运算不满足结合律。

由于 x * x = |x - x| = 0, 当 $x \neq 0$ 时, $x * x \neq x$, 所以运算不满足幂等律。 由于对所有 $x, y \in A$, 若 x < 0, 则有 $0 \le x * y \ne x$, 从而 $\langle A, * \rangle$ 没有单位元。

- (3) 由于 n 的倍数的乘积仍是 k 的倍数,所以 $A = n\mathbb{Z}$ 对 * 运算封闭。从而 $\langle A, * \rangle$ 是代数系统。由乘法性质知,* 运算满足交换律和结合律,不满足幂等律。 当 n = 1 时,A 中有单位元 1,1 和 -1 $n \neq 1$ 时,无单位元。
- (4) 由对称差的性质可知,A 对 * 运算封闭。从而 $\langle A, * \rangle$ 是代数系统。 由对称差的性质知,运算满足交换律、结合律。 对任意 $x \in A$,有 $x * x = x \oplus x = \varnothing$,当 $x \neq \varnothing$ 时, $x * x \neq x$,所以运算不满足幂等律。 显然 \varnothing 是单位元,且所有元素都是自身的逆元。
- (5) 首先证明封闭性。

若 R_1, R_2 是两个等价关系,则 $R_1 \cap R_2$ 显然是自反的(因为对任意 $x \in B$,都有 $\langle x, x \rangle \in R_1, \langle x, x \rangle \in R_2$,所以有 $\langle x, x \rangle \in R_1 \cap R_2$)。对任意 $x, y, z \in B$,若 $\langle x, y \rangle, \langle y, z \rangle \in R_1 \cap R_1$,则由 R_1, R_2 的传递性知, $\langle x, z \rangle \in R_1, \langle x, z \rangle \in R_2$,从而有 $\langle x, z \rangle \in R_1 \cap R_2$, $R_1 \cap R_2$ 是传递的。对任意 $x, y \in B$,若 $\langle x, y \rangle \in R_1 \cap R_2$,则由 R_1, R_2 的对称性知, $\langle y, x \rangle \in R_1, \langle y, x \rangle \in R_2$,从而 $\langle y, x \rangle \in R_1 \cap R_2$,是对称的。这就证明了对证明 B 上的等价关系 $R_1, R_2 \in A$,有 $R_1 \cap R_2 \in A$ 。从而 $\langle A, * \rangle$ 是代数系统。

由集合交的性质知,*运算满足交换律、结合律和幂等律。 B上的全域关系 E_B 是单位元。除 E_B 外,其它元素无逆元。

7. 因为 $\langle \mathbb{Z}_{12}, \oplus \rangle$ 是循环群,面循环群的子群都是 $\langle a^n \rangle$ 的形式。所以 G 的子群为:

$$H_1 = \langle 0 \rangle = \{0\};$$

$$H_2 = \langle 6 \rangle = \{0, 6\};$$

$$H_3 = \langle 4 \rangle = \{0, 4, 8\};$$

$$H_4 = \langle 3 \rangle = \{0, 3, 6, 9\};$$

$$H_5 = \langle 2 \rangle = \{0, 2, 4, 6, 8, 10\};$$

$$H_6 = \langle 1 \rangle = G$$
;

子群格如下:

易于验证,L(G) 中没有与五角格或钻石格同构的子格,所以L(G) 是模格,也是分配格。由于 H_2 和 H_5 没有补元,所以L(G) 不是有补格,从而不是布尔代数。

8.

证明:对任意 $q \in G, h \in N$,有

$$f(ghg^{-1}) = f(g)f(h)f(g)^{-1}$$
 (f 是同态)
= $f(g)f(g)^{-1}f(h)$ (G₂ 是交换群)
= $f(h)$ (f(g)f(g)⁻¹ = e_2)