ECN 101

Introduction to Electronics and Communication Engineering

Review

Integration crucial for modern technological development.

Diode circuits

Half wave rectifier

Full wave rectifier

Diode as clipper and clamper

Diode as voltage regulator

Op-Amp basics

Diode as clamper

Clamper is a circuit that changes the dc level of a waveform without changing its appearance.

During the period that the diode is in the 'on' state, assume that the capacitor will charge up instantaneously to a voltage level determined by the surrounding network.

Assume that during the period when the diode is in the 'off' state the capacitor holds on to its established voltage level.

Op-Amp: LM 741

• One of the most commonly used Op-Amp.

Packaged device look like:

- An Op-Amp contains several transistors, resistors, and a few capacitors and diodes.
- More simply, an Op-Amp is depicted as:

Op-Amp in a nutshell

• The internal circuitry in the op-amp tries to force the voltage at the inverting input to be equal to the non-inverting input.

- While analyzing an Op-Amp circuit
 - Assume no current flows into either input terminal
 - Assume no current flows out of the output terminal

The output voltage is limited by the supply voltage.

Op-Amp contd..

• Op-Amp is represented as:

Op-Amp functional model

$$V_{\rm d} = V_{\scriptscriptstyle 2} - V_{\scriptscriptstyle 1}$$

 \boldsymbol{A} is the open loop gain.

Parameter	Variable	Ideal Values	Typical Ranges
Open-Loop Voltage Gain	A	∞	10 ⁵ to 10 ⁸
Input Resistance	Ri	$\infty \Omega$	10 5 to 10 13 Ω
Output Resistance	Ro	ο Ω	10 to 100 Ω
Supply Voltage	Vcc/V⁺ -Vcc/V⁻	N/A N/A	5 to 30 V -30V to oV

Voltage transfer characteristics

Op-Amp analysis

$$R_i = \infty \Omega$$

- Therefore, $i_1 = i_2 = 0A$
 $R_o = 0 \Omega$

Rarely is the op amp limited to $-V_{cc} < V_o < +V_{cc}$

$$V_d = 0V$$
 and so $V_1 = V_2$

- The internal circuitry in the op-amp tries to force the voltage at the inverting input to be equal to the non-inverting input.
- While analyzing an Op-Amp circuit
 - Assume no current flows into either input terminal
 - Assume no current flows out of the output terminal

Inverting Amplifier

$$V_{
m out} = -rac{R_{
m f}}{R_{
m in}}V_{
m in}$$

Non-inverting Amplifier

$$V_{\text{out}} = V_{\text{in}} \left(1 + \frac{R_2}{R_1} \right)$$

Differentiator

$$V_{\text{out}} = -RC \frac{\mathrm{d}V_{\text{in}}}{\mathrm{d}t}$$

Integrator

$$V_{\text{out}} = -\int_0^t \frac{V_{\text{in}}}{RC} \, \mathrm{d}t + V_{\text{initial}}$$

Summing amplifier

Difference amplifier

If R₁ = R₂ and R_f = R_g:
$$V_{\mathrm{out}} = \frac{R_{\mathrm{f}}}{R_{\mathrm{1}}} (V_2 - V_1)$$

Buffer/Voltage follower

Question

