Contents

1	Introduction														
	1.1 Symmetric cipher														
	1.2 Kerckhoff's principle														
2	Perfectly Secret Encryption														
	2.1 perfectly secure encryption														
	2.2 Prefect adversarial indistinguisha	bility													
	2.3 One-time pad														

Chapter 1

Introduction

Cryptography is the art and science of encrypting and decrypting a message.

1.1 Symmetric cipher

A symmetric cipher scheme Π can be viewed as a triplet (Gen, Enc, Dec) of algorithms. Suppose \mathcal{M} be the set of all possible messages and \mathcal{K} be the set of all keys. Gen chooses a key $k \in \mathcal{K}$ and then Enc: $\mathcal{M} \times \mathcal{K} \to \mathcal{C}$ encrypts the message m with key k and returns the cipher c. Lastly, Dec: $\mathcal{C} \times \mathcal{K} \to \mathcal{M} \cup \bot$ decrypts the cipher c with key k and returns either a message or an error, denoted as \bot . Without loss of generality we can assume that Gen picks k uniformly from \mathcal{K} . Futhermore, Enc can be randomized, however Dec is deterministic and for every message m and key k we must have

$$\operatorname{Dec}_k(\operatorname{Enc}_k(m)) = m$$

1.2 Kerckhoff's principle

Kerckhoff's principle assumes the following for every encryption scheme

- 1. The encryption and decryption is known to everyone.
- 2. The security of the scheme is only dependent on the key.

1.3 Attacks

Some possible attacks include (in increasing power)

Cihpertext only Attacker only knows the ciphertexts.

Known-plaintext Attacker knows one or more plaintext/ciphertext generated by the key.

Chosen-plaintext Attacker can obtain encryption of plaintexts of his choice.

Chosen-ciphertext Attacker can obtain decryption of ciphertexts of his choise.

1. Introduction

Chapter 2

Perfectly Secret Encryption

2.1 perfectly secure encryption

Let K and M be two random variables, where K is the result of Gen and M is the message. We can assume that they are independent. Furthermore, $C = \operatorname{Enc}_K(M)$ is also a random varible. By the Kerckhoff's principle, we assume that the distribution on M and Enc is known and only K is unknown.

Definition (Perfectly secure encrption): An encryption scheme is perfectly secure if for all $c \in \mathcal{C}$ with $\mathbb{P}(C=c) > 0$:

$$\forall m \in \mathcal{M}, \quad \mathbb{P}(M=m \mid C=c) = \mathbb{P}(M=m)$$
 (2.1)

Proposition 2.1. An encryption scheme Π is perfectly secure if and only if

$$\forall m, m' \in \mathcal{M}, \quad \mathbb{P}(\operatorname{Enc}_K(m) = c) = \mathbb{P}(\operatorname{Enc}_K(m') = c)$$
 (2.2)

Proof. Suppose Π is perfectly secure then (assuming that $\mathbb{P}(M=m)>0$)

$$\mathbb{P}(\operatorname{Enc}_K(m) = c) = \mathbb{P}(C = c \mid M = m) = \frac{\mathbb{P}(M = m \mid C = c)\mathbb{P}(C = c)}{\mathbb{P}(M = m)}$$
$$= \frac{\mathbb{P}(M = m)\mathbb{P}(C = c)}{\mathbb{P}(M = m)} = \mathbb{P}(C = c)$$

Now if the equation holds for Π then (again assuming that $\mathbb{P}(M=m)>0$)

$$\begin{split} \mathbb{P}(M=m\mid C=c) &= \frac{\mathbb{P}(C=c\mid M=m)\mathbb{P}(M=m)}{\mathbb{P}(C=c)} \\ &= \frac{\mathrm{Enc}_K(m)\mathbb{P}(M=m)}{\sum_{m^*}\mathbb{P}(C=c\mid M=m^*)\mathbb{P}(M=m^*)} \\ &= \frac{\mathbb{P}(M=m)}{\sum_{m^*}\mathbb{P}(M=m^*)} = \mathbb{P}(M=m) \end{split}$$

2.2 Prefect adversarial indistinguishability

An encryption scheme is **perfectly indistinguishable** if no adversary \mathcal{A} can succeed with probability better than $\frac{1}{2}$. Formally, we run the following experiment $\operatorname{PrivK}_{\mathcal{A},\Pi}^{eav}$

- 1. \mathcal{A} outputs a pair $m, m_0 \in \mathcal{M}$.
- 2. k = Gen and b chosen from $\{0,1\}$ uniformly then the **challenge ciphertext** $c = \text{Enc}_k(m_b)$ is given to \mathcal{A} .
- 3. \mathcal{A} tries to determine the which message was encrypted and then outputs b'.

4.

$$\operatorname{PrivK}_{\mathcal{A},\Pi}^{eav} \begin{cases} 1 & b' = b \text{ then } \mathcal{A} \text{ succeeds} \\ 0 & b' \neq b \text{ then } \mathcal{A} \text{ fails} \end{cases}$$

Since \mathcal{A} can guess randomly $\mathbb{P}(\operatorname{PrivK}_{\mathcal{A},\Pi}^{eav}=1) \geq \frac{1}{2}$ and thus a scheme is perfectly indistinguishable if

$$\mathbb{P}(\operatorname{PrivK}_{\mathcal{A},\Pi}^{eav} = 1) = \frac{1}{2}, \quad \forall \mathcal{A}$$

Proposition 2.2. Π is perfectly secret if and only if it is perfectly indistinguishable.

Proof.

$$\mathbb{P}(\operatorname{PrivK}_{A\Pi}^{eav} = 1) = \mathbb{P}(M = m \mid C = c)$$

2.3 One-time pad

Let $l \in \mathbb{N}^*$ and $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^l$ then one-time pad scheme is describe as follows

- Gen is uniform.
- $\operatorname{Enc}_k(m) = k \oplus m$.
- $\operatorname{Dec}_k(c) = k \oplus c$.

Theorem 2.3. One-time pad is perfectly secure.

Proof.

$$\mathbb{P}(M=m\mid C=c) = \frac{\mathbb{P}(C=c\mid M=m)\mathbb{P}(M=m)}{\sum_{m^*}\mathbb{P}(C=c\mid M=m^*)\mathbb{P}(M=m^*)}$$
$$= \frac{\mathbb{P}(K=c\oplus m)}{\sum_{m^*}\mathbb{P}(K=c\oplus m^*)\mathbb{P}(M=m^*)}\mathbb{P}(M=m)$$
$$= \mathbb{P}(M=m)$$

Proposition 2.4. If Π is perfectly secure then we must have $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof. Suppose $|\mathcal{K}| < |\mathcal{M}|$ and let $c \in \mathcal{C}$ be a ciphertext and define $\mathcal{M}(c)$ to the

$$\mathcal{M}(c) = \{ m \mid m = \mathrm{Dec}_k(c) \text{ for some } k \in \mathcal{K} \}$$

Then $|\mathcal{M}(c)| \leq |\mathcal{K}| < |\mathcal{M}|$ and therefore there exists $m \in \mathcal{M}$ such that $m \notin \mathcal{M}(c)$ hence

$$\mathbb{P}(M=m\mid C=c)=0\neq \mathbb{P}(M=m)$$

Note that we assumed the distribution over \mathcal{M} is uniform.

Theorem 2.5 (Shannon's Theorem). Π with $|\mathcal{M}| = |\mathcal{E}|$ is perfectly secure if and only if

- 1. Gen is uniform.
- 2. $\forall m \in \mathcal{M} \text{ and } c \in \mathcal{C}, \exists ! k \in \mathcal{K} \text{ such that } \operatorname{Enc}_k(m) = c.$

Proof.