Matemática das Coisas

Parte 1

Cálculo de distâncias inacessíveis

Aula de 28 de Fevereiro de 2023

José Joaquim Martins Oliveira

Geometria Euclidiana Elementar

1. Triângulo

Classificação dos triângulos e suas propriedades Congruência de triângulos Semelhança de triângulos Razões trigonométricas

2. Circunferência

Perímetro e área Relações entre circunferências e rectas Relações entre circunferências e ângulos

3. Aplicações

Cálculo de distâncias inacessíveis

Notações e definições

- Os triângulos denotam-se por $\triangle ABC$ e $\triangle DFE$;
- O comprimentos de lado [AB] denota-se por \overline{AB} ;
- O ângulo de vértice A e semirrectas [AC) e [AB) denota-se por $\angle BAC$, ou simplesmente por $\angle A$;

Notações e definições

- A medida do $\angle BAC$ denota-se por $m(\angle BAC)$ Usaremos o grau como unidade de medida (0°-360°);
- h_1 representa a altura do $\triangle ABC$ em relação ao lado [AB] (base);
- h_2 representa a altura do $\triangle DFE$ em relação ao lado [DF] (base).

Classificação dos triângulos quanto aos lados

• Triângulo Escaleno

 $\overline{AB} \neq \overline{BC}$, $\overline{BC} \neq \overline{AC}$ e $\overline{AC} \neq \overline{AB}$

Classificação dos triângulos quanto aos lados

• Triângulo Isósceles

$$\overline{AC} = \overline{BC}$$

Classificação dos triângulos quanto aos lados

• Triângulo Equilátero

$$\overline{AB} = \overline{BC} = \overline{AC}$$

Classificação dos triângulos quanto aos ângulos

• Triângulo Acutângulo

$$m(\angle BAC) < 90^{\circ}$$
, $m(\angle CBA) < 90^{\circ}$ e $m(\angle BCA) < 90^{\circ}$

Classificação dos triângulos quanto aos ângulos

• Triângulo Rectângulo (no vértice A)

$$m(\angle BAC) = 90^{\circ}$$
, $m(\angle CBA) < 90^{\circ}$ e $m(\angle ACB) < 90^{\circ}$

O lado [CB] chama-se hipotenusa; Os lados [AC] e [AB] chamam-se catetos.

Classificação dos triângulos quanto aos ângulos

• Triângulo Obtusângulo

$$m(\angle BAC) > 90^{\circ}$$
, $m(\angle CBA) < 90^{\circ}$ e $m(\angle ACB) < 90^{\circ}$

• A soma das medidas dos ângulos de um triângulo é igual a 180°.

$$m(\angle BAC) + m(\angle ACB) + m(\angle CBA) = 180^{\circ}$$

• A área de um triângulo obtém-se pela fórmula

$$\frac{\mathsf{base} \times \mathsf{altura}}{2}$$

$$\text{Área}_{\triangle ABC} = \frac{\overline{AB} \times h_1}{2}; \quad \text{Área}_{\triangle DFE} = \frac{\overline{DF} \times h_2}{2}.$$

Dado um △ABC tem-se

$$\overline{AC} = \overline{BC}$$
 se e só se $m(\angle BAC) = m(\angle CBA)$

Teorema de Pitágoras:
 Dado um △ABC rectângulo em A tem-se

$$\overline{BC}^2 = \overline{AC}^2 + \overline{AB}^2 \tag{1}$$

• Reciprocamente, um $\triangle ABC$ que verifique a igualdade (1) é rectângulo em A.

Congruência de triângulos

 Dois segmentos de recta, [AB] e [CD], dizem-se <u>congruentes</u> se têm o mesmo comprimentos, i.e. AB = CD.

Representa-se por $[AB] \cong [CD]$.

• Dois ângulos, $\angle CAB$ e $\angle EDF$, dizem-se congruentes se têm a mesma medida, i.e. $m(\angle CAB) = m(\angle EDF)$.

Representa-se por $\angle CAB \cong \angle EDF$.

Congruência de triângulos

 Dois triângulos, △ACB e △DFE, dizem-se <u>congruentes</u> se existe uma correspondência entre os vértices

(Na figura
$$A \mapsto D$$
, $C \mapsto F$ e $B \mapsto E$)

tal que ângulos e lados correspondentes são congruentes.

Na figura $[AB] \cong [DE]$, $[BC] \cong [EF]$, $[CA] \cong [FD]$, $\angle A \cong \angle D$, $\angle B \cong \angle E$ e $\angle C \cong \angle F$.

Representa-se por $\triangle ACB \cong \triangle DFE$.

Critério LAL

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $[AB] \cong [DE]$, $\angle B \cong \angle E$ e $[BC] \cong [EF]$, então $\triangle ABC \cong \triangle DEF$.

Critério ALA

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $\angle A \cong \angle D$, $[AC] \cong [DF]$, e $\angle C \cong \angle F$, então $\triangle ABC \cong \triangle DEF$.

Critério LLL

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $[AB] \cong [DE]$, $[AB] \cong [CD]$ e $[BC] \cong [EF]$, então $\triangle ABC \cong \triangle DEF$.

Critério LAA

Dados dois triângulos, $\triangle ABC$ e $\triangle DEF$, para os quais está definida a correspondência

$$A \mapsto D$$
, $B \mapsto E$ e $C \mapsto F$

tal que $[AB] \cong [DE]$, $\angle A \cong \angle D$ e $\angle C \cong \angle F$, então $\triangle ABC \cong \triangle DEF$.

 Verifique que ALL e AAA não são critérios de congruência de triângulos.

Semelhança de triângulos

 Dois triângulos, △ACB e △DFE, dizem-se <u>semelhantes</u> se existe uma correspondência entre os vértices

(Na figura
$$A \mapsto D$$
, $C \mapsto F$ e $B \mapsto E$)

tal que ângulos correspondentes são congruentes e ângulos correspondentes são proporcionais.

Na figura $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\angle C \cong \angle F$ e

$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}} \qquad \left(\frac{\text{razão de semelhança: } r = \frac{\overline{AB}}{\overline{DE}} \right).$$

Representa-se por $\triangle ACB \sim \triangle DFE$.

Semelhança de triângulos

Exemplo: Considere-se os triângulos △ACB e △DFE,

Onde
$$\angle A \cong \angle E$$
, $\angle B \cong \angle F$, $\angle C \cong \angle D$ e

$$\overline{AB} = 4$$
, $\overline{BC} = 3$, $\overline{AC} = 3.42$, $\overline{EF} = 5.2$, $\overline{DE} = 4.446$, $\overline{DF} = 3.9$

Verifique que os triângulos são semelhantes, identificando a razão de semelhanca.

Critérios de semelhança de triângulos

- Critério AA
 Se dois triângulos têm, de um para o outro, dois ângulos congruentes, então são semelhantes.
- Exemplo Dados dois triângulos, △ABC e △DEF, em que

$$\angle A \cong \angle D$$
 e $\angle B \cong \angle E$

então $\triangle ABC \sim \triangle DEF$.

• Razão de semelhança de △ABC para △DEF:

Critérios de semelhança de triângulos

Critério LAL

Se dois triângulos têm, de um para o outro, um ângulo congruente e os correspondentes lados adjacentes proporcionais, então são semelhantes.

Critério LLL

Se dois triângulos têm, de um par ao outro, todos os lados proporcionais, então são semelhantes.

• Considere os $\triangle OA_1B_1$ e $\triangle OA_2B_2$ em que

$$m(\angle OA_2B_2) = m(\angle OA_1B_1) = 90^{\circ}$$
 e $\theta = m(\angle A_2OB_2) \in]0^{\circ}, 90^{\circ}[.$

Pelo critério AA da semelhança de triângulos

$$\triangle OA_1B_1 \sim \triangle OA_2B_2$$

• Tendo-se $\triangle OA_1B_1 \sim \triangle OA_2B_2$, então

• Assim obtêm-se as razões trigonométricas

$$\frac{\overline{A_2 B_2}}{\overline{OB_2}} = \frac{\overline{A_1 B_1}}{\overline{OB_1}}; \qquad \qquad \frac{\overline{A_2 B_2}}{\overline{OA_2}} = \frac{\overline{A_1 B_1}}{\overline{OA_1}}; \qquad \qquad \frac{\overline{OB_2}}{\overline{A_2 B_2}} = \frac{\overline{OB_1}}{\overline{A_1 B_1}}; \\
\rightarrow \frac{\overline{OA_2}}{\overline{OB_2}} = \frac{\overline{OA_1}}{\overline{OB_2}}; \qquad \qquad \frac{\overline{OB_2}}{\overline{A_2 B_2}} = \frac{\overline{OB_1}}{\overline{OA_1}}; \qquad \qquad \frac{\overline{OB_2}}{\overline{OA_2}} = \frac{\overline{OB_1}}{\overline{OA_1}}.$$

- Para $\theta \in]0^{\circ},90^{\circ}[$, define-se:
 - 1. <u>Seno de θ </u> como sendo a razão $\frac{A_1B_1}{\overline{OB_1}}$, denotando-se por sen (θ) ;
 - 2. Cosseno de θ como sendo a razão $\frac{\overline{OA_1}}{\overline{OB_1}}$, denotando-se por $\cos(\theta)$;
 - 3. Tangente de θ como sendo a razão $\frac{A_1B_1}{\overline{OA_1}}$, denotando-se por $\operatorname{tg}(\theta)$;

- Para $\theta \in]0^{\circ}, 90^{\circ}[$, define-se:
 - 4. Cotangente de θ como sendo a razão $\frac{\overline{OA_1}}{\overline{A_1B_1}}$, denotando-se por $\cot(\theta)$;
 - 5. Secante de θ como sendo a razão $\frac{\overline{OB_1}}{\overline{OA_1}}$, denotando-se por $sec(\theta)$;
 - 6. Cossecante de θ como sendo a razão $\frac{\overline{OB_1}}{\overline{A_1B_1}}$, denotando-se por $\csc(\theta)$.

Fórmula fundamental da trigonometria

• Considere-se um triângulo rectângulo $\triangle OAB$ com a hipotenusa medindo uma unidade, $\overline{OB} = 1$:

1. Assim tem-se

$$\cos(\theta) = \overline{OA}$$
 e $\sin(\theta) = \overline{AB}$.

2. Pelo teorema de Pitágoras, tem-se

$$\overline{OB}^2 = \overline{OA}^2 + \overline{AB}^2$$

3. Donde se obtém a chamada fórmula fundamental da trigonometria:

$$1 = \cos^2(\theta) + \sin^2(\theta), \quad \theta \in]0^\circ, 90^\circ[$$

Circunferência

Sejam O um ponto e r > 0, um número positivo.
 Chama-se circunferência de centro O e raio r à figura geométrica constituída pelos pontos do plano que estão à distância r do ponto O.

- Diâmetro: Segmento de recta de extremos na circunferência e que contém o centro. Exemplo [ED];
- Corda: Segmento de recta de extremos na circunferência.
 Exemplo [AB];
- Raio: Segmento de recta que liga um ponto da circunferência ao centro. Exemplo [OP].

Circunferência

• O número pi

$$\pi = 3,141592653589793238462643383279502884197169399...$$

• Corresponde ao perímetro de uma circunferência de diâmetro igual à unidade, 1.

 Equivalentemente, corresponde a metade do perímetro de uma circunferência de raio igual à unidade

A conversão de graus para radianos é dada pela igualdade

$$180^{\circ} = \pi$$

• Perímetro de uma circunferência de raio r > 0:

Perímetro =
$$2\pi r$$

• Área de uma circunferência de raio r > 0:

Área =
$$\pi r^2$$

 Se uma recta (AB) é tangente a uma circunferência de centro O no ponto A, então as rectas (AO) e (AB) são perpendiculares.
 Ou seja

$$m(\angle BAO) = 90^{\circ}$$
.

 Numa circunferência, a recta perpendicular a uma sua corda no ponto médio contém o centro da circunferência.

Ou seja,
$$\overline{AM} = \overline{MB}$$
 e

$$m(\angle BAO) = 90^{\circ}$$
.

- Chama-se ângulo ao centro de uma circunferência a qualquer ângulo cujo vértice coincide com o centro.
- Chama-se ângulo inscrito numa circunferência a qualquer ângulo cujo vértice pertence à circunferência e os lados intersectam-na.

- ∠BOA é ângulo ao centro;
- ∠BCA é ângulo inscrito;
- O arco BA chama-se interno a ∠BCA;
- O arco ACB chama-se externo a ∠BCA;
- Chama-se amplitude do arco \widehat{BA} à medida do $\angle BOA$.

 Num circunferência, a medida de um ângulo inscrito é metade da amplitude do arco interno.

Concretamente:

$$m(\angle BCA) = \frac{1}{2}m(\angle BOA).$$

 A medida do ∠CBA, apresentado da figura, pode ser calculada da seguinte forma.

$$m(\angle CBA) = \frac{1}{2} \Big(m(\angle COA) - m(\angle DOE) \Big).$$

 A medida do ∠CBA, apresentado da figura, pode ser calculada da seguinte forma.

$$m(\angle CBA) = \frac{1}{2} \Big(m(\angle COA) + m(\angle DOE) \Big).$$

