ODD SEMESTER EXAMINATION, NOVEMBER-2016 PROBABILITY & STATISTICS (MTH-2002)

Programme: B.Tech Full Marks: 60

Semester: 3rd Time: 3 Hours

Culti- 410			
Subject/Course Learning Outcome	*Taxonomy Level	Ques. Nos.	Mark
Apply probability axioms to compute probability and conditional probability	L3,L3,L4,L3	1(a,b,c), 2(a)	2*4
Define random variables and compute probability distributions, joint & marginal distribution	L4,L4,L1,L5, L5	2(b,c)3(a, b,c)	2*5
Compute expectation of random variables and their functions and compute moments and moment generating functions of a random variable	L4,L1	4(a),6(a)	2*2
Discuss discrete probability distribution viz: Binomial, Poisson & Hypergeometric and continuous probability distribution distributions viz: Uniform, Normal Gamma & Exponential	L4,L5,L3, L4,L5,L3,L4, L1	4(b,c), 5(a,b,c), 6(b,c),7(a)	2*8
Estimate the population mean and variance of a normal distribution by point and interval estimation	L3, L5	7(b,c)	2*2
Infer about population parameter through hypothesis testing with the help of a random sample	L2,L4,L4, L3,L4,L4	8(a,b,c), 10(a,b,c),	2*6
*Bloom's taxonomy levels: Knowledge (L1). Communication	L3,L5,L5	9(a,b,c)	2*3

^{*}Bloom's taxonomy levels: Knowledge (L1), Comprehension (L2), Application (L3), Analysis (L4), Evaluation (L5), Creation (L6)

Answer all questions. Each question carries equal mark.

1	a)	List the elements of the following sample space S.	2
		$S = \{x : 2x - 4 \ge 0 \text{ and } x < 1 \}$	
	b)	If 3 books are picked at random from a shelf containing 7 mathematics, 3 physics and 2 chemistry books. Calculate the probability that 2 mathematics books are selected?	2
	c)	The Police in a city plan to enforce speed limits by using radar traps at location L ₁ , L ₂ , L ₃ and L ₄ which will be operated 40%, 30%, 20% & 30% of the time respectively. If a person who is speeding on his way to work has probabilities 0.2, 0.1, 0.5 & 0.2, respectively, of passing through these locations, Compute the probability that he will receive a speeding ticket.	2

	a)	With reference to 1(c), Calculate the probability that the person passed through the radar trap located at L ₂ , given he already got a speeding ticket.	2
	b)	If random variable 'X' has the probability distribution given by $\left(\frac{3}{16}(3-x^2), -1 \le x \le 1\right)$	2
		$f(x) = \begin{cases} \frac{3}{16}(3-x^2), & -1 \le x \le 1\\ 0, & elswhere \end{cases}$ then derive the cumulative distribution function of X.	
	c)	With reference 2(b), compute the probability that the random variable X is less than ½.	2
3	a)	If the joint probability distribution of X & Y is given by $f(x,y) = c(x+y)$, $x = 0,1,2,3$; $y = 0,1,2$, find the value of 'c'.	2
	b)	With reference to 3(a), evaluate the marginal distributions of the random variables X & Y.	2
	c)	From 3(a), calculate P $(X > 2, Y \le 1)$	2
4	a)	A coin is biased such that a head is three time as likely to occur as a tail. Calculate the expected number of tails when this coin is tossed twice.	2
	b)	Suppose X is a random variable with probability density function given by $f(x) = \begin{cases} \frac{8}{x^3}, & x > 2 \\ 0, & \text{otherwise} \end{cases}$ Compute the variance of Z = 2X + 1.	2
	c)	A random variable X has a mean $\mu = 20$ and variance $\sigma^2 = 9$. Using Chebyshev's theorem, find P(10 < X < 22).	2
5	a)	On average, the author of a text book makes two typing errors per page. Compute the probability that on the next page the author will make 4 or more errors.	- 1
	b)	Given the normally distribution random variable 'X' with mean 30 and standard deviation 6. Calculate the value of 'k' that has 80% of the normal curve area to the left and compute $P(X \le 22)$.	

		Is 100 items are randomly selected.	2			
	c)	A process yields 10% defective items. If 100 items are randomly selected.				
		Calculate the probability that the number of defectives is less than 8 by using				
		the normal approximation to the Binomial distribution.				
		Let X be a random variable with probability distribution	2			
5	(a)	Let X be a random variable with probability distribution				
		$f(x) = \begin{cases} \frac{1+x}{2}, & -1 < x < 1 \\ 0, & otherwise. \end{cases}$				
		Find the probability distribution of $Y = X^2$				
	b)	Find the moment generating function for poison distribution.	2			
	c)	Compute the probability that a random sample of 25 observations from a normal population with variance 6 will have sample variance S ² between 3.462 to 10.745.	2			
7	a)	State type - I and type-II error.	2			
	b)	Find the maximum likelihood estimator for ' μ ' of normal population from the sample of observations x_1, x_2,x_n	2			
	c)	A random sample of 64 bags of white cheddar popcorn weighed on average 5.23 ounces with a standard deviation of 0.24 ounce. Test the hypothesis that μ =5.5 against the alternative hypothesis μ < 5.5 at 0.05 level of significance.	2			
8	a)	A new process for cement manufacturing results on mean compressive strength 5000kg per square cm, with standard deviation 120 kg. To test hypothesis $\mu = 5000$ against the alternative $\mu < 5000$ a random sample of 50 pieces of cement is tested. The critical region is defined to be $\overline{x} < 4970$ Find type – I error.				
	b	A soft-drink machine is said to be out of control if the variance of the contents exceeds 1.15 deciliters. A random sample of 25 drinks from the machine has a variance 2.03 deciliters. Use $\alpha = 0.05$ and explain the critical region (Assume normal distribution).	nis			
	С	With reference to 8(b), test whether the machine is out of control.				

9	a)	A study of the amount of rainfall and the quantity of air pollution removed, produced the following data:								,			
		Daily rainfall (in 0.01 cm) x	4.3	4.5	5.9	5.6	6.1	- 2	5.2	3.8			
		Particulate Removed (μ g/m³) y	126	121	116	118	114	1	18	132			
		Calculate the correlati	on co-e	fficient.					L		1		
	b)	Deduce the regression line of Y on x , from $9(a)$.									+		
c) Estimate the amount of particulate removed when daily rainfall is 4.8 uni from 9(b).									g units,	+			
10 a) A coin is thrown until a head occurs and the number of tosses (X) reco						corded.	-						
		(x)	1	2	3	4	5	6	7	8			
_			36	60	34	12	9	1	3	1			
_ 1		Find the expected frequencies for the values of X.											
	b)	$\alpha = 0.05$:		
c) In an experiment, to study the dependence of hypertension on smoking hab the following data were taken on 180 individuals.								abits,	2				
			Non sm	okers	1	oderate		Heavy	/ smoke	ers			
		Hypertension	. 21			36			30	-			
		No hypertension	48			26		•	19				
		Test the hypothesis, independent of smoking	that th g habits	e prese	nce or	absen	ces of	hyper	rtensic	on is			