

Análisis de Sistemas Lineales

Modelado de sistemas

Contenido

- Sistema: definiciones
- Modelado
- Representación de la estructura del sistema
- ▶ Función de transferencia

Sistema

Un sistema realiza una función, posee una estructura y presenta un comportamiento.

Sistema de control

De lazo abierto

 Ni la salida, ni las variables del sistema influyen en el control

De lazo cerrado

 Las variables del sistema o la salida, por medio de realimentación, influyen en el control

Control de lazo abierto

Control de lazo cerrado

Definiciones

Realimentación

• Una muestra de la salida es redirigida hacia la entrada para comparación

Planta

- Es el equipo físico que se relaciona con la magnitud que se controla
- Se representa como sistema LTI

Controlador

 Elemento que se añade para llevar a cabo el control

Definiciones (2)

Estabilidad (E/S)

 Propiedad de un sistema que ante una entrada finita reacciona con una salida finita

Servo control

 Sistema de control en el cual la salida es la posición o alguna de sus derivadas

Sistema dinámico

 Unidad funcional cuyos principales descriptores varían en el tiempo (Pueden ser descritos como funciones del tiempo)

Relación entre componentes del modelo

Modelado

Modelado

• El modelado es una abstracción: La dinámica será abstraída del carácter físico.

Objetivo de la abstracción

- Describir los procesos temporales por medio de funciones del tiempo
- Resumir las relaciones entre esos procesos como dependencias funcionales

Representación

• Cuáles variables del fenómeno reproducen el comportamiento dinámico del sistema

Relación entre el sistema y el modelo

Pasos del modelado

Creación de la descripción de la estructura

Identificar los componentes importantes y sus relaciones

Descripción de la estructura

Identificación de las entradas, variables y perturbaciones Partir el sistema en sus elementos. Las relaciones son cualitativas

Obtención del modelo cuantitativo

Modelo cuantitativo

Prueba del modelo

Estabilidad

Error de estado estacionario

Respuesta de frecuencia

Simulación

Comparación de resultados con las medidas del proceso

Validación

Síntesis

Estructura del control

Diseño

Dimensionamiento

Importancia de la estructura del sistema

Contribuye a la comprensión del sistema

Muestra la relación entre las partes

Proporciona una visión global de las propiedades dinámicas del sistema

Muestra dónde el sistema se encuentra realimentado, y los acoples

Representaciones gráficas de la estructura

Diagramas de bloques

La estructura del sistema se describe a través de un conjunto de elementos de transferencia (transmitancias) y las relaciones entre éstos.

Elementos del diagrama de bloques

Diagramas de flujo de señal

La estructura del sistema se describe a través de un gráfico dirigido, donde los nodos representan las señales y las flechas representan propiedades de transferencia.

Elementos del diagrama de flujo de señales

Descripción temporal de sistemas lineales

Forma general de la ecuación diferencial

 Ecuación diferencial ordinaria de n-orden, donde a_i y b_i son reales y provienen de los parámetros físicos del sistema

$$a_{n} \frac{d^{n} y(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_{1} \frac{dy(t)}{dt} + a_{0} y(t) =$$

$$b_{q} \frac{d^{q} u(t)}{dt^{q}} + b_{q-1} \frac{d^{q-1} u(t)}{dt^{q-1}} + \dots + b_{1} \frac{du(t)}{dt} + b_{0} u(t)$$

$$(1)$$

▶ Dadas u(t) para $t \ge 0$ y las condiciones iniciales es posible conocer y(t)

Condiciones iniciales
$$\frac{d^n y(0)}{dt^n}, \frac{d^{n-1} y(0)}{dt^{n-1}}, \cdots, y(0); q < n \quad \text{para causalidad}$$

Función de transferencia

Aplicamos la Transformada de Laplace a la ecuación (1) y poniendo todas las condiciones iniciales en cero se tiene:

$$a_n s^n Y(s) + a_{n-1} s^{n-1} Y(s) + \dots + a_1 s Y(s) + a_0 Y(s) = b_{q-1} s^{q-1} U(s) + \dots + b_1 s U(s) + b_0 U(s)$$

$$(a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0) Y(s) = (b_q s^q + b_{q-1} s^{q-1} + \dots + b_1 s + b_0) U(s)$$

Función de transferencia en forma de cociente de polinomios

$$\frac{Y(s)}{U(s)} = \frac{b_q s^q + b_{q-1} s^{q-1} + \ldots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0} = G(s)$$

Propiedades de la transformada de Laplace

$$F(s) = \mathcal{L}\{f(t)\}$$

$$\mathcal{L}\left\{\frac{d\mathbf{f}(\mathbf{t})}{dt}\right\} = \left.\mathcal{L}\left\{\dot{\mathbf{f}}(\mathbf{t})\right\} = sF(s) - f(t)\right|_{t=0}$$

$$\mathcal{L}\left\{\frac{d^{k}f(t)}{dt}\right\} = s^{k}F(s) - s^{k-1}f(t)\Big|_{t=0} - s^{k-2}\dot{f}(t)\Big|_{t=0} \dots - \frac{d^{k-1}f(t)}{dt}\Big|_{t=0}$$

Otras formas de representar G(s)

$$G(s) = \frac{C_q \cdot (s - s_1)(s - s_2) \cdots (s - s_q)}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_n)}$$

$$G(s) = C_q \frac{\prod_{i=1}^{q} (s - s_i)}{\prod_{i=1}^{n} (s - \lambda_i)}$$

ZPK: Cociente de producto de ceros entre producto de polos

- q < n Función estrictamente propia (planta)
- q = n Función propia (controlador)
- q > n Función impropia (no existe)

Referencias

- Ogata, Katsuhiko.,, Dinámica de Sistemas", Prentice Hall, 1987, México.
- Kuo, Benjamin C..., Sistemas de Control Automático", Ed. 7, Prentice Hall, 1996, México.