

1.00111110

数字逻辑基础

主讲:何宾

Email: hebin@mail.buct.edu.cn

2014.06

在计算机上的存储器是物理设备,它们用于保存程序代码 或者处理过程中产生的暂时或者永久数据。

Memory

DRAM

DDR4 SDRAM DDR3 SDRAM DDR2 SDRAM

DDR SDRAM

SDRAM **GDDR**

RLDRAM Memory

LPDRAM

DRAM Modules

RDIMM VI P RDIMM

VLP UDIMM

UDIMM

SODIMM

SORDIMM

VLP Mini-DIMM

LRDIMM

Mini-DIMM

NAND Flash

3D NAND TLC NAND MLC NAND SLC NAND

Managed NAND

e-MMC

Embedded USB

Universal Flash Storage

NOR Flash

Parallel NOR Flash Serial NOR Flash Xccela Flash

Hybrid Memory Cube

Short-Reach HMC

Multichip Packages

Storage

Memory Cards

SSDs by Interface

NVMe SSDs

SSDs by Capacity

SSDs by Product Line

SSDs by Usage

Client Storage Enterprise Storage Automotive

Industrial

Solid State Drives

SATA SSDs

固态硬盘

U盘

DDR内存

存储器分类和工作原理 --存储器分类

※ 易失性存储器

- 要求上电以维持数据信息;
- 通常有较快的访问速度且成本较低;
- 通常用于暂存数据,比如CPU的高速缓存,内部存储器;
- 笔记本和PC内存插槽上的DDR3 SDRAM内存条,就属于易失性存储器。

❖非易失性存储器

- 不要求上电来维持数据信息;
- 通常有较低的访问速度且成本较高;
- 通常用于第二级存储,或者长期永久存储.
- 笔记本和PC所搭载的基本输入输出系统(basic input output system, BIOS),就是由非易失性存储器构成。

存储器分类和工作原理 --存储器工作原理

在计算机中,通常所说的存储器访问包括对存储器的读和 写访问。其中:

■写存储器。

处理器首先给出所要访问存储器单元的地址,然后再将数据写到该地址所指向存储器的地址空间。

■ 读存储器。

处理器首先给出所要访问存储器单元的地址,然后从该地址所指向存储器的地址空间读取数据。

一个8位宽度和2⁸(0~255)个存储深度的存储器的结构。

从图中可知,对于八位地址信号Address[7:0]来说:

- 通过它提供用于访问存储器内不同单元的地址;
- 通过存储器内建的地址译码器以及所提供的地址信息,选择存储器内的一个存储单元(也就是一个字);
- ■将该存储单元连接到位线放大器。

注:对于一个容量较大的存储器来说,将存储器的地址分为行和列两部分。

存储器分类和工作原理 --存储器工作原理

对于读操作来说:

- ■将所选择要读取数据的单元与位线放大器连接。
- 位线放大器将读取的信号恢复到正常的电压, 然后将信息输出到 Data_Out [7:0] 数据端口。

对于写操作来说:

- 将数据放到Data_In[7:0]端口上。
- 放大器将位线设置到所期望的值,然后将端口上的值驱动存放到 所对应的存储器单元中。

易失性存储器 --静态存储器的特点

对于静态RAM(static RAM, SRAM)来说,它属于易 失性存储器。其特点主要包括:

- 当且仅当给SRAM供电时,数据就一直保存在存储单元中。一旦掉电,则信息丢失。
- 典型地, 通常使用六个晶体管保存一个比特位数据。
- ■具有快速的数据访问能力。
- SRAM的功耗较大。
- 密度较低,所需要的面积较大。
- ■其单位存储的成本较高。

易失性存储器 --静态存储器结构

典型的,一个SRAM单元由六个MOSFET晶体管构成;

- 一个比特位保存在4个晶体管 (M1-M4), 它构成2个反相器, 且 交叉耦合:
- 访问一个比特位由两个访问 晶体管控制 (M5和M6),它们 由字线 (选择)控制;

易失性存储器 --静态存储器结构

■读操作

□对地址译码,然后选中所期望的—单元,将相应的选择线(select)设置为'1'

□取决于四个晶体管 (M1-M4)的值, 其中一个比特线充电到'1',另 一个泄放到'0'

□然后读取两个位线的状态 , 作为 1位数据。

易失性存储器 --静态存储器结构

■写操作

- □两个比特线(bit和bit')预充电到所期望的值(比如,bit = VDD, bit' = VSS)
- □对地址译码,然后选中所 期望的单元,将相应的选 择线(select)设置为'1'
- □强迫四个晶体管 (M1-M4)

翻转它们的状态(或者充电或者放电),这是因为位线通常比4个晶体管有更大的电容。

非易失性存储器--动态存储器特点

对于动态RAM(dynamic RAM, DRAM)来说,其特点 主要包括:

- 在包含一个晶体管和电容的单元中,保存一个数据比特位。根据电容的充电或者放电状态,表示比特位的逻辑"1"或者逻辑"0"状态;
- 由于电容上的电荷会"泄露",因此需要周期性的刷新(充电), 比如每10毫秒刷新一次;
- 与SRAM相比, 其存储密度高, 占用的面积小。因此, 成本较低 (便宜):

非易失性存储器--动态存储器分类

根据数据率划分,DRAM包括

- 单数据率 (Single Data Rate, SDR)
- 双数据率 (Double Data Rate, DDR)
- 双数据率×2 (Double Data Rate 2, DDR2)
- 双数据率×4 (Double Data Rate 3, DDR3)
- 双数据率×8(Double Data Rate 4,DDR4)

非易失性存储器--动态存储器分类

根据同步方式,将DRAM分为:

- 同步DRAM (Synchronous DRAM, SDRAM);
- 非同步DRAM;

非易失性存储器--动态存储器原理

在DRAM中,每个存储器单元要求很少的晶体管,比如三个晶体管或者甚至只有一个晶体管

- 比如,一个晶体管单元由一个晶体管和一个电容组成;
 - □一个晶体管:一个门控晶体管用于选择一个单元
 - □一个电容:保存单个比特位的值.

非易失性存储器--动态存储器原理

■读操作

- □地址译码器对地址译码,将选择线设置为'1';
- □根据电容的状态,对位线充电。比如,如果电容放电,电流 经从比特线流向电容,然而比特线的电压将低于门限。

■写操作

- □根据期望的值(比如, VDD或VSS), 对单个比特线进行预充电
- □地址译码器对地址译码,将选择线设置为'1';
- □由位线,对电容充电或者放电。

非易失性存储器

- 只读存储器(read only memory , ROM)
 - □对于ROM来说,早期的时候,在制造ROM时,就将期望的数据 事先固化到其中,用户不能修改ROM中的数据。
 - □以后的ROM类型,允许用户通过重新编程ROM来修改其中的数据,比如EPROM和EEPROM。

非易失性存储器

- 非易失性的随机访问存储器(non-volatile RAM, NVRAM)
 - □对于NVRAM来说,允许随机访问,可以读写数据。
 - □其中最典型的就是Flash存储器。

非易失性存储器

■机械存储设备

- □比如: 硬盘、磁带、光盘。
- □对于机械存储设备来说:
 - □成本较低;
 - □速度也很慢;