### Autoencoders



#### **GRAHAM TAYLOR**

VECTOR INSTITUTE

SCHOOL OF ENGINEERING UNIVERSITY OF GUELPH

CANADIAN INSTITUTE FOR ADVANCED RESEARCH



## Principal Components Analysis

- PCA works well when the data is near a linear manifold in highdimensional space
- Project the data onto this subspace spanned by principal components
- In dimensions orthogonal to the subspace the data has low variance



# An inefficient way to fit PCA

- Train a neural network with a "bottleneck" hidden layer
- Try to make the output the same as the input



- If the hidden and output layers are linear, and we minimize squared reconstruction error:
  - The M hidden units will span the same space as the first M principal components
  - But their weight vectors will not be orthogonal
  - And they will have approximately equal variance

# Why fit PCA inefficiently?



- With nonlinear layers before and after the code, it should be possible to represent data that lies on or near a nonlinear manifold
  - the encoder maps from data space to co-ordinates on the manifold
  - the decoder does the inverse transformation
- The encoder/decoder can be rich, multi-layer functions

### Auto-encoder



- Feed-forward architecture
- Trained to minimize reconstruction error
  - bottleneck or regularization essential

### Auto-encoder



- Feed-forward architecture
- Trained to minimize reconstruction error
  - bottleneck or regularization essential

Example: real-valued data

#### Encoder

$$h_i = \sigma\left(\sum_j W_{i,j} x_j\right)$$

#### Decoder

$$r_j = \sum_i W_{i,j} h_i$$

#### Error

$$L = ||\boldsymbol{r} - \boldsymbol{x}||^2$$

## Autoencoder: Example (MNIST)



### Autoencoder: Filters

