Article		Length	cm
Depth	cm	Weight	N/m
I _I	cm ⁴	I_{y}	cm ⁴
I_s	cm^4	λ-20	
I_{ν}	cm^4	λ_{20}	
v		λ_{80}	
Tributary Area	m^2	C_{pe}/C_{pe_1}	

External load

Project Name:

Location:

Date:

By:

Peak moments

		kN ·cm			
		$M_{_{omax}}$	M_{umax}	$M_{_{vmax}}$	$\mathcal{M}_{_{temp}}$
ner	(1/2) Wind				
Summer	Thermal				
Winter	Wind				
	Thermal				

Peak stresses

			N/mm ²			N/mm
		σ_{oo}	σ_{ou}	σ_{uo}	σ_{uu}	T_{ν}
Summer	(1/2) Wind					
	Thermal					
	$\Sigma(\sigma_{xx}\Phi)$					
Winter	Wind					
	Thermal					
	$\Sigma(\sigma_{xx}\Phi)$					
	$\sigma_{max}/\beta_{0.2} =$					
T _{max}	$_{ax}$ / (R ^S /A ₂) = $\begin{cases} Summ \\ Wint \end{cases}$	Summer				
		Winter				
	$20/R^{T} = \langle$	Summer				
	20/11 -	Winter				

Maximum deflection

Out-of-plane	<u>In-plane</u>
δ_z =	$\delta_{y} =$
$\delta_{Z_allow} =$	$\delta_{y_allow} = min(L/300, 3mm) =$
δ_z / δ_{z_allow} =	$\delta_{\gamma} / \delta_{\gamma_allow} =$
$1.1(T_{vw}+T_{vt})/(R^{s}/A_2) = \begin{cases} Summer \\ Winter \end{cases}$	

Project Name:

Location:

Date:

By: