Appl. No. 09/646,640 Amdt. dated Dcc. 14, 2004 Reply to Office Action of July 14, 2004

Amendments to the Claims:

- 1 1. (cancelled).
- 2. (currently amended) Protection The protection method according to claim-19,
- 2 <u>characterized in that wherein a randomly transformed data element is a key (K1,</u>
- 3 K2, K3, K4, K5).
- 3. (currently amended) Protection The protection method according to claim 1 9,
- 2 characterized in that wherein a randomly transformed data element is a message
- 3 block (M, M0, M1, M2, M3).
- 4. (currently amended) Protection The protection method according to claim 4 9,
- 2 characterized in that wherein a randomly transformed data element is a message
- 3 block associated with a key by a logical operator of the exclusive-OR type (R1,
- 4 R2, R3, R4, R5).
- 5. (currently amended) Protection The protection method according to claim 1.2.
- 2 eharacterized in that wherein the cryptographic algorithm for executing
- 3 operations for processing data (M, M0, M1, M2, M3, K1, K2, K3, K4, K5, R1,
- 4 R2, R3, R4, R5) comprises a group of operations (270) executed repeatedly.
- 6. (currently amended) Protection The protection method according to claim 5,
- 2 eharacterized in that wherein the random transformation step is a step that
- 3 precedes the group of operations (270) executed repeatedly and in that the
- 4 inverse transformation step is a step that follows said group of operations (270).

Appl. No. 09/646,640 Amdt. dated Dec. 14, 2004 Reply to Office Action of July 14, 2004

1	7.	(currently amended) Protection The protection method according to claim + 2,
2		characterized in that <u>further comprising</u> a step for randomly modifying the order
3		of execution of the operations of the group of operations (270).
1	8.	(currently amended) Protection The protection method according to claim 1 9,
2		characterized in that wherein the cryptographic algorithm is the DATA
3		ENCRYPTION STANDARD type.
1	9.	(new) Data protection method for protecting data elements processed by a
2		microprocessor in a chip card from discovery by analysis of the microprocessor's
3		electric power consumption, said method using a cryptographic algorithm for
4		executing operations for processing said data elements so as to generate
5		encrypted information, said method comprising:
6 .		random transformation of at least one of the data elements by associating said
7		at lest one of the data elements with a random number generated by
8		an unpredictable number generator, by means of a logical operator of
9		the exclusive-OR type, and
10		after this random transformation step, an inverse transformation step such
11		that the encrypted information is unchanged by these tranformation
12		steps.
1	10	(new) Data protection method for protecting data elements processed by a
2		microprocessor in a chip card from discovery by analysis of the microprocessor's
3		electric power consumption, said method using a cryptographic algorithm for
4		executing operations for processing said data elements so as to generate
5		encrypted information, said method comprising:

Appl. No. 09/646,640 Amdt. dated Dec. 14, 2004 Reply to Office Action of July 14, 2004

6	randomly modifying the order of execution of operations from one cycle to
7	another, a cycle being a complete execution cycle of the algorithm or
8	an intermediate cycle of a group of operations, said operations being
9	operations whose order of execution relative to the others does not
10	affect the result.
1	11. (new) The protection method according to claim 10, wherein the modified order
2	of execution of operations include permutation of bits of a message block before
3	permutation of bits of a key, and vice versa.
1	12. (new) The protection method according to claim 10, wherein the modified order
2	of execution of operations include modifying the order of processing quartets
3	making up a data element.
1	13. (new) The protection method according to claim 10, wherein the modification of
2	the order of execution of operations is random.