State modulation of sensorimotor processing

Jing-Xuan Lim^{1,2} & Misha Ahrens¹

¹Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA

²The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD

Animals constantly adapt their behavior to changing internal and external conditions. Behavioral adaptations can occur through changes in "brain states", a functional "rewiring" of the brain, for example by neuromodulators. Here, we explore how the efficacy of past locomotion changes current behavior by influencing information processing at multiple brain loci.

Methods

Experimental Paradigm

Summary

- Ineffective swimming evokes a brain state change that results in a reduced responsiveness to pulses of forward-moving grating, a common stimulus used to elicit the optomotor response.
- By probing the animal with different kinds of stimulus, we find that multiple regions of the brain are modulated in this passive state. Both up- and down-regulation are seen.
- Notably, regions associated with visuosensory stimulus and their downstream regions are much less active in the passive state, which suggest a brain-wide modulation of information processing leading to a change in behavior.

Ineffective swimming induces futility-induced passivity, causing a weaker optomotor response

Zebrafish need to integration over a larger number of forward-moving grating pulses in the passive state before they start responding.

While the effect is common amongst fish, a clear bimodal distribution of time to swim is not seen. This suggests that many factors, in addition to brain states, influence motor responsiveness in fish.

Multiple brain loci are down-regulated, which could explain the weaker optomotor response

Sensory and intermediate brain loci are less sensitive to visual stimuli of multiple types

Forward-moving gratings

Open loop higher -0.003-0.002-0.001 0.000 0.001 0. Δ*F/F*

Open loop Closed loop higher higher

Dark flash

OL-CL pos resp (bs + bg rm)

OL-CL pos

Bright flash

mean yz projection

Open loop
higher

Closed loop
higher

higher

ΔF/F

Rotating pinwheel

Kawashima, T., Zwart, M.F., Yang, C.T., Mensh, B.D., and Ahrens, M.B. (2016). The Serotonergic System Tracks the Outcomes of Actions to Mediate Short-Term Motor Learning. Cell 167, 933-946.e20.

Mu, Y., Bennett, D. V, Rubinov, M., Narayan, S., Yang, C., Tanimoto, M., Mensh, B.D., Looger, L.L., and Ahrens, M.B. (2019). Glia Accumulate Evidence that Actions Are Futile and Suppress Unsuccessful Behavior. Cell.