1. Consider the languages or sets of strings $A = \{a, aa, aaa\}$ and $B = \{bb\}$. Show the languages denoted by each of the following:

a. A^1

e. B^1

i. B*

b. A^2

f. B^2

j. $(AB)^2$

c. $A \cup A^2$

g. B^3

k. $(A \cup B)^2$

d. A*

h. $B \cup B^2 \cup B^3$

2. Write a formal regular expression (**not** a Ruby regular expression) that describes or recognizes each of the following languages. Formal regular expressions may use **only** the three operations concatenation, alternation, and Kleene closure, as defined in lecture. Use ϵ to denote the empty string. The underlying alphabet for each part is $\Sigma = \{a, b\}$.

The notation #a(w) is used below to refer to the number of a's occurring in the string w. For example, #a(bbaba) = 2.

a. $\{ w \mid w \text{ begins with } abab \}$

e. $\{ w \mid \#a(w) \text{ is even or } |w| \text{ is even } \}$

b. $\{ w \mid w \text{ ends with } abab \}$

f. $\{ w \mid aaa \text{ is a substring of } w \}$

c. $\{ w \mid w \text{ begins with } ab \text{ and ends with } ba \}$ Note: The string aba is in this language.

g. $\{ w \mid aaa \text{ is } \mathbf{not} \text{ a substring of } w \}$

d. $\{ w \mid \#a(w) \mod 5 = 2 \}$ Recall that $i \mod k = j$ if and only if i - j is divisible by k.

3. Consider the following language:

 $\{w \mid w \in \{0, 1\}^* \text{ and } w \text{ contains an even number of 0s, and } w \text{ does not contain three consecutive 1s} \}$ Determine whether each of the following regular expressions correctly describes or recognizes this language or not. Identify why each incorrect regular expression is wrong—give a string that the regular expression doesn't give the right results for, and identify what result the regular expression should give for that string, and what result it actually gives.

```
a. (0(\epsilon|1|11)0)^*
```

b.
$$((0(\epsilon|1|11)0)^*|1|11)$$

c.
$$((0(\epsilon|1|11)0)^*|1|11)^*$$

d.
$$((\epsilon|1|11) \ 0 \ (\epsilon|1|11) \ 0 \ (\epsilon|1|11))^* \ |\ 1 \ |\ 11)$$

e.
$$(((\epsilon|1|11) \ 0 \ (\epsilon|1|11) \ 0)^* \ |\ 1 \ |\ 11)$$

f.
$$(\epsilon |1|11) (0 (\epsilon |1|11) 0)^* (\epsilon |1|11)$$

g.
$$((\epsilon|1|11) \ 0 \ (\epsilon|1|11) \ 0)^* \ (\epsilon|1|11)$$