SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016 NOME _____ COGNOME ____ MATRICOLA_____

QUIZ

1. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva.

- \mathbf{v}
- 2. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.
- TILE

3. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.

V

4. Il numero 7 è invertibile modulo 16.

- \mathbf{F}
- 5. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe d'equivalenza del numero 3.
- $\mathbf{0}$ \mathbf{F}

6. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.

- F
- 7. $\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a notP(x) orR(x,y) = V per P(x) = F oppure per R(x,y) = V
 - (a) $\exists x (P(x) \land \forall y \neg R(x, y));$
 - (b) $\exists x (P(x) \land \exists y R(x,y));$
 - $\exists x (P(x) \vee \neg \exists y R(x,y);$
 - (d) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$
- 8. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A \times B$ è
 - W
- $(3 \times 2)_3 = 183$
- (b) 6^3

 18^{3}

- (c) 18^3
- (-)
- (d) 18
- 9. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è
 - (a) 122 conta l'ordine? NO! $\{1,2\} = \{2,1\}$
 - (b) 24 ammesse ripetizioni? NO!!! C12,2 = 12!/2!*10! = 12*11/2 = 6*11=66
 - (c) 12
 - **(4)** 66
- 10. Se una funzione $f: A \to B$ è iniettiva, allora è anche invertibile.

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n,1). Determinare se la funzione f è injettiva, suriettiva o biunivoca.
- 2. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

3. Dimostrare per induzione che per ogni $n\geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

4. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:

ripetizioni NO! ordine no! 10!/(10-7)!=10*9*8

- (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
- (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 5. (a) È vero che $-1 \equiv_7 8$? =1

 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 ... 1$

- (d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso. MCD(11,27)=1 SI 5 SOL
- 6. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \not R$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

$$f(5) = -24$$
 $f^{-1}(5) = +-6^{1/2}$
 $f^{-1}(1) = 0$ $f^{-1}(5) = +-6^{1/2}$
 $f^{-1}(-3) = +-2$

Answer Key for Exam A

QUIZ

1. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva.

 $\mathbf{V} \mid \mathbf{F} \mid \mathrm{F}$

2. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.

VFV

3. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.

V F F

4. Il numero 7 è invertibile modulo 16.

VFV

5. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe d'equivalenza del numero 3.

VFV

6. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.

V F F

- 7. $\neg \forall x (P(x) \rightarrow \exists y R(x, y))$ è equivalente a
 - (a) $\exists x (P(x) \land \forall y \neg R(x, y));$
 - (b) $\exists x (P(x) \land \exists y R(x,y));$
 - (c) $\exists x (P(x) \lor \neg \exists y R(x, y);$
 - (d) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$
- 8. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A \times B$ è
 - (a) 18^3
 - (b) 6^3
 - (c) 18^3
 - (d) 18
- 9. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è
 - (a) 122
 - (b) 24
 - (c) 12
 - (d) 66
- 10. Se una funzione $f:A\to B$ è iniettiva, allora è anche invertibile.

 $\mathbf{V} \mid \mathbf{F} \mid F$

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

f è iniettiva: se f(n) = f(m) allora (n,1) = (m,1) e quindi n = m; f non è suriettiva perché, ad esempio, (0,0) non appartiene all'immagne di f.

2. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

Per n=1 il membro sinistro dell'uguaglianza è $1 \cdot 1! = 1$ mentre il membro destro è (1+1)! - 1 = 2! - 1 = 2 - 1 = 1. La base è quindi verificata.

Per il passo induttivo, dobbiamo dimostrare che

$$1 \cdot 1! + 2 \cdot 2! + \dots + n! + (n+1) \cdot (n+1)! = (1+n+1)! - 1 = (n+2)! - 1$$

Sfruttando l'ipotesi induttiva, si ha:

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! + (n+1) \cdot (n+1)! = (1+n)! - 1 + (n+1) \cdot (n+1)!$$

dove le parti in rosso a destra e a sinistra dell'uguaglianza sono uguali per ipotesi induttiva. Quindi basta verificare che $(1+n)! - 1 + (n+1) \cdot (n+1)! = (n+2)! - 1$. Partendo dal membro di sinistra e raggruppando (n+1)!, otteniamo:

$$(1+n)! - 1 + (n+1) \cdot (n+1)! = (1+n)!(1+(n+1)) - 1 = (n+2)! - 1,$$

che è quanto si voleva dimostrare.

3. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

Per n=1 il membro sinistro della disuguaglianza 1 mentre il membro destro è $2-\frac{1}{1}=1$. La base è quindi verificata.

Per il passo induttivo, dobbiamo dimostrare che

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{(n+1)}$$

Sfruttando l'ipotesi induttiva, si ha:

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}.$$

Ci basta quindi verificare che

$$2-\frac{1}{n}+\frac{1}{(n+1)^2}\leq 2-\frac{1}{(n+1)}.$$

Cancellando 2 a destra e a sinistra della disuguaglianza, otteniamo una disuguaglianza equivalente, ovvero:

$$-\frac{1}{n} + \frac{1}{(n+1)^2} \le -\frac{1}{(n+1)},$$

che a sua volta, spostando i termini negativi, è equivalente a

$$\frac{1}{(n+1)} + \frac{1}{(n+1)^2} \le \frac{1}{n};$$

moltiplicando per n (che è positivo) otteniamo

$$\frac{n(n+1)+n}{(n+1)^2} \le 1.$$

Il numeratore dell'espressione a sinistra è $n^2 + 2n$ che è minore del denominatore, uguale a $n^2 + 2n + 1$. Quindi la disuguaglianza è verificata.

- 4. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
 - (a) $\binom{10}{3}$. 10*9*8/6
 - (b) $\binom{10}{2} \cdot 8!$ 10*9/2*8!=45*8!
- 5. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- (a) NO: infatti -1 8 = -9 non è divisibile per 7.
- (b) Siccome $27 \equiv_{28} -1$ si ha $27^{15} \equiv_{28} -1$ ed il resto cercato è uguale al resto di -1 nella divisione per 28 che è 27 (infatti -1 = -28 + 27 è la divisone con resto).
- (c) $a\in\mathbb{Z} \ \text{è l'inverso moltiplicativo di } b\in\mathbb{Z} \ \text{modulo 3 se e solo se} \ ab\equiv_3=1$
- (d) Il numero 11 è invertibile modulo 27 perché MCD(11, 27) = 1. Si ha:

$$27 = 2 \cdot 11 + 5$$
, $11 = 2 \cdot 5 + 1$

Quindi

$$1 = 11 - 2 \cdot 5 = 11 - 2(27 - 2 \cdot 11) = 5 \cdot 11 - 2 \cdot 27$$

e l'inverso di 11 modulo 27 è 5. Come controprova calcoliamo 11 · 5 modulo 27:

$$11 \cdot 5 = 55 = 27 \cdot 2 + 1 \equiv_{27} 1.$$

6. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- (a) 15 non appartiene alla classe d'equivalenza di 32 perche' 15 non è in relazione con 32, visto che $5 \not\equiv_3 2$.

- (b) Ci sono tre classi che corrispondono ai possibili resti modulo 3: la classe di 0, la classe di 1 e la classe di 2. Queste classi sono tutte differenti e ogni intero appartiene ad una di queste classi, a seconda che la sua coifra delle unità sia congruente a 0, 1 o 2.
- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
 - (a) $f(5) = -5^2 + 1 = -24$,

$$f^{-1}(5) = \{x \in \mathbb{Z} : f(x) = 5\} = \{x \in \mathbb{Z} : -x^2 + 1 = 5\} = \{x \in \mathbb{Z} : x^2 = -4\} = \emptyset;$$
$$f^{-1}(\{1, 5, -3\}) = \{x \in \mathbb{Z} : f(x) = 1 \lor f(x) = 5 \lor f(x) = -3\}.$$

Poiché $-x^2+1=1$ ha soluzione $x=0, -x^2+1=5$ è equivalente a $-x^2=4$ e non ha soluzione, mentre $-x^2+1=-3$ è equivalente a $x^2=4$ ha soluzione $x=-2 \lor x=2$, si ha

$$[f^{-1}({1,5,-3}) = {0,-2,2}.$$

(b) f non è iniettiva: ad esempio, f(1) = f(-1); f non è suriettiva: come abbiamo visto sopra 5 non appartiene all'immagine di f.

\mathbf{S}	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/2	2016
NO	ME _		
CO	GNOI	ME	
MA	TRIC	OLA	
		QUIZ	
1.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
3.		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dio e codominio uguali ad A ha 5^5 elementi.	VF
4.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
5.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oldsymbol{V}oldsymbol{F}$
6.	Il nun	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
7.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni co odominio $A \times B$ è	on dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^3	
	(d)	18	
8.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
9.		$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

2. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 3. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 4. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 5. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 6. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/2	2016
NOI	ME _		
COC	GNOI	ME	
MA	TRIC	OLA	
		QUIZ	
		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
3.	Il num	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$
5.	La fun	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} \mathbf{F}}$
6.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
7.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
8.	$\neg \forall x (P$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \vee \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni condominio $A\times B$ è	on dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 2. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 3. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 4. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 6. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 7. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016 NOME COGNOME _ MATRICOLA_____ **QUIZ** $\mathbf{V} \mathbf{F}$ 1. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$. 2. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe $\mathbf{V} \mid \mathbf{F}$ d'equivalenza del numero 3. 3. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con $\mathbf{V} \mid \mathbf{F}$ dominio e codominio uguali ad A ha 5^5 elementi. $\mathbf{V} | \mathbf{F}$ 4. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva. $|\mathbf{V}|\mathbf{F}$ 5. Il numero 7 è invertibile modulo 16. $\mathbf{V} | \mathbf{F}$ 6. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3. 7. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è (a) 122 (b) 24(c) 12 (d) 66 8. $\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a $\exists x (P(x) \land \forall y \neg R(x,y));$ (a) (b) $\exists x (P(x) \land \exists y R(x,y));$ $\exists x (P(x) \lor \neg \exists y R(x, y);$ (c) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$ 9. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A \times B$ è 18^{3} (a) (b) 6^3 18^{3} (c) (d) 18

10. Se una funzione $f: A \to B$ è iniettiva, allora è anche invertibile.

 $\mathbf{V} \mid \mathbf{F}$

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 3. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

4. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 5. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 6. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

7. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

2

SCF	RITTO MATEMATICA DI BASE E LOGICA 25/0	1/2016
NOME		
COGN	OME	
MATD		
MAIK	COLA	
	\mathbf{QUIZ}	
1. Il n	umero 7 è invertibile modulo 16.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
2. La i	formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oldsymbol{\mathbf{V}}oldsymbol{\mathbf{F}}$
3. Se o	lue numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
	l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con inio e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
5. La i	funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
	a congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe uivalenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$
	4 è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzio codominio $A\times B$ è	ni con dominio
(a	18^{3}	
(b		
(c)		
(d) 18	
8. Sia	Aun insieme con 12 elementi. Il numero di sotto insiemi di A di cardinalità 2 è	
(a		
(b		
(c)		
(d		
	$(P(x) \to \exists y R(x,y))$ è equivalente a	
(a		
(b		
(c)		
(d	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 2. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 3. Considerare la relazione d'equivalenza ${\cal R}$ sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 4. Dimostrare per induzione che per ogni $n \geq 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

6. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

2

- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

SCRITTO MATEMATICA DI BASE E LOGICA 25/0	1/2016
NOME	
COGNOME	
MATRICOLA	
\mathbf{QUIZ}	
1. Il numero 7 è invertibile modulo 16.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} \mathbf{F}}$
3. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
4. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{\mathbf{V} \mid \mathbf{F}}$
5. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{\mathbf{V} \mid \mathbf{F}}$
6. Nella congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe d'equivalenza del numero 3.	$oxed{V F}$
7. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzio A e codominio $A \times B$ è	ni con dominio
(a) 18^3	
(b) 6^3	
(c) 18^3	
(d) 18 $S = \forall m(B(m) \land \exists n B(m, n)) \land aguiralente a$	
8. $\neg \forall x (P(x) \to \exists y R(x,y))$ è equivalente a	
(a) $\exists x (P(x) \land \forall y \neg R(x, y));$ (b) $\exists x (P(x) \land \exists y R(x, y));$	
(b) $\exists x (F(x) \land \exists y R(x, y));$ (c) $\exists x (P(x) \lor \neg \exists y R(x, y);$	
(d) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y),$	
9. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
(a) 122	
(b) 24	
(c) 12	
(d) 66	

ESERCIZI NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 3. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 4. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 5. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 6. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

7. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

2

S	CRI	ITTO MATEMATICA DI BASE E LOGICA 25/01/20)16
NO	ME _		
СО	GNO	ME	
MA	TRIC	COLA	
		\mathbf{QUIZ}	
1.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
2.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
3.	Il num	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
4.		nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
5.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
6.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ivalenza del numero 3.	VF
7.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
8.	$\neg \forall x (F)$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x, y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x, y);$	
9.		$\exists x(\neg P(x)\to\neg\exists yR(x,y).$ è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con odominio $A\times B$ è	dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 2. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 3. Dimostrare per induzione che per ogni $n \geq 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

4. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 5. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 6. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 7. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/2	2016
NO	ME _		
СО	GNOI	ME	
MA	TRIC	OLA	
		\mathbf{QUIZ}	
1.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2.	Il nun	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
3.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oldsymbol{\mathbf{V}}oldsymbol{\mathbf{F}}$
4.		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
5.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
6.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} \mathbf{F}}$
7.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni co odominio $A \times B$ è	on dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
8.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \vee \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
9.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

6. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow \mbox{ la cifra delle unità di }a$ è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 7. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

2

S	CRI	ITTO MATEMATICA DI BASE E LOGICA 25/01/	2016
NO	ME _		
CO	GNOI	OME	
MA	TRIC	COLA	
		\mathbf{QUIZ}	
1.		nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
2.		mero 7 è invertibile modulo 16.	VF
3.	La fur	unzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
4.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe nivalenza del numero 3.	$oldsymbol{\mathbf{V}}oldsymbol{\mathbf{F}}$
5.	La for	ormula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
6.	Se due	ne numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
7.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni codominio $A \times B$ è	on dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^3	
	(d)	18	
8.	Sia A	${\bf A}$ un insieme con 12 elementi. Il numero di sotto insiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
9.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x, y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x, y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

ESERCIZI NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 2. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 3. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 4. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 5. Dimostrare per induzione che per ogni $n \geq 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

6. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 7. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

S	CRITTO MATEMATICA DI BASE E LOGICA 25/	01/2016
NO	ME	
СО	GNOME	
MA	TRICOLA	
	\mathbf{QUIZ}	
1.	Il numero 7 è invertibile modulo 16.	$oldsymbol{f V}oldsymbol{f F}$
2.	Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{V}oxed{F}$
3.	La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{V}oxed{F}$
4.	La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{V}oxed{F}$
5.	Nella congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla class d'equivalenza del numero 3.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
6.	Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} \mathbf{F}}$
7.	Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzi A e codominio $A \times B$ è	ioni con dominio
	(a) 18^3	
	(b) 6^3	
	(c) 18^3	
	(d) 18	
8.	$\neg \forall x (P(x) \to \exists y R(x,y))$ è equivalente a	
	(a) $\exists x (P(x) \land \forall y \neg R(x, y));$	
	(b) $\exists x(P(x) \land \exists y R(x,y));$	
	(c) $\exists x (P(x) \lor \neg \exists y R(x, y);$	
	(d) $\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
9.	Sia A un insieme con 12 elementi. Il numero di sotto insiemi di A di cardinalità 2 è	
	(a) 122	
	(b) 24	
	(c) 12	
	(d) 66	

ESERCIZI NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

2. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

3. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 4. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 5. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 6. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 7. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/2	2016
		, ,	
COC	GNON	ME	
MAT	ΓRIC	OLA	
		\mathbf{QUIZ}	
		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2.	La fun	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
3.	La for:	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{V F}$
4.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
5.	Il num	nero 7 è invertibile modulo 16.	$oxed{\mathbf{V} \mathbf{F}}$
		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
7.	$\neg \forall x (P)$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	` '	$\exists x (P(x) \lor \neg \exists y R(x, y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni condominio $A\times B$ è	on dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
9.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 2. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

3. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

4. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \cancel{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 5. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 6. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

SCRITTO MATEMATICA DI BASE E LOGICA 25/01	/2016
NOME	
COGNOME	
MATRICOLA	
\mathbf{QUIZ}	
1. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{\mathbf{V} \mid \mathbf{F}}$
2. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{\mathbf{V} \mid \mathbf{F}}$
3. Il numero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
4. Nella congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe d'equivalenza del numero 3.	$oldsymbol{V}oldsymbol{F}$
5. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{f V}oldsymbol{f F}$
6. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{V}oxed{F}$
7. $\neg \forall x (P(x) \rightarrow \exists y R(x, y))$ è equivalente a	
(a) $\exists x (P(x) \land \forall y \neg R(x, y));$	
(b) $\exists x (P(x) \land \exists y R(x,y));$	
(c) $\exists x (P(x) \lor \neg \exists y R(x, y);$	
(d) $\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
8. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzion A e codominio $A \times B$ è	i con dominio
(a) 18^3	
(b) 6^3	
(c) 18^3	
(d) 18	
9. Sia A un insieme con 12 elementi. Il numero di sotto insiemi di A di cardinalità 2 è	
(a) 122	
(b) 24	
(c) 12	
(d) 66	

ESERCIZI NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

3. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 4. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 5. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

6. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché 2 \equiv_3 8, mentre 30 R 7 perché 0 $\not\equiv_3$ 7).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

2

- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01	1/2016
NO	ME _		
СО	GNOI	ME	
MA	TRIC	OLA	
		\mathbf{QUIZ}	
1.	Il nun	nero 7 è invertibile modulo 16.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
3.		asieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
4.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$\mathbf{V} \mathbf{F}$
5.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{V}oxed{F}$
6.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{V ar{F}}$
7.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzion odominio $A\times B$ è	i con dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
8.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
9.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 3. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

4. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 5. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 6. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

7. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/	2016
NO	ME _		
СО	GNO	ME	
MA	TRIC	COLA	
		\mathbf{QUIZ}	
1.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} \mid \mathbf{F}}$
2.		nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} \mathbf{F}}$
3.	Il num	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
4.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
5.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ivalenza del numero 3.	$oldsymbol{V}oldsymbol{F}$
6.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
7.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
8.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni edominio $A\times B$ è	con dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
9.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

ESERCIZI NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 2. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 3. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 4. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 5. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 6. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

7. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

2

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016NOME _____ COGNOME _ MATRICOLA_____ **QUIZ** $\overline{\mathbf{V}|\mathbf{F}}$ 1. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$. $\mathbf{V} \mid \mathbf{F}$ 2. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3. $\mathbf{V} | \mathbf{F}$ 3. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva. 4. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe $\mathbf{V} | \mathbf{F}$ d'equivalenza del numero 3. $\mathbf{V} \mid \mathbf{F}$ 5. Il numero 7 è invertibile modulo 16. 6. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi. $|\mathbf{V}|\mathbf{F}$ 7. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è (a) 122 (b) 2412 (c) (d) 66 8. $\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a $\exists x (P(x) \land \forall y \neg R(x,y));$ (a) (b) $\exists x (P(x) \land \exists y R(x,y));$ $\exists x (P(x) \lor \neg \exists y R(x, y);$ (c) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$ 9. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio Ae codominio $A\times B$ è 18^{3} (a) (b) 6^3 18^{3} (c) (d) 18

 $\mathbf{V} \mid \mathbf{F}$

10. Se una funzione $f:A\to B$ è iniettiva, allora è anche invertibile.

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 2. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

3. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

4. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché 2 \equiv_3 8, mentre 30 R 7 perché 0 $\not\equiv_3$ 7).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 5. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 6. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 7. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016 NOME COGNOME _____ MATRICOLA_____ **QUIZ** $\mathbf{V} \mathbf{F}$ 1. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva. 2. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe $\mathbf{V} \mid \mathbf{F}$ d'equivalenza del numero 3. $\mathbf{V} \mid \mathbf{F}$ 3. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3. 4. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con $\mathbf{V} | \mathbf{F}$ dominio e codominio uguali ad A ha 5^5 elementi. 5. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$. $|\mathbf{V}|\mathbf{F}$ $|\mathbf{V}|\mathbf{F}$ 6. Il numero 7 è invertibile modulo 16. 7. $\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a $\exists x (P(x) \land \forall y \neg R(x, y));$ (a) (b) $\exists x (P(x) \land \exists y R(x,y));$ $\exists x (P(x) \lor \neg \exists y R(x,y);$ (c) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$ 8. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è (a) (b) 24(c) 12 (d) 66 9. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A \times B$ è 18^{3} (a) (b) 6^3 (c) 18^{3} (d) 18

10. Se una funzione $f: A \to B$ è iniettiva, allora è anche invertibile.

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 2. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

3. Dimostrare per induzione che per ogni $n \geq 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

4. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 5. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 6. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 7. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

2

S	CRI	ITTO MATEMATICA DI BASE E LOGICA 25/01	$\overline{/2016}$
NO	ME _		
CO	GNO	ME	
	arvor		
MA	TRIC	COLA	
		\mathbf{QUIZ}	
1.	Il num	mero 7 è invertibile modulo 16.	$oldsymbol{\mathbf{V}}oldsymbol{\mathbf{F}}$
2.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
3.		nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} ar{\mathbf{F}}}$
4.	La fur	nzione $f:\mathbb{N}\to\mathbb{N}\times\mathbb{N}$ definita da $f(n)=(n,n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
5.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mid \mathbf{F}$
6.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ivalenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$
7.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni odominio $A\times B$ è	con dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
8.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
9.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \vee \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 3. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

4. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 5. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 6. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 7. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

SCRIT	TTO MATEMATICA DI BASE E LOGICA $25/01/2$	016
NOME		
COGNOM	1E	
MATDICA		
MATRICC	OLA	
	\mathbf{QUIZ}	
	ongruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ralenza del numero 3.	$\mathbf{V} \mathbf{F}$
2. La funz	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
3. La form	nula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
4. Il num ϵ	ero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
5. Se due	numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
6. Se l'ins	sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con o e codominio uguali ad A ha 5^5 elementi.	VF
7 Sia <i>A</i> 11	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
(a)	122	
(b)	24	
(c)	12	
(d)	66	
	un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio $A\times B$ è	n dominio
(a)	18^{3}	
(b)	6^3	
(c)	18^{3}	
(d)	18	
9. $\neg \forall x (P($	$(x) \to \exists y R(x,y)$) è equivalente a	
(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
(b)	$\exists x (P(x) \land \exists y R(x,y));$	
(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 2. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

3. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 4. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 5. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 6. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 7. (a) È vero che $-1 \equiv_{7} 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

SCRITTO MATEMATICA DI BASE E LOGICA 25/01,	/2016
NOME	
COGNOME	
COGNOME	
MATRICOLA	
\mathbf{QUIZ}	
1. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mid \mathbf{F}$
2. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
3. Nella congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe d'equivalenza del numero 3.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
4. Il numero 7 è invertibile modulo 16.	$oxed{\mathbf{V} \mid \mathbf{F}}$
5. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} \mid \mathbf{F}}$
6. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{\mathbf{V} \mid \mathbf{F}}$
7. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni A e codominio $A \times B$ è	con dominio
(a) 18^3	
(b) 6^3	
(c) 18^3	
(d) 18	
8. Sia A un insieme con 12 elementi. Il numero di sotto insiemi di A di cardinalità 2 è	
(a) 122	
(b) 24	
(c) 12	
(d) 66	
9. $\neg \forall x (P(x) \rightarrow \exists y R(x, y))$ è equivalente a	
(a) $\exists x (P(x) \land \forall y \neg R(x, y));$	
(b) $\exists x (P(x) \land \exists y R(x,y));$	
(c) $\exists x (P(x) \lor \neg \exists y R(x, y);$	
(d) $\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 2. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 5. Dimostrare per induzione che per ogni $n \geq 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

6. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

7. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2	2016
NOME	
COGNOME	
MATRICOLA	
QUIZ	
1. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
2. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
3. Il numero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
4. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
5. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mid \mathbf{F}$
6. Nella congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe d'equivalenza del numero 3.	V F
7. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
(a) 122	
(b) 24	
(c) 12	
(d) 66	
8. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni co A e codominio $A \times B$ è	on dominio
(a) 18^3	
(b) 6^3	
(c) 18^3	
(d) 18	
9. $\neg \forall x (P(x) \rightarrow \exists y R(x, y))$ è equivalente a	
(a) $\exists x (P(x) \land \forall y \neg R(x, y));$	
(b) $\exists x (P(x) \land \exists y R(x,y));$	
(c) $\exists x (P(x) \lor \neg \exists y R(x, y);$	
(d) $\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 2. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 3. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

4. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

5. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 6. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 7. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/	2016
NO	ME _		
СО	GNOI	ME	
MA	TRIC	OLA	
		\mathbf{QUIZ}	
1.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
2.		nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} \mathbf{F}}$
3.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
4.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ivalenza del numero 3.	V F
5.	Il nun	nero 7 è invertibile modulo 16.	$\mathbf{V} \mid \mathbf{F}$
6.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{V F}$
7.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
		$\exists x (P(x) \land \exists y R(x, y)); \exists x (P(x) \lor \neg \exists y R(x, y);$	
	(d)	$\exists x (T(x)) \forall \exists y R(x, y),$ $\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
8.	` '	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
9.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni o dominio $A\times B$ è	con dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	

ESERCIZI NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

2. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 3. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 4. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 6. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 7. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?

2

(b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?

SCR	ITTO MATEMATICA DI BASE E LOGICA 25/01/	2016
NOME _		
COGNO	ME	
MATRIO	COLA	
	QUIZ	
	nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
2. La fo	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
	congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ivalenza del numero 3.	$\mathbf{V} \mathbf{F}$
4. Se du	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
5. La fu	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
6. Il nu	mero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
7. Sia <i>A</i>	un insieme con 12 elementi. Il numero di sotto insiemi di A di cardinalità 2 è	
(a)	122	
(b)	24	
(c)	12	
(d)	66	
	è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni odominio $A\times B$ è	con dominio
(a)	18^{3}	
(b)	6^3	
(c)	18^{3}	
(d)	18	
$9. \ \neg \forall x ($	$P(x) \to \exists y R(x,y)$) è equivalente a	
(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
(b)	$\exists x (P(x) \land \exists y R(x,y));$	
(c)	$\exists x (P(x) \vee \neg \exists y R(x, y);$	
(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 3. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 4. Dimostrare per induzione che per ogni $n \geq 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

6. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 7. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01	/2016
NO	ME _		
CO	GNO	ME	
	artor	VII.7	
MA	TRIC	OLA	
		\mathbf{QUIZ}	
1.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{\mathbf{V} \mid \mathbf{F}}$
2.		nsieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con nio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} \mathbf{F}}$
3.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{\mathbf{V} \mid \mathbf{F}}$
4.	Il nun	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
5.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mid \mathbf{F}$
6.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe ivalenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$
7.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni odominio $A \times B$ è	i con dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
8.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
9.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \vee \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 2. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 4. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n\geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 6. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 7. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

		TTO MATEMATICA DI BASE E LOGICA 25/01/2	2016
NO.	ME _		
CO	GNO	ME	
MA	TRIC	OLA	
		\mathbf{QUIZ}	
1.	La fun	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
2.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
3.	Il num	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
4.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	VF
5.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	VF
6.		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
7.	$\neg \forall x (F)$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x, y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
8.		e un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni co dominio $A\times B$ è	on dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^3	
	(d)	18	
9.	Sia A	un insieme con 12 elementi. Il numero di sotto insiemi di ${\cal A}$ di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 2. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 6. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 7. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

\mathbf{S}	CRITTO MATEMATICA DI BASE E LOGICA 25/01	/2016
NO	ME	
СО	GNOME	
MA	TRICOLA	
	\mathbf{QUIZ}	
1.	La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oldsymbol{\mathbf{V}}oldsymbol{\mathbf{F}}$
2.	Nella congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe d'equivalenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$
3.	La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} \mid \mathbf{F}}$
4.	Il numero 7 è invertibile modulo 16.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$
5.	Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{f V}oldsymbol{f F}$
6.	Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{V}oxed{F}$
7.	Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a) 122	
	(b) 24	
	(c) 12	
	(d) 66	
8.	Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzion A e codominio $A\times B$ è	i con dominio
	(a) 18^3	
	(b) 6^3	
	(c) 18^3	
	(d) 18	
9.	$\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a	
	(a) $\exists x (P(x) \land \forall y \neg R(x, y));$	
	(b) $\exists x (P(x) \land \exists y R(x,y));$	
	(c) $\exists x (P(x) \lor \neg \exists y R(x, y);$	
	(d) $\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

2. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 3. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 4. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 5. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 6. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

\mathbf{S}	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/	2016
NO	ME _		
СО	GNOI	ME	
MA	TRIC	OLA	
		\mathbf{QUIZ}	
1.	La for	rmula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
2.	Il nun	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
3.		isieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dio e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
4.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
5.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$
6.	La fur	nzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
7.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
8.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni o dominio $A\times B$ è	con dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^3	
	(d)	18	
9.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

2. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 5. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

6. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \cancel{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016 NOME COGNOME _____ MATRICOLA_____ **QUIZ** 1. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe $\mathbf{V} \mid \mathbf{F}$ d'equivalenza del numero 3. 2. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva. $\mathbf{V} | \mathbf{F}$ 3. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3. $\mathbf{V} | \mathbf{F}$ 4. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5^5 elementi. $\mathbf{V} \mid \mathbf{F}$ 5. Il numero 7 è invertibile modulo 16. $\mathbf{V} \mid \mathbf{F}$ $\mathbf{V} | \mathbf{F}$ 6. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$. 7. $\neg \forall x (P(x) \rightarrow \exists y R(x, y))$ è equivalente a (a) $\exists x (P(x) \land \forall y \neg R(x,y));$ (b) $\exists x (P(x) \land \exists y R(x,y));$ $\exists x (P(x) \lor \neg \exists y R(x,y);$ (c) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$ 8. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è (a) (b) 24 (c) 12 (d) 9. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio Ae codominio $A\times B$ è 18^{3} (a) (b) 6^3 18^{3} (c) (d) 18

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

2. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 3. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 4. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 5. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 6. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

- 7. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.

S	CRI	TTO MATEMATICA DI BASE E LOGICA 25/01/	2016
NON	ИЕ _		
COC	GNOI	ME	
MAT	ΓRIC	OLA	
		\mathbf{QUIZ}	
1.	Il num	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$
		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	V F
4.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
5.	La fun	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
6.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
		e un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni o dominio $A \times B$ è	con dominio
	(a)	18^3	
	(b)	6^3	
	(c)	18^3	
	(d)	18	
8.	$\neg \forall x (F)$	$P(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
9.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	
	. /		

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 2. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 3. Considerare la relazione d'equivalenza ${\cal R}$ sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 4. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 5. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

6. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

7. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

SC	BI'	TTO MATEMATICA DI BASE E LOGICA 25/01/20	016
		110 MILLIMITION BI BRISE E EGGION 20/01/20	710
		ИЕ	
COG	NON		
MAT	RIC	OLA	
		\mathbf{QUIZ}	
1. L	a forr	nula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$
		ongruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$\mathbf{V} \mathbf{F}$
		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con o e codominio uguali ad A ha 5^5 elementi.	$\mathbf{V} \mathbf{F}$
4. L	a fun:	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$
5. Il	num	ero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$
6. Se	e due	numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$
7. ¬	$\forall x (P$	$(x) \to \exists y R(x,y)$) è equivalente a	
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$	
	(b)	$\exists x (P(x) \land \exists y R(x,y));$	
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$	
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$	
		un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio $A\times B$ è	dominio
	(a)	18^{3}	
	(b)	6^3	
	(c)	18^{3}	
	(d)	18	
9. Si	ia A ι	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è	
	(a)	122	
	(b)	24	
	(c)	12	
	(d)	66	

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 2. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27^{15} nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

5. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

6. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

7. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016 NOME _____ COGNOME _ MATRICOLA____ **QUIZ** $\mathbf{V} \mathbf{F}$ 1. Se due numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3. 2. La formula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$. $\mathbf{V} \mid \mathbf{F}$ 3. Nella congruenza modulo 5, tutti i numeri della forma 5k-2 appartengono alla classe $\mathbf{V} \mid \mathbf{F}$ d'equivalenza del numero 3. $\mathbf{V} \mid \mathbf{F}$ 4. Il numero 7 è invertibile modulo 16. $\mathbf{V} \mid \mathbf{F}$ 5. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da f(n) = (n, n+1) è suriettiva. 6. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con $\mathbf{V} | \mathbf{F}$ dominio e codominio uguali ad A ha 5^5 elementi. 7. Sia A un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è (a) 122 (b) 24(c) 12 (d) 66 8. $\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a $\exists x (P(x) \land \forall y \neg R(x,y));$ (a) (b) $\exists x (P(x) \land \exists y R(x,y));$ $\exists x (P(x) \lor \neg \exists y R(x, y);$ (c) $\exists x (\neg P(x) \rightarrow \neg \exists y R(x, y).$ 9. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A \times B$ è 18^{3} (a) (b) 6^3 18^{3} (c) (d) 18

 $\mathbf{V} \mid \mathbf{F}$

10. Se una funzione $f:A\to B$ è iniettiva, allora è anche invertibile.

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 2. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

5. Dimostrare per induzione che per ogni $n \geq 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 6. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a\in\mathbb{Z}$ è l'inverso moltiplicativo di $b\in\mathbb{Z}$ modulo 3 se e solo se $ab\equiv_3\dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

7. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016					
NO	ME _				
CO	GNOI	ME			
MA	TRIC	OLA			
		\mathbf{QUIZ}			
1.		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$oldsymbol{V}oldsymbol{F}$		
2.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$		
3.	Il num	nero 7 è invertibile modulo 16.	$\mathbf{V} \mathbf{F}$		
4.	La fun	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$\mathbf{V} \mathbf{F}$		
5.		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oxed{\mathbf{V} \mathbf{F}}$		
6.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$oxed{\mathbf{V} \mid \mathbf{F}}$		
7.	$\neg \forall x (F)$	$P(x) \to \exists y R(x,y)$) è equivalente a			
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$			
	(b)	$\exists x (P(x) \land \exists y R(x,y));$			
	(c)	$\exists x (P(x) \lor \neg \exists y R(x,y);$			
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$			
8.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è			
	(a)	122			
	(b)	24			
	(c)	12			
	(d)	66			
9.	9. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A\times B$ è				
	(a)	18^3			
	(b)	6^3			
	(c)	18^3			
	(d)	18			

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

- 1. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1, 5, -3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 2. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 3. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre $30 \mathbb{R}$ 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 4. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 5. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 6. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

7. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016						
NOME						
COGNOME						
MATRICOLA						
QUIZ						
1. La funzione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$	è suriettiva. V F					
2. Se due numeri sono congruenti modulo 9 allora sono con	agruenti anche modulo 3. VF					
3. Se l'insieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con dominio e codominio uguali ad A ha 5 ⁵ elementi.						
4. La formula proposizionale $P \to Q$ è equivalente alla form	nula $Q \to P$. $\boxed{\mathbf{V} \mid \mathbf{F}}$					
5. Il numero 7 è invertibile modulo 16.	$oldsymbol{f V}oldsymbol{f F}$					
6. Nella congruenza modulo 5, tutti i numeri della forma 5. d'equivalenza del numero 3.	$k-2$ appartengono alla classe $oxed{\mathbf{V} \ \mathbf{F}}$					
7. Se A è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni con dominio A e codominio $A \times B$ è						
(a) 18^3						
(b) 6^3						
(c) 18^3						
(d) 18						
8. Sia A un insieme con 12 elementi. Il numero di sottoinsi	emi di A di cardinalità 2 è					
(a) 122						
(b) 24						
(c) 12						
(d) 66						
9. $\neg \forall x (P(x) \rightarrow \exists y R(x,y))$ è equivalente a						
(a) $\exists x (P(x) \land \forall y \neg R(x, y));$						
(b) $\exists x (P(x) \land \exists y R(x,y));$						
(c) $\exists x (P(x) \lor \neg \exists y R(x, y);$						
(d) $\exists x (\neg P(x) \to \neg \exists y R(x, y).$						

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

2. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

5. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 6. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 7. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.

SCRITTO MATEMATICA DI BASE E LOGICA 25/01/2016					
NO	ME _				
CO	GNOI	ME			
MA	TRIC	OLA			
		\mathbf{QUIZ}			
1.	La for	mula proposizionale $P \to Q$ è equivalente alla formula $Q \to P$.	$\mathbf{V} \mathbf{F}$		
2.		sieme A ha 5 elementi, allora l'insieme delle funzioni iniettive con io e codominio uguali ad A ha 5^5 elementi.	$oxed{\mathbf{V} \mathbf{F}}$		
3.	Il num	nero 7 è invertibile modulo 16.	$oxed{\mathbf{V} oxed{\mathbf{F}}}$		
4.	Se due	e numeri sono congruenti modulo 9 allora sono congruenti anche modulo 3.	$\mathbf{V} \mathbf{F}$		
		congruenza modulo 5, tutti i numeri della forma $5k-2$ appartengono alla classe valenza del numero 3.	$oldsymbol{\mathbf{V}} oldsymbol{\mathbf{F}}$		
6.	La fur	zione $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ definita da $f(n) = (n, n+1)$ è suriettiva.	$oxed{\mathbf{V} \mid \mathbf{F}}$		
7.	Sia A	un insieme con 12 elementi. Il numero di sottoinsiemi di A di cardinalità 2 è			
	(a)	122			
	(b)	24			
	(c)	12			
	(d)	66			
8.	$\neg \forall x (I$	$P(x) \to \exists y R(x,y)$) è equivalente a			
	(a)	$\exists x (P(x) \land \forall y \neg R(x,y));$			
	(b)	$\exists x (P(x) \land \exists y R(x,y));$			
	(c)	$\exists x (P(x) \vee \neg \exists y R(x, y);$			
	(d)	$\exists x (\neg P(x) \to \neg \exists y R(x, y).$			
9.		è un insieme con 3 elementi e B è un insieme con 6 elementi, il numero di funzioni odominio $A\times B$ è	con dominio		
	(a)	18^{3}			
	(b)	6^3			
	(c)	18^{3}			
	(d)	18			

NOTA BENE: TUTTE LE RISPOSTE VANNO GIUSTIFICATE

1. Considerare la relazione d'equivalenza R sui numeri naturali definita da

 $aRb \Leftrightarrow$ la cifra delle unità di a è congrua modulo 3 alla cifra delle unità di b

(ad esempio 52 R 78 perché $2 \equiv_3 8$, mentre 30 R 7 perché $0 \not\equiv_3 7$).

- (a) Determinare se 15 appartiene alla classe d'equivalenza di 32.
- (b) Determinare quante sono le classi d'equivalenza di R ed un insieme di rappresentanti per le classi d'equivalenza.
- 2. (a) È vero che $-1 \equiv_7 8$?
 - (b) Calcolare il resto di 27¹⁵ nella divisione per 28.
 - (c) Completare:

 $a \in \mathbb{Z}$ è l'inverso moltiplicativo di $b \in \mathbb{Z}$ modulo 3 se e solo se $ab \equiv_3 \dots$

(d) Il numero 11 è invertibile modulo 27? Se si, trova l'inverso.

SOL

- 3. Su un tavolo ci sono dieci pezzi di frutta, tutti diversi fra loro (una mela, una banana, un kiwi etc...). In quante maniere diverse possiamo:
 - (a) confezionare un cestino regalo contenente tre pezzi di frutta, scelti dai pezzi sulla tavola?
 - (b) mettere in fila i dieci pezzi di frutta sul tavolo in modo che la mela preceda la banana?
- 4. Sia $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la funzione definita da f(n) = (n, 1). Determinare se la funzione f è iniettiva, suriettiva o biunivoca.
- 5. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(x) = -x^2 + 1$.
 - (a) Determinare f(5), $f^{-1}(5)$ e $f^{-1}(\{1,5,-3\})$.
 - (b) Determinare se f è iniettiva o suriettiva.
- 6. Dimostrare per induzione che per ogni $n \ge 1$ vale:

$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (1+n)! - 1$$

7. Dimostrare per induzione che per ogni $n \ge 1$ si ha

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$