

1. Elementos do sistema computacional

- ✓ O computador é uma máquina ou dispositivo capaz de executar uma sequência de instruções definidas pelo homem para gerar um determinado resultado.
- ✓ Essa sequência de instruções é denominada **algoritmo**, que ao serem executadas pelo computador, resolvem um problema específico.
- ✓ Assim, algoritmos compõem o que conhecemos como programa de computador, ou seja, software.

1. Elementos do sistema computacional

- ✓ Dispositivos de entrada e saída (ex.: monitor, teclado, impressora, webcam);
- ✓ Dispositivos de armazenamento (ex.: memória volátil e permanente);
- √ Processador;

Assim como todo o **conjunto de elementos que compõem um computador** são chamados de **hardware**.

1. Elementos do sistema computacional

1. PCs analógicos x digitais

- ✓ Os computadores podem ser classificados em dois tipos principais: analógicos e digitais.
- ✓ Os computadores analógicos não trabalham com números e são normalmente criados para finalidade específica, onde suas variáveis atuam medindo a intensidade de uma corrente elétrica em um resistor, o ângulo de giro de uma engrenagem, o nível de água de um recipiente e etc.

1. PCs analógicos x digitais

- √Já os computadores digitais resolvem problemas realizando operações diretamente com números, enquanto os analógicos medem;
- ✓ Os **computadores digitais** resolvem os problemas realizando cálculos e tratando cada número, dígito por dígito, que só podem assumir dois valores distintos: 0 ou 1.

1. PCs analógicos x digitais

3. Geração 0: computador mecânico

- **√**1642 -1945
- √ essencialmente analógicos, com construção baseada no uso de engrenagens
- ✓ Exemplos: mecanismo de Antikythera, máquina de Pascal e a máquina das diferenças de Babbage.

3. Geração 0: computador mecânico

Válvulas na Primeira Geração de Computadores

✓ A **Primeira Geração de Computadores** (1945 - 1955) foi marcada pelo uso de **válvulas eletrônicas** como os principais componentes para processar e armazenar informações

✓ O que eram as válvulas eletrônicas?

As válvulas eletrônicas eram dispositivos de controle de corrente elétrica em circuitos. Elas funcionavam como interruptores ou amplificadores e foram essenciais para os primeiros computadores digitais.

Essas válvulas eram grandes, geravam muito calor e consumiam muita energia, mas permitiram a criação dos primeiros computadores programáveis, como o ENIAC (1946) e o UNIVAC I (1951).

Válvulas na Primeira Geração de Computadores

- ✓ Desvantagens das válvulas
 - •Eram grandes e frágeis → Um computador poderia ocupar uma sala inteira.
 - **•Esquentavam muito** \rightarrow O ENIAC, por exemplo, gerava tanto calor que precisava de um sistema de resfriamento.
 - •Consumo de energia alto \rightarrow Gastavam milhares de watts para operar.
 - •Curta vida útil → Quebravam frequentemente, exigindo manutenção constante.

Válvulas na Primeira Geração de Computadores

Modelo de Von Neumann

- •Armazenamento de programas e dados na mesma memória → Diferente de máquinas anteriores (como a Máquina de Turing), os dados e as instruções são armazenados juntos, permitindo que o computador altere seu próprio código durante a execução.
- Execução sequencial das instruções → O processador busca e executa instruções em sequência, salvo quando há desvios condicionais.
- •Uso de uma unidade central de processamento (CPU) → Que contém:
 - Unidade de Controle (UC) → Coordena a execução das instruções.
 - Unidade Lógica e Aritmética (ULA) → Realiza cálculos matemáticos e lógicos.
- Memória RAM → Armazena temporariamente programas e dados em execução.
- Entrada e Saída (E/S) → Permite interação com o usuário e outros dispositivos.

Segunda geração: Transistores (1955-1965)

- **Uso de transistores** → Substituíram as válvulas eletrônicas, reduzindo o tamanho e consumo de energia.
- Memória de núcleo magnético → Substituiu os tambores magnéticos da Primeira Geração, permitindo acesso mais rápido aos dados.
- Linguagens de programação de alto nível → Surgem Fortran (1957) e COBOL (1959), facilitando o desenvolvimento de software.
- ◆ Armazenamento em fitas magnéticas e discos → Maior capacidade de armazenamento em comparação com cartões perfurados.
- Computadores comerciais mais acessíveis → Empresas começaram a usar computadores para processamento de dados.

Segunda geração: Transistores (1955-1965)

Exemplos de Computadores da Segunda Geração

- \blacksquare **IBM 1401** (1959) \rightarrow Primeiro computador comercial de grande sucesso.
- 🖳 IBM 1620 → Usado em universidades e instituições de pesquisa.
- UNIVAC II → Evolução do primeiro computador comercial (UNIVAC I).

Segunda geração: Transistores (1955-1965)

Vantagens da Segunda Geração:

- Menor tamanho e maior velocidade → Os computadores ficaram mais compactos e processavam milhões de instruções por segundo.
- Menor consumo de energia → Reduziu drasticamente o gasto elétrico em comparação com a primeira geração.
- ightharpoonup Maior confiabilidade ightharpoonup Os transistores eram mais duráveis que as válvulas, diminuindo falhas.
- **Expansão do uso comercial** → Empresas começaram a utilizar computadores para contabilidade, folha de pagamento e estatísticas.

Terceira geração: Circuitos integrados (1965-1970)

- Uso de circuitos integrados (chips) → Um único chip podia conter milhares de transistores, reduzindo o tamanho e o consumo de energia.
- Redução no tamanho dos computadores → Computadores ficaram muito menores, possibilitando seu uso em escritórios.
- Maior velocidade de processamento → Conseguindo realizar milhões de instruções por segundo.
- Surgimento dos primeiros sistemas operacionais → Agora era possível executar múltiplos programas ao mesmo tempo (multiprogramação).
- Uso de monitores e teclados → Abandonando os cartões perfurados para entrada de dados.

Terceira geração: Circuitos integrados (1965-1970)

- **IBM System/360** (1964) → Primeira família de computadores compatíveis entre si, dominou o mercado corporativo.
- PDP-8 (1965) → Primeiro minicomputador comercialmente viável, reduzindo custos e permitindo maior acesso à computação.
- 📃 IBM 370 (1970) → Evolução do System/360, trazendo mais poder de processamento.

Terceira geração: Circuitos integrados (1965-1970)

- Uso de circuitos integrados (chips) → Um único chip podia conter milhares de transistores, reduzindo o tamanho e o consumo de energia.
- Redução no tamanho dos computadores → Computadores ficaram muito menores, possibilitando seu uso em escritórios.
- Maior velocidade de processamento → Conseguindo realizar milhões de instruções por segundo.
- Surgimento dos primeiros sistemas operacionais → Agora era possível executar múltiplos programas ao mesmo tempo (multiprogramação).
- Uso de monitores e teclados → Abandonando os cartões perfurados para entrada de dados.

Quarta geração: microprocessadores (1970 – atual)

✓ A partir de 1970, as evoluções tecnológicas ocorreram principalmente na miniaturização dos componentes internos dos computadores, relacionados à escala de integração dos circuitos integrados.

✓ Nessa geração os circuitos passaram a uma larga escala de integração - Large Scale Integration (LSI), aumentando significativamente o número de componentes em

um mesmo chip.

Componentes básicos >

Os computadores possuem, basicamente, três componentes principais:

- Unidade Central de Processamento (CPU);
- Armazenamento (memória);
- Dispositivos de entrada e saída;

Interconectados por barramentos →

Gabinete x CPU →

Unidade Central de Processamento:

Componente principal do computador, também conhecido por processador.
Responsável pela execução de dados e instruções armazenadas em memória.

MEMÓRIA →

Há diversos tipos de memória:

RAM, HD, SSD, ROM, cache, registradores, mas existe uma delas denominada de memória principal, utilizada diretamente na execução dos programas e á secundária para armazenamento permanente.

Dispositivos de I/O →

Os dispositivos de entrada permitem a inserção de dados e comandos, enquanto os dispositivos de saída exibem ou transmitem as informações processadas. Exemplos incluem teclado e mouse (entrada), além de monitor e impressora (saída).

Barramento →

Conjunto de linhas de comunicação que interliga os componentes do computador, permitindo a transferência de dados, endereços e sinais de controle. Responsável pela comunicação entre a CPU, memória e dispositivos periféricos.

Questão Consulplan 2023 – Fiscal de Posturas ->

Assinalar a alternativa que apresenta um equipamento classificado como periférico nos computadores profissionais e residenciais:

- a) Monitor
- b) Processador
- c) Placa-mãe
- d) Fonte de alimentação
- e) Memória RAM

Questão Objetiva 2023 – Enfermeiro ->

Um PC moderno típico é constituído por vários componentes, que são instalados em uma placa principal, chamada de placa-mãe. O componente conhecido como CPU, que é formado por circuitos integrados capazes de ser programados para executar uma tarefa predefinida, basicamente manipulando e processando dados, é:

- a) Memória
- b) Barramento
- c) Processador
- d) Dispositivo de saída
- e) Armazenamento

Questão FUNDATEC 2023 – Técnico em TI ->

Dados são transferidos, entre os diversos elementos de um computador, por caminhos físicos denominados:

- a) Unidades operacionais
- b) Barramentos
- c) Dispositivos de entrada
- d) Dispositivo de saída
- e) Memórias

Representação numérica >

Desde o início de sua existência, o homem sentiu a necessidade de contar objetos, fazer divisões, diminuir, somar, entre outras operações aritméticas.

Diversas formas de contagem e representação de valores foram propostas e a forma mais utilizada para representação numérica é a notação posicional.

Sistemas posicionais e não posicionais ->

Sistemas não posicionais

✓ Algarismos romanos: X = 10, independente da posição que ele é escrito (Ex: XXI = 10, 10, 1 ou XIX = 10, 1, 10)

Sistemas posicionais

- √ O valor de um algarismo depende da posição, ou seja da ordem que está disposto. Ex: 21 e 32
- √ O 2 (no número 21) representa 2 dezenas;
- √ O 2 (no número 32) representa 2 unidades.

Bases do sistemas de numeração ->

Dependendo do sistema de numeração adotado, é dito que a quantidade de algarismos que o compõem é denominada base.

A civilização ocidental adotou um sistema de numeração que possui dez algarismos (0, 1, 2, 3, 4, 5, 6, 7, 8 e 9), denominado de sistema decimal.

Portanto, no sistema decimal a base é 10. O sistema binário possui apenas dois algarismos (0 e 1), sendo que sua base é 2.

Conversão de bases →

A conversão entre bases numéricas é uma operação comum em computação e eletrônica. São apresentadas quatro bases amplamente utilizadas:

- Base binária: composta por apenas dois dígitos: 0 e 1.
- Base decimal: possui 10 dígitos, de 0 a 9.
- Base hexadecimal: possui 16 dígitos, de 0 a 9 e as letras de A a F.
- Base octal: possui 8 dígitos, de 0 a 7.

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

Conversão de bases →

Os seis tipos de conversão:

- 1.Binário para Octal
- 2.Binário para Hexadecimal
- 3.Binário (qualquer base) para Decimal
 - Octal para Decimal
 - Hexadecimal para Decimal
- 4.Decimal para Binário
- 5.Decimal para Hexadecimal
- 6.Decimal para Octal

Conversão de binário para octal >

Para converter um número binário em octal, é preciso **agrupar os dígitos binários em grupos de três**, da direita para a esquerda.

Em seguida, podemos converter cada grupo de três dígitos binários em um dígito octal, conforme tabela de equivalências apresentada anteriormente.

Exemplo: 101111011101

Agrupamento em trios: 1 011 110 111 101

Conversão para octal:

 $1 \rightarrow 1$

 $011 \rightarrow 3$

 $110 \rightarrow 6$

 $111 \rightarrow 7$

 $101 \rightarrow 5$

Resultado: 5735₈

Conversão de binário para octal >

Outro exemplo:

1101011011

Agrupamento:

001 101 011 011

Conversão para octal:

 $001 \rightarrow 1$

 $101 \rightarrow 5$

 $011 \rightarrow 3$

 $011 \rightarrow 3$

Resultado: 1533₈

Desafio:

- 1101011011
- 110110110
- 101010011
- 111000111
- 100111101
- 1100011010

Conversão de binário para hexadecimal >

Para converter um número binário em hexa, é preciso **agrupar os dígitos binários em grupos de quatro**, da direita para a esquerda.

Em seguida, podemos converter cada grupo de quatro dígitos binários em um dígito hexa, conforme tabela de equivalências apresentada anteriormente.

Exemplo: 101111011101

Agrupamento em trios: 1011 1101 1101

Conversão para octal:

 $1011 \rightarrow B$

 $1101 \rightarrow D$

 $1101 \rightarrow D$

Resultado: BDD

Conversão de binário para decimal →

Conversão de binário (ou qualquer base) para decimal Exemplo: Converter o número binário 10110 para decimal

Então, para converter um número binário para decimal, basta **escrever o número binário** e, para cada dígito, **multiplicá-lo pelo número 2 e elevar ao número de sua posição** (começando em zero, sempre da direita para a esquerda).

Conversão de decimal para binário >

Conversão de decimal para binário (ou qualquer base) Exemplo: Converter o número decimal 22 para binário

22 ÷ 2 = 11 resto 0 11 ÷ 2 = 5 resto 1 5 ÷ 2 = 2 resto 1 2 ÷ 2 = 1 resto 0 1 ÷ 2 = 0 resto 1 Resultado: 10110

Para converter um número decimal em uma base diferente, você deve dividir o número decimal pelo valor da nova base, anotar o resto da divisão e continuar dividindo o resultado da divisão anterior até que o quociente seja menor que a nova base. Em seguida, anote todos os restos das divisões em ordem reversa. Esse será o número na nova base.

IBADE 2022 – Analista de Informática ->

Em relação à conversão de números decimais para números binários, é correto afirmar que o número 8 deve ser representado:

- a) 111
- b) 1010
- c) 1100
- d) 1000
- e) 10

UFAM 2022 - Técnico em TI →

MUITA PREGUIÇA PARA COPIAR A QUESTÃO: A6 de hexadecimal em decimal

- a) 166
- b) 165
- c) 164
- d) 163
- e) 162

FCC 2022 – Técnico Judiciário - informática ->

Ao somar os binários de mais baixa ordem 111 com 110, o resultado é:

- a) 0101
- b) 1100
- c) 1101
- d) 1011
- e) 1110

TABELA VERDADE→

A tabela verdade é uma ferramenta fundamental na lógica e na teoria dos circuitos booleanos.

Ela permite determinar o valor lógico de uma expressão booleana para todas as possíveis combinações de valores das variáveis envolvidas.

Elas são úteis para verificar a validade de proposições lógicas, construir circuitos lógicos e simplificar expressões booleanas.

Lógica Proposicional →

Com o uso desta tabela é possível definir o valor lógico de uma proposição, isto é, saber quando uma sentença é verdadeira ou falsa.

"Se hoje é segunda-feira, então amanhã é terça-feira."

As proposições representam pensamentos completos e indicam afirmações de fatos ou ideias.

Para combinar proposições simples e formar proposições compostas são utilizados conectivos lógicos.

Proposições Simples →

São aquelas que não contêm nenhuma outra proposição, ou seja, não faz uso de conectivos lógicos.

São proposições simples as seguintes:

p: Antônio é desobediente.

q: Camila é estudiosa.

r: O número 11 é impar.

*São representadas por letras minúsculas.

Proposições Composta →

São aquelas formadas pela combinação de duas ou mais proposições simples, fazendo uso de conectivos lógicos.

São proposições compostas as seguintes:

P: Maria é bonita e Joana é inteligente.

Q: Antonio é casado ou João é solteiro.

R: Se x não é maior que y, então x é igual a y ou x é menor que y.

*São representadas por letras maiúsculas.

Conectivos →

São **utilizados para combinar ou modificar proposições lógicas**. Eles são fundamentais para a construção de expressões booleanas e o raciocínio lógico.

São conectivos usuais em Lógica:

- 1.Negação "não", cujo símbolo é "~" **p:** Antonio **não** é casado.
- 2.Conjunção "e", cujo símbolo é "^" Q: Alexandre é alto e Elivelton é baixo.

Conectivos →

- 3) Disjunção: "ou", cujo símbolo é "v"
- R: Maria é a melhor ou Joana é a pior.
- **4) Condicional**: "**se...., então**", cujo símbolo é "→"
- S: Se está calor, então vai chover.
- 5) Bicondicional: "Se, e somente se", símbolo é " \leftrightarrow "
- T: João vai à praia se, e somente se, Juca tocar violão.

Tabela de conectivos →

Conectivo	Símbolo	Operação Lógica	Valor Lógico
não	?	negação	Terá valor falso quando a proposição for verdadeira e vice-versa.
e	^	conjunção	Será verdadeira somente quando todas as proposições forem verdadeiras.
OU	V	disjunção	Será verdadeira quando pelo menos uma das proposições for verdadeira.
seentão	\rightarrow	condicional	Será falsa quando a proposição antecedente for verdadeira e a consequente for falsa.
se somente se	\leftrightarrow	bicondicional	Será verdadeira quando ambas as proposições forem verdadeiras ou ambas falsas.

Tabela Verdade →

REVISANDO AS TABELAS-VERDADE

P	Q	P^Q
V	V	V
٧	F	F
F	٧	F
F	F	F

P	Q	$P \rightarrow Q$
V	٧	٧
V	F	F
F	٧	٧
F	F	٧

P	Q	PVQ
V	V	V
v	F	v
F	v	V
F	F	F

P	Q	P ↔ Q
V	٧	V
v	F	F
F	v	F
F	F	V

P	Q	P⊻Q
٧	٧	F
V	F	V
F	V	V
F	F	F

P	~ P
٧	F
F	V

Portas Lógicas →

Portas Lógicas - Símbolos

NOME	Símbolo Gráfico	Símbolo Algébrico
NOT	A———S	S = A ou S = A'
AND	A	S = A . B ou S = AB
OR	A B	S = A + B
NAND	AB S	S = (AB)
NOR	A B	S = (A + B)
XOR	A B	S = A⊕B

Portas Lógicas →

FUNDET 2018 – Técnico em Automação – Analise o circuito lógico a seguir 🗲

Assinale a alternativa que apresenta a saída desse sistema:

- a) (X + Y) * Y'
- b) (X + Y) * Y
- c) (X + Y) + Y'
- d) (X * Y) * Y'

FGV 2013 – Técnico em Telecomunicações – Analise o circuito lógico a seguir ->

Assinale a alternativa que apresenta a saída desse sistema:

CESGRANRIO 2014 – Técnico em TI – Analise o circuito lógico a seguir ->

Assinale a alternativa que apresenta a saída desse sistema:

a)
$$(X*Y) + (Z'+W)' + K'$$

c)
$$(X*Y)'*(Z'+W')'+K$$

d)
$$(X*Y) * (Z'+W)' * K'$$

OBRIGADO!

E-mail: pacheco.professor@outlook.com

