Pre-empts	Pre-empts		
Restrictions for CS2040S	Avoid Java "advanced" features like Lambda expressions, Type inferences (var), Default, static private methods in an interface Do not use libraries if they make the problem set easier Do not use libraries unless the problem set specifically says you can		
Considerations	Only makes code shorter Little extra functionality Often hide what is really happening May or may not make code harder / easier to read		
Goal of writing code in CS2040S	Correct / Bug-Free Easy to read / understand Efficient Submitted by deadline Short		
Advice	Make your code intentional (Avoid default / non-explicit behaviours)		

OOP Paradigm (Same concept as CS2030S, different applications)		
Abstraction	User-centric, information on a need-to-know basis,	
	hide implementations where possible	
	Group methods and data in a class meant to	
Encapsulation	represent something (noun), Hiding implementation	
	and only interface publicly visible.	
Inheritance	Build new classes by extending existing classes	
Innentance	(Sharing and Adding functionality)	
Polymorphism	Same interface, but different behaviour based on	
Potymorphism	context	

Application of OOP Paradigm (for Algorithmic Design)		
	Divide Problem into Components	
Application	Define interface between components	
Аррисации	Solve each problem separately	
	Repeat, then combine solutions	
Abstraction	Interface: how you manipulate the object	
ADSTRACTION	Implementation: details hidden inside the object	
	Class as a template for producing an object	
Encapsulation	Grouping functionalities to solve a subset of	
	problems	

Principles of Java	
First Principle	Everything is an Object
Second Principle	Everything has a Type

Classes & Objects,	Classes & Objects, Regular & Static	
Classes	Template for how to make an object	
Objects	An instance of the class	
Constructors Creates and instantiate the object and its field		
Parts of an Object	State (data), Behaviour (methods for modifying the state)	

Regular vs Static	Regular Variables/Functions are PER OBJECT		
Regular VS Static	Static Variables/Functions are PER CLASS		
Access Control			
(none specified)	Within the same package		
public	Everywhere		
private	Only in the same class		
protected	Within the same package, and by subclasses		
Advice: Always sp	Advice: Always specify the access you intend (even if the default is okay)		

	Java Operators	
	=	Assignment
	+, -, *, /	Plus, minus, multiplication, division
	%	Remainder, Modulo
	++,	Increment, decrement
	<,>	Less than, greater than
	<=,>=	Less-than-or-equal, greater-than-or-equal
_	&&,	Logical and, logical or
	~, &, ^,	Bitwise operations: complement, and, xor, or

Primitive	Data Types		
Byte	8 bit	-2^7	2^7 - 1
Short	16 bit	-2^15	2^15 – 1
Int	32 bit	-2^31	2^31 - 1
Long	64 bit	-2^63	2^63 - 1
Float	32 bit (IEEE 754)	(2 – 2^23) *	
Double	64 bit (IEEE 754)	+-(2 ^ -1074)	+-((2 - 2^-52) * 2^1023)
Boolean	1 bit	False	True
Char	16 bit (Unicode)	\u0000 (0)	\uffff(65535)

ALCOHOL AND A CONTROL OF THE ACTION					
Algorithm Analysis	s (Big O notation)				
Dro omnt	Take Logs to be Base 2, Loga(n) = Log2(n)/log2(a)			n)/log2(a)	
Pre-empt	Always think big inputs				
Big-O Notation	_	- ((-, -, -))	
T(n) = O(f(n))	$\exists c > 0$	$\land \exists n_0 > 0 \to \Big(\forall n$	$> n_0(T(n))$	$\leq cf(n)$	
Big-Ω Notation	_	- ((-, ,	-(, ,))	
$T(n) = \Omega(f(n))$	$\exists c > 0$	$\land \exists n_0 > 0 \to \Big(\forall n$	$n > n_0(T(n))$	$\geq cf(n)$	
Big-O Notation	<i>m</i>	() 0((()).	m() o(c())	
$T(n) = \Theta(f(n))$	$T(n) = O(f(n)) \wedge T(n) = \Omega(f(n))$		f(n)		
	Function	Name	Function	Name	
	5	Constant	n ³	Polynomial	
	loglog(n)	Double Log	n³log(n)		
Order of Size:	log(n)	Logarithmic	n ⁴	Polynomial	
	log²(n)	Polylogarithmic	2 ⁿ	Exponential	
	n	Linear	2 ²ⁿ		
	nlog(n)	Log-linear	n!	Factorial	
Summation	$T(n) = O(f(n)) \land S(n) = O(f(n))$				
Summation	$\to T(n) + S(n) = O(f(n) + g(n))$				
Product	$T(n) = O(f(n)) \land S(n) = O(f(n))$				

	$\to T(n) * S(n) = O(f(n) * g(n))$	
Sterling's	$n! \approx \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$	
Approximation	11. 1 VZIII (e)	
Sequential	cost - cost + cost	
Statements	$cost = cost_{first} + cost_{second}$	
If / else	$cost = max(cost_{first}, cost_{second})$	
statements	$\leq cost_{first} + cost_{second}$	
A Recursion M	eometric Sum: $\sum_{k=0}^{n} ar^k = \begin{cases} a(n+1) & a=1\\ a\left(\frac{1-r^{n+1}}{1-r}\right) & otherwise \end{cases}$ rithmetic Sum: $\sum_{i=1}^{n} (a+d*i) = \frac{n(2*a+(n+1)d)}{2}$ aster Theorem: $\text{where, } T(n) = aT\left(\frac{n}{b}\right) + f(n), a \geq 1, b > 1$ $T(n) = \begin{cases} \theta(n^{\log_b a}) & f(n) = 0(n^{\log_b a})\\ \theta(n^{\log_b a} \times \log n) & f(n) = \theta(n^{\log_b a}) & \epsilon > 0\\ \theta(f(n)) & f(n) = \Omega(n^{\log_b a + \epsilon}) \end{cases}$	

Searching Algorithms		
Characteristics	Runtime	
Search Algorithm	Linear Search: O(n); Binary Search: O(log(n)) Quick Search: O(log(n))	
Linear Search	Check all elements	
Binary Search	Check mid element, compare with required value, Must be searching an ordered array	
Quick Search	Check Relative Positioned element, compare with required value, Must be searching an ordered array	
Precondition	Fact that is true when the function begins Something important for it to work correctly Useful to validate when possible	
Postcondition	Fact that is true when the function ends Something useful to show that the computation was done correctly	
Invariant	Relationship between variables that is always true	
Loop Invariant	Relationship between variables that is true at the beginning (or end) of each iteration of a loop	
Peak Finding	Find Local Max, Binary Search, Check slope direction Invariants: There is a peak in the range [begin, end] Every peak in [begin, end] is a peak in [0, n-1]	
Steep Peaks	Steep peaks are strictly larger than its neighbours	
2D Peak	2D Peak: Larger than or equal to its neighbours Find Max of All Col, then find peak (O(mn + log(m))) Find Local of All Col, then find peak (incorrect) Find Max of Mid Col, then recurse (O(nlog(m)) Find Max of Border + Cross, then recurse in quadrant where (the neighbour of Max) > Max (O(n+m))	

Sorting Algorithms	
Characteristics Runtime, Space, Stability, Worst Cases	
Runtime Best Case (Ω), Average Case (Θ), Worst Case (Ο, I	
Space	Total Space ever allocated

(Alt, Realistic: Max Space allocated at one time)		
Stability	Preserves order of equal elements	
Dogo Cort	Randomly permutate array, check if sorted,	
Bogo Sort	O(n*n!), Unstable, All cases are worst cases	
Ougntum	Generate permutation and check the array if sorted, destroy	
Quantum Bogo Sort	universe if not, If many-worlds interpretation holds, there	
Bugu Suit	exists a surviving universe where array is sorted, O(n)	
	Iterate through the array, swap if greater than next element,	
Bubble	loop first n-1 element	
Sort	Invariant: Largest k element sorted at k loops	
	Ω(n)/O(n²), In-Place, Stable, Reversed / Circular Left Shift	
	Iterate through the array, swap minimal element to the front,	
Selection	loop last n – 1 element	
Sort	Invariant: smallest k element sorted at k loops	
	Ω(n)/O(n²), In-Place, Unstable, All cases are worst cases	
	Take first element, swap insert into sorted array at the front,	
Insertion	loop to next unsorted element	
Sort	Invariant: smallest k element sorted at k loops	
	$\Omega(n)/O(n^2)$, In-Place, Stable, Reversed	
	Split array in half, recurse halves, merge in order	
Merge Sort	Invariant: Subarrays are sorted at end of loop	
Merge Sort	$\Theta(nlog(n))$, Space: $\Omega(n)/O(n^2)$ by implementation,	
	Stable (check merge), All cases are worst case	
Ingrassia-	Generate all permutations, sort permutations, return first	
Kurtz Sort	element in the sorted list of permutations	
	Partition the array on pivot by swapping bigger elements on	
	the left with smaller elements on the right, then recurse	
	Invariant (Partition): for every i < low, A[i] < pivot,	
Quick Sort	for every j > high, A[j] > pivot	
Quick 301t	Runtime dependent on pivot selection, In-Place, Unstable,	
	All cases are worst case	
	Runtime: 1^{st} elem = $\Omega(n^2)$, Median elem = $O(n\log(n))$,	
	1/10+9/10 = O(nlog(n))	
	3-Way Partitioning:	
Quick Sort	1) Two Pass: Regular Partition then Pack Duplicates	
(Duplicate)	, , , , , , , , , , , , , , , , , , , ,	
	<pivot, =pivot,="" in-progress,="">pivot (4 pointers)</pivot,>	
Paranoid	Randomise pivot index selection	
Quick Sort	Θ(nlog(n)) Runtime	

Data Structure De	Data Structure Design		
Data Structure	A way of storing and organizing data efficiently, such that required operations can be performed efficiently with respect to time as well as memory Considerations: Maintenance, Modification, Query Upgrades: Augmentations, New Properties		
Static Data Structure	Size of Structure is fixed; Content can be modified but without changing memory space allocated to it Eg. Array, Stack, Queue, Fixed Size Tree		
Dynamic Data Structure	Size of Structure is not fixed and can be modified during the operations performed on it Eg. Lists, Trees, Tries, Hash Tables		

	Choose underlying data structure Determine additional info needed
Augmenting Data Structures	3) Modify data structure to maintain additional info when structure changes 4) Develop new operations
	Preprocessing, Accessing, Modifying,
Order Statistics	Postprocessing

Tree Data Structure		
Idea	Given a dictionary, storing key-value pairs	
	Possible Implementations	
	Sorted Array } insert: O(n), (binary) search: O(log(n))	
luea	Unsorted Array } insert: O(1), search = O(n)	
	Linked List } insert: O(1), search = O(n)	
	Balanced BS Trees } insert: O(log(n)), search = O(log(n))	
Trees	Components: Nodes (1 Root), Edges, No Cycles	
Binary Trees	Empty or A node pointing to two binary trees	
BST	Keys in left sub-tree < key < Keys in right sub-tree	
Root	The base node, all search/insert start here	
Leaf	No children, Height = 0, Weight = 1	
Siblings	Nodes that share a parent	
Height	-1 if null, 0 if leaf, else max(h(v.left), h(v.right)) + 1	
Weight	0 if null, 1 if leaf, else w(v.left) + w(v.right) + 1	
Rank	r(leftparent) + r(v.left)	
	Same keys != Same Shape, affects performance,	
Shape	determined by order of insertion of nodes	
	# orders: n!; # shapes: ~4 ⁿ (Catalan)	
Tree	Pre-Order, In-Order, Post-Order, Level-Order	
Traversal	Order of visited nodes	

Binary Search Tree (BST)	
Description	Keys in left sub-tree < key < Keys in right sub-tree
Applications	Max/min, rank/select, successor/predecessor operations
Search	At each node, compare node key, go to key direction
Insert	Search, then add at null
Delete	No child: remove v 1 child: remove v, connect child(v) to parent(v) 2 child: x = successor (v), delete(x), remove v, connect x to left(v), right(v), parent(v)
Successor / Predecessor	Successor: Get right child left most node, else left parent Predecessor: Get left child right most node, else right parent
Runtime	Insert, delete, search, predecessor, successor, findMax,
Summary	findMin: O(h); in-order-traversal: O(n)
Balanced	h = O(log(n)), for Balanced BST: all operations are O(log(n))
Getting a Balanced Tree	Define good property of a tree Show that if the good property holds, then the tree is balanced Invariant) After every insert/delete, make sure the good
	property still holds, If not, fix it
AVL Tree	Adelson-Velskii & Landis 1962 Tree

Rebalancing: Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor			Step 0, Augment: every node v, store height	
if v.left.height - v.right.height ≤ 1 Binary Search Tree is height balanced if every node in the tree is height balanced / # keys in heavier sub-tree at most twice of # keys in lighter sub-tree Step 2, Maintain Height Balance: Tree Rotation Claim A height-balanced tree with n nodes has at most height h = O(log(n)) Free Rebalancing: Brea Rotation Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property LR/RL- Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance			Update on insert/delete operations	
Binary Search Tree is height balanced if every node in the tree is height balanced / # keys in heavier sub-tree at most twice of # keys in lighter sub-tree Step 2, Maintain Height Balance: Tree Rotation Claim A height-balanced tree with n nodes has at most height h = O(log(n)) Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only at most 2 rotations to fix Unly at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance			Step 1, Define Height Balance: node v is height-balanced	
tree is height balanced / # keys in heavier sub-tree at most twice of # keys in lighter sub-tree Step 2, Maintain Height Balance: Tree Rotation A height-balanced tree with n nodes has at most height h = O(log(n)) Free Rebalancing: Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance			if $ v.left.height - v.right.height \le 1$	
twice of # keys in lighter sub-tree Step 2, Maintain Height Balance: Tree Rotation A height-balanced tree with n nodes has at most height h = O(log(n)) Free Rebalancing: Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Rebalancing: Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only at most 2 rotations to fix Delete in AVL Delete in AVL Onlete node v and reconnect children Check every ancestor of deleted node for height-balance			Binary Search Tree is height balanced if every node in the	
Step 2, Maintain Height Balance: Tree Rotation A height-balanced tree with n nodes has at most height h = O(log(n)) Free Rebalancing: Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance			tree is height balanced / # keys in heavier sub-tree at most	
Claim A height-balanced tree with n nodes has at most height h = O(log(n)) Free Rebalancing: Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property LR/RL- Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance			twice of # keys in lighter sub-tree	
h = O(log(n)) free Rebalancing: Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property LR/RL Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance			Step 2, Maintain Height Balance: Tree Rotation	
Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v Rebalancing: Ifree Rotation Repart Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property LR/RL- Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	Claim		A height-balanced tree with n nodes has at most height	
Rebalancing: Left Rotation on Node v: v.right = vRight.left, vRight.left = v Maintains ordering of keys => Maintains BST Property Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	Claiiii		h = O(log(n))	
Iree Rotation Maintains ordering of keys => Maintains BST Property LR/RL- Left-Right-Heavy: Left Rotate Left Child, then Right Rotate Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	Tree		Right Rotation on Node v: v.left = vLeft.right, vLeft.right = v	
R/RL- Heavy Right-Heavy: Left Rotate Left Child, then Right Rotate Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	Rebalanci	ing:	Left Rotation on Node v: v.right = vRight.left, vRight.left = v	
Heavy Right-Left-Heavy: Right Rotate Right Child, then Left Rotate Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	Tree Rotat	ion	Maintains ordering of keys => Maintains BST Property	
Insert key in BST, then walk up tree and check for balance Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	LR/RL-	Left	-Right-Heavy: Left Rotate Left Child, then Right Rotate	
Only need to fix lowest out-of-balance node Only at most 2 rotations to fix If v has 2 children, swap with successor Delete in AVL Delete in AVL Check every ancestor of deleted node for height-balance	Heavy Righ		nt-Left-Heavy: Right Rotate Right Child, then Left Rotate	
Only at most 2 rotations to fix If v has 2 children, swap with successor Delete node v and reconnect children Check every ancestor of deleted node for height-balance	,		Insert key in BST, then walk up tree and check for balance	
If v has 2 children, swap with successor Delete in AVL Check every ancestor of deleted node for height-balance	Insert in A	VL	Only need to fix lowest out-of-balance node	
Delete in AVL Delete node v and reconnect children Check every ancestor of deleted node for height-balance			Only at most 2 rotations to fix	
Check every ancestor of deleted node for height-balance	Delete in AVL		If v has 2 children, swap with successor	
Check every ancestor of deleted node for height-balance			Delete node v and reconnect children	
At most O(log(n)) rotations to fix			Check every ancestor of deleted node for height-balance	
			At most O(log(n)) rotations to fix	

Trie / Dictionary		
Danamintian	Trees where nodes can have many children	
Description	Used for storing address and words (ie Dictionary)	
Root-to-Leaf	Danvagant Strings is Kova	
Path	Represent Strings ie Keys	
Terminating	Manufacture of Chaires in Manufacture	
Character	Marks the end of String ie Keys	
Space Required	O((size of text)*overhead)	
Search	O(L) where L is length of string	
VS Trees	Shorter Runtime, Bigger Space, No Ordering	
Trie Nodes	Many Children, for Strings: Fixed degree (ASCII: 256)	

Hash Table / Symbol Table		
	Store Key-Value Pairs by putting them into the key's	
Description	hashcode mapped with the table's unique hashing	
	function	
Keys	Should have no duplicate and be immutable	
Duplicate Key	Replace existing key / Add new value (ie key has 2	
Handling	values) / throw error	
Empty / Null Value	Delete existing (key, value) pair / Create a null value /	
Handling	throw error	
Insert / Put	Insert (Key, Value) into table	
Search	Get value paired with key	
Delete	Remove key and value by key	
Contains / Get	Check if there is a value for key	
Size	Number of (Key, Value)	
(Suc/Prede)cessor	Does not Exist	

Hash Function	Random mapping a small number n of keys out of a huge universe U of possible keys into $m \approx n$ buckets $h: U \to 1 \dots m$, store key k in bucket $h(k)$ Time to compute h and access bucket $\approx O(1)$
hashCode()	Every object supports the method int hashCode() $A = B \rightarrow A.\text{hashCode}() = B.\text{hashCode}()$
hashCode Truncation	Usually, table size is 2^n , so we just get the first n least significant bits, code: hashcode & (length-1)
hash in HashMap	Further differentiate keys with the same hashCode truncation
equals(Object o)	Should match behaviour of hashcode Equivalence relationship, o = null gives false
String hash	$\sum_{i=0}^{n-1} s[i] \times 31(n-i+1),$ 31 is prime, $2^5 - 1$ easy to compute
SUHA	Simple Uniform Hashing Assumption Every key is equally likely to map to every bucket & keys are mapped independently Assume n items, $m = \Omega(n)$ buckets, e.g., $m = 2n$ Search Time: $O(n) + n/m = O(1)$
Key Collisions	Inevitable by Pigeon-Hole Principle
Hashing with Chaining	Use linked list to store multiple keys in one bucket Searching: $\theta(1)$, $O(n)$ Inserting: $O(1)$, Inserting n items: $O(\log n / \log \log n)$
Hashing with Open Addressing	Collided items are still inserted into the table directly
Linear Probe	Probe next location if current is filled, put in next available slot, *deleted items hold tombstone value Better than Chaining in practise due to: Caching & Prefetching
Deletion in Linear Probing	Just probe entire table during search: expensive Tombstoning: need handle too many items deleted Replace with another element further down
Re-hashing	Regenerate the whole table, happens when: Too many tombstones $(n/4 \text{ items in } n \text{ size} \to 2n \text{ size})$ No more space in table $(n \text{ items in } n \text{ size} \to 2n \text{ size})$ Time: $O(m_1 + m_2 + n) = O(n)$, as $m_1 = an$, $m_2 = bn$
Amortised Cost	If an expensive operation (re-hashing: O(n)) is reliant on and relative to cheaper operations (insert/delete: O(1)), we may spread the cost of the expensive operation to the cheaper operation, ie make expensive free
Amortised Analysis	Single Request (Risks Tail Latency), no spike in runtime / no single expensive operations: Tree Batch of n Requests, prefer higher throughput: Hashtable

Heap & Priority Queues	
	Better insert / extractMax function than trees, allow
Considerations	implementing new operations like merge / split
	Can be converted from an array in O(n) time, heapify

Binary Heaps Invariant	Priority at each node < parent priority: help find max
	Complete Binary Tree, filled from left to right:
IIIValialit	maintain O(log n) height
	"Tree" in an array: represents the heap, a[0] = size
Binary Heap	$childIdx = 2 \times parentIdx + 0/1$
Components	Hashtable: map ID to node indices
	Array: map indices to IDs
Pubble Up	Recursively swap with parent if priority is bigger
Bubble Up	than parent
Bubble Down	Recursively swap with larger child if priority is
Bubble Down	smaller than larger child
Insert	Put in next free spot, then bubble up
Delete	Swap with last element, last element bubble down
Decrease Key	Simply bubble down
Hoonify	Heapify from right to left, bottom to top
Heapify	Amortised O(n) time
Hoopport	Convert heap to sorted array by recursively swap
Heapsort	root with last element then bubble down root node

Graphs	
Components	Nodes & Edges (connecting 2 nodes)
	Unique ie no 2 edges share the same start & end
Simple Graphs	nodes
	No self-loops
Multigraph	Simple graph with non-unique edges
Hypergraph	Edges contain more than 2 nodes, Unique Edges
Undirected Graph	Edges are bidirectional, $(i, j) \in E \leftrightarrow (j, i) \in E$
Directed Graph	Edges are directional, $\exists i, j \in V((i, j) \in E \land (j, i) \notin E)$
Sparse Graph	$E \approx O(V)$
Dense Graph	$E \approx O(V^2)$
Path	Set of edges connecting 2 nodes, no repeated node
Connected	Every pair of nodes is connected by a path
Cycle	"Path" where first and last node are the same
Tree	Connected Graph with no cycle
Forest	Graph of Tree components
Degree of Node	Number of adjacent edges
Degree of Graph	Maximum degree of all nodes in graph
Diameter	Distance of maximum shortest path between 2
Diameter	nodes
Star	One central node, all edges connect centre to edge
Stai	nodes
Clique	Complete graph, all pairs connected by edges
Self-Explanatory	Line, Cycle
Bipartite Graph	Nodes divided into two sets with no edges between
	nodes in the same set
Application of	Implemented in connecting different states or
Graphs	representing networks
Rubik's Cube	Diameter of (n x n x n) cube = $\theta(n^2/\log n)$
Representing	Adjacency List: Array (node) of linked list (edges)
Graphs	Adjacency Matrix: ij = edge from i node to j node
Ciapilo	Edge List: List of node pairs (edges)

Adjacency List	Get All Neighbours: O(deg(v))
	Get if node x & y are neighbours: O(min(deg(x),
	deg(y)))
	Space = O(V + E)
	$A[v][w] = 1 \leftrightarrow (v, w) \in E$
	Symmetric for undirect graph
Adjacency Matrix	$A^n = $ # of length n paths
Adjacency Matrix	Get all neighbours: O(V)
	Get if node x and y are neighbours: O(1)
	$Space = O(V^2)$
Pagerank Vector	Vector that describes the distribution of nodes
	Eigenvector of matrix with eigenvalue 1 $pprox A^{\infty}$

Searching Graph	
Description	Start at some vertex, end at some other vertex
Methods	BFS/Breadth-First Search & DFS/Depth-First Search
BFS	Search level[i] from level[i-1]
	Pseudocode:
	1) Set queue to contain only source node
	2) while queue is not empty
	a) Take next node out of queue
	b) Go through all neighbours of node
	c) If updated, skip. Else, update info and enqueue
	3) Finish when queue is empty, review info
	Run Time: O(V + E) with adjacency list
	Gets shortest path graph (a Tree)
	BFS but with a stack instead of queue
DFS	Run Time: O(V + E) with adjacency list,
DF3	O(V^2) with matrix
	Cannot get shortest path
Handling	When queue/stack is empty, check if all nodes are
Disconnected	visited, then, if necessary, continue search on an
Graph	unvisited node
Topological	Ordering where $(u, v) \in E \rightarrow u$ appears after v
Ordering	Only for Directed Acyclic Graph (DAG), not unique
Topological Sort	DFS, add node to the end if it has no unvisited child
Pre-Order DFS	Process each node when it is first visited
Post-Order DFS	Process node when it is last visited (Toposort)
Strongly	Forms a cycle in a graph, two nodes v, w are
Connected	reachable to/from each other
Component	Graph of SSC is acyclic
	Found with DFS, at each node u visit:
	1) update u time
	2) for all v neighbour to u, update u low time
Cycle Finding	a) if v has time, no low time, consider time
	b) if v has no time, recurse on v, consider low time
	3) if u low time = u time, u belongs to acyclic graph
	of SSC / if u low time <= u time, u belongs in a cycle
Articulation Point	Removing this node disconnects the graph
	If u low time < u time, it is not an articulation point
	Repeat cycle finding on SSC Graph until no changes
Bridge Edge	Connects two articulation points

Single Source Short	Single Source Shortest Paths (SSSP)	
	Unweighted Graphs: BFS	
Cases	Weighted Non-negative Acyclic Graphs: Dijkstra	
	Weighted Acyclic Graphs: Bellman Ford	
BFS for SSSP	Graph level = SSSP distance, connect next node to	
	node, ignore edges pointing to visited next node	
	BFS but visit lightest unvisited node each time	
	Pseudocode	
	1) Initialise minimum priority queue and graph with	
	start node and all other nodes with priority as 0 and	
	Max priority respectively	
Diikotro	2) While the PQ is not empty	
Dijkstra	a) get minimum node from PQ	
	b) relax adjacent nodes and if needed, parentNode	
	3) Recursively trace parentNode from endpoint for	
	SSSP	
	Run Time: $V * O(log V) + E * O(log(V)) =$	
	$O(E \log V)$	
	Remove each node from PQ at most once	
	Decrease priority of node v in PQ at most in-deg(v)	
Dijkstra Invariant	Visited nodes have smallest distance at the end	
	Unvisited nodes have estimated smallest distance >	
	their final smallest distance	
Relax node	Lower distance estimate if new distance is lower	
Triangle Inequality	For Dijkstra, $\delta(S, C) \le \delta(S, A) + \delta(A, C)$	
	Spam relax with every edge for the number of	
	nodes, works since most number rounds of	
	relaxation is the diameter of graph < number of	
	nodes	
	Pseudocode	
Bellman-Ford on	1) Initialize array for distance, 0 for start, max for all	
general	others	
	2) for V -1 iterations:	
	a) for edge (u, v) in the graph:	
	i) relax(arr, u, v)	
	b) stop if no changes / relaxation made	
	Run Time: O(VE)	
Negative Cycle	If distance array still changes at V number of	
Detection	relaxations, there is a negative cycle	
	Pseudocode:	
	1) Set up distance estimate array	
Bellman-Ford with toposort on DAG	2) Get toposorted list of nodes topo_list	
	3) for u in topo_list:	
	a) for neighbour v in u.neighbour_list:	
	i) relax(dist, u, v)	
	Run Time: O(V + E)	
Multiple Sources	Add super node with directed 0 weight edge to	
Our ation of Otata	sources	
Creating State	Creating layers / connections between layers to	
Space	force SSSP to go certain directions	

	ie Encode many things about your traversal through
	the graph
Shortest Path at	K + 1 copies / layers of graph, edges points to next
exactly k edges	node in the next layer

Union Find	
Description	Simplifies the isConnected query after graph search
Pre-processing	Set up another data structure or graph
	augmentation
Union	Connect two objects
Find	Gets if any path connecting the two objects
	Component identity array, union by updating all
Version 1	objects in the child component to have the new
Version	parent component identity
	Expensive union: O(n), Cheap find: O(1)
	Parent pointer array, union by updating root node's
Version 2	parent to the other root node
	Expensive union: O(n), Expensive Find: O(n)
	Same as Ver 2, but specify union to update lighter
Weighted Union	tree's root node's parent to heavier root node
	Cheap union: O(1), Cheap? Find: O(log(n))
Path Compression	After finding root, set parent of each traversed node
r au Compression	to the root
Weight Union with	Any sequence of m union/find operations on n
Path Compression	objects takes: $O(n + m\alpha(m, n))$

Minimum Spanning	Minimum Spanning Tree	
Definition	Spanning tree with minimum weight Property 1: No cycle Property 2: If an MST is cut, the two pieces are MST Property 3 (Cycle Property): For every cycle, the maximum weight edge is not in MST Property 4 (Cut Property): For every partition of the nodes, the minimum weight edge across the cut is in the MST	
Spanning Tree	Acyclic subset of edges that connects all nodes	
Caution	Cannot find shortest path	
Generic MST Algorithm	Red Rule: If C is a cycle with no red edges, then colour the max-weight edge in C red Blue Rule: If D is a cut with no blue edges, then colour the min-weight edge in D blue Greedy Algorithm: Repeat apply red rule / blue rule to an arbitrary edge until all edges are either blue or red	
Wrong MST Algorithm	Divide-and-Conquer 1) If the number of vertices is 1, then return 2) Divide the nodes into two sets 3) Recursively calculate the MST of each set 4) Find the lightest edge that connects the two sets and add it to the MST	
Kruskal's Algorithm	Add edges to MST Pseudocode:	

	1) Initialise UFDS for n nodes, all initially disjoint
	2) sort edges by weights in ascending order
	3) for each edge e = (u, v)
	a) skip if u and v are in the same component
	b) add edge in union u and v component
	Run Time:
	$O(E \log(E)) = O(E \log(V))$ for sorting edges
	O(E a(E)) for find and union vertexes
	Add nodes to MST
	Pseudocode:
	1) Set min-pq to contain only source node
	2) while min-pg is not empty
	a) take next node out of min-pq
	b) if node has not been added before, include the
Prim's Algorithm	edge used into the MST, otherwise skip
	c) go through all neighbours n of node
	d) if edge has weight w, insert n into min-pq with
	priority w
	Run Time:
	O(V log(V)) for extracting every vertex once +
	$O(E \log(V))$ for decreasing key = $O(E \log(v))$
	Start min-pq with all nodes with priority infinity, and
Drim's Algorithm	source node with priority 0. When we process a
Prim's Algorithm Variant	node's neighbours, decrease key the neighbour if
Variant	the new edge weight is smaller than its current
	priority
	If edges have weights from {ab}, 0 < a < b
	Linked list array of size b-a as a "Priority Queue"
	Kruskal's: Put & iterate all edges: O(E), union-find
Kruskal's & Prim's	each edge: O(aE), Total = O(aE)
Algorithm Variant	Prim's: Insert/Remove: O(V), decreaseKey: O(E)
Algoritimi variant	Total: $O(V + E) = O(E)$
	Variant fails in Dijkstra since Dijkstra holds total
	distance and not smallest edge, variant only work if
	we know the maximum distance
	For every node except root, add minimum weight
Directed MST	incoming edge
	Runtime: O(E)
Maximum ST	Negate the weights

Dynamic Programming	
Description	Used for problems with overlapping subproblems
Optimal	Optimal solution can be constructed from optimal
Substructure	solutions to smaller sub-problems
Overlapping	The same smaller problem is used to solve multiple
Subproblem	different bigger problems in an optimal substructure
Dynamic Programming Recipe	1) Identify Optimal Substructure
	2) Define subproblems
	3) Solve problem using subproblems
	4) Write pseudocode

$Value(S\setminus \{S_n\}, L-w)+v)$
If $S_n > L$, $Value(S, L)Value = S \setminus \{S_n\}$
Run Time: O(nL)

	A) O control of the matter of
	1) Count subproblems
Dynamic	2) Figure out total time taken to solve all
Programming	subproblems
Analysis	Hint: Often times, it is just # subproblems x time per
	subproblem
Basic Strategy 1:	1) Solve smallest problem (ie base case)
Bottom Up	2) combine smaller problems to bigger problems
Dynamic	3) solve bigger problems
Programming	4) recursively solve upwards to the root problem
Basic Strategy 2:	1) Topologically sort DAG
DAG + topological	,
sort	2) Solve problems in reverse order
Basic Strategy 3:	1) Start at root and recurse
Top down Dynamic	2) Recurse down until base case
Programming	3) Solve & memorize, compute each solution once
- 0	Strat 1: Subproblem: S[i] = LIS(A[in]) start at A[i]
	Solve: S[n] = 0, S[i] = $(\max_{(i,j) \in E} S[j]) + 1$
Longest Increasing	((,,),== ,,)
Subsequence	Run Time: O(n^2) Strat 2: Toposort (alr done), find longest path
	, , ,
	Run Time: $V(O(V + E)) = O(n^3)$
	Check for positive weight cycle first, else
	Strat 1: subproblem:
	$P[v,k] = \max_{k \in \mathbb{R}} \text{prize starting at } v \text{ at } k \text{ steps}$
	Solve: $P[v, 0] = 0$,
Prize Collecting	$P[v,k] = \max_{i=1}^{n} (P[w_i + w(v,w_i)]),$
	$v.nbrList() = \{w_1 \dots w_n\}$
	Run Time: O(kV^2)
	Strat 2: Transform G into DAG by making k copies
	Solve for longest path with DAG_SSSP
	Run Time: O(kV + kE)
	Strat 1: Subproblem:
	S[v, k] = size of vertex covers in subtree
Vertex Cover on a	rooted at node v , if v is covered $k = 1$ or not, $k = 0$
Tree	Solve: $S[v, 0] = \sum (\forall n \in v \text{'s neighbours } S[n, 1])$
	$S[v, 1] = \sum (\forall n \in v \text{'s nbrs min}(S[n, 0], S[n, 1]))$
	Run Time: O(V)
	Simple Strat 1: no preprocessing
	Preprocessing: 0, q queries: O(qE log(V))
	Simple Strat 2: For every node v, run SSSP, then
	store distance to every other node
	Preprocessing: O(VE log(V)), q queries: O(q)
	Floyd-Warshall: if P is shortest path (u to v to w),
All Pairs Shortest	then P contains shortest path (u to v) and (v to w)
Path	Subproblem: $S[v, w, P]$ be shortest path (v, w)
	using only intermediate nodes in set P
	Solve: $S[v, w, \emptyset] = E[v, w], S[v, w, P_i] =$
	$min(S[v, w, P_{i-1}], S[v, i, P_{i-1}] + S[i, w, P_{i-1}])$
	Run Time: O(V^3) Space: O(V^2) with routing table,
	where M(v,w) is weight of minimum bottleneck
Knapsack (max	Subproblem: Value(S, L): max attainable value using
value without	items from set S not exceeding L
exceeding limit)	Solve: Value(S, 0) = 0, $Value(S, L) = max(Value(S \setminus \{S_n\}, L),$