MATH 3110 - Spring 2023, Learning Activity 21

1. If a 6×3 matrix A has rank 3, find $\dim(\operatorname{Nul}(A))$, $\dim(\operatorname{Col}(A))$ and $\operatorname{rank}(A^T)$. Computation: We have $\dim(\operatorname{Nul}(A)) + \operatorname{rank}(A) = 3$ (number of columns) so $\dim(\operatorname{Nul}(A)) = 0$ and $\operatorname{rank}(A^T) = 0$

 $\dim(\operatorname{Nul}(A)) = 0$ $\dim(\operatorname{Col}(A)) = 3$ $\operatorname{rank}(A^T) = 3$

2. Let B be a 8×7 matrix.

rank(A) = 3

(a) Could B have a 2-dimensional null space? Justify your answer.

Yes	No
X	

Explain your answer: If $\dim(\text{Nul}(A)) = 2$ then $\text{rank}(A) = \dim(\text{Col}(A)) = 7 - 2 = 5$ which is possible since it's less than 7 (the largest possible rank).

(b) What is the largest possible rank of B? Justify your answer.

Explain your answer: the largest possible rank is min(8,7) = 7.

3. Assume that the matrix A is row equivalent to the matrix B, given below.

$$A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Determine rank(A) and dim(Nul(A)).

$$rank(A) = 3$$
 $dim(Nul(A)) = 2$

(b) Find bases for Col(A), Row(A) and Nul(A).

Computation: For the basis for Nul(A), write the solutions of $A\vec{x} = \vec{0}$ in parametric vector form and collect the vectors. Using the row echelon form B, we have

$$ec{x} = \left[egin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array}
ight] = x_2 \left[egin{array}{c} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}
ight] + x_4 \left[egin{array}{c} -5 \\ 0 \\ 3/2 \\ 1 \\ 0 \end{array}
ight], \quad x_2, x_4 \in \mathbb{R}$$

1

Basis for $\operatorname{Col}(A)$		Basis for $Row(A)$	Basis for $Nul(A)$									
the pivot columns of A (1st, 3rd, and 5th column)		the nonzero rows of the row echelon form B of A (1st, 2nd, and 3rd row of B) $\mathcal{B}_{\mathrm{Row}(A)} = \{(1,-3,0,5,-7), (0,0,2,-3,8), (0,0,0,0,5)\}$		г -	1	r .	1					
$\mathcal{B}_{\mathrm{Col}(A)}=\Big\{$	$\begin{bmatrix} 1 \\ -2 \\ -3 \\ 3 \end{bmatrix}$,	4 -6 -6 4	,	9 -10 -3 0	}		{	3 1 0 0	,	$ \begin{array}{c} -5 \\ 0 \\ 3/2 \\ 1 \\ 0 \end{array} $	}