表 1 4 1

化合物			
No.	$ m R^r$	$ m R^5$	¹H-NMR (CDCl₃)
11-001	X	nBu	1.01 (t, $J = 7.2$ Hz, 3H), 1.42-1.54 (m, 2H), 1.65-1.79 (m, 2H), 1.79 (s, 6H), 2.13 (s, 3H), 2.41 (s, 3H), 4.13 (t, $J = 7.8$ Hz, 2H), 7.16-7.22 (m, 2H), 7.26-7.33 (m, 2H), 7.42-7.46 (m, 2H), 8.25 (s, 1H), 10.40 (br s, 1H).
11-002	X	Вn	1.79 (s, 6H), 2.13 (s, 3H), 2.29 (s, 3H), 5.50(br s, 2H), 7.09-7.47 (m, 10H), 8.35 (s, 1H), 10.35 (br s, 1H).
11-003	X		1.05-1.32 (m, 4H), 1.58-1.91 (m, 7H), 1.79 (s, 6H), 2.12 (s, 3H), 2.38 (s, 3H), 4.01 (br s, 2H), 7.16-7.21 (m, 1H), 7.26-7.32 (m, 2H), 7.43-7.46 (m, 2H), 8.24 (s, 1H), 10.39 (br s, 1H).
11-004	HO	\rightarrow	1.00-1.30 (m, 4H), 1.55-1.90 (m, 7H), 2.18 (s, 3H), 2.40 (s, 3H), 3.89-4.00 (m, 2H), 4.03 (br s, 2H), 5.26-5.32 (m, 1H), 7.26-7.43 (m, 5H), 8.33 (s, 1H), 10.72 (br d, $J = 6.9$ Hz, 1H).
11-005	CI		1.00-1.30 (m, 4H), 1.60-1.92 (m, 7H), 2.17 (s, 3H), 2.39 (s, 3H), 3.90 (d, J = 6.0 Hz, 2H), 4.04 (br s, 2H), 5.50-5.56 (m, 1H), 7.26-7.44 (m, 5H), 8.30 (s, 1H), 10.73 (d, J = 8.1 Hz, 1H).
11-006			1.00-1.30 (m, 4H), 1.56-1.88 (m, 7H), 1.90-2.00 (m, 2H), 2.18 (s, 3H), 2.39 (s, 3H), 2.71 (t, $J = 8.1$ Hz, 2H), 3.46 (quint, $J = 6.9$ Hz, 2H), 4.03 (br s, 2H), 7.14-7.30 (m, 5H), 8.32 (s, 1H), 9.98 (br s, 1H).
11-007	Ţ Ē	nBu	0.99 (t, J = 7.5 Hz, 3H), 1.89-1.51 (m, 2H), 1.62-1.73 (m, 2H), 2.18 (s, 3H), 2.42 (s, 3H), 3.89-4.00 (m, 2H), 4.12 (dd, J = 9.0 Hz, J = 5.1 Hz, 2H), 5.26-5.32 (m, 1H), 7.26-7.43 (m, 5H), 8.32 (s, 1H), 10.72 (br d, J = 6.9 Hz, 1H).
11-008	CI	nBu	1.00 (t, J = 7.5 Hz, 3H), 1.41-1.53 (m, 2H), 1.64-1.74 (m, 2H), 2.16 (s, 3H), 2.41 (s, 3H), 3.91 (d, J = 5.7 Hz, 2H), 4.13 (t, J = 7.5 Hz, 2H), 5.50-5.57 (m, 1H), 7.28-7.45 (m, 5H), 8.30 (s, 1H), 10.73 (br d, J = 8.1 Hz, 1H).
11-009	Me Me		0.84 (d, J = 6.6 Hz, 6H), 1.06-1.85 (m, 21H), 2.17 (s, 3H), 2.38 (s, 3H), 4.00 (br s, 2H), 4.09-4.18 (m, 1H), 8.31 (s, 1H), 9.77 (d, J = 7.5 Hz, 1H).

表 1 4 2

化合物			H
No.	R^{r}	$ m R^5$	¹H-NMR (CDCl ₃)
11-010	4		0.60-0.65 (m, 2H), 0.77-0.84 (m, 2H), 1.05-1.26 (m, 5H), 1.59-1.85 (m, 6H), 2.18 (s, 3H), 2.38 (s, 3H), 2.89-2.98 (m, 1H), 4.00 (br s, 2H), 8.32 (s, 1H), 9.89 (br s, 1H).
11-011		\rightarrow	0.86-2.19 (m, 15H), 2.19 (s, 3H), 2.38 (s, 3H), 2.72-2.91 (m, 2H), 3.94 (br s, 2H), 5.37-5.44 (m, 1H), 7.06-7.16 (m, 3H), 7.34-7.37 (m, 1H), 8.38 (s, 1H), 10.22 (br d, $J = 8.7$ Hz, 1H).
11-012	Me Me		0.92 (t, J= 7.5 Hz, 3H), 0.95 (d, J= 6.6 Hz, 3H), 1.06-1.85 (m, 14H), 2.18 (s, 3H), 2.39 (s, 3H), 3.20-3.29 (m, 1H), 3.34-3.42 (m, 1H), 4.03 (br s, 2H), 8.32 (s, 1H), 9.95 (br s, 1H).
11-013	→		0.98 (s, 9H), 1.07-1.23 (m, 5H), 1.62- 1.83 (m, 6H), 2.18 (s, 3H), 2.39 (s, 3H), 3.26 (d, <i>J</i> = 6.0 Hz, 2H), 4.03 (br s, 2H), 8.33 (s, 1H), 10.06 (br s, 1H).
11-014			1.05-1.23 (m, 5H), 1.62-1.87 (m, 6H), 2.18 (s, 3H), 2.39 (s, 3H), 4.00 (br s, 2H), 4.62 (d, J = 5.4 Hz, 2H), 6.25-6.31 (m, 2H), 7.35 (s, 1H), 8.34 (s, 1H), 10.23 (br s, 1H).
11-015		Me Me	0.88 (d, J = 6.9 Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H), 1.16-1.30 (m, 1H), 1.35-1.48 (m, 1H), 1.89-2.00 (m, 1H), 2.19 (s, 3H), 2.39 (s, 3H), 4.03 (br s, 1H), 4.64 (d, J = 6.0 Hz, 2H), 7.20-7.38 (m, 5H), 8.37 (s, 1H), 10.30 (br s, 1H).
11-016		Me Me	0.90 (t, J= 7.2 Hz, 3H), 0.95 (t, J= 7.5 Hz, 3H), 1.17-1.32 (m, 1H), 1.35-1.49 (m, 1H), 1.88-2.00 (m, 1H), 2.18 (s, 3H), 2.39 (s, 3H), 2.93 (t, J= 7.5 Hz, 2H), 3.62-3.69 (m, 2H), 4.06 (br s, 2H), 7.17-7.31 (m, 5H), 8.33 (s, 1H), 10.03 (br s, 1H).
11-017		7	0.98 (s, 9H), 2.18 (s, 3H), 2.40 (s, 3H), 4.34 (br s, 2H), 7.20-7.37 (m, 5H), 8.34 (s, 1H), 10.31 (br s, 1H).
11-018		X	0.99 (s, 9H), 2.17 (s, 3H), 2.39 (s, 3H), 2.91 (t, J = 7.5 Hz, 2H), 3.63-3.70 (m, 2H), 7.16-7.31 (m, 5H), 8.30 (s, 1H), 10.01 (br s, 1H).
11-019			2.19 (s, 3H), 2.53 (s, 3H), 4.63 (d, $J = 5.7 \text{ Hz}$, 2H), 5.34 (s, 2H), 6.33 (m, 2H), 7.21-7.37 (m, 6H), 8.38 (s, 1H), 10.18 (br s, 1H).

表 1 4 3

	n			
化合物 No.	$ m R^{r}$	$ m R^5$	¹H-NMR (CDCl₃)	
11-020		7	2.19 (s, 3H), 2.53 (s, 3H), 2.92 (t, <i>J</i> = 7.5 Hz, 2H), 3.62-3.69 (m, 2H), 5.34 (s, 2H), 6.35 (m, 2H), 7.17-7.32 (m, 5H), 7.35 (t, <i>J</i> = 1.5 Hz, 1H), 8.34 (s, 1H), 9.92 (br s, 1H).	
11-021			0.45-0.66 (m, 4H), 1.08-1.18 (m, 1H), 2.19 (s, 3H), 2.45 (s, 3H), 4.11 (d, $J = 6.9 \text{ Hz}$, 2H), 4.64 (d, $J = 5.7 \text{ Hz}$, 2H), 7.20-7.38 (m, 5H), 8.36 (s, 1H), 10.31 (br s, 1H).	
11-022			0.47-0.61 (m, 4H), 1.09-1.17 (m, 1H), 2.19 (s, 3H), 2.45 (s, 3H), 2.93 (t, $J = 7.8$ Hz, 2H), 3.63-6.70 (m, 2H), 4.12 (d, $J = 6.9$ Hz, 2H), 7.17-7.32 (m, 5H), 8.33 (s, 1H), 10.03 (br s, 1H).	
11-023	Н	nBu	1.00 (t, $J = 7.5$ Hz, 3H), 1.40-1.53 (m, 2H), 1.63-1.73 (m, 2H), 2.18 (s, 3H), 2.42 (s, 3H), 4.13 (t, $J = 8.1$ Hz, 2H), 5.73 (br s, 1H), 8.31 (s, 1H), 9.62 (br s, 1H).	
11-024			1.05-1.26 (m, 6H), 1.66-1.77 (m, 4H), 1.83-1.92 (m, 1H), 2.19 (s, 3H), 2.41 (s, 3H), 4.08 (br s, 2H), 4.97 (d, J= 4.5 Hz, 2H), 7.50 (t, J= 7.5 Hz, 2H), 7.61 (t, J= 7.5 Hz, 1H), 8.02-8.06 (m, 2H), 8.32 (s, 1H), 10.78 (br s, 1H).	
11-025		Bn	2.19 (s, 3H), 2.33 (s, 3H), 4.98 (d, <i>J</i> = 4.5 Hz, 2H), 5.52 (br s, 2H), 7.14 (d, <i>J</i> = 7.5 Hz, 2H), 7.29-7.36 (m, 3H), 7.50 (t, <i>J</i> = 7.5 Hz, 2H), 7.61 (t, <i>J</i> = 7.5 Hz, 1H), 8.03 (d, <i>J</i> = 7.5 Hz, 2H), 8.41 (s, 1H), 10.74 (br s, 1H).	

表 1 4 4

化合物 No.	Rr	$ m R^3$	¹ H-NMR (CDCl ₃)
12-001		CI	1.04 (t, J = 7.3 Hz, 3H), 1.42-1.54 (m, 2H), 1.67-1.78 (m, 2H), 2.28 (s, 3H), 2.94 (t, J = 7.3 Hz, 2H), 3.65-3.72 (m, 2H), 4.12-4.18 (m, 8H), 8.29 (s, 1H), 9.91 (t, J = 5.5 Hz, 1H).
12-002		NH	1.04 (t, $J = 7.3$ Hz, 3H), 1.43-1.55 (m, 2H), 1.70-1.80 (m, 2H), 2.44 (s, 3H), 2.97 (m, 2H), 3.67-3.74 (m, 2H), 4.18 (t, $J = 7.9$ Hz, 3H), 6.55 (m, 1H), 6.90-6.94 (m, 1H), 7.19-7.46 (m, 8H), 8.50 (s, 1H), 8.79 (brs, 1H), 10.14 (t, $J = 5.8$ Hz, 1H).
12-003		Et	0.98 (t, J = 7.5 Hz, 3H), 1.16 (t, J = 7.5 Hz, 3H), 1.38-1.51 (m, 2H), 1.60-1.72 (m, 2H), 2.43 (s, 3H), 2.53 (quint, J = 7.5 Hz, 2H), 4.09 (t, J = 7.8 Hz, 2H), 4.64 (d, J = 6.0 Hz, 2H), 7.20-7.38 (m, 5H), 8.38 (s, 1H), 10.30 (br s, 1H).
12-004		Et	1.00 (t, J = 7.5 Hz, 3H), 1.16 (t, J = 7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.61-1.73 (m, 2H), 2.43 (s, 3H), 2.52 (quint, J = 7.5 Hz, 2H), 2.94 (t, J = 7.8 Hz, 2H), 3.63-3.70 (m, 2H), 4.11 (t, J = 7.8 Hz, 2H), 7.17-7.32 (m, 5H), 8.35 (s, 1H), 10.04 (br s, 1H).

表145

│ 化合物 │ _ No.	構造	¹H-NMR (CDCl₃)
13-001	O N HO N	0.99 (t, J=7.5 Hz, 3H), 1.08 (t, J=7.5 Hz, 3H), 1.19 (t, J=7.5 Hz, 3H), 1.38-1.50 (m, 2H), 1.53-1.72 (m, 4H), 2.50 (quint, J=7.5 Hz, 2H), 2.62-2.68 (m, 2H), 4.06 (m, 2H), 4.64 (t, J=6.0 Hz, 2H), 7.23-7.37 (m, 5H), 8.40 (s, 1H), 10.32 (br s, 1H).
13-002	HO N	1.01 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.5 Hz, 3H), 1.19 (t, J = 7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.54-1.73 (m, 4H), 2.50 (quint, J = 7.5 Hz, 2H), 2.62-2.68 (m, 2H), 2.93 (t, J = 7.8 Hz, 2H), 3.63-3.70 (m, 2H), 4.04-4.10 (m, 2H), 7.18-7.32 (m, 5H), 8.37 (s, 1H), 10.06 (br s, 1H).
13-003	HON	0.98 (t, J=7.2 Hz, 3H), 1.08 (t, J=7.2 Hz, 3H), 1.38-1.50 (m, 2H), 1.53-1.72 (m, 4H), 2.19 (s,3H), 2.62-2.68 (m, 2H), 4.04-4.10 (m, 2H), 4.64 (d, J=5.7 Hz, 2H), 7.21-7.38 (m, 5H), 8.35 (s, 1H), 10.30 (br s, 1H).
13-004		1.00 (t, J=7.5 Hz, 3H), 1.08 (t, J=7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.53-1.72 (m, 4H), 2.18 (s, 3H), 2.62-2.68 (m, 2H), 2.93 (t, J=7.5 Hz, 2H), 3.63-3.70 (m, 2H), 4.04-4.10 (m, 2H), 7.18-7.32 (m, 5H), 8.31 (s, 1H), 10.03 (br s, 1H).
13-005	H Me O N Me	0.98 (t, $J = 7.3$ Hz, 3H), 1.38-1.53 (m, 6H), 1.62-1.72 (m, 6H), 2.54 (s, 3H), 2.62 (t, $J = 6.1$ Hz, 2H), 2.83 (t, $J = 6.4$ Hz, 2H), 4.10 (t, $J = 7.9$ Hz, 2H), 7.21-7.38 (m, 2H), 7.55 (d, $J = 7.6$ Hz, 1H), 8.38 (s, 1H), 8.79 (br s, 1H).
13-006	CI O N Me	0.97 (t, J = 7.3 Hz, 3H), 1.38-1.53 (m, 6H), 1.62-1.75 (m, 6H), 2.62 (t, J =6.1 Hz, 2H), 2.83 (t, J =6.1 Hz, 2H), 4.10 (t, J = 7.9 Hz, 2H), 7.32-7.47 (m, 3H), 7.72-7.75 (m, 1H), 8.39 (s, 1H), 9.18 (br s, 1H).
13-007	BnO N CI	0.97 (t, J = 7.3 Hz, 3H), 1.34-1.46 (m, 2H), 1.72-1.82 (m, 2H), 4.03 (t, J = 7.3 Hz, 2H), 5.21 (s, 2H), 7.06 (d, J = 2.1 Hz, 1H), 7.23-7.40 (m, 8H), 7.95 (s, 1H), 8.15 (br s, 1H).
13-008	FONOTH	0.96 (d, J = 7.3 Hz, 3H), 1.36-1.56 (m, 6H), 1.58-1.71 (m, 4H), 1.71-1.81 (m, 2H), 2.57 (t, J = 6.0 Hz, 2H), 2.85 (t, J = 6.3 Hz, 2H), 3.08-3.20 (m, 2H), 3.18 (t, J = 5.0 Hz, 2H), 8.92 (t, J = 5.0 Hz, 2H), 4.06 (tlike, 2H), 6.87-7.00 (m, 5H).
13-009	O HO N	0.98 (t, J = 7.5 Hz, 3H), 1.22 (t, J = 7.5 Hz, 3H), 1.36-1.51 (m, 2H), 1.61-1.72 (m, 2H), 2.19 (s, 3H), 2.73 (quint, J = 7.5 Hz, 2H), 4.08 (t, J = 7.8 Hz, 2H), 4.64 (d, J = 6.0 Hz, 2H), 7.20-7.39 (m, 5H), 8.35 (s, 1H), 10.03 (br s, 1H).

表 1 4 6

化合物 No.	構造	¹H-NMR (CDCl ₃)
13-010	ON HOUND	1.00 (t, J = 7.5 Hz, 3H), 1.23 (t, J = 7.5 Hz, 3H), 1.40-1.52 (m, 2H), 1.61-1.73 (m, 2H), 2.19 (s, 3H), 2.73 (quint, J = 7.5 Hz, 2H), 2.93 (t, J = 7.5 Hz, 2H), 3.63-3.70 (m, 2H), 4.08 (t, J = 7.5 Hz, 2H), 7.17-7.32 (m, 5H), 8.31 (s, 1H), 10.03 (br s, 1H).
13-011	O HON	0.98 (t, J = 7.5 Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H), 1.38-1.50 (m, 2H), 1.61-1.77 (m, 4H), 2.66 (t, J = 7.8 Hz, 2H), 4.05 (t, J = 7.8 Hz, 2H), 4.64 (d, J = 6.0 Hz, 2H), 6.28 (d, J = 7.8 Hz, 1H), 7.20-7.40 (m, 5H), 8.44 (d, J = 7.8 Hz, 1H), 10.21 (br s, 1H).
13-012	O HON	1.00 (t, J = 7.5 Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H), 1.39-1.55 (m, 2H), 1.61-1.77 (m, 4H), 2.66 (t, J = 7.8 Hz, 2H), 2.93 (t, J = 7.8 Hz, 2H), 3.62-3.70 (m, 2H), 4.06 (t, J = 7.8 Hz, 2H), 6.27 (d, J = 7.5 Hz, 1H), 7.18-7.32 (m, 5H), 8.41 (d, J = 7.5 Hz, 1H), 9.95 (br s, 1H).
13-013	H N Me	0.98 (t, $J = 7.3$ Hz, 3H), 1.37-1.49 (m, 2H), 1.76-1.86 (m, 2H), 4.08 (t, $J = 7.3$ Hz, 2H), 7.26 (d, $J = 2.4$ Hz, 1H), 7.32-7.54 (m, 8H), 7.76-7.79 (m, 1H), 8.92 (d, $J = 2.4$ Hz, 1H), 9.29 (s, 1H).
13-014	H Cl N Cl Me O N Me	0.99 (t, J = 7.3 Hz, 3H), 1.38-1.50 (m, 2H), 1.60 (d, J = 7.0 Hz), 1.77-1.87 (m, 2H), 4.09 (dt, J = 7.1, 3.7 Hz, 2H), 5.32 (dt, J = 7.3, 7.0 Hz, 1H), 7.21-7.48 (m, 5H), 7.69 (d, J = 2.7 Hz, 1H), 8.83 (d, J = 2.7 Hz, 1H), 10.29 (d, J = 7.9 Hz).
13-015	H CI Me O N Me	0.98 (t, $J = 7.3$ Hz, 3H), 1.37-1.49 (m, 2H), 1.76-1.86 (m, 2H), 2.54 (s, 3H), 4.06 (t, $J = 7.3$ Hz, 2H), 7.18-7.59 (m, 4H), 8.70 (d, $J = 2.4$ Hz, 1H), 8.84 (br s, 1H).
13-016	Me O HON Me	0.98 (t, J = 7.3 Hz, 3H), 1.38-1.46 (m, 2H), 1.57 (d, J = 7.0 Hz, 3H), 1.70-1.80 (m, 2H), 3.97 (dt, J = 4.3, 7.0 Hz, 2H), 5.29 (q, J = 7.3 Hz, 2H), 7.21-7.40 (m, 5H), 7.69 (d, J = 2.4 Hz, 1H), 8.62 (d, J = 2.4 Hz, 1H), 10.08 (d, J = 7.3 Hz, 1H).
13-017	Me O Cl	0.99 (t, J = 7.3 Hz, 3H), 1.37-1.49 (m, 2H), 1.59 (d, J = 7.0 Hz, 3H), 1.77-1.87 (m, 2H), 4.00-4.15 (m, 2H), 5.31 (dt, J = 7.6, 7.3 Hz, 1H), 7.21-7.43 (m, 3H), 7.65 (d, J = 2.7 Hz, 1H), 8.61 (d, J = 2.7 Hz, 1H), 10.19 (d, J = 7.6 Hz, 1H).
13-018	Me O HON Me	0.99 (t, $J = 7.3$ Hz, 3H), 1.38-1.50 (m, 2H), 1.60 (d, $J = 7.0$ Hz), 1.77-1.87 (m, 2H), 4.09 (dt, $J = 7.1$, 3.7 Hz, 2H), 5.32 (dt, $J = 7.3$, 7.0 Hz, 1H), 7.21-7.48 (m, 5H), 7.69 (d, $J = 2.7$ Hz, 1H), 8.83 (d, $J = 2.7$ Hz, 1H), 10.29 (d, $J = 7.9$ Hz).

表 1 4 7

11 A Hm		
化合物 No.	構造	¹ H-NMR (CDCl ₃)
13-019	NOME NONE NONE NONE NONE NONE NONE NONE	0.90 (t, J = 7.2 Hz, 3H), 1.23-1.71 (m, 12H), 2.41 (br t, J = 6.0 Hz, 2H), 2.68 (br t, J = 6.0 Hz, 2H), 3.27 (s, 3H), 3.70-4.00 (m, 2H), 4.01 (s, 3H), 7.11-7.61 (m, 6H).
13-020	HON	0.99 (t, $J = 7.2$ Hz, 3H), 1.08 (t, $J = 7.5$ Hz, 3H), 1.39-1.73 (m, 6H), 2.18 (s, 3H), 2.63-2.69 (m, 2H), 3.89-3.99 (m, 2H), 4.08 (s, 2H), 5.26-5.32 (m, 1H), 7.27-7.43 (m, 5H), 8.31 (s, 1H), 10.72 (d, $J = 5.7$ Hz, 1H).
13-021	HON	0.99 (t, J = 7.5 Hz, 3H), 1.23 (t, J = 7.5 Hz, 3H), 1.39-1.52 (m, 2H), 1.63-1.74 (m, 2H), 2.19 (s, 3H), 2.74 (q, J = 7.5 Hz, 2H), 3.89-4.00 (m, 2H), 4.09 (s, 2H), 5.26-5.32 (m, 1H), 7.26-7.43 (m, 5H), 8.32 (s, 1H), 10.72 (d, J = 7.2 Hz, 1H).
13-022		1.00 (t, $J = 7.5$ Hz, 3H), 1.19-1.26 (m, 2H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.52-1.62 (m, 1H), 1.72 (quint, $J = 7.5$ Hz, 2H), 1.81-1.87 (m, 1H), 1.92-2.07 (m, 2H), 3.40 (br s,1H), 3.47 (br s, 1H), 3.89-3.99 (m, 1H), 4.17-4.26 (m, 1H), 4.57-4.71 (m, 2H), 7.20-7.38 (m, 5H), 8.44 (s, 1H), 10.30 (br s, 1H).
13-023	NH N	1.01 (t, J=7.5 Hz, 3H), 1.18-1.30 (m, 4H), 1.43-1.60 (m, 2H), 1.64-1.81 (m, 2H), 1.78 (s, 6H), 1.89-2.05 (m, 2H), 3.33 (br s,1H), 3.47 (br s, 1H), 3.92-4.01 (m, 1H), 4.21-4.31 (m, 1H), 7.24-7.32 (m, 3H), 7.43-7.46 (m, 2H), 8.33 (s, 1H), 10.42 (br s, 1H).
13-024		1.00 (t, $J = 7.5$ Hz, 3H), 1.17-1.26 (m, 2H), 1.39-1.60 (m, 4H), 1.55 (d, $J = 3.0$ Hz, 3H), 1.68-1.85 (m, 2H), 1.90-2.07 (m, 2H), 3.37 (br s,1H), 3.47 (br s, 1H), 3.88-4.01 (m, 1H), 4.17-4.30 (m, 1H), 5.30 (quint, $J = 7.5$ Hz, 1H), 7.18-7.41 (m, 5H), 8.40 (s, 1H), 10.34 (d, $J = 7.8$ Hz, 1H).
13-025	HO N N N N	1.00 (t, J = 7.2 Hz, 3H), 1.19-1.26 (m, 1H), 1.41-2.10 (m, 9H), 3.39 (br s,1H), 3.49 (br s, 1H), 3.89-3.99 (m, 3H), 4.20-4.30 (m, 1H), 5.29 (q, J = 6.0 Hz, 1H), 7.26-7.43 (m, 5H), 8.40 (s, 1H), 10.71 (d, J = 7.2 Hz, 1H).
13-026	CI N N N N N N N N N N N N N N N N N N N	1.01 (t, $J = 7.5$ Hz, 3H), 1.20-1.31 (m, 2H), 1.41-1.55 (m, 2H), 1.70-1.88 (m, 4H), 1.90-2.08 (m, 2H), 3.38 (br s,1H), 3.48 (br s, 1H), 3.90 (d, $J = 4.8$ Hz, 2H), 3.95-4.02 (m, 1H), 4.20-4.31 (m, 1H), 5.50-5.58 (m, 1H), 7.26-7.44 (m, 5H), 8.39 (s, 1H), 10.74 (d, $J = 7.8$ Hz, 1H).
13-027	CI N HONN	1.00 (t, J = 7.5 Hz, 3H), 1.08 (t, J = 7.5 Hz, 3H), 1.40-1.72 (m, 6H), 2.17 (s, 3H), 2.63-2.68 (m, 2H), 3.90 (d, J = 5.7 Hz, 2H), 4.11 (br s, 2H), 5.54 (s, 1H), 7.26-7.44 (m, 5H), 8.30 (s, 1H), 10.74 (br d, J = 7.8 Hz, 1H).

表 1 4 8

化合物 No.	構造	¹H-NMR (CDCl₃)
13-028	CINDA	1.00 (t, J = 7.5 Hz, 3H), 1.23 (t, J = 7.5 Hz, 3H), 1.41-1.53 (m, 2H), 1.65-1.78 (m, 2H), 2.18 (s, 3H), 2.74 (quint, J = 7.8 Hz, 2H), 3.90 (d, J = 5.7 Hz, 2H), 4.11 (br s, 2H), 5.50-5.57 (m, 1H), 7.26-7.44 (m, 5H), 8.30 (s, 1H), 10.74 (br d, J = 7.5 Hz, 1H).
13-029		0.70 (t, $J = 7.2$ Hz, 3H), 1.11 (sextet, $J = 7.2$ Hz, 2H), 1.54 (quint, $J = 7.2$ Hz, 2H), 1.61 (s, 3H), 1.81 (s, 3H), 3.70-3.86 (m, 2H), 5.34 (quint, $J = 7.2$ Hz, 1H), 7.17-7.58 (m, 10H), 8.43 (s, 1H), 10.41 (d, $J = 7.8$ Hz, 1H).
13-030	OXN O	0.72 (t, $J = 7.5$ Hz, 3H), 1.12 (sextet, $J = 7.5$ Hz, 2H), 1.57 (quint, $J = 7.5$ Hz, 2H), 1.78 (s, 3H), 1.82 (s, 6H), 3.81 (t, $J = 8.4$ Hz, 2H), 7.16-7.57 (m, 10H), 8.37 (s, 1H), 10.49 (br s, 1H).
13-031	HONDO	0.70 (t, $J = 7.2$ Hz, 3H), 1.10 (sextet, $J = 7.2$ Hz, 2H), 1.54 (quint, $J = 7.2$ Hz, 2H), 1.83 (s, 3H), 3.76-3.86 (m, 2H), 3.91-4.08 (m, 2H), 5.29-5.36 (m, 1H), 7.16-7.57 (m, 10H), 8.48 (s, 1H), 10.82 (d, $J = 6.6$ Hz, 1H).
13-032	XH ON N	0.70 (t, $J = 7.2$ Hz, 3H), 1.01 (s, 9H), 1.11 (sextet, $J = 7.2$ Hz, 2H), 1.54 (quint, $J = 7.2$ Hz, 2H), 1.83 (s, 3H), 3.29 (t, $J = 4.8$ Hz, 2H), 3.80 (t, $J = 7.2$ Hz, 2H), 7.20-7.67 (m, 2H), 7.50-7.60 (m, 3H), 8.46 (s, 1H), 10.15 (br s, 1H).
13-033	CI NH ON NH	0.71 (t, $J = 7.5$ Hz, 3H), 1.11 (sextet, $J = 7.5$ Hz, 2H), 1.56 (quint, $J = 7.5$ Hz, 2H), 1.82 (s, 3H), 3.81 (dd, $J = 6.0$ Hz, 3.6 Hz, 2H), 3.93 (d, $J = 6.0$ Hz, 2H), 5.53-5.61 (m, 1H), 7.19-7.57 (m, 10H), 8.44 (s, 1H), 10.83 (d, $J = 8.4$ Hz, 1H).
13-034	NH ON N	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.58 (d, $J = 7.2$ Hz, 3H), 1.64-1.77 (m, 4H), 1.83-1.92 (m, 2H), 2.60 (t, $J = 6.0$ Hz, 2H), 2.74 (t, $J = 6.0$ Hz, 2H), 4.00-4.10 (m, 2H), 5.30 (quint, $J = 7.2$ Hz, 1H), 7.19-7.42 (m, 5H), 8.23 (s, 1H), 10.34 (d, $J = 7.5$ Hz, 1H).
13-035	HO N N N N N N N N N N N N N N N N N N N	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.60-1.70 (m, 2H), 1.69-1.80 (m, 2H), 1.83-1.93 (m, 2H), 2.62 (t, $J = 6.0$ Hz, 2H), 2.75 (t, $J = 6.0$ Hz, 2H), 3.89-3.98 (m, 2H), 4.00-4.08 (m, 2H), 5.25-5.32 (m, 1H), 7.27-7.43 (m, 5H), 8.27 (s, 1H), 10.75 (d, $J = 5.4$ Hz, 1H).
13-036	CI NH ON NH	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.62-1.78 (m, 4H), 1.83-1.93 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.75 (t, $J = 6.0$ Hz, 2H), 3.91 (d, $J = 6.0$ Hz, 2H), 4.06 (t, $J = 7.2$ Hz, 2H), 5.50-5.58 (m, 1H), 7.27-7.45 (m, 5H), 8.23 (s, 1H), 10.75 (t, $J = 7.5$ Hz, 1H).

表149

化合物 No.	構造	¹H-NMR (CDCl₃)
13-037	NH ON N	0.99 (t, J = 7.2 Hz, 3H), 1.18-1.51 (m, 8H), 1.61-1.77 (m, 6H), 1.83-1.92 (m, 2H), 1.96-2.02 (m, 2H), 2.61 (t, J = 6.0 Hz, 2H), 2.73 (t, J = 6.0 Hz, 2H), 3.90-4.01 (m, 1H), 4.03 (t, J = 7.2 Hz, 2H), 8.24 (s, 1H), 9.86 (d, J = 7.5 Hz, 1H).
13-038	OH ON N	0.99 (t, J = 7.5 Hz, 3H), 1.13-1.30 (m, 2H), 1.45 (sextet, J = 7.5 Hz, 2H), 1.59-1.92 (m, 15H), 2.61 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 3.28 (t, J = 6.0 Hz, 2H), 4.04 (t, J = 7.5 Hz, 2H), 8.25 (s, 1H), 9.96 (br s, 1H).
13-039	HON	0.98 (t, $J = 7.5$ Hz, 3H), 1.44 (sextet, $J = 7.5$ Hz, 2H), 1.52-1.78 (m, 10H), 1.82-1.91 (m, 2H), 1.99-2.11 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.73 (t, $J = 6.0$ Hz, 2H), 4.02 (t, $J = 7.5$ Hz, 2H), 4.36 (sextet, $J = 6.6$ Hz, 1H), 8.24 (s, 1H), 9.91 (d, $J = 6.9$ Hz, 1H).
13-040	NH ON N	0.99 (t, J = 7.2 Hz, 3H), 1.05-1.29 (m, 6H), 1.18 (d, J = 6.6 Hz, 3H), 1.45 (sextet, J = 7.2 Hz, 2H), 1.59-1.92 (m, 11H), 2.61 (t, J = 6.0 Hz, 2H), 2.73 (t, J = 6.0 Hz, 2H), 3.93-4.13 (m, 1H+2H), 8.24 (s, 1H), 9.85 (d, J = 8.7 Hz, 1H).
13-041	N ₃ N ₃ N ₃ N ₄ N ₅	0.99 (t, $J = 7.2$ Hz, 3H), 1.45 (sextet, $J = 7.2$ Hz, 2H), 1.60-1.78 (m, 4H), 1.83-1.91 (m, 2H), 2.61 (t, $J = 6.0$ Hz, 2H), 2.75 (t, $J = 6.0$ Hz, 2H), 3.70 (d, $J = 6.0$ Hz, 2H), 4.06 (t, $J = 7.2$ Hz, 2H), 5.38-5.46 (m, 1H), 7.26-7.45 (m, 5H), 8.23 (s, 1H), 10.73 (t, $J = 8.7$ Hz, 1H).
13-042		0.99 (t, $J = 7.5$ Hz, 3H), 1.45 (sextet, $J = 7.5$ Hz, 2H), 1.58 (d, $J = 7.2$ Hz, 3H), 1.68 (quint, $J = 7.5$ Hz, 2H), 2.82 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 6.0$ Hz, 2H), 4.05 (t, $J = 7.5$ Hz, 2H), 4.58 (s, 2H), 5.29 (quint, $J = 7.2$ Hz, 1H), 7.23-7.42 (m, 5H), 8.17 (s, 1H), 10.25 (d, $J = 7.5$ Hz, 1H).
13-043		0.99 (t, J = 7.2 Hz, 3H), 1.03-1.30 (m, 4H), 1.18 (d, J = 6.6 Hz, 3H), 1.45 (sextet, J = 7.2 Hz, 2H), 1.60-1.84 (m, 9H), 2.82 (t, J = 6.0 Hz, 2H), 3.92-4.13 (m, 5H), 4.59 (s, 2H), 8.18 (s, 1H), 9.77 (d, J = 8.1 Hz, 1H).
13-044		1.01 (t, $J = 7.5$ Hz, 3H), 1.47 (sextet, $J = 7.5$ Hz, 2H), 1.71 (quint, $J = 7.5$ Hz, 2H), 1.79 (s, 6H), 2.82 (t, $J = 6.0$ Hz, 2H), 4.00 (t, $J = 6.0$ Hz, 2H), 4.05 (t, $J = 7.5$ Hz, 2H), 4.54 (s, 2H), 7.26-7.34 (m, 3H), 7.42-7.46 (m, 2H), 8.11 (s, 1H), 10.34 (br s, 1H).
13-045	ON HONN	0.99 (t, $J = 7.5 \text{ Hz}$, 3H), 1.19-1.52 (m, 8H), 1.62-1.79 (m, 8H), 1.80-1.88 (m, 2H), 1.91-2.02 (m, 2H), 2.71 (t, $J = 6.0 \text{ Hz}$, 2H), 2.93 (t, $J = 6.0 \text{ Hz}$, 2H), 3.93-4.02 (m, 1H), 4.16 (br t, $J = 7.5 \text{ Hz}$, 2H), 8.29 (s, 1H), 9.86 (d, $J = 6.9 \text{ Hz}$, 1H).

表 1 5 0

化合物 No.	構造	¹ H-NMR (CDCl ₃)
13-046	O H O N	1.00 (t, J = 7.2 Hz, 3H), 1.47 (sextet, J = 7.2 Hz, 2H), 1.63-1.74 (m, 6H), 1.83-1.90 (m, 2H), 2.72 (t, J = 6.0 Hz, 2H), 2.96 (t, J = 6.0 Hz, 2H), 4.23 (br t, J = 7.2 Hz, 2H), 4.96 (d, J = 4.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.61 (t, J = 7.5 Hz, 1H), 8.04 (d, J = 7.5 Hz, 2H), 8.29 (s,1H), 10.79 (br s, 1H).
13-047	ON HONN	0.99 (t, $J = 7.2$ Hz, 3H), 1.22-1.49 (m, 6H), 1.60-1.78 (m, 6H), 1.94-2.01 (m, 2H), 2.82 (t, $J = 6.0$ Hz, 2H), 3.91-4.05 (m, 5H), 4.60 (s, 2H), 8.18 (s, 1H), 9.79 (d, $J = 6.3$ Hz, 1H).
13-048	OH OH OH	0.98 (t, $J = 7.2$ Hz, 3H), 1.10-1.29 (m, 6H), 1.40-1.56 (m, 8H), 1.65-1.82 (m, 8H), 1.93 (br t, $J = 12.0$ Hz, 1H), 2.66 (t, $J = 6.0$ Hz, 2H), 2.93 (t, $J = 6.0$ Hz, 2H), 3.78-3.87 (m, 2H), 4.00-4.12 (m, 1H), 4.16 (br t, $J = 7.2$ Hz, 2H), 7.29 (br s, 1H), 8.00 (s, 1H).
13-049	CI NH ON NH	0.99 (t, J=7.2 Hz, 3H), 1.46 (sextet, J=7.2 Hz, 2H), 1.61-1.73 (m, 6H), 1.87 (sextet, J=6.0 Hz, 2H), 2.74 (t, J=6.0 Hz, 2H), 2.96 (t, J=6.0 Hz, 2H), 4.19 (br t, J=7.2 Hz, 2H), 4.68 (d, J=6.0 Hz, 2H), 7.15 (dd, J=8.4 Hz, 2.4 Hz, 1H), 7.23-7.29 (m, 1H), 7.39 (d, J=2.4 Hz, 1H), 8.31 (s,1H), 10.43 (br s, 1H).
13-050		0.99 (t, J = 7.2 Hz, 3H), 1.45 (sextet, J = 7.2 Hz, 2H), 1.63-1.79 (m, 4H), 1.89 (quint, J = 6.0 Hz, 2H), 2.63 (t, J = 6.0 Hz, 2H), 2.76 (t, J = 6.0 Hz, 2H), 4.05 (t, J = 8.1 Hz, 2H), 4.68 (d, J = 6.0 Hz, 2H), 7.15 (dd, J = 8.7 Hz, 2.4 Hz, 1H), 7.25-7.29 (m, 1H), 7.38 (d, J = 2.4 Hz, 1H), 8.27 (s,1H), 10.44 (br s, 1H).

試験例

5

10

15

上記化合物を使用して、以下の試験を行った。

試験例1 ヒトカンナビノイド受容体結合阻害実験

ヒトカンナビノイド受容体は、CB1 又は CB2 受容体を安定発現させた CHO 細胞の膜画分を用いた。調製した膜標品と披検化合物、及び 38,000 dpm の [3 H]CP55940 (終濃度 0.5 nM: NEN Life Science Products 社製)をアッセイ緩衝液 (0.5% 牛血清アルブミンを含む 50 mM Tris-HCl 緩衝液 (pH 7.4)、1 mM EDTA、3 mM MgCl2)中で、25℃、2 時間のインキュベーションを行なった。インキュベーションの後、1% ポリエチレンイミン処理したグラスフィルターにて濾過、0.1% BSA を含む 50 mM Tris-HCl 緩衝液 (pH 7.4)にて洗浄後、液体シンチレーションカウンターにてグラスフィルター上の放射活性を求めた。非特異的結合は 10μ M の WIN55212-2 (US 5081122 記載のカンナビノイド受容体アゴニスト、Sigma 社製)存在下で測定し、特異的結合に対する被検化合物の 50%阻害濃度 (IC50 値)を求めた。披検化合物の Ki 値は、得られた IC50 値と $[^3$ H]CP55940 の Kd 値から算出した。

表 1 5 1

化合物	Ki (nM)	
	CB1受容体	CB2受容体
I-5	>5000	61
I-23	>5000	29
I-50	>5000	39
I-51	n.t.	23
I-52	n.t.	35
I-56	n.t.	54
1-6	>5000	9
I - 57	4134	6
I-69	n.t.	33
I-60	2097	18
1-62	n.t.	44
1-63	n.t.	43
1-74	n.t.	48

I-77	n.t.	53
I-84	>5000	35
I-85	n.t.	25

n.t.: not tested

表 1 5 2

202				
化合物	Ki (nM)			
	CB1受容体	CB2受容体		
II-13	n.t.	6		
11-14	>5000	2		
11-17	n.t.	8		
11-39	906	2		
11-40	n.t.	0.5		
11-41	n.t.	1		
11-42	>5000	0.3		
11-44	321	1.1		
11-45	386	1.2		
11-46	3226	2		
11-49	1116	2.9		
11-74	704	1.2		
11-78	1015	8		
11-80	>5000	2.2		
11-88	n.t.	8		
11-89	n.t.	8		
11-92	1312	6		
11-93	1537	3		

n.t.: not tested

表 1 5 3

化合物	Ki (nM)	化合物	Ki (nM)	
	CB1受容体	CB2受容体		CB1受容体	CB2受容体
2-004	nt	101	4-062	>5000	4
3-010	nt	57	4-101	890	1.5
3-038	1252	12	4-102	908	1.6
4-001	2851	28	4-104	54	6
4-002	746	17	4-105	91	2.1
4-003	680	44	4-301	1769	8
4-052	1497	24	4-302	>5000	10
4-053	254	6	4-310	512	9
4-054	482	6	5-005	391	16
4-056	551	8	5-006	390	14
4-061	124	2.5			

試験例2 カンナビノイド受容体を介する cAMP 生成阻害実験

ヒト CB1 又は CB2 受容体を発現させた CHO 細胞に、被検化合物を添加し 15 分間インキュベーションの後、フォルスコリン(終濃度 4 μM、SIGMA 社)を 加えて 20 分間インキュベーションした。1N HCl を添加して反応を停止させた後、 上清中の cAMP 量を Cyclic AMP kit (シーアイエス ダイアグノスティック社製) を用いて測定した。フォルスコリン刺激による cAMP 生成をフォルスコリン無刺 激に対して 100%とし、50%の抑制作用を示す被検化合物の濃度(IC50値)を求 10 めた。表に示すとおり、披検化合物は、CB1 又は CB2 受容体に対してアゴニス ト作用を示した。

5

表 1 5 4

化合物	CB2受容体 IC ₅₀ (nM)
I-5	6.5
I-23	2.6
I-51	2.8
I-6	2.7
I-57	5.5

表 1 5 5

化合物	CB2受容体 IC50
	(nM)
I-46	5.4
1-39	13.7
1-49	2.2
I-74	1.6
1-92	<0.2
1-93	0.6

5 表156

化合物	CB2受容体 IC ₅₀ (nM)
3-038	28.6
4-001	64.2
4-053	7.9
4-054	4.2
4-056	4.3
4-061	2.3
4-062	1.3
4-101	1.4
4-102	1.7
4-104	9.8

表 1 5 7

化合物	CB1 受容体 IC ₅₀ (nM)
3-109	2.7
11-001	1.2
11-002	0.4
13-006	1.6
11-011	0.6
11-012	7.8
11-013	7.5
13-023	0.3
10-041	3.5
10-045	1.2
13-030	0.7
10-050	2.0
10-058	2.4
10-059	6.1
13-044	1.8
10-089	9.4
10-103	6.3

本発明化合物について、さらに試験例3、4及び5を行った。

試験例3 マウスカンナビノイド受容体結合阻害実験

5 マウスカンナビノイド受容体は、CB1 及び CB2 受容体が豊富に存在する組織として、それぞれマウス脳膜画分及び脾臓膜画分を用いた(C57BL/6Jマウス)。受容体結合阻害実験は、試験例 1 に示す方法に順じて行なった。

試験例 4 ICR 系マウスにおける Compound 48/80 誘発痒みに対する抑制効果

Inagaki らの方法 (Eur J Pharmacol 1999;367:361-371)を一部改変して実験を行った。即ち、雌性 ICR 系マウスの予め剃毛した背部に compound 48/80 (3 μg/50 μl/site)を皮内注射して反応を惹起し、その直後から観察される注射部位への後肢での引っ掻き回数を 30 分間に渡ってカウントした。なお、マウスは一度の動作で数回連続して引っ掻くため、その一連の動作を1回とカウントした。披検化合物は、ゴマ油溶液、又は 0.5%メチルセルロース懸濁液にて一度に経口投与した後、あらかじめ設定した最高血中濃度が得られる時間に compound 48/80 の接種により痒みを惹起した。痒み抑制の評価は、化合物投与群の引っ掻き回数と媒体投与群におけ

る引っ掻き回数とを比較することにより行った。有意差検定は Dunnett's test で行い、有意水準は 5%とした。表に示すように、マリファナの活性本体である Δ^9 -テトラヒドロカンナビノール、及びカンナビノイド受容体にアゴニスト作用を示す基本骨格の異なる 3 系統の披検化合物は、compound 48/80 によって誘発される痒みを抑制した。

表 1 5 8

10

15

化合物	結合試験	:Ki値(nM)		P抑制:)(nM)	抗掻痒効果(%)
	脳(CB1)	脾臓 (CB2)	CB1	CB2	100 mg/kg(p.o.)
I-270	80	1.2	68.7	7.9	98**
11-86	12	1.1	16.8	1	98**
4-101	35	0.6	60.3	1.4	81**
10-035	12	0.1	29.0	0.2	93**
WIN55212- 2	7	6	12.2	1.1	70*
THC	40	9.2	11.4	6.6	98**#

*p < 0.05, **p < 0.01, # 10 mg/kg(i.p.)

試験例 5 カンナビノイド受容体アゴニストの痒み抑制作用に対する拮抗実験上記の実施例で認められた compound 48/80 誘発痒みに対する披検化合物の抑制作用について、公知のカンナビノイド 1 型受容体アンタゴニストの SR141716A と、2 型受容体アンタゴニストの SR144528 を用いることにより、その受容体特異性について評価を行なった。評価は、SR141716A 又は SR144528 のそれぞれを披検化合物の投与の 1 時間前にマウスに経口投与した後、実施例 1 と同様の方法で披検化合物の compound 48/80 誘発痒みに対する効果を検討した。 有意差検定は Welch's t-test で行い、有意水準は 5%とした。図 1 に示すように、I-270 のcompound 48/80 誘発痒みに対する抑制効果は、カンナビノイド 1 型受容体アンタゴニストの SR141716A によって拮抗された。このことから、CB1 受容体を介して痒み抑制作用が発揮されていることが確認された。

また、CB2 受容体への選択性が高い化合物による抗掻痒作用は、カンナビノイド2 型受容体アンタゴニストの SR144528 によって拮抗されることも、上記同様に確認した。このことから、CB2 受容体を介しても抗掻痒作用が発揮されることが確認された。

これらの結果は、CB1 及び/又は CB2 受容体アゴニストが、抗掻痒剤(かゆみの抑制剤)として有効であることを示すものである。

製剤例

以下に示す製剤例1~8は例示にすぎないものであり、発明の範囲を何ら限定 10 することを意図するものではない。「活性成分」なる用語は、本発明化合物、そ の互変異性体、それらのプロドラッグ、それらの製薬的に許容される塩またはそ れらの溶媒和物を意味する。

製剤例1

硬質ゼラチンカプセルは次の成分を用いて製造する:

15		用量
		(mg/カプセル)
	活性成分	2 5 0
	デンプン(乾燥)	2 0 0
	ステアリン酸マグネシウム	1 0
20	合計	$460 \mathrm{mg}$

製剤例2

錠剤は下記の成分を用いて製造する:

		用量	
		(mg/錠剤)	
25	活性成分	2 5 0	
	セルロース(微結晶)	4 0 0	
	二酸化ケイ素(ヒューム)	1 0	

 ステアリン酸
 5

 合計
 665mg

成分を混合し、圧縮して各重量665mgの錠剤にする。

製剤例3

5 以下の成分を含有するエアロゾル溶液を製造する:

	活性成分	0.25
	エタノール	25.75
	プロペラント22(クロロジフルオロメタン)_	74.00
10	合計	100.00

活性成分とエタノールを混合し、この混合物をプロペラント22の一部に加え、 -30℃に冷却し、充填装置に移す。ついで必要量をステンレススチール容器へ 供給し、残りのプロペラントで希釈する。バブルユニットを容器に取り付ける。 製剤例4

15 活性成分 6 0 m g を含む錠剤は次のように製造する:

	活性成分	6 0 m g
	デンプン	4 5 m g
	微結晶性セルロース	3 5 m g
	ポリビニルピロリドン(水中10%溶液)	4 m g
20	ナトリウムカルボキシメチルデンプン	4.5 mg
	ステアリン酸マグネシウム	0.5 mg
	滑石	<u>1 m g</u>
	合計	150mg

活性成分、デンプン、およびセルロースはNo. 45メッシュU. S. のふる いにかけて、十分に混合する。ポリビニルピロリドンを含む水溶液を得られた粉 末と混合し、ついで混合物をNo. 14メッシュU. S. ふるいに通す。このよ うにして得た顆粒を50℃で乾燥してNo. 18メッシュU. S. ふるいに通す。

あらかじめNo. 60メッシュU. S. ふるいに通したナトリウムカルボキシメチルデンプン、ステアリン酸マグネシウム、および滑石をこの顆粒に加え、混合した後、打錠機で圧縮して各重量150mgの錠剤を得る。

製剤例5

5 活性成分80mgを含むカプセル剤は次のように製造する:

活性成分 80mg

デンプン 5 9 m g

微結晶性セルロース59mg

ステアリン酸マグネシウム ____2 m g

10 合計 2 0 0 m g

活性成分、デンプン、セルロース、およびステアリン酸マグネシウムを混合し、 No. 45 メッシュ U. S. のふるいに通して硬質ゼラチンカプセルに 200 m g ずつ充填する。

製剤例6

15 活性成分225mgを含む坐剤は次のように製造する:

活性成分 2 2 5 m g

飽和脂肪酸グリセリド <u>2000mg</u>

合計 2 2 2 5 m g

活性成分をNo.60メッシュU.S.のふるいに通し、あらかじめ必要最小 20 限に加熱して融解させた飽和脂肪酸グリセリドに懸濁する。ついでこの混合物を、みかけ2gの型に入れて冷却する。

製剤例7

活性成分50mgを含む懸濁剤は次のように製造する:

活性成分 50mg

25 ナトリウムカルボキシメチルセルロース 50mg

シロップ 1.25 m l

安息香酸溶液 0.10ml

香料 q. V.

色素 q. v.

精製水を加え合計 5 m 1

活性成分をNo.45メッシュU.S.のふるいにかけ、ナトリウムカルボキシメチルセルロースおよびシロップと混合して滑らかなペーストにする。安息香酸溶液および香料を水の一部で希釈して加え、攪拌する。ついで水を十分量加えて必要な体積にする。

製剤例8

静脈用製剤は次のように製造する:

10 活性成分 100mg

飽和脂肪酸グリセリド

1 0 0 0 m 1

上記成分の溶液は通常、1分間に1mlの速度で患者に静脈内投与される。

産業上の利用の可能性

15 カンナビノイド受容体アゴニスト作用を有する化合物により、痒みを抑制する ことができる。

請求の範囲

1. カンナビノイド受容体アゴニスト作用を有する化合物、そのプロドラッグ、 それらの製薬上許容される塩、又はそれらの溶媒和物を有効成分として含有する 抗掻痒剤。

- 2. カンナビノイド受容体アゴニスト作用を有する化合物が、カンナビノイド 1型受容体アゴニスト作用を有する化合物である請求の範囲第1項記載の抗掻痒 剤。
- 3. カンナビノイド受容体アゴニスト作用を有する化合物が、カンナビノイド 10 2型受容体アゴニスト作用を有する化合物である請求の範囲第1項記載の抗掻痒 剤。
 - 4. カンナビノイド受容体アゴニスト作用を有する化合物が、カンナビノイド 1型受容体アゴニスト作用及びカンナビノイド2型受容体アゴニスト作用を有す る化合物である請求の範囲第1項記載の抗掻痒剤。
- 15 5. カンナビノイド受容体アゴニスト作用を有する化合物が、式(I):

5

20

(式中、 R^1 は置換されていてもよいアルキレンであり;

 R^2 はアルキル、式:-C($=R^3$) $-R^4$ (式中、 R^3 は O 又は S であり、 R^4 はアルキル、アルコキシ、アルキルチオ、アルケニルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル又は置換されていてもよいアミノアルキルを表わす)で示される基又は式: $-SO_2R^5$ (式中、 R^5 はアルキル、置換されていてもよいアミ

ノ、置換されていてもよいアリール又は置換されていてもよい芳香族複素環式基 を表わす)で示される基であり;

mは0~2の整数であり;

5

10

Aは置換されていてもよいアリール又は置換されていてもよい芳香族複素環式基である)で示される化合物群から選択されるものである請求の範囲第1項記載の 抗掻痒剤。

6. R^1 がアルキレンで置換されていてもよい炭素数 $2\sim 9$ の直鎖状又は分枝状のアルキレンであり; R^2 が式:-C($=R^3$) $-R^4$ (式中、 R^3 は O 又は S であり、 R^4 がアルコキシ、アルキルチオ又はアルケニルチオである)で示される基であり;mが 0 であり;Aがアルキル、アルコキシ、ハロアルコキシ及びアルキルチオからなる群から選択される基で $1\sim 2$ 箇所置換されていてもよいアリールである請求の範囲第 5 項記載の抗掻痒剤。

7. カンナビノイド受容体アゴニスト作用を有する化合物が、式(II):

$$(CH_2)_{m} \qquad \begin{matrix} R^6 \\ N \end{matrix}$$

15 (式中、 R^2 は置換されていてもよい複素環式基又は式:-C(=Z) $W-R^8$ (式中、ZはO又はS; WはO又はS; R^8 は置換されていてもよいアルキル、置換されていてもよいアルケニル又は置換されていてもよいアルキニル)で示される基であり;

R⁶及びR⁷はそれぞれ独立して水素原子、置換されていてもよいアルキル、置換 20 されていてもよいアルコキシアルキル、置換されていてもよいアミノアルキル又 は置換されていてもよいシクロアルキル;又は

 R^6 及び R^7 は一緒になって置換されていてもよいヘテロ原子を含んでいてもよいアルキレンであり;

 $m は 0 \sim 2 の整数であり;$

Aは置換されていてもよいアリール又は置換されていてもよい芳香族複素環式基である)で示される化合物群から選択されるものである請求の範囲第1項記載の 抗掻痒剤。

5 8. mが0であり; Aがアルキル、アルコキシ、ハロアルコキシ及びアルキル チオからなる群から選択される基で1~2箇所置換されていてもよいアリールで ある請求の範囲第7項記載の抗掻痒剤。

10. カンナビノイド受容体アゴニスト作用を有する化合物が、式(III):

$$R^{9}$$
 R^{10}
 R^{11}
 R^{12}
 R^{13}
 R^{12}

10

15 (式中、R[®]は水素、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ又は式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 及び Y^3 はそれぞれ独立して単 結合又は置換されていてもよいアルキレンであり; Y^2 は単結合、-O-、-O- -C (=O) -、-O- -C (=O) - 、-O- -C (=O) - 、-O- -C (=O) -C (=C) -C (=

-C (= S) $-NR^b-$ 、 $-NR^b-SO_2-NR^b-$ 、 $-NR^b-C$ (= NH) $-NR^b-$ 、-S-、 $-SO_2-O-$ 、 $-SO_2-NR^b-$ 、 $-SO_2-NR^b-C$ (= O) $-NR^b-$ 、-C (= O) $-NR^b-$ 、-C (= O) $-NR^b-$ 、-C (= O) $-NR^b-$ 、-C (= O) $-NR^b-C$ (= O) $-NR^b-C$ (= S) $-NR^b-C$ (= S) $-NR^b-C$ (= S) $-NR^b-C$ (= S) $-NR^b-C$ (= O) $-NR^b-C$ (= O) -NR

5

10

25

 R^{10} は水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、 置換されていてもよいアルキニル、ハロゲン、シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキルチオ、アルケニルオキシ、アルキニルオキシ、アルキルスルフィニル、アルキルスルホニル、ニトロ又は式: $-Y^4-R^\circ$ (式中、 Y^4 は単結合、-O-、-S-、-SO-、 $-SO_2-$ 、-NH-、-C(=O) -、 $-CH_2-$ 、-C(=O) - NH-又は一NH-C(=O) - であり; R° は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり; R^{11} 及び R^{12} はそれぞれ独立して、水素、置換されていてもよいアルキル、置換されていてもよいアルケニル、置換されていてもよいアルキニル、ハロゲン、

シアノ、ホルミル、アシル、カルボキシ、アルコキシカルボニル、置換されていてもよいカルバモイル、イソチオシアナト、置換されていてもよいアミノ、ヒドロキシ、アルコキシ、アルキニルオキシ、ア

5

15

 R^{13} は水素、ヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキル又は式: $-Y^6-R^e$ (式中、 Y^6 は単結合、置換されていてもよいアルキレン、アルケニレン、アルキニレン、-O-、-S-、-SO-、

10 $-SO_2-$ 、-NH-、-C(=O) -、-C(=O) -NH-E-又は-NH -C(=O) -であり; Eは単結合又は置換されていてもよいアルキレンであり; R°は置換されていてもよい炭素環式基又は置換されていてもよい複素環式基である)で示される基であり;

又は、R¹⁰及びR¹¹の組合わせ、R¹¹及びR¹²の組合わせ、R¹²及びR¹³の 組合わせのいずれか一つの組合わせが一緒になって、隣接する原子と共にヘテロ 原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環を形成 していてもよく;

XはS又はOである)で示される化合物群から選択されるものである請求の範囲第1項記載の抗掻痒剤。

20 11. R^9 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 、 Y^2 、 Y^3 及び R^b は請求の範囲第10項と同意義であり; R^a は置換されていてもよい炭素環式基、置換されていてもよい複素環式基又はアシルである)で示される基であり; R^{10} が水素又は置換されていてもよいアルキルであり; R^{11} が置換されていてもよいアルキル、ハロゲン又は式: $-Y^5-R^a$ (式中、 Y^5 は単結合又はアルキニレンであり; R^a は請求の範囲第10項と同意義である)で示される基であり; R^{12} が水素又は置換されていてもよいアルキルであり; R^{13} がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい炭素数3以上のアルキル

又は式: $-Y^6-R^e$ (式中、 Y^6 及び R^e は請求の範囲第10項と同意義である)で示される基であり;又は、 R^{11} 及び R^{12} は一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい環を形成していてもよい請求の範囲第10項記載の抗掻痒剤。

5 1 2. R^9 が式: $-Y^1-Y^2-Y^3-R^a$ (式中、 Y^1 は単結合であり; Y^2 は -C (=O) -N H -であり; Y^3 は単結合又は置換されていてもよいアルキルであり; R^a は置換されていてもよい炭素環式基又はアシルである) で示される基であり;

 R^{10} が水素であり;

10 R^{11} 及び R^{12} が一緒になって、隣接する原子と共にヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよい環を形成し;

 \mathbb{R}^{13} がヘテロ原子及び/又は不飽和結合が介在していてもよい置換されていてもよいアルキルであり;

XがS又はOである請求の範囲第10項記載の抗掻痒剤。

- 15 13. カンナビノイド受容体アゴニスト作用を有する化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を投与することを特徴とする掻痒の治療方法。
- 14. 抗掻痒剤を製造するためのカンナビノイド受容体アゴニスト作用を有する化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒
 20 和物の使用。

図 1

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/01725

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ A61K45/00, 31/426, 31/435, 31/436, 31/4375, 31/4412, 31/4427, 31/4439, 31/4523, 31/4704, 31/4709, 31/4745, 31/506, 31/5377, 31/54, 31/541, 31/5415, 31/547, A61P17/04 According to International Patent Classification (IPC) or to both national classification and IPC					
	S SEARCHED				
Minimum de	ocumentation searched (classification system followed l	by classification symbols)			
	Cl ⁷ A61K45/00, 31/33-31/655, A				
Jitsı Kokai	Jitsuyo Shinan Koho 1971-2003	Toroku Jitsuyo Shinan Koh Jitsuyo Shinan Toroku Koh	o 1994–2003 o 1996–2003		
Electronic d CAPL	ata base consulted during the international search (nam US (STN), MEDLINE (STN), REGISTR	e of data base and, where practicable, sea Y (STN), EMBASE (STN), BI	rch terms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
Е,Х	US 2002/0182159 A1 (UNILEVER CARE USA, DIVISION OF CONOPCO 05 December, 2002 (05.12.02), Full text; particularly, exam & WO 02/65997 A1), INC.),	1-12,14		
E,A	WO 02/053543 A1 (Shionogi & Co., Ltd.), 11 July, 2002 (11.07.02), Full text (Family: none)				
A	WO 01/19807 A1 (Shionogi & C 22 March, 2001 (22.03.01), Full text & EP 1219612 A1	o., Ltd.),	1-9,14		
			·		
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.	1		
* Specia "A" docum	l categories of cited documents: ent defining the general state of the art which is not ered to be of particular relevance	"T" later document published after the interpriority date and not in conflict with tunderstand the principle or theory und	he application but cited to lerlying the invention		
"E" earlier date	document but published on or after the international filing	"X" document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be		
"L" docum	auto				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such					
means "P" document published prior to the international filing date but later "Accommend the same patent family than the priority date claimed "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art "Combination being obvious to a person skilled in the art					
Date of the	Date of the actual completion of the international search 06 May, 2003 (06.05.03) Date of mailing of the international search 20 May, 2003 (20.05.03)				
Name and n	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer				
Foosimile N		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/01725

		Relevant to claim No.
ategory*	Citation of document, with indication, where appropriate, of the relevant passages	1-12,14
A	DARMANI, N.A. et al., Cannabinoids of diverse structure inhibit two DOI-induced 5-HT _{2A} receptor-mediated behaviors in mice, Pharmacology, Biochemistry and Behavior, 2001, Vol.68, No.2, pages 311 to 317	1-12,14
A	BUEB, Jean-Luc et al., Receptor-independent effects of natural cannabinoids in rat peritoneal mast cells in vitro, Biochemica et Biophysica Acta, 2001, Vol.1538, Nos.2 to 3, pages 252 to 259	1-12,14
	·	
		·

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/01725

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
 1. X Claims Nos.: 13 because they relate to subject matter not required to be searched by this Authority, namely: Claim 13 pertains to methods for treatment of the human body by therapy and thus relates to a subject matter which this International Searching Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search. 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1⁷ A61K45/00, 31/426, 31/435, 31/436, 31/4375, 31/4412, 31/4427, 31/4439, 31/4523, 31/4704, 31/4709, 31/4745, 31/506, 31/5377, 31/54, 31/541, 31/5415, 31/547, A61P17/04

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. $C1^7$ A61K45/00, 31/33-31/655, A61P17/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN)

MEDLINE (STN)

REGISTRY (STN)

EMBASE (STN)

BIOSIS (STN)

C. 関連すると認められる文献

し、		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
EX	US 2002/0182159 A1 (UNILEVER HOME & PERSONAL CARE USA, DIVISION OF CONOPCO, INC.) 2002.12.05, 全文, 特にEXAMPLE1-3 & WO 02/65997 A1	1-12, 14
EΑ	WO 02/053543 A1(塩野義製薬株式会社)2002.07.11, 全文 (ファミリーなし)	1-4, 10-12, 14
A	WO 01/19807 A1(塩野義製薬株式会社)2001.03.22, 全文 & EP 1219612 A1	1-9, 14
	1	i

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

06.05.03

国際調査報告の発送日

20.05.03

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 浜田 麻子 配^{4C}

2938

電話番号 03-3581-1101 内線 3451

<u>C</u> (続き). 引用文献の カテゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	DARMANI, N. A. et al, Cannabinoids of diverse structure inhibit two DOI-induced 5-HT _{2A} receptor-mediated behaviors in mice, Pharmacology, Biochemistry and Behavior, 2001, Vol. 68, No. 2, pp311-317	1–12, 14
A	BUEB, Jean-Luc <i>et al</i> , Receptor-independent effects of natural cannabinoids in rat peritoneal mast cells in vitro, Biochemica et Biophysica Acta, 2001, Vol. 1538, No. 2-3, pp252-259	1-12, 14
r		
,		
		,
-		
		,
		,
٠		
		,

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
	第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなか	つった。
1. X	請求の範囲 13 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲13は、治療による人体の処置方法に関するものであって、PCT第17条(2)(a)(i)及びPCT規則39.1(iv)の規定により、この国際調査機関が国際調査を行うことを要しない対象に係るものである。
2.	請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
	·
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
対フエエ関	元は1~~十 「丁~~)(女」()() () () () () () () () () () () () ()
次に並	さべるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	i de la companya de
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
_	
追加調査	至手数料の異議の申立てに関する注意 追加調査手数料の納付と共に出願人から異議申立てがあった。
_ 	」 追加調査手数料の納付と共に出願人から異議申立てがなかった。
L	」 足別羽里丁郊がツ羽羽 こ 大に耳願人がり共蔵中立 しゅうしゅ