Graficas-ejemplos

October 30, 2020

1 Velocidad de la luz

```
[9]: library(ggplot2)
[10]: library(MASS)
    v1 <- data.frame(michelson)
[11]: v1</pre>
```

		Speed	Run	Expt
		<int $>$	<fct $>$	<fct $>$
-	1	850	1	1
	2	740	2	1
	3	900	3	1
	4	1070	4	1
	5	930	5	1
	6	850	6	1
	7	950	7	1
	8	980	8	1
	9	980	9	1
	10	880	10	1
	11	1000	11	1
	12	980	12	1
	13	930	13	1
	14	650	14	1
	15	760	15	1
	16	810	16	1
	17	1000	17	1
	18	1000	18	1
	19	960	19	1
	20	960	20	1
	21	960	1	2
	22	940	2	2
	23	960	3	2
	24	940	4	2
	25	880	5	2
	26	800	6	2
	27	850	7	2
	28	880	8	2
A 1 . C . 100 . 0	29	900	9	2
A data.frame: 100×3	30	840	10	2
	71	910	11	4
	72	920	12	4
	73	890	13	4
	74	860	14	4
	75	880	15	4
	76	720	16	4
	77	840	17	4
	78 7 8	850	18	4
	79	850	19	4
	80	780	20	4
	81	890	1	5
	82	840	2	5
	83 84	780 810	$\frac{3}{4}$	5 5
	84 85	810 760	4 5	5 5
	86	810	6	5 5
	87	790	7	5 5
	88	810	8	5 <u>.</u> 5
	89	820	9	5
	90	850	10	5

2 Pima Indians

[17]: ggplot(Pima.tr2, aes(type))+geom_bar()

[19]: Pima.tr2

	npreg	glu	bp	skin	bmi	ped	age	type
	<int></int>	$\stackrel{-}{<}$ int $>$	<int></int>	<int $>$	<dbl $>$	<dbl></dbl>	<int></int>	<fct></fct>
1	5	86	68	28	30.2	0.364	24	No
2	7	195	70	33	25.1	0.163	55	Yes
3	5	77	82	41	35.8	0.156	35	No
4	0	165	76	43	47.9	0.259	26	No
5	0	107	60	25	26.4	0.133	23	No
6	5	97	76	27	35.6	0.378	52	Yes
7	3	83	58	31	34.3	0.336	25	No
8	1	193	50	16	25.9	0.655	24	No
9	3	142	80	15	32.4	0.200	63	No
10	2	128	78	37	43.3	1.224	31	Yes
11	0	137	40	35	43.1	2.288	33	Yes
12	9	154	78	30	30.9	0.164	45	No
13	1	189	60	23	30.1	0.398	59	Yes
14	12	92	62	7	27.6	0.926	44	Yes
15	1	86	66	52	41.3	0.917	29	No
16	4	99	76	15	23.2	0.223	21	No
17	1	109	60	8	25.4	0.947	21	No
18	11	143	94	33	36.6	0.254	51	Yes
19	1	149	68	29	29.3	0.349	42	Yes
20	0	139	62	17	22.1	0.207	21	No
21	2	99	70	16	20.4	0.235	27	No
22	1	100	66	29	32.0	0.444	42	No
23	4	83	86	19	29.3	0.317	34	No
$\frac{1}{24}$	0	101	64	17	21.0	0.252	21	No
25	1	87	68	34	37.6	0.401	24	No
26	9	164	84	21	30.8	0.831	32	Yes
27	1	99	58	10	25.4	0.551	21	No
28	0	140	65	26	42.6	0.431	24	Yes
29	5	108	72	43	36.1	0.263	33	No
A data.frame: 300×8 30	2	110	74	29	32.4	0.698	27	No
271	2	87	NA	23	28.9	0.773	25	No
272	10	108	66	NA	32.4	0.272	42	Yes
273	10	139	80	NA	27.1	1.441	57	No
274	4	110	92	NA	37.6	0.191	30	No
275	$\mid 4 \mid$	114	64	NA	28.9	0.126	24	No
276	0	101	62	NA	21.9	0.336	25	No
277	2	91	62	NA	27.3	0.525	22	No
278	8	133	72	NA	32.9	0.270	39	Yes
279	1	111	94	NA	32.8	0.265	45	No
280	5	147	75	NA	29.9	0.434	28	No
281	$\mid 4 \mid$	92	80	NA	42.2	0.237	29	No
282	2	90	60	NA	23.5	0.191	25	No
283	7	114	64	NA	27.4	0.732	34	Yes
284	7	125	86	NA	37.6	0.304	51	No
285	2	119	NA	NA	19.6	0.832	72	No
286	5	115	76	NA	31.2	0.343	44	Yes
287	0	141	N ₅ A	NA	42.4	0.205	29	Yes
288	0	167	NA	NA	32.3	0.839	30	Yes
289	4	90	NA	NA	28.0	0.610	31	No
290	5	132	80	NA	26.8	0.186	69	No

• ¿Qué dice este gráfico de barras?

Las personas que tienen diabetes

[22]: help(Pima.tr2)

• ¿Por qué la parte superior izquierda está vacía?

No hay muchas mujeres con muchos embarazos a los 20 años

[23]: ggplot(Pima.tr2, aes(age,npreg))+geom_point()

3 Titanic

[25]: head(data.frame(Titanic))

```
Class
                                Sex
                                                  Survived
                                          Age
                                                            Freq
                        <fct>
                                <fct>
                                          <fct>
                                                  <fct>
                                                            <dbl>
                        1st
                                Male
                                         Child
                                                  No
                                                            0
                        2nd
                                Male
                                         Child
                                                  No
                                                            0
A data.frame: 6 \times 5
                        3rd
                                Male
                                         Child
                                                  No
                                                            35
                                Male
                                         Child
                                                  No
                                                            0
                        Crew
                     5
                                Female Child
                                                            0
                        1st
                                                  No
                     6
                        2nd
                                Female
                                         Child
                                                  No
                                                            0
```

- ¿Qué se les ocurre para graficar todo?
- ¿Cuántos pasajeros en total viajaban por clase?
- Exploren una por una las otras variables categóricas del dataset

[29]: library(tidyverse)

Attaching packages tidyverse

1.3.0

```
      tibble
      3.0.3
      dplyr
      1.0.1

      tidyr
      1.1.1
      stringr
      1.4.0

      readr
      1.3.1
      forcats
      0.5.0

      purrr
      0.3.4
```

Conflicts

tidyverse_conflicts()

```
dplyr::filter() masks stats::filter()
dplyr::lag() masks stats::lag()
dplyr::select() masks MASS::select()
```

```
[32]: data.frame(Titanic) %>%
    group_by(Class) %>%
    summarise(count = sum(Freq))
```

`summarise()` ungrouping output (override with `.groups` argument)

A tibble:
$$4 \times 2$$

$$\begin{array}{c|ccc}
Class & count \\
 &
\\
1st & 325 \\
2nd & 285 \\
3rd & 706 \\
Crew & 885
\end{array}$$

4 Peliculas

¿Cómo se ve el scatterpl
pot si quitamos los que tienen más de 1000 votos? Ahora filtremos los mayores a 9. ¿Pasa algo?

```
[14]: library(ggplot2)
   install.packages("ggplot2movies")
   library(ggplot2movies)
   library(tidyverse)

Updating HTML index of packages in '.Library'

Making 'packages.html' ...
   done
```

Attaching packages

tidyverse

1.3.0

```
      tibble
      3.0.3
      dplyr
      1.0.1

      tidyr
      1.1.1
      stringr
      1.4.0

      readr
      1.3.1
      forcats
      0.5.0

      purrr
      0.3.4
```

Conflicts

tidyverse_conflicts()

dplyr::filter() masks stats::filter()
dplyr::lag() masks stats::lag()

[15]: head(movies)

	title	year	length	budget	rating	votes	r1	r2	r3
A tibble: 6×24	<chr $>$	<int $>$	<int $>$	<int $>$	<dbl $>$	<int $>$	<dbl $>$	<dbl $>$	< d
	\$	1971	121	NA	6.4	348	4.5	4.5	4.5
	\$1000 a Touchdown	1939	71	NA	6.0	20	0.0	14.5	4.5
	\$21 a Day Once a Month	1941	7	NA	8.2	5	0.0	0.0	0.0
	\$40,000	1996	70	NA	8.2	6	14.5	0.0	0.0
	\$50,000 Climax Show, The	1975	71	NA	3.4	17	24.5	4.5	0.0
	\$pent	2000	91	NA	4.3	45	4.5	4.5	4.5

[16]: table(movies\$mpaa)

```
NC-17 PG PG-13 R
53864 16 528 1003 3377
```

```
[17]: #Estamos quitando todo lo ruidoso (los de mas de 100 votos)
movies %>%
filter(votes < 1000) %>%
```

```
ggplot(aes(votes, rating)) +
    geom_point()
```



```
[20]: #Estamos quitando todo lo ruidoso (los de mas de 1000 votos y los de menos de 9)
movies %>%
    filter(votes < 1000, votes > 9) %>%
    ggplot(aes(votes, rating)) +
        geom_point()
```



```
[39]: movies %>%

pivot_longer(cols = c(Action, Animation, Comedy, Drama, Documentary,

→Romance, Short), names_to = "category", values_to = "figure") %>%

data.frame() %>%

head()
```

Error in eval(lhs, parent, parent): object 'movies' not found
Traceback:

1. movies %>% pivot_longer(cols = c(Action, Animation, Comedy, Drama,

```
Documentary, Romance, Short), names_to = "category", values_to =

"figure") %>%

data.frame() %>% head()

2. eval(lhs, parent, parent)

3. eval(lhs, parent, parent)
```

https://tidyr.tidyverse.org/

5 Máquinas tragamonedas

En el paquete DAAG, está el dataset vlt, muestren si los símbolos que aparecen tienen la misma frecuencia, o no. Ejes comparables.

```
[6]: install.packages("DAAG")

Updating HTML index of packages in '.Library'

Making 'packages.html' ...
done
```

```
[10]: library(tidyverse) library(ggplot2)
```

```
[8]: data(vlt, package="DAAG")
head(vlt)
```

```
window1
                                     window2
                                                window3
                                                                    night
                                                           prize
                          <int>
                                     <int>
                                                <int>
                                                           <int>
                                                                    <int>
                          2
                                     0
                                                0
                                                           0
                                                                    1
                         0
                                     5
                                                1
                                                           0
                                                                    1
A data.frame: 6 \times 5
                         0
                                     0
                                                0
                                                           0
                                                                    1
                                     0
                                                0
                                                           0
                                                                    1
                                     0
                         0
                                                0
                                                           0
                                                                    1
                         0
                                                                    1
```

[`]summarise()` ungrouping output (override with `.groups` argument)

[`]summarise()` ungrouping output (override with `.groups` argument)

`summarise()` ungrouping output (override with `.groups` argument)


```
[23]: #pivot_longer cambia el formato a una bonita

#names_to es el nombre de la columna

vlt %>%

    pivot_longer(cols = starts_with('window'), names_to = "window", values_to = __

→ "figure" )
```

	prize	night	window	figure
	<int></int>	<int></int>	<chr></chr>	<int></int>
	0	1	window1	2
	0	1	window2	0
	0	1	window3	0
	0	1	window1	0
	0	1	window2	5
	0	1	window3	1
	0	1	window1	0
	0	1	window2	0
	0	1	window3	0
	0	1	window1	2
	0	1	window2	0
	0	1	window3	0
	0	1	window1	0
	0	1	window2	0
	0	1	window3	0
	0	1	window1	0
	0	1	window2	0
	0	1	window3	1
	0	1	window1	1
	0	1	window2	0
	0	1	window3	1
	0	1	window1	0
	0	1	window1 window2	0
	0	1	window2 window3	0
	5	1	window3 window1	1
	5	1	window1 window2	2
	5	1	window2 window3	1
	0	1	window3 window1	0
	0	1	window1 window2	0
A tibble: 1035×4	0	1	window2 window3	1
A tibble, 1055 × 4	U	1	windows	1
	0	2	window1	1
	0	2	window2	0
	0	2	window3	1
	5	2	window1	1
	5	2	window2	2
	5	2	window3	3
	0	2	window1	0
	0	2	window2	2
	0	2	window3	0
	0	2	window1	0
	0	2	window2	0
	0	2	window3	0
	0	2	window1	0
	0	2	window2	1
	0	2	window3	0
	0	2	window1	7
	0	2	window1	
	0	2	window2	0
	0	2	window3	0
	0	$\frac{2}{2}$	window1 window2	0
	U	4	WIIIGOW Z	V

```
[45]: vlt %>%
    pivot_longer(cols = starts_with('window'), names_to = "window", values_to =
    →"figure") %>%
    group_by(window, figure) %>%
    summarise(n = n()) %>%
    ggplot(aes(x = figure, weight = n, fill = window)) +
    facet_wrap(~window) +
    geom_bar()
```

`summarise()` regrouping output by 'window' (override with `.groups` argument)

6 Autos

Grafiquen 1/MPG.City, vs horsepowerhay ¿una relación lineal? ¿Cuáles son los outliers?

```
[41]: data(Cars93, package = "MASS")

[43]: head(Cars93)
```

		Manufacturer <fct></fct>	Model <fct></fct>	Type <fct></fct>	Min.Price <dbl></dbl>	Price <dbl></dbl>	Max.Price <dbl></dbl>	MPG.city <int></int>	M. <i< th=""></i<>
A data.frame: 6×27	1	Acura	Integra	Small	12.9	15.9	18.8	25	31
	2	Acura	Legend	Midsize	29.2	33.9	38.7	18	25
	3	Audi	90	Compact	25.9	29.1	32.3	20	26
	4	Audi	100	Midsize	30.8	37.7	44.6	19	26
	5	BMW	535i	Midsize	23.7	30.0	36.2	22	30
	6	Buick	Century	Midsize	14.2	15.7	17.3	22	31

```
[47]: Cars93 %>%
    mutate(inverse = 1/MPG.city) %>%
    select(Horsepower, inverse) %>%
    ggplot(aes(x=Horsepower, inverse)) +
        geom_point()
```

