# **Project: Predictive Analytics Capstone**

# Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number?

The optimal number of store formats is 3. I arrived this number by using K-Centroids Cluster analysis and K-Centroids Diagnostics Tool with K-Mean Clustering Method. According to K-Mean analysis or below report, both Adjusted Rand Indices and Calinski-Harabasz Indices shows highest mean value at 2 and 3 indicating that the optimal number of stores formats is 3 (but we can also take 2 stores).

|                            |           | K-Means Cluster / | Assessment Report |          |           |           |
|----------------------------|-----------|-------------------|-------------------|----------|-----------|-----------|
| Summary Statistics         |           |                   |                   |          |           |           |
| Adjusted Rand Indices:     |           |                   |                   |          |           |           |
|                            | 2         | 3                 | 4                 | 5        | 6         | 7         |
| Minimum                    | -0.009675 | 0.076235          | 0.140656          | 0.157999 | 0.208442  | 0.215517  |
| 1st Quartile               | 0.237245  | 0.273359          | 0.324062          | 0.28911  | 0.310322  | 0.283793  |
| Median                     | 0.443127  | 0.379958          | 0.379205          | 0.354445 | 0.369622  | 0.343121  |
| Mean                       | 0.42889   | 0.410693          | 0.396973          | 0.372638 | 0.379017  | 0.355602  |
| 3rd Quartile               | 0.607523  | 0.513414          | 0.465973          | 0.444893 | 0.445965  | 0.419453  |
| Maximum                    | 0.907005  | 0.823811          | 0.789549          | 0.639632 | 0.565878  | 0.54505   |
| Calinski-Harabasz Indices: |           |                   |                   |          |           |           |
|                            | 2         | 3                 | 4                 | 5        | 6         | 7         |
| Minimum                    | 7.838511  | 9.845155          | 11.56778          | 10.41516 | 9.754192  | 8.452392  |
| 1st Quartile               | 18.329049 | 15.370633         | 13.54646          | 12.70601 | 12.042498 | 11.37346  |
| Median                     | 20.072097 | 16.43124          | 14.78233          | 13.31046 | 12.703326 | 12.062457 |
| Mean                       | 18.866108 | 16.214792         | 14.61573          | 13.44934 | 12.742937 | 12.071297 |
| 3rd Quartile               | 20.790946 | 17.532122         | 15.63393          | 14.31965 | 13.470937 | 12.865362 |
| Maximum                    | 22.415549 | 18.750421         | 16.86351          | 16.57168 | 15.173243 | 14.756313 |



### 2. How many stores fall into each store format?

According to Cluster Information: Cluster 1 has 25 stores; Cluster 2 has 35 stores and Cluster 3 has 25 stores.

#### Summary Report of the K-Means Clustering Solution Cluster

|          |                                                                                    | January Report                                                                              | or the it incums claster. | ng bolation clast    |                        |                      |               |
|----------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|----------------------|------------------------|----------------------|---------------|
| Solution | n Summary                                                                          |                                                                                             |                           |                      |                        |                      |               |
|          |                                                                                    | 1 + Percent_Dry_Grocery + Percent_Dairy +<br>lata)), k = 3, nrep = 10, FUN = kcca, family : |                           | nt_Meat + Percent_Pr | oduce + Percent_Floral | + Percent_Deli + Per | cent_Bakery + |
| Cluster  | Information:                                                                       |                                                                                             |                           |                      |                        |                      |               |
|          | Cluster                                                                            | Size                                                                                        | Ave Distance              |                      | Max Distance           |                      | Separation    |
|          | 1                                                                                  | 25                                                                                          | 2.099985                  |                      | 4.823871               |                      | 2.19156       |
|          | 2                                                                                  | 35                                                                                          | 2.475018                  |                      | 4.412367               |                      | 1.947298      |
|          | 3                                                                                  | 25                                                                                          | 2.289004                  |                      | 3.585931               |                      | 1.72574       |
|          | gence after 8 iterations.<br>within cluster distances: 196.<br>Percent_Dry_Grocery | .35034. Percent_Dairy                                                                       | Percent_Frozen_Food       | Percent_Meat         | Percent_Produce        | Percent_Floral       | Percent_De    |
| 1        | 0.528249                                                                           | -0.215879                                                                                   | -0.261597                 | 0.614147             | -0.655027              | -0.663872            | 0.82483       |
| 2        | -0.594802                                                                          | 0.655893                                                                                    | 0.435129                  | -0.384631            | 0.812883               | 0.71741              | -0.4616       |
| 3        | 0.304474                                                                           | -0.702372                                                                                   | -0.347583                 | -0.075664            | -0.483009              | -0.340502            | -0.17848      |
|          | Percent_Bakery                                                                     | Percent_General_Merchandise                                                                 |                           |                      |                        |                      |               |
| 1        | 0.428226                                                                           | -0.674769                                                                                   |                           |                      |                        |                      |               |
| 2        | 0.312878                                                                           | -0.329045                                                                                   |                           |                      |                        |                      |               |
| 3        | -0.866255                                                                          | 1.135432                                                                                    |                           |                      |                        |                      |               |

# 3. Based on the results of the clustering model, what is one way that the clusters differ from one another?



From the report of K-Mean Clustering, we can see the cluster 1 and 3 both of them have same size of 25. Cluster 1 has the highest Max Distance which is 4.82 and have lowest Ave Distance of 2.09 with highest separation of 2.19. Cluster 2 has the largest size of 35 with Highest Ave Distance of 2.47, Max Distance of 4.41 and Separation of 1.94. Similarly, Cluster 3 has Ave Distance of 2.28, Max Distance of 3.58 and Separation of 1.75.

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.



## Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)



In any classification problem we will need to set an estimation sample 80 and a

validation sample 20 of my data. This helps us compare different classification models to see which better fit the data. Both Random Model and Boosted Model. I going to use Boosted model because dataset is small in number so that we can run the boosted model in short time. The comparison result made me choose boosted model has the best result in Accuracy = 70.59%, F1 = 75% and Accuracy\_1 = 50%.

#### Report for Boosted Model BT

Basic Summary:

1

Loss function distribution: Multinomial Total number of trees used: 4000

Best number of trees based on 5-fold cross validation: 1829



#### Number of Iterations Assessment Plot



2. What format do each of the 10 new stores fall into? Please fill in the table below.

| Store Number | Segment |
|--------------|---------|
| S0086        | 1       |
| S0087        | 2       |
| S0088        | 3       |
| S0089        | 2       |
| S0090        | 2       |
| S0091        | 3       |
| S0092        | 2       |
| S0093        | 3       |
| S0094        | 2       |
| S0095        | 2       |

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

I have used ETS model for forecast. I have come to this decision by comparing between ETS and ARIMA and using TS plot tool. From below Decomposition plot, I have seen the error is multiplicative, the trend is non-exciting and seasonality has an increase trend and multiplicative as the perks change over time. So, I have chosen the ETS model.











#### Summary of ARIMA Model ARIMA

Method: ARIMA(1,0,0)(1,1,0)[12]

Call:

auto.arima(Sum\_Produce)

#### Coefficients:

ar1 sar1 Value 0.79852 -0.700441 Std Err 0.126448 0.140181

sigma^2 estimated as 1671079042075.49: log likelihood = -437.22224

Information Criteria:

AIC AICc BIC 880.4445 881.4445 884.4411

In-sample error measures:

ME RMSE MAE MPE MAPE MASE ACF1
-102530.8325034 1042209.8528363 738087.5530941 -0.5465069 3.3006311 0.4120218 -0.1854462

Ljung-Box test of the model residuals:

Chi-squared = 15.0973, df = 12, p-value = 0.23616



Lag



#### **Summary of Time Series Exponential Smoothing Model ETS1**

#### Method:

ETS(M,N,M)

#### In-sample error measures:

| ME             | RMSE            | MAE            | MPE        | MAPE      | MASE      | ACF1      |
|----------------|-----------------|----------------|------------|-----------|-----------|-----------|
| -14783.6612202 | 1044018.8940828 | 809742.8924252 | -0.2664397 | 3.5527937 | 0.4555978 | 0.3283229 |

#### Information criteria:

| AIC       | AICc      | BIC       |
|-----------|-----------|-----------|
| 1479.4048 | 1495.4048 | 1506.8344 |

#### Smoothing parameters:

| Parameter | Value    |
|-----------|----------|
| alpha     | 0.327727 |
| gamma     | 0.001656 |

#### Initial states:

| State | Value           |
|-------|-----------------|
| - 1   | 23159664.744847 |
| s0    | 0.926093        |
| s1    | 0.956024        |
| s2    | 0.930877        |
| s3    | 0.91335         |
| s4    | 0.879554        |
| s5    | 0.903808        |
| s6    | 1.02648         |
| s7    | 1.169472        |
| s8    | 1.151996        |
| s9    | 1.121918        |
| s10   | 0.981225        |

#### Forecasts from ETS(M,N,M)



The Forecast Plot shows the historic data in black and the expected value in blue. The orange in the plot shows the 90% confidence interval, and the yellow shows the 95% confidence interval.





From the Actual vs. Forecast Values for Arima and ETS plots above, I can see the forecast values by the ETS model is most near to the actual values than the forecast values by the Arima model.

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

The forecasted values for produce, monthly in 2016 for new and existing stores, table down shows the historical data together with these forecasts.

| 20 | Record | Year | Month | Forecast_sales_existing_stores | Forecast_Sales_new_Stores | Total_Forecast_sales | Date    |
|----|--------|------|-------|--------------------------------|---------------------------|----------------------|---------|
| ?) | 1      | 2016 | 1     | 21829060.031666                | 2491319.093207            | 24320379.124873      | 2016-1  |
| ن  | 2      | 2016 | 2     | 21146329.631982                | 2408384.783604            | 23554714.415586      | 2016-2  |
|    | 3      | 2016 | 3     | 23735686.93879                 | 2833157.321387            | 26568844.260177      | 2016-3  |
|    | 4      | 2016 | 4     | 22409515.284474                | 2679433.371626            | 25088948.6561        | 2016-4  |
|    | 5      | 2016 | 5     | 25621828.725097                | 3054885.876482            | 28676714.601579      | 2016-5  |
|    | 6      | 2016 | 6     | 26307858.040046                | 3106151.779247            | 29414009.819294      | 2016-6  |
|    | 7      | 2016 | 7     | 26705092.556349                | 3132699.144598            | 29837791.700947      | 2016-7  |
|    | 8      | 2016 | 8     | 23440761.329527                | 2776154.195458            | 26216915.524985      | 2016-8  |
|    | 9      | 2016 | 9     | 20640047.319971                | 2451565.941438            | 23091613.261409      | 2016-9  |
|    | 10     | 2016 | 10    | 20086270.462075                | 2401771.574835            | 22488042.03691       | 2016-10 |
|    | 11     | 2016 | 11    | 20858119.95754                 | 2477301.916348            | 23335421.873888      | 2016-11 |
|    | 12     | 2016 | 12    | 21255190.244976                | 2452170.069396            | 23707360.314372      | 2016-12 |

