# PROJECT 8 ABC CAR VOLUME TREND ANALYSIS



# WHAT IS CALL VOLUME TREND?



• Call volume trend refers to the patterns and fluctuations in the number of incoming calls received by a business or organization over a specific period of time. Analyzing call volume trends is crucial for understanding the demand for customer service or support at different times. By tracking these trends, businesses can make informed decisions about resource allocation, staffing levels, and operational efficiency.









# **IMPORTANCE**



## Crucial for Resource Allocation:

• Understanding the ebb and flow of call volumes helps us allocate resources efficiently, ensuring optimal staffing levels during peak periods.

## Enhancing Customer Service Efficiency:

 Enables us to streamline operations, reducing wait times and improving the overall customer experience.

## Better Workforce Management:

Provides insights for strategic planning, helping us manage our workforce effectively to meet customer demands.









# PROJECT DESCRIPTION



- This project focuses on analyzing the call volume trends within ABC Company. Understanding the patterns in call volume is essential for optimizing operations and enhancing customer satisfaction.
- In this presentation, we will analyze call volume patterns over a specific timeframe and make strategic approach for the betterment of the calls being answered/transferred/abandoned.









# **APPROACH**



#### Data Collection

• The approach involves gathering call volume data from multiple sources, including call center software, to ensure comprehensive analysis.

## Data Analysis Techniques

• Utilizing advanced statistical and machine learning techniques to extract meaningful patterns from call volume data.

## Key Findings

Presenting the key findings derived from the call volume analysis, including peak hours, customer satisfaction trends, and more









# TECH STACK USED



### MICROSOFT EXCEL:

- Versatile tool for collecting and organizing data.
- Used for data analysis including sorting, filtering and statistical calculations.
- Used for creating visualizations (charts, graphs etc)

## MICROSOFT POWERPOINT:

- Finalized report is visualized in the form of presentation.
- EXCEL LINK <a href="https://drive.google.com/drive/folders/1062z8Aulxs778up6oS6PBWGeTvUqx0CK">https://drive.google.com/drive/folders/1062z8Aulxs778up6oS6PBWGeTvUqx0CK</a>





A. Average Call Duration: Determine the average duration of all incoming calls received by agents. This should be calculated for each time bucket.

Your Task: What is the average duration of calls for each time bucket?

- Creating a pivot table using the columns time\_bucket and call\_seconds
- Visualizing the pivot table via bar chart

| Call_Status  | answered          | Ţ          |
|--------------|-------------------|------------|
|              |                   |            |
| Time_Bucke ▼ | Average of Call_S | econds (s) |
| 10_11        |                   | 203.33     |
| 11_12        |                   | 199.26     |
| 12_13        |                   | 192.89     |
| 13_14        |                   | 194.74     |
| 14_15        |                   | 193.68     |
| 15_16        |                   | 198.89     |
| 16_17        |                   | 200.87     |
| 17_18        |                   | 200.25     |
| 18_19        |                   | 202.55     |
| 19_20        |                   | 203.41     |
| 20_21        |                   | 202.85     |
| 9_10         |                   | 199.07     |
| Grand Total  |                   | 198.62     |



B. Call Volume Analysis: Visualize the total number of calls received. This should be represented as a graph or chart showing the number of calls against time. Time should be represented in buckets (e.g., I-2, 2-3, etc.).

Your Task: Can you create a chart or graph that shows the number of calls received in each time bucket

Count of Customer\_Phone\_No Count of Call\_Seconds (s)

14626

16000

- Creating a pivot table using the columns customer phone number, time\_bucket , call seconds



C. Manpower Planning: The current rate of abandoned calls is approximately 30%. Propose a plan for manpower allocation during each time bucket (from 9 am to 9 pm) to reduce the abandon rate to 10%. In other words, you need to calculate the minimum number of agents required in each time bucket to ensure that at least 90 out of 100 calls are answered.

Your Task: What is the minimum number of agents required in each time bucket to reduce the abandon rate to 10%?

- Creating a pivot table using call\_status, customer\_phone\_no
- Visualizing the call\_status vs call\_seconds and count of customer\_phone\_no using a bar chart

| work days             | 6   |
|-----------------------|-----|
| unplanned leaves      | 4   |
| work_days_in_a_month  | 20  |
| duty hours            | 9   |
| lunch break           | 1.5 |
| actual working hrs    | 4.5 |
| total days in a month | 30  |





- Created a pivot table I to find out the total call\_seconds on Ist January.
- Finding the sum of hour =i2/3600 where i2 is sum of call\_seconds on Ist January
- Finding the agents working when 60% calls are answered using the formula =j2/5 where j2 = sum of hours
- Finding the agents required for 90% calls to be answered using the formula =(j3/60)\*90 where j3 is agents working when 60% calls are answered
- Creating a pivot table with columns date, time\_bucket, call\_seconds as count (percentage as well as decimal)
- Multiplying the decimal (count of call\_seconds) using the formula =ROUND(k12\*\$J\$4\$,0) WHERE K12 = decimal for count of call\_seconds and \$j\$4 = agents required for 90% calls answered.
- Dragging the formula for all the time\_buckets to get the agents required
   For each time stamp

| sum of calls_second on 1st jan | sum of hour |
|--------------------------------|-------------|
| 676664                         | 187.96      |
| 60% answered ,agents =         | 38          |
| 90% answered ,agents =         | 56          |

| Date_&_Time (IVII | litiple items) 📑      |
|-------------------|-----------------------|
|                   |                       |
| Row Labels 🗷 Sun  | n of Call_Seconds (s) |
| 09                | 35313                 |
| 10                | 53087                 |
| 11                | 67751                 |
| 12                | 72680                 |
| 13                | 59693                 |
| 14                | 76137                 |
| 15                | 65689                 |
| 16                | 59464                 |
| 17                | 68155                 |
| 18                | 53096                 |
| 19                | 40141                 |
| 20                | 25281                 |
| 21                | 177                   |
| Grand Total       | 676664                |

Data & Time (Multiple Items)

| date        | 01-01-2022                |                            |                        |
|-------------|---------------------------|----------------------------|------------------------|
|             |                           |                            |                        |
| Row Labels  | Count of Call_Seconds (s) | Count of Call_Seconds (s)2 | <b>Agents Required</b> |
| 10_11       | 11.89%                    | 0.12                       | 7                      |
| 11_12       | 10.49%                    | 0.10                       | 6                      |
| 12_13       | 10.10%                    | 0.10                       | 6                      |
| 13_14       | 8.03%                     | 0.08                       | 4                      |
| 14_15       | 9.32%                     | 0.09                       | 5                      |
| 15_16       | 7.90%                     | 0.08                       | 4                      |
| 16_17       | 7.13%                     | 0.07                       | 4                      |
| 17_18       | 8.01%                     | 0.08                       | 4                      |
| 18_19       | 7.26%                     | 0.07                       | 4                      |
| 19_20       | 5.06%                     | 0.05                       | 3                      |
| 20_21       | 7.08%                     | 0.07                       | 4                      |
| 9_10        | 7.73%                     | 0.08                       | 5                      |
| Grand Total | 100.00%                   | 1.00                       | 56                     |

D. Night Shift Manpower Planning: Customers also call ABC Insurance Company at night but don't get an answer because there are no agents available. This creates a poor customer experience. Assume that for every 100 calls that customers make between 9 am and 9 pm, they also make 30 calls at night between 9 pm and 9 am. The distribution of these 30 calls is as follows:

Your Task: Propose a manpower plan for each time bucket throughout the day, keeping the maximum abandon rate at 10%

• Firstly, creating a pivot table using columns date, call\_status as count of call\_status

| Count of Call_St | atus Column Labels 🔻 |          |          |                     | 12-01-2022         | 1299  | 3297  | 47   | 4643   |
|------------------|----------------------|----------|----------|---------------------|--------------------|-------|-------|------|--------|
| Row Labels       | <b>▼</b> abandon     | answered | transfer | (blank) Grand Total | 13-01-2022         | 738   | 3326  | 59   | 4123   |
| 01-01-2022       | 684                  | 3883     | 77       | 4644                | 14-01-2022         | 291   | 2832  | 32   | 3155   |
| 02-01-2022       | 356                  | 2935     | 60       | 3351                | 15-01-2022         | 304   | 2730  | 24   | 3058   |
| 03-01-2022       | 599                  | 4079     | 111      | 4789                | 16-01-2022         | 1191  | 3910  | 41   | 5142   |
| 04-01-2022       | 595                  | 4404     |          | 5113                | 17-01-2022         | 16636 | 5706  | 5    | 22347  |
| 05-01-2022       | 536                  |          |          | 4790                | 18-01-2022         | 1738  | 4024  | 12   | 5774   |
| 06-01-2022       | 991                  |          |          | 4951                | 19-01-2022         | 974   | 3717  | 12   | 4703   |
|                  |                      |          |          |                     | 20-01-2022         | 833   | 3485  | 4    | 4322   |
| 07-01-2022       | 1319                 |          |          | 4948                | 21-01-2022         | 566   | 3104  | 5    | 3675   |
| 08-01-2022       | 1103                 | 3519     | 50       | 4672                | 22-01-2022         | 239   | 3045  | 7    | 3291   |
| 09-01-2022       | 962                  | 2628     | 62       | 3652                | 23-01-2022         | 381   | 2832  | 12   | 3225   |
| 10-01-2022       | 1212                 | 3699     | 72       | 4983                | (blank)            |       |       |      |        |
| 11-01-2022       | 856                  | 3695     | 86       | 4637                | <b>Grand Total</b> | 34403 | 82452 | 1133 | 117988 |

Given in the ques:

| Distribution of 30 calls coming in night for every 100 calls coming in between 9am - 9pm (i.e. 12 hrs slot)                  |   |    |   |   |   |   |   |   |   |   |   |
|------------------------------------------------------------------------------------------------------------------------------|---|----|---|---|---|---|---|---|---|---|---|
| 9pm- 10pm 10pm - 11pm 11pm- 12am 12am- 1am 1am - 2am 2am - 3am 3am - 4am 4am - 5am 5am - 6am 6am - 7am 7am - 8am 8am - 9am i |   |    |   |   |   |   |   |   |   |   |   |
| 3                                                                                                                            | 3 | 22 | 2 | 1 | 1 | 1 | 1 | 3 | 4 | 4 | 5 |

- Using the pivot table, finding the average calls in a day using formula =AVERAGE(J3:J25) where j3:j25 represents
  the calls in a day from Ist January to 23rd January.
- Now finding the calls in the night shift which is 30% of the calls placed in a day.
- To find the addition hours required, Used the formula =ROUND(I5\*198.6\*0.9/3600,0) where I5 = calls b/w 9m
  9am and 198.6 = average call duration
- For agents required, used the formula =L8/5 where L8 = additional hours
- Now creating a table with time\_bucket and call distribution given in the table provided in the question
- Finding the time distribution by using the formula =\$O\$14/02 where \$0\$14 = total calls and o2 = first call distribution (in the first time bucket)
- Dragging the formula for all the time\_buckets
- Creating a column "agents required"
- For finding the agents required for each time\_bucket,
   Divided 15 i.e. total agents required by time distribution in each time\_bucket

average calls in a day
5130
76

calls between9pm-9am
1539
additional hrs required
agents reuired

| Time bucket       | call distribution | time distribution - | agents required 🔻 |
|-------------------|-------------------|---------------------|-------------------|
| 9_10              | 3                 | 10.00               | 2                 |
| 10_11             | 3                 | 10.00               | 2                 |
| 11_12             | 2                 | 15.00               | 1                 |
| 12_1              | 2                 | 15.00               | 1                 |
| 1_2<br>2_3        | 1                 | 30.00               | 1                 |
| 2_3               | 1                 | 30.00               | 1                 |
| 3_4               | 1                 | 30.00               | 1                 |
| 3_4<br>4_5<br>5_6 | 1                 | 30.00               | 1                 |
| 5_6               | 3                 | 10.00               | 2                 |
| 6_7               | 4                 | 7.50                | 2                 |
| 7_8               | 4                 | 7.50                | 2                 |
| 8_9               | 5                 | 6.00                | 3                 |
| TOTAL             | 30                | 201.00              | 15                |



# **RESULT**



- AVG call duration
- Calls abandoned
- Agents required to reduce calls abandonment
- Agents required for night shift
- No. of calls received
- Average calls in a day
- Exact working hours
- Unplanned leaves



