Aakrist Goyal 2201331540002

Page N	0.		
Date	1	1	

I What is Big Date and where do we need to apply Big Data? - Big Date refers to datasets characterized by the SYS: volume: Extremely large data sizes Leg. Petabytes) velocity: High speed generationle-g. real time TOT data) variety: Diverse Formats (Structured, Seni-Structured, Unstructured) Veracity - Challenges in data accuracy and quality Value: - Insights derived for decision making

Applications-

- Healthcare ; Predictive analytics for disease trends
- Retail: Customer behaviour analysis for personalized marketing
- + Finance: Fraud detection using transaction patterns
- Smart cities: traffic optimization via sensor data
- 2. Define "Data Locality Optimization" 2
- Date locality Optimization prioritizes processing data on the node where it is stored le-g., in Hadoop clusters. This minimizes network transfer overhead, reduces latency, and improves efficiency
- 3. List down the frameworks associated in Hadoop?
- Hadoop's ecosystem includes multiple frameworks for storage, processing, and wor dination:
- · HDFS: Distributed Storage System for handling large files across
- · Map Reduce: Batch Processing model for parallel computation.

 · YARN: Resource manager for scheduling tasks and managing cluster resources.
- · Hive: Soil like interface (Hiveal) for querying date stored in
- · Pig: righ level scripting languarge for data transformation. HBase: No Sal destabase for real-time read write access to large destasets ?

	Aakrist Goyal	Date			
	Spark: In-memory processing engine for faster analytics (not par				
	of Hadoop but often integrated).				
•	Zookeeper: Coordination service for man	aging distributed systems.			
1	I tall yout have a great and an electrical house	a hospital and a superior			
4.	le) hat are the big data characteristics	3 man of the second			
7	The SVs define Big Data:				
Volume: Messive Scale (eg. Terabytes to Tetlabytes).					
Velocity: High-speed date streamsleg. Social Media, LOT Sensors).					
Variety: Mixed data types (eg. text, videos, logs).					
	Veracity: Data quality challenges leg	incomplete or noisy date			
	Value: Business insights derived thro	ugh analytics			
5.	IN A. DA	Sob Guart's supplied			
5. What is Map Reduce Programming Model?					
Maphedure is a distributed processing framework for parallel					
	Computation across clusters.				
i) Map Phase:					
	Splits input data into chunks.	el solant sociales			
	Processes each chunk to produce in	termediate key-value pairs			
	3 goldish i al Boland di astronio	Bull gelf reach Just &			
(i)	Reduce Phase :-	is sadap and a gardatte			
- Aggregates intermediate results by key.					
	Produces Final output	bandalar - anika			
		100000000000000000000000000000000000000			
	Write the difference between Operati	ional and Analytical System			
6.	with reference to Big Data?	TURISMA TIMARY!			
1	Acrect Operational Systems	Analytical systems			
7	o Line In the	Historical data analysis			
. 8		(OLAP)			
	processing (OLTP)	Aggregated, denormalized date			
. 7	Sata Type Structured, normalized data	Complex queries with joins			
0	Milery Surger Broger	Business intelligence dash board			
. [rample Banking transcations,	January Gotter			

Page No.

Aakrist Goyal 2201331540002 9. Write down the disadvantages of aggregate oriented Database and how these can be overcome? - Disadvantages: · Limited Joins: Poor support for complete relationship Leg. Social Network
· Eventual consistency: Data may be temporarily inconsistent across · Redundancy: Data duplication due to donormalization. Solutions: · Denormalization: Pre-join data during writes to optimize reads.
· Hybrid Architecture: Combine NoSal with relational databases For transactions leg. (QRS pattern). · Application-Level Joins Handle joins in code instead of database. to. What are different types of digital data and explore big data use in reference to Cloud Computing? - Digital Data Types:i) Structured: Tabular data leg. SQL databases, (SV Jiles) in Seni-Structured: Self-describing formats (eg. JSON, XML, logs) iii) unstructured: No Pre defined formats leg. emails, videos, social media posts).

Big Date in Clark Computing:

· Storage: Scalable Solutions like AWS 53, troogle Hourd Storage.
· Processing: Managed services like AWS EMRLElastic MapRedue , Azure Databricks

. Analytics- tools like Grougle Bigalurry Converters data wavehou

- Song). · Cost Efficiency - Pay - as - you - go models reduce upfront infra - Structure costs