

第二組

■ 611410088 張馨予 611410144 張靖暄 611415028 楊雅竹 611415096 曾博晟

Outline

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Machine Learning

Deep Learning

Machine Learning

Normal

>>>> COVID-19

02

Main hallmark

Deeper is better, Steadily increase the depth

Conv

Small Conv is better

LRN useless

Batch normalization will fail when the Batch size is small

02

Main hallmark

Improved utilization of the computing resources inside the network

Deep network

22 Layers

Parameter

Uses 12 times fewer parameters

Main hallmark

Solves the degradation problem through residual learning

Deep network

152 Layers

Inconsistent maintenance

- 1. zero-padding
- 2. projection shortcut

Main hallmark

DenseBlock and Transition

Parameter

use of 1x1 convolutional layers reduces the dimensionality of feature maps

Prevention of Overfitting

 Batch Normalization and Dropout are used to prevent overfitting and improve the model's generalization ability.

Main hallmark

Merging Convolution and Self-Attention

Lightweight Structure

reduces computation and storage costs by using shallow networks and downsampling

MBConv

- 1. Depthwise Convlution
- 2. inverted bottleneck

ResNet50

ResNet50

ResNet50

Hyperparameters

Epochs

Model

 \bullet \bullet \bullet

Test_Accuracy

Conclusion

In this experiment, we study the effect of different models on this dataset.

We try to enhance the accuracy by using adjusting hyperparameters.

Constant learning rate vs step learning rate

Finally, we found that GoogLeNet and ResNet50 has a good balance between accuracy and generalization.

https://chih-sheng-huang821.medium.com/%E4%BB%80%E9%BA%BC%E6%98%AF%E4%BA%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7-

%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-587e6a0dc72a

https://kknews.cc/zh-tw/code/xpaz689.html

https://cinnamonaitaiwan.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-cnn%E5%8E%9F%E7%90%86-

keras%E5%AF%A6%E7%8F%BE-432fd9ea4935

https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_convolutional_neural_networks_work.html

https://chih-sheng-huang821.medium.com/%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-convolutional-

neural-network-cnn-cnn%E9%81%8B%E7%AE%97%E6%B5%81%E7%A8%8B-ecaec240a631

https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C

https://zhuanlan.zhihu.com/p/34443907

https://www.itread01.com/content/1546240696.html

https://danjtchen.medium.com/vgg-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E5%8E%9F%E7%90%86-d31d0aa13d88

https://www.twblogs.net/a/5bc11ba92b717711c9242c8c

https://arxiv.org/abs/1409.4842

https://www.easyatm.com.tw/wiki/GoogLeNet

https://iter01.com/537759.html

https://medium.com/%E8%BB%9F%E9%AB%94%E4%B9%8B%E5%BF%83/deep-learning-residual-leaning-

%E8%AA%8D%E8%AD%98resnet%E8%88%87%E4%BB%96%E7%9A%84%E5%86%A0%E5%90%8D%E5%BE%8C%E7%B9%B

C%E8%80%85resnext-resnest-6bedf9389ce

https://ithelp.ithome.com.tw/m/articles/10264843

https://zhuanlan.zhihu.com/p/31852747

https://medium.com/ching-i/%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E7%B5%A1-cnn-

%E7%B6%93%E5%85%B8%E6%A8%A1%E5%9E%8B-googlelenet-resnet-densenet-with-pytorch-code-1688015808d9

https://zhuanlan.zhihu.com/p/37189203

https://medium.com/%E5%AD%B8%E4%BB%A5%E5%BB%A3%E6%89%8D/dense-cnn-

%E5%AD%B8%E7%BF%92%E5%BF%83%E5%BE%97-%E6%8C%81%E7%BA%8C%E6%9B%B4%E6%96%B0-8cd8c65a6f3f

https://paperswithcode.com/sota/image-classification-on-imagenet

https://www.gushiciku.cn/pl/gKIM/zh-tw

https://arxiv.org/abs/2106.04803

Thank You