Fun damentals on coherent optics: linear propagation in optical waveguides exercice 2 conection

2:
$$NA = (n_1^2 - n_2^2)^{1/2} = (1.463^2 - 1.458^2)^{1/2} = 0.12$$

3: the volume of silice is not changed.

=) volume of the preform
$$V_p = V_0 l$$
 lime of the fiser V_f

(=) IT D_0^2 | IT D_0^2

$$(3) \frac{11}{4} \frac{D_{\rho}^{2}}{4} = \frac{11}{4} \frac{D_{\rho}^{2}}{4} + \frac{1}{4} \left(\frac{D}{D} \Rightarrow Diameter; index \rho \Rightarrow preform \right)$$

$$(2) \frac{11}{4} \frac{D_{\rho}^{2}}{4} + \frac{1}{4} \frac{D_{\rho}^{2}}{4} + \frac{1}{4} \frac{D}{A} = \frac{1}{4} \frac{D} = \frac{1}{4} \frac{D}{A} = \frac{1}{4} \frac{D}{A} = \frac{1}{4} \frac{D}{A} = \frac{1}{4$$

$$(2) L_{g} = L_{p} \left(\frac{D_{p}}{D_{f}} \right)^{2} = 0.5 \left(\frac{310^{-2}}{12510^{-6}} \right)^{2} = 28.800 \text{ m} = 28.8 \text{ fm}$$

4/ a)
$$\Delta = \frac{NA^2}{2n_1^2} = \frac{0.12^2}{2 \times 1.463^2} \times 3.4 \cdot 10^{-3} < 10^{-2}$$

The weak guidance approximation applies -> LP, (= linearly polarized)

modes can be considered. In a LP mode at given time and place

(t and z fixed), the planization remains linear (= in a given director)

in all the cross pertion.

Signature of the section of the section of the constant of the const

$$5/a) \frac{d\Delta \mathcal{G}}{d\lambda} = \frac{-2\pi}{6^2} (m_v - 1) \Delta e \Big|_{\lambda = \sqrt{\tau}} = 0 \frac{d\lambda}{2\pi} \frac{-d\tau^2}{(m_v - 1) \Delta e} \frac{d\Delta \mathcal{G}}{d\lambda}$$

c)
$$\Delta e = e_{\Lambda} - e_{2} = 0.5 \text{ mm}$$

$$\Delta d = \frac{(1.1 \cdot 10^{-6})^{2}}{(1.5 - 1)_{x} \cdot Q_{5} \cdot 10^{-3}} = 4.8 \cdot 10^{9} \text{ m} = 4.8 \text{ nm}$$

1. 1. 0 P 1. W.	3
The beam after usering the plates	
=> the exacting beam (after the plates) is an even beam (111) The LPO, mode (which is even (11)) can be excited	
The LP, mode (which is odd (1) (1) or (2)) is motexaited at all => 2^2 LP, mode = 0	
Wavelength shift 1102.4-1100=2.4 mm = 4.8 mm	
= = (A of question > c)	
The phase difference between the upper part and the lower part of the beam, after the plates is $\Delta f_2 = \Delta f_1 \pm \pi = (2m \pm 1)\pi$ The exciting beam (after the plates) is odd The LPAN mode (IT) will be excited	
The Llor mode (which is even [1]) is not excited at all	
=) d2 So, mode = 0	

when I is swept and, as they are both guided, P(I) is relatively stable

When I is swept and, as LPv1 mode is quided but not the LPv1 mode, P(1) dec ply fluctuates.

10) a do/12 = 1240 mm @do: V=2.405

211 aNA = 2. 405 => a = 2.405 do = 2.405 x 1,24 = 3,96 mm

do aNA = 2. 405 => a = 2.105 do = 2.405 x 1,24 = 3,96 mm

b) V= 2T a NA = 2T x 4 x 0.12 = 4.75

En the set of dispersion curves we can see that V>Vc for the modes LPo, LP., LPe, and LPoz. Among these modes:

c) the lowest order mode ni is the LPo, mode (highest B) the highest order mode MH is the LPoz mode (lowest B)

For V= 4.75 we can read on the normalized dispersion curves: B(LP01) = 0,82 and B(LP02)= 0.13

 $B = \frac{\beta^{2} - k_{0} n_{2}}{k_{0}^{2} (n_{1}^{2} - n_{2}^{2})} \quad \text{with } \beta = k_{0} n_{e} \implies B = \frac{m_{e}^{2} - n_{2}^{2}}{NA^{2}}$ $\Rightarrow m_e = (\beta NA^2 + m_z^2)^{1/2}$

calculations: me (LPo.) = (0.82 x 0.12 +1.458 2) 1/2 = 1.462

Me (Goe) = (0.13 x 0.12 + 1.458) 1/2 = 1.486

d) $U_{\ell} = \frac{C}{m_e}$ $U_{\ell}(N_e) = U_{\ell}(N_e) = \frac{C}{m_e(N_e)} = \frac{310^6}{1.462} \times 2.05210 \, \text{ms}^{-1}$

Ug(NH)= Ug(LPoz)= C = 310 N 2.057 10 ms