Pumping Lemma for Regular languages

This lemma gives a necessary condition for a language to be regular ie if a language is regular it must satisfy this condition.

Lemma: Let L be a regular language. Then there exists a constant p > 0 such that if $w \in L$ with $|w| \ge p$, we must have w = x y z with $|x y| \le p$, |y| > 0 and $x y^k z \in L$ for $k \ge 0$.

Proof : Since L is regular it is accepted by some DFA M. Let p be the number of states of M. Then for $w \in L$ with $|w| = k \ge p$, M will go thru the states q_0 , q_1 ,... q_p ,... q_k where q_0 is the start state and q_k is a final state. Since the sequence q_0 , q_1 ,..., q_p has p+1 elements and there are only p distinct states in M, by PHP there are i,j such that $0 \le i < j \le p$ with $q_i = q_j$. Let the string x take M from q_0 to q_i , y take M from q_i to q_j (ie back to q_i) and z take M from q_j to q_k .

$$q_0 \rightarrow q_1 \rightarrow \dots q_i = q_j \rightarrow q_{j+1} \rightarrow \dots q_k$$

$$x \qquad q_{j-1} \qquad q_{i+1} \qquad z$$

Since $j \le p$, $|x y| \le p$. Since i < j, |y| > 0. Finally for $k \ge 0$, $x y^k z$ takes M from the start state q_0 to a final state. Hence M accepts $x y^k z$ ie $x y^k z \in L$ for $k \ge 0$.

Application of Pumping Lemma to prove that certain languages are not regular.

1) L= $\{0^n1^n \mid n \ge 0\}$. Assume L is regular and let p be the PL constant. Take $w = 0^p1^p$ which is in L and $|w| \ge p$. By PL w = xyz, $|xy| \le p$, |y| = m > 0 and $xy^kz \in L$ for $k \ge 0$. Since $|xy| \le p$, xy and hence y must consist entirely of 0's ie $y = 0^m$. Thus $xy^0z = 0^{p-m}1^p$ $\in L$ which is a contradiction since m > 0.

This contradiction proves that L is not regular. Such a proof is always by contradiction. We assume that the given L is not regular. We then choose a suitable w ∈ L depending on the PL constant p s.t. $|w| \ge p$. Then by PL w = xyz s.t. $|xy| \le p$, |y| > 0 and $xy^kz \in L$ for $k \ge 0$. Then we show that either xz or some xy^kz for k > 1is not in L. This is a contradiction which proves that L is not regular. If we use xz we say that y has been pumped out and if we use xy^kz for k > 1, we say tha v^{k-1} has been pumped in. In the above proof we used $w = 0^p 1^p$ and pumped out.

2) Palindromes over $\{0,1\}$: Take w = $0^{p}10^{p}$ and pump out.

- 3) Language of balanced parantheses: Take (p) and pump out
- 4) $L = \{0^n 10^n \mid n \ge 1\}$. Take $w = 0^p 10^p$ and pump out
- 5) $L = \{0^n 1^m 2^n \mid m, n \ge 0\}$. Take $w = 0^p 1^p 2^p$ and pump out.
- 6) $L = \{0^n 1^m \mid n \le m\}$. Take $w = 0^p 1^p$ and pump in
- 7) $L = \{0^n 1^{2n} \mid n \ge 1\}$. Take $w = 0^p 1^{2p}$ and pump out
- 8) L = $\{0^n \mid n \text{ a perfect square}\}$. Take w = 0^{p^2} . $|xy| \le p$ and hence $1 < |y| \le p$. Therefore $|xyz| = p^2 < |xy^2z| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$. Hence $|xy^2z|$ cannot be a perfect square a contradiction.
- 9) $L = \{0^n \mid n \text{ a perfect cube}\}$ HW
- 10) L = {uu | $u \in \{0,1\}^*$ }. Take $w = 0^p 10^p 1$. Since w = uu, one 1 should be in the first u and one 1 in the second. After pumping in

- in the first u there are more 0's giving the contradiction.
- 11) L = {u u^R | u \in {0,1}*}. Take w = 0^p110^p and proceed as in 10).
- 12) L = {u u | u \in {0,1}*, u complement of u}. Take w = $0^p 1^p$ and pump out
- 13) Let $n_0(w)$ = number of 0's in w and similarly $n_1(w)$. Let $L = \{w \in \{0,1\}^* \mid n_0(w) = n_1(w)\}$. Take $w = 0^p 1^p$ and pump out
- 14) L = $\{0^n \mid n \text{ a prime}\}$. Take w = 0^q with q a prime $\geq p$. this is possible since there are infinite number of primes. Now w = xyz with $|y| = m \geq 1$. So $|xy^{q+1}z| = |xyz| + |y|^q = q + qm = q(m + 1)$. Now $q \geq 2$ and $m+1 \geq 2$, which is a contradiction since a prime cannot have 2 factors ≥ 2 . Proof in Book (Example 4.3) more complicated. This proof supplied by Sunand Sharma of 2017 Batch.

15) Prove or disprove $L = \{w \in \{0,1\}^* \mid w \text{ has} \}$ equal number of 01 and 10 as substrings is regular. This is regular since it is given by the DFA

16) Prove or disprove $L = \{0^n u 1^n \mid n \ge 1, u \in \{0,1\}^*\}$ is regular. Let $L1 = 0(0+1)^*1$. Clearly L1 is a subset of L. Take $w \in L$. Then $w = 0^n u 1^n$ $n \ge 1$. Let $u' = 0^{n-1} u 1^{n-1}$. Then $u' \in \{0,1\}^*$ and w = 0 u' $1 \in L1$. Thus L is a subset of L1. Thus $L = L1 = 0(0+1)^*1$ is regular.

17) Prove or disprove {0ⁿ1u1ⁿ | n ≥ 1,u∈{0,1}*} is regular. Assume that L is regular and take w = 0^p1ε1^p. Pumping in we get a contradiction. Hence L is not regular.