Data Mining Lectures

Piotr Wąsiewicz

Institute of Computer Science pwasiewi@elka.pw.edu.pl

15 maja 2017

Literature

Books

 P. Cichosz, Data Mining algorithms: explained using R, Wiley 2015

Internet sites

- http://www.wiley.com/go/data_mining_algorithms
- http://www.stat.wisc.edu/~larget/stat302/chap3.pdf

Data Sets

Tables

- A table (a set) consist of several columns, variables, input attributes or rows as vectors of attribute values.
- A limited dataset contains also a depended on input attributes variable called the target variable, the target attribute, the class label, the class concept, classes, the target concept, the group identifier, the response variable (regression).
- Each row can be called an instance, an object descibed by attribute values.
- Attributes can be nominal with a finite number of discrete values, ordinal - like nominal with a total order relation, continouos (numerical, linear) having numerical values.
- The target attribute classifies instances (objects) into classes or clusters them into groups.

Data Sets

Baskets

 Baskets consists e.g. of different length sets of product ids (ordinal numbers).

Statistical elements

- If the p-value is below the significance level, then the null hypothesis is rejected (no relationship in the given domain).
- False positive (type I error) rejected null hypothesis is actually true. This risk increases with a larger significance level.
- False negative (type II error) rejected alternative hypothesis is actually true. This risk increases with a smaller significance level.
- Pearson's linear correlation coefficient measures the strength of linear relationship between two continuous attributes, null hypothesis - 0 value.
- Spearman's rank correlation also has values from -1 to 1 for increasing relationship.
- For discrete attributes Chi2 and the loglikelihood ratio (G-test) tests can be taken.
- For mixed attributes t-test (with Mann-Whitney-Wilcoxon nonparametric alternative) and f-test - one-way ANOVA (with Kruskal-Wallis alternative) can be used.
- The population is to the sample as the sample is to the bootstrap samples (samples with replacement).

The model e.g. the decision tree

Create the model to return a prediction after taking an instance as an argument

- Made a classifier which is trained on a training set with a target attribute (supervised learning tasks using some expert knowledge put in the target variable) and predicts class label values for rows without this target classes.
- Find a regression target values based on input data.
- Without any expert knowledge cluster groups using the similarity structure discovered in the input data and write groups identifiers to the target attribute.

Model performance

Quality of predictions

 The expected quality of predictions on the whole domain including previously unseen instances

Overfitting

 A model perfoms worse on the whole domain than on the training dataset, where e.g. it has excellent performance.

Model ensembles

• For three binary classification models with independent mistakes voting reduces error if base model error below 1/2 $(\epsilon^3 + 3\epsilon^2(1-\epsilon) < \epsilon)$

Base model generation

- Different sets of training instances: use a different set of training instances to create each base model.
- Different sets of attributes: use a different set of attributes to create each base model.
- Different algorithms: use a different algorithm to create each base model.
- Different parameter setups: use a different algorithm parameter setup to create each base model.
- Algorithm randomization: use independent runs of a non-deterministic algorithm to create each base model.

Ensemble prediction

- Voting: combine base model predictions by (possibly weighted) voting.
- Probability averaging: combine base model class probability predictions by (possibly weighted) averaging.
- Using as attributes: create a combined model using base model predictions as attributes.

Bagging

- Base models created using a single algorithm applied to multiple bootstrap samples of the training set samples drawn at random with replacement - 63.8% bag, 37.2% out-of-bag (OOB).
- Ensemble prediction by (unweighted) voting.
- Requires an unstable algorithm for sufficient base model diversity e.g., decision trees, but after some number of base models it is stabilized.
- Moderate prediction improvement, but a useful stabilization effect.

Stacking

- Different base model algorithms.
- Very difficult to design.

Boosting

- Increase base model diversity by shifting focus during model creation.
- Force subsequent base model to compensate deficiencies of the preceding ones.
- Typically used with weight-sensitive classification algorithms increase weights of instances incorrectly classified by the previous model.
- Ensemble prediction by weighted voting.
- Substantial prediction improvement.
- Simple base models work well e.g., small decision trees or decision stumps.
- Can not be executed in parallel.
- AdaBoost weighted base models and attributes.

Random forest

- Bagging combined with algorithm randomization for increased base model diversity.
- Randomized decision trees sample attributes at each node prior to split selection.
- Ensemble prediction by voting.
- Maximum or near-maximum fit of base models individual overfitting gets compensated by combining many randomized trees.
- Substantial prediction improvement.
- Estimate prediction quality using OOB (Out-of-bag) instances.
- For each training instance: generate and combine predictions of those and only those trees for which the instance is OOB
- Use these predictions to calculate the misclassification error (or another prediction quality indicator).
- Estimate the predictive utility of attributes by measuring error on the mutated data.