Analyse II

David Wiedemann

Table des matières

1	Intégrales généralisées						
	1.1	Integrales absoluments convergentes	5				
	1.2	Integrale generalisee sur un intervalle non borne	7				
2	L'es _l	'espace \mathbb{R}^n					
	2.1	Espace vectoriel norme	7				
	2.2	Normes sur \mathbb{R}^n	9				
	2.3	Suites sur \mathbb{R}^n	9				
	2.4	Topologie de \mathbb{R}^n	10				
	2.5	Classification des points d'un ensemble $E\subset \mathbb{R}^n$	10				
	2.6	Caracterisation des ensembles ouverts	11				
	2.7	Caracterisation des ensembles fermes	11				
	2.8	Ensembles compacts	12				
3	Fond	onctions de plusieurs variables					
	3.1	Notion de limite	12				
	3.2	Caracterisation de limite par suites	13				
	3.3	Proprietes de l'operation de limite	13				
	3.4	Fonctions a valeurs dans R^m	14				
4	Fond	Fonctions continues 1					
		4.0.1 Definitions Equivalentes	14				
	4.1	Prolongement par continuite	14				
5	Deri	Derivees de fonctions a plusieurs variables					
	5.1	Derivees Directionelles	16				
	5.2	Fonctions Differentiables	17				
	5.3	Derivees d'ordre superieur	19				
	5.4	Derivees d'ordre superieur	22				
	5.5	Developpement limite et formule de Taylor	23				

List of Theorems

1	Definition	(Intégrales généralisées (sur un intervalle borné non
	fermé)) .	
2	Definition	(Integrale sur un intervalle borne ouvert) 4
1	Theorème	(Critere de Comparaison)
3	Definition	(Integrale absolument convergente) 5
3	Theorème	(absolument convergente implique convergente) 5
5	Theorème	(Critere de comparaison (II)) 6
4	Definition	(Integrale sur un intervalle non borne)
5	Definition	(Norme d'un vecteur)
6	Definition	(Espace vetoriel norme) 7
7	Definition	
8	Definition	(Distance)
9	Definition	(Produit Scalaire)
6	Theorème	(Inegalite de Cauchy-Schwarz) 8
7	Theorème	
10	Definition	(Suites convergentes)
9	Lemme	
11	Definition	(Suites de Cauchy)
10	Theorème	
11	Theorème	(Bolzano-Weierstrass) 10
12	Definition	(Boule) 10
13	Definition	
14	Definition	
15	Definition	(Ensemble compact)
12	Theorème	(Caracterisation par sous-suites convergentes) 12
13	Theorème	(Caracterisation par recouvrements finis) 12
16	Definition	(Chemin dans E)
17	Definition	(Ensembles connexes par arcs)
18	Definition	(Limite)
14	Theorème	(Des deux gendarmes)
15		(Limites/Suites)
16	Theorème	(Critere de Cauchy) 13
19	Definition	(Limite)
20	Definition	(Continuite en un point)
21	Definition	(Continuite sur E)
22	Definition	(continuite uniforme sur E)
23	Definition	(Prolongement par continuite) 14
17	Theorème	(Prolongement par continuite sur l'adherence) 15
18	Theorème	
24	Definition	15

19	Theorème	16
20	Theorème	16
21	Theorème	16
25	Definition (Derivees directionnelle)	16
26	Definition (Gradient)	17
27	Definition (Matrice Jacobienne)	17
28	Definition (Differentiabilite)	17
22	Theorème	17
23	Theorème (Theoreme des accroissements finis dans \mathbb{R}^n)	19
24	Theorème (Taf dans le cas vectoriel)	19
29	Definition (Derivees partielles secondes (cas scalaire))	19
30	Definition (Matrice hessienne)	20
31	Definition (Espace $C^2(E)$)	20
32	Definition (Derivees directionnelles secondes)	20
25	Lemme	20
26	Theorème (Theoreme de Schwarz)	21
27	Corollaire	23

Lecture 1: Introduction

Mon 22 Feb

Intégrales généralisées

Peut-on définir une intégrale sur un intervalle ouvert plutot que sur un intervalle fermé? ie.

$$f:[a,b]\to\mathbb{R}$$
 c.p.m.

Definition 1 (Intégrales généralisées (sur un intervalle borné non fermé))

Soit $f : [a, b] \to \mathbb{R}$ continue par morceaux (a < b).

En particulier, f est c.p.m. sur tout intervalle [a,x], a < x < b Soit $F(x) = \int_a^x f(t)dt$.

On dit que l'integrale generalisee $\int_a^b f(x)dx$ existe (ou converge) si $\lim_{x\to b} F(X)$ existe, dans ce cas, on note

$$\int_a^b f(t)dt = \lim_{x o b} F(x) - F(a)$$

 $Si \lim_{x \to b^{-}} F(x)$ n'existe pas, alors on dit que

$$\int_{a}^{b} f(t)dt$$

diverge. Definition analogue pour le cas |a, b|.

On souhaite definir $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} tan(x) dx = 0$. Dans certains cas cette integrale vaut 0. Mais si on calcule

$$\lim_{\epsilon \to 0} \int_{-\frac{\pi}{2} + \epsilon^2} \frac{\pi}{2} - \epsilon t an(t) dt = \lim_{\epsilon \to 0+} (-\ln(\cos(\frac{\pi}{2} - \epsilon)) + \ln(\cos(-\frac{\pi}{2} + \epsilon^2))) = -\infty$$

Il faut donc une definition qui est coherente.

Definition 2 (Integrale sur un intervalle borne ouvert)

Soit $f:]a, b[\rightarrow \mathbb{R} \ c.p.m \ et \ c \in]a, b[$.

Si les integrales generalisees $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ existent, alors on definit l'integrale

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt$$

Si une des deux integrales diverge, alors le tout diverge.

Lecture 2: Integrales Generalisees

Wed 24 Feb

Theorème 1 (Critere de Comparaison)

Soit $f,g:[a,b[
ightarrow\mathbb{R}\ c.p.m.\ et\ supposons\ \exists c\in[a,b[\ tel\ que$

$$0 \le f(x) \le g(x) \forall x \in [c, b]$$

Si $\int_a^b g(x)dx$ existe alors $\int_a^b f(x)dx$ existe aussi Si $\int_a^b f(x)dx$ diverge alors $\int_a^b g(x)dx$ diverge aussi.

Preuve

 $Si \int_a^b g(x)dx$ existe, alors $\int_c^b g(x)dx$ existe.

$$\int_{a}^{b} f(x)dx = \lim_{x \to b-} \int_{a}^{x} f(t)dt$$

$$= \lim_{x \to b-} \left(\int_{a}^{c} f(t)dt + \int_{c}^{x} f(t)dt \right)$$

$$= \int_{a}^{c} f(t)dt + \lim_{x \to b-} \int_{c}^{x} f(t)dt$$

$$\leq \int_{a}^{c} f(t)dt + \lim_{x \to b-} \int_{c}^{x} g(t)dt < +\infty$$

En notant $F(x) = \int_a^x f(t)dt$, F est non decroissante, et bornee superieurement sur l'intervalle $[a,b] \Rightarrow \lim_{x\to b^-} F(x)$ existe.

Exemple

$$f(x) = \left|\sin(\frac{1}{x})\right| sur \left]0, 1\right]$$
, on a

$$0 \le f(x) \le 1$$

1 est integrable, et donc l'integrale de f(x) existe.

1.1 Integrales absoluments convergentes

Definition 3 (Integrale absolument convergente)

Soit I un intervalle du type [a,b[,]a,b] ou]a,b[et $f:I
ightarrow \mathbb{R}$ c.p.m.

On dit que l'integrale generalisee de f sur I est absolument convergente si

$$\int_{T} |f(x)| dx$$

existe.

Theorème 3 (absolument convergente implique convergente)

Si l'integrale $\int_a^b f(x)dx$ converge absolument, alors il converge.

Preuve

Notons $f_+(x) = \max\{f(x), 0\}$ et $f_-(x) = -\min\{f(x), 0\}$ et on a $|f(x)| = f_+(x) + f_-$.

Donc

$$0 \le f_{+}(x) \le |f(x)|$$
 et $0 \le f_{-}(x) \le |f(x)| \forall x \in I$

Par critere de comparaison, si

$$\int_a^b |f(x)| dx$$
 existe \Rightarrow alors $\int_a^b f_+(x) dx, \int_a^b f_-(x)$ existent

et donc
$$\int_a^b f(x)dx$$

Remarque

Soit $f:I \to \mathbb{R}$ c.p.m Si f est bornee sur I, alors

$$\int_I f(x) dx$$

existe.

Theorème 5 (Critere de comparaison (II))

Soit $f:[a,b[
ightarrow \mathbb{R} \ c.p.m.$

S'il existe $\alpha \in]-\infty,1[$ tel que

$$\lim_{x o b-}f(x)(b-x)^lpha=l\in\mathbb{R}$$

Alors

$$\int_a^b f(x)dx$$

existe.

S'il existe $\alpha \geq 1$ tel que

$$\lim_{x o b-}f(x)(b-x)^lpha=l
eq 0$$

alors

$$\int_a^b f(x)dx$$

diverge.

Preuve

Par definition de la limite $\forall \epsilon > 0, \exists b-a > \delta_{\epsilon} > 0$ tel que

$$|f(x)(b-x)^{lpha}-l|<\epsilon orall x$$

$$\Rightarrow l - \epsilon \leq f(x)(b-x)^{\alpha} \leq l + \epsilon$$

et donc

$$0 \le |f(x)| \le rac{|l| + \epsilon}{(b-x)^{lpha}}$$

Puisque le terme de droite est integrable, on conclut par le critere de comparaison. Pour la deuxieme partie, soit $\alpha \geq 1$ et $l \neq 0$.

Supposons l > 0, on a

$$l-\epsilon \leq f(x)(b-x)^{\alpha}$$

Le meme raisonnement que ci-dessus donne que l'integrale de f diverge. \square

1.2 Integrale generalisee sur un intervalle non borne

Definition 4 (Integrale sur un intervalle non borne)

Soit $f:[a,+\infty[
ightarrow\mathbb{R}\ c.p.m.$ On dit que $\int_a^{+\infty}f(x)dx$ existe si

$$\lim_{x o +\infty}\int_a^x f(x)dx$$

existe et dans ce cas, on note

$$\int_{a}^{+\infty} f(x)dx = \lim_{x \to +\infty} \int_{a}^{x} f(t)dt$$

idem si $f:]-\infty,a[\to\mathbb{R}.$ Soit $f:]a,+\infty[\to\mathbb{R}$ c.p.m. on dit que $\int_a^\infty f(x)dx$ existe s'il existe $c\in]a,\infty[$ tel que

$$\lim_{x \to a+} \int_{x}^{c} f(t)dt \ et \ \lim_{y \to +\infty} \int_{c}^{y} f(t)dt$$

existent.

Lecture 3: L'espace \mathbb{R}^n

Mon 01 Mar

2 L'espace \mathbb{R}^n

2.1 Espace vectoriel norme

Soit un ensemble V sur lequel on definit deux operations

1. somme : $+: V \times V \rightarrow V$

2. multiplication par un scalaire $\mathbb{R} \times V \to V$

On definit R^n par $R^n = \mathbb{R} \times \mathbb{R} ... \times \mathbb{R}$

Definition 5 (Norme d'un vecteur)

C'est une application $N:V \to \mathbb{R}$, c'est une application qui satisfait

— $\forall x \in V : N(x) \geq 0$ et N(x) = 0 si et seulement si x = 0.

 $-- \, \forall \lambda \in \mathbb{R}, x \in V : N(\lambda x) = |\lambda| N(x)$

 $-- \forall x, y \in V, N(x+y) \leq N(x) + N(y)$

On utilise souvent la notation N(x) = ||x||

Definition 6 (Espace vetoriel norme)

Un espace vectoriel norme est note (V, ||.||)

Definition 7

Soit V un espace vectoriel et N_1, N_2 deux normes sur V. On dit que N_1 et N_2 sont equivalentes si $\exists c_1, c_2 > 0$ tel que

$$c_1N_2(x) \leq N_1(x) \leq c_2N_2(x) orall x \in V$$

Definition 8 (Distance)

Soit X un ensemble.

Une distance est une application $d: X \times X \to \mathbb{R}_+$ qui satisfait les proprietes suivantes

- $\forall x,y \in X, d(x,y) \geq 0, d(x,y) = 0 \iff x = y$
- La distance est symmetrique
- $\forall x, y, z \in V, d(x, y) \leq d(x, z) + d(z, y)$

Un espace X muni d'une distance est appele un espace metrique et est note (X,d).

On peut toujours definir une distance sur un espace vectoriel norme, defini par

$$d(x,y) = ||x - y||$$

On appelle cette distance, la distance induite par la norme.

Tout espace vectoriel norme est aussi un espace metrique.

Definition 9 (Produit Scalaire)

Soit V un espace vectoriel.

Un produit scalaire est une application $b:V\times V\to\mathbb{R}$ qui satisfait les proprietes suivantes

- $-- \forall x, y \in V, b(x, y) = b(y, x)$
- $-- \forall x, y \in V, \forall \alpha, \beta \in \mathbb{R}, b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- $\forall x \in V, b(x,x) > 0, b(x,x) = 0 \iff x = 0$

Theorème 6 (Inegalite de Cauchy-Schwarz)

Soit V un espace vectoriel et $b: V \times V \to \mathbb{R}$ un produit scalaire. Alors

$$\forall x, y \in V | b(x, y) < \sqrt{b(x, x)b(y, y)}$$

Preuve

 $\forall x, y \in V, \alpha \in \mathbb{R}$.

$$0 \leq b(\alpha x + y, \alpha x + y) = \alpha^2 b(x, x) + 2\alpha b(x, y) + b(y, y)$$

Donc on a

$$\Delta = b(x, y)^2 - b(x, x)b(y, y)$$

Theorème 7

Soit $b: V \times V \to \mathbb{R}$ un produit scalaire, alors l'application $x \to \sqrt{b(x,x)} = \|x\|_b$ est une norme sur V.

Donc, si V est muni d'un produit scalairel, alors V est un espace norme et donc V est un espace metrique pour la distance induite par le produit scalaire.

2.2 Normes sur \mathbb{R}^n

- La norme euclidienne $\|x\| = \sqrt{\sum_{i=1}^n x_i^2}$
- Norme "max" $\left\|x\right\|_{\infty}=\max \left|x_{i}^{\mathsf{v}}\right|$
- Norme 1 : $||x||_1 = \sum |x_i|$
- Normes $p \in [1, +\infty[\|x\|_p = (\sum |x_i|^p)^{\frac{1}{p}}]$ Pour p infinie, on retrouve la norme infinie

On montre en exercices que toutes les normes p sont equivalentes.

De meme, on montre que toutes les normes sur \mathbb{R}^n sont equivalentes. Par contre, seulement la norme 2 est deduite d'un produit scalaire.

Definition 10 (Suites convergentes)

Soit
$$\left\{x^{(k)}\right\}_{k=0}^{\infty}\subset\mathbb{R}^n$$
.

On dit que cette suite converge s'il existe $x \in \mathbb{R}^n$

$$\lim_{k \to +\infty} \left\| x^{(k)} - x \right\| = 0$$

Lecture 4: Boules sur \mathbb{R}^n

Wed 03 Mar

2.3 Suites sur \mathbb{R}^n

Remarque

Supposons que $\{x^{(k)}\} \to \overrightarrow{x}$ par rapport a la norme euclidienne. Et oit $||| \cdot |||$ une autre norme sur \mathbb{R}^n . Puisque toutes les normes sont equivalentes sur \mathbb{R}^n $|||\overrightarrow{x}||| \le c||\overrightarrow{x}||_2$ Donc toutes les suites converge peu importe la norme.

En particulier, on peut choisir la norme infinie.

Lemme 9

Une suite $\{x^{(k)}\}$ converge si et seulement si toutes les composantes convergent.

Definition 11 (Suites de Cauchy)

On dit qu'une suite $\{x^{(k)}\}$ est de Cauchy si

$$orall \epsilon > 0 \exists N > 0: orall k, l \geq N \left\| x^{(k)} - x^{(l)}
ight\| \leq \epsilon$$

Theorème 10

Une suite converge si et seulement si elle est de Cauchy.

Preuve

Si la suite $x^{(k)}$ converge \iff $\left\{x_i^{(k)}\right\}$ converge pour tout $i=1,\ldots,n$ donc toutes ces suites sont de Cauchy et donc $x^{(k)}$ converge.

Theorème 11 (Bolzano-Weierstrass)

Soit $\{x^{(k)}\}$ une suite bornee.

Alors il existe une sous-suite $\{x^{(k_j)}\}$ qui converge

Preuve

 $Si\left\{x^{(k)}\right\}$ est bornee, en particulier chaque suite $x^{(k)_i}$ sera bornee.

En i = 1, la suite $x^{(k)}$ est bornee, donc il existe une sous-suite convergente vers une valeur x_1 .

On considere les index de cette sous-suite et on reapplique l'argument cidessus en i=2, etc.

2.4 Topologie de \mathbb{R}^n

Definition 12 (Boule)

Pour tout $x \in \mathbb{R}^n$ et $\delta > 0$, la boule ouverte centree en x et de rayon δ

$$B(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| < \delta \}$$

La boule fermee

$$\overline{B}(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| \le \delta \}$$

La sphere centree en x et de rayon δ

$$S(x,\delta) = \{ y \in \mathbb{R}^n : ||y - x|| = \delta \}$$

2.5 Classification des points d'un ensemble $E \subset \mathbb{R}^n$

Le complementaire de E est

$$E^c = \{ y \in \mathbb{R}^n, y \notin E \}$$

On dit que x est un point interieur de E si $\exists \delta: B(x,\delta) \subset E$, on dit que x est un point frontiere de E si $\forall \delta B(x,\delta) \cap E \neq \emptyset$ et $B(x,\delta) \cap E^c \neq \emptyset$ On dit que E^o est l'ensemble des points interieurs de E, E^o est appele l'interieur de E.

On note ∂E l'ensemble des points frontieres, appele la frontiere ou le bord de E.

On dit que x est un point adherent de E si $\forall \delta > 0, B(x, \delta) \cap E \neq \emptyset$ On note \bar{E} l'ensemble des points adherents de E, appele l'adherence de E.

On a $\bar{E} = E \cup \partial E$

On dit que x est un point isole si

$$\exists \delta > 0 B(x, \delta) \cap E = \{x\}$$

On dit que x est un point d'accumulation de E, si $\forall \delta > 0$

$$B(x,\delta)\cap (E\setminus \{x\})\neq \emptyset$$

Donc, en particulier, si on prend $\delta = \frac{1}{k}, k \in \mathbb{N}$

$$\exists x^{(k)} \in E, ext{ tel que } \left\| x^{(k)} - x
ight\| \leq rac{1}{k}$$

La suite $x^{(k)}$ converge vers x.

Definition 13

Soit E un ensemble de \mathbb{R}^n , on dit que E est ouvert si tous ses points sont interieurs

Definition 14

E est ferme si E^c est ouvert.

Lecture 5: Ensembles compacts/connexes par arcs

Mon 08 Mar

2.6 Caracterisation des ensembles ouverts

- $\stackrel{\circ}{E}$ est toujours ouvert.
- E est ouvert si et seulement si $E = \stackrel{\circ}{E}$
- L'union (meme infinie) d'ensembles ouverts est ouverte.

Soit $E = \bigcup_{\alpha \in A} K_{\alpha}$ et K_{α} sont ouverts.

Alors $\forall x \in E$, $x \in K_{\alpha}$ et donc il existe une boule ouverte centree en x et contenue dans K_{α} .

— L'intersection finie d'ensembles ouverts est ouverte. Soit $E = \bigcap K_i$, alors $\forall x \in E, x \in K_i \forall i$, mais chaque K_i est ouvert, donc en prendant $\delta = \min \{\delta_1, \ldots\}, \ B(x, \delta) \in E$ et donc E est ouvert.

2.7 Caracterisation des ensembles fermes

- $--\mathbb{R}^n\setminus \overline{E}=\overset{\circ}{E}, \overline{E^c}=\mathbb{R}^n\setminus \overset{\circ}{E}$
- \overline{E} est toujours ferme.
- L'intersection (meme infinie) d'ensembles fermes est fermee.
- L'union finie d'ensembles fermes est fermee.
- E est ferme si et seulement si toute suite $\{x^{(k)}\}$ convergente, converge vers un element $x \in E$.

Preuve

Soit E ferme et $\{x^{(k)}\}$ une suite convergente vers $x \in \mathbb{R}^n$, $\forall \epsilon > 0 \exists N_{\epsilon} : \forall k > N_{\epsilon}, \|x - x^{(k)}\| \leq \epsilon$.

 $Donc \ orall \epsilon B(x,\epsilon) \cap E
eq \emptyset, \ donc \ x \in \overline{E} = E.$

Supposons que E n'est pas ferme, donc E^c n'est pas ouvert. Donc $\exists x \in E^c : \forall \delta > 0, B(x, \delta) \cap E \neq \emptyset$.

Si on prend $\delta=\frac{1}{k}, k\in\mathbb{N}\exists x^{(k)}\in B(x,\delta)\cap E$ et $\left\{x^{(k)}\right\}$ converge vers x, donc $x\in E
otin \mathcal{A}$

2.8 Ensembles compacts

Definition 15 (Ensemble compact)

On dit que E est compact si E est a la fois ferme et borne.

Theorème 12 (Caracterisation par sous-suites convergentes)

Un ensemble non vide $E \subset \mathbb{R}^n$ est compact si et seulement si de toute suite $\{x^{(k)}\}\subset E$ on peut extraire une sous-suite convergente vers un element $x\in E$

Theorème 13 (Caracterisation par recouvrements finis)

Un ensemble non vide $E \subset \mathbb{R}^n$ est compact si et seulement si de toute famille $\{K_{\alpha}, \alpha \in A\}$ d'ouverts tel que $E \subset K_{\alpha}$, on peut extraire une sous-famille finie qui est encore un recouvrement de E.

Definition 16 (Chemin dans E)

Soit $E \subset \mathbb{R}^n$ non vide. On appelle chemin de E une application $\gamma:[0,1] \to E$, $\gamma(t)=(\gamma_1,\ldots)$, tel que γ_i est continu pour tout i.

Definition 17 (Ensembles connexes par arcs)

Un ensemble $E \subset \mathbb{R}^n$ est connexe par arcs si $\forall x, y \in E$, il existe un chemin γ tel que $\gamma(0) = x, \gamma(1) = y$.

3 Fonctions de plusieurs variables

Soit $E\subset\mathbb{R}^n$ non vide. On appelle fonction sur E a valeurs reelles une application $f:E\to\mathbb{R}$

$$\forall x \in E, x \to f(x) \subset \mathbb{R}^n$$

On note D(f) le domaine de f, Im f l'image, g(f) le graphe .

3.1 Notion de limite

Definition 18 (Limite)

Soit $f: E \to \mathbb{R}$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. On dit que

$$\lim_{x o x_0}f(x)=l\in\mathbb{R}$$

si

$$\forall \epsilon > 0, \exists \delta > 0: ||x - x_0|| < \delta$$

Alors

$$\|f(x)-l\|<\epsilon$$

Theorème 14 (Des deux gendarmes)

Soit $f,g,h:E \to \mathbb{R}^n$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. Si $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l$ et $\exists \alpha > 0$

$$h(x) \le f(x) \le g(x)0 < ||x - x_0|| \le \alpha$$

Alors $\lim_{x\to x_0} f(x)$ existe et est egale a l.

Lecture 6: Fonctions continues

Wed 10 Mar

3.2 Caracterisation de limite par suites

Theorème 15 (Limites/Suites)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $x_0 \in \mathbb{R}^n$ un point d'accumulation de E. La limite $\lim_{x \to x_0} f(x) = l$ si et seulement si pour toute suite suite $\{x^{(k)}\} \subset E$ qui converge vers x_0 , on a $\lim_{k \to +\infty} f(x^{(k)}) = l$.

Preuve

Soit $\{x^{(k)}: \lim_{k\to+\infty} x^{(k)} = x_0\}$, on sait que $\lim_{x\to x_0} f(x) = l$ donc

$$\forall \epsilon > 0, \exists \delta > 0 \forall x \in E, ||x - x_0|| < \delta, |f(x) - l| < \epsilon$$

il existe N tq $\forall k > n$ tq $\left\|x^{(k)} - x_0\right\| < \delta$

Si la limite $\lim_{k\to+\infty} f(x^{(k)}) = l$ pour toute suite $x^{(k)}$.

Par l'absurde, supposons que $\lim_{x\to x_0} f(x)$ n'existe pas.

$$\exists \epsilon > 0 \forall \delta > 0 \exists x \in E, x \neq x_0 : ||x - x_0|| < \delta$$

et

$$|f(x)-l| \geq \epsilon$$

Si on prend $\delta = \frac{1}{k}$, alors $\exists x^{(k)} \neq x_0 : \left\| x^{(k)} - x_0 \right\| < \frac{1}{k}$ tel que $|f(x^{(k)}) - l| \ge \epsilon$. Or cette suite $x^{(k)}$ converge vers x_0 , $\not \downarrow$

3.3 Proprietes de l'operation de limite

Soit $f,g:E\subset\mathbb{R}^n\to\mathbb{R}$, $x_0\in\mathbb{R}^n$ un point d'accumulation de E et $\lim_{x\to x_0}f(x)=l_1$, $\lim_{x\to x_0}g(x)=l_2$, alors l'operation de limite est lineaire, respecte les regles de multiplication.

Theorème 16 (Critere de Cauchy)

Idem qu'en analyse I.

3.4 Fonctions a valeurs dans R^m

Soit
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
.

Definition 19 (Limite)

On dit que $\lim_{x o x_0}f(x)=\overrightarrow{l}\in\mathbb{R}^m$ existe si

$$orall \epsilon > 0, \exists \delta > 0: orall x \in E \setminus \{x_0\}$$
 , $0 < \|x - x_0\| < \delta$

on a

$$||f(x) - l|| < \epsilon$$

De plus, chaque composante de f converge vers la composante correspondante de la limite.

4 Fonctions continues

Definition 20 (Continuite en un point)

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}^m$, et $x_0 \in E$.

Si x_0 est un point d'accumulation de E, on dit que f est continue en x_0 si $\lim_{x\to x_0} f(x) = f(x_0)$.

 $Si x_0$ est un point isole, on admet que f est continue en x_0

4.0.1 Definitions Equivalentes

- $-- \forall \epsilon > 0, \exists \delta : \forall x \in E, ||x x_0||, ||f(x) f(x_0)|| < \epsilon$
- pour toute suite $x^{(k)} \subset E$ qui converge vers x_0 on a que $\lim_{k \to +\infty} f(x^{(k)}) = f(x_0)$

Definition 21 (Continuite sur E)

On dit que $f: E \to \mathbb{R}^m$ est continue sur E si elle est continue en tout point $x \in E$.

Dans ce cas, on note $f \in C^0(E)$

Definition 22 (continuite uniforme sur E)

On dit que f est uniformement continue sur E si $\forall \epsilon$, $\exists \delta$ tel que $\forall x \in E, \forall y \in E ||y - x|| < \delta$, on a $||f(y) - f(x)|| < \epsilon$

Evidemment, la continuite uniforme implique la continuite.

Lecture 7: Prolongement par continuite

Mon 15 Mar

4.1 Prolongement par continuite

Definition 23 (Prolongement par continuite)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ continue, avec $E \neq \overline{E}$, soit $x_0 \in \overline{E} \setminus E$. Une fonction $\tilde{f}: E \cup \{x_0\} \to \mathbb{R}^m$ est appellee un prolongement si \tilde{f} est continue en x_0 et

coincide avec f sur E.

Le prolongement par continuite est uniquement defini par $\tilde{f}(x) = f(x)$ si $x \in E$ et $\tilde{f}(x_0) = \lim_{x \to x_0} f(x)$ si la limite existe.

Theorème 17 (Prolongement par continuite sur l'adherence)

Soit $E \subset \mathbb{R}^n$ non vide et $f: E \to \mathbb{R}^n$ continue sur E. Supposons que $\forall x \in \overline{E} \setminus E$ la limite $\lim_{y \to x} f(y)$ existe. Alors on peut definir un prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$, $\tilde{f}(x) = f(x) \forall x \in E$ et $\tilde{f}(x) = \lim_{y \to x} f(y)$ sinon, de plus \tilde{f} est continue sur \overline{E} .

Preuve

 $Si \ x \in E, \ f(x)$ est continue en x donc $\tilde{f}(x) = f(x)$ est continue en x. On a

$$ilde{f}(x) = \lim_{y o x, y \in E} f(y) = \lim_{y o x, y \in E} ilde{f}(y)$$

Pour montrer que \widetilde{f} est continue en x, il faut montrer que $\widetilde{f}(x) = \lim_{y \to x, y \in \overline{E}} \widetilde{f}(y)$ Il faut montrer que pour toute suite $x^{(k)} \subset \overline{E}$ convergeant en $x \in \overline{E} \setminus E$ on a

$$\lim_{k o +\infty} ilde{f}(x^{(k)})= ilde{f}(x)$$

On construit une deuxieme suite $y^{(k)}$ convergent vers x.

 $Si \ x^{(k)} \in E$, alors $y^{(k)} = x^{(k)}$.

 $Si \ x^{(k)} \in \stackrel{\frown}{E} \setminus E$ on peut toujours trouver une valeur $y^{(k)} \in E$ tel que $\left\|y^{(k)-x^{(k)}}\right\| \le 2^{-k}$, $\left\|f(y^{(k)}-\widetilde{f}(x^{(k)}))\right\| \le 2^{-k}$.

On aura donc

$$\left\|y^{(k)}-x
ight\|\leq \left\|y^{(k)}-x^{(k)}
ight\|+\left\|x^{(k)}-x
ight\|$$

Ainsi $y^{(k)} \subset E$ converge vers x, et ainsi

$$\lim_{k \to +\infty} \tilde{f}(x^{(k)}) = \lim_{k \to +\infty} (\tilde{f}(x^k) - \tilde{f}(y^k)) + \lim_{k \to +\infty} \tilde{f}(y^{(k)}) = \lim_{k \to +\infty} \tilde{f}(y^{(k)})$$

Theorème 18

Soit $E \subset \mathbb{R}^n$ non vide $f: E \to \mathbb{R}^n$ uniformement continue. Alors f peut etre prolongee par continuite sur \overline{E} et le prolongement $\tilde{f}: \overline{E} \to \mathbb{R}^m$ est uniformement continu.

Definition 24

Soit $E \subset \mathbb{R}^n$ non vide, $f: E \to \mathbb{R}$ Si $\sup f = \infty$ on dit que f n'est pas bornee superieurement.

Si $M < \infty$ on appelle M la borne superieure de f.

S'il existe $x_M \in E, f(x_M) = M$ alors on dit que M est le maximum de f sur E et x_M est un point maximum de f. Meme definition pour borne inferieure.

Theorème 19

Soit E non vide et compact, $f: E \to \mathbb{R}$ continue. Alors f atteint son maximum et son minimum sur E.

Preuve

Par l'absurde f n'est pas bornee, il existe $x^{(k)}$ tel que $|f(x^{(k)})| > k$ Mais E est compact, donc il existe une sous-suite $x^{(k_i)}$ qui converge, or f est continue, donc

$$\lim_{i \to +\infty} f(x^{(k_i)}) = f(x) < \infty \not$$

Supposons que f n'atteint pas ses bornes Il existe $x^{(k)}$ qui converge vers le sup, or E est ferme.

Theorème 20

Soit $E \subset \mathbb{R}^n$ non vide, compact, connexe par arcs, et $f : E \to \mathbb{R}$ continue. Alors f atteint toutes les valeurs entre son minimum et maximum.

Preuve

f est continue sur un compact donc f atteint son min et son max. Puisque E est connexe, il existe γ un chemin du minimum au maximum. On conclut par TVI sur la fonction $f \circ \gamma$

Theorème 21

Soit $E \subset \mathbb{R}^n$ non vide et compact avec $f: E \to \mathbb{R}^m$ continue. Alors f est uniformement continue sur E.

Lecture 8: Derivee partielles et directionnelle

Wed 17 Mar

5 Derivees de fonctions a plusieurs variables

5.1 Derivees Directionelles

Definition 25 (Derivees directionnelle)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $\overrightarrow{x_0} \in E$ et $\overrightarrow{v} \in \mathbb{R}^n$ un vecteur arbitraire. On dit que f est derivable dans la direction \overrightarrow{v} , au point x_0 , si

$$\lim_{t\to 0}\frac{f(x_0+tv)-f(x_0)}{t}$$

existe et on note $D_v f(x_0)$.

Si on prend $\|\overrightarrow{v}\|$ (norme euclidienne), alors on appelle $D_v f(x_0)$ la derivee directionnelle de f dans la direction \overrightarrow{v} au point x_0 .

en particulier, on peut prendre $\overrightarrow{v} = e_i$, dans ce cas on utilise la notation

$$D_{e_i}f(x_0)=rac{\partial f}{\partial x_i}(x_0)=\lim_{t o 0}rac{f(x_0+te_i)-f(x_0)}{t}$$

et on appelle $\frac{\partial f}{\partial x_i}(x_0)$ la i-eme derivee partielle de f au point x_0 .

Definition 26 (Gradient)

Soit $f: E \subset \mathbb{R}^n o \mathbb{R}, x_0 \in \overset{\circ}{E}$.

Si toutes les derivees partielles de f en x_0 existent, alors on appelle le vecteur gradient

$$abla f(x_0) \in \mathbb{R}^n,
abla f(x_0) = egin{pmatrix} rac{\partial f}{\partial x_i}(x_0) \ dots \ rac{\partial f}{\partial x_n}(x_0) \end{pmatrix}$$

Definition 27 (Matrice Jacobienne)

On appelle matrice Jacobienne $Df(x_0) \in \mathbb{R}^{1 \times n}$

$$Df(x_0) = \left(rac{\partial f}{\partial x_1}(x_0), \dots, rac{\partial f}{\partial x_n}(x_0)
ight)$$

5.2 Fonctions Differentiables

Definition 28 (Differentiabilite)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ et $x_0 \in \overset{\circ}{E}$. On dit que f est differentiable (ou derivable) en x_0 si il existe une application lineaire $L_{x_0}: \mathbb{R}^n \to \mathbb{R}$ et une fonction $g: E \to \mathbb{R}$ tel que

$$f(x) = f(x_0) + L_{x_0}(x - x_0) + g(x) \forall x \in E$$

 $et \lim_{x \to x_0} \frac{g(x)}{\|x - x_0\|} = 0.$

Theorème 22

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}$ differentiable en $x_0 \in \overset{\circ}{E}$, alors

- Toutes les derivees partielles de f en x_0 existent.
- Оп а

$$L_{x_0}(x-x_0) = \sum rac{\partial f}{\partial x_i}(x_i-x_0) = Df(x_0)(x-x_0)$$

— Toutes les derivees directioneelles existent et

$$D_v f(x_0) = \sum rac{\partial f}{\partial x_i}(x_0) v_i =
abla f(x_0)^T \overrightarrow{v} = D f(x_0) \overrightarrow{v}$$

— f est continue en x_0 .

Preuve

— Оп а

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{t \to 0} \frac{f(x_0 + te_i) - f(x_0)}{t}$$

$$egin{aligned} &= \lim_{t o 0} rac{f(x_0) + L_{x_0}(x_0 + te_i - x_0) + g(x_0 + te_i)}{t} \ &= L_{x_0}(e_i) + \lim_{t o 0} rac{g(x_0 + te_i)}{t} \ &= L_{x_0}a_i \end{aligned}$$

— On a

$$f(x) = f(x_0) + L_{x_0}(x - x_0) + g(x)$$

Donc

$$\lim_{x o x_0} f(x) = f(x_0) + \lim_{x o x_0} L_{x_0}(x-x_0) + \lim_{x o x_0} g(x) = f(x_0)$$

_

$$egin{aligned} D_v f(x_0) &= \lim_{t o 0} rac{f(x_0+tv)-f(x_0)}{t} \ &= \lim_{t o 0} rac{Df(x_0)tv+g(x_0+tv)}{t} \ &= Df(x_0)\overrightarrow{v} \end{aligned}$$

Lecture 9: Derivees secondes

Wed 24 Mar

Cas scalaire:

Soit $E \subset \mathbb{R}^n$ ouvert, $x, y \in E$ et $f : E \to \mathbb{R}$ derivable sur E.

On denote par [x, y] le segment (ferme) entre x et y et]x, y[le segment ouvert entre x et y.

Theorème 23 (Theoreme des accroissements finis dans \mathbb{R}^n)

Soit $x, y \in E \subset \mathbb{R}^n$ et $f: E \to \mathbb{R}$, alors il existe $z \in [x, y]$ tel que

$$f(y) - f(x) = \nabla f(z)^T (y - x) = Df(z)(y - x)$$

Preuve

Soit g(t) = f(x + t(y - x)) pour $t \in [0, 1]$.

On a alors

$$g'(t) = rac{d}{dt}g(t) = rac{d}{dt}f(\phi(t))$$

ou phi(t) = x + t(y - x).

Puisque f et ϕ sont derivables, on conclut que g est aussi derivable. Donc

$$egin{aligned} g'(t) &= Df(\phi(t)) \cdot D\phi(t) \ &= \sum rac{\partial f}{\partial x_i}(x + t(y - x))(y_i - x_i) \ &=
abla f(x + t(y - x))^T(y - x) = Df(x + t(y - x))(y - x) \end{aligned}$$

Le taf applique a g donne $\exists s \in]0,1[$ tel que

$$g(1) - g(0) = g'(s)$$

Donc

$$f(y) - f(x) = Df(x + s(y - x))(y - x)$$

On conclut en posant z = x + s(y - x).

Le cas vectoriel:

Theorème 24 (Taf dans le cas vectoriel)

Soit $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$

On essaie de representer f(y) - f(x) a l'aide des derivees de f.

On peut ecrire TAF pour chaque composante, mais les z_k ne sont en general pas les memes.

Cependant, on peut toujours ecrire pour $f \in C^1(E)$

$$f(y)-f(x)=\int_0^1 Df(x+s(y-x))(y-x)ds$$

5.3 Derivees d'ordre superieur

Definition 29 (Derivees partielles secondes (cas scalaire))

Soit $f: E \to \mathbb{R}$, E ouvert.

Supposons que pour un indice $i = \{1, ..., n\}$ fixe, la derivee partielle $\frac{\partial f}{\partial x_i}(x)$ existe $\forall x \in E$.

Si $\frac{\partial f}{\partial x_i}$ admet la derivee partielle selon x_j , alors on dit que f a une derivee partielle seconde en x et on note

$$rac{\partial^2 f}{\partial x_i \partial x_i}(x) = rac{\partial}{\partial x_j}(rac{\partial f}{\partial x_i})(x)$$

Definition 30 (Matrice hessienne)

Soit $f: \mathbb{R}^n \to \mathbb{R}$ tel que toutes les derivees partielles existent que toutes les derivees secondes existent

$$H_f(y) = egin{pmatrix} rac{\partial}{\partial x_1} (rac{\partial f}{\partial x_1})(y) & rac{\partial}{\partial x_1} (rac{\partial f}{\partial x_2})(y) & \dots \ rac{\partial}{\partial x_2} (rac{\partial f}{\partial x_2})(y) & rac{\partial}{\partial x_2} (rac{\partial f}{\partial x_2})(y) & \dots \ rac{\partial}{\partial x_3} (rac{\partial f}{\partial x_1})(y) & rac{\partial}{\partial x_3} (rac{\partial f}{\partial x_2})(y) & \dots \end{pmatrix}$$

Definition 31 (Espace $C^2(E)$)

On dit que $f: E \to \mathbb{R}$ est de classe C^2 si toutes les derivees partielles secondes sont continues.

Definition 32 (Derivees directionnelles secondes)

Soit $v \in \mathbb{R}^n$, ||v|| = 1. Alors, etant donne $D_v f : E \to \mathbb{R}$, on peut essayer de calculer la derivee directionnelle de $D_v f$ dans la direction $w \in \mathbb{R}^n$.

Si une telle derivee exise, on dit que f admet une derivee directionnelle seconde dans les directions v et w au point x et on note

$$D_{wv} f(x) = D_w(D_v f)(x)$$

Lemme 25

Soit $f \in C^2(E)$, E ouvert et $v, w \in \mathbb{R}^n$ tel que ||v|| = ||w|| = 1. Alors $D_{wv}f$ existe en tout $x \in E$ et

$$egin{aligned} D_{wv}f(x) &= w^T H_f(x) v \ &= \sum_{i=1}^n w_i (\sum_{j=1}^n H_f(x)_{ij} v_j) \ &= \sum_{i,j=1}^n rac{\partial^2 f}{\partial x_i \partial x_j}(x) w_i v_j \end{aligned}$$

Preuve

Si $f \in C^2$ alors $f \in C^1$, alors $D_v f(x) = \nabla f(x)^T v = \sum \frac{\partial f}{\partial x_i}(x) v_i$. Mais puisque $f \in C^2$, $\frac{\partial f}{\partial x_i} \in C^1 \forall i$, donc

$$egin{aligned} D_w(D_v f)(x) &=
abla (D_v f)^T w = \sum_{i=1}^n rac{\partial}{\partial x_i} (D_v f) w_i \ &= \sum_{i=1}^n \sum_{j=1}^n rac{\partial}{\partial x_i} (rac{\partial f}{\partial x_j}(x)) v_j w_i \end{aligned}$$

Ce qui donne le resultat desire.

Theorème 26 (Theoreme de Schwarz)

Soit $f: E \to \mathbb{R}$. Pour $i, j \in \{1, \dots, n\}$ fixes. Supposons que $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$, $\frac{\partial^2 f}{\partial x_j \partial x_i}$ existent sur E et sont continues en $x \in E$. Alors

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$$

Lecture 10: Derivees d'ordre superieur

Mon 29 Mar

FIGURE 1 - thmschwarz

Preuve

Soit s,t > 0 suffisamment petit tel que

$$x + se_i, x + te_j, x + se_i + te_j \in E$$

Posons

$$\begin{split} \Delta(s,t) &= f(x+se_i+te_j) - f(x+se_i) - f(x+te_j) + f(x) \\ &= \frac{\partial f}{\partial x_j}(x+se_i)t - \frac{\partial f}{\partial x_j}(x)t \\ &= \frac{\partial}{\partial x_i}\frac{\partial^2 f}{\partial x_j}st \\ &= \frac{\partial}{\partial x_i}f(x+te_j)s - \frac{\partial}{\partial x_i}f(x)s \end{split}$$

Plus formellement, on peut ecrire

$$\Delta(s,t) = (f(x + se_i + te_i) - f(x + se_i)) - (f(x + te_i) - f(x))$$

On definit

$$g(\xi) = f(x + \xi e_i + t e_i) - f(x + \xi e_i)$$

et donc

$$\Delta(s,t) = g(s) - g(0)$$

et g est derivable car f est derivable

$$g'(\xi) = rac{\partial f}{\partial x_i}(x + \xi e_i + t e_j) - rac{\partial f}{\partial x_i}(x + \xi e_i)$$

par le TAF, on a

$$egin{aligned} g(s) - g(0) &= g'(ilde{s})s \ &= (rac{\partial f}{\partial x_i}(x + ilde{s}e_i + te_j) - rac{\partial f}{\partial x_i}(x + ilde{s}e_i))s \end{aligned}$$

On definit maintenant

$$\phi(y) = rac{\partial f}{\partial x_i}(x + ilde{s}e_i + ye_j)$$

Alors on a

$$\Delta(s,t) = (\phi(t) - \phi(0))s$$

A nouveau, ϕ est derivabe, et donc on a

$$egin{aligned} \Delta(s,t) &= \phi'(ilde{t})ts \ &= rac{\partial^2}{\partial x_i \partial x_i}(x + ilde{s}e_i + ilde{t}e_j)ts \end{aligned}$$

 $Si\ on\ prend\ t=s$, on a

$$\lim_{s \to 0} \frac{1}{s^2} \Delta(s, s) = \lim_{s \to 0} \frac{1}{s^2} \left(\frac{\partial^2 f}{\partial x_i \partial x_i} \left(x + \tilde{s} + \tilde{t} e_j \right) s^2 \right)$$

On peut appliquer exactement le meme raisonnement dans l'autre sens, et on obtient le resultat desire. $\ \Box$

5.4 Derivees d'ordre superieur

Soit $E \subset \mathbb{R}^n$ ouvert non vide, $f: E \to \mathbb{R}$ et on fixe $i_1, \ldots, i_p \in \{1, \ldots, n\}$. On definit la derivee partielle par rapport aux variables x_{i_1}, \ldots, x_{i_p} , on note alors

$$\frac{\partial^p f}{\partial x_{i_p} \dots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_p}} (\dots (\frac{\partial}{\partial x_{i_2}} (\frac{\partial f}{\partial x_{i_1}})))(x)$$

Corollaire 27

Soit i_1, \ldots, i_p fixe et σ une permutation des nombres $\{1, \ldots, p\}$. Si $\frac{\partial^p}{\partial x_{i_p} \ldots \partial x_{i_1}}$ et $\frac{\partial^p f}{\partial x_{i_{\sigma(p)}} \ldots \partial x_{i_{\sigma(1)}}}$ existent et sont continues en x pour toute permutation alors ils sont egaux

5.5 Developpement limite et formule de Taylor

On veut generaliser la definition pour la dimension 1, on veut un polynome de degre p dans les variables (x_1, \ldots, x_n) , en utilisant la notation multi-entiers, on note

$$p(x) = \sum_{lpha = (lpha_1, ..., lpha_n), |lpha| \leq 2} c_lpha x^lpha$$

De maniere generale, on peut donc ecrire

$$q(x) = \sum_{lpha \in \mathbb{N}^n, |lpha| \le p} c_lpha x^lpha$$

Le developpement limite d'ordre p d'une fonction $f:E\to\mathbb{R}$ autour d'un point $x\in \overset{\circ}{E}$, aura donc la forme

$$f(y) = \sum_{lpha \in \mathbb{N}^n, |lpha| \leq p} c_lpha (y-x)^lpha + R_p(y)$$

Ou R_p satisfait

$$\lim_{y \to x} \frac{R_p(y)}{\left\|y - x\right\|^p} = 0$$

Soit $f: E \to \mathbb{R}$, $f \in C^{p+1}(E)$, E un ouvert non vide et soient $x, y \in E$ tel que $[x.y] \in E$, soit g(t) = f(x+t(y-x)), pour $t \in [0,1]$, on voit que $g \in C^{p+1}([0,1])$. On peut donc ecrire

$$g(t) = g(0) + g'(0)t + \ldots + \frac{g^p(0)}{p!}t^p + R_p(y)$$

On a donc

$$g'(t) = \sum_{i_1=1}^n \frac{\partial f}{\partial x_{i_1}}(x_t) \frac{d(x_t)i_1}{dt} = \sum_{i_1=1}^n \frac{\partial f}{\partial x_{i_1}}(xt)(y_{i_1}-x_{i_1}) = \sum_{|\alpha|=1} \frac{\partial^{|\alpha|} f}{\partial x^\alpha}(y-x)^\alpha$$

De meme, on trouve

$$egin{aligned} g''(t) &= rac{d}{dt}(rac{d}{dt}f(x_t)) \ &= \sum_{|lpha|=2}rac{2!}{lpha!}rac{\partial^2 f}{\partial x^lpha}(x_t)(y-x)^lpha \end{aligned}$$

La formule de Taylor s'ecrit donc

$$egin{split} f(y) &= g(1) = \sum_{k=0}^p rac{g^k(0)}{k!} t + R_p(y) \ &= \sum_{k=0}^p \sum_{|lpha|=k} rac{1}{k!} rac{k!}{lpha!} rac{\partial^lpha}{\partial x^lpha} (x) (y-x)^lpha + R_p(1) \end{split}$$

La formule de lagrange donne

$$R_p(1) = \sum_{|lpha|=p+1} rac{1}{lpha!} rac{\partial^{|lpha|} f}{\partial x^lpha} (x + heta(y-x)) (y-x)^lpha$$