ECE 467: Introduction VLSI Design

Project: Multiplication and Accumulation (MAC) Datapath for Neural Networks

Amit Ranjan Trivedi

School of Electrical and Computer Engineering
University of Illinois at Chicago

System Goal

System Level Components

- High level components
 - Inverter chain and universal gates
 - Adder
 - Multiplier
 - Register
 - SRAM

TBD based on sequence in which topics are covered in lecture

Specifications

- Technology: 45nm
- Nominal supply voltage: 0.9V-1.2V (choose appropriately to optimize the performance)
 - Targeted clock frequency: 1 GHz
- Aim-
 - Achieve functionality
 - Supply Voltage should be same for all the system blocks
 - Apply techniques learnt in the course to maximize frequency
 - Low power design: apply different power saving techniques to make your design energy efficient

Transistor Specifications

 VTG: Regular threshold voltage transistor should be used for project design

Submission Schedule

- Project Report I [5% of the total]: October 27th
- Project Report II [5% of the total]: November 17th
- Final Report [15% of the total]: December 9th
- Classroom Presentation [5% of the total]: Last week of classes

All report are due by the midnight of the due date

Tentative Project Plan

- Part-1 (Schematic Design)
 - Inverter chain design and NAND, NOR, XOR implementation (including symbols)
 - Adder
 - Flip/Flop design
 - Multiplier design
 - SRAM design
- Part-2
 - System level integration

Tentative Submission Dates

- Reports are due biweekly. Final grades for lab will be cumulative of these reports.
- Classroom presentations near the end of semester [TBD]
- This document will be updated biweekly.
 Please check this document regularly.

Project Report 1

- Design of Inverter Chain to drive larger loads:
 - Memory blocks are often located far from the processing elements. Therefore, long interconnects are required for data transmission.
 - Using long interconnects leads to significant capacitive load at PIPO's output.
 - To drive larger loads efficiently, we use inverter chains

Project Report 1(contd..)

 In this sub-project, we will be designing an inverter chain to efficiently drive larger loads.

• Project Description:

- Let the input capacitance of a minimum sized inverter be C1=10fF
- Determine the number of appropriately sized inverter stages required to drive a load of 128C1=1.28pF
 - Refer to the lecture notes on sizing of inverter chain

Project Description(contd..)

Number of stages (N)	Upsizing Factor (u)	Propagation delay (t _p)
1		
2		
3		
4		
5		

Project Report 1

- Results required:
 - Delay characteristics for different N (Cadence plots) and complete the given table
 - Delay vs. Number of stages (N)
 - Delay vs. Supply Voltage (for optimal N)
 - Delay vs. Temperature (for optimal N)
 - Leakage current vs. Supply Voltage & Temperature (for optimal N)
 - Optimize the body biasing of all the NMOS transistors to minimize delay and plot Delay vs. V_{BS} (V_{BS} ranging 0.25 to 0.25) (for optimal N) [All the NMOS will have same V_{BS}]

Additional Assignment

- Create a library of standard cells including 2-input NAND & NOR, 3-input NAND & NOR and 2-input EXOR [size these gates to match t_{phl} and t_{plh} characteristics with that of a minimum sized inverter. For all designs, $L_p=L_n=L_{min}=45$ nm. Minimum sized inverter: $W_{min}=2$ XL $_{min}$, $W_n=W_{min}$, $W_p=2$ X W_{min}]
- Create two more variants of the above setup as follows:
 - To match characteristics of an inverter upsized by a factor
 2
 - To match characteristics of an inverter upsized by a factor
 3

Some tips

- Label everything appropriately (nodes, wires, instances), no default labels
- Minimum size inverter can be named as INVx1, and twice strength one as INVx2. Use similar naming convention for the other gates too.
- Write one-line description of the circuit in the schematic view
- Schematic should be easy to follow

Additional Assignment (contd..)

Results Required:

- Delay vs. Supply Voltage
- Delay vs. Temperature
- Leakage current vs. Supply Voltage & Temperature
- Optimize the body biasing of all the NMOS transistors to minimize delay and plot Delay vs. V_{BS} (V_{B} ranging -0.25 to 0.25)[All the NMOS will have same V_{R}]

Project Report 2

- Design 1-bit Full adder using
 - Architecture of your choice (design your schematic using expression in slides 6 & 7 of Adders lecture)
 - Static CMOS Full Adder architecture (Refer to slide7)
 - Transmission Gate Based Full Adder architecture (Refer slide 11 & 12)

Project Report 2

- Results required for adder design
 - Compare the area and delay performance of different Full Adder architectures and select the best architecture to work with
 - Delay vs. Supply Voltage
 - Delay vs. Temperature
 - Leakage current vs. Supply Voltage and Temperature

Project Report 2 (contd.)

- Using the chosen Full Adder implementation style
 - Design an 8-bit Ripple Carry Adder (Refer Slide 15)
 - Design an 8-bit Carry Select Adder (Refer Slide 37)
 - Optimize one of the above designs to achieve a worst-case delay of <500ps (i.e, design to retain functionality when Cin is switched at a frequency > 1.5GHz)

Project Report 2

- Results required
 - Obtain proper functionality
 - Compare the area and delay performance of the two architectures
 - Determine and state the input combination for worst-case delay
 - Worst-Case Delay vs. Supply Voltage
 - Worst-Case Delay vs. Temperature
 - Leakage current vs. Supply Voltage and Temperature

- Design an SRAM cell
 - Design an 6T SRAM cell
 - Read Noise Margin ≥ 30% of VDD
 - Write Noise Margin ≥ 30% of VDD
 - Required results
 - Clearly show the design steps
 - Power Consumption vs. VDD and Temperature
 - Read and Write Noise Margin vs. VDD
 - Read and Write Noise Margin vs. Temperature

- Implement an array of 32x32 SRAM cells using 6T SRAM cells
- Design write circuitry and demonstrate data write ability of your design
- Design a row and column decoder to read 4-bit data while operating at clock frequency of >1GHz.
- Note: For read operation, initialize array contents randomly or to a fixed value.
- Consider bitline wire capacitance and word line wire capacitance to be 40fF (Does not scale with number of SRAM cells)
- Delay of the row and column decoder should be $< T_{CLK}/2$

SRAM timing considerations

- Results Required:
 - Use the modular design and demonstrate reliable read functionality
 - Demonstrate reliable write functionality
 - Power Consumption vs. VDD & Temperature

- You are free to adopt any multiplier architecture
- Report the chosen architecture
- Worst-case delay should be less than 1 ns
- Results Required:
 - Show the modular implementation of multiplier
 - Demonstrate proper functionality
 - Plot Delay vs. Supply voltage
 - Plot Delay vs. Temperature

- You are free to choose any design style for D
 FFs
- Setup time < 15% of CLK period
- CLK-Q delay < 10% of CLK period
- Do not unnecessarily upsize the devices in the latch, it will increase power dissipation
 - Plot CLK-Q delay vs. Supply Voltage
 - Plot CLK-Q delay vs. Temperature
 - Plot Power consumption vs. Clock Frequency

- Using the D FFs, implement parallel-inparallel-out (PIPO) registers
- Implement 4-bit and 9-bit PIPO registers
- Report the modular design and demonstrate proper functionality for a CLK period <1ns
 - Plot Power Consumption vs. Supply Voltage
 - Plot Power Consumption vs. CLK period
 - Plot Max. operating frequency vs. Supply Voltage

Final Report Template

- Final report is the most critical part of this project
- Find the template of final report on BB
- Final report should combine the summary of the entire project
- Final report should be professionally written and should include properly drawn figure (no screenshots from Cadence, draw schematic figures manually)