

# Calculus 2 Workbook Solutions

Geometric series



### **GEOMETRIC SERIES TEST**

 $\blacksquare$  1. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\sum_{n=1}^{\infty} 6 \left(\frac{2}{3}\right)^{n-1}$$

#### Solution:

In the series, a = 6 and r = 2/3. Since |r| < 1, the series converges.

 $\blacksquare$  2. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\sum_{n=1}^{\infty} \left(\frac{3}{7}\right)^{n-1}$$

#### Solution:

In the series, a = 1 and r = 3/7. Since |r| < 1, the series converges.

 $\blacksquare$  3. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\frac{\pi}{2} + \frac{\pi^2}{6} + \frac{\pi^3}{18} + \frac{\pi^4}{54} + \cdots$$

#### Solution:

In the series,  $a = \pi/2$  and  $r = \pi/3$ . Since |r| > 1, the series diverges.

 $\blacksquare$  4. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \left(-\frac{1}{3}\right)^{n-1} + \dots$$

## Solution:

In the series, a = 1 and r = -1/3. Since |r| < 1, the series converges.

 $\blacksquare$  5. Use the geometric series test to say whether the geometric series converges or diverges, then give the value of the common ratio r.

$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$



## Solution:

In the series,  $a=e/\pi$  and  $r=e/\pi$ . Since |r|<1, the series converges.



### SUM OF THE GEOMETRIC SERIES

■ 1. Find the sum of the geometric series.

$$\sum_{n=1}^{\infty} 7 \left( \frac{3}{8} \right)^{n-1}$$

## Solution:

In the series, a=7 and r=3/8, so |r|<1. Then the series converges to the sum

$$S = \frac{a}{1 - r} = \frac{7}{1 - \frac{3}{8}} = \frac{\frac{7}{1}}{\frac{5}{8}} = \frac{7}{1} \cdot \frac{8}{5} = \frac{56}{5}$$

2. Find the sum of the geometric series.

$$\sum_{n=1}^{\infty} 9 \left( \frac{5}{14} \right)^{n-1}$$

## Solution:

In the series, a=9 and r=5/14, so |r|<1. Then the series converges to the sum

$$S = \frac{a}{1 - r} = \frac{9}{1 - \frac{5}{14}} = \frac{\frac{9}{1}}{\frac{9}{14}} = \frac{9}{1} \cdot \frac{14}{9} = 14$$

■ 3. Find the sum of the geometric series.

$$\frac{1}{3} - \frac{2}{9} + \frac{4}{27} - \frac{8}{81} + \cdots$$

## Solution:

In the series, a=1/3 and r=-2/3, so |r|<1. Then the series converges to the sum

$$S = \frac{a}{1 - r} = \frac{\frac{1}{3}}{1 - \left(-\frac{2}{3}\right)} = \frac{\frac{1}{3}}{\frac{5}{3}} = \frac{1}{3} \cdot \frac{3}{5} = \frac{1}{5}$$

■ 4. Find the sum of the geometric series.

$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

## Solution:

In the series,  $a=e/\pi$  and  $r=e/\pi$ , so |r|<1. Then the series converges to the sum

$$S = \frac{a}{1 - r} = \frac{\frac{e}{\pi}}{1 - \frac{e}{\pi}} = \frac{\frac{e}{\pi}}{\frac{\pi}{\pi} - \frac{e}{\pi}} = \frac{\frac{e}{\pi}}{\frac{\pi}{\pi} - e} = \frac{e}{\pi} \cdot \frac{\pi}{\pi - e} = \frac{e}{\pi} \cdot \frac{\pi}{\pi - e} = \frac{e}{\pi}$$



## **VALUES FOR WHICH THE SERIES CONVERGES**

 $\blacksquare$  1. Find the values of x for which the geometric series converges.

$$\sum_{n=1}^{\infty} \frac{17}{3} x^{n-1}$$

#### Solution:

Expand the series.

$$\sum_{n=1}^{\infty} \frac{17}{3} x^{n-1} = \frac{17}{3} + \frac{17}{3} x + \frac{17}{3} x^2 + \frac{17}{3} x^3 + \frac{17}{3} x^4 + \cdots$$

The common ratio between each term is x. So we'll set up the inequality |r| < 1 to solve for the values where the series converges.

$$-1 < x < 1$$

 $\blacksquare$  2. Find the values of x for which the geometric series converges.

$$\sum_{n=1}^{\infty} 5 \left( \frac{x-2}{3} \right)^{n-1}$$

#### Solution:

Expand the series.

$$\sum_{n=1}^{\infty} 5\left(\frac{x-2}{3}\right)^{n-1} = 5 + 5\left(\frac{x-2}{3}\right) + 5\left(\frac{x-2}{3}\right)^2 + 5\left(\frac{x-2}{3}\right)^3$$

$$+5\left(\frac{x-2}{3}\right)^4 + 5\left(\frac{x-2}{3}\right)^5 + \cdots$$

The common ratio between each term is (x-2)/3. So we'll set up the inequality |r| < 1 to solve for the values where the series converges.

$$\left| \frac{x-2}{3} \right| < 1$$

$$-1 < \frac{x-2}{3} < 1$$

$$-3 < x - 2 < 3$$

$$-1 < x < 5$$

 $\blacksquare$  3. Find the values of x for which the geometric series converges.

$$\sum_{n=0}^{\infty} 4^n x^n$$

## Solution:



Expand the series.

$$\sum_{n=0}^{\infty} 4^n x^n = 1 + 4x + 16x^2 + 64x^3 + 256x^4 + \cdots$$

The common ratio between each term is 4x. So we'll set up the inequality |r| < 1 to solve for the values where the series converges.

$$-1 < 4x < 1$$

$$-\frac{1}{4} < x < \frac{1}{4}$$



#### GEOMETRIC SERIES FOR REPEATING DECIMALS

■ 1. Express the repeating decimal  $0.\overline{17}$  as a geometric series.

#### Solution:

The repeating decimal can be re-written as

$$0.\overline{17}$$

0.17171717171717...

$$0.17 + 0.0017 + 0.000017 + 0.00000017 + \dots$$

$$\frac{17}{100} + \frac{17}{10,000} + \frac{17}{1,000,000} + \frac{17}{100,000,000} + \dots$$

$$\frac{17}{100}\left(1+\frac{1}{100}+\frac{1}{10,000}+\frac{1}{1,000,000}+\dots\right)$$

Now that the repeating decimal is written as a series, we can identify a = 17/100 and r = 1/100. So the series is

$$\sum_{n=1}^{\infty} a_1 r^{n-1}$$

$$\sum_{n=1}^{\infty} \frac{17}{100} \left( \frac{1}{100} \right)^{n-1}$$



 $\blacksquare$  2. Express the repeating decimal  $23.\overline{23}$  as a geometric series.

### Solution:

The repeating decimal can be re-written as

$$23.\overline{23}$$

23.23232323...

$$23 + 0.23 + 0.0023 + 0.000023 + 0.00000023 + \dots$$

$$23 + \frac{23}{100} + \frac{23}{10,000} + \frac{23}{1,000,000} + \frac{23}{100,000,000} + \dots$$

$$23 + \frac{23}{100} \left( 1 + \frac{1}{100} + \frac{1}{10,000} + \frac{1}{1,000,000} + \dots \right)$$

Now that the repeating decimal is written as a series, we can identify a = 23/100 and r = 1/100. So the series is

$$\sum_{n=1}^{\infty} a_1 r^{n-1}$$

$$23 + \sum_{n=1}^{\infty} \frac{23}{100} \left( \frac{1}{100} \right)^{n-1}$$



 $\blacksquare$  3. Express the repeating decimal  $6.7\overline{2}$  as a geometric series.

#### Solution:

The repeating decimal can be re-written as

 $6.7\overline{2}$ 

6.72222222...

$$6.7 + 0.02 + 0.002 + 0.0002 + 0.00002 + \dots$$

$$6.7 + \frac{2}{100} + \frac{2}{1,000} + \frac{2}{10,000} + \frac{2}{100,000} + \dots$$

$$6.7 + \frac{1}{50} + \frac{1}{500} + \frac{1}{5,000} + \frac{1}{50,000} + \dots$$

$$6.7 + \frac{1}{50} \left( 1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{1,000} + \dots \right)$$

Now that the repeating decimal is written as a series, we can identify a = 1/50 and r = 1/10. So the series is

$$\sum_{n=1}^{\infty} a_1 r^{n-1}$$

$$6.7 + \sum_{n=1}^{\infty} \frac{1}{50} \left( \frac{1}{10} \right)^{n-1}$$



 $\blacksquare$  4. Express the repeating decimal  $9.15\overline{65}$  as a geometric series.

#### Solution:

The repeating decimal can be re-written as

$$9.15\overline{65}$$

9.1565656565...

$$9.15 + 0.0065 + 0.000065 + 0.00000065 + 0.0000000065 + \dots$$

$$9.15 + \frac{65}{10,000} + \frac{65}{1,000,000} + \frac{65}{100,000,000} + \frac{65}{10,000,000,000} + \dots$$

$$9.15 + \frac{13}{2,000} + \frac{13}{200,000} + \frac{13}{20,000,000} + \frac{13}{2,000,000,000} + \dots$$

$$9.15 + \frac{13}{2,000} \left( 1 + \frac{1}{100} + \frac{1}{10,000} + \frac{1}{1,000,000} + \dots \right)$$

Now that the repeating decimal is written as a series, we can identify a=13/2,000 and r=1/100. So the series is

$$\sum_{n=1}^{\infty} a_1 r^{n-1}$$

$$9.15 + \sum_{n=0}^{\infty} \frac{13}{2,000} \left(\frac{1}{100}\right)^{n-1}$$





W W W . K R I S T A K I N G M A T H . C O M