IMPLEMENTATION OF BOOLEAN LOGIC USING ARDUINO

N. VARALAKSHMI

 $\begin{tabular}{ll} varalakshminissankara4@gmail.com\\ COMET.FWC021\\ Future\ Wireless\ Communication\ (FWC)\\ ASSIGNMENT \end{tabular}$

July 07, 2025

Abstract

(GATE 2010 CS, Question No.9 – Implementing an answer of the above question using arduino)

1. Components

Component	Qty
Arduino UNO Board	1
USB Cable (Type B)	1
Push Buttons	3
LEDs	1
220Ω Resistors	3
Jumper Wires (M-M)	10
Breadboard	1
Android Mobile with Ar-	1
duinodroid App	

Table 1: List of components used

2. Setup and Connections

- 1. Connect push buttons to D2, D3, D4 for P, Q, R.
- 2. Add pull-down resistors to each input.

- 3. Connect an LED to pin D13 via a 220Ω resistor.
- 4. Common ground for buttons and LED.
- 5. Power Arduino via USB and Arduinodroid app.

3. Steps for Implementation

- 1. Complete the circuit connections.
- 2. Connect Arduino to mobile via USB.
- 3. Open Arduinodroid, select board and port.
- 4. Open, save, compile and upload code.

4. Truth Table

P	Q	R	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

implementation

$$\begin{split} f &= \overline{P}\,\overline{Q}\,R + \overline{P}\,Q\,\overline{R} + P\,\overline{Q}\,\overline{R} + P\,Q\,R \\ &= \overline{P}(\overline{Q}R + Q\overline{R}) + P(\overline{Q}\,\overline{R} + QR) \\ &= \overline{P}(Q \oplus R) + P(Q \oplus R)' \\ &= P \oplus (Q \oplus R) \\ &= \overline{f} = P \oplus Q \oplus R \end{split}$$

6. Input and Output Pins

- P (Input) D2
- **Q** (Input) D3
- R (Input) D4
- F (Output LED) D13

7. Arduino Code Link

https://github.com/varalakshmi298/ide/gate/gate_q3.ino

