

Abdullah Gül University

Department of Electrical and Electronics Engineering

Pre-Lab 4

RLC Circuit Phasor Analysis

Barış DEMİRCİ agu@338.rocks

December 25, 2024

Contents

	Overview
	1.1 Objective
2	Procedure
	2.1 Analytical Calculations in Phasor Domain
	2.1.1 Determine the Capacitor Value
	2.1.2 Calculating Voltage and Current Values
	2.1 Analytical Calculations in Phasor Domain
3	Discussion
	3.1 Analytical Results
	3.1 Analytical Results
4	Conclusion

Page 2 EE212

Overview

1.1 Objective

This pre-lab report focuses on analyzing and simulating an RLC circuit, as shown in Figure 1. The circuit is described by the equation $V_R + V_L = 2\cos(\omega t - 7.5)$ with a frequency of f = 1kHz, $\omega = 2\pi \times 10^3 \frac{\rm rad}{\rm s}$. The objectives include calculating the capacitor value C and determining the phasor-domain voltage and current values $(V_C, I_i, {\rm and} I_o)$. Additionally, the circuit will be simulated in LTspice to observe the waveforms for voltages V_C and V_L , as well as currents I_i and I_o .

Procedure

2.1 Analytical Calculations in Phasor Domain

2.1.1 Determine the Capacitor Value

Figure 2.1: RLC Circuit

Transforming this circuit into the phasor domain, we have the following circuit:

Figure 2.2: RLC Circuit Phasor Domain

Applying nodal analysis at node N_1 :

$$\frac{V_S - N_1}{1.5} + \frac{N_1}{2.2 + j2\pi \times 10^{-1}} - \frac{N_1}{12 + \frac{-j}{2000\pi C}} = 0$$
 (2.1)

 V_S and N_1 are given as $V_S = 5 \angle -15^\circ$ and $N_1 = 2 \angle -7.5^\circ$.

Page 4 EE212

Solving for C:

$$\frac{5\angle -15^{\circ} - 2\angle -7.5^{\circ}}{1.5} + \frac{2\angle -7.5^{\circ}}{2.2 + j2\pi \times 10^{-1}} - \frac{2\angle -7.5^{\circ}}{12 + \frac{-j}{2000\pi C}} = 0$$
 (2.2)

$$\frac{5\angle -15^{\circ} - 2\angle -7.5^{\circ}}{1.5} + \frac{2\angle -7.5^{\circ}}{2.2 + j2\pi \times 10^{-1}} = \frac{2\angle -7.5^{\circ}}{12 + \frac{-j}{2000\pi C}}$$
(2.3)

$$2.0189\angle -19.9451^{\circ} + 0.8741\angle -23.4393^{\circ} = \frac{2\angle -7.5^{\circ}}{12 + \frac{-j}{2000\pi C}}$$
(2.4)

$$2.8919\angle -21.0007^{\circ} = \frac{2\angle -7.5^{\circ}}{12 + \frac{-j}{2000\pi C}}$$
 (2.5)

$$\frac{-j}{2000\pi C} = \frac{2\angle -7.5^{\circ}}{2.8919\angle -21.0007^{\circ}} - 12 = 11.3287\angle 179.1834^{\circ}$$
 (2.6)

$$C = \frac{-j}{2000\pi \times 11.3287 \angle 179.1834^{\circ}} = 1.4049 \angle 90.8166^{\circ} = -200.2236 \times 10^{-9} + j14.0474 \times 10^{-6}$$
(2.7)

From equation 2.7, we have $C = -200.2236 \times 10^{-9} + j14.0474 \times 10^{-6}$, which means there should be a capacitor with a real value which is impossible. Therefore, we can add a $200.2236 \times 10^{-9}\Omega$ resistor in series to the capacitor to make it only capacitive. After that, the capacitor value is $j14.0474\mu\Omega$.

2.1.2 Calculating Voltage and Current Values

After finding the capacitor value, we know everything about the circuit. We can calculate the Voltage and current values as follows:

$$I_O = \frac{2\angle -7.5^{\circ}}{2.2 + j2\pi \times 10^{-1}} = 0.802\angle -3.4771^{\circ}A$$
 (2.8)

$$I_i = \frac{5\angle -15^\circ - 2\angle -7.5^\circ}{1.5} = 2.0189\angle -19.9451^\circ A \tag{2.9}$$

$$I_C = I_i - I_O = 1.2703 \angle -30.255^{\circ} A$$
 (2.10)

And from the current values, we can calculate the voltage values:

$$V_R = I_O \times 2.2 = 1.7644 \angle -3.4771^{\circ}V$$
 (2.11)

$$V_L = I_O \times j2\pi \times 10^{-1} = 0.50391 \angle 86.5229^{\circ}V$$
 (2.12)

$$V_C = I_C \times j14.0474\mu = 1.7844 \angle 59.745^{\circ}V \tag{2.13}$$

Converting the phasor voltages and currents to time domain:

$$v_R(t) = 1.7644\cos(2000\pi t - 3.4771^\circ)V \tag{2.14}$$

$$v_L(t) = 0.50391\cos(2000\pi t + 86.5229^\circ)V \tag{2.15}$$

$$v_C(t) = 1.7844\cos(2000\pi t + 59.745^\circ)V \tag{2.16}$$

$$i_O(t) = 0.802\cos(2000\pi t - 3.4771^\circ)A$$
 (2.17)

$$i_i(t) = 2.0189\cos(2000\pi t - 19.9451^\circ)A$$
 (2.18)

$$i_C(t) = 1.2703\cos(2000\pi t - 30.255^\circ)A$$
 (2.19)

Page 6 EE212

2.2 SPICE Simulation

Figure 2.3: SPICE Voltage Simulation

Figure 2.4: SPICE Current Simulation

Comparing the SPICE simulation results with the analytical calculations, everything seems to be correct.

Discussion

3.1 Analytical Results

The calculated capacitor value, voltage, and currents and are based on phasor-domain principles. These results highlight the phase differences and magnitude relationships inherent in RLC circuits operating at a specific frequency.

3.2 Simulation Analysis

The SPICE simulation provides a practical visualization of the circuit's behavior. Waveforms for and demonstrate the phase shifts due to the reactive components, while and reflect the current distribution through the circuit.

Page 8 EE212

Conclusion

This pre-lab exercise has provided a comprehensive approach to understanding RLC circuit dynamics. By combining phasor-domain analysis with SPICE simulations, we have:

- Determined the capacitor value required for circuit functionality.
- Calculated key voltage and current parameters.
- Visualized the circuit's behavior through simulation.

These steps ensure **readiness for the lab experiment** and a deeper understanding of the theoretical and practical considerations of RLC circuits.