ICS 2018 Problem Sheet #3

```
Problem 3.1:
```

Distributive laws for sets

(2+2=4 points)

Let A, B and C be sets. Proof that the following two distributive laws hold:

a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Here

Let us consider an element x such that $x \in A \cup (B \cap C)$

If
$$x \in A \cup (B \cap C) \rightarrow x$$
 is either in A or $(B \cap C)$

 $x \in A \text{ or } x \in (B \text{ and } C)$

 $x \in A \text{ or } (x \in B \text{ and } x \in C)$

 $(x \in A) or (x \in B and x \in C)$

 $(x \in A \text{ or } x \in B) \text{ and } (x \in A \text{ or } x \in C)$

 $(x \in A \cup B)$ and $(x \in A \cup C)$

 $x \in (A \cup B) \cap (A \cup C)$

 $x \in (A \cup B) \cap (A \cup C)$

So, if
$$x \in A \cup (B \cap C)$$
 then $x \in (A \cup B) \cap (A \cup C)$

$$\therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Here

Let us consider an x element such that $x \in A \cap (B \cup C)$

If
$$x \in A \cap (B \cup C) \rightarrow x$$
 is an element of A and $(B \cup C)$

 $(x \in A)$ and $x \in (B \cup C)$

 $(x \in A)$ and $x \in (B \cup C)$

 $(x \in A)$ and $(x \in B \text{ or } x \in C)$

 $x \in (A \text{ and } B) \text{ or } x \in (A \text{ and } C)$

 $x \in (A \cap B)$ or $x \in (A \cap C)$

 $x \in (A \cap B) \cup (A \cap C)$

So, if
$$x \in A \cap (B \cup C)$$
 then $x \in (A \cap B) \cup (A \cap C)$

$$\therefore A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Problem 3.2:

Reflexive, symmetric, transitive

(1+1+1=3 points)

For each of the following relations, determine whether they are reflexive, symmetric, or transitive. Provide a reasoning.

a) $R = \{(a,b)|a,b \in \mathbb{Z} \land a \neq b\}$ (The numbers a and b are different.)

Reflexive Property

 $\forall a \in \mathbb{Z}, a = a$

We have, a is equal to a. $a \neq a$ is False

Thus, it is not reflexive.

Symmetric Property

 $\forall (a,b) \in \mathbb{Z}$,

We have, $a \neq b$ and $b \neq a$.

For Example:

 $5 \neq 4$ and $4 \neq 5$ is True

Thus, it is symmetric.

Transitive Property

 $\forall (a,b,c) \in \mathbb{Z}$,

We have, $a \neq b \land b \neq c$

In some cases, a = c

For Example:

 $5 \neq 4$, $4 \neq 5$

So, $5 \neq 5$ is False.

Thus, it is not transitive.

b) $R = \{(a,b)|a,b \in \mathbb{Z} \land |a-b| \le 3\}$ (The absolute difference of the numbers a and b is less than or equal to 3.)

Reflexive Property

 $\forall a, a \in \mathbb{Z}$,

We have,
$$|a - a| = 0$$

 $|a - a| = 0 \le 3$

Thus, it is reflexive.

Symmetric Property

 $\forall (a,b) \in \mathbb{Z}$,

We have,
$$|a - b| = |b - a|$$

 $|a - b| \le 3 = |b - a| \le 3$

Thus, it is symmetric.

Transitive Property

 $\forall (a,b,c) \in \mathbb{Z}$, We have, $|a-b| \leq 3 \land |b-c| \leq 3$ So $|a-c| \leq 3$ May not be true There may be conditions s.th |a-c| > 3 where, a=6, b=3 and c=1

Thus, it is not transitive.

c) $R = \{(a,b)|a,b \in \mathbb{Z} \land (a \bmod 10) = (b \bmod 10)\}$ (The last digit of the decimal representation of the numbers a and b is the same.)

Reflexive Property

 $\forall a, \ a \in \mathbb{Z}$, We have, $(a \bmod 10) = (a \bmod 10)$

Thus, it is reflexive.

Symmetric Property

 $\forall (a,b) \in \mathbb{Z}$, We have, $(a \mod 10) = (b \mod 10)$ $\leftrightarrow (b \mod 10) = (a \mod 10)$ Thus, it is symmetric.

Transitive Property

 $\forall (a, b, c) \in \mathbb{Z}$, We have, $(a \ mod \ 10) = (b \ mod \ 10) = (c \ mod \ 10)$ So, $(a \ mod \ 10) = (c \ mod \ 10)$

Thus, it is Transitive.