

目录

发展历程

基本概念

机器学习

- 机器学习 (machine learning): 通过计算的手段,利用经验来改善系统自身的性能。(经验→数据) Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- 学习算法 (learning algorithm): 从数据产生模型的算法。(经验数据→学习算法→模型)

基本术语

例:

(色泽=青绿;根蒂=蜷缩;敲声=浊响) (色泽=浅白;根蒂=硬挺;敲声=清脆)

示例数据

- 示例 (instance), 样本 (sample)
- 属性 (attibute), 特征 (feature)
- 属性值 (attribute value)
- 属性空间 (attribute space),样本空间 (sample space)

训练过程

- 学习 (learning), 训练 (training)
- 训练数据 (training data)
- 训练样本 (training sample)
- 训练集 (traning set)

预测值

- 分类 (classification): 二分类 (正类, 负类), 多分类
- 回归 (regression)
- 聚类 (clustering): 簇(cluster)

假设空间

演绎

- 从一般到特殊的特化(pecialization) 的过程。
- 基本原理 → 具体状况

归纳

- 从特殊到一般的泛化 (generalization)的过程。
- 具体的事实 → 一般性规律
- 广义的归纳学习 → 样例中学习
- 狭义的归纳学习 → 训练数据中 学得概念。(布尔概念学习)

假设空间

布尔概念学习

• 对"是", "不是"表示为0/1布尔值 例如:

表 1.1 西瓜数据集

编号	色泽	根蒂	敲声	好瓜
1	青绿	蜷缩	浊响	是
2	乌黑	蜷缩	浊响	是
3	青绿	硬挺	清脆	否
4	乌黑	稍蜷	沉闷	否

- 假设空间规模大小: 4 × 4 × 4 + 1 = 65
- *: 表示无论取任何值都合适
- · φ: 表示以上概念都不存在

归纳偏好

• 机器学习算法在机器学习过程中对某种类型假设的偏好。

奥卡姆剃刀

• 若有多个假设与观察一致,则选择最简单的那个。

图 1.3 存在多条曲线与有限样本训练集一致

没有免费的午餐

- 对于所有机器学习问题,任何一种算法(包括瞎猜)的期望效果都是一样的。
- 没有一种机器学习算法是适用于所有情况的。
- 某一个机器学习算法在某个领域好用,在另外一个领域就有可能不好用。在讨论算法的相对优劣,必须针对具体的学习问题。

发展历程

二十世纪七十年代

• 从二十世纪七十年代中期开始,人工智能研究进入了"知识期",在这一时期,大量专家系统问世,在很多应用领域取得了大量成果。

二十世纪

- 八十年代: 主流是符号主义学习, 其代表包括决策树和基于逻辑的学习。
- 九十年代中期之前: 主要技术是基于神经网络的连接主义学习。
- 九十年代中期: "统计学习"占据主流,代表性技术是支持向量机以及核方法。

二十一世纪

• 掀起了以"深度学习"为名的热潮,在若干测试和竞赛上,尤其是涉及语音、图像等复杂对象的应用中,深度学习技术取得了优越性能。

应用现状

• 机器学习为许多交叉学科提供了重要的技术支撑。

例如: "生物信息学"试图利用信息技术来研究生命显现和规律,生物信息学研究涉及从"生命现象"到"规律发现"的整个过程,其间包括数据处理、数据管理、数据分析、仿真实验等环节,其中,数据分析是机器学习技术的舞台。

• 机器学习与普通人的生活密切相关。

例如:天气预报、能源勘测、环境检测等方面。在商业营销中,有效利用机器学习技术对销售数据、客户信息进行分析,帮助商家优化库存,降低成本。

• 机器学习影响人类社会政治生活。

例如: 2012年美国大选期间, 奥巴马有一支机器学习团队, 他们对各类选情数据进行分析, 为奥巴马提示下一步竞选行动。

机器学习 周志华 chap2 chap3 知识点总结

目录

Chap 2 经验误差与过拟合

- 错误率 = 分类错误的样本数/样本总数 E = a / m
- 精度 = 1 错误率
- 误差: 学习器的实际预测输出与样本的真实输出之间的差异
- 经验误差 (训练误差) : 学习器在训练集上的误差
- 泛化误差: 学习器在新样本上的误差
- 学习器的训练目标:希望得到泛化误差小的学习器。
- 过拟合: 学习器学习能力过于强大,将训练样本自身的一些特点当做所有潜在样本具有的一般性质,导致泛化性能下降。
- 欠拟合:与"过拟合"相对,指对训练样本的一般性质尚未学好

由于机器学习面临的问题通常是NP或者更难的问题,因此过拟合不可避免只能缓解。

Chap 2 评估方法

- 假设测试样本从样本真实分布中独立同分布采样得到,使用一个"测试集"来测试学习器对新样本的判别能力,然后以测试集上的"测试误差"作为泛化误差的近似。
- 测试集应该尽可能与训练集互斥,即测试样本尽量不在训练集中出现。
- 一个包含m个样例的数据集 $D=\{(\mathbf{x}1,y1),(\mathbf{x}2,y2),...,(\mathbf{x}m,ym)\}$,有以下几种方式来划分训练集 S 和测试集 T:

方法名称	留出法	交叉验证法	自助法
主要思想	直接将数据集D划分为两个互斥的集合,训练集S和测试集T,在S上训练出模型后用T来评估误差,作为对泛化误差的估计	先将数据集D划分为k个大小相似的互 斥子集,每次用k-1个子集的并集作为 训练集,余下的子集作为测试集。进行 k次训练和测试,返回k个测试结果的均 值	对于包含m个样本的数据集D,进行m次有放回的随机取样(每次取一个样本)放入D',将D'用于训练集,D-D'作为测试集(D中约有36.8%的样本未出现在D'中)
使用范围	初始数据量充足时	初始数据量充足时	 适用于数据集较小,难以有效划分训练/测试集的样本集 能从初始数据集中产生多个不同的训练集,有利于集成学习等方法
缺点	测试集不是全部样本,降低评估保真性	稳定性和保真性取决于k的取值	产生的数据集改变了初始数据集的分布, 会引入估计偏差
备注	通常若干次随机划分重复实验评估后取 平均值,一般划分比例为2/3~4/5的训练 集	特例:留一法,不受随机样本划分方式的影响,结果较为准确,缺点:数据集比较大时开销大	

Chap 2 参数调节

● 参数调节即模型的参数设定。

● 方法: 对每个参数选定一个范围和变化步长

● 优点:虽然得到的往往不是最佳值,但是能折中开销和性能

● 最终模型:在学习算法和参数配置已经选定后,要用数据集 D 重新训练模型,从而得到最终模型。

Chap 2 性能度量

- 性能度量是衡量模型泛化能力的评价标准,不同的性能度量会导致不同的评判结果。
- 错误率与精度: **分类任务**中常用的两种性能度量。 错误率: 分类错误的样本数占总样本数的比例。 精度: 分类正确的样本数占总样本数的比例。
- ullet 查准率、查全率、 F_1 准确率(查准率): $R = \frac{TP}{TP + FN}$

召回率(查全率): $P = \frac{TP}{TP + FP}$

查准率与查全率相矛盾,一方升高另一方降低。 当查准率=查全率时,为PR图的平衡点(BEP)。

二分类问题

真实情况	预测结果		
开 大用儿	正例	反例	
正例	TP (真正例)	FN (假反例)	
反例	FP (假正例)	TN (真反例)	

根据应用中对查准率和查全率的重视程度不同,得到 F_1 度量的一般形式 F_{eta} 度量:

$$F_{\beta} = \frac{(1+\beta^2) \times P \times R}{(\beta^2 \times P) + R}$$

 β 度量了查全率对查准率的相对重要性, β >1 时查全率有更大影响, β <1时查准率有更大影响。

Chap 2 性能度量

● ROC (受试者工作特征) 与 AUC 根据学习器的预测结果对样例进行排序,按此顺序逐个将样例作为正反例的分界点,计算出真正例率:

$$\mathrm{TPR} = \frac{TP}{TP + FN}$$

假正例率:

$$\text{FPR} = \frac{FP}{TN + FP} \ .$$

作为横纵坐标绘制ROC曲线。 ROC曲线下的面积AUC, 用于比较分类器的优劣。

Chap 2 性能度量

	横纵轴	意义	度量方法		比较	
P-R曲线	查准率为纵轴, 查全率为横轴	反映学习器 性能	平衡点(BEP): 查准率=查全率	F1度量:表现对查准率和查全率的偏好	$F_{eta ext{ iny eta}}$	1) 若一个学习器的曲线被另一个学习器完全包住,则后者性能一定优于前者; 2) 若交叉无法判断,比较曲线下面积大小
ROC曲线	纵轴真正例率, 横轴假正例率	反应样本预 测的排序质 量				ROC曲线下面积: AUC
代价曲线	横轴是取值[0,1] 的正例概率代价, 纵轴是取值[0,1] 的归一化代价	不同类型的 错误造成的 损失				ROC曲线上的每个点可以转化为代价平面上的一条线段,取所有线段下界,围成的面积为在所有条件下学习器的期望总体代价。

Chap 2 比较检验

	方法	思想	解决的问题	结果示意图
	假设检验	根据测试错误率估推出泛化错 误率的分布	对单个学习器泛化性能 的检验	二项检验:概率p符合二项分布; t校验:变量 T T服从自由度为k-1的t 分布
	交叉验证t检验	若两个学习器的性能相同,则 它们使用相同的训练/测试集得 到的测试错误率应相同。	对多个学习器的性能进 行比较,在一个数据集上 比较两个算法的性能	变量 $ au_T$ 服从自由度为 k -1的 t 分布(k 折交叉验证)
	McNemar检验	假设两学习器性能相同	针对二分类问题,在一 个数据集上比较两个算法 的性能	变量 τ_{χ^2} 服从自由度为1的 χ^2 分布
	Friedman检验	基于算法排序的校验方法,得 到算法比较序值表。	在一组数据集上比较多 个算法的性能,是基于算 法排序的,要求k(算法 个数)较大	原始Friedman检验:在 k 和N都较大时,变量 $^{\tau}\chi^{2}$ 服从自由度为 k -1的 $^{\chi}$ 分布; 改进的Friedman检验: $^{\tau}$ 服从自由度为 k -1和(k -1)(N -1)的F分布
	Nemenyi后续检验	计算出平均序值差别的临界值 域,若两个算法的平均序值之 差超出了临界值域,则以相应的 置信度拒绝"两个算法性能相同" 这一假设。	在一组数据集上比较多 个算法的性能,若"所有 算法的性能相同"假设被 拒绝,需进行"后续检验"。	Friedman检验图:纵轴显示各个算法,横轴是平均序值,若两个算法的横线段有重叠,则没有显著差别,否则有显著差别

Chap 3线性回归(回归问题)

- 线性回归的**基本思想**是采用对输入样例各个特征进行线性加权的方式得到预测的输出,并将预测的输出和真实值的均方误 差最小化。
- **均方误差**即函数值与平均数的方差,它是回归任务最常用的度量,它采用的是欧几里得(欧式)距离。基于均方误差来进行模型求解的方法,称为"最**小二乘法**"。在线性回归中,"最小二乘法"就是找到一条直线,使所有样本到该直线的欧式距离之和最小。
- 求解线性方程 $E_{(w,b)} = \sum_{i=1}^{m} (y_i wx_i b)^2$ 中的 ω 和b的过程,称为最小二乘"参数估计"。分别对 ω 和b求偏导,当两个偏导数均为0时(极值点处),得到的 ω 和b为最优解。
- 对于有多个属性的情况,我们可以用多元线性回归来实现问题的求解。
- 考虑单调可微函数g(.), $\Rightarrow y = g^{-1} \left(\omega^T x + b \right)$,

使得线性模型推广为广义线型模型。对数线性回归即是广义线性模型在g(.)=In(.) 时的特例。

图 3.1 对数线性回归示意图

Chap 3 对数几率回归(分类问题)

- 通过一个单调可微函数将分类任务的真实标记y与线性回归模型的预测值z联系起来。 若预测值z大于零就判为正例,小于零则判为反例,预测值为临界值零则可任意判别。因为单位阶跃函数不连续,用对数几率函数来替代。
- 将对数几率函数作为可微函数g(.),推导出:

$$\ln \frac{y}{1-y} = \omega^T + b$$

- 把y看做是正例的可能性,1-y看成是反例的可能性,则两者的比值 $\frac{y}{1-y}$ 称为几率,反映了x作为正例的相对可能性对几率取对数则得到"对数几率": $\ln \frac{y}{1-v}$
- 接下来就可以用"极大似然法"来对 ω 和b进行估计。
- 优点:
- 直接对分类可能性进行建模,无需事先假设数据分布,避免了假设分布不准确带来的问题;
- ▶ 可以得到类别近似概率预测;
- > 对率函数式任意阶可导的凸函数,易于求最优解。

Chap 3 线性判别分析

线性判别分析(LDA)是一种经典的线性学习方法:给定一个训练样本,设法将样例投影到一条直线上,使得同类样例的 投影点尽可能接近、异类样例的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的这条直线上,再根据投影点 的位置来确定新样本的类别:

投影:
$$\omega^T \mu_0$$
 和 $\omega^T \mu_1 +$

协方差:
$$\omega^T \sum_0 \omega \, \hat{\omega} \, \omega^T \sum_1 \omega \, \varphi$$

欲使同类样例的投影点尽可能接近,可以让同类样例投影点的协方差尽可能小;而欲使异类样例的投影点尽可能远离,可以让类中心之间的距离尽可能大:

$$J = \frac{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{b} \boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{w} \boldsymbol{w}}.$$

这是LDA 欲最大化的目标,即 S_s 与 S_s 的广义瑞利商。

Chap 3 多分类学习

- 多分类学习主要是讲述如何对数据集进行拆分。
- 有些二分类学习方法可直接推广到多分类,但在更多情形下是基于一些基本策略,利用二分类学习器来解决多分类问题。

对于考虑 N 个类别 C1,C2,C3....CN

C1, C2, C3.... CN, 多分类学习的基本思路是"拆解法"<u>即将多</u>分类任务拆为若干个二分类任务求解. →

拆分策略	思路	结果预测	预测开销
—对— (OvO)	将N个类别两两配对,产生 N(N-1)/2个二分类任务和分类结 果。	被预测得最多的类别作为最终分类结果。	存储开销和测试时间开销大,但在类别很多时,训练时间开销比OvR小
一对其余(OvR)	每次将一个类的样例作为正例, 所有其他类的样例作为范例来训 练N个分类器。	若测试时仅有一个分类器预测为正类,则对应的类别标记作为最终分类结果;若有多个分类器预测为正类,则选择置信度最大的类别标记为分类结果。	存储开销和测试时间开销小
多对多(MvM)	每次将若干个类作为正类,若干个其他类作为反类(OvO和OvR是MvM的特例),采用ECOC(纠错输出码)技术。		

Chap 3 类别不平衡问题

- 指分类任务中不同类别训练样例数目差别很大的情况。
- 基本策略: 再缩放/再平衡, 令 $\frac{y'}{1-y'} = \frac{y}{1-y} \times \frac{m^-}{m^+}$

当训练集中正、反例的数目不同时,我们直接拿预测几率和观测几率进行比较就可以得出结论。如正例数目为 m^+ ,反例数目为 m^- ,则观察几率为 m^+ ,当

分类器的预测几率高于观测几率便可以判断为正例: $\frac{y}{1-v} > \frac{m^+}{m^-}$ 。 →

实现方法	含义	代表算法	开销
过采样(上采样)	正例过多,增加一些正例	SMOTE:通过 对训练集里的正 例进行插值来产 生额外的正例	开销大
欠采样(下采样)	反例过多, 去除一些反例	EasyEnsemble: 利用集成学习机制,将反例划分为若干个集合供不同学习器使用。	开销小
阈值移动	在用训练好的分类器进行预测时,将嵌入到决策过程中		