatorname{int} A$. 4.

Důsledek

A otevřená \Longrightarrow int A = A.

Definice 5.5 (Hraniční bod, hranice, uzávěr)

Necht (\mathbb{P}, ϱ) je metrický prostor, $M \subseteq \mathbb{P}$ a $x \in \mathbb{P}$. Řekneme, že x je hraničním bodem M, jestliže $\forall r > 0$ platí $M \cap B(x, r) \neq \emptyset$ a $(\mathbb{P} \setminus M) \cap (B(x, r)) \neq \emptyset$. Množinu všech hraničních bodů nazýváme hranicí M a značíme jí ∂M .

Věta 5.6 (Uzávěr a uzavřené množiny)

Nechť (\mathbb{P}, ϱ) je metrický prostor a $A \subseteq \mathbb{P}$. Pak A je uzavřená $v \mathbb{P} \Leftrightarrow \overline{A} = A$.

 $D\mathring{u}kaz$

 $\Longrightarrow: A \text{ uzavřená} \implies \mathbb{P} \setminus A \text{ je otevřená} \implies \forall x \in \mathbb{P} \setminus A \; \exists r > 0: \mathsf{B}(x,r) \subseteq \mathbb{P} \setminus A \implies x \notin \partial A \implies \partial \subseteq A \implies \overline{A} = A \cup \partial A = A.$

 $\iff: A = \overline{A} = A \cup \partial A \implies \partial A \subseteq A \implies \forall x \in \mathbb{P} \setminus A \ x \notin \partial A \implies \exists r > 0 : B(x,r) \cap A = \emptyset \text{ nebo } B(x,r) \cap (\mathbb{P} \setminus A) = \emptyset \implies B(x,r) \cap A = \emptyset \implies B(x,r) \subseteq \mathbb{P} \setminus A \implies \mathbb{P} \setminus A \text{ je otevřená} \implies A \text{ je uzavřena.}$

Věta 5.7 (Vlastnosti uzávěru)

Nechť (\mathbb{P}, ϱ) je metrický prostor a $A \subseteq P$. Potom platí

$$(i)A \subseteq B \implies \overline{A} \subseteq \overline{B}.$$

(ii) Necht
$$A \neq \emptyset$$
, pak $\overline{A} = \{x \in \mathbb{P} | \varrho(x, A) = \inf \{\varrho(x, y) | y \in A\} = 0\}$.
(iii) $\overline{\overline{A}} = \overline{A}$.

 $D\mathring{u}kaz$

(i): Necht $x \in \overline{A} = A \cup \partial A \subseteq B \cup \partial A$. Je-li $x \in B$, pak $x \in \overline{B} = B \cup \partial B$. Je-li $x \in \partial A$ a $x \notin B$, pak $\forall r > 0$: $B(x,r) \cap A \neq \emptyset \implies B(x,r) \cap B \neq \emptyset$ a $\{x\} \in B(x,r) \cap (\mathbb{P} \setminus B) \neq \emptyset \implies x \in \partial B \implies x \in \overline{B}$.

(ii) Označme $M = \{x \in \mathbb{P} | \varrho(x,A) = 0\}$. M je uzavřená: Necht $y \in \mathbb{P} \backslash M$, pak $\varrho(y,A>0)$, tedy $\exists r>0$: $\mathsf{B}(y,r) \cap A = \emptyset$. Tvrdíme, že $\mathsf{B}(y,\frac{r}{2}) \subseteq \mathbb{P} \backslash M$: $\forall a \in A \ \forall z \in \mathsf{B}(y,\frac{r}{2})$, pak $\varrho(z,a) \geq \varrho(y,a) - \varrho(z,y) > r - \frac{r}{2} = \frac{r}{2} \implies z \in \mathsf{P} \backslash M \implies \mathsf{B}(y,\frac{r}{2}) \subseteq \mathbb{P} \backslash M$. Tedy $\forall y \in \mathbb{P} \backslash M \ \exists r>0$: $\mathsf{B}(y,\frac{r}{2}) \subseteq \mathbb{P} \backslash M \implies \mathbb{P} \backslash M$ je otevřená $\implies M$ je uzavřená. Podle (i) je $A \subseteq M \implies \overline{A} \subseteq \overline{M} = M$.

Dokážeme opačnou inkluzi $(M \subseteq \overline{A})$: Nechť $x \in \mathbb{P} \setminus \overline{A} \implies$ podle předchozí věty je \overline{A} uzavřená, a tedy $\mathbb{P} \setminus \overline{A}$ je otevřená $\implies \exists r > 0 : \mathrm{B}(x,r) \cap \overline{A} \neq \emptyset \implies \varrho(x,A) \geq r > 0 \implies x \notin M$. Z $\mathbb{P} \setminus \overline{A} \subseteq \mathbb{P} \setminus M \implies M \subseteq \overline{A}$.

(iii) Pro $A=\emptyset$ je $\overline{A}=\emptyset$ a tvrzení platí. Jinak podle (ii) $\overline{A}=M$ a $\overline{M}=M.$ Pak $\overline{\overline{A}}=\overline{M}=M=\overline{A}.$