Math 624: Homework 3

- 1. Prove Proposition 1.6 in Chaper 6 of the textbook.
- 2. Let [0,1] equipped with \mathcal{M} , the σ -algebra of Lebesgue measurable subsets of [0,1]. Let m denote the Lebesgue measure on [0,1] and let μ denote the counting measure on [0,1], i.e. for $E \subset [0,1]$, $\mu(E)$ is the number of elements in E. Let $D = \{(x,x), x \in [0,1]\}$ denote the diagonal in $[0,1] \times [0,1]$. Show that $\int \int \chi_D dm d\mu$, $\int \int \chi_D d\mu dm$, and $\int \chi_D d(m \times \mu)$ are all unequal. Explain why this does not contradict Fubini Theorem.

Hint: To compute $\int \chi_D d(m \times \mu)$ go back to the definition of $m \times \mu$.

- 3. Let (X, \mathcal{M}, μ) be an arbitrary measure space. Let Y be a countable set, $\mathcal{N} = \mathcal{P}(Y)$ and let ν be any σ -finite measure on Y, e.g., the counting measure. Show that the Fubini-Tonelli Theorem is valid in this case.
- 4. Exercise 14, p. 315
- 5. Let $(X_i, \mathcal{M}_i, \mu_i)$, $i = 1, 2, 3, \cdots$ be a countable collection of *finite* measure spaces with $\mu_i(X_i) = 1$. Consider the Cartesian product $X = \prod_{i=1}^{\infty} X_i$. Each point in X is represented by a sequence $x = \{x_i\}$ with $x_i \in X_i$. We say that the set E is a cylinder if E has the form

$$E = \{x = \{x_i\}; x_i \in E_i \in \mathcal{M}_i \text{ and } E_i = X_i \text{ for all but finitely many } i\}.$$

For a cylinder set define $\mu_0(E) = \prod_{j=1}^{\infty} \mu_i(E_i)$. It is possible to show that μ_0 extends to a unique finite measure on X, μ , on X which is called the product measure. The proof of this fact is quite technical and you can simply accept it here (see the probability class). Such spaces are a source of good examples: do Exercise 23, (a) and (b), p. 318.

- 6. Exercise 12, p. 315 (we need this for the construction of polar coordinates).
- 7. Exercise 5, p. 313. Deduce from this fact the amusing fact that the volume of the d-dimensional ball of radius 1 tends to 0 as $d \to \infty$. Recall that the Gamma function $\Gamma(x)$ is given, for $x \ge 0$, by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

and that by integration parts you can prove that $\Gamma(x+1) = x\Gamma(x)$.

8. Let $f(x) = x_1^{\alpha_1} \cdots x_d^{\alpha_d}$ where α_i , $i = 1, \dots, n$ are nonnegative integers, i.e. f(x) is a monomial. Proceeding as in the previous show that $\int f d\sigma = 0$ if any α_j is odd, and if all α_j 's are even then, with $\beta_j = \frac{\alpha_j + 1}{2}$,

$$\int f \, d\sigma \, = \, \frac{2\Gamma(\beta_1) \cdots \Gamma(\beta_n)}{\Gamma(\beta_1 + \beta_n)} \, .$$