Evaluación de impacto: Tema 2

Francesco Bogliacino

Primero una terminología

- Y: LHS, variable dependiente, outcome, variable explicada, variable predecida
- X: RHS, variable independiente, explicativa, control, predictor, regresor

- 1. ¿Cuál es la relación funcional entre x & y?
- 2. ¿Cómo permitimos que otras variables aparte de x afecten y?
- 3. ¿Cómo hacemos para identificar una relación ceteris paribus?

• La regresión lineal es un modelo sobre la población;

$$Y = \beta_0 + \beta_1 x + u$$

• para poder estimar $m{\beta_0}$ y $m{\beta_1}$ necesitamos caracterizar las relación entre x y u **en la población**

Supuestos

- Hacemos primero el supuesto que el valor esperado de u, que escribimos E[u]=0
- ¿Qué es el valor esperado? sería la media calculada sobre la población entera que es $\int u(i)p(u(i))di$ o $\sum u_ip(u_i)$
- Es un problema ese supuesto? NO, asuma que no sea cero sino $lpha_0$

Puedo redefinir
$$\mathbf{Y} = (\boldsymbol{\beta_0} + \alpha_0) + \boldsymbol{\beta_1} \mathbf{x} + (\mathbf{u} - \alpha_0)$$

Supuestos

- Un supuesto clave (con el cual lidiaremos todo el curso) es este:
- E[u|x] = E[u]

	Altas habilidades blandas	Bajas habilidades blandas	
Graduado	0.16	0.14	0.30
No graduado	0.37	0.33	0.70
	0.53	0.47	

• E[u] = 2 * 0.53 + 1 * 0.47 = 1.53

	Altas habilidades blandas=2	Bajas habilidades blandas=1	
Graduado	P(u=2 G)=0.16/0.3 0=0.53	P(u=1 G)=0.14/0.3 0=0.47	0.30
No graduado	0.37	0.33	0.70
	0.53	0.47	

Mean independence

- Obviamente en muchos casos (ej educación) este es un mal supuesto;
- Este segundo supuesto es lo que llamamos independencia en promedio (mean Independence en inglés)

• La regresión lineal es un modelo sobre la población;

$$Y = \beta_0 + \beta_1 x + u$$

Qué pasa con el supuesto de independencia en promedio?

$$E[Y|x] = \beta_0 + \beta_1 x + E[u|x] = \beta_0 + \beta_1 x$$

La CEF o PRF en práctica

El estimador

¿Cómo estimamos?

- Primero nosotros queremos "identificar" $oldsymbol{eta}_0, oldsymbol{eta}_1$ pero los "estimamos" porque no trabajamos con la población sino con una muestra $\{y_i, x_i\}$ y no observamos u_i ;
- El estimador nos dará un valor $\widehat{\pmb{\beta}}$ que depende de la muestra, es decir a muestras diferentes sacaremos valores diferentes;
- Esta es la "variabilidad" de la muestra:
 - Piensen en Lalonde, el valor estaba alrededor de los 800 USD, pero muestras diferentes me dan valores diferentes
 - Quisiéramos pegarle en "promedio"

- Si E[u|x] = 0 es obvio que E[u] = 0
- Si E[u|x] = 0 es obvio que Cov(x,u) = E[xu] = 0

Llamamos $x'_i, x''_i, ..., x^n_i$ los valores que asume la variable x

•
$$\frac{1}{N}\sum_{i=1}^{N} x_i u_i = \frac{1}{N} \left[N' x_i' \left(\frac{1}{N'} \sum_{i=1}^{N'} u_i \right) + \dots + Nn x_i^N \left(\frac{1}{Nn} \sum_{i=1}^{N'} u_i \right) \right]$$

- Pero sabemos que todos esos promedios son ceros
- Noten que acabamos de hacer E[xu] = E[xE[u|x]] que tiene el nombre de Ley de Expectativas Iteradas

- Si $E[u|x] = \mathbf{0}$ es obvio que $E[u] = E[y \beta_0 + \beta_1 x] = \mathbf{0}$
- Si E[u|x]=0 es obvio que $Cov(x,u)=E[x(y-eta_0-eta_1x)]=0$

• En la muestra:

$$\bullet \frac{1}{N} \sum_{i=1}^{N} (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) = 0$$

$$\bullet \, \frac{1}{N} \sum_{i=1}^{N} x_i (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) = 0$$

Ahora lo que hay que hacer es resolver esas dos ecuaciones, en dos incognitas

•
$$\frac{1}{N}\sum_{i=1}^{N} y_i - \widehat{\beta_0} - \widehat{\beta_1} \frac{1}{N}\sum_{i=1}^{N} x_i = 0 \rightarrow \widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

• $\frac{1}{N}\sum_{i=1}^{N} x_i (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) = 0 \rightarrow$

$$\frac{1}{N}\sum_{i=1}^{N} x_i (y_i - [\overline{y} - \widehat{\beta_1} \overline{x}] - \widehat{\beta_1} x_i) = 0$$

$$\frac{1}{N}\sum_{i=1}^{N} x_i (y_i - \overline{y}) = \widehat{\beta_1} \frac{1}{N}\sum_{i=1}^{N} x_i (x_i - \overline{x})$$

$$\frac{1}{N}\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y}) = \widehat{\beta_1} \frac{1}{N}\sum_{i=1}^{N} (x_i - \overline{x})^2$$

• Si
$$\frac{1}{N}\sum_{i=1}^{N}(x_i - \bar{x})^2 > 0$$
 entonces
$$\widehat{\beta_1} = \frac{covarianza.m(x,y)}{varianza.m(x)}$$

- OLS es lo que acabamos de ver
- La lógica es que usamos la variabilidad en la muestra de x para poder identificar el impacto sobre y
- Pero ojo que:
 - Estamos USANDO un SUPUESTO sobre la población
 - Siempre podemos calcular OLS (a menos que X no varíe) pero no necesariamente identificamos el beta de la población
- Para calcular OLS en esta manera usamos condiciones sobre los MOMENTOS
- Una alternativa es la siguiente

• Define $\widehat{y_i}$ como la predicción. Puedo querer predecir el sueldo de la unidad i sabiendo su educación x_i

•
$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

- El error de predicción es $\widehat{u_i} = y_i \widehat{\beta_0} \widehat{\beta_1} x_i$
- Definamos un criterio a minimizar,

$$\frac{1}{N} \sum_{1}^{N} \widehat{u_i}^2$$

• Minimizando eso logramos exactamente lo mismo

- OJO! Los errores de predicción o residuales NO son los términos u_i que nunca observamos;
- Los residuales por construcción suman a cero

$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) = 0$$

- $\frac{1}{N}\sum_{i=1}^{N}(y_i-\widehat{\beta_0}-\widehat{\beta_1}x_i)=0$ Y por construcción $\frac{1}{N}\sum_{i=1}^{N}x_i(y_i-\widehat{\beta_0}-\widehat{\beta_1}x_i)=0$ son ortogonales a χ_i
- No usen la ortogonalidad de los residuales para inferir independencia de los u_i de x_i (si lo hacen me va a caer una lagrimita)

- Recuerden también que $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$
- $\frac{1}{N} \sum_{i=1}^{N} \widehat{y}_i \, \widehat{u}_i = \widehat{\beta}_0 \, \frac{1}{N} \sum_{i=1}^{N} \widehat{u}_i + \widehat{\beta}_1 \, \frac{1}{N} \sum_{i=1}^{N} x_i \widehat{u}_i = 0$
- Es decir las predicciones son ortogonales a los errores, y así cualquier función lineal

• Finalmente recuerden que $\widehat{\beta_0}=\bar{y}-\widehat{\beta_1}\bar{x}$ o sea que si hago la predicción para el promedio saco el promedio. Esto es porque decidimos que así fuera

Resumen: propriedades algébricas de OLS

- (\bar{x}, \bar{y}) está en la recta de regresión
- Las predicciones y los residuales no están correlacionados
- Los residuales y el predictor no están correlacionados
- Los residuales suman a cero

• (STATA...)

OLS y su valor esperado

Tengamos presente el objetivo

- Nosotros observamos una muestra
- Quisiéramos decir algo sobre la población

• Vamos a ver como nos va con OLS en Stata

- Como ocurrió con el ejemplo simulado, OLS tiene variabilidad, cada muestra nos restituye un valor diferente que depende de la características de los datos
- En el ejemplo simulado, en promedio acertábamos, pero se ve una campana alrededor del valor verdadero;
- Vimos también que dada la varianza de los datos, la cantidad de observaciones y el efecto que queremos identificar, hay un cierto número de veces que nos equivocamos en una dirección o en la otra

Supuestos (1)

- El modelo para la población se puede escribir $Y=oldsymbol{eta}_0+oldsymbol{eta}_1x+u$
- Implicaciones: nuestros parámetros de interés son $oldsymbol{eta_0}$, $oldsymbol{eta_1}$
- Recuerden donde queremos ir: nosotros vamos a tener un modelo así por definición de Outcome Alternativos Potenciales
- X y u son realizaciones de variables aleatorias por lo tanto lo es y
- Este supuesto es el de *linealidad en los parámetros*

Supuestos (2)

- El muestreo es aleatorio e independiente
- Para cada i podemos escribir $y_i = oldsymbol{eta_0} + oldsymbol{eta_1} x_i + u_i$

• Ojo que $oldsymbol{u_i}$ es la componente no observable. No es el error de predicción

Supuestos (3): obvio

- Tenemos variabilidad en la x_i
- Esto en práctica es obvio, sin variabilidad en la x podemos cerrar todo e irnos

Supuestos (4)

 Este es el supuesto clave: la componente no observable tiene media condicional cero

$$E[u|x] = 0$$

Recuerden: yo (o Stata, o R) podemos calcular OLS que eso se cumpla o menos y de hecho independientemente hasta del supuesto 1

• Queremos mostrar que $E[\widehat{\beta_1}] = \beta_1$

$$\widehat{\beta_1} = \frac{\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}$$

Llamemos $\sum_i (x_i - \bar{x})^2 = TOT_x$ Sabemos que $TOT_x > 0$ por el supuesto (3)

• Remplacemos (por supuesto 1 y 2) $y_i = \beta_0 + \beta_1 x_i + u_i$

$$\sum_{i} (y_{i} - \bar{y})(x_{i} - \bar{x}) = \sum_{i} (x_{i} - \bar{x})(\beta_{0} + \beta_{1}x_{i} + u_{i}) = \beta_{0} \sum_{i} (x_{i} - \bar{x}) + \beta_{1} \sum_{i} (x_{i} - \bar{x}) x_{i} + \sum_{i} (x_{i} - \bar{x}) u_{i} = \beta_{1} TOT_{x} + \sum_{i} (x_{i} - \bar{x}) u_{i}$$

$$\widehat{\beta_1} = \beta_1 + \frac{\sum_i (x_i - \bar{x}) u_i}{\sum_i (x_i - \bar{x})^2}$$

¿Qué es ese último término?

- Definan $w_i = \frac{x_i \bar{x}}{\sum_i (x_i \bar{x})^2}$
- Podemos escribir el último término como $\sum_i w_i u_i$
- recuerden que:
 - cada w_i es función de los x_i
 - El estimador es entonces función lineal de los términos no observables

• Vamos a usar el mismo trick que hemos aprendido

$$E[\widehat{\beta_1}] = \beta_1 + E\left[\sum_i w_i u_i\right] = \beta_1 + \sum_i E[w_i u_i] = \beta_1 + \sum_i E[w_i E[u_i | x_i]]$$

- Luego usamos el supuesto (4) y $E[\widehat{\beta_1}] = \beta_1$
- Es clave que en la población x y u no sean correlacionados o esto no ocurriría

Resumen

- Con los supuestos (1)-(4) OLS no es sesgado
- Problema: cada muestra nos dará un valor diferentes. En general nos concentramos cerca del valor del parámetro
- Nosotros podemos esperar que nuestra muestra sea "típica" pero no sabemos porque
- Recuerden también:
 - Los u_i no son observables, son las distancias de las observaciones respeto a la CEF o RPF
 - Los residuales son las distancias verticales entre las observaciones y la relación estimada. Eso si se observan (más precisamente se calculan)

Back to CEF

- Trabajemos con una población finita, sueldo y educación, hay un número de estados del mundo $x_i=\{1,\dots,16\}$ que son variables aleatorias
- $y_i = I(x_i = 1)n^{-1} \sum_i y_i^{cuando\ tienen\ 1} + ... + I(x_i = 16)n^{-1} \sum_i y_i^{cuando\ tienen\ 16} + algo$
- En otras palabras puedo decir que una variable es la suma de dos componentes: lo que puedo predecir dado que está en el estado x_i más un algo que ya no depende [=es independiente] de x_i

Dos interpretaciones

- Una variable y_i la puedo "romper" en dos componentes:
 - Lo que me explica la x_i y lo que no me explica la x_i
- Una variable la puedo predecir de la siguiente manera:
 - Lo que me ayude a predecir x_i y lo que no me ayuda a predecir la x_i
- Esa primera componente es la CEF, la $E[y_i|x_i]$, por lo cual la relación en la población siempre es

$$y_i = E[y_i|x_i] + \varepsilon_i = CEF + algo \ ortogonal$$

[OJO: estoy diciendo que la distribución de los errores de predicción sea la misma, NO que las características subyacente que llevan a diferentes sueldo sean distribuidas de la misma manera. Eso permitiría una interpretación CAUSAL]

Por qué Lineal es vida ©

Por qué Lineal es vida ©

Recuerden hacia siempre donde vamos

• Vamos a usar la Regresión Lineal en la población para escribir la CEF

$$E[Y|x] = \beta_0 + \beta_1 x$$

- Porque al final lo que nos interesa es la CEF (y como esa se conecta a nuestro caso especifico donde la x_i toma los dos valores 1 y 0), no las características especificas del soporte de una variable
- Eso nos permite una cuantificación "sencilla" y "transparente" de los coeficientes, que no depende de otras variables

•
$$Y_i^{obs} = Y_i^1 D_i + (1 - D_i) Y_i^0 = Y_i^0 + (Y_i^1 - Y_i^0) D_i$$

Dos formulas importantes

La anatomía de la regresión

La variable omitida

La anatomía de la regresión

 Supongamos que la educación sea tan buena como aleatoriamente asignada una vez tengamos en cuenta la discriminación por género y el estrato socio-económico

Miremoslo en una base de datos (-> Stata)

¿Qué quiere decir?

- Cuando introducimos variables de control además de nuestra x_i estamos usando la variabilidad *que queda* después de "igualar" las personas en término de estas variables de control
- Por esto es importante:
 - No controlar por cualquier cosa, sino por variables que me ayuden en eliminar la selección

La variable omitida

- No controlar por una variable que explica la selección impide recuperar el valor del parámetro, en otras palabras no nos permite estimar sin sesgo -> hay algo más, aparte de la variabilidad de la muestra, que nos afecta
- Pensemos en la educación, y el hecho que la habilidad también cuente en la educación y en el mercado del trabajo
- Back to the data....

La variable omitida

• Se lo voy a derivar para un caso más sencillo

$$y_i = \beta_0 + \beta_1 S_i + \beta_2 A_i + u_i$$

¿Qué pasa si no observo A?

$$\widehat{\beta_{1}} = \frac{Cov(S_{i}, y_{i})}{Var(S_{i})} = \frac{E[S_{i}, (\beta_{0} + \beta_{1}S_{i} + \beta_{2}A_{i} + u_{i})] - E[S_{i}]E[\beta_{0} + \beta_{1}S_{i} + \beta_{2}A_{i} + u_{i}]}{Var(S_{i})} = \frac{P_{0}E[S_{i}] + P_{1}E[S_{i}] + P_{2}E[S_{i}A_{i}] + E[S_{i}u_{i}] - E[S_{i}]\beta_{0} - P_{1}E[S_{i}]^{2} - P_{2}E[S_{i}]E[A_{i}] + E[S_{i}]E[u_{i}]}{Var(S_{i})}$$

$$= \frac{\beta_1 Var[S_i^2] + \beta_2 Cov[S_i A_i] + Cov[S_i u_i]}{Var(S_i)} = \beta_1 + \frac{\beta_2 Cov[S_i A_i]}{Var(S_i)}$$

La variable omitida

- Si $Cov[S_iA_i] > 0$ y A_i no la observo, yo puedo tener muchos datos, muy limpios y hacer un montón de regresiones pero nunca identificaré el efecto de la educación (a lo mejor se en qué dirección estoy sobre estimando)
- Esta va a ser la norma cuando trabajemos con datos observables
- Para poder identificar β_1 necesito una estrategia de identificación

¿Y la varianza?

Un último esfuerzo

heteroschedasticity

Dependencia en los datos

 A veces hay dependencia en los datos, cuando las observaciones de un grupo (cluster) se "contaminan"

Como nos va con ,rob -> back to Stata