Complex manifolds

Definition

Let M be a 2m-dimensional topological manifold. A coordinate atlas $\{(U, \phi_U : U \to \mathbb{C}^m)\}$ is called *holomorphic* if the transition functions $\phi_U \circ \phi_V^{-1}$ are holomorphic functions between subsets of \mathbb{C}^m ; in this case the coordinate charts ϕ_U are called *local holomorphic coordinates*. The manifold M is called *complex* if it admits a holomorphic atlas.

Two holomorphic atlases are called *equivalent* if their union is a holomorphic atlas. An equivalence class of holomorphic atlases on *M* is called a *complex structure*.

Remark: Obviously, a complex manifold of dimension m is a smooth (real) manifold of dimension 2m. We will denote the underlying real manifold by $M_{\mathbb{R}}$.

Example

Complex projective space $\mathbb{P}^m = \mathbb{C}P^m$, the set of (complex) lines in \mathbb{C}^{m+1} , i.e. the set of equivalence classes of the relation

$$(z_0,\ldots,z_m)\sim(\alpha z_0,\ldots,\alpha z_m),\quad orall lpha\in\mathbb{C}^*(\ =\mathbb{C}\setminus\{0\})$$

on $\mathbb{C}^{m+1}\setminus\{0\}$. In other words $\mathbb{C}P^m=\left(\mathbb{C}^{m+1}\setminus\{0\}\right)/\sim$. We denote the equivalence class of (z_0,\ldots,z_m) by $[z_0,\ldots,z_m]$ and call (z_0,\ldots,z_m) homogeneous coordinates.

The complex charts are defined as for real projective space $\mathbb{R}P^m$:

$$U_i = \{[z_0, \ldots, z_m] : z_i \neq 0\}, \quad j = 0, \ldots, m$$

$$\phi_j: U_j \to \mathbb{C}^m, \qquad \phi_j([z_0, \ldots, z_m]) = \left(\frac{z_0}{z_j}, \ldots, \frac{z_{j-1}}{z_j}, \frac{z_{j+1}}{z_j}, \ldots, \frac{z_m}{z_j}\right).$$

Example

- 1. Complex Grassmanian $\operatorname{Gr}_p(\mathbb{C}^m)$; this is the set of all p-dimensional vector subspaces of \mathbb{C}^m . Note $\operatorname{Gr}_1(\mathbb{C}^{m+1}) = \mathbb{C}P^m$.
- 2. The *torus* $T^2 := \mathbb{R}^2/\mathbb{Z}^2$ is a complex manifold of dimension 1.
- 3. Level sets of submersions $f: \mathbb{C}^{m+1} \to \mathbb{C}$. If f is holomorphic and its differential df does not vanish at any point of $f^{-1}(c)$, then $f^{-1}(c)$ is a complex submanifold. For example *Fermat hypersurfaces*:

$$\left\{\left(z_0,\ldots,z_m\right)\in\mathbb{C}^m:\ \sum_{j=0}^mz_j^{d_j}=1\right\},\quad d_0,\ldots,d_m\in\mathbb{N}.$$

- 4. Similarly, *homogeneous* polynomials f on \mathbb{C}^{m+1} give complex submanifolds of $\mathbb{C}P^m$.
- 5. Complex Lie groups: $GL(n,\mathbb{C})$, $O(n,\mathbb{C})$, etc.; all open subsets of the space of all $n \times n$ matrices: $M_n(\mathbb{C}) \cong \mathbb{C}^{n^2}$.

Some linear algebra

Definition

Let $V_{\mathbb{R}}$ be a real vector space. A *complex structure* on $V_{\mathbb{R}}$ is a linear map $J:V_{\mathbb{R}}\to V_{\mathbb{R}}$ satisfying $J^2=-\mathrm{Id}$

Let V be any m-dimensional complex vector space and let $V_{\mathbb{R}}$ be the underlying 2m-dimensional vector space. Then the \mathbb{R} -linear map defined by Jv=iv is an almost complex structure.

Conversely, given any 2m-dimensional real vector space $V_{\mathbb{R}}$ with a complex structure J, let $V_{\mathbb{C}}:=\mathbb{C}\otimes V_{\mathbb{R}}$ be the associated 2m-dimensional complex vector space. The complex structure extends to a \mathbb{C} -linear map $J:V_{\mathbb{C}}\to V_{\mathbb{C}}$. Let $V^{1,0}$ and $V^{0,1}$ denote the eigenspaces of J with eigenvalues i and -i. There is a canonical isomorphism $V_{\mathbb{R}}\to V^{1,0}$, $X\mapsto X-iJX$ with inverse $Z\mapsto (Z+\bar{Z})/2$. This endows $V_{\mathbb{R}}$ with the structure of a complex vector space.

Remark: vector spaces that carry almost complex structures are necessarily even-dimensional!

Almost complex manifolds

Definition

An almost complex structure on a smooth real manifold M is an endomorphism J of the tangent bundle such that $J^2 = -1$ (i.e. J is a family of complex structures J_X on T_XM that depend smoothly on X). The pair (M, J) is called an almost complex manifold in this case.

Remark: Obviously, an almost complex manifold has even dimension, but not every even-dimensional smooth manifold admits an almost complex structure, e.g. S^4 does not [Borel & Serre, 1951] showed that the only spheres admitting an almost complex structure are S^2 (= $\mathbb{C}P^1$) and S^6 .

Example

Any complex manifold carries a canonical almost complex structure, defined as follows. Let $(z^1, \ldots, z^m) : U \to \mathbb{C}^m$ be a holomorphic chart on a complex manifold and let $(x^1, y^1, \ldots, x^m, y^m)$ be real coordinates such that $z^j = x^j + \mathrm{i} y^j$ for $j = 1, \ldots, m$. We define

$$J(\partial/\partial x^j) = \partial/\partial y^j, \quad J(\partial/\partial y^j) = -\partial/\partial x^j \quad \forall j = 1, \dots, m.$$

We will show later that this definition is independent of the choice of holomorphic coordinates.

Remark: It is not true however that every almost complex structure is obtained from a complex structure. S^6 admits an almost complex structure, but it is still an open problem whether it can also be made into a complex manifold.

The holomorphic tangent bundle

Definition

Let (M,J) be an almost complex manifold. The *complexified tangent* bundle is $T_{\mathbb{C}}M:=\mathbb{C}\otimes_{\mathbb{R}}TM$. The holomorphic (antiholomorphic) tangent bundle of M is the eigenbundle $T^{1,0}M$ ($T^{0,1}M$) of J in $T_{\mathbb{C}}M$ with eigenvalue i (-i).

The holomorphic cotangent bundle (anti-holomorphic cotangent bundle) is the subbundle $\Lambda^{1,0}M$ ($\Lambda^{0,1}M$) of $\Lambda^1_{\mathbb{C}}M$ consisting of all cotangent vectors u such that $u(X)=0 \ \forall X\in T^{0,1}M$ ($\forall X\in T^{1,0}M$). Finally, $\Lambda^{p,q}M:=\Lambda^p(\Lambda^{1,0}M)\wedge\Lambda^q(\Lambda^{0,1}M)$. Sections of $\Lambda^{p,q}M$ are called (p,q)-forms, and the space of all such forms is denoted by $\Omega^{p,q}M$.

There are canonical splittings:

$$T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M, \quad \Lambda_{\mathbb{C}}^rM = \bigoplus_{p+q=r} \Lambda^{p,q}M.$$

Example

On a complex manifold, in terms of local holomorphic coordinates z^j near a point $p \in M$,

$$T_{\rho}^{1,0}M = \operatorname{span}\left\{\frac{\partial}{\partial z_{j}}\right\}, \quad T_{\rho}^{0,1}M = \operatorname{span}\left\{\frac{\partial}{\partial \overline{z}_{j}}\right\}$$

If u^{j} are another set of holomorphic coordinates then

$$\frac{\partial}{\partial u^j} = \frac{\partial z^k}{\partial u^j} \frac{\partial}{\partial z^k},$$

because $\partial \bar{z}^k/\partial u^j=0$. A similar statement holds for $\partial/\partial \bar{u}^j$. It follows that J is independent of the choice of complex coordinates, since the splitting $T_{\mathbb{C}}M=T^{1,0}M\oplus T^{0,1}M$ determines J.

A section of $T^{1,0}M$ can be written $X = X^j \partial/\partial z^j$. It follows that if both X and Y are sections of $T^{1,0}M$, then so is their Lie bracket [X,Y].

The Newlander-Nirenberg Theorem

Theorem (Newlander-Nirenberg)

Let (M, J) be an almost complex manifold. The almost complex structure J comes from a complex structure if and only if

$$X, Y \in \Gamma(T^{1,0}M) \implies [X, Y] \in \Gamma(T^{1,0}M).$$

Remark: An equivalent condition is the vanishing of the *Nijenhuis tensor*.

$$N(X, Y) = [JX, JY] - [X, Y] - J[X, JY] - J[JX, Y].$$

As for the proof, we have just have seen the "only if" part. The "if" part is very hard. See Kobayashi & Nomizu for a proof under an additional assumption that M and J are real-analytic, and Hörmander's "Introduction to Complex Analysis in Several Variables" for a proof in full generality.

The dual picture

Example

In local holomorphic coordinates z^j on a complex manifold M, (p,q)-forms u may be written as follows:

$$u = \frac{1}{p! q!} u_{j_1 \dots j_p \overline{k}_1 \dots \overline{k}_q}(z, \overline{z}) dz^{j_1} \wedge \dots \wedge dz^{j_p} \wedge d\overline{z}^{k_1} \wedge \dots \wedge d\overline{z}^{k_q}$$

(The coefficients $u_{j_1...j_p\bar{k}_1...\bar{k}_j}$ can be chosen anti-symmetric in the j's and k's.) A direct calculation shows that

$$u \in \Omega^{p,q}M \Rightarrow du \in \Omega^{p+1,q}M \oplus \Omega^{p,q+1}M$$
.

This property characterises complex manifolds...

Theorem

Let (M, J) be an almost complex manifold of dimension 2n. The following conditions are equivalent:

- (i) J is a complex structure.
- (ii) $d\Omega^{1,0}M \subset \Omega^{2,0}M \oplus \Omega^{1,1}M$.
- (iii) $d\Omega^{p,q}M \subset \Omega^{p+1,q}M \oplus \Omega^{p,q+1}M$ for all $0 \le p,q \le m$.

Proof.

The only non-trivial bit is (ii) \Longrightarrow (i). Use the following elementary formula for the exterior derivative of a 1-form:

$$2d\omega(Z,W) = Z(\omega(W)) - W(\omega(Z)) - \omega([Z,W]).$$

Holomorphic maps

Definition

A smooth map $f: M_1 \to M_2$ between two complex manifolds is called *holomorphic* if $\psi_V \circ f \circ \phi_U^{-1}$ is a holomorphic map between open subsets in \mathbb{C}^n , for any charts (U, ϕ_U) in M_1 and (V, ψ_V) in M_2 . A holomorphic bijection $f: M_1 \to M_2$ with holomorphic inverse is called a *biholomorphism*

Definition

A smooth map $f:(M_1,J_1)\to (M_2,J_2)$ between two almost complex manifolds is called *J-holomorphic* if the differential of f commutes with the almost complex structures, i.e. $f_*\circ J_1=J_2\circ f_*$ as maps from T_pM_1 to $T_{f(p)}M_1$.

It is left as an exercise to show that every holomorphic map is *J*-holomorphic.

Summary 1

- An almost complex manifold is a pair (M, J), where M is a smooth real manifold and $J: TM \to TM$ has $J^2 = -Id$. $T^{1,0}M$, $T^{0,1}M$ denote the $\pm i$ -eigenspaces of J in $T^{\mathbb{C}}M$. $T^{1,0}M = \{X iJX : X \in TM\}$.
- If M is a *complex manifold* with local coordinates (z_1, \ldots, z_n) , then $T^{1,0}M$ is spanned by $\partial/\partial z_1, \ldots, \partial/\partial z_n$; $T^{1,0}M$ is called the (1,0) or holomorphic tangent bundle.
- A complex manifold is always an almost complex manifold in a natural way. Conversely, an almost complex manifold (M, J) is a complex manifold (i.e. complex coordinates exist) iff $[\Gamma(T^{0,1}M), \Gamma(T^{0,1}M)] \subset \Gamma(T^{0,1}M)$ (Newlander–Nirenberg Theorem).
- We can similarly decompose $T^*M \otimes \mathbb{C}$ into $T^{1,0}M$ and $T^{0,1}M$, and the whole exterior algebra into a direct sum: $\Lambda M \otimes \mathbb{C} = \bigoplus \Lambda^{p,q}M$.
- On a complex manifold, $\Lambda^{p,q}M$ is spanned by

$$dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{j_1} \wedge \cdots \wedge d\overline{z}_{j_q}$$
.

• Sections of $\Lambda^{p,q}M$ are called (p,q)-forms. (M,J) is a complex manifold iff $d\Omega^{1,0}M \subset \Omega^{2,0}M \oplus \Omega^{1,1}M$ equivalently, $d\Omega^{p,q}M \subset \Omega^{p+1,q}M \oplus \Omega^{p,q+1}M$ for all $0 \le p,q \le m$.

The Dolbeault operator

Recall that, on a complex manifold, $d(\Omega^{p,q}M) \subset \Omega^{p+1,q}M \oplus \Omega^{p,q+1}M$. We may therefore write $d = \partial + \bar{\partial}$, where $\partial : \Omega^{p,q}M \to \Omega^{p+1,q}M$ and $\bar{\partial} : \Omega^{p,q}M \to \Omega^{p,q+1}M$.

Lemma

$$\partial^2=0,\quad ,\bar{\partial}^2=0,\quad \partial\bar{\partial}+\bar{\partial}\partial=0.$$

Proof.

 $0 = d^2 = (\partial + \bar{\partial})^2 = \partial^2 + \bar{\partial}^2 + (\partial \bar{\partial} + \bar{\partial} \partial)$ and the three operators in the last term take values in different subbundles of $\Lambda^* M \otimes \mathbb{C}$.

Definition

The operator $\bar{\partial}: \Omega^{p,q}M \to \Omega^{p,q+1}M$ is called the *Dolbeault operator*. A *p*-form ω of type (p,0) is called *holomorphic* if $\bar{\partial}\omega = 0$.

Dolbeault cohomology

 $\bar{\partial}$ defines *Dolbeault cohomology groups* of a complex manifold, analogous to de Rham cohomology:

$$\begin{split} Z^{p,q}_{\bar\partial}(M) &:= \{\omega \in \Omega^{p,q}(M): \ \bar\partial \omega = 0\} \\ H^{p,q}_{\bar\partial}(M) &:= Z^{p,q}_{\bar\partial}(M) \big/ \bar\partial \Omega^{p,q-1}(M). \end{split}$$
 — the $\bar\partial$ -closed forms.

Warning: Dolbeault cohomology is not a topological invariant: it depends on the complex structure.

A holomorphic map $f: M \rightarrow N$ between complex manifolds induces a $\mathsf{map}\ f^*: H^{p,q}_{\bar\partial}(N) \to H^{p,q}_{\bar\partial}(M).$

Lemma (Dolbeault Lemma)

For B a ball in
$$\mathbb{C}^n$$
, $H_{\bar{\partial}}^{p,q}(B) = 0$ for $q > 0$.

For a proof, see Griffiths and Harris, p. 25.

This lemma implies that $H^{p,q}_{\bar\partial}(\mathbb{C}^m)=0$ for q>1. Note however that $H_{\bar{a}}^{p,0}(\mathbb{C}^m)$ has infinite dimension!

Example (\mathbb{CP}^1)

We claim that $H_{\bar{\partial}}^{1,0}(\mathbb{CP}^1)\cong 0$ and that $H_{\bar{\partial}}^{0,1}(\mathbb{CP}^1)\cong 0$. Consider first $H_{\bar{\partial}}^{1,0}$. Let w_0 and w_1 be the coordinates on the two patches U_0 , U_1 , so that $w_1 = 1/w_0$. Any (1,0)-form ϕ can be written $\phi = \phi_0(w_0) dw_0$ on U_0 , and $\phi = \phi_1(w_1) dw_0$ on U_1 . Since $\mathrm{d}w_1 = -\,\mathrm{d}w_0/w_0^2,\, \phi_0 = -\phi_1/w_0^2 \text{ on } U_0\cap U_1.$ This implies that $\phi_0 \to 0$ as $w_0 \to \infty$, and that ϕ_0 is a bounded function on \mathbb{C} . $\partial \phi = 0$ implies that ϕ_0 and ϕ_1 are holomorphic functions. Therefore by Liouville's theorem, φ_0 is constant. Since $\varphi_0 \to 0$ at $\infty,\, \varphi_0 = 0.$ Hence $\varphi = 0.$ Now consider $H_{\bar{3}}^{0,1}$. Let ψ be any (0,1)-form. By the Dolbeault lemma, there are functions $f_i:U_i\to\mathbb{C}$ such that $\psi=\bar\partial f_i$ on U_i . On $U_0\cap U_1$, $f_1 - f_0$ is an anti-holomorphic function, so write

$$f_1-f_0=\sum_{i=-\infty}^\infty a_iw_0^i.$$

Then $g = f_0 + \sum_{i=1}^{\infty} a_i w_0^i = f_1 - \sum_{i=0}^{\infty} a_{-i} w_1^i$ is a function on \mathbb{CP}^m such that $\bar{\partial} g = \Psi$.

First example of a complex vector bundle

Example

Let M be a smooth n-dimensional manifold and let V be a complex k-dimensional vector space. The *trivial vector bundle* over M of rank k is the pair (E,π) , where $E=M\times V$ and $\pi:E\to M$ is the projection.

Roughly speaking, a vector bundle is something that looks like this example locally...

Complex vector bundles

Definition

Let M be a smooth n-dimensional manifold. A smooth complex vector bundle of rank k on M consists of a 2k+n-dimensional manifold E and a surjective submersion $\pi: E \to M$ such that

- for each $x \in M$, $E_x := \pi^{-1}(x)$ has the structure of a complex k-dimensional vector space;
- for each $x \in M$ there exists an open set $U \ni x$ and a diffeomorphism $\phi_U : \pi^{-1}(U) \to U \times \mathbb{C}^k$ such that

$$pr_U \circ \phi = \pi$$
 (where $pr_U : U \times \mathbb{C}^k \to U$ is the projection)

and $\phi_U|_{E_v}$ is a vector space isomorphism for each $y \in U$.

The maps ϕ_U are called *trivialisations* of E over U. The vector spaces E_X are called the *fibres* of E.

Example (The tangent bundle)

If M is any smooth manifold, the complexified tangent bundle $T_{\mathbb{C}}M$ is an example of a complex vector bundle. Given local coordinates $U \subset M$, $x : U \to \mathbb{R}^n$, a local trivialisation is given by

$$\phi_U:(p,X) \to (p,(X^1,X^2,\ldots,X^n)), \quad \text{where } p \in U, \ X = X^i \frac{\partial}{\partial x^i} \in T_p M.$$

If M is an almost complex manifold, the holomorphic and anti-holomorphic tangent bundles $T^{1,0}M$ and $T^{0,1}M$ are also examples of complex vector bundles. In fact, they are "sub-bundles" of $T_{\mathbb{C}}M$...

Definition

Let (E,π_E) be a complex vector bundle over a smooth Riemannian manifold M. A sub-bundle of E is a vector bundle of the form (F,π_F) , where $F \subset E$ is a submanifold, $\pi_F = \pi_E|_F$, and for each $p \in M$, F_p is a linear subspace of E_p .

Remark: We often omit π and simply write a vector bundle as $E \to M$.

Transition functions

Given any pair ϕ_U , ϕ_V of trivialisations, their *transition function* is the smooth map $g_{UV}: U \cap V \to GL(k, \mathbb{C})$ defined by

$$\phi_U \circ \phi_V^{-1}(x, v) = (x, g_{UV}(x)v) \quad \forall x \in U \cap V, v \in \mathbb{C}^k.$$

They satisfy

$$g_{UV}(x)g_{VU}(x) = I$$
, $g_{UV}(x)g_{VW}(x)g_{WU}(x) = I$ $(x \in U \cap V)$.

Conversely, given an open cover $\mathcal{U}=\{U_{\alpha}\}$ of M and C^{∞} -maps $g_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to GL(k,\mathbb{C})$ satisfying these identities, there is a unique complex vector bundle $E\to M$ with transition functions $\{g_{\alpha\beta}\}$.

New vector bundles from old

If E, F are two vector bundles with transition functions g_{UV}, h_{UV} , one can form (using vector bundle operations):

- The dual bundle E^* , with transition functions $g_{UV}(x)^T$.
- The direct sum $E \oplus F$, with transition functions

$$\begin{pmatrix} g_{UV}(x) & 0 \\ 0 & h_{UV}(x) \end{pmatrix} \in GL(\mathbb{C}^k \oplus \mathbb{C}^l)$$

• The *tensor product* $E \otimes F$, with transition functions

$$g_{UV}(x) \otimes h_{UV}(x) \in GL(\mathbb{C}^k \otimes \mathbb{C}^l)$$

- The *determinant bundle* $\Lambda^k E$ (where k is the rank of E), with transition functions $\det g_{UV} \in \mathbb{C}^*$.
- The bundle $\operatorname{Hom}(E,F) := F \otimes E^*$.
- If F is a sub-bundle of E there is a quotient bundle E/F. The transition functions for F, E and E/F are of the form

$$h_{UV}, \quad g_{UV} = \begin{pmatrix} h_{UV} & k_{UV} \\ 0 & j_{UV} \end{pmatrix}, \quad \text{and } j_{UV}$$

Vector bundles and maps

Definition

A *homomorphism* between vector bundles E and F on M is given by a smooth map $f: E \to F$, such that for each $p \in M$ the restrictions $f_p := f|_{E_x} : E_x \to F_x$ are linear. We have the obvious notions of $\ker(f)$ — a subbundle of E, and $\operatorname{Im}(f)$ — a subbundle of F. Also, f is called an *isomorphism* if each f_p is an isomorphism.

A vector bundle E on M is called *trivial* if E is isomorphic to the product bundle $M \times \mathbb{C}^k$.

Definition

Given a C^{∞} -map $f: M \to N$ and a vector bundle $E \xrightarrow{\pi} N$, we define the pullback bundle f^*E on M by

$$f^*E = \{(x, e) \in M \times E : f(x) = \pi(e)\}; \text{ so } (f^*E)_x = E_{f(x)}.$$

Sections

Definition

A *section* of a vector bundle $E \to M$ is a smooth map $s : M \to E$ such that $\pi \circ s = id_M$. The space of sections is denoted by $\Gamma(E)$.

For example, a vector field is a section of the tangent bundle.

Definition

A *local frame* for a vector bundle $E \to M$ consists of an open subset $U \subset M$ and a set $\{e_1, e_2, \dots, e_k\}$ of sections of the vector bundle $\pi^{-1}(U)$ such that for each $p \in U$, $\{e_1(p), e_2(p), \dots, e_k(p)\}$ are a basis for E_p .

Given a local frame, a section s can be represented by functions $s^i: U \to \mathbb{C}$ with $i=1,\ldots,k$, such that $s(p)=\sum_i s^i(p)e_i(p)$. **Exercise:** Show that a local frame determines a local trivialisation, and conversely.

Holomorphic vector bundles

Definition

Let M be a complex m-dimensional manifold. A *holomorphic vector* bundle of rank k on M consists of a k+m-dimensional complex manifold E and a surjective submersion $\pi: E \to M$ such that

- for each $x \in M$, $E_x := \pi^{-1}(x)$ has the structure of a complex k-dimensional vector space;
- for each $x \in M$ there exists an open set $U \ni x$ and a biholomorphism $\phi_U : \pi^{-1}(U) \to U \times \mathbb{C}^k$ such that

$$pr_U \circ \phi = \pi$$
 (where $pr_U : U \times \mathbb{C}^k \to U$ is the projection)

and $\phi_U|_{E_y}$ is a vector space isomorphism for each $y \in U$.

A complex vector bundle is holomorphic if and only if its transition functions $g_{UV}:U\cap V\to GL(k,\mathbb{C})$ are holomorphic functions.

Example (Tangent and related bundles)

Examples include $T^{1,0}M$ and $\Lambda^{p,0}M$. However, $T^{0,1}M$ and $\Lambda^{p,q}M$ with q>0 are NOT holomorphic vector bundles. The top exterior power $\Lambda^{m,0}M$ is called the *canonical bundle* over M.

Example (The tautological bundle on $\mathbb{C}P^n$)

The tautological line bundle $\pi: L \to \mathbb{C}P^n$ is defined by setting $L_A = A$, where A is a line in \mathbb{C}^{n+1} defining a point of $\mathbb{P}^n = \mathbb{C}P^n$.

To show that this bundle is holomorphic, it suffices to show that its transition functions are holomorphic.

Recall that we covered $\mathbb{C}P^n$ wth n+1 open subsets $U_j = \{[z_0, \ldots, z_n] : z_j \neq 0\}$. A trivialisation of L over U_j is given by $\phi_j : \pi^{-1}U \ni (\ell, (z_0, \ldots, z_n)) \mapsto (\ell, z_j) \in U_j \times \mathbb{C},$

hence $\phi_i \phi_j^{-1}([z], \lambda) = ([z], z_i z_j^{-1} \lambda)$, so the transition functions are $g_{ij}([z]) = z_i z_j^{-1}$. Since the transition functions are holomorphic, L is a holomorphic line bundle.

Everything that we defined for complex vector bundles carries over to the holomorphic setting, with "smooth" replaced by "holomorphic". Briefly:

- A *holomorphic subbundle F* of a holomorphic vector bundle *E* must be a complex submanifold of *E*.
- A homomorphism or isomorphism f between two holomorphic vector bundles F and E must be a holomorphic map.
- A *holomorphic section* of a holomorphic vector bundle $E \to M$ is a holomorphic function $s: M \to E$.
- The pull-back of a a holomorphic bundle $E \to N$ by $f: M \to N$ is holomorphic as long as f is holomorphic.
- One can define duals, direct sums, quotients, and tensor products of holomorphic bundles as for complex bundles.

Remark: a holomorphic bundle may be non-trivial as a holomorphic bundle and trivial as a complex vector bundle. Holomorphic triviality is a stronger condition than triviality!

Summary 2

- A (complex) vector bundle over a smooth manifold M is a smooth map $\pi: E \to M$, from a smooth manifold E with fibres $E_x = \pi^{-1}(x)$ $(x \in M)$ which are vector spaces of some finite dimension k, such that π is locally trivial, i.e., there exists an open cover $\mathcal U$ of M such that, for every $U \in \mathcal U$, we have a diffeomorphism $\phi_U : \pi^{-1}(U) \to U \times \mathbb C^k$ and these diffeomorphisms satisfy $\phi_U \circ \phi_V^{-1}(x,v) = (x,g_{UV}(x)v)$, where $g_{UV}: U \cap V \to GL(k,\mathbb C)$ is a smooth map.
- E is a *holomorphic* vector bundle if M is a complex manifold and g_{UV} are holomorphic functions for all $U, V \in \mathcal{U}$; this implies that E is a complex manifold.
- A section of a vector bundle $E \to M$ is a smooth map $s : M \to E$ such that $s(x) \in E_x$ for all $x \in M$ (like a vector field). The space of sections is denoted by $\Gamma(E)$.
- A *frame* for E over U is a choice of a vector space basis $(s_1(x), \ldots, s_k(x))$ for E_x which varies smoothly with $x \in U$ (i.e., each $s_i : U \to E$ is a smooth section.
- If *E* is a holomorphic vector bundle, we can speak of *holomorphic* sections and *frames*.

Connections

Connections are a way to differentiate sections.

Notation: given a complex vector bundle $E \to M$, $\Lambda^r E := \Lambda^r M \otimes E$ and $\Omega^r E := \Gamma(\Lambda^r E)$ (and similarly for $\Lambda^{p,q} E$ and $\Omega^{p,q} E$).

Definition

Let $E \to M$ be a complex vector bundle over a smooth manifold M. A connection on E is a \mathbb{C} -linear map $D : \Gamma(E) \to \Omega^1 E$ satisfying the Leibniz rule:

$$D(fs) = (df) \otimes s + f(Ds) \quad \forall f \in C^{\infty}(M), \ s \in \Gamma(E).$$

Let *D* be a connection on *E* and let *X* be a vector field on *M*. The *covariant derivative with respect to X* is the operator $D_X : \Gamma(E) \to \Gamma(E)$ defined by

$$D_X s = Ds(X) \quad \forall s \in \Gamma(E).$$

Connection matrix

Let us choose a local frame $e = (e_1, ..., e_k)$ for E over U. Then there is a matrix of 1-forms $\theta = (\theta_{ij})$ such that

$$De_i = \sum_{j} \theta_{ij} e_j$$
 $(i = 1, ..., k)$

 θ is called the *connection matrix* (or *gauge potential*) with respect to the frame *e*.

For example $\Gamma_{ij}^k dx^i$ is the connection matrix for the *Levi-Civita* connection in the frame $\partial/\partial x^i$.

Since $D(fs) = df \otimes s + f \cdot Ds$, the data e and θ determine D.

The connection matrix depends on the choice of e: if (e'_1, \ldots, e'_k) is another frame with e'(x) = g(x)e(x) $(g(x) \in GL(k, \mathbb{C}))$, then

$$De' = dg \, e + g \, De = dg \, e + g \, \theta \, e = dg \, g^{-1} \, e' + g \, \theta \, g^{-1} \, e'.$$

So the connection matrix w.r.t. e' is

$$\theta' = g\theta g^{-1} + dg g^{-1}.$$

The matrix-valued function *g* is sometimes called a *gauge transformation*.

Example

Consider the trivial bundle $\mathbb{C}^2 \times \mathbb{R}^3$ of rank 2 over \mathbb{R}^3 .

Its standard (global) frame is
$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Set $v = \partial/\partial x_1$ and

$$\theta = \begin{pmatrix} dx_1 & dx_2 \\ dx_2 & dx_3 \end{pmatrix}.$$

Then
$$De_1= heta_{11}e_1+ heta_{12}e_2=egin{pmatrix} dx_1\ dx_2 \end{pmatrix}$$
 and $D_ve_1=e_1.$ Similarly,

$$D_v e_2 = 0$$
. Therefore, for a general section $s = \begin{pmatrix} s_1(x_1, x_2, x_3) \\ s_2(x_1, x_2, x_3) \end{pmatrix}$,

$$egin{aligned} D_{v}(s) &= D_{v}(s_{1}e_{1} + s_{2}e_{2}) \ &= ds_{1}(v)e_{1} + s_{1}D_{v}e_{1} + ds_{2}(v)e_{2} + s_{2}D_{v}e_{2} \ &= rac{\partial s_{1}}{\partial x_{1}}e_{1} + s_{1}e_{1} + rac{\partial s_{2}}{\partial x_{1}} + 0 = \left(egin{aligned} rac{\partial s_{1}}{\partial x_{1}} + s_{1} \ rac{\partial s_{2}}{\partial x_{1}} \end{aligned}
ight). \end{aligned}$$

Curvature

Any connection $D: \Gamma(E) \to \Omega^1 E$ can be extended to an operator $D: \Omega^p E \to \Omega^{p+1} E$ by imposing the Leibniz rule:

$$D(\omega \otimes \sigma) = d\omega \otimes \sigma + (-1)^{\rho} \omega \wedge D\sigma, \ \forall \omega \in \Omega^{\rho} M, \, \sigma \in \Gamma(E).$$

Lemma

The operator $D^2: \Gamma(E) \to \Omega^2 E$ is tensorial, i.e. $D^2(fs) = fD^2 s$ $\forall f \in C^{\infty}(M), s \in \Gamma(E)$.

Proof.

$$D^2(fs) = D(df \otimes s + fDs) = d^2f - df \otimes Ds + df \otimes Ds + fD^2s = fD^2s. \quad \Box$$

Definition

The *curvature* of a connection D is the section $R^D \in \Omega^2 \operatorname{Hom}(E, E)$ such that $R^D(s) = D^2 s \ \forall s \in \Gamma(E)$.

Curvature matrix

Given a local frame $e = (e_1, ..., e_k)$, the curvature R^D is represented by a matrix-valued 2-form (Θ_{ij}) such that $R^D(s_i e_i) = s_i \Theta_{ij} e_j$ for all local sections $s = s_i e_i$. One can calculate Θ in terms of θ :

$$D^{2}s_{i}e_{i} = D(ds_{i}e_{i} + s_{i}\theta_{ij}e_{j})$$

$$= -ds_{i} \wedge \theta_{ij}s_{j} + ds_{i} \wedge \theta_{ij}e_{j} + s_{i}d\theta_{ij}e_{j} - s_{i}\theta)ij \wedge \theta_{jk}e_{k}$$

$$= s_{i}(d\theta_{ij} - \theta_{ik} \wedge \theta_{kj})e_{j}.$$

Hence $\Theta_{ij} = d\theta_{ij} - \theta_{ik} \wedge \theta_{kj}$, or, more succinctly,

$$\Theta = d\theta - \theta \wedge \theta$$
.

Exercise: Show that if e'(x) = g(x)e(x) is another frame then $\Theta' = g\Theta g^{-1}$.

Exercise: Prove the *Bianchi identity*: $d\Theta + \theta \wedge \Theta - \Theta \wedge \theta = 0$.

Holomorphic vector bundles

Definition

Let M be a complex m-dimensional manifold. A *holomorphic vector* bundle of rank k on M consists of a k+m-dimensional complex manifold E and a **holomorphic** surjective submersion $\pi:E\to M$ such that

- for each $x \in M$, $E_x := \pi^{-1}(x)$ has the structure of a complex k-dimensional vector space;
- for each $x \in M$ there exists an open set $U \ni x$ and a **biholomorphism** $\phi_U : \pi^{-1}(U) \to U \times \mathbb{C}^k$ such that

$$pr_U \circ \phi = \pi$$
 (where $pr_U : U \times \mathbb{C}^k \to U$ is the projection)

and $\phi_U|_{E_v}$ is a vector space isomorphism for each $y \in U$.

A complex vector bundle is holomorphic if and only if its transition functions $g_{UV}:U\cap V\to GL(k,\mathbb{C})$ are holomorphic functions.

Example (Tangent and related bundles)

Examples include $T^{1,0}M$ and $\Lambda^{p,0}M$. However, $T^{0,1}M$ and $\Lambda^{p,q}M$ with q>0 are NOT holomorphic vector bundles (**Exercise:** why not?). The top exterior power $K:=\Lambda^{m,0}M$ is called the *canonical bundle* over M.

Example (The tautological bundle on $\mathbb{C}P^n$)

The tautological line bundle $\pi: L \to \mathbb{C}P^n$ is defined by setting $L_A = A$, where A is a line in \mathbb{C}^{n+1} defining a point of $\mathbb{P}^n = \mathbb{C}P^n$.

To show that this bundle is holomorphic, it suffices to show that its transition functions are holomorphic.

Recall that we covered $\mathbb{C}P^n$ wth n+1 open subsets $U_j = \{[z_0, \ldots, z_n] : z_j \neq 0\}$. A trivialisation of L over U_j is given by $\phi_j : \pi^{-1}U \ni ([z_0, \ldots, z_n], \lambda(z_0, \ldots, z_n)) \mapsto ([z_0, \ldots, z_n], \lambda z_j) \in U_j \times \mathbb{C}$.

Hence $\phi_i \phi_j^{-1}([z], p) = ([z], z_i z_j^{-1} p)$, so the transition functions are $g_{ij}([z]) = z_i z_j^{-1}$. Since the transition functions are holomorphic, L is a holomorphic line bundle.

Everything that we defined for complex vector bundles carries over to the holomorphic setting, with "smooth" replaced by "holomorphic". Briefly:

- A holomorphic subbundle F of a holomorphic vector bundle E must be a complex submanifold of E.
- A homomorphism or isomorphism f between two holomorphic vector bundles F and E must be a holomorphic map.
- A *holomorphic section* of a holomorphic vector bundle $E \to M$ is a holomorphic function $s: M \to E$.
- The pull-back of a a holomorphic bundle $E \to N$ by $f: M \to N$ is holomorphic as long as f is holomorphic.
- One can define duals, direct sums, quotients, and tensor products of holomorphic bundles as for complex bundles.

Remark: a holomorphic bundle may be non-trivial as a holomorphic bundle and trivial as a complex vector bundle. Holomorphic triviality is a stronger condition than triviality!

The $ar{\partial}$ operator

Lemma

Let $E \to M$ be a **holomorphic** vector bundle over a complex manifold. There is a unique operator $\bar{\partial}: \Omega^{p,q}E \to \Omega^{p,q+1}E$ such that $\bar{\partial}s = 0$ for any holomorphic section $s \in \Gamma(E)$ and which obeys the Leibniz rule:

$$\bar{\partial}(\omega \wedge s) = \bar{\partial}\omega \wedge s + (-1)^{p+q}\omega \wedge \bar{\partial}s \quad \forall \omega \in \Omega^{p,q}M, \ s \in \Omega^{r,s}E.$$

Proof.

Let e_i be a local holomorphic frame for E, and write a section ω as $\omega = \omega_i e_i$ with ω_i locally-defined (p,q)-forms. The properties of $\bar{\partial}$ stated in the lemma imply that

$$\bar{\partial}\omega = \bar{\partial}\omega_i \wedge e_i$$
.

It is straightforward to check that this is independent of the choice of holomorphic frame *e*.

Remark: Note that $\bar{\partial}^2 = 0$.

Summary 3

- A *connection* on a complex vector bundle $E \to M$ is an operator $D : \Gamma(E) \to \Omega^1(E)$ which satisfies the Leibniz rule $D(fs) = (df) \otimes s + f \cdot Ds$ for $f \in C^{\infty}(M)$, $s \in \Gamma(E)$.
- In a local frame $e = (e_j)$ for E, $De_i = \sum \theta_{ij} e_j$. The matrix θ of 1-forms is called the *connection matrix (w.r.t. the frame e)*.
- The *curvature* of a connection is the section $R^D \in \Omega^2 \operatorname{Hom}(E, E)$ such that $D^2 = R^D$. In a local frame it has matrix $\Theta = d\theta \theta \wedge \theta$.
- A *holomorphic vector bundle* is a vector bundle whose projection and trivialisation maps are holomorphic.

Holomorphic and complex vector bundles

The next theorem answers the question: when can a complex vector bundle be made into a holomorphic vector bundle?

Theorem

Let $E \to M$ be a complex vector bundle over a complex manifold and let $\bar{\partial}: \Omega^{p,q}E \to \Omega^{p,q+1}E$ be an operator that satisfies the Leibniz rule. Then $\bar{\partial}$ is induced from the structure of a holomorphic vector bundle on E if and only if $\bar{\partial}^2=0$.

This theorem can be proved using the Newlander-Nirenberg theorem.

Definition

A connection on a holomorphic vector bundle is said to be *compatible* with the holomorphic structure if, for every $s \in \Omega^{p,q}E$, the component of Ds in $\Omega^{p,q+1}E$ equals $\bar{\partial}s$.

The theorem implies that a complex vector bundle with a connection D admits a compatible holomorphic structure iff the component of R^D in $\Omega^{0,2}\operatorname{Hom}(E,E)$ vanishes.

Definition

Let $E \to M$ be a complex vector bundle over a smooth manifold. A *Hermitian metric* on E is a pairing $\langle \cdot, \cdot \rangle : \Gamma(E) \times \Gamma(E) \to \Gamma(E)$ such that, for all $s, t, u \in \Gamma(E)$, all $f, g \in C^{\infty}(M)$, and all $x \in M$:

- $\langle s,s\rangle \geq 0$, and $\langle s,s\rangle(x)=0 \Leftrightarrow s(x)=0$

The pair $(E, \langle \cdot, \cdot \rangle)$ is called a *Hermitian vector bundle* in this case.

Remark: It follows that each fibre E_x carries a Hermitian metric which depends smoothly on x.

Definition

A connection D on a hermitian vector bundle (E, h) is called *hermitian* or *compatible* with the hermitian structure if

$$\mathsf{d}\langle s,t \rangle = \langle \mathsf{D} s,t \rangle + \langle s,\mathsf{D} t \rangle \quad \forall s,t \in \Gamma(E).$$

Exercise: Show that in a frame e such that $\langle e_i, e_j \rangle = \delta_{ij}$ the connection matrix for a hermitian connection is anti-hermitian.

Theorem

If E o M is a Hermitian holomorphic vector bundle over a complex manifold, then there is unique connection D (called the Chern connection) compatible with both the metric and the complex structure.

Proof.

Let $(e_1, ..., e_k)$ be a holomorphic frame for E and put $h_{ij} = \langle e_i, e_j \rangle$. If D is compatible with the complex structure, then De_i is of type (1,0), and, as D is compatible with the metric:

$$\mathrm{d}h_{ij} = \langle De_i, e_j
angle + \langle e_i, De_j
angle = \sum_{p} heta_{ip} h_{pj} + \sum_{p} \overline{ heta}_{jp} h_{ip}.$$

The first term is of type (1,0) and the second of type (0,1), so:

$$\partial h_{ij} = \sum_{\rho} \theta_{i\rho} h_{\rho j}, \quad \bar{\partial} h_{ij} = \sum_{\rho} \overline{\theta_{j\rho}} h_{i\rho}.$$

Therefore $\partial h = \theta h$ and $\bar{\partial} h = h\bar{\theta}^T$. The unique solution to the first equation is $\theta = \partial h h^{-1}$; this solves the second because $\bar{h} = h^T$.

Curvature of the Chern connection in a holomorphic frame

Recall that the curvature matrix of a connection D with respect to any frame $e = (e_1, \dots, e_n)$ is given by

$$\Theta = d\theta - \theta \wedge \theta$$
,

where θ is the connection matrix w.r.t. e.

Recall that, for the Chern connection, $\theta = \partial h h^{-1}$ in a holomorphic frame e (where $h_{ij} = \langle e_i, e_i \rangle$). So. . .

$$d\theta = (\partial + \bar{\partial})\theta = \bar{\partial}\theta + \partial(\partial hh^{-1}) = \bar{\partial}\theta - \partial h \wedge \partial(h^{-1}) = \bar{\partial}\theta + \partial hh^{-1} \wedge \partial hh^{-1}.$$

Hence the curvature matrix of the Chern connection w.r.t. a holomorphic frame is given by

$$\Theta = \bar{\Theta}$$

. This calculation shows that the curvature is a (1,1)-form. In the case of a line bundle, if $h = \langle e_1, e_1 \rangle$, we have

$$\theta = \partial \log h$$
, $\Theta = \bar{\partial} \partial \log h$.

Example (Curvature of the tautological bundle of $\mathbb{C}P^m$)

The tautological bundle *L* is a subbundle of the trivial bundle $\mathbb{P}^m \times \mathbb{C}^{m+1}$:

$$L := \{ (\ell, z) \in \mathbb{P}^n \times \mathbb{C}^{m+1} : z \in \ell \subset \mathbb{C}^{m+1} \}.$$

The standard Hermitian metric on \mathbb{C}^{m+1} defines a Hermitian metric on $\mathbb{P}^m \times \mathbb{C}^{m+1}$ and hence on L. We will calculate the curvature of the associated Chern connection on L. A holomorphic frame over U_0 is given by:

$$e: [z_0, \ldots, z_m] \to ([z_0, \ldots, z_m], (1, z_1/z_0, \ldots, z_m/z_0)).$$

 $h:=\langle e,e\rangle=1+\sum_{j=1}^m|w_j|^2,$ where $w_j=z_j/z_0$ are local coordinates. So

$$\Theta = \bar{\partial} \partial \log h = -\frac{\sum_{j=1}^{n} dw^{j} \wedge d\bar{w}^{j}}{1 + \sum_{j=1}^{n} |w_{j}|^{2}} + \frac{\sum_{i,j=1}^{n} \bar{w}_{i} dw_{i} \wedge w_{j} d\bar{w}_{j}}{(1 + \sum_{j=1}^{n} |w_{j}|^{2})^{2}}.$$

Hermitian manifolds

Definition

A Hermitian manifold (M,g) consists of a complex manifold M and a Riemannian metric g on M for which the almost complex structure J is an isometry, i.e.:

$$g(JX,JY) = g(X,Y) \ \forall X,Y \in \Gamma(TM).$$

Setting $\omega(X, Y) = g(JX, Y)$ defines a (1,1)-form ω called the fundamental form of (M,g).

The holomorphic tangent bundle of a Hermitian manifold carries a canonical positive definite Hermitian inner product (or *Hermitian metric*), defined by

$$\langle X, Y \rangle = 2g(\bar{X}, Y) \quad \forall X, Y \in \Gamma(T^{1,0}M).$$

Conversely, given a complex manifold M and a positive definite Hermitian inner product $\langle \cdot, \cdot \rangle$ on $T^{1,0}M$, setting

$$g(X, Y) = \langle X - iJX, Y - iJY \rangle \forall X, Y \in \Gamma(TM)$$

makes (M,g) a Hermitian manifold.

Hermitian manifolds in local coordinates

Given local holomorphic coordinates z^i , let $h_{ij} = h(\partial/\partial z^i, \partial/\partial z^j)$. Then

$$g=rac{1}{2}h_{ij}(\mathrm{d}z^i\,\mathrm{d}ar{z}^j+\mathrm{d}ar{z}^j\,\mathrm{d}z^i),\quad \omega=rac{\mathrm{i}}{2}h_{ij}\,\mathrm{d}z^i\wedge\mathrm{d}ar{z}^j.$$

In particular, $h = g \pm i\omega$, where $h = h_{ij} d\bar{z}^i \wedge dz^j$ is the section of $\Lambda^{0,1} M \otimes \Lambda^{1,0} M$ that defines $\langle \cdot, \cdot \rangle$.

Example (Connection and curvature in dimension one)

Let M be a $Riemann\ surface$, i.e., a 1-dimensional complex manifold. Let z=x+iy be a local coordinate and $\partial/\partial z$ a local holomorphic frame, then a Hermitian metric on $T^{1,0}M$ is written as $h\,dz\otimes d\bar{z}$, for a local function h>0. The connection matrix of the Chern connection is $\partial h\,h^{-1}=\frac{\partial\log h}{\partial z}\,dz$, and the curvature matrix is

$$\Theta = \bar{\partial}\partial \log h = \frac{\partial^2 \log h}{\partial \bar{z}\partial z} d\bar{z} \wedge dz = \left(-\frac{1}{4}\Delta \log h\right) dz \wedge d\bar{z}.$$

Now, the fundamental form on M is $\omega=rac{\mathrm{i}}{2}h\,\mathrm{d}z\wedge\mathrm{d}ar{z}$ and hence

$$\Theta = -iK\omega$$
,

where $K = (-\Delta \log h)/2h$ is the usual Gauss curvature of a surface.

Sign of the curvature

Definition

The curvature $R_E \in \Gamma(\Lambda^{1,1}M \otimes Hom(E,E))$ of the Chern connection of a Hermitian holomorphic vector bundle $E \to M$ is called *positive at* $x \in M$ if the Hermitian matrix $R_E(x)(v,\bar{v}) \in Hom(E_x,E_x)$ is positive definite $\forall 0 \neq v \in T_x^{1,0}M$. We write $R_E(x) > 0$ if this is the case. If $R_E(x) > 0$ for every $x \in M$ the curvature is said to be *positive* and we write $R_E > 0$. Negative, non-negative, and positive curvature are defined similarly and written $R_E < 0$, $R_E \ge 0$, $R_E \le 0$.

In a local frame, R_E is positive at x if the matrix $\Theta(x)(v, \overline{v})$ is positive $\forall 0 \neq v \in T^{1,0}M$.

Example

- **1** The curvature of the tautological bundle $J_{\mathbb{P}^n}$ is negative.
- The curvature the holomorphic tangent bundle of a Riemann surface is positive if and only if the Gauss curvature is positive.

Sub-bundles

Let us compute the curvature R_F of the Chern connection of a holomorphic subbundle $F \subset E$ (with the induced Hermitian metric). Let $N = F^{\perp}$. This is a C^{∞} complex subbundle of E.

Choose a local frame for E consisting of a **holomorphic** frame for F and **any** frame for N. Let θ_E , θ_F be corresponding the matrices for the Chern connections on E and F.

Write

$$\theta_{E} = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right).$$

Since θ_E is compatible with the metric, $B = -C^{\dagger}$.

Since $F \subset E$ is holomorphic and θ is compatible with the holomorphic structure, A and C are a matrices of (1,0)-forms.

A defines a holomorphic Hermitian connection on A, so $A = \theta_F$. So

$$\Theta_{\textit{E}} = \mathrm{d}\theta_{\textit{E}} - \theta_{\textit{E}} \wedge \theta_{\textit{E}} = \begin{pmatrix} \mathrm{d}\theta_{\textit{F}} - \theta_{\textit{F}} \wedge \theta_{\textit{F}} + B \wedge B^{\dagger} & * \\ * & * \end{pmatrix}.$$

Therefore $R_F - R_E|_F \le 0$: curvature decreases in holomorphic subbundles.

Example

If M is a complex submanifold of \mathbb{C}^n and $F = T^{1,0}M \subset T^{1,0}\mathbb{C}^n\big|_M$ the curvature of $T^{1,0}M$ is non-positive. In particular, if M is a Riemann surface then its *Gauss* curvature $K \leq 0$.

A similar calculation for the quotient bundle E/F shows that

$$|R_{E/F}-R_E|_F\geq 0,$$

i.e. the curvature increases in holomorphic quotient bundles.

Example

Consider a holomorphic vector bundle $E \to M$ which is "spanned by its sections", i.e. there exist holomorphic sections $s_1, \ldots, s_k \in \Gamma(E)$ (with $k \ge \operatorname{rank}(E)$) such that $s_1(x), \ldots, s_k(x)$ span $E_x \ \forall x \in M$. Then

$$M \times \mathbb{C}^k \to E$$
, $(x,\lambda) \mapsto \sum_{j=1}^k \lambda_j s_j(x)$

is surjective. Thus E is a quotient bundle of a trivial bundle and $R_Q \ge 0$ with respect to the obvious metric.

Summary 4

- A complex vector bundle is holomorphic iff it admits an operator $\bar{\partial}: \Omega^{p,q}(E) \to \Omega^{p,q+1}(E)$ which obeys the Leibniz rule with $\bar{\partial}^2 = 0$.
- A Hermitian metric $\langle \cdot, \cdot \rangle$ on a complex vector bundle E is a smoothly varying Hermitian inner product on each fibre E_x $(x \in M)$.
- The *Chern connection* on a Hermitian holomorphic bundle is the unique connection compatible with both structures. In a local *holomorphic* frame its connection and curvature matrices are given by $\theta = \partial h \, h^{-1}$ and $\Theta = \bar{\partial} \theta$.
- A Hermitian manifold is a complex Riemannian manifold such that g(JX, JY) = g(X, Y).
- The curvature of the Chern connection can be positive positive or negative and
 - curvature decreases in holomorphic subbundles;
 - 2 curvature increases in holomorphic quotient bundles.

The Ricci form

Definition

Let $E \to M$ be a complex vector bundle over a smooth manifold, let D be a connection on E and let $R^D \in \Omega^2 \operatorname{Hom}(E, E)$ be its curvature. The *Ricci form of D* is the 2-form $\operatorname{tr} R^D \in \Lambda^2 M$.

Lemma

The Ricci form defines a cohomology class $\left[\operatorname{tr} R^D\right] \in H^2_{\operatorname{DR}}(M)$ that does not depend on D.

Proof.

Choose a local frame and let $\Theta=d\theta-\theta\wedge\theta$ be the matrix of 2-forms representing R^D . Since $\theta\wedge\theta$ is traceless the Ricci form is equal $\operatorname{tr}\Theta=\operatorname{tr} d\theta=\operatorname{dtr}\theta$. Therefore the Ricci form is locally exact, hence closed.

Now let D' be another connection. Then A = D - D' is a well-defined section of $\Lambda^1 M \otimes \text{Hom}(E, E)$. So $\text{tr } R^D - \text{tr } R^{D'} = \text{dtr } A$ is exact.

The first Chern class

Definition

The cohomology class $c_1(E) = \frac{i}{2\pi} \left[\operatorname{tr} R^D \right] \in H^2_{DR}(M)$ is called *the first Chern class* of E.

The first Chern class is a topological invariant.

It is also integral, i.e. $\int_{\Sigma} c_1(E) \in \mathbb{Z}$ for any real 2-dimensional submanifold $\Sigma \subset M$. **Note added:** The first Chern number of a trivial

vector bundle is zero, because a trivial vector bundle admits a connection with zero curvature. The first Chern number of a line bundle (i.e. a vector bundle of rank 1) is zero if and **only if** it is trivial.

Example (Tautological bundle on \mathbb{P}^1)

. Recall that, for the Chern connection induced from $\mathbb{P}^1 \times \mathbb{C}^2$, we computed the curvature matrix in the chart U_0 with holomorphic coordinate w as

$$\Theta = \frac{1}{\left(1 + |w|^2\right)^2} d\bar{w} \wedge dw.$$

Now, $H^2_{DR}(\mathbb{P}^1)$ is identified with \mathbb{C} via integration: $\omega \mapsto \int_{\mathbb{P}^1} \omega$. Thus

$$c_1(L) = \frac{\mathrm{i}}{2\pi} \int_{\mathbb{C}} \frac{1}{\left(1+|w|^2\right)^2} d\bar{w} \wedge dw = \frac{-1}{\pi} \int_{[0,\infty)\times[0,2\pi]} \frac{r}{\left(1+r^2\right)^2} dr \wedge d\theta,$$

where $w = re^{i\theta}$. Hence

$$c_1(L) = \frac{-1}{\pi} \int_0^{+\infty} dr \int_0^{2\pi} \frac{r}{\left(1 + r^2\right)^2} d\theta = -2 \int_0^{+\infty} \frac{r}{\left(1 + r^2\right)^2} dr = -1.$$

In fact, over any \mathbb{P}^n , $c_1(L) = -1$. (This follows from the above because the restriction of the canonical bundle on \mathbb{P}^n to \mathbb{P}^1 equals the canonical bundle on \mathbb{P}^1).

First Chern numbers of tensor products etc

Exercise: Let M be a compact complex manifold Let E and F be complex vector bundles over M of ranks m and n, respectively. Then:

- (i) $c_1(\Lambda^m E) = c_1(E)$,
- (ii) $c_1(E \oplus F) = c_1(E) + c_1(F)$,
- (iii) $c_1(E \otimes F) = nc_1(E) + mc_1(F)$, note order of n, m,
- (iv) $c_1(E^*) = -c_1(E)$,
- (v) $c_1(f^*E) = f^*c_1(E)$.

Chern number of a complex manifold

Definition

Let M be a complex manifold of dimension n. The first Chern class of M is $c_1(M) := c_1(T^{1,0}M) = c_1(\Lambda^n T^{1,0}M) = -c_1(K_M)$.

Example

$$c_1(\mathbb{P}^n) = c_1(K^*) = c_1((L^*)^{\otimes (n+1)}) = (n+1)c_1(L^*) = n+1$$
. In particular, $c_1(\mathbb{P}^1) = 2$.

For \mathbb{P}^1 , this is just the Gauss–Bonnet theorem; in general, for any Hermitian metric on a compact surface S,

$$c_1(S) = \frac{1}{2\pi} \int_S K\omega = \chi(S)$$
, the Euler characteristic of S .

Examples of manifolds with $c_1(M) = 0$

Observe that $c_1(M) = 0$ if the canonical bundle K_M is trivial, i.e. there exists a non-vanishing holomorphic (n,0)-form on M where $n = \dim_{\mathbb{C}} M$.

- \mathbb{C}^n . Other boring examples include any M with $H^2(M) = 0$.
- Quotients of \mathbb{C}^n by finite groups of biholomorphisms, e.g. by lattices: abelian varieties (complex tori).
- The quadric $Q = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_1^2 + z_2^2 + z_3^2 = 1\}$. This is a complexification of S^2 and so $H^2(Q) \neq 0$. The following holomorphic 2-form is non-vanishing on Q and trivialises K_Q :

$$z_1 dz_2 \wedge dz_3 + z_2 dz_3 \wedge dz_1 + z_3 dz_1 \wedge dz_2$$
.

• The famous K3-surface (one of them, anyway): $S = \{ [z_0, z_1, z_2, z_3] \in \mathbb{P}^3 : z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0 \}.$

First Chern class of a hypersurface

Let $\iota: V \hookrightarrow M$ be a complex hypersurface in a complex *n*-manifold M. Let $\Lambda^{1,0}M|_V = \iota^*\Lambda^{1,0}M$ denote the *restriction* of $\Lambda^{1,0}M$ to V. Let $N^* \subset \Lambda^{1,0} M|_V$ denote the bundle of forms ϕ such that $\phi(X) = 0$ $\forall X \in T^{1,0} V$. Then

 $\Lambda^{1,0} V \cong \Lambda^{1,0} M|_V / N^*.$

It follows that

$$\Lambda^{n,0}M|_{V}\cong \Lambda^{n-1,0}V\otimes N^*$$

and hence that

$$-c_1(M) = -c_1(V) + c_1(N^*).$$

Let f, f' be local holomorphic defining functions for V over open sets $U, U' \subset M$.

Then $\iota^* df$, $\iota^* df'$ are local holomorphic frames for V. On $U \cap U'$:

$$\iota^* \, \mathrm{d} f = \iota^* \, \mathrm{d} \left(\frac{f}{f'} f' \right) = \iota^* \left(\frac{f}{f'} \, \mathrm{d} f' + f' \, \mathrm{d} \frac{f}{f'} \right) = \left(\frac{f}{f'} \circ \iota \right) \iota^* \, \mathrm{d} f'.$$

Hence N^* has transition function f/f'.

Hypersurfaces in \mathbb{P}^n

A homogeneous polynomial $P(z_0, ..., z_n)$ of degree d defines a hypersurface $V \subset \mathbb{P}^n$.

The local defining equations for V on $U_j = \{z_j \neq 0\}$ are $P_j := P/z_j^d$. So N^* has transition functions $(z_i/z_j)^d$.

The bundle with transition function (z_i/z_j) is the tautological bundle L, so $N^* \cong (L^*)^d$ and $c_1(N^*) = -d$.

Recall that $c_1(\mathbb{P}^n) = n+1$. Hence

$$c_1(V) = c_1(\mathbb{P}^n) + c_1(N^*) = n + 1 - d.$$

Thus the 'K3 surface' $\{[z_0,z_1,z_2,z_3]\in\mathbb{P}^3:z_0^4+z_1^4+z_2^4+z_3^4=0\}$ has $c_1=0$.

Motivating Kähler manifolds

Let M be a Hermitian manifold (i.e. a complex manifold with a compatible Riemannian metric g).

The real and holomorphic tangent bundles are isomorphic:

$$TM \cong T^{1,0}M, \quad X \mapsto X - iJX.$$

Moreover, $T^{1,0}M$ is a hermitian holomorphic vector bundle, with hermitian metric

$$\langle X - iJX, Y - iJY \rangle = g(X, Y) \quad \forall X, Y \in \Gamma(TM).$$

There are thus two natural connections on TM:

- The Levi-Civita connection (*g*-compatible and torsion-free)
- 2 The Chern connection (compatible with Hermitian and complex structures).

When are these connections the same?

Lemma

Let ∇ be a connection on the tangent bundle of a Hermitian manifold M. Then ∇ can be identified with a connection D on $T^{1,0}M$ if and only if $\nabla J = 0$. Moreover,

- **1** D is compatible with the holomorphic structure if and only if the torsion of ∇ is a section of $\Lambda^{2,0} \otimes T^{1,0}M \oplus \Lambda^{0,2} \otimes T^{0,1}M$.
- ② D is compatible with the Hermitian structure if and only if ∇ is compatible with g.

Note that

$$\begin{array}{cccc} (\nabla J)(X) & := & \nabla(JX) - J\nabla X = 0 & \forall X \in \Gamma(TM) \\ (\nabla g)(X,Y) & := & \mathsf{d}(g(X,Y)) - g(\nabla X,Y) - g(X,\nabla Y) & \forall X,Y \in \Gamma(TM) \\ D\langle W,Z\rangle & := & \mathsf{d}\langle W,Z\rangle - \langle DW,Z\rangle - \langle W,DZ\rangle & \forall W,Z \in \Gamma(T^{1,0}M). \end{array}$$

Thus the second condition may be restated $\nabla g = 0 \Leftrightarrow D\langle \cdot, \cdot \rangle = 0$. The lemma implies that equality of the Chern and Levi-Civita connections is equivalent to J being parallel w.r.t. the Levi-Civita connection, and to the Chern connection being torsion free.

Proof.

Choose local holomorphic coordinates z^j and work with the frame $\partial/\partial z^j, \partial/\partial \bar{z}^j$ for $T_{\mathbb{C}}M$. A connection on $T^{1,0}M$ with connection matrix θ_i^k yields a real connection on TM with matrix:

$$\left(\begin{array}{cc} \theta & 0 \\ 0 & \bar{\theta} \end{array}\right).$$

This clearly makes J = diag(i, ..., i, -i, ..., -i) parallel. Conversely, any connection that makes J parallel must be of this form.

The torsion of this connection is given by

$$T = (\theta_{jk}^I dz^j \wedge dz^k + \theta_{\bar{j}k}^I d\bar{z}^j \wedge dz^k) \otimes \frac{\partial}{\partial z^I} + \text{c.c.},$$

where $\theta_k^l = \theta_{jk}^l \, \mathrm{d} z^j + \theta_{\bar{j}k}^l \, \mathrm{d} \bar{z}^j$. The connection on $T^{1,0}M$ is holomorphic if and only if θ_j^k are (1,0)-forms, and this is clearly equivalent to the condition stated for the torsion.

The last part follows from the fact that $(\langle \cdot, \cdot, \rangle, J)$ determine g and (g, J) determine $\langle \cdot, \cdot, \rangle$.

Theorem

Let (M,g) be a Hermitian manifold and let $\omega(\cdot,\cdot)=g(J\cdot,\cdot)$ be its fundamental form. The following conditions are equivalent:

- (i) *J* is parallel for the Levi–Civita connection ∇ .
- (ii) The Chern connection D has zero torsion.
- (iii) The Levi-Civita and the Chern connections coincide.
- (iv) The fundamental form ω of g is closed, $d\omega = 0$.
- (v) For each point $p \in M$, there exists a smooth real-valued function f in a neighbourhood of p, such that $\omega = i \partial \bar{\partial} f$.
- (vi) For each point $p \in M$, there exist complex coordinates w centred at p (called holomorphic normal coordinates), such that $g(w) = 1 + O(|w|^2)$.

Proof strategy: We have show $(i) \Leftrightarrow (iii) \Leftrightarrow (ii)$; now show

$$(i) \Longrightarrow (iv) \Longrightarrow (v) \Longrightarrow (vi) \Longrightarrow (ii).$$

$(i) \implies (iv)$

If J and g are both parallel w.r.t. the Levi–Civita connection, then so is ω (since $\omega(\cdot,\cdot)=g(J\cdot,\cdot)$).

To show that $d\omega = 0$ we use the following lemma:

Lemma

Let M be a manifold, let $\phi \in \Omega^p M$ and let ∇ be a torsion-free connection on TM. Then

$$d\phi = \nabla \wedge \phi.$$

The notation " $\nabla \wedge \phi$ " instructs you to first evaluate $\nabla \phi$, which is a section of $T^*M \otimes \Lambda^p M$, and then replace \otimes with \wedge . Thus for $\omega \in \Lambda^2 M$, the lemma says

$$d\omega(X,Y,Z) = \nabla_X \omega(Y,Z) - \nabla_Y \omega(X,Z) + \nabla_Z \omega(X,Y).$$

Clearly, $\nabla \omega = 0$ implies $d\omega = 0$.

The lemma can be proved by writing the left and right hand sides in a coordinate frame $\mathrm{d} x^j$, and recalling that vanishing torsion means that the connection matrix $\Gamma^k_i = \Gamma^k_{ij} \, \mathrm{d} x^i$ satisfies $\Gamma^k_{ij} = \Gamma^k_{ji}$.

$(iv) \implies (v)$

Lemma ($\partial \bar{\partial}$ lemma)

Let M be a complex manifold such that $H^{0,1}(M) = 0$ and let ϕ be an exact real (1,1)-form on M. Then there exists a real function $f: M \to \mathbb{R}$ such that $\phi = i\partial \bar{\partial} f$.

Thus if $U \subset M$ is diffeomorphic to a ball then ω is exact over U, and $\omega = i\partial \bar{\partial} f$ because $H^{0,1}(U) = 0$ (by the Dolbeault lemma).

Proof.

Write $\phi = d\psi$ for an exact 1-form ψ . Write $\psi = \chi + \chi'$, with $\chi \in \Omega^{1,0}M$ and $\chi' \in \Omega^{0,1}M$. Since ψ is real, $\chi' = \bar{\chi}$.

Decomposing to types gives $\phi = d\psi = \partial \chi + (\bar{\partial}\chi + \partial\bar{\chi}) + \bar{\partial}\bar{\chi}$.

Since $\phi \in \Omega^{1,1}M$, $\partial \chi = 0 = \bar{\partial}\bar{\chi}$.

Since $H^{0,1}(M) = 0 \; \exists u : M \to \mathbb{C}$ such that $\bar{\chi} = \bar{\partial} u$.

Since $\partial \bar{\partial} + \bar{\partial} \bar{\partial} = 0$, $\phi = \bar{\partial} \partial \bar{u} + \partial \bar{\partial} u = \partial \bar{\partial} (u - \bar{u}) = i \partial \bar{\partial} \operatorname{Im}(u)$.

$(v) \Longrightarrow (vi)$

Write $g = \frac{1}{2}h_{jk}(dz^j d\bar{z}^k + d\bar{z}^k dz^j)$ and $\omega = \frac{1}{2}h_{jk} dz^j \wedge d\bar{z}^k$ in local coordinates near a point z = 0, with $h_{kj} = \bar{h}_{jk}$. By linear change of coordinates we can arrange that $h_{jk}(0) = \delta_{jk}$. Then

$$h_{ik} = \delta_{ik} + z^I a_{lik} + \bar{z}^I \bar{a}_{lki} + O(|z|^2).$$

Since $\omega = i\partial \bar{\partial} f$ for some function f, $a_{ljk} = 2\partial^3 f/\partial z^l \partial z^j \partial \bar{z}^k$, and hence $a_{ljk} = a_{jlk}$. Let

$$w^j = z^j + \frac{1}{2}a_{lkj}z^kz^l$$
, so that $dw^j = dz^j + a_{klj}z^kdz^l$.

Then

$$\begin{array}{ll} \frac{\mathrm{i}}{2} \, \mathrm{d} w^j \wedge \mathrm{d} \bar{w}^j & = & \frac{\mathrm{i}}{2} (\mathrm{d} z^j \wedge \mathrm{d} \bar{z}^j + a_{klj} z^k \, \mathrm{d} z^l \wedge \mathrm{d} \bar{z}^j + \mathrm{d} z^j \wedge \bar{a}_{klj} \bar{z}^k \, \mathrm{d} \bar{z}^l) + O(|z|^2) \\ & = & \omega + O(|z|^2) \\ & = & \omega + O(|w|^2). \end{array}$$

$(vi) \implies (ii)$

Let $p \in M$, and choose coordinates z near, such that $g = \frac{1}{2} h_{jk} (dz^j d\bar{z}^k + d\bar{z}^k dz^j)$ with

$$h_{jk} = \delta_{jk} + O(|z|^2).$$

Since the derivatives of h_{jk} vanish at z=0, the connection matrix $\theta=\partial hh^{-1}$ of the Chern connection vanishes at z=0. Therefore the Chern connection has vanishing torsion at p. Since the choice of p was arbitrary, the Chern connection is torsion-free.

This completes the proof.

Kähler manifolds

Definition

A Hermitian manifold satisfying any one of the six equivalent conditions in the preceding theorem is called a *Kähler manifold*, its metric is called a *Kähler metric*, and its fundamental form ω is called the *Kähler form*. A local function f such that $\omega = i\partial \bar{\partial} f$ is called a *Kähler potential*.

Example (\mathbb{C}^m)

$$g=rac{1}{2}\sum_{j}\mathrm{d}z^{j}\,\mathrm{d}ar{z}^{j}+\mathrm{d}ar{z}^{j}\,\mathrm{d}z^{j},\quad \omega=rac{\mathrm{i}}{2}\sum_{j}\mathrm{d}z^{j}\wedge\mathrm{d}ar{z}^{j}.$$

This is Kähler, by (vi). A Kähler potential is given by

$$f=\frac{1}{2}|z|^2.$$

Example (Fubini–Study metric on \mathbb{P}^m)

Choose standard coordinates $w^j = z^j/z^0$ over U_0 , with j = 1, ..., m. Let

 $f_0 = \ln\left(1 + \sum_{j=1}^m |w^j|^2\right), \quad \omega = \mathrm{i}\partial\bar{\partial}f_0.$

We claim that this ω extends to the whole of \mathbb{P}^m . To show this, define f_i analogously on U_i . Then on $U_i \cap U_0$,

$$f_j - f_0 = \ln\left(\sum_{l=0}^m \frac{|z^l|^2}{|z^j|^2}\right) - \ln\left(\sum_{l=0}^m \frac{|z^l|^2}{|z^0|^2}\right) = \ln\frac{z^0}{z^j} + \ln\frac{\bar{z}^0}{\bar{z}^j}.$$

Therefore $\mathrm{i}\partial\bar{\partial}f_j-\mathrm{i}\partial\bar{\partial}f_0=0$, and we may write $\omega=\mathrm{i}\partial\bar{\partial}f_j$ on U_j . By direct calculation, $\mathrm{i}\partial\bar{\partial}f_0=\frac{\mathrm{i}}{2}h_{jk}\,\mathrm{d}w^j\wedge\mathrm{d}\bar{w}^k$, where h is the matrix

$$h = \frac{1}{1 + |w|^2} \left(|d_k - \frac{ww^{\dagger}}{1 + |w|^2} \right) > \frac{1}{1 + |w|^2} \left(|d_k - \frac{ww^{\dagger}}{|w|^2} \right) \ge 0$$

Therefore $g = \frac{1}{2}h_{jk}(dw^j d\bar{w}^j + d\bar{w}^j dw^j)$ is positive definite, so (\mathbb{P}^m, g) is Kähler.

New Kähler metrics from old

Remark: It can be shown that the Fubini–Study metric on \mathbb{P}^m is invariant under the natural action of U(m+1).

Proposition

A complex submanifold of a Kähler manifold, equipped with the induced metric, is Kähler.

Proof.

Let $\iota: N \to M$ be the inclusion map. Since N is a complex submanifold, $\iota_* \circ J_N = J_M \circ \iota_*$. Therefore the fundamental form $\omega_N = g_N(J_N \cdot, \cdot)$ equals the pull-back $\iota^* \omega_M$ of the fundamental form of M. Since ω_M is closed, so too is ω_N .

Proposition

The product of two Kähler manifolds is Kähler.

The proof is an exercise!

The Ricci form

Proposition

Let (M,g) be a Kähler manifold, let J be its almost complex structure and let

$$Ric(X,Y) := tr(V \mapsto R(V,X)Y)$$

be its Ricci tensor. be its Ricci tensor. Then

$$Ric(JX, JY) = Ric(X, Y) \quad \forall X, Y \in TM$$

Definition

The Ricci form of a Kähler manifold is the (1,1)-form

$$\rho(X,Y) = Ric(JX,Y) \quad \forall X,Y \in TM.$$

 ρ is a 2-form because

$$\rho(Y,X) = Ric(JY,X) = Ric(X,JY) = Ric(JX,J^2Y) = -\rho(X,Y).$$

It is of type (1,1) because

$$\rho(JX,JY) = Ric(J^2X,JY) = Ric(J^3X,J^2Y) = \rho(X,Y).$$

Proof.

Since the Chern connection makes J parallel ($\nabla J = 0$),

$$R(X,Y)JZ = JR(X,Y)Z \quad \forall X,Y,Z \in TM.$$

Since the Chern connection has curvature of type (1,1),

$$R(JX, JY)Z = R(X, Y)Z \quad \forall X, Y, Z \in TM.$$

Therefore

$$Ric(JX, JY) = tr(V \mapsto R(V, JX)JY)$$

= $tr(V \mapsto JR(JV, J^2X)Y)$ identies above
= $tr(V \mapsto J^2R(V, J^2X)Y)$ cyclicity of trace
= $Ric(X, Y)$

Properties of the Ricci form

Theorem

Let ρ be the Ricci form of a Kähler manifold (M,g). Then

- ip is equal to the curvature of the Chern connection of the canonical bundle.
- 2 ρ is closed: $d\rho = 0$.
- In local coordinates where $g = \frac{1}{2}h_{jk}(dz^j d\bar{z}^k + d\bar{z}^k dz^j)$, $\rho = -i\partial\bar{\partial}\ln\det h$.
- **1** $[\rho/2\pi] = c_1(M)$ in $H^2(M)$.

$i\rho$ = curvature of K

By *J*-compatibility of ∇ and Bianchi I:

$$JR(X,Y)V = -JR(Y,V)X - JR(V,X)Y = R(V,Y)JX - R(V,X)JY.$$

Therefore

$$\operatorname{tr}(V \mapsto JR(X,Y)V) = Ric(Y,JX) - Ric(X,JY) = 2\rho(X,Y).$$

We evaluate this trace over TM as a trace over $T_{\mathbb{C}}M$.

With respect to the splitting $T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$,

$$J = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$
 and $R = \begin{pmatrix} \Theta & 0 \\ 0 & \bar{\Theta} \end{pmatrix}$,

where Θ is the curvature of the Chern connection on $T^{1,0}M$. Hence

$$\rho(X,Y) = \frac{\mathrm{i}}{2} \operatorname{tr}(\Theta(X,Y)) - \frac{\mathrm{i}}{2} \operatorname{tr}(\bar{\Theta}(X,Y)).$$

The Chern connection θ on $T^{1,0}M$ induces a holomorphic Hermitian connection $-\operatorname{tr}\theta$ on $K=\det(\Lambda^{1,0}M)$. By uniqueness, this is the Chern connection of K. It's curvature is $\Theta_K=-\operatorname{tr}\Theta$. Since the connection is Hermitian, $\bar{\Theta}_K=-\Theta_K$. So $\mathrm{i}\rho=\Theta_K$.

Everything else follows

The remaining parts of the theorem follow from the identity $i\rho = \Theta_K$:

- ρ is closed by the (second) Bianchi identity: $d\Theta_K = 0$.
- If $g = \frac{1}{2}h_{jk}(dz^j d\bar{z}^k + d\bar{z}^k dz^j)$ then

$$\langle dz^1 \wedge \ldots \wedge dz^k, dz^1 \wedge \ldots \wedge dz^k \rangle = \det(h)^{-1}.$$

Therefore $\rho = -i\overline{\partial}\partial \ln(\det(h)^{-1}) = -i\partial\overline{\partial}\ln\det h$.

•
$$c_1(M) = -c_1(K) = -[\frac{i}{2\pi}\Theta_K] = [\frac{1}{2\pi}\rho].$$

Hodge star and Laplacian

Definition

Let (M,g) be a compact oriented n-dimensional **Riemannian** manifold and let Vol_g be a volume form. The *Hodge star operator* is the unique operator $*: \Omega^p M \to \Omega^{n-p} M$ such that

$$u \wedge *v = g(u, v) \operatorname{Vol}_{a} \quad \forall u, v \in \Omega^{p} M.$$

The L^2 inner product on $\Omega^p M$ is

$$\langle u, v \rangle_{L^2} = \int_M g(\bar{u}, v) \operatorname{Vol}_g = \int_M \bar{u} \wedge *v.$$

Remark: if E_i is an orthonormal frame for TM and e^i is the dual frame for T^*M then the metric g on Ω^pM is defined such that the forms $e^{i_1} \wedge \ldots \wedge e^{i_p}$, $i_1 < \ldots < i_p$ are orthonormal.

Exercise: show that $*^2 = (-1)^{p(n-p)}$.

Definition

Let (M,g) be as above. The codifferential is the map

$$d^*: \Omega^p M \to \Omega^{p-1} M, \quad d^* = (-1)^{pn+1} * d*.$$

The Hodge Laplacian (or Laplace-Beltrami operator) is

$$\triangle_g: \Omega^p M \to \Omega^p M, \quad \triangle_g:= \mathrm{dd}^* + \mathrm{d}^* \mathrm{d}.$$

Lemma

The codifferential is the L^2 adjoint of the exterior derivative, and the Hodge-Laplacian is self-adjoint.

Proof.

$$\langle du, v \rangle_{L^2} = \int_M d\bar{u} \wedge *v = (-1)^{p+1} \int_M \bar{u} \wedge d*v$$

= $(-1)^{pn+p(1-p)+1} \int_M \bar{u} \wedge *(*d*v) = \langle u, d^*v \rangle_{L^2}.$

Furthermore $(d^*d)^* = d^*(d^*)^* = d^*d$ and similarly $(dd^*)^* = dd^*$.

Example (\mathbb{R}^3 with $g = \sum_i dx^i dx^i$)

If $f: \mathbb{R}^3 \to \mathbb{R}$ is a 0-form then

$$df = \frac{\partial f}{\partial x^{1}} dx^{1} + \frac{\partial f}{\partial x^{2}} dx^{2} + \frac{\partial f}{\partial x^{3}} dx^{3}$$

$$*df = \frac{\partial f}{\partial x^{1}} dx^{2} \wedge dx^{3} - \frac{\partial f}{\partial x^{2}} dx^{1} \wedge dx^{3} + \frac{\partial f}{\partial x^{3}} dx^{1} \wedge dx^{2}$$

$$d*df = \frac{\partial^{2} f}{(\partial x^{1})^{2}} dx^{1} \wedge dx^{2} \wedge dx^{3} + \frac{\partial^{2} f}{(\partial x^{2})^{2}} dx^{1} \wedge dx^{2} \wedge dx^{3}$$

$$+ \frac{\partial^{2} f}{(\partial x^{3})^{2}} dx^{1} \wedge dx^{2} \wedge dx^{3}$$

$$*d*df = \frac{\partial^{2} f}{(\partial x^{1})^{2}} + \frac{\partial^{2} f}{(\partial x^{2})^{2}} + \frac{\partial^{2} f}{(\partial x^{3})^{2}}$$

and $d^*f = 0$, so

$$\triangle_g f = \mathsf{d}^* \, \mathsf{d} f = - * \, \mathsf{d} * \, \mathsf{d} f = - \sum_i \frac{\partial^2 f}{(\partial x^i)^2}.$$

Hodge Laplacian as a gradient

Lemma

The Hodge Laplacian is the gradient of the energy functional

$$E_g:\Omega^p M o \mathbb{R}, E_g: \phi\mapsto rac{1}{2}\left(\langle \mathsf{d}\phi, \mathsf{d}\phi
angle_{L^2} + \langle \mathsf{d}^*\phi, \mathsf{d}^*\phi
angle_{L^2}
ight),$$

i.e. if ϕ_t is a family of p-forms smoothly parametrised by $t \in \mathbb{R}$,

$$\left. \frac{\mathsf{d}}{\mathsf{d}t} \mathsf{E}_g[\phi_t] \right|_{t=0} = \mathrm{Re} \, \langle \dot{\phi}_0, \triangle_g \phi_0 \rangle_{L^2}.$$

Proof.

$$\frac{d}{dt}E_{g}[\phi_{t}] = \frac{1}{2}(\langle d\dot{\phi}_{t}, d\phi_{t}\rangle_{L^{2}} + \langle d\phi_{t}, d\dot{\phi}_{t}\rangle_{L^{2}} + \langle d^{*}\dot{\phi}_{t}, d^{*}\dot{\phi}_{t}\rangle_{L^{2}} + \langle d^{*}\dot{\phi}_{t}, d^{*}\dot{\phi}_{t}\rangle_{L^{2}})$$

$$= \operatorname{Re}(\langle d\dot{\phi}_{t}, d\phi_{t}\rangle_{L^{2}} + \langle d^{*}\dot{\phi}_{t}, d^{*}\dot{\phi}_{t}\rangle_{L^{2}})$$

$$= \operatorname{Re}(\langle \dot{\phi}_{t}, d^{*}d\phi_{t}\rangle_{L^{2}} + \langle \dot{\phi}_{t}, dd^{*}\phi_{t}\rangle_{L^{2}})$$

$$= \operatorname{Re}\langle \dot{\phi}_{t}, \triangle_{g}\phi_{t}\rangle_{L^{2}}.$$

Dolbeault Laplacians

Let *M* be a compact *m*-complex-dimensional Hermitian manifold.

Exercise: Show that $*(\Omega^{p,q}M) = \Omega^{m-q,m-p}M$.

Exercise: Show that the operators

$$\partial^*: \Omega^{p,q}M \to \Omega^{p-1,q}M, \quad \partial^* = -*\bar{\partial}*$$

$$\bar{\partial}^*: \Omega^{p,q}M \to \Omega^{p,q-1}M, \quad \bar{\partial}^* = -*\partial *$$

are the L^2 -adjoints of ∂ and $\bar{\partial}$.

Definition

The *Hodge Laplacians* are the operators \triangle_{∂} , $\triangle_{\bar{\partial}} : \Omega^{p,q}M \to \Omega^{p,q}M$, $\triangle_{\partial} = \partial \partial^* + \partial^* \partial$, $\triangle_{\bar{\partial}} = \bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}$.

Exercise: Show that the Dolbeault Laplacians are the gradients of

$$\textit{E}_{\bar{\partial}}[\varphi] = \frac{1}{2} \left(\langle \bar{\partial} \varphi, \bar{\partial} \varphi \rangle + \langle \bar{\partial}^* \varphi, \bar{\partial}^* \varphi \rangle \right), \quad \textit{E}_{\bar{\bar{\partial}}}[\varphi] = \frac{1}{2} \left(\langle \bar{\partial} \varphi, \bar{\partial} \varphi \rangle + \langle \bar{\partial}^* \varphi, \bar{\partial}^* \varphi \rangle \right).$$

Laplacians on Kähler manifolds

Theorem

Let (M,g) be a Kähler manifold. Then $\triangle_g = 2\triangle_{\bar{\partial}} = 2\triangle_{\bar{\partial}}$.

Proof.

Let $p \in M$ and choose normal coordinates $z^j = x^j + iy^j$ near p such that $g_{jk} = \delta_{jk} + O(|z|^2)$. Let ϕ be any form.

Then $\triangle_g \phi = \triangle_\delta \phi + O(|z|)$.

In particular, $\triangle_g \phi(0) = \triangle_\delta \phi(0)$.

Similarly, the Dolbeault Laplacians agree with their Euclidean versions at z=0.

By direct calculation, $\triangle_g=2\triangle_{\bar\partial}=2\triangle_{\bar\partial}$ holds for the Euclidean metric.

Therefore $\triangle_q \phi = 2 \triangle_{\bar{\partial}} \phi = 2 \triangle_{\bar{\partial}} \phi$ at p.

Since *p* was arbitrary, $\triangle_q \phi = 2 \triangle_{\bar{\partial}} \phi = 2 \triangle_{\bar{\partial}} \phi$ everywhere.

Cohomology of compact Kähler manifolds I

Proposition

If (M, g) is an m-complex-dimensional compact Kähler manifold and $0 \le q \le m$ then $H_{DR}^{2q}(M) \ne 0$.

Hence the complex manifold $S^1 \times S^{2m-1}$ admits no Kähler metric!

Proof.

Let ω be the Kähler form. Then ω is closed, and hence so is ω^q . Suppose that $\omega^q = \mathrm{d} \psi$ for some $\psi \in \Omega^{q-1} \mathit{M}$. By Stokes' theorem:

$$\int_{M} \omega^{m} = \int_{M} d\psi \wedge \omega^{m-q} = \int_{M} d(\psi \wedge \omega^{m-q}) = 0.$$

By direct calculation in an orthonormal basis, $\omega^m = m! \operatorname{Vol}_g$, so

$$\int_{M} \omega^{m} = m! \operatorname{Vol}(M) \neq 0,$$

a contradiction. Thus ω^q is not exact, and $0 \neq [\omega^q] \in H^{2q}_{DR}(M)$.

Cohomology of compact Kähler manifolds II

Proposition

Let (M,g) be an m-complex-dimensional compact Kähler manifold and $0 \le q \le m$. The inclusion $\Omega^{q,0}M \hookrightarrow \Omega^qM$ induces an injective map $H^{q,0}_{\bar\partial}(M) \hookrightarrow H^q_{DR}(M)$.

Proof.

If $\eta \in \Omega^{q,0} M$ and $\bar{\partial} \eta = 0$ we call η a *holomorphic* (q,0)-*form*. Assume:

Lemma

A non-zero holomorphic (q,0)-form is never exact.

Choose any non-zero element of $H^{q,0}_{\bar\partial}(M)$; this is represented by a unique holomorphic (q,0)-form η . Then $\mathrm{d}\eta=(\partial+\bar\partial)\eta=\partial\eta$ is an exact holomorphic (q+1,0)-form, so $\mathrm{d}\eta=0$ by the lemma. Therefore η defines a class $[\eta]\in H^{2q}_{DR}(M)$. This class is not trivial, because η is not exact, by the lemma.

Proof of lemma.

Let η be a non-zero holomorphic (q,0)-form, and suppose for contradiction that $\eta=d\psi$ for some $\psi\in\Omega^{q-1}M$. Then since $d\bar{\eta}=0$ and $d\omega=0$,

$$\int_M \eta \wedge ar{\eta} \wedge \omega^{m-q} = \int_M \mathsf{d}(\psi \wedge ar{\eta} \wedge \omega^{m-q}) = 0$$

by Stokes' theorem. On the other hand,

$$\int_{M} \eta \wedge \bar{\eta} \wedge \omega^{m-q} = C_{m,q} \int_{M} \eta \wedge *\eta = C_{m,q} \langle \eta, \eta \rangle_{L^{2}} \neq 0,$$

(where $C_{m,q} = (-i)^{q^2} 2^q (m-q)!$), a contradiction. Therefore η is not exact.

The proposition that we just proved is a special case of the Hodge theorem, which will be proved in a few slides' time...

Harmonic forms

Definition

A *p*-form ϕ on a Riemannian manifold is called *co-closed* if $d^*\phi = 0$ and *harmonic* if $\triangle_g \phi = 0$. The space of all harmonic *p*-forms is denoted $\mathcal{H}^p(M)$.

Lemma

A differential form on a compact Riemannian manifold is harmonic if and only if it is both closed and co-closed.

Proof.

The "if" direction is obvious, so suppose that ϕ is a harmonic p-form. Then

$$0 = \langle \triangle_g \phi, \phi \rangle_{L^2} = \langle (\mathsf{dd}^* + \mathsf{d}^* \, \mathsf{d}) \phi, \phi \rangle_{L^2} = \langle \mathsf{d} \phi, \mathsf{d} \phi \rangle_{L^2} + \langle \mathsf{d}^* \phi, \mathsf{d}^* \phi \rangle_{L^2}.$$

The right hand side is zero if and only if $d\phi = 0$ and $d^*\phi = 0$.

The Hodge-de Rham theorem

Theorem (Hodge-de Rham)

Let (M,g) be a compact Riemannian manifold. Then there are L^2 -orthogonal decompositions,

$$\Omega^{p}M = \mathcal{H}^{p}(M) \oplus d(\Omega^{p-1}M) \oplus d^{*}(\Omega^{p+1}M).$$

Corollary (Hodge isomorphism)

On a compact Riemannian manifold (M,g) the natural map $\mathcal{H}^p(M) \to H^p_{DR}(M)$, $\phi \mapsto [\phi]$ is an isomorphism.

Proof of corollary.

Let $\phi \in \Omega^p(M)$ and write $\phi = \phi_H + d\psi + d^*\chi$ with $\phi_H \in \mathcal{H}^p(M)$. If $d^*\chi = 0$ then ϕ is closed. Conversely, if ϕ is closed then

$$0 = \langle \mathsf{d} \phi, \chi
angle_{L^2} = \langle \mathsf{d} \mathsf{d}^* \chi, \chi
angle = \langle \mathsf{d}^* \chi, \mathsf{d}^* \chi
angle$$

and $d^*\chi = 0$. So $\ker d = \mathcal{H}^p(M) \oplus d(\Omega^{p-1}M)$. Therefore $H^p_{DB}(M) = \ker d/\operatorname{im} d \cong \mathcal{H}^p(M)$.

Corollary (Poincaré duality)

Let M be a compact n-dimensional manifold. Then $H_{DR}^k(M) \cong H_{DR}^{n-k}(M)$.

Proof.

Choose any Riemannian metric on M. It suffices to show that the Hodge star induces a linear map $\mathcal{H}^k_{DR}(M) \to \mathcal{H}^{n-k}_{DR}(M)$, i.e. to show that if ϕ is harmonic then $*\phi$ is harmonic. This is left as an **exercise**. The linear map must then be an isomorphism, because $*^2 = (-1)^{k(n-k)}$.

Sketch proof of Hodge-de Rham theorem.

Want to show: $\Omega^p M = \mathcal{H}^p(M) \oplus d(\Omega^{p-1}M) \oplus d^*(\Omega^{p+1}M)$.

Easy to show that the three factors are orthogonal:

$$\langle \mathsf{d} \psi, \mathsf{d}^* \phi \rangle_{L^2} = \langle \mathsf{d}^2 \psi, \phi \rangle_{L^2} = 0 \text{ shows that } \mathsf{d}(\Omega^{p-1} \mathit{M}) \perp \mathsf{d}^*(\Omega^{p+1} \mathit{M});$$

if
$$\omega \in \mathcal{H}^{p}(M)$$
 then $d\omega = 0$, so $\langle \omega, d^*\psi \rangle = \langle d\omega, \psi \rangle = 0$ and

$$\mathcal{H}^p(M) \perp d^*(\Omega^{p+1}M); \dots$$

Next show the three factors span $\Omega^p M$ – this is hard! Things would be easy if $\Omega^p(M)$ were finite-dimensional: in that case, since \triangle_g is self-adjoint, it would restrict to an invertible operator

$$A:\mathcal{H}^p(M)^\perp \to \mathcal{H}^p(M)^\perp$$
. For any $\psi \in \mathcal{H}^p(M)^\perp$ we could write

$$\psi = AA^{-1}\psi = \triangle_g(A^{-1}\psi) = d(d^*A^{-1}\psi) + d^*(dA^{-1}\psi),$$

and conclude that $\mathcal{H}^p(M)^{\perp} = d(\Omega^{p-1}M) \oplus d^*(\Omega^{p+1}M)$.

Since $\Omega^p(M)$ is NOT finite-dimensional life is harder. You need to work with a completion of $\Omega^p(M)$ with respect to a Lebesgue or Sobolev norm and appeal to linear analysis to show that A is invertible (usually by a circuitous route). You also need to show that things in the kernel of \triangle_g really are smooth solutions, rather than weak solutions.

Dolbeault decomposition theorem

Theorem (Dolbeault decomposition theorem)

Let (M,g) be a compact Hermitian manifold, and let $\mathcal{H}^{p,q} = \ker(\triangle_{\bar{\partial}}) \subset \Omega^{p,q}M$. Then there are L^2 -orthogonal decompositions,

$$\Omega^{p,q}M = \mathcal{H}^{p,q}(M) \oplus \bar{\partial}(\Omega^{p,q-1}M) \oplus \bar{\partial}^*(\Omega^{p,q+1}M).$$

Corollary

Dolbeault isomorphism theorem On a compact Hermitian manifold (M,g) the natural map $\mathcal{H}^{p,q}(M) \to H^{p,q}_{\bar{\partial}}(M)$, $\phi \mapsto [\phi]$ is an isomorphism.

Both proofs are similar to their Riemannian counterparts.

Corollary (Serre duality)

On a compact complex m-dimensional manifold M, $H^{p,q}(M) \cong H^{m-p,m-q}(M)$.

Proof: Choose a Hermitian metric and show that $\psi \mapsto *\overline{\psi}$ is an isomorphism $\mathcal{H}^{p,q}(M) \to \mathcal{H}^{m-p,m-q}(M)$.

Theorem (Hodge)

Let (M,g) be a compact Kähler manifold. Then

$$H^k_{DR}(M)\cong \bigoplus_{p+q=k} H^{p,q}_{\bar\partial}(M), \quad \text{and} \quad H^{q,p}_{\bar\partial}(M)\cong \overline{H^{p,q}_{\bar\partial}(M)}.$$

Proof.

Since
$$\triangle_g = 2\triangle_{\bar{\partial}}$$
, $\mathcal{H}^k(M) = \bigoplus_{p+q=k} \mathcal{H}^{p,q}(M)$.
Since $\triangle_{\bar{\partial}} = \triangle_{\partial}$, $\Psi \mapsto \bar{\Psi}$ is an isomorphism $\mathcal{H}^{p,q}(M) \to \mathcal{H}^{q,p}(M)$.

The results then follow by the Hodge and Dolbeault isomophism theorems.

Theorem

Let ϕ_t be a continuous family of isometries of a compact Kähler manifold parametrised by $t \in \mathbb{R}$ such that $\phi_{s+t} = \phi_s \circ \phi_t$. Then ϕ_t is holomorphic for all $t \in \mathbb{R}$.

The theorem is **false** on non-compact Kähler manifolds. E.g. SO(4) is a path-connected group of isometries of \mathbb{C}^2 , but only its subgroup U(2) acts holomorphically.

The theorem is also false for actions of discrete groups. E.g. the antipodal map $S^2 \to S^2$, $\mathbf{x} \mapsto -\mathbf{x}$ (where $\mathbf{x} \in \mathbb{R}^3$ satisfies $\mathbf{x}.\mathbf{x} = 1$) is not holomorphic with respect to the complex structure on $\mathbb{P}^1 \simeq S^2$ (**Exercise**).

Remark: By setting $X = \dot{\phi}_t|_{t=0}$, we learn that Killing vectors X on compact Kähler manifolds commute with J: [X, JY] = J[X, Y] for all vector fields Y.

Proof.

We show that $\phi_t^*\omega = \omega$. The result follows, since g and ω determine J. Since $*\omega = \frac{1}{(m-1)!}\omega^{m-1}$ and $d\omega = 0$, $d^*\omega = -*d*\omega = 0$. Hence ω is harmonic.

Since ϕ_t is homotopic to the identity map, $\phi_t^* \omega$ and ω define the same cohomology class in $H^2_{DR}(M)$.

Since ϕ_t is an isometry, $\triangle_g \phi_t^* \omega = \phi_t^* \triangle_g \omega = 0$ and $\phi_t^* \omega$ is also harmonic.

Therefore $\phi_t^*\omega - \omega$ is a harmonic form homologous to zero.

By the Hodge-de Rham theorem, it must vanish.

So
$$\phi_t^*\omega = \omega$$
.

Sectional curvature

Let (M,g) be a Riemannian manifold and let $\pi \subset T_x M$ be a plane. Recall that the *sectional curvature* of π is the Gauss curvature of a surface passing through x tangent to π .

Given $X, Y \in \pi$, the sectional curvature of π is equal to

$$K_X(X,Y) = \frac{R(X,Y,X,Y)}{g(X,X)g(Y,Y) - g(X,Y)^2},$$

where R(U, V, X, Y) = g(U, R(X, Y)V).

Definition

Let (M,g) be a *Hermitian* manifold. The *holomorphic sectional curvatures* are the sectional curvatures of tangent planes to one-complex-dimensional submanifolds.

A plane π is tangent to a complex submanifold if and only if it is fixed by J. So the holomorphic sectional curvatures are the quantities

$$K_X(X,JX) = \frac{R(X,JX,X,JX)}{g(X,X)^2}, \quad X \in T_XM.$$

Holomorphic sectional curvature determines curvature

Recall that

Theorem

Let (M,g) be a Riemannian manifold. Then the sectional curvatures of M determine the curvature tensor.

Kähler manifolds are even better:

Theorem

Let (M,g) be a Kähler manifold. Then the holomorphic sectional curvatures of M determine the curvature tensor.

Both proofs are similar to the proof that a quadratic form B on a vector space V is determined by the quantities B(v, v), $v \in V$. In that case, one extracts B(u, v) as the coefficient of 2t in

$$B(u+tv, u+tv) = B(u, u) + 2tB(u, v) + t^2B(v, v).$$

We will prove only the second of these two theorems.

Proof: Holomorphic sectional curvature determines curvature.

We show that the holomorphic sectional curvatures determine the sectional curvatures, and appeal to the previous theorem.

The coefficient of t^2 in R(X + tY, JX + tJY, X + tY, JX + tJY) is

$$R(X,JY,X,JY) + R(X,JX,Y,JY) + R(X,JY,Y,JX) + R(Y,JX,Y,JX) + R(Y,JX,X,JY) + R(Y,JX,X,JY).$$

Using symmetry properties of R and the fact that R(U, V, JX, JY) = R(U, V, X, Y) = R(JU, JV, X, Y), this equals

$$2R(X,JY,X,JY) + 4R(X,JX,Y,JY).$$

The first term here looks like a sectional curvature. We make the second look like a sectional curvature by using the Bianchi identity:

$$R(X,JX,Y,JY) = -R(X,Y,JY,JX) - R(X,JY,JX,Y)$$
$$= R(X,Y,X,Y) + R(X,JY,X,JY).$$

Ш

Proof (cont'd).

So the coefficient of t^2 in R(X+tY,JX+tJY,X+tY,JX+tJY) is

$$6R(X,JY,X,JY)+4R(X,Y,X,Y).$$

Similarly, the coefficient of t^2 in R(X+tJY,JX-tY,X+tJY,JX-tY) is

$$6R(X, Y, X, Y) + 4R(X, JY, X, JY).$$

R(X, Y, X, Y) is equal to a linear combination of these two quantities.

If you haven't seen the proof that sectional curvatures determine the curvature tensor, it is similar in spirit to this one.

Constant holomorphic sectional curvature

Definition

A Kähler manifold (M,g) is said to have constant holomorphic sectional curvature if $K_x(X,JX)$ does not depend on the point $x \in M$ or on the plane $\pi \subset T_xM$ spanned by X,JX.

Example

 \mathbb{C}^m has constant sectional curvature equal to zero.

Example (\mathbb{P}^m has positive constant sectional curvature)

Rather than a direct calculation, we give a conceptual proof. Let

$$F_{1,2} = \{ \text{linear subspaces } \ell, m \subset \mathbb{C}^{m+1} : \dim \ell = 1, \dim m = 2, \ell \subset m \}.$$

Pairs $(\ell, m) \in F_{1,2}$ are called *flags*.

There is a bijection

$$F_{1,2} \rightarrow \{(x,\pi) : x \in \mathbb{P}^m, \pi \subset T_x M \text{ is a } \mathbb{C}\text{-linear subspace}\}$$

 $(\ell,m) \mapsto \left([z_0 : \ldots : z_m], \frac{d}{dt}[z_0 + tv_0 : \ldots : z_m + tv_m]\Big|_{t=0}\right),$

where $z, v \in \mathbb{C}^{m+1}$ are such that $\ell = \operatorname{span}\{z\}$, $m = \operatorname{span}\{z, v\}$. U(m+1) acts transitively on \mathbb{P}^m and on $F_{1,2}$, i.e. any flag can be mapped to any other by an element of U(m+1).

The metric and complex structure on \mathbb{P}^m are invariant under this action (see second exercise sheet).

Therefore the holomorphic section curvature is a function on $F_{1,2}$ which is invariant under a transitive group action, hence constant.

Example (Complex hyperbolic space)

$$\mathbb{C}H^m = \{ w \in \mathbb{C}^m : |w|^2 < 1 \}$$

$$\omega = i\partial \bar{\partial} \ln(1 - |w|^2) \}.$$

This is a Kähler manifold with constant *negative* sectional curvature.

Theorem

The only complete simply connected Kähler manifolds with constant sectional curvature are \mathbb{P}^m , \mathbb{C}^m and $\mathbb{C}H^m$.

The Calabi conjecture

Let (M,g) be a compact Kähler manifold.

Recall that $c_1(M) := c_1(T^{1,0}M) = \frac{i}{2\pi} \left[\operatorname{tr} R^D \right] \in H^2_{DR}(M)$, where R^D is the curvature of any connection D on $T^{1,0}M$.

If D is the Chern connection R^D is type (1,1), so

$$c_1(M) \in H^2_{DR}(M) \cap H^{1,1}_{\bar{\partial}}(M).$$

Recall that $[\rho] = 2\pi c_1(M)$.

Can every form ϕ such that $[\phi] = c_1(M)$ be realised as the Ricci form of some Kähler metric?

Theorem (Calabi-Yau)

Let (M,g) be a compact Kähler manifold with Kähler form ω and let ϕ be a real (1,1)-form representing $c_1(M)$. Then there exists a unique Kähler metric on M whose Kähler form $\tilde{\omega}$ satisfies $[\tilde{\omega}] = [\omega]$ and whose Ricci form $\tilde{\rho}$ satisfies $\tilde{\rho} = \phi$.

Conjectured by Calabi, proved by Yau in 1977.

Kähler-Einstein manifolds

Recall that a Riemannian manifold is called *Einstein* if $Ric = \lambda g$ for some constant $\lambda \in \mathbb{R}$.

A complex manifold is called *Kähler-Einstein* if it admits a metric which is both Kähler and Einstein.

Does a given Kähler manifold admit a Kähler-Einstein metric?

Note that $\rho = \lambda \omega$ on a Kähler-Einstein manifold, so $\lambda[\omega] = 2\pi c_1(M)$. Since $\omega > 0$, one requires $\lambda = 0$, > 0 or < 0 according to whether $c_1(M)$ is positive, negative, or zero. W.l.o.g., $\lambda = 0, \pm 1$.

Existence of Kähler-Einstein metrics

If $c_1(M) = 0$, there is a Kähler-Einstein metric with $\rho = 0$, by the Calabi-Yau theorem.

Theorem (Aubin-Yau, 1978)

Let M be a compact Kähler manifold with $c_1(M) < 0$. Then there exists a unique Kähler metric whose fundamental form $\tilde{\omega}$ and Ricci form $\tilde{\rho}$ satisfy $\tilde{\rho} = -\tilde{\omega}$.

It is not true that every Kähler manifold with $c_1(M) > 0$ admits a Kähler-Einstein metric.

Berman shows in arXiv:1205.6214 that a manifold with $c_1(M) > 0$ must be "K-(poly)stable" (a similar result was obtained by Tian in 1997 with more restrictive assumptions).

Chen, Donaldson Sun, and, independently, Tian, showed in late 2012 that any K-(poly)stable Kähler manifold with $c_1(M) > 0$ admits a Kähler-Einstein metric.

Constant scalar curvature Kähler metrics

A constant scalar curvature Kähler metric is a Kähler metric whose scalar curvature S := tr Ric is constant.

Kähler-Einstein metrics obviously have constant scalar curvature. In fact, more is true on compact Kähler manifolds:

$$S = \text{constant and } [\rho] = \lambda[\omega] \quad \Leftrightarrow \quad g \text{ is K\"{a}hler-Einstein.}$$

Stoppa has shown (2009) that constant scalar curvature Kähler manifolds are necessarily K-stable. The proof of the converse (i.e. existence of constant scalar curvature Kähler metrics on K-stable manifolds) remains an important open problem.