Functional Analysis Sheet 5

Featuring Diddle

TO-DO

- Exercise 1 []
- Exercise 2 [in progress] (Duc)
- Exercise 3 []
- Exercise 4 []

GNTM 2019: Caro packt aus - So war es mit Simone wirklich | INTERVIEW

Wichtig: https://www.youtube.com/watch?v=o-gR9KPCVbo

Exercise 1

To prove

If E is separable, then $F := \{x \in E : ||x|| = 1\}$ is separable.

Proof. Let E be a normed space, which is separable. This means that there exists a *countable dense* subset $Q \subset E$.

Claim: $\tilde{Q} := \{ \frac{x}{||x||} : x \in Q \}$ is a countable dense subset of F.

1. *Countable subset:* For all $x \in \tilde{Q}$ it holds ||x|| = 1. Thus, $x \in F$.

We know Q is countable. There exists a bijection $\tau: \tilde{Q} \to Q$ with

$$\tau(\tilde{q}) = \tilde{q}||\tilde{q}||.$$

So, \tilde{Q} is countable.

2. **Dense in** F: Let $x \in F$. We know that Q is dense in E. Hence, there exists a sequence $(x_n)_{n \in \mathbb{N}} \subset Q$ with $x_n \neq 0$ for all $n \in \mathbb{N}$ such that

$$\lim_{n\to\infty}x_n=x.$$

Define a new sequence $(y_n)_{n\in\mathbb{N}}$ with

$$y_n \coloneqq \frac{x_n}{||x_n||} \in \tilde{Q} \quad \forall n \in \mathbb{N}.$$

We will see that $y_n \to x$:

$$\lim_{n\to\infty}y_n=\lim_{n\to\infty}\frac{x_n}{||x_n||}=\underbrace{\frac{\lim_{n\to\infty}x_n}{||\lim_{n\to\infty}x_n||}}_{||\cdot||\text{ is continuous}}=\underbrace{\frac{x}{||x||}}_{=1}=x.$$

So, \tilde{Q} is dense in F.

We have shown the claim. Therefore, F is separable per definition, as we have found a countable dense subset of F, namely Q.

If $F:=\{x\in E:||x||=1\}$ is separable, then there exists a sequence $(x_n)_{n\in\mathbb{N}}\subset E$ such that

$$\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})}=E.$$

Proof. Let $F = \{x \in E : ||x|| = 1\}$ be separable. Hence, we find a countable subset $Q \subset F$, that is dense in F where Q is of the Form $Q = (x_n)_{n \in \mathbb{N}} \subset E$ and $||x_n||=1$ for all $n\in\mathbb{N}$. Let now $x\in E$ be arbitrary. We want to find a sequence $(y_n)_{n\in\mathbb{N}}$ in Q with $y_n\to x$ for $n\to\infty$ and every y_n a finite linear combination of our (x_n)

Note that in any case where $x \neq 0$ (for x = 0 everything is clear) we know $\frac{x}{||x||}=1.$ Thus, $\frac{x}{||x||}\in F$ so by assumption we can find a sequence $(\tilde{y}_n)_{n\in\mathbb{N}}\subset Q$ with $\tilde{y}_n \overset{n \to \infty}{\longrightarrow} \frac{x}{||x||}$ and . This of course means

$$\lim_{n\to\infty}\tilde{y}_n=\frac{x}{||x||}\iff ||x||\lim_{n\to\infty}\tilde{y}_n=\lim_{n\to\infty}||x||\tilde{y}_n=x.$$

Since for all natural numbers n we can find an $i_n \in \mathbb{N}$ with $y_n = x_{i_n}$ and hence we know that $||x||y_n \in \operatorname{span}((x_n)_n)$ and that means

$$x \in \overline{\operatorname{span}((x_n)_n)} \implies E = \overline{\operatorname{span}((x_n)_n)}$$

To show: $\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})}\subset E$. Let $x\in\overline{\operatorname{span}((x_n)_{n\in\mathbb{N}})}$.

We know that $\mathbb{C}_{\mathbb{Q}}:=\{z=a+ib:a,b\in\mathbb{Q}\}$ is countable and dense in \mathbb{C} . Thus, $\operatorname{span}_{\mathbb{Q}}:=\{x\in E\mid \exists m_x\in\mathbb{N}:x=\sum_{i=1}^{m_x}\lambda_ix_{\tau_x(i)}\in\operatorname{span}((x_n)_n)\text{ and }\lambda_i\in\mathbb{C}_{\mathbb{Q}}\}$ - where τ_x is some permutation of \mathbb{N} - is also dense in $\operatorname{span}((x_n)_n)$

Now we can see that

$$\operatorname{span}_{\mathbb{Q}} = \bigcup_{m \in \mathbb{N}} \left\{ x = \sum_{i=1}^{m} \lambda_{i} x_{\tau_{x}(i)} \in E \mid \lambda_{i} \in \mathbb{C}_{\mathbb{Q}} \text{ for all } i \in \{1, ..., m\} \right\}$$

$$= \bigcup_{m \in \mathbb{N}} \bigcup_{(n_{1}, ..., n_{m}) \in \mathbb{N}^{m}} \bigcup_{(\lambda_{1}, ..., \lambda_{m}) \in (\mathbb{C}_{\mathbb{Q}})^{m}} \left\{ \sum_{i=1}^{m} \lambda_{i} x_{n_{i}} \right\}$$

which is countable. Thus we have a countable set for which

$$\overline{\operatorname{span}_{\mathbb{Q}}} = \overline{\operatorname{span}((x_n)_n)} = E.$$

Hence E is separable.

Now for the second part of the task: We show that E^* being separable implies E being separable by proving that $\mathrm{span}((x_n)_n)$ is dense in E for a sequence (x_n) as discussed in the task. We will, however, assume that $||x_n||=1$ for all natural n. We can do that because $1=||\ell_n||=\sup_{||x||=1}|\ell(x)|$ implies that for all positive ϵ we can find an x with ||x||=1 and still $|\ell_n(x)|>1-\epsilon$.

Now towards a contradiction assume there exists a $x \in E$ with $x \notin \operatorname{span}((x_n)_n)$. This means we have

$$\inf_{y \in \operatorname{span}((x_n)_n)} ||x - y|| > 0.$$

Then Corollary 4.8 in the script yields us an $\ell \in E^*$ with $\ell|_{\text{span}((x_n)_n)} = 0$ and $||\ell|| = 1$, so $\ell \in S$.

This leads us for any $n \in \mathbb{N}$ to

$$||\ell - \ell_n|| = \sup_{x \neq 0} \frac{|\ell(x) - \ell_n(x)|}{||x||} \ge \frac{|\ell(x_n) - \ell_n(x_n)|}{||x_n||} = \frac{|\ell_n(x_n)|}{||x_n||} = \frac{1}{2||x_n||} > 0.$$

Thus, $\ell \notin \overline{(\ell_n)_n}$ and hence $(\ell_n)_n$ is not dense in S. That is a contradiction!

Exercise 2

Let E be a $\mathbb C$ vector space with a seminorm $\rho: E \to \mathbb R$ on E, and let F be a linear subspace $F \subset E$. Let $f: F \to \mathbb K$ with

$$|f(x)| \le \rho(x), \quad \forall x \in F.$$

There exists an extension $\ell:E\to\mathbb{K}$ such that $\ell_{|F}=f \text{ and } |\ell(x)|\leq \rho(x) \quad \forall x\in F.$

$$\ell_{|F} = f \text{ and } |\ell(x)| \le \rho(x) \quad \forall x \in F$$

Exercise 3

(i) Let X be a normed space and $C \subset X$ be open and convex with $0 \in C$. We show that $p_C: X \to [0, \infty)$ (note that $p_C(x) < \infty$ for all $x \in X$, which we will show later) is a sublinear functional.

To prove

For all $x, y \in X$ it holds

$$p_C(x+y) \le p_C(x) + p_C(y).$$

Proof. Let $x, y \in X$. From 3(ii) we know that C is absorbing. Thus, $p_C(x) \neq \infty, p_C(y) \neq \infty$ and $p_C(x+y) \neq \infty$. Let $\epsilon > 0$ be arbitrary. For xthere exists $\mu_x \in \mathbb{R}_{>0}$ and $z_y \in C$ such that $x = \mu_x z_x$ and $\mu_x < p_C(x) + \frac{\epsilon}{2}$. Likewise for y: there is $\mu_y \in \mathbb{R}_{>0}$ such that $y = \mu_y z_y$ with $\mu_y < p_C(y) + \frac{\epsilon}{2}$. Adding μ_x and μ_y together yields

$$\mu_x + \mu_y < p_C(x) + p_C(y) + \epsilon.$$

Next, we try to find a vector $z_{x+y} \in C$ and scalar $\mu_{x+y} > 0$ such that

$$\mu_{x+y}z_{x+y} = x + y.$$

Consider the vector

$$z_{x+y} \coloneqq \frac{\mu_x}{\mu_x + \mu_y} z_x + \frac{\mu_y}{\mu_x + \mu_y} z_y,$$

which luckily lies in C. To see this, remember that C is a convex set, and note that z_{x+y} is a convex combination of $z_x \in C$ and $z_y \in C$ since

$$\frac{\mu_x}{\mu_x + \mu_y} + \frac{\mu_y}{\mu_x + \mu_y} = 1.$$

Define the scalar μ_{x+y} as $\mu_{x+y} \coloneqq \mu_x + \mu_y > 0$. We see that

$$\mu_{x+y} z_{x+y} = \mu_x z_x + \mu_y z_y = x + y.$$

Putting everything together

$$p_C(x+y) \stackrel{(*)}{\leq} \mu_{x+y} = \mu_x + \mu_y < p_C(x) + p_C(y) + \epsilon.$$

Explanation

(*) holds by definition of $p_C(x+y)$.

As ϵ was chosen arbitrarily, it holds

$$p_C(x+y) \le p_C(x) + p_C(y).$$

To prove

For any $x \in X$ and $\lambda \in \mathbb{R}_{>0}$ it holds

$$p_C(\lambda x) = \lambda p_C(x).$$

Proof. Let $x \in X$ and $\lambda > 0$. Then,

$$\begin{split} p_C(\lambda x) &= \inf\{\alpha > 0: \lambda x \in \alpha C\} = \inf\{\alpha > 0: x \in \frac{\alpha}{\lambda}C\} \\ &= \inf\{\lambda \alpha > 0: x \in \alpha C\} \\ &= \lambda \inf\{\alpha > 0: x \in \alpha C\} \\ &= \lambda p_C(x). \end{split}$$

Conclusion: $p_C: X \to [0, \infty)$ is a sublinear functional.

(ii)

(iii) We want to show:

To prove

$$C = \{ x \in X : p_C(x) < 1 \}$$

Proof. sadasd