Claims

1. A process for preparing isotactic 1-butene copolymers containing up to 30% by mol of units derived from one or more alpha olefins of formula CH₂=CHZ, wherein Z is a C₃-C₂₀ hydrocarbon group comprising contacting 1-butene and one or more of said alpha-olefins, under polymerization conditions, in the presence of a catalyst system obtainable by contacting:

a) at least a metallocene compound of formula (I)

$$R^{2}$$
 R^{1}
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}

wherein

M is a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements;

p is an integer from 0 to 3, being equal to the formal oxidation state of the metal M minus 2;

X, equal to or different from each other, are hydrogen atoms, halogen atoms, or R, OR, OSO₂CF₃, OCOR, SR, NR₂ or PR₂ groups, wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or a OR'O group wherein R' is a divalent radical selected from C_1 - C_{20} alkylidene, C_6 - C_{40} arylidene, C_7 - C_{40} alkylarylidene and C_7 - C_{40} arylalkylidene radicals;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, and C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-

17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

 R^1 and R^3 , equal to or different from each other, are linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 R^2 and R^4 , equal to or different from each other, are hydrogen atoms or linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 T^1 and T^2 , equal to or different from each other are a moiety of formula (II), (III) or (IV):

$$R^5$$
 R^6
 R^5
 R^7
 R^8
 R^7
 R^8
 R^9
 R^8
(II) (III) (IV)

wherein: the atom marked with the * is bound to the atom marked with the same symbol bonds in formula (I);

 R^5 , R^6 , R^7 , R^8 and R^9 , equal to or different from each other, are hydrogen atoms, or a linear or branched saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, C_7 - C_{40} -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

R⁶ and R⁷ can also join to form a saturated or unsaturated condensed 5 to 7 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; and

- b) at least an alumoxane or a compound able to form an alkylmetallocene cation.
- 2 The process according to claim 1 wherein the catalyst system further comprises organo aluminum compound.
- The process according to claim 1 or 2 wherein in the compound of formula (I) M is titanium, zirconium or hafnium; X is a hydrogen atom, a halogen atom or a R group; L is selected from the group consisting of is Si(CH₃)₂, SiPh₂, SiPhMe, SiMe(SiMe₃), CH₂,

 $(CH_2)_2$, $(CH_2)_3$ and $C(CH_3)_2$ and R^9 is a hydrogen atom or a linear or branched saturated or unsaturated C_1 - C_{20} -alkyl radical.

The process according to anyone of claims 1 to 3 wherein the metallocene compound has formula (V):

$$T^3$$
 CH_2-R^{10}
 $R^{10}-H_2C$
 T^4

(V)

wherein M, L, X and p have the same meaning as in claim 1;

 R^{10} , equal to or different from each other, are hydrogen atoms, or linear or branched saturated or unsaturated C_1 - C_{19} -alkyl, C_3 - C_{19} -cycloalkyl, C_6 - C_{19} -aryl, C_7 - C_{19} -alkylaryl, C_7 - C_{19} -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T³ and T⁴, equal to or different from each other are moieties of formula (Va), (Vb) or (Vc):

wherein: the atom marked with the symbol * is bound to the atom marked with the same symbol in formula (V);

R⁶, R⁷ and R⁹ have the same meaning as in claim 1.

The process according to claim 4 wherein in the compound of formula (V) R¹⁰ is a hydrogen atom or a C₁-C₁₉-alkyl radical; R⁶, R⁷ are hydrogen atoms or linear or branched saturated or unsaturated C₁-C₂₀-alkyl radicals, or they can form a saturated or unsaturaded 5 or 6 membered ring optionally containing heteroatoms

belonging to groups 13-16 of the Periodic Table of the Elements; and R^9 is a linear or branched saturated or unsaturated C_1 - C_{20} -alkyl radical.

The process according to anyone of claims 1 to 3 wherein the metallocene compound has formula (VI):

$$T^5$$
 CH_2-R^{10}
 $R^{10}-H_2C$
 T^6

(VI)

wherein M, L, X and p have the same meaning as in claim 1 and R^{10} , equal to or different from each other, are hydrogen atoms, or linear or branched saturated or unsaturated C_1 - C_{19} -alkyl, C_3 - C_{19} -cycloalkyl, C_6 - C_{19} -aryl, C_7 - C_{19} -alkylaryl, C_7 - C_{19} -arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

T⁵ and T⁶, equal to or different from each other are a moieties of formula (VIa), (VIb) or (VIc):

$$R^{14}$$
 R^{13}
 R^{12}
 R^{14}
 R^{13}
 R^{14}
 R^{13}
 R^{12}
 R^{14}
 R^{15}
 R^{11}
 R^{15}
 R^{11}
 R^{15}
 R^{11}
 R^{12}
 R^{13}
 R^{12}
 R^{14}
 R^{15}
 R^{11}
 R^{15}
 R^{11}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{11}
 R^{15}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{11}
 R^{15}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{11}
 R^{15}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{11}
 R^{12}
 R^{15}
 R^{11}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{11}
 R^{12}
 R^{15}
 R

wherein: the atom marked with the symbol * is bound to the atom marked with the same symbol in formula (VI);

R⁶, R⁷ and R⁹, have the same meaning as in claim 1;

R¹¹, R¹², R¹³, R¹⁴, and R¹⁵, equal to or different from each other, are hydrogen atoms or linear or branched saturated or unsaturated C₁-C₂₀-alkyl, C₃-C₂₀-cycloalkyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl, C₇-C₂₀-arylalkyl radicals, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, or two adjacent groups can form together a saturated or unsaturated condensed 5 or 6 membered ring optionally containing heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements.

- The process according to claim 6 wherein R⁶, R⁷ are hydrogen atoms or linear or branched saturated or unsaturated C₁-C₂₀-alkyl radicals; or they can form a saturated or unsaturaded 5 or 6 membered ring optionally containing heteroatoms heteroatoms belonging to groups 13-16 of the Periodic Table of the Elements; R⁹ is a hydrogen atom or a linear or branched saturated or unsaturated C₁-C₂₀-alkyl radical; R¹¹ is a C₁-C₂₀-alkyl radical; R¹⁴ is a hydrogen atom or a C₁-C₂₀-alkyl radical; and R¹⁵ are hydrogen atoms.
- The process according to anyone of claims 1 to 7 wherein the alpha-olefin is 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 4,6-dimethyl-1-heptene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
- The process according to claim 8 wherein the alpha-olefin is comonomers are 1-pentene, 1-hexene and 1-octene.
- The process according to anyone of claims 1 to 9 wherein the content of said alpha olefins derived units in the copolymer is from 2% to 20% by mol.
- An isotactic 1-butene copolymer containing up to 30% by mol of one or more alphaolefins of formula CH₂=CHZ derived units, wherein Z is a C₃-C₂₀ hydrocarbon group having the following features:
 - isotactic pentads (mmmm) >90%; and
 - the percentage of soluble fraction in diethylether (%SD) and the molar content of said alpha olefins (%O) in the polymer chain meet the following relation:

12 The isotactic 1-butene copolymer according to claim 11 wherein the percentage of soluble fraction content in diethylether (%SD) and the molar content of said alpha olefins (%O) in the polymer chain meet the following relation:

13. The isotactic 1-butene copolymer according to claims 11 or 12 having a content of alpha-olefin derived units comprised between 10% and 30% by mol and having percentage of soluble fraction in diethylether >92%.

- 14. The isotactic 1-butene copolymer according to claims 11 or 12 having a content of alpha-olefin derived units comprised between 5% and 12% by mol and having percentage of soluble fraction in diethylether >41%.
- 15. An isotactic 1-butene copolymer containing up to 30% by mol of units derived from one or more alpha-olefins of formula CH₂=CHZ, wherein Z is a C₃-C₂₀ hydrocarbon group having the following features:
 - isotactic pentads (mmmm) >90%; and
 - presence of 4,1 insertions in the polymer chain.