

הפקולטה למדעי החברה החוג למדעי המחשב אוניברסיטת חיפה

מתמטיקה דיסקרטית, סמסטר א' תשס"ח - בוחן אמצע

19/12/2007 : תאריך

מספר הקורס: 203.1850

מרצה: אמיר רובינשטיין

מתרגל: עידו ניסנבוים

			מספר תעודת הזהות:

<u>הנחיות:</u>

- 1. יש לרשום את מספר תעודת הזהות במקום המיועד בעמוד זה.
 - .2 משך הבחינה שעתיים.
- 3. בטופס הבחינה 9 עמודים (כולל עמוד זה) וודאו כי כולם ברשותכם!
- 4. יש לכתוב את התשובות על גבי טופס הבחינה, במקומות המיועדים לכך בלבד.
 - 5. שימו לב: תשובות לא מסודרות או בכתב יד לא ברור לא תיבדקנה.
 - 6. אסור שימוש בחומר עזר כלשהו.
- 7. 20% מהניקוד בכל סעיף יינתנו אם התשובה <u>היחידה</u> בסעיף תהיה "לא יודע/ת".
- מותר להשתמש בכל טענה או משפט שלמדתם בהרצאות או בתרגולים (אך <u>לא</u> בתרגילי בית או מקורות אחרים) מבלי להוכיח אותם, בתנאי שמצטטים אותם באופן מדוייק וברור.

בהצלחה!!!

ניקוד	ערד	שאלה	
	25	1	
	25	2	
	25	3	
	25	4	
	5	בונוס	
	105	סה"כ	

שאלה 1 (25 נקודות)

תהי $A = \mathcal{R} - \{0\}$ (קבוצת הממשיים פרט ל- 0).

 $R = \{(x,y) \,|\, x \cdot y > 0\} : (R \subseteq A \times A) \,A$ מתון היחס הבא מעל

א. הוכיחו כי R הינו יחס שקילות.

: <u>הוכחה</u>

 $: \stackrel{A}{R}$ ב. ציינו מה עוצמתה של קבוצת המנה

... מהן מחלקות השקילות שמשרה R על Rי הסבירו בקצרה.

A גם כן מעל , $R' \! = \! \{(x,y) \, | \, x \cdot y > 1\}$ ד. נתון היחס

הקיפו בעיגול את <u>כל</u> המשפטים הנכונים מבין המשפטים הבאים:

- .וע שקילות R' .1
- . אינו יחס שקילות כי הוא אינו רפלקסיביR' .2
 - . אינו יחס שקילות כי הוא אינו סימטריR'
- .4 אינו יחס שקילות כי הוא אינו טרנזיטיבי. R'

שאלה 2 (25 נקודות)

שימו לב: בשאלה זו מספר סעיפים שאינם קשורים זה לזה.

א. הוכיחו או הפריכו את השקילות הלוגית הבאה, עבור פסוקים $p_{_{1}},...,p_{_{n}},q$ כלשהם ו- n שלם חיובי

$$(p_1 \lor ... \lor p_n) \rightarrow q \equiv (p_1 \rightarrow q) \lor ... \lor (p_n \rightarrow q)$$
 : כלשהו

עליכם להקיף בעיגול את התשובה הנכונה ולהוכיח את תשובתכם.

הפסוקים שקולים / אינם שקולים (הקיפו בעיגול)
<u>הוכחה</u> :

. (כאשר T^+ ב. תהי השלמים החיוביים). ב. תהי $f:Z^+ \to Z^+$

.
$$g(k) = f(k) + f(k+2)$$
 נגדיר $g: Z^+ \rightarrow Z^+$ נגדיר

. תד-חד-ערכית, אז א חד-חד-ערכית, אם אם הוכיחו או הפריכו את הטענה הבאה הבאה הוכיחו או הפריכו את הטענה הבאה הבאה

הקיפו בעיגול את התשובה הנכונה והוכיחו תשובתכם (אין צורך להוכיח כי g הינה פונקציה).

הטענה נכונה / אינה נכונה (הקיפו בעיגול) <u>: הוכחה</u> 4

ג. נתונה הקבוצה (א אינסופית אינסופית אינסופית אינסופית אינסופית אינסופית אינסופית אינסופית בת מנייה). אינסופית בת מנייה). אינסופית בת מנייה).

	<u>: הוכחה</u>
ADDA.	
7	
to do	

שאלה 3 (25 נקודות)

 $(b,a) \notin R$ או $(a,b) \in R$ מעל קבוצה A כלשהי ייקרא א-סימטרי אם הוא מקיים שאם R מעל קבוצה אכלשהי ייקרא א

עבור יחס R מעל קבוצה A כלשהי הוכיחו כי שלוש הטענות הבאות הן עבור עבור אוני R

- .יחס א-סימטרי R .1
 - $R \cap R^{-1} = \emptyset$.2
- $I_A = \{(a,a) \,|\, a \in A\} : A$ באשר I_A הוא יחס הזהות על ווא $I_A \cap R^2 = \varnothing$.3

		: המשך ההוכחה

שאלה 4 (25 נקודות)

-ט ששייכות ששייכות כל הקבוצות עבור קבוצה Aלא ריקה איבריה הם קבוצות, נגדיר את איבריה לא ריקה לא ריקה איבריה הם קבוצות, נגדיר את Aו- Aיו בעצמן קבוצות העבוצות כל הקבוצות ששייכות ל- Aו- אימו לב ש- Aיו בעצמן קבוצות העבוצות אייכות ל- A

 $. \cup A = N, ~~ \cap A = \varnothing$ מתקיים , $A = \{N, N_{even}, N_{odd} \,\}$ עבור : לדוגמא

 $S = \{B \mid B \subseteq Z^+,$ סופית, $B\}$

: הקבוצה הבאה S

 $A \subseteq S$ וגם $A \neq \emptyset$ וגם אל ריקה לא ריקה לא תת קבוצה לא ריקה של

 $A=\varnothing$ וגם $A=\varnothing$ וגם A=A= א. הראו קבוצה

$$A = \\
\cup A =$$

. $\cap A \neq \emptyset$ וגם $A \models A \models A$ וגם $A \models A$ ב. $A \models A$

- ג. <u>הוכיחו או הפריכו</u> את הטענות הבאות (הקיפו בעיגול את התשובה הנכונה והוכיחו תשובתכם):
 - .1 לכל A, A קבוצה סופית.

.2 לכל A, A קבוצה סופית.

הטענה נכונה / אינה נכונה (הקיפו בעיגול)
<u>הוכחה</u> :

שאלת בונוס (5 נקודות)

: מקור הסימון אותו טבע קנטור הוא (הקיפו בעיגול, ישנה רק תשובה אחת נכונה)

- 1. יהדותו של קנטור והתעניינותו בשפה העברית.
- 2. קנטור סבר כי כבר נעשה שימוש נרחב מידי באותיות האלף-בית היווני והרומי במתמטיקה, ולכן בחר באות עברית.
 - 3. קנטור טען כי הוא חווה התגלות אלוהית בחלום, שם הצטווה לבחור באות אלף.
 - 4. אלף היא האות הראשונה בשם "אמיר", ואין לכך כל קשר למתמטיקאי קנטור.

בהצלחה!