多様体

大上由人

2024年12月2日

1 多様体の定義

- Def. 多様体 -

- m 次元可微分多様体とは、次の条件を満たす位相空間 M のことである。
 - 1. M はハウスドルフかつパラコンパクトである。
 - 2. 座標近傍と呼ばれる開集合と同相写像の組 (U_i, φ_i) と、その集合でアトラスと呼ばれる 集合族 $\{(U_i, \varphi_i)\}$ が存在し、次の条件を満たす。
 - (a) $\bigcup_i U_i = M$
 - (b) $\varphi_i: U_i \to \mathbb{R}^m$ は同相写像である。
 - (c) $\varphi_i \circ \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$ は C^∞ 級写像である。

多様体が Haussdorff であるご利益は、以下の命題による。

- Prop. —

位相空間 M がハウスドルフ空間であるとする。このとき、M の点列が極限点をもてば、その極限点はただ一つである。

すなわち、ハウスドルフ空間において、極限を定義できるようになる。多様体上での関数の収束 や、微分などを考えるときに、この性質は非常に重要である。

2 多様体上の関数/写像

- $\mathbf{Def.}$ 多様体の写像が C^r 級である -

多様体 M から多様体 N への写像

$$f: M \to N \tag{2.1}$$

が、1 点 $p \in M$ において C^r 級であるとは、p の任意の座標近傍 (U,φ) と、f(p) の任意の座標近傍 (V,ψ) が存在して、次の条件を満たすことをいう。

- 1. $f(U) \subset V$
- 2. $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$ が C^r 級である

また、 $f:M\to N$ が C^r 級であるとは、f が M の任意の点 p において C^r 級であることをいう。

要するに、一旦座標近傍に引き戻して、 \mathbb{R}^m 上の関数として考えることで、 \mathbb{C}^r 級性を定義している。

とくに、多様体上の**関数**とは、N が $\mathbb R$ であるときの写像のことをいう。逆に、M が一次元空間 $\mathbb R$ であるとき、

$$c: \mathbb{R} \to N \tag{2.2}$$

を、N 上の**曲線**という。

3 接ベクトル空間

3.1 方向微分

多様体 M 上で、点 p を通るようななめらかな曲線 $c:(-\varepsilon,\varepsilon)\to M$ を考える。p の周りで座標 近傍 (U,φ) をとると、曲線の座標表示は、

$$c(t) = (x^{1}(t), x^{2}(t), \dots, x^{m}(t))$$
(3.1)

である。このとき、t=0における曲線の速度ベクトルは、

$$\frac{\mathrm{d}}{\mathrm{d}t}c(t) = \left(\frac{\mathrm{d}x^1}{\mathrm{d}t}, \frac{\mathrm{d}x^2}{\mathrm{d}t}, \dots, \frac{\mathrm{d}x^m}{\mathrm{d}t}\right)$$
(3.2)

である。しかし、この速度ベクトルの表示は、局所座標の取り方に依存してしまう。そこで、速度 ベクトルを一般化することを考える。

準備として、p の開近傍 U で定義された C^r 級関数 $f:U \to \mathbb{R}$ を考える。このとき、c と f の合

成関数

$$f \circ c : (-\varepsilon, \varepsilon) \to \mathbb{R}$$
 (3.3)

を作ることができる。この、関数 f に対してこの微分係数を対応させる対応

$$f \mapsto \frac{\mathrm{d}}{\mathrm{d}t}(f \circ c) \bigg|_{t=0}$$
 (3.4)

を、c における f の方向微分といい、

$$\mathbf{v}_c = \left. \frac{\mathrm{d}}{\mathrm{d}t} (f \circ c) \right|_{t=0} \tag{3.5}$$

で表す。このとき、方向微分は以下の性質を持つ。

方向微分の性質 -

1. f,g が点 p の開近傍 U で定義された C^r 級関数で、しかも、p のある十分小さな開近傍上で f=g であるとする。このとき、

$$\mathbf{v}_c(f) = \mathbf{v}_c(g) \tag{3.6}$$

が成り立つ。

2. 線形性

$$\mathbf{v}_c(f+g) = \mathbf{v}_c(f) + \mathbf{v}_c(g) \tag{3.7}$$

が成り立つ。

3. Leibniz 則

$$\mathbf{v}_c(fg) = f(p)\mathbf{v}_c(g) + g(p)\mathbf{v}_c(f) \tag{3.8}$$

が成り立つ。

これらの性質を用いて、方向微分を定義する。

- Def. 方向微分 -

点pにおける方向微分 \mathbf{v} とは、上の1,2,3の性質を満たす写像である。

このとき、方向微分すべての集合 D(p) はベクトル空間をなす。

3.2 接ベクトル空間

- Def. 接ベクトル空間 -

多様体 M の点 p における接ベクトル空間 T_pM とは、以下のベクトルが張る D(p) の部分空間のことをいう。

$$\left\{ \left(\frac{\partial}{\partial x^1} \right)_p, \left(\frac{\partial}{\partial x^2} \right)_p, \dots, \left(\frac{\partial}{\partial x^m} \right)_p \right\}$$
 (3.9)

このとき、接ベクトル空間が、局所座標の取り方に寄らないことが示される。

以上の準備の下、速度ベクトルを一般化する。

· Def. 速度ベクトル ·

 $c: (-\varepsilon, \varepsilon) \to M$ かつ c(0) = p である曲線の t = 0 における速度ベクトルとは、

$$\mathbf{v}_c = \left. \frac{\mathrm{d}}{\mathrm{d}t} c(t) \right|_{t=0} \tag{3.10}$$

で定義される接ベクトルである。

4 写像の微分

M,N を多様体、m,n 次元 C^r 級多様体とし、 $f:M\to N$ を C^r 級写像とする。点 $p\in M$ を通るような M 上の C^r 級曲線

$$c: (-\varepsilon, \varepsilon) \to M \quad (c(0) = p)$$
 (4.1)

を考える。この曲線を f でうつすと、f(p) を通る N 上の C^r 級曲線

$$f \circ c : (-\varepsilon, \varepsilon) \to N \quad ((f \circ c)(0) = f(p))$$
 (4.2)

が得られる。ここでは、t=0 での曲線 c の速度ベクトルと、t=0 での曲線 $f\circ c$ の速度ベクトル の関係を調べる。

 $T_p M$ の任意の元 ${f v}$ をとる。このとき、 $\left. \frac{{
m d}c}{{
m d}t} \right|_{t=0} = {f v}$ となるような、p を通る C^r 級曲線

$$c: (-\varepsilon, \varepsilon) \to M \quad (c(0) = p)$$
 (4.3)

が存在する。この曲線を写像 $f: M \to N$ でうつすと、q = f(p) を通る C^r 級曲線

$$f \circ c : (-\varepsilon, \varepsilon) \to N \quad ((f \circ c)(0) = q)$$
 (4.4)

が得られる。t=0におけるこの曲線の速度ベクトルは、

$$\mathbf{w} = \frac{\mathrm{d}}{\mathrm{d}t} (f \circ c) \bigg|_{t=0} \tag{4.5}$$

である。このようにして、 T_pM の元 ${\bf v}$ に対して T_qN の元 ${\bf w}$ が対応する。また、この対応は曲線の取り方によらないことが示せる。これにより、 T_pM の元 ${\bf v}$ に対して T_qN の元 ${\bf w}$ が対応する写像として、微分が定義される。

- Def. 写像の微分・

上の対応で定まる写像

$$(df)_p: T_pM \to T_{f(p)}N \tag{4.6}$$

を、 $f:M\to N$ の p における微分という。 a

a 以降、 f_* と書くこともある。

この写像に"微分"という名前がついていることを納得するために、以下の例を考えてみる。 ex.

 $M=\mathbb{R},\,N=\mathbb{R},\,f(x)=x^2$ とする。このとき、p=1 における f の微分 $(df)_1$ は、hoge 写像の微分を成分表示する。hogehoge

$$\begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix}$$

$$(4.7)$$