Uygulama

Sayısal Analiz

- 1. Polinomlar
- 2. Enterpolasyon
- 3. Grafikler

Polinomlar

Polinom Girişi

Matlab'de polinomlar katsayılarının vektörü ile tanımlanır.

Örnek: $P(x) = -6x^5 + 4x^3 - 2x^2 + 3$ polinomunu tanıtınız.

$$>>P = [-6 0 4 -2 0 3]$$

Dikkat edilirse x⁴ ve x¹ mertebeli terimlerin katsayılarının 0 olarak girildiği görülebilir.

Polinomun köklerinin bulunması

Yukarıda tanımlanan P polinomunun kökleri roots komutu ile bulunabilir.

```
>> r = roots(P)
r =
0.9490
0.3643 + 0.7341i
0.3643 - 0.7341i
-0.8388 + 0.2844i
-0.8388 - 0.2844i
P polinomumun ilk kökü reel, diğer kökleri ise karmaşıktır.
```

Kökleri bilinen bir polinomun oluşturulması

Kökleri [-1 1] olan polinomu poly fonksiyonu ile tanımlayalım.

```
>> poly([-1 1])
ans =
1 \ 0 \ -1 \ \rightarrow \ (x^2+0x-1)
```

Polinomun belli bir noktada değerinin bulunması

P polinomunun 2 noktasındaki değerini bulalım. Bu amaçla polyval fonksiyonu kullanılacaktır.

$$P(x) = -6x^5 + 4x^3 - 2x^2 + 3 \rightarrow P = [-6 \ 0 \ 4 \ -2 \ 0 \ 3]$$

```
>> polyval(P,2)
ans =
-165
```

Polinomun bir tanım aralığında değerlerinin bulunması

P polinomunun 1 ile 5 arasındaki değerlerini hesaplayalım.

```
>> polyval(P,1:5)
ans =
-1 -165 -1365 -5917 -18297
```

Polinomun türevinin alınması

P polinomunun türevini polyder fonksiyonu ile hesaplayalım.

```
>> polyder(P)
ans =
```

-30 0 12 -4 0

Dolayısıyla, P polinomunun türevi : $-30x^4+0x^3+12x^2-4x+0 \rightarrow -30x^4+12x^2-4x$

Polinomun integralinin alınması

P polinomunun integralini polyint fonksiyonu ile hesaplayalım. İntegrasyon sabiti 3 ise;

```
>> polyint(P,3)
```

ans =

$$-1\ 0\ 1\ -0.66667\ 0\ 3\ 3\ \rightarrow -x^6 + 0x^5 + x^4 - 0.67x^3 + 0x^2 + 3x + 3$$

Dolayısıyla, P polinomunun integrasyon sabitinin 3 olması durumunda integrali:

$$-x^6+x^4-0.67x^3+3x+3$$

İki polinomun çarpımı

```
(x+1)(x^2) çarpımını conv fonksiyonu ile hesaplayalım.

>> conv([1 1],[1 0 0])

ans =

1 1 0 0 \rightarrow (x^3+x^2)
```

Polinom Bölümü

```
x^3+x^2+1 polinomunu x^2'ye deconv fonksiyonu ile bölelim.
```

```
>> [a,b] = deconv([1 1 0 1],[1 0 0])
a =
1 1
b =
0 0 0 1
```

Burada a bölümü ve b ise kalanı göstermektedir.

Aradeğer bulma hesabı (Enterpolasyon)

Bir boyutlu aradeğer bulma: interp1()

Türkiye'nin 1900 ile 1990 arasında 10 yılda bir tekrarlanan nüfus sayımının sonuçları **t** ve **p** vektörleriyle verilmiştir.

```
>>t = 1900:10:1990;
>>p = [75.99591.972105.711123.203131.669150.697179.323203.212226.505249.633];
1975 yılında Türkiye'nin nüfusunu hesaplayınız.
>=interp1(t,p,1975)
ans =
214.8585
Çoğunlukla yukarıdaki tipteki bilgiler tek tabloda özetlenir. Aynı işlemi aşağıda tekrar
edelim.
>>tab =
1950 150.697
1960 179.323
```

1990 249.633

>>p = interp1(tab(:,1),tab(:,2),1975)

1970 203.212

1980 226.505

p =

214.8585

Ara değer hesabında kullanılan yöntemler:

linear : Doğrusal ara değer bulmakta kullanılır.

nearest: Yakın olan değeri seçer.

spline : Ara değer cubic spline yöntemi ile hesaplanır.

cubic : Ara değer cubic Hermite yöntemi ile hesaplanır

Şimdi 1900-1990 arası nüfus artışının grafiğini çizdirelim.

```
>>x = 1900:1:2000;
```

>>y = interp1(t,p,x,'spline');

>>plot(t,p,'o',x,y)

Örnek olarak, 1990 ile 2000 yılları arasında nüfus artışının grafiğini çizdirelim.

>>x = 1900:1:2000;

>>y = interp1(t,p,x,'spline');

>>plot(t,p,'o',x,y) 300

İki boyutlu interpolasyon

 $\{x_k, y_l\}$ noktaları için , $1 \le k \le m$, $1 \le l \le n$ aralığında z_{ki} , verildiğinde z = f(x, y)interpolasyon denklemi $z_i = interp2(x, y, z, x_i, y_i, 'method')$ matlab fonksiyonu ile bulunabilir.

Metotlar:

Örnek:

Ornek: $z = \sin(x^2 + y^2) \text{ fonksiyonundan } -1 \le x \le 1, -1 \le y \le 1 \text{ aralıgında data üreterek 'linear' ve atlab the 'cubic' metotlarla interpolasyon yapalım,}$ >> [x, y] = meshgrid(-1:.25:1); $>> z = \sin(x.^2 + y.^2);$

$$>>z = \sin(x.^2 + y.^2)$$

$$>>[x_i, y_i] = meshgrid(-1:.05:1);$$

$$>> z_i = interp2(x, y, z, x_i, y_i, 'linear');$$

Minimum kareler yöntemiyle polinoma uydurma, polyfit

Verilen x ve y değerlerinden 3. dereceden bir polinom geçirelim.

```
>> x=[-2 -1 1 3];

>>y=[16 1 0 -2];

>> polyfit(x,y,3) %% Burada 3 polinomun derecesini vermektedir.

ans =

-0.9917 2.8500 0.4917 -2.3500 $\rightarrow$ -0.9917x^3 + 2.85x^2 + 0.4917x - 2.35
```

Grafik Çizdirme

Kartezyen Koordinatlarında 2 Boyutlu Çizim

 $[0\ 2\pi]$ tanım aralığında $\sin(\theta)$ grafiğini çizelim.

>> plot(0:0.01:2*pi,sin(0:0.01:2*pi))

Bu aşamadada grafiğin x eksenini düzenleyelim. İlk aşamada her pi/2 noktasına bir **tik** atalım ve

- >> set(gca,'XTick',0:pi/2:2*pi)
- $>> \operatorname{set}(\operatorname{gca}, 'X\operatorname{TickLabel}', \{'0', '\operatorname{pi}/2', '\operatorname{pi}', '3\operatorname{pi}/2', '2\operatorname{pi}'\})$

Grafiğin ve eksenlerinin isimlerini yerleştirelim.

Matlab'de kullanılan semboller bu örneğin sonundaki tabloda verilmiştir.

>>xlabel('0 \leq \Theta \leq 2\pi')

>>Title('sin(\Theta)')

text komutu ile Grafiğin üzerinde pi/4 noktasını işaretleyelim.

>>Text(pi/4,sin(pi/4),'\leftarrow sin(\pi\div4)', 'HorizontalAlignment','left')

Şimdi grid çizgilerini yerleştirelim.

>> grid

Bu grafiğin üzerine $\cos(\theta)$ grafiğini yeşil renkte 2 kalınlığında kesikli çizgiler ile çizdirelim.

- >>hold on
- >>plot(0:0.01:2*pi,cos(0:0.01:2*pi),'--g','Linewidth',2)
- >>hold off

Matlab'de Sembollerin Kullanımı

Character Sequence	Symbol	Character Sequence	Symbol	Character Sequence	Symbol
\alpha	α	\upsilon	υ	\sim	~
\beta	β.	\phi	ф	\ leq	≤
\gamma	γ	\chi	χ	\infty	∞
\delta	δ	\psi	Ψ	\clubsuit	*
\epsilon	3	\omega	ω	\diamondsuit	•
\zeta	ζ	\ Gamma	Γ	\heartsuit	•
\eta	η	\Delta	Δ	\spadesuit	•
\theta	θ	\Theta	Θ	\leftrightarrow	\leftrightarrow
\vartheta	Ð	\ Lambda	Λ	\leftarrow	←
\iota	ι	\Xi	Ξ	\uparrow	↑
\kappa	κ	\Pi	П	\rightarrow	\rightarrow
\lambda	λ	\Sigma	Σ	\downarrow	↓
\mu	Ч	\Upsilon	Y	\circ	0
\nu	ν	\Phi	Φ	\ pm	±
\xi	ξ	\Psi	Ψ	\geq	≥
\pi	π	\Omega	Ω	\propto	œ
\rho	ρ	\forall	A	\partial	д
\sigma	σ	\exists	3	\bullet	•
\varsigma	ς	\ni	э	\div	÷
\tau	τ	\cong	≅	\neq	≠
\equiv	=	\approx	≈	\aleph	8
\ Im	3	\ Re	भ	\wp	Ø
\otimes	8	\oplus	⊕	\oslash	Ø
\cap	\cap	\cup	U	\supseteq	⊇

Line Style Specifiers

Specifier	Line Style	
-	Solid line (default)	
	Dashed line	
:	Dotted line	
	Dash-dot line	

Çizgi ve Nokta biçimleme komutları

Marker Specifiers

Specifier	Marker Type		
+	Plus sign		
0	Circle		
*	Asterisk		
	Point		
х	Cross		
'square' Ors	Square		
'diamond' Ord	Diamond		
^	Upward-pointing triangle		
v	Downward-pointing triangle		
>	Right-pointing triangle		
<	Left-pointing triangle		
'pentagram'orp	Five-pointed star (pentagram)		
'hexagram'orh	Six-pointed star (hexagram)		

Color Specifiers

Specifier	Color
r	Red
g	Green
b	Blue
С	Cyan
m	Magenta
У	Yellow
k	Black
Ψ	White

Biçimleme:

örnek:

Sin(x), Sin(x-pi/2) ve Sin(x-pi) fonksiyonlarının grafiklerini değişik çizgi ve nokta biçimleri kullanarak çiziniz.

Lejantda fonksiyonların isimlerini gösterin.

Polar Koordinatlarda 2 Boyutlu Çizim

 $r = \sin 2\theta$ nın grafiğini çizdirelim.

>>theta = linspace(0,2*pi)

>>r = $\sin(2*$ theta)

>>polar(r,theta)

3 boyutlu çizgi grafiği

3 boyutlu bir helis çizdirelim

- >>t = 0:pi/50:10*pi;
- >>plot3(sin(t),cos(t),t)
- >>grid on
- >>axis square

3 boyutlu ağ grafiği

 $z = xe^{-x^2 - y^2}$ fonksiyonun ağ grafiğini çizdirelim.

>> mesh(z)

3 boyutlu yüzey grafiği

 $z = xe^{-x^2 - y^2}$ fonksiyonun yüzey grafiğini çizdirelim.

3 boyutlu perde grafiği

 $z = xe^{-x^2 - y^2}$ fonksiyonun perde grafiğini çizdirelim.

 $>> z = x .* exp(-x.^2 - y.^2);$

>> meshz(z)

 $z = xe^{-x^2 - y^2}$ fonksiyonun kontur grafiğini çizdirelim.

Matlab Uygulama

26

200

100

100

İyi Çalışmalar...