(Q5)

(a)

Proof. By definition of symmetry, an entry in row i column j should equal the entry in row j column i.

This is a result of the Axiom of Commutativity.

(b)

Proof. Given the layout of the multiplication table, this means that

$$\forall a \in \mathbb{F}, (a \cdot 0) = (0 \cdot a) = 0$$

We can prove this as follows:

(Add. Iden.)
$$a \cdot 0 = (a \cdot 0) + 0$$

(Add. Inv.) $= (a \cdot 0) + (a \cdot 0 + (-a) \cdot 0)$
(Assoc.) $= (a \cdot 0 + a \cdot 0) + ((-a) \cdot 0)$
(Dist.) $= a \cdot (0 + 0) + (-a) \cdot 0$
(Add. Iden.) $= (0 \cdot a) + (0 \cdot (-a))$
(Add. Inv.) $= 0$

(c) This is a result of the uniqueness of each field element:

$$a + b = c + b \implies a = c$$

Proof. For some $a, b, c \in \mathbb{F}$, we have:

$$a+b=c+b \implies a+b+(-b)=c+b+(-b)$$

 $\implies a+0=c+0$
 $\implies a=c$

(d) This is also a result of the uniqueness of each field element:

$$a \cdot c = b \cdot c \implies a = b$$

Proof. For some $a, b, c \in \mathbb{F} \setminus \{0\}$, we have:

$$a \cdot b = c \cdot b \implies a \cdot b \cdot b^{-1} = c \cdot b \cdot b^{-1}$$

 $\implies a \cdot 1 = c \cdot 1$
 $\implies a = c$

(e) This set is not a field, as the properties addressed in (a), (c) and (d) are violated.