Project Writeup/README

Traffic Sign Recognition

The process involves the following steps...

- Load the data set (see below for links to the project data set)
- Explore, summarize and visualize the data set
- Design, train and test a model architecture
- Use the model to make predictions on new images
- Analyze the softmax probabilities of the new images
- Summarize the results with a written report

Files/Folders included:

- ✓ Traffic Sign Classifier.ipynb
- ✓ Traffic Sign Classifier.html
- ✓ WRITEUP.pdf
- ✓ Test Images

RUBRIC POINTS:

1. Data Set Summary & Exploration

Size of the training set is
 Size of the test set is
 34799 images of size (32,32)
 12630 images of size (32,32)

> Then, we are slicing validation set from the training set, we take 20% of the training set. Hence,

size of the validation set is : 6960 images of size (32,32)

> Image data shape is (32, 32, 3). Here, 3 is the no. of channels i.e. RGB in this case for color

images.

No. of classes : 43 i.e. 43 different types of traffic signs

Distribution of traffic sign data in the datasets......

Distribution of the traffic sign images per class......

2. Designing and Testing the Model Architecture

- > Images have been normalized to scale down the data to a better scale, i.e. having zero mean and equal variance.
- LeNet architecture has been used. The network is depicted below......

The LeNet implemented is based upon the following paper by Yann LeCun.... http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf

The model was trained using.....

Adam Optimizer to minimize the loss function

Epoch : 20 Batch Size : 64

O Hyperparameters... mu: 0, sigma: 0.1

o Learning rate : 0.001

- We run the training data through the training pipeline to train the model.
- After each epoch, we measure the loss and accuracy of the validation set.
- Maximum Validation Accuracy: 98.5%

- The model checkpoint is saved.
- ➤ We then evaluate the model on the test set. It gives test accuracy of **91.4%**

3. Testing the Model on New Images

The following German traffic signs downloaded from the internet have been used to test the model......

- ➤ The fifth image, 5.jpg might be difficult to classify because of large size or image effects or non-standard pedestrian icons.
- > The actual labels of the signs are.....

Image	Sign Type	Label
1.jpg	Road work	25
2.jpg	Stop	14
3.jpg	Priority Road	12
4.jpg	No entry	17
5.jpg	Pedestrians	27
6.jpg	Speed limit (120km/h)	8

- Overall Accuracy on these new test images is 83.33%
- ➤ As expected, the 5th image fails to get classified.
- > The top 5 probabilities of the new test images are......

Image: 1.jpg

- 1. Road work Probability: 0.8144193
- 2. Wild animals crossing Probability: 0.14610314
- 3. Bicycles crossing Probability: 0.03947703
- 4. Slippery road Probability: 3.2619124e-07
- 5. Speed limit (80km/h) Probability: 1.4778094e-07

Image: 2.jpg

- 1. Stop Probability: 0.99139386
- 2. Road work Probability: 0.008138403
- 3. Speed limit (60km/h) Probability: 0.00024956363
- 4. No entry Probability: 7.4283125e-05
- 5. Bicycles crossing Probability: 6.9950445e-05

Image: 3.jpg

- Priority road Probability: 1.0
 Yield Probability: 4.3217787e-11
- 3. No passing for vehicles over 3.5 metric tons Probability: 2.3713712e-11
- 4. No passing Probability: 1.366222e-16
- 5. End of all speed and passing limits Probability: 1.2293068e-17

Image: 4.jpg

- No entry Probability: 0.6594514
 Stop Probability: 0.34048912
- 3. Bicycles crossing Probability: 5.775748e-05
- 4. Speed limit (30km/h) Probability: 1.5726348e-06
- 5. Speed limit (20km/h) Probability: 4.678121e-08

Image: 5.jpg

- 1. Right-of-way at the next intersection Probability: 1.0
- 2. Pedestrians Probability: 4.638571e-08
- 3. Beware of ice/snow Probability: 8.947157e-11
- 4. Slippery road Probability: 3.3830987e-11
- 5. Children crossing Probability: 2.7232173e-11

Image: 6.jpg

- 1. Speed limit (120km/h) Probability: 0.5996338
- 2. Speed limit (70km/h) Probability: 0.3105269
- 3. Speed limit (50km/h) Probability: 0.089732334
- 4. Keep left Probability: 0.000106782456
- 5. Speed limit (30km/h) Probability: 1.9371399e-07

Note: The 2nd probability for 5th image is correct label!

The model can be further improved by...

- Augmenting the training data
- Grayscale conversion of the training data
- Implementing in detail as described in the paper by Pierre Sermanet and Yann LeCun.
 [http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf]
- Using different model architectures other than LeNet