Claims

1. A pyrazolopyrimidine of the formula

$$R^{1}$$
 R^{6}
 R^{5}
 R^{5}
 R^{4}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}

in which

- represents optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl or optionally substituted heterocyclyl,
 - R² represents hydrogen or alkyl, or
- R¹ and R² together with the nitrogen atom to which they are attached represent an optionally substituted heterocyclic ring,
 - R³ represents hydrogen or alkyl,
 - R⁴ represents optionally substituted alkenyl or optionally substituted alkynyl,
 - R⁵ represents halogen, CN, alkyl, alkoxy or alkylthio and
 - R⁶ represents alkyl, cycloalkyl or optionally substituted aryl.
- 15 2. The pyrazolopyrimidine of the formula (I) as claimed in claim 1 in which
 - R¹ represents alkyl having 1 to 6 carbon atoms which may be mono- to pentasubstituted by identical or different substituents from the group consisting of halogen, cyano, hydroxyl, alkoxy having 1 to 4 carbon atoms and cycloalkyl having 3 to 6 carbon atoms, or
- 20 R¹ represents alkenyl having 2 to 6 carbon atoms which may be monoto trisubstituted by identical or different substituents from the group consisting of halogen, cyano, hydroxyl, alkoxy having 1 to 4 carbon atoms and cycloalkyl having 3 to 6 carbon atoms, or

represents alkynyl having 3 to 6 carbon atoms which may be mono- to R^1 trisubstituted by identical or different substituents from the group consisting of halogen, cyano, alkoxy having 1 to 4 carbon atoms and cycloalkyl having 3 to 6 carbon atoms, or R^1 represents cycloalkyl having 3 to 6 carbon atoms which may be mono- to 5 trisubstituted by identical or different substituents from the group consisting of halogen and alkyl having 1 to 4 carbon atoms, or represents saturated or unsaturated heterocyclyl having 5 or 6 ring members and 1 R^1 to 3 heteroatoms, such as nitrogen, oxygen and/or sulfur, where the heterocyclyl may be mono- or disubstituted by halogen, alkyl having 1 to 4 carbon atoms, 10 cyano, nitro and/or cycloalkyl having 3 to 6 carbon atoms, R^2 represents hydrogen or alkyl having 1 to 4 carbon atoms, or together with the nitrogen atom to which they are attached represent a saturated or R¹ and R² unsaturated heterocyclic ring having 3 to 6 ring members, where the heterocycle may contain a further nitrogen, oxygen or sulfur atom as ring member and where 15 the heterocycle may be substituted up to three times by fluorine, chlorine, bromine, alkyl having 1 to 4 carbon atoms and/or haloalkyl having 1 to 4 carbon atoms and 1 to 9 fluorine and/or chlorine atoms, represents hydrogen or alkyl having 1 to 4 carbon atoms, R^3 represents alkenyl having 2 to 6 carbon atoms or alkynyl having 2 to 6 carbon R^4 20 atoms, or represents alkenyl having 2 to 4 carbon atoms which is substituted by carboxyl, R^4 methoxycarbonyl, ethoxycarbonyl, formyl or halogen, or represents alkynyl having 2 to 4 carbon atoms which is substituted by carboxyl, 25 methoxycarbonyl or ethoxycarbonyl, formyl or halogen, represents fluorine, chlorine, bromine, CN, alkoxy having 1 to 4 carbon atoms or R^5

alkylthio having 1 to 4 carbon atoms and

R⁶ represents alkyl having 1 to 6 carbon atoms or represents cycloalkyl having 3 to 6 carbon atoms, or

represents phenyl which may be mono- to tetrasubstituted by identical or different substituents.

5 3. The pyrazolopyrimidine of the formula (I) as claimed in claim 1 or 2 in which

R¹ represents a radical of the formula

where # denotes the point of attachment and where for those radicals which may be present in optically active form each of the possible stereoisomers or mixtures thereof may be present,

R² represents hydrogen, methyl, ethyl or propyl, or

10

15

R¹ and R² together with the nitrogen atom to which they are attached represent pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, 3,6-dihydro-1(2H)-piperidinyl or tetrahydro-1(2H)-pyridazinyl, where these radicals may be substituted by 1 to 3 fluorine atoms, 1 to 3 methyl groups and/or trifluoromethyl,

or

R¹ and R² together with the nitrogen atom to which they are attached represent a radical of the formula

$$-N \longrightarrow_{(R'')_m} \text{ or } N \longrightarrow_{(R''')_n}$$

5 in which

R' represents hydrogen or methyl,

R" represents methyl, ethyl, fluorine, chlorine or trifluoromethyl,

m represents the number 0, 1, 2 or 3, where R" represents identical or different radicals if m represents 2 or 3,

10 R'" represents methyl, ethyl, fluorine, chlorine or trifluoromethyl

and

- n represents the number 0, 1, 2 or 3, where R'" represents identical or different radicals if n represents 2 or 3,
- R³ represents hydrogen, methyl, ethyl, propyl or isopropyl,
- 15 R⁴ represents straight-chain or branched alkenyl having 2 to 5 carbon atoms, where each of these radicals may be monosubstituted by carboxyl, methoxycarbonyl, ethoxycarbonyl, formyl or halogen, or
 - R⁴ represents alkynyl having 2 to 5 carbon atoms, where each of these radicals may be monosubstituted by carboxyl, methoxycarbonyl or ethoxycarbonyl,
- 20 R⁵ represents fluorine, chlorine, CN, methoxy, ethoxy, methylthio or ethylthio,

and

represents straight-chain or branched alkyl having 1 to 4 carbon atoms, represents cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, or

R6 represents phenyl which may be mono- to trisubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, cyano, nitro, formyl, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, allyl, propargyl, methoxy, ethoxy, n- or i-propoxy, methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, propargyloxy, methylsulfonyl, ethylsulfonyl, allyloxy, ethylsulfinyl, trifluoroethyl, difluoromethoxy, trifluoromethoxy, trifluoromethyl, difluoromethylthio, trifluoroethoxy, difluorochloromethoxy, trifluoromethylsulfinyl, trifluoromethylthio, difluorochloromethylthio, trifluoromethylsulfonyl, trichloroethynyloxy, trifluoroethynyloxy, chloroallyloxy, iodopropargyloxy, methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, acetyl, propionyl, acetyloxy, methoxycarbonyl, ethoxycarbonyl, hydroximinomethyl, hydroximinoethyl, methoximinomethyl, ethoximinomethyl, methoximinoethyl, ethoximinoethyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl,

2,3-attached 1,3-propanediyl, methylenedioxy (-O-CH₂-O-) or 1,2-ethylenedioxy (-O-CH₂-CH₂-O-), where these radicals may be mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, methyl, ethyl, n-propyl, i-propyl and trifluoromethyl.

4. The pyrazolopyrimidine of the formula (I) according to one or more of claims 1 to 3 in which

 R^1 , R^2 , R^3 and R^5 have the particularly preferred meanings given above,

R⁴ represents a radical of the formula

—CH
$$\equiv$$
CH $_2$, —C \equiv CH $_2$, —CH \equiv CH \rightarrow CH $_3$, CH $_3$

$$-C=CH-CH_3$$
 , $-CH=CH-C_2H_5$, $-C=CH-CHO$

--C=CH--C
$$_2$$
H $_5$, --CH=CH--COOH , --CH=CH--CH(CH $_3$) $_2$ CH $_3$

10

5

15

25

R6

5

10

15

20

-CH=CH-CO-OCH₃, -CH=CH-CO-OC₂H₅, -C \equiv CH, -C \equiv C-CH₃, -C \equiv C-C₂H₅, -C \equiv C-C₃H₇, -C \equiv C-COOH, -C \equiv C-CO-OCH₃ or -C \equiv C-CO-OC₂H₅ and

R6 represents methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, cyclopropyl, cyclopentyl or cyclohexyl, or

represents 2,4-, 2,5- or 2,6-disubstituted phenyl or 2-substituted phenyl or represents 2,4,6-trisubstituted phenyl, where the substituents are selected from the group consisting of fluorine, chlorine, bromine, cyano, nitro, formyl, methyl, ethyl, n- or i-propyl, n-, i-, s- or t-butyl, allyl, propargyl, methoxy, ethoxy, n- or ipropoxy, methylthio, ethylthio, n- or i-propylthio, methylsulfinyl, ethylsulfinyl, ethylsulfonyl, allyloxy, trifluoromethyl, methylsulfonyl, propargyloxy, difluoromethoxy, trifluoromethoxy, difluorochloromethoxy, trifluoroethyl, trifluoroethoxy, difluoromethylthio, difluorochloromethylthio, trifluoromethylthio, trifluoromethylsulfinyl, trifluoromethylsulfonyl, trichloroethynyloxy, trifluoroethynyloxy, chloroallyloxy, iodopropargyloxy, methylamino, ethylamino, n- or i-propylamino, dimethylamino, diethylamino, acetyl, propionyl, acetyloxy, methoxycarbonyl, ethoxycarbonyl, hydroximinomethyl, hydroximinoethyl, methoximinomethyl, ethoximinomethyl, methoximinoethyl, ethoximinoethyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl,

2,3-attached 1,3-propanediyl, methylenedioxy (-O-CH₂-O-) or 1,2-ethylenedioxy (-O-CH₂-CH₂-O-), where these radicals may be mono- or polysubstituted by identical or different substituents from the group consisting of fluorine, chlorine, methyl, ethyl, n-propyl, i-propyl and trifluoromethyl.

- 5. A process for preparing pyrazolopyrimidines of the formula (I) as claimed in claim 1, characterized in that
- 25 a) pyrazolopyrimidines of the formula

$$R^{1}$$
 R^{2}
 R^{6}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
(II),

- 77 -

in which

in which

 R^{1} , R^{2} , R^{3} , R^{5} and R^{6}

are as defined above and

 R^7

represents hydrogen or alkyl

are reacted with phosphonium salts of the formula

 $Y_3^{\bigoplus}P-CH_2-R^8$ X^{Θ} (III)

5

Y represents alkyl, cycloalkyl, aralkyl or phenyl

X represents an anion, such as bromide, and

R⁸ represents hydrogen or optionally substituted alkyl

in the presence of a base in the presence of a diluent,

or

b) pyrazolopyrimidines of the formula

$$R^{1}$$
 R^{2}
 R^{6}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7

in which

 R^1 , R^2 , R^3 , R^5 and R^6

are as defined above,

 R^9

represents hydrogen or optionally substituted alkyl,

X

represents chlorine or bromine

are reacted with strong bases in the presence of a diluent,

15

c) pyrazolopyrimidines of the formula

$$R^{1}$$
 R^{6}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
(IIa),

in which

 R^1 , R^2 , R^3 , R^5 , R^6 and R^7 are as defined above

are initially reacted with phosphorus oxychloride in the presence of dimethylformamide and then further with a base to give a compound of the formula (V)

or

5

d) pyrazolopyrimidines of the formula

$$R^{1}$$
 R^{2}
 R^{6}
 R^{5}
 R^{5}
 R^{7}
(IIa),

in which

5

10

R¹, R², R³, R⁵, R⁶ and R⁷ are as defined above, are reacted with Grignard compounds

R8-CH2-Mg X,

where R⁸ is as defined above, and then acidified.

- 6. A composition for controlling unwanted microorganisms, characterized in that it comprises at least one pyrazolopyrimidine of the formula (I) as claimed in one or more of claims 1 to 4, in addition to extenders and/or surfactants.
- 7. The composition as claimed in claim 6, comprising at least one further fungicidally or insecticidally active compound.
- 8. The use of pyrazolopyrimidines of the formula (I) as claimed in one or more of claims 1 to 4 for controlling unwanted microorganisms.
- 9. A method for controlling unwanted microorganisms, characterized in that pyrazolopyrimidines of the formula (I) according to one or more of claims 1 to 4 are applied to the unwanted microorganisms and/or their habitat.
- 10. The process for preparing compositions for controlling unwanted microorganisms, characterized in that pyrazolopyrimidines of the formula (I) according to one or more of claims 1 to 4 are mixed with extenders and/or surfactants.

Pyrazolopyrimidines

Abstract

Novel pyrazolopyrimidines of the formula

$$R^{1}$$
 R^{6}
 R^{5}
 R^{5}
 R^{4}
 R^{2}
 R^{3}
 R^{3}
 R^{4}

in which

 R^1 , R^2 , R^3 , R^4 , R^5 and R^6 are as defined in the description,

a plurality of processes for preparing these compounds and their use for controlling unwanted microorganisms.