MM54HC190/MM74HC190 Synchronous Decade Up/Down Counters with Mode Control MM54HC191/MM74HC191 Synchronous Binary Up/Down Counters with Mode Control General Description

These high speed synchronous counters utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of CMOS technology, along with the speeds of low power Schottky TTL.

These circuits are synchronous, reversible, up/down counters. The MM54HC191/MM74HC191 are 4-bit binary counters and the MM54HC190/MM74HC190 are BCD counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-

N dividers by simply modifying the count length with the preset inputs.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Features

- Level changes on Enable or Down/Up can be made regardless of the level of the clock input
- Wide power supply range: 2-6V
- Low quiescent supply current: 80 μA maximum (74HC Series)
- Low input current: 1 µA maximum

Connection Diagram

Load	Enable G	Down/ Up	Clock	Function
Н	L	L	1	Count Up
Н	L	Н	1 ↑	Count Down
L	Х	Χ	Х	Load
Н	Н	Χ	X	No Change

Asynchronous inputs Low input to load sets $Q_A = A_B$ $Q_B = B$, $Q_C = C$, and $Q_D = D$

Order Number MM54HC190/191 or MM74HC190/191

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{\rm CC}$ + 1.5 V
DC Output Voltage (V _{OUT})	-0.5 to $V_{\rm CC}$ + 0.5 V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Power Dissipation (P_D)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T_L) (Soldering 10 seconds)
 260°C

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
$ \begin{array}{ll} \text{Input Rise or Fall Times} \\ (t_r,t_f) & V_{CC}\!=\!2.0V \\ V_{CC}\!=\!4.5V \\ V_{CC}\!=\!6.0V \end{array} $		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C ; ceramic "J" package: -12 mW/°C from 100°C to 125°C . Note 4: For a power supply of $5\text{V} \pm 10^{\circ}\text{K}$ the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5\text{V}$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

Symbol	Parameter	From (Input)	To (Output)	Тур	Units
f _{MAX}	Maximum Clock Frequency			40	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Load	Q _A , Q _B Q _C , Q _D	30	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Data A, B, C, D	Q _A , Q _B Q _C , Q _D	27	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Ripple Clock	16	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Q _A , Q _B Q _C , Q _D	24	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Max/Min	30	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Down/Up	Ripple Clock	29	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Down/Up	Max/Min	22	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Time	Enable	Ripple Clock	22	ns
t _W	Minimum Clock, Clear or Load Input Pulse Width			10	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ V \ \text{to 6.0V}, \ C_L = 50 \ \text{pF}, \ t_f = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	Parameter	From (Input)	To (Output)	I Vcc I		25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
		(input)	(Guipui)		Тур		Guaranteed l	Limits	
f _{MAX}	Maximum Clock			2.0V	9	4.0	3.5	2.6	MHz
	Frequency			4.5V	30	20	16	13	MHz
				6.0V	36	24	19	15	MHz
t _{PLH} , t _{PHL}	Maximum Propagation	Load	Q _A , Q _B	2.0V	80	220	275	330	ns
	Delay Time		Q_C, Q_D	4.5V	27	44	55	66	ns
	-			6.0V	21	37	47	56	ns
t _{PLH} , t _{PHL}	Maximum Propagation	Data A,	Q _A , Q _B	2.0V	71	200	250	300	ns
	Delay Time	B, C, D	Q_C, Q_D	4.5V	25	40	50	60	ns
				6.0V	19	34	43	51	ns
t _{PLH} , t _{PHL}	Maximum Propagation	Clock	Ripple	2.0V	44	125	155	190	ns
	Delay Time		Clock	4.5V	25	25	31	38	ns
				6.0V	14	21	26	32	ns
t _{PLH} , t _{PHL}	Maximum Propagation	Clock	Q _A , Q _B	2.0V	83	215	270	325	ns
	Delay Time		Q_C, Q_D	4.5V	29	43	54	65	ns
				6.0V	22	37	46	55	ns

Symbol	Parameter	From	To	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
		(Input)	(Output)			Тур		Guaranteed		
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Clock	Max/Min		2.0V 4.5V 6.0V	125 41 31	255 51 43	320 64 54	385 77 65	ns ns ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay Time	Down/Up	Ripple Clock		2.0V 4.5V 6.0V	90 30 24	210 42 36	265 53 45	315 63 54	ns ns ns
t _{PLH} ,t _{PHL}	Maximum Propagation Delay Time	Down/Up	Max/Min		2.0V 4.5V 6.0V	88 30 23	190 38 32	240 48 41	285 57 48	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Time	Enable	Ripple Clock		2.0V 4.5V 6.0V	50 18 14	125 25 21	155 31 26	190 38 32	ns ns ns
t _W	Minimum Clock, Load or Clear Input Pulse Width				2.0V 4.5V 6.0V	36 12 9	125 25 21	155 31 26	190 38 32	ns ns ns
t _S	Minimum Setup Time	Data	Load		2.0V 4.5V 6.0V	50 14 10	100 20 17	125 25 21	150 30 26	ns ns ns
t _H	Data Hold Time	Load	Data		2.0V 4.5V 6.0V	-16 -3 -2	25 5 5	30 6 6	40 8 7	ns ns ns
ts	Minimum Setup Time	Down/Up	Clock		2.0V 4.5V 6.0V	62 18 14	150 30 26	190 38 33	225 48 38	ns ns ns
t _H	Minimum Hold Time	Clock	Down/Up		2.0V 4.5V 6.0V	-23 -5 -4	0 0	0 0 0	0 0 0	ns ns ns
t _S	Minimum Setup Time	Enable	Clock		2.0V 4.5V 6.0V	28 10 7	100 20 17	125 25 21	150 30 26	ns ns ns
t _H	Minimum Hold Time	Clock	Enable		2.0V 4.5V 6.0V	-11 -5 -3	0 0 0	0 0 0	0 0 0	ns ns ns
t _{rem}	Minimum Removal Time	Load	Clock		2.0V 4.5V 6.0V	1 1 0	25 5 5	30 6 6	40 8 7	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time				2.0V 4.5V 6.0V	30 10 9	75 15 13	95 19 16	110 22 19	s ns ns
t _W	Minimum Load Pulse Width				2.0V 4.5V 6.0V	53 15 12	100 20 17	125 25 21	150 30 26	ns ns ns
C _{IN}	Input Capacitance					5	10	10	10	pF
C _{PD}	Power Dissipation Capacitance (Note 5)					35				pF

Timing Diagrams

'HC190 Synchronous Decade Counters Typical Load, Count, and Inhibit Sequences

TL/F/5322-4

Sequence:

- (1) Load (preset) to BCD seven
 (2) Count up to eight, nine, zero, one and two
- (3) Inhibit
- (4) Count down to one, zero, nine, eight, and seven

'HC191 Synchronous Binary Counters Typical Load, Count, and Inhibit Sequence

TL/F/5322-5

Sequence:

- (1) Load (preset) to binary thirteen
- (2) Count up to fourteen, fifteen, zero, one, and two
- (3) Inhibit
- (4) Count down to one, zero, fifteen, fourteen, and thirteen

Order Number MM74HC190N or MM74HC191N NS Package N16E

0.050 ± 0.010 (1.270 ± 0.254)

90° ± 4° TYP

0.030 ± 0.015 (0.762 ± 0.381) 0.100 ± 0.010

(2.540 ± 0.254) TYP

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

0.125 - 0.150 (3.175 - 3.810)

0.014 - 0.023

(0.356 = 0.584) TYP

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

0.280 (7.112) MIN

(0.325 +0.040 -0.015

(8.255 +1.016 -0.381)

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

 $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP

N16E (REV F)