Student ID:	 March 14, 2018 – 9:00 AM
	Duration: 50 minutes

ENEL 471 - Winter 2018 2nd Midterm Exam

Notes:

- This exam is closed book and closed notes.
- Non-programmable calculators are allowed.
- The exam duration is 50 minutes.
- The exam is composed of 2 Problems and 5 pages. All the problems are independent.
- Please write your name and ID# in each page

Student ID:Student name:	 March 14, 2018 – 9:00 AM Duration: 50 minutes
Problem 1 [10 pts]	

The sinusoidal modulating wave: $m(t) = 2\cos(6000\pi t)$

is applied to a phase modulator with phase sensitivity $k_p = 0.1$ radian per volt. The unmodulated carrier wave has frequency $f_c = 1$ MHz and amplitude $A_c = 1$ volt.

- a- Determine the instantaneous frequency of this PM signal and sketch it versus time.
- b- Determine the time domain expression of this PM signal and sketch it versus time.
- c- Determine the maximum frequency deviation Δf and the modulation index β .
- d- Determine the expression of the frequency spectrum of the resulting PM signal and sketch it. **Show all amplitudes and frequencies of interest**.
- e- Construct a phasor diagram of this PM modulated signal.

Student ID:	March 14, 2018 – 9:00 AM
Student name:	Duration: 50 minutes

Problem 2 [10 pts]

A carrier wave of amplitude $A_c = 2$ volt and frequency $f_c = 100$ kHz is FM modulated by the message $m(t) = A_m \cos(2f_m \pi t)$, where $A_m = 1$ volt and $f_m = 1$ kHz. The frequency sensitivity of the FM modulator is k_f is 2 kHz per volt.

- a- What is the time domain expression of the FM modulated signal?
- b- Determine the maximum frequency deviation Δf and the modulation index β
- c- Determine the transmission bandwidth of this FM signal using Caron's rule.
- d- Determine the bandwidth by transmitting only those side frequencies whose amplitude exceed 1 percent of the unmodulated carrier amplitude. (Use the table below)
- e- Sketch the frequency spectrum of the modulated signal. Show only the sidebands within the bandwidth calculated in d-. Indicate all the frequencies and amplitudes of interest. (Use the table below)

Values of the Bessel Functions $J_n(\beta)$

	β = 1	β = 2	$\beta = 3$	β = 4
n=0	0.7652	0.2239	-0.2601	-0.3971
n=1	0.4401	0.5767	0.3391	-0.066
n=2	0.1149	0.3528	0.4861	0.3641
n=3	0.0196	0.1289	0.3091	0.4302
n=4	0.0025	0.034	0.132	0.2811
n = 5		0.007	0.043	0.1321
n = 6		0.0012	0.0114	0.0491
n = 7			0.0025	0.01518
n = 8				0.004

 Student ID:
 March 14, 2018 – 9:00 AM

 Student name:
 Duration: 50 minutes

Trigonometric Identities

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(a)\cos(b) = \frac{1}{2} \left[\cos(a-b) + \cos(a+b)\right]$$

$$\sin(a)\sin(b) = \frac{1}{2} \left[\cos(a-b) - \cos(a+b)\right]$$

$$\sin(a)\cos(b) = \frac{1}{2} \left[\sin(a+b) + \sin(a-b)\right]$$

$$\cos\left(a + \frac{\pi}{2}\right) = -\sin(a)$$

$$\cos\left(a - \frac{\pi}{2}\right) = \sin(a)$$

$$\sin\left(a-\frac{\pi}{2}\right)=-\cos(a)$$

 $\sin\left(a+\frac{\pi}{2}\right)=\cos\left(a\right)$

Taylor series first order approximation of trigonometric functions

If
$$a \ll 1$$
 rad
Then: $\cos(a) \approx 1$
 $\sin(a) \approx a$

Properties of the Bessel Functions of the First Kind

$$J_{n}(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(j\beta \sin(\theta) - jn\theta) d\theta$$
$$J_{-n}(\beta) = (-1)^{n} J_{n}(\beta)$$