Planche 1.

Exercice 1. On pose $f(x) = \sum_{n \ge 1} \frac{x^n}{\sqrt{n}}$. Déterminer le rayon de convergence, la convergence de la série en 1 et -1, la continuité de f en -1 et la limite de f en 1.

Exercice 2. Soit $\sum_{n>0} a_n z^n$ de rayon R>0 et de somme f. Montrer que pour 0 < r < R,

$$\sum_{n\geq 0} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

Montrer que f est constante si |f| admet un maximul local en 0.

On suppose maintenant que $R = +\infty$ et qu'il existe $P \in \mathbb{R}_N[X]$ tel que $|f(z)| \leq P(|z|)$ pour tout z complexe. Montrer que $f \in \mathbb{C}_N[X]$.

Planche 2.

Exercice 1. Calculer le rayon de convergence de $\sum_{n\geq 0} x^{n^2}$ et de $\sum_{n\geq 0} a_n x^n$ où a_n est la n-ième décimale de $\sqrt{2}$.

Exercice 2. On définit la suite a_n par $a_0 = a_1 = 1$ et $a_{n+2} = a_{n+1} + \frac{2}{n+1}a_n$. Trouver une formule pour a_n .

Planche 3.

Exercice 1. Trouver le développement en série entière de $\sin(\frac{1}{3}\arcsin(t))$ en 0.

Exercice 2. On note I_n le nombre d'involutions de $\{1, \ldots, n\}$. Trouver une formule pour ce nombre.