Ejercicio 1: Lógica Combinacional

Diseñar un controlador de display 7 segmentos utilizando un decodificador BCD a 7 segmentos y un circuito combinacional que convierta la entrada decimal en formato BCD. El controlador debe ser capaz de mostrar la entrada decimal en el display.

Estos son los segmentos del BCD:

Aquí se ven los segmentos con cada parte que se prende en cada número que se forma.

Tabla de Verdad

Nos sirve en este caso para ver cuál segmento encender (1) y cuál dejar apagado (0) para formar el número que necesitamos.

Número	D	С	В	Α	а	b	С	d	е	f	g	Hexa
0	0	0	0	0	1	1	1	1	1	1	0	0x3f
1	0	0	0	1	0	1	1	0	0	0	0	0x06
2	0	0	1	0	1	1	0	1	1	0	1	0x5b
3	0	0	1	1	1	1	1	1	0	0	1	0x4f
4	0	1	0	0	0	1	1	0	0	1	1	0x66
5	0	1	0	1	1	0	1	1	0	1	1	0x6d
6	0	1	1	0	1	0	1	1	1	1	1	0x7d
7	0	1	1	1	1	1	1	0	0	0	0	0x27
8	1	0	0	0	1	1	1	1	1	1	1	0x7f
9	1	0	0	1	1	1	1	1	0	1	1	0x6f

Los A; B; C y D representan los bits. El A sería un 2¹, el B un 2², el C un 2³ y el D un 2⁴ los exponentes representan la cantidad de variables que pueden formar. Por lo que A puede representar dos variables, B puede cuatro y así. Con lo que esos 4 bits nos permitirían representar 16 variables, del 0 al 15. Pero siendo que tenemos un display BCD solo podemos representar del 0 al 9. Para sacar de forma lógica como formar los segmentos para nuestros números nos puede servir entonces sumar esos bits que representan cada número.

Por ejemplo, en:

D	С	В	Α
0	0	0	0

Con eso representamos el 0 activando ningún bit. Si quisiera el 6:

Activaría los bits C(24) y B (22), y así sucesivamente.

Vamos a sacar como conectar con el método de suma de productos. Para lo que nos enfocamos en las distintas columnas que representan cada segmento (a;b;c;d;e;f;g) que se enfoca en los 0 para crear los productos. Los términos de las sumas corresponden a una compuerta OR (X = A + B). Lo que significa que a la salida tiene que dar 0, todas las entradas tienen que dar 0, o sea negar los 1.

Número	D	С	В	Α	а
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

Siendo así la columna del segmento analizado la función que nos quedaría sería:

$$a = (D+C+B+-A)*(D+-C+B+A)$$

Número	D	С	В	Α	b
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

Siendo así la columna del segmento analizado la función que nos quedaría sería:

$$b = (D + -C + B + -A)*(D + -C + -B + A)$$

Número	D	С	В	Α	С
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1

Siendo así la columna del segmento analizado la función que nos quedaría sería:

$$c=(D+C+-B+A)$$

Número	D	U	В	Α	d
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1

Siendo así la columna del segmento analizado la función que nos quedaría sería:

$$d = (D+C+B+-A)*(D+-C+B+A)*(D+-C+-B+-A)$$

Número	D	С	В	Α	е
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0

Siendo así la columna del segmento analizado la función que nos quedaría sería:

$$e = (D+C+B+-A)*(D+C+-B+-A)*(D+-C+B+A)*(D+-C+B+-A)*(D$$

Número	D	С	В	Α	f
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1

Siendo así la columna del segmento analizado la función que nos quedaría sería:

Número	D	С	В	Α	g
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1

Siendo así la columna del segmento analizado la función que nos quedaría sería:

$$g = (D+C+B+A)*(D+C+B+-A)*(D+-C+-B+-A)$$

Teniendo entonces las funciones de los segmentos en que cada término representa una compuerta OR al ser sumas, al estar multiplicando los términos y la multiplicación ser representada por una compuerta AND utilizamos una para unir cada término de las distintas secciones. Y colocamos el display BCD para las conexiones de las compuertas.