Congratulations! You passed!

Grade received 100% To pass 80% or higher

Transformers

Latest Submission Grade 100%

1. A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture).

1/1 point

- O True
- False

Correct
 Correct! A Transformer Network can ingest entire sentences all at the same time.

2. Transformer Network methodology is taken from: (Check all that apply)

1/1 point

- None of these.
- Attention mechanism.
- Convolutional Neural Network style of architecture
- Convolutional Neural Network style of processing.
- **⊘** Correct
- 3. The concept of Self-Attention is that:

1/1 point

- Given a word, its neighbouring words are used to compute its context by selecting the highest of those word
 values to map the Attention related to that given word.
- O Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.
- **⊘** Correct
- 4. Which of the following correctly represents Attention?

1 / 1 point

- \bigcirc Attention $(Q, K, V) = min(\frac{QK^T}{\sqrt{d_*}})V$
- \bigcap Attention $(Q, K, V) = min(\frac{QV^T}{\sqrt{d_c}})K$
- \bigcirc Attention(Q, K, V) = $softmax(\frac{QV^T}{\sqrt{d_k}})K$
- $\textbf{5.} \ \ \, \text{Are the following statements true regarding Query (Q), Key (K) and Value (V)?}$

1/1 point

Q = interesting questions about the words in a sentence

K = specific representations of words given a Q

Position and word order are essential in sentence construction of any language.

	⊘ Correct	
	☐ It helps to locate every word within a sentence.	
	☐ It is used in CNN and works well there.	
	Providing extra information to our model.	
	⊘ Correct	
10.	Which of these is a good criteria for a good positionial encoding algorithm?	1/1 point
	It should output a unique encoding for each time-step (word's position in a sentence).	
	⊘ Correct	
	Distance between any two time-steps should be consistent for all sentence lengths.	
	⊘ Correct	
	The algorithm should be able to generalize to longer sentences.	
	☐ None of the these.	