机器学习导论 (2024 春季学期)

三、线性模型

主讲教师: 周志华

线性模型

线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数

$$f(x) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

向量形式: $f(x) = w^{\mathrm{T}}x + b$

简单、基本、可理解性好

线性回归 (linear regression)

$$f(x_i) = wx_i + b \notin f(x_i) \simeq y_i$$

离散属性的处理:若有"序"(order),则连续化; 否则,转化为 k 维向量

令均方误差最小化,有
$$(w^*, b^*) = \underset{(w,b)}{\operatorname{arg\,min}} \sum_{i=1}^m (f(x_i) - y_i)^2$$
$$= \underset{(w,b)}{\operatorname{arg\,min}} \sum_{i=1}^m (y_i - wx_i - b)^2$$

对
$$E_{(w,b)} = \sum_{i=1}^{m} (y_i - wx_i - b)^2$$
 进行最小二乘参数估计

线性回归

分别对 w 和 b 求导:

$$\frac{\partial E_{(w,b)}}{\partial w} = 2\left(w\sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} (y_i - b)x_i\right)$$
$$\frac{\partial E_{(w,b)}}{\partial b} = 2\left(mb - \sum_{i=1}^{m} (y_i - wx_i)\right)$$

令导数为 0, 得到闭式(closed-form)解:

$$w = \frac{\sum_{i=1}^{m} y_i (x_i - \bar{x})}{\sum_{i=1}^{m} x_i^2 - \frac{1}{m} \left(\sum_{i=1}^{m} x_i\right)^2} \qquad b = \frac{1}{m} \sum_{i=1}^{m} (y_i - wx_i)$$

多元(multi-variate)线性回归

$$f(\boldsymbol{x}_i) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b$$
 使得 $f(\boldsymbol{x}_i) \simeq y_i$

$$\boldsymbol{x}_i = (x_{i1}; x_{i2}; \dots; x_{id}) \quad y_i \in \mathbb{R}$$

把 \mathbf{w} 和b 吸收入向量形式 $\hat{\mathbf{w}} = (\mathbf{w}; b)$,数据集表示为

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \\ x_{21} & x_{22} & \cdots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_1^{\mathrm{T}} & 1 \\ \boldsymbol{x}_2^{\mathrm{T}} & 1 \\ \vdots & \vdots \\ \boldsymbol{x}_m^{\mathrm{T}} & 1 \end{pmatrix} \quad \boldsymbol{y} = (y_1; y_2; \dots; y_m)$$

多元线性回归

同样采用最小二乘法求解,有

$$\hat{\boldsymbol{w}}^* = \operatorname*{arg\,min}_{\hat{\boldsymbol{w}}} \left(\boldsymbol{y} - \mathbf{X} \hat{\boldsymbol{w}} \right)^{\mathrm{T}} \left(\boldsymbol{y} - \mathbf{X} \hat{\boldsymbol{w}} \right)$$

令
$$E_{\hat{w}} = (\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})^{\mathrm{T}}(\boldsymbol{y} - \mathbf{X}\hat{\boldsymbol{w}})$$
, 对 $\hat{\boldsymbol{w}}$ 求导:
$$\frac{\partial E_{\hat{\boldsymbol{w}}}}{\partial \hat{\boldsymbol{x}}} = 2\mathbf{X}^{\mathrm{T}}(\mathbf{X}\hat{\boldsymbol{w}} - \boldsymbol{y}) \quad$$
 令其为零可得 $\hat{\boldsymbol{w}}$

然而, 麻烦来了: 涉及矩阵求逆!

- $oldsymbol{\Box}$ 若 $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ 满秩或正定,则 $\hat{oldsymbol{w}}^* = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}oldsymbol{y}$
- $flue{z}$ $flue{z}$ $flue{z}$ $flue{x}$ 不满秩,则可解出多个 $\hat{m{w}}$

此时需求助于归纳偏好,或引入 正则化 (regularization) 第6、11章

线性模型的变化

对于样例 $(x,y), y \in \mathbb{R}$,若希望线性模型的预测值逼近真实标记,则得到线性回归模型 $y = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$

令预测值逼近 y 的衍生物?

若令 $\ln y = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$

则得到对数线性回归

(log-linear regression)

实际是在用 $e^{\mathbf{w}^{\mathrm{T}}\mathbf{x}+b}$ 逼近 y

广义(generalized)线性模型

一般形式:
$$y = g^{-1} (\mathbf{w}^T \mathbf{x} + b)$$

单调可微的 联系函数 (link function)

令
$$g(\cdot) = \ln(\cdot)$$
 则得到 对数线性回归
$$\ln y = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$$

... ...

二分类任务

线性回归模型产生的实值输出
$$z = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b$$
 期望输出 $y \in \{0,1\}$

找z和y的 联系函数

理想的"单位阶跃函数" (unit-step function)

$$y = \begin{cases} 0, & z < 0; \\ 0.5, & z = 0; \\ 1, & z > 0, \end{cases}$$

性质不好,

需找"替代函数"

(surrogate function)

单调可微、任意阶可导

$$y = \frac{1}{1 + e^{-z}}$$

 $\frac{1}{1+e^{-z}}$ 对数几率函数 (logistic function) 简称"对率函数"

注意: Logistic与"逻辑" 没有半毛钱关系!

常用

1. Logistic 源自 Logit, 不是Logic; 2. 实数值, 并非 "非0即1"的逻辑值

对率回归

以对率函数为联系函数:

$$y=rac{1}{1+e^{-z}}$$
 变为 $y=rac{1}{1+e^{-(m{w}^{\mathrm{T}}m{x}+b)}}$ 即: $m{w}^{\mathrm{T}}m{w}=m{w}^{\mathrm{T}}m{x}+b$ "对数几率" (odds),反映了 $m{x}$ 作为正例的相对可能性 (log odds,亦称 logit)

"对数几率回归" (logistic regression) 简称"对率回归"

- 无需事先假设数据分布
- 可得到"类别"的近似概率预测
- 可直接应用现有数值优化算法求取最优解

求解思路

若将 y 看作类后验概率估计 $p(y=1 \mid x)$,则

$$\ln \frac{y}{1-y} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b \quad \text{可写为} \quad \ln \frac{p(y=1 \mid \boldsymbol{x})}{p(y=0 \mid \boldsymbol{x})} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

于是,可使用 "极大似然法" → 第7章 (maximum likelihood method)

给定数据集 $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^m$

最大化"对数似然"(log-likelihood)函数

$$\ell(\boldsymbol{w}, b) = \sum_{i=1}^{m} \ln p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}, b)$$

求解思路

$$\Rightarrow \boldsymbol{\beta} = (\boldsymbol{w}; b)$$
, $\hat{\boldsymbol{x}} = (\boldsymbol{x}; 1)$, 则 $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$ 可简写为 $\boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}$

再令
$$p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 1 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta}) = \frac{e^{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b}}{1 + e^{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b}}$$

$$p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 0 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta}) = 1 - p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = \frac{1}{1 + e^{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b}}$$

则似然项可重写为 $p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b) = y_i p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) + (1 - y_i) p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$

于是,最大化似然函数
$$\ell(\boldsymbol{w},b) = \sum_{i=1}^{m} \ln p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}, b)$$

等价为最小化
$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{m} \left(-y_i \boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}_i + \ln \left(1 + e^{\beta^{\mathrm{T}} \hat{\boldsymbol{x}}_i} \right) \right)$$

高阶可导连续凸函数,可用经典的数值优化方法 如梯度下降法/牛顿法 [Boyd and Vandenberghe, 2004]

To be continued