МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Звіт

Лабораторна робота №1 з дисципліни:

"Дискретна математика"

Виконав:

Студент групи КН-113

Вовчак Л. В.

Викладач:

Мельникова Н.І.

Тема: "Моделювання основних логічних операцій "

Мета: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні значення за таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Постановка завдання:

Варіант № 6

- Формалізувати речення. Якщо завтра буде холодно та рукав буде полагоджений, я одягну тепле пальто; якщо завтра буде холодно, а рукав не буде полагоджений, отже, я не одягну тепле пальто.
- 2. Побудувати таблицю істинності для висловлювань: $(x \Rightarrow (y \Rightarrow z)) \Rightarrow ((x \land y) \Rightarrow z);$

- тавтологією або протиріччям: $((p \land q) \to (q \leftrightarrow r)) \to \overline{(p \lor r)}$ 4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання: $((p \to q) \land (q \to q)) \to p$;
- 5. Довести, що формули еквівалентні: $p \to (q \land r)$ та $p \lor (q \oplus r)$.

Додаток 2 до лабораторної роботи з розділу 1

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул:

6.
$$(x \Rightarrow (y \Rightarrow z)) \Rightarrow ((x \land y) \Rightarrow z);$$

Розв'язок задачі №1

Позначимо логічні висловлювання через деякі змінні: х, у, z.

Нехай:

Х – на вулиці холодно;

Y – рукав полагоджено;

Z – я одягну пальто;

Тоді формалізація речення буде такою:

$$((x \land y) \to z) V((x \land y) \to z)$$

Розв'язок задачі №2

Таблиця істинності для висловлювання $(\mathbf{x} \to (\mathbf{y} \to \mathbf{z})) \to ((\mathbf{x} \wedge \mathbf{y}) \to \mathbf{z})$

	Α	В	C	D	Е	F	G	Н
1	Х	У	Z	$(y \rightarrow z)$	(x ∧ y)	$x \rightarrow (y \rightarrow z)$	$(x \land y) \rightarrow z$	$(x \to (y \to z)) \to ((x \land y) \to z)$
2	0	0	0	1	0	1	1	1
3	0	0	1	1	0	1	1	1
4	0	1	0	0	0	1	1	1
5	0	1	1	1	0	1	1	1
6	1	0	0	1	0	1	1	1
7	1	0	1	1	0	1	1	1
8	1	1	0	0	1	0	0	1
9	1	1	1	1	1	1	1	1
10								

Розв'язок задачі №3

	Α	В	C	D	Е	F	G	Н	I
1	р	q	r	(p \(\q \)	$(q \leftrightarrow r)$	$(p \land q) \rightarrow (q \leftrightarrow r)$	(p ∧ r)	(p Λ r)	$((p \land q) \rightarrow (q \leftrightarrow r)) \rightarrow (\overline{p \land r})$
2	0	0	0	0	1	1	0	1	1
3	0	0	1	0	0	1	1	0	0
4	0	1	0	0	0	1	0	1	1
5	0	1	1	0	1	1	1	0	0
6	1	0	0	0	1	1	1	0	0
7	1	0	1	0	0	1	1	0	0
8	1	1	0	1	0	0	1	0	1
9	1	1	1	1	1	1	1	0	0
10									

Задане висловлювання не ϵ ні тавтологі ϵ ю, ні протиріччям.

Розв'язок задачі №4

Припустимо що висловлювання $((p \to q) \land (q \to q)) \to p \in$ протиріччям, тоді:

$$((p \rightarrow q) \land (q \rightarrow q)) = True;$$

p = False;

Оскільки $((p \rightarrow q) \land (q \rightarrow q)) = True$, то $(p \rightarrow q) = True i (q \rightarrow q) = True$

Так як p = False, то $(p \rightarrow q) = True$ і оскільки $(q \rightarrow q)$ завжди True, тоді в такому випадку значення висловлювання False, отже, якщо хоча б в одному можливому випадку значення висловлювання False, то це висловлювання не є тавтологією.

Розв'язок задачі №5

Таблиця істинності для двох формул $\mathbf{p} \to (\mathbf{q} \ \mathbf{\Lambda} \ \mathbf{r})$ та $\mathbf{p} \ \mathbf{V} \ (\mathbf{q} \ \mathbf{\Phi} \ \mathbf{r})$

	Α	В	С	D	Е	F	G	
1	р	q	r	(q Λ r)	(q ⊕ r)	$p \rightarrow (q \land r)$	p V (q ⊕ r)	
2	0	0	0	0	1	0	0	
3	0	0	1	0	1	1	1	
4	0	1	0	0	1	1	1	
5	0	1	1	1	1	0	0	
6	1	0	0	0	0	0	1	
7	1	0	1	0	0	1	1	
8	1	1	0	0	0	1	1	
9	1	1	1	1	1	0	1	
10								

Ці дві формули не ϵ еквівалентними, оскільки їхні значення відрізняються при ($\mathbf{p}=\mathbf{1},\,\mathbf{q}=\mathbf{0},\,\mathbf{r}=\mathbf{0}$) та ($\mathbf{p}=\mathbf{1},\,\mathbf{q}=\mathbf{1},\,\mathbf{r}=\mathbf{1}$).

Розв'язок задачі з додатку №2

Отримавши результати заданого висловлювання відносно значень змінних (**x**, **y**, **z**), з таблиці істинності (див. Розв'язок задачі №2) будуємо програму на мові програмування С++

```
▼ Dodatok2

             #include <iostream>
             using namespace std;
           □int main()
                 int x, y, z;
                 setlocale(LC_ALL, "Ukrainian");
                 cout << "X= ";
                 cin \gg x;
                 cout << "Y= ";
                 cin >> y;
                 cout << "Z= ";
                 cin >> z;
                 if ((x == 0) \&\& (y == 0) \&\& (z == 0)) cout << 1;
                 if ((x == 0) && (y == 0) && (z == 1)) cout (< 1;
                 if ((x == 0) \&\& (y == 1) \&\& (z == 0)) cout << 1;
                 if ((x == 0) \&\& (y == 1) \&\& (z == 1)) cout << 1;
                 if ((x == 1) \&\& (y == 0) \&\& (z == 0)) cout << 1;
                 if ((x == 1) \&\& (y == 0) \&\& (z == 1)) cout << 1;
                 if ((x == 1) && (y == 1) && (z == 0)) cout (< 1;
                 if ((x == 1) && (y == 1) && (z == 1)) cout << 1;
                 else cout << "Введіть правильні дані";
```

Висновок:

Виконуючи лабораторну роботу №1, я на практиці ознайомився із основними поняттями математичної логіки, навчився будувати складні висловлювання за допомогою логічних операцій та знаходити їхні значення за таблицями істинності, використовувати закони алгебри логіки, освоїв методи доведень.