Билеты к экзамену по теории графов 2022 год факультет Математики и Компьютерных наук, СПбГУ (лекции Карпова Дмитрия Валерьевича)

Вячеслав Тамарин

21 июня 2022 г.

Оглавление

T	11y 1	ги и циклы	7
	1.1	Существование гамильтонова пути и цикла: теорема Оре .	7
	1.2	Существование гамильтонова пути и цикла: замыкание Хватала	9
	1.3	Критерий существования гамильтонова цикла через связность.	10
	1.4	Теорема Хватала о гамильтоновых последовательностях	12
	1.5	Гамильтонов цикл в кубе связного графа	14
	1.6	Теорема Татта о существовании регулярного графа степени k с обхватом g	15
2	2 Паросочетания		
	2.1	Независимые множества, паросочетания и покрытия в графе. Теорема Галлаи	19
	2.2	Максимальное паросочетание и дополняющие пути: теорема Бержа	21
	2.3	Теорема Татта о совершенном паросочетании	22
	2.4	Теорема Петерсена о паросочетании в кубическом графе	24

	2.5	Теорема Плесника о совершенном паросочетании в регулярном графе.	25
	2.6	Теорема Петерсена о выделении 2-фактора в 2k-регулярном графе и ее следствие о регулярных факторах	26
	2.7	Теорема Томассена о почти регулярном факторе почти регулярного графа.	27
	2.8	Теорема Ловаса о разбиении графа.	28
3	Свя	зность	29
	3.1	Блоки и точки сочленения. Лемма о пересечении блоков	29
	3.2	Дерево блоков и точек сочленения и его свойства	30
	3.3	Крайние блоки	32
	3.4	Алгоритм разбиения графа на блоки.	33
		3.4.1 Алгоритм разбиения связного графа на блоки	34
	3.5	Следствие о веере путей из теоремы Менгера. Теорема Дирака о цикле, содержащем заданные к вершин	34
	3.6	Разделяющие множества в k-связном графе, части разбиения. Внутренность и граница части разбиения	37
4	Pac	краски	39
	4.1	Лемма о галочке	39
	4.2	Теорема Брукса	41
	4.3	Списочное хроматическое число k -редуцируемого графа	42
	4.4	Две леммы о d-раскрасках (о избыточной вершине и о удалении вершины с сохранением связности)	43
	4.5	Теорема Бородина о d-раскрасках	45
	4.6	Списочная теорема Брукса.	46

	4.7	к-критические графы. Простеишие своиства	40
	4.8	Теорема Галлаи о k-критических графах	47
	4.9	Лемма Дирака о разделяющем двухвершинном множестве в критическом графе	48
	4.10	Гипотеза Хайоша, случай $k=4.$	49
	4.11	Конструкция графа с произвольным хроматическим числом без треугольников	51
	4.12	Оптимальные раскраски ребер и их свойства. Хроматический и покрывающий индексы двудольного графа	53
	4.13	Теорема Визинга.	55
	4.14	Теорема Гупты.	58
	4.15	Хроматический многочлен графа	58
	4.16	Хроматический многочлен и компоненты связности. Кратность корня 0 хроматического многочлена графа	59
	4.17	Хроматический многочлен и блоки. Кратность корня 1 хроматического многочлена графа	61
5	Пла	нарные графы	63
	5.1	Теорема Жордана для ломаной	63
	5.2	Грань плоского графа и ее граница. Свойства	65
	5.3	Циклический обход границы.	67
		5.3.1 Циклический обход границы	67
	5.4	Лемма о несвязной границе грани несвязного графа	68

Глава 1

Пути и циклы

1.1 Существование гамильтонова пути и цикла: теорема Оре

 ${f lm}\ {f 1.}\ \Pi$ усть $n>2,\ a_1\ldots a_n$ — максимальный путь (по ребрам) в графе $G,\ n$ ричем $d_G(a_1)+d_G(a_n)\geqslant n.$ Тогда в графе есть цикл длины n.

 $N_G(v)$ — все вершины смежные с вершиной v в графе G.

 $d_G(v)$ — степень вершины v в графе G.

proof. Разберем несколько случаев:

- ullet Если a_1 и a_n смежны, то $a_1a_2\ldots a_n$ искомый цикл.
- Иначе $N_G(a_1), N_G(a_n) \subset \{a_2, \dots a_{n-1}\}$, так как удлинить путь нельзя.

Если есть вершина a_k смежная с a_n и вершина a_{k+1} смежная с a_1 , то в графе есть цикл из n вершин

$$a_1a_2\ldots a_ka_na_{n-1}\ldots a_{k+1}.$$

Пусть
$$N_G(a_n) = \{a_{i_1}, \dots, a_{i_l}\}.$$

Если хотя бы одна из вершин $a_{i_1+1}, \ldots, a_{i_l+1}$ лежит в $N_G(a_1)$, то, согласно утверждению выше, в графе есть цикл длины n.

Иначе $d_G(a_1) \leq n - 1 - d_G(a_n)$, а это противоречит условию.

<u>thm</u> (Критерий Оре, 1960). 1. Если для любых двух несмежных вершин $u,v\in V(G)$ выполняется

$$d_G(u) + d_G(v) \geqslant v(G) - 1,$$

то в графе G есть гамильтонов путь.

2. Если v(G) > 2 и для любых двух несмежных вершин $u, v \in V(G)$ выполняется

$$d_G(u) + d_G(v) \geqslant v(G),$$

то в графе G есть гамильтонов цикл.

proof.

- 1. Докажем первое утверждение
 - Для двух вершин все очевидно. Далее предположим, что v(G) > 2.
 - Рассмотрим две вершины a и b и предположим, что они несмежные. По условию $d_G(a)+d_G(b)\geqslant v(G)-1$, поэтому $N_G(a)\cap N_G(b)\neq\varnothing$, следовательно, a и b связаны. Тогда граф G связен.
 - Теперь найдем наибольший простой путь $a_1 \dots a_n$ в графе G. Так как вершин больше двух, и граф связен, $n \geqslant 3$. Предположим, что это не гамильтонов путь, то есть $n \leqslant v(G) 1$.
 - Если $a_1 \dots a_n$ не цикл, то по лемме 1 существует цикл Z из n вершин, так как

$$d_G(a_1) + d_G(a_n) \geqslant v(G) - 1 \geqslant n$$
.

• Так как граф связен, существует не вошедшая в этот цикл вершина, смежная с хотя бы одной из вершин цикла. Тогда из нее и цикла можно получить путь длиной n+1, противоречие.

2. По первому пункту уже есть гамильтонов путь, обозначим его за $a_1 \dots a_n$, где n = v(G).

Если a_1 и a_n смежны, то мы нашли гамильтонов цикл. Иначе

$$d_G(a_1) + d_G(a_n) \geqslant v(G) = n.$$

А тогда по лемме 1 в графе есть гамильтонов цикл.

- **cor 1** (Критерий Дирака, 1952). 1. Если $\delta(G) \geqslant \frac{v(G)-1}{2}$, то в графе G есть гамильтонов путь.
 - 2. Если $\delta(G)\geqslant \frac{v(G)}{2}$, то в графе G есть гамильтонов цикл.

1.2 Существование гамильтонова пути и цикла: замыкание Хватала

Im 2. Пусть вершины a u b не смежны u $d_G(a) + d_G(b) \geqslant v(G)$. Тогда граф G гамильтонов, согда граф G + ab тоже гамильтонов.

proof.

- \bullet Если G гамильтонов, то и граф с дополнительным ребром ab тоже гамильтонов.
- Докажем следствие в обратную сторону. Пусть граф G + ab гамильтонов.
 - Если гамильтонов цикл не проходит по ребру ab, то он есть и в графе G.
 - Если проходит по ab, то в G есть гамильтонов путь, причем сумма степеней его концов не меньше v(G), тогда по лемме 1 в графе G есть гамильтонов цикл.

<u>def</u> (Замыкание графа). Рассмотрим произвольный граф G. Пока существуют две вершины $a,b \in V(G)$, для которых $d_G(a) + d_G(b) \geqslant v(G)$, добавим в граф соответствующее ребро ab. Полученный граф называется замыканием графа G, обозначается C(G).

cor 2 (Хватал, 1974). Граф G гамильтонов, согда его замыкание C(G) — гамильтонов граф.

 ${
m lm}\ 3$ (о единственности замыкания). Замыкание графа G определено однозначно, то есть не зависит от порядка добавления ребер.

<u>proof.</u> Пусть в результате двух различных цепочек добавления ребер были получены различные графы G_1 и G_2 .

Тогда есть ребра, добавленные при построении G_1 , которых нет в G_2 . Найдем такое ребро ab, которое было добавлено первым.

Обозначим граф, к которому мы добавили ab, за G_0 . Тогда $d_{G_0}(a) + d_{G_0}(b) \geqslant v(G)$.

С другой стороны, все ребра, добавленные к G при построении G_0 , добавлены и G_2 . Поэтому, $d_{G_2}(a)+d_{G_2}(b)\geqslant v(G)$, следовательно, в G_2 нет ребра, которое мы должны были добавить. Противоречие.

1.3 Критерий существования гамильтонова цикла через связность.

 ${f lm}$ 4. Пусть граф G гамильтонов. Тогда для любого множества $S\subset V(G)$ выполняется неравенство $c(G-S)\leqslant |S|^1.$

<u>proof.</u> Пусть c(G-S)=c и U_1,\ldots,U_c — компоненты связности графа $G-S,\ Z$ — гамильтонов цикл графа G.

Начнем обходить цикл Z, начиная с вершины из множества S. Пусть s_i — вершина, которая предшествует первому входу цикла в компоненту U_i .

Все s_i различны, причем принадлежат S, так как не могут входить ни в одну из компонент (иначе это одна компонента, а тогда вершина неправильная). Отсюда следует требуемое неравенство.

 $^{^{1}}c(G)$ — число компонент связности в графе G

<u>thm</u> (Хватал, Эрдёшь, 1972). Пусть $v(G) \ge 3$ и $\kappa(G) \ge \alpha(G)^2$, тогда G гамильтонов.

proof.

- Если в графе нет циклов, то есть $\kappa(G) == 1$. Тогда точно $\alpha(G) \geqslant 2$, так как вершин не меньше трех. По условию такой случай невозможен.
- Пусть $\kappa(G) = k$. Выберем цикл C максимальной длины в графе G. Пусть $C = v_1 v_2 \dots v_n^3$.
- Пусть C не гамильтонов. Рассмотрим компоненту связности W графа G-V(C). Заметим, что $N_G(W)\subset V(C)$.

- (а) Обозначим за $M = \{v_{i+1} \colon v_i \in N_G(W)\}$. Докажем, что $M \cap N_G(W) = \varnothing$.
 - Пусть $v_i, v_{i+1} \in N_G(W)$ и $w, w' \in W$, $v_i w, v_{i+1} w' \in E(G)$, P-ww'-путь по вершинам из W.
 - Тогда можно удлинить цикл C хотя бы на одно ребро, заменив ребро v_iv_{i+1} на ребро v_iw , далее путь P, потом ребро $w'v_{i+1}$. Но цикл C должен был быть максимальным. Противоречие.

Это означает, что $N_G(W)$ отделяет непустое множество M от W, следовательно $|M|=|N_G(W)|\geqslant k$

 $^{^2\}kappa(G)$ — вершинная связность, $\alpha(G)$ — размер максимального независимого множества

³Считаем, что нумерация циклическая

- (b)
 - Теперь предположим, что вершины $v_{i+1}, v_{j+1} \in M$ смежны. Пусть $w, w' \in W$ и $v_i w, v_j w' \in E(G)$ и P ww'-путь по вершинам компоненты W.
 - Рассмотрим цикл Z, проходящий сначала участок $v_{j+1}v_{j+2}\dots v_i$ цикла C, затем ребро v_iw , далее путь P и ребро $w'v_j$, потом участок $v_jv_{j-1}\dots v_{i+1}$ по циклу C и ребро $v_{i+1}v_{j+1}$. Построенный цикл Z длиннее C, противоречие.

Из этого следует, что $M \cup \{w\}$ — независимое множество с |M|+1>k вершин. А это противоречит условию $\alpha(G)\leqslant k$.

 \bullet В итоге, цикл C должен быть гамильтоновым.

1.4 Теорема Хватала о гамильтоновых последовательностях.

- <u>def.</u> 1. Пусть $a_1 \leqslant a_2 \leqslant \dots a_n$ и $b_1 \leqslant b_2 \leqslant \dots b_n$ две упорядоченные последовательности. Последовательность $\{a_i\}_{i \in [1..n]}$ мажорирует последовательность $\{b_i\}_{i \in [1..n]}$, если $\forall i \in [1..n] \colon a_i \geqslant b_i$.
 - 2. Пусть G граф на n вершинах. Степенная последовательность графа G упорядоченная последовательность степеней его вершин $d_1 \leqslant \ldots d_n$.
 - 3. Будем говорить, что граф G мажорирует граф H, если v(G) = v(H) и степенная последовательность графа G мажорирует степенную последовательность графа H.
 - 4. Последовательность $a_1 \leqslant a_2 \leqslant \dots a_n$ называется гамильтоновой, если $a_n \leqslant n-1$ и любой граф на n вершинах, степенная последовательность которого мажорирует $a_1, \dots a_n$, имеет гамильтонов цикл.

thm (Критерий Хватала, 1972). Пусть $0 \le a_1 \le a_2 \le \ldots \le a_n \le n-1$, $n \ge 3$. Следующие два утверждения равносильны:

- 1. Последовательность $a_1, \dots a_n$ гамильтонова.
- 2. Для каждого $s<\frac{n}{2}$ из $a_s\leqslant s$ следует $a_{n-s}\geqslant n-s.$

proof.

 $2 \implies 1$ Предположим, что наша последовательность негамитльтонова. Рассмотрим негамильтонов граф G на n вершинах с максимальным числом ребер, степенная последовательность $\{d_i\}_{i\in[1..n]}$ которого мажорирует $\{a_i\}_{i\in[1..n]}$.

По лемме 2 граф G совпадает со своим замыканием, так как граф максимальный, и сумма степеней любых двух несмежных вершин менее n.

Рассмотрим две несмежные вершины $x, y \in V(G)$ с максимальной суммой $d_G(x) + d_G(y)$, такие есть, иначе граф полный, и точно гамильтонов. Не умаляя общности $d_G(x) \leq d_G(y)$.

Так как $d_G(x) + d_G(y) < n$, имеем $d_G(x) = s < \frac{n}{2}$, поэтому $d_G(y) \le n - 1 - s$.

Пусть W_x — множество всех вершин графа G, отличных от x и не смежных с x, W_y — аналогично для y.

$$|W_x| = n - 1 - d_G(x) = n - 1 - s; \qquad |W_y| = n - 1 - d_G(y) \geqslant d_G(x) = s.$$

Степени всех вершин множества W_y не превосходят s, так как s дает максимальную сумму с $d_G(y)$. Поэтому $a_s \leqslant d_s \leqslant s$. В множестве $W_x \cup \{x\}$ будет n-s вершин, причем их степени не превосходят $d_G(y) \leqslant n-1-s$, поэтому $a_{n-s} \leqslant d_{n-s} \leqslant n-s-1$.

Но это противоречит условию. Следовательно, последовательность $\{a_i\}$ гамильтонова.

 $1 \implies 2$ Докажем, что последовательность $\{a_i\}$ не может быть гамильтоновой, если не выполнено второе условие.

Пусть $h < \frac{n}{2}, a_h \leqslant h$ и $a_{n-h} \leqslant n-h-1$. Построим негамильтонов граф $G_{n,h}$, степенная последовательность которого мажорирует $\{a_i\}$.

Пусть $A = \{v_1, \dots, v_h\}$, $B = \{v_{n-h+1}, \dots, v_n\}$, $D = \{v_{h+1}, \dots, v_{n-h}\}$. Граф $G_{n,h}$ будет объединением $K_{h,h}$ с долями A и B и K_{n-h} на вершинах $B \cup D$:

Рис. 1.2: Граф $G_{n,h}$

Здесь все степени в A равны h, в B-n-1, в D-n-h-1. Степенная последовательность выглядит следующим образом:

$$\underbrace{h,\ldots,h}_{h},\underbrace{n-h-1,\ldots,n-h-1}_{n-2h},\underbrace{n-1,\ldots,n-1}_{h}.$$

Эта последовательность мажорирует a_1, \ldots, a_n .

Всего компонент связности $c(G_{n,h}-B)=h+1=|B|,$ это D и отдельные вершины в A.

Так как $c(G_{n,h}-B) > h = |B|$, можем применить лемму ?? и получить, что $G_{n,h}$ не является гамильтоновым.

1.5 Гамильтонов цикл в кубе связного графа.

<u>def</u>. Для графа G и натурального числа d обозначим через G^d граф на вершинах из V(G), в котором вершины x и y смежны, согда $\mathrm{dist}_G(x,y) \leqslant d$.

<u>thm</u> (Чартранд, Капур, 1969). Для любого связного графа G с $v(G) \geqslant 3$ и ребра $e \in E(G)$ в графе G^3 существует гамильтонов цикл, содержащий ребро e.

<u>proof.</u> Достаточно доказать теорему для дерева, так как иначе можем просто выделить остовное.

Будем доказывать индукцией по количеству вершин.

База: для трех или четырех вершин очевидно, так как G^3 — полный граф.

Переход: пусть для меньших деревьев теорема доказана.

Рассмотрим ребро uv. G — дерево, поэтому в G — uv разбивается на две компоненты связности $U \ni u$ и $V \ni v$. Пусть $G_u = G(U)$, $G_v = G(V)$. НУО $|U| \geqslant 3$. Тогда в G_u^3 по предположению индукции есть гамильтонов цикл, содержащий ребро $ux \in E(G(U))$.

- (а) Если $|V| \geqslant 3$, аналогично строим гамильтонов цикл в G_v^3 , содержащий инцидентное вершине v ребро $vy \in E(G(V))$, и соединяем эти циклы в один, заменив ux и vy на uv и xy (ребро $xy \in E(G^3)$, так как $\mathrm{dist}_G(x,y) \leqslant 3$).
- (b) Если |V|=2, точно есть ребро $vy\in E(G)$, которое мы просто присоединяем к циклу из U вместо ребра ux.
- (c) Если |V|=1, заменяем ребро ux на uv и vx.

1.6 Теорема Татта о существовании регулярного графа степени k с обхватом g.

 $\underline{\operatorname{def}}$. Обхват графа G (обозначение g(G)) — длина наименьшего цикла в графе G.

<u>thm</u> (Татт). Пусть $k, g, n \in \mathbb{N}$, причем $k, g \geqslant 3$, kn четно и

$$n > \frac{k(k-1)^{g-1} - 2}{k-2}.$$

Тогда существует регулярный граф G степени $k \, \mathrm{c} \, g(G) = g$ и v(G) = n.

<u>proof.</u> Пусть $\mathcal{G}(n, g, k)$ — множество всех графов на n вершинах с обхватом g и максимальной степенью вершин не более k.

Пусть $v_{< k}(G)$ — количество вершин степени менее k в графе G, $\operatorname{dist}_{< k}(G)$ — максимальное из расстояний между парами вершин степени менее k в графе g, при $v_{< k}(G) < 2$ положим $\operatorname{dist}_{< k}(G) = 0$.

Если n > g, $\mathcal{G}(n, g, k) \neq \emptyset$, например, есть граф из цикла на g вершинах и нескольких изолированных вершинах.

Будем выбирать в $\mathcal{G}(n,q,k)$ граф следующим образом:

- 1. сначала возьмем все графы с максимальным количеством ребер,
- 2. затем из них выберем графы с максимальным $v_{< k}$,
- 3. из оставшихся выберем граф G с максимальным $\operatorname{dist}_{< k}(G)$.

Докажем, что G — регулярный граф степени k.

- Пусть не так. Рассмотрим пару его максимально удаленных вершин степени менее k. Пусть это x и y (возможно x=y).
- Если $\operatorname{dist}_G(x,y) \geqslant g-1$, то соединим x и y и получим граф $G' \in \mathcal{G}(n,g,k)$ с e(G') > e(G), а такого не должно быть. Следовательно, $\operatorname{dist}_G(x,y) \leqslant g-2$.
- Так как степени x и y меньше k, а степени всех остальных не больше k, то на расстоянии не более g-1 от y находится не более чем $\frac{(k-1)^g-1}{k-2}$ вершин, а на расстоянии не более g-2 от x не более $\frac{(k-1)^{g-1}-1}{k-2}$ вершин.
- По условию теоремы существует такая вершина z, что $\operatorname{dist}(x,z) \geqslant g-1$ и $\operatorname{dist}(y,z) \geqslant g$.

- Так как $\operatorname{dist}_G(x,y) \leq g-2$, степень $d_G(z) = k \geqslant 3$. Следовательно, есть ребро $zu \in E(G)$, через которое проходят не все простые циклы длины g графа G. Тогда g(G-zu) = g(G) = g.
- $d_G(u) = k$, так как:

$$\operatorname{dist}_G(y, u) \geqslant \operatorname{dist}_G(y, z) - 1 \geqslant g - 1 > \operatorname{dist}(x, y) = \operatorname{dist}_{\leq k}(G).$$

- Пусть G' = G zu + zx. g(G') = g, e(G') = e(G), $d_{G'}(x) = d_{G}(x) + 1$, $d_{G'}(u) = d_{G}(u) 1 = k 1$, степени остальных вершин совпадают. Итого, $G' \in \mathcal{G}(n,g,k)$.
- Заметим, что $v_{< k}(G') \geqslant v_{< k}(G)$. По алгоритму выбора графа G должно быть равенство, поэтому $d_{G'}(x) = k$ и $d_G(x) = k 1$.
- Так как kn четно, вершина x не может быть единственной вершиной степени меньше k в графе G, следовательно, $x \neq y$.

Докажем, что $\operatorname{dist}_{G'}(y, u) > \operatorname{dist}_{G}(y, x)$.

- Найдем yu-путь P, который реализует расстояние между y и u в G'.
- ullet Если P проходит только про ребрам G, то

$$\operatorname{dist}_{G'}(y, u) = \operatorname{dist}_{G}(y, u) \geqslant g - 1 > \operatorname{dist}_{G}(y, x).$$

• Следовательно, P проходит по новому ребру zx. Тогда P содержит путь по ребрам графа G от y до x или z и само ребро zx.

И, так как $\operatorname{dist}_G(y,z)\geqslant g>\operatorname{dist}_G(y,z)$:

$$\operatorname{dist}_{G'}(y, u) \geqslant \min(\operatorname{dist}_{G}(y, x) + 1, \operatorname{dist}_{G}(y, z) + 1) > \operatorname{dist}_{G}(y, x).$$

• Таким образом,

$$\operatorname{dist}_{\langle k}(G') \geqslant \operatorname{dist}_{G'}(y, u) > \operatorname{dist}_{G}(y, x = \operatorname{dist}_{\langle k}(G)).$$

Противоречие. Значит, G - k-регулярный граф.

Глава 2

Паросочетания

2.1 Независимые множества, паросочетания и покрытия в графе. Теорема Галлаи.

- <u>def.</u> Множество вершин $U \subset V(G)$ называется независимым, если никакие две его вершины не смежны. Обозначим через $\alpha(G)$ количество вершин в максимальном независимом множестве графа G.
- <u>def</u>. Множество ребер $M \subset E(G)$ называется паросочетанием, если никакие его два ребра не имеют общей вершины. Обозначим через $\alpha'(G)$ количество ребер в максимальном паросочетании графа G.
- $\underline{\operatorname{def}}$. Паросочетание M графа G называется совершенным, если оно покрывает все вершины графа.
- <u>def.</u> Будем говорить, что множество вершин $W \subset V(G)$ покрывает ребро $e \in E(G)$, если существует вершина $w \in W$, инцидентная e. Будем говорить, что множество ребер $F \subset E(G)$ покрывает вершину $v \in V(G)$, если существует ребро $f \in F$, инцидентное v.
- <u>def</u>. Множество вершин $W\subset V(G)$ называется вершинным покрытием, если оно покрывает все ребра графа. Обозначим через $\beta(G)$ количество вершин в минимальном вершинном покрытии графа G.
- <u>def</u>. Множество ребер $F \subset E(G)$ называется реберным покрытием, если оно покрывает все вершины графа. Обозначим через $\beta'(G)$ количество ребер в минимальном реберном покрытии графа G.

 ${f lm 5.}$ 1. $U\subset V(G)$ — независимое множество, согда $V(G)\setminus U$ — вершинное покрытие.

2.
$$\alpha(G) + \beta(G) = v(G)$$
.

proof.

- 1. Если U независимое множество, то все ребра из этих вершин выходят в $V(G)\setminus U$, значит все ребра покрываются $V(G)\setminus U$. Если $V(G)\setminus U$ вершинное покрытие, ребер внутри U быть не может, следовательно U независимое множество.
- 2. Применяем первый пункт для максимального независимого множества и минимального вершинного покрытия.

 \Box

 $\underline{\mathbf{thm}}$ (Галлаи, 1959). Пусть G — граф с $\delta(G)>0$. Тогда

$$\alpha'(G) + \beta'(G) = v(G)$$

proof. Докажем неравенство в обе стороны.

• Пусть M — максимальное паросочетание, U — множество не покрытых M вершин графа. $|U| = v(G) - 2\alpha'(G)$.

Так как $\delta(G)>0$, можно выбрать множество F из |U| ребер, покрывающее U.

Тогда $M \cup F$ — покрытие,

$$\beta'(G) \leqslant |M \cup F|\alpha'(G) + v(G) - 2\alpha'(G).$$

Из этого получаем неравенство $\alpha'(G) + \beta'(G) \leq v(G)$.

• Пусть L — минимальное реберное покрытие, $|L| = \beta'(G)$, Рассмотрим подграф H = G(L), порожденный ребрами покрытия.

Все компоненты связности в H — звезды, иначе L не минимально. В каждой компоненте можем выбрать только одно ребро в паросочетание.

Следовательно, $\alpha'(G) \geqslant c(H)$ и $\beta'(G) = |L| = e(H) \geqslant v(H) - c(H) = v(G) - c(H)$. Сложим два неравенства и получим $\alpha'(G) + \beta'(G) \geqslant v(G)$.

2.2 Максимальное паросочетание и дополняющие пути: теорема Бержа.

<u>def.</u> Пусть M — паросочетание в графе G.

- Назовем путь М-чередующимся, если в нем чередуются ребра из M и ребра, не входящие в M.
- Назовем M-чередующийся путь M-дополняющим, если его начало и конец не покрыты паросочетанием M.

thm (Берж, 1957). Паросочетание M в графе G является максимальным, согда нет M-дополняющих путей.

proof.

- \Longrightarrow Пусть в графе G существует M-дополняющий путь $S=a_1a_2\dots a_{2k}.$ Тогда мы можем заменить все входящие в M ребра $a_2a_3,\dots,a_{2k-2}a_{2k-1}$ на не входящие в M ребра $a_1a_2,\dots,a_{2k-1}a_{2k},$ увеличив паросочетание. Противоречие.
- \longleftarrow Пусть M не максимальное паросочетание, тогда рассмотрим максимальное M'.

Пусть $N=M \triangle M'$ и подграф H=G(N). Для любой вершины $v\in H$ имеем $d_H(v)\in\{1,2\},$ поэтому H — объединение путей и циклов.

Причем в каждом пути или цикле ребра из M и M' чередуются. Так как ребер из M' больше, есть хотя бы одна компонента P графа H — путь нечетной длины, где ребер из M' больше. Получается, что мы нашли M-дополняющий путь. Противоречие.

2.3 Теорема Татта о совершенном паросочетании.

<u>def</u>. Для произвольного графа G через o(G) обозначим количество нечетных компонент связности графа G.

<u>thm</u> (Татт, 1947). В графе G существует совершенное паросочетание, согда для любого $S \subset V(G)$ выполняется условие $o(G-S) \leqslant |S|$.

proof.

- \Longrightarrow Пусть $S\subset V(G),\ M$ совершенное паросочетание. Тогда одна из вершин каждой нечетной компоненты связности графа G-S должна быть соединена с вершиной из S ребром паросочетания M, при этом все такие вершины различны, так как входят в паросочетание только один раз.
- Предположим, что граф удовлетворяет условию, но не имеет совершенного паросочетания.

Подставим пустое S в условие: $o(G)\leqslant |\varnothing|=0,$ то есть v(G) четно.

Пусть G^* — максимальный надграф G на том же множестве вершин, не имеющий совершенного паросочетания. Хотим построить совершенное паросочетание в G^* , тем самым получив противоречие.

Для любого $S \subset V(G)$ выполняется неравенство

$$o(G^* - S) \leqslant o(G - S) \leqslant |S|.$$

Пусть $U = \{u \in V(G) \colon d_{G^*}(u) = v(G) - 1\}$. Очевидно, что G^* не может быть полным, поэтому $U \neq V(G)$.

 ${f lm}$ 6. Граф G^*-U представляет собой объединение нескольких несвязных друг с другом полных подграфов.

proof.

- Предположим противное. Тогда существуют такие вершины $x,y,z\in V(G)\setminus U$, что $xy,yz\in E(G^*)$, но $xz\notin E(G^*)$.
- Так как $y \notin U$, существует такая вершина $w \notin U$, что $yw \notin E(G^*)$.

- Так как граф G^* максимален, в графе $G^* + xz$ существует паросочетание M_1 , а в графе $G^* + yw M_2$. При этом $xz \in M_1$ и $yw \in M_2$, иначе в G^* будет совершенное паросочетание.
- Пусть $H = (V(G), M_1 \triangle M_2)$. Граф H несвязное объединение четных циклов, в каждом из которых чередуются ребра из M_1 и M_2 , поэтому в каждой компоненте есть совершенные паросочетания на ребрах M_1 и на ребрах M_2 .
- Ребра xz и yw принадлежат ровно одному паросочетание, поэтому лежат и E(H).

Разберем два случая:

- 1. Ребра xz и yw лежат в разных компонентах C_1 и C_2 графа H. Тогда можем выбрать на вершинах C_1 выбрать паросочетание из M_2 , в C_2 из M_1 , в остальных из любых. Так мы получили совершенное паросочетание в графе G^* . Противоречие.
- 2. Ребра xz и yw лежат в одной компоненте C графа H. НУО, считаем, что в цикле C вершины расположены в порядке ywzx. Рассмотрим простой путь P=xC''yzC'w. Заметим,

Рис. 2.1: Случай 2

что V(P) = V(C) и $E(P) \subset E(G^*)$. Следовательно, существует совершенное паросочетание $M_C \subset E(G^*)$ на вершинах компоненты связности C.

В остальных компонентах можем выбрать ребра любого из M_1 и M_2 . Так мы построили совершенное паросочетание графа G^* . Противоречие.

Будем использовать лемму.

- Среди несвязных полных графов не более |U| имеет нечетное число вершин по условию теоремы.
- В каждой четной компоненте графа G^*-U мы построим полное паросочетание, в каждой нечетной паросочетание на всех вершинах кроме одной, оставшуюся мы соединим с вершиной из U. Мы используем различные вершины из U, их хватит.
- Наконец, разобьем на пары оставшиеся вершины из U : это можно сделать, так как каждая из них смежна в G^* со всеми остальными.

Так мы построили совершенное паросочетание в графе G^* . Противоречие.

2.4 Теорема Петерсена о паросочетании в кубическом графе.

 $\underline{\mathbf{def}}$. Кубический граф — граф, все вершины которого имеют степень 3.

 $\underline{\mathbf{def}}$. Мост графа — ребро, не входящее ни в один цикл.

 $\underline{\text{thm}}$ (Петерсон, 1891). Пусть G — связный кубический граф, в котором не более двух мостов. Тогда в графе есть совершенное паросочетание.

<u>proof.</u> Пусть совершенного паросочетания нет. Тогда по Теореме Татта существует такое множество $S\subset V(G),$ что o(G-S)>|S|.

Так как в кубическом графе четное число вершин, $S \neq \emptyset$ и $o(G-S) \equiv |S| \pmod 2$.

Пусть U_1, \ldots, U_n — все нечетные компоненты связности графа G-S. $n\geqslant |S|+2$.

Пусть $m_i = e_G(U_i, S)$. Это число нечетное, так как:

$$m_i = \sum_{v \in U_i} d_G(v) - 2e(G(U_i)) = 3|U_i| - 2e(G(U_i)).$$

В G не больше двух мостов, поэтому не более, чем два числа из m_i равны 1, а остальные не меньше 3, так как нечетные.

$$3|S| = \sum_{v \in S} d_G(v) \geqslant \sum_{i=1}^n m_i \geqslant 3n - 4 \geqslant 3(|S| + 2) - 4 > 3|S|.$$

Противоречие.

2.5 Теорема Плесника о совершенном паросочетании в регулярном графе.

thm (Плесник, 1972). Пусть G — регулярный граф степени k с четным числом вершин, причем $\lambda(G) \geqslant k-1$, а граф G' получен из G удалением не более, чем k-1 ребра. Тогда в графе G' есть совершенное паросочетание.

 $\underline{proof.}$ Пусть множество $F\subset E(G)$ таково, что G'=G-F. Тогда $|F|\leqslant k-1.$

Предположим, что условие теоремы Татта не выполняется. Рассмотрим множество Татта $S\subset V(G')$. Так как

$$o(G'-S) + |S| \equiv v(G) \pmod{2},$$

из o(G'-S) > |S| следует, что $o(G'-S) \geqslant |S| + 2$.

Пусть U_1, \dots, U_n — нечетные, а U_{n+1}, \dots, U_t — четные компоненты связности графа G'-S.

Для каждого $i \in [1..t]$ пусть:

- α_i количество ребер из E(G'), соединяющих U_i с S;
- β_i количество ребер из F, соединяющих с U_i с S;
- γ_i количество ребер из F, соединяющих U_i с остальными компонентами связности G' S;
- $m_i = \alpha_i + \beta_i + \gamma_i$ количество ребер графа G, соединяющих U_i с $V(G) \setminus U_i$.

Для нечетных компонент связности имеем $m_i \equiv k \pmod 2$. Также $m_i \geqslant \lambda(G) \geqslant k-1$, поэтому $m_i \geqslant k$. Отсюда:

$$\sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} \beta_i + \sum_{i=1}^{n} \gamma_i \geqslant kn$$
 (2.1)

Очевидно, что

$$\sum_{i=1}^{t} \alpha_i + \sum_{i=1}^{t} \beta_i \leqslant k \cdot |S|$$

И

$$2\sum_{i=1}^{t} \beta_i + \sum_{i=1}^{t} \gamma_i \le 2 \cdot |F| \le 2k - 2.$$

Сложим:

$$\sum_{i=1}^{t} \alpha_i + 3\sum_{i=1}^{t} \beta_i + \sum_{i=1}^{t} \gamma_i \leqslant k(|S| + 2) - 2$$
 (2.2)

Из неравенств 2.1 и 2.2 получаем $kn\leqslant k(|S|+2)-2$, следовательно, o(G'-S)<|S|+2. А мы выше доказали противное. Противоречие. $\ \square$

cor 3. Пусть G — регулярный граф степени k c четным числом вершин, причем $\lambda(G) \geqslant k-1$. Тогда для любого ребра $e \in E(G)$ существует совершенное паросочетание графа, содержащее e.

 $\underline{proof.}$ Пусть $e=ab,\ e_1,\dots,e_{k-1}$ — остальные ребра, инцидентные вершине a.

По теореме Плесника в графе $G - \{e_1, \dots, e_{k-1}\}$ есть совершенное паросочетание, которое должно содержать e, так как содержит a.

2.6 Теорема Петерсена о выделении 2-фактора в 2k-регулярном графе и ее следствие о регулярных факторах.

 $\underline{\mathbf{def}}$. k-фактором графа G называется его остовный регулярный подграф степени k.

 $\underline{\mathbf{thm}}$ (Петерсон, 1891). У регулярного графа степени 2k есть 2-фактор.

<u>proof.</u> Так как все степени четные, есть эйлеров цикл. Обойдем его в некотором направлении и ориентируем каждое ребро в направлении обхода. Теперь в каждую вершину \overline{G} входит и выходит ровно по k стрелок.

Построим граф G^* следующим образом: разделим каждую вершину $v \in V(G)$ на две вершины v_1 и v_2 , если ребро $xy \in E(G)$ было ориентировано от $x \in Y$, то проведем в графе G^* ребро x_1y_2 .

Таким образом, существует биекция $\varphi \colon E(G) \to E(G^*)$, заданная правилом $\varphi(xy) = x_1 y_2$.

 G^* — регулярный двудольный граф степени k с долями $\{v_1\}_{v\in V(G)}$ и $\{v_2\}_{v\in V(G)}.$

По следствию 3 в графе G^* есть совершенное паросочетание M^* .

Пусть $M=\varphi^{-1}(M^*)$. Для любой вершины $x\in V(G)$ каждая из вершин $x_1,x_2\in V(G^*)$ инцидентна ровно одному ребру из M^* .

Поэтому x инцидентна ровно двум ребрам из M, то есть M-2-фактор графа G.

- **cor 4.** 1. Регулярный граф степени 2k есть объединение k своих 2-факторов.
 - 2. Для любого $r \leq k$ регулярный граф степени 2k имеет 2r-фактор.

2.7 Теорема Томассена о почти регулярном факторе почти регулярного графа.

<u>thm</u> (Томассен, 1981). Пусть G — граф, степени всех вершин которого равны или k или k+1, а $r\leqslant k$. Тогда существует остовный подграф F графа G, степени всех вершин которого равны либо r, либо r+1.

proof. Индукция по r.

База: r = k, очевидно, подойдет H = G.

Переход: от k к k-1. Пусть граф имеет остовный подграф F, степени вершин которого равны r или r+1.

Будем удалять из графа F по очереди ребра, соединяющие вершины степени r+1. В какой-то момент мы получим граф F', степени вершин которого равны r или r+1, при этом любые две вершины степени r+1 несмежны. Пусть V_{r+1} — множество всех вершин степени r+1 в F'. Если $V_{r+1}=\varnothing$, то F' уже подходит.

Пусть $V' = V(G) \setminus V_{r+1}$, B — двудольный граф с долями V_{r+1} и V', ребра которого — $E_{F'}(V_{r+1}, V')$.

Для каждой вершины $x \in V_{r+1}$ мы имеем $d_B(x) = r+1$, для каждой $y \in V'$ имеем $d_B(y) \leqslant y$.

По следствию из теоремы Холла в графе B есть паросочетание M, покрывающее все вершины из V_{r+1} .

Тогда удалим его и все вершины степени r+1 потеряют по одному ребру, а степени r не более одного. Итого получится граф H=F'-M, где степени равны r или r-1.

2.8 Теорема Ловаса о разбиении графа.

cor 5 (Ловас, 1970). Пусть $s,t \in \mathbb{N}$. Тогда любой граф максимальной степени s+t-1 представляется в виде объединения графа максимальной степени не более s и графа максимальной степени не более t.

<u>proof.</u> Пусть G — граф с $\Delta(G) = s + t - 1$. Добавим в граф вершины и ребра, чтобы он стал регулярным степени k = s + t - 1.

По теореме Томассена граф H имеет остовный подграф H_1 , степени вершин которого равны t или t-1.

Тогда оставшиеся ребра графа H образуют подграф H_2 , степени вершин которого равны s-1 или s.

Теперь удалим из подграфов H_1 и H_2 добавленные вершины и ребра, получим подграфы G_1 и G_2 графа G с $\Delta(G_1) \leqslant t$ и $\Delta(G_2) \leqslant s$. При этом $G = G_1 \cup G_2$.

Глава 3

Связность

3.1 Блоки и точки сочленения. Лемма о пересечении блоков.

Здесь граф G связен.

 $\underline{\mathbf{def}}$. Вершина $a \in V(G)$ называется точкой сочленения, если граф G-a несвязен.

 $\underline{\operatorname{def}}$. Блок — максимальный по включению подграф графа G.

<u>def</u>. Блоки и точки сочленения несвязного графа — блоки и точки сочленения его компонент.

Im 7. Пусть B_1 и B_2 — два разных блока графа G, причем $V(B_1) \cap v(B_2) \neq \emptyset$. Тогда $V(B_1) \cap V(B_2)$ состоит из одной точки сочленения а графа G, причем a — единственная точка сочленения, отделяющая B_1 от B_2 .

proof.

Единственность Пусть $|V(B_1) \cap V(B_2)| \ge 2$. Тогда для любой вершины $x \in V(B_1 \cup B_2)$ граф $B_1 \cup B_2 - x$ связен, так как $B_1 - x$ связен, $B_2 - x$ связен, плюс остается хотя бы одна общая вершина. Следовательно, $B_1 \cup B_2$ содержится в блоке B графа G, но тогда B_1 и B_2 не максимальные по включению.

Пусть $V(B_1) \cap V(B_2) = \{a\}$. Так как a — общая вершина блоков B_1 и B_2 , отделять B_1 от B_2 в графе G может только a.

Точка сочленения Если a не отделяет B_1 от B_2 , в графе G должен быть $V(B_1)V(B_2)$ -путь P.

Пусть $H = B_1 \cup B_2 \cup P$. Граф H - x связен для любой вершины $x \in V(H)$. Поэтому H содержится в одном блоке графа G. Но блок B_1 — его собственный подграф. Противоречие.

В итоге a — единственная вершина, отделяющая B_1 от B_2 , следовательно, граф G — a несвязен, поэтому a — точка сочленения.

3.2 Дерево блоков и точек сочленения и его свойства.

<u>def</u>. Построим двудольный граф B(G), вершины которого — точки сочленения a_1, \ldots, a_n графа G, а вершины другой доли — его блоки B_1, \ldots, B_m . Вершины a_i и B_j будут смежны, если $a_i \in V(B_j)$.

Такой граф называется деревом блоков и точек сочленения.

Im 8. Пусть B_1 и B_2 — два разных блока графа G, а P — путь между ними в графе B(G). Тогда точки сочленения графа G, отделяющие B_1 от B_2 — это в точности те точки сочленения, что лежат на пути P. Остальные не разделяют даже объединение блоков пути P.

- Пусть x точка сочленения графа G, не лежащая на пути P, H объединение всех блоков на пути P.
 - Для любого блока B на пути P граф B-x связен. Если B не B_1 и не B_2 , то в нем можно пройти между двумя точками сочленения, входящими в P, так как x не входит в P. Поэтому H-x связный граф.
- Пусть a точка сочленения, лежащая на P, и она входит в блоки B_1' и B_2' на пути P.

Рис. 3.1

Обозначим через H_1 объединение всех блоков на пути P до a, через H_2 — объединение всех блоков после a.

Применим рассуждения первого пункта отдельно к H_1 и к H_2 . Получаем, что a не разделяет ни одного из них.

С другой стороны, по лемме 7 точка сочленения a отделяет блок B'_1 от B'_2 , а значит, a отделяет H_1 от H_2 , следовательно и B_1 от B_2 .

- <u>thm</u>. 1. Дерево блоков и точек сочленения это дерево, все листья которого соответствуют блокам.
 - 2. Точка сочленения a разделяет два блока B_1 и B_2 , согда a разделяет B_1 и B_2 в B(G).

proof.

1. Докажем первый пункт.

Связность. Для любых двух вершин B(G) рассмотрим путь Q в G между ними.

Перестроим его в путь в B(G): участок пути Q, проходящий по одному блоку графа G, заменим на соответствующую блоку вершину в B(G), переход Q между различными блоками по лемме 7 осуществляется через их общую точку сочленения — вершину B(G).

Дерево. Пусть в B(G) есть простой цикл Z. Рассмотрим подграф H — объединение всех блоков этого цикла.

Между любыми двумя входящими в Z блоками есть два независимых пути в B(G).

По лемме 8 граф H не имеет точек сочленения, иначе они должны лежать на одновременно на двух путях по циклу.

Следовательно, существует блок B, содержащий H, блоки цикла Z — собственные подграфы B, что невозможно.

Листья. Если лист соответствует точке сочленения a, то по лемме 8 граф G-a связен. Противоречие.

2. Докажем второй пункт: в дереве B(G) есть единственный путь между блоками B_1 и B_2 , по лемме 8 в точности точки сочленения с этого пути отделяют B_1 от B_2 в исходном графе G.

3.3 Крайние блоки

 $\underline{\mathbf{def}}$. Назовем блок B крайним, если он соответствует листу дерева блоков и точек сочленения.

<u>def</u>. Внутренность Int(B) блока B — множество всех его вершин, не являющихся точками сочленения в графе.

- Блок недвусвязного графа крайний, согда он содержит ровно одну точку сочленения.
- Внутренность некрайнего блока может быть пустой, а крайнего всегда непуста.
- Если у связного графа есть точки сочленения, то он имеет хотя бы два крайних блока.
- Если B блок графа G, $x \in Int(B)$, то граф G x связен.

Im 9. Пусть B — крайний блок связного графа G с $v(G) \geqslant 2$, G' = G - Int(B). Тогда граф G' связен, а блоки G' — все блоки G, кроме B.

<u>proof.</u> Пусть $a \in V(B)$ — точка сочленения, отрезающая крайний блок B от остального графа G. Тогда Int(B) — это одна из компонент связности графа G - a, следовательно, сам граф G' будет связен.

Отличные от B блоки графа G — подграфы G', не имеют точек сочленения и являются максимальными подграфами G' с таким свойством, так как были максимальными в G. Следовательно, они все — блоки G'.

Пусть B' — блок G'. Очевидно, что $v(G') \geqslant 2$, поэтому B' содержит хотя бы одно ребро e, которое в графе G лежит в некотором блоке $B^* \neq B$, так как блок максимальный по включению, $B^* = B'$.

3.4 Алгоритм разбиения графа на блоки.

Пусть U_1, \ldots, U_k — все компоненты связности графа $G - a, G_i = G(U_i \cup \{a\})$. Разрежем граф G на графы $G_1, \ldots G_k$.

- **Im 10.** 1. Пусть $b \in U_i$. Тогда b разделяет вершины $x, y \in U_i$ d G_i , согда b разделяет $ux \in G$.
 - 2. Все точки сочленения графов G_1, \ldots, G_k в точности все точки сочленения графа G, кроме a.

proof.

1. Если G-b не содержит xy-путь, то его нет и в G_i-b .

Наоборот, пусть x и y лежат в разных компонентах связности графа G_i-b . НУО можно считать, что компонента связности $W\ni x$ не содержит a. Тогда W — компонента связности графа G-b, следовательно, в G-b тоже не было xy-пути.

2. Так как $G_i - a$ — компонента графа G - a, вершина a не является точкой сочленения ни в одном из графов G_1, \ldots, G_k .

Любая другая точка сочленения графа G лежит ровно в одном из графов G_1, \ldots, G_k и является в нем точкой сочленения по прошлому пункту.

Так же из прошлого пункта следует, что других точек сочленения в графах $G_1, \ldots G_k$ нет.

3.4.1 Алгоритм разбиения связного графа на блоки

- Выберем точку сочленения a и разрежем по ней G: заменим граф G на полученные G_1, \ldots, G_k .
- Каждый следующий шаг берем один из имеющихся графов, выбирает точку сочленения и разрезаем по ней.
- И так далее, пока хотя бы один из полученных графов имеет точку сочленения.

 $\underline{\text{thm}}$. В результате описанного алгоритма вне зависимости от порядка действий получатся блоки графа G.

<u>proof.</u> По лемме 10 мы вне зависимости от порядка проведем разрезы только по всем точками сочленения и только по ним.

Пусть B — блок графа G. Тогда в графе G множество V(B) не было разделено ни одной из точек сочленения. Тогда по первому пункту леммы 10 множество V(B) не было разрезано алгоритмом.

Так как в результате алгоритма получились индуцированные подграфы графа G, один из них обозначим за H — надграф B.

Если $H \neq B$, то рассмотрим вершину $c \in V(H) \setminus V(B)$. В графе G существует точка сочленения a, отделяющая c от V(B). Тогда по лемме 10 при разрезе по a вершина c была отделена от блока B. Противоречие.

3.5 Следствие о веере путей из теоремы Менгера. Теорема Дирака о цикле, содержащем заданные k вершин.

def. Пусть $X, Y \subset V(G), R \subset V(G) \cup E(G)$.

1. Через G-R обозначим граф, полученный из G в результате удаления всех вершин и ребер из R, а также всех ребер инцидентных вершинам из R.

- 2. Назовем множество R разделяющим, если граф G-R несвязен. Обозначим за $\mathfrak{R}(G)$ множество всех разделяющих множеств.
- <u>def</u>. Граф G является k-связным, если $v(G) \geqslant k+1$ и минимальное вершинное разделяющее множество в графе G содержит хотя бы k вершин.
- <u>def.</u> 1. Пусть $x,y \in V(G)$ несмежные вершины. Обозначим за $\kappa_G(x,y)$ размер минимального множества $R \subset V(G)$ такого, что R разделяет x и y. Если x и y смежны, положим $\kappa_G(x,y) = +\infty$. Назовем $\kappa_G(x,y)$ связностью вершин x и y.

Пусть $X,Y\subset V(G)$. Обозначим через $\kappa_G(X,Y)$ размер минимального множества $R\subset V(G)$ такого, что R разделяет X и Y. Если такого множества нет, положим $\kappa_G(X,Y)=+\infty$.

В k-связном графе G для любых двух множество вершин $X,Y\subset V(G)$ выполнено $\kappa_G(X,Y)\geqslant k$.

<u>thm</u> (Менгер, 1927). Пусть $X,Y\subset V(G),$ $\kappa_G(X,Y)\geqslant k,$ $|X|\geqslant k,$ $|Y|\geqslant k.$ Тогда в графе G существуют k непересекающихся XY-путей.

cor 6. Пусть $x \in V(G)$, $Y \subset V(G)$, $x \notin Y$, $k = \min(|Y|, \kappa_G(x, Y))$. Тогда существуют k путей от x до различных вершин множества Y, не имеющих общих внутренних вершин.

proof. Пусть $X = N_G(x)$. Так как $\kappa_G(x, Y) \geqslant k$, $|N_G(x) \geqslant k|$.

Так как $x \notin Y$, любое множество вершин R, отделяющее X от Y отделяет вершину x от множества Y. Следовательно, $|R| \geqslant k$.

Так как $|Y| \geqslant k$ по теореме Менгера существует k непересекающихся путей от x до различных вершин множества Y.

<u>thm</u> (Уитни, 1932). Пусть G - k-связный граф. Тогда для любых двух вершин $x, y \in V(G)$ существует k независимых xy-путей.

proof. Индукция по k.

База: k = 1, очевидно

Переход: пусть мы доказали для меньших k. Если вершины x и y несмежны, то утверждение следует из следствия 6.

Разберем случай смежных x и y.

Если G-xy— это (k-1)-связный граф, то про индукционному предположению существует k-1 независимый xy-путь в графе G-xy и еще один путь — ребро xy.

Теперь предположим, что в G-xy существует разделяющее множество $T, |T| \leq k-2$. Так как T не разделяет G, в графе $G-(T \cup \{xy\})$ ровно две компоненты связности: $U_x \ni x$ и $U_y \ni y$.

Пусть $T_x = T \cup \{x\}$. Если $U_x \neq \{x\}$, то T_x отделяет $U_x \setminus \{x\}$ от U_y в G, но это невозможно, так как $|T_x| \leq k-1$.

Тогда $U_x = \{x\}$ и, аналогично, $U_y = \{y\}$. Получается, что в графе G не более k вершин: T, x и y. Но такой граф не может быть k-связным.

<u>thm</u> (Дирак). Пусть $k \ge 2$. В k-связном графе для любых k вершин существует простой цикл, содержащий все эти вершины.

proof. Индукция по k.

База: k = 2, следует из теоремы Уитни.

Переход: $k-1 \to k$. Рассмотрим k-связный граф G и его вершины v_1, \ldots, v_k . Так как G и k-1-связный тоже, по индукционному предположению есть простой цикл Z, содержащий вершины v_1, \ldots, v_{k-1} . Разберем два случая:

- 1. Пусть v(Z) < k. Тогда $V(Z) = \{v_1, \dots, v_{k-1}\}$, по следствию 6 существуют непересекающиеся пути от v_k до всех вершин Z. Теперь можно вставить в Z еще одну вершину v_k между двумя соседними.
- 2. v(Z) > k. По следствию 6 существует k непересекающихся путей от v_k до Z.

Обозначим концы этих путей $x_1, \ldots, x_k \in V(Z)$. Они делят круг на k-дуг и внутренность еще одной из этих дуг. Поэтому хотя бы одна не содержит ни одной из вершин v_1, \ldots, v_{k-1} . Ее мы можем заменить на путь от начала до v_k и от v_k до конца, тем самым получив искомый цикл.

3.6 Разделяющие множества в k-связном графе, части разбиения. Внутренность и граница части разбиения.

Пусть $\mathfrak{S} \subset \mathfrak{R}(G)$.

<u>def.</u> Множество $A \subset V(G)$ — часть \mathfrak{S} -разбиения, если никакие две вершины из A нельзя разделить никаким множеством из \mathfrak{S} , но любая другая вершина графа G отделена от множества A хотя бы одним из множеств набора \mathfrak{S} .

Множество всех частей разбиения графа G набором разделяющих множеств $\mathfrak S$ мы будем обозначать через $\operatorname{Part}(\mathfrak S)$. Если граф не очевиден $\operatorname{Part}(G;\mathfrak S)$.

Вершину части $A \in \operatorname{Part}(\mathfrak{S})$ назовем внутренней, если она не входит ни в одно из множеств набора \mathfrak{S} . Множество таких вершин — $\operatorname{Int}(A)$ — внутренность части A.

Вершины, входящие в какие-либо множества из \mathfrak{S} , будем называть граничными, а все их множество границей и обозначать через Bound(A).

Внутренняя вершина части $A \in \operatorname{Part}(\mathfrak{S})$ может быть концом ребра , входящего в множество $S \in \mathfrak{S}$.

Пусть $A,B\in {\rm Part}(\mathfrak{S}),\, A\neq B,\, A\cap B\neq \varnothing.$ Тогда существует такое $S\in \mathfrak{S},$ что $A\cap B\subset S.$

Разделяющее множество $S \subset V(G)$ в k-связном графе G должно содержать на менее k вершин. Мы обозначим через $\mathfrak{R}_k(G)$ множество всех k-вершинных разделяющих множеств графа G.

Пусть $S \in \mathfrak{R}_k(G)$, $A \in \operatorname{Part}(\mathfrak{S})$. Тогда $\operatorname{Int}(A) \neq \emptyset$, $G(\operatorname{Int}(A))$ связен — это компонента графа G - S. Для любой вершины $x \in S$ существует вершина $y \in \operatorname{Int}(A)$, смежная с x (иначе $S \setminus \{x\}$ отделяет $\operatorname{Int}(A)$ от G - A).

Однако, если $\mathfrak{S} \subset \mathfrak{R}_K(G)$, $B \in \operatorname{Part}(\mathfrak{S})$, то возможно, что $\operatorname{Int}(B) = \emptyset$.

Кроме того, при $\mathrm{Int}(B) \neq \varnothing$ индуцированный подграф $G(\mathrm{Int}(B))$ не обязательно связен.

Im 11. Пусть $\mathfrak{S} \subset \mathfrak{R}_k(G)$, $A \in \text{Part}(\mathfrak{S})$. Тогда верно:

- 1. Вершина $x \in Int(A)$ не смежна ни с одной другой из вершин множества $V(G) \setminus A$.
- 2. Если $\operatorname{Int}(A) \neq \emptyset$, то $\operatorname{Bound}(A)$ отделяет $\operatorname{Int}(A)$ от $V(G) \setminus A$.

proof.

- 1. Пусть вершина $x \in \text{Int}(A)$ смежна с вершиной $y \in V(G) \setminus A$. Существует множество $S \in \mathfrak{S}$, отделяющее y от Int(A) в G. Тогда $x,y \notin S$, причем они смежны. Противоречие.
- 2. Следует из прошлого пункта.

 $\underline{\mathbf{thm}}$. Пусть G-k-связный граф, $\mathfrak{S}, \mathfrak{T} \subset \mathfrak{R}_k(G)$.

- 1. Пусть $A \in \operatorname{Part}(\mathfrak{S})$. Тогда $\operatorname{Bound}(A)$ множество всех вершин части A, смежных хотя бы с одной из $V(G) \setminus A$.
- 2. Пусть $A \in \operatorname{Part}(\mathfrak{S})$ и $A \in \operatorname{Part}(\mathfrak{T})$. Тогда граница A как части $\operatorname{Part}(\mathfrak{S})$ совпадает с границей A как части $\operatorname{Part}(\mathfrak{T})$.

proof.

- 1. Пусть $x \in \text{Bound}(A)$. Существует такое множество $S \in \mathfrak{S}$, что $x \in S$. Множество вершин S не разделяет A, следовательно A может пересекать внутренность не более чем одной части Part(S). Тогда существует такая часть $B \in \text{Part}(S)$, что $\text{Int}(B) \cap A = \emptyset$. Тогда существует вершина $y \in \text{Int}(B)$, смежная с x.
 - По следствию $\ref{eq:condition}$ ни одна из вершин множества $\operatorname{Int}(A)$ не может быть смежна с вершиной из $V(G)\setminus A$.
- 2. В первом пункте мы построили $\mathrm{Bound}(A)$ вне зависимости от $\mathfrak S$ или $\mathfrak T$, поэтому совпадать с границей обоих будет совпадать.

Глава 4

Раскраски

4.1 Лемма о галочке

<u>def.</u> Раскраска вершин графа G в k цветов — функция $\rho\colon V(G)\to M$, где |M|=k. Раскраска ρ называется правильной, если $\rho(v)\neq \rho(u)$ для любой пары смежных вершин u и v .

Через $\chi(G)$ обозначим хроматическое число графа G — наименьшее натуральное число, для которого существует правильная раскраска вершин графа G в такое количество цветов.

Раскраска ребер графа G в k цветов — функция $\rho\colon E(G)\to M$, где |M|=k. Раскраска называется правильной, если $\rho(v)\neq\rho(u)$ для любой пары смежных ребер u и v.

Через $\chi'(G)$ обозначим хроматический индекс графа G — наименьшее натуральное число, для которого существует правильная раскраска ребер графа G в такое количество цветов.

 ${
m lm}\ 12.\$ Пусть G- связный граф, $\Delta(G)\leqslant d,$ причем хотя бы одна из верши графа имеет степень менее $d.\$ Тогда $\chi(G)\leqslant d.$

proof. Индукция по количеству вершин.

База: Если в графе не более d вершин, его точно можно покрасить в d цветов.

Переход: Пусть мы уже доказали утверждение для любого меньшего связного графа с меньшим числом вершин.

Пусть $u \in V(G)$ — вершина степени менее d. Рассмотрим граф G-u. Пусть G_1,\ldots,G_k — компоненты G-u.

В каждом из графов G_i есть вершина u_i , смежная с u в графе G. Тогда у u_i в G_i степень не более d-1, и $\Delta(G_i) \leqslant d$.

По индукционному предположению, каждый G_i можно покрасить в d цветов. Далее докрашиваем u, мы можем это сделать, так как у нее только d-1 ребро.

 \Box

Im 13. Если $G-\partial$ вусвязный неполный граф $c\ \delta(G)\geqslant 3$, существуют такие вершины $a,b,c\in V(G)$, что $ab,bc\in E(G)$, $ac\notin E(G)$ и граф G-a-c связен.

proof.

 \bullet Пусть G трехсвязен.

Так как G неполный, существуют такие вершины $a,b,c\in V(G)$, что $ab,bc\in E(G)$ и $ac\notin E(G)$. Граф G-a-c точно связен.

• Путь G не трехсвязен, тогда существует вершина $b \in V(G)$, что граф G' = G - b не двусвязен.

Граф G' имеет хотя бы два крайних блока. Так как исходный G двусвязен, вершина b должна быть смежна хотя бы с одной внутренней вершиной каждого крайнего блока G'. Пусть a и c — смежные с b внутренние вершины двух разных крайних блоков B_a и B_c графа G'.

Тогда графы $B_a - a$ и $B_c - c$ связны, поэтому и G' - a - c связен.

Так как $d_G(b) \geqslant 3$, вершина b смежна с G'-a-c, а значит, и граф G-a-c связен.

Рис. 4.1

4.2 Теорема Брукса

<u>thm</u> (Брукс, 1941). Пусть $d \geqslant 3$, G — связный граф, отличный от K_{d+1} , $\Delta(G) \leqslant d$. Тогда $\chi(G) \leqslant d$.

<u>proof.</u> Достаточно рассмотреть случай регулярного графа степени d, иначе можно воспользоваться леммой 12. Рассмотрим два случая.

• Пусть в графе G есть точка сочленения a. Тогда $G = G_1 \cup G_2$, где $V(G_1) \cap V(G_2) = \{a\}$, а сами G_1 и G_2 связны.

Так как a смежна хотя бы с одной вершиной и из G_1 и из G_2 , то $d_{G_1}(a) < d$ b $d_{G_2}(a) < d$. По лемме 12 можем покрасить G_1 и G_2 в d цветов.

Согласуем раскраски, чтобы цвет вершины a был одинаковый, и получим правильную раскраску всего G.

• Теперь пусть G двусвязен. По лемме 13 существуют такие $a,b,c \in V(G)$, что $ab,bc \in E(G)$, $ac \notin E(G)$ и граф G-a-c=G' связен.

Рассмотрим такой G' и его остовное дерево T.

Подвесим дерево за b. Пронумеруем уровни так, чтобы номер совпадал с расстоянием от корня.

Пусть $\rho(a) = \rho(c) = 1$. Будем красить остальные вершины дерева в порядке убывания номеров их уровней, начиная с листьев.

Пусть $x \neq b$ — очередная вершина, причем на момент ее рассмотрения мы покрасили все вершины больших уровней, но не красили вершины меньших. Тогда ее предок еще не имеет цвета, поэтому соседи покрашены максимум в d-1 цвет. Следовательно, хотя бы один свободный останется.

Посмотрим на момент, когда осталась только вершина b. У нее два соседа a и c имеют один цвет, поэтому опять есть свободный цвет.

Так мы покрасили все вершины графа G в d цветов.

4.3 Списочное хроматическое число k-редуцируемого графа.

 $\underline{\operatorname{def}}$ (Списочные раскраски). Каждой вершине $v \in V(G)$ сопоставляется список L(v), после чего раскраска считается правильной, если цвет каждой вершины входит в ее список.

Минимальное такое $k \in \mathbb{N}$, что для любых списков из k цветов существует правильная раскраска вершин графа G, обозначается через $\mathrm{ch}(G)$ и называется списочное хроматическое число.

Аналогично определяются списочная раскраска ребер и списочный хроматический индекс.

 $\underline{note}.$ Известны графы, где $\mathrm{ch}(G)>\chi(G),$ но не известны такие, где $\mathrm{ch}'(G)>\chi'(G).$

<u>def</u>. Пусть $k \in \mathbb{N}$. Граф называется k-редуцируемым, если его вершины можно занумеровать v_1, \ldots, v_n так, что каждая вершины смежна менее чем с k вершинами с бо́льшим номером.

lm 14. Пусть G - k-редуцируемый граф. Тогда $\chi(G) \leqslant \operatorname{ch}(G) \leqslant k$.

<u>proof.</u> Пусть v_1, \ldots, v_n — нумерация вершин графа из определения, причем каждой вершине v_i соответствует список $L(v_i)$ длины $l(v_1) \geqslant k$.

Покрасим вершины в порядке, обратном нумерации. При покраске вершины v_i количество запретов на цвет не превосходит количество соседей

среди вершин с бо́льшим номером, а таких не более k-1. Значит, мы можем покрасить вершину v_i в цвет из ее списка.

Im 15. Граф G является редуцируемым, согда для любого его подграфа H выполняется $\delta(H) \leqslant k-1$.

proof.

 \implies Пронумеруем вершины графа G как в определении. Пусть какойто подграф H имеет $\delta(H)\geqslant k.$

Рассмотрим вершину с наименьшим номером $v_i \in V(H)$. Она смежна не менее чем с $d_H(v_i) \geqslant \delta(H) \geqslant k$ вершинами с бо́льшими номерами. Противоречие.

Пусть вершины v_1, \ldots, v_{i-1} уже построены.

Рассмотрим граф $G_i = G - \{v_1, \dots, v_{i-1}\}$. В нем должна быть вершина степени не более $\delta(G_i) \leqslant k-1$, которую мы и возьмем в качестве v_i .

4.4 Две леммы о d-раскрасках (о избыточной вершине и о удалении вершины с сохранением связности).

<u>**def.**</u> Граф G называется d-раскрашиваемым, если для любого набора списков L, удовлетворяющего условию $l(v) \geqslant d_G(v)$ для каждой вершины $v \in V(G)$, существует правильная раскраска вершин в цвета из списков.

Список цветов, удовлетворяющий указанному условию, будем называть d-списком.

<u>def.</u> Назовем вершину $v \in V(G)$ нормальной, если $l(v) \geqslant d_G(v)$, избыточной, если $l(v) > d_G(v)$.

 ${f lm}$ 16. Пусть G- связный граф, L- d-список, в котором вершина а избыточная. Тогда существует правильная раскраска вершин графа G в соответствии со списком L.

proof. Индукция по количеству вершин.

База: граф с одной избыточной вершиной, очевидно.

Переход: пусть мы уже доказали утверждение для графов с меньшим числом вершин.

Рассмотрим граф G-a. Пусть G_1, \ldots, G_k — все компоненты графа G-a. В каждом графе G_i должна быть вершина a_i , смежная с a.

Рассмотрим отдельно граф G_i с исходными списками вершин. Тогда a_i станет избыточной, так как $d_{G_i}(a) \leq d_G(a_i) - 1 \leq l(a_i) - 1$.

По индукционному предположению вершины всех G_i можно покрасить в соответствии со списками. Так как a избыточная, мы можем раскрасить ее в какой-то цвет из списка L(a), не нарушив правильности раскраски.

Im 17. Пусть G — связный граф, L — d-список. Предположим, что существуют две смежные вершины a и b такие, что граф G — a связен u $L(A) \not\subset L(b)$. Тогда существует правильная раскраска вершин графа G в соответствии со списком L.

proof. Пусть $1 \in L(A) \setminus L(B)$.

В связном графе G-a из всех списков вершин множества $N_G(A)$, содержащих цвет 1, удалим этот цвет, остальные оставим без изменений. Получим новые списки L'(v) графа G-a.

Все вершины графа G-a нормальны: вершины не из $N_G(a)$ не изменились, а для $v \in N_G(a)$ имеем

$$l'(v) \ge l(v) - 1 \ge d_G(v) - 1 = d_{G-a}(v).$$

Так как $1 \notin L(b)$, l'(b) = l(b). Так как $d_{G-a)(b)=d_G(b)-1}$, вершина b избыточная.

По лемме 16 существует правильная раскраска вершин графа G-a в цвета из L'. Далее докрашиваем a в цвет 1, получаем правильную раскраску вершин графа G в цвета списка L.

4.5 Теорема Бородина о d-раскрасках

<u>def</u>. Граф, в котором каждый блок — нечетный цикл или полный граф называется лесом Галлаи.

 $\underline{\mathbf{thm}}$ (Бородин, 1977). Если G не является лесом Галлаи, то G d-раскрашиваем.

<u>proof.</u> Пусть каждой вершине v соответствует список L(v). НУО $l(v)=\overline{d_G(v)}$ для каждой вершины $v\in V(G)$. Считаем граф связными.

Индукция по размеру графа.

База: G двусвязен.

Если не все списки одинаковые, то существуют две смежные вершины a и b с $L(a) \neq L(b)$ и G раскрашиваем по лемме 17.

Значит, все списки одинаковы, состоят из d цветов. Тогда и все степени вершин равны d.

По условию граф отличается от полного графа и нечетного цикла, поэтому, по теореме Брукса раскраска существует.

Переход: G недвусвязен. Пусть для меньшего чем G графа теорема доказана.

Рассмотрим крайний блок B графа G, отделяемый от остального графа точкой сочленения a.

Граф B-a связен, все вершины нормальны по условию, а все смежные с a вершины избыточны, причем такие должны быть, иначе это не точка сочленения. По лемме 14 его вершины можно покрасить согласно спискам.

Пусть G' = G - Int(B). Граф G' имеет те же блоки, что и G, кроме B. Поэтому среди этих блоков должен быть еще один блок, отличный от нечетного цикла и полного графа.

Списки отличных от a вершин не менялись, степени — тоже.

Составим новый список L'(a) из всех цветов L(a), кроме использованных для раскраски $\mathbb{N}_B(a)$. Таких цветов не более $d_B(a)$. Так как $d_G(a) = d_B(a) + d_{G'}(A)$, получаем $l'(a) \geqslant d_{G'}(a)$.

По индукционному предположению существуют правильная раскраску вершин G' в цвета из списка. Далее дополняем ее раскраской B-a и получаем искомую раскраску вершин G.

4.6 Списочная теорема Брукса.

<u>thm</u> (Визинг, 1976). Пусть $d \geqslant 3$, G — связный граф, отличный от K_{d+1} , $\Delta(G) \leqslant d$. Тогда $\mathrm{ch}(G) \leqslant d$.

 $\underline{proof.}$ Пусть каждой вершине $v \in V(G)$ соответствует список L(v), причем $l(v) \geqslant d$.

- $\bullet\,$ Если G не лес Галлаи, по теореме Бородина он раскрашивается.
- Пусть G лес Галлаи. По условию G не двусвязен, поэтоому его блоки точно отличны от K_{d+1} .

Посмотрим на крайний блок B и его вершину b, не являющуюся точкой сочленения. Так как этот блок не является полным подграфом:

$$l(b) \geqslant d > d_B(b) = d_G(b).$$

Значит, вершина b избыточна, по лемме 16 существует искомая раскраска.

4.7 k-критические графы. Простейшие свойства.

<u>def.</u> Назовем граф k-критическим, если $\chi(G) = k$, но $\chi(H) < k$ для любого собственного подграфа H графа G.

lm 18. Если G-k-критический граф, то $\delta(G)\geqslant k-1$.

proof. Пусть $a \in V(G)$, $d_G(a) \leqslant k-2$. По определению $\chi(G-a) \leqslant k-1$.

Покрасим граф G-a в k-1 цвет, так как степень a в исходном графе меньше k-1, мы сможем докрасить ее и получить раскраску в k-1 цвет. Противоречие. $\hfill\Box$

 ${f lm}\ {f 19.}\ \Pi$ усть G-k-критический граф, $S\subset V(G)$ — разделяющее множество $|S|< k.\ T$ огда G(S)— не полный.

 $\underline{proof.}$ Пусть G(S) — полный, $S = \{a_1, \dots, a_m\}$, $\mathrm{Part}(S) = \{F_1, \dots, F_n\}$, $G_i = G(F_i)$.

Так как G_i — собственный подграф G, то $\chi(G_i) \leqslant k-1$, пусть ρ_i — правильная раскраска G_i в k-1 цвет.

Так как вершины S попарно смежны в G_i , то все цвета $\rho(a_1), \rho(a_2), \ldots, \rho(a_m)$ различны. Теперь согласуем раскраски в G_1, \ldots, G_n и получим общую раскраску в k-1 цвет для вершин графа G. Противоречие.

4.8 Теорема Галлаи о к-критических графах.

<u>thm</u> (Галлаи, 1963). Пусть $k \ge 3$, G - k-критический граф. Пусть V_{k-1} — множество всех вершин графа G, имеющих степень k-1, а $G_{k-1} = G(V_{k-1})$. Тогда G_{k-1} — лес Галлаи.

<u>proof.</u> По лемме 18 $\delta(G) \geqslant k-1$. Будем считать, что $G_{k-1} \neq \emptyset$, иначе доказывать нечего.

Предположим, что G_{k-1} не лес Галлаи. Тогда этот граф имеет компоненту G', у которой есть блок, отличный от полного графа и нечетного цикла. Пусть V(G') = V'.

Для собственного подграфа H=G-V' графа G мы имеем $\chi(H)\leqslant k-1,$ так как G-k-критический.

Пусть ρ — раскраска графа H в k-1 цвет. Рассмотрим любую вершину $x\in V'$, пусть она имеет n_x соседей в V(H). Поместим в список L(x) в

точности те цвета из [1..k-1], что не встречаются среди n_x . Тогда длина списка $l(x) \geqslant k-1-n_x = d_{G'}(x)$.

По теореме Бородина граф G' является d-раскрашиваемым, следовательно, существует правильная раскраска ρ^* графа G' в цвета из построенных списков.

Вместе ρ и ρ^* дают правильную раскраску вершин G в k-1 цвет. Противоречие. Значит G_{k-1} — лес Галлаи.

4.9 Лемма Дирака о разделяющем двухвершинном множестве в критическом графе.

<u>def</u>. Пусть $x,y \in V(G)$ — две несмежные вершины. Определим операцию слияния вершин x и y графа G следующим образом: эти вершины объединяются в одну новую x#y, которая будет смежна со всеми вершинами, смежными в графе G хотя бы с одной из вершин x и y. Полученный граф обозначим через G#xy.

 ${f Im}\ {f 20}\ (\mbox{Дирак}, 1953).$ Пусть G-k-критический граф, $S=\{a,b\}\in \Re(G),$ ${\bf Part}(S)=\{F_1,\ldots,F_m\}$ и $G_i=F(F_i).$ Тогда $m=2,\ ab\notin E(G)$ и части ${\bf Part}(S)$ можно занумеровать так, что графы G_1+ab и $G_2\#ab-k$ -критические.

<u>proof.</u> Пусть $U_i = \text{Int}(F_i)$ — компонента связности графа G - S, $G'_i = G - U_i$, $M_j = V(G'_i)$.

Так как G-k-критический, то его подграф G_i' имеет правильную раскраску в k-1 цвет. Пусть ρ_i' — такая раскраска.

Назовем ρ_i' раскраской типа 1, если $\rho_i'(a)=\rho_i'(b),$ и раскраской типа 2, иначе.

st. Если для некоторых различных i, j существуют правильные раскраски в k-1 цвет одного типа ρ'_i графа G'_i и ρ'_j графа G'_i , то $\chi(G) \leqslant k-1$.

<u>ртооf.</u> Пока нет \square Предположим, что $m \geqslant 3$. Рассмотрим правильные раскраски ρ_i' графов G_i' в k-1 цвет для $i \in [1..3]$.

Какие-то две имеют один тип, следовательно, по утверждению $4.9 \chi(G) \leq$ k-1, но это не так.

Тогда, m=2. $G_1=G_2'$ и $G_2=G_1'$.

По утверждению 4.9 у графов G_1 и G_2 не может быть правильных раскрасок в k-1 цвет одного и того же типа. НУО у всех тип 1 в G_1 и 2 в G_2 .

Так как существует правильная раскраска типа 1, $ab \notin E(G)$.

st. Граф $G_1^* = G_1 + ab - k$ -критический.

proof. Пока нет st. Граф $G_2^* = G_2 \# ab - k$ -критический.

proof. Пока нет

Гипотеза Хайоша, случай k = 4. 4.10

 $\underline{\mathbf{def.}}$ Пусть H — произвольный граф. Назовем граф H' подразбиением графа H, если H' может быть получен из H заменой нескольких ребер на простые непересекающиеся пути.

<u>thm</u> (Дирак, 1953). Если $\chi(G) = 4$, то граф содержит в качестве подграфа подразбиение K_4 .

proof. Достаточно доказать для 4-критических графов. Рассмотрим такой граф G. Будем доказывать по индукции по количеству вершин в графе.

База: G — трехсвязный граф. $\delta(G)\geqslant 3$, тогда в графе G существует простой цикл $Z = a_1 a_2 \dots a_n$, длины хотя бы 4.

Так как $G - \{a_1, a_3\}$ связен, существует простой путь P от a_2 до a_m , не проходящий по другим вершинам цикла.

Эти две вершины делят цикл на две непустые дуги: $B = \{a_3, \dots, a_{m-1}\}$ и $B' = \{a_{m+1}, \dots, a_1\}.$

Так как $G-\{a_2,a_m\}$ связен, существует BB'-путь Q, не проходящий через a_2 и a_m . Пусть $a_x\in B$ и $a_y\in B'$ — концы Q.

Рассмотрим два случая

- $V(P) \cap V(Q) = \emptyset$. Рассмотрим подграф H графа G — объединение цикла Z и путей P и Q. Этот граф — подразбиение K_4 . См. рис. 4.2a.
- $V(P) \cap V(Q) \neq \emptyset$. Пусть u — первая точка пересечения с Q на пути P (от a_2). Тогда подграф H, равный объединению цикла Z, пути Q и участка a_2Pu — подразбиение K_4 . См. рис. 4.2b.

Переход: граф G не трехсвязен.

Пусть S — минимальное разделяющее множество графа G. Тогда $|S| \leq 2$. Пусть $S = \{a, b\}$.

По лемме 20 вершины a и b несмежны, $\mathrm{Part}(S)=\{F_1,F_2\},\ G_i=G(F_i),$ причем части можно занумеровать так, что граф $G_1^*=G_1+ab-4$ -критический.

По индукционному предположению, в графе G_1^* есть подграф H, являющийся подразбиением K_4 . Если H — уже подграф G, то переход доказан.

Предположим, что H не подграф G, тогда $ab \in H$.

Граф G_2 связен, поэтому существует ab-путь P с $\operatorname{Int}(P) \cap V(H) = \emptyset$. Тогда граф $H' = H - ab \cup P$ – подграф G и подразбиение K_4 . См. рис. 4.2c.

4.11 Конструкция графа с произвольным хроматическим числом без треугольников.

 $\operatorname{\underline{\mathbf{def}}}$. Кликовое число графа G (обозначение $\omega(G)$) — это количество вершин в максимальной клике.

thm (Мычельский, 1955). Для любого $k \in \mathbb{N}$ существует граф G, удовлетворяющий условиям $\chi(G)=k,\ g(G)\geqslant 4.$

proof. Для k=1 и k=2 подойдут полные графы K_1 и K_2 .

Построим следующие графы G_3, G_4, \ldots без треугольников с $\lambda(G_k) = k$.

Пусть построен граф G_k , причем $V(G_k) = \{u_1, \ldots, u_n\}$. Этот граф будет частью графа G_{k+1} , в котором будут добавлены вершины v_1, \ldots, v_n, w .

Ребра между новыми вершинами проведем так: v_i будет смежна со всеми вершинами из $N_{G_k}(ui)$ и только с ними, а w — со всеми вершинами v_1, \ldots, v_n и только с ними (см. рис. ??).

Рис. 4.3

Понятно, что треугольников в графе G_{k+1} нет.

Далее заметим, что $\chi(G_{k+1}) \leq k+1$: если ρ – правильная раскраска вершин G_{k+1} в k цветов, то можно продолжить ее на G_{k+1} , использовав только один дополнительный цвет, для этого положим $\rho(v_i) = \rho(u_i)$ и $\rho(w) = k+1$.

Предположим, что $\chi(G_{k+1}) \leq k_i$, и рассмотрим правильную раскраску ρ вершин графа G_{k+1} в k цветов.

НУО $\rho(w)=k$. Построим правильную раскраску ρ' вершин G_k в k-1 цвет, получим противоречие.

Для каждой вершины положим, $\rho'(u_i) = \rho(u_i)$, если $\rho(u_i) \neq k$, и $\rho'(u_i) = \rho(v_i)$, если $\rho(u_i) = k$.

Так как вершины v_1, \ldots, v_n смежны с вершиной w цвета k, то их цвета отличны от k, следовательно, $\rho' \colon V(G_k) \to [1..k-1]$.

Докажем правильность раскраски ρ :. Предположим противное, пусть $\rho'(u_i) = \rho'(u_j)$, вершины u_i и u_j смежны.

Очевидно, хотя бы одна из них перекрашена, пусть это u_i , тогда $\rho'(u_i) = \rho(v_i)$.

Мы перекрашивали только вершины, имеющие цвет k в раскраске ρ , среди них не было смежных, следовательно, $\rho'(u_i) = \rho(u_i)$.

По построению, из $u_j \in N_{G_k}(u_i)$ следует $u_j \in N_{G_k}(v_i)$ и мы можем сделать вывод, что

$$\rho'(u_i) = \rho(v_i) \neq \rho(u_j) = \rho'(u_j).$$

Противоречие.

Таким образом, ρ' — правильная раскраска вершин графа G_k , противоречие. Следовательно, $\chi(G_{k+1})=k+1$.

4.12 Оптимальные раскраски ребер и их свойства. Хроматический и покрывающий индексы двудольного графа.

<u>def.</u> Хроматический индекс графа G — наименьшее натурально число $\chi'(G)$, для которого существует правильная раскраска ребер графа G в такое количество цветов.

Назовем раскраску покрывающей, если ребра каждого цвета образуют покрытие, то есть покрывают все вершины.

Покрывающий индекс графа G — наибольшее натуральное число $\kappa'(G)$, для которого существует покрывающая раскраска ребер графа G.

 $\underline{\mathbf{def}}$. Пусть ρ — раскраска ребер графа G в k цветов.

Будем говорить, что в раскраске ρ цвет i представлен в вершине v, если существует инцидентное v ребро e такое, что $\rho(e)=i$. Обозначим за $\rho(v)$ количество цветов, представленных в вершине v.

Введем обозначение $\rho(G) = \sum_{v \in V(G)} \rho(v)$. Назовем раскраску ρ k-оптимальной, если для любой другой раскраски ρ' ребер графа G в k цветов $\rho(G) \geqslant \rho'(G)$.

Пусть ρ — правильная раскраска ребер графа G в не более чем k цветов. Тогда для каждой вершины $v \in V(G)$ имеем $\rho(v) = d_G(v) \geqslant \rho'(v)$ для любой другой раскраски ρ' . Поэтому правильная раскраска всегда k-оптимальна.

 ${f lm}\ 21.\$ Пусть G- связный граф, отличный от простого цикла нечетной длины. Тогда существует такая раскраска ребер G в два цвета, что в каждой вершине степени не менее двух представлены оба цвета.

proof.

- Если все вершины имеют степень 2, то это четный цикл, утверждение верно.
- Если графе есть вершины нечетной степени, то добавим новую вершину w и соединим со всеми вершинами нечетной степени. Получим граф со всеми четными степенями \tilde{G} .

- Если в графе G есть вершины нечетной степени, то положим a=w.
- ullet Если все степени четные, то $\tilde{G}=G$, а в качестве a возьмем вершину степени хотя бы 4, такая есть, так как G не является четным циклом.

В графе \tilde{G} есть эйлеров цикл. Покрасим ребра в порядке обхода по нему, начиная с a и чередуя цвета.

Пусть $x \neq a$. Если $d_G(x) \geqslant 2$, мы прошли через x не меньше раза, поэтому у x есть два ребра G разных цветов.

Если a=w, то ничего проверять не нужно. Тогда остался случай, когда a — вершина степени хотя бы 4. Тогда есть в G есть два ребра инцидентных a разных цветов. $\hfill\Box$

Любая раскраска ρ ребер графа в цвета [1..k] — разбиение множества E(G) в объединение непересекающихся множеств E_1, \ldots, E_k , где ρ принимает значение i на ребрах E_i .

 ${f lm}$ 22. Пусть ho-k-оптимальная раскраска ребер графа G. Предположим, что вершина w и цвета i и j таковы, что в вершине w хотя бы два раза представлен цвет i и не представлен цвет j. Пусть $H=G(E_i\cap E_j),$ а H_w — компонента графа H, содержащая вершину w. Тогда H_w — простой цикл нечетной длины.

proof. Пусть H_w не является простым циклом нечетной длины.

Построим новую раскраску ρ' , отличающуюся только раскраской ребер H_w : раскрасим из в цвета i и j так, чтобы в каждой вершине x степени $d_{H_w}(x) \geqslant 2$ были представлены оба цвета, это возможно по лемме 21.

Тогда $\rho'(w) \geqslant \rho(w) + 1$, а для любой другой вершины x, очевидно, что $\rho'(x) \geqslant \rho(x)$. Тогда $\rho'(G) > \rho(G)$, поэтому ρ не может быть k-оптимальной. Противоречие.

<u>note</u>. Очевидно, что $\chi'(G)\geqslant \Delta(G)$: все ребра, инцидентные одной вершине наибольшей степени должны быть разноцветными.

thm (Кениг, 1916). Пусть G — двудольный граф (возможно, с кратными ребрами). Тогда $\chi'(G) = \Delta(G)$.

 $\underline{proof.}$ Пусть $\Delta=\Delta(G).$ Рассмотрим $\Delta\text{-оптимальную раскраску }\rho$ ребер графаG.

Предположим, что ρ — неправильная. Тогда существует вершина v и цвет i такие, что i дважды представлен в вершине v.

Так как $d_G(v) \leq \Delta$, существует цвет j, который не представлен в вершине v. По лемме 22 в G есть нечетный цикл, противоречие.

 $\underline{\mathbf{thm}}$ (Гупта, 1966). Если граф G двудольный, то $\kappa'(G) = \delta(G)$.

proof. Рассмотрим $\delta(G)$ -оптимальную раскраску ρ ребер графа G.

Предположим, что ρ не является покрывающей. Тогда существует вершина v и цвет i такие, что i не представлен в вершине v.

Так как $d_G(v) \geqslant \delta$, существует цвет j, который представлен в вершине v дважды. По лемме 22 в G есть нечетный цикл, противоречие.

4.13 Теорема Визинга.

<u>def</u>. Через $\mu(G)$ обозначим максимальную кратность ребра графа G, то есть максимум $e_G(\{x\},\{y\})$ для всех пар $x,y\in V(G)$.

<u>thm</u> (Визинг, 1964). Для любого графа G выполнено $\Delta(G) \leqslant \chi'(G) \leqslant \Delta(G) + \mu(G)$.

 $\underline{proof.}$ Пусть $\mu=\mu(G), \Delta=\Delta(G).$ Достаточно доказать существование правильной раскраски ребер G в $\Delta+\mu$ цветов.

Рассмотрим ($\Delta + \mu$)-оптимальную раскраску ρ ребер G. Предположим, что эта раскраска неправильная.

Тогда существует вершина u и цвет i_1 , который дважды представлен в вершине u. Так как $d_G(u) < \Delta + \mu$, существует цвет j, не представленный в u.

Пусть $uv_1 \in E(G)$ и $\rho(uv_1) = i_1$. Так как $d_G(v_1) < \Delta + \mu$, существует цвет i_2 , не представленный в v_1 .

Опишем один шаг построения.

Пусть различные цвета i_1, \ldots, i_l и ребра $e_1, \ldots, e_l \in E(G)$ таковы, что $e_t = uv_t$, $\rho(e_t) = i_t$, цвет i_{t+1} не представлен в вершине v_t .

Будем говорить, что цвет i_{t+1} выбран для вершины v_t . Также вершины v_1, \ldots, v_t не обязательно различны.

Рассмотрим вершину $v=v_l$. Пусть в наборе v_1,\ldots,v_l она встречается m раз. Очевидно, $m\leqslant \mu$.

Тогда на предыдущих шагах мы рассматривали вершину v и m-1 раз выбирали цвет, не представленный в этой вершине. Поскольку

$$d_G(v_l) + m - 1 < \Delta + \mu,$$

существует цвет i_{l+1} , не представленный в вершине v_l и не выбранный для нее на предыдущих шагах, его мы и выберем.

Определим раскраску данного шага ρ_l : $\rho_l(e_s) = i_{s+1}$ при $s \in [1..l]$ и $\rho_l(e) = \rho(e)$ на остальных ребрах.

st. Раскраска ρ_l k-оптимальна. Цвет i_{l+1} представлен в вершине u.

<u>proof.</u> Для вершин $x \notin \{u, v_1, \dots, v_l\}$ цвета ребер не менялись, поэтому $\rho_l(x) = \rho(x)$.

Рассмотрим вершину w, которая входит в $\{v_1,\ldots,v_l\}$ ровно n раз. Пусть $W=v_{s_1}=\ldots=v_{s_n}.$

По построению все выбранные для вершины w цвета $i_{s_1+1}, \dots i_{s_n+1}$ различны, не представлены в вершине w в раскраске ρ и представлены в раскраске ρ_l .

Цвета i_{s_1},\ldots,i_{s_n} представлены в вершине w в раскраске $\rho.$

Все отличные от e_{s_1}, \ldots, e_{s_n} ребра, инцидентные w, не изменили свой цвет, поэтому остальные цвета одинаково представлены в w в раскрасках ρ и ρ_l , поэтому $\rho_l(w) \geqslant \rho(w)$.

Рассмотрим вершину u. В результате перекрашивания инцидентных u ребер e_1, \ldots, e_l из их цветов исчез i_1 , и появился i_{l+1} . Но так как цвет i_1 был представлен в u в раскраске ρ хотя бы дважды, он представлен и в раскраске ρ .

Тогда $\rho_l(u) \geqslant \rho(u)$ и $\rho_l(G) \geqslant \rho(G)$, следовательно, раскраска p_l оптимальна. Так как ρ тоже оптимальная, $\rho(G) = \rho_l(G)$, поэтому цвет i_{l+1} был представлен в вершине u и в раскраске ρ . \square Пусть $e_{l+1} = uv_{l+1}$ — ребро цвета $\rho(e_{l+1}) = \rho(G)$.

Так мы завершили еще один шаг.

Поскольку у u конечное число соседей, на некотором шаге мы получим $i_{m+1}=i_k$. То есть v_m не совпадает с v_{k-1} (иначе мы выбрали бы $i_{m+1}\neq i_k$). Так как в вершинах v_{k-1} и v_m в раскраске ρ не представлен цвет i_k , а в v_k представлен, все три вершины v_{k-1}, v_k, v_m различны.

Рассмотрим ($\Delta + \mu$)-оптимальные раскраски ρ_{k-1} и ρ_m (считаем, что $\rho_0 = \rho$):

- В обеих раскрасках в вершине u дважды представлен цвет i_k .
- ullet Цвет j не представлен в вершине u ни в одной из раскрасок.

Пусть E_s — множество всех ребер цвета s в раскраске ρ_{k-1} , E'_s — множество всех ребер цвета s в раскраске ρ_m . $H = G(E_{i_k} \cup E'_j)$ и $H' = G(E'_{i_k} \cup E'_j)$.

По лемме 22 из оптимальности раскрасок следует, что содержащие вершину u компоненты связности графов H и H' — простые циклы нечетной длины.

Тогда $d_H(v_k) = 2$: из v_k выходит ребро uv_k цвета $\rho_{k-1}(uv_k) = i_k$ и ребро цвета j. Для всех ребер e цикла H, кроме uv_k цвет $\rho_{k-1}(e) = \rho_m(e)$, поэтому $d_{H'}(v_k) = d_H(v_k) - 1 = 1$.

Вершины v_k и u лежать в одной компоненте связности H', которая должна быть нечетным циклом. Противоречие.

Следовательно, ρ — искомая правильная раскраска в $\Delta + \mu$ цветов. \square

4.14 Теорема Гупты.

thm (Гупта, 1974). Для любого графа G выполняется неравенство $\kappa'(G) \geqslant \delta(G) - \mu(G)$.

proof. Пока нет

4.15 Хроматический многочлен графа.

<u>def</u>. Для любого натурального числа k обозначим через $\chi_G(k)$ количество правильных раскрасок вершин графа G в k цветов.

Функция $\chi_G(k)$ называется хроматическим числом графа G.

<u>note</u>. • $\chi_G(\chi(G)) \neq 0$

• $\forall k < \chi(G) \colon \chi_G(k) = 0$

 ${f lm}$ 23. Пусть G — непустой граф, а e=uv — его ребро. Тогда

$$\chi_{G-uv}(k) = \chi_G(k) + \chi_{G \cdot uv}(k).$$

 $\underline{proof.}$ Разобьем правильные раскраски графа G-e в k цветов на два типа:

- 1. где вершины u и v разного цвета;
- 2. где вершины u и v одного цвета.

Количество раскрасок первого типа равно $\chi_G(k)$, а второго — $\chi_{G \cdot ab}(k)$.

 $\underline{\mathbf{thm}}.$ Для любого графа G без петель выполнены следующие утверждения:

- 1. Функция $\chi_G(k) \in \mathbb{Z}[k]$ унитарный многочлен с целыми коэффициентами степени v(G) ;
- 2. Знаки коэффициентов $\chi_G(k)$ чередуются, причем старший не меньше нуля.

proof. Индукция по размеру графа G и количеству ребер.

База: Для пустого графа на n вершинах $\overline{K_n}$, очевидно, $\chi_{\overline{K_n}}(k)=k^n$, поэтому все утверждения верны.

Переход: Пусть G — непустой граф, e — его ребро. По лемме 23

$$\chi_G(k) = \chi_{G-e}(k) - \chi_{G \cdot e}(k).$$

Для меньших графов $G \cdot e$ и G - e утверждения доказаны:

- $\chi_{G-e}(k)$ многочлен степени v(G);
- $\chi_{G \cdot e}(k)$ многочлен степени $v(G \cdot e) = v(G) 1$.

Старший коэффициент $\chi_G(k)$ равен старшему коэффициенту $\chi_{G-e}(k)$, то есть 1.

Так как $\deg(\chi_{G-e}) = \deg(\chi_{G-e}) - 1$, в χ_G чередование знаков сохранится.

4.16 Хроматический многочлен и компоненты связности. Кратность корня 0 хроматического многочлена графа.

 ${f lm}$ 24. Пусть G_1,\ldots,G_n — все компоненты графа G. Тогда $\chi_G(k)=\prod_{i=1}^n\chi_{G_i}(k).$

proof. Очевидно

<u>thm</u>. Для любого графа G число 0 является корнем $\chi_G(k)$ кратности, равной количеству компонент связности.

 $\underline{proof.}\ 0$ — корень любого хроматического многочлена, так как раскрасок в 0 цветов быть не может.

Докажем, что для связного графа G кратность корня 0 у $\chi_G(k)$ равна 1. Далее по лемме 24 получим утверждение теоремы.

Пусть v(G) = n. Индукцией по количеству вершин докажем для связного графа G, что коэффициент при k многочлена $\chi_G(k)$ не равен 0 и имеет такой же знак как $(-1)^n$.

База: n = 0, очевидно.

Переход: пусть G — связный граф с $v(G)=n\geqslant 2$, для меньшего n утверждение доказано, T — остовное дерево графа G. $\chi_T(k)=k(k-1)^{n-1}$.

Существует последовательность графов $G_0 = T, \ldots, G_n = G$, в которой $G_{i+1} = G_i + e$, где $e \notin E(G_i)$.

Пусть a_i — коэффициент при k многочлена $\chi_{G_i}(k)$. Докажем по индукции, что $a_i \neq 0$ и имеет такой же знак, что и $(-1)^{n-1}$.

База: i = 0, очевидно, по формуле для дерева.

Переход: пусть $a_i \neq 0$ и имеет знак $(-1)^{n-1}$. По лемме $\ref{eq:condition}$ $\chi_{G_i(k)} = \chi_{G_i \cdot e}(k)$.

Граф $G_i \cdot e_i$ связен. По индукционному предположению у многочлена $\chi_{G_i \cdot e_i}(k)$ знак коэффициента b при k такой же, как $(-1)^{n-2}$, то есть отличается от знака a_i .

Поэтому $a_{i+1} = a_i - b$ имеет такой же знак, что и a_i и отличный от 0.

4.17 Хроматический многочлен и блоки. Кратность корня 1 хроматического многочлена графа.

 ${f lm}$ 25. Пусть G-cвязный граф c n блоками B_1,\ldots,B_n . Тогда

$$\chi_G(k) = \left(\frac{1}{k}\right)^{n-1} \cdot \prod_{i=1}^n \chi_{B_i}(k).$$

proof. Индукция по количеству блоков.

База: для двусвязного графа, очевидно, это один блок.

Переход: Пусть $n\geqslant 2$. НУО, B_n — крайний блок, содержащий ровно одну точку сочленения a.

В графе $G' = G - Int(B_n)$ ровно на один блок меньше, так как нет B_n . По индукционному продолжению для G':

$$\chi_{G'}(k) = \left(\frac{1}{k}\right)^{n-2} \cdot \prod_{i=1}^{n-1} \chi_i(k).$$

Рассмотрим любую правильную раскраску ρ графа G' в k цветов. Попробуем покрасить вершины B_n с соблюдением правильности.

Единственное ограничение — цвет вершины a уже зафиксирован, поэтому раскрасок в k раз меньше.

Следовательно, $\chi_G(k) = \frac{1}{k} \cdot \chi_{G'}(k) \cdot \chi_{B_n}(k)$.

<u>thm.</u> Пусть G — связный граф с более чем одной вершиной. Тогда 1 — корень многочлена $\chi_G(k)$ кратности, равной количеству блоков графа G.

<u>proof.</u> Так как в каждом блоке хотя бы две вершины, достаточно доказать, что у хроматического многочлена графа без точек сочленения число 1 является корнем кратности 1, а далее применить лемму 25.

Для $H \simeq K_2$ утверждение очевидно. Разберем второй вариант – двусвязный граф.

1 точно корень, так как раскрасить в один цвет двусвязный граф невозможно.

Докажем, что $\chi'_H(1) \neq 0$, тогда мы покажем, что 1 имеет кратность 1. Для этого докажем, что для двусвязного графа H на m вершинах $\chi'_H(1) \neq 0$ и имеет такой же знак, как $(-1)^m$.

Индукция по v(H).

База: Если H — полный граф на трех вершинах, то

$$\chi_{K_3}(k) = k(k-1)(k-2)$$
 $\chi'_{K_3}(1) = 1(1-2) = -1.$

Переход: Пусть v(H) > 3. Тогда по теореме ?? существует такое ребро $e \in E(H)$, что граф $H \cdot e$ двусвязен.

По лемме 21 $\chi'_H(1) = \chi'_{H-e}(1) - \chi'_{H-e}(1)$.

Так как $v(H \cdot e) < e(H)$, если граф H - e двусвязен, то уже доказано, что $\chi'_{H-e}(1)$ имеет тот же знак, что и $(-1)^m$.

Если H-e односвязен, то он имеет хотя бы два блока. Тогда для него верна лемма 23.

Так как хроматический многочлен каждого блока имеет корень 1, причем для недвусвязного графа H-e его хроматический многочлен имеет 1 корнем кратности хотя бы 2. И тогда $\chi'_H(1)=0$, разность тоже не может быть равна нулю, а знак сохраняется из $H\cdot e$.

Глава 5

Планарные графы

5.1 Теорема Жордана для ломаной.

 $\underline{\text{thm}}$ (Жордан, 1887). Замкнутая несамопересекающаяся ломаная P делит точки плоскости, не лежащие на P, на две такие части, что выполнены следующие условия:

- (1) любые две точки из одной части можно соединить ломаной, не пересекающей P ;
- (2) любая ломаная, соединяющая две точки из разных частей пересекает P.

<u>proof.</u> Пусть $P_1 \dots P_m$ — вершины P в порядке обхода по часовой стрелке. Обозначим через M множество всех точек плоскости, не лежащих на P.

Зафиксируем на прямой вектор l, не параллельный ни одной из сторон P. Из каждой точки $A \in M$ выпустим луч l(A) в направлении l.

Если l(A) содержит вершину P_i многоугольника P, то стороны $P_{i-1}P_i$ и P_iP_{i+1} лежат в одной полуплоскости относительно l(A), будем говорить, что многоугольник P касается l(A) в вершине P_i .

Посчитаем число p(A) точек пересечения l(A) с P, не являющихся касаниями. Оно точно конечное.

Обозначим за M_0 ту часть, которая состоит из всех точек $A \in M$, для которых p(A) четно, и за M_1 — нечетно.

 $\mathbf{st.}$ M_0 и M_1 непусты.

<u>ртооf.</u> Рассмотрим прямую l_0 , параллельную вектору l, проходящую через внутреннюю точку ломаной P.

Найдем последнее пересечение во внутренней точке прямой l_0 и P в направлении вектора l — обозначим за ее X.

Рассмотрим содержащий X малый отрезок [Y,Z] на l_0 , не пересекающий P в отличных от X точках. Пусть Y лежит перед X при движении в направлении l. Тогда p(Y)=1, а p(Z)=0.

st. Пусть $A, B \in M$ и отрезок [A, B] не пересекает P. Тогда $p(A) \equiv p(B) \pmod{2}$. В частности, выполнено второе условие теоремы.

proof. Если $AB \parallel l$, то утверждение очевидно.

Если нет, отметим на отрезке AB все такие точки A_1, \ldots, A_k в направлении от A к B, что $l(A_i)$ касается P (если такие есть). И обозначим $A_0 = A, A_{k+1} = B$.

Тогда для каждого $i \in [0..k]$ все точки отрезка $[A_i, A_{i+1}]$ имеют одинаковое значение функции p, при переходе на соседний отрезок значение может изменится на четное число (см. рис. 5.1a).

В любом случае, на всем отрезке [A,B] четность одинаковая. Докажем первое утверждение теоремы

Пусть $A, B \in M_i$. Если отрезок [A, B] не пересекает P, то все уже доказано. Тогда найдем ближайшие к A и к B точки пересечения A_1 и B_1 соответственно.

Отметим на отрезке $[A, A_1]$ точку A' очень близко к A_1 , на отрезке $[B_1, B]$ — точку B' очень близко к B, обозначим «очень близко» за δ . Тогда p(A) = p(A') и p(B) = p(B'). См. рис. 5.1b.

Проведем вдоль каждой стороны многоугольника две параллельных прямых на расстоянии δ с обоих сторон от P. Получим два новых многоугольника P' и P''. Подбираем δ так, чтобы эти многоугольники не пересекали сторон исходного.

НУО A' лежит на P'. Если B' тоже лежит на P', то мы можем дополнить ее до точек A и B, тем самым получив ломаную от A до B, не пересекающую P.

Пусть B' лежит на P''. Тогда обозначим за B^* точку пересечения P' с AB около B на расстоянии δ .

Тогда $p(B^*) - p(B') = \pm 1$. Но по утверждению 5.1 должно выполнятся сравнение

$$p(B^*) \equiv p(A') \equiv p(A) \equiv p(B) \equiv p(B') \pmod{2}$$
.

Противоречие.

5.2 Грань плоского графа и ее граница. Свойства.

<u>def</u>. Граф называется планарным, если его можно изобразить на плоскости так, чтобы его ребра не пересекались во внутренних точках.

<u>def</u>. Плоский граф — конкретное изображение планарного графа бед пересечений и самопересечений ребер.

 $\underline{\operatorname{def}}$ (Грань). Пусть M — множество всех точек плоскости, не входящих в изображение G. Запись $A \sim B$ означает, что точки $A, B \in M$ можно соединить ломаной, не пересекающей изображение графа G. \sim — отношение эквивалентности.

Назовем классы эквивалентности по \sim гранями. Обозначим множество всех граней F(G) и f(G) = |F(G)|.

<u>def</u>. Рассмотрим ребро e плоского графа G. Если по разные стороны e расположены разные грани, то это ребро граничное, если одна и та же, что внутреннее. Обозначим через E_d множество всех граничных и внутренних ребер.

 $\underline{\operatorname{def}}$. Граничные вершины грани d — вершины, до которых можно дойти по ломаной от внутренних точек этой грани, не пересекая изображение графа G. Обозначим их множество через V_d .

 $\underline{\operatorname{def}}$. Граница грани d — подграф B(d) графа G с множеством вершин V_d и множеством ребер E_d .

 $\underline{\mathbf{def}}$. Размер границы грани d — количество граничный ребер этой грани плюс удвоенное количество внутренних. Обозначение: b(d).

$$\sum_{d \in F(G)} b(d) = 2e(G).$$

- 1. Любые две точки на границе грани d можно соединить ломаной, проходящей в d.
 - 2. Если две точки A и B на изображении графа G можно соединить ломаной L, не пересекающей изображения G, то A и B лежат на границе некоторой грани.

proof.

- 1. Пусть A внутренняя точка грани d. От нее можно провести ломаные, не пересекающие изображение G, до любых двух граничных. Все точки на этих ломаных лежат в d.
- 2. A и B точно лежат на границе грани d, содержащей все внутренние точки L.

5.3 Циклический обход границы.

<u>def</u>. Рассмотрим любую вершину a плоского графа G и упорядочим выходы ребер из a по часовой стрелке. Два ребра, выходы которых соседние в этом порядке, будем называть соседними в вершине a.

 ${f lm}\ 27.\$ Пусть $ab_1\ u\ ab_2\ -\ \partial {f e}a\ cocedних\ ребра\ {f e}$ вершине $a.\$ Тогда $ab_1\ u\ ab_2\$ лежат в границе некоторой грани.

<u>ртооf.</u> Вершины b_1 и b_2 можно соединить ломаной вдоль b_1ab_2 , не пересекающей изображения G. Поэтому, ребра ab_1 и ab_2 лежат на границе некоторой грани.

5.3.1 Циклический обход границы

(a)

Пусть G — плоский граф, $d \in F(G)$, $x_1x_2 \in E_d$.

Пройдем по ребру x_1x_2 от x_1 до x_2 . НУО справа по ходу движения расположена грань d.

Повернем в вершине x_2 направо до выхода соседнего ребра x_2x_3 . Если $d_G(x_2)=1$, то $x_1=x_3$, это не проблема. Также $x_2x_3\in E_d$.

Пройдем по этому ребру от x_2 к x_3 , справа опять будет расположена грань d. И так далее. В итоге мы вернемся на ребро x_1x_2 , при этом в вершину x_1 мы могли приходить и по другому ребру.

Мы получили замкнутый циклический путь, см. рис. 5.2а.

Пусть получился циклический маршрут $Z=x_1x_2\dots x_k$. Рассмотрим вершину x_i . По построению Z обходит вокруг x_i — пусть против часовой стрелки.

Пусть мы вышли из x_i по ребру $x_i x_{i+1}$, вернулись по ребру $x_{j-1} x_j = x_{j-1} x_i$, см. рис. 5.2b.

Тогда сектор между выходами ребер $x_i x_{i+1}$ b $x_i x_{j-1}$ не принадлежит грани d.

Следовательно, Z проходит все ребра из E_d , инцидентные вершине x_i . Поскольку это верно для любой входящей в Z вершины, этот маршрут обходит в точности все ребра одной из компонент графа B(d).

Обозначим за Z(U) такой маршрут для компоненты U, а через Z(d) — объединение построенных маршрутов для всех компонент B(d).

Если маршрут Z(d) проходит ребро e дважды, то в разных направлениях. Значит, по обе стороны от e расположена грань d, то есть e — внутренне ребро d.

Пусть e — внутреннее ребро грани d. Тогда при проходе по e в любом из направлений справа будет расположена грань d. Поэтому, маршрут Z)d) дважды пройдет e в обоих направлениях.

5.4 Лемма о несвязной границе грани несвязного графа.

 ${
m lm}$ 28. Для плоского графа G выполнены следующие утверждения:

- 1. Если $d \in F(G)$ и B(d) несвязна, то разные компоненты связности графа B(d) лежат в разных компонентах связности графа G.
- 2. $\Gamma pa \phi G$ несвязен, согда он имеет грань с несвязной границей.

proof.

1. Пусть B_1 и B_2 — две компоненты B(d).

Изображение B_1 ограничено и не пересекает других компонент B(d). Следовательно, изображение B_1 можно отделить от изображения B_2 замкнутой ломаной в грани d, не пересекающей ребер G (как в доказательстве теоремы Жордана). Значит, между B_1 и B_2 нет путь в графе G.

2. Пусть граф несвязен, но все грани имеют связные границы. Тогда можно обойти все грани графа G, каждый раз переходя в грань, имеющую с предыдущей общую вершину или ребро. Но тогда G связен. Противоречие.

По первому пункту следует обратное утверждение.