Wirtschaftsinformatik II – Stuckenschmidt/Meilicke

Syntax und Semantik: Aussagenlogik

Zentrale Konzepte und Einschränkungen

AUSSAGENLOGIK GRUNDLAGEN

Logische Sprachen

Aussagenlogik

- $p \rightarrow (q \lor \neg q)$
- Kräht der Hahn auf dem Mist ändert sich's Wetter oder's bleibt wie es ist
- Beschreibungslogik

- $-M \sqsubseteq S$
- Alle Menschen sind sterblich
- Prädikatenlogik
 - $\quad \forall x \ M(x) \to S(x)$
 - Alle Menschen sind sterblich

Syntax und Semantik

- Die Syntax einer Logik bestimmt, wie sich komplexe Ausdrücke aus einfachen und komplexen Ausdrücken zusammensetzen
 - Terme und Formeln, Klammersetzung
 - Die Syntax einer Logik entspricht der Grammatik einer Sprache
- Die Semantik einer Logik erklärt, wie sich die Bedeutung komplexer Ausdrücke aus der Bedeutung ihrer Bestandteile ergibt
 - Interpretation, Modell, Erfüllbarkeit, Folgerung, ...
- Syntax und Semantik müssen für jede Logik spezifiziert werden
 - Im folgenden für Aussagenlogik

Aussagenlogik Prinzip

- Aussagenlogik (propositional logic) befasst sich mit damit wie komplexe Aussagen von einfachen Aussagen (Propositionen) abhängen
- Einfache Aussagen werden dabei nicht weiter zerlegt
 - Ein Satz wie "IBM ist ein IT Unternehmen" wird als eine ausagenlogische Variable, z.B. als die Proposition α aufgefasst
 - Die Proposition a hat den Wert wahr (1) oder falsch (0)
 - Deshalb nennt man eine Proposition auch Variable!
- Komplexe Zusammenhänge durch logische Junktoren
 - $\neg (a \land b) \lor (c \leftrightarrow d)$

Aussagenlogik Bausteine

- Aussagelogische Variablen (Propositionen)
 - -a,b,c,...
- Junktoren

$$-\rightarrow$$
, \vee , \wedge , \leftrightarrow , \neg

- Klammern
 - **–** (,)

Syntax

- Eine aussagenlogische Variable ist eine aussagenlogische Formel
- Wenn lpha und eta Formeln sind, dann sind auch

- Eine Proposition oder deren Negation nennt man Literal
 - Ein Literal ohne Negation nennt man positiv (z.B. a)
 - Ein Literal mit Negation nennt man negativ (z.B. $\neg a$)

Formeln.

Klammerersparnisregeln

- Die äußeren Klammern einer Formel können weggelassen werden
 - D.h. statt $((a \land b) \leftrightarrow \neg c)$ kann man auch schreiben $(a \land b) \leftrightarrow \neg c$
- Konjunktion und Disjunktion bindet stärker als Subjunktion und Bisubjunktion
 - D.h. statt $(a \land b) \leftrightarrow \neg c$ kann man auch schreiben $a \land b \leftrightarrow \neg c$
- Negation bindet nur die Formel, die direkt neben ihr steht
 - $\neg a \lor b$ ist <u>nicht</u> dasselbe wie $\neg (a \lor b)$
 - $\neg a \lor b$ ist dasselbe wie $(\neg a) \lor b$

Klammerersparnisregeln

- Auch wenn wir noch nicht definiert haben, was Äquivalenz bedeutet, gilt ...
- Da $(\alpha \land \beta) \land \gamma$ äquivalent ist zu $\alpha \land (\beta \land \gamma)$, können die Klammern wegelassen werden
 - Gilt im allgemeinen für eine Konjunktion von beliebig vielen Formeln (Rekursion)
 - Für bestimmte Algorithmen (z.B. im Tableauverfahren) wird in solchen Fällen eine Klammerung vorausgesetzt, die dann beliebig gewählt werden kann
- Dasselbe gilt f
 ür die Disjunktion (oben ∧ ersetzen durch ∨)

Kleine Übung

Welche Klammern kann man weglassen?

1.
$$(((a \land b) \lor c) \rightarrow (a \lor b))$$

2.
$$\left(\left(\left((a \land b) \lor c\right) \to a\right) \lor b\right)$$

3.
$$(((a \land b) \land d) \land a)$$

 Achtung: Wir haben keine Regeln definiert, die aussagen, ob A oder V stärker bindet, diesbezüglich können wir also keine Klammern weglassen

Syntax

- Alles, was nach diesen Regeln gebildet wird, ist eine aussagenlogische Formel
 - D.h. die letzten Folien spezifizieren die Syntax der Aussagenlogik vollständig (= 2 Folien ohne Klammerersparnisregeln)
- Achtung: Die Syntax anderer Logiken ist deutlich komplizierter
 - Insbesondere kommen dann Regeln dazu, bei denen es darum geht, wie Formeln aus Bestandteilen zusammengesetzt sind, die selbst keine Formeln sind

Nochmal: Syntax und Semantik

- Die Syntax einer Logik bestimmt wie sich komplexe Ausdrücke aus einfachen und komplexen Ausdrücken zusammensetzen
 - Terme und Formeln, Klammersetzung
 - Die Syntax einer Logik entspricht der Grammatik einer Sprache
- Die Semantik einer Logik erklärt, wie sich die Bedeutung komplexer Ausdrücke aus der Bedeutung ihrer Bestandteile ergibt
 - Interpretation, Modell, Erfüllbarkeit, Folgerung, ...

- Es sei Σ eine Menge von aussagenlogischen Variablen
- Eine Interpretation I für Σ ist eine Abbildung, die jedes $x \in \Sigma$ auf falsch (= f) oder wahr (= w) abbildet
 - Alternativ kann man die Wahrheitswerte auch mittels 0 (falsch) und 1 (wahr) benennen
 - Beispiel: $\Sigma = \{a, b\}$, dann ist durch I(a) = f und I(b) = w eine Interpretation für Σ definiert
- Die Semantik legt fest, worauf eine Interpretation I für Σ eine aussagenlogische Formel abbildet, die aus den Elementen in Σ gebildet ist

• Sind α und β Formeln, so gilt

$$-I(\alpha \land \beta) = w \qquad \text{g.d.w.} \quad I(\alpha) = w, \ I(\beta) = w$$

$$-I(\alpha \lor \beta) = f \qquad \text{g.d.w} \quad I(\alpha) = f, \ I(\beta) = f$$

$$-I(\alpha \to \beta) = f \qquad \text{g.d.w} \quad I(\alpha) = w, \ I(\beta) = f$$

$$-I(\alpha \leftrightarrow \beta) = w \qquad \text{g.d.w} \quad I(\alpha) = I(\beta)$$

$$-I(\neg \alpha) = w \qquad \text{g.d.w} \quad I(\alpha) = f$$

 Dies kann man auch mittels Wahrheitstafeln/tabellen veranschaulichen

α	β	α Λ β
f	f	f
f	W	f
W	f	f
W	W	W

α	β	α ∨ β
f	f	f
f	W	W
W	f	W
W	W	W

α	β	$\alpha \leftrightarrow \beta$
f	f	W
f	W	f
W	f	f
W	W	W

α	β	$\alpha \rightarrow \beta$
f	f	W
f	W	W
W	f	f
W	W	W

α	$\neg \alpha$
f	W
W	f

- Wenn für eine Formel α und eine Interpretation I gilt $I(\alpha) = w$, dann sagt man auch dass I ein Modell für α ist
- Wenn α ein Modell hat (d.h., wenn es eine Interpretation gibt, die ein Modell ist), dann sagt man auch, dass α erfüllbar ist
- Wenn jede Interpretation für α ein Modell ist, dann ist α eine Tautologie (man sagt auch dass α gültig ist)
- Wenn α kein Modell hat, dann nennt man α unerfüllbar oder eine Kontradiktion

- Zwei Formeln α und β sind äquivalent, wenn jedes Modell für α auch ein Modell für β ist, und umgekehrt
- Eine Formel β folgt aus einer Formel α genau dann, wenn jedes Modell für α auch ein Modell für β ist
- Wenn β aus α folgt, dann schreibt man auch $\alpha \models \beta$

Hahn auf dem Mist

- Ein Beispiel für eine Tautologie haben wir bereits kennengelernt
 - Kräht der Hahn auf dem Mist ändert sich's Wetter oder's bleibt wie es ist.
 - Übersetzung: p → $(q \lor \neg q)$

p	q	$p \to (q \vee \neg q)$
f	f	w w
f	W	w w
W	f	w w
W	W	w w

Hahn auf dem Mist

- Ein Beispiel für eine Tautologie haben wir bereits kennengelernt
 - Kräht der Hahn auf dem Mist ändert sich's Wetter oder's bleibt wie es ist.
 - Übersetzung: p → $(q \lor \neg q)$
- Man kann Erfüllbarkeit und ähnliche Begriffe mit SAT Solvern überprüfen (allgemein: Reasoner)
 - http://fmv.jku.at/limboole/ (einfach zu verwenden)
 - Kleine Demo ("valid = gültig = Tautologie")!

Minesweeper

- Auch komplexe Sachverhalte können mit Aussagenlogik ausgedrückt werden
 - Solange eine feste Anzahl an endlich vielen
 Objekten beschrieben wird
- Minesweeper als Beispiel
 - Programmierprojekt in der Vorlesung "Künstliche Intelligenz"
 - Die Zahl auf einem Feld kann man ausdrücken als Disjunktion von Konjunktionen (DNF)

Beispiel

Positives Literal bedeutet, dass auf dem entsprechenden Feld eine Mine ist

- Aufgedeckte "1"
 - $(a \land \neg b) \lor (\neg a \land b)$
- Aufgedeckte "4"
 - $\quad (a \land b \land c \land d \land \neg e) \lor (a \land b \land c \land \neg d \land e) \lor \dots$
- Aufgedeckte "2"
 - $(d \wedge e)$
- Alles zusammen in eine Wissensbasis KB stecken, dann gilt z.B. $KB \models c$

Mit Aussagenlogik kann man nicht nur Schaltungen designen!

Wissensbasis

- Der Folgerungsbegriff ist ein Begriff, der bei (fast) jeder Logik im Zentrum steht
- Oft stellt sich die Frage, ob eine Aussage aus einer Menge gegebener Aussagen (Beobachtungen + allgemeines Wissen) folgt
 - Zum Beispiel, ob im Rahmen eines Arguments die Konlusion aus den Prämissen folgt (siehe nächste Folie)
 - Oder ob aus einer umfangreichen Wissenbasis KB = $\{a_1, \dots, a_n\}$ folgt, dass H.Schmidt ein Experte im Gebiet XML Datenbanken ist
- In dem Fall ist mit $KB \models \alpha$ gemeint, dass α aus der Konjunktion $a_1 \land ... \land a_n$ folgt

Syllogismus

Alle Menschen sind sterblich Sokrates ist ein Mensch	
Sokrates ist sterblich	С

Edgetett Stew

- Einfache Aussagen werden nicht weiter zerlegt
 - Damit werden viele eigentlich einfache logische Zusammenhänge unbegründbar
 - Idee: Logik muss auch in der Lage sein "innere Zusammenhänge" von Sätzen abzubilden
 - Beschreibungslogik und Prädikatenlogik sind dazu in der Lage!

Konzepthierarchie / komplexe Strukturen

 Viele Modellierungsaufgaben können daher nur ungenügend mit Aussagenlogik gelöst werden

Konzepthierarchie / komplexe Strukturen

- ENDE von Teil 1:
 - Modellieren einer Domänen-Ontologie mit dem Tool Protege

Zusammenfassung

- Jede Logik benötigt Syntax und Semantik
 - Für Aussagenlogik ist beides sehr einfach und überschaubar
 - Zentrale Begriffe sind Interpretation und Modell
- Komplexe Modellierungsaufgaben benötigen andere Logiken
 - Insbesondere ist es notwendig, die Bestandteile von Sätzen explizit darstellen zu können
 - Inferenzmechanismen werden m\u00e4chtiger, aber auch komplexer und teurer (Laufzeit)
 - Bergiffshierarchien können erstellt werden (schließt auch große Teile von UML ein)

Ausblick

- Inferenz für Aussagenlogik
 - Direktes und indirektes Verfahren
 - Im Kontext des indirekten Verfahrens: Tableauverfahren um Erfüllbarkeit zu überprüfen

Danach geht es weiter mit einer ausdruckstärkeren Logik

