Assignment of OS Lab on 2/8/23:

Write a C program to simulate the following contiguous memory allocation techniques

- b) Best-fit

a) Worst-fit

c) First-fit

Simulate the following situation:

Example

Consider a swapping system in which memory consists of the following whole sizes in memory order: 10K, 4k, 20k, 18k, 7k, 9k, 12k, and 15k. Which hole is taken for successive segment request of i)12k, ii)10k, iii)9k for first fit? Now repeat the question for best fit and worst fit.

Best Fit		
12k	\rightarrow	12k
10k	\rightarrow	10k
9k	\rightarrow	9k

CODE:

```
#include<stdio.h>
#include<conio.h>
#define max 25
void firstfit()
{
  int frag[max],b[max],f[max],i,j,nb,nf,temp;
  static int bf[max],ff[max];

printf("\nEnter the number of blocks:");
  scanf("%d",&nb);
  printf("Enter the number of files:");
  scanf("%d",&nf);
```

```
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{
printf("Block %d:",i);
scanf("%d",&b[i]);
}
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{
printf("File %d:",i);
scanf("%d",&f[i]);
}
for(i=1;i<=nf;i++)
{
for(j=1;j<=nb;j++)
{
if(bf[j]!=1)
{
temp=b[j]-f[i];
if(temp>=0)
{
ff[i]=j;
break;
}
}
frag[i]=temp;
bf[ff[i]]=1;
}
```

```
printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");
for(i=1;i<=nf;i++)
printf("\n\%d\t\t\%d\t\t\%d\t\t\%d\t\t\%d",i,f[i],ff[i],b[ff[i]],frag[i]);
}
void bestfit()
{
int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;
static int bf[max],ff[max];
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{
printf("Block %d:",i);
scanf("%d",&b[i]);
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{
printf("File %d:",i);
scanf("%d",&f[i]);
}
for(i=1;i<=nf;i++)
{
for(j=1;j<=nb;j++)
```

```
{
if(bf[j]!=1)
{
temp=b[j]-f[i];
if(temp>=0)
if(lowest>temp)
{
ff[i]=j;
lowest=temp;
}
}
frag[i]=lowest;
bf[ff[i]]=1;
lowest=10000;
}
printf("\nFile No\tFile Size \tBlock No\tBlock Size\tFragment");
for(i=1;i<=nf && ff[i]!=0;i++)
printf("\n\%d\t\t\%d\t\t\%d\t\t\%d\t\t\%d",i,f[i],ff[i],b[ff[i]],frag[i]);
}
void worstfit()
{
int frag[max],b[max],f[max],i,j,nb,nf,temp,highest=0;
static int bf[max],ff[max];
printf("\nEnter the number of blocks:");
scanf("%d",&nb);
```

```
printf("Enter the number of files:");
scanf("%d",&nf);
printf("\nEnter the size of the blocks:-\n");
for(i=1;i<=nb;i++)
{
printf("Block %d:",i);
scanf("%d",&b[i]);
}
printf("Enter the size of the files :-\n");
for(i=1;i<=nf;i++)
{
printf("File %d:",i);
scanf("%d",&f[i]);
}
for(i=1;i<=nf;i++)
{
for(j=1;j<=nb;j++)
{
if(bf[j]!=1) //if bf[j] is not allocated
{
temp=b[j]-f[i];
if(temp>=0)
if(highest<temp)</pre>
{
ff[i]=j;
highest=temp;
}
```

```
}
frag[i]=highest;
bf[ff[i]]=1;
highest=0;
}
printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");
for(i=1;i<=nf;i++)
printf("\n\%d\t\t\%d\t\t\%d\t\t\%d\t\t\%d",i,f[i],ff[i],b[ff[i]],frag[i]);
}
void main()
{
int c;
while(1)
{
printf("\n1.first fit 2.best fit 3.worst fit 4.exit");
printf("\nenter choice:");
scanf("%d",&c);
switch(c)
{
case 1:firstfit();
break;
case 2:bestfit();
break;
case 3:worstfit();
break;
case 4:exit(0);
default:printf("invalid choice");
}}}
```

OUTPUT:

```
1.first fit 2.best fit 3.worst fit 4.exit
enter choice:1
Enter the number of blocks:8
Enter the number of files:3
Enter the size of the blocks:-
Block 1:10
Block 2:4
Block 3:20
Block 4:18
Block 5:7
Block 6:9
Block 7:12
Block 8:15
Enter the size of the files :-
File 1:12
File 2:10
File 3:9
File no:
                File size :
                               Block no:
                                               Block size:
                                                               Fragement
                                                20
                12
                                3
                                                               8
2
                10
                                1
                                               10
                                                               0
3
                                4
                                                18
                                                               9
1.first fit 2.best fit 3.worst fit 4.exit
enter choice:
1.first fit 2.best fit 3.worst fit 4.exit
enter choice:2
Enter the number of blocks:8
Enter the number of files:3
Enter the size of the blocks:-
Block 1:10
Block 2:4
Block 3:20
Block 4:18
Block 5:7
Block 6:9
Block 7:12
Block 8:15
Enter the size of the files :-
File 1:12
File 2:10
File 3:9
File No File Size
                         Block No
                                          Block Size
                                                           Fragment
                                  7
                                                                   0
                                                  12
                 10
                                 1
                                                  10
                                                                   0
```

6

9

9

0

```
1.first fit 2.best fit 3.worst fit 4.exit
enter choice:3
Enter the number of blocks:8
Enter the number of files:3
Enter the size of the blocks:-
Block 1:10
Block 2:4
Block 3:20
Block 4:18
Block 5:7
Block 6:9
Block 7:12
Block 8:15
Enter the size of the files :-
File 1:12
File 2:10
File 3:9
File_no:
                File_size :
                                Block_no:
                                                Block_size:
                                                                 Fragement
                12
                                3
                                                20
                10
                                4
                                                18
                                                                 8
                9
                                8
                                                 15
                                                                 6
```