CLAIMS

Please amend the claims as follows:

1	1. (Currently Amended) A flow system device used for creating, monitoring, and
2	controlling specific modifiable fluid flow patterns, said system comprising:
3	at least one fluid filled loop;
4	a rotor stage for maintaining at least one rotor, said loop positioned on said rotor;
5	a driving motor for rotating said rotor stage; [and]
6	a motion controller for controlling the speed and directional motion of said motor[-];
7	an external measurement system to observe, record, and control the contained loop
8	flow within said at least one loop.
1	2. Cancelled
1	3. The flow system device of claim 1 wherein a vascular prosthesis is placed within the
2	tube.
1	4. The flow system device of claim 3, wherein said vascular prosthesis is a stent or
2	graft.
1	5. The flow system device of claim 1 wherein the created fluid flow is bidirectional.
1	6. The flow system device of claim 1 wherein the loop includes a one way valve.
1	7. The flow system device of claim 1 wherein the system included six rotors with six
2	corresponding fluid filled loops.

- 8. The flow system device of claim 1 wherein the fluid is blood.
- 9. (Currently Amended) The flow system device of claim [1] 3 wherein the stents are coated with gold or stainless steel.
- 1 10. (Currently Amended) The flow system of claim 1 wherein [the fluid flow within 2 the loop is controllable such that thrombotic] a biological signal is created.
- 1 11. The flow system device of claim 1 wherein the fluid flow within the loop is controllable such that the effects of background noise is minimized.
- 1 12. (Currently Amended) A method of creating, monitoring, and controlling specific,
 2 modifiable fluid flow patterns, said method comprises:
- 3 providing a fluid flow system including at least one loop, a rotor stage for maintaining at least
- 4 one rotor, the loop position on the rotor, a driving motor for rotating the rotor stage [and], a
- 5 motion controller for controlling the speed and directional motion of the [motor] rotor[+], and
- 6 an external measurement system to observe, record, and control the contained loop flow;
- filling the at least one loop with fluid which is to be tested;
- 8 controlling the motor to obtain the desired motion of the fluid within the tube;
- 9 measuring the desired effects of the fluid flow.
- 1 13. Cancelled

1

- 1 14. The method of claim 12 wherein the fluid is blood.
 - 15. The method of claim 12 wherein a vascular prosthesis is maintained within the

16. The method of claim 15 wherein the vascular prosthesis is a stent or graft. 1 17. (Currently Amended) The method of claim 15 wherein the [thrombotie] biologic 1 2 effect of the vascular prosthesis on the blood is measured. 1 18. Cancelled 19. Cancelled 20. Cancelled 1 21. Cancelled 22. (New) The flow system device of claim 1 wherein the loop has the geometric 2 characteristics of a coronary arterial segment. 1 23. (New) The flow system device of claim 5 wherein the specific fluid flow pattern 2 produced and observed is that of coronary flow. 1 24. (New) The flow system device of claim 10 wherein the biological signal is a 2 thrombotic signal. 1 25. (New) The flow system device of claim 10 wherein the fluid flow within the loop 2 is controllable, such that flow dependent variations in the biological signal are generated. 1 26. (New) The method of claim 12 wherein the fluid flow within the loop is 2 controlled, such that flow-dependent variations in the desired, measured effects are generated.

2

tube.

- 1 27. (New) The method of claim 17 wherein the loop has the geometric characteristics
- 2 of a coronary arterial segment.
- 1 28. (New) The method of claim 17 wherein the specific fluid flow pattern produced
- 2 and observed is that of coronary flow.
- 1 29. (New) The method of claim 17 wherein the biological effect is a thrombotic
- 2 effect.