Intro to Machine Learning

and understanding model error

What is Machine Learning?

The ability to make accurate predictions based on what was experienced in the past "Programming by example"

Basic tasks:

- Regression: predict the value of a function (e.g., stock price prediction)
- Classification: categorize objects into fixed categories (e.g., detecting fraudulent transactions)

Genetic Interactions - Type

Our case can be translated into two options:

- Classification: Is this pair a genetic interaction? (true/false)
- Regression: What is the cell growth of this pair? (0..1)

Example - Spam detection

Supervised Learning

Functions \mathcal{F} Training data $\{(x_i,y_i)\in\mathcal{X}\times\mathcal{Y}\}$ $f: \mathcal{X} \to \mathcal{Y}$ find $\hat{f} \in \mathcal{F}$ s.t. $y_i \approx \hat{f}(x_i)$ **LEARNING** Learning machine New data PREDICTION $y = \hat{f}(x)$

Genetic Interactions - Data

X is the vector of features created from the Ontology for each gene pair, each GO term has possible values of 0,1,2

Y is the cell growth for each gene pair - a value between 0 and 1

Model Training

Choose the simplest model/algorithm that fits the problem/data

- Unbalanced data (95% from a single class)
- Feature amount
- Feature type continuous or categorical
- Missing values
- Prior work with the model

Flow-chart like tree structure

Node - a test on a feature

Branch - a result of the test

Leaf - label

≥1.8

Ham

8 Errors

Model example - Which one?

Generalization

Do well on test data that is not known during learning

Minimizing the loss function (error) on the training data is not necessarily the best policy

We want the learning machine to model the true regularities in the data and to ignore the noise in the data

Train and test sets

Simulate unseen data by splitting data into train / test (hold-out) sets

- Train our model on part of the data
- Test the performance on the rest
- (Optional validation set)

Decrease variance with cross-validation

The Learning Process

https://www.slideshare.net/liorrokach/introduction-to-machine-learning-13809045

Overfitting

Overfitting

Important to limit model complexity (example: polynomial degree)

Bias-Variance tradeoff

Bias - stems from bad assumptions

of our model

Variance - due to sensitivity to variations

in the data

Low model complexity - high bias

low variance

High model complexity - low bias high variance

http://scott.fortmann-roe.com/docs/BiasVariance.html

Error (Confusion) Matrix

True Positive - correct "Yes" classifications
True Negative - correct "No" classifications
False Positive - "No" classified as "Yes"
False Negative - "Yes" classified as "No"

		Predicted Class	
		Yes	No
Class	Yes	TP	FN
Actual	No	FP	TN

Many measures are derived using simple functions on these terms

ROC & AUC

Recall or TPR (True Positive Rate) = TP/(TP+FN)

Fall-out or FPR = FP/(FP+TN)

AUC - Area Under Curve

Random model AUC = 0.5

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Precision-Recall

Precision - TP/(TP+FP)

