Kholle 13 filière MPSI/MP2I Planche 1

- 1. Soit *G* un groupe et *A* une partie de *G*. Définition du sous-groupe engendré par *A*. Démontrer qu'il s'agit du plus petit sous-groupe de *G* contenant *A*.
- 2. Soit *G* un groupe, *H* et *K* deux sous-groupes de *G*. On suppose que $H \cup K$ est un sous-groupe de *G*. Montrer que $H \subset K$ ou $K \subset H$.
- 3. On note $G = \mathbb{R}^* \times \mathbb{R}$. On le munit de la loi suivante :

$$\forall ((x,y),(x',y')) \in G^2, \quad (x,y) \otimes (x',y') = (xx',xy'+y)$$

Montrer que cette structure est un groupe, puis qu'elle est non isomorphe à $(\mathbb{R}^2,+)$.

Kholle 12 filière MPSI/MP2I Planche 2

- 1. Soit $f: G \to H$ un morphisme de groupes. Que valent $f(e_G)$ et $f\left(x^{-1}\right)$ pour tout élément x de G? Le démontrer.
- 2. Exhiber deux groupes de cardinal 4 non isomorphes. Montrer qu'il s'agit des deux seuls groupes de cardinal 4 à isomorphisme près.
- 3. Soit G un groupe et H une partie finie de G non vide et stable par la lci de G. Montrer que H est un sous-groupe de G.

Kholle 13 filière MPSI/MP2I Planche 3

- 1. Soit $f: G \to H$ un morphisme de groupes. Définition du noyau et de l'image de f. Démontrer qu'il s'agit de groupes.
- 2. On considère G =]-1,1[. On le munit de l'application $\oplus: G^2 \to \mathbb{R}, (x,y) \to (x+y)/(1+xy) = x \oplus y$. Montrer qu'il s'agit d'une loi de composition interne et que (G,\oplus) est un groupe.
- 3. Soit G un groupe. On suppose qu'il existe un entier naturel non nul n tel que l'application $f: G \to G, x \mapsto x^n$ est un morphisme de groupe surjectif.
 - (a) Démontrer qu'alors

$$\forall (x, y) \in G^2, \quad x^{n-1}y = yx^{n-1}$$

(b) On suppose de plus que l'application $G \to G, x \mapsto x^{n-1}$ est surjective. Démontrer qu'alors G est commutatif.

Kholle 13 filière MPSI/MP2I Bonus

- 1. Soit G un groupe. On note \widehat{G} l'ensemble des morphismes de groupes de G dans \mathbb{C}^* . Montrer que \widehat{G} est un groupe pour le produit d'applications. Déterminer $\widehat{\mathbb{U}}_3$.
- 2. On se donne Q un ensemble à 8 éléments notés

$$Q = \{1, -1, i, -i, j, -j, k, -k\}$$

On définit une table de multiplication sur Q via la table

	1	i	j	k	-1	-i	− <i>j</i>	-k
1	1	i	j	k	-1	-i	− <i>j</i>	-k
i	i	-1	k	− <i>j</i>	-i	1	-k	j
j	j	-k		i	− <i>j</i>	k	1	-i
k	k	j	-i	-1			i	1
-1	-1	-i	– ј	-k	1	i	j	k
-i	-i	1	-k	j	i	-1	k	-j
-j	-j	k	1	-i	j	-k	-1	i
-k	-k	− <i>j</i>	i	1	k	j	-i	-1

Démontrer que ${\it Q}$ muni de cette loi est un groupe non commutatif, mais que tous ses sous-groupes stricts sont commutatifs.

