C91AR | Advanced Statistics using R

Lecture 6: Data Simulation for Correlation in R

Dr Pete McKenna

2025-02-28

Contents

1	Todays packages	2
2	What's the deal with data simulation?	3
3	OK, so what is today's session going to cover?	3
4	Simulating Univariate data	3
5	Examine the data	3
6	How NOT To Simulate Bivariate data	5
7	Our first attempt at simulating multivariate data	5
8	Scatter plot the heights and weights data	6
9	Scatter plot of the log of handw data	7
10	Using the MASS::mvrnorm command	7
11	MASS::mvrnorm arguments	8
	11.1 Out of interest, what about the relationship between 2+ variables?	8
12	Matrix Calculations for the Sigma argument	8
13	Gathering the statistics	9

1 TODAYS PACKAGES 2

14	Calculation output	9
15	Calculating Sigma for MASS:mvrnorm	9
16	Enter values into the formula	10
17	Create covariance matrix for the MASS::mvrnorm argument in R	10
	17.1 Some notes about the matrix function	10
18	Simulate data	11
19	Simulation considerations	12
2 0	Simulating a large dataset	12
2 1	Combine the real and simulated data	13
22	Examined combined data	13
23	Plot the real and simulated data	13
24	With tidyplots	14
25	Save the simulated dataset	15
26	Round-up and conclusion	15
27	Thank you!	16

1 Todays packages

5 EXAMINE THE DATA 3

2 What's the deal with data simulation?

- Simulating data is a really useful skill for research and teaching.
- For research, it can help you to plan and prepare analysis scripts (e.g., for pre-registration), instead of waiting until data collection is complete.
 - This in turn can help you select the correct statistical test.
- For teaching, you can create topic-relevant datasets for specific courses.
- More generally, creating and working with simulated data helps to develop your understanding of statistical concepts.

3 OK, so what is today's session going to cover?

- The formula for correlation
- The related R code for simulating bivariate (i.e., includes 2 variables) data
- How to plot simulated data

4 Simulating Univariate data

• Data along a normal distribution can be simulated using the rnorm function, like so:

5 Examine the data

```
headTail(rt_sim)
```

```
## control rt
```

5 EXAMINE THE DATA

```
## 1
        1443.73
        1568.94
## 2
## 3
         808.48
         699.91
## 4
## 5
         428.12
## 6
## 7
         773.09
         663.01
## 8
## 9
         859.12
```

• Here's our data plotted in a histogram.

6 How NOT To Simulate Bivariate data

• However, to simulate the distribution of two related variables you can't just run rnorm twice as you will end up with two variables that are unrelated, with a correlation of (near) zero.

[1] -0.0373358

7 Our first attempt at simulating multivariate data

- Let's start by simulating some data representing hypothetical humans and their height and weight.
- We know these things are correlated.
- What we need to be able to simulate are the **means**, **standard deviations**, and the **correlations** between these two variables.
- I'm using a dataset of heights and weights link on final slide.

```
## Rows: 475
## Columns: 2
## $ height_in <dbl> 63, 67, 71, 71, 56, 67, 65, 74, 64, 62, 60, 47, 38, 67, 67,~
## $ weight_lbs <dbl> 130, 169, 178, 225, 98, 204, 145, 180, 150, 136, 110, 80, 3~
```

8 Scatter plot the heights and weights data

• It is evident from the scatter plot of the distribution that the relationship between heights and weights is not quite linear, so let's log transform the variables.

9 Scatter plot of the log of handw data

10 Using the MASS::mvrnorm command

- The MASS package provides a function myronrm which stands for multivariate + rnorm.
- MASS is a large package in R, so for efficiency let's only load the required components by using the argument MASS::mvrnorm instead of library("MASS").

This is also a handy way to proceed as there are some annoying package conflicts between dplyr
and MASS that we want to avoid.

11 MASS::mvrnorm arguments

- The three arguments to take note of are:
 - n = number of samples required
 - mu = a vector giving the means of the variables
 - Sigma = a positive-definite symmetric matrix specifying the covariance of the variables
- Positive-Definite Symmetric Matrix
 - A covariance matrix (also known as the variance-covariance matrix) specifying the variances
 of the individual variables and their inter-relationships.
 - It is essentially a multi-dimensional version of standard deviation.

11.1 Out of interest, what about the relationship between 2+ variables?

For a multivariate distribution with more than two variables you need

- The means for all of the variables.
- Their standard deviations.
- All possible pairwise correlations between the variables.

12 Matrix Calculations for the *Sigma* argument

A covariance matrix can be calculated using the following formula:

$$\sum = \begin{pmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{yx}\sigma_y\sigma_x & \sigma_y^2 \end{pmatrix}$$

- $\sigma_x^2 = \text{squared SD for } x$.
- $\sigma_y^2 = \text{squared SD } y$.
- $\rho_{xy}\sigma_x\sigma_y$ = the co-variances (i.e., the correlation multiplied by the two standard deviations, shown in the off-diagonal.
- It is worth saying here that the covariance is just the correlation times the product of the two standard deviations.

13 Gathering the statistics

- Let's start by gathering the statistics we need to simulate the data using MASS::mvrnorm.
- Remember, we need the
 - mean
 - sd
 - Sigma
- We will continue with the log of the data, as the relationship is more linear.

```
# calculate means and sd
handw_log |>
  summarise(mean_h = mean(hlog),
            sd_h = sd(hlog),
            mean_w = mean(wlog),
            sd_w = sd(wlog)) |>
  mutate_if(is.numeric, round, digits = 2) # round to 2 decimal places
## # A tibble: 1 x 4
     mean_h sd_h mean_w sd_w
##
      <dbl> <dbl> <dbl> <dbl> <
## 1
       4.11 0.26
                    4.74 0.65
# calculate correlation
cor(handw_log$hlog, handw_log$wlog)
```

14 Calculation output

[1] 0.9615714

```
• \bar{x} = 4.11, \sigma_x = 0.26 (mean and SD of log height)
```

- $\bar{y} = 4.74, \sigma_y = 0.65$ (mean and SD of log weight)
- $\rho_{xy} = 0.96$ (correlation between the two)

15 Calculating Sigma for MASS:mvrnorm

• We now have all of the information we need to simulate the height and weight of, let's say 500 humans.

- One last piece in the puzzle is to create the covariance matrix to supply to the Sigma argument.
- Let's plug in the output values we calculated previously into the covariance matrix formula.

16 Enter values into the formula

$$\sum = \begin{pmatrix} \sigma_x^2 & \rho_{xy}\sigma_x\sigma_y \\ \rho_{yx}\sigma_y\sigma_x & \sigma_y^2 \end{pmatrix}$$

• So plugging in the values we got above, our covariance matrix should be

$$\sum = \begin{pmatrix} .26^2 & (.96)(.26)(.65) \\ (.96)(.65)(.26) & .65^2 \end{pmatrix} = \begin{pmatrix} .067 & .162 \\ .162 & .423 \end{pmatrix}$$

17 Create covariance matrix for the MASS::mvrnorm argument in R

```
## [,1] [,2]
## [1,] 0.06760 0.16224
## [2,] 0.16224 0.42250
```

17.1 Some notes about the matrix function

- The first argument is a vector of values, which we created using c().
- The ncol argument specifies how many columns the matrix should have.
- matrix fills the elements of the matrix by column by column, rather than row by row.
- You can change this behaviour if desired by changing the byrow argument to byrow = TRUE.

18 SIMULATE DATA 11

18 Simulate data

OK, so now we have my_sigma we're ready to use MASS::mvrnorm. Let's test it by creating 6 synthetic humans.

```
## height weight
## [1,] 4.046250 4.964822
## [2,] 3.946070 4.613247
## [3,] 4.582814 5.702836
## [4,] 4.520118 5.680369
## [5,] 4.134257 4.573500
## [6,] 4.427730 5.442189
```

- MASS::mvrnorm returns a matrix with a row for each simulated human, with the first column representing the log height and the second representing the log weight.
- But the log heights and weights are not very useful to us, so let's transform them back using the exp(), which is the inverse of log() transform.

```
exp(log_ht_wt)
```

```
## height weight
## [1,] 57.18263 143.2831
## [2,] 51.73166 100.8109
## [3,] 97.78919 299.7163
## [4,] 91.84645 293.0574
## [5,] 62.44320 96.8826
## [6,] 83.74115 230.9473
```

```
# remember height is measured in inches
# weight is measured in pounds
```

19 Simulation considerations

- Note, that there will be some unusual observations generated, with strangely high or low values for height and weight.
- However, you can rest easy knowing that the weight/height relationship, as specified by the variance vocariance matrix, has been preserved.

20 Simulating a large dataset

Finally, let's simulate a group of 500 humans, convert their values from the log space to the real space (e.g., inches and pounds), and plot a comparison between the original data and our simulated data.

```
##
     height_in weight_lbs
                                type
          63.1
                   106.76 simulated
## 1
## 2
        131.15
                    655.42 simulated
## 3
         80.06
                   320.35 simulated
         43.88
                     69.69 simulated
## 5
                                <NA>
         67.52
                    145.5 simulated
## 6
          81.2
                   199.54 simulated
## 8
         50.54
                    93.26 simulated
## 9
         66.82
                   145.88 simulated
```

21 Combine the real and simulated data

• What do you think bind_rows is doing here?

22 Examined combined data

```
# examine tibble
headTail(all_data)
##
     height_in weight_lbs
                               type
## 1
            63
                      130
                              real
## 2
            67
                      169
                              real
            71
## 3
                     178
                              real
## 4
            71
                      225
                              real
                               <NA>
## 5
## 6
         67.52
                  145.5 simulated
## 7
                 199.54 simulated
         81.2
         50.54
                  93.26 simulated
## 8
## 9
         66.82
                  145.88 simulated
```

23 Plot the real and simulated data

```
# plot the data
ggplot(all_data,
    aes(x = height_in,
        y = weight_lbs)) +
geom_point(aes(colour = type),
        alpha = .6)
```

24 WITH TIDYPLOTS 14

24 With tidyplots

25 Save the simulated dataset

```
# write data as a csv into "data" folder
write_csv(all_data, "data_tidy/simulated_handw.csv")
```

26 Round-up and conclusion

- In the process of showing you how to simulate bivariate data you become more familiar with covariance and matrix calculations.
- This is just an example of how data simulation can develop statistical your expertise.
- The end result is something you can use for research (e.g., your analysis script) or for teaching your class (e.g., the dataset).

27 THANK YOU! 16

27 Thank you!

Inspiration for today's session on Data Simulation:Learning Statistical Models Through Simulation in R: Correlation and Regression

PsyPag & MSCP-Section Simulation Summer School

Data Simulation Workshops

Heights and weights dataset