20. If $|x - x_0| < \frac{\epsilon}{2}$ and $|y - y_0| < \frac{\epsilon}{2}$, then $|(x + y) - (x_0 + y_0)| < \epsilon$.

Proof.

Suppose $|x - x_0| < \frac{\epsilon}{2}$ and $|y - y_0| < \frac{\epsilon}{2}$. Then by Proposition 14.b, $-\frac{\epsilon}{2} < x - x_0 < \frac{\epsilon}{2}$ and $-\frac{\epsilon}{2} < y - y_0 < \frac{\epsilon}{2}$. Adding the two inequalities,

$$-\frac{\epsilon}{2} - \frac{\epsilon}{2} < x - x_0 + y - y_0 < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$-\epsilon < (x+y) - (x_0 + y_0) < \epsilon$$
$$\therefore |(x+y) - (x_0 + y_0)| < \epsilon.$$

Note also that $-\frac{\epsilon}{2} < y - y_0 < \frac{\epsilon}{2}$ implies $\frac{\epsilon}{2} > -y + y_0 > -\frac{\epsilon}{2}$. Adding this inequality to the inequality with x,

$$-\frac{\epsilon}{2} - \frac{\epsilon}{2} < x - x_0 - y + y_0 < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$-\epsilon < (x - y) - (x_0 - y_0) < \epsilon$$
$$\therefore |(x - y) - (x_0 - y_0)| < \epsilon.$$