数字逻辑设计

张春慨

School of Computer Science ckzhang@hit.edu.cn

用触发器设计同步时序逻辑一实例

- 序列发生器
- 模8可逆计数器
- ■自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

序列信号发生器:能循环产生一组特定的串行数字序列信号的电路。

序列的长度:序列信号的位数。如:序列为00011,则序列长度为5。

任意类型

- □ 使用D触发器设计
- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器 + 反馈电路设计(逻辑门 or译码器 or数据选择器)
- □ 用计数器 + PROM设计

例1: 用D触发器设计一个 110100 序列信号发生器

- 方法1: 利用D触发器
- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

大体思路:

- 1. 实现序列信号一个 周期之内的波形
- ---、2. 将此波形循环再现

1. 画状态转换图

时序电路的不同 状态对应输出序 列中的各位。

2. 状态编码

$$S_0 \longrightarrow 000$$
, $S_3 \longrightarrow 011$
 $S_1 \longrightarrow 001$, $S_4 \longrightarrow 100$
 $S_2 \longrightarrow 010$, $S_5 \longrightarrow 101$

4.卡诺图化简

Q_1Q_0							
Q_2	00	01	11	10			
0	0	0	1	0			
1	7	0	X	X			
•							

3. 状态转换真值

$Q_2Q_1Q_0$	Q_2^{n+1}	$Q_1^{n+1} Q_0^{n+1}$	Y
0 0 0	0	0 1	1
0 0 1	0	1 0	1
0 1 0	0	1 1	0
0 1 1	1	0 0	1
1 0 0	1	0 1	0
1 0 1	0	0 0	0

$$D_0 = Q_0'$$

$$D_1 = Q_2'Q_1'Q_0 + Q_1Q_0'$$

Q ₁ C	Q_1Q_0							
Q_2	00	01	11	10				
0	1	1	1	0				
1	0	0	X	X				

$$Y=Q_2'Q_1'+Q_1Q_0$$

 $D_2 = Q_2 Q_0' + Q_1 Q_0$

- 5. 电路实现(略)
- 6. 检查无关项

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

例1:设计一个 110100 序列信号发生器

方法2: 利用计数器+数据选择器

计数器+数据选择器 设计序列信号发生器的方法

- □ 数据选择器74151的输入 D₀-D₅接成110100。
- □ 74163接成模6加法计数器
- □ 计数器输出连接到数据选择 器的选择控制端CBA,经 过循环选择产生所需序列。

大体思路:

1. 实现序列信号一个 周期之内的波形

2. 循环再现

D5

D₆

D7

74x151

(置数归零法)

74x163

Q_A

 Q_{B}

 Q_{c}

 Q_D

RCO

ENP

ENT

例2:设计一个 00010111 序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)

例2:设计一个 00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)

具体方法

□确定移位寄存器的位数。

序列信号长度为L,则移位寄存器的位数n 应满足:

$2^n \ge L$

试探法: n 为满足条件的最小值 ,将序列数据循环左移, 画状态图。检查状态图中所有 L个状态是否两两不 同,是,则n 值可用;否则取n+1,重复上述操作。

- □ 画状态转换表,确定左移时最低位输入的卡诺图,求出 表达式。如果有无关项,检察电路的自启动能力
- □ 实现最低位反馈输入(逻辑门 or 译码器 or 数据选择器)
- □ 取移位寄存器的某位输出即为所要求的序列信号。

1. 确定移位寄存器位数

序列长度L=8,则n=3

2. 状态转换图

用74194的低3位 $Q_BQ_CQ_D$ 输出

例2:设计一个 00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计

3. 状态转换真值表

 Q_1Q_0

4.卡诺图化简

例2: 设计一个 00010111序列信号发生器 1~4. 同上

方法3: 移位寄存器+反馈电路设计

 $Q_BQ_CQ_D$ 分别接**74151**的选择控制端CBA,则:

$$D_0 = D_2 = D_3 = D_5 = 1$$
,
 $D_1 = D_4 = D_6 = D_7 = 0$

例2:设计一个 00010111序列信号发生器 1~4. 同上

方法3: 移位寄存器+反馈电路设计

$$L_{IN} = Q_B Q_C' Q_D + Q_B' Q_C + Q_B' Q_D'$$

转换为最小 = Σ*m* (0, 2, 3, 5) 项表达式

Q_BQ_CQ_D分别接74138的地 址输入端CBA,则:

Y₀, Y₂, Y₃, Y₅分别被译中时, 反馈回1,否则反馈回0

序列信号发生器设计方法总结

方法总结

特殊类型

- □ 使用环形计数器设计
- □ 使用扭环计数器设计

任意类型

- □ 使用D触发器设计
- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)
- □ 用计数器 + PROM设计

用触发器设计同步时序逻辑一实例

- 序列发生器
- 模8可逆计数器
- ■自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例1: 利用T触发器设计一个同步模8可逆计数器

确定T₃: 看Q₃ⁿ→Q₃ⁿ⁺¹ 确定T₂: 看Q₂ⁿ→Q₂ⁿ⁺¹ 确定T₁: 看Q₁ⁿ→Q₄ⁿ⁺¹

CP —— X=0: 加法; X=1: 减法

Z:进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	\mathbf{Q}_{n}
1	Q _n

2. 状态转换真值表

_									7		
	输	入	顼	l态		次态			输入		输出
	X	Q_3^n	Q_2^n	$\mathbf{Q_1}^n$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T ₃	T ₂	T ₁	Z
	0	0	0	0	0	0	1	0	0	1	0
	0	0	0	1	0	1	0	0	1	1	0
	0	0	1	0	0	1	1	0	0	1	0
	0	0	1	1	1	0	0	1	1	1	0
	0	1	0	0	1	0	1	0	0	1	0
	0	1	0	1	1	1	0	0	1	1	0
	0	1	1	0	1	1	1	0	0	1	0
	0	1	1	1	0	0	0	1	1	1	1
	1	0	0	0	1	1	1	1	1	1	1
	1	0	0	1	0	0	0	0	0	1	0
	1	0	1	0	0	0	1	0	1	1	0
	1	0	1	1	0	1	0	0	0	1	0
	1	1	0	0	0	1	1	1	1	1	0
	1	1	0	1	1	0	0	0	0	1	0
	1	1	1	0	1	0	1	0	1	1	0
	1	1	1	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_{3} = \overline{X} Q_{2}^{n} Q_{1}^{n} + X \overline{Q_{2}^{n}} \overline{Q_{1}^{n}}$$

$$T_2 = \overline{X} Q_1^n + X Q_1^n$$

$$T_1 = 1$$

$$Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n}$$

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例2: 利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 ¥ , 1 ¥
- 每次投币只接收一枚硬币
- 机器收到1.5 ¥,给出一瓶饮料
- 机器收到2.0 字, 给出一瓶饮料, 找回0.5 字

 $X_1 X_{0.5} = 00: 0$

 $X_1 X_{0.5} = 01: 0.5 Y$

 $X_1 X_{0.5} = 10: 1 Y$

Y=1/0:给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

 S_0 —初始状态,无投币

S₁—机器收到0.5¥

S2—机器收到1.0 ¥ (2个 0.5 ¥, or 1个1.0 ¥)

Solution 1:

Mealy circuit

if (机器又收到1个0.5 Y)

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1 Y)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

Solution 1: Mealy circuit

③ Mealy 状态图

④ 状态表

现态	Sn+1/ Z					
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5}=01$	X ₁ X _{0.5} =10	$X_1X_{0.5}=11$		
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX		
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX		
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX		

④ 状态表

现态	Sn+1/ Z						
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5}=01$	$X_1X_{0.5}=10$	X ₁ X _{0.5} =11			
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX			
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX			
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX			

2. 状态化简

3. 状态分配

S ₀ ——	00
S ₁ ——	01
S ₂	10

需要2个D触发器

4. 状态转换真值

	输	入〔	现	态	次	态	输。	λ	输	出	
	X ₁	X _{0.5}	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{n}$	$\mathbf{Q}_{2}^{\text{n+1}}$	$\mathbf{Q_1}^{\text{n+1}}$	D_2	D ₁	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	L
	0	0	1	1	X	X	X	X	X	X	D
	0	1	0	0	0	1	0	1	0	0	Ī
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	
	0	1	1	1	X	X	X	X	X	Х	
	1	0	0	0	1	0	1	0	0	0	Γ
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	
	1	0	1	1	X	X	X	X	X	X]
7	1	1	0	0	Х	Χ	X	Х	Х	Х	N
	1	1	0	1	X	X	X	X	X	Х	
	1	1	1	0	X	X	X	X	X	Х	
U	1	1	1	1	X	X	X	X	X	X	IJ

5. 卡诺图化简

$$\mathbf{D}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{Q}_1^{n} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n}$$

$$\mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_1^{\,\mathrm{n}} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{\,\mathrm{n}} \overline{\mathbf{Q}}_2^{\,\mathrm{n}}$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

Q_2	n Q ₁n			
$X_1 X_{0.5}$	ⁿ Q₁ ⁿ 00	01	11	10
00	0	0	Х	0
01	0	0	Х	0
11	Х	X	Х	X
10	0	0	Х	1

$$Z = X_1Q_2^n$$

6. 电路实现

!)电路需要预置

7. 检查无关项

无关状态: Q₂ⁿQ₁ⁿ =11 X₁X_{0.5} 分别为 00 ,01,10时,带入计算 $\bigcap_{\mathbf{Q}_{2}^{n+1}} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $(Q_1^{n+1} = D_1 = \overline{X}_1 \overline{X}_{0.5} Q_2^{n} + X_{0.5} \overline{Q}_1^{n} \overline{Q}_2^{n})$ $Y = Q_2^n X_{0,5} + Q_2^n X_1 + X_1 Q_1^n$ └ Z= X₁Q₂ʰ $X_1X_{0.5}/YZ$ 01/00 00/00 00 _10/10 非自 10/00 01/10 01/00 启动 10/1 0110 00/00 00/00 收费

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5 ¥

S₂—机器收到1.0 ¥

S3—机器收到1.5 ¥

S₄—机器收到2.0 ¥

Solution 2:

Moor circuit

③ Moor 状态表

现态		输出		
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S_2	S ₃	00
S ₂	S ₂	S_3	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S ₄	S ₀	S ₁	S ₂	11

② Moor 状态图

2. 状态化简

3. 状态分配

$\mathbf{Q_2}^{n}\mathbf{Q_1}^{n}$								
Q_3^n	00	01	11	10				
0	S ₀	S ₃		S ₁				
1	S ₄			S ₂				

需要3个D触发器

S ₁ - S ₂ -	000 010 110
$S_3^ S_4^-$	001 100

S₄ —— 100

4. 状态转换真值表

辅	入		现	态		次态		输	λ		输	出
X ₁	$X_{0.5}$	$\mathbf{Q_3}^n$	\mathbf{Q}_{2}^{n}	$\mathbf{Q_1}^{\mathrm{n}}$	Q_3^{n+1}	\mathbf{Q}_{2}^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Υ	Z
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	X	X	X	X	X	X

5. 卡诺图化简

Q,	n Q 1n	X_1		
$X_{0.5}Q_3$	00	01	11	10
00	0	0	X	0
01	0	X	X	0
11	0	X	X	1
10	0	0	Х	0
Q	n Q 1n	Х	ː ₁ =1	
$X_{0.5}Q_3^{n}$	00	01	11	10
00	0	0	X	1
01	0	X	Х	0
11	Х	X	X	Х
10	Х	X	X	X

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$\mathbf{D}_2 = \overline{\mathbf{X}}_{0.5} \mathbf{Q}_3^{n} + \overline{\mathbf{Q}}_2^{n} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_2^{n} + \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n}$$

$$\mathbf{D}_1 = \mathbf{X}_{0.5} \mathbf{Q}_3^{\text{n}} \mathbf{Q}_2^{\text{n}} + \overline{\mathbf{Q}}_3^{\text{n}} \mathbf{X}_1 \mathbf{Q}_2^{\text{n}}$$

$$Y = \overline{Q}_2^n Q_3^n + Q_1^n$$

$$Z = \overline{Q}_2^n Q_3^n$$

$$\begin{aligned}
& D_3 = \overline{X}_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_{0.5} Q_2^n + X_1 \overline{Q}_2^n \\
& D_2 = \overline{X}_{0.5} Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5} Q_2^n \\
& D_1 = X_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_1 Q_2^n \\
& Y = \overline{Q}_2^n Q_3^n + Q_1^n \\
& Z = \overline{Q}_2^n Q_3^n
\end{aligned}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moor型电路与Mealy型电路比较

- ▶ Moor型电路中的状态总数相对要多 一些,需要使用较多的触发器资源。
- ▶ Moor型电路的输出只与状态有关, 输出没有毛刺。

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例3: 利用JK触发器设计一个时序锁

- □ 输入: X₁X₂, 输出: Z
- □该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11, 时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00、都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态,输入00

B—输入00后,再输入01

C-输入00、01后, 再输入11, 且Z=1

E—错误状态

现态	次态S _{n+1}						
S _n	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$						
R	R	В	E	E	0		
В	R	E	С	E	0		
С	R	E	E	E	1		
E	R	E	E	E	0		

现态	次态 <i>S</i> _{n+1}						
S _n	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$						
R	R	В	E	E	0		
В	R	E	С	E	0		
С	R	E	E	E	1		
E	R	E	E	E	0		

2. 状态化简

3. 状态分配 需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

		<u> </u>	• • • •	**						
输	入	顼	!态	次	态		输	λ		输出
X_1	X_2	\mathbf{Q}_{2}^{n}	$\mathbf{Q_1}^{\mathbf{n}}$	\mathbf{Q}_2^{n+1}	Q_1^{n+1}	J ₂	K ₂	J ₁	K ₁	Z
0	0	0	0	0	0	0	Χ	0	Х	0
0	0	0	1	0	0	0	X	X	1	0
0	0	1	0	0	0	X	1	0	Х	0
0	0	1	1	0	0	X	1	X	1	1
0	1	0	0	0	1	0	X	1	Х	0
0	1	0	1	1	0	1	X	X	1	0
0	1	1	0	1	0	X	0	0	Х	0
0	1	1	1	1	0	X	0	X	1	1
1	0	0	0	1	0	1	X	0	Х	0
1	0	0	1	1	0	1	X	X	1	0
1	0	1	0	1	0	X	0	0	Х	0
1	0	1	1	1	0	X	0	X	1	1
1	1	0	0	1	0	1	X	0	Х	0
1	1	0	1	1	1	1	X	X	0	0
1	1	1	0	1	0	X	0	0	X	0
1	1	1	1	1	0	X	0	X	1	1

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

X_1Q_2	ⁿ Q ₁ ⁿ 00	01	11	10
$\mathbf{A}_{1}\mathbf{Q}_{2}$	00	UI	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$Z = Q_2^n Q_1^n$$

$$\mathbf{J}_1 = \overline{\mathbf{X}}_1 \mathbf{X}_2 \overline{\mathbf{Q}}_2^{\mathsf{n}}$$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例4: 利用JK触发器设计一个同步二进制串行加法器

- 1. 原始状态图及状态表
 - ① 设加法器内部状态

a—— 无进位

b---- 有进位

② Mealy 状态图

③ Mealy 状态表

现态		Qn-	+1/ Z	
Qn	$X_1X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$	$X_1X_2=11$
а	a/0	a/1	a / 1	b / 0
b	a / 1	b / 0	b / 0	b / 1

- 2. 状态化简 3. 状态分配 a=0, b=1
- 4. 状态转换真值表

辅	入:	现态	输	入	输出	
X ₁	X ₂	Qn	Qn+1	J	K	Ζ
0	0	0	0	0	X	0
0	0	1	0	X	1	1
0	1	0	0	0	X	1
0	1	1	1	X	0	0
1	0	0	0	0	X	1
1	0	1	1	X	0	0
1	1	0	1	1	X	0
1	1	1	1	X	0	1

5. 卡诺图化简

6. 电路实现

方案2: 如何用一位全加器实现?

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例5:用D触发器设计一个串行输入的8421BCD码误码检测器要求:

- 8421BCD码低位在前、高位在后串行地加到检测器的输入端。
- 电路每接收一组代码,即在收到第4位代码时判断。若是错误代码,则 输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

1. 原始状态图及状态表

利用触发器设计同步时序逻辑_例5

现态	Qn+	1/ Z	
Qn	X=0	X=1	
Α	B/0	C / 0	
В	D / 0	E/0	
С	F/0	G / 0	
D	H/0	1/0	
Е	J/0	K/0	
F	L/0	M / 0	
G	N / 0	P/0	
-	A/0	A/0	
	A / 0	A/1	
}	A/ 0	A/1	
K	A/0	A/1	
}	A/O	A/0	
M	A/0-	A/1	
Ņ	A/Q	A/1	
D.	A/0	A/4	

2. 状态化简

	现态	Q ⁿ⁺		
	Qn	X=0	X=1	
>	Α	B/0	C / 0	
	В	D / 0	E/0	
	С	F/0	G / 0	
_	D	- H / O-	- I / 0	
_		1/0	1/0	
_	F.	- H / O-	- I/ 0 -	
	G	1/0	1/0	
	Н	A/0	A/0	
	I	A / 0	A / 1	
				•

现态	Qn+1/Z				
Qn	X=0	X=1			
Α	B/0	C / 0			
В	D / 0	E/0			
С	D/0	E / 0			
D	H/0	1/0			
Е	1/0	1/0			
H	A/0	A/0			
	A / 0	A / 1			

利用触发器设计同步时序逻辑_例5

2. 状态化简

现态	Qn+1/ Z			
Qn	X=0	X=1		
Α	B/0	B / 0		
В	D / 0	E/0		
D	H/0	1/0		
E	1/0	1/0		
Н	A/0	A/0		
I	A / 0	A / 1		

3. 状态分配

知则1:次态相同,现态编码应相邻

HI, DE 应相邻

规则2: 同一现态对应的次态应给予相邻编码

DE, HI 应相邻

规则3:输出相同,现态编码应相邻

ABDEH应相邻

A: 000; B: 001 D: 011; I: 010

E: 111; H: 110

4. 状态转换真值表

确定D₃:看Q₃n+1

确定D₂:看Q₂n+1 确定D₁:看Q₁n+1

$Q_3^{Q_2}$	ⁿ Q₁ ⁿ 00	01	11	10	
0	Α	В	D	I	
1			Е	Н	

现态	Q n+1/ Z			
Qn	X=0	X=1		
Α	B/0	B / 0		
В	D / 0	E/0		
D	H/0	1/0		
Е	1/0	1/0		
Н	A/0	A/0		
	A / 0	A / 1		

3	输入及	え 现る	7.		次态			輸入	输	出
X	Q_3^n	Q_2^n	$\mathbf{Q_1}^{n}$	Q_3^{n+1}	\mathbf{Q}_2^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Z
0	0	0	0	0	0	1	0	0	1	0
0	0	0	1	0	1	1	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	1	1	0	0
0	1	0	0	X	X	X	X	X	X	X
0	1	0	1	X	X	X	X	X	X	X
0	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1	0	0
1	0	0	0	0	0	1	0	0	1	0
1	0	0	1	1	1	1	1	1	1	0
1	0	1	0	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0	1	0	0
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	1	0	0	1	0	0

利用触发器设计同步时序逻辑_例5

5. 卡诺图化简

$$XQ_3^n Q_1^n$$
 $00 \quad 01 \quad 11 \quad 10$
 $00 \quad 1 \quad 1 \quad 0 \quad 0$
 $01 \quad x \quad x \quad 0 \quad 0$
 $11 \quad x \quad x \quad 0 \quad 0$

$$D_1 = \overline{Q_2^n}$$

10

$$Z = X \overline{Q_3^n} Q_2^n \overline{Q_1^n}$$

6. 电路实现

利用触发器设计同步时序逻辑_例5

7. 无关项检查

将无关状态 $Q_3^nQ_2^nQ_1^n=100和101分别代入次态方程和输出方程计算$

电路可以自启动

$$\begin{cases}
Q_i^{n+1} = D_i \\
D_3 = \overline{Q_3^n} Q_2^n Q_1^n \overline{X} + X \overline{Q_2^n} Q_1^n \\
D_2 = Q_1^n \\
D_1 = \overline{Q_2^n} \\
Z = X \overline{Q_3^n} Q_2^n \overline{Q_1^n}
\end{cases}$$

利用触发器设计时序逻辑——实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

利用触发器设计同步时序逻辑_例6

例6: 利用T触发器设计一个串行输入的奇校验检测器

② Moor 状态图

③状态表

现态	次态	输出	
Qn	X=0	X=1	Z
S ₀	S ₀	S ₁	0
S ₁	S ₁	So	1

1. 原始状态图及状态表

① 状态设定

S₀──表示收到偶数个"1",初始为0个"1" S₁──表示收到奇数个"1"

- 2. 状态化简
- 3. 状态分配 S₀: 0, S₁: 1
- 4. 状态转换真值表

输入	现态	次态	输入	输出
X	Qn	Qn+1	T	Z
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

5. 卡诺图化简

 $T=X; Z=Q^n$

6. 电路实现

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例7:利用D触发器设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为余3码。

■ 转换器的输入和输出都是最低位优先

		X nput BCD)			Z Outp		
t_3	t_2	t_1	t_0	t_3	t_2	t_1	t_0
.ele.			0				1
			1				0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀时刻</i> 输出
00	1 1
01	00
10	01
11	1 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	011
001	100
010	101
011	110
100	111
101	000
110	001
111	010

t ₃ t ₂ t ₁ t ₀ 时刻 输入	t ₃ t ₂ t ₁ t ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

		X nput BCD)			Z Out exce	put ss-3)	
t_3	t_2	t_1	t_0	t_3	t_2	t_1	t_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

1. 原始状态图及状态表

- □ *t*₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	<i>t₁ t₀</i> 时刻 输出
00	11
01	00
10	01
11	1 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	011
001	100
010	101
011	110
100	111
101	000
110	001
111	010

	$t_0 = 0$	12	
$t_1 \begin{array}{c} 0 \\ 1 \end{array}$	1/0	%	1/1
$t_2 = 0$	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0, 1, 0	0,1,0
$t_3 0 1 0$	J N 19/	1 M	R P 9/2

t ₃ t ₂ t ₁ t ₀ 时刻 输入	<i>t</i> ₃ <i>t</i> ₂ <i>t</i> ₁ <i>t</i> ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1 011
1001	1 100

2. 状态化简

Time	Input Sequence Received (Least Significant Bit First)	Present State	Next Sta X = 0	ate 1	Preser Output X = 0	
t _o	reset	Α	В	С	1	0
t ₁	0 1	B C	D E	F G	1 0	0
t ₂	00 01 10 11	D E F G	H I J K	L M N	0 1 1 1	1 0 0 0
t ₃	000 001 010 011 100 101 110	H I J K L M N	A A A A A A	A A - - -	0 0 0 0 0 1 1	1 1

		Nex	t	Present	
	Present	Stat	e	Output	(Z)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	C	1	0
$\overline{t_1}$	В	D	Ε	1	0
	C	Ε	Ε	0	1
t_2	D	Н	Н	0	1
	E	Н	M	1	0
t ₃	Н	Α	Α	0	1
257041 72	М	Α	-	1	-

3. 状态分配

		Nex	t	Prese	nt
	Present	Stat	e	Output	(Z)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	C	1	0
t ₁	В	D	Ε	1	0
	С	Ε	Ε	0	1
t ₂	D	Н	Н	0	1
	E	Н	M	1	0
t ₃	Н	Α	A	0	1
167041	М	A	_	1	_

4. 状态转换真值表

94		Q†Q	$Q_2^+ Q_3^+$	Z	
	$Q_1Q_2Q_3$	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	XXX	1	X
_	001	XXX	XXX	х	Х

4. 状态转换真值表

Ra.		Q ₁ +Q	$Q_2^+Q_3^+$	Z	
	$Q_1Q_2Q_3$	<i>X</i> = 0	X = 1	<i>X</i> = 0	X = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	011	000	000	0	1
Μ	010	000	XXX	1	Х
_	0 0 1	x x x	XXX	х	х

5. 卡诺图化简

 $D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2'$

 $Z = X'Q'_3 + XQ_3$

6. 电路实现

7. 无关项检查

将无关状态Q₃Q₂Q₄=100代入次态方程和输出方程计算

$$\begin{cases} D_1 = Q_1^+ = Q_2' \\ D_2 = Q_2^+ = Q_1 \\ D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2' \\ Z = X' Q_3' + X Q_3 \end{cases}$$

电路可以自启动

H

M

B

C

D

E

例8: 迭代电路设计——利用D触发器设计一个比较器,能对两个n位

1. 原始状态图及状态表

对于第 i 个单元,设状态——

S₀: X = Y 时

S₁: X > Y 时

S₂: X < Y 时

 Z_2 、 Z_3 、 Z_1 分别取值为1

- □由n个比较子单元(cell)构成
- □ 从高位到低位,逐位对应比较,并将前一位比较 的结果传送给下一位

每个对应位的比较都

□ 第*i*个单元的比较结果: *X* = *Y*, *X* > *Y*, or *X* < *Y*.

1. 原始状态图及状态表

		S_{i+1}				
	S_{i}	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
X = Y	S_0	<i>S</i> ₀	S ₂	S ₀	S ₁	0 1 0
X > Y	S_1	S ₁	S_1	S_1	S_1	0 0 1
X < Y	S_2	S_2	S_2	S ₂	S_2	1 0 0

在第*i* 个(前一个)单元 有比较结果的前提下,根 据输入取值,可以确定第 *i* +1个单元的比较结果

对于第 i 个单元, 设状态-

S₀: X = Y时 S₁: X > Y时 S₂: X < Y时

Z₁ 、Z₂ 、 Z₃ 分别取值为1

2. 状态化简

3. 状态分配

 $S_0: 00$

S₁: 01

需要两个触发器, 用 a,b来表示

S₂: 10

4. 状态转换真值表

3	$a_{i+1}b_{i+1}$				
a _i b _i	$x_i y_i = 00$		11	10	$Z_1 Z_2 Z_3$
0 0	00	10	00	01	0 1 0
0 1	01	01	01	01	0 0 1
10	10	10	10	10	1 0 0

5. 卡诺图化简

第 i 个子单元的电路实现

6. 电路实现

7. 无关项检查 (略)

例9:利用D触发器设计一个同步时序电路,当输入序列以010或1001 结尾时(允许重叠检测),输出Z为1,否则Z=0.

1. Mealy型原始状态图构建

(1) 子序列010检测的状态设定

S₀——初始复位状态,表示没有任何输入

S₁──表示序列以**"0"结束**

S。——表示序列以"10"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

(1) 010检测的局部状态图

重叠检测: 010中的

10可以被1001检测重

(2) 子序列1001检测的状态设定

 S_0 —初始复位状态,表示没有任何输入

S₁──表示序列以"0"结束

S₂——表示序列以"10"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

S₄——表示接收到1001序列的第一个**"1**"

S₅——表示序列以"100"结束。

(2) 1001检测的局部状态图

重叠检测: 010中的 10可以被1001检测重

重叠检测: 010中的

10可以被1001检测重

(2) 子序列1001检测的状态设定

- S_0 —初始复位状态,表示没有任何输入
- S₁──表示序列以"0"结束
- S₂—表示序列以"10"结束
- S₃——表示序列以"010"结束,此时输出标志 Z=1。
- S₄——表示接收到1001序列的第一个"1"
- S₅——表示序列以"100"结束。

- 2. 状态化简(略)
- 3.状态分配(略)
- 4.状态转换真值表(略)
- 5.卡诺图化简(略)
- 6. 电路实现(略)

(3)010及1001检测的完整状态图

例10:某同步时序电路如下所示,按图接线后,试验得到如下的循环状态。经检查:触发器工作正常,试分析故障所在。

1. 获得正确状态图

① 输入方程

$$J_0 = \overline{Q_2}^n$$
, $K_0 = 1$
 $J_1 = K_1 = Q_0^n$
 $J_2 = Q_0^n Q_1^n$, $K_2 = 1$

② 次态方程

$$\mathbf{Q}_0^{n+1} = \overline{\mathbf{Q}}_0^n \overline{\mathbf{Q}}_2^n$$

$$\mathbf{Q}_1^{n+1} = \mathbf{Q}_1^{n} \oplus \mathbf{Q}_0^n$$

$$\mathbf{Q}_2^{n+1} = \mathbf{Q}_0^n \mathbf{Q}_1^n \overline{\mathbf{Q}}_2^n$$

③ 正确的状态转换图

④ 电路功能:模5加法计数器,可自启动

2. 故障分析

① 触发器工作正常: 说明——电源和地线接触良好、时钟信号CP正常送入 故障只可能在进位链或驱动回路中

② 分析各触发器状态:

次态方程

2. 故障分析

② 分析各触发器状态:

结论:

接入,

2. 故障分析

③ 针对触发器0分析:

?

K₀接触不良?

J₀接触不良?

TTL电路管脚悬空 等效为高电平1

 $\overline{\mathbf{Q}}_2$ 没有接入, \mathbf{J}_0 悬 空等效为高电平1

➡ 触发器变成T', 符合故障现象

Ko没问题

Q₂Q₁Q₀
001
010
011

Q₂没有

J₀悬空

讨论:某同步时序电路如下所示,在电路状态转换图保持不变的前提下,把电路中的JK触发器换成D触发器,应该怎样设计?如果将电路改成模8计数器,最简单的实现方法是什么?

