Notes on Basic Mathematics

Brandon Koepke

April 27, 2015

1 Numbers

1.1 The Integers

Definition 1.1. Positive Integers \mathbb{Z}^+ : 1,2,3,4,...

Definition 1.2. Origin: 0

Definition 1.3. Natural Numbers \mathbb{N}^+ : 0,1,2,3,...

Definition 1.4. Negative Integers \mathbb{Z}^- : -1,-2,-3,...

Theorem 1.1. 0+a=a+0=a

Theorem 1.2. a+(-a)=-a+a=0

Definition 1.5. Additive Inverse of a: -a

Addition (1.1). Commutativity: $\forall a,b \in \mathbb{Z}, a+b=b+a$

Addition (1.2). Associativity: $\forall a,b,c \in \mathbb{Z}, (a+b)+c=a+(b+c)$

Theorem 1.3. $\forall a,b \in \mathbb{Z}, a+b=0 \Longrightarrow (b=-a) \land (a=-b)$

Theorem 1.4. $\forall a \in \mathbb{Z}, a = -(-a)$

Theorem 1.5. $\forall a,b \in \mathbb{Z}, -(a+b) = -a-b$

Addition (1.3). $\forall a,b \in \mathbb{Z}^+ \Longrightarrow a+b \in \mathbb{Z}^+$

Addition (1.4). $\forall a,b \in \mathbb{Z}^- \Longrightarrow a+b \in \mathbb{Z}^-$

1.2 Rules for Multiplication

Multiplication 1.1. Commutativity: $\forall a,b \in \mathbb{Z},ab=ba$

Multiplication 1.2. Associativity: $\forall a,b,c \in \mathbb{Z},(ab)c=a(bc)$

Theorem 1.6. $\forall a \in \mathbb{Z}, 1a = a \text{ and } \forall a \in \mathbb{Z}, 0a = 0$

Multiplication 1.3. Distributivity

 $\forall a,b,c \in \mathbb{Z}, a(b+c) = ab+ac$

and

 $\forall a,b,c \in \mathbb{Z}, (b+c)a = ba+bc$

Theorem 1.7. $\forall a \in \mathbb{Z}, (-1)a = -a$

Theorem 1.8. $\forall a,b \in \mathbb{Z}, -(ab) = (-a)b$

Theorem 1.9. $\forall a,b \in \mathbb{Z}, -(ab) = a(-b)$

Theorem 1.10. $\forall a,b \in \mathbb{Z}, (-a)(-b) = ab$

Definition 1.6. *n*-th power of a is $a^n = aaa...a$ (n times)

Theorem 1.11. $\forall m,n \in \mathbb{Z}^+, a^{m+n} = a^m a^n$

Theorem 1.12. $\forall m, n \in \mathbb{Z}^+, (a^m)^n = a^{mn}$

Example 1.1.

$$(ab)^n = a^n b^n$$

$$(ab)^n = abab...ab$$

$$= aa...abb...b$$

$$= a^n b^n$$

Multiplication 1.4.

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$
 $(a+b)(a-b) = a^2 - b^2$

1.3 Even and Odd Integers; Divisibility

Definition 1.7. $\forall n \in \mathbb{Z}^+, \exists m \in \mathbb{Z}^+, n = 2m \implies n \text{ is even}$

Definition 1.8. $\forall n \in \mathbb{Z}, \exists m \in \mathbb{N}^+ \text{ (including 0)}, n = 2m+1 \Longrightarrow n \text{ is odd}$

Theorem 1.13. Let E(x) be the predicate for x is even and let O(x) be the predicate for x is odd.

$$\forall a,b \in \mathbb{Z}^+, E(a) \land E(b) \Longrightarrow E(a+b)$$

$$\forall a,b \in \mathbb{Z}^+, E(a) \land O(b) \Longrightarrow O(a+b)$$

$$\forall a,b \in \mathbb{Z}^+, O(a) \land E(b) \Longrightarrow O(a+b)$$

$$\forall a,b \in \mathbb{Z}^+, O(a) \land O(b) \Longrightarrow E(a+b)$$

Theorem 1.14.

$$\forall a \in \mathbb{Z}^+, E(a) \Longrightarrow E(a^2)$$

 $\forall a \in \mathbb{Z}^+, O(a) \Longrightarrow O(a^2)$

Corallary 1.1.

$$\forall a \in \mathbb{Z}^+, E(a^2) \Longrightarrow E(a)$$

 $\forall a \in \mathbb{Z}^+, O(a^2) \Longrightarrow O(a)$

Definition 1.9. d divides n or n is divisible by d if n = dk for some integer k

1.4 Rational Numbers

Definition 1.10. Rational Number \mathbb{Q} : can be written in the form $\frac{m}{n}$, where $m,n\in\mathbb{Z}$ and $n\neq 0$

Rational (1.1). Rule for cross-multiplying.

$$\forall m, n, r, s \in \mathbb{Q}, n \neq 0, s \neq 0 \Longrightarrow \frac{m}{n} = \frac{r}{s} \Longleftrightarrow ms = rn$$

Rational (1.2). Cancellation rule for fractions

$$\forall a, m, n \in \mathbb{Q}, a \neq 0, n \neq 0 \Longrightarrow \frac{am}{an} = \frac{m}{n}$$

Theorem 1.15. Any positive rational number has an expression as a fraction in lowest form

Rational (1.3). Addition rule for rational numbers $\forall a,b,d \in \mathbb{Q}, d \neq 0 \Longrightarrow \frac{a}{d} + \frac{b}{d} = \frac{a+b}{d}$

Rational (1.4). General case of addition rule for rational numbers

$$\forall m, n, r, s \in \mathbb{Q}, n \neq 0, s \neq 0 \Longrightarrow \frac{m}{n} + \frac{r}{s} = \frac{ms + rn}{ns}$$

Corallary 1.2. The sum of positive rational numbers is also positive

Corallary 1.3. $\forall a \in \mathbb{Q} \Longrightarrow 0 + a = a + 0 = a$

Corallary 1.4. Addition of rational numbers satisfies the properties of commutativity and associativity

Rational (1.5). Multiplication of rational numbers

$$\forall m, n, r, s \in \mathbb{Q}, n \neq 0, s \neq 0 \Longrightarrow \frac{m}{n} * \frac{r}{s} = \frac{mr}{ns}$$

Corallary 1.5.
$$\forall k \in \mathbb{Q}^+, n \neq 0 \Longrightarrow a^k = \left(\frac{m}{n}\right)^k = \frac{m^k}{n^k}$$

Theorem 1.16. There is no positive rational number whose square is 2

Definition 1.11. Irrational: a number which is not rational

Corallary 1.6. For any rational number a we have 1a = a and 0a = 0. Furthermore, multiplication is associative, commutative, and distributive with respect to addition.

Rational (1.6). Rational numbers satisfy the property $\forall a \in \mathbb{Q}, a \neq 0 \Longrightarrow \exists a^{-1}, a^{-1}a = aa^{-1} = 1$

Rational (1.7). Cross-multiplication

$$\forall a,b,c,d \in \mathbb{Q}, b \neq 0, d \neq 0 \Longrightarrow \frac{a}{b} = \frac{c}{d}, ad = bc, ad = bc, \frac{a}{b} = \frac{c}{d}$$

Rational (1.8). Cancellation law for multiplication $\forall a,b,c \in \mathbb{Q} a \neq 0, ab = ac \Longrightarrow b = c$

Rational (1.9). Common denominator

$$\forall a,\!b,\!c,\!d\!\in\!\mathbb{Q},\!b\!\neq\!0,\!d\!\neq\!0\Longrightarrow\frac{a}{b}+\frac{c}{d}\!=\!\frac{ad\!+\!bc}{bd}$$

2 Chapter 2: Linear Equations

2.1 Equations In Two Unknowns

Linear Equations (2.1). General form for solving systems of linear equations in two unknowns.

$$\forall a,b,c,d,u,v \in \mathbb{R}, ab-bc \neq 0, ax+by=u, cx+dy=v$$

$$\implies x = \frac{du - bv}{ad - bc}, y = \frac{av - cu}{ad - bc}$$

3 Chapter 3: Real Numbers

3.1 Addition and Multiplication

Addition (3.1). Addition is commutative and associative, meaning that

$$\forall a,b,c \in \mathbb{R}, a+b=b+a, a+(b+c)=(a+b)+c$$

Furthermore

$$0 + a = a$$

To each real number a there is an associated a denoted by -a such that

$$a + (-a) = 0$$

Multiplication 3.1. Properties of multiplication, multiplication is commutative and associative, meaning that

$$\forall a,b,c \in \mathbb{R}, ab = ba, a(bc) = (ab)c$$

Furthermore

$$1a = a, 0a = 0$$

Multiplication is distributive with respect to addition meaning that

$$a(b+c)=ab+ac,(b+c)a=ba+ca$$

Corallary 3.1. For real numbers

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

Corallary 3.2. There is also the existence of a multiplicative inverse

$$\forall a \in \mathbb{R}, a \neq 0 \exists a^{-1} \mid a^{-1}a = aa^{-1} = 1$$

3.2 Real Numbers: Positivity

Positivity (3.1). If a,b are positive then so are the **Inequalities** product ab and the sum a+b

Positivity (3.2). If $a \in \mathbb{R}$ then either a is positive or a = 0 or -a is positive, and these possibilities are mutually exclusive.

Positivity (3.3). If a is positive and b is negative, **Inequalities** then ab is negative

(3.4). If a is negative and b is negative, then ab is positive

Positivity (3.5). If a is positive, then 1/a is positive

Positivity (3.6). If a is negative, then 1/a is negative

Corallary 3.3. $\forall a \in \mathbb{R}. a > 0 \Longrightarrow \exists b \in \mathbb{R} \mid b^2 = a$

Corallary 3.4. $\forall x,y \in \mathbb{R}, x^2 = y^2 \Longrightarrow x = y \text{ or } x - y$

Definition 3.1. Absolute value of x is $|x| = \sqrt{x^2}$

Powers and Roots

Definition 3.2. The product of a with itself n times is $\forall n \in \mathbb{Z}^+ a \in \mathbb{R}a^n$

Corallary 3.5. $\forall m, n \in \mathbb{Z}^+ a^{m+n} = a^m a^n$

Corallary 3.6. $\forall a \in \mathbb{R}^+, n \in \mathbb{Z}^+ \exists r \in \mathbb{R}^+ \mid r^n = a$

Definition 3.3. The n^{th} root of a is $a^{1/n}$ or $\sqrt[n]{a}$

Powers (3.1). $\forall a,b \in \mathbb{R}^+ (ab)^{1/n} = a^{1/n}b^{1/n}$

Corallary 3.7. Let a be a positive number. To each rational number x we can associate a positive number denoted by a^x , which is the n^{th} power of a when x is a positive integer n, the n^{th} root of a when x=1/n, and satisfying the following conditions:

Powers (3.2). $\forall x,y \in \mathbb{O}a^{x+y} = a^x a^y$

Powers (3.3). $\forall x,y \in \mathbb{Q}(a^x)^y = a^{xy}$

Powers (3.4). $\forall a,b \in \mathbb{R}^+(ab)^x = a^x b^x$

Corallary 3.8. $\forall a \in \mathbb{Q}a^0 = 1$

Corallary 3.9. $\forall a \in \mathbb{R} x \in \mathbb{R}^+ a^{-x} = \frac{1}{a^x}$

Corallary 3.10. $\forall a \in \mathbb{R}m, n \in \mathbb{Z}^+ a^{m/n} = (a^m)^{1/n} =$ $(a^{1/n})^m$

Inequalities3.4

 $(3.1). \forall a \in \mathbb{R}^+ \Longrightarrow a > 0$

Inequalities(3.2). $\forall a,b \in \mathbb{R}a - b > 0 \Longrightarrow a > b$

Inequalities (3.3). $\forall a \in \mathbb{R} - a > 0 \Longrightarrow a < 0$

Inequalities $(3.4). \forall a,b \in \mathbb{R} a > b \Longrightarrow b < a$

(3.5). $\forall a,b \in \mathbb{R}a > b \Longrightarrow a > b \lor a = b$ *Inequalities*

(3.6). $\forall a,b,c \in \mathbb{R} a > b \land b > c \Longrightarrow a > c$

Inequalities (3.7). $\forall a,b,c \in \mathbb{R} a > b \land c > 0 \Longrightarrow ac > bc$

Inequalities (3.8). $\forall a,b,c \in \mathbb{R}a > b \land c < 0 \Longrightarrow ac < bc$

Definition 3.4. open interval: $\forall x, a, b \in \mathbb{R} \mid a < x < b$

Definition 3.5. closed interval: $\forall x, a, b \in \mathbb{R} \mid a < x < b$

Definition 3.6. half open or half closed: $\forall x.a.b \in \mathbb{R}$ $a \le x < b, a < x \le b$

Definition 3.7. infinite interval: $\forall x, a \in \mathbb{R} \mid x < a \lor x > a$ $a \lor x \le a \lor x \ge a$

Chapter 4: Quadratic Equations

Quadratic(4.1). Let a,b,c be real numbers and $a\neq 0$. The solutions of the quadratic equation $ax^{2}+bx+c=0$

are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

provided that $b^2 - 4ac$ is positive or 0. If $b^2 - 4ac$ is negative, then the equation has no solution in the real numbers.

5 Chapter 5: Distance and Angles

Distance

The distance between points P,Q in the plane by d(P,Q). It is a number which satisfies the following properties.

 $(5.1). \forall P,Q:d(P,Q) \iff P=Q$ **Distance**

 $(5.2). \forall P,Q:d(P,Q)=d(Q,P)$ Distance

Distance (5.3). Triangle inequality: $\forall P,Q,M:d(P,M) \leq d(P,Q) + d(Q,M)$

Definition 5.1. We assume that two distinct points P,Q lie on only one line denoted L_{PQ}

Definition 5.2. Segment: the portion of the line between two points P,Q, denoted by \overline{PQ} . If units of measure are selected then the length of the segment is equal to the distance d(P,Q)

 $(5.1). \ \forall P, Q, M : d(P, M) =$ Seament $d(P,Q) + d(Q,M) \iff Q \in \overline{PQ}$

Segment (5.2). $\forall P, M \mid d = d(P, M) : 0 < c < d \Longrightarrow$ $\exists Q \in \overline{PM} \mid d(P,Q) = c$

Figure 1: Triangle inequality

Segment between P and Q

Figure 2: Segment

Figure 3: Line

Figure 4: PQM Angle

Figure 5: Circle

Figure 6: Disc

5.2 Angles

Corallary 5.1. $\forall (P,Q,P\neq Q)\exists !L_{PQ}$

Corallary 5.2. $\forall L_1, L_2, \neg(L_1 || L_2) \exists ! P \mid (P \in L_1) \land (P \in L_2)$

Corallary 5.3. $\forall L_1, P \exists ! L_2 | (P \in L_2) \land (L_1 \parallel L_2)$

Corallary 5.4. $\forall L_1, L_2, L_3, (L_1 \parallel L_2) \land (L_2 \parallel L_3) \Longrightarrow (L_1 \parallel L_3)$

Corallary 5.5. $\forall L_1, P \exists ! L_2 \mid (P \in L_2) \land (L_1 \perp L_2)$

Corallary 5.6. $\forall L_1, L_2, L_3, (L_1 \perp L_2) \land (L_2 \parallel L_3) \Longrightarrow (L_1 \perp L_3)$

Corallary 5.7. $\forall L_1, L_2, L_3, (L_1 \perp L_2) \land (L_2 \perp L_3) \Longrightarrow (L_1 \parallel L_3)$

Definition 5.3. Ray: a ray is a line between two points P,Q such that the ray is composed of all possible points extending past Q infinitely on one side. A ray is determined by it's starting point and direction.

Figure 7: Ray

Definition 5.4. Vertex: the starting point of the ray.

Definition 5.5. Angle: The portion enclosed by two rays R_{PQ} and R_{PM} . The angle must be given additional information in order to determine which side of the resulting enclosure should be considered as the angle.

Figure 8: Angle

Definition 5.6. We shall determine the side of an angle by the portion enclosed by the clockwise enumeration of $\angle QPM$. In this case there are two rays R_{QP} R_{PM} and this angle would be the amount enclosed on the inside of Q, P, M in that order. The opposite side would be $\angle MPQ$.

Definition 5.7. Zero Angle: the angle enclosed by the line P,Q,M. 0 degrees.

Definition 5.8. Full Angle: the angle enclosed by the line on the opposite side P,Q,M. 360 degrees.

Figure 9: Full Angle

Figure 10: Inside Angle

Figure 11: Outside Angle

Definition 5.9. Straight Angle: the angle enclosed by the line M,P,Q. 180 degrees.

Definition 5.10. Sector: The area inside a circle captured by an angle with the vertex in the center of the circle. (A slice of a circle).

Figure 12: Straight Angle

Figure 13: Sector

Corallary 5.8. Angle $x = 360 \left(\frac{area \ of \ S}{area \ of \ D} \right)$ where S is the sector and D is the disk.

Definition 5.11. Right angle: 90 degrees.

Figure 14: Right angle 90 degrees

Figure 15: 45 degree angle

Corallary 5.9. Area of $S = \frac{\angle S}{360}\pi r^2$ where r is the radius.

Figure 16: 3 degree angle

Figure 17: Degree example

5.3 The Pythagoras Theorem

Definition 5.12. $\forall P, Q, M, (\overline{PQ}, \overline{QM}, \overline{PM}) \Longrightarrow \triangle PQM$

Figure 18: Triangle

Definition 5.13. Right-angle triangle: When one of the three sides of a triangle is 90°

Definition 5.14. Legs of right triangle: The sides of the triangle that meet at the 90° angle

Right Triangle (5.1). If two right-triangles $\triangle PQM$ and $\triangle P'Q'M'$ have legs $\overline{PQ},\overline{PM}$ and $\overline{P'Q'},\overline{P'M'}$ of equal lengths

$$\operatorname{length} \overline{PQ} = \operatorname{length} \overline{P'Q'}$$
$$\operatorname{length} \overline{PM} = \operatorname{length} \overline{P'M'}$$

then the angles of the triangles have equal measure, their areas are equal and the length of \overline{QM} is equal to $\overline{Q'M'}$.

Right Triangle (5.2). $\forall L, L', (L \parallel L'), P, Q, (P \in L \land Q \in L)K_P, (K_P \perp L \land P \in K_P), P', (P' \in K_P \land P' \in L'), K_Q, (K_Q \perp L \land Q \in K_P), Q', (Q' \in K_Q \land Q' \in L') \Longrightarrow \operatorname{length}(\overline{PP'}) = \operatorname{length}(\overline{QQ'}) \Longrightarrow d(P,P') = d(Q,Q')$

Right Triangle (5.3). Rectangle: $\forall P, \ Q, \ M, \ N \mid F \left(\overline{PQ}, \overline{QN}, \overline{NM}, \overline{MP}\right), \ (\overline{PQ} \mid | \overline{NM} \wedge \overline{QN} \mid | \overline{MP}) \wedge (\overline{PQ} \perp \overline{QN} \wedge \overline{NM} \perp \overline{NP}) \Longrightarrow \overline{PQ}, \overline{QN}, \overline{NM}, \overline{MP} \wedge R(P,Q,N,M).$ where:

- F is the predicate such that it's arguments all form sides
- R is the predicate such that all of it's arguments form a rectangle.

Figure 19: Rectangle

Figure 20: Triangle Rectangle

Theorem 5.1. $\forall A, B \in \angle Right Triangle, other than right angle then <math>\Longrightarrow m(A)+m(B)=90^{\circ}$

Theorem 5.2. Area of right triangle | legs $a,b \Longrightarrow \frac{ab}{2}$

Definition 5.15. Hypotenuse: the third side of a right-angle triangle which is not one of the legs

Theorem 5.3. Let a,b be lengths of two legs of a right triangle and let c be the length of the hypotenuse then: $a^2+b^2=c^2$

Corallary 5.10. Let P, Q be distinct points in the plane, Let M be a point in the plane, then $d(P,M) = d(Q,M) \iff M \in \bot$ bisec \overline{PQ}

6 Chapter 6: Isometries

6.1 Some standard mappings of the plane

Mapping of the plane into itself we shall mean an association, which to each point of the plane associates another point of the plane.

Mapping (6.1). Let P be a point and P' be a point associated with P by the mapping, we denote this by $P \mapsto P'$

Definition 6.1. The value of the mapping at P is the point P' associated with the value P.

Definition 6.2. We also say that P' corresponds to P under the mapping.

Mapping (6.2). If F is a mapping into the plane, then the value of F at P is F(P).

Definition 6.3. The image of P under F is the value F(P) of F at P.

 $\begin{array}{llll} \textit{Mapping} & (6.3). & \forall F, \ G & : \ F \in \text{mapping} \\ \Longleftrightarrow \forall P, F(P) \!=\! G(P) \end{array}$

Constant mapping 6.1. $\forall P: point, O \in point, P \mapsto O$