Exploratory Data Analysis (EDA) – Descriptive Analysis

Monthly Sales Performance Analysis

Which month achieved the highest total sales, and what was the total sales figure recorded during that period?

1. Overview

This analysis aims to explore and visualize monthly sales trends to uncover insights into the temporal dynamics of business performance. By identifying the month with the highest total sales, stakeholders can make informed strategic decisions such as aligning marketing campaigns, inventory planning, and promotional activities with high-performing periods. Through an engaging bar chart visualization, this report transforms raw transactional data into a powerful narrative of revenue trends across the year.

2. Goal

- To conduct an exploratory data analysis (EDA) focused on monthly sales performance.
- To identify which month generated the highest total sales.
- To quantify the sales volume during that peak period.
- To derive actionable insights that can support data-driven decision-making and improve business strategy.

3. Business Challenge

- Lack of visibility into monthly sales patterns hampers effective planning and resource allocation.
- The business struggles to identify peak and off-peak sales months, limiting its ability to optimize promotional efforts and inventory cycles.
- Without clarity on seasonal sales trends, forecasting, and budgeting remain reactive rather than proactive.
- Decision-makers lack concrete evidence to justify strategic timing for marketing or product rollouts

4. Methodology

- Clean, preprocess, and aggregate sales data by month.
- Visualize monthly sales using an intuitive bar chart to enhance interpretability.
- Highlight the month with the highest total sales and annotate its value for clarity.
- Use visual storytelling and formatted labels to make the insights easily digestible for both technical and non-technical stakeholders.
- Share recommendations based on findings to optimize business planning and improve revenue targeting.

Import necessary libraries

```
In [10]: import pandas as pd
import os
import glob
```

Combine the sales data from all months into a single consolidated CSV file

```
In [12]: folder_path = r"C:\Monthly_Sales"

# Retrieve all CSV files from the folder using glob
all_files = glob.glob(os.path.join(folder_path, "*.csv"))

# All CSV files combined as one DataFrame
all_data = pd.concat([pd.read_csv(file) for file in all_files], ignore_index=True)

# Merged DataFrame saved into a new CSV
output_file = os.path.join(folder_path, "all_data.csv")
all_data.to_csv(output_file, index=False)

print("All files integrated into:", output_file)
```

All files integrated into: C:\Monthly_Sales\all_data.csv

Load the updated DataFrame

```
In [14]: # Skip Blank Rows if present in the dataset

df = pd.read_csv(r'C:\Monthly_Sales\all_data.csv', skip_blank_lines=True)
    df.head()
```

Out[14]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
	0	175667	iPhone	1	700.0	04/24/24 19:12	135 Meadow St, Boston, MA 02215
	1	175668	AA Batteries (4- pack)	1	5.84	04/20/24 13:45	592 4th St, San Francisco, CA 94016
	2	175669	AA Batteries (4- pack)	1	5.84	04/28/24 09:17	632 Park St, Dallas, TX 75001
	3	175670	AA Batteries (4- pack)	2	5.84	04/23/24 14:06	131 Pine St, San Francisco, CA 94016
	4	175671	Samsung Odyssey Monitor	1	409.99	04/23/24 12:13	836 Forest St, Boston, MA 02215

In [15]: df.shape

Out[15]: (10524393, 6)

Data Cleaning Process

Thoroughly clean and standardize the data to eliminate errors, ensure consistency, and build a solid foundation for meaningful insights.

Find and remove rows with NaN values

```
In [18]: df.isna().sum()
Out[18]: Order ID
                              27328
          Product Name
                              27328
          Units Purchased
                              27330
         Unit Price
                              27330
         Order Date
                              27331
          Delivery Address
                              27332
          dtype: int64
In [19]: # If Nan value is present in Order ID and Unit Purchased, it will be impossible to
         # Therefore, drop Nan values in Order ID and Units Purchased.
         df.dropna(subset=['Order ID', 'Units Purchased'], inplace=True)
In [20]: # Check if Nan value is present
         df.isna().sum()
```

```
Out[20]: Order ID 0
Product Name 0
Units Purchased 0
Unit Price 0
Order Date 1
Delivery Address 2
dtype: int64
```

In [21]: # Further check if any NaN values or blank rows are present
blank_rows_na = df[df.isnull().any(axis=1)]
blank_rows_na

Out[21]:

		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
2195	228	Charging Cable	1	14.95	05/24/24 07:04	852 Hickory St, San Francisco, CA 94016	NaN
3001	506	150766	iPhone	1	7	NaN	NaN

Find and remove rows with duplicate values

```
In [23]: # Find duplicate values
         df.duplicated()
Out[23]: 0
                      False
                     False
         1
          2
                     False
          3
                     False
                     False
                      . . .
          10524388
                      True
         10524389
                      True
         10524390
                      True
                      True
         10524391
         10524392
                      True
          Length: 10497063, dtype: bool
In [24]: # Remove duplicated values
         df.drop_duplicates(inplace = True)
In [25]: # Check again for duplicated values
         df.duplicated()
```

```
Out[25]: 0
                      False
          1
                     False
          2
                     False
          3
                     False
                     False
                      . . .
          172530
                     False
          2195228
                     False
                     False
          3001506
          6370083
                     False
          6403571
                     False
          Length: 171546, dtype: bool
```

Verify and fix incorrect data types in the dataset

```
In [27]: # check for data types
         df.dtypes
Out[27]: Order ID
                              object
          Product Name
                              object
          Units Purchased
                             object
          Unit Price
                              object
          Order Date
                              object
                             object
          Delivery Address
          dtype: object
         Fix incorrect data types
         df['Order Date'] = pd.to_datetime(df['Order Date'], format='%m/%d/%y %H:%M', errors
In [29]:
         df['Units Purchased'] = pd. to_numeric(df['Units Purchased'], errors='coerce')
         df['Unit Price'] = pd. to_numeric(df['Unit Price'], errors='coerce')
In [30]: # Verify the presence of NaN values remaining in the columns as a result of using e
         df.isna().sum()
Out[30]: Order ID
                              0
          Product Name
          Units Purchased
                              1
          Unit Price
          Order Date
                              3
          Delivery Address
          dtype: int64
In [31]: | df = df.dropna()
```

Change the data type to optimize memory usage (Optional)

```
In [33]: df['Order ID'] = pd.to_numeric(df['Order ID'], downcast='integer')
df['Product Name'] = df['Product Name'].astype('category')
```

```
df['Units Purchased'] = df['Units Purchased']. astype('int8')
df['Unit Price'] = pd.to_numeric(df['Unit Price'], downcast='float')
df['Delivery Address'] = df['Delivery Address'].astype('category')
```

Expand the dataset with supplementary columns

Add month column

```
In [36]: df['Month'] = df['Order Date'].dt.month
df
```

Out[36]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4
	•••							
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10
	6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8

171543 rows × 7 columns

Out[37]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	
	•••								
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	Septer
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	Septer
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	Septer
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	Oct

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ⁽
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	Αι

171543 rows × 8 columns

Add week day column

```
In [39]: df['Day of Week'] = df['Order Date'].dt.strftime('%a')
df
```

Out	[39]	1

]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ₀ N
_	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	
	•••								
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	Septer
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	Septer
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	Septer
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	Oct

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M. N
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	Αι

171543 rows × 9 columns

Add hour column

```
In [41]: df['Hour'] = df['Order Date'].dt.hour
df
```

<u> </u>		L 44 .	1
0	IIT.	1 41 1	

]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ₀ N
_	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	
	•••								
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	Septer
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	Septer
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	Septer
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	Oct

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ₁
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	Αι

171543 rows × 10 columns

Add city column

```
In [43]: def city(address):
    return address.split(",")[1].strip(" ")

def state_abbrev(address):
    return address.split(",")[2].split(" ")[1]

df['City'] = df['Delivery Address'].apply(lambda x: f"{city(x)} ({state_abbrev(x)})
    df.head()
```

ıt[43]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Day of Week
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	April	Wed
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	April	Sat
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	April	Sun
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	April	Tue
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	April	Tue

Organize Data by Order Date Chronologically and Reindex

```
In [45]: df = df.sort_values(by = 'Order Date')
df
```

Out[45]:

•		Order Product ID Name		Units Purchased Unit Pr		Order Date	Delivery Address	Month	Month Name
	78282	160155	Alienware Monitor	1	400.989990	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January
	68761	151041	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January
	64303	146765	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January
	63092	145617	Amana Washing Machine	1	600.000000	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January
	74502	156535	iPhone	1	700.000000	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January
	•••								
	44457	297748	iPhone	1	700.000000	2025-01-01 02:37:00	258 Forest St, Los Angeles, CA 90001	1	January
	30663	284606	Bose SoundSport Headphones	1	99.989998	2025-01-01 02:50:00	211 Johnson St, Boston, MA 02215	1	January
	49246	302330	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:03:00	665 6th St, San Francisco, CA 94016	1	January
	30770	284711	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:19:00	250 8th St, San Francisco, CA 94016	1	January

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name
50619	303626	USB-C Charging Cable	3	11.950000	2025-01-01 04:43:00	651 Lakeview St, Dallas, TX 75001	1	January

171543 rows × 11 columns

Out[46]:

•	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Mont Nam
0	160155	Alienware Monitor	1	400.989990	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	Januar
1	151041	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	Januar
2	146765	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	Januar
3	145617	Amana Washing Machine	1	600.000000	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	Januar
4	156535	iPhone	1	700.000000	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	Januar
•••								
171538	297748	iPhone	1	700.000000	2025-01-01 02:37:00	258 Forest St, Los Angeles, CA 90001	1	Januar
171539	284606	Bose SoundSport Headphones	1	99.989998	2025-01-01 02:50:00	211 Johnson St, Boston, MA 02215	1	Januar
171540	302330	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:03:00	665 6th St, San Francisco, CA 94016	1	Januar
171541	284711	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:19:00	250 8th St, San Francisco, CA 94016	1	Januar

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Mont Nam
171542	303626	USB-C Charging Cable	3	11.950000	2025-01-01 04:43:00	651 Lakeview St, Dallas, TX 75001	1	Januar

171543 rows × 11 columns

Add Total Sales column

```
In [48]: df['Total Sales'] = df['Units Purchased'] * df['Unit Price']
df.head()
```

Out[48]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Day of Week
	0	160155	Alienware Monitor	1	400.98999	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January	Mon
	1	151041	AAA Batteries (4-pack)	1	4.99000	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January	Mon
	2	146765	AAA Batteries (4-pack)	1	4.99000	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January	Mon
	3	145617	Amana Washing Machine	1	600.00000	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January	Mon
	4	156535	iPhone	1	700.00000	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January	Mon

Format Unit Price and Total Sales to 2 decimal places

```
In [50]: df['Unit Price'] = df['Unit Price'].apply(lambda x: "%.2f" % x)
```

In [54]: df.dtypes

```
In [51]: df['Total Sales'] = df['Total Sales'].apply(lambda x: "%.2f" % x)
df.head()
```

Out[51]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Day of Week	Нс
	0	160155	Alienware Monitor	1	400.99	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January	Mon	
	1	151041	AAA Batteries (4-pack)	1	4.99	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January	Mon	
	2	146765	AAA Batteries (4-pack)	1	4.99	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January	Mon	
	3	145617	Amana Washing Machine	1	600.00	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January	Mon	
	4	156535	iPhone	1	700.00	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January	Mon	

Format Unit Price and Total Sales to 2 decimal places

```
In [53]: df['Unit Price'] = pd.to_numeric(df['Unit Price'])
    df['Total Sales'] = pd.to_numeric(df['Total Sales'])
```

```
Out[54]: Order ID
                                     int32
         Product Name
                                  category
         Units Purchased
                                      int8
         Unit Price
                                   float64
                          datetime64[ns]
         Order Date
         Delivery Address category
         Month
                                     int32
         Month Name
                                    object
         Day of Week
                                    object
         Hour
                                     int32
         City
                                    object
         Total Sales
                                   float64
         dtype: object
```

Determine which month recorded the highest total sales, and provide the corresponding sales figure for that period.

```
monthly_sales = df.groupby('Month')['Total Sales'].sum()
         monthly_sales
Out[56]: Month
         1
               4639312.17
               1235017.71
               2358783.67
               2619873.83
         5
               2657978.27
               3408613.54
         6
         7
               2990038.42
               3143681.87
         9
               2368652.05
         10
               1760182.98
         11
               5743349.24
         12
               6404121.28
         Name: Total Sales, dtype: float64
```

Plot Monthly Sales

```
import matplotlib.pyplot as plt
import matplotlib.ticker as tick

# Grouping by Month, ensuring Month is treated as a string or integer and not datet
monthly_sales = df.groupby(df['Month Name'])['Total Sales'].sum()

# Reorder the months
month_order = ['January', 'February', 'March','April','May', 'June', 'July', 'Augus
monthly_sales = monthly_sales.reindex(month_order)

# Plotting
ax = monthly_sales.plot(kind='bar', title="Monthly Sales")

ax.set_xlabel('Month number')
ax.set_ylabel('Total Sales in USD ($)')
```

```
# Format y-axis with comma separators
ax.get_yaxis().set_major_formatter(plt.FuncFormatter(lambda x, _: f'{int(x):,}'))
plt.xticks(rotation=90)
plt.grid(linewidth=0.1)
plt.savefig(r"C:/Users/DELL/OneDrive - COVENANT UNIVERSITY/Desktop/1/Monthly Sales
plt.show()
```


Key Insights

- 1. December recorded the highest total sales, with a revenue of \$6,404,121.28, making it the most profitable month of the year.
- 2. November followed as the second-highest month with \$5,743,349.24, indicating a strong year-end sales trend.
- 3. February was the weakest month, with the lowest total sales of \$1,235,017.71.

A noticeable sales surge begins from June onward, suggesting a buildup toward the end-of-

year peak.

Strategic Recommendations

 Capitalize on Q4 sales momentum: Invest heavily in marketing, promotions, and inventory during November and December,

as these months are proven high performers—likely driven by holidays, year-end bonuses, and seasonal demand.

- 2. Launch pre-holiday campaigns starting Q3 (around July–September) to create demand early and ride the momentum.
- 3. Investigate low performance in February: Look into potential causes

(example, post-holiday fatigue, customer spending behavior, or operational lags) and explore strategies like targeted promotions or loyalty incentives to boost engagement.

4. Use seasonality to guide forecasting: Align production, staffing, and budget planning with high

and low-performing months for optimized operations and cost efficiency.