In [5]:

```
import numpy as np # library to handle data in a vectorized manner
import pandas as pd # library for data analsysis
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import json # library to handle JSON files
!conda install -c conda-forge geopy --yes # uncomment this line if you haven't completed th
from geopy.geocoders import Nominatim # convert an address into latitude and longitude valu
import requests # library to handle requests
from pandas.io.json import json_normalize # tranform JSON file into a pandas dataframe
# Matplotlib and associated plotting modules
import matplotlib.cm as cm
import matplotlib.colors as colors
# import k-means from clustering stage
from sklearn.cluster import KMeans
# for webscraping import Beautiful Soup
from bs4 import BeautifulSoup
import xml
!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven't compl
import folium # map rendering library
print('Libraries imported.')
usage: conda-script.py [-h] [-V] command ...
conda-script.py: error: unrecognized arguments: # uncomment this line if you
haven't completed the Foursquare API lab
Libraries imported.
usage: conda-script.py [-h] [-V] command ...
conda-script.py: error: unrecognized arguments: # uncomment this line if you
haven't completed the Foursquare API lab
In [6]:
url = requests.get('https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M').text
soup = BeautifulSoup(url, 'lxml')
```

In [7]:

```
table_post = soup.find('table')
fields = table_post.find_all('td')

postcode = []
borough = []
neighbourhood = []

for i in range(0, len(fields), 3):
    postcode.append(fields[i].text.strip())
    borough.append(fields[i+1].text.strip())
    neighbourhood.append(fields[i+2].text.strip())

df_pc = pd.DataFrame(data=[postcode, borough, neighbourhood]).transpose()
df_pc.columns = ['Postcode', 'Borough', 'Neighbourhood']
df_pc.head()
```

Out[7]:

Postcode		Borough	Neighbourhood	
0	M1A Not assigned			
1	M2A	Not assigned		
2	МЗА	North York	Parkwoods	
3	M4A	North York	Victoria Village	
4	M5A	Downtown Toronto	Regent Park / Harbourfront	

In [8]:

```
df_pc.head()
```

Out[8]:

	Postcode	Borough	Neighbourhood	
0	M1A	Not assigned		
1	M2A	Not assigned		
2	МЗА	North York	Parkwoods	
3	M4A	North York	Victoria Village	
4	M5A	Downtown Toronto	Regent Park / Harbourfront	

In [9]:

```
df_pc['Borough'].replace('Not assigned', np.nan, inplace=True)
df_pc.dropna(subset=['Borough'], inplace=True)
df_pc.head()
```

Out[9]:

Neighbourhood	Borough	Postcode	
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Regent Park / Harbourfront	Downtown Toronto	M5A	4
Lawrence Manor / Lawrence Heights	North York	M6A	5
Queen's Park / Ontario Provincial Government	Downtown Toronto	M7A	6

In [10]:

```
df_pc.head()
```

Out[10]:

Neighbourhood	Borough	Postcode	
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Regent Park / Harbourfront	Downtown Toronto	M5A	4
Lawrence Manor / Lawrence Heights	North York	M6A	5
Queen's Park / Ontario Provincial Government	Downtown Toronto	M7A	6

In [11]:

```
df_pcn = df_pc.groupby(['Postcode', 'Borough'])['Neighbourhood'].apply(', '.join).reset_ind
df_pcn.columns = ['Postcode', 'Borough', 'Neighbourhood']
df_pcn
```

•	Canada Post Gateway Processing Centre	Mississauga	M7R	86
	Business reply mail Processing Centre	East Toronto	M7Y	87
	New Toronto / Mimico South / Humber Bay Shores	Etobicoke	M8V	88
	Alderwood / Long Branch	Etobicoke	M8W	89
	The Kingsway / Montgomery Road / Old Mill North	Etobicoke	M8X	90
	Old Mill South / King's Mill Park / Sunnylea /	Etobicoke	M8Y	91
	Mimico NW / The Queensway West / South of Bloo	Etobicoke	M8Z	92
	Islington Avenue	Etobicoke	M9A	93
	West Deane Park / Princess Gardens / Martin Gr	Etobicoke	М9В	94
	Eringate / Bloordale Gardens / Old Burnhamthor	Etobicoke	М9С	95
	Humber Summit	North York	M9L	96
	Humberlea / Emery	North York	М9М	97
_	Weston	York	M9N	98

In [12]:

```
df_pcn['Neighbourhood'].replace('Not assigned', "Queen's Park", inplace=True)
df_pcn
```

Out[12]:

Neighbourhood	Borough	Postcode	
Malvern / Rouge	Scarborough	M1B	0
Rouge Hill / Port Union / Highland Creek	Scarborough	M1C	1
Guildwood / Morningside / West Hill	Scarborough	M1E	2
Woburn	Scarborough	M1G	3
Cedarbrae	Scarborough	M1H	4
Scarborough Village	Scarborough	M1J	5
Kennedy Park / Ionview / East Birchmount Park	Scarborough	M1K	6
Golden Mile / Clairlea / Oakridge	Scarborough	M1L	7
Cliffside / Cliffcrest / Scarborough Village West	Scarborough	M1M	8
Birch Cliff / Cliffside West	Scarborough	M1N	9

In [13]:

```
df_pcn.shape
```

Out[13]:

(103, 3)

In [14]:

```
df_geo = pd.read_csv('http://cocl.us/Geospatial_data')
df_geo.columns = ['Postcode', 'Latitude', 'Longitude']
```

In [15]:

```
df_pos = pd.merge(df_pcn, df_geo, on=['Postcode'], how='inner')

df_tor = df_pos[['Borough', 'Neighbourhood', 'Postcode', 'Latitude', 'Longitude']].copy()

df_tor.head()
```

Out[15]:

	Borough	Neighbourhood	Postcode	Latitude	Longitude
0	Scarborough	Malvern / Rouge	M1B	43.806686	-79.194353
1	Scarborough	Rouge Hill / Port Union / Highland Creek	M1C	43.784535	-79.160497
2	Scarborough	Guildwood / Morningside / West Hill	M1E	43.763573	-79.188711
3	Scarborough	Woburn	M1G	43.770992	-79.216917
4	Scarborough	Cedarbrae	M1H	43.773136	-79.239476

In [16]:

```
address = 'Toronto, Canada'

geolocator = Nominatim()
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of the City of Toronto are {}, {}.'.format(latitude, long
```

C:\Users\GANTAYASHWANTHINI\anaconda3\lib\site-packages\ipykernel_launcher.p y:3: DeprecationWarning: Using Nominatim with the default "geopy/1.21.0" `us er_agent` is strongly discouraged, as it violates Nominatim's ToS https://op erations.osmfoundation.org/policies/nominatim/ (https://operations.osmfoundation.org/policies/nominatim/) and may possibly cause 403 and 429 HTTP error s. Please specify a custom `user_agent` with `Nominatim(user_agent="my-application")` or by overriding the default `user_agent`: `geopy.geocoders.option s.default_user_agent = "my-application"`. In geopy 2.0 this will become an exception.

This is separate from the ipykernel package so we can avoid doing imports until

The geograpical coordinate of the City of Toronto are 43.6534817, -79.383934 7.

In [17]:

```
# create map of New York using latitude and longitude values
map_toronto = folium.Map(location=[latitude, longitude], zoom_start=10)
# add markers to map
for lat, lng, borough, neighborhood in zip(df_tor['Latitude'], df_tor['Longitude'], df_tor[
    label = '{}, {}'.format(neighborhood, borough)
    label = folium.Popup(label, parse_html=True)
    folium.CircleMarker(
        [lat, lng],
        radius=3,
        popup=label,
        color='green',
        fill=True,
        fill_color='#3199cc',
        fill_opacity=0.3,
        parse_html=False).add_to(map_toronto)
map_toronto
```

Out[17]:

In []: