Econ 330: Urban Economics

Lecture 5

John Morehouse January 21st, 2020

Lecture V: Rents

Schedule

Today

- 1) Intro to Rents
- 2) Rents Across Cities
- 3) Rents Within Cities

Upcoming

- !! HWI due next class (thurs, Jan 21) !!
 - In the second of the second of
- Reading (Chapter IV ToTC)

Taking Stock

First Two Weeks: Intoduction and **existence**, **size & growth** (philosophicalish questions)

Now: fundamentals of location choice theory. Questions

- Why do people choose to live in one place vs another? (SF vs Detroit)
 - Today: How do these choices impact rental prices (across cities)

Later: Formalize this. Learn **basics** of discrete choice modeling

Rents: An Overview

Rents: NY

source: Oppurtunity Atlas

Rents: Seattle

Rents: Chicago

Checklist

- 1) Intro to Rents **V**
- 2) Rents Across Cities
- 3) Rents Within Cities

Prices across cities

Easy version Supply and demand curves vary across cities (today)

 Equilibrium will be different across cities (and hence prices are different)

Hard Version Solving for equilibrium when wages respond to population changes as well (not today)

Q: Why would supply and demand curves vary across cities?

Rents: An Overview

In general, supply curves across cities are impacted by: local construction costs, land available for development, and land-use regulations

- Local construction costs: shifts intercept (labor is more expensive for all firms in one area vs another)
- Land available for development and land use regulations: slope (changes marginal cost) of developing land. Why?

Example:

Seattle:

$$egin{aligned} R_{SEA} &= 10 + H_{SEA} \ R_{SEA} &= 25 - 2 * H_{SEA} \end{aligned}$$

• **SF**:

$$R_{SF} = 10 + 2 * H_{SF} \ R_{SF} = 30 - 3 * H_{SF}$$

Tasks:

- 1) Solve for equilibrium in both cities
- 2) Given your answer to 1, and knowledge of the term *locational equilibrium* what can you say must be the case about **wages and or amenity values** in one city vs the other?

Example

Stepping Back

One assumption underling the above example:

Is this reasonable? **Discuss**

Checklist

- 1) Intro to Rents 🗸
- 2) Rents Across Cities

 V
 - Supply and Demand variation
 - Eq computation
- 3) Rents Within Cities

The Bid-Rent Curve

The **Bid - Rent Curve** is the relationship between housing prices and the distance of land from the city center [†]

These curves vary across sectors

- Consumer Bid rent curve: commuting costs
- Rural Bid Rent: fertility of land
- Manufacturing: Accessibility to consumers and suppliers
- Tech/info: Accessibility to Information

† It actually does not have to be the city center -- can be a point of attraction. In this class we will always use the city center though.

Housing Prices Model

We now build a simple model of rental/housing prices within a city

- 1) Commuting cost is **only location factor** in decision making
 - All locations are otherwise identical
- 2) Only one member of household commutes to employment area
- 3) Only considers the monetary (not time) cost of commuting
- 4) Noncommuting travel is insignificant
- 5) Public services, **taxes, amenities** are the same everywhere (implication from 1)

Locational Indifference

Axiom 1: Housing prices adjusts until there is locational indifference (and prices in general)

• IE: until an increase in rent for a closer location just offsets the lower commuting costs

In math:

- P: **price** of housing (price per square foot)
- h: **amount** of housing (in ft^2)
- x: distance to employment area

• t: **commuting cost** per mile

Slope of the Housing Bid-Rent Curve

If there is locational indifference we can derive the slope of the bid-rent curve:

Slope of the Housing Bid-Rent Curve

If there is locational indifference we can derive the **slope** of the **bid-rent** curve:

Slope of the Housing Bid-Rent Curve

If there is locational indifference we can derive the **slope** of the **bid-rent** curve:

Another Derivation

Suppose you have decided that the optimal amount of money to spend on housing and commuting per month is M^st

You can allocate this as

$$P \cdot h + x \cdot t = M^*$$

• Since we graph the bid rent curve in the (x,P) space, we solve for p:

No Substitution

Example Suppose the following:

- Each household has \$800 a month to spend on housing and commuting
- All rental units are the same size, with each HH occupying a rental unit that is 1000 sq ft
- Monthly commuting cost is \$50 dollars per mile from employment center

Task: Draw the housing - price curve. Put miles from city center on x axis and price per square foot on y axis

Example: The housing price curve

Substitution

Q1: If you really wanted to live closer to campus -- or an exciting downtown in a big city -- would you be willing to live in a smaller apartment to do so?

Substitution

Let's formalize the mechanism for substitution a bit:

higher prices \implies higher oppurtunity cost per square foot of housing (for the consumer)

- As price of rent increases, consumers are likely to substitute (atleast somewhat) towards other goods, decreasing the square footage of housing demanded
- Housing units closer to city centers are thus likely to be smaller in size

Adding substitution to the model

Q3: Did our model of locational indifference accommodate for substitution? Why or Why not?

$$\Delta P \cdot h + \Delta x \cdot t = 0$$

A3: No because h (the quantity of housing consumed) is **independent of distance** from center (x)

If consumers can substitute, our locational indifference condition becomes:

- Where h(x) is an increasing function of x
- Ex: h(10) > h(5) (the quantity of housing demanded 10 miles from the center exceeds that of 5 miles)

Quick Q

Q4 What is the new slope of the bid-rent curve?

Q5 Using the equation above what happens to the slope of the housing bid-rent curve as x increases. **Why**?

Model with Substitution Graph

Checklist

- 1) Intro to Rents 🗸
- 2) Rents Across Cities V
 - Supply and Demand variation across cities
 - Eq computation
- 3) Rents Within Cities <a>V
 - The bid rent curve for consumers
 - Locational Indifference
 - With substitution