Dieter Scholz

Flugbereichsgrenzen

flight envelope

Flughöhe und Mach-Zahl / Geschwindigkeit

Zusatz zum Abschnitt 10 der Vorlesung "Flugmechanik" an der HAW Hamburg

Erste Übersicht über die Flugbereichsgrenzen

Überziehgeschwindigkeit als Funktion der Höhe

$$V_{s} = V_{s,0} \sqrt{\frac{\rho_{0}}{\rho}} = V_{s,0} \sqrt{\frac{1}{\sigma}} \qquad \sigma = \rho/\rho_{0}$$

Wahre Fluggeschwindigkeit bei begrenzender Machzahl

Basisgleichungen und Aerodynamik

$$M = \sqrt{\alpha}$$
 $V = M \cdot \alpha$
 $\alpha = \alpha_0 \cdot \sqrt{\frac{1}{T_0}}$ $\alpha_0 = 340,29 \frac{\text{m/s}}{\text{s}}$

Dies gilt in der

Troposiphève und in der

Stratosiphève

 $\alpha_T = \alpha_0 \cdot \sqrt{\frac{1}{T_0}} = 295,07 \frac{\text{m/s}}{\text{s}}$

Wahre Fluggeschwindigkeit bei begrenzender Machzahl

Widerstandsanstieg: Mach Number of Drag Divergence, M_{DD}

Flugbetrieb: Maximum Operating Mach Number, M_{MO}

Schütteln: Buffet Onset Mach Number, M_{bo}

Notabstieg: Dive Mach Number, M_D

Nach Zulassungsvorschriften und Auslegungsprinzipien ist die Machzahl im Reiseflug McR nach oben begrenzt durch Abhängigkeiten von den oben aufgelisteten Machzahlen.

Details dazu auf den nächsten Seiten ...

MDD = MCR = MMO

Mbo

MD

Wahre Fluggeschwindigkeit bei begrenzender Machzahl

Widerstandsanstieg: Mach Number of Drag Divergence, M_{DD}

Machzahl MDD, relative Profildicke t/c, Auftriebsbeiwert CL stehen über das Profil im Zusammenhang

Airbus und Boeing wählen bei der Auslegung von Strahlverkehrsflugzeugen:

$$M_{DD} = M_{CR}$$

und erhalten dadurch (definitionsgemäß) einen Wellenwiderstandsbeiwert von

CD, wave =
$$0.002$$
 (20 drag counts)

$$\begin{split} M_{DD,eff} &= M_{DD} \cdot \sqrt{\cos \phi_{25}} \\ (t/c) &= 0.3 \cdot \cos \phi_{25} \cdot \left(\left[1 - \left(\frac{5 + M_{DD,eff}^2}{5 + \left(k_M - 0.25 \cdot C_L \right)^2 \right)^{3.5}} \right] \cdot \frac{\sqrt{1 - M_{DD,eff}^2}}{M_{DD,eff}^2} \right)^{\frac{2}{3}} \end{split}$$

 $k_M = 1.0$ für Profile der NACA-6-Serie (NACA 6-series wing sections),

 $k_M = 1.1$ für ältere superkritische Profile,

 $k_M = 1.2$ für neuere superkritische Profile

SCHOLZ, Dieter; CIORNEI, Simona: **Mach number, relative thickness, sweep and lift coefficient of the wing - An empirical investigation of parameters and equations**, (Deutscher Luft- und Raumfahrtkongreß, Friedrichshafen, 26. - 29. September 2005). In: BRANDT, P. (Ed.): *Jahrbuch 2005*. Bonn: Deutsche Gesellschaft für Luft- und Raumfahrt, 2005. - Paper: DGLR-2005-122, ISSN 0070-4083

Schütteln: Buffet Onset Mach Number, M_{bo}

BERARD, A., ISIKVEREN, A.T.: Conceptual design prediction of the buffet envelope of transport aircraft. *Journal of Aircraft*, Vol. 46, No. 5, September-October 2009.

CS 25.251 Vibration and buffeting

- (a) The aeroplane must be demonstrated in flight to be free from any vibration and buffeting that would prevent continued safe flight in any likely operating condition.
- (b) Each part of the aeroplane must be demonstrated in flight to be free from excessive vibration under any appropriate speed and power conditions up to V_{DF}/M_{DF}. The maximum speeds shown must be used in establishing the operating limitations of the aeroplane in accordance with CS 25.1505.
- (d) There may be no perceptible buffeting condition in the cruise configuration in straight flight at any speed up to V_{MO}/M_{MO}, except that the stall warning buffeting is allowable.

MD	max. design dive Mach number
MDF	max. demonstrated flight dive Mach number
Ммо	max. operating Mach number

CS 25.1505 Maximum operating limit speed

The maximum operating limit speed (V_{MO}/M_{MO}, airspeed or Mach number, whichever is critical at a particular altitude) is a speed that may not be deliberately exceeded in any regime of flight (climb, cruise, or descent), unless a higher speed is authorised for flight test or pilot training operations. V_{MO}/M_{MO} must be established so that it is not greater than the design cruising speed V_C and so that it is sufficiently below V_D/M_D or V_{DF}/M_{DF}, to make it highly improbable that the latter speeds will be inadvertently exceeded in operations. The speed margin between V_{MO}/M_{MO} and V_D/M_D or V_{DF}/M_{DF} may not be less than that determined under CS 25.335(b) or found necessary during the flight tests conducted under CS 25.253.

CS 25.253 High-speed characteristics

(iii) Buffeting that would impair the pilot's ability to read the instruments or control the aeroplane for recovery.

CS 25.335 Design airspeeds

(b) Design dive speed, V_D . V_D must be selected so that V_C/M_C is not greater than 0.8 V_D/M_D , or so that the minimum speed margin between V_C/M_C and V_D/M_D is the greater of the following values:

Wahre Fluggeschwindigkeit bei konstantem Staudruck

$$\frac{1}{2}$$
SoVE = $\frac{1}{2}$ SV $\frac{2}{3}$ V = $\frac{1}{2}$ SV $\frac{2}{3}$

Die Äquivalentgeschwindigkeit VE oder der Staudruck stellen ein Maß für die Belastung der Struktur dar.

Begrenzung durch Kabineninnendruck

CS 25.841 Pressurised cabins

(a) Pressurised cabins and compartments to be occupied must be equipped to provide a cabin pressure altitude of not more than 2438 m (8000 ft) at the maximum operating altitude of the aeroplane under normal operating conditions.

Boeing B 787: Kabinenhöhe: 6000 ft

$$\sigma_{\rm t} = \frac{p \cdot D}{2 \cdot s}$$
 Kesselformel
$$\sigma_{\rm a} = \frac{p \cdot D}{1 \cdot s}$$

Nutzbarer Geschwindigkeitsbereich bei maximaler Flughöhe

VMO or MMO
Vmax,config
(buffet margin)

1,3 Vs

Vs = f(n)

Vss = 1,15 Vs

Vss: stick shaker speed

Beispiel: Boeing MD-11

Zusammenfassung der Begrenzungen

