

Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Augmenting path.
- Reductions.
- Local search.
- Randomization.

Ex.

O(n log n) interval scheduling (find maximum subset of mutually compatible jobs).
O(n log n) Closest Pair of Points
O(nlogn) Weighted Interval Scheduling.
O(mn) = O(n³) Bipartite matching.

Algorithm design anti-patterns.

- NP-completeness.
- PSPACE-completeness.
- Undecidability.

 $O(n^k)$ algorithm unlikely.

 $O(n^k)$ certification algorithm unlikely.

No algorithm possible.

Decision Problems

Decision problem.

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: A(s) = yes iff $s \in X$.

PRIMES: $X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37,\}$ Algorithm. [Agrawal-Kayal-Saxena, 2002] $p(|s|) = |s|^8$.

Running time $O(\log^{7.5}s)$, for input number s, $|s| = \log s$, in binary representation

Optimization problem.

An optimization problem can be solved with polynomial-time overhead if its decision version can be solved.

Example: what is the largest prime less than n?

Definition of P

P. Decision problems for which there is a poly-time algorithm.

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is × a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
PRIMES	Is x prime?	AKS (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

NP

Certification algorithm intuition.

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

Def. Algorithm C(s, t) is a certifier for problem X if for every string $s, s \in X$ iff there exists a string t such that C(s, t) = yes.

NP. Decision problems for which there exists a poly-time certifier.

C(s, t) is a poly-time algorithm and $|t| \le p(|s|)$ for some polynomial $p(\cdot)$.

[to determine if a <u>proposed</u> solution t is <u>truly</u> a solution to s or not in <u>poly-time</u>]

Remark. NP stands for non-deterministic polynomial-time. Searching for a proof t that being accepted by C(s, t) is a <u>non-deterministic</u> search over the space of all possible t.

Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \le |s|$.

Certifier.

```
boolean C(s, t) {
   if (t \le 1 \text{ or } t \ge s)
      return false
   else if (s is a multiple of t)
       return true
       return false
```

Instance. s = 437,669. Certificate. t = 541 or 809. ← 437,669 = 541 × 809

Conclusion. COMPOSITES is in NP.

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ , is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

$$\left(\ \overline{x_1} \ \lor \ x_2 \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ \overline{x_2} \ \lor \ x_3 \right) \ \land \ \left(\ x_1 \ \lor \ x_2 \ \lor \ x_4 \right) \ \land \ \left(\overline{x_1} \ \lor \ \overline{x_3} \ \lor \ \overline{x_4} \right)$$

instance s

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

certificate t

Conclusion. SAT is in NP.

7

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

P, NP, EXP

- P. Decision problems for which there is a poly-time algorithm.
- EXP. Decision problems for which there is an exponential-time algorithm.
- NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP$.

- Pf. Consider any problem X in P.
- \blacksquare By definition, there exists a poly-time algorithm A(s) that solves X.
- Certificate: $t = \varepsilon$, certifier C(s, t) = A(s). •

Claim. NP \subseteq EXP.

- Pf. Consider any problem X in NP.
- By definition, there exists a poly-time certifier C(s, t) for X.
- To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
- Return yes, if C(s, t) returns yes for any of these. ■

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

- Is the decision problem as easy as the certification problem?
- Clay \$1 million prize.

would break RSA cryptography (and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...

If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

8.1 Polynomial-Time Reductions

Polynomial-Time Reduction

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

don't confuse with reduces from

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$. computational model supplemented by special piece of hardware that solves instances of Y in a single step

Design algorithms. If $X \le_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \le_P Y$ and $Y \le_P X$, we use notation $X =_P Y$. Purpose. Classify problems according to relative difficulty.

Independent Set

INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \ge k$, and for each edge at most one of its endpoints is in S?

- Ex. Is there an independent set of size \geq 6? Yes.
- Ex. Is there an independent set of size \geq 7? No.

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge, at least one of its endpoints is in S?

- Ex. Is there a vertex cover of size \leq 4? Yes.
- Ex. Is there a vertex cover of size \leq 3? No.

Vertex Cover and Independent Set

Claim. VERTEX-COVER ≡ PINDEPENDENT-SET.

Pf. We show S is an independent set iff V - S is a vertex cover.

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET.

Pf. We show S is an independent set iff V - S is a vertex cover.

 \Rightarrow

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent \Rightarrow u \notin S or v \notin S \Rightarrow u \in V S or v \in V S.
- Thus, V S covers (u, v).

(

- Let V S be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since V S is a vertex cover.
- \blacksquare Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. \blacksquare

8.4 NP-Completeness

NP-Complete

NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \le_p Y$.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff P = NP.

Pf. \Leftarrow If P = NP then Y can be solved in poly-time since Y is in NP.

Pf. \Rightarrow Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since $X \le_p Y$, we can solve X in poly-time. This implies NP \subseteq P. /
- We already know $P \subseteq NP$. Thus P = NP. •

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]

A decision problem such that every problem in NP reduces to it. $^{not \, necessarily \, in \, NP}$ Example: Circuit satisfiability

NP-hard search problem. A problem such that every problem in NP reduces to it. not necessarily a yes/no problem

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

21

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973] Pf. (sketch)

 Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit.
 Moreover, if algorithm takes poly-time, then circuit is of poly-size.

sketchy part of proof; fixing the number of bits is important, and reflects basic distinction between algorithms and circuits

- Consider some problem X in NP. It has a poly-time certifier C(s, t). To determine whether s is in X, need to know if there exists a certificate t of length p(|s|) such that C(s, t) = yes.
- View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and convert it into a poly-size circuit K.
 - first |s| bits are hard-coded with s
 - remaining p(|s|) bits represent bits of t
- Circuit K is satisfiable iff C(s, t) = yes.

Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_p Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_P Y$ then Y is NP-complete.

Pf. Let W be any problem in NP. Then $W \leq_P X \leq_P Y$.

- By transitivity, W ≤ P Y.
- Hence Y is NP-complete. ■

by definition of NP-complete

by assumption

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT \leq_P 3-SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:
 - $-x_2 = -x_3$ \Rightarrow add 2 clauses: $x_2 \vee x_3$, $\overline{x_2} \vee \overline{x_3}$
 - x_1 = x_4 v x_5 \Rightarrow add 3 clauses: x_1 v $\overline{x_4}$, x_1 v $\overline{x_5}$, $\overline{x_1}$ v x_4 v x_5
 - x_0 = $x_1 \wedge x_2 \Rightarrow$ add 3 clauses: $\overline{x_0} \vee x_1$, $\overline{x_0} \vee x_2$, $x_0 \vee \overline{x_1} \vee \overline{x_2}$
- Hard-coded input values and output value.
 - $-x_5 = 0 \Rightarrow \text{add 1 clause}: \overline{x_5}$
 - x_0 = 1 \Rightarrow add 1 clause: x_0
- Final step: turn clauses of length < 3 into clauses of length exactly 3. ■

25

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

Factoring: Given two integers x and y, does x have a nontrivial factor less than y?

27

PSPACE

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

Observation. $P \subseteq PSPACE$.

poly-time algorithm can consume only polynomial space

Claim. 3-SAT is in PSPACE.

Pf.

- Enumerate all 2ⁿ possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses. •

Theorem. NP \subseteq PSPACE.

- Pf. Consider arbitrary problem Y in NP.
- Since $Y \leq_P 3$ -SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement black box in poly-space. ■

PSPACE-Complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-Complete. Problem Y is PSPACE-complete if

- (i) Y is in PSPACE and
- (ii) for every problem X in PSPACE, $X \leq_P Y$.

Theorem. [Stockmeyer-Meyer 1973] QSAT is PSPACE-complete. Quantified 3-SAT $\exists x_1 \forall x_2 \dots \exists x_{n-2} \forall x_{n-1} \exists x_n \Phi(x_1, \dots, x_n)$?

Theorem. PSPACE ⊆ EXPTIME.

Pf. Previous algorithm solves QSAT in exponential time, and QSAT is PSPACE-complete. •

Summary. P & NP & PSPACE & EXPTIME.

it is known that P ≠ EXPTIME, but unknown which inclusion is strict; conjectured that all are

2

Quantified Satisfiability

QSAT. Let $\Phi(x_1, ..., x_n)$ be a Boolean CNF formula. Is the following propositional formula true?

$$\exists \mathbf{x_1} \ \forall \mathbf{x_2} \ \exists \mathbf{x_3} \ \forall \mathbf{x_4} \dots \ \forall \mathbf{x_{n-1}} \ \exists \mathbf{x_n} \ \Phi(\mathbf{x_1}, \, \dots, \, \mathbf{x_n})$$

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no matter what Bob does?

$$\mathsf{Ex.} \quad (x_1 \ \lor \ x_2) \ \land \ (x_2 \ \lor \ \overline{x_3}) \ \land \ (\overline{x_1} \ \lor \ \overline{x_2} \ \lor \ x_3)$$

Yes. Amy sets x_1 true; Bob sets x_2 ; Amy sets x_3 to be same as x_2 .

$$\mathsf{Ex}$$
. $(x_1 \lor x_2) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$

No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses; if Amy sets x_1 true; Bob sets x_2 true; Amy loses.

PSPACE-Complete Problems

A number of basic problems in AI are PSPACE-complete:

Planning, Game, Quantification (QSAT)

More PSPACE-complete problems.

- Competitive facility location.
- Natural generalizations of games.
 - Othello, Hex, Geography, Rush-Hour, Instant Insanity
 - Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

31

Competitive Facility Location

COMPETITIVE-FACILITY is PSPACE-complete.

Input. Graph with positive edge weights, and target B. Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Yes if B = 20; no if B = 25.