g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

The NLMIXED Procedure

Specifications				
Data Set	WORK.A			
Dependent Variable	y1d			
Distribution for Dependent Variable	Binomial			
Random Effects	u			
Distribution for Random Effects	Normal			
Subject Variable	id			
Optimization Technique	Dual Quasi-Newton			
Integration Method	Adaptive Gaussian Quadrature			

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

	Initial Parameters			
		Negative		
		Log		
beta	log_sigma	Likelihood		
2.1	0.33	46.5471807		

	Iteration History				
Iteration	Calls	Negative Log Likelihood	Difference	Maximum Gradient	Slope
1	5	46.3972952	0.149885	0.99921	-10.7322
2	8	46.3397697	0.057525	0.11979	-6.36809
3	10	46.3392704	0.000499	0.007571	-0.00106
4	12	46.3392688	1.649E-6	0.000069	-3.31E-6
5	14	46.3392688	8.79E-10	0.000011	-1.54E-9

NOTE: GCONV convergence criterion satisfied.

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

The NLMIXED Procedure

Fit Statistics	
-2 Log Likelihood	92.7
AIC (smaller is better)	96.7
AICC (smaller is better)	97.2
BIC (smaller is better)	99.1

_				
Dar	ama	tor	Estim	natac

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	959 Confid Lim	ence	Gradient
beta	2.3741	0.4890	24	4.85	<.0001	1.3648	3.3834	-8.17E-6
log_sigma	0.4625	0.2667	24	1.73	0.0957	-0.08791	1.0129	-0.00001

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.2391	0.07167
log_sigma	0.07167	0.07112

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.5495
log_sigma	0.5495	1.0000

g004.sas: Separate mixed models for rsfMRI and comparative 1. rsfMRI

Obs	id	n	p1raw	p1	p1I	p1u
1	Anzellotti 2010	1	1.00000	0.92796	0.34818	0.99679
2	Song 2006	2	1.00000	0.93665	0.41690	0.99674
3	Wang 2007	2	1.00000	0.93665	0.41690	0.99674
4	Tavares 2017	3	1.00000	0.94297	0.47123	0.99675
5	Weaver 2013	4	0.75000	0.82892	0.36427	0.97617
6	Gnanadas 2017	6	0.83333	0.86658	0.46774	0.97959
7	Morgan 2003	6	1.00000	0.95500	0.58313	0.99690
8	Stufflebeam 2011	6	0.83333	0.86658	0.46774	0.97959
9	Zhao 2019	6	1.00000	0.95500	0.58313	0.99690
10	vanHoudt 2015	7	1.00000	0.95772	0.60976	0.99696
11	Jann 2008	8	1.00000	0.96007	0.63289	0.99703
12	Kang 2003	8	1.00000	0.96007	0.63289	0.99703
13	Hunyadi 2014	10	0.70000	0.75048	0.42928	0.92323
14	Yang 2015	11	1.00000	0.96549	0.68722	0.99720
15	Hunyadi 2015b	12	1.00000	0.96692	0.70163	0.99726
16	Hunyadi 2015a	18	0.61111	0.64979	0.40951	0.83233
17	Su 2015	21	1.00000	0.97537	0.78675	0.99765
18	Barron 2014	23	1.00000	0.97660	0.79905	0.99772
19	Lee 2014	29	0.79310	0.80608	0.62055	0.91354
20	Reyes 2016	34	0.91176	0.91216	0.76228	0.97112
21	Boerwinkle 2017	36	0.94444	0.94024	0.80411	0.98369
22	Chen 2017	42	0.76190	0.77276	0.61810	0.87723
23	Bettus 2010	44	0.59091	0.60834	0.45295	0.74448
24	Khoo 2019	49	0.48980	0.50873	0.36596	0.65008
25	Boerwinkle 2019	64	0.39063	0.40765	0.28984	0.53713

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative $\frac{1}{2}$

The NLMIXED Procedure

Specifications				
Data Set	WORK.A			
Dependent Variable	yd1			
Distribution for Dependent Variable	Binomial			
Random Effects	u			
Distribution for Random Effects	Normal			
Subject Variable	id			
Optimization Technique	Dual Quasi-Newton			
Integration Method	Adaptive Gaussian Quadrature			

Dimensions	
Observations Used	25
Observations Not Used	0
Total Observations	25
Subjects	25
Max Obs per Subject	1
Parameters	2
Quadrature Points	25

	Initial Parameters						
	Negative						
		Log					
beta	log_sigma	Likelihood					
2.1	0.33	48.4687264					

Iteration History										
Iteration	Slope									
1	5	48.3458543	0.122872	1.13705	-9.72288					
2	8	48.2771755	0.068679	0.12540	-7.76176					
3	10	48.2763505	0.000825	0.010710	-0.00175					
4	12	48.2763433	7.163E-6	0.000445	-0.00001					
5	14	48.2763433	6.354E-9	1.161E-6	-1.27E-8					

NOTE: GCONV convergence criterion satisfied.

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative $\frac{1}{2}$

The NLMIXED Procedure

-							
Fit Statistics							
-2 Log Likelihood	96.6						
AIC (smaller is better)	100.6						
AICC (smaller is better)	101.1						
BIC (smaller is better)	103.0						

Pa	ran	nete	r Fs	tim	ates

Parameter	Estimate	Standard Error	DF	t Value	<i>Pr</i> > <i>t</i>	95 Confic Lim	Gradient	
beta	1.8878	0.3625	24	5.21	<.0001	1.1395	2.6360	1.135E-6
log_sigma	0.1986	0.2448	24	0.81	0.4253	-0.3068	0.7039	-1.16E-6

Covariance Matrix of Parameter
Estimates

	beta	log_sigma
beta	0.1314	0.04238
log_sigma	0.04238	0.05995

Correlation Matrix of Parameter Estimates

	beta	log_sigma
beta	1.0000	0.4774
log_sigma	0.4774	1.0000

g004.sas: Separate mixed models for rsfMRI and comparative 2. Comparative $\frac{1}{2}$

Obs	id	n	p2raw	p2	p2l	p2u
1	Anzellotti 2010	1	1.00000	0.88660	0.40054	0.98919
2	Song 2006	2	1.00000	0.89915	0.45920	0.98943
3	Wang 2007	2	1.00000	0.89915	0.45920	0.98943
4	Tavares 2017	3	1.00000	0.90854	0.50567	0.98974
5	Weaver 2013	4	1.00000	0.91591	0.54359	0.99006
6	Gnanadas 2017	6	0.83333	0.85026	0.49613	0.97037
7	Morgan 2003	6	1.00000	0.92691	0.60219	0.99067
8	Stufflebeam 2011	6	1.00000	0.92691	0.60219	0.99067
9	Zhao 2019	6	1.00000	0.92691	0.60219	0.99067
10	vanHoudt 2015	7	1.00000	0.93116	0.62543	0.99096
11	Jann 2008	8	1.00000	0.93483	0.64573	0.99122
12	Kang 2003	8	0.87500	0.87222	0.55921	0.97350
13	Hunyadi 2014	10	0.70000	0.75224	0.44967	0.91858
14	Yang 2015	11	0.81818	0.83462	0.55218	0.95382
15	Hunyadi 2015b	12	0.75000	0.78365	0.50512	0.92782
16	Hunyadi 2015a	18	0.61111	0.65729	0.42286	0.83390
17	Su 2015	21	1.00000	0.95929	0.78442	0.99349
18	Barron 2014	23	0.91304	0.90301	0.72093	0.97106
19	Lee 2014	29	0.89655	0.89149	0.72839	0.96179
20	Reyes 2016	34	0.91176	0.90461	0.75906	0.96616
21	Boerwinkle 2017	36	0.80556	0.81332	0.65375	0.90953
22	Chen 2017	42	0.85714	0.85850	0.71910	0.93498
23	Bettus 2010	44	0.50000	0.52718	0.37684	0.67275
24	Khoo 2019	49	0.46939	0.49553	0.35461	0.63716
25	Boerwinkle 2019	64	0.35938	0.38416	0.26918	0.51373

g004.sas: Separate mixed models for rsfMRI and comparative Both $\,$

Obs	id	n	p1raw	р1	p1I	p1u	p2raw	р2	p2l	p2u
1	Anzellotti 2010	1	1.00000	0.92796	0.34818	0.99679	1.00000	0.88660	0.40054	0.98919
2	Song 2006	2	1.00000	0.93665	0.41690	0.99674	1.00000	0.89915	0.45920	0.98943
3	Wang 2007	2	1.00000	0.93665	0.41690	0.99674	1.00000	0.89915	0.45920	0.98943
4	Tavares 2017	3	1.00000	0.94297	0.47123	0.99675	1.00000	0.90854	0.50567	0.98974
5	Weaver 2013	4	0.75000	0.82892	0.36427	0.97617	1.00000	0.91591	0.54359	0.99006
6	Gnanadas 2017	6	0.83333	0.86658	0.46774	0.97959	0.83333	0.85026	0.49613	0.97037
7	Morgan 2003	6	1.00000	0.95500	0.58313	0.99690	1.00000	0.92691	0.60219	0.99067
8	Stufflebeam 2011	6	0.83333	0.86658	0.46774	0.97959	1.00000	0.92691	0.60219	0.99067
9	Zhao 2019	6	1.00000	0.95500	0.58313	0.99690	1.00000	0.92691	0.60219	0.99067
10	vanHoudt 2015	7	1.00000	0.95772	0.60976	0.99696	1.00000	0.93116	0.62543	0.99096
11	Jann 2008	8	1.00000	0.96007	0.63289	0.99703	1.00000	0.93483	0.64573	0.99122
12	Kang 2003	8	1.00000	0.96007	0.63289	0.99703	0.87500	0.87222	0.55921	0.97350
13	Hunyadi 2014	10	0.70000	0.75048	0.42928	0.92323	0.70000	0.75224	0.44967	0.91858
14	Yang 2015	11	1.00000	0.96549	0.68722	0.99720	0.81818	0.83462	0.55218	0.95382
15	Hunyadi 2015b	12	1.00000	0.96692	0.70163	0.99726	0.75000	0.78365	0.50512	0.92782
16	Hunyadi 2015a	18	0.61111	0.64979	0.40951	0.83233	0.61111	0.65729	0.42286	0.83390
17	Su 2015	21	1.00000	0.97537	0.78675	0.99765	1.00000	0.95929	0.78442	0.99349
18	Barron 2014	23	1.00000	0.97660	0.79905	0.99772	0.91304	0.90301	0.72093	0.97106
19	Lee 2014	29	0.79310	0.80608	0.62055	0.91354	0.89655	0.89149	0.72839	0.96179
20	Reyes 2016	34	0.91176	0.91216	0.76228	0.97112	0.91176	0.90461	0.75906	0.96616
21	Boerwinkle 2017	36	0.94444	0.94024	0.80411	0.98369	0.80556	0.81332	0.65375	0.90953
22	Chen 2017	42	0.76190	0.77276	0.61810	0.87723	0.85714	0.85850	0.71910	0.93498
23	Bettus 2010	44	0.59091	0.60834	0.45295	0.74448	0.50000	0.52718	0.37684	0.67275
24	Khoo 2019	49	0.48980	0.50873	0.36596	0.65008	0.46939	0.49553	0.35461	0.63716
25	Boerwinkle 2019	64	0.39063	0.40765	0.28984	0.53713	0.35938	0.38416	0.26918	0.51373