### Interactions of cells with their environment; Engineering materials with biological recognition

**Last time:** Polyelectrolyte hydrogel swelling thermodynamics

Applications of polyelectrolyte hydrogels: BioMEMS and drug delivery

**Today**: Biological recognition *in vivo* 

Engineering biological recognition of biomaterials: controlling cell adhesion, migration,

and cytokine signaling

**Reading**: Y. Hirano and D.J. Mooney, 'Peptide and protein presenting materials for tissue

engineering,' Adv. Mater. 16(1) 17-25 (2004)

Discher, Janmey, Wang, 'Tissue Cells Feel and Respond to the Stiffness of Their Substrate,' *Science* **310** 1139-1143 (2005))

**Supplementary Reading**: 'The Extracellular Matrix,' pp. 1124-1150, *Molecular Biology of the Cell*, Lodish et al.

#### **ANNOUNCEMENTS:**

# In situ formability: example: 'printable' gels

INICITET PRINTING:

- EJECT UQVID TO

Collagen printed on an agarose gel substrate:





MATERIAL VISCOSITY



Figure 14 in Burg, K. J., and T. Boland. "Minimally Invasive Tissue Engineering Composites and Cell Printing." *IEEE Eng. Med. Biol.* 22, no. 5 (2003): 84-91.

## Formability of hydrogels for tissue engineering



Structured porous replica

Opin. Coll. Interf. Sci. 5, 56 (2000)

Lecture 11 Spring 2006

### Scaffolds with ordered, highly interconnected porosity

#### Brightfield image:



**PEG hydrogel scaffolds** 



#### Confocal fluorescence:





A. Stachowiak et al, *Advanced Materials* (2005)

# Degradable hydrogels: degradation by hydrolysis of cross-links (mechanism I)

MOST COMMON ROUTE TO

XLINK DECEMPATION

THERMAL BREAKDOWN

OF NONCOVALENT JUNCTIONS

(USUALLY RELATIVELY RAPID)

# Dextran-based degradable hydrogels: degradation by hydrolysis of cross-links



## Tissue barriers/conformal coatings

#### **Conformal coatings**

## Applications: tissue barriers

### **Tissue barriers and conformal coatings**





Figure by MIT OCW.

(After An and Hubbell 2000)

# Engineering Biological Recognition in Synthetic Materials

### Interactions of cells with their environment



## Incorporation of ECM signals in biomaterials

Synthetic biomaterial

Peptides or proteins tethered to biomaterial surface, examples of (1) and (3)

(2) Matrix remodeling:

- 1. Cell adhesion/migration
- 2. Matrix remodeling
- 3. Cytokine signaling



Lecture 11 Spring 2006

# The insoluble surroundings of the cell: Functions of the native extracellular matrix (ECM):

- Mechanical support
- Cues for cell survival/function
  - Anchorage-dependent cell growth
  - Differentiation cues
- Organization of tissue

# Collagen and Adhesions Proteins: Structure and Function

- Sixt et al. *Immunity* 22 (2005):19-25.
- Friedl et al. Eur. J. Immunol. 28 (1998): 2331.
- Lodish et al. Molecular Cell Biology

**Cell adhesion** 

# Controlling cell attachment and migration Structure of integrins:

12-15 nm **–** Region Actin filaments (cytoskeleton) integrin Cysteinerich Repeats Cell membrane Plasma Membrane Figure by MIT OCW. (Lodish, Molecular Cell Biology) (Extracellular space) Adhesion protein **ECM** fiber Lecture 11 Spring 2006 14



Adhesive interactions can play multiple roles simultaneously: supporting adhesion, delivery of biochemical signals, or delivering biomechanical signals



SIGNALING MM BE REGULATED BY PHYSICAL DICTRIBUTION OF ADHESION RECEPTORS



#### **Cell adhesion**

# Cells sense and respond to the stiffness of their substrate

#### Cell adhesion on biomaterials:

Cell responses to non-biological, synthetic biomaterials



- 1. Protein adsorption
- 2. Denaturation (unfolding)?
- 3. Cell responses to expected and unexpected epitopes
- 4. Reorganization?
  - Vroman effect: protein exchange

## Control of cell attachment by mechanical properties of substrate

Polyelectrolyte multilayers (Rubner lab MIT):

CELL MUST BE CAPABLE OF GENERATING TRACTION



Figure by MIT OCW.

# Controlling cell response to biomaterials by building in ECM cues on a 'blank slate' background

## Design of protein adsorption-resistant surfaces

## Design of protein adsorption-resistant surfaces

## Limiting nonspecific cell adhesion

#### Methyl methacrylate



Poly(ethylene glycol) methacrylates



# Tailoring cell adhesion on biomaterials via immobilized ligands

Peptide integrin-binding GRGDSP sequence

PEO short 6-9 unit side chains for protein resistance

**PMMA** backbone anchors hydrophilic side chains

# Peptides used to modulate cell adhesion on biomaterials

| Peptide    | Derived from       | Conjugate                               | Role      |                     |
|------------|--------------------|-----------------------------------------|-----------|---------------------|
| sequence   |                    | receptor                                |           | * DATHOS MARZ       |
| IKVAV      | Laminin α-chain    | LBP110 (110 KDa                         | Cell-ECM  | - PETIDES NORE      |
|            |                    | laminin binding                         | adhesion  | ROBURT THAN INTACT  |
|            |                    | protein)                                |           |                     |
| RGD        | Laminin α-chain,   | Multiple integrins                      | Cell-ECM  | PROTEINS            |
|            | fibronectin,       |                                         | adhesion  | WAR BOURNANCE       |
|            | collagen           |                                         |           | -KD OF ICAL SHOPING |
| YIGSR      | Laminin β1-chain   | $\alpha_1\beta_1$ and $\alpha_3\beta_1$ | Cell-ECM  | USULUM SIGNIFICANTA |
|            |                    | integrins                               | adhesion  |                     |
| RNIAEIIKDI | Laminin γ-chain    | unknown                                 | Cell-ECM  | BEDUCED:            |
|            | ·                  |                                         | adhesion  | Pans                |
| HAV        | N-cadherin         | N-cadherin                              | Cell-cell | e.g. RGDS           |
|            |                    |                                         | adhesion  | V\$,                |
| DGEA       | Type I collagen    | $\alpha_2\beta_1$ integrin              | Cell-ECM  | FN                  |
|            |                    |                                         | adhesion  |                     |
| VAPG       | Elastase           | Elastase receptor                       | Cell-ECM  |                     |
|            |                    |                                         | adhesion  | KD 1000-402D        |
| KQAGDV     | Fibrinogen γ-chain | $\beta_3$ integrins                     | Cell-ECM  | KD 1000-FOLD        |
|            |                    |                                         | adhesion  | FOR PEPTIDE         |
|            |                    |                                         |           | FUE LELING          |



Lecture 11 Spring 2006

# Cells respond to control of ligand density at the surface

Figure 11 in Irvine, D. J., A. V. Ruzette, A. M. Mayes, and L. G. Griffith. "Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 2. Surface segregation of comb polymers in polylactide." *Biomacromolecules* 2 (2001): 545-56.

Figure 12 in Irvine, D. J., A. V. Ruzette, A. M. Mayes, and L. G. Griffith. "Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 2. Surface segregation of comb polymers in polylactide." *Biomacromolecules* 2 (2001): 545-56.

# Cells respond to control of ligand density at the surface



Figure by MIT OCW.

### **Further Reading**

- 1. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. & San Antonio, J. D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. *J Biol Chem* **277**, 4223-31 (2002).
- Lemire, J. M., Merrilees, M. J., Braun, K. R. & Wight, T. N. Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro. *J Cell Physiol* 190, 38-45 (2002).
- 3. Hubbell, J. A., Massia, S. P. & Drumheller, P. D. Surface-grafted cell-binding peptides in tissue engineering of the vascular graft. *Ann N Y Acad Sci* **665**, 253-8 (1992).
- 4. Drumheller, P. D. & Hubbell, J. A. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. *Anal Biochem* **222**, 380-8 (1994).
- 5. Kuhl, P. R. & Griffith-Cima, L. G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. *Nat Med* **2**, 1022-7 (1996).
- Cook, A. D. et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. *J Biomed Mater Res* 35, 513-23 (1997).
- 7. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. *Biomaterials* **22**, 439-44 (2001).
- 8. de Gennes, P. G. Conformations of polymers attached to an interface. *Macromolecules* **13**, 1069-1075 (1980).
- 9. Milner, S. T. Polymer brushes. *Science* **251**, 905-914 (1991).
- 10. Mendelsohn, J. D., Yang, S. Y., Hiller, J., Hochbaum, A. I. & Rubner, M. F. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. *Biomacromolecules* **4**, 96-106 (2003).
- 11. Banerjee, P., Irvine, D. J., Mayes, A. M. & Griffith, L. G. Polymer latexes for cell-resistant and cell-interactive surfaces. *J Biomed Mater Res* **50**, 331-9. (2000).
- 12. Irvine, D. J., Mayes, A. M. & Griffith, L. G. Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 1. Synthesis and Characterization of Comb Thin Films. *Biomacromol.* **2**, 85-94 (2001).
- 13. Irvine, D. J. et al. Comparison of tethered star and linear poly(ethylene oxide) for control of biomaterials surface properties. *J Biomed Mater Res* **40**, 498-509. (1998).
- 14. Irvine, D. J., Ruzette, A. V., Mayes, A. M. & Griffith, L. G. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide. *Biomacromolecules* **2**, 545-56 (2001).
- 15. Patel, N. et al. Spatially controlled cell engineering on biodegradable polymer surfaces. *Faseb Journal* **12**, 1447-1454 (1998).
- 16. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. *Nature* **385**, 537-40 (1997).