

0.1 Постановка задачи

Решить дифференциальное уравнение:

$$\frac{d^2x}{dt^2} + (1 + \alpha x^2)x = \cos(t), \alpha = 0.2, -0.2$$
 (1)

Сами зададим начальные условия. Перепишем 1 в виде системы двух дифференциальных уравнений:

$$1 \Leftrightarrow \begin{cases} \frac{dx}{dt} = y\\ \frac{dy}{dt} = \cos(t) - (1 + \alpha x^2)x \end{cases}$$
 (2)

Получается мы свели дифференциальное уравнение второго порядка к системе дифференциальных уравнений. Будем решать эту систему при помощи метода Дормана-Принса 7 порядка.

Введём обозначения:

Пусть s - целое положительное число, называемое числом стадий и $a_{21}, \dots a_{s,s-1}, b_1, \dots b_s, c_2 \dots c_s$ - вещественные коэффициенты. Тогда метод

$$k_{1} = f(x_{0}, y_{0})$$

$$k_{2} = f(x_{0} + c_{2}h, y_{0} + ha_{2,1}k_{1})$$

$$k_{3} = f(x_{0} + c_{3}h, y_{0} + h(a_{3,1}k_{1} + a_{32}k_{2})$$

$$...$$

$$k_{s} = f(x_{0} + c_{s}h, y_{0} + h(a_{s,1}k_{1} + \dots + a_{s,s-1}k_{s-1}))$$

$$y_{1} = y_{0} + h(b_{1}k_{1} + \dots + b_{s}k_{s})$$
(3)

- будет *s*-стадийным явным методом Рунге-Кутта, решения задачи:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases} \tag{4}$$

Определение 1. Метод Рунге-Кутты имеет порядок p, если:

$$||y(x_0+h)-y_1|| \le Kh^{p+1},$$

т.е члены для точного решения $y(x_0 + h)$ и для y_i совпадают до члена h^p включительно.

Приведем таблицу Бутчера для метода Дормана-Принса 8(7) порядка из книги Хайрер Э., Нерсетт С., Ваннер Г. "Решение обыкновенных дифференциальных уравнений. Нежесткие задачи".

e, 0							a ij					14005451 335480064	b _i 13451932 455176623
18	18								,			0	0
$\frac{1}{12}$	1/48	$\frac{1}{16}$,									0	0
1 8	$\frac{1}{32}$	0	$\frac{3}{32}$									0	0
<u>5</u> 16	<u>5</u> 16	0	- <u>75</u> 64	75 64								0	0
3 8	<u>3</u> 80	0	0	$\frac{3}{16}$	$\frac{3}{20}$							<u>-59238493</u> 1068277825	-808719846 976000145
<u>59</u> 400	29443841 614563906	0	0	77736538 692538347	-28693883 1125000000	23124283 1800000000						181606767 758867731	1757004468 5645159321
93 200	16016141 946692911	0	0	61564180 158732637	22789713 633445777	545815736 2771057229	- 180193667 1043307555					561292985 797845732	656045339 265891186
5490023248 7719169821	39632708 573591083	0	0 -	- 433636366 683701615	-421739975 2616292301	100302831 723423059	790204164 839813087	800635310 3783071287				- 1041891430 1371343529	-3867574721 1518517206
13 20	246121993 1340847787	0	0	-37695042795 15268766246	-309121744 1061227803		6005943493 2108947869	393006217 1396673457	123872331 1001029789			760417239 1151165299	465885868 32273653 5
201146811	-1028468189 846180014	0	0 -	8478235783 508512852	1311729495 1432422823	-10304129995 1701304382	-48777925059 3047939560	15336726248 1032824649	-45442868181 3398467696	3065993473 597172653		118820643 751138087	53011238 667516719
1	185892177 718116043	0	0 -	-3185094517 667107 34 1	-477755414 1098053517	- 703635378 230739211	5731566787 1027545527	5232866602 850066563	- 4093664535 808688257	3962137247 1805957418	65686358 487910083	<u>-528747749</u> 2220607170	2 45
1	491063109	0	0 -	-5068492393 434740067	-411421997 543043805	652783627 914296604	925320556	-13158990841 6184727034	3936647629 1978049680	-160528059 685178525	248638103 1413531060	$\frac{1}{4}$	0

0.2 Переменный шаг:

Выбор шага в алгоритме Дормана-Принса:

Сначала вычисляем $y^{(1)}$ - приближенное значение в точке x_0+h методом Рунге-Кутта 7 порядка. Потом вычисляем $y^{(2)}$ приближенное значение в точке x_0+h уже методом 8 порядка. Рассматриваем ошибку как $err=||y^{(1)}-y^{(2)}||$. Если err< tol - то шаг принимается. Новый шаг h пересчитывается по формуле $h_{new}=h_{old}*min(facmin,max(facmax,fac*(\frac{err}{tol})^{\frac{1}{7}}))$. fac, facmin, facmax - это параметры которые не дают алгоритму слишком быстро уменьшать или увеличивать шаг. Согласно книге Хайрер Э., Нерсетт С., Ваннер Г. "Решение обыкновенных дифференциальных уравнений. Нежесткие задачи"их можно выбрать так:

facmin = 0, facmax = 1.5, fac = 0.8

0.3 Гармонический осциллятор

Рассмотрим работу алгоритма DP-8(7) на гармоническом осцилляторе.

$$x'' + \omega^2 x = 0 \tag{5}$$

Перепишем это дифференциальное уравнение в следующем виде:

$$\begin{cases} x' = y \\ y' = -\omega^2 x \end{cases}$$
 (6)

Таблица 1: [DP - 8(7)].

Отрезок:	Погр. в кон. тчк	Макс. погр.	Кол-во узлов в сетке	Число Рунге
$[0, 10\pi]$	1.232542e-10	3.010808e-10	135	83.289586
$[0, 100\pi]$	1.242393e-09	3.130512e-09	1333	84.822430
$[0, 1000\pi]$	1.246366e-08	3.160922e-08	13316	84.833284
$[0, 10000\pi]$	1.243602e-07	3.160972e-07	133142	84.857393
$[0, 100000\pi]$	1.236711e-06	3.159496e-06	1331410	84.990234

В этой таблице приводятся результаты работы алгоритма на $[0,10\pi],[0,1000\pi],[0,10000\pi],[0,10000\pi]$ с погрешностью на шаге 10^{-11}

Графики гармонического осциллятора $[0,10\pi]$ с точностью на шаге 10^{-11}

0.4 Поиск периода

Сначала ищем такое минимальное t, что y(x(t)) = 0. Пусть это будет t_0 . Далее идем по фазовому портрету и ищем место, где y(x(t)) меняет знак. Ищем корень методом хорд. Хотим найти такое T, что:

$$\begin{cases} x(t_0) = x(t_0 + T), \\ y(t_0) = y(t_0 + T) \end{cases}$$

Находим всех претендентов на период и потом проверяем, что это действительно период.

Период осциллятора

$$\begin{cases} x' = y \\ y' = -x \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

 $T \approx 6.28319 \approx 2\pi$

$$\begin{cases} x' = y \\ y' = -4x \\ x(0) = 0 \\ y(0) = 2 \end{cases}$$

0.5 Графики задачи и период

Рассмотрим сначала задачу с данными начальными условиями.

$$\begin{cases} x' = y \\ y' = -(1 + 0.2x^2)x + \cos(t) \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

 $T\approx 45182.385526,$ Числа рунге = 75.957517 $x'(x)\ [0,50000]$

Найдем периоды для различных начальных условий: Пусть х(0) = 0, у(0) = -1000, $T\approx 320.438513$ и число Рунге = 117.284488 [0, 350] x(t) с точностью 10^{-11}

Рассмотрим теперь задачу для другого α .

$$\begin{cases} x' = y \\ y' = -(1 - 0.2x^2)x + \cos(t) \\ x(0) = 0 \\ y(0) = 1 \end{cases}$$

Периода нет, Числа рунге = 39.751736 $x'(x) \ [0, 3.99]$

Нарисуем для нескольких начальных условий решения для $\alpha=0.2$. Пусть (x(0),y(0))=(0,2),(1,1),(2,0)

Числа Рунге соответственно: 40.815113, 40.815113, 50.875706 [0, 100] x(t) с точностью 10^{-11}

Нарисуем для нескольких начальных условий решения для $\alpha=-0.2$. Пусть (x(0),y(0))=(0,2),(1,1),(2,0)

Числа Рунге соответственно: 75.957517, 75.851, 75.935517

 $[0,3] \ x(t)$ с точностью 10^{-11}

