Çoklu Doğrusal Regresyon Modeli: Tahmin Ekonometri I

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

18 Mayıs 2021

Taslak

- Çoklu Doğrusal Regresyon Modeli
 - Motivasyon
 - k Bağımsız Değişkenli ÇDR Modeli
 - Gauss-Markov Varsayımları
 - Anakütle Regresyon Fonksiyonu
- 2 Çoklu Doğrusal Regresyon Modeli Tahmini
 - Örneklem Regresyon Fonksiyonu
 - Tahmin Yöntemleri
 - SEKK Parametre Tahmincileri
 - Yorumlama ve Örnekler
 - Tahmin Edilen Değerler ve Kalıntılar
 - BDR ve ÇDR Tahminlerinin Karşılaştırılması
 - Kareler Toplamları ve Uyum İyiliği
 - SEKK Parametre Tahmincilerinin Varyansı
 - SEKK Parametre Tahmincilerinin Özellikleri
 - SEKK Parametre Tahmincilerinin Sapmasızlığı
 - SEKK Parametre Tahmincilerinin Sapinasizing
 SEKK Parametre Tahmincilerinin Etkinliği
 - SERR rarametre rammincherinin etkining
 - Gauss–Markov Teoremi
 - Modelleme Sorunları
 - Orijinden Geçen Regresyon
 - Modele Gereksiz Bağımsız Değişken Eklenmesi
 - Gerekli Bağımsız Değişkenin Model Dışında Bırakılması

 Basit Doğrusal Regresyon (BDR) analizinde kilit varsayım olan BDR.5 varsayımı çoğu zaman gerçekçi olmayan bir varsayımdır.

BDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|\mathbf{x}) = 0$$

• Daha önce gördüğümüz Yinelenen Beklentiler Kanunu'nu hatırlayalım.

Yinelenen Beklentiler Kanunu

$$E[E(u|\mathbf{x})] = E(u)$$

• Yinelenen Beklentiler Kanunu kullanılarak BDR.5 varsayımı yeniden tanımlanabilir.

$$E[\underline{E(u|\mathbf{x})}] = E(u)$$

$$= 0$$

$$E[0] = E(u)$$

$$0 = E(u)$$

BDR.5: Sıfır Kosullu Ortalama Varsayımı

$$E(u|\mathbf{x}) = E(u) = 0$$

Yani, hata terimi u'nun bağımsız değişken x'e göre koşullu ve koşulsuz ortalaması sıfırdır.

• Koşullu beklenen değerin 5. özelliğini kullanarak *u* ve *x* arasındaki ilişki hakkında daha fazla yorumda bulunabiliriz.

Koşullu Beklenen Değer: Özellik 5

$$E(u|\mathbf{x}) = E(u)$$
 ise $Cov(x, u) = 0$ ve $Corr(x, u) = 0$

Yani, bağımsız değişken x'in her fonksiyonu hata terimi u ile ilişkisizdir.

• Korelasyondan farklı olarak, koşullu beklenen değer u ve x arasındaki non-lineer ilişkiyi de kapsadığından BDR.5 varsayımı hata terimi u ve bağımsız değişken x rassal olduğunda (BDR.3 sağlandığında) yeniden tanımlanabilir.

BDR.5: Sıfır Kosullu Ortalama Varsayımı

$$E(u|\mathbf{x}) = E(u) = 0$$

$$Cov(x, u) = 0$$
, $Corr(x, u) = 0$ ve $E(xu) = 0$

Sonuç: *u* ve *x* bağımsızdır. Yani *u* ve *x* hem lineer hem de non-lineer olarak ilişkisizdir.

▶ Ek Bilgi

- BDR.5 varsayımı ile, y'yi etkileyen diğer tüm faktörler (gözlenemeyen hata terimi u) x ile ilişkisizdir (ceteris paribus).
- Bu faktörler spesifik (kesin) olarak kontrol edilemez. Sadece, bu faktörlerin ortalama olarak değişmediği varsayılır ($\Delta u = 0$).
- İktisadi değişkenlerin bir çoğu birbiriyle ilişkili olduğundan bağımsız bir değişken x'in bağımlı değişken y üzerindeki yalın etkisini bulmak için bazı faktörlerin spesifik olarak kontrol edilmesi gerekir.
- BDR analizinde spesifik kontrol mümkün olmadığından dolayı ceteris paribus varsayımını uygulamak çok zordur.
- Bu nedenle BDR analizinde çoğu zaman BDR.5 varsayımı ihlal edilir ve parametre tahmincileri (β_0 ve β_1) sapmalı olur.
- Çoklu Doğrusal Regresyon analizinde ise açıkça diğer birçok faktör spesifik olarak kontrol edildiğinden ceteris paribus varsayımına uygundur.

Motivasyon - Fonksiyonel Form

- Çoklu Doğrusal Regresyon (ÇDR) analizinde bağımlı değişkeni (*y*) eşanlı olarak etkileyen pek çok etkeni (x) kontrol edebiliriz. Kısacası, çok sayıda bağımsız değişkeni (x) kullanabiliriz.
- kısmını açıklayabiliriz. Yani, *y*'nin tahmini için daha üstün/iyi modeller geliştirebiliriz.

Modele yeni bağımsız değişkenler ekleyerek y'deki değişimin daha büyük bir

- ÇDR analizinde regresyonun biçimini, yani fonksiyonel formunu, belirlemede çok daha geniş olanaklara sahip oluruz.
- Kısacası, ÇDR modeli bize daha zengin bir analiz imkanı sunar.

2 Bağımsız Değişkenli ÇDR Modeli

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

Ücret Modeli

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + u$$

wage: Saatlik ücret (dolar); educ: Eğitim düzeyi (yıl); exper: Tecrübe düzeyi (yıl)

- β_1 , ücretleri etkileyen diğer tüm faktörler sabit tuttuğumuzda ($\Delta exper$ ve $\Delta u = 0$), eğitimin ücretler üzerindeki etkisini ölçer.
- β_2 , ücretleri etkileyen diğer tüm faktörler sabit tuttuğumuzda ($\Delta e duc$ ve $\Delta u = 0$), tecrübenin ücretler üzerindeki etkisini ölcer.
- Yukarıdaki regresyonda tecrübeyi sabit tutarak eğitimin ücretlere etkisini ölçebiliyoruz. Basit regresyonda bu olanak yoktu. Sadece educ ile u ilişkisizdir diye varsayıyorduk. Yani sadece $\Delta u = 0$ diyebiliyorduk.

Sınav Basarı Modeli

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

$$avgscore = \beta_0 + \beta_1 expend + \beta_2 avginc + u$$

avgscore: Ortalama sınav sonucu; expend: Öğrencinin eğitim harcaması; avqinc: Ortalama aile geliri

• Eğer ortalama aile gelirini (avqinc) modele doğrudan sokmazsak (yanlış modeli kullanırsak), onu yanlış modeledeki hata teriminin (ν) içine almış oluruz.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 (Doğru Model)
 $y = \beta_0 + \beta_1 x_1 + v$ (Yanlış Model)
 $v = \beta_2 x_2 + u$ (Yanlış Model Hata Terimi)

 Doğru ve yanlış modelden elde edeceğimiz tahminler farklı olacağından, modeller ve onların ÖRF'leri aşağıdaki gibi gösterilebilir.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \quad \text{(Doğru Model ve \"ORF)}$$

$$y = \beta_0 + \beta_1 x_1 + v \longrightarrow \tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \quad \text{(Yanlış Model ve \"ORF)}$$

$$v = \beta_2 x_2 + u \quad \text{(Yanlış Model Hata Terimi)}$$

- Ortalama aile geliri (avqinc), öğrencinin harcaması (expend) ile yakından ilişkili olduğundan yanlış model kullanıldığında:
 - x_1 ile ν iliskili olacaktır. $\longrightarrow Corr(x_1, \nu) \neq 0$
 - BDR.5 varsayımı ihlal edilecektir. $\longrightarrow E(v|\mathbf{x}) \neq 0$
 - Sonuç olarak $\tilde{\beta}_1$ sapmalı tahmin edilecektir. $\longrightarrow E(\tilde{\beta}_1) \neq \beta_1$
- Eğer doğru modeli (avqinc değişkenini modele ekleyerek) kullanırsak hem avginc'i doğrudan kontrol etme olanağına kavuşmuş olacağız hem de sapmasız parametre tahmincileri elde edeceğiz.

Tüketim Modeli: Karesel (Quadratic) Fonksiyonel Form

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u$$
$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$

cons: Tüketim; inc: Gelir; $x_1 = inc$; $x_2 = inc^2$; $x_2 = x_1^2$

- Bu modelde β_1 'in yorumu farklı olacaktır. Geliri (*inc*) değiştirirken, gelirin karesini (inc^2) sabit $(\Delta inc^2 = 0)$ tutamayız. Çünkü, gelir değişirse karesi de değişir.
- Burada, gelirdeki bir birim değişmenin tüketim üzerindeki etkisi, yani marjinal tüketim eğilimi (marginal propensity to consume) şu şekilde hesaplanabilir:

$$\frac{\Delta y}{\Delta x_1} \approx \beta_1 + 2\beta_2 x_1 \longrightarrow \frac{\Delta cons}{\Delta inc} \approx \beta_1 + 2\beta_2 inc$$

k Bağımsız Değişkenli ÇDR Modeli

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (İndekssiz)

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (İndeksli)

- k: bağımsız değişken sayısı $\longrightarrow j = 1, 2, ..., k$
- k + 1: bilinmeyen sabit β parametre sayısı $\longrightarrow \beta_0, \beta_1, \dots, \beta_k$
- n: gözlem (veri) sayısı $\longrightarrow i = 1, 2, ..., n$ ve s = 1, 2, ..., n, $i \neq s$
- y: bağımlı değişken
- x_j : j'inci bağımsız değişken $\longrightarrow x_1, x_2, \dots, x_k$
- *u*: Hata terimi. *x*'ler dışında modele dahil edilmemiş tüm faktörlerin ortak etkisi
- β_0 : Kesim parametresi (1 tane var), sabit terim olarak da adlandırılır
- β_i : x_i bağımsız değişkeni için eğim parametresi (k tane var)
- **x**: Tüm bağımsız değişkenlerin temsili \longrightarrow **x** = $\{x_1, x_2, \dots, x_k\}$
- Yukarıdaki model bazen **anakütle modeli** olarak da bilinir.

k Bağımsız Değişkenli ÇDR Modeli

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (İndekssiz)

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (İndeksli)

- β_i : y'yi etkileyen diğer tüm faktörler sabit tutulduğunda x_i 'deki değişmenin y'de yaratacağı etkiyi/değişmeyi gösterir.
- β_1 : u'yi etkileyen diğer tüm faktörler, yani diğer x'ler ve u'da içerilen faktörler, sabitken ($\Delta x_2 = \Delta x_3 = \cdots = \Delta x_k = \Delta u = 0$), x_1 'deki değişmenin u'de yaratacağı etkiyi/değişmeyi gösterir.
 - Parametreleri yorumlarken fonksiyonel forma dikkat edilmelidir.
 - Düzey-Düzey, Log-Log, Log-Düzey ve Düzey-Log fonksiyonel formlarındaki yorumlama farklarını hatırlayın!
- Modele ne kadar çok x bağımsız değişkeni eklenirse eklensin dışarıda bırakılmış ya da gözlenemeyen faktörler her zaman olacaktır.

ÇDR.1: Gözlem Sayısı

Gözlem sayısı n tahmin edilecek anakütle parametre sayısından büyük ya da en azından eşit olmalıdır.

$$n \ge k + 1$$

ÇDR.2: Parametrelerde Doğrusallık

Model parametrelerde doğrusaldır.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u \checkmark$$

$$y = \beta_0 + \beta_1^2 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \sqrt{\beta_2} x_2 + u \checkmark$$

CDR.3: Rassallık

Tahminde kullanılan n tane gözlem ilgili anakütleden rassal örnekleme yoluyla seçilmiştir. Yani gözlemler stokhastiktir (rassal), deterministik (kesin) değil.

$$\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$$

CDR.4: Tam Çoklu Doğrusal Bağıntının Olmaması

Örneklemde (ve bu nedenle anakütlede) bağımsız değişkenlerin hiçbiri kendi içinde sabit değildir (yeterli değişenlik vardır) ve bağımsız değişkenler arasında tam çoklu doğrusal bağıntı (TÇDB) yoktur.

$$\sum_{i=1} (x_{ij} - \bar{x}_j)^2 > 0, \quad \forall j = 1, 2, \dots, k$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \quad \longrightarrow \quad x_2 = 2x_1 \quad \text{TCDB VAR } \mathbf{X}$$

$$\longrightarrow \quad x_2 = x_1^2 \quad \text{TCDB YOK } \mathbf{V}$$

ÇDR.5: Sıfır Koşullu Ortalama

u hata teriminin bağımsız değişkenlerin herhangi bir değeri verildiğinde beklenen değeri sıfıra eşittir.

$$E(u|x_1,x_2,\ldots,x_k)=E(u|\mathbf{x})=0$$

 Yinelenen Beklentiler Kanunu (Slayt 4) ve koşullu beklenen değerin 6. özelliği (Slayt 5) kullanılarak Sıfır Koşullu Ortalama varsayımı hata terimi u ve bağımsız değişken x rassal olduğunda (ÇDR.3 sağlandığında) yeniden tanımlanabilir.

CDR.5: Sıfır Koşullu Ortalama

$$E(u|\mathbf{x}) = E(u) = 0$$

$$Cov(x_j, u) = 0$$
, $Corr(x_j, u) = 0$ ve $E(x_j u) = 0$, $\forall j = 1, 2, ..., k$

Sonuç: u ve x_i bağımsızdır. Yani u ve x_i hem lineer hem de non-lineer olarak ilişkisizdir.

CDR.6: Otokorelasyon Olmaması

Hata terimleri arasında otokorelasyon yoktur.

$$Corr(u_i, u_s | x_1, x_2, \dots, x_k) = 0, \quad i \neq s$$

$$Corr(u_i, u_s | \mathbf{x}) = 0, \quad i \neq s$$

$$Corr(u_i, u_s) = 0, \quad i \neq s$$
 (u ve x 'ler bağımsız olduğundan)

- ÇDR.6 varsayımı, yatay-kesit verilerindeki rassallık varsayımı (ÇDR.3) nedeniyle aslında otomatik olarak sağlanır. Fakat çok ekstrem durumlarda gereklidir ve bu nedenle diğer birçok kaynaktan farklı olarak eklenmiştir.
- ÇDR.6 varsayımı aşağıdaki eşitlikleri de sağlar.

ÇDR.6: Otokorelasyon Olmaması

$$Cov(u_i, u_s | \mathbf{x}) = 0$$
 ve $Cov(u_i, u_s) = 0$, $i \neq s$
 $E(u_i u_s | \mathbf{x}) = 0$ ve $E(u_i u_s) = 0$, $i \neq s$

CDR.7: Sabit Varyans (Homoscedasticity)

u hata teriminin bağımsız değişken x'lere göre koşullu varyansı sabittir.

$$Var(u|x_1,x_2,\ldots,x_k)=\sigma^2$$

$$Var(u|\mathbf{x})=\sigma^2$$

$$Var(u)=\sigma^2$$
 (u ve x 'ler bağımsız olduğundan) Delay

ÇDR.7 varsayımı aşağıdaki eşitlikleri de sağlar.

CDR.7: Sabit Varyans (Homoscedasticity)

$$E(u^2|\mathbf{x}) = \sigma^2$$
 ve $E(u^2) = \sigma^2$

• σ regresyonun standart sapmasıdır (bilinmiyor, bu nedenle tahmin edilecek).

- Yukarıda verilen Gauss–Markov varsayımları yatay-kesit verisi ile yapılan regresyon için geçerli varsayımlardır.
- Zaman serileri ile yapılan regresyonlarda bu varsayımların değiştirilmesi gerekir.
- Gauss–Markov Varsayımları, ÇDR Varsayımları olarak da anılır.
- Bazı ÇDR varsayımlarının detayı ilerleyen slatlarda konu akışı içinde verilmiştir.
- Gauss-Markov Varsayımları daha sonra Gauss-Markov Teoremi'ni oluşturmada kullanılacaktır.
- Gauss-Markov Teoremi ise ÇDR modelinin Sıradan En Küçük Kareler Yöntemi ya da Momentler Yöntemi ile tahmini için teorik dayanak sağlamada kullanılacaktır. Bakınız Slayt 85.

Anakütle Regresyon Fonksiyonu

• CDR.5 ve CDR.7 varsayımları altında bağımlı değişken y'nin x'e göre koşullu dağılımı aşağıdaki gibi ifade edilebilir.

y'nin x'e Göre Koşullu Dağılımı $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + u$ (Model) $E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$ (ARF) $Var(y|\mathbf{x}) = \sigma^2$ $y|\mathbf{x} \sim (\underline{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k}, \underline{\sigma^2})$ (y'nin dağılımı) Varyans Ortalama

Anakütle Regresyon Fonksiyonu

• Anakütle Regresyon Fonksiyonu (ARF) bağımlı değişken y'nin x'e göre koşullu ortalamasıdır.

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (İndekssiz)

$$E(y_i|\mathbf{x}_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$
 (İndeksli)

Orneklem Regresyon Fonksiyonu: Amaç

- CDR tahminindeki asıl amacımız:
 - Öncelikle, iktisat teorisine göre model oluşturmak.
 - Sonra, Gauss-Markov varsayımları kullanarak ARF'yi oluşturmak.
 - Son olarak, ARF'yi rassal örnekleme yoluyla seçtiğimiz belli sayıdaki veriyi kullanarak tahmin etmektir.
- ARF'nin tahmini ise Örneklem Regresyon Fonksiyonu'dur ve bu tahmin örneklemden örnekleme değişir.

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

Örneklem Regresyon Fonksiyonu: Amaç

Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (İndekssiz)

$$u_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (İndeksli)

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (İndekssiz)

$$E(y_i|\mathbf{x}_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$$
 (İndeksli)

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$
 (İndekssiz)

Örneklem Regresyon Fonksiyonu

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k \qquad \text{(İndekssiz)}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik} \qquad \text{(İndeksli)}$$

$$y_i = \hat{y}_i + \hat{u}_i$$
Gözlenen Değer Tahmin Edilen Değer Kalıntı (Artık)
Rassal Değil (Deterministik)

- \hat{y}_i : y_i bağımlı değişkenin tahmini
- Paramete tahmincileri/tahmin edicileri örneklemden örnekleme değişir, yani rassaldır.
 - $\hat{\beta}_0$: β_0 kesim parametresinin tahmini (1 tane var)
 - $\hat{\beta}_i$: β_i eğim parametresinin tahmini (k tane var)
- \hat{u}_i : Kalıntı (artık). Rassal değildir, tahmin sırasında hesaplanır. Hata terimi u_i 'nun örneklem analoğu olarak yorumlanabilir fakat kesinlikle aynı şeyler değildir.

Örneklem Regresyon Fonksiyonu

• Model, ARF ve ÖRF denklemleri arasında dikkat edilmesi gereken farklar vardır.

Model, ARF ve ÖRF $\underbrace{y_i}_{} = \underbrace{\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}}_{} +$ (Model) Gözlenen Değer $E(y_i|\mathbf{x}_i)$ Rassal Hata Terimi (Sistematik Olmayan Kısım) (Sistemetik Kısım) $E(y_i|\mathbf{x}_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik}$ (ARF) Sistemetik Kısım $= \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik}$ (ÖRF) Sistemetik Kısmın Tahmini Tahmin Edilen Değer Gözlenen Değer Tahmin Edilen Değer Kalıntı (Artık) Rassal Değil (Deterministik)

Orneklem Regresyon Fonksiyonu: Tahmin Yöntemleri

Model, ARF ve ÖRF

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (Model)

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k \tag{ARF}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$
 (ÖRF)

- Örneklem Regresyon Fonksiyonu (ÖRF), iki yöntemle tahmin edilebilir.
 - Sıradan En Küçük Kareler (SEKK) Yöntemi
 - Momentler Yöntemi
- İki yöntem de aynı tahmin sonuçlarını verir.

Sıradan En Küçük Kareler Yöntemi

• Sıradan En Küçük Kareler Yöntemi, kalıntı kareleri toplamını (SSR) en küçük yapan parametre tahmincilerini hesaplamaya çalışır.

Örneklem Regresyon Fonksiyonu (ÖRF)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$

Gözlenen Değer, Tahmin Edilen Değer ve Artık

$$y_i = \hat{y}_i + \hat{u}_i \longrightarrow \hat{u}_i = y_i - \hat{y}_i$$

SEKK Amaç Fonksiyonu

$$\min_{\hat{\beta}_0, \, \hat{\beta}_j} SSR = \min_{\hat{\beta}_0, \, \hat{\beta}_j} \sum_{i=1}^n \hat{u}_i^2 = \min_{\hat{\beta}_0, \, \hat{\beta}_j} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_k x_{ik})^2$$

Sıradan En Küçük Kareler Yöntemi

SEKK Birinci Sıra Koşulları

$$\frac{\partial SSR}{\partial \hat{\beta}_{0}} = -2 \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \hat{\beta}_{2} x_{i2} - \dots - \hat{\beta}_{k} x_{ik}) = 0$$

$$\frac{\partial SSR}{\partial \hat{\beta}_{1}} = -2 \sum_{i=1}^{n} x_{i1} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \hat{\beta}_{2} x_{i2} - \dots - \hat{\beta}_{k} x_{ik}) = 0$$

$$\frac{\partial SSR}{\partial \hat{\beta}_{2}} = -2 \sum_{i=1}^{n} x_{i2} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \hat{\beta}_{2} x_{i2} - \dots - \hat{\beta}_{k} x_{ik}) = 0$$

$$\vdots = \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{\partial SSR}{\partial \hat{\beta}_{k}} = -2 \sum_{i=1}^{n} x_{ik} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i1} - \hat{\beta}_{2} x_{i2} - \dots - \hat{\beta}_{k} x_{ik}) = 0$$

Sıradan En Küçük Kareler Yöntemi

SEKK Birinci Sıra Koşulları

$$\sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} \hat{u}_{i} = 0$$

$$\sum_{i=1}^{n} x_{i1}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} x_{i1}\hat{u}_{i} = 0$$

$$\sum_{i=1}^{n} x_{i2}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} x_{i2}\hat{u}_{i} = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\sum_{i=1}^{n} x_{ik}(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \hat{\beta}_{2}x_{i2} - \dots - \hat{\beta}_{k}x_{ik}) = 0 \longrightarrow \sum_{i=1}^{n} x_{ik}\hat{u}_{i} = 0$$

• Birinci sıra koşullarından elde edilen k+1 tane denklemin çözümünden parametre tahmincileri $\hat{\beta}_0$ ve $\hat{\beta}_i$ 'lar (toplamda k+1 tane) bulunur.

Momentler Yöntemi

- Anakütle moment koşulları ÇDR.5 varsayımı kullanılarak yazılabilir.
- Daha sonra anakütle moment koşullarını kullanarak örneklem moment koşulları elde edilebilir.

CDR.5: Sıfır Koşullu Ortalama

$$E(u|\mathbf{x}) = E(u) = 0$$

$$Cov(x_j, u) = 0$$
, $Corr(x_j, u) = 0$ ve $E(x_j u) = 0$, $\forall j = 1, 2, ..., k$

Sonuç: u ve x_i bağımsızdır. Yani u ve x_i hem lineer hem de non-lineer olarak ilişkisizdir.

Momentler Yöntemi

Anakütle Moment Koşulları ve Örneklem Moment Koşulları

Anakütle
$$E(u) = 0 \longrightarrow \sum_{i=1}^{n} \hat{u}_i = 0$$

$$E(x_1 u) = 0 \longrightarrow \sum_{i=1}^{n} x_{i1} \hat{u}_i = 0$$

$$E(x_2 u) = 0 \longrightarrow \sum_{i=1}^{n} x_{i2} \hat{u}_i = 0$$

$$\vdots = 0 \longrightarrow \vdots = 0$$

$$E(x_k u) = 0 \longrightarrow \sum_{i=1}^{n} x_{ik} \hat{u}_i = 0$$

Momentler Yöntemi

- Örneklem moment koşullarından elde edilen k + 1 tane denklemin çözümünden parametre tahmincileri $\hat{\beta}_0$ ve $\hat{\beta}_i$ 'lar (toplamda k+1 tane) bulunur.
- SEKK birinci sıra koşulları ve örneklem moment koşulları aslında aynı denklemler kümesini verir.
- Bu nedenle, SEKK Yöntemi ve Momentler Yöntemi ile ÇDR modeli tahmin edildiğinde aynı sonuçlara ulaşılır.
- Genellikle kullanılan yöntem SEKK'dır. Bu nedenle parametre tahmincileri $\hat{\beta}_0$ ve $\hat{\beta}_i$ 'lar genellikle SEKK parametre tahmincileri ya da SEKK tahmincileri olarak adlandırılır.
- Bu yöntemlerin tek çözüm vermesi için ÇDR.4 (Tam Çoklu Doğrusal Bağıntının Olmaması) varsayımının sağlanması gereklidir. Bakınız Slayt 15.

Ana Model

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i \\ \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} \end{aligned} \tag{Model - İndeksli)}$$

• β_0 kesim parametresinin tahmini $\hat{\beta}_0$:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2$$

• β_1 eğim parametresinin tahmini, ya da x_1 'nin eğim parametresinin tahmincisi, $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

• β_1 eğim parametresinin tahmini, ya da x_1 'in eğim parametresinin tahmincisi, $\hat{\beta}_1$:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

burada \hat{r}_{i1} , x_1 'in x_2 üzerine uygulanan regresyondan (1. yardımcı regresyon) elde edilen kalıntılardır.

1. Yardımcı Regresyon Tahmini

$$x_{i1} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}$$

(İndeksli)

- 1. yardımcı regresyondan elde edilen kalıntı \hat{r}_1 , x_1 içindeki x_2 'nin etkisi çıkarıldıktan sonraki x_1 'i ifade eder.
- Bu işlemdeki amaç, bağımsız değişkenler x_1 ve x_2 arasındaki doğrusal bağıntı nedeniyle bağımlı değişken *y* üzerinde oluşabilecek dolaylı etkiyi kaldırmaktır.

- Amacımız x_1 'in y'yi yalın/kısmi olarak ne kadar etkilediğini yani $\hat{\beta}_1$ 'yı bulmaktı.
- Öyleyse $\hat{\beta}_1$, y'nin \hat{r}_1 üzerine uygulanan regresyondan (2. yardımcı regresyon) elde edilen eğim parametresinin tahminidir.

2. Yardımcı Regresyon Tahmini

$$y_i = \hat{\delta}_0 + \hat{\beta}_1 \hat{r}_{i1} + \hat{\epsilon}_i$$
 (İndeksli)

- $\hat{\epsilon}_i$ ve $\hat{\delta}_0$, sırasıyla 2. yardımcı regresyondaki kalıntıları ve kesim parametresi tahminini ifade eder. Bu değerler bizim ilgi alanımızda değildir.
- 2. yardımcı regresyon basit doğrusal regresyon olduğundan, daha önceden bildiğimiz eğim parametresi tahmicisinin formülünü kullanabiliriz.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

 \hat{r}_i , 2. yardımcı regresyonda bağımsız değişken olarak görev yaptığı için formüldeki x'ler yerine konulabilir.

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \longrightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})y_{i}}{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})^{2}}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})y_{i}}{\sum_{i=1}^{n} (\hat{r}_{i1} - \bar{\hat{r}}_{1})^{2}} \longrightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \hat{r}_{i1}y_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \quad (1. \text{ Yardımcı Regresyondan})$$

• Kısacası $\hat{\beta}_1$, x_1 içindeki x_2 'nin etkisi çıkarıldıktan sonraki x_1 'nin bağımlı değişken y'yi etkileyen yalın/kısmi yani ceteris paribus etkisini ifade eder.

Ana Model

$$\begin{aligned} y_i &= \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i \\ \hat{y}_i &= \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \dots + \hat{\beta}_k x_{ik} \end{aligned} \tag{Model - İndeksli)}$$

• β_0 kesim parametresinin tahmini $\hat{\beta}_0$ (1 tane var):

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \dots - \hat{\beta}_k \bar{x}_k$$

• β_i eğim parametresinin tahmini, ya da x_i 'nin eğim parametresinin tahmincisi, $\hat{\beta}_i$ (*k* tane var):

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}, \quad \forall j = 1, 2, \dots, k$$

• x_i 'nin eğim parametresinin tahmincisi $\hat{\beta}_i$ (k tane var):

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}, \quad \forall j = 1, 2, \dots, k$$

burada \hat{r}_{ij} , x_i 'nin diğer tüm x'ler $(x_1, x_2, \dots, x_{j-1}, x_{j+1}, \dots, x_k)$ üzerine uygulanan regresyondan (1. yardımcı regresyon) elde edilen kalıntılardır.

1. Yardımcı Regresyon Tahmini

$$x_{ij} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i1} + \hat{\alpha}_2 x_{i2} + \dots + \hat{\alpha}_{j-1} x_{ij-1} + \hat{\alpha}_{j+1} x_{ij+1} + \dots + \hat{\alpha}_k x_{ik} + \hat{r}_{ij} \quad (\text{Indeksli})$$

- 1. yardımcı regresyondan elde edilen kalıntı \hat{r}_i , x_i içindeki diğer tüm x'lerin $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ etkisi çıkarıldıktan sonraki x_i 'yi ifade eder.
- Bu işlemdeki amaç, bağımsız değişken x'ler arasındaki çoklu doğrusal bağıntı nedeniyle bağımlı değişken *y* üzerinde oluşabilecek dolaylı etkiyi kaldırmaktır.

- Amacımız x_i 'nin y'yi yalın/kısmi olarak ne kadar etkilediğini yani $\hat{\beta}_i$ 'yı bulmaktı.
- Öyleyse $\hat{\beta}_i$, y'nin \hat{r}_i üzerine uygulanan regresyondan (2. yardımcı regresyon) elde edilen eğim parametresinin tahminidir.

2. Yardımcı Regresyon Tahmini

$$y_i = \hat{\delta}_0 + \hat{\beta}_j \hat{r}_{ij} + \hat{\epsilon}_i$$
 (İndeksli)

- $\hat{\epsilon}_i$ ve $\hat{\delta}_0$, sırasıyla 2. yardımcı regresyondaki kalıntıları ve kesim parametresi tahminini ifade eder. Bu değerler bizim ilgi alanımızda değildir.
- 2. yardımcı regresyon basit doğrusal regresyon olduğundan, daha önceden bildiğimiz eğim parametresi tahmicisinin formülünü kullanabiliriz.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• \hat{r}_i , 2. yardımcı regresyonda bağımsız değişken olarak görev yaptığı için formüldeki x'ler yerine konulabilir.

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \longrightarrow \hat{\beta}_{j} = \frac{\sum_{i=1}^{n} (\hat{r}_{ij} - \bar{\hat{r}}_{j})y_{i}}{\sum_{i=1}^{n} (\hat{r}_{ij} - \bar{\hat{r}}_{j})^{2}}$$

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} (\hat{r}_{ij} - \overline{\hat{r}_{j}}) y_{i}}{\sum_{i=1}^{n} (\hat{r}_{ij} - \overline{\hat{r}_{j}})^{2}} \longrightarrow \hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}} \quad (1. \text{ Yardımcı Regresyondan})$$

• Kısacası $\hat{\beta}_i, x_i$ içindeki diğer tüm x'lerin $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$ etkisi çıkarıldıktan sonraki x_i 'nin bağımlı değişken y'yi etkileyen yalın/kısmi yani ceteris paribus etkisini ifade eder.

SEKK Parametre Tahmincileri: Frisch-Waugh Teoremi

• Önceki slaytlarda 2 bağımsız ve k bağımsız değişkenli ÇDR modellerinde $\hat{\beta}_i$ 'yi, yani x_i 'nin bağımlı değişken y'yi etkileyen yalın/kısmi etkisini, hesaplamak için kullandığımız prosedür ekonometride Frisch-Waugh Teoremi olarak anılır.

Ragnar Frisch (1895-1973) Kaynak: Wikipedia

Frederick V. Waugh (1898-1974)

Kavnak: AgEcon

Sıfır Koşullu Ortalama Varsayımı (CDR.5) Yorumu

2 Bağımsız Değişkenli Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

2 bağımsız değişkenli modelde, u'nun x'lerle ilişkisiz olması varsayımını, yani CDR.5, şu şekilde formüle edebilirz.

$$E(u|x_1, x_2) = E(u|\mathbf{x}) = 0$$

- Yani x_1 ve x_2 'nin anakütledeki tüm kombinasyonları için u'nun beklenen değeri sıfırdır.
- Örneğin, ücret modelinde (Slayt 8) ÇDR.5 varsayımı aşağıdaki gibi yazılabilir.

$$wage = \beta_0 + \beta_1 e duc + \beta_2 exper + u$$
 (Model)

$$E(u|educ, exper) = 0$$
 (ÇDR.5)

- Bu ücretleri etkileyen diğer faktörlerin (u) ortalama olarak educ ve exper ile ilişkisiz olduğu anlamına gelir.
- Örneğin, doğuştan gelen yetenek (ability) u'nun bir parçası ise, ortalama yetenek düzeyi, eğitim ve tecrübenin tüm kombinasyonlarında aynıdır (sabittir).

Sıfır Koşullu Ortalama Varsayımı (ÇDR.5) Yorumu

• Sınav başarı modelinde (Slayt 9), ÇDR.5 varsayımı aşağıdaki gibi yazılabilir.

$$avgscore = \beta_0 + \beta_1 expend + \beta_2 avginc + u$$
 (Model)

$$E(u|expend, avginc) = 0$$
 (ÇDR.5)

- Yani, ortalama sınav sonucunu etkileyen diğer faktörler (okula ya da öğrenciye özgü vs.), ortalama olarak, expend ve avginc değişkenleriyle ilişkisizdir.
- Tüketim modelinde (Slayt 11), ÇDR.5 varsayımı aşağıdaki gibi yazılabilir.

$$cons = \beta_0 + \beta_1 inc + \beta_2 inc^2 + u$$
 (Model)

$$E(u|inc,inc^2) = E(u|inc) = 0$$
 (ÇDR.5)

• Burada inc biliniyorken, inc² otomatik olarak bilineceğinden ayrıca koşullu beklenti içinde yazmaya gerek yoktur.

Regresyonun Yorumu: 2 Bağımsız Değişken

Model ve ÖRF

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 (Model)
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$
 (ÖRF)

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2$$

(Değişim Cinsinden)

- Eğim paramtresi tahmincisi $\hat{\beta}_1$, bağımsız değişken x_1 'in y üzerindeki yalın/kısmi yani ceteris paribus etkisini verir.
- $\hat{\beta}_1$ 'nın yorumu: x_2 sabitken, yani $\Delta x_2 = 0$ iken

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1$$

- x_2 sabitken, x_1 'de meydana gelen 1 birimlik değişmenin y'de meydana getireceği ortalama değişim $\hat{\beta}_1$ kadardır.
 - Parametreleri yorumlarken fonksiyonel forma dikkat edilmelidir.
- Benzer şekilde $\hat{\beta}_2$ 'nın yorumu: x_1 sabitken, yani $\Delta x_1 = 0$ iken

$$\Delta \hat{y} = \hat{\beta}_2 \Delta x_2$$

Regresyonun Yorumu: k Bağımsız Değişken

Model ve ÖRF

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (Model)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$
 (ÖRF)

$$\Delta \hat{y} = \hat{\beta}_1 \Delta x_1 + \hat{\beta}_2 \Delta x_2 + \dots + \hat{\beta}_k \Delta x_k$$
 (Değişim Cinsinden)

- Eğim paramtresi tahmincisi $\hat{\beta}_j$, bağımsız değişken x_j 'nin y üzerindeki yalın/kısmi yani ceteris paribus etkisini verir.
- $\hat{\beta}_j$ 'nın yorumu: diğer tüm bağımsız değişkenler $(x_1, x_2, \dots, x_{j-1}, x_{j+1}, \dots, x_k)$ sabitken, yani $\Delta x_1 = \Delta x_2 = \dots = \Delta x_{j-1} = \Delta x_{j+1} = \dots = \Delta x_k = 0$ iken

$$\Delta \hat{y} = \hat{\beta}_j \Delta x_j$$

- Diğer tüm bağımsız değişkenler $(x_1, x_2, \dots, x_{j-1}, x_{j+1}, \dots, x_k)$ sabitken, x_j 'de meydana gelen 1 birimlik değişmenin y'de meydana getireceği ortalama değişim $\hat{\beta}_j$ kadardır.
 - Parametreleri yorumlarken fonksiyonel forma dikkat edilmelidir.

Örnek: Üniversite Başarı Modeli

Üniversite Basarı Modeli (CDR)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \tag{ÖRF}$$

$$\widehat{colGPA} = 1.29 + 0.453 \, hsGPA + 0.0094 \, ACT$$
 (ÖRF)

n = 141 Öğrenci; colGPA: Üniversite genel not ortalaması (4 üzerinden); hsGPA: Lise not ortalaması; ACT: Genel vetenek sınav sonucu

- Kesim parametresi $\hat{\beta}_0 = 1.29$ olarak tahmin edilmiştir.
 - hsGPA = 0 ve ACT = 0 olduğunda modelce tahmin edilen üniversite genel not ortalaması colGPA'yı ifade eder. Ancak örneklemde hsGPA ve ACT'si 0 olan öğrenci olmadığından yorumlanması anlamsızdır.
- ACT'yi sabit tutarak lise not ortalaması hsGPA'yı 1 puan arttırdığımızda üniversite genel not ortalaması colGPA 0.453 puan artar.
- hsGPA'yı sabit tutarak genel yetenek sınav sonucu ACT'yi 1 puan arttırdığımızda üniversite genel not ortalaması colGPA 0.0094 puan artar.

Örnek: Üniversite Başarı Modeli

• Sadece genel yetenek sınav sonucu ACT'yi kullanarak basit regresyon tahmin etseydik:

Üniversite Basarı Modeli (BDR)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_2 x_2 \tag{ÖRF}$$

$$\widehat{colGPA} = 2.4 + 0.0271 ACT$$
 (ÖRF)

- ACT'nin paramatre tahmincisi $\hat{\beta}_2$ önceki çoklu regresyonda bulunandan 3 kat daha vüksek çıktı.
- Bu regresyon, bize lise not ortalaması (hsGPA) aynı olan iki öğrenciyi ortalama olarak karşılaştırma olanağı vermiyor fakat önceki regresyonda veriyordu.
- Lise not ortalaması hsGPA'yı kontrol ettiğimizde genel yetenek sınav sonucu ACT'nin üniversite genel not ortalaması colGPA üzerindeki önemi/etkisi azalıyor.

Örnek: Logaritmik Ücret Modeli

Logaritmik Ücret Modeli

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$
 (ÖRF)

$$\ln wage = 0.284 + 0.092 educ + 0.0041 exper + 0.022 tenure$$
 (ÖRF)

n=526 Çalışan; wage: Saatlik ücret (dolar); educ: Eğitim düzeyi (yıl); exper: Tecrübe düzeyi (yıl); tenure: Kıdem (yıl)

- Bağımlı değişken logaritmik ve bağımsız değişkenler düzey (log-düzey) olarak modelde yer aldığından paramtere tahmincileri 100 ile çarpılarak % olarak ceteris paribus yorumlanmalıdır.
- Örneğin, *exper* ve *tenure* sabit tutulduğunda *educ* bir yıl arttırılırsa *wage* ortalama olarak %9.2 (%0.092 × 100) artar.
- Başka bir ifadeyle, *exper* ve *tenure* düzeyleri aynı olan iki çalışandan birinin *educ* düzeyi diğerinden bir yıl fazlaysa, bu iki çalışan için tahmin edilen ücret farkı ortalama olarak %9.2'dir.
- Burada somut iki işçiden değil ortalama durumdan bahsedilmektedir.

Diğer Değişkenleri Sabit Tutmanın Anlamı

- ÇDR'de parametre tahmincilerini ceteris paribus koşulu altında bağımsız değişkenlerin *y* üzerindeki yalın/kısmi etkileri olarak yorumluyoruz.
- Örneğin, logaritmik ücret modelinde (Slayt 48) $\hat{\beta}_1 = 0.092$ olması, exper ve tenure düzeyleri aynı olan iki çalışandan birinin educ düzeyi 1 yıl fazla olanın ortalama olarak %9.2 daha yüksek ücret alacağı şeklinde yorumlanmıştı.
- Bu yorum, verinin bu şekilde toplandığı anlamına gelmez, yani exper ve tenure düzeyleri aynı olan işçiler özellikle seçilip veri toplanmamıştır.
 - Veri rassal seçilmiş 526 çalışana ait wage, educ, exper ve tenure bilgilerinden oluşuyor.
 - exper ve tenure düzeyi aynı olan çalışanları ayrıca gruplandırmıyoruz.
- Aslında elimizde *exper* ve *tenure* düzeyleri aynı olan çalışanlardan oluşan bir örneklem olsaydı, exper ve tenure bağımsız değişkenlerini modele koymaya gerek kalmazdı.
 - Fakat, bu durum uygulamada çoğunlukla mümkün değildir.
 - Ayrıca ÇDR analizinde yalın/kısmi yani ceteris paribus etki hesaplandığından zaten yukarıdaki gibi bir duruma gerek yoktur.

Birden Fazla Bağımsız Değişkeni Aynı Anda Değiştirmek

- Bazen bağımsız değişken x'lerden birkaçını aynı anda değiştirerek y'de meydana gelen ortalama değişimi ölçmek isteriz.
- Bazı durumlarda ise bağımsız değişken x'lerden biri değiştirildiğinde diğeri de otomatik olarak değisir.
- Örneğin, logaritmik ücret modelinde (Slayt 48) tenure 1 yıl arttırıldığında exper de otomatik olarak 1 yıl artar.

$$\Delta \widehat{\ln wage} = 0.284 \Delta e duc + 0.0041 \Delta exper + 0.022 \Delta tenure$$
 (Değişim Cins.)
= 0.0041 × 0 + 0.0041 × 1 + 0.0022 × 1
= 0.0261

- Burada 0.0261, educ sabit tutulduğunda tenure ve exper 1 yıl arttırılırsa ln waqe'de meydana gelen ortalama etkiyi belirtir.
 - Model log-düzey formunda olduğundan bulunan bu değer 100 ile çarpılarak % olarak ceteris paribus yorumlanmalıdır.
 - Yani, educ sabit tutulduğunda tenure ve exper 1 yıl arttırılırsa wage ortalama olarak %2.61 ($\%0.0261 \times 100$) artar.

Tahmin Edilen Değerler ve Kalıntılar

i'inci Gözlem İçin Tahmin Edilen \hat{y}_i Değeri

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i1} + \hat{\beta}_{2}x_{i2} + \dots + \hat{\beta}_{k}x_{ik} \tag{ÖRF}$$
Tahmin Edilen Değer

• x_{ij} değerlerini tahmin edilen regresyonda (ÖRF'de) yerine koyarsak tahmin edilen bağımsız değişken değerlerini yani \hat{y}_i 'yi elde ederiz.

Kalıntılar (Artıklar)

$$\hat{u}_i = y_i - \hat{y}_i$$
Kalıntı (Artık) Gözlenen Değer Tahmin Edilen Değer

- Gözlenen y_i değerleriyle tahmin edilen değerler \hat{y}_i arasındaki fark kalıntıları \hat{u}_i verir.
- $\hat{u}_i > 0$ ise $y_i > \hat{y}_i$, eksik tahmin yapılmıştır.
- $\hat{u}_i < 0$ ise $y_i < \hat{y}_i$, fazla tahmin yapılmıştır.

SEKK kalıntılarının toplamı ve dolayısıyla da örneklem ortalaması sıfıra eşittir.

$$\sum_{i=1}^{n} \hat{u}_i = 0 \quad \text{ve} \quad \bar{\hat{u}} = 0$$

- Bu durum SEKK birinci sıra koşullarından ilkinin (aynı zamanda örneklem moment koşullarından ilkinin) bir sonucudur. Bakınız Slayt 31.
- Anakütledeki hata terimleri u'nun örneklemdeki analoğu kalıntılar \hat{u} olarak yorumlanabilir fakat kesinlikle aynı şeyler değildir.

$$\underbrace{E(u) = 0}_{\text{Anakütle}} \longrightarrow \underbrace{u}_{\text{Örneklem}}$$

$$\underbrace{E(u) = 0}_{\text{Anakütle}} \longrightarrow \underbrace{E(\hat{u}) = 0}_{\text{Örneklem}}, \quad \underbrace{\bar{u}}_{\text{i} = 0} \quad \text{ve} \quad \bar{u} = 0$$

$$\underbrace{\bar{u}}_{\text{Anakütle}} \longrightarrow \underbrace{\bar{u}}_{\text{Orneklem}}$$

1 Bağımsız değişken x_i ile kalıntı terimleri \hat{u} arasındaki örneklem kovaryansı ve korelasyon katsayısı sıfırdır.

$$Cov(x_j, \hat{u}) = 0$$
 ve $Corr(x_j, \hat{u}) = 0$, $\forall j = 1, 2, ..., k$

- Bu durum diğer SEKK birinci sıra koşullarının (k tane) ve ayrıca diğer örneklem moment koşullarının (k tane) bir sonucudur. Bakınız Slayt 31.
- Bağımsız değişken x_i 'lerle kalıntı \hat{u} 'ların lineer olarak ilişkisizliği çıkarılabilir.

$$Cov(x_j, u) = 0$$
 ve $Corr(x_j, u) = 0$ \longrightarrow $E(x_j u) = 0$ (Anakütle)
 $Cov(x_i, \hat{u}) = 0$ ve $Corr(x_i, \hat{u}) = 0$ \longrightarrow $E(x_i \hat{u}) = 0$ (Örneklem)

$$\underbrace{E(x_{j}u) = 0}_{\text{Anakütle}} \longrightarrow \underbrace{E(x_{j}\hat{u}) = 0 \quad \text{ve} \quad \sum_{i=1}^{n} x_{ij}\hat{u}_{i} = 0}_{\text{Örneklem}}$$

1. ve 2. cebirsel özelliklerin bir sonucu olarak tahmin edilen değerler û ile kalıntı terimleri \hat{u} arasındaki örneklem kovaryansı ve korelasyon katsayısı sıfırdır.

$$Cov(\hat{y}, \hat{u}) = 0$$
 ve $Corr(\hat{y}, \hat{u}) = 0$

• Bu özellikten tahmin edilen değerler \hat{y} ile kalıntı terimleri \hat{u} 'ların lineer olarak ilişkisizliği çıkarılabilir.

$$\underbrace{Cov(\hat{y}, \hat{u}) = 0 \quad \text{ve} \quad Corr(\hat{y}, \hat{u}) = 0}_{\text{Örneklem}} \quad \longrightarrow \quad \underbrace{E(\hat{y}\hat{u}) = 0 \quad \text{ve} \quad \sum_{i=1}^{n} \hat{y}_{i}\hat{u}_{i} = 0}_{\text{Örneklem}}$$

Tahmin edilen \hat{y}_i değerlerinin ortalaması gözlenen y_i değerlerinin ortalamasına eşittir.

$$y_{i} = \hat{y}_{i} + \hat{u}_{i}$$

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} \hat{y}_{i} + \sum_{i=1}^{n} \hat{u}_{i}$$

$$n\bar{\hat{y}} = n\bar{y}$$

$$\bar{\hat{y}} = \bar{y}$$
(1. Cebirsel Özellik)

 $(\bar{x}_i, \bar{y}: j=1,2,\ldots,k)$ noktası daima ÖRF'den geçer (üzerine düşer).

$$(\bar{x}_j, \bar{y}: j=1,2,\ldots,k) \longrightarrow \bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + \cdots + \hat{\beta}_k \bar{x}_k + u$$

BDR ve CDR Tahminlerinin Karşılaştırılması

Basit vs. Çoklu Doğrusal Regresyon (2 Bağımsız Değişkenli) Tahmini

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{u}$$
 vs. $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{u}$

(Tahmin)

- Yukarıda verilen regresyonlar arasındaki temel fark, soldaki regresyonda (BDR'de) bağımsız değişken x_2 'nin modele dahil edilmemesidir.
- $\tilde{\beta}_1$ ve $\hat{\beta}_1$ arasındaki ilişki şu şekildedir: $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1$
- $\tilde{\delta}_1$, x_2 'nin x_1 üzerine uygulanan regresyondaki eğim parametresi tahminidir.
- Yukarıdaki regresyonlar genelde farklı sonuçlar verir.
- Ancak şu iki durumda eğim parametresi tahminleri $\tilde{\beta}_1$ ve $\hat{\beta}_1$ aynı olur.
 - x_2 'nin y üzerindeki yalın/kısmi etkisi sıfırdır, yani $\hat{\beta}_2 = 0$ 'dır.
 - Örneklemde x_1 ve x_2 lineer (doğrusal) olarak ilişkisizdir, yani $\tilde{\delta}_1 = 0$ 'dır.

BDR ve ÇDR Tahminlerinin Karşılaştırılması

BDR Bilgileri - Tahmin

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{u} \longrightarrow \tilde{\beta}_1 = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1) y_i}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$$

ÇDR (2 Bağımsız Değişkenli) Bilgileri - Tahmin

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{u} \longrightarrow \sum_{i=1}^n x_{i1} \hat{u}_i = 0 \quad \text{ve} \quad \sum_{i=1}^n \hat{u}_i = 0 \quad \text{(Ana Model)}$$

$$x_2 = \tilde{\delta}_0 + \tilde{\delta}_1 x_1 + \tilde{r}_2 \qquad \longrightarrow \quad \tilde{\delta}_1 = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1) x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$$
 (Yardımcı Model)

BDR ve ÇDR Tahminlerinin Karşılaştırılması

- Şimdi BDR'deki eğim parametresi tahmincisi $\tilde{\beta}_1$ 'nın verilen formülünü
 - ÇDR modelini
 - ÇDR modelinden elde ettiğimiz cebirsel özellikleri
 - Yardımcı modeldeki eğim parametresi tahmincisi $\tilde{\delta}_1$ 'nın verilen formülünü

kullanarak değiştirelim ve $\tilde{\beta}_1$ ve $\hat{\beta}_1$ arasındaki ilişkiyi bulalım.

$$\tilde{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) y_{i}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) (\hat{\beta}_{0} + \hat{\beta}_{1} x_{i1} + \hat{\beta}_{2} x_{i2} + \hat{u}_{i})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \frac{\hat{\beta}_{0} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) x_{i1}} + \frac{\hat{\beta}_{1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) \hat{u}_{i}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

BDR ve CDR Tahminlerinin Karşılaştırılması

$$\tilde{\beta}_{1} = \frac{\hat{\beta}_{0} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\hat{\beta}_{1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i1}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\hat{\beta}_{2} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \hat{\beta}_{1} + \hat{\beta}_{2} \underbrace{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}_{i=1} + \underbrace{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}_{i=1} + \underbrace{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}_{i=1}$$

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1$$

BDR ve ÇDR Tahminlerinin Karşılaştırılması

Şekil 1: x_1 'in y Üzerindeki Direkt ve Dolaylı Etkisi

k-1 vs. k Değişkenli ÇDR Tahminlerinin Karşılaştırılması

k − 1 vs. k Değişkenli Çoklu Doğrusal Regresyon Tahmini

$$y = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \dots + \tilde{\beta}_{k-1} x_{k-1} + \tilde{u}$$

VS.

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_{k-1} x_{k-1} + \hat{\beta}_k x_k + \hat{u}$$
 (Tahmin)

- Yukarıda verilen regresyonlar arasındaki temel fark, soldaki regresyonda bağımsız değişken x_k 'nin modele dahil edilmemesidir.
- $\tilde{\beta}_j$ ve $\hat{\beta}_j$ arasındaki ilişki şu şekildedir: $\tilde{\beta}_j = \hat{\beta}_j + \hat{\beta}_k \tilde{\delta}_j$
- $\tilde{\delta}_j, x_k$ 'nın x_j üzerine uygulanan regresyondaki eğim parametresi tahminidir.
- Yukarıdaki regresyonlar genelde farklı sonuçlar verir.
- Ancak şu iki durumda eğim parametresi tahminleri $\tilde{\beta}_i$ ve $\hat{\beta}_i$ aynı olur.
 - x_k 'nin y üzerindeki yalın/kısmi etkisi sıfırdır, yani $\hat{\beta}_k = 0$ 'dır.
 - Örneklemde x_j ve x_k lineer (doğrusal) olarak ilişkisizdir, yani $\tilde{\delta}_j = 0$ 'dır.

CDR Modeli: Tahmin

Karaler Toplamları (Sum of Squares)

• Her bir i gözlemi için gözlenen değer, tahmin edilen değer ve kalıntı arasındaki ilişki aşağıdaki gibi gösterilebilir.

$$y_i = \hat{y}_i + \hat{u}_i$$

Her iki tarafın örneklem ortalamalarından sapmalarının karesini alıp toplarsak

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} \left[(\hat{y}_i - \bar{y}) + (\hat{u}_i - \bar{u}) \right]^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} \left[(\hat{y}_i - \bar{y}) + \hat{u}_i \right]^2 \qquad (1. \text{ ve 4. Cebirsel Öz.})$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{u}_i^2 + 2 \sum_{i=1}^{n} \hat{u}_i \hat{y}_i - 2\bar{y} \sum_{i=1}^{n} \hat{u}_i \qquad (3. \text{ Cebirsel Öz.})$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} \hat{u}_i^2$$

Karaler Toplamları (Sum of Squares)

• Toplam Kareler Toplamı: SST (Total Sum of Squares) y'deki toplam değişkenliği verir.

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Var(y) = SST/(n-1) olduğuna dikkat edin.

• Açıklanan Kareler Toplamı: SSE (Explained Sum of Squares) modelce açıklanan kısımdaki, yani \hat{y} , değişkenliği verir.

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Kalıntı Kareleri Toplamı: SSR (Residual Sum of Squares) kalıntılardaki, yani \hat{u} , değişkenliği verir.

$$SSR = \sum_{i=1}^{n} \hat{u}_i^2$$

Karaler Toplamları (Sum of Squares)

• y'deki toplam değişkenlik aşağıdaki gibi yazılabilir.

$$SST = SSE + SSR$$

$$\underbrace{\sum_{i=1}^{n} (y_i - \bar{y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{SSE}} + \underbrace{\sum_{i=1}^{n} \hat{u}_i^2}_{\text{SSR}}$$

Uyum İyiliği (Goodness-of-fit)

• y'deki toplam değişkenlik denkleminin her iki tarafını SST'ye bölersek

$$SST = SSE + SSR$$

$$1 = \frac{SSE}{SST} + \frac{SSR}{SST}$$

 Açıklanan kısmın değişkenliğinin toplam değişkenlik içindeki payı regresyonun determinasyon (belirlilik) katsayısıdır ve R^2 ile gösterilir.

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- SSE hiçbir zaman SST'den büyük olamayacağı için $0 \le R^2 \le 1$
- ullet R^2 , u'deki değişkenliğin x tarafından açıklanan kısmının yüzdesini verir. Regresyonun açıklama gücü yükseldikçe R^2 , 1'e yaklaşır.
- R² modelin açıklama gücünü (ne kadar iyi fit edildiğini) belirttiği için bazen Uyum İyiliği olarak da adlandırılır.
- R^2 şu şekilde de hesaplanabilir: $R^2 = Corr(y, \hat{y})^2$

Uyum İyiliği (Goodness-of-fit)

Determinasyon katsayısı

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- Regresyona yeni bir bağımsız değişken x eklendiğinde R^2 her zaman artar (ya da çok nadir aynı kalır). Ya da başka bir deyişle SSE'nin her zaman artmasıdır.
- Örneğin daha önce verilen CDR Ücret Modeli'ne (Slayt 8) modelle alakasız bir değişken eklendiğinde dahi R^2 artacaktır.
 - Modele SSN adlı kişinin sosyal güvenlik numarasının son hanesini belirten yeni bir değişken eklediğimizi düşünelim.
 - Emek ekonomisine göre kişinin alacağı ücretin, SSN ile hiçbir ilişkisi yoktur.
 - Fakat SSN'nin modele eklenmesi matematiksel olarak R^2 değerini arttıracaktır.
- Bu nedenle yeni bir değişkenin modele olan katkısının belirlenmesinde ve ÇDR modellerinde modelin açıklama gücünün belirlenmesinde R^2 iyi bir ölçüt değildir.
- Bu sebeple CDR modellerinde düzeltilmiş R^2 yani \bar{R}^2 kullanılır.
- ullet detaylı olarak daha sonra incelenecektir. O zamana kadar modelin açıklama gücünü belirlemede R^2 değerini kullanacağız.

Uyum İyiliği (Goodness-of-fit): Örnek

Üniversite Basarı Modeli (CDR)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \tag{ÖRF}$$

$$\overline{colGPA} = 1.29 + 0.453 \, hsGPA + 0.0094 \, ACT$$
 (ÖRF)

$$n = 141, \quad R^2 = 0.176$$

- Determinasyon katsayısı 0.176 olarak tahmin edilmiştir.
- Üniversite genel not ortalaması *colGPA*'daki değişkenliğin yaklaşık %17.6'sı hsGPA ve ACT değişkenleriyle açıklanabilmektedir.
- Dışarıda bırakılan birçok faktör olduğundan üniversite genel not ortalaması colGPA'nın küçük bir kısmı açıklanabilmiştir.
- Üniversite genel not ortalaması *colGPA*'yı etkileyen bu modelde yer almayan başka birçok değişken olduğu unutulmamalıdır.

CDR.7: Sabit Varyans (Homoscedasticity)

u hata teriminin bağımsız değişken x'lere göre koşullu varyansı sabittir.

$$Var(u|x_1,x_2,\ldots,x_k)=\sigma^2$$

$$Var(u|\mathbf{x})=\sigma^2$$

$$Var(u)=\sigma^2$$
 (u ve x 'ler bağımsız olduğundan)

- Bu varsayımın sağlanmadığı duruma değişen varyans (heteroscedasticity) denir.
- Bu varsayım SEKK parametre tahmincilerinin varyanslarının ve standart hatalarının türetilmesinde ve etkinlik özelliklerinin belirlenmesinde kullanılır.
- Sapmasızlık için sabit varyans varsayımına ihtiyaç yoktur.
- Örneğin, ücret modelinde (Slayt 8) bu varsayım, model dışında bırakılan faktörler u'nun değişkenliğinin modele dahil edilen tüm bağımsız değişkenlere (educ ve exper) bağlı olmadığını söylemektedir.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

- σ^2 gözlenemeyen hata terimi u'nun varyansıdır. Bu nedenle σ^2 hata varyansı, σ ise regresyonun standart sapması olarak adlandırılır.
- *SST_i*, *x_i*'deki örneklem değişkenliğini ifade eder.
- R_i^2 ise x_j 'nin diğer tüm x değişkenlerine regresyonundan (kesim parametresi içeren) elde edilen belirlilik katsayısıdır.
- $Var(\hat{\beta}_i)$, σ^2 ile aynı yönde ilişkilidir. σ^2 'yi düşürmenin tek yolu güçlü bağımsız değişkenleri modele eklemektir.
- $Var(\hat{\beta}_i)$, SST_i ile ters yönde ilişkilidir. SST_i 'yi arttırmanın tek yolu gözlem sayısını arttırmaktır.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- $Var(\hat{\beta}_j)$, diğer tüm bağımsız değişken x'lerin x_j ile korelasyon düzeyini belirten R_j^2 terimine de bağlıdır.
 - R_i^2 arttıkça $Var(\hat{\beta}_j)$ sınırsız artar. Bakınız Şekil 2.
 - Limitte $R_j^2=1$ olduğunda varyans sonsuz olur (ayrıca $\hat{\beta}_j$ belirsiz olur). Ancak tam çoklu doğrusal bağıntının olmaması varsayımı (ÇDR.4) bu durumu engeller.
- Kısacası, bağımsız değişken x'lerin birbirleriyle doğrusal ilişki düzeyi (çoklu doğrusal bağıntının gücü) arttıkça SEKK parametre tahmincilerinin varyansı artar.
- Bu nedenle istenmeyen durum tam çoklu doğrusal bağıntı iken dikkat edilmesi durum ise çoklu doğrusal bağıntı gücünün yüksek olmasıdır.

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

• ÇDR için verilen yukarıdaki $Var(\hat{\beta}_i)$ formülü aynı zamanda tek bağımsız değişken içeren modeldeki (BDR) parametre tahmincilerinin varyans formülünün çıkartılmasında kullanılabilir.

$$y = \beta_0 + \beta_1 x_1 + u$$
 (Model)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1$$
 (ÖRF)

$$x_1 = \hat{\alpha}_0 + \hat{r}_1, \quad R_1^2 = 0$$
 (1. Yardımcı Regresyon Tahmini)

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_1(1 - R_1^2)} = \frac{\sigma^2}{SST_1} \longrightarrow Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_x} = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2}$$

Teorem: $\hat{\beta}_i$ 'ların Varyansları

Gauss-Markov varsayımları (ÇDR.1 - ÇDR.7) altında

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

- Hata terimi u gözlenemediği için hata varyansı σ^2 bilinmez.
- Bu nedenle, SEKK parametre tahmincilerinin varyansı $Var(\hat{\beta}_i)$ 'ların tahmini için öncelikle hata varyansı σ^2 'nin tahmin edilmesi gerekir.
- nedenle, σ^2 'nin de aynı şekilde sapmasız tahmin edilmesi gerekir.

Hata Varyansı σ^2

ÇDR.5 varsayımı altında hata varyansı σ^2 aşağıdaki gibi yazılabilir.

$$Var(u) = \sigma^2 = E(u^2) - \underbrace{E(u)^2}_{= 0 \text{ (CDR.5)}}$$
 (Varyans Formülü)
$$\sigma^2 = E(u^2)$$

•
$$\sigma^2$$
'nin sapmasız tahmincisi hata terimi u 'nun örneklem ortalaması $n^{-1}\sum_{i=1}^{n}u_i^2$ 'dır.

- Fakat, hata terimi u gözlenemediği için σ^2 'nin tahmininde hata terimi u'nun yerine onun örneklem analoğu olan kalıntı \hat{u} kullanılır. $n^{-1}\sum_{i=1}^n u_i^2 \longrightarrow n^{-1}\sum_{i=1}^n \hat{u}_i^2$
- Fakat $n^{-1}\sum_{i=1}^n \hat{u}_i^2$ sapmalı bir tahmincidir. Bu nedenle, σ^2 'nin sapmasız tahmincisini hesaplamak için BDR'de yaptığımız gibi bu değerin serbestlik derecesi kullanılarak düzeltilmesi gerekir.

Teorem: Hata Varyansı σ^2 'nin Sapmasız Tahmini

Gauss–Markov varsayımları (ÇDR.1 - ÇDR.7) altında hata varyansı σ^2 'nin sapmasız bir tahmincisi:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \hat{u}_i^2}{n - k - 1} = \frac{SSR}{n - k - 1}$$

- Serbestik derecesi (bağımsız bilgi sayısı) $\longrightarrow s.d. = n (k + 1) = n k 1$
 - Serbestlik derecesi SEKK birinci sıra koşullarından (k+1 tane) gelmektedir. Bu koşullar kalıntı \hat{u} 'nın üzerine k+1 tane kısıt koyar.
 - n tane kalıntıdan n-(k+1) tanesi biliniyorsa geriye kalan k+1 kalıntı otomatik olarak bilinecektir. Bu nedenle kalıntıların serbestlik derecesi n-k-1'dir.
- $\hat{\sigma}$ regresyonun standart sapması σ 'nın bir tahmincisidir ve regresyonun standart hatası ya da ortalama karesel hata olarak adlandırılır.
- Regresyona yeni bir bağımsız değişken eklendiğinde $\hat{\sigma}$ azalabilir ya da artabilir.
 - Modele yeni bir bağımsız değişken eklendiğinde SSR düşecektir fakat aynı zamanda serbestklik dereceside 1 düşecektir. SSR payda, serbestlik derecesi ise paydada olduğundan hangi değişimin daha fazla etkiye sahip olduğunu kestiremeyiz.

• $\hat{\sigma}^2$ tahmin edildikten sonra $Var(\hat{\beta}_i)$ 'nın formülünde yerine koyulup $Var(\hat{\beta}_i)$ 'nın sapmsız bir tahmincisi hesaplanabilir.

$\hat{\beta}_i$ 'ların Varyans Tahminleri

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)} \longrightarrow \widehat{Var(\hat{\beta}_j)} = \frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- Genelde, $Var(\hat{\beta}_i)$ ve $Var(\hat{\beta}_i)$ arasındaki ayrım yazımda net olarak gösterilmez.
 - $\hat{\beta}_i$ 'ların varyans tahmini denildiğinde $Var(\hat{\beta}_i)$ kastedilmesine rağmen yazıdaki gösterimde genelde $Var(\hat{\beta}_i)$ kullanılır.
 - Bu derste aynı yolu izleyip $\hat{\beta}_i$ 'ların varyans tahminini $Var(\hat{\beta}_i)$ ile göstereceğiz.

$$Var(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

$\hat{\beta}_i$ 'ların Standart Sapmaları (sd)

$$sd(\hat{\beta}_j) = \sqrt{Var(\hat{\beta}_j)} \longrightarrow sd(\hat{\beta}_j) = \frac{\sigma}{\sqrt{SST_j(1 - R_j^2)}}, \quad \forall j = 1, 2, \dots, k$$

$\hat{\beta}_j$ 'ların Standart Hataları (se)

$$se(\hat{\beta}_j) = \sqrt{\widehat{Var(\hat{\beta}_j)}} \longrightarrow se(\hat{\beta}_j) = \frac{\hat{\sigma}}{\sqrt{SST_j(1 - R_j^2)}}, \quad \forall j = 1, 2, \dots, k$$

- $se(\hat{\beta}_j)$ güven aralıklarının hesaplanmasında ve hipotez testlerinde kullanılır.
 - $se(\hat{\beta}_j)$ direkt olarak $\hat{\sigma}$ 'ya bağlı olduğundan aynen SEKK parametre tahmincileri $\hat{\beta}_j$ 'lar gibi $se(\hat{\beta}_j)$ 'nın da örneklem dağılımı vardır ve örneklemden örnekleme değişir.
 - $se(\hat{\beta}_j)$, ÇDR.7 (sabit varyans) varsayımına dayanan $Var(\hat{\beta}_j)$ formülünden türetildiği için ÇDR.7 varyasımının sağlanmaması durumunda, yani değişen varyans varsa, $Var(\hat{\beta}_i)$ ve $se(\hat{\beta}_i)$ tahminleri sapmalı olur.
 - Değişen varyans durumunda SEKK parametre tahmincilerinin varyansları geçersizdir ve bu nedenle düzeltilmeleri gerekir.

SEKK Parametre Tahmincilerinin Sapmasızlığı

Teorem: SEKK Parametre Tahmincilerinin Sapmasızlığı

CDR.1 - CDR.5 varsayımları altında SEKK parametre tahmincileri sapmasızdır.

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

- Sapmasızlık, SEKK parametre tahmincilerinin örneklem dağılımlarının ortalamasının (beklenen değerinin) bilinmeyen anakütle parametrelerine eşit olduğunu söyler.
- İlerleyen slaytlarda sapmasızlık için gerekli olan varsayımların bazıları hakkındaki detaylar verilmiştir.

CDR.1: Gözlem Sayısı

Gözlem sayısı n tahmin edilecek anakütle parametre sayısından büyük ya da en azından eşit olmalıdır.

$$n \ge k + 1$$

ÇDR.2: Parametrelerde Doğrusallık

Model parametrelerde doğrusaldır.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u \checkmark$$

$$y = \beta_0 + \beta_1^2 x_1 + \beta_2 x_2 + u \checkmark$$

$$y = \beta_0 + \beta_1 x_1 + \sqrt{\beta_2} x_2 + u \checkmark$$

Doğrusal Parametre Tahmincileri

 $\hat{\beta}_i$ parametre tahmincisi aşağıdaki gibi yazılabiliyorsa doğrusaldır.

$$\hat{\beta}_j = \sum_{i=1}^n w_{ij} y_i, \quad \forall j = 1, 2, \dots, k$$

- Burada w_{ij} tüm bağımsız değişken x'lerin bir fonksiyonudur.
- SEKK parametre tahmincileri aşağıdaki gibi yazılabildiğinden doğrusaldır:

$$\hat{\beta}_{j} = \frac{\sum_{i=1}^{n} \hat{r}_{ij} y_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}} = \sum_{i=1}^{n} w_{ij} y_{i}, \quad \text{burada} \quad w_{ij} = \frac{\hat{r}_{ij}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$

• \hat{r}_{ij}, x_j 'nin tüm diğer bağımsız değişkenler üzerine regresyonundan elde edilen kalıntı terimidir.

CDR.3: Rassallık

Tahminde kullanılan n tane gözlem ilgili anakütleden rassal örnekleme yoluyla seçilmiştir. Yani gözlemler stokhastiktir (rassal), deterministik (kesin) değil.

$$\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i) : i = 1, 2, \dots, n\}$$

CDR.4: Tam Çoklu Doğrusal Bağıntının Olmaması

Örneklemde (ve bu nedenle anakütlede) bağımsız değişkenlerin hiçbiri kendi içinde sabit değildir (yeterli değişenlik vardır) ve bağımsız değişkenler arasında tam çoklu doğrusal bağıntı (TÇDB) yoktur.

$$\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 > 0, \quad \forall j = 1, 2, \dots, k$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow x_2 = 2x_1$$
 TÇDB VAR **X**

$$\longrightarrow$$
 $x_2 = x_1^2$ TÇDB YOK \checkmark

ÇDR.4: Tam Çoklu Doğrusal Bağıntının Olmaması

Bu varsayım bağımsız değişken x'ler arasında tam doğrusal bir ilişkinin olmaması gerektiğini söyler. Herhangi bir x diğer x'lerin lineer bir kombinasyonu olarak yazılamaz. Yani x'ler arasındaki korelasyon katsayısı 1 olamaz.

- ÇDR.4 varsayımı bağımsız değişken x'lerin arasındaki non-lineer ilişki hakkında hicbir kısıtlamada bulunmaz.
- CDR.4 varsayımı bağımsız değişken x'lerin doğrusal ilişkili olmasına izin verir. Fakat izin verilmeyen tek durum tam doğrusal ilişkinin olmamasıdır.
- x'ler tam ilişkili olursa SEKK parametre tahmincilerinin hesaplanması matematiksel olarak mümkün olmaz (parametre tahmincileri belirsiz olur).
- Bu varsayıma göre bağımsız değişkenler doğrusal ilişkili olabilirler. Zaten, x'ler arasında doğrusal ilişkiye (1'den düşük korelasyona) izin vermezsek ÇDR'den istediğimiz faydayı alamayız.
- Örneğin, sınav başarı modelinde (Slayt 9) ortalama aile geliri avqinc ve öğrencinin eğitim harcaması expend arasında ilişki olduğunu bilerek bu değişkenleri modele sokuyoruz. Amaç ortalama aile geliri avqinc'i kontrol etmektir.

CDR.5: Sıfır Kosullu Ortalama

$$E(u|\mathbf{x}) = E(u) = 0$$

$$Cov(x_j, u) = 0$$
, $Corr(x_j, u) = 0$ ve $E(x_j u) = 0$, $\forall j = 1, 2, ..., k$

Sonuç: u ve x_i bağımsızdır. Yani u ve x_i hem lineer hem de non-lineer olarak ilişkisizdir.

- CDR.5 varsayımı hata terimi u'nun bağımsız değişken x'lerle ilişkisiz olduğunu, yani x'lerin kesin dışsal (exogenous) olduğunu, söyler.
- Eğer *u*, *x*'lerden biriyle ilişkiliyse, yani ÇDR.5 sağlanmazsa, SEKK parametre tahmincileri sapmalı olur. Bu durumda tahmin sonuçları güvenilir olmaz.
- CDR.5 varsayımının sağlanmadığı durumlar nelerdir?
 - Modelin fonksiyon kalıbının yanlış kurulması (functional form misspecification)
 - Önemli bir değişkenin model dışında bırakılması (omitted variable)
 - Bağımsız değişkenlerde yapılan ölçme hataları (measurement error)
- CDR.5 varsayımı sağlanmıyorsa içsel değişkenler (endogenous variables), yani içsellik, söz konusudur.

SEKK Parametre Tahmincilerinin Etkinliği

Teorem: SEKK Parametere Tahmincilerinin Etkinliği

CDR.6 - CDR.7 varsayımları altında SEKK parametre tahmincileri etkindir.

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- SEKK paramatre tahmincileri $\hat{\beta}_i$ 'ların etkin olması en küçük/minimum varyanslı olması anlamına gelir.
- Küçük varyans ve dolayısıyla küçük standart hata $se(\hat{\beta}_i)$ istenen bir özelliktir.
 - Küçük varyansa sahip parametre tahmincileri $\hat{\beta}_i$ 'ların farklı örneklemlerde elde edilen değerleri gerçek parametre β_i değerinden (beklenen değeri) çok fazla uzaklaşmaz, yani ortalamadan sapma azdır.
 - ullet Bu nedenle küçük varyansa sahip parametre tahmincileri \hat{eta}_i 'lar daha hassas bir tahmin verir.
 - Küçük standart hata $se(\hat{\beta}_i)$ 'ya sahip ve dolayısıyla daha hassas olan $\hat{\beta}_i$ 'ların güven aralıklarının hesaplanmasında ve hipotez testlerinin yapılmasında daha kesin istatistiki sonuçlara varabiliriz.

Gauss-Markov Teoremi

Gauss-Markov Teoremi

CDR.1 - CDR.7 varsayımları altında SEKK parametre tahmincileri, tüm doğrusal sapmasız tahminciler arasında etkin/en iyi (minimum varyanslı) olanlarıdır.

Başka bir ifadeyle, CDR.1 - CDR.7 varsayımları altında SEKK parametre tahmincileri $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ anakütle parametreleri $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ 'nın **D**oğrusal En İyi Sapmasız Tahmin Edicileridir (DESTE ya da BLUE—Best Linear Unbiased Estimator).

- Gauss-Markov Teoremi regresyon modelinin SEKK yöntemiyle tahmini için teorik dayanak sağlar.
- Eğer bu varsayımlar sağlanıyorsa SEKK yöntemi dışında başka bir tahmin yöntemine başvurmamıza gerek yoktur. SEKK yöntemi bize doğrusal, sapmasız ve varyansı en düşük (en iyi) tahmincileri vermektedir.
- CDR.1 CDR.7 varsayımlarından biri bile ihlal edilirse Gaus-Markov Teoremi gecersiz olur.
- ÇDR.5 sağlanmazsa SEKK parametre tahmincilerinin sapmasızlık özelliği, ÇDR.6 ve ÇDR.7 sağlanmazsa etkinlik özelliği kaybolur.

Gauss-Markov Teoremi

Carl Friedrich Gauss (1777-1855) Kaynak: Wikipedia

Andrey Markov (1856-1922) Kaynak: Wikipedia

Orijinden Geçen Regresyon

Orijinden Geçen Regresyon

Bazen Ekonomi Teorisi, kesim parametresi β_0 'ın sıfır olması gerektiğini söyler. Böyle bir durumda β_0 modelden çıkartılarak tahmin yapılır.

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (Model)

$$\tilde{y} = \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \dots + \tilde{\beta}_k x_k$$
 (ÖRF)

- Orijinden geçen regresyonda
 - Parametre tahmincileri $\tilde{\beta}_1, \tilde{\beta}_2, \dots, \tilde{\beta}_k$ ların, kesim parametresi β_0 in bulunduğu regresyondaki $\hat{\beta}_1, \hat{\beta}_2, \dots, \hat{\beta}_k$ 'lardan farklı değerler alacağı unutmulmamalıdır.
 - x'ler 0 olduğunda tahmin edilen y değeri (\hat{y}) 0'dır.
 - Cebirsel özellikler geçersizdir.
 - R^2 negatif çıkabilir, yani y'nin örneklem ortalaması (\bar{y}) y'deki değişkenliği açıklamada modeldeki bağımsız değişken x'lerden daha başarılıdır.
 - R^2 negatif ise, $R^2 = 0$ kabul edilir ya da regresyona kesim parametresi eklenerek tahmin yapılır.

Orijinden Geçen Regresyon

Orijinden Geçen Regresyon

Bazen Ekonomi Teorisi, kesim parametresi β_0 'ın sıfır olması gerektiğini söyler. Böyle bir durumda β_0 modelden çıkartılarak tahmin yapılır.

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$
 (Model)

$$\tilde{y} = \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2 + \dots + \tilde{\beta}_k x_k \tag{ÖRF}$$

- Gerçekte (ARF'de) kesim parametresi β_0 sıfırdan farklı olmasına ($\beta_0 \neq 0$) rağmen orijinden geçen regresyon tahmin edilirse eğim parametresi tahmincileri sapmalı olur. $\longrightarrow E(\tilde{\beta}_i) \neq \beta_i$
- Gerçekte (ARF'de) kesim parametresi β_0 sıfır olmasına ($\beta_0 = 0$) rağmen sıfır değilmiş gibi regresyona dahil edilirse eğim parametresi tahmincilerinin varyansları yükseltir. $\longrightarrow Var(\hat{\beta}_i) \uparrow$
- Gözlem sayısı *n* arttırılarak parametre tahmincilerinin varyansları düşürülebilirken sapmalı parametre tahminci probleminden kurtulamayız. Bu nedenle uygulamada genelde kesim parametresi β_0 direkt olarak modele eklenir.

Modele Gereksiz Bağımsız Değişken Eklenmesi

- Modele gerekli olmadığı halde bir bağımsız değişken x eklersek SEKK parametre tahmincileri $\hat{\beta}$ 'lar ve onların varyansları bundan nasıl etkilenir?
- Modele gereksiz bir bağımsız değişken x'in eklenmesi ARF'de bu değişkenin yalın/kısmi etkisinin sıfır olduğu anlamına gelmektedir.
- Yani, model fazla kurulmuştur (overspecification).
- Örneğin, aşağıdaki doğru modelin bilinmediğini ve bağımsız değişken x₃'ü modele gereksiz yere ekleyerek yanlış modelin kullanıldığını düşünelim.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 (Doğru Model)
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$ (Yanlış Model)

- Yanlış modelin ÇDR.1 ÇDR.7 varsayımlarını sağladığını varsayalım.
- x_3 'ün yalın/kısmi etkisi sıfır olmasına ($\beta_3 = 0$) rağmen modele koyulduğunda, yani yanlış model kullanıldığında ARF aşağıdaki gibi olur.

$$E(y|x_1, x_2, x_3) = E(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 (ARF)

• Bu ARF'nin bilinmediğini ve araştırmacının modele x_3 'ü katsayısı sıfır ($\beta_3 = 0$) olduğu halde eklediğini varsayıyoruz.

Modele Gereksiz Bağımsız Değişken Eklenmesi

• Bu durumda ÖRF aşağıdaki gibi yazılabilir.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$
 (ÖRF)

• SEKK parametre tahmincileri hala sapmasızdır. Bu sonuç Slayt 78'de verilen teorem ve ek bilgi yardımıyla kolayca çıkarılabilir.

$$E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1, \quad E(\hat{\beta}_2) = \beta_2, \quad E(\hat{\beta}_3) = 0$$

- Gereksiz eklenen bağımsız değişken x_3 'ün katsayısının doğru değeri sıfırdır. $\hat{\beta}_3$ 'nın kendisi hiçbir zaman sıfır olmayacak olsa da, x_3 değişkenin bir açıklayıcılığı olmadığından tahmincisinin beklenen değeri de 0 olacaktır.
- Modele gereksiz bir bağımsız değişkenin eklenmesi durumda SEKK parametre tahmincileri hala sapmasız olsa da parametre tahmincilerinin varyansları yükselir.
 - Modele yeni bağımsız değişken x_j eklenince R_j^2 artacağından $Var(\hat{\beta}_j)$ de artar.

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

- Modelede yer alması gerektiği halde bir bağımsız değişken x'i modelden dışlarsak SEKK parametre tahmincileri $\hat{\beta}$ 'lar ve onların varyansları bundan nasıl etkilenir?
- Gerekli bir bağımsız değişken x'in modelden dışlanması ARF'de bu değişkenin yalın/kısmi etkisinin sıfır olmadığı anlamına gelmektedir.
- Yani, model eksik kurulmuştur (underspecification).
- Örneğin, CDR.1 CDR.7 varsayımlarının sağlandığı doğru modelin x_1 ve x_2 bağımsız değişkenlerini içerdiğini varsayalım.
- Fakat, araştırmacının bağımsız değişken x_2 'yi gözleyemediği için model dışında bırakıp yanlış modeli tahmin ettiğini düşünelim.
- Eğer x₂'yi modele doğrudan sokmazsak (yanlış modeli kullanırsak), onu yanlış modeledeki hata teriminin (ν) içine almış oluruz.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 (Doğru Model)
 $y = \beta_0 + \beta_1 x_1 + v$ (Yanlış Model)
 $v = \beta_2 x_2 + u$ (Yanlış Model Hata Terimi)

 Doğru ve yanlış modelden elde edeceğimiz tahminler farklı olacağından, modeller ve onların ÖRF'leri aşağıdaki gibi gösterilebilir.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$
 (Doğru Model ve ÖRF)
 $y = \beta_0 + \beta_1 x_1 + v \longrightarrow \tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$ (Yanlış Model ve ÖRF)
 $v = \beta_2 x_2 + u$ (Yanlış Model Hata Terimi)

- Yanlış model tahmin edildiğinde x_1 'in eğim paramteresi β_1 'in parametre tahminicisi $\tilde{\beta}_1$ hala sapmasız mıdır?
- Yanlış modelde β_1 'in parametre tahminicisi $\tilde{\beta}_1$:

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1) y_i}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$$

• $\tilde{\beta}_1$ 'nın sapmalı bir tahminci olup olmadığını ve eğer sapmalı ise sapmanın boyutunu belirlemek için β_1 formülünde y yerine doğru modeli yazıp, yeniden düzenleyelim.

$$\tilde{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) y_{i}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} = \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) (\beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2} + u)}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

$$= \frac{\beta_{0} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\beta_{1} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) x_{i1}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\beta_{2} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1}) u_{i}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$$

• $ilde{eta}_1$ 'nın yeniden düzenlenen formülü aşağıdaki gibi olacaktır.

$$\tilde{\beta}_1 = \beta_1 + \frac{\beta_2 \sum_{i=1}^{n} (x_{i1} - \bar{x}_1) x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1) u_i}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$$

• $\tilde{\beta}_1$ 'nın yeniden düzenlenen formülünün tüm x'lere (**x**) göre koşullu beklenen değerini alalım.

$$E(\tilde{\beta}_{1}|\mathbf{x}) = E(\beta_{1}|\mathbf{x}) + E\left(\frac{\beta_{2} \sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} \middle| \mathbf{x} \right) + E\left(\frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})u_{i}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} \middle| \mathbf{x} \right)$$

$$= \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} + \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} \left(\frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})u_{i}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}\right)$$

• $\tilde{\beta}_1$ 'nın tüm x'lere (**x**) göre koşullu beklenen değeri aşağıdaki gibi olacaktır.

$$E(\tilde{\beta}_1|\mathbf{x}) = \beta_1 + \beta_2 \frac{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)x_{i2}}{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$$

• β_2 'nin yanında yer alan terim x_2 'nin x_1 üzerine regresyonundan (yardımcı model) elde edilen eğim parametresi tahmincisi $\tilde{\delta}_1$ 'dir.

$$x_2 = \tilde{\delta}_0 + \tilde{\delta}_1 x_1 + \tilde{r}_2 \longrightarrow \tilde{\delta}_1 = \frac{\sum_{i=1}^n (x_{i1} - \bar{x}_1) x_{i2}}{\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2}$$
 (Yardımcı Model Tahmini)

• SEKK parametre tahmincilerinin sapmasızlığı tüm x'lere (\mathbf{x}) göre koşullu hesaplanmasına rağmen genelde koşulsuz olarak gösterilir. Böylece, $\tilde{\beta}_1$ 'nın beklenen değeri aşağıdaki gibi olur.

$$E(\tilde{\beta}_1|\mathbf{x}) = \beta_1 + \beta_2 \tilde{\delta}_1 \longrightarrow E(\tilde{\beta}_1) = \beta_1 + \beta_2 \tilde{\delta}_1$$

Şekil 3: x_1 'in y Üzerindeki Direkt ve Dolaylı Etkisi

• $E(\tilde{\beta}_1)$ ve β_1 arasındaki farka **dışlanmış değişken sapması** (omitted variable bias) adı verilir.

$$E(\tilde{\beta}_1) = \beta_1 + \beta_2 \tilde{\delta}_1 \longrightarrow sapma = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$$

- Şu iki durumda sapma 0, yani $\tilde{\beta}_1$ sapmasız, olur.
 - x_2 'nin y üzerindeki yalın/kısmi etkisi sıfırdır, yani $\beta_2 = 0$ 'dır. Doğru modelde bağımsız değişken x2 bulunmamalıdır.
 - x_1 ve x_2 lineer (doğrusal) olarak ilişkisizdir, yani $\tilde{\delta}_1 = 0$.
- Sapmanın işareti hem β_2 'ye hem de dışlanan bağımsız değişken x_2 ile modele dahil edilen değişken x_1 arasındaki korelasyona, yani $Corr(x_1, x_2) = \tilde{\delta}_1$, bağlıdır.
- Dışlanan bağımsız değişken x₂ gözlenemiyorsa bu korelasyon hesaplanamaz.
- Aşağıdaki tablo sapmanın yönüne ilişkin dört olası durumu özetlemektedir.

	$ ilde{\delta}_1$	
$oldsymbol{eta}_2$	$\tilde{\delta}_1 > 0$	$\tilde{\delta}_1 < 0$
$\beta_2 > 0$	Pozitif Sapma	Negatif Sapma
$\beta_2 < 0$	Negatif Sapma	Pozitif Sapma
Notlar: Ca	$arr(x_1, x_2) = \tilde{\delta}_1$	

Notlar: $Corr(x_1, x_2) = \delta_1$

$$sapma = E(\tilde{\beta}_1) - \beta_1 = \beta_2 \tilde{\delta}_1$$

- Sapmanın işaretinin yanı sıra boyutu da önemlidir. Sapmanın boyutu hem $\tilde{\delta}_1$ 'ya hem de β_2 'ye bağlıdır.
- β₁'in büyüklüğüne kıyasla küçük bir sapma uygulamada sorun yaratmayabilir. Örneğin, anakütle eğim parametresi β_1 'ın değeri 8.6 iken tahmin sonucunda elde edilen sapma 0.1 ise.
- Uygulamada, β_2 bilinmeyen anakütle parametresi olduğundan sapmanın büyüklüğünü hesaplamak çoğunlukla mümkün olmaz.
- Buna rağmen bazı durumlarda sapmanın yönü/işareti hakkında bir fikir elde edebiliriz.
- Örneğin, bağımsız değişken x_2 'yi gözleyemediğimize rağmen
 - x_2 'nin y üzerindeki yalın/kısmi etkisinin yönünü, yani β_2 'nin işaretini
 - x_1 ve x_2 arasındaki lineer ilişkinin yönünü, yani $\tilde{\delta}_1$ 'nin işaretini bildiğimizi düşünelim.
- Bu durumda sapmanın yönü/işareti hakkında yorumda bulunabiliriz.
 - $E(\tilde{\beta}_1) > \beta_1$ ise $\tilde{\beta}_1$ 'da **yukarı sapma** vardır.
 - $E(\tilde{\beta}_1) < \beta_1$ ise $\tilde{\beta}_1$ 'da **asağı sapma** vardır.

- Örneğin, ücreti açıklamak doğru modelin hem eğitim (educ) hem de doğuştan gelen yetenek (ability) bağımsız değişkenlerini içerdiğini düşünelim.
- Yetenek (ability) bağımsız değişkenini gözleyemediğimiz için model dışında bırakıp yanlış modeli tahmin ettiğimizi düşünelim.

$$wage = \beta_0 + \beta_1 educ + \beta_2 ability + u \qquad \text{(Doğru Model)}$$

$$wage = \beta_0 + \beta_1 educ + v \longrightarrow \widetilde{wage} = \tilde{\beta}_0 + \tilde{\beta}_1 educ \quad \text{(Yanlış Model ve \"ORF)}$$

$$v = \beta_2 ability + u \qquad \text{(Yanlış Model Hata Terimi)}$$

$$ability = \tilde{\delta}_0 + \tilde{\delta}_1 educ + \tilde{r}_{ability} \qquad \text{(Yardımcı Model Tahmini)}$$

- Yanlış model tahmin edildiğinde, educ'e ait eğim parametresi tahmincisi $\tilde{\beta}_1$ 'deki sapmanın işaretinin pozitif olacağı söylenebilir. Çünkü,
 - Yetenek (*ability*) ücretlerle (*wage*) pozitif ilişkilidir, yani $\beta_2 > 0$ 'dır.
 - Eğitimli (educ) insanlar daha yetenekli (ability) olma eğilimindedir, yani $\tilde{\delta}_1 > 0$ 'dır.

$$sapma = E(\tilde{\beta}_1) - \beta_1 = \underbrace{\beta_2}_{\tilde{\delta}_1}$$

• $E(\tilde{\beta}_1) > \beta_1$ olduğundan $\tilde{\beta}_1$ 'da **yukarı sapma** vardır.

$$wage = \beta_0 + \beta_1 e duc + \beta_2 ability + u$$
 (Doğru Model)
 $wage = \beta_0 + \beta_1 e duc + v \longrightarrow wage = \tilde{\beta}_0 + \tilde{\beta}_1 e duc$ (Yanlış Model ve ÖRF)
 $v = \beta_2 ability + u$ (Yanlış Model Hata Terimi)
 $ability = \tilde{\delta}_0 + \tilde{\delta}_1 e duc + \tilde{r}_{ability}$ (Yardımcı Model Tahmini)

- Yetenek (*ability*) ve eğitim (*educ*) yakından ilişkili, $\tilde{\delta}_1 \neq 0$, olduğundan yanlış model kullanıldığında:
 - educ ile v ilişkili olacaktır. $\longrightarrow Corr(educ, v) \neq 0$
 - CDR.5 varsayımı ihlal edilecektir. $\longrightarrow E(v|educ) \neq 0$
 - $\tilde{\beta}_1$ sapmalı tahmin edilecektir. $\longrightarrow E(\tilde{\beta}_1) \neq \beta_1$

Sonuç olarak bağımsız değişken educ içseldir.

• Yeteneğin dışlanıp yanlış modelin kullanılması durumunda, eğitimin ücret (wage) üzerindeki etkisi, yani $\tilde{\beta}_1$, abartılı tahmin edilir. Yani, aslında yanlış modeldeki eğitimin etkisinin bir kısmı doğuştan gelen yeteneğe bağlıdır.

- Daha fazla bağımsız değişken içeren modellerde gerekli bir değişkenin model dışında bırakılması SEKK parametre tahmincilerinin genellikle sapmalı olmasına neden olur.
- Doğru modelin aşağıdaki gibi olduğunu varsayalım.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$
 (Doğru Model)

x₃'ü dışarıda bırakarak aşağıdaki yanlış modeli tahmin ettiğimizi düşünelim.

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \tilde{\beta}_2 x_2$$
 (Yanlış Model - ÖRF)

- x_3 'ün, x_1 ile lineer ilişkili fakat x_2 ile lineer ilişkisiz olsun. Eğer,
 - x_1 ve x_2 lineer ilişkili ise, bu durumda $\tilde{\beta}_1$ ve $\tilde{\beta}_2$ sapmalı olur.
 - x_1 ve x_2 lineer ilişkisiz ise, bu durumda $\tilde{\beta}_1$ sapmalı fakat $\tilde{\beta}_2$ sapmasız olur.

$$\begin{array}{c} Corr(x_3, x_1) \neq 0 \\ Corr(x_3, x_2) = 0 \\ Corr(x_1, x_2) \neq 0 \end{array} \right\} E(\tilde{\beta}_1) \neq \beta_1 \quad \text{vs.} \qquad \begin{array}{c} Corr(x_3, x_1) \neq 0 \\ Corr(x_3, x_2) = 0 \\ Corr(x_1, x_2) = 0 \end{array} \right\} E(\tilde{\beta}_1) \neq \beta_1 \\ Corr(x_1, x_2) = 0 \end{array}$$

Model Seçimi: Sapmasızlık vs. Küçük Varyans

- Modele bir bağımsız değişkenin eklenip eklenmemesi kararı SEKK parametre tahmincilerinin sapması ve varyansındaki değişim karşılaştırılarak verilmelidir.
- Olası modeller ve onların ÖRF'lerinin aşağıdaki gibi olduğunu varsayalım.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \qquad (1. \text{ Model ve \"ORF})$$

$$y = \beta_0 + \beta_1 x_1 + v \longrightarrow \tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \qquad (2. \text{ Model ve \"ORF})$$

$$v = \beta_2 x_2 + u \qquad (2. \text{ Model Hata Terimi})$$

$$x_2 = \tilde{\delta}_0 + \tilde{\delta}_1 x_1 + \tilde{r}_2 \qquad (\text{Yardımcı Model Tahmini})$$

- Bağımsız değişkenler genellikle lineer olarak ilişkili olduğundan, x_1 ve x_2 'in de lineer ilişkili, yani $Corr(x_1, x_2) = \tilde{\delta}_1 \neq 0$ olduğunu varsayalım.
- 1. model tahmininden elde edilen $\hat{\beta}_1$ eğer,
 - $\beta_2 = 0$ ise, bağımsız değişken x_2 gereksiz olarak modele eklenmiştir (bakınız Slayt 89) ve bu nedenle $\hat{\beta}_1$ sapmasızdır. $\longrightarrow E(\hat{\beta}_1) = \beta_1$
 - $\beta_2 \neq 0$ ise, bağımsız değişken x_2 doğru olarak modele eklenmiştir ve bu nedenle $\hat{\beta}_1$ sapmasızdır. $\longrightarrow E(\hat{\beta}_1) = \beta_1$

Model Seçimi: Sapmasızlık vs. Küçük Varyans

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 \qquad (1. \text{ Model ve \"ORF})$$

$$y = \beta_0 + \beta_1 x_1 + v \longrightarrow \tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 \qquad (2. \text{ Model ve \"ORF})$$

$$v = \beta_2 x_2 + u \qquad (2. \text{ Model Hata Terimi})$$

$$x_2 = \tilde{\delta}_0 + \tilde{\delta}_1 x_1 + \tilde{r}_2 \qquad (\text{Yardımcı Model Tahmini})$$

- 2. model tahmininden elde edilen $\tilde{\beta}_1$ eğer,
 - $\beta_2 = 0$ ise, bağımsız değişken x_2 doğru olarak modelden çıkarılmıştır ve bu nedenle $\tilde{\beta}_1$ sapmasızdır. $\longrightarrow E(\tilde{\beta}_1) = \beta_1$
 - $\beta_2 \neq 0$ ise, bağımsız değişken x_2 gerekli olduğu halde modelden çıkarılmıştır (bakınız Slayt 91) ve bu nedenle $\tilde{\beta}_1$ sapmalıdır. $\longrightarrow E(\tilde{\beta}_1) \neq \beta_1$
- Bu nedenle model seçiminde eğer sapmasızlık tek kriter ise, 1. model tahminindeki $\hat{\beta}_1$ her durumda sapmasız olduğu için $\tilde{\beta}_1$ 'e göre tercih edilir.
- Fakat sapmasızlığa göre bir model tercihi, varyans da düşünüldüğünde her zaman doğru degildir.

Model Seçimi: Sapmasızlık vs. Küçük Varyans

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u \longrightarrow \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$
 (1. Model ve ÖRF)

$$y = \beta_0 + \beta_1 x_1 + v \longrightarrow \tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$$
 (2. Model ve ÖRF)

- 1. modelde 2. modele göre daha fazla bağımsız değişken olduğundan $Var(\tilde{\beta}_1) < Var(\hat{\beta}_1)$ 'dır (bakınız Slayt 90).
- Eğer $\beta_2 = 0$ ise,
 - 1. model tahminindeki $\hat{\beta}_1$ sapmasızdır. $\longrightarrow E(\hat{\beta}_1) = \beta_1$
 - 2. model tahminindeki $\tilde{\beta}_1$ sapmasızdır. $\longrightarrow E(\tilde{\beta}_1) = \beta_1$
 - $\tilde{\beta}_1$ sapmasız ve $\hat{\beta}_1$ 'e göre daha küçük varyanslı olduğundan 2. model, yani $\tilde{\beta}_1$, tercih edilir.
- Eğer $\beta_2 \neq 0$ ise,
 - 1. model tahminindeki $\hat{\beta}_1$ sapmasızdır. $\longrightarrow E(\hat{\beta}_1) = \beta_1$
 - 2. model tahminindeki $\tilde{\beta}_1$ sapmalıdır. $\longrightarrow E(\tilde{\beta}_1) \neq \beta_1$
 - $\hat{\beta}_1$ sapmasız olduğundan ve gözlem sayısı n arttırılarak varyansı yeteri kadar küçüleceğinden 1. model, yani $\hat{\beta}_1$, tercih edilir.
- Kısacası sapmasızlık olmazsa olmaz şart iken varyans gözlem sayısı *n* arttırılarak düsürebilir.

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Güriş, S. (2005). Ekonometri: Temel Kavramlar. Der Yayınevi.

Hyndman, R.J. ve G. Athanasopoulos (2018). Forecasting: Principles and Practice. O'Texts.

Stock, J.H. ve M.W. Watson (2015). Introduction to Econometrics.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

Ek Bilgiler

BDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|\mathbf{x}) = E(u) = 0$$

$$Cov(x, u) = 0, \quad Corr(x, u) = 0 \quad \text{ve} \quad E(xu) = 0$$

$$Cov(x, u) = E(xu) - E(x) E(u) = 0$$

$$=E(xu)=0$$

Ek Bilgiler

ÇDR.5: Sıfır Koşullu Ortalama Varsayımı

$$E(u|\mathbf{x}) = E(u) = 0$$

$$Cov(x_j, u) = 0, \quad Corr(x_j, u) = 0 \quad \text{ve} \quad E(x_j u) = 0, \quad \forall j = 1, 2, \dots, k$$

$$Cov(x_j, u) = E(x_j u) - E(x_j) \underbrace{E(u)}_{= 0} = 0$$

$$=E(x_ju)=0$$

Ek Bilgiler

ÇDR.6: Otokorelasyon Olmaması

$$Cov(u_i, u_s | \mathbf{x}) = 0$$
 ve $Cov(u_i, u_s) = 0$, $i \neq s$
 $E(u_i u_s | \mathbf{x}) = 0$ ve $E(u_i u_s) = 0$, $i \neq s$
 $Cov(u_i, u_s | \mathbf{x}) = E(u_i u_s | \mathbf{x}) - \underbrace{E(u_i | \mathbf{x})}_{=0} \underbrace{E(u_s | \mathbf{x})}_{=0} = 0$
 $= E(u_i u_s | \mathbf{x}) = 0$

◀ Sunuma Geri Dön

ÇDR.7: Sabit Varyans (Homoscedasticity)

$$E(u^2|\mathbf{x}) = \sigma^2$$
 ve $E(u^2) = \sigma^2$

$$Var(u|\mathbf{x}) = E(u^2|\mathbf{x}) - \underbrace{E(u|\mathbf{x})^2}_{=0} = \sigma^2$$

$$=E(u^2|\mathbf{x})=\sigma^2$$

Sunuma Geri Dön

Anakütle Regresyon Fonksiyonu (ARF)

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

$$Var(y|\mathbf{x}) = \sigma^2$$
(ARF)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \underbrace{E(u|\mathbf{x})}_{=0}$$

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$
 (ARF)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + u$$

$$Var(y|\mathbf{x}) = Var(u|\mathbf{x})$$

$$Var(y|\mathbf{x}) = \sigma^2$$

◀ Sunuma Geri Dön

Parametre Tahmincileri: 2 Bağımsız Değişken

 β_0 kesim parametresinin tahmini $\hat{\beta}_0$:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2$$

- $\hat{\beta}_0$ 'nın formülü
 - SEKK birinci sıra koşullarından ya da örneklem moment koşullarından ilki (Slayt 31)
 - İndeksli haldeki model denklemi
 - Kalıntı û'nın denklemi

kullanılarak çıkarılabilir.

$$\sum_{i=1}^{n} \hat{u}_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = 0$$

$$= \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \hat{\beta}_{0} - \sum_{i=1}^{n} \hat{\beta}_{1} x_{i1} - \sum_{i=1}^{n} \hat{\beta}_{2} x_{i2} = 0$$

$$= n\bar{y} - n\hat{\beta}_{0} - \hat{\beta}_{1} n\bar{x}_{1} - \hat{\beta}_{2} n\bar{x}_{2} = 0$$

$$= \bar{y} - \hat{\beta}_{0} - \hat{\beta}_{1} \bar{x}_{1} - \hat{\beta}_{2} \bar{x}_{2} = 0$$

Sonuç: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2$

Parametre Tahmincileri: k Bağımsız Değişken

 β_0 kesim parametresinin tahmini $\hat{\beta}_0$ (1 tane var):

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \dots - \hat{\beta}_k \bar{x}_k$$

- $\hat{\beta}_0$ 'nın formülü
 - SEKK birinci sıra koşullarından ya da örneklem moment koşullarından ilki (Slayt 31)
 - İndeksli haldeki model denklemi
 - Kalıntı û'nın denklemi

kullanılarak çıkarılabilir.

$$\sum_{i=1}^{n} \hat{u}_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = 0$$

$$= \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \hat{\beta}_{0} - \sum_{i=1}^{n} \hat{\beta}_{1} x_{i1} - \sum_{i=1}^{n} \hat{\beta}_{2} x_{i2} - \dots - \sum_{i=1}^{n} \hat{\beta}_{k} x_{ik} = 0$$

$$= n\bar{y} - n\hat{\beta}_{0} - \hat{\beta}_{1} n\bar{x}_{1} - \hat{\beta}_{2} n\bar{x}_{2} - \dots - \hat{\beta}_{k} n\bar{x}_{k} = 0$$

$$= \bar{y} - \hat{\beta}_{0} - \hat{\beta}_{1} \bar{x}_{1} - \hat{\beta}_{2} \bar{x}_{2} - \dots - \hat{\beta}_{k} \bar{x}_{k} = 0$$

Sonuç:
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}_1 - \hat{\beta}_2 \bar{x}_2 - \cdots - \hat{\beta}_k \bar{x}_k$$

Tahmin Edilen Değerler ve Kalıntıların Cebirsel Özellikleri - 2

$$Cov(x_j, \hat{u}) = E(x_j \hat{u}) - E(x_{ij}) \underbrace{E(\hat{u}_i)}_{=0} = 0$$

$$= E(x_j \hat{u}) = 0$$

$$\text{ya da}$$

$$Cov(x_j, \hat{u}) = \frac{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(\hat{u}_i - \bar{\hat{u}})}{n-1} = 0$$

$$Cov(x_j, \hat{u}) = \frac{\sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(\hat{u}_i - \hat{u})}{n-1} = 0$$

$$Cov(x_j, \hat{u}) = \sum_{i=1}^{n} x_{ij} (\hat{u}_i - \underbrace{\bar{u}}_{=0}) = 0$$
$$= \sum_{i=1}^{n} x_{ij} \hat{u}_i = 0$$

(1. Cebirsel Özellik)

(1. Cebirsel Özellik)

Tahmin Edilen Değerler ve Kalıntıların Cebirsel Özellikleri - 3

$$Cov(\hat{y}, \hat{u}) = Cov(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k, \hat{u})$$

$$= \hat{\beta}_1 \underbrace{Cov(x_1, \hat{u})}_{=0} + \hat{\beta}_2 \underbrace{Cov(x_2, \hat{u})}_{=0} + \dots + \hat{\beta}_k \underbrace{Cov(x_k, \hat{u})}_{=0} = 0 \quad (2. \text{ Cebirsel Öz.})$$

$$= E(\hat{y}\hat{u}) = 0 \quad (\text{Kovaryans formulu ve 1. Cebirsel Özellik})$$

ve

$$Cov(\hat{y}, \hat{u}) = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})(\hat{u}_i - \underbrace{\bar{u}}_{=0}) = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})\hat{u}_i = 0$$
 (1. Cebirsel Özellik)

$$= \sum_{i=1}^{n} \hat{y}_{i} \hat{u}_{i} - \bar{y} \sum_{i=1}^{n} \hat{u}_{i} = 0$$

$$=\sum_{i=1}^n \hat{y}_i \hat{u}_i = 0$$

SEKK Parametre Tahmincilerinin Varyansı

 $\hat{\beta}_i$ 'ların varyansları:

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2, \quad \forall j = 1, 2, \dots, k$$

• $\hat{\beta}_j$ 'ların varyans formülünü çıkartmada işimizi kolaylaştırmak için 2 bağımsız değişkenli ÇDR modelini kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

- 2 bağımsız değişkenli ÇDR modelinde, spesifik olarak $\hat{\beta}_1$ 'nın varyans formülünü çıkartacağız.
- Daha sonra bulduğumuz bu formülü k bağımsız değişkenli ÇDR modelindeki $\hat{\beta}_i$ 'ların varyans formülünü çıkartmada kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

1. Yardımcı Regresyon Tahmini

$$x_{i1} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}$$
 (İndeksli)
$$\sum_{i=1}^n \hat{r}_{i1} = 0 \quad \text{ve} \quad \sum_{i=1}^n x_{i2} \hat{r}_{i1} = 0$$
 (Cebirsel Özellikler)

$$\sum_{i=1}^{n} x_{i1} \hat{r}_{i1} = \sum_{i=1}^{n} (\hat{\alpha}_0 + \hat{\alpha}_1 x_{i2} + \hat{r}_{i1}) \hat{r}_{i1} = \hat{\alpha}_0 \sum_{i=1}^{n} \hat{r}_{i1} + \hat{\alpha}_1 \sum_{i=1}^{n} x_{i2} \hat{r}_{i1} + \sum_{i=1}^{n} \hat{r}_{i1}^2$$

$$\sum_{i=1}^{n} x_{i1} \hat{r}_{i2} = \sum_{i=1}^{n} \hat{r}_{i2}^2$$
(Sonra Kullandacak)

$$\sum_{i=1}^{n} x_{i1} \hat{r}_{i1} = \sum_{i=1}^{n} \hat{r}_{i1}^{2}$$
 (Sonra Kullanılacak)
$$\sum_{i=1}^{n} \hat{r}_{i1}^{2} = SSR_{1} = SST_{1}(1 - R_{1}^{2})$$
 (R² Formülünden)

- $\hat{\beta}_1$ 'nın varyans formülü
 - $\hat{\beta}_1$ 'nın formülü (Slayt 39)
 - 2 bağımsız değişkenli ÇDR model denklemi (Slayt 105),
 - Otokorelasyon olmaması varsayımı, ÇDR.6 (Slayt 17),
 - Sabit varyans varsayımı, ÇDR.7 (Slayt 18),
 - Varyansın bir özelliği $\longrightarrow Var(\sum a_i u_i) = \sum a_i^2 Var(u_i)$, burada a_i 'ler sabit sayılardır ve u_i 'ler ikili olarak ilişkisizdir.
 - R² formülü

kullanılarak çıkarılabilir.

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \hat{r}_{i1} y_i}{\sum_{i=1}^n \hat{r}_{i1}^2} = \frac{\sum_{i=1}^n \hat{r}_{i1} (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i)}{\sum_{i=1}^n \hat{r}_{i1}^2}$$

$$\hat{\beta}_{1} = \frac{\beta_{0} \sum_{i=1}^{n} \hat{r}_{i1} + \beta_{1} \sum_{i=1}^{n} x_{i1} \hat{r}_{i1} + \beta_{2} \sum_{i=1}^{n} x_{i2} \hat{r}_{i1} + \sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} = \beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}}$$

• Alternatif $\hat{\beta}_1$ formülü şimdi $\hat{\beta}_i$ için yazılabilir:

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \longrightarrow \hat{\beta}_{j} = \beta_{j} + \frac{\sum_{i=1}^{n} \hat{r}_{ij} u_{i}}{\sum_{i=1}^{n} \hat{r}_{ij}^{2}}$$

• Şimdi, alternatif $\hat{\beta}_1$ formülünün tüm x'lere (**x**) göre koşullu varyansını alalım.

$$Var(\hat{\beta}_{1}|\mathbf{x}) = Var\left(\beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1}u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \middle| \mathbf{x}\right) = \frac{1}{\left(\sum_{i=1}^{n} \hat{r}_{i1}^{2}\right)^{2}} Var\left(\sum_{i=1}^{n} \hat{r}_{i1}u_{i}|\mathbf{x}\right)$$

$$= \frac{1}{\left(\sum_{i=1}^{n} \hat{r}_{i1}^{2}\right)^{2}} \left(\sum_{i=1}^{n} \hat{r}_{i1}^{2} \underbrace{Var(u_{i}|\mathbf{x})}_{= \sigma^{2}(\text{CDR.7})}\right) = \frac{1}{\left(\sum_{i=1}^{n} \hat{r}_{i1}^{2}\right)^{2}} \sigma^{2} \sum_{i=1}^{n} \hat{r}_{i1}^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}}$$

• $\hat{\beta}_1$ 'nın varyans formülü

$$Var(\hat{\beta}_1|\mathbf{x}) = \frac{\sigma^2}{\sum_{i=1}^n \hat{r}_{i1}^2} = \frac{\sigma^2}{SST_1(1 - R_1^2)}$$

• $\hat{\beta}_1$ 'nın varyans formülü tüm x'lere (**x**) göre koşullu hesaplanmasına rağmen genelde koşulsuz olarak gösterilir:

$$Var(\hat{\beta}_1|\mathbf{x}) = \frac{\sigma^2}{SST_1(1-R_1^2)} \longrightarrow Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_1(1-R_1^2)}$$

• $Var(\hat{\beta}_1)$ formülü şimdi $Var(\hat{\beta}_i)$ için yazılabilir:

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_1(1 - R_1^2)} \longrightarrow Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}$$

SEKK Parametere Tahmincilerinin Sapmasızlığı

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

• $\hat{\beta}_0$ ve $\hat{\beta}_j$ 'ların sapmasızlığını kanıtlamada işimizi kolaylaştırmak için 2 bağımsız değişkenli ÇDR modelini kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

- 2 bağımsız değişkenli ÇDR modelinde, spesifik olarak $\hat{\beta}_0$ ve $\hat{\beta}_1$ 'nın sapmasızlığını kanıtlacağız.
- Böylelikle, k bağımsız değişkenli ÇDR modelindeki $\hat{\beta}_0$ ve $\hat{\beta}_j$ 'ların sapmasızlığını kanıtlamış olacağız.

- $\hat{\beta}_1$ 'nın sapmasızlığı
 - $\hat{\beta}_1$ 'nın Slayt 105'de gösterilen alternatif formülünün tüm x'lere (**x**) göre koşullu beklenen değerini alıp
 - Sıfır koşullu ortalama varsayımı, ÇDR.5 (Slayt 16),

kullanalılarak gösterilebilir.

$$\hat{\beta}_1 = \beta_1 + \frac{\displaystyle\sum_{i=1}^n \hat{r}_{i1} u_i}{\displaystyle\sum_{i=1}^n \hat{r}_{i1}^2} \qquad \qquad (\hat{\beta}_1\text{'nın Alternatif Formülü})$$

$$E(\hat{\beta}_{1}|\mathbf{x}) = E\left(\beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \middle| \mathbf{x}\right) = \beta_{1} + \frac{\left(\sum_{i=1}^{n} \hat{r}_{i1} \underbrace{E(u_{i}|\mathbf{x})}\right)}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} = \beta_{1}$$

$$E(\hat{\beta}_1|\mathbf{x}) = \beta_1$$

- $\hat{\beta}_0$ 'nın sapmasızlığı
 - $\hat{\beta}_0$ 'nın Slayt 33'deki formülünün tüm x'lere (\mathbf{x}) göre koşullu beklenen değerini alıp
 - Model denkleminin toplamları alınarak elde edilen denklem

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + u_{i} \longrightarrow \sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} (\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + u_{i})$$

$$n\bar{y} = n\beta_{0} + \beta_{1}n\bar{x}_{1} + \beta_{2}n\bar{x}_{2}$$

$$\bar{y} = \beta_{0} + \beta_{1}\bar{x}_{1} + \beta_{2}\bar{x}_{2}$$

kullanılarak gösterilebilir.

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}_{1} - \hat{\beta}_{2}\bar{x}_{2}$$
 (Slayt 33)
$$E(\hat{\beta}_{0}|\mathbf{x}) = E(\bar{y} - \hat{\beta}_{1}\bar{x}_{1} - \hat{\beta}_{2}\bar{x}_{2}|\mathbf{x})$$

$$E(\hat{\beta}_{0}|\mathbf{x}) = \bar{y} - \underbrace{E(\hat{\beta}_{1}|\mathbf{x})}_{=\beta_{1}}\bar{x}_{1} - \underbrace{E(\hat{\beta}_{2}|\mathbf{x})}_{=\beta_{2}}\bar{x}_{2}$$

$$E(\hat{\beta}_{0}|\mathbf{x}) = \bar{y} - \beta_{1}\bar{x}_{1} - \beta_{2}\bar{x}_{2}$$

$$E(\hat{\beta}_{0}|\mathbf{x}) = \beta_{0}$$

• $\hat{\beta}_0$ ve $\hat{\beta}_1$ 'nın sapmasızlığı tüm x'lere (**x**) göre koşullu hesaplanmasına rağmen genelde koşulsuz olarak gösterilir:

$$E(\hat{\beta}_0|\mathbf{x}) = \beta_0 \longrightarrow E(\hat{\beta}_0) = \beta_0$$

 $E(\hat{\beta}_1|\mathbf{x}) = \beta_1 \longrightarrow E(\hat{\beta}_1) = \beta_1$

• $\hat{\beta}_1$ 'nın sapmasızlığı şimdi $\hat{\beta}_j$ için yazılabilir:

$$E(\hat{\beta}_1) = \beta_1 \longrightarrow E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

SEKK Parametere Tahmincilerinin Sapmasızlığı

$$E(\hat{\beta}_0) = \beta_0$$

$$E(\hat{\beta}_j) = \beta_j, \quad \forall j = 1, 2, \dots, k$$

◀ Sunuma Geri Dör

Teorem: SEKK Parametere Tahmincilerinin Etkinliği

ÇDR.6 - ÇDR.7 varsayımları altında SEKK parametre tahmincileri etkindir.

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

• $\hat{\beta}_0$ ve $\hat{\beta}_j$ 'ların etkinliğini kanıtlamada işimizi kolaylaştırmak için 2 bağımsız değişkenli ÇDR modelini kullanacağız.

2 Bağımsız Değişkenli ÇDR Modeli

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$
 (Model - İndeksli)
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2}$$
 (ÖRF - İndeksli)

- 2 bağımsız değişkenli ÇDR modelinde, spesifik olarak $\hat{\beta}_1$ 'nın etkinliğini kanıtlacağız.
- Böylelikle, k bağımsız değişkenli ÇDR modelindeki $\hat{\beta}_j$ 'ların etkinliğini kanıtlamış olacağız.

- $\hat{\beta}_1$ 'nın etkinliğini kanıtlayabilmek için β_1 'in herhangi bir doğrusal sapmasız tahmincisi olan $\tilde{\beta}_1$ 'nın $\hat{\beta}_1$ 'e göre daha büyük varyanslı olduğunun gösterilmesi gerekir. $\longrightarrow Var(\tilde{\beta}_1) \ge Var(\hat{\beta}_1)$
- $oldsymbol{\Theta}$ Bu nedenle \hat{eta}_1 ve \tilde{eta}_1 'nın varyanslarının hesaplanarak karşılaştırılması gereklidir.
- $\hat{\beta}_1$ 'nın tüm x'lere (**x**) göre koşullu varyansı (bakınız Slayt 105)

$$Var(\hat{\beta}_1|\mathbf{x}) = \frac{\sigma^2}{\sum_{i=1}^n \hat{r}_{i1}^2} = \frac{\sigma^2}{SST_1(1 - R_1^2)}$$

- $\tilde{\beta}_1$ 'nın tüm x'lere (\mathbf{x}) göre koşullu varyansı
 - $\hat{\beta}_1$ 'nın Slayt 105'de gösterilen alternatif formülü önce $\tilde{\beta}_1$ için yazılıp tüm x'lere (\mathbf{x}) göre koşullu varyansını alındıktan sonra
 - Varyansın bir özelliği $\longrightarrow Var(\sum a_iu_i) = \sum a_i^2Var(u_i)$, burada a_i 'ler sabit sayılardır ve u_i 'ler ikili olarak ilişkisizdir.

kullanalılarak hesaplanabilir.

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \longrightarrow \tilde{\beta}_{1} = \beta_{1} + \frac{\sum_{i=1}^{n} \hat{r}_{i1} u_{i}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \quad (\hat{\beta}_{1} \text{ ve } \tilde{\beta}_{1}' \text{nin Alternatif Formülü})$$

$$\tilde{\beta}_{1} = \beta_{1} + \sum_{i=1}^{n} w_{i1} u_{i}, \quad \text{burada} \quad w_{i1} = \frac{\hat{r}_{i1}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \quad \text{ve} \quad \sum_{i=1}^{n} w_{i1} \hat{r}_{i1} = 1$$

$$Var(\tilde{\beta}_{1}|\mathbf{x}) = Var(\beta_{1} + \sum_{i=1}^{n} w_{i1} u_{i}|\mathbf{x}) = Var(\sum_{i=1}^{n} w_{i1} u_{i}|\mathbf{x})$$

$$Var(\tilde{\beta}_1|\mathbf{x}) = Var(\beta_1 + \sum_{i=1}^n w_{i1}u_i|\mathbf{x}) = Var(\sum_{i=1}^n w_{i1}u_i|\mathbf{x})$$
$$= \sum_{i=1}^n w_{i1}^2 \underbrace{Var(u_i|\mathbf{x})}_{= \sigma^2 \text{ (CDR.7)}}$$

$$Var(\tilde{\beta}_1|\mathbf{x}) = \sigma^2 \sum_{i=1}^{n} w_{i1}^2$$
 ($\tilde{\beta}_1$ 'nın Varyansı)

• Şimdi, ÇDR.1 - ÇDR.7 varsayımları altında $Var(\tilde{\beta}_1|\mathbf{x})$ ve $Var(\hat{\beta}_1|\mathbf{x})$ arasındaki farkı inceleyelim.

$$\begin{aligned} Var(\tilde{\beta}_{1}|\mathbf{x}) - Var(\hat{\beta}_{1}|\mathbf{x}) &= \sigma^{2} \sum_{i=1}^{n} w_{i1}^{2} - \frac{\sigma^{2}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} = \sigma^{2} \left(\sum_{i=1}^{n} w_{i1}^{2} - \frac{1}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \right) \\ &= \sigma^{2} \left(\sum_{i=1}^{n} w_{i1}^{2} - \frac{\left(\sum_{i=1}^{n} w_{i1} \hat{r}_{i1} \right)^{2}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}} \right) \end{aligned} \qquad (\sum w_{i1} \hat{r}_{i1} = 1)$$

$$Var(\tilde{\beta}_{1}|\mathbf{x}) - Var(\hat{\beta}_{1}|\mathbf{x}) = \sigma^{2} \sum_{i=1}^{n} (w_{i1} - \hat{\gamma}_{1}\hat{r}_{i1})^{2}, \text{ burada } \hat{\gamma}_{1} = \frac{\sum_{i=1}^{n} w_{i1}\hat{r}_{i1}}{\sum_{i=1}^{n} \hat{r}_{i1}^{2}}$$

- σ^2 her zaman pozitif olan bir değerdir.
- $\sum_{i=1} (w_{i1} \hat{\gamma}_1 \hat{r}_{i1})^2$ değeri, w_{i1} 'in \hat{r}_{i1} üzerine uygulanan regresyondan elde edilen kalıntı kareleri toplamıdır ve her zaman pozitif olan bir değerdir.
 - $\hat{\gamma}_1$ ise aynı regresyondan elde edilen eğim parametresi tahmincisidir.
- Bu nedenle $Var(\tilde{\beta}_1) \ge Var(\hat{\beta}_1)$ 'dır.
- $oldsymbol{\hat{eta}}_1$ doğrusal sapmasız tahminciler içinde en küçük varyansa sahiptir, yani etkindir.
- \hat{eta}_1 'nın etkinliği şimdi \hat{eta}_j için yazılabilir:

Teorem: SEKK Parametere Tahmincilerinin Etkinliği

ÇDR.6 - ÇDR.7 varsayımları altında SEKK parametre tahmincileri etkindir.

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \quad \forall j = 1, 2, \dots, k$$

