INTELIGENCIA ARTIFICIAL Algoritmos de búsqueda

Búsqueda A*

J. Marcos Moreno-Vega

OBJETIVO:

Proponer, implementar y evaluar búsquedas A* para encontrar el camimo mínimo entre dos vértices de un grafo.

TAREAS:

Además de las tareas descritas en el presente documento, los alumnos tendrán que realizar las modificaciones que se planteen durante la corrección de la práctica. Asimismo, tendrán que responder a un cuestionario de preguntas tipo test sobre los contenidos teóricos de los algoritmos de búsqueda.

Corrección:

Semana del 4 al 8 de noviembre.

Evaluación:

Código fuente y memoria: hasta 4 puntos. Si el día de la corrección falta algún código o este es incorrecto, la práctica se calificará como No apta.

Modificación propuesta el día de la corrección: hasta 4 puntos.

Cuestionario sobre los contenidos teóricos: hasta 2 puntos.

Lenguaje de programación:

Java o C++.

Problema del camino mínimo entre dos vértices de un grafo

Sea dado un grafo G = (V, E), donde V es el conjunto de vértices y E es el conjunto de aristas (|V| = n, |E| = m). Cada arista (i, j) $\in E$ tiene asociada una distancia o coste d(i, j). Se desea encontrar el camino mínimo que conecta el vértice origen v_0 con el vértice destino v_d .

Implementación

Las instancias del problema se suministrarán en un fichero de texto con el siguiente formato: en la primera fila se encuentra el número de vértices, n; a continuación, se enumeran las distancias, d(i, j), entre los pares de vértices. Se asume que las distancias son simétricas, es decir, que d(i, j) = d(j, i), $\forall i, j \in V$. Además, d(i, i) = 0, $\forall i \in V$ y $d(i, j) = \infty$ si no hay una arista que conecte al vértice i con el vértice j.

Por ejemplo, si n = 5, el fichero de texto para el grafo de la figura 1(a) contendría los datos mostrados en la figura 1(b) (solo la primera columna; la segunda describe qué representa cada dato):

Figura 1: Grafo y su representación

La función heurística, $h(\cdot)$, se leerá de un fichero de texto que tiene el siguiente formato: en la primera fila se encuentra el número de vértices, n; a continuación se enumeran los valores de la función heurística. Para el grafo de la figura 1(a), dicho fichero contendría los valores de la figura 2, si $v_0 = 1$ y $v_d = 5$.

```
5 número de vértices

1.000 /* h(1)

2.236 /* h(2)

1.414 /* h(3)

1.000 /* h(4)

0.000 /* h(5)
```

Figura 2: Formato del fichero con la función heurística

Tareas

- a) Diseñar e implementar una búsqueda A* para el problema del camino mínimo entre dos vértices de un grafo.
 - Debe poder indicarse, cómodamente, cuáles son los vértices origen y destino.

b) Analizar el comportamiento de la búsqueda A* considerando diferentes funciones heurísticas.

Qué debe presentar el alumno

- a) Código fuente, debidamente comentado, y fichero ejecutable.
- b) Una memoria en formato pdf en la que se describan brevemente la búsqueda A* diseñada enumerando las estructuras de datos usadas y cualquier elemento necesario para comprender el diseño propuesto.
- c) La memoria debe incluir también tablas o gráficas de resultados que muestren el comportamiento de la búsqueda sobre diferentes instancias del problema. En la figura 3 se muestra el formato de estas tablas de resultados.

Se han considerado seis grafos (instancias ID_1 , ID_2 , ..., ID_6), de diferentes tamaños, con varias combinaciones de vértices origen y destino. En la tabla se mostrará el camino mínimo para ir del vértice v_o al vértice v_d , su longitud y los nodos generados e inspeccionados por la búsqueda A^* que usa la función heurística $h_1(\cdot)$.

Búsqueda A*. Función heurística h_1	urística h_1 (n h	Funci	A*.	iueda	Búso
---------------------------------------	------------------	-----	-------	-----	-------	------

Instancia	n	m	v_o	v_d	Camino	Distancia	Nodos generados	Nodos inspeccionados
ID_1	10	5	1	10			8	1
ID_1	10	5	2	7				
ID_2	10	10	1	8				
ID_2	10	10	3	9				
ID_3	10	15	1	6				
ID_3	10	15	3	7				
ID_4	20	10	7	10				
ID_4	20	10	1	8				
ID_5	20	20	2	9				
ID_5	20	20	3	9				
ID_6	20	50	1	5				
ID_6	20	50	4	10				

Figura 3: Búsqueda A*. Tabla de resultados