Tutorien-Übungsblatt 1

Aufgabe 1

Gegeben sei der folgende endliche Automat:

 $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, S, \mathcal{F})$ mit $\Sigma = \{a, b\}, \ \mathcal{Q} = \{S, B, C, D\}, \ \mathcal{F} = \{B, C\}$ und δ gegeben durch:

- 1. Geben Sie die von diesem Automaten akzeptierte Sprache in einem regulären Ausdruck an!
- 2. Um was für einen Automaten handelt es sich?
- 3. Konstruieren Sie einen äquivalenten endlichen Automaten, der nur einen einzigen Endzustand besitzt!
- 4. Geben Sie eine linkslineare Grammatik für die Sprache dieses Automaten an, die keine überflüssigen Nichtterminale und Regeln enthält!

Aufgabe 2

- 1. Formulieren Sie einen regulären Ausdruck über dem Alphabet $\Sigma = \{0, 1\}$, der jedes beliebige Wort erfasst, wobei die vorletzte Ziffer 0 sein soll!
- 2. Geben Sie für diese Sprache den möglichst größten Chomsky-Typ und eine zugehörige Grammatik an!
- 3. Geben Sie einen dazugehörigen Automaten an, der diese Sprache akzeptiert!

Aufgabe 3

Gegeben sei der folgende endliche Akzeptor \mathcal{M} mit dem Eingabealphabet $\Sigma = \{a, b, c, d\}$:

- 1. Welche Sprache $\mathcal{L}(\mathcal{M})$ wird von dem Akzeptor \mathcal{M} akzeptiert?
- 2. Konstruieren Sie aus \mathcal{M} eine rechtslineare Grammatik, die $\mathcal{L}(\mathcal{M})$ erzeugt!

Aufgabe 4

Die Sprache \mathcal{L} sei durch den regulären Ausdruck $(aa^*b^*)^*cc^*$ definiert.

- 1. Geben Sie eine rechtslineare Grammatik $\mathcal G$ an, die $\mathcal L$ erzeugt!
- 2. Konstruieren Sie aus \mathcal{G} einen endlichen Akzeptor, der \mathcal{L} akzeptiert!

Lösung zu Aufgabe 1

- 1. $(a \cdot a^*) + (b \cdot b^*) = (a^+) + (b^+)$
- 2. Es handelt sich um einen (endlichen) Akzeptor.
- 3. So könnte ein gesuchter nichtdeterministischer endlicher Automat aussehen:

4. Grammatik: $\mathcal{G} = (\mathcal{T}, \mathcal{V}, S, \mathcal{P})$ mit $\mathcal{V} := \{S, B, C\}, \ \mathcal{T} := \{a, b\}, \ \mathcal{P} := \{S \to Ca \mid Bb \mid a \mid b, B \to Bb \mid b, C \to Ca \mid a\}$

Lösung zu Aufgabe 2

- 1. $(0+1)^* \cdot 0 \cdot (0+1)$
- 2. Die Sprache ist vom Chomsky-Typ 3! Grammatik: $\mathcal{G} = (\mathcal{T}, \mathcal{V}, S, \mathcal{P})$ mit $\mathcal{V} := \{S, B\}, \, \mathcal{T} := \{0, 1\}, \, \mathcal{P} := \{S \to 0S \mid 1S \mid 0B, B \to 0 \mid 1\}$
- 3. So könnte der gesuchte endliche Automat aussehen: $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, S, \mathcal{F})$ mit $\Sigma = \{0, 1\}, \ \mathcal{Q} = \{S, B, C\}, \ \mathcal{F} = \{C\}$ und δ gegeben durch:

Lösung zu Aufgabe 3

1. Der Akzeptor \mathcal{M} akzeptiert die Sprache $\mathcal{L}(\mathcal{M}) = \{a,b\}^+\{c\}^+\{d\}(\{d\}\{a,b\}^*\{c\}^+\{d\})^*$.

Da sich die Sprache $\mathcal{L}(\mathcal{M})$ leichter und leserlicher mit einem regulären Ausdruck beschreiben lässt, folgt hier noch zusätzlich der reguläre Ausdruck R, der $\mathcal{L}(\mathcal{M})$ beschreibt:

$$R = (a+b)(a+b)^*cc^*d(d(a+b)^*cc^*d)^*$$

2. Aus dem endlichen Akzeptor $\mathcal{M} = (\mathcal{Q}, \Sigma, \delta, q_0, \mathcal{F})$ kann direkt eine rechtslineare Grammatik konstruiert werden, die $\mathcal{L}(\mathcal{M})$ erzeugt:

Schritt 1: Definiere das Terminalalphabet der Grammatik als das Eingabealphabet des Automaten, also $\mathcal{T} := \Sigma = \{a, b, c, d\}.$

Schritt 2: Füge für jeden Zustand q des Akzeptors dem Variablenalphabet der Grammatik eine Variable hinzu: $\mathcal{V} := \{S, A, B, C\}$, wobei das Startzeichen S dem Startzustand q_0 , A dem Zustand q_1 , B dem Zustand q_2 und C dem Zustand q_3 entspricht.

Schritt 3: Übersetze die Transitionen des Akzeptors in Produktionen der Grammatik. Füge dazu für jede Transition $\delta(q_l,x)=q_m$ des Akzeptors mit $q_l,q_m\in Q,x\in \Sigma$ eine Produktion $V_1\to xV_2$ hinzu, wobei V_1 und V_2 die Variablen sind, die den Zuständen q_l und q_m entsprechen. Füge außerdem für jeden Endzustand des Akzeptors eine Produktion $V\to\lambda$ für die dem Endzustand entsprechenden Variable $V\in\mathcal{V}$ hinzu. Die Sprache $\mathcal{L}(\mathcal{M})$ wird damit also erzeugt von der Grammatik $\mathcal{G}=(\mathcal{T},\mathcal{V},S,\mathcal{P})$ mit dem Terminalalphabet $\mathcal{T}=\{a,b,c,d\}$, dem Variablenalphabet $\mathcal{V}=\{S,A,B,C\}$, dem Startzeichen S und der Produktionenmenge

$$\mathcal{P} = \{ S \to aA \mid bA$$

$$A \rightarrow aA \mid bA \mid cB$$

$$B \to cB \mid dC$$

$$C \to dA \mid \lambda$$
 }.

Lösung zu Aufgabe 4

1. \mathcal{L} wird von folgender Grammatik $\mathcal{G} = (\mathcal{T}, \mathcal{V}, S, \mathcal{P})$ mit Terminalalphabet $\mathcal{T} = \{a, b, c\}$ und Variablenalphabet $\mathcal{V} = \{S, A, B\}$ und folgenden Produktionen erzeugt:

$$S \rightarrow aA \mid cB$$

$$A \rightarrow aA \mid bA \mid cB$$

$$B \to cB \mid \lambda$$

2. Aus der rechtslinearen Grammatik \mathcal{G} lässt sich folgendermaßen ein endlicher Akzeptor \mathcal{M} konstruieren, der \mathcal{L} akzeptiert, wobei das Eingabealphabet des Akzeptors das Terminalalphabet der Grammatik ist:

Schritt 1: Für jede Variable $V \in \mathcal{V}$ bekommt der Akzeptor einen Zustand q_V , dabei entspricht der Startzustand q_S dem Startzeichen S.

Schritt 2: Für jede Produktion der Form $V_1 \to xV_2$ mit $V_1, V_2 \in \mathcal{V}$ und $x \in \mathcal{T}$ bekommt der Akzeptor eine Transition von q_{V_1} nach q_{V_2} mit Eingabezeichen x.

Schritt 3: Enthält die Grammatik für eine Variable $V \in \mathcal{V}$ eine Produktion $V \to \lambda$, so wird der entsprechende Zustand q_V zum Endzustand.

Damit erhalten wir folgenden Automaten:

