Sieci jednokierunkowe

Pytania testowe

•	
1. Met	oda propagacji wstecznej:
a)	to metoda uczenia dowolnych sieci neuronowych,
b)	może być stosowana wyłącznie dla sieci złożonej z przynajmniej dwóch neuronów,
c)	wykorzystywana jest wyłącznie w sieciach dokonujących aproksymacji,
d)	żadna z powyższych odpowiedzi, dlaczego?
2. Met	oda perceptronowa jest metodą:
a)	której stosowanie jest ograniczone do sieci jednowarstwowych,
b)	jest efektywna, jeśli zastosowano dodatkowo technikę momentum,
c)	korekty wag w warstwach ukrytych sieci neuronowych,
d)	uniemożliwia poprawną klasyfikację np. funkcji not-XOR.
3. Met	oda propagacji wstecznej może być użyta dla sieci zbudowanej z neuronów mających:
a)	dowolną funkcję aktywacji,
b)	wyłącznie funkcję sigmoidalną,
c)	funkcję unipolarną,
d)	żadna z powyższych odpowiedzi, dlaczego?
4 D	
	ceptron to:
a)	inaczej pojedynczy neuron,
b)	sieć wielowarstwowa,
c)	szczególny przypadek sieci jednowarstwowej,
d)	neuron z dyskretną funkcją aktywacji.
5. Perc	ceptronowa metoda propagacji wstecznej:
a)	wymaga ciągłych funkcji aktywacji w neuronach składających się na sieć, ,
b)	może być stosowana tylko w sieciach jednowarstwowych,
c)	może być stosowana również w sieciach wielowarstwowych, ale jednokierunkowych,
d)	żadna z powyższych odpowiedzi, dlaczego?
6. Met	oda propagacji wstecznej w przypadku sieci jednowarstwowych:
a)	nie wymaga, aby funkcja aktywacji była różniczkowalna,
b)	nie może być stosowana,
c)	wymaga, aby funkcja aktywacji była całkowalna,

d) przynajmniej dwie warstwy.

Ćwiczenie 1

Mając obliczone wartości błędów w warstwie wyjściowej (α_1 , α_2 , α_3) obliczyć wartości błędów w warstwie ukrytej (β_1 , β_2). Następnie wyznacz nowe wartości wag pierwszego neuronu w warstwie ukrytej.

Ćwiczenie 2 (wersja dla pracowitych, wersja dla leniwych)

Ostatnia warstwa ukryta pewnej sieci neuronowej składała się z dwóch neuronów i dla pewnego wzorca uczącego na wyjściu tej warstwy pojawiły się wartości x=2 i y=-1. Poniżej znajduje się jeden z neuronów warstwy wyjściowej (wartość $\theta=7$), na wyjściu której oczekujemy wartości 0. Podaj wszystkie pozostałe niezbędne parametry, aby obliczyć wyjście neuronu i w razie potrzeby przeprowadź proces uczenia.

