

Hands-on practice on the Reaction4Exp platform

Hands-on practice on the Reaction4Exp platform

Manuela Rodríguez-Gallardo
Antonio Moro Mario Gómez-Ramos
Carla Muñoz-Chimbo

8th July 2025

Elastic and Inelastic scattering


```
-26900
              23940
              -22100
             -19600
              -16000
    1----13500
             -12250
  Sh...1+..........7465.8-----
              -6541.6
              -5615.4
              -4680.3 > 690 FS
    5- 473.98 3708.5
3-233.760.30
2510.741
         1093.95
   0+ ______ 0 STABLE ......
```


Elastic scattering

Hands-on practice on the Reaction4Exp platform

Woods-Saxon parameters for ⁴He+²⁰⁸Pb optical potential

V_0 [MeV]	<i>r</i> ₀ [fm]	<i>a</i> ₀ [fm]	$W_{\scriptscriptstyle V} \ [{\sf MeV}]$	<i>r_i</i> [fm]	a _i [fm]	<i>r_c</i> [fm]
96.44	1.085	0.625	32	0.958	0.42	1.2

Remember: absolute (physical) radii $R_x = r_x (A_p^{1/3} + A_t^{1/3})$.

Elastic scattering

Hands-on practice on the Reaction4Exp platform

Woods-Saxon parameters for ⁴He+²⁰⁸Pb optical potential

V_0 [MeV]	<i>r</i> ₀ [fm]	<i>a</i> ₀ [fm]	$W_{\scriptscriptstyle V} \ [{\sf MeV}]$	<i>r_i</i> [fm]	a _i [fm]	<i>r_c</i> [fm]
96.44	1.085	0.625	32	0.958	0.42	1.2

Remember: absolute (physical) radii $R_x = r_x (A_p^{1/3} + A_t^{1/3})$.

We will try four indicent energies:

E_{lab}	$E_{ m cm}$	k	η	r_{\min}
(MeV)	(MeV)	(fm^{-1})		(fm)
10	9.81	1.36	16.3	24.1
22	21.6	2.01	11.0	10.9
27	26.5	2.23	9.94	8.9
60	58.9	3.32	6.67	4.0

Elastic scattering cross sections

Elastic S-matrices

Inelastic scattering

Hands-on practice on the Reaction4Exp platform

Woods-Saxon parameters for $^4 He + ^{208} Pb (3^-)$ at 23.5 MeV

V_0	<i>r</i> ₀	<i>a</i> ₀	W_s	ri	aį	r _c
[MeV]	[fm]	[fm]	[MeV]	[fm]	[fm]	[fm]
92.5	1.384	0.625	22.24	1.265	0.592	1.2

Nuclear and Coulomb deformation parameters

β_N	βс
0.103	0.113

Inelastic scattering

Hands-on practice on the Reaction4Exp platform

Woods-Saxon parameters for ${}^{4}\text{He}+{}^{208}\text{Pb}(3^{-})$ at 23.5 MeV

V_0	<i>r</i> ₀	<i>a</i> ₀	W_s	ri	aį	r _c
[MeV]	[fm]	[fm]	[MeV]	[fm]	[fm]	[fm]
92.5	1.384	0.625	22.24	1.265	0.592	1.2

Nuclear and Coulomb deformation parameters

β_N	βс
0.103	0.113

$$\delta_N = \beta_N \ R_N = 0.85 \ {\rm fm}$$
 $M_n(E3) = \beta_C \ 3 \ Ze \ R_C^3/4\pi = 795.08 \ e \ {\rm fm}^3$

Elastic and inelastic cross sections using CC method

EPM: inelastic and Coulomb breakup

Inelastic scattering to the excited bound state of ¹¹Be

Hands-on practice on the Reaction4Exp platform

$$^{11}\text{Be}+^{197}\text{Au}$$
 at 39.6 and 31.9 MeV

$$B(E1; gs \rightarrow 1/2^{-}) = 0.116 \text{ e}^{2} \text{fm}^{2}$$

Remember: distribution type "discrete"

Inelastic scattering to the excited bound state of ¹¹Be

Hands-on practice on the Reaction4Exp platform

$$^{11}\mbox{Be}+^{197}\mbox{Au}$$
 at 39.6 and 31.9 MeV

$$\textit{B(E1;gs} \rightarrow 1/2^{-}) = 0.116~\text{e}^2\text{fm}^2$$

Remember: distribution type "discrete"

Coulomb breakup for ¹¹Be

Hands-on practice on the Reaction4Exp platform

$$^{11}\mbox{Be}+^{208}\mbox{Pb}$$
 at 69 MeV/u

We need a $dB(E1)/d\varepsilon$ distribution from a theor. model

Remember: distribution type "continous"

Coulomb breakup for ¹¹Be

Hands-on practice on the Reaction4Exp platform

$$^{11}\mbox{Be}+^{208}\mbox{Pb}$$
 at 69 MeV/u

We need a $dB(E1)/d\varepsilon$ distribution from a theor. model

Remember: distribution type "continous"

Coulomb breakup for ¹¹Be

Hands-on practice on the Reaction4Exp platform

 $^{11}\mbox{Be} + ^{208}\mbox{Pb}$ at 69 $\mbox{MeV/u}$

We need a $dB(E1)/d\varepsilon$ distribution from a theor. model

Remember: distribution type "continous"

Transfer reaction

Hands-on practice on the Reaction4Exp platform

$|^{208}$ Pb $(d, p)^{209}$ Pb at 20 MeV

Potentials needed

Hands-on practice on the Reaction4Exp platform

For n-p ground state we use the Gaussian form:

$$V_{pn}(r) = -72.15 \exp[-(r/1.484)^2]$$

Ī	system	V_0	<i>r</i> ₀	<i>a</i> ₀	W_s	r _i	a _i	r _c
		[MeV]	[fm]	[fm]	[MeV]	[fm]	[fm]	[fm]
Ī	$d+^{208}{\sf Pb}$	112.0	1.25	0.682	19.4	1.25	0.783	1.30
	$p+^{208(9)}$ Pb	52.0	1.25	0.65	10.0	1.25	0.76	1.25
	$n+^{208}$ Pb(gs)	adjust.	1.23	0.65				

Remember: $Q = Q_0 - E_x$

Transfer cross sections to several states of ²⁰⁹Pb

Discussion and feedback on the platform

- → With Reaction4Exp we can do calculations for elastic, inelastic, transfer and Coulomb breakup reactions as seen.
- → Soon, breakup using CDCC will be available.
- → Also available it is the obtention of double-folding optical potentials using the SPP code.

Discussion and feedback on the platform

- → With Reaction4Exp we can do calculations for elastic, inelastic, transfer and Coulomb breakup reactions as seen.
- → Soon, breakup using CDCC will be available.
- → Also available it is the obtention of double-folding optical potentials using the SPP code.
- → Feedback & suggestions

Hands-on practice on the Reaction4Exp platform

To finish...