Neural Networks Design And Application

Encoder-decoder for graph data

Transform information at neighbors

Transform information at neighbors Combine them

Q: What is information?

Transform information at neighbors
Combine them

Image

Q: can we extend similar operation to general graph?

Q: can we extend similar operation to general graph?

Key: aggregate information from neighbors

Node degree

Adjacency matrix

$$\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

INPUT GRAPH

Nearest neighbors of A?

INPUT GRAPH

Nearest neighbors of A:

B, C, D

INPUT GRAPH

Nearest neighbors of A: B, C, D

Nearest neighbors of B?

INPUT GRAPH

Nearest neighbors of B: A, C

INPUT GRAPH

Nearest neighbors of B: A, C

INPUT GRAPH

Nearest neighbors of C?

INPUT GRAPH

Nearest neighbors of C: A, B, E, F

Nearest neighbors of D?

Nearest neighbors of D: A

Nearest neighbors of A: B, C, D

Nearest neighbors of A: B, C, D

Two hops away

Two hops away

Encoder-decoder for graph data

Encoder-decoder for graph data

Other embedding methods: random walk embedding node2vec

Encoder-decoder for graph data

Other embedding methods:

random walk embedding

Q: what can we do in the box to aggregate information?

Q: what can we do in the box to aggregate information? Average/summation?

Q: what can we do in the box to aggregate information? Average/summation → linear model

Q: what can we do in the box to aggregate information?Average/summation → linear modelA neural network nonlinear layer?

