

Informatics Institute of Technology Department of Computing 5DATA001C.2 Machine Learning and Data Mining

Name: Ravindi Madana

UoW Number: w2082268

IIT Number: 20232777

Group Number: 23

Contents

Case Study (A) Analyses Report for Predicting Mortality Status Tasks Task (1) – Domain	
Understanding: Classification	3
Task (2) – Exploring and Understanding Your Dataset	4
Task (3) – Data Preparation: Cleaning and Transforming your data	5
3 - (a)	5
3 - (b)	5
Task (4) – Classification Modelling of Cancer Patients Mortality Status	6
4 - (a)	6
4 - (b)	7
Task (5) – Evaluating your Cancer Mortality Status Classification Models	7
5 - (a)	7
5- (b)	9
5 - (c)	10
5 - (d)	10
5 - (e)	11
Case_Study (B) Analyses Report for Predicting Survival Months Tasks	13
Task 1	13
Task 2	14
2)- a Why use a decision tree regression (DT) algorithm to model	14
2) – b – i Decision Tree (DT) regression models, DT-1 & DT-2	14
2) – b – ii Explanation of Pruning Method and Evaluation	14
Task 3 – Evaluating your Cancer Survival Months DT Regression Models (3a) Metric	
Justification Table	16
(3b) Recommend Best Model	17
(3c) Critical Reflections on Model Performance	17
Task 4 – Interpreting Cancer Survival Months Decision Tree Outcomes	17

Case Study (A) Analyses Report for Predicting Mortality Status Tasks Task (1) – Domain Understanding: Classification

Variable Name	RETAIN or DROP	Brief justification for retention or dropping
Patient ID	DROP	Don't need for predictions
Month of Birth	DROP	No medical relevant
Age	RETAIN	Important risk fact, according to age possibility check
Sex	DROP	All patient here seems like female
Occupation	DROP	So many types of occupation can't encode
T Stage	RETAIN	Tumor stage is a critical predictor for survival rate
N Stage	RETAIN	Nodal status is a key indicator of breast cancer outcomes
6th Stage	RETAIN	Combined staging system provides comprehensive disease progression assessment
Differentiated	RETAIN	Tumor differentiation is a prognostic factor in breast cancer
Grade	RETAIN	Histological grade is strongly associated with patient survival
A Stage	RETAIN	Reports whether cancer has spread to distant locations, a major determinant of death
Tumor Size	RETAIN	Tumor size is directly related to risk of death
Estrogen Status	RETAIN	Estrogen receptor status affects response to therapy and prognosis
Progesterone Status	RETAIN	Progesterone receptor status affects treatment decisions and survival

Regional Node Examined	RETAIN	Number of nodes assessed is related to extent of disease assessment
Regional Node Positive	RETAIN	Number of positive nodes is one of the strongest predictors of recurrence and survival
Survival Months	DROP	This is post-outcome data which would lead to leakage of data in mortality prediction
Mortality Status	RETAIN	This is our target variable for the classification problem.

Task (2) – Exploring and Understanding Your Dataset

Variable Data Types

Descriptive Statistics Table

Mortality Status Distribution Plot

Task (3) – Data Preparation: Cleaning and Transforming your data

3 - (a)

Variable Name	Issue found	Proposed fix	Justification for
	36 11 1	7	used fix method
Reginol_Node_Positive	Misspelled column	Rename to	Readability and
	name	Regional_Node_Positive	correctness are
			improved.
Mortality_Status	Inconsistent	Convert to lowercase, strip	Standardizes
	capitalization and	whitespace, map values to	categories for binary
	spelling (ALIVE, alive, Dead, DEAD)	Alive and Dead	classification
Age, Tumor_Size	Contains invalid	Convert to numeric with	Invalid entries and
	entries (Minus values)	errors='coerce', remove	outliers may bias or
	and out of range values	out-of-ange	crash models.
Missing Columns	Contain missing values	Impute using mean	Mean imputation
			prevents row loss
			while being effective
			continuous data
			default.
T_Stage, N_Stage,	Ordinal categorical	Encode using	Models can't handle
Grade, Differentiated	variables not in	LabelEncoder or mapping	strings. Encoding
	numerical form		ordinal categories
			preserves the natural
			order,
Estrogen_Status,	Categorical string	Map values to numeric	Categorical strings
Progesterone_Status,	labels	manually	must be numerically
A_Stage, 6th_Stage			encoded for ML
			models.
Sex, Occupation	Irrelevant or redundant	Drop columns	These are not likely
	variables		to be informative for
			mortality prediction
Float columns with no	Some float columns	Convert to Int64	Preserves
decimals	don't actually contain		compatibility with
	fractional values		models expecting
			integers.

3 - (b)

Before Fix (Regional_Node_Positive): After Fix (Regional_Node_Positive):

```
print(data.columns)
upation', 'T_Stage', 'N_Stage', '6th_Stage', 'Differentiated', 'Grade', 'A_
tus', 'Regional_Node_Examined', 'Reginol_Node_Positive', 'Survival_Months',
```

Before Fix (Mortality_Status):

BEFORE FIX: Show inconsistent Mortality_Status values print(data['Mortality_Status'].unique()) ['Alive' 'Dead' 'ALIVE' 'DEAD' 'ALive' 'alive' 'dead']

After Fix (Mortality_Status):

```
[ ] data_cleaned['Mortality_Status'].unique()

→ array([1, 0])
```

Before Fix (Age and Tumor Size):

After Fix (Age and Tumor Size):

115, 73, 125, 104, 94, 86, 64, 96, 79, 67] Length: 110, dtype: Int64

Before Fix (Missing Columns):

After Fix (Missing Columns):

Before Fix (Data Encoding and Float Converting)

After Fix

Task (4) – Classification Modelling of Cancer Patients Mortality Status

4 - (a)

Algorithm Name	Algorithm Type	Learnable Parameters	Some Strategic Hyperparameters
NB	Parametric	Class prior	None (typically not
		probabilities,	tunable in GaussianNB)

		likelihoods (mean, variance for Gaussian NB)	
LR	Parametric	Weights/coefficients (β values)	Regularization (C), penalty (L1/L2), solver
KNN (N=?)	Non-parametric	None (lazy learner)	Number of neighbors (k), distance metric, weights

4 - (b)

4 - (b) - i

Here employed an 80/20 train-test split to ensure most data is left for model learning and a significant amount is set aside for safe testing. Such balance allows us to build models with satisfactory generalization performance. The dataset is not extremely small nor highly imbalanced, thus the application of an 80/20 split in sound model evaluation.

4 - (b) - iii

```
[8] # This code from code reuse session 3 pt 7
    # Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
```

Here used the stratify = y parameter to maintain class balance between "Alive" and "Dead" cancer patients both in training and test sets. This is necessary for unbiased comparison of classification performance. We have also used random_state=42 to make results reproducible and all models get tested on same data subset.

Task (5) – Evaluating your Cancer Mortality Status Classification Models

5 - (a)

- I. Logistic Regression (LR)
 - a) Confusion Matrix

b) Classification Report

	precision	recall	f1-score	support
0 1	0.53 0.86	0.11 0.98	0.19 0.92	185 1021
accuracy macro avg weighted avg	0.69 0.81	0.55 0.85	0.85 0.55 0.80	1206 1206 1206

c)AUC-ROC Curve

II. Naive Bayes (NB)

a) Confusion Matrix

b) Classification Report

•	precision	recall	f1-score	support	
0 1	0.35 0.89	0.42 0.86	0.38 0.87	185 1021	
accuracy macro avg	0.62	0.64	0.79 0.63	1206 1206	
weighted avg	0.81	0.79	0.80	1206	

c)AUC-ROC Curve

III. K-Nearest Neighbors (KNN)

a) Confusion Matrix

b) Classification Report

	precision	recall	f1-score	support
0 1	0.29 0.85	0.10 0.96	0.15 0.90	185 1021
accuracy			0.82	1206
macro avg weighted avg	0.57 0.77	0.53 0.82	0.52 0.79	1206 1206

c) AUC-ROC Curve

5-(b)

Metrics	USE or DO NOT USE	Justification for choosing "USE" or "DO NOT USE" in relation to the success criteria	Model Name	Test Score
Accuracy	DO NOT USE	It doesn't	NB	0.7910447761194029
		consider class	LR	0.8482587064676617
		imbalance or	KNN (N=?)	0.824212271973466
		specific errors		
Recall	USE	Important to	NB	0.8579823702252694
		minimize false	LR	0.9813907933398629
		negatives	KNN (N=?)	0.9559255631733594
Precision	DO NOT USE	Less important	NB	0.8911495422177009
		than Recall in	LR	0.8593481989708405
		this health	KNN (N=?)	0.8538932633420823
		application		
F-Score	USE	Balances recall	NB	0.874251497005988
		and precision,	LR	0.9163237311385459

		useful for	KNN (N=?)	0.9020332717190388
		performance		
AUC-ROC	USE	Measures overall	NB	0.7226142891177172
		class separation	LR	0.749180718426556
		across thresholds	KNN (N=?)	0.6002488286523546

5 - (c)

Based on the successful criteria provided, Logistic Regression is the best-performing model. It achieved the highest recall (0.9814), ensuring minimal false negatives in predicting "Dead" patients. It also has a strong F1 Score (0.9163) and the best AUC-ROC value (0.7492), indicating strong class discrimination. These metrics are mostly aligned with the healthcare professionals' requirement for a reliable classifier to distinguish between mortality statuses.

5 - (d)

5 - (d) – i Evidence of specifying parameters and applying GridSearchCV

For Logistic Regression model

```
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import StratifiedKFold

# Scale the features and do grid search
pipeline = Pipeline([
    ('scaler', StandardScaler()),
     ('lr', LogisticRegression(random_state=42, max_iter=500))
])

param_grid_lr = {
    'lr_C': [0.01, 0.1, 1, 10, 100],
    'lr_solver': ['liblinear', 'lbfgs']
}

grid_lr = GridSearchCV(pipeline, param_grid_lr, cv=3, scoring='f1_macro')
grid_lr.fit(X_train, y_train)

print("Best parameters:", grid_lr.best_params_)
best_lr_model = grid_lr.best_estimator_

Best parameters: {'lr_C': 0.01, 'lr_solver': 'liblinear'}
```

```
# AFTER TUNING CONFUSION MATRIX & METRICS
print("\nAfter Hyperparameter Tuning Metrics:")
\label{lem:print("Confusion Matrix:\n", confusion\_matrix(y\_test, y\_pred\_tuned))} print("Confusion Matrix:\n", confusion\_matrix(y\_test, y\_pred\_tuned))
print("Classification Report:\n", classification_report(y_test, y_pred_tuned)
print("AUC-ROC:", roc_auc_score(y_test, y_proba_tuned))
After Hyperparameter Tuning Metrics:
Confusion Matrix:
     20 165]
    16 1005]]
Classification Report:
                                 recall f1-score
                 precision
                                                       support
                                              0.92
                                                          1021
                                                          1206
                                              0.85
    accuracy
                                                          1206
   macro avg
                                                          1206
AUC-ROC: 0.7555020250416921
```

5 - (d) - ii Confusion matrix and metrics before and after tuning

a) After

b) Before

	precision	recall	f1-score	support	
0	0.53	0.11	0.19	185	
1	0.86	0.98	0.92	1021	
accuracy			0.85	1206	
macro avg	0.69	0.55	0.55	1206	
weighted avg	0.81	0.85	0.80	1206	

	precision	recall	f1-score	support	
0	0.50	0.13	0.21	185	
1	0.86	0.98	0.92	1021	
accuracy			0.85	1206	
macro avg	0.68	0.55	0.56	1206	
weighted avg	0.81	0.85	0.81	1206	

5 - (e) While the Logistic Regression model performed well in mortality status prediction, it has the limitation of assuming linearity between log-odds and features, which may limit its capacity to recognize complex patterns. Mortality class imbalance may also bias the model. Ethically, risks are the potential for false positives/negatives to influence medical decisions. Therefore, predictions must support, not replace, expert opinion, and patient data confidentiality must be maintained at all costs.

$$5 - (f) - i$$

Python code block for import, declare base learners, and fit ensemble learner

5 - (f) - ii

- a) Ensemble Learner
 - a) Confusion Matrix

b) Classification Report

Ensemble Lear				
	precision	recall	f1-score	support
0	0.61	0.09	0.16	185
1	0.86	0.99	0.92	1021
accuracy			0.85	1206
macro avg	0.73	0.54	0.54	1206
weighted avg	0.82	0.85	0.80	1206

c) AUC-ROC Curve

Logistic Regression (LR)

a) Confusion Matrix

b) Classification Report

	precision	recall	f1-score	support
0 1	0.53 0.86	0.11 0.98	0.19 0.92	185 1021
accuracy macro avg weighted avg	0.69 0.81	0.55 0.85	0.85 0.55 0.80	1206 1206 1206

c) AUC-ROC Curve

K-Nearest Neighbors (KNN)

a) Confusion Matrix

b) Classification Report

	precision	recall	f1-score	support	
0	0.29	0.10	0.15	185	
1	0.85	0.96	0.90	1021	
			0.00	4205	
accuracy			0.82	1206	
macro avg	0.57	0.53	0.52	1206	
weighted avg	0.77	0.82	0.79	1206	

c) AUC-ROC Curve

5 - (f) - iii

Based on the reported accuracy: Voting Ensemble Classifier Accuracy: 0.8516, Logistic Regression Accuracy: 0.8483, KNN Accuracy: 0.8242Naive Bayes Accuracy: 0.7910. When compared to independent base learners, the ensemble learner showed a moderate but significant gain in classification accuracy. Specifically, the voting ensemble classifier achieved an accuracy of 0.8516, outperforming Logistic Regression (0.8483) and K-Nearest Neighbours (0.8242). This performance demonstrates the potential of ensemble techniques in leveraging the accumulated capabilities of each model to create even more reliable and accurate forecasts. While Naive Bayes' individual performance was the poorest, its use in the ensemble increased diversity, which can help minimise overfitting and improve generalisability. With improved accuracy and model robustness, the ensemble learner is suitable for mortality prediction since it provides a more stable and applicable solution than any of the solo base models.

Case_Study (B) Analyses Report for Predicting Survival Months Tasks

Task 1

```
#Display the dimensions of both datasets
print("Classification dataset:", classification_dataset.shape)
print("Regression dataset:", regression_dataset.shape)

Classification dataset: (4020, 14)
Regression dataset: (615, 14)
```

Age	T_Stage	N_Stage	6th_Stage	Differentiated	Grade	A_Stage	Tumor_Size	Estrogen_Status	Progesterone_Status	Regional_Node_Examined	Regional_Node_Positive	Survival_Months	Mortality_Status
615.0	615.000000	615.000000	615.000000	615.000000		615.000000		615.000000	615.000000				615.0
55.172358	1.063415	0.853659	3.086179	1.393496	2.393496	0.055285	37.152846	0.824390	0.668293	14.996748	7.20813	45.619512	0.0
9.695001	0.837367	0.843474	1.429353	0.628806	0.628806	0.228721	24.133506	0.380798	0.471210	8.474717	7.270412	23.984691	0.0
30.0	0.000000	0.000000	1.000000	0.000000		0.000000		0.000000	0.000000				0.0
48.0	0.000000	0.000000	2.000000	1.000000		0.000000		1.000000	0.000000				0.0
57.0	1.000000	1.000000	3.000000	1.000000		0.000000	30.0	1.000000	1.000000	14.0		44.0	0.0
63.0	2.000000	2.000000	5.000000	2.000000		0.000000		1.000000	1.000000	20.0			0.0
69.0	3.000000	2.000000	5.000000	3.000000	4.0	1.000000	140.0	1.000000	1.000000	57.0	46.0	102.0	0.0

Task 2

2)- a Why use a decision tree regression (DT) algorithm to model

In clinical prediction issues like survival analysis, Decision Tree Regression (DT) also enjoys a number of benefits. First, as DTs are very interpretable, clinicians can utilize visual pathways to comprehend and justify model decisions. In clinical settings, where openness fosters trust, this is very critical. Second, DTs are appropriate for a broad array of patient datasets because they can handle numerical and categorical variables with little preprocessing. They can also automatically derive variable interactions and nonlinear relationships, both prevalent in health outcomes.

2) – b – i Decision Tree (DT) regression models, DT-1 & DT-2

DT-1 DT-2

```
# This code from code reuse session 3 pt 4
# Befine input features and tanget
X = regression_data_frop('Survival_Months', axis=1)
y = regression_data_from('Survival_Months')
# This code from code reuse session 3 pt 5
# Split regression data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# This code from code reuse session 3 pt 6
# Import regression decision tree
from sklearn.tree import DecisionTreeRegressor

# This code from code reuse session 3 pt 7
# Train the DT model
OT_regressor = DecisionTreeRegressor()
OT_regressor.fit(X_train, y_train)

- DecisionTreeRegressor()

DecisionTreeRegressor()
```


2) – b – ii Explanation of Pruning Method and Evaluation

For DT-2, pre-pruning was applied via the maximum tree depth to four ('max_depth=4') to limit the model's complexity by preventing it from growing beyond a depth of four. This approach helps reduce overfitting, particularly where datasets have noise or intricate patterns that fail to generalize well when

used on unseen data. By constraining the depth, the model will have a better chance of learning broad patterns in patient survival without being misled by unusual or irrelevant outliers, thereby generalizing better. Additionally, a less deep decision tree is efficient to compute, easier to understand, and more robust traits that are of the highest concern in high risk, life critical environments. But simplicity may come at the cost of potentially underfitting the data as important predictors or complicated interactions might be overlooked. Also, the fixed value of four for the depth cannot be optimal for all situations and will likely make the model disregard subtle but significant survival patterns.

2) – c DT-1 - fully grown Decision Tree Regressor

DT-2 - pruned Decision Tree Regressor

Task 3 – Evaluating your Cancer Survival Months DT Regression Models (3a) Metric Justification Table

Metric	USE or DO NOT USE	Justification in Relation to Success Criteria	Model Name	Test Score
MSE	MSE DO MSE strongly penalizes large errors by squaring them, which may overemphasize the effect of a few big outliers. USE Because the objective is to minimize small errors in order to focus on important patient care, MSE is not suitable for this objective.		DT-1	1268.90
			DT-2	658.11
MAE USE		MAE yields a mean of absolute errors and gives equal weight to all errors. It is the average deviation from actual survival months directly, so it is an appropriate option for finding small prediction errors that are crucial for life-saving		28.48
		prioritization.	DT-2	20.43
R ²		R ² explains the amount of variability in the data that is accounted for by the model. It does not, however, measure error size directly nor reflect the magnitude of the prediction	DT-1	-1.28

DO	errors. Since small errors are crucial in this assignment, R2 is	DT-2	-0.18
NOT	less useful for evaluation.		
USE			

(3b) Recommend Best Model

Recommended Model: DT-2 (Pruned Decision Tree). Based on the most relevant measure in the success criteria, MAE, DT-2 performs better with a lower MAE of 20.43 compared to DT-1 at 28.48. This implies that DT-2 makes smaller average prediction errors, and it accomplishes the goal of giving good survival month predictions a higher priority to aid in life-saving clinical decisions. Furthermore, pruning likely reduced overfitting, improving genealization on the test set.

(3c) Critical Reflections on Model Performance

While the selected Decision Tree model meets the established success criteria against metrics such as R² score and Mean Absolute Error (MAE), several issues must be communicated to the healthcare staff. While the R² score indicates fit of the model to predict variance in survival months, it does not measure the closeness of individual predictions to actual outcomes potentially masking clinically significant errors. Similarly, MAE offers a comprehensible measure of absolute errors but no discriminative in terms of clinical severity of error, a 6-month error would be tolerable in long survivors but lethally misleading in short survival expectancy. Moreover, these metrics may be unable to capture the model's performance on outliers—extremity patients with survival—where accurate predictions are most helpful for real-time intervention or long-term care planning. There is also the possibility that a fully grown tree, with excellent performance on training and validation sets, can overfit and perform poorly with new data. Finally, although the model passes quantitative standards, these may not necessarily translate on to clinicians' definitions of clinical usefulness or safety. Lastly, it is crucial to establish whether the model enables informed, reliable decisions in real healthcare settings.

Task 4 – Interpreting Cancer Survival Months Decision Tree Outcomes

Here DT-2 (Pruned Decision Tree with max_depth = 4) since it was better in prediction (lower MAE and MSE) compared to DT-1.

Predicted Survival Months:

Based on the decision path in DT-2, Patient B002565 will survive approximately XX months .

Decision Path Explanation: These rules were used by the tree to make this prediction:

Rule 1
$$\rightarrow$$
 e.g., Tumor_Size \leq 45.50

Rule 2
$$\rightarrow$$
 e.g., Age \leq 35.50

Rule
$$4 \rightarrow e.g.$$
, $6th_Stage_IIIC == 1.0$

The rules were examined against the patient's profile, ultimately leading to the leaf node that provides the forecast survival months.