S	nreenathji engineer 146 kg zone
	-: Convolution Theorem:-
	State Convolution Theorem and Apply it to Evaluate: 1 [1 (s2+a2)2]
2 €	Osing Convolution Theorem Evaluate; Li S2 (s2+q2)2
(3) ★	Using Convolution Theorem Evaluate. L' S (s²+a²)²
<u>(4)</u> **	Using Convolution Theorem Solve. LT S2 (cs2+a2) (cs2+b2)
	(Same as Example-2)
3 *	Using Convolution Theorem Solve
6	Solve the convolution Theorem and youty it for fct) = t & g(t) = e ^{2t} . Scanned by CamScanner
	Scallied by Calliscalliel

	Tage No.
	- Power series:-
"	find power series soil of the
28	equation $C(1+x^2) y'' + xy' - 9y = 0 in$ fower of x.
2)	find the series son of
	(1+x2) y" + xy! ->uy =0"
3).	solve in sories the equation
	$\frac{dx}{dx^2} + o(\frac{2}{y}) = 0$
A)	Determine the series solution for the differential eggl xo = 0
5).	Find the series soil of
	(1-x2) y" - 2xy + 2y = 0.
shi	eenathji engineering zone

	Page No. Date
	Partial Diff. eg.
	Method of separation of Variableso-
*	Solve 2 <u>au</u> - <u>au</u> + u Sulvicated to the condition
	Subjected to the condition $U(x, 0) = 4 e^{-3x}.$
-*	solve x dy -2y dy =0 using
<u>E)</u>	method of Separation of Variables.
*	Solve $\frac{\partial z}{\partial x^2} - \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation
4	Variables
71	Using seperable variable technique find the acceptable general soll to the one dimension heat ear ou = 2 24 and .
	find the oil satisfying the conditions $M(0,t) = 4(T,t) = 0 \text{for} t>0 \text{and}$
sh	reenathji engineering zone
M. a.	

	Page No. Date
	-: Definations- (4 Marks):
1) 2) 3). 4) 5)	Gamma Function 8). Sinusoidal Pulse Bessel Function Function ExxXX Function q) Square wave Unit step Function function
G). +)	Dirac's Delta Function Relation ship Between beta and gamma Function B(m,n) = mn m+n
	First Order DAF- eq. Topic
	1) Linean Dff- eqn. 2) Variable separable & Homagenius
	3). Exact Diff. eq 4). Non Exact Diff. eq 5) Orthogonal toxiactories .
S	hreenathji engineering zone
Maria I	

	Page No. Date
	fowner Series
	$R \left(-\pi < x < \pi.\right)$
	Th (122211.)
	f(x) = x $f(x) = x + x $
	f(x) = 1sinx1
~	$(x) = x \sin x$
£	Halfrange sine series:
_	> Obtain halfrange cosine series
	for f(x) = sinx where ocxc71.
	Obtain halfrange sine series
	for for) = cosx where ocicn
=)	Obtain halfrange cosine series for fix)=x2
	OLXZTI
=)	Obtain fourier sine series for fox)=2x
	02x<1
	proposthii anginooring zono
5	meenatriji engineening zone

	Page No. Date
	: Interval:
*	obtain a fourier series for
1	
	$f(x) = \begin{cases} T + x & O < x < T \\ T - x & T < x < 2T \end{cases}$
*	obtain a fourier series expansion
	for $f(x) = 1 + 2x - \pi cxc < 0$
	1-2x $0 < x < T$
	71
*	obtain a fourier series for
	for): TIX 0 (XC)
	T(2-x) \(\frac{2}{2} \)
S	hreenathji engineering zone
3	

