Name:			

1. Let $p_0=1, p_1=\cos\theta$ (for θ some fixed constant) and $p_{n+1}=2p_1p_n-p_{n-1}$ for $n\geq 1$. Prove that $p_n=\cos(n\theta)$ for integers $n\geq 0$.

Solution:		

2.	Assume that there are 10 points within the squre with side 1.	Sho	w that	there	are	two	points	among
	these 10 such that the distance between them is at most $\sqrt{2}/3$.							

Solution:		

3. Show that $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$.

Solution:

4. Let $m \ge n$ be positive integers. Show that

$$S(m,n) = \sum_{i=1}^{m} S(m-i, n-1)n^{i-1}.$$

Solution: