VIII) Partie I : Étude d'une fonction auxiliaire

On considère la fonction f définie sur l'intervalle $]0;+\infty[$ par:

$$f(x) = ln\left(\frac{x+1}{x}\right) - \frac{1}{x+1}.$$

- 1. Calculer la limite de f(x) lorsque x tend vers 0 et lorsque x tend vers $+\infty$.
- 2. Déterminer l'expression de la fonction dérivée de la fonction f et étudier les variations de f.
- 3. Tracer la courbe (C_f) représentative de la fonction f dans un repère orthogonal $(O; \vec{i}, \vec{j})$, où $||\vec{i}|| = 4 cm$ et $||\vec{j}|| = 5 cm$.

Partie II: Étude d'une fonction.

On considère la fonction g définie sur l'intervalle $]0;+\infty[$ par:

$$g(x) = x \ln\left(\frac{x+1}{x}\right).$$

- 1. Prouver que $\lim_{x\to +\infty} g(x) = 1$ et que $\lim_{x\to 0} g(x) = 0$.
- 2. Déterminer l'expression de la fonction dérivée de g. On vérifie que g'(x) = f(x).
- 3. En déduire les variations de g sur $]0;+\infty[$.
- 4. Calculer, en cm^2 , l'aire du domaine délimité par (C_f) , l'axe des abscisses et les droites d'équation x = 1 et x = e.

Partie III: Étude d'une suite

Soit (u_n) la suite numérique définie sur N* par $u_n = \left(\frac{n+1}{n}\right)^n$.

Montrer, en remarquant que $ln(u_n) = g(n)$, que :

- a) La suite (u_n) est une suite croissante.
- b) La suite (u_n) est convergente et préciser sa limite.

IX)La constante d'Euler

Le but de cet exercice est de montrer que la suite $(c_n)_{n\geq 1}$ définie par : $c_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-ln(n)$ est une suite convergente.

Partie A:

- 1. Soit $f(x) = ln(x+1) ln(x) \frac{1}{x+1}$
 - a. Déterminer le domaine de définition de la fonction f,
 - b. Étudier les variations de la fonction f.
 - c. En déduire le signe de f(x).
- 2. Soit $g(x) = ln(x+1) ln(x) \frac{1}{x}$
 - a. Déterminer le domaine de définition de la fonction g,
 - b. Étudier les variations de la fonction g.
 - c. En déduire le signe de g(x).
- 3. En déduire que pour tout $x \ge 1$,

$$\frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}$$

Partie B: Soit la suite $(u_n)_{n\geq 1}$ définie sur \mathbb{N}^* par : $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$

- a) Appliquer le résultat obtenu dans la **Partie A.3.** pour x=1, x=2,..., x=n-1 et x=n $(n \ge 1)$.
- b) En déduire que pour tout $n \ge 1$, $u_{n+1} 1 \le \ln(n+1) \le u_n$.
- c) En déduire que la suite $(u_n)_{n\geq 1}$ diverge vers $+\infty$.

Partie C: Soit f la fonction définie par $[0; +\infty[$ par :

$$f(x) = \frac{1}{x} - \ln\left(\frac{x+1}{x}\right)$$

a) En utilisant l'encadrement obtenu dans la **Partie A.3.** montrer que pour tout $n \ge 1$,

$$0 \le f(n) \le \frac{1}{n} - \frac{1}{n+1}$$

- b) Vérifier que pour tout $n \ge 2$, $c_n = f(1) + f(2) + \cdots + f(n-1)$.
- c) En déduire que la suite $(c_n)_{n\geq 1}$ est croissante et que, pour tout $n\geq 2$,

$$f(1) \le c_n \le 1 - \frac{1}{n}$$

d) En déduire que la suite $(c_n)_{n\geq 1}$ converge. (La limite de la suite $(c_n)_{n\geq 1}$ est dite la constante d'Euler).

X) Intégrale et intégration par parties

Soit la suite $(I_n)_{n\in\mathbb{N}}$ définie pour tout naturel n par :

$$I_n = \int_1^e x. (ln(x))^n dx \quad \text{si } n \ge 1$$

$$et I_0 = \int_1^e x \, dx$$

- 1. Calculer I_0 , puis I_1 .
- 2. a. Au moyen d'une intégration par parties, exprimer l_n en fonction de n et de l_{n-1} .
 - b. Vérifier que $2I_n + nI_{n-1} = e^2$.
 - c. En déduire la valeur de I_2 .
 - d. Démontrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
 - e. En déduire que pour tout $n \ge 1$:

$$\frac{e^2}{n+3} \le I_n \le \frac{e^2}{n+2}$$

f. En déduire la limite de la suite $(I_n)_{n\in\mathbb{N}}$.