

Packet Tracer - Criação de sub-redes no cenário

Kelvin de Lima Rodrigues - P8 de Informática

Tabela de Endereçamento

Dispositivo	Interface	Endereço IP	Máscara de sub-rede	Gateway padrão
R1	G0/0	192.168.100.1	255.255.255.224	N/A
	G0/1	192.168.100.33	255.255.255.224	N/A
	S0/0/0	192.168.100.129	255.255.255.224	N/A
R2	G0/0	192.168.100.65	255.255.255.224	N/A
	G0/1	192.168.100.97	255.255.255.224	N/A
	S0/0/0	192.168.100.158	255.255.255.224	N/A
S1	VLAN 1	192.168.100.2	255.255.255.224	192.168.100.1
S2	VLAN 1	192.168.100.34	255.255.255.224	192.168.100.33
S3	VLAN 1	192.168.100.66	255.255.255.224	192.168.100.65
S4	VLAN 1	192.168.100.98	255.255.255.224	192.168.100.97
PC1	NIC	192.168.100.30	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.62	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.94	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.126	255.255.255.224	192.168.100.97

Objetivos

Parte 1: Projetar um Esquema de Endereçamento IP

Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

Cenário

Nesta atividade, você recebe o endereço de rede 192.168.100.0/24 para sub-rede e fornece o endereço IP para a rede Packet Tracer. Cada rede local requer um espaço suficiente para, no mínimo, 25 endereços para dispositivos finais, o comutador e o roteador. A conexão entre R1 e R2 exigirá um endereço IP para cada extremidade do link.

Instruções

Parte 1: Projetar um Esquema de Endereçamento IP

Etapa 1: Divida a rede 192.168.100.0/24 no número apropriado de sub-redes.

a. Com base na topologia, quantas sub-redes são necessárias?

8 sub-redes

b. Quantos bits devem ser emprestados para comportar o número de sub-redes na tabela de topologia?

3 bits

c. Quantas sub-redes são criadas?

8 sub-redes

d. Quantos hosts utilizáveis são criados por sub-rede?

30 hosts utilizáveis

Observação: se a resposta for menos que os 25 hosts necessários, significa que você pegou emprestado bits demais.

e. Calcule o valor binário das cinco primeiras sub-redes. As duas primeiras sub-redes foram feitas para você.

Sub-re de	Endereço de rede	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

f. Calcule o valor binário e o valor decimal da nova máscara de sub-rede.

Primeiro Octeto	Segundo octeto	Terceiro octeto	Bit de Máscar a 7	Bit de Más cara 6	Bit de Más cara 5	Bit Más cara 4	Bit Más cara 3	Bit de Más cara 2	Bit Más cara 1	Bit de Más cara 0
11111111	11111111	11111111	1	1	1	0	0	0	0	0
Primeiro octeto decimal	Segundo octeto decimal	Terceiro octeto decimal	Quarto octeto decimal							
255.	255.	255.	224							

g. Preencha a **Tabela de Sub-Redes**,listando o valor decimal de todas as sub-redes disponíveis, o primeiro e o último host utilizáveis e o endereço de broadcast. Repita até que todos os endereços estejam listados.

Observação: não é necessário usar todas as linhas.

Tabela de Sub-Redes

Número da Sub-Red e	Endereço da Sub-Rede	Primeiro Endereço de Host Utilizável	Último Endereço de Host Utilizável	Endereço de Broadcast
0	192.168.100.0	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128	192.168.100.129	192.168.100.158	192.168.100.159
5				
6				
7				
8				
9				
10				

Etapa 2: Atribua as sub-redes à rede mostrada na topologia.

- a. Atribua a sub-Rede 0 à LAN conectada à interface GigabitEthernet 0/0 de R1: 192.168.100.0 /27
- b. Atribua a Sub-Rede 1 à LAN conectada à interface GigabitEthernet 0/1 de R1: 192.168.100.32 /27
- c. Atribua a Sub-Rede 2 à LAN conectada à interface GigabitEthernet 0/0 de R2: 192.168.100.64 /27
- d. Atribua a Sub-Rede 3 à LAN conectada à interface GigabitEthernet 0/1 de R2: 192.168.100.96 /27
- e. Atribua a Sub-Rede 4 ao link WAN entre R1 e R2: 192.168.100.128 /27

Etapa 3: Documente o esquema de endereçamento.

Preencha a Addressing Table utilizando as seguintes diretrizes:

- a. Atribua os primeiros endereços IP utilizáveis em cada sub-rede a R1 para os dois links de LAN e WAN.
- Atribua os primeiros endereços IP utilizáveis a R2 para os links LAN. Atribua o último endereço IP utilizável para o link WAN.
- c. Atribua o segundo endereço IP utilizável nas sub-redes anexadas aos comutadores.
- d. Atribua os últimos endereços IP utilizáveis aos PCs em cada sub-rede.

Parte 2: Parte 2: Atribuir Endereços IP a Dispositivos e Verificar a Conectividade

A maior parte do endereçamento IP já está configurada nesta rede. Implemente as etapas a seguir para concluir a configuração do endereçamento. O roteamento dinâmico EIGRP já está configurado entre R1 e R2.

Etapa 1: Configure interfaces LAN R1.

- a. Configure as duas interfaces de rede local com os endereços da tabela de endereçamento.
- b. Configure as interfaces para que os hosts nas LANs tenham conectividade com o gateway padrão

Etapa 2: Configure o endereçamento IP no S3.

- a. Configure a interface VLAN1 do switch com endereçamento.
- b. Configure o switch com o endereço de gateway padrão.

Etapa 3: Configure PC4.

Configure o PC4 com endereços de host e gateway padrão .

Etapa 4: Verifique a conectividade.

Você só pode verificar a conectividade de R1, S3 e PC4. Entretanto, deve conseguir fazer ping em cada endereço IP listado na **Tabela de Endereçamento**.

```
C:\>ping 192.168.100.62
Pinging 192.168.100.62 with 32 bytes of data:
Request timed out.
Reply from 192.168.100.62: bytes=32 time=4ms TTL=126
Reply from 192.168.100.62: bytes=32 time=5ms TTL=126
Reply from 192.168.100.62: bytes=32 time=7ms TTL=126
Ping statistics for 192.168.100.62:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 4ms, Maximum = 7ms, Average = 5ms
C:\>ping 192.168.100.94
Pinging 192.168.100.94 with 32 bytes of data:
Request timed out.
Reply from 192.168.100.94: bytes=32 time<1ms TTL=127
Reply from 192.168.100.94: bytes=32 time<1ms TTL=127
Reply from 192.168.100.94: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.100.94:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.100.34
Pinging 192.168.100.34 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 192.168.100.34: bytes=32 time=5ms TTL=253
```

```
C:\>ping 192.168.100.34

Pinging 192.168.100.34 with 32 bytes of data:

Request timed out.

Request timed out.

Reply from 192.168.100.34: bytes=32 time=5ms TTL=253

Reply from 192.168.100.34: bytes=32 time=7ms TTL=253

Ping statistics for 192.168.100.34:

Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),

Approximate round trip times in milli-seconds:

Minimum = 5ms, Maximum = 7ms, Average = 6ms

C:\>ping 192.168.100.30

Pinging 192.168.100.30 with 32 bytes of data:

Request timed out.

Reply from 192.168.100.30: bytes=32 time=1ms TTL=126

Reply from 192.168.100.30: bytes=32 time=1ms TTL=126

Reply from 192.168.100.30: bytes=32 time=1ms TTL=126

Ping statistics for 192.168.100.30:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 1ms, Maximum = 5ms, Average = 2ms
```

```
C:\>ping 192.168.100.97
Pinging 192.168.100.97 with 32 bytes of data:
Reply from 192.168.100.97: bytes=32 time<1ms TTL=255
Reply from 192.168.100.97: bytes=32 time<1ms TTL=255
Reply from 192.168.100.97: bytes=32 time<1ms TTL=255
Reply from 192.168.100.97: bytes=32 time=8ms TTL=255
Ping statistics for 192.168.100.97:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 8ms, Average = 2ms
C:\>ping 192.168.100.158
Pinging 192.168.100.158 with 32 bytes of data:
Reply from 192.168.100.158: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.100.158:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.100.2
Pinging 192.168.100.2 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 192.168.100.2: bytes=32 time=7ms TTL=253
Reply from 192.168.100.2: bytes=32 time=5ms TTL=253
Ping statistics for 192.168.100.2:
    Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),
Approximate round trip times in milli-seconds:
   Minimum = 5ms. Maximum = 7ms. Average = 6ms
```

```
C:\>ping 192.168.100.129
Pinging 192.168.100.129 with 32 bytes of data:
Reply from 192.168.100.129: bytes=32 time=9ms TTL=254
Reply from 192.168.100.129: bytes=32 time=6ms TTL=254
Reply from 192.168.100.129: bytes=32 time=7ms TTL=254
Reply from 192.168.100.129: bytes=32 time=7ms TTL=254
Ping statistics for 192.168.100.129:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 6ms, Maximum = 9ms, Average = 7ms
C:\>ping 192.168.100.65
Pinging 192.168.100.65 with 32 bytes of data:
Reply from 192.168.100.65: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.100.65:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.100.1
Pinging 192.168.100.1 with 32 bytes of data:
Reply from 192.168.100.1: bytes=32 time=29ms TTL=254
Reply from 192.168.100.1: bytes=32 time=9ms TTL=254
Reply from 192.168.100.1: bytes=32 time=5ms TTL=254
Reply from 192.168.100.1: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.100.1:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 29ms, Average = 11ms
C:\>ping 192.168.100.33
Pinging 192.168.100.33 with 32 bytes of data:
Reply from 192.168.100.33: bytes=32 time=8ms TTL=254
Reply from 192.168.100.33: bytes=32 time=1ms TTL=254
Reply from 192.168.100.33: bytes=32 time=11ms TTL=254
Reply from 192.168.100.33: bytes=32 time=8ms TTL=254
Ping statistics for 192.168.100.33:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 11ms, Average = 7ms
```

```
C:\>ping 192.168.100.126
Pinging 192.168.100.126 with 32 bytes of data:
Reply from 192.168.100.126: bytes=32 time=6ms TTL=128
Reply from 192.168.100.126: bytes=32 time=5ms TTL=128
Reply from 192.168.100.126: bytes=32 time=4ms TTL=128
Reply from 192.168.100.126: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.100.126:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 6ms, Average = 3ms
C:\>ping 192.168.100.66
Pinging 192.168.100.66 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 192.168.100.66: bytes=32 time<1ms TTL=254
Reply from 192.168.100.66: bytes=32 time<1ms TTL=254
Ping statistics for 192.168.100.66:
   Packets: Sent = 4, Received = 2, Lost = 2 (50% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.100.98
Pinging 192.168.100.98 with 32 bytes of data:
Request timed out.
Reply from 192.168.100.98: bytes=32 time<1ms TTL=255
Reply from 192.168.100.98: bytes=32 time<1ms TTL=255
Reply from 192.168.100.98: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.100.98:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms Maximum = Oms
```