Basic Electrical and Electronics Engineering

LECTURE 1.8

Dr. Sonam Shrivastava/ Assistant Professor (Sr.) /SELECT

BEEE102L

Basic Electrical and Electronics Engineering

- 1. DC Circuits
- 2. AC Circuits
- 3. Magnetic Circuits
- 4. Electrical Machines
- 5. Semiconductor Devices and Applications
- 6. Digital Systems
- 7. Sensors and Transducers

Books

Text Books

- Allan R. Hambley, "Electrical Engineering -Principles & Applications", 2019, 6th Edition, Pearson Education
- V. D. Toro, Electrical Engineering Fundamentals, 2nd edition. PHI,
 2014

Reference Books

- R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, 11th edition. Pearson, 2012
- DP Kothari & Nagrath, "Basic Electric Engineering", 2019, Tata McGraw Hill

Superposition Theorem - Definition

 The superposition principle states that the response in any passive element in a linear network containing multiple sources is same as the algebraic sum of the response due to the each source.

$$V_{x} = \sum_{i=1}^{n} V_{xi}$$

$$I_{x} = \sum_{i=1}^{n} I_{xi}$$

Superposition Theorem

 Superposition theorem is one of the important method that takes a complex circuit and simplifies it in a way that makes a perfect sense and make that circuit a simple one and easy to understand.

 Superposition theorem helps to analyze a complex circuit with multiple sources to determine the net current/voltage in a desire component when all sources are connected The strategy used in the Superposition Theorem is to eliminate all but one source of power within a network at a time, using series/parallel analysis to determine voltage drops and/or currents within the modified network for each power source separately.

Turning Off Sources

- Voltage sources should be replaced with short circuits.
- A short circuit will allow current to flow across it, but the voltage across a short circuit is equal to 0V.
- Current sources should be replaced with open circuits.
- An open circuit can have a non-zero voltage across it, but the current is equal to 0A.

Superposition Theorem - Application

Superposition Theorem - Application

$$v = v_1 + v_2 = 2 + 8 = 10 \text{ V}$$

$$v_1 = \frac{4}{4+8}(6) = 2 \text{ V}$$

$$i_3 = \frac{8}{4 + 8}(3) = 2 \text{ A}$$

$$v_2 = 4i_3 = 8 \text{ V}$$

Problem 1

$$I_x = I_{x1} + I_{x2}$$

Problem 1

Example 1: Find the current flowing through 20 Ω using the superposition theorem.

SOURCE 1

$$I_1 = 0.4 A$$

SOURCE 2

$$I_2 = 1.6 A$$

$$I_1 + I_2 = 2 A$$

Calculate the current in 20 ohm resistance using superposition theorem.

$$I'_{20\Omega} = 0.4761A(\downarrow)$$

$$I''_{20\Omega} = -0.3809A(\downarrow)$$

SOURCE 2

SOURCE 3

$$I'''_{20\Omega} = -0.5714(\downarrow)$$

$$egin{align} I_{20\Omega} &= I'_{20\Omega} + I''_{20\Omega} + I'''_{20\Omega} \ &I_{20\Omega} &= 0.4761 + (-0.3809) + (-0.5714) \ &I_{20\Omega} &= -0.4762A \ (\downarrow) \ &I_{20\Omega} &= 0.4762A \ (\uparrow) \ &I_{20\Omega} &= 0.4762A \ (\downarrow) \ &I_{20\Omega} &= 0.4762A \ (\uparrow) \ &I_{20\Omega} &= 0.4762A \ (\downarrow) \ &I_{20\Omega} &= 0.4762A \ (\downarrow) \ &I_{20\Omega} &= 0.4762A \ (\downarrow) \ &I_{20\Omega} &= 0.4762A \ (\uparrow) \ (\downarrow) \ &I_{20\Omega} &= 0.4762A \ (\downarrow) \$$

Problem 2

$$I_1 = I_3$$
 $R_{eq} = R_1 + R_3 = 70\Omega$
 $I_1 = V_S / R_{eq} = 42.9 mA$

$$V_1 = (R_1 / R_{eq})V_S = I_1 R_1$$

 $V_1 = 2.14V$

$$V_3 = (R_3 / R_{eq})V_S = I_3 R_3$$

 $V_3 = 0.857V$

Note: The polarity of the voltage and the direction of the current through RI has to follow what was used in the first solution.

$$I_1 + I_2 = I_3 + I_{S2}$$

 $I_2 = I_{S2} = 2A$
 $I_1 = I_3$

$$V_2 = I_2 R_2 = 2A(30\Omega) = 60V$$

$$0 = V_1 + V_3 = I_1 R_1 + I_3 R_3$$
 $I_1 R_1 = -I_3 R_3$
 $I_1 = I_3 = 0A$
 $V_1 = 0V$
 $V_3 = 0V$

Currents and voltages in original circuit with all sources turned on.

	Vs on	ls1 on	ls2 on	Total
l ₁	+42.9mA	+0.286A	0A	+0.329A
I ₂	0	-1A	2A	+1A
I ₃	+42.9mA	-0.714A	0A	-0.671A
V_1	+2.14V	+14.3V	0V	16.4V
V_2	0V	-30V	+ 60V	+30.0V
V_3	0.857V	-14.3V	0V	-13.4V

Use source transformation to reduce the circuit between terminals *a* and *b* shown in Figure to a single voltage source in series with a single resistor.

