Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Aleksandra Maj

Nr albumu: 248424

Wybór struktury i estymacja parametrów macierzy korelacji komponentów losowych w liniowym modelu z efektami losowymi

Praca magisterska na kierunku MATEMATYKA w zakresie MATEMATYKA STOSOWANA

> Praca wykonana pod kierunkiem dra inż. Przemysława Biecka Zakład Statystyki Matematycznej MIM UW

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczna.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy przedstawiona jest teoria dotycząca estymacji współczynników liniowych modeli z efektami mieszanymi, porównywania ich oraz testowania jakości dopasowania i doboru struktury komponentów losowych w modelu. Przedstawiony jest również szereg kryteriów mierzących jakość dopasowania modelu do danych: GIC, PRESS, CCC, R^2 , R_W^2 oraz R_{LR}^2 . Oprócz teorii zaprezentowane są wyniki studium symulacyjnego, którego celem było zbadanie skuteczności wyboru struktur korelacji komponentów losowych modelu na podstawie części opisanych kryteriów. Symulacje zostały przeprowadzone przy użyciu pakietu środowiska R o nazwie lmmfit, który powstał specjalnie na potrzeby pracy.

Słowa kluczowe

liniowy model z efektami losowymi, liniowy model mieszany, analiza danych panelowych, macierz kowariancji komponentów losowych, struktura korelacji efektów losowych, kryterium GIC, współczynnik PRESS dla liniowych modeli mieszanych, współczynnik CCC dla liniowych modeli mieszanych, współczynniki R^2 dla liniowych modeli mieszanych, struktura korelacji błędów losowych, rozkład Cholesky'ego, rozkład SVD

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.2 Statystyka

Klasyfikacja tematyczna

62H12 Estimation 62J20 Diagnostics 62J99

Tytuł pracy w języku angielskim

The choice of structure and parameters estimation of correlation matrix of random factors in linear model with random effects

Spis treści

W	prow	adzenie
1.		stawowe pojęcia 1 Definicje 1
2.	Lini	owe modele mieszane
	2.1.	Formuła modelu
		2.1.1. Macierzowa formuła modelu
	2.2.	Rozkłady zmiennej objaśnianej
		2.2.1. Rozkład warunkowy zmiennej objaśnianej
		2.2.2. Rozkład bezwarunkowy zmiennej objaśnianej (rozkład brzegowy) 17
	2.3.	Estymacja parametrów modelu
		2.3.1. Estymacja metodą największej wiarygodności (ang. maximum likeli-
		$hood\ method\ (ML))$
		2.3.2. Estymacja metodą ograniczonej największej wiarygodności (ang. restricted maximum likelihood method (REML))
		2.3.3. Regularyzowana i ważona metoda najmniejszych kwadratów (ang. penalized weighted least squares (PWLS))
	2.4.	Parametryzacja macierzy kowariancji
		2.4.1. Parametryzacja macierzy R_i
		2.4.2. Parametryzacja macierzy D
3.	Dop	pasowanie modelu i struktury korelacji
	3.1.	Diagnostyka liniowego modelu mieszanego
		3.1.1. Badanie normalności efektów losowych b_i
		3.1.2. Diagnostyka reszt
	3.2.	Testowanie istotności współczynników
		3.2.1. Testowanie hipotez dotyczących efektów stałych
		3.2.2. Testowanie hipotez dotyczących efektów losowych b
	3.3.	Wybór modelu
		3.3.1. Kryteria informacyjne: GIC, AIC i BIC
		3.3.2. Współczynnik $PRESS$ dla modeli mieszanych
		3.3.3. Współczynniki \mathbb{R}^2 dla modeli mieszanych
		3.3.4. Współczynnik CCC dla modeli mieszanych
	3.4.	Struktury korelacji komponentów losowych
		3.4.1. Struktury korelacji błędów losowych ε
		3.4.2 Struktury korelacji efektów losowych h

4.	Lini	owe m	od	lele	\mathbf{mie}	esza	ne	\mathbf{w}]	\mathbf{R}														36
	4.1.	Pakiet	nl	me -	· fur	ıkcja	ı lm	e()															36
	4.2.	Pakiet	1 m	mfi	t.																		40
		4.2.1.	Fυ	ınko	je s	tru	ctSt	tep	()	i s	trı	ıct	St	ер	R2	()							41
	4.3.	Analiza	za d	lany	ch s	ymu	ılow	any	$^{\prime}\mathrm{ch}$														45
		4.3.1.	O_{i}	pis s	sym	ulaci	ji .																45
		4.3.2.	W	yni]	ki sy	ymul	acji	ί															47
		4.3.3.	W	nios	ski i	pod	lsun	now	ani	ie s	yn	nula	acj	i.									54
Po	dsun	nowani	ie																				59
Α.	Wyı	niki sy	mı	ılac	ji, t	tabe	ele																61
в.	Zaw	artość	pł	yty	\mathbf{CI})																	77
Bi	bliog	rafia .																					79

Spis rysunków

4.1.	Porządek struktur korelacji błędów losowych ε	41
4.2.	Porządek struktur korelacji efektów losowych b	42
4.3.	Porządek liniowych modeli mieszanych wyznaczony przez struktury kompo-	
	nentów losowych	43
4.4.	Porównanie kryteriów, wybór prawidłowych struktur komponentów losowych,	
	start z prawdziwego modelu	48
4.5.	Porównanie kryteriów, wybór prawidłowych struktur komponentów losowych,	
	start z modelu o innych strukturach	49
4.6.	Porównanie kryteriów, wybór prawidłowej struktury efektów losowych b , start	
	z prawdziwego modelu	50
4.7.	Porównanie kryteriów, wybór prawidłowej struktury efektów losowych $b,$ start	
	z modelu o innych strukturach	51
4.8.	Porównanie kryteriów, wybór prawidłowej struktury błędów losowych ε , start	
	z prawdziwego modelu	52
4.9.	Porównanie kryteriów, wybór prawidłowej struktury błędów losowych ε , start	
	z modelu o innych strukturach	53
4.10.	Wybór struktur korelacji komponentów losowych dla modeli bazowych	56
4.11.	Wybór struktur korelacji komponentów losowych dla modeli bazowych, c.d	57

Spis tablic

4.1.	Wybrane argumenty funkcji lme()	39
4.2.	Uzyskiwanie informacji z hipotetycznego obiektu lme.fit dopasowanego za	
	pomocą funkcji lme()	40
4.3.	Funkcje pakietu lmmfit wyznaczające współczynniki jakości dopasowania dla	
	liniowego modelu mieszanego	41
4.4.	Funkcja structStep() wyznaczająca struktury korelacji komponentów losowych	
	poprzez minimalizację kryterium GIC lub $PRESS$	44
4.5.	Funkcja structStepR2() wyznaczająca struktury korelacji komponentów losowyc	h
	poprzez maksymalizację współczynnika dopasowania	44
Λ 1	Wybór modelu, porównanie kryteriów, wybór prawidłowych struktur kompo-	
л.1.	nentów losowych	62
Δ 2	Wybór modelu, porównanie kryteriów, wybór prawidłowej struktury efektów	02
11.2.	losowych	63
A.3.	Wybór modelu, porównanie kryteriów, wybór prawidłowej struktury błędów	00
11.0.	losowych	64
A.4.	Wybór modelu, model bazowy m1	65
	Wybór modelu, model bazowy m2	68
	Wybór modelu, model bazowy m3	71
	Wybór modelu, model bazowy m4	74

Wprowadzenie

Celem niniejszej pracy jest przedstawienie teorii dotyczącej estymacji współczynników liniowych modeli z efektami mieszanymi, porównywania ich oraz testowania jakości dopasowania i doboru struktury komponentów losowych w modelu. Dla uproszczenia zapisu, w dalszej części pracy liniowy model z efektami mieszanymi nazywany będzie modelem mieszanym. Trzeba jednak zwrócić uwagę, że modele z efektami losowymi są szerszą grupą modeli niż modele mieszane, ponieważ nie muszą one zawierać efektów stałych.

W teorii klasycznych modeli liniowych współczynniki modelu traktuje się jako wartości nieznane, ale stałe i określone dla całej populacji. W liniowych modelach mieszanych, będących uogólnieniem modeli liniowych, oprócz współczynników traktowanych jako stałe (nazywanych efektami stałymi), znajdują się jeszcze tak zwane efekty losowe. Są to współczynniki modelu, których ocena wartości nie jest istotna w analizie, natomiast istotna jest ocena ich zmienności. Poprzez założenie, że współczynniki te są realizacjami pewnej zmiennej losowej, można właśnie tę zmienność badać.

Przyjęcie, które współczynniki mają być traktowane jako losowe, a które jako stałe jest rzeczą arbitralną i często bywa kontrowersyjne, ponieważ każdy z tych rodzajów współczynników ma zupełnie inną interpretację. Często jako losowe traktuje się zmienne jakościowe, które występują tylko na kilku poziomach ze wszystkich możliwych poziomów występowania danej zmiennej, na przykład: mamy dane o ocenach i poziomach inteligencji uczniów z dziesięciu szkół. Chcielibyśmy zbadać jaki wpływ ma poziom inteligencji na ocenę ucznia. Wiadomo, że sposoby nauczania różnią się między szkołami, więc, chcąc również uwzględnić efekt szkoły w modelu, możemy potraktować ją jako efekt losowy (w kraju jest więcej niż dziesięć szkół). Takie potraktowanie efektu szkoły pozwala uwzględnić zmienność ocen uczniów między szkołami, a nie ocenić wpływ konkretnej szkoły na poziom ocen. Gdybyśmy potraktowali efekt szkoły jako efekt stały, moglibyśmy wskazać, w której szkole poziom ocen jest wyższy lub niższy niż w innych.

Poprzez możliwość uwzględnienia zmienności między grupami, modele mieszane znajdują niezwykle szerokie zastosowanie w naukach przyrodniczych, finansach czy medycynie. W szczególności są one przydatne do analizy danych panelowych. Dane panelowe charakteryzują się tym, że zebrane są informacje o podmiotach obserwowanych przez kilka okresów czasu (ang. repeated measurements), na przykład: zbieramy dane o ciśnieniu krwi stu konkretnych pacjentów przez rok, wykonując pomiary co miesiąc. Analizując dane tego typu nie interesuje nas wpływ danej jednostki na badaną zmienną, ale ogólne zróżnicowanie między obserwowanymi jednostkami. Efekt jednostki traktujemy wtedy jako losowy.

Oprócz teorii dotyczącej liniowych modeli mieszanych, w pracy zaprezentowane są wyniki studium symulacyjnego, którego celem było zbadanie skuteczności wyboru struktur korelacji komponentów losowych modelu na podstawie kryteriów: AIC, BIC, PRESS (ang. predicted residual sum of squares), CCC (ang. concordance correlation coefficient), R_W^2 oraz R_{LR}^2 (współczynniki PRESS, CCC oraz R_W^2 występują w dwóch wersjach: brzegowej i warunkowej).

Praca została podzielona na cztery rozdziały, jednak koncepcyjnie składa się z dwóch części: pierwszej - wprowadzenie i teoria liniowych modeli mieszanych oraz drugiej - obsługa liniowych modeli mieszanych w środowisku R oraz studium symulacyjne przeprowadzone z wykorzystaniem właśnie tego środowiska.

Pierwszy rozdział zawiera podstawowe pojęcia i definicje związane z liniowymi modelami mieszanymi. Rozdział drugi jest poświęcony sformułowaniu modelu mieszanego oraz teoretycznemu opisowi metod estymacji współczynników modelu: metodzie ML (ang. maximum likelihood), REML (ang. restricted maximum likelihood) oraz PWLS (ang. penalized weighted least squares). W rozdziale trzecim znajduje się opis diagnostyki modelu mieszanego oraz testowania hipotez dotyczących istotności współczynników modelu. W rozdziale tym zawarte są również szczegółowe opisy kryteriów używanych do badania jakości dopasowania modelu do danych i pomocnych przy wyborze modelu, takich jak: kryteria informacyjne GIC (ang. generalized information criterion), AIC i BIC, współczynnik PRESS, współczynniki R^2 oraz współczynnik CCC dla modeli mieszanych.

Rozdział czwarty stanowi odrębną część pracy. Znajduje się w nim opis pakietu nlme autorstwa D. Batesa i J. Pinheiro, który pozwala wykonywać odpowiednie analizy w środowisku R oraz opis pakietu lmmfit, który powstał specjalnie na potrzeby tejże pracy. Pakiet ten zawiera funkcje wyznaczające wszystkie współczynniki i kryteria jakości dopasowania modelu do danych opisane w pracy oraz funkcje dokonujące automatycznego doboru struktur korelacji błędów losowych i korelacji efektów losowych przy ustalonych efektach stałych i losowych w modelu mieszanym pogrupowanym przez jedną zmienną. Pakiet lmmfit dostępny jest pod adresem:

http://cran.r-project.org/web/packages/lmmfit/index.html

W rozdziale czwartym znajduje się również opis studium symulacyjnego, które zostało przeprowadzone za pomocą wyżej wymienionych pakietów. Celem studium jest zbadanie skuteczności części opisanych w pracy współczynników jakości dopasowania modelu w wyborze struktur korelacji komponentów losowych modelu.

Rozdział 1

Podstawowe pojęcia

W rozdziale tym przedstawione zostały podstawowe definicje i pojęcia używane w niniejszej pracy.

1.1. Definicje

Definicja 1.1.1 (Macierz idempotentna) Macierza idempotentna nazywamy kwadratowa macierz A, taka że

$$A^2 = AA = A$$
.

Jeśli macierz A jest macierzą symetryczną idempotentną, to wtedy

$$A^T A = A$$
.

Definicja 1.1.2 (Macierz nieujemnie określona) Niech A będzie macierzą symetryczną, jeśli dla każdego niezerowego wektora x zachodzi:

$$x^T A x \ge 0$$
.

to A nazywamy macierzą nieujemnie określoną (lub dodatnio pół określoną).

Definicja 1.1.3 (Macierz dodatnio określona) Niech A będzie macierzą symetryczną, jeśli dla każdego niezerowego wektora x zachodzi:

$$x^T Ax > 0$$
.

to A nazywamy macierzą dodatnio określoną.

Definicja 1.1.4 (Rozkład Cholesky'ego) Niech $A \in \mathbb{R}^{n \times n}$ będzie symetryczną macierzą dodatnio określoną. *Macierzą rozkładu Cholesky'ego macierzy A* nazywamy górnotrójkątną macierz $U \in \mathbb{R}^{n \times n}$, taką że:

$$A = U^T U$$

lub dolnotrójkatna macierz $L \in \mathbb{R}^{n \times n}$, taka że:

$$A = LL^T$$
.

Macierze U i L są wyznaczone jednoznacznie.

Definicja 1.1.5 (Rozkład SVD) Niech $A \in \mathbb{R}^{m \times n}$, $m \geq n$, będzie dowolną macierzą. *Rozkładem SVD (ang.: Singular Value Decomposition) macierzy A* nazywamy następującą dekompozycje:

$$A = U\Sigma V^T$$
.

gdzie U jest macierzą ortonormalną rozmiaru $m \times n$, będącą bazą przestrzeni rozpiętej przez kolumny A, V jest macierzą ortonormalną rozmiaru $n \times n$, będącą bazą przestrzeni rozpiętej przez kolumny A, a Σ jest macierzą diagonalną rozmiaru $n \times n$ mającą na przekątnej pierwiastki wartości własnych macierzy A^TA w kolejności niemalejącej.

Definicja 1.1.6 (Rozkład LDL) Niech $A \in \mathbb{R}^{n \times n}$, będzie dowolną macierzą symetryczną. *Rozkładem LDL macierzy A* nazywamy następującą dekompozycję:

$$A = LDL^T$$

gdzie L jest kwadratową macierzą dolnotrójkątną rozmiaru $n \times n$ z jedynkami na przekątnej, a D jest macierzą diagonalną $n \times n$, mającą na przekątnej pierwiastki wartości własnych macierzy A^TA w kolejności niemalejącej.

Definicja 1.1.7 (Rozkład QR) Niech $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Rozkładem QR macierzy A nazywamy przedstawienie:

$$A = QR$$

gdzie Q jest macierzą ortogonalną $m \times m$, a R jest górnotrójkątną macierzą $m \times n$. Ponieważ (m-n) dolnych rzędów macierzy R jest zerowych, rozkład ten można przedstawić w tak zwanej wąskiej postaci:

$$A = QR = Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = [Q_1, Q_2] \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1,$$

gdzie R_1 jest macierzą górnotrójkątną $n \times n$, Q_1 jest rozmiaru $m \times n$, Q_2 jest rozmiaru $m \times (m-n)$ i obie te macierze mają ortogonalne kolumny.

Gdy macierz A jest pełnego rzędu n oraz założymy, że diagonalne elementy macierzy R_1 są dodatnie, to R_1 i Q_1 są wyznaczone jednoznacznie, ponadto Q_2 nie jest wyznaczona jednoznacznie oraz R_1 jest równa górnotrójkątnej macierzy rozkładu Cholesky'ego macierzy A^TA .

Definicja 1.1.8 (Estymator Największej Wiarygodności) Przypuśćmy, że $x_1, ..., x_n$ jest próbą niezależnych obserwacji z rozkładu o nieznanej gęstości $f_0(\cdot)$ pochodzącej z rodziny $\{f_{\theta}(\cdot), \theta \in \Theta\}$, takiej że $f_0(\cdot) = f_{\theta_0}(\cdot)$, gdzie θ_0 jest prawdziwą wartością parametru θ . Niech

$$\mathcal{L}(\theta; x_1, ..., x_n) = f_{\theta}(x_1, ..., x_n) = \prod_{i=1}^n f_{\theta}(x_i)$$

będzie funkcją wiarygodności oraz

$$l(\theta; x_1, ..., x_n) = \ln \mathcal{L}(\theta; x_1, ..., x_n) = \sum_{i=1}^n \ln f_{\theta}(x_i)$$

będzie funkcją log-wiarygodności. Wtedy estymatorem największej wiarygodności θ nazywamy $\hat{\theta}_{ML}$, który spełnia:

$$\hat{\theta}_{ML} = \underset{\theta \in \Theta}{\operatorname{arg max}} \ l(\theta; x_1, ..., x_n).$$

Definicja 1.1.9 (Efekt stały) *Efektem stałym* nazywamy nieznaną stałą, którą chcemy oszacować na podstawie danych. Stała ta jest określona dla całej populacji lub podzbioru populacji (grupy).

Definicja 1.1.10 (Efekt losowy) *Efektem losowym* jest realizacja pewnej zmiennej losowej. Zazwyczaj nie tyle jesteśmy zainteresowani oceną tej wartości, co chcemy estymować parametry rozkładu, z którego ta zmienna losowa pochodzi. Wartość efektu losowego jest charakterystyczna dla pewnego podzbioru populacji.

Definicja 1.1.11 (Liniowy model z efektami losowymi) Liniowym modelem z efektami losowymi nazywamy model zawierający efekty losowe lub efekty stałe i losowe, który tłumaczy liniową zależność między zmienną objaśnianą a funkcjami zmiennych objaśniających.

Definicja 1.1.12 (Liniowy model mieszany) Liniowym modelem mieszanym nazywamy liniowy model z efektami losowymi, który zawiera również efekty stałe.

Rozdział 2

Liniowe modele mieszane

Modele mieszane, tak jak i inne modele statystyczne, opisują zależność pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi. Używane są przede wszystkim do modelowania zależności w danych, które są pogrupowane względem jednej lub kilku zmiennych. Przykładami takich pogrupowanych danych mogą być: dane panelowe (każdy obiekt wyznacza grupę - jest obserwowany przez kilka okresów czasu), dane z powtarzanymi pomiarami lub dane o kilku poziomach grupowania (np. oceny uczniów z różnych klas, które znajdują się w różnych szkołach). Poprzez traktowanie wpływu konkretnej grupy jako efekt losowy, modele mieszane pozwalają uwzględniać strukturę zależności między zmiennymi grupującymi obserwacje. Pozwalają również na efektywne zmniejszenie liczby parametrów modelu.

Zostało przyjęte w literaturze przedmiotu, że efekty stałe oznacza się literami greckimi, natomiast litery łacińskie oznaczają efekty losowe. Podzbiór kolumn macierzy eksperymentu traktowanych jako efekty stałe oznaczany będzie symbolem X, a podzbiór kolumn zmiennych traktowanych jako zmienne losowe symbolem Z.

Rozdział ten powstał na podstawie opisu teorii z książek [Burzykowski2011], [Bates2009], [Pinheiro2000] i jest poświęcony opisowi liniowych modeli mieszanych. W pierwszym podrozdziałe omówione jest ogólne sformułowanie liniowego modelu mieszanego dla danych pogrupowanych przez jedną zmienną. W kolejnych podrozdziałach opisane są trzy metody estymacji współczynników modelu - metoda największej wiarygodności (ML), ograniczonej największej wiarygodności (REML) oraz regularyzowanej, ważonej metody najmniejszych kwadratów (PWLS). Na końcu tego rozdziału opisujemy parametryzacje macierzy kowariancji efektów losowych i błędów losowych w modelu.

2.1. Formula modelu

Dla ułatwienia zapisu, będziemy rozpatrywać dane pogrupowane o N poziomach (i = 1, ..., N). W każdej grupie znajduje się n_i obserwacji $(\sum_{i=1}^N n_i = n)$. Przyjmujemy również, że macierz X jest pełnego rzędu p.

Formuła modelu wyglada następujaco:

$$y_i = X_i \beta + Z_i b_i + \varepsilon_i, \tag{2.1}$$

gdzie y_i , X_i i ε_i są odpowiednio: wektorem ciągłym zmiennej objaśnianej, macierzą eksperymentu oraz wektorem reszt dla i-tej grupy, Z_i oraz b_i są: macierzą zmiennych objaśniających (traktowanych jako losowe) i wektorem efektów losowych:

$$Z_{i} = \begin{pmatrix} z_{i1}^{(1)} & z_{i1}^{(2)} & \dots & z_{i1}^{(q)} \\ \vdots & \vdots & \ddots & \vdots \\ z_{in_{i}}^{(1)} & z_{in_{i}}^{(2)} & \dots & z_{in_{i}}^{(q)} \end{pmatrix} = \left(z_{i}^{(1)}, z_{i}^{(2)}, \dots, z_{i}^{(q)}\right),$$

$$(2.2)$$

$$b_i = \begin{pmatrix} b_{i1} \\ \vdots \\ b_{iq} \end{pmatrix}. \tag{2.3}$$

Tak jak macierz X_i , Z_i jest macierzą znanych wartości q zmiennych objaśniających, natomiast b_i są nieobserwowalnymi realizacjami zmiennej losowej \mathcal{B} , takiej że:

$$\mathcal{B} \sim \mathcal{N}_q(0, \mathcal{D}).$$
 (2.4)

Zakłada się również, że

$$\varepsilon_i \sim \mathcal{N}_{n_i}(0, \mathcal{R}_i)$$
 (2.5)

oraz $b_i \perp \varepsilon_i$ dla każdego i=1,...,N (b_i jest niezależne od ε_i w każdej grupie). Założenie niezależności efektów losowych i błędów losowych odgrywa kluczową rolę w rozróżnieniu klasycznych liniowych modeli mieszanych i rozszerzonych liniowych modeli mieszanych, których nie będziemy omawiać w tej pracy. Są one opisane w [Burzykowski2011]. Dodatkowo zakłada się jeszcze, że dla każdego i oraz i' zachodzi $b_i \perp \varepsilon_{i'}$.

Zauważmy, że efekty losowe powinny z założenia mieć zerową wartość oczekiwaną, zatem niezerowa ich średnia musi być wyrażona jako efekt stały, stąd najczęściej Z jest podzbiorem kolumn X.

Niech

$$\mathcal{D} = \sigma^2 D \text{ oraz } \mathcal{R}_i = \sigma^2 R_i, \tag{2.6}$$

gdzie σ^2 jest nieznanym parametrem. Dla identyfikowalności modelu przyjmuje się, że górne, lewe elementy macierzy D i R_i są równe 1, także wtedy \mathcal{D} i \mathcal{R}_i są zdefiniowane jednoznacznie.

2.1.1. Macierzowa formuła modelu

Niech $y=(y_1^T,...,y_N^T)^T$ będzie wektorem całej zmiennej objaśnianej (długości $n=\sum_{i=1}^N n_i$). Analogicznie, niech $b=(b_1^T,...,b_N^T)^T$ i $\varepsilon=(\varepsilon_1^T,...,\varepsilon_N^T)^T$ będą wektorami zawierającymi wszystkie efekty losowe modelu. Niech

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix}, \tag{2.7}$$

$$Z = \begin{bmatrix} Z_1 & 0 & \dots & 0 \\ 0 & Z_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & Z_N \end{bmatrix}, \tag{2.8}$$

wtedy macierzową formułą modelu jest:

$$y = X\beta + Zb + \varepsilon, \tag{2.9}$$

gdzie

$$b \sim \mathcal{N}_{N_a}(0, \mathfrak{D}) \ i \ \varepsilon \sim \mathcal{N}_n(0, \sigma^2 R),$$
 (2.10)

gdzie

$$\mathfrak{D} = \sigma^2 I_N \otimes D = \begin{bmatrix} D & 0 & \dots & 0 \\ 0 & D & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & D \end{bmatrix}$$
 (2.11)

oraz

$$R = \begin{bmatrix} R_1 & 0 & \dots & 0 \\ 0 & R_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & R_N \end{bmatrix}.$$
 (2.12)

Warto zauważyć, że szczególna, blokowa postać macierzy Z, R i \mathfrak{D} wynika z tego, że opisujemy model pogrupowany względem jednej zmiennej grupującej.

2.2. Rozkłady zmiennej objaśnianej

Opisane powyżej sformułowanie liniowego modelu mieszanego wyznacza rozkłady dwóch zmiennych losowych: $y_i|b_i$ i y_i . Pierwszy jest warunkowym rozkładem zmiennej objaśnianej pod warunkiem nieobserwowalnej zmiennej normalnej, drugi natomiast jest rozkładem bezwarunkowym. Rozkłady te posłużą potem do estymacji parametrów modelu.

2.2.1. Rozkład warunkowy zmiennej objaśnianej

Z założeń modelu mamy:

$$\mathbb{E}(y_i|\mathcal{B} = b_i) \equiv \mu_i = X_i\beta + Z_ib_i, \tag{2.13}$$

$$Var(y_i|\mathcal{B} = b_i) = \sigma^2 R_i, \tag{2.14}$$

gdzie $\mu_i = (\mu_{i1}, ..., \mu_{in_i})^T$ oraz

$$\mathbb{E}(y_{ij}|\mathcal{B} = b_i) \equiv \mu_{ij} = x_{ij}^T \beta + z_{ij}^T b_i,$$

gdzie $x_{ij} = (x_{ij}^{(1)},...,x_{ij}^{(p)})^T$ i $z_{ij} = (z_{ij}^{(1)},...,z_{ij}^{(q)})^T$ są kolumnowymi wektorami zawierającymi wartości predyktorów x i z dla j-tej obserwacji z i-tej grupy.

2.2.2. Rozkład bezwarunkowy zmiennej objaśnianej (rozkład brzegowy)

Dane jest również:

$$\mathbb{E}(y_i) = X_i \beta, \tag{2.15}$$

$$Var(y_i) = \mathcal{V}_i = \sigma^2 V_i = \sigma^2 (Z_i D Z_i^T + R_i), \tag{2.16}$$

zatem brzegowym rozkładem zmiennej objaśnianej jest

$$y_i \sim \mathcal{N}_{n_i}(X_i\beta, \sigma^2 Z_i D Z_i^T + \sigma^2 R_i).$$
 (2.17)

Warto zauważyć, że w brzegowym modelu nie występują efekty losowe b_i . Stąd macierz D nie musi być traktowana jako macierz kowariancji, w konsekwencji nie musi być dodatnio określona (wystarczy, żeby macierz $V_i = Z_i D Z_i^T + R_i$ była dodatnio określona). D musi być jedynie symetryczna.

2.3. Estymacja parametrów modelu

Macierz D jest macierzą wariancji efektów losowych b_i . Dla potrzeb estymacji parametryzuje się tę macierz wektorem nieznanych parametrów θ_D określającym jej elementy, wtedy:

$$\mathcal{D}(\sigma^2, \theta_D) = \sigma^2 D(\theta_D). \tag{2.18}$$

Najogólniejszy przypadek zakłada, że każde dwa elementy wektora b_i mogą być ze sobą skorelowane. Wtedy \mathcal{D} ma ogólną strukturę macierzy dodatnio określonej o q-1 elementach odpowiadających wariancjom (lewy, górny element D jest równy 1) i $\frac{q(q-1)}{2}$ elementach odpowiadających kowariancjom elementów wektora b_i . Stąd θ_D zawiera co najwyżej $\frac{q(q+1)}{2}-1$ parametrów. Pomimo, że zazwyczaj q jest nieduże, to estymacja wszystkich parametrów może być problematyczna - zwiększając wymiar przestrzeni parametrów, coraz trudniejszym zadaniem jest zachowanie dodatniej określoności i symetryczności macierzy kowariancji \mathcal{D} . Dla uproszczenia estymacji, narzuca się na macierz \mathcal{D} pewną strukturę. Takie postępowanie zmniejsza liczbę parametrów do oszacowania oraz umożliwia prostszą interpretację wyników.

Zupełnie analogicznie parametryzuje się macierze R_i - macierze wewnątrzgrupowych korelacji błędów losowych ε_i :

$$\mathcal{R}_i(\sigma^2, \theta_R) = \sigma^2 R_i(\theta_R), \tag{2.19}$$

gdzie θ_R jest wektorem parametrów niezależnym od θ_D . Wtedy można zapisać:

$$Var(\varepsilon_i|\mathcal{B} = b_i) = \sigma^2 R_i(\mu_i, \theta_R)$$
(2.20)

lub

$$Var(\varepsilon_i|\mathcal{B} = b_i) = Var(\varepsilon_i) = \sigma^2 R_i(\theta_R),$$
 (2.21)

gdy $b_i \perp \varepsilon_i$, czyli gdy b_i i ε_i są niezależne.

2.3.1. Estymacja metodą największej wiarygodności (ang. maximum likelihood method (ML))

Żeby móc zastosować metodę największej wiarygodności (patrz definicja 1.1.8), trzeba określić funkcję wiarygodności modelu: $L(\beta, \sigma^2, \theta)$. Niestety bezwarunkowy rozkład b_i czy rozkład zmiennej $y_i|b_i$ nie są dobre do konstrukcji tej funkcji, ponieważ zawierają nieobserwowalne efekty losowe b_i . Z tego samego powodu funkcją wiarygodności nie może być również łączny rozkład zmiennych b_i i y_i .

Rozwiązaniem tego problemu jest oparcie estymacji współczynników liniowego modelu mieszanego na brzegowym rozkładzie y_i , który otrzymujemy po scałkowaniu względem b_i rozkładu łącznego b_i i y_i :

$$f_Y(y) = \int f_{Y,\mathcal{B}}(y,b) db = \int f_{Y|\mathcal{B}}(y|b) f_{\mathcal{B}}(b) db, \qquad (2.22)$$

gdzie $f_{Y,\mathcal{B}}$ jest gęstością łącznego rozkładu zmiennej losowej Y, której realizacjami są y_i i zmiennej losowej \mathcal{B} , której realizacjami są b_i , $f_{Y|\mathcal{B}}$ jest gęstością warunkowego rozkładu Y pod warunkiem \mathcal{B} i $f_{\mathcal{B}}$ jest gęstością bezwarunkowego rozkładu \mathcal{B} . Ponieważ $f_{Y,\mathcal{B}}$ i $f_{\mathcal{B}}$ są gęstościami wielowymiarowych rozkładów normalnych, to brzegowy rozkład Y również jest wielowymiarowym rozkładem normalnym.

Korzystając z własności warunkowych rozkładów prawdopodobieństwa i przyjmując oznaczenie

$$h(b) = f_{Y|\mathcal{B}}(y|b)f_{\mathcal{B}}(b), \tag{2.23}$$

mamy:

$$f_{\mathcal{B}|Y}(b|y) = \frac{f_{Y|\mathcal{B}}(y|b)f_{\mathcal{B}}(b)}{f_{Y}(y)} = \frac{h(b)}{\int_{\mathbb{R}^q} h(b) db}.$$
 (2.24)

Wtedy funkcją wiarygodności jest:

$$L(\beta, \sigma^2, \theta, b) = L(\beta, \theta, \sigma^2) = \int_{\mathbb{R}^q} h(b) \, db. \tag{2.25}$$

Innym rozwiązaniem problemu znalezienia funkcji wiarygodności jest odmienne przedstawienie modelu:

$$y_i = X_i \beta + Z_i b_i + \varepsilon_i = X_i \beta + \varepsilon_i^*, \tag{2.26}$$

gdzie i = 1, ..., N oraz $\varepsilon_i^* = Z_i b_i + \varepsilon_i$.

Zmienna losowa ε_i^* jako suma dwóch wektorów zmiennych losowych z niezależnych wielowymiarowych rozkładów normalnych o średniej zero, sama ma rozkład normalny o średniej zero i macierzy kowariancji $\mathcal{V}_i = \sigma^2 V_i = \sigma^2 (Z_i D Z_i^T + R_i)$. Stąd, z (2.26), mamy: y_i ma wielowymiarowy rozkład normalny o średniej $X_i\beta$ i macierzy kowariancji $\sigma^2 V_i$. Zatem

$$f_Y(y_i; \beta, \theta, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{n_i}{2}} |V_i|^{\frac{1}{2}}} \exp\left(-\frac{(y_i - X_i\beta)^T V_i^{-1} (y_i - X_i\beta)}{2\sigma^2}\right), \tag{2.27}$$

gdzie $\theta = (\theta_D, \theta_R)$. Czyli funkcją wiarygodności jest

$$L_{full}(\beta, \theta, \sigma^{2}) = \prod_{i=1}^{N} \frac{1}{(2\pi\sigma^{2})^{\frac{n_{i}}{2}} |V_{i}|^{\frac{1}{2}}} \exp\left(-\frac{(y_{i} - X_{i}\beta)^{T} V_{i}^{-1} (y_{i} - X_{i}\beta)}{2\sigma^{2}}\right) =$$

$$= \frac{1}{(2\pi\sigma^{2})^{\frac{n}{2}}} \prod_{i=1}^{N} |V_{i}|^{-\frac{1}{2}} \prod_{i=1}^{N} \exp\left(-\frac{(y_{i} - X_{i}\beta)^{T} V_{i}^{-1} (y_{i} - X_{i}\beta)}{2\sigma^{2}}\right),$$
(2.28)

gdzie $n = \sum_{i=1}^{N} n_i$. Stąd funkcją log-wiarygodności jest

$$l_{full}(\beta, \theta, \sigma^{2}) = \ln(L_{full}(\beta, \theta, \sigma^{2})) =$$

$$= -\frac{n}{2}\ln(\sigma^{2}) - \frac{1}{2}\sum_{i=1}^{N}\ln|V_{i}| - \frac{1}{2\sigma^{2}}\sum_{i=1}^{N}(y_{i} - X_{i}\beta)^{T}V_{i}^{-1}(y_{i} - X_{i}\beta),$$
(2.29)

gdzie dla uproszczenia notacji przyjmujemy oznaczenie $V_i = V_i(\theta)$. Estymację parametru θ przeprowadza się w dwóch krokach:

1. Profilujemy log-wiarygodność: traktujemy θ jako ustalone i obliczamy estymatory największej wiarygodności parametrów β i σ^2 :

$$\hat{\beta}(\theta) = \left(\sum_{i=1}^{N} X_i^T V_i^{-1} X_i\right)^{-1} \sum_{i=1}^{N} X_i^T V_i^{-1} y_i, \tag{2.30}$$

$$\hat{\sigma}_{ML}^2(\theta) = \frac{\sum_{i=1}^N r_i^T V_i^{-1} r_i}{n},\tag{2.31}$$

gdzie $r_i \equiv r_i(\theta) = y_i - X_i \hat{\beta}(\theta)$. Profilowanie pozwala na zmniejszenie liczby parametrów do wyestymowania.

2. Podstawiamy sprofilowane $\hat{\beta}(\theta)$ i $\hat{\sigma}^2(\theta)$ do $l_{full}(\cdot)$ i przeprowadzamy maksymalizację $l_{full}(\cdot)$ ze względu na parametr θ otrzymując estymator $\hat{\theta}_{ML}$, który wstawiamy do (2.30) i (2.31). W uproszczonej notacji przyjmuje się, że $\hat{\beta}_{ML} = \hat{\beta}(\hat{\theta}_{ML})$.

2.3.2. Estymacja metodą ograniczonej największej wiarygodności (ang. restricted maximum likelihood method (REML))

Ponieważ metoda największej wiarygodności może prowadzić do obciążonych estymatorów (szczegóły w [Gurka2006]), stosuje się metodę REML, czyli metodę ograniczonej największej wiarygodności.

Podobnie jak dla metody ML, również w metodzie REML profiluje się funkcję log-wiarygodności, z tą różnicą, że za parametr σ^2 wstawiamy estymator postaci:

$$\hat{\sigma}_{REML}^2(\theta) = \frac{\sum_{i=1}^{N} r_i^T V_i^{-1} r_i}{n-p}.$$
(2.32)

Po podstawieniu sprofilowanych estymatorów (2.30) i (2.32) do funkcji log-wiarygodności, otrzymujemy:

$$l_{REML}(\theta) = -\frac{n-p}{2} \ln(\sum_{i=1}^{N} r_i^T r_i) - \frac{1}{2} \sum_{i=1}^{N} \ln|V_i| - \frac{1}{2} \ln|\sum_{i=1}^{N} X_i^T V_i^{-1} X_i|.$$
 (2.33)

Funkcja $l_{REML}(\cdot)$ określona wzorem (2.33) przyjmuje maksimum w punkcie $\hat{\theta}_{REML}$. Tak jak w metodzie ML, w uproszczonej notacji przyjmuje się, że $\hat{\beta}_{REML} = \hat{\beta}(\hat{\theta}_{REML})$, gdzie $\hat{\beta}(\cdot)$ wyraża się wzorem (2.30).

Innym argumentem przemawiającym za używaniem estymatorów REML, jest to, że pomimo, iż wektor reszt z modelu $y-X\hat{\beta}$ jest wektorem n-wymiarowym, to reszty w punkcie $\hat{\theta}$ spełniają układ p liniowo niezależnych równań postaci

$$X^{T}V^{-1}(y - X\hat{\beta}) = 0. (2.34)$$

Czyli wektor reszt w punkcie $\hat{\theta}$ jest rzutem zmiennej objaśnianej na (n-p)-wymiarową podprzestrzeń n-wymiarowej przestrzeni. Estymator $\hat{\sigma}_{REML}^2$ uwzględnia zatem fakt, że σ^2 wyestymowane za pomocą reszt ma tylko n-p stopni swobody.

Również analogicznie jak dla metody ML, metodę REML można zapisać w postaci całkowej. Funkcją, którą maksymalizujemy jest

$$L_{REML}(\theta, \sigma^2) = \int_{\mathbb{R}^p} L(\theta, \beta, \sigma^2) \, d\beta, \tag{2.35}$$

gdzie $L(\theta, \beta, \sigma^2)$ wyraża się wzorem (2.25). Metoda REML ma ciekawą interpretację, mianowicie poprzez wycałkowanie funkcji wiarygodności względem parametru β jest ona równoważna estymacji parametrów modelu na przestrzeni ortogonalnej do przestrzeni rozpiętej przez kolumny macierzy X.

2.3.3. Regularyzowana i ważona metoda najmniejszych kwadratów (ang. penalized weighted least squares (PWLS))

Regularyzowana i ważona metoda najmniejszych kwadratów polega na sprowadzeniu problemu estymacji parametrów liniowego modelu mieszanego do problemu ważonej regresji liniowej z nałożoną karą, który to problem potrafimy efektywnie rozwiązywać. W metodzie PWLS punktem startowym jest logarytm gestości rozkładu łącznego zmiennych Y i \mathcal{B} :

$$h_{joint}(\beta, \sigma^{2}, \theta) = -\frac{n + N_{q}}{2} \ln(\sigma^{2}) - \frac{1}{2} \ln(|R||\mathfrak{D}|) - \frac{1}{2\sigma^{2}} \left((y - X\beta - Zb)^{T} R^{-1} (y - X\beta - Zb) + b^{T} \mathfrak{D}^{-1} b \right),$$
(2.36)

gdzie macierz \mathfrak{D} jest określona wzorem (2.11) a macierz R wzorem (2.12).

Zauważmy, że liniowy model mieszany określony formułą (2.9) można przekształcić tak, aby efekty losowe były nieskorelowane. Niech Λ_{θ} będzie dolnotrójkątną macierzą rozkładu Cholesky'ego macierzy \mathfrak{D} (patrz definicja (1.1.4)).

$$\mathfrak{D} = \Lambda_{\theta} \Lambda_{\theta}^{T}, \tag{2.37}$$

wtedy można zapisać:

$$b = \Lambda_{\theta} u, \tag{2.38}$$

gdzie u jest realizacją zmiennej losowej U takiej, że

$$U \sim \mathcal{N}_{N_a}(0, \sigma^2 I_{N_a}). \tag{2.39}$$

Jeśli przyjmiemy oznaczenie $A^T = Z\Lambda_{\theta}$, to otrzymamy:

$$\mathbb{E}(y|U=u) = X\beta + Z\Lambda_{\theta}u \equiv X\beta + A^{T}u, \tag{2.40}$$

$$Var(y|U=u) = \sigma^2 R \tag{2.41}$$

oraz

$$\mathbb{E}(y) = X\beta,\tag{2.42}$$

$$Var(y) = \sigma^2(A^T A + R). \tag{2.43}$$

Wtedy

$$h_{PLS}(\beta, \sigma^{2}, \theta) = -\frac{n + N_{q}}{2} \ln(\sigma^{2}) - \frac{1}{2} \ln(|R|) - \frac{1}{2\sigma^{2}} \left((y - X\beta - A^{T}u)^{T} R^{-1} (y - X\beta - A^{T}u) + u^{T}u \right) =$$

$$= -\frac{n + N_{q}}{2} \ln(\sigma^{2}) - \frac{1}{2} \ln(|R|) - \frac{d(\beta, \theta)}{2\sigma^{2}}.$$
(2.44)

Zauważmy, że $d(\beta, \theta)$ przypomina regularyzowaną, ważoną sumę kwadratów, gdzie regularyzacją (karą) określimy $u^T u = \|u\|^2$. W rzeczywistości $d(\cdot)$ można postrzegać jako sumę kwadratów reszt w liniowym modelu regresji:

$$\begin{pmatrix} R^{-1/2}y \\ 0 \end{pmatrix} = \begin{bmatrix} R^{-1/2}A^T & R^{-1/2}X \\ I_{N_q} & 0 \end{bmatrix} \begin{pmatrix} u \\ \beta \end{pmatrix} \equiv W \begin{pmatrix} u \\ \beta \end{pmatrix}, \tag{2.45}$$

gdzie $R^{-1/2}$ jest górnotrójkątną macierzą z rozkładu Cholesky'ego macierzy R^{-1} . Rozwiązanie $(\widetilde{u}^T, \widetilde{\beta}^T)^T$ problemu (2.45) spełnia

$$W^{T}W\left(\begin{array}{c} \widetilde{u} \\ \widetilde{\beta} \end{array}\right) = W^{T}\left(\begin{array}{c} R^{-1/2}y \\ 0 \end{array}\right), \tag{2.46}$$

czyli

$$\begin{bmatrix} AR^{-1}A^T + I_{N_q} & AR^{-1}X \\ X^TR^{-1}A^T & X^TR^{-1}X \end{bmatrix} \begin{pmatrix} \widetilde{u} \\ \widetilde{\beta} \end{pmatrix} = \begin{pmatrix} AR^{-1}y \\ X^TR^{-1}y \end{pmatrix}.$$
 (2.47)

Dla ograniczenia złożoności obliczeniowej i oszczędności pamięci wprowadza się rzadką macierz rozkładu Cholesky'ego:

$$L = \begin{bmatrix} L_Z & 0 \\ L_{ZX} & L_X \end{bmatrix}, \tag{2.48}$$

która spełnia $LL^T=PW^TWP^T$, gdzie ortogonalna macierz P jest macierzą permutacji zdefiniowaną układem niezerowych elementów Z (poprzez odpowiednie permutowanie chcemy, żeby niezerowe elementy macierzy L znajdowały się jak najbliżej przekątnej).

Gdy założymy, że P jest postaci blokowo-diagonalnej

$$P = \begin{bmatrix} P_Z & 0\\ 0 & P_X \end{bmatrix},\tag{2.49}$$

to możemy zapisać:

$$h_{PLS}(\beta, \sigma^{2}, \theta) = -\frac{n + N_{q}}{2} \ln(\sigma^{2}) - \frac{1}{2} \ln(|R|) - \frac{\tilde{d}(\theta)}{2\sigma^{2}} - \frac{1}{2\sigma^{2}} \left(\frac{P_{Z}(u - \tilde{u})}{P_{X}(\beta - \tilde{\beta})} \right)^{T} LL^{T} \left(\frac{P_{Z}(u - \tilde{u})}{P_{X}(\beta - \tilde{\beta})} \right),$$

$$(2.50)$$

gdzie $\widetilde{d}(\theta)=d(\beta,\theta)\big|_{\widetilde{u}^T,\widetilde{\beta}^T)^T}$. Wtedy funkcje log-wiarygodności można przedstawić jako

$$l_{ML}^{*}(\beta, \sigma^{2}, \theta) = -\frac{n}{2} \ln \sigma^{2} - \frac{1}{2} \ln(|R||L_{Z}|^{2}) - \frac{\tilde{d}(\theta)}{2\sigma^{2}} - \frac{1}{2\sigma^{2}} (L_{X}^{T} P_{X}(\beta - \tilde{\beta}))^{T} L_{X}^{T} P_{X}(\beta - \tilde{\beta}).$$
(2.51)

Dla ustalonego θ estymatorem β jest $\widetilde{\beta}(\theta)$, spełniający układ równań (2.46), a estymator σ^2 jest dany wzorem

$$\hat{\sigma}_{ML}^2 = \frac{\tilde{d}(\theta)}{n}.\tag{2.52}$$

Przez podstawienie tych estymatorów do $l_{ML}^*(\cdot)$ otrzymujemy:

$$l_{ML}(\theta) = -\frac{1}{2}\ln(|R||L_Z|^2) - \frac{n}{2}\ln\tilde{d}(\theta).$$
 (2.53)

Maksymalizacja $l_{ML}(\cdot)$ względem parametru θ prowadzi do estymatora $\hat{\theta}_{ML}$, który potem wstawia się do $\hat{\beta}(\theta) = \tilde{\beta}(\theta)$ i $\hat{\sigma}_{ML}^2$.

Ocenę $\hat{\theta}_{REML}$ otrzymuje się przez maksymalizację funkcji

$$l_{REML}(\theta) = -\frac{1}{2}\ln(|R||L_Z|^2|L_X|^2) - \frac{n-p}{2}\ln\widetilde{d}(\theta),$$
 (2.54)

skąd

$$\hat{\sigma}_{REML}^2 = \frac{\tilde{d}(\theta)}{n-p},\tag{2.55}$$

a $\hat{\beta}(\hat{\theta}_{REML}) = \widetilde{\beta}(\hat{\theta}_{REML}).$

Ponieważ estymacja metodą PWLS jest oparta na rozkładzie Cholesky'ego macierzy \mathfrak{D} i wykorzystuje macierz permutacji P, pozwalającą rozrzedzić macierz rozkładu Λ_{θ} , to metoda ta staje się bardzo wydajna numerycznie. Jest to zaletą, szczególnie przy analizie dużych zbiorów danych.

Oprócz wymienionych wyżej metod estymacji współczynników liniowych modeli mieszanych stosuje się szereg innych metod, spośród których warto wymienić metodę wykorzystującą rozkład QR (patrz definicja 1.1.7). Została ona szczegółowo opisana w [Pinheiro2000].

2.4. Parametryzacja macierzy kowariancji

Głównym problemem przy estymacji współczynników liniowego modelu mieszanego są ograniczenia nałożone na macierze D i R_i . Macierze te jako macierze kowariancji powinny być symetryczne i dodatnio określone. Możliwym rozwiązaniem tego problemu jest takie sparametryzowanie D i R_i , aby problem z ograniczeniami stał się problemem bez ograniczeń.

2.4.1. Parametryzacja macierzy R_i

Rozpatrzymy rozkład macierzy R_i postaci

$$R_i = \Delta_i C_i \Delta_i, \tag{2.56}$$

gdzie Δ_i jest macierzą diagonalną z nieujemnymi elementami, a C_i jest macierzą korelacji. Obydwie macierze są rozmiaru $n_i \times n_i$. Macierz Δ_i pozwala uwzględnić heteroskedastyczność błędów losowych, podczas gdy C_i uwzględnia korelację wewnątrzgrupową błędów. Przyjmijmy założenie, że macierz C_i jest określona przez elementy wektora ρ , czyli $C_i = C_i(\rho)$, a macierz Δ_i określają elementy wektora δ : $\Delta_i = \Delta_i(\delta)$.

Elementy wektora δ ograniczone do liczb rzeczywistych dodatnich można wyrazić jako

$$\delta_i = e^{\delta_i^*}, \tag{2.57}$$

gdzie $\delta_i^* = \ln \delta_i$ i do estymacji używać nieograniczonych parametrów δ_i^* .

Wybór macierzy C_i jako macierzy korelacji jest ograniczony do zbioru macierzy symetrycznych i dodatnio określonych. Trzeba zatem tak przetransformować macierz C_i , żeby pozbyć się ograniczeń na zbiór jej elementów. Opisane zostaną trzy przykładowe transformacje.

1. Jeśli C_i jest macierzą korelacji opisującą autokorelację błędów rzędu 1 (AR(1)):

$$C_{i}(\rho) = \begin{bmatrix} 1 & \rho & \rho^{2} & \dots & \rho^{n_{i}-1} \\ \rho & 1 & \rho & \dots & \rho^{n_{i}-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho^{n_{i}-2} & \dots & \rho & 1 & \rho \\ \rho^{n_{i}-1} & \dots & \rho^{2} & \rho & 1 \end{bmatrix},$$
(2.58)

to możemy użyć z-transformacji Fishera dla ρ

$$\rho^* = \ln \frac{1+\rho}{1-\rho}.$$
 (2.59)

Takie przekształcenie elementów macierzy C_i pozwala na estymację bez ograniczeń - zbiór parametrów ρ^* jest nieograniczony. Z postaci transformacji odwrotnej

$$\rho = \frac{e^{\rho^*} - 1}{e^{\rho^*} + 1} \tag{2.60}$$

zagwarantowane jest, że parametry $\rho \in (-1,1)$ i macierz jest nieujemnie określona: $C_i \ge 0$.

2. Jeśli C_i jest macierzą korelacji o postaci niezmienniczej na permutacje, czyli

$$C_{i}(\rho) = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho & \dots & \rho & 1 & \rho \\ \rho & \dots & \rho & \rho & 1 \end{bmatrix}, \tag{2.61}$$

wystarczy, żeby wartości własne macierzy C_i postaci $1 + (n_i - 1)\rho$ i $1 - \rho$ były dodatnie. Stąd używa się zmodyfikowanej z-transformacji Fishera:

$$\rho^* = \ln \frac{\frac{1}{n_i - 1} + \rho}{1 - \rho}.$$
 (2.62)

Tak jak poprzednio, transformacja odwrotna gwarantuje dobre właściwości parametrów ρ i macierzy C_i .

Zauważmy, że jeśli parametr ρ jest wspólny dla wszystkich grup i grupy różnią się rozmiarami, to transformacja

$$\rho^* = \ln \frac{\frac{1}{n^* - 1} + \rho}{1 - \rho},\tag{2.63}$$

gdzie $n^* = \max(n_i)$ daje pożądane własności przekształconych parametrów ρ^* .

3. Rozwiązaniem dla ogólnej postaci macierzy korelacji C_i , gdzie

$$C_{i}(\rho) = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \dots & \rho_{1n_{i}} \\ \rho_{12} & 1 & \rho_{23} & \dots & \rho_{2n_{i}} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho_{1(n_{i}-1)} & \dots & \rho_{(n_{i}-2)(n_{i}-1)} & 1 & \rho_{(n_{i}-1)n_{i}} \\ \rho_{1n_{i}} & \dots & \rho_{(n_{i}-2)n_{i}} & \rho_{(n_{i}-1)n_{i}} & 1 \end{bmatrix},$$
(2.64)

jest użycie rozkładu Cholesky'ego macierzy C_i (patrz definicja (1.1.4)). Niech

$$C_i = U_i^T U_i, (2.65)$$

gdzie macierz U_i jest macierzą górnotrójkątną. Rozkład ten pozwala wyrazić ρ jako funkcję elementów macierzy U_i . Tworzą one zbiór nieograniczony, który może ułatwić obliczenia numeryczne. Warto zauważyć, że relacja pomiędzy ρ a elementami U_i jest złożona i trudno używać ich na przykład do określania przedziałów ufności dla ρ . Więcej szczegółów można znaleźć w [Pinheiro1996].

Korelacja błędów losowych w niektórych modelach może przyjmować strukturę przestrzenną. Dla takich struktur częstym ograniczeniem na współczynnik ρ jest $\rho > 0$. Wtedy, żeby pozbyć się tego ograniczenia wystarczy zastąpić ρ przez $\ln(\rho)$. Szczegóły można znaleźć w [Burzykowski2011].

Niestety dla większości struktur kowariancji nie ma gwarancji na istnienie takiej transformacji parametrów, żeby lepiej i szybciej estymować parametry macierzy C_i .

2.4.2. Parametryzacja macierzy D

Parametryzację macierzy D kowariancji efektów losowych w modelu przeprowadza się analogicznie do parametryzacji macierzy R_i - macierzy kowariancji błędów losowych modelu. Jeśli założymy, że macierz D jest postaci AR(1) (patrz punkt 1. podrozdziału 2.4.1) lub jest niezmiennicza ze względu na permutacje (patrz punkt 2. podrozdziału 2.4.1 lub podrozdział 3.4), to używając log-transformacji dla wariancji i z-transformacji Fishera dla korelacji, otrzymamy problem estymacji parametrów modelu na nieograniczonym zbiorze. Do estymacji współczynników macierzy D stostuje się również rozkład Cholesky'ego.

Jeszcze innym podejściem do uzyskania nieograniczonej parametryzacji macierzy D jest użycie logarytmu macierzy ([Pinheiro1996]), który zostanie zdefiniowany poniżej. Macierz D można przedstawić w postaci

$$D = QTQ^T. (2.66)$$

Jest to rozkład LDL (patrz definicja 1.1.6) dla kwadratowej macierzy symetrycznej, gdzie T jest macierzą diagonalną o dodatnich elementach:

$$T = \text{diag}(t_1, ..., t_q),$$
 (2.67)

a Q jest macierzą ortogonalną.

Niech ln(T) będzie macierzą, taką że

$$ln(T) = diag(ln(t_1), ..., ln(t_q)).$$
 (2.68)

Przyjmijmy oznaczenie

$$D^* = Q\ln(T)Q^T,\tag{2.69}$$

zachodzi wtedy

$$D = e^{D^*}, (2.70)$$

gdzie

$$e^{D^*} = \sum_{k=0}^{\infty} \frac{(D^*)^k}{k!}.$$
 (2.71)

Stąd D^* nazywamy logarytmem macierzy D. Relacja $D = e^{D^*}$ pozwala wyrazić parametry θ_D jako funkcję parametrów górnego trójkąta macierzy D^* . Tworzą one nieograniczony zbiór parametrów, ułatwiając estymację.

W niektórych sytuacjach rozwiązania problemu optymalizacji nie zapewniają dodatniej określoności macierzy D. Rozpatruje się wtedy model brzegowy określony wzorem (2.17), w którym macierzą kowariancji jest $V_i(\theta) = \sigma^2(Z_iD(\theta_D)Z_i^T + R_i(\theta_R))$. Wystarczy wtedy założyć dodatnią określoność macierzy V_i i symetryczność macierzy D.

Rozdział 3

Dopasowanie modelu i struktury korelacji

3.1. Diagnostyka liniowego modelu mieszanego

Żeby móc wyciągać konstruktywne wnioski na podstawie dopasowanego liniowego modelu mieszanego, trzeba najpierw przeprowadzić jego diagnostykę, czyli trzeba sprawdzić, czy założenia modelu są spełnione. Dwa główne to: założenie normalności efektów losowych b_i i założenie normalności błędów losowych ε_i . Zanim przystąpimy do wnioskowania warto również zbadać wpływ obserwacji odstających.

3.1.1. Badanie normalności efektów losowych b_i

W teorii liniowych modeli mieszanych zakłada się, że efekty losowe b_i są nieobserwowalnymi realizacjami zmiennej losowej \mathcal{B} , która ma rozkład normalny o średniej zero i macierzy kowariancji $\sigma^2 D$. Aby zweryfikować to założenie potrzebne są predykcje wartości b_i . Przeważnie używa się do tego wzoru

$$\hat{b}_i = \hat{D} Z_i \hat{V}_i^{-1} (y_i - X_i \hat{\beta}). \tag{3.1}$$

Estymator \hat{b}_i postaci (3.1) to tak zwany BLUP (ang. best linear unbiased predictor, czyli najlepszy nieobciążony liniowy predyktor) efektów b_i . Jest on również nazywany EBLUP (ang. empirical best unbiased linear predictor, czyli najlepszy empiryczny nieobciążony liniowy predyktor), ze względu na użycie empirycznych macierzy \hat{V}_i i \hat{D} .

Mając oszacowane wartości b_i , warto jest przyjrzeć się ich wykresowi kwantyl-kwantyl (wykres q-q) lub histogramowi. Trzeba jednak pamiętać, że nie jest to dokładna metoda, ponieważ obserwowany rozkład \hat{b}_i nie musi odzwierciedlać prawdziwego rozkładu zmiennej \mathcal{B} (szczegóły w [Verbeke2000]). Mimo tego, wykresy te mogą pomóc w wykrywaniu obserwacji odstających.

W praktyce sprawdzanie założenia o normalności efektów losowych b_i powinno opierać się na porównywaniu wyników dopasowywania liniowego modelu mieszanego dopasowywanego bez założenia o normalności i z takim założeniem (więcej w [Verbeke2000]).

Warto podkreślić, że pomimo braku normalności rozkładu efektów losowych b_i nadal można wnioskować o efektach stałych β .

3.1.2. Diagnostyka reszt

Analogicznie jak dla zwykłych modeli liniowych diagnozując model mieszany bada się zachowanie reszt z modelu.

Można badać dwa rodzaje reszt:

1. reszty warunkowe postaci

$$\hat{\varepsilon}_{C,i} = y_i - X_i \hat{\beta} - Z_i \hat{b}_i, \tag{3.2}$$

gdzie \hat{b}_i jest dane wzorem (3.1).

2. reszty brzegowe postaci

$$\hat{\varepsilon}_{M,i} = y_i - X_i \hat{\beta}. \tag{3.3}$$

Ponieważ reszty te mogą być skorelowane, żadna z powyższych postaci nie jest odpowiednia do bezpośredniej diagnostyki. Należy zatem badać odpowiednio przetransformowane reszty, które są nieskorelowane:

$$\hat{\varepsilon}_{C,i}^* = (\hat{\sigma}\hat{U}_{C,i}^T)^{-1}\hat{\varepsilon}_{C,i},\tag{3.4}$$

gdzie $\hat{U}_{C,i}$ pochodzi z rozkładu Cholesky'ego macierzy \hat{R}_i lub

$$\hat{\varepsilon}_{M,i}^* = (\hat{\sigma}\hat{U}_{M,i}^T)^{-1}\hat{\varepsilon}_{M,i},\tag{3.5}$$

gdzie $\hat{U}_{M,i}$ pochodzi z rozkładu Cholesky'ego macierzy \hat{V}_i . Czyli zachodzi

$$\hat{U}_{C,i}^T \hat{U}_{C,i} = \hat{R}_i \tag{3.6}$$

oraz

$$\hat{U}_{M,i}^T \hat{U}_{M,i} = \hat{V}_i. \tag{3.7}$$

Wtedy $\hat{\varepsilon}_{C,i}^*$ i $\hat{\varepsilon}_{M,i}^*$ mają asymptotyczny rozkład normalny o średniej zero i jednostkowej wariancji.

3.2. Testowanie istotności współczynników

3.2.1. Testowanie hipotez dotyczących efektów stałych

Hipotezy dotyczące efektów stałych modelu, czyli parametrów β testuje się tymi samymi metodami co dla liniowych modeli ze skorelowanymi błędami (uogólnionych modeli liniowych). W szczególności liniowe hipotezy weryfikuje się przy użyciu testu F.

Alternatywnie można używać do testowania istotności współczynników β testu ilorazu wiarygodności (ang. likelihood ratio test (LRT)). Test LRT wykorzystuje różnicę logarytmów wiarygodności dwóch zagnieżdżonych modeli (parametry modelu zagnieżdżonego stanowią podzbiór parametrów modelu zagnieżdżającego) do oceny statystycznej istotności parametrów którymi różnią się dane modele. W przypadku, gdy testujemy istotność efektów stałych, oba modele muszą być dopasowane metodą ML. Statystyka testowa jest postaci

$$LR = -2(l(\hat{\theta}_1) - l(\hat{\theta}_2)),$$
 (3.8)

gdzie $l(\cdot)$ jest funkcją log-wiarygodności danego modelu osiągającą maksimum w $\hat{\theta}_1$ dla modelu zagnieżdżonego i w $\hat{\theta}_2$ dla modelu zagnieżdżającego, gdzie $\hat{\theta}_1 \in \Theta_1$, $\hat{\theta}_2 \in \Theta_2$ i $\Theta_1 \subseteq \Theta_2$. Hipoteza jest

$$H_0: \beta_{i_1} = \dots = \beta_{i_k} = 0 \text{ vs } H_A: \exists_{j \in \{1,\dots,k\}} \beta_{i_j} \neq 0,$$
 (3.9)

gdzie zbiór $\{i_1,...,i_k\}$ jest zbiorem indeksów parametrów wektora β , które zostały usunięte z modelu zagnieżdżającego. Ponieważ model z większą ilością parametrów (zagnieżdżający) zawsze osiąga większe maksimum funkcji log-wiarygodności, test LRT pozwala określić czy różnica maksimów logarytmów wiarygodności obu modeli jest istotnie różna od zera. Asymptotycznym rozkładem statystyki testowej jest rozkład χ^2 z liczbą stopni swobody równą różnicy liczby parametrów, którą różnią się badane modele.

3.2.2. Testowanie hipotez dotyczących efektów losowych b

Testowanie hipotez dotyczących efektów losowych polega na testowaniu hipotez dotyczących parametrów macierzy wariancji efektów losowych b. Do weryfikacji tych hipotez używa się testu LRT (patrz poprzedni podrozdział, wzór (3.8)). Przy używaniu tego testu trzeba zwracać szczególną uwagę na położenie wartości parametrów związanych z hipotezą zerową. Jeśli należą one do wnętrza przestrzeni parametrów, to granicznym rozkładem statystyki testowej LR jest rozkład χ^2 z liczbą stopni swobody równą różnicy liczby parametrów, którą różnią się badane modele. Jeśli natomiast wartości parametrów z hipotezy zerowej leżą na brzegu przestrzeni parametrów, to statystyka LR nie ma rozkładu χ^2 . W niektórych przypadkach daje się pokazać, że jej rozkład jest mieszaniną rozkładów χ^2 z różnymi liczbami stopni swobody (szczegóły w [Stram1994]).

Jeden efekt losowy

Żeby dany efekt mógł być traktowany jako losowy, jego wariancja powinna być istotnie różna od zera, zatem chcemy weryfikować hipotezę

$$H_0: Var(b_1) = 0 \text{ vs } H_A: Var(b_1) > 0,$$
 (3.10)

gdzie b_1 oznacza jedyny efekt losowy w modelu. Zauważmy, że 0 leży na brzegu przestrzeni dopuszczalnych wartości wariancji (dla dowolnej zmiennej losowej X, $Var(X) \ge 0$). W tym przypadku asymptotycznym rozkładem statystyki testowej LR jest następująca mieszaniną rozkładów χ^2 : $\frac{1}{2}\chi_0^2 + \frac{1}{2}\chi_1^2$. Ten symboliczy zapis oznacza, że zmienna losowa, którą jest statystyka LR ma dystrybuante postaci

$$F_{LR}(x) = \frac{1}{2}F_{\chi_0^2}(x) + \frac{1}{2}F_{\chi_1^2}(x), \tag{3.11}$$

gdzie $F_{\chi^2_i}(\cdot)$ jest dystrybuantą rozkładu χ^2 o istopniach swobody.

Liczba efektów losowych: k vs k+1

Dla ustalonego zbioru efektów losowych chcemy testować hipotezę zerową mówiącą, że w modelu powinno być k efektów losowych przeciwko hipotezie alternatywnej mówiącej, że w modelu jest k+1 efektów losowych. Czyli w obu modelach macierze X_i efektów stałych są takie same, natomiast w modelu zerowym macierz kowariancji efektów losowych jest dodatnio określoną, symetryczną macierzą rozmiaru $k \times k$, a w modelu alternatywnym dodatnio określoną, symetryczną macierzą rozmiaru $(k+1) \times (k+1)$.

Niech l_{ML}^0 i l_{ML}^1 będą maksimami funkcji log-wiarygodności odpowiednio modelu zerowego i modelu alternatywnego wyestymowanymi metodą ML. Statystyka testu LRT to

$$LR_{ML} = -2(l_{ML}^0 - l_{ML}^1). (3.12)$$

Analogicznie dla metody REML

$$LR_{REML} = -2(l_{REML}^0 - l_{REML}^1). (3.13)$$

Wtedy obie te statystyki asymptotycznie mają rozkład $\frac{1}{2}\chi_k^2 + \frac{1}{2}\chi_{(k+1)}^2$ będący mieszaniną rozkładów χ^2 , czyli zmienna losowa, którą jest statystyka LR ma dystrybuantę postaci

$$F_{LR}(x) = \frac{1}{2} F_{\chi_k^2}(x) + \frac{1}{2} F_{\chi_{(k+1)}^2}(x), \tag{3.14}$$

gdzie $F_{\chi^2_i}(\cdot)$ jest dystrybuantą rozkładu χ^2 o istopniach swobody.

Liczba efektów losowych: k vs k + k'

Dla ustalonych efektów stałych chcemy weryfikować hipotezę zerową mówiącą, że w modelu powinno być k efektów losowych przeciwko hipotezie alternatywnej mówiącej, że w modelu powinno być k+k' efektów losowych, gdzie k'>1.

Dla przykładu jeśli hipoteza zerowa mówi, że w modelu występuje k nieskorelowanych efektów losowych, a hipoteza alternatywna stwierdza, że w modelu powinno być k+k' nieskorelowanych efektów losowych (macierze wariancji efektów losowych D_k i $D_{k+k'}$ są diagonalne), to wtedy przy prawdziwej hipotezie zerowej asymptotycznym rozkładem statystyki testowej LR jest

$$\sum_{m=0}^{k'} 2^{-k'} \binom{k'}{m} \chi_m^2, \tag{3.15}$$

czyli zmienna losowa, którą jest statystyka LR ma dystrybuantę postaci

$$F_{LR}(x) = \sum_{m=0}^{k'} 2^{-k'} \binom{k'}{m} F_{\chi_m^2}(x), \tag{3.16}$$

gdzie $F_{\chi^2_i}(\cdot)$ jest dystrybuantą rozkładu χ^2 o i stopniach swobody.

Jak pokazano w [Shapiro1988] rozkładem asymptotycznym statystyki testowej LR określonej wzorem (3.12) lub (3.13) jest mieszanina rozkładów χ^2 . Wagi stojące przy rozkładach tej mieszaniny analitycznie daje się obliczyć tylko dla bardzo szczególnych postaci macierzy kowariancji efektów losowych, natomiast dla pozostałych przypadków estymacja tych wag staje się zadaniem nietrywialnym obliczeniowo i numerycznie.

3.3. Wybór modelu

Jednym z trudniejszych problemów w teorii statystyki matematycznej jest zagadnienie wyboru modelu. Żeby móc prawidłowo wnioskować na podstawie dopasowanego modelu, trzeba jak najlepiej odwzorować zależności między danymi, co łączy się z wyborem odpowiedniego modelu. W klasycznych modelach liniowych problem ten ograniczał się do (także niełatwego) zagadnienia wyboru zmiennych do modelu i wyboru funkcji transformujących zmienne objaśniające, czy zmienną objaśnianą. W przypadku liniowych modeli mieszanych dochodzi jeszcze zagadnienie wyboru odpowiednich zmiennych, które będą traktowane jako losowe, a także dobór struktury korelacji błędów losowych ε i struktury korelacji efektów losowych b.

W kolejnych podrozdziałach znajdują się opisy kryteriów i współczynników jakości dopasowania modelu do danych, które mogą być pomocne przy wyborze modelu lub struktur korelacji w liniowym modelu mieszanym.

3.3.1. Kryteria informacyjne: GIC, AIC i BIC

Analogicznie jak dla zwykłych modeli liniowych, przy wyborze liniowego modelu mieszanego można posługiwać się kryteriami informacyjnymi. Kryterium GIC jest ogólnym kryterium informacyjnym (ang. generalized information criterion) postaci:

$$GIC(model(\theta), c) = -2l_{model(\theta)} + |\theta| \cdot c, \tag{3.17}$$

gdzie $l_{model(\theta)}$ jest funkcją log-wiarygodności badanego modelu, θ jest wektorem parametrów badanego modelu, $|\theta|$ jest liczbą parametrów modelu, a c jest karą za liczbę parametrów.

Kryteria AIC i BIC są szczególnymi przypadkami ogólnego kryterium GIC:

1. Kryterium AIC (Akaike, 1973), wyraża się wzorem:

$$AIC(model(\theta)) = GIC(model(\theta), 2) = -2l_{model(\theta)} + 2 \cdot |\theta|,$$
 (3.18)

gdzie $l_{model(\theta)}$ jest funkcją log-wiarygodności badanego modelu, a $|\theta|$ jest liczbą parametrów modelu.

2. Kryterium BIC (Schwarz, 1978), wyraża się wzorem:

$$BIC(model(\theta)) = GIC(model(\theta), \ln n) = -2l_{model(\theta)} + |\theta| \cdot \ln n, \tag{3.19}$$

gdzie $l_{model(\theta)}$ jest funkcją log-wiarygodności badanego modelu, $|\theta|$ jest liczbą parametrów modelu, a n jest liczbą obserwacji.

Warto zwrócić uwagę, że kara za liczbę parametrów w modelu jest większa dla kryterium BIC, zatem będzie ono wskazywać mniejsze modele. Minimalizując wybrane kryterium informacyjne dostajemy szukany model. Niestety nie jest to optymalna metoda wyboru modelu, ponieważ funkcja, którą wyraża się dane kryterium, może mieć na przykład kilka minimów lokalnych i można w wyniku nie dostać najlepszego modelu.

W dalszych podrozdziałach opisanych jest kilka współczynników, które oprócz kryteriów informacyjnych można stosować w rozwiązywaniu zagadnienia wyboru liniowego modelu mieszanego.

3.3.2. Współczynnik PRESS dla modeli mieszanych

Współczynnikiem *PRESS* (ang. predicted residual sum of squares) nazywamy wskaźnik wprowadzony i opisany przez D. Allena w 1974 roku w pracy [Allen1974], który mierzy różnicę pomiędzy obserwowanymi wartościami a ich predykcją, gdzie wartość i-tej predykcji uzyskuje się z modelu bez i-tej grupy (ang. leave-one-group prediction). Dla modeli mieszanych istnieją dwa rodzaje predykcji reszt z modelu:

1. warunkowa:

$$\hat{\varepsilon}_{C,(i)} = y_i - x_i^T \hat{\beta}_{(i)} - z_i^T \hat{b}_{(i)}, \tag{3.20}$$

2. brzegowa:

$$\hat{\varepsilon}_{M,(i)} = y_i - x_i^T \hat{\beta}_{(i)}, \tag{3.21}$$

gdzie indeks $\cdot_{(i)}$ oznacza wartości oszacowań dla modelu opartego na danych bez i-tej grupy. Wtedy

$$PRESS_C = \sum_{i=1}^{N} \hat{\varepsilon}_{C,(i)}^T \hat{\varepsilon}_{C,(i)}$$
(3.22)

oraz

$$PRESS_M = \sum_{i=1}^{N} \hat{\varepsilon}_{M,(i)}^T \hat{\varepsilon}_{M,(i)}.$$
(3.23)

Żeby nie estymować N razy parametrów modelu na danych bez kolejnych grup obserwacji, korzysta się z macierzy rzutu na przestrzeń rozpiętą przez kolumny macierzy X, tak zwanej macierzy daszkowej (ang. $hat\ matrix$). Macierz ta jest macierzą idempotentną (patrz definicja (1.1.1)). Dla modeli liniowych macierz daszkowa jest postaci $H = X(X^TX)^{-1}X^T$ oraz zachodzi

$$\hat{\varepsilon}_{(i)} = \frac{\hat{\varepsilon}_i}{1 - h_{ii}},\tag{3.24}$$

gdzie $\hat{\varepsilon}_i$ jest i-tą resztą z modelu, a h_{ii} jest i-tym elementem przekątnej macierzy H.

Podobnie, dla liniowych modeli mieszanych wykorzystuje się macierz daszkową postaci (patrz [Christensen1992]):

$$\hat{H} = X(X^T \hat{V}^{-1} X)^{-1} X^T \hat{V}^{-1}, \tag{3.25}$$

gdzie \hat{V} jest macierzą kowariancji reszt z modelu wyestymowanego na pełnych danych. Macierz \hat{H} nie jest prawdziwą macierzą rzutu na przestrzeń rozpiętą przez kolumny X, nie jest też symetryczna, ale jest idempotentna i według autorów [Christensen1992] jest dobrym rzutem. Niech

$$A = \sum_{i=1}^{N} (X_i^T \hat{V}_i^{-1} X_i)$$
 (3.26)

oraz

$$B = \sum_{i=1}^{N} (X_i^T \hat{V}_i^{-1} y_i), \tag{3.27}$$

gdzie X_i jest macierzą eksperymentu dla i-tej grupy, \hat{V}_i jest macierzą korelacji komponentów losowych dla i-tej grupy, a y_i jest wektorem zmiennej objaśnianej dla i-tej grupy dla modelu brzegowego lub warunkowego, wtedy zachodzi:

$$\hat{\beta} = A^{-1}B. \tag{3.28}$$

Niech ponadto

$$A_i = A - X_i^T \hat{V}_i^{-1} X_i (3.29)$$

oraz

$$B_i = B - X_i^T \hat{V}_i^{-1} y_i, (3.30)$$

wtedy $\hat{\beta}_{(i)} = A_i^{-1} B_i$, gdzie $\hat{\beta}_{(i)}$ jest wektorem efektów stałych dla modelu bez i-tej grupy. Jeśli przyjmiemy oznaczenie $\hat{Q} = I - \hat{H}$, to

$$\hat{\varepsilon}_{(i)} = \hat{Q}_{ii}^{-1} \hat{\varepsilon}_i, \tag{3.31}$$

gdzie \hat{Q}_{ii} jest blokiem z przekątnej macierzy \hat{H} odpowiadającym obserwacjom z i-tej grupy. Dowody powyższych faktów można znaleźć w [Liu1999], skąd został zaczerpnięty opis współczynnika PRESS.

Współczynnik PRESS może służyć do wykrywania obserwacji odstających oraz do porównywania modeli ze sobą - im mniejsza wartość wskaźnika PRESS, tym lepsze dopasowanie modelu do danych. Żeby stwierdzić jednak czy wartość tego współczynnika jest mała czy duża, trzeba odnieść się do innego modelu dopasowanego na tych samych danych.

3.3.3. Współczynniki \mathbb{R}^2 dla modeli mieszanych

Współczynniki R^2 dla modeli mieszanych są analogami klasycznego współczynnika R^2 dla modeli liniowych i stanowią miarę dopasowania modelu do danych. Tak jak zwykły wskaźnik R^2 , współczynniki R^2 dla modeli mieszanych są miarą jednowymiarową, której wartości należą do przedziału [0,1]. Główną zaletą współczynników R^2 dla modeli mieszanych jest to, że pozwalają one bezpośrednio porównywać ze sobą modele niezagnieżdżone (modele zagnieżdżone można efektywnie porównywać testem ilorazu wiarygodności, patrz podrozdział (3.2.2)).

W poniższych podrozdziałach opisane zostały trzy rodzaje współczynników \mathbb{R}^2 dla liniowych modeli mieszanych:

- 1. klasyczny współczynnik R^2 ,
- 2. współczynnik R_W^2 oparty na statystyce Walda,
- 3. współczynnik ${\cal R}^2_{LR}$ oparty na ilorazie wiarygodności.

Pierwsze dwa z wyżej wymienionych wskaźników opierają się na resztach z badanego modelu, czyli $\hat{\varepsilon}$. Ponieważ dla modeli mieszanych reszty z modelu mogą być w dwóch postaciach: warunkowej i brzegowej (patrz podrozdział (3.1.2)), również te wskaźniki R^2 mogą mieć dwie postaci.

Wszystkie opisane dalej współczynniki R^2 dla modeli mieszanych mogą dawać różne wartości dla tego samego modelu, stąd pewna dowolność przy wyborze, którym wskaźnikiem się kierować. W szczególności zastosowane do zwykłej regresji liniowej dadzą ten sam wynik. Wskaźniki R^2 wymienione poniżej rosną wraz ze wzrostem liczby parametrów modelu, aby temu zapobiec, koryguje się ich wartości, dodając karę za liczbę parametrów modelu. Skorygowane wartości współczynników R^2 (ang. adjusted R^2) będziemy oznaczać indeksem \cdot_{adj} .

Klasyczny współczynnik R^2 dla liniowych modeli mieszanych

Klasycznym współczynnikiem R^2 nazywamy wskaźnik postaci:

$$R^2 = 1 - \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{(y - \bar{y})^T (y - \bar{y})},\tag{3.32}$$

gdzie $\hat{\varepsilon} = y - \hat{y}$ są resztami z badanego modelu, a \hat{y} jest predykcją wartości yz modelu.

Ponieważ są dwa rodzaje reszt z modelu (patrz podrozdział (3.1.2)), współczynnik R^2 dla modeli mieszanych może być liczony na dwa sposoby:

1. Przy użyciu reszt warunkowych

$$R_C^2 = 1 - \frac{\hat{\varepsilon}_C^T \hat{\varepsilon}_C}{(y - \bar{y})^T (y - \bar{y})},$$
(3.33)

gdzie
$$\hat{\varepsilon}_C = y - \hat{y}_C = y - (X\hat{\beta} + Z\hat{b}).$$

2. Przy użyciu reszt brzegowych

$$R_M^2 = 1 - \frac{\hat{\varepsilon}_M^T \hat{\varepsilon}_M}{(y - \bar{y})^T (y - \bar{y})},\tag{3.34}$$

gdzie
$$\hat{\varepsilon}_M = y - \hat{y}_M = y - X\hat{\beta}$$
.

Żeby zapobiec wzrostowi współczynnika R^2 wraz ze wzrostem liczby parametrów modelu, można skorygować otrzymane współczynniki na dwa sposoby:

$$R_{adj}^2 = 1 - \frac{n}{n-n}(1-R^2) \tag{3.35}$$

lub

$$R_{adj}^2 = 1 - \frac{n}{n - (p + |\theta|)} (1 - R^2), \tag{3.36}$$

gdzie n jest liczbą obserwacji, p jest liczbą kolumn (rzędem) macierzy X, $|\theta|$ jest długością wektora parametrów korelacji θ , a R^2 jest oparty na resztach warunkowych lub brzegowych.

Współczynnik R^2 oparty na statystyce Walda

Współczynnik \mathbb{R}^2 oparty na statystyce Walda po raz pierwszy został zaproponowany w roku 1973 przez A. Buse w pracy [Buse1973]. Jednak dopiero w 1990 roku L. Magee w pracy [Magee1990] opisał zastosowanie tego współczynnika do badania jakości dopasowania liniowych modeli mieszanych.

Współczynnik R^2 oparty na statystyce Walda wyraża się wzorem:

$$R_W^2 = 1 - \frac{\hat{\varepsilon}^T V^{-1} \hat{\varepsilon}}{(y - \bar{y})^T V^{-1} (y - \bar{y})},$$
(3.37)

gdzie $\hat{\varepsilon}$ jest wektorem reszt z modelu, czyli $\hat{\varepsilon} = y - \hat{y}$, gdzie y jest wektorem zmiennej objaśnianej, a \hat{y} jest wektorem predykcji wartości y z modelu, V jest macierzą kowariancji reszt z modelu oraz \bar{y} jest wektorem wartości średniej z y.

Analogicznie jak dla klasycznego współczynnika \mathbb{R}^2 , współczynnik \mathbb{R}^2_W dla modeli mieszanych może być liczony na dwa sposoby:

1. Przy użyciu reszt warunkowych

$$R_{W,C}^{2} = 1 - \frac{\hat{\varepsilon}_{C}^{T} V^{-1} \hat{\varepsilon}_{C}}{(y - \bar{y})^{T} V^{-1} (y - \bar{y})},$$
(3.38)

gdzie $\hat{\varepsilon}_C = y - \hat{y}_C = y - (X\hat{\beta} + Z\hat{b}).$

2. Przy użyciu reszt brzegowych

$$R_{W,M}^2 = 1 - \frac{\hat{\varepsilon}_M^T V^{-1} \hat{\varepsilon}_M}{(y - \bar{y})^T V^{-1} (y - \bar{y})},$$
(3.39)

gdzie
$$\hat{\varepsilon}_M = y - \hat{y}_M = y - X\hat{\beta}$$
.

Wskaźnik $R_{W,M}^2$ jest prostszym wskaźnikiem, ponieważ nie wymaga użycia predykcji efektów losowych b. Tak jak klasyczny R^2 , współczynnik R^2 oparty na statystyce Walda można korygować ze względu na liczbę parametrów modelu na dwa sposoby:

$$R_{W,adj}^2 = 1 - \frac{n}{n-p} (1 - R_W^2) \tag{3.40}$$

lub

$$R_{W,adj}^2 = 1 - \frac{n}{n - (p + |\theta|)} (1 - R_W^2), \tag{3.41}$$

gdzie n jest liczbą obserwacji, p jest liczbą kolumn (rzędem) macierzy X, $|\theta|$ jest długością wektora parametrów korelacji θ , a R_W^2 jest wskaźnikiem opartym na resztach warunkowych lub brzegowych.

Współczynnik R^2 oparty na ilorazie wiarygodności

Współczynnik R^2 oparty na ilorazie wiarygodności dla modeli mieszanych został zdefiniowany przez L. Magee w 1990 roku w pracy [Magee1990]. Bazuje on na porównaniu badanego modelu z modelem zawierającym jedynie stałą.

Współczynnik R^2 oparty na ilorazie wiarygodności wyraża się wzorem:

$$R_{LR}^{2} = 1 - \exp\left(-\frac{2}{n}|l_{model}(\hat{\theta}_{1}) - l_{0}(\hat{\theta}_{0})|\right), \tag{3.42}$$

gdzie $l_{model}(\hat{\theta}_1)$ jest maksimum funkcji log-wiarygodności badanego modelu, $l_0(\hat{\theta}_0)$ jest maksimum funkcji log-wiarygodności modelu opartego tylko na stałej, a n jest liczbą obserwacji.

3.3.4. Współczynnik CCC dla modeli mieszanych

Współczynnikiem zgodności korelacji (ang. concordance correlation coefficient), czyli współczynnikiem CCC nazywamy wskaźnik mierzący zgodność dwóch zmiennych, to znaczy, jest to miara, która określa jak duża jest wariancja odchyleń różnic dwóch zmiennych od zera (czyli jak bardzo wykres jednej zmiennej względem drugiej odbiega od linii 45°).

Współczynnik *CCC* wyraża stosunek wariancji odchyleń różnic dwóch zmiennych od zera i wariancji odchyleń różnic tych zmiennych od zera przy założeniu niezależności badanych zmiennych.

Wskaźnik CCC określony jest wzorem:

$$\rho_C = 1 - \frac{\mathbb{E}(Y_1 - Y_2)^2}{\mathbb{E}_{nzal}(Y_1 - Y_2)^2} =
= \frac{2\sigma_{Y_1Y_2}^2}{\sigma_{Y_1Y_1}^2 + \sigma_{Y_2Y_2}^2 + (\mu_{Y_1} - \mu_{Y_2})^2},$$
(3.43)

gdzie $\mathbb{E}_{nzal}(\cdot)$ oznacza wartość oczekiwaną przy założeniu niezależności zmiennych, dla których jest ona obliczana, $\sigma^2_{Y_1Y_2}$ jest kowariancją zmiennych Y_1 i Y_2 , $\sigma^2_{Y_iY_i}$ jest wariancją zmiennej Y_i , a μ_{Y_i} jest wartością oczekiwaną zmiennej Y_i .

W 1996 roku E.F. Vonesh w pracy [Vonesh
1996] zaproponował użycie współczynnika CCC do oceny dopasowania liniowego modelu mieszanego. Jeśli za Y_1 we
źmiemy wektor zmiennej objaśnianej y, a za Y_2 wektor \hat{y} predykcji y z
 modelu, to współczynnik CCC dla modelu mieszanego to:

$$\hat{\rho}_C = \frac{\sum_{i=1}^N (y_i - \hat{y}_i)^T (y_i - \hat{y}_i)}{\sum_{i=1}^N (y_i - \bar{y})^T (y_i - \bar{y}) + \sum_{i=1}^N (\hat{y}_i - \bar{y})^T (\hat{y}_i - \bar{y}) + n(\bar{y} - \bar{y})^2},$$
(3.44)

gdzie y_i jest wektorem zmiennej objaśnianej w i-tej grupie, \hat{y}_i jest wektorem predykcji wektora y_i z modelu, \bar{y} jest średnią wartością y, a \hat{y} jest średnią wartością \hat{y} oraz n jest liczbą obserwacji.

Tak jak współczynnik R_W^2 , współczynnik CCC dla modeli mieszanych ma dwie postaci:

- 1. warunkową, gdy za predykcje \hat{y} użyjemy predykcji z modelu warunkowego, czyli $\hat{y} = X\hat{\beta} + Z\hat{b}$,
- 2. brzegową, gdy za predykcje \hat{y} użyjemy predykcji z modelu brzegowego, czyli $\hat{y} = X\hat{\beta}$.

Współczynnik $\hat{\rho}_C$ jest zatem miarą zgodności obserwowanych wartości y i predykcji z badanego modelu.

Analogicznie jak dla współczynników R^2 i R^2 opartego na statystyce Walda, żeby zapobiec wzrostowi współczynnika CCC wraz ze wzrostem liczby parametrów modelu, można skorygować otrzymane współczynniki na dwa sposoby:

$$\hat{\rho}_{C,adj} = 1 - \frac{n}{n-p} (1 - \hat{\rho}_C) \tag{3.45}$$

lub

$$\hat{\rho}_{C,adj} = 1 - \frac{n}{n - (p + |\theta|)} (1 - \hat{\rho}_C), \tag{3.46}$$

gdzie n jest liczbą obserwacji, p jest liczbą kolumn (rzędem) macierzy X, $|\theta|$ jest długością wektora parametrów korelacji θ , a $\hat{\rho}_C$ jest oparty na resztach warunkowych lub brzegowych.

3.4. Struktury korelacji komponentów losowych

W liniowym modelu mieszanym występują dwa rodzaje struktur korelacji: struktura korelacji efektów losowych b oraz struktura korelacji błędów losowych ε . Sformułowanie modelu zakłada ogólne postaci macierzy D i macierzy R, które są macierzami korelacji odpowiednich komponentów losowych modelu.

Dla celów obliczeniowych lub interpretacyjnych warto narzucić z góry pewne struktury na macierze D i R. Jednym z głównych problemów analizy danych przy użyciu liniowych modeli mieszanych jest, oprócz wyboru zmiennych do modelu, właśnie wybór odpowiednich struktur korelacji. W rozdziale 4. opisane jest symulacyjne studium wyboru struktur korelacji komponentów losowych liniowego modelu mieszanego.

W dalszych podrozdziałach zostaną opisane struktury korelacji efektów losowych b i błędów losowych ε zaimplementowane w pakiecie nlme programu R, który będzie wykorzystywany do symulacji i analizy danych rzeczywistych. Część z poniżej wymienionych struktur została opisana w podrozdziałe (2.4).

3.4.1. Struktury korelacji błędów losowych ε

Zeby zadać strukturę korelacji błędów losowych modelu, trzeba zadać korelację między ε_{ij} i $\varepsilon_{ij'}$, odpowiadającym korelacji j-tego i j'-tego błędu losowego z i-tej grupy. Do tego celu przyjmuje się, że korelacja między tymi błędami losowymi jest określona funkcją o wektorze parametrów ρ .

Poprzez różne funkcje korelacji otrzymujemy całą gamę struktur korelacji błędów losowych. W tej pracy ograniczymy opis tych struktur do struktur zaimplementowanych w R. Struktury są wymienione w kolejności od najprostszych do najbardziej skomplikowanych:

- 1. brak struktury: błędy losowe ε są ze sobą nieskorelowane i są homoskedastyczne, w R jest to domyślna struktura korelacji błędów losowych ε i nazywa się NULL,
- 2. struktura niezmiennicza ze względu na permutacje:

$$Cor(\varepsilon_i) = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho & \dots & \rho & 1 & \rho \\ \rho & \dots & \rho & \rho & 1 \end{bmatrix}, \tag{3.47}$$

która w R nazywa się corCompSymm,

3. struktura autoregresyjna rzędu 1:

$$Cor(\varepsilon_{i}) = \begin{bmatrix} 1 & \rho & \rho^{2} & \dots & \rho^{n_{i}-1} \\ \rho & 1 & \rho & \dots & \rho^{n_{i}-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho^{n_{i}-2} & \dots & \rho & 1 & \rho \\ \rho^{n_{i}-1} & \dots & \rho^{2} & \rho & 1 \end{bmatrix},$$
(3.48)

która w R nazywa się corAR1,

4. struktura autoregresyjna z ruchomą średnią ARMA(p, q), która w R nazywa się corARMA:

$$\varepsilon_{i,t} = \sum_{j=1}^{p} \phi_j \varepsilon_{i,t-j} + \sum_{j=1}^{q} \alpha_j \eta_{i,t-j} + \eta_{i,t}, \tag{3.49}$$

gdzie
$$\mathbb{E}\eta_{i,t} = 0$$
, $Var(\eta_{i,t}) = \sigma_{\eta}^2$ oraz $\mathbb{E}(\eta_{i,t}, \eta_{i,s}) = 0$ dla każdego $t \neq s$,

- 5. struktura autoregresyjna ciągła: błędy zachowują się jak proces autoregresyjny z ciągłym czasem, która w R nazywa się corCAR,
- 6. struktura ogólna:

$$Cor(\varepsilon_{i}) = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \dots & \rho_{1n_{i}} \\ \rho_{12} & 1 & \rho_{23} & \dots & \rho_{2n_{i}} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \rho_{1(n_{i}-1)} & \dots & \rho_{(n_{i}-2)(n_{i}-1)} & 1 & \rho_{(n_{i}-1)n_{i}} \\ \rho_{1n_{i}} & \dots & \rho_{(n_{i}-2)n_{i}} & \rho_{(n_{i}-1)n_{i}} & 1 \end{bmatrix},$$
(3.50)

która w R nazywa się corSymm.

Oprócz wyżej wymienionych struktur korelacji błędów losowych, w pakiecie nlme są jeszcze przestrzenne struktury korelacji służące do przedstawiania zależności przestrzennych między błędami losowymi. Tą grupą struktur nie będziemy się zajmować w niniejszej pracy, szczegóły można znaleźć w [Burzykowski2011].

3.4.2. Struktury korelacji efektów losowych b

Analogicznie jak dla struktur korelacji błędów losowych ε , żeby zadać strukturę korelacji między efektami losowymi b w liniowym modelu mieszanym, trzeba zadać korelację między poszczególnymi kolumnami macierzy efektów losowych Z. W tej pracy ograniczymy opis tych struktur do struktur zaimplementowanych w pakiecie nlme:

- 1. struktura identycznościowa: efekty losowe b są ze sobą nieskorelowane i są homoskedastyczne, która w R nazywa się pdIdent,
- 2. struktura diagonalna:

$$D = \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \sigma_{n_i-1} & 0 \\ 0 & \dots & 0 & 0 & \sigma_{n_i} \end{bmatrix},$$
(3.51)

która w R nazywa się pdDiag,

3. struktura niezmiennicza ze względu na permutacje:

$$D = \begin{bmatrix} 1 & d & d & \dots & d \\ d & 1 & d & \dots & d \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ d & \dots & d & 1 & d \\ d & \dots & d & d & 1 \end{bmatrix},$$
(3.52)

która w R nazywa się pdCompSymm,

4. struktura ogólna:

$$D = \begin{bmatrix} 1 & d_{12} & d_{13} & \dots & d_{1n_i} \\ d_{12} & 1 & d_{23} & \dots & d_{2n_i} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ d_{1(n_i-1)} & \dots & d_{(n_i-2)(n_i-1)} & 1 & d_{(n_i-1)n_i} \\ d_{1n_i} & \dots & d_{(n_i-2)n_i} & d_{(n_i-1)n_i} & 1 \end{bmatrix},$$
(3.53)

która w R ma trzy reprezentacje: pdSymm, ogólna macierz dodatnio określona, parametryzowana elementami rozkładu SVD, pdLogChol, ogólna macierz dodatnio określona, reprezentowana w postaci Cholesky'ego (patrz podrozdział (2.4.2)) oraz pdNatural, ogólna macierz dodatnio określona w naturalnej parametryzacji, czyli przy użyciu odchyleń standardowych i korelacji,

5. struktura blokowa: macierz blokowa o blokach określonych strukturami opisanymi w punktach 1-4.

Wszystkie wyżej wymienione struktury uporządkowane są w kolejności od najprostszych do najbardziej skomplikowanych.

Rozdział 4

Liniowe modele mieszane w R

Obecnie dostępnych jest kilka pakietów programu R pozwalających na dopasowywanie modeli mieszanych, między innymi: nlme, lme4 i MCMglmm. Do tej pracy wykorzystywany był jedynie pakiet nlme, którego autorami są: J. Pinheiro, D. Bates, S. Debroy i D. Sarkar. Szczegółowa dokumentacja pakietu nlme dostępna jest na stronie:

http://cran.r-project.org/web/packages/nlme/index.html.

Równie szczegółowy opis pakietu wraz z ciekawymi przykładami jego zastosowań można znaleźć w [Burzykowski2011], z której to pozycji został zaczerpnięty opis pakietu i funkcji lme().

4.1. Pakiet nlme - funkcja lme()

Podstawowym narzędziem pakietu nlme do estymacji liniowych modeli mieszanych jest funkcja lme(). Pozwala ona budować i dopasowywać modele z zagnieżdżonymi efektami losowymi b i skorelowanymi błędami losowymi ε (błędy losowe wewnątrz grup mogą być heteroskedastyczne). Żeby określić liniowy model mieszany trzeba określić struktury: średniej (efekty stałe) i efektów losowych (macierz D), opcjonalnie określa się struktury korelacji błędów losowych (macierz R) i wagi dla obserwacji.

W poniższych tabelach przedstawione zostały najważniejsze argumenty funkcji lme() wraz z ich klasami oraz funkcje umożliwiające uzyskiwanie informacji o parametrach modelu dopasowanego funkcją lme(). Obydwie tabele zostały zaczerpnięte z [Burzykowski2011].

Tablica 4.1: Wybrane argumenty funkcji lme(). Źródło: [Burzykowski2011].

Nazwa argumentu	Klasa argumentu	Komponent modelu
fixed	formula	efekty stałe,
	groupedData	zmienne grupujące
random	reStruct	efekty losowe,
		struktura efektów losowych
correlation	corStruct	struktura korelacji błędów losowych ε
weights	varFunc	wagi wariancji błędów losowych ε
data	data.frame	dane
	grouped Data	
method		metoda estymacji: ML lub REML

Tablica 4.2: Uzyskiwanie informacji z hipotetycznego obiektu lme.fit dopasowanego za pomocą funkcji lme(). $\acute{Z}r\acute{o}dlo:$ [Burzykowski2011].

Komponent modelu lme.fit	Funkcja
Podsumowanie modelu	<pre>summary(lme.fit)</pre>
Metoda estymacji	lme.fit\$method
$\hat{\sigma}$	summary(lme.fit)\$sigma
$\mid \hat{eta} \mid$	fixef(lme.fit)
$ \operatorname{Var}\hat{eta} $	vcov(lme.fit)
95% przedział ufności dla β	<pre>intervals(lme.fit, which = "fixed")</pre>
95% przedział ufności dla θ , σ	<pre>intervals(lme.fit, which = "var-cov")</pre>
95% przedział ufności dla θ_D	<pre>intervals(lme.fit, which = "var-cov")\$reStruct</pre>
\hat{b}_i	ranef(lme.fit)
$\hat{\beta} + \hat{b}_i$ w grupach	<pre>coef(lme.fit)</pre>
$\mid \hat{\mathcal{D}} \mid$	<pre>getVarCov(lme.fit)</pre>
	VarCorr(lme.fit)
$\mid \hat{\mathcal{R}}_i \mid$	<pre>getVarCov(lme.fit, type = "conditional")</pre>
$\mid \hat{\mathcal{V}}_i \mid$	<pre>getVarCov(lme.fit, type = "marginal")</pre>
Maksimum wiarygodności ML	logLik(lme.fit, REML = FALSE)
Maksimum wiarygodności REML	logLik(lme.fit)
AIC	AIC(lme.fit)
BIC	BIC(lme.fit)
Dopasowane wartości:	
- warunkowe	fitted(lme.fit)
- brzegowe	fitted(lme.fit, level = 0)
Reszty:	
- warunkowe	resid(lme.fit, type = "response")
- brzegowe	resid(lme.fit, type = "response", level = 0)
Predykcje:	
- warunkowe	<pre>predict(lme.fit, newdata)</pre>
- brzegowe	<pre>predict(lme.fit, newdata, level = 0)</pre>

4.2. Pakiet lmmfit

Na potrzeby niniejszej pracy, został utworzony pakiet programu R o nazwie lmmfit, który zawiera funkcje wyznaczające wszystkie współczynniki opisane w podrozdziale (3.3) dla liniowych modeli mieszanych pogrupowanych przez jedną zmienną. Pakiet ten jest dostępny pod adresem:

http://cran.r-project.org/web/packages/lmmfit/index.html

Pakiet lmmfit zawiera również funkcje dokonujące automatycznego doboru struktur korelacji błędów losowych i korelacji efektów losowych przy ustalonych efektach stałych i losowych w modelu pogrupowanym przez jedną zmienną.

Tablica 4.3: Funkcje pakietu lmmfit wyznaczające współczynniki jakości dopasowania dla hipotetycznego liniowego modelu mieszanego pogrupowanego przez jedną zmienną o nazwie lme.fit. $\acute{Z}r\acute{o}dlo$: opracowanie własne.

Współczynnik	Funkcja
Kryterium GIC z karą k	GIC(lme.fit, k)
Współczynnik <i>PRESS</i> :	
- brzegowy	<pre>lmmPRESS(lme.fit, type = "marginal")</pre>
- warunkowy	<pre>lmmPRESS(lme.fit, type = "conditional")</pre>
Klasyczny współczynnik \mathbb{R}^2 :	
- brzegowy	<pre>lmmR2(lme.fit, type = "marginal")</pre>
- warunkowy	<pre>lmmR2(lme.fit, type = "conditional")</pre>
Współczynnik \mathbb{R}^2 oparty na statystyce Walda:	
- brzegowy	<pre>lmmR2W(lme.fit, type = "marginal")</pre>
- warunkowy	<pre>lmmR2W(lme.fit, type = "conditional")</pre>
Współczynnik \mathbb{R}^2 oparty na ilorazie	
wiarygodności:	lmmR2LR(lme.fit)
Współczynnik CCC:	
- brzegowy	<pre>lmmCCC(lme.fit, type = "marginal")</pre>
- warunkowy	<pre>lmmCCC(lme.fit, type = "conditional")</pre>

Dodatkowo funkcjom lmmCCC(), lmmR2() i lmmR2W() można podać argument adjust (który przyjmuje jedną z wartości: "none" (domyślna wartość), "fixed" lub "both"), który dla otrzymanego współczynnika wprowadza poprawkę ze względu na liczbę parametrów modelu (odpowiednio: brak poprawki, poprawka na liczbę efektów stałych b, poprawka na liczbę efektów stałych b i parametrów macierzy korelacji komponentów losowych modelu), patrz podrozdziały (3.3.3) i (3.3.4).

4.2.1. Funkcje structStep() i structStepR2()

Struktury korelacji błędów losowych ε opisane w podrozdziale (3.4.1) są częściowo zagnieżdżone, dlatego daje się je umieścić w wierzchołkach grafu następującej postaci:

Rysunek 4.1: Graf obrazujący uporządkowanie struktur korelacji błędów losowych ε dla liniowych modeli mieszanych. Źródło: opracowanie własne.

Część struktur korelacji efektów losowych b opisanych w podrozdziale (3.4.2) również daje się umieścić w wierzchołkach grafu:

Rysunek 4.2: Graf obrazujący uporządkowanie struktur korelacji efektów losowych b dla liniowych modeli mieszanych. $\acute{Z}r\acute{o}dlo$: opracowanie własne.

Zatem liniowe modele mieszane o ustalonych efektach stałych i ustalonych efektach losowych o strukturach korelacji komponentów losowych wymienionych w powyższych grafach daje się umieścić w wierzchołkach większego grafu będącego połączeniem grafów z rysunków 4.1 i 4.2, który jest przedstawiony na rysunku 4.3 (jest to graf produktowy dla grafów 4.1 i 4.2). Dla czytelności rysunku na grafie 4.3 zostały wymienione tylko nazwy struktur komponentów losowych modelu. Rodzice modelu o strukturach komponentów losowych wymienionych w danym wierzchołku są dla niego modelami zagnieżdżającymi.

Romby na końcach krawędzi wskazują kierunek zagnieżdżenia modeli w wierzchołkach: model, przy którym jest romb, jest modelem zagnieżdżonym w stosunku do modelu, który znajduje się na drugim końcu krawędzi. Kolory krawędzi symbolizują rodzaj struktury korelacji, która jest zmieniana: czerwony - zmieniana jest struktura korelacji błędów losowych ε modelu, czarny - zmieniana jest struktura efektów losowych b modelu.

Funkcje automatycznie dobierające struktury korelacji błędów losowych i korelacji efektów losowych przy ustalonych efektach stałych i losowych w modelu pogrupowanym przez jedną zmienną zachłannie przeszukują grafy 4.1, 4.2 lub 4.3, wyszukując lokalne minimum (kryteria GIC, AIC, BIC, PRESS) lub maksimum (współczynniki R^2 , CCC) danego kryterium poruszając się po wierzchołkach danego grafu według następującego algorytmu:

- 1. obliczenie wartości kryterium dla modelu,
- 2. obliczenie wartości kryterium dla wszystkich sąsiadów modelu,
- 3. wybór modelu o najmniejszej (największej) wartości kryterium,
- 4. powtórzenie kroków 1-3, aż do osiągnięcia lokalnego minimum (maksimum) kryterium.

Taki wybór struktur korelacji komponentów losowych liniowego modelu mieszanego pogrupowanego przez jedną zmienną może się sprawdzać, gdy mamy do czynienia z dużymi danymi, czyli gdy dopasowanie modeli o wszystkich możliwych strukturach jest czasochłonne. Funkcje structStep() i structStepR2() wyestymują w najlepszym wypadku 5 modeli, a w najgorszym 20 modeli.

Rysunek 4.3: Graf obrazujący uporządkowanie liniowych modeli mieszanych o różnych strukturach korelacji komponentów losowych. $\acute{Z}r\acute{o}dlo:$ opracowanie własne.

Tablica 4.4: Funkcja structStep() zachłannie wyznaczająca struktury korelacji komponentów losowych poprzez minimalizację kryterium GIC lub PRESS. $\acute{Z}r\acute{o}dlo$: opracowanie własne.

Nazwa argumentu	Klasa argumentu	Komponent modelu
model	lme	liniowy model mieszany
		pogrupowany przez jedną zmienną
k	numeric	kara za liczbę parametrów modelu
	string:	dla kryterium GIC lub wskaźnik, że ma
	"PRESS"	być minimalizowany PRESS
p, q	integer	parametry struktury $ARMA(p,q)$
structChange	character	parametr określający, które struktury mają
		być wybierane:
		"correlation" tylko struktura błędów losowych
		"random" tylko struktura efektów losowych
		"both" obydwie struktury jednocześnie
trace	logical	gdy TRUE, umożliwia śledzenie ścieżki wyboru
		struktur
type	character	typ współczynnika <i>PRESS</i> :
		"marginal" lub "conditional"

Tablica 4.5: Funkcja structStepR2() zachłannie wyznaczająca struktury korelacji komponentów losowych poprzez maksymalizację współczynnika dopasowania. $\acute{Z}r\acute{o}d\acute{l}o:$ opracowanie własne.

Nazwa argumentu	Klasa argumentu	Komponent modelu
model	lme	liniowy model mieszany
		pogrupowany przez jedną zmienną
crit	function	funkcja wyznaczająca współczynnik, który będzie
		maksymalizowany: lmmCCC, lmmR2, lmmR2W lub
		lmmR2LR
type	character	parametr określający rodzaj reszt używanych do
		obliczenia współczynnika: "marginal" lub
		"conditional"
adjust	character	parametr określający rodzaj poprawki ze
		względu na liczbę parametrów modelu: "none",
		"fixed" lub "both"
p, q	integer	parametry struktury $ARMA(p,q)$
structChange	character	parametr określający, które struktury mają
		być wybierane:
		"correlation" tylko struktura błędów losowych
		"random" tylko struktura efektów losowych
		"both" obydwie struktury jednocześnie
trace	logical	gdy TRUE, umożliwia śledzenie ścieżki wyboru
		struktur

4.3. Analiza danych symulowanych

Rozdział ten jest poświęcony opisowi studium symulacyjnego. Celem symulacji było zbadanie skuteczności kryteriów oceny jakości dopasowania modelu wymienionych w podrozdziale (3.3) jako wytycznych do wyboru struktur korelacji komponentów losowych w liniowym modelu mieszanym pogrupowanym przez jeden czynnik. Wybór struktur korelacji modelu przeprowadzany był automatycznie poprzez minimalizację lub maksymalizację wybranych współczynników, przy użyciu funkcji structStep() lub structStepR2() z pakietu lmmfit (opis tych funkcji znajduje się w podrozdziale (4.2)).

4.3.1. Opis symulacji

Do analiz wybranych zostało dziewięć współczynników:

- 1. AIC (patrz podrozdział (3.3.1)),
- 2. BIC (patrz podrozdział (3.3.1)),
- 3. PRESS w dwóch wersjach: brzegowej i warunkowej (patrz podrozdział (3.3.2)),
- 4. CCC w dwóch wersjach: brzegowej i warunkowej (patrz podrozdział (3.3.4)),
- 5. R_W^2 w dwóch wersjach: brzegowej i warunkowej (patrz podrozdział $(3.3.3)),\,$
- 6. R_{LR}^2 (patrz podrozdział (3.3.3)).

Współczynniki AIC, BIC oraz *PRESS* w wersjach brzegowej i warunkowej były minimalizowane (funkcją structStep()), reszta współczynników była maksymalizowana (funkcją structStepR2()).

Do analiz zostały użyte trzy zbiory danych: Orthodont (z pakietu nlme), Earthquake (z pakietu nlme) oraz sleepstudy (z pakietu lme4). Wszystkie te zbiory pochodzą z pakietów autorstwa D.Batesa i J.Pinheiro.

Ustalone zostały cztery modele bazowe:

- m1 <- lme(Reaction \sim 1 + Days, random = \sim 1 + Days | Subject, data = sleepstudy),
- m2 <- lme(distance \sim 1 + age + Sex, random = \sim 1 + age | Subject, data = Orthodont),
- m3 <- lme(distance \sim 1 + age + Sex, random = \sim 1 + age + Sex | Subject, data = Orthodont),
- m4 <- lme(accel \sim 1 + distance + Richter + soil, random = \sim 1 + distance + Richter + soil | Quake, data = Earthquake),

gdzie formuła y ~ 1 + x oznacza model o zmiennej objaśnianej y i zmiennych objaśniających 1 i x oraz formuła random = ~ 1 + x | g oznacza, że jako zmienne losowe przyjmuje się 1 i x, a zmienną grupującą jest g.

Ze względu na złożoność obliczeniową i czasochłonność estymacji, do symulacji wybrane zostały następujące struktury korelacji efektów losowych: pdIdent, pdDiag, pdCompSymm, pdSymm oraz następujące struktury błędów losowych: NULL i corCompSymm. Modele o strukturach pdSymm, NULL i pdSymm, corCompSymm udało się dopasować jedynie dla modelu bazowego m3 (dla modeli m1 i m2 struktura korelacji pdSymm jest równoważna strukturze pdCompSymm). Symulacje przebiegały według następującego schematu (dla każdego z modeli m1, m2, m3 i m4):

- 1. Estymacja współczynników modelu bazowego z jedną z ośmiu powyżej wymienionych struktur korelacji.
- 2. Wygenerowanie wektora efektów losowych b z wykorzystaniem macierzy korelacji efektów losowych z modelu z punktu 1.
- 3. Wygenerowanie wektora błędów losowych ε z wykorzystaniem macierzy korelacji błędów losowych z modelu z punktu 1.
- 4. Obliczenie nowych wartości zmiennej objaśnianej y z wykorzystaniem danych z modelu bazowego i wektorów komponentów losowych b i ε z punktów 2. i 3.
- 5. Dopasowanie modelu o strukturach korelacji takich jak w modelu bazowym, opartego na nowych danych.
- 6. Wybór i dopasowanie funkcją structStep() lub strucStepR2() modelu wynikowego dla modelu z punktu 5.
- 7. Dopasowanie modelu o wybranych, innych strukturach korelacji niż w modelu bazowym, opartego na nowych danych.
- 8. Wybór i dopasowanie funkcją structStep() lub strucStepR2() modelu wynikowego dla modelu z punktu 7.
- 9. Powtórzenie kroków od 2. do 8. 250 razy.
- 10. Powtórzenie kroków od 1. do 9. dla wszystkich wybranych kryteriów oceny jakości dopasowania modelu.

Zostało wyestymowane 26 modeli, na podstawie których 250 razy były generowane odpowiednio skorelowane komponenty losowe dla modeli symulowanych. W sumie zostało dopasowanych 13000 modeli, które zostały przekazane do funkcji automatycznego doboru struktur korelacji structStep() i structStepR2(). Funkcje te wybierały modele wynikowe na podstawie dziewięciu kryteriów jakości dopasowania modelu wymienionych na początku podrozdziału (4.3.1).

Generowanie danych

Przykład kodu w R użytego do generowania modeli o odpowiednio skorelowanych komponentach losowych:

```
p <- nrow(V) #liczba efektów losowych
X <- model.matrix(formula(m4), data = getData(m4))</pre>
                                                             # macierz efektów stalych
Z \leftarrow X
                                                             # macierz efektów losowych
mu1 <- X %*% fixef(m4)
dane = cbind(1,X,getGroups(m4))
colnames(dane) = c("y", "Intercept", "distance", "Richter", "soil1", "Quake")
dane = as.data.frame(dane)
# generowanie komponentów losowych:
bi <- mvrnorm(N, rep(0, p), V)
                                             # efekty losowe skorelowane wg macierzy V
mu \leftarrow mu1 + rowSums(Z * b[rep(1:N, ni), ]) # nowe X beta + Z b
eps <- list()
                                             # grupy mogą być nierównoliczne
for (i in 1:N){
 # macierz korelacji blędów losowych dla i-tej grupy:
Ri <- getVarCov(m4, type = "conditional", individual = i)[1][[1]]
 eps[[i]] <- mvrnorm(1, rep(0, nrow(Ri)), Ri)</pre>
}
eps <- unlist(eps)</pre>
y <- mu + eps
                                               #nowe y
dane\$y = y
model <- lme(y ~ distance + Richter + soil1, data = dane,
             random = list(Quake = pdCompSymm(~ 1 + distance + Richter + soil1)))
```

4.3.2. Wyniki symulacji

Wynikiem przeprowadzonych symulacji są procentowe rozkłady wyboru prawidłowych struktur korelacji komponentów losowych modelu mieszanego: struktury efektów losowych b i błędów losowych ε , tylko struktury korelacji efektów losowych b lub tylko struktury korelacji błędów losowych ε dla poszczególnych kryteriów dla każdego z modeli bazowych m1, m2, m3 oraz m4. Zostały one przedstawione w tabelach A.1 - A.7, które znajdują się w dodatku A na końcu pracy. Część wyników została również przedstawiona graficznie na wykresach 4.4 - 4.11. Nagłówki poszczególnych wykresów są skrótami oznaczającymi prawdziwe struktury modeli, z których generowane były dane do symulacji.

Prawdziwe struktury to:

 $\label{eq:pdlient} $$\operatorname{pdDiag}, \operatorname{NULL}\ (DN); \operatorname{pdCompSymm}, \operatorname{NULL}\ (CoN); \operatorname{pdSymm}, \operatorname{NULL}\ (SN); \operatorname{pdI-dent}, \operatorname{corCompSymm}\ (ICo); \operatorname{pdDiag}, \operatorname{corCompSymm}\ (DCo); \operatorname{pdCompSymm}, \operatorname{corCompSymm}\ (CoCo); \operatorname{pdSymm}, \operatorname{corCompSymm}\ (SCo). \\$

W podpisach rysunków znajduje się również informacja o strukturach modelu, z którego startowały funkcje doboru struktur: "start z prawdziwego modelu" oznacza, że modelem startowym dla funkcji dobierającej struktury był model o takich strukturach, jak w modelu, z którego generowane były dane, "start z modelu o innych strukturach" oznacza, że modelem startowym był model o pewnych innych strukturach (różnych od tych w modelu, z którego generowane były dane).

Na osiach OX wykresów znajdują się wartości procentowe, natomiast na osiach OY zaznaczono kryteria. Jeśli przy nazwie kryterium znajduje się literka "c" lub "m", oznacza to odpowiednio, że używana była warunkowa lub brzegowa wersja danego kryterium (kryteria CCC, PRESS i R_W^2).

Rysunek 4.4: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowych struktur korelacji komponentów losowych w modelu (w procentach, gwiazdkami oznaczono średnie). Startowym modelem był prawdziwy model. $\acute{Z}r\acute{o}d\acute{t}o$: opracowanie własne.

Rysunek 4.5: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowych struktur korelacji komponentów losowych w modelu (w procentach, gwiazdkami oznaczono średnie). Startowym modelem był model o innych strukturach. $\acute{Z}r\acute{o}dlo:$ opracowanie własne.

Rysunek 4.6: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowej struktury korelacji efektów losowych b w modelu (w procentach, gwiazdkami oznaczono średnie). Startowym modelem był prawdziwy model. $\acute{Z}r\acute{o}dlo$: opracowanie własne.

Rysunek 4.7: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowej struktury korelacji efektów losowych b w modelu (w procentach, gwiazdkami oznaczono średnie). Startowym modelem był model o innych strukturach. $\acute{Z}r\acute{o}dlo:$ opracowanie własne.

Rysunek 4.8: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowej struktury korelacji błędów losowych ε w modelu (w procentach, gwiazdkami oznaczono średnie). Startowym modelem był prawdziwy model. Źródło: opracowanie własne.

Rysunek 4.9: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowej struktury korelacji błędów losowych ε w modelu (w procentach, gwiazdkami oznaczono średnie). Startowym modelem był model o innych strukturach. Źródło: opracowanie własne.

4.3.3. Wnioski i podsumowanie symulacji

Procentowe zestawienia wyników symulacji znajdują się w tabelach A.1 - A.7 w dodatku A. Wyniki zostały również przedstawione graficznie na rysunkach 4.4 - 4.11, które znajdują się w podrozdziale 4.3.2 oraz poniżej.

Żadne z badanych kryteriów nie wyróżnia się skutecznością wyboru prawidłowych struktur korelacji komponentów losowych modelu. Średnio wszystkie kryteria wskazywały prawdziwy model w około 20% przypadków, gdy funkcje automatycznego doboru struktur jako startowy miały podany prawdziwy model. Niestety średnia ta drastycznie spada, do około 5% przypadków, gdy modelem startowym jest pewien inny model o strukturach korelacji różnych od prawdziwych. Jedynymi kryteriami, które się wyróżniają, są kryteria AIC i BIC, które w około 45% przypadków wskazały prawidłowy model przy starcie z prawdziwego modelu i w około 25%, gdy modelem startowym był inny model, przy założeniu, że rzeczywisty model miał najprostszą strukturę: pdIdent, NULL. Najsłabiej wypadł współczynnik R_{LR}^2 , który prawidłowo wskazywał tylko strukturę pdCompSymm, corCompSymm.

Porównanie kryteriów

Kryteria AIC i BIC najczęściej wskazywały prawidłowe struktury korelacji komponentów losowych modelu, gdy prawdziwą strukturą była najprostsza struktura pdIdent, NULL, zarówno gdy modelem startowym był prawdziwy model, jak i gdy model startowy miał błędne struktury korelacji. Kryterium BIC wybierało dobry model w 82,9% (model startowy o prawdziwych strukturach korelacji) oraz w 31% przypadków (model startowy o innych strukturach), zatem wypadło lepiej niż kryterium AIC, które średnio wskazywało prawidłowy model odpowiednio 55,6% i 23,9% razy. Niestety dla pozostałych struktur modeli kryteria te wypadły słabo.

Pozostałe kryteria, gdy modelem startowym był prawdziwy model, wykazywały wzrost skuteczności wraz ze wzrostem stopnia skomplikowania struktur modelu. Widać to na rysunku 4.4. Niestety średnia skuteczność wyboru prawidłowych struktur przez te kryteria waha się między 5% a 45%, co nie jest dobrym wynikiem.

Gdy modelem startowym był model o pewnych innych strukturach niż prawdziwe, żadne z kryteriów (oprócz AIC i BIC) nie przekroczyło średniej skuteczności w wysokości 20% (rysunek 4.5).

Wykres 4.6 pokazuje, że przy znanej strukturze korelacji błędów losowych modelu (na przykład, gdy wiadomo, że błędy losowe są homoskedastyczne i nieskorelowane) najlepszym kryterium wyboru struktury korelacji efektów losowych może być jedno z kryteriów PRESS. Skuteczność tych kryteriów to około 60%. Są one dobre, ponieważ mają podobną skuteczność niezależnie od rodzaju rzeczywistej struktury korelacji efektów losowych (w przeciwieństwie do innych kryteriów, których średnia skuteczność waha się między 10% a 96%). Również wykres 4.7 wskazuje, że skuteczność wyboru struktur korelacji za pomocą współczynników PRESS jest na stabilnym poziomie niezależnie od prawdziwej struktury modelu (wynosi około 20%).

Rzeczą rzucającą się w oczy na wyżej wymienionych wykresach jest niestabilność wyboru struktur korelacji przez kryteria AIC i BIC. Zarówno startując z prawdziwego modelu, jak i z modelu o innych strukturach średnie skuteczności wyboru struktury korelacji efektów losowych wahają się między 10% a 98% w zależności od rodzaju rzeczywistej struktury modelu.

Wykres 4.8 pokazuje, że w zasadzie wszystkie kryteria wybierają prawidłową strukturę korelacji błędów losowych z prawdopodobieństwem około 0,5 (modelem startowym jest prawdziwy

model). Gdy model startowy ma inne struktury niż prawdziwy (patrz wykres 4.9), to skuteczność części kryteriów spada do około 20%, skuteczność współczynnika R_{LR}^2 spada nawet do zera dla najprostszych modeli, a skuteczność kryteriów AIC oraz BIC spada prawie do zera dla modeli o bardziej skomplikowanej strukturze korelacji błędów losowych.

Podsumowując, dla najprostszych struktur korelacji komponentów losowych liniowego modelu mieszanego najlepiej wypadły kryteria AIC i BIC. Dla bardziej skomplikowanych struktur skuteczniejsze okazały się kryteria jakości dopasowania modelu do danych: współczynnik CCC w wersji warunkowej i współczynnik R_W^2 również w wersji warunkowej. Skuteczność tych kryteriów w obserwowanych zbiorach nie jest jednak duża. Jedynie zakładając, że wiadomo jaka jest prawidłowa struktura efektów losowych lub błędów losowych można z prawdopodobieństwem około 20% dobrać prawidłowo drugą strukturę. Takie wyniki mogły jednak zostać uzyskane z powodu błędnych założeń co do postaci modeli bazowych, które to założenia nie były w tej pracy sprawdzane. Ponieważ studium symulacyjne zostało przeprowadzone tylko dla dziewięciu kryteriów, możliwe jest, że pewne inne kryteria okazałyby się bardziej skuteczne od badanych.

Porównanie kryteriów między modelami

Rysunki 4.10 oraz 4.11 przedstawiają procentową skuteczność wyboru struktur korelacji efektów losowych b i błędów losowych ε dla wszystkich badanych kryteriów w zależności od modelu bazowego. W lewej kolumnie każdego z tych rysunków znajdują się wykresy dla modelu startowego o prawidłowych strukturach, natomiast prawa kolumna wykresów odpowiada modelowi startowemu o pewnych innych strukturach niż prawdziwe.

Wszystkie badane kryteria mają bardzo małą skuteczność w wykrywaniu struktury korelacji efektów losowych b postaci pdDiag, niezależnie od wielkości modelu (modele m1 i m2 są najmniejsze, największy jest model m4) oraz niezależnie od struktury korelacji błędów losowych ε . Widać to na rysunkach 4.10 (c) i (d) oraz 4.11 (c) i (d).

Kryteria AIC (czarny kwadrat) i BIC (fioletowe kółko) stosunkowo najczęściej wskazywały prawidłowe struktury korelacji komponentów losowych modeli m1, m2 oraz m3. Niestety nie sprawdziły się dla największego modelu m4.

Również współczynnik *CCC* w wersji warunkowej (jasnoniebieski trójkąt) wyróżnia się skutecznością dla mniejszych modeli, w szczególności dla modeli m1 i m2.

W konkluzji, najprawdopodobniej, aby dobrać struktury korelacji komponentów losowych w liniowym modelu mieszanym, trzeba posiadać więcej informacji o badanym problemie i posiadanych danych. Badane kryteria mogą służyć wtedy do ogólnej jakości dopasowania modelu do danych.

Rysunek 4.10: Wybór struktur korelacji komponentów losowych w zależności od modelu bazowego: (a) IN, start z prawdziwego modelu, (b) IN, start z modelu o innych strukturach, (c) DN, start z prawdziwego modelu, (d) DN, start z modelu o innych strukturach, (e) CoN, start z prawdziwego modelu, (f) CoN, start z modelu o innych strukturach

Rysunek 4.11: Wybór struktur korelacji komponentów losowych w zależności od modelu bazowego: (a) ICo, start z prawdziwego modelu, (b) ICo, start z modelu o innych strukturach, (c) DCo, start z prawdziwego modelu, (d) DCo, start z modelu o innych strukturach, (e) CoCo, start z prawdziwego modelu, (f) CoCo, start z modelu o innych strukturach

Podsumowanie

Celem tej pracy było przedstawienie teorii dotyczącej estymacji liniowych modeli z efektami mieszanymi (popularnie zwanych modelami mieszanymi), metod porównywania ich oraz testowania jakości dopasowania modelu do danych. W pracy zostało przedstawionych kilka metod estymacji współczynników liniowego modelu mieszanego. Zarysowana również została teoria testowania hipotez dotyczących istotności współczynników modelu. Głównym celem było jednak opisanie kryteriów mówiących o jakości dopasowania modelu, takich jak: kryterium GIC (ang. generalized information criterion), kryterium PRESS (ang. predicted residual sum of squares), współczynnika CCC (ang. concordance correlation coefficient) oraz współczynników R^2 dla liniowych modeli mieszanych.

Przeprowadzono również studium symulacyjne, które miało na celu sprawdzenie skuteczności kryteriów oceny jakości dopasowania, wspomnianych powyżej, jako wytycznych do wyboru struktur korelacji komponentów losowych w liniowym modelu mieszanym. Wyniki studium wskazują, że niestety żadne z badanych kryteriów nie powinno służyć do wyboru prawidłowych struktur korelacji w modelu.

Do przeprowadzenia analiz, obliczeń i wykonania rysunków wykorzystane zostało środowisko R. Do celów tejże pracy i studium symulacyjnego powstał również pakiet lmmfit, który zawiera funkcje wyznaczające wszystkie współczynniki i kryteria opisane w pracy oraz funkcje dokonujące automatycznego doboru struktur korelacji komponentów losowych liniowego modelu mieszanego przy ustalonych efektach stałych i losowych.

Ciekawym rozszerzeniem niniejszej pracy mogłoby być zbadanie, czy wymienione w pracy kryteria jakości dopasowania modelu do danych mogą być pomocne przy wyborze zmiennych do modelu przy ustalonych strukturach korelacji komponentów losowych. Metoda wyboru zmiennych do modelu oparta o któryś z tych współczynników byłaby prostsza i bardziej użyteczna niż metoda oparta na przykład na teście ilorazu wiarygodności (LRT), ponieważ pozwalałaby efektywnie porównywać między sobą modele niezagnieżdżone.

Pomimo, że zmiennym traktowanym jako losowe w modelu przypisuje się zupełnie inną interpretację niż zmiennym traktowanym jako stałe, ciekawym zagadnieniem byłoby również sprawdzenie, czy współczynniki opisane w pracy mogłyby pomóc w określeniu, które zmienne powinny być traktowane jako losowe, a które jako stałe.

Dodatek A

Wyniki symulacji, tabele

W tym dodatku znajdują się zestawienia wyników symulacji opisanych w podrozdziale (4.3).

W tabelach od A.4 do A.7 przedstawione są procentowe rozkłady wyboru struktur przez funkcje structStep() lub structStpR2() dla kolejnych modeli bazowych: m1, m2, m3 oraz m4. Nazwy kolumn tabel A.4 - A.7 są skrótami oznaczającymi prawdziwe struktury modeli, z których generowane były dane do symulacji, natomiast nazwy wierszy tych tabeli są skrótami oznaczającymi, jakie struktury komponentów losowych zostały wybrane przez funkcje automatycznego doboru struktur.

Struktury prawdziwe to:

pdIdent, NULL (IN); pdDiag, NULL (DN); pdCompSymm, NULL (CoN); pdSymm, NULL (SN); pdIdent, corCompSymm (ICo); pdDiag, corCompSymm (DCo); pdCompSymm, corCompSymm (CoCo); pdSymm, corCompSymm (SCo).

Struktury możliwe do wybrania przez funkcje doboru struktur to:

pdIdent, NULL (IN); pdDiag, NULL (DN); pdCompSymm, NULL (CoN); pdSymm, NULL (SN); pdIdent, corCompSymm (ICo); pdDiag, corCompSymm (DCo); pdCompSymm, corCompSymm (CoCo); pdSymm, corCompSymm (SCo); pdIdent, corAR1 (IAR1); pdDiag, corAR1 (DAR1); pdCompSymm, corAR1 (CoAR1); pdSymm, corAR1 (SAR1); pdIdent, corARMA(1,1) (IARMA); pdDiag, corARMA(1,1) (DARMA); pdCompSymm, corARMA(1,1) (CoARMA); pdSymm, corARMA(1,1) (SARMA); pdIdent, corSymm (IS); pdDiag, corSymm (DS); pdCompSymm, corSymm (CoS); pdSymm, corSymm (SS).

Każda z tabel A.4 - A.7 jest podzielona na 18 części: po dwie części dla każdego z dziewięciu kryteriów wyboru modelu - nagłówek "start z prawdziwego modelu" oznacza, że modelem startowym dla funkcji dobierającej struktury był model o takich strukturach, jak w modelu, z którego generowane były dane, nagłówek "start z modelu o innych strukturach" oznacza, że modelem startowym był model o pewnych innych strukturach (różnych od tych w modelu, z którego generowane były dane). W nagłówkach znajduje się również informacja, które kryterium służyło do wyboru modelu. Jeśli przy nazwie kryterium znajduje się literka "c" lub "m", oznacza to odpowiednio, że używana była warunkowa lub brzegowa wersja danego kryterium (kryteria CCC, PRESS i R_W^2). Liczby w kolumnach każdej z 18 podtabel sumują się do 100.

Tabele od A.1 do A.3 stanowią procentowe zestawienie poprawnych wyborów odpowiednio: struktur komponentów losowych modelu (struktury efektów losowych b i błędów losowych ε), struktury efektów losowych b, struktury błędów losowych ε ze względu na kryteria wyboru

dla każdego z modeli bazowych m1, m2, m3 oraz m4. Tak, jak dla tabel A.4 do A.7, nazwy kolumn są skrótami oznaczającymi prawdziwe struktury modeli, z których generowane były dane do symulacji (rozszerzenia skrótów - patrz wyżej), natomiast nazwy wierszy oznaczają nazwę kryterium, według którego model był wybierany.

Tablica A.1: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowych struktur korelacji komponentów losowych w modelu (w procentach dla każdego modelu bazowego). $\acute{Z}r\acute{o}dlo$: opracowanie własne.

m1	s	tart z	modelu	o pra	wdziwy	ych str	ukturac	h		start	z mod	elu o i	nnych	struktı	urach	
Str. Kryt.	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
AIC	68,8	3,6	1,2	X	100	0	0	X	20	1,6	0,4	X	0,8	0	0	X
BIC	95,2	0	0	X	98,4	0	0	X	23,6	0	0	X	0,4	0	0	X
CCCc	19,2	8,8	3,6	X	60,4	0	36,8	X	14,8	7,2	3,6	X	46,4	0	17,6	X
CCCm	21,6	16,4	28,8	X	27,6	28,4	46	X	4,8	6,8	8,8	X	0	0,4	0	X
PRESSc	11,6	16	19,6	X	37,6	36	53,2	X	4,8	4,4	8	X	0,8	0,4	1,2	X
PRESSm	13,6	15,6	22	X	34,8	35,2	60,8	X	4	6,4	8	X	0,8	2	0,8	X
R2Wc	0,8	4,4	37,6	X	0	35,6	42,4	X	0	4	12,4	X	0	8	0	X
R2Wm	11,2	9,6	8,8	X	17,6	21,6	44	X	7,2	8,8	4	X	7,6	9,2	9,2	X
R2LR	0	0	23,2	X	20	13,2	81,6	X	0	0	0	X	0	0,8	20	X

m2	S	tart z	modelu	o pra	wdziwy	ch str	ukturac	h	start z modelu o innych strukturach							
Str. Kryt.	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo
AIC	70	3,2	34,4	X	15,6	0	10,4	X	36,8	0	16	X	0	0	0,4	X
BIC	97,2	0,8	10	X	3,6	0	0,4	X	50,8	0	8,4	X	0	0	0	X
CCCc	19,2	8,8	3,6	X	60,4	2	36,8	X	0	0	0	X	0	1,6	33,2	X
CCCm	8,8	11,2	41,6	X	15,6	7,2	16,8	X	2,8	0	0,8	X	2,8	0	0	X
PRESSc	14,4	13,6	26,8	X	13,6	17,6	37,2	X	5,6	1,6	4	X	1,2	0	0,4	X
PRESSm	10	7,6	39,6	X	9,6	9,2	26,8	X	3,2	0	0,8	X	0,8	0	0	X
R2Wc	0,4	2,4	8	X	14,8	14,8	25,6	X	0,4	0,8	0	X	9,6	5,6	7,6	X
R2Wm	5,6	2	41,6	X	0,8	22,4	31,2	X	5,2	0	26,4	X	0,4	1,2	0	X
R2LR	0	0	26	X	0	7,2	81,2	X	0	0	0	X	0	0	0	X

m3	S	tart z	modelı	ı o pra	wdziwy	ch str	ukturac	ch	start z modelu o innych strukturach								
Str. Kryt.	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo	
AIC	72,4	2,8	45,6	3,2	12,4	0	8,4	0,4	37,6	0,4	18	0	0	0	0	0	
BIC	96	0	27,6	0	5,2	0	4,4	0,4	49,6	0	16,8	0	0	0	0	0	
CCCc	0,8	12	8,8	1,2	13,6	18	20	3,6	0,4	2	8	0,4	0	2,8	0	0	
CCCm	2,4	10,8	10,8	5,6	10,4	15,6	27,2	12,4	0,8	0	6	1,6	2,4	0	0	0	
PRESSc	10,4	12	9,6	18,4	14	15,2	16,4	27,2	7,2	2,4	4,4	6	0,4	0,4	0,4	0,4	
PRESSm	6,4	5,6	8,8	12	9,6	11,6	21,6	22,8	2,8	0	3,6	2	2,4	0	0	0,8	
R2Wc	0	4,8	0	12,4	10,8	30	34,4	10,4	0	3,2	0	0	4,4	2,4	4,8	0,8	
R2Wm	2,8	2	30,8	6,4	1,2	18,4	25,2	44	2	0	2	0	0,4	0,4	0	0,8	
R2LR	0	0	0	4,4	0	14,8	45,6	78,8	0	0	0	2,8	0	0	0	0	

m4	S	tart z	modelu	o pra	wdziwy	ych str	ukturac	h	start z modelu o innych strukturach									
Str. Kryt.	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo		
AIC	11,2	2	7,2	X	5,6	0	1,6	X	1,2	2	0,4	X	1,6	0	0	X		
BIC	43,2	5,6	2,4	X	2,8	0	0	X	0	5,2	0	X	0	0	0	X		
CCCc	6	0	0,8	X	22,8	2	14,4	X	0	0	0	X	14,8	0	0	X		
CCCm	8,8	14,4	10,8	X	11,6	25,6	27,2	X	6,8	0,8	4	X	2,4	0	0	X		
PRESSc	10,4	16,4	12	X	26,4	18,8	22	X	6	3,6	2,4	X	17,2	0	1,6	X		
PRESSm	8	8,8	10	X	13,2	24,4	29,2	X	4	0,4	3,2	X	0,8	0	0,4	X		
R2Wc	8,8	5,2	21,6	X	26,4	49,6	23,6	X	3,6	3,2	1,6	X	21,6	0,8	3,6	X		
R2Wm	8,4	10,4	15,2	X	4,8	27,2	68,4	X	1,2	0	3,6	X	0	0	0	X		
R2LR	0	0	0,4	X	0	68,8	99,2	X	0	0	0	X	0	0	0	X		

Tablica A.2: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowej struktury efektów losowych \boldsymbol{b} w modelu (w procentach dla każdego modelu bazowego). Źródło: opracowanie własne.

m1	٤	start z	modelu	ı o pra	wdziwy	ych str	ukturac	h		start	z mod	lelu o i	innych	strukt	urach	
Str,	TNI	DM	C N	CNI	IC	DC	0.0	aa	TNI	DM	C N	CINT	TO	DC	a a	aa
Kryt,	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
AIC	96,8	5,6	4,4	X	100	4	2,8	X	90	1,6	3,6	X	1,2	2,8	6,8	X
BIC	100	0	0	X	100	0	0	X	99,2	100	6	X	2	0	0	X
CCCc	73,6	36.8	40	X	61,2	26.8	36.8	X	63.6	16,8	8,8	X	46.8	13,2	17.6	X
CCCm	68	63,6	81,6	X	66	55,6	71,2	X	22,4	13,2	36,8	X	60,8	10	12	X
PRESSc	68,8	63,6	81,2	X	54	56,8	68,8	X	24	16,4	38	X	35,6	12,4	14	X
PRESSm	70,4	63,6	81,6	X	53,2	57,6	70,4	X	23,2	17,2	37,2	X	36,8	11,6	9,2	X
R2Wc	33,2	52,8	85,6	X	1.6	43.6	71,2	X	2,8	19,2	60,8	X	0	17,2	69,6	X
R2Wm	52,4	66	54	X	19,6	47,6	50,4	X	31,2	39,2	19,6	X	7,6	27,6	50	X
R2LR	74	68,8	76	X	22	19.6	81,6	X	1,6	5,6	76.4	X	83,6	1,6	51,6	X
						,-	,-		-,-	-,-	, -			-,-	,-	
		***	ma a dala			.ab atm		l _o		at a mt		lalı. a i	in manala	~4l.4.	a ala	
m2		start z	modert	i o pra	waziwy	ch str	ukturac	11	T	start	z moc	ieiu o .	innych	Strukt	uracn	
Str,	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
Kryt,																
AIC	85,6	6,4	39,6	X	88,4	1,6	42	X	80,8	0	31,6	X	71,6	4,4	36	X
BIC	99,2	0,8	10	X	99,2	0	11,2	X	98,8	0	8,8	X	95,6	0,4	10	X
CCCc	73,6	36,8	40	X	61,2	27,2	36,8	X	13,2	24,4	10	X	10,8	32	35,2	X
CCCm	46,8	45,2	82,8	X	46,8	31,2	26,8	X	26	22	56	X	22	18,4	16	X
PRESSc	58	54,8	70	X	44	53,2	81,6	X	18	9,6	22,4	X	20,4	17,6	22	X
PRESSm	39,6	36,8	70	X	41,2	36,8	37,2	X	28	21,2	45,2	X	23,2	14,8	30	X
R2Wc	28,8	42,8	48,4	X	18,8	44,4	28,8	X	19,2	46,4	36,8	X	11,6	28,4	46,4	X
R2Wm	29,2	34,4	95,6	X	23,6	50,4	87,2	X	8,8	8	62,4	X	16	4,4	69,6	X
R2LR	36,8	47,2	100	X	18,8	48	99,6	X	0,4	0	52,4	X	12,4	0	55,6	X
m3		start z	modelu	ı o pra	wdziwy	ych str	ukturac	h		start	z mod	lelu o	innych	strukt	urach	
		start z	modelu		wdziwy	ych str	ukturac	h	1	start			innych	strukt	urach	
Str,	IN	start z	modelu CoN	o pra	wdziwy ICo		ukturac CoCo		IN	start	z mod	lelu o	innych ICo		urach CoCo	SCo
Str,	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo		DN	CoN	SN	ICo	DCo	CoCo	
Str, Kryt, AIC	IN 84	DN 4	CoN 60,4	SN 5,2	ICo 86,8	DCo 1,6	CoCo 55,2	SCo 6,8	82,4	DN 1,2	CoN 41,2	SN 2	ICo 79,2	DCo 0,8	CoCo 42,4	4,4
Str, AIC BIC	IN 84 98,4	DN 4 0	CoN 60,4 29,2	SN 5,2 0	ICo 86,8 98	DCo 1,6 0	CoCo 55,2 32,8	SCo 6,8 0,8	82,4 98,8	DN 1,2 0	CoN 41,2 24,8	SN 2 0	ICo 79,2 96,8	DCo 0,8 0	CoCo 42,4 29,2	4,4
Str, Kryt, AIC BIC CCCc	IN 84 98,4 30	DN 4 0 57,2	CoN 60,4 29,2 29,6	SN 5,2 0 7,2	ICo 86,8 98 48,8	DCo 1,6 0 40	CoCo 55,2 32,8 30,8	SCo 6,8 0,8 5,6	82,4 98,8 14,8	DN 1,2 0 11,6	CoN 41,2 24,8 48,4	SN 2 0 1,2	ICo 79,2 96,8 17,6	DCo 0,8 0 22,8	CoCo 42,4 29,2 53,6	4,4 0 3,6
Str, Kryt, AIC BIC CCCc CCCm	IN 84 98,4 30 41,6	DN 4 0 57,2 48	CoN 60,4 29,2 29,6 56,8	SN 5,2 0 7,2 29,2	ICo 86,8 98 48,8 31,2	DCo 1,6 0 40 56,8	CoCo 55,2 32,8 30,8 64,4	SCo 6,8 0,8 5,6 20	82,4 98,8 14,8 19,6	DN 1,2 0 11,6 25,2	CoN 41,2 24,8 48,4 19,2	SN 2 0 1,2 9,2	ICo 79,2 96,8 17,6 23,6	DCo 0,8 0 22,8 30	CoCo 42,4 29,2 53,6 21,2	4,4 0 3,6 15,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc	IN 84 98,4 30 41,6 51,6	DN 4 0 57,2 48 61,2	CoN 60,4 29,2 29,6 56,8 50	SN 5,2 0 7,2 29,2 62,4	ICo 86,8 98 48,8 31,2 46,4	DCo 1,6 0 40 56,8 60	CoCo 55,2 32,8 30,8 64,4 50	SCo 6,8 0,8 5,6 20 62,4	82,4 98,8 14,8 19,6 16,8	DN 1,2 0 11,6 25,2 12	CoN 41,2 24,8 48,4 19,2 10	SN 2 0 1,2 9,2 19,6	ICo 79,2 96,8 17,6 23,6 22,4	DCo 0,8 0 22,8 30 10,4	CoCo 42,4 29,2 53,6 21,2 2,8	4,4 0 3,6 15,6 17,2
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm	IN 84 98,4 30 41,6 51,6 37,2	DN 4 0 57,2 48 61,2 44	CoN 60,4 29,2 29,6 56,8 50 39,2	SN 5,2 0 7,2 29,2 62,4 40	ICo 86,8 98 48,8 31,2 46,4 32,8	DCo 1,6 0 40 56,8 60 43,6	CoCo 55,2 32,8 30,8 64,4 50 50,8	SCo 6,8 0,8 5,6 20 62,4 38	82,4 98,8 14,8 19,6 16,8 23,6	DN 1,2 0 11,6 25,2 12 27,6	CoN 41,2 24,8 48,4 19,2 10 14,4	SN 2 0 1,2 9,2 19,6 17,6	TCo 79,2 96,8 17,6 23,6 22,4 27,6	DCo 0,8 0 22,8 30 10,4 25,2	CoCo 42,4 29,2 53,6 21,2 2,8 20	4,4 0 3,6 15,6 17,2 29,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc	IN 84 98,4 30 41,6 51,6 37,2 25,6	DN 4 0 57,2 48 61,2 44 61,2	CoN 60,4 29,2 29,6 56,8 50 39,2 42	SN 5,2 0 7,2 29,2 62,4 40 62	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2	DCo 1,6 0 40 56,8 60 43,6 59,2	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8	SCo 6,8 0,8 5,6 20 62,4 38 17,2	82,4 98,8 14,8 19,6 16,8 23,6 12,4	DN 1,2 0 11,6 25,2 12 27,6 34	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8	SN 2 0 1,2 9,2 19,6 17,6 3,2	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4	DCo 0,8 0 22,8 30 10,4 25,2 16,4	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2	4,4 0 3,6 15,6 17,2 29,6 13,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4	DN 4 0 57,2 48 61,2 44 61,2 39,2	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4	SN 5,2 0 7,2 29,2 62,4 40 62 58	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2	DN 1,2 0 11,6 25,2 12 27,6 34 5,6	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2	TCo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc	IN 84 98,4 30 41,6 51,6 37,2 25,6	DN 4 0 57,2 48 61,2 44 61,2	CoN 60,4 29,2 29,6 56,8 50 39,2 42	SN 5,2 0 7,2 29,2 62,4 40 62	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2	DCo 1,6 0 40 56,8 60 43,6 59,2	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8	SCo 6,8 0,8 5,6 20 62,4 38 17,2	82,4 98,8 14,8 19,6 16,8 23,6 12,4	DN 1,2 0 11,6 25,2 12 27,6 34	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8	SN 2 0 1,2 9,2 19,6 17,6 3,2	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4	DCo 0,8 0 22,8 30 10,4 25,2 16,4	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2	4,4 0 3,6 15,6 17,2 29,6 13,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24	DN 4 0 57,2 48 61,2 44 61,2 39,2 44	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8	SN 5,2 0 7,2 29,2 62,4 40 62 58 100	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4	79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24	DN 4 0 57,2 48 61,2 44 61,2 39,2 44	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8	SN 5,2 0 7,2 29,2 62,4 40 62 58 100	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4	TCo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 start z	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modely	SN 5,2 0 7,2 29,2 62,4 40 62 58 100	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 ych str	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24	DN 4 0 57,2 48 61,2 44 61,2 39,2 44	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8	SN 5,2 0 7,2 29,2 62,4 40 62 58 100	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 wdziwy	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 ych str	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4	79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 start z	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modely	SN 5,2 0 7,2 29,2 62,4 40 62 58 100	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 ych str	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 Start z	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modelu CoN	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 SN	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 wdziwy	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 DCo	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74 CoCo	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 lelu o	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 innych ICo	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24 IN 73,2	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 Start z DN 54,4	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modely CoN 45,2	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 1 o pra	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 Wdziwy ICo 56,4 86,4 44,8	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 Cych str DCo 50	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74 ukturac CoCo 88	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start DN 39,6	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 innych ICo 42,4	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt: DCo 50,4	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo 31,2	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24 IN 73,2 90	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 Start z DN 54,4 48,8	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modelt CoN 45,2 24,4	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 SN X X	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 wdziwy ICo 56,4 86,4	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 DCo 50 26,8	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74 ukturac CoCo 88 63,2	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo X X	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0 IN	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start DN 39,6 18	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN 12 2	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 innych ICo 42,4 66,4	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt: DCo 50,4 39,6	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo 31,2 23,6	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24 IN 73,2 90 66,8	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 Start z DN 54,4 48,8 54,8	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modelte CoN 45,2 24,4 70,4	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 SN X X X X	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 Wdziwy ICo 56,4 86,4 44,8	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 DCo 50 26,8 9,2	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74 ukturac CoCo 88 63,2 45,6	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo X X X	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0 IN 46,4 63,2 29,2	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start DN 39,6 18 11,6	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN 12 2 24,4	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X X X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 innych ICo 42,4 66,4 24,4	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt: DCo 50,4 39,6 38,8	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo 31,2 23,6 13,2	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc CCCc CCCm	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24 IN 73,2 90 66,8 46,4	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 DN 54,4 48,8 54,8 68,4	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modelt CoN 45,2 24,4 70,4 58,4	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 SN X X X X X	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 wdziwy ICo 56,4 86,4 44,8 29,2	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 DCo 50 26,8 9,2 47,2	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74 ukturac CoCo 88 63,2 45,6 50,4	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo X X X X	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0 IN 46,4 63,2 29,2 28	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start DN 39,6 18 11,6 37,2	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN 12 2 24,4 25,6	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X X X X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 innych ICo 42,4 66,4 24,4 19,2	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt DCo 50,4 39,6 38,8 46,8	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo 31,2 23,6 13,2 18	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo X X X X
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc CCCm PRESSc	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24 IN 73,2 90 66,8 46,4 53,6	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 DN 54,4 48,8 54,8 68,4 64,4 54,8	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modelte CoN 45,2 24,4 70,4 58,4 62,4	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 SN X X X X X X	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 ICo 56,4 86,4 44,8 29,2 40	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 DCo 50 26,8 9,2 47,2 41,6	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 76,8 74 Ukturace CoCo 88 63,2 45,6 50,4 53,2	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo X X X X X	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0 IN 46,4 63,2 29,2 28 30	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start DN 39,6 18 11,6 37,2 26	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN 12 2 24,4 25,6 25,6	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X X X X X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 Innych ICo 42,4 66,4 24,4 19,2 30,8	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt DCo 50,4 39,6 38,8 46,8 27,2	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo 31,2 23,6 13,2 18 12	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo X X X
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSc PRESSm	IN 84 98,4 30 41,6 51,6 37,2 25,6 28,4 24 IN 73,2 90 66,8 46,4 53,6 40,8	DN 4 0 57,2 48 61,2 44 61,2 39,2 44 DN 54,4 48,8 54,8 68,4 64,4	CoN 60,4 29,2 29,6 56,8 50 39,2 42 82,4 44,8 modelt CoN 45,2 24,4 70,4 58,4 62,4 61,6	SN 5,2 0 7,2 29,2 62,4 40 62 58 100 SN X X X X X X	ICo 86,8 98 48,8 31,2 46,4 32,8 15,2 19,2 6 ICo 56,4 86,4 44,8 29,2 40 39,2	DCo 1,6 0 40 56,8 60 43,6 59,2 55,6 72,4 ych str DCo 26,8 9,2 47,2 41,6 44,8	CoCo 55,2 32,8 30,8 64,4 50 50,8 38,8 74 ukturac CoCo 88 63,2 45,6 50,4 53,2 48	SCo 6,8 0,8 5,6 20 62,4 38 17,2 48,8 100 h SCo X X X X X X	82,4 98,8 14,8 19,6 16,8 23,6 12,4 9,2 0 IN 46,4 63,2 29,2 28 30 21,2	DN 1,2 0 11,6 25,2 12 27,6 34 5,6 0 start DN 39,6 18 11,6 37,2 26 29,2	CoN 41,2 24,8 48,4 19,2 10 14,4 2,8 20,8 0 CoN 12 24,4 25,6 25,6 18,8	SN 2 0 1,2 9,2 19,6 17,6 3,2 17,2 40,4 SN X X X X X X X	ICo 79,2 96,8 17,6 23,6 22,4 27,6 12,4 7,2 0 innych ICo 42,4 66,4 24,4 19,2 30,8 23,6	DCo 0,8 0 22,8 30 10,4 25,2 16,4 2 0 strukt: DCo 50,4 39,6 38,8 46,8 27,2 36,8	CoCo 42,4 29,2 53,6 21,2 2,8 20 5,2 44,4 0 urach CoCo 31,2 23,6 13,2 18 12 14,4	4,4 0 3,6 15,6 17,2 29,6 13,6 20,4 71,6 SCo X X X X X

100

99,6

64,8

 \mathbf{X}

87,6

Tablica A.3: Porównanie wyboru modelu dla wszystkich dziewięciu kryteriów. Wybór prawidłowej struktury błędów losowych ε w modelu (w procentach dla każdego modelu bazowego). Źródło: opracowanie własne.

	S	start z	modelu	ı o pra	wdziwy	ch str	ukturac	h		start	z mod	lelu o i	innych	strukt	urach	
Str,	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo
AIC	71,2	91,2	91,6	X	100	77,2	96,8	X	22	70,4	70,8	X	0,8	8,4	49,2	X
BIC	95,2	100	100	X	98,4	77,2	99,6	X	24	95,6	94	X	0,4	2	50,4	X
CCCc	31,6	58,8	31,2	X	99,2	45,6	100	X	26,4	25,2	35,2	X	70,4	28	61,6	X
CCCm	40,8	36,4	36,4	X	57,2	52,8	54,8	X	33,2	35,6	35,2	X	2,8	5,6	5,2	X
PRESSc	27,6	30,8	26,4	X	80,8	72	69,6	X	22,8	25,6	22,4	X	12,8	9,6	12,8	X
PRESSm	27,6	32,4	28	X	78,8	70,4	84	X	25,2	26,4	25,2	X	12	11,2	12,4	X
R2Wc	30,8	27,2	44	X	98	89,6	64,8	X	14,4	22,8	13,6	X	0	24,8	0	X
R2Wm	32	29,2	32,8	X	96,8	54,4	93,6	X	19,6	26	24	X	34,8	20	32,8	X
R2LR	8	22,4	23,2	X	98	90,8	100	X	0	0	0	X	0	19,2	31,2	X
m2	S	start z	modelu	ı o pra	wdziwy	ch str	ukturac	h	п	start	z moc	lelu o i	innych	strukt	urach	
Str, Kryt,	IN	DN	CoN	SN	ICo		СоСо		IN	DN	CoN	SN	ICo		СоСо	
AIC	83,2	91,6	88,8	X	20,4	25,2	30	X	49,2	54	58,8	X	0	0,8	1,2	X
BIC	98	99,6	100	X	3,6	24,8	24	X	52	59,6	94	X	0	0	0	X
CCCc	31,6	58,8	31,2	X	99,2	47,2	100	X	8	0	0	X	15,2	50,4	35,2	X
CCCm	52	49,6	54	X	56,4	54,4	88,4	X	24,4	8,4	3,2	X	7,2	5,2	13,6	X
PRESSc	32	36,4	38	X	42,8	41,2	46	X	27,2	24,8	13,6	X	6	3,6	2,4	X
PRESSm	60,4	54,8	67,6	X	50,4	48,8	87,6	X	23,2	11,6	6,4	X	6,8	4,8	13,6	X
R2Wc	38	19,6	42,8	X	93,6	59,6	92,8	X	22,4	2,4	0	X	27,6	45,6	40,4	X
R2Wm	53,2	51,6	44,4	X	20,4	48,4	38,8	X	40	37,6	30	X	6	6,4	0	X
R2LR	36	38,8	26	X	38	38	81,2	X	0	0	0	X	0	5,6	0	X
m3		start z	modelu	ı o pra	wdziwy	ch str	ukturac	h		start	z mod	lelu o i	innych	strukt	urach	
Str,	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	
Kryt, AIC									IN 48,8							SCo 0
Str,	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo		DN	CoN	SN	ICo	DCo	CoCo	
Kryt, AIC	IN 86,4	DN 97,2	CoN 81,6	SN 97,6	ICo 17,2	DCo 94	CoCo 27,6	SCo 91,2	48,8	DN 53,2	CoN 43,6	SN 2,8	ICo 0	DCo 2,4	CoCo 0	0
Kryt, AIC BIC	IN 86,4 97,6	DN 97,2 100	CoN 81,6 97,2	SN 97,6 100	ICo 17,2 5,2	DCo 94 100	CoCo 27,6 26,4	SCo 91,2 99,2	48,8 50,8	DN 53,2 57,2	CoN 43,6 52	SN 2,8 0,4	ICo 0 0	DCo 2,4 0,4	CoCo 0 0	0 0
Str, Kryt, AIC BIC CCCc	IN 86,4 97,6 48,8	DN 97,2 100 51,2	CoN 81,6 97,2 25,6	SN 97,6 100 90,4	ICo 17,2 5,2 60	DCo 94 100 70,8	CoCo 27,6 26,4 78,8	SCo 91,2 99,2 97,6	48,8 50,8 9,6	DN 53,2 57,2 6	CoN 43,6 52 19,6	SN 2,8 0,4 6,4	ICo 0 0 6,8	DCo 2,4 0,4 57,2	CoCo 0 0 3,2	0 0 22,8
Str, Kryt, AIC BIC CCCc CCCm	IN 86,4 97,6 48,8 52,4	DN 97,2 100 51,2 50,8	CoN 81,6 97,2 25,6 49,2	SN 97,6 100 90,4 69,6	ICo 17,2 5,2 60 63,6	DCo 94 100 70,8 38,4	CoCo 27,6 26,4 78,8 54,4	SCo 91,2 99,2 97,6 91,2	48,8 50,8 9,6 15,6	DN 53,2 57,2 6 10,4	CoN 43,6 52 19,6 14,8	SN 2,8 0,4 6,4 12,4	ICo 0 0 6,8 8,8	DCo 2,4 0,4 57,2 2,8	CoCo 0 0 3,2 2,8	0 0 22,8 7,2
Str, Kryt, AIC BIC CCCc CCCm PRESSc	IN 86,4 97,6 48,8 52,4 37,2	DN 97,2 100 51,2 50,8 33,6	CoN 81,6 97,2 25,6 49,2 33,2	SN 97,6 100 90,4 69,6 43,2	ICo 17,2 5,2 60 63,6 43,2	DCo 94 100 70,8 38,4 35,2	CoCo 27,6 26,4 78,8 54,4 47,6	SCo 91,2 99,2 97,6 91,2 46	48,8 50,8 9,6 15,6 32	DN 53,2 57,2 6 10,4 22	CoN 43,6 52 19,6 14,8 26,4	SN 2,8 0,4 6,4 12,4 30	ICo 0 0 6,8 8,8 6	DCo 2,4 0,4 57,2 2,8 6,8	CoCo 0 0 3,2 2,8 11,6	0 0 22,8 7,2 4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm	IN 86,4 97,6 48,8 52,4 37,2 56	DN 97,2 100 51,2 50,8 33,6 50,4	CoN 81,6 97,2 25,6 49,2 33,2 66	SN 97,6 100 90,4 69,6 43,2 70	ICo 17,2 5,2 60 63,6 43,2 61,6	DCo 94 100 70,8 38,4 35,2 49,2	CoCo 27,6 26,4 78,8 54,4 47,6 63,2	SCo 91,2 99,2 97,6 91,2 46 82,8	48,8 50,8 9,6 15,6 32 18,8	DN 53,2 57,2 6 10,4 22 11,6	CoN 43,6 52 19,6 14,8 26,4 19,6	SN 2,8 0,4 6,4 12,4 30 11,6	ICo 0 0 6,8 8,8 6 8	DCo 2,4 0,4 57,2 2,8 6,8 8	CoCo 0 0 3,2 2,8 11,6 4	0 0 22,8 7,2 4 9,2
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc	IN 86,4 97,6 48,8 52,4 37,2 56 32,4	DN 97,2 100 51,2 50,8 33,6 50,4 11,6	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4	SN 97,6 100 90,4 69,6 43,2 70 17,6	ICo 17,2 5,2 60 63,6 43,2 61,6 92	94 100 70,8 38,4 35,2 49,2 64,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8	48,8 50,8 9,6 15,6 32 18,8 11,6	DN 53,2 57,2 6 10,4 22 11,6 8,4	CoN 43,6 52 19,6 14,8 26,4 19,6 2	SN 2,8 0,4 6,4 12,4 30 11,6 0	ICo 0 0 6,8 8,8 6 8	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8	CoCo 0 3,2 2,8 11,6 4 33,6	0 0 22,8 7,2 4 9,2 56,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,8 92,4 78,8	48,8 50,8 9,6 15,6 32 18,8 11,6 26	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8	ICo 0 0, 6,8 8,8 6 8 28 2 0	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0	0 0 22,8 7,2 4 9,2 56,4 12,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,8 92,4 78,8	48,8 50,8 9,6 15,6 32 18,8 11,6 26	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8	ICo 0 0, 6,8 8,8 6 8 28 2 0	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0	0 0 22,8 7,2 4 9,2 56,4 12,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt,	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 modelu CoN	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 vch str	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8	48,8 50,8 9,6 15,6 32 18,8 11,6 26	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 start	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 Reliely of SN	1Co 0 0 6,8 8,8 6 8 28 2 0 innych ICo	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukt: DCo	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 CoN 34	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra SN	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo 41,2	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 h SCo	48,8 50,8 9,6 15,6 32 18,8 11,6 26 0	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 start DN 11,6	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X	ICo 0 0 6,8 8,8 6 8 28 2 0 innych ICo 2,4	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukt: DCo 0,4	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36 55,6	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 modelu CoN	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra SN X	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo 41,2 9,6	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 vch str	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 SCo X X	48,8 50,8 9,6 15,6 32 18,8 11,6 0 IN	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 start DN 11,6 51,2	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8 0	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X X	ICo 0 0 6,8 8,8 6 8 28 2 0 Innych ICo 2,4 0	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukt: DCo	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0 0	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 CoN 34	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra SN	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo 41,2	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 DCo 45,6	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo 3,6	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 Ch SCo X X X	48,8 50,8 9,6 15,6 32 18,8 11,6 26 0	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 start DN 11,6	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X	ICo 0 0 6,8 8,8 6 8 28 2 0 innych ICo 2,4	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukt: DCo 0,4	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo X X X
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2 52,4	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36 55,6	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 CoN 34 70,4	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra SN X	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo 41,2 9,6	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 DCo 45,6 71,6	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo 3,6 2,8	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 SCo X X	48,8 50,8 9,6 15,6 32 18,8 11,6 0 IN	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 start DN 11,6 51,2	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8 0	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X X	ICo 0 0 6,8 8,8 6 8 28 2 0 Innych ICo 2,4 0	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukt: DCo 0,4 0	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0 0	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2 52,4 8	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36 55,6 42	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 CoN 34 70,4 7,6	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra SN X X X	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo 41,2 9,6 73,2	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 DCo 45,6 71,6 92,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo 3,6 2,8 67,6	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 Ch SCo X X X	48,8 50,8 9,6 15,6 32 18,8 11,6 26 0 IN 1,6 0	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 start DN 11,6 51,2 5,6	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8 0 0	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X X X	ICo 0 0 6,8 8,8 6 8 28 2 0 Innych ICo 2,4 0 39,2	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukti DCo 0,4 0 2,4	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0 0 0	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo X X X
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc CCCm	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2 52,4 8 55,2	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36 55,6 42 43,6	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 CoN 34 70,4 7,6 48,4	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 1 o pra X X X X	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 wdziwy ICo 41,2 9,6 73,2 72,8	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 DCo 45,6 71,6 92,8 76,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo 3,6 2,8 67,6 75,6	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 Ph SCo X X X X	48,8 50,8 9,6 15,6 32 18,8 11,6 26 0 IN	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 Start DN 11,6 51,2 5,6 13,2	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8 0 19,6	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X X X X	ICo 0 0 6,8 8,8 6 8 28 2 0 Innych ICo 2,4 0 39,2 20,8	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukti DCo 0,4 0 2,4 3,2	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0 0 15,2	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo X X X X
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc CCCm PRESSc	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2 52,4 8 55,2 22,8	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36 55,6 42 43,6 38,4	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 CoN 34 70,4 7,6 48,4 22	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 I o pra X X X X X	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 Wdziwy ICo 41,2 9,6 73,2 72,8 67,2	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 DCo 45,6 71,6 92,8 76,8 69,2	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 Ukturac CoCo 3,6 2,8 67,6 75,6 51,2	SCo 91,2 99,2 97,6 91,2 46 82,8 92,8 92,4 78,8 Ch SCo X X X X X	48,8 50,8 9,6 15,6 32 18,8 11,6 26 0 IN 1,6 0 17,6 17,6	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 Start DN 11,6 51,2 5,6 13,2 14,4	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8 0 0 19,6 16,4	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X X X X X	ICo 0 0 6,8 8,8 6 8 28 2 0 Innych ICo 2,4 0 39,2 20,8 39,6	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukts DCo 0,4 0 2,4 3,2 12	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0 0 15,2 13,2	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo X X X X X
Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSm R2Wc R2Wm R2LR m4 Str, Kryt, AIC BIC CCCc CCCm PRESSc PRESSc PRESSc	IN 86,4 97,6 48,8 52,4 37,2 56 32,4 47,6 51,6 IN 33,2 52,4 8 55,2 22,8 58,8	DN 97,2 100 51,2 50,8 33,6 50,4 11,6 50,8 53,2 DN 36 55,6 42 43,6 38,4 51,6	CoN 81,6 97,2 25,6 49,2 33,2 66 40,4 41,2 53,6 modelt CoN 34 70,4 7,6 48,4 22 43,2	SN 97,6 100 90,4 69,6 43,2 70 17,6 42,4 4,4 SN X X X X X X	ICo 17,2 5,2 60 63,6 43,2 61,6 92 25,6 39,2 Wdziwy ICo 41,2 9,6 73,2 72,8 67,2 66,8	DCo 94 100 70,8 38,4 35,2 49,2 64,8 44,4 36,8 7ch strr DCo 45,6 71,6 92,8 76,8 69,2 76,8	CoCo 27,6 26,4 78,8 54,4 47,6 63,2 71,6 37,6 70,4 ukturac CoCo 3,6 2,8 67,6 75,6 51,2 80	SCo 91,2 99,2 97,6 91,2 46 82,8 92,4 78,8 SCo X X X X X X	48,8 50,8 9,6 15,6 32 18,8 11,6 26 0 IN 1,6 0 0 17,6 17,6	DN 53,2 57,2 6 10,4 22 11,6 8,4 29,6 0 Start DN 11,6 51,2 5,6 13,2 14,4 16,8	CoN 43,6 52 19,6 14,8 26,4 19,6 2 2,4 0 CoN 0,8 0 0 19,6 16,4 16	SN 2,8 0,4 6,4 12,4 30 11,6 0 6 2,8 SN X X X X X X	ICo 0 0 6,8 8,8 6 8 28 2 0 Innych ICo 2,4 0 39,2 20,8 39,6 13,6	DCo 2,4 0,4 57,2 2,8 6,8 8 44,8 6,8 2 strukti DCo 0,4 0 2,4 3,2 12 2,4	CoCo 0 0 3,2 2,8 11,6 4 33,6 1,2 0 urach CoCo 0 0 15,2 13,2 13,6	0 0 22,8 7,2 4 9,2 56,4 12,4 0,4 SCo X X X X X X

Tablica A.4: Wybór modelu dla wszystkich dziewięciu kryteriów: m
1. $\acute{Z}r\acute{o}dlo:$ opracowanie własne.

AIC		start z	modelu	o pra	wdziwy	ch str	ukturac	h		start	z mod	lelu o i	innych	strukti	urach	
Start	IN	DN	CoN	SN	ICo		CoCo		IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
Koniec																
IN DN	68,8 $2,4$	83,2 3,6	82,4 8	X X	0 0	17,2 1,6	$_{0,4}^{0,4}$	X X	$\begin{vmatrix} 20 \\ 1,6 \end{vmatrix}$	68,8 1,6	63,2 $7,2$	X X	$0 \\ 89,2$	68 2	0,8 $39,2$	X X
SN	0	4,4	1,2	X	0	0,8	2,8	X	0.4	0	0,4	X	8,8	0	6,8	X
ICo	10,4	2	1,6	X	100	75,2	96,8	X	0,8	7,6	0,4	X	0,8	8	49,2	X
CoCo	0	0	0	X	0	0,4	0	X	0	0	0	X	0	0,4	0	X
SCo	0	0	0	X	0	1,6	0	X	0	0	0	X	0	0	0	X
IAR1	12,4	4,8	3,6	X	0	0,8	0	X	69,2	19,2	0	X	0,4	14,4	0	X
DAR1	0,8	0	0	X	0	0,8	0	X	3,6	0	0,8	X	0	0,8	0,4	X
CoAR1	0	0	0,4	X	0	0	0	X	0	0	0	X	0	0	0	X
SAR1	0	0	0	X	0	0	0	X	4,4	0,4	0	X	0	0	0	X
IARMA DARMA	$\begin{array}{c c} 5,2 \\ 0 \end{array}$	$0 \\ 2$	0 0	X X	0	$0 \\ 1,6$	0	X X	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$^{2,4}_{0}$	$\frac{24,4}{0,4}$	X X	0	$^{6,4}_{0}$	$^{3,6}_{0}$	X X
CoARMA	0	0	2,8	X	0	0	0	X	0	0	$0,4 \\ 0,4$	X	0,8	0	0	X
SARMA	0	0	0	X	0	0	0	X		0	2,8	X	0,0	0	0	X
BIC							ukturac		<u> </u>		z mod					
DIO	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	95,2	100	99,6	X	1,6	22,8	0,4	X	23,6	95,6	93,6	X	1,6	94,4	2	X
DN	0 0	0	0,4	X	0	0	0	X	0,4	0	0,4	X	97,2	0	46	X
SN	0	0	0	X	0	0	0	X	0	0	0	X	0,4	0	1,2	X
ICo	1,6	0	0	X	98,4	77,2	99,6	X	0	0,8	0	X	0,4	2	50,4	X
IAR1	3,2	0	0	X	0	0	0	X	75,6	3,6	0	X	0	2,8	0	X
DAR1	0	0	0	X	0	0	0	X	0,4	0	0	X	0,4	0	0,4	X
IARMA	0	0	0	X	0	0	0	X	0	0	6	X	0	0,8	0	X
CCCc							ukturac		***		z mod					0.0
TAT	IN	DN	CoN	SN	ICo		CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN DN	19,2	41,2	19,6	X X	0 0	17,6	0	X X	14,8	16	22,8	X	0	18 10	0	X X
CoN	9,2	8,8 $7,6$	$\frac{8}{3,2}$	X	0	10,4 $1,2$	0	X	6,8	7,2 $1,2$	8,8 $2,4$	X	0	1,6	0	X
SN	0,4	1,0 $1,2$	0,2	X	0	0,8	0	X	1,2	0,8	1,2	X	0	0.4	0	X
ICo	17,6	0,4	18,8	X	60,4	30,8	63,2	X	10	13,6	0	X	46,4	21,2	44	X
CoCo	9,2	0	12,8	X	38,8	14,8	36,8	X	6	5,6	0	X	24	6,8	17,6	X
IAR1	13,2	10,4	10	X	0	6	0	X	38,8	38,8	0,4	X	0,4	9,6	0	X
DAR1	3,2	5,2	3,6	X	0	2,4	0	X	10,4	9,6	1,2	X	0	3,2	0	X
CoAR1	1,2	2	2	X	0	0,4	0	X	5,2	4	0	X	0	0,8	0	X
SAR1	0,4	0	0	X	0	0	0	X	0,8	0	0	X	0	0	0	X
IARMA	22,8	0	0	X	0	0	0	X X	0	2	44	X	0	27,2	38	X
DARMA CoARMA	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\frac{22,8}{0}$	$0 \\ 21.6$	X X	0	$^{13,6}_{0}$	0	X	$\begin{vmatrix} 0 \\ 2,4 \end{vmatrix}$	0	$\frac{12}{4,4}$	X X	$0 \\ 29,2$	0	0	X X
SARMA	0	0	$\frac{21,0}{0}$	X	0	0	0	X	$\begin{bmatrix} 2,4\\0 \end{bmatrix}$	0	0.8	X	29,2	0	0	X
IS	0,8	0,4	0	X	0,8	1,6	0	X	0	1,2	0,0	X	0	1,2	0.4	X
DS	0,0	0	0	X	0	0,4	0	X	ő	0	1,6	X	0	0	0	X
CCCm		tart z	modelıı		wdziwy		ukturac		ш	start	z mod		innych	struktı	urach	
	IN	DN	CoN	SN	·	DCo	СоСо		IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	21,6	7,2	7,2	X	14,4	4	2,4	X	4,8	17,6	8	X	10,8	17,6	22	X
DN	7,2	16,4	0,4	X	1,6	6	0	X	0,8	6,8	18,4	X	3,2	7,2	8	X
CoN	10	2,8	23,2	X	2,4	0,8	17,2	X	19,2	8,8	1,6	X	12,4	10	9,6	X
SN	2	10	5,6	X	0	3,6	4	X	8,4	2,4	7,2	X	11,2	2,8	2	X
ICo DCo	2,4	0,4	0	X	27,6	6,8	7,2	X	0	4,8	0	X	0	5,2	5,2	X
DCo CoCo	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$^{6,8}_{0}$	$0 \\ 4$	X X	$18,8 \\ 9,2$	$28,4 \\ 1,6$	$^{1,6}_{33,6}$	X X	$\begin{vmatrix} 0\\3,6 \end{vmatrix}$	0	0,8	X X	$_{2,8}^{0}$	$_{0,4}^{0,4}$	0	X X
SCo	0,4	0	0	X	$^{9,2}_{1,6}$	1,6	12,4	X	0,4	0	0	X	2,8	0	0	X
IAR1	8,8	6,4	8,4	X	20	2,8	16,8	X	17,6	19,6	2,4	X	50	10,8	46,4	X
DAR1	1,6	2	$^{0,1}_{2,4}$	X	0,4	1,6	0,8	X	4	6,4	0,8	X	2,4	1,6	0,8	X
CoAR1	2	1,2	3,2	X	0	2,8	0	X	6,8	4,8	1,2	X	0	4,4	0	X
SAR1	8	8	10,4	X	0	5,2	0,8	X	27,2	20,8	2,8	X	0	7,2	0,4	X
IARMA	34,8	0	0	X	3,2	0	0	X	0	6,8	19,2	X	0	30,8	5,2	X
DARMA	0	37,6	0	X	0	18,8	0	X	0	0	12,4	X	0	0	0	X
CoARMA	0	0	35,2	X	0	0	3,2	X	6,8	0	6,4	X	7,2	0	0	X
SARMA IS	0	0	0	X X	0	0	0	X X	0	$0 \\ 1,2$	17,6	X X	0	1.2	0	X X
DS	$0,4 \\ 0,8$	$0,4 \\ 0,8$	0 0	X	$^{0,8}_{0}$	$0.8 \\ 0.8$	0	X	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$^{1,2}_{0}$	$0,4 \\ 0,8$	X	0	$^{1,2}_{0,8}$	$_{0,4}^{0,4}$	X
CoS	0,8	0,8	0	X	0	0,8	0	X	0,4	0	0,8	X	0	0,8	0	X
000					~	_	_		, -	~	~		_	~	_	

									tabela	a m1, k	contynu	acja ta	abeli z	poprze	dniej st	trony
PRESSc	5	start z	modelu	ı o pra	wdziwy	ch str	ukturac	h		start	z mod	lelu o i	nnych	strukti	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	11,6	4,8	5,6	X	8	0,4	0,8	X	4,8	12,8	3,2	X	6,8	14	14,4	X
DN	6	16	1,2	X	0,8	7,2	0,4	X	0,4	4,4	11,2	X	2,8	7,2	9,2	X
CoN	7,2	0,8	10	X	0,8	0,8	7,2	X	12	6,8	0	X	17,2	4,4	8,4	X
SN	2,8	9,2	9,6	X	0	0,4	2,8	X	5,6	1,6	8	X	10,8	0,4	1,2	X
ICo	8,8	1,6	0	X	37,6	17,6	11,2	X	0,8	8,4	0,4	X	0,8	8,8	10	X
DCo	1,2	7,6	0	X	24	36	$_{5,2}$	X	0	2,8	8,4	X	0,4	0,4	1,6	X
CoCo	1,2	0,4	8	X	13,2	5,2	35,2	X	7,2	0,4	0	X	9,6	0,4	0,8	X
SCo	0,4	2,4	1,6	X	6	13,2	18	X	1,2	0,8	0,8	X	2	0	0,4	X
IAR1	10	6,8	8,8	X	5,6	1,6	13,2	X	18,4	21,6	2	X	28	9,6	33,6	X
DAR1	2	2,8	3,2	X	0,4	2,8	0,4	X	4,8	8,4	1,2	X	1,6	3,6	0	X
CoAR1	2	1,6	2	X	0,4	0,8	1,2	X	6	4,4	0	X	3,6	2	3,2	X
SAR1	8	8,4	8,8	X	0	2,4	0,4	X	32	16,8	1,6	X	1,6	6	0	X
IARMA	35,6	0	0	X	1,6	0	0	X	0	8,4	17,6	X	0	40,4	16	X
DARMA	0	35,6	0	X	0	8,4	0	X	0	0	14,4	X	0	0	0	X
CoARMA	0	0	41,2	X	0	0	4	X	6,4	0	7,6	X	14,8	0	0	X
SARMA	0	0	0	X	0	0	0	X	0	0	20	X	0	0	0	X
IS	2,8	0,4	0	X	1,2	0,8	0	X	0	1,6	0,8	X	0	1,6	1,2	X
DS	0	1,6	0	X	0,4	2,4	0	X	0	0,8	2,8	X	0	1,2	0	X
CoS	0.4	0	0	X	0	0	0	X	0.4	0	0	X	0	0	0	X
PRESSm							ukturac				z mod					
TTEBBIII	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	13,6	5,6	4,8	X	6	2	0	X	4	16,8	5,2	X	8	12,4	16,4	X
DN	9,2	15,6	$^{4,0}_{1,2}$	X	0,8	6	0.4	X	1,6	6,4	$\frac{5,2}{12}$	X	2	5,2	10,4 $12,4$	X
CoN	3,6	$^{13,0}_{2,4}$	12,8	X	1,6	0,4	4	X	13,2	2,8	1,2	X	19,6	6,4	3,6	X
SN	1,2	8,8	9,2	X	0	1,6	2	X	6,4	0,4	6,8	X	8,8	1,2	3,6	X
ICo	7,6	1,2	9,2	X	34,8	1,0	20,4	X	0,4	9,2	0,8	X	0,8	8,8	10.4	X
DCo	1,0	8		X	23,6	35,2	$^{20,4}_{2,8}$	X	0,8	$^{9,2}_{1,6}$	6	X	0,8	2	10,4 $1,2$	X
CoCo	2	0	$0,4 \\ 7,6$	X	17,2	35,2 $3,2$	$\frac{2,8}{46,8}$	X	5,6	,	0	X		0,4	0.8	X
SCo	0	1,2	0	X		3,2 14	14	X	1 ′	0,4	0	X	9,6	0,4	0,8	X
IAR1	10		-	X	3,2		6	X	0,4	0,4	$\frac{0}{2}$	X	$^{1,6}_{28}$			X
DAR1	2	6,8	8,8	X	$_{0}^{7,2}$	0,8	0	X	18,4	21,6	$\frac{2}{1,2}$	X		9,6	33,6	X
CoAR1	$\frac{2}{2}$	$^{2,8}_{1,6}$	$^{3,2}_{2}$	X	0	$^{1,2}_{0,4}$	0,8	X	4,8	8,4	1,2	X	$^{1,6}_{3,6}$	$^{3,6}_{2}$	$0 \\ 3,2$	X
SAR1	8	,		X		1,2		X	$\begin{vmatrix} & 0 \\ 32 \end{vmatrix}$	4,4		X	,		,	X
	1	8,4	8,8	X	0	,	0	X	1	16,8	1,6	X	1,6	6	0	X
IARMA	35,6	0	0	X	4	10.0	0	X	0	8,4	17,6	X	0	40,4	16	X
DARMA	0 0	35,6	$0 \\ 41.2$	X	0	12,8 0	0	X	0	0	14,4	X	140	0	0	X
CoARMA	_		,	X			2,8	X	6,4	0	7,6	X	14,8	0		
SARMA	0	0	0		0	0	0		0	0	20		0	0	0	X
IS	3,6	0,4	0	X	1,2	0,8	0	X	0	1,6	0,8	X	0	1,2	0,8	X
DS	0	1,6	0	X X	0,4	2,4	0	X	0	0,8	2,8	X X	0	0,8	0	X
CoS	0,4	0			0	0	0	X	0,4	0	0		0	0	0	X
R2Wc							ukturac				z mod					
	IN	DN	CoN	SN	ICo	DCo	CoCo		IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	0,8	0	0,4	X	0	0	0	X	0	0	0	X	0	0	0,4	X
									1							
DN	3,2	4,4	6	X	0	1,6	6	X	2	4	1,2	X	34,8	4,4	29,2	X
CoN	0	0	0,8	X	0	0	0	X	0	$\begin{array}{c} 4 \\ 0 \end{array}$	0	X	0	0	0	X
CoN SN	$\begin{array}{c} 0 \\ 26,8 \end{array}$	$0 \\ 22,8$	$0.8 \\ 36.8$	X X	0 0	$_{0,8}^{0}$	$0 \\ 28,4$	X X	$\begin{vmatrix} 0 \\ 12,4 \end{vmatrix}$	$\begin{array}{c} 4 \\ 0 \\ 18,8 \end{array}$	$0 \\ 12,4$	X X	$0 \\ 64,8$	$0 \\ 27,2$	0 69,6	X X
CoN SN ICo	$\begin{array}{c} 0 \\ 26,8 \\ 4,8 \end{array}$	$0 \\ 22,8 \\ 0,4$	0.8 36.8 1.6	X X X	0 0 0	$0 \\ 0,8 \\ 3,2$	$\begin{array}{c} 0 \\ 28,4 \\ 0 \end{array}$	X X X	$\begin{vmatrix} 0 \\ 12,4 \\ 0,8 \end{vmatrix}$	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \end{array} $	$0 \\ 12,4 \\ 0,8$	X X X	0 64,8 0	$\begin{array}{c} 0 \\ 27,2 \\ 4 \end{array}$	0 69,6 0	X X X
CoN SN ICo DCo	0 26,8 4,8 8,4	0 $22,8$ $0,4$ $16,8$	0.8 36.8 1.6 4.8	X X X X	$0 \\ 0 \\ 0 \\ 51,6$	$0 \\ 0,8 \\ 3,2 \\ 35,6$	$0 \\ 28,4 \\ 0 \\ 22,4$	X X X X	$ \begin{array}{c c} 0 \\ 12,4 \\ 0,8 \\ 2,4 \end{array} $	$ \begin{array}{r} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \end{array} $	0 $12,4$ $0,8$ $16,8$	X X X X	0 64,8 0 0	$\begin{array}{c} 0\\27,2\\4\\8\end{array}$	0 69,6 0 0	X X X X
CoN SN ICo DCo CoCo	0 26,8 4,8 8,4 3,2	0 $22,8$ $0,4$ $16,8$ 2	0,8 36,8 1,6 4,8 9,6	X X X X X	$0 \\ 0 \\ 0 \\ 51,6 \\ 0$	$0 \\ 0,8 \\ 3,2 \\ 35,6 \\ 1,2$	$0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4$	X X X X X	$ \begin{array}{c c} 0 \\ 12,4 \\ 0,8 \\ 2,4 \\ 4 \end{array} $	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \end{array} $	0 $12,4$ $0,8$ $16,8$ $0,4$	X X X X X	0 64,8 0 0 0	$0 \\ 27,2 \\ 4 \\ 8 \\ 4$	0 69,6 0 0	X X X X X
CoN SN ICo DCo CoCo SCo	0 26,8 4,8 8,4 3,2 8,4	0 $22,8$ $0,4$ $16,8$ 2 $11,6$	0,8 36,8 1,6 4,8 9,6 2,4	X X X X X	$0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4$	0 $0,8$ $3,2$ $35,6$ $1,2$ $49,6$	$0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42$	X X X X X X	0 12,4 0,8 2,4 4 4,4	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \end{array} $	0 $12,4$ $0,8$ $16,8$ $0,4$ $6,4$	X X X X X	0 64,8 0 0 0	0 27,2 4 8 4 8,8	0 69,6 0 0 0	X X X X X X
CoN SN ICo DCo CoCo SCo IAR1	0 26,8 4,8 8,4 3,2 8,4 0	0 $22,8$ $0,4$ $16,8$ 2 $11,6$ 0	0,8 36,8 1,6 4,8 9,6 2,4	X X X X X X	$0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4 \\ 0$	0 0,8 3,2 35,6 1,2 49,6 0	$0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42 \\ 0$	X X X X X X X	$\begin{bmatrix} 0 \\ 12,4 \\ 0,8 \\ 2,4 \\ 4 \\ 4,4 \\ 2 \end{bmatrix}$	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \end{array} $	$0 \\ 12,4 \\ 0,8 \\ 16,8 \\ 0,4 \\ 6,4 \\ 0$	X X X X X X	0 64,8 0 0 0 0	0 27,2 4 8 4 8,8 0	0 69,6 0 0 0 0	X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1	0 26,8 4,8 8,4 3,2 8,4 0 3,2	$0 \\ 22,8 \\ 0,4 \\ 16,8 \\ 2 \\ 11,6 \\ 0 \\ 1,6$	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6	X X X X X X X X	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4 \\ 0 \\ 0 \end{array}$	$0\\0,8\\3,2\\35,6\\1,2\\49,6\\0\\1,6$	$0\\28,4\\0\\22,4\\0,4\\42\\0\\0,4$	X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \end{array} $	$0 \\ 12,4 \\ 0,8 \\ 16,8 \\ 0,4 \\ 6,4 \\ 0 \\ 0$	X X X X X X X X	0 64,8 0 0 0 0 0 0 0,4	0 27,2 4 8 4 8,8 0 3,2	0 69,6 0 0 0 0 0	X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2	0 $22,8$ $0,4$ $16,8$ 2 $11,6$ 0	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6	X X X X X X X X X	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4 \\ 0 \\ 0 \\ 0 \end{array}$	0 0,8 3,2 35,6 1,2 49,6 0 1,6 0,4	$0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42 \\ 0$	X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \\ 4 \end{array} $	0 12,4 0,8 16,8 0,4 6,4 0 0	X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0	$0 \\ 27,2 \\ 4 \\ 8 \\ 4 \\ 8,8 \\ 0 \\ 3,2 \\ 2$	0 69,6 0 0 0 0 0 0	X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4	$0 \\ 22,8 \\ 0,4 \\ 16,8 \\ 2 \\ 11,6 \\ 0 \\ 1,6$	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6	X X X X X X X X X X	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4 \\ 0 \\ 0 \end{array}$	$0\\0,8\\3,2\\35,6\\1,2\\49,6\\0\\1,6$	$0\\28,4\\0\\22,4\\0,4\\42\\0\\0,4$	X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \end{array} $	0 12,4 0,8 16,8 0,4 6,4 0 0	X X X X X X X X X X	0 64,8 0 0 0 0 0 0 0,4	0 27,2 4 8 4 8,8 0 3,2	0 69,6 0 0 0 0 0	X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2	0 $22,8$ $0,4$ $16,8$ 2 $11,6$ 0 $1,6$ 0	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6	X X X X X X X X X X X X X X X X X X X	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{matrix} 0 \\ 0,8 \\ 3,2 \\ 35,6 \\ 1,2 \\ 49,6 \\ 0 \\ 1,6 \\ 0,4 \\ 1,2 \\ 0 \end{matrix}$	$\begin{array}{c} 0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42 \\ 0 \\ 0,4 \\ 0 \end{array}$	X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4	$ \begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \\ 4 \end{array} $	0 12,4 0,8 16,8 0,4 6,4 0 0	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0	$0 \\ 27,2 \\ 4 \\ 8 \\ 4 \\ 8,8 \\ 0 \\ 3,2 \\ 2$	0 69,6 0 0 0 0 0 0	X X X X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA DARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4	$\begin{array}{c} 0 \\ 22,8 \\ 0,4 \\ 16,8 \\ 2 \\ 11,6 \\ 0 \\ 1,6 \\ 0 \\ 10,4 \end{array}$	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6 0 14,8	X X X X X X X X X X X X X X X X X X X	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 51,6 \\ 0 \\ 46,4 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{matrix} 0 \\ 0,8 \\ 3,2 \\ 35,6 \\ 1,2 \\ 49,6 \\ 0 \\ 1,6 \\ 0,4 \\ 1,2 \end{matrix}$	$\begin{array}{c} 0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42 \\ 0 \\ 0,4 \\ 0 \\ 0 \end{array}$	X X X X X X X X X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4 62	$\begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \\ 4 \\ 40,8 \end{array}$	0 12,4 0,8 16,8 0,4 6,4 0 0	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0	0 27,2 4 8 4 8,8 0 3,2 2 9,6	0 69,6 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA DARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4 26,8	$\begin{array}{c} 0 \\ 22,8 \\ 0,4 \\ 16,8 \\ 2 \\ 11,6 \\ 0 \\ 1,6 \\ 0 \\ 10,4 \\ 0 \end{array}$	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6 0 14,8	X X X X X X X X X X X X X X X X X X X	0 0 0 51,6 0 46,4 0 0 0 0	$\begin{matrix} 0 \\ 0,8 \\ 3,2 \\ 35,6 \\ 1,2 \\ 49,6 \\ 0 \\ 1,6 \\ 0,4 \\ 1,2 \\ 0 \end{matrix}$	0 28,4 0 22,4 0,4 42 0 0,4 0 0	X X X X X X X X X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4 62 0	$\begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \\ 4 \\ 40,8 \\ 0 \end{array}$	0 12,4 0,8 16,8 0,4 6,4 0 0 0 4,8 11,2 2	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0 0	0 27,2 4 8 4 8,8 0 3,2 2 9,6 26,8	0 69,6 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA DARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4 26,8	$\begin{array}{c} 0 \\ 22,8 \\ 0,4 \\ 16,8 \\ 2 \\ 11,6 \\ 0 \\ 1,6 \\ 0 \\ 10,4 \\ 0 \\ 28 \end{array}$	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6 0 14,8	X X X X X X X X X X X X X X X X X X X	0 0 0 51,6 0 46,4 0 0 0 0 0	0 0,8 3,2 35,6 1,2 49,6 0 1,6 0,4 1,2 0 3,2	0 28,4 0 22,4 0,4 42 0 0,4 0 0	X X X X X X X X X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4 62 0	4 0 18,8 2 4 1,2 9,2 4 10 4 40,8 0	0 12,4 0,8 16,8 0,4 6,4 0 0 0 4,8 11,2	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0 0 0	$\begin{array}{c} 0 \\ 27,2 \\ 4 \\ 8 \\ 4 \\ 8,8 \\ 0 \\ 3,2 \\ 2 \\ 9,6 \\ 26,8 \\ 0 \end{array}$	0 69,6 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA DARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4 26,8 0	$\begin{array}{c} 0 \\ 22,8 \\ 0,4 \\ 16,8 \\ 2 \\ 11,6 \\ 0 \\ 1,6 \\ 0 \\ 10,4 \\ 0 \\ 28 \\ 0 \end{array}$	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6 0 14,8 0 0	X X X X X X X X X X X X X X X X X X X	0 0 0 51,6 0 46,4 0 0 0 0 0	0 0,8 3,2 35,6 1,2 49,6 0 1,6 0,4 1,2 0 3,2 0	0 28,4 0 22,4 0,4 42 0 0,4 0 0 0	X X X X X X X X X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4 62 0 0	4 0 18,8 2 4 1,2 9,2 4 10 4 40,8 0 0	0 12,4 0,8 16,8 0,4 6,4 0 0 0 4,8 11,2 2	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0 0 0 0 0,0	$\begin{array}{c} 0 \\ 27,2 \\ 4 \\ 8 \\ 4 \\ 8,8 \\ 0 \\ 3,2 \\ 2 \\ 9,6 \\ 26,8 \\ 0 \\ 0 \end{array}$	0 69,6 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA DARMA CoARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4 26,8 0 0	0 22,8 0,4 16,8 2 11,6 0 1,6 0 28 0 0	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6 0 14,8 0 0 21,2	X X X X X X X X X X X X X X X X X X X	0 0 0 51,6 0 46,4 0 0 0 0 0 0	0 0,8 3,2 35,6 1,2 49,6 0 1,6 0,4 1,2 0 3,2 0	$\begin{array}{c} 0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42 \\ 0 \\ 0,4 \\ 0 \\ 0 \\ 0 \\ 0,4 \\ 0 \end{array}$	X X X X X X X X X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4 62 0 0 0	$\begin{array}{c} 4 \\ 0 \\ 18,8 \\ 2 \\ 4 \\ 1,2 \\ 9,2 \\ 4 \\ 10 \\ 4 \\ 40,8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 12,4 0,8 16,8 0,4 6,4 0 0 0 4,8 11,2 2 39,6	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 27,2 4 8 4 8,8 0 3,2 2 9,6 26,8 0 0	0 69,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA DARMA CoARMA SARMA	0 26,8 4,8 8,4 3,2 8,4 0 3,2 1,2 10,4 26,8 0 0 0,8	0 22,8 0,4 16,8 2 11,6 0 1,6 0 28 0 0	0,8 36,8 1,6 4,8 9,6 2,4 0 1,6 0 14,8 0 0 21,2 0	X X X X X X X X X X X X X X X X X X X	0 0 0 51,6 0 46,4 0 0 0 0 0 0 0 0 0	0 0,8 3,2 35,6 1,2 49,6 0 1,6 0,4 1,2 0 3,2 0 0	$\begin{array}{c} 0 \\ 28,4 \\ 0 \\ 22,4 \\ 0,4 \\ 42 \\ 0 \\ 0,4 \\ 0 \\ 0 \\ 0 \\ 0,4 \\ 0 \\ 0 \\ \end{array}$	X X X X X X X X X X X X X X X X X X X	0 12,4 0,8 2,4 4 4,4 2 5,6 4 62 0 0 0	4 0 18,8 2 4 1,2 9,2 4 10 4 40,8 0 0 0 0,8	$\begin{array}{c} 0 \\ 12,4 \\ 0,8 \\ 16,8 \\ 0,4 \\ 6,4 \\ 0 \\ 0 \\ 0 \\ 4,8 \\ 11,2 \\ 2 \\ 39,6 \\ 0 \end{array}$	X X X X X X X X X X X X X X X X X X X	0 64,8 0 0 0 0 0 0,4 0 0 0 0 0	$\begin{array}{c} 0 \\ 27,2 \\ 4 \\ 8 \\ 4 \\ 8,8 \\ 0 \\ 3,2 \\ 2 \\ 9,6 \\ 26,8 \\ 0 \\ 0 \\ 0 \\ 0,4 \end{array}$	0 69,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X

									tabela	a m1, l	ontynu	acja ta	abeli z	poprze	edniej s	trony
R2Wm	5	start z	modelu	ı o pra	wdziwy	ch str	ukturac	h		start	z mod	lelu o i	nnych	strukt	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	11,2	9,2	13,2	X	0	12,4	0	X	7,2	9,2	10,8	X	0	13,2	0	X
DN	12,8	9,6	10,8	X	0	5,6	0	X	5,6	8,8	9,2	X	1,6	10	22,4	X
CoN	2,8	2	3,2	X	1,2	0,8	6	X	3,2	2,8	0,4	X	9,6	5,2	6,4	X
SN	5,2	8,4	5,6	X	0	0,8	0	X	3,6	5,2	3,6	X	51,6	4,4	34,4	X
ICo	5,6	4,4	1,2	X	17,6	8,8	9,6	X	2,4	4,4	1,6	X	7,6	4,4	6,4	X
DCo	10,8	10,4	7,2	X	42,8	21,6	40	X	8,4	5,2	15,6	X	14,8	9,2	17,2	X
CoCo	0,8	0,8	11,2	X	6,8	4	12,4	X	0,8	1,6	0,8	X	8,4	3,2	1,2	X
SCo	1,6	1,6	4,4	X	29,6	20	31,6	X	2,4	1,2	1,6	X	4	3,2	8	X
IAR1	5,6	4,8	6,4	X	0	4	0	X	21,2	18	0	X	0	6	0	X
DAR1	8,8	7,6	7,2	X	0	5,2	0	X	20	24	0	X	0	7,6	0	X
CoAR1	1,2	0,4	4	X	0	0	0	X	8	3,2	0	X	0	1,2	0	X
SAR1	2,4	1,6	1,6	X	0	0,4	0	X	16,4	13,6	0	X	0	2	0	X
IARMA	28	0	0	X	0	0	0	X	0	0	13,2	X	0	27,2	2,8	X
DARMA	0	36,4	0	X	0	12,8	0	X	0	0	25,6	X	0	0	0	X
CoARMA	0	0	24	X	0	0	0,4	X	0,4	0	1,6	X	2,4	0	0	X
SARMA	0	0	0	X	0	0	0	X	0	0	11,6	X	0	0	0	X
IS	2	0,8	0	X	2	1,2	0	X	0,4	1,6	1,2	X	0	2,4	1,2	X
DS	1,2	2	0	X	0	2,4	0	X	0	1,2	3,2	X	0	0,8	0	X
R2LR		start z					ukturac				z mod					
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
SN	8	22,4	23,2	X	0	0,8	0	X	0	0	0	X	83,6	9,6	31,6	X
ICo	2,4	1,2	0,8	X	20	5,2	14,4	X	0	0	0	X	0	4	10,4	X
DCo	2,8	3,6	0	X	4,4	13,2	4	X	0	0	0	X	0	0,8	0,8	X
CoCo	4	1,2	6,4	X	20,4	14	19,2	X	0	0	0	X	0	5,2	6	X
SCo	10	4	6	X	53,2	58,4	62,4	X	0	0	0	X	0	9,2	14	X
IAR1	0	0	0	X	0	0	0	X	1,2	4	0	X	0	0	0	X
DAR1	0	0	0	X	0	0	0	X	1,6	4,8	0	X	0	0	0	X
CoAR1	0	0	0	X	0	0	0	X	3,2	2,4	0	X	0	0	0	X
SAR1	0	0,8	1,2	X	0	0,4	0	X	93,6	85,6	0	X	0	0,4	0	X
IARMA	68,8	0	0	X	0	0	0	X	0	0	4	X	0	67,2	36	X
DARMA	0	63,2	0	X	0	4,4	0	X	0	0	14,8	X	0	0	0	X
CoARMA	0	0	62,4	X	0	0	0	X	0	0	2	X	16,4	0	0	X
SARMA	0	0	0	X	0	0	0	X	0	0	74,4	X	0	0	0	X
IS	2,8	1,6	0	X	2	1,6	0	X	0,4	2,4	1,6	X	0	2,8	1,2	X
DS	1,2	2	0	X	0	2	0	X	0	0,8	3,2	X	0	0,8	0	X

Tablica A.5: Wybór modelu dla wszystkich dziewięciu kryteriów: m
2. Źródło: opracowanie własne.

AIC	S	tart z	modelu	o pra	wdziwy	ych str	ukturac	h		start	t z mod	lelu o i	innych	struktı	urach	
Koniec	IN	DN	CoN	SN	ICo		CoCo		IN	DN	CoN	SN	ICo		СоСо	
IN	70	75,2	48,8	X	59,6	63,6	36,4	X	36,8	42,8	42,8	X	68	79,2	50,8	X
DN	0,8	3,2	5,6	X	0	0,8	0	X	0,4	0	0	X	13,6	4,4	0	X
CoN	11,6	11,6	28,4	X	6	6,4	24	X	10,8	11,2	15,2	X	8	8	24	X
SN	0,8	1,6	6	X	0	0,8	4,8	X	1,2	0	0,8	X	3,2	2	8	X
ICo	2,8	0	0	X	15,6	22	19,6	X	0	37,6	10,8	X	0	0,8	0,8	X
CoCo	0	0	0	X	4,8	2,4	7,2	X	0	1,6	11,2	X	0	0	0,4	X
SCo	0	0	0	X	0	0,8	3,2	X	0	0	2,4	X	0	0	0	X
IAR1	11,2	4,8	5,2	X	9,2	2,4	1,2	X	44	2,4	6,8	X	3,6	4,4	10,8	X
DAR1	0	1,6	0,8	X	0,4	0,4	0	X	2,8	0	0,8	X	3,2	0	0	X
CoAR1	1,2	0,4	3,6	X	0,4	0	2	X	1,6	2	1,2	X	0,4	1,2	3,2	X
SAR1	0	0	0	X	0	0	0	X	1,6	0	0	X	0	0	0,4	X
IARMA	0,8	0	0	X	0,8	0	0	X	0	0	0	X	0	0	0,8	X
DARMA	0	1,6	0	X	0	0,4	0	X	0	0	0	X	0	0	0	X
CoARMA	0	0	1,2	X	0	0	0,8	X	0	1,6	0	X	0	0	0	X
IS	0,8	0	0	X	3,2	0	0,8	X	0	0,4	7,2	X	0	0	0,8	X
CoS	O	0	0,4	X	0	0	Ô	X	0,8	0,4	0,8	X	0	0	Ô	X
BIC	S	tart z	modelu	o pra	wdziwy	vch str	ukturac	h		star	t z mod	elu o i	innych	strukt	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	97,2	98	88,4	X	93,2	74,8	65,2	X	50,8	59,2	85,6	X	95,6	98,4	86,4	X
DN	0,4	0,8	1,6	X	0	0	0	X	0,4	0	0	X	3,6	0,4	0	X
CoN	0,4	0,8	9,2	X	0,4	0,4	9,6	X	0,8	0,4	8,4	X	0,4	1,2	8,8	X
SN	o o	Ó	0,8	X	0	0	1,2	X	0	0	0	X	Ó	0	1,2	X
ICo	0.8	0	0	X	3.6	24	23,6	X	0	39,2	2,4	X	0	0	0	X
CoCo	o o	0	0	X	0	0,8	0	X	0	0,4	0	X	0	0	0	X
SCo	0	0	0	X	0	0	0.4	X	0	0	0	X	0	0	0	X
IAR1	1,2	0.4	0	X	2,4	0	0	X	48	0.4	2,8	X	0	0	3.6	X
DAR1	0	0	0	X	0	0	0	X	0	0	0,4	X	0.4	0	0	X
CoAR1	0	0	0	X	0,4	0	0	X	0	0,4	0,4	X	O	0	0	X
CCCc	S	tart z	modelu	o pra	wdziwy	ych str	ukturac	h		start	t z mod	elu o i	innych	strukti	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	19,2	41,2	19,6	X	0	17,6	0	X	0	0	0	X	7,6	0,4	0	X
DN	9,2	8,8	8	X	0	10,4	0	X	6	0	0	X	6	28,8	51,6	X
CoN	2,8	7,6	3,2	X	0	1,2	0	X	0,4	0	0	X	32,4	0,8	0,8	X
SN	0,4	1,2	0.4	X	0	0.8	0	X	1.6	0	0	X	6,8	6,8	1,2	X
ICo	17,6	0,4	18,8	X	60,4	30,8	63,2	X	4	19,2	30	X	0	20	2	X
DCo	O	Ó	Ô	X	Ô	2	Ô	X	1,2	23,6	8,8	X	14,8	1,6	0	X
CoCo	9,2	0	12,8	X	38,8	14,4	36,8	X	7,6	41,6	8,4	X	Ó	27,2	33,2	X
SCo	0	0	0	X	0	Ó	0	X	0	9,2	1,2	X	0,4	1,6	0	X
IAR1	13,2	10,4	10	X	0	6	0	X	4,4	0	Ô	X	0,8	0	0	X
DAR1	3,2	5,2	3,6	X	0	2	0	X	33,2	0	0	X	7,2	1,2	2	X
CoAR1	1,2	2	2	X	0	0,4	0	X	15,6	0	0	X	0	0,8	0	X
SAR1	0,4	0	0	X	0	0	0	X	12	0	0	X	2,8	0,4	0	X
IARMA	22,8	0	0	X	0	0	0	X	0	0	0	X	0	0	1,6	X
DARMA	0	22,8	0	X	0	12,4	0	X	0	0	0	X	9,6	0	0	X
CoARMA	0	0	21,6	X	0	0	0	X	0,4	0	0	X	0	6,4	0	X
IS	0,8	0,4	0	X	0.8	1.6	0	X	4,8	4	47,2	X	2,4	1,6	5,6	X
DS	0,0	0	0	X	0,0	0,4	0	X	1,2	0,8	4	X	9,2	0,4	2	X
CoS	o o	0	0	X	0	0	0	X	6,4	1,6	0	X	0	1,6	0	X
SS	0	0	0	X	0	0	0	X	1,2	0	0,4	X	0	0,4	0	X
										a m2, l	kontynu	acja t	abeli n	a nastę	pnej st	ronie

IN										tabela	a m2, l	kontynu	acja ta	abeli z	poprze	edniej s	trony
IN	CCm				o pra	wdziwy					start	t z mod		nnych	struktı		
DN																CoCo	
CON								-								,	X
SN		8	11,2	7,2		0,4		0		7,2	0	0		10,4	16,8	14,4	X
ICO		22,4	18,4	10		0	0,8	3,6		10,4	8,4	0			13,6	6,4	X
DCO	SN	12,8	13,6	31,6		0	,	0		4		0,8		,	10,8	8,8	X
CoCo						,		,		0				2,8		9,2	X
SCC	DCo	2	5,2				7,2	27,2		0	21,6			4,4	0	4,4	X
ARI		-						,		1					4,8		X
DARI				,				,		1 '					,		X
CARI			,			,				1 '				,			X
SARI	AR1		6,8	1,2		2	1,6	0		16,4	0	0,8		10,8	1,6	7,6	X
LARMA	oAR1	1,2	1,6	8,4		0	0,4	0,4		11,2	4,4	0		0,8	11,6	0,4	X
DARMA	AR1	0,8	1,2	2		0	0	0		13,2	1,2	0		0,8	1,2	0	X
CoARMA	.RMA	22,4	_	0	X	8,4	-	0	X	0	0	4,8	X	0	0	15,2	X
S		0	15,2	0		0	5,2	0	X	0		0	X	14	0	0	X
DS	ARMA			20,4	X	0	0		X	1	7,2		X		16	0	X
CoS			7,2	0,4		16,8	12,8	0,8		2,8	2	17,6		7,2	0	11,2	X
SS			6,8			8	11,2			0,4	0,4			3,2	0	2,8	X
PRESSC		0,8	0	5,2	X	1,6	0,4	3,6	X	4,4	3,6	2,8	X	0	1,6	0,4	X
IN DN CoN SN ICo DCo CoCo SCo IN DN CoN SN ICo DCo CoCo IN 14,4 9,2 8 X 8 1,6 2,8 X 5,6 5,2 8,4 X 8,8 8,4 11,2 CoN 5,2 4,4 14 X 2,8 0,8 10,4 X 12,4 12,4 2,4 X 3,6 14 10,4 SN 2 9,2 12,8 X 1,6 2 4,4 X 6,8 5,6 1,6 X 6 10,8 2,8 ICo 4,4 0 1,2 X 13,6 4,4 2,4 X 0,8 5,6 20 X 1,2 1,6 2 DCo 1,2 1,6 0 X 14 17,6 6,4 X 0,4 5,2 15,2 X 3,6 0 0 CoCo 0,4 0,4 2 X 8,4 1,2 13,6 X 2,4 11,6 9,2 X 0,1,2 0,4 SCo 0 2,4 1,6 X 6,8 18 23,6 X 0,4 22,4 5,6 X 1,2 0,4 0 0,8 X 0,4 2,4 5,6 X 1,2 0,4 0,8 1,2 X 1,6 3,6 1,2 DAR1 10 6,4 10,4 X 2,4 4 2 X 15,6 2,4 3,2 X 5,2 1,6 10,4 0,8 1,2 X 1,6 3,6 1,2 DAR1 10 6,4 10,4 X 2,4 4 2 X 15,6 2,4 3,2 X 5,2 1,6 10,4 0,8 1,2 X 1,6 3,6 1,2 DAR1 4 11,6 3,6 X 2,8 5,2 4,4 X 15,2 6 1,6 X 10 8,8 6 IARMA 28,8 0 0 X 8,8 0 0 X 0 0 8 X 0 0 32,4 0 A 0 0 0 0 0 0 0 0	SS	0	0,4	0,4	X	0,4	0	0	X	0,4	1,2	$_{0,4}$	X	0	0	0	X
IN DN CoN SN ICo DCo CoCo SCo IN DN CoN SN ICo DCo CoCo IN 14,4 9,2 8 X 8 1,6 2,8 X 5,6 5,2 8,4 X 8,8 8,4 11,2 CoN 5,2 4,4 14 X 2,8 0,8 10,4 X 12,4 12,4 2,4 X 3,6 14 10,4 SN 2 9,2 12,8 X 1,6 2 4,4 X 6,8 5,6 1,6 X 6 10,8 2,8 ICo 4,4 0 1,2 X 13,6 4,4 2,4 X 0,8 5,6 20 X 1,2 1,6 2 DCo 1,2 1,6 0 X 14 17,6 6,4 X 0,4 5,2 15,2 X 3,6 0 0 CoCo 0,4 0,4 2 X 8,4 1,2 13,6 X 2,4 11,6 9,2 X 0,1,2 0,4 SCo 0 2,4 1,6 X 6,8 18 23,6 X 0,4 22,4 5,6 X 1,2 0,4 0 0,8 X 0,4 2,4 5,6 X 1,2 0,4 0,8 1,2 X 1,6 3,6 1,2 DAR1 10 6,4 10,4 X 2,4 4 2 X 15,6 2,4 3,2 X 5,2 1,6 10,4 0,8 1,2 X 1,6 3,6 1,2 DAR1 10 6,4 10,4 X 2,4 4 2 X 15,6 2,4 3,2 X 5,2 1,6 10,4 0,8 1,2 X 1,6 3,6 1,2 DAR1 4 11,6 3,6 X 2,8 5,2 4,4 X 15,2 6 1,6 X 10 8,8 6 IARMA 28,8 0 0 X 8,8 0 0 X 0 0 8 X 0 0 32,4 0 A 0 0 0 0 0 0 0 0	RESSc	5	start z	modelu	o pra	wdziwy	ych stri	ıkturac	h		start	t z mod	lelu o i	nnych	strukti	urach	
IN						·				IN						CoCo	SCo
DN	IN																X
CON		,								1 '						,	X
SN			,							1 '						,	X
ICo			,			,		,		1 '	,	,		,		,	X
DCo			,	,		,		,		1 '							X
CoCo				,		,		,		1 '							X
SCo		,	,					,		1 '	,			,			X
IAR1		,	,				,			1 '	,	,			,	,	X
DAR1			,	,		,		,		1 '	,						X
CoAR1		,	,	,				,		1 '	,	,					X
SAR1			,	,		,				1 '				,	,	,	X
IARMA				,			,			1 '		,		,			X
DARMA			,	,		,		,		1 '					,		X
CoARMA										1							X
IS			,							1							X
DS				,				,		1 '		-					X
CoS 0,4 0 10 X 0,4 0 4,8 X 5,6 2,4 1,2 X 0,4 1,2 0,4 SS 0,4 0 0,8 X 0,4 0,4 0,4 X 0,8 0,4 0 X 0,4 0,8 0 PRESSm start z modelu o prawdziwych strukturach start z modelu o innych strukturach IN DN CoN SN ICo DCo CoCo SCo IN DN CoN SN ICo DCo CoCo CoCo			,			,		,		1 '						,	X
SS			,	,		,		,		1 '	,			,	,		X
PRESSm										1 '							X
IN DN CoN SN ICo DCo CoCo SCo IN DN CoN SN ICo DCo CoCo CoC																	71
IN	LESSM									TNT							CO-
DN 5,2 7,6 11,2 X 0,8 2,4 0 X 2,8 0 0 X 9,2 14 13,2 CoN 28 17,6 14,4 X 0 0,4 5,2 X 13,2 11,2 0 X 13,2 12 8 SN 17,2 19,2 25,2 X 0 0,4 0 X 4 0,4 0,8 X 20,4 6,8 18,4 ICo 4,4 1,6 0 X 9,6 17,2 35,2 X 0 25,2 8,8 X 0,8 0 8 DCo 1,6 3,6 0 X 11,2 9,2 25,6 X 0 25,2 8,8 X 0,8 0 8 DCo 1,6 3,6 0 X 11,2 9,2 25,6 X 0 20,8 8,4 X 6 0	IN																SCo
CoN 28 17,6 14,4 X 0 0,4 5,2 X 13,2 11,2 0 X 13,2 12 8 SN 17,2 19,2 25,2 X 0 0,4 0 X 4 0,4 0,8 X 20,4 6,8 18,4 ICo 4,4 1,6 0 X 9,6 17,2 35,2 X 0 25,2 8,8 X 0,8 0 8 DCo 1,6 3,6 0 X 11,2 9,2 25,6 X 0 20,8 8,4 X 6 0 5,6 CoCo 0 0 3,2 X 14,8 10,8 6 X 3,6 13,2 17,6 X 0 3,6 0 SCo 0,4 0 0,4 X 14,8 11,6 20,8 X 0,4 16,8 20,8 X 0 1,2								-				,		,		,	X
SN 17,2 19,2 25,2 X 0 0,4 0 X 4 0,4 0,8 X 20,4 6,8 18,4 ICo 4,4 1,6 0 X 9,6 17,2 35,2 X 0 25,2 8,8 X 0,8 0 8 DCo 1,6 3,6 0 X 11,2 9,2 25,6 X 0 20,8 8,4 X 6 0 5,6 CoCo 0 0 3,2 X 14,8 10,8 6 X 3,6 13,2 17,6 X 0 3,6 0 SCo 0,4 0 0,4 X 14,8 11,6 20,8 X 0,4 16,8 20,8 X 0 1,2 0 IAR1 5,2 3,6 1,6 X 5,2 2 0,4 X 24 0 4,4 X 4 2,4																	X
ICo 4,4 1,6 0 X 9,6 17,2 35,2 X 0 25,2 8,8 X 0,8 0 8 DCo 1,6 3,6 0 X 11,2 9,2 25,6 X 0 20,8 8,4 X 6 0 5,6 CoCo 0 0 3,2 X 14,8 10,8 6 X 3,6 13,2 17,6 X 0 3,6 0 SCo 0,4 0 0,4 X 14,8 11,6 20,8 X 0,4 16,8 20,8 X 0 17,2 0 IAR1 5,2 3,6 1,6 X 5,2 2 0,4 X 24 0 4,4 X 4 2,4 2,8 DAR1 2 7,2 0 X 2,8 3,2 0 X 12,4 0,4 0,8 X 9,6 0,8																	X
DCo 1,6 3,6 0 X 11,2 9,2 25,6 X 0 20,8 8,4 X 6 0 5,6 CoCo 0 0 3,2 X 14,8 10,8 6 X 3,6 13,2 17,6 X 0 3,6 0 SCo 0,4 0 0,4 X 14,8 11,6 20,8 X 0,4 16,8 20,8 X 0 1,2 0 IAR1 5,2 3,6 1,6 X 5,2 2 0,4 X 24 0 4,4 X 4 2,4 2,8 DAR1 2 7,2 0 X 2,8 3,2 0 X 12,4 0,4 0,8 X 9,6 0,8 4,4 CoAR1 2 0 3,6 X 0,4 0 1,2 X 14,8 4 0,4 X 0,4 6,4										1							X
CoCo 0 0 3,2 X 14,8 10,8 6 X 3,6 13,2 17,6 X 0 3,6 0 SCo 0,4 0 0,4 X 14,8 11,6 20,8 X 0,4 16,8 20,8 X 0 1,2 0 IAR1 5,2 3,6 1,6 X 5,2 2 0,4 X 24 0 4,4 X 4 2,4 2,8 DAR1 2 7,2 0 X 2,8 3,2 0 X 12,4 0,4 0,8 X 9,6 0,8 4,4 CoAR1 2 0 3,6 X 0,4 0 1,2 X 14,8 4 0,4 X 0,4 6,4 2 SAR1 0,8 2 1,6 X 0 0 1,2 X 13,2 0 0 X 0,8 1,6										1							X
SCo 0,4 0 0,4 X 14,8 11,6 20,8 X 0,4 16,8 20,8 X 0 1,2 0 IAR1 5,2 3,6 1,6 X 5,2 2 0,4 X 24 0 4,4 X 4 2,4 2,8 DAR1 2 7,2 0 X 2,8 3,2 0 X 12,4 0,4 0,8 X 9,6 0,8 4,4 CoAR1 2 0 3,6 X 0,4 0 1,2 X 14,8 4 0,4 X 0,4 6,4 2 SAR1 0,8 2 1,6 X 0 0 1,2 X 13,2 0 0 X 0,8 1,6 1,6										1							X
IAR1 5,2 3,6 1,6 X 5,2 2 0,4 X 24 0 4,4 X 4 2,4 2,8 DAR1 2 7,2 0 X 2,8 3,2 0 X 12,4 0,4 0,8 X 9,6 0,8 4,4 CoAR1 2 0 3,6 X 0,4 0 1,2 X 14,8 4 0,4 X 0,4 6,4 2 SAR1 0,8 2 1,6 X 0 0 1,2 X 13,2 0 0 X 0,8 1,6 1,6										1 '							X
DAR1 2 7,2 0 X 2,8 3,2 0 X 12,4 0,4 0,8 X 9,6 0,8 4,4 CoAR1 2 0 3,6 X 0,4 0 1,2 X 14,8 4 0,4 X 0,4 6,4 2 SAR1 0,8 2 1,6 X 0 0 1,2 X 13,2 0 0 X 0,8 1,6 1,6																	X
CoAR1 2 0 3,6 X 0,4 0 1,2 X 14,8 4 0,4 X 0,4 6,4 2 SAR1 0,8 2 1,6 X 0 0 1,2 X 13,2 0 0 X 0,8 1,6 1,6				,						1							X
SAR1 0,8 2 1,6 X 0 0 1,2 X 13,2 0 0 X 0,8 1,6 1,6											,				,		X
														,			X
										1 '							X
		13,6	0	0	X	5,6	0	0	X	0	0	5,6	X	0	0	12,4	X
DARMA 0 12,8 0 X 0 7,6 0 X 0 0 0 X 12,8 0 0										1							X
CoARMA 0																	X
IS 6,4 8,8 0,4 X 14,8 15,6 0,8 X 0,8 0,4 11,2 X 8,8 0,8 8																	X
DS 2,8 5,6 0 X 10,8 14,4 0,8 X 0,4 0 10 X 4 0 2										1 '							X
CoS 0,4 0 4,4 X 2,8 0 1,6 X 6 2 5,2 X 0 1,2 0										1							X
SS 0 0 0,4 X 0,4 1,2 0 X 0 0 0,4 X 0,4 0 0	SS	0	0	0,4	X	0,4	1,2	0	X								X
tabela m2, kontynuacja tabeli na następnej st										tabel	a m2, l	kontynu	ıacja ta	abeli n	a nastę	epnej st	ronie

									tabela	a m2, k	contynu	acja ta	abeli z	poprze	edniej st	trony
R2Wc	s	start z	modelu	ı o pra	wdziwy	ch str	ukturac	h		start	z mod	lelu o i	innych	strukti	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	0,4	1,2	0,4	X	0	0	0	X	0,4	0	0	X	0	0,8	0	X
DN	17,6	2,4	34,4	X	0	0,4	0,4	X	9,6	0,8	0	X	4,8	19,6	4	X
SN	20	16	8	X	0	3,6	0,8	X	12,4	1,6	0	X	18	22,8	38,4	X
ICo	22,4	15,2	7,2	X	14,8	26	33,2	X	4,4	21,6	12,8	X	9,6	17,2	22,8	X
DCo	8,8	10	2,8	X	53,6	14,8	34	X	0,4	45,2	46,8	X	10,8	5,6	10	X
CoCo	15,2	11,6	21,6	X	18	15,2	10	X	5,2	22,4	21,2	X	6,8	20,8	7,6	X
SCo	0	1,2	4	X	7,2	3,6	15,6	X	0	6	15,6	X	0,4	2	0	X
IAR1	0	0,4	0	X	0	0	0	X	10.8	0	0	X	0	0	0	X
DAR1	4,4	0,4	6,8	X	0	0,4	0,4	X	15,6	0,4	0	X	1,2	3,2	0,4	X
CoAR1	Ô	0	0	X	0	Ó	0	X	10,8	0	0	X	0	0	Ô	X
SAR1	3,2	8,8	1,2	X	0	2,8	0	X	25,2	0,8	0	X	13,2	6	0,4	X
IARMA	2	0	0	X	0	0	0	X	0	0	0	X	0	0	0,8	X
DARMA	0	14,8	0	X	0	10,8	0	X	0	0	0	X	18,4	0	0	X
CoARMA	0	0	12,8	X	0	0	0	X	0	0,4	0	X	0	$\overset{\circ}{2}$	0	X
IS	4	2,8	0	X	4	4	1,6	X	3,6	0	1,6	X	2	0	8,8	X
DS	2	15,2	0	X	$^{-2}$,4	18	1,6	X	0,8	0	2	X	14,8	0	6,8	X
CoS	0	0	0,8	X	0	0	$^{1,0}_{2,4}$	X	0,8	0,8	0	X	0	0	0,0	X
SS	0	0	0,0	X	0	0.4	0	X	0,0	0,0	0	X	0	0	0	X
R2Wm							ukturac				z mod					
1 1 2 VV 111	IN	DN	CoN	SN	ICo	DCo	СоСо	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	5,6	5,6	2,4	X	4,4	0,8	4,8	X	5,2	4	3,6	X	6	4,4	5,2	X
DN	5,6	2	0,4	X	0	0,8	0	X	3,2	0	0	X	0,4	2,8	3,2 $3,6$	X
CoN	30,8	34	31,2	X	36	1,6	44,8	X	27,2	33,6	23,6	X	48	33,2	51,6	X
SN	11,2	10	10,4	X	0	0	0	X	4,4	0	$^{23,0}_{2,8}$	X	8,8	9,6	9,2	X
ICo	0,8	0	0	X	0,8	8,8	1,6	X	0	0,4	2,0	X	0,3	9,0	0	X
DCo	0,8 $0,4$	3,6	0	X	10	22.4	6	X	$\begin{vmatrix} 0 & 0 \\ 0 & 4 \end{vmatrix}$	8	3.6	X	$^{0,4}_{4,8}$	0	0	X
CoCo	0,4	0,4	$^{0}_{2,4}$	X	1,6	2,4 $2,4$	14,4	X	1,6	14,8	5,6	X	0	$\frac{1,2}{2}$	0	X
SCo	0	0,4	1,6	X	8	14.8	16,8	X	0,4	24	16,4	X	0,8	3,2	0	X
IAR1	3,2	2	0,8	X	1,2	0	0	X	3,6	1,6	0	X	1,6	$^{3,2}_{3,2}$	0,8	X
DAR1	$^{0,2}_{1,6}$	2,4	0,0	X	0	0,4	0	X	6,8	0	0	X	2	0,2	0,0	X
CoAR1	8,8	4,8	12,8	X	4,4	$^{0,4}_{1,6}$	2	X	20,8	3,2	6	X	3,6	13,6	6,4	X
SAR1	0,0	0,8	0,4	X	0	0,8	0	X	16	0	0	X	$^{5,0}_{1,2}$	1,6	0,4	X
IARMA	12,8	0,0	0,4	X	2,8	0,0	0	X	0	0	1,2	X	0	0	7,2	X
DARMA	0	9,6	0	X	0	$^{0}_{2,4}$	0	X	0	0	0	X	4	0	0	X
CoARMA	0	0	23,2	X	0	0	3,2	X	1,6	4	0	X	0	20,4	0	X
IS	6,8	5,2	0	X	14,4	15,2	0	X	0	0,4	18,8	X	8	0	6	X
DS	8,8	16,8	0,8	X	12,4 $12,8$	24,4	0,4	X		0,4	10,3 $10,4$	X	10	0	7,2	X
CoS	2	10,8 $1,2$	12,4	X	3,2	$\frac{24,4}{2}$	5,2	X	6,8	4	7,2	X	0	3,6	1,6	X
SS	$\frac{2}{1,2}$	1,2 $1,2$	12,4 $1,2$	X	0.4	$\frac{2}{1.6}$	0.8	X	0,8	2	0.8	X	0,4	0.8	0.4	X
R2LR							ukturac		1 4							71
N2LK	IN	DN	CoN	SN	Wdziwy ICo	DCo	CoCo	SCo	IN	DN	z mod CoN	SN	Innych ICo	DCo	Urach CoCo	SCo
DN	0	$\frac{DN}{0}$	0	X	0	0	0	X	0	0 0	Con 0	X	0	0	0,4	X
SN	36	38,8	26	X	0	0.4	0	X	0	0	0	X		15,6	50,4	X
ICo	30 0	38,8	26 0		0	0,4			0			X	38,4 0	15,6	50,8 0	
DCo	0	0	0	X X		7,2	0	X X	0	0	$^{0,8}_{2}$	X	0	0	0	X X
				X	$0.8 \\ 12$			X	0	32		X	0		0	X
CoCo	0,8	0	0,8			7,2	18,4				10,8			4,4		
SCo CoAP1	0,8	0	1,2	X	25,2	23,6	62,8	X	0	56,8	28,8	X	0	1,2	0	X
CoAR1	0	0	0	X	0	0	0	X	2,8	0	0	X	0	1.2	0	X
SAR1	0,4	0,4	0,4	X	0	0	0	X X	80,8	0	0	X	0	1,2	0	X
IARMA	24	17.6	0	X	0	0	0		0	0	0	X	0	0	22,8	X
DARMA	0	17,6	0	X	0	0,8	0	X	0	0	0	X	14,8	0	0	X
CoARMA	0	0	50,8	X X	0	0	0	X	0	0	0	X	10.4	67,2	0	X
	10 0			X	18,8	15,2	0	X	0,4	0,4	25,6	X	12,4	0,4	5,6	X
IS	12,8	10	0				0 4	37	_	_	10.0	37	00.0	_	150	3.7
DS	19,6	29,6	0	X	36	40	0,4	X	0	0	19,2	X	30,8	0	15,6	X
	,						0,4 $15,2$ $3,2$	X X X	$\begin{vmatrix} 0 \\ 13,6 \\ 2,4 \end{vmatrix}$	$0 \\ 7,2 \\ 3,6$	19,2 $10,4$ $2,4$	X X X	30,8 $1,2$ $2,4$	$0 \\ 8 \\ 2$	$ \begin{array}{c} 15,6 \\ 2,8 \\ 2 \end{array} $	X X X

Tablica A.6: Wybór modelu dla wszystkich dziewięciu kryteriów: m
3. $\acute{Z}r\acute{o}dło:$ opracowanie własne.

AIC		tart z	modeli	1 o pra	wdziwy	rch etr	ukturac	h		ctart	7 mor	lelu o i	innych	etrukti	ırach	
Start		start z		i o pia	wuziwy	CII SUI	ukturac	11		Start			imiyen	SULUKU	шасп	
Koniec	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	72,4	83,6	34,8	72,8	64,8	1,6	20,8	0,8	37,6	44,4	14,8	1,6	2,4	73,6	38	64
DN	2,8	2,8	0	1,2	0,4	0,8	0	0	0,4	0,4	9,6	1,2	4	0,8	9,2	0,4
CoN	11,2	10	45,6	20,4	7,2	0,4	38,4	1,2	10,8	8,4	18	0	1,2	14,4	40,8	27,2
SN	0	0,8	1,2	3,2	0	0,4	0	4	0	0	1,2	0	0	1,6	2,8	4,4
ICo	2,8	0	2	0	12,4	79,6	18,8	64	0,4	39,6	0	74,8	0	2	0	0
DCo	0	0	0	0	1,2	0	0,4	0	0	0,8	0	0	0	0	0	0
CoCo	0	0	4	0	3,6	13,6	8,4	26,8	0	2	0	18,8	0	0,4	0	0
SCo	0	0	0	0	0	0,8	0	0,4	0	0	0	2	0	0	0	0
IAR1	7,2	1,6	1,2	0	5,6	0,4	3,6	0,4	44,4	1,2	0	0	76,4	5,2	1,6	2,8
DAR1	0,4	0,8	0,4	0,4	0	0,8	0	0	2,4	0	0,8	0	3,6	0	4,8	0
CoAR1	1,6	0	8,8	0	0,4	0,4	6	0	2,8	1,6	0	0	10,4	0,8	1,6	0,4
SAR1	0	0	0	1,6	0	0	0,4	2	0,4	0	0	0	0,8	0	0,8	0
IARMA	1,6	0	0	0	2,4	0	0	0	0	0	23,6	0	0	0	0	0
DARMA	0	0,4	0	0	0	0	0	0	0	0	3,6	0	0	0	0,4	0,8
CoARMA	0	0	0,8	0	0	0	2	0	0,4	0,4	22,8	0	0	1,2	0	0
SARMA	0	0	0	0,4	0	0	0	0	0	0	2,8	0	0	0	0	0
IS	0	0	0	0	1,6	1,2	0,8	0	0	1,2	1,2	1,2	0,4	0	0	0
DS	0	0	0	0	0,4	0	0	0	0	0	1,2	0,4	0,8	0	0	0
CoS	0	0	1,2	0	0	0	0,4	0	0,4	0	0,4	0	0	0	0	0
SS	0	0	0	0	0	0	0	0,4	0	0	0	0	0	0	0	0
BIC		start z	modelı	ı o pra	wdziwy	ch str	ukturac	h		start	z moo	lelu o i	innych	struktı	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	96	98,8	69,6	97,6	90,8	0	44	0,4	49,6	56,4	32,8	0,4	0,8	97,6	68,8	96
DN	0,4	0	0	0	0	0	0	0	0	0	2,4	0	0	0	1,6	0
CoN	1,2	1,2	27,6	2,4	1,6	0	28,4	0	1,2	0,8	16,8	0	0	1,2	29,2	4
SN	0	0	0	0	0	0	0	0,4	0	0	0	0	0	0	0	0
ICo	0,8	0	1,2	0	5,2	100	22	94,8	0	42,8	0	97,2	0	0,4	0	0
CoCo	0	0	0,4	0	0	0	4,4	4	0	0	0	2,4	0	0	0	0
SCo	0	0	0	0	0	0	0	0,4	0	0	0	0	0	0	0	0
IAR1	1,6	0	0	0	2	0	1,2	0	49,2	0	0	0	96	0,8	0	0
DAR1	0	0	0	0	0	0	0	0	0	0	0	0	0,8	0	0,4	0
CoAR1	0	0	1,2	0	0,4	0	0	0	0	0	0	0	2,4	0	0	0
IARMA	0	0	0	0	0	0	0	0	0	0	40	0	0	0	0	0
CoARMA	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0
CCCc					·		ukturac						innych			
	IN	DN	CoN	SN	ICo	DCo		SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	
IN	0,8	6,8	6,4	8	0	0	0	0	0,4	0	4	0	0	0,4	23,2	4
DN	37,2	12	5,2	52	0	4	0	0	4,4	2	4	6	4	18	6,8	5,2
CoN	7,6	28	8,8	29,2	0	0	0	0	2,8	3,6	8	0	0,4	2,8	52,8	13,2
SN	3,2	4,4	5,2	1,2	0	0,4	0	0	2	0,4	3,6	0,4	0	5,2	5,2	1,6
ICo	10,4	0	41,6	0	13,6	21,2	57,2	8	8,4	18,8	0	11,2	0	15,2	0	0
DCo	0	14,4	0,4	1,2	16	18	0,8	51,2	1,2	8	3,2	28,4	6,8	2,8	3,2	22,4
CoCo	19,2	0	10,8	0	29,6	29,2	20	34,8	17,2	52,4	3,6	24	0	38,8	0	0,4
SCo	0	0	1,6	0,4	0,8	2,4	0,8	3,6	0,4	2,4	0	0	0	0,4	0	0
IAR1	0	0	0,4	0,4	0	0	0	0	2	0	0	0	12,8	0,4	0,4	0,4
DAR1	0,8	9,6	0	2	0	2,4	0	0	14,8	0	0,4	1,6	22,4	1,2	2	8,4
CoAR1	0,8	0,4	0,8	0	0	0	0	0	26,4	0	0	0	34,8	0,8	0,4	0,4
SAR1	0	1,2	0,8	2,8	0	0	0	0	3,6	0	0,4	0	2,8	0,4	0	0,8
IARMA	2	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0
DARMA	0	6,4	0	0	0	0,8	0	0	0	0	5,2	2	0,8	0	3,6	10,8
CoARMA	0	0	4	0	0	0	0,4	0	0,4	0,4	36,8	0	0	5,2	0	0
SARMA	0	0	0	2,4	0	0	0	0	0	0	2	0	0	0	0	0
IS	16,8	1,2	8	0	35,2	4,8	10	0	4	3,6	7,6	2,8	4,8	3,6	0,4	2,8
DS	0,8	14,8	0,8	0	2,4	14,8	0,4	0,4	1,2	1,6	4,8	22	10	0,8	1,6	28
CoS	0,4	0,4	5,2	0	2,4	0,8	10,4	0	10,8	6	0	0,8	0,4	4	0,4	0,4
SS	0	0,4	0	0,4	0	1,2	0	2	0	0,8	0,4	0,8	0	0	0	1,2
									tabel	a m3, l	contyni	iacja ta	abeli na	a nastę	epnej st	ronie

									tabela	a m3, k	ontynu	acja ta	abeli z	poprze	dniej s	trony
CCCm	S	tart z	modelı	ı o pra	wdziwy	ych str	ukturac	ch		start	z mod	lelu o i	nnych	strukti	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	2,4	11,2	3,2	17,6	1,6	1,6	0	0	0,8	0	2	3,6	2,8	10,8	5,6	17,6
DN	16,4	10,8	10,4	34,8	1,2	6	0	0	6,8	0	1,6	6,4	6	27,2	3,6	13,6
CoN	24,4	14	10,8	11,6	0,4	1,2	9,2	0,4	5,2	9,2	6	0,8	4,4	15,6	19,6	6,8
SN	9,2	14,8	24,8	5,6	0	0,4	5,6	3,2	2,8	1,2	5,2	1,6	0,8	9,2	36	13,2
ICo	3,2	0,4	0	0	10,4	8,4	7,6	29,6	0	18	0,4	11,6	2,4	0	0,4	1,6
DCo	0	2,4	0	0	21,2	15,6	9,6	39,2	0	24,8	2	14,8	5,6	0	2,4	5,6
CoCo	0	0	8,4	0,4	26,4	8,4	27,2	10	6,8	22	0	8,8	0,4	2,8	0	0
SCo	0	0	0,4	2,8	5,6	6	10	12,4	0	8	0	6,8	0,4	0	0	0
IAR1	4,4	1,6	0,8	1,6	2	1,2	0	0	15,6	0	0,4	4,4	10,4	3,2	0	4,8
DAR1	2	7,2	1,6	2,4	0	2,4	0	0	22	0	0,4	2,4	14,4	2,4	4,4	6
CoAR1	1,6	0	6,8	2	0	0	4,4	0,4	12,8	2	0	0	11,6	6	1,2	1,6
SAR1	0,8	2,8	1,6	8,4	0	0.4	1,2	1,6	20	1,2	0	0,4	15,6	2	3,2	2,4
IARMA	20,8	0	0	0	4,4	0	0	0	0	0	4,4	0	0	0	0	0
DARMA	0	18	0	0	0	13,6	0	0	0	0	25,2	14,4	3,2	0	16,4	14,4
CoARMA	0	0	22	0	0	0	6,8	0	1,2	8	12	0	0	17,6	0	0
SARMA	0	0	0	12	0	0	0	1,6	0	0	18,8	0	0	0	0	0
IS	10,8	6,8	0	0,4	12,8	15,2	0,8	Ó	3,2	1,2	5,6	11,2	8	0,4	2,8	5,2
DS	3,2	9,6	0	0	10	19,2	0,4	Ō	0,8	0,4	14	10,4	11,6	0,4	3,6	7,2
CoS	0,8	0	8,8	0	3,6	0,4	16,8	0,4	2	3,6	1,2	2	2	2,4	0,4	0
SS	0,0	0,4	0,4	0,4	0,4	0	0,4	1,2	0	0,4	0,8	0,4	0,4	0	0,4	0
PRESSc	_						ukturac				z mod					
TRESSC	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	10,4	5,6	12,4	4	8	2	3,2	2	7,2	4,4	7,6	7,2	4,4	7,2	8	12,8
DN	15,2	12	3,2	10,4	2,4	13,2	2	5,2	6	$^{1,1}_{2,4}$	8	$\frac{1,2}{14}$	10	4,8	18	15,6
CoN	8	6	9,6	10,1 $10,4$	5,2	2,8	10,8	6,8	11,6	11,2	4,4	2,8	2,8	18	2	4
SN	3,6	10	8	18,4	$^{5,2}_{1,6}$	$^{2,0}_{3,2}$	$^{10,0}_{3,2}$	12,4	7,2	4	6,4	6	$^{2,0}_{3,2}$	9,2	10,4	8,4
ICo	3,0	0	1,6	0	14	7,2	18,4	1,6	0,4	5,6	0,4	2,4	0,2	0,8	2,8	0,8
DCo	0	2,8	0	1,2	20	15,2	3,6	11,0 $11,2$	0,4	4	4,8	14,8	4,4	0,3 $0,4$	6,8	2,8
CoCo	0,8	0,4	4,4	0,8	6,8	2,8	16,4	6	2	15,2	0	$^{14,0}_{2,4}$	0,8	4,4	0,0	0
SCo	0,3	0,4	0,4	6	$^{0,3}_{2,4}$	10	9,2	27,2	0,4	10,2 $10,4$	0	8,8	0,3 $0,4$	1,2	1,6	0,4
IAR1	4,8	3,2	11,2	$^{0}_{2,4}$	$^{2,4}_{1,6}$	0,4	$^{3,2}_{2,8}$	0	8,8	2,8	0	$^{0,0}_{1,2}$	10	4,8	4	$^{0,4}_{1,6}$
DAR1	5,2	10,4	6,8	7,2	2	$^{0,4}_{2,4}$	1,6	4,4	10	5,2	0,8	6	16,8	5,2	4,4	10,8
CoAR1	2,4	1,6	2,8	1,2	1,6	1,2	2	0,4	13,6	$\frac{6,2}{4,4}$	0,0	1,2	9,6	$\frac{6,2}{4,4}$	0,4	2
SAR1	6,8	6	$^{2,0}_{3,6}$	$\frac{1,2}{14}$	1,0 $1,2$	1,2 $1,2$	2,4	7,2	24	4,8	0,4	4,8	14,8	7,6	$^{0,4}_{2,4}$	8,4
IARMA	24,8	0	0,0	0	10,8	0	0	0	0	0	9,6	0	0	0	0	0,4
DARMA	0	26,8	0	0	0	16	0	0	0	0	29,2	18	2,4	0	32,4	27,6
CoARMA	0	0	23,2	0	0	0	12	0	4,4	21,2	5,2	0	0	27,6	02,4	0
SARMA	0	0	0	23,6	0	0	0	14,4	0	0	6	0	0	0	0	0
IS	7,6	5,6	1,6	0	12	8	2,4	0	0,4	0,8	6,4	3,6	7,6	1,2	2,8	2
DS	6	9,2	0,4	0	9,6	13,2	0,8	0	0,8	0,0	9,6	6,8	11,6	0	$^{2,0}_{3,6}$	2,8
CoS	0	0	10	0	0,8	0,8	8,8	0	2,8	3,2	0	0,0	0,8	3,2	0,0	0
SS	0	0	0.8	0.4	0,0	0,4	0,0	1,2	0	0	0,8	0	0,0	0	0	0
PRESSm							ukturac				z mod					
TICESSIII									IN		CoN			DCo		SCo
IN	1N 6,4	DN 8,8	CoN 13,6	$\frac{\text{SN}}{15,6}$	1Co 3,2	0,8	CoCo 0	$\frac{\text{SCo}}{0}$	1N 2,8	DN 0	8	$\frac{\text{SN}}{1,2}$	1Co 3,2	15,2	CoCo 10,8	SCo 11,2
DN	13,6	5,6	13,0 12	27,6	0	$^{0,8}_{3,2}$	0	0	4,8	0	3,6	$^{1,2}_{7,6}$	$^{3,2}_{3,6}$	$\frac{15,2}{22}$	5,2	10
CoN	20,8	14,4	8,8	14,8	0,4	$^{3,2}_{1,2}$	9,2	0,8	7,2	10,4	$^{3,0}_{3,6}$	0,8	3,0 $3,2$	8,8	$\frac{3,2}{20}$	8,4
SN	15,2	21,6	31,6	12,0	$0,4 \\ 0,4$	0,8	5,6	9,2	4	10,4 $1,2$	$^{3,0}_{4,4}$	2	$^{3,2}_{3,6}$	19,6	37,6	27,6
ICo	3,6	0,4	0	0	9,6	12,4	5,0 14,8	17,6	0	15,2 $15,2$	4,4	12,8	$^{3,0}_{2,4}$	19,0	0,8	1,6
DCo	0,4	$^{0,4}_{3,6}$	0	0	18,4	12,4 $11,6$	13,2	30,8	0	$^{15,2}_{26,8}$	2	14,8	$^{2,4}_{5,6}$	0	3,2	$^{1,0}_{6,4}$
CoCo	0,4	3,0	4,4	0	22,8	11,0 $11,2$	21,6	11,6	2,4	18,8	0	13,6	0,0	7,2	0	$0,4 \\ 0,4$
SCo	0,4	0	0	$^{0}_{2,4}$	10,8	11,2 14	13,6	$^{11,0}_{22,8}$	0	10,0 $11,2$	0	15,0 $15,2$	0	$0.8^{7,2}$	0	$0,4 \\ 0,8$
IAR1	4,8	$_{3,2}^{0}$	0,8	$^{2,4}_{1,2}$	2,8	1,6	13,0	0,4	19,2	0	$^{0}_{1,2}$	$^{13,2}_{2,4}$	12,4	0,8 1,2	2,8	4,8
DAR1	4,4	9,2	0,3	0,4	0,8	4	0	0,4	16,4	0	0.8	0,4	15,2	$^{1,2}_{1,6}$	$^{2,3}_{3,6}$	4,6
CoAR1	0,8	$^{3,2}_{1,2}$	4,4	$0,4 \\ 0,4$	0,3 $0,4$	0	4,8	0	13,6	$^{0}_{2,4}$	0,3	$0,4 \\ 0,4$	8	$^{1,0}_{3,2}$	0	0,4
SAR1	2	0.8	2	10,4	0,4	$^{0}_{1,2}$	$^{4,0}_{1,2}$	4	19,6	$^{2,4}_{1,2}$	0	0,4	17,6	$^{3,2}_{2,4}$	0,4	$^{0,4}_{1,2}$
IARMA	15,2	0,8	0	0	3,2	0	0	0	0	0	6,4	0	0	0	0,4	0
DARMA	0	16,4	0	0	0	9,6	0	0	0	0	21,6	10,8	0	0	10,8	15,6
CoARMA	0	0	16,4	0	0	9,0	3,6	0	2,4	5,2	9,6	0	0	13,2	0	0
SARMA	0	0	0	14,8	0	0	3,0	1,6	0	0,2	$^{9,0}_{21,6}$	0	0	15,2	0	0
IS	7,2	$_{5,2}^{0}$	0	0	14	12	$_{0,4}^{0}$	0,8	1,6	$^{0}_{1,2}$	6,4	$_{5,2}^{0}$	9,6	0	0,4	$^{-0}$
DS	4	9,2	0,8	0	9,6	15,2	$0,4 \\ 0,4$	0,8	0,4	0,8	9,6	$\frac{3,2}{12}$	9,0 14,4	1,6	$^{0,4}_{4,4}$	3,2
CoS	1,2	0,2	5,2	0	$^{9,0}_{3,2}$	0,8	11,6	0	5,2	5,6	$^{9,0}_{1,2}$	0,4	0,4	$^{1,0}_{3,2}$	4,4	0
SS	0	0,4	0,2	0	0,2	0,8 $0,4$	11,0	0,4	0,4	0,0	0	$0,4 \\ 0,4$	0,4 $0,8$	0,2	0	0
L 20		U	U	U	0,4	0,4	U	0,4				,	,		epnej st	

									tabela	a m3, k	ontynı	acja ta	abeli z	poprze	edniej s	trony
R2Wc		start z	modelu	ı o pra	wdziwy	ch str	ıkturac	h		start	z mod	lelu o i	innych	strukt	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	0	0,8	0	1,6	0	0	0	0	0	0	0	0	0,4	0,8	0	1,2
DN	15,6	4,8	32,8	2	0	0	18,4	0	6,4	3,2	0,8	0	0	12,4	2,4	0,4
CoN	0	0	0	1,6	0	0	0	0	0,4	0,4	0	0	0	0,4	0	0,4
SN	16,8	6	7,6	12,4	0	0	2,4	4	4,8	4,8	1,2	0	1,2	25,2	0,8	9,2
ICo	18,8	14,8	5,6	10,4	10,8	22	4,4	38	4,4	23,2	0,4	29,2	4,4	18,8	5,2	22,4
DCo	13,6	19,6	0,8	12,4	57,6	30	$\dot{24}$	31,2	1,6	28,4	14,8	35,2	18	2,4	22,8	26
CoCo	18,4	10,4	31,2	6	18	10,4	34,4	13,2	6	28,4	1,6	8	3,6	22,4	4,8	7,2
SCo	0	1,6	2,4	4,4	5,6	2,4	8,8	10,4	0	6	0	2	2	1,2	0,8	0,8
IAR1	0	0	Ô	1,6	0	Ó	0	0	6	0	0	0	1,6	0,4	0	0
DAR1	3,6	0	7,6	1,2	0	0	2	0	16,4	1,6	0	0	8,4	1,6	0,4	0,8
CoAR1	0	0	0,4	0,8	0	0	0	0	9,2	0	0	0	2,4	0	0,4	0
SAR1	5,2	0,4	1,2	19,2	0	3,2	1,2	1,2	39,2	1,2	0	0,8	23,6	5,2	1,2	3,2
IARMA	2,8	0,1	0	0	0	0,2	0	0	0	0	2,4	0,0	0	0	0	0
DARMA	0	12,8	0	ő	0	2,8	0	Ő	ő	ő	51,2	1,2	4,4	ő	46,4	4
CoARMA	0	0	8	0	0	0	1,6	0	0	0	0,8	0	0	5,6	0	0
SARMA	0	0	0	24,8	0	0	0	1,2	0	0	10,8	0	0	0,0	0	0
IS	4	4	0	0	4,4	2,8	0	0,4	2	0,8	0,8	5,2	6	0,8	0	7,2
DS	1,2	24	0	0,4	2,8	26,4	0	0,4	0,4	0,8	14,4	18	23,6	0,0	14,8	15,6
CoS	0	0,4	$^{0}_{2,4}$	0,4	0,8	0	2,8	0	2,8	1,2	0,4	0	25,0	2,8	0	1,2
SS	0	0,4 $0,4$	0	$^{0}_{1,2}$	0,8	0	2,0	0.4	0,4	0	0,4 $0,4$	0,4	0,4	2,0	0	0,4
									0,4							0,4
R2Wm			modelu				ıkturac		INI				innych			CC-
INI	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo 0.4	DCo	CoCo	SCo
IN	2,8	5,6	2,4	5,6	6,4	0,4	0,8	0,4	2	4,4	0	0,4	0,4	4,4	2,4	1,6
DN	6	2	0,8	6,4	0	0	0	0	0,8	0	0	0,4	0,4	0,4	0	4,8
CoN	30,8	24	30,8	24	26,4	2,8	24,4	2	22,4	21,2	2	5,2	6,8	22,4	44	20,8
SN	8	19,2	7,2	6,4	3,6	1,6	5,6	1,6	0,8	4	0,4	0	1,6	16	26,8	15,2
ICo	0	0,4	0	0	1,2	6	0,4	9,6	0	2,8	0	6,8	0,4	0	0	0,8
DCo	0	4,4	0	0	9,6	18,4	2,8	23,6	0,8	4,4	0,4	29,6	1,2	0,4	1,2	10,4
CoCo	0,4	0	3,6	0,4	10,4	4,4	25,2	15,2	7,6	31,6	0	8	0	6	0	0,4
SCo	0	0	0	4,8	4,4	15,6	9,2	44	0,4	13,6	0	14,4	0,4	0,4	0	0,8
IAR1	5,6	1,2	1,2	0,4	0,4	0,8	0	0	6,8	0,8	0	0,4	2,8	0,8	0,4	0
DAR1	0,8	0,4	0	2	0,4	0,4	0	0	6,4	0	0	0,8	4,8	0	0	3,2
CoAR1	6	2	10,4	3,2	3,2	1,6	4,8	0	16,4	3,2	0	0,8	17,6	10,4	0	4
SAR1	3,2	2,4	4,4	13,2	0	1,2	2,8	0,4	24,8	2	0	1,6	31,6	5,6	1,6	3,6
IARMA	12,8	0	0	0	1,6	0	0	0	0	0	3,6	0	0	0	0	0
DARMA	0	13,2	0	0	0	2,8	0	0	0	0	14,4	2	1,6	0	12,4	15,2
CoARMA	0	0	22,4	0	0	0	4,4	0	0,4	2	17,6	0	0	22,8	0	0
SARMA	0	0	0	32,4	0	0	0	0	0	0	30,4	0	0	0	0	0
IS	7,2	2,8	0	0	9,6	6	0,8	0	0,4	0,4	6	2,4	3,6	0,8	1,6	1,2
DS	12,8	19,2	0,8	0	18	34	0,4	0	0,8	1,2	22,4	25,2	24	1,2	8	17,2
CoS	3,2	0,8	15,2	0	4,4	2,4	18	0,4	8,8	7,2	1,2	0,8	1,6	7,6	0,4	0
SS	0,4	2,4	0,8	1,2	0,4	1,6	0,4	2,8	0,4	1,2	1,6	1,2	1,2	0,8	1,2	0,8
R2LR					·	ch str	ıkturac				z mod		innych	strukt		
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo		SCo
DN	3,6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CoN	5,2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SN	42,8	53,2	53,6	4,4	0	2,4	0	2	0	0	0	2,8	0	57,6	70	70,4
DCo	0	Ô	0	O	8,4	14,8	0	0	0	0	0	20,8	0	Ô	0	0,4
CoCo	0	0	0	0	9,6	Ó	45,6	0	0	48,4	0	Ô	0	1,6	0	0
SCo	0	0	0	6	21,2	22	24,8	78,8	0	36,8	0	35,6	0	0,4	0	0
DAR1	0	0	0	0	Ó	0	Ô	O	0	Ó	0	Ô	6	Ô	0	0
CoAR1	0	0	0	0	0	0	0	0	14,8	0	0	0	0	0	0	0
SAR1	0	0	0,8	38,8	0	0,4	0	9,6	68	0	0	0	48	2	0	0,8
IARMA	18,4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DARMA	0	17,2	0	0	0	1,2	0	0	0	0	28,4	0,4	0	0	16	11,2
CoARMA	0	0	28,4	ő	0	0	0	ő	ő	ő	0	0	0	27,6	0	0
SARMA	0	0	0	48,4	0	0	0	6	ő	ő	35,2	ő	0	0	0	Ő
IS	5,6	0	0	0	6	0	0	0	ő	0	0	0	0	0	0	0
DS	22,4	26,8	0	0	43,6	56,4	0	0	0	0	34,4	38,4	44,4	0	12,8	16,8
CoS	1,6	0	16,4	0	8,8	0	28,4	0	16,4	12,8	0	0	0	9,6	0	0
SS	0,4	2,8	0,8	2,4	2,4	2,8	1,2	3,6	0,8	2	$\overset{\circ}{2}$	2	1,6	$^{0,0}_{1,2}$	$^{0}_{1,2}$	0,4
	- , -	-,~	- , -	., -	-, -	.,~	,-	- , ~	u -,-				-,-	-,-	,-	- , -

Tablica A.7: Wybór modelu dla wszystkich dziewięciu kryteriów: m
4. Źródło: opracowanie własne.

AIC	S	start z	modelu	o pra	wdziwy	vch str	ukturac	h		start	z mod	elu o i	innych	struktı	urach	
Start									***							
Koniec	IN	DN	CoN	SN	ICo		CoCo		IN	DN	CoN	SN	ICo		CoCo	
IN	11,2	30,4	17,6	X	10,4	0,4	1,6	X	1,2	8	0,4	X	19,2	8,4	3,2	X
DN	20,4	2	9,2	X	3,2	1,6	3,2	X	0	2	0	X	6,8	0,8	1,6	X
CoN	1,6	3,6	7,2	X	2	0,4	17,6	X	0,4	1,6	0,4	X	5,2	0	19,6	X
SN	1.6	0	0	X	0	0	0	X	0	0	0	X X	0,8	0	0	X
ICo DCo	$\begin{array}{c c} 1,6 \\ 0 \end{array}$	0	0,8	X X	$\frac{5,6}{32}$	35,6	1,6	X X	0	3,6	0	X	$^{1,6}_{0}$	0,4	0	X X
CoCo	0.4	0	0.4	X	$\frac{32}{3,6}$	0 10	$^{0,4}_{1,6}$	X	0	$37,6 \\ 3,6$	0	X	0,8	0	0	X
IAR1	28	10,4	19,2	X	$\frac{5,0}{28}$	3,2	4,8	X	45,2	33,6	40	X	21,6	7,2	4	X
DAR1	0,4	0,8	8	X	0	$^{3,2}_{2,4}$	0.4	X	44	0	46	X	$\frac{21,0}{4,4}$	0	3,2	X
CoAR1	4	1,2	12	X	2,8	0,4	39,2	X	6,4	2,4	11,6	X	9,2	0,4	11.6	X
SAR1	0	-,-	0	X	0	0	0	X	0,4	0	0	X	0	0	0	X
IARMA	32,4	0	0	X	12,4	0	0	X	Ô	7,6	0	X	0	26	0	X
DARMA	0	51,6	0	X	0	46	0	X	2,4	0	1,6	X	0	49,6	56,8	X
CoARMA	0	0	25,6	X	0	0	29,6	X	0	0	0	X	30,4	7,2	0	X
BIC	S	start z	modelu	o pra	wdziwy	ych str	ukturac	h		start	z mod	elu o i	innych	struktı	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	43,2	48,4	58	X	46,8	0,8	26	X	0	44,4	0	X	61,2	34	27,6	X
DN	8,4	5,6	10	X	4,4	0,4	2	X	0	5,2	0	X	6,8	0,4	0	X
CoN	0,8	1,6	2,4	X	0,4	0	24	X	0	1,6	0	X	1,2	0	22,8	X
ICo	0	0	0	X	2,8	70,8	2	X	0	0	0	X	0	0	0	X
DCo	0	0	0	X	6,8	0	0,8	X	0	12	0	X	0	0	0	X
CoCo	0	0	0	X	0	0,8	0	X	0	0,4	0	X	0	0	0	X
IAR1	16	1,2	6,4	X	15,6	0,8	5,6	X	63,2	18	63,6	X	5,2	12	0,8	X
DAR1	0	0	1,2	X	0,8	0	0,4	X X	34	0,8	34,4	X	0,4	0	1,6	X
CoAR1 IARMA	0,8 $30,8$	0	0	X X	$^{1,2}_{21,2}$	0	$\frac{12}{0}$	X	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$0 \\ 17,6$	$\frac{2}{0}$	X X	$^{1,2}_{0}$	0,4 $13,6$	$^{0,8}_{0}$	X X
DARMA	0	43,2	0	X	0	26,4	0	X	0,8	0	0	X	0	39,2	46,4	X
CoARMA	0	45,2	22	X	0	20,4	27.2	X	0,0	0	0	X	$\frac{0}{24}$	0.4	0	X
	0								0					0,-	- 0	71
CCCc		tart z	modelu	o pra	wdziwa	zch etr	ukturac	h		etart	z mod	م دام	innych	etrukti	urach	
CCCc			modelu CoN	-					IN					struktı DCo		SCo
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN 0	DN	CoN	SN	ICo	DCo	CoCo	SCo X
IN	IN 6		CoN 6,4	SN X	ICo 4,8	DCo 0	CoCo 0	SCo X	IN 0 0			SN X	ICo 6		CoCo 32	X
	IN	DN 33,2	CoN 6,4 0,4	SN	ICo	DCo	CoCo	SCo	0	DN 5,6	CoN 0	SN	ICo	DCo 2,4	CoCo	
IN DN	IN 6 1,2	DN 33,2 0	CoN 6,4	SN X X	ICo 4,8 0,4	DCo 0 0	CoCo 0 0	SCo X X	0	DN 5,6 0	CoN 0 0	SN X X	ICo 6 0,4	DCo 2,4 0	CoCo 32 0,4	X X
IN DN CoN	IN 6 1,2 0,8	DN 33,2 0 8,8	CoN 6,4 0,4 0,8	SN X X X	ICo 4,8 0,4 0,4	DCo 0 0 0	CoCo 0 0 4,4	SCo X X X	0 0 0	DN 5,6 0 0	CoN 0 0 0	SN X X X	ICo 6 0,4 1,2	DCo 2,4 0 0,4	CoCo 32 0,4 12,4	X X X
IN DN CoN ICo	IN 6 1,2 0,8 13,2	DN 33,2 0 8,8 0	CoN 6,4 0,4 0,8 7,6	SN X X X X	ICo 4,8 0,4 0,4 22,8	DCo 0 0 0 45,6	CoCo 0 0 4,4 49,6	X X X X X X X	0 0 0 0	DN 5,6 0 0 19,6	CoN 0 0 0 0	X X X X	ICo 6 0,4 1,2 14,8	DCo 2,4 0 0,4 2	32 0,4 12,4 0	X X X X X X
IN DN CoN ICo DCo CoCo IAR1	IN 6 1,2 0,8 13,2 0 17,6 5,2	DN 33,2 0 8,8 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6	SN X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2	DCo 0 0 0 45,6 2	CoCo 0 0 4,4 49,6 3,6	X X X X X X X X	0 0 0 0	DN 5,6 0 0 19,6 10	CoN 0 0 0 0 0	X X X X X	ICo 6 0,4 1,2 14,8 0	DCo 2,4 0 0,4 2	CoCo 32 0,4 12,4 0	X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2	DN 33,2 0 8,8 0 0 0 1,6 17,6	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 7,6	X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4	DCo 0 0 45,6 2 45,2 0 2,4	CoCo 0 0 4,4 49,6 3,6 14,4 0,8 0,4	X X X X X X X X X	0 0 0 0 0 0 29,2 41,6	DN 5,6 0 19,6 10 38,4 2 1,6	CoN 0 0 0 0 0 0 34,4 40,8	X X X X X X X X	ICo 6 0,4 1,2 14,8 0 24,4 3,6 4,8	DCo 2,4 0 0,4 2 0 0,4 0 0	CoCo 32 0,4 12,4 0 0 0 0,8 12,4	X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4	DN 33,2 0 8,8 0 0 0 1,6 17,6 1,6	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 7,6 12,4	SN X X X X X X X X X X X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6	DCo 0 0 45,6 2 45,2 0 2,4 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8	X X X X X X X X X	0 0 0 0 0 0 29,2 41,6 29,2	DN 5,6 0 0 19,6 10 38,4 2 1,6 1,6	CoN 0 0 0 0 0 0 34,4 40,8 24,4	X X X X X X X X X	ICo 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12	DCo 2,4 0 0,4 2 0 0,4 0 0	CoCo 32 0,4 12,4 0 0 0 8 12,4 0,8	X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4	DN 33,2 0 8,8 0 0 0 1,6 17,6 1,6	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0	SN X X X X X X X X X X X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2	DCo 0 0 45,6 2 45,2 0 2,4 0 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0	X X X X X X X X X X	0 0 0 0 0 0 29,2 41,6 29,2 0	DN 5,6 0 19,6 10 38,4 2 1,6 1,6 21,2	CoN 0 0 0 0 0 0 34,4 40,8 24,4 0	X X X X X X X X X X	ICo 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0	DCo 2,4 0 0,4 2 0 0,4 0 0,4 0 23,2	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0	X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 7,6 12,4 0	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0	X X X X X X X X X X X	0 0 0 0 0 0 29,2 41,6 29,2 0	DN 5,6 0 0 19,6 10 38,4 2 1,6 1,6 21,2 0	CoN 0 0 0 0 0 0 34,4 40,8 24,4 0 0,4	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0	DCo 2,4 0 0,4 2 0 0,4 0 0,4 0 23,2 38,8	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2	X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18	SCo	0 0 0 0 0 0 29,2 41,6 29,2 0 0	DN 5,6 0 0 19,6 10 38,4 2 1,6 21,2 0 0	CoN 0 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8	DCo 2,4 0 0,4 2 0,4 0 0 0 23,2 38,8 32,4	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0	X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA SARMA	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6	SN X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2,4 1,6 15,2 0 0	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18	X X X X X X X X X X X X X X X X X X X	0 0 0 0 0 0 29,2 41,6 29,2 0 0	DN 5,6 0 0 19,6 10 38,4 2 1,6 21,2 0 0 0	CoN 0 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0	X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6 0	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch str	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0	DN 5,6 0 0 19,6 10 38,4 2 1,6 21,2 0 0 0 start	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 z mod	SN X X X X X X X X X X X X X X A X A X A	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0	DCo 2,4 0 0,4 2 0 0,4 0 0,2 38,8 32,4 0,4 struktu	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach	X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA SARMA CCCm	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0 IN	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 estart z	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6 0	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy 1Co	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch strr	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 0 18 0 ukturac CoCo	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0	DN 5,6 0 0 19,6 10 38,4 2 1,6 21,2 0 0 0 start	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 z z mod	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0	DCo 2,4 0 0,4 2 0 0,4 0 0,2 38,8 32,4 0,4 struktu DCo	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo	X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA CCCCm	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8	DN 33,2 0 8,8 0 0 1,6 1,6 0 37,2 0 0 extart z DN 15,2	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6 0 modelu CoN	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 0 wdziwy 1Co 6,4	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych str: DCo 1,2	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac CoCo 0,4	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 innych 1Co 15,6	DCo 2,4 0 0,4 2 0 0,4 0 0,4 0 23,2 38,8 32,4 0,4 DCo 6,8	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 urach CoCo 14	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA COCCm	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 22	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 estart z	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6 0 modelu CoN 20 17,6	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 0 wdziwy 1Co 6,4 0,4	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych strr DCo 1,2 10,4	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac CoCo 0,4 0	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 1 N 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 z z mod	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 innych 1Co 15,6 11,2	DCo 2,4 0 0,4 2 0 0,4 0 0,2 38,8 32,4 0,4 struktu DCo	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 urach CoCo 14 12	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA CCCCm	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6 0 modelu CoN	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 0 wdziwy 1Co 6,4	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych str: DCo 1,2	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac CoCo 0,4	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 innych 1Co 15,6	DCo 2,4 0 0,4 2 0 0,4 0 0,2 38,8 32,4 0,4 struktr DCo 6,8 7,6	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 urach CoCo 14	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA CCCCm IN DN CoN	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 22 24,4	DN 33,2 0 8,8 0 0 1,6 1,6 1,6 0 37,2 0 0 otart z DN 15,2 14,4 14	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 0 39,6 0 modelu CoN 20 17,6 10,8	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy 1Co 6,4 0,4 8,4	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych strr DCo 1,2 10,4 0,4	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac CoCo 0,4 0 8,8	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 innych 1Co 15,6 11,2 14,4	DCo 2,4 0 0,4 2 0 0,4 0 0,2 38,8 32,4 0,4 struktr DCo 6,8 7,6 6	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 urach CoCo 14 12 15,6	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA COOR IN DN CON SN ICo DCo	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 22 24,4 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 14 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 modelu CoN 20 17,6 10,8 0 0,4 1,2	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy 1Co 6,4 0,4 8,4 0 11,6 29,2	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch strr DCo 1,2 10,4 0,4 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac CoCo 0,4 0 8,8 0,4	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 0 start DN 8 0,8 4,4 0	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0	SN X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 0 1Co 15,6 11,2 14,4 0,4	DCo 2,4 0 0,4 2 0 0,4 0 0,2 38,8 32,4 0,4 struktt DCo 6,8 7,6 6 0	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 urach CoCo 14 12 15,6 0,4	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA COORM IN DN CON SN ICo DCo CoCo	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0 IN 8,8 22 24,4 0 6 0 2	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 14 0 0,8 12,4 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 modelu CoN 20 17,6 10,8 0 0,4 1,2 11,6	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 45,2 0 0 0 wdziwy 1Co 6,4 0,4 8,4 0 11,6 29,2 32	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych strr DCo 1,2 10,4 0,4 0 26 25,6 25,2	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 18 0 ukturac CoCo 0,4 4 26 22,4 26,8	SCo X	0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 1 1N 6,8 8,4 2,4 0 0 8,4 0,8	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 9,6 0	X X X X X X X X X X X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 innych 1Co 15,6 11,2 14,4 0,4 2,4 2,4 16	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 DCo 6,8 7,6 6 0 2,8 0 0,4	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA COCCm IN DN CoN SN ICo DCo CoCo SCo	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 2 24,4 0 6 0 2 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 0 0,8 12,4 0 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 Tool 17,6 10,8 0 0,4 1,2 11,6 0	SN X X X X X X X X X X X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 0 wdziwy 1Co 6,4 0,4 8,4 0 11,6 29,2 32 0	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych stri DCo 1,2 10,4 0,4 0 26 25,6 25,2 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 0 18 0 ukturac CoCo 0,4 0 8,8 0,4 26 22,4 26,8 0,4	SCo	0 0 0 0 0 29,2 41,6 29,2 0 0 0 1 IN 6,8 8,4 2,4 0 0 8,4 0,8	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 c z mod CoN 6,4 9,2 4 0 9,6 0 0 0	X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 innych 1Co 15,6 11,2 14,4 0,4 2,4 2,4 16 0	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 DCo 6,8 7,6 6 0 2,8 0 0,4 0	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA SARMA COARMA SARMA ICO IN DN CoN SN ICO DCO CoCo SCO IAR1	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 22 24,4 0 6 0 2 0 4	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 14 0 0,8 12,4 0 0 0,4	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 Tool 17,6 10,8 0 0,4 1,2 11,6 0 1,6	SN X X X X X X X X X	1Co 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 0 wdziwy 1Co 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych stri DCo 1,2 10,4 0 26 25,6 25,2 0 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 0 18 0 ukturac CoCo 0,4 0 8,8 0,4 26 22,4 26,8 0,4 0,8	SCo X	0 0 0 0 0 29,2 41,6 29,2 0 0 0 1 IN 6,8 8,4 2,4 0 0 8,4 0,8 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0 1,6	CoN 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 9,6 0 0 15,6	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 innych 1Co 15,6 11,2 14,4 0,4 2,4 2,4 16 0 1,2 16 17 18 19 19 19 19 19 19 19 19 19 19	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 DCo 6,8 7,6 6 0 2,8 0 0,4 0 0,4	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0 1,6	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA SARMA COCCm IN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 22 24,4 0 6 0 2 0 4 1,6	DN 33,2 0 8,8 0 0 1,6 17,6 0,37,2 0 start z DN 15,2 14,4 0 0,8 12,4 0 0,4 11,6	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 Tool 17,6 10,8 0 0,4 1,2 11,6 0 1,6 0,8	SN X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2,4 1,6 15,2 0 0 wdziwy ICo 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6 0	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch strr DCo 1,2 10,4 0 26 25,6 25,2 0 0 3,2	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 0 18 0 ukturac CoCo 0,4 0 8,8 0,4 26 22,4 26,8 0,4 0,8 0	SCo X	0 0 0 0 0 29,2 41,6 29,2 0 0 0 1 IN 6,8 8,4 2,4 0 0 8,4 0,8 0 0 21,2 29,6	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 8,8 4,4 0 13,2 36,4 31,2 0 1,6 0	CoN 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 CoN 6,4 9,2 4 0 9,6 0 0 15,6 32,8	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 innych 1Co 15,6 11,2 14,4 0,4 2,4 2,4 16 0 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 DCo 6,8 7,6 6 0 2,8 0 0,4 0 0,4 0	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0 1,6 8,4	X X X X X X X X X X X X X X X X X X X
IN	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 IN 8,8 22 24,4 0 6 0 2 0 4 1,6 3,6	DN 33,2 0 8,8 0 0 1,6 17,6 0 37,2 0 0 start z DN 15,2 14,4 0 0,8 12,4 0 0,4 11,6 1,2	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 Tool 17,6 10,8 0 0,4 1,2 11,6 0 1,6 0,8 6,8	SN X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2,4 1,6 15,2 0 0 wdziwy ICo 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6 0 0,8	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 ych stri DCo 1,2 10,4 0 26 25,6 25,2 0 0 3,2 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0,4 8,8 0 0 18 0 ukturac CoCo 0,4 0 8,8 0,4 26 22,4 26,8 0,4 0,8 0 4,4	SCo X	0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 1 1N 6,8 8,4 2,4 0 0 8,4 0,8 0 21,2 29,6 19,6	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0 1,6 0 0	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 9,6 0 0 15,6 32,8 21,2	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 innych 1Co 15,6 11,2 14,4 0,4 2,4 2,4 16 0 1,2 1,6 10	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 DCo 6,8 7,6 6 0 2,8 0 0,4 0 0,4 0 0 0	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0 1,6 8,4 2	X X X X X X X X X X X X X X X X X X X
IN	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 1N 8,8 22 24,4 0 6 0 2 0 4 1,6 3,6 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 0 0,8 12,4 0 0,8 11,6 1,2 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 modelu CoN 20 17,6 10,8 0 0,4 1,2 11,6 0 1,6 0,8 6,8 0	SN X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy ICo 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6 0 0,8 0	DCo 0 0 45,6 2 45,2 0 0 44,8 0 0 ych str DCo 1,2 10,4 0,4 0 266 25,6 25,2 0 0 3,2 0 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0 18 0 ukturac CoCo 0,4 0 8,8 0,4 26 22,4 26,8 0,4 0,8 0 4,4 0	SCo X	0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0 1,6 0 0 0	CoN 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 9,6 0 0 15,6 32,8 21,2 0,4	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 innych 1Co 15,6 11,2 14,4 0,4 2,4 2,4 16 0 0 1,2 1,3 1,3 1,3 1,4 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 Struktr DCo 6,8 7,6 6 0 2,8 0 0,4 0 0,4 0 0 0 0	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 1,6 8,4 2 0	X X X X X X X X X X X X X X X X X X X
IN	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0 IN 8,8 22 24,4 0 6 0 2 4 1,6 3,6 0 27,6	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 0 0,8 12,4 0 0,8 11,6 1,2 0 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 modelu CoN 20 17,6 10,8 0 0,4 1,2 11,6 0 1,6 0,8 6,8 0 0	SN X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy ICo 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6 0 0,8 0 9,6	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch strr DCo 1,2 10,4 0,4 0 26 25,6 25,2 0 0 3,2 0 0 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0 18 0 ukturac CoCo 0,4 26 22,4 26,8 0,4 26 4,4 0,8 0 4,4 0 0	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0 0 21,2 29,6 19,6 0 0,4 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0 1,6 0 0 4,4	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 9,6 0 0 15,6 32,8 21,2 0,4 0	SN X X X X X X X X X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 15,6 11,2 14,4 0,4 2,4 2,4 16 0 1,2 1,2 1,3 1,3 1,3 1,4 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 Struktr DCo 6,8 7,6 6 0 2,8 0 0,4 0 0,4 0 0 13,2	CoCo 32 0,4 12,4 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0 1,6 8,4 2 0 0	X X X X X X X X X X X X X X X X X X X
IN DN CoN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA SARMA CCCm IN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0 IN 8,8 22 24,4 0 6 0 2 4 1,6 3,6 0 27,6 0	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 0 0,8 12,4 0 0,8 12,4 0 0 0,4 11,6 1,2 0 0 30	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 ToN 20 17,6 10,8 0 0,4 1,2 11,6 0 0,8 6,8 0 0 0 0	SN X X X X X X X X X	TCo 4,8 0,4 0,4 22,8 5,2 45,2 2 45,2 0 0 0 wdziwy TCo 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6 0 0,8 0 9,6 0	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch strr DCo 1,2 10,4 0,4 0 26 25,6 25,2 0 0 3,2 0 0 0 8	CoCo 0 4,4 49,6 3,6 14,4 0,8 0 18 0 ukturac CoCo 0,4 26 22,4 26,8 0,4 26,8 0,4 0 4,4 0 0 0 0	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0 1 1N 6,8 8,4 2,4 0 0 8,4 0,8 0 21,2 29,6 19,6 19,6 19,6 19,6 19,6 19,6 19,6 1	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0 1,6 0 0 4,4 0	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 0 9,6 0 0 15,6 32,8 21,2 0,4 0 0,8	SN X X X X X X X X X	TCo 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 32,8 0 innych TCo 15,6 11,2 14,4 0,4 2,4 2,4 16 0 0 1,2 1,6 10 0 0 0	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 struktr DCo 6,8 7,6 6 0 2,8 0 0,4 0 0 13,2 39,2	CoCo 32 0,4 12,4 0 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0 1,6 8,4 2 0 30,8	X X X X X X X X X X X X X X X X X X X
IN	IN 6 1,2 0,8 13,2 0 17,6 5,2 7,2 6,4 42,4 0 0 0 IN 8,8 22 24,4 0 6 0 2 4 1,6 3,6 0 27,6	DN 33,2 0 8,8 0 0 1,6 17,6 1,6 0 37,2 0 0 start z DN 15,2 14,4 0 0,8 12,4 0 0,8 11,6 1,2 0 0	CoN 6,4 0,4 0,8 7,6 0 17,6 7,6 12,4 0 39,6 0 modelu CoN 20 17,6 10,8 0 0,4 1,2 11,6 0 1,6 0,8 6,8 0 0	SN X X X X X X X X X	ICo 4,8 0,4 0,4 22,8 5,2 45,2 2 2,4 1,6 15,2 0 0 wdziwy ICo 6,4 0,4 8,4 0 11,6 29,2 32 0 1,6 0 0,8 0 9,6	DCo 0 0 45,6 2 45,2 0 2,4 0 0 4,8 0 0 vch strr DCo 1,2 10,4 0,4 0 26 25,6 25,2 0 0 3,2 0 0 0	CoCo 0 4,4 49,6 3,6 14,4 0,8 0 18 0 ukturac CoCo 0,4 26 22,4 26,8 0,4 26 4,4 0,8 0 4,4 0 0	SCo X	0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0 0 0 29,2 41,6 29,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DN 5,6 0 19,6 10 38,4 2 1,6 21,2 0 0 start DN 8 0,8 4,4 0 13,2 36,4 31,2 0 1,6 0 0 4,4 0 0	CoN 0 0 0 0 0 34,4 40,8 24,4 0 0,4 0 0 5 z mod CoN 6,4 9,2 4 0 9,6 0 15,6 32,8 21,2 0,4 0 0,8 0	SN X	1Co 6 0,4 1,2 14,8 0 24,4 3,6 4,8 12 0 0 32,8 0 15,6 11,2 14,4 0,4 2,4 2,4 16 0 1,2 1,2 1,3 1,3 1,3 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	DCo 2,4 0 0,4 2 0 0,4 0 0 23,2 38,8 32,4 0,4 struktr DCo 6,8 7,6 6 0 2,8 0 0,4 0 0,4 0 0 13,2 39,2 23,6	CoCo 32 0,4 12,4 0 0,8 12,4 0,8 0 41,2 0 0 urach CoCo 14 12 15,6 0,4 0 15,2 0 0 1,6 8,4 2 0 0	X X X X X X X X X X X X X X X X X X X

									tabela	a m4, k	contynu	acja ta	abeli z	poprze	edniej st	rony
PRESSc	s	tart z	modelu	o pra	wdziwy	ych str	ukturac	h		start	z mod	lelu o i	innych	struktı	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	10,4	15,2	5,2	X	2,4	3,2	5,6	X	6	6,8	4,8	X	6,4	9,6	12,4	X
DN	6,8	16,4	4,8	X	6,4	11,2	3,2	X	10,4	3,6	9,2	X	4,4	7,2	19,2	X
CoN	5,6	6,8	12	X	4,4	2,4	9,2	X	1,2	4	2,4	X	12,4	4	8,8	X
ICo	16,4	2,8	12,4	X	26,4	28	28,4	X	1,2	22,8	0,8	X	17,2	6,8	4	X
DCo	0,8	10,4	0	X	12,4	18,8	0,8	X	7,2	15,6	4,8	X	0,4	0	7,6	X
CoCo	19,2	2	18	X	28,4	22,4	22	X	2,4	22	1,2	X	22	5,2	1,6	X
IAR1	10	6,4	7,6	X	4,4	1,6	5,6	X	22,8	4,8	24	X	7,2	1,2	4,8	X
DAR1	7,2	16,4	7,6	X	4,4	5,2	3,2	X	32	6,8	30,4	X	4,4	0,8	16,8	X
CoAR1	6,8	2,4	13,2	X	4	0,8	9,6	X	16,4	4	22	X	11,6	2	1,6	X
IARMA	16,8	0	0	X	6,8	0	0	X	0	9,6	0	X	0	20,4	0	X
DARMA	0	21,2	0	X	0	6,4	0	X	0,4	0	0,4	X	0	19,2	23,2	X
CoARMA	0	0	19,2	X	0	0	12,4	X	0	0	0	X	14	23,6	0	X
PRESSm	S	tart z	modelu	o pra	wdziwy	ych str	ukturac	h		start	z mod	lelu o i	innych	strukti	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	8	21,6	16,8	X	9,6	1,2	0,8	X	4	10	3,2	X	20,4	9,2	15,2	X
DN	29,2	8,8	16,4	X	0,4	9,6	Ô	X	10,4	0,4	9,6	X	10,8	6,4	12	X
CoN	21,6	21,2	9,6	X	5,6	1,2	7,2	X	3,2	6,4	2,8	X	11,6	8,8	12,4	X
SN	0	Ô	0,4	X	0	Ô	0	X	0	0	0,4	X	0,4	0,4	0,8	X
ICo	5,6	0,4	0,8	X	13,2	24	26	X	0,4	15,6	0	X	0,8	2	0,4	X
DCo	0	10	1,2	X	27,6	24,4	24,8	X	7,2	28,8	8,4	X	3,6	0	12,8	X
CoCo	1,6	0	16,4	X	26	28,4	29,2	X	0	28,8	0,4	X	9,2	0,4	0,4	X
IAR1	5,2	1,2	1,6	X	4,4	0	0	X	16,8	2,8	16,4	X	2,4	0	0,4	X
DAR1	2	6,4	1,6	X	O	2	0,4	X	40,4	O	43,6	X	1,2	0	12,4	X
CoAR1	4,8	0,8	9,6	X	1,2	0,4	2,4	X	16	0	15,2	X	9,6	0,8	0,8	X
SAR1	0	0	0	X	Ó	Ô	Ô	X	0,4	0	0	X	0	Ô	Ô	X
IARMA	22	0	0	X	12	0	0	X	0	7,2	0	X	0	16	0	X
DARMA	0	29,6	0	X	0	8,8	0	X	1,2	0	0	X	0	30,4	32,4	X
CoARMA	0	0	25,6	X	0	0	9,2	X	0	0	0	X	30	25,2	0	X
SARMA	0	0	0	X	0	0	0	X	0	0	0	X	0	0,4	0	X
R2Wc		start z	modelu	o pra	wdziwy	vch stri	ukturac	h		start	z mod	lelu o i	innych	strukti	urach	
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
IN	8,8	3,6	6	X	1,6	0	2	X	3,6	0,4	3,6	X	8	6	2,4	X
DN	30	5,2	8,8	X	3,2	0,8	4,8	X	5,2	3,2	3,6	X	18	17,6	8,4	X
CoN			01.0	X	0,4	0	7,2	X	9	0	1,6	~ ~	00.0			
	4	2,4	21,6		٠, ـ		• ,	1	2		-,-	X	23,6	4	2,4	X
SN	0	$^{2,4}_{0}$	21,6	X	0	0	0	X	0	0	0	X X	$\frac{23,6}{0,4}$	$\frac{4}{0}$	$^{2,4}_{0}$	X X
			,						1		,		,			
SN	0	0	0	X	0	0	0	X	0	0	0	X	0,4	0	0	X
SN ICo	$0 \\ 25,2$	$_{7,6}^{0}$	$0 \\ 26,4$	X X	$0 \\ 26,4$	$0 \\ 24,8$	$0 \\ 61,2$	X X	0 8,8	$0 \\ 24,4$	$0 \\ 9,2$	X X	0,4 $21,6$	$0\\12$	$0\\22$	X X
SN ICo DCo	$0 \\ 25,2 \\ 0,4$	$0 \\ 7,6 \\ 25,6$	$\begin{array}{c} 0 \\ 26,4 \\ 0 \end{array}$	X X X	0 26,4 48	$0 \\ 24,8 \\ 49,6$	$ \begin{array}{c} 0 \\ 61,2 \\ 0,8 \end{array} $	X X X	0 8,8 22,4	$0 \\ 24,4 \\ 41,2$	9,2 20,8	X X X	$0,4 \\ 21,6 \\ 0$	$0 \\ 12 \\ 0,8$	$0 \\ 22 \\ 9,2$	X X X
SN ICo DCo CoCo	$\begin{array}{c} 0 \\ 25,2 \\ 0,4 \\ 20,8 \end{array}$	0 $7,6$ $25,6$ $7,2$	$0 \\ 26,4 \\ 0 \\ 28,4$	X X X X	$0 \\ 26,4 \\ 48 \\ 20,4$	0 $24,8$ $49,6$ $23,6$	$0 \\ 61,2 \\ 0,8 \\ 23,6$	X X X X	$\begin{bmatrix} 0 \\ 8,8 \\ 22,4 \\ 4 \end{bmatrix}$	0 $24,4$ $41,2$ 30	9,2 20,8 5,6	X X X X	0,4 $21,6$ 0 $19,6$	0 12 0,8 8,4	0 22 9,2 3,6	X X X X X X
SN ICo DCo CoCo IAR1	$\begin{array}{c} 0 \\ 25,2 \\ 0,4 \\ 20,8 \\ 0 \end{array}$	0 $7,6$ $25,6$ $7,2$ 0	$0 \\ 26,4 \\ 0 \\ 28,4 \\ 0$	X X X X X X	$0 \\ 26,4 \\ 48 \\ 20,4 \\ 0$	0 $24,8$ $49,6$ $23,6$ 0	0 61,2 0,8 23,6 0	X X X X X X X	$\begin{bmatrix} 0 \\ 8,8 \\ 22,4 \\ 4 \\ 0 \end{bmatrix}$	$0 \\ 24,4 \\ 41,2 \\ 30 \\ 0$	0 9,2 20,8 5,6 1,6	X X X X X X	0,4 $21,6$ 0 $19,6$ 0	0 12 0,8 8,4 0	0 22 9,2 3,6 0	X X X X X X X
SN ICo DCo CoCo IAR1 DAR1	$\begin{bmatrix} 0 \\ 25,2 \\ 0,4 \\ 20,8 \\ 0 \\ 0 \end{bmatrix}$	$\begin{matrix} 0 \\ 7,6 \\ 25,6 \\ 7,2 \\ 0 \\ 1,6 \\ 0 \\ 0 \end{matrix}$	0 26,4 0 28,4 0	X X X X X X X X	0 26,4 48 20,4 0	0 $24,8$ $49,6$ $23,6$ 0 0	$0 \\ 61,2 \\ 0,8 \\ 23,6 \\ 0 \\ 0$	X X X X X X X X	$\begin{bmatrix} 0 \\ 8,8 \\ 22,4 \\ 4 \\ 0 \\ 54 \end{bmatrix}$	$\begin{array}{c} 0 \\ 24,4 \\ 41,2 \\ 30 \\ 0 \\ 0 \end{array}$	0 9,2 20,8 5,6 1,6 53,6	X X X X X X X X	0,4 $21,6$ 0 $19,6$ 0 0	0 12 0,8 8,4 0 0	0 22 9,2 3,6 0 1,6	X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA	0 25,2 0,4 20,8 0 0	$ \begin{array}{c} 0 \\ 7,6 \\ 25,6 \\ 7,2 \\ 0 \\ 1,6 \\ 0 \end{array} $	0 26,4 0 28,4 0 0 0,4	X X X X X X X X X	0 26,4 48 20,4 0 0 0 0	0 24,8 49,6 23,6 0 0	0 61,2 0,8 23,6 0 0 0	X X X X X X X X	$\begin{bmatrix} 0 \\ 8,8 \\ 22,4 \\ 4 \\ 0 \\ 54 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 24,4 \\ 41,2 \\ 30 \\ 0 \\ 0 \\ 0 \end{array}$	0 9,2 20,8 5,6 1,6 53,6 0,4	X X X X X X X X X	0,4 $21,6$ 0 $19,6$ 0 0 $0,8$	$\begin{array}{c} 0 \\ 12 \\ 0.8 \\ 8.4 \\ 0 \\ 0 \\ 0 \\ 5.6 \\ 43.6 \end{array}$	$0 \\ 22 \\ 9,2 \\ 3,6 \\ 0 \\ 1,6 \\ 0$	X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA	$\begin{array}{c} 0 \\ 25,2 \\ 0,4 \\ 20,8 \\ 0 \\ 0 \\ 10,8 \end{array}$	$\begin{matrix} 0 \\ 7,6 \\ 25,6 \\ 7,2 \\ 0 \\ 1,6 \\ 0 \\ 0 \end{matrix}$	0 26,4 0 28,4 0 0 0,4 0	X X X X X X X X	0 26,4 48 20,4 0 0 0	0 24,8 49,6 23,6 0 0 0	0 61,2 0,8 23,6 0 0 0	X X X X X X X X	0 8,8 22,4 4 0 54 0	$\begin{array}{c} 0 \\ 24,4 \\ 41,2 \\ 30 \\ 0 \\ 0 \\ 0,8 \end{array}$	0 9,2 20,8 5,6 1,6 53,6 0,4 0	X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0	0 12 0,8 8,4 0 0 0 5,6	0 22 9,2 3,6 0 1,6 0	X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA	0 25,2 0,4 20,8 0 0 10,8 0	$\begin{matrix} 0 \\ 7,6 \\ 25,6 \\ 7,2 \\ 0 \\ 1,6 \\ 0 \\ 0 \\ 46,8 \\ 0 \end{matrix}$	0 26,4 0 28,4 0 0 0,4 0	X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0	$\begin{matrix} 0 \\ 24,8 \\ 49,6 \\ 23,6 \\ 0 \\ 0 \\ 0 \\ 1,2 \\ 0 \end{matrix}$	$\begin{matrix} 0 \\ 61,2 \\ 0,8 \\ 23,6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0,4 \end{matrix}$	X X X X X X X X X	$\begin{bmatrix} 0 \\ 8,8 \\ 22,4 \\ 4 \\ 0 \\ 54 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{matrix} 0 \\ 24,4 \\ 41,2 \\ 30 \\ 0 \\ 0 \\ 0,8 \\ 0 \\ 0 \end{matrix}$	0 9,2 20,8 5,6 1,6 53,6 0,4 0	X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0,8	$\begin{array}{c} 0 \\ 12 \\ 0,8 \\ 8,4 \\ 0 \\ 0 \\ 0 \\ 5,6 \\ 43,6 \\ 2 \end{array}$	0 22 9,2 3,6 0 1,6 0 0 50,4	X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA	0 25,2 0,4 20,8 0 0 10,8 0	$\begin{matrix} 0 \\ 7,6 \\ 25,6 \\ 7,2 \\ 0 \\ 1,6 \\ 0 \\ 0 \\ 46,8 \\ 0 \end{matrix}$	0 26,4 0 28,4 0 0 0,4 0 0 8,4	X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0	$\begin{matrix} 0 \\ 24,8 \\ 49,6 \\ 23,6 \\ 0 \\ 0 \\ 0 \\ 1,2 \\ 0 \end{matrix}$	0 61,2 0,8 23,6 0 0 0 0 0,4	X X X X X X X X X	$\begin{bmatrix} 0 \\ 8,8 \\ 22,4 \\ 4 \\ 0 \\ 54 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{matrix} 0 \\ 24,4 \\ 41,2 \\ 30 \\ 0 \\ 0 \\ 0,8 \\ 0 \\ 0 \end{matrix}$	0 9,2 20,8 5,6 1,6 53,6 0,4 0	X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0,8	$\begin{array}{c} 0 \\ 12 \\ 0,8 \\ 8,4 \\ 0 \\ 0 \\ 0 \\ 5,6 \\ 43,6 \\ 2 \end{array}$	0 22 9,2 3,6 0 1,6 0 0 50,4	X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA	0 25,2 0,4 20,8 0 0 10,8 0 0	0 7,6 25,6 7,2 0 1,6 0 46,8 0	0 26,4 0 28,4 0 0,4 0 8,4 modelu	X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 wdziwy	0 24,8 49,6 23,6 0 0 0 1,2 0 vch stry	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo	X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0	0 24,4 41,2 30 0 0 0,8 0 0 start	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0	X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktu	0 22 9,2 3,6 0 1,6 0 50,4 0	X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm	0 25,2 0,4 20,8 0 0 10,8 0 0 11,8 0 0 11,8	0 7,6 25,6 7,2 0 1,6 0 46,8 0 start z DN	0 26,4 0 28,4 0 0,4 0 0,8,4 modelu CoN	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 0 wdziwy ICo 4,4	0 24,8 49,6 23,6 0 0 0 0 1,2 0 ych stry	0 61,2 0,8 23,6 0 0 0 0 0,4	X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 1 1 1 1,2	0 24,4 41,2 30 0 0 0,8 0 0 start DN	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 t z mod	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0,8 0 0 8 innych ICo 8,4	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktu DCo 3,6	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN	0 25,2 0,4 20,8 0 0 10,8 0 0 s IN 8,4 30	0 7,6 25,6 7,2 0 1,6 0 46,8 0	0 26,4 0 28,4 0 0,4 0 0,8,4 modelu CoN 7,2 4,4	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 wdziwy ICo 4,4 0	0 24,8 49,6 23,6 0 0 0 1,2 0 vch stry DCo 0,8 4	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 tz mod CoN 2,4 4,4	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4	0 22 9,2 3,6 0 1,6 0 50,4 0	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN	0 25,2 0,4 20,8 0 0 10,8 0 0 IN 8,4 30 38	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 30	0 26,4 0 28,4 0 0,4 0 0,8,4 modelu CoN	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 0 wdziwy ICo 4,4	0 24,8 49,6 23,6 0 0 0 1,2 0 ych strr DCo 0,8 4	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo	X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0 1 1N 1,2 6 3,6	0 24,4 41,2 30 0 0 0,8 0 0 start DN	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 t z mod	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6	0 12 0,8 8,4 0 0 5,6 43,6 2 struktu DCo 3,6 0,4 14,4	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA COARMA R2Wm IN DN CoN SN	0 25,2 0,4 20,8 0 0 10,8 0 0 IN 8,4 30 38 0,4	0 7,6 25,6 7,2 0 1,6 0 46,8 0 start z DN 9,6 10,4	0 26,4 0 28,4 0 0,4 0 0,8,4 modelu CoN 7,2 4,4 15,2 0	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 wdziwy ICo 4,4 0 15,2 0	0 24,8 49,6 23,6 0 0 0 1,2 0 ych strr DCo 0,8 4 4,8 0,4	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 tz mod CoN 2,4 4,4 3,6 0	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0,8 0 8 innych ICo 8,4 4,8 15,6 1,2	0 12 0,8 8,4 0 0 5,6 43,6 2 strukto DCo 3,6 0,4 14,4	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4	X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN	0 25,2 0,4 20,8 0 0 10,8 0 0 IN 8,4 30 38	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 30 0,4	0 26,4 0 28,4 0 0,4 0 0,8,4 modelu CoN 7,2 4,4 15,2	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 wdziwy ICo 4,4 0 15,2	0 24,8 49,6 23,6 0 0 0 1,2 0 ych strr DCo 0,8 4	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0 1 1N 1,2 6 3,6 0,4	0 24,4 41,2 30 0 0 0,8 0 0 0 start DN 4,4 0 13,2	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 tz mod CoN 2,4 4,4 3,6	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6	0 12 0,8 8,4 0 0 5,6 43,6 2 struktu DCo 3,6 0,4 14,4	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN SN ICo	0 25,2 0,4 20,8 0 0 10,8 0 0 IN,8 3,4 30 38 0,4 4,8	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 30 0,4	0 26,4 0 28,4 0 0 0,4 0 8,4 modelu CoN 7,2 4,4 15,2 0 0,4	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 28	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stri DCo 0,4 4,8 0,4	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0 1 1,2 6 3,6 0,4	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6 38,4	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 E z mod CoN 2,4 4,4 3,6 0 0 4,4	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2	0 12 0,8 8,4 0 0 5,6 43,6 2 strukto DCo 3,6 0,4 14,4 0 2,8 0	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6,4 17,2 0,4 0	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA TOO IN TO IN T	0 25,2 0,4 20,8 0 0 10,8 0 0 IN,8 8,4 30 38 0,4 4,8	0 7,6 25,6 7,2 0 1,6 0 46,8 0 start z DN 9,6 10,4 30 0,4 4,8	0 26,4 0 28,4 0 0 0,4 0 0 8,4 modelu CoN 7,2 4,4 15,2 0 0,4 0,8	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 0 0 0 0 1Singuista 15,2 0 4,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stri DCo 0,4 4,8 0,4 14 27,2	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0 1 1N 1,2 6 3,6 0,4 0 4,8	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 t z mod CoN 2,4 4,4 3,6 0 0	X X X X X X X X X X S S N S S X X X X X	0,4 21,6 0 19,6 0 0,8 0 8 innych ICo 8,4 4,8 15,6 1,2 0	0 12 0,8 8,4 0 0 5,6 43,6 2 strukto DCo 3,6 0,4 14,4 0 2,8	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6,4 17,2 0,4 0 8,8	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN SN ICo DCo	0 25,2 0,4 20,8 0 0 10,8 0 0 IN 8,4 30 38 0,4 4,8 0 0,4	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 30 0,4 4,8	$\begin{array}{c} 0 \\ 26,4 \\ 0 \\ 28,4 \\ 0 \\ 0 \\ 0,4 \\ 0 \\ 0 \\ 8,4 \\ \hline {\rm CoN} \\ 7,2 \\ 4,4 \\ 15,2 \\ 0 \\ 0,4 \\ 0,8 \\ 27,2 \\ \end{array}$	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 0 TCo 4,4 0 15,2 0 4,8 28 34,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stri DCo 0,8 4 4,8 0,4 14 27,2 29,6	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 1 1N 1,2 6 3,6 0,4 0 4,8	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 E z mod CoN 2,4 4,4 3,6 0 0 0 4,4 0,4 0,4 0	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2 19,6	0 12 0,8 8,4 0 0 5,6 43,6 2 strukto DCo 3,6 0,4 14,4 0 2,8 0 0,4	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 8,8 0	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA TIN DN CoN SN ICo DCo CoCo SCo IAR1	0 25,2 0,4 20,8 0 0 10,8 0 0 IN 8,4 30 38 0,4 4,8 0 0,4 0 0 3,2	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 0 4,8 0 0	0 26,4 0 28,4 0 0 0,4 0 0 8,4 Toolu 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 28 34,8 0 4,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stry DCo 0,8 4 4,8 0,4 14 27,2 29,6 0 0	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 11,2 1,2 6 3,6 0,4 0 4,8 0 0 11,2	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6 0 1,2	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 5 z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0,4 0,7,2	X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2 19,6 0	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4 14,4 0 2,8 0 0,4 0	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 8,8	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA TIN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1	0 25,2 0,4 20,8 0 0 10,8 0 0 1N 8,4 30 38 0,4 4,8 0 0,4 0 3,2 1,6	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 0 4,8 0 0	0 26,4 0 28,4 0 0 0,4 0 0 8,4 Toolu CoN 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4 2,8	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 0 TCo 4,4 0 15,2 0 4,8 28 34,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych strr DCo 0,8 4 4,8 0,4 14 27,2 29,6 0 0 7,6	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 11,2 6,6 0,4 0 4,8 0 0 11,2 41,2	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6 0 1,2 0,4	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 5 z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2 19,6 0 4 1,2	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4 14,4 0 2,8 0 0,4 0 1,6 0	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 8,8 0 0 0,8 26	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA TIN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 DAR1 COAR1	0 25,2 0,4 20,8 0 0 10,8 0 0 IN 8,4 30 38 0,4 4,8 0 0,4 0 0 3,2	0 7,6 25,6 7,2 0 1,6 0 46,8 0 extart z DN 9,6 10,4 0 4,8 0 0	0 26,4 0 28,4 0 0 0,4 0 0 8,4 Toolu 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 28 34,8 0 4,8 0,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stry DCo 0,8 4 4,8 0,4 14 27,2 29,6 0 0	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 11,2 6,6 0,4 0 4,8 0 0 11,2 41,2 30,4	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6 0 1,2 0,4 4	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 5 z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	X X X X X X X X SN X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2 19,6 0 4 1,2 24	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4 14,4 0 0,4 0 0,4 0 0,4 0,4 0,6 0,4 0,6 0,6 0,6 0,6 0,7 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,8 8,8 0 0 0,8 26 1,2	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 COAR1 SAR1	0 25,2 0,4 20,8 0 0 10,8 0 0 10,8 0 0 10,8 0 0 0 3,4 4,8 0 0,4 4,8 0 0,4 0,4 0,4 0,5 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0 7,6 25,6 7,2 0 1,6 0 46,8 0 start z DN 9,6 10,4 30 0,4 4,8 0 0 14,8 0,4	0 26,4 0 28,4 0 0 0,4 0 0 8,4 TooN 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4 2,8 24,4	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 28 34,8 0 4,8 0,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych strr DCo 0,8 4 4,8 0,4 14 27,2 29,6 0 0 7,6 0,4	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4 0,4 0	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 11,2 6 6 3,6 0,4 0 4,8 0 0 11,2 41,2 30,4 0,8	0 24,4 41,2 30 0 0 0,8 0 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6 0 1,2 0,4 4	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 5 z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2 19,6 0 4 1,2	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4 14,4 0 2,8 0 0,4 0 1,6 0	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 8,8 0 0 0,8 26 1,2 0,4	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 SAR1 IARMA	0 25,2 0,4 20,8 0 0 10,8 0 0 10,8 0 0 10,8 0 0 0 3,4 4,8 0 0,4 0,4 0,4 0,5 0 0,4 0,5 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0 7,6 25,6 7,2 0 1,6 0 46,8 0 estart z DN 9,6 10,4 30 0,4 0 4,8 0 0	0 26,4 0 28,4 0 0 0,4 0 0 8,4 modelu CoN 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4 2,8 24,4 0	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 34,8 0,8 4,8	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stry DCo 0,8 4 4,8 0,4 27,2 29,6 0 0 7,6 0,4 0	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4 0,4	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 11,2 6,6 0,4 0 4,8 0 0 11,2 41,2 30,4	0 24,4 41,2 30 0 0 0,8 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6 0 1,2 0,4 4	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 E z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8,4 4,8 15,6 1,2 19,6 0 4 1,2 24 0,4	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4 14,4 0 2,8 0 0,4 0 1,6 0 0 0,5 0 0,4 1,6 0,6 0,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 0 8,8 0 0 0 8,8 0 1,6 0 0 0 1,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 AR1 AR1 CoAR1 AR1 AR1 AR1 AR1 ARMA DARMA	0 25,2 0,4 20,8 0 0 10,8 0 0 10,8 0 0 10,8 0 0 0 3,4 4,8 0 0,4 4,0 0 0,4 0 0,7,6	0 7,6 25,6 7,2 0 1,6 0 46,8 0 0 start z DN 9,6 10,4 30 0,4 0 4,8 0 0 14,8 0 0	0 26,4 0 28,4 0 0 0,4 0 0 8,4 modelu CoN 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4 2,4 2,8 24,4 0 0 0	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 28 34,8 0 4,8 0,8 4	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stry DCo 0,8 4 4,8 0,4 14 27,2 29,6 0 0 7,6 0,4 0	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4 0 0 4,8	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 0 11,2 6 3,6 0,4 0 0 4,8 0 0 11,2 41,2 30,4 0,8 0	0 24,4 41,2 30 0 0 0,8 0 0 0 start DN 4,4 0 13,2 0 5,6 0 0 1,2 0,4 4 0	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 E z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0 7,2 46,8 30,4 0,4 0	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8,4 4,8 15,6 1,2 0 1,2 19,6 0 4 1,2 24 0,4 0	0 12 0,8 8,4 0 0 0 5,6 43,6 2 struktr DCo 3,6 0,4 14,4 0 2,8 0 0,4 0 1,6 0 0 0,4 1,6 0 0,4 1,6 0 0,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 8,8 0 0 0,8 26 1,2 0,4	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA TIN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 DAR1 CoAR1 DAR1 CoAR1 DAR1 CoAR1 SAR1 IARMA DARMA COARMA	0 25,2 0,4 20,8 0 0 10,8 0 0 10,8 38 0,4 4,8 0 0,4 0 0,4 0 0,5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7,6 25,6 7,2 0 1,6 0 46,8 0 9,6 10,4 30 0,4 0 4,8 0 0 0 14,8 0 0	0 26,4 0 28,4 0 0 0,4 0 0 8,4 modelu CoN 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4 2,8 24,4 0	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 wdziwy ICo 4,4 0 15,2 0 4,8 28 34,8 0 4,8 0,8 4 0	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stry DCo 0,8 4,8 0,4 14 27,2 29,6 0 0,7,6 0,4 0 0	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4 0 0 4,8	X X X X X X X X X X X X X X X X X X X	0 8,8 22,4 4 0 54 0 0 0 0 11,2 6 3,6 0,4 0 0 4,8 0 0 0 11,2 41,2 30,4 0 0 0 0 0 0 0 0 0 0	0 24,4 41,2 30 0 0 0,8 0 0 0 start DN 4,4 0 13,2 0 5,6 0 0 1,2 0,4 4 0	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 E z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0 7,2 46,8 30,4 0,4 0 0	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8,4 4,8 15,6 1,2 0 1,2 19,6 0 4 1,2 24 0,4	0 12 0,8 8,4 0 0 5,6 43,6 2 strukto DCo 3,6 0,4 14,4 0 2,8 0 0,4 0 1,6 0 0 0,4 14,4 0 0 0,4 1,6 0,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	0 22 9,2 3,6 0 1,6 0 50,4 0 urach CoCo 6 6,4 17,2 0,4 0 0,8 26 1,2 0,4 0 0 32,8	X X X X X X X X X X X X X X X X X X X
SN ICo DCo CoCo IAR1 DAR1 CoAR1 IARMA DARMA CoARMA R2Wm IN DN CoN SN ICo DCo CoCo SCo IAR1 DAR1 CoAR1 AR1 AR1 CoAR1 AR1 AR1 AR1 AR1 ARMA DARMA	0 25,2 0,4 20,8 0 0 10,8 0 0 10,8 8,4 30 38 0,4 4,8 0 0,4 0 3,2 1,6 0 0 7,6 0	0 7,6 25,6 7,2 0 1,6 0 46,8 0 9,6 10,4 30 0,4 0 4,8 0 0 14,8 0 0 29,6	0 26,4 0 28,4 0 0 0,4 0 0 8,4 modelu CoN 7,2 4,4 15,2 0 0,4 0,8 27,2 0 2,4 2,4 2,8 24,4 0 0 0 15,2	X X X X X X X X X X X X X X X X X X X	0 26,4 48 20,4 0 0 0 0 0 0 0 0 0 4,4 0 15,2 0 4,8 28 34,8 0 4,8 0 4,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 24,8 49,6 23,6 0 0 0 1,2 0 ych stry DCo 0,8 4 4,8 0,4 14 27,2 29,6 0 0 7,6 0,4 0 0 0 1,2 0 0 1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 61,2 0,8 23,6 0 0 0 0,4 ukturac CoCo 0,8 0 8,8 0 7,2 5,6 68 0,4 0,4 0 0 4,8	X X X X X X X X X X X X X X X X X X X	IN 1,2 6 3,6 0,4 0 11,2 41,2 30,4 0 0,4 0 0	0 24,4 41,2 30 0 0 0,8 0 0 0 start DN 4,4 0 13,2 0 5,6 38,4 27,6 0 1,2 0,4 4 0 0 5,2 0 0	0 9,2 20,8 5,6 1,6 53,6 0,4 0 0 0 E z mod CoN 2,4 4,4 3,6 0 0 4,4 0,4 0 7,2 46,8 30,4 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X X X X X X X X X X X X X	0,4 21,6 0 19,6 0 0,8 0 0 8 innych ICo 8,4 4,8 15,6 1,2 0 1,2 19,6 0 4 1,2 24 0,4 0,0 0 0,8 0,8 0,8 0,8 0,0 0,8 0,8 0,0 0,8 0,0 0,0	0 12 0,8 8,4 0 0 5,6 43,6 2 strukti DCo 3,6 0,4 14,4 0 2,8 0 0,4 0 1,6 0 0 1,6 0 0,4 0,4 0,6 0,6 0,7 0,7 0,8 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	0 22 9,2 3,6 0 1,6 0 50,4 0 0 wrach CoCo 6 6,4 17,2 0,4 0 8,8 0 0,8 26 1,2 0,4 0	X X X X X X X X X X X X X X X X X X X

									tabela	a m4, k	ontynu	acja ta	abeli z	poprze	dniej st	rony
R2LR	start z modelu o prawdziwych strukturach				h	start z modelu o innych strukturach										
	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo	IN	DN	CoN	SN	ICo	DCo	CoCo	SCo
DN	33,2	0	0	X	0	0	0	X	0	0	0	X	0	0	0	X
CoN	1,6	0	0	X	0	0	0	X	0	0	0	X	0	0	0	X
SN	0,4	0	0,4	X	0	0	0	X	0	0	0	X	1,2	0	1,2	X
ICo	0	0	0	X	0	0	0	X	0	0,4	0	X	0	0	0	X
DCo	0	0	0	X	70,8	68,8	0	X	0	76	0	X	0	0	0,4	X
CoCo	0	0	3,6	X	29,2	0	98,8	X	0	23,6	0	X	4,8	0	0	X
SCo	0	0	0	X	0	0	0,4	X	0	0	0	X	0	0	0	X
DAR1	0	1,2	0	X	0	0	0	X	98,8	0	98,4	X	0	0	3,2	X
CoAR1	0	0,4	0,8	X	0	0	0	X	0,4	0	0,8	X	2	0	0	X
SAR1	0	0	0	X	0	0	0	X	0,8	0	0,8	X	0	0	0	X
IARMA	64,8	0	0	X	0	0	0	X	0	0	0	X	0	0,4	0	X
DARMA	0	98,4	0	X	0	31,2	0	X	0	0	0	X	0	87,6	95,2	X
CoARMA	0	0	95,2	X	0	0	0,8	X	0	0	0	X	92	11,6	0	X
SARMA	0	0	0	X	0	0	0	X	0	0	0	X	0	0,4	0	X

Dodatek B

Zawartość płyty CD

Płyta CD załączona do pracy zawiera:

- 1. plik źródłowy pracy w LATEX,
- 2. plik tekstowy z pracą w formacie pdf,
- 3. pliki instalacyjne pakietu lmmfit.

Bibliografia

- [Akaike 1973] Akaike H., Information theory and an extension of the maximum likelihood principle, In second international symposium on information theory, B.N.Petrov i F.Csaki, Akademiai Kiado, Budapeszt, 267-281, 1973.
- [Allen1974] Allen D.M., The relationship between variable selection and data augmentation and a method of prediction, Technometrics, 16, 125-127, 1974.
- [Bates 2009] Bates D., Computational methods for mixed models, R Foundation for Statistical Computing, 2009.
- [Burzykowski2011] Burzykowski T., Linear and mixed effects models using R, Springer, 2011, w przygotowaniu.
- [Buse1973] Buse A., Godness of fit in generalized least squares estimation, The American Statistician 27, 106-108, 1973.
- [Crainiceanu2004] Crainiceanu C., Ruppert D., Likelihood ratio tests in linear mixed models with one variance component, Journal of the Royal Statistical Society: Series B, 66, 165-185, 2004.
- [Christensen1992] Christensen R., Pearson L.M., Johnson W., Case-deletion diagnostics for mixed models, Technometrics, 34, No.1, 38-45, 1992.
- [Demidienko2004] Demidienko E., *Mixed models: theory and applications*, Wiley-Interscience, 1 ed., 2004.
- [Gurka2006] Gurka M., Selecting the best linear mixed model under REML, The American Statistician, 60(1), 19-26, 2006.
- [Kent1983] Kent J.T., Information gain and a general measure of correlation, Biometrika 70, 163-73, 1983.
- [Kenward1997] Kenward M., Roger J., Small sample inference for fixed effects from restricted maximum likelihood, Biometrics, 53 (3), 983-997, 1997.
- [Keselman1998] Keselman H.J., Algina J., Kowalchuk R.K., Wolfinger R.D., A comparison of two approaches for selecting covariance structures in the analysis of repeated measurements, Communications in Statistics: Simulation and Computation, 27 (3), 591-604, 1998.
- [Kramer 2005] Kramer M., R² statistics for mixed models, Conference on Applied Statistics in Agriculture, 17, 148-160, 2005.
 - http://www.ars.usda.gov/sp2UserFiles/ad_hoc/12000000SpatialWorkshop/19KramerSupplRsq.pdf

- [Liu1999] Liu H., Weiss R.E., Jennrich I., Wenger N.S., *PRESS model selection in repeated measures data*, Elsevier, Computational Statistics & Data Analysis, 30, 169-184, 1999.
- [Magee1990] Magee L., R^2 measures based on Wald and likelihood ratio joint significance tests, The American Statistician, 44, 250-253, 1990.
- [Molenberghs 2007] Molenberghs G., Verbeke G., Likelihood ratio, score, and Wald tests in a constrained parameter space, The American Statistician, 66 (1), 22-27, 2007.
- [Pinheiro 2000] Pinheiro J., Bates D., Mixed-effects models in S and S-PLUS, Springer, 2000.
- [Pinheiro 1996] Pinheiro J., Bates D., Unconstrained parametrizations for variance-covariance matrices, Statistics and Computing, 6(3), str. 289 296, 1996.
- [Schabenberger 2004] Schabenberger O., Mixed model influence diagnostics, SUGI 29, Paper 189-29, 2004.
- [Shapiro1988] Shapiro A., Towards a unified theory of inequality constrained testing in multivariate analysis, International Statistical Review 56, 1988.
- [Stram1994] Stram D.O., Lee J.W., Variance components testing in the longitudinal mixed effects model, Biometrics 50, 1171-1177, 1994.
- [Verbeke2000] Verbeke G., Molenberghs G., Linear mixed models for longitudinal data, Springer Verlag, 2000.
- [Verbeke2003] Verbeke G., Molenberghs G., The use of score tests for inference on variance components, Biometrics, 59 (2), 254-262, 2003.
- [Vonesh1996] Vonesh E.F., Chinchili V.M., Pu K., Goodness-of-fit in generalized nonlinear mixed-effect models, Biometrics, 52, 1996.
- [Vuong1989] Vuong Q.H., Likelihood ratio tests for model selection and non-nested hypothesis, Econometrica 57, 307-333, 1989.
- [Wang2007] Wang J., Selecting the best linear mixed model using predictive approaches, Brigham Young University, 2007.