

Objektif

- Mengetahui maksud struktur data dan menjelaskan penggunaannya dalam pemrograman
- Mengetahui operasi yang terkait dengan struktur data dan metode pemrograman paling umum yang terkait dengan struktur tersebut.
- Mengetahui metode dan notasi yang digunakan untuk menspesifikasi apa-apa yang perlu dikerjakan oleh program dan bagaimana program ini melakukan pekerjaan tersebut.

Jenis/Tipe Data (Data Type)

- Terdiri dari
 - □ Set nilai data
 - □ Set operasi yang bisa diterapkan pada nilai tersebut

PDE - Struktur Data

3

Klasifikasi Jenis Data

- Simple Data Type (Jenis Data Sederhana)
 - □ Item data individual
- Data Structures / data aggregates (struktur data)
 - □ Kombinasi dari item data individual
 - Membentuk item data lain

Jenis Data Sederhana

- Numerik, terdiri dari :
 - □ Numerik integer (bilangan bulat)
 - □ Numerik real (bilangan riil)
- Karakter, terdiri dari :
 - □ Alfabet : a .. z, A .. Z
 - □ Angka: 0..9
 - ☐ Simbol khusus : + ? '![]{} ... dll
- Boolean (logika), terdiri dari :
 - □ True
 - □ False

PDE - Struktur Data

5

Identifier

- Dalam bahasa pemrograman, item data diidentifikasi menurut namanya, bukan menurut alamat lokasinya dalam memori
- Identifier akan merupakan konstanta jika ia selalu dikaitkan dengan nilai data yang sama
- Identifier akan merupakan variabel jika nilai datanya yang terkait bisa berubah
- Literal, nilai data yang tertera dalam program namun bukan sebagai identifier

Deklarasi Data

- Jenis data konstanta dan variabel harus didefinisikan dalam program sehingga :
 - operasi yang tepat dapat dijalankan pada nilai data dan
 - ☐ Jumlah ruang penyimpanan yang tepat bisa ditentukan
- Statement untuk mendefinisikan jenis data disebut declarative statement
- Beberapa bahasa pemrograman memiliki sintaks pendeklarasian yang berbeda
- Beberapa contoh program (pendeklarasian data) yang akan diberikan ditulis dalam pseudo-code

PDE - Struktur Data

7

Contoh

```
Constants
pi = 3.141592654
```

Variables

i, qty : integer

harga_satuan, harga_beli : real

status : boolean

nama : character(25)

Struktur Data

- Kelompok item data yang terorganisasi yang dianggap sebagai suatu unit
- Disebut juga sebagai jenis data kompleks (complex data type) atau data aggregates
- Beberapa struktur data :
 - □ Array (larik)
 - □ String
 - □ Record
 - □ List (daftar)
 - □ Tree

PDE - Struktur Data

9

Array (Larik)

- Set item data yang disusun secara baik menjadi rangkaian dan diacu atau ditunjuk oleh satu identifier
- Contoh : Nilai = (56 42 89 65 48)
- Item data individual dalam array bisa ditunjuk secara terpisah dengan menyatakan posisinya dalam array itu
 - □ Nilai(1) menunjuk 56
 - □ Nilai(2) menunjuk 42
- Bilangan yang ditulis dalam tanda kurung menandakan posisi item individual dalam array (disebut juga subscript / indeks)

Array (Larik)

- Variabel bisa digunakan sebagai subscript, misalnya Nilai(i).
 - □ Jika i = 2 maka menunjuk ke Nilai(2) yaitu 42
 - □ Jika i = 4 maka menunjuk ke Nilai(4) yaitu 65
- Item data individual dalam suatu array sering disebut elemen
- Matriks
 - □ Array yang hanya berisi bilangan dan tidak ada data alfabetisnya
- Klasifikasi Array
 - □ Array 1 dimensi
 - □ Array multi dimensi

PDE - Struktur Data

11

Array Multi Dimensi

- Mempunyai elemen-elemen yang disusun ke dalam baris dan kolom dan digunakan sebagai tabel data
- Contoh : Nilai ujian dari mahasiswa satu kelas untuk beberapa mata kuliah bisa ditempatkan dalam array 2 dimensi

Siswa ke (no. baris)	B. Inggris (kolom 1)	Matematika (kolom 2)	56 4	.4
1	A(1,1) = 56	A(1,2) = 44	42 3	
2	A(2,1) = 42	A(2,2) = 36	\rightarrow A = $\begin{vmatrix} 89 & 7 \\ 1 & 3 \end{vmatrix}$	_
3	A(3,1) = 89	A(3,2) = 73	65 8	
4	A(4,1) = 65	A(4,2) = 86	48 5	1
5	A(5,1) = 48	A(5,2) = 51		

PDE - Struktur Data

12

Deklarasi Array

Array 1 dimensi

Variables

Nilai: array [1..5] of integer A : array [1..4] of real

Array 2 dimensi

Variables

A : array [1..5, 1..2] of integer

PDE - Struktur Data

13

Penanganan Array

- Metode dasar penanganan array :
 - ☐ Mencari nilai terbesar
 - □ Mencari nilai terkecil
 - □ Menghitung nilai rata-rata
 - ☐ Menghitung nilai total
 - □ Menghitung jumlah nilai di bawah rata-rata
- Menyortir Array (Sort)
 - □ Buble sort
 - □ Straight selection sort
- Mencari/Meneliti Array (Search)
 - □ Linear search

Penanganan Array

- Contoh: Nilai ujian mahasiswa akan dibaca dalam array. Kemudian akan ditampilkan nilai terbesar, nilai terkecil, nilai rata-rata, nilai total, dan jumlah nilai di bawah rata-rata.
- Tahapan penanganan array
 - □ Input nilai data ke dalam array
 - □ Mengkalkulasi nilai terbesar, terkecil, total, dan ratarata
 - □ Mengkalkulasi jumlah nilai di bawah rata-rata
 - □ Menampilkan hasilnya (output)

PDE - Struktur Data

15

String

- Rangkaian karakter yang ditangani sebagai unit data tunggal
- Contoh (string literal) :
 - □ "ABC, 32fl2. 3h"
 - □ "Kucing dalam karung"
- Contoh (variabel string) :
 - □ A = "Universitas"
 - □ B = "Gunadarma"
- Berada dalam bentuk array karakter 1 dimensi

String

- Fixed-length string (String yang panjangnya tetap)
 - Mempunyai jumlah tempat karakter yang tetap yang tersedia (bisa digunakan) untuk penyimpanan data
- Variable-length string (String yang panjangnya berubah-ubah)
 - □ Memberi data sejumlah spasi (ruang) sesuai yang ia perlukan

PDE - Struktur Data

17

Fixed-length string

posisi karakter	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
isi	Α	Ν	D	R	I	Α	М	R	Ι		ı	Ν	Α			J	0	K	0		D	Е	D	I	
komentar		strii	ng k	(e 1		;	strir	ng k	(e 2	2	,	strir	ng k	(e 3	3	5	strir	ng k	∢e ∠	1		strii	ng k	ce 5	5

Variable-length string

posisi karakter	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
isi	Α	Ν	D	R	-	*	Α	М	R	ı	*	-	Ν	Α	*	J	0	K	0	*	Α	L	*		
komentar		st	ring	ke	1			strii	ng k	ce 2	2	st	ring	j ke	: 3		strii	ng k	⟨e ∠	1	str	ing	ke 5	tempa	t sisa

PDE - Struktur Data

Deklarasi String

Fixed-length string

Variables

nama : string[5]

Variable-length string

Variables

nama : string

PDE - Struktur Data

19

Operasi pada String

- Concatenation
 - □ Penggabungan dua atau lebih string
 - □Contoh:

A = "Universitas"

B = "Gunadarma"

C = A + B

maka

C = "UniversitasGunadarma"

Operasi pada String [2]

- Substring
 - Mengambil bagian dari suatu string
 - □ Contoh

```
A = "Universitas"
```

$$C = Left(A, 3)$$

$$D = Right(B, 5)$$

$$E = Substr(A, 4, 5)$$

maka

```
C = "Uni"
```

PDE - Struktur Data

21

Record

- Seperti array 1 dimensi
- Terdiri dari serangkaian item data yang terkait
- Item data berurutan yang ada dalam record bisa mempunyai jenis yang berbeda
- Contoh : Mengorganisasikan 3 item data yang berbeda ke dalam struktur data tunggal
 - □ NIP : string(8)
 - □ Nilai : real
 - □ Lulus : boolean

Deklarasi Record

```
mahasiswa : record

NIP : string(8)

Nilai : real

Lulus : boolean

end record
```

- Setiap elemen memiliki identifier sendiri
- Elemen dari suatu record disebut field

PDE - Struktur Data

23

- Penunjukan ke setiap field dari suatu record bisa dilakukan dengan :
 - □ Notasi "dot" (titik)

```
Begin
    mahasiswa.NPM := `51292215'
    mahasiswa.Nilai := 90.5
    mahasiswa.Lulus := True
End
```

□ Notasi "with"

```
Begin
    with mahasiswa
    do
        NPM := `51292215'
        Nilai := 90.5
        Lulus := True
    end with
End
```

PDE - Struktur Data

24

Array Record (Tabel)

- Kumpulan dua atau lebih record
- Deklarasi Array Record

Variable

Mahasiswa : Array [1..5] of record

NIP : string(8)

Nilai : real

Lulus : boolean

End record

PDE - Struktur Data

25

List

- Memberikan cara yang fleksibel untuk penanganan item data secara urut
- Perubahan terhadap urutan tersebut dapat dicapai (dilakukan) dengan perpindahan data yang minimal dan kehilangan ruang penyimpanan yang sedikit
- Contoh : Kalimat "Ahmad does not like cake" dituliskan sebagai suatu list, seperti berikut :

- Beberapa istilah
 - □ DATUM: item data dalam list
 - □ POINTER: penunjuk yang menyambungkan item data satu dengan yang lain
 - □ NODE / elemen : elemen dari suatu list yang terbentuk dari datum dan pointer
 - ☐ *TERMINATOR*: pointer terakhir dari list
 - □ START POINTER: menyatakan tempat datum pertama
 - □ FREE STORAGE POINTER: menyatakan di mana datum berikutnya bisa mengarah atau menuju

PDE - Struktur Data

27

Deklarasi List

List dapat dideklarasikan sebagai sebuah array record

Variable

kalimat : Array [1..7] of record

Datum : string

Next : integer

End record

PDE - Struktur Data

	Row	Datum	Pointer to	Comment
Start	Number		Next Datum	
Pointer	1	"Ahmad"	2	Next datum is in row 2
	2	"does"	3	Next datum is in row 3
	3	"not"	4	Next datum is in row 4
	4	"like"	5	Next datum is in row 5
Free	5	"cake"	-1	Last datum; -1 is a terminator
storage	6		7	
Pointer	7		8	

PDE - Struktur Data

29

Operasi pada List

- Deletion : penghapusan elemen suatu list
 - □ Ketika elemen suatu list dihapus, tempat penyimpanan yang telah dikosongkan dapat digunakan lagi
- Insertion : penyisipan elemen ke dalam suatu list
- Search : pencarian elemen dalam suatu list

PDE - Struktur Data

30

Tree

- Struktur data hirarki
- Dikonstruksi menggunakan aturan preseden untuk item data, misal : menggunakan rangkaian alfabet atau numerik
- Beberapa Istilah :
 - □ NODE : elemen dari suatu tree
 - Setiap node memiliki (sedikitnya) dua pointer yaitu left pointer dan right pointer
 - □ ROOT NODE : datum pertama yang ditempatkan dalam tree
 - □ PARENT NODE : node yang memiliki node di bawahnya (sub-node)
 - ☐ CHILD NODE : node yang berada di bawah parent
 - ☐ LEAF NODE: node yangotidak mempunyai child 31

 Contoh : bilangan-bilangan ini (56 42 89 65 48) ditempatkan ke dalam tree

- Catatan :
 - □ Node paling kiri berisi bilangan terkecil
 - □ Node paling kanan berisi bilangan terbesar

Row Number	Left Pointer	Datum	Right Pointer
1	2	56	3
2	-1	42	5
3	4	89	-1
4	-1	65	-1
5	-1	48	-1