TOPOLOGY QUALIFYING EXAM Strecker - Summerhill FALL 1982

Do nine but no more than nine of the following 15 problems:

1. Prove or give a counter example:

The product of locally connected spaces is locally connected.

- 2. a) Let $f:X \to Y$ and $g:X \to Y$ be continuous, with Y Haldsdorff. If D is dense in X and f|D=g|D, show that f=g.
 - b) Prove or disprove this assertion if Y is not assumed to be Hausdorff.
- 3. Let C be the Cantor set in [0,1]; i.e.,

$$C = \{ \sum_{i=1}^{\infty} \frac{1}{3^{i}} \mid n_{i} = 0, 2 \}.$$
 Prove that C is homeomorphic

to the countable power of a two-point discrete space {0,2}.

4. Prove or disprove:

A completely regular T_1 space is connected if and only if its Stone-Čech compactification is connected.

- 5. Prove that any retract of a product of real lines must be locally connected.
- 6. Prove or disprove:

If X is compact and metrizable, then any distance preserving function $f:X \to X$ must be surjective.

- 7. Prove that the following are equivalent:
 - a) X is countably compact.
 - b) Every decreasing sequence of closed nonempty subsets of X has a nonempty intersection.
- 8. Prove that the three-point space (X,τ) with $X = \{a,b,c\}$ and $\tau = \{\emptyset, X, \{a\}\}$ is "universal" in the sense that every topological space is a subspace of some power of it.
- 9. Prove or give a counter example for each of the following:
 - a) Every quotient of a locally compact space is locally compact.
 - b) Every separable space is second countable.
 - c) Every subspace of a second countable space is separable.
 - d) Every compact Hausdorff space is metrizable.

- 10. Give four examples, one compact, one locally compact but non-compact, one non-locally compact, and one non-locally connected, of spaces homotopically equivalent to the circle s^1 but not homeomorphic to s^1 .
- ll. Let X be a compact Hausdorff space. Prove that X is metrizable if and only if the diagonal $\Delta\subseteq X\times X$ is a G_{δ} .

12. Prove:

- a) The inverse limit of any inverse spectrum of compact Hausdorff spaces is compact Hausdorff.
- b) The direct limit of any direct spectrum of locally connected spaces is locally connected.
- 13. Prove that if $A \times B$ is a compact subset of $X \times Y$ contained in an open set W of $X \times Y$, then there exist open sets $U \subset X$ and $V \subset Y$ such that

 $A \times B \subset U \times V \subset W$.

- 14. Call a metric space X an absolute neighborhood extensor (ANE) if for each metric space X, each closed subset \overline{A} of X, and each continuous map $f:A \to Y$, there is a neighborhood N of A in X and a continuous map $f:N \to X$ such that $\widehat{f} | A = f$. If Y is an ANE, A is a compact subset of a metric space X, and $f,g:A \to Y$ are homotopic, show that f and g extend to maps (on a neighborhood of A) $\widehat{f},\widehat{g}:N \to Y$ which are homotopic.
- 15. Let A be a closed subset of the space X, and let $f:A \to Y$ be a closed continuous function. Prove that if X and Y are paracompact then X attached to Y by $f(X \cup_f Y)$ must be paracompact.