Bargav Jayaraman

bj4ng@virginia.edu | https://bargavjayaraman.github.io

Education

PhD in Computer Science (May '22) University of Virginia, Charlottesville, USA

GPA: 3.91/4.0

MS in Computer Science (May '15)

IIIT, Hyderabad, India GPA: 8.68/10.0

B Tech in Computer Science (May '12) SASTRA University, Thanjavur, India

GPA: 8.58/10.0

Technical Skills

Languages:

Python, C, C++, Java

Web Development:

HTML, CSS, Markdown

Libraries & Frameworks:

Scikit-Learn, Obliv-C, Tensorflow, Amazon Web Services, Git

Work Experience

Research and Development Senior Analyst

Jan '15 to July '16

Accenture Technology Labs, Bangalore, India

- Application of machine learning techniques for solving software engineering problems like multi-lingual vagueness detection on software requirements and automated web testing.
- Filed three patents and co-authored a peer-reviewed paper accepted in 25th conference on RE '17.
- Developed end-to-end deep learning pipeline for detecting vagueness in English and transferring the vagueness detection knowledge to Portuguese and Spanish.
- Used deep learning techniques to identify web objects and texts for automated testing of web pages.

Teaching Assistant for following courses:

Data Warehousing and Data Mining (at IIIT Hyderabad, India)
Principles of Information Security (at IIIT Hyderabad, India)

Fall '14

Spring '14

Selected Projects and Publications

Evaluating Differentially Private Machine Learning in Practice

Aug '18 to Present

- Compared the privacy leakage of differential private machine learning implementations.
- Proposed stronger membership inference attacks that pose significant privacy threat even in skewed prior settings.
- Implemented using Python and Tensorflow framework.

Related Publications: In PETS '21 In USENIX Security '19

Private Multi-Party Machine Learning

Aug '16 to Present

- Performed privacy preserving machine learning over sensitive data such as health records.
- Combined secure multi-party computation protocols with differential privacy to improve privacy-utility trade-off.
- Implemented using Python, Scikit-Learn and Obliv-C framework.

Related Publications: In NIPS '18 In NIPS '16

Distributed Certificate Authorities

Apr '17 to July '17

- Proposed decentralized CA where two CAs jointly generate certificates using secure multi-party computation.
- Experimented with different bandwidth and latency settings on AWS and Azure cloud servers.
- Secure certificate signing in minutes, costing from cents to few dollars.
- Implemented certificate signing using Obliv-C and GMP libraries.

Related Publications: In Archive '17

Multi-Lingual Vagueness Detection

Jan '15 to Jan '16

- Used deep learning to identify vague terms like 'some', 'many', etc. in software requirement texts.
- Used transfer learning for vagueness detection across English, Spanish and Portuguese software requirements.
- Implemented using Theano and Python framework.

Related Publications: In RE '17

Secure String Matching on Outsourced Data

Jan '14 to Dec '14

- Performed searching of sub-strings and prefixes within keywords on documents outsourced to cloud server.
- Ranked documents containing the target string pattern in an efficient and privacy preserving way.
- Implemented in C++.

Related Publications: In ICDCS '15