Relações

- Ligações entre elementos de conjuntos são representados usando uma estrutura chamada <u>relação</u>.
- · No nosso dia-a-dia estamos freqüentemente utilizando o conceito de relações:
 - Comparar objetos (maior, menor, igual);
 - Marido-Mulher, Pai-para-filho, Pai-mãe-filho; etc.
- · Relações podem ser usadas para resolver problemas tais como:
 - Determinar quais pares de cidades são ligadas por linhas aéreas em uma rede;
 - Busca de uma ordem viável para diferentes fases de um
 - Elaboração de um modo útil de armazenar informações em bancos de dados computacionais.

Relações

- Definição de Relações:
 - Pode-se definir relações como um subconjunto do produto cartesiano entre conjuntos
- · Relações Binárias:
 - Dados dois conjuntos quaisquer A e B, uma *relação* <u>binária</u> entre A e B é um subconjunto obtido do produto cartesiano AxB destes conjuntos.
 - Uma relação binária de A em B é um conjunto R de pares ordenados, onde o 1º elemento de cada par vem de A e o 2º vem de B, ou seja R⊆AxB.
 - Quando (a,b)∈ R, diz-se que a está relacionado com B.
 - Usa-se a notação a R b, para denotar que (a,b)∈ R.
 - O número de relações binárias de A em B é dado por $2^{|A|,|B|}$

Relações

- Exemplo:
 - $A={1,2,3} e B={r,s}$
 - $AxB = \{(1,r),(1,s),(2,r),(2,s),(3,r),(3,s)\}$ é o Produto Cartesiano de A e B.
 - R = {(1,r),(1,s),(2,s),(3,r)} é uma Relação de A em B.
 - Pode-se dizer: 1 R s, 1 R s, 2 R s, 3 R r.
 - Mas: 3 /R s (o par ordenado (3,r) ∉ R.

R	r	s
1	X	X
2		X
3	X	

Relações

- Exercício:
 - Seja A=B={1,2,3,4,5}. Define-se a relação R (menor do que) sobre A como:
 - a R b se e somente se a < b.
 - Neste caso R={....
 - Observe que o que realmente importa em uma relação é que nós saibamos precisamente quais elementos em A estão realcionados a quais elementos em B.

Conjuntos Originados de Relações

- Definições:
 - Seja R ⊆ AxB uma relação de A em B. Então
 - Domínio de R, denotado por Dom(R) é o conjunto de todos os elementos em A que estão relacionados com algum elemento em
 - Para o exercício anterior $Dom(R) = \{1,2,3,4\}.$
 - Contradomínio ou Imagem de R, denotado por Ran(R) ou Im(R) é o conjunto de todos os elementos de B que são segundos elementos de pares de R.
 - Para o exercício anterior Ran(R) ={2,3,4,5}
 - Se $x \in A$, define-se o conjunto R(x) dos $\underbrace{R\text{-relativos de }x}_{}$ como sendo o conjunto de todos os y em B com a propriedade de que x está relacionado a y por R, ou seja, $R(x) = \{y \in B \mid x \mid R \mid y\}$ Para o exercício anterior $R(3) = \{4,5\}$.
 - Similarmente, se $A_{\subseteq}A$, então $R(A_1)$, o conjunto dos **R-relativos** $\operatorname{\underline{de}} A_i$, é o conjunto de todos os y em B com a propriedade de que x está relacionado a y por R e $x \in A_1$.
 - Para o exercício anterior se A₁={2,3} e R(2,3)={3,4,5}.

Operações de Relações

- Definições:
 - Como relações são conjuntos, é possível aplicar as operações usuais sobre conjuntos também sobre relações. O conjunto resultante também será composto por pares ordenados e definirá uma relação.
 - Sejam R e S ⊆ AxB duas relações de A em B. Então:
 - R C S define uma relação tal que: $a (R \cap S) b = a R b \wedge a S b$
 - RÈ S define uma relação tal que:
 - $a(R \cup S) b = a R b v a S b$
 - R S define uma relação tal que: $\underline{\underline{a}\ (R-S)\ b=a\ R\ b\ ^a\ a\ /S\ b=(a,b)} \in R\ ^a\ (a,b)\not\in S$ $\underline{\underline{R}\ de\underline{\underline{f}} ne\ uma\ relação\ tal\ que:}$
 - $a(\overline{R}) b = a/R b = (a,b) \notin R$

Relações Internas

- · Definições:
 - Uma <u>Relação Interna</u> sobre o conjunto A é uma relação de A em A (ou seja, é um subconjunto de AxA).
- Exemplo: Seja A={1,2,3,4}. Quais pares ordenados estão na relação R={(a,b) | a divide b}?
 - R={(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)}
- Exercício: Considere as seguintes relações sobre o conjunto dos inteiros:
 - $\ R1 = \ \{(a,b) \mid a \leq b \ \}$
 - $R2 = \{(a,b) \mid a > b \}$
 - $-R3 = \{(a,b) \mid a = b \text{ ou } a = -b \}$
 - R4 = {(a,b) | a = b } - R5 = {(a,b) | a = b+1 }
 - R6 = $\{(a,b) | a = b + 1\}$
 - Quais destas relações contém cada um dos pares ordenados: (1,1),(2,1),(1,2),(1,-1) e (2,2)?

Propriedades das Relações Internas

- Relação Reflexiva Definição:
 - Uma relação binária interna R em um conjunto A é <u>reflexiva</u> se, para todo a∈ A, aRa, ou seja

 $\forall a (a \in A \to (a,a) \in R)$

- $-\,$ A relação de igualdade é reflexiva, pois para qualquer a $\in\,$ A, a=a.
- A relação ≤ é reflexiva no conjunto dos números reais.
- A relação de inclusão ⊆ é reflexiva na família de todos os subconjuntos do conjunto Universo.
- Exemplo:
 - A relação R={(a,b) | a divide b} é reflexiva não conjunto dos números inteiros excluindo o zero.
 - Dado o conjunto A={1,2,3}, a relação R={(1,1),(1,2),(3,3)}
 NÃO é reflexiva.

Propriedades das Relações Internas

- Relação Simétrica Definição:
 - Uma relação binária interna R em um conjunto A é <u>simétrica</u> se, para todo a∈ A e b∈ A, se aRb então bRa, ou seja

 $\forall a, b((a,b) \in \, R \to (b,a) \in \, R)$

- A relação de igualdade é simétrica, pois para qualquer a e $b \in A$, se a = b, então b = a.
- A relação ≤ é NÃO é simétrica no conjunto dos números reais.
- A relação de ser irmão não é simétrica no conjunto de todas as pessoas, mas é simétrica no conjunto de todos os homens.
- Relação Assimétrica Definição:
 - Uma relação binária interna R em um conjunto A é <u>assimétrica</u> se, para todo a∈ A e b∈ A, se aRb então b/Ra, ou seja ∀a,b((a,b) ∈ R → (b,a) ∉ R)

Propriedades das Relações Internas

- Relação Anti-Simétrica Definição:
 - Uma relação binária interna R em um conjunto A é
 anti-simétrica se, para todo a∈ A e b∈ A, se aRb e bRa,
 então a=b, ou seja

 $\forall a,b((a,b)\in R \land (b,a)\in R \rightarrow a{=}b)$

- A relação de subconjunto próprio ⊂ é anti-simétrica no conjunto de todos os subconjuntos do conjunto Universo.
- É possível possuir uma relação que seja ao mesmo tempo simétrica e anti-simétrica, como por exemplo a relação de igualdade.

Propriedades das Relações Internas

- Relação Transitiva Definição:
 - Uma relação binária interna R em um conjunto A é <u>transitiva</u> se, para todo a∈ A, b∈ A e c∈ A, se aRb e bRc, então aRc, ou seja

 $\forall a,b,c((a,b) \in \ R \ ^{\wedge} \ (b,c) \in \ R \rightarrow (a,c) \in \ R)$

- As relações ≤, < e = são transitivas no conjunto dos números reais.
- As relações ⊆, ⊂ e = são transitivas na família de todos os subconjuntos do conjunto Universo.
- A relação "ser mãe" NÃO é transitiva.

Propriedades das Relações Internas

- Exercício 1: Determine se as relações abaixo são reflexivas, simétricas, assimétricas, anti-simétricas ou transitivas :
- a) $R = \{ (1,3),(1,1),(3,1),(1,2),(3,3),(4,4) \}$
- b) R=

 $\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$

- Respostas :
- a) N, N, N, N, N N
- b) S, N, S, N, N, S

Propriedades das Relações Internas

- Exercício 2: Determine se as relações abaixo são reflexivas, simétricas, assimétricas, anti-simétricas ou transitivas :
- · Considere as relações sobre o conjunto dos inteiros:
 - $R1 = \{(a,b) \mid a \leq b \}$ $- R2 = \{(a,b) \mid a > b \}$
 - $R3 = \{(a,b) \mid a = b \text{ ou } a = -b \}$
 - $R4 = \{(a,b) \mid a = b \}$
 - $R5 = \{(a,b) \mid a = b+1 \}$
 - $\ R6 = \ \{(a,b) \mid a+b \le 3 \ \}$

Representação de Relações

- Além de representar as relações explicitando propriedades dos pares ordenados ou listando todos os pares, também é possível representar relações usando:
 - Matrizes de 0's e 1's.
 - Grafos direcionados (dígrafos).
- MATRIZES DE RELAÇÕES
 - Sejam $A=\{a_1,a_2,...,a_m\}$, $B=\{b_1,b_2,...,b_n\}$ e R uma relação de A em B. A matriz mxn da relação R pode ser obtida da seguinte maneira: 1 se a_iRb_j , ou seja, se $(a_i,b_j) \in R$

l 0 se a_i\Rb_j, ou seja, se (a_i,b_j) ∉ R

M_R é denominada Matriz de R.

Representação de Relações

- Exemplo 1: Sejam A={ $\{1,2,3\}$ e B= $\{r,s\}$ e a relação R de A em B dada por
- R= { (1,r),(2,s),(3,r)}. Então a matriz M_R de R é:

 $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $M_{R(3x2)} = \begin{bmatrix} 0 & 1 \end{bmatrix}$

[1 0]

• Exemplo 2: Defina a relação representada pela matriz:

[1 0 0 1] $\mathbf{M}_{R(3x4)} \!\!= \left[\begin{array}{ccccc} \!\! 0 & 1 & 1 & 0 \end{array} \right]$ [1 0 1 0]

• Solução: Como M é 3x4, fazemos: A={a1,a2,a3} e $B = \{b1, b2, b3, b4\}$

Então, como (ai,bj)R se e somente se mij=1, temos:

• R={(a1,b1),(a1,b4),(a2,b2),(a2,b3),(a3,b1),(a3,b3)}

Representação de Relações

- DÍGRAFOS DE RELAÇÕES
 - Seja R uma relação em um conjunto A= $\{a_1,a_2,...,a_m\}$.
 - Os elementos de A são representados por pontos ou círculos chamados "nós" ou "vértices"
 - Os nós correspondentes a a_i e a_j são identificados como a_i e a_j
 - Se a¡Ra; isto é, se (a¡,a¡)∈R, então conecta-se os nós a¡ e a, através de um arco e coloca-se uma seta no arco na direção de a_i para a_j.
 - Quando todos os nós correspondentes aos pares ordenados da relação R estiverem conectados através de arco orientados, tem-se então um grafo orientado ou dígrafo da relação R.

Representação de Relações

- Exemplo 1: Sejam A={1,2,3,4} e $R = \{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,4),(4,1)\}.$
- O dígrafo de R é:

Representação de Relações

• Exemplo 2: Explicite a relação determinada pelo dígrafo abaixo:

Caracterização das Propriedades usando Matrizes e Dígrafos

- · Reflexiva:
 - Matrizes: A matriz M_R possui todos os elementos da diagonal principal igual a 1.
 - Dígrafos: Para todos os vértices do dígrafo, existem arestas que ligam o vértice a ele mesmo.

$$\mathbf{M_{R}} = \begin{array}{c|cccc} 1 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \hline 0 & 0 & 1 \\ \end{array}$$

Caracterização das Propriedades usando Matrizes e Dígrafos

- Simétrica:
 - Matrizes: A matriz M_R é simétrica em relação a diagonal principal, ou seja, [M_R]=[M_R]^T.
 - Dígrafos: Se de algum vértice do dígrafo partir uma aresta para um outro vértice, deve obrigatoriamente existir uma aresta no sentido contrário.

	1	1	0
$\mathbf{M}_{\mathrm{R}}\!\!=\!$	1	1	1
	0	1	0

Caracterização das Propriedades usando Matrizes e Dígrafos

- · Assimétrica:
 - Matrizes: A matriz M_R <u>deve</u> ter a diagonal principal igual a zero, além disso, $m_{ij} \neq m_{ji}$.
 - Dígrafos: Se de algum vértice do dígrafo partir uma aresta para um outro vértice, não pode existir uma aresta no sentido contrário.

$$M_{R} = \begin{array}{c|ccc} 0 & 1 & 0 \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \end{array}$$

Caracterização das Propriedades usando Matrizes e Dígrafos

- Anti-Simétrica:
 - Matrizes: A matriz M_R <u>pode</u> ter a diagonal principal igual a zero, além disso, m_{ii} ≠m_{ii}.
 - Dígrafos: Se de algum vértice do dígrafo partir uma aresta para um outro vértice, não pode existir uma aresta no sentido contrário.

 $M_R = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 1 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 1 & 0 \\ \hline \end{array}$

Partição e Cobertura de um Conjunto

- Definição:
 - Seja S um dado conjunto e $A=\{A_1,A_2,...,A_m\}$ onde cada A_i é um subconjunto de S e

$$U_{i=1}^{m}A_{i}=S$$

Então o conjunto A é chamado de $\underline{\mathbf{cobertura}}$ de S e os conjuntos $\mathbf{A_1, A_2, ... A_m}$ $\underline{\mathbf{cobrem}}$ S.

 Se além disso, os conjuntos Ai forem mutuamente disjuntos, ou seja

Então A é chamado de $\underline{\text{partição}}$ de Se os conjuntos $A_1, A_2, ... A_m$ são chamados de \emph{blocos} de S.

Partição e Cobertura de um Conjunto

- Exemplo:
 - Seja S={a,b,c} e consideremos os seguintes subconjuntos de S,
 - $-A = \{\{a,b\},\{b,c\}\} \quad B = \{\{a\},\{a,c\}\} \quad C = \{\{a\},\{b,c\}\}$
 - $-\ D = \! \{\{a,b,c\}\} \quad E \! = \! \{\{a\},\{b\},\{c\}\} \quad F \! = \! \{\{a\},\{a,b\},\{a,c\}\}$
 - Os conjuntos A e F são coberturas de S enquanto C, D e E são partições de S.

Relação de Equivalência

- Definição:
 - Uma relação R em um conjunto A é uma Relação de Equivalência se:
 - 1. R for reflexivo:
 - R for simétrico; e
 - 3. R for transitivo.
 - Exemplos:
 - A igualdade de números em um conjunto de
 - A similaridade de triângulos em um conjunto de triângulos;
 - A relação entre linhas que são paralelas em um conjunto de linhas de um plano.

Relação de Equivalência

- Suponha que a matrícula dos estudantes em uma dada Universidade siga o esquema:

dudu em versidade sigu o esquema.				
Inicial do Nome:	Horário de Matrícula:			
A-G	8:00 - 10:59			
H-N	11:00 - 13:59			
O-Z	14:00 - 16:59			

- Seja R a relação que contém (x,y) e x e y são estudantes com nomes começando com letras do mesmo bloco.
 - Consequentemente, x e y podem se matricular na mesma hora se e somente se $(x,y) \in R$.
 - Pode-se notar que R é reflexiva, simétrica e transitiva.

Relação de Equivalência

- Exemplos:
 - Dada a relação R definida sobre os Naturais como:
 - $R=\{(x,y) \mid |x-y|.MOD.2=0\}$ (resto da divisão por 2=0) Podemos observar alguns dos pares ordenados desta
 - relação...{...,(1,3),(1,1),(3,1),(1,5),(5,1),(3,3),(5,5),...
 - \dots , (0,0), (0,2), (0,4), (2,4), (4,2), (2,2), (4,4), (0,4), (4,0), \dots }
 - Esta relação é reflexiva, simétrica e transitiva.
 - É possível identificar dois subconjuntos (partições ou blocos) dos Naturais onde estas propriedades (reflexiva, simétrica e transitiva) se mantém. Estas duas partições são:
 - O subconjunto dos <u>Números Pares</u> e o dos <u>Números </u> <u>Ímpares.</u>

Classe de Equivalência

- - Uma relação de equivalência num conjunto divide-o em partições, colocando os elementos que são relacionados a cada um dos outros numa mesma classe, denominada de <u>classe de equivalência</u>. Estas classes de equivalência podem ser tratadas como entidades.
 - Exemplo:
 - A figura a seguir mostra a partição do conjunto dos Naturais em duas classes de equivalência.

Classe de Equivalência

- Exemplo:
 - Seja A={1,2,3,4,5,6,7} e seja R a relação "módulo congruente 3" dada por $R=\{(x,y) \mid (x-y) \text{ \'e divis\'ivel }$ por 3}
 - Mostre que R é uma relação de equivalência, desenhe o grafo de R e determine as classes de equivalência geradas pelos elementos de A.
 - $R = \{(1,1),(1,4),(4,1),(4,4),(1,7),(7,1),(4,7),(7,4),$ (7,7),(2,2),(2,5)(5,2),(5,5),(3,3),(3,6),(6,3),(6,6)

É Reflexiva, Simétrica e Transitiva.

Classe 3

Relações de Equivalência

- Exercícios:
 - 1. Seja A= $\{1,2,3,4\}$ e seja a relação de equivalência R sobre A definida por $R = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4).$

Determine todas as classes de equivalência de R.

- 2. Se {{1,2},{3},{4,5}} é uma partição do conjunto A={1,2,3,4,5}. Determine a relação de equivalência R
- Seja A={a,b,c}. Determine se a relação R cuja matriz é dada abaixo é uma relação de equivalência. Quais as classes de equivalência?

Relações de Compatibilidade

- Definição:
 - Uma relação R em A é chamada uma <u>relação de</u> <u>compatibilidade</u> se ela é reflexiva e simétrica.
- · Exemplo:
 - Seja X={ball, bed, dog, egg, let} e seja R a relação dada por R={(x,y)| x e y possuem alguma letra em comum}.
 - R={(ball,ball),(bed,bed),(dog,dog),(egg,egg),(let,let), (ball,bed),(bed,ball),(ball,let),(let,ball),(bed,dog),(dog,bed), (bed,egg),(egg,bed),(bed,let),(let,bed),(dog,egg),(egg,dog) (egg,let),(let,egg)}
 - Desenho o grafo.

Relações de Compatibilidade

- R é uma relação de compatibilidade e x e y são chamados <u>compatíveis</u> se xRy.
- Embora uma relação de equivalência em um conjunto defina uma partição de um conjunto em classes de equivalência, uma relação de compatibilidade não necessariamente define uma partição.
- Entretanto, uma relação de compatibilidade define uma cobertura do conjunto.

Relações de Ordem

- Relações são usadas freqüentemente para alguns ou todos os elementos de um conjunto.
 - Ordenamos palavras usando xRy, onde x vem antes do y no dicionário.
- A relação de ordem é uma generalização do conceito de menor ou igual (s) ou de maior ou igual (e). A relação de ordem é interna e só existe se comparar elementos do mesmo conjunto.
- Uma relação de ordem é reflexiva, anti-simétrica e transitiva.
- Um conjunto A, junto com sua relação de ordem R é chamado de <u>poset</u> (partially ordered set) e é denotado por (A.R).

Relações de Ordem

- Relação de Ordem Total Definição:
- Uma relação de ordem R em um conjunto não vazio A tal que todos os elementos de A são comparáveis 2 a 2 pela R chama-se <u>Relação de Ordem Total</u> em A.

 $\forall x \forall y (x, y \in A \land (xRy \ v \ yRx))$

- Se todos os elementos podem ser comparáveis entre si, esta relação é de Ordem Total.
- Exemplo:
- A relação no conjunto A={2,4,8,16,...,2n,...) definida por "x é múltiplo de y" é uma relação de ordem total em A.
- A ordem natural "x ≤ y" no conjunto dos números reais é uma relação de ordem total.

Relações de Ordem

- Relação de Ordem Parcial Definição:
 - Se a relação é reflexiva, anti-simétrica e transitiva mas não é universal, ou seja, não vale para todos os elementos do conjunto considerado (alguns não são comparáveis) é uma <u>Relação de Ordem Parcial</u>.
- Exemplo:
 - A relação no conjunto dos números naturais por "x|y" (relação de divisibilidade) é uma Relação de Ordem Parcial em N (reflexiva, anti-simétrica e transitiva), porque dois números naturais nem sempre são comparáveis por esta ordem, como, por exemplo, 5 e 7 (5 não divide 7 e 7 não divide 5).

Relações de Ordem

- Exemplo:
 - Mostre que a relação ≥ é uma relação de ordem sobre o conjunto dos inteiros. Diga se ela é uma relação de ordem total ou parcial.
 - Solução:
 - ≥={(n1,n2) | n1 e n2 ∈ Z ^ n1 é maior ou igual a n2}

- Além disso para qualquer a e b ∈ Z, ou a≥b OU b≥a
- Logo, (Z,³) é uma Relação de Ordem Total sobre o conjunto dos inteiros.
- Mostre que a relação ⊆ é uma relação de ordem sobre o conjunto potência do conjunto {1,2,3}. Diga se ela é uma relação de ordem total ou parcial.

Relações de Ordem

- Diagramas de Hasse de Conjuntos munidos de uma Relação de Ordem
 - Conjuntos munidos de uma relação de ordem são uma relação e portanto pode-se desenhar seu dígrafo.
 - No entanto, muitas arestas não precisam estar presentes em virtude das propriedades da relação de ordem (reflexiva e transitiva).
 - Para simplificar a representação, retira-se de seus dígrafos as arestas que sempre devem estar presentes.
 - As estruturas obtidas desta forma são chamadas de DIAGRAMAS DE HASSE da relação de ordem.

Diagramas de Hasse

- Exemplo:
 - Considere o dígrafo da relação de ordem "≤" sobre o conjunto A={1,2,3,4}:

Diagramas de Hasse

- Exemplo 2:
 - Seja A={1,2,3,4,6,8,12}. Considere a relação de divisibilidade sobre A.

Diagramas de Hasse

- · Definições:
 - Se (A,R) é um conjunto munido de uma relação de ordem e a,b∈ A, então:
 - 1. Se aRb, diz-se que "a precede b"
 - Se aRb e não existe nenhum c tal que aRc e cRb, dizse que "a é o precedecessor imediato de b" (escreve-se aĐb).
 - 3. Se aRb, diz-se que "b sucede a"
 - 4. Se aRb e não existe nenhum c tal que aRc e cRb, dizse que "<u>b é o sucessor imediato de a</u>".

Diagramas de Hasse

- Outra maneira de se construir Diagramas de Hasse:
 - O Diagrama de Hasse de um conjunto munido de uma relação de ordem (A,R) é o dígrafo no qual os vértices são elementos de A.
 - Existirá uma aresta de um vértice a para um vértice b sempre que aĐb.
 - Ao invés de desenhar uma seta de a para b, coloca-se b mais alto do que a e desenha-se uma linha entre eles
 - Fica subentendido que o movimento para cima indica sucessão.

Diagramas de Hasse

- Exemplo 1:
- Seja S={a,b,c} e seja A=P(S) (o conjunto potência de S). Desenhe o Diagrama de Hasse do conjunto munido da relação de ordem (A,⊆).
- $A=\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$

Diagramas de Hasse

- Exemplo 2:
 - Seja A={1,2,3,4,6,8,9,12,18,24}. Desenhe o Diagrama de Hasse do conjunto munido da relação de ordem "a divide b" (A,)).

Diagramas de Hasse

- Exercício 1:
 - Determine o Diagrama de Hasse da relação de ordem que tem o seguinte dígrafo:

Diagramas de Hasse

- Exercício 2 e 3:

M= 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1

Elementos Extremos de Relações

- Definição:
 - Considere o conjunto munido de relação de ordem (A,R). Então:
 - a) Um elemento $a \in A$ é chamado de um <u>elemento</u> <u>maximal</u> de A se não existe $c \in A$ tal que aRc e a $\neq c$.
 - b) Um elemento $a \in A$ é chamado de um <u>elemento</u> <u>minimal</u> de A se não existe $c \in A$ tal que cRa e $a \ne c$.
- Exemplos:
 - (N*,≤): elemento minimal:1 maximal: não tem
 - (R, ≤): elemento minimal: não tem maximal: não tem
 - $(\{1,2,3,4\}, \leq)$: elemento minimal:1, maximal: 4

Elementos Extremos de Relações

- Exemplos:
 - Considere o conjunto munido de relação de ordem (A,R) e seu diagrama de Hasse.

•a1, a2 e a3 são elementos **maximais** de A •b1, b2 e b3 são elementos **minimais** de A

Elementos Extremos de Relações

- Exemplos:
 - Quais elementos do conjunto munido de relação de ordem ({2,4,5,10,12,20,25},|) são maximais e quais são minimais?

•12, 20 e 25 são elementos **maximais** de A •2 e 5 são elementos **minimais** de A

Elementos Extremos de Relações

- Definição:
 - Seja o conjunto munido de uma relação de ordem (A,R).
 - a) Um elemento a∈ A é chamado de um <u>maior elemento</u> de A se bRa **para todo** b∈ A.
 - b) Um elemento $a \in A$ é chamado de um **menor elemento** de A se aRb **para todo** $b \in A$.

Elementos Extremos de Relações

• Exemplos:

(A): menor elemento é "a", não tem menor elemento.

(B): não tem menor elemento, "e" é o maior elemento.

(C): não tem major nem menor elemento.

(D): "a" é o menor elemento, "d" é o maior elemento.

Caminhos em Relações e Dígrafos

 Definição: Seja R uma relação sobre o conjunto A. Um caminho de comprimento n de a para b é uma seqüência finita ¶=a,x₁,x₂...,x_{n-1},b tal que:

- Note que um caminho de comprimento n envolve n+1 elementos de A (não necessariamente distintos).
- O modo mais fácil de visualizar um caminho é com o dígrafo de uma relação: sucessão de arestas, seguindo os sentidos indicados.
- Então:

 \P_1 =1,2,5,4,3 é um caminho de comprimento 4 de 1 a 3. \P_2 =1,2,5 é um caminho

de comprimento 2 de 1 a 1.

 \P_3 =2,2 é um caminho de comprimento 1 de 2 a 2.

Caminhos em Relações e Dígrafos

- Um caminho que começa e termina no mesmo vértice é chamado de um ciclo (¶₂ e ¶₃ são ciclos).
- $\ Caminhos \ de \ comprimento \ 1 \ s\~{ao} \ os \ pares \ ordenados \\ (x,y) \ que \ pertencem \ a \ R.$
- Caminhos em relações R podem ser usados para definir novas relações bastante úteis.
- Definição: xRⁿy significa que há um <u>caminho de</u> <u>comprimento n</u> de x até y em R.
- Definição: xR[∞]y significa que há um caminho de x até y em R (R[∞] é chamada <u>relação de conectividade</u> para R).

5 4

Caminhos em Relações e Dígrafos

- Exemplo: Sejam A= $\{a,b,c,d,e\}$ e R= $\{(a,a),(a,b),(b,c),(c,e),(c,d),(d,e)\}$. Explicite :
 - a)R²
 - b)R[∞]

Produto Booleano $(1^1)v(0^0)$ $(1^1)v(0^1)$ (1^0)v(0^1) $A \otimes B = (0^1)v(1^0)$ (0^1)v(1^1) (0^0)v(1^1) (1^1)v(0^0) (1^1)v(0^1) (1^0)v(0^1) 1v0 0v0 $A \otimes B =$ 0 1 1 A⊗B= 0v00v1 0v1

0v0

1v0 1v0

1 1 0

Caminhos em Relações e Matrizes - Se R é uma relação sobre $A=\{a_1,a_2,...,a_m\}$ então $M_R^2=M_R\otimes M_R$. Para n>2 e para uma relação R sobre A, então: 1 1 0 0 0 $M_R^n = M_R \otimes M_R \otimes ... \otimes M_R$ (n fatores) 0 0 1 0 0 $M_R =$ • Exemplo: Sejam A={a1,a2,a3,a4,a5} e 0 0 0 0 1 $\mathbf{M_R}\ddot{\mathbf{A}}\mathbf{M_R} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \end{bmatrix} \ddot{\mathbf{A}} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \end{bmatrix} = =$ 0 0 0 0 0 •Exemplo: Sejam A={a,b,c,d,e} e $R = \{(a,a),(a,b),(b,c),(c,e),(c,d),(d,e)\}$. Explicite: b)R[∞]

Relações Externas

- Quanto aos conjuntos, uma relação é dita EXTERNA se tomarmos os elementos de conjuntos distintos e verificarmos a relação entre estes elementos.
- · Numa relação externa temos:

 $A_1 \neq A_2 \neq ... \neq An$

- · Exemplo:
 - Dados os seguintes conjuntos: P de professores; D de disciplinas oferecidas em um semestre; L os locais onde serão ministradas as aulas e H os horários das aulas:
 - P={Paulo, Carlos, Maria, Henrique}
 - D={INE2135, INE5381, INE5377, INE5102}
 - L={CTC005, CTC102, CTC221, CTC004}
 - H={8-10, 10-12}

Relações Externas · As seguintes relações podem ser definidas entre estes INE5377 conjuntos: INE5381 Maria INE5102 =R1=Professores x Disciplinas Carlos INE2135 INE5102 Henrique INE2135 CTC005 INE5102 CTC004 =R2=Disciplinas x Salas INE5377 CTC221 INE5381 CTC004

=R3=Disciplinas x Horários

Relações Externas

- As sub-relações de uma relação podem ser obtidas através de extração de propriedades que caracterizam a relação.
 Isto é feito através de operações de seleção e projeção.
- Por exemplo ao se selecionar "Paulo" da R1 cria-se uma nova sub-relação que indica quais as disciplinas que o professor Paulo irá ministrar.
- Estas manipulações podem ser feitas no computador utilizando linguagens de base de dados como a SQL.

Combinação de Relações Binárias

INE2135 8-10 INE5102 10-12

INE5377 8-10 INE5381 8-10

- Da mesma forma que nós podemos manipular conjuntos através das operações de união, interseção, complemento, podemos utilizar estas operações para modificar combinar e refinar relações existentes para produzir novas relações.
- Note que, uma vez que relações de A em B são subconjuntos de AxB, duas relações de A em B podem ser combinadas de todos os modos em que se puder combinar dois conjuntos.
- Operações entre Relações:
 - Sejam R e S duas relações de A em B. Então as seguintes relações são definidas:
 - ~R: Relação Complementar de R é definida como: (a,b)∈ ~R ↔ (a,b)∉ R

Combinação de Relações Binárias

- Operações entre Relações:
 - 2. $R \cap S$: Relação Interseção de R com S é definida como: $(a,b) \in R \cap S \leftrightarrow (a,b) \in R \land (a,b) \in S$
 - 3. $R \cup S$: Relação União de R com S é definida como: $(a,b) \in R \cup S \leftrightarrow (a,b) \in R \ v \ (a,b) \in S$
 - 4. R^{-1} : Relação Inversa de R é definida como: $(a,b) \in R^{-1} \leftrightarrow (b,a) \in R$

Combinação de Relações Binárias

- Operações entre Relações:
 - Exercícios:
 - Sejam A= $\{1,2,3,4\}$, B= $\{a,b,c\}$ e R e S de A em B definidas por:

 $R = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a)\}$

 $S=\{(1,b),(2,c),(3,b),(4,b)\}$

Mostrar:

- a) $\sim R = \{(1,c),(2,a),(3,a),(3,c),(4,b),(4,c)\}$
- b) $R \cap S = \{(1,b),(2,c),(3,b)\}$
- c) $R \cup S = \{(1,a),(1,b),(2,b),(2,c),(3,b),(4,a),(4,b)\}$
- $d) \quad R^{\text{-}1} \!\!=\!\! \{(a,\!1),\!(b,\!1),\!(b,\!2),\!(c,\!2),\!(b,\!3),\!(a,\!4)\}$

Composição de Relações Binárias

- Definição:
 - Seja R a relação de A para B e S a relação de B para C.
 Então a relação escrita como RoS é chamada de
 "relação composta" de R e S onde
 - $\ \text{RoS}{=}\{(x,z)|x{\in}\, A \ ^{\wedge} z{\in}\, C \ ^{\wedge}\, \exists y(y{\in}\, B \ ^{\wedge}(x,y){\in}\, R \ ^{\wedge}(y,z){\in}\, S)\}$
 - A operação de obtenção de RoS de ReS é chamada "composição" de relações.
 - Nota:
 - RoS é vazia se a interseção da imagem de R e do domínio de S for vazia
 - RoS não é vazia se existir pelo menos um par ordenado (x,y)∈ R tal que o segundo membro for o primeiro membro de um par ordenado de S.

Composição de Relações Binárias

- Exemplo:
 - Sejam A={1,2,3,4} e as relações R e S sobre A definidas por:

 $R = \{(1,2),(1,1),(1,3),(2,4),(3,2)\}$

 $S = \{(1,4),(1,3),(2,3),(3,1),(4,1)\}$

- Como (1,2)∈ R e (2,3)∈ S, então temos que (1,3)∈ RoS.
- Também (1,1)∈ R e (1,4)∈ S, assim, (1,4)∈ RoS.
- Continuando com este processo, encontra-se
- $RoS = \{(1,4),(1,1),(1,3),(2,1),(3,3)\}$

Composição de Relações Binárias

- · Observações:
 - Em geral RoS≠SoR
 - Teorema: A operação de composição sobre relações é associativa, isto é:

(RoS)oP = Ro(SoP)

 Teorema: Sejam A, B e C conjuntos, R uma relação de A em B e S uma relação de B em C. Então:

 $(RoS)^{-1} = S^{-1}oR^{-1}$

Composição de Relações Binárias

- Usando Grafos
 - Através dos grafos de R e de S pode-se facilmente construir e visualizar o grafo de RoS.

Composição de Relações Binárias

- Exercícios:
 - $-\ Seja\ R=\{(1,2),(3,4),(2,2)\}\ e\ S=\{(4,2),(2,5),(3,1),(1,3)\}.$ Ache RoS, SoR, Ro(SoR), (RoS)oR, RoR, SoS e RoRoR
 - RoS={(1,5),(3,2),(2,5)}
 - SoR={(4,2),(3,2),(1,4)}
 - $\text{Ro(SoR)} = \{(3,2)\}$
 - (RoS)oR={(3,2)}
 - RoR={(1,2),(2,2)}
 - SoS={(4,5),(3,3),(1,1)}
 - $\ RoRoR{=}\{(1,\!2),\!(2,\!2)\}$

Composição de Relações Binárias

- Exercícios:
 - Seja R e S duas relações sobre o conjunto dos naturais positivos N⁺

 $R = \{(x,2x) \mid x \in \mathbb{N}^+\} \text{ e } S = \{(x,7x) \mid x \in \mathbb{N}^+\}$

Ache RoS, SoR, RoR, RoRoR e RoSoR.

- $\text{RoS} = \{(x.14x) \mid x \in \mathbb{N}^+\}$
- $SoR = \{(x.14x) \mid x \in \mathbb{N}^+\}$
- RoR= $\{(x,4x) | x \in \mathbb{N}^+\}$
- $RoRoR = \{(x.8x) \mid x \in \mathbb{N}^+\}$
- $RoSoR = \{(x,28x) \mid x \in N^+\}$

Composição de Relações Binárias

- Composição usando Matrizes de Relações
 - Teorema: Se R é uma relação de A em B e S é uma relação de B em C, então:

 $M_{RoS} = M_R \otimes M_S$

Além disso, se |A|=m (cardinalidade de A = m), |B|=n e |C|=p:

- M_R tem ordem mxn
- M_S tem ordem nxp
- M_{RoS} tem ordem mxp
- M_{RoS} tem ordem mxp

 Para construir a matriz MRoS, percorremos a iésima linha de MR e a Késima coluna de MS procurando ao menos 1 elemento j, tal que o elemento da posição j da linha e da posição j da coluna percorrida seja 1. Então a posição [i,k] de MRoS recebe 1, caso contrário recebe 0.

Composição de Relações Binárias

- · Exemplo:
 - Seja A={a,b,c} e sejam R e S relações sobre A com matrizes:

 $R = \{(a,a),(a,c),(b,a),(b,b),(b,c),(c,b)\}$

 $S{=}\{(a,\!a),\!(b,\!b),\!(b,\!c),\!(c,\!a),\!(c,\!c)\}$

 $RoS = \{(a,a),(a,c),(b,a),(b,b),(b,c),(c,b),(c,c)\}$

- E a matriz da relação composta RoS é:

	1	0	1	
$M_{RoS} =$	1	1	1	
	0	1	1	

Composição de Relações Binárias

- · Exercício:
 - Seja A= $\{1,2,3,4,5\}$ e sejam R= $\{(1,2),(3,4),(2,2)\}$ e $S=\{(4,2),(2,5),(3,1),(1,3)\}$. Obter as matrizes RoS e SoR

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Reticulados

Vamos voltar as Relações de Ordem:

Relembrando alguns conceitos fundamentais:

- a) Um elemento a ∈ A é chamado de um <u>elemento maximal</u> de A se não existe $c \in A$ tal que aRc e a≠c.
- b) Um elemento a ∈ A é chamado de um elemento minimal de A se não existe $c \in A$ tal que cRa e a≠c.
- c) Um elemento a∈ A é chamado de um <u>maior</u> <u>elemento</u> de A se bRa **para todo** b∈ A.
- Um elemento a∈ A é chamado de um <u>menor</u> elemento de A se aRb para todo $b \in \overline{A}$

Reticulados

- **Alguns Conceitos Novos:**
- Definição:

Considere um POSET (A,R) e um subconjunto B de A.

- a) Um elemento $a \in A$ é chamado de <u>cota superior</u> de B se bRa para todo $b \in B$.
- b) Um elemento $a \in A$ é chamado de cota inferior de B se aRb para todo $b \in B$.
- Exemplo: Considere o POSET a={a,b,c,d,e,f,g,h}, cujo diagrama de Hasse é mostrado. Ache todas as cotas superiores e inferiores para os subconjuntos $B1=\{a,b\}$; $b2=\{c,d,e\}$.
- - B1 não tem cota inferior. c,d,e,f,g e h são cotas superiores f de B1. f,g e h são cotas superiores de B2.
- a e b são cotas inferiores

Reticulados

- Mais Alguns Conceitos Novos:
- Definição:

Considere um POSET (A,R) e um subconjunto B de A.

- a) Um elemento $a \in A$ é chamado de <u>menor cota</u> superior (LUB) de B se a for uma cota superior de B e aRa', sempre que a' é uma cota superior de B.
- Um elemento $a \in A$ é chamado de <u>maior cota</u> <u>inferior</u> (GLB) de B se a for uma cota inferior de B e a'Ra, sempre que a' é uma cota inferior de B.
- Exemplo: Considere o POSET $a=\{a,b,c,d,e,f,g,h\}$ e $B1=\{a,b\}$; $b2=\{c,d,e\}$. Ache os ULB e GLB
- de B1 e B2.
- LUB(B1)=c GLB(B2)=c

Reticulados

- Exemplo:
 - Seja A={1,2,3,4,5,...,11} o POSET cujo diagrama de Hasse é mostrado. Ache a menor cota superior e a maior cota inferior de B={6,7,10} se eles existirem.

Reticulados

- Definição:
 - Um POSET (A,R) é chamado um RETICULADO se todo par de elementos {a,b} possui tanto uma menor cota superior (LUB), como uma maior cota inferior (GLB).
- Observações:
 - Reticulados possuem muitas propriedades especiais.
 - São usados em muitas aplicações diferentes tais como modelo de fluxo de informações.
 - Eles também tem um papel importante na álgebra
 - Denota-se o LUB($\{a,b\}$) por avb (<u>operação de junção</u>) e denota-se o GLB($\{a,b\}$) por a^b (<u>operação de encontro</u>).

Reticulados

- Exemplo:
 - Determine se os POSETS representados por cada um dos diagramas de Hasse abaixo são reticulados.

- Os posets (A) e (C) são reticulados, pois cada par de
- elementos tem tanto uma LUB como uma GLB.

 •Já o poset (B) não é um reticulado, pois os elementos b e c
 não possuem menor cota superior (LUB). (note que d, e, f são cotas superiores, mas nenhum precede os outros dois)

Reticulados

- Alguns Exemplos Interessantes:
 - Seja S={a,b,c} e L=P(S). Como sabemos, \subseteq é uma relação de ordem parcial em L (L, \subseteq).
 - Determine se (L,⊆) é um reticulado.
 - Note que para quaisquer conjuntos A e $B \in L$, então a junção de A e B (AvB) é a sua união $A \cup B$, e o encontro de A e B (A^B) é a sua intersecção $A \cap B$.
 - Logo, L é um reticulado.

Reticulados

- Alguns Exemplos Interessantes:
 - Considere o poset $(Z^+,|)$, onde para a e b em Z^+ , a|b se a "é divisível" por b. Então $(Z^+,|)$ é um reticulado em que as operações de junção e encontro de a e b são respectivamente:
 - avb = mmc(a,b)
 - $a^b = mdc(a,b)$

Reticulados

- Exercício:
 Quais dos diagramas de Hasse a seguir representam reticulados?

