

Prediction of security policies for network

Team Introduction

Students

Itay Koren Ludmila Galkovskaya

Mentor

Gleb Ivashkevich (Datarythmics)

Industry partner

Johnathan Azaria

(Imperva)

Company Introduction

IMPERVA

Solutions that protect users against cyber attacks

6000+ Customers

Understanding our domain

What is DDoS?

A distributed denial of service attack, overwhelming a server, service, or network with more data than it can handle.

IP & IP Range

Start IP: 192.168.0. 1

End IP: 192.168.0.254

Vectors of attacks:

UDP

Understanding our domain

What is a Network security policy?

It is a set of thresholds, each of them activates a set of rules to handle the traffic.

Problem statement

Why do we have to mitigate DDOS attacks?

To ensure business continuity, guarantee uptime and no performance impact

\$300K is the average cost of 1 hour of downtime

Project results

Why do we have to update security policies?

"Normal" amount of traffic changes over time

Why do we have to automate creating policies?

It is a human and time consuming task, people make mistakes

Project goals

Main

Create a model for complete network security policy

Project impact

Enable Imperva to set up-to-date, more accurate and personalized security policies

Data overview. Target

2 Metrics:

PPS (packets per second)
BW (MB per second)

13 Vectors:

TCP, UDP, DNS, NTP, SYN NETFLOW, etc.

8 Thresholds:

IP Level
IP Range level

Complete policy - 208 values

Narrowed down to TCP - PPS

Data overview. Input

Encoded data Data format Parquet files Size 133 000 samples 71 GB Time series 1 minute 30 days per max sample sample intervals mean Metadata Comments Reasons

Data overview. Preprocessing

Our approach. Filtering and transformation

Filtering samples by:

- Target values constant/ default
 values, particular ranges
- Comments/ reasons
- Irrelevant policies/ edge cases

Transformation:

Target distribution has long and light tail - used log-transform

Our approach. Feature extraction

Our approach. Feature extraction

Patterns of traffic:

Our approach. Features

ip_ss ip_ss 1.00 daily_max_q90 0.97 daily_max_4 0.97 daily_max_3 0.96 daily_max_2 daily_max_q70 0.91 daily_max_1 0.78 daily_mean_q90 0.73 daily_q90_q90 0.73 daily_mean_q70 0.70 daily_q90_q70 0.69 daily_median_q90 0.69 daily_median_q70

Initial

Our approach. Training

Scalers:

No Scaling

MinMaxScaler

StandardScaler

RobustScaler

Linear models:

Linear Regression

Ridge

Lasso

SVR

Grid search:

model__alpha

model__kernel

model__C

Tree-based models:

Random forest

XGBoost

CatBoost

Metrics and evaluation

Project results

MinMaxScaler + SVR + symetric threshold accuracy: 0.83 ± 0.05

MinMaxScaler + SVR + asymmetric threshold accuracy: 0.85 ± 0.03

Future work

Advanced goal:

Detect port scanning operations and handle them, so the model for security policies won't be affected

THANK YOU!

СПАСИБО!

TODA RABA!