Graph Sketching

Sketch the following graph:

$$y^2 = x^2 \pm 1$$

(Note: distinguish between the positive 1 and negative 1 curves).

Give the equation of its asymptotes.

Give the equation of a curve that touches this graph at 4 different points.

Sketch the following graph $(\alpha, \beta \in \mathbb{R})$ in the cases where $\beta = 0$ and $\beta \neq 0$ and give equations for the corresponding graphs in the previous part for the case where $\beta \neq 0$.

$$(\alpha - y - \beta x)(y - \alpha - \beta x) \pm 1 = 0$$

Algebra

For these following questions, use of Calculus is NOT permitted.

We define the symbol ε such that $\varepsilon^2 = 0$, $\varepsilon \neq 0$. A *dual number* is of the form $x + y\varepsilon$; $x, y \in \mathbb{R}$.

(i) Simplify $(a + b\varepsilon)(c + d\varepsilon)$ and $\frac{a+b\varepsilon}{c+d\varepsilon}$.

$$P(x) = \sum_{n=0}^{\infty} p_n x^n$$

(ii) By considering the dual number $a + b\varepsilon$ find an expression for P'(a) in terms of P, a and ε , where P'(a) represents the derivative of P(x) evaluated at x = a. Recall that the definition of the Taylor series of an analytic function f about a is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

- (iii) Find an expression for the derivative f' of any analytic function f evaluated at a in terms of f, a and ε .
- (iv) Find an expression for $\left. \left(\frac{\mathrm{d}g}{\mathrm{d}f} \times \frac{\mathrm{d}f}{\mathrm{d}x} \right) \right|_{x=a}$ in terms of f, g, a and ε .

Vectors

- (i) Draw a diagram showing 2D position vectors \vec{a} , \vec{b} and $\frac{(\vec{a} \cdot \vec{b})\vec{b}}{|\vec{b}|^2}$.
- (ii) Use the Cauchy Schwarz inequality $|\vec{u}||\vec{v}| \ge |\vec{u} \cdot \vec{v}|$ to prove the triangle inequality $|\vec{u}| + |\vec{v}| \ge |\vec{u} + \vec{v}|$.
- (iii) Identify the following 3D surfaces, where \hat{u} is a fixed vector of unit length:

$$|\vec{r}| = \rho$$

$$\vec{r} \cdot \hat{u} = l$$

$$\vec{r} \cdot \hat{u} = m|\vec{r}|$$

$$|\vec{r} - (\vec{r} \cdot \hat{u})\hat{u}| = n$$

(iv) Solve the vector equation $\vec{a} \times \vec{b} + \lambda \vec{r} = \vec{c}$ for \vec{r} given that $\lambda \neq 0$.

Vectors 2 (FM Required)

Let \vec{a} , \vec{b} and \vec{c} be non-zero vectors in \mathbb{R}^3 .

- (a) State the geometric significance of the equation $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$.
- Assume that $\vec{a} \cdot (\vec{b} \times \vec{c}) > 0$.
- (b) Prove that if \vec{r} lies on the plane containing \vec{a} , \vec{b} and \vec{c} , then:

$$\vec{r} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) = \vec{a} \cdot (\vec{b} \times \vec{c})$$

(c) Find necessary and sufficient conditions for \vec{r} to lie in or on the trapezoid formed by the origin, and vectors \vec{a} , \vec{b} and \vec{c} .

Calculus

Recall the definition of the derivative $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

You may assume the mean value theorem; that for any continuous function f, there exists a value $c \in [a, b]$ such that

$$\int_{a}^{b} f(t)dt = f(c)(b-a)$$

- (i) Let $F(x) = \int_0^x f(t)dt$, where f is continuous. Find F'(x). [Hint: consider the bound on c].
- (ii) Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the functional equation:

$$f(x) = \lambda(1 + x^2) \left[1 + \int_0^x \frac{f(t)}{1 + t^2} dt \right]$$

Sets

Sketch the curve $x^2 + y^2 = 65$ and give an integer point on this curve. Write down the equation of a line that passes through this point in the form $y = m(x - x_0) + c$.

Find a quadratic in x in terms of m.

By factorizing your quadratic, find the set of all rational points on the curve.