UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SEMINARIO DE ÁLGEBRA B Ejemplo: Teoría de retículas

SEMESTRE: Séptimo u octavo

CLAVE: **0705**

HORAS A LA SEMANA/SEMESTRE		
TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Moderna I, Análisis Matemáti-

co I, Variable Compleja I.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Introducir al alumno a los principales conceptos, resultados y problemas que se abordan en esta rama del álgebra.

NUM. HORAS	UNIDADES TEMÁTICAS
5	1. Conjuntos y relaciones
	1.1 Conjuntos.
	1.2 Números naturales.
	1.3 Relaciones y operaciones.
	1.4 Relaciones de equivalencia.
	1.5 Congruencias.
10	2. Definiciones de retículas
	2.1 Órdenes parciales.
	2.2 Cadenas y anticadenas.
	2.3 Retículas.
	2.4 Ejemplos: Retículas finitas pequeñas. Retículas booleanas. Pro-
	ductos. Retículas de equivalencia o partición. Cadenas.

15	3. Conceptos básicos
	3.1 Dualidad.
	3.2 Intersecciones y uniones.
	3.3 Átomos y coátomos, seudocomplementos, complementos.
	3.4 Subretículas.
	3.5 Morfismos.
	3.6 Condiciones de cadena y completez.
	3.7 Completaciones.
	3.8 Productos.
	3.9 Congruencias.
	3.10 Lema de Zorn y elementos máximos.
20	4. Retículas modulares y distributivas
	4.1 Modularidad.
	4.2 Condiciones de longitud y cubrimiento.
	4.3 Elementos irreducibles.
	4.4 Grupos y módulos.
	4.5 Semimodularidad.
	4.6 Complementos y átomos.
	4.7 Distributividad.
	4.8 Álgebras de Boole. Complementos. Átomos. Subálgebras. Ideales.
	4.9 Álgebras de Skolem.
	4.10 Lógica.
	4.11 Caracterización de distributividad y modularidad mediante
	prohibición de subretículas.
10	5. Ideales y filtros
	5.1 Ideales primos, ideales máximos y ultrafiltros.
	5.2 Existencia.
10	6. Representaciones
	6.1 Mediante retículas de conjuntos.
	6.2 Espacios ideales primos.
	6.3 Dualidad.
10	7. Aplicaciones a otras áreas de la Matemática
	7.1 Grupos, anillos, topología.

BIBLIOGRAFÍA BÁSICA:

- 1. Davey, P., *Introduction to Lattices and Order*, Cambridge: Cambridge University, 1990.
- 2. Donnellan, T., Lattice Theory, Oxford: Pergamon Press, 1968.
- 3. Gratzer, G., General Lattice Theory, Boston: Birkhauser, 1998.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Birkhoff, G., *Lattice Theory*, Providence, Rhode Island: American Mathematical Society, 1973.
- 2. Blyth, T.S., Ockham Algebras, Oxford: Oxford University, 1994.
- 3. Freese, R., Jezek, J., Nation, J.B., *Free Lattices*, Providence, Rhode Island: American Mathematical Society, 1995.
- 4. Halmos, P.R., Lectures on Boolean Algebras, New York: Springer-Verlag, 1974.
- 5. Kalmbach, G., Orthomodular Lattices, London: Academic, 1983.
- 6. Stern, M., Semimodular Lattices, Cambridge: Cambridge University, 1999.
- 7. Szasz, G., Theorie des Treillies, Paris: Dunod, 1971

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.