INFORMATION RETRIEVAL - SHORT EXERCISES II - VECTOR SPACE MODEL AND LATENT SEMANTIC INDEXING

I. Consider a set of terms $\mathbf{T} = \{t_1, t_2, t_3, t_4\}$ and the following collection of two documents: $\mathbf{D1} = \{t_1 \ t_2 \ t_1 \ t_2 \ t_3\}$ and $\mathbf{D2} = \{t_4 \ t_2 \ t_3\}$. Consider query $\mathbf{Q} = \{t_1 \ t_4\}$. Represent D1, D2, and Q using TF (normalized Bag-Of-Words).

TF	t ₁	t ₂	t ₃	t ₄	max
D1	2/2	2/2	1/2	0	2
D2	0	2/2	1/2	1/2	2
Q	1	0	0	1	1

Compute IDFs for all four terms (note that only D1 and D2 are included in the collection).

	t ₁	t ₂	t ₃	t ₄	N
IDF	log2	log1=0	log1=0	log 2	2

II. Consider the below term-document matrix \mathbf{C} for the bag-of-words representation of five documents $\mathbf{D1}$ - $\mathbf{D5}$ in the space of six terms $\mathbf{t_1}$ - $\mathbf{t_6}$. Using the SVD factorization method, matrix \mathbf{C} has been decomposed into matrices \mathbf{K} , \mathbf{S} , and $\mathbf{D^T}$ given below. The rank of \mathbf{C} is 4 (4 \leq min{6,5}), so 4 concepts (semantic dimensions) were discovered.

 $\mathbf{C} = \begin{bmatrix} & \mathbf{D1} & \mathbf{D2} & \mathbf{D3} & \mathbf{D4} & \mathbf{D5} \\ \mathbf{t_1} & 5 & 5 & 0 & 0 & 1 \\ \mathbf{t_2} & 4 & 5 & 1 & 1 & 0 \\ \mathbf{t_3} & 5 & 4 & 1 & 1 & 0 \\ \mathbf{t_4} & 0 & 0 & 4 & 4 & 4 \\ \mathbf{t_5} & 0 & 0 & 5 & 5 & 5 \\ \mathbf{t_6} & 1 & 1 & 4 & 4 & 4 \end{bmatrix}$

not

sure

	terms -> concepts						
	-0.27						
	-0.29						
_t3	-0.29	0.47	0.44	0.71			
^ t4	-0.45	-0.29	-0.01	0			
t5	-0.56	-0.36	-0.02	0			
t6	-0.50	-0.18	-0.05	0			

concept space					
S =	13.74 0		0	0	
	0	10.88	0	0	
	0	0	1.36	0	
	0	0	0	1	

	D1	D2	D3	D4	D5
	-0.32	-0.32	-0.52	-0.52	-0.5
D ^T =		0.63			
D. =	-0.02	-0.02	0.41	0.41	-0.82
	0.71	-0.71	0	0	0

Answer the following questions:

- What is the informativeness value of the most important concept? Answer: 13.74
- Based on the informativeness values of all concepts, which seems the most obvious value for the reduced number of dimensions k? Answer: k = 2
- What is the (numerical value of the) mapping of term t₆ to the most important (informative) concept? Answer: 0 (i.e., the 4th concept)
- What is the vector representing document D3 in the space of four discovered concepts?
 Answer: [-0.52, -0.25, 0.41 , 0]