<u>A PROJECT ON</u> "AGRICULTURAL DATA MANAGEMENT SYSTEM"

SUBMITTED BY

Abhiram Chandaluri

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING, NATIONAL INSTITUTE OF TECHNOLOGY WARANAGAL 2021-2022

CONTENTS:

S.No	CONTENT	PAGE NUMBER
1	Probem Statement	2
2	ER Diagram	3
3	ER Model Assumptions	4
4	Tables	4
5	Functional Dependencies and Primary Keys	10
6	Normalization	12
7	Relational Schema with Normalized tables	14
8	SQL Code	15

PROBLEM STATEMENT:

In this project, I have designed a database management system to store information about the activities pertaining to the agricultural sector. The database will contain all the information related to farming which will be available to the admin/government and their officials to make schemes as per the status of the farmer and allot benefits as per his requirements.

India is the fourth largest agricultural sector in the world. This sector employs over two-thirds of the country. Not only this, agriculture is a major source of income for more than 75% of Indians. Our project aims to solve farmers' problems through proper application of Information technology, which will increase the efficiency and profit in the agribusiness activities.

This database will have the farmer's personal details, schemes available for him, crops produced, inputs required by him, etc. This database management system will help the Government to monitor the status of all the farmers, whether they are small-scale, medium-scale or large-scale. Knowing about the farmers would give an overview to the government to make the agricultural budget and provide schemes that could benefit them. Farmers will be able to register for schemes as per their current condition and avail of corresponding benefits. Our database also keeps track of the farmers' bank accounts and loans to get relaxations if needed. Moreover, it also manages the quantity of crops sold and bought by them at MSP. This would make it flexible to keep a specific fixed value for crops, profitable for both farmers and the government.

Finally, in order to increase efficiency and profit in agribusiness, this database could be used to collect, retrieve and analyse data to continually improve the existing system.

ER DIAGRAM:

https://drive.google.com/file/d/142R1CUxVsdLK1ENsWDv9vT7JZwMiBHf7/view?usp=sharing

ER MODEL ASSUMPTIONS:

- Farmers order only fertilisers and pesticides as crop inputs for agriculture.
- Multiple suppliers can supply the farmers with inputs and farmers can order from multiple suppliers.
- There is a direct link between buyers and sellers(farmers).
- Buyers utilise government owned warehouses to keep their stock.
- A warehouse has its owner and is managed by one of the government administrator's.
- Multiple schemes are launched by administrators (a government body), but each farmer can avail facilities of only one scheme.
- For the sake of simplicity, we have assumed that one farmer can take a maximum of only one loan from a bank.
- Each crop is bought by multiple buyers.

TABLES:

1. FARMER

<u>ATTRIBUTE</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
FARMER_ID	NUMBER	PRIMARY KEY
FARMER_NAME	VARCHAR(20)	NOT NULL
GENDER	VARCHAR(1)	NOT NULL
CONTACT	NUMBER	NOT NULL
PIN_CODE	NUMBER	FOREIGN KEY, NOT NULL
SCHEME_ID	NUMBER	FOREIGN KEY, NOT NULL

2.CROPS

<u>ATTRIBUTE</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
NAME	VARCHAR(30)	PRIMARY KEY
CROP_TYPE	VARCHAR(30)	NOT NULL
FARMER_ID	NUMBER	FOREIGN KEY, NOT NULL

3. WAREHOUSE

<u>ATTRIBUTE</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
WAREHOUSE_ID	NUMBER	PRIMARY KEY
OWNER	VARCHAR(30)	NOT NULL
B_ID	NUMBER	FOREIGN KEY, NOT NULL
USER_ID	NUMBER	FOREIGN KEY, NOT NULL

4.SCHEME

<u>ATTRIBUTE</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
SCHEME_ID	NUMBER	PRIMARY KEY
NO_OF_REGISTRATIONS	NUMBER	NOT NULL
SCHEME_NAME	VARCHAR(30)	NOT NULL
USER_ID	NUMBER	FOREIGN KEY, NOT NULL

5.BUYER:

<u>ATTRIBUTE</u>	<u>DATATYPE</u>	CONSTRAINT AND CHARACTERISICS
B_ID	NUMBER	PRIMARY KEY
BUYER_NAME	VARCHAR2(40)	NOT NULL
PIN CODE	NUMBER	FOREIGN KEY, NOT NULL

6.BUYS

<u>ATTRIBUTE</u>	<u>DATATYPE</u>	CONSTRAINT AND CHARACTERISICS
B_ID	NUMBER	FOREIGN KEY, NOT NULL
CROP_NAME	NUMBER	FOREIGN KEY, NOT NULL
QUANTITY	NUMBER	NOT NULL

7.PRODUCES

<u>ATTRIBUTE</u>	<u>DATATYPE</u>	CONSTRAINT AND CHARACTERISICS
FARMER_ID	NUMBER	FOREIGN KEY, NOT NULL
CROP_NAME	NUMBER	FOREIGN KEY, NOT NULL

8.ADMINISTRATOR:

<u>ATTRIBUTE</u>	<u>DATATYPE</u>	CONSTRAINT AND CHARACTERISTICS
USER_ID	NUMBER	PRIMARY KEY
TYPE	VARCHAR2(20)	NOT NULL
PASSWORD	VARCHAR2(50)	NOT NULL

9.BANK

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
BANK_ID	NUMBER	PRIMARY KEY, NOT NULL
BANK_NAME	VARCHAR2(20)	NOT NULL

<u>10.LOAN</u>

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
LOAN_ID	NUMBER	PRIMARY KEY, NOT NULL
FARMER_ID	NUMBER	NOT NULL
BANK_ID	NUMBER	FORIEGN KEY, NOT NULL

11.INPUTS

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
PESTICIDE_AMT	NUMBER	NOT NULL
FERTILISER_AMT	NUMBER	NOT NULL
SUP_ID	NUMBER	FOREIGN KEY
PRICE	NUMBER	NOT NULL

12.SUPPLIER

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
SUP_ID	NUMBER	PRIMARY KEY , NOT NULL
SUP_NAME	VARCHAR2(30)	NOT NULL

13.PLACE

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
PINCODE	NUMBER	PRIMARY KEY , NOT NULL
VILLAGE	VARCHAR2(30)	NOT NULL
DISTRICT	VARCHAR2(30)	NOT NULL

14.SUPPLY

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
SUP_ID	NUMBER	FORIEGN KEY, NOT NULL
FARMER_ID	NUMBER	FORIEGN KEY, NOT NULL

<u>15.SELLS</u>

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
FARMER_ID	NUMBER	FORIEGN KEY, NOT NULL
B_ID	NUMBER	FORIEGN KEY, NOT NULL

16.STORED-AT

<u>ATTRIBUTES</u>	DATA TYPE	CONSTRAINT AND CHARACTERISTICS
CROP_NAME	VARCHAR2(20)	FORIEGN KEY, NOT NULL
WAREHOUSE_ID	NUMBER	FORIEGN KEY, NOT NULL

FUNCTIONAL DEPENDENCIES AND PRIMARY KEYS:

1. FARMER:

FARMER_ID -> { FARMER_NAME , GENDER , CONTACT , PIN_CODE , SCHEME_ID } Since all fields depend on the farmer_id , (FARMER_ID) $^+$ -> R . Hence , Farmer_id is a primary key .

2. CROPS:

NAME -> { CROP_TYPE } Since all fields depend on the NAME, (NAME) $^+$ -> R . Hence , NAMEis a primary key .

3. LOANS

LOAN_ID-> { FARMER_ID,,BANK_ID }
Since all fields depend on the LOAN_ID, (LOAN_ID)+ -> R.
Hence, LOAN_ID is a primary key.

4. BANK

BANK_ID-> { BANK_NAME } Since all fields depend on the BANK_ID, (BANK_ID)+ -> R. Hence, BANK_ID is a primary key.

5. SCHEMES

SCHEME_ID-> { SCHEME_NAME, COUNT_OF_REGISTRATIONS } Since all fields depend on the SCHEME_ID, (SCHEME_ID) $^+$ -> R . Hence , SCHEME_ID is a primary key .

6. ADMINISTRATOR:

USER_ID-> { TYPE, PASSWORD} Since all fields depend on the USER_ID, i.e. (USER_ID) $^+$ -> R . Hence , USER_ID is a primary key .

7. SELLS RELATION

8. WAREHOUSE

WAREHOUSE_ID -> { OWNER , BUYER_ID } Since all fields depend on the WAREHOUSE_ID, (WAREHOUSE_ID) $^+$ -> R . Hence , WAREHOUSE_ID is a primary key .

9. STORED_AT RELATION

10. PLACE

PIN_CODE ->{ VILLAGE, DISTRICT}
Since all fields depend on the BANK_ID, i.e.(PIN_CODE)+ -> R.
Hence, PIN_CODE is a primary key.

11. SUPPLIER

SUP_ID -> { SUP_NAME }

Since all fields depend on the SUP_ID, $(SUP_ID)^+ \rightarrow R$.

Hence, SUP_ID is a primary key.

12. INPUTS

SUP_ID-> {PESTICIDE_AMT, FERTILISER_AMT, PRICE}

Since all fields depend on the SUP_ID, (SUP_ID) $^+$ -> R.

Hence, SUP_ID is a primary key which is Foreign Key from SUPPLIER Relation.

13. SUPPLY RELATION

14.PRODUCES RELATION

15.BUYS RELATION

16. BUYER

B_ID -> { BUYER_NAME}

Since all fields depend on the B_ID , $(B_ID)^+ -> R$.

Hence, B_ID is a primary key.

NORMALISATIONS:

1) FARMER

Primary key: FARMER_ID

All attributes depend on the FARMER_ID, hence the table is 2NF.

All attributes depend directly on FARMER_ID, hence the table is in 3NF.

All determinants (FARMER_ID) are candidate keys, hence the table is in BCNF.

2) CROPS

Primary key: NAME

All attributes depend on the NAME, hence the table is 2NF.

All attributes depend directly on NAME, hence the table is in 3NF.

All determinants (NAME) are candidate keys, hence the table is in BCNF.

3) LOANS

Primary key: LOAN_ID

All attributes depend on the LOAN_ID, hence the table is 2NF.

All attributes depend directly on LOAN_ID, hence the table is in 3NF.

All determinants (LOAN_ID) are candidate keys, hence the table is in BCNF.

4) BANK

Primary key: BANK_ID

All attributes depend on the BANK_ID, hence the table is 2NF.

All attributes depend directly on BANK_ID, hence the table is in 3NF.

All determinants (BANK_ID) are candidate keys, hence the table is in BCNF.

5) SCHEME

Primary key: SCHEME_ID

All attributes depend on the SCHEME_ID, hence the table is 2NF.

All attributes depend directly on SCHEME_ID, hence the table is in 3NF.

All determinants (SCHEME_ID) are candidate keys, hence the table is in BCNF.

6) ADMINISTRATOR

Primary key: USER_ID

All attributes depend on the USER_ID, hence the table is 2NF.

All attributes depend directly on USER_ID, hence the table is in 3NF.

All determinants (USER_ID) are candidate keys, hence the table is in BCNF.

7) WAREHOUSE

Primary key: WAREHOUSE_ID

All attributes depend on the WAREHOUSE_ID, hence the table is 2NF.

All attributes depend directly on WAREHOUSE_ID, hence the table is in 3NF.

All determinants (WAREHOUSE_ID) are candidate keys, hence the table is in

BCNF.

8) PLACE

Primary key: PIN_CODE

All attributes depend on the PIN_CODE, hence the table is 2NF.

All attributes depend directly on PIN_CODE, hence the table is in 3NF.

All determinants (PIN_CODE) are candidate keys, hence the table is in BCNF.

9) SUPPLIER

Primary key: SUP_ID

All attributes depend on the SUP_ID, hence the table is 2NF.

All attributes depend directly on SUP_ID, hence the table is in 3NF.

All determinants (SUP_ID) are candidate keys, hence the table is in BCNF.

10) BUYER

Primary key: B_ID

All attributes depend on the B_ID, hence the table is 2NF.

All attributes depend directly on B_ID, hence the table is in 3NF.

All determinants (B_ID) are candidate keys, hence the table is in BCNF.

11) INPUTS

Primary key: NONE

All attributes depend on the SUP_ID, hence the table is 2NF.

All attributes depend directly on SUP_ID, hence the table is in 3NF.

All determinants (SUP_ID) are candidate keys, hence the table is in BCNF.

RELATIONAL SCHEMA WITH NORMALISED TABLES:

https://drive.google.com/file/d/1luEgGdAAvIvgMr7HygigNka2SJmyH8qs/view?usp=sharing

.....

SQL CODE:

1 -> CREATION OF TABLES:-

```
CREATE TABLE GOVERMENT
USER_ID NUMBER,
TYPE_ VARCHAR(30),
PASSWORD_ VARCHAR(30),
PRIMARY KEY(USER_ID)
);
CREATE TABLE PLACE
PINCODE NUMBER,
VILLAGE VARCHAR(30),
STATE_VARCHAR(30),
PRIMARY KEY(PINCODE)
);
CREATE TABLE SCHEME
SCHEME_ID NUMBER,
NO_OF_REGISTRATIONS NUMBER,
SCHEME_NAME VARCHAR(30),
USER_ID NUMBER,
PRIMARY KEY(SCHEME_ID),
FOREIGN KEY (USER_ID) REFERENCES GOVERMENT(USER_ID)
);
CREATE TABLE FARMER
FARMER_ID NUMBER,
FARMER_NAME VARCHAR(30),
GENDER VARCHAR(30),
```

```
CONTACT NUMBER,
PINCODE NUMBER,
SCHEME_ID NUMBER,
PRIMARY KEY(FARMER_ID),
FOREIGN KEY (SCHEME_ID) REFERENCES SCHEME(SCHEME_ID)
);
CREATE TABLE BUYER
B_ID NUMBER,
BUYER_NAME VARCHAR(30),
PINCODE NUMBER,
PRIMARY KEY(B_ID),
FOREIGN KEY (PINCODE) REFERENCES PLACE(PINCODE)
);
CREATE TABLE CROPS
NAME_ VARCHAR(30),
CROP_TYPE VARCHAR(30),
B_ID NUMBER,
FARMER_ID NUMBER,
PRIMARY KEY(NAME_),
FOREIGN KEY (B_ID) REFERENCES BUYER(B_ID),
FOREIGN KEY (FARMER_ID) REFERENCES FARMER(FARMER_ID)
);
CREATE TABLE WAREHOUSE
WAREHOUSE_ID NUMBER,
OWNER_ VARCHAR(30),
B_ID NUMBER,
USER_ID NUMBER,
PRIMARY KEY(WAREHOUSE_ID),
FOREIGN KEY (B_ID) REFERENCES BUYER(B_ID),
FOREIGN KEY (USER_ID) REFERENCES GOVERMENT(USER_ID)
```

```
);
CREATE TABLE BANK
BANK_ID NUMBER,
BANK_NAME VARCHAR(30),
PRIMARY KEY(BANK_ID)
);
CREATE TABLE LOAN
LOAN_ID NUMBER,
BORROWER_ID NUMBER,
BANK_ID NUMBER,
PRIMARY KEY(LOAN_ID),
FOREIGN KEY (BANK_ID) REFERENCES BANK(BANK_ID)
);
CREATE TABLE SUPPLIER
SUP_ID NUMBER,
SUP_NAME VARCHAR(30),
PRIMARY KEY(SUP_ID)
);
CREATE TABLE SUPPLY
SUP_ID NUMBER,
FARMER_ID NUMBER,
FOREIGN KEY (SUP_ID) REFERENCES SUPPLIER(SUP_ID),
FOREIGN KEY (FARMER_ID) REFERENCES FARMER(FARMER_ID)
);
```

```
CREATE TABLE SELLS
FARMER_ID NUMBER,
B_ID NUMBER,
FOREIGN KEY (B_ID) REFERENCES BUYER(B_ID),
FOREIGN KEY (FARMER_ID) REFERENCES FARMER(FARMER_ID)
);
CREATE TABLE STORED_AT
CROP_NAME VARCHAR(20),
WAREHOUSE_ID NUMBER,
FOREIGN KEY (CROP_NAME) REFERENCES CROPS(NAME_),
FOREIGN KEY (WAREHOUSE_ID) REFERENCES WAREHOUSE(WAREHOUSE_ID)
);
CREATE TABLE PRODUCES
FARMER_ID NUMBER,
CROP_NAME VARCHAR(20),
FOREIGN KEY (FARMER_ID) REFERENCES FARMER(FARMER_ID),
FOREIGN KEY (CROP_NAME) REFERENCES CROPS(NAME_)
);
CREATE TABLE BUYS
B_ID NUMBER,
CROP_NAME VARCHAR(20),
QTY NUMBER,
FOREIGN KEY (B_ID) REFERENCES BUYER(B_ID),
FOREIGN KEY (CROP_NAME) REFERENCES CROPS(NAME_)
);
```

2 -> INSERTION OF VALUES:-

```
Insert into administrator values(100001, 'Central', 'itsPMOofINDIA');
Insert into administrator values(100002, 'Maharashtra state', '293dne83DH');
Insert into administrator values(100003, 'Punjab state', '582kee48RJ');
Insert into administrator values(100004, 'Delhi UT', '572jne28RH');
Insert into administrator values(100005, 'Bihar state', '683fhi82YJ');
Insert into administrator values(100006, 'Jharkhand state', '479feu95UW');
Insert into administrator values(100007, 'Kerela state', '581fig74IR');
Insert into administrator values(100008, 'Mizoram state', '792iex38IC');
Insert into administrator values(100009, 'Odisha state', '582ian72IS');
Insert into place values (124303, 'Jindran', 'Rohtak');
Insert into place values (141104, 'Badhel', 'Ludhiana');
Insert into place values (110001, 'Delhi', 'Delhi');
Insert into place values (841101, 'Saraiya', 'Saran');
Insert into place values (845401, 'Garahia', 'Motihari');
Insert into place values (424304, 'Balsane', 'Dhule');
Insert into place values (416216, 'Karnoor', 'Kolhapur');
Insert into place values (825405, 'Jitpur', 'Hazaribagh');
Insert into place values (829206, 'Bhusar', 'Latehar');
Insert into place values (673579, 'Pulpalli', 'Wayanaad');
Insert into place values (691307, 'Edamon', 'Kollam');
Insert into place values (796261, 'Phullen', 'Aizwal');
Insert into place values (796431, 'Belkhai', 'Mamit');
Insert into place values (754200, 'Ganapur', 'Cuttack');
Insert into place values (752121, 'Sairi', 'Puri');
Insert into scheme values (200001, 89264, 'PM-Kishan Scheme', 100001);
Insert into scheme values (200002, 46293, 'Solar water pump Scheme', 100002);
Insert into scheme values (200003, 57292, 'Jan Dhan Yojna', 100003);
Insert into scheme values (200004, 82664, 'Kerala-Kishor-Fund', 100004);
Insert into scheme values (200005, 54829, 'Maharshtra Kranti', 100005);
Insert into scheme values (200006, 68264, 'Kisan Bima Yojna', 100006);
Insert into scheme values (200007, 18234, 'Kishan Samridhi', 100007);
```

```
Insert into scheme values (200008, 59132, 'Krishi udyog Yojna', 100008);
Insert into scheme values(200009, 71837, 'Krishi Vikas', 100009);
Insert into farmer values (900001, 'Diljeet Singh', 'M', 815739679, 124303,
100003);
Insert into farmer values (900002, 'Shivshankar Tambe', 'M', 817825679,
416216, 100002);
Insert into farmer values (900003, 'Harpreet Sahu', 'M', 8123468264, 141104,
100001);
Insert into farmer values (900004, 'Meiyang Dumphut', 'M', 6824572849,
796261, 100008);
Insert into farmer values (900005, 'Ramadhir Singh', 'M', 9452758257, 110001,
100004);
Insert into farmer values (900006, 'Ashok Jadhav', 'M', 9342857556, 110001,
100001);
Insert into farmer values (900007, 'Bibhu Pandey', 'M', 6201768943, 829206,
100006);
Insert into farmer values (900008, 'Mohan Lal', 'M', 9428537194, 841101,
100001);
Insert into farmer values (900009, 'Ram Prasad', 'M', 920831958, 845401,
100005);
Insert into farmer values (900010, 'Rempuia Baleng', 'M', 8351958365, 752121,
100009);
Insert into farmer values (900011, 'Mrin Moy', 'M', 9027461853, 796431,
100008);
Insert into farmer values (900012, 'Sayooj Nair', 'M', 9191243827, 673579,
100007);
Insert into farmer values (900013, 'Ramalinga Swamy', 'M', 8204745109,
691307, 100001);
Insert into farmer values (900014, 'Tarun Yadav', 'M', 9829692547, 845401,
100005);
Insert into farmer values (900015, 'Nikhil Gope', 'M', 9430173985, 825405,
100006);
Insert into farmer values (900016, 'Gurkeerat Singh', 'M', 9036837159, 141104,
100003);
```

```
Insert into farmer values (900017, 'Raman Das', 'M', 9302947518, 754200,
100009);
Insert into farmer values (900018, 'Anil Ganguly', 'M', 9438194326, 754200,
100001);
Insert into buyer values (400001, 'Raghav', 141104);
Insert into buyer values (400002, 'Ashutosh', 841101);
Insert into buyer values (400003, 'Deepak', 829206);
Insert into buyer values (400004, 'Avishek', 845401);
Insert into buyer values (400005, 'Shubhank', 110001);
Insert into buyer values (400006, 'Kulshrestha', 124303);
Insert into buyer values (400007, 'Krishnanshu', 754200);
Insert into buyer values (400008, 'Chirantan', 673579);
Insert into buyer values (400009, 'Raghvendra', 796261);
Insert into bank values (600001, 'NITW Bank');
Insert into bank values (600002, 'SBI');
Insert into bank values (600003, 'Central Bank');
Insert into bank values (600004, 'Canara Bank');
Insert into bank values (600005, 'Kerala Bank');
Insert into bank values (600006, 'Punjab National Bank');
Insert into bank values (600007, 'Bank of Mizo');
Insert into bank values (600008, 'Dena Bank');
Insert into bank values (600009, 'Bank of India');
Insert into crops values ('Arhar', 'pulses');
Insert into crops values ('Toor', 'pulses');
Insert into crops values ('Rice', 'Cereal');
Insert into crops values ('Wheat', 'Cereals');
Insert into crops values ('Maize', 'Cereals');
Insert into crops values ('Jowar', 'Cereals');
Insert into crops values ('Bajra', 'Cereals');
Insert into crops values ('Turmeric', 'Spices');
Insert into crops values ('Pepper', 'Spices');
```

```
Insert into buys values (400008, 'Arhar',2000);
Insert into buys values (400002, 'Maize', 15000);
Insert into buys values (400004, 'Jowar', 8000);
Insert into buys values (400009, 'Bajra', 7000);
Insert into buys values (400001, 'Pepper', 4000);
Insert into buys values (400006, 'Turmeric', 1000);
Insert into produces values (900018, 'Arhar');
Insert into produces values (900008, 'Maize');
Insert into produces values (900001, 'Jowar');
Insert into produces values (900002, 'Arhar');
Insert into produces values (900007, 'Pepper');
Insert into produces values (900005, 'Turmeric');
Insert into warehouse values (500001, 'Deepak', 400005, 100008);
Insert into warehouse values (500002, 'Jamal', 400009, 100005);
Insert into warehouse values (500003, 'Rishab', 400003, 100009);
Insert into warehouse values (500004, 'Farhan', 400008, 100002);
Insert into warehouse values (500005, 'Naman', 400004, 100007);
Insert into warehouse values (500006, 'Devansh', 400005, 100001);
Insert into warehouse values (500007, 'Tarun', 400009, 100006);
Insert into warehouse values (500008, 'Aniket', 400004, 100003);
Insert into warehouse values (500009, 'Piyush', 400006, 100009):
Insert into warehouse values (500010, 'Krishna', 400001, 100008);
Insert into warehouse values (500011, 'Saurabh', 400002, 100004);
Insert into warehouse values (500012, 'Shaswat', 400006, 100007);
Insert into warehouse values (500013, 'Devashish', 400008, 100005);
Insert into warehouse values (500014, 'Dipankar', 400007, 100003);
Insert into warehouse values (500015, 'Manish', 400002, 100001);
Insert into warehouse values (500016, 'Manav', 400001, 100006);
Insert into warehouse values (500017, 'Madhav', 400007, 100002);
Insert into warehouse values (500018, 'Sai', 400003, 100004);
```

```
Insert into loan values (700001, 90001, 600003);
Insert into loan values (700002, 90007, 600006);
Insert into loan values (700003, 90009, 600001);
Insert into loan values (700004, 90002, 600007);
Insert into loan values (700005, 90005, 600002);
Insert into loan values (700006, 90008, 600009);
Insert into loan values (700007, 90003, 600004);
Insert into loan values (700008, 90006, 600008);
Insert into loan values (700009, 90004, 600005);
Insert into supplier values (400001, 'Ashish');
Insert into supplier values (400002, 'Rahul');
Insert into supplier values (400003, 'Ranjan');
Insert into supplier values (400004, 'Aman');
Insert into supplier values (400005, 'Raushan');
Insert into supplier values (400006, 'Prateek');
Insert into supplier values (400007, 'Sahil');
Insert into supplier values (400008, 'Farhan');
Insert into supplier values (400009, 'Sukhbir');
Insert into supply values (400001, 90007);
Insert into supply values (400002, 90009);
Insert into supply values (400003, 90005);
Insert into supply values (400004, 90008);
Insert into supply values (400005, 90003);
Insert into supply values (400006, 90006);
Insert into supply values (400007, 90004);
Insert into supply values (400008, 90001);
Insert into supply values (400009, 90002);
Insert into sells values (90001, 400009);
Insert into sells values (90002, 400008);
Insert into sells values (90003, 400007);
Insert into sells values (90004, 400006);
```

```
Insert into sells values (90005, 400005);
Insert into sells values (90006, 400004);
Insert into sells values (90007, 400003);
Insert into sells values (90008, 400002);
Insert into sells values (90009, 400001);
Insert into stored_at values('arhar', 500006);
Insert into stored_at values('Jowar', 500001);
Insert into stored_at values('Rice', 500002);
Insert into stored_at values( 'Turmeric', 500007 );
Insert into stored_at values('Wheat', 500009);
Insert into stored_at values('Toor', 500003);
Insert into stored_at values('Pepper', 500008);
Insert into stored_at values('Maize', 500004);
Insert into stored_at values('Arhar', 500005);
Insert into inputs values (573, 682, 400001, 4827);
Insert into inputs values (324, 588, 400002, 5479);
Insert into inputs values (841,764,400003,3685);
Insert into inputs values (575, 489, 400004, 5116);
Insert into inputs values (265, 342, 400005, 7090);
Insert into inputs values (648,538,400006,3767);
Insert into inputs values (492, 500, 400007, 6452);
Insert into inputs values (632,730,400008,4753);
Insert into inputs values (692,650,400009,5388);
```