

Features

- Compact design to save board space -0603 footprint
- Small size results in very fast time to react to fault events
- Low profile
- RoHS compliant* and halogen free**
- Agency recognition: c 🕶 us 🟯

Applications

- USB port protection
- HDMI 1.4 Source protection
- PC motherboards Plug and Play protection
- Mobile phones Battery and port protection
- PDAs / digital cameras

MF-FSMF Series - PTC Resettable Fuses

Electrical Characteristics

	V max.	I max.	lhold	I _{trip}	Resistance Ohms at 23 °C		Max. Time To Trip		Tripped Power Dissipation
Model	Volts	Amps	Amp				Amperes at 23 °C	Seconds at 23 °C	Watts at 23 °C
			Hold	Trip	R _{Min} .	R _{1Max.}			Тур.
MF-FSMF010X	15	40	0.10	0.30	0.900	6.000	0.50	1.00	0.5
MF-FSMF020X	9	40	0.20	0.50	0.550	3.500	1.00	0.60	0.5
MF-FSMF025X	6	40	0.25	0.75	0.20	1.400	8.00	0.10	0.5
MF-FSMF035X	6	40	0.35	0.75	0.200	1.400	8.00	0.10	0.5
MF-FSMF050X	6	40	0.50	1.00	0.100	0.800	8.00	0.10	0.5

Environmental Characteristics

Operating Temperature.....-40 °C to +85 °C

Maximum Device Surface Temperature

in Tripped State125 °C

Passive Aging +85 °C, 1000 hours ±5 % typical resistance change Humidity Aging +85 °C, 85 % R.H. 1000 hours ±5 % typical resistance change Thermal Shock +85 °C to -40 °C, 20 times ±10 % typical resistance change

Condition A

Test Procedures And Requirements For Model MF-FSMF Series

Test	Test Conditions	Accept/Reject Criteria
Visual/Mech	Verify dimensions and materials	Per MF physical description
Resistance	In still air @ 23 °C	Rmin ≤ R ≤ R1max
Time to Trip	At specified current, Vmax, 23 °C	T ≤ max. time to trip (seconds)
Hold Current	30 min. at Ihold	No trip
Trip Cycle Life	Vmax, Imax, 100 cycles	No arcing or burning
Trip Endurance	Vmax, 48 hours	No arcing or burning
Solderability	ANSI/J-STD-002	95 % min. coverage
UL File Number	E174545	
	http://www.ul.com/ Follow link to Certificat	ions, then UL File No., enter E174545
TÜV Certificate Number		
	http://www.tuvdotcom.com/.Follow.link.to."	other certificates" enter File No. 50171531

Thermal Derating Chart - Ihold (Amps)

Model	Ambient Operating Temperature									
	-40 °C	-20 °C	0 °C	23 °C	40 °C	50 °C	60 °C	70 °C	85 °C	
MF-FSMF010X	0.13	0.12	0.11	0.10	0.08	0.07	0.06	0.05	0.03	
MF-FSMF020X	0.27	0.25	0.23	0.20	0.17	0.14	0.12	0.10	0.07	
MF-FSMF025X	0.32	0.29	0.27	0.25	0.21	0.18	0.16	0.14	0.10	
MF-FSMF035X	0.47	0.41	0.38	0.35	0.29	0.26	0.24	0.20	0.14	
MF-FSMF050X	0.67	0.59	0.54	0.50	0.41	0.37	0.34	0.29	0.20	

^{*}RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.

^{**}Bourns follows the prevailing definition of "halogen free" in the industry. Bourns considers a product to be "halogen free" if (a) the Bromine (Br) content is 900 ppm or less; (b) the Chlorine (Cl) content is 900 ppm or less; and (c) the total Bromine (Br) and Chlorine (Cl) content is 1500 ppm or less.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.

Additional Applications

- Automotive electronic control modules
- Game console port protection

MF-FSMF Series - PTC Resettable Fuses

BOURNS

Product Dimensions

Model	A		В		С		D
wodei	Min.	Max.	Min.	Max.	Min.	Max.	Min.
MF-FSMF010X	1.45	1.85	0.65	1.05	0.30	0.65	0.20
	(0.057)	(0.073)	(0.026)	(0.041)	(0.012)	(0.026)	(0.008)
MF-FSMF020X	1.45	1.85	<u>0.65</u>	1.05	0.30	<u>0.65</u>	<u>0.20</u>
	(0.057)	(0.073)	(0.026)	(0.041)	(0.012)	(0.026)	(0.008)
MF-FSMF025X	1.45	1.85	0.65	1.05	0.30	0.65	0.20
	(0.057)	(0.073)	(0.026)	(0.041)	(0.012)	(0.026)	(0.008)
MF-FSMF035X	1.45	1.85	<u>0.65</u>	1.05	0.30	<u>0.65</u>	0.20
	(0.057)	(0.073)	(0.026)	(0.041)	(0.012)	(0.026)	(0.008)
MF-FSMF050X	1.45	1.85	<u>0.65</u>	1.05	<u>0.65</u>	1.00	0.20
	(0.057)	(0.073)	(0.026)	(0.041)	(0.026)	(0.039)	(0.008)

Packaging: MF-FSMF010X = 5000 pcs. per reel;

MF-FSMF020X, MF-FSMF025X & MF-FSMF035X = 6000 pcs. per reel;

MF-FSMF050X = 4000 pcs. per reel

DIMENSIONS: $\frac{MM}{(INCHES)}$

Solder Reflow Recommendations

Notes:

- MF-FSMF models cannot be wave soldered. Please contact Bourns for hand soldering recommendations.
- If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.
- · Compatible with Pb and Pb-free solder reflow profiles.
- Excess solder may cause a short circuit, especially during hand soldering. Please refer to the Multifuse® Polymer PTC Soldering Recommendation guidelines.

Terminal material: Nickel/gold plated.

Termination pad solderability: <u>Standard Au finish</u>: Meets ANSI/J-STD-002 Category 2.

Recommended Storage: 40 °C max./70 % RH max.

How To Order

Typical Part Marking

BI-WEEKLY DATE CODE WILL APPEAR ON THE PACKAGING LABEL: WEEK 1 AND 2 = A WEEK 51 AND 52 = Z

"freeXpansion Design" is a trademark of Bourns, Inc.
Specifications are subject to change without notice.
The device characteristics and parameters in this data
sheet can and do vary in different applications and
actual device performance may vary over time.
Users should verify actual device performance in their
specific applications.

Typical Time to Trip at 23 °C

The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

BOURNS®

Asia-Pacific: Tel: +886-2 2562-4117 • Fax: +886-2 2562-4116

EMEA: Tel: +36 88 520 390 • Fax: +36 88 520 211

The Americas: Tel: +1-951 781-5500 • Fax: +1-951 781-5700

www.bourns.com

MF-FSMF Series Tape and Reel Specifications

BOURNS®

Product Dimensions			
Tape Dimensions	MF-FSMF010X per EIA 481-1	MF-FSMF020X, MF-FSMF025X, MF-FSMF035X per EIA 481-1	MF-FSMF050X per EIA 481-1
W	$\frac{8.0 \pm 0.1}{(0.315 \pm 0.004)}$	$\frac{8.0 \pm 0.1}{(0.315 \pm 0.004)}$	$\frac{8.0 \pm 0.1}{(0.315 \pm 0.004)}$
P ₀	$\frac{4.0 \pm 0.1}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.1}{(0.157 \pm 0.004)}$	$\frac{4.0 \pm 0.1}{(0.157 \pm 0.004)}$
P1	$\frac{4.0 \pm 0.05}{(0.157 \pm 0.002)}$	$\frac{4.0 \pm 0.05}{(0.157 \pm 0.002)}$	$\frac{4.0 \pm 0.05}{(0.157 \pm 0.002)}$
P2	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.0 \pm 0.05}{(0.079 \pm 0.002)}$
A ₀	$\frac{1.17 \pm 0.05}{(0.046 \pm 0.002)}$	$\frac{1.17 \pm 0.05}{(0.046 \pm 0.002)}$	$\frac{1.17 \pm 0.05}{(0.046 \pm 0.002)}$
B ₀	$\frac{2.02 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.02 \pm 0.05}{(0.079 \pm 0.002)}$	$\frac{2.02 \pm 0.05}{(0.079 \pm 0.002)}$
D ₀	$\frac{1.55 \pm 0.05}{(0.061 \pm 0.002)}$	$\frac{1.55 \pm 0.05}{(0.061 \pm 0.002)}$	$\frac{1.55 \pm 0.05}{(0.061 \pm 0.002)}$
=	$\frac{3.5 \pm 0.05}{(0.138 + 0.002)}$	$\frac{3.5 \pm 0.05}{(0.138 + 0.002)}$	$\frac{3.5 \pm 0.05}{(0.138 + 0.002)}$
=1	$\frac{1.75 \pm 0.1}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.1}{(0.069 \pm 0.004)}$	$\frac{1.75 \pm 0.1}{(0.069 \pm 0.004)}$
Т	$\frac{0.75 \pm 0.05}{(0.030 \pm 0.002)}$	$\frac{0.60 \pm 0.05}{(0.024 \pm 0.002)}$	$\frac{0.95 \pm 0.05}{(0.037 \pm 0.002)}$
10 P ₀	$\frac{40.0 \pm 0.1}{(1.575 \pm 0.004)}$	$\frac{40.0 \pm 0.1}{(1.575 \pm 0.004)}$	$\frac{40.0 \pm 0.1}{(1.575 \pm 0.004)}$
Reel Dimensions	·	·	,
A max.	185 (7.283)	<u>185</u> (7.283)	185 (7.283)
N min.	<u>50</u> (1.97)	<u>50</u> (1.97)	50 (1.97)
W ₁	$\frac{8.4 + 1.5/-0.0}{(0.331 + 0.059/-0)}$	8.4 + 1.5/-0.0 (0.331 + 0.059/-0)	$\frac{8.4 + 1.5/-0.0}{(0.331 + 0.059/-0)}$
W ₂ max.	14.4 (0.567)	14.4 (0.567)	14.4 (0.567)

