Simulink 기초 사용법

3.1. 개요

- Simulink는 그래픽 화면상에서 **블록선도(block diagram**) 방식으로 시스템을 모델링하여, 모의실험(simulation) 및 분석하기 위한 소프트웨어 패키지이다.
- Simulink는 시스템을 구성하는 각종 요소들을 기본적으로 제공되는 100개 이상의 블록들의 조합으로 그 특성을 표현함으로써, 복잡한 시스템을 시각적으로 알기 쉽게 모델링하여 시뮬레이션 할 수 있다.
- 연속시간(continuous time) 시스템은 물론 이산시간(discrete time) 시스템의 모의실험 도 역시 가능하다.
- 실시간 모의실험(real-time simulation)을 할 수 있다. PC에 AD/DA(analog to digital/digital to analog) 보드나 DSP 보드를 장착하여, Simulink 상에서 실제 외부신호를 이용하여 실물실험을 할 수 있다. 이때, Simulink에서 구현된 모델이 자동으로 C-code로 만들어진다. 이러한 기능은 고속설계(rapid design)를 가능하게 한다.

Simulink 파일들은 확장자가 "mdl"인 파일로 저장된다.

y=sint 그래프 그리는 프로그램

y=sint 그래프 그리는 프로그램

작업공간(Workspace)

- Simulink 모델에 사용되는 변수들과 simulink 모델을 실행한 결과가 모여있는 메모리 공간 (memory space)이다.
- Simulink의 작업공간은 MATLAB 작업공간과 같은 공간을 사용한다. 즉, MATLAB과 Simulink 는 항상 작업폴더와 작업공간을 서로 공유하여 사용한다.

<u>작업공간(Workspace)</u>

>>a=2

블록 도움말 얻기

"Copy Model To Clipboard" 후, 붙이기 한 결과 (그림으로 처리)

Sources

Sinks

Signal Routing

Continuous

Discrete

Math

Logic and Bit Operations

Discontinuities

Lookup Tables

User-Defined Functions

3.3. Simulink 모델 구성법

PID 제어기 실습

모의실험 실행 설정

모의실험 실행 설정

모의실험 결과 확인

모의실험 결과 확인

모의실험 결과 확인

MATLAB과 Simulink 모델 응답

기계장치에 일정한 힘을 가한 경우의 반응(응답, response)을 구하는 예를 MATLAB과 Simulink로 각각 수행해 보자.

질량-댐퍼-스프링으로 구성된 기계시스템의 전달함수는 아래 G(s)와 같다.

$$G(s) = \frac{1}{ms^2 + bs + k} = \frac{1}{s^2 + 2s + 4}$$

[그림 3.43] 기계시스템

MATLAB과 Simulink 모델 응답

```
MATLAB을 이용한 단위계단응답 계산
```

```
clear all;
close all;
ole;
t=[0:0.01:20];
num=1;
den=[1 2 4];
y=step(num,den,t);
plot(t,y);
grid on;
```


MATLAB과 Simulink 모델 응답

Simulink를 이용한 단위계단응답 계산

