A saturation model for impaired learning with enhanced plasticity

based on work in preparation by: T.D. Barbara Nguyen-Vu, Grace Q. Zhao, Han-Mi Lee, SL, Surya Ganguli, Carla J. Shatz, Jennifer L. Raymond

Subhaneil Lahiri

Stanford University, Applied Physics

July 12, 2013

Saturation by enh. plasticity impairs learning

A saturation model for impaired learning with enhanced plasticity based on work in preparation by: T.D. Burbara Ngayen-Vu, Grace Q. Zhao, Han-Mi Lee, SL, Surya Gangdi, Carla J. Shatz, Jennifer L. Roymond

> aford University, Applied Phy July 12, 2013

1. Acknowledge Barbara and Grace

Introduction

One might expect enhanced plasticity to enhance learning. But often it actually causes impairment.

We argue that this impaired learning is due to basal activity biasing the synapses prior to learning, leaving fewer synapses available for further plasticity.

By analysing several models of complex synapses, we see that the behaviour of enhanced LTD mice in a motor learning task can constrain the synaptic structure.

└─Ir

Saturation by enh. plasticity impairs learning

└─Introduction

ion

One might expect enhanced plasticity to enhance learning. But often i actually causes impairment.

We argue that this impaired learning is due to basal activity biasing the

synapses prior to learning, leaving fewer synapses available for further plasticity.

By analysing several models of complex synapses, we see that the behaviour of enhanced LTD mice in a motor learning task can constrain the synaptic structure.

1. It does help in some cases

└─Outline

VOR learning and the cerebellum

2 The effects of enhanced plasticity and saturation

Modelling approach

Modelling results

Section 1

VOR learning and the cerebellum

Vestibulo-Occular Reflex

Eye movements compensate for head movements to maintain fixation.

Requires control of VOR gain = $\frac{\text{eye velocity}}{\text{head velocity}}$.

Needs to be adjusted as eye muscles age, etc.

[du Lac et al. (1995), Boyden et al. (2004)]

4 D > 4 D > 4 E > 4 E > E 990

Saturation by enh. plasticity impairs learning VOR learning and the cerebellum

└─Vestibulo-Occular Reflex

VOR training

VOR Increase Training

VOR Decrease Training

PF-Pk: PF+CF \rightarrow LTD, PF+ $\mathcal{L}F \rightarrow$ LTP. Saturation by enh. plasticity impairs learning VOR learning and the cerebellum

└VOR training

- 1. trick brain into thinking VOR gain needs adjusting my moving visual stimulu
- 2. anti-phase →increase gain
- 3. in phase \rightarrow decrease gain
- 4. Gain change involves cerebellum
- 5. Marr-Albus-Ito: Pf-Pk synapses
- 6. Lisberger-Miles: Vestibular input-VN synapses
- 7. Different mechs for different freq, head angle, gain up/down.
- 8. Different Pk cells have different tunings.
- 9. Gain up in case of interest: LTD in Pf-Pk in flocculus
- 10. Gain down: uses different mech for behaviour, but does reverse LTD in Pf-Pk in flocculus

Section 2

The effects of enhanced plasticity and saturation

MHC-I $D^bK^b - /-$ knockout

Knockout of molecules lowers threshold for LTD in PF-Pk synapses.

[McConnell et al. (2009)]

Saturation by enh. plasticity impairs learning

—The effects of enhanced plasticity and saturation

- 1. Easier LTD →expect better learning
- 2. No difference at baseline
- 3. Impairment of learning

Viral rescue removes defect

Local injection of Pk specific virus used to restore the knocked-out molecules.

40.40.45.45. 5 000

Saturation by enh. plasticity impairs learning

—The effects of enhanced plasticity and saturation

Verification in the second of the second of

└─Viral rescue removes defect

- 1. removes defect
- 2. tells us that it is these PF-Pk synapses that are important
- 3. But what mechanism?

Saturation hypothesis

Error model

Saturation model

Naive Normal Naive Normal State Learning State Learning Training Mutation Mutation Training Naive Impaired Saturated Impaired State State Learning Learning

Saturation by enh. plasticity impairs learning

The effects of enhanced plasticity and saturation

Saturation hypothesis

- 1. Older explanation: error model
- 2. Our model: baseline activity \rightarrow saturation \rightarrow less depression possible
- 3. Saturation has to compete with enhanced plsaticity. Which will win?

2013-07-12

Evidence: level of depression

Basal level of GluR2 phosphorylation at serine 880 in AMPA receptor.

Biochemical signature of PF-Pk LTD.

Shows that # depressed synapses in flocculus is larger in KO than WT.

Saturation by enh. plasticity impairs learning

The effects of enhanced plasticity and saturation

Evidence: level of depression

1. Predicted by saturation hypothesis

Evidence: saturation by CF stimulation

Use Channelrhodopsin to stimulate CF \rightarrow increase LTD in PF-Pk synapses \rightarrow simulate saturation in WT.

4 D > 4 D > 4 E > 4 E > 4 D > 4 D >

Saturation by enh. plasticity impairs learning

The effects of enhanced plasticity and saturation

Evidence: saturation by CF stimulation

hodopon to stimulate CF --increase LTD in FP-Ps yangs --inimilate surprise in VTI.

. should result in similar behaviour to KO

Evidence: desaturation by gain-decrease pretraining

Saturation by enh. plasticity impairs learning

—The effects of enhanced plasticity and saturation

Evidence: desaturation by gain-decrease pretraining

1. gain dec reverses LTD

2013-07-12

2. but behaviour from elsewhere

Summary of training results

Saturation by enh. plasticity impairs learning

The effects of enhanced plasticity and saturation

—Summary of training results

- 1. Restricted to gain inc for comparison
- 2. Black: WT. Red: KO
- 3. Solid: no pre. Dashed: with pre
- 4. Horz and vert comparisons: conceptual
- 5. Diagonal comparisons: paramter fitting. Depend on size of KO vs. pretraining
- 6. KO hurts w/o, but helps w/
- 7. pre helps KO but hurts WT
- 8. top and left most restrictive
- 9. Pay attention to solid: black above red
- 10. Pay attention to black: solid above dashed
- 11. Concentrate on initial slope

Questions

- Can the saturation effect overcome the enhanced plasticity?
- How can a little reverse bias help, but too much hurt?
- Can we find a purely synaptic explanation of these results?

013-07-12

Saturation by enh. plasticity impairs learning

—The effects of enhanced plasticity and saturation

Can the saturation effect overcome the enhanced plasticity
 How can a little reverse bias help, but too much hurt?
 Can we find a purely synaptic explanation of these results?

└─Questions

- 1. in competition
- 2. first makes sense, but second?
- 3. This is a question about synaptic populations after all.

Section 3

Modelling approach

Model of circuit

Saturation by enh. plasticity impairs learning -Modelling approach

└─Model of circuit

- 1. Contralateral baseline shift compensates for Our baseline shift 2. Gain increase due to LTD at lightning
- 3. Gain decease due to plasticity elsewhere, but also reverses LTD at lightning
- 4. Nonlinearity here won't affect our questions, as long as it doesn't change 5. Nonlinearity before compensation could change things

Complex synapses

Saturation by enh. plasticity impairs learning —Modelling approach

—Complex synapses

- 1. functional states, not molecules
- 2. synaptic weight depends on state
- 3. many states can have same weight
- 4. stochastic transitions

Simplifying assumptions

- No spatial/temporal correlations in plasticity events.
- ullet Potentiating/depressing plasticity events \sim Poisson processes.
- Potentiation and depression are described by Markov processes.

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]

Saturation by enh. plasticity impairs learning — Modelling approach — Simplifying assumptions

Simplifying assumptions

- 1. allows us to concentrate on synapse, not neuron/network
- 2. No filing system
- 3. don't care if STDP...

Synaptic dynamics

There are N identical synapses with M internal functional states.

$$rac{\mathrm{d}\mathbf{p}(t)}{\mathrm{d}t} = r\mathbf{p}(t)\mathbf{W}^{\mathrm{F}}, \qquad \mathbf{W}^{\mathrm{F}} = f^{\mathsf{pot}}\mathbf{M}^{\mathsf{pot}} + f^{\mathsf{dep}}\mathbf{M}^{\mathsf{dep}} - \mathbf{I},$$
 $\mathbf{p}^{\infty}\mathbf{W}^{\mathrm{F}} = 0.$

4 D > 4 P > 4 E > 4 E > E 9 Q P

Saturation by enh. plasticity impairs learning —Modelling approach

☐ Synaptic dynamics

- 1. stoch process has steady state.
- 2. Prior activity puts it in this state. row vec.
- 3. plasticity events at rate r
- 4. fraction pot/dep
- 5. probs changed by Markov matrices, prob $i \rightarrow j$
- 6. Readout: synaptic weight vec when in each state.
- 7. Memory at t = 0, keep track of pot/dep
- 8. subsequent: average over pot/dep

Modelling VOR learning

Mutation: Changes mechanism of LTD \implies change \mathbf{M}^{dep} .

Training: Changes statistics of LTP/LTD \implies change r, f^{pot}, f^{dep} .

Learning: Change in VOR gain \Longrightarrow fn. of decrease in $\langle \mathbf{w} \rangle$.

Saturation by enh. plasticity impairs learning Modelling approach

Modelling VOR learning

- 1. lower threshold \rightarrow increase off-diagonal elements.
- 2. Only parameters we have. Don't care about r.
- 3. Same PF+CF input \rightarrow same r, f^{pot}, f^{dep} in each case.
- 4. Only output we have. Don't keep track of synaptic identity.
- 5. Input to Pk, some linear combination of w's.

2013-07-12

-Modelling results

Section 4

Modelling results

Binary synapse

Saturation by enh. plasticity impairs learning

Modelling results

Binary synapse

- 1. Compare solid curves
- 2. Compare black curves
- 3. understand why next slide

Binary synapse: initial distributions

 \sim rate of events

 \times prob. of transition

 \times prob. ready for Δw

 $\times (-\Delta w)$

Saturation by enh. plasticity impairs learning —Modelling results

Binary synapse: initial distributions

- 1. WT: start with everything equal just for illustration, not essential
- 2. WT: during training, increase f^{dep} (green arrow) \to weakening.
- 3. KO: inc $q^{\text{pot}} \rightarrow \text{bias}$
- 4. KO: competition between inc prob trans & dec prob ready
- 5. KO: first one wins. see why after next model
- 6. pre: reduces/reverses bias. always helps.

Serial synapse

[Leibold and Kempter (2008)]

Saturation by enh. plasticity impairs learning —Modelling results

└─Serial synapse

- 1. Still looks binary from outside. Hidden states (not essential).
- 2. Only see Δw at boundary.
- 3. understand why next slide

Serial synapse: initial distributions

Saturation by enh. plasticity impairs learning Modelling results

—Serial synapse: initial distributions

- 1. Now only get signal from crossing boundary
- 2. KO: inc $q^{\text{pot}} \rightarrow \text{bias}$, now exponential
- 3. KO: prob ready wins over prob trans, now exponential
- 4. pre: reduces/reverses bias.
- 5. pre: little reverse bias repopulates bndry, helps.
- 6. pre: too much reverse bias moves away from bndry, hurts.
- 7. maths next slide

Mathematical explanation

Serial synapse: $\mathbf{p}_i^{\infty} \sim \mathcal{N}\left(\frac{q^{\text{pot}}}{a^{\text{dep}}}\right)^i$.

Learning rate
$$\sim \mathbf{p}_{M/2}^{\infty} \left(\frac{q^{\mathsf{dep}}}{q^{\mathsf{pot}}} \right) = \mathcal{N} \left(\frac{q^{\mathsf{pot}}}{q^{\mathsf{dep}}} \right)^{\frac{M}{2} - 1}$$
.

For M > 2: larger $q^{\text{dep}} \implies$ slower learning.

For M=2: larger $q^{\text{dep}} \implies \text{larger } \mathcal{N} \implies \text{faster learning}$.

Saturation by enh. plasticity impairs learning

☐ Mathematical explanation

-Modelling results

- 1. Detailed balance. Exponential decay.
- 2. for large enough M, q^{pot} , overcome \mathcal{N}
- 3. Other factor in \mathbf{p}^{∞} smaller $\Longrightarrow \mathcal{N}$ larger.

Essential features

The success of the serial model relies on two features:

- Enhancing the effect of saturation,
- Metaplasticity repeated potentiation makes subsequent depression harder.

Saturation by enh. plasticity impairs learning —Modelling results

00000000

Enhancing the effect of saturation,

 Metaplasticity – repeated potentiation makes subsequent depe harder.

1. due to exponential decay

-Essential features

- 2. push away from boundary where signal generated
- 3. borne out by other models that fail/succeed

Other models that fail

Multistate model

Saturation by enh. plasticity impairs learning —Modelling results

Other models that fail

- 1. MS: linear weights, unlike serial.
- 2. like bunch of binary synapses in series.
- 3. solid curves: fails early on , but catches up quickly
- 4. black curves: fails badly
- 5. No real enhancement of saturation, no metaplasticity.
- 6. All transitions contribute: pushing to end has little effect.
- 7. Pooled: resource depleted by pot/dep. replenished by reverse.
- 8. solid curves succeed: enhanced saturation
- 9. black curves fail: opposite metaplasticity, pot makes dep easier

Other models that work

Non-uniform multistate model

Cascade model

Saturation by enh. plasticity impairs learning Modelling results

Other models that work

- 1. Both models, trans probs decay exponentially from centre.
- 2. Nonuni: linear weights. Cascade: binary weights.
- 3. Enhanced saturation and metaplasticity
- 4. Pushing to end makes pot and dep harder
- 5. Note: hidden states not necessary

[Fusi et al. (2005)]

Conclusions and further questions

- The saturation effect overcome the enhanced plasticity, if it is enhanced. Requires complexity
- A little reverse bias can help, but too much hurts, if repeated potentiation makes depression harder. Requires metaplasticity
- We can find a purely synaptic explanation of VOR behaviour, iff the synapses have these features.
- We used behaviour to constrain molecular structure of synapses!
- Can we constrain it further with more experiments?

Concl

Saturation by enh. plasticity impairs learning

Modelling results

-Conclusions and further questions

ions and further questions

- The saturation effect overcome the enhanced plasticity, if it is enhanced. Requires complexity
 A little reverse bias can help, but too much hurts, if repeated
- potentiation makes depression harder. Requires metaplasticity
- We can find a purely synaptic explanation of VOR behaviour, iff the
- synapses have these features.
- We used behaviour to constrain molecular structure of synapses
 Can we constrain it further with more experiments?

- 1. e.g. exponential deacy, resource depletion, . . .
- 2. e.g. moving away from weight boundary, or weaker transitions.
- 3. Other explanations? Non-linearity in PK cell?

References I

S du Lac, J L Raymond, T J Sejnowski, and S G Lisberger.

"Learning and Memory in the Vestibulo-Ocular Reflex".

Annual Review of Neuroscience, 18(1):409-441, (1995).

Edward S. Boyden, Akira Katoh, and Jennifer L. Raymond.

"CEREBELLUM-DEPENDENT LEARNING: The Role of Multiple Plasticity Mechanisms".

Annual Review of Neuroscience, 27(1):581-609, (2004).

David Marr.

"A theory of cerebellar cortex".

The Journal of Physiology, 202(2):437-470, (1969).

Saturation by enh. plasticity impairs learning

Modelling results

-References

"A theory of cerebellar cortex".

References II

James S. Albus.

"A theory of cerebellar function".

Mathematical Biosciences, 10(1):25 – 61, (1971) .

Masao Ito.

"Neural design of the cerebellar motor control system".

Brain research, 40(1):81–84, (1972).

M Ito.

"Cerebellar Control of the Vestibulo-Ocular Reflex-Around the Flocculus Hypothesis".

Annual Review of Neuroscience, 5(1):275–297, (1982).

Saturation by enh. plasticity impairs learning Modelling results

References

James S. Albus.

"Neural design of the cerebellar motor control system

"Cerebellar Control of the Vestibulo-Ocular Reflex-Around the Flocculus

References III

F A Miles and S G Lisberger.

"Plasticity in the Vestibulo-Ocular Reflex: A New Hypothesis".

Annual Review of Neuroscience, 4(1):273–299, (1981).

Michael J. McConnell, Yanhua H. Huang, Akash Datwani, and Carla J. Shatz.

"H2-Kb and H2-Db regulate cerebellar long-term depression and limit motor learning".

Proc. Natl. Acad. Sci. U.S.A., 106(16):6784-6789, (2009).

S. Fusi, P. J. Drew, and L. F. Abbott.

"Cascade models of synaptically stored memories".

Neuron, 45(4):599-611, (Feb. 2005).

Saturation by enh. plasticity impairs learning Modelling results

-References

- F A Miles and S G Lisberger "Plasticity in the Vestibulo-Ocular Reflex: A New Hypothesis
- - S. Funi, P. J. Drew, and L. F. Abbott. "Cascade models of synaptically stored memories"

References IV

S. Fusi and L. F. Abbott.

"Limits on the memory storage capacity of bounded synapses".

Nat. Neurosci., 10(4):485-493, (Apr., 2007).

A. B. Barrett and M. C. van Rossum.

"Optimal learning rules for discrete synapses".

PLoS Comput. Biol., 4(11):e1000230, (Nov, 2008).

Christian Leibold and Richard Kempter.

"Sparseness Constrains the Prolongation of Memory Lifetime via Synaptic Metaplasticity".

Cerebral Cortex, 18(1):67-77, (2008).

□ > 4 @ > 4 E > 4 E > 0 Q @ ...

Saturation by enh. plasticity impairs learning

Modelling results

- S. Finil and L. F. Abbett.

 "Unitin on the memory strapps capacity of bounded synapses."

 Mr. Hamera, 16(4) 465–492. (Apr., 2007).

 A. B. Barrett and M. C. von Rosson.

 "Opinial learning rules for discrete synapses."

 PLeS Comput. 64, 4(11) s1002030, (Nov., 2008).

References V

D. J. Amit and S. Fusi.

"Learning in neural networks with material synapses".

Neural Computation, 6(5):957-982, (1994).

Saturation by enh. plasticity impairs learning — Modelling results — References

```
References V

D. J. Ant and S. Fasi.

"Learning in neural networks with material lynapses".

Heard Computation, (63) 957-462, (1994).
```