NOTES ON NACTI 2019 AT UMD

Quanxin Mei^{1, *}
¹Center for Quantum Information,
Institute of Interdisciplinary Information Science,
Tsinghua University

LIST OF FIGURES

LIST OF TABLES

CONTENTS

	List of Figures	1
	List of Tables	1
I.	Quantum simulations with trapped ions—UMD, Chris Monroe	2
II.	Quantum sensing and simulations with large trapped ion crystals—NIST, M. Affolter	5
III.	Imporved test of local lorentz invariance from a deterministic preparation of entangled states— UC Berkeley, E. Megidish	5
IV.	Quantum simulation of spin models in arbitrary spatial dimensions using a linear chain of ions—PI, R. Islam	5
V.	Quantum optomechanics with trapped ions and nanospheres—Univ of Innsbruck, T. E. Northup	3
VI.	Hybrid trapped ion and neutral atom based quantum networking—ARL, Q. S. Quraishi	4
VII.	Quantum networking with trapped ion qubits at afrl—afrl, KA Brickman Soderberg	4
/III.	Search for Lorentz symmetry violation with trapped ions—Univ of Delaware, M. Safronova	4
IX.	The nuclear clock: Recent progress and perspectives—LMU, L. von der wense	4
Χ.	Quantum logic spectroscopy of cold highly charged ions—PTB, S. A. King	4
XI.	Trapped ion atomic clock development for space and ultra-stable ground applications—JPL, E. A. Burt	; 5
XII.	Quantum computation and quantum simulation with strings of trapped Ca ⁺ Ions	Ę

^{*} meiquanxin@gmail.com

XIII.	Probing quantum properties in atom-ion collisions experiments—Weizmann, N. Akerman	5
XIV.	Trapped Ion quantum computing—Mainz, F. Schmidt-Kaler	5
XV.	High-rate, high-fidelity entanglement across an elementary quantum network—Oxford, C. J. Ballance	5
XVI.	Quantum control of atomic and molecular ions at NIST—NIST, D. Leibfried	5
XVII.	Mixed-species and integrated plarforms for trapped-ion QIP	5
XVIII.	Myth: SPAM is either a versatile canned mear product or unsolicited email—UCLA, W. C. Campbell	5
XIX.	Progress toward nonbinary quantum logic in barium ions—Waterloo, C. Senko	6
XX.	Progress in the quantum control of single molecular ions—University of Basel, Z. Meir	6
XXI.	Molecular ion state control and prospects for precision measurement—Northwestern Univ, B. C. Odom	6
XXII.	Towards sympathetic translational and rotational cooling of CAH^+ in an ion-atom hybrid trap	6
XXIII.	Honeywell's trapped ion quantum computer—Honeywell, B. Neyenhuis	6
XXIV.	Scaling trapped ion quantum computing—IonQ, J. Mizrahi	6
XXV.	Qubit control and microfabricated surface ion traps—Sandia, M. Revelle	6
XXVI.	Integrated technologies for enhanced control of trapped-ion systems—Lincoln Lab MIT,J. Chiaverini	6
XXVII.	Adsorbate-coverage-dependent work-function patches on Au ion-trap electrodes—NIST, D. A. Hite	7
XXVIII.	Progress in engineering ion trap quantum computers—Duke, J. Kim	7
XXIX.	Quantum-classical hybrid circuits with trapped ions—UMD, N. M. Linke	7
XXX.	Hot topics	7
XXXI.	Poster Session I	7
YYYII	Poster session II	7

I. QUANTUM SIMULATIONS WITH TRAPPED IONS—UMD, CHRIS MONROE

- $1.\ \ 80\ ions\ in\ HOA2$
- 2. Highly engineered laser exist for Ytterbium ions
- 3. dipole-dipole coupling, XX gate, $T=10\sim 100 \mu s, F\approx 98\%\sim 99.9\%$
- 4. Long-range Ising Hamiltonian to generate global entanglement

- 5. Quantum scrambling, complete diffusion of entanglement within a system, relevant to information in black holes
- 6. Simulations of molecular applications
- 7. Global interaction simulations
 - Pre-thermalization, the center of the ion chains move with Jt = 36
 - Dynamical phase transition with 50+ qubits
 - (a) prepare spins along x
 - (b) Quench spins to H
 - (c) Measure along x

Global control AQOA

II. QUANTUM SENSING AND SIMULATIONS WITH LARGE TRAPPED ION CRYSTALS—NIST, M. AFFOLTER

1. Penning Trap, multi-dimensional ion crystal, spin squeezing, weak E-Field sensing an the like

III. IMPORVED TEST OF LOCAL LORENTZ INVARIANCE FROM A DETERMINISTIC PREPARATION OF ENTANGLED STATES— UC BERKELEY, E. MEGIDISH

- 1. Use the Zeeman splitting of $D_{5/2}$ state of ${}^{40}Ca^+$
- 2. Entangled states
- 3. Ar^+ milling decreases the motional heating of ion trap

IV. QUANTUM SIMULATION OF SPIN MODELS IN ARBITRARY SPATIAL DIMENSIONS USING A LINEAR CHAIN OF IONS—PI, R. ISLAM

1. Analog-digital

V. QUANTUM OPTOMECHANICS WITH TRAPPED IONS AND NANOSPHERES—UNIV OF INNSBRUCK, T. E. NORTHUP

- 1. ion trap potential: deep, harmonic with a large volume regime
- 2. cavity qed in the strong coupling regime, shift more than linewidth

- 3. ions are light, 200nm motional regime
- 4. non-gaussian states can be obtained by ions' internal defrees of freedom
- 5. Mechanical motion shifts the cavity resonance
- 6. strong field strength leads to linearized interaction, which maps Gaussian states into Gaussian states
- 7. Nonlinear interaction is required
- 8. electrical feedback cooling
- 9. optical feedback cooling
- 10. wheel-type trap

VI. HYBRID TRAPPED ION AND NEUTRAL ATOM BASED QUANTUM NETWORKING—ARL, Q. S. QURAISHI

- 1. better wire access in blade trap
- 2. PPLN, Difference frequency generation, $493 + 1343 \rightarrow 780$

VII. QUANTUM NETWORKING WITH TRAPPED ION QUBITS AT AFRL—AFRL, K.-A BRICKMAN SODERBERG

1. $^{133}Ba^{+2}D_{5/2}$ lifetime 30s, I = 1/2

VIII. SEARCH FOR LORENTZ SYMMETRY VIOLATION WITH TRAPPED IONS—UNIV OF DELAWARE, M. SAFRONOVA

1.

IX. THE NUCLEAR CLOCK: RECENT PROGRESS AND PERSPECTIVES—LMU, L. VON DER WENSE

1.

X. QUANTUM LOGIC SPECTROSCOPY OF COLD HIGHLY CHARGED IONS—PTB, S. A. KING

XI. TRAPPED ION ATOMIC CLOCK DEVELOPMENT FOR SPACE AND ULTRA-STABLE GROUND APPLICATIONS—JPL, E. A. BURT
1.
XII. QUANTUM COMPUTATION AND QUANTUM SIMULATION WITH STRINGS OF TRAPPED CA^+ IONS
1.
XIII. PROBING QUANTUM PROPERTIES IN ATOM-ION COLLISIONS EXPERIMENTS—WEIZMANN, N. AKERMAN
1.
XIV. TRAPPED ION QUANTUM COMPUTING—MAINZ, F. SCHMIDT-KALER
1.
XV. HIGH-RATE, HIGH-FIDELITY ENTANGLEMENT ACROSS AN ELEMENTARY QUANTUM NETWORK—OXFORD, C. J. BALLANCE
1.
XVI. QUANTUM CONTROL OF ATOMIC AND MOLECULAR IONS AT NIST—NIST, D. LEIBFRIED
1.
XVII. MIXED-SPECIES AND INTEGRATED PLARFORMS FOR TRAPPED-ION QIP
XVIII. MYTH: SPAM IS EITHER A VERSATILE CANNED MEAR PRODUCT OR UNSOLICITED EMAIL—UCLA, W. C. CAMPBELL

1.

XIX. PROGRESS TOWARD NONBINARY QUANTUM LOGIC IN BARIUM IONS—WATERLOO, C. SENKO
1.
XX. PROGRESS IN THE QUANTUM CONTROL OF SINGLE MOLECULAR IONS—UNIVERSITY OF BASEL, Z. MEIR
1.
XXI. MOLECULAR ION STATE CONTROL AND PROSPECTS FOR PRECISION MEASUREMENT—NORTHWESTERN UNIV, B. C. ODOM 1.
XXII. TOWARDS SYMPATHETIC TRANSLATIONAL AND ROTATIONAL COOLING OF CAH ⁺ IN AN ION-ATOM HYBRID TRAP
1.
XXIII. HONEYWELL'S TRAPPED ION QUANTUM COMPUTER—HONEYWELL, B. NEYENHUIS 1.
XXIV. SCALING TRAPPED ION QUANTUM COMPUTING—IONQ, J. MIZRAHI
XXV. QUBIT CONTROL AND MICROFABRICATED SURFACE ION TRAPS—SANDIA, M. REVELLE
1.

XXVI. INTEGRATED TECHNOLOGIES FOR ENHANCED CONTROL OF TRAPPED-ION SYSTEMS—LINCOLN LAB MIT,J. CHIAVERINI

1.

XXVII. ADSORBATE-COVERAGE-DEPENDENT WORK-FUNCTION PATCHES ON AU ION-TRAP ELECTRODES—NIST, D. A. HITE

1.

XXVIII. PROGRESS IN ENGINEERING ION TRAP QUANTUM COMPUTERS—DUKE, J. KIM

1.

XXIX. QUANTUM-CLASSICAL HYBRID CIRCUITS WITH TRAPPED IONS—UMD, N. M. LINKE

1.

XXX. HOT TOPICS

XXXI. POSTER SESSION I

en

XXXII. POSTER SESSION II