

Marc Klinger, Andrew Taylor, Donggeun Tak, Sylvia Zhu 13.01.2022

marc.klinger@desy.de

GRB 190114C - Afterglow

GRB 190114C GRB 190829A GRB 180720B

one of the brightest GRB afterglows

- rich dataset
 - → Swift: XRT, BAT
 - → Fermi: GBM, LAT
- intermediate redshift (z = 0.42)
 - → VHE detection up to 40min!

Standard model: Long GRB

core collapse

 $\sigma(10^{10}cm)$

massive star

rotating

compact object $\sigma(10km \sim 10^6 cm)$

remnant II afterglow

relativistic plasma shell $\sigma(10^{16}cm\sim0.01lyr)$

Simple Box Assumption

- Homogeneous shell of electrons/positrons and photons
- relativistic shock
 - \rightarrow injection of non-thermal particles (ε_e, ζ_e)

- \rightarrow turbulent magnetic fields (ε_B)
- particles cool
- photons escape

see e.g. Piran 2005 for a detailed review

Characteristic values of blast wave parameters

Characteristic values of blast wave parameters

Electron spectrum

steady state:

$$\rightarrow N \sim Q(E) \tau(E)$$

power law injection spectral index $p \approx 2$

 \rightarrow weak field required to fit observed break $\varepsilon_{B} \sim 10^{-4} \leftrightarrow B \sim 0.6G$

Photon spectrum: 2 types of solutions

→ synchrotron self-Compton spectrum

1. double hump solution:

- → predicts dip: does this dip exist?
- \rightarrow requires large η , is this plausible?

2. single hump solution (syn. only)

- → predicts no dip
- → syn. burn off limit requires 2 field strengths, is this plausible?

see also GRB 190829A

→ LAT data crucial to distinguish! Are statistics good enough?

Conclusions

- GRB 190114C offers rich data set
- 2 types of possible solutions
 - → LAT data crucial to distinguish

next step: fit data to get most out of it!

Thank you for your attention!