

Diplomarbeit

Abstraktion verteilter Produktionsmaschinen in cyber-physischen Produktionssystemen

10. September 2016

Peter Heisig

Matr.-Nr.: 3521226

Betreuer

Dipl.-Medieninf. Gordon Lemme, Dr.-Ing. Sebastian Götz

Verantwortl. Hochschullehrer

Prof. Dr. Uwe Aßmann

Erklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit mit dem Titel
Abstraktion verteilter Produktionsmaschinen in cyber-physischen Produktionssystemen
unter Angabe aller Zitate und nur unter Verwendung der angegebenen Literatur und Hilfsmittel selbstständig angefertigt habe.
Dresden, den 10. September 2016
Peter Heisig

Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Motivation	1
	1.2	Zielsetzung	2
	1.3	Rahmen dieser Arbeit	2
	1.4	Methode und Aufbau	2
2	Gru	ndlagen	3
	2.1	Produktion und deren Automatisierung	3
	2.2	Cyber-physische Produktionssysteme	5
		2.2.1 Architekturstile und -muster	5
		2.2.2 Fog-Computing im Kontext von CPPS	5
	2.3	Informationsmodelle in der Fertigungsindustrie	5
		2.3.1 OPC Unified Architecture	5
	2.4	Kontrolle & Überwachung von Produktionsmaschinen	7
	2.5	Zusammenfassung	7
3	Anfo	orderungen	9
4	Fors	chungsstand	11
	4.1	Legacy Machine Monitoring Using Power Signal Analysis [DP11] $$	11
	4.2	Remote real-time CNC machining for web-based manufacturing [Wan+0	4] 12
	4.3	An ARM-based Multi-channel CNC Solution for Multi-tasking Turning	
		and Milling Machines [GM16]	13
	4.4	Prototype OPC UA Server for Remote Control of Machine Tools	
		[Aya+13]	14
	4.5	Information Architecture for Reconfigurable production systems [Pau+1	3] 15
	4.6	A systematic approach to OPC UA information model design [PFK16]	15
	4.7	Multi Agent based Control Architectures [Fal16]	16
	4.8	Towards model-integrated service-oriented manufacturing execution	
		system [FWW16]	16

5	Konzeption					
	5.1	Zusammenfassung	19			
6	-	lementation	21			
	6.1	Zusammenfassung	21			
7		uation	23			
	7.1	Zusammenfassung	23			
8	Zusa	ammenfassung	i			
	8.1	0000				
	8.2	Ausblick	i			
Α	Anh	ang	i			
Abbildungen						
Pr	ograr	mmcode	v			
Ta	belle	n	vii			
Literatur						

1 Einleitung

1.1 Motivation

Durch sinkende Losgrößen und steigende Produktvariabilität sind Echtzeitüberwachung und -kontrolle in verteilten, rekonfigurierbaren Fertigungssystemen notwendig [Wan+04].

Die Infrastruktur für eine Verbindung zwischen automatisiertem Equipment und E-Manufacturing fehlt [Wan+04].

Heutige Produktionseinrichtungen beherbergen Maschinen jeden Alters, die zu einem gemeinsamen System verwachsen müssen. Gerade ältere Modelle (Altmaschinen) besitzen häufig keine Möglichkeit der Integration in die IT-Systeme einer modernen Fertigungsstrecke. So sind geschlossene Architekturen und fehlende Schnittstellen verantwortlich für eingeschränkte Überwachung und Steuerung, respektive für die Verhinderung von ökonomisch sinnvoller Automation [DP11].

Als Teil des Fertigungsprozesses besitzt eine Altmaschine keine Möglichkeit externer Kommunikation und kein Application Programming Interface (API) [DP11].

Bisher basierten Produktionseinrichtungen auf dem manuellen Sammeln und Verteilen von Daten für Überwachung, Steuerung und Wartung der Maschinen. Doch gegenüber den hohen Kosten, menschlichen Fehlern, dem teilweise schlechten Zugang zur Maschine und Aspekten der Datensicherheit, sind Automatisierungslösungen heute günstig und damit Teil der Fertigungsindustrie [DP11].

Durch steigende Rechenleistung sind ARM-Prozessoren auf Einplatinencomputern in der Lage Mehrachsmaschinen zu kontrollieren [GM16].

1.2 Zielsetzung

1.3 Rahmen dieser Arbeit

- \cdot betrachtet
 - Fertigungsindustrie
 - CNC-Maschinen
- \cdot unbetrachtet
 - TODO

1.4 Methode und Aufbau

2 Grundlagen

2.1 Produktion und deren Automatisierung

- · Ebenen der Automatisierungspyramide
 - MES

- ...

Feldbusse (EtherCAT, etc.)

Abbildung 2.1: Beispiel einer klassischen Automatisierungspyramide²

Value-Stream Mapping (VSM) ist eine Methode der *Lean Production*, mit der ein vollständiger Material- und Informationsfluss vom Zulieferer zum Endkunden abgebildet werden kann. Damit bietet VSM ein Maß tatsächlich benötigter Produktions- und Durchlaufzeit eines Produkts [MFT09].

G-code is considered a "dumb" language as it only documents instructional and procedural data, leaving most of the design information behind. G-code programs

 $^{^2 \}mathrm{Darstellung}$ durch Wikipedia-Nutzer Ulrich AAB

Abbildung 2.2: Grundstruktur flexibler Automation [Lin15]

are also hardware dependent, denying modern CNC machine tools desired interoperability and portability [XLY06].

In einer Flexible Manufacturing Cell (FMC) befinden sich zwei oder mehr CNC-Maschinen, die im Verbund ein Flexible Manufacturing System (FMS) bilden [Gro08].

2.2 Cyber-physische Produktionssysteme

· Überblick: Wang 2015 [WTO15]

2.2.1 Architekturstile und -muster

- · MAS, Holonic [Lei09; Fal16]
- · SOA [Mey10; FWW16]
- · Blackboard [MVK06; Pau+13]

2.2.2 Fog-Computing im Kontext von CPPS

Aazam 2016 [AH16]

Im WAN problematisch [Sch+15] => OPC4Factory

2.3 Informationsmodelle in der Fertigungsindustrie

Hersteller von Software für Supervisory Control and Data Aquisiton (SCADA) verwalten eine große Anzahl an Kommunikationstreibern für unterschiedliche Automationsund Informationssysteme. Außerdem erschweren verschiedene Kommunikationsprotokolle und Nachrichtenformate die Integration zusätzlicher Systeme [Aya+13].

2.3.1 OPC Unified Architecture

Die *OPC Unified Architecture* (OPC UA) ist ein semantischer Kommunikationsund Datenmodellierungsstandard für den Informationsaustausch via TCP/IP [Aya+13].

- · Communication Technology that merges:
 - (1) Transport mechanism (uses internet standards XML, HTTP,... and also optimized binary TCP)
 - (2) Information modelling (using an extensible meta model)
- · Extensible meta model
- · Platform independent (cross-platform)
- · Scalable
- · But not hard real-time (not yet) => nicht geeignet für direkt Bewegungskontrolle [Pau14]

Abbildung 2.3: OPC UA Übersicht³

Die definierte Semantik des Address Space erlaubt nicht nur anspruchsvolle M2M-Kommunikation. Sie ermöglicht dem Operator einer FMC Strukturinformationen einzusehen und die Automatisierungskomponenten zu kontrollieren [Aya+13].

Hoppe 2014 [Hop14]

Obwohl bereits verschiedene wichtige Informationsmodelle, wie OPC-UA for Analyser Devices, FDI (Field Device Integration), ISA95, MT-Connect, BACnet und PLCopen existieren, oder in der Entstehung sind, gibt es hier noch Handlungsbedarf:

- · Wie geben sich z. B. ein "Temperatursensor" oder eine "Ventilsteuerung" zu erkennen?
- · Welche Objekte, Methoden, Variablen und Ereignisse definieren die

Schnittstelle für Konfiguration, Initialisierung, Diagnose und Laufzeit? OPC-UA hat das Potential, sich als De-facto-Standard für den Daten-

³nach opcfoundation.org/about/opc-technologies/opc-ua

und Informationsaustausch in der Automatisierungspyramide für nichtechtzeitkritische Anwendungen zu etablieren. Eine sichere, horizontale und vertikale Kommunikation vom Sensor bis in die IT-Systeme ist damit bereits heute umsetzbar. Die Verbände BITCOM, VDMA und ZVEI werden durch die Industrie-4.0-Arbeitskreise keinen neuen Kommunikationsstandard definieren können; die Arbeitskreise bieten aber eine gute Grundlage zum Informationsaustausch.

- · MTConnect (RO Standard for Process Information in CNC) [Vij+08]
- · STEP-NC [HL07; XN06]

2.4 Kontrolle & Überwachung von Produktionsmaschinen

- \cdot CNC
- · STEP-NC
- · IEC 61499 Function Blocks

2.5 Zusammenfassung

3 Anforderungen

- · Echtzeit der Steuerung
- · Kontrollschleife?

4 Forschungsstand

4.1 Legacy Machine Monitoring Using Power Signal Analysis [DP11]

Purpose. Ziel von Deshpande et al. war eine nicht-invasive Methode der Echtzeitüberwachung von Energieverbrauch und weiteren Parametern bei Legacy-Maschinen.

Design/Methodology/Approach. Durch das Abgreifen des Stromverbrauchs über eine Universal Power Cell (UPC), dem Sensor an der Maschine, können Informationen via TCP und UDP an eine externe Komponente übergeben und ausgewertet werden. Die in Kilowatt eingehenden Verbrauchsdaten wurden durch an Bedingungen gekoppelte Schwellwerte in Status (an, aus, Leerlauf), Energieverbrauch, Werkzeugwechsel und Werkstückdurchsatz unterschieden. Für die Case Study und einen anschließenden Vergleich hatten Deshpande et al. auch moderne Maschinen mit der UPC ausgestattet. Verglichen wurde die zeitabhängige Auslastung von drei unterschiedlichen Modellen.

Findings. Mit einer Genauigkeit von 95% für den Status und 99% für Werkzeugwechsel und Durchsatz wurde das Konzept erfolgreich getestet.

Research Limitations/Implications. Das Konzept nutzt ausschließlich den Eingangsstrom der Maschine, wodurch Genauigkeit und Umfang der Daten begrenzt werden.

Practical Implications.

Für den Einsatz in einer realen Produktionsumgebung fehlen UI und API. Anforderungen an die Energieversorgung, sowie der Verbrauch von Teilsystemen der Produktionskette werden messbar. Die periodische Planung der Wartung kann aufgrund tatsächlicher Nutzung und Auslastung geschehen. Außerdem werden Prinzipien wie VSM echtzeitfähig und ermöglichen eine höhere Produktivität.

Originality/Value. Die minimal-invasive Methode ist unabhängig von Hard- Software und erlaubt die autonome Aggregation von Informationen unzugänglicher Alt-

maschinen.

4.2 Remote real-time CNC machining for web-based manufacturing [Wan+04]

Purpose. Das Ziel von Wang et al. war die Entwicklung einer offenen Architektur für die Echtzeitüberwachung und -kontrolle von im Netzwerk befindlichen CNC-Maschinen.

Design/Methodology/Approach. Ein Web-basierter Thin-Client des Wise-ShopFloor ermöglicht die Kontrolle und Überwachung der Maschinen über ein dreidimensionales Modell der Fertigungsstrecke. Das darunterliegende Framework basiert auf einer Client/Server-Architekturstil und verwendet seitens des Servers das MVC-Entwurfsmuster. Maschinen werden über das Fabriknetzwerk mit dem Server verbunden und sind somit vom Internet getrennt. Bei der Verwendung mehrerer Clients wird für das Routing ein Publish/Subscribe Mechanismus über HTTP-Streaming eingesetzt. Mit Hilfe dessen wird das Verhalten des auf Java 3D basierenden Visualisierungsmodells durch Sensorik an den Machinen beeinflusst. In der von Wang et al. durchgeführten Case Study wurde unter Verwendung einer CNC-Fräsmaschine die Tauglichkeit des Konzepts verifiziert. Die Schnittstelle zwischen Server und Maschine wurde durch einen Open Architecture Controller¹ bereitgestellt. Für die Kontrolle der Fräse kann zwischen einem manuellen und einem automatischen Modus gewählt werden, wobei letzterer die direkte Übertragung von G-Code ermöglicht.

Findings.

Das Internet ist ein zentraler Aspekt verteilter Produktion. Jedoch sind damit Sicherheitslücken fatal für interne Daten und vertrauliche Informationen der Organisation. Die gezielte Verbreitung dieser stellt ein erhöhtes wirtschaftliches Risiko dar und muss in besonderem Maße geschützt werden. Weiterhin sind Systemfehler auf Maschinenebene im Bezug auf Personen- und Materialschäden untragbar. Daher muss die reibungslose Kommunikation von Steuerungsbefehlen zu jeder Zeit gewährleistet sein.

Research Limitations/Implications. Standards für die Kommunikation von Sensor- und Steuerungsinformationen sind notwendig um Effizienz und Integration der Systeme zu vereinfachen. So müssen globale Schnittstellen definiert und durch die Komponenten des Systems implementiert werden. Durch die Verwendung eines

¹Steuerungskomponente, die Modifikationen über das API hinaus zulässt [Yon04]

zuverlässigen NC-Befehlsinterpreters ist die verteilte Echtzeitsteuerung von CNC-Maschinen nach Wang et al. praktisch möglich. Jedoch setzt dieses System eine bestehende Anbindung an die Steuerungsebene voraus.

Practical Implications. Die direkte Verbindung des Clients zu einer Maschine ist mit der verwendeten Technologie nicht möglich. Sowohl die Java Sicherheitsinfrastuktur, als auch die Überwindung von Firewalls stellen zukünftig zu lösende Probleme dar. Für künftige Maschinen ist daher das Einbetten eines dedizierten Web-Services in die Kontrolleinheit notwendig.

Originality/Value. Ein wichtiger Aspekt des Konzepts von Wang et al. ist die technische Umsetzung auf der Java-Plattform. Mit dieser werden Sicherheitsinfrastrukturmerkmale wie byte-code-Verifikation und Rechtemanagement direkt unterstützt. Die Indirektion des Kontrollflusses über den Server der Architektur zu den Maschinen verhilft zur Einhaltung.

4.3 An ARM-based Multi-channel CNC Solution for Multi-tasking Turning and Milling Machines [GM16]

- · Purpose
 - Untersuchung von CNC mit ARM-Computern
 - * Portierung eines CNC-Kernels auf Pi 2 durch Virtualisierung mit gemeinsamen Bibliotheken (Cross-Compile)
 - * Kontrolle mehrerer paralleler Kanäle mit Schrittmotoren und Spindel
 - * Kommunikation über EtherCAT Feldbus (Echtzeit)
- · Design/Methodology/Approach
 - Soft-SPS, RT-Linux auf ARM-Computer
 - ARM/PC-Anbindung
 - * Spindel- und Motortreiber via EtherCAT
 - * Feldbus-Koppler via EtherCAT
 - * NC-Terminal via TCP
 - Case-Study mit einer Dreh-/Fräsmaschine
 - Synch. der Kanäle durch High-Level-Funktionen (Load, Run, Start, Stop, Reset, Wait, Sleep)
- · Findings
 - Ressourcen eines Einplatinencomputers sind ausreichend

- parallele Portierung PC/ARM von NC-Software bei guter Kernel-Arch. mgl.
- lediglich individuelle Konfiguration der Werkzeuge/Maschinen notwendig
- CNC-Kernel braucht idle 20% ARM-CPU / 3% PC-CPU => steigt mit #Kanäle #Achsen
- · Research Limitations/Implications
 - weitere Forschung auf Basis dessen
 - * Verarbeitungspräzision/-Stabilität (Precision Engineering)
 - * Adaptive Kontrolle
 - * Diagnose/Prognose
- · Practical Implications
 - Ether
CAT Cycle ${\rm Time}^1 < 2{\rm ms},$ perspektivisch < 1
ms => beeinfl. Anzahl paralleler Kontroll-Kanäle
 - künftig: Einplatinencomputer kontrollieren > 12 Achsen
- · Originality/Value
 - Bwertung mit Technology Readiness Level² 6

4.4 Prototype OPC UA Server for Remote Control of Machine Tools [Aya+13]

- · Purpose
 - OPC UA Server für CNC innerhalb einer flexiblen Fertigungszelle
 - semantische Kommunikationsschnittstelle
- · Design/Methodology/Approach
 - OPC UA Methoden für Maschinenbefehle
 - Kommunikation zw. Server und Maschine via propriät. Direct Numerical Control (DNC)
 - Case-Study an CNC-Drehmaschine & Industrieroboter
 - C++ UA Server SDK, .NET UA Client SDK (Unified Automation)
- · Findings

¹,,[...] die Zeit, die ein Teilnehmer (slave) warten muß, bis er wieder 'dran' ist." [Sch99].

²www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html

_

 \cdot Research Limitations/Implications

_

· Practical Implications

_

- · Originality/Value
 - OPC UA Methoden als Steuerungsschnittstelle

4.5 Information Architecture for Reconfigurable production systems [Pau+13]

Purpose.

Design/Methodology/Approach.

Findings.

Research Limitations/Implications.

Practical Implications.

Originality/Value.

4.6 A systematic approach to OPC UA information model design [PFK16]

Purpose.

Design/Methodology/Approach.

Findings.

Research Limitations/Implications.

Practical Implications.

Originality/Value.

4.7 Multi Agent based Control Architectures [Fal16]

Purpose.

Design/Methodology/Approach.

Findings.

Research Limitations/Implications.

Practical Implications.

Originality/Value.

4.8 Towards model-integrated service-oriented manufacturing execution system [FWW16]

Purpose.

Design/Methodology/Approach.

Findings.

Research Limitations/Implications.

Practical Implications.

Originality/Value.

Die Integration bestehender Hardware in die intelligente Steuerung einer Fabrik ist Thema des *RetroNet-*Projekts. Das Fraunhofer IPK entwickelt mit Industriepartnern physische und logische Konnektoren für die Anbindung von bestehenden Anlagen an eine Steuerungsplattform. Maschinen-, Anlagen und Produktionsdaten werden zu diesem Zweck zentral erfasst und gespeichert. Weiterhin soll eine Middleware im Client-Server-Architekturstil Dienste und zugrunde liegende Teilsysteme

miteinander verbinden und eine vermittelnde Rolle im Gesamtsystem einnehmen [Fra16b].

Forschung im Bereich Cloud-basierter Industriesteuerung wird in Zusammenarbeit von Fraunhofer, der TU Berlin und Industriepartnern betrieben. Im Projekt pI-CASSO werden die Auslagerung von Steuerungsdiensten in die Cloud und Möglichkeiten einer Verteilung und Modularisierung herkömmlicher Kontrollsysteme auf CPS-Komponenten untersucht [Fra16a].

Im Projekt *OPC4Factory* der TU Wien, wurden generische OPC UA Informationsmodelle entwickelt. Diese verbessern die Konnektivität von NC-Maschinen, Industrierobotern und anderen Komponenten innerhalb einer flexibel automatisierten Fertigungszelle. Die Orchestrierung der Fertigungsoperationen, sowie die Konfiguration der Komponenten soll durch die Lösung der Schnittstellenproblematik vereinfacht werden¹.

[Sch+15; Sch+14; Vic+15]

4.9 Zusammenfassung

- · TODO Projekte zusammenfassen & gegeneinander abgrenzen
- · Schnittstellenproblematik immer Teil des Problems
- $\cdot\,$ Entwicklung von Konnektoren meist Standardlösung

¹www.ift.at/forschung/foschungsprojekte/opc4factory see [Aya+13; Pau+13; Pau14]

5 Konzeption

- · Konzept eines Cell Controller als Basis (vgl. [Aya+13; FWW16])
 - kein Feldbus => keine Koppler (vgl. [GM16])
 - kein Maschinenspez. NC-Terminal => verteiltes System => entfernte Mensch-Maschine-Schnittstelle (vgl. [GM16])
 - Motortreiber als Teil des Surrogate
 - Echtzeit: SPS und Motortreiber auf einer Platine
- · Bisher OPC UA Server als Adapter zu proprietären Maschinenprotokollen
 - Server <-> Maschine => Server <-> Adapter <-> Maschine ?
- · Persistenzkonzept: Blackboard? [Pau+13]
- · Kontrolle der Arbeitssequenz? (PROtEUS, BPMN/Activiti)

OPC4Factory:

OPC UA Server und ihre Informationsmodelle repräsentieren alle für die Automatisierungs-aufgaben erforderlichen Komponenten der angeschlossenen Maschinen und Roboter (Ladetüren, Spannmittel, Werkzeuge, NC-Programme etc.) mit ihren Attributen, Ereignissen und Methoden. Die Kommunikation auf dieser Ebene **erfordert keine Echtzeitfähigkeit**, da Steuerungsaufgaben mit Echtzeitanforderungen ausschließlich innerhalb der Maschinen- bzw. Robotersteuerung abgewickelt werden.

5.1 Zusammenfassung

6 Implementation

6.1 Zusammenfassung

Evaluation

7.1 Zusammenfassung

8 Zusammenfassung

- 8.1 Schlussfolgerung
- 8.2 Ausblick

A Anhang

i

Abbildungen

2.1	Beispiel einer klassischen Automatisierungspyramide	3
2.2	Grundstruktur flexibler Automation [Lin15]	4
2.3	OPC UA Übersicht	6

Programmcode

Tabellen

Literatur

- [AH16] Mohammad Aazam und Eui-Nam Huh. "Fog Computing: The Cloud-IoT/IoE Middleware Paradigm". In: *IEEE Potentials* 35.3 (Mai 2016), Seiten 40–44. DOI: 10.1109/MPOT.2015.2456213 (siehe Seite 5).
- [Aya+13] I Ayatollahi, B Kittl, Florian Pauker u.a. "Prototype OPC UA Server for Remote Control of Machine Tools". In: *International Conference on Innovative Technologies*. Band 1009. 12. 2013, Seiten 73–76 (siehe Seiten 5, 6, 14, 17, 19).
- [DP11] Amit Deshpande und Ron Pieper. "Legacy Machine Monitoring Using Power Signal Analysis". In: ASME 2011 International Manufacturing Science and Engineering Conference, Volume 2. ASME, 2011, Seiten 207-214. DOI: 10.1115/MSEC2011-50019 (siehe Seiten 1, 11).
- [Fal16] Solmaz Mansour Fallah. "Multi Agent based Control Architectures". In: 26th DAAAM International Symposium on intelligent Manufacturing and Automation (2016), Seiten 1166–1170. DOI: 10.2507/26th.daaam. proceedings.164 (siehe Seiten 5, 16).
- [Fra16a] Fraunhofer IPK. Industrie 4.0 Cloudbasierte Steuerungen. 2016. URL: https://www.ipk.fraunhofer.de/fileadmin/user%7B%5C_%7DpICASSO%7B%5C_%7Dweb.pdf (siehe Seite 17).
- [Fra16b] Fraunhofer IPK. "RetroNet Praxisnahe Brücke in die Industrie 4.0". In: FUTUR (2016), Seite 8. URL: https://issuu.com/claudiaengel/docs/futur%78%5C_%7D1%78%5C_%7D2016 (siehe Seite 17).
- [FWW16] Solmaz Mansour Fallah, Sabine Wolny und Manuel Wimmer. "Towards model-integrated service-oriented manufacturing execution system". In: 2016 1st International Workshop on Cyber-Physical Production Systems (CPPS). IEEE, Apr. 2016, Seiten 1–5. DOI: 10.1109/CPPS.2016.7483917 (siehe Seiten 5, 16, 19).
- [GM16] Sergej N. Grigoriev und Georgi M. Martinov. "An ARM-based Multichannel CNC Solution for Multi-tasking Turning and Milling Machines". In: *Procedia CIRP* 46 (2016), Seiten 525–528. ISSN: 22128271. DOI: 10.1016/j.procir.2016.04.036 (siehe Seiten 1, 13, 19).

- [Gro08] Mikell P. Groover. Automation, production systems, and computer-integrated manufacturing. Prentice Hall, 2008, Seite 815. ISBN: 0132393212 (siehe Seite 5).
- [HL07] Martin Hardwick und David Loffredo. "STEP-NC: Smart Data for Smart Machining". In: *Proceedings of the Intl. Conf. on Smart Machining Systems*, NIST. 2007 (siehe Seite 7).
- [Hop14] Stefan Hoppe. "Standardisierte horizontale und vertikale Kommunikation: Status und Ausblick". In: *Industrie 4.0 in Produktion, Automatisierung und Logistik.* Wiesbaden: Springer Fachmedien Wiesbaden, 2014, Seiten 325–341. DOI: 10.1007/978-3-658-04682-8_16 (siehe Seite 6).
- [Lei09] Paulo Leitão. "Agent-based distributed manufacturing control: A state-of-the-art survey". In: Engineering Applications of Artificial Intelligence 22.7 (2009), Seiten 979–991. DOI: 10.1016/j.engappai.2008.09.005 (siehe Seite 5).
- [Lin15] Petra Linke. "Grundlagen zur Automatisierung". In: Grundlagen Automatisierung. Wiesbaden: Springer Fachmedien Wiesbaden, 2015, Seiten 1–28. DOI: 10.1007/978-3-658-05961-3_1 (siehe Seite 4).
- [Mey10] Heiko Meyer. "Software Architecture of Manufacturing Execution Systems". In: Systemics, Cybernetics and Informatics 8.2 (2010), Seiten 62–66 (siehe Seite 5).
- [MFT09] Heiko Meyer, Franz Fuchs und Klaus Thiel. Manufacturing Execution Systems Optimal Design, Planning, and Deployment. Band 53. 9. 2009. ISBN: 9780071623834 (siehe Seite 3).
- [MVK06] L. Monostori, J. Váncza und S.R.T. Kumara. "Agent-Based Systems for Manufacturing". In: CIRP Annals Manufacturing Technology 55.2 (2006), Seiten 697–720. DOI: 10.1016/j.cirp.2006.10.004 (siehe Seite 5).
- [Pau+13] Florian Pauker, T Weiler, I Ayatollahi u.a. "Information Architecture for Reconfigurable production systems". In: *DAAAM International Scientifiv Book 2013* January (2013), Seiten 873–886. DOI: 10.2507/daaam.scibook.2013.53 (siehe Seiten 5, 15, 17, 19).
- [Pau14] Florian Pauker. "OPC UA for machine tending industrial robots Prototypic development of an OPC UA server for ABB industrial robots". In: October (2014). DOI: 10.15224/978-1-63248-031-6-155 (siehe Seiten 6, 17).
- [PFK16] Florian Pauker, Thomas Frühwirth und Burkhard Kittl. "A systematic approach to OPC UA information model design". In: 49th CIRP Conference on Manufacturing Systems. May. 2016 (siehe Seite 15).

- [Sch+14] Jan Schlechtendahl, Felix Kretschmer, Armin Lechler u.a. "Communication Mechanisms for Cloud based Machine Controls". In: *Procedia CIRP*. Band 17. Elsevier, 2014, Seiten 830–834. DOI: 10.1016/j.procir.2014.01.074 (siehe Seite 17).
- [Sch+15] Jan Schlechtendahl, Felix Kretschmer, Zhiqian Sang u.a. "Extended study of network capability for cloud based control systems". In: Robotics and Computer-Integrated Manufacturing. May 2014. 2015. DOI: 10.1016/j.rcim.2015.10.012 (siehe Seiten 5, 17).
- [Sch99] Gerhard Schnell. Bussysteme in der Automatisierungstechnik: Grundlagen und Systeme der industriellen Kommunikation. 3. Auflage. Vieweg+Teubner Verlag, 1999. ISBN: 978-3528265694 (siehe Seite 14).
- [Vic+15] Axel Vick, Christian Horn, Martin Rudorfer u. a. "Control of robots and machine tools with an extended factory cloud". In: 2015 IEEE World Conference on Factory Communication Systems (WFCS). IEEE, Mai 2015, Seiten 1–4. DOI: 10.1109/WFCS.2015.7160575 (siehe Seite 17).
- [Vij+08] Athulan Vijayaraghavan, Will Sobel, Armando Fox u.a. "Improving Machine Tool Interoperability Using Standardized Interface Protocols: MTConnect". In: *Laboratory for Manufacturing and Sustainability* (2008) (siehe Seite 7).
- [Wan+04] Lihui Wang, Peter Orban, Andrew Cunningham u.a. "Remote real-time CNC machining for web-based manufacturing". In: *Robotics and Computer-Integrated Manufacturing* 20.6 (2004), Seiten 563–571. DOI: 10.1016/j.rcim.2004.07.007 (siehe Seiten 1, 12).
- [WTO15] Lihui Wang, Martin Törngren und Mauro Onori. "Current status and advancement of cyber-physical systems in manufacturing". In: *Journal of Manufacturing Systems* 37 (2015), Seiten 517–527. DOI: 10.1016/j.jmsy.2015.04.008 (siehe Seite 5).
- [XLY06] X.W. Xu, Lihui Lihui Wang und Yiming Yiming Rong. "STEP-NC and function blocks for interoperable manufacturing". In: *IEEE Transactions on Automation Science and Engineering* 3.3 (Juli 2006), Seiten 297–308. DOI: 10.1109/TASE.2005.862147 (siehe Seite 5).
- [XN06] X.W. Xu und S.T. Newman. "Making CNC machine tools more open, interoperable and intelligent a review of the technologies". In: *Computers in Industry* 57.2 (2006), Seiten 141–152. DOI: 10.1016/j.compind. 2005.06.002 (siehe Seite 7).
- [Yon04] Chi Yonglin. "An evaluation space for open architecture controllers". In: *The International Journal of Advanced Manufacturing Technology* 26.4 (2004), Seiten 351–358. DOI: 10.1007/S00170-004-2111-X (siehe Seite 12).