Tutorial 1

Monday, February 1, 2021

1. $T(n)=n^3+20n+1$ Is $O(n^3)$?

$$n^3+20n+1 \le c.n^3$$

Assume c=22 (20 + 1 + 1)n=0, 1<0, false n=1, 22<=22, true n=2, 49<176, true

Order of growth

N	N, N^2, N^3
N^2	N^2, N^3
N^3	N^3, N^4
Logn	n, nlogn, N^2, N^3

Draw graph

When n=1, c=22, condition for O is satisfied, i.e. $n^3+20n+1 < -2n^2$ for 11 = 2 $n^3+20n+1 \le c.n^3$ for all n>0 and c=22

2. $T(n)=n^3+20n+1$ Is not $O(n^2)$? True

$$n^3+20n+1 \le c.n^2$$

- 3. $T(n)=n^3+20n+1$ Is $O(n^4)$? True
- 4. $T(n)=n^3+20n$ Is Omega (n^2) ? True
- 5. Sorting algorithm:

O(nlogn)

1ms to sort 1000 data items

T(n) = c.n.log.n (T(N) is time to sort N items)

Find T(1,000,000)

$$T(1000) = c.1000.\log 1000 = 1 \text{ ms}$$

 $C = 1/1000.\log 1000$

 $C = 1.003 * 10^{(-4)} = 0.0001$

 $T(10^6) = 0.0001 * 10^6 * \log(10^6) = 1993.156 \text{ ms} =$ 2000ms

6. $T(n) = c*n^2$

 $T(100) = c * 100^2 = 1 ms$

 $C = 1/100^2 = 0.0001$

$$T(5000) = 0.0001 * 5000^2 = 2500.0 \text{ ms}$$

7. 10s -> 1000 items

$$T(n) = c * f(n) = c * n$$

$$T(1000) = c * 1000 = 10$$

 $C = 10/1000 = 0.01$

$$T(100, 000) = 0.01 * 100000 = 1000.0$$

8. Reflective: all yes

$$f(n) = O(f(n))$$

Symmetric: O and Omega not symmetric

 $f(\log n) = O(n)$

But f(n) := O(log n)

Theta is symmetric

Transitive: true for all

- 9. X
 - a. True
 - b. False, O(a + b) = O(max(a,b))
 - c. False
 - d. True
 - e. False, O(n^3)