Potential and natural output

Alejandro Justiniano Federal Reserve Bank of Chicago

Giorgio Primiceri Northwestern University

National Bank of Belgium March 22, 2010

Definitions

Efficient output

Level of output that would prevail under perfect competition

Potential output

➤ Level of output that would prevail under imperfect competition, but flexible prices and wages and constant markups

Natural output

➤ Level of output that would prevail under imperfect competition, but flexible prices and wages

Why estimate natural output?

- Actual output natural output
 - Importance of nominal rigidities
- Potential output natural output
 - Exogenous markup variation in prices and wages
 - Monetary policy inflation-output trade-off
- If markup shocks are interpreted as tech. or preference
 - Natural = potential

Model economy

Model economy under flex prices/wages

Natural = level of output that would be observed under imperfectly competitive markets and flexible prices and wages

Model economy under flex prices/wages and no markup shocks

Potential = level of output that would be observed under imperfect competition, but flexible prices and wages and constant markups

Preview of the results

- Potential output is smooth
 - More modest business cycles had markets been competitive
 - Large portion of fluctuations are inefficient
 - Gap resembles "standard" measures of BC

- Natural output is implausibly volatile
 - Casts doubts on structural interpretation of innovations in price and wage Phillips curves

Outline

- Model
- Estimates of potential output
 - What is the share of inefficient fluctuations?
- A brief comparison to the literature
- Estimates of *natural* output
- Alternative interpretation of markup shocks

NK model with exogenous capital accumulation

- 5 blocks:
 - □ Intermediate firms
 - ☐ Final-good producers
 - ☐ Households
 - □ Employment agencies
 - □ Policy makers

Production technology of final-good producers

$$Y_{t} = \left[\int_{0}^{1} Y_{t}(i) \frac{1}{1+\lambda_{p,t}} di\right]^{1+\lambda_{p,t}}$$

Production technology of final-good producers

$$Y_{t} = \left[\int_{0}^{1} Y_{t}(i) \frac{1}{1+\lambda_{p,t}} di\right]^{1+\lambda_{p,t}} \text{price markup shock}$$

$$Y_t(i) = A_t L_t(i)^{\alpha}$$

- ☐ Monopolistically competitive markets
- □ Optimizing firms set prices by maximizing PDV of profits
- \square Calvo type stickiness: a fraction ξ_p of firms cannot re-optimize
 - index prices to ss and past inflation

$$E_{0} \sum_{t=0}^{\infty} \beta^{t} b_{t} \left[\log \left(C_{t} - hC_{t-1} \right) - \varphi \frac{L_{t}^{1+\nu}}{1+\nu} \right]$$

subject to

$$P_t C_t + T_t + B_t \le R_{t-1} B_{t-1} + Q_t(i) + \Pi_t + W_t(i) L_t(i)$$

- Monopolistically competitive suppliers of specialized labor
- \square Calvo-type stickiness: a fraction ξ_w of HH cannot re-optimize
 - index wages to ss and past inflation-productivity

Employment agencies aggregate differentiated labor into homogeneous labor

$$L_{t} = \left[\int_{0}^{1} L_{t}(i) \frac{1}{1 + \lambda_{w,t}} di\right]^{1 + \lambda_{w,t}}$$
 wage markup shock

 Monetary policy sets the short-term nominal interest rate following a Taylor-type rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\rho_R} \left[\left(\frac{\overline{\pi}_{t-3,t}}{\pi_t^*}\right)^{\phi_{\pi}} \left(\frac{Y_t/Y_{t-4}}{e^{\gamma}}\right)^{\phi_y} \right]^{1-\rho_R} \mathcal{E}_{R,t}$$

Exogenous disturbances

- Tastes & technology
 - Productivity

growth rate is AR(1)

AR(1)

- □ Inter-temporal preference shock →
- Shocks to markets competitiveness
 - ☐ Mark-up shock in wages

→ i.i.d.

☐ Mark-up shock in prices

i.i.d.

- Monetary policy
 - MP shocks

→ *i.i.d.*

☐ Inflation target shock

→ persistent AR(1)

Data

- Observable variables
 - 1. GDP
 - 2. Hours
 - 3. Wages
 - 4. Inflation
 - 5. Federal funds rate

Quarterly data from 1954:III to 2006:II

Data

- Observable variables
 - 1. GDP
 - 2. Hours → Total hours / population 22-64 age (Francis-Ramey)
 - 3. Wages → Compensation of employees (NIPA) / total hours
 - 4. Inflation
 - 5. Federal funds rate

Quarterly data from 1954:III to 2006:II

Why this model

Relative to simplest NK framework

- Additional frictions
 - Habits and indexation
- Sticky wages
 - ➤ Output gap ≠ real marginal cost
- Wages and hours observable
 - Labor share is observable (as in Sbordone, Gali & Gertler)
 - Productivity is observable make contact with RBC

Output

Potential Output

Output Gap and Business Cycles

Output Gap and Business Cycles

Most recent estimates of the output gap

Most recent estimates of the output gap

Most recent estimates of the Equilibrium RIR

Output Gap and Business Cycles

A useful decomposition

$$y_t - y_t^{hp} =$$
BC

A useful decomposition

$$y_{t} - y_{t}^{hp} = y_{t} - y_{t}^{*} + y_{t}^{*} - y_{t}^{*hp} + y_{t}^{*hp} - y_{t}^{hp}$$
BC output gap "BC for potential"
$$\Delta \text{ in HP}$$
 trends

Potential output and business cycles

DSGE-gap resembles "standard" measures of BC

This result is not typical in the literature

"Going after" (a subset of) the literature

- Output gap estimates differ from standard measures
 - ☐ Edge, Kiley and Laforte (2008)
 - □ Levin, Onatski, Williams and Williams (2005)
 - □ Andrés, López-Salido and Nelson (2005)

Edge, Kiley and Laforte (2008)

Edge, Kiley and Laforte (2008)

"Our" gap without π^*

LOWW (2005)

LOWW (2005)

"Our" gap with LOWW dataset and policy rule

Andrés, López-Salido and Nelson (2005)

Andrés, López-Salido and Nelson (2005)

—— "Our" gap without *markup shocks*

Importance of shocks to Phillips curve

Simplest Phillips curve

$$\pi_t = \beta E_t \pi_{t+1} + \kappa g_t + \lambda_{p,t}$$

US inflation (GDP deflator)

Importance of shocks to Phillips curve

Simplest Phillips curve

$$\pi_t = \beta \ E_t \pi_{t+1} + \kappa \ g_t + \lambda_{p,t}$$

- If no shocks to Phillips curve
 - □ Gap forced to explain high frequency variation in inflation
 - Need low price stickiness
 - □ Potential output ≈ actual output

Why the mix of shocks matters

 Gap resembles economic slack if choose shocks to appropriately account for low & high frequency fluctuations in data

Shock	Purpose
Labor supply	Hours, low frequency
Inflation Target	Inflation, low frequency
Price markup	Inflation, high frequency
Wage markup	Wages, high frequency

Rationale: 1) model fits better 2) proxies for features outside model's scope, i.e. reduced form shocks

"Going after" (a subset of) the literature

- Output gap estimates differ from standard measures
 - ☐ Edge, Kiley and Laforte (2008)
 - □ Levin, Onatski, Williams and Williams (2005)
 - □ Andrés, López-Salido and Nelson (2005)

One exception: Sala, Soderstrom and Trigari (2008)

Potential output and business cycles

DSGE-gap resembles "standard" measures of BC

This result is not typical in the literature

- One important ingredient:
 - Shocks to Phillips curve

Outline

- Model
- Estimates of potential output
- A brief comparison to the literature
- Estimates of *natural* output
- Alternative interpretation of markup shocks

Output

Natural Output

Why is natural output so volatile?

- Wage markup shocks are implausibly volatile
 - ➤ Imply variation of desired markups between -/+ 400%

Why is natural output so volatile?

- Wage markup shocks are implausibly volatile
 - ➤ Imply variation of desired markups between -/+ 400%

$$w_t = \gamma_1 w_{t-1} + \gamma_2 E_t w_{t+1} + \kappa \mu_t^w + \kappa \lambda_{w,t}$$

Std ≈ 30 basis points

Why is natural output so volatile?

- Wage markup shocks are implausibly volatile
 - ➤ Imply variation of desired markups between -/+ 400%
 - Why "not a problem" under sticky wages?

The effect of wage markup shocks

The effect of wage markup shocks

Wage markup shocks

- Are these shocks plausible?
 - Model misspecification?
 - Coincide with reduced form residuals from VAR(4)

Wage markup shocks

Wage markup shocks

- Are these shocks plausible?
 - Model misspecification?
 - Coincide with reduced form residuals from VAR(4)

- Variance decomposition at BC frequencies
 - Explain negligible share of variance in all series but wages
 - ≥ 2% output, 5% hours

Outline

- Model
- Estimates of potential output
- A brief comparison to the literature
- Estimates of natural output
- Alternative interpretation of markup shocks

Alternative interpretation of markup shocks

- Noise
 - sampling error
 - □ idiosyncratic shocks across multiple wage (price) series
 - Very different high frequency behavior
 - Abraham et al. (1999), Bosworth and Perry (1994)
 - Boivin and Giannoni (2006 and 2009)

Alternative wage series

Alternative wage series

Growth rate of nominal wages

LEPRIVA

hourly compensation of non-supervisory and production workers (Establishment Survey)

HCBS

- hourly compensation in the business sector
- includes dividend payments and other stuff that has little to do with wages

Alternative interpretation of markup shocks

- Noise
- Model with measurement errors fits data as well

Output Gaps

Alternative interpretation of markup shocks

- Noise
- Model with measurement errors fits data as well
- Natural ∞ potential output
 - □ More plausible implications for flex prices and wages economy

Alternative interpretation of markup shocks

- Noise
- Model with measurement errors fits data as well
- - More plausible implications for flex prices and wages economy
- Caveat: all ME, extreme assumption

Robustness

Robustness

MLE

- Labor supply shocks (persistent)
 - ☐ Gap even closer to HP, CBO

Robustness

MLE

- Labor supply shocks (persistent)
 - □ Gap even closer to HP, CBO

- Larger model with endogenous capital accumulation and additional propagation mechanisms
 - ☐ CEE (2005), Smets and Wouters (2007)

Gap in Model with Capital

Conclusions

- Potential output is smooth
 - ☐ Inefficient business cycles

- Natural output is implausibly volatile
 - Casts doubts on structural interpretation of innovations in price and wage Phillips curves

- Alternative interpretation that fits data as well
 - □ Shocks to Phillips curves are not structural
 - → No distinction between natural and potential output

Additional material

1. Hours measures

2. How inefficient are business cycles in a model with K?

1. Hours

2. BC decomposition in a model with K

2. BC decomposition in a model with K (hours)

