H.B.U.C. Chlef Faculty of Exact Sciences Mathematics Department U.Y. 2020/2021

Level: 2nd Master/ Option: A.M.S. Module: Stochastic Processes 3

Test ÉCRIT N°1 (Martingales à temps continu.)

Exemple important

On dit qu'un processus $(Z_t)_{t\geq 0}$ à valeurs dans \mathbb{R} ou dans \mathbb{R}^d a des accroissements indépendants à la filtration $(\mathcal{F}_t)_{t\geq 0}$ si Z est adapté et si, pour tous; $0\leq s< t,\ Z_t-Z_s$ est indépendant de \mathcal{F}_s .

Si Z un processus à valeurs dans \mathbb{R} a des accroissements indépendants à la filtration $(\mathcal{F}_t)_{t>0}$, alors

- 1. Si $Z_t \in L^1$ pour tout $t \geq 0$, alors $\tilde{Z}_t := Z_t E(Z_t)$ est une martingale;
- 2. Si $Z_t \in L^2$ pour tout $t \geq 0$, alors $Y_t := \tilde{Z}_t^2 \mathbb{E}(\tilde{Z}_t^2)$ est une martingale;
- 3. Si pour un certain $\theta \in \mathbb{R}$, on a $\mathbb{E}(e^{\theta Z_t}) < \infty$ pour tout $t \geq 0$, alors

$$X_t := \frac{e^{\theta Z_t}}{\mathbb{E}(e^{\theta Z_t})}$$

est une martingale.

written test N°1 (Continuous Time Martingales)

Important example

We say that a process $(Z_t)_{t\geq 0}$ with values in \mathbb{R} or in \mathbb{R}^d has independent increments with respect to the filtration $(\mathcal{F}_t)_{t\geq 0}$ if Z is adapted and if, for every $0\leq s< t,\ Z_t-Z_s$ is independent of \mathcal{F}_s . If Z is a real-valued process having independent increments with respect to $(\mathcal{F}_t)_{t\geq 0}$, then

- 1. if $Z_t \in L^1$ for every $t \geq 0$, then $\tilde{Z}_t := Z_t E(Z_t)$ is a martingale;
- 2. if $Z_t \in L^2$ for every $t \geq 0$, then $Y_t := \tilde{Z}_t^2 \mathbb{E}(\tilde{Z}_t^2)$ is a martingale;
- 3. if for some $\theta \in \mathbb{R}$, we have $\mathbb{E}(e^{\theta Z_t}) < \infty$ for every $t \geq 0$, then

$$X_t := \frac{e^{\theta Z_t}}{\mathbb{E}(e^{\theta Z_t})}$$

is a martingale.

REFERENCE

Jean-François Le Gall, Brownian Motion, Martingales, and Stochastic Calculus, springer 2016. (page 50).