

Course Title 3D Computer Vision: Techniques and Applications

Course Number EL-GY 9143

Course Description: Advances in informatics technologies coupled with data acquisition techniques have resulted in the production of three dimensional (3D) models at an unprecedented scale across areas as diverse as engineering, science and medicine. We are therefore faced with a dramatic demand for automatic 3D model processing, understanding and analyzing techniques. Researchers are regularly interested in interpreting the 3D shape of such models according to their intrinsic geometric attributes. The effective and efficient interpretation of 3D models is often challenged with the prevalence of non-rigidity within the shapes, the corruption of the shapes due to the presence of geometric noise, and the availability of a large volume of 3D models in innumerable databases. This course will introduce students to the techniques and applications of 3D computer vision. The focus of this course will be recent methods for 3D shape matching, retrieval, registration, recognition, segmentation, classification and clustering.

Credits 3

Prerequisite Courses MA 2012 (Linear Algebra) or equivalents, and proficiency in programming (Matlab is required and C++ is optional)

Instructor Information

Instructor(s) Prof. Yi Fang

Contact Information: 2 Metrotech Center, 10.069 or 10.084

Email: <u>vfang@nvu.edu</u>

Intended Learning Outcomes: Upon successful completion of this course, students will be able to:

- Describe the representation of 3D image data
- Develop an efficient 3D object search engine
- Develop techniques for 3D object registration and matching
- Develop methods for robust 3D object recognition and segmentation
- Apply knowledge of 3D image data analysis techniques to analyze and model engineering problems to meet desired needs

Course Materials

Textbook: Michael Mortenson, Geometric Modeling, 3rd Edition, 2006 (Optional)

Computer and software: Students should have access to computers (preferably laptop) with the following programs installed: Matlab, Paraview and LaTeX. Discuss with the instructor if you have problems.

Teaching and Learning Methodologies: Students are expected to arrive at class with an understanding of the basic definitions, concepts, and applications of relevant topics. Class time will be devoted to indepth discussions of course topics. Project assignments are dedicated for reinforcing course topics via solving representative problem sets and holding class discussions.

Assignments and Grades: Students are expected to understand the basic definitions, concepts, and applications of relevant topics in class. Grades will be based on four mini projects, one final project, report

and presentation. Project will be assigned after the completion of each specific topic. The distribution of grades is subject to some revision at the discretion of the instructor. Typical weighting values are as follow: First four projects will be worth 15% each and the final project, report, and presentation will be worth 40% of the course grade. The final letter grade is based on a curve.

Course Schedule (tentative): A typical schedule for course topics, projects, and exam dates is given in the table below.

Week	Lecture Topics	Project
Sept. 2	1. Introduction to 3D Computer Vision	Project One
	2. Geometric transformation	Assigned
	 Linear transformation 	
	Matrix vector products	
	Affine transformation	
	Iterative closest point	
Sept. 9	Group Project Discussion day	
Sept. 16	Introduction to 3D Shape Analysis	
	3D model representation	
	3D Euclidean distance	
	3D Geodesic distance	
Sept. 23	Introduction to 3D Shape Analysis	
	3D Diffusion distance	
	3D point shape signature	
	3D global shape descriptor	
Sept. 30	3D Shape Retrieval	Project Two
•	 Introduction of shape matching 	Assigned
	 Design of global shape descriptor 	
	Shape retrieval engine	
Oct. 7	Group Project Discussion day	
Oct. 14	3D Shape Registration	Project Three
	 Introduction of shape correspondence 	Assigned
	Design of robust point shape signature	
	Shape registration	
Oct. 21	Group Project Discussion day	
Oct. 28	3D Shape Segmentation	Project Four
	 Introduction of shape segmentation 	Assigned
	 Shape segmentation based on point 	
	signature	
	 Shape segmentation based on pairwise 	
	distance	
Nov. 4	Group Project Discussion day	
Nov.11	Data-driven shape analysis	
	Data-driven shape classification	
	Data-driven shape segmentation	
Nov.18	Data-driven shape analysis	Call for Final Project
	Data-driven shape retrieval	
	Data-driven shape registration	
Nov.25	Final Project Discussion (stage 0)	
	Topic determined	
	Group Presentation of proposed idea	
	Classroom discussion	

Dec. 2	Final Project Discussion (stage 1)	
	 Project Progress update 	
	 Group Presentation of updated progress 	
	Classroom discussion	
Dec.9	Final Project Demo and Presentation (section I)	Final Project and
	Project Demo	Presentation
	Group presentation	
Dec. 16	Final Project Demo and Presentation (section II)	
	Project Demo	
	Group presentation	
	Final report paper due	

Policy on Academic Dishonesty:

The School of Engineering encourages academic excellence in an environment that promotes honesty, integrity, and fairness. Please see the school's policy on academic dishonesty at our school's website: http://engineering.nyu.edu/academics/code-of-conduct/academic-misconduct and university's policy: https://www.nyu.edu/about/policies-guidelines-compliance/policies-and-guidelines/academic-integrity-for-students-at-nyu.html