МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Факультет систем управления и робототехники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 по дисциплине *«Дискретные системы управления»*

по теме: МОДЕЛИРОВАНИЕ ЛИНЕЙНЫХ ДИСКРЕТНЫХ СИСТЕМ

Студент: Группа № R3435	<i>Зыкин Л. В</i> . Вариант №8
Предподаватель: <i>доцент</i>	Краснов А. Ю.

Санкт-Петербург 2025

1 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДИСКРЕТНОГО ЭЛЕМЕНТА НА НЕПРЕРЫВНУЮ СИСТЕМУ

1.1 Постановка задачи

Вариант: **8**. Для схемы на рис. **1** заданы параметры: период дискретизации $T=0.2\,\mathrm{c}$, усиление непрерывной части $K_{CO}=3.4$. Требуется:

- (a) Реализовать схему в среде моделирования (Python/NumPy/Matplotlib). Для дискретного звена использовать экстраполятор нулевого порядка (ZOH).
- (b) Подбором коэффициента обратной связи K_{FB} найти границы устойчивости (нейтральная и колебательная) замкнутой системы. Построить переходные характеристики выхода.
- (с) Сделать вывод о влиянии ZOH на устойчивость замкнутой системы.
- (d) Исследовать влияние K_{FB} на колебательность процесса: найти значения, соответствующие максимальной колебательности и отсутствию колебаний; построить переходные процессы.
- (e) Найти значение K_{FB} , обеспечивающее оптимальный по быстродействию процесс; представить переходные характеристики.

Рисунок 1 — Структурная схема моделирования задания 1 (иллюстрация из методички).

1.2 Математическая модель

Непрерывная часть имеет передаточную функцию вида

$$W_c(s) = \frac{K_{CO}}{s}, \quad K_{CO} = 3.4.$$

При ZOH-дискретизации и замыкании по K_{FB} дискретная динамика для состояния интегратора описывается

$$x_{k+1} = (1 - TK_{CO}K_{FB})x_k + TK_{CO}, y_k = x_k,$$

где собственное число замкнутой системы $a = 1 - TK_{CO}K_{FB}$.

1.3 Ход моделирования

Реализация выполнена в скрипте python/task1.py. Скрипт формирует переходные процессы для различных значений K_{FB} и сохраняет рисунки в папку images/task1/.

(b) Границы устойчивости

Границы по условию |a|=1 дают $K_{FB}=0$ (нейтральная) и $K_{FB}=\frac{2}{TK_{CO}}=2/(0.2\cdot 3.4)\approx 2.941$ (колебательная, a=-1).

Рисунок 2 — Переходная характеристика при нейтральной границе устойчивости $(K_{FB}=0).$

Рисунок 3 — Переходная характеристика при колебательной границе устойчивости ($a=-1,\,K_{FB}\approx 2,941$).

(с) Влияние ZOH

ZOH фиксирует управляющее воздействие на интервале дискретизации, что эквивалентно появлению дискретного собственного числа $a=1-TK_{CO}K_{FB}$. В результате устойчивость определяется положением a внутри единичного круга; чем ближе a к границе -1, тем больше колебательность.

(d) Влияние коэффициента обратной связи

Рисунок 4 — Переходная характеристика без колебаний (0 < a < 1).

Рисунок 5 — Переходная характеристика при максимальной колебательности ($a \approx -0.9$).

Тенденции: при уменьшении a в диапазоне (0,1) процесс становится быстрее и апериодичнее; при отрицательных a появляется колебательность, её амплитуда растёт по мере приближения a к -1.

(е) Оптимальный по быстродействию процесс

Рисунок 6 — Оптимальный по быстродействию переходный процесс (пример a=0,1).

Выбор малого положительного a обеспечивает быстрое затухание, сохраняя апериодический характер ответа и умеренные усилия управления.

1.4 Выводы по заданию 1

ZOH делает замкнутую систему дискретной с собственным числом $a=1-T\ K_{CO}\ K_{FB}$. Границы устойчивости соответствуют |a|=1: $K_{FB}=0$ и $K_{FB}=2/(TK_{CO})$. При 0< a<1 процесс апериодический; при -1< a<0 — колебательный, степень колебательности растёт при приближении к -1. Выбор меньшего a ускоряет процесс, но повышает требования к управляющему воздействию; слишком малые a могут приводить к насыщению исполнительных органов.

2 ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ДИСКРЕТНЫХ СИСТЕМ

2.1 Постановка задачи

Сформировать дискретную модель системы $\ddot{y}=u$ при ZOH-дискретизации: $A_d=\begin{bmatrix}1&T\\0&1\end{bmatrix},\ B_d=\begin{bmatrix}T^2/2\\T\end{bmatrix}$. Задать управление $u(k)=-Kx(k)=-[k_1\ k_2]x(k)$. По пяти наборам желаемых корней из таблицы варианта 8 синтезировать K, рассчитать матрицу $F=A_d-B_dK$ и выполнить моделирование при исходных условиях $y(0)=1,\ \dot{y}(0)=0$.

2.2 Результаты расчётов и моделирования

Расчёты выполнены в скрипте python/task2.py (алгоритм Аккермана). Полученные переходные процессы приведены на рис. 7–11. Итоговые коэффициенты $K = [k_1 \ k_2]$:

Набор	Полюса	k_1	k_2
1	$\{0.8, 0.2\}$	-21.0	-2.9
2	$\{1.0, -0.3\}$	-25.0	-1.0
3	$\{0.6, -0.3\}$	-12.0	-0.3
4	$\{0.7j, -0.7j\}$	12.25	-1.225
5	$\{-0.3+0.8j, -0.3-0.8j\}$	33.25	-0.325

Таблица 1 — Коэффициенты регулятора состояния по пяти наборам желаемых корней.

Качественный анализ:

- Наборы 1 и 3 (действительные полюса в пределах круга): апериодическое затухание; чем меньше модули полюсов, тем быстрее процесс и короче время установления.
- Набор 2 (полюс при 1): крайняя медлительность из □за близости к границе устойчивости; заметное затягивание перехода.

- **Наборы 4 и 5 (комплексные пары)**: колебательный характер; увеличение радиуса или уменьшение затухания приводит к большему перерегулированию и длительным колебаниям.

Рисунок 7 — Набор 1: переходный процесс.

Рисунок 8 — Набор 2: переходный процесс.

Рисунок 9 — Набор 3: переходный процесс.

Рисунок 10 — Набор 4: переходный процесс.

Рисунок 11 — Набор 5: переходный процесс.

Выводы по заданию 2

Размещение корней позволяет напрямую задать желаемые динамические показатели. Действительные корни ближе к нулю дают быстрое апериодическое поведение, комплексные корни — колебательный процесс; приближение полюсов к единичной окружности замедляет систему и повышает чувствительность к возмущениям.

3 ПОСТРОЕНИЕ ДИСКРЕТНЫХ КОМАНДНЫХ ГЕНЕРАТОРОВ

3.1 Генератор гармонического сигнала

Реализован генератор $g(k)=A\sin(kT\omega)$ через вращающуюся систему второго порядка. Такой генератор удобен как эталонное воздействие: частота настраивается параметром ω , дискретизация — периодом T.

Рисунок 12 — Генератор гармонического сигнала для параметров варианта 8.

3.2 Математическая модель возмущения

Вариант 8: $4\sin(2kT) + 1.5\cos(2.5kT)$. Сумма двух автономных осцилляторов позволяет использовать модель как вход «возмущение» в схемах «вход—состояние—выход» для оценки устойчивости/робастности.

Рисунок 13 — Выход дискретной модели возмущения.

Выводы по заданию 3

Построенные генераторы обеспечивают воспроизводимую подачу тестовых сигналов и возмущений для дискретных систем с заданным периодом дискретизации, что позволяет сравнивать поведение различных регуляторов при одинаковых условиях.