Міністерство освіти та науки України Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики Кафедра обчислювальної математики

3BIT

на тему:

Застосування методу Бубнова-Гальоркіна до розв'язання граничної задачі звичайного диференціального рівняння

Виконав студент IV курсу групи ОМ-4 Півень Денис Миколайович Науковий керівник кандидат фізико-математичних наук доцент кафедри обчислювальної математики Кузьмін Анатолій Володимирович

Зміст

1	Постановка задачі	3					
	1.1 Загальний вигляд						
	1.2 Дані конкретного варіанту						
2	Короткі теоретичні відомості методу який використовується	3					
3 Детальний опис алгоритму з вказанням обчислюваних фо							
	3.1 Метод скінченних елементів	4					
	3.2 Виконання граничних умов (2)	5					
	3.3 Метод скінчених різниць	6					
	тодами	6					
4	Лістинг програмного коду з коментарями	8					
5	Представлення результатів у графічному та табличному ви-						
	глядах	9					
ճ	Аналіз отриманих результатів та висновки						

1 Постановка задачі

Знайти розв'язок задачі методом скінченних елементів.

1.1 Загальний вигляд

$$-\frac{d}{dx}\left(p(x)\cdot\frac{d}{dx}y(x)\right) + a(x)\cdot\frac{d}{dx}y(x) + q(x)\cdot y(x) = f(x)$$

$$h_1\cdot\frac{d}{dx}y(0) - h_2\cdot y(0) = 0$$

$$H_1\cdot\frac{d}{dx}y(1) + H_2\cdot y(1) = 0$$

$$(2)$$

1.2 Дані конкретного варіанту

$$\frac{p(x)}{1 + \sin(\pi x)} \frac{q(x)}{3} \frac{h_1, h_2}{1, 2} \frac{H_1, H_2}{0, 1} \frac{a(x)}{\sin(\pi x)} \frac{f(x)}{2x^2 + \sin(2x)}$$

$$-\frac{d}{dx} \left((1 + \sin(\pi x)) \cdot \frac{d}{dx} y(x) \right) + \sin(\pi x) \cdot \frac{d}{dx} y(x) + 3 \cdot y(x) = 2x^2 + \sin(2x)$$

$$\frac{d}{dx} y(0) - 2 \cdot y(0) = 0$$

$$y(1) = 0$$

2 Короткі теоретичні відомості методу який використовується

Метод Бубнова-Гальоркіна— чисельний метод розв'язання диференціальних рівнянь з граничними умовами. Диференціальні рівняння з граничними умовами у математичній фізиці називаються задачею математичної фізики.

Нехай є диференціальне рівняння з деякими крайовими умовами (першого роду)

$$\hat{A}[u(x)] = f(x), a \le x \le b$$

$$u(a) = \alpha, u(b) = \beta$$
(3)

Наближений розв'язок шукаємо у вигляді наступної суми

$$u(x) \approx y_n(x) = \phi_0(x) + \sum_{k=1}^n \phi_k(x) \cdot \alpha_k \tag{4}$$

 $\phi_0(x)$ — деяка неперервна функція, що задовільняє крайові умови (3),

 $\phi_k(x), 1 \leq k < \infty$, якась система лінійно незалежних функцій, повна в класі неперервних функцій, що визначені на відрізку [a,b] і набувають нульових значень на його кінцях.

Детальний опис алгоритму з вказанням обчи-3 слюваних формул

Метод скінченних елементів 3.1

Визначимо узагальнений розв'язок задачі (1), (2).

Виберемо функцію v, яка задовільняє граничним умовам (2).

Рівняння (1) помножимо на v і проінтегруємо від 0 до 1.

$$\int_0^1 \left(-(py')' + ay' + qy \right) v \, dx = \int_0^1 fv \, dx$$

Застосуємо формулу інтегрування за часинами

$$\int_0^1 (py'v' + ay'v + qyv) \ dx - py'v \Big|_0^1 = \int_0^1 fv \ dx$$

$$\int_0^1 (py'v' + ay'v + qyv) \ dx - p(1)y'(1)v(1) + p(0)y'(0)v(0) = \int_0^1 fv \ dx$$

$$\int_0^1 \left(py'v' + ay'v + qyv \right) dx + \frac{H_2}{H_1} p(1)y(1)v(1) + \frac{h_2}{h_1} p(0)y(0)v(0) = \int_0^1 fv \, dx \quad (5)$$

Співвідношення (5) визначає узагальнений розв'язок задачі (1), (2) для $y \in$ $W_2^1(0,1)$

Виберемо систему координатних функцій $\{w_i(x)\}_{i=1,\infty}$

- 1. Система функцій належить $W_2^1(0,1)$
- 2. Система функцій лінійно-незалежна
- 3. Система функцій є повною

Будемо розглядати граничну задачу для звичайного диференціального рівняння (1), (2).

Для пошуку розв'язку будемо використовувати інтегральну тотожність (5) Визначимо систему координатних функцій.

На відрізку [0,1] введемо рівномірну сітку $x_i = ih, i = \overline{0,N}$ де $h = \frac{1}{N}$

 $x_0 = 0, x_N = 1$ – граничні вузли сітки. $x_i, i = 1, N-1$ – внутрішні вузли сітки.

Для кожного внутрішнього вузла сітки визначимо функцію $w_i(x)$ за наступною формулою:

$$w_i(x) = \begin{cases} 0, & x < x_{i_1} \\ \frac{x - x_{i-1}}{h}, & x_{i-1} \le x \le x_i \\ \frac{x_{i+1} - x}{h}, & x_i \le x \le x_{i+1} \\ 0, & x > x_{i+1} \end{cases}$$

Для граничних точок:

$$w_0(x) = \begin{cases} \frac{x_1 - x}{h}, & x_0 \le x \le x_1 \\ 0, & x > x_1 \end{cases}$$

$$w_N(x) = \begin{cases} 0, & x < x_{N-1} \\ \frac{x - x_{N-1}}{h}, & x_{N-1} \le x \le x_N \end{cases}$$

3.2 Виконання граничних умов (2)

Якщо $h_1 \neq 0, H_1 \neq 0$ то такі умови називаються природніми і вони будуть виконуватись автоматично.

Розв'язок записується у вигляді

$$y_N(x) = \sum_{i=0}^{N} c_i \varphi_i(x) \tag{6}$$

Якщо $h_1=0,\,H_1\neq 0$ то розв'язок записується у вигляді

$$y_N(x) = \sum_{i=1}^{N} c_i \varphi_i(x) \tag{7}$$

Оскільки $\varphi_i(0)=0$ для $i=\overline{1,N}$ то умова y(0)=0 виконана. Якщо $h_1\neq 0,\, H_1=0,$ то розв'язок записується у вигляді

$$y_N(x) = \sum_{i=0}^{N-1} c_i \varphi_i(x) \tag{8}$$

Оскільки $\varphi_i(1)=0$ для $i=\overline{0,N-1}$ то умова y(1)=0 виконана. Матриця А – тридіагональна

$$A = \begin{pmatrix} a_{11} & a_{12} & 0 & \dots & 0 \\ a_{21} & a_{22} & a_{23} & \dots & 0 \\ 0 & a_{32} & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{N+1N+1} \end{pmatrix} \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{N+1} \end{pmatrix}$$

3.3 Метод скінчених різниць

3.3.1 Побудова різницевої схеми інтегро-інтерполяційними методами.

$$-\frac{d}{dx}\left(p(x)\cdot\frac{d}{dx}y(x)\right) + q(x)\cdot y(x) = f(x)$$

$$-p(0)\cdot\frac{d}{dx}y(0) - \alpha_1\cdot y(0) = 0$$

$$-p(1)\cdot\frac{d}{dx}y(1) - \alpha_2\cdot y(1) = 0$$
(10)

Визначимо систему координатних функцій.

На відрізку [0,1] введемо рівномірну сітку $x_i=ih, i=\overline{0,N}$ де $h=\frac{1}{N},$ $x_0=0, x_N=1$ — граничні вузли сітки. $x_i, i=\overline{1,N-1}$ — внутрішні вузли сітки. $x_{i+\frac{1}{2}}, i=\overline{0,N-1}$ — допоміжні вузли.

$$W(x) = p(x)\frac{d}{dx}y(x) \tag{11}$$

Інтегруємо рівняння (9)

$$-\frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \frac{d}{dx} W(x) \, dx + \frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q(x) \cdot y(x) \, dx = \frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x) \, dx \qquad (12)$$

$$-\frac{W(x_{i+\frac{1}{2}}) - W(x_{i-\frac{1}{2}})}{h} + y(x_i) \cdot \frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q(x) \, dx = \frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x) \, dx \qquad (13)$$

Введемо позначення

$$W_{i+\frac{1}{2}} = W(x_{i+\frac{1}{2}}),$$

$$y_i = y(x_i)$$

$$q_i = \frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} q(x) dx,$$

$$f_i = \frac{1}{h} \cdot \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x) dx$$

Тоді вираз (13) набуває вигляду

$$-\frac{W_{i+\frac{1}{2}} - W_{i-\frac{1}{2}}}{h} + y_i \cdot q_i = f_i \tag{14}$$

Аналогічно інтегруємо рівняння (11)

$$\frac{1}{h} \cdot \int_{x_i}^{x_{i+1}} \frac{d}{dx} y(x) \, dx = \frac{1}{h} \cdot \int_{x_i}^{x_{i+1}} \frac{W(x)}{p(x)} \, dx \tag{15}$$

$$\frac{y_{i+1} - y_i}{h} = W_{i+\frac{1}{2}} \cdot \frac{1}{h} \cdot \int_{x_i}^{x_{i+1}} \frac{1}{p(x)} dx \tag{16}$$

При позначенні

$$\frac{1}{p_{i+\frac{1}{2}}} = \frac{1}{h} \cdot \int_{x_i}^{x_{i+1}} \frac{1}{p(x)} dx, \tag{17}$$

Вираз (16) набуває вигляд

$$W_{i+\frac{1}{2}} = p_{i+\frac{1}{2}} \cdot \frac{y_{i+1} - y_i}{h} \tag{18}$$

Підставимо (18) в (14), отримаємо

$$-\frac{1}{h} \cdot \left(p_{i+\frac{1}{2}} \cdot \frac{y_{i+1} - y_i}{h} - p_{i-\frac{1}{2}} \cdot \frac{y_i - y_{i-1}}{h} \right) + y_i \cdot q_i = f_i, \quad i = \overline{1, N-1}$$
 (19)

Доповнимо систему (19) граничними умовами. Для цього проінтегруємо рівняння (9) в межах від x_0 до $x_{\frac{1}{2}}$

$$-\frac{1}{0.5h} \cdot \int_{x_0}^{x_{\frac{1}{2}}} \frac{d}{dx} W(x) \, dx + \frac{1}{0.5h} \cdot \int_{x_0}^{x_{\frac{1}{2}}} q(x) \cdot y(x) \, dx = \frac{1}{0.5h} \cdot \int_{x_0}^{x_{\frac{1}{2}}} f(x) \, dx \quad (20)$$

$$-\frac{W(x_{\frac{1}{2}}) - W(x_0)}{0.5h} + y_0 \cdot \frac{1}{0.5h} \cdot \int_{x_0}^{x_{\frac{1}{2}}} q(x) \, dx = \frac{1}{0.5h} \cdot \int_{x_0}^{x_{\frac{1}{2}}} f(x) \, dx \tag{21}$$

Позначимо

$$q_{0} = \frac{1}{0.5h} \cdot \int_{x_{0}}^{x_{\frac{1}{2}}} q(x) dx,$$

$$f_{0} = \frac{1}{0.5h} \cdot \int_{x_{0}}^{x_{\frac{1}{2}}} f(x) dx$$

$$-\frac{W_{\frac{1}{2}} - W_{0}}{0.5h} + y_{0} \cdot q_{0} = f_{0}$$
(22)

Враховуючи граничну умову (10) можемо записати

$$-W_0 + \alpha_1 y_0 = 0$$

Таким чином можемо записати співвідношення (22)

$$-p_{\frac{1}{2}} \cdot \frac{y_1 - y_0}{h} + (\alpha_1 + 0.5 \cdot h \cdot q_0) \cdot y_0 = 0.5 \cdot h \cdot f_0$$
 (23)

4 Лістинг програмного коду з коментарями

```
> #Півень Денис ОМ-4
           #Варіант 2
   > restart:
   > with(LinearAlgebra) :
with(plots) :
 > #Метод скінчених різниць

> #Задаємо значення коефіцієнтів

> h1 := 1 : h2 := 2 : H1 := 0 : H2 := 1
 > # Kpaňobi ymobu

> h2 \cdot y(0) - h1 \cdot D(y)(0) = 0:

H2 \cdot y(1) + H1 \cdot D(y)(1) = 0:
 > N := 1000:
   \rightarrow h := \frac{1}{N}:
     x_i := [0, seq(i \cdot h, i = 1.N - 1), 1]:
     > w_0 := unapply \left( piecewise \left( x_i[1] \le x \le x_i[2], \frac{x_i[2] - x}{h}, 0 \right), x \right)
          w_n := unapply \left( piecewise \left( x_i[N] \le x \le x_i[N+1], \frac{x - x_i[N]}{h}, 0 \right), x \right):
           w\_i \coloneqq seq\left(\mathit{imapply}\left(\mathit{piecewise}\left(x < x\_i[i-1], 0, x\_i[i-1] \le x \le x\_i[i], \frac{x - x\_i[i-1]}{h}, x\_i[i] \le x \le x\_i[i+1], \frac{x\_i[i+1] - x}{h}, 0\right), x\right), i = 2..N\right)
           w := [w_0, w_i, w_n]:
   > plot([seq(w(x)[i], i=1..N)], x=0..1):
         > A := Matrix(N, N) :
b := Vector(N) :
> for i from 1 to N do:
              A[i,j] := evalf\Big[int(k(x) \cdot diff(w(x)[i], x) \cdot diff(w(x)[j], x) + q(x) \cdot w(x)[j] \cdot w(x)[i], x = 0 \cdot x \cdot i[3]\big) + \frac{h2}{h1} \cdot k(0) \cdot w[i](0) \cdot w[j](0)\Big];
              A[i,j] := evalf \left[ int(k(x) \cdot diff(w(x)[i], x) \cdot diff(w(x)[j], x) + q(x) \cdot w(x)[j] \cdot w(x)[i], x = x\_i[N-2]...1) + \frac{h2}{h1} \cdot k(0) \cdot w[i](0) \cdot w[j](0) \right];
                end do:
                 A[i,j] := evalf \bigg( int(k(x) \cdot diff(w(x)[i],x) \cdot diff(w(x)[j],x) + q(x) \cdot w(x)[j] \cdot w(x)[i], \\ x = x\_i[i-1] \cdot x\_i[i+1]) + \frac{h2}{h1} \cdot k(0) \cdot w[i](0) \cdot w[j](0) \bigg) \bigg\}
                end do:
           end if
      end d\alpha
> for i from 1 to N d\alpha
b[i] := int(f(x) \cdot w(x)[i], x = 0.001..1);
end d\alpha
  end do:

> c := evalf(LinearSolve(A, b)):

> A, c = b:

> u_n := x \rightarrow add(c[i] \cdot w(x)[i], i = 1.N):
> #Інтегро-інтерноляційний метод
> #Знаходимо потрібні коефіпісити
  > a_1 := \frac{h2}{h1} :
 \begin{split} & = J = \frac{n}{h^2}; \\ & > \chi_s \partial S \coloneqq \left[ seq \left( cost f \left( \chi_s f(t) + \frac{h}{2} \right), t = 1, N \right) \right]; \\ & = q_s t \coloneqq \left[ \frac{1}{0.5 h} \int_{-\chi_s(1)}^{\chi_s(0)} dt dt dt dt - \frac{1}{h} \int_{-\chi_s(0)}^{\chi_s(0)} q(t) dt, t = 1, N - 1 \right] \cdot \frac{1}{0.5 h} \int_{-\chi_s(0)}^{\chi_s(0)} q(t) dt \right]; \\ & = f \coloneqq Vector \left( column) \left[ N + 1, \left[ \frac{1}{0.5 h} \int_{-\chi_s(0)}^{\chi_s(0)} f(t) dt, seq \left[ \frac{1}{h} \int_{-\chi_s(0)}^{\chi_s(0)} f(t) dt, t = 1, N - 1 \right] \cdot \frac{1}{0.5 h} \int_{-\chi_s(0)}^{\chi_s(0)} f(t) dt \right]; \\ & = f \coloneqq Vector \left( column) \left[ N + 1, \left[ \frac{1}{0.5 h} \int_{-\chi_s(0)}^{\chi_s(0)} f(t) dt, seq \left[ \frac{1}{h} \int_{-\chi_s(0)}^{\chi_s(0)} f(t) dt, t = 1, N - 1 \right] \cdot \frac{1}{0.5 h} \int_{-\chi_s(0)}^{\chi_s(0)} f(t) dt \right]; \end{split}
        k\_i05 := \left[ seq \left( evalf \left( \left( \frac{1}{h} \cdot \int_{x_{-i}^{-1}[i+1]}^{x_{-i}^{-1}[i+1]} \frac{1}{k(x)} \, \mathrm{d}x \right)^{-1} \right), i = 1..N \right) \right];
   > <u># Формусмо матрицю</u>
> AI := Matrix(N + 1, N + 1) :
       for i from 2 to N do: AI[i,i-1] := -\frac{k \cdot i05[i-1]}{k^2};
           A1[i, i] := \frac{k_{-i}05[i - 1] + k_{-i}05[i]}{k^2} + q_{-i}[i];
           AI[i, i + 1] := -\frac{k\_i05[i]}{h^2};
\begin{split} &Al[i,i+1] = \frac{h^2}{h^2} \\ &\text{end } \text{d} \alpha \\ &Al[1,1] = \frac{k \cdot d05[1]}{0.5 \cdot h^2} + \frac{a \cdot l}{0.5 \cdot h} + q_x[i]; \\ &Al[1,2] = \frac{k \cdot d05[1]}{0.5 \cdot h^2}; \\ &Al[N+1,N] = Al[1,2]; \\ &Al[N+1,N+1] = 1; \\ &> cl = end[t](leares)be(dA,f_f); \\ &> Al, cl = f_l; \\ &> u,nl : x^n edd(cl[l] \cdot w(x)[l], l = 1,N); \end{split}
```

5 Представлення результатів у графічному та табличному виглядах

```
 \begin{array}{l} & \exists \textit{Ebytesso.pndpix} \\ > \textit{eq} : = -\textit{diff}(k(x), \textit{diff}(y(x), x), x) + \textit{q}(x) \cdot y(x) = f(x) : \\ \textit{ty} : = \textit{h}.1 \cdot D(y)(0) - \textit{h}.2 \cdot y(0) = 0. \textit{H}.D(y)(1) + \textit{H}.2 \cdot y(1) = 0 : \\ \textit{nsol} : = \textit{dsolve}([\textit{eq.ty}], y(x), \textit{numeric}) : \\ > \textit{p}.1 : = \textit{plot}(\textit{u.n.} 0, ...1, \textit{style} = \textit{point.color} = \textit{green}) : \\ \textit{p}.2 : = \textit{dsolytof(point.oh.thickness = 4)} : \\ \textit{p}.3 : = \textit{plot}(\textit{u.n.} 1, 0, ...1, \textit{style} = \textit{point.symbol} = \textit{asterisk.color} = \textit{blue}) : \\ \textit{dsaplay}(\textit{p}.1, \textit{p}.2, \textit{p}.3) : \\ \\ 0.12 - \\ \\ 0.06 - \\ \\ 0.06 - \\ \\ 0.02 - \\ \\ 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 \\ \\ \end{array}
```

```
 \begin{array}{ll} & \underbrace{\# \mathsf{OGpaxopycod noxn6km}} \\ > \mathit{result} := \mathit{Vector}\{10, \{ \mathit{seq}(u, n(0.1 \cdot i), i = 1..10) \} \} : \\ \mathit{maple} := \mathit{Vector}\{10, \{ \mathit{seq}(u, p(0.1 \cdot i), i = 1..10) \} \} : \\ \mathit{abETr} := \mathit{Vector}\{10, \{ \mathit{seq}(abeSr_i, l, i = 1..10) \} \} : \\ \mathit{varEr} := \mathit{Vector}\{10, \{ \mathit{seq}(abeSr_i, l, i = 1..10) \} \} : \\ \mathit{varEr} := \mathit{Vector}\{10, \{ \mathit{seq}(\frac{abeSr_i, l, i = 1..10}{maple}[i], i = 1..10) \} \} : \\ \mathit{varEr} := \mathit{Vector}\{10, \{ \mathit{seq}(\frac{abeSr_i, l, i = 1..10}{maple}[i], i = 1..10) \} . \\ \mathit{varEr} := \mathit{Vector}\{10, \{ \mathit{seq}(abeSr_i, l, i = 1..10) \} . \\ \mathit{varEr} := \mathit{Vector}\{10, \{ \mathit{varEr}(i, l, i = 1..10) \} . \\ \mathit{varEr} := \mathit{Vector}\{10, \{ \mathit{varEr}(i, l, i = 1..10) \} . \\ \mathit{varEr} := \mathit{varEr}(i, l, i = 1..10) \} . \\ \mathit{varEr} := \mathit{varEr}(i, l, i = 1..10) \} . \\ \mathit{varEr} := \mathit{varEr}[i] := \mathit{varEr}[i] := \mathit{varEr}[i] . \\ \mathit{varEr}[i] . \\ \mathit{varEr}[i] := \mathit{varEr}[i] . \\ \mathit{varEr}[i] := \mathit{varEr}[i] . \\
```

	Galerkin Finite el	Maple	Absolute error	Relative error
.1	0.0981046135474680919	0.0981048256467128982	2.12099244806251974 × 10 ⁻⁷	2.16196546304507484 × 10 ⁻⁶
.2	0.110727587744829645	0.110727841485188702	2.53740359057452736 × 10 ⁻⁷	2.29156782661020103 × 10 ⁻⁶
.3	0.120656917262563917	0.120657183571535292	2.66308971375028847 × 10 ⁻⁷	2.20715388418742152 × 10 ⁻⁶
.4	0.127576487503662322	0.127576816856843911	3.29353181588443178 × 10 ⁻⁷	2.58160682875491322 × 10 ⁻⁶
.5	0.130839621569107334	0.130840049440239498	4.27871132163692991 × 10 ⁻⁷	$3.27018473314717667 \times 10^{-6}$
.6	0.129290133396770202	0.129290573756265098	4.40359494896513937 × 10 ⁻⁷	3.40596752031333019 × 10 ⁻⁶
.7	0.120913670977512960	0.120914114819867580	4.43842354619361501 × 10 ⁻⁷	3.67072409437539972 × 10 ⁻⁶
.8	0.102134099619032567	0.102134452843781406	3.53224748839142677 × 10 ⁻⁷	3.45842895324865128 × 10 ⁻⁶
.9	0.0662898069298040737	0.0662900276353016599	2.20705497586126675 × 10 ⁻⁷	3.32939214930412257 × 10 ⁻⁶
1.0	0.	0.	0.	0

	Galerkin Integra	Maple	Absolute error	Relative error
.1	0.0978313262830812214	0.0981048256467128982	0.000273499363631676817	0.00278782783444904555
.2	0.110414414480611428	0.110727841485188702	0.000313427004577274126	0.00283060701241249308
.3	0.120304247381951029	0.120657183571535292	0.000352936189584263094	0.00292511543148207256
.4	0.127182604362044649	0.127576816856843911	0.000394212494799262014	0.00309000102457184260
.5	0.130400592553187034	0.130840049440239498	0.000439456887052463996	0.00335873372818605966
.6	0.128799192703541732	0.129290573756265098	0.000491381052723366407	0.00380059457118431514
.7	0.120360276854415221	0.120914114819867580	0.000553837965452358416	0.00458042442999679039
.8	0.101501545679046859	0.102134452843781406	0.000632907164734547445	0.00619680379257138078
.9	0.0655509263240977025	0.0662900276353016599	0.000739101311203957390	0.0111495097764955711
1.0	0.	0.	0.	0

6 Аналіз отриманих результатів та висновки

У результаті виконаної роботи було отримано розв'язок граничної задачі звичайного диференціального рівняння другого порядку за допомогою варіцій методу Бубнова-Гальоркіна, а саме Скінчено різницевим та Інтерго-інтерполяційним методами. Результати було порівняно з вбудованим методом Марlе для вирішення подубних задач. Скінчено різницевий метод збігається до розв'язку швидше ніж Інтерго-інтерполяційний, це видно з результатів поданих у табличному вигляді. Максимальна похибка Інтерго-інтерполяційного методу не перебільшує 0.5%, що свідчить про те, що метод є придатним для розв'язання задач такого типу.