A Survey of Spiking Neural Networks and Their Learning Strategies

Presenter: Md Asiful Hoque Prodhan

Survey Overview

- Section 1: Introduction
- Section 2: Foundations of SNNs
- Section 3: Neuron Models and Signal Encoding
- Section 4: Learning and Training Methods
- Section 5: Challenges and Future Directions
- Section 6: Conclusion

Overview of Spiking Neural Networks (SNNs)

Artificial Neural Networks (ANNs)

- Efficient at processing large data and solving complex problems through parallel computation.
- Learn from experience, improving accuracy and performance with exposure to new data.
- High computational power and energy consumption, particularly in real-time and edge device applications.
- Limited in processing timedependent information like biological brains.

Spiking Neural Networks (SNNs)

- Overcome the limitations of ANNs with brain-inspired communication methods.
- Instead of continuous activation, SNNs send signals (spikes) only at specific times.
- Energy-efficient and better suited for processing time-based information

Terminologies

Term	Definition
Spike (Action	A brief electrical pulse emitted by a neuron to signal its activation to other neurons; It is a binary
Potential)	event - either a full spike occurs or nothing.
Membrane potential	The internal voltage level of a neuron that rises and falls in response to inputs.
Threshold	The voltage level that the membrane potential must reach for the neuron to emit a spike.
Firing	The act of a neuron emitting a spike once its threshold is reached.
Resting potential	The baseline voltage of a neuron when it is not receiving any input.
Refractory period	A short time after firing, during which the neuron cannot fire again
Leak	The gradual decay of a neuron's voltage back to its resting potential when it is not receiving input.
Time-step	A small moment in time when all neurons check inputs and update their voltages.
Event-driven	A mode where neurons update only when spikes occur, rather than at every time-step.
Asynchronous	Neurons update on their own timing instead of all updating together.

Neuron Models

Leaky Integrate-and-Fire (LIF) Model

Figure-1: Dynamics of a leaky-integrate-and-fire (LIF) model in response to input spikes. (Rathi et al., 2023)

Learning Methods in SNNs

Spike-Time-Dependent Plasticity (STDP)

- A biologically feasible, unsupervised learning rule based on Hebbian principles (Legenstein et al., 2005; Markram et al., 2012; Ruf & Schmitt, 1997).
- Spike order matters:
 - First Case: If presynaptic spike occurs before postsynaptic spike, the synapse may be strengthened or weakened.
 - Second Case: If postsynaptic spike occurs before presynaptic spike, the synapse may also be strengthened or weakened.
- Hebbian STDP: First case leads to strengthening and the second case leads to weakening
- Anti-Hebbian STDP: First case leads to weakening and the second case leads to strengthening

Unsupervised Learning of Digit Recognition using STDP (Diehl & Cook, 2015)

Biologically Plausible Design:

- Leaky Integrate-and-Fire (LIF) Neurons
- Conductance-based Synapses
- Lateral Inhibition to ensure competition between neurons.
- Adaptive Spiking Threshold for homoeostasis.

Network Performance:

- Accuracy: Achieved 95% accuracy on the MNIST dataset
- Scalability: Performance scales well as the number of neurons increases.

ANN-to-SNN Conversion for Image Classification (Rueckauer et al., 2017)

- Converts analog deep networks (CNNs) into SNNs for image classification.
- Key Innovations:
 - Converts ANN activations to equivalent SNN spike rates.
 - Replaces ANN components with spike-based equivalents (e.g., softmax, batch normalization, max-pooling).
 - Percentile-based normalization improves firing rate estimates and reduces error.

Results:

- LeNet on MNIST: 2x reduction in operations with minimal error increase.
- Lower computing costs in SNNs compared to traditional ANNs.

Challenges and Limitations

Future Research Directions

Neuron Models & Learning Capacity

Expanding Applications

Edge Device Adoption

Training Efficiency

Scalability

Distributed & Asynchronous Models

Standardized Benchmarks

Spike Encoding Schemes

References

- Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9, 99. https://doi.org/10.3389/fncom.2015.00099
- Kudithipudi, D., Schuman, C., Vineyard, C. M., Pandit, T., Merkel, C., Kubendran, R., ... & Furber, S. (2025).
 Neuromorphic computing at scale. *Nature*, 637(8047), 801-812. https://doi.org/10.1038/s41586-024-08253-8
- Legenstein, R., Naeger, C., & Maass, W. (2005). What Can a Neuron Learn with Spike-Timing-Dependent Plasticity? Neural Computation, 17(11), 2337–2382. https://doi.org/10.1162/0899766054796888
- Markram, H., Gerstner, W., & Sjöström, P. J. (2012). Spike-Timing-Dependent Plasticity: A Comprehensive Overview.
 Frontiers in Synaptic Neuroscience, 4, 2. https://doi.org/10.3389/fnsyn.2012.00002
- Rathi, N., Chakraborty, I., Kosta, A., Sengupta, A., Ankit, A., Panda, P., & Roy, K. (2023). Exploring Neuromorphic Computing Based on Spiking Neural Networks: Algorithms to Hardware. ACM Computing Surveys, 55(12), 1–49. https://doi.org/10.1145/3571155
- Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification. Frontiers in Neuroscience, 11, 682. https://doi.org/10.3389/fnins.2017.00682
- Ruf, B., & Schmitt, M. (1997). Learning temporally encoded patterns in networks of spiking neurons. Neural Processing Letters, 5(1), 9–18. https://doi.org/10.1023/A:1009697008681