Student Information

Full Name: Alperen OVAK

Id Number: 2580801

Answer 1

(a) Let x_1, x_2, \ldots, x_m be m points in \mathbb{C} , and let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be non-negative coefficients summing up to 1 $(\sum_{i=1}^m \lambda_i = 1)$. Consider the linear combination

$$\sum_{i=1}^{m} \lambda_i x_i.$$

Since \mathbb{C} is convex, any convex combination of points in \mathbb{C} is also in \mathbb{C} . Therefore,

$$\sum_{i=1}^{m} \lambda_i x_i \in \mathbb{C}.$$

(b) Suppose $f \circ g$ is not convex. This means there exist points x_1 and x_2 in the domain of $f \circ g$ and $t \in [0,1]$ such that

$$f \circ g((1-t)x_1 + tx_2) > (1-t)(f \circ g(x_1)) + t(f \circ g(x_2)).$$

Now, because f is convex,

$$f((1-t)g(x_1) + tg(x_2)) \le (1-t)f(g(x_1)) + tf(g(x_2)),$$

contradicting the assumption. Therefore, $f \circ g$ must be convex.

(c)

Answer 2

(a) X is in this set because $X - X = \emptyset$.

If A is in this set, then X - A is either finite or \emptyset . However, the complement of A, X - A, is not necessarily in this set because if X - A is finite, then A might be infinite.

This set is not closed under countable unions. If we take countable unions of sets where X-U is finite, the result could be a set where X-U is infinite.

So, this set is not a σ -algebra on X.

(b)

(c) X is in this set because $X - X = \emptyset$.

If A is in this set, then X - A is either infinite, \emptyset , or X. However, the complement of A, X - A, is not necessarily in this set because if X - A is infinite, then A might be finite.

This set is not closed under countable unions. If we take countable unions of sets where X - U is infinite, the result could be a set where X - U is finite.

So, this set is not a σ -algebra on X.

Answer 3

(a) Let's consider the congruence $ax \equiv b \pmod{p}$. If there exists an integer solution $x = x_0$, then $ax_0 \equiv b \pmod{p}$. So $ax_0 - b$ is divisible by p. This implies there exists $y \in \mathbb{Z}$ such that $ax_0 - yp = b$.

Let $d = \gcd(a, p)$ (by Bezout's identity, there exist integers x_1 and y_1 such that $ax_1 + py_1 = d$). This implies:

$$\left(\frac{b}{d}\right)ax_1 + \left(\frac{b}{d}\right)py_1 = b$$

Then, we have:

$$ax + py = b$$

where x, y are integers. Since $d = \gcd(a, p)$ divides both p and a, it divides b too.

Therefore, $gcd(a, p) \mid b$ is a must.

- (b)
- (c)

Answer 4

(a) Let $Y = \bigcup_{i \in \mathbb{N}} Y_i$. The sets Y_i are countable; therefore, there exist surjective functions $f_i : \mathbb{N} \to Y_i$. By Cantor's first diagonal argument, it is known that $\mathbb{N} \times \mathbb{N}$ is countable. So let's define:

$$F: \mathbb{N} \times \mathbb{N} \to Y$$

$$(i,x)\mapsto f_i(x)$$

Per the definition of the union, this mapping is surjective. So, Y is indeed countable.

(b) Let's denote this set by X^{ω} . Then we will show that a function $g: \mathbb{Z}^+ \to X^{\omega}$ cannot be surjective to prove the uncountability of this set.

Let's denote this set by X^{ω} . We will show that a function $g: \mathbb{Z}^+ \to X^{\omega}$ cannot be surjective to prove the uncountability of this set.

For a function g defined as $g(n) = (x_{n1}, x_{n2}, \dots, x_{nn}, \dots)$ where each x_{ij} belongs to the set $X = \{a, b, \dots, z\}$, consider the element $y = (y_1, y_2, \dots) \in X^{\omega}$ given by:

$$y_n = \begin{cases} x_{nn} & \text{if } x_{nn} \neq a \\ b & \text{if } x_{nn} = a \end{cases}$$

In other words, y is constructed such that it differs from each g(n) by at least one coordinate. This means that y is not mapped to by g, and therefore, g cannot be surjective.

This argument generalizes to any countable product of a set X with |X| > 1. If X has |X| = k elements, then there are $k^{\mathbb{N}}$ distinct sequences in the countable product X^{ω} , making it uncountable.