

Funções

Problema 1

 $\overline{\text{Sendo f}(x)} = x^2 - x \text{ e g}(x) = x + 3$, calcule:

(a)
$$f(g(x))$$

(b)
$$g(f(x))$$

Problema 2

Sendo $f(x) = x^2$, calcule $\frac{f(x+h) - f(x)}{h}$

Problema 3

Dado o gráfico de f (x), calcule f (20)

Problema 4

Dê o conjunto imagem das seguintes funções:

(a)
$$f(x) = x^2 - 4$$

(b)
$$f(x) = x^2 - 5x + 6$$
 (c) $f(x) = x^2 + x + 1$

(c)
$$f(x) = x^2 + x + 1$$

Problema 5

 $\overline{\text{Dada a funç}}$ $\overline{\text{a o }}g:\{-1;2;4;5\} \rightarrow \{-7;-4;-1;0;4;8;17\}$, definida pela regra $g(x)=x^2-8$, indique o domínio, o contradomínio e a imagem dessa função.

Problema 6

Dado que o gráfico da função f (x) = $\frac{x^2 - 3}{x + a}$ passa pelo ponto (3;3), calcule o valor de a

Problema 7

Uma função f de variável real satisfaz a condição f(x+1) = f(x) + f(1), qualquer que seja o valor da variável x. Sabendo que f(2) = 1, determine o valor de:

(a) f(1)

(b) f(7)

(c) f(x)

Problema 8

Um projétil é lançado e tem a sua altura (em metros) dada pela função $h(t) = 100t - 5t^2$. A partir desta calcule:

(a) O tempo em que o projétil permanece no ar

(b) A altura máxima atingida pelo projétil

Problema 9

Uma função f(x) = ax + b passa pelos pontos (3;5) e (5;9). Calcule a e b e desenhe o gráfico da equação.

Problema 10

Daniel pretende contratar um plano de telefonia fixa. A empresa A cobra R\$25,00 de mensalidade fixa mais R\$0,10 por minuto de ligação. A empresa B cobra R\$35,00 de mensalidade fixa e mais R\$0,05 por minuto de ligação. Sendo assim, calcule o número mínimo de minutos que Daniel deve usar para que o plano da empresa B seja mais vantajoso do que o da empresa A. Represente graficamente o resultado.

Respostas

(1) (a) 55

(b)
$$7-4a+2a^2-4b+4ab+2b^2$$

(c) $2x^2 + 4x + 7$

(2) (a)
$$x^2 + 5x + 6$$

(b)
$$x^2 - x + 3$$

(3)
$$\frac{f(x+h) - f(x)}{h} = 2x + h$$

$$(4) f(20) = 44$$

(5) (a)
$$Im = [-4; +\infty[$$

(b)
$$Im = [-\frac{1}{4}; +\infty[$$

(c)
$$Im = [\frac{3}{4}; +\infty[$$

- (6) Domínio = $\{-1; 2; 4; 5\}$
 - Contradomínio = {-7; -4; -1; 0; 4; 8; 17}
 - Imagem = $\{-7, -4, 8, 17\}$

(7)
$$a = -1$$

(8) (a)
$$f(1) = \frac{1}{2}$$

(b)
$$f(7) = \frac{7}{2}$$

(c)
$$f(x) = \frac{x}{2}$$

(9) (a)
$$t = 20s$$

(b)
$$h_{max} = 500 m$$

(10)
$$a = 2 e b = -1$$

(11) 200 minutos