APUNTES DE MICROPROCESADORES Y MICROCONTROLADORES

Temario

- 1. Introducción a los microcontroladores (MCU) y Microprocesadores (MPU)
- 2. Estructura de un MPU
- 3. Estructura de un MCU
- 4. Elementos estructurales de la memoria
- 5. Programación del MPU
- 6. Interfase del MCU con dispositivos externos
- 7. Puertos de comunicación E/S paralelo
- 8. Puertos de comunicación serial asíncrona y síncrona
- 9. Temporizadores
- 10. Aplicaciones de los MPU y MCU

BIBLIOGRAFIA

	INTEL	MOTOROLA	TEXAS INSTRUMENT	
NICHO	Computadoras personales	Control de procesos industriales	Procesamiento digital (DSP)	

ARQUITECTURA VON NEWMAN

Propuso dos conceptos básicos:

- 1. Utilización del sistema de numeración binaria
- 2. Almacenamiento de la secuencia de instrucciones de que consta el programa de una memoria interna, fácilmente accesible, junto con los datos de referencia, con esto se aumento la velocidad de proceso.

Un solo bus de datos y direcciones, el mismo bus se emplea para enviar y recibir instrucciones y datos. Los datos y las instrucciones son almacenados en una memoria principal, CPU \rightarrow va a la memoria principal, extrae las instrucciones y después los datos.

ARQUITECTURA HARVARD

Esta arquitectura se caracteriza por tener por separado el bus de datos y el bus de direcciones. Esto significa que las instrucciones y los datos son almacenados en memorias diferentes que son accedidas de forma separada por la CPU.

ARQUITECTURA VON NEWMAN

ARQUITECTURA HARVARD

MICROPROCESADORES

- 1. La unión de una Unidad Central de Control y la ALU, junto con algunos registros de transferencia forman la Unidad Central de Procesos o CPU de una computadora.
- 2. El concepto de CPU nace con las computadoras electrónicas de la primera generación fabricadas con tubo de vacío.
- 3. El concepto de Microprocesador nace con las computadoras electrónicas de la tercera generación fabricadas a base de circuitos integrados.

UN MICROPROCESADOR ES UN CPU INTEGRADO

ALU: procesa uno o dos números binarios efectuando operaciones aritméticas y operaciones lógicas.

UNIDAD DE CONTROL: responsable del control de todo el sistema, se encarga de proporcionar la secuencia y tiempo para el procesamiento de las instrucciones axial como la trayectoria y destino de los datos, se apoya en una señal de reloj el cual sincroniza el desarrollo temporal de todas las señales de control dentro y fuera del microprocesador. El sistema en cada instante en un estado perfectamente definido.

ANALOGIA: un policía de transito, dice quien pasa y quien no, su dirección y el momento en que deben hacerlo.

REGISTRO DE CONTROL DE CONDICION DE ESTADOS (CCR): este registro proporciona información acerca de la última operación efectuada en la ALU, también conocido como REGISTRO DE BANDERAS.

ACUMULADORES A Y B: registros para almacenar operandos para ser procesados por la ALU.

3 de 19 Introducción a los mP y mC (parte 1)

REGISTRO DE DIRECCIONAMIENTO DE MEMORIA (MAR): registro para direccionar univocamente localidades de memoria principal. Si 16 bits, 2¹⁶= localidades direccionadas.

REGISTRO DE DIRECCIONAMIENTO DE DATOS (MDR): registro para transferir datos desde o hacia la memoria principal.

REGISTRO DE INSTRUCCIONES (IR): registro para almacenar el código de la instrucción de cada operación efectuada por el microprocesador.

CONTADOR DE PROGRAMA (PC): registro para almacenar el número de la siguiente instrucción a ser procesada por el microprocesador.

REGISTRO X: registro para el manejo de índices, es como un directorio, con índice para acceder rápidamente y hacer tareas.

APUNTADOR DE PILA (SP): registro para el manejo de subrutinas o interrupciones y otras operaciones.

COMUNICACIÓN ENTRE MODULOS

La comunicación entre los módulos se efectúa en atención al tipo de información que se procesa. Puede ser de 3 tipos:

CONTROL DATOS DIRECCIONES

APUNTE ANEXO PARA LA COMPRENSION DE LA MAR Y LA MDR

PROBLEMA:

Para una memoria RAM de 2Kb y una ROM de 4Kb se usan como memoria principal de un microprocesador que tiene una longitud de palabra de 1 byte.

a) Determinar el número de palabras de la memoria RAM

1Kb=1024 bits

#bits totales RAM = 2(1024)=2048 bits --> 2048 [bits]/ 8 [bits/palabra]=256 [palabras]

- b) Determinar el número de palabras de la memoria ROM
- 1Kb=1024 bits

#bits totales ROM= 4(1024)=4096 bits --> 4096 [bits]/ 8 [bits/palabra]=**512 [palabras]**

- c) Numero total de palabras de la memoria total.#palabras totales = =256+512 = 768 palabras
- d) Número de líneas necesarias para el direccionamiento. $2^{\text{\#lineas}} = 768$

#lineas pertenece a los enteros.

#lineas = 10

6 de 19 Introducción a los mP y mC (parte 1)

7 de 19 Introducción a los mP y mC (parte 1)

UNIDAD DE CONTROL							
ES UN SISTEMA COMPLETO	ES UN SISTEMA COMPLETO QUE INCLUYE EN UN SOLO CHIP:						
PARA QUE SEA MCU DEBE	PARA QUE SEA MCU DEBE MPU						
TENER AL MENOS ESTOS	TENER AL MENOS ESTOS MEMORIA (ROM, RAM, EPROM, E2PROM						
ELEMENTOS	PUERTOS DE ENTRADA-SALIDA PARALELO						
	PUERTOS DE COMUNICACIÓN SERIE ASINCRONA						
	PUERTOS DE COMUNICACIÓN SERIE SINCRONA						
	CONVERTIDOR A/D						
	UNIDAD DE TIEMPO (TIMERS)						
OSCILADOR Y RELOJ INTERNOS							
LA MEMORIA NO ES M	IASIVA YA QUE SOLO SE REQUIERE PARA CONTROL DE PROCESOS.						

ESTRUCTURA DE UN MICROPROPROCESADOR

ES EL CENTRO NERVIOSO DEL MPU, PROPORCIONA LA SECUENCIA Y TIEMPO PARA EL PROCESAMIENTO DE LAS INSTRUCCIONES, ASI COMO PARA EL CONTROL DE LA TRAYECTORIA Y EL DESTINO DE LOS DATOS.

Cada operador y operando ocupan un lugar especifico en la memoria principal de forma tal que c/u de ellos, tiene que ser direccionado en forma secuencial y uno a la vez

CICLO DE PROCESAMIENTO Y CICLO DE RELOJ DEL MPU

Sea F=2[MHz]=(1/4)*8[MHz]

 $T=0.5[\mu s]$

EL CICLO DE PROCESAMIENTO SE EJECUTA EN 1[µs]
NO CONFUNDIR EL CICLO DE PROCESAMIENTO CON EL CICLO DE RELOJ DEL MPU

EJEMPLO:

De acuerdo a la siguiente instrucción del μP especificado determinar el número de ciclos necesarios para que se efectúe la instrucción y lo que sucede en cada ciclo.

MPU → 8 BITS

MEMORIA PRINCIPAL → 65KBYTE

INSTRUCCIÓN: suma contenido de la localidad de memoria \$04b5 al contenido del acumulador y coloca el resultado en el acumulador

	4 CICLOS DE TRABAJO							
FETCH	EJECUTE	FETCH	EJECUTE	FETCH	EJECUTE	FETCH	EJECUTE	
Pc direcciona localidad 65 via MAR pc → 0065 y su contenido se va al registro de instrucciones via MDR	Se ignora	Se direcciona 0066 por pc via MAR , PC se incrementa y su contenido se va al resgistro de instrucciones via MDR	Se ignora	Pc direcciona el siguiente via MAR, su contenido se va al registro de instrucciones via MDR	Se igniora	Se direcciona pc con 04B5 por pc, via MAR y como el registro de intrucciones esta completo se transfierea a la ALU via MDR	Hace la suma la ALU.	
CICLO DE PROCESAMIENTO 1		CICLO DE PR	OCESAMIENTO 2	CICLO DE PR	OCESAMIENTO 3	CICLO DE PI	ROCESAMIENTO	
T1 T2		T3	T4	T5	T6	T7	T8	

Señal: cualquier magnitud física de naturaleza eléctrica codificada en código binario. Este código puede ejecutarse directamente en el microprocesador.

Lenguaje maquina:

Una reducción significativa en la dificultad de programación se consiguió con la ejecución de los lenguajes ensambladores.

Lenguaje ensamblador: el lenguaje que permite escribir instrucciones en forma simbólica utilizando nombres fácilmente recordables (nemotécnicos).

ESTRUCTURA DE LOS ELEMENTOS DE MEMORIA ESTADO ACTUAL DE LA TECNOLOGÍA

Esquema básico de una memoria

MEMORIA DE SEMICONDUCTOR MEMORIA RAM MEMORIA ROM MEMORIA SERIE

Data Types

The CPU12 supports four data types:

- 1. Bit data
- 2. 8-bit and 16-bit signed and unsigned integers
- 3. 16-bit unsigned fractions
- 4. 16-bit addresses

A byte is eight bits wide and can be accessed at any byte location. A word is composed of two consecutive bytes with the most significant byte at the lower value address. There are no special requirements for alignment of instructions or operands.

MODOS EN QUE TRABAJA EL MICROCONTROLADOR HC11

MODO	MODO B	MODO A	¿QUE HACE?
SINGLE CHIP	1	0	El mC funciona como tal, es decir, con toda la disponibilidad de sus puertos y con un alcance para el usuario definido por su memoria interna
EXPANDED MODE	1	1	El mC funciona como microprocesador, direccionando una memoria externa, la cual s direcciona vía el bus de expansión de direcciones, perdiéndose por lo tanto los puertos D y C del mP. Así, quedan disponibles 16 pines para direccionar una memoria exterior hasta 64Kb
BOOTSTRAP	0	0	Variación del modo single chip, modo que ejecuta un programa bootloader en una memoria ROM interna llamada bootstrap. La memoria contiene el programa bootloader y conjunto especial de vectores de interrupción y reset.
TEST	0	1	Modo especial de prueba para los recursos del mC, ejecutado por el fabricante.

MODOS EN QUE TRABAJA EL MICROCONTROLADOR HC12

PROGRAMACION DEL MICROCONTROLADOR Y EL MICROPROCESADOR

		FORMATO SE NISMEDICO ONES								
		PEROMOR HEXADEC	TIPO DE MARECCIONAMIENTO	BASE NUMERICA	OPERAND	00 0	PERANDO			
Mnemónic o		APGGEAEO BINARIO	A S CI %	ASCCI	*según bas numérica		según base numérica			
Código de Operación	Н	exadecimal —			Hexadecim		exadecimal			
Numero de Bits		LD&B	Tipo de direc		\$ Base numérica	20				
		LDAB	(inmed	Jiato)	\$	20				
		LDAB			\$	В3				

TAMAÑO DE LAS INSTRUCCIONES					
TAMAÑO DE LAS	TIPO DE		NOTACION		
INSTRUCCIONES	DIRECCIONA	MIENTO			
1 BYTE (SIN OPERANDOS)	INHERENTE				
	DIRECTO	dato reside en memoria			
	INMEDIATO	Dato esta junto a operador	#		
	INDEXADO	Numero que se ha de sumar al registro índice junto al operador	**,X (** de referencia)		
2 BYTE (CON OPERANDOS) (1+1)	RELATIVO	Estas indican a la CPU que realice un salto de bytes hacia adelante o hacia atrás. El desplazamiento tiene signo y es de un byte por lo que las bifurcaciones sólo se pueden hacer de 128 bytes hacia atrás ó 127 bytes hacia delante.	*,±H (* desplazamiento)		
3 BYTE (CON DOS OPERANDOS) (1+2)	EXTENDIDO	El dato se encuentra en la dirección de memoria especificada. El dato puede estar en cualquier posición de la memoria dentro del límite de las 64Kb, por lo que la dirección ocupa 2 bytes.	- Incondicionado		

15 de 19 Introducción a los mP y mC (parte 1)

UNAM, FACULTAD DE APUNTES DE MICROPR 05/P5	INGENIERÍA OCESADORES Y MICROCONTROLADORES	SANTIAGO CRUZ CARLOS 02/05/2006 07:44
	16 de 19 Introducción a los mP y mC (par	te 1)

Mode Register

The mode register (MODE) controls the MCU operating mode and various configuration options. This register is not in the map in peripheral mode.

Address:	\$000B	

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	SMODN	MODB	MODA	ESTR	IVIS	EBSWAI	0	EME
Write:	SIVIODIN	INIODE	WODA	ESIK	1013	EDSWAI	U	EIVIE
Reset states:								
Normal expanded narrow:	1	0	1	1	0	0	0	0
Normal expanded wide:	1	1	1	1	0	0	0	0
Special expanded narrow:	0	0	1	1	1	0	0	1
Special expanded wide:	0	1	1	1	1	0	0	1
Peripheral:	0	1	0	1	1	0	0	1
Normal single-chip:	1	0	0	1	0	0	0	0
Special single-chip:	0	0	0	1	1	0	0	1

MODELO DE PROGRAMACION DEL HC12

7	Α	0 7	B 0	8-BIT ACCUMULATORS A AND B
15		D	0	16-BIT DOUBLE ACCUMULATOR D (A : B)
15		Х	0	INDEX REGISTER X
				7
15		Υ	0	INDEX REGISTER Y
15		SP	0	STACK POINTER
10		31		J. J
15		PC	0	PROGRAM COUNTER
		SXI	H I N Z V C	CONDITION CODE REGISTER
				CARRY
				OVERFLOW
				ZERO
				NEGATIVE
				IRQ INTERRUPT MASK (DISABLE)
				HALF-CARRY FOR BCD ARITHMETIC
				XIRQ INTERRUPT MASK (DISABLE)
				STOP DISABLE (IGNORE STOP OPCODES)

UNAM, FACULTAD DE INGENIERÍA APUNTES DE MICROPROCESADORES Y MICROCONTROLADORES 05/P5 SANTIAGO CRUZ CARLOS 02/05/2006 07:44

COSAS INTERESANTES ACERCA DE UN MICROPROCESADOR.

UNA FORMA TIPICA DE MEDIR EL RENDIMIENTO ES POR EL TIEMPO DE EJECUCION DE LOS PROGRAMAS:

RENDIMIENTO = 1/(TIEMPO DE EJECUCIÓN)

MIPS: MILLONES DE INSTRUCCIONES POR SEGUNDO

MFLOPS: MILLONES DE OPERACIONES EN COMA FLOTANTE POR SEGUNDO

EXISTEN UNA SERIE DE TEST QUE PERMITEN MEDIR EL RENDIMIENTO DE TODO EL SISTEMA EN CONJUNTO.