

Test Plan Reference

PLT

0.5.2

2019-05-13

Copyright ©2016, 2019 Blue Clover Devices

Revision History

Revision History	
Revision 0.5.2	2019-05-13
`measure`: Document `reference` argument	
Document `nfc` command	
Revision 0.5.1	2019-04-16
Add `CC1352` target	
Document `define` command	
Revision 0.5.0	2019-03-31
Document `freq` command	
Document `measure` command	
Document `mux` command	
Document `pin` command	
Document `power` command	
Document `short` command	
Document `uartCfg` command	
Revision 0.4.9	2019-03-28
Document `serial request` command	
Update UART port names	
Revision 0.4.8	2019-03-08
Renamed to Test Plan Reference	
Revision 0.4.7	2019-03-08
Split off from System Manual	

Table of Contents

- Preface
- 1. Test Suite Reference
 - 1.1. Test Suites
 - 1.1.1. Test Suite Structure
 - 1.1.1.1. Test Items
 - 1.1.1.2. Test Item Steps
 - 1.1.2. Basic Example
 - 1.2. Test Commands
 - 1.2.1. bledis Test BLE Discovery
 - 1.2.2. define Define user key
 - 1.2.3. erase Erase DUT Flash
 - 1.2.4. extflash_write Write Peripheral Flash
 - 1.2.5. freq Frequency Monitor Control
 - 1.2.6. identify Identify DUT
 - 1.2.7. measure Probe Measurement
 - 1.2.8. mux Multiplex Control
 - 1.2.9. nfc NFC Handling
 - 1.2.10. operator Operator Test
 - 1.2.11. pin Digital pin control
 - 1.2.12. power Power Control
 - 1.2.13. program Program DUT
 - 1.2.14. scan Scan Barcode
 - 1.2.15. serial Request serial number
 - 1.2.16. short Connect Multiplex channels
 - 1.2.17. sleepms Delay
 - 1.2.18. uart Send and Extract UART response
 - 1.2.19. uartAwait Await UART response
 - 1.2.20. uartCfg Configure UART
 - 1.2.21. uartExpect Set expectation for uartAwait
 - 1.2.22. uartReadTimeout Test if UART is not transmissing

Preface

Document describing the test suite definition for use with the Production Line Tool.

1. Test Suite Reference

1.1 Test Suites

Example: A minimal test suite, with a single test item, scanning a bar code.

title: "PLT demo: Scan"
suite:
 - ident: SCAN-T1
 title: Scan MAC address
 steps:
 - command: scan MAC ADDRESS

1.1.1 Test Suite Structure

PLT test suites are encoded as YAML text files, starting with the test suite title.

title: "PLT demo: Scan"

The title: is followed by the suite: section, containing the test items in the test plan.

1.1.1.1 Test Items

Test items are identified with an **ident**: line, can contain a descriptive **title**, and should contain one or more test item steps.

During test execution, all test item steps need to complete successfully for the test item to succeed.

1.1.1.2 Test Item Steps

Test item steps consist of command: or uartcmd: blocks. A Test Item can contain multiple Test Item steps.

1.1.2 Basic Example

A basic In-Circuit Test suite for the PLT demo board.

```
title: "v0.1.8 (Green)"
suite:
  - ident: ICT-T1
   title: Identify DUT
      - command: identify nRF52
  - ident: ICT-T2
    title: Erase nRF52 with FT2232H Mini Module
    steps:
      - command: erase nRF52
  - ident: ICT-T3
    title: Program DEMO-BOARD FW nRF52 with FT2232H Mini Module
      - command: program nRF52 s132_nrf52_6.0.0_softdevice.hex,ly10-demo-fw-
0.1.8.hex, none
  - ident: ICT-T4
    title: BLE discovery
      - command: bledis %BLEMAC% 30 # Wait up to 30 seconds for BLE discovery to
complete
```

1.2 Test Commands

1.2.1 bledis - Test BLE Discovery

Establishes a BLE connection to the DUT and discovers GATT services.

Usage:

bledis %BLEMAC%|<name> [<timeout>] [<minRSSI>]

Argument	Description
name	GAP name advertised by DUT. %BLEMAC% to specify the DUT's BLE MAC address instead
timeout	Timeout, in seconds
minRSSI	RSSI treshold (optional)

Example: BLE discovery of identified BLE HW MAC address.

- ident: ICT-T1

title: Identify DUT

steps:

- command: identify nRF52

- ident: ICT-T2

title: BLE Discovery

steps:

- command: bledis %BLEMAC% 30 -60

1.2.2 define - Define user key

Manually defines a test plan key, which will be emedded in the test report and serial number requests performed as part of the current test plan.

Usage:

define <key> <value>

Argument	Description
key	Name of the test plan key.
value	Value for the key; can be any kind of string value.

- ident: ICT-T0

title: Set variables

steps:

- command: define work_order 1011X02

- ident: ICT-T1

title: Request serial

steps:

- command: request serial

1.2.3 erase - Erase DUT Flash

Erase DUT MCU on-board flash.

Usage:

erase <target> [UART0|UART1]

Argument	Description
target	Target to erase
UARTO, UART1	Port for UART targets

Supported target values:

target	Description
CC1352	TI CC1352 RFSoC
DA14580	Dialog DA14580 RFSoC
ESP32	Espressif ESP32 RFSoC (JTAG)
ESP32_HomeKit	Espressif ESP32 RFSoC (JTAG; HomeKit)
ESP32_JTAG	Espressif ESP32 RFSoC (JTAG)
ESP32_UART	Espressif ESP32 RFSoC (esptool)
nRF52	Nordic nRF52 RFSoC (SWD)
nRF52_DevKit	Nordic nRF52 RFSoC (USB, JLink)
STM32F4	ST STM32F4xx MCU (SWD)
STM32F4_DevKit	ST STM32F4xx MCU (USB, JLink)
STM32L4	ST STM32L4xx MCU (SWD)
STM32L4_DevKit	ST STM32L4xx MCU (USB, JLink)

Example: Erase STM32L4 on-board flash.

- ident: ICT-T1 title: Erase

steps:

- command: erase STM32L4

1.2.4 extflash_write - Write Peripheral Flash

Write DUT periperal flash.

Usage:

extflash_write UART0|UART1 <filename>

Argument	Description
UARTO, UART1	Port for UART targets
filename	Firmware Element Filename

1.2.5 freq - Frequency Monitor Control

Set the channel to use for frequency measurements.

Usage:

freq 0|1

Argument	Description
0	Use CLK0
1	Use CLK1

Example: Measure CLK1 frequency

suite:

- ident: ICT-T1

title: Measure CLK1 frequency

steps:

- command: freq 1

- command: sleepms 1000

- command: measure frequency 7.90-8.10MHz

1.2.6 identify - Identify DUT

Identify DUT MCU and/or RF peripherals.

Usage:

identify <target> [UART0|UART1]

Argument	Description
target	Target to identify
UARTO, UART1	Port for UART targets

Supported *target* values:

target	Description
CC1352	TI CC1352 RFSoC
DA14580	Dialog DA14580 RFSoC
ESP32	Espressif ESP32 RFSoC (JTAG)
ESP32_HomeKit	Espressif ESP32 RFSoC (JTAG; HomeKit)
ESP32_JTAG	Espressif ESP32 RFSoC (JTAG)
ESP32_UART	Espressif ESP32 RFSoC (esptool)
nRF52	Nordic nRF52 RFSoC (SWD)
nRF52_DevKit	Nordic nRF52 RFSoC (USB, JLink)
STM32F4	ST STM32F4xx MCU (SWD)
STM32F4_DevKit	ST STM32F4xx MCU (USB, JLink)
STM32L4	ST STM32L4xx MCU (SWD)
STM32L4_DevKit	ST STM32L4xx MCU (USB, JLink)

1.2.7 measure - Probe Measurement

Usage:

measure <channel> [<signal>] <range> [<reference>]

Argument	Description
channel	Measurement channel
signal	DDTPxx or RDTPxx probe for pin measurement
range	Acceptable range
reference	Reference value

The measure command supports the following channels:

channel	Description
current3V3	3V3 current draw
current5V	5V current draw
currentVARV	VARV current draw
frequency	Frequency (CLK0 or CLK1)
impedance	Impedance measurement (RVREF/RA)
pin	Digital pin measurement (DDTPxx/RDTPxx)
voltageDATP07	DATP07 voltage
voltageDATP08	DATP08 voltage
voltageDATP09	DATP09 voltage
voltageDATP10	DATP10 voltage

channel	Description
voltageDATP11	DATP11 voltage
voltageDATP12	DATP12 voltage
voltageMUX0	MUX0 voltage
voltageMUX1	MUX1 voltage
voltageMUX2	MUX2 voltage
voltageMUX3	MUX3 voltage

Example: Electrical measurements

```
suite:
```

- ident: ICT-T1

title: Measure CLKO frequency

steps:

- command: freq 0

- command: sleepms 1000

- command: measure frequency 32.75-32.78kHz

· ident: ICT-T2

title: Measure Impedance

steps:

- command: mux 0 RATP02

- command: mux 1 RATP03

- command: mux 2 RA

- command: mux 3 RVREF

- command: short 0 2 set

- command: short 1 3 set

- command: measure impedance 750-1000m0hm 3.3V

- command: short 0 2 release

- command: short 1 3 release

- command: sleepms 1500

- command: measure impedance 2-100hm 3300

- ident: ICT-T3

title: Measure Currents

steps:

- command: measure current3V3 <1A

- command: measure current5V 0.1-0.5A

- command: measure currentVARV >100mA

- ident: ICT-T4

title: Measure Voltages

steps:

- command: mux 0 DATP00

- command: mux 1 DATP01

- command: mux 2 RATP00

- command: mux 3 RATP17

- command: measure voltageMUX0 >1V

- command: measure voltageMUX1 <3300mV

- command: measure voltageMUX2 >100mV

- command: measure voltageMUX3 1500-1800mV

command: measure voltageDATP07 200-6000mV

- command: measure voltageDATP08 -0.2-0.1V

- command: measure voltageDATP09 0-4V

- command: measure voltageDATP10 -0.1-3.3V

- command: measure voltageDATP11 0-3.4V

- command: measure voltageDATP12 -0.1-3.4V

Example: Digital pin measurement

suite:

- ident: ICT-T1

title: Set Digital pins

steps:

- command: pin RDTP21 input pullup

- command: pin DDTP04 input

- ident: ICT-T2

title: Read Digital pins

steps:

- command: measure pin RDTP21 low - command: measure pin DDTP04 high

1.2.8 mux - Multiplex Control

Select a probe or signal for a multiplex channel.

Usage:

mux <channel> <signal>

Argument	Description
channel	Multiplex channel (03)
signal	Probe or signal

The following signals and probes can be assigned to a multiplex channel:

signal	MUX	Description
DATP00DATP06	0, 1	Direct Analog Test Probes
RATP00RATP31	0, 1	Routed Analog Test Probes
DDTP00DDTP08	2, 3	Direct Digital Test Probes
RVREF	all	Impedance measurement, reference voltage
RA	all	Impedance measurement, test voltage
GND	all	Ground
3V30UT	all	3.3V power rail
5V0UT	all	5.0V power rail
VARVDIV	all	VARV power rail, after 1/3 voltage divider

Example: Multiplex control

suite:

- ident: ICT-T1
 title: Setup MUX

steps:

command: mux 0 DATP02
command: mux 1 DATP03
command: mux 2 RA
command: mux 3 RVREF
command: short 0 2 set
command: short 1 3 set

- ident: ICT-T2

title: Measure impedance DATP02..DATP03

steps:

- command: measure impedance 10-200kOhm

1.2.9 nfc - NFC Handling

Manipulate NFC cards.

Usage:

nfc write <TAGTYPE> <payload>...

Argument	Description
tagtype	Tag type (NTAG203, NTAG213 or NTAG216)
payload	NDEF payload (text:)

Example: Program NDEF message with two text records.

- ident: ICT-T1
 title: Write NFC

steps:

- command: define CODE 123

- command: nfc write NTAG213 text:"Sample Text" text:%CODE%

1.2.10 operator - Operator Test

Instruct operator to perform a manual test step.

Usage:

operator <message>

Example: Instruct operator inspect housing.

- ident: ICT-T1

title: Visual Inspection (manual)

steps:

- command: operator "Inspect Housing"

1.2.11 pin - Digital pin control

Configure a Digital probe.

Usage:

pin probe> input [pullup]
pin probe> output [low|high]

Argument	Description
probe	Probe (DDTPxx or RDTPxx)
input	Configure as input
pullup	Enable pull-up (only for RDTPxx pins)
output	Configure as output
low	Set low
high	Set high

Example: Control digital pins

suite:

- ident: ICT-T1

title: Configure digital inputs

steps:

command: pin DDTP05 inputcommand: pin DDTP03 input

- command: pin RDTP04 input pullup

- ident: ICT-T2

title: Control digital outputs

steps:

- command: pin DDTP00 output

- command: pin DDTP02 output low - command: pin RDTP01 output high

1.2.12 power - Power Control

Control power applied to the Device Under Test.

Usage:

power off
power <rail> [on|off|<level>]

Argument	Description
rail	Power rail
on	Turn on the specified power rail
off	Turn off all or specified power rail
level	Voltage level for VARV: 212.0

Supported rail values:

rail	Description
3V3	3.3V power rail
5V	5V power rail
VARV	Variable power rail
12V	12V power rail
SWD	SWD (3.3V) power rail
JTAG	JTAG (3.3V) power rail
UART0	UARTO (3.3V) power rail
UART1	UART1 (3.3V) power rail

Example: Apply power

suite:

- ident: ICT-T1 title: Apply power

steps:

- command: power 3V3 on - command: power 5V on - command: power VARV 10.2

- ident: ICT-T2
 title: Wait
 steps:

- command: sleepms 1000

- ident: ICT-T3
 title: Power off

steps:

- command: power off

1.2.13 program - Program DUT

Erase and Program DUT MCU on-board flash.

Usage:

program <target> [UART0|UART1] [offset1:]<img1>,[offset2:]<img2>,[offset3:]<img3>[,...]

Argument	Description
target	Target to program
UARTO, UART1	Port for UART targets
offset1 Opti	onal: Offset for 1st image
img1	Firmware Element (Bootloader)
offset2 Opti	onal: Offset for 2nd image

Argument	Description
img2	Firmware Element (Application)
offset3 Opti	onal: Offset for 3rd image
img3	Firmware Element (Partitioning)
	Optional: Additional offsets, images

Supported *target* values:

target	Description
CC1352	TI CC1352 RFSoC
DA14580	Dialog DA14580 RFSoC
ESP32	Espressif ESP32 RFSoC (JTAG)
ESP32_HomeKit	Espressif ESP32 RFSoC (JTAG; HomeKit)
ESP32_JTAG	Espressif ESP32 RFSoC (JTAG)
ESP32_UART	Espressif ESP32 RFSoC (esptool)
nRF52	Nordic nRF52 RFSoC (SWD)
nRF52_DevKit	Nordic nRF52 RFSoC (USB, JLink)
STM32F4	ST STM32F4xx MCU (SWD)
STM32F4_DevKit	ST STM32F4xx MCU (USB, JLink)
STM32L4	ST STM32L4xx MCU (SWD)
STM32L4_DevKit	ST STM32L4xx MCU (USB, JLink)

1.2.14 scan - Scan Barcode

Scan a barcode using USB-attached barcode scanner.

Usage:

scan <format>

Argument	Description
format	Format of code to scan

Supported *format* values:

format	Description
%MAC_ADDRESS%	48-bit MAC address (XX:XX:XX:XX:XX)

1.2.15 serial - Request serial number

Request a serial number through PLTcloud. Under Project Settings in PLTcloud, serial number allocation can be configured to use either monotonic counters, or through a WebHook.

Usage:

serial request

Argument	Description
request	Request serial number through PLTcloud backend

When a webhook is selected in PLTcloud, a JSON request will be sent containing:

```
{
    "dut_id": "<DUT IDENTIFIER>",
        "serial_number": "<SERIAL NUMBER>",
        "ble_mac": "<BLE MAC>",
        "mcu_id": "<MCU ID>",
        "MYCUSTOMKEY": "my custom value"
}
The API endpoint should return something like:
{
        "serial_number": "<SERIAL NUMBER>"
}
```

1.2.16 short - Connect Multiplex channels

Usage:

short <muxA> <muxB> set|release

Argument	Description
muxA	Multiplex channel (03)
тихВ	Multiplex channel (03)
set	Short specified multiplex channels
release	Release short between specified multiplex channels

Example: connect multiplex channels

```
suite:
```

ident: ICT-T1
 title: Control shorts
 steps:
 - command: short 0 1 set
 - command: short 1 3 set
 - command: sleepms 1000
 ident: ICT-T1
 title: 0-2 instead of 0-1
 - command: short 0 1 release
 - command: short 0 2 set

1.2.17 sleepms - Delay

Temporarily suspend test suite execution.

Usage:

sleepms <duration>

Argument	Description
duration	Duration, in milliseconds

1.2.18 uart - Send and Extract UART response

Extract data from UART.

Usage:

```
uartcmd: uart UART0|UART1
  [[expect: <expectText>]
    [extract: <extractText>
        extractKey: <extractKey>]]
  [send: <sendText>]
```

Argument	Description
UARTO, UART1	UART port
expectText	Text to expect, prior to extraction
extractText	Regular expression to extract
extractKey	Key in which to store extracted text
sendText	Text to send prior to extaction

Example: extract ICCID from cellular modem, storing in the ICCID key.

- uartcmd: uart UART0
expect: "+CCID:"

extract: "CCID: (\\d{20})\r\n"

extractKey: ICCID
send: "AT+ICCID\r\n"

1.2.19 uartAwait - Await UART response

Wait for a specific UART response.

Usage:

uartAwait UART0|UART1 <seconds>

Argument	Description
UARTO, UART1	UART port
seconds	Time to await response, in seconds

Example:

command: uartExpect UARTO Pressedcommand: operator "Press button"

- command: uartAwait UART0 1

1.2.20 uartCfg - Configure UART

Configure a UART port.

Usage:

uartCfg UART0|UART1 <speed> [<triplet>]
uartCfg UART0 tp

Argument	Description
UARTO, UART1	UART port
speed	Baud rate
triplet	UART configuration triplet: 8N1 or 7E1
tp	Use alternate test points instead of UART. (Only for UARTO)

Example:

- command: uartCfg UART1 9600 8N1

- command: uartCfg UART0 tp

1.2.21 uartExpect - Set expectation for uartAwait

Set a UART response to wait for with the uartAwait command.

Usage:

uartExpect UART0|UART1 <expect>

Argument	Description
UARTO, UART1	UART port
expect	String to expect with subsequent uartAwait command

Example:

command: uartExpect UARTO Pressedcommand: operator "Press button"

- command: uartAwait UART0 1

1.2.22 uartReadTimeout - Test if UART is not transmissing

Test if nothing is received from UART.

Usage:

uartReadTimeout UART0|UART1 <seconds> [<sendText>]

Argument	Description
UARTO, UART1	UART port
seconds	Number of seconds to wait for incoming data
sendText	Text to send before waiting

Example: Test if modem is shut down.

- command: uartReadTimeout UART0 1 "AT"