5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

Definitions and Examples

- A language can be generated by a CFG if and only if it can be accepted by a *pushdown automaton*.
- A pushdown automaton is similar to an FA but has an auxiliary memory in the form of a stack.
- Pushdown automata are, by default, nondeterministic. Unlike FA's, the nondeterminism cannot always be removed.

• $(p, u) \in \delta(q, a, z_0)$ means that a push operation is performed on the stack.

• $(p, \Lambda) \in \delta(q, a, v)$ means that a pop operation is performed on the stack.

Definitions and Examples (cont'd.)

- There are some special states: an initial state q₀ and a set A of accepting states.
- Initially, the PDA is in the initial state q_0 and the head scans the leftmost cell. The tape holds an input string. The stack is empty with the initial stack symbol Z_0 .

- When the tape head gets off the tape, the PDA stops. An input string x is accepted by the PDA if the PDA stops at an accepting state (and the stack is empty).
- Otherwise, the input string is rejected.

7

Definitions and Examples (cont'd.)

- A single move of a PDA depends on
 - 1. current state
 - 2. next input
 - 3. symbol currently on top of the stack
- A PDA can replace the top symbol X by a string α of stack symbols.
- Special cases are pushing a symbol Y (replacing X by YX) and popping X (replacing X by Λ)

- Definition 5.1: A *pushdown automaton* (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$, where:
 - *Q* is a finite set of states
 - The *input* and *stack* alphabets Σ and Γ are finite sets
 - $q_0 \in Q$ is the initial state
 - $Z_0 \in \Gamma$ is the initial stack symbol
 - $A \subseteq Q$ is the set of accepting states
 - The transition function is $\delta: Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma \rightarrow$ the set of finite subsets of $Q \times \Gamma^*$
- Because values of δ are sets, M may be nondeterministic
- A move requires that there be at least one symbol on the stack. Z_0 is the one on the stack initially.

9

Definitions and Examples (cont'd.)

- A *configuration* of a PDA is a triple (q, x, α)
 - $q \in Q$ is the current state
 - $x \in \Sigma^*$ is the portion of the input string that has not yet been read
 - The contents of the stack is $\alpha \in \Gamma^*$
- $(p, x, \alpha) \vdash_M (q, y, \beta)$: one of the possible moves in the first configuration takes M to the second.
 - \vdash_{M}^{n} and \vdash_{M}^{*} refer to n moves and zero or more moves.

- Definition 5.2: If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ and $x \in \Sigma^*$, the string x is *accepted* by M if $(q_0, x, Z_0) \vdash_M^* (q, \Lambda, \alpha)$ for some $\alpha \in \Gamma^*$ and some $q \in A$
 - A language *L* is said to be accepted by *M* if *L* is precisely the set of strings accepted by *M*.
 - Sometimes a string accepted by *M* is said to be accepted *by final state*, because acceptance does not depend on the final stack contents.

Definitions and Examples (cont'd.)

- $L(G)=AnBn = \{a^nb^n \mid n \ge 0\}$
- As soon as the PDA reads a 'b':
 - It enters a new state in which only *b*'s are legal inputs.
 - It pops one *a* off the stack to cancel this *b*.
- The stack has no limit to its size, so the PDA can handle anything in *AnBn*.

11

• A PDA for AnBn is $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where $Q=\{q_0, q_1, q_2, q_3\}$, $A=\{q_0, q_3\}$, and the transitions are:

Move #	State	Input	Stack Symbol	Move(s)
1	q_o	а	Z_0	(q_1, aZ_0)
2	q_1	а	а	(q ₁ , aa)
3	q_1	b	а	(q_2, Λ)
4	q_2	b	а	(q_2, Λ)
5	q_2	Λ	Z_0	(q_3, Z_0)
(all other combinations)				none

$$\begin{array}{c} (q_{o} \ aabb, Z_{o}) \vdash (q_{1}, abb, aZ_{o}) \\ \vdash (q_{1}, bb, aaZ_{o}) \\ \vdash (q_{2}, b, aZ_{o}) \\ \vdash (q_{2}, \Lambda, Z_{o}) \\ \vdash (q_{3}, \Lambda, Z_{0}) \end{array}$$

13

Definitions and Examples (cont'd.)

• A PDA for *SimplePal* is $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where $Q=\{q_0, q_1, q_2\}, A=\{q_2\},$ and the transitions are:

Move #	State	Input	Stack Symbol	Move(s)
1	q_o	а	Z_0	(q_o, aZ_o)
2	q_o	b	Z_0	(q_0, bZ_0)
3	q_o	а	а	(q ₀ , aa)
4	q_o	b	а	(q _o ba)
5	q_o	а	b	(q ₀ , ab)
6	q_o	b	b	(q ₀ , bb)
7	q_o	с	Z_0	(q_1, Z_0)
8	q_o	с	а	(q1, a)
9	q_o	с	b	(q1, b)
10	q_1	а	а	(q ₁ , Λ)
11	q_1	b	b	(q_1, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)				none

$$(q_0, abcba, Z_0) \vdash (q_0, bcba, aZ_0) \vdash (q_0, cba, baZ_0) \vdash (q_1, ba, baZ_0)$$

 $\vdash (q_1, a, aZ_0) \vdash (q_1, A, Z_0) \vdash (\mathbf{q}_2, A, Z_0)$

Move #	State	Input	Stack Symbol	Move(s)
1	q_o	а	Z_0	(q_0, aZ_0)
2	q_o	b	Z_0	(q_0, bZ_0)
3	q_0	а	а	(q ₀ , aa)
4	q_o	b	а	(q _o , ba)
5	q_o	а	b	(q ₀ , ab)
6	q_o	b	b	(q _o , bb)
7	q_0	с	Z_0	(q_1, Z_0)
8	q_{o}	с	а	(q ₁ , a)
9	q_0	с	b	(q1, b)
10	q_1	а	а	$(q_p \Lambda)$
11	q_1	b	b	(q_{1}, Λ)
12	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)				none

15

Definitions and Examples (cont'd.)

Move #	State	Input	Stack Symbol	Move(s)
1	q_o	а	Z_0	(q_0, aZ_0)
2	q_{o}	b	Z_0	(q_o, bZ_o)
3	q_o	а	а	(q ₀ , aa)
4	q_{o}	b	а	(q _o , ba)
5	q_o	а	b	(q ₀ , ab)
6	q_o	b	b	(q ₀ , bb)
7	q_o	с	Z_0	(q_1, Z_0)
8	q_{o}	с	а	(q1, a)
9	q_o	с	b	(q₁, b)
10	q_1	а	а	(q_p, Λ)
11	q_1	b	b	$(q_{\scriptscriptstyle 1}, \Lambda)$
12	q_1	Λ	Z_0	(q_2, Z_0)
	(all other combinations)			

• A PDA for Pal is $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where $Q=\{q_0, q_1, q_2\}, A=\{q_2\},$ and the transitions are:

Move #	State	Input	Stack Symbol	Move(s)
1	q_0	а	Z_0	$(q_{\varrho}, aZ_{\varrho}), (q_{1}, Z_{\varrho})$
2	q_0	а	а	$(q_{\scriptscriptstyle 0}, aa), (q_{\scriptscriptstyle 1}, a)$
3	q_o	а	b	$(q_0, ab), (q_1, b)$
4	q_o	b	Z_0	$(q_{o}, bZ_{o}), (q_{1}, Z_{o})$
5	q_o	b	а	(q ₀ , ba), (q ₁ , a)
6	q_o	b	b	(q ₀ , bb), (q ₁ , b)
7	q_o	Λ	Z_0	(q_1, Z_0)
8	q_o	Λ	A	$(q_{p} a)$
9	q_o	Λ	b	(q ₁ , b)
10	q_1	а	а	$(q_{\nu} \Lambda)$
11	q_1	b	b	$(q_{\nu} \Lambda)$
12	q_1	Λ	Z_0	(q_2, Z_0)
(all other combinations)			ations)	none

 $(q_0, abbba, Z_0) \vdash (q_0, bbba, aZ_0) \vdash (q_0, bba, baZ_0) \vdash (q_1, ba, baZ_0)$ $\vdash (q_1, a, aZ_0) \vdash (q_1, A, Z_0) \vdash (q_2, A, Z_0)$

Deterministic Pushdown Automata

- Definition 5.10: A pushdown automaton $M=(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is *deterministic* if it satisfies both of the following conditions:
 - For every $q \in Q$, every σ in $\Sigma \cup \{\Lambda\}$, and every $X \in \Gamma$, the set $\delta(q, \sigma, X)$ has at most one element.
 - For every $q \in Q$, every $\sigma \in \Sigma$, and every $X \in \Gamma$, the two sets $\delta(q, \sigma, X)$ and $\delta(q, \Lambda, X)$ cannot both be nonempty.
- A language *L* is a *deterministic context-free language* (DCFL) if there is a deterministic PDA (DPDA) accepting *L*.

19

Deterministic Pushdown Automata (cont'd.)

- One example is the previous PDA accepting *AnBn*
- Another example: the language of balanced strings of brackets
 - Two states q_0 and q_1 , where q_0 is the accepting state
 - Input symbols are [and]
 - Stack symbols are Z_0 and [

Move #	State	Input	Stack Symbol	Move(s)
1	q_0	[Z_0	$(q_1, [Z_0)$
2	q_1	[[(q ₁ ,[[)
3	q_1]	[(q_1, Λ)
4	q_1	Λ	Z_0	(q_0, Z_0)
	none			

Deterministic Pushdown Automata (cont'd.)

- The language *Pal* of palindromes over {*a, b*} can be accepted by a PDA *M* that saves symbols on the stack until it "guesses" that it has reached the middle of the string, then cancels stack symbols with input symbols.
- The initial state of M, in which it stays while it is processing the first half of the string, is q_{0} .
- The state it enters when it is ready to begin the second half is q_1 , and the accepting state is q_2 .
- Typical lines from the transition table: $(q_0, a, Z_0) = \{(q_0, aZ_0), (q_1, Z_0)\}$ $(q_0, a, b) = \{(q_0, ab), (q_1, b)\}$ $(q_0, \Lambda, b) = \{(q_1, b)\}$

21

Deterministic Pushdown Automata (cont'd.)

- $(q_0, aba, Z_0) \vdash (q_0, ba, aZ_0) \vdash (q_1, a, aZ_0) \vdash (q_1, \Lambda, Z_0)$ $\vdash (q_2, \Lambda, Z_0)$ $(q_0, aa, Z_0) \vdash (q_0, a, aZ_0) \vdash (q_1, a, aZ_0) \vdash (q_1, \Lambda, Z_0)$ $\vdash (q_2, \Lambda, Z_0)$
- The only nondeterminism is in the transition from q_0 to q_1 .
- Theorem 5.16: The language *Pal* cannot be accepted by a DPDA (*i.e.*, cannot be accepted without guessing).

