Convolutional Neural Network

SC-yjtian

2019.09.10

Convolution

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

n x n image

fxf filter

n-f+1 x n-f+1

Padding

Valid: no padding

• Same: output size = input size

$$n+2p-f+1 = n$$

Stride

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Conv layer

$$Z^1 = W^1 \cdot a^0 + b^1$$
$$a^1 = g(Z^1)$$

Test

One conv layer:

5x5x3 input size, 10 filters that are 3x3x3, padding 1, stride 2

how many parameters? output size?

Pooling layer

Max Pooling

1	3	2	1	
2	9	1	1	
1	3	2	3	
5	6	1	2	

	9	2
•	6	3

$$f = 2$$

$$s = 2$$

$$p = 0$$

Average Pooling

Fully Connected layer

CNN Example

CNN Example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	3,072	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208
POOL1	(14,14,8)	1,568	0
CONV2 (f=5, s=1)	(10,10,16)	1,600	416
POOL2	(5,5,16)	400	0
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

CNN Train

Training set $(x^{(1)}, y^{(1)}) \dots (x^{(m)}, y^{(m)})$.

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J

CNN

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Exercise

Code: https://github.com/Tianyijian/nndl-exercise

tf.nn.conv2d

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

除去name参数用以指定该操作的name,与方法有关的一共五个参数:

第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch,in_height,in_width,in_channels]这样的shape,具体含义是[训练时一个batch的图片数量,图片高度,图片宽度,图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels,out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维

第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4

第四个参数padding: string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)

第五个参数: use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

结果返回一个Tensor,这个输出,就是我们常说的feature map

tf.nn.max_pool

tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做 池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride, stride, 1]

第四个参数padding:和卷积类似,可以取'VALID'或者'SAME'

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

Padding

X: 2x3 filter: 2x2

• Valid: no padding, remove

1	2	3
4	5	6

$$\lceil \frac{(W-F+1)}{S} \rceil$$

Same: padding, add

1	2	3	0
4	5	6	0

$$\lceil \frac{W}{S} \rceil$$

Thank You