Repaso de Álgebra

Matrices Positivas y Raíz Cuadrada de una Matriz

Santiago Alférez

Agosto de 2020

Análisis Estadístico de Datos MACC

Universidad del Rosario

Contenidos

Matrices definidas positivas

Raíz Cuadrada de una Matriz

Matrices definidas positivas

Introducción

Algunas consideraciones

- Frecuentemente, el estudio de la variación y las interrelaciones en los datos se basan en distancias y en la suposición de que los datos multivariados están normalmente distribuidos.
- Las distancias al cuadrado y la densidad normal multivariada se pueden expresar en términos de productos de matriz llamados formas cuadráticas.
- Por lo tanto, las formas cuadráticas desempeñan un papel central en el análisis multivariado.
- Veremos formas cuadráticas que siempre son no negativas y las matrices definidas positivas asociadas.
- Generalmente, los resultados que involucran formas cuadráticas y
 matrices simétricas son una consecuencia directa de una expansión para
 las matrices simétricas conocida como descomposición espectral.

Descomposición espectral

Descomposición espectral

La descomposición espectral para una matriz simétrica $\mathbf A$ de $k \times k$ es:

$$\mathbf{A}_{(k\times k)} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' \mathbf{e}_1' + \dots + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' \mathbf{e}_2' + \dots + \lambda_k \mathbf{e}_k \mathbf{e}_k' \mathbf{e}_k'$$

donde $\lambda_1, \lambda_2, \ldots, \lambda_k$ son los valores propios de \mathbf{A} y $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_k$ son los vectores propios normalizados asociados. Entonces, $\mathbf{e}_i' \mathbf{e}_i = 1$ para $i = 1, 2, \ldots, k$, y $\mathbf{e}_i' \mathbf{e}_j = 0$ para $i \neq j$

La descomposición espectral es una herramienta muy útil para derivar ciertos resultados estadísticos. Por ejemplo, la explicación matricial de la distancia.

Descomposición espectral

Ejemplo 1

Dada la siguiente matriz simétrica,

$$\mathbf{A} = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}$$

Exprese la descomposición espectral, dado que los valores propios son $\lambda_1=9, \lambda_2=9,$ y $\lambda_3=18$ (encontrados mediante $|{\bf A}-\lambda {\bf I}|$).

Forma cuadrática

La expresión $\mathbf{x}'\mathbf{A}\mathbf{x}$ solo tiene términos al cuadrado x_i^2 y términos del producto x_ix_k ,.

Matriz definida no negativa

Cuando una matriz simétrica A de $k \times k$ es tal que,

$$0 \le \mathbf{x}' \mathbf{A} \mathbf{x}$$

para todo $\mathbf{x}'=[x_1,x_2,\ldots,x_k]$, la matriz \mathbf{A} (o su forma cuadrática) es definida no negativa.

Matriz definida positiva

Si la igualdad en la expresión anterior se mantiene solo para el vector

 $\mathbf{x}' = [0, 0, \dots, 0]$ entonces \mathbf{A} (o su forma cuadrática) se dice que es definida positiva.

En otras palabras, A es definida positiva si

$$0 < \mathbf{x}' \mathbf{A} \mathbf{x}$$

para todos los vectores $\mathbf{x} \neq \mathbf{0}$.

Ejemplo 2

Muestre que la matriz para la siguiente forma cuadrática es definida positiva:

$$3x_1^2 + 2x_2^2 - 2\sqrt{2}x_1x_2$$

Ejercicio 1

Muestre que la forma cuadrática $3x_1^2+3x_2^2-2x_1x_2$ es definida positiva

Conociendo la definición con los valores propios

- Una matriz es definida como no negativa si y sólo si todos sus valores propios son mayores o iguales que cero.
- Una matriz es definida positiva si y sólo si todos sus valores propios son positivos.

Distancia, variables aleatorias y matriz definida positiva

Consideraciones

- Si los elementos de un vector $\mathbf{x} = (x_1, x_2, \dots, x_p)$ son valores de p variables aleatorias X_1, X_2, \dots, X_p , estos elementos pueden considerarse cómo un punto en el espacio p-dimensional y la distancia del punto al origen puede interpretarse en términos de (las unidades de) la desviación estándar.
- De esta forma, podemos tener en cuenta la incertidumbre o variabilidad en las observaciones.
- Puntos con la misma incertidumbre se consideran a la misma distancia respecto al origen.

Distancia, variables aleatorias y matriz definida positiva

Distancia estadística general

(distancia)
$$^2 = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{pp}x_p^2 + 2(a_{12}x_1x_2 + a_{13}x_1x_3 + \dots + a_{p-1,p}x_{p-1}x_p)$$

siempre que (distancia)² > 0 para todo $[x_1, x_2, \dots, x_p] \neq [0, 0, \dots, 0]$.

Distancia positiva

Haciendo que $a_{ij}=a_{ji}$ para $i\neq j, i=1,2,\ldots,p, j=1,2,\ldots,p,$ tenemos que

$$0 < (\ \text{distancia} \)^2 = \left[\begin{array}{ccc} x_1, x_2, \dots, x_p \end{array} \right] \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pp} \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_p \end{array} \right]$$

$$0 < ($$
 distancia $)^2 = \mathbf{x}' \mathbf{A} \mathbf{x}$ para $\mathbf{x} \neq \mathbf{0}$

Distancia, variables aleatorias y matriz definida positiva

$$0<($$
 distancia $)^2=\mathbf{x}'\mathbf{A}\mathbf{x}$ para $\mathbf{x}\neq\mathbf{0}$

Observaciones sobre la distancia y su forma cuadrática

- De la expresión anterior, la matriz A simétrica de p x p es definida positiva.
- Así, la distancia es determinada a partir de una forma cuadrática definida positiva x'Ax.
- Por el contrario, una forma definida positiva puede ser interpretada como una distancia cuadrada.
- El cuadrado de la distancia desde \mathbf{x} a un punto fijo arbitrario $\boldsymbol{\mu}' = [\mu_1, \mu_2, \dots, \mu_p]$ es dado por la expresión $(\mathbf{x} \boldsymbol{\mu})' \mathbf{A} (\mathbf{x} \boldsymbol{\mu})$

Interpretación geométrica de la distancia

Se puede obtener una interpretación geométrica, al expresar la distancia como la raíz cuadrada de una forma cuadrática definida positiva, con base en los valores y vectores propios de la matriz $\bf A$.

- Para p=2, el punto $\mathbf{x}'=[x_1,x_2]$ a una distancia constante c respecto al origen, satisface: $\mathbf{x}'\mathbf{A}\mathbf{x}=a_{11}x_1^2+a_{22}x_2^2+2a_{12}x_1x_2=c^2$.
- Mediante descomposición espectral, la expresión anterior resulta en:

$$\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2'$$
. Así, $\mathbf{x}' \mathbf{A} \mathbf{x} = \lambda_1 (\mathbf{x}' \mathbf{e}_1)^2 + \lambda_2 (\mathbf{x}' \mathbf{e}_2)^2$

- Ahora, $c^2 = \lambda_1 y_1^2 + \lambda_2 y_2^2$ es una elipse en $y_1 = \mathbf{x}' \mathbf{e}_1$ y $y_2 = \mathbf{x}' \mathbf{e}_2$ porque $\lambda_1, \lambda_2 > 0$ cuando \mathbf{A} es definida positiva.
- Se puede mostrar que $\mathbf{x} = c\lambda_1^{-1/2}\mathbf{e}_1$ satisface $\mathbf{x}'\mathbf{A}\mathbf{x} = \lambda_1\left(c\lambda_1^{-1/2}\mathbf{e}_1'\mathbf{e}_1\right)^2 = c^2$
- Del mismo modo, $\mathbf{x} = c\lambda_2^{-1/2}\mathbf{e}_2$ da la apropiada distancia en la dirección \mathbf{e}_2 .

Interpretación geométrica de la distancia

Por lo tanto, los puntos a la distancia c se encuentran en una elipse cuyos ejes están dados por los vectores propios de ${\bf A}$ con longitudes proporcionales a los recíprocos de las raíces cuadradas de los valores propios.

Raíz Cuadrada de una Matriz

Raíz cuadrada de una matriz

La idea es expresar la inversa de una matriz cuadrada en términos de sus valores y vectores propios, mediante la descomposición espectral.

Construyendo la raíz cuadrada

Sea $\bf A$ una matriz definida positiva de $k \times k$ con la descomposición espectral $\bf A = \sum_{i=1}^k \lambda_i {\bf e}_i {\bf e}_i'$. Sean los vectores propios normalizados las columnas de otra matriz $\bf P = [{\bf e}_1, {\bf e}_2, \ldots, {\bf e}_k]$. Entonces

$$\mathbf{A}_{(k\times k)} = \sum_{i=1}^{\kappa} \lambda_i \mathbf{e}_i \mathbf{e}_i' = \mathbf{P}_{(k\times k)(k\times k)(k\times k)}$$

donde $\mathbf{PP'} = \mathbf{P'P} = \mathbf{I}$ y Λ es la matriz diagonal

$$\mathbf{\Lambda}_{(k \times k)} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix} \quad \text{con } \lambda_i > 0$$

Raíz cuadrada de una matriz

Construyendo la raíz cuadrada

Dado que
$$(\mathbf{P}\Lambda^{-1}\mathbf{P}')\mathbf{P}\Lambda\mathbf{P}' = \mathbf{P}\Lambda\mathbf{P}'(\mathbf{P}\Lambda^{-1}\mathbf{P}') = \mathbf{P}\mathbf{P}' = \mathbf{I}$$
:

$$\mathbf{A}^{-1} = \mathbf{P}\Lambda^{-1}\mathbf{P}' = \sum_{i=1}^{k} \frac{1}{\lambda_i} \mathbf{e}_i \mathbf{e}_i'$$

Raíz cuadrada de una matriz

Sea $\Lambda^{1/2}$ la matriz diagonal con $\sqrt{\lambda_i}$ como el i-ésimo elemento diagonal. La matriz $\sum_{i=1}^k \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i' = \mathbf{P} \Lambda^{1/2} \mathbf{P}'$ se llama raíz cuadrada de \mathbf{A} y se denota por $\mathbf{A}^{1/2}$

Raíz cuadrada de una matriz

Propiedades de la raíz cuadrada de una matriz

La raíz cuadrada de una matriz definida positiva A,

$$\mathbf{A}^{1/2} = \sum_{i=1}^k \sqrt{\lambda_i} \mathbf{e}_i \mathbf{e}_i' = \mathbf{P} \Lambda^{1/2} \mathbf{P}'$$

tiene las siguientes propiedades:

- 1. $(\mathbf{A}^{1/2})' = \mathbf{A}^{1/2}$ (es decir que, $\mathbf{A}^{1/2}$ es simétrica).
- 2. $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$
- 3. $\left(\mathbf{A}^{1/2}\right)^{-1} = \sum_{i=1}^{k} \frac{1}{\sqrt{\lambda_i}} \mathbf{e}_i \mathbf{e}_i' = \mathbf{P} \Lambda^{-1/2} \mathbf{P}'$, donde $\Lambda^{-1/2}$ es una matriz diagonal con $1/\sqrt{\lambda_i}$ como el *i*-ésimo elemento diagonal.
- **4.** $\mathbf{A}^{1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1/2}\mathbf{A}^{1/2} = \mathbf{I}$, y $\mathbf{A}^{-1/2}\mathbf{A}^{-1/2} = \mathbf{A}^{-1}$, donde $\mathbf{A}^{-1/2} = (\mathbf{A}^{1/2})^{-1}$