Name _____

Roll No. _____

The following rules apply:

- Each step carries weight.
- Step should be commented.
- Answers must be supported.

Question:	1	2	Total
Points:	9	11	20
Score:			600

Experiment 02

User Defined Function: Legendre Function Series Expansion Method

The Legendre differential equation is

$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0$$

where n is a +ve integer. It arises particularly in boundary value problems with spherical symmetry.

The Legendre polynomial of first kind $P_n(x)$, as a series solution in [-1,1] is

$$P_n(x) = \sum_{i=0}^{m} \frac{(-1)^i (2n-2i)!}{2^n i! (n-i)! (n-2i)!} x^{(n-2i)}$$

Here m = n/2 if n is even and m = (n-1)/2 if n is odd.

In the experiment you will be required to use the above $P_n(x)$ expression to find the differential polynomials, prove the recurrence relations of the Legendre polynomials as well as the orthogonality properties.

The orthogonality property is:

$$\int_{-1}^{1} P_n(x) P_m(x) = \frac{2}{2n+1} \delta_{mn} \quad where \quad \begin{cases} \delta_{mn} = 0 : m \neq n \\ \delta_{mn} = 1 : m = n \end{cases}$$

Questions:

- Where do you find physical application of Legendre Polynomial, name few problems?
- What's the importance of recurrence relations?
- What's the physical meaning you draw from orthogonality or normalization?

Sept. 13, 2021: ONLINE

1. METHOD/CODE

(a) (1 point) (Factorial Function)

The Gamma function $\Gamma(n)$ or the factorial $n! = \Gamma(n+1)$ (when n is a positive integer) follow the recursive relation

$$\Gamma(n+1) = n\Gamma(n)$$
 or $(n+1)! = (n+1)n!$

Write a code to generate the Gamma function $\Gamma(n)$ for an arbitrary n.

(b) (3 points) (Legendre Function)

Write a code to generate the Legendre function as sum of terms of the series expansion.

(c) (3 points) (Derivative of Legendre Function)

Write a code to generate the derivative of Legendre function as sum of terms of the series expansion.

(d) (2 points) (Compare with inbuilt Python command) The Legendre Polynomials and their differentials.

2. APPLICATIONS

(a) (2 points) (Legendre Polynomial)

Generate the values of $P_0(x)$, $P_1(x)$ and $P_2(x)$ Legendre polynomials in the range x = (-1,1) using explicit series representation taking 100 data points of x within the given range. Store them in tabulated form as x, $P_0(x)$, $P_1(x)$ and $P_2(x)$ in the data file leg00.dat. Retrieve these values and plot these functions. Display the same on the console.

(b) (2 points) (Derivative of the Legendre Polynomial)

Generate the values of derivative $P'_1(x)$, $P'_2(x)$ and $P'_3(x)$ of the Legendre polynomial $P_1(x)$, $P_2(x)$ and $P_3(x)$ in the range (-1,1) using explicit series representation taking 100 data points of x within the given range. Append the same in the data file leg01.dat. Retrieve these values and plot $P'_0(x)$, $P'_2(x)$ along with $P_1(x)$. Display the same on the console/screen

- (c) (4 points) (Prove the recursion relation for Legendre polynomial)
 - 1. $nP_n(x) = xP'_n(x) P'_{n-1}(x)$

Take input from **leg01.dat** fot n = 2 & verify the RHS & LHS for each of the data points x. Store in **leg02.dat** the data x, n, (n - 1), $P_n(x)$, $P'_n(x)$ and $P'_{n-1}(x)$ in column form. Display the results on the console.

2. $(2n+1)xP_n(x) = (n+1)P_{n+1} + nP_{n-1}(x)$

Take input from **leg00.dat** fot n = 2 & verify the RHS & LHS for each of the data points x. Store in **leg03.dat** the data x, n, (n - 1), (n + 1), $P_n(x)$, $P_{n-1}(x)$ and $P_{n+1}(x)$ in column form. Display the results on the console.

3. $nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)$ for Legendre polynomial.

Take input from **leg00.dat** for n = 3 & verify the RHS & LHS for each of the data points x. Store in **leg04.dat** the data x, n, (n - 1), (n + 1), $P_n(x)$, $P_{n-1}(x)$ and $P_{n+1}(x)$ in column form. Display the results on the console.

(d) (3 points) (Prove the Orthogonality relation)

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{mn}$$

Take input from leg00.dat for n = m and $n \neq m$ & verify. Display your result for the corresponding values of n and m in matrix form.