Määrittelydokumentti

Joel Järvinen

February 19, 2014

1 Ongelma / Aihe

Tietorakenteiden ja algoritmien harjoitustyönä tulen tekemään erilaisia järjestämisalgoritmeja ja vertailemaan niitä keskenään, tulen myös vertailemaan omia järjestysalgoritmeja Javan Arrays.sort()-metodiin. Tietorakenteena tulen toteuttamaan geneerisen keon.

2 Tavoitevaatimukset

2.1 Kekojärjestäminen - Heap Sort

Aikavaativuus kekojärjestämiselle on $\mathcal{O}(n \log n)$, ja kekojärjestämisessä käytetyn heapify-operaation rekursioiden vuoksi tilavaativuus on $\mathcal{O}(\log n)$.

2.2 Kuplajärjestäminen - Bubble Sort

Aikavaativuus kuplajärjestämisellä on $\mathcal{O}(n^2)$, mutta tilavaativuus on $\mathcal{O}(1)$ sillä algoritmi käyttää yhtä apumuuttujaa.

2.3 Lomitusjärjestäminen - Merge Sort

Aikavaativuus on $\mathcal{O}(n \log n)$ ja tilavaativuus on $\mathcal{O}(n)$.

2.4 Pikajärjestäminen - Quick Sort

Aikavaativuus pikajärjestämisellä on pahimmassa tapauksessa $\mathcal{O}(n^2)$, mutta keskimääräinen aikavaativuus on $\mathcal{O}(n\log n)$. Tilavaativuus on osittain iteratiivisesti tehdyllä pikajärjestämisellä $\mathcal{O}(\log n)$, mutta jos se tehdään kokonaan rekursiivisesti on tilavaativuus $\mathcal{O}(n)$.

2.5 Laskemisjärjestäminen - Counting Sort

Laskemisjärjestämisellä voidaan rikkoa $\mathcal{O}(n \log n)$ aikavaativuusraja, mutta tällöin tulee tietää mikä on suurin mahdollinen luku mikä listalle on lisätty. Tällöin voidaan päästä aika- ja tilavaativuuksissa $\mathcal{O}(n+k)$ luokkaan, missä n on listan koko ja k on suurin mahdollinen alkio.

3 Tavoitteet

Pyrin kaikissa algoritmeissa saavuttamaan yllämainitut parhaat / keskimääräiset aika- ja tilavaativuudet.

4 Lähteet

Tietorakenteet ja algoritmit kurssin luentomateriaali StackOverflow sivusto *stackoverflow.com*