Ecuación de onda caso unidimensional

Introducción

- ► La ecuación de onda es una ecuación diferencial en derivadas parciales de orden 2
- Permite modelar diversos fenómenos físicos:
 - Caso unidimensional: la vibración de una cuerda de guitarra
 - Caso bidimensional: el movimiento concéntrico de las olas en la superficie de un lago al arrojar una piedra
 - Caso tridimensional: la propagación de las ondas de choque en un terremoto
- La teoría se desarrolló en el siglo XVIII: d'Alembert descubrió la ecuación unidimensional en 1746 y 10 años después Euler descubrió la ecuación tridimensional

Modelo unidimensional

- El modelo unidimensional representa la vibración de una cuerda de guitarra
- El contexto es el siguiente
 - \triangleright Consideremos coordenadas (x, y) en el plano cartesiano
 - ▶ Modelamos la cuerda en reposo paralela al eje x en y = 0 en el intervalo $x \in [0, L]$
 - Los extremos de la cuerda (x = 0, x = L) se mantienen fijos
 - Si tensamos la cuerda y la soltamos podemos modelar la vibración mediante una función y=u(x,t) que describe la posición en y como función de x y del tiempo t

Modelo unidimensional

Ecuación

Condiciones iniciales

$$u(x,0) = I(x) \quad \text{con } x \in [0,L]$$

Condiciones de borde

▶
$$u(0,t) = 0$$
 con $t \in (0,T]$

$$u(L,t) = 0 \quad \text{con } t \in (0,T]$$

La función I(x) y la constante c son datos del problema.

Diferencias finitas

- Discretizar el dominio
- Reemplazar las derivadas por versiones discretas
- ▶ Definir la recurrencia para calcular nuevos puntos

Diferencias finitas: discretizar el dominio

- La ecuación que queremos resolver involucra a una función bivariada u(x, t), su dominio es $[0, L] \times [0, T]$
- Discretizar en este caso significa muestrear el dominio bidimensional
 - Muestrear $x: 0 = x_0 < x_1 < \cdots < x_{N_x-1} < x_{N_x} = L$
 - Muestrear t: $0 = t_0 < t_1 < \cdots < t_{N_t-1} < t_{N_t} = T$
 - Considerar la malla que surge del producto cartesiano: (x_i, t_n) con $i = 0, ..., N_x$ y $n = 0, ..., N_t$
 - Vamos a considerar que la malla de puntos del dominio es equidistante en las dos dimensiones; o sea: $x_{i+1} x_i = \Delta x$, $t_{n+1} t_n = \Delta t$

Fig. 2.1 Mesh in space and time. The circles show points connected in a finite difference equation

Diferencias finitas: reemplazar las derivadas

- ► Derivadas de orden 2:
 - $\frac{\partial^{2}}{\partial t^{2}} u(x_{i}, t_{n}) \sim \frac{u_{i}^{n+1} 2 u_{i}^{n} + u_{i}^{n-1}}{\Delta t^{2}}$ $\frac{\partial^{2}}{\partial \omega^{2}} u(x_{i}, t_{n}) \sim \frac{u_{i+1}^{n} 2 u_{i}^{n} + u_{i-1}^{n}}{\Delta v^{2}}$
- La versión discreta de la ecuación diferencial queda definida de este modo:

$$\frac{u_i^{n+1} - 2 u_i^n + u_i^{n-1}}{\Delta t^2} = c^2 \frac{u_{i+1}^n - 2 u_i^n + u_{i-1}^n}{\Delta x^2}$$

Diferencias finitas: definir la recurrencia

- Resolver la ecuación implica calcular la función u en el tiempo siguiente
- Introducimos una constante (para simplificar las cuentas): $C=c\frac{\Delta t}{\Delta x}$
- La recurrencia se define del siguiente modo (Verificar!):

$$u_i^{n+1} = -u_i^{n-1} + 2 u_i^n + C^2(u_{i+1}^n - 2 u_i^n + u_{i-1}^n)$$

Diferencias finitas: definir la recurrencia (cont.)

$$u_i^{n+1} = -u_i^{n-1} + 2 u_i^n + C^2(u_{i+1}^n - 2 u_i^n + u_{i-1}^n)$$

► Warning!:

- Analizar qué pasa en t_1 (analizar la recurrencia en n=1)
- Analizar qué pasa en t_2 (analizar la recurrencia en n=2)

Diferencias finitas: definir la recurrencia (cont.)

$$u_i^{n+1} = -u_i^{n-1} + 2 u_i^n + C^2(u_{i+1}^n - 2 u_i^n + u_{i-1}^n)$$

► Warning!:

- Analizar qué pasa en t_1 (analizar la recurrencia en n=1)
- ▶ Analizar qué pasa en t_2 (analizar la recurrencia en n=2)

► Solución!:

- Usamos la condición inicial: $\frac{\partial}{\partial t}u(x,0)=0$
- Su versión discreta es: $u_i^0 = \frac{u_i^1 u_i^{-1}}{2 \Delta t} = 0 \Rightarrow u_i^1 = u_i^{-1}$
- Ejercicio: con esta nueva información despejar u¹_i

El algoritmo

- 1. Computar el vector de las posiciones iniciales: $u_i^0 = I(x_i)$ con $i = 0, ..., N_x$
- 2. Computar el vector u_i^1
 - ightharpoonup Fijamos los extremos: $u_0^1=u_{N_x}^1=0$
 - $u_i^1 = u_i^0 + \frac{C^2}{2}(u_{i+1}^0 2 u_i^0 + u_{i-1}^0) \text{ con } i = 1, \dots, N_x 1$
- 3. Para cada tiempo $n = 1, ..., N_t 1$ computar el vector u_i^n
 - Fijamos los extremos: $u_0^n = u_{N_x}^n = 0$
 - Aplicar la ecuación de recurrencia para calcular u_i^n con $i = 1, ..., N_x 1$

Algunas curiosidades

- ightharpoonup El algoritmo requiere sólo 3 vectores de tamaño N_{\times}
- Notar que las 4 condiciones (2 iniciales y 2 de borde) fueron necesarias
 - ► Hay una relación entre el orden de las derivadas de la ecuación y la cantidad de condiciones que necesitamos para resolverla
- La generalización de la ecuación a más dimensiones se define del siguiente modo:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

- u es una función multivariada: $u(x_1, \ldots, x_n, t) = y$
- ▶ ∇^2 es el *operador laplaciano* y se define como: $\nabla^2 = \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$

Bibliografía

► Finite Difference Computing with PDEs (Hans Peter Langtangen-Svein Linge, Springer, 2010)