1 Lezione del 10-04-25

Riprendiamo la trattazione dei diagrammi di Bode di funzioni di trasferimento di uso comune.

1.1 Poli complessi coniugati

Prendiamo la funzione di trasferimento con denominatore al second'ordine:

$$G(s) = \frac{1}{1 + \frac{2\xi}{\omega_0}s + \frac{s^2}{\omega_0^2}} = \frac{\omega_0^2}{s^2 + 2\xi\omega_0s + \omega_0^2}$$

dove ricordiamo ω_0 è la **pulsazione naturale** e ξ è lo smorzamento.

Prendiamo quindi la prima forma, che altro non è se non la forma di Bode e ricaviamo la risposta armonica:

$$G(j\omega) = \frac{1}{1 + \frac{2\xi}{\omega_0} j\omega - \frac{\omega^2}{\omega_0^2}} = \frac{1}{\left(1 - \frac{\omega^2}{\omega_0^2}\right) + j\left(\frac{2\xi}{\omega_0}\omega\right)}$$

1.1.1 Valutazione del modulo

Troviamo quindi il modulo:

$$|G(j\omega)| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0}\right)^2 + 4\xi^2 \frac{\omega^2}{\omega_0^2}}}$$

da cui la risposta in decibel:

$$|G(j\omega)|_{dB} = 20 \log_{10} \left(\frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0}\right)^2 + 4\xi^2 \frac{\omega^2}{\omega_0^2}}} \right)$$

Possiamo allora tracciare il diagrama a rette prendendo il punto di rottura in ω_0 :

• $\omega << \omega_0$, da cui:

$$|G(j\omega)| \approx 0 \, \mathrm{dB}$$

• $\omega >> \omega_0$, da cui:

$$|G(j\omega)| \approx 20 \log \left(\frac{1}{\frac{\omega^2}{\omega_0^2}}\right) = 40 \log(\omega_0) - 40 \log(\omega)$$

cioè si ottiene una retta con pendenza di -40 dB/dec (-12 dB/oct).

Da cui si ottiene l'approssimazione (sovraimposta al valore reale):

1.1.2 Risonanza

Potrebbe interessarci valutare l'errore, sopratutto considerato il fatto che non teniamo conto dello smorzamento ξ nella stima per rette. Prendiamo quindi il valore sul punto di rottura:

$$|G(j\omega_0)|_{dB} = 20\log\left(\frac{1}{4\xi^2}\right) = -20\log(2\xi)$$

per cui si ottengono gli errori al variare di ξ (considerata la nostra approssimazione per rette che prende 0 dB a $\omega=\omega_0$):

ξ	Errore
0	$+\infty$
$\frac{1}{2}$	0 dB
$\frac{\sqrt{2}}{2}$	-3 dB
$\overline{2}$	-6 dB

Come regola empirica, possiamo assumere di poter usare il diagramma asintotico (il diagramma per rette) solo quando lo smorzamento è $\xi>0.3$.

Vediamo ad esempio l'errore che commettiamo per $\xi = \frac{1}{4}$, che calcoliamo subito dovrà essere di 6 dB:

Come notiamo, si forma un picco attorno a $\omega = \omega_0$, dove la risposta ha un valore di picco vicino (in verità a ξ decrescente il massimo assoluto si sposta sempre più verso sinistra) all'errore calcolato. Questo picco prende il nome di **picco di risonanza**.

1.1.3 Picco di risonanza

Per ricavare il **punto di picco** effettivo, cerchiamo il punto stazionario della funzione:

$$f(u) = (1 - u^2) + 4\xi^2 u^2, \quad u = \frac{\omega}{\omega_0}$$

che è il denominatore del modulo.

Abbiamo quindi, derivando:

$$\frac{d}{du}f(u) = 0 = -4u(1 - u^2) + 8\xi^2 u$$

da cui:

$$u_{max} = \frac{\omega_{max}}{\omega_0} = \sqrt{1 - 2\xi^2}$$

cioè il punto di picco è:

$$\omega_{max} = \omega_0 \sqrt{1 - 2\xi^2}$$

e il valore di picco, ovvero il modulo in decibel raggiunto nel punto di picco, è pari a:

$$\max |G(j\omega)|_{dB} = 20 \log (\omega_{max})$$

Osserviamo che questo valore è effettivamente definito su $\mathbb R$ solo quando $\xi < \frac{1}{\sqrt{2}}$: questo si spiega semplicemente dal fatto che per $\xi > \frac{1}{\sqrt{2}}$ la funzione modulo del trasferimento è monotona, e non esiste nessun picco.

Vediamo quindi il punto di picco dell'esempio precedente, dove ricordiamo avevamo preso $\xi = \frac{1}{4}$:

Il valore ω_{max} , calcolato al computer, risulta circa ~ 0.935 , per cui l'errore $|G(\omega_{max})|$ in questo caso è abbastanza vicino all'errore in $\omega=1$, che era di 6 dB.

Possiamo quindi riportare un grafico che mostra la variazione del picco di risonanza al variare dello smorzamento ξ :

Questo grafico è duale a quello in 14.1.1: prima avevamo parlato della risposta a transiente, e adesso parliamo della risposta a regime, ma in entrambi i casi vediamo favorire una certa frequenza di oscillazione ω_0 (che nel transiente avevamo visto è corretta di un fattore dipendente dallo smorzamento).

Inoltre, si vede molto bene come intorno a $0.7 \approx \frac{1}{\sqrt{2}}$ il picco scompare: questa è la conseguenza diretta del fatto che, come abbiamo detto, il punto di picco $\omega_0 \sqrt{1-2\xi^2}$ è effettivamente definito su $\mathbb R$ solo nel caso $\xi < \frac{1}{\sqrt{2}}$.

Facciamo quindi un breve riassunto sulle frequenze di oscillazione che abbiamo incontrato finora:

• Frequenza di oscilazione naturale: ω_0

Abbiamo detto sarebbe la frequenza naturale a cui il sistema oscillasse se non vi fosse smorzamento ξ , e infatti vediamo che in tal caso corrisponde esattamente alle altre 2 frequenze;

- Frequenza di oscillazione naturale smorzata: $\omega_d = \omega_0 \sqrt{1 \xi^2}$ Rappresenta la frequenza di oscillazione della *risposta libera* del sistema, cioè quella con cui, nel caso questo sia stabile, decade naturalmente al punto di equilibrio (l'origine);
- frequenza di picco risonante: $\omega_{max} = \omega_0 \sqrt{1-2\xi^2}$ Rappresenta ciò che abbiamo visto, cioè la frequenza che il sistema, preso dal punto di vista della funzione di trasferimento ingresso-uscita, amplifica più delle altre (sotto l'ipotesi $\xi < \frac{1}{\sqrt{2}}$). In questo è intrinsecamente legata alla *risposta forzata* del sistema.

Si ricava immediatamente che nei sistemi sottosmorzati $\xi < 1$ (che sono comunqe gli unici dove questo tipo di considerazioni si applicano), vale fra queste frequenze la relazione:

$$\omega_{max} < \omega_d < \omega_0$$

cioè il sistema preferisce oscillare, in *risposta libera* (ω_d), ad una frequenza leggermente più alta di quella di eccitazione massima in *risposta forzata* (ω_{max}).

1.1.4 Valutazione di fase

Per quanto riguarda la fase, invece, si avrà:

$$\angle G(j\omega) = -\operatorname{atan2}\left(\frac{\frac{2\xi}{\omega_0}\omega}{1 - \frac{\omega^2}{\omega_0^2}}\right)$$

in quanto l'unico termine che determina la fase è il denominatore.

Potremo quindi prendere l'approssimazione per rette:

$$\begin{cases} \omega << \omega_0 \implies \angle G(j\omega) \approx 0^{\circ} \\ \omega >> \omega_0 \implies \angle G(j\omega) \approx -180^{\circ} \\ \omega = \omega_0 \implies \angle G(j\omega) = -90^{\circ} \end{cases}$$

preso $\tau > 0$.

Il valore in $\omega = \omega_0$ si calcola osservando che:

$$\angle G(j\omega_0) = -\operatorname{atan2}\left(\frac{2\xi}{0^+}\right)$$

da cui il limite, che porta appunto a -90° .

Otteniamo quindi il grafico approssimato, come sempre sovraimposto a quello reale:

Vediamo che lo scostamento in fase è lo stesso del sistema del primo ordine, ma raddoppiato: questo ha senso, in quanto abbiamo detto già lo stesso abbattimento dopo la frequenza di taglio ω_0 era del doppio, cioè -40 dB/dec.

Una considerazione più interessante potrebbe essere quella della pendenza della retta che approssima la componente intorno a ω_0 : abbiamo infatti che, a differenza dei sistemi del prim'ordine, nei sistemi del second'ordine lo scostamento in fase avviene con velocità diverse intorno alla frequenza di taglio (finora si è assunto -1): è proprio questo a dare il caratteristico picco di risonanza (rispettate le condizioni di cui sopra).

Calcoliamo allora la derivata dell'argomento della risposta:

$$\frac{d}{d\omega} \left(\angle G(j\omega) \right) = -\frac{1}{1 + \left(\frac{\frac{2\xi\omega}{\omega_0}}{1 - \frac{\omega^2}{\omega_0^2}} \right)^2} \cdot \frac{\frac{2\xi}{\omega_0} \left(1 - \frac{\omega^2}{\omega_0^2} \right) + \frac{2\xi\omega}{\omega_0} \cdot \frac{2\omega}{\omega_0^2}}{\left(1 - \frac{\omega^2}{\omega_0^2} \right)^2}$$

Questa funzione, valutata in ω_0 , dà:

$$\frac{d}{d\omega} \left(\angle G(j\omega) \right) \left(j\omega_0 \right) = -\frac{2\xi}{\omega_0} \cdot \frac{\left(1 + \frac{\omega_0^2}{\omega_0^2} \right)}{\left(1 - \frac{\omega_0^2}{\omega_0^2} \right)^2 + \left(\frac{2\xi\omega_0}{\omega_0} \right)^2} = -\frac{1}{\xi\omega_0}$$

Tracceremo quindi la retta di congiunzione in $\omega = \omega_0$ con coefficiente angolare $-\frac{1}{\xi\omega_0}$.

Vediamo ad esempio il caso con $\xi = 0.6$:

Dal punto di vista pratico, possiamo fare la stessa ipotesi di approssimazione di prima: per $\xi>0.3$ prendiamo la retta con derivata -1, mentre per $\xi<0.3$ la pendenza è troppo ripida perchè questa sia valida.

1.2 Ritardo nei diagrammi di Bode

Vediamo infine l'effetto che il ritardo ha nel dominio frequenze. Avevamo già visto l'espressione del ritardo nel dominio d Laplace:

$$G(s) = e^{-s\tau}$$

In risposta armonica, questa dà:

$$G(j\omega) = e^{-j\omega\tau}$$

cioè uno scostamento in fase di $\omega \tau$.

L'effetto sul diagramma di Bode sarà quindi di lasciare invariato il modulo (cioè dare una costante a 0 dB), e sopratutto di scostare la fase di un valore pari a $-\omega\tau$.

Vediamo allora il grafico del modulo:

e il grafico della fase:

1.3 Esempio: diagramma di Bode

Vediamo quindi un esempio pratico di disegno di un diagramma di Bode. Prendiamo la funzione di trasferimento:

$$G(s) = 200 \frac{\left(s + \frac{1}{10}\right)}{\left(s + 1\right)\left(\frac{s^2}{400} + \frac{s}{20} + 1\right)}$$

che protiamo subito nella forma di Bode e in risposta armonica:

$$=20\frac{(10s+1)}{(s+1)\left(\frac{s^2}{400}+\frac{s}{20}+1\right)}=20\frac{(10j\omega+1)}{(j\omega+1)\left(-\frac{\omega^2}{400}+\frac{j\omega}{20}+1\right)}$$

Vediamo poi il guadagno: questo nella forma di Bode è dato dal 20 che moltiplica il rapporto polinomi. Dalla tabella in 17.2.1 ricordiamo che un modulo di |20| corrisponde a un guadagno di 26 dB. Aggiugneremo quindi questo valore a tutti i moduli che calcoleremo.

Da qui distinguiamo zeri e poli e ne individuiamo il comportamento tramite un approssimazione per rette. Da quanto avevamo dimostrato nella 17.1.3, potremo poi sommare i grafici ottenuti dalle singole risposte per zero e per polo e ottenere la risposta complessiva.

Abbiamo quindi:

• Zeri:

- $10j\omega + 1$: questo rappresenta una rampa, con pendenza di 20 dB/dec, che inizia a pulsazione $j\omega^* = \frac{1}{10}$. Dal punto di vista della fase rappresenterà una transizione da 0° a 90° con punto a derivata unitaria in $\frac{1}{10}$.

• Poli:

- $j\omega+1$: questo rappresenta un passa basso, con pendenza di -20 dB/dec e frequenza di taglio a $j\omega^*=1$.
 - Dal punto di vista della fase rappresenterà una transizione da 0° a -90° con punto a derivata unitaria in 1;
- $-\frac{\omega^2}{400}+\frac{j\omega}{20}+1$: questa è una forma del secondo grado, di cui ci interessa prima di tutto conoscere il tipo. Riconosciamo allora di poterci ricondurre alla forma $-\frac{\omega^2}{\omega_0^2}+\frac{2\xi}{\omega_0}j\omega+1$, cioè:

$$-\frac{\omega^2}{400} + \frac{j\omega}{20} + 1 = -\frac{\omega^2}{\omega_0^2} + \frac{2\xi}{\omega_0}j\omega + 1$$

da cui:

$$\omega_0^2 = 400 \implies \omega_0 = 20, \quad \frac{2\xi}{\omega_0} = \frac{2\xi}{20} = \frac{1}{20} \implies \xi = \frac{1}{2}$$

cioè siamo nel caso sottosmorazato, tra con l'altro $\xi=0.5$, che è compreso fra 0.3 e 0.7, quindi abbiamo detto *risonante* ma *approssimabile* col diagramma a rette. Ignoriamo quindi lo smorzamento e prendiamo un filtro passa basso con pendenza di -40 dB/dec e frequenza di taglio a $j\omega^*=20$.

Dal punto di vista della fase rappresenterà una transizione da 0° e -90°

Tracciamo quindi il diagramma di Bode del modulo, considerando le seguenti regioni:

- [0, 0.1): nessun zero o polo è attivo, quindi si resta a 0 + 26 dB;
- [0.1, 1): lo zero è attivo, si sale con 20 dB/dec fino a 20 + 26dB;
- [1, 20]: il polo lineare è attivo e compensa lo zero, si resta a 20 + 26 dB;

• $[20, +\infty)$: il polo quadratico è attivo, si scende con -40 db/dec.

da cui il grafico:

che come vediamo si discosta dal grafico originale per lo più per lo smussamento intorno a $0.1\sim 1$, e per il picco di risonanza (che abbiamo volontariamente ignorato) a 20.

Disegnamo quindi il diagramma di Bode della fase. In questo caso notiamo di avere molta sovrapposizione fra le transizioni di fase: un'idea potrebbe essere quella di considerare assoluti solo i valori assoluti 0 e a $+\infty$, e per gli zeri e i poli intermedi prendere i punti "medi" (a $\pm 45^{\circ}$ per lo zero e il polo lineare, e a -90° per il polo quadratico).

che vediamo essere abbastanza simile alla fase effettiva (in verde).