

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605)

Modelo Booleano

Profa. Giseli Rabello Lopes

.....

Roteiro

- Introdução
- Modelo booleano
 - Matriz de incidência
 - Índice invertido
 - Otimização de consultas
- Referências

- Modelo de RI simples baseado em:
 - Teoria dos conjuntos
 - Álgebra booleana
- Representações:
 - Documentos (D)
 - Conjuntos de termos de indexação
 - Consultas (Q)
 - Formuladas através de expressões booleanas
 - Termos e conectivos de boole (AND, OR e NOT)
 - Operações sobre conjuntos:
 - Intersecção (AND)
 - União (OR)
 - Negação (NOT)

• Exemplo:

(Information AND Retrieval) OR IR

- Resultado:
 - Critério de decisão binário
 - Função de similaridade:

$$sim(d_{j},q)=$$
 { 1 se d_{j} satisfaz condições da expressão booleana q 0 caso contrário

Matriz de incidências

	doc_1	doc2	doc ₃	doc_j
termo ₁	0	1	0	1
termo ₂	1	1	0	1
termo ₃	0	0	1	1
termo _i	0	0	0	1

- Consulta =
$$termo_1 \land \neg termo_3$$

 $0101 \land \neg 0011$
 $0101 \land 1100 = 0100 (doc_2)$

	Antony and Cleopatra	Julius Caesar	The Thempest	Hamlet	Othello	Macbeth	•••
Antony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

[Manning et al., 2008]

Brutus AND Caesar AND NOT Calpurnia

	Antony and Cleopatra	Julius Caesar	The Thempest	Hamlet	Othello	Macbeth	•••
Antony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

[Manning et al., 2008]

Brutus AND Caesar AND NOT Calpurnia

	Antony and Cleopatra	Julius Caesar	The Thempest	Hamlet	Othello	Macbeth	
Antony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

[Manning et al., 2008]

Brutus AND Caesar AND NOT Calpurnia

	Antony and Cleopatra	Julius Caesar	The Thempest	Hamlet	Othello	Macbeth	
Antony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

[Manning et al., 2008]

Brutus AND Caesar AND NOT Calpurnia

	Antony and Cleopatra	Julius Caesar	The Thempest	Hamlet	Othello	Macbeth	•••
Antony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
mercy	1	0	1	1	1	1	
worser	1	0	1	1	1	0	

[Manning et al., 2008]

Brutus AND Caesar AND NOT Calpurnia

- Matriz de incidências não é adequada para coleções de tamanho médio e grande
 - Matriz muito grande e esparsa
 - Espaço de armazenamento
 - Tempo de processamento

- Indexação
 - Arquivo invertido

 doc_1 doc_2 doc_3 doc_i termo₁ 0 0 0 termo₂ 1 0 1 termo₃ 0 0 0 0 termo_i

- Indexação
 - Arquivo invertido

 doc_1 doc_2 doc_3 doc_i termo₁ 0 0 0 termo, 1 1 termo₃ 0 0 0 termo_i 0

- Indexação
 - Arquivo invertido
 - Consulta = termo₂ \(\text{termo}_3 \)

lista de termos lista de *postings* termo₁ termo₂ Intersecção = j termo₃ termo,

Consulta simples:

Brutus AND Calpurnia

- Resolução:
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de *postings*;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de *postings*;
- 5. Calcular a intersecção entre as duas listas de postings.

Consulta simples:

Brutus AND Calpurnia

- Resolução:
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de *postings*;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de *postings*;
- 5. Calcular a intersecção entre as duas listas de postings.

Consulta simples:

Brutus AND Calpurnia

- Resolução:
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de *postings*;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de *postings*;
- 5. Calcular a intersecção entre as duas listas de postings.

Consulta simples:

Brutus AND Calpurnia

- Resolução:
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de *postings*;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de *postings*;
- 5. Calcular a intersecção entre as duas listas de postings.

Consulta simples:

Brutus AND Calpurnia

- Resolução:
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de *postings*;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de *postings*;
- 5. Calcular a intersecção entre as duas listas de *postings*.

Consulta simples:

Brutus AND Calpurnia

- Resolução:
- 1. Localizar Brutus no Dicionário;
- 2. Recuperar sua lista de *postings*;
- 3. Localizar Calpurnia no Dicionário;
- 4. Recuperar sua lista de *postings*;
- 5. Calcular a intersecção entre as duas listas de postings.

Interseção [Manning et al., 2008]

• Algoritmo para intersecção de duas listas de postings p_1 e p_2

```
INTERSECT(p_1, p_2)

1    answer \leftarrow \langle \rangle

2    while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}

3    do if docID(p_1) = docID(p_2)

4    then ADD(answer, docID(p_1))

5     p_1 \leftarrow next(p_1)

6    p_2 \leftarrow next(p_2)

7    else if docID(p_1) < docID(p_2)

8    then p_1 \leftarrow next(p_1)

9    else p_2 \leftarrow next(p_2)

10    return answer
```

Obs.: Listas de *postings* devem estar ordenadas por *docID*

Exercício

- Considere uma coleção formada pelos documentos a seguir:
 - $-d_1 =$ "um navegador explorou o oceano"
 - $-d_2$ = "mozilla firefox é o melhor navegador"
 - $-d_3$ = "internet explorer versus firefox"
- Construa um índice invertido considerando apenas os termos presentes na consulta abaixo e simule sua execução:
 - q = (navegador AND NOT oceano) OR internet OR firefox

Otimização de consultas

- Objetiva organizar o trabalho de resposta para que a consulta seja realizada no menor tempo e com o menor trabalho possível
 - Tentar executar as operações numa ordem que vise que menores resultados sejam gerados ao longo da execução
 - Identificar a melhor ordem de acesso nas listas de postings

Otimização de consultas [Manning et al., 2008]

- Estimar tamanho do resultado
 - AND (Intersecção)
 - Será no máximo igual ao tamanho da menor lista de postings
 - OR (União)
 - Será no máximo igual a soma do tamanho das duas listas de postings
 - NOT (Negação)
 - Será diferença entre número de documentos da coleção e o tamanho da lista de postings do termo

Otimização de consultas

AND

- Tamanho máximo do resultado é o menor tamanho das listas de *postings*
- Começar com os termos de menor frequência

Consultas conjuntivas [Manning et al., 2008]

 Algoritmo para consultas conjuntivas que retorna o conjunto de documentos contendo cada termo da lista de entrada

Otimização de consultas

OR

- Tamanho máximo do resultado é a soma dos tamanhos das listas de postings
- Começar com operações com menor estimativa

Otimização de consultas

- AND + OR
 - Utilizar heurística mista

- Formalismo claro, mas
 - Todos os documentos retornados possuem a mesma relevância
 - Não há ranking
 - Casamento exato
 - Dificuldade de expressar consultas utilizando operadores booleanos
 - Considerado o mais "fraco" dos modelos clássicos
- Extensão proposta: modelo booleano estendido [Salton, Fox & Wu, 1983]

Exemplo de Aplicação

Exercício

- 1. Considerando os seguintes documentos:
 - 1. xadrez.txt = "O peão e o cavalo são peças de xadrez. O cavalo é o melhor do jogo."
 - 2. jogo.txt = "A jogada envolveu a torre, o peão e o rei."
 - 3. rodeio.txt = "O peão laçou o boi"
 - 4. fazenda.txt = "Cavalo de rodeio!"
 - **5. policia.txt** = "Policiais o jogaram no xadrez."

removendo *stopwords* (lista: a, o, e, é, de, do, no, são) e considerando uma etapa de *stemming* utilizando o *Online Snowball stemmers* (http://mazko.github.io/jssnowball/) para língua portuguesa (language: *portuguese*), represente a coleção utilizando:

- a) Matriz de incidências;
- b) Índice baseado em arquivo invertido.
- 2. Realize a consulta booleana (cavalo OR boi) AND NOT peão para cada representação anterior.
- 3. Como pode ser otimizada a consulta (peão OR cavalo OR torre) AND (jogo OR xadrez)? Realize as operações passo a passo e indique as heurísticas utilizadas.

Referências

 Baeza-Yates, R.; Ribeiro-Neto, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. 2 ed. Bookman, 2013.

 Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval. Wokingham, UK: Addison-Wesley, 2 ed., 2011.

 Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.

Online edition 2009: http://nlp.stanford.edu/IR-book/

Referências

 Salton, G.; Fox, E. A.; Wu, H. Extended Boolean information retrieval. Communications of the ACM, New York, v.26, n.11, p. 1022-1036, Nov. 1983.

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605) Dúvidas?

Profa. Giseli Rabello Lopes giseli@dcc.ufrj.br CCMN - DCC - Sala E-2012

