

Principal Component Analysis (I)

- Objectives
- Population principal components

(Materials from Johnson and Wichern, Applied Multivariate Statistical Analysis)

Objectives

- Dimension reduction through linear combinations
- An intermediate step in a more complex data analysis (eg. Cluster analysis)
- Easier to interpret?

Let $X \sim (\mu, \Sigma)$ where $X = (X_1, X_2, ..., Xp)'$ and let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ be the eigenvalues of Σ .

Assume that $Y = (Y_1, Y_2, ..., Y_p)'$ where Y_i is a linear combination of X. That is

$$Y_i = \boldsymbol{l}_i' \boldsymbol{X}$$

Then,
$$\operatorname{Var}(Y_i) = \boldsymbol{l}_i' \boldsymbol{\Sigma} \boldsymbol{l}_i$$
 and $\operatorname{Cov}(Y_i, Y_j) = \boldsymbol{l}_i' \boldsymbol{\Sigma} \boldsymbol{l}_j$ $i \neq j$


```
1^{st} principal component: Y_1 = \mathbf{l}_1' \mathbf{X} that maximizes \text{Var}(\mathbf{l}_1' \mathbf{X}) subject to \mathbf{l}_1' \mathbf{l}_1 = 1
```

 2^{nd} principal component: $Y_2 = \mathbf{l}_2' \mathbf{X}$ that maximizes $\text{Var}(\mathbf{l}_2' \mathbf{X})$ subject to $\mathbf{l}_2' \mathbf{l}_2 = 1$ and $\text{Cov}(\mathbf{l}_1' \mathbf{X}, \mathbf{l}_2' \mathbf{X}) = 0$

 i^{th} principal component: $Y_i = \mathbf{l}_i' \mathbf{X}$ that maximizes $\text{Var}(\mathbf{l}_i' \mathbf{X})$ subject to \mathbf{l}_i' $\mathbf{l}_i = 1$ and $\text{Cov}(\mathbf{l}_i' \mathbf{X}, \mathbf{l}_k' \mathbf{X}) = 0$

for k < i

Main Result

Let Σ be the covariance matrix of $X = (X_1, X_2, ..., Xp)'$. Further, let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ be the eigenvalues of Σ , with associated eigenvectors $e_1, e_2, ..., e_p$

```
1^{st} principal component: Y_1 = e_1'X
2^{nd} principal component: Y_2 = e_2'X
```

. . .

 i^{th} principal component: $Y_i = \boldsymbol{e}_i' \boldsymbol{X}$

Proportion of total variance due to the i^{th} principal component

Let Σ be the covariance matrix of $X = (X_1, X_2, ..., X_p)'$ with diagonal elements $\sigma_{11}, \sigma_{22}, ..., \sigma_{pp}$, Let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ be the eigenvalues of Σ , with associated eigenvectors $\boldsymbol{e}_1, \boldsymbol{e}_2, ..., \boldsymbol{e}_p$

Define total variance $=\sum_{i=1}^{p} Var(X_i) = \sum_{i=1}^{p} \sigma_{ii}$

Can be shown that $\sum_{i=1}^{p} \sigma_{ii} = \sum_{i=1}^{p} \lambda_i$

Hence, proportion of total population variance due to the k^{th} principal component is

$$\frac{\lambda_k}{\sum_{i=1}^p \lambda_i}$$

4

Population principal components

Let $X \sim (\mu, \Sigma)$ where $X = (X_1, X_2, ..., Xp)'$. $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0$ are the eigenvalues of Σ with corresponding normalized eigenvectors be $e_1, e_2, ..., e_p$. Let $\Gamma = (e_1, e_2, ..., e_p)$, then $Y = \Gamma'(X - \mu)$ is the **principal component transformation** of X.

Properties

- 1. $E(Y_i) = 0$, i = 1, ..., p
- 2. $Var(Y_i) = \lambda_i, i = 1, ..., p$
- 3. $Cov(Y_i, Y_j) = 0$, $i \neq j$
- 4. $Var(Y_1) \ge Var(Y_2) \ge \cdots \ge Var(Y_p) \ge 0$
- 5. $\sum_{i=1}^{p} Var(Y_i) = trace(\Sigma)$
- 6. $\prod_{i=1}^{p} Var(Y_i) = |\Sigma|$

Correlation coefficients between a principal component and the original variables

Let $X \sim (\mu, \Sigma)$ where $X = (X_1, X_2, ..., X_p)'$ and $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ be the eigenvalues of Σ , with associated eigenvectors e_1 , e_2 ,..., e_p . If $Y_1 = e_1'X$, $Y_2 = e_2'X$,..., $Y_p = e_p'X$ are the principal components, then

$$\rho_{Y_i,X_k = \frac{e_{ki\sqrt{\lambda_i}}}{\sqrt{\sigma_{kk}}}}$$

where i, k = 1, 2, ..., p are the correlation coefficients between the components Y_i and the variables X_k .

Example

Let
$$X \sim (\mu, \Sigma)$$
 where $X = (X_1, X_2, X_3)'$ and $\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

The principal components are

$$Y_1 = e_1'X = -.383X_1 + .924X_2$$

 $Y_2 = e_2'X = X_3$
 $Y_3 = e_3'X = .924X_1 + .383X_2$

$$\begin{aligned} Var(Y_1) &= Var(-.383X_1 + .924X_2) \\ &= (-.383)^2 Var(X_1) + (.924)^2 Var(X_2) + 2(-.383)(.924) \mathcal{C}ov(X_1, X_2) \\ &= 5.83 = \lambda_1 \end{aligned}$$

and so on...

```
> VarY <- t(eigen(Sigma)$vectors) %*% Sigma %*% eigen(Sigma)$vectors

> VarY

[,1] [,2] [,3]

[1,] 5.828427e+00 0 -8.881784e-16

[2,] 0.000000e+00 2 0.000000e+00

[3,] -7.979728e-16 0 1.715729e-01

>
```

```
> Sigma <- matrix(c(1,-2,0,-2,5,0,0,0,2),nrow=3)
> Sigma
  [,1] [,2] [,3]
[1,] 1 -2 0
[2,] -2 5 0
[3,] 0 0 2
> eigen(Sigma)
$values
[1] 5.8284271
                2.0000000
                              0.1715729
$vectors
      [,1]
                              [,2]
                                                 [,3]
[1,] -0.3826834
                                             0.9238795
[2,] 0.9238795
                               0
                                             0.3826834
[3,] 0.0000000
                                             0.0000000
```

Example (Cont'd) What is the covariance between the principal components Y and X?

```
> CovYX <-t(eigen(Sigma)$vectors) %*% Sigma

> CovYX

[,1] [,2] [,3]

[1,] -2.2304425 5.3847645 0

[2,] 0.0000000 0.0000000 2

[3,] 0.1585127 0.0656581 0
```

What is the correlation between the principal components Y and X?

```
> DiagvarY <- diag(1/sqrt(diag(VarY)))
> DiagvarY
     [,1]
                              [,2]
                                             [,3]
                                             0.000000
[1,] 0.4142136
                              0.0000000
[2,] 0.0000000
                                             0.000000
                              0.7071068
[3,] 0.0000000
                              0.0000000
                                             2.414214
> DiagSigma <- diag(1/sqrt(diag(Sigma)))
> DiagSigma
    [,1]
                [,2]
                              [,3]
               0.0000000
                              0.0000000
[1.] 1
[2,] 0
               0.4472136
                              0.0000000
               0.0000000
                              0.7071068
[3,] 0
> DiagvarY %*% CovYX %*% DiagSigma
                                              [,3]
      [,1]
                              [,2]
[1,]-0.9238795
                              0.99748421
                                              0
                                                             [Correlations between the first PC and X]
[2,] 0.0000000
                              0.00000000
                                                            [Correlations between the second PC and X]
                                              1
[3,] 0.3826834
                              0.07088902
                                                             [Correlations between the third PC and X]
                                              0
```

Population principal components (using the correlation matrix)

Let
$$X \sim (\mu, \Sigma)$$
 where $X = (X_1, X_2, ..., Xp)'$ and $\Sigma = \{\sigma_{ij}\}$.

Let
$$\mathbf{D} = \begin{bmatrix} \sigma_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{pp} \end{bmatrix}$$
 be a diagonal matrix with diagonal elements σ_{ii} , $i = 1, ..., p$.

Let ρ be the correlation matrix of X. Then, $\rho = (D^{1/2})^{-1} \Sigma (D^{1/2})^{-1}$

Standardized variables: $Z_i = (X_i - \mu_i) / \sqrt{\sigma_{ii}}$

Consider
$$\mathbf{Z} = (\mathbf{D}^{\frac{1}{2}})^{-1}(\mathbf{X} - \boldsymbol{\mu})$$
 where $\mathbf{Z} = (Z_1, Z_2, ..., Zp)'$

Then, $Z \sim (0, \rho)$

4

Population principal components (using the correlation matrix)

Now, the standardized vector $\mathbf{Z} \sim (\mathbf{0}, \boldsymbol{\rho})$ and if $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$ are the eigenvalues of $\boldsymbol{\rho}$, with associated eigenvectors $\boldsymbol{e}_1, \boldsymbol{e}_2, \ldots, \boldsymbol{e}_p$

 1^{st} principal component: $Y_1 = e_1' \mathbf{Z}$ 2^{nd} principal component: $Y_2 = e_2' \mathbf{Z}$

. . .

. . .

. .

 p^{th} principal component: $Y_p = e_p' Z$

total variance = $\sum_{i=1}^{p} Var(Y_i) = \sum_{i=1}^{p} Var(Z_i) = p$

Hence, proportion of total population variance due to the k^{th} principal component is $\frac{\lambda_k}{p}$

Correlation between principal component Y_i and Z_k is $\rho_{Y_i,X_k} = e_{ki\sqrt{\lambda_i}}$

Population principal components (using the correlation matrix)

Example

Let
$$X \sim (\mu, \Sigma)$$
 where $X = (X_1, X_2, X_3)'$ and $\Sigma = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

The covariance matrix is ρ given in the right-hand box (refer to R-output).

The principal components using the covariance matrix are

$$Y_1 = e_1' \mathbf{Z} = -0.7071068 Z_1 + .7071068 Z_2$$

 $Y_2 = e_2' \mathbf{Z} = Z_3$
 $Y_3 = e_3' \mathbf{Z} = .7071068 Z_1 + .7071068 Z_2$

Variance-covariance matrix of Y

> VarY <- t(eigen(rho)\$vectors) %*% rho %*% eigen(rho)\$vectors > VarY				
[,1]	[,2]	[,3]		
[1,] 1.894427e+00	0	-4.440892e-16		
[2,] 0.000000e+00	1	0.000000e+00		
[3,] -4.579670e-16	0	1.055728e-01		

> D <- diag(dia > D	ng(Sigma))			
[,1] [,2] [,	31			
[1,] 1 0 0	,5]			
[2,] 0 5 0				
[3,] 0 0 2				
> Droot <- diag(sqrt(diag(Sigma)))				
> Droot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
2000	[,1]	[,2]	[,3]	
[1,]	1	0.000000	0.000000	
[2,]	0	2.236068	0.000000	
[3,]	0	0.000000	1.414214	
> rho <- solve(Droot) %*% Sigma %*% solve(Droot)				
> rho				
	[,1]	[,2]	[,3]	
[1,]	1.0000000	-0.8944272	0	
[2,]	-0.8944272	1.0000000	0	
[3,]	0.0000000	0.0000000	1	
> eigen(rho)				
\$values				
[1] 1.8944272	1.0000000	0.1055728		
\$vectors				
	[,1]	[,2]	[,3]	
[1,]	-0.7071068	0	0.7071068	
[2,]	0.7071068	0	0.7071068	
[3,]	0.0000000	1	0.00000000	
			10	

Population principal components (using the correlation matrix)

Example (Cont'd) What is the covariance between the principal components Y and Z?

```
> CovYZ <-t(eigen(rho)$vectors) %*% rho

> CovYZ

[,1] [,2] [,3]

[1,] -1.33956231 1.33956231 0

[2,] 0.00000000 0.00000000 1

[3,] 0.07465125 0.07465125 0
```

What is the correlation between the principal components Y and X?

```
> DiagvarY <- diag(1/sqrt(diag(VarY)))
> DiagvarY
     [,1]
                              [,2]
                                              [,3]
[1,] 0.7265425
                              0.0000000
                                              0.000000
[2,] 0.0000000
                                              0.000000
[3,] 0.0000000
                              0.0000000
                                              3.077684
> Diagrho <- diag(1/sqrt(diag(rho)))
> Diagrho
    [,1]
                [,2]
                               [,3]
[1,] 1
                0
[2,] 0
                              0
[3,] 0
                0
> DiagvarY %*% CovYZ %*% Diagrho
      [,1]
                              [,2]
                                              [,3]
[1,] -0.9732490
                              0.9732490
                                                             [Correlations between the first PC and Z]
                                              0
[2,] 0.0000000
                              0.0000000
                                                             [Correlations between the second PC and Z]
[3,] 0.2297529
                              0.2297529
                                              0
                                                             [Correlations between the third PC and Z]
```