Programa de Pós-Graduação em Engenharia Elétrica e de Computação (PPGEEC) Introdução à Ciências de Dados - UFC *Campus* Sobral – 2023.1 Andressa Gomes Moreira – andressagomes@alu.ufc.br

Sumário

- 1. Introdução
- 2. Teste de Hipótese
- 3. Definições Importantes
- 4. Exemplos
- 5. Testes A/B
- 6. Referências

O que são hipóteses?

3

O que são hipóteses?

- Possibilidade de algo acontecer; chance, opção.
- Sentenças afirmativas que definem a explicação provisória a um problema e devem ser submetidas à verificação para sua comprovação ou não.

O que são hipóteses?

- Possibilidade de algo acontecer; chance, opção.
- Sentenças afirmativas que definem a explicação provisória a um problema e devem ser submetidas à verificação para sua comprovação ou não.

O Exemplos:

- "Esta é uma moeda honesta";
- "Os cientistas de dados preferem Python a R".

- Estatística Descritiva:
 - Organiza, resume e descreve os dados.
- Estatística Inferencial:
 - Usa dados da amostra para servir como estimadores dos dados da população.
 Tirar conclusões a partir de dados amostrais.

- O teste de hipóteses é uma regra bem objetiva que auxilia o pesquisador a rejeitar ou aceitar uma hipótese estatística, com base nos dados amostrais.
- O teste de hipótese é realizado quando queremos testar um valor hipotético para um parâmetro populacional com base nas informações de uma amostra.

1. Exemplo: "A média de idade dos alunos do curso de Engenharia da Computação (UFC) é igual a 25 anos".

- **1. Exemplo**: "A média de idade dos alunos do curso de Engenharia da Computação (UFC) é igual a 25 anos".
- O Parâmetro populacional = Média de idade dos alunos

- **1. Exemplo**: "A média de idade dos alunos do curso de Engenharia da Computação (UFC) é igual a 25 anos".
- O Parâmetro populacional = Média de idade dos alunos
- População = Alunos da Engenharia da Computação

- **1. Exemplo**: "A média de idade dos alunos do curso de Engenharia da Computação (UFC) é igual a 25 anos".
- Parâmetro populacional = Média de idade dos alunos
- O **População** = Alunos da Engenharia da Computação
- Amostra = Alunos da turma Ciências de Dados

- **1. Exemplo**: "A média de idade dos alunos do curso de Engenharia da Computação (UFC) é igual a 25 anos".
- Parâmetro populacional = Média de idade dos alunos
- O **População** = Alunos da Engenharia da Computação
- Amostra = Alunos da turma Ciências de Dados
- Aceitar ou rejeitar essa hipótese

Definições Importantes

- População e Amostra
- Tipos de Hipóteses
- Tipos de Testes de HipóteseTipos de Erro
- Nível de Significância α
- Valor crítico e Região Crítica
- Testes Estatísticos Z e T

População e Amostra

- O **População**: Conjunto completo de indivíduos que se deseja fazer inferências.
- Amostra: Grupo representativo da população, que é estudado para tirar conclusões sobre a população.

População e Amostra

- População: Conjunto completo de indivíduos que se deseja fazer inferências.
- Amostra: Grupo representativo da população, que é estudado para tirar conclusões sobre a população.

População	Amostra
Alunos do curso Engenharia da Computação	Alunos da turma Introdução à Ciência de Dados
Pacientes com determinada doença	Grupo de pacientes com determinada doença

- O Hipótese Nula (H_0):
 - Hipótese estatística a ser testada. Concorda com a hipótese inicial.
 - Contém uma afirmação de igualdade (≤, =, ≥)
- O Hipótese Alternativa (H_a):
 - Complemento da hipótese nula. Discorda com a hipótese inicial.
 - Contém uma afirmação de desigualdade (<, ≠, >).

- O Hipótese Nula (H_0):
 - Hipótese estatística a ser testada. Concorda com a hipótese inicial.
 - Contém uma afirmação de igualdade (≤, =, ≥)
- Hipótese Alternativa (H_a):
 - Complemento da hipótese nula. Discorda com a hipótese inicial.
 - Contém uma afirmação de desigualdade (<, ≠, >).

Hipótese Nula (H_0)	Hipótese Alternativa (H_a)
A verdadeira média populacional da altura dos brasileiros é menor ou igual que 1,65m (H_0 : $\mu \le 1,65$ m);	A verdadeira média populacional da altura dos brasileiros é maior que 1,65m $(H_a: \mu > 1,65 \text{ m});$

- Ex1.: "A altura média dos alunos do curso Engenharia da Computação é 1,70m".
 - H_0 :
 - H_a :

- Ex1.: "A altura média dos alunos do curso Engenharia da Computação é 1,70m".
 - H_0 : $\mu = 1,70 \text{ m}$;
 - H_a : $\mu \neq 1,70$ m.

- Ex2.: "A proporção de mulheres matriculadas na disciplina de Introdução à Ciência de Dados é de pelo menos 20%".
 - H_0 :
 - H_a :

- Ex2.: "A proporção de mulheres matriculadas na disciplina de Introdução à Ciência de Dados é de pelo menos 20%".
 - H_0 : $p \ge 0.2$;
 - H_a : p < 0.2.

- Teste Bilateral ou bicaudal: Teste cuja hipótese alternativa (H_a) contém o sinal de diferença (\neq).
 - H_0 : $\mu = 25$ anos;
 - H_a : $\mu \neq 25$ anos.

Figura - Curva do teste de hipótese bilateral.

- Teste Unilateral ou unicaudal à direita: Teste cuja hipótese alternativa (H_a) contém o sinal de maior que (>).
 - H_0 : $\mu \le 25$ anos;
 - H_a : $\mu > 25$ anos.

Figura - Curva do teste de hipótese unicaudal à direita.

- Teste Unilateral ou unicaudal à esquerda: Teste cuja hipótese alternativa (H_a) contém o sinal de menor que (<).
 - H_0 : $\mu \ge 25$ anos;
 - H_a : μ < 25 anos.

Figura - Curva do teste de hipótese unicaudal à esquerda.

Figura – Tipos de Teste de Hipótese.

Tipos de Erros

- No teste de hipótese existem duas decisões possíveis:
 - Aceitar H_0 e Rejeitar H_a .
 - Rejeitar H_0 e Aceitar H_a .

Tipos de Erros

- Existem dois tipos de erros na tomada de decisão:
 - **Erro Tipo I** (α): Rejeitar a hipótese H_0 quando ela é verdadeira;
 - Erro Tipo II (β): Aceitar a hipótese H_0 quando ela é falsa.

Tipos de Erros

- Existem dois tipos de erros na tomada de decisão:
 - **Erro Tipo I** (α): Rejeitar a hipótese H_0 quando ela é verdadeira;
 - Erro Tipo II (β): Aceitar a hipótese H_0 quando ela é falsa.

Situação Bool	Tomada de Decisão		
Situação Real	Aceitar H ₀	Rejeitar H ₀	
H ₀ verdadeira	Decisão Correta	Erro Tipo I (α)	
H ₀ falsa	Erro Tipo II (β)	Decisão Correta	

Tabela I - Resultados Possíveis de um Teste de Hipóteses (Riscos na tomada de decisão).

Nível de Significância (α)

- É a probabilidade de cometer um erro na tomada de decisão (Erro do Tipo I),
 rejeitando a hipótese nula quando ela é verdadeira.
- Por exemplo, um nível de significância de 5% indica um risco de 0.05 de concluir que existe diferença entre os resultados do estudo e a hipótese nula, quando na verdade não existe nenhuma diferença.

P-valor

- O valor de P representa a probabilidade da hipótese nula ser verdadeira.
- Para usar o P-valor na decisão de um teste de hipótese:
 - Se p-valor $\leq \alpha$, então rejeitamos H_0 .
 - Se p-valor $> \alpha$, então aceitamos H_0 .

Valor Crítico - Região Crítica

- \circ O valor crítico é o valor que divide a área de rejeição da área de não rejeição de H_0 .
- Define um conjunto de valores para rejeitar a hipótese nula. Este conjunto é chamado região crítica.

Testes Paramétricos

- Testes paramétricos são uma ferramenta estatística usada para analisar os fatores populacionais.
- Tipos de testes paramétricos:
 - Teste Z da distribuição normal.
 - Teste T de Student
 - Teste F

Testes Paramétricos

Testes Estatístico Z: Usado para testar a média ou proporção de uma população, quando sabemos o desvio padrão da população:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- \bar{x} = Média da amostra
- μ = Média da população
- σ = Desvio padrão da população
- \sqrt{n} = Tamanho da amostra

Testes Paramétricos

Testes Estatístico T: Usado para testar a média de uma população, quando não sabemos o desvio padrão da população, apenas o da amostra:

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

- \bar{x} = Média da amostra
- μ = Média da população
- S = Desvio padrão da amostra
- \sqrt{n} = Tamanho da amostra

Exemplos

Passo a Passo

- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);
- 2. Fazer o gráfico da distribuição amostral e desenhar a região crítica (RC);
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente. Marcar o valor no gráfico;
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado. Marcar o valor no gráfico;
- 5. Conclua o teste aceitando ou rejeitando a hipótese nula.

Exemplo 01: Sabe-se que certa linhagem de camundongo, alimentados com uma ração padrão, tem um aumento médio de peso igual a 64 gramas. Um lote (amostra) de 81 camundongos foi alimentado com uma nova ração. O aumento médio de peso observado nos camundongos foi de \bar{X} = 60,75 g. A nova ração tem a mesma eficiência alimentar que a padrão? Use α = 0,05 e um desvio padrão de σ = 3,84 g.

- Exemplo 01: Sabe-se que certa linhagem de camundongo, alimentados com uma ração padrão, tem um aumento médio de peso igual a 64 gramas. Um lote (amostra) de 81 camundongos foi alimentado com uma nova ração. O aumento médio de peso observado nos camundongos foi de \bar{X} = 60,75 g. A nova ração tem a mesma eficiência alimentar que a padrão? Use α = 0,05 e um desvio padrão de σ = 3,84 g.
- Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);
 - Hipótese nula H_0 : $\mu = 64$

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);
 - Hipótese nula H_0 : $\mu = 64$
 - Hipótese alternativa H_a : $\mu \neq 64$

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);
 - Hipótese nula H_0 : $\mu = 64$
 - Hipótese alternativa H_a : $\mu \neq 64$
 - ➤ Trata-se de um Teste Bilateral (≠)

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 2. Fazer o gráfico da distribuição amostral e desenhar a região crítica (RC);
 - ➤ Trata-se de um Teste Bilateral (≠)

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 2. Fazer o gráfico da distribuição amostral e desenhar a região crítica (RC);
 - ➤ Trata-se de um Teste Bilateral (≠)

- Exemplo 01: Dados fornecidos: \bar{X} = 60,75; μ = 64; σ = 3,84; n = 81; α = 0,05.
- 2. Fazer o gráfico da distribuição amostral e desenhar a região crítica (RC);
 - ➤ Trata-se de um Teste Bilateral (≠)

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Conhecido = Teste Z

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Conhecido = Teste Z

						Segunda casa	decimal de Z				
	Z	0	1	2	3	4	5	6	7	8	9
	0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
	0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
	0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
	0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
	0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
	0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
	0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
	0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
	0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
	0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
	1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
	1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
	1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
	1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
	1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
Z	1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
de 2	1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
ima	1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
a dec	1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
Cass	1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
neira	2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
prin	2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
ira e	2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
inte	2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
Parte	2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936

	-					Segunda casa	decimal de Z				
	Z	0	1	2	3	4	5	6	7	8	9
	0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
	0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0 <mark>636</mark>	0,0675	0,0714	0,0753
	0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
	0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1 <mark>4</mark> 06	0,1443	0,1480	0,1517
	0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
	0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
	0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
	0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
	0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
	0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3 <mark>3</mark> 15	0,3340	0,3365	0,3389
	1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
	1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3 <mark>77</mark> 0	0,3790	0,3810	0,3830
	1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3 <mark>962</mark>	0,3980	0,3997	0,4015
	1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4 <mark>131</mark>	0,4147	0,4162	0,4177
	1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
2	1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4 <mark>4</mark> 06	0,4418	0,4429	0,4441
de 2	1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4 <mark>515</mark>	0,4525	0,4535	0,4545
ima	1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
a dec	1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4586	0,4693	0,4699	0,4706
cas	1,9	◆ 0 ,4713 −	-0,471 9	-0,4 7 26 -	- 0,4732 -	-0,473 8-	-0,4744 -	0,4750	0,4756	0,4761	0,4767
neira	2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
prin	2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
ira (2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
inte	2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
artı	2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Conhecido = Teste Z

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Conhecido = Teste Z

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Conhecido = Teste Z

$$z_{obs} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Conhecido = Teste Z

$$z_{obs} = \frac{60,75 - 64}{\frac{3,84}{\sqrt{81}}} = -7,56$$

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Conhecido = Teste Z

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Conhecido = Teste Z

- **Exemplo 01**: Dados fornecidos: $\bar{X} = 60,75$; $\mu = 64$; $\sigma = 3,84$; n = 81; $\alpha = 0,05$.
- Conclua o teste aceitando ou rejeitando a hipótese nula.
 - > $z_{obs} \in RC = Rejeitar a hipótese nula <math>H_0$

- Exemplo 01: Sabe-se que certa linhagem de camundongo, alimentados com uma ração padrão, tem um aumento médio de peso igual a 64 gramas. Um lote (amostra) de 81 camundongos foi alimentado com uma nova ração. O aumento médio de peso observado nos camundongos foi de \bar{X} = 60,75 g. A nova ração tem a mesma eficiência alimentar que a padrão? Use α = 0,05 e desvio padrão de σ = 3,84 g.
- Conclusões: De acordo com o teste Z ao nível de 5% de significância, pode-se concluir que a nova ração tem menor eficiência.

Exemplo 02: Um fabricante afirma que seus suplementos não contém mais do que 30mg de sódio. Uma amostra de 10 potes possui, em média, 31,4mg de sódio e desvio padrão S = 3g. Sendo o nível de significância de 5%, os dados refutam ou não a afirmação?

- Exemplo 02: Um fabricante afirma que seus suplementos não contém mais do que 30mg de sódio. Uma amostra de 10 potes possui, em média, 31,4mg de sódio e desvio padrão S = 3g. Sendo o nível de significância de 5%, os dados refutam ou não a afirmação?
- Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 1. Escrever as hipóteses (hipótese nula H_0 e hipótese alternativa H_a);
 - Hipótese nula H_0 : $\mu = 30$
 - Hipótese alternativa H_a : $\mu > 30$
 - > Trata-se de um Teste Unilateral à direita (>)

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 2. Fazer o gráfico da distribuição amostral e desenhar a região crítica (RC);
 - > Trata-se de um Teste Unilateral à direita (>)

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 2. Fazer o gráfico da distribuição amostral e desenhar a região crítica (RC);
 - > Trata-se de um Teste Unilateral à direita (>)

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Desconhecido = Teste T

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Desconhecido = Teste T

Distribuição t-Student: valores tc tais que $P(-tc \le t \le tc) = 1 - p$

																	
	p►	90%	80%	70%	60%	50%	40%	30%	20%	10%	8%	6%	5%	4%	2%	1%	0,2%
	1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	7,916	10,579	12,706	15,895	31,821	63,657	318,309
	2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	3,320	3,896	4,303	4,849	6,965	9,925	22,327
	3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	2,605	2,951	3,182	3,482	4,541	5,841	10,215
	4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,333	2,601	2,776	2,999	3,747	4,604	7,173
	5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,191	2,422	2,571	2,757	3,365	4,032	5,893
	6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,104	2,313	2,447	2,612	3,143	3,707	5,208
	7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,046	2,241	2,365	2,517	2,998	3,499	4,785
	8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,004	2,189	2,306	2,449	2,896	3,355	4,501
	9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	1,973	2,150	2,262	2,398	2,821	3,250	4,297
	10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	1,948	2,120	2,228	2,359	2,764	3,169	4,144
	11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	1,928	2,096	2,201	2,328	2,718	3,106	4,025
	12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	1,912	2,076	2,179	2,303	2,681	3,055	3,930
	13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	1,899	2,060	2,160	2,282	2,650	3,012	3,852
	14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	1,887	2,046	2,145	2,264	2,624	2,977	3,787
	15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	1,878	2,034	2,131	2,249	2,602	2,947	3,733
	16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	1,869	2,024	2,120	2,235	2,583	2,921	3,686
	17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	1,862	2,015	2,110	2,224	2,567	2,898	3,646
	18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	1,855	2,007	2,101	2,214	2,552	2,878	3,610
	19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	1,850	2,000	2,093	2,205	2,539	2,861	3,579
	20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	1,844	1,994	2,086	2,197	2,528	2,845	3,552
e e	21	0,127	0,257	0,391	0,532	0,686	0,859	1,063	1,323	1,721	1,840	1,988	2,080	2,189	2,518	2,831	3,527
ad	22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	1,835	1,983	2,074	2,183	2,508	2,819	3,505
Ď	23	0,127	0,256	0,390	0,532	0,685	0,858	1,060	1,319	1,714	1,832	1,978	2,069	2,177	2,500	2,807	3,485
Liberdade	24	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	1,828	1,974	2,064	2,172	2,492	2,797	3,467
Ξ	25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	1,825	1,970	2,060	2,167	2,485	2,787	3,450
de	26	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,315	1,706	1,822	1,967	2,056	2,162	2,479	2,779	3,435
SC	27	0,127	0,256	0,389	0,531	0,684	0,855	1,057	1,314	1,703	1,819	1,963	2,052	2,158	2,473	2,771	3,421
sne	28	0,127	0,256	0,389	0,530	0,683	0,855	1,056	1,313	1,701	1,817	1,960	2,048	2,154	2,467	2,763	3,408

1,311

1.310

1,699

1 697

1,814

1 812

1,957

1 955

2,045

2.042

2,150

2 147

2,462

2 457

2,756

2.750

3,396

3.385

0,127

0 127

30

0,256

0.256

0,389

0 389

0,530

0.530

0,683

0.683

0,854

0.854

1,055

1.055

Distribuição t-Student: valores tc tais que $P(-tc \le t \le tc) = 1 - p$

				וט	stribu	içao i	-Stuu	ent. v	alores	ic la	is que	= r (-tt	$\leq t \leq t$	C) - I	- P		100
	p►	90%	80%	70%	60%	50%	40%	30%	20%	10%	8%	6%	5%	4%	2%	1%	0,2%
	1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	7,916	10,579	12 /06	15,895	31,821	63,657	318,309
	2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	3,320	3,896	4,803	4,849	6,965	9,925	22,327
	3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	2,605	2,951	3,182	3,482	4,541	5,841	10,215
	4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,333	2,601	2,776	2,999	3,747	4,604	7,173
	5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,191	2,422	2,571	2,757	3,365	4,032	5,893
	6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,104	2,313	2,147	2,612	3,143	3,707	5,208
	7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,046	2,241	2,865	2,517	2,998	3,499	4,785
	8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,004	2,189	2,806	2,449	2,896	3,355	4,501
	9	0,129	0,261	0,390	0,543	0,703	0,889	1,100	1,583	1,635	1,975	2,130	2,262	2,398	2,821	3,250	4,297
	10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	1,948	2,120	2,228	2,359	2,764	3,169	4,144
	11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	1,928	2,096	2,201	2,328	2,718	3,106	4,025
	12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	1,912	2,076	2,179	2,303	2,681	3,055	3,930
	13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	1,899	2,060	2,160	2,282	2,650	3,012	3,852
	14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	1,887	2,046	2,145	2,264	2,624	2,977	3,787
	15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	1,878	2,034	2,131	2,249	2,602	2,947	3,733
	16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	1,869	2,024	2,120	2,235	2,583	2,921	3,686
	17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	1,862	2,015	2,110	2,224	2,567	2,898	3,646
	18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	1,855	2,007	2,101	2,214	2,552	2,878	3,610
	19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	1,850	2,000	2,093	2,205	2,539	2,861	3,579
	20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	1,844	1,994	2,086	2,197	2,528	2,845	3,552
9	21	0,127	0,257	0,391	0,532	0,686	0,859	1,063	1,323	1,721	1,840	1,988	2,080	2,189	2,518	2,831	3,527
Liberdade	22	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	1,835	1,983	2,074	2,183	2,508	2,819	3,505
5	23	0,127	0,256	0,390	0,532	0,685	0,858	1,060	1,319	1,714	1,832	1,978	2,069	2,177	2,500	2,807	3,485
oc	24	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	1,828	1,974	2,064	2,172	2,492	2,797	3,467
	25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	1,825	1,970	2,060	2,167	2,485	2,787	3,450
e	26	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,315	1,706	1,822	1,967	2,056	2,162	2,479	2,779	3,435
S	27	0,127	0,256	0,389	0,531	0,684	0,855	1,057	1,314	1,703	1,819	1,963	2,052	2,158	2,473	2,771	3,421
Graus de	28	0,127	0,256	0,389	0,530	0,683	0,855	1,056	1,313	1,701	1,817	1,960	2,048	2,154	2,467	2,763	3,408
C	29	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,311	1,699	1,814	1,957	2,045	2,150	2,462	2,756	3,396
	30	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1.310	1.697	1.812	1.955	2.042	2.147	2.457	2.750	3.385

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 3. Obter o valor crítico do teste $(z_c, t_c, ...)$ na tabela da distribuição correspondente.
 - Desvio Padrão Desconhecido = Teste T

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Desconhecido = Teste T

$$t_{obs} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Desconhecido = Teste T

$$t_{obs} = \frac{31,4 - 30}{\frac{3}{\sqrt{10}}} = 1,475$$

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 4. Calcular o valor observado (z_{obs} , t_{obs} , ...) de acordo com o problema analisado.
 - Desvio Padrão Desconhecido = Teste T

- **Exemplo 02**: Dados fornecidos: $\bar{X} = 31,4$; $\mu = 30$; $\sigma = ?$; S = 3; n = 10; $\alpha = 0,05$.
- 5. Conclua o teste aceitando ou rejeitando a hipótese nula.
 - \succ $t_{obs} \notin RC = Aceitar a hipótese nula <math>H_0$

- Exemplo 02: Um fabricante afirma que seus suplementos não contém mais do que 30mg de sódio. Uma amostra de 10 potes possui, em média, 31,4mg de sódio e desvio padrão S = 3g. Sendo o nível de significância de 5%, os dados refutam ou não a afirmação?
- Conclusões: De acordo com o teste T ao nível de 5% de significância, pode-se concluir que os suplementos analisados não contém mais do que 30mg de sódio.

Testes A/B

Testes A/B

- O objetivo dos testes A/B é projetar um experimento a fim de confirmar ou rejeitar uma hipótese.
- Os cientistas de dados devem conduzir experimentos, por exemplo, no que diz respeito à interface de usuário e marketing de produto.
- Os dados são coletados e analisados, e então se tira uma conclusão.

Termos-chave para Testagem A/B

- Tratamento: Algo (preço, título de site) ao qual um indivíduo é exposto;
- Grupo de tratamento: Um grupo de indivíduos expostos a um tratamento específico;
- Grupo de controle: Um grupo de indivíduos expostos a nenhum tratamento;
- Randomização: O processo de atribuir aleatoriamente indivíduos a tratamentos.
- Indivíduos: Os itens (visitantes de um site, pacientes etc.) que são expostos aos tratamentos.
- Estatística de teste: A métrica usada para medir o efeito do tratamento.

Teste A/B

Como Fazer Teste A/B?

- Coletar Dados Iniciais do Teste A/B
- Definir os Objetivos do Teste A/B
- Formular uma Hipótese
- Criar uma Variação
- Fazer o Teste
- Analisar os Resultados

Testes A/B

- Exemplos de testagem A/B incluem:
 - Testagem de dois preços para determinar qual gera mais lucro líquido.
 - Testagem de dois títulos de site para determinar qual gera mais cliques.
 - Testagem de dois anúncios online para determinar qual gera mais conversões.

Testes A/B

Referências

- [1] Grus, Joel Data Science do Zero / Joel Grus; traduzido por Welington Nascimento. Rio de Janeiro : Alta Books, 2016. 336 p. : il. ; 3,8 MB.
- [2] Bruce, Peter Estatística Prática para Cientistas de Dados 50 Conceitos Essenciais / Peter Bruce, Andrew Bruce Alta Books, 1ª Edição, 2019.
- [3] Assis, Janilson Pinheiro de Testes de hipóteses estatísticas / Janilson Pinheiro de Assis, Roberto Pequeno de Sousa, Paulo César Ferreira Linhares—Mossoró: EdUFERSA, 2020. 182 p.

Obrigada!

Alguma dúvida?

and ressagomes@alu.ufc.br