Mecánica Analítica Computacional

Vibraciones en sistemas discretos | Múltiples grados de libertad

- 1. En el sistema de la figura $l = 0.5 \,\mathrm{m}, \, k_1 = k_2 = k = 2 \times 10^3 \,\mathrm{N} \,\mathrm{m}^{-1} \,\mathrm{y}$ $m_1 = m_2 = m_3 = m = 1$ kg. Asumiendo pequeñas las oscilaciones en torno al cero de las coordenadas indicadas:
 - a) obtenga las ecuaciones de Euler-Lagrange,
 - b) escríbalas en forma matricial (matrices M, K), y
 - c) obtenga las frecuencias naturales de oscilación del sistema.

2. Péndulo de torsión compuesto

El sistema de la figura consiste en un eje atraviesa tres discos que tienen por momentos de inercia I_1, I_2 e I_3 todos de igual magnitud $1 \times 10^3 \,\mathrm{kg}\,\mathrm{m}^2$. El eje de acero tiene un diámetro $d = 0.01 \,\mathrm{m}$ y sus secciones longitudes de $l_1 = l_2 = l_3 = 0.5 \,\mathrm{m}.$

Recordemos que para una coordenada angular θ la ecuación de Euler-Lagrange es

$$\Gamma \dot{\theta} + \kappa \theta + I \ddot{\theta} = \tau,$$

donde Γ en la fricción torsional, I el momento de inercia, τ el torque aplicado. κ es la rigidez torsional (torsional stiffness) o coeficiente de torsión que responde al torque restitutivo que ejerce la pieza al ser torcida en un ángulo unidad, $\tau_{\text{restitutivo}} = -\kappa \theta$ y su magnitud la determina

$$\kappa = \frac{GJ}{l},$$

donde l es la longitud de la pieza, G el módulo de cilladura (shear modulus) específico de cada material, y Jes el módulo o momento de torsión de la sección geométrica transversal a la dirección de $\vec{\tau}$. Para una sección circular J es igual al segundo momento del área, o momento de inercia polar

$$J_{zz} = J_{xx} + J_{yy} = \frac{\pi r^4}{2} = \frac{\pi d^4}{32}.$$

Según el documento Mechanical Properties of Structural Steels publicado por National Institute of Standards and Technology estadounidense, para el acero estructural de las torres 1 y 2 del World Trade Center de Nueva York desaparecidas el año 2001,

$$G = g_0 + g_1 T + g_2 T^2 + g_3 T^3 + g_4 T^4 + g_5 T^5$$

 $g_0 = 80,005\,922\,\text{GPa}$
 $g_1 = -0.018\,303\,811\,\text{GPa}\,^{\circ}\text{C}^{-1}$

$$g_1 = -0.018303811 \,\text{GPa} \,\text{C}^{-1}$$

$$g_2 = -1,5650288 \times 10^{-5} \,\mathrm{GPa} \,\mathrm{^{\circ}C^{-2}}$$

$$g_3 = -1,516\,092\,1 \times 10^{-8}\,\mathrm{GPa}\,^{\circ}\mathrm{C}^{-3}$$

$$g_4 = -1,6242911 \times 10^{-11} \,\mathrm{GPa}\,^{\circ}\mathrm{C}^{-4}$$

$$g_5 = 7,7277543 \times 10^{-15} \,\mathrm{GPa}\,^{\circ}\mathrm{C}^{-5}$$

Descartando la fricción rotacional Γ :

- a) obtenga las ecuaciones de Euler-Lagrange,
- b) escríbalas en forma matricial (matrices M, K), y
- c) obtenga las frecuencias naturales de oscilación del sistema.