Task-02

=> Predicting optimum number of clusters

```
In [17]:
```

```
# Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [18]:

```
dataset=pd.read_csv("Iris.csv")
```

In [19]:

```
dataset.head()
```

Out[19]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Data Preprocessing

In [20]:

```
dataset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

```
In [21]:
```

```
dataset.isnull().sum()
```

Out[21]:

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

In [22]:

```
dataset["Species"].value_counts()
```

Out[22]:

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: Species, dtype: int64

Converting String data to Integer

In [23]:

```
from sklearn.preprocessing import LabelEncoder
l1=LabelEncoder()
dataset["Species"]=l1.fit_transform(dataset["Species"])
```

In [24]:

```
dataset.head()
```

Out[24]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	0
1	2	4.9	3.0	1.4	0.2	0
2	3	4.7	3.2	1.3	0.2	0
3	4	4.6	3.1	1.5	0.2	0
4	5	5.0	3.6	1.4	0.2	0

In [32]:

```
x = dataset.iloc[:, [1, 2, 3, 4]].values
```

Elbow Method

In [62]:

```
# Solving the problem by K-means Clustering
# By using elbow method finding optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n clusters = i, init = 'k-means++', random state = 0)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
    print(wcss)
plt.plot(range(1, 11), wcss, "r")
plt.title('The elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.grid(ls="--")
plt.show()
C:\ProgramData\Anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:103
6: UserWarning: KMeans is known to have a memory leak on Windows with MK
L, when there are less chunks than available threads. You can avoid it by
```

setting the environment variable OMP_NUM_THREADS=1. warnings.warn(

```
[680.8244]
[680.8244, 152.36870647733906]
[680.8244, 152.36870647733906, 78.94084142614601]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571, 46.5
6163015873016]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571, 46.5
6163015873016, 38.930963049671746]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571, 46.5
6163015873016, 38.930963049671746, 34.19068792479663]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571, 46.5
6163015873016, 38.930963049671746, 34.19068792479663, 30.06387443273313]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571, 46.5
6163015873016, 38.930963049671746, 34.19068792479663, 30.06387443273313,
27.842356060606065]
[680.8244, 152.36870647733906, 78.94084142614601, 57.31787321428571, 46.5
6163015873016, 38.930963049671746, 34.19068792479663, 30.06387443273313,
27.842356060606065, 26.048202248044355]
```


Lets work on Model Training

In [34]:

```
kmeans = KMeans(n_clusters = 3, init = 'k-means++', random_state = 0)
y_kmeans = kmeans.fit_predict(x)
```

In [35]:

dataset["Output"]=y_kmeans
dataset

Out[35]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	Output
0	1	5.1	3.5	1.4	0.2	0	1
1	2	4.9	3.0	1.4	0.2	0	1
2	3	4.7	3.2	1.3	0.2	0	1
3	4	4.6	3.1	1.5	0.2	0	1
4	5	5.0	3.6	1.4	0.2	0	1
145	146	6.7	3.0	5.2	2.3	2	2
146	147	6.3	2.5	5.0	1.9	2	0
147	148	6.5	3.0	5.2	2.0	2	2
148	149	6.2	3.4	5.4	2.3	2	2
149	150	5.9	3.0	5.1	1.8	2	0

150 rows × 7 columns

Visualization Of Clusters

In [60]:

```
plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], marker='s', s = 60, c = 'red', label
plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], marker='s', s = 60, c = 'blue', labe
plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], marker='s', s = 60, c = 'green', labe
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], marker='*', s =
plt.grid(ls='--')
plt.title('Clusters of Iris')
plt.legend()
```

Out[60]:

<matplotlib.legend.Legend at 0x26a3535d640>

In []: