

American Journal of Audiology: A Journal of Clinical Practice Index to Volume 11, 2002

Author Index	139
Subject Index	139
Title Index	140
Department Index	141

Author Index

Behr, R. See Jackson et al., 11(2), 128-133

Berent, M. See Schow et al., 11(1), 9-12

Bilger, R. C. See Ramkissoon et al., 11(1) 23-28

Burkard, R. Educating audiologists: Diversity or homogeneity?, 11(1), 4-6

Burkard, R. F., & Sims, D. A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults, 11(1), 13–22

Cacace, A. T. See McFarland & Cacace, 11(1),

Chard, L. L. See Purdy et al., 11(2), 72-82 Chermak, G. See Schow et al., 11(1), 9-12

Discolo, C. M., & Hirose, K. Pediatric cochlear implants, 11(2), 114-118

Domitz-Vieira, D. M. See Schow et al., 11(1), 9-12

Dorman, M. F., Loizou, P. C., Spahr, A. J., & Maloff, E. Factors that allow a high level of speech understanding by patients fit with cochlear implants, 11(2), 119-123

Erler, S. F., & Garstecki, D. C. Hearing lossand hearing aid-related stigma: Perceptions of women with age-normal hearing, 11(2), 83-91

Farrington, D. R. See Purdy et al., 11(2), 72-82

Feth, L. L. See Knecht et al., 11(2), 65-71; McCaslin et al., 11(1), 42-49

Garstecki, D. C. See Erler & Garstecki, 11(2), 83-91

Ghossaini, S. N. See Spitzer et al., 11(2), 96-103

Halpin, C. The tuning curve in clinical audiology, 11(2), 56-64

Helms, J. See Jackson et al., 11(2), 128-133

Henry, P. See Ricketts & Henry, 11(1), 29-41 Hirose, K. See Discolo & Hirose, 11(2),

114-118 Hodgson, S.-A. See Purdy et al., 11(2), 72-82 Jackson, K. B., Mark, G., Helms, J., Mueller, J., & Behr, R. An auditory brainstem implant system, 11(2), 128-133

Jacobson, G. P. See McCaslin et al., 11(1), 42-49

Jacobson, G. P. Is the tail wagging the dog?, 11(1), 2-3

Jacobson, G. P. Our great and noble profession, 11(2), 54-55

Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L. Background noise levels and reverberation times in unoccupied classrooms: Predictions and measurements, 11(2), 65-71

Lansing, C. R. See Ramkissoon et al., 11(1) 23-28

Loizou, P. C. See Dorman et al., 11(2), 119-123

Maloff, E. See Dorman et al., 11(2), 119-123 Mark, G. See Jackson et al., 11(2), 128-133

McCaslin, D. L., Feth, L. L., Jacobson, G. P., & Mishler, P. J. An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals, 11(1), 42-49

McFarland, D. J., & Cacace, A. T. Factor analysis in CAPD and the "unimodal" test battery: Do we have a model that will satisfy?, 11(1), 7-9

Mishler, P. J. See McCaslin et al., 11(1), 42-49

Moran, C. A. See Purdy et al., 11(2), 72–82 Mueller, J. See Jackson et al., 11(2), 128–133 Nelson, P. B. See Knecht et al., 11(2), 65–71

Newman, C. W., & Sandridge, S. A. Introduction to AJA implantable hearing device symposium supplement, 11(2), 94-95

Proctor, A. See Ramkissoon et al., 11(1) 23-28
Purdy, S. C., Farrington, D. R., Moran, C. A.,
Chard, L. L., & Hodgson, S.-A. A parental questionnaire to evaluate children's auditory behavior in everyday life (ABEL),

Ramkissoon, I., Proctor, A., Lansing, C. R., & Bilger, R. C. Digit speech recognition

11(2), 72-82

thresholds (SRT) for non-native speakers of English, 11(1) 23-28

Ricketts, T., & Henry, P. Low-frequency gain compensation in directional hearing aids, 11(1), 29-41

Sandridge, S. A. See Newman & Sandridge, 11(2), 94-95

Schow, R. L., Seikel, J. A., Chermak, G., Berent, M., & Domitz-Vieira, D. M. Support for a multiple-factor model of auditory processing, 11(1), 9-12

Seikel, J. A. See Schow et al., 11(1), 9-12 Shannon, R. V. The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design, 11(2), 124-127

Sims, D. See Burkard & Sims, 11(1) 13–22
Spahr, A. J. See Dorman et al., 11(2), 119–123
Spindel, J. H. Middle ear implantable hearing devices, 11(2), 104–113

Spitzer, J. B., Ghossaini, S. N., & Wazen, J. J. Evolving applications in the use of boneanchored hearing aids, 11(2), 96-103

Wazen, J. J. See Spitzer et al., 11(2), 96-103Weber, P. C. Medical and surgical considerations for implantable hearing prosthetic devices, 11(2), 134-138

Whitelaw, G. M. See Knecht et al., 11(2), 65-71

Subject Index

Hearing

Assessment of Hearing,

Diagnostic Audiology-General

Digit speech recognition thresholds (SRT) for non-native speakers of English, 11(1), 23-28

Support for a multiple-factor model of auditory processing, 11(1), 9-12

The tuning curve in clinical audiology, 11(2), 56-64

Psychoacoustics

An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals, 11(1), 42-49

The tuning curve in clinical audiology, 11(2), 56-64

Specific Diagnostic Techniques and **Approaches**

Behavioral

Factor analysis in CAPD and the "unimodal" test battery: Do we have a model that will satisfy?, 11(1), 7-9

Support for a multiple-factor model of auditory processing, 11(1), 9-12

Electrophysiologic

A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults, 11(1), 13-22

An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals, 11(1), 42-49

Pediatric

Support for a multiple-factor model of auditory processing, 11(1), 9-12

Digit speech recognition thresholds (SRT) for non-native speakers of English, 11(1), 23-28

The tuning curve in clinical audiology, 11(2), 56-64

Educating Audiologists

Educating audiologists: Diversity or homogeneity?, 11(1), 4-6

Intervention.

Habilitation, Rehabilitation, and

A parental questionnaire to evaluate children's auditory behavior in everyday life (ABEL), 11(2), 72-82

An auditory brainstem implant system, 11(2), 128-133

Background noise levels and reverberation times in unoccupied classrooms: Predictions and measurements, 11(2), 65-71

Evolving applications in the use of bone-anchored hearing aids, 11(2), 96-103

Factors that allow a high level of speech understanding by patients fit with cochlear implants, 11(2), 119-123

Hearing loss- and hearing aid-related stigma: Perceptions of women with age-normal hearing, 11(2), 83-91

Introduction to AJA implantable hearing device symposium supplement, 11(2), 94-95 Pediatric cochlear implants, 11(2), 114-118

Hearing Aids and Other Prostheses

An auditory brainstem implant system, 11(2), 128-133

Evolving applications in the use of bone-anchored hearing aids, 11(2), 96-103

Factors that allow a high level of speech understanding by patients fit with cochlear implants, 11(2), 119-123

Hearing loss- and hearing aid-related stigma: Perceptions of women with age-normal hearing, 11(2), 83-91

Introduction to AJA implantable hearing device symposium supplement, 11(2), 94-95

Low-frequency gain compensation in directional hearing aids, 11(1), 29-41

Medical and surgical considerations for implantable hearing prosthetic devices, 11(2), 134 - 138

Middle ear implantable hearing devices, 11(2),

A parental questionnaire to evaluate children's auditory behavior in everyday life (ABEL), 11(2), 72-82

Pediatric cochlear implants, 11(2), 114-118 The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design, 11(2), 124-127

The tuning curve in clinical audiology, 11(2), 56-64

Nature of Hearing and Its Disorders

Auditory and Other Otic Pathologies

Support for a multiple-factor model of auditory processing, 11(1), 9-12

The tuning curve in clinical audiology, 11(2), 56-64

Effects of Noise and Issues in Hearing Conservation

Background noise levels and reverberation times in unoccupied classrooms: Predictions and measurements, 11(2), 65-71

Hearing Loss and Deafness

A parental questionnaire to evaluate children's auditory behavior in everyday life (ABEL), 11(2), 72-82

An auditory brainstem implant system, 11(2), 128-133

Evolving applications in the use of bone-anchored hearing aids, 11(2), 96-103

Factors that allow a high level of speech understanding by patients fit with cochlear implants, 11(2), 119-123

Hearing loss- and hearing aid-related stigma: Perceptions of women with age-normal hearing, 11(2), 83-91

Introduction to AJA implantable hearing device symposium supplement, 11(2), 94-95

Medical and surgical considerations for implantable hearing prosthetic devices, 11(2), 134 - 138

Middle ear implantable hearing devices, 11(2), 104-113

Pediatric cochlear implants, 11(2), 114-118 The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design, 11(2), 124-127

The tuning curve in clinical audiology, 11(2), 56-64

Normal Auditory Systems

An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals, 11(1), 42-49

Professional and General Scientific Issues

Professional Training

Education and Continuing Education

Educating audiologists: Diversity or homogeneity?, 11(1), 4-6

Speech

Nature of Normal Speech

Perception of Speech

The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design, 11(2), 124-127

Title Index

A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults. Burkard, R. F., & Sims, D., 11(1), 13-22

A parental questionnaire to evaluate children's auditory behavior in everyday life (ABEL). Purdy, S. C., Farrington, D. R., Moran, C. A., Chard, L. L., & Hodgson, S.-A., 11(2), 72-82

An auditory brainstem implant system. Jackson, K. B., Mark, G., Helms, J., Mueller, J., & Behr, R., 11(2), 128-133

An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals. McCaslin, D. L., Feth, L. L., Jacobson, G. P., & Mishler, P. J., 11(1), 42-49

Background noise levels and reverberation times in unoccupied classrooms: Predictions and measurements. Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L., 11(2), 65-71

Digit speech recognition thresholds (SRT) for non-native speakers of English. Ramkissoon, I., Proctor, A., Lansing, C. R., & Bilger, R. C., 11(1), 23-28

Educating audiologists: Diversity or homogeneity? Burkard, R., 11(1), 4-6

Evolving applications in the use of bone-anchored hearing aids. Spitzer, J. B., Ghossaini, S. N., & Wazen, J. J., 11(2), 96-103

Factor analysis in CAPD and the "unimodal" test battery: Do we have a model that will satisfy? McFarland, D. J., & Cacace, A. T., 11(1), 7-9

Factors that allow a high level of speech understanding by patients fit with cochlear implants. Dorman, M. F., Loizou, P. C., Spahr, A. J., & Maloff, E., 11(2), 119-123

- Hearing loss- and hearing aid-related stigma: Perceptions of women with age-normal hearing. Erler, S. F., & Garstecki, D. C., 11(2), 83-91
- Introduction to AJA implantable hearing device symposium supplement. Newman, C. W., & Sandridge, S. A., 11(2), 94–95
- Is the tail wagging the dog? Jacobson, G. P., 11(1), 2-3
- Low-frequency gain compensation in directional hearing aids. Ricketts, T., & Henry, P., 11(1), 29-41
- Medical and surgical considerations for implantable hearing prosthetic devices. Weber, P. C., 11(2), 134–138
- Middle ear implantable hearing devices. Spindel, J. H., 11(2), 104-113
- Pediatric cochlear implants. Discolo, C. M., & Hirose K., 11(2), 114-118
- Support for a multiple-factor model of auditory processing. Schow, R. L., Seikel, J. A., Chermak, G., Berent, M., & Domitz-Vieira, D. M., 11(1), 9-12
- The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design. Shannon, R. V., 11(2), 124–127
- The tuning curve in clinical audiology. Halpin, C., 11(2), 56-64

Department Index

Editorials

- Is the tail wagging the dog? Jacobson, G. P., 11(1), 2-3
- Our great and noble profession. Jacobson, G. P., 11(2), 54-55

Letters to the Editor

- Factor analysis in CAPD and the "unimodal" test battery: Do we have a model that will satisfy? McFarland, D. J., & Cacace, A. T., 11(1), 7-9
- Support for a multiple-factor model of auditory processing. Schow, R. L., Seikel, J. A., Chermak, G., Berent, M., & Domitz-Vieira, D. M., 11(1), 9-12

Research and Technology-Articles

- A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults. Burkard, R. F., & Sims, D., 11(1), 13-22
- A parental questionnaire to evaluate children's auditory behavior in everyday life (ABEL). Purdy, S. C., Farrington, D. R., Moran, C. A., Chard, L. L., & Hodgson, S.-A., 11(2), 72–82
- An auditory brainstem implant system. Jackson, K. B., Mark, G., Helms, J., Mueller, J., & Behr, R., 11(2), 128-133
- An electrophysiological measure of temporal resolution in normal subjects using frequency modulated signals. McCaslin, D. L., Feth, L. L., Jacobson, G. P., & Mishler, P. J., 11(1), 42-49
- Background noise levels and reverberation times in unoccupied classrooms: Predictions and measurements. Knecht, H. A., Nelson, P. B., Whitelaw, G. M., & Feth, L. L., 11(2), 65-71
- Digit speech recognition thresholds (SRT) for non-native speakers of English.

 Ramkissoon, I., Proctor, A., Lansing, C. R., & Bilger, R. C., 11(1), 23–28

- Evolving applications in the use of bone-anchored hearing aids. Spitzer, J. B., Ghossaini, S. N., & Wazen, J. J., 11(2), 96-103
- Factors that allow a high level of speech understanding by patients fit with cochlear implants. Dorman, M. F., Loizou, P. C., Spahr, A. J., & Maloff, E., 11(2), 119-123
- Hearing loss- and hearing aid-related stigma: Perceptions of women with age-normal hearing. Erler, S. F., & Garstecki, D. C., 11(2), 83-91
- Introduction to AJA implantable hearing device symposium supplement. Newman, C. W., & Sandridge, S. A., 11(2), 94-95
- Low-frequency gain compensation in directional hearing aids. Ricketts, T., & Henry, P., 11(1), 29-41
- Medical and surgical considerations for implantable hearing prosthetic devices. Weber. P. C., 11(2), 134–138
- Middle ear implantable hearing devices. Spindel, J. H., 11(2), 104-113
- Pediatric cochlear implants. Discolo, C. M., & Hirose, K., 11(2), 114-118
- The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design. Shannon, R. V., 11(2), 124-127

Short Course

The tuning curve in clinical audiology. Halpin, C., 11(2), 56-64

Viewpoint

Educating audiologists: Diversity or homogeneity? Burkard, R., 11(1), 4-6