PATENT SPECIFICATION

(11) 1 554 275

(21) Application No. 39054/76 (22) File (31) Convention Application No. 12413/75

(22) Filed 21 Sept. 1976

(32) Filed 24 Sept. 1975

(31) Convention Application No. 12414/75

(32) Filed 24 Sept. 1975

(31) Convention Application No. 7250/76

(32) Filed 9 June 1976 in

(33) Switzerland (CH)

(44) Complete Specification published 17 Oct. 1979

(51) INT CL2 C07D 403/04 A61K 31/55 (C07D 403/04 243/38 295/12)

(52) Index at acceptance

C2C 1626 1747 200 213 215 220 227 22Y 246 247 250 252 25Y 28X 305 311 313 31Y 321 322 323 32Y 332 337 338 351 352 360 361 364 366 368 36Y 386 401 40Y 43X 453 45Y 620 621 623 624 625 628 630 652 65X 660 661 668 698 699 761 762 770 802 80Y LS LW TR WE ZB

(72) Inventor FRITZ HUNZIKER

(54) DIBENZO[b,e][1,4]DIAZEPINES

(71) We, SANDOZ LTD., of 35 Lichtstrasse, 4002 Basle, Switzerland, a Swiss Body Corporate, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to dibenzo[b,e]-[1,4]diazepines.

The present invention provides compounds of formula I,

wherein

10

15

20

25

R, is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl of 2 to 4 carbon atoms, or alkoxyalkyl of 2 to 5 carbon atoms in the aggregate thereof, R, is fluorine or chlorine, and

 R_3 is alkyl of 1 to 4 carbon atoms, hydroxyalkyl of 2 to 4 carbon atoms, alkoxyalkyl of 2 to 5 carbon atoms in the aggregate thereof, or alkenyl of 3 or 4 carbon atoms, with the proviso that when R_3 is methyl, R_2 is fluorine.

Alkyl in R, has preferably 1 to 2 carbon atoms.

The alkoxy moiety in alkoxyalkyl or the hydroxy moiety in hydroxyalkyl is preferably located in the terminal position of the alkylene chain which preferably has 2 or 3, especially 2, carbon atoms. The alkoxy radical in alkoxyalkyl is preferably methoxy. The double bond in alkenyl is in the 2,3 or 3,4-position. Alkenyl is preferably alkyl or 2-methyl-2-propenyl

Alkenyl is preferably allyl or 2-methyl-2-propenyl. R_1 is preferably methyl. R_3 is preferably alkyl or alkoxyalkyl, especially alkyl.

R₃ especially is methyl, ethyl or n-propyl.

The present invention also provides a process for the production of a compound of formula I as defined above, which comprises reacting a compound of formula II,

5

15

10

20

20

25

	wherein R_2 and R_3 are as defined above, and X is a leaving group,	
	with a compound of formula III,	
5	HN N-R ₁	5
10	wherein R, is as defined above. The process may be effected in conventional manner for such reactions. In the compound of formula II, X is attached by a covalent or ionic bond to the carbon atom, and signifies, for example, amino which may be substituted by one or two alkyl groups of 1 to 4 carbon atoms, especially 1 to 4 carbon atoms; sulfhydryl, alkoxy or alkylthio of 1 to 4 carbon atoms, for example methoxy or methylthio, p-nitrobenzylthio or tosyloxy, or preferably halogen, especially chlorine.	10
15	The process is conveniently effected at temperatures between 50° to 170°C in an inert organic solvent, for example xylene or dioxane. The starting materials of formula II may be prepared in known manner, e.g. as described herein, for example via the corresponding lactam, e.g. by reaction with phosphorusoxychloride.	15
20	Free base forms of compounds of formula I may be converted into the acid addition salt forms in conventional manner and vice versa. A suitable acid is hydrochloric acid. In the following Examples all temperatures are in degrees Centigrade and are uncorrected.	20
25	EXAMPLE 1	25
	5-n-Propyl-8-chloro-11-(4-methyl-1-piperazinyl)- 5H-dibenzo[b,e][1,4]diazepine 5.74 g of 5-n-propyl-8-chloro-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepin-11-	•
·30	one, 30 ml of phosphorusoxychloride and 1 ml of N,N-dimethylaniline are boiled for 3 hours. The resulting solution of the imido-chloride of the lactam is evaporated to dryness, the residue evaporated twice more after the addition of xylene, and then boiled for 6 hours with 20 ml of dioxane and 25 ml of N-methylpiperazine. The resulting mixture is then concentrated as far as possible, and the residue is	30
35	partitioned between aqueous ammonia and ether. The ethereal phase is washed with water, and extracted continuously with dilute acetic acid to remove the basic components. The base is set free by the addition of sodium hydroxide and taken up in chloroform. The chloroform phase is washed with water, dried over anhydrous sodium sulphate and concentrated to dryness. The residue is taken up in ether, filtered through basic aluminium oxide and crystallized from ether/petroleum ether	35
40	to give the title compound; M.Pt. 120°—122°C. The starting material may be obtained as follows:— 2-Nitro-4-chloro-diphenylamine-2'-carboxylic acid is converted via the acid chloride into 2-nitro-4-chloro-diphenylamine-2'-carboxylic acid methyl ester (M.Pt. 155°—156°). This is reacted with n-propyl iodide in the presence of sodium hydride in	40
45	hexamethylphosphoric acid triamide to form N-n-propyl-2-nitro-4-chloro-diphenylamino-2'-carboxylic acid methyl ester. This is reduced in the presence of Raney nickel in ethyl acetate to form N-n-propyl-2-amino-4-chloro-diphenylamine-2'-carboxylic acid methyl ester. This is cyclized in the presence of sodium amide in boiling dioxane over several hours to yield the starting material	45
50	used in Example 1. In analogous manner to that described in Example 1, the following compounds of formula I may be obtained, wherein:—	50
55	Example R ₂ R ₁ R ₃ M.Pt.° 2 Cl CH ₃ C ₂ H ₅ 145—146° 3 Cl CH ₃ CH ₂ CCH ₂ OCH ₃ 160—161° 4 F CH ₃ C ₂ H ₆ 133—135° 5 F CH ₃ n-C ₃ H ₇ 95—97° and 115—117° 6 F CH ₃ n-C ₄ H ₉ 124—125°	.55
60	7 CI CH ₃ CH ₂ —CH=CH ₂ 157—159° 8 CI CH ₃ CH ₂ CH ₂ OH 157—159°	60

WHAT WE CLAIM IS:-

50

1. A process for the production of a compound of formula I,

In another group of compounds R₂ is fluorine.

5	wherein R ₁ is hydrogen, alkyl of 1 to 4 carbon atoms, hydroxyalkyl of 2 to 4 carbon atoms, or alkoxyalkyl of 2 to 5 carbon atoms in the aggregate thereof, R ₂ is fluorine or chlorine, and R ₃ is alkyl of 1 to 4 carbon atoms, hydroxyalkyl or 2 to 4 carbon atoms, alkoxyalkyl of 2 to 5 carbon atoms in the aggregate thereof, or alkenyl of 3 or 4 carbon atoms, with the proviso that when R ₃ is methyl, R ₂ is fluorine, which comprises reacting a compound of formula II,	5
	R ₂ N=C II	
0	wherein R_2 and R_3 are as defined above, and X is a leaving group, with a compound of formula III,	10
	HN_N-R ₁	
15	wherein R_1 is as defined above.	15
	2. A process for the production of a compound of formula I, as stated in Claim I, substantially as hereinbefore described with reference to any one of the Examples.	
20	3. A compound of formula I, whenever produced by a process according to Claim 1 or 2.	20
	 A compound of formula I, as defined in Claim 1. A compound of Claim 4, wherein R₁ is hydrogen, alkyl or hydroxyalkyl, and 	
25	R ₃ is hydroxyalkyl or alkoxyalkyl. 6. A compound of Claim 4, wherein R ₁ is alkyl, R ₂ is chlorine and R ₃ is alkyl of	25
	 2 to 4 carbon atoms. 7. A compound of Claim 4, wherein R₂ is fluorine. 8. A compound of Claim 4, which is 5-n-propyl-8-chloro-11-(4-methyl-1- 	
30	piperazinyl)-5H-dibenzo[b,e][1,4]diazepine. 9. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl, C ₂ H ₅ . 10. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl,	30
	CH ₂ CCH ₂ OCH ₃ . 11. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , F, C ₂ H ₅ . 12. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , F,	
35	n-C ₃ H ₇ . 13. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , F,	35
	n-C ₄ H ₉ . 14. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl,	
40	CH ₂ —CH=CH ₂ . 15. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl,	40
	CH ₂ CH ₂ OH. 16. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl,	
	iso-C ₃ H ₇ . 17. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl,	45
45	iso-C ₄ H ₉ . 18. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , Cl,	45
	n-C ₄ H ₉ . 19. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ , F, CH ₃ . 20. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₂ CH ₂ OH,	
50	21. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively C ₂ H ₅ , F, CH ₃ . 22. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively H, F, CH ₃ . 23. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively i-C ₃ H ₇ , F,	50
55	CH ₃ . 24. A compound of Claim 4, wherein R_1 , R_2 , R_3 are respectively n-C ₃ H ₇ , F, CH ₃ .	55

	25. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₂ CH ₂ OCH ₃ , F, CH ₃ .	
	26. A compound of Claim 4, wherein R_1 , R_2 , R_3 are respectively t- C_4H_9 , F, CH_3 .	
5	27. A compound of Claim 4, wherein R ₁ , R ₂ , R ₃ are respectively CH ₃ . F, CH ₂ —CH=CH ₃ .	5
	28. A compound according to any one of Claims 3 to 27 in free base form. 29. A compound according to any one of Claims 3 to 27 in acid addition salt	
10	form. 30. A pharmaceutical composition comprising a compound according to any one of Claims 3 to 27 in free base form or in pharmaceutically acceptable acid addition salt form in association with a pharmaceutical carrier or diluent.	10

B. A. YORKE & CO., Chartered Patent Agents, 98, The Centre, Feltham, Middlesex, TW13 4EP, Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1979
Published by The Patent Office, 25 Southampton Buildings, London, WC2A IAY, from which copies may be obtained.