MATH 135: Introduction to the Theory of Sets

Jad Damaj

Fall 2022

Contents

1	Introduction 3			
	1.1	August 25		
		1.1.1 Introduction	3	
		1.1.2 Basics	3	
2	Axi	oms and Operations	5	
	2.1		Ē	
		2.1.1 Zermelo Fraenkel Axioms of Set Theory	Ē	
3	Rela	ations and Functions	7	
	3.1	September 1	7	
		±	7	
	3.2		8	
			8	
		3.2.2 Infinite Cartesion Products	8	
	35. T			
4			10	
	4.1	September 8		
	4.0	4.1.1 Natural Numbers		
	4.2	September 13		
		4.2.1 Operations on the Natural Numbers		
		4.2.2 Integers		
	4.0	4.2.3 Rationals		
	4.3	September 15		
		4.3.1 Reals (Dedekind Cuts)	L2	
5	Car		L 3	
	5.1	September 15		
		5.1.1 Cardinality	13	
	5.2	September 20	14	
		5.2.1 Cardinality	14	
	5.3	September 22	15	
		5.3.1 Cardinals	15	
	5.4	September 27	16	
		5.4.1 Schroder-Bernstein Theorem		
	5.5	September 29		
		5.5.1. Zorn's Lomma		

Introduction

1.1 August 25

1.1.1 Introduction

Foundations of Mathematics: language, axioms, formal proofs

- We focus on the axioms in set theory
- We use ZFC (Zermelo-Fraenkel + Choice)
- \bullet There is only one primitive notion : \in
- Within the ZFC universe, everything is a set

Course Outline:

- Basic axioms
- Operations, relations, functions
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- \bullet carindals
- AC
- ordinals

1.1.2 Basics

Principle of Extensionality: Two sets A, B are the same \leftrightarrow they have the same elements $\forall x (x \in A \leftrightarrow x \in B)$ **Example 1.1.1.** $2, 3, 5 = \{5, 2, 4\} = \{2, 5, 2, 3, 3, 2\}$

Definition 1.1.2. There is a set with no elements, denoted \varnothing

- $\emptyset \neq \{\emptyset\}$
- $A \subseteq B$: A is a subset of $B \leftrightarrow$ each element of A is in B (use \subseteq to denote proper subset)

1.1. AUGUST 25

- $\{2\} \subseteq \{2,3,5\}$ but $\{2\} \notin \{2,3,5\}$
- Power set opertaion: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$

We can define a hierarchy:

$$\begin{array}{l} V_0 = \varnothing, \ V_1 = \mathcal{P}(\varnothing) = \{\varnothing\}, \ V_2 = \mathcal{PP}(\varnothing) = \{\varnothing, \{\varnothing\}\} \\ V_3 = \mathcal{P}(V_2) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ V_4, \dots \\ V_\omega = \bigcup_{n \in \mathbb{N}} V_n, \ \mathcal{P}(V_\omega), \ \mathcal{PP}(V_\omega), \dots, V_{\omega + \omega}, \dots, V_{\omega + \omega + \cdots}, \dots, V_{\omega \times \omega}, \dots, V_{\omega^\omega} \end{array}$$

Axioms and Operations

2.1August 30

Zermelo Fraenkel Axioms of Set Theory 2.1.1

Setting: in ZFC all objects are sets

Language: contains vocabulary (ϵ), logical symbols (=, \land , $\lor \exists$, \forall , \neg), variables (x, y, A, B, etc.)

Axiom 2.1.1 (Extensionality Axiom). Two sets are the same if they have the same elements $\forall A, B(\forall x (x \in A \leftrightarrow x \in B) \rightarrow A = B)$

Axiom 2.1.2 (Empty Set Axiom). There is a set with no members, denoted \varnothing $\exists A \forall x (x \notin A)$

Axiom 2.1.3 (Pairing Axiom). For any sets u, v there is a est whose elements are u and v, denoted $\{u, v\}$ $\forall u, v \exists A \forall x (x \in A \leftrightarrow x = u \lor x = v)$

Axiom 2.1.4 (Union Axiom (Preliminary Form)). For any sets a, b there is a set whose elements are elements of a and elements of b, denoted $a \cup b$ $\forall a, b \exists A \forall x (x \in Ax \in u \lor x \in v)$

Axiom 2.1.5 (Powerset Axiom). Each set A, has a power set $\mathcal{P}(A)$. $\forall A \exists B \forall x (x \in B \iff x \subseteq A)$ where $x \subseteq A$ stands for $\forall y (y \in x \rightarrow y \in A)$

Axiom 2.1.6 (Union Axiom). For any set A, there is a set [JA] whose members are members of the members of A.

 $\forall A \exists B \forall x (x \in B \leftrightarrow \exists y \in A (x \in y))$

Idea for the subset axiom: For any set A, there is a set B whose members are members of A satisfying some property.

2.1. AUGUST 30 135: Set Theory

eg. $B = \{x \in A \mid x \text{ satisfies property } P\} \subseteq A$

Example 2.1.7. $B = \{n \in \mathbb{N} \mid n \text{ cannot be described in less that 20 words}\}$

• let b be the smallest element in B, then b is the smallest element that cannot be described in 20 words.

• Paradox : need to use formal language to express property P.

Example 2.1.8. Let $B = \{x \mid x \notin x\}$

Question: $B \in B$? $B \in B \leftrightarrow B \notin B$: need to have property be contained in some larger set.

We can now restate the axiom more formally:

Axiom 2.1.9 (Subset Axiom (Scheme)). For each formula $\phi(x)$, there is an axiom: $\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \phi(x))$

Example 2.1.10. Suppose there is a set of all sets A. Consider $B = \{x \in A \mid x \notin x\}$. Then $B \in B \leftrightarrow B \notin B$, contradiction. So there can be no such set A.

The language of 1rst order logic for ZFC:

The following are formulas:

- $x = y, x \in y$ atomic formulas
- $(\varphi \wedge \psi), (\varphi \vee \psi), \neg \varphi$ where φ, ψ are formulas
- $\exists v\varphi, \forall x\varphi$

Example 2.1.11. $\varphi(v, w) := (\exists v (v \in x \land \neg v = w)) \to (\forall y (\neg y \in y))$ is a formula

Relations and Functions

3.1 September 1

3.1.1 Relations and Functions

Ordered Pair: $\langle a, b \rangle = \langle c, d \rangle \leftrightarrow a = c, b = d$

```
Definition 3.1.1. \langle a, b \rangle = \{ \{a\}, \{a, b\} \}
```

Cartesian product of A and B, denoted $A \times B = \{\langle x, y \rangle x \in A, y \in B\}$ Using the subset axiom $A \times B = \{z \in \mathcal{PP}(A \cup B) \mid \exists x \in A \exists y \in Bz = \langle x, y \rangle\}$ Observation: $\langle x, y \rangle \in \mathcal{PP}(C)$ for $x, y \in C$ $\{x\}, \{x, y\} \in \mathcal{P}(C)$ so $\{\{x\}, \{x, y\}\} \subseteq \mathcal{P}(C)$ so $\{\{x\}, \{x, y\}\} \in \mathcal{PP}(C)$

Definition 3.1.2. A binary relation is a set R whose elements are ordered pairs.

If $R \subset A \times B$ then R is a relation from $A \to B$.

Definition 3.1.3. Given a relation R, dom $R = \{x \in \bigcup \bigcup R \mid \exists y \langle x, y \rangle \in R\}$, range $R = \{y \in \bigcup \bigcup R \mid \exists x \langle x, y \rangle \in R\}$, field $(R) = \text{dom}(R) \cup \text{range}(R)$

```
Example 3.1.4. R = \{\langle a,b \rangle, \langle c,d \rangle, \langle e,f \rangle\} = \{\{\{a\}, \{a,b\}\}, \{\{c\}, \{c,d\}\}, \{\{e\}, \{e,f\}\}\}\} \cup R = \{\{a\}, \{a,b\}, \{c\}, \{c,d\}, \{e\}, \{e,f\}\} \cup R = \{a,b,c,d,e,f\}
```

n-ary relations: define *n*-tuple by $\langle a, b, c \rangle = \langle \langle a, b, \rangle, c \rangle$ etc.

Definition 3.1.5. A function is a relation F such that $\forall x, y, z \ \langle x, y \rangle \in F$ and $\langle x, z \rangle \in F \rightarrow y = z$

 $\forall x \in \text{dom } (F) \text{ there is } y \text{ such that } \langle x,y \rangle \in F. \text{ If } A = \text{dom}(F), B \supseteq \text{range}(F) \text{ then } F \text{ is said to a funtion from } A \text{ to } B, f:A \to B$

We say that $f: A \to B$ is onto if B = range(F)

Definition 3.1.6. F is injective if $\forall x, y, z \langle x, z \rangle \in F \land \langle y, z \rangle inF \rightarrow x = y$.

3.2. SEPTEMBER 6 135: Set Theory

Definition 3.1.7. For a set A, relations F, G

- (a) inverse $F^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \in F \}$
- (b) composition: $G \circ F = \{\langle x, z \rangle \mid \exists y \langle x, y \rangle \in F, \langle y, z \rangle \in G\}$
- (c) restriction: $F \upharpoonright_A \{\langle x, y \rangle \in F \mid x \in A\}$
- (d) image of A under F, $F[A] = \{y \mid \exists x \in A \langle x, y \rangle \in F\} = \operatorname{range}(F \upharpoonright_A)$

Example 3.1.8. If F is a function, F^{-1} may not be a function. F^{-1} is a function $\leftrightarrow F$ is one to one.

Example 3.1.9. $F^{-1} \circ F = \{\langle x, x \rangle \mid x \in \text{dom}(F)\}\$ if F is one to one More generally, $F^{-1} \circ F = \{\langle x, z \rangle \mid \exists y \in \text{range } F \langle x, y \rangle, \langle z, y \rangle \in F\}.$

3.2 September 6

3.2.1 Functions and Relations

Theorem 3.2.1. Let $F: A \to B$ with $A \neq \emptyset$

- (a) There is a function $G: B \to A$ such that $G \circ F = \mathrm{id}_A \leftrightarrow F$ is one to one.
- (b) There is a function $G: B \to A$ such that $F \circ F = \mathrm{id}_B \leftrightarrow F$ is onto.

Proof. (a) Suppose there is such a G. Take a_1, a_2 such that $F(a_1) = F(a_2)$, then $a_1 = G \circ F(a_1) = G \circ F(a_2) = a_2$

Conversely, suppose F is one to one. We want to define $G: B \to A$ given $b \in B$, let G(b)=the unique $a \in A$ such that F(a) = b if $b \in \operatorname{range}(F)$. If $b \notin \operatorname{range}(F)$, let $G(b) = a_0$ with $a_0 \in A$ arbitrary (exists since A nonempty)

(b) Suppose that $G: B \to A$, with $F \circ G = \mathrm{id}_B$ Want to show $\forall b \in B \exists a \, F(a) = b$ Take $a = G(b) \to F(a) = F(G(b)) = b$

Conversely, suppose F is onto. We want to define G, given $b \in B$ want to define G(b) such that F(G(b)) = b, equivalently, want $G(b) \in F^{-1}(\{b\})$. Since F is onto $F^{-1}(\{b\})$ is nonempty. Let G(b) be any element of $F^{-1}(b)$, equivalently $G \subseteq F^{-1}$ and $dom(G) = B = dom(F^{-1})$.

Example 3.2.2. Suppose $A = \mathbb{N}$, let $G = \{(b, a) \in B \times \mathbb{N} : a \text{ is least satisfying } f(a) = b\}$

• Don't have a method to specify such elements in gneral.

Axiom 3.2.3 (Axiom of Choice - Form I). For every relation R, there is a function $G \subseteq R$ with dom(G) = dom(R)

3.2.2 Infinite Cartesion Products

 $A \times B = \{ \langle x, y \rangle \in \mathcal{PP}(A \cup B) \mid x \in A \land y \in B \}$

3.2. SEPTEMBER 6 135: Set Theory

Definition 3.2.4. Let M be a function with domain I such that for every $i \in I$, H(i) is a set. Let

$$\underset{i \in I}{\times} H(i) - \{f: I \to \bigcup H(i) \, | \, f(i) \in H9 = (i)\}$$

Example 3.2.5. Let ω_g be $\{G \subseteq \mathbb{R} \mid 0 \neq G, G \cup \{0\} \text{ is closed under addition } \}$

 $\times_{G \in \omega_g} = \times_{G \in \omega_g} H(G)$ is a function such that for each $G \in \omega_g$, you get an element of G.

Observation: If one of the H(i) is \varnothing , then $\times_{i \in I} H(i) = \varnothing$

Axiom 3.2.6 (Axiom of Choice - Form II). If H is a function with domain I such that $H(i) \neq \emptyset \ \forall i \in I$, then $\times_{i \in I} H(i) \neq \emptyset$

 $(\text{ACI}) \to (\text{ACII}) \text{: We are given } H \text{ with } H(i) \neq \varnothing \text{ for all } i. \text{ Want } f: I \to H(i) \text{ with } f(i) \in H(i) \ \forall i \in I. \text{ Let } R = \{\langle i, h \rangle \in I \times \bigcup_{i \in I} H(i) \ | \ h \in H(i) \}. \ \operatorname{dom}(R) = I, \text{ since } H(i) \neq \varnothing \text{ there is } h \in H(i) \text{ so } \langle i, h \rangle \in R. \text{ BY ACI, there is } F \subseteq R \text{ with } \operatorname{dom}(F) = \operatorname{dom}(R) = I. \ \forall i, \langle i, f(i) \rangle \in R \text{ so } f(i) \in H(i)$

Naturals, Rationals, Reals

4.1 September 8

4.1.1 Natural Numbers

Idea: each natural number is the set of all the previous numbers. $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}, \dots, n = \{0, 1, \dots, n-1\}, \dots$

Definition 4.1.1. The successor of a set a is defined as $a^+ = a \cup \{a\}$

Definition 4.1.2. A set I is inductive if $\emptyset \in I$ and $\forall a \in I, a^+ \in I$

Definition 4.1.3. a is a natural number if it belongs to all inductive sets, $\forall I(I \text{ inductive} \rightarrow a \in I)$

If I is any inductive set, let $\omega = \{a \in I \mid a \text{ belongs to all inductive sets}\}$ =the minimal inductive set. Observation: ω is inductive because \varnothing is in all inductive sets and if n belongs to all inductive sets then so does n^+

Axiom 4.1.4 (Ifinity Axiom). There is an inductive set.

Inductivion Principle: If $A \subseteq \omega$ is inductive set $A = \omega$

Example 4.1.5. Every natural number is 0 or the succesor of some natural number.

Let $A = \{n \in \omega \mid n = 0 \vee \exists m \in \omega \mid n = m^+\}$. A is inductive so $A = \omega$

Definition 4.1.6. A set A is transitive if one of the following equivalent conditions holds:

- if $x \in a \in A$, then $x \in A$
- $\bullet \ \bigcup A \subseteq A$
- if $a \in A$, then $a \subseteq A$
- $A \in \mathcal{P}(A)$

4.2. SEPTEMBER 13 135: Set Theory

Example 4.1.7. Transitive sets includ \emptyset , each natural number, ω, V_{ω}

Claim: $A = \{n \in \omega \mid n \text{ is transitive }\}$ is inductive (implies all nautrual numbers are transitiev)

- Base: $0 \in A$ since \emptyset is transitive
- Inductive Step: Suppose $n \in A$ transitive, want to show n^+ is transitive. Consider $x \in a \in n^+ = n \cup \{n\}$. If a = n, $x \in n \subseteq n^+$. If $a \in n$, $x \in a \in \text{so by transitivity } x \in n^+$ so $x \in n^+$

Theorem 4.1.8. If a is tansitive, then $| | a^+ = a$

```
Proof. (\supseteq) a = \bigcup \{a\} \subseteq \bigcup (a \cup \{a\} = \bigcup a^+) \ (a \in a^+ \text{ so } a \subseteq \bigcup a^+)
(\subseteq) Take x \in \bigcup a^+, then let b \in a^+ with x \in b. If b = a, x \in a. If b \in a, x \in b \in a so x \in a.
```

• If a, b transitive and $a^+ = b^+$ then $a = \bigcup a^+ = \bigcup b^+ = b$ so successor function is one to one on transitive sets, more specifically ω .

Fix a number $k \in \omega$. Consdier the following functions:

- $A_k : \omega \to \omega$ by $A_k(0) = 0$, $A_k(n^+) = A_k(n)^+$
- $M_k : \omega \to \omega$ by $M_k(0) = 0$, $M_k(n^+) = A_k(M_k(n))$

4.2 September 13

4.2.1 Operations on the Natural Numbers

Theorem 4.2.1. Let A be a set, $a \in A$ and $F : A \to A$. Then there is a unique function $h : \omega \to A$ such that:

- 1. h(0) = a
- 2. $h(n^+) = F(h(n))$ for all $n \in \omega$

Proof. Let $h = \{\langle n, b \rangle \in \omega \times A \mid \text{there is } g : n^+ \to A \text{ such that } g(0) = a, g(i^+) = F(g(i)) \land g(n) = b\}$ Claim 1: For all n there is a $g : \{0, \ldots, n\} \to A$ such that $g(0) = a, g(i^+) = F(g(i))$ Claim 2: Such a g is unique.

Proof of Claim 1. Let $I = \{n \in \omega \mid \text{ such a } g \text{ exists}\}$. Want to show that I is inductive.

- 1. $0 \in I$: let $g: \{0\} \to A$ be such that g(0) = a eg. $g = \{\langle 0, a \rangle\}$
- 2. Suppose $n \in I$, we know such a g exists for $n, g : \{0, ..., n\} \to A$. We want $\tilde{g} : \{0, ..., n, n^+\} \to A$. Let $\tilde{g} = g \cup \{\langle n^+, F(g(n)) \rangle\}$

Proof of Claim 2. Suppose $g, \tilde{g} : \{0, ..., n\} \to A$ such that $g(0) = a = \tilde{g}(0), \ g(i^+) = F(g(i)), \ \tilde{g}(i^+) = F(\tilde{g}(i^+)), i < n$. We want to show $g(i) = \tilde{g}(i) \ \forall i \leq n$. $g(0) = \tilde{g}(0), \ g(i^+) = F(g(i)) = F(\tilde{g}(i)) = \tilde{g}(i^+)$

4.3. SEPTEMBER 15 135: Set Theory

```
Can formally show this by induction using I = \{i \in \omega \mid i \in n^+ \land g(i) = \tilde{g}(i) \lor i \notin n^+\}
Claim 3: \forall n \in \omega, h(n^+) = F(H(n))
```

```
Definition 4.2.2. Given k \in \omega, define A_k : \omega \to \omega by A_k(0) = k, A_k(n^+) = (A_k(n))^+. Define n+k = A_k(n) Define M_k : \omega \to \omega by M_k(0) = 0, M_k(n^+) = A_k(M_k(n)), let n \times k = M_k(n). Let m < n if m \in n
```

Theorem 4.2.3. We can show the associativity of addition: $\forall a, b, v \in \omega((a+b)+c=a+(b+c))$, commutativity of addition: $\forall a, b \in \omega a + b = b + a$, etc.

4.2.2 Integers

```
Let \sim be the following equivalence relation on \omega \times \omega by \langle a,b \rangle \sim \langle c,d \rangle \leftrightarrow a+d=b+c

Define \mathbb{Z} = \omega \times \omega / \sim. 0_{\mathbb{Z}} = [\langle 0,0 \rangle], \ 1_{\mathbb{Z}} = [\langle 1,0 \rangle]

Let [\langle a,b \rangle] +_{\mathbb{Z}} [\langle c,d \rangle] = [\langle a+c,b+d \rangle]. One needs to show this is well defined eg. if \langle a,b \rangle \sim \langle a',b' \rangle, \langle c,d \rangle \sim \langle c',d' \rangle

then \langle a+c,b+d \rangle \sim \langle a'+c',b'+d' \rangle /

Let [\langle a,b \rangle] \times_{\mathbb{Z}} [\langle c,d \rangle] = [\langle ac+bd,ad+bc \rangle]

Let E:\omega \to \mathbb{Z} by E(n) = [\langle n,0 \rangle]
```

4.2.3 Rationals

```
Let \sim be the following equivalence relation on \mathbb{Z} \times \mathbb{Z} \setminus \{0\}. \langle a,b \rangle \sim \langle c,d \rangle \iff a \times_{\mathbb{Z}} d = b \times_{\mathbb{Z}} c
Define \mathbb{Q} = \mathbb{Z} \times \mathbb{Z} \setminus \{0\} / \sim. 0_{\mathbb{Q}} = [\langle 0,1 \rangle], 1_{\mathbb{Q}} = [\langle 1,1,\rangle]
Let [\langle a,b \rangle] \times_{\mathbb{Q}} [\langle c,d \rangle] = [\langle a \times c,b \times d \rangle]
Let [\langle a,b \rangle] +_{\mathbb{Q}} [\langle c,d \rangle] = [\langle ad+bc,bd \rangle]
E: \mathbb{Z} \to \mathbb{Q} by E(z) = [\langle z,1 \rangle]
```

4.3 September 15

4.3.1 Reals (Dedekind Cuts)

Definition 4.3.1. A dedekind cut is a subset $D \subseteq \mathbb{Q}$ such that

- $\emptyset \neq D \neq \mathbb{Q}$
- D is closed downwards, if $d \in D$, $c < d \rightarrow c \in D$
- D has no greatest element.

```
Let \mathbb{R} = \{D \in \mathcal{P}(\mathbb{Q}) \mid D \text{ is a dedekind cut } \}

\sqrt{2} = \{q \in \mathbb{Q} \mid q \times_{\mathbb{Q}} q < 2\}, \ e = \{q \in \mathbb{Q} \mid exn \in \omega \ q <_{\mathbb{Q}} \ (1 + \frac{1}{N})^N \} \text{ For } r \in \mathbb{R}, \ -r = \{q \in \mathbb{Q} \mid -q \in r\} \setminus \{-\sup(r)\} \}

For r_1, r_2 \in \mathbb{R}, \ r_1 \leq_{\mathbb{R}} r_2 \iff r_1 \subseteq r_2

r_1 \times r_2 = \{q \in \mathbb{Q} \mid \exists q \leq 0 \in r \exists b \leq 0 \in r_2 \ q, a \times_{\mathbb{Q}} b \text{ if } r_1, r_2 > 0, \dots
```

Theorem 4.3.2. $(\mathbb{R}, 0, 1, +, \times, \leq)$ is an ordered field.

 $E: \mathbb{Q} \to \mathbb{R}$ is a field embedding.

Cardinal Numbers and the Axiom of Choice

5.1 September 15

5.1.1 Cardinality

Definition 5.1.1. A is equinumerous to B (written $A \approx B$) if there is a bijection $f: A \to B$

Theorem 5.1.2. For every A, B, C

- $A \approx A$
- If $A \approx B$, $B \approx B$
- If $A \approx B$, $B \approx C$ then $A \approx C$

Lemma 5.1.3. $\mathbb{Z} \approx \omega$

Proof. For
$$z \in Z$$
, $f(z) = \begin{cases} -2z & z \leq 0 \\ 2z + 1 & z > 0 \end{cases}$

Lemma 5.1.4. $\mathbb{Q} \approx \omega$

Proof.
$$f: \omega \to \mathbb{Z} \times \mathbb{Z}^+, \mathbb{Q} = \mathbb{Z} \times \mathbb{Z}^+/\sim f': \omega \to \mathbb{Q}, f'(n) = \text{least } i \in \omega \ g(i) \notin \{f(1), \dots, f(n-1)\}$$

Lemma 5.1.5. $\mathbb{R} \approx (0,1)_{\mathbb{R}}$

5.2. SEPTEMBER 20 135: Set Theory

5.2 September 20

5.2.1 Cardinality

Lemma 5.2.1. $1. \mathbb{N} \not\approx \mathbb{R}$

2. For any set $A, A \not\approx \mathcal{P}(A)$

Proof. 1. Let $f: \omega \to \mathbb{R}$, claim f is not onto. Want $r \notin \operatorname{ran}(f)$, $\forall n \in \omega r \neq f(n)$. Choose A_0 such that $f(0) \notin A_0$. Given A_n such that $f(0), \ldots, f(n) \notin A_n$. Divide A_n by 2, take half that does not contain f(n+1) to be A_{n+1} , then $A_0 \supset A_1 \supset A_2 \supset \cdots$, $\bigcap_{n \in \omega} A_n \neq \emptyset$ and for each $n, f(n) \notin A_n$ so $f(n) \notin \bigcap A_n$

2. let $f:A\to A$. Claim f is not onto. Let $B=\{b\in A\mid b\notin f(b)\}$. Claim $B\notin \mathrm{range}(f)$. Suppose for contradiction that B=f(b) for $b\in A, b\in B \leftrightarrow b\notin f(b) \iff b\notin B$, contradiction.

Definition 5.2.2. A set A is finite if $\exists n \in omega(A \approx n)$ eg. $\exists n \, exf : n \rightarrow A$ bijection. $A = \{f(0), f(1), \dots, f(n-1)\}$

Lemma 5.2.3 (Pigeonhole Principle). No finite set is equinumerous to a finite subset of itself.

Lemma 5.2.4. If B is a proper subset of $n \in \omega$ ther is m < n such that $B \approx m$

Proof. Use induction on n. Let $A = \{n \in \omega \mid \forall B \in n \exists m \in n \ B \approx n\}$. Claim A is inductive. $0 \in A$ trivial, $1 \in A$. $B \subsetneq \{\emptyset\} \to B = \emptyset \to B \approx 0$. Suppose $n \in A$, want to show $n^+ \in A$. Take $B \subsetneq n^+ = n \cup \{n\}$. If $n \in B$, $B \cap n \subseteq n$ so $\exists m < n \ B \cap n \approx m$ so $B \approx m^+ < n^+$. If $n \notin B$, either $B \cap n = n$ so $B \approx n < n^+$ of $B \cap n \subsetneq n$ so $\exists m < n \ B = B \cap n \approx m$.

Proof (Pigeonhole Principle). Take $n, B \subseteq n, B \approx n$. Then $B \approx m$ for some m < n so $m \approx n$. Let $A = \{n \mid Am < n \ m \not\approx n\}$. Claim A is inductive. $0 \in A$, suppose $n \in A$, want to show $n^+ \in A$. Idea: turn a bijection for $n^+ \approx m^+$ so a bijection $n \approx m/$

Corollary 5.2.5. • No finite set is equinumerous to a proper subset

- ω is not finite $(\omega \approx \omega \setminus \{0\} \text{ by } n \mapsto n+1)$
- Every finite set is equinumerous to a unique natural number. We call that number the cardinality of A, card(A)
- A subset of a finite subset is finite

Definition 5.2.6. A set κ is said to be a cardinal if

5.3. SEPTEMBER 22 135: Set Theory

- κ is transitive (if $x \in a, a \in \kappa \to x \in \kappa$)
- ϵ is a linear order on κ ($\forall x, y \ x \in y \ \text{or} \ y \in x \ \text{or} \ x = y$)
- $\forall x \in \kappa \ x \not\approx \kappa$

Theorem 5.2.7. For every set A, there is a unique cardinal κ such that $A \approx \kappa$. We call this κ card(A)

Example 5.2.8. • $n = \{0 \in 1 \in 2 \in \cdots \in n-1\}$ is a cardinal

- $\omega = \{0 \in 1 \in 2 \in \cdot\}$ is a cardinal
- $\omega^+ = \{0, 1, 2, \ldots\} \cup \{\omega\} \approx \omega$ is not a carinal

Notation: $\omega - \aleph_0$, card(\mathbb{R}) = 2^{\aleph_0} , smallest cardinal greater than $\aleph_0 = \aleph_1$

5.3 September 22

5.3.1 Cardinals

Definition 5.3.1. Given carindals κ and λ let

- $\kappa + \lambda = \operatorname{card}(K \cup L)$ where K and L are disjoint sets of carindality κ and λ
- $\kappa \cdot \lambda = \operatorname{card}(K \times L)$ where K and L are sets of carindality κ and λ
- $\kappa^{\lambda} = \{f \text{ function } L \to K\} = \operatorname{card}(^L K) \text{ were } K \text{ and } L \text{ are sets of carindality } \kappa \text{ and } \lambda$

Notation: ${}^{A}B = \{f : f \text{ is a function } A \to B\}$

Theorem 5.3.2. Let κ, λ, μ be carindals

• $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$

Proof. Let K, L, M be disjoint sets of size κ, λ, μ . $K \cup (L \cup M) = (K \cup L) \cup M$

- $\kappa + \lambda = \lambda + \kappa$
- $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$

Proof. $(K \times L) \times M \to K \times (L \times M)$ by $\langle \langle k, l \rangle, m \rangle \to \langle k, \langle l, m \rangle \rangle$

- $\kappa \cdot \lambda = \lambda \cdot \kappa$
- $\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$

Proof. $K \times (L \cup M) \approx (K \times L) \cup (K \times M)$

• $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$

5.4. SEPTEMBER 27 135: Set Theory

• $\kappa^{\lambda \cdot \mu} = (\kappa^{\lambda})^{\mu}$

Proof. $F: {}^{L\times M}K \to {}^{M}{}^{L}K, \ f: {}^{L\times M}K, \ F(g) = \text{the function that maps } m \text{ to } g_m: L \to K \text{ where } g_m(l) = g(l,m)$ $F^{-1}(h)$ with $h: M \to ({}^{L}K)$ is g such that g(l,m) = h(m)(l)

Definition 5.3.3. A is dominated by B (written $A \leq B$) if there is a one to one function from $A \to B$

 $A \le B \iff \operatorname{card}(A) \leqslant \operatorname{card}(B)$

Example 5.3.4. • $A \subseteq B \iff A \leq B$

• $\mathbb{N} \approx \mathbb{N} \approx \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$

Example 5.3.5. $\mathbb{R} \approx (0,1)_{\mathbb{R}} \leq {}^{\omega}2 \leq \mathbb{R}$

- $(0,1)_{\mathbb{R}} \leq {}^{\omega}2$. Given r, let $f_r: \omega \to \{0,1\}$ be $f_r(n) = n$ th digit of binary representation of r avoiding representations that end in all 1s.
- $^{\omega}2 \leq \mathbb{R}, f: \omega \to 2 \mapsto \sum_{i \in \omega} f(i) \cdot 10^{-1}$

Observation: $^2\omega \approx \mathcal{P}(\omega) \operatorname{card}(^2\omega) = 2^{\aleph_0}$

5.4 September 27

5.4.1 Schroder-Bernstein Theorem

Example 5.4.1. Show that $\mathbb{R} \cup \{*\}$ and \mathbb{R} are equinumerous.

We define f by f(*) = 0, $f(r) = \begin{cases} r+1 & r \in \mathbb{N} \\ r & r \in \mathbb{R} \setminus \mathbb{N} \end{cases}$

Lemma 5.4.2. If A is finite, then $\omega \leq A$

Proof. $A \neq 0$ so $\exists a_0 \in A$. Let $f(0) = a_0$, $A \setminus \{a_0\} \neq \emptyset$ since $A \not\approx 1$ so $a_1 \in A \setminus \{a_1\}$ Let $f(1) = a_1$. We want $G : \{\text{finite subsets of } A\} \to A \text{ such that } G(F) \in A \setminus F$. Let $R = \{\langle F, a \rangle | F \text{ finite } a \in A \setminus F\}$. Observation: dom(R) = all finite subsets of A. Since A is not finite $A \setminus F \neq \emptyset$ for all finite sets, $F \subseteq A$. Use AC to get a function $G \subseteq R$ such that dom (G) = dom(R). Define $f : \omega \to A$ by recusrion. $f(0) = a_0$, $f(n) = G(\{f(0), \ldots, f(n-1)\}) \in A \setminus \{f(0), \ldots, f(n-1)\}$.

Corollary 5.4.3. A set A is infinite \leftrightarrow A is equinumerous to some proper subset of itself.

If A is infinite, there is 1 to 1 $f: \omega \to A$. We define a bijection $h: A \to A\{f(0)\}$ by $h(a) = \begin{cases} a & a \notin \text{dom}(f) \\ f(n+1) & a = f(n) \end{cases}$

Theorem 5.4.4 (SChroder Bernstein Theorem). If $A \leq B$, $B \leq A$, then $A \approx B$

5.5. SEPTEMBER 29 135: Set Theory

Proof. Let $f:A\to B$ 1 to 1, $g:A\to B$ 1 to 1. We want $h:A\to B$ bijection. Let $C_0=A\backslash \mathrm{ran}(g)$, let $D_0=f[\![C_0]\!],\ C_1[\![D_0]\!].\ C_0\cap C_1=\varnothing$ because $C_0=A\backslash \mathrm{ran}g$ and $C_1\subseteq \mathrm{ran}(g)$. We recursivley define $C+n+1=g[\![D_n]\!],\ D_{n+1}=[\![C_{n+1}]\!].$ We see that C_n disjoint, D_n disjoint. Define $h(a)=\begin{cases}g(a)&a\in\bigcup_{n\in\omega}C_n\\g^{-1}&a\in A\backslash\bigcup_{n\in\omega}C_n\end{cases}$. $f\to\bigcup_{n\in\omega}$ is a bijection $\bigcup C_n\to\bigcup D_n.\ g\to\bigcup_{n\in\omega}D_n$ is a bijection $B\backslash\bigcup_{n\in\omega}D_n\to A\backslash A\backslash\bigcup_{n\in\omega}C_n$

• Follows that $\mathbb{R} \approx \mathcal{P}(\omega)$

5.5 September 29

5.5.1 Zorn's Lemma

Theorem 5.5.1. For every A, B either $A \leq B$ or $B \leq A$.

Zorn's Lemma: Let \mathcal{A} be a collection of sets such that for every chain $\mathcal{C} \subseteq \mathcal{A}$, $\bigcup \mathcal{C} \in \mathcal{A}$. Then \mathcal{A} has a maximal element.

Definition 5.5.2. \mathcal{C} is a chain if for every $C, D \in \mathcal{C}$ either $C \subseteq D$ or $D \subseteq C$ $B \in \mathcal{A}$ is maximal if ther is no $C \in \mathcal{A}$ with $B \subsetneq C$

We prove the following theorem to get some practice with Zorn's Lemma

Theorem 5.5.3. Every vector space has a basis.

Proof. Let V be a vector space over a field k. $B \subseteq V$ is linearly independent if for every $v_1, \ldots, v_n \in B$, distinct, k_1, \ldots, k_n such that $\sum k_i v_i = 0$, $k_1 = k_2 = \cdots = 0$. B is a basis if B is linearly independent and $\langle B \rangle = V$ where $\langle B \rangle = \{\sum_{i=1}^n k_i v_i \mid v_1, \ldots, v_n \in B, k_1, \ldots, k_n \in k\}$ Let $\mathcal{A} = \{B \subseteq V \mid B \text{ is linearly independent}\}$. W need to showt that if $\mathcal{C} \subseteq \mathcal{A}$ is a chain then $\bigcup \mathcal{C} \in \mathcal{A}$. Consider a chain \mathcal{C} consisting of linearly independent sets. To prove that $\bigcup \mathcal{C}$ is linearly independent assume we have $v_1, \ldots, v_n \in \bigcup \mathcal{C}, k_1, \ldots, k_n \in k$ with $\sum_{i=1}^n v_i k_i = 0$. For each v_i , there is $C_i \in \mathcal{C}$ with $v_i \in C_i$. One C_i contains all the others, say C_{i_0} . $v_1, \ldots, v_n \in C_{i_0}$. C_{i_0} is linearly independent so all $k_i = 0$. Now we apply Zorns Lemma to get a maximal element $B \in \mathcal{A}$. B is a maximal linearly independent set in V. $\langle B \rangle = V$ since if there is some $v \in V \setminus \langle B \rangle$ then $B \cup \{v\}$ is linearly independent, contradicting the maximality of B.

Lemma 5.5.4. Let \mathcal{C} be a collection of functions. Then

- (i) $\bigcup \mathcal{C}$ is a function
- (ii) dom ($\bigcup \mathcal{C}$) = $\bigcup \{ \text{dom } f : f \in \mathcal{C} \}$
- (iii) ran ($\bigcup \mathcal{C}$) = $\bigcup \{ \operatorname{ran} f : f \in \mathcal{C} \}$
- (iv) if all functions in \mathcal{C} are 1 to 1, then $\bigcup \mathcal{C}$ is one to one.

5.5. SEPTEMBER 29 135: Set Theory

Proof. (ii): dom $(\bigcup \mathcal{C}) = \{a \mid \exists b \langle a, b \rangle \in \bigcup \mathcal{C}\} = \{a \mid \exists b \exists f \in \mathcal{C} \langle a, b \rangle \in f\} = \{a \mid \exists f (\exists b \langle a, b \rangle \in f)\} = \{a \mid \exists f \in \mathcal{C} \mid a \in \text{dom } f\} = \bigcup \{\text{dom } f : f \in \mathcal{C}\}$

- (i): $\bigcup \mathcal{C}$ is a relation. Want to show it is a function. Suppose $\langle a,b\rangle \in \bigcup \mathcal{C}$ and $\langle a,c\rangle \in \bigcup \mathcal{C}$. $\exists f \in \mathcal{C}$, $\langle a,b\rangle \in f, \exists g \in \mathcal{C} \langle a,c\rangle \in g$. Since \mathcal{C} a chain, either $f \subseteq g$ or $g \subseteq f$. If $f \subseteq g, \langle a,b\rangle, \langle a,c\rangle \in g$, a function, b=c.
- (iv): $\bigcup \mathcal{C}$ is a function. Want to show it is one to one. Suppose $\langle a,b \rangle \in \bigcup \mathcal{C}$ and $\langle c,b \rangle \in \bigcup \mathcal{C}$. $\exists f \in \mathcal{C}$, $\langle a,b \rangle \in f$, $\exists g \in \mathcal{C} \ \langle c,b \rangle \in g$. Since \mathcal{C} a chain, either $f \subseteq g$ or $g \subseteq f$. If $f \subseteq g$, $\langle a,b \rangle$, $\langle c,b \rangle \in g$, a one to one, a=c.