ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P54808–2011

Арматура трубопроводная НОРМЫ ГЕРМЕТИЧНОСТИ ЗАТВОРОВ

Издание официальное

Москва Стандартинформ 2011

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0 - 2004 «Стандартизация в Российской Федерации. Основные положения».

Настоящий стандарт соответствует международным стандартам ИСО 5208:2008 «Арматура трубопроводная промышленная. Испытание давлением» (ISO 5208:2008 (E) «Industrial valves - Pressure testing of metallic valves») и МЭК 60534-4:2006 «Клапаны регулирующие для промышленных процессов. Часть 4. Контроль и типовые испытания» (CEI/IEC 60534-4:2006 «Industrial-process control valves – Part 4: Inspection and routine testing») в части требований к герметичности затвора.

Сведения о стандарте

- 1 РАЗРАБОТАН Закрытым акционерным обществом «Научнопроизводственная фирма «Центральное конструкторское бюро арматуростроения» (ЗАО «НПФ «ЦКБА»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 259 «Трубопроводная арматура и сильфоны»
- 3 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от №

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	1
2 Нормативные ссылки	1
З Термины и определения, сокращения и обозначения	2
4 Общие положения	8
5 Нормы герметичности затворов	9 . 11
6 Порядок установления в КД требований по герметичности затвора	. 13
7 Требования к испытаниям на герметичность затвора	. 16
Приложение A (справочное) Соотношение значений номинальных диаметров и номинальных давлений, выраженных в метрической системе и в единицах США.	
Приложение Б (справочное) Нормы герметичности затворов запорной, обратной и предохранительной арматуры по воде	. 19
Приложение В (справочное) Нормы герметичности затворов запорной, обратной и предохранительной арматуры по воздуху при <i>Pucn</i> =0,6 МПа	. 21
Приложение Γ (рекомендуемое) Нормы герметичности затворов запорной, обратной и предохранительной арматуры по воздуху при $Pucn = PN(Pp)$. 23
Приложение Д (справочное) Нормы герметичности затворов регулирующей арматуры	. 43
Приложение E (рекомендуемое) Рекомендации по назначению классов герметичности арматуры	. 45
Приложение Ж (справочное) Примеры записи в НД допущений по изменению утечки в затворе	
Библиография	49

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Арматура трубопроводная НОРМЫ ГЕРМЕТИЧНОСТИ ЗАТВОРОВ

Pipeline Valves. Rates of leakage

Дата введения 2012-07-01

1 Область применения

Настоящий стандарт устанавливает нормы и классы герметичности затворов трубопроводной арматуры (далее – арматуры) номинальных диаметров от DN 3 до DN 2000 на номинальные давления от PN 1 до PN 420 всех видов (запорная, обратная, предохранительная, регулирующая, распределительносмесительная, фазоразделительная) и всех типов (задвижки, клапаны, краны и дисковые затворы), а также для комбинированной арматуры.

Нормы герметичности, приведенные в стандарте, применяют при всех видах испытаний, а также при проверках герметичности затвора арматуры в процессе эксплуатации.

Настоящий стандарт пригоден для целей подтверждения соответствия.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие нормативные документы:

ГОСТ Р 52720-2007 Арматура трубопроводная. Термины и определения

ГОСТ Р 53402-2009 Арматура трубопроводная. Методы контроля и испытаний

ГОСТ Р ИСО 8573-1-2005 Сжатый воздух. Часть 1. Загрязнения и классы чистоты

ГОСТ 12.2.085-2002 Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности

ГОСТ 12893-2005 Клапаны регулирующие односедельные, двухседель-

ные и клеточные. Общие технические условия

ГОСТ 17433-80 Промышленная чистота. Сжатый воздух. Классы загрязненности

3 Термины и определения, сокращения и обозначения

3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1

арматура запорная: Арматура, предназначенная для перекрытия потока рабочей среды с определенной герметичностью.

[ГОСТ Р 52720, статья 3.1]

3.1.2

арматура запорно-регулирующая: Арматура, совмещающая функции запорной и регулирующей арматуры.

[ГОСТ Р 52720, статья 3.6]

3.1.3 **арматура комбинированная:** Арматура, совмещающая различные функции (например, функции запорной и защитной, функции запорной и регулирующей и т.д.).

3.1.4

арматура невозвратно-запорная: Обратная арматура, в которой может быть осуществлено принудительное закрытие арматуры.

[ГОСТ Р 52720, статья 3.6]

3.1.5

арматура невозвратно-управляемая: Обратная арматура, в которой может быть осуществлено принудительное открытие, закрытие или ограничение хода арматуры.

[ГОСТ Р 52720, статья 3.7]

арматура обратная: Арматура, предназначенная для автоматического предотвращения обратного потока рабочей среды.

[ГОСТ Р 52720, статья 3.5]

3.1.7

арматура предохранительная: Арматура, предназначенная для автоматической защиты оборудования и трубопроводов от недопустимого превышения давления посредством сброса избытка рабочей среды.

[ГОСТ Р 52720, статья 3.2]

3.1.8

арматура распределительно-смесительная: Арматура, предназначенная для распределения потока рабочей среды по определенным направлениям или для смешивания потоков.

[ГОСТ Р 52720, статья 3.8]

3.1.9

арматура регулирующая: Арматура, предназначенная для регулирования параметров рабочей среды посредством изменения расхода.

[ГОСТ Р 52720, статья 3.3]

3.1.10

арматура фазоразделительная: Арматура, предназначенная для разделения рабочих сред, находящихся в различных фазовых состояниях.

[ГОСТ Р 52720, статья 3.10]

3.1.11

герметичность затвора: Свойство затвора препятствовать газовому или жидкостному обмену между средами, разделенными затвором.

[ГОСТ Р 52720, статья 6.24]

давление номинальное *PN*, кгс/см²: Наибольшее избыточное рабочее давление при температуре рабочей среды 293 К (20 °C), при котором обеспечивается заданный срок службы (ресурс) корпусных деталей арматуры, имеющих определенные размеры, обоснованные расчетом на прочность при выбранных материалах и характеристиках прочности их при температуре 293 К (20 °C).

[ГОСТ Р 52720, статья 6.1]

3.1.13

давление рабочее *Рр*: Наибольшее избыточное давление, при котором возможна длительная работа арматуры при выбранных материалах и заданной температуре.

[ГОСТ Р 52720, статья 6.3]

3.1.14

давление настройки *Рн***:** Наибольшее избыточное давление на входе в предохранительный клапан, при котором затвор закрыт и обеспечивается заданная герметичность затвора.

 Π р и м е ч а н и е – P_H должно быть не менее рабочего давления P_P в оборудовании.

[ГОСТ Р 52720, статья 6.7]

 Π р и м е ч а н и е — определение термина «давление настройки» в другом нормативном документе:

давление настройки *Рн*: Наибольшее избыточное давление на входе в предохранительный клапан, при котором затвор закрыт и обеспечивается заданная герметичность затвора. Давление настройки клапанов при направлении сброса в систему без противодавления принимается равным расчетному давлению. Давление настройки клапанов при направлении сброса в систему с противодавлением принимается меньшим на значение расчетного противодавления.

[ГОСТ 12.2.085-2002, статья 3.2.3]

диаметр номинальный DN: Параметр, применяемый для трубопроводных систем в качестве характеристики присоединяемых частей арматуры.

П р и м е ч а н и е — Номинальный диаметр приблизительно равен внутреннему диаметру присоединяемого трубопровода, выраженному в миллиметрах и соответствующему ближайшему значению из ряда чисел, принятых в установленном порядке.

[ГОСТ Р 52720, статья 6.2]

3.1.16 **заказчик:** Юридическое или физическое лицо, определяющее технические характеристики и требования к разработке, изготовлению и монтажу трубопроводной арматуры.

3.1.17

затвор: Совокупность подвижных (золотник, диск, клин, шибер, плунжер и др.) и неподвижных (седло) элементов арматуры, образующих проходное сечение и соединение, препятствующее протеканию рабочей среды.

[ГОСТ Р 52720, статья 7.3]

- 3.1.18 изготовитель (поставщик): Юридическое или физическое лицо, изготавливающее в соответствии с технической документацией арматуру, наносящее на арматуру свое наименование (имя, товарный знак), подписывающее паспорт на изделие, и признающее ответственность за безопасность арматуры и выполнение гарантийных обязательств.
- 3.1.19 класс герметичности затвора (класс герметичности): Характеристика арматуры, оцениваемая нормой герметичности затвора.

3.1.20

номинальный ход h_y : Полный ход арматуры без учета допусков.

[ГОСТ Р 52720, статья 6.15]

3.1.21 норма герметичности затвора Q: Максимально допустимая утечка в затворе арматуры.

относительная утечка δ_{3ams} , %: Количественный критерий негерметичности в затворе, представляющий собой отношение расхода (в ${\rm m}^3/{\rm q}$), среды плотностью 1000 кг/ ${\rm m}^3$, протекающей через закрытый номинальным усилием затвор регулирующей арматуры при перепаде давления на нем 0,1 МПа (1,0 кгс/с ${\rm m}^2$), к условной пропускной способности.

[ГОСТ Р 52720, статья 6.45]

3.1.23

противодавление: Избыточное давление на выходе арматуры (в частности, из предохранительного клапана, конденсатоотводчика).

П р и м е ч а н и е – Противодавление представляет собой сумму статического давления в выпускной системе(в случае закрытой системы) и давления, возникающего от ее сопротивления при протекании среды.

[ГОСТ Р 52720, статья 6.11]

3.1.24 **разработчик арматуры:** Юридическое лицо или индивидуальный предприниматель, разрабатывающий конструкторскую и эксплуатационную документацию на арматуру.

3.1.25

седло: Неподвижный или подвижный элемент затвора, установленный или сформированный в корпусе арматуры.

[ГОСТ Р 52720, статья 7.4]

3.1.26

среда испытательная: Среда, используемая для контроля арматуры.

[ГОСТ Р 52720, статья 2.21]

3.1.27 условная пропускная способность Kvy, \mathbf{m}^3/\mathbf{q} : Пропускная способность при номинальном ходе.

утечка: Проникание вещества из герметизированного изделия через течи под действием перепада полного или парциального давления.

[ГОСТ Р 52720, статья 6.44]

3.2 В настоящем стандарте применены следующие сокращения:

КД – конструкторская документация;

НД – нормативная документация;

ПМ – программа и методика испытаний арматуры;

РЭ – руководство по эксплуатации;

ТУ – технические условия.

3.3 В настоящем стандарте применены следующие обозначения:

DNex - номинальный диаметр входного патрубка арматуры;

 D_c - диаметр седла, мм;

 $N_{\it воды}$ - количество капель воды;

 N_{603} - количество пузырьков воздуха;

P 1aбc - абсолютное давление до регулирующей арматуры;

Рисп - давление испытательной среды;

 $P_{H_{min}}$ - минимальное, из указанных в КД, давление настройки изделия;

 $\Delta Pucn$ - перепад давления на регулирующей арматуре;

 ΔP_{max} - максимально допустимый перепад давления на арматуре;

V кап - объем капли воды;

V nуз - объем пузырька воздуха;

 ρ - плотность испытательной среды, кг/м³, при параметрах испытаний $P_{1a\delta c}$ и t_{1} ;

 ρ_H - плотность испытательной среды при нормальных условиях, кг/м³, (для воздуха $\rho_H = 1,205$ кг/м³);

k - показатель адиабаты испытательной среды (для воздуха k = 1,4);

 t_1 - температура испытательной среды, °С.

4 Общие положения

- 4.1 Испытательные среды:
- вода (которая может содержать ингибитор коррозии), керосин или любая другая жидкость, вязкость которой не превышает вязкости воды;
 - воздух или другой газ (например, азот, природный газ, фреон).

Вид испытательной среды выбирают по таблице 1 в зависимости от назначения арматуры и устанавливают в ТУ.

Таблица 1 - Виды испытательных сред

Рин побощой ополи	Испытательная среда						
Вид рабочей среды	вода	воздух					
Жидкие среды, не относящиеся к опасным веществам [1]	+	-					
Газообразные среды, а также жидкие среды, относящиеся к опасным веществам [1]	- ¹⁾	+					
1) Для арматуры АС испытательная среда - вода, воздух [2]. Для арматуры других объектов допускаются испытания водой по согласованию с заказчиком							

^{4.2} Давление испытательной среды Pucn указывают в КД (ТУ, РЭ) и выбирают из таблицы 2.

Таблица 2 – Давление испытательной среды

Вид арматуры	Давление Рисп для	испытательной среды				
вид арматуры	вода	воздух				
Запорная и обратная	1,1· <i>PN</i>	(0,6±0,1) МПа				
	Pp	PN				
	ΔP_{max}	Pp				
	-	ΔP_{max}				
Предохранительная		Рн				
Регулирующая	0,	4 МПа				
	PN					
	Pp					
		ΔP_{max}				

 Π р и м е ч а н и е – Π о согласованию с заказчиком либо по его требованию допускается проводить испытания при давлениях *Рисп*, отличных от указанных (для предохранительной арматуры - с учетом требований 5.1.5). Параметры испытаний и норму герметичности затвора устанавливают в ТУ (КД).

4.3 Скорость подъема давления, время выдержки арматуры под давлением при установившемся давлении и время контроля (измерения утечки в за-

- творе) в соответствии с ГОСТ Р 53402, если в ТУ (КД, ПМ, РЭ) не указано иное.
- 4.4 Температура испытательной среды от 5 °C до 40 °C, за исключением случаев, оговоренных в ТУ (КД).

При проведении испытаний разность температур стенки корпуса арматуры и окружающего воздуха не должна вызывать конденсацию влаги на поверхности стенок арматуры.

4.5 Если для обозначения номинального диаметра арматуры применено обозначение в единицах США (*NPS* в дюймах), то для определения нормы герметичности затвора предварительно следует определить значение *DN*, эквивалентное *NPS* в соответствии с приложением A (таблицей A.1).

Если для обозначения номинального давления арматуры применен класс давления ANSI, то для определения нормы герметичности затвора предварительно следует определить значение номинального давления *PN*, эквивалентное классу давления ANSI в соответствии приложением A (таблицей A.2).

5 Нормы герметичности затворов

- **5.1** Нормы и классы герметичности затворов запорной, обратной и предохранительной арматуры
- 5.1.1 Норму герметичности затворов для всех PN в зависимости от номинального диаметра DN и класса герметичности при испытании водой давлением Pucn=1,1PN и воздухом давлением Pucn=0,6 МПа определяют по таблице 3.

Таблица 3 – Нормы и классы герметичности затворов запорной, обратной и предохранительной арматуры

Класс	Норма гер	метичности затвора	$\stackrel{\cdot}{a} Q$ для испытатель	ной среды			
герме-	вода при Т	Pucn=1,1 <i>PN</i>	воздух при Рисп =0,6 МПа				
тичности	Q, mm ³ /c	Q , см 3 /мин	Q , mm^3/c	Q, см ³ /мин			
A	Отсутств	ие видимых утечек	в течение времени	испытания			
AA	$0,006 \cdot DN$	$0,0004 \cdot DN$	$0,18\cdot DN$	0,011· <i>DN</i>			
В	$0,\!01 \cdot \!DN$	$0,0006 \cdot DN$	0,30· <i>DN</i>	0,018· <i>DN</i>			
C	$0,03 \cdot DN$	0,0018· <i>DN</i>	3,00· <i>DN</i>	0,18· <i>DN</i>			
CC	$0,08\cdot DN$	0,0048· <i>DN</i>	22,30·DN	1,30· <i>DN</i>			
D	$0,10\cdot DN$	0,006· <i>DN</i>	30· <i>DN</i>	1,80· <i>DN</i>			
Е	0,30· <i>DN</i>	0,018· <i>DN</i>	300· <i>DN</i>	18,0· <i>DN</i>			
EE	0,39· <i>DN</i>	0,023· <i>DN</i>	470·DN	28,2· <i>DN</i>			
F	1,0· <i>DN</i>	0,060· <i>DN</i>	3000·DN	180· <i>DN</i>			
G	$2,0\cdot DN$	0,12· <i>DN</i>	6000·DN	360· <i>DN</i>			

Примечания

- 5.1.2 Нормы герметичности (численные значения допустимых утечек в затворе Q) по воде и воздуху в зависимости от класса герметичности приведены в приложениях Б и В:
 - нормы герметичности по воде при $Pucn = 1, 1 \cdot PN(Pp)$ в таблице Б.1;
 - нормы герметичности по воздуху при $Pucn = 0.6 \text{ M}\Pi a$ в таблице В.1.
- 5.1.3 Допускается задавать норму герметичности затвора количеством капель воды либо пузырьков воздуха. Допустимое количество капель воды N_{6000} (пузырьков воздуха N_{6030}) в зависимости от внутреннего диаметра насадки, подсое-

диненной к выходному патрубку арматуры, вычисляют по формулам (1) или (2):

$$N_{\textit{BOODM}} = \frac{Q_{\textit{BOODM}}}{V_{\textit{Kan}}},\tag{1}$$

где Q воды - норма герметичности затвора по воде;

 $V_{\kappa an}$ - объем капли воды в зависимости от внутреннего диаметра насадки в соответствии с ГОСТ Р 53402;

¹ Норма герметичности по воде приведена для всех значений давления испытательной среды *Pucn*, указанных в таблице 2.

² Для арматуры, у которой номинальные диаметры входного и выходного патрубков разные норму герметичности рассчитывают, принимая DN=DNex.

³Для предохранительной арматуры норма герметичности затвора рассчитывается с учетом 5.1.5.

$$N_{603\partial} = \frac{Q_{603\partial}}{V_{ny3}}, \tag{2}$$

где $Q_{803\partial}$ - норма герметичности затвора по воздуху;

V пуз - объем пузырька воздуха в зависимости от внутреннего диаметра насадки в соответствии с ГОСТ Р 53402.

- 5.1.4 Испытание воздухом давлением Pucn=PN (Pp) проводят по требованию заказчика:
- арматуры на номинальное давление не более *PN* 200 только классов герметичности «А», «АА», «В», «С», «СС» и «D»;
- арматуры на номинальные давления PN 250 и PN 320 только классов герметичности «А», «АА» и «В»;
- арматуры на номинальное давление PN 420 только класса герметичности «А».

Норму герметичности затвора устанавливают по согласованию с заказчиком. Рекомендуемые численные значения допустимых утечек в затворе Q при Pucn=PN (Pp) приведены в приложении Γ (таблицы $\Gamma.1-\Gamma.5$).

- 5.1.5 Для предохранительной арматуры:
- утечку в затворе определяют при давлении Pucn, равном давлению настройки P_H , если в КД (ТУ) не указано иное. При испытании по методикам, изложенным в [3], [4] и [5], утечку в затворе определяют при давлении Pucn, указанном в этих методиках;
- утечку в затворе определяют при давлении Pucn, равном минимальному значению P_H диапазона настройки, указанного в КД, если при заказе не указано значение P_H ;
 - норму герметичности затвора определяют:
 - а) по воде по таблицам 3 или Б.1, принимая вместо DN значение Dc;
- б) по воздуху для значения PN, ближайшего меньшего к $P_{H_{min}}$ (Pucn) по таблицам $\Gamma.1$ $\Gamma.5$.

5.2 Нормы и классы герметичности затворов регулирующей арматуры

5.2.1 Норму герметичности затворов определяют в соответствии с таблицей 4 в зависимости от вида испытательной среды, условной пропускной способности Kv_y , перепада давления на арматуре $\Delta Pucn$ и абсолютного давления до арматуры $P1a\delta c$.

Т а б л и ц а 4 - Нормы и классы герметичности затвора регулирующей арматуры

- W O 31		° P 11 11	пасеві гермети шости затвора ре	- July July aprilar Jp.				
Класс герме-	Относи- тельная утечка в	Испы-	Норма герметичности затвора Q , мм 3 /с (см 3 /мин), для перепада давления					
тич-	затворе	ная						
ности	δ_{3ame} ,	среда	Δ <i>Pucn</i> , MΠa	$\Delta Pucn$, κΓC/CM ²				
	% от <i>K</i> vy		·	·				
I			По согласованию с заказч	иком				
II	0,5							
III	0,1	Вода	$281 \cdot \delta_{3ame} \cdot Kv_y \cdot \sqrt{\Delta Pucn \cdot \rho}$	$88 \cdot \delta_{3ame} \cdot Kvy \cdot \sqrt{\Delta Pucn \cdot \rho}$				
IV	0,01	Бода	$(16.9 \cdot \delta_{3ame} \cdot Kvy \cdot \sqrt{\Delta Pucn \cdot \rho})$	$(5,3 \cdot \delta_{3amg} \cdot Kvy \cdot \sqrt{\Delta Pucn \cdot \rho})$				
IV-S1	0,0005		Sumo V I /	· sume · · ·				
II	0,5		$9.0 \cdot 10^5 \cdot \delta_{3ame} \cdot Kv_y \cdot B^{1} \times$	$8.8 \cdot 10^4 \cdot \delta_{3ame} \cdot Kvy \cdot B^{1)} \times$				
III	0,1							
IV	0,01		$\times \sqrt{\frac{\Delta Pucn \cdot P1a\delta c}{c}}$	$\times \sqrt{\frac{\Delta Pucn \cdot P1a6c}{\rho_{H}}}$				
IV-S1	0,0005	Воздух	$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	$\begin{pmatrix} \times \sqrt{\rho_{H}} \\ 5,3 \cdot 10^{3} \cdot \delta_{3amg} \cdot Kvy \cdot B^{1)} \times \\ \times \sqrt{\frac{\Delta Pucn \cdot P1a\delta c}{\rho_{H}}} \end{pmatrix}$				
IV-S2	-		$55,6 \cdot Dc \cdot \Delta Pucn$ $(3,34 \cdot Dc \cdot \Delta Pucn)$	$5,6 \cdot Dc \cdot \Delta Pucn$ $(0,34 \cdot Dc \cdot \Delta Pucn)$				
V	-	Вода	$0.05 \cdot Dc \cdot \Delta Pucn$ $(3.0 \cdot 10^{-3} \cdot Dc \cdot \Delta Pucn)$	$0,005 \cdot Dc \cdot \Delta Pucn$ $(3,0 \cdot 10^{-4} \cdot Dc \cdot \Delta Pucn)$				
VI	-	Воздух	$3.0 \cdot K_1^{2)} \cdot \Delta Pucn$ $(0.18 \cdot K_1^{2)} \cdot \Delta Pucn)$	$0.3 \cdot K_1^{2)} \cdot \Delta Pucn$ $(0.02 \cdot K_1^{2)} \cdot \Delta Pucn)$				
1) B = -	$\frac{1}{\sqrt{1-\beta}} \cdot \sqrt{\frac{k}{k-1}}$	$\frac{\overline{\frac{2}{1}}}{-1} \cdot \left(\beta_{\kappa p}^{\frac{2}{k}}\right)$	лютных давлений	нощий сжимаемость среды и за- я адиабаты k и отношения абсо- после и до арматуры				
			$\beta = \frac{P 1a6c - \Delta Pucn}{P 1a6c};$					
	$\beta \kappa p = \left($	$\left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$	- критическое отношени	е давлений.				

2)	Диаметр седла $Dc^{3)}$, мм	25	40	50	65	80	100	150	200	250	300	350	400
	Коэффициент K_1	2,5	5,0	7,5	10,0	15,0	28,3	66,7	112,5	185,0	266,7	360,0	473,3

³⁾ Если диаметр седла клапана Dc отличается от приведенных значений более чем на 2 мм, то коэффициент K_1 следует определять интерполяцией, учитывая, что величина утечки в затворе пропорциональна квадрату диаметра седла.

- 5.2.2 Нормы герметичности затворов (численные значения утечек в затворе Q) по воде и воздуху в зависимости от значения условной пропускной способности Kvy для классов герметичности «II», «III», «IV» и «IV-S1» приведены в приложении Д:
- нормы герметичности затвора по воде при $\Delta Pucn = 0,4$ МПа в таблице Д.1;
- нормы герметичности затвора по воздуху при $P_{1abc} = 0,5$ МПа и $\Delta Pucn = 0,4$ МПа в таблице Д.2.

5.3 Рекомендации по назначению классов герметичности

- 5.3.1 Рекомендации по назначению классов герметичности приведены в приложении Е:
- для запорной, обратной, предохранительной, запорно-регулирующей, распределительно-смесительной и фазоразделительной арматуры в таблицах Е.1 и Е.2;
 - для регулирующей арматуры в таблице Е.3.
- 5.3.2 Для распределительно-смесительной и фазоразделительной арматуры допускается назначать нормы и классы герметичности затворов по таблице 3.
- 5.3.3 Для комбинированной арматуры нормы и классы герметичности затворов назначают по составляющим видам арматуры в соответствии с рекомендациями по приложению E, при этом:
- для запорно-регулирующей арматуры нормы и классы герметичности назначают как для запорной арматуры;

- для невозвратно-запорной и невозвратно-управляемой арматуры нормы и классы герметичности назначают для каждого режима работы отдельно (запорной или обратной арматуры).

Нормы и классы герметичности затворов согласовывают с заказчиком.

6 Порядок установления в КД требований по герметичности затвора

- 6.1 В ТУ (КД, ПМ, РЭ) разработчик арматуры указывает класс герметичности затвора арматуры или норму герметичности затвора. При этом в ТУ (КД,
- ПМ, РЭ) указывают вид испытательной среды и давление испытаний.
- В ТУ (КД, ПМ, РЭ) предохранительной арматуры, а также регулирующей арматуры классов герметичности «IV-S2», «V» и «VI» разработчик арматуры дополнительно указывает диаметр седла Dc.
- 6.2 Допускается устанавливать нормы герметичности затворов, отличные от норм, указанных в настоящем стандарте (в зависимости от конкретных условий эксплуатации арматуры).
- 6.3 Примеры записи в ТУ (КД, ПМ, РЭ) класса герметичности или нормы герметичности затвора арматуры.

Примеры

1 Для запорной, обратной арматуры:

- а) «Класс герметичности затвора «В» по ГОСТ P54808 испытательная среда — вода, давление испытаний Pucn=1,1·PN»;
- б) «Класс герметичности затвора «СС» по ГОСТ Р 54808, испытательная среда – воздух, давление испытаний Рисп=0,6 МПа».
 - 2 Для регулирующей арматуры:

«Класс герметичности затвора - «II» по ГОСТ Р 54808, испытательная среда — воздух, абсолютное давление испытаний Р1абс=0,5 МПа, перепад давления Δ Р1абс=0,4 МПа».

3 Для предохранительной арматуры:

«Класс герметичности затвора — «В» по ГОСТ Р 54808, испытательная среда — вода, давление испытаний Рн= ... МПа»;

4 Для всех видов арматуры:

«Утечка в затворе — не более $17 \text{ мм}^3/\text{c}$, испытательная среда — вода, давление испытаний $Pucn=\dots M\Pi a$ ».

- 6.4 Нормы герметичности при применении испытательных сред, указанных в 4.1:
- при испытании природным газом устанавливают допустимую утечку в затворе, равную значению допустимой утечки в затворе по воздуху, умноженному на 1,75;
- при испытании азотом допустимая утечка в затворе не должна превышать значения утечки по воздуху;
- при испытании гелием, фреоном и керосином допустимую утечку в затворе указывают в КД (ТУ);
- при замене гелия и фреона на воздух, а керосина на воду, допустимую утечку в затворе пересчитывают в соответствии с ГОСТ Р 53402 и указывают в КД (ТУ).
- 6.5 Возможность изменения норм герметичности затворов арматуры в процессе ее эксплуатации, а также при наработке ресурса при испытаниях, определяется по согласованию с заказчиком. В приложении Ж приведены примеры записи соответствующих требований в НД.

7 Требования к испытаниям на герметичность затвора

7.1 Испытания на герметичность затвора следует проводить по ТУ на изделие или по ГОСТ Р 53402.

7.2 Требования к испытательным средам

- 7.2.1 Вода должна соответствовать требованиям [6]. Допускается применять воду, соответствующую требованиям [7].
- 7.2.2 Класс чистоты воздуха 684 по ГОСТ Р ИСО 8573-1 или класс 9 по ГОСТ 17433.
- 7.2.3 С учетом материалов уплотнительных поверхностей затворов и условий эксплуатации арматуры в КД на конкретную арматуру допускается устанавливать другие требования к чистоте испытательных сред.
 - 7.2.4 Природный газ должен соответствовать требованиям [8].

- 7.2.5 Качество других испытательных сред регламентируют в КД на конкретную арматуру. Требования, предъявляемые к качеству испытательных сред, приводят в НД изготовителя.
- 7.3 При применении объемного, капельного и пузырькового методов контроля утечку в затворе определяют со стороны выходного патрубка арматуры при давлении равном атмосферному или из корпуса арматуры через специальное отверстие.
- 7.4 Допускается, по требованию заказчика, применять методы контроля и испытаний, отличные от методов, приведенных в ГОСТ Р 53402, при условии описания в ТУ (КД, ПМ) методики проведения контроля и испытаний, а также критериев оценки результатов.
- 7.5 При проведении испытаний должны быть обеспечены точность измерения параметров и требования безопасности в соответствии с ГОСТ Р 53402. Программу и методику испытаний согласовывают с заказчиком.
- 7.6 Погрешность измерения утечки в затворе не должна превышать 5 % от допустимого значения величины утечки.
- 7.7 Средства диагностирования и технические средства должны обеспечивать точность измерения, согласующуюся с критерием допустимой утечки.
- 7.8 При контроле герметичности затвора арматуры класса герметичности «А» не являются браковочными признаками:
- при испытании водой образование росы, не превращающейся в стекающие капли, по контуру уплотнительной поверхности;
 - при испытании воздухом образование не отрывающихся пузырьков;
- при применении средств технического диагностирования либо технических средств:
- а) при испытании водой утечка в затворе $Q \le 0.015$ мм 3 /с $(9.0 \cdot 10^{-4}$ см 3 /мин);
- б) при испытании воздухом утечка в затворе $Q \le 0.05~{\rm mm}^3/{\rm c}$ (3,0·10⁻³ cm³/мин).

Приложение А

(справочное)

Соотношение значений номинальных диаметров и номинальных давлений, выраженных в метрической системе и в единицах США

А.1 Соотношение между значениями номинальных диаметров NPS, выраженных в единицах США, и значениями номинальных диаметров DN, выраженных в метрической системе, приведены в таблице A.1.

Таблица А.1

Номи-	NPS	1/8	1/4	3/8	1/2	3/4	1	11/4	1½	2	21/2	3
диаметр	DN	3	6	10	15	20	25	32	40	50	65	80

Продолжение таблицы А.1

Номи-	NPS	4	5	6	8	10	12	14	16	18	20	24
нальный диаметр	DN	100	125	150	200	250	300	350	400	450	500	600

Окончание таблицы А.1

Номи-	NPS	26	28	30	32	36	40	42	48	56	64	80
нальный		670	7 00	7.50	000	000	1000	1070	1200	1.400	1.500	2000
диаметр	DN	650	700	750	800	900	1000	1050	1200	1400	1600	2000

А.2 Соотношение между значениями классов давлений ANSI, выраженных в единицах США, и значениями номинальных давлений PN, выраженных в метрической системе, приведены в таблице A.2. Соотношения приведены для стальной арматуры на основании [9], [10], [11]. Определение промежуточных значений PN следует проводить с помощью интерполяции.

Таблица А.2

Класс давления ANSI	150	300	400	600	900	1500	2500
Номинальное давление <i>PN</i>	20	50	63	100	150	250	420

Приложение Б

(справочное)

Нормы герметичности затворов запорной, обратной и предохранительной арматуры по воде

Т а б л и ц а Б.1 - Нормы герметичности затворов по воде при $Pucn = 1, 1 \cdot PN$ (Pp)

Поми	Норма герметичности затвора по воде Q , мм 3 /с (см 3 /мин),												
Номи- нальный	порм	-	-		<i>л</i> /мин <i>)</i> ,								
		ДЛЯ К.	пассов гермети Г	чности 									
диаметр <i>DN</i>	AA	В	C	CC	D								
3	0,018 (0,001)	0,03 (0,002)	0,09 (0,005)	0,24 (0,014)	0,30 (0,018)								
6	0,036 (0,002)	0,06 (0,004)	0,18 (0,011)	0,48 (0,029)	0,60 (0,036)								
10	0,06 (0,004)	0,10 (0,004)	0,30 (0,011)	0,80 (0,048)	1,0 (0,060)								
15	0,00 (0,004)	0,15 (0,009)	0,45 (0,027)	1,2 (0,072)	1,5 (0,090)								
20	0,12 (0,007)	0,13 (0,003)	0,60 (0,036)	1,6 (0,10)	2,0 (0,12)								
25	0,12 (0,007)	0,20 (0,012)	0,75 (0,045)	2,0 (0,12)	2,5 (0,15)								
32	0,13 (0,009)	0,23 (0,013)	0,73 (0,043)	2,6 (0,12)	3,2 (0,19)								
40	0,19 (0,011)	0,32 (0,019)	1,2 (0,072)	3,2 (0,19)									
50	0,24 (0,014)	0,40 (0,024)	, , , ,	, , , ,	, , ,								
65	0,30 (0,018)	0,50 (0,030)	1,5 (0,090) 2,0 (0,12)	4,0 (0,24) 5,2 (0,31)	5,0 (0,30) 6,5 (0,39)								
80	0,39 (0,023)	0,80 (0,048)	2,0 (0,12)	5,2 (0,31) 6,4 (0,38)	6,5 (0,39) 8,0 (0,48)								
100	0,48 (0,029)	,	3,0 (0,18)	8,0 (0,48)	10 (0,60)								
125	0,00 (0,030)	1,0 (0,000)	3,8 (0,23)	10 (0,60)	13 (0,78)								
150	0,73 (0,043)	1,5 (0,078)	4,5 (0,27)	12 (0,72)	15 (0,78)								
200	1,2 (0,072)	2,0 (0,12)	6,0 (0,36)	16 (0,96)	20 (1,2)								
250	1,5 (0,090)		7,5 (0,45)	20 (1,2)	25 (1,5)								
300	1,8 (0,11)	3,0 (0,18)	9,0 (0,54)	24 (1,4)	30 (1,8)								
350	2,1 (0,13)	3,5 (0,21)	11 (0,66)	28 (1,7)	35 (2,1)								
400	2,4 (0,14)	4,0 (0,24)	12 (0,72)	32 (1,9)	40 (2,4)								
450	2,7 (0,16)	4,5 (0,27)	14 (0,84)	36 (2,2)	45 (2,7)								
500	3,0 (0,18)	5,0 (0,30)	15 (0,90)	40 (2,4)	50 (3,0)								
600	3,6 (0,22)	6,0 (0,36)	18 (1,1)	48 (2,9)	60 (3,6)								
650	3,9 (0,23)	6,5 (0,39)	20 (1,2)	52 (3,1)	65 (3,9)								
700	4,2 (0,25)	7,0 (0,42)	21 (1,3)	56 (3,4)	70 (4,2)								
750	4,5 (0,27)	7,5 (0,45)	23 (1,4)	60 (3,6)	75 (4,5)								
800	4,8 (0,29)	8,0 (0,48)	24 (1,4)	64 (3,8)	80 (4,8)								
900	5,4 (0,32)	9,0 (0,54)	27 (1,6)	72 (4,3)	90 (5,4)								
1000	6,0 (0,36)	10 (0,60)	30 (1,8)	80 (4,8)	100 (6,0)								
1050	6,3 (0,38)	11 (0,66)	32 (1,9)	84 (5,0)	105 (6,3)								
1200	7,2 (0,43)	12 (0,72)	36 (2,2)	96 (5,8)	120 (7,2)								
1400	8,4 (0,50)	14 (0,84)	42 (2,5)	112 (6,7)	140 (8,4)								
1600	9,6 (0,58)	16 (0,96)	48 (2,9)	128 (7,7)	160 (9,6)								

2000	12,0 (0,72)	20 (1,2)	60 (3,6)	160 (9,6)	200 (12)

Окончание таблицы Б.1

Номиналь-	Норма герметичности затвора по воде Q , мм 3 /с (см 3 /мин),				
ный диа-	для классов герметичности				
метр <i>DN</i>	E	EE	F	G	
3	0,9 (0,054)	1,2 (0,072)	3 (0,18)	6 (0,36)	
6	1,8 (0,11)	2,3 (0,14)	6 (0,36)	12 (0,72)	
10	3,0 (0,18)	3,9 (0,23)	10 (0,60)	20 (1,2)	
15	4,5 (0,27)	5,9 (0,35)	15 (0,90)	30 (1,8)	
20	6,0 (0,36)	7,8 (0,47)	20 (1,2)	40 (2,4)	
25	7,5 (0,45)	9,8 (0,59)	25 (1,5)	50 (3,0)	
32	9,6 (0,58)	12 (0,72)	32 (1,9)	64 (3,8)	
40	12 (0,72)	16 (0,96)	40 (2,4)	80 (4,8)	
50	15 (0,90)	20 (1,2)	50 (3,0)	100 (6,0)	
65	20 (1,2)	25 (1,5)	65 (3,9)	130 (7,8)	
80	24 (1,4)	31 (1,9)	80 (4,8)	160 (9,6)	
100	30 (1,8)	39 (2,3)	100 (6,0)	200 (12)	
125	38 (2,3)	49 (2,9)	125 (7,5)	250 (15)	
150	45 (2,7)	59 (3,5)	150 (9,0)	300 (18)	
200	60 (3,6)	78 (4,7)	200 (12)	400 (24)	
250	75 (4,5)	98 (5,9)	250 (15)	500 (30)	
300	90 (5,4)	117 (7,0)	300 (18)	600 (36)	
350	105 (6,3)	137 (8,2)	350 (21)	700 (42)	
400	120 (7,2)	156 (9,4)	400 (24)	800 (48)	
450	135 (8,1)	176 (11)	450 (27)	900 (54)	
500	150 (9,0)	195 (12)	500 (30)	$1,0.10^3$ (60)	
600	180 (11)	234 (14)	600 (36)	$1,2\cdot10^3$ (72)	
650	195 (12)	254 (15)	650 (39)	$1,3\cdot10^3$ (78)	
700	210 (13)	273 (16)	700 (42)	$1,4\cdot10^3$ (84)	
750	225 (14)	293 (18)	750 (45)	$1,5\cdot10^3$ (90)	
800	240 (14)	312 (19)	800 (48)	$1,6\cdot10^3$ (96)	
900	270 (16)	351 (21)	900 (54)	$1.8 \cdot 10^3$ (108)	
1000	300 (18)	390 (23)	$1,0.10^3$ (60)	$2,0\cdot10^3$ (120)	
1050	315 (19)	410 (25)	$1,1\cdot 10^3$ (66)	$2,1\cdot10^3$ (126)	
1200	360 (22)	468 (28)	$1,2\cdot10^3$ (72)	$2,4\cdot10^3$ (144)	
1400	420 (25)	546 (33)	$1,4\cdot10^3$ (84)	$2,8\cdot10^3$ (168)	
1600	480 (29)	624 (37)	$1,6\cdot10^3$ (96)	$3,2\cdot10^3$ (192)	
2000	600 (36)	780 (47)	$2,0.10^3$ (120)	$4.0 \cdot 10^3$ (240)	

Приложение В

(справочное)

Нормы герметичности затворов запорной, обратной и предохранительной арматуры по воздуху при *Pucn*=0,6 МПа

Таблица В.1 - Нормы герметичности затворов по воздуху

<u> 1 аолица</u>	В.1 - Нормы герметичности затворов по воздуху					
Номиналь-	Норма	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),				
ный диа-				ссов герметичнос		
метр <i>DN</i>	AA	В	С	CC	D	
3	0,6 (0,036)	0,9 (0,054)	9,0 (0,54)	67 (4,0)	90 (5,4)	
6	1,1 (0,066)	1,8 (0,11)	18 (1,1)	134 (8,0)	180 (11)	
10	1,8 (0,11)	3,0 (0,18)	30 (1,8)	223 (13)	300 (18)	
15	2,7 (0,16)	4,5 (0,27)	45 (2,7)	335 (20)	450 (27)	
20	3,6 (0,22)	6,0 (0,36)	60 (3,6)	446 (27)	600 (36)	
25	4,5 (0,27)	7,5 (0,45)	75 (4,5)	558 (33)	750 (45)	
32	5,8 (0,35)	9,6 (0,58)	96 (5,8)	714 (43)	960 (58)	
40	7,2 (0,43)	12 (0,72)	120 (7,2)	892 (54)	$1,2\cdot 10^3$ (72)	
50	9,0 (0,54)	15 (0,90)	150 (9,0)	$1,1\cdot 10^3$ (66)	$1,5\cdot 10^3 (90)$	
65	12 (0,72)	20 (1,2)	195 (12)	$1,4\cdot10^3$ (84)	$2,0.10^3$ (120)	
80	14 (0,84)	24 (1,4)	240 (14)	$1,8\cdot10^3(108)$	$2,4\cdot10^3$ (144)	
100	18 (1,1)	30 (1,8)	300 (18)	$2,2\cdot10^3$ (132)	$3,0.10^3$ (180)	
125	23 (1,4)	38 (2,3)	375 (23)	$2.8 \cdot 10^3 (168)$	$3.8 \cdot 10^3 (228)$	
150	27 (1,6)	45 (2,7)	450 (27)	$3,3\cdot10^3(198)$	$4,5\cdot10^3$ (270)	
200	36 (2,2)	60 (3,6)	600 (36)	$4,5\cdot10^3$ (270)	$6,0.10^3$ (360)	
250	45 (2,7)	75 (4,5)	750 (45)	$5,6\cdot10^3$ (336)	$7,5\cdot10^3$ (450)	
300	54 (3,2)	90 (5,4)	900 (54)	$6,7\cdot10^3$ (402)	$9,0.10^3$ (540)	
350	63 (3,8)	105 (6,3)	$1,1\cdot10^3$ (66)	$7.8 \cdot 10^3 (468)$	$1,1\cdot 10^4 (660)$	
400	72 4,3)	120 (7,2)	$1,2\cdot10^3$ (72)	$8,9\cdot10^3$ (534)	$1,2\cdot 10^4 (720)$	
450	81 (4,9)	135 (8,1)	$1,4\cdot10^3$ (84)	$1,0.10^4$ (600)	$1,4\cdot 10^4 (840)$	
500	90 (5,4)	150 (9,0)	$1,5\cdot10^3$ (90)	$1,1\cdot10^4$ (660)	$1,5\cdot 10^4 (900)$	
600	108 (6,5)	180 (11)	$1.8 \cdot 10^3 (108)$	$1,3\cdot10^4$ (780)	$1.8 \cdot 10^4 (1.1 \cdot 10^3)$	
650	117 (7,0)	195 (12)	$2,0.10^3$ (120)		$2,0\cdot10^4(1,2\cdot10^3)$	
700	126 (7,6)	210 13)		$1,6\cdot10^4(960)$	$2,1\cdot10^4(1,3\cdot10^3)$	
750	135 (8,1)	225 (14)	$2,3\cdot10^3$ (138)	$1,7\cdot10^4(1,0\cdot10^3)$	$2,3\cdot10^4(1,4\cdot10^3)$	
800	144 (8,6)	240 (14)	$2,4\cdot10^3$ (144)	$1,8\cdot10^4(1,1\cdot10^3)$	$2,4\cdot10^4(1,4\cdot10^3)$	
900	162 (9,7)	270 (16)	$2,7\cdot10^3$ (162)	$2,0.10^4 (1,2.10^3)$	$2,7\cdot10^4(1,6\cdot10^3)$	
1000	180 (11)	300 (18)	$3,0.10^3$ (180)	$2,2\cdot10^4(1,3\cdot10^3)$	$3,0.10^4 (1,8.10^3)$	
1050	189 (11)	315 (19)	$3,2\cdot10^3$ (192)			
1200	216 (13)	360 (22)	$3,6\cdot10^3$ (216)	$2,7\cdot10^4(1,6\cdot10^3)$	$3,6\cdot10^4(2,2\cdot10^3)$	
1400	252 (15)	420 (25)	$4,2\cdot10^3$ (252)	, , , , , , , , , , , , , , , , , , , ,		
1600	288 (17)	480 (29)	$4.8 \cdot 10^3 (288)$	$3,6\cdot10^4(2,2\cdot10^3)$	$4.8 \cdot 10^4 (2.9 \cdot 10^3)$	
2000	360 (22)	600 (36)	$6.0 \cdot 10^3 (360)$	$4.5 \cdot 10^4 (2.7 \cdot 10^3)$	$6,0.10^4 (3,6.10^3)$	

Окончание таблицы В.1

Номиналь-	Норма герметичности затвора по воздуху Q , мм ³ /с (см ³ /мин), при $Pucn=0.6$ МПа для классов герметичности				
метр <i>DN</i>	Е	EE	F	G	
3	900 (54)	$1,4\cdot 10^3 (84)$	$9,0.10^3$ (540)	$1,8\cdot10^4(1,1\cdot10^3)$	
6	$1,8\cdot10^3(108)$	$2,8\cdot10^3$ (168)	$1,8\cdot10^4(1,1\cdot10^3)$	$3,6\cdot10^4(2,2\cdot10^3)$	
10	$3,0\cdot10^3(180)$	$4,7\cdot10^3$ (282)	$3,0\cdot10^4(1,8\cdot10^3)$	$6,0\cdot10^4(3,6\cdot10^3)$	
15	$4,5\cdot10^3$ (270)	$7,1\cdot10^3$ (426)	$4,5\cdot10^4(2,7\cdot10^3)$	$9,0\cdot10^4(5,4\cdot10^3)$	
20	$6,0\cdot10^3(360)$	$9,4\cdot10^3(564)$	$6,0\cdot10^4(3,6\cdot10^3)$	$1,2\cdot10^5(7,2\cdot10^3)$	
25	$7,5\cdot10^3$ (450	$1,2\cdot 10^4 (720)$	$7,5\cdot10^4(4,5\cdot10^3)$	$1,5\cdot10^5(9,0\cdot10^3)$	
32	$9,6\cdot10^3$ (576)	$1,5\cdot 10^4 (900)$	$9,6\cdot10^4(5,8\cdot10^3)$	$1,9\cdot10^5(1,1\cdot10^4)$	
40	$1,2\cdot10^4$ (720)	$1,9\cdot10^4 (1,1\cdot10^3)$	$1,2\cdot10^5(7,2\cdot10^3)$	$2,4\cdot10^5(1,4\cdot10^4)$	
50	$1,5\cdot10^4(900)$	$2,4\cdot10^4(1,4\cdot10^3)$	$1,5\cdot10^5(9,0\cdot10^3)$	$3,0\cdot10^5(1,8\cdot10^4)$	
65	$2,0.10^4 (1,2.10^3)$	$3,1\cdot10^4(1,9\cdot10^3)$	$2,0\cdot10^5(1,2\cdot10^4)$	$3,9\cdot10^5 (2,3\cdot10^4)$	
80	$2,4\cdot10^4(1,4\cdot10^3)$	$3,8\cdot10^4(2,3\cdot10^3)$	$2,4\cdot10^5(1,4\cdot10^4)$	$4,8\cdot10^5 (2,9\cdot10^4)$	
100	$3,0.10^4 (1,8.10^3)$	$4,7\cdot10^4(2,8\cdot10^3)$	$3,0.10^5 (1,8.10^4)$	$6,0\cdot10^5(3,6\cdot10^4)$	
125	$3,8\cdot10^4(2,3\cdot10^3)$	$5,9\cdot10^4(3,5\cdot10^3)$	$3,8\cdot10^5 (2,3\cdot10^4)$	$7,5\cdot10^5 (4,5\cdot10^4)$	
150	$4,5\cdot10^4(2,7\cdot10^3)$	$7,1\cdot10^4(4,3\cdot10^3)$	$4,5\cdot10^5 (2,7\cdot10^4)$	$9,0.10^5 (5,4.10^4)$	
200	$6,0\cdot10^4(3,6\cdot10^3)$	$9,4\cdot10^4(5,6\cdot10^3)$	$6,0\cdot10^5(3,6\cdot10^4)$	$1,2\cdot 10^6 (7,2\cdot 10^4)$	
250	$7,5\cdot10^4(4,5\cdot10^3)$	$1,2\cdot10^5(7,2\cdot10^3)$	$7,5\cdot10^5 (4,5\cdot10^4)$	$1,5\cdot10^6(9,0\cdot10^4)$	
300	$9,0.10^4 (5,4.10^3)$	$1,4\cdot10^5 (8,4\cdot10^3)$	$9,0.10^5 (5,4.10^4)$	$1,8\cdot10^6(1,1\cdot10^5)$	
350	$1,1\cdot10^5 (6,6\cdot10^3)$	$1,6\cdot10^5(9,6\cdot10^3)$	$1,1\cdot10^6(6,6\cdot10^4)$	$2,1\cdot10^6(1,3\cdot10^5)$	
400	$1,2\cdot10^5(7,2\cdot10^3)$	$1,9\cdot10^5(1,1\cdot10^4)$	$1,2\cdot10^6(7,2\cdot10^4)$	$2,4\cdot10^6(1,4\cdot10^5)$	
450	$1,4\cdot10^5 (8,4\cdot10^3)$	$2,1\cdot10^5(1,3\cdot10^4)$	$1,4\cdot10^6(8,4\cdot10^4)$	$2,7\cdot10^6(1,6\cdot10^5)$	
500	$1,5\cdot10^5(9,0\cdot10^3)$	$2,4\cdot10^5(1,4\cdot10^4)$	$1,5\cdot10^6(9,0\cdot10^4)$	$3,0\cdot10^6(1,8\cdot10^5)$	
600	$1,8\cdot10^5(1,1\cdot10^4)$	$2,8\cdot10^5(1,7\cdot10^4)$	$1,8\cdot10^6(1,1\cdot10^5)$	$3,6\cdot10^6(2,2\cdot10^5)$	
650	$2,0.10^5 (1,2.10^4)$	$3,1\cdot10^5(1,9\cdot10^4)$	$2,0\cdot10^6(1,2\cdot10^5)$	$3,9\cdot10^6(2,3\cdot10^5)$	
700	$2,1\cdot10^5(1,3\cdot10^4)$	$3,3\cdot10^5(2,0\cdot10^4)$	$2,1\cdot10^6(1,3\cdot10^5)$	$4,2\cdot10^6(2,5\cdot10^5)$	
750	$2,3\cdot10^5(1,4\cdot10^4)$	$3,5\cdot10^5(2,1\cdot10^4)$	$2,3\cdot10^6(1,4\cdot10^5)$	$4,5\cdot10^6(2,7\cdot10^5)$	
800	$2,4\cdot10^5(1,4\cdot10^4)$	$3.8 \cdot 10^5 (2.3 \cdot 10^4)$	$2,4\cdot10^6(1,4\cdot10^5)$	$4.8 \cdot 10^6 (2.9 \cdot 10^5)$	
900	$2,7\cdot10^5(1,6\cdot10^4)$	$4,2\cdot10^5(2,5\cdot10^4)$	$2,7\cdot10^6(1,6\cdot10^5)$	$5,4\cdot10^6(3,2\cdot10^5)$	
1000	$3,0.10^5 (1,8.10^4)$	$4,7\cdot10^5(2,8\cdot10^4)$	$3,0\cdot10^6(1,8\cdot10^5)$	$6,0\cdot10^6(3,6\cdot10^5)$	
1050	$3,2\cdot10^5(1,9\cdot10^4)$	$4,9\cdot10^5(2,9\cdot10^4)$	$3,2\cdot10^6(1,9\cdot10^5)$	$6,3\cdot10^6(3,8\cdot10^5)$	
1200	$3,6\cdot10^5(2,2\cdot10^4)$	$5,6\cdot10^5(3,4\cdot10^4)$	$3,6\cdot10^6(2,2\cdot10^5)$	$7,2\cdot10^6(4,3\cdot10^5)$	
1400	$4,2\cdot10^5(2,5\cdot10^4)$	$6,6\cdot10^5(4,0\cdot10^4)$	$4,2\cdot10^6(2,5\cdot10^5)$	$8,4\cdot10^6(5,0\cdot10^5)$	
1600	$4,8\cdot10^5(2,9\cdot10^4)$	$7,5\cdot10^5 (4,5\cdot10^4)$	$4,8\cdot10^6(2,9\cdot10^5)$	$9,6\cdot10^6(5,8\cdot10^5)$	
2000	$6,0.10^5 (3,6.10^4)$	$9,4\cdot10^5(5,6\cdot10^4)$	$6,0\cdot10^6(3,6\cdot10^5)$	$1,2\cdot10^7(7,2\cdot10^5)$	

Приложение Г

(рекомендуемое)

Нормы герметичности затворов запорной, обратной и предохранительной арматуры по воздуху при Pucn = PN(Pp)

ТаблицаГ.1 - Нормы герметичности затворов по воздуху лля класса герметичности «АА»

	для класса герметичности «АА»					
Номиналь-	Норма гер	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),				
ный диа-			Pucn = PN(Pp)	ı		
метр <i>DN</i>	<i>PN</i> 1	<i>PN</i> 1,6	PN 2,5	PN 4	PN 6	
3	0,1 (0,006)	0,2 (0,012)	0,2 (0,012)	0,4 (0,024)	0,5 (0,030)	
6	0,3 (0,018)	0,4 (0,024)	0,6 (0,036)	0,8 (0,048)	1,1 (0,066)	
10	0,7 (0,042)	0,8 (0,048)	1,0 (0,060)	1,4 (0,084)	1,8 (0,11)	
15	1,4 (0,084)	1,6 (0,096)	1,8 (0,11)	2,2 (0,13)	2,7 (0,16)	
25	2,8 (0,17)	3,0 (0,18)	3,3 (0,20)	3,8 (0,23)	4,5 (0,27)	
32	4,1 (0,25)	4,3 (0,26)	4,6 (0,28)	5,1 (0,31)	5,8 (0,35)	
40	5,7 (0,34)	5,9 (0,35)	6,2 (0,37)	6,6 (0,40)	7,2 (0,43)	
50	8,0 (0,48)	8,1 (0,49)	8,3 (0,50)	8,6 (0,52)	9,0 (0,54)	
65	9,0 (0,54)	9,3 (0,56)	9,8 (0,59)	11 (0,66)	12 (0,72)	
80	12 (0,72)	12 (0,72)	13 (0,78)	13 (0,78)	14 (0,84)	
100	14 (0,84)	15 (0,90)	15 (0,90)	17 (1,0)	18 (1,1)	
125	18 (1,1)	19 (1,1)	19 (1,14)	21 (1,3)	23 (1,4)	
150	23 (1,4)	23 (1,4)	24 (1,44)	25 (1,5)	27 (1,6)	
200	27 (1,6)	28 (1,7)	30 (1,8)	32 (1,9)	36 (2,2)	
250	36 (2,2)	37 (2,2)	39 (2,3)	41 (2,5)	45 (2,7)	
300	45 (2,7)	46 (2,8)	48 (2,9)	50 (3,0)	54 (3,2)	
350	54 (3,2)	55 (3,3)	57 (3,4)	59 (3,5)	63 (3,8)	
400	63 (3,8)	64 (3,8)	66 (4,0)	68 (4,1)	72 (4,3)	
450	72 (4,3)	73 (4,4)	75 (4,5)	77 (4,6)	81 (4,9)	
500	81 (4,9)	82 (4,9)	84 (5,0)	86 (5,2)	90 (5,4)	
600	90 (5,4)	92 (5,5)	95 (5,7)	101 (6,1)	108 (6,5)	
650	108 (6,5)	109 (6,5)	111 (6,7)	113 (6,8)	117 (7,0)	
700	117 (7,0)	118 (7,1)	120 (7,2)	122 (7,3)	126 (7,6)	
750	126 (7,6)	127 (7,6)	129 (7,7)	131 (7,9)	135 (8,1)	
800	135 (8,1)	136 (8,2)	138 (8,3)	140 (8,4)	144 (8,6)	
900	144 (8,6)	146 (8,8)	149 (8,9)	155 (9,3)	162 (9,7)	
1000	162 (9,7)	164 (9,8)	167 (10)	173 (10)	180 (11)	
1050	180 (11)	181 (11)	183 (11)	185 (11)	189 (11)	
1200	189 (11)	192 (12)	197 (12)	205 (12)	216 (13)	
1400	216 (13)	220 (13)	227 (14)	238 (14)	252 (15)	
1600	252 (15)	256 (15)	263 (16)	274 (16)	288 (17)	
2000	288 (17)	297 (18)	310 (19)	331 (20)	360 (22)	

Продолжение таблицы Г.1

Номиналь-	Норма герме	етичности затвора	$\overline{\mathfrak{l}}$ по воздуху Q , м	м ³ /с (см ³ /мин),	
ный диа-	при $Pucn = PN(Pp)$ для PN				
метр DN	PN 10	<i>PN</i> 16	PN 25	PN 40	
3	0,7 (0,042)	0,9 (0,054)	1,3 (0,078)	1,8 (0,11)	
6	1,3 (0,078)	2,0 (0,12)	3,0 (0,18)	4,6 (0,28)	
10	2,8 (0,17)	4,2 (0,25)	6,3 (0,38)	9,9 (0,59)	
15	4,6 (0,28)	7,6 (0,46)	12 (0,72)	19 (1,14)	
25	8,3 (0,50)	14 (0,84)	23 (1,4)	37 (2,2)	
32	11 (0,66)	20 (1,2)	32 (1,9)	53 (3,2)	
40	15 (0,90)	27 (1,6)	44 (2,6)	73 (4,4)	
50	20 (1,2)	36 (2,2)	61 (3,7)	101 (6,1)	
65	28 (1,7)	52 (3,1)	88 (5,3)	149 (8,9)	
80	36 (2,2)	70 (4,2)	119 (7,1)	202 (12)	
100	49 (2,9)	95 (5,7)	165 (9,9)	280 (17)	
125	66 (4,0)	130 (7,8)	228 (14)	390 (23)	
150	84 (5,0)	169 (10)	297 (18)	510 (31)	
200	124 (7,4)	255 (15)	452 (27)	781 (47)	
250	168 (10)	351 (21)	627 (38)	$1,1\cdot10^3$ (66)	
300	215 (13)	457 (27)	820 (49)	$1,4\cdot10^3$ (84)	
350	266 (16)	571 (34)	$1,0.10^3$ (60)	$1,8\cdot10^3$ (108)	
400	320 (19)	693 (42)	$1,3\cdot10^3$ (78)	$2,2\cdot10^3$ (132)	
450	378 (23)	822 (49)	$1,5\cdot10^3$ (90)	$2,6\cdot10^3$ (156)	
500	437 (26)	958 (57)	$1,7\cdot10^3$ (102)	$3,0\cdot10^3$ (180)	
600	565 (34)	$1,3\cdot10^3$ (78)	$2,3\cdot10^3$ (138)	$4,0\cdot10^3$ (240)	
650	632 (38)	$1,4\cdot 10^3$ (84)	$2,6\cdot10^3$ (156)	$4,5\cdot10^3$ (270)	
700	702 (42)	$1,6\cdot10^3$ (96)	$2.9 \cdot 10^3 (174)$	$5,0.10^3$ (300)	
750	774 (46)	$1,7\cdot10^3$ (102)	$3,2\cdot10^3$ (192)	$5,6\cdot10^3$ (336)	
800	848 (51)	$1.9 \cdot 10^3 (114)$	$3.5 \cdot 10^3$ (210)	$6,1\cdot10^3$ (366)	
900	$1,0.10^3$ (60)	$2,3\cdot10^3$ (138)	$4,2\cdot10^3$ (252)	$7,3\cdot10^3$ (438)	
1000	$1,2\cdot10^3$ (72)	$2,6\cdot10^3$ (156)	$4.9 \cdot 10^3$ (294)	$8,5\cdot10^3$ (510)	
1050	$1,2 \cdot 10^3 (72)$	$2.8 \cdot 10^3 (168)$	$5,2\cdot10^3$ (312)	$9,2\cdot10^3$ (552)	
1200	$1,5 \cdot 10^3 (90)$	$3.5 \cdot 10^3$ (210)	$6,4\cdot10^3$ (384)	$1,1\cdot10^4$ (660)	
1400	$1,9 \cdot 10^3$ (114)	$4,3\cdot10^3$ (258)	$8,0.10^3$ (480)	$1,4\cdot10^4$ (840)	
1600	$2,3\cdot10^3$ (138)	$5,3\cdot10^3$ (318)	$9.8 \cdot 10^3 (588)$	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	
2000	$3,1\cdot10^3$ (186)	$7,3\cdot10^3$ (438)	$1,4\cdot10^4$ (840)	$\frac{1,710 (1,010)}{2,4\cdot 10^4 (1,4\cdot 10^3)}$	
2000	$_{3,1.10}$ (100)	1,510 (430)	1,410 (040)	2, 1 10 (1,410)	

ГОСТ Р 54808-2011

Номиналь-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),				
ный диа-			$V\left(Pp ight)$ для PN		
метр <i>DN</i>	PN 63	PN 80	PN 100	PN 125	
3	2,7 (0,16)	3,3 (0,20)	4,1 (0,25)	5,1 (0,31)	
6	7,2 (0,43)	9,0 (0,54)	11 (0,66)	14 (0,84)	
10	15 (0,90)	19 (1,1)	24 (1,4)	30 (1,8)	
15	30 (1,8)	39 (2,3)	48 (2,9)	61 (3,7)	
25	59 (3,5)	75 (4,5)	94 (5,6)	118 (7,1)	
32	85 (5,1)	108 (6,5)	136 (8,2)	170 (10)	
40	118 (7,1)	151 (9,1)	189 (11)	238 (14)	
50	164 (9,8)	210 (13)	264 (16)	332 (20)	
65	242 (15)	310 (19)	391 (23)	492 (30)	
80	329 (20)	422 (25)	533 (32)	670 (40)	
100	458 (27)	589 (35)	743 (45)	936 (56)	
125	638 (38)	822 (49)	$1,0.10^3$ (60)	$1,3\cdot10^3$ (78)	
150	837 (50)	$1,1\cdot10^3$ (66)	$1,4\cdot10^3$ (84)	$1,7\cdot10^3$ (102)	
200	$1,3\cdot10^3$ (78)	$1,7\cdot10^3$ (102)	$2,1\cdot10^3$ (126)	$2,6\cdot10^3$ (156)	
250	$1.8 \cdot 10^3 \ (108)$	$2,3\cdot10^3$ (138)	$2,9\cdot10^3$ (174)	$3,7\cdot10^3$ (222)	
300	$2,4\cdot10^3$ (144)	$3,0\cdot10^3$ (180)	$3.8 \cdot 10^3$ (228)	$4.8 \cdot 10^3$ (288)	
350	$3,0\cdot10^3$ (180)	$3.8 \cdot 10^3$ (228)	$4.8 \cdot 10^3$ (288)	$6,1\cdot10^3$ (366)	
400	$3,6\cdot10^3$ (216)	$4,7\cdot10^3$ (282)	$5,9\cdot10^3$ (354)	$7,5\cdot10^3$ (450)	
450	$4,3\cdot10^3$ (258)	$5,6\cdot10^3$ (336)	$7,0.10^3$ (420)	$8,9\cdot10^3$ (534)	
500	$5,0.10^3$ (300)	$6,5\cdot10^3$ (390)	$8,3\cdot10^3$ (498)	$1,0.10^4$ (600)	
600	$6,6\cdot10^3$ (396)	$8,6\cdot10^3$ (516)	$1,1\cdot10^4$ (660)	$1,4\cdot 10^4$ (840)	
650	$7,5\cdot10^3$ (450)	$9,6\cdot10^3$ (576)	$1,2\cdot10^4$ (720)	$1,5\cdot 10^4$ (900)	
700	$8,3\cdot10^3$ (498)	$1,1\cdot 10^4$ (660)	1,4·10 ⁴ (840)	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	
750	$9,2\cdot10^3$ (552)	$1,2\cdot10^4$ (720)	$1,5\cdot 10^4$ (900)	$1,9\cdot10^4 \ (1,1\cdot10^3)$	
800	$1,0.10^4$ (600)	$1,3\cdot10^4$ (780)	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$2,1\cdot10^4 \ (1,3\cdot10^3)$	
900	$1,2\cdot10^4$ (720)	$1,6\cdot10^4$ (960)	$2,0\cdot10^4 \ (1,2\cdot10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$	
1000	$1,4\cdot 10^4$ (840)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,3\cdot10^4 \ (1,4\cdot10^3)$	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$	
1050	$1,5\cdot10^4$ (900)	$2,0\cdot10^4 \ (1,2\cdot10^3)$	$2.5 \cdot 10^4 \ (1.5 \cdot 10^3)$	$3,2\cdot10^4 \ (1,9\cdot10^3)$	
1200	$1,9 \cdot 10^4 \ (1,1 \cdot 10^3)$	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$3.9 \cdot 10^4 \ (2.3 \cdot 10^3)$	
1400	$2,3\cdot10^4 \ (1,4\cdot10^3)$	$3,0.10^4 (1,8.10^3)$	$3.9 \cdot 10^4 \ (2.3 \cdot 10^3)$	$4.9 \cdot 10^4 \ (2.9 \cdot 10^3)$	
1600	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$	$3,7\cdot10^4 \ (2,2\cdot10^3)$	$4,7\cdot10^4 (2,8\cdot10^3)$	$6.0 \cdot 10^4 \ (3.6 \cdot 10^3)$	
2000	$4.0 \cdot 10^4 \ (2.4 \cdot 10^3)$	$5,2\cdot10^4 \ (3,1\cdot10^3)$	$6,6\cdot10^4 \ (4,0\cdot10^3)$	$8,3\cdot10^4 (5,0\cdot10^3)$	

Окончание таблицы Г.1

Номиналь-	Норма гермет	ΓΙΑ υ ΙΟΛΟΤΙΑ 22ΤΡΩΝ2 ΠΑ	Ω BOSTIVYV Ω MM ³	/c (cm ³ /мин)			
ный диа-	тторма термет	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин), при $Pucn = PN$ (Pp) для PN					
метр DN	PN 160	PN 200	PN 250	PN 320			
3	6,4 (0,38)	7,9 (0,47)	6 (0,36)	3 (0,18)			
6	18 (1,1)	22 (1,3)	15 (0,90)	4 (0,24)			
10	38 (2,3)	48 (2,9)	25 (1,5)	6 (0,36)			
15	78 (4,7)	97 (5,8)	60 (3,6)	10 (0,60)			
25	151 (9,1)	189 (11)	150 (9,0)	19 (1,1)			
32	219 (13)	274 (16)	200 (12)	30 (1,8)			
40	306 (18)	383 (23)	300 (18)	40 (2,4)			
50	427 (26)	536 (32)	350 (21)	55 (3,3)			
65	633 (38)	794 (48)	550 (33)	70 (4,2)			
80	864 (52)	$1,1\cdot10^3$ (66)	700 (42)	100 (6,0)			
100	$1,2\cdot10^3$ (72)	$1,5\cdot10^3$ (90)	$1,0.10^3$ (60)	150 (9,0)			
125	$1,7\cdot10^3$ (102)	$2,1\cdot10^3$ (126)	$1,5\cdot10^3$ (90)	220 (13)			
150	$2,2\cdot10^3$ (132)	$2,8\cdot10^3$ (168)	$2,2\cdot10^3$ (132)	300 (18)			
200	$3,4\cdot10^3$ (204)	$4,3\cdot10^3$ (258)	$3,2\cdot10^3$ (192)	450 (27)			
250	$4.8 \cdot 10^3$ (288)	$6,0\cdot10^3$ (360)	-	-			
300	$6,3\cdot10^3$ (378)	$7,9 \cdot 10^3 (474)$	-	-			
350	$7,9\cdot10^3$ (474)	$9,9\cdot10^3$ (594)	-	-			
400	$9,6\cdot10^3$ (576)	$1,2\cdot10^4$ (720)	-	-			
450	$1,1\cdot10^4$ (660)	$1,4\cdot 10^4$ (840)	-	-			
500	$1,3\cdot10^4$ (780)	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	-	-			
600	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,2\cdot10^4 \ (1,3\cdot10^3)$	-	-			
650	$2,0.10^4 (1,2.10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$	-	-			
700	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$2,8\cdot10^4 \ (1,7\cdot10^3)$	-	-			
750	$2,5\cdot10^4 \ (1,5\cdot10^3)$	$3,1\cdot10^4 \ (1,9\cdot10^3)$	-	-			
800	$2,7\cdot10^4 \ (1,6\cdot10^3)$	$3,4\cdot10^4 \ (2,0\cdot10^3)$	-	-			
900	$3,3\cdot10^4 (2,0\cdot10^3)$	$4,1\cdot10^4 \ (2,5\cdot10^3)$	-	-			
1000	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	-	-			
1050	$4,1\cdot10^4 \ (2,5\cdot10^3)$	$5,2\cdot10^4 \ (3,1\cdot10^3)$	-	-			
1200	$5,0.10^4 (3,0.10^3)$	$6,3\cdot10^4 \ (3,8\cdot10^3)$	-	-			
1400	$6,3\cdot10^4 \ (3,8\cdot10^3)$	$7.9 \cdot 10^4 \ (4.7 \cdot 10^3)$	-	-			
1600	$7,7\cdot10^4 \ (4,6\cdot10^3)$	$9,7\cdot10^4 \ (5,8\cdot10^3)$	-	-			
2000	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$	-	-			

Т а б л и ц а Γ .2 – Нормы герметичности затворов по воздуху для класса герметичности «В»

Номи-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин), при $Pucn = PN (Pp)$ для PN				
диаметр <i>DN</i>	<i>PN</i> 1	PN 1,6	PN 2,5	PN 4	PN 6
3	0,2 (0,012)	0,3 (0,018)	0,4 (0,024)	0,6 (0,036)	0,9 (0,054)
6	0,6 (0,036)	0,7 (0,042)	1,0 (0,060)	1,3 (0,078)	1,8 (0,11)
10	1,2 (0,072)	1,4 (0,084)	1,7 (0,10)	2,3 (0,14)	3,0 (0,18)
15	2,4 (0,14)	2,7 (0,16)	3,1 (0,19)	3,8 (0,23)	4,8 (0,29)
25	4,7 (0,28)	5,0 (0,30)	5,5 (0,33)	6,4 (0,38)	7,5 (0,45)
32	6,8 (0,41)	7,1 (0,43)	7,6 (0,46)	8,5 (0,51)	9,6 (0,58)
40	9,5 (0,57)	9,8 (0,59)	10 (0,60)	11 (0,66)	12 (0,72)
50	13 (0,78)	14 (0,84)	14 (0,84)	14 (0,84)	15 (0,9)
65	15 (0,90)	16 (0,96)	16 (0,96)	18 (1,08)	20 (1,2)
80	20 (1,2)	20 (1,2)	21 (1,3)	22 (1,3)	24 (1,4)
100	24 (1,4)	25 (1,5)	26 (1,6)	28 (1,7)	30 (1,8)
125	30 (1,8)	31 (1,9)	32 (1,92)	35 (2,1)	38 (2,3)
150	38 (2,3)	38 (2,3)	40 (2,4)	42 (2,5)	45 (2,7)
200	45 (2,7)	47 (2,8)	50 (3)	54 (3,2)	60 (3,6)
250	60 (3,6)	62 (3,7)	65 (3,9)	69 (4,1)	75 (4,5)
300	75 (4,5)	77 (4,6)	80 (4,8)	84 (5,0)	90 (5,4)
350	90 (5,4)	92 (5,5)	95 (5,7)	99 (5,9)	105 (6,3)
400	105 (6,3)	107 (6,4)	110 (6,6)	114 (6,8)	120 (7,2)
450	120 (7,2)	122 (7,3)	125 (7,5)	129 (7,7)	180 (8,1)
500	135 (8,1)	137 (8,2)	140 (8,4)	144 (8,6)	150 (9,0)
600	150 (9,0)	154 (9,2)	159 (9,5)	168 (10)	180 (11)
650	180 (11)	182 (11)	185 (11)	189 (11)	195 (12)
700	195 (12)	197 (12)	200 (12)	204 (12)	210 (13)
750	210 (13)	212 (13)	215 (13)	219 (13)	225 (14)
800	225 (14)	227 (14)	230 (14)	234 (14)	240 (14)
900	240 (14)	244 (15)	249 (15)	258 (15)	270 (16)
1000	270 (16)	274 (16)	279 (17)	288 (17)	300 (18)
1050	300 (18)	302 (18)	305 (18)	309 (19)	315 (19)
1200	315 (19)	320 (19)	329 (20)	342 (21)	360 (22)
1400	360 (22)	367 (22)	378 (23)	396 (24)	420 (25)
1600	420 (25)	427 (26)	438 (26)	456 (27)	480 (29)
2000	480 (29)	494 (30)	516 (31)	552 (33)	600 (36)

Продолжение таблицы Г.2

Номи-	Норма герм	етичности затвора при <i>Рисп</i> = <i>P</i> N	по воздуху Q , мм 3 /	с (cм ³ /мин),
диаметр <i>DN</i>	PN 10	PN 16	PN 25	PN 40
3	1,2 (0,072)	1,5 (0,090)	2,1 (0,13)	3,0 (0,18)
6	2,5 (0,15)	3,6 (0,22)	5,3 (0,32)	8,0 (0,48)
10	4,6 (0,28)	7,0 (0,42)	11 (0,66)	17 (1,0)
15	8,0 (0,48)	13 (0,78)	20 (1,2)	32 (1,9)
25	14 (0,84)	23 (1,38)	38 (2,3)	62 (3,7)
32	19 (1,14)	32 (1,9)	53 (3,2)	87 (5,2)
40	25 (1,50)	44 (2,6)	73 (4,4)	122 (7,3)
50	33 (2,0)	60 (3,6)	101 (6,1)	169 (10)
65	46 (2,8)	87 (5,2)	147 (8,8)	248 (15)
80	61 (3,7)	116 (7,0)	199 (12)	336 (20)
100	81 (4,9)	159 (9,5)	274 (16)	467 (28)
125	110 (6,6)	218 (13)	379 (23)	649 (39)
150	140 (8,4)	282 (17)	495 (30)	850 (51)
200	206 (12)	425 (26)	754 (45)	$1,3\cdot10^3$ (78)
250	279 (17)	586 (35)	$1,0.10^3$ (60)	$1,8\cdot10^3$ (108)
300	359 (22)	762 (46)	$1,4\cdot10^3$ (84)	$2,4\cdot10^3$ (144)
350	444 (27)	952 (57)	$1,7\cdot10^3$ (102)	$3,0.10^3$ (180)
400	534 (32)	$1,2\cdot10^3$ (72)	$2,1\cdot10^3$ (126)	$3,6\cdot10^3$ (216)
450	629 (38)	$1,4\cdot10^3$ (84)	$2,5\cdot10^3$ (150)	$4,3\cdot10^3$ (258)
500	729 (44)	$1,6\cdot10^3$ (96)	$2.9 \cdot 10^3 \ (174)$	$5,1\cdot10^3$ (306)
600	941 (56)	$2,1\cdot10^3$ (126)	$3.8 \cdot 10^3$ (228)	$6,7\cdot10^3$ (402)
650	$1,1\cdot10^3$ (68)	$2,3\cdot10^3$ (138)	$4,3\cdot10^3$ (258)	$7,5\cdot10^3$ (450)
700	$1,2\cdot10^3$ (72)	$2,6\cdot10^3$ (156)	$4.8 \cdot 10^3$ (288)	$8,4\cdot10^3$ (504)
750	$1,3\cdot10^3$ (78)	$2.9 \cdot 10^3 \ (174)$	$5,3\cdot10^3$ (318)	$9,3\cdot10^3$ (558)
800	$1,4\cdot10^3$ (84)	$3,2\cdot10^3$ (192)	$5.8 \cdot 10^3 (348)$	1,0·10 ⁴ (600)
900	$1,7\cdot10^3$ (102)	$3.8 \cdot 10^3$ (228)	$6.9 \cdot 10^3 (414)$	$1,2\cdot10^4$ (720)
1000	$1,9\cdot10^3$ (114)	$4,4\cdot10^3$ (264)	$8,1\cdot10^3$ (486)	$1,4\cdot 10^4$ (840)
1050	$2,1\cdot10^3$ (126)	$4,7\cdot10^3$ (282)	$8,7\cdot10^3$ (522)	1,5·10 ⁴ (900)
1200	$2.5 \cdot 10^3 \ (150)$	$5.8 \cdot 10^3$ (348)	$1,1\cdot10^4$ (660)	$1.9 \cdot 10^4 \ (1.1 \cdot 10^3)$
1400	$3,1\cdot10^3$ (186)	$7,2\cdot10^3$ (432)	$1,3\cdot10^4$ (780)	$2,4\cdot10^4 \ (1,4\cdot10^3)$
1600	$3.8 \cdot 10^3$ (228)	$8.8 \cdot 10^3$ (528)	$1,6\cdot10^4$ (960)	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$
2000	$5,2\cdot10^3$ (312)	$1,2\cdot10^4$ (720)	$2,3\cdot10^4 \ (1,4\cdot10^3)$	

Продолжение таблицы Г.2

Номи-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин), при $Pucn = PN (Pp)$ для PN				
нальный	_	при <i>Pucn =P1</i> V	<i>(PP)</i> для <i>PN</i>		
диаметр <i>DN</i>	PN 63	PN 80	PN 100	PN 125	
3	4,5 (0,27)	5,6 (0,34)	6,8 (0,41)	8,4 (0,50)	
6	12 (0,72)	15 (0,90)	19 (1,1)	24 (1,4)	
10	26 (1,6)	32 (1,9)	40 (2,4)	50 (3,0)	
15	51 (3,1)	65 (3,9)	81 (4,9)	101 (6,1)	
25	98 (5,9)	125 (7,5)	157 (9,4)	197 (12)	
32	140 (8,4)	178 (11)	224 (13)	281 (17)	
40	196 (12)	251 (15)	316 (19)	397 (24)	
50	273 (16)	350 (21)	440 (26)	553 (33)	
65	403 (24)	517 (31)	651 (39)	819 (49)	
80	548 (33)	704 (42)	887,8 (53)	$1,1\cdot10^3$ (66)	
100	763 (46)	982 (59)	$1,2\cdot10^3$ (72)	1,6·10 ³ (96)	
125	$1,1\cdot10^3$ (66)	$1,4\cdot10^3$ (84)	$1,7\cdot10^3$ (102)	$2,2\cdot10^3$ (132)	
150	$1,4\cdot10^3$ (84)	$1,8\cdot10^3$ (108)	$2,3\cdot10^3$ (138)	$2,9\cdot10^3$ (174)	
200	$2,1\cdot10^3$ (126)	$2.8 \cdot 10^3 \ (168)$	$3.5 \cdot 10^3 (210)$	$4,4\cdot10^3$ (264)	
250	$3,0\cdot10^3$ (180)	$3.9 \cdot 10^3$ (234)	$4.9 \cdot 10^3$ (294)	$6,2\cdot10^3$ (372)	
300	$3.9 \cdot 10^3 (234)$	$5,1\cdot10^3$ (306)	$6,4\cdot10^3$ (384)	$8,1\cdot10^3$ (486)	
350	$4,9\cdot10^3$ (294)	$6,4\cdot10^3$ (384)	$8,1\cdot10^3$ (486)	$1,0\cdot10^4$ (600)	
400	$6.0\cdot10^3$ (360)	$7.8 \cdot 10^3 (468)$	$9.8 \cdot 10^3 (588)$	$1,2\cdot 10^4$ (720)	
450	$7,2\cdot10^3$ (432)	$9,3\cdot10^3$ (558)	$1,2\cdot 10^4$ (720)	$1,5\cdot10^4$ (900)	
500	$8,4\cdot10^3$ (504)	$1,1\cdot10^4$ (660)	$1,4\cdot 10^4$ (840)	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	
600	$1,1\cdot10^4$ (660)	$1,4\cdot10^4$ (840)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,3\cdot10^4 \ (1,4\cdot10^3)$	
650	$1,2\cdot10^4$ (720)	$1,6\cdot10^4$ (960)	$2,0.10^4 (1,2.10^3)$	$2,6\cdot10^4 \ (1,6\cdot10^3)$	
700	$1,4\cdot10^4$ (840)	$1,8\cdot10^4 \ (1,1\cdot10^3)$	$2,3\cdot10^4 \ (1,4\cdot10^3)$	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$	
750	$1,5\cdot10^4$ (900)	$2,0\cdot10^4 \ (1,2\cdot10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$	$3,2\cdot10^4 \ (1,9\cdot10^3)$	
800	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$2.8 \cdot 10^4 \ (1.7 \cdot 10^3)$	$3.5 \cdot 10^4 \ (2.1 \cdot 10^3)$	
900	$2,0.10^4 (1,2.10^3)$	$2,6\cdot10^4 \ (1,6\cdot10^3)$	$3,3\cdot10^4 (2,0\cdot10^3)$	$4,2\cdot10^4 (2,5\cdot10^3)$	
1000	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$3.9 \cdot 10^4 \ (2.3 \cdot 10^3)$	$4.9 \cdot 10^4 \ (2.9 \cdot 10^3)$	
1050	$2.5 \cdot 10^4 \ (1.5 \cdot 10^3)$	$3,3\cdot10^4 (2,0\cdot10^{3)}$	$4,2\cdot10^4 \ (2,5\cdot10^3)$	$5,3\cdot10^4 \ (3,2\cdot10^3)$	
1200	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$4.0 \cdot 10^4 \ (2.4 \cdot 10^{3)}$	$5,1\cdot10^4 \ (3,1\cdot10^3)$	$6.5 \cdot 10^4 (3.9 \cdot 10^3)$	
1400	$3.9 \cdot 10^4 \ (2.3 \cdot 10^3)$	$5,1\cdot10^4 \ (3,1\cdot10^3)$	$6,4\cdot10^4 \ (3,8\cdot10^3)$	$8,1\cdot10^4 \ (4,9\cdot10^3)$	
1600	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	$6.2 \cdot 10^4 \ (3.7 \cdot 10^3)$	$7.9 \cdot 10^4 \ (4.7 \cdot 10^3)$	$9,9\cdot10^4 (5,9\cdot10^3)$	
2000	$6,7\cdot10^4 \ (4,0\cdot10^3)$	$8,7\cdot10^4 (5,2\cdot10^3)$	$1,1\cdot10^5 (6,6\cdot10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$	

Окончание таблицы Г.2

Номи-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин), при $Pucn = PN (Pp)$ для PN				
нальный	1	при <i>Pucn =PI</i> \	/ (<i>Рр)</i> для <i>Р</i> М		
диаметр <i>DN</i>	PN 160	PN 200	PN 250	PN 320	
3	11 (0,66)	13 (0,78)	10 (0,60)	5 (0,30)	
6	30 (1,8)	37 (2,2)	25 (1,5)	7 (0,42)	
10	64 (3,8)	80 (4,8)	42 (2,5)	10 (0,60)	
15	129 (7,7)	162 (9,7)	100 (6,0)	17 (1,0)	
25	252 (15)	316 (19)	250 (15)	32 (1,9)	
32	361 (22)	452 (27)	333 (20)	50 (3,0)	
40	510 (31)	639 (38)	500 (30)	67 (4,0)	
50	712 (43)	893 (54)	583 (35)	92 (5,5)	
65	$1,1\cdot10^3$ (66)	$1,3\cdot10^3$ (78)	917 (55)	117 (7,0)	
80	$1,4\cdot10^3$ (84)	$1,8\cdot10^3$ (108)	$1,2\cdot10^3$ (72)	167 (10)	
100	$2,0\cdot10^3$ (120)	$2,5\cdot10^3$ (150)	$17 \cdot 10^3 \ (102)$	250 (15)	
125	$2,8\cdot10^3$ (168)	$3,5\cdot10^3$ (210)	$2,5\cdot10^3$ (150)	367 (22)	
150	$3,7\cdot10^3$ (222)	$4,6\cdot10^3$ (276)	$3,7\cdot10^3$ (222)	500 (30)	
200	$5,7\cdot10^3$ (342)	$7,1\cdot10^3$ (426)	$5,2\cdot10^3$ (312)	750 (45)	
250	$7,9\cdot10^3$ (474)	$1,0.10^4$ (600)	-	-	
300	$1,0\cdot10^4$ (600)	$1,3\cdot10^4$ (780)	-	-	
350	$1,3\cdot10^4$ (780)	$1,7\cdot10^4 \ (1,0\cdot10^3)$	-	-	
400	$1,6\cdot10^4$ (960)	$2,0.10^4 (1,2.10^3)$	-	-	
450	$1,9\cdot10^4 \ (1,1\cdot10^3)$	$2,4\cdot10^4 \ (1,4\cdot10^3)$	-	-	
500	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$2.8 \cdot 10^4 \ (1.7 \cdot 10^3)$	-	-	
600	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$	$3,7\cdot10^4 \ (2,2\cdot10^3)$	-	-	
650	$3,3\cdot10^4 \ (2,0\cdot10^3)$	$4,2\cdot10^4 \ (2,5\cdot10^3)$	-	-	
700	$3,7\cdot10^4 \ (2,2\cdot10^3)$	$4,7\cdot10^4 \ (2,8\cdot10^3)$	-	-	
750	$4,1\cdot10^4 \ (2,5\cdot10^3)$	$5,2\cdot10^4 \ (3,1\cdot10^3)$	-	-	
800	$4,5\cdot10^4 \ (2,7\cdot10^3)$	$5,7\cdot10^4 \ (3,4\cdot10^3)$	-	-	
900	$5,4\cdot10^4 \ (3,2\cdot10^3)$	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	-	-	
1000	$6,3\cdot10^4 \ (3,8\cdot10^3)$	$8,0\cdot10^4 \ (4,8\cdot10^3)$	-	-	
1050	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$8,6\cdot10^4 \ (5,2\cdot10^3)$	-	-	
1200	$8,3\cdot10^4 (5,0\cdot10^3)$	$1,0.10^5 (6,0.10^3)$	-	-	
1400	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,3\cdot10^5 \ (7,8\cdot10^3)$	-	-	
1600	$1,3\cdot10^5 \ (7,8\cdot10^3)$	$1,6\cdot10^5 \ (9,6\cdot10^3)$	-	-	
2000	$1.8 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2,3\cdot10^5 \ (1,4\cdot10^{4})$	-	-	

Т а б л и ц а Γ .3 — Нормы герметичности затворов по воздуху для класса герметичности «С»

Номи-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),			
нальный		при <i>Pucn =PN</i>	(<i>Pp</i>) для <i>PN</i>	T
диаметр <i>DN</i>	<i>PN</i> 1	<i>PN</i> 1,6	PN 2,5	PN 4
3	0,6 (0,036)	1,6 (0,096)	3,1 (0,19)	5,6 (0,34)
6	1,7 (0,10	3,7 (0,22)	6,6 (0,40)	12 (0,72)
10	3,6 (0,22)	6,8 (0,41)	12 (0,72)	19 (1,1)
15	6,5 (0,39)	11,1 (0,67)	18 (1,1)	30 (1,8)
25	14 (0,84)	21 (1,3)	32 (1,92)	51 (3,1)
32	20 (1,2)	30 (1,8)	43 (2,6)	66 (4,0)
40	29 (1,7)	40 (2,4)	56 (3,4)	83 (5,0)
50	40 (2,4)	53 (3,2)	73 (4,4)	106 (6,4)
65	59 (3,5)	75 (4,5)	100 (6,0)	141 (8,5)
80	81 (4,9)	100 (6,0)	128 (7,7)	176 (11)
100	113 (6,8)	135 (8,1)	169 (10)	225 (14)
125	157 (9,4)	183 (11)	223 (13)	288 (17)
150	207 (12)	236 (14)	280 (17)	353 (21)
200	318 (19)	352 (21)	403 (24)	487 (29)
250	445 (27)	481 (29)	536 (32)	628 (38)
300	585 (35)	622 (37)	679 (41)	774 (46)
350	737 (44)	774 (46)	831 (50)	925 (56)
400	900 (54)	936 (56)	990 (59)	$1,1\cdot10^3$ (66)
450	$1,1\cdot10^3$ (66)	$1,1\cdot10^3$ (66)	$1,2\cdot10^3$ (72)	$1,2\cdot10^3$ (72)
500	$1,3\cdot10^3$ (78)	$1,3\cdot10^3$ (78)	$1,3\cdot10^3$ (78)	$1,4\cdot10^3$ (84)
600	$1,7\cdot10^3$ (102)	$1,7\cdot10^3$ (102)	$1,7 \cdot 10^3$ (102)	$1,7\cdot10^3$ (102)
650	$1,9\cdot10^3$ (114)	$1,9\cdot10^3$ (114)	$1,9\cdot10^3$ (114)	$1,9\cdot10^3$ (114)
700	$2,1\cdot10^3$ (126)	$2,1\cdot10^3$ (126)	$2,1\cdot10^3$ (126)	$2,1\cdot10^3$ (126)
750	$2,1\cdot10^3$ (126)	$2,1\cdot10^3$ (126)	$2,1\cdot10^3$ (126)	$2,2\cdot10^3$ (132)
800	$2,3\cdot10^3$ (138)	$2,3\cdot10^3$ (138)	$2,3\cdot10^3$ (138)	$2,3\cdot10^3$ (138)
900	$2,4\cdot10^3$ (144)	$2,4\cdot10^3$ (144)	$2,5\cdot10^3$ (150)	$2,6\cdot10^3$ (156)
1000	$2,7\cdot10^3$ (162)	$2,7\cdot10^3$ (162)	$2.8 \cdot 10^3$ (168)	$2.9 \cdot 10^3 (174)$
1050	$3,0.10^3$ (180)	$3,0.10^3$ (180)	$3,0.10^3$ (180)	$3,1\cdot10^3$ (186)
1200	$3,2\cdot10^3$ (192)	$3,2\cdot10^3$ (192)	$3,3\cdot10^3$ (198)	$3,4\cdot10^3$ (204)
1400	$3,6\cdot10^3$ (216)	$3,7\cdot10^3$ (222)	$3.8 \cdot 10^3$ (228)	$4.0 \cdot 10^3$ (240)
1600	$4.2 \cdot 10^3$ (252)	$4,3\cdot10^3$ (258)	$4,4\cdot10^3$ (264)	$4.6 \cdot 10^3$ (276)
2000	$4.8 \cdot 10^3$ (288)	$4,9\cdot10^3$ (294)	$5,2\cdot10^3$ (312)	$5,5\cdot10^3$ (330)

Продолжение таблицы Г.3

Номи- нальный	Норма герметичности затвора по воздуху Q , мм ³ /с (см ³ /мин), при $Pucn = PN (Pp)$ для PN							
диаметр	PN 6		V 10		V 16	PI	V 25	
<i>DN</i> 3	9,0 (0,	54) 9,6	(0,58)	11	(0,66)	12	(0.72)	
6	18 (1,		(0,38) $(1,2)$	23	(1,4)	27	(0,72) (1,6)	
10	30 (1,		(2,0)	41	(2,5)	51	(3,1)	
15	45 (2,		(3,2)	65	(3,9)	84	(5,1) $(5,0)$	
25	75 (4,	· ·	(5,6)	120	(7,2)	160	(9,6)	
32	96 (5,		(7,3)	162	(9,7)	221	(13)	
40	120 (7,	· ·	(9,4)	213	(13)	296	(18)	
50	150 (9,	· ·	(12)	280	(17)	398	(24)	
65	,	1,7) 273	(16)	390	(23)	565	(34)	
80	240 (14		(21)	507	(30)	747	(45)	
100	300 (18	3) 450	(27)	675	(41)	$1,0.10^3$	(60)	
125	375 (23	3) 586	(35)	901	(54)	$1,4.10^{3}$	(84)	
150	450 (27	7) 728	(44)	$1,1\cdot 10^3$	(66)	$1,8\cdot10^{3}$	(108)	
200	600 (36	(5)	(60)	$1,7 \cdot 10^3$	(102)	$2,6\cdot10^{3}$	(156)	
250	750 (45	2	(84)	$2,3\cdot10^{3}$	(138)	$3,6\cdot10^{3}$	(216)	
300	900 (54	2	(102)	$2,9 \cdot 10^3$	(174)	$4,7 \cdot 10^3$	(282)	
350	$1,1\cdot10^3$ (66	2	(126)	$3,6.10^3$	(216)	$5,8\cdot10^{3}$	(348)	
400	$1,2\cdot 10^3$ (72)	2	(144)	$4,3.10^3$	(258)	$7,0.10^3$	(420)	
450	$1,4\cdot10^3$ (84	2	(168)	$5,0.10^3$	(300)	$8,3\cdot10^{3}$	(498)	
500	$1,5\cdot10^3$ (90	2	(192)	$5,8.10^3$	(348)	$9,6\cdot10^{3}$	(576)	
600	$1,8\cdot10^3$ (10)	2	(246)	$7,4\cdot10^{3}$	(444)	$1,3\cdot 10^4$	(780)	
650	$2,0.10^3$ (12)	2	(270)	$8,3\cdot10^{3}$	(498)	$1,4.10^4$	(840)	
700	$2,1\cdot10^3$ (12)	2	(294)	$9,2\cdot10^{3}$	(552)	$1,6.10^4$	(960)	
750	$2,3\cdot10^3$ (13)	2	(324)	$1,0.10^4$	(600)	$1,7 \cdot 10^4$	$(1,0.10^3)$	
800	$2,4\cdot10^3$ (14)	2	(354)	$1,1\cdot 10^4$	(660)	$1,9.10^4$	$(1,1\cdot10^3)$	
900	$2,7\cdot10^3$ (16		(414)	$1,3\cdot 10^4$	(780)	$2,2\cdot10^4$		
1000	$3,0.10^3$ (18)		(474)	$1,5\cdot 10^4$	(900)	$2,6\cdot10^4$	$(1,6\cdot10^3)$	
1050	$3,2\cdot10^3$ (19	2	(504)	$1,6.10^4$	(960)	$2,8\cdot10^4$	$(1,7\cdot10^3)$	
1200	$3,6\cdot10^3$ (21)	1	(600)	$2,0.10^4$	$(1,2\cdot10^3)$	$3,4.10^4$	$(2,0\cdot10^3)$	
1400	$4,2\cdot10^3$ (25)	4	(720)	$2,4.10^4$	$(1,4\cdot10^3)$	$4,3.10^4$		
1600	$4.8 \cdot 10^3$ (28)	1	(900)	$3,0.10^4$	$(1,8\cdot10^3)$	$5,2\cdot10^4$		
2000	$6.0 \cdot 10^3$ (36)	1	$(1,2\cdot10^3)$	$4,1\cdot10^{4}$	$(2,5\cdot10^3)$	$7,2\cdot 10^4$	$(4,3\cdot10^3)$	

Продолжение таблицы Г.3

нальный диаметр DN PN 40 PN 63 PN 80 PN 100 3 14 (0,84) 18 (1,1) 21 (1,3) 24 (1,4) 6 34 (2,0) 45 (2,7) 54 (3,2) 63 (3,8) 10 67 (4,0) 92 (5,5) 110 (6,6) 132 (7,9) 15 114 (6,8) 161 (9,7) 196 (12) 236 (14) 25 228 (14) 331 (20) 408 (24) 498 (30) 32 320 (19) 471 (28) 582 (35) 714 (43) 40 435 (26) 648 (39) 805 (48) 990 (59) 50 593 (36) 893 (54) 1,110³ (66) 1,410³ (84) 65 857 (51) 1,3-10³ (78) 1,6-10³ (96) 2,0-10³ (120) 80 1,1-10³ (66) 1,8-10³ (108) 2,2-10³ (132) 2,8-10³ (168) 100 1,6-10³ (96) 2,4-10³ (144) 3,1-10³ (186) 3,8-10³ (228) 125 2,2-10³ (132) 3,4-10³ (204) 4,3-10³ (358) 5,3-10³ (318) 150 2,8-10³ (168) 4,4-10³ (264)	Номи-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),							
DN	нальный	при $Pucn = PN (Pp)$ для PN							
14 (0,84)	_	PN 40	PN 63	PN 80	PN 100				
6 34 (2,0) 45 (2,7) 54 (3,2) 63 (3,8) 10 67 (4,0) 92 (5,5) 110 (6,6) 132 (7,9) 15 114 (6,8) 161 (9,7) 196 (12) 236 (14) 25 228 (14) 331 (20) 408 (24) 498 (30) 32 320 (19) 471 (28) 582 (35) 714 (43) 40 435 (26) 648 (39) 805 (48) 990 (59) 50 593 (36) 893 (54) 1,1·10³ (66) 1,4·10³ (84) 65 857 (51) 1,3·10³ (78) 1,6·10³ (96) 2,0·10³ (120) 80 1,1·10³ (66) 1,8·10³ (108) 2,2·10³ (132) 2,8·10³ (168) 100 1,6·10³ (96) 2,4·10³ (144) 3,1·10³ (186) 3,8·10³ (228) 125 2,2·10³ (132) 3,4·10³ (204) 4,3·10³ (258) 5,3·10³ (318) 150 2,8·10³ (168) 4,4·10³ (264) 5,6·10³ (336) 7,0·10³ (420) 200 4,2·10³ (252) 6,7·10³ (402) 8,5·10³ (510) 1,1·10⁴ (660) 250 5,9·10³ (354) <td></td> <td></td> <td>11005</td> <td>117 00</td> <td>11/100</td>			11005	117 00	11/100				
10			· · /	· / /	(, ,				
15		(, ,	` ' /	` , ,	` ' /				
25 228 (14) 331 (20) 408 (24) 498 (30) 32 320 (19) 471 (28) 582 (35) 714 (43) 40 435 (26) 648 (39) 805 (48) 990 (59) 50 593 (36) 893 (54) 1,1·10³ (66) 1,4·10³ (84) 65 857 (51) 1,3·10³ (78) 1,6·10³ (96) 2,0·10³ (120) 80 1,1·10³ (66) 1,8·10³ (108) 2,2·10³ (132) 2,8·10³ (168) 100 1,6·10³ (96) 2,4·10³ (144) 3,1·10³ (186) 3,8·10³ (228) 125 2,2·10³ (132) 3,4·10³ (204) 4,3·10³ (258) 5,3·10³ (318) 150 2,8·10³ (168) 4,4·10³ (264) 5,6·10³ (336) 7,0·10³ (420) 200 4,2·10³ (252) 6,7·10³ (402) 8,5·10³ (510) 1,1·10⁴ (660) 250 5,9·10³ (354) 9,3·10³ (558) 1,2·10⁴ (720) 1,5·10⁴ (900) 300 7,6·10³ (456) 1,2·10⁴ (720) 1,6·10⁴ (960) 2,0·10⁴ (1,2·10³) 350 9,6·10³ (576) 1,5·10⁴ (900) 2,0·10⁴ (1,1·10³) 2,5·10⁴ (1,5·10³) <td></td> <td>· , ,</td> <td>(, ,</td> <td>` ' /</td> <td>` ' /</td>		· , ,	(, ,	` ' /	` ' /				
32 320 (19) 471 (28) 582 (35) 714 (43) 40 435 (26) 648 (39) 805 (48) 990 (59) 50 593 (36) 893 (54) 1,1·10³ (66) 1,4·10³ (84) 65 857 (51) 1,3·10³ (78) 1,6·10³ (96) 2,0·10³ (120) 80 1,1·10³ (66) 1,8·10³ (108) 2,2·10³ (132) 2,8·10³ (168) 100 1,6·10³ (96) 2,4·10³ (144) 3,1·10³ (186) 3,8·10³ (228) 125 2,2·10³ (132) 3,4·10³ (204) 4,3·10³ (258) 5,3·10³ (318) 150 2,8·10³ (168) 4,4·10³ (264) 5,6·10³ (336) 7,0·10³ (420) 200 4,2·10³ (252) 6,7·10³ (402) 8,5·10³ (510) 1,1·10⁴ (660) 250 5,9·10³ (354) 9,3·10³ (558) 1,2·10⁴ (720) 1,5·10⁴ (900) 300 7,6·10³ (456) 1,2·10⁴ (720) 1,6·10⁴ (960) 2,0·10⁴ (1,2·10³) 350 9,6·10³ (576) 1,5·10⁴ (900) 2,0·10⁴ (1,2·10³) 2,5·10⁴ (1,5·10³) 400 1,2·10⁴ (720) 1,9·10⁴ (1,1·10³) 2,4·10⁴ (1,4·10³)			, ,	` /	` ′				
40 435 (26) 648 (39) 805 (48) 990 (59) 50 593 (36) 893 (54) 1,1·10³ (66) 1,4·10³ (84) 65 857 (51) 1,3·10³ (78) 1,6·10³ (96) 2,0·10³ (120) 80 1,1·10³ (66) 1,8·10³ (108) 2,2·10³ (132) 2,8·10³ (168) 100 1,6·10³ (96) 2,4·10³ (144) 3,1·10³ (186) 3,8·10³ (228) 125 2,2·10³ (132) 3,4·10³ (204) 4,3·10³ (258) 5,3·10³ (318) 150 2,8·10³ (168) 4,4·10³ (264) 5,6·10³ (336) 7,0·10³ (420) 200 4,2·10³ (252) 6,7·10³ (402) 8,5·10³ (510) 1,1·10⁴ (660) 250 5,9·10³ (354) 9,3·10³ (558) 1,2·10⁴ (720) 1,5·10⁴ (900) 2,0·10⁴ (1,2·10³) 2,5·10⁴ (1,2·10³) 300 7,6·10³ (456) 1,2·10⁴ (720) 1,6·10⁴ (960) 2,0·10⁴ (1,2·10³) 2,5·10⁴ (1,5·10³) 400 1,2·10⁴ (720) 1,9·10⁴ (1,1·10³) 2,4·10⁴ (1,4·10³) 3,6·10⁴ (2,2·10³) 500 1,6·10⁴ (960) 2,6·10⁴ (1,6·10³) 3,3·10⁴ (2,0·10³) 4,2·10⁴ (2,5·10³) <td></td> <td>` ,</td> <td>` ,</td> <td>` /</td> <td>` '</td>		` ,	` ,	` /	` '				
50 593 (36) 893 (54) 1,1·10³ (66) 1,4·10³ (84) 65 857 (51) 1,3·10³ (78) 1,6·10³ (96) 2,0·10³ (120) 80 1,1·10³ (66) 1,8·10³ (108) 2,2·10³ (132) 2,8·10³ (168) 100 1,6·10³ (96) 2,4·10³ (144) 3,1·10³ (186) 3,8·10³ (228) 125 2,2·10³ (132) 3,4·10³ (204) 4,3·10³ (258) 5,3·10³ (318) 150 2,8·10³ (168) 4,4·10³ (264) 5,6·10³ (336) 7,0·10³ (420) 200 4,2·10³ (252) 6,7·10³ (402) 8,5·10³ (510) 1,1·10⁴ (660) 250 5,9·10³ (354) 9,3·10³ (558) 1,2·10⁴ (720) 1,5·10⁴ (900) 2,0·10⁴ (720) 1,5·10⁴ (900) 300 7,6·10³ (456) 1,2·10⁴ (720) 1,6·10⁴ (960) 2,0·10⁴ (1,2·10³) 2,5·10⁴ (1,5·10³) 400 1,2·10⁴ (720) 1,9·10⁴ (1,1·10³) 2,4·10⁴ (1,4·10³) 3,0·10⁴ (1,8·10³) 450 1,4·10⁴ (840) 2,2·10⁴ (1,3·10³) 2,8·10⁴ (1,7·10³) 3,6·10⁴ (2,2·10³) 500 1,6·10⁴ (960) 2,6·10⁴ (1,6·10³) 3,3·10⁴ (2,0·10³)		` ,	` ,	` /	` '				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		435 (26)	` '	, ,	` '				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	593 (36)	(/						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65	\ /							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100		$2,4\cdot10^3$ (144)	$3,1\cdot10^3$ (186)	$3.8 \cdot 10^3$ (228)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125		$3,4\cdot10^3$ (204)	$4,3\cdot10^3$ (258)	$5,3\cdot10^3$ (318)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150	$2.8 \cdot 10^3$ (168)	$4,4\cdot10^3$ (264)	$5,6\cdot10^3$ (336)	$7,0.10^3$ (420)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	$4,2\cdot10^3$ (252)	$6,7\cdot10^3$ (402)	$8,5\cdot10^3$ (510)	$1,1\cdot10^4$ (660)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250			$1,2\cdot10^4$ (720)	$1,5\cdot10^4$ (900)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	$7,6\cdot10^3$ (456)	$1,2\cdot10^4$ (720)	$1,6\cdot10^4$ (960)	$2,0.10^4 (1,2.10^3)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	350				$2,5\cdot10^4 \ (1,5\cdot10^{3})$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400		$1,9\cdot10^4 \ (1,1\cdot10^3)$		$3,0.10^4 (1,8.10^3)$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	450	,							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	$1,6\cdot10^4$ (960)		,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	650	$2,4\cdot10^4 \ (1,4\cdot10^3)$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	700								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,		,					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$. , ,							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
{ 1000 0,7·10 (J,J·10) 1,J·10 (J,U·10) 1,5·10 (1,1·10) <i>2,</i> 4·10 (1,4·10)	1600	$8,9\cdot10^4 (5,3\cdot10^3)$	$1,5 \cdot 10^5 (9,0 \cdot 10^3)$	$1.9 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2.4 \cdot 10^5 (1.4 \cdot 10^4)$				

Окончание таблицы Г.3

Номиналь-	Норма герметично	сти затвора по воздуху	Q, мм ³ /с (см ³ /мин),
ный диа- метр <i>DN</i>	PN 125	ри <i>Pucn =PN (Pp)</i> для <i>P.</i> <i>PN</i> 160	PN 200
3			
6	28 (1,7)	33 (2,0)	39 (2,3)
	75 (4,5)	92 (5,5)	111 (6,7) 240 (14)
10	159 (9,5)	196 (12)	()
25	287 (17)	359 (22)	440 (26)
32	610 (37) 878 (53)	767 (46)	947 (57)
-	` /	$1,1\cdot10^3$ (66)	$1,4\cdot10^3$ (84)
40	$1,2\cdot10^3$ (72)	$1,5\cdot10^3$ (90)	$1,9\cdot10^3$ (114)
50	$1,7\cdot10^3$ (102)	$2,2\cdot10^3$ (132)	$2,7\cdot10^3$ (162)
65	$2.5 \cdot 10^3 \ (150)$	$3,2\cdot10^3$ (192)	$4.0 \cdot 10^3 (240)$
80	$3,4\cdot10^3$ (204)	$4,4\cdot10^3$ (264)	$5,4\cdot10^3$ (324)
100	$4.8 \cdot 10^3$ (288)	$6.1 \cdot 10^3$ (366)	$7,6\cdot10^3$ (456)
125	$6,6\cdot10^3$ (396)	$8,5\cdot10^3$ (510)	$1,1\cdot10^4$ (660)
150	$8,7\cdot10^3$ (522)	$1,1\cdot10^4$ (660)	1,4·10 ⁴ (840)
200	$1,3\cdot10^4$ (780)	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$2,1\cdot10^4 \ (1,3\cdot10^3)$
250	$1,9\cdot10^4 \ (1,1\cdot10^3)$	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3.0 \cdot 10^4 \ (1.8 \cdot 10^3)$
300	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$3.9 \cdot 10^4 \ (2.3 \cdot 10^3)$
350	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$4.0 \cdot 10^4 \ (2.4 \cdot 10^3)$	$5,0.10^4 (3,0.10^3)$
400	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	$6,1\cdot10^4 \ (3,7\cdot10^3)$
450	$4,5\cdot10^4 \ (2,7\cdot10^3)$	$5.8 \cdot 10^4 \ (3.5 \cdot 10^3)$	$7,2\cdot10^4 \ (4,3\cdot10^3)$
500	$5,3\cdot10^4 \ (3,2\cdot10^3)$	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$8,5\cdot10^4 (5,1\cdot10^3)$
600	$6.9 \cdot 10^4 \ (4.1 \cdot 10^3)$	$8.9 \cdot 10^4 \ (5.3 \cdot 10^3)$	$1,1\cdot10^5 \ (6,6\cdot10^3)$
650	$7.8 \cdot 10^4 \ (4.7 \cdot 10^3)$	$1,0.10^5 (6,0.10^3)$	$1,3\cdot10^5 \ (7,8\cdot10^3)$
700	$8,7\cdot10^4 \ (5,2\cdot10^3)$	$1,1\cdot10^5 \ (6,6\cdot10^{3)}$	$1,4\cdot10^5 \ (8,4\cdot10^3)$
750	$9,6\cdot10^4 \ (5,8\cdot10^3)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1,6.10^5 (9,6.10^3)$
800	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$	$1,7\cdot10^5 \ (1,0\cdot10^4)$
900	$1,3\cdot10^5 \ (7,8\cdot10^3)$	$1,6\cdot10^5 \ (9,6\cdot10^3)$	$2,0.10^5 (1,2.10^4)$
1000	$1,5\cdot10^5 (9,0\cdot10^3)$	$1,9\cdot10^5 \ (1,1\cdot10^4)$	$2,4\cdot10^5 \ (1,4\cdot10^4)$
1050	$1,6\cdot10^5 \ (9,6\cdot10^3)$	$2,1\cdot10^5 \ (1,3\cdot10^4)$	$2,6\cdot10^5 \ (1,6\cdot10^4)$
1200	$1.9 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2,5\cdot10^5 (1,5\cdot10^4)$	$3,1\cdot10^5 (1,9\cdot10^4)$
1400	$2,5\cdot10^5 (1,5\cdot10^4)$	$3,2\cdot10^5 (1,9\cdot10^4)$	$4,0.10^5 (2,4.10^4)$
1600	$3,0.10^5 (1.8.10^4)$	$3.9 \cdot 10^5 (2.3 \cdot 10^4)$	$4.8 \cdot 10^5 \ (2.9 \cdot 10^4)$
2000	$4,2\cdot10^5 (2,5\cdot10^4)$	$5,4\cdot10^5 (3,2\cdot10^4)$	$6.8 \cdot 10^5 \ (4.1 \cdot 10^4)$

Т а б л и ц а Γ .4 – Нормы герметичности затворов по воздуху для класса герметичности «СС»

Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),							
	при $Pucn = PN$	V(Pp) для PN					
<i>PN</i> 1	<i>PN</i> 1,6	PN 2,5	<i>PN</i> 4				
1,4 (0,08)	9,3 (0,56)	21 (1,3)	41 (2,5)				
3,9 (0,23)	20 (1,2)	43 (2,6)	82 (4,9)				
8,3 (0,50)	34 (2,0)	73 (4,4)	137 (8,2)				
15 (0,90)	54 (3,2)	111 (6,7)	207 (12)				
33 (2,0)	96 (5,8)	190 (11)	348 (21)				
48 (2,9)	127 (7,6)	247 (15)	447 (27)				
66 (4,0)	166 (10)	314 (19)	562 (34)				
93 (5,6)	216 (13)	400 (24)	706 (42)				
138 (8,3)	295 (18)	531 (32)	925 (56)				
188 (11)	379 (23)	667 (40)	$1,1\cdot 10^3$ (66)				
263 (16)	499 (30)	853 (51)	$1,4\cdot 10^3$ (84)				
367 (22)	657 (39)	$1,1\cdot10^3$ (66)	$1.8 \cdot 10^3 \ (108)$				
482 (29)	826 (50)		$2,2\cdot10^3$ (132)				
743 (45)	$1,2\cdot10^3$ (72)	$1,9 \cdot 10^3$ (114)	$3,0\cdot10^3$ (180)				
$1,0.10^3$ (60)		$2,4\cdot10^3$ (144)	$3.8 \cdot 10^3$ (228)				
$1,4\cdot 10^3$ (84)		$3,0\cdot10^3$ (180)	$4,6\cdot10^3$ (276)				
$1,7\cdot10^3$ (102)			$5,4\cdot10^3$ (324)				
			$6,2\cdot10^3$ (372)				
$2.5 \cdot 10^3$ (150)			$7,0\cdot10^3$ (420)				
$2.9 \cdot 10^3$ (174)			$7,9 \cdot 10^3 (474)$				
$3.9 \cdot 10^3$ (234)			$9,6\cdot10^3$ (576)				
$4,4\cdot10^3$ (264)	$5,6\cdot10^3$ (336)	$7,4\cdot10^3$ (444)	1,0.104 (600)				
$4.9 \cdot 10^3$ (294)		$8,1\cdot10^3$ (486)	$1,1\cdot 10^4$ (660)				
	$6.8 \cdot 10^3$ (408)		$1,2\cdot 10^4$ (720)				
$5.9 \cdot 10^3$ (354)	$7,4\cdot10^3$ (444)		$1,3\cdot10^4$ (780)				
		1	$1,5\cdot10^4$ (900)				
			$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$				
2	. , ,	. , , , , ,	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$				
. '		1	$2.0 \cdot 10^4 \ (1.2 \cdot 10^3)$				
, ,	, ,		$2.4 \cdot 10^4 \ (1.4 \cdot 10^3)$				
, ,	,		$2.8 \cdot 10^4 \ (1.7 \cdot 10^3)$				
,		, , ,	$3.6 \cdot 10^4 (2.2 \cdot 10^3)$				
	PN 1 1,4 (0,08) 3,9 (0,23) 8,3 (0,50) 15 (0,90) 33 (2,0) 48 (2,9) 66 (4,0) 93 (5,6) 138 (8,3) 188 (11) 263 (16) 367 (22) 482 (29) 743 (45) 1,0·10³ (60) 1,4·10³ (84) 1,7·10³ (102) 2,1·10³ (126) 2,5·10³ (150) 2,9·10³ (174) 3,9·10³ (234) 4,4·10³ (264)	PN 1 PN 1,6 1,4 (0,08) 9,3 (0,56) 3,9 (0,23) 20 (1,2) 8,3 (0,50) 34 (2,0) 15 (0,90) 54 (3,2) 33 (2,0) 96 (5,8) 48 (2,9) 127 (7,6) 66 (4,0) 166 (10) 93 (5,6) 216 (13) 138 (8,3) 295 (18) 188 (11) 379 (23) 263 (16) 499 (30) 367 (22) 657 (39) 482 (29) 826 (50) 743 (45) 1,2·10³ (72) 1,0·10³ (60) 1,6·10³ (96) 1,4·10³ (84) 2,0·10³ (120) 1,7·10³ (102) 2,4·10³ (144) 2,1·10³ (126) 2,9·10³ (174) 2,5·10³ (150) 3,4·10³ (204) 2,9·10³ (174) 3,9·10³ (234) 3,9·10³ (234) 5,0·10³ (300) 4,4·10³ (264) 5,6·10³ (336) 4,9·10³ (324) 6,2·10³ (372) 5,4·10³ (354) 7,4·10³ (444) 7,1·10³ (426) 8,6·10³ (516) 8,3·10³ (498) 1,0·10⁴ (600) <td>πριμ Pucn =PN (Pp) для PN PN 1 PN 1,6 PN 2,5 1,4 (0,08) 9,3 (0,56) 21 (1,3) 3,9 (0,23) 20 (1,2) 43 (2,6) 8,3 (0,50) 34 (2,0) 73 (4,4) 15 (0,90) 54 (3,2) 111 (6,7) 33 (2,0) 96 (5,8) 190 (11) 48 (2,9) 127 (7,6) 247 (15) 66 (4,0) 166 (10) 314 (19) 93 (5,6) 216 (13) 400 (24) 138 (8,3) 295 (18) 531 (32) 188 (11) 379 (23) 667 (40) 263 (16) 499 (30) 853 (51) 367 (22) 657 (39) 1,1·10³ (66) 482 (29) 826 (50) 1,3·10³ (78) 743 (45) 1,2·10³ (72) 1,9·10³ (114) 1,0·10³ (60) 1,6·10³ (96) 2,4·10³ (144) 1,4·10³ (84) 2,0·10³ (120) 3,0·10³ (180) 1,7·10³ (102) 2,4·10³ (144) 3,5·10³ (210) 2,5·10³ (150) 3,4·10³ (234) 5,4·10³ (324) 2,9·10³ (174)</td>	πριμ Pucn =PN (Pp) для PN PN 1 PN 1,6 PN 2,5 1,4 (0,08) 9,3 (0,56) 21 (1,3) 3,9 (0,23) 20 (1,2) 43 (2,6) 8,3 (0,50) 34 (2,0) 73 (4,4) 15 (0,90) 54 (3,2) 111 (6,7) 33 (2,0) 96 (5,8) 190 (11) 48 (2,9) 127 (7,6) 247 (15) 66 (4,0) 166 (10) 314 (19) 93 (5,6) 216 (13) 400 (24) 138 (8,3) 295 (18) 531 (32) 188 (11) 379 (23) 667 (40) 263 (16) 499 (30) 853 (51) 367 (22) 657 (39) 1,1·10³ (66) 482 (29) 826 (50) 1,3·10³ (78) 743 (45) 1,2·10³ (72) 1,9·10³ (114) 1,0·10³ (60) 1,6·10³ (96) 2,4·10³ (144) 1,4·10³ (84) 2,0·10³ (120) 3,0·10³ (180) 1,7·10³ (102) 2,4·10³ (144) 3,5·10³ (210) 2,5·10³ (150) 3,4·10³ (234) 5,4·10³ (324) 2,9·10³ (174)				

Продолжение таблицы $\Gamma.4$

Номиналь-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин), при $Pucn = PN (Pp)$ для PN							
метр <i>DN</i>	PN 6	<i>PN</i> 10	<i>PN</i> 16	PN 25				
3	67 (4,0)	67 (4,0)	68 (4,1)	69 (4,1)				
6	134 (8,0)	136 (8,2)	140 (8,4)	146 (8,8)				
10	223 (13)	230 (14)	240 (14)	256 (15)				
15	335 (20)	351 (21)	376 (23)	413 (25)				
25	558 (33)	592 (36)	643 (39)	719 (43)				
32	714 (43)	765 (46)	842 (51)	957 (57)				
40	892 (54)	966 (58)	$1,1\cdot10^3$ (66)	$1,2\cdot10^3$ (72)				
50	$1,1\cdot10^3$ (66)	$1,2\cdot10^3$ (72)	$1,4\cdot10^3$ (84)	$1,6\cdot10^3$ (96)				
65	$1,4\cdot10^3$ (84)	$1,6\cdot10^3$ (96)	$1.9 \cdot 10^3$ (114)	$2,2\cdot10^3$ (132)				
80	$1.8 \cdot 10^3 \ (108)$	$2,0\cdot10^3$ (120)	$2,3\cdot10^3$ (138)	$2.8 \cdot 10^3$ (168)				
100	$2,2\cdot10^3$ (132)	$2,5\cdot10^3$ (150)	$3,0\cdot10^3$ (180)	$3,7\cdot10^3$ (222)				
125	$2.8 \cdot 10^3 \ (168)$	$3,2\cdot10^3$ (192)	$3.9 \cdot 10^3 (234)$	$4.9 \cdot 10^3$ (294)				
150	$3,3\cdot10^3$ (198)	$3.9 \cdot 10^3$ (234)	$4.8 \cdot 10^3$ (288)	$6,2\cdot10^3$ (372)				
200	$4.5 \cdot 10^3$ (270)	$5,4\cdot10^3$ (324)	$6.8 \cdot 10^3 (408)$	$8,9\cdot10^3$ (534)				
250	5,6·10 ³ (336)	$6.9 \cdot 10^3 (414)$	$8,9\cdot10^3$ (534)	$1,2\cdot10^4$ (720)				
300	$6,7\cdot10^3$ (402)	$8,4\cdot10^3$ (504)	$1,1\cdot 10^4$ (660)	$1,5\cdot10^4$ (900)				
350	$7.8 \cdot 10^3 (468)$	$1,0\cdot10^4$ (600)	1,3·10 ⁴ (780)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$				
400	$8,9 \cdot 10^3 (534)$	$1,2\cdot10^4$ (720)	$1,6\cdot10^4$ (960)	$2,2\cdot10^4 \ (1,3\cdot10^3)$				
450	$1,0.10^4$ (600)	$1,3\cdot10^4$ (780)	$1.8 \cdot 10^4 \ (1080)$	$2,6\cdot10^4 \ (1,6\cdot10^3)$				
500	$1,1\cdot 10^4$ (660)	$1,5\cdot10^4$ (900)	$2,1\cdot10^4$ (1260)	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$				
600	$1,3\cdot10^4$ (780)		$2,6\cdot10^4 \ (1,6\cdot10^3)$	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$				
650	$1,4\cdot 10^4$ (840)	$2,0\cdot10^4 \ (1,2\cdot10^3)$		$4,2\cdot10^4 \ (2,5\cdot10^3)$				
700	$1,6\cdot10^4$ (960)		$3,2\cdot10^4 \ (1,9\cdot10^3)$	$4,6\cdot10^4 \ (2,8\cdot10^3)$				
750	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3.5 \cdot 10^4 \ (2.1 \cdot 10^3)$	$5,1\cdot10^4 (3,1\cdot10^3)$				
800	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$, ,	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$	$5.5 \cdot 10^4 \ (3.3 \cdot 10^3)$				
900	$2,0.10^4 (1,2.10^3)$	$2.9 \cdot 10^4 \ (1.7 \cdot 10^3)$	$4,4\cdot10^4 \ (2,6\cdot10^3)$	$6.5 \cdot 10^4 \ (3.9 \cdot 10^3)$				
1000	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$3,3\cdot10^4 (2,0\cdot10^3)$	$5,0.10^4 (3,0.10^3)$	$7.5 \cdot 10^4 \ (4.5 \cdot 10^3)$				
1050	$2,3\cdot10^4 \ (1,4\cdot10^3)$		$5,3\cdot10^4 \ (3,2\cdot10^3)$	$8,0\cdot10^4 \ (4,8\cdot10^3)$				
1200	$2,7\cdot10^4 \ (1,6\cdot10^3)$,	$6.3 \cdot 10^4 (3.8 \cdot 10^3)$	$9,6\cdot10^4 (5,8\cdot10^3)$				
1400	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$5,0.10^4 (3,0.10^3)$		$1,2\cdot10^5 \ (7,2\cdot10^3)$				
1600	$3,6\cdot10^4 \ (2,2\cdot10^3)$	$5.8 \cdot 10^4 \ (3.5 \cdot 10^3)$		$1,4\cdot10^5 \ (8,4\cdot10^3)$				
2000	$4.5 \cdot 10^4 \ (2.7 \cdot 10^3)$		$1,2\cdot10^5 (7,2\cdot10^3)$	$2.0 \cdot 10^5 \ (1.2 \cdot 10^4)$				

Номи-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),							
нальный	при $Pucn = PN(Pp)$ для PN							
диаметр <i>DN</i>	PN 40	PN 63	PN 80	PN 100				
3	71 (4,3)	74 (4,4)	76 (4,6)	79 (4,7)				
6	156 (9,4)	171 (10)	182 (11)	195 (12)				
10	282 (17)	322 (19)	351 (21)	386 (23)				
15	474 (28)	569 (34)	638 (38)	721 (43)				
25	847 (51)	$1,0.10^3$ (60)	$1,2\cdot10^3$ (72)	$1,4\cdot10^3$ (84)				
32	$1,1\cdot10^3$ (66)	$1,4\cdot10^3$ (84)	$1,7\cdot10^3$ (102)	$1,9\cdot10^3$ (114)				
40	$1,5\cdot10^3$ (90)	$1,9\cdot10^3$ (114)	$2,3\cdot10^3$ (138)	$2,6\cdot10^3$ (156)				
50	$2,0.10^3$ (120)	$2,6\cdot10^3$ (156)	$3,1\cdot10^3$ (186)	$3,6\cdot10^3$ (216)				
65	$2.8 \cdot 10^3$ (168)	$3,7\cdot10^3$ (222)	$4,4\cdot10^3$ (264)	$5,2\cdot10^3$ (312)				
80	$3,7\cdot10^3$ (222)	$5,0.10^3$ (300)	$5.9 \cdot 10^3 (354)$	$7,0.10^3$ (420)				
100	$4.9 \cdot 10^3$ (294)	$6.8 \cdot 10^3 (408)$	$8,1\cdot10^3$ (486)	$9,7\cdot10^3$ (582)				
125	$6,6\cdot10^3$ (396)	$9,2\cdot10^3$ (552)	$1,1\cdot10^4$ (660)	$1,3\cdot10^4$ (780)				
150	$8,4\cdot10^3$ (504)	$1,2\cdot10^4$ (720)	$1,4\cdot10^4$ (840)	$1,7.10^4 \ (1,0.10^3)$				
200	$1,2\cdot10^4$ (720)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$2,7\cdot10^4 \ (1,6\cdot10^3)$				
250	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3,0.10^4 \ (1,8.10^3)$	$3,7\cdot10^4 (2,2\cdot10^3)$				
300	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$3,2\cdot10^4 \ (1,9\cdot10^3)$	$3.9 \cdot 10^4 \ (2.3 \cdot 10^3)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$				
350	$2,7 \cdot 10^4 \ (1,6 \cdot 10^3)$	$4,0.10^4 (2,4.10^3)$	$4.9 \cdot 10^4 \ (2.9 \cdot 10^3)$	$6.0 \cdot 10^4 \ (3.6 \cdot 10^3)$				
400	$3,2\cdot10^4 \ (1,9\cdot10^3)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	$5.9 \cdot 10^4 \ (3.5 \cdot 10^3)$	$7,3\cdot10^4 \ (4,4\cdot10^3)$				
450	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$	$5,7\cdot10^4 \ (3,4\cdot10^3)$	$7,1\cdot10^4 \ (4,3\cdot10^3)$	$8,7\cdot10^4 (5,2\cdot10^3)$				
500	$4,4\cdot10^4 \ (2,6\cdot10^3)$	$6.6 \cdot 10^4 \ (4.0 \cdot 10^3)$	$8,2\cdot10^4 \ (4,9\cdot10^3)$	$1,0.10^5 (6,0.10^3)$				
600	$5,7\cdot10^4 \ (3,4\cdot10^3)$	$8,6\cdot10^4 \ (5,2\cdot10^3)$		$1,3\cdot10^5 (7,8\cdot10^3)$				
650	$6.3 \cdot 10^4 \ (3.8 \cdot 10^3)$	$9,6\cdot10^4 \ (5,8\cdot10^3)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1,5\cdot10^5 (9,0\cdot10^3)$				
700	$7,0.10^4 (4,2.10^3)$	$1,1\cdot10^5 (6,6\cdot10^3)$	$1,3\cdot10^5 (7,8\cdot10^3)$	$1,7\cdot10^5 \ (1,0\cdot10^4)$				
750	$7,7\cdot10^4 \ (4,6\cdot10^3)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1,5\cdot10^5 (9,0\cdot10^3)$	$1.8 \cdot 10^5 \ (1.1 \cdot 10^4)$				
800	$8,5\cdot10^4 \ (5,1\cdot10^3)$	$1,3\cdot10^5 \ (7,8\cdot10^3)$	$1,6\cdot10^5 (9,6\cdot10^3)$	$2,0.10^5 (1,2.10^4)$				
900	$1,0.10^5 (6,0.10^3)$	$1,5\cdot10^5 (9,0\cdot10^3)$	$1,9\cdot10^5 \ (1,1\cdot10^4)$	$2,4\cdot10^5 \ (1,4\cdot10^4)$				
1000	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1.8 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2,3\cdot10^5 (1,4\cdot10^4)$	$2.8 \cdot 10^5 \ (1.7 \cdot 10^4)$				
1050	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1,9\cdot10^5 \ (1,1\cdot10^4)$	$2,4\cdot10^5 \ (1,5\cdot10^4)$	$3,0.10^5 (1,8.10^4)$				
1200	$1,5\cdot10^5 \ (9,0\cdot10^3)$	$2,3\cdot10^5 \ (1,4\cdot10^4)$	$3,0\cdot10^5 \ (1,8\cdot10^4)$	$3,7\cdot10^5 (2,2\cdot10^4)$				
1400	$1,9 \cdot 10^5 \ (1,1 \cdot 10^4)$	$2.9 \cdot 10^5 \ (1.7 \cdot 10^4)$	$3,7\cdot10^5 (2,2\cdot10^4)$	$4,6\cdot10^5 (2,8\cdot10^4)$				
1600	$2,3\cdot10^5 \ (1,4\cdot10^4)$	$3,6\cdot10^5 (2,2\cdot10^4)$	$4,5\cdot10^5 (2,7\cdot10^4)$	$5,7\cdot10^5 (3,4\cdot10^4)$				
2000	$3,1\cdot10^5 (1,9\cdot10^4)$	$5.0 \cdot 10^5 \ (3.0 \cdot 10^4)$	$6,3\cdot10^5 (3,8\cdot10^4)$	$7,9 \cdot 10^5 \ (4,7 \cdot 10^4)$				

Окончание таблицы Г.4

Номиналь-	Норма герметично	сти затвора по воздуху	Q, мм ³ /с (см ³ /мин),
ный диа-		PN 160	
метр <i>DN</i>	PN 125	PN 160	PN 200
3	82 (4,9)	87 (5,2)	92 (5,5)
6	211 (13)	234 (14)	260 (16)
10	429 (26)	490 (29)	559 (34)
15	823 (49)	967 (58)	$1,1\cdot10^3$ (66)
25	$1,6\cdot10^3$ (96)	$1,9\cdot10^3$ (114)	$2,2\cdot10^3$ (132)
32	$2,2\cdot10^3$ (132)	$2,7\cdot10^3$ (162)	$3,2\cdot10^3$ (192)
40	$3,1\cdot10^3$ (186)	$3,7\cdot10^3$ (222)	$4,5\cdot10^3$ (270)
50	$4,3\cdot10^3$ (258)	$5,2\cdot10^3$ (312)	$6,2\cdot10^3$ (372)
65	$6,2\cdot10^3$ (372)	$7,7\cdot10^3$ (462)	$9,3\cdot10^3$ (558)
80	$8,4\cdot10^3$ (504)	$1,0.10^4$ (600)	$1,3\cdot10^4$ (780)
100	$1,2\cdot10^4$ (720)	$1,4\cdot 10^4$ (840)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$
125	1,6·10 ⁴ (960)	$2,0.10^4 \ (1,2.10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$
150	$2,1\cdot10^4 \ (1,3\cdot10^3)$	$2,6\cdot10^4 \ (1,6\cdot10^3)$	$3,2\cdot10^4 \ (1,9\cdot10^3)$
200	$3,2\cdot10^4 \ (1,9\cdot10^3)$	$4,1\cdot10^4 \ (2,5\cdot10^3)$	$5,0.10^4 (3,0.10^3)$
250	$4,5\cdot10^4 \ (2,7\cdot10^3)$	$5,7\cdot10^4 \ (3,4\cdot10^3)$	$7,0.10^4 \ (4,2.10^3)$
300	$5,9\cdot10^4 \ (3,5\cdot10^3)$	$7,4\cdot10^4 \ (4,4\cdot10^3)$	$9,2\cdot10^4 \ (5,5\cdot10^3)$
350	$7,4\cdot10^4 \ (4,4\cdot10^3)$	$9,3\cdot10^4 (5,6\cdot10^3)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$
400	$9,0.10^4 (5,4.10^3)$	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$
450	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$	$1,7 \cdot 10^5 \ (1,0 \cdot 10^4)$
500	$1,3\cdot10^5 \ (7,8\cdot10^3)$	$1,6\cdot10^5 \ (9,6\cdot10^3)$	$2,0.10^5 (1,2.10^4)$
600	$1,6.10^5 (9,6.10^3)$	$2,1\cdot10^5 \ (1,3\cdot10^4)$	$2,6\cdot10^5 \ (1,6\cdot10^4)$
650	$1,9 \cdot 10^5 \ (1,1 \cdot 10^4)$	$2,4\cdot10^5 \ (1,4\cdot10^4)$	$2.9 \cdot 10^5 \ (1.7 \cdot 10^4)$
700	$2,1\cdot10^5 \ (1,3\cdot10^4)$	$2,6\cdot10^5 \ (1,6\cdot10^4)$	$3,3\cdot10^5 (2,0\cdot10^4)$
750	$2,3\cdot10^5 \ (1,4\cdot10^4)$	$2.9 \cdot 10^5 \ (1.7 \cdot 10^4)$	$3,6\cdot10^5 (2,2\cdot10^4)$
800	$2,5\cdot10^5 \ (1,5\cdot10^4)$	$3,2\cdot10^5 \ (1,9\cdot10^4)$	$4,0.10^5 (2,4.10^4)$
900	$3,0.10^5 (1.8.10^4)$	$3.8 \cdot 10^5 \ (2.3 \cdot 10^4)$	$4.8 \cdot 10^5 \ (2.9 \cdot 10^4)$
1000	$3,5\cdot10^5 (2,1\cdot10^4)$	$4,5\cdot10^5 (2,7\cdot10^4)$	$5,6\cdot10^5 \ (3,4\cdot10^4)$
1050	$3.8 \cdot 10^5 \ (2.3 \cdot 10^4)$	$4.8 \cdot 10^5 \ (2.9 \cdot 10^4)$	$6,0.10^5 (3,6.10^4)$
1200	$4,6\cdot10^5 \ (2,8\cdot10^4)$	$5,9\cdot10^5 \ (3,5\cdot10^4)$	$7,3\cdot10^5 \ (4,4\cdot10^4)$
1400	$5,8\cdot10^5 \ (3,5\cdot10^4)$	$7,4\cdot10^5 \ (4,4\cdot10^4)$	$9,3\cdot10^5 (5,6\cdot10^4)$
1600	$7,1\cdot10^5 \ (4,3\cdot10^{4})$	$9,1\cdot10^5 (5,5\cdot10^4)$	$1,1\cdot10^6 \ (6,6\cdot10^4)$
2000	$9.9 \cdot 10^5 \ (5.9 \cdot 10^4)$	$1,3\cdot10^6 \ (7,8\cdot10^4)$	$1,6\cdot10^6 \ (9,6\cdot10^4)$

Т а б л и ц а $\Gamma.5$ — Нормы герметичности затворов по воздуху для класса герметичности «D»

Номиналь-	Норма герметичности затвора по воздуху Q , мм ³ /с (см ³ /мин), при $Pucn = PN(Pp)$ для PN							
метр <i>DN</i>	<i>PN</i> 1	<i>PN</i> 1,6	PN 2,5	PN 4				
3	1,9 (0,11)	13 (0,78)	28 (1,7)	55 (3,3)				
6	5,5 (0,33)	26 (1,6)	58 (3,5)	110 (6,6)				
10	12 (0,72)	47 (2,8)	98 (5,9)	185 (11)				
15	22 (1,3)	73 (4,4)	150 (9,0)	279 (17)				
25	47 (2,8)	131 (7,9)	258 (15)	469 (28)				
32	68 (4,1)	175 (11)	336 (20)	603 (36)				
40	95 (5,7)	228 (14)	426 (26)	758 (45)				
50	133 (8,0)	297 (18)	543 (33)	953 (57)				
65	197 (12)	407 (24)	723 (43)	$1,2\cdot10^3$ (72)				
80	268 (16)	524 (31)	908 (54)	$1,5\cdot10^3$ (90)				
100	375 (23)	690 (41)	$1,2\cdot10^3$ (72)	$2,0\cdot10^3$ (120)				
125	524 (31)	911 (55)	$1,5\cdot10^3$ (90)	$2,5\cdot10^3$ (150)				
150	689 (41)	$1,1\cdot10^3$ (66)	$1.8 \cdot 10^3 (108)$	$3,0\cdot10^3$ (180)				
200	$1,1\cdot 10^3$ (66)	$1,7\cdot10^3$ (102)	$2,5\cdot10^3$ (150)	$4,0\cdot10^3$ (240)				
250	$1,5\cdot10^3$ (90)	$2,2\cdot10^3$ (132)	$3,3\cdot10^3$ (198)	$5,1\cdot10^3$ (306)				
300	$1.9 \cdot 10^3$ (114)	$2.8 \cdot 10^3$ (168)	$4,1\cdot10^3$ (246)	$6,2\cdot10^3$ (372)				
350	$2,5\cdot10^3$ (150)	$3,4\cdot10^3$ (204)	$4.9 \cdot 10^3 (294)$	$7,3\cdot10^3$ (438)				
400	$3.0 \cdot 10^3$ (180)	$4,1\cdot10^3$ (246)	$5,7\cdot10^3$ (342)	$8,4\cdot10^3$ (504)				
450	$3,6\cdot10^3$ (216)	$4.8 \cdot 10^3$ (288)	$6,6\cdot10^3$ (396)	$9,5\cdot10^3$ (570)				
500	$4,2\cdot10^3$ (252)	$5,5\cdot10^3$ (330)	$7,4\cdot10^3$ (444)	$1,1\cdot10^4$ (660)				
600	$5.5 \cdot 10^3$ (330)	$7,0.10^3$ (420)	$9,3\cdot10^3$ (558)	1,3·10 ⁴ (780)				
650	$6,2\cdot10^3$ (372)	$7.8 \cdot 10^3$ (468)	$1,0.10^4$ (600)	$1,4\cdot 10^4$ (840)				
700	$6.9 \cdot 10^3$ (414)	$8,6\cdot10^3$ (516)	$1,1\cdot 10^4 (660)$	1,5·10 ⁴ (900)				
750	$7,7\cdot10^3$ (462)	$9.5 \cdot 10^3 (570)$	$1,2\cdot10^4$ (720)	$1,7\cdot10^4 \ (1,0\cdot10^3)$				
800	$8.5 \cdot 10^3$ (510)	$1,0.10^4$ (600)	$1,3\cdot10^4$ (780)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$				
900	$1,0.10^4$ (600)	$1,2\cdot10^4$ (720)	$1,5\cdot 10^4 (900)$	$2.0 \cdot 10^4 \ (1.2 \cdot 10^3)$				
1000	$1,2\cdot 10^4$ (720)	$1,4\cdot10^4$ (840)	$1,7 \cdot 10^4 (1,0 \cdot 10^3)$	$2,3\cdot10^4 \ (1,4\cdot10^3)$				
1050	$1,3\cdot10^4$ (780)	$1.5 \cdot 10^4 (900)$	$1.8 \cdot 10^4 (1.1 \cdot 10^3)$	$2,4\cdot10^4 \ (1,4\cdot10^3)$				
1200	1,6·10 ⁴ (960)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,2\cdot10^4 (1,3\cdot10^3)$	$2.8 \cdot 10^4 \ (1.7 \cdot 10^3)$				
1400	$2.0 \cdot 10^4 \ (1.2 \cdot 10^3)$	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$2,6\cdot10^4 (1,6\cdot10^3)$					
1600	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$2,7\cdot10^4 \ (1,6\cdot10^3)$	$3,1\cdot10^4 (1,9\cdot10^3)$					
2000	$3,4\cdot10^4 \ (2,0\cdot10^3)$		$4,1\cdot10^4 (2,5\cdot10^3)$					

Продолжение таблицы Г.5

Номиналь-	Норма герме	тичности затвора	по воздуху Q , мм 3	³ /с (см ³ /мин),
ный диа-	PN 6		V (<i>Pp</i>) для <i>PN</i>	DN 25
метр <i>DN</i> 3		PN 10	PN 16	PN 25
6	90 (5,4)	91 (5,5)	92 (5,5)	94 (5,6)
	180 (11)	184 (11)	190 (11)	199 (12)
10	300 (18)	310 (19)	326 (20)	349 (21)
15	450 (27)	471 (28)	502 (30)	550 (33)
25	750 (45)	800 (48)	874 (52)	986 (59)
32	960 (58)	$1,0.10^3$ (60)	$1,1\cdot10^3$ (66)	$1,3\cdot10^3$ (78)
40	$1,2\cdot10^3$ (72)	$1,3\cdot10^3$ (78)	$1,5\cdot10^3$ (90)	$1,7\cdot10^3$ (102)
50	$1,5\cdot10^3$ (90)	$1,7\cdot10^3$ (102)	$1.9 \cdot 10^3$ (114)	$2,2\cdot10^3$ (132)
65	$2.0 \cdot 10^3$ (120)	$2,2\cdot10^3$ (132)	$2.5 \cdot 10^3$ (150)	$3.1 \cdot 10^3$ (186)
80	$2,4\cdot10^3$ (144)	$2.7 \cdot 10^3$ (162)	$3,2\cdot10^3$ (192)	$3.9 \cdot 10^3$ (234)
100	$3.0 \cdot 10^3 (180)$	$3.5 \cdot 10^3$ (210)	$4,1\cdot10^3$ (246)	$5,2\cdot10^3$ (312)
125	$3.8 \cdot 10^3$ (228)	$4,4\cdot10^3$ (264)	$5,4\cdot10^3$ (324)	$6.8 \cdot 10^3 (408)$
150	$4,5\cdot10^3$ (270)	$5,4\cdot10^3$ (324)	$6.7 \cdot 10^3$ (402)	$8,6\cdot10^3$ (516)
200	$6,0.10^3$ (360)	$7,3\cdot10^3$ (438)	$9,4\cdot10^3$ (564)	$1,2\cdot10^4$ (720)
250	$7,5\cdot10^3$ (450)	$9,4\cdot10^3$ (564)	$1,2\cdot10^4$ (720)	$1,7\cdot10^4 \ (1,0\cdot10^3)$
300	$9,0.10^3$ (540)	$1,2\cdot10^4$ (720)	$1,5\cdot10^4$ (900)	$2,1\cdot10^4 \ (1,3\cdot10^3)$
350	$1,1\cdot10^4$ (660)	$1,4\cdot10^4$ (840)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,6\cdot10^4 \ (1,6\cdot10^3)$
400	$1,2\cdot10^4$ (720)	$1,6\cdot10^4$ (960)	$2,2\cdot10^4 \ (1,3\cdot10^3)$	$3,1\cdot10^4 \ (1,9\cdot10^3)$
450	$1,4\cdot10^4$ (840)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$	$3,6\cdot10^4 \ (2,2\cdot10^3)$
500	$1,5\cdot 10^4$ (900)	$2,1\cdot10^4 \ (1,3\cdot10^3)$	$2,9\cdot10^4 \ (1,7\cdot10^3)$	$4,1\cdot10^4 \ (2,5\cdot10^3)$
600	$1,8\cdot10^4 \ (1,1\cdot10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$	$3,6\cdot10^4 \ (2,2\cdot10^3)$	$5,3\cdot10^4 \ (3,2\cdot10^3)$
650	$2,0.10^4 (1,2.10^3)$	$2.8 \cdot 10^4 \ (1.7 \cdot 10^3)$	$4,0.10^4 (2,4.10^3)$	
700	$2,1\cdot10^4 \ (1,3\cdot10^3)$	$3,0.10^4 \ (1,8.10^3)$	$4,4\cdot10^4 \ (2,6\cdot10^3)$	$6.5 \cdot 10^4 \ (3.9 \cdot 10^3)$
750	$2,3\cdot10^4 \ (1,4\cdot10^3)$	$3,3\cdot10^4 \ (2,0\cdot10^3)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	$7,1\cdot10^4 \ (4,3\cdot10^3)$
800	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3,5\cdot10^4 \ (2,1\cdot10^3)$	$5,2\cdot10^4 \ (3,1\cdot10^3)$	$7.8 \cdot 10^4 \ (4.7 \cdot 10^3)$
900	$2,7\cdot10^4 \ (1,6\cdot10^3)$	$4,1\cdot10^4 \ (2,5\cdot10^3)$	$6.1 \cdot 10^4 \ (3.7 \cdot 10^3)$	$9,1\cdot10^4 (5,5\cdot10^3)$
1000	$3,0\cdot10^4 \ (1,8\cdot10^3)$	$4,6\cdot10^4 \ (2,8\cdot10^3)$	$7.0 \cdot 10^4 \ (4.2 \cdot 10^3)$	$1,1\cdot10^5 \ (6,6\cdot10^3)$
1050	$3,2\cdot10^4 \ (1,9\cdot10^3)$	$4.9 \cdot 10^4 (2.9 \cdot 10^3)$	$7,4\cdot10^4 \ (4,4\cdot10^3)$	$1,1\cdot10^5 (6,6\cdot10^3)$
1200	$3,6\cdot10^4 (2,2\cdot10^3)$	$5.7 \cdot 10^4 \ (3.4 \cdot 10^3)$	$8.8 \cdot 10^4 (5.3 \cdot 10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$
1400	$4,2\cdot10^4 (2,5\cdot10^3)$	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$1,1\cdot10^5 (6,6\cdot10^3)$	$1,7 \cdot 10^5 \ (1,0 \cdot 10^4)$
1600	$4.8 \cdot 10^4 (2.9 \cdot 10^3)$	$8.0 \cdot 10^4 (4.8 \cdot 10^3)$	$1,3\cdot10^5 (7,8\cdot10^3)$	$2.0 \cdot 10^5 (1.2 \cdot 10^4)$
2000	$6.0 \cdot 10^4 \ (3.6 \cdot 10^3)$	$1,1\cdot10^5 (6,6\cdot10^3)$	$1.7 \cdot 10^5 \ (1.0 \cdot 10^4)$	$2.8 \cdot 10^5 (1.7 \cdot 10^4)$

Номиналь-	Норма герметичности затвора по воздуху Q , мм 3 /с (см 3 /мин),							
ный диа-			V(Pp) для PN					
метр <i>DN</i>	PN 40	PN 63	PN 80	PN 100				
3	97 (5,8)	102 (6,1)	106 (6,4)	110 (6,6)				
6	214 (13)	236 (14)	253 (15)	273 (16)				
10	387 (23)	447 (27)	490 (29)	542 (33)				
15	628 (38)	749 (45)	838 (50)	943 (57)				
25	$1,2\cdot10^3$ (72)	$1,5\cdot10^3$ (90)	$1,7\cdot10^3$ (102)	$1,9 \cdot 10^3$ (114)				
32	$1,6\cdot10^3$ (96)	$2,0\cdot10^3$ (120)	$2,3\cdot10^3$ (138)	$2,7\cdot10^3$ (162)				
40	$2,1\cdot10^3$ (126)	$2,7\cdot10^3$ (162)	$3,2\cdot10^3$ (192)	$3,7\cdot10^3$ (222)				
50	$2.8 \cdot 10^3$ (168)	$3,7\cdot10^3$ (222)	$4,3\cdot10^3$ (258)	$5,1\cdot10^3$ (306)				
65	$3.9 \cdot 10^3$ (234)	$5,3\cdot10^3$ (318)	$6,3\cdot10^3$ (378)	$7,4\cdot10^3$ (444)				
80	$5,1\cdot10^3$ (306)	$7,0.10^3$ (420)	$8,4\cdot10^3$ (504)	$1,0.10^4$ (600)				
100	$6.9 \cdot 10^3$ (414)	$9,5\cdot10^3$ (570)	$1,1\cdot 10^4$ (660)	$1,4\cdot 10^4$ (840)				
125	$9,3\cdot10^3$ (558)	$1,3\cdot10^4$ (780)	1,6·10 ⁴ (960)	$1,9\cdot10^4 \ (1,1\cdot10^3)$				
150	$1,2\cdot 10^4$ (720)	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$2,0\cdot10^4 \ (1,2\cdot10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$				
200	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$	$3,1\cdot10^4 \ (1,9\cdot10^3)$	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$				
250	$2,4\cdot10^4 \ (1,4\cdot10^3)$	$3.5 \cdot 10^4 \ (2.1 \cdot 10^3)$	$4,3\cdot10^4 (2,6\cdot10^3)$	$5,2\cdot10^4 \ (3,1\cdot10^3)$				
300	$3,0.10^4 (1,8.10^3)$	$4.5 \cdot 10^4 \ (2.7 \cdot 10^3)$	$5,6\cdot10^4 \ (3,4\cdot10^3)$	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$				
350	$3.8 \cdot 10^4 \ (2.3 \cdot 10^3)$	$5,6\cdot10^4 \ (3,4\cdot10^3)$	$7.0 \cdot 10^4 \ (4.2 \cdot 10^3)$	$8,6\cdot10^4 \ (5,2\cdot10^3)$				
400	$4.5 \cdot 10^4 \ (2.7 \cdot 10^3)$	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$8,4\cdot10^4 (5,0\cdot10^3)$	$1,0.10^5 (6,0.10^3)$				
450	$5,3\cdot10^4 \ (3,2\cdot10^3)$	$8,0\cdot10^4 \ (4,8\cdot10^3)$	$1,0\cdot10^5 \ (6,0\cdot10^3)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$				
500	$6.2 \cdot 10^4 \ (3.7 \cdot 10^3)$	$9,4\cdot10^4 (5,6\cdot10^3)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1,4\cdot10^5 \ (8,4\cdot10^3)$				
600	$8,0\cdot10^4 \ (4,8\cdot10^3)$	$1,2\cdot10^5 (7,2\cdot10^3)$	$1,5\cdot10^5 (9,0\cdot10^3)$	$1,9\cdot10^5 \ (1,1\cdot10^4)$				
650	$8,9\cdot10^4 (5,3\cdot10^3)$			$2,1\cdot10^5 (1,3\cdot10^4)$				
700	$9.9 \cdot 10^4 (5.9 \cdot 10^3)$	$1,5\cdot10^5 (9,0\cdot10^3)$	$1.9 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2,4\cdot10^5 (1,4\cdot10^4)$				
750	$1,1\cdot10^5 (6,6\cdot10^3)$	$1,7 \cdot 10^5 \ (1,0 \cdot 10^4)$	$2,1\cdot10^5 \ (1,3\cdot10^4)$	$2,6\cdot10^5 \ (1,6\cdot10^4)$				
800	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$1.8 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2.3 \cdot 10^5 (1.4 \cdot 10^4)$	$2.9 \cdot 10^5 \ (1.7 \cdot 10^4)$				
900	$1,4\cdot10^5 \ (8,4\cdot10^3)$	$2,2\cdot10^5 (1,3\cdot10^4)$	$2.8 \cdot 10^5 \ (1.7 \cdot 10^4)$	$3,4\cdot10^5 (2,0\cdot10^4)$				
1000	$1,6.10^5 (9,6.10^3)$	$2,6\cdot10^5 (1,6\cdot10^4)$	$3.2 \cdot 10^5 (1.9 \cdot 10^4)$	$4.0 \cdot 10^5 (2.4 \cdot 10^4)$				
1050	$1,8\cdot10^5 \ (1,1\cdot10^4)$	$2,7\cdot10^5 \ (1,7\cdot10^4)$	$3.5 \cdot 10^5 (2.1 \cdot 10^4)$	$4,3\cdot10^5 (2,6\cdot10^4)$				
1200	$2,1\cdot10^5 (1,3\cdot10^4)$	$3,3\cdot10^5 (2,0\cdot10^4)$	$4.2 \cdot 10^5 (2.5 \cdot 10^4)$	$5,3\cdot10^5 (3,2\cdot10^4)$				
1400	$2,7 \cdot 10^5 (1,6 \cdot 10^4)$	$4.2 \cdot 10^5 (2.5 \cdot 10^4)$	$5,3\cdot10^5 (3,2\cdot10^4)$	$6,6\cdot10^5 (4,0\cdot10^4)$				
1600	$3,2\cdot10^5 (1,9\cdot10^4)$	$5,1\cdot10^5 (3,1\cdot10^4)$	$6.5 \cdot 10^5 (3.9 \cdot 10^4)$	$8.1 \cdot 10^5 (4.9 \cdot 10^4)$				
2000								
2000	$4.5 \cdot 10^5 \ (2.7 \cdot 10^4)$	$7,1\cdot10^5 (4,3\cdot10^4)$	$9.0 \cdot 10^5 (5.4 \cdot 10^4)$	$1,1\cdot10^6 \ (6,6\cdot10^4)$				

Окончание таблицы Г.5

Номиналь-	Норма герметично	сти затвора по воздуху	Q, мм ³ /с (см ³ /мин),
ный диа-		ри <i>Pucn =PN (Pp)</i> для <i>P</i>	
метр <i>DN</i>	PN 125	PN 160	PN 200
3	115 (6,9)	123 (7,4)	131 (7,9)
6	297 (18)	332 (20)	371 (22)
10	606 (36)	696 (42)	799 (48)
15	$1,1\cdot10^3$ (66)	$1,3\cdot10^3$ (78)	$1,5\cdot10^3$ (90)
25	$2,2\cdot10^3$ (132)	$2,7\cdot10^3$ (162)	$3,2\cdot10^3$ (192)
32	$3,2\cdot10^3$ (192)	$3.8 \cdot 10^3 (228)$	$4,6\cdot10^3$ (276)
40	$4,4\cdot10^3$ (264)	$5,3\cdot10^3$ (318)	$6,4\cdot10^3$ (384)
50	$6,1\cdot10^3$ (366)	$7,4\cdot10^3$ (444)	$8,9 \cdot 10^3 (534)$
65	$8.9 \cdot 10^3$ (534)	$1,1\cdot10^4$ (660)	$1,3\cdot10^4$ (780)
80	$1,2\cdot10^4$ (720)	$1,5\cdot10^4$ (900)	$1.8 \cdot 10^4 \ (1.1 \cdot 10^3)$
100	$1,7 \cdot 10^4 \ (1,0 \cdot 10^3)$	$2,1\cdot10^4 \ (1,3\cdot10^3)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$
125	$2,3\cdot10^4 \ (1,4\cdot10^3)$	$2,9\cdot10^4 \ (1,7\cdot10^3)$	$3,5\cdot10^4 \ (2,1\cdot10^3)$
150	$3,0.10^4 \ (1,8.10^3)$	$3,8\cdot10^4 \ (2,3\cdot10^3)$	$4,6\cdot10^4 \ (2,8\cdot10^3)$
200	$4,6\cdot10^4 \ (2,8\cdot10^3)$	$5,8\cdot10^4 \ (3,5\cdot10^3)$	$7,1\cdot10^4 \ (4,3\cdot10^3)$
250	$6,4\cdot10^4 \ (3,8\cdot10^3)$	$8,1\cdot10^4 \ (4,9\cdot10^3)$	$1,0.10^5 (6,0.10^3)$
300	$8,4\cdot10^4 \ (5,0\cdot10^3)$	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,3\cdot10^5 \ (7,8\cdot10^3)$
350	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$1,3\cdot10^5 \ (7,8\cdot10^3)$	$1,7 \cdot 10^5 \ (1,0 \cdot 10^4)$
400	$1,3\cdot10^5 \ (7,8\cdot10^3)$	$1,6\cdot10^5 \ (9,6\cdot10^3)$	$2,0\cdot10^5 \ (1,2\cdot10^4)$
450	$1,5\cdot10^5 \ (9,0\cdot10^3)$	$1,9\cdot10^5 \ (1,1\cdot10^4)$	$2,4\cdot10^5 \ (1,4\cdot10^4)$
500	$1.8 \cdot 10^5 \ (1.1 \cdot 10^4)$	$2,3\cdot10^5 \ (1,4\cdot10^4)$	$2.8 \cdot 10^5 \ (1.7 \cdot 10^4)$
600	$2,3\cdot10^5 \ (1,4\cdot10^4)$	$3,0.10^5 (1.8.10^4)$	$3,7\cdot10^5 (2,2\cdot10^4)$
650	$2,6\cdot10^5 \ (1,6\cdot10^4)$	$3,4\cdot10^5 (2,0\cdot10^4)$	$4,2\cdot10^5 (2,5\cdot10^4)$
700	$2.9 \cdot 10^5 \ (1.7 \cdot 10^4)$	$3.8 \cdot 10^5 \ (2.3 \cdot 10^4)$	$4,7\cdot10^5 (2,8\cdot10^4)$
750	$3,3\cdot10^5 (2,0\cdot10^4)$	$4,2\cdot10^5 (2,5\cdot10^4)$	$5,2\cdot10^5 \ (3,1\cdot10^4)$
800	$3,6\cdot10^5 \ (2,2\cdot10^4)$	$4,6\cdot10^5 \ (2,8\cdot10^4)$	$5,7\cdot10^5 \ (3,4\cdot10^4)$
900	$4,3\cdot10^5 (2,6\cdot10^4)$	$5,5\cdot10^5 \ (3,3\cdot10^4)$	$6.8 \cdot 10^5 \ (4.1 \cdot 10^4)$
1000	$5,0.10^5 (3,0.10^4)$	$6,4\cdot10^5 \ (3,8\cdot10^4)$	$8,0.10^5 (4,8.10^4)$
1050	$5,4\cdot10^5 \ (3,2\cdot10^4)$	$6.9 \cdot 10^5 \ (4.1 \cdot 10^4)$	$8,6\cdot10^5 (5,2\cdot10^4)$
1200	$6,6\cdot10^5 \ (4,0\cdot10^4)$	$8,4\cdot10^5 (5,0\cdot10^4)$	$1,1\cdot10^6 \ (6,6\cdot10^4)$
1400	$8,3\cdot10^5 (5,0\cdot10^4)$	$1,1\cdot10^6 \ (6,6\cdot10^4)$	$1,3\cdot10^6 \ (7,8\cdot10^4)$
1600	$1,1\cdot10^6 \ (6,6\cdot10^4)$	$1,3\cdot10^6 \ (7,8\cdot10^4)$	$1,6\cdot10^6 \ (9,6\cdot10^4)$
2000	$1,4\cdot10^6 \ (8,4\cdot10^4)$	$1.8 \cdot 10^6 \ (1.1 \cdot 10^5)$	$2,3\cdot10^6 \ (1,4\cdot10^5)$

Приложение Д

(справочное)

Нормы герметичности затворов регулирующей арматуры

Условная	Норма	Норма герметичности затвора Q , мм 3 /с (см 3 /мин),								
пропускная		для классов го	ерметичности	,						
способность	II	III	IV	IV-S1						
Kv_y , м $^3/ч$	δ затв =0,5 %	δ затв =0,1 %	δ затв =0,01 %	δ затв =0,0005 %						
0,10	267 (16)	55 (3,3)	5,5 (0,33)	0,3 (0,018)						
0,16	433 (26)	88 (5,3)	8,8 (0,53)	0,4 (0,024)						
0,25	683 (41)	138 (8,3)	14 (0,83)	0,7 (0,028)						
0,40	$1,1\cdot10^3$ (66)	217 (13)	22 (1,3)	1,1 (0,066)						
0,63	$1,7\cdot10^3$ (102)	333 (20)	33 (2,0)	1,7 (0,10)						
1,0	$2,7\cdot10^3$ (162)	550 (33)	55 (3,3)	2,7 (0,16)						
1,6	$4,3\cdot10^3$ (258)	883 (53)	88 (5,3)	4,3 (0,26)						
2,5	$6.8 \cdot 10^3 (408)$	$1,4\cdot10^3$ (84)	138 (8,4)	6,8 (0,41)						
4,0	$1,1\cdot10^4$ (660)	$2,2\cdot10^3$ (132)	217 (13)	11 (0,66)						
6,3	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$3,3\cdot10^3$ (198)	333 (20)	17 (1,0)						
10	$2,7\cdot10^4 \ (1,6\cdot10^3)$	5,5·10 ³ (330)	550 (33)	27 (1,6)						
16	$4,3\cdot10^4 (2,6\cdot10^3)$	$8,8\cdot10^3$ (528)	883 (53)	43 (2,6)						
25	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$1,4\cdot 10^4$ (840)	$1,4\cdot 10^3$ (84)	68 (4,1)						
32	$8,3\cdot10^4 (5,0\cdot10^3)$	$1,7\cdot10^4 \ (1,0\cdot10^3)$	$1,7\cdot10^3$ (100)	83 (5,0)						
40	$1,1\cdot10^5 \ (6,6\cdot10^3)$	$2,2\cdot10^4$ $(1,3\cdot10^3)$	$2,2\cdot10^3$ (130)	110 (6,6)						
63	$1,7.10^5 (1,0.10^4)$	$3,3\cdot10^4 \ (2,0\cdot10^3)$	$3,3\cdot10^3$ (200 ³)	167 (10)						
80	$2,2\cdot10^5 (1,3\cdot10^4)$	$4,3\cdot10^4 \ (2,6\cdot10^3)$	$4,3\cdot10^3$ (260)	217 (13)						
100	$2,7\cdot10^5 (1,6\cdot10^4)$	$5,5\cdot10^4$ (3,3·10 ³)	$5,5\cdot10^3$ (330)	267 (16)						
125	$3,3\cdot10^5 (2,0\cdot10^4)$	$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$6.8 \cdot 10^3$ (410)	333 (20)						
160	$4,3\cdot10^5 (2,6\cdot10^4)$	$8,8\cdot10^4 (5,3\cdot10^3)$		433 (26)						
250	$6.8 \cdot 10^5 \ (4.1 \cdot 10^4)$			683 (41)						
320	$8,3\cdot10^5 (5,0\cdot10^4)$	$1,7\cdot10^5 \ (1,0\cdot10^4)$	$1,7\cdot10^4 \ (1,0\cdot10^3)$	833 (50)						
400	$1,1\cdot10^6 \ (6,6\cdot10^4)$	$2,2\cdot10^5 (1,3\cdot10^4)$		$1,1\cdot 10^3$ (66)						
500	$1,3\cdot10^6 \ (7,8\cdot10^4)$	$2,7\cdot10^5 \ (1,6\cdot10^4)$	$2,7\cdot10^4 \ (1,6\cdot10^3)$	$1,3\cdot10^3$ (78)						
630	$1,7\cdot10^6 \ (1,0\cdot10^5)$		$3,3\cdot10^4 (2,0\cdot10^3)$	$1,7 \cdot 10^3 \ (100)$						
800	$2,2\cdot10^6 \ (1,3\cdot10^5)$		$4,3\cdot10^4 \ (2,6\cdot10^3)$	$2,2\cdot10^3$ (130)						
1000	$2,7\cdot10^6 \ (1,6\cdot10^5)$	$5,5\cdot10^5 (3,3\cdot10^4)$	$5,5\cdot10^4 \ (3,3\cdot10^3)$	$2,7\cdot10^3$ (160)						
1250	$3.5 \cdot 10^6 \ (2.1 \cdot 10^5)$		$6.8 \cdot 10^4 \ (4.1 \cdot 10^3)$	$3,5\cdot10^3$ (210)						
1600	$4,3\cdot10^6 \ (2,6\cdot10^5)$			$4,3\cdot10^3$ (260)						
2240	$6.2 \cdot 10^6 \ (3.7 \cdot 10^5)$		$1,2\cdot10^5 (7,2\cdot10^3)$	$6,2\cdot10^3$ (370)						
2500		$1,4\cdot10^6 \ (8,4\cdot10^4)$		$7,0.10^3$ (420)						
4000	$1,1\cdot10^7 \ (6,6\cdot10^5)$			$1,1\cdot 10^4$ (660)						

Т а б л и ц а Д.2 - Нормы герметичности затворов по воздуху при $P1a\delta c=0,5$ МПа и $\Delta Pucn=0,4$ МПа

Условная	Норма г	терметичности зат	вора Q , мм ³ /с (см ³	³ /мин),
пропускная		для классов ге	рметичности	
способность	II	III	IV	IV-S1
Kv_y , м $^3/ч$	δ затв = $0,5~\%$	δ затв = $0,1\%$	δ затв =0,01 %	δ затв =0,0005 %
0,10	$9,7\cdot10^3$ (582)	$2,0.10^3$ (120)	200 (12)	9,7 (0,58)
0,16	$1,6\cdot10^4$ (960)	$3,0.10^3$ (180)	300 (18)	16 (0,96)
0,25	$2,5\cdot10^4 \ (1,5\cdot10^3)$	$4.8 \cdot 10^3$ (288)	483 (29)	25 (1,5)
0,40	$4,0.10^4 (2,4.10^3)$	$7.8 \cdot 10^3 $ (468)	783 (47)	40 (2,4)
0,63	$6.0 \cdot 10^4 \ (3.6 \cdot 10^3)$	$1,2\cdot10^4$ (720)	$1,2\cdot10^3$ (72)	60 (3,6)
1,0	$9,7\cdot10^4 \ (5,8\cdot10^3)$	$2,0.10^4 (1,2.10^3)$	$2,0.10^3$ (120)	97 (5,8)
1,6	$1,6\cdot10^5 \ (9,6\cdot10^3)$	$3,0.10^4 (1,8.10^3)$	$3,0.10^3$ (180)	160 (9,6)
2,5	$2.5 \cdot 10^5 \ (1.5 \cdot 10^4)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	$4.8 \cdot 10^3$ (290)	250 (15)
4,0	$4,0.10^5 (2,4.10^4)$	$7.8 \cdot 10^4 \ (4.7 \cdot 10^3)$	$7.8 \cdot 10^3 (470)$	400 (24)
6,3	$6,0.10^5 (3,6.10^4)$	$1,2\cdot10^5 (7,2\cdot10^3)$	$1,2\cdot10^4$ (720)	600 (36)
10	$9,7\cdot10^5 (5,8\cdot10^4)$	$2,0.10^5 (1,2.10^4)$	$2,0.10^4 \ (1,2.10^3)$	970 (58)
16	$1,6\cdot10^6 \ (9,6\cdot10^4)$	$3,0.10^5 (1,8.10^4)$	$3,0.10^4 (1,8.10^3)$	
25	$2,5\cdot10^6 \ (1,5\cdot10^5)$	$4.8 \cdot 10^5 (2.9 \cdot 10^4)$	$4.8 \cdot 10^4 \ (2.9 \cdot 10^3)$	$2,5\cdot10^3$ (150)
32	$3,2\cdot10^6 \ (1,9\cdot10^5)$	$6,2\cdot10^5 (3,7\cdot10^4)$	$6,2\cdot10^4 \ (3,7\cdot10^3)$	$3,2\cdot10^3$ (190)
40	$4,0.10^6 (2,4.10^5)$	$7.8 \cdot 10^5 \ (4.7 \cdot 10^4)$	$7.8 \cdot 10^4 \ (4.7 \cdot 10^3)$	$4,0.10^3$ (240)
63	$6,0\cdot10^6 \ (3,6\cdot10^5)$	$1,2\cdot10^6 \ (7,2\cdot10^4)$	$1,2\cdot10^5 \ (7,2\cdot10^3)$	$6.0 \cdot 10^3$ (360)
80	$7.8 \cdot 10^6 \ (4.7 \cdot 10^5)$	$1,5\cdot10^6 (9,0\cdot10^4)$	$1,5\cdot10^5 (9,0\cdot10^3)$	$7.8 \cdot 10^3 (470)$
100	$9,7\cdot10^6 \ (5,8\cdot10^5)$	$2,0.10^6 (1,2.10^5)$	$2,0.10^5 (1,2.10^4)$	$9,7\cdot10^3$ (580)
125	$1,2\cdot10^7 \ (7,2\cdot10^5)$	$2,5\cdot10^6 \ (1,5\cdot10^5)$	$2,5\cdot10^5 \ (1,5\cdot10^4)$	$1,2\cdot10^4$ (720)
160	$1,6\cdot10^7 \ (9,6\cdot10^5)$	$3.0 \cdot 10^6 \ (1.8 \cdot 10^5)$	$3,0.10^5 (1,8.10^4)$	
250	$2,5\cdot10^7 \ (1,5\cdot10^6)$	$4.8 \cdot 10^6 \ (2.9 \cdot 10^5)$	$4.8 \cdot 10^5 (2.9 \cdot 10^4)$	$2,5\cdot10^4 \ (1,5\cdot10^3)$
320	$3,2\cdot10^7 \ (1,9\cdot10^6)$	$6,2\cdot10^6 (3,7\cdot10^5)$	$6,2\cdot10^5 (3,7\cdot10^4)$	
400	$4,0.10^7 (2,4.10^6)$	$7.8 \cdot 10^6 \ (4.7 \cdot 10^5)$	$7.8 \cdot 10^5 \ (4.7 \cdot 10^4)$	
500	$4.8 \cdot 10^7 \ (2.9 \cdot 10^6)$	$9,7\cdot10^6 (5,8\cdot10^5)$	$9,7\cdot10^5 (5,8\cdot10^4)$	
630	$6,0\cdot10^7 \ (3,6\cdot10^6)$	$1,2\cdot10^7 \ (7,2\cdot10^5)$	$1,2\cdot10^6 (7,2\cdot10^4)$	
800	$7.8 \cdot 10^7 \ (4.7 \cdot 10^6)$	$1,5\cdot10^7 \ (9,0\cdot10^5)$	$1,5\cdot10^6 (9,0\cdot10^4)$	
1000	$9,7\cdot10^7 \ (5,8\cdot10^6)$	$2,0.10^7 (1,2.10^6)$	$2,0.10^6 (1,2.10^5)$	
1250	$1,2\cdot10^8 \ (7,2\cdot10^6)$	$2.5 \cdot 10^7 \ (1.5 \cdot 10^6)$	$2,5\cdot10^6 \ (1,5\cdot10^5)$	
1600	$1,6\cdot10^8 \ (9,6\cdot10^6)$	$3,0\cdot10^7 \ (1,8\cdot10^6)$	$3,0\cdot10^6 \ (1,8\cdot10^5)$	
2240	$2,2\cdot10^8 \ (1,3\cdot10^7)$	$4,2\cdot10^7 (2,5\cdot10^6)$	$4,2\cdot10^6 (2,5\cdot10^5)$	
2500	$2,5\cdot10^8 \ (1,5\cdot10^7)$	$4.8 \cdot 10^7 \ (2.9 \cdot 10^6)$	$4.8 \cdot 10^6 \ (2.9 \cdot 10^5)$	
4000	$4,0.10^8 (2,4.10^7)$	$7.8 \cdot 10^7 \ (4.7 \cdot 10^6)$	$7.8 \cdot 10^6 \ (4.7 \cdot 10^5)$	

Приложение Е

(рекомендуемое)

Рекомендации по назначению классов герметичности арматуры

Таблица Е.1 - Рекомендации по назначению классов герметичности затворов запорной, обратной, предохранительной, запорнорегулирующей, распределительно-смесительной и фазоразделительной арматуры, рабочая среда — жидкость

Вид	Тип		I	Клас	с гер	мети	чнос	ти за	твора	ì	
арматуры арматуры		A	AA	В	С	CC	D	Е	EE	F	G
У	плотнение з	атво	pa «N	иета.	пл-м	етал	л»				
Запорная	Клапаны	+	+	+	+	+	+	+	+	+	+
	Задвижки	+	+	+	+	+	+	+	+	+	+
	Дисковые	+	+	+	+	+	+	+	+	+	+
	затворы			Т			Т			Т	Т
	Краны	+	+	+	+	+	+	+	+	+	+
Обратная	Затворы				+	+	+	+	+	+	+
	Клапаны				+	+	+	+	+	+	+
Предохранительная	Bce			+	+	+	+				
Запорно-			+	+	+	+	+				
регулирующая			'	'	'	'	'				
Распределительно-				+	+	+	+	+	+	+	+
смесительная				'	'	'	'	'	'	'	'
Фазоразделительная		+	+	+	+	+					
	Уплотнен	ие за	атвор	oa «M	1ЯГК(oe»		ı	1		
Запорная	Клапаны	+	+	+	+	+	+				
	Задвижки	+	+	+	+	+	+				
	Дисковые	+	+	+	+	+	+				
	затворы			Т		T	Т				
	Краны	+	+	+	+	+	+	+	+	+	+
Обратная	Затворы	+	+	+	+	+					
	Клапаны	+	+	+	+	+					
Предохранительная	Bce	+	+	+	+						
Запорно-		+	+	+	+	+					
регулирующая				'							
Распределительно-				+	+	+	+	+			
смесительная					'	'	'	'			
Фазоразделительная		+	+	+							

Таблица Е.2 - Рекомендации по назначению классов герметичности затворов запорной, обратной, предохранительной, запорнорегулирующей, распределительно-смесительной и фазоразделительной арматуры, рабочая среда — газ

Вид	Тип Класс герметичности затвора										
арматуры	арматуры	A	AA	В	С	CC	D	Е	EE	F	G
Уплотнение затвора «металл-металл»											
Запорная	Клапаны	+	+	+	+	+	+	+	+	+	+
	Задвижки	+	+	+	+	+	+	+	+		
	Дисковые			_				,			
	затворы			+	+	+	+	+	+	+	+
	Краны			+	+	+	+	+	+		
Обратная	Затворы						+	+	+	+	
	Клапаны				+	+	+	+	+	+	
Предохранительная	Bce		+	+	+	+	+				
Запорно- регулиру-			+	+	+						
ющая			'	ı	1						
Распределительно-				+	+	+	+	+	+	+	+
смесительная				'	1	l	•	'	ı	ı	I
Фазоразделительная		+	+	+	+	+					
	Уплотнен	ие за	атвој	oa «N	1ЯГК(oe»		ı	1		1
Запорная	Клапаны	+	+	+	+						
	Задвижки	+	+	+	+						
	Дисковые	+	+	+	+	+					
	затворы	+	+	+	+	+					
	Краны	+	+	+	+	+	+	+	+	+	+
Обратная	Затворы	+	+	+	+	+					
	Клапаны	+	+	+	+	+					
Предохранительная	Bce	+	+	+							
Запорно- регулиру-		+	+	+	+	+					
ющая		'	'	ı	'						
Распределительно-				+	+	+	+	+			
смесительная				1	'	'	ı	'			
Фазоразделительная		+	+	+							

Таблица Е.З - Рекомендации по назначению классов герметичности затворов

регулирующей арматуры

Рекомендуе-	Класс герметичности затвора					
мый класс герметичности	Ι	II	III	IV, IV-S1, IV-S2	V	VI
Конструк- тивное испол- нение регули- рующего кла- пана	Bce	Двухсе- дельный, клеточ- ный раз- гружен- ный	Двухсе- дельный, односе- дельный, клеточ- ный	Односе- дельный, клеточ- ный нераз- гружен- ный	Односе- дельный, клеточ- ный	Односе- дельный с мягким уплотне- нием за- твора

Приложение Ж

(справочное)

Примеры записи в НД допущений по изменению утечки в затворе

Ж.1 Примеры записи в НД допущений по изменению утечки в затворе в процессе эксплуатации и при проведении испытаний приведены в таблице Ж.1.

Таблица Ж.1

НД	Требование НД
[2]	2.3.8.8 При отсутствии с ТЗ или/и ТУ требований к герметичности в процессе эксплуатации величины протечек при приемочных испытаниях после наработки ресурса по пункту 4.2.1 не должны превышать указанных в пунктах 2.3.8.1, 2.3.8.3, 2.3.8.5, 2.3.8.6 более чем в десять раз
[11]	11.4.3 Приемочные критерии Утечка для арматуры с эластичным седлом и арматуры со смазанной пробкой не должна превышать параметров ISO 5208 Класс А (отсутствие видимой утечки). Для арматуры с металлическим седлом норма утечки не должна превышать ISO 5208:1993, Класс D, за исключением того, что норма утечки во время испытаний затвора согласно Разделу В.4 не должна превышать более чем в два раза допустимую утечку по ISO 5208:1993, Класс D, если не оговорено иначе. Процедуры для испытания различных типов запорной арматуры даны в п.11.4.4. Примечание К специальным конструкциями может предъявляться требование, чтобы утечка соответствовала ISO 5208:1993, Класс D.

Примечания

- 1 Для арматуры класса герметичности «А» после наработки полного ресурса в процессе испытаний утечка в затворе не должна превышать значение, указанное в настоящем стандарте для класса герметичности «В».
- 2 Норма герметичности в процессе наработки полного ресурса определяется линейной интерполяцией.
- 3 Указанные нормы герметичности обеспечиваются при выполнении технического обслуживания арматуры в соответствии с РЭ.

ΓΟCT P 54808-2011

Библиография

		1 1				
[1]	Закон Российской Федерации № 116-ФЗ от 21 июля 1997 г. «О промышленной					
	безопасности опасных производственных объектов»					
[2]	НП-068-05	Трубопроводная арматура для атомных станций. Об-				
		щие технические требования				
[3]	ИСО 4126-1:2004	Устройства предохранительные для защиты от избы-				
	(ISO 4126-1:2004)	точного давления. Часть 1. Предохранительные клапа-				
		ны (Safety devices for protection against excessive pressure				
		– Part 1: Safety valves)				
[4]	ИСО 4126-2:2003 (Е)	Предохранительные устройства для защиты от избы-				
	(ISO 4126-2:2003 (E)	точного давления. Часть 2. Предохранительные устрой-				
		ства с разрывной мембраной (Safety devices for protec-				
		tion against excessive pressure – Part 2: Bursting disc safe-				
		ty devices)				
[5]	АПИ 527:1991	Испытание предохранительной арматуры на герметич-				
	API 527:1991	ность в затворе (Seat Tightness of Pressure Relief Valves)				
[6]	МУ 2.1.5.1183-03	Санитарно – эпидемиологический надзор за использо-				
		ванием воды в системах водоснабжения промышлен-				
		ных предприятий				
[7]	СанПиН 2.1.4.1074-01	Питьевая вода. Гигиенические требования к качеству				
		воды централизованных систем питьевого водоснабже-				
		ния. Контроль качества				
[8]	OCT 51.40-93	Газы горючие природные, поставляемые и транспорти-				
		руемые по магистральным газопроводам. Технические				
		условия				
[9]	ИСО 7005-1:1992	Фланцы металлические. Часть 1. Стальные фланцы				
	ISO 7005-1:1992	(Metallic Flanges – Part 1: Steel Flanges)				

[10] ИСО 14313:2007	Нефтяная и газовая промышленность. Трубопроводные
ISO14313:2007	транспортные системы – Вентили трубопроводов
	(ISO14313:2007 «Petroleum and natural gas industries –
	Pipeline transportation systems – Pipeline valves»)
[11] АПИ 6D:2008	Спецификация на трубопроводную арматуру (API Spec
API Spec 6D:2008	6D:2008 «Specification for Pipeline Valves»)