Specification of Thermoelectric Module

TEC1-12710

Description

The 127 couples, 40 mm \times 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70 $^{\circ}$ C or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Peformance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	16	17.2	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	10.1	10.1	DC current through the modules at DT _{max}	
Q _{C max} (Watts)	101.1	110.5	Cooling capacity at cold side of the module under DT=0 ℃	
AC resistance (Ohms)	1.25	1.38	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Positive lead wire (Red) 18AWG leads, PVC insulated Negative lead wire (Black) Cold side:Tc See ordering option See ordering option See ordering option

Manufacturing Options

A. Solder:

- 1. T100: BiSn (Melting Point=138°C)
- 2. T200: CuSn (Melting Point= 227 °C)

B. Sealant:

- 1. NS: No sealing (Standard)
- 2. SS: Silicone sealant
- 3. EPS: Epoxy sealant
- 4. Customer specify sealing

C. Ceramics:

- 1. Alumina (Al_2O_3 , white 96%)(AlO)
- 2. Aluminum Nitride (AlN)

D. Ceramics Surface Options:

- 1. Blank ceramics (not metalized)
- 2. Metalized (Copper-Nickel plating)

Ordering Option

Cuffin	Thickness	Flatness/	Lead wire length (mm)		
Suffix	H/(mm)	Parallelism (mm)	Standard/Optional length		
TF	0:3.6±0.1	0: 0.05/0.05	150±3/Specify		
TF	1:3.6±0.05	1: 0.025/0.025	150±3/Specify		
TF	2:3.6±0.025	2: 0.015/0.015	150±3/Specify		
Eg. TF01: Thickness 3.6±0.1(mm) and Flatness 0.025/0.025 (mm)					

Naming for the Module

TF01: Thickness ± 0.1 (mm) and Flatness/ Parallelism: 0.025/0.025 (mm)

Specification of Thermoelectric Module

TEC1-12710

Imax=10.1 A 90 I = 8 AI = 6 AI = 4 AI = 2 A36 18 10 20 70 DT / °C

Performance Curves at Th=50 °C

Standard Performance Graph Qc= f(DT)

Standard Performance Graph V = f(DT)

Standard Performance Graph Qc = f(V)

Specification of Thermoelectric Module

TEC1-12710

Performance Curves at Th=27 ℃

5 4 — DT=30 °C — DT=20 °C — DT=10 °C — DT=0 °C O DT=0 °C Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Cold side of the module sticked on the object being cooled
- Hot side of the module mounted on a heat radiator
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.