Laboratory Exam

Simple Linear Regression

Charlene Garridos

2023-06-29

Contents

1	The	Fractional Distillation Data	1
	1.1	Scatter Diagram	2
	1.2	The Least-Squares Fit	3
	1.3	The Estimate	4
	1.4	Test for Significance of Regression in the Fractional Distillation Regression Model. $\ \ldots \ \ldots$	5
	1.5	An analysis-of-variance approach to test significance of regression	6
	1.6	95% CI on the slope	7
	1.7	95% CI on the mean purily when the hydrocarbon percentage is 1.00	7
2	The	Steam Consumption Data	7
	2.1	Scatter Diagram	8
	2.2	The Least-Squares Fit	9
	2.3	The Estimate	9
	2.4	Test for Significance of Regression in the Steam Consumption Regression Model	10
	2.5	An analysis-of-variance approach to test significance of regression.	11
	2.5 2.6	An analysis-of-variance approach to test significance of regression	

1 The Fractional Distillation Data

The purity of oxygen produced by a fractional distillation process is thought to be related to the percentage of hydrocarbons in the main condensor of the processing unit.

```
# Specify the file path relative to the working directory
file_path <- "/Users/User/Downloads/fractional_distillation_data.csv"
# Read the CSV file</pre>
```

```
fractional_distillation_data <- read.csv(file_path)

# View the data
print(fractional_distillation_data)</pre>
```

```
Purily Hydrocarbon
##
## 1
       86.91
## 2
       89.85
                    1.11
## 3
       90.28
                    1.43
## 4
       86.34
                    1.11
## 5
       92.58
                    1.01
                    0.95
## 6
       87.33
## 7
       86.29
                    1.11
## 8
       91.86
                    0.87
## 9
       95.61
                    1.43
## 10 89.86
                    1.02
                    1.46
## 11 96.73
## 12 99.42
                    1.55
## 13 98.66
                    1.55
## 14 96.07
                    1.55
## 15 93.65
                    1.40
## 16 87.31
                    1.15
## 17 95.00
                    1.01
## 18 96.85
                    0.99
## 19 85.20
                    0.95
## 20 90.56
                    0.98
```

1.1 Scatter Diagram

a. Create a scatter diagram for the data.

Scatterplot of Hydrocarbon and Purity of Oxygen

Least-Squares Estimation of the Parameters

Use the lm() function to calculate the linear model based on the data set.

```
# calculate model
model <- lm(data = fractional_distillation_data,
formula = Purily ~ Hydrocarbon)</pre>
```

The model object is a list of a number of different pieces of information, which can be seen by looking at the names of the objects in the list.

```
# view the names of the objects in the model
names(model)
##
    [1] "coefficients"
                         "residuals"
                                          "effects"
                                                           "rank"
    [5] "fitted.values" "assign"
                                          "qr"
                                                           "df.residual"
    [9] "xlevels"
                         "call"
                                          "terms"
                                                           "model"
model$coefficients
   (Intercept) Hydrocarbon
##
      77.86328
                   11.80103
```

1.2 The Least-Squares Fit

The summary() function is a useful way to gather critical information in your model. b. The Least-squares fit is

```
model_summary <- summary(model)</pre>
model_summary$sigma
## [1] 3.59656
model_summary$coefficients
##
               Estimate Std. Error
                                     t value
                                                 Pr(>|t|)
## (Intercept) 77.86328 4.198888 18.543786 3.537382e-13
## Hydrocarbon 11.80103 3.485119 3.386119 3.291122e-03
1.3
      The Estimate
c.
The estimate of \sigma^2 is
sigma_squared<- (model_summary$sigma)^2</pre>
sigma_squared
## [1] 12.93524
Hypothesis Testing on the Slope and Intercept
model_summary
##
## Call:
## lm(formula = Purily ~ Hydrocarbon, data = fractional_distillation_data)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
## -4.6724 -3.2113 -0.0626 2.5783 7.3037
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 77.863
                        4.199 18.544 3.54e-13 ***
                             3.485
                                   3.386 0.00329 **
## Hydrocarbon
                 11.801
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.597 on 18 degrees of freedom
## Multiple R-squared: 0.3891, Adjusted R-squared: 0.3552
## F-statistic: 11.47 on 1 and 18 DF, p-value: 0.003291
model_summary$coefficients["Hydrocarbon",]
##
       Estimate
                  Std. Error
                                  t value
                                              Pr(>|t|)
## 11.801028193 3.485118700 3.386119444 0.003291122
```

mosaic::xqt(0.95, 18)

```
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
```


[1] 1.734064

1.4 Test for Significance of Regression in the Fractional Distillation Regression Model.

d. Test for Significance of Regression in the Fractional Distillation Regression Model.

Based on the statistical analysis conducted, the t-statistic for the coefficient of Hydrocarbon, with the 95% confidence interval, is 3.386 (p < 0.003), indicating a significant relationship between hydrocarbon and the purity of oxygen. This positive t-value suggests that as the hydrocarbon increases, the purity of oxygen tends to increase. Therefore, we can infer that hydrocarbon has a substantial impact on the purity of oxygen in the fractional distillation data.

Thus, the statistically significant t-value provides strong evidence to reject H_0 : $\beta_1 = 0$ and support the conclusion that hydrocarbon is an influential factor in determining the purity of an oxygen.

model_summary\$fstatistic

```
## value numdf dendf
## 11.4658 1.0000 18.0000
```

```
mosaic::xqf(0.95,1,18)
```


[1] 4.413873

1.5 An analysis-of-variance approach to test significance of regression.

e. An analysis-of-variance approach to test significance of regression. At 95% confidence interval, the F-statistic of 11.4658 (p < 0.003) obtained from the regression analysis indicates that the overall model, including the intercept and the predictor variable hydrocarbon, is statistically significant. It suggests the inclusion of hydrocarbon as a predictor in the model significantly improves the ability to predict the purity of the oxygen compared to a model without this variable. Along with the low p-value, it indicates that there is a low probability of obtaining such a strong relationship between the predictors and the response variable by chance alone. This strengthens our confidence in the conclusion that hydrocarbon has a substantial impact on the purity of the oxygen. Therefore, the F-statistic provides strong evidence to reject $H_0: \beta_1 = 0$.

1.6 95% CI on the slope

```
confint(model_summary)

## 2.5 % 97.5 %

## (Intercept) 69.041747 86.68482

## Hydrocarbon 4.479066 19.12299
```

1.7 95% CI on the mean purily when the hydrocarbon percentage is 1.00

```
confint(model_summary$coefficients)

## Confidence Interval from Bootstrap Distribution (8 replicates)

## 2.5% 97.5%

## percentile 0.0005759464 67.48237
```

2 The Steam Consumption Data

The number of pounds of steam used per month at a plant is thought to be related to the average monthly ambient temperature.

```
# Specify the file path relative to the working directory
file_path <- "/Users/User/Downloads/steam_consumption_data.csv"

# Read the CSV file
steam_consumption_data <- read.csv(file_path)

# View the data
print(steam_consumption_data)</pre>
```

```
##
      Month Temperature Usage
                     21 185.79
## 1
        Jan
## 2
        Feb
                     24 214.47
## 3
                     32 288.03
        Mar
## 4
        Apr
                     47 424.84
## 5
                     50 454.68
        May
                     59 539.03
## 6
        Jun
                     68 621.55
## 7
        Jul
## 8
        Aug
                     74 675.06
## 9
                     62 562.03
        Sep
## 10
        Oct
                     50 452.93
## 11
        Nov
                     41 369.95
## 12
                     30 273.98
        Dec
```

2.1 Scatter Diagram

a. Create a scatter diagram for the data.

Scatterplot of Temperature and Past Year's Usage

Least-Squares Estimation of the Parameters

Use the lm() function to calculate the linear model based on the data set.

```
# calculate model
model_1 <- lm(data = steam_consumption_data,
formula = Usage ~ Temperature)</pre>
```

The model object is a list of a number of different pieces of information, which can be seen by looking at the names of the objects in the list.

```
# view the names of the objects in the model
names(model_1)

## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
```

```
model_1$coefficients
```

```
## (Intercept) Temperature
## -6.332087 9.208468
```

2.2 The Least-Squares Fit

The summary() function is a useful way to gather critical information in your model. b. The Least-squares fit is

```
model_1_summary <- summary(model_1)
model_1_summary$sigma</pre>
```

[1] 1.945628

model_1_summary\$coefficients

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.332087 1.67004573 -3.791565 3.534310e-03
## Temperature 9.208468 0.03382295 272.254999 1.099192e-20
```

2.3 The Estimate

c. The estimate of σ^2 is

```
sigma_squared<- (model_1_summary$sigma)^2
sigma_squared</pre>
```

[1] 3.78547

Hypothesis Testing on the Slope and Intercept

```
model_1_summary
```

```
##
## lm(formula = Usage ~ Temperature, data = steam_consumption_data)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -2.5629 -1.2581 -0.2550 0.8681 4.0581
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -6.33209
                          1.67005 -3.792 0.00353 **
## Temperature 9.20847
                          0.03382 272.255 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.946 on 10 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 7.412e+04 on 1 and 10 DF, p-value: < 2.2e-16
```

```
model_1_summary$coefficients["Temperature",]
```

```
## Estimate Std. Error t value Pr(>|t|)
## 9.208468e+00 3.382295e-02 2.722550e+02 1.099192e-20
```

```
mosaic::xqt(0.99, 10)
```


[1] 2.763769

2.4 Test for Significance of Regression in the Steam Consumption Regression Model.

d. Test for Significance of Regression in the Steam Consumption Regression Model.

Based on the statistical analysis conducted, the t-statistic for the coefficient of Temperature, with the 99% confidence interval, is 2.722 (p < 0.002), indicating a significant relationship between temperature and usage. This positive t-value suggests that as the temperature increases, the usage tends to increase. Therefore, we can infer that temperature has a substantial impact on the usage of the steam consumption.

Thus, the statistically significant t-value provides strong evidence to reject H_0 : $\beta_1 = 0$ and support the conclusion that temperature is an influential factor in determining the usage.

model_1_summary\$fstatistic

value numdf dendf ## 74122.78 1.00 10.00

mosaic::xqf(0.99,1,10)

[1] 10.04429

2.5 An analysis-of-variance approach to test significance of regression.

e. An analysis-of-variance approach to test significance of regression. At 99% confidence interval, the F-statistic of 74122.78 (p < 0.002) obtained from the regression analysis indicates that the overall model, including the intercept and the predictor variable temperature, is statistically significant. It suggests the inclusion of temperature as a predictor in the model significantly improves the ability to predict the usage compared to a model without this variable. Along with the low p-value, it indicates that there is a low probability of obtaining such a strong relationship between the predictors and the response variable by chance alone. This strengthens our confidence in the conclusion that temperature has a substantial impact on the usage of the steam consumption. Therefore, the F-statistic provides strong evidence to reject $H_0: \beta_1 = 0$.

2.6 99% CI on the slope

```
confint(model_1_summary)

## 2.5 % 97.5 %

## (Intercept) -10.053181 -2.610993

## Temperature 9.133106 9.283830
```

2.7 99% prediction interval on the steam usage in a month with average ambient tempreature of 58 degrees.

```
(new_data <- data.frame(</pre>
 Temperature = c(58, 65, 65),
 Usage = c(455, 632, 423.09)
))
##
     Temperature Usage
            58 455.00
## 1
             65 632.00
## 2
## 3
             65 423.09
predict(model_1, new_data)
##
## 527.7590 592.2183 592.2183
predict(model_1, new_data, interval = "prediction")
##
          fit
                   lwr
## 1 527.7590 523.1644 532.3537
## 2 592.2183 587.4957 596.9410
## 3 592.2183 587.4957 596.9410
predict(model_1, new_data, interval = "confidence")
          fit
                   lwr
## 1 527.7590 526.2368 529.2813
## 2 592.2183 590.3448 594.0918
## 3 592.2183 590.3448 594.0918
confint(model_1)
                    2.5 %
                             97.5 %
## (Intercept) -10.053181 -2.610993
## Temperature
                 9.133106 9.283830
```