Nonlinear Equations

Fixed point iterations

Given a function f, the root of f can be found as follow:

$$f(x)=0
ightarrow x-\phi(x)=0 \ x^{k+1}=\phi(x^k)$$

We want to solve
$$f=rac{t}{8}\left(63t^4-70t^2+15
ight)=0$$

Then we can focus our attention on the roots finding of $f_1 = 63t^4 - 70t^2 + 15$.

We recast $f_1(t)$ in term of $t-\phi(t)$.

Fixed point iterations

We consider different ways to go:

1. divide by 70t
$$\dfrac{63}{70}t^3-t+\dfrac{15}{70t}=0 \implies \phi_1=\dfrac{63}{70}t^3+\dfrac{15}{70t}$$

2. divide by
$$63t^3$$
 $t-rac{70}{63t}+rac{15}{63t^3}=0 \implies \phi_2=rac{70}{63t}-rac{15}{63t^3}$

3. multiply by t/15
$$\frac{63}{15}t^5 - \frac{70}{15}t^3 + t = 0 \implies \phi_3 = -\frac{63}{15}t^5 + \frac{70}{15}t^3$$

$$4. \quad 70t^2 = 63t^4 + 15 \implies t = \sqrt{\frac{63t^4 + 15}{70}} \implies \phi_4 = \sqrt{\frac{63t^4 + 15}{70}}$$

Recall

Proposition 1. (Global convergence)

- 1. Assume that $\phi(x)$ is continuous on [a,b] and such that $\phi(x) \in [a,b]$ for all $x \in [a,b]$; then there exists at least one fixed point $\alpha \in [a,b]$ of ϕ .
- 2. If $\exists L < 1$ such that $|\phi(x_1) \phi(x_2)| \leq L|x_1 x_2| \ \forall x_1, x_2 \in [a, b]$,

then there exists a unique fixed point $\alpha \in [a, b]$ and the sequence $x^{(k+1)} = \phi(x^{(k)}), k \geq 0$ converges to α , for any initial guess $x^{(0)} \in [a, b]$.

Recall

Remark 1.

If $\phi(x)$ is differentiable in [a,b] and

 $\exists K < 1 \text{ such that } |\phi'(x)| \leq K \ \forall x \in [a, b],$

then the condion 2 of the proposal (1) is satisfied. This assumption is stronger, but is more often used in practice because it is easier to check.

Proposition 2. (Local convergence - Theorem 2.1 in the book) Let ϕ be a continuous and differentiable function on [a,b] and α be a fixed point of ϕ . If $|\phi'(\alpha)| < 1$, then there exists $\delta > 0$ such that, for all $x^{(0)}$, $|x^{(0)} - \alpha| \le \delta$, the sequence $\{x^{(k)}\}$ defined by $x^{(k+1)} = \phi(x^{(k)})$ converges to α when $k \to \infty$. Moreover, it holds

$$\lim_{k \to \infty} \frac{x^{(k+1)} - \alpha}{x^{(k)} - \alpha} = \phi'(\alpha).$$

Note that, if $0 < |\phi'(\alpha)| < 1$, then for any constant C such that $|\phi'(\alpha)| < C < 1$, if k is large enough, we have:

$$|x^{(k+1)} - \alpha| \le C |x^{(k)} - \alpha|.$$

Recall

Proposition 3. (Proposition 2.2 in the book)

Let ϕ be a twice differentiable on [a,b] and α be a fixed point of ϕ . Let us consider that $x^{(0)}$ converges locally. If $\phi'(\alpha) = 0$ and $\phi''(\alpha) \neq 0$, then the fixed point interations converges with order 2 and

$$\lim_{k \to \infty} \frac{x^{(k+1)} - \alpha}{(x^{(k)} - \alpha)^2} = \frac{\phi''(\alpha)}{2}.$$

Least squares

Consider n+1 points x0, x1, ..., xn and n+1 values y0, y1, ..., yn. If n is large, interpolation (polynomial of degree n) can show large oscillations.

Instead of interpolating the values, it is possible to define a **polynomial of degree m** < n that approximate the data at best.

The **least square polynomial** is the polynomial of degree m that **minimize distance to the data**:

$$\sum_{i=0}^{n} |y_i - \tilde{f}_m(x_i)|^2 \le \sum_{i=0}^{n} |y_i - p_m(x_i)|^2 \qquad \forall p_m(x) \in \mathbb{P}_m$$

Least squares

If the polynomial is:

$$\tilde{f}_m(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m$$

We can define the function:

$$\Phi(a_0, a_1, \dots, a_m) = \sum_{i=0}^{m} |y_i - (a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_m x_i^m)|^2$$

Then the coefficients are the solutions of:

$$\frac{\partial \Phi}{\partial a_k} = 0, \qquad k = 0, ..., m,$$

Least squares

The solution of the previous problem is equivalent to solve:

$$B^T B \mathbf{a} = B^T \tilde{\mathbf{y}}.$$

where

$$B = \begin{pmatrix} 1 & x_0 & \dots & x_0^m \\ 1 & x_1 & \dots & x_1^m \\ \vdots & & & \vdots \\ 1 & x_n & \dots & x_n^m \end{pmatrix}$$

Least squares: exercises

The result of census of the population of Switzerland between 1900 and 2010 (in thousands) is summarized in the table.

- Is it possible to estimate the number of inhabitants of Switzerland during the year when there has not been census, for example in 1945 and 1975?
- Is it possible to predict the number of inhabitants of Switzerland in 2020?

year	population
1900	3315
1910	3753
1920	3880
1930	4066
1941	4266
1950	4715
1960	5429
1970	6270
1980	6366
1990	6874
2000	7288
2010	7783