IN THE SPECIFICATION

Please replace paragraph 12 with the following paragraph.

between first and second reflected polarized light signal components, the method comprising the steps of transmitting a first incident light signal toward a first object, wherein said first object is one of a magnetic disk and a glass substrate, separating from a reflected light signal that has reflected off said first object a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase that is different from said first phase, wherein said first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to a plane of incidence of said reflected light signal, and wherein said second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said reflected light signal. Detecting a first intensity of said first mixed reflected polarized light signal component, detecting a second intensity of said second mixed reflected polarized light signal component; and determining a difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities.

IN THE CLAIMS

2

3

1

Please amend the claims as set forth below.

4

5	1. (Currently Amended) A method for measuring a first phase difference between
6	first and second mixed reflected polarized light signal components, the method comprising the
7	steps of:
8	transmitting a first incident light signal toward a first object, wherein said first object is
9	one of a magnetic disk and a glass substrate;
10	separating from a reflected light signal that has reflected off said first object a the first
11	mixed reflected polarized light signal component having a first phase and a the second mixed
12	reflected polarized light signal component having a second phase that is different from said first
13	phase, wherein said first mixed reflected polarized light signal component comprises both P-
14	polarized and S-polarized light relative to a plane of incidence of said reflected light signal, and
15	wherein said second mixed reflected polarized light signal component comprises both P-
16	polarized and S-polarized light relative to the plane of incidence of said reflected light signal;
17	detecting a first intensity of said first mixed reflected polarized light signal component;
18	detecting a second intensity of said second mixed reflected polarized light signal
19	component; and
20	determining a difference in phase between said first and second mixed reflected polarized
21	light signal components based upon said first and second intensities.
1	2. (Original) The method of claim 1 further comprising the step of:
2	determining a texture on said first object based upon said difference in phase.
1	3. (Original) The method of claim 1, further comprising the step of:

determining a thickness of a lubricant on said first object based upon said difference in

2

3

phase.

1	4. (Original) The method of claim 1, further comprising the step of:
2	determining a thickness of a carbon layer of said first object based upon said difference in
3	phase.
1	5. (Original) The method of claim 1, further comprising the step of:
2	determining a magnetic characteristic of said first object based upon said difference in
3	phase.
1	6. (Original) The method of claim 1, further comprising the step of:
2	polarizing said first incident light signal to generate a first incident polarized light signal
3	component and a second incident polarized light signal component of said first incident light
4	signal, said first and second incident polarized light signal components being orthogonally
5	polarized.
1	7. (Original) The method of claim 1, wherein said first and second mixed reflected
2	polarized light signal components are orthogonally polarized.
1	8. (Original) The method of claim 1, further comprising the step of:
2	measuring the magneto-optic Kerr effect based upon said difference in phase.
1	9. (Original) The method of claim 8, further comprising the steps of:
2	determining a defect exists at a first location on the first object based upon said first and
3	second intensities; and
4	marking said first location to identify said defect.

1.	10. (Original) The method of claim 9, wherein said marking step further comprises	
2	the steps of:	
3	moving a mechanical scribe to a position substantially adjacent to said first location;	
4	positioning said mechanical scribe at substantially said first location; and	
5	marking said first location with said mechanical scribe.	
1	Original) The method of claim 1, further comprising the steps of:	
2	determining a defect exists at a first location on the first object based upon said first and	
3	second intensities; and	
4	marking said first location to identify said defect.	
1	12. (Original) The method of claim 11, wherein said marking step further comprises	
2	the steps of:	
3	moving a mechanical scribe to a position substantially adjacent to said first location;	
4	positioning said mechanical scribe at substantially said first location; and	
5 -	marking said first location with said mechanical scribe.	
1	13. (Original) The method of claim 1 wherein the step of determining a difference	
2	includes:	
3	determining a difference between said first and second intensities to reduce the effect on	
4	at least one measured value of a texture on said first object.	
1	14. (Currently Amended) A system for measuring a first phase difference between	
2	first and second mixed reflected polarized light signal components, comprising:	

3	a light source for transmitting a first incident light signal toward a first object wherein		
4	said first object is one of a magnetic disk and a glass substrate;		
5	a polarization splitter for separating from a first reflected light signal, that has reflected		
6	off of said first object, the first mixed reflected polarized light signal component having a first		
7	phase, and the second mixed reflected polarized light signal component having a second phase		
8	that is different from said first phase, wherein the first mixed reflected polarized light signal		
9	component comprises both P-polarized and S-polarized light relative to a plane of incidence of		
10	said reflected light signal, and wherein the second mixed reflected polarized light signal		
11	component comprises both P-polarized and S-polarized light relative to the plane of incidence of		
12	said reflected light signal;		
13	a first detector for detecting a first intensity of the first mixed reflected polarized light		
14	signal component;		
15	a second detector for detecting a second intensity of the second mixed reflected polarized		
16	light signal component; and		
17	a phase determinator for determining a difference in phase between the first and second		
.18	mixed reflected polarized light signal components based upon said first and second intensities.		
1	15. (Original) The system of claim 14, wherein said phase determinator comprises:		
2	a texture eliminator for determining a difference between said first and second intensities		
. 3	to reduce the effect on at least one measured value of a texture on said first object.		
1	16. (Original) The system of claim 14, further comprising:		
2	a thickness determinator for determining a thickness of a lubricant on said first object		

based upon said difference in phase.

3

l	17. (Original) The system of claim 14, further comprising:	
2	a carbon thickness determinator for determining a thickness of a carbon layer of said firs	
3	object based upon said difference in phase.	
1	18. (Original) The system of claim 14, further comprising:	
2	a magnetic identifier for determining a magnetic characteristic of said first object based	
3	upon said difference in phase.	
1	19. (Original) The system of claim 14, further comprising:	
2	a Kerr effect determinator for measuring the magneto-optic Kerr effect based upon said	
3	difference in phase.	
1	20. (Original) The system of claim 19, further comprising:	
2	a defect determinator for determining a defect exists at a first location on the first object	
3	based upon said first and second intensities; and	
4	a mechanical scribe for marking said first location to identify said defect.	
1	21. (Original) The system of claim 20, further comprising:	
2	a scribe positioner for moving a mechanical scribe to a position substantially adjacent to	
3	said first location before marking said first location.	
1	22. (Original) The system of claim 14, further comprising:	
2	a defect determinator for determining a defect exists at a first location on the first object	
3	based upon said first and second intensities; and	
4	a mechanical scribe for marking said first location to identify said defect.	

- 1 23. (Original) The system of claim 22, further comprising:
- 2 a scribe positioner for moving a mechanical scribe to a position substantially adjacent to
- 3 said first location before marking said first location.
- 1 24. (Original) The system of claim 14, further comprising:
- 2 a polarizer for polarizing said first incident light signal to generate a first incident
- 3 polarized light signal component and a second incident polarized light signal component of said
- 4 first incident light signal, said first and second incident polarized light signal components being
- 5 orthogonally polarized.
- 1 25. (New) The method of claim 1, wherein said first incident light signal is an
- 2 ultraviolet light signal.
- 1 26. (New) The method of claim 1, wherein said first incident light signal is an
- 2 infrared light signal.
- 1 27. (New) The method of claim 1, wherein said first incident light signal is a visible
- 2 light signal.
- 1 28. (New) The system of claim 14, wherein said first incident light signal is an
- 2 ultraviolet light signal.
- 1 29. (New) The system of claim 14, wherein said first incident light signal is an
- 2 infrared light signal.
- 1 30. (New) The system of claim 14, wherein said first incident light signal is an
- 2 visible light signal.

1	31. (New) A method for measuring a phase difference between first and second mixed			
2	reflected polarized lights signals, comprising the steps of:			
3	transmitting a first incident light signal toward a first object, wherein said first object is			
4	one of a magnetic disk and a glass substrate;			
5	adjusting a rotational angle of a quarter wave plate that receives a reflected light signal			
6	that has reflected off said object;			
7	separating from a quarter wave plate transmitted light signal, that has passed through said			
8	quarter wave plate, the first mixed reflected polarized light signal component having a first phase			
9	and the second mixed reflected polarized light signal component having a second phase that is			
10	different from said first phase, wherein the first mixed reflected polarized light signal component			
11	comprises both P-polarized and S-polarized light relative to a plane of incidence of said reflecte			
12	light signal, and wherein the second mixed reflected polarized light signal component comprise			
13	both P-polarized and S-polarized light relative to the plane of incidence of said reflected light			
14	signal;			
15	detecting a first intensity of the first mixed reflected polarized light signal component;			
16	detecting a second intensity of the second mixed reflected polarized light signal			
17	component; and			
18	determining a difference in phase between the first and second mixed reflected polarized			
19	light signal components based upon said first and second intensities.			
1	32. (New) The method of claim 31 wherein said angle of said quarter wave plate is			
2	adjusted to substantially optimize the sensitivity of said reflected light signal to at least one of a			
3	Kerr effect, carbon thickness, defect or lubricant thickness of said object.			

l	33.	(New) The method of claim 31 further comprising the step of:
2	det	ermining a texture on said first object based upon said difference in phase.
1	34.	(New) The method of claim 31, further comprising the step of:
2	det	ermining a thickness of a lubricant on said first object based upon said difference in
3	phase.	
1	35.	(New) The method of claim 31, further comprising the step of:
2	det	ermining a thickness of a carbon layer of said first object based upon said difference in
3	phase.	
1	36.	(New) The method of claim 31, further comprising the step of:
2	det	ermining a magnetic characteristic of said first object based upon said difference in
3	phase.	
1	37.	(New) The method of claim 31, further comprising the step of:
2	det	ermining a Kerr effect of said first object based upon said difference in phase.
1	38	(New) The method of claim 31 wherein said step of adjusting said rotational
2	angle utiliz	zes a motor.
1	39.	(New) The method of claim 38 wherein said motor is an electromagnetic motor.
1	40.	(New) The method of claim 38 wherein said motor is a pneumatic motor.
1	41.	(New) The method of claim 38 wherein said motor is a piezoelectric motor.
1	42.	(New) A system for measuring a phase difference between first and second mixed
2	reflected p	olarized light signal components, comprising:

3	a light source for transmitting a first incident light signal toward a first object wherein
4	said first object is one of a magnetic disk and a glass substrate;
5	a quarter wave plate, capable of being adjusted and disposed to receive a reflected light
6	signal, said reflected light signal having reflected off said first object;
7	a polarization splitter for separating from a quarter wave plate transmitted light signal,
8	that has passed through said quarter wave plate, the first mixed reflected polarized light signal
9,	component having a first phase, and the second mixed reflected polarized light signal component
10	having a second phase that is different from said first phase, wherein the first mixed reflected
11	polarized light signal component comprises both P-polarized and S-polarized light relative to a
12	plane of incidence of said reflected light signal, and wherein the second mixed reflected
13	polarized light signal component comprises both P-polarized and S-polarized light relative to the
. 14	plane of incidence of said reflected light signal;
15	a first detector for detecting a first intensity of the first mixed reflected polarized light
16	signal component;
17	a second detector for detecting a second intensity of the second mixed reflected polarized
18	light signal component; and
19	a phase determinator for determining a difference in phase between the first and second
20	mixed reflected polarized light signal components based upon said first and second intensities.
1	43. (New) The system of claim 42 wherein said angle of said quarter wave plate is
2	adjusted to substantially optimize the sensitivity of said received reflected light signal to at least
3	one of a Kerr effect, carbon thickness, defect or lubricant thickness of said object.

(New) The system of claim 42 further comprising: 1 44. a texture determinator, for determining a texture on said first object based upon said 2 3 difference in phase. (New) The system of claim 42, further comprising: 1 45. 2 a lubricant thickness determinator, for determining a thickness of a lubricant on said first object based upon said difference in phase. 3 (New) The system of claim 42, further comprising: 46. 1 a carbon layer thickness determinator, for determining a thickness of a carbon layer of 2 said first object based upon said difference in phase. 3 47. (New) The system of claim 42, further comprising: 1 a magnetic characteristic determinator, for determining a magnetic characteristic of said 2 first object based upon said difference in phase. 3 (New) The system of claim 42, further comprising: 48. 1 a Kerr effect determinator, for determining a Kerr effect of said first object based upon 2 3 said difference in phase. 1 49 (New) The system of claim 42, further comprising a motor to adjust an angle of 2 said quarter wave plate. (New) The system of claim 49 wherein said motor is an electromagnetic motor. 1 50. 1 51. (New) The system of claim 49 wherein said motor is a pneumatic motor. (New) The system of claim 49 wherein said motor is a piezoelectric motor. 52. 1

(New) The system of claim 49 wherein said motor is a piezoelectric motor.

1

53.