

AD-A031 240

BALLISTIC RESEARCH LABS ABERDEEN PROVING GROUND MD
AMMUNITION FOR LAW ENFORCEMENT. PART III. PHOTOGRAPHS OF BULLET--ETC(U)
SEP 76 W J BRUCHEY, B IZDEBSKI, H OFFNEY

F/G 19/1

UNCLASSIFIED

BRL-MR-2673

NL

1 OF 2
ADA031240

AD A 031240
BRL MR 2673

B R L

(11)

MEMORANDUM REPORT NO. 2673

AMMUNITION FOR LAW ENFORCEMENT: PART III,
PHOTOGRAPHS OF BULLETS RECOVERED AFTER
IMPACTING TISSUE SIMULANT

William J. Bruchey, Jr.
Bernard Izdebski
Henry Offney
Bruce Rickter
James Haynie

September 1976

Approved for public release; distribution unlimited.

USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER BRL MEMORANDUM REPORT NO. 2673	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Ammunition for Law Enforcement, Part III. Photographs of Bullets Recovered After Impacting Tissue Simulant.		9. TYPE OF REPORT & PERIOD COVERED Final <i>rept.</i>
7. AUTHOR(s) William J. Bruchey, Jr. / Bruce Rickter Bernard Izdebski / James Haynie Henry Offney		6. PERFORMING ORG. REPORT NUMBER
8. CONTRACT OR GRANT NUMBER(s)		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1F662618AH80
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Materiel Development & Readiness Command 5001 Eisenhower Avenue Alexandria, VA 22333		12. REPORT DATE SEPTEMBER 1976
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>(12) 103P.S.</i>		13. NUMBER OF PAGES 107
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) UNCLASSIFIED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Small Arms Penetration Studies Wound Ballistics Tissue Simulant Bullets Stopping Power Incapacitation		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A comprehensive study was conducted for the Department of Justice to determine what factors influence human incapacitation by handgun bullets. An evaluation of the effectiveness of nearly all commercial handgun bullets was made. As part of the study, each bullet was recovered after impacting and penetrating a tissue simulant target. This report is a supplement to the overall program methodology and results presented in a BRL Report entitled, "Ammunition for Law Enforcement: Part I, Methodology for Evaluating Relative Stopping Power" <i>b7c</i>		

07

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

and Results." Presented in this report are the photographs of bullets recovered after firing during this program.

↑

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	Page
I. INTRODUCTION	5
II. PHOTOGRAPHIC RESULTS	6
DISTRIBUTION LIST	105

ACCESSION INFO	
RTIS	White Section <input checked="" type="checkbox"/>
BOS	Buff Section <input type="checkbox"/>
UNARMED	
JUSTIFICATION	
REPRODUCTION FEASIBILITY CODES	
REGULAR, COLOR, SPECIAL	
A	

D D C
REF ID: A65112
OCT 27 1976
R E C U L T I L D
D

I. INTRODUCTION

In December 1972, the National Institute of Law Enforcement and Criminal Justice of the Law Enforcement Assistance Administration approved and funded a project, submitted by the Law Enforcement Standards Laboratory (LESL) of the National Bureau of Standards, to conduct a study of the terminal effects of police handgun ammunition. LESL late in 1973 contracted with the U.S. Army Ballistic Research Laboratories (BRL) to conduct the study and prepare a report of its findings. The purpose of the study was to provide federal, state and local law enforcement agencies with a criterion for use in selection of handgun ammunition; a criterion which considers not only the offensive capabilities of the ammunition, but also the safety factors concerning innocent bystanders. The purpose was not specifically to show that studies by previous investigators were invalid, but to bring the salient features of these previous studies together with a more detailed and updated description of the entire scenario to produce a unified approach to the problem which would allow an objective evaluation of handgun effectiveness.

To place the question of handgun effectiveness on the level of an objective approach, three primary terminal characteristics of handgun ammunition were studied:

1. Relative Incapacitation of Human Targets (i.e., relative stopping power).
2. Ricochet Hazards.
3. Material Penetration Characteristics.

As the focus of the study was on commercially available handgun ammunition in the caliber range from 0.355 (9mm) through 0.45, an extensive laboratory investigation of all significantly different handgun bullets available to law enforcement agencies in the United States was conducted. This report deals with experiments performed for the relative incapacitation portion of the study from which the following data were extracted:

- 1A. Measurement of the formation and subsequent development of the temporary cavity produced in tissue simulant by each bullet as a function of striking velocity.
- 1B. Measurement of the general dynamic behavior of each bullet as it penetrated the tissue simulant, its stability, and deformation, as a function of striking velocity.

1C. Measurement of the impact velocity by factory loaded ammunition corresponding to each bullet under study when fired from various handguns currently used by law enforcement agencies.

The photographic data presented in the following section were gathered during Part 1B. The volume of the data generated for relative incapacitation requires that the results be presented in three separate reports as follows:

Ammunition for Law Enforcement: Part I, Methodology for Evaluating Relative Stopping Power and Results.

Ammunition for Law Enforcement: Part II, Data on Cavity Formation and Bullet Deformation During Penetration of Tissue Simulant.

Ammunition for Law Enforcement: Part III, Photographs of Bullets Recovered After Impacting Tissue Simulant.

II. PHOTOGRAPHIC RESULTS

During the conduct of the tests to evaluate the effectiveness of handgun bullets against personnel, each bullet was fired into a 30 cm long block of tissue simulant. For each test shot, the penetration of the bullet was recorded dynamically by both high-speed cinematography and flash x-ray photography. After each shot (when possible), the bullet was recovered from the tissue simulant and photographed. Presented on the following pages are these photographs.

The data are arranged in the following sequence:

1. Manufacturers are listed alphabetically.
2. Within manufacturer, the data are presented from smallest to largest caliber.
3. Within caliber, the data are presented in the following order for construction type:

- a. Full Jacket (FJ)
- b. Full Metal Case (FMC)
- c. Full Metal Jacket (FMJ)
- d. Jacketed Hollow Point (JHP)
- e. Jacketed Soft Point (JFP) (JSP)
- f. Lead (L)
- g. Lead Hollow Point (LHP)
- h. Lead Round Nose (LRN)
- i. Lubaloy
- j. Metal Piercing (MP)
- k. Round Nose (RN)
- l. Semi-Wadcutter (SWC)
- m. Wadcutter (WC)

4. Within construction type, the data are presented from smallest to largest mass in grains.

Velocity = 409 m/s

Velocity = 356 m/s

Velocity = 312 m/s

Figure 1 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .357 MAG, JHP, 110 GRAIN

Velocity = 387 m/s

Velocity = 343 m/s

Figure 2 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .38 SPECIAL, JHP, 158 GRAIN

Velocity = 481 m/s

Velocity = 349 m/s

Figure 3 Effects of Striking Velocity on Bullet Deformation for HORNADY, .357 MAG, JFP, 158 GRAIN

Velocity = 342 m/s

Velocity = 290 m/s

Figure 4 Effects of Striking Velocity on Bullet Deformation for
HIGH PRECISION, .45 ACP, JHP, 170 GRAIN

Velocity = 355 m/s

Velocity = 348 m/s

Velocity = 303 m/s

Velocity = 271 m/s

Figure 5 Effects of Striking Velocity on Bullet Deformation for HIGH PRECISION, .44 MAG, JHP, 240 GRAIN

Velocity = 405 m/s

Velocity = 336 m/s

Velocity = 293 m/s

Velocity = 224 m/s

Velocity = 144 m/s

Figure 6 Effects of Striking Velocity on Bullet Deformation for HORNADY, .38 SPECIAL, JHP, 110 GRAIN

Velocity = 426 m/s

Velocity = 376 m/s

Velocity = 356 m/s

Velocity = 294 m/s

Velocity = 247 m/s

Figure 7 Effects of Striking Velocity on Bullet Deformation for HORNADY, .357 MAG, JHP, 125 GRAIN

Figure 8 Effects of Striking Velocity on Bullet Deformation for HORNADY, .38 SPECIAL, JHP, 158 GRAIN

Velocity = 355 m/s

Velocity = 314 m/s

Velocity = 279 m/s

Velocity = 261 m/s

Velocity = 221 m/s

Figure 9 Effects of Striking Velocity on Bullet Deformation for HORNADY, .41 MAG, JHP, 210 GRAIN

Velocity = 341 m/s

Velocity = 316 m/s

Velocity = 303 m/s

Velocity = 262 m/s

Velocity = 236 m/s

Figure 10 Effects of Striking Velocity on Bullet Deformation for HORNADY, .44 MAG, JHP, 240 GRAIN

Velocity = 374 m/s

Velocity = 338 m/s

Velocity = 317 m/s

Velocity = 296 m/s

Velocity = 266 m/s

Velocity = 231 m/s

Figure 11 Effects of Striking Velocity on Bullet Deformation for HORNADY, .44 MAG, JHP, 200 GRAIN

Velocity = 425 m/s

Velocity = 407 m/s

Velocity = 371 m/s

Velocity = 354 m/s

Velocity = 0 m/s

Figure 12 Effects of Striking Velocity on Bullet Deformation for REMINGTON, 9MM, FJ, 124 GRAIN

Figure 13 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, JHP, 96 GRAIN

Velocity = 430 m/s

Velocity = 383 m/s

Velocity = 346 m/s

Velocity = 290 m/s

Velocity = 230 m/s

Velocity = 0 m/s

Figure 14 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .357 MAG, JHP, 125 GRAIN

Velocity = 393 m/s

Velocity = 354 m/s

Velocity = 321 m/s

Velocity = 269 m/s

Velocity = 0 m/s

Figure 15 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .357 MAG, JHP, 158 GRAIN

Figure 16 Effects of Striking Velocity on Bullet Deformation for
REMINGTON, .357 MAG, JSP, 158 GRAIN

Velocity = 381 m/s

Velocity = 360 m/s

Velocity = 0 m/s

Figure 17 Effects of Striking Velocity on Bullet Deformation for
REMINGTON, .357-MAG, L, 158 GRAIN

Figure 18 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, L, 200 GRAIN

Velocity = 410 m/s

Velocity = 375 m/s

Velocity = 0 m/s

Figure 19 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, MP, 158 GRAIN

Velocity = 386 m/s

Velocity = 376 m/s

Velocity = 329 m/s

Velocity = 0 m/s

Figure 20 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, RN, 158 GRAIN

Figure 21 Effects of Striking Velocity on Bullet Deformation for
REMINGTON, .38 SPECIAL, SWC, 158 GRAIN

Velocity = 437 m/s

Velocity = 293 m/s

Velocity = 265 m/s

Velocity = 0 m/s

Figure 22 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .38 SPECIAL, WC, 148 GRAIN

Velocity = 389 m/s

Velocity = 369 m/s

Velocity = 348 m/s

Velocity = 297 m/s

Velocity = 0 m/s

Figure 23 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .41 MAG, JSP, 210 GRAIN

Figure 24 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .41MAG, L, 210 GRAIN

Velocity = 375 m/s

Velocity = 0 m/s

Figure 25 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .45 ACP, WC, 185 GRAIN

Velocity = 360 m/s

Velocity = 338 m/s

Velocity = 308 m/s

Velocity = 284 m/s

Velocity = 245 m/s

Velocity = 0 m/s

Figure 26 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .45, JHP, 185 GRAIN

Velocity = 379 m/s

Velocity = 0 m/s

Figure 27 Effects of Striking Velocity on Bullet Deformation for REMINGTON, .45 ACP, MC, 230 GRAIN

Velocity = 440 m/s

Velocity = 393 m/s

Velocity = 342 m/s

Figure 28 Effects of Striking Velocity on Bullet Deformation for SIERRA, .357 MAG, JHP, 110 GRAIN

Figure 29 Effects of Striking Velocity on Bullet Deformation for
SIERRA, .38 SPECIAL, JHP, 125 GRAIN

Figure 30 Effects of Striking Velocity on Bullet Deformation for SIERRA, .38 SPECIAL, JHP, 150 GRAIN

Velocity = 374 m/s

Velocity = 356 m/s

Figure 31 Effects of Striking Velocity on Bullet Deformation for SIERRA, .357 MAG, JSP, 125 GRAIN

Velocity = 385 m/s

Velocity = 345 m/s

Velocity = 295 m/s

Velocity = 260 m/s

Velocity = 180 m/s

Figure 32 Effects of Striking Velocity on Bullet Deformation for SIERRA, .38 SPECIAL, JSP, 158 GRAIN

Velocity = 355 m/s

Figure 33 Effects of Striking Velocity on Bullet Deformation for SIERRA, .41 MAG, JHP, 170 GRAIN

Velocity = 353 m/s

Figure 34 Effects of Striking Velocity on Bullet Deformation for
SIERRA, .41 MAG, JHP, 210 GRAIN

Velocity = 371 m/s

Figure 35 Effects of Striking Velocity on Bullet Deformation for SIERRA, .44 MAG, JHP, 180 GRAIN

Velocity = 369 m/s

Figure 36 Effects of Striking Velocity on Bullet Deformation for
SIERRA, .44 MAG, JHP, 240 GRAIN

Velocity = 461 m/s

Velocity = 420 m/s

Velocity = 335 m/s

Velocity = 255 m/s

Velocity = 183 m/s

Figure 37 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, 9 MM, JHP, 100 GRAIN

**Figure 38 Effects of Striking Velocity on Bullet Deformation for
SMITH & WESSON, 9 MM, JHP, 115 GRAIN**

Figure 39 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, 9 MM, JSP, 90 GRAIN

Velocity = 526 m/s

Velocity = 342 m/s

Velocity = 311 m/s

Velocity = 236 m/s

Velocity = 190 m/s

Figure 40 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JHP, 110 GRAIN

Velocity = 544 m/s

Velocity = 387 m/s

Velocity = 307 m/s

Velocity = 279 m/s

Velocity = 250 m/s

Velocity = 209 m/s

Figure 41 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, 125 GRAIN

Figure 42 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JHP, 158 GRAIN

Velocity = 381 m/s

Velocity = 314 m/s

Velocity = 237 m/s

Figure 43 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .38 SPECIAL, JSP, 90 GRAIN

Figure 44 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .357 MAG, JSP, 158 GRAIN

Velocity = 265 m/s

Figure 45 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .38 SPECIAL, RN, 158 GRAIN

Velocity = 250 m/s

Figure 46 Effects of Striking Velocity on Bullet Deformation for SMITH & WESSON, .38 SPECIAL, WC, 148 GRAIN

Velocity = 453 m/s

Velocity = 439 m/s

Velocity = 380 m/s

Velocity = 369 m/s

Velocity = 297 m/s

Velocity = 267 m/s

Figure 47 Effects of Striking Velocity on Bullet Deformation for SPEER, 9MM, JHP, 100 GRAIN

Figure 48 Effects of Striking Velocity on Bullet Deformation for SPEER, 9MM, JSP, 125 GRAIN

Velocity = 418 m/s

Figure 49 Effects of Striking Velocity on Bullet Deformation for SPEER, 9MM, RN, 125 GRAIN

Figure 50 Effects of Striking Velocity on Bullet Deformation for SPEER, .357, JHP, 110 GRAIN

Velocity = 436 m/s

Velocity = 407 m/s

Velocity = 383 m/s

Velocity = 339 m/s

Velocity = 316 m/s

Velocity = 230 m/s

Figure 51 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JHP, 125 GRAIN

Figure 52 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JHP, 140 GRAIN

Figure 53 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JHP, 146 GRAIN

Velocity = 429 m/s

Velocity = 398 m/s

velocity = 325 m/s

Velocity = 309 m/s

Velocity = 238 m/s

Velocity = 224 m/s

Figure 54 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JSP, 125 GRAIN

Figure 55 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JSP, 158 GRAIN

Figure 56 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, JSP, 160 GRAIN

Figure 27 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, SWC, 158 GRAIN

Figure 58 Effects of Striking Velocity on Bullet Deformation for SPEER, .38, WC, 148 GRAIN

Velocity = 417 m/s

Velocity = 398 m/s

Velocity = 358 m/s

Velocity = 354 m/s

Velocity = 333 m/s

Velocity = 316 m/s

Figure 59 Effects of Striking Velocity on Bullet Deformation for SPEER, 41MAG, JHP, 200 GRAIN

Figure 60 Effects of Striking Velocity on Bullet Deformation for
SPEER, 41MAG, JSP, 220 GRAIN

Velocity = 378 m/s

Velocity = 337 m/s

Figure 61 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, JHP, 200 GRAIN

Velocity = 356 m/s

Velocity = 353 m/s

Velocity = 304 m/s

Figure 62 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, JHP, 225 GRAIN

Velocity = 390 m/s

Velocity = 370 m/s

Velocity = 299 m/s

Figure 63 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, JSP, 240 GRAIN

Velocity = 411 m/s

Velocity = 322 m/s

Velocity = 307 m/s

Figure 64 Effects of Striking Velocity on Bullet Deformation for SPEER, 44MAG, SWC, 240 GRAIN

Velocity = 460 m/s

Velocity = 374 m/s

Velocity = 319 m/s

Velocity = 283 m/s

Velocity = 189 m/s

Figure 65 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, JHP, 200 GRAIN

Velocity = 423 m/s

Velocity = 389 m/s

Velocity = 371 m/s

Velocity = 338 m/s

Velocity = 291 m/s

Figure 66 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, JHP, 225 GRAIN

Velocity = 454 m/s

Velocity = 369 m/s

Velocity = 313 m/s

Figure 67 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, SWC, 200 GRAIN

Velocity = 422 m/s

Velocity = 398 m/s

Velocity = 373 m/s

Velocity = 346 m/s

Figure 68 Effects of Striking Velocity on Bullet Deformation for SPEER, .45, SWC, 250 GRAIN

Figure 69 Effects of Striking Velocity on Bullet Deformation for SUPER VEL, .38SP, JHP, 110 GRAIN

Velocity = 375 m/s

Velocity = 347 m/s

Velocity = 346 m/s

Velocity = 299 m/s

Velocity = 274 m/s

Velocity = 245 m/s

Figure 70 Effects of Striking Velocity on Bullet Deformation for
SUPER VEL, .38SP, JSP, 110 GRAIN

Velocity = 311 m/s

Velocity = 290 m/s

Velocity = 266 m/s

Figure 71 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .22, LHP, 37 GRAIN

Figure 72 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, 9 MM, JSP, 100 GRAIN

Velocity = 407 m/s

Velocity = 361 m/s

Velocity = 309 m/s

Velocity = 239 m/s

Velocity = 200 m/s

Figure 73 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38 SPECIAL, JHP, 110 GRAIN

Velocity = 381 m/s

Velocity = 335 m/s

Velocity = 291 m/s

Velocity = 267 m/s

Velocity = 210 m/s

Figure 74 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, JHP, 158 GRAIN

Figure 75 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .357, JSP, 150 GRAIN

Velocity = 348 m/s

Velocity = 301 m/s

Velocity = 236 m/s

Figure 76 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, JSP, 158 GRAIN

Velocity = 488 m/s

Figure 77 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .357 MAG, JSP, 158 GRAIN

**Figure 78 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .38 SPECIAL, LEAD, 158 GRAIN**

Velocity = 381 m/s

Velocity = 359 m/s

Figure 79 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .357, LHP, 158 GRAIN

Figure 80 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, LHP, 158 GRAIN

Velocity = 384 m/s

Velocity = 347 m/s

Figure 81 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .38, LRN, 150 GRAIN

Velocity = 381 m/s

Velocity = 332 m/s

Velocity = 288 m/s

Figure 82 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, LRN, 158 GRAIN

Velocity = 248 m/s

Figure 83 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38 LONG COLT, LUBALOY, 150 GRAIN

Velocity = 343 m/s

Velocity = 331 m/s

Velocity = 115 m/s

Figure 84 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .357 MAG, LUBALOY, 158 GRAIN

Velocity = 391 m/s

Figure 85 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .357, MP, 158 GRAIN

Velocity = 377 m/s

Velocity = 335 m/s

Velocity = 304 m/s

Figure 86 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, RN, 158 GRAIN

Figure 87 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .38, SWC, 158 GRAIN

Velocity = 495 m/s

Velocity = 319 m/s

Velocity = 265 m/s

Figure 88 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .38, WC, 148 GRAIN

AD-A031 240 BALLISTIC RESEARCH LABS ABERDEEN PROVING GROUND MD F/G 19/1
AMMUNITION FOR LAW ENFORCEMENT. PART III. PHOTOGRAPHS OF BULLET--ETC(U)
SEP 76 W J BRUCHEY, B IZDEBSKI, H OFFNEY

UNCLASSIFIED

BRL-MR-2673

NL

2 OF 2
ADA031240

END
DATE
FILMED
11 - 76

Figure 89 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45, FMJ, 185 GRAIN

Velocity = 268 m/s

Figure 90 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45 AUTOMATIC, FMC, 185 GRAIN

Velocity = 323 m/s

Figure 91 Effects of Striking Velocity on Bullet Deformation for
WINCHESTER-WESTERN, .45 AUTOMATIC, FMC, 230 GRAIN

Velocity = 355 m/s

Figure 92 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45, FMJ, 230 GRAIN

Velocity = 335 m/s

Figure 93 Effects of Striking Velocity on Bullet Deformation for WINCHESTER-WESTERN, .45, LRN, 255 GRAIN

Velocity = 391 m/s

Velocity = 331 m/s

Velocity = 286 m/s

Velocity = 232 m/s

Velocity = 155 m/s

Figure 94 Effects of Striking Velocity on Bullet Deformation for ZERO, .38 SPECIAL, JHP, 100 GRAIN

Figure 95 Effects of Striking Velocity on Bullet Deformation for ZERO, .357 MAG, JHP, 110 GRAIN

Figure 96 Effects of Striking Velocity on Bullet Deformation for ZERO, .357 MAG, JHP, 125 GRAIN

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	1	Commander U.S. Army Electronics Command ATTN: DRSEL-RD Fort Monmouth, NJ 07703
1	Director of Defense Research and Engineering (OSD) Washington, DC 20305	1	Commander U.S. Army Missile Command ATTN: DRSMI-R Redstone Arsenal, AL 35809
1	Director Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209	1	Commander U.S. Army Tank Automotive Development Command ATTN: DRDTA-RWL Warren, MI 48090
1	Director Weapons Systems Evaluation Gp Washington, DC 20305	1	Commander U.S. Army Mobility Equipment Rsch & Dev Command ATTN: Tech Docu Cen, Bldg 315 DRSME-RZT Fort Belvoir, VA 22060
1	Chairman Defense Science Board Washington, DC 20301	1	Commander U.S. Army Armament Command Rock Island, IL 61202
1	Commander U.S. Army Materiel Development & Readiness Command ATTN: DRCMA-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander U.S. Army Harry Diamond Labs ATTN: DRXDO-TI 2800 Powder Mill Road Adelphi, MD 20783
1	Commander U.S. Army Mobility Research & Development Laboratory Ames Research Center Moffett Field, CA 94035	2	Commander U.S. Army Frankford Arsenal ATTN: SARFA-J7400 SARFA-J7600 Philadelphia, PA 19137
1	Commander U.S. Army Aviation Systems Command ATTN: AMSAV-E 12th & Spruce Streets St. Louis, MO 63166	1	Commander U.S. Army Picatinny Arsenal ATTN: SARPA-DW-6 Dover, NJ 07801

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Commander US Army Watervliet Arsenal ATTN: SARWV-RR-C Watervliet, NY 12189	1	Commander US Army Infantry School ATTN: Infantry Agency Fort Benning, GA 31905
1	Commander White Sands Missile Range ATTN: STEW-TE-PS, Mr. Findley White Sands, NM 88002	1	The Surgeon General Department of the Army Washington, DC 20315
2	Commander US Army Natick Research and Development Center ATTN: Mr. T. Bailey Mr. T. Keville Natick, MA 01760	1	Chief of Naval Operations ATTN: OP-03ED Department of the Navy Washington, DC 20350
1	Commander US Foreign Science and Technology Center ATTN: DRXST-WS 220 Seventh Street, NW Charlottesville, VA 29901	1	Commander US Naval Air Systems Command ATTN: AIR-604 Washington, DC 20360
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SA White Sands Missile Range NM 88002	1	Commandant US Marine Corps Washington, DC 20380
1	Commander US Army Armor School ATTN: Armor Agency Fort Knox, KY 40121	1	Director MCDEC ATTN: C, Gnd Cbt Div Quantico, VA 22154
1	Commander US Army Field Artillery School ATTN: Field Artillery Agency Fort Sill, OK 73405	1	AFATL (DLRW) Eglin AFB, FL 32442
1	Commander US Army Aviation School ATTN: Aviation Agency Fort Rucker, AL 36362	1	US Department of Treasury Training Center ATTN: Mr. W. McClarin Powdermille Road Beltsville, MD 20705
		1	Federal Bureau of Investigation ATTN: Mr. C. Cunningham, Rm 7410 Washington, DC 30405

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	International Association of Chiefs of Police Gaithersburg, MD 20760	1	Inspector General Department of Correction State Office Bldg No. 8 ATTN: Mr. A. Van Winkler 714 "P" Street Sacramento, CA 95814
1	Rockwell International Los Angeles Aircraft Division ATTN: Mr. W. Dotseth International Airport Los Angeles, CA 90009		<u>Aberdeen Proving Ground</u>
1	Wilmington Bureau of Police ATTN: Mr. J.G.P. Doherty Wilmington, DE 19801		Marine Corps Ln Ofc Dir, USAMSAA Cdr, USAEA ATTN: SAREA-BL
1	Deputy Attorney General ATTN: Mr. J. Denney Wilmington Tower Wilmington, DE 19801		