1. Найдите все минимальные генераторы для минимального уровня поддержки = 1.

Support = 1 — уровень поддержки

Набор данных:

tid	itemset
1	ACD
2	BCD
3	AC
4	ABD
5	ABCD
6	BCD

F — frequent set

	support	itemset
0	4.0	(A)
1	4.0	(B)
2	5.0	(C)
3	5.0	(D)
4	2.0	(B, A)
5	3.0	(C, A)
6	3.0	(D, A)
7	3.0	(C, B)
8	4.0	(B, D)
9	4.0	(C, D)
10	1.0	(C, B, A)
11	2.0	(B, A, D)
12	2.0	(C, D, A)
13	3.0	(C, B, D)
14	1.0	(C, B, A, D)

Сгруппируем F по поддержке:

```
5 D, C
4 A, B, BD, CD
3 CA, DA, CB, CBD
2 BAD, CDA, BA
1 CBA, CBAD
```

Получим closed frequent set C и minimal generators G

tidset 12456	C D	G D
12356 1345	C A	C A
2456	BD	В
1256	CD	CD
135	CA	CA
145	DA	DA
256	CBD	CB
45	BAD	BA
15	CDA	CDA
5	CBAD	CBA

Пример получения значений:

Для С:

$$c(BA) = i(t(BA)) = i(45) = BAD$$
 — BA не входит в C, тк $X! = C(X)$ $c(BAD) = i(t(BAD)) = i(45) = BAD$ — BAD входит в C, тк $X = C(X)$

Для G:

тк BAD — закрытый сет для BA и только BA и BAD делят tidset=45, BA — минимальный генератор

2.

Выполните следующие задание:

- 1. Выпишите список всех закрытых наборов (closed itemsets)
- 2. Является ли набор BCD выводимым? Является ли набор ABCD выводимым? Какие границы их поддержки?.

Сгруппируем по поддержке:

6 - A

5 — B, AB,

4 — C, AC

3 — D, AD, BC, ABC

2 — BD, CD, ABD, ACD

1 — BCD, ABCD

```
Torдa, closed frequent set C: C
A
AB
AC
AD
ABC
ABD
ACD
ABCD
```

выводимы ли BCD и ABCD (derived)? Какие границы поддержки?

```
X = BCD
UB-UPPER BORDER
LB-LOWER BORDER
Y \subseteq W \subset X
Y = BCD; |X/Y| = 0-even; W-not exist; \sup(X) \ge 0-LB
Y = BC; |X/Y| = 1 - odd; W = \{BC\}; \sup(X) \le (-1)^2 * \sup(BC) = 3 - UB
Y = BD; |X/Y| = 1 - odd; W = \{BD\}; \sup(X) \le (-1)^2 * \sup(BD) = 2 - UB
Y = CD; |X/Y| = 1 - odd; W = \{CD\}; \sup(X) \le (-1)^2 * \sup(CD) = 2 - UB
Y = B; |X/Y| = 2 - even; W = \{B, BC, BD\};
\sup(X) \ge (-1)^3 * \sup(B) + (-1)^2 * \sup(BC) + (-1)^2 * \sup(BD) = -5 + 3 + 2 = 0 - LB
Y = C; |X/Y| = 2 - even; W = \{C, BC, CD\};
\sup(X) \ge (-1)^3 * \sup(C) + (-1)^2 * \sup(BC) + (-1)^2 * \sup(CD) = -4 + 3 + 2 = 1 - LB
Y = D; |X/Y| = 2 - even; W = \{D, BD, CD\};
\sup(X) \ge (-1)^3 * \sup(D) + (-1)^2 * \sup(BD) + (-1)^2 * \sup(CD) = -3 + 2 + 2 = 1 - LB
Y = \emptyset; |X/Y| = 3 - odd; W = \{B, C, D, BC, BD, CD, \emptyset\};
\sup(X) \le (-1)^3 * \sup(B) + (-1)^3 * \sup(C) + (-1)^3 * \sup(D)
+(-1)^2* \sup(BD)+(-1)^2* \sup(BC)+(-1)^2* \sup(BC)+(-1)^4* \sup(\mathcal{S})
=-5-4-3+3+2+2+6=1-UB
\sup(X) \in [\max\{LB(X)\}, \min\{UB(X)\}] = [1,1] - borders
if max\{LB(X)\}=min\{UB(X)\}, then X-derived \rightarrow 1=1, then BCD-derived
```

$$X = ABCD$$

$$Y = ABCD; |X/Y| = 0 - even; \sup(x) \ge 0$$

$$Y = ABC; |X/Y| = 1 - odd; \sup(x) \le 3$$

$$Y = ACD; |X/Y| = 1 - odd; \sup(x) \le 2$$

$$Y = ABD; |X/Y| = 1 - odd; \sup(x) \le 2$$

$$Y = BCD; |X/Y| = 1 - odd; \sup(x) \le 1$$

$$Y = AB; |X/Y| = 2 - even; \sup(x) \ge 0$$

 $Y = AC; |X/Y| = 2 - even; \sup(x) \ge 1$
 $Y = AD; |X/Y| = 2 - even; \sup(x) \ge 1$
 $Y = BC; |X/Y| = 2 - even; \sup(x) \ge 1$
 $Y = BD; |X/Y| = 2 - even; \sup(x) \ge 1$
 $Y = CD; |X/Y| = 2 - even; \sup(x) \ge 1$

$$Y = A; |X/Y| = 3 - odd; \sup(x) \le 1$$

 $Y = B; |X/Y| = 3 - odd; \sup(x) \le 1$
 $Y = C; |X/Y| = 3 - odd; \sup(x) \le 1$
 $Y = D; |X/Y| = 3 - odd; \sup(x) \le 1$

$$Y = \emptyset$$
; $|X/Y| = 4 - evem$; $\sup(x) \ge 1$

$$\sup(X) \in [\max\{LB(X)\}, \min\{UB(X)\}] = [1,1] - borders$$

if $\max\{LB(X)\} = \min\{UB(X)\}, then X - derived \rightarrow 1 = 1, then ABCD - derived$

3. Найдите все подпоследовательности в минимальным уровнем поддержки = 4 Даны последовательности:

Id	Sequence
\mathbf{s}_1	AATACAAGAAC
\mathbf{s}_2	GTATGGTGAT
S ₃	AACATGGCCAA
S 4	AAGCGTGGTCAA

Как проходило построение дерева подпоследовательностей:

Итоговое дерево подпоследовательностей без лишних узлов

Для алфавита $\{A,C,G,T\}$ посчитайте, сколько всего может быть разных последовательностей длины k

 $N = | \{A,C,G,T\} | \land k$

4. Дан набор графов. Разделите их на изоморфные группы

G2, G5 — изоморфные графы G1, G3, G4, G6 — их изоморфные подграфы

G3 — изоморфный подграф G7