CMPS 4750/6750 Computer Networks – Fall 17

Homework 4 - Solution

Due 05/02/17 at the beginning of the class

- 1. (6 points) (switching) Consider the switch shown below. Suppose that all datagrams have the same fixed length, that the switch operates in a slotted, synchronous manner, and that in one time slot a datagram can be transferred from an input port to an output port. The switch fabric is a crossbar so that at most one datagram can be transferred to a given output port in a time slot, but different output ports can receive datagrams from different input ports in a single time slot. What is the minimal number of time slots needed to transfer the packets shown from input ports to their output ports in the following two cases, respectively?
 - (a) packets are served in a first-come-first-served (FCFS) manner
 - (b) packets can be served in any order you want (i.e., it need not have HOL blocking)
 - **Solution:** (a) Using FCFS, the minimal number of time slots needed is 3. One possible schedule is as follows. Slot 1: send X in top input queue, send Y in middle input queue. Slot 2: send X in middle input queue, send Y in bottom input queue. Slot 3: send Z in bottom input queue.
 - (b) If one can use any scheduling policiy, the minimal number of time slots needed is 2. One possible schedule is as follows. Slot 1: send X in top input queue, send Y in middle input queue, and send Z in the bottom input queue. Slot 2: send X in middle input queue, send Y in bottom input queue.

2. (8 points) (longest prefix matching)

Consider a datgram network using 32-bit host addresses. Suppose a router has four links, numbered 0 through 3, and packets are to be forwarded to the link interfaces as follows:

Destination Address Range	Link Interface
11000000 00000000 00000000 00000000 through 11000000 00111111 11111111 11111111	0
11000000 01000000 00000000 00000000 through 11000001 011111111 11111111 11111111	1
11000001 10000000 00000000 00000000 through 11000001 111111111 11111111 11111111	2
otherwise	3

Provide a forwarding table that uses longest prefix matching, and forwards packets to the correct link interfaces. You may use more than one extries for a prefix, but try to make the forwarding table as small as possible.

Solution: See the following table for one possible solution.

Prefix Match	Link Interface
11000000 00	0
1100000	1
11000001 1	2
otherwise	3

3. (6 points)(subnets)

Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the pre-fix 223.1.17/24. Also suppose that Subnet 1 is required to support at least 120 interfaces, Subnet 2 is required to support at least 30 interfaces, and Subnet 3 is required to support at least 60 interfaces. Provide three network addresses (of the form a.b.c.d/x) that satisify these constraints.

Solution: One possible solution is as follows:

Subnet 1: 223.1.17.0/25 Subnet 2: 223.1.17.128/27 Subnet 3: 223.1.17.192/26

4. (10 points)(distance-vector routing)

Consider the following network with 4 routers. The initial costs of all links are given as follows: c(x,y) = 4, c(x,z) = 50, c(y,w) = 1, c(z,w) = 1, c(y,z) = 3. Suppose that poisoned reverse

is used in the distance-vector routing algorithm. Now suppose that the link cost between x and y increases to 60. Will there be a count-to-infinity problem even if positioned reverse is used? Justify your answer.

Solution: Yes, there will be a count-to-infinity problem. The following table shows the routing converging process. Assume that at time t0, link cost change happens. At time t1, y updates its distance vector and informs neighbors w and z. In the following table, " \rightarrow " stands for "informs". We see that w, y, z form a loop in their computation of the costs to router x.

	t0	t1	t2	t3	t4
Z	\rightarrow w, $D_z(x) = \infty$		No change	\rightarrow w, $D_z(x)=\infty$	
	\rightarrow y, $D_z(x)=6$			\rightarrow y, $D_z(x)=11$	
w	\rightarrow y, $D_w(x)=\infty$		\rightarrow y, $D_w(x) = \infty$		No change
	\rightarrow z, $D_w(x)=5$		\Rightarrow z, $D_w(x)=10$		
у	\rightarrow w, D _y (x)=4	\rightarrow w, D _y (x)=9		No change	\rightarrow w, D _y (x)=14
	\Rightarrow z, D _y (x)=4	\Rightarrow z, $D_y(x) = \infty$			\Rightarrow z, $D_y(x) = \infty$

If we continue the iterations shown in the above table, then we will see that, at t27, z detects that its least cost to x is 50, via its direct link with x. At t29, w learns its least cost to x is 51 via z. At t30, y updates its least cost to x to be 52 (via w). Finally, at time t31, no updating, and the routing is stabilized.

	t27	t28	t29	t30	t31
Z	\rightarrow w, D _z (x)=50				via w, ∞
	\rightarrow y, $D_z(x)=50$				via y, 55
					via z, 50
W		\rightarrow y, $D_w(x)=\infty$	\rightarrow y, $D_w(x)=51$		via w, ∞
		\rightarrow z, $D_w(x)=50$	\rightarrow z, $D_w(x) = \infty$		via y, ∞
					via z, 51
У		\rightarrow w, D _y (x)=53		\rightarrow w, $D_y(x) = \infty$	via w, 52
		\rightarrow z, $D_y(x) = \infty$		\rightarrow z, D _y (x)= 52	via y, 60
					via z, 53