

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Классификация методов подсчета информационной энтропии

Студент: **Хамзина Регина Ренатовна ИУ7-73Б** Руководитель: **Оленев Антон Александрович**

Цель и задачи

Цель: классификация методов подсчета информационной энтропии.

Задачи:

- провести анализ предметной области: рассмотреть основные определения, изучить свойства информационной энтропии и ее связь со сжатием данных;
- описать существующие методы подсчета информационной энтропии;
- выделить критерии сравнения описанных методов;
- провести сравнение методов по выделенным критериям.

Передача информации

$$H(X) = -\sum_{i=1}^{n} (p_i \cdot \log_a p_i), \tag{1}$$

где $n \in \mathbb{N}$, $p_i = P(X \sim x_i)$, $\sum_{i=1}^n p_i = 1$, a > 1.

Связь энтропии и сжатия данных

$$K_{\rm CM} = \frac{L_{\rm MCX}}{L_{\rm CM}},\tag{2}$$

где $L_{\text{исх}}$ — объем исходных данных X, $L_{\text{сж}}$ — объем сжатых данных $X_{\text{сж}}$.

Метод скользящего окна

$$H(X) = -\sum_{i=0}^{255} (p_i \cdot \log_2 p_i), \tag{3}$$

где $p_i = \frac{k_i}{N}$ — вероятность появления байта в массиве байтов размером N, k_i — число вхождений байта в массив байтов.

Биномиальный метод

$$H(X) = -\sum_{k=0}^{n} (C_n^k \cdot P_k \cdot \log_2 P_k),$$
 (4)

где
$$P_k = p^k \cdot (1-p)^{(n-k)}, \ C_n^k = \frac{n!}{k! \cdot (n-k)!}.$$

Сравнение методов

Метод	K1	K2	K3	K4
Скользящего окна	$O(N+2^n)$	_	+	2^n
Биномиальный	O(N+n)	+	+	$2 \cdot (n+1)$

- К1 временная сложность;
- K2 необходимость вычисления факториала;
- K3 возможность распараллеливания вычислений;
- K4 объем требуемой дополнительной памяти.

Заключение

Цель научно-исследовательской работы достигнута. При написании данной работы:

- проведен анализ предметной области: рассмотрены основные определения, изучены свойства информационной энтропии и ее связь со сжатием данных;
- описаны существующие методы подсчета информационной энтропии;
- выделены критерии сравнения описанных методов;
- проведено сравнение методов по выделенным критериям.