DefakeHop++: An Enhanced Lightweight Deepfake Detector

What is DefakeHop++?

Enhanced Detector

• Improved version of DefakeHop.

Improvements

- Facial Landmarks: From 3 to 11 landmarks.
- Feature Selection: Uses Discriminant Feature Test (DFT) for supervised selection.

DefakeHop++ System Overview

- 1. Pre-processing Step
- 2. One-Stage PixelHop
- 3. Spatial PCA
- 4. Discriminant Feature Test (DFT)
- 5. Classifier

DefakeHop++ System Overview

Figure 2: An overview of DefakeHop++.

Pre-processing Step

Frame Extraction

• Extract frames from video sequences (e.g., 3 frames per second).

Facial Landmark Detection

Use OpenFace2 to detect 68 landmarks.

Block Extraction

• Crop and resize facial regions and landmarks (e.g., 128x128 pixels).

cropping

- crop sizes are hyper-parameters
- 3 big blocks (yellow) and 8 small blocks (reds)

One-Stage PixelHop

Description

• Data-dependent filter bank creation using the Saab transform.

Feature Extraction

 Decompose patches into DC and AC components, focusing on high-energy features.

Spatial PCA

Purpose

• Remove spatial correlations in feature components.

Method

• Apply PCA to each channel, retaining leading components up to 80% of total energy.

Discriminant Feature Test (DFT)

Supervised Selection

• Optimize feature selection using training labels by minimizing cross-entropy.

Process

• Split feature intervals at various positions, evaluate cross-entropy, select best split.

Classification

Classifier

• Use **LightGBM**, a gradient boosting framework, for final classification.

Features

• Integrate features from various facial regions and landmarks.

Experimental Results

Datasets

• Evaluation on UADFV, FaceForensics++, Celeb-DF, DFDC.

Performance Metrics

• Comparison of AUC scores, model size, training time.

Key Findings

Comparison with MobileNet v3

• Higher detection performance with significantly smaller model size (238K parameters vs. 1.5M).

Training Efficiency

 Lower training time and computational requirements, suitable for mobile deployment.

Conclusion and Future Work

Summary

 DefakeHop++: Lightweight, high-performance Deepfake detector for mobile devices.

Future Directions

- Extend to other fake image types (e.g., satellite images, spliced photos).
- Explore lightweight, weakly-supervised solutions for evolving Deepfake techniques.