

COMP90049 Knowledge Technologies

K- Nearest Neighbour (KNN)

- ·It is a geometric based method.
- •It is a simple technique and works well in many situations.
- •There is no learning involved.
- •Given a training data set with labelled information and test case we find K training data points (records) nearest to the test case.
- •The test case is labelled with the label of the most frequent label of the K nearest points to the test case.

COMP90049 Knowledge Technologies

K- Nearest Neighbour (KNN) method

For K =3, the example shows how KNN labels an unknown test case $\quad . \quad \Delta$

Some difficulties with KNN:

· What should be the distance function?

How do we efficiently find the K-nearest neighbouring points to the test case?

As the number of dimensions increases all the points seem to be more or less at an equal distance (curse of dimensionality). In this case KNN performs poorly and in fact most machine learning methods can fail!

Advantages:

- Very simple scheme with no learning phase.
- Works well for small dimensional da
- New data can be easily added and hence it is a Lazy Method.
- No need to estimate any probabilities but the notion of K nearest implicitly models the distribution when determining the K-nearest points

COMP90049 Knowledge Technologies

K- Nearest Neighbour (KNN) method

Some difficulties with KNN:

· What should be the distance function?

Let $p = \langle p1, p2, ..., pn \rangle$ and $q = \langle q1, q2, ..., qn \rangle$ two points in an n-dimensional space.

$$\begin{split} & \text{Euclidian distance }(p,q) = \left\lVert p - q \right\rVert^2 = \sqrt{\sum_{i=1}^n (pi - qi)^2} \\ & \text{Minkowski distance}(p,q,k) = \underbrace{\sqrt{\sum_{i=1}^n |pi - qi|^k}}_{i=1} |pi - qi|^k \end{split} \\ & \text{Radial_Basis_dist}(p,q,\sigma) = \exp(-\frac{\left\lVert p - q \right\rVert^2}{2\sigma^2}) \\ & \text{When} \end{split}$$

k=1 is called L1 Norm k=2 is called L2 Norm

 $Cos_dist(p,q) = \frac{p,q}{\|p\| * \|q\|}$

COMP90049 Knowledge Technologies

Support Vector Machines (SVM)

We can separate a linearly separable two-class using many decision boundaries. However, some decision boundaries are far better than the others. The goal of SVM is to find the optimal decision boundary.

Support Vector Machines

Support vector machines is like Naïve Bayesian Classifier is a statistical machine learning Technique and it is also a geometric based method like KNN (K-nearest neighbour)

Separating Hyper-plane

For dataset $\{x_i\}$:

$$f(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i + b = \begin{cases} >= 1, & \text{if } y_i = 1; \\ <= -1, & \text{if } y_i = -1. \end{cases}$$

COMP90049 Knowledge Technologies

Separating Hyper-plane

For dataset $\{x_i\}$:

$$f(\mathbf{x}_i) = \mathbf{w}^T \mathbf{x}_i + b = \begin{cases} \geq 1, & \text{if } y_i = 1; \\ \leq -1, & \text{if } y_i = -1. \end{cases}$$

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$

Unfortunately we may not find hyper-panes that can separate given set of training instances. Therefore we allow some margin of errors

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$$

COMP90049 Knowledge Technologies

Lagrange function

The optimal hyper-plane is found as the solution to the optimization problem:

minimize
$$\tau(\mathbf{w}, \xi) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{k=1}^{n} \xi_k$$

minimize
$$\tau(\mathbf{w}, \xi) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
 subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \quad i = 1..n$$

Lagrangian function:

grangian function. Dimension
$$L = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i)$$

COMP90049 Knowledge Technologies

Lagrangian function

For data in the input space:

maximize
$$Q(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 $0 \le \alpha_i \le C$

Once optimal $\partial_1, \partial_2, ..., \partial_n$ are determined, w can be computed as

$$W = \sum_{i=1}^{n} \alpha_i y_i x_i$$

COMP90049 Knowledge Technologies

Kernel mapping

х	у
-3	c1
-2	c1
-1	c2
0	c2
+1	c2
+2	c1
+3	c1

Class1	Clas	s2	Class1		
-3 -2	1	0	1	2	3

We cannot separate the points by drawing a boundary

MELIFOURNE

COMP90049 Knowledge Technologies

Kernel mapping

cineering research for the benefit of society

engineering research for the benefit of socie

MELGOURNE

COMP90049 Knowledge Technologies

Kernel mapping

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\Phi}(\mathbf{x}_i) \cdot \mathbf{\Phi}(\mathbf{x}_j)$$

MELGOURNE

COMP90049 Knowledge Technologie

Kernel mapping

Note: feature space is of higher dimension than the input space in practice

 $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\Phi}(\mathbf{x}_i) \cdot \mathbf{\Phi}(\mathbf{x}_j)$

engineering research for the benefit of soci

Ñ.

COMP90049 Knowledge Technologies

Non-linear case

For data in the input space:

$$\begin{split} & \text{minimize} & & Q(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{subject to} & & \sum_{i=1}^n \alpha_i y_i = 0 & & 0 \leq \alpha_i \leq C \end{split}$$

where K is a kernel function, by which SVMs may construct a better optimal separating hyper-plane into a higher dimensional feature space.

J.

COMP90049 Knowledge Technologie

Kernel functions

Linear kernel: $K(x_i, x_j) = x_i^T \cdot x_j$

Polynomial kernel: $K(\pmb{x}_i, \pmb{x}_j) = (\pmb{x}_i^{\ T} \cdot \pmb{x}_j + \theta)^d$

Radial-basis function (RBF) kernel:

 $K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) = \exp(-\frac{\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\|^{2}}{2\sigma^{2}})$

ngineering research for the benefit of societ

engineering research for the benefit of socie

COMP90049 Knowledge Technologies

Weaknesses of SVMs

- Best performance depends on the choice of the kernel and its parameters.
- Learning is very expensive.
- Generalization to multi-class memberships needs several SVMs Some solutions

Build one versus the rest:

- E.g. 3 class problem c1, c2 and c3
 C1 vs C2 or C3 SVM1
 C2 vs C1or C3 SVM2
 C3 vs C1 or C2 SVM3

Requires n classifiers

SVM1 C1 vs C2C3 C1	SVM2 C2 vs C1C3	SVM3 C3 vs C1C2	Final Class
C1			
	G2	c3	Largest-class-of (C1,C2,C3)
C1	C2	C1 or C2	Largest-class-of (C1,C2)
C1	C1 or C3	c3	Largest-class-of (C1,C3)
C1	C1 or C3	C1 or C2	C1
C2 or C3	C2	СЗ	Largest-class-of (C2,C3)
C2 or C3	C2	C1 or C2	C2
C2 or C3	C1 or C3	C3	СЗ
C2 or C3	C1 or C3	C1 or C3	Largest-class-of (C1,C2,C3)

COMP90049 Knowledge Technologies

Weaknesses of SVMs

•Generalization to multi-class memberships Some solutions

- · Build one versus the rest:
- One Versus one
 - E.g. 3 class problem C1,C2 and C3
 - C1 vs C2 -SVM1 C1 vs C3 -SVM2
 - C2 vs C3 -SVM3

	SVM1 C1 vs C2	SVM2 C1 vs C3	SVM3 C2 vs C3	Final Class
	C1	C1	C2	C1
	C1	C1	C3	C1
	C1	C3	C2	Largest-Class-of (C1,C2,C3)
_	C1	C3	C3	C3
3	C2	C1	C2	C2
	C2	C1	СЗ	Largest-Class-of C1,C2,C3)
	C2	C3	C2	C2
	C2	C2	C3	C2

 $\binom{n}{2}$ classifiers! Requires building

COMP90049 Knowledge Technologies

Weaknesses of SVMs

•Generalization to multi-class memberships

Some solutions

- · Build one versus the rest:
- One Versus one
- Build log(n) binary classifiers Example assume we have 4 classes
 - We build log(4) = 2 classifies

i		Class			
1	X11	C3			
2	X21	X22		X2m	C2
3	X31	X32		X3m	C1
n	Xn1 Xn2 Xnn				C4

Training Data

Y1	Y2	Class
-1	-1	C1
-1	+1	C2
+1	-1	C3
+1	+1	C4

Weaknesses of SVMs

Y1	Y2	Class
-1	-1	C1
-1	+1	C2
+1	-1	C3
+1	+1	C4

Training Data						
i		>	(Class	
1	X11	X12		X1m	C3	
2	X21	X22		X2m	C2	
3	X31	X32		X3m	C1	
n	Xn1	Xn2		Xnm	C4	

				7(11)	7(112	-			
	Training Data								
		Y1	Y2						
1	X11	X12		X1m	+1	-1			
2	X21	X22		X2m	- 1	+1			
3	X31	X32		X3m	- 1	-1			
n	Xn1	Xn2		Xnm	+1	+1			

COMP90049 Knowledge Technologies

Weaknesses of SVMs

Training Data							
i		Х					
1	X11	X12		X1m	C3		
2	X21	X22		X2m	C2		
3	X31	X32		X3m	C1		
n	Xn1	Xn2		Xnm	C4		

			XII.	1 1 1 2		A	71	-1
-		2	X21	X22		X2m	- 1	+1
		3	X31	X32		X3m	- 1	-1
Ī		n	Xn1	Xn2		Xnm	+1	+1
	Γ			Trai	ning Dal	la-2		
ı							-	

Training Data-1							
i		Х					
1	X11	X11 X12 X1m					
2	X21	X22		X2m	- 1		
3	X31	X32		X3m	- 1		

n	Xn1	Xn2		Xnm	+1		

Training Data-2					
i	Х				Y2
1	X11	X12		X1m	-1
2	X21	X22		X2m	+1
3	X31	X32		X3m	-1

n	Xn1	Xn2		Xnm	+1