

Parametric vs. Nonparametric

Many More Tests Exist!

Learning Objectives:

- 1. Differentiate nonparametric from parametric statistics
- Discuss the advantages and disadvantages of nonparametric statistics
- 3. Enumerate and differentiate the different nonparametric tests
- 4. Apply some commonly used nonparametric test to hypothesis testing problems

Parametric Test Procedures

1. Involve Population Parameters

Example: Population Mean

$$t = \frac{\overline{X} - \mu_0}{(S_x / \sqrt{n})}$$

2. Have Stringent Assumptions

Example: Normal Distribution

3. Require Interval Scale or Ratio Scale

Whole Numbers or Fractions

Example: Height in Inches (72, 60.5, 54.7)

4. Examples: z-Test, t-Test, ANOVA

Nonparametric Test Procedures

- 1. Do Not Involve Population Parameters
- 2. No Stringent Distribution Assumptions "Distribution-free"
- 3. Data Measured on Any Scale

Ratio or Interval

Ordinal

Example: Good-Better-Best

Nominal

Example: Male-Female

4. Example: Wilcoxon-Mann-Whitney Test

Advantages of Nonparametric Tests

- 1. Used With All Scales
- Easier to Compute
 Developed Originally Before
 Wide Computer Use
- 3. Make Fewer Assumptions
- 4. Need Not Involve Population Parameters
- 5. Results May Be as Exact as Parametric Procedures

Disadvantages of Nonparametric Tests

May Waste Information
 If Data Permit Using Parametric Procedures

Example: Converting Data From Ratio to Ordinal Scale

- Require a larger sample size than the corresponding parametric test in order to achieve the same power
- 3. Difficult to Compute by Hand for Large Samples
- Stat tables are not readily available

Summary Table of Statistical Tests

Level of Measurement	Sample Characteristics					Correlation
	1 Sample	2 Sample		K Sample (i.e., >2)		
		Independent	Dependent	Independent	Dependent	
Categorical or Nominal	Bi- nomial	X ² Fisher Exact	Mc Nemar's	X ²	Cochran's Q	Kappa Agreement Test
Rank or Ordinal	Run's test Kolmo- gorov Smirnov	Median Test Wilcoxon- Mann- Whitney	Sign Test Wilcoxon Signed Ranks	Kruskal-Wallis	Friendman's ANOVA	Spearman's rho Kendall Rank
Parametric (Interval & Ratio)	z-test or t-test	t- test between groups	Paired t-test	1 way ANOVA between groups	1 way ANOVA (within or repeated measure)	Pearson's r
			Factori	al ANOVA	I	

Application of Commonly Used Nonparametric Statistics

=> nonparametric statistics...

Wilcoxon-Mann-Whitney Test

Wilcoxon-Mann-Whitney Test

Also known as Wilcoxon-test, Wilcoxon rank sum test, U-test, Mann-Whitney-U-test

Tests Two Independent Population

- compare medians

Corresponds to t-Test for 2 Independent Means

Assumptions

Independent, Random Samples

Populations Are Continuous

Can Use Normal Approximation If $n_i \ge 20$

Wilcoxon-Mann-Whitney Test Procedure

- 1. Assign Ranks, r_i , to the $n_1 + n_2$ Sample Observations If unequal sample sizes, let n_1 refer to smaller-sized sample Smallest Value = 1 Average Ties
- 2. Sum the Ranks, R_i, for Each Sample
- 3. Test Statistic
 - Null hypothesis: both samples come from the same underlying distribution

$$U = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1$$
 where R₁ is the sum of ranks in sample 1

Compute also $(n_1n_2 - U)$. If this expression is larger than the above U, then this becomes the final U statistic.

** At N>=20, U begins to approximate t, so the test stat changes to a t-value.

Wilcoxon-Mann-Whitney Test Example

 You're an agriculturist. You want to determine if there was a difference in the biomass of male and female Juniper trees.

 Randomly select 6 trees of each gender from the field. Dry them to constant moisture and weigh in kg.

Male trees Data: 71, 73, 78, 75, 72, 74

Female trees Data: 80, 73, 83, 84, 82, 79

Wilcoxon-Mann-Whitney Test Solution

•H ₀ :	Test Statistic:
•Ha:	
$\Box \alpha =$	
• $n_1 = n_2 =$	
•Critical Value:	Decision:
	Conclusion:

Wilcoxon-Mann-Whitney Test Computation Table

Male	Trees	Female Trees		
Weight	Rank	Weight	Rank	
71		80		
73		73		
78		83		
75		84		
72		82		
74		79		

Rank Sum

Wilcoxon-Mann-Whitney Test Solution

Median weights =

$$\square \alpha = 0.05$$

$$-n_1 = 6 \quad n_2 = 6$$

Critical Value:

$$U$$
 table = 31

* Depends on the U table you are using

Test Statistic:

$$U = (6)(6) + (6)(7)/2 - 24.5 = 32.5$$

$$n1n2 - U = (6)(6) - 32.5 = 3.5$$

*!!! final U_{Calc} = 32.5

Decision:

Reject H_0 at $\alpha = .05$ since

 $U_{calc} > U_{table}$

Conclusion:

There is evidence that the medians are not equal.

Wilcoxon-Mann-Whitney Test Solution (SPSS Output)

NPar Tests

Mann-Whitney Test

Ranks

	Gender of Tree	N	Mean Rank	Sum of Ranks
Weight in kg	Male	6	4.08	24.50
	Female	6	8.92	53.50
	Total	12		

Test Statistics^b

	Weight in kg	
Mann-Whitney U	3.500	
Wilcoxon W	24.500	
Z	-2.326	
Asymp. Sig. (2-tailed)	.020	
Exact Sig. [2*(1-tailed Sig.)]	.015 ^a	/

 $p < \alpha$; Reject Ho

a. Not corrected for ties.

b. Grouping Variable: Gender of Tree

Sign Test

Sign Test

- 1. Tests One Population Median, η (eta)
- 2. Corresponds to t-Test for 1 Mean
- 3. Assumes Population Is Continuous
- 4. Small Sample Test Statistic: # Sample Values Above (or Below) Median
- 5. Can Use Normal Approximation If $n \ge 10$

Sign Test Example

 You're a marketing analyst for Chefs-R-Us. You've asked 8 people to rate a new ravioli on a 5-point Likert scale

1 = terrible to

5 = excellent

The ratings are:

2 4 1 2 1 1 2 1

At the .05 level, is there evidence that the median rating is at least 3?

Sign Test Solution

- H₀: *P-Value*:
- Ha:
- $\square \alpha =$
- Test Statistic:

Decision:

Conclusion:

Sign Test Uses P-Value to Make Decision

P-Value is the probability of getting an observation at Least as extreme as we got.

If 7 of 8 Observations 'Favor' H_a , Then P-Value = $P(x \ge 7)$ = .031 + .004 = .035.

If α = .05, Then Reject H₀ Since P-Value $\leq \alpha$.

Sign Test Solution

- Ho: $\eta = 3$
- Ha: η < 3
- $\square \alpha = .05$
- Test Statistic:

S = 7 (Ratings 1 & 2 are less than η = 3:

2 4 1 2 1 1 2 1)

P-Value:

 $P(x \ge 7) = .031 + .004 = .035$ (Binomial Table, n = 8, p = 0.50)

$$P(X) = \frac{n!}{X!(n-X)!} \pi^{x} (1-\pi)^{n-X}$$

Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

There is evidence that the median is less than 3

Sign Test (R Output)

```
R version 2.3.1 (BSDA and eV10 package must be loaded)
> x < c(2,4,1,2,1,1,2,1)
> sign.test(x,md=3, alternative="less")
    One-sample Sign-Test
data: x
s = 1, p-value = 0.03516
alternative hypothesis: true median is less than 3
95 percent confidence interval:
-Inf 2
sample estimates:
median of x
    1.5
$Confidence.Intervals
                    Conf.Level L.E.pt U.E.pt
                               -Inf
                    0.8555
Lower Achieved CI
                    0.9500 -Inf
Interpolated CI
Upper Achieved Cl 0.9648 -Inf
Warning message:
multi-argument returns are deprecated in: return(rval, Confidence.Intervals)
```

Mc Nemar Change Test

McNemar Change Test (MCT)

Typical examples:

 Testing the shift in the proportion of abnormal responses from before and after treatment in the same group of patients

 Comparing two ocular treatments when both are given to each patient, one in each eye

Data Layout: MCT

			Condition 2	
		No. of 'Responders'	No. of 'Non- Responders'	TOTAL
ion 1	No. of 'Responders'	Α	В	A+B
S 'Non-	No. of 'Non- Responders'	С	D	C+D
	TOTAL	A+C	B+D	N=A+B+C+D

McNemar Change Test (MCT)

 The hypothesis of interest is the equality of response proportions, p₁ and p₂, under conditions 1 and 2, respectively.

 The test statistic is based on the difference in the discordant cell frequencies (B, C).

Test Summary: MCT

Null hypothesis:

 $H_0: p_1 = p_2$

• Alternative hypothesis: $H_a: p_1 \neq p_2$

• Test Statistic:

$$\boldsymbol{\chi^2} = \frac{\left(\boldsymbol{B} - \boldsymbol{C}\right)^2}{\boldsymbol{B} + \boldsymbol{C}}$$

Decision Rule:Reject H_0 if $\chi^2 > \chi_1^2(\alpha)$

- where $\chi_1^2(\alpha)$ is the critical value from the chi-square table with significance level α and 1 degree of freedom

Example: MCT

 Bilirubin Abnormalities Following Drug Treatment

86 patients were treated with an experimental drug for 3 months.

Pre-post study clinical laboratory results showed abnormally high total bilirubin values.

Is there evidence of a change in the preto post-treatment rates of abnormalities?

Solution: MCT

Let p₁ and p₂ represent the proportions of patients with abnormally high bilirubin values ('Y') before and after treatment, respectively.

	POST- Treatment			- TOTAL
		'N'	Υ'	TOTAL
PRE-	'N'	60	14	74
Treatment	'Y'	6	6	12
	TOTAL	66	20	86

^{&#}x27;Y' = T.Bilirubin above upper limit of normal range

Test Summary: MCT

• Null hypothesis: $H_0: p_1 = p_2$

Alternative hypothesis: H_a: p₁ ≠ p₂

• Test Statistic: $\chi^2 = \frac{(B-C)^2}{B+C} = \frac{(14-6)^2}{14+6} = \frac{64}{20} = 3.20$

Decision: Do not reject H₀ since

$$\chi^2 < \chi_1^2 (\alpha_{0.05}) = 3.841$$

Conclusion:

There is no sufficient evidence to conclude at 0.05 level of significance that a shift in abnormality rates occurs with treatment.

SAS Computer Output for MCT

McNemar's Test

Example: Bilirubin Abnormalities Following Drug Treatment
TABLE OF PRE BY PST

```
PRE(PRE) PST(PST)
Frequency,
Percent ,
Row Pct ,
Col Pct ,N ,Y , Total
ffffffffffffffffffffffffff
N , 60 , 14 , 74
       , 69.77 , 16.28 , 86.05
       , 81.08 , 18.92 ,
       , 90.91 , 70.00 ,
fffffffffffffffffffffffff
      , 6, 6, 12
       , 6.98 , 6.98 , 13.95
       , 50.00 , 50.00 ,
       , 9.09 , 30.00 ,
fffffffffffffffffffffffff
Total
        66 20 86
         76.74 23.26 100.00
```

McNemar's Test

STATISTICS FOR TABLE OF PRE BY PST

Statistic = 3.200 DF = 1 (Prob = 0.074

35

References

Dawson-Saunders, B. and Trapp, R.G. Basic and Clinical Biostatistics. Connecticut: Prentice Hall International, Inc. (1990).

McGill, J.J. Chap. 14: Nonparametric Statistics Presentation. (May 2006).

Siegel S. and Castellan N.J. Nonparametric Statistics for the Behavioral Sciences (2nd edition). New York: McGraw Hill (1988).

Walker G.A. Common Statistical Methods for Clinical Research with SAS Examples, SAS Institute, Inc, Cary NC (1997).