Stochastic computation in recurrent networks of spiking neurons

Clayton Seitz

September 26, 2021

The squid giant axon

Hodkin and Huxley developed a mathematical model for nerve cell communication in 1952 using voltage data from the giant axon of a squid

Na^+ and K^+ are the major charge carriers

Ca²⁺ sensors enable high-speed two-photon imaging

Animal models and experimental technologies have improved drastically Scale bars: b, 250 um; c, d, 100 um

But our mathematical and physical theories of sensory processing are lacking...

Spiking neural networks: integrate and fire models

$$\tau \dot{V(t)} = -g_L V(t) + \sum_n w_n \theta_n(t)$$

Synaptic strengths are dynamic

 w_n represents the change in the post-synaptic membrane potential induced by an action potential at the presynaptic cell

 w_n is a result of complex biochemical pathways and is not necessarily a constant (synaptic plasticity)

Langevin dynamics of the membrane potential

Predicting I(t) is hard especially with dynamic synapses. We often model I(t) as a stochastic process e.g., $I(t) = \mu(t) + \sqrt{2D}\eta(t)$

$$\tau \dot{V(t)} = -g_L V(t) + \mu(t) + \sqrt{2D}\eta(t)$$

which is a Langevin equation

