Outline Pre-processing Sensor Data Filtering Technique Synchronization for SBR Balancing SBR

Programming SBR Part - II Balancing and Tuning

e-Yantra Team

Indian Institute of Technology, Bombay

February 14, 2024

Agenda for Discussion

- 1 Pre-processing Sensor Data
 - Noise in sensors
 - Plotting graph
- 2 Filtering Technique
 - High Pass and Low Pass Filters
 - Complementary Filter
- 3 Synchronization for SBR
 - Interrupt
 - Interrupt vs Polling
- 4 Balancing SBR
 - Algorithm
 - Integral windup

- 1 Pre-processing Sensor Data
 - Noise in sensors
 - Plotting graph
- 2 Filtering Technique
 - High Pass and Low Pass Filters
 - Complementary Filter
- 3 Synchronization for SBR
 - Interrupt
 - Interrupt vs Polling
- 4 Balancing SBR
 - Algorithm
 - Integral windur

Noise in sensors Plotting graph

Noise

Low Frequency Noise: slow, persistent fluctuations or variations in the output signal. Eg: Bias instability or Angular Random Walk

High Frequency Noise: small, rapid fluctuations or variations in the output signal. Sources - mechanical vibration, temperature variation, quantization noise, etc..

Plotting Graph

Point Graph Normal acceleration (mix*)

400

400

200

200

300

400

500

100

500

100

Main Shaft (calcion t) 250

300

350

(b) Raw Accel Value

- 1 Pre-processing Sensor Data
 - Noise in sensors
 - Plotting graph
- 2 Filtering Technique
 - High Pass and Low Pass Filters
 - Complementary Filter
- 3 Synchronization for SBR
 - Interrupt
 - Interrupt vs Polling
- 4 Balancing SBR
 - Algorithm
 - Integral windup

High Pass Filter

Low Pass Filter

Complementary Filter

$$\Theta_n = \alpha \cdot (\Theta_{n-1} + \mathsf{gyroDot} \cdot dt) + (1 - \alpha) \cdot (\Theta_{\mathsf{acc}})$$

- 1 Pre-processing Sensor Data
 - Noise in sensors
 - Plotting graph
- 2 Filtering Technique
 - High Pass and Low Pass Filters
 - Complementary Filter
- 3 Synchronization for SBR
 - Interrupt
 - Interrupt vs Polling
- 4 Balancing SBR
 - Algorithm
 - Integral windur

Interrupt

Timer Interrupt

Motor Encoder

Interrupt vs Polling

- Triggering Mechanism
- Complexity to implement
- CPU Utilization
- Change in sampling time

- 1 Pre-processing Sensor Data
 - Noise in sensors
 - Plotting graph
- 2 Filtering Technique
 - High Pass and Low Pass Filters
 - Complementary Filter
- 3 Synchronization for SBR
 - Interrupt
 - Interrupt vs Polling
- 4 Balancing SBR
 - Algorithm
 - Integral windup

Algorithm

Integral Windup

Integral windup is a phenomenon that occurs in PID control systems when the integral component of the controller accumulates error beyond acceptable limits.

Its implications:

- Accumulation of Error due to constants
- Saturation or Constraint of output actuator/input
- Overshoot and Instability
- Delayed Recovery

Algorithm Integral windup

Thank You!

Post your queries on: support@e-yantra.org Contents available on: e-yantra Resources For more details, please visit: e-yantra website

