HKUST MATH 1014 L1 assignment 7 submission

MATH1014 Calculus II Problem Set 7 L01 (Spring 2024)

Problem Set 7

Note: The problem sets serve as additional exercise problems for your own practice. Problem Set 7 covers materials from \$8.2 - \$8.4.

Q3

Let (a_n) be a sequence of positive real numbers.

Q3.a

Show that if $\sum_{k=1}^{+\infty} a_k$ converges, then $\sum_{k=1}^{+\infty} rac{1}{a_k}$ diverges.

$$egin{align*} \sum_{k=1}^{+\infty} a_k ext{ converges} \ &\Longrightarrow \lim_{k o +\infty} a_k = 0 \ &\Longrightarrow \lim_{k o +\infty} rac{1}{a_k} = +\infty \ &\Longrightarrow \sum_{k=1}^{+\infty} rac{1}{a_k} ext{ diverges by the tail test} \end{aligned}$$

Q3.b

Show that if $\lim_{n o +\infty} n a_n = L > 0$, then $\sum_{k=1}^{+\infty} a_k$ diverges.

$$\sum_{k=1}^{+\infty} rac{1}{k}$$
 diverges by the p -test $\lim_{n o +\infty} na_n = L > 0$ $\Longrightarrow \lim_{n o +\infty} rac{a_n}{rac{1}{n}} = L > 0$ $\Longrightarrow \sum_{k=1}^{+\infty} a_k$ diverges by the limit comparison test $\left(a_n > 0, rac{1}{n} > 0
ight)$

Q3.c

Show that if $\sum_{k=1}^{+\infty}a_k$ converges, then $\sum_{k=1}^{+\infty}a_k^2$ converges. Is the converse true?

$$\sum_{k=1}^{+\infty} a_k ext{ converges} \ \Longrightarrow \lim_{k o +\infty} a_k = 0$$

$$egin{aligned} &\lim_{n o +\infty}rac{a_k^2}{a_k}=\lim_{n o +\infty}a_k=0\ &\Longrightarrow \sum_{k=1}^{+\infty}a_k^2 ext{ converges by the limit comparison test} \end{aligned} \qquad egin{aligned} (a_k^2>0,a_k>0) \end{aligned}$$

The converse is not true. Let $a_k = \frac{1}{k}$.

Then $\sum_{k=1}^{+\infty} a_k^2 = \sum_{k=1}^{+\infty} \frac{1}{k^2}$ converges by the *p*-test,

But $\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} \frac{1}{k}$ diverges by the *p*-test.

Q3.d

Show that if $\sum_{k=1}^{+\infty}a_k^2$ converges, then $\sum_{k=1}^{+\infty}rac{a_k}{k}$ converges.

Hint: AM-GM inequality.

$$\sum_{k=1}^{+\infty} \frac{1}{k} \text{ diverges by the } p\text{-test and } \sum_{k=1}^{+\infty} a_k^2 \text{ converges}$$

$$\implies \lim_{k \to +\infty} \frac{a_k^2}{\frac{1}{k}} = 0$$

$$\implies \lim_{k \to +\infty} \frac{a_k}{\frac{1}{\sqrt{k}}} = \sqrt{0}$$

$$\implies \lim_{k \to +\infty} \frac{1}{\frac{1}{k}} \cdot \frac{a_k}{\frac{1}{\sqrt{k}}} = \lim_{k \to +\infty} \frac{\frac{a_k}{k}}{\frac{1}{k^2}} = 0$$

$$\implies \lim_{k \to +\infty} \frac{1}{\frac{1}{k}} \cdot \frac{a_k}{\frac{1}{\sqrt{k}}} = \lim_{k \to +\infty} \frac{\frac{a_k}{k}}{\frac{1}{k^2}} = 0$$

$$\sum_{k=1}^{+\infty} \frac{1}{k^{\frac{3}{2}}} \text{ converges by the } p\text{-test}$$

$$\implies \sum_{k=1}^{+\infty} rac{a_k}{k} ext{ converges by the limit comparison test} \qquad \left(rac{1}{k^{rac{3}{2}}} > 0, rac{a_k}{k} > 0
ight)$$

Q7

For each of the following series, find all the values of $p\in\mathbb{R}$ such that the series converges.

Q7.a

$$\sum_{k=1}^{+\infty} k^2 \sin^p \frac{1}{k}$$

$$egin{aligned} &rac{1}{k} \in (0,1] \ \Longrightarrow & \sin^p rac{1}{k} > 0 \ \Longrightarrow & k^2 \sin^p rac{1}{k} > 0 \ \Longrightarrow & k^{2-p} > 0 \end{aligned}$$
 $egin{aligned} & \lim_{k o +\infty} rac{k^2 \sin^p rac{1}{k}}{k^{2-p}} \ &= \lim_{k o +\infty} rac{\sin^p rac{1}{k}}{k^{-p}} \ &= \lim_{k o +\infty} \left(rac{\sin rac{1}{k}}{rac{1}{k}}
ight)^p \end{aligned}$

$$\sum_{k=1}^{+\infty} k^{2-p}$$
 converges by the p -test iff $p \in (3,+\infty)$

$$\sum_{k=1}^{+\infty} k^2 \sin^p \frac{1}{k} \text{ converges by the limit comparison test iff } p \in (3,+\infty) \qquad \left(k^{2-p} > 0, \frac{1}{k} \in (0,1] \implies k^2 \sin^p \frac{1}{k} > 0\right)$$

Q7.b

$$\sum_{k=2}^{+\infty} \frac{1}{(\ln \ln k)^{p \ln k}}$$

$$\sum_{k=2}^{+\infty} \frac{1}{(\ln \ln k)^{p \ln k}} \qquad \cdots (1)$$

$$\int_{2}^{+\infty} \frac{1}{(\ln \ln k)^{p \ln k}} \, \mathrm{d}k \qquad \cdots (2)$$

$$= \int_{\ln 2}^{+\infty} \frac{e^{k}}{(\ln k)^{pk}} \, \mathrm{d}k \qquad \cdots (3) \quad \text{(change of variable: } \ln k \mapsto k)$$

$$\sum_{k=1}^{+\infty} \frac{e^k}{(\ln k)^{pk}} \cdots (4)$$

$$=\sum_{k=1}^{+\infty} \left(\frac{e}{(\ln k)^p}\right)^k \qquad \cdots (5)$$

$$\lim_{k \to +\infty} \sqrt[k]{\left| \left(\frac{e}{(\ln k)^p} \right)^k \right|} \qquad \cdots (6)$$

$$= \lim_{k \to +\infty} \sqrt[k]{\left(\frac{e}{(\ln k)^p} \right)^k} \qquad \qquad \left(k > 1 \implies \frac{e}{\ln k} > 0 \right)$$

$$= \lim_{k \to +\infty} \frac{e}{(\ln k)^p}$$

$$k
ightarrow+\infty \ (\ln k)^p \ = egin{cases} 0, & p>0 \ e, & p=0 \ +\infty, & p<0 \end{cases}$$

$$(6)<1 \text{ iff } p\in (0,+\infty)$$

 \implies (5) is convergent iff $p \in (0, +\infty)$ by the root test

 $\implies (4) \text{ is convergent iff } p \in (0,+\infty)$

 \implies (3) is convergent iff $p \in (0, +\infty)$ by the integral test

 $\implies (2) \text{ is convergent iff } p \in (0, +\infty)$

 \implies (1) is convergent iff $p \in (0, +\infty)$ by the integral test

$$\sum_{k=3}^{+\infty} \frac{1}{k(\ln k)(\ln \ln k)^p}$$

$$\sum_{k=2}^{+\infty} \frac{1}{k(\ln k)(\ln \ln k)^p} \cdots (1)$$

$$\int_{3}^{+\infty} \frac{1}{k(\ln k)(\ln \ln k)^{p}} \, \mathrm{d}k \qquad \cdots (2)$$

$$= \int_{\ln 3}^{+\infty} \frac{1}{k(\ln k)^{p}} \, \mathrm{d}k \qquad \qquad \text{(change of variable: } \ln k \mapsto k)$$

$$= \int_{\ln \ln 3}^{+\infty} \frac{1}{k^{p}} \, \mathrm{d}k \qquad \qquad \cdots (3) \quad \text{(change of variable: } \ln k \mapsto k)$$

- (3) is convergent iff $p \in (1, +\infty)$ by the p-test
- $\implies (2) ext{ is convergent iff } p \in (1, +\infty)$
- \implies (1) is convergent iff $p \in (1, +\infty)$ by the integral test

Q8

Let $\left(a_{n}
ight)$ be a sequence of real numbers, and define

$$a_n^+:=\max\{a_n,0\} \qquad ext{and} \qquad a_n^-:=\max\{-a_n,0\}$$

for every n. Show that

Q8.a

If $\sum_{k=1}^{+\infty}a_k$ converges absolutely, then both $\sum_{k=1}^{+\infty}a_k^+$ and $\sum_{k=1}^{+\infty}a_k^-$ converge.

$$\sum_{k=1}^{+\infty} a_k \text{ converges absolutely}$$

$$\Rightarrow \sum_{k=1}^{+\infty} |a_k| \text{ converges}$$

$$a_n \geq 0$$

$$\Rightarrow a_n^+ = a_n = |a_n|$$

$$a_n < 0$$

$$\Rightarrow a_n^+ = 0 < |a_n|$$

$$\Rightarrow \sum_{k=1}^{+\infty} a_n^+ \text{ converges by the direct comparison test} \qquad (a_n^+ \geq 0, |a_n| \geq 0)$$

$$a_n \leq 0$$

$$\Rightarrow a_n^- = -a_n = |a_n|$$

$$a_n > 0$$

$$\Rightarrow a_n^- = 0 < |a_n|$$

$$\Rightarrow a_n^- = 0 < |a_n|$$

$$\Rightarrow a_n^- = 0 < |a_n|$$

$$\Rightarrow a_n^- \leq |a_n|$$

$$\Rightarrow \sum_{k=1}^{+\infty} a_n^- \text{ converges by the direct comparison test} \qquad (a_n^- \geq 0, |a_n| \geq 0)$$

Q8.b

4

If $\sum_{k=1}^{+\infty}a_k$ converges conditionally, then both $\sum_{k=1}^{+\infty}a_k^+$ and $\sum_{k=1}^{+\infty}a_k^-$ diverge.

$$\sum_{k=1}^{+\infty} a_k$$
 converges conditionally

$$\implies \sum_{k=1}^{+\infty} |a_k| \text{ diverges}$$

$$a_n \geq 0 \ \Longrightarrow a_n^+ = a_n$$

$$a_n < 0$$

$$\implies a_n^- = -a_n \implies a_n = -a_n^-$$

 \therefore (a_n) can be rewritten as a sequence in terms of a_n^+ and $-a_n^-$ only. $(|a_n|)$ can be rewritten as a sequence in terms of a_n^+ and a_n^- only.

$$\begin{array}{l} a_k^+ \geq 0 \implies a_k^+ = |a_k^+| \\ a_k^- \geq 0 \implies a_k^- = |a_k^-| \end{array}$$

assume both
$$\sum_{k=1}^{+\infty}a_k^+=L^+$$
 and $\sum_{k=1}^{+\infty}a_k^-=L^-$ converge

$$\implies$$
 both $\sum_{k=1}^{+\infty} a_k^+$ and $\sum_{k=1}^{+\infty} a_k^-$ converge absolutely

$$\implies \sum_{n=1}^{+\infty} \lvert a_n \rvert = L^+ + L^- ext{ converges}$$

...since absolutely converging sequences can be rearranged without changing their sums.

the above conclusion contradicts that $\sum_{k=1}^{+\infty} |a_k|$ diverges

$$\implies$$
 both $\sum_{k=1}^{+\infty} a_k^+$ and $\sum_{k=1}^{+\infty} a_k^-$ cannot converge simultaneously \cdots (1)

Without loss of generality,

assume one of the sum converges while the other diverges:

Assume
$$\sum_{k=1}^{+\infty} a_k^+ = L^+$$
 converges and $\sum_{k=1}^{+\infty} a_k^-$ diverges.

Then, $\sum_{k=1}^{n\in\mathbb{Z}_{\geq 1}}a_k^+\leq L^+$ by the monotone convergence theorem.

$$\text{Consider } \sum_{k=1}^{n\in\mathbb{Z}_{\geq 1}} a_k = \sum_{k=1}^n a_k^+ - \sum_{k=1}^n a_k^-.$$

$$egin{align} \sum_{k=1}^{n\in\mathbb{Z}_{\geq 1}} a_k &= \sum_{k=1}^n a_k^+ - \sum_{k=1}^n a_k^- \ &\leq L^+ - \sum_{k=1}^n a_k^- \ \end{pmatrix} \cdots (2)$$

$$a_k^- \geq 0 ext{ and } \sum_{k=1}^{+\infty} a_k^- ext{ diverges}$$

$$\implies \sum_{k=1}^{+\infty} a_k^- = +\infty ext{ as the partial sums are increasing}$$

$$\sum_{k=1}^{+\infty} a_k^- = +\infty$$
 diverges

$$\implies L^+ - \sum_{k=1}^{+\infty} a_k^- = -\infty$$
 diverges by the algebraic limit theorem

$$\implies \sum_{k=1}^{+\infty} a_k \le -\infty \text{ diverges by (2)}$$

the above conclusion contradicts that $\sum_{k=1}^{+\infty} a_k$ converges

$$\implies \sum_{k=1} a_k^+ \text{ cannot converge and } \sum_{k=1} a_k^- \text{ cannot diverge simultaneously} \cdots (3)$$

Similarly,
$$\sum_{k=1}^{+\infty} a_k^-$$
 cannot converge and $\sum_{k=1}^{+\infty} a_k^+$ cannot diverge simultaneously \cdots (4)

(1), (3), (4) combined implies that both integrals must diverge simultaneously.

Q9

For each of the following series, determine whether it diverges, converges absolutely or converges conditionally.

Q9.b

$$\sum_{k=0}^{+\infty} (-1)^{k+1} \left(\sqrt{k+1} - \sqrt{k} \right)$$

$$\sum_{k=0}^{+\infty} (-1)^{k+1} \left(\sqrt{k+1} - \sqrt{k} \right) \qquad \cdots (1)$$

$$a_k := \sqrt{k+1} - \sqrt{k} \ a_{k+1} = \sqrt{k+2} - \sqrt{k+1} \ k \geq 0$$

$$\begin{aligned} a_k &> 0 & (\sqrt{*} \text{ is increasing}) \\ &|a_k| - |a_{k+1}| \\ &= \left| \sqrt{k+1} - \sqrt{k} \right| - \left| \sqrt{k+2} - \sqrt{k+1} \right| \\ &= \sqrt{k+1} - \sqrt{k} + \sqrt{k+2} - \sqrt{k+1} \\ &= \sqrt{k+2} - \sqrt{k} \\ &> 0 \\ &\therefore |a_k| \geq |a_{k+1}| & \cdots (2) \end{aligned}$$

$$\begin{split} &\lim_{k \to +\infty} a_k \\ &= \lim_{k \to +\infty} \left(\sqrt{k+1} - \sqrt{k} \right) \\ &= \lim_{k \to +\infty} \frac{(k+1) - k}{\sqrt{k+1} + \sqrt{k}} \\ &= \lim_{k \to +\infty} \frac{1}{\sqrt{k+1} + \sqrt{k}} \\ &= 0 & \cdots (3) \end{split}$$

- (1) is an alternating series in terms of a_k .
- (1) converges by the alternating series test due to (2), (3).

$$\sum_{k=0}^{+\infty} \left| (-1)^{k+1} \left(\sqrt{k+1} - \sqrt{k} \right) \right| \qquad \cdots (4)$$

$$= \sum_{k=0}^{+\infty} \left(\sqrt{k+1} - \sqrt{k} \right) \qquad \left(\left| (-1)^{k+1} \right| = 1, \sqrt{k+1} - \sqrt{k} > 0 \right)$$

$$= \lim_{n \to +\infty} \sum_{k=0}^{n} \left(\sqrt{k+1} - \sqrt{k} \right)$$

$$= \lim_{n \to +\infty} \sqrt{n+1}$$

$$= +\infty$$

$$\therefore (4) \text{ diverges}$$

- \therefore (1) converges but (4) diverges
- \therefore (1) converges conditionally

$$\sum_{k=2}^{+\infty} \frac{(-1)^k}{\sqrt{k} + (-1)^k}$$

$$\sum_{k=2}^{+\infty} \frac{(-1)^k}{\sqrt{k} + (-1)^k} \cdots (1)$$

$$= \sum_{k=2}^{+\infty} \frac{(-1)^k \left(\sqrt{k} - (-1)^k\right)}{k - 1}$$

$$= \sum_{k=2}^{+\infty} \frac{(-1)^k \sqrt{k} - 1}{k - 1}$$

$$= \sum_{k=2}^{+\infty} \left(\frac{(-1)^k \sqrt{k}}{k - 1} - \frac{1}{k - 1}\right) \cdots (2)$$

Consider the sum $\sum_{k=2}^{+\infty} \frac{(-1)^k \sqrt{k}}{k-1}.$

It is alternating series with $a_k = \frac{\sqrt{k}}{k-1}$.

Also,
$$\frac{\mathrm{d}a_k}{\mathrm{d}k} = \frac{0.5k^{-0.5}(k-1) - \sqrt{k}}{(k-1)^2} = \frac{-0.5\sqrt{k} - 0.5k^{-0.5}}{(k-1)^2} < 0.$$
 Thus a_k is strictly decreasing when $k \geq 2$.

$$\text{Furthermore, } \lim_{k \to +\infty} \frac{\sqrt{k}}{k-1} = \lim_{k \to +\infty} \frac{\sqrt{\frac{k}{k^2}}}{1 - \frac{1}{k}} = 0.$$

By the alternating series test, the sum being considered converges.

Consider the sum
$$\sum_{k=2}^{+\infty} \frac{1}{k-1} = \sum_{k=1}^{+\infty} \frac{1}{k}$$
.

The sum diverges by the p-test.

Finally, by above and the algebraic limit theorem,

(2) equals
$$\sum_{k=2}^{+\infty} \frac{(-1)^k \sqrt{k}}{k-1} - \sum_{k=2}^{+\infty} \frac{1}{k-1}$$
 and diverges.

Thus (1) diverges.

Q11

Find the radius and interval of convergence for each of the following power series.

Q11.b

$$\sum_{k=1}^{+\infty} \frac{x^k}{2^k k^2}$$

The center of the power series is x = 0.

The coefficient of the power series is $c_k = \frac{1}{2^k k^2}$.

radius of convergence

$$egin{aligned} &= \lim_{k o + \infty} \left| rac{c_k}{c_{k+1}}
ight| \ &= \lim_{k o + \infty} \left| rac{2^{k+1}(k+1)^2}{2^k k^2}
ight| \ &= 2 \lim_{k o + \infty} \left| rac{k^2 + 2k + 1}{k^2}
ight| \ &= 2 \lim_{k o + \infty} \left| rac{1 + 2k^{-1} + k^{-2}}{1}
ight| \ &= 2 \end{aligned}$$

When
$$x = 2$$
,

$$\sum_{k=1}^{+\infty} \frac{2^k}{2^k k^2}$$
 $= \sum_{k=1}^{+\infty} \frac{1}{k^2}$

which converges by the p-test.

$$\text{As } k \geq 1 \implies \frac{1}{k^2} > 0,$$

The integral converges absolutely.

Then its alternating series counterpart,

$$\sum_{k=1}^{+\infty} rac{(-1)^k 2^k}{2^k k^2} = \sum_{k=1}^{+\infty} rac{(-2)^k}{2^k k^2}$$

also converges by the absolute convergence test,

and is the expression when x = -2.

interval of convergence = [-2, 2]

For each of the following power series, evaluate its sum whenever it converges. What happens at the end-points of its interval of convergence?

Hint: In each part, apply term-wise differentiation or integration on some power series whose sum is well-known.

Q14.b

$$\sum_{k=2}^{+\infty}\frac{1}{k(k-1)}(x-1)^k$$

The center of the power series is

$$x = 1$$

The coefficients of the power series are

$$c_k = rac{1}{k(k-1)}.$$

radius of convergence

$$= \lim_{k \to +\infty} \left| \frac{c_k}{c_{k+1}} \right|$$

$$= \lim_{k \to +\infty} \left| \frac{\frac{1}{k(k-1)}}{\frac{1}{(k+1)k}} \right|$$

$$= \lim_{k \to +\infty} \left| \frac{k+1}{k-1} \right|$$

$$= \lim_{k \to +\infty} \frac{k+1}{k-1}$$

$$= \lim_{k \to +\infty} \frac{1+\frac{1}{k}}{1-\frac{1}{k}}$$

$$= 1$$

$$(k \to +\infty)$$

When
$$x = 2$$
,

When
$$x = 2$$
,
$$\sum_{k=2}^{+\infty} \frac{1}{k(k-1)} (2-1)^k$$

$$= \sum_{k=2}^{+\infty} \frac{1}{k(k-1)}$$

$$= \sum_{k=2}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k}\right)$$

$$= \lim_{k \to +\infty} \left(1 - \frac{1}{k}\right)$$

$$= 1$$
(telescope)

The sum converges.

When x = 0,

$$\sum_{k=2}^{+\infty} \frac{1}{k(k-1)} (0-1)^k$$

$$= \sum_{k=2}^{+\infty} \frac{1}{k(k-1)} (-1)^k$$

$$= \sum_{k=2}^{+\infty} \frac{(-1)^k}{k(k-1)} (2-1)^k$$

... which is the alternating counterpart of the series

Thus, the sum converges by the absolute convergence test. interval of convergence = [0, 2]

$$\begin{split} S(x) &:= \sum_{k=2}^{+\infty} \frac{1}{k(k-1)} (x-1)^k \qquad x \in [0,2] \\ S(2) &= 1 \\ S'(x) &= \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=2}^{+\infty} \frac{1}{k(k-1)} (x-1)^k \qquad x \in (0,2) \\ &= \sum_{k=2}^{+\infty} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{k(k-1)} (x-1)^k \qquad \text{(power series can be differentiated term-wise)} \\ &= \sum_{k=2}^{+\infty} \frac{1}{k-1} (x-1)^{k-1} \\ S'(1) &= \sum_{k=2}^{+\infty} \frac{1}{k-1} (1-1)^{k-1} \\ &= \sum_{k=2}^{+\infty} 0 \qquad \qquad (k-1>0) \end{split}$$

$$S''(x) - \frac{d^{4}}{dx^{2}} \sum_{k=2}^{\infty} \frac{1}{k(k-1)} (x-1)^{k} \qquad x \in (0,2)$$

$$- \sum_{k=2}^{\infty} \frac{d^{2}}{dx^{2}} \frac{1}{k(k-1)} (x-1)^{6} \qquad (power series can be differentiated term-wise)$$

$$- \sum_{k=+\infty}^{\infty} (x-1)^{k-1} - (x-1)^{0}$$

$$= \lim_{k \to +\infty} \frac{(x-1)^{k-1} - 1}{(x-1)^{-1}}$$

$$= \lim_{k \to +\infty} \frac{(x-1)^{k-1} - 1}{x-2}$$

$$- \frac{1}{2-x}$$

$$S'(x) = \int S''(x) dx$$

$$- \int \frac{1}{2-x} dx$$

$$= \ln |2-x| - C$$

$$S'(1) = -\ln |2-1| + C$$

$$0 = C$$

$$C = 0$$

$$S'(x) = -\ln |2-x| \qquad x \in (0,2)$$

$$S(x) = \int S'(x) dx$$

$$= - \int \ln |a| du \qquad (u := 2-x)$$

$$= u \ln |u| - \int \frac{u}{u} du$$

$$= u \ln |u| - u + C$$

$$= (2-x) \ln |2-x|$$

$$= \lim_{x \to 2^{-1}} \frac{\ln |2-x|}{(2-x)^{2}}$$

$$- \lim_{x \to 2^{-1}} \frac{\ln |2-x|}{(2-x)^{2}}$$

$$= \lim_{x \to 2^{-1}} \frac{1 \ln |2-x|}{(2-x)^{2}}$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2^{-1}} ((2-x) \ln |2-x| - 2 + x + C)$$

$$= \lim_{x \to 2$$

$$=egin{cases} (2-x)\ln(2-x)+x-1, & x\in [0,\ 1, & x=2 \end{cases}$$
 The sum converges on the endpoints of

the interval of convergence.

Q14.e

$$\sum_{k=1}^{+\infty} \frac{k}{k+1} x^k$$

(2-x > 0)

The center of the power series is

$$x = 0$$

The coefficients of the power series are

$$c_k = rac{k}{k+1}.$$

radius of convergence

$$\begin{split} &=\lim_{k\to+\infty}\left|\frac{c_k}{c_{k+1}}\right|\\ &=\lim_{k\to+\infty}\left|\frac{\frac{k}{k+1}}{\frac{k+1}{k+2}}\right|\\ &=\lim_{k\to+\infty}\left|\frac{k(k+2)}{(k+1)^2}\right|\\ &=\lim_{k\to+\infty}\left|\frac{(k+1)^2-1}{(k+1)^2}\right|\\ &=\lim_{k\to+\infty}\left|1-\frac{1}{(k+1)^2}\right|\\ &=1 \end{split}$$

When
$$x = -1$$
,

$$\sum_{k=1}^{+\infty} \frac{k}{k+1} (-1)^k$$

Consider
$$a_k = \frac{k}{k+1}(-1)^k$$
.

Consider the subsequence given by $b_k = a_{2k} = \frac{2k}{2k+1}(-1)^{2k}$.

$$\lim_{k \to +\infty} \frac{2k}{2k+1} (-1)^{2k} = \lim_{k \to +\infty} \frac{2}{2+\frac{1}{k}} = 1$$

Consider the subsequence given by $c_k = a_{2k-1} = \frac{2k-1}{2k} (-1)^{2k-1}$.

$$\lim_{k \to +\infty} \frac{2k-1}{2k} (-1)^{2k-1} = \lim_{k \to +\infty} \left(-\frac{2-\frac{1}{k}}{2} \right) = -1$$

As the two subsequences of $(a_k)_{k\in\mathbb{N}}$ approaches different values as $k\to +\infty$,

$$\lim_{k \to +\infty} \frac{k}{k+1} (-1)^k \text{ does not exist.}$$

Thus, $\sum_{k=1}^{+\infty} \frac{k}{k+1} (-1)^k$ diverges by the tail test.

When x = 1.

$$\sum_{k=1}^{+\infty} \frac{k}{k+1} 1^k$$

$$\lim_{k o +\infty}rac{k}{k+1}1^k$$

$$=\lim_{k\to +\infty}\frac{1}{1+\frac{1}{k}}$$

=1

Thus, $\sum_{k=1}^{+\infty} \frac{k}{k+1} 1^k$ diverges by the tail test.

interval of convergence = (-1, 1)

$$\sum_{k=1}^{+\infty} x^k \qquad x \in (-1,1)$$

$$= \lim_{k \to +\infty} \frac{x^{k+1} - x}{x - 1}$$

$$= \frac{x}{1 - x}$$

$$(|x| < 1)$$

$$S(x) := \sum_{k=1}^{+\infty} rac{k}{k+1} x^k \qquad x \in (-1,1)$$

$$S(0) = \sum_{k=1}^{+\infty} \frac{k}{k+1} 0^{k}$$

$$= \sum_{k=1}^{+\infty} 0$$

$$= 0$$

$$S(x) = \sum_{k=1}^{+\infty} \frac{k}{k+1} x^{k}$$

$$= \sum_{k=1}^{+\infty} \left(1 - \frac{1}{k+1}\right) x^{k}$$

$$= \sum_{k=1}^{+\infty} x^{k} + \sum_{k=1}^{+\infty} \left(1 - \frac{1}{k+1}\right) x^{k} - \sum_{k=1}^{+\infty} x^{k}$$

$$= \sum_{k=1}^{+\infty} x^{k} - \sum_{k=1}^{+\infty} \frac{1}{k+1} x^{k}$$
(algebraic limit theorem)
$$= \frac{x}{1-x} - \sum_{k=1}^{+\infty} \frac{1}{k+1} x^{k}$$

Not using differential equations:

$$egin{aligned} T(x) := \sum_{k=1}^{+\infty} rac{1}{k+1} x^k & x \in (-1,1) \ &= egin{cases} rac{1}{x} \sum_{k=1}^{+\infty} rac{1}{k+1} x^{k+1}, & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases} \end{aligned}$$

$$U(x) := \sum_{k=1}^{+\infty} rac{1}{k+1} x^{k+1} \qquad x \in (-1,1)$$

$$U'(x) = rac{\mathrm{d}}{\mathrm{d}x} \sum_{k=1}^{+\infty} rac{1}{k+1} x^{k+1}$$
 $= \sum_{k=1}^{+\infty} rac{\mathrm{d}}{\mathrm{d}x} rac{1}{k+1} x^{k+1}$
 $= \sum_{k=1}^{+\infty} x^k$

$$({\it power series can be differentiated term-wise})$$

$$U(0) = \sum_{k=1}^{+\infty} \frac{1}{k+1} 0^{k+1}$$
 $= \sum_{k=1}^{+\infty} 0$
 $= 0$

$$(k + 1 > 0)$$

$$U(x) = \int U'(x) dx$$

$$= \int \frac{x}{1-x} dx$$

$$= \int \frac{u-1}{u} du \qquad u := 1-x$$

$$= u - \ln|u| + C$$

$$= 1 - x - \ln|1 - x| + C$$

$$= -x - \ln|1 - x| + C$$

$$U(0) = -0 - \ln|1 - 0| + C$$

$$U(x) = -x - \ln|1 - x| \qquad x \in (-1, 1)$$
 $T(x) = \int \frac{1}{x} \sum_{k=1}^{+\infty} \frac{1}{k+1} x^{k+1}, \quad x \in (-1, 1)$

$$T(x) = egin{cases} rac{1}{x} \sum_{k=1}^{+\infty} rac{1}{k+1} x^{k+1}, & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases} \ = egin{cases} rac{1}{x} U(x), & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases} \ = egin{cases} -1 - rac{\ln|1-x|}{x}, & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases}$$

$$\begin{split} S(x) &= \frac{x}{1-x} - \sum_{k=1}^{+\infty} \frac{1}{k+1} x^k \\ &= \frac{x}{1-x} - T(x) \\ &= \begin{cases} \frac{x}{1-x} + 1 + \frac{\ln|1-x|}{x}, & x \in (-1,0) \cup (0,1) \\ \frac{0}{1-0}, & x = 0 \end{cases} \\ &= \begin{cases} \frac{x+1-x}{1-x} + \frac{\ln|1-x|}{x}, & x \in (-1,0) \cup (0,1) \\ 0, & x = 0 \end{cases} \\ &= \begin{cases} \frac{1}{1-x} + \frac{\ln|1-x|}{x}, & x \in (-1,0) \cup (0,1) \\ 0, & x = 0 \end{cases} \end{split}$$
 The sum diverges on the endpoints of

The sum diverges on the endpoints of the interval of convergence.

Alternatively, using differential equations:

$$S'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x}{1-x} - \sum_{k=1}^{+\infty} \frac{1}{k+1} x^k \right)$$

$$= \frac{(1-x)+x}{(1-x)^2} - \sum_{k=1}^{+\infty} \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{k+1} x^k$$

$$= \begin{cases} \frac{1}{(1-x)^2} - \sum_{k=1}^{+\infty} \frac{k}{k+1} x^{k-1}, & x \in (-1,0) \cup (0,1) \\ 1 - \frac{1}{2}, & x = 0 \end{cases}$$

$$= \begin{cases} \frac{1}{(1-x)^2} - \frac{1}{x} \sum_{k=1}^{+\infty} \frac{k}{k+1} x^k, & x \in (-1,0) \cup (0,1) \\ \frac{1}{2}, & x = 0 \end{cases}$$

$$= \begin{cases} \frac{1}{(1-x)^2} - \frac{S(x)}{x}, & x \in (-1,0) \cup (0,1) \\ \frac{1}{2}, & x = 0 \end{cases}$$

$$y := S(x) \quad x \in (-1,0) \cup (0,1)$$

$$y' = \frac{1}{(1-x)^2} - \frac{y}{x}$$

(power series can be differentiated term-wise)

The above is a linear ordinary differential equation.

An unique solution exists on each of (-1,0) and (0,1).

Solve the homogeneous equation.

$$y'=-rac{y}{x}$$
 $x\in (-1,0)\cup (0,1)$ $rac{\mathrm{d}y}{\mathrm{d}x}=-rac{y}{x}$ $rac{1}{y}\,\mathrm{d}y=-rac{1}{x}\,\mathrm{d}x$ $\intrac{1}{y}\,\mathrm{d}y=-\intrac{1}{x}\,\mathrm{d}x$ $\int rac{1}{y}\,\mathrm{d}y=-\int rac{1}{x}\,\mathrm{d}x$ $\ln \lvert y
vert = -\ln \lvert x
vert + C$ $e^{\ln \lvert y
vert}=e^{-\ln \lvert x
vert + C}$ $\lvert y
vert = rac{e^C}{\lvert x
vert}$ $y=\pm rac{e^C}{\lvert x
vert}$ $y=\pm rac{e^C}{\lvert x
vert}$ $y=\frac{c_1}{x}$ $c_1\in \mathbb{R}_{
eq 0}$ When $c_1=0$, $v=0$ $v=0$ $v=0$ $v=0$ $v=0$ $v=0$ $v=0$ $v=0$... which satisfies the homogeneous

... which satisfies the homogeneous equation.

$$y=rac{c_1}{x} \qquad c_1 \in \mathbb{R}$$

Different c_1 can be chosen on each of (-1,0) and (0,1).

Solve the inhomogeneous equation.

$$y = \frac{1}{x} \int \frac{\det\left[\frac{1}{(1-x)^2}\right]}{\det\left[\frac{1}{x}\right]} dx \qquad x \in (-1,0) \cup (0,1)$$
 (variation of parameters)
$$= \frac{1}{x} \int \frac{x}{(1-x)^2} dx$$

$$= -\frac{1}{x} \int \frac{-u+1}{u^2} du \qquad u := 1-x$$

$$= -\frac{1}{x} \left(-\ln|u| - \frac{1}{u} + c_1\right) \qquad c_1 \in \mathbb{R}$$

$$= \frac{\ln|1-x|}{x} + \frac{1}{x(1-x)} - \frac{c_1}{x}$$

Different c_1 can be chosen on each of (-1,0) and (0,1), which will be denoted c_1^- and c_1^+ respectively below.

$$\lim_{x o 0^+}rac{\ln ert 1-xert}{x} \ rac{\ln ert 1-xert}{x}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{\ln(1-x)}{x}}{x} \qquad (1-x \ge 0)$$

$$= \lim_{x \to 0^{+}} \frac{-\frac{1}{1-x}}{1} \qquad (L'Hopital rule)$$

$$= -1$$

$$\lim_{x \to 0^{-}} \frac{\ln|1-x|}{x}$$

$$= \lim_{x \to 0^{-}} \frac{\frac{\ln(x-1)}{x}}{x} \qquad (1-x \le 0)$$

$$= \lim_{x \to 0^{-}} \frac{\frac{1}{x-1}}{1} \qquad (L'Hopital rule)$$

$$= -1$$

$$\lim_{x \to 0} \frac{\ln|1-x|}{x} = -1$$

$$S(0) = \lim_{x \to 0^+} \left(\frac{\ln|1-x|}{x} + \frac{1}{x(1-x)} - \frac{c_1^+}{x} \right) \qquad \qquad \text{(make } S(x) \text{ continuous)}$$

$$0 = -1 + \lim_{x \to 0^+} \frac{1 - c_1^+ + c_1^+ x}{x(1-x)} \qquad \qquad \text{(algebraic limit theorem)}$$

$$1 = \lim_{x \to 0^+} \frac{c_1^+}{(1-x)-x} \qquad \qquad \text{(L'Hoptial rule)}$$

$$1 = c_1^+$$

$$c_1^+ = 1$$

$$S(0) = \lim_{x \to 0^-} \left(\frac{\ln|1-x|}{x} + \frac{1}{x(1-x)} - \frac{c_1^-}{x} \right) \qquad \qquad \text{(make } S(x) \text{ continuous)}$$

$$0 = -1 + \lim_{x \to 0^-} \frac{1 - c_1^- + c_1^- x}{x(1-x)} \qquad \qquad \text{(algebraic limit theorem)}$$

$$1 = \lim_{x \to 0^-} \frac{c_1^-}{(1-x)-x} \qquad \qquad \text{(L'Hopital rule)}$$

Therefore,

 $c_1^-=1$

$$S(x) = egin{cases} rac{\ln |1-x|}{x} + rac{1}{x(1-x)} - rac{1}{x}, & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases}$$
 $= egin{cases} rac{\ln |1-x|}{x} + rac{1-1+x}{x(1-x)}, & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases}$
 $= egin{cases} rac{\ln |1-x|}{x} + rac{1}{1-x}, & x \in (-1,0) \cup (0,1) \ 0, & x = 0 \end{cases}$

The sum diverges on the endpoints of the interval of convergence.