STANDARD HIGH SCHOOL ZZANA

PHYSICS PAPER 3 EXERCISES FOR S6

OBJECTIVES

- 1. Construct are suitable table.
- 2. Complete the table with correct significant figures (s.f) and decimal places (d.p).
- 3. Plot graphs

NB; Use a graph book to answer the questions below that will be part of pre registration assessment.

No. 1

Given that the values of α (°), β (°) and x (cm) are experimental values.

w = 6.50 cm.

α (°)	β (°)	x(cm)
20	13	1.5
30	20	2.3
40	25	2.9
50	31	3.8
60	35	4.4
70	40	5.2

- (i) Construct a suitable table of result including values of, $\sin^2\alpha$ and $\left(\frac{x\cos\beta}{w}\right)^2$
- (ii) Plot a graph of $\sin^2 \alpha$ against $\left(\frac{x\cos\beta}{w}\right)^2$.
- (iii) Find the slope **S** of the graph.
- (iv) Evaluate **n** from the expression $\mathbf{n} = \sqrt{s}$

No.2

Given that the values of i (°) and s (cm) are experimental values.

d=5.1cm, $t=(d-\sqrt{2})$ and $m=(d\sqrt{2})-1$.

i(°)	s(cm)
15	1.6
20	1.2
25	1.0
30	0.6
40	0.3

(i) Construct a suitable table of result including values of: sin²i and

$$y = \frac{(s-t)^2}{m^2 + (s\sqrt{2} + 1)^2}$$

- (ii) Plot a graph of sin²i against y
- (iii) Find the slope **S** of the graph.
- (Iv) Evaluate \mathbf{n} from the expression $\mathbf{n} = \sqrt{\mathbf{S}}$

Given that the values of i (°), d (°) and e (°) are experimental values.

i(º)	d(º)	e(º)
30	48	78
40	43	62
50	38	47
60	41	40
65	43	37
70	45	33

- i) Construct a suitable table of result including values of (d-e) (°)
- ii) Plot a graph of $\, d \,$ against $\, i \,$ and use it to determine the angle of minimum deviation $\, m \,$
- iii) Plot a graph of **(d-e)** against **i** and read off the intercept **c** on the i-axis.
- iv) Calculate for **n** using the equation.

$$n = \frac{\sin\frac{1}{2}(m+c)}{\sin\frac{1}{2}c}$$

No.4

Given that the values of h (cm) and β (°) are experimental values.

h (cm)	β(°)
1.5	30
3.0	50
4.5	70
6.0	90
7.5	110
9.0	130

- (i) Construct a suitable table of result including values of: h^2 , $\sin \beta$ and $\frac{h}{h^2+36}$
- (ii) Plot a graph of $\sin \beta$ against $\frac{h}{h^2+36}$
- (iii) Find the slope **S** of the graph.

Given that the values of $L_1(m)$, $L_2 = 0.150m$, d(m), t(s) are experimental values.

$$T(s) = \frac{t}{20}$$

d(m)	L ₁ (m)	t(s)	2β(0)
0.900	1.100	28.15	110
0.700	0.900	27.37	100
0.600	0.800	26.94	94
0.500	0.700	25.88	90
0.400	0.600	24.78	82
0.300	0.500	23.25	74

- i) Construct a suitable table of results including values of : T^2 and ($L_1\cos\beta + 2 L_2$)
- ii) Plot a graph of T^2 against $(L_1\cos\beta + 2L_2)$
- iii) Read off the intercept **c** on the x-axis.
- iv) Determine the slope **S** of graph.
- v) Calculate g from the express

$$S = \frac{2\pi^2}{g}$$

. Copy and complete the table below. Take $\it l$ =0.500m

<i>x</i> (m)	x^2 (m ²)	y(cm)	y(m)	<i>xy</i> (m ²)	$\frac{x}{y}$	$\frac{xl}{y}$
0.05		26.1				
0.10		31.0				
0.15		38.0				
0.20		45.0				
0.25		53.2				
0.30		62.0				

No. 7 .Copy and complete the table below.

i(0)	r(0)	x(cm)	l(cm)	sin i	Cos r	xcos r(cm)
10	6	0.8	7.0			
20	14	1.6	7.2			
30	20	2.4	7.4			
40	28	3.5	7.8			
50	30	4.0	8.1			
60	35	4.8	8.5			

No. 7 .Copy and complete the table below. Take E=3.00V

y(m)	<i>V</i> (V)	I(A)	$\frac{1}{v}$ V ⁻¹	$\frac{1}{I}$ A-1	$\frac{1}{y}$ (m ⁻¹)	$\frac{V}{I}\Omega$	$\frac{E}{V}$
0.200	0.50	0.40					
0.300	0.60	0.36					
0.400	0.70	0.32					
0.500	0.80	0.28					
0.600	1.00	0.24					
0.700	1.10	0.20					

No. 8 .Copy and complete the table below. Take f_1 =6.0cm

x(cm)	(x+f ₁)(cm)	z(cm)	(z-f ₁)(cm)	$\frac{(x+f1)}{(z-f1)}$	$\frac{1}{x}$ (cm ⁻¹)	$(x+f_1)x(z-f_1)(cm^2)$
10.0		12.3				
15.0		10.6				
20.0		9.6				
25.0		8.6				
30.0		8.3				
35.0		8.2				

No. 9. Given that the values of $f_0(cm)$, $x_1(cm)$ and $x_2(cm)$ are experimental values, all measured using a meter rule. Complete the table of results values of (l^2-d^2): where $d=(x_2-x_1)$ and $f_0=10.0cm$.

l(cm)	x 1(cm)	x 2(cm)
6.5f _o	52.0	8.8
6.0f _o	46.6	9.2
5.5f _o	41.1	10.0
5.0f _o	36.2	11.0
4.5f _o	30.0	11.9
4.0f _o	24.9	13.0

END