Reg.	NI	um	ber:

Continuous Assessment Test (CAT) – I - August 2024

Programme	:	B.Tech CSE, B.Tech CSE (Specializations) and B.Tech Electronics and Computer Engineering (BLC)	Semester	:	FALL 24-25
Course Code & Course Title		BCSE205L & Computer Architecture and Organization	Class Number	:	CH2024250101393 CH2024250101392 CH2024250102314 CH2024250102677
Faculty -	:	Dr. Vaidehi Vijayakumar Dr. Kavitha J C Dr. Aswiga R V Dr. Arivarasi	Slot	:	F1 +TF1
Duration	:	1.30 Hrs	Max. Mark	:	50

Q. No.	Sub- division	Question Text	Marks
10		Consider a real time scenario of developing a mobile application that requires efficient execution of multimedia tasks, such as video playback and image processing, on a smart phone. The application must run smoothly without draining the battery quickly.	
	a)	Which architecture would you prefer for the smart phone's processor, and why? [3 Marks]	
	b)	How does the chosen architecture influence the efficiency of multimedia processing and battery life? Explain with architecture diagram. [7 Marks]	10
2\/	(a)	A simplified register file with 2 read ports and 1 write port has 9 registers (R0 t R8) with 8 bits each. Assuming that R0 = (11001101) ₂ and R1= (11010101) ₂ , How the operations R2 =R1 X R0 and R3 = R1 +R0 is processed and stored. [6 Marks]	
	b)	Explain the above operation with appropriate architecture diagram.[4 Marks]	10
3	a) ,e	Illustrate how the processor will perform multiplication of two numbers $(+27)_{10}$ and $(-11)_{10}$ through Modified Booth's algorithm method. [8 marks]	
	b)	Find the decimal equivalent of the accumulator at the end of second iteration [2 marks]	10
4	a)	Consider the numbers (73.625) ₁₀ and (22.75) ₁₀ , Perform floating point addition and represent the result in single precision format [5 Marks]	
V	b)	Perform floating point subtraction and represent the result in half precision format [5 Marks]	10

5

Identify the addressing modes and calculate the effective address of the operand R5 after executing each of the given instructions, considering the initial values R6 = 3000, SI = 3500 (Source Index Register), and PC = 1500, with the following memory address-value pairs

Memory	Value
1500	4000
1600	9000
2000	10000
2500	11000
3000	12000
3500	13000
4000	13500

Instructions:

STA R5, #2000 LDA R5, [1500] LDA R5, [R6] LDA R5, 500[SI] STA R5, 100[PC]

10

********All the best******

1 37