CS302: Operating Systems

Spring 2021 Prof. Yinqian Zhang

Time: Wed 14:00 - 15:50

Location: Room 101, Lychee Hill 1

TA Teams

- 王伟力 (W 1-101)
- 李倩 (W 1-102)
- 邓楠 (W 6-409)
- 陈毅铭 (W 6-406)
- 李浩南 (W 6-408)
- 刘昊天 (W 6-402)

- 张超祖 (T 6-409)
- 孙挺 (T 6-408)
- 王晨旭 (T 202)
- 向隆 (Project 1)
- 邓森 (Project 2)

Why are you here?

- The other class is full......
- This is a mandatory course.....
- I want to learn operating systems!
 - To work for tech giants
 - To do research in systems, security, databases
 - To prepare entrance exams for grad schools in China

Who are you?

- Volunteers for self introduction?
 - Use three bullet points?
- An English/Chinese speaker?
- A C programmer?
- Sophomore?
 - Please drop this course if you are.

What is an operating system?

- It is not an "operation" system
- Abstraction of hardware
 - Making sense of bits of 1s and 0s
- Software that supports applications
 - Managing resources, resolving conflicts, handling faults, preventing attacks, etc.
- Examples & analogies

Welcome to CS302

We will study Operating Systems

- Concepts & Practice
- Die Overview, Process, Memory, Storage

Topics

- Process concepts, scheduling, synchronization, deadlocks
- Multi-thread programming
- Memory hierarchy and memory management
- File systems, Disk allocation, scheduling
- ¤ I/O
- Security

Prerequisites

- C Programming
 - All course projects will use C or C++
 - Linux kernel is written by C
 - We have tutorial for C today, so don't worry!
- Data structure and algorithm analysis
 - It helps you to understand OS concepts, e.g., LRU
 - It assists you to design efficient OS components
- Computer Organization Principle
 - How do computers work?
 - Hardware and software collaboration

Reference Books

- Operating System Concepts, 9th Edition, Abraham Siberschatz et. al.
- Operating Systems Principles & Practice, 2nd Edition, Thomas Anderson et. al.
- → 操作系统课程设计, 机械工业出版社, 朱敏, 唐博等

Reference Books (cont'd)

- Operating Systems: Three Easy Pieces, Remzi H.
 Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
- Freely available online: http://pages.cs.wisc.edu/~remzi/OSTEP/

How do you understand better

- Lectures (2 hours)
 - Get the main ideas and concepts
 - Try to be active and THINK about the questions
- Tutorial / Lab (2 hours)
 - Tutorial is helping you to understand concepts in lectures.
 - Do the lab exercises / projects
 - Do not be shy to ask questions
- After class
 - Read chapters in the reference books
 - Review slides

Assessment (tentative)

Continuous Assessment: 66%

□ Class participations: 10%

□ Lab exercises: 20%

□ Project: 36%

→ Exam: 34%

[™] Mid-term Examination: 14%

□ Final Examination: 20%

Assessment (cont'd)

Class participation

- Both lecture and lab are taken into account
- The easiest part in all assessments

Lab exercise

- Once per week, you need submit your report for each lab
- 100 points for each lab

Project

- Project 1: an individual coding project on Pintos, 18%
- Project 2: an open-ended group project, 18%

Examination

- Two examinations: Mid-term, Final
- Mid-term: 14%, Final: 20%
- Several Questions of Final is the same as Mid-term

More about Projects

- Two projects will be released at:
 - Week 2, and Week 7, respectively.
- Deadlines of projects are:
 - Week 11, and Week 15, respectively
- Project 1: individual project
 - Extend the Pintos kernel
 - TAs will inject baseline (BASE) solutions
 - □ Grading rule:
 - Better than BASE: 40-100 points, Otherwise, less than 40 points
 - Both open test cases and hidden test cases

Project 2

- An open-ended group project
 - Choose a topic that is relevant to this course(management of processes, memory, file systems, etc.)
 - □ One-to-one guidance (once per week)
 - Example topics will be provided
 - **Examples:**
 - Extension of an open-source project for improvements
 - (Re-)Implementation of a published research project
 - A project in "National Operating System Design Competition for College Students"
 - **Team size:** at most 3 students per group, assigned by email application.

Project 2 (cont'd)

- An open-ended group project
 - National Operating System Design Competition for College Student
 - https://os.educg.net/
 - More detailed info can be found here:
 https://github.com/oscomp/os-competition-info

Project 2 (cont'd)

- An open-ended group project
 - **Bonus points:** up to 10%
 - If your project can be open sourced with full documentation
 - Or, if your project can lead to a paper submission
 - Or, if your project is good enough to be judged by external developers/researchers
 - * How many bonus points you can get depends on your awesomeness!

Grading Policy

Later policy:

- No late submission allowed
- Guidelines on collaboration
 - write up the assignment **ON YOUR OWN**
 - If you discuss with your classmates on assignments, make sure you throw away written work from the discussion
- Zero tolerance on plagiarism
 - Software will be used to detect plagiarism cases!
 - Serious cases will be reported to university
 - Sign cheating agreement with CSE Department in next week

Tentative Schedule

No.	Topic
1	Introduction
2	OS Structures
3	Processes
4	Threads
5	Synchronization
6	Scheduling
7	Main Memory

No.	Topic
8	Virtual Memory
9	Storage Structure
10	I/O
11	File System I
12	File System II
13	Linux System
14	Advanced topics

Course Materials

Blackboard

- Please check course website regularly
 - **Announcement**
 - Lecture slides
 - Tutorial / lab exercises
 - Solutions

Warning

- CS302 is tough
 - And it should be
- No spoon-feeding
 - No tips, no cheat-sheet, close-book exam
 - Programs must pass test cases to gain scores
- CUHK suggestion: don't take too many other courses when you take this course
- Exams cover EVERYTHING in this course

Previous statistics

How can I be excellent?

- \diamond Sum of 2 Projects > 180 \rightarrow A- or A or A+
- \Rightarrow Sum of 2 Projects = 200 \rightarrow A+
- \diamond Sum of 10 Labs > 950 \rightarrow A+

Previous statistics

How can I be excellent?

- \diamond Sum of 2 Projects > 180 \rightarrow A- or A or A+
- \diamond Sum of 2 Projects = 200 \rightarrow A+
- \diamond Sum of 10 Labs > 950 \rightarrow A+

How can I fail this course?

- ♦ Class Attendance Part < 8 / 10 → Fail</p>
- ⋄ One Project Missing → Fail
- ⋄ Sum of 2 Projects <= 86 → Fail
 </p>

Previous statistics

How can I be excellent?

- \Rightarrow Sum of 2 Projects > 180 \rightarrow A- or A or A+
- \rightarrow Sum of 2 Projects = 200 \rightarrow A+
- \diamond Sum of 10 Labs > 950 \rightarrow A+

How can I fail this course?

- ♦ Class Attendance Part < 8 / 10 → Fail</p>
- ⋄ One Project Missing → Fail
- \bullet Sum of 2 Projects \leq 86 \rightarrow Fail

How hard about examinations?

- \rightarrow Average of Exam 1 \rightarrow 52.9
- \rightarrow Average of Exam 3 \rightarrow 53.6

Acknowledgements

- Some notes and examples are extracted from
 - □ Dr. Eric Lo's offering in CUHK,
 - □ Dr. Ion Stoica in Berkeley
 - Dragon book course materials
- Prof. Bo Tang teaching in Room 102!