

Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA Ano letivo 2019/2020

TURMAS: PN1, PN2 e PNrep

EXERCÍCIOS PN-P4

4.1

Considere uma distribuição de 12 cargas elétricas pontuais dispostas em círculo nas posições das horas de um relógio convencional. Onze cargas têm o valor +q, enquanto que a décima segunda tem um valor -q. Determine:

- a) o campo elétrico, num ponto **P** ao longo do eixo que passa perpendicularmente ao centro do plano onde estão as cargas e que está a uma distância **d** desse centro.
- b) a posição e o valor de uma carga pontual fixa **-Q**, para que qualquer carga elétrica colocada no ponto **P** e largada a partir do repouso permaneça em repouso.

4.2

Uma esfera não condutora de raio $\bf a$ é colocada no centro de uma casca esférica condutora de raio interno $\bf b$ e raio externo $\bf c$, como mostra a figura. Uma carga $\bf +Q$ está distribuída uniformemente na esfera interior, com uma densidade volúmica de carga $\bf \rho$ ($\bf C \cdot m^{-3}$). A casca externa tem carga $\bf -Q$.

- a) Determine campo elétrico $\vec{E}(\mathbf{r})$, em todo o espaço;
- b) Determine potencial elétrico *V(r)*, em todo o espaço;
- c) Suponha, agora, que a casca condutora tem uma carga -2Q. Determine o trabalho para trazer uma carga elétrica +q do infinito até à superfície exterior da casca. Comente o valor do trabalho, quanto ao sinal (positivo ou negativo).
- d) Nas condições da alínea anterior, determine o trabalho para mover a carga +q na superfície exterior da casca condutora entre os pontos A e B. Comente o resultado.

4.3

Duas esferas de massa $m_1 = \mathbf{m}$ e $m_2 = 2\mathbf{m}$ têm, respetivamente, cargas elétricas $+\mathbf{q_1}$ e $-\mathbf{q_2}$. Inicialmente, estão separadas de uma distância \mathbf{r} (entre os seus centros) e são largadas do repouso.

- a) Determine as velocidades das v1 e v2 das esferas, quando estão separadas de uma distância r/2;
- b) Suponha, agora, que as esferas têm raios R₁ = 10 cm e R₂ = 15 cm e os seus potenciais elétricos são, respetivamente, V₁ = 1000 V e V₂ = -2000V. As esferas colidem. Após a colisão, são afastadas. Determine o novo potencial de cada esfera.