State Space Models

Hans-Peter Höllwirth

Master Project Report
Barcelona Graduate School of Economics
Master Degree in Data Science
2017

Contents

1	Introduction	3
2	State Space Models2.1 Local Level Model2.2 Latent State Inference	4 4 5
	2.3 Parameter Inference	5
3	Filtering 3.1 Kalman Filter 3.1.1 Algorithm 3.1.2 Likelihood evaluation 3.2 Particle Filter 3.3 Importance Sampling Particle Filter	7 7 7 7 7
4	Illustration	8
	4.1 Trivariate Local Level Model 4.1.1 The Model 4.1.2 Realization 4.2 Hierarchical Dynamic Poisson Model 4.2.1 The Model 4.2.2 Realization 4.2.3 Densities 4.2.4 Maximum Likelihood Estimation	8 8 9 9 10 10
5		10

1 Introduction

2 State Space Models

State space models consist of two set of data:

- 1. A series of **latent states** $\{x_t\}_{t=1}^T$ (with $x_t \in \mathcal{X}$) that forms a Markov chain. Thus, x_t is independent of all past states but x_{t-1} .
- 2. A set of **observations** $\{y_t\}_{t=1}^T$ (with $y_t \in \mathcal{Y}$) where any observation y_t only depends on its latent state x_t . In other words, an observation is a noisy representation of its underlying state.

Note that if the state space \mathcal{X} and the observation state \mathcal{Y} are both discrete sets, the state space model reduces to a Hidden Markov Model.

The relation between the latent states and observations can be summarized by two probability distributions:

- 1. The **transition density** from the current state to a new state $p(x_{t+1}|x_t, \theta)$.
- 2. The **measurement density** for an observation given the latent state $p(y_t|x_t, \theta)$.

Here, $\theta \in \Theta$ denotes the parameter vector of a state space model.

2.1 Local Level Model

Arguably, the simplest state space model is the (univariate) local level model. It has the following form:

observation:
$$y_t = x_t + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$$

state: $x_{t+1} = x_t + \eta_t, \quad \eta_t \sim N(0, \sigma_{\eta}^2)$

with some initial state $x_1 \sim N(a_1, P_1)$. All noise elements, i.e. all ϵ_t 's and η_t 's, are both mutually independent and independent from the initial state x_1 . Assuming that we know a_1 and P_1 , the model is fully specified by the following vector of parameters:

$$\boldsymbol{\theta} = [\sigma_{\eta}^2, \sigma_{\epsilon}^2]^T$$

Note that in the case of noise-free observations (i.e. $\sigma_{\eta}^2 = 0$), the model reduces to a pure random-walk. Likewise, if $\sigma_{\epsilon}^2 = 0$, the observations $\{y_t\}_{t=1}^T$ are a white noise representation of a some value x_1 .

The transition and measurement density of the local level model are simple to deduce:

$$p(x_{t+1}|x_t, \boldsymbol{\theta}) \sim N(x_t, \sigma_{\epsilon}^2)$$

$$p(y_t|x_t, \boldsymbol{\theta}) \sim N(x_t, \sigma_{\eta}^2)$$

2.2 Latent State Inference

Often, the main objective in state space models is to infer the latent state from observations. Let \mathcal{I}_t denote the set of observed values up to time t:

$$\mathcal{I}_t = \{y_1, y_2, \dots, y_t\}$$

Then information about the latent state x_t can be summarized by the following two probability distributions:

- 1. The **prediction density**, $p(x_t|\mathcal{I}_{t-1}, \boldsymbol{\theta})$, gives the probability of x_t given past observations \mathcal{I}_{t-1} .
- 2. The filtering density, $p(x_t|\mathcal{I}_t, \boldsymbol{\theta})$, gives the probability of x_t given the current and past observations \mathcal{I}_t .

The prediction and filtering densities are recursively related. Given the filtering density for state x_{t-1} , the prediction density for state x_t is

$$p(x_t|\mathcal{I}_{t-1},\boldsymbol{\theta}) = \int p(x_t|x_{t-1},\boldsymbol{\theta})p(x_{t-1}|\mathcal{I}_{t-1},\boldsymbol{\theta})dx_{t-1}$$

where the first term in the integral is the transition density from x_{t-1} to x_t , and the second term is the filtering density from before. Likewise, given the prediction density for state x_t , the filtering density for x_t is

$$p(x_t|\mathcal{I}_t, \boldsymbol{\theta}) = \int p(x_t|x_{t-1}, \boldsymbol{\theta}) p(x_{t-1}|\mathcal{I}_{t-1}, \boldsymbol{\theta}) dx_{t-1}$$

2.3 Parameter Inference

Assuming a particular state space model, another common objective is is to infer the model parameters from observations. This is usually achieved via **maximum likelihood estimation**. The log-likelihood of the observations for a given parameter vector $\boldsymbol{\theta}$ is the

product of the conditional densities of observations, given all previous observations:

$$\log \mathcal{L}(\boldsymbol{\theta}) = \log \prod_{t=1}^{T} p(y_t | \mathcal{I}_{t-1}, \boldsymbol{\theta})$$

$$= \sum_{t=1}^{T} \log p(y_t | \mathcal{I}_{t-1}, \boldsymbol{\theta})$$

$$= \sum_{t=1}^{T} \log \int p(y_t | x_t, \boldsymbol{\theta}) p(x_t | \mathcal{I}_{t-1}, \boldsymbol{\theta}) dx_t$$
(2.1)

The decomposition of the observation densities into measurement density and prediction density, however, makes the maximization problem analytically intractable.

3 Filtering

The objective of filtering is to update our knowledge of the system each time a new observation y_t is brought in. That is, we want to compute

3.1 Kalman Filter

The Kalman filter calculates the mean and variance of the unobserved state, given the observations.

3.1.1 Algorithm

The filter is a recursive algorithm. The current best estimate is updated whenever a new observation is obtained. To start the recursion, we need an initial state which is drawn with a_1 and P_1 . We assume a_1 and P_1 to be known. There are various ways to initialize the algorithm when a_1 and P_1 are unknown, however, these methods are beyond the scope of this project.

3.1.2 Likelihood evaluation

$$\log L(Y_n) = -\frac{nd}{2}\log(2\pi) - \frac{1}{2}\sum_{t=1}^{T}(\log|F_t| + v_t^T F_t^{-1} v_t)$$

3.2 Particle Filter

3.3 Importance Sampling Particle Filter

4 Illustration

4.1 Trivariate Local Level Model

4.1.1 The Model

Consider a time series of length T with each observation $\mathbf{y}_t = [y_{1t}, y_{2t}, y_{3t}]^T$ and each state $\mathbf{x}_t = [x_{1t}, x_{2t}, x_{3t}]^T$ being described by a 3-dimensional vector.

observation:
$$\mathbf{y}_t = \mathbf{x}_t + \boldsymbol{\epsilon}_t, \quad \boldsymbol{\epsilon}_t \sim N(\mathbf{0}, \sigma_{\epsilon}^2 I_3)$$

state: $\mathbf{x}_{t+1} = \mathbf{x}_t + \boldsymbol{\eta}_t, \quad \boldsymbol{\eta}_t \sim N(\mathbf{0}, \Sigma_n)$

with initial state $x_1 \sim N(a_1, P_1)$ and where we restrict the covariance matrix of the state disturbances, Σ_{η} , to the form

$$\Sigma_{\eta} = \begin{bmatrix} \sigma_{\eta 1}^2 & \rho \sigma_{\eta 1} \sigma_{\eta 2} & \rho \sigma_{\eta 1} \sigma_{\eta 3} \\ \rho \sigma_{\eta 1} \sigma_{\eta 2} & \sigma_{\eta 2}^2 & \rho \sigma_{\eta 2} \sigma_{\eta 3} \\ \rho \sigma_{\eta 1} \sigma_{\eta 3} & \rho \sigma_{\eta 2} \sigma_{\eta 3} & \sigma_{\eta 3}^2 \end{bmatrix}$$

Thus, Σ_{η} can be described by $\sigma_{\eta 1}^2$, $\sigma_{\eta 2}^2$, $\sigma_{\eta 3}^2 > 0$ and $\rho \in [0,1]$. Furthermore, we assume for simplicity that the observation noise has the same variance in each dimension $\sigma_{\epsilon}^2 > 0$. Therefore, the model is fully specified by the following vector of parameters:

$$\boldsymbol{\theta} = [\rho, \sigma_{n1}^2, \sigma_{n2}^2, \sigma_{n3}^2, \sigma_{\epsilon}^2]^T$$

The initial state parameters a_1 and P_1 are assumed to be known.

4.1.2 Realization

Figure 4.1 plots the states and observations for a realization of the trivariate local level model with length T = 100. The model parameters are

$$\boldsymbol{\theta} = [\rho = 0.7, \sigma_{\eta 1}^2 = 4.2, \sigma_{\eta 2}^2 = 2.8, \sigma_{\eta 3}^2 = 0.9, \sigma_{\epsilon}^2 = 1.0]^T$$

The initial state x_1 is drawn from a standard normal.

Figure 4.1: Realization of the model with T = 100

4.2 Hierarchical Dynamic Poisson Model

Explain the main idea and potential use cases.

4.2.1 The Model

Consider a time series over M days, each consisting of N intra-daily observations. Let m denote the day and n be the intraday index.

observation:
$$y_{mn} = \text{Poisson}(\lambda_{mn})$$

state: $\log \lambda_{mn} = \log \lambda_m^{(D)} + \log \lambda_{mn}^{(I)} + \log \lambda_n^{(P)}$

where the state consists of a daily, an intra-daily, and a periodic component:

$$\begin{array}{ll} \text{daily component:} & \log \lambda_{m+1}^{(D)} = \phi_0^{(D)} + \phi_1^{(D)} \log \lambda_m^{(D)} + \eta_m^{(D)} & \eta_t \sim N(0, \sigma_{(D)}^2) \\ \text{intra-daily component:} & \log \lambda_{mn+1}^{(I)} = \phi_1^{(I)} \log \lambda_{mn}^{(I)} + \eta_{mn}^{(I)} & \eta_{mn} \sim N(0, \sigma_{(I)}^2) \\ \text{periodic component:} & \log \lambda_n^{(P)} = \phi_1^{(P)} \sin(\pi(n-1)/M) & \end{array}$$

The initial daily and intra-daily component is drawn from a normal with mean a_1 and covariance P_1 :

$$\log \lambda_1^{(D)}, \log \lambda_1^{(I)} \sim N(a_1, P_1)$$

Note that both the daily and intra-daily component constitute an AR(1) model, with the mean of the intra-daily component $\phi_0^{(I)}$ set to 0. The model is fully specified by the following vector of parameters:

$$\boldsymbol{\theta} = [\phi_0^{(D)}, \phi_1^{(D)}, \sigma_{(D)}^2, \phi_1^{(I)}, \sigma_{(I)}^2, \phi_1^{(P)}]^T$$

Again, the initial state parameters a_1 and P_1 are assumed to be known.

4.2.2 Realization

Figure 4.2 plots the states and observations for a realization of the hierarchical dyanmic Poisson model over N=5 days with M=20 intra-daily observations. The model parameters are

$$\boldsymbol{\theta} = [\phi_0^{(D)} = 0.7, \phi_1^{(D)} = 0.6, \sigma_{(D)}^2 = 0.6, \phi_1^{(I)} = 0.3, \sigma_{(I)}^2 = 0.2, \phi_1^{(P)} = 0.8]^T$$

The initial daily and intra-daily state components were drawn from a standard normal.

Figure 4.2: Realization of the model with N=5 and M=20

4.2.3 Densities

State transition and prediction density and how they are used in the particle filter

4.2.4 Maximum Likelihood Estimation

Show log-likelihood plots

Figure 4.3: Belief convergence without misinformation after 300 and 2000 iterations

Conclusion

by Etessami et al.[?]