Assignment-1

J. Prabhath - EE18BTECH11021

Download all python codes from

https://github.com/jpln135/EE3025/tree/main/ Assignment_1/codes

and latex-tikz codes from

https://github.com/jpln135/EE3025/tree/main/ Assignment_1

1 Problem

1.1. Let

$$x(n) = \left\{ \begin{array}{l} 1, 2, 3, 4, 2, 1 \\ 1 \end{array} \right\} \quad (1.1.1)$$

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2)$$
 (1.1.2)

1.2. Compute

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(1.2.1)

and H(k) using h(n).

1.3. Compute

$$Y(k) = X(k)H(k) \tag{1.3.1}$$

2 Solution

2.1. Impulse response h(n) can be found from given difference equation as follows

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2)$$
 (2.1.1)

2.2. Let $W_N = e^{-j2\pi/N}$

We can express X as Matrix Multiplication of DFT Matrix and x.

$$X = \left[W_N^{ij} \right]_{N \times N} x, \quad i, j = 0, 1, \dots, N-1 \quad (2.2.1)$$

2.3. In the given problem, we have N = 6

$$\implies W_6 = e^{-j2\pi/6} = \frac{1}{2} - \frac{\sqrt{3}}{2}j$$
 (2.3.1)

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} W_6^0 & W_6^0 & W_6^0 & W_6^0 & W_6^0 & W_6^0 \\ W_6^0 & W_6^1 & W_6^2 & W_3^3 & W_6^4 & W_6^5 \\ W_6^0 & W_6^2 & W_6^4 & W_6^6 & W_6^8 & W_6^{15} \\ W_6^0 & W_6^3 & W_6^6 & W_6^9 & W_{12}^{12} & W_{16}^{16} & W_{20}^{20} \\ W_6^0 & W_6^5 & W_6^{10} & W_{15}^{15} & W_{20}^{20} & W_{25}^{25} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 1 \end{bmatrix}$$

1

$$\implies \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} 13 \\ -4 - \sqrt{3}j \\ 1 \\ -1 \\ 1 \\ -4 + \sqrt{3}j \end{bmatrix}$$
 (2.3.3)

2.4. Similarly, we have

$$\begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix} = \begin{bmatrix} W_6^0 & W_6^0 & W_6^0 & W_6^0 & W_6^0 & W_6^0 \\ W_6^0 & W_6^1 & W_6^2 & W_6^3 & W_6^4 & W_6^5 \\ W_6^0 & W_6^2 & W_6^4 & W_6^6 & W_6^8 & W_6^{10} \\ W_6^0 & W_6^3 & W_6^6 & W_6^9 & W_6^{12} & W_6^{15} \\ W_6^0 & W_6^4 & W_6^8 & W_6^{12} & W_6^{16} & W_6^2 \\ W_6^0 & W_6^5 & W_6^{10} & W_6^{15} & W_6^{20} & W_6^{25} \end{bmatrix} \begin{bmatrix} 1 \\ -0.5 \\ 1.25 \\ -0.625 \\ 0.3125 \\ -0.15625 \end{bmatrix}$$

$$\implies \begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix} = \begin{bmatrix} 1.28125 \\ 0.51625 - 0.5142j \\ -0.07813 + 1.1096j \\ 3.84375 \\ -0.07183 - 1.1096j \\ 0.51625 + 0.5142j \end{bmatrix} (2.4.2)$$

2.5. We can find Y using,

$$\begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \\ Y(4) \\ Y(5) \end{bmatrix} = \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} \times \begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix}$$
 (2.5.1)

$$\implies \begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \\ Y(4) \\ Y(5) \end{bmatrix} = \begin{bmatrix} 16.65625 \\ -2.95312 + 1.16372j \\ -0.07813 + 1.1096j \\ -3.84375 \\ -0.07813 - 1.1096j \\ -2.95312 - 1.16372j \end{bmatrix}$$
(2.5.2)

2.6. Consider the following property of Complex Exponentials

$$W_N^2 = W_{N/2} (2.6.1)$$

2.7. Let F_N be the N-point DFT Matrix. Using the property of Complex Exponentials we can express F_N in terms of $F_{N/2}$

$$F_{N} = \begin{bmatrix} I_{N/2} & D_{N/2} \\ I_{N/2} & -D_{N/2} \end{bmatrix} \begin{bmatrix} F_{N/2} & 0 \\ 0 & F_{N/2} \end{bmatrix} P_{N} \quad (2.7.1)$$

For N = 6

$$\implies F_6 = \begin{bmatrix} I_3 & D_3 \\ I_3 & -D_3 \end{bmatrix} \begin{bmatrix} F_3 & 0 \\ 0 & F_3 \end{bmatrix} P_6 \quad (2.7.2)$$

where

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{2.7.3}$$

$$D_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & W_3^1 & 0 \\ 0 & 0 & W_3^2 \end{bmatrix}$$
 (2.7.4)

$$P_6 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.7.5)

$$\implies P_{6} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(1) \\ x(3) \\ x(5) \end{bmatrix}$$
 (2.7.6)

Let

$$\begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \end{bmatrix} = F_{N/2} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \end{bmatrix}$$
 (2.7.7)

and

$$\begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \end{bmatrix} = F_{N/2} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \end{bmatrix}$$
 (2.7.8)

be the N/2 point DFTs.

2.8. By replacing the above results in the equation $X = F_N x$, we get

$$\begin{vmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & W_6^0 & 0 & 0 \\ 0 & 1 & 0 & 0 & W_6^1 & 0 \\ 0 & 0 & 1 & 0 & 0 & W_6^2 \\ 1 & 0 & 0 & -W_6^0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -W_6^1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -W_6^2 \end{vmatrix} \begin{vmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_2(0) \\ X_2(1) \\ X_2(2) \end{vmatrix}$$

$$(2.8.1)$$

2.9. Using the above method we have broken down an N-point DFT into 2 N/2-point DFTs

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \end{bmatrix} + \begin{bmatrix} W_6^0 & 0 & 0 \\ 0 & W_6^1 & 0 \\ 0 & 0 & W_6^2 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \end{bmatrix}$$
(2.9.1)

$$\begin{bmatrix} X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \end{bmatrix} - \begin{bmatrix} W_6^0 & 0 & 0 \\ 0 & W_6^1 & 0 \\ 0 & 0 & W_6^2 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \end{bmatrix}$$
(2.9.2

By recursively breaking down N-point DFT into 2 N/2-point DFTs we can reduce our time complexity from $O(N^2)$ to O(NlogN)

2.10. The following code computes Y and generates magnitude and phase plots of X, H, Y

https://github.com/jpln135/EE3025/tree/main/ Assignment_1/codes/EE18BTECH11021. py

2.11. The following plots are obtained

