Exercise 5. Show that Zorn's lemma implies the following:

Lemma (Kuratowski). Let \mathscr{A} be a collection of sets. Suppose that for every subcollection \mathscr{B} of \mathscr{A} that is simply ordered by proper inclusion, the union of the elements of \mathscr{B} belongs to \mathscr{A} . Then \mathscr{A} has an element that is properly contained in no other element of \mathscr{A} .

Proof. For all \mathscr{B} subcollection of \mathscr{A} that is simply ordered by proper inclusion, the set $B = \bigcup_{b \in \mathscr{B}} b$ is an upper bound of \mathscr{B} in \mathscr{A} . Zorn's lemma gives us the existence of a maximal element $M \in \mathscr{A}$. Since M is maximal, for all $A \in \mathscr{A}$ such that $A \neq M$, we have $A \subset M$. Therefore M is not a proper subset of any other element of \mathscr{A} .