Chapter

1

FUNCTIONS & LIMITS

OBJECTIVE

(1)	If y is	If y is expressed in terms of a variable "x" as $y = f(x)$, called (Lahore Board 2005)								
	(a)	Implict function	(b)	Explicit function						
	(c)	Linear function	(d)	None						
(2)	$x = at^2$	2, y = 2at represents		(Lahore Board 2007)						
	(a)	Circle	(b)	Ellipse						
	(c)	Parabola	(d)	Hyperbola						
(3)	If f: X	→ Y, then Y is called								
	(a)	Domain	(b)	Range						
	(c)	Codomain	(d)	None of these						
(4)	$\lim_{x \to a}$	$\frac{x^3 - a^3}{x - a} = \underline{\hspace{1cm}}$		(Lahore Board 2005, 2009)						
	(a)	Undefined	(b)	$3a^2$						
	(c)	a^2	(d)	0						
(5)	A fund	ction f(x) is said to be continue	ous at x	= c if						
	(a)	f(c) is defined	(b)	$ Lim x \to c f(x) exists $						
	(c)	$\lim_{x \to c} f(x) = f(c)$	(d)	All are correct (Lahore Board 2013)						
(6)	A fund	on $I: x \to x$ defined as $I(x) = x$ is called								
	(a)	Even function	(b)	Linear function						
	(c)	Identity function	(d)	Constant function						
(7)	If f: X	$X \to Y$ is function, then $y = f(x)$	$(x), x \in \Sigma$	X called (Lahore Board 2005)						
	(a)	Domain	(b)	Co-domain						

(c) Range

(d) None of these

(8) If $\frac{f(x) + f(-x)}{2} = 0$, then f(x) is _____

(a) Even

(b) Odd

(c) Periodic

(d) Explicit

(9) If $f(x) = \frac{x}{x^2 - 4}$ f(x) is not defined at x = _____

(a) x = 4

(b) x = 0

(c) x = 2, -2

(d) 1

(10) $x \to 0$ $\frac{3^{3x} - 1}{x} =$ _____

(a) ℓ n3

(b) ℓn9

(c) ∞

(d) ℓn27

(11) Range of constant function is _____

(a) Null Set

(b) R

(c) Single ton set

(d) $[0,\infty)$

(12) $f(x) = \sin x + \cos x$ is _____ function.

(a) Even

(b) Odd

(c) Neither even nor odd

(13) $\sin h^{-1} x =$ _____

(Lahore Board 2009)

(a) $\log (x + \sqrt{x^2 + 1})$

(b) $\log (x - \sqrt{x^2 + 1})$

(c) $\log (x + \sqrt{x^2 - 1})$

(d) None

(14) The perimeter P of a square as a function of its Area A is (Lahore Board 2008, 2011)

(a) $P = \sqrt{A}$

(b) $P = 2\sqrt{A}$

(c) $P = 3\sqrt{A}$

(d) $P = 4\sqrt{A}$

(15) The area of circumscribed n-sides Polygon as $n \to \infty$ approaches area of _____.

(a) Square

(b) Polygon

(c) Circle

(d) Rectangle

(16) $\lim_{x \to \infty} \frac{a}{x^p} = \underline{\hspace{1cm}}$

(d)

Area of circle of unit radius is _____

 ∞

(Gujranwala Board 2006)

(c)

(25)

				,	
	(a)	1	(b)	$\sqrt{2}$	
	(c)	3.142	(d)	None of these	
(26)	A fun	ction in which the variable ap	ppears as	s exponent, is called function.	
	(a)	Even function	(b)	Odd function	
	(c)	Logarithmic function	(d)	None	
(27)	$\lim_{x \to \infty}$	•			
	(a)	∞	(b)	1	
	(c)	0	(d)	-1	
(28)	A fun	ction f(x) is said to be odd if	$f(-x) = _{-}$		
	(a)	f(x)	(b)	-f(x)	
	(c)	у	(d)	None	
(29)	Explic	cit form of $y - x^2 - 2x + 1 = 0$	0 is	4	
	(a)	$y = x^2 + 2x - 1$	(b)	$y - x^2 = 2x - 1$	
	(c)	$2x + x^2 = y + 1$	(d)	None	
(30)	If a fun	action $f(x)$ is not continuous at $x = 0$	e, then it is	s called at c. <i>(Gujranwala Board 200</i>	17
	(a)	Linear	(b)	Discontinous	
	(c)	Explicit	(d)	None	
(31)	f(x) =	x cot x is		(Lahore Board 2006)	
	(a)	Linear function	(b)	Quadratic function	
	(c)	Odd function	(d)	Even function	
(32)	If $f: \Sigma$	$X \to Y$ is function, then $y \in Y$	ed (Lahore Board 2006)	1	
	(a)	Dependent variable of f	(b)	Independent variable of f	
	(c)	Value of f	(d)	Range of f	
(33)	$ \lim_{x \to 1} $	$\frac{x^3 - x}{x + 1} = \underline{\hspace{1cm}}$			
	(a)	0	(b)	1	
	(c)	2	(d)	3	
(34)	The v	alue of K for which the funct	ion f(x)	$= \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ k & x = 0 \end{cases}$ is continuous is	

(Lahore Board 2006)

(a)

(b) 1

5

(c) -1 (d) -2

 $\theta \overset{Lim}{\to} 0 \ \frac{\sin 7\theta}{\theta} =$ (35)

(Lahore Board 2006)

(a)

7 (b)

(c)

None (d)

The linear function f(x) = ax + b is an identity function if (Gujranwala Board 2007) (36)

a = 0, b = 1(a)

(b) a = 1, b = 0

(c) a = 1 = b

a = 0 = b(d)

 $\theta \to 0$ $\frac{\sin \theta}{\theta} = 1$ if θ is measured in

Degree (a)

Radian (b)

Clockwise (c)

(d) Anticlockwise

(38)A function $f: X \to Y$ defined by $f(x) = C \forall x \in X$, $c \in Y$ has range equal to ___

(Gujranwala Board 2007)

 $\Re - \{c\}$ (a)

 \Re (b)

(c)

(d) {c}

 $\lim_{x \to \infty} -f(x) \neq \lim_{x \to \infty} +f(x)$, then f(x) is When (39)

> Continuous at C (a)

(b) $x \rightarrow c$ f(x) exists

Lim

 $x \rightarrow c$ f(x) does not exist (c)

none of these (d)

If the degree of a polynomial function is _____, then the function is called linear (40)function.

(a) One

Two (b)

(d) none

(Lahore Board 2007)

(b) (d)

(a) sin hx

(b) cosec hx

(c) tan hx

- (d) cot hx
- (43) Domain of $x^2 + y^2 = 1$ is _____
 - (a) [-1, 1]

(b) IR

(c) $[0, \infty]$

- (d) $[-\infty, 0]$
- (44) Range of $f(x) = \sqrt{x+1}$ is _____

(Lahore Board 2007)

(a) $(-\infty, 0)$

(b) $[0, \infty)$

(c) $(-\infty, \infty)$

- (d) $[-\infty, 0]$
- (45) $x^2 + y^2 = 4$ is _____

(Lahore Board 2008)

(a) Function

(b) Line

(c) Not function

- (d) Ellipse
- (46) $x \to 0 \frac{e^x 1}{x} = \underline{\hspace{1cm}}$
 - (a) 1

(b) logae

(c) e

- (d) None
- (47) If f(x) = 2x + 1, $g(x) = x^2 1$ then gog(x) =
 - (a) $x^4 2x^2$

(b) $4x^2 + 4x$

(c) x

- (d) x + 1
- (48) $x \to \infty \frac{2-3x}{\sqrt{3+4x^2}} =$
 - (a) $\frac{3}{2}$

(b) $\frac{-3}{2}$

(c)

- (d) ∞
- (49) Domain of $f^{-1}(x)$ is ______ if $f(x) = \sqrt{x^2 4}$
 - (a) IR

(b) $IR - \{0\}$

(c) $R - \{-2, 2\}$

- (d) None of these
- (50) $\cosh^{-1} x =$ _____
 - (a) $\ell n (x \sqrt{x^2 + 1})$
- (b) $\ell n \left(\frac{x-1}{x+1} \right)$
- (c) $\ell n (x + \sqrt{x^2 1})$
- (d) $\ell n \left(\frac{x+1}{x-1} \right)$
- (51) $\lim_{x \to 0} \frac{1}{(1-x)^x} = \underline{\hspace{1cm}}$
- (Lahore Board 2014, Lahore Board 2009)

(a)
$$e^{-1}$$

(b) e

(d) e^3

(52)
$$\theta \to 0 \quad \frac{\sin^2 \theta}{\theta} = \underline{\qquad}$$

(b) -1

(d) 0

(53) If
$$f(x) = \frac{1}{x-1}$$
, then $f^{-1}(x) = \underline{\hspace{1cm}}$

(a)
$$\frac{x-1}{x}$$

(b) $\frac{x}{x-1}$

(c)
$$\frac{x}{x+1}$$

(d) $\frac{x+1}{x}$

(54) Range of
$$y = x^2 + 1$$
 is set of +ve real number except

(a)
$$0 < y \le 1$$

(b) $0 \le y \le 1$

(c)
$$0 \le y \le 1$$

(d) 0 < y < 1

(55)
$$f(x) = e^{-x}$$
 is a function which is _

(a) always increasing

(b) always decreasing

(c) niether increasing nor decreasing

(d) None of these

(56) Which one is not an exponential function.

$$(a) \qquad 3^3$$

(b) n^x

(d) xⁿ

(57) Which one is an implicit function.

(a)
$$x^3 + x^2 + x + 1 = y$$

(b) y = f(x)

(c)
$$y = x^2 + 1$$

(d) $xy + xy^2 + x^2 + y = 2$

(58) Range of cos hx =
$$\frac{1}{2}$$
 (e^x + e^{-x}) is _____

(a) R

(b) [-1, 1]

(c)
$$[1, \infty]$$

(d) None

(59)
$$\lim_{x \to a^{+}} \lim_{f(x) = \ell_{1}, x \to a^{-}} \lim_{f(x) = \ell_{2}, \text{ then } x \to a} \lim_{f(x) \text{ exists if }} \lim_{x \to a^{+}} \lim_{f(x) = \ell_{1}, x \to a^{-}} \lim_{f(x) = \ell_{2}, \text{ then } x \to a} \lim_{f(x) \to a^{+}} \lim_{f(x) \to$$

(a) $\ell_1 \neq \ell_2$

(b) $\ell_1 < \ell_2$

(c)
$$\ell_1 > \ell_2$$

(d) $\ell_1 = \ell_2$

- (60) Let f(x) be polynomial such that f(0) = 5, f(-1) = 10, $f(1) = 6f(x) = _______$
 - (a) $3x^2 2x + 5$

(b) $3x^2 + 2x - 5$

(c) $3x^2 + 2x + 5$

- (d) $3x^2 2x 5$
- (61) The range of $\frac{3x-2}{2x-1}$ is _____
 - (a) $\Re \{-\frac{1}{2}\}$

(b) $\Re - \{1\}$

(c) $\Re - \{\frac{3}{2}\}$

- (d) $\mathfrak{R} \{\frac{1}{2}\}$
- (62) $\theta \to 0 \quad \frac{1 \cos 9\theta}{1 \cos 3\theta} = \underline{\hspace{1cm}}$
 - (a) 0

(b) 3

(c) 9

- (d) 12
- (63) $x \xrightarrow{\text{Lim}} x \xrightarrow{3x^4 + 2x^3 + 2} = \underline{\qquad}$
 - (a) ∞

(b) -2

(c) $\frac{1}{2}$

- (d) $\frac{-1}{2}$
- (64) Constant function is always
 - (a) odd

(b) even

(c) linear

- (d) quadratic
- (65) If $\cos \theta \le \frac{\sin \theta}{\theta} \le 1$ if $\theta \to 0$ $\cos \theta = 1$, then $\theta \to 0$ $\frac{\sin \theta}{\theta} =$
 - (a) 0

(b) 2

(c) 1

- (d) -1
- (66) $y^2 = 4ax$ is symmetric about _____
 - (a) origin

(b) x-axis

(c) y-axis

- (d) None of these
- (67) $x \to 0 \frac{a^{2x} 1}{x} =$ _____
 - (a) 0

(b) $\ell n \ 2a$

(c) ℓna^2

(d) None of these

(a) Does not exist

(b) 0

9

(c) 1

(d) None of these

(69) Domain of $f^{-1}(x)$ if $f(x) = 3 + \sqrt{x-1}$

(a) $[1, \infty]$

(b) $[3, \infty)$

(c) $[0, \infty]$

(d) None of these

(70) Which one is a function.

 $(a) y^2 = 4x$

(b) $x^2 + y^2 = 16$

(c) $x^2 = 4ay$

(d) None of these

(71) If $f: X \xrightarrow{1-1} Y$, Y is called _____

(a) co-domain

(b) range

(c) domain

(d) None of these

(72) Co-domain and range concides if function is

(a) onto

(b) In to

(c) Injective

(d) bijective

(73) $\lim_{x \to 0} \frac{x}{\tan x} = \underline{\hspace{1cm}}$

(a) 0

(b)

(c) ∞

(d) 2

(74) $\lim_{x \to 0} \frac{\sin x^{\circ}}{x} = \underline{\hspace{1cm}}$

(a) 1

(b) $\frac{\pi}{180}$

(c) $\frac{180}{\pi}$

(d) None of these

(75) $x = t^2$, y = t are parameteric equations of _____

(a) straight line

(b) parabola

(c) circle

(d) None of these

(76) $x = a \cos t$, $y = a \sin t$ are parametric equations of _____

(a) parabola

(b) circle

(c) ellipse

(d) hyperbola

(77)
$$\lim_{x \to 0} \frac{e^{\frac{-1}{x^2}}}{1 + e^{\frac{-1}{x^2}}} = \underline{\qquad} \text{(Lhr Board 2013)}$$

(a) 0

(b) 1

(c) -1

(d) ∞

(78) If
$$f(x) = -2x + 8$$
 then $f^{-1}(x) =$ _____

(Lahore Board 2013)

(a) $\frac{8+x}{2}$

(b) $\frac{x-8}{2}$

(c) $\frac{8-x}{2}$

(d) $\left(\frac{2}{8-x}\right)$

(79)
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{1 + \cos \theta} = \underline{\hspace{1cm}}$$

(Lahore Board 2014)

(a) (

(b) $\frac{p}{q}$

(c) $\frac{p^2}{q^2}$

(d) $\frac{q^2}{p^2}$

(80)
$$\frac{e^{2x} - 1}{2e^x} = \underline{\hspace{1cm}}$$

(Lahore Board 2014)

(a) sin x

(b) cos x

(c) sin hx

- (d) cos hx
- (81) $x = 3 \cos t$, $y = 3 \sin t$ represent.

(Lahore Board 2014)

(a) Line

(b) Circle

(c) Parabola

(d) Hyperbola

1.	b	2.	c	3.	с	4.	b	5.	d	6.	c
7.	c	8.	b	9.	с	10.	d	11.	c	12.	c
<i>13.</i>	a	14.	d	15.	с	16.	d	17.	d	18.	c
19.	c	20.	b	21.	c	22.	c	23.	b	24.	b
25.	c	26.	d	27.	с	28.	b	29.	а	30.	b
31.	d	32.	а	33.	а	34.	b	35.	b	36.	b
37.	b	38.	d	39.	с	40.	а	41.	с	42.	d
43.	а	44.	b	45.	с	46.	а	47.	а	48.	b

49.	d	50.	c	<i>51</i> .	а	52.	d	<i>53</i> .	d	54.	b
55.	b	56.	d	<i>57</i> .	d	58.	с	59.	d	60.	a
61.	c	62.	c	63.	с	64.	b	65.	с	66.	b
67.	c	68.	c	69.	b	70.	с	71.	b	72.	d
<i>73</i> .	b	74.	b	75.	b	76.	b	77.	а	<i>78.</i>	c
79.	а	80.	с	81.	b						

