组合存在

2019年1月15日 17:59

- 1. 重要的组合思想:
 - 1) ——对应
 - i. 切割魔方至少要6次,对应正当中的小方块的6个面
 - ii. n小组竞赛至少要比n-1次,对应淘汰n-1组
 - 2) 数学归纳

描述一个与自然数相关的命题 P(n) 证明

归纳基础: 例如P(0) 真 归纳步骤: 例如 $P(n) \Rightarrow P(n+1)$

第一数学归纳法:

i. n=0为真

假设对n为真,证对n+1为真

第二数学归纳法:

n=0为真

假设对一切小于n的k为真,证明对n为真

证明命题P(m,n)

针对 m, n 两个自然数

任意给定m(或n)对n(或m)归纳

ii. 多重归纳

归纳基础 <0, n'>为真,< m', 0>为真 归纳步骤

假设<m-1,n>、<m,n-1>为真,证<m,n>为真

3) 上下界逼近

一. 鸽巢原理

1. 主观理解

鸽巢原理 设 $q_1, q_2, ..., q_n$ 是给定正整数,若把 $q_1+q_2+...+q_n-n+1$ 个物体放入n个盒子里,则或第一个盒子

- 1) 至少包含了 q_1 个物体,或者第二个盒子至少包含了 q_2 个物体,…,或者第n个盒子至少包含了 q_n 个物体.
- 推论 若 n(r-1)+1个物体放到 n 个盒子里,则存在一个 2) 盒子至少包含了r个物体. 令 $q_1 = q_2 = \dots = q_n = r$ 即可
- 2. 取整函数

顶函数(Ceiling fuction),底函数(Floor fuction) 定义 对于实数 x,

1) 顶函数 [x]: 大于或等于 x 的最小整数 底函数 [x]: 小于或等于 x 的最大整数 有时将底函数记作 [x]

性质 $(1)x-1<|x|\leq x\leq [x]< x+1$

- 2) $(2) \lfloor x+m \rfloor = \lfloor x \rfloor + m, \lceil x+m \rceil = \lceil x \rceil + m, m \rightarrow 2$ $(3) \lceil m/2 \rceil + \lfloor m/2 \rfloor = m, m \rightarrow 2$
- 3. 函数形式定义

设 $f:A\rightarrow B$, |A|=m, |B|=n, 若m>n, 则存在至少 $\lceil m/n \rceil$ 个

1) 元素 $a_1, a_2, \ldots, a_{\lceil m/n \rceil}$ 使得

$$f(a_1) = f(a_2) = ... = f(a_{\lceil m/n \rceil})$$

例9 $a_1, a_2, ..., a_{n^2+1}$ 是实数序列,证明可以选出n+1个数的子序列 $a_{k_1}, a_{k_2}, ..., a_{k_n}$,使得其为递增子序列或递减子序列

证 假设没有长为n+1的递增子序列,设 m_k 表示从 a_k 开始的最长递增子序列长度,则

2) $1 \le m_k \le n$, $m_1, m_2, ..., m_{n^2+1}$ 必存在 $\lceil (n^2+1)/n \rceil = n+1 \land m_k$ 取值相等,都等于l $m_{k_1} = m_{k_2} = ... = m_{k_{n+1}} = l$

若 $a_{k_i} < a_{k_{i+1}}$,则从前者开始的递增子序列长度为H1,矛盾.

 $a_{k_1} > a_{k_2} > ... > a_{k_{n+1}}$ 是长为n+1的递减子序列.

二. Ramsey定理

1. 简单应用

用红蓝两色涂色 K_6 的边,则或有一个红色 K_3 ,或

1) 有一个蓝色 K_3

R(3,3)=6

用红蓝两色涂色 K_9 的边,则或有一个红色 K_4 ,或

2) 有一个蓝色 K_3 .

R(3,4)=9

证:存在一个顶点关联4条蓝边或者6条红边. 否则蓝边数<4,红边数<6,则蓝边总数至多

L(3×9)/2 = 13, 红边总数至多L(5×9)/2 = 22, 总共 35 条边,与 K_9 边数为 36 矛盾. 设 ν_1 关联 4 条蓝边,若对应 4 个顶点没有蓝边,则构成红 K_4 ; 有1条蓝边,则构成兰 K_3 .

对于 K_8 ,存在一种涂色方案, 既没有蓝色三角形,也没有红

iv. 色完全四边形.

R(3,4)=9.

2. Ramsey定理

定理 设p,q为正整数, $p,q \ge 2$,则存在最小正整数

1) R(p,q),使得当 $n \ge R(p,q)$ 时,用红蓝两色涂色 K_n 的 边,则或存在一个蓝色的 K_p ,或存在一个红色的 K_q 。证明思路:归纳法

归纳基础 $R(p, 2) \le p$, $R(2, q) \le q$,

2) 归纳步骤 R(p-1,q), R(q-1,p) 存在 $\Rightarrow R(p,q) \le R(p-1,q) + R(q-1,p)$

假设对正整数p',q'命题为真,其中 $p' \le p, q' \le q$, p' + q' ,

则 R(p-1,q), R(p,q-1) 存在. 令 $n \ge R(p-1,q) + R(p,q-1)$.

3) **case1** v_1 关联 R(p-1,q) 条蓝边, **case2** v_1 关联 R(p,q-1) 条红边.

对于case1,如为蓝色 K_{p-1} ,构成蓝色 K_p ;如为红色 K_q ,则满足要求.对于 case2 可以类似分析. $R(p,q) \le R(p-1,q) + R(q-1,p)$

3. 小Ramsey数 (上下界)

http://mathworld.wolfram.com/RamseyNumber.html

P	a	3	4	5	6	7	8	9	10	11	12	13	14	15
3		6	9	14	18	23	28	36	40 43	46 51	52 59	59 69	66 78	73 88
4			18	25	35 41	49 61	56 84	73 115	92 149	97 191	128 238	133 291	141 349	153 417
5	5			43 49	58 87	80 143	101 216	125 316	143 442	159 848	185 848	209 1461	235 1461	265 3059
6)				102 165	113 298	127 495	169 780	179 1171	253 2566	262 2566	317 5033	317 5033	401 11627
7	7					205 540	216 1031	233 1713	289 2826	405 4553	416 6954	511 10581	511 15263	511 22116
8	3						282 1870	317 3583	377 6090	377 10630	377 16944	817 27490	817 41526	861 63620
9	,							565 6588	580 12677	22325	39025	64871	89203	
1	0								798 23556		81200			1265

4. Ramsey数性质

- 1) R(a,b) = R(b,a), R(a,2) = R(2,a) = a
- 2) $R(a,b) \le R(a-1,b) + R(a,b-1)$

5. 推广

R(p,q)的图表示 R(p,q)的集合表述:

 K_{μ} 的顶点集V 集合S

 K_n 的边集 E S 的 2 元子集的集合 T

1) 用 2 色涂色 K_n 的边 将 T 划分成 E_1, E_2

存在蓝色完全p 边形 存在S 的p 子集其所有 2 元子集 ϵE_1 存在红色完全 q 边形 存在S 的 q 子集其所有 2 元子集 ϵE_2 集合表述具有更强的表达能力.

对于任意给定的正整数p,q,r, $(p,q \ge r)$ 存在一个最小的正整数 R(p,q;r) 使得当集合S 的元素数大于等于 R(p,q;r) 时,将S 的 r 子集族任意划分成

2) E_1, E_2 , 则或者S有p子集A, A的所有r元子集 属于 E_1 , 或者存在q子集B, B的所有r元子集属于 E_2 .

设 $r, k \ge 1, q_i \ge r, i=1,2,...,k$, 是给定正整数,则存在一个最小的正整数 $R(q_1,q_2,...,q_k;r)$,使得当 $n \ge R(q_1,q_2,...,q_k;r)$ 时,当 n元集 S 的所有r元 子集划分成 k 个子集族 $T_1,T_2,...,T_k$,那么存在

3) S的 q_1 元子集 A_1 , 其所有的r元子集属于 T_1 , 或者在S的 q_2 元子集 A_2 , A_2 的所有r元子集属于 T_2 , ..., 或者存在S的 q_k 元子集 A_k , 其所有的r 元子集属于 T_k .

6. 应用

引理1平面上任给5点,没有3点共线,则必有4点是凸4边形的顶点。

1) 引理2平面上m个点,若没有3点共线且任4点都是凸4边 形的顶点,则这m个点构成凸m边形的顶点

证 做最大的凸多边形 T. 如果 T 是 4 边形或 5 边形,则命题为真. 如果为 3 边形,则 3 边形内存在 2 点,与过这 2 点的直线一侧的另外 2 点构成凸 4 边形.

i.

证:假设最大的凸多边形是 p 边形, p<m. 则必有点落入这个 多边形内部.将这个多边形划分成三角形,必有点落入某 个三角形,这个三角形的顶点与内部的点构成凹 4 边形. 与已知矛盾.

ii.

例 10 对于任意 m≥3, m∈Z+, 存在正整数 N(m), 使得当
2) n≥N(m) 时,若平面的 n 个点没有三点共线,其中总有 m个点构成一个凸 m 边形的顶点 m=3, N(m)=N(3)=3,

3) m=4, N(m)=N(4)=5,

 $N(m) \le R(5, m; 4)$

i.

ii.

iii.

iv.

٧.

vi.

vii.

viii.

ix.

X.

xi. ------我是底线------