Data for the 18 Spiral Samples

Spirals used as examples in the paper are shown in red

File Name	Time to draw [sec]	rms error	rms of signal before normalization [pixels]	Is peak present?	Estimated Freq [Hz]	Remarks	Time to complete procedure [sec]
S1	NA	4.48%	25.98				
S2	NA	3.80%	34.83				
S3	NA	10.06%				Distorted Spiral	Added 2 mins in Photoshop
S4	NA	7.29%	35.76	peak	NA		
S5	NA	1.05%	19.02				
S6	11.7	12.67%	35	peak	5.12		124
S7	17.3	9.89%	27.92				118
S8	11.5	5.84%	33.1				115
S9	8.7	2.89%	16.83	Small peak	5.06		115
S10	10.28	1.53%	21.81	peak	5.74		116
S11	11.1	7.39%	24.42	peak	5.4		116
S12	13.3	4.22%	24.89	peak	3.02		117
S13	16.2	11.08%	36.34				117
S14	13.7	7.22%	33.26				113
S15	13.8	3.91%	32.27	peak	3.33 Hz		113
S16	14.2	6.88%	36.25				
S17	11.3	7.05%	33.36				
S18	9	5.46%	35.31	peak	5.33 Hz		