Decentralized Learning of GANs from Multi-Client Non-iid Data

Ryo Yonetani (OMRON SINIC X), Tomohiro Takahashi (OMRON), Atsushi Hashimoto (OMRON SINIC X), Yoshitaka Ushiku (OMRON SINIC X)

Problem Setting

Multiple image collections $\{X_i \mid i = 1, ..., N\}$ that are

- Owned separately and privately by different clients
- Drawn from non-identical distributions with different classes, $p_i(x)$

Output: Distribution comprising all the classes, $p_{max}(x) = \frac{1}{Z} \max_{i} p_i(x)$

 X_i needs to be decentralized and private in each client storage

Clients:

Cooperate training in a secure fashion

Server:

Generate images of all the classes

Decentralized GANs

- 1. Each client trains an individual discriminator $D_i(x)$ with its own data X_i
- 2. Server updates generator G to fool D_1, \dots, D_N to get $p_g = p_{max} \rightarrow but how?$

Our Contributions

- 1. Forgiver-First Update (F2U): update G to fool $D_{max}(x) = \max_{i} D_i(x)$. Has a theoretical guarantee to achieve $p_g = p_{max}$ as the global optimum!
- 2. Forgiver-First Aggregation (F2A): update G to fool $D_{agg}(x) = \sum_i w_i D_i(x)$ where w_i adaptively emphasizes forgiving D. Can work well in practice and involve secure-aggregation protocols to make the training provably secure

Forgiver-First Update (F2U)

Lemma 1: When $D_i(x)$ was trained optimally from $p_i(x)$, $D_{max}^*(x) = \max_i D_i(x)$ can be regarded as the optimal discriminator trained from $p_{max}(x)$.

Proof sketch:

- Client-wise optimal discriminator $D_i^*(x) = \frac{p_i(x)}{p_i(x) + p_g(x)}$

 $D_2(G(z)) = 0.2$

Theorem 2: When G is trained against $D_{max}^*(x)$, the GAN achieves its global optimum if and only if $p_g = p_{max}$.

Proof sketch:

Optimizing Generator's objective for LSGAN corresponding to minimizing f-divergence

$$L(G) = \frac{1}{2} \int_{x} \frac{\left(p_{max}(x) + p_{g}(x)\right) \alpha^{2} p_{g}^{2}(x)}{\left(p_{max}(x) + \alpha p_{g}(x)\right)^{2}} dx = \frac{1}{2} D_{f}(p_{g}||p_{max}) + const$$

where $f(x) = \frac{(x+1)\alpha^2x^2}{(1+\alpha x)^2} - \frac{2\alpha^2}{(1+\alpha)^2}$ is a convex continuous function with f(1) = 0

Forgiver-First Aggregation (F2A)

 $D_{agg}(x) = \sum_{i} w_{i} D_{i}(x)$ where $w_{i} = softmax(\lambda D_{i}(x))$

- λ -> large, $D_{agg}(x)$ will converge to $D_{max}(x)$.
- λ -> small, $D_{a,g,g}(x)$ will average $D_i(x)$ equally.
- λ is updated via backprop to better fit to given data

$D_1(G(z)) = 0.8$

 $D_2(G(z)) = 0.2$

Security consideration

- $D_i(x)$ can be used to infer if X_i contains certain x.
- $D_{aaa}(x)$ and its loss gradient consist of summation over client-wise variables
- All the computations needed to update G can be wrapped by secure-aggregation that allows one to compute $\sum_i a_i$ while keeping a_i secret.

Contact information

Ryo Yonetani, Ph.D. Senior Researcher at OMRON SINIC X ryo.yonetani@sinicx.com https://yonetaniryo.github.io

Experimental Results

Data: splitting MNIST, FMNIST, and CIFAR10 into five subsets such that X_1, X_2, X_3, X_4, X_5 contains {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9} —th classes

(Non-OVL: non-overlapping condition)

{0, 1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7}, {6, 7, 8, 9}, {8, 9, 0, 1}-th classes (Mod-OVL: moderately-overlapping condition)

Baselines: MD-GAN, GMAN (both learns G from multiple Ds but with different aggregation strategies)

FID scores

	MNIST		F-MNIST		CIFAR10	
	Non-OVL	Mod-OVL	Non-OVL	Mod-OVL	Non-OVL	Mod-OVL
MD-GAN	38.42	34.33	56.09	47.12	56.64	50.30
GMAN*	67.69	58.65	56.79	49.84	50.50	41.83
F2U (Ours)	22.19	13.38 14.53	43.67	32.65	66.43	40.42
F2A (Ours)	18.96		37.16	29.03	38.92	41.01

Related Work

- Distributed SGD: mostly assumes iid data and supervised learning
- Federated learning: assumes non-iid data but still with supervised setting
- GANs with multiple Ds and/or Ds: mainly for stabilizing training, modeling multi-domain data, etc, not for decentralized learning

Future Directions

- More practical settings: conditional, multiple Gs, etc.
- Other adversarial learning: GAIL, adversarial domain adaptation, etc.