

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 04-214918
(43) Date of publication of application : 05.08.1992

(51) Int.Cl. F01N 3/08
F01N 3/28

(21) Application number : 03-016826 (71) Applicant : TOYOTA MOTOR CORP
(22) Date of filing : 18.01.1991 (72) Inventor : HIROTA SHINYA
INOUE TOKUTA

(30) Priority
Priority number : 02 11563 Priority date : 09.02.1990 Priority country : JP

(54) EXHAUST PURIFYING DEVICE FOR INTERNAL COMBUSTION ENGINE

(57) Abstract:

PURPOSE: To improve the NOx purification ratio of lean NOx catalyst in a lean NOx catalyst-equipped internal combustion engine.

CONSTITUTION: An internal combustion engine 1, lean NOx catalyst 3 provided in its exhaust system 16, an HC generating means to generate HC of a low boiling point using used fuel, and an HC supply means to supply the low boiling point HC generated by the low boiling point HC generating means to the upstream of the lean NOx catalyst 3 are provided. The HC generating means generates the low boiling point HC by thermal decomposition of fuel, fractional distillation, or both of thermal decomposition and fractional distillation. The low boiling point HC acts effectively for purification of NOx, thereby the NOx purification ratio for the lean NOx catalyst is improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

07-04-06; 04:44 PM; 東京セントラル特許事務所
Searching PAJ

OLIFF

; 0355242325

3 / 26
Z/Z ページ

decision of rejection]
[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平4-214918

(43) 公開日 平成4年(1992)8月5日

(51) Int.Cl.[®]F 01 N 3/08
3/28

識別記号

B 7910-3G
301 C 9150-3G

庁内整理番号

F I

技術表示箇所

審査請求 未請求 請求項の数 1 (全 7 頁)

(21) 出願番号

特願平3-16826

(22) 出願日

平成3年(1991)1月18日

(31) 優先権主張番号 実願平2-11563

(32) 優先日 平2(1990)2月9日

(33) 優先権主張国 日本 (JP)

(71) 出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72) 発明者 広田 信也

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(72) 発明者 井上 恒太

愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内

(74) 代理人 弁理士 田嶋 紹雄

(54) 【発明の名称】 内燃機関の排気浄化装置

(57) 【要約】

【目的】 リーンNO_x触媒装着内燃機関のリーンNO_x触媒のNO_x浄化率を向上する。【構成】 内燃機関1と、その排気系1~6に設けられたリーンNO_x触媒3と、使用燃料を利用して低沸点HCを生成するHC生成手段と、低沸点HC生成手段によって生成された低沸点HCをリーンNO_x触媒3の上流に供給するHC供給手段とを有する。HC生成手段は、燃料の熱分解、分留、或いは熱分解と分留との両方によって、低沸点HCを生成する。低沸点HCはNO_x浄化に有效地働くので、リーンNO_x触媒のNO_x浄化率が向上する。

(2)

特開平4-214918

1

【特許請求の範囲】

【請求項 1】 排気系を備えた希薄燃焼可能な内燃機関と、前記内燃機関の排気系に設けられた、遷移金属或いは貴金属を担持せしめたゼオライトからなり、酸化窒素気中、HC存在下でNO_xを還元する触媒と、使用燃料を利用して低沸点HCを生成する低沸点HC生成手段と、低沸点HC生成手段によって生成された低沸点HCを前記内燃機関の排気系の前記触媒上流に供給するHC供給手段と、から成る内燃機関の排気浄化装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、排気系にいわゆるリーンNO_x触媒を装着した、希薄燃焼可能な内燃機関の排気浄化装置に関し、とくに触媒上流に燃料中のHC成分を炭素数の少ない炭化水素として供給する排気浄化装置に関する。

【0002】

【従来の技術】 燃費向上のために、希薄域の空燃比で燃焼を行わせることが有効であり、ディーゼル機関や一部のガソリン機関で実用化されている。希薄空燃比領域においては、従来の触媒ではNO_xを浄化できないので、NO_x低減がリーンバーン内燃機関の課題になっており、希薄空燃比でもNO_xを浄化できる触媒が注目されている。特開平1-130735号公報、特願昭63-95026号は、遷移金属を担持せしめたゼオライトからなり、酸化窒素気中、HC存在下でNO_xを還元する触媒（以下、リーンNO_x触媒という）を教示している。また、リーンNO_x触媒がNO_xを還元して浄化するにはHCが必要なため、特開昭63-283727号公報は、使用燃料とは別にHCタンクを搭載し、HCをリーンNO_x触媒の上流に注入する装置を提案している。

【0003】

【発明が解決しようとする課題】 しかし、別HC源の携帯は、たとえばディーゼルエンジンにおいて軽油以外の別HCの貯蔵、注入装置を必要とし、コスト高になるとという問題がある。一方、別装置をもたずにHCを導入するには、使用燃料の一部を導入HCとして利用することが考えられる。しかし、発明者等の試験研究によれば、リーンNO_x触媒のNO_x還元に効率的に働くHC成分は比較的炭素数の少ないもの（1分子中の炭素数の数が3-6程度のもの）である。ディーゼルエンジンの燃料である軽油のHCの炭素数が比較的大きなもの（1分子中の炭素数が10-15）が多く、一律にリーンNO_x触媒上流に導入してもNO_x浄化率の向上に大きな効果を期待できないという問題がある。

【0004】 本発明の目的は、排気系にリーンNO_x触媒を装着した、希薄燃焼可能な内燃機関の排気浄化装置において、低沸点HC（1分子中の炭素数の小さいHC）を供給してリーンNO_x触媒のNO_x浄化率を高

2

め、しかもそれを使用燃料とは別のHC源をもたずに達成することを目的とする。

【0005】

【課題を解決するための手段】 上記目的を達成する、本発明の内燃機関の排気浄化装置は、次の手段を有する。排気系を備えた希薄燃焼可能な内燃機関、前記内燃機関の排気系に設けられた、遷移金属或いは貴金属を担持せしめたゼオライトからなり、酸化窒素気中、HC存在下でNO_xを還元する触媒、使用燃料を利用して低沸点HCを生成する低沸点HC生成手段、および低沸点生成手段によって生成された低沸点HCを前記内燃機関の排気系の前記触媒上流に供給するHC供給手段。

【0006】

【作用】 低沸点HC生成手段は、エンジンがディーゼルエンジンである場合、使用燃料である軽油を一部熱分解して低沸点HCを生成するか、或いは軽油中に含まれている低沸点HCを蒸発点の差を利用して抽出（いわゆる分留）して低沸点HCを生成するか、或いは熱分解と分留の両方により低沸点HCを生成するか、の何れかを行う。この低沸点HCは、HC供給手段によってリーンNO_x触媒の上流に供給され、リーンNO_x触媒のNO_x浄化率を高める。

【0007】

【実施例】 3つの、本発明に係る実施例を説明する。第1実施例は、使用燃料の一部を熱分解して低沸点HCを生成する場合であり、図1から図7までに示されている。第2実施例は、使用燃料から低沸点HCを分留する場合であり、図8に示されている。第3実施例は、使用燃料から熱分解と分留とによって低沸点HCを生成する場合であり、図9に示されている。

【0008】 まず、第1実施例を説明する。図1、図2において、希薄燃焼可能な内燃機関1はたとえばディーゼル機関からなり、燃料噴射ポンプ2から軽油燃料が圧送され、筒内噴射用噴射ノズル5から各気筒に噴射されて燃焼される。また、内燃機関1の排気系16には排気を浄化するために、リーンNO_x触媒3が装着されている。内燃機関1は、通常、希薄空燃比領域で運転されるので、排気は酸素過剰窒素気、酸化窒素気となり、リーンNO_x触媒3は、HC存在下で、NO_xを還元する。

【0009】 内燃機関1の排気マニホールド14には、望ましくはその上部に、マニホールド壁を隔てて燃料分解チャンバー11が設けられている。燃料分解チャンバー11と排気マニホールド内の排気通路とを隔てるマニホールド壁は受熱面積を大きくとっており、排気ガスの熱によって燃料分解チャンバー内を約500°C以上に熱することができるようにしてある。燃料噴射ポンプ2から筒内噴射用噴射ノズル5までの燃料送給管の途中に燃料分岐部4が設けられ、そこから燃料分岐管15が燃料分解チャンバー11まで延びていて、燃料分解チャンバー内噴射用

(3)

特開平4-214918

3

噴射ノズル6を介して、燃料分解チャンバ11内に使用燃料の一部を噴射することができるようになっている。燃料噴射ポンプ2、燃料分配部4、燃料分歧管5、燃料分解チャンバの噴射ノズル6、燃料分解チャンバ11は、使用燃料の一部を熱分解して低沸点HCを生成する低沸点HC生成手段を構成する。

【0010】燃料分解チャンバ11からは、リーンNO_x触媒3の上流の分解燃料注入部8まで、分解燃料を送給する分解燃料供給管7が伸びている。分解燃料供給管7の中には、燃料分解チャンバ11からリーンNO_x触媒3の上流に流れる分解燃料の量を制御する流量制御弁9が設けられている。流量制御弁9の開度は弁駆動装置10によって制御される。分解燃料供給管7、分解燃料注入部8、流量制御弁9、弁駆動装置10は、燃料分解チャンバ11内の分解燃料(低沸点HC)をリーンNO_x触媒3の上流に供給するHC供給手段を構成する。

【0011】燃料分解チャンバ11の底部からは、燃料分解チャンバ11内の余分の燃料(燃料分解チャンバ11からリーンNO_x触媒3上流に供給されなかった燃料)を燃料噴射ポンプ2に亘す燃料リターン管12が設けられている。リーンNO_x触媒3の上流に注入される分解燃料量を、リーンNO_x触媒3によるNO_x還元に必要十分なHC量に制御するために、制御装置(ECU)13が設けられている。ECU13は、図3に示すように、機関回転速度が高い程注入HC量が大になるように、したがって、図5に示すように、流量制御弁開度が大になるように、弁駆動装置10を介して流量制御弁9を制御する。また、ECU13は、図4に示すように、機関負荷が大な程注入HC量が大になるように、したがって、図6に示すように、負荷が大な程(筒内燃料噴射量が多い程、アクセル開度が大な程)、流量制御弁開度が大になるように、流量制御弁9を制御する。燃料噴射ポンプ2は電子制御燃料噴射ポンプからなり、ECU13によって制御され、筒内噴射の噴射時期、噴射量が決定される。

【0012】つぎに、第1実施例の作用について説明する。使用燃料の一部(筒内に噴射される燃料の約10%)は、燃料分解チャンバ11に噴射される。燃料分解チャンバ11内に噴射された軽油燃料は、排気マニホールド内を流れる排気ガスからの熱をマニホールド壁を介して受取り、この熱によって、蒸発し、炭素数の低いHC成分(C₁~C₄)に分解される。燃料分解チャンバ11は、排気マニホールド表面温度が約500°C以上になれば、HCの分解は可能である。それ以下の温度の場合は、燃料分解チャンバ11内面および排気マニホールド表面に、白金パラジウムなどを塗布しておけば、HC分解用触媒として作用し、低炭素数HCを生成することができる。リーンNO_x触媒3によるNO_x還元に必要な注入HC量は、筒内噴射される燃料の約3~5%であり、必要量が流量制御弁9によって調節されて、リーン

4

NO_x触媒3の上流に、分解燃料注入部8から注入される。残りの余分の分解燃料は、燃料リターン管12を介して、燃料噴射ポンプ2に戻される。なお、燃料分解チャンバ11内の圧力は、チャンバ内温度500°Cでは、(273+500)/273=2.8気圧程度になり、排気圧力よりかなり高いため、排気ガスが分解燃料管7を逆流することはない。

【0013】リーンNO_x触媒3の上流に注入された低炭素数のHCは、リーンNO_x触媒3に流れ、そこで一部、部分酸化されて活性種を生じ、図7のメカニズムに従って、NO_xと反応してNO_xを還元し、無害化する。すなわち、低沸点HCの、一部、部分酸化によって生成された活性種とNO_xとの反応で、NO_xを還元し、排気ガスを浄化する。低沸点HCの供給により活性種の量も増え、リーンNO_x触媒のNO_x浄化率が向上する。なお、第1実施例では、内燃機関としてディーゼル機関を例にとったが、これは、排気系にリーンNO_x触媒を有し、希薄空燃比領域で運転されるガソリン機関であってもよい。

【0014】つぎに、第2実施例を図8を参照して説明する。第2実施例において、第1実施例に準じる部材、すなわち、希薄燃焼可能な内燃機関としてのディーゼルエンジン1、燃料噴射ポンプ2、リーンNO_x触媒3、筒内噴射用燃料噴射ノズル5、ECU13、排気系16には、第1実施例と同じ符号を付すことにより説明を省略し、異なる部材についてのみ以下に説明する。燃料タンク20には、機関の運転に用いる燃料とは別に燃料を循環させる循環経路21が設けられ、途中に燃料循環ポンプ22、循環される燃料を約350°C以上に加熱するヒータ23が設けられる。ヒータ23の下流側には、ヒータ23により加熱されて一部気化した液体燃料を残りの液体燃料から分離する気液分離器24が設けられている。気化する燃料は低沸点HCを多く含み、残りの液体燃料は高沸点HCを多く含む。気液分離器24は配管25でHCタンク26に接続されており、気液分離器24で分離された気体の低沸点HCは、配管25を通してHCタンク26に導かれ、自然放冷で約250°C~350°Cに冷却して液体となりHCタンク26内に貯蔵される。ここで、循環経路21、燃料循環ポンプ22、ヒータ23、気液分離器24、HCタンク26は、使用燃料を利用して低沸点燃料を、主に分留(沸点の差を利用して低沸点HCを抽出する反応)により生成する低沸点HC生成手段を構成する。

【0015】HCタンク26は、リーンNO_x触媒3の上流の内燃機関排気系16に設けたHC噴射ノズル27に配管28により接続され、該配管途上にHC供給ポンプ29が設けられる。このHC供給ポンプ29はHCタンク26からのHCを昇圧し、HC噴射ノズル27はECU13からの指令により開弁して低沸点HCをリーンNO_x触媒3の上流に注入する。ECU13は、エンジ

(4)

特開平4-214918

5

ン回転数信号Neと負荷(アクセル開度)信号Teを読み取り、Ne、Teマップ上で示された燃料量を噴射するよう、HC噴射ノズル27に指令信号を送る。配管28、HC噴射ノズル27、HC供給ポンプ29、ECU13は、低沸点HCをリーンNOx触媒上流に供給する、第2実施例における、HC供給手段を構成する。

【0016】つぎに、第2実施例の作用を説明する。燃料タンク20の燃料の一部は燃料循環ポンプ22で循環され、ヒータ23で加熱されるとともに気液分離器24で気液分離されることにより分留され、低沸点成分のHCが燃料より抽出され、HCタンク26に貯蔵される。この低沸点HCがHC噴射ノズル27からリーンNOx触媒上流に導入されるので、リーンNOx触媒3のNOx浄化率が高められる。ディーゼルエンジンの場合、燃料(機油)は1分子中の炭素数が15以上のものが多くリーンNOx触媒のNOx還元反応に使用できないHCが多いが、上記の分留により低沸点成分が抽出されてこれがリーンNOx触媒3の上流に導入されるので、NOx浄化に極めて有効となる。また、今まででは高沸点HCを添加した場合そのHCをリーンNOx触媒で浄化することが困難でHCエミッションの増大という問題を生じていたが、低沸点HCの場合はリーンNOx触媒ではなく全て浄化(酸化)されるので、HCエミッションの問題も生じない。

【0017】つぎに、第3実施例を図9を参照して説明する。第3実施例において、第1実施例および第2実施例に準じる部材、すなわち、希薄燃焼可能な内燃機関としてのディーゼルエンジン1、燃料噴射ポンプ2、リーンNOx触媒3、筒内噴射用燃料噴射ノズル5、ECU13、排気マニホールド14、排気系16、燃料タンク20、気液分離器24、配管25、HCタンク26、HC噴射ノズル27、配管28、HC供給ポンプ29には、第1実施例、第2実施例と同じ符号を付すことにより説明を省略し、異なる部材についてのみ以下に説明する。筒内噴射用燃料噴射ノズル5からの燃料リターン配管30は、リターン燃料が排気マニホールド14の熱を多く吸収できるように、排気マニホールド14直近で蛇行されており、この蛇行部32で燃料は、一部熱分解されるとともに、元々燃料中に含まれていた低沸点HCおよび熱分解により低沸点HCとなったHCが気化される。蛇行部32の下流に設けられた気液分離器24は、燃料の気液を分離し、分離された気体の方の低沸点HCは配管25を通してHCタンク26に導かれ、貯められる。ここで、燃料リターン配管30、蛇行部32、気液分離器24、配管25、HCタンク26は、使用燃料の一部を利用して、熱分解と分留によって低沸点HCを生成する、第3実施例における、低沸点HC生成手段を構成する。

【0018】HCタンク26とHC噴射ノズル27を接続する配管28、HC供給ポンプ29、HC噴射ノズル

6

27、ECU13は、HCタンク26の低沸点HCをリーンNOx触媒3の上流に注入する、第3実施例における、HC供給手段を構成する。この場合、ECU13は、エンジン回転数信号Neと触媒出口の排気温信号(排気温センサ31の出力)Texとからマップ上で示されたHC量を噴射するよう、指令信号をHC噴射ノズル27に送る。

【0019】つぎに、第3実施例の作用を説明する。リターン燃料は燃料リターン配管30の蛇行部32で、一部熱分解されるとともに、加熱されて気化する。この気化分は気液分離器24で分離され、HCタンク26内に貯まる。HCタンク26内のHCは低沸点HCであり、熱分解により低沸点HCとなったものと、燃料中に元々含まれていた低沸点HCとの両方を含む。この低沸点HCはHC噴射ノズル27からリーンNOx触媒3の上流に導入され、リーンNOx触媒3のNOx浄化率を上げる。

【0020】

【発明の効果】本発明によれば、使用燃料の一部を利用して低沸点HCを生成し、それをリーンNOx触媒の上流に導入するようにしたので、リーンNOx触媒のNOx浄化率を高めることができ、しかも、それを別のHC源を具備する必要なく達成できるという効果を得る。

【図面の簡単な説明】

【図1】本発明の第1実施例に係る内燃機関の排気浄化装置の、系統図を含む、概略平面図である。

【図2】図1の装置の側面図である。

【図3】機関回転速度-注入HC量特性図である。

【図4】機関負荷-注入HC量特性図である。

【図5】機械回転速度-流量制御弁開度特性図である。

【図6】燃料噴射量(機関負荷)-流量制御弁開度特性図である。

【図7】リーンNOx触媒によるNOx還元メカニズムを示すブロック図である。

【図8】本発明の第2実施例に係る内燃機関の排気浄化装置の系統図である。

【図9】本発明の第3実施例に係る内燃機関の排気浄化装置の系統図である。

【符号の説明】

- 1 内燃機関
- 2 燃料噴射ポンプ
- 3 リーンNOx触媒
- 5 筒内噴射用燃料噴射ノズル
- 6 燃料分解チャンバ内噴射用噴射ノズル
- 7 分解燃料供給管
- 8 分解燃料注入部
- 9 流量制御弁
- 10 弁駆動装置
- 11 燃料分解チャンバ
- 12 燃料リターン管

(5)

特開平4-214918

- 13 ECU
 14 排気マニホールド
 15 燃料分配管
 16 排気系
 20 燃料タンク
 21 循環経路
 22 燃料循環ポンプ
 23 ヒータ
 24 気液分離器

- 25 配管
 26 HCタンク
 27 HC噴射ノズル
 28 配管
 29 HC供給ポンプ
 30 燃料リターン配管
 31 排気温センサ
 32 純行部

【図1】

【図3】

【図4】

【図5】

【図6】

(6)

特開平4-214918

【図2】

【図7】

【図8】

(7)

特開平4-214918

【図9】

