Overview on Apache Airflow

- Airflow is an open-source platform for developing, scheduling, and monitoring batch-oriented workflows.
- It provides the workflow management capabilities that are integral to modern cloud-native data platforms.
 - It automates the execution of jobs, coordinates
 dependencies between tasks, and gives organizations a
 central point of control for monitoring and managing
 workflows.
 - It is especially used for creating and managing complex workflows like the data pipelines that crisscross cloud and on-premises environments.
- Airflow is Python-based framework enables you to build workflows connecting with virtually any technology.
- Airflow is a dynamic platform, since anything that can be done with Python code can be done on Airflow.

- It provides elasticity, scalability, elegant and extensible.
- It provides a web interface that helps to manage the state of your workflows.

The main characteristics of airflow are

 Dynamic - Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.

- **Extensible** Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
- **Elegant -** Airflow pipelines are lean and explicit.

 Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.

- **Scalable** Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers.
- Flexible Workflow parameterization is built-in leveraging the Jinja templating engine.
- Airflow workflows are directed acyclic graphs (DAGs) of tasks.

What is DAG(Directed Acyclic Graphs)?

• A directed acyclic graph (DAG) is a conceptual representation of a series of activities.

- DAGs are often used to visually represent the relationships between your data models and dependencies between different events.
- Directed Acyclic Graph has two important features:
 - <u>Directed Edges</u> In Directed Acyclic Graph, each edge has a direction, meaning it goes from one vertex (node) to another.

This direction signifies a one-way relationship or dependency between nodes.

- Acyclic The term "acyclic" indicates that there are no cycles or closed loops within the graph. In other words, you cannot traverse a sequence of directed edges and return to the same node, following the edge directions.
- Formation of cycles is prohibited in DAG.
- The order of the activities is depicted by a graph, which is visually presented as a set of circles, each representing an activity, some of which are connected by lines, representing the flow from one activity to another.

Features of Apache Airflow

Easy to Use

• If you have a bit of python knowledge, you are good to go and deploy on Airflow.

Open Source

• It is free and open-source with a lot of active users.

Robust Integrations

• It will give you ready to use operators so that you can work with Google Cloud Platform, Amazon AWS, Microsoft Azure, etc.

Use Standard Python to code

You can use python to create simple to complex workflows
 with complete flexibility.

Amazing User Interface

- You can monitor and manage your workflows.
- It will allow you to check the status of completed and ongoing tasks.

Deferrable Operators

 Accommodate long-running tasks with deferrable operators and triggers that run tasks asynchronously, making more efficient use of resources.

Components of Apache Airflow

DAG

- It is the Directed Acyclic Graph a collection of all the tasks that you want to run which is organized and shows the relationship between different tasks.
- It is defined in a python script.

 Web Server

 Web Server

- It is the user interface built on the Flask.
- It allows us to monitor the status of the DAGs and trigger them.

Metadata Database

 Airflow stores the status of all the tasks in a database and do all read/write operations of a workflow from here.

Scheduler

- As the name suggests, this component is responsible for scheduling the execution of DAGs.
- It retrieves and updates the status of the task in the database.

Tasks

- Each node in a DAG represents a task.
- It is a representation of a sequence of tasks to be performed, which constitutes a pipeline.
- The represented jobs are defined by the operators.

Operators

- The operators are the building blocks of the Airflow platform.
- They are used to determine the work done.
- It can be an individual task (node of a DAG), defining how the task will be executed.
- The DAG ensures that the operators are scheduled and executed in a specific order, while the operators define the jobs to be executed at each step of the process.

Croud & Al Analytics

- On Airflow, Hooks allow interfacing with third-party systems.
- They allow the connection between APIs and external databases like Hive, S3, GCS, MySQL, and Postgres.

Plugins

- Airflow plugins can be described as a combination of Hooks and Operators.
- They are used to accomplish specific tasks involving an external application.

Connections

- Connections allow Airflow to store information, allowing it to connect to external systems such as API credentials or tokens.
- They are managed directly from the platform's user interface.
- The data is encrypted and stored as metadata in a Postgres or MySQL database.

When is Airflow used for?

- Airflow can be used for any batch data pipeline, so its use cases are as numerous as they are diverse.
 - Due to its scalability, this platform particularly excels at orchestrating tasks with complex dependencies on multiple external systems.
- By writing pipelines in code and using the various plugins available, it is possible to integrate Airflow with any dependent systems from a unified platform for orchestration and monitoring.

Benefits of Apache Airflow

- Ease of use—you only need a little python knowledge to get started.
- Open-source community—Airflow is free and has a large community of active users.
- Integrations—ready-to-use operators allow you to integrate Airflow with cloud platforms (Google, AWS, Azure, etc).
- Coding with standard Python—you can create flexible workflows using Python with no knowledge of additional technologies or frameworks.
- Graphical UI—monitor and manage workflows, check the status of ongoing and completed tasks.

Cloud & Al Analytics