ADVANCED PHOTOSENSORS FOR LASER BEACON ADAPTIVE OPTICS ON THE STARFIRE OPTICAL RANGE 3.5 M TELESCOPE: PREPRINT

Robert Johnson

Boeing LTS Inc. 6200 Uptown Blvd Suite 240 Albuquerque, NM 87110-4142

1 August 2009

Technical Paper

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY Directed Energy Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
01-08-2009	Technical Paper	1 Jan, 2006-Aug 1, 2009
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
		FA9451-05-C-0257 S038NGAS
Advanced Photosensors for La	ser Beacon Adaptive Optics on the	5b. GRANT NUMBER
Starfire Optical Range 3.5 m T	elescope: Preprint	
1	1 1	5c. PROGRAM ELEMENT NUMBER
		62605F
6. AUTHOR(S)		5d. PROJECT NUMBER
Robert Johnson		6255
		5e. TASK NUMBER
		SJ
		5f. WORK UNIT NUMBER
		CA
7. PERFORMING ORGANIZATION NAM Boeing LTS Inc.	E(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
6200 Uptown Blvd Suite 240		
Albuquerque, NM 87110-4142		
1110 44.014.0, 1111 0, 110 11.2		
9. SPONSORING / MONITORING AGEN	CY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory		AFRL/RDSA
3550 Aberdeen AVE SE		
Kirtland AFB, NM 87117-5776		11. SPONSOR/MONITOR'S REPORT
		NUMBER(S)
		AFRL-RD-PS-TP-2009-1019
12. DISTRIBUTION / AVAILABILITY STA	ATEMENT	·

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release

13. SUPPLEMENTARY NOTES

Accepted for publication at the Advanced Maui Optical and Space Surveillance Technologies Conference; Wailea, Maui, HI; September 2-4. 377ABW-2009-1113; 27 Aug 09. "Government Purpose Rights" PA approval 377ABW-2009-1113 dtd 27 Aug 09.

14. ABSTRACT

Total upgrade of 3.5 m sodium guidestar adaptive optics for space situational awareness (NGAS). 24x24 subaperture AO system in compact coude path. High optical throughput; efficient use of sodium beacon and other signals. Using existing 50w sodium laser. Replace all optics except for primary. Replace all sensors.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Robert Johnson
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	SAR	24	19b. TELEPHONE NUMBER (include area code) 505-846-6669

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Advanced photosensors for laser beacon adaptive optics on the Starfire Optical Range 3.5 m telescope

Advanced Maui Optical and Space Surveillance Technologies Conference

Robert Johnson, Ph.D.
Directed Energy Directorate,
Air Force Research Laboratory

Outline

- Background & status
- Motivation
- Status of CCID-66
- Shared MIT Lincoln CCD lot with TMT and Keck
- APD arrays
- Summary

photo by R. Fugate, 4 sec exp, f/2.2, f=35 mm

Total Upgrade of 3.5 m

Sodium Guidestar Adaptive Optics for Space Situational Awareness (NGAS)

image by J. Spinhirne and B. Agena

- 24×24 subaperture AO system in compact coudé path
- High optical throughput: efficient use of sodium beacon & other signals
- Use existing 50 W sodium laser
- Replace all optics except for primary
- Replace all sensors

3

3.5 m AO Upgrade Status

- Primary removed; plan to recoat mid-Sept.
- Coudé lab gutted; optics benches installed
- Optics: large fraction delivered; mounts in fabrication
- New fast steering mirror and deformable mirror delivered
- CCID-66 complete; electronics in work
- APD arrays: 16×16 subaperture 2nd prototype delivered

Arrays for Wavefront Sensing

Better AO performance with low read noise and low latency

Avalanche photodiode arrays

- Geiger mode, no read noise, direct to digital, fast readout
- Drawbacks
 - Crosstalk
 - Probability of detection ~0.5

Approach

- Continue CCD development while working on issues with APD arrays
- CCID-66, 2-stage JFET amplifier

CCID-66 Description

- 160×160 pixels, 21 μm square
- 16×80 pixels per channel with frame store
- 20 channels, 3–10 MHz per channel, > 3000 fps
- 2-stage planar JFET, low cap, high responsivity
- Proven I.3 e⁻ at 0.5 MHz single-stage planar JFET
- Estimate 8 e⁻ at 5 MHz two-stage planar JFET
- QE 0.8 at 589 nm

7

WFS Requirements

Estimates for CCID-66 with a 5 MHz pixel clock

Description	Units	Threshold	Goal	Estimate
Subaperture number (WFS)	_	24×24	24×24	40×40
Integration time (WFS)	ms	0.25	0.1	0.2
Frame rate (WFS)	fps	4000	10000	4000
Quantum efficiency (WFS)	_	0.45	0.45	0.8
Read noise	e-	8	-	6
Dark counts	e ⁻ /ms	10	_	10
Crosstalk	%	< 5	< 3	1
Read-out latency	μs	90	15	200

Requirements are similar for APD WFS. CCD-66 also used for Scoring and FPA Tracker.

24×24 Shack-Hartmann WFS

CCID-66 Progress

- Completed back-illumination processing
 - 4 wafers, 32 devices
- MBE passivation: good qe in ultraviolet
- Hydrogen sinter: reduce dark current
- Used new anti-reflection coat
- Packaged with 2-stage TEC
- Delivered to SciMeasure in 2009 July, expect cameras 2009 October

11

Planned CCD Work

- Build and tune electronics (SciMeasure)
- Characterize CCID-66 at SOR
- Shared wafer lot with TMT+Keck
- Improved CCID-66
 - I and 2 stage amplifiers
 - 2 phase serial register
 - Dump drain

Shared Wafer Lot

- 160 x 160 pixel adaptive optics (AO) imagers
- · 256 x 256 pixel AO imagers
- · 1k x 1k imagers
- Polar Coordinate Detector Prototype
- 12 wafer lot
 - split into 3 different implant levels for the planar JFET
 - 4 wafers per split

13

APD Design Details

- High Fill Factor
- Geiger Mode Operation
- Photoelectrons collected outside of punch-through region diffuse into the cathode for breakdown
- With proper tuning of p+ doping, mostly drift detection with some diffusion
- Photons in center of quadcell are efficiently collected

APD Array Prototype

15

APD Array Package

Lid

Sensor

Interposer board

Interposer spacer

TEC

TEC spacer

Case

APD Electronics

17

16×16 Prototype Tests

Dark frames (0.5 ms integration)

Mean = 2.7 counts

STD = 2.3 counts

counts (DN)

0.5 ms	Mean	STD	Mean Good	STD Good
Mean	10.3	62.0	2.7	2.3
STD	1.3	1.5	7	_

16×16 Prototype Tests

Read noise 0.6 e-, Gain 1.29 e-/DN Should be read noise 0 e-, gain 1.0 e-/DN; finer sampling at low flux should show this.

APD Array Status

- BBAPD Lot 2 Complete
 - 16×16 & 32×32 quad-cells, test structures
 - Tests show high peak field causes tunneling current, initiates linear-mode avalanche near edge of device
 - Other wafers will get P implant to reduce field at edge
- SOR2008 ROIC complete
 - Included Tyrell arbiter circuits (resolve crosstalk)
 - Improved reset circuit (< 224 ns)
 - Modified PCB for extra bias voltages

23

Summary

- Expect CCID-66 camera delivery late 2009
- Shared CCD lot 2010
- Continue APD development

Backup

25

New 3.5 m Coudé Room

- Turbulence simulator
 - In-lab check-out
- DM & FSM not at pupil
 - Compact design
- LGS + NGS capability

New Sensors for 3.5 m

Name	Make	Sensor (array size)	Model	λ (nm)
LGS WFS	MIT/LL	Si APD 32×32 subapertures	APD32	589 ±15
LGS WFS Interim	MIT/LL	Si CCD JFET 160×160 pixels	CCID-66	589 ±15
NGS WFS	MIT/LL	Si APD 32×32 subapertures	APD32	480 – 640
NGS WFS Interim	MIT/LL	Si CCD JFET 160×160 pixels	CCID-66	480 – 640
Tilt+Focus	MIT/LL	Si APD 32×32 subapertures	APD32	480 – 640
Tilt+Focus Interim	MIT/LL	Si APD 16×16 subapertures	APD16	480 – 640
I-Band Imager	MIT/LL	Si 1024×1024 pixels	-	650 – 1000
J-Band Imager	Teledyne	InGaAs 1020×1020 pixels	Hawaii-1RG	1100 – 1350
NGS Tracker	TBD	TBD quad cell	TBD	480 – 640
Scoring Sensor	MIT/LL	Si CCD JFET 160×160 pixels	CCID-66	650 – 1000
Correlation Tracker	MIT/LL	Si CCD JFET 160×160 pixels	CCID-66	480 – 640
Acquisition (×3)	Q-Imaging	Si EMCCD 512×512	e2v CCD97	480 – 1000

27

Formats of Sensor Data

Camera Name (unofficial)	Sensor array size	Pixels vert per channel (read out)	Pixels horiz per channel (read out)	Bits	Pixels per channel	Chans	Pixel rate per channel (M pix/s)	Total pixel rate (Mpix/s)	Interface (words × bits)
LGS WFS	32×32 subaps	6	32	10	192	4	60	240	CL Medium (4×10)
LGS WFS Interim	160×160 pixels	24	16	14	384	12	3	36	CL Medium (2×16)
NGS WFS	32×32 subaps	6	32	10	192	4	60	240	CL Medium (4×10)
NGS WFS Interim	160×160 pixels	24	16	14	384	12	3	36	CL Medium (2×16)
Tilt+Focus	32×32 subaps	2	4	10	8	2	60	120	CL Medium (4×10)
Tilt+Focus Interim	16×16 subaps	4	4	10	16	1	60	60	CL Base (2×10)
I-Band Imager	1024×1024 pixels	1016	1016	16	1032256	16	5	80	CL Base (1×16)
J-Band Imager	1020×1020 pixels	1016	1016	16	1032256	16	5	80	CL Base (1×16)
NGS Tracker	16×16 subaps	2	2	10	4	1	60	60	CL Base (2×10)
Scoring Sensor	160×160 pixels	64	16	14	1024	16	3	48	CL Medium (2×16)
Correlation Track	160×160 pixels	64	16	14	1024	16	3	48	CL Medium (2×16)
Acquisition (×3)	512×512 pixels	512	512	14	262144	1	5	5	Firewire (IEEE1394)

gray = SOR Fabric interface

Types of Sensors

Sensor	Pixels (total)	Pixel Size (µm)	Function	
MIT Lincoln APD16	32×32	50	NGS Tracker Tilt+Focus Interim	
MIT Lincoln APD32	64×64	50	LGS WFS, NGS WFS Tilt+Focus	
MIT Lincoln CCID-66	160×160	21	Scoring Sensor, FPA Tracker LGS WFS Interim, NGS WFS Interim	
Teledyne Hawaii-1RG	1000×1000	18	J-Band Imager	
MIT Lincoln Ik×Ik	1000×1000	13	I-Band Imager	
e2v CCD97	512×512	16	Acquisition	

discussed in this talk

29

Selected Requirements

threshold [goal]

Sensor	λ (μm)	read noise (e ⁻)	dark count (e ⁻ /ms/pix)	frame rate (10³/s)	crosstalk (%)	latency (µs)
LGS WFS	0.589±0.015	0 [0]	0.5 [0.5]	4 [10]	5 [3]	90 [15]
Interim NGS WFS	0.48 - 0.64	8 [8] (at 5 MHz)	10 [10]	4 [10]	5 [3]	90 [15]
Tilt+Focus	0.48 - 0.64	0 [0]	0.5 [0.5]	2 [4]	5 [3]	90 [15]
I-Band	0.65 – 1.0	20	10 [1]	0.004	3 [1]	-

CCID-66 AR Coating

Mira Design Details

- InGaAs diode array
- Indium bump-bonds to ROIC
- Each pixel has an amplifier
- Voltage signals output to a multiplexer
- 16 channels in parallel, 16-bit digitizer
- Read-out takes approx. 0.7 sec
- No anti-blooming, no guide window

CCD Electronics

courtesy of R. Dueck

SciMeasure electronics and camera head for CCID-26

Mira Dark Current

Mira test parameters

- Measure
 - read noise, gain, well capacity (PTC)
 - dark current
 - quantum efficiency (1250, 1064, 1550 nm)
- Full frame, slow (low noise) readout
- Temperature controlled 85 kelvins

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/RVIL
Kirtland AFB, NM 87117-5776 2 cy

Robert Johnson
Official Record Copy
AFRL/RDSAM 1 cy