Armstrong Atlantic State University Engineering Studies MATLAB Marina – 3D Plotting Exercises

- 1. Write a MATLAB program that will plot the curve traced by the functions: $x(\theta) = 6\cos(\theta)$, $y(\theta) = -6\sqrt{2}\sin(\theta)$, and $z(\theta) = -6\sin(\theta)$ for the angle range $0 \le \theta \le 2\pi$ radians. Hint: this is a 3D parametric plot.
- 2. Write a MATLAB program that will generate a surface plot of $f(x,y) = \frac{4x^2}{16} \frac{3y^2}{16}$ for the range $-2.0 \le x \le 2.0$ and $-3.0 \le y \le 3.0$.
- 3. Write a MATLAB program that will generate a surface plot of the mass of a conic surface. The conic surface is defined by $z=2\sqrt{x^2+y^2}$ for $0.5 \le z \le 4$ and the mass is related to z by m=6-z. Hint: this problem is best solved using cylindrical polar coordinates $\left(r,\theta,z\right)$ rather than rectangular coordinates $\left(x,y,z\right)$ for the underlying grid. Use z and θ for creating the initial grid, a grid for r can then be computed from the z and θ grids, grids for x and y can be computed from the r and θ grids, and m can be computed from z grid. Plot x versus y versus m.

Last modified Wednesday, October 16, 2013

(CC) BY-NC-ND

This work by Thomas Murphy is licensed under a <u>Creative Commons Attribution-NonCommercial-NoDerivs 3.0</u> Unported License.