CURS 10

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LEGĂTURA DINTRE SINTAXĂ ŞI SEMANTICĂ

RECAP.

Teorema de corectitudine 9.4

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Teorema de completitudine 9.6

Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

2

Definiția 10.1

Fie Γ o multime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație.

Fie Γ, Δ mulţimi de formule a.î. $\Gamma \subseteq \Delta$.

- · Dacă Δ este consistentă, atunci și Γ este consistentă.
- · Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Propoziția 10.2

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine, ar rezulta că ⊨ ⊥, o contradicție. Aşadar ⊬ ⊥, deci Ø este consistentă.
- (ii) Aplicând Propoziția 8.7.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ ,

$$\vdash \varphi$$
 ddacă *Thm* $\vdash \varphi$.

Din (i) rezultă că Thm este consistentă.

Propoziţia 10.3

Pentru o mulţime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Demonstrație. $(i) \Rightarrow (ii) \Rightarrow (iii)$ și $(i) \Rightarrow (iv)$ sunt evidente.

(iii) \Rightarrow (i) Fie φ o formulă. Conform Propoziția 9.2,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că $\Gamma \vdash \varphi$.

(iv) \Rightarrow (iii). Presupunem că $\Gamma \vdash \bot$. Avem că $\bot = \neg \top$. Deoarece \top este tautologie, aplicăm Teorema de completitudine pentru a conclude că $\vdash \top$, deci și $\Gamma \vdash \top$.

Propoziția 10.4

Fie Γ o mulţime de formule şi φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Demonstrație.

(i) Avem

(ii) Similar.

Propoziția 10.5

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulţime finită de formule.

- (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ ddacă $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.
- (ii) Γ este consistentă ddacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Demonstraţie. Exerciţiu.

Propoziția 10.6

Fie Γ o mulţime de formule. Γ este inconsistentă ddacă Γ are o submulţime finită inconsistentă.

Demonstrație. "⇐" este evidentă.

" \Rightarrow " Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 10.3.(iv), $\Gamma \vdash \bot$. Aplicând Propoziția 8.12, obținem o submulțime finită $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ a lui Γ a.î. $\Sigma \vdash \bot$. Prin urmare, Σ este inconsistentă. \square

Un rezultat echivalent:

Propoziţia 10.7

Fie Γ o mulţime de formule. Γ este consistentă ddacă orice submulţime finită a lui Γ este consistentă.

CONSECINȚĂ A TEOREMEI DE COMPLETITUDINE

Teorema 10.8

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Demonstrație. Avem

$$\{\varphi\} \text{ este inconsistent} \iff \vdash \neg \varphi \\ \text{conform Propoziţiei 10.4.(ii)} \\ \iff \vdash \neg \varphi \\ \text{conform Teoremei de completitudine} \\ \iff \{\varphi\} \text{ este nesatisfiabilă} \\ \text{conform Propoziției 7.11.(ii)}.$$

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema 10.9 (Teorema de completitudine tare - versiunea 1) Pentru orice mulțime de formule Γ ,

 Γ este consistentă $\iff \Gamma$ este satisfiabilă.

Demonstrație. " \Leftarrow " Presupunem că Γ este satisfiabilă, deci are un model $e:V \to \{0,1\}$. Presupunem că Γ nu este consistentă. Atunci $\Gamma \vdash \bot$ şi, aplicând Teorema de corectitudine, rezultă că $\Gamma \vDash \bot$. Ca urmare, $e \vDash \bot$, ceea ce este o contradicție.

" \Rightarrow " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate pentru a conclude că Γ este satisfiabilă.

Fie $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ o submulţime finită a lui Γ. Atunci Σ este consistentă, conform Propoziţiei 10.7. Din Propoziţia 10.5.(ii), rezultă că $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă. Aplicând acum Teorema 10.8, obţinem că $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este satisfiabilă. Deoarece, conform Propoziţiei 7.12.(i), $\Sigma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}$, avem că Σ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema 10.10 (Teorema de completitudine tare - versiunea 2) Pentru orice multime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Demonstrație.

Observație

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).

LITERALI

Definiția 10.11

Un literal este o

- · variabilă (în care caz spunem că este literal pozitiv) sau
- · negația unei variabile (în care caz spunem că este literal negativ).

Exemplu.

- $\cdot v_1, v_2, v_{10}$ literali pozitivi
- $\cdot \neg v_0, \neg v_{100}$ literali negativi

Definiția 10.12

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

$$\varphi$$
 este în FND ddacă $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Definiția 10.13

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

$$\varphi$$
 este în FNC ddacă $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$, unde fiecare $L_{i,j}$ este literal.

Exemple.

- · $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- · $(\neg v_9 \wedge v_1) \vee v_{24} \vee (v_2 \wedge \neg v_1 \wedge v_2)$ este în FND
- \cdot $v_1 \wedge \neg v_5 \wedge v_4$ este atât în FND cât și în FNC
- $\cdot \neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- · $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Notaţie. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 10.14

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c\right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

(i) Aplicând Propoziția 7.4, obținem

$$\neg \varphi = \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \sim \bigvee_{i=1}^{n} \neg \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \\
\sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} \neg L_{i,j} \right) \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} L_{i,j}^{c} \right).$$

(ii) Exerciţiu.

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 şi $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi) \text{ cu } \neg\varphi \land \neg\psi \quad \text{ \emptyset i } \quad \neg(\varphi \land \psi) \text{ cu } \neg\varphi \lor \neg\psi.$$

Pasul 3.

Pentru FNC, se aplică distributivitatea lui ∨ faţa de ∧, pentru a înlocui

$$\varphi \vee (\psi \wedge \chi) \operatorname{cu} (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ §i } \quad (\psi \wedge \chi) \vee \varphi \operatorname{cu} (\psi \vee \varphi) \wedge (\chi \vee \varphi).$$

Pentru FND, se aplică distributivitatea lui \wedge faţa de \vee , pentru a înlocui $\varphi \wedge (\psi \vee \chi)$ cu $(\varphi \wedge \psi) \vee (\varphi \wedge \chi)$ şi $(\psi \vee \chi) \wedge \varphi$ cu $(\psi \wedge \varphi) \vee (\chi \wedge \varphi)$.

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența și comutativitatea lui \lor , că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

FUNCŢIA ASOCIATĂ UNEI FORMULE

Exemplu.

Arătaţi că $\vDash v_1 \rightarrow (v_2 \rightarrow (v_1 \land v_2))$.

V_1	V ₂	$V_1 \rightarrow (V_2 \rightarrow (V_1 \wedge V_2))$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel defineşte o funcţie $F:\{0,1\}^2 \rightarrow \{0,1\}$

$arepsilon_1$	$arepsilon_2$	$F(\varepsilon_1, \varepsilon_2)$
0	0	1
0	1	1
1	0	1
1	1	1

FUNCȚIA ASOCIATĂ UNEI FORMULE

Fie φ o formulă și $Var(\varphi) = \{x_1, \dots, x_n\}.$

Fie $(\varepsilon_1, ..., \varepsilon_n) \in \{0, 1\}^n$. Definim $e_{\varepsilon_1, ..., \varepsilon_n} : Var(\varphi) \to \{0, 1\}$ astfel: $e_{\varepsilon_1, ..., \varepsilon_n}(x_i) = \varepsilon_i$ pentru orice $i \in \{1, ..., n\}$.

Definim $e_{\varepsilon_1,...,\varepsilon_n}^+(\varphi) \in \{0,1\}$ astfel:

$$e_{\varepsilon_1,...,\varepsilon_n}^+(\varphi) := e^+(\varphi)$$
,

unde $e: V \to \{0,1\}$ este orice evaluare care extinde $e_{\varepsilon_1,...,\varepsilon_n}$, adică, $e(x_i) = e_{\varepsilon_1,...,\varepsilon_n}(x_i) = \varepsilon_i$ pentru orice $i \in \{1,...,n\}$.

Conform Propoziției 1.14, definiția nu este ambiguă.

Definiția 10.15

Funcția asociată lui φ este $F_{\varphi}: \{0,1\}^n \to \{0,1\}$, definită astfel:

$$F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n)=e^+_{\varepsilon_1,\ldots,\varepsilon_n}(\varphi)$$
 pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$.

Aşadar, F_{φ} este funcţia definită de tabela de adevăr pentru φ .

FUNCŢIA ASOCIATĂ UNEI FORMULE

Propoziţia 10.16

- (i) Fie φ o formulă. Atunci
 - (a) $\models \varphi$ ddacă F_{φ} este funcția constantă 1.
 - (b) φ este nesatisfiabilă ddacă F_{φ} este funcția constantă 0.
- (ii) Fie φ, ψ două formule. Atunci
 - (a) $\varphi \vDash \psi$ ddacă $F_{\varphi} \leq F_{\psi}$.
 - (b) $\varphi \sim \psi$ ddacă $F_{\varphi} = F_{\psi}$.
- (iii) Există formule diferite φ, ψ a.î. $F_{\varphi} = F_{\psi}$.

Demonstrație. Exercițiu.

Definiția 10.17

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu.

Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n=|Var(\varphi)|$.

Teorema 10.18

Fie $n \ge 1$ şi $H: \{0,1\}^n \to \{0,1\}$ o funcţie booleană arbitrară. Atunci există o formulă φ în FND a.î. $H = F_{\varphi}$.

Demonstraţie. Dacă $H(\varepsilon_1, \ldots, \varepsilon_n) = 0$ pentru orice $(\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n$,

luăm
$$\varphi := \bigvee (v_i \wedge \neg v_i)$$
. Avem că $Var(\varphi) = \{v_0, \dots, v_{n-1}\}$, aşadar,

 $F_{\varphi}:\{0,1\}^n\stackrel{i=0}{ o}\{0,1\}$. Cum $v_i\wedge \neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_{φ} este de asemenea funcția constantă 0.

22

Altfel, mulţimea

$$T:=H^{-1}(1)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=1\}$$

este nevidă.

Considerăm formula

$$\varphi := \bigvee_{(\varepsilon_1, \dots, \varepsilon_n) \in T} \left(\bigwedge_{\varepsilon_i = 1} \mathsf{V}_i \wedge \bigwedge_{\varepsilon_i = 0} \neg \mathsf{V}_i \right).$$

Deoarece $Var(\varphi) = \{v_1, \dots, v_n\}$, avem că $F_{\varphi} : \{0,1\}^n \to \{0,1\}$.

Demonstrăm că pentru orice $(\delta_1,\ldots,\delta_n)\in\{0,1\}^n$, avem că

$$F_{\varphi}(\delta_1,\ldots,\delta_n)=1\iff H(\delta_1,\ldots,\delta_n)=1,$$

de unde va rezulta imediat că $H = F_{\varphi}$.

Fie
$$e: V \to \{0,1\}$$
 a.î. $e(v_i) = \delta_i$ pentru orice $i \in \{1,\ldots,n\}$. Atunci $e^+(\varphi) = 1 \iff \bigvee_{(\varepsilon_1,\ldots,\varepsilon_n)\in T} (\bigwedge_{\varepsilon_i=1} e(v_i) \land \bigwedge_{\varepsilon_i=0} \neg e(v_i)) = 1 \Leftrightarrow \bigvee_{(\varepsilon_1,\ldots,\varepsilon_n)\in T} (\bigwedge_{\varepsilon_i=1} \delta_i \land \bigwedge_{\varepsilon_i=0} \neg \delta_i) = 1 \Leftrightarrow \text{există} (\varepsilon_1,\ldots,\varepsilon_n) \in T \text{ a.î.} \bigwedge_{\varepsilon_i=1} \delta_i = 1 \Leftrightarrow \text{există} (\varepsilon_1,\ldots,\varepsilon_n) \in T \text{ a.î.} \delta_i = \varepsilon_i \text{ pentru orice } i \in \{1,\ldots,n\} \Leftrightarrow (\delta_1,\ldots,\delta_n) \in T \Leftrightarrow H(\delta_1,\ldots,\delta_n) = 1.$

Prin urmare,
$$F_{\varphi}(\delta_1, \dots, \delta_n) = 1 \iff e^+_{\delta_1, \dots, \delta_n}(\varphi) = 1$$

 $\iff e^+(\varphi) = 1 \text{ pentru orice } e : V \to \{0, 1\} \text{ a.î. } e(v_i) = \delta_i \text{ pentru orice } i \in \{1, \dots, n\} \iff H(\delta_1, \dots, \delta_n) = 1.$

Teorema 10.19

Fie $n \ge 1$ şi $H: \{0,1\}^n \to \{0,1\}$ o funcţie booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H = F_{\psi}$.

Demonstrație. Dacă $H(\varepsilon_1, \ldots, \varepsilon_n) = 1$ pentru orice $(\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=0}^{n-1} (\mathsf{v}_i \vee \neg \mathsf{v}_i).$$

Altfel, mulţimea

$$F:=H^{-1}(0)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=0\}$$

este nevidă.

Considerăm formula
$$\psi := \bigwedge_{(\varepsilon_1, \dots, \varepsilon_n) \in F} \left(\bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i \right).$$

Se demonstrează că $H=F_{\psi}$ (exerciţiu!).

Exemplu.

Fie $H: \{0,1\}^3 \to \{0,1\}$ descrisă prin tabelul:

ε_1	ε_2	$arepsilon_3$	$H(arepsilon_1,arepsilon_2,arepsilon_3)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$D_{1} = v_{1} \lor v_{2} \lor v_{3}$$

$$D_{2} = v_{1} \lor v_{2} \lor \neg v_{3}$$

$$C_{1} = \neg v_{1} \land v_{2} \land \neg v_{3}$$

$$D_{3} = v_{1} \lor \neg v_{2} \lor \neg v_{3}$$

$$C_{2} = v_{1} \land \neg v_{2} \land \neg v_{3}$$

$$C_{3} = v_{1} \land \neg v_{2} \land v_{3}$$

$$C_{4} = v_{1} \land v_{2} \land \neg v_{3}$$

$$C_{5} = v_{1} \land v_{2} \land v_{3}$$

$$\varphi = C_1 \vee C_2 \vee C_3 \vee C_4 \vee C_5$$
 în FND a.î. $H = F_{\varphi}$.
 $\psi = D_1 \wedge D_2 \wedge D_3$ în FNC a.î. $H = F_{\psi}$.

Teorema 10.20

Orice formulă φ este echivalentă cu o formulă $\varphi^{\rm FND}$ în FND și cu o formulă $\varphi^{\rm FNC}$ în FNC.

Demonstraţie. Fie $Var(\varphi) = \{x_1, \dots, x_n\}$ şi $F_{\varphi}: \{0,1\}^n \to \{0,1\}$ funcţia booleană asociată. Aplicând Teorema 1.75 cu $H:=F_{\varphi}$, obţinem o formulă φ^{FND} în FND a.î. $F_{\varphi}=F_{\varphi^{FND}}$. Aşadar, conform Propoziţiei 1.73.(ii), $\varphi\sim\varphi^{FND}$. Similar, aplicând Teorema 1.76 cu $H:=F_{\varphi}$, obţinem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.