Mathematical Innovation for PET and MRI Imaging

M. J. Ehrhardt¹, M. M. Betcke², P. Markiewicz², J. Schott² and C.-B. Schönlieb³

1 University of Bath 2 University College London 3 University of Cambridge

contact: m.ehrhardt@bath.ac.uk

Multi-Contrast MRI

Magnetic resonance imaging (MRI) is a versatile technology with many different contrasts, e.g. T₁ and T₂. MRI contrasts show similar structures due to same anatomy.

Research hypothesis: Can we exploit redundancy, transfer structure from one contrast to another and reconstruct from less data? This directly leads to shorter scan times (patient comfort, save time/money, dynamic imaging).

Difficult to compare images of different contrasts. **Define** direction structure location contrast of changes and

Qualitative Results [1]

Quantitative Results [1]

PET-CT and PET-MR

Positron emission tomography (PET) uses radioactive tracers (e.g. [¹⁸F]FDG or [¹⁸F]florbetapir) for functional imaging. Typical PET images are of low resolution, partly due to high noise in the data.

Research hypothesis: Can we enhance PET imaging (e.g. higher resolution) by advanced mathematical models? These models may or may not include anatomical MRI information. This may lead to: better localisation, better quantification, lower dose.

Results: FDG and florbetapir [2, 3]

References:

[1] Ehrhardt, Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences, 2016

[2] Ehrhardt, Markiewicz, Richtárik, Schott, Chambolle, Schönlieb, Faster PET Reconstruction with a Stochastic Primal-Dual Hybrid Gradient Method, Proc. SPIE, 2017 [3] Ehrhardt, Markiewicz, Schönlieb, Faster PET Reconstruction with Non-Smooth Priors by Randomization and Preconditioning, arxiv.org/abs/1808.07150, 2018

