Flexible Inference for fMRI Data

Aldo Solari

CLADAG 2017 Big Data - Big Knowledge

Milan, September 14, 2017

Joint work with

Co-author	University	Country
Jonathan D. Rosenblatt	Ben-Gurion	Israel
Livio Finos	Padua	Italy
Wouter D. Weeda	Leiden	The Netherlands
Jelle J. Goeman	LUMC	The Netherlands

Outline

1 Introduction

- 2 Cluster-based Inference
- **3** All-Resolutions Inference
- 4 Discussion

Big brain

Source: Landhuis (2017)

Brain activity

- Brain activity is measured on a 3D grid of voxels
- Voxel = $3mm \times 3mm \times 3mm$ cube

Go/No-go data

Task

- Go: press a button when you see an happy face ⊚
- No-go: hold when you see a neutral face ⊚

High-dimensional data

- n = 34 subjects
- m = 225212 voxels

Test statistics

- Null hypothesis: Go = No-go
- A test statistic Z is computed for each voxel

Standard approaches

^{* 814} fMRI studies published in 2010 and 2011 from Cerebral Cortex, Nature, Nature Neuroscience, NeuroImage, Neuron, PNAS, and Science

Outline

1 Introduction

- 2 Cluster-based Inference
- **3** All-Resolutions Inference
- 4 Discussion

Cluster-based inference

- Cluster-based inference is data-driven: clusters are both defined and tested with the same data
- Issues with circular analysis solved by random field theory
- Two steps:
 - **1** Cluster definition: Z-threshold e.g. cluster = contiguous voxels with Z > 3.2
 - 2 Cluster significance: α -threshold e.g. a cluster is significant if RFT p-value < 5%

Significant clusters

Low spatial resolution

• Discovering a cluster means that

"there exists at least one active voxel in the cluster" and not that

"all the voxels in the cluster are active"

- Spatial specificity paradox: the larger the detected cluster, the less information we have on the location of the activation
- No information on the % of activation of each cluster

Low spatial resolution

cluster	size	# active	% active	
Α	2191	?	?	
В	1835	?	?	
C	1400	?	?	
D	698	?	?	
Ε	421	?	?	
F	304	?	?	
G	245	?	?	
Н	232	?	?	
1	187	?	?	

Notation

- $B = \{1, 2, ..., m\}$: brain, collection of m voxels
- $S \subseteq B$: voxel set. A cluster C is a particular case
- $S = \{S : S \subseteq B\}$ with $|S| = 2^m$: collection of all voxel sets
- $A \subseteq B$: (unknown) set of truly active voxels

Parameter of interest

- $a(S) = |A \cap S|$: # of truly active voxels in S
- $\pi(S) = a(S)/|S|$: % of truly active voxels in S

Cluster null hypothesis

- Given a pre-specified cluster forming Z-threshold (e.g. Z > 3.2), we obtain a collection of candidate clusters C
- Both the number of clusters |C| and each cluster $C \in C$ are random quantities, because are determined by the data
- Cluster null hypothesis

$$H_C: \pi(C) = 0$$

Rejecting H_C implies $\pi(C) > 0$, at least one active voxel in C

• However, the null hypotheses are random

Outline

1 Introduction

- 2 Cluster-based Inference
- **3** All-Resolutions Inference
- 4 Discussion

Proposed approach: ARI

- Rather than testing random hypotheses, we propose a more classical approach
- Construct simultaneous lower bounds $\underline{\pi}(S)$ for the parameter of interest $\pi(S)$ satisfying

P(for all
$$S \in \mathcal{S} : \underline{\pi}(S) \leq \pi(S)$$
) $\geq 1 - \alpha$

• The bound is valid for all *S*, and therefore for one or more selected *S*, regardless of how they were selected

Confidence bounds

Based on Goeman and Solari (2011), Meijer et al. (2016) and Rosenblatt et al. (2017) showed that

$$\underline{\pi}(S) = \min \left\{ 0 \le k \le |S| : \min_{1 \le i \le |S| - k} \frac{h}{i} p_{(i+k:S)} > \alpha \right\} / |S|$$

where $p_{(i:S)}$ is the *i*th smallest *p*-value in *S* and

$$h = \max \{ i \in \{0, ..., m\} : ip_{(m-i+j:B)} > j\alpha, \text{ for } j = 1, ..., i \}$$

Assumption: Simes inequality

For the set $\bar{A}=B\setminus A$ of all non-active voxels, we assume the Simes inequality

$$P\left(\bigcap_{i=1}^{|\bar{A}|} \left\{ p_{(i:\bar{A})} > \frac{i\alpha}{|\bar{A}|} \right\} \right) \ge 1 - \alpha$$

- It has been shown to hold for independent *p*-values, and under various conditions implying non-negative correlations between *p*-values, one of which is the PRDS condition
- For instance, Simes inequality is necessary for the Benjamini and Hochberg (1995) procedure
- Nichols and Haysaka (2003) suggested that PRDS, and therefore the Simes inequality, is plausible for brain maps

Simes inequality

Computation time

- Sorting the p-values: linearithmic $O(m \log m)$
- Computing h (only once): linearithmic $O(m \log m)$
- Computing $\underline{\pi}(S)$: linear in S
- With m = 225212 takes seconds

ARI: quantify and localize

- 1 quantify the activation of each cluster
- 2 localize the source of the activation within the cluster: a "drill-down" from discovered clusters to sub-clusters

Quantify

cluster	size	# active <u>a</u> (C)	% active $\underline{\pi}(C)$
А	2191	624	29 %
В	1835	847	46 %
С	1400	454	32 %
D	698	0	0 %
Е	421	25	6 %
F	304	33	11 %
G	245	0	0 %
Н	232	0	0 %
1	187	0	0 %

Quantify

Localize

cluster	threshold	size	# active	% active
А	Z > 3.2	2191	624	29 %
1	Z > 4	405	267	66 %
2	Z > 4	133	31	23 %
3	<i>Z</i> > 4	6	0	0 %
В	Z > 3.2	1835	847	46 %
1	<i>Z</i> > 4	963	826	86 %
С	Z > 3.2	1400	454	32%
1	Z > 4	583	449	77 %
2	Z > 4	4	0	0 %
3	Z > 4	1	0	0 %

Localize

Localize

Outline

- 1 Introduction
- 2 Cluster-based Inference
- **3** All-Resolutions Inference
- 4 Discussion

Discussion

- ARI brings unprecedented flexibility to the analysis of fMRI data
- With ARI, users can iterate the process of
 - 1 choosing regions in any way, also after seeing the data
 - 2 quantify the % of activation
 - **3** refine the regions

without compromising the validity of the inference

• ARI is implemented in R package hommel

References

- Goeman JJ and Solari (2011)

 Multiple Testing for Exploratory Research

 Statistical Science, 26:584?597
- Meijer RS, Krebs TJP, Solari A and Goeman JJ (2016)

 Simultaneous Control of All Discovery Proportions by an Extension of Hommel's Method

 Arxiv
- Rosenblatt JD, Finos L, Weeda WW, Solari A and Goeman JJ (2017)

 All-Resolutions Inference for Brain Imaging
 Submitted

