

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

VALIDAÇÃO DOS CÁLCULOS E RELATÓRIOS MAC015 - Resistência dos Materias

Júlia Zoffoli Caçador 202365520B Robert Gonçalves Vieira de Souza 202365505B Rubia Danielle Viol 202365515B

Link para o Google Colab: Link para o Google Colab

Juiz de Fora, 2025

Sumário

1	Observações 2				
2	Questão 1				
	2.1	Gráfic	80	2	
	2.2	Relató	ório	2	
3	Questão 2				
	3.1	Cargas	s Pontuais	3	
	3.2	.2 Carregamentos Distribuidos		4	
		3.2.1	Carregamento Retangular	4	
		3.2.2	Carregamento Triangular	5	
		3.2.3	Carregamento Trapezoidal	6	
	3.3	Funcio	onamento e Estrutura Geral	7	
		3.3.1	Definições de Enums	7	
		3.3.2	Classes e Funções	8	
	3.4	Interac	ção com o Usuário	8	
		3.4.1	Carregamentos Pontuais:	8	
		3.4.2	Carregamentos Distribuídos:	8	
		3.4.3	Apoios:	8	
	3.5	Result	tados Gerados	9	
		3.5.1	Validação da Estabilidade:	9	
		3.5.2	Cálculo de Reações:	9	
		3.5.3	Exibição dos Resultados	9	
4	Que	estão 3		10	
	4.1	Aplica	ação em exemplos:	10	
	4.2	Funcio	onamento e Estrutura Geral	12	
		4.2.1	Classe Nó	12	
		4.2.2	Classe Barra	13	
		4.2.3	Classe Treliça	13	
	4.3	Detall	namento do Cálculo	14	
		4.3.1	Funcionamento	14	
		4.3.2	Exibição dos Resultados	14	
	4.4	Exem	plo de Execução	15	

1 Observações

Para a validação da rotina computacional gerada, foi usado o software *FTool* para comparar os resultados.

2 Questão 1

2.1 Gráfico

Força resultante: 1.00 N Direção da resultante: 0.00 graus

Figura 1: Gráfico para representação da força resultante

2.2 Relatório

Para a execução da 1ª questão, foi desenvolvida uma rotina computacional que tem como propósito calcular e representar graficamente a força resultante de um conjunto de forças coplanares concorrentes.

Ele solicita ao usuário o número de forças atuantes e permite escolher entre dois formatos de entrada:

1. Inserção de intensidade e ângulo de cada força em relação à horizontal

2. Inserção das componentes cartesianas x e y das forças.

Para o primeiro formato, ele utiliza a função separaComponentes para calcular as componentes x (horizontal) e y (vertical) de cada força a partir de sua intensidade e ângulo, aplicando as funções trigonométricas seno e cosseno. No segundo formato, os valores das componentes são fornecidos diretamente.

Após armazenar todas as forças em uma matriz de coordenadas, o programa utiliza a função *calculaResultante* para determinar a força resultante. Ele soma separadamente os componentes x e y de todas as forças para obter os componentes da resultante. Com esses valores, calcula a magnitude da resultante utilizando o teorema de Pitágoras

$$F = \sqrt{x^2 + y^2}$$

e determina a direção do vetor resultante em relação ao eixo horizontal por meio da função arcotangente (atan2), convertendo o resultado para graus.

Além disso, o código fornece uma visualização gráfica da força resultante utilizando o módulo *matplotlib*. Ele plota o vetor da resultante no plano cartesiano, com uma escala adequada para facilitar a interpretação. O gráfico inclui eixos, grades, e uma legenda indicando a intensidade e o ângulo da força resultante. Finalmente, ele imprime no terminal os valores da intensidade e direção da resultante, fornecendo uma representação quantitativa e visual do sistema de forças.

Este programa é útil para aplicações práticas, como o estudo de equilíbrio de forças em estruturas ou o cálculo de vetores resultantes em dinâmica.

3 Questão 2

3.1 Cargas Pontuais

Figura 2: Estrutura Gerada.

Figura 4: Resultado obtido através do programa desenvolvido.

3.2 Carregamentos Distribuidos

3.2.1 Carregamento Retangular

Figura 5: Estrutura Gerada.

Figura 6: Resultado obtido através do FTool

RESULTADO:

Carregamento 1:

Fx: 0.00 Fy: 800.00 Posição: 7.00

Reações nos apoios:

A_x: 0.00 A_y: 800.00 M: 5600.00

Figura 7: Resultado obtido através do programa desenvolvido.

3.2.2 Carregamento Triangular

Figura 8: Estrutura Gerada.

Figura 10: Resultado obtido através do programa desenvolvido.

3.2.3 Carregamento Trapezoidal

Figura 11: Estrutura Gerada.

Carregamento 1: Fx: 0.00 Fy: 135.00

Fy: 135.00 Posição: 1.50

Carregamento 2:

Fx: 0.00 Fy: 135.00 Posição: 3.67

Carregamento 3:

Fx: 0.00 Fy: 306.00 Posição: 7.71

Reações nos apoios:

A_x: 0.00 A_y: 236.50 B_y: 339.50

Figura 13: Resultado obtido através

Figura 13: Resultado obtido através do programa desenvolvido.

3.3 Funcionamento e Estrutura Geral

O programa é dividido em várias partes conectadas que permitem configurar uma viga com diferentes tipos de carregamentos e apoios, verificando sua estabilidade e determinando as reações nos apoios.

3.3.1 Definições de Enums

Figura 12: Resultado obtido através do FTool

São criados dicionários para categorizar os tipos de carregamentos, apoios e estabilidade da viga:

- Tipos de carregamento: Retangular, triangular e trapézoidal.
- Tipos de apoio: Apoio de 1º, 2º e 3º gênero.
- Tipos de estabilidade: Hipoestática, isostática, e hiperestática.

3.3.2 Classes e Funções

- CarregamentoPontual
 - Representa uma carga pontual com intensidade, posição e angulação.
 - Utiliza a função 'separaComponentes' para calcular as componentes horizontal ('Fx') e vertical ('Fy') da força.
- CarregamentoDistribuido:
 - Representa um carregamento distribuído que pode ser retangular, triangular ou trapézoidal.
 - Calcula a função w(x) para o carregamento e, a partir dela, a força resultante (integral de w(x)) e o centroide (posição da resultante).
- Apoio: Representa os diferentes tipos de apoios e suas características, como reações verticais e horizontais.
- gerar_numIncognitas: calcula o número de incógnitas no sistema, com base no tipo e na quantidade de apoios.
- get_estabilidade: Avalia a estabilidade da viga comparando o número de equações de equilíbrio (3 para sistemas planares) com o número de incógnitas.
- calcula_reacoes: Aplica o método dos momentos e as equações de equilíbrio de forças (em x e y) para calcular as reações nos apoios.

3.4 Interação com o Usuário

O código solicita informações sobre os carregamentos e apoios de forma interativa:

3.4.1 Carregamentos Pontuais:

• Intensidade, posição e angulação.

3.4.2 Carregamentos Distribuídos:

- Tipo de carregamento (retangular, triangular ou trapézoidal).
- Valores iniciais e finais do carregamento (w₋0, w₋1).
- Posições inicial e final (p_0, p_f).

3.4.3 Apoios:

- Tipo de apoio (1º, 2º ou 3º gênero).
- Posição de cada apoio.

3.5 Resultados Gerados

Após a entrada de dados:

3.5.1 Validação da Estabilidade:

- Verifica se a viga é isostática.
- Em caso de hiperestaticidade ou hipoestaticidade, o programa encerra com um erro.

3.5.2 Cálculo de Reações:

- Determina as reações nos apoios usando as equações de equilíbrio:
 - Somatório das forças em x=0
 - Somatório das forças em y = 0
 - Somatório dos momentos = 0

3.5.3 Exibição dos Resultados

- Mostra os valores das forças horizontais Fx e verticais Fy de cada carregamento.
- Exibe as reações em cada apoio calculadas.
- É exibido um gráfico com a plotagem das reações e das forças de cada carregamento.

Figura 14: Gráfico gerado por um exemplo.

4 Questão 3

4.1 Aplicação em exemplos:

15: Estrutura Gerada.

Figura

Figura 16: Resultado obtido através do FTool

Reações de apoio:

Nó 0: Rx = 0.00 kN Ry = 6.67 kN Nó 6: Ry = 7.33 kN

Figura 17: Resultado obtido através do programa desenvolvido.

Figura 18: Estrutura Gerada.

Figura 19: Resultado obtido através do FTool

```
Forcas nas barras:
Barra 0: 7.50 kN (Tração)
Barra 1: 15.00 kN (Tração)
Barra 2: 15.00 kN (Tração)
Barra 3: 22.50 kN (Tração)
Barra 4: 0.00 kN (Compressão)
Barra 5: 0.00 kN (Compressão)
Barra 6: 27.50 kN (Tração)
Barra 7: 42.50 kN (Tração)
Barra 8: 50.00 kN (Tração)
Barra 9: 0.00 kN (Compressão)
Barra 10: 10.61 kN (Compressão)
Barra 11: 7.50 kN (Tração)
Barra 12: 10.61 kN (Compressão)
Barra 13: 0.00 kN (Compressão)
Barra 14: 10.61 kN (Tração)
Barra 15: 27.50 kN (Compressão)
Barra 16: 38.89 kN (Tração)
_____
Reações de apoio:
Nó 0:
Ry = -7.50 \text{ kN}
Nó 4:
Rx = -50.00 \text{ kN}
Ry = 27.50 kN
```

Figura 20: Resultado obtido através do programa desenvolvido.

4.2 Funcionamento e Estrutura Geral

Este código resolve uma treliça utilizando o **Método de Equilíbrio dos Nós**, onde os nós são modelados como pontos no espaço, e as forças são calculadas com base no equilíbrio de forças. O programa possui uma estrutura modular dividida em três classes principais, que representam os componentes de uma treliça: **Nós, Barras,** e a própria **Treliça**. A resolução do sistema de equações é realizada através da montagem de um sistema linear com a biblioteca Sympy que considera as forças nos nós, as reações nos apoios e as propriedades das barras.

4.2.1 Classe Nó

A classe **No** representa um ponto na treliça, onde as forças podem ser aplicadas. Cada nó possui:

- Coordenadas (x, y): Localização no plano cartesiano.
- Forças (fx, fy): Forças aplicadas nas direções X e Y (opcionais).
- Barras: Barras conectadas ao nó.

• Restrições de movimento: Indica se o nó possui algum tipo de Apoio conectado à ele, podendo ser fixo ou móvel.

Métodos principais:

- adicionar_barra: Adiciona barras conectadas ao nó.
- definir_apoio: Define se o nó possui restrições em X ou Y (ou ambos).

4.2.2 Classe Barra

A classe **Barra** representa a conexão entre dois nós, com as propriedades de comprimento, força e direção. Cada barra tem:

- Nós (no1, no2): Nós que estão conectados pela barra.
- Comprimento: Calculado com base na distância entre os dois nós.
- Força: Força interna na barra (calculada posteriormente).
- Ângulo: Ângulo da barra em relação ao eixo X.

Métodos principais:

- calcular_comprimento: Calcula o comprimento da barra usando a fórmula da distância euclidiana.
- calcular_angulo: Calcula o ângulo da barra em relação ao eixo X.
- obter_cossenos_diretores: Obtém os cossenos direcionais no eixo X e Y para aplicar no sistema de equações.

4.2.3 Classe Treliça

A classe **Treliça** gerencia a estrutura da treliça, incluindo a adição de nós, barras e apoios. Além disso, ela realiza a validação da isostaticidade e a resolução do sistema de equações. Cada treliça possui:

- Lista de Nós: Todos os nós da treliça.
- Lista de Barras: Todas as barras que conectam os nós.
- **Métodos**: Métodos para adicionar nós, barras e resolver o sistema linear de forças.

Métodos principais:

• adicionar_no: Adiciona um nó à treliça.

- adicionar_barra: Adiciona uma barra entre dois nós.
- validar_isostatica: Valida se a treliça é isostática (barras + numero de icógnitas = 2 * nós).
- resolver: Resolve o sistema de equações e determina as forças nas barras e reações nos apoios.
- imprimir_resultados: Exibe as forças nas barras e as reações nos apoios após a resolução.

4.3 Detalhamento do Cálculo

4.3.1 Funcionamento

O processo de cálculo segue os seguintes passos:

- 1. **Definição dos Nós**: O usuário insere as coordenadas dos nós e, opcionalmente, as forças externas aplicadas nos nós. Cada nó pode ser fixo ou móvel, dependendo das restrições de movimento que são definidas.
- 2. **Definição dos Apoios**: O programa permite definir o tipo de apoio em cada nó:
 - Apoio de 1º gênero (móvel): Impede o movimento apenas no eixo Y.
 - Apoio de 2º gênero (fixo): Impede o movimento nos eixos X e Y.
- 3. **Definição das Barras**: O usuário conecta os nós por meio das barras. Cada barra tem um comprimento, um ângulo e uma direção de força que será usada para resolver o sistema de equações.
- 4. **Visualização**: O sistema gera um gráfico plano cartesiano, plotando os nós, as barras e os apoios. Isso permite ao usuário visualizar a treliça e verificar se os dados foram inseridos corretamente.
- 5. Exibição dos Resultados: Após a resolução do sistema de equações, o sistema exibe as forças nas barras e as reações nos apoios. A força em cada barra pode ser classificada como Tração ou Compressão.

4.3.2 Exibição dos Resultados

Após a resolução, os resultados são apresentados:

- Forças nas Barras: O sistema calcula a força interna de cada barra. Se a força for positiva, significa que a barra está em tração; se for negativa, está em compressão.
- Reações nos Apoios: As forças de reação nos apoios são calculadas. Para cada nó com apoio, o programa exibe a reação nas direções X e Y.

4.4 Exemplo de Execução

O programa permite que o usuário insira os dados de uma treliça, conforme o exemplo abaixo:

- Número de Nós: O número total de nós a serem inseridos.
- Apoios: Definição do tipo de apoio para cada nó.
- Barras: Conexão entre os nós.

Após a inserção desses dados, o programa gera o gráfico da treliça e resolve o sistema linear para encontrar as forças nas barras e as reações nos apoios.