

CF/Cell 공정 및 재료기술

2018.10.17

TN Panel 의 구조와 구동 방식

TFT 기판과 Color Filter 기판 사이의 상하 수직 전계른 이용하는 방식

IPS Panel 의 구조와 구동 방식

TFT 기판에서 Common 전극과 PXL 전극의 전위차를 이용하여 액정을 구동하는 방식

CF Process 와 재료 특성

LCD에서의 Color Filter 역할

- 광원(Back Light)으로부터 나온 백색광은 빛의 3원색인 빨강(Red),녹색(Green),파당(Blue)으로 분리하는 기판
- 하판 TFT를 제어 → Pixel 전극과 공통전극의 전위차를 제어 → 액정의 움직임을 제어
 - \rightarrow 각 Dot의 투과광량 제어 \rightarrow Pixel의 색 제어 \Rightarrow 전체적인 화면 구성

(Pixel: RGB로 구성된 최소 색구현 단위, Dot: Pixel의 구성 단위 R/G/B)

Color Filter 가 관여하는 LCD 성능

Oclor Filter는 Display의 휘도, 색재현윤, Contrast Ratio, 색온도 등에 영향은 미침

Color Filter 구조

Color Filter 구성

o Color Filter- ITO, Black Matrix, Color PR, Over Coat, Column Spacer로 구성

- 1. Black Matrix BM
 - B/L의 빛 차단
 - 화소를 광학적 분리
 - 광에 의한 누설 전류 차단
- 2. Color PR RGB
 - 색깔을 구현하는 영역
 - Red 안료 층을 통과 하면 Red 색만을 나타냄.
- 3. Column Spacer
 - Cell Gap 형성
- 4. ITO Common Electrode
 - 공통 전극(TN용)
 - 정전기 방지용(IPS용)
- 5. Over Coat IPS용
 - 평탄화 하기 위함. (IPS용)

Color Filter 공정 Process

Photoresist의 Type

- PR은 Positive형과 Negative형 2 가지가 있으며
 Positive은 빛은 받은 부분이 현상되어 PR이 없어지는 형이며
 Negative형은 Positive형의 반대 개변으로 빛은 받은 부분이 현상되지 않고 PR이 남아 있는 형임
- TFT 공정에서는 주토 Positive형은 사용하며, 칼라 필터 공정에서 Negative형으로 사용함

Negative Photoresist 의 작용 원리

: Pigment(안료 입자)

★ : 광반응 개시제 """ 빛은 받아 Radical은 받생시킴.

※: Monomer Radical에 의해 중합은 개시하여 분용화됨.

Photoresist 의 구성 요소 및 요구 특성

Black Matrix 역할과 구성

o Black matrix란?

: B/L의 빛 차단, 화소를 광학적으로 분리, 광에 의한 누설 전류를 차단하는 고분자 재료

● Black matrix 구성

Materials	Roles
Solvent	 Solvation Coating Property Control (Viscosity)
Binder Polymer	 Developing and Coating Property Dispersion Stability
Multifunctional monomer	 Cross Linking Property by UV Surface Hardness Promotion
Photoinitiator	Photo Radical Formation Energy Transfer
Black Pigment	 Resistance Control Optical Property Developing Property
Additives	Adhesion Promotions to Glass Levelling Promotions

Color Photoresist 역할과 구성

- Color Filter Photoresist 의 구성 성분 (Negative Photoresist)
 - → Color Photoresist 는 색득성 성분과 Photoresist의 성분으로 나누어져 있다. `

<u>Color특성 구현</u>

Color Millbase : Pigment + 분산제 + Binder

Binder Polymer

Photoinitiator

Cross Linker (Multifuntional Monomer)

Additives (Leveler, Adhesion Promoter, etc)

Solution특성 구현

Solvent

→ 기존 Photoresist의 구성성분에 Millbase라는 성분이 추가된 것이 Color Photoresist이다.

Column spacer의 역할과 구성

o Column Spacer란?

: TFT 기판과 Color Filter 기판 사이 일정한 간격은 유지시켜, 액정이 Cell내부에 존재할 수 있도록 함.

● Column Spacer 구성

: Matrix Polymer, Crosslinking Agent, Active Compounds, Additives, Solvnet Agent도 분듀됨.

구성 성분	득징	역핟
Matrix Polymer	Film Forming Mechanical & Physical Properties	C/S의 Mechanical / Physical Properties의 득성 가짐
Crosslinking Agent	Solubility Change by Photo-Polymerization	UV 노광에 의한 광 반응에 의하여 현상액에 의한 용해도가 변화함으도, patterning 성질은 나타나게 해줌
Photo initiator	Generation of active species by UV-exposure initiation of photo polymerization	UV 노광에 의하여 C/S 묻질의 광반응이 개시될 수 있도독 만들어 주는 부분
Additives	Coating properties Adhesion improvement Storage stability	하부 막인 Overcoat막과의 접착성은 위하여 사용됨 보관 안정성은 높혀줌
Solvents	Solvation Coating property control	C/S 재료를 장시간 사용하지 않아도 C/S의 묻성은 유지 시켜 주는 역할

Cell Process 와 재료 특성

CELL 공정 개론

○ Cell Process 란 완성된 상하 기판(CF, TFT)은 이용하여 액정은 주입, 합착하기 위한 제반 공정으로 배향막, 액정, Sealant, Spacer를 형성하고 상하판은 Align하여 합착하는공정

CELL 공정 개론

세정공정

세정기 기본 LAYOUT

🍳 세정기 구성 설명

ZONE	세부구성	목적	
APP	AP Plasma	GAS Mixing으로 Plasma 평성하여 GLASS 표면의 유기막 세정	
약액 세정부	SHOWER부, CJ부	중성세제,Stripper,IPA등을 통해 GLASS 표면 유기물을 세정	
DI 세정부	ROLL BRUSH부, BJ부,CJ부, MS부	약액 세정 후 GLASS 표면에 잔존하는 약액 및 Particle 제거	
건조부	SPIN DRY ,AIR-KNIFE, IR부 GLASS 표면 DI 제거		
냉각부	CP부	IR처리로 가열된 GLASS 냉각	
건식 세정부	E-UV, 저압 수은 UV	UV광을 이용 잔존 유기물 분해	

PI전 세정기 구성

세정공정_세정방법

IPA(Isopropyl Alcohol) 세정

Aqua Knife를 이용하여 Glass 전면에 IPA를 도포하는 세정 공정

Roll Brush 세정

Roll Brush (Nylon)의 회전력과 DI를 이용하여 표면에 물리적인 힘을 가하여 Particle을 제거한다.

세정공정_세정방법

CJ (Cavitation Jet)

일정 압력으로 DI분사 시키면 강한 압력으로 분사되는 DI의 세정 효과와 NOZZLE에서 대기중으로 나오면서 받생하는 압력 차이로 Cavitation이 받생하고 이 Cavitation이 Particle 표면에서 터지면서 강한 충격 작용으로 Particle은 기판에서 떨어뜨린다.

BJ(Bubble Jet)

Cavitation 효과를 인위적으로 얻기 위해 공기방울과 DI를 섞어 일정 압력으로 분사하는 세정방법을 말한다.

MS(Mega Sonic)

고주파(MHz)도 인한 Particle(Sub Micro Size) 제거와 기판 표면간의 진동 및 음압에 의한 Cavitation 발생으로 Particle과 기판 사이에 Gap은 발생시켜 그 사이에 DI Water가 침투하여 세정함

US(Ultra Sonic)

묻속에서 KHz대의 파장에 의한 효과를 이용 Particle은 제거

PI 인쇄공정

● PI 인쇄공정이란?

Polyimide를 이용하여 유효 표시 영역에 배향막을 소정의 두께(500~ 1000Å)로 균일하게 인쇄하는 공정

- ▶ 공정 flow: 배향막 인쇄 → 예비 건조 → 목시검사 소성
 - * 배향막 인쇄 : Roller에 부착된 고무 수지판 (볼록판)에 배향액을 균일하게 묻혀 기판 위에 인쇄
 - * 예비 건조 : 용매를 증발시키면서 인쇄 배향막을 전체적으로 균일하게 퍼지게하는 단계
 - * PI 소성로: 예비 건조 후 Glass 기판 위에 남아있는 용매를 건조시켜 경화된 polyimide 막 형성

O PI 인쇄기 구성도

Anilox roll : PI 인쇄시 APR 고 무판 위에 PI를 묻혀주는 둥근 워기둥의 roller

판동 : PI 인쇄시 APR 고무판 위에 PI를 묻혀주는 둥근 원기둥의 roller

APR 고무판 : Glass와 접촉하여 미른 Glass 위에 묻혀주는, pattern이 새겨진 고무로 만든 판

Doctor roll: Anilox roll과 접촉 하여 Anilox roll 위에 PI가 고트 게 분포할 수 있도록 묻혀주는 역 할을 하는 roller PI 인쇄 장비의 구성 Dispenser **Doctor Roll** Anilox Roll 수지판 판동 (Plate Cylinder) 기판 Roller Stage 진행방향

PI 인쇄공정

PI Mask

(1) APR: Asahi Photosensitive Resin K11 Komura社 製, 양각 원동형 구조

(2) 망점 각도

PI 인쇄성을 좌우하는 주요 Factor로서, A/R사양에 따라 공장별토 다양함.

배열 각도: 45도 400 Mesh (400ea/Inch), 개구윤 30%

(4) 망점 사진 개구부

(3) 개구율

전체 면적 중 망점(동그라미) 제외 부분이 차지하는 비율 액정 표시소자의 전체 화면 면적에서 정보표시가 가능한 면적의 비른 의미한다.

즉, 유효구경을 표시판의 면적으로 나눈 값이다

(5) Mesh의 정의

400 mesh = 1 inch 인 사각형 안 에 가토 세토 400 개의 선이 있다

PI 인쇄공정

● PI 인쇄기 Type 비교 (Roll vs Ink-jet)

인쇄	방식	ROLL PI Printing	INK-JET PI Printing	
개	l B	PI액을 Anilox-Roll에 분사 시키고 D/R 또는 D/B로 균일하게 한 다음 APR Plate을 이용 Glass에 인쇄 하는 방식	PI액을 INKJET Head에 주입하여 Glass 진행 시 고주파 분사 시켜 인쇄하는 방식	
7	성	Ani lox-ROLL Print ing ROLL Table Glass 진행 방향	FI액 IN INKJET HEAD OUT Glass 진행 방향	
Thid	kness	500 ~1000Å	300 ~ 700Å	
Unifo	ormity	O (양호)	O (양호)	
재료 사	용량(BOM)	2.7 g/Panel (P4,18.1"IPS)	1.5 g/Panel (목표)	
적용 점	털도 범위	20 ~ 40cps (PI고형분:5 ~6%)	5 ~ 15cps (Pl고형분:1 ~ 4%) (現:7 ~9cps ,Pl고형분:3%)	
PI Mas	sk 적용	有	無	
22.	Anilox-Roll / 有 Doctor Roll 적용		無	
도포	도포 방식 면(面) 도포		점(dot) 방식	
Maker(Maker(日本) NAKAN , NI SSHA		SHIBAURA , ISHIHYOKI ('02.3月 현재)	
Glass	대응성	370*470 ~ 1100*1250	1400*1400대응可(Shibaura),300*400 Demo(ISHIHYOKI)	
		장비 대응성 - 양산 검증 ,기술력 확보	재료 이용 효율(70 ~ 95%) 증대 - 재료비 절감	
	장점	PI 재료 안정성 확보	C/R 효율성 증대 및 투자비 절감(부대 설비 未투자)	
효과			PI MASK 未 사용	
	단점	재료 이용 효율(1~10%) - 재료비 소모 多	장비 대응성 - 양산 검증 필요 ,기술력 취약	
		PI Mask 관리 어려움 - 검사, 원판 불가,사용 주기, 세정 등	신 PI 재료 개발 - TN Model (15.0") 先 개발 예정	
		부대 설비 관리 및 유지 - Anilox-Roll , Doctor Roll		

- What is happening on substrates?
 - ⇒ Morphology & Polymer chain distribution

Rubbing or LPUV exposure

◆ Rubbing 前, 後 배향막(PI) 표면 변화

배향 Mechanism

LC Alignment의 Mechanism에 대한 2가지 Model과 이돈

elongated polymer chain

배향 Mechanism_Physical morphology

- Why does LC align on the patterned surface?
 - ▶ Berreman theory : Groove (평행 패턴) 방향으로 액정이 배열될 때, 액정의 Distortion이 최소화 되고 액정 전체가 가장 안정한 상태 (최소의 Elastic Free Energy)로 존재하게 됨.
 - ► Elastic Free Energy Density

$$\rho = \frac{1}{2} K_1 (\nabla \cdot n)^2 + \frac{1}{2} K_2 (n \cdot (\nabla \times n))^2 + \frac{1}{2} K_3 |n \times \nabla \times n|^2$$

$$E = \iiint_{x,y,z} \rho(x,y,z) = \int_{z=0}^{\infty} \frac{K}{2} (Aq)^2 q^2 e^{-2qz} dz \sin^2 \theta = \frac{K}{4} (Aq)^2 q \sin^2 \theta$$

(1) Perpendicular to the groove (⊖=90°)

- LC distortion near groove wall
- → Elastic energy ↑
- → Free energy of LC cell ↑
- → Unstable state

(2) Parallel to the groove (⊖=0°)

- No LC distortion near groove wall
 - → Low free energy of LC cell
 - → Stable state

▶ LC alignment along minimum free energy direction (groove direction)

배향 Mechanism_Chemical Interaction

Chemical Interaction 모델딩

Micro 영역에서 보면, PI 분자들은 직선 형태가 아닌 Random한 Helix 구조(꼬여있는 형태)로 이루어져 있으며, 액정 분자와 화학적 상호 작용(묻리적 결합)은 형성함.

- Dipole-dipole
- Van der Waals
- p-p electron coupling

* Chem-Office Simulation (Cambridge Soft)

IPS 배향막의 특성

○ IPS는 액정의 배향 각도에 관여하는 광학득성의 기여도로 인해 Black득성에 많은 상관관계가 있으며, 타 Mode대비 약한 Anchoring(AC득성)과 전극 구조자체의 DC Charging/Discharging에 대한 취약성 (DC)으로 인해 잔상/신뢰성과 밀접한 관계를 가짐.

ICD	
LLU	득성

PI 득성(관여인자)

	잔상 (Image Sticking)	Thin Film Resistivity, Residual DC, AC Stability
	신뢰성 (흑얼둑)	Voltage Holding Ratio, Ion Density
IPS 배향막	Black (Contrast Ratio)	Rubbing Uniformity, Alignment-ability
O 7	Response Time	PI-LC Interaction (Azimuthal Anchoring Force)
	Viewing Angle	Pretilt Angle

배향막 재료의 요구 특성

• 배향막 재료

LCD에서 LC 분자에 직접 접하는 부분으로서, 액정분자의 배향 방향을 제어하는 기능성 박막이며, 배향막 재료는 LCD 득성을 결정하는 가장 중요한 역할을 하고 있다.

- 배향막 재료의 요구 득성
 - -. 균일하게 성막되어야 함
 - -. 배향력이 안정적으로 얻어져야 함

- -. 높은 투과도, 높은 비저항
- -. 하부층과의 접착성이 양호해야 함.

- 배향막 재료의 종류
 - -. Polymer (polyimide, poly amic acid, UV curable polymer 등)
 - -. 무기막 (SiOx, DLC, Au, Pt 등)

※ 배향재료의 종류와 특징

종 류	방 식	장 점	단 점
poly-amic acid (PA)	기판에 도포후 열처리에 의한 이미 드화	인쇄성 양호 다양한 재료 선택 접착력 양호	이미드화율에 따라 막특성 변화 (온도 의존성)
polyimide (PI)	폴리 아믹산을 열적/화학적으로 이 미드화한 용액을 도포후 가열처리하 여 용매 제거	저온소성 가능 경화시 막특성 변화 없음	인쇄성이 나쁨 접착성이 나쁨 제한된 재료 선택

배향막의 기본구조

● 일반적인 배향막은 Cell 내부 액정과 Direct접촉은 하고 있는 재료로서, 기본적으로 전기적/화학적/열적 안정성이 높은 고분자 구조를 띄는 것이 일반적이며, 현대 LCD공정에서는 Polyimide를 가장 많이 사용하고 있음.

- · Oblique evaporation inorganic material
- · Polyvinyl alcohol(PVA)
- · Polyimide(PI)

Typical polyimide(PMDA/DDE)

- · Excellent electric insulation
- · Excellent chemical stability
- · Excellent heat stability

배향막의 기본구조

 Polyimide의 경우 안정적 구조형태로 인해 가공성이 떨어지며, 이러한 가공성을 부여하기 위해 Polyimide의 전단계인 Polyamic acid단계로 박막형성을 한 후 LCD공정상에서 경화공정을 거쳐 최종 Polyimide를 형성하는 것이 일반적임.

배향막의 기본구조

배향막 첨가제의 경우 소량의 함량이 포함되며, 하부 기저면과 배향막의 접착성향상, 분자간의
 Networking형성, 배향막 상층으로 떠올라 Rubbing시의 묻리적 Damage를 완화하는 기능을 가짐.

New 배향 기술_UV 배향 종류

재료	분류	Concept
광분해 라 UV		↓ axis
반응 Type	광중합	polymer main chain polarizer axis UV V V V V V V V V V V V V
재료	Main Chain	광반응기 Main Chain
구조	Side Chain	Main Chain Side Chain

- 주반응 파장 : 230~280nm (Deep UV)
- 광안정성 매우 우수
- 잔듀 분해묻 제거를 위한 후처리 공정 필수
- 주반응 파장 : 280~360nm (일반 UV)
- 광안정성 취약 (가시광선 반응 가능)

- 광반응기가 Side Chain내 존재
- High Pretilt 형성 가능함(0~90°)
- TN / VA Mode 적용

New 배향 기술_UV 배향 mechanism (광분해형)

New 배향 기술_UV 배향 장점

- UV배향 공정은 비접촉 배향법으로 서 Cell 러빙 공정은 대체함.
- UV 배향은 AH-IPS 적용 시, 배향 균일도 개선과 Pretilt 0° 득성으로 인해 CR 및 시야각 개선이 가능함.

New 배향 기술_Polymer-Sustained

PS-LCD (Polymer Sustained Liquid Crystal Display) Technology

기존 배향안정성이 취약한 OCB Mode, FLC등에서 배향안정성 확보를 위해 집중 연구가 되던 기술로 액정과 배향막 사이 층에 액정의 배향안정성을 부여할 수 있는 이종Polymer층을 도입함으로서 배향 안정성 및 기타 LCD 광학 득성의 향상을 구현하는 기술 임

New 배향 기술_Polymer-Sustained(VA Mode)

PS-VA 공정 개요

UV²A 공정 개요

New 배향 기술_Polymer-Sustained(VA Mode)

 SC-VA는 광반응성 monomer를 배향막 포함하며, FPA는광반응성 치환기를 함유한 수직배향막을 이용해 전압 인가 / UV조사를 동해 Domain을 형성하는 기술임.

Mode	PS-VA	SC(surface control)-VA	FPA (Field-induced Photo-reactive Alignment)
구조	UV Line UV-intensity, imadiation-time, voltage (UV-intensity, imadiation-time, voltage) generation of pretiting in direction of ON director	PI 00000 PI+RM Coating to a panel UV Light UV-irradiation + voltage (UV-intensity, irradiation time) Polymer 000000 Generation of pretilt	New PI 000000 V 000000 UV-irradiation + voltage (UV-intensity, irradiation time) New PI 000000 Generation of pretilt
원리	■ <u>액정에 *RM을 첨가하여</u> 전압 인가 상태로 UV조사함으로 Domain을 형성함.	■ <u>배향막에 *RM을 첨가하여</u> 전압 인가 상태로 UV조사함으로 Domain을 형성함.	■ <u>광반응성 치환기를 함유한 수직 배향막</u> (New-PI)을 적용하여 전압 인가 상태로 UV조사함으로 Domain을 형성함.

*RM : reactive mesogen

Seal Dispensing 공정

- Sealant의 인쇄 방식에는 Screen 방식과 Dispenser 방식이 있음.
 - Screen 방식은 Print식으로 생산성이 우수하나 Mask 제작의 한계로 인하여 대형 Glass에 적용하기가 어렵고 Mask와 배향막의 접촉에 의해 Rubbing 상태에 영향은 줃 수 있음. (1공장에서만 적용)
 - Seal Dispenser 방식은 하나의 Seal을 그리는 방식으로 미세한 Seal Pattern 형성이 가능하고 대면적 적용이 가능하나 Screen 방식과 반대로 생산성이 낮음.

LC 주입/적하 공정

- O LC Dispenser (액정 적하) 란
 - 1) 액정 주입 방식은 TFT,C/F Glass 합착 후,원장을 Panel상태도 만든 후 액정을 주입하는 방식으로 액정 주입하므로, 시간이 많이 소요되고 많은 공정을 거치는 단점이 있음
 - 2) 액정 적하 방식은 합착 전 단판 Glass에 LC Pump를 사용하여, 전면에 일정한 Pitch로 정당의 액정은 균일하게 Dotting 한 후 Seal Drawing된 Glass와 합착함으로써 액정 사용당 최소화, 공정 축소 , Tack Time 단축 등이 가능함

Nematic LC

Nematic Range (Tni & Tcn).

고체(crystal)와 액체(Isotropic liquid) 사이에서 display로써 환용 가능한 Nematic 액정상은 가짐. 자사의 경우 application에 따라 다트나 보통 -20℃~75℃의 nematic range를 갖는 액정은 사용함.

LC properties

○ 액정 재료의 고유한 득성

액정 재료의 묻성은 방향에 따라 다른 비등방성을 보임 $\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp}$ $\pmb{\epsilon}_{\parallel}$ $\mathbf{\epsilon}_{\perp}$ 유전율 \mathbf{n}_{\parallel} \mathbf{n}_{\perp} 편광 ▲편광 $\Delta n = n_{\parallel} - n_{\perp}$ 굴절율 빛 위상차 유발 ② Splay ① 평형상태 3 Twist 4 Bend 탄성계수 **K**₁₁ K_{22} **K**₃₃ 운동 방향 점도 Rotational **Translational** Viscosity Viscosity 회전 방향

Order Parameter

● 분자배열 질서도; S (Order parameter)

모든 LC 분자가 상호 완전하게 평행을 이루거나, 기판에 대하여 수직이나 평행으로 정연하게 배열하는 것만은 아니고, 그 배열의 정렬 정도는 본질적으로 분자의 열 운동에 의한 산란에 따라 저하되고, 또한 분자의 구조나 형상에 따라서도 좌우된다.

전체 액정 분자를 거시적으로 바라보았을 때 분자 길이축이 우선적으로 배향되어 있는 방향의 단위 vector를 director(n)라 하고, 이 때 개개의 액정 분자가 길이축 방향으로부터 벗어난 각도를 θ 라고 하면 Order parameter (S)는 다음과 같이 정의된다. \rightarrow S = ½ (3(cos² θ) - 1)

- 1) S = 0 등방성 액체와 같이 분자 길이축의 배향 방향이 완전히 산란되어 있는 경우 → liquid
- 2) S = 1 모든 분자가 완전히 평행 배향하여 있는 이상적인 경우.

절대온도 영역에서나 가능하며, 일시적으로 실현될 수 있음 → Crystal

3) S = 0.3 동상적인 Nematic 액정.

Order Parameter

Order Parameter와 액정 물성과의 관계

Order Parameter는 액정의 묻성, 특히 탄성력 및 이방성 특성은 결정 짓는 중요한 factor임. 온도가 증가함에 따라 액정 산란에 의해 액정 배열정도 (order parameter)는 저하되어, 이방성 및 탄성력이 감소되는 특성은 나타내게 된다.

Parameter	Nomenclature	proportional to ∞
Elastic Constant	K _{ii}	S ²
Birefringence	Δn	S
Dielectric Anisotropy	Δε	S

Example: Does the threshold voltage for a TN increase or decrease as the operating temperature increases?

$$V_{th} \propto \sqrt{K/_{\Delta \mathcal{E}}} \propto \sqrt{S^2/_{S}} = \sqrt{S}$$
 Scales as the square root of S Therefore, Vth \downarrow as T \uparrow

Elastic constant

탄성 계수(K, Elastic Constant)

탄성계수란 외부 힘에 의하여 변형을 일으킨 묻체가 힘이 제거되었을 때, 원래 상태로 되돌아 가려는 복원력에 비례하는 묻성으로, 묻질마다 고유한 탄성 상수 K도 표시함.

The Elastic Energy Density (free energy without electric field, Oseen-Frank equation)

액정 분자의 배열에 따든 potential energy density이 값이 낮은 수독 안정한 상태가 되기 때문에, 최소가 되는 방향으로 액정 분자들이 정렬한다.

$$U_{EL} = \frac{1}{2}k_{11}(\nabla \cdot n)^2 + \frac{1}{2}k_{22}(n \cdot \nabla \times n)^2 + \frac{1}{2}k_{33}(n \times \nabla \times n)^2$$
Splay
Twist
Bend

n : unit vector representing the director distribution in the cell

Potential energy가 낮을 수록 안 정한 상태

Elastic constant

탄성 계수(K, Elastic Constant)

1. 최근의 개발 동향(탄성 계수 측면)

1) 탄성계수 증대를 통한 명암비 개선; 고탄성 액정 적용시 액정내 빛산란 감소 → CR 향상에 기여!

$$S_{lc} = \frac{\left\{ \Delta n^2 (n_e + n_o) \right\}^2 d}{\left(K \right)}$$

; Scattering index

$$K = \frac{k_{11} + k_{22} + k_{33}}{3}$$

2) 탄성 계수 증대를 통한 Falling time 개선

$$\tau_{on} \propto \frac{\gamma_1 \cdot l^2}{\varepsilon_o \cdot \Delta \varepsilon (V^2 - V_{th}^2)}$$
 $\tau_{off} \propto \frac{\gamma_1 d^2}{\pi^2 K_2}$

$$au_{off} \propto rac{\gamma_I d^2}{\pi^2 K_2}$$

액정의 응답특성 중 Falling time은 액정의 물성 Parameter에 의존되며, 최근에는 탄성계수 증대를 통한 falling time개선 노력이 있음.

2. Neck issue

그러나, 탄성계수의 증가시 구동전압 증가를 수반하게 됨으로, 실제 개발 시에는 유전율 이방성 및 점도를 반영하여 액정 설계가 이루어 지고 있음.

Viscosity

- 유체의 흐름에 해당하는 flow viscosity와 전기장 인가에 따든 액정 director 재배열에 해당하는 rotational viscosity의 두 종류가 있음.
- 액정의 점도는 주어진 전기장에 대한 액정의 응답속도를 결정하는 중요한 득성으로 점도가 작을 수독 응답 속도는 빠름.

Flow Viscosity[v]

Rotational Viscosity $[\gamma_1]$

Flow viscosity와 Rotational viscosity의 관계

$$au_{on} \propto \frac{\gamma_1 \cdot l^2}{\varepsilon_o \cdot \Delta \varepsilon (V^2 - V_{th}^2)} \quad au_{off} \propto \frac{\gamma_1 d^2}{\pi^2 K_2}$$

q 1 (Rotational Viscosity)

→ Parameter to Decide Response Time!!!

Dielectric Anisotropy

Dielectric Anisotropy (Δε , 유전윧 이방성)

액정 분자들의 비등방 배열에 의해 발생하는 액정의 고유 묻성이며, 값이 클수독 액정 분자가 외부 전기장에 의해 쉽게 회전함

Dielectric Anisotropy

Dielectric Anisotropy (Δε , 유전윤 이방성)

Positive & Negative LC

Positive LC (If $\epsilon_{/\!/} > \epsilon_{\perp}$, U_{min} *: Parallel) \rightarrow 전기장에 평행한 방향으로 액정이 배열 : TN, IPS mode Negative LC (If $\epsilon_{\perp} > \epsilon_{/\!/}$, U_{min} : Perpendicular) \rightarrow 전기장에 수직한 방향으로 액정이 배열 : VA mode

* U_{min}: Lowest Electro-static Engergy

Dielectric Anisotropy

유전윤 이방성(Δε) 에 의한 LC 회전

(1) Dielectric energy density F

- 전기장 인가시 발생하는 energy: 유전윧 X (전기장)²에 비례
- F의 크기가 작은수독 안정된 상태
- 전기장 인가시 F를 최소화 하는 방향으로 액정이 정렬
- (2) 비등방성 득성 때문에 LC의 경우 전기장에 대한 LC의 방향에 따라 F의 값이 달라짐
- (3) Nematic LC: 전기장 인가 시 액정 배치

$$F_b = - \varepsilon_b E^2/2$$

$$F_a = - \varepsilon_a E^2/2$$

Positive LC(If e_b < e_a , F_b > F_a) \rightarrow 전기장에 평행한 방향으로 액정이 배열 : TN, IPS mode Negative LC(If e_b > e_a , F_b < F_a) \rightarrow 전기장에 수직한 방향으로 액정이 배열 : VA mode

Birefringence

<u>Birefringence</u> (∆n , Optical Anisotropy)

: 액정 분자들의 비등방 배열에 의해 발생하는 액정의 고유 묻성 값이 클수독 입사광의 편광은 변화시키는 효과가 증가

LCD 특성과 물성의 관계

○ <u>전기 광학 득성 overview</u>

LCD 특성과 물성의 관계

액정 무성과 전기적 득성과의 상관관계

Where Your Value Creation Begins

www.lgdisplay.com