1914-1043 Salmon Ahmed Khan Class Activity Q. transform basis {u, u2, u3, u4} into orthonormal basis using gram schmidt U1 = (0,2,1,0) U2=(1,-1,0,0) U3=(1,2,0,-1) U4 : (1,0,0,1) Using Grom Schmidt Process (Vi= U1 = (0, 2,1,0) (a) $V_2 = U_2 - (U_2, x_1) V_1 = U_2 - (0, 2/51, 0)(0, x_1/0) V_1$ $||V_1||^2 = ||V_1||^2 = ||V_1||^$ N2 = U2/ - 8 (0,2,1,0) = (0,2,1,0) - (0,2,1,0) s = (0,0,0,0) (3 V2 = U2 - (U2, V1) V1 (U25 Vi)= (1,-1,0,0)(0,2,1,0)=-2 111/112 = 5 $V_2 = (1, -1, 0, 0) - (-2)(0, 2, 1, 0)$ = (1, -1, 0, 0) - (0, -4, -2, 0) $(1, \frac{1}{5}, \frac{2}{5}, 0)$

$$\frac{3}{1} \frac{1}{2} = \frac{1}{1} \frac{1}{2} \frac$$

$$V_{a}$$
, U_{4} = $(0,0,0,0)$ - $\frac{1}{9}(1,-1/5,\frac{2}{5},0)$ - $\frac{1}{9}(1/2,\frac{1}{2},\frac{1}{2},\frac{1}{2})$
= U_{41} - $(5/6,-1/6,\frac{1}{3},0)$ - $(-1/10,-1/10,\frac{1}{5},\frac{1}{5})$
= U_{42} - $(1/1/15,-1/15,\frac{2}{1})$
= $(1,0,0,1)$ - $(1/1/15,-1/15,\frac{2}{1})$
 V_{42} ($1/15$, $1/15$, $-2/15$, $1/15$)

Fox orthonormal basis:

$$w_1 = V_1 = (0, a, 1, 0) = (0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0)$$

$$||V_1|| = \sqrt{5} = (1, -\frac{1}{5}, \frac{2}{5}, 0) = (\frac{5}{\sqrt{5}}, -\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}, 0)$$

$$||V_2|| = \sqrt{30}/5 = (\sqrt{30}, \sqrt{30}, \sqrt{30})$$

$$W_4 = V_4 = (1/15, 1/15, -2/15, 16/15) = 1, 1 , -2, 16$$

11 V411 $\sqrt{262/15}$ $\sqrt{562}$ $\sqrt{562}$ $\sqrt{562}$ $\sqrt{562}$ $\sqrt{562}$

Q2. P3 be Eucliden Inner Product. Find orthogrammal baris for subspace spanned by (0,1,2), (-1,0,1) (-1,1,3)

 $V_{1}=(0,1,2)$ $V_{2}=(-1,0,1)$ $V_{3}=(-1,1,3)$

For Orthogonal bouris:

(V1. V2) = (0,1,2)(-1,0,1) = 0+0+2=2

(V1, V3) = (0, 1, 2) (-1, 1, 3) = 0+1+6=7

(V2-V3)= (-1,0,1)(-1,1,3)=1+0+3=4

11/11 = JO+1+4 = J5 11 V211 = J1+0+1= J2 11V311 = 1 1+1+9 = 111

 $W_1 = V_1 = 0$, $\frac{1}{\sqrt{5}}$, $\frac{2}{\sqrt{5}} = \left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$

 $W_{1} = V_{2} = -1$, 0, 1 $||V_{2}|| = \sqrt{2}$

 $W_3 = V_3 = -1$, $\frac{3}{\sqrt{11}}$, $\frac{3}{\sqrt{11}}$