Alumno:

Duración: dos horas y media. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera. No se consideran cálculos dispersos o sin comentarios, ni gráficos o diagramas sin la identificación completa de sus elementos y su relación con el problema.

- 1. (a) Dados los enteros positivos a,b,m probar que $\alpha \in \mathbb{Z}$ es una solución de la ecuación $ax = b \pmod{m}$ sii cualquier elemento de $[\alpha] \in \mathbb{Z}_m$ es una solución de la misma ecuación y determinar el conjunto $X = \{x \in \mathbb{Z} : 6x = 12 \pmod{9}, 12x = 24 \pmod{18}\}.$
 - (b) Decidir si la siguiente proposición es verdadera o falsa, justificando detalladamente los argumentos que validan la decisión.

No existe un grafo simple G planar tal que su complemento G' sea planar y su orden sea mayor que 10.

- 2. (a) En el conjunto $A = \{a_1, a_2, a_3, a_4, a_5\}$ sea \mathcal{S} la relación determinada por el digraph de la figura, y \mathcal{T} la relación definida por la matriz $M_{\mathcal{T}}$, y sea \mathcal{R} la relación $\mathcal{R} = (\mathcal{S} + \mathcal{T})^{-1}$. Determinar (siempre que existan), con las operaciones $x + y \stackrel{\text{def}}{=} \sup\{x,y\}, xy \stackrel{\text{def}}{=} \inf\{x,y\}, todos$ los pares $(x,y) \in A^2$ tales que $xy + x = x + a_2a_3, (x + y)\mathcal{R}(a_3a_5)$.
 - (b) Probar que el producto de n números positivos (n > 1) de suma constante igual a s es máximo sii cada uno de ellos es igual a s/n.

- 3. Probar que: (a) todo grafo simple G = (V(G), E(G)) planar conexo de orden $n = |V(G)| \ge 3$ tiene al menos un vértice v de grado $d(v) \le 5$. (b) Todo grafo planar es 5-coloreable.
- 4. Determinar el valor de verdad de cada una de las siguientes proposiciones, detallando la justificacin completa del valor asignado.
 - (a) Una condición necesaria para que el grafo orientado G=(V(G),E(G)) sea un torneo de orden n es que $\sum_{k=1}^{n}(d_k^+)^2=\sum_{k=1}^{n}(d_k^-)^2$.
 - (b) Sean n (con n > 1) números naturales d_1, d_2, \ldots, d_n tales que $0 \le d_1 \cdots \le d_n$. Para que estos números sean los grados de los vértices de algún grafo G de orden n es necesario y suficiente que se cumplan las dos condiciones siguientes: (i) $d_1 + d_2 + \cdots + d_n$ es par, (ii) $d_n \le d_1 + d_2 + \cdots + d_{n-1}$.