

AD-A104 029

NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/G 13/13
NATIONAL DAM SAFETY PROGRAM, BEATTIES MILL DAM (NJ00821), PASSA--ETC(U)

DACW61-79-C-0011

AUG 81 W A GUINAN

DEAN/NAP-53842/NJ00821-81/ NL

UNCLASSIFIED

1 of 1
40A
101m.2

END
DATE
FILED
10-81
DTIC

AD A104029

PASSAIC RIVER BASIN,
PASSAIC RIVER, PASSAIC COUNTY
NEW JERSEY.

BEATTIES MILL DAM
(NJ 00821)

PHASE I INSPECTION REPORT.
NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED.

DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

REPT. NO.: DAEN/NAP-53842/NJ 00821-81/08

AUGUST 1981

D

81 9 09 038

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DAEN/NAP-53842/NJ00821-81/08	2. GOVT ACCESSION NO. <i>AD-A104</i>	3. RECIPIENT'S CATALOG NUMBER <i>029</i>
4. TITLE (and Subtitle) Phase I Inspection Report National Dam Safety Program Beatties Mill Dam, NJ00821 Passaic County, New Jersey	5. TYPE OF REPORT & PERIOD COVERED FINAL	
7. AUTHOR(s) Guinan, Warren, P.E.	6. PERFORMING ORG. REPORT NUMBER DACPW61-79-C-0011 ✓	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Anderson-Nichols 150 Causeway St. Boston, MA 02114	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources P.O. Box CN029 Trenton, NJ 08625	12. REPORT DATE August, 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Philadelphia, PA 19106	13. NUMBER OF PAGES 50	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams Embankments Visual Inspection Structural Analysis	National Dam Safety Program Beatties Mill Dam, N.J. Spillways	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.		

IN REPLY REFER TO
NAPEN-N

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE-2 D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	<input type="checkbox"/>
By _____	
Distribution/	
Availability Cases	
Dist	Avail and/or Special
<input checked="" type="checkbox"/>	<input type="checkbox"/>

31 AUG 1981

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08621

Dear Governor Byrne:

Enclosed is the Phase I Inspection Report for Beatties Mill Dam in Passaic County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Beatties Mill Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 30 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood.) However, more detailed hydraulic and hydrologic studies are not recommended due to the limited site condition and the intended purpose of the dam. To ensure the adequacy of the structure, the following actions as a minimum, are recommended:

a. Within one year from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Design and oversee repair procedures for the replacement of the large masonry blocks which have been dislodged from the north side of the training wall which is at the left center of the dam.

(2) Evaluate the potential for undermining of the foundation support at the downstream end of the masonry spillway training wall at the left center of the dam caused by the loss of several large bedrock blocks, and design and oversee corrective measures as needed.

(3) Investigate measures to assure the stability of the dam under severe overtopping conditions.

)

NAPEN-N

Honorable Brendan T. Byrne

b. Within one year from the date of approval of this report the owner should repair the eroded construction joints.

c. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.

d. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Minish of the Eleventh District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

ROGER L. BALDWIN

Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

Incl

As stated

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 06629

Mr. John O'Dowd, Acting Director
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 06629

BEATTIES MILL DAM (NJ00824)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 23 April 1981 by Anderson-Nichols and Co. Inc., under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Beatties Mill Dam, initially listed as a high hazard potential structure, but reduced to a significant hazard potential structure as a result of this inspection, is judged to be in fair overall condition. The dam's spillway is considered inadequate because a flow equivalent to 30 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood.) However, more detailed hydraulic and hydrologic studies are not recommended due to the limited site condition and the intended purpose of the dam. To ensure the adequacy of the structure, the following actions as a minimum, are recommended:

a. Within one year from the date of approval of this report the owner should engage a qualified professional consultant to perform the following:

(1) Design and oversee repair procedures for the replacement of the large masonry blocks which have been dislodged from the north side of the training wall which is at the left center of the dam.

(2) Evaluate the potential for undermining of the foundation support at the downstream end of the masonry spillway training wall at the left center of the dam caused by the loss of several large bedrock blocks, and design and oversee corrective measures as needed.

(3) Investigate measures to assure the stability of the dam under severe overtopping conditions.

b. Within one year from the date of approval of this report the owner should repair the eroded construction joints.

c. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam, within one year from the date of approval of this report.

d. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

DATE:

4. May 81

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam:	Beatties Mill
Identification No.:	Fed ID No. NJ00821
State Located:	New Jersey
County Located:	Passaic
Stream:	Passaic River
River Basin:	Passaic
Date of Inspection	April 23, 1981

ASSESSMENT OF GENERAL CONDITIONS

Beatties Mill Dam is a 19-foot high concrete run-of-the-river dam with 267 feet of its 287 foot crest serving as a spillway. A 3-foot wide, 1-foot deep notch in the spillway crest carries low flows. The dam is 85 years old and underwent major reconstruction in 1945-1946. It is of intermediate size and in fair condition, and serves to create a pool allowing diversion of 75 mgd from the Passaic River to the Passaic Valley Water Commission's water treatment plant for treatment and municipal use.

Several stones are missing from the upstream end of a stone masonry training wall at the left center of the dam. This has caused vertical and horizontal displacement of other stones in the training wall, and could lead to seepage and undermining of the spillway. In addition, some erosion and undermining of the rock foundation at the downstream end of the training wall has occurred.

The spillway would pass 29% of the Spillway Design Flood, which is one-half of the PMF. Failure of the dam would cause interruption of raw water supply (75 mgd) to the Passaic Valley Water Commission's water treatment plant. This interruption of a public utility would entail economic losses but would cause little, if any, threat of loss of life. Therefore the hazard classification of Beatties Mill Dam is significant.

It is recommended that the owner retain the services of a professional engineer, qualified in the design and construction of dams, to accomplish the following tasks in the near future: Design and oversee repairs to the training wall at the left center of the dam, evaluate the potential for undermining of the foundation at the downstream end of the training wall and design and oversee corrective measures as needed, and investigate measures to assure the stability of the dam under severe overtopping conditions.

It is further recommended that the owner accomplish the following in the near future as part of operating and maintenance procedures: repair construction joints on the dam and develop a written operation and maintenance schedule to ensure the safety of the dam.

ANDERSON-NICHOLS & COMPANY, INC.

Warren A. Guinan, P.E.
Project Manager
New Jersey No. 16848

April 23, 1981

OVERVIEW PHOTO
BEATTIES MILL DAM

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonable possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

CONTENTS

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY REPORT

BEATTIES MILL DAM FED ID NO. NJ00821

SECTION 1	PROJECT INFORMATION	<u>Page</u>
	1.1 <u>General</u>	1
	1.2 <u>Project Description</u>	1
	1.3 <u>Pertinent Data</u>	3
SECTION 2	ENGINEERING DATA	
	2.1 <u>Design</u>	6
	2.2 <u>Construction</u>	6
	2.3 <u>Operation</u>	6
	2.4 <u>Evaluation</u>	6
SECTION 3	VISUAL INSPECTION	7
SECTION 4	OPERATIONAL PROCEDURES	
	4.1 <u>Procedures</u>	8
	4.2 <u>Maintenance of Dam</u>	8
	4.3 <u>Maintenance of Operating Facilities</u>	8
	4.4 <u>Warning System</u>	8
	4.5 <u>Evaluation of Operational Adequacy</u>	8
SECTION 5	HYDRAULIC/HYDROLOGIC	9
SECTION 6	STRUCTURAL STABILITY	10
SECTION 7	ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES	
	7.1 <u>Assessment</u>	11
	7.2 <u>Recommendations/Remedial Measures</u>	11
FIGURES	1. Regional Vicinity Map	
	2. Essential Project Features	
	3. Essential Project Features	
APPENDICES	1. Engineering and Experience Data	
	2. Check List Visual Inspection	
	3. Photographs	
	4. Hydrologic Computations	
	5. HEC 1 Output	
	6. References	

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY INSPECTION PROGRAM
BEATTIES MILL DAM
FED ID NO. #NJ00821

SECTION 1
PROJECT INFORMATION

1.1 General

a. Authority. Authority to perform the Phase I Safety Inspection of Beatties Mill Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 12 December 1980 under Basic Contract No. FPM-39 and Contract No. A01093 dated 10 October, 1979. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367 and by agreement between the State and the U.S. Army Engineers District, Philadelphia. The inspection discussed herein was performed by Anderson-Nichols & Company, Inc.

b. Purpose: The purpose of the Phase I Investigation is to develop an assessment of the general conditions with respect to the safety of Beatties Mill Dam and appurtenances. Conclusions are based upon available data and visual inspection. The results of this study are used to determine any need for emergency measures and to conclude if additional studies, investigations, and analyses are necessary and warranted.

1.2 Project Description

a. Description of Dam and Appurtenances. Beatties Mill Dam is a concrete run-of-the-river dam with a structural and hydraulic height of 19.3 feet. Most of the dam's crest is a 267 foot long broad-crested overflow spillway in three sections - an arched 152-foot center section (concave upstream), a 55-foot right wingwall tying into a factory building which serves as the right abutment, and a 60-foot left wingwall tying into the left abutment. There is a 3-foot wide, 1-foot deep notch in the right wingwall for low flows. The dam's crest width is about 5 feet, the upstream face is 2H:1V (4 feet) and then nearly vertical, and the downstream face slopes 1H:1-1/2V.

The pond created by Beatties Mill Dam serves to create a diversion pool for a canal leading to a water treatment plant. This canal is controlled from a gate house about 300 feet upstream of the left abutment.

b. Location. The dam is located in Little Falls, New Jersey, on the Passaic River. It is at 40°53.1' north latitude and 74°14.1' west longitude on the Paterson Quadrangle. To reach Beatties Mill Dam, take exit 53 from U.S. Interstate Highway 80 to Riverview Drive South. After about 0.7 miles, turn right on Union Avenue. The gate leading to Beatties Dam is 0.2 miles south on Union Avenue on the right.

c. Size Classification. Beatties Mill Dam is classified as being intermediate in size on the basis of storage at the dam crest of 4,870 acre-feet, which is less than 50,000 acre-feet but more than 1,000 acre-feet, in accordance with criteria given in the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification. The failure of Beatties Mill Dam would cause a threat of loss to few, if any, lives. However, the hazard classification is considered to be significant because failure of the dam would interrupt inflow to the Passaic Valley Water Commission's water treatment plant, which is an important public utility.

e. Ownership. The dam is owned by the Passaic Valley Water Commission. Information may be obtained by writing the Commission at P.O. Box 230, Clifton, New Jersey, or by calling (201)772-3900.

f. Purpose. Beatties Mill Dam creates a pond from which an average of 75 mgd of Passaic River water is diverted to Passaic Valley Water Commission water treatment plant for treatment and use as water supply.

g. Design and Construction History. The cornerstone of the gatehouse controlling diversions to the water treatment plant indicates that Beatties Mill Dam was originally constructed in 1896. The dam was damaged by flooding in 1945, and major reconstruction designed by Bogert-Childs Engineering Associates was carried out in 1945-1946.

h. Normal Operational Procedure. Water for the Passaic Valley Water Commission is diverted to treatment as needed by canal. The average rate of diversion is 75 mgd. No other operational procedures were disclosed for this dam.

i. Site Geology. No boring information was available at the time the dam was inspected. Information derived from the Geologic Map of New Jersey (Kummel and Johnson, 1912) and the Glacial Drift Map of New Jersey (Salisbury, Kummel, Peet and Whitson, 1902) indicates that soils within the immediate site area consist of stratified drift which may include sand and gravel in plains, deltas, eskers, kames, and terraces.

Bedrock of igneous origin was observed in massive outcrops along the entire foundation during the inspection of this dam. The previously mentioned map (Kummel and Johnson) indicates that bedrock in this area consists of shale and sandstone with igneous intrusives of Triassic age.

1.3 Pertinent Data

a. Drainage Area

762 square miles

b. Discharge at Damsite (cfs)

Maximum flood at damsite - For USGS Gage 013895000, Passaic River at Little Falls, N.J., the maximum discharge from 1897 to the present is 28,000 cfs on October 10, 1903. The gage is 0.6 miles downstream of the dam, and has a drainage area of 762 square miles.

Total ungated spillway capacity at maximum pool elevation (at top of dam) - 12,701 cfs

c. Elevation (ft. above NGVD)

Top of dam - 164.1

Test flood (1/2 PMF) - 171.6

Recreation pool (at time of inspection) - about 157.2

Spillway crest - 156.8

Streambed at centerline of spillway - low point 144.8

Maximum tailwater - (F.I.S. 500 year flood) - 156

d. Reservoir (length in feet)

Length of maximum pool - (at 164.1' NGVD) - 117,000 (estimated)

Spillway crest - 76,000 (estimated)

e. Storage (acre-feet)

Spillway crest - 1,435

Test Flood (1/2 PMF) - 9,218

Top of dam - 4,870

f. Reservoir Surface (acres)

Top of dam - 536

Spillway crest - 350

g. Dam

Type - concrete gravity

Length - 287 feet

Height - 19.3 feet (hydraulic)

- 19.3 feet (structural)

Top width - about 5 feet

Side slopes - upstream 2H:1V for four feet then nearly vertical; downstream 1H:1-1/2V

Zoning - Not applicable

Impervious core - Not applicable

Cutoff - unknown

Grout curtain - unknown

h. Spillway

Type - Concrete overflow

Length of weir - 267 feet

Crest elevation - 157.8' NGVD - 3 foot notch at 156.8' NGVD

Low level outlet - None

U/S Channel - Passaic River

D/S Channel - Passaic River

i. Regulating Outlets

Type - Diversion canal controlled by gate located in gate house; seven 10' x 12' liftgates. Trash racks located at edge of reservoir outside gate house.

Width - Canal about 75 feet wide

Access - From left (north) bank through gate house to gates. Trash racks accessible from walkway upstream of gate house. Debris collected are passed downstream through trash flume and connecting 30-inch pipe.

SECTION 2
ENGINEERING DATA

2.1 Design

No hydraulic or hydrologic engineering data were disclosed. The plans for the 1945-1946 reconstruction were obtained.

2.2 Construction

Extensive correspondence exists between the Passaic Valley Water Commission and the New Jersey Department of Conservation concerning the 1945-1946 reconstruction of the dam. This correspondence is reproduced in Appendix 1.

2.3 Operation

No written operational data were found.

2.4 Evaluation

a. Availability. A search of the New Jersey Department of Environmental Protection files revealed the information discussed above.

b. Adequacy. The data obtained combined with the visual inspection are deemed adequate to complete this Phase 1 Inspection Report

SECTION 3
VISUAL INSPECTION

3.1 Findings

a. Dam. Some erosion and undermining of the large rock outcrop downstream of the left abutment of the dam has occurred. Several large masonry blocks are missing at the junction of the spillway and the masonry block training wall which is perpendicular to the spillway at the left center of the dam. The existence of former root systems was observed behind several of the adjacent blocks which had remained in place. Several of the top cap stones on the training wall had been displaced up to 3 inches vertically downward adjacent to the intersection with the spillway. Horizontal separations up to 5 inches wide were measured between blocks located in the spillway and the adjacent center masonry block training wall. Some undermining of the large stones was observed near the downstream end of the masonry training wall. The toe of the concrete spillway is undermined 2-4 inches along its entire length. The downstream face of the dam is eroded, exposing the coarse aggregate, with deeper erosion at the construction joints and apparent cold joints.

b. Appurtenant Structures. The trash racks, walkway, and gate house all appeared to be in good condition. The trash flume and connecting pipe were free of debris. Some debris had collected on the trash racks. The diversion canal was essentially free of debris; however, brush and small trees line the canal banks.

c. Reservoir Area. The watershed above the lake is gently sloping and urbanized with numerous mill buildings and homes. Slopes on the shore appear to be stable. Some sedimentation was observed in the reservoir.

d. Downstream Channel. Bedrock channel with some displacement of large blocks of massive rock outcrop has occurred along the right and left sides of the channel downstream of the dam. Trees are growing along the top of the rock outcrops along the left side of the channel downstream of the dam.

SECTION 4
OPERATIONAL PROCEDURES

4.1 Procedures

No written operating procedures were revealed. Acceptable procedures are followed for operation of the diversion to the water treatment plant.

4.2 Maintenance of Dam

No formal maintenance procedures for the dam were found.

4.3 Maintenance of Operating Facilities

No formal maintenance procedures for the operating facilities were discovered. However, maintenance is adequate for continual use.

4.4 Warning System

No description of any warning system was found.

4.5 Evaluation of Operational Adequacy

The remedial measures described in Section 7.2 should be implemented as described to improve operation and maintenance for the dam.

SECTION 5
HYDROLOGIC/HYDRAULIC

5.1 Evaluation of Features

a. Design Data. Because no original hydrologic design data were revealed, an evaluation of such data could not be performed.

b. Experience Data. The water surface elevation caused by the flood of record for the dam, in October 1903, is shown on a stone in the diversion structure controlling the canal to the water treatment plant. The peak elevation was about 169 feet above NGVD, 11 feet above the present spillway crest. The peak flow from the October 1903 flood at the USGS gage 0.6 miles downstream of the dam was 28,000 cfs. Since the dam was rebuilt in 1945, the stage-discharge relationship in the 1903 flood cannot be compared to the stage discharge curve developed in this report. In 1945, the dam was damaged by high waters. No record of the peak stage in the reservoir from this flood could be found.

c. Visual Inspection. At the time of the inspection, all flow was through the 3-foot wide notch in the main spillway, allowing a clear view of the spillway crest and downstream face.

d. Beatties Mill Dam Overtopping Potential. The hydraulic/hydrologic evaluation for this dam is based on a Selected Spillway Design Flood (SDF) equal to one-half the Probable Maximum Flood (PMF) in accordance with the range of test floods given in the evaluation guidelines for dams classified as significant hazard and intermediate size. The PMF was obtained from Passaic River Basin - New Jersey and New York - Survey Report for Water Resources by the New York District of the Corps of Engineers. The half-PMF inflow to the pond is 44,000 cfs, with a peak outflow of 43,785 cfs causing a stage of 171.6 feet above NGVD. (Hydrologic/hydraulic computations are attached as Appendix 4.)

Water could rise 7.3 feet above the crest of the low flow notch in the spillway, to 164.1 feet above NGVD, before overtopping the left abutment of the dam. Under this head the spillway capacity is 12,701 cfs, 29% of the selected SDF. Flood routing calculations indicate that Beatties Mill Dam would be overtopped for 91 hours to a maximum elevation of 171.6 feet NGVD, 7.5 feet above the crest of the left abutment, under half-PMF conditions.

e. Draw-down Capacity. Water could be diverted from Beatties Mill Dam at times of low flow through the canal leading to the water treatment plant. The time required to draw the reservoir down would depend on inflow and on the capacity of the canal.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

The displacement of large masonry blocks at the junction of the spillway and center masonry block training wall may lead to seepage and undermining of the spillway. The dislodgment of several large blocks of bedrock at the downstream end of the masonry block training wall may cause stability problems to the training wall if allowed to continue.

6.2 Design and Construction Data.

No design or construction data pertinent to the structural stability of the dam are available.

6.3 Operating Records.

No operating records pertinent to the structural stability of the dam are available.

6.4 Post-Construction Changes.

Plans and sections from the 1945-1946 reconstruction of the dam are available; however no computational data pertinent to the structural stability of the dam are available.

6.5 Seismic Stability

This dam is in Seismic Zone 1. According to the Recommended Guidelines, dams located in Seismic Zone 1 "may be assumed to present no hazard from earthquake, provided static stability conditions are satisfactory and conventional safety margins exist". None of the visual observations made during the inspection are indicative of unstable conditions. However, because no data are available concerning the engineering properties of the foundation materials for this dam, it is not possible to make an engineering evaluation of the stability of the structure or the factor of safety under static conditions.

SECTION 7
ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. Beatties Mill Dam is 85 years old and is in fair condition.

b. Adequacy of Information. The information available is such that the assessment of the dam must be based primarily on the results of the visual inspection.

c. Urgency. The recommendations made in 7.2.a and 7.2.b should be implemented by the owner as prescribed.

d. Necessity for Additional Data/Evaluation. The information available from the visual inspection is adequate to identify the potential problems which are listed in 7.2.a. These problems require the attention of a professional engineer who will have to make additional engineering studies to design or specify remedial measures to rectify the problems. If left unattended, the problems could lead to failure of the dam.

7.2 Recommendation/Remedial Measures

a. Recommendations. The owner should retain a professional engineer qualified in the design and construction of dams to accomplish the following in the near future:

- (1) Design and oversee repair procedures for the replacement of the large masonry blocks which have been dislodged from the north side of the training wall which is at the left center of the dam.
- (2) Evaluate the potential for undermining of the foundation support at the downstream end of the masonry spillway training wall at the left center of the dam caused by the loss of several large bedrock blocks, and design and oversee corrective measures as needed.
- (3) Investigate measures to assure the stability of the dam under severe overtopping conditions.

b. Alternatives. None recommended.

c. Operating and Maintenance Procedures. The owner should accomplish the following in the near future:

- (1) Repair the eroded construction joints.
- (2) Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

PLAN

ELEVATION

Anderson-Nichols & Co., Inc. BOSTON	U.S. ARMY ENGINEER DIST PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA
NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS	
BEATTIES MILL DAM	
PASSAIC RIVER	NEW JERSEY
SCALE NOT TO SCALE	
DATE: JUNE 1981	

SCALE IN MILES

MAP BASED ON STATE OF NEW JERSEY
OFFICIAL MAP & GUIDE.

Anderson-Nichols & Co., Inc.		U.S. ARMY ENGINEER DIST. PHILADELPHIA CORPS OF ENGINEERS PHILADELPHIA, PA.	
NATIONAL PROGRAM OF INSPECTION OF NON-FED.DAMS			
BEATTIES MILL DAM LOCATION MAP			
PASSAIC RIVER		NEW JERSEY	
		SCALE: 1" = 4 Miles Approx.	
		DATE: JUNE 1981	

FIGURE -

APPENDIX 1
ENGINEERING AND EXPERIENCE DATA
BEATTIES MILL DAM

Borough of West Paterson

Department of Administration

ALFRED A. REDA
Municipal Clerk
Administrator

RECEIVED

AUG 25 1972

PASSAIC COUNTY, N.J.

625 McBride Avenue,
West Paterson, N.J. 07428
(201) 516-0903

DEPT. OF ENVIRONMENTAL PROTECTION
DIV. OF WATER RESOURCES
August 21, 1972

404

Mr. Asis
State Department of Environmental Protection,
Division of Water Resources
Trenton, NJ

RE: Beattie Dam Little Falls
Township Passaic County NJ

Dear Mr. Asis:

With respect to the above noted matter please be advised that on August 15, 1972 Mr. Wendell Inhofer, General Superintendent of the Passaic Valley Water Commission, made a visual inspection of the Beattie Dam and was accompanied by Mr. Robert P. Schilling, Municipal Engineer, for the Borough of West Paterson.

For your information I am enclosing herewith a copy of Mr. Schilling's report dated August 15th wherein it is indicated the aforesaid found no evidence of cracks or other structural defects etc.

Please note that at the time of this inspection Mayor Alfred H. Baumann of West Paterson was away on vacation and has just returned. Upon his direction I am forwarding this report to you.

Should you desire any additional information on this matter, please do not hesitate to call my office. Thanking you for your cooperation, I wish to remain,

Sincerely yours,

Alfred A. Reda
Municipal Clerk
Administrator

AAR:gd
Enc.

CC: Mayor Alfred H. Baumann
Robert P. Schilling
Municipal Engineer

14
3AA

PASSAIC VALLEY WATER COMMISSION

1886 MAIN AVENUE
CLifton, NEW JERSEY
P. O. BOX 250

WENDELL R. INHOFFER
General Superintendent
and Chief Engineer

August 14, 1972

DEPT. OF ENVIRONMENTAL
PROTECTION
80, 67 WATSON ROAD
MORRISTOWN, NJ 07960

Mr. Dirk C. Hofman, P.E.
Chief - Bureau of Water Control
State of New Jersey
Department of Environmental Protection
Division of Water Resources
Trenton, New Jersey 08625

Dear Mr. Hofman:

Re: Beatties Dam, Application No. 404

This is to inform you that on Saturday, August 12, 1972, the writer personally inspected Beatties Dam after all overflow had been diverted to the Commission's intake canal.

You are hereby advised that cracks and leaks reported in the Herald News on June 26, 1972, were not apparent during this inspection.

A number of photographs were taken and will be forwarded to your office in the near future.

Very truly yours,

PASSAIC VALLEY WATER COMMISSION

Wendell R. Inhofer
General Superintendent
and Chief Engineer

W.H.:grt

RECEIVED
MAY 10 1970
NEW JERSEY STATE DEPARTMENT OF ENVIRONMENTAL QUALITY CONTROL
WATER SUPPLY AND POLLUTION CONTROL
DIVISION OF WATER RESOURCES
ATLANTIC CITY, NEW JERSEY

Honorable Mayor and Council
Borough of West Milford, N.J.

Re: Huntite Dam
Little Falls Township,
Passaic County, N.J.

Gentlemen:

This is to advise that on this date I met with Mr. Wendell Inhoffer, General Superintendent and Chief Engineer, Passaic Valley Water Commission, in connection with an earlier report received regarding possible structural defects in the Huntite Dam, in Little Falls, N.J.

At the present time there is no overflow occurring at the dam and we were able to observe the entire top and external face of the structure during tide low, saline. We found no evidence of any deterioration, cracks or other structural defects and in Mr. Inhoffer's opinion the dam appears to be in a sound condition. Mr. Inhoffer also stated that he has had photographs taken of the dam and has submitted a report of his findings to the New Jersey Dept. of Environmental Protection, Division of Water Resources.

Respectfully submitted,

Robert P. Schilling
Robert P. Schilling
Municipal Engineer

RPS:cc

Morris County Mosquito Extermination Commission

2 Franklin Place

COMMISSIONERS

A. THOMAS STOTT, President
WILLIAM V. FROG, Vice-President
REV. JOSEPH E. WALSH, Treasurer
DR. JOSEPH E. MAYER, Jr., Secretary
DR. JOHN E. DODDISON
GEORGE E. LARSEN

JAMES E. HART, JR.
Supervisor
Morristown 4-1226

MORRISTOWN, N.J.
October 28, 1946.

N.J. State Water Policy Commission
28 West State Street
Trenton, New Jersey.

Attention: Mr. Howard T. Critchlow

Gentlemen:

I am writing to inquire whether the State Water Policy Commission has checked the work completed at Beatties Dam, Little Falls, by the Passaic Valley Water Commission with respect to the following:

1. Elevation of the re-capped spillway.
2. Length of present spillway including wall on the mill side.

I have been informed by my associates in Little Falls that great secrecy surrounded the work, with watchmen, etc. All were forbidden to discuss the work; however, information is abroad that the spillway was raised a few inches in the re-capping process and the portion of the dam paralleling the mill side was cut off so that it can be no longer considered a spillway area. This may be rumor as most reports are; however, we must be prepared to answer.

Our position is one opposing even a fraction of an inch rise in the elevation of the spillway and the encirclement of any spillway area. If your Department has checked the work by running levels from the B.M. established by the Riparian Stream and Waterway Survey to the points on the spillway as shown on the plan of that survey and found no increase we will be more than pleased. If this was not done in the course of approving the final work we will take the steps necessary to make the survey in order to answer the rumors.

With best regards to you and your assistants, I remain,

Yours truly,

Robert L. Vannote
Robert L. Vannote, Exec. Secy.
Four County Committee for Mosquito
Control in the Passaic Valley

RIVIA

Report on Dam Inspection

MATTY'S DAM
PINNACLE RIVER, WENATCHEE COUNTY

APPLICATION NO. 144
DAM NO. 86-30

On August 25, 1946 inspection was made in company with Richard B. Beymore, Superintendent, Pacific Valley Lumber Company, of the Matty's Dam which has been completed recently under permit approved November 1, 1945 for the cubic foot date. Investigation disclosed that the work on the spillway has been completed in accordance with the approved drawings and is an excellent job. Inspectors have heard from three angles. It is recommended that the enclosed letter accepting the request to the spillway be sent to Mr. Beymore.

At the time of inspection, the contractor was removing the earth dike which had been constructed upstream of the spillway to permit raising and was using this material to build a dike along the left bank to permit construction of the skimming flume.

This dike is being removed to below the original stream bed level where rock permits.

Brenton, B. J.
August 26, 1946

George R. Shanks
George R. Shanks
Acting Chief Engineer

BERNARD HORN BRONX
8 MELROSE AVENUE
BRONXWOOD VILLAGE, N.Y.
REGISTRATION NO. 4-4
RECORDED 8-28-59

Law Office
BIDNEY & KORNBLATH
126 BROADWAY AT 14TH
NEW YORK 7-1214

RECORDED
126 BROADWAY
AT 14TH STREET
BOSTON, MASSACHUSETTS

Gentlemen:

Several weeks ago, I wrote to you regarding the modification of the lease of my office at the Battle Manufacturing Building in Jersey. My client, Mr. [redacted] in Lincoln Park, had been compelled to leave as a result of the alteration of his office mentioned above, his property being rendered worthless. Accordingly, would you be kind enough to communicate with me concerning this matter.

Sincerely yours,

BERNARD HORN

On July 21, 1915 I was in conference with General W.
B. Bagnall, U.S.A., Commanding General of the
U.S. Engineers, and with Mr. C. E. Hartman,
the Chief Engineer of the U.S. Army Corps of
Engineers, at the site of the proposed dam, at
the time of the conference, the water level was about 2 feet
or more above the bedrock. It was my opinion at that time
that the dam should be built on the bedrock, and just
prior to the conference, General Bagnall had ordered
the dam to be built on the bedrock, and just prior to the
construction of the dam, General Bagnall had ordered
the U.S. Engineers to excavate a deep cut through
the bedrock down to the bedrock, and to the bottom of the bedrock.

George R. Shanklin

George R. Shanklin
Asst. Chief Engineer

Trenton, N.J.
July 29, 1916

Report on Site Inspection

Report on the Spillway Coating

APPENDIX 20, 106

DMB No. ES-30

On May 17, 1946 inspection was made of the work in progress on the repair to the dam on the Little River to Little Falls, Garrett County. The inspection disclosed that the new spilling crest has been built by the end of the original section in the middle of the dam. At the time of the inspection all work had been interrupted by high floods. The bond observed on the new coating was approximately 8 inches.

Franklin, W. J.
May 27, 1946

George R. Franklin
George R. Franklin
Asst. Chief Engineer

RECEIVED
APR 19 1968

Dear Sirs:

Receiving your letter of your letter of May 15, 1968,
concerning the proposed placement of blackboards for the group of
four dormitories at the University of Little Falls.
In accordance with the conditions of the permit issued
with that letter dated May 15, 1968, the proposed blackboards
will be removed from the dormitory buildings by May 31, 1968.
We have been unable to find a copy of the original application
submitted to the State Board of Education, so we are referring to
your files, copies of which you can furnish us.

Sheet No. 1 of the "Proposed Plan" is not included for the
reason that there are no changes shown on that drawing.

Sheet No. 2 of the "Proposed Plan" is not included because
it was accepted for the group of four dormitories in accordance with
original condition 11, "It is hereby ordered that approval hereto
does not permit the placing of blackboards on the doors of the dormi-
tories."

Yours very truly,

E. F. Critchlow
Chief Engineer

cc: [unclear]

May 9, 1946

Mr. Richard H. Boyers, General Supervisor
Reservoirs & Canals
Bureau of Reclamation
Washington, D. C.

Dear Mr. Boyers:

In reply to your letter of May 9, 1946 suggesting that the top of the dam wall on the 10' cut-off will rise 8 inches due to the eccentric elevation 19/40 of the main dam, we can advise you that this advice has no objection to this change in the dam size, provided however, it does. If this change is adopted, please file in duplicate revised drawings showing same.

Yours very truly,

E. S. Crittenden
Chief Engineer

RECORDED

OO

ESTATE PLANNING AND TAXES

4-34498-0100 1-39

LAW & SOCIETY

On 1-11-31, 1915, he was my student at W. Luttrell, District Engineer, D. C., and I had the pleasure of meeting him at the Annual Meeting of the American Society of Civil Engineers, held in Boston, Mass., in 1916. He was then working on the work being performed by the U. S. Engineers in the construction of the Little Falls Bridge, New York.

Following the turbines, bridge, Bartooll and Bearyus discussed the location of a pumping station to be located at this point for pumping water from the lake and bringing it to the reservoir and also a location of the pumping station about 100 feet as far down the lake as the station is to go. Located the records of the first 100 feet at the dam, and the pumping station to be located in the gorge below the outlet of discharge of the turbines and other plant waters.

Trenton, N.
May 6, 1844

George R. Franklin

George E. Shooklin
Asst. Chief Engineer

PASSAIC VALLEY WATER COMMISSION

State of New Jersey
Division of Conservation
Division of Water Policy and Supply
Division of Water Supply
Division of Waterworks
Division of Sewerage
Division of Flood Control
Division of Water Resources
Division of Water Pollution Control
Division of Water Quality Control
Division of Water Conservation
Division of Water Resource Management
Division of Water Resource Development
Division of Water Resource Protection
Division of Water Resource Utilization
Division of Water Resource Management
Division of Water Resource Development
Division of Water Resource Protection
Division of Water Resource Utilization

137 ELLISON STREET
PATERSON, N.
JERSEY

May 8, 1946

GRS

Department of Conservation
Division of Water Policy and Supply
28 West State Street
Trenton, N.J.

Attention: H.T.Critchlow, Chief Engineer

Re: Repair "Benttie's Dam"

Gentlemen:

? It has just been suggested that the top of the wing-wall on the Benttie's mill side of the above captioned structure, be held at an elevation 8 inches higher than the crest of the main dam. This would materially improve the operating appearance when a small amount of water is flowing over the dam, and would confine the flow to the main section.

The plans, as approved, call for holding the same crest level throughout, namely, elevation 167.80.

Would you approve of the change suggested above?

Very truly yours,
PASSAIC VALLEY WATER COMMISSION

Richard E. Bonyn
Richard E. Bonyn
General Superintendent

REB:G

Report on Little Falls, N.J.

LITTLE FALLS,
LITTLE RIVER,
FAGGARD RIVER

APPLICATION NO. 404

RAM NO. 26-30

On October 10, 1945 an action was made and conference was held with Richard E. Bogert, General Superintendent, Little Valley Water Commission and Mr. Eugene F. Bonvouloir, President of Bogart, Chilie Manufacturing Corporation, concerning the repair and construction of a skimming flume at Little Falls on the Little River at Little Falls.

The inspection disclosed that the crest of the main dam had been severely damaged by the July 24th flood, wherein two courses of the stone masonry had been washed off the top of the dam for a distance of 12 feet near the right wing wall and for a distance of 6 feet near the left end of the main spillway. The left wing wall was in good condition with a concrete cap. Fifteen feet, however, of this wing wall is obstructed at the left end by an entrapment of ledge rock on the downstream face. The right wing wall, opposite the bogart manufacturing Company plant, is in very poor condition and looks badly.

The preliminary drawings filed October 1 were discussed with Messrs. Bonvouloir and Bogert, who were advised (1) that no approval to start construction could be granted before the next Council meeting on November 1; (2) that approval of the repair and the skimming flume would be recommended without the provisions for flashboards; (3) that the outlet of the skimming flume be modified to reduce its obstruction of the left wing wall. Mr. Bogert agreed to eliminate the two concrete sills shown on the spillway for future flashboards, but requested that the pipe sockets and eye-bolts shown on the final drawings for use with flashboards at some future date be approved, since the cost of installing these items at the future date would be large as compared with the cost of installing them at this time. In order to avoid a serious obstruction to the left wing wall and heavy rock excavation below this wing wall, it was decided to end the skimming flume 20 feet above the dam and discharge through a concrete pipe, the top of which would be located below the crest of the dam. In support of the flashboard provisions Mr. Bogert was requested to file a letter with his application substantiating the need of the flashboards.

Trenton, New Jersey
October 25, 1945

George E. Franklin
George E. Franklin
Asst. Chief Engineer

Dam Application No. A-91
(26-50)

State of New Jersey
State Water Policy Commission

REPORT ON DAM APPLICATION

To the State Water Policy Commission,
State of New Jersey:

Gentlemen:

The application of Peascoc Valley Water Commission, 137 Wilson St., Paterson, N.J.,
filed October 22, 1945, for approval of plans and for a permit to repair a dam
and construct a spillway 50 feet above the dam
known as Beattie's Dam and to race in Little Falls on Peascoc River.

Tributary to Newark Bay in Passaic County, New Jersey,
Chief Assistant Engineer.

PRINCIPAL FEATURES

Location 26.1.6.6-6

Site inspected Oct. 10, 1945 - 0.2.8.

Purpose of dam Potable public water supply

Length of dam 160 feet

Drainage area 772.9 sq. mi.

Elevation of low line 157.8 Applicant's datum

Area of lake natural channels

157.5 N.J. Geodetic

Type of dam Stone masonry dam capped with aggregate width

Capacity of lake 100,000 cu. yds.

Upstream slope 2-1/2 to 1 or flatter

Downstream slope 1 to 1-1/2

Foundation material Trap-rock ledge

Max. height 82 feet

Type of spillway Freefall overflow, racing dam

Length of spillway 285 feet

Max. head on spillway 11-1/2 feet see other side.

Spillway capacity 31,075 sec. ft. per sq. mi. 800 sec. ft. per sq. mi. See other side.

Estimated maximum flood flow

sec. ft. per sq. mi. Oct. 10, 1933

Outlets other than spillway Intake canal and gate house for Peascoc Valley Water Comm. plant

on left bank upstream of dam and intake works for Beattie's Mill

Drawings filed

plant on right bank ad dam.

It has been found that the site for the dam is suitable and the plans adequate to ensure the construction of a structure which will not be a menace to life or property. It is therefore recommended that the plans be approved and that a permit be issued, subject, however, to the following terms and conditions:

1. That this permit does not give any property rights, either in real estate or material, nor any exclusive privileges; neither does it authorize any injury to private property nor invasion of private rights, nor any infringement of Federal, State or local laws or regulations, nor does it waive the obtaining of Federal assent, when necessary.

PASSAIC VALLEY WATER COMMISSION

137 ELLISON STREET

PATERSON, N.

JERSEY

DAM APPLICATION NO. 40211

REC'D BY MAIL

OCT 22 1955

ENCL 1

N. J. Dept. of Conservation
Division of Water Policy & Supply
20 West State Street
Trenton 8, New Jersey

Attention: H. T. Critchlow,
Chief Engineer

Ref Dam #26,30 Passaic County

Gentlemen:

We are enclosing herewith application forms for permission to repair this Commission's Dam, known as "Beattie's Dam", across the Passaic River at Little Falls. Also enclosed is a complete set of plans and specifications for the project.

Following our conference on the site with Mr. Shanklin on October 10th, we have revised the design of the outlet end of the skimming flume in accordance with your suggestions to eliminate any obstruction at the crest of the dam. The proposed elevation of the new crest is the same as that of the existing crest of the arched section. This elevation of crest will be held throughout the entire spillway and will effect a betterment in discharge capacity, since the crests of the existing wing walls on either side of the arched section are now and have been some three to four inches higher than the crest of the arched section.

You will note on the drawings that we are requesting approval for the installation of pipe sockets in the new dam crest for the future installation of flashboards, if and when applied for and approved by your Board.

We submit the following arguments to justify our request:

- (1) The pipe sockets would be flush with the top of the dam, filled and sealed with material of a

-2-

removable nature, and would offer no resistance to free discharge.

- (2) Flashboards would not be installed unless formal approval were granted by your Board. This policy would be confirmed by the Commission by formal resolution, if you request such action.
- (3) The design of the flashboard supports, if and when applied for and approval granted, would consist of stainless steel pins with a calibrated cut-away section at crest level, and designed and tested to fail at a predetermined elevation of water level above the permanent crest of the dam. The flashboards would then fall to the downstream face of the dam and be held there by chains fastened to the eye bolts set in the face of the dam. Such a design for flashboards would cause no hardship to upstream property owners during times of low flow conditions and would fail and create no obstruction to the free discharge over the dam during times of high water.

We are anticipating, at this time, the need for flashboards on this dam at some time in the future for the following reasons:

- (1) The Little Falls Purification Plant on this Commission's Passaic River source of potable water supply is designed on gravity flow of water from the river through intake canal, screen house, coagulation basins, influent piping and on to the filters. It is estimated that the present maximum gradient

PASSAIC VALLEY WATER COMMISSION

-3-

with water level at the river of 157.8 (crest level of the dam) will not permit production of potable water from this source in excess of 50 m.g.d. The future installation of flashboards to permit the carrying of 1 ft. higher elevation of water at the river intake, during times of low flow, would materially increase the potable water yield from this source of supply.

(2) The future installation of the flashboards could provide certain other advantages such as increased hydro-electric generation, which might be vital in our ability to pump water during failure of our auxiliary source of power.

As stated in our letter of September 20th, the Commission considers the repair of the dam urgent, and time to be of the essence. For this reason we have explained at length our present and future plans in anticipation of your deliberation on the application. The work has been advertised and bids will be received by the Commission on October 24th, and we respectfully request your approval of the project by that date or shortly after, in order that the contract may be awarded without delay.

Very truly yours,

PASSAIC VALLEY WATER COMMISSION

Richard E. Bonyn
Richard E. Bonyn
General Superintendent

REB:VM

C
PASSAIC VALLEY WATER COMMISSION

PASSAIC VALLEY WATER COMMISSION

137 ELLISON STREET

PATERSON,
NEW JERSEY

September 20, 1948

H.T. Grisham, Chief Engineer
New Jersey Department of Conservation
Division of Water Policy and Supply
50 West State Street
Trenton 6, New Jersey

R. L. DUNN, Esq., Passaic County

Gentlemen:

In response to your letter of September 11th, regarding repairs to our dam at Little Falls, we hereby make formal application for you to proceed with this construction.

Enclosed herewith is a copy of a preliminary report of Bogert-Childs Engineering Associates, together with preliminary drawings of the work to be undertaken. It is proposed to do the following work:

- (1) Reconstruct the crooked downstream slope of the curved section of the dam and the straight section on gate house side, with poured concrete of typical cross-section as shown on scheme 1. of the drawings.
- (2) To reinforce the existing side wall on the Peattie Manufacturing side with poured concrete typical section E-R as shown on the drawing.
- (3) To hold the elevation of the new concrete crest of the main dam and side wall, at the same elevation as the crest of the present dam.
- (4) To construct a "skimming flume" from the floating boom at the gate house to and through the dam as shown on the drawings.

*Not approve (5)
provision
for flash boards*

This application does not include a request for any change in elevation of the crest of the existing dam, or for the installation of flash boards previously mentioned in our letter of September 6th, but is merely a request for approval to proceed with the permanent

New Jersey Department of Conservation -D- September 26, 1946

rebuilding of the existing structure, the maintenance of which is vital to the operation of this Commission's Passaic River water supply.

Since the flood of July 2nd, recent high water over the dam has caused more damage to the structure and for this reason it is imperative that work on the repairs be placed under way as soon as possible.

Will you therefore kindly give this matter your prompt consideration so that there may be no undue delay in proceeding with the project.

Very truly yours,
PASSAIC VALLEY WATER COMMISSION

Richard E. Bonyum
Richard E. Bonyum
General Superintendent

RBB:G

PASSAIC VALLEY WATER COMMISSION

PASSAIC VALLEY WATER COMMISSION

137 ELLISON STREET
PATERSON, N.J.
NEW JERSEY

Dear Passaic Co.

September 6, 1945.

R. T. Critchlow, Chief Engineer
H. S. Dept. of Conservation
Division of Water Valley & Supply
10 West State Street
Trenton 8, New Jersey

Dear Mr. Critchlow

Re: 26-30

During the recent flood of July 22nd and 23rd, material damage was done to this Commission's dam across the Passaic River at Little Falls. The dam is known as "Baptist's Land". Several of the coping stones forming the crest of the stone masonry dam were washed away.

We are starting with the preparation of plans and specifications for the work of making a permanent masonry like structure. To be included in this project is a new sluiceway from the floating boom at our River intake, to end through the dam to facilitate removal of debris which collects at the intake. Also contemplated is the installation of collapsible flashboard on the top of the dam which would permit the carrying of approximately 1 ft. higher elevation of water in the pond above the dam during dry river conditions, but which would collapse at time of high water and not interfere with the free discharge over the dam.

It is my understanding that such work is subject to the approval of your department and for this reason I am advising you of the project. We have engaged the services of Bogart-Childe Engineering Associates in the preparation of design, plans and specifications.

Please advise if I am correct in assuming that your approval is necessary and if so please inform us of the procedure to follow.

Very truly yours,
PASSAIC VALLEY WATER COMMISSION

Richard E. Bonyn
(ovm) Richard E. Bonyn
General Superintendent

APPENDIX 2

CHECK LIST

VISUAL INSPECTION

BEATTIES MILL DAM

Check List
Visual Inspection
Phase 1

Name Dam	Beatties Mill Dam	County	Passaic	State NJ (00821)	Coordinators	NJDEP
Date(s) Inspection	2/17/81 4/23/81	Weather	Clear Rain	Temperature	52° 55°	
Pool Elevation at Time of Inspection	157.2'	NGVD	Tailwater at Time of Inspection	152'	NGVD	

Inspection Personnel:

W. Guinan
S. Gilman
R. Murdock

C. Plaud
J. Stone

R. Murdock/K. Stuart/S. Gilman Recorder

Mr. L. O'Brien - Owner's Representative

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SEEPAGE OR LEAKAGE	None observed	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Considerable loss of stone support at junction of spillway and buttress and underneath downstream end of buttress.	Repair training wall and downstream support.
DRAINS	N/A	
WATER PASSAGES	N/A	
FOUNDATION	Entire structure is founded on bedrock.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Surface of dam is eroded exposing the coarse aggregate	
STRUCTURAL CRACKING	Evidence of horizontal cracks or cold construction joints in d/s right end face.	Repair joint
VERTICAL AND HORIZONTAL ALIGNMENT	No indication of horizontal or vertical movement	
MONOLITH JOINTS	N/A	
CONSTRUCTION JOINTS	Vertical joints are eroded to 1-inch deep. No leakage noted. Bottom of weir is undermined at base approximately 2-4 inches all along toe of concrete dam.	

OUTLET WORKS

VISUAL EXAMINATION OF
OBSERVATIONS

CRACKING AND SPALLING OF
CONCRETE SURFACES IN OUTLET
CONDUIT

Canal diversion for Passaic Valley
Water Commission.

INTAKE STRUCTURE

Building over intake channel
Diversion to canal controlled from
gate house.
Channel in good condition.

2-4

OUTLET STRUCTURE

Canal to water treatment plant

EMERGENCY GATE

N/A

REMARKS OR RECOMMENDATIONS

Canal - good condition

N/A

UNCATDED SPILLWAY

VISUAL EXAMINATION OF

OBSERVATIONS

REMARKS OR RECOMMENDATIONS

CONCRETE WEIR

Good shade

APPROACH CHANNEL

2-5

LITERATURE

Passaic River - open channel, bedrock channel bottom.

Beattie Mill building adjacent to right bank d/s

RENTERS AND SPILLWAY.

VISUAL EXAMINATION OF	RESERVOIR	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES		Gradually to moderately sloped. Mill buildings on right side of reservoir; wooded.	
SEDIMENTATION		Some sedimentation observed in the reservoir.	

DOWNSHIFT CHANNEL

VISUAL EXAMINATION OF CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Rocky, well-defined channel Stable, steep slopes	None threatened APPROXIMATE NO. OF HOMES AND POPULATION

CHECK LIST¹
 ENGINEERING DATA
 DESIGN, CONSTRUCTION, OPERATION

ITEM	REMARKS
PLAN OF DAM	Plans from 1945-1946 reconstruction on file at NJDEP, Post Office Box CN-029, Trenton, N.J. 08625
REGIONAL VICINITY MAP	Prepared for this report
CONSTRUCTION HISTORY	No information available on the original construction in 1896 (est.). General information is available, however, in the NJDEP files on the 1945-1946 reconstruction. Copies of this information are included in Appendix 1 of this report.
TYPICAL SECTIONS OF DAM	Dam sections pertinent to the 1945-1946 reconstruction are on file at NJDEP; see "PLAN OF DAM" above.
HYDROLOGIC/HYDRAULIC DATA	84 years of discharge record at U.S.G.S. gage, 0.6 miles downstream of dam. 28,000 cfs in October 1903 is flood of record. No other information disclosed.
OUTLETS - PLAN	Not available
- DETAILS	Not available
- CONSTRAINTS	Not available
- DISCHARGE RATINGS	Not available
RAINFALL/RESERVOIR RECORDS	Not available. Peak stage from 1903 storm 11.1 feet above spillway crest.

ITEM	REMARKS
DESIGN REPORTS	Letters regarding 1945-1946 reconstruction available at NJDEP. See 'IPLAN OF DAM' on page 2-8.
GEOLOGY REPORTS	Not available
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	Not available
2-9	
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Not available
POST-CONSTRUCTION SURVEYS OF DAM	Not available
BORROW SOURCES	Not applicable

ITEMS	REMARKS
SPILLWAY PLAN	
SECTIONS	On file at NJDEP. See "PLAN OF DAM" on page 2-8 of this report.
DETAILS	

OPERATING EQUIPMENT
PLANS & DETAILS

Not available

ITEM	REMARKS
MONITORING SYSTEMS	None
MODIFICATIONS	Plans for 1945-1946 reconstruction at NUDEP. See "PLAN OF DAM" on page 2-8 of this report.
HIGH POOL RECORDS	October 1903, 11.1 feet over crest of dam. (1945 reconstruction changed stage-discharge relationship.)
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Damaged by high flows in 1945 (see Engineering Data, Appendix 1)
MAINTENANCE OPERATION RECORDS	Not available

CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: 762 square miles, wetlands,
urban areas, wooded areas

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 156.8 feet NGVD
(1,435 acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY)
Not applicable

ELEVATION MAXIMUM TEST FLOOD POOL: 171.6 feet NGVD

ELEVATION TOP DAM: 164.1 feet NGVD (4,870 acre-feet)

SPILLWAY CREST: free overflow concrete spillway
a. Elevation 157.8 feet NGVD (3 foot notch at 156.8)
b. Type broad-crested
c. Width 5 feet
d. Length 267 feet
e. Location Spillover entire top of dam
f. Number and Type of Gates None

OUTLET WORKS: gated canal
a. Type lift gates
b. Location 300 feet upstream of left abutment
c. Entrance Invert unknown
d. Exit Invert unknown

HYDROMETEOROLOGICAL GAGES: None

MAXIMUM NON-DAMAGING DISCHARGE: 12,701 cfs

APPENDIX 3
PHOTOGRAPHS

BEATTIES MILL DAM

April 23, 1981

View along axis of dam from left (north) abutment

April 23, 1981

View of dam and pool area from downstream left bank

April 23, 1981

View of left wingwall and abutment

April 23, 1981

View of right wingwall and abutment. Note low level flow notch.

February 17, 1981

Small overflow spillway in right side, straight section of dam. Note large log in notch.

April 23, 1981

Erosion of training wall adjacent to spillway.

April 23, 1981

Root system visible behind missing stones. Stone block at crest (top of photo) is displaced three inches downward.

April 23, 1981

View of five-inch separation between masonry blocks near the base of the intersection between the training wall and the spillway.

April 23, 1981

Upstream side of intake building for canal to water treatment plant. Note high water mark from 1903 flood to the right of and below the right window.

April 23, 1981

View of canal to water treatment plant from intake building.

April 23, 1981

View of loss of rock support below downstream end of training wall.

APPENDIX 4
HYDROLOGIC COMPUTATIONS

BEATTIES MILL DAM

UPSTREAM DRAINAGE AREA

PAN

NATIONAL PROGRAM OF INSPECTION OF
NON-FED. DAMS
BETTIES MILL DAM

SCALE IN MILES

A horizontal ruler scale marked from 0 to 20 in increments of 1. The numbers 0, 10, and 20 are clearly visible at the ends of the scale.

REGIONAL VICINITY MAP

JUNE 1981

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
PHILADELPHIA, PENNSYLVANIA

Anderson-Nichols & Company, Inc.

BOSTON, MA

**MAP BASED ON U.S.G.S. I:250,000 SERIES SHEET
NK18-8 SCRANTON, PA., N.Y., N.J. 1962, REVISED
1976, AND NK18-11 NEWARK, N.J., PA., N.Y. 1944,
REVISED 1969.**

JOB NO.

SQUARES 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1/4 IN. SCALE

1

PMF

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Time (hours)PMF flow at Beatties Dam

0	2,300
6	2,300
12	2,300
18	2,300
24	2,300
30	2,300
36	3,000
42	7,700
48	21,000
54	40,000
60	60,000
66	73,500
72	83,500
78	88,000
84	87,000
90	83,500
96	77,500
102	69,000
108	62,000
114	54,500
120	47,500
126	40,500*
132	34,000†
138	28,000†
144	22,000†
150	16,000†
156	11,000†
162	6,000†

* Estimates of recessional
values

JOB NO.

SQUARES
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1

2

3

Stage Vs Discharge

4

The hydraulic profile for Bent Hies Mill Dam is shown on p. 3.

5

6

7

8

Spillway

9

10

$$Q = \text{Low flow notch + crest} = 3(3)(E - 156.8)^{3/2} + 3(264)(E - 157.8)^{3/2}$$

11

12

Top of Dam

13

14

$$Q = 3.0(20)(E - 164.1)^{3/2}$$

15

16

Side Slope

17

18

$$Q = C C L H_{top}^{3/2} = 2.6 (10)(E - 164.1) (0.5(E - 164.1))^{3/2}$$

19

Elevation (ft. above N.E.V.)	Q_{spillway} (cfs)	$Q_{\text{top of Dam}}$ (cfs)	$Q_{\text{side slope}}$ (cfs)	Q_{Total} (cfs)
148.6	0	0	0	0
156.8	0	0	0	0
157.8	9.0	0	0	9
158	83	0	0	83
159	1,070	0	0	1,070
160	2,636	0	0	2,636
161	4,611	0	0	4,611
162	6,924	0	0	6,924
163	9,530	0	0	9,530
164.1	12,701	0	0	12,701
165	15,570	51	7	15,570
166	18,848	157	46	19,051
167	22,394	296	132	22,822
168	26,138	462	276	26,876
169	30,070	651	489	31,210
171	38,464	1,087	1,150	40,701
173	47,521	1,593	2,172	51,286
174	52,283	1,868	2,835	56,986
		2,100	3,106	59,090

JOB NO.

SQUARES 1/4 IN. SCALE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
--------------------------	---	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Stage Vs Storage

The Passaic River upstream of Beatties Mill Dam is very flat.

From U.S.G.S. goals, the 160' contour line is 106,000 feet upstream of the dam, and the 180' contour is 158,000 feet upstream. The lowpoint in the reservoir pool is shown to be 148.6' NGVD on the plans, with the lowpoint on the low flow weir at 156.8'. Top of dam is 164.1'

Stationing, 1900 ft u/s of dam.

at normal pool (156.8)

$$\text{Surface area} = \text{length} \times \text{avg. width}$$

$$\text{Length} = \frac{156.8 - 148.6}{164.1 - 148.6} (106,000) = 76,246 \text{ ft.}$$

$$\text{avg. width} = 200 \text{ ft}$$

$$\text{area} = (76,246)(200) \text{ ft}^2 = 350.1 \text{ acres}$$

$$\text{Storage} = \text{Area} (\text{Avg Depth}) = 350.1 \left(\frac{156.8 - 148.6 + 0}{2} \right) = 1435 \text{ ac-ft.}$$

JOB NO.

SQUARES
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1

2

at top of dam

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Surface area = length \times Avg. width

$$\text{Length} = 106,000 + \frac{4.1}{20}(52,000) \\ = 116,660 \text{ ft}$$

Avg. width = 200 ft

$$\text{area} = 116,660 (200) \left(\frac{1}{43,560} \right) = 536 \text{ ac.}$$

Storage = Surface area to 160 (Avg. Depth) + S.A. to 164.1 (Avg. Depth)

$$= \frac{106,000 (200)}{43,560} \left(\frac{(164.1 - 148.6) + (164.1 - 160)}{2} \right) + \frac{10,660 (200)}{43,560} \left(\frac{(164.1 - 160) + 0}{2} \right)$$

$$= (486.7)(9.8) + 48.9(2.05) = 4,870 \text{ ac. ft.}$$

at 175' GVD

$$\text{Storage} = \frac{106,000 (200)}{43,560} \left(\frac{(175 - 148.6) + (175 - 160)}{2} \right)$$

$$+ \frac{52,000 \left(\frac{15}{20} \right)}{43,560} 200 \left(\frac{(175 - 160) + 0}{2} \right)$$

$$= 486.7 (20.7) + 179.1 (7.5) = 11,418 \text{ ac. ft.}$$

Stage vs. Storage is plotted on page . The following points are in
to TCC-1:

<u>E (ft. NAVD)</u>	<u>Stor (Ac-ft.)</u>
148.6	0
156.8	1,435
157.8	1,820
160	2,790
162	3,740
164.1	4,870
167	6,410
169	7,600
171	8,830
172	10,160

Anderson-Nichols & Company, Inc.

Subject Beaties Mill

Sheet No. 8 of 8

Date 7/7/81

Computed T.G.

Checked T.G.

JOB NO.

SQUARES
1/4 IN. SCALE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

APPENDIX 5

HEC 1 OUTPUT

BEATTIES MILL DAM

HEC-1 INPUT

LINE	10.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10
10	IC BEATTIES MILL DAM OVERTOPPING ANALYSIS - TOM GOOCH AMCO
10	NC PASSAIC COUNTY - LITTLE FALLS
10	0.1, 0.25, 0.5 MULTIPLES OF THE PMF
10	200
10	0
10	JR FLOW 0.1 0.25 0.5
7	KK A1 BEATTIES MILL POND INFLOW HYDROGRAPH INFLOW FROM PASSAIC RIVER BASIN SURVEY REPORT FOR WATER RESOURCES
9	IN 360 2300 2300: 2300: 2300: 2300: 2300: 2300: 2300: 2300:
10	GT 2300: 2300: 2300: 2300: 2300: 2300: 2300: 2300: 2300: 2300:
11	GT 6000: 73500: 83500: 88000: 87000: 83300: 73000: 67000: 61000: 56000:
12	GT 40500: 40500: 34000: 28000: 22000: 16000: 11000: 6000: 2300: 2300:
13	KK A2 ROUTE INFLOW HYDROGRAPH THROUGH BEATTIES MILL POND
14	SY 1435 1435: 1620: 2790: 3740: 4870: 6410: 7600: 8830: 10160:
15	SY 148.6 156.8 157.8 157.8 162: 162: 162: 162: 162: 162: 162:
16	SQ 148.0 156.0 157.9 157.9 160: 160: 160: 160: 160: 160: 160:
17	SE 145.6 156.6 156.8 157.8 160: 160: 160: 160: 160: 160: 160:
18	SE 156.8 267.0 267.0 287.0 0.0 1.5
19	SZ 164.1 22
20	
21	

BEATTIE'S MILL DAM, CVERTOPPING ANALYSIS - TOM GOODCH
NEW JERSEY, 821 MILES EAST OF THE PMF
0.1, 0.25, 0.5 MILES FROM THE COUNTY LINE - LITTLE FALLS

OUTPUT CONTROL VARIABLES
IPLAT O PRINT CONTROL
GSCALE O HYDROGRAPH PLT SCALE AGES
DMSC YES PRINT DIAGNOSTIC MESSAGES

HYDROGRAPH TIME DATA		MINUTES IN COMPUTATION INTERVAL	
1 DATE	60	STARTING DATE	
1 TIME	1	ENDING DATE	
1 TIME	000	NUMBER OF HYDROGRAPH ORDINATES	
1 TIME	200		
1 DATE	9		
1 TIME	0700		
COMPUTATION INTERVAL		1.00	HOURS
TOTAL TIME BASE		199.00	HOURS

ENGLISH	UNITS	SQUARE MILES
INCHES	INCHES	INCHES
INCHES	FEET	FEET
FEET	FEET	FEET
FEET	ACRES	ACRES
ACRES	FEET	FEET
FEET	DEGREES FAHRENHEIT	DEGREES FAHRENHEIT

MULTI-PLAN OPTION RATIO	MULTI-PAYOUT OPTION RATIO OF RUMOFF	NUMBER OF PLANS
0.10	0.25	0.50

BEATTIES MILL POND INFLOW HYDROGRAPH

INFLOW FROM PASSAIC RIVER BASIN SURVEY REPORT FOR WATER RESOURCES
TIME DATA FOR INPUT TIME SERIES
JXMIN 300 TIME INTERVAL IN MINUTES
JXMAX 1000
JXSTEP 1
JXINTV 1
JXSTRTIME 0
JXENDTIME 1000

SUBBASIN: FLOWOFF DATA
SUBBASIN CHARACTERISTICS
SUBBASIN AREA 0.0

PEAK FLOW (CFS)	TIME (HRS)	MAXIMUM AVERAGE FLOW 24-HR 72-HR	199.00-HR
EF-60.	78.00	{ CFS } 875.00 0.400 4.333. 68648.	{ CFS } 850.27 0.000 1.648. 409707.
		{ INCHES }	{ INCHES }
		{ AC-FS }	{ AC-FS }
		{ CUMULATIVE AREA }	{ CUMULATIVE AREA }

HYDROGRAPH AT STATION 1: ECB PLAN

PICAR FLUN	TIME (HRS)	MAXIMUM FLOW	AVERAGE FLOW
{CFCS}	8759	24-HR	199.00
6-HR.	8503.	72-HR	3138.
	0300	0885.	3100.
	0343.	16865.	40614.
{INC-FCS}			
{INC-HEF}			
{AC-F}			

**HYDROGRAPH AT STATION
1000 FEET DEPTH**

PEAK FLOW (CFS)	TIME (HR)	MAXIMUM AVERAGE FLOW 24-HR	199. CO-H 7845
2200.	78.00	(INCHES) (AC-FT)	0.00
		6-HR 2189. 0.00 10858.	17213. 0.00 102425.
		(CFS)	21257. 0.00 42162.

**HYDROGRAPH AT STATION 1
FOR PLAN A1**

PEAK FLOW (CFS)	TIME (HR)	(CFS)	(INCHES)	(AC-FT)	MAXIMUM AVERAGE FLOW 1/4-HR	1/4-HR	199.00-HR
44000.	78.00	65.	437.	0.00	425.14	344.26	15691.

ROUTE INFLOW HYDROGRAPH THROUGH BEATTIES MILL POND

HYDROGRAPH ROUTING DATA

14 PS	STORAGE ROUTING LISTS	TYPE RSVRIC	STICK 1435.00	NUMBER OF SUBREACHES INITIAL CONDITION WORKING R AND D COEFFICIENT
15 SV	STORAGE	0.0 ... 1435.0	1820.0	2790.0
16 SE	EL ELEVATION	148.60	156.80	157.80
17 SC	DISCHARGE	0.	0.	9.
18 SE	EL ELEVATION	148.60	156.80	157.80
19 SS	SPILLWAY CREEL SPWID CQDN EXPW	156.80 267.00 3.00 1.50	SPILLWAY CREST ELEVATION WIDTH WEIR COEFFICIENT EXponent OF HEAD	SPILLWAY CREST ELEVATION WIDTH WEIR COEFFICIENT EXponent OF HEAD
20 ST	TOP OF DAM TOPEL DAWHID CQDN EXPW	169.10 287.00 0.00 1.50	ELEVATION AT TOP OF DAM WIDTH WEIR COEFFICIENT EXponent OF HEAD	***
	STORAGE	0.0	1435.00	1820.00
	OUTFLOW	0.0	0.0	9.00
***	***	***	***	***

COMPUTED STORAGE-OUTFLOW CURVE
3740.00 4870.00 6410.00 7600.00 8830.00 10160.00
6410.00 7600.00 8830.00 10160.00

HYDROGRAPH AT STATION 1, RATIO = 0.10
FOR PLAN 1, A2

PEAK CUTOFFLW IS 8730. AT TIME 82.00 HOURS

PEAK FLOW (CFS)	TIME (HR)	MAXIMUM AVERAGE FLOW 24-HR	MAXIMUM AVERAGE FLOW 24-HR
8730.	82.00	{(CFS) (AC-FT)}	{(CFS) (AC-FT)}
		0.716 0.322.	8471. 16801.
			6659. 0.000 0.016.
			3110. 0.000 51146.

PEAK STAGE (FT-FT)	TIME (HR)	MAXIMUM AVERAGE STORAG E 24-HR	MAXIMUM AVERAGE STORAG E 24-HR
4(93.	82.00		
		4091. 4042.	72-HR 3710.
			199.00-HR 2705.

PEAK STAGE (FET)	TIME (HR)	MAXIMUM AVERAGE STAGE 24-HR	CUMULATIVE AREA = 0.0 SQ MI
142.66	82.00	162.65	162.56
			161.90
			159.73

HYDROGRAPH AT STATION 1, RATIO = 0.25
FOR PLAN 1, A2

PEAK CUTOFFLW IS 21669. AT TIME 81.00 HOURS

PEAK FLOW (CFS)	TIME (HRS)	TIME (HRS)	MAXIMUM FLOW 24-HR
417.9.	81.00	{(CFS)} {INCHES}	2183.4. 0.600
PEAK STORAGE (AC-FT)	TIME (HRS)	TIME (HRS)	AVERAGE FLOW 24-HR
472.5.	81.00	{INCHES}	2120.8. 0.000
PEAK STAGE (FEET)	TIME (HR)	TIME (HR)	STORAGE 24-HR
16.73	91.00	{AC-FT}	42065. 6164.
			102156. 5540.
			128436. 3635.
CUMULATIVE AREA =	0.0	SQ MI	
***	***	***	***
HYDROGRAPH AT STATION 1, RATIO = 0.50 A2			
PEAK OUTFLOW IS 43785. AT TIME 81.00 HOURS			
PEAK FLOW (CFS)	TIME (HRS)	TIME (HRS)	MAXIMUM FLOW 24-HR
43785.	81.00	{(CFS)} (INCHES) (AC-FT)	43700. 0.000 21669.
PEAK STORAGE (AC-FT)	TIME (HRS)	TIME (HRS)	AVERAGE FLOW 24-HR
214.	81.00	{INCHES}	42444. 9049.
PEAK STAGE (FEET)	TIME (HR)	TIME (HR)	STORAGE 24-HR
171.56	81.00	{AC-FT}	34374. 7982.
			0.000 199.00-HR 4876.
CUMULATIVE AREA =	0.0	SQ MI	204539. 257257.

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND; AREA IN SQUARE MILES
 TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS		
				FLOW	RATIO 1 0.10	RATIO 2 0.25
HYDROGRAPH AT	A1	0.0	1	88.00	22000.00	44000.00
ROUTE 1C	A2	0.0	1	82.00	87.00	478.00
			** PEAK STAGES IN FEET			
			1 STAGE TIME	162.66	166.73	171.58
				82.00	81.00	81.00

SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION A2

PLAN 1	ELEVATION STORAGE OUTFLOW	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM		
		156.80 1435.0.	156.80 1435.0.	164.10 4870.0.		
RATIO OF P.H.F. TO W.S.ELEV	MAXIMUM PRESSURE OVER DAM	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE CFS-FT	DURATION OVER TOP HOURS	MAX OUTFLOW CFS	TIME OF FAILURE HOURS
0.10	162.66	0.0	4093.	8739.	0.0	82.00
0.25	166.73	2.63	6265.	21269.	60.00	81.00
0.50	171.58	7.48	9218.	43765.	91.00	81.00

*** NORMAL END OF JUP ***

HEC-1 INPUT

Part 1

ID.....1.....2.....3.....4.....5.....6.....7.....8.....9.....10

ID BEATTIES MILL DAM NO. 921 - PASSAIC COUNTY - TOM GONDCH ANCO

ID NEW JERSEY DAM NO. 921 - PASSAIC COUNTY - TOM GONDCH ANCO

ID 0.5 MULTIPLE OF THE P.M.F. 200

ID 60

ID 2

ID 0.5

JR FLOW

KK BEATTIES MILL POND INFLOW HYDROGRAPH

KK INFLOW FROM PASSAIC RIVER BASIN SURVEY REPORT FOR WATER RESOURCES

ID	TIME	INFLOW	ROUTE	INFLOW	HYDROGRAPH	THROUGH	BEATTIES MILL POND				
10	360	2300.	A1	2300.	2300.	2300.	3000.	3000.	21000.	40000.	
11	600	73500.	2300.	83500.	83500.	87000.	77500.	69000.	62000.	54500.	
12	4750	46500.	34000.	28000.	22000.	16000.	11000.	6000.	2300.	2300.	
13	RS	A2	ROUTE	INFLOW	HYDROGRAPH	THROUGH	BEATTIES MILL POND				
14	SV	148.0	1435.	1820.	2790.	3740.	4870.	6410.	7600.	8830.	10160.
15	SE	148.0	156.8	157.8	160.	162.	164.1	167.	169.	171.	173.
16	SE	148.0	156.0	157.9	2638.	6924.	12791.	12822.	31210.	40701.	51286.
17	SS	148.0	156.8	157.8	267.0	162.	164.1	167.	169.	171.	173.
18	SS	156.8	267.0	3.0	1.5						
19	ST	164.1	287.0	0.0	1.5						
20											
21											
22											

L105

FLUCU HYDROGRAPH PACKAGE (HEC-1)
FLUQUARY 1981
RUN DATE 07/07/81 TIME 13.07.24

U.S. ARMY CORPS OF ENGINEERS
THE HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 440-3285 OR (FTS) 440-3285

BEATTIES MILL DAM OVERTOPPING ANALYSIS - TOM GROUCH
NEW JERSEY NO. A21-PASSAIC COUNTY - LITTLE FALLS

ANCO

5 10 OUTPUT CONTROL VARIABLES PRINT CONTROL
 IPRINT 1 PLOT CONTROL
 IPLOT 1 HYDROGRAPH PLOT SCALE
 QSCAL 0 PRINT DIAGNOSTIC MESSAGES
 DMSSG YES
IT HYDROGRAPH TIME DATA 60 MINUTES IN COMPUTATION INTERVAL
 IWIN 1 0000 STARTING DATE
 ITIME 0000 STARTING TIME
 INDATE 200 NUMBER OF HYDROGRAPH ORDINATES
 INDTIME 0700 ENDING DATE
 ENDING TIME
COMPUTATION INTERVAL 198.00 HOURS
ENGLISH UNITS SQUARE MILES
DRAINAGE AREA INCHES
PRECIPITATION DEPTH FEET
LENGTH, ELEVATION CUBIC FEET PER SECOND
FLOOR SURFACE VOLUME ACRES-FEET
SURFACE AREA ACRES
TEMPERATURE DEGREES FAHRENHEIT
JP MULTI-PLAN OPTION 1 NUMBER OF PLANS
JR MULTI-RATIO OPTION
 RATIOS OF RUNOFF 0.50

7 KK BEATTIES MILL POND, INFLOW HYDROGRAPH
9 IN TIME DATA FOR INPUT TIME SERIES
 JXMIN 3600 TIME INTERVAL IN MINUTES
 JXDATE 1 0 STARTING DATE
 JXTIME 0 STARTING TIME
SUBBASIN FUNDOFF DATA
0 BA SUBBASIN CHARACTERISTICS
 0.C SUBBASIN AREA

KW

HYDROGRAPH AT STATION A1

PEAK FLOW (CFS)	IMF (HR) 78.00	MAXIMUM AVERAGE FLOW 24-HR 975.00 0.000 434.00 0.000 16P648.	72-HR 850.27 0.000 0.000 16P648. 0.000	199.00-HR 313.83 0.000 516.137.
PEAK FLOW (CFS)	IMF (HR) 800.00	MAXIMUM AVERAGE FLOW 24-HR 975.00 0.000 434.00 0.000 16P648.	72-HR 850.27 0.000 0.000 16P648. 0.000	199.00-HR 313.83 0.000 516.137.

**HYDROGRAPH AT STATION
PLAN 1, RATIO = 0.50 A1**

PERFECT FLCH (CFS) 4600.	TIME (HR) 78.60	MAXIMUM FLOW 24-HR 42795	AVERAGE FLOW 72-HR 12514	MAXIMUM FLOW 199.00-HR 34427.
(CFS) 4600.	(INCHES) 0.000	(AC-FT) 0000	(AC-FT) 21716.	(AC-FT) 84325.
CUMULATIVE AREA =		0.0 SC MI		15692. 0.000 204852. 258067.

ROUTE INFLOW HYDROGRAPH THROUGH BEATTIES MILL POND

卷之三

14	FS	STORAGE ROUTING LIST	1 TYPE RSVRIC	1 STOR 1435.00	1 NUMBER OF SURFACES TYPE OF INITIAL CONDITION INITIAL CONDITION WORKING R AND D COEFFICIENT	1 NUMBER OF SURFACES TYPE OF INITIAL CONDITION INITIAL CONDITION WORKING R AND D COEFFICIENT	1 NUMBER OF SURFACES TYPE OF INITIAL CONDITION INITIAL CONDITION WORKING R AND D COEFFICIENT	1 NUMBER OF SURFACES TYPE OF INITIAL CONDITION INITIAL CONDITION WORKING R AND D COEFFICIENT
15	SV	STORAGE	0.0	1435.0	1820.0	2790.0	3740.0	4870.0
16	SE	ELEVATION	148.60	156.80	157.80	160.00	162.00	164.10
17	SQ	DISCHARGE	0.	0.	9.	2636.	6924.	12701.
18	SE	ELEVATION	148.60	156.80	157.80	160.00	162.00	164.10

20 ST	TOP OF DAM TOPEL DAWWID COQQ EXPQ	164.10 287.60 0.00 0.00 1.50	ELEVATION AT TOP OF DAM DAM WIDTH WEIR COEFFICIENT EXponent OF HEAD
		1435.00	1820.00 COMPUTED STORAGE-OUTFLOW CURVE 2790.00 3740.00 4670.00
STORAGE -	0.0	0.0	6410.00
OUTFLOW	0.0	9.00	7600.00
		2636.00	8830.00
		6924.00	10160.00
		12701.00	
		22822.00	
		31210.00	
		40701.00	
		51286.00	

**HYDROGRAPH AT STATION
PLAYA 1.**

PEAK OUTFLOW IS 43785. AT TIME 81.00 HOURS

PEAK FLOW (CFS)	TIME (HR)	TIME (CFS) (INCHES) (AC-FT)	MAXIMUM AVERAGE FLOW 24-HR 42444 0.000 84187.	199.00-HR 72-HR 34374. 0.000 204538.
PEAK STAGE (AC-F) 5218.	TIME (HR)	TIME 9207.	MAXIMUM AVERAGE STORAGE 24-HR 9649.	199.00-HR 72-HR 7982. 4876.
PEAK STAGE (F.E.)	TIME (HR)	TIME 171.56	MAXIMUM AVERAGE STAGE 24-HR 171.32	199.00-HR 72-HR 169.59 163.82
		CUMULATIVE AREA =	0.0 SQ MI	

PEAK FLOW AND STAGE (Cubic-01 cubic) SUMMARY FOR MULTIPLE PLANT-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES
 TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS
HYDROGRAPH AT	A1	0.0	1	FLOW TIME 44000. 78.00
ROUTED TO	A2	0.0	1	FLOW TIME 43785. 81.00
** PEAK STAGES IN FEET **				
	1	STAGE TIME	171.58 81.00	

SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION A2

PLAN 1	ELEVATION STORAGE OUTFLOW	INITIAL VALUE C.	SP.ILLWAY CREST 156.80 1435. 0.	TOP OF DAM 164.10 4870. 12701.		
RATIO OF P/F TO H.S.ELEV	MAXIMUM RESERVOIR DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
0.50	171.58	7.48	9218.	43785.	91.00	81.00 0.0

NORMAL END OF JOB ***

APPENDIX 6

REFERENCES

BEATTIES MILL DAM

APPENDIX 6
REFERENCES

BEATTIES MILL DAM

Chow, Ven Te, Open Channel Hydraulics, McGraw Hill Book Company, New York, 1959.

King, H.W. and E.F. Brater, Handbook of Hydraulics, McGraw Hill Book Company, New York, Fifth Edition 1963.

Lewis, J.V. and H.B. Kummel (1910-1912) Geologic Map of New Jersey, revised by H.B. Kummel, 1931, and by M.E. Johnson, 1950. New Jersey Department of Conservation of Economic Development Atlas.

Schway, G.O., R.K. Frevert, T.W. Edmister, and K.K. Barnes, Soil and Water Conservation Engineering, The Ferguson Foundation Agricultural Engineering Series, John Wiley and Sons, Inc., New York, 1966, 683 pp.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, Flood Hydrograph Package (HEC-1) Users Manual, (Preliminary), Davis, California, March 1981.

U.S. Army Corps of Engineers, New York District, Passaic River Basin, New Jersey and New York, Survey Report for Water Resources, June, 1972.

U.S. Department of Agriculture, Soil Conservation Service, Urban Hydrology for Small Watersheds, Technical Release No. 55, Washington, 1975.

U.S. Department of Commerce, Weather Bureau, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1000 Square Miles and Durations of 6, 12, 24, and 48 Hours", Hydrometeorological Report No. 33, Washington.

United States Department of Interior, Bureau of Reclamation, Design of Small Dams, U.S. Government Printing Office, Washington, 1977, 816 pp.

U.S. Department of the Interior, Geological Survey, Water Resources Data for New Jersey, Volume 1, Atlantic Slope Basins, Hudson River to Cape May, Water Year 1979.

U.S. Department of Interior, Geological Survey, 7.5-Minute Series (topographic) maps, scale 1:24000, Contour Interval 10 feet: New Brunswick, New Jersey, (1954), Photorevised 1970.

Viessman, Warren, Jr., J.W. Knapp, G.L. Lewis, T.E. Harbaugh, Introduction to Hydrology, Harper and Row, Publishers, New York, Second Edition 1977, 704 pp.

**DATE:
ILME**