Active buzzer

Overview

In this lesson, you will learn how to generate a sound with an active buzzer.

Component Required:

- (1) x kuongshun Mega2560 R3
- (1) x Active buzzer
- (2) x F-M wires (Female to Male DuPont wires)

Component Introduction

BUZZER:

Electronic buzzers are DC-powered and equipped with an integrated circuit. They are widely used in computers, printers, photocopiers, alarms, electronic toys, automotive electronic devices, telephones, timers and other electronic products for voice devices. Buzzers can be categorized as active and passive ones. Turn the pins of two buzzers face up. The one with a green circuit board is a passive buzzer, while the other enclosed with a black tape is an active one.

The difference between the two is that an active buzzer has a built-in oscillating source, so it will generate a sound when electrified. A passive buzzer does not have such a source so it will not tweet if DC signals are used; instead, you need to use square waves whose frequency is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple built-in oscillating circuits.

Passive Buzzer

Overview

In this lesson, you will learn how to use a passive buzzer.

The purpose of the experiment is to generate eight different sounds, each sound lasting 0.5 seconds: from Alto Do (523Hz), Re (587Hz), Mi (659Hz), Fa (698Hz), So (784Hz), La (880Hz), Si (988Hz) to Treble Do (1047Hz).

Component Required:

- (1) x kuongshun Mega2560 R3
- (1) x Passive buzzer
- (2) x F-M wires (Female to Male DuPont wires)

Component Introduction

Passive Buzzer:

The working principle of passive buzzer is using PWM generating audio to make the air to vibrate. Appropriately changed as long as the vibration frequency, it can generate different sounds. For example, sending a pulse of 523Hz, it can generate Alto Do, pulse of 587Hz, it can generate midrange Re, pulse of 659Hz, it can produce

midrange Mi. By the buzzer, you can play a song.

We should be careful not to use the MEGA2560 R3 board analog Write () function to generate a pulse to the buzzer, because the pulse output of analog Write () is fixed (500Hz).

Tilt Ball Switch

Overview

In this lesson, you will learn how to use a tilt ball switch in order to detect small angle of inclination.

Component Required:

- (1) x kuongshun Mega2560 R3
- (1) x Tilt Ball switch
- (2) x F-M wires (Female to Male DuPont wires)

HDX HDX

Component Introduction

Tilt sensor:

Tilt sensors (tilt ball switch) allow you to detect orientation or inclination. They are small, inexpensive, low-power and easy-to-use. If used properly, they will not wear out. Their simplicity makes them popular for toys, gadgets and appliances. Sometimes, they are referred to as "mercury switches", "tilt switches" or "rolling ball sensors" for obvious reasons.

They are usually made up of a cavity of some sort (cylindrical is popular, although not always) with a conductive free mass inside, such as a blob of mercury or rolling ball. One end of the cavity has two conductive elements (poles). When the sensor is oriented so that that end is downwards, the mass rolls onto the poles and shorts them, acting as a switch throw.

While not as precise or flexible as a full accelerometer, tilt switches can detect motion or orientation. Another benefit is that the big ones can switch power on their own. Accelerometers, on the other hand, output digital or analog voltage that must then be analyzed using extra circuitry.

Servo

Overview

Servo is a type of geared motor that can only rotate 180 degrees. It is controlled by sending electrical pulses from your 2560 R3 board. These pulses tell the servo what position it should move to. The Servo has three wires, of which the brown one is the ground wire and should be connected to the GND port of 2560, the red one is the power wire and should be connected to the 5v port, and the orange one is the signal wire and should be connected to the Dig #9port.

Component Required:

- (1) x kuongshun Mega2560 R3
- (1) x Servo (SG90)
- (3) x M-M wires (Male to Male jumperwires)

Component Introduction

SG90

- Universal for JR and FP connector
- Cable length: 25cm
- No load; Operating speed: 0.12 sec / 60 degree (4.8V), 0.10 sec / 60 degree (6.0V)
- Stall torque (4.8V): 1.6kg/cm
- Temperature : -30~60'C
- Dead band width: 5us
- Working voltage: 3.5~6V
- Dimension: 1.26 in x 1.18 in x 0.47 in (3.2 cm x 3 cm x 1.2 cm)
- Weight: 4.73 oz (134 g)

Water Level Detection Sensor Module

Overview

In this lesson, you will learn how to use a water level detection sensor module. This module can perceive the depth of water and the core component is an amplifying circuit which is made up of a transistor and several pectinate PCB routings. When put into the water, these routings will present a resistor that can change along with the change of the water's depth. Then, the signal of water's depth is converted into the electrical signal, and we can know the change of water's depth through the ADC function of MEGA2560R3.

Component Required:

- (1) x kuongshun Mega2560 R3
- (3) x F-M wires (Female to Male DuPontwires)
- (1) x Water lever detection sensor module

Component Introduction

lines of bare conducting wires.

Water sensor:

This sensor works by having a series of exposed traces connected to ground. Interlaced between the grounded traces are the sense traces.

The sensor traces have a weak pull-up resistor of 1 M Ω . The resistor will pull the sensor trace value high until a drop of water shorts the sensor trace to the grounded trace. Believe it or not this circuit will work with the digital I/O pins of your MEGA2560 R3 board or you can use it with the analog pins to detect the amount of water induced contact between the grounded and sensor traces.

This item can judge the water level through with a series of exposed parallel wires stitch to measure the water droplet/water size. It can easily change the water size to analog signal, and output analog value can directly be used in the program function, then to achieve the function of water level alarm.

Membrane Switch Module

Overview

In this project, we will go over how to integrate a keyboard with an MEGA2560 R3 board so that the MEGA2560 R3 can read the keys being pressed by a user. Keypads are used in all types of devices, including cell phones, fax machines, microwaves, ovens, door locks, etc. They're practically everywhere. Tons of electronic devices use them for user input.

So knowing how to connect a keypad to a microcontroller such as an MEGA2560 R3 board is very valuable for building many different types of commercial products.

At the end when all is connected properly and programmed, when a key is pressed, it shows up at the Serial Monitor on your computer. Whenever you press a key, it shows up on the Serial Monitor. For simplicity purposes, we start at simply showing the key pressed on the computer.

For this project, the type of keypad we will use is a matrix keypad. This is a keypad that follows an encoding scheme that allows it to have much less output pins than there are keys. For example, the matrix keypad we are using has 16 keys (0-9, A-D, *, #), yet only 8 output pins. With a linear keypad, there would have to be 17 output pins (one for each key and a ground pin) in order to work. The matrix encoding scheme allows for less output pins and thus much less connections that have to make for the keypad to work. In this way, they are more efficient than

Component Required:

- (1) x kuongshun Mega2560 R3
- (1) x Membrane switch module
- (8) x M-M wires (Male to Male jumper wires)

linear keypads, being that they have less wiring.

When connecting the pins to the MEGA2560 R3 board, we connect them to the digital output pins, D9-D2. We connect the first pin of the keypad to D9, the second pin to D8, the third pin to D7, the fourth pin to D6, the fifth pin to D5, the sixth pin to D4, the seventh pin to D3, and the eighth pin to D2. These are the connections in atable:

Keypad Pin	Connects to Arduino Pin
1	D9
2	D8
3	D7
4	D6
5	D5
6	D4
7	D3
8	D2

Ultrasonic Sensor Module

Overview

Ultrasonic sensor is great for all kind of projects that need distance measurements, avoiding obstacles as examples.

The HC-SR04 is inexpensive and easy to use since we will be using a

Library specifically designed for these sensor

Component Required:

- (1) x kuongshun Mega256D R3
- (1) x Ultrasonic sensor module
- (4) x F-M wires (Female to Male DuPontwires)

Component Introduction

Ultrasonic sensor

Ultrasonic sensor module HC-SR04 provides 2cm-400cm non-contact measurement function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters, receiver and control circuit. The basic principle of work:

- (1) Using IO trigger for at least 10us high level signal,
- (2) The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.
- (3) IF the signal back, through high level, time of high output IO duration is the time from sending ultrasonic tore turning.

Test distance = (high level time \times velocity of sound (340m/s)/2

The Timing diagram is shown below. You only need to supply a short 10us pulse to the trigger input to start the ranging, and then the module will send out an 8 cycle burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is pulse width and the range in proportion .You can calculate the range through the time interval between sending trigger signal and receiving echo signal. Formula: us / 58 = centimeters or us / 148 =inch; or: the range = high level time * velocity (340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent trigger signal to the echosignal.

Temperature and Humidity Sensor

Overview

In this tutorial we will learn how to use a DHT11 Temperature and Humidity Sensor. It's accurate enough for most projects that need to keep track of humidity and temperature readings.

Again we will be using a Library specifically designed for these sensors that will make our code short and easy to write.

Component Required:

- (1) x kuongshun Mega2560 R3
- (1) x DHT11 Temperature and Humidity module
- (3) x F-M wires (Female to Male DuPont wires)

Component Introduction

Temp and humidity sensor:

DHT11 digital temperature and humidity sensor is a composite Sensor which contains a calibrated digital signal output of the temperature and humidity. The dedicated digital modules collection technology and the temperature and humidity sensing technology are applied to ensure that the product has high reliability and

excellent long-term stability. The sensor includes a resistive sense of wet components and a NTC temperature measurement devices, and connects with a high-performance 8-bitmicrocontroller.

Applications: HVAC, dehumidifier, testing and inspection equipment, consumer goods, automotive, automatic control, data loggers, weather stations, home appliances, humidity regulator, medical and other humidity measurement and control.

Product parameters

Relative humidity:

Resolution: 16Bit

Repeatability: ±1% RH

Accuracy: At 25°C ±5%RH

Interchangeability: fully interchangeable

Response time: 1 / e (63%) of 25°C 6s

1m / s air 6s

Hysteresis: <± 0.3% RH

Long-term stability: <± 0.5% RH / yr in

Temperature:

Resolution: 16Bit

Repeatability: ±0.2°C

Range: At 25°C ±2°C

Response time: 1 / e (63%) 10S

Electrical Characteristics
Power supply: DC 3.5 ~ 5.5V

Supply Current: measurement 0.3mA standby $60\mu A$

Sampling period: more than 2 seconds

Pin Description:

1, the VDD power supply $3.5 \sim 5.5 \text{V DC}$

2 DATA serial data, a single bus

3, NC, empty pin

4, GND ground, the negativepower

