

AD A1 U91 08

LEVEL ✓

①

DELAWARE RIVER BASIN
MILLTOWN DAM
WEST CHESTER AREA MUNICIPAL AUTHORITY

NDI NO. PA-00218
DER NO. 15-146

CHESTER COUNTY, PENNSYLVANIA

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DACW31-81-C-0013
PREPARED FOR

DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

DTIC
SELECTED
BED 3 1188

D
H

BY
Berger Associates

Harrisburg, Pennsylvania 17105

JULY 1981

Notes: All DTIC color
will be in black and white.

DISTRIBUTION STATEMENT

Approved for
Distribution to
Qualified Contractors

1/1/

81 12 28 161

DTIC FILE COPY

PREFACE

This report has been prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

Accession No.	GR-11	GR-12	GR-13	GR-14	GR-15	GR-16	GR-17	GR-18	GR-19	GR-20	GR-21	GR-22	GR-23	GR-24	GR-25	GR-26	GR-27	GR-28	GR-29	GR-30	GR-31	GR-32	GR-33	GR-34	GR-35	GR-36	GR-37	GR-38	GR-39	GR-40	GR-41	GR-42	GR-43	GR-44	GR-45	GR-46	GR-47	GR-48	GR-49	GR-50	GR-51	GR-52	GR-53	GR-54	GR-55	GR-56	GR-57	GR-58	GR-59	GR-60	GR-61	GR-62	GR-63	GR-64	GR-65	GR-66	GR-67	GR-68	GR-69	GR-70	GR-71	GR-72	GR-73	GR-74	GR-75	GR-76	GR-77	GR-78	GR-79	GR-80	GR-81	GR-82	GR-83	GR-84	GR-85	GR-86	GR-87	GR-88	GR-89	GR-90	GR-91	GR-92	GR-93	GR-94	GR-95	GR-96	GR-97	GR-98	GR-99	GR-100	GR-101	GR-102	GR-103	GR-104	GR-105	GR-106	GR-107	GR-108	GR-109	GR-110	GR-111	GR-112	GR-113	GR-114	GR-115	GR-116	GR-117	GR-118	GR-119	GR-120	GR-121	GR-122	GR-123	GR-124	GR-125	GR-126	GR-127	GR-128	GR-129	GR-130	GR-131	GR-132	GR-133	GR-134	GR-135	GR-136	GR-137	GR-138	GR-139	GR-140	GR-141	GR-142	GR-143	GR-144	GR-145	GR-146	GR-147	GR-148	GR-149	GR-150	GR-151	GR-152	GR-153	GR-154	GR-155	GR-156	GR-157	GR-158	GR-159	GR-160	GR-161	GR-162	GR-163	GR-164	GR-165	GR-166	GR-167	GR-168	GR-169	GR-170	GR-171	GR-172	GR-173	GR-174	GR-175	GR-176	GR-177	GR-178	GR-179	GR-180	GR-181	GR-182	GR-183	GR-184	GR-185	GR-186	GR-187	GR-188	GR-189	GR-190	GR-191	GR-192	GR-193	GR-194	GR-195	GR-196	GR-197	GR-198	GR-199	GR-200	GR-201	GR-202	GR-203	GR-204	GR-205	GR-206	GR-207	GR-208	GR-209	GR-210	GR-211	GR-212	GR-213	GR-214	GR-215	GR-216	GR-217	GR-218	GR-219	GR-220	GR-221	GR-222	GR-223	GR-224	GR-225	GR-226	GR-227	GR-228	GR-229	GR-230	GR-231	GR-232	GR-233	GR-234	GR-235	GR-236	GR-237	GR-238	GR-239	GR-240	GR-241	GR-242	GR-243	GR-244	GR-245	GR-246	GR-247	GR-248	GR-249	GR-250	GR-251	GR-252	GR-253	GR-254	GR-255	GR-256	GR-257	GR-258	GR-259	GR-260	GR-261	GR-262	GR-263	GR-264	GR-265	GR-266	GR-267	GR-268	GR-269	GR-270	GR-271	GR-272	GR-273	GR-274	GR-275	GR-276	GR-277	GR-278	GR-279	GR-280	GR-281	GR-282	GR-283	GR-284	GR-285	GR-286	GR-287	GR-288	GR-289	GR-290	GR-291	GR-292	GR-293	GR-294	GR-295	GR-296	GR-297	GR-298	GR-299	GR-300	GR-301	GR-302	GR-303	GR-304	GR-305	GR-306	GR-307	GR-308	GR-309	GR-310	GR-311	GR-312	GR-313	GR-314	GR-315	GR-316	GR-317	GR-318	GR-319	GR-320	GR-321	GR-322	GR-323	GR-324	GR-325	GR-326	GR-327	GR-328	GR-329	GR-330	GR-331	GR-332	GR-333	GR-334	GR-335	GR-336	GR-337	GR-338	GR-339	GR-340	GR-341	GR-342	GR-343	GR-344	GR-345	GR-346	GR-347	GR-348	GR-349	GR-350	GR-351	GR-352	GR-353	GR-354	GR-355	GR-356	GR-357	GR-358	GR-359	GR-360	GR-361	GR-362	GR-363	GR-364	GR-365	GR-366	GR-367	GR-368	GR-369	GR-370	GR-371	GR-372	GR-373	GR-374	GR-375	GR-376	GR-377	GR-378	GR-379	GR-380	GR-381	GR-382	GR-383	GR-384	GR-385	GR-386	GR-387	GR-388	GR-389	GR-390	GR-391	GR-392	GR-393	GR-394	GR-395	GR-396	GR-397	GR-398	GR-399	GR-400	GR-401	GR-402	GR-403	GR-404	GR-405	GR-406	GR-407	GR-408	GR-409	GR-410	GR-411	GR-412	GR-413	GR-414	GR-415	GR-416	GR-417	GR-418	GR-419	GR-420	GR-421	GR-422	GR-423	GR-424	GR-425	GR-426	GR-427	GR-428	GR-429	GR-430	GR-431	GR-432	GR-433	GR-434	GR-435	GR-436	GR-437	GR-438	GR-439	GR-440	GR-441	GR-442	GR-443	GR-444	GR-445	GR-446	GR-447	GR-448	GR-449	GR-450	GR-451	GR-452	GR-453	GR-454	GR-455	GR-456	GR-457	GR-458	GR-459	GR-460	GR-461	GR-462	GR-463	GR-464	GR-465	GR-466	GR-467	GR-468	GR-469	GR-470	GR-471	GR-472	GR-473	GR-474	GR-475	GR-476	GR-477	GR-478	GR-479	GR-480	GR-481	GR-482	GR-483	GR-484	GR-485	GR-486	GR-487	GR-488	GR-489	GR-490	GR-491	GR-492	GR-493	GR-494	GR-495	GR-496	GR-497	GR-498	GR-499	GR-500	GR-501	GR-502	GR-503	GR-504	GR-505	GR-506	GR-507	GR-508	GR-509	GR-510	GR-511	GR-512	GR-513	GR-514	GR-515	GR-516	GR-517	GR-518	GR-519	GR-520	GR-521	GR-522	GR-523	GR-524	GR-525	GR-526	GR-527	GR-528	GR-529	GR-530	GR-531	GR-532	GR-533	GR-534	GR-535	GR-536	GR-537	GR-538	GR-539	GR-540	GR-541	GR-542	GR-543	GR-544	GR-545	GR-546	GR-547	GR-548	GR-549	GR-550	GR-551	GR-552	GR-553	GR-554	GR-555	GR-556	GR-557	GR-558	GR-559	GR-560	GR-561	GR-562	GR-563	GR-564	GR-565	GR-566	GR-567	GR-568	GR-569	GR-570	GR-571	GR-572	GR-573	GR-574	GR-575	GR-576	GR-577	GR-578	GR-579	GR-580	GR-581	GR-582	GR-583	GR-584	GR-585	GR-586	GR-587	GR-588	GR-589	GR-590	GR-591	GR-592	GR-593	GR-594	GR-595	GR-596	GR-597	GR-598	GR-599	GR-600	GR-601	GR-602	GR-603	GR-604	GR-605	GR-606	GR-607	GR-608	GR-609	GR-610	GR-611	GR-612	GR-613	GR-614	GR-615	GR-616	GR-617	GR-618	GR-619	GR-620	GR-621	GR-622	GR-623	GR-624	GR-625	GR-626	GR-627	GR-628	GR-629	GR-630	GR-631	GR-632	GR-633	GR-634	GR-635	GR-636	GR-637	GR-638	GR-639	GR-640	GR-641	GR-642	GR-643	GR-644	GR-645	GR-646	GR-647	GR-648	GR-649	GR-650	GR-651	GR-652	GR-653	GR-654	GR-655	GR-656	GR-657	GR-658	GR-659	GR-660	GR-661	GR-662	GR-663	GR-664	GR-665	GR-666	GR-667	GR-668	GR-669	GR-670	GR-671	GR-672	GR-673	GR-674	GR-675	GR-676	GR-677	GR-678	GR-679	GR-680	GR-681	GR-682	GR-683	GR-684	GR-685	GR-686	GR-687	GR-688	GR-689	GR-690	GR-691	GR-692	GR-693	GR-694	GR-695	GR-696	GR-697	GR-698	GR-699	GR-700	GR-701	GR-702	GR-703	GR-704	GR-705	GR-706	GR-707	GR-708	GR-709	GR-710	GR-711	GR-712	GR-713	GR-714	GR-715	GR-716	GR-717	GR-718	GR-719	GR-720	GR-721	GR-722	GR-723	GR-724	GR-725	GR-726	GR-727	GR-728	GR-729	GR-730	GR-731	GR-732	GR-733	GR-734	GR-735	GR-736	GR-737	GR-738	GR-739	GR-740	GR-741	GR-742	GR-743	GR-744	GR-745	GR-746	GR-747	GR-748	GR-749	GR-750	GR-751	GR-752	GR-753	GR-754	GR-755	GR-756	GR-757	GR-758	GR-759	GR-760	GR-761	GR-762	GR-763	GR-764	GR-765	GR-766	GR-767	GR-768	GR-769	GR-770	GR-771	GR-772	GR-773	GR-774	GR-775	GR-776	GR-777	GR-778	GR-779	GR-780	GR-781	GR-782	GR-783	GR-784	GR-785	GR-786	GR-787	GR-788	GR-789	GR-790	GR-791	GR-792	GR-793	GR-794	GR-795	GR-796	GR-797	GR-798	GR-799	GR-800	GR-801	GR-802	GR-803	GR-804	GR-805	GR-806	GR-807	GR-808	GR-809	GR-810	GR-811	GR-812	GR-813	GR-814	GR-815	GR-816	GR-817	GR-818	GR-819	GR-820	GR-821	GR-822	GR-823	GR-824	GR-825	GR-826	GR-827	GR-828	GR-829	GR-830	GR-831	GR-832	GR-833	GR-834	GR-835	GR-836	GR-837	GR-838	GR-839	GR-840	GR-841	GR-842	GR-843	GR-844	GR-845	GR-846	GR-847	GR-848	GR-849	GR-850	GR-851	GR-852	GR-853	GR-854	GR-855	GR-856	GR-857	GR-858	GR-859	GR-860	GR-861	GR-862	GR-863	GR-864	GR-865	GR-866	GR-867	GR-868	GR-869	GR-870	GR-871	GR-872	GR-873	GR-874	GR-875	GR-876	GR-877	GR-878	GR-879	GR-880	GR-881	GR-882	GR-883	GR-884	GR-885	GR-886	GR-887	GR-888	GR-889	GR-890	GR-891	GR-892	GR-893	GR-894	GR-895	GR-896	GR-897	GR-898	GR-899	GR-900	GR-901	GR-902	GR-903	GR-904	GR-905	GR-906	GR-907	GR-908	GR-909	GR-910	GR-911	GR-912	GR-913	GR-914	GR-915	GR-916	GR-917	GR-918	GR-919	GR-920	GR-921	GR-922	GR-923	GR-924	GR-925	GR-926	GR-927	GR-928	GR-929	GR-930	GR-931	GR-932	GR-933	GR-934	GR-935	GR-936	GR-937	GR-938	GR-939	GR-940	GR-941	GR-942	GR-943	GR-944	GR-945	GR-946	GR-947	GR-948	GR-949	GR-950	GR-951	GR-952	GR-953	GR-954	GR-955	GR-956	GR-957	GR-958	GR-959	GR-960	GR-961	GR-962	GR-963	GR-964	GR-965	GR-966	GR-967	GR-968	GR-969	GR-970	GR-971	GR-972	GR-973	GR-974	GR-975	GR-976	GR-977	GR-978	GR-979	GR-980	GR-981	GR-98
---------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	-------

PHASE I REPORT
NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITIONS
AND RECOMMENDATIONS

Name of Dam: MILLTOWN DAM
State & State No.: PENNSYLVANIA, 15-146
County: CHESTER
Stream: EAST BRANCH CHESTER CREEK
Date of Inspection: APRIL 9, 1981

Based on the visual inspection, past performance and the available engineering data, the dam and its appurtenant structures appear to be in poor condition.

In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is small, and the hazard classification is high. These classifications indicate that the Spillway Design Flood (SDF) should be in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. The recommended SDF for this structure is one-half the PMF. The spillway capacity is adequate for passing only 18 percent of the PMF peak inflow without overtopping the dam. Hazard to life is significantly increased downstream if the dam fails. The spillway, therefore, is considered to be seriously inadequate, and the facility is classified as unsafe, non-emergency.

The following recommendations are presented for immediate action by the owner:

- (1) That, in lieu of improving the facilities, the embankment be breached after obtaining a permit from the Bureau of Dam Safety, Obstruction and Storm Water Management, Pennsylvania Department of Environmental Resources.
- (2) That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for providing adequate spillway capacity.
- (3) That the upstream and downstream slopes and the crest be cleared of all trees, brush and debris under the supervision of a professional engineer experienced in the design and construction of dams. The embankment shall be provided with an adequate protective cover and be maintained on a regular basis.

MILLTOWN DAM NDI NO. PA-00218 DER NO. 15-146

WEST CHESTER AREA MUNICIPAL AUTHORITY CHESTER COUNTY

4. That, after clearing, the right abutment be inspected for signs of seepage, sloughs and other indications of instability.
5. That the crest of the left embankment be widened and raised.
6. That the eroded stone section of the spillway discharge channel be filled with rocks of appropriate size.
7. That the drawdown valve be maintained and operated on an annual basis.
8. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall.
9. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

SUBMITTED BY:

BERGER ASSOCIATES, INC.
HARRISBURG, PENNSYLVANIA

DATE: July 31, 1981

APPROVED BY:

James W. Peck
Colonel, Corps of Engineers
Commander and District Engineer

DATE: 7 Aug 81

Hendrik Jongsma

MILLTOWN DAM

Photograph No. 1

OVERVIEW

TABLE OF CONTENTS

	<u>Page</u>
SECTION 1 - PROJECT INFORMATION	
1.1 GENERAL	1
1.2 DESCRIPTION OF PROJECT	1
1.3 PERTINENT DATA	2
SECTION 2 - ENGINEERING DATA	
2.1 DESIGN	5
2.2 CONSTRUCTION	5
2.3 OPERATION	5
2.4 EVALUATION	5
SECTION 3 - VISUAL INSPECTION	
3.1 FINDINGS	7
3.2 EVALUATION	8
SECTION 4 - OPERATIONAL PROCEDURES	
4.1 PROCEDURES	9
4.2 MAINTENANCE OF DAM	9
4.3 MAINTENANCE OF OPERATING FACILITIES	9
4.4 WARNING SYSTEM	9
4.5 EVALUATION	9
SECTION 5 - HYDROLOGY/HYDRAULICS	
5.1 EVALUATION OF FEATURES	10
SECTION 6 - STRUCTURAL STABILITY	
6.1 EVALUATION OF STRUCTURAL STABILITY	13
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS	
7.1 DAM ASSESSMENT	15
7.2 RECOMMENDATIONS	15
APPENDIX A - CHECK LIST OF VISUAL INSPECTION REPORT	
APPENDIX B - CHECK LIST OF ENGINEERING DATA	
APPENDIX C - PHOTOGRAPHS	
APPENDIX D - HYDROLOGY AND HYDRAULIC CALCULATIONS	
APPENDIX E - PLATES	
APPENDIX F - GEOLOGIC REPORT	

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

MILLTOWN DAM

NDI NO. PA-00218
DER NO. 15-146

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

A. Authority

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspections of dams throughout the United States.

B. Purpose

The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property.

1.2 DESCRIPTION OF PROJECT

A. Description of Dam and Appurtenances

Note: Design drawings for this dam (Plate III, Appendix E) indicate a spillway elevation of 104.0 (normal pool). It was estimated from the U.S.G.S. Quadrangle sheet that the normal pool elevation is 345.0. Elevation 345.0 was used as the elevation of the low flow notch in the spillway for this report.

Milltown Dam is an earthfill structure with an embankment length of 250 feet on the right of the spillway and 30 feet on the left of the spillway. The maximum embankment height is about 20 feet. The ogee spillway is located near the left abutment. Its crest is 69 feet long at an elevation 5.5 feet below the abutment walls.

The intake control structure is a wet well located on the upstream side of the crest adjacent to the right spillway wall. Two 16-inch pipes discharge from the reservoir into the wet well. A 16-inch pipe leading from the wet well is used as the supply line. A 16-inch Y-section, with a control valve at the downstream toe, can be used for drawdown.

B. Location:

East Goshen Township, Chester County
U.S.G.S. Quadrangle - West Chester, PA
Latitude 39°-58.1', Longitude 75°-32.7'
Appendix E, Plates I & II

- C. Size Classification: Small: Height - 20 feet
Storage - 114 acre-feet
- D. Hazard Classification: High (Refer to Section 3.1.E.)
- E. Ownership: West Chester Area Municipal Authority
Mr. David M. Hughes, Manager
205 Lacey Street
West Chester, Pennsylvania 19380
- F. Purpose: Water supply (abandoned)
- G. Design and Construction History

The facilities were designed in 1921 by Franklin and Company, Philadelphia. A permit for construction was issued on February 22, 1921. H.W. Fitzgerald, Binghamton, New York, the contractor, started construction in the spring of 1923 and completed the facilities on August 15, 1924.

H. Normal Operating Procedures

The dam and reservoir were constructed for use as a domestic water supply. An abandoned filtration plant is located about 250 feet downstream. Heavy siltation of the reservoir has occurred over the years and the reservoir is no longer used for domestic water supply storage.

1.3 PERTINENT DATA

A. Drainage Area (square miles)

From files:	6.6
Computed for this report:	6.3
Use:	6.3

B. Discharge at Dam Site (cubic feet per second) See Appendix D for hydraulic calculations.

Maximum known flood (estimated from gage records for East Branch Chester Creek)	633
Outlet works at pool Elev. 345	58
Outlet works at low pool Elev. 335	33
Spillway capacity at pool Elev. 349.1 (low point of dam)	2063

C.	<u>Elevation</u> (feet above mean sea level)	
	Top of dam (low point as surveyed)	349.1
	Top of dam (design crest)	350.3
	Spillway crest (low flow notch)	345.0
	Upstream portal invert (approx.)	329.2
	Downstream portal invert (approx.)	329
	Streambed at downstream toe of dam (estimate)	329
D.	<u>Reservoir</u> (miles)	
	Length of normal pool (Elev. 345.0)	0.4
	Length of maximum pool (Elev. 349.1)	0.7
E.	<u>Storage</u> (acre-feet)	
	Spillway crest (Elev. 345.0)	18.5
	Top of dam (Elev. 349.1)	114
F.	<u>Reservoir Surface</u> (acres)	
	Spillway crest (Elev. 345.0)	9.2
	Top of dam (Elev. 349.1)	43
G.	<u>Dam</u>	
	Refer to Plates III and IV in Appendix E for plan and section.	
	Type:	Earthfill.
	Length:	280 feet not including the spillway.
	Height:	20 feet.
	Top Width:	Design - 8 feet; Survey - varies.
	Side Slopes:	
	Upstream:	
	Below elev. 345	2.5H to 1V
	Above elev. 345	2.0H to 1V
	Downstream:	2.0H to 1V
		<u>Surveyed</u>
		Unknown
		2.1H to 1V
		2.1H to 1V

Zoning: Concrete core wall on centerline of the dam.

Cutoff: Trench excavated into rock for placing of concrete core wall.

Grouting: None.

H. Outlet Facilities

Type: 24" diameter concrete outlet pipe, blowoff from 16-inch water supply line.

Inlet
Elevation: (Approx.) 329.2

Location: Right side of spillway.

I. Spillway

Type: Concrete ogee section with low flow notch.

Length
of Weir: 69 feet including 41 foot low flow notch.

Crest
Elevation: 345 (low flow notch); 345.5 (remainder).

Location: Left end of dam.

J. Regulating Outlets

See Section 1.3.H. above.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

The available engineering data for Milltown Dam are limited to a set of three construction drawings. One drawing is a general plan of the reservoir. The other two drawings have been reproduced in Appendix E of this report. The files also contained a report prepared by the Pennsylvania Department of Environmental Resources (PennDER) upon the application for a permit. This report states that PennDER calculated the capacity of the spillway at 2940 cfs and had reviewed the stability of the spillway section. This review indicates that the resultant would fall within the middle third of the base. Designer's calculation for stability, seepage, and spillway capacity are not available.

2.2 CONSTRUCTION

The available construction data are limited to a copy of the construction specifications, a progress report by PennDER dated July 17, 1923, and a few construction photographs. The report was based on a field inspection of the foundation on July 16, 1923, and states that excavation for the core wall had been completed. The trench was 15 feet deep at the spillway section and had reached a very hard gneissie rock with tight seams. The overburden consisted of large boulders and loose seamy stone. No seepage was noticed on the upstream side of the excavation. The concrete of the core wall was of good quality.

The construction specifications indicates that material with up to 3 inches of stone was to be placed on the upstream side of the core wall, and that less impervious material was to be placed on the downstream side. Fill, placed in layers of 6 to 12 inches, was to be compacted.

2.3 OPERATION

Formal records of operation are not maintained by the owner. Maximum discharges over the spillway crest are unknown. The reservoir is no longer used for water supply storage. All inflow above normal pool is discharged over the spillway. The valves on the drawdown line and supply lines have not been operated for many years. Inspection reports by PennDER indicate that maintenance of the embankment has been neglected.

2.4 EVALUATION

A. Availability

The available engineering data are contained in the files of PennDER, Harrisburg, Pennsylvania.

B. Adequacy

The available engineering and construction data, combined with the field inspection, are considered to be adequate for making a reasonable assessment of the dam.

C. Operating Records

Operating records, including maximum pool levels, have not been maintained.

D. Post Construction Changes

The visual inspection did not reveal that post construction changes were made at these facilities.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

A. General

The general appearance of Milltown Dam is poor, due to lack of maintenance. Brush and trees are growing on the upstream and downstream slopes (Photograph No. 4), and the immediate downstream area has been used as a dump area. The crest of the left section of the embankment is low and narrow. There were no signs of seepage or slope stability problems.

The visual inspection check list and sketches of the general plan and profile of the dam, as surveyed during the inspection, are presented in Appendix A of this report. Photographs of the facilities taken during the inspection are reproduced in Appendix C. The inspectors discussed the use and condition of the facilities with the manager of the authority in his office.

B. Embankment

The embankment on the left side of the spillway has a low and narrow crest (Photographs No. 1 and No. 6). Several large trees are growing on both the upstream and downstream slopes. The embankment to the right of the spillway has a poor appearance. The crest is below the design elevation and has very little protective cover. The upstream slope is covered with dumped rock with a considerable growth of brush near the normal flow line (Photograph No. 3). The downstream slope has very dense brush over most of its surface, which prevented close observation of the condition of this slope. Rubbish and fill have been dumped on this slope. A steep, bare scarp is located adjacent to the spillway on the downstream slope. A concrete slab has been placed on the crest adjacent to the control structure (Photograph No. 5). A sewer line and several man holes are located immediately downstream of the dam (Plate A-I). Piles of rock, brush, tires, and other debris were dumped in this area.

C. Appurtenant Structures

The ogee concrete spillway has a 41 foot wide low flow notch in its center. (See Photographs No. 7, 8 and 10.) The concrete in this area has deteriorated. A large piece of concrete has spalled off adjacent to the low flow notch (Photograph No. 10) at the top of the weir. The spillway abutment walls have many small cracks, but appeared to be stable. At the downstream end of the concrete ogee section there is a two foot deep basin with an endsill (Photograph No. 9). It appears that the original riprap in this area has eroded. Further investigation is required to determine the depth of erosion and the condition of the bottom of the basin. Placing additional heavy stone in this basin is recommended.

The intake control structure is located in the right spillway wall and is in fair condition. The downstream valve on the drawdown line has not been operated in many years.

D. Reservoir

The reservoir area is surrounded by flat to moderate slopes. A sewer line has been recently installed in the right bank of the reservoir. The bank is at the present unprotected against erosion. A roadway parallels the bank on this side. An undetermined but considerable amount of siltation has occurred in the reservoir. The drainage area is mostly cultivated land with many residential developments. Township Line Dam, another reservoir for the West Chester Area Municipal Authority, is located two miles upstream from Milltown Dam. This dam (DER No. 15-046) has been previously inspected for a Phase I report.

E. Downstream Channel

The immediate downstream channel is a natural creek with a rock-lined bottom. The slopes are moderate to nearly level. An abandoned municipal water treatment plant and Pennsylvania Route 3 are located within 600 feet downstream of the dam. There are four houses located about one-half mile farther downstream. Based on the field observation, the potential hazard for loss of more than a few lives exists downstream of the dam. The hazard category is therefore considered to be "High."

3.2 EVALUATION

The overall visual evaluation of Milltown Dam indicates that the dam is in poor condition due to poor maintenance practices. It is recommended that the embankment and the area immediately downstream of the embankment be cleared of all trees, brush and debris. The crest of the embankment and the slopes should be restored to their original design dimensions and be provided with a protective vegetative cover.

The eroded spillway discharge channel should be backfilled with appropriate sized stone.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The dam and reservoir were constructed to provide water supply storage for the West Chester area. Due to siltation, this facility is no longer used. At the present time, all inflow is discharged over the spillway.

4.2 MAINTENANCE OF EMBANKMENT

The owners of the reservoir and embankment have not performed any maintenance of the embankment in the recent years.

4.3 MAINTENANCE OF OPERATING FACILITIES

The reservoir is no longer used for its original purpose and the gates and valves have not been maintained or operated in recent years.

4.4 WARNING SYSTEM

There is no formally organized surveillance and downstream warning system in existence at the present time.

4.5 EVALUATION

The operational procedures for Milltown Dam are inadequate. It is recommended that a program be developed for regular maintenance of the dam, which shall include the removal of all trees, brush, and debris, the mowing of the embankment on a regular basis after reseeding, and the annual maintenance and operation of the drawdown valve.

A formal surveillance plan and downstream warning system should be developed for implementation during periods of heavy or prolonged rainfall.

SECTION 5 - HYDROLOGY/HYDRAULICS

5.1 EVALUATION OF FEATURES

A. Design Data

The hydrologic and hydraulic analyses available from PennDER for Milltown Dam were not very extensive. No stage-discharge curve, stage-storage curve, unit hydrograph, or flood routings were contained in the PennDER files.

B. Experience Data

There are no records of flood levels at Milltown Dam. Based on records of the U.S.G.S. stream gage on East Branch Chester Creek located about 2.6 miles downstream of the dam, the maximum inflow to Milltown Dam is estimated to be 633 cfs. This flood was passed without reported difficulties.

C. Visual Observations

On the date of the inspection, no conditions were observed that would indicate that the appurtenant structures of the dam could not operate satisfactorily during a flood event until the dam is overtopped. It was noted that riprap at the downstream end of the spillway chute had been dislodged. Upstream of Milltown Dam is one manmade dam. This impoundment was included in the hydrologic evaluation in Appendix D.

D. Overtopping Potential

Milltown has a total storage capacity of 114 acre-feet and an overall height of 20 feet, both referenced to the top of the dam. These dimensions indicate a size classification of "Small"; the hazard classification is "High" (see Section 3.1.E.).

The recommended Spillway Design Flood (SDF) for a dam having the above classification is in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. Because of the small storage capacity, the recommended SDF is one-half the PMF. For this dam, the SDF peak inflow is 6531 cfs (see Appendix D for HEC-1 inflow computations).

Comparison of the estimated SDF peak inflow of 6531 cfs with the estimated spillway discharge capacity of 2063 cfs indicates that a potential for overtopping of Milltown Dam exists.

An estimate of the storage effect of the reservoir and routing of the computed inflow hydrograph through the reservoir shows that this dam does not have the necessary storage available to pass the SDF without overtopping. The spillway-reservoir system can pass a flood event equal

to 18% of a PMF, based on the present low point of the embankment. If the top of dam would be made uniform at the design elevation, the spillway-reservoir system would be able to pass a flood event equal to 26% of a PMF without overtopping.

E. Dam Break Evaluation

The calculations to determine the behavior of the dam in the event of an overtopping and a resulting breaching of the embankment indicates that there will be a substantial increase in water levels downstream from the dam.

Several houses are located about 3200 feet downstream from the dam. On the basis of the results of the dam break analysis, using the U.S. Army Corps of Engineers HEC-1 program, the water surface elevations in the vicinity of the houses have been compared for several conditions prior to and after a dam break. (Refer to Table 1, Appendix D.) For an earth embankment with a concrete core wall, it is estimated that one foot of overtopping would result in a breach. It is estimated that the core wall will fail along with the earth embankment. Calculations indicate that 27 percent of the PMF inflow would cause an overtopping of 1.0 foot, based on the present low point of the crest. The increase in water levels downstream due to overtopping of 1.0 foot with no failure as compared to no overtopping would be 1.0 foot. While more property would be exposed to flooding, the increase in the hazard to loss of life is not considered significant. With failure, however, the breaching analysis indicates a rise of 2.1 feet above the flow level just prior to breach when considering a 15 minute time to complete the breach and a 0.6 foot rise above flow level just prior to breach when considering a two hour time to complete the breach. The increase in hazard to loss of life and property damage is reflected not only in the increase in depth of water of 2.1 feet in the 15 minute breach and 0.6 foot in the two hour breach, but more significantly in the shorter time to reach the peak. Less time would be available to respond to the flooding under the breach conditions.

Being an earth embankment with a core wall, it is judged that the breach would be completed between the 15 minute and the two hour period. The numerical difference of water levels is 1.5 feet. The property damage would be similar with either time of failure. Again, however, the time factor is most significant regarding loss of life. Calculations indicate that the water depth will increase at a rate of 2.1 feet in 15 minutes under the 15 minute breach condition.

One manmade dam is located upstream of Milltown Dam. For this evaluation, this impoundment was not considered to have breached (see Appendix D).

On the basis of these calculations, it is concluded that the hazard to loss of life and property damage is significantly increased when the dam is overtopped and failed as compared to the condition just prior to failure.

levels. Refer to Table 1, Appendix D, for comparison of flood water

F. Spillway Adequacy

Calculations show that the spillway discharge capacity and reservoir storage capacity combine to handle 18% of the PMF (refer to Appendix D).

Since the spillway discharge and reservoir storage capacity cannot pass one-half of the PMF and because the downstream hazard to loss of life is high and this hazard is significantly increased when the dam fails as compared to just prior to failure, the spillway is judged to be seriously inadequate.

The hydrologic analysis for this investigation was based upon existing conditions of the watershed. The effects of future development were not considered.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

A. Visual Observations

1. Embankment

The visual inspection of Milltown Dam did not detect any signs of embankment instability. However, the downstream slope was covered with dense brush and trash, preventing close observation. At its lowest point, the crest of the dam is 1.2 feet below its design elevation and is narrow and unprotected near the left abutment. A footpath adjacent to the right spillway wall has caused a steep, eroded condition. Seepage was not detected. The upstream slope is protected with dumped rock.

2. Appurtenant Structures

Although the spillway has deteriorated, the present condition does not endanger the safety of the structure. The spillway walls have numerous small cracks but are apparently stable. No movement or tilting was detected. The erosion beyond the concrete spillway slab is of concern. To prevent possible undermining of the concrete slab, heavy stone should be placed in this area.

B. Design and Construction Data

1. Embankment

The typical embankment section (Plate III, Appendix E) indicates an earthfill embankment with a concrete core wall along the centerline of the dam. The core wall has a bottom width of three feet and was founded on rock. A trench up to 15 feet deep was excavated through the overburden. The top of the core was 1.8 feet below the design crest elevation. The upstream slope was protected with riprap.

An inspection report in 1927, prepared by PennDER, indicates that the embankment had settled one foot over a length of ten feet on each side of the spillway. The narrow crest in the left embankment has been reported since 1941.

2. Appurtenant Structures

The typical section of the spillway (Plate IV, Appendix E) indicates only a token amount of reinforcement in the concrete section. Fifteen tension bars, spaced at about 5 feet, are located on the upstream side. A cutoff wall is placed on the upstream side. The spillway is founded on gravel and sand. At the downstream side, there is a 30-inch deep cutoff wall with weepholes. Beyond this cutoff wall is a grouted stone slab about 25 feet long with another three foot deep cutoff wall.

The intake control structure is an integral part of the right spillway wall.

C. Operating Records

Operating records for this dam have not been maintained by the owner.

D. Post Construction Changes

There are no indications that post construction modifications have been made to the dam or its appurtenant structures.

E. Seismic Stability

This dam is located in Seismic Zone 1, and it is considered that the static stability is sufficient to withstand minor earthquake-induced dynamic forces. No studies or calculations have been made to confirm this assumption.

SECTION 7 - ASSESSMENT AND RECOMMENDATIONS

7.1 DAM ASSESSMENT

A. Safety

The visual inspection and the review of the construction drawings indicates that Milltown Dam is in poor condition due to poor maintenance procedures. There were no signs of structural instability, seepage, or sloughage. Dense brush growth on the downstream slope prevented close observation. The embankment profile is below its design crest elevation over most of its length. Erosion beyond the spillway could undermine the concrete slab.

The hydrologic and hydraulic computations indicate that the combination of the storage capacity and the discharge capacity of the spillway are sufficient to pass only 18 percent of the PMF without overtopping the embankment. The recommended SDF is 50 percent of the PMF. Failure of the dam could occur with 27 percent of the PMF. The hazard to loss of life is significantly increased when the dam fails. The spillway is therefore considered to be seriously inadequate and the facility is classified as unsafe, non-emergency.

B. Adequacy of Information

The visual inspection is considered to be sufficiently adequate for making a reasonable assessment of this dam.

C. Urgency

The recommendations presented below should be implemented immediately.

D. Additional Studies

A detailed hydrologic and hydraulic study is recommended to determine methods of improving the spillway capacity.

7.2 RECOMMENDATIONS

In order to assure the continued satisfactory operation of this dam, the following recommendations are presented for immediate implementation by the owner:

1. That, in lieu of improving the facilities, the embankment be breached after obtaining a permit from the Bureau of Dam Safety, Obstruction and Storm Water Management, Pennsylvania Department of Environmental Resources.

2. That a detailed hydrologic and hydraulic engineering analysis be made by a professional engineer with experience in the design and construction of dams to determine means for providing adequate spillway capacity.
3. That the upstream and downstream slopes and the crest be cleared of all trees, brush and debris under the supervision of a professional engineer experienced in the design and construction of dams. The embankment shall be provided with an adequate protective cover and be maintained on a regular basis.
4. That, after clearing, the right embankment be inspected for signs of seepage, sloughs and other indications of instability.
5. That the crest of the left embankment be widened.
6. That the eroded stone section of the spillway discharge channel be filled with rocks of appropriate size.
7. That the drawdown valve be maintained and operated on an annual basis.
8. That a formal surveillance and downstream warning system be developed for use during periods of high or prolonged rainfall.
9. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

APPENDIX A
CHECK LIST OF VISUAL INSPECTION REPORT

APPENDIX A

CHECK LIST

PHASE I - VISUAL INSPECTION REPORT

PA DER #15-146

NDI NO. PA-00 218

NAME OF DAM Milltown Dam HAZARD CATEGORY High

TYPE OF DAM Earthfill

LOCATION East Goshen TOWNSHIP Chester COUNTY, PENNSYLVANIA

INSPECTION DATE 4/9/81 WEATHER Showers TEMPERATURE 40-50°

INSPECTORS: R. Houseal (Recorder) OWNER'S REPRESENTATIVE(s):

H. Jongasma

.

R. Shireman

.

A. Bartlett

.

NORMAL POOL ELEVATION: 345 (U.S.G.S.) AT TIME OF INSPECTION:

BREAST ELEVATION: 350.3 (Design) POOL ELEVATION: 345.1

SPILLWAY ELEVATION: 345.0 (Low flow) TAILWATER ELEVATION:

MAXIMUM RECORDED POOL ELEVATION: Unknown

GENERAL COMMENTS:

The general visual appearance of this dam is poor due to the lack of maintenance. The downstream slope and beyond is used by locals for disposal of miscellaneous items. Fill from sewer installation along the right shore of the reservoir encroaches into the pool.

VISUAL INSPECTION
EMBANKMENT

OBSERVATIONS AND REMARKS	
A. SURFACE CRACKS	None observed.
B. UNUSUAL MOVEMENT BEYOND TOE	None observed. Dirt road at toe plus waste area for timber, boulders, stone, misc. fill, tires and other non organic rubbish. Sanitary sewer manhole about 50' downstream from toe near spillway outlet channel.
C. SLOUGHING OR EROSION OF EMBANKMENT OR ABUTMENT SLOPES	Downstream slope covered with heavy brush, brambles, small trees and rubbish. Could not detect any sloughs or slope distress.
D. ALIGNMENT OF CREST: HORIZONTAL: VERTICAL:	Horizontal - straight line--no movement visible. Vertical - refer to Profile, Plate A-II.
E. RIPRAP FAILURES	None observed. Weed and brush cover to water's edge on upstream slope.
F. JUNCTION EMBANKMENT & ABUTMENT OR SPILLWAY	Appear to be sound structurally. Eroded foot path down slope at junction with right spillway wall. Recent fill from sewer installation at right end of embankment near roadway.
G. SEEPAGE	None observed on slope or along downstream toe.
H. DRAINS	Refer to plans.
J. GAGES & RECORDER	None.
K. COVER (GROWTH)	Crest - bare earth--some grass--tire tracks. <u>Upstream slope</u> - dumped rock with weeds, grass and brush. <u>Downstream slope</u> - heavy brush--some small trees and rubbish and fill.

NDI NO. PA-00 218

VISUAL INSPECTION
OUTLET WORKS

OBSERVATIONS AND REMARKS	
A. INTAKE STRUCTURE	Stone masonry structure adjacent to the right spillway structure.
B. OUTLET STRUCTURE	None.
C. OUTLET CHANNEL	Directly from spillway to creek.
D. GATES	None. Valve in downstream manhole for a reported 24" blowoff. Has not been operated in many years.
E. EMERGENCY GATE	See D. above.
F. OPERATION & CONTROL	No records.
G. BRIDGE (ACCESS)	None.

NDI NO. PA-00 218

VISUAL INSPECTION
SPILLWAY

OBSERVATIONS AND REMARKS	
A APPROACH CHANNEL	Directly from reservoir.
B. WEIR: Crest Condition Cracks Deterioration Foundation Abutments	Ogee spillway section. Concrete spalled and in a slightly deteriorated condition. Overflow section is fair. Spillway walls have many cracks. It appears that the embankment to the right of the control structure has been repaired by placing a mass of concrete.
C. DISCHARGE CHANNEL: Lining Cracks Stilling Basin	Natural stone and rock channel. Should be drained to inspect condition.
D. BRIDGE & PIER:	None.
E. GATES & OPERATION EQUIPMENT	None.
F. CONTROL & HISTORY	No records.

VISUAL INSPECTION

<u>OBSERVATIONS AND REMARKS</u>	
<u>INSTRUMENTATION</u>	
Monumentation	None.
Observation Wells	None.
Weirs	None.
Piezometers	None.
Staff Gauge	None.
Other	None.
<u>RESERVOIR</u>	
Slopes	Moderate - 3:1 and flatter.
Sedimentation	Reported as a serious problem. The reservoir is no longer used in the water supply system.
Watershed Description	Grassed lawns and roadway on right. Lawns and woods on left.
<u>DOWNTSTREAM CHANNEL</u>	
Condition	Natural creek--rock bottom.
Slopes	Moderate to near level.
Approximate Population	More than a few.
No. Homes	Abandoned water treatment plant. Route 3. Four homes.

APPENDIX B
CHECK LIST OF ENGINEERING DATA

APPENDIX B

CHECK LIST
ENGINEERING DATA

PA DER # 15-146

NDI NO. PA-00218

NAME OF DAM MILLTOWN DAM

ITEM	REMARKS
AS-BUILT DRAWINGS	Not available.
REGIONAL VICINITY MAP	U.S.G.S. Quadrangle - West Chester, PA See Plate II, Appendix E
CONSTRUCTION HISTORY	Construction started in Spring 1923. Contractor: H.W. Fitzgerald, Binghamton, NY. Completion date: August 15, 1924.
GENERAL PLAN OF DAM	Plate III, Appendix E.
TYPICAL SECTIONS OF DAM	Plate III, Appendix E.
OUTLETS: PLAN DETAILS CONSTRAINTS DISCHARGE RATINGS	Plates III and IV, Appendix E. Not available.

NDI NO. PA-00218

ENGINEERING DATA

ITEM	REMARKS
RAINFALL & RESERVOIR RECORDS	No records.
DESIGN REPORTS	Not available.
GEOLOGY REPORTS	Not available.
DESIGN COMPUTATIONS: HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None.
MATERIALS INVESTIGATIONS: BORING RECORDS LABORATORY FIELD	Borings were made. Results are unknown.
POST CONSTRUCTION SURVEYS OF DAM	None reported. -
BORROW SOURCES	From reservoir area.

NDI NO. PA-00218

ENGINEERING DATA

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	None.
HIGH POOL RECORDS	No records.
POST CONSTRUCTION ENGINEERING STUDIES & REPORTS	None reported.
PRIOR ACCIDENTS OR FAILURE OF DAM Description: Reports:	None.
MAINTENANCE & OPERATION RECORDS	No records.
SPILLWAY PLAN, SECTIONS AND DETAILS	Plates III and IV, Appendix E.

NDI NO. PA-00218

ENGINEERING DATA

ITEM	REMARKS
OPERATING EQUIPMENT, PLANS & DETAILS	See plans.
CONSTRUCTION RECORDS	Limited to one inspection report for foundation of core wall.
PREVIOUS INSPECTION REPORTS & DEFICIENCIES	PennDER inspection reports dated 1923, 1927, 1932, 1934, 1937, 1941, 1944, 1948, 1952, 1962, 1970, and 1972. Narrow crest, low crest, brush, and trees have been reported.
MISCELLANEOUS	

NDI NO. PA-00 218

CHECK LIST
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: suburban housing developments

ELEVATION:

TOP NORMAL POOL & STORAGE CAPACITY: Elev. 345 Acre-Feet 18.5

TOP FLOOD CONTROL POOL & STORAGE CAPACITY: Elev. 349.1 Acre-Feet 114

MAXIMUM DESIGN POOL: Elev. 350.3

TOP DAM: Elev. 349.1

SPILLWAY:

a. Elevation 345

b. Type concrete ogee section with low flow notch

c. Width 69 feet including 41 foot low flow notch

d. Length --

e. Location Spillover near left abutment

f. Number and Type of Gates none

OUTLET WORKS:

a. Type 24 inch pipe with valves

b. Location right side of spillway

c. Entrance inverts 329.2

d. Exit inverts 329.0

e. Emergency drawdown facilities pipe with valves

HYDROMETEOROLOGICAL GAGES:

a. Type none

b. Location

c. Records

MAXIMUM NON-DAMAGING DISCHARGE: 2063 cfs

APPENDIX C
PHOTOGRAPHS

APPENDIX C

OVERVIEW OF SPILLWAY AND RIGHT EMBANKMENT - NO. 2

UPSTREAM SLOPE - NO. 3

PA-00218
Plate C-II

RIGHT EMBANKMENT - NO. 4
NOTE: BRUSH AND TREES ON SLOPE

CONTROL TOWER - NO. 5
NOTE: CONCRETE SLABS

PA-00218
Plate C-III

LEFT EMBANKMENT - NO. 6
NOTE: TREES AND NARROW CREST

LOW FLOW NOTCH IN SPILLWAY - NO. 7

PA-00218
Plate C-IV

OVERVIEW OF SPILLWAY - NO. 8

ERODED DOWNSTREAM SLAB - NO. 9

PA-00218
Plate C-V

ERODED SPILLWAY CREST - NO. 10

SPILLWAY SECTION FROM RIGHT ABUTMENT - NO. 11

PA-00218
Plate C-VI

DOWNSTREAM CHANNEL - NO. 12

OVERVIEW OF RESERVOIR - NO. 13

PA-00218
Plate C-VII

APPENDIX D

HYDROLOGY AND HYDRAULIC CALCULATIONS

APPENDIX D

SUMMARY DESCRIPTION
OF
FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the overtopping potential of the dam, and (2) the capability to estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam overtopping analysis is shown below.

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.

The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program refer to the Users Manual for the Flood Hydrograph Package (HEC-1) Dam Safety Version prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

BY RLS DATE 1/22/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES
MILLION DAM

SHEET NO. 1 OF 9
PROJECT DO 590

SPILLWAY RATING

'C = 3.88 (SMALL DAMS,
FIG. 249)

$$Q = C L_1 H_1^{3/2} + C L_2 H_2^{3/2}$$

$$L_1 = 14 + 14 = 28'$$

$$L_2 = 41'$$

$$H_1 = 349.1 - 345.5 = 3.6$$

$$H_2 = 349.1 - 345.0 = 4.1$$

$$Q = 3.88 \times 28 \times (3.6)^{1.5} + 3.88 \times 41 \times (4.1)^{1.5}$$

$$= 2063 \text{ CFS}$$

BY BLS DATE 1/22/81
CHKD BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 2 OF 9
PROJECT

MILLTOWN DAM

SPILLWAY RATING CURVE

BY RLS DATE 4/22/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

MILLTOWN DAM

SHEET NO. 3 OF 9
PROJECT D-0590

DISCHARGE THROUGH OUTLET WORKS

24" Dia PIPE

C = 0.6 (KINGS HOOK)

UPSTREAM INVERT = 329.2

$$Q = C A \sqrt{2gH}$$

AT POOL ELEV. 345

$$H = 345 - 330.2 = 14.8'$$

$$Q = 0.6 \times \pi \times \frac{2^2}{4} \times (2 \times 32.2 \times 14.8)^{0.5}$$

$$= 58 \text{ CFS}$$

AT LOW POOL ELEV 335

$$H = 335 - 330.2 = 4.8'$$

$$Q = 0.6 \times \pi \times \frac{2^2}{4} \times (2 \times 32.2 \times 4.8)^{0.5}$$

$$= 33 \text{ CFS}$$

BY RLS DATE 9/22/81
CHKD BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 4 OF 9
PROJECT D0590

EMBANKMENT RATING

$$Q = CLH^{3/2}$$

$$C = 2.7 \text{ (KINGS HDBK.)}$$

AT ELEV 349.5

$$2.7 \times 7 \times (.25)^{1.5} = 2$$

$$2.7 \times 4 \times (.2)^{1.5} = 1$$

$$2.7 \times 20 \times (.1)^{1.5} = 2$$

$$2.7 \times 50 \times (.25)^{1.5} = 17$$

$$2.7 \times 38 \times (.15)^{1.5} = 6$$

$$\Sigma = 28 \text{ CFS}$$

AT ELEV 350

$$2.7 \times 7 \times (.75)^{1.5} = 12$$

$$2.7 \times 7 \times (.55)^{1.5} = 8$$

$$2.7 \times 9 \times (.1)^{1.5} = 1$$

$$2.7 \times 36 \times (.3)^{1.5} = 16$$

$$2.7 \times 50 \times (.45)^{1.5} = 41$$

$$2.7 \times 50 \times (.75)^{1.5} = 88$$

$$2.7 \times 50 \times (.6)^{1.5} = 63$$

$$2.7 \times 15 \times (.2)^{1.5} = 4$$

$$\Sigma = 233 \text{ CFS}$$

AT ELEV 350.5

$$2.7 \times 6 \times (.2)^{1.5} = 1$$

$$2.7 \times 7 \times (1.25)^{1.5} = 26$$

$$2.7 \times 7 \times (1.05)^{1.5} = 20$$

$$2.7 \times 18 \times (.5)^{1.5} = 17$$

$$2.7 \times 4 \times (.15)^{1.5} = 1$$

$$2.7 \times 14 \times (.1)^{1.5} = 1$$

$$2.7 \times 36 \times (.8)^{1.5} = 70$$

$$2.7 \times 50 \times (.95)^{1.5} = 125$$

$$2.7 \times 50 \times (1.25)^{1.5} = 189$$

$$2.7 \times 50 \times (1.1)^{1.5} = 156$$

$$2.7 \times 35 \times (.45)^{1.5} = 29$$

$$\Sigma = 635 \text{ CFS}$$

$$\Sigma = 1217 \text{ CFS}$$

AT ELEV 351

AT ELEV 352

$$\Sigma = 2846 \text{ CFS}$$

AT ELEV 353

$$\Sigma = 5041 \text{ CFS}$$

AT ELEV 355

$$\Sigma = 10800 \text{ CFS}$$

BY RLS DATE 7/22/71
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 1A OF 9
PROJECT D 0590

MILL TOWN DAM

TOTAL DISCHARGE CURVE

BY RLS DATE 4/22/81
CHKD BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 5 OF 9
PROJECT D0590

MILLTOWN DAM

MAXIMUM KNOWN FLOOD AT DAMSITE

THERE ARE NO RECORDS OF POOL LEVELS AT THIS DAM. BASED ON RECORDS OF THE STREAM GAGING STATION ON EAST BRANCH CHESTER CREEK LOCATED ABOUT 2.6 MILES DOWNSTREAM OF THE DAM (D.A. = 10.8 SQ. MI.) THE MAXIMUM DISCHARGE AT THE GAGE OCCURRED IN JANUARY 1978 WHEN A FLOW OF 971 CFS WAS OBSERVED. THE MAXIMUM INFLOW TO MILLTOWN DAM IS ESTIMATED TO BE:

$$\left(\frac{6.33}{10.8}\right)^{0.8} \times 971 = 633 \text{ CFS}$$

DESIGN FLOOD

SIZE CLASSIFICATION

MAXIMUM STORAGE = 114 ACRE-FEET
MAXIMUM HEIGHT = 20 FEET
SIZE CLASSIFICATION IS "SMALL"

HAZARD CLASSIFICATION

SEVERAL HOMES LOCATED NEAR THE DOWNSTREAM CHANNEL.
USE "HIGH"

RECOMMENDED SPILLWAY DESIGN FLOOD

THE ABOVE CLASSIFICATIONS INDICATE USE OF AN SDF EQUAL TO ONE HALF PMF TO THE PROBABLE MAXIMUM FLOOD.

BY RLS DATE 9/23/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

MILITOWN DAM

SHEET NO. 6 OF 9
PROJECT D 0590

UPSTREAM RESER OIR

TOWNSHIP LINE DAM

EARTHFILL DAM WITH CONCRETE CORE WALL
39' HIGH
530' LONG

Ogee section

C = 3.8 (PENNDR FILES)

EMBANKMENT C = 2.7 (KINGS HOBK)

DATA OBTAINED FROM PENNDR FILES AND SITE VISIT.

BY RLS DATE 9/23/81
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 7 OF 9
PROJECT D0590

MILLTOWN DAM

BREACH ASSUMPTIONS

BREACH WIDTH = 50'

SIDE SLOPES (EARTH EMBANKMENT
WITH CORE WALL) = 1:1

FAILURE TIME (EARTH EMBANKMENT
WITH CORE WALL) =

BETWEEN 15 MIN. AND 2 HR.

USE: .25 HR., .5 HR., 1 HR., 2 HR.

POOL LEVEL AT FAILURE: EARTH EMBANKMENT
WITH CORE WALL
SAY 1.0 FT. OVER TOP OF DAM

UPSTREAM RESERVOIR:

TUPLINE DAM = NOT OVERTOPPED BY 27% PMF
WILL NOT BREACH.

DAMAGE CENTER - 3200 FT DOWNSTREAM

BY RLS DATE 4/23/81
CHKD. BY _____ DATE _____
SUBJECT _____

BERGER ASSOCIATES

SHEET NO. 8 OF 9
PROJECT D0590

MILL TOWN DAM

SPILLWAY CAPACITY CURVE

BY RLS DATE 6/27/81
CHKD. BY _____ DATE _____
SUBJECT _____

BERGER ASSOCIATES

SHEET NO. 9 OF 9
PROJECT DO 590

MILLTOWN DAM

SPILLWAY CAPACITY CURVE (DESIGN)

**HYDROLOGY AND HYDRAULIC ANALYSIS
DATA BASE**

NAME OF DAM: MILLTOWN DAM RIVER BASIN: Delaware
 PROBABLE MAXIMUM PRECIPITATION (PMP) = 23.5 INCHES/24 HOURS⁽¹⁾

(FOR FOOTNOTES SEE NEXT PAGE)

STATION	1	2	3	4
STATION DESCRIPTION	TOWNSHIP LINE DAM	MILLTOWN DAM		
DRAINAGE AREA (SQUARE MILES)	2.6	3.7		
CUMULATIVE DRAINAGE AREA (SQUARE MILE)	2.6	6.3		
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) ⁽²⁾	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 6	113 123 132 143 --	113 123 132 143 --	
SNYDER HYDROGRAPH PARAMETERS	ZONE ⁽³⁾ C_p / C_t ⁽⁴⁾ L (MILES) ⁽⁵⁾ L_{co} (MILES) ⁽⁵⁾ $T_p = C_t (L \cdot L_{co})^{0.3}$ (Hours)	10 .60/1.25 3.30 1.59 2.06	10 .60/1.25 3.73 1.65 2.16	
SPILLWAY DATA	CREST LENGTH (FT.) FREEBOARD (FT.) DISCHARGE COEFFICIENT EXPONENT ELEVATION	50 5.7 3.8 1.5 414	69 4.1 3.88 1.5 345	
AREA ⁽⁶⁾ (ACRES)	NORMAL POOL ELEV. ELEV.	414 = 65 420 = 124 360 = 77	345 = 9.2 350 = 51 360 = 77	
STORAGE (ACRE - FEET)	NORMAL POOL ⁽⁷⁾ ELEV. ELEV. ELEV.	414 = 597 390 = 0 405 = 174 420 = 1150 425 = 2000	345 = 13.5 339 = 0	

- (1) Hydrometeorological Report 33 (Figure 1), U.S. Army, Corps of Engineers, 1956.
- (2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956.
- (3) Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients (C_p and C_t).
- (4) Snyder's Coefficients.
- (5) L = Length of longest water course from outlet to basin divide.
 L_{ca} = Length of water course from outlet to point opposite the centroid of drainage area.
- (6) Planimetered area encompassed by contour upstream of dam.
- (7) PennDER files.
- (8) Computed by conic method.

MAP

2

MILLTOWN DAM

PA-00218

PLATE D-I

TABLE NO. 1
COMPARISON OF WATER SURFACE ELEVATIONS
MILLTOWN DAM

SDF = 6531 cfs

Crest Elevation (Low Point) - 349.1 Spillway Elevation - 345.0

<u>STAGE</u>	<u>CREST OF DAM ELEVATION</u>	<u>DEPTH</u>	<u>3200' D/S OF DAM* ELEVATION</u>
A. At Low Point in Embankment Crest	349.1	0	311.5
B. 27% PMF Overtopping No Breach	350.14	1.04	312.5
C. 27% PMF Overtopping (15 Min. Breach)	350.11	1.01	314.6
D. 27% PMF Overtopping (2 Hour Breach)	350.13	1.03	313.1

*Several houses located about 3200 feet downstream of Milltown Dam.
Considered to be damage center.

Condition C: (Time refers to elapsed time after start of storm). Time to reach breach elevation 350.1 at dam = 42.50 Hours. Water level 3200' downstream prior to breach = 312.5'. Duration of breach = 15 Minutes. Time for breach to peak 3200' downstream = .5 Hours. Peak elevation 3200' downstream due to breach = 314.6. Rate of increase in water level = 2.1' in 30 Minutes.

FLOOD HYDROGRAPH PACKAGE (HEC-1)

DAM SAFETY VERSION JULY 1978

LAST MODIFICATION 01 APR 80

1 A1 MILLTOWN DAM **** EAST BRANCH CHESTER CREEK
 2 A2 EAST GOSHEN TWP., CHESTER COUNTY, PA.
 3 A3 NDI # PA-00218 PA DER # 15-146
 4 B 300 0 15 0 0 0 0 0 -4 0
 5 B1 5
 6 J 1 9 1
 7 J1 1 .85 .7 .6 .5 .4 .3 .2 .1
 8 K 1
 9 K1 INFLOW HYDROGRAPH - TWP. LINE DAM SUBAREA
 10 M 1 1 2.6 6.3 1
 11 P 23.5 113 123 132 143
 12 T 1 .05
 13 W 2.06 .60
 14 X -1.5 -.05 2
 15 K 1 2 1
 16 K1 RESERVOIR ROUTING - TWP. LINE DAM
 17 Y 1 1
 18 Y1 1
 19 \$S 0 12 61 174 361 597 1150 2000
 20 \$E 390 395 400 405 410 414 420 425
 21 \$\$ 414 50 3.8 1.5
 22 \$D 420 2.7 1.5 530
 23 K 1 3 1
 24 K1 ROUTING THRU REACH 2 - 3
 25 Y 1 1
 26 Y1 1
 27 Y6 .1 .07 .1 384 410 1100 .0063
 28 Y7 0 410 80 400 180 390 510 384 520 384
 29 Y7 620 390 790 400 1000 410
 30 K 1 4 1
 31 K1 ROUTING THRU REACH 3 - 4
 32 Y 1 1
 33 Y1 1
 34 Y6 .07 .05 .07 369 390 2350 .0028
 35 Y7 0 380 500 380 700 370 740 369 750 369
 36 Y7 870 370 990 380 1010 390
 37 K 1 5 1
 38 K1 ROUTING THRU REACH 4 - 5
 39 Y 1 1
 40 Y1 1
 41 Y6 .1 .05 .1 363 390 2050 .0028
 42 Y7 0 390 150 380 260 370 450 363 460 363
 43 Y7 890 370 1010 380 1120 390
 44 K 1 6 1
 45 K1 ROUTING THRU REACH 5 - 6
 46 Y 1 1
 47 Y1 1
 48 Y6 .1 .07 .1 354 380 2100 .0069
 49 Y7 0 380 50 370 150 360 240 354 250 354
 50 Y7 370 360 450 370 510 380
 51 K 7 1
 52 K1 INFLOW HYDROGRAPH - MILLTOWN DAM SUBAREA
 53 M 1 1 3.7 6.3
 54 P 23.5 113 123 132 143
 55 T 1 .05
 56 W 2.16 .60
 57 X -1.5 -.05 2
 58 K 2 8 1
 59 K1 COMBINE HYDROGRAPHS AT MILLTOWN DAM
 60 K 1 9 1
 61 Y1 RESERVOIR ROUTING - THRU MILLTOWN DAM

1/28

62 Y 1 1
 63 Y4 345 345.5 346 346.5 347 347.5 348 348.5 349.1 349.5
 64 Y4 350 350.5 351 352 353 355
 65 Y5 0 55 197 401 650 936 1256 1606 2063 2416
 66 Y5 3049 3901 4956 7593 10872 19012
 67 \$A 0 9.2 51 77
 68 \$E 339 345 350 360
 69 \$\$ 345
 70 \$D 349.1
 71 K 99

2/
28

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
ROUTE HYDROGRAPH TO	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
RUNOFF HYDROGRAPH AT	7
COMBINE 2 HYDROGRAPHS AT	8
ROUTE HYDROGRAPH TO	9
END OF NETWORK	

 FLOOD HYDROGRAPH PACKAGE (HEC-1)
 DAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 01 APR 80

RUN DATE* 81/07/23,
 TIME* 10.05.31.

MILLTOWN LAM **** EAST BRANCH CHESTER CREEK
 EAST GOSHEN TWP., CHESTER COUNTY, PA.
 NDI # PA-00218 PA DER # 15-146

JOB SPECIFICATION									
NR	NHR	XMIN	IDAY	IHR	IMIN	NETRC	IPLT	IPRT	NSTAN
300	0	15	0	0	0	0	6	-4.	0
			JOPER	NWT	LROPT	TRACE			
			5	0	0	0			

MULTI-PLAN ANALYSES TO BE PERFORMED
 NPLAN= 1 NRTIO= 9 LRTIO= 1
 RTIOS= 1.00 .85 .70 .60 .50 .40 .30 .20 .10

***** ***** ***** ***** *****

3
29

***** ***** ***** ***** *****
SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH - TWP. LINE 8AM SUBAREA

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
1	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

IHYDG	IUNG	TAREA	SNAP	TRSDA	TRSFC	RATIO	ISNOW	ISAME	LOCAL
1	1	2.60	0.00	6.30	0.00	0.000	0	1	0

PRECIP DATA

SPFE	PMS	R6	R12	R24	R48	R72	R96
0.00	23.50	113.00	123.00	132.00	143.00	0.00	0.00

TRSFC COMPUTED BY THE PROGRAM IS .800

LOSS DATA

LROPT	STRKR	DLTRR	RTIDL	ERAIN	STRKS	RTIDK	STRTL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 2.06 CP= .60 NTA= 0

RECEDITION DATA

STRTQ= -1.50 QRCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 43 END-OF-PERIOD ORDINATES, LAG= 2.05 HOURS, CP= .60 VOL= 1.00

20.	74.	149.	234.	325.	406.	465.	498.	502.	467.
415.	388.	325.	287.	253.	224.	198.	175.	154.	136.
120.	106.	94.	83.	73.	65.	57.	51.	45.	39.
35.	31.	27.	24.	21.	19.	17.	15.	13.	11.
10.	9.	8.	7.	6.	5.	5.	4.		

0
MD,DA HR,MN PERIOD RAIN EXCS LOSS COMP 0 MD,DA HR,MN PERIOD RAIN EXCS LOSS COMP 0

SUM 26.88 24.47 2.42 166100.
(683.)(621.)(61.)(4703.43)

HYDROGRAPH ROUTING

RESERVOIR ROUTING - TWP. LINE DAM

4
28

ISTAO	ICOMP	IECON	ITAPE	JFLT	JFRT	INAME	ISTAGE	IAUTO
2	1	0	0	0	0	1	0	0

ROUTING DATA

QLOSS	CLOSS	AVG	IRES	ISAME	ICPT	IPMP	LSTR
0.0	0.000	0.00	1	1	0	0	0

NSTPS	NSTDL	LAG	AMSKN	X	TSK	STORA	ISPRAT
1	0	0	0.000	0.000	0.000	597.	0

CAPACITY= 0. 12. 61. 174. 361. 597. 1150. 2000.

ELEVATION= 390. 395. 400. 405. 410. 414. 420. 425.

CREL	SPWID	CORN	EXPW	ELEV1	COOL	CAREA	EXPL
414.0	50.0	3.8	1.5	0.0	0.0	0.0	0.0

DAM DATA			
TOPEL	CGOD	EXPD	DAMWID
420.0	2.7	1.5	530.

PEAK OUTFLOW IS 6150. AT TIME 42.50 HOURS

PEAK OUTFLOW IS 5051. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 3946. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 3209. AT TIME 43.00 HOURS

PEAK OUTFLOW IS 2589. AT TIME 43.25 HOURS

PEAK OUTFLOW IS 2016. AT TIME 43.25 HOURS

PEAK OUTFLOW IS 1452. AT TIME 43.25 HOURS

PEAK OUTFLOW IS 911. AT TIME 43.50 HOURS

PEAK OUTFLOW IS 402. AT TIME 43.75 HOURS

HYDROGRAPH ROUTING

*****5/
28

ROUTING THRU REACH 2 - 3

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPT	I NAME	I STAGE	I AUTO
3	1	0	0	0	0	1	0	0
ROUTING DATA								
QLOSS	CLOSS	AUG	IRES	ISAME	IOPT	IPMP	LSTR	
0.0	0.000	0.00	1	1	0	0	0	
NSTPS	NSTDL		LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0		0	0.000	0.000	0.000	0.	0

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	384.0	410.0	1100.	.00630

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC
 0.00 410.00 80.00 400.00 160.00 390.00 510.00 584.00 520.00 384.00
 620.00 390.00 790.00 400.00 1000.00 410.00

STORAGE	0.00 139.60	2.04 162.61	7.47 186.91	16.29 212.55	28.49 239.56	43.69 267.95	60.32 297.70	78.22 328.63	97.41 361.33	117.86 395.20
OUTFLOW	0.00 41233.41	112.38 51100.50	635.47 61994.52	1797.67 73924.41	3790.15 86730.36	7218.61 101029.42	11975.64 116239.63	17763.64 132577.68	24570.20 150068.75	32392.40 168726.29
STAGE	384.00 397.68	385.37 399.05	386.74 400.42	308.11 401.79	359.47 403.16	390.84 404.53	392.21 405.89	393.59 407.26	394.95 408.63	396.32 410.00
FLOW	0.00 41233.41	112.38 51100.50	635.47 61994.52	1797.67 73924.41	3790.15 86730.36	7218.61 101029.42	11975.64 116239.63	17763.64 132577.68	24570.20 150068.75	32392.40 168726.29

MAXIMUM STAGE IS 390.4

MAXIMUM STAGE IS 390.0

MAXIMUM STAGE IS 389.5

MAXIMUM STAGE IS 389.1

MAXIMUM STAGE IS 389.6

MAXIMUM STAGE IS 388.3

MAXIMUM STAGE IS 387.7

MAXIMUM STAGE IS 387.1

MAXIMUM STAGE IS 386.1

HYDROGRAPH ROUTING

6/28

ROUTING THRU REACH 3 - 4

ISTAO	ICOMP	IECON	ITAPE	JFLT	JPRT	I NAME	ISTAGE	IAUTO
4	1	0	0	0	0	1	0	0
ROUTING DATA								
CLOSS	CLOSS	Avg	IRES	ISAME	IOPR	IPMF	LSTR	
0.0	0.000	0.00	1	1	0	0	0	
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISFRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

RN(1)	RN(2)	RN(3)	ELNUT	ELMAX	RLNTH	SEL
.0700	.0500	.0700	369.0	390.0	2350.	.00280

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	380.00	500.00	390.00	700.00	370.00	740.00	369.00	750.00	369.00
870.00	370.00	990.00	380.00	1010.00	390.00				

STORAGE	0.00	5.83	17.22	30.72	46.33	64.05	63.88	105.82	127.86	156.02
	185.70	244.80	304.04	363.40	422.90	482.53	542.29	602.19	662.21	722.37
OUTFLOW	0.00	125.67	693.56	1637.76	2947.49	4627.54	6688.19	9142.24	12003.75	15287.44
	17194.03	22734.27	29316.12	36840.62	45241.60	54470.04	64487.44	75262.33	86768.30	98982.71
STAGE	369.00	370.11	371.21	372.32	373.42	374.53	375.63	376.74	377.84	378.95
	380.05	381.16	382.26	383.37	384.47	385.58	386.68	387.79	388.89	390.00
FLOW	0.00	125.67	693.56	1637.76	2947.49	4627.54	6688.19	9142.24	12003.75	15287.44
	17194.03	22734.27	29316.12	36840.62	45241.60	54470.04	64487.44	75262.33	86768.30	98982.71

MAXIMUM STAGE IS 375.3

MAXIMUM STAGE IS 374.8

MAXIMUM STAGE IS 374.1

MAXIMUM STAGE IS 373.6

MAXIMUM STAGE IS 373.1

MAXIMUM STAGE IS 372.6

MAXIMUM STAGE IS 372.1

MAXIMUM STAGE IS 371.5

MAXIMUM STAGE IS 370.6

HYDROGRAPH ROUTING7/
28

ROUTING THRU REACH 4 - 5

ISTAQ	ICOMP	IECON	ITAPE	JFLT	JPRT	INAME	ISTAGE	IAUTO
5	1	0	0	0	0	1	0	0
ROUTING DATA								
QLOSS	CLOSS	AVG	IRES	ISAME	IDPT	IPMP	LSTR	
0.0	0.000	0.00	1	1	0	0	0	
NSTPS	NSTOL	LAG	4MSKK	X	TSK	STORA	ISPRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0500	.1000	363.0	390.0	2050.	.00290

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	390.00	150.00	380.00	260.00	370.00	450.00	363.00	460.00	363.00
890.00	370.00	1010.00	380.00	1120.00	390.00				

STORAGE	0.00	4.88	18.17	39.98	70.01	108.54	151.93	197.51	245.26	295.51
	347.34	401.66	458.16	517.00	578.31	642.09	708.35	777.07	846.27	921.51
OUTFLOW	0.00	136.41	788.96	2250.93	4766.99	8636.71	14937.17	22604.28	31572.15	41795.51
	53242.66	65890.37	79720.85	94698.72	110854.18	128184.34	146686.63	166368.27	187225.82	209264.98
STAGE	363.00	364.42	365.84	367.26	368.68	370.11	371.53	372.95	374.37	375.79
	377.21	378.63	380.05	381.47	382.89	384.32	385.74	387.16	388.59	390.00
FLOW	0.00	136.41	788.96	2250.93	4766.99	8636.71	14937.17	22604.28	31572.15	41795.51
	53242.66	65890.37	79720.85	94698.72	110854.18	128184.34	146686.63	166368.27	187225.82	209264.98

MAXIMUM STAGE IS 369.2

MAXIMUM STAGE IS 368.8

MAXIMUM STAGE IS 368.2

MAXIMUM STAGE IS 367.8

MAXIMUM STAGE IS 367.4

MAXIMUM STAGE IS 367.0

MAXIMUM STAGE IS 366.5

MAXIMUM STAGE IS 366.0

MAXIMUM STAGE IS 365.0

HYDROGRAPH ROUTING

ROUTING THRU REACH 5 - 6

8/28

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	IAME	ISTAGE	IAUTO
6	1	0	0	0	0	1	0	0
ROUTING DATA								
GLOSS	CLOSS	Avg	IRES	ISAME	IDPT	IPMP	LSTR	
0.0	0.000	0.00	1	1	0	0	0	
NSTFS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0700	.1000	354.0	390.0	2100.	.00690

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

7.00	390.00	50.00	370.00	150.00	360.00	240.00	354.00	250.00	354.00
370.00	360.00	450.00	370.00	510.00	380.00				

STORAGE	0.00	2.24	7.64	16.20	27.92	42.50	58.83	76.78	96.36	117.56
	140.38	164.83	190.88	218.07	246.25	275.43	305.60	335.76	369.92	402.07
OUTFLOW	0.00	70.86	366.38	999.63	2066.78	3885.94	6410.93	9497.37	13148.72	17371.96
	22176.43	27573.00	33607.55	40318.42	47620.96	55514.22	63998.94	73077.09	82751.53	93025.83
STAGE	354.00	355.37	356.74	358.11	359.47	360.84	362.21	363.58	364.95	366.32
	367.68	369.05	370.42	371.79	373.16	374.53	375.89	377.26	378.63	390.00
FLOW	0.00	70.86	366.38	999.63	2066.78	3885.94	6410.93	9497.37	13148.72	17371.96
	22176.43	27573.00	33607.55	40318.42	47620.96	55514.22	63998.94	73077.09	82751.53	93025.83

MAXIMUM STAGE IS 362.0

MAXIMUM STAGE IS 361.5

MAXIMUM STAGE IS 360.9

MAXIMUM STAGE IS 360.3

MAXIMUM STAGE IS 359.9

MAXIMUM STAGE IS 359.4

MAXIMUM STAGE IS 358.7

MAXIMUM STAGE IS 357.9

MAXIMUM STAGE IS 356.8

SUB-AREA RUNOFF COMPUTATION

*****9/
28
INFLOW HYDROGRAPH - MILLTOWN DAM SUBAREA

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	I STAGE	IAUTO
7	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

IHYDG	IUHG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	3:70	0.00	6.30	0.00	0.000	0	0	0

PRECIP DATA

SPFE	PMS	R6	R12	R24	R48	R72	R96
0.00	23.50	113.00	123.00	132.00	143.00	0.00	0.00

TRSPC COMPUTED BY THE PROGRAM IS .800

LOSS DATA

LROPT	STRKR	DLTKR	RTIOL	ERAIN	STRKS	RTIDK	STRTL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 2.16 CP=.60 NTA= 0

RECEDITION DATA

STRTO= -1.50 QRCMH= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 52 END-OF-PERIOD ORDINATES, LAG= 2.15 HOURS, CP= .60 VOL= 1.00

25.	92.	185.	292.	407.	516.	600.	653.	674.	651.
592.	528.	470.	419.	374.	333.	297.	265.	236.	210.
189.	167.	149.	133.	118.	106.	94.	84.	75.	67.
59.	53.	47.	42.	38.	33.	30.	27.	24.	21.
19.	17.	15.	13.	12.	11.	9.	8.	8.	7.
6.	5.								

0
END-OF-PERIOD FLOW
MD,DA HR,MN PERIOD RAIN EXCS LOSS COMP Q MD,DA HR,MN PERIOD RAIN EXCS LOSS COMP Q

SUM 26.88 24.47 2.42 236071.
(683.)(621.)(61.)(6684.79)

COMBINE HYDROGRAPHS

COMBINE HYDROGRAPHS AT MILLTOWN DAM

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	I STAGE	IAUTO
8	2	0	0	0	0	1	0	0

***** HYDROGRAPH ROUTING *****

RESERVOIR ROUTING - THRU MILLTOWN DAM

10/28

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
9	1	0	0	0	0	1	0	0

ROUTING DATA

BLOSS	CLOSS	Avg	IRES	ISAME	IOPT	IPMP	LSTR
0.0	0.000	0.00	1	0	0	0	0

NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0	0	0.000	0.000	0.000	19.	-1

STAGE	345.00	345.50	346.00	346.50	347.00	347.50	348.00	348.50	349.10	349.50
	350.00	350.50	351.00	352.00	353.00	355.00				
FLOW	0.00	56.00	197.00	401.00	650.00	936.00	1256.00	1606.00	2063.00	2416.00
	3045.00	3901.00	4956.00	7593.00	10872.00	19012.00				

SURFACE AREA= 0. 9. 51. 77.

CAPACITY= 0. 18. 155. 790.

ELEVATION= 339. 345. 350. 360.

CREL	SPWID	CDQW	EXPW	ELEV1	COOL	CAREA	EXPL
345.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

DAM DATA			
TOSEL	COOD	EXFD	DAMWID
349.1	0.0	0.0	0.

PEAK OUTFLOW IS 14537. AT TIME 42.50 HOURS

PEAK OUTFLOW IS 12017. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 9478. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 7938. AT TIME 42.50 HOURS

PEAK OUTFLOW IS 6496. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 5082. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 3697. AT TIME 42.75 HOURS

PEAK OUTFLOW IS 2320. AT TIME 43.00 HOURS

PEAK OUTFLOW IS 1096. AT TIME 43.00 HOURS

11/28

***** ***** ***** ***** *****

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN RATIO	RATIOS APPLIED TO FLOWS								
				1.00	.95	.70	.60	.50	.40	.30	.20	.10
HYDROGRAPH AT	1	2.60	1	6804.	5783.	4762.	4082.	3402.	2721.	2041.	1361.	680.
	((6.73)		(192.65)	(163.76)	(134.86)	(115.59)	(96.33)	(77.06)	(57.80)	(38.55)	(19.27)
ROUTED TO	2	2.60	1	6150.	5051.	3946.	3209.	2589.	2016.	1452.	911.	402.
	((6.73)		(174.14)	(143.02)	(111.72)	(90.87)	(73.32)	(57.08)	(41.11)	(25.79)	(11.38)
ROUTED TO	3	2.60	1	6148.	5057.	3944.	3202.	2590.	2014.	1452.	911.	402.
	((6.73)		(174.09)	(143.20)	(111.69)	(90.69)	(73.33)	(57.02)	(41.13)	(25.76)	(11.38)
ROUTED TO	4	2.60	1	6126.	5048.	3941.	3201.	2582.	2011.	1447.	908.	400.
	((6.73)		(173.45)	(142.95)	(111.60)	(90.65)	(73.10)	(56.94)	(40.99)	(25.71)	(11.33)
ROUTED TO	5	2.60	1	6120.	5035.	3927.	3190.	2579.	2004.	1444.	906.	399.
	((6.73)		(173.29)	(142.58)	(111.20)	(90.33)	(73.04)	(56.74)	(40.89)	(25.65)	(11.29)
ROUTED TO	6	2.60	1	6103.	5037.	3925.	3189.	2574.	2002.	1443.	904.	398.
	((6.73)		(172.80)	(142.62)	(111.15)	(90.31)	(72.87)	(56.68)	(40.85)	(25.59)	(11.26)
HYDROGRAPH AT	7	3.70	1	9339.	7738.	6537.	5603.	4669.	3736.	2802.	1868.	934.
	((9.58)		(264.44)	(224.78)	(185.11)	(158.67)	(132.22)	(105.73)	(79.33)	(52.89)	(26.44)
2 COMBINED	8	6.30	1	14653.	12080.	9513.	7977.	6531.	5111.	3748.	2383.	1126.
	((16.32)		(441.94)	(342.07)	(269.38)	(225.89)	(184.93)	(144.71)	(106.13)	(67.48)	(31.38)
ROUTED TO	9	6.30	1	14587.	12017.	9473.	7938.	6496.	5082.	3697.	2320.	1096.
	((16.32)		(413.06)	(340.27)	(268.40)	(224.78)	(183.74)	(143.89)	(104.69)	(65.70)	(31.04)

1 SUMMARY OF DAM SAFETY ANALYSIS

THUR. LINE DAM

PLAN 1	INITIAL VALUE			SPILLWAY CREST		TOP OF DAM	
	ELEVATION			414.00		414.00	
	STORAGE			597.		597.	
	OUTFLOW	0.		0.		0.	2792.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	421.39	1.39	1386.	6150.	5.25	42.50	0.00
.85	421.03	1.03	1326.	5051.	4.25	42.75	0.00
.70	420.62	.62	1256.	3946.	3.50	42.75	0.00
.60	420.28	.28	1198.	3209.	2.25	43.00	0.00
.50	419.71	0.00	1123.	2589.	0.00	43.25	0.00
.40	418.33	0.00	1042.	2016.	0.00	43.25	0.00
.30	417.83	0.00	955.	1452.	0.00	43.25	0.00
.20	416.34	0.00	869.	911.	0.00	43.50	0.00
.10	415.75	0.00	782.	569.	0.00	43.75	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6148.	390.4	42.50
.85	5057.	390.0	42.75
.70	3944.	389.5	43.00
.60	3202.	389.1	43.25
.50	2590.	388.6	43.25
.40	2014.	388.3	43.25
.30	1452.	387.7	43.50
.20	910.	387.1	43.75
.10	402.	386.1	44.00

12/29

PLAN 1 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6126.	375.3	42.75
.85	5048.	374.8	42.75
.70	3941.	374.1	43.00
.60	3201.	373.6	43.25
.50	2582.	373.1	43.50
.40	2011.	372.6	43.50
.30	1447.	372.1	43.75
.20	903.	371.5	43.75
.10	400.	370.6	44.25

PLAN 1 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6120.	369.2	42.75
.85	5035.	368.8	43.00
.70	3927.	368.2	43.25
.60	3190.	367.8	43.50
.50	2579.	367.4	43.50
.40	2004.	367.0	43.75
.30	1444.	366.5	43.75
.20	903.	366.0	44.00
.10	399.	365.0	44.50

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6103.	362.0	42.75
.85	5037.	361.5	43.00
.70	3925.	360.9	43.25
.60	3189.	360.3	43.50
.50	2574.	359.9	43.75
.40	2002.	359.4	43.75
.30	1443.	358.7	44.00
.20	904.	357.9	44.25
.10	398.	356.6	44.75

PLAN 1

SUMMARY OF DAM SAFETY ANALYSIS

MILL TOWN DAM

	INITIAL ELEVATION	SPILLWAY CREST	TOP OF DAM
STORAGE	345.00	345.00	349.10
OUTFLOW	18.	18.	114.
	0.	0.	2063.

13/28

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	353.91	4.81	373.	14587.	11.25	42.50	0.00
.85	353.28	4.18	335.	12017.	10.75	42.75	0.00
.70	352.58	3.49	294.	9478.	10.00	42.75	0.00
.60	352.11	3.01	267.	7938.	9.00	42.50	0.00
.50	351.53	2.48	239.	6496.	8.25	42.75	0.00
.40	351.05	1.95	210.	5082.	7.00	42.75	0.00
.30	350.38	1.28	174.	3697.	5.25	42.75	0.00
.20	349.39	.29	126.	2320.	2.50	42.75	0.00
.10	347.75	0.00	67.	1098.	0.00	43.00	0.00

END ENCOUNTERED.
N>

FLOOD HYDROGRAPH FACADE (HEC-1)

DM SAFETY VERSION JULY 1978

LAST MODIFICATION 01 AFG 80

(BREACH)

14/28

XXXXXXXXXXXXXXXXXXXXXX

1 A1 MILLTOWN DAM **** EAST BRANCH CHESTER CREEK
2 A2 EAST GOSHEN TWP., CHESTER COUNTY, PA.
3 A3 HDI # PA-00218 PA DER # 15-146
4 B 300 0 15 0 0 0 0 0 -4 0
5 B1 5
6 J 5 1 1
7 J1 .27
8 K 1
9 K1 1
10 M 1 1 2.6 6.3 1
11 P 23.5 113 123 132 143 1
12 T 1 .05
13 W 2.06 .60
14 X -1.5 -.05 2
15 K 1 2 1
16 K1 1
17 Y 1 1
18 Y1 1
19 \$S 0 12 61 174 361 597 1150 2000
20 \$E 390 395 400 405 410 414 420 425
21 \$\$ 414 50 3.8 1.5
22 \$D 420 2.7 1.5 530
23 K 1 3 1
24 K1 ROUTING THRU REACH 2 - 3
25 Y 1 1
26 Y1 1
27 Y6 .1 .07 .1 384 410 1100 .0063
28 Y7 0 410 .80 400 180 390 510 394 520 384
29 Y7 820 390 790 400 1000 410 1
30 K 1 4 1
31 K1 ROUTING THRU REACH 3 - 4
32 Y 1 1
33 Y1 1
34 Y6 .07 .05 .07 369 390 2330 .0028
35 Y7 0 380 500 380 700 370 740 369 750 369
36 Y7 970 370 990 360 1010 350 1
37 K 1 5 1
38 K1 ROUTING THRU REACH 4 - 5
39 Y 1 1
40 Y1 1
41 Y6 .1 .05 .1 363 390 2050 .0028
42 Y7 0 390 150 380 260 370 450 363 460 363
43 Y7 890 370 1010 380 1120 390 1
44 K 1 6 1
45 K1 ROUTING THRU REACH 5 - 6
46 Y 1 1
47 Y1 1
48 Y6 .1 .07 .1 354 380 2100 .0069
49 Y7 0 380 50 370 150 360 210 354 250 354
50 Y7 370 360 450 370 510 360 1
1 51 K 7 1
52 K1 INFLOW HYDROGRAPH - MILLTOWN DAM SUBAREA
53 M 1 1 3.7 6.3 1
54 P 23.5 113 123 132 143 1
55 T 1 .05
56 W 2.16 .60
57 X -1.5 -.05 2
58 K 2 8 1
59 K1 COMBINE HYDROGRAPHS AT MILLTOWN DAM
60 K 1 9 1
61 P 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

52
 63 Y1 1 1 1
 64 Y4 345 345.5 346 346.5 347 347.5 18.5 -1 348 348.5 349.1 349.5 15/28.
 65 Y4 350 350.5 351 352 353 355
 66 Y5 0 56 197 401 650 936 1256 1606 2063 2416
 67 Y5 3049 3901 4956 7593 10872 19012
 68 \$A 0 9.2 51 77
 69 \$E 339 345 350 360
 70 \$\$ 345
 71 \$D 349.1
 72 \$B 50 1 339 .25 345 400
 73 \$B 50 1 339 .25 345 350.1
 74 \$B 50 1 339 .5 345 350.1
 75 \$B 50 1 339 1 345 350.1
 76 \$B 50 1 339 2 345 350.1
 77 K 1 10 1
 78 K1 ROUTING THRU REACH 9 - 10
 79 Y 1 i
 80 Y1 1
 81 Y6 .08 .06 .08 307 330 3200 .014
 82 Y7 0 330 20 320 80 310 90 307 100 307
 83 Y7 180 310 300 320 360 330
 84 K 99

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
ROUTE HYDROGRAPH TO	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
RUNOFF HYDROGRAPH AT	7
COMBINE 2 HYDROGRAPHS AT	8
ROUTE HYDROGRAPH TO	9
ROUTE HYDROGRAPH TO	10
END OF NETWORK	

 FLOOD HYDROGRAPH PACKAGE (HEC-1)
 IAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 01 APR 80

RUN DATE* 81/07/23,
 TIME* 10.07.54.

MILLTOWN DAM **** EAST BRANCH CHESTER CREEK
 EAST GOSHEN TWP., CHESTER COUNTY, PA.
 NDI # PA-00218 PA DER # 15-146

JOB SPECIFICATION											
NQ	NHR	NMIN	IDAY	IHR	IMIN	METRC	IPLT	IPRT	INSTAN		
300	0	15	0	0	0	0	0	-4	0		
			JOPER	NWT	LROPT	TRACE					
			5	0	0	0					

MULTI-PLAN ANALYSES TO BE PERFORMED
 NPLAN= 5 NRATIO= 1 LRTIO= 1

RTIOS= .27

16/28

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS	
				1	.27
HYDROGRAPH AT	1	2.60 (6.73)	1	1837.	
				(52.02)(
			2	1837.	
				(52.02)(
			3	1837.	
				(52.02)(
ROUTED TO	2	2.60 (6.73)	1	1288.	
				(36.46)(
			2	1288.	
				(36.46)(
			3	1288.	
				(36.46)(
ROUTED TO	3	2.60 (6.73)	1	1288.	
				(36.46)(
			2	1288.	
				(36.46)(
			3	1288.	
				(36.46)(
ROUTED TO	4	2.60 (6.73)	1	1284.	
				(36.35)(
			2	1284.	
				(36.35)(
			3	1284.	
				(36.35)(

17/28

ROUTED TO	5	2.60 (6.73)	1 1279. (36.22)(2 1279. (36.22)(3 1279. (36.22)(4 1279. (36.22)(5 1279. (36.22)(
ROUTED TO	6	2.60 (6.73)	1 1279. (36.21)(2 1279. (36.21)(3 1279. (36.21)(4 1279. (36.21)(5 1279. (36.21)(
HYDROGRAPH AT	7	3.70 (9.58)	1 2521. (71.40)(2 2521. (71.40)(3 2521. (71.40)(4 2521. (71.40)(5 2521. (71.40)(
2 COMBINED	8	6.30 (16.32)	1 3334. (94.40)(2 3334. (94.40)(3 3334. (94.40)(4 3334. (94.40)(5 3334. (94.40)(
ROUTED TO	9	6.30 (16.32)	1 3286. (93.04)(2 8382. (237.36)(3 7360. (208.42)(4 5812. (164.57)(5 4167. (118.01)(
ROUTED TO	10	6.30 (16.32)	1 3286. (93.06)(2 6890. (195.12)(3 6247. (176.69)(4 5566. (158.19)(5 4134.

SUMMARY OF DAM SAFETY ANALYSIS

TWP. LIVIE DAM

18/26

PLAN	RATIO OF PMF	ELEVATION		INITIAL VALUE	SPILLWAY CREST	TOP OF DAM	TIME OF FAILURE HOURS
		MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	414.00	414.00	420.00	
1	.27	417.58	0.00	927.	1288.	0.00	43.50
2	.27	417.58	0.00	927.	1288.	0.00	43.50
3	.27	417.58	0.00	927.	1288.	0.00	43.50
4	.27	417.58	0.00	927.	1288.	0.00	43.50
5	.27	417.58	0.00	927.	1288.	0.00	43.50

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.27	417.58	0.00	927.	1288.	0.00	43.50	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1288.	387.5	43.50

PLAN 2 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1288.	387.5	43.50

PLAN 3 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1288.	387.5	43.50

PLAN 4 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1288.	387.5	43.50

PLAN 5 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1288.	387.5	43.50

PLAN 1 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1284.	371.9	43.75

PLAN 2 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1284.	371.9	43.75

2%
PLAN 3 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1284.	371.9	43.75

PLAN 4 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1284.	371.9	43.75

PLAN 5 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1284.	371.9	43.75

PLAN 1 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	366.3	43.75

PLAN 2 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	366.3	43.75

PLAN 3 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	366.3	43.75

PLAN 4 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	366.3	43.75

PLAN 5 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	366.3	43.75

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	358.5	44.00

PLAN 2 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	358.5	44.00

PLAN 3 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	358.5	44.00

PLAN 4 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	358.5	44.00

PLAN 5 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	1279.	358.5	44.00

SUMMARY OF DAM SAFETY ANALYSIS

MILLTOWN DAM

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
STORAGE	345.00	345.00	349.10
OUTFLOW	18.	18.	114.
	0.	0.	2063.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.27	350.14	1.04	162.	3286.	5.00	43.00	0.00

PLAN 2

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
STORAGE	345.00	345.00	349.10
OUTFLOW	18.	18.	114.
	0.	0.	2063.

2/13/81

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.27	350.11	1.01	161.	8382.	2.03	42.75	42.50

PLAN 3
 INITIAL VALUE SPILLWAY CREST TOP OF DAM
 ELEVATION 345.00 345.00 349.10
 STORAGE 18. 16. 114.
 OUTFLOW 0. 0. 2063.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.27	350.12	1.02	161.	7360.	2.21	43.00	42.50

PLAN 4
 INITIAL VALUE SPILLWAY CREST TOP OF DAM
 ELEVATION 345.00 345.00 349.10
 STORAGE 18. 18. 114.
 OUTFLOW 0. 0. 2063.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.27	350.12	1.02	161.	5812.	2.54	43.50	42.50

PLAN 5
 INITIAL VALUE SPILLWAY CREST TOP OF DAM
 ELEVATION 345.00 345.00 349.10
 STORAGE 18. 18. 114.
 OUTFLOW 0. 0. 2063.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.27	350.13	1.03	161.	4172.	3.04	44.06	42.50

PLAN 1 STATION 10

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	3296.	312.5	43.00

PLAN 2 STATION 10

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	6990.	314.6	43.00

22/29

PLAN 3 STATION 10

23/29

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	6247.	314.3	43.00

PLAN 4 STATION 10

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	5586.	313.9	43.50

PLAN 5 STATION 10

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.27	4134.	313.1	44.25

EDT ENCOUNTERED.
ND

DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 01 APR 80

(DESIGN)

2/28

1 A1 MILLTOWN DAM **** EAST BRANCH CHESTER CREEK
2 A2 EAST GOSHEN TWP., CHESTER COUNTY, PA.
3 A3 NDI # PA-00218 PA DER # 15-146
4 B 300 0 15 0 0 0 0 0 -4 0
5 R1 5
6 J 1 9 1
7 J1 1 .85 .7 .5 .5 .4 .3 .2 .1
8 K 1
9 K1 INFLOW HYDROGRAPH - TWP. LINE DAM SUBAREA
10 M 1 1 2.6 6.3
11 P 23.5 113 123 132 143
12 T
13 W 2.06 .60 1 .05
14 X -1.5 -.05 2
15 K 1 2
16 K1 RESERVOIR ROUTING - TWP. LINE DAM 1
17 Y 1 1
18 Y1 1
19 \$S 0 12 61 174 361 597 1150 2000
20 \$E 390 395 400 405 410 414 420 425
21 \$\$ 414 50 3.8 1.5
22 \$D 420 2.7 1.5 530
23 K 1 .3
24 K1 ROUTING THRU REACH 2 - 3 1
25 Y 1 1
26 Y1 1
27 Y6 .1 .07 .1 384 410 1100 .0063
28 Y7 0 410 60 400 160 390 510 384 520 384
29 Y7 620 390 790 200 1000 410
30 K 1 4
31 K1 ROUTING THRU REACH 3 - 4 1
32 Y 1 1
33 Y1 1
34 Y6 .07 .05 .07 369 390 2350 .0028
35 Y7 0 380 500 380 700 370 740 369 750 369
36 Y7 870 370 990 380 1010 390
37 K 1 5
38 K1 ROUTING THRU REACH 4 - 5 1
39 Y 1 1
40 Y1 1
41 Y6 .1 .05 .1 363 390 2050 .0028
42 Y7 0 390 150 390 260 370 450 363 460 363
43 Y7 890 370 1010 380 1120 390
44 K 1 6
45 K1 ROUTING THRU REACH 5 - 6 1
46 Y 1 1
47 Y1 1
48 Y6 .1 .07 .1 354 380 2100 .0039
49 Y7 0 390 50 370 150 360 240 354 250 354
50 Y7 370 360 450 370 510 380
51 K 7
52 K1 INFLOW HYDROGRAPH - MILLTOWN DAM SUBAREA 1
53 M 1 1 3.7 6.3
54 P 23.5 113 123 132 143
55 T
56 W 2.16 .60 1 .05
57 X -1.5 -.05 2
58 K 2 8
59 K1 COMBINE HYDROGRAPHS AT MILLTOWN DAM 1
60 K 1 9
61 K1 RESERVOIR ROUTING - THRU MILLTOWN DAM 1

62 Y 1 1
 63 Y1 1
 64 Y4 345 345.5 346 346.5 347 347.5 348 348.5 349.1 350.3
 65 Y4 351 351.5 352 353 354 355
 66 Y5 0 56 197 401 650 935 1256 1604 2063 3084
 67 Y5 4182 5227 6422 9185 12368 15916
 68 \$A 0 9.2 51 77
 69 \$E 339 345 350 360
 70 \$\$ 345
 71 \$D 350.3
 72 K 99

25/2

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
ROUTE HYDROGRAPH TO	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
RUNOFF HYDROGRAPH AT	7
COMBINE 2 HYDROGRAPHS AT	8
ROUTE HYDROGRAPH TO	9
END OF NETWORK	

 FLOOD HYDROGRAPH PACKAGE (HEC-1)
 DAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 01 APR 90

RUN DATE: 81/07/23.
 TIME: 10.09.11.

MILLTOWN DAM **** EAST BRANCH CHESTER CREEK
 EAST GOSHEN TWP., CHESTER COUNTY, PA.
 NDI # PA-00218 PA DER # 15-146

JOB SPECIFICATION										
NO	NHR	FMIN	IDAY	IHR	IMIN	METRC	IPLT	IPRT	NSTAN	
300	0	15	0	0	0	0	0	-4	0	
			JOPER	NWT	LROPT	TRACE				
			5	0	0	0				

MULTI-PLAN ANALYSES TO BE PERFORMED
 NPLAN= 1 MRTIO= 9 LRTIO= 1
 RTIOS= 1.00 .85 .70 .60 .50 .40 .30 .20 .10

***** ***** ***** ***** *****

***** * ***** * ***** * ***** * *****

26/27

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	RATIOS APPLIED TO FLOWS									
			PLAN	RATIO 1 1.00	RATIO 2 .85	RATIO 3 .70	RATIO 4 .60	RATIO 5 .50	RATIO 6 .40	RATIO 7 .30	RATIO 8 .20	RATIO 9 .10
HYDROGRAPH AT	1	2.60	1	6804.	5783.	4762.	4082.	3402.	2721.	2041.	1361.	680.
	(6.73)			(192.65)	(163.76)	(134.86)	(115.59)	(96.33)	(77.06)	(57.80)	(38.53)	(19.27)
ROUTED TO	2	2.60	1	6150.	5051.	3946.	3209.	2589.	2016.	1452.	911.	402.
	(6.73)			(174.14)	(143.02)	(111.72)	(90.87)	(73.32)	(57.08)	(41.11)	(25.79)	(11.38)
ROUTED TO	3	2.60	1	6148.	5057.	3944.	3202.	2590.	2014.	1452.	910.	402.
	(6.73)			(174.09)	(143.20)	(111.69)	(90.68)	(73.33)	(57.02)	(41.13)	(25.76)	(11.38)
ROUTED TO	4	2.60	1	6126.	5048.	3941.	3201.	2582.	2011.	1447.	908.	400.
	(6.73)			(173.46)	(142.95)	(111.60)	(90.65)	(73.10)	(56.94)	(40.99)	(25.71)	(11.33)
ROUTED TO	5	2.60	1	6120.	5035.	3927.	3190.	2579.	2004.	1444.	906.	399.
	(6.73)			(173.29)	(142.58)	(111.20)	(90.33)	(73.04)	(56.74)	(40.89)	(25.65)	(11.29)
ROUTED TO	6	2.60	1	6103.	5037.	3925.	3189.	2574.	2002.	1443.	904.	398.
	(6.73)			(172.80)	(142.62)	(111.15)	(90.31)	(72.87)	(56.58)	(40.85)	(25.59)	(11.26)
HYDROGRAPH AT	7	3.70	1	9339.	7938.	6537.	5603.	4669.	3736.	2802.	1858.	934.
	(9.59)			(264.44)	(224.78)	(185.11)	(158.67)	(132.11)	(105.78)	(79.33)	(52.39)	(26.44)
2 COMBINED	8	6.30	1	14653.	12080.	9513.	7977.	6531.	5111.	3748.	2393.	1126.
	(15.32)			(414.94)	(342.07)	(269.38)	(225.89)	(184.93)	(144.71)	(106.13)	(67.48)	(31.68)
ROUTED TO	9	6.30	1	14551.	11999.	9472.	7920.	6491.	5068.	3673.	2317.	1096.
	(16.32)			(412.04)	(339.76)	(268.22)	(224.27)	(183.80)	(143.51)	(104.02)	(65.61)	(31.04)

1 SUMMARY OF DAM SAFETY ANALYSIS

TWP. LINE DAM

PLAN 1	ELEVATION	STORAGE	OUTFLOW	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
				414.00	414.00	420.00
				597.	597.	1150.
				0.	0.	2792.

RATIO OF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	421.39	1.39	1366.	6150.	5.25	42.50	0.00
.85	421.03	1.03	1326.	5051.	4.25	42.75	0.00
.70	420.62	.62	1256.	3946.	3.50	42.75	0.00
.60	420.28	.28	1198.	3209.	2.25	43.00	0.00
.50	419.71	0.00	1123.	2589.	0.00	43.25	0.00
.40	418.83	0.00	1042.	2016.	0.00	43.25	0.00
.30	417.88	0.00	955.	1452.	0.00	43.25	0.00
.20	416.94	0.00	859.	911.	0.00	43.50	0.00
.10	415.65	0.00	749.	402.	0.00	43.75	0.00

PLAN 1 STATION 3

2/13/8

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6148.	390.4	42.50
.85	5057.	390.0	42.75
.70	3944.	389.5	43.00
.60	3202.	389.1	43.25
.50	2590.	388.6	43.25
.40	2014.	388.3	43.25
.30	1452.	397.7	43.50
.20	910.	387.1	43.75
.10	402.	386.1	44.00

PLAN 1 STATION 4

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6126.	375.3	42.75
.85	5046.	374.8	42.75
.70	3941.	374.1	43.00
.60	3201.	373.6	43.25
.50	2582.	373.1	43.50
.40	2011.	372.6	43.50
.30	1447.	372.1	43.75
.20	906.	371.5	43.75
.10	400.	370.6	44.25

PLAN 1 STATION 5

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6120.	369.2	42.75
.85	5035.	368.8	43.00
.70	3927.	368.2	43.25
.60	3190.	367.8	43.50
.50	2579.	367.4	43.50
.40	2004.	367.0	43.75
.30	1444.	366.5	43.75
.20	906.	366.0	44.00
.10	399.	365.0	44.50

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6103.	362.0	42.75
.85	5037.	361.5	43.00
.70	3925.	360.9	43.25
.60	3189.	360.3	43.50
.50	2574.	359.9	43.75
.40	2002.	359.4	43.75
.30	1443.	358.7	44.00
.20	904.	357.9	44.25
.10	398.	356.8	44.75

SUMMARY OF DAM SAFETY ANALYSIS

MILL TOWN DAM

28/28

PLAN 1

	INITIAL ELEVATION	SPILLWAY CREST	TOP OF DAM
STORAGE	345.00	345.00	350.30
OUTFLOW	18.	18.	170.
	0.	0.	3084.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	354.62	4.32	416.	14551.	9.00	42.50	0.00
.85	353.88	3.58	371.	11999.	8.50	42.75	0.00
.70	353.09	2.79	324.	9472.	7.50	42.75	0.00
.60	352.54	2.24	292.	7920.	6.75	42.75	0.00
.50	352.02	1.72	263.	6491.	5.75	42.75	0.00
.40	351.42	1.12	230.	5069.	4.50	42.75	0.00
.30	350.68	.38	190.	3673.	2.50	43.00	0.00
.20	349.40	0.00	126.	2317.	0.00	43.00	0.00
.10	347.75	0.00	67.	1096.	0.00	43.00	0.00

EOI ENCOUNTERED.

>

APPENDIX E

PLATES

APPENDIX E

PROPOSED STORAGE RESERVOIR
FOR WATER SUPPLY SYSTEM OF
→ BOROUGH OF WEST CHESTER,
AT MILLTOWN PUMPING STATION.
EAST GOSHEN TOWNSHIP.
CHESTER COUNTY, PA.

T. G. COLE & WORTHY,
Consulting Engineers,
FRANKLIN & COMPANY,
Consulting Engineers,
100 Broadway, New York.

PLATE III
PA-00218

- Cross Section of Concrete Spillway
(bottom center line looking east)
Scale 1"

- Cross Section through Retaining Wall -
Section on Line A-B
Scale 1"

PROPOSED STORAGE RESERVOIR
FOR WATER SUPPLY SYSTEM OF
BOSTON & THE WEST CHESTER,
AND MILLTOWN PUMPING STATION,
FAIR GOSEN TOWNSHIP,
CHESTER COUNTY, PA.

T G COLESWORTHY,
Architects,
FRANKLIN & COMPANY,
Consulting Engineers,
Philadelphia, Jan 14, 1921.

PLATE IV
PA-00218

APPENDIX F
GEOLOGIC REPORT

APPENDIX F

GEOLOGIC REPORT

BEDROCK - DAM AND RESERVOIR

This area overlies the Baltimore Gneiss, which is a recrystallized sediment consisting of biotite and hornblende gneiss, heavily injected with gabbro.

STRUCTURE

The joints are moderately to poorly formed in a platy or blocky pattern.

OVERBURDEN

The overburden in this area most probably consists of residual soils originating from the parent bedrock.

AQUIFER CHARACTERISTICS

This formation has an extremely low primary porosity and the jointing provides a very low secondary porosity. Subsurface seepage in this area should be of little concern.

DISCUSSION

From the available construction plans, it appears that the cutoff trench of the dam was excavated to bedrock. If such is the case, the Baltimore Gneiss provides a good quality foundation for heavy structures.

SOURCES OF INFORMATION

1. Bascom, F., et al., 1932. Coatesville - West Chester, Pennsylvania - Delaware Folio: U.S. Geological Survey F-233.
2. McGlade, W.G., 1972. Engineering Characteristics of the Rocks of Pennsylvania: Pennsylvania Geological Survey EG-1.

GEOLOGIC MAP - MILLTOWN DAM

LEGEND

Baltimore Gneiss