Do ecological interactions impact geographic distributions of species?

Kévin Cazelles^{1,2}, Nicolas Mouguet², Dominique Gravel¹

QCBS Conference, October 29th 2015

- 1. Département de Biologie, Université du Québec à Rimouski
- 2. Institut des Sciences de L'Evolution de Montpellier, Université de Montpellier

Species distributions

Species B

Ecological niche

Species distributions forecasts

Ecological interactions

• What have we done?

• Occurrence: $P_i = \mathbb{P}(X_i)$,

- Occurrence: $P_i = \mathbb{P}(X_i)$,
- Observed co-ccurrence: $P_{i,j} = \mathbb{P}(X_i, X_j)$,

- Occurrence: $P_i = \mathbb{P}(X_i)$,
- Observed co-ccurrence: $P_{i,i} = \mathbb{P}(X_i, X_i)$,
- Independent co-ccurrence: $P_{i,j;IND} = \mathbb{P}(X_i)\mathbb{P}(X_j)$,

- Occurrence: $P_i = \mathbb{P}(X_i)$,
- Observed co-ccurrence: $P_{i,i} = \mathbb{P}(X_i, X_i)$,
- Independent co-ccurrence: $P_{i,j;IND} = \mathbb{P}(X_i)\mathbb{P}(X_j)$,
- Ratio P_{i,i}/P_{i,i;IND} vs Network properties.

 Niche Model (Williams et Martinez, 2000) to build realistic networks,

- Niche Model (Williams et Martinez, 2000) to build realistic networks,
- Trophic Theory of Island Biogeography (Gravel *et al.*, 2011) as a theoretical distribution.

Theory of Island Biogeography

Trophic Theory of Island Biogeography

Two additionnal rules:

Island without preys, predator cannot colonize,

Trophic Theory of Island Biogeography

Two additionnal rules:

- Island without preys, predator cannot colonize,
- Extinction of the last preys, predator goes extinct too.

Shortest path

Cazelles et al., 2015, Theoretical Ecology

Environmemental gradients?

- Environmemental gradients?
- Empirical data?

Empirical dataset

S: Salix H: Herbivore P: Parasitoid

• What is next?

1 Abiotic variables: λ,

- **1** Abiotic variables: λ,
- **Biotic variables:** B,

- **1** Abiotic variables: λ,
- **Biotic variables:** B,
- **Movement:** φ,

- **1** Abiotic variables: λ,
- **Biotic variables:** B,
- **Movement:** φ,
- Evolution: τ.

- Abiotic variables: λ,
- Biotic variables: B,
- **Movement:** φ,
- Evolution: τ.

$$\mathbb{P}(X_1, X_2, ..., X_n) = f(\varphi, \lambda, B, \tau)$$

- **4** Abiotic variables: λ.
- **Biotic variables:** B,
- **Movement:** φ,
- Evolution: τ.

$$\mathbb{P}(X_1, X_2,, X_n) = f(\varphi, \lambda, B, \tau)$$

Functionnal traits to go further...

Biodiversity management

 Ecological interactions very likely impact species distributions,

Biodiversity management

- Ecological interactions very likely impact species distributions.
- Species distributions are changing, new SDM approaches are required,

Biodiversity management

- Ecological interactions very likely impact species distributions.
- Species distributions are changing, new SDM approaches are required,
- How can we develop suitable strategies for conservation at community scale?

MERCI

Distributions of abiotic variables

Environmental gradient

Distributions of abiotic variables

Number of interactions per species and association strength

