Exercícios - Folha 6 2020/21

- 37. Seja G um grupo. Mostre que a aplicação $\phi:G\to G$ definida por $\phi(x)=x^{-1}$ é um automorfismo se e só se o grupo G for abeliano.
- 38. Sejam G e G' grupos e $\varphi:G\to G'$ um morfismo. Mostre que:
 - (a) Para cada $x \in G$ e $n \in \mathbb{Z}$, se tem $\varphi(x^n) = \varphi(x)^n$;
 - (b) Se $x \in G$ tem ordem finita, então, $\varphi(x)$ tem ordem finita e $o(\varphi(x)) \mid o(x)$;
 - (c) Se $x \in G$ tem ordem finita e φ é isomorfismo, então $\varphi(x)$ tem ordem finita e $o(\varphi(x)) = o(x)$.
- 39. Mostre que os grupos $\mathbb{Z}_{15}/\langle [5]_{15}\rangle$ e \mathbb{Z}_5 são isomorfos.
- 40. Mostre que $8\mathbb{Z}/56\mathbb{Z} \simeq \mathbb{Z}_7$.
- 41. Seja G um grupo não abeliano de ordem 8.
 - (a) Mostre que G tem um subgrupo H tal que |H|=4.
 - (b) Prove que $H \triangleleft G$.
- 42. Determine os subgrupos cíclicos de um grupo cíclico de ordem 10.
- 43. Seja $G = \langle a \rangle$ um grupo cíclico de ordem ímpar tal que $a^{47} = a^{17}$, $a^{10} \neq 1_G$ e $a^6 \neq 1_G$. Determine, justificando:
 - (a) a ordem de G;
 - (b) o número de subgrupos de G;
 - (c) todos os geradores distintos de G;
 - (d) o número de automorfismos de G.