Project 1: Predicting Catalog Demand

Business and Data Understanding

Key Decisions:

1. What decisions needs to be made?

- Should the company send the catalogs to 250 new costumers from company mailing list?
- If yes, what will be the predicted profit?

2. What data is needed to inform those decisions?

 Historical customer profile and sales data are needed for the prediction of this year's mailing catalog.

Analysis, Modeling, and Validation

Variables:

Target variable is the "average sale amount",

Predictor variables are "customer segment", "average number of products purchased", and "number of years as a customer".

"customer segment" is a categorical variable with three categories:

- a) customer segment loyalty club only
- b) customer segment loyalty club and credit card
- c) customer segment store mailing list

"average number of products purchased" and 'number of years as a customer" are the continuous variables.

Correlation:

I observed a strong correlation (r=0.80) between target variable (average number of products purchased) and continuous predictor variables (average sale amount).

Table 1 shows Pearson correlation between target variable and continuous predictor variables that shows a strong correlation between "average number of products purchased" and "average sale amount" (r=0.80), but the correlation between 'number of years as a customer" and "average sale amount" is weak (r=0.02). "average number of products purchased" used as a predictor variable, and eliminated the variable of the 'number of years as a customer".

FieldName		Avg_Sale_Amount	Avg_Num_Products_Purchased	NumberOfYearsAsACustumer
Avg_Sale_Amount		1	0.855754	0.029782
Avg_Num_Products_	Purchased	0.855754	1	0.043346
NumberOfYearsAsAC	ustumer	0.029782	0.043346	1

Table 1: Pearson Correlation

Scatterplot:

tterplot of Avg Sale Amount versus Avg Num Products Pur

Graphic 1 shows a strong positive relationship between Avg_Sale_Amount and Num Products Purchased.

atterplot of Avg_Sale_Amount versus NumberOfYearsAsACus

Graphic 2 shows no linear relationship between Avg_Sale_Amount and NumberOfYearsAsACustomer.

Regression Model:

Training-data-set: Last year's customer data

Test-data-set: List of this years' customers data which the company plans to send.

Target Variable: Average Sale Amount

Predictive Variables: "Customer Segment", and "Average Number Of Products

Purchased"

The model shows which predictor variable(s) significantly explain the target variable.

Report for Linear Model Linear_Regression_3

Basic Summary

Call:

Im(formula = Avg_Sale_Amount ~ Customer_Segment + Avg_Num_Products_Purchased, data = the.data)

Residuals:

Min	1Q	Median	3Q	Max
-663.8	-67.3	-1.9	70.7	971.7

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	303.46	10.576	28.69	< 2.2e-16 ***
Customer_SegmentLoyalty Club Only	-149.36	8.973	-16.65	< 2.2e-16 ***
Customer_SegmentLoyalty Club and Credit Card	281.84	11.910	23.66	< 2.2e-16 ***
Customer_SegmentStore Mailing List	-245.42	9.768	-25.13	< 2.2e-16 ***
Avg_Num_Products_Purchased	66.98	1.515	44.21	< 2.2e-16 ***

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137.48 on 2370 degrees of freedom Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366

F-statistic: 3040 on 4 and 2370 degrees of freedom (DF), p-value < 2.2e-16

Table 2

Table 2 shows that all categories of "Customer Segment" variables and "Average Number Of Products Purchased" significantly predicts the target variables (p-value<0.001), "Number of Years as a Customer" does not significantly predict the target variable.

R-squared is a goodness-of-fit measure for linear regression models. Multiple R-squared in this regression model is 0.8369, which indicates the percentage of the variance in the target variable that the predictor variables explain collectively.

The regression equation:

Y = 303.46 + (-149.36 * 'customer segment loyalty club only') + (281.84 * 'customer segment loyalty club and credit card') + (-245.42 * 'customer segment store mailing list') + (66.98 * 'Average Number Of Products Purchased')

Name	Customer_Segment	Avg_Num_Products_Purchased	Predicted Sales
Alice Dewitt	Loyalty Club Only	4	422.01

"Average Sale Amount" = 303.46 + (-149.36*1) + (281.84*0) + (-245.42*0) + (66.98*4)

For Alice Dewitt, Score_Yes is 0.38, and 422.01*0.38 is 163.61.

Presentation/Visualization

Recommendation:

According to the results of the linear regression model, expected profit \$21,987.43 is greater than \$10,000.00

I recommend the executives of the company to send the catalog to new 250 customers.