Лабораторная работа №4 Шум

Кобыжев Александр

7 апреля 2021 г.

Оглавление

1	Teo	ретиче	еская часть о свойствах преобразования	Φ	уp	ье	5
	1.1	Общи	е сведения				5
	1.2	Свойс	тва				5
		1.2.1	Линейность				5
		1.2.2	Смещение функции				6
		1.2.3	Масштабирование функции				6
		1.2.4	Перемножение функции				7
		1.2.5	Свёртывание функции				7
		1.2.6	Дифференцирование функции				7
		1.2.7	Интегрирование функции				8
		1.2.8	Обратимость				9
2	Упр	ражне	ние 4.1				10
3	Упр	ражне	ние 4.2				15
4	Упр	ражне	ние 4.3				17
5	Упражнение 4.4				20		
6	Упражнение 4.5				25		
7	Вы	волы					29

Список иллюстраций

2.1	Спектр звука	11
2.2	Спектр мощности звука	
2.3	Спектр двух звуков	13
2.4	Спектр мощности двух звуков	
2.5	Спектрограмма звука	14
3.1	Сегменты звуков	16
4.1	Таблица данных	17
4.2	Визуализация данных	18
4.3	Спектр искусственного звука	19
5.1	Визуализация звука	21
5.2	Спектр мощности звука	22
5.3	Визуализация нового звука	23
5.4	Сравнение спектров	24
6.1	Визуализация звука	26
6.2	Спектр мощности звука	27
6.3	Спектр мощности звука	28

Листинги

2.1	Прослушивание скачанного шума	10
2.2	Выбор короткого отрезка	10
2.3	Спектр звука	10
2.4	Спектр мощности звука	11
2.5	Выбор другого сегмента звука	12
2.6	Спектр двух звуков	12
2.7	Спектр мощности двух звуков	13
2.8	Спектрограмма звука	14
3.1	Функция bartlett_method	15
3.2	Сегменты звуков	15
4.1	Таблица данных	17
4.2	Визуализация данных	17
4.3	Спектр искусственного звука	18
4.4	Наклон прямой	19
5.1		20
5.2	Создание звука	20
5.3	Создание звука	20
5.4	Визуализация звука	21
5.5	Спектр мощности звука	21
5.6	Наклон прямой	22
5.7	Создание нового звука	22
5.8	Визуализация нового звука	22
5.9	Сравнение спектров	23
6.1	Создание функции	25
6.2	Генерация значений	25
6.3	Создание звука	26
6.4	Визуализация звука	26
6.5	Спектр мощности звука	26
6.6	Наклон прямой	27
6.7	Генерация более длинной выборки	27
6.8	Использование метода Барлетта	27

6.9	Спектр мощности звука	28
6.10	Наклон прямой 2	28

Теоретическая часть о свойствах преобразования Фурье

1.1 Общие сведения

Преобразование Фурье функции f вещественной переменной является интегральным и задаётся следующими формулами:

Прямое:
$$F(\nu) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\nu t}dt$$

Обратное:
$$f(t) = \int_{-\infty}^{\infty} F(\nu)e^{2\pi i\nu t}d\nu$$

1.2 Свойства

1.2.1 Линейность

По определению, для некоторого векторного пространства $(V,K,+,\cdot)$, $a,b\in V,\,\gamma\in K$:

$$f:V o V$$
 - линейна $\Longleftrightarrow egin{cases} \gamma\cdot f(a)=f(\gamma\cdot a)\ f(a)+f(b)=f(a+b) \end{cases}$

Очевидно, что преобразование Фурье (ПФ) удовлетворяет этому условию (как функция на $(\mathbb{R} \to \mathbb{R}, \mathbb{C}, +, \cdot)$), а следовательно:

Fourier
$$\left(\sum_{i} \alpha_{i} \phi_{i}(t)\right) = \sum_{i} \alpha_{i} \cdot Fourier(\phi_{i}(t))$$

$$= \sum_{i} \alpha_{i} \Phi_{i}(\nu)$$

1.2.2 Смещение функции

При смещении функции $\phi(t)$ на Δt результат ПФ умножается на $e^{2\pi i \nu \Delta t}$. Пусть $t' = t + \Delta t$, тогда:

Fourier
$$(\phi(t + \Delta t)) = \int_{-\infty}^{\infty} \phi(t + \Delta t)e^{-2\pi i\nu t}dt$$

= $\int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu(t' - \Delta t)}dt$

Так как $dt' = d(t + \Delta t) = dt$, то:

$$\int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu(t'-\Delta t)}dt' = e^{2\pi i\nu\Delta t} \cdot \int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu t'}dt'$$
$$= e^{2\pi i\nu\Delta t} \cdot F(\nu)$$

1.2.3 Масштабирование функции

Пусть $t' = \alpha t$, тогда:

Fourier
$$(\phi(\alpha t)) = \int_{-\infty}^{\infty} \phi(\alpha t) e^{-2\pi i \nu t} dt$$

= $\int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt$

Так как $dt' = \alpha dt$, то для a > 0:

$$\begin{split} \int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt &= \frac{1}{\alpha} \int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \frac{\nu}{\alpha} t'} dt \\ &= \frac{1}{\alpha} \Phi\left(\frac{\nu}{\alpha}\right) \end{split}$$

Для a<0 получится dt'<0 при dt>0. При этом нужно поменять пределы интегрирования местами, тогда получим результат с отрицательным знаком:

$$-\frac{1}{\alpha}\Phi\left(\frac{\nu}{\alpha}\right)$$

Таким образом, в одной форме это:

$$\frac{1}{|\alpha|}\Phi\left(\frac{\nu}{\alpha}\right)$$

Вывод: при сжатии функции по времени в α раз, её $\Pi\Phi$ расширяется по частоте в α раз.

1.2.4 Перемножение функции

ПФ произведения двух функций - это свёртка их ПФ.

$$Fourier (\phi(t)\xi(t)) = \int_{-\infty}^{\infty} \phi(t)\xi(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \Phi(k)e^{2\pi ikt}dk\right)\xi(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \Phi(k)\left(\int_{-\infty}^{\infty} \xi(t)e^{2\pi i(k-\nu)t}dt\right)dk$$

$$= \int_{-\infty}^{\infty} \Phi(k)\left(\int_{-\infty}^{\infty} \xi(t)e^{-2\pi i(\nu-k)t}dt\right)dk$$

$$= \int_{-\infty}^{\infty} \Phi(k)\Xi(\nu-k)dk$$

$$= (\Phi * \Xi)(\nu)$$

1.2.5 Свёртывание функции

 $\Pi\Phi$ свёртки двух функций есть произведение $\Pi\Phi$ этих функций. Доказывается аналогично в силу «симметрии» прямого и обратного преобразований Φ урье.

1.2.6 Дифференцирование функции

При дифференцировании $\phi(t)$ по t её $\Pi\Phi$ умножается на $2\pi i\nu$.

Fourier
$$\left(\frac{d\phi(t)}{dt}\right) = \int_{-\infty}^{\infty} \frac{d\phi(t)}{dt} e^{-2\pi i \nu t} dt$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i \nu t} d\phi(t)$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \phi(t) d\left(e^{-2\pi i \nu t}\right)$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \int_{-\infty}^{\infty} \phi(t) e^{-2\pi i \nu t} dt$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \cdot \Phi(\nu)$$

Прямое и обратное преобразование Фурье существует для функций с ограниченной энергией, то есть:

$$\int_{-\infty}^{\infty} |\phi(t)|^2 dt \neq \infty$$

И из этого следует, что первое слагаемое равно 0.

1.2.7 Интегрирование функции

При интегрировании $\Pi\Phi$ делится на $2\pi i\nu$.

Fourier
$$\left(\int_{-\infty}^{t} \phi(t')dt'\right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt'\right) e^{-2\pi i \nu t} dt$$

$$= -\frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt'\right) d\left(e^{-2\pi i \nu t}\right)$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t')dt'\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} d\left(\int_{-\infty}^{t} \phi(t')dt'\right)\right]$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t)dt\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt\right]$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[0 - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt\right]$$

$$= \frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt$$

$$= \frac{1}{2\pi i \nu} \cdot \Phi(\nu)$$

0 возникает потому, что $\int_{-\infty}^{\infty} \phi(t')dt' = 0$.

1.2.8 Обратимость

Преобразования обратимы, причём обратное преобразование имеет практически такую же форму, как и прямое преобразование.

Упражнение 4.1

Для данного упражнения с предложенного сайта я скачал запись обстановки в ресторане.

```
wave =
thinkdsp.read_wave('173920__matias44__murmullo-restaurant.wav')
wave.make_audio()
Листинг 2.1: Прослушивание скачанного шума
Выберем короткий отрезок:
segment = wave.segment(start=1.5, duration=1.0)
segment.make_audio()
Листинг 2.2: Выбор короткого отрезка
Теперь составим его спектр.
spectrum = segment.make_spectrum()
spectrum.plot_power()
thinkplot.config(xlabel='Frequency (Hz)')
Листинг 2.3: Спектр звука
```


Рис. 2.1: Спектр звука

Амплитуда падает с частотой, поэтому это может быть красный или розовый шум. Мы можем проверить это, посмотрев на спектр мощности в логарифмической шкале.

```
spectrum.plot_power()
thinkplot.config(xlabel='Frequency (Hz)',
xscale='log',
yscale='log')
Листинг 2.4: Спектр мощности звука
```


Рис. 2.2: Спектр мощности звука

Эта структура с увеличением, а затем и с уменьшением амплитуды кажется обычным явлением для естественных источников шума. Чтобы увидеть, как спектр меняется с течением времени, я выберу другой сегмент.

```
segment2 = wave.segment(start=2.5, duration=1.0)
segment2.make_audio()
```

Листинг 2.5: Выбор другого сегмента звука

Теперь рассмотрим два спектра:

```
spectrum2 = segment2.make_spectrum()
spectrum.plot_power()
spectrum2.plot_power(color='#beaed4')
thinkplot.config(xlabel='Frequency (Hz)',
ylabel='Amplitude')
```

Листинг 2.6: Спектр двух звуков

Рис. 2.3: Спектр двух звуков

Теперь рассмотрим график мощности в логарифмическом масштабе.

```
spectrum.plot_power()
spectrum2.plot_power(color='#beaed4')
thinkplot.config(xlabel='Frequency (Hz)',

ylabel='Amplitude',

xscale='log',
yscale='log')
```

Листинг 2.7: Спектр мощности двух звуков

Рис. 2.4: Спектр мощности двух звуков

Таким образом, структура кажется неизменной с течением времени. Мы также можем посмотреть на спектрограмму:

segment.make_spectrogram(512).plot(high=5000)

Листинг 2.8: Спектрограмма звука

Рис. 2.5: Спектрограмма звука

В этом сегменте общая амплитуда падает, но смесь частот кажется стабильной.

Упражнение 4.2

bartlett_method создает спектрограмму и извлекает spec_map, который отображает время на объекты Spectrum. Он вычисляет PSD для каждого спектра, складывает их и помещает результаты в объект Spectrum.

```
def bartlett_method(wave, seg_length=512, win_flag=True):
     # make a spectrogram and extract the spectrums
     spectro = wave.make_spectrogram(seg_length, win_flag)
     spectrums = spectro.spec_map.values()
     # extract the power array from each spectrum
     psds = [spectrum.power for spectrum in spectrums]
     # compute the root mean power (which is like an amplitude)
     hs = np.sqrt(sum(psds) / len(psds))
     fs = next(iter(spectrums)).fs
11
     # make a Spectrum with the mean amplitudes
     spectrum = thinkdsp.Spectrum(hs, fs, wave.framerate)
     return spectrum
15
                  Листинг 3.1: Функция bartlett method
     Построим сегменты:
psd = bartlett_method(segment)
psd2 = bartlett_method(segment2)
4 psd.plot_power()
5 psd2.plot_power(color='#beaed4')
7 thinkplot.config(xlabel='Frequency (Hz)',
```

```
ylabel='Power',
xscale='log',
yscale='log')
Листинг 3.2: Сегменты звуков
```

10²
10¹
10⁻²
10²
10³
10⁴
Frequency (Hz)

Рис. 3.1: Сегменты звуков

Теперь мы можем более чётко увидеть взаимосвязь между мощностью и частотой. Это не простая линейная зависимость, но она одинакова для разных сегментов, таких как около 1000 Γ ц, 6000 Γ ц и выше 10000 Γ ц.

Упражнение 4.3

На предложенной веб-странице я скачал данные о ежедневной цене BitCoin в течение года.

```
data = pd.read_csv('BTC_USD_2020-04-08_2021-04-07-CoinDesk.csv')
data
```

Листинг 4.1: Таблица данных

	Currency	Date	Closing Price (USD)	24h Open (USD)	24h High (USD)	24h Low (USD)
0	втс	2020-04-08	7175.667477	7277.704282	7464.732245	7081.639209
1	втс	2020-04-09	7367.293398	7175.669418	7424.743721	7155.211053
2	втс	2020-04-10	7321.816614	7366.900961	7399.469133	7125.775519
3	втс	2020-04-11	6866.398189	7321.815746	7325.324778	6752.593664
4	втс	2020-04-12	6873.848495	6872.137266	6949.788875	6777.889694
360	втс	2021-04-03	58821.626994	58726.084566	60101.752326	58478.598349
361	втс	2021-04-04	57517.798773	58958.428985	59713.210136	57185.768006
362	втс	2021-04-05	58177.402764	57134.860051	58540.984706	56552.222275
363	втс	2021-04-06	58843.559540	58230.675538	59243.036175	56846.969047
364	втс	2021-04-07	58040.187602	59133.655740	59484.199475	57421.853085

Рис. 4.1: Таблица данных

Визуализируем скачанные данные.

Листинг 4.2: Визуализация данных

Рис. 4.2: Визуализация данных

Построим спектр искусственно созданного звука, где частотой будет выступать 1/дни.

Листинг 4.3: Спектр искусственного звука

Рис. 4.3: Спектр искусственного звука

Спектр сход с прямой линией, поэтому можно предположить, что это "красный" или "розовый" шум. Проверим это, узнав наклон прямой.

spectrum.estimate_slope()[0]

Листинг 4.4: Наклон прямой

Наклон составляет -1.8216406076974851, что похоже на красный шум (который должен иметь наклон -2).

Упражнение 4.4

Созданный класс UncorrelatedPoissonNoise представляет некоррелированный пуассоновский шум. Оценивает сигнал в заданное время.

```
class UncorrelatedPoissonNoise(thinkdsp.Noise):

def evaluate(self, ts):

ys = np.random.poisson(self.amp, len(ts))

return ys

Листинг 5.1: Созданный класс UncorrelatedPoissonNoise
```

Рассмотрим как это звучит при низких уровнях «радиации».

```
amp = 0.001
framerate = 10000
duration = 1

signal = UncorrelatedPoissonNoise(amp=amp)
wave = signal.make_wave(duration=duration, framerate=framerate)
wave.make_audio()
```

Листинг 5.2: Создание звука

Звук действительно похож на звуки от счётчика Гейгера, будто бы находишься где-то в Припяти. Чтобы убедиться, что все работает, мы сравниваем ожидаемое количество частиц и фактическое количество:

```
1 expected = amp * framerate * duration
2 actual = sum(wave.ys)
3 print(expected, actual)
Листинг 5.3: Создание звука
```

Количество частиц в обоих случаях равняется 10. Теперь рассмотрим

полученный звук:

1 wave.plot()

Листинг 5.4: Визуализация звука

Рис. 5.1: Визуализация звука

Рассмотрим спектр мощности в логарифмическом масштабе:

```
spectrum = wave.make_spectrum()
spectrum.plot_power()
thinkplot.config(xlabel='Frequency (Hz)',

ylabel='Power',
scale='log',
yscale='log')
```

Листинг 5.5: Спектр мощности звука

Рис. 5.2: Спектр мощности звука

Рассмотрим наклон:

spectrum.estimate_slope().slope

Листинг 5.6: Наклон прямой

Похоже на белый шум, а крутизна близка к 0 (-0.0006437981022653128). При более высокой скорости поступления это больше похоже на белый шум:

```
amp = 1
framerate = 10000
duration = 1

signal = UncorrelatedPoissonNoise(amp=amp)
wave = signal.make_wave(duration=duration, framerate=framerate)
wave.make_audio()
```

Листинг 5.7: Создание нового звука

Построим его график.

wave.plot()

Листинг 5.8: Визуализация нового звука

Рис. 5.3: Визуализация нового звука

И спектр сходится на гауссовском шуме.

Листинг 5.9: Сравнение спектров

Рис. 5.4: Сравнение спектров

Упражнение 4.5

Вот весь процесс в функции: Создает розовый шум с помощью алгоритма Восса-Маккартни.

```
def voss(nrows, ncols=16):
     array = np.empty((nrows, ncols))
     array.fill(np.nan)
     array[0, :] = np.random.random(ncols)
     array[:, 0] = np.random.random(nrows)
     # the total number of changes is nrows
     n = nrows
     cols = np.random.geometric(0.5, n)
     cols[cols >= ncols] = 0
     rows = np.random.randint(nrows, size=n)
     array[rows, cols] = np.random.random(n)
     df = pd.DataFrame(array)
     df.fillna(method='ffill', axis=0, inplace=True)
     total = df.sum(axis=1)
     return total.values
                     Листинг 6.1: Создание функции
     Чтобы проверить это, я сгенерирую 12005 значений:
_{1} \text{ ys} = \text{voss}(12005)
2 ys
```

Листинг 6.2: Генерация значений

Теперь создадим из них звук:

```
wave = thinkdsp.Wave(ys)
wave.unbias()
wave.normalize()
```

Листинг 6.3: Создание звука

Теперь посмотрим на его визуализацию.

1 wave.plot()

Листинг 6.4: Визуализация звука

Рис. 6.1: Визуализация звука

Как и ожидалось, это больше похоже на случайное блуждание, чем на белый шум, но более случайное, чем на красный шум. Теперь рассмотрим спектр мощности:

```
spectrum = wave.make_spectrum()
spectrum.hs[0] = 0
spectrum.plot_power()
thinkplot.config(xlabel='Frequency (Hz)',
scale='log',
yscale='log')
Листинг 6.5: Спектр мощности звука
```


Рис. 6.2: Спектр мощности звука

Посмотрим на наклон:

spectrum.estimate_slope().slope

Листинг 6.6: Наклон прямой

Расчетный наклон близок к -1 (-1.0129573459835064).

Мы можем лучше понять средний спектр мощности, сгенерировав более длинную выборку:

```
1 seg_length = 40 * 124
2 iters = 100
3 wave = thinkdsp.Wave(voss(seg_length * iters))
4 len(wave)
```

Листинг 6.7: Генерация более длинной выборки

И используя метод Барлетта для вычисления среднего.

Листинг 6.8: Использование метода Барлетта

Это довольно близко к прямой линии с некоторой кривизной на самых высоких частотах, если рассматривать спектр мощности звука.

```
spectrum.plot_power()
2 thinkplot.config(xlabel='Frequency (Hz)',
                 xscale='log',
                 yscale='log')
```

Листинг 6.9: Спектр мощности звука

Рис. 6.3: Спектр мощности звука

Посмотрим на наклон:

spectrum.estimate_slope().slope

Листинг 6.10: Наклон прямой

Наклон теперь более близок к -1 (-1.0048368551745679).

Выводы

Во время выполнения лабораторной работы получены навыки работы с различными видами шумов. Также получены навыки создания этих шумов через различные данные.