Eksploracja danych

naiwny klasyfikator bayesowski

Piotr Lipiński

Naiwny klasyfikator bayesowski

□ Klasyfikacja danych reprezentowanych przez d-wymiarowe wektory

$$\mathbf{x} = (x_1, x_2, ..., x_d)$$

z użyciem K klas $C_1, C_2, ..., C_K$

 Klasyfikator będzie definiowany przez warunkowe rozkłady prawdopodobieństwa (dla każdej klasy C_k):

$$P(C_k | \mathbf{x}) = P(C_k | x_1, x_2, ..., x_d)$$

 Mając takie rozkłady, dla każdego wektora danych x będzie można wyznaczyć najbardziej prawdopodobną klasę (która będzie wynikiem klasyfikacji wektora danych x).

Piotr Lipiński, eksploracja danych

,

Naiwny klasyfikator bayesowski

□ Korzystając z twierdzenia Bayesa mamy:

$$P(C_k \mid \mathbf{x}) = P(C_k) P(\mathbf{x} \mid C_k) / P(\mathbf{x})$$

 Mianownik tego ułamka nie jest istotny, bo nie zależy od klasy. Licznik natomiast można przedstawić jako rozkład łączny:

$$P(C_k, x_1, x_2, ..., x_d)$$

□ Rozkład łączny można rozpisać jako:

$$\begin{split} &P(C_k,\,x_1,\,x_2,\,...,\,x_d) = \\ &P(C_k)\,P(\,x_1,\,x_2,\,...,\,x_d \mid C_k) = \\ &P(C_k)\,P(\,x_1 \mid C_k)\,P(x_2,\,...,\,x_d \mid C_k,\,x_1) = \\ &P(C_k)\,P(\,x_1 \mid C_k)\,P(x_2 \mid C_k,\,x_1)\,P(x_2,\,...,\,x_d \mid C_k,\,x_1,\,x_2) = ... = \\ &P(C_k)\,P(\,x_1 \mid C_k)\,P(x_2 \mid C_k,\,x_1)\,...\,P(x_d \mid C_k,\,x_1,\,x_2,\,...,\,x_{d-1}) \end{split}$$

Piotr Lipiński, eksploracja danych

0

Naiwny klasyfikator bayesowski

 $\ \square$ Jeżeli założymy (naiwnie) warunkową niezależność zmiennych losowych $x_1, x_2, ..., x_d$, to:

$$\begin{split} &P(x_2 \mid C_k, x_1) = P(x_2 \mid C_k) \\ &P(x_3 \mid C_k, x_1, x_2) = P(x_3 \mid C_k) \\ & \dots \\ &P(x_d \mid C_k, x_1, x_2, \dots, x_{d-1}) = P(x_d \mid C_k) \end{split}$$

□ Zatem rozkład łączny upraszcza się do:

$$P(C_k, x_1, x_2, ..., x_d) = P(C_k) P(x_1 | C_k) P(x_2 | C_k) ... P(x_d | C_k)$$

Piotr Lipiński, eksploracja danych

Naiwny klasyfikator bayesowski

- □ Konstrukcja klasyfikatora wymaga więc wyznaczenia:
 - $P(C_k)$
 - można to estymować na podstawie zbioru danych uczących (częstość występowania poszczególnych klas w zbiorze danych uczących)
 - $\blacksquare \qquad P(x_i \mid C_k)$
 - dla prostych (dyskretnych) przypadków można to estymować na podstawie zbioru danych uczących
 - dla bardziej złożonych przypadków należy przyjąć jakiś model tego rozkładu prawdopodobieństwa (popularne są rozkłady gaussowskie, dwumianowe, Bernoulliego, itp.)

Piotr Lipiński, eksploracja danych

5

Przykład

- Celem jest klasyfikacja owoców na podstawie ich cech. Skupiamy się na rozpoznawaniu banana, pomarańczy i innego owocu (trzy klasy) na podstawie trzech cech binarnych: długi, słodki, żółty.
- Dane uczące zawierają informacje o 1000 owoców opisanych przez trzy cechy (długi, słodki, żółty).
- □ Tabela poniżej zawiera podsumowanie zbioru danych uczących.

typ	długi	niedługi	słodki	niesłodki	żółty	nieżółty	razem
banan	400	100	350	150	450	50	500
pomarańcza	0	300	150	150	300	0	300
inny	100	100	150	50	50	150	200
razem	500	500	650	350	800	200	1000

Piotr Lipiński, eksploracja danych

Przykład

□ Prawdopodobieństwa bezwarunkowe (prior probabilities)

P(banan) = 500 / 1000 = 0.50 P(pomarańcza) = 300 / 100 = 0.30 P(inny) = 200 / 1000 = 0.20

□ Prawdopodobieństwa zdarzeń (evidence probabilities)

P(dlugi) = 500 / 1000 = 0.50 P(slodki) = 650 / 1000 = 0.65P(zloty) = 800 / 1000 = 0.80

typ	długi	niedługi	słodki	niesłodki	żółty	nieżółty	razem
banan	400	100	350	150	450	50	500
pomarańcza	0	300	150	150	300	0	300
inny	100	100	150	50	50	150	200
razem	500	500	650	350	800	200	1000

Piotr Lipiński, eksploracja danych

Przykład

Prawdopodobieństwa warunkowe

P(długi | banan) = 400 / 500 = 0.80 P(długi | pomarańcza) = 0 / 300 = 0 P(długi | inny) = 100 / 200 = 0.50 P(słodki | banan) = 350 / 500 = 0.70

P(zółty | banan) = 450 / 500 = 0.90

(należy wyliczyć wszystkie prawdopodobieństwa warunkowe $P(x_i \mid C_k)$, dla cech x_i = długi, słodki, żółty i klas C_k = banan, pomarańcza, inny)

Uczenie naiwnego klasyfikatora bayesowskiego to właśnie wyliczenie tych prawdopodobieństw.

typ	długi	niedługi	słodki	niesłodki	żółty	nieżółty	razem
banan	400	100	350	150	450	50	500
pomarańcza	0	300	150	150	300	0	300
inny	100	100	150	50	50	150	200
razem	500	500	650	350	800	200	1000

Piotr Lipiński, eksploracja danych

Przykład

- Nauczonego naiwnego klasyfikara bayesowskiego można użyć do rozpoznawania nieznanych owoców (opisanych przez rozważane trzy cechy).
- Zastanówmy się czym może być owoc długi, słodki i żółty. Są trzy możliwości może to być banan, pomarańcza lub inny owoc. Będziemy rozpatrywać więc

P(banan | długi, słodki, żółty)

P(pomarańcza | długi, słodki, żółty)

P(inny | długi, słodki, żółty)

□ P(banan | długi, słodki, żółty) =

 $P(banan)\;P(d^{i}ugi\mid banan)\;P(s^{i}odki\mid banan)\;P(\dot{z}o^{i}ty\mid banan)$

P(długi) P(słodki) P(żółty)

0.50 * 0.80 * 0.70 * 0.90

_____=

0.50 * 0.65 * 0.80

 $0.252000 \ / \ 0.260000 = 0.969231$ Piotr Lipiński, eksploracja danych

9

Przykład

- P(pomarańcza | długi, słodki, żółty) = 0 bo P(dlugi | pomarańcza) = 0
- □ P(inny | długi, słodki, żółty) =

0.20 * 0.50 * 0.75 * 0.25

0.50 * 0.65 * 0.80

0.018750 / 0.260000 = 0.072115

- $\hfill \square$ Ostatecznie więc owoc długi, słodki i żółty jest najprawdopodobniej bananem.
- Naturalnie, jak łatwo zauważyć, liczenie mianownika było niepotrzebne, bo do porównywania prawdopodobieństw warunkowych wystarcza sam licznik.
- □ Na czym polegała "naiwność" klasyfikatora bayesowskiego w tym przykładzie?

Piotr Lipiński, eksploracja danych