Group Assignment

Korea University Business School Prof. Lee, Gun-woong

Instructions

- Due Date: Thursday, 21 April by 11:59pm
- Deliverables and File Naming Rules
 - R code file: BUSS215_A2_GXX.r
 - Data file: BUSS215_A2_GXX.csv
 - XX indicates your group number
 - If violated, 5 points will be deducted from the total score
- DO NOT use Excel, SAS, or any statistical software packages
- Work within your group. DO NOT share the answers with other groups
- Submit the file to the Blackboard Site
- If you need any assistance, please contact the TA, Mingi Song(smgnc3@korea.ac.kr)

Step 0: Import the admission data (admission.csv) from your project folder

> adm <- read.csv('admission.csv')</pre>

Step 1: Create three columns indicating the ranks (Low, Mid, High) of GRE, GPA, and Prestige of undergrad institutions (rank) as follows (30 pts.)

gre	GRE_Rank
gre =< 300	NQ
300 < gre =< 550	Low
550 < gre =< 700	Mid
700 < gre =< 800	High

gpa	GPA_Rank
gpa =< 2.0	NQ
2.0 < gpa =< 3.0	Low
3.0 < gpa =< 3.5	Mid
3.5 < gpa =< 4.0	High

rank	SCH_Rank
4	NQ
3	Low
2	Mid
1	High

Note: NQ means "Not Qualified"

<Output>

>	head(a	adm)					
	admit	gre	gpa	rank	GRE_Rank	GPA_Rank	SCH_Rank
1	O	380	3.61	3	Low	High	Low
2	1	660	3.67	3	Мid		
3	1	800	4.00	1	High		High
4	1	640	3.19	4	мid	мid	NQ
5	0	520	2.93	4	Low	Low	NQ
6	1	760	3.00	2	High	Low	Mid

Step 2: Answer the following questions (15 pts.):

Q1: Count the number of applicants whose GPA scores are in the 'Mid' rank.

Q2: How many applicants are graduated from the 'Low' ranked undergrad institutions?

Q3: What is the average GRE score for the applicants whose undergraduate institutions' ranks are <u>NOT</u> in the 'NQ' rank?

Step 3: Create an additional column indicating the overall admission scores computed based on *GRE_Rank*, *GPA_Rank*, and *SCH_Rank* (30 pts.):

Overall_Score =
$$0.5*GRE_Rank + 0.3*GPA_Rank + 0.2*SCH_Rank$$
, where $NQ=10$, Low = 40 , Mid = 70 , and High = 100

e.g.,
$$Overall_Score = 0.5*GRE_Rank(\underline{Mid}) + 0.3*GPA_Rank(\underline{NQ}) + 0.2*SCH_Rank(\underline{Low})$$

= $0.5*70 + 0.3*10 + 0.2*40 = 26$

<Output>

>	head(a	adm)						
	admit	gre	gpa	rank	GRE_Rank	GPA_Rank	SCH_Rank	Overall_Score
1	0	380	3.61	3	Low	High	Low	58
2	1	660	3.67	3	Mid	High	Low	73
3	1	800	4.00	1	High	High	High	100
4	1	640	3.19	4	мid	Mid	NQ	58
5	0	520	2.93	4	Low	Low	NQ	34
6	1	760	3.00	2	High	Low	Mid	76

Step 4: Answer the following questions (20 pts.):

Q4: Calculate Prob(admit=0)

Q5: Calculate Prob(admit=1)

Q6: Calculate Prob(admit=0 | GRE_Rank = NQ)

Q7: Calculate Prob(admit=1 | GPA_Rank != High)

Q8: Calculate Prob(admit=0 | SCH_Rank = Low)

Q9: Calculate Prob(admit=1 | Overall_Score > 75)

Q10: Calculate Prob(admit=0 | Overall_Score < 30)

*Note: You should compute the conditional probabilities for Q6 – Q10 "|" means "given", not "or"

Step 5: Export the data as a <u>csv</u> file (i.e., BUSS215_A2_GXX.csv) (5 pts.)