Robust and Explainable Fault Diagnosis with Power-Perturbation-**Based Decision Boundary Analysis of Deep Learning Models**

Background and Objective

Faults in rotating machines or their components can be diagnosed through vibration data analysis. This research aims to explain the decision criteria, decision boundaries, and robustness of black-box 1D-CNNs. The proposed method goes beyond simple classification by providing reasoning behind the model's decisions and insights into its generalization capability under unseen working conditions.

Methods

Robustness evaluation based on power perturbations around the dominant frequencies and corresponding changes in cross-entropy

A frequency-domain-based gradient-weighted class activation mapping method was used to analyze dominant frequencies.

Robustness-based ensemble model, where each model is weighted by class-wise robustness scores

- 1. Intuitive visual explanations of model's robustness
- 2. Validated effectiveness of the robustness scores and ensemble strategy

(Upper figure: Accuracy under unseen working conditions aligns with the calculated robustness scores)