Algèbre linéaire

Calcul formel – TP 5

Toutes les questions peuvent être traitées avec l'aide de Sage, sauf lorsque l'on vous demande de faire une preuve « à la main »!

1. Matrices circulantes

On appelle matrice circulante de taille n une matrice de la forme suivante (ici de taille 5):

$$\begin{pmatrix} a_0 & a_1 & a_2 & a_3 & a_4 \\ a_4 & a_0 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_0 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_0 & a_1 \\ a_1 & a_2 & a_3 & a_4 & a_0 \end{pmatrix}.$$

Une telle matrice est définie par la liste des n réels $(a_0, a_1, \dots, a_{n-1})$ constituant la première ligne, les autres lignes se déduisant de la première par permutations circulaires.

- 1. Écrire une fonction construisant une matrice circulante; elle aura comme paramètre une liste dont les éléments sont les coefficients de la première ligne.
- 2. Écrire une fonction qui teste si une matrice donnée est circulante; cette fonction aura comme paramètre la matrice (supposée carrée) et renverra comme résultat vrai ou faux (True ou False) selon les cas.
- 3. Théorème : "Le produit de deux matrices circulantes est une matrice circulante." Montrer formellement ce théorème pour les matrices de taille n = 5.
- 4. Soit J la matrice circulante définie par la liste (0, 1, 0, 0, ..., 0). Montrer (formellement pour n = 5) que toute matrice circulante M se décompose sous une forme

$$M = \sum_{k=0}^{n-1} a_k J^k.$$

Quelle est cette décomposition pour la matrice circulante définie par la liste (3, 1, 4, 1, 5)? **Énigme.** Combien vaut le coefficient devant J^4 ?

2. Le 20000ème nombre bis de Fibonnacci

Partie I. La suite bis de Fibonacci.

On se propose de calculer explicitement les termes de la suite bis de Fibonacci définie par :

$$P_0 = 3$$
 $P_1 = 0$ $P_2 = 2$ $P_n = P_{n-2} + P_{n-3}$ pour $n \ge 3$.

On pose

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad X_n = \begin{pmatrix} P_{n+2} \\ P_{n+1} \\ P_n \end{pmatrix} \quad \text{avec} \quad X_0 = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}.$$

Trouver à la main une relation simple entre X_{n+1} , X_n et A; en déduire

$$X_n = A^n X_0$$
.

Une méthode efficace pour calculer A^n permettrait d'en déduire un calcul de P_n .

Partie II. Exponentiation rapide.

- Pour calculer A^8 , il est possible de calculer $A \times A \times A \times A \times A \times A \times A \times A$ ce qui fait 7 multiplications de matrices.
- Il est plus judicieux de remarquer que $A^8 = ((A^2)^2)^2$ et donc calculer $A^2 = A \times A$, puis $A^4 = A^2 \times A^2$ et enfin $A^8 = A^4 \times A^4$, c'est-à-dire seulement 3 multiplications.
- Pour calculer A^{13} , on commence par décomposer l'exposant 13 en somme de puissances de 2 : 13 = 8+4+1, et donc $A^{13} = A^8 \times A^4 \times A$. Pour calculer A, A^4 et A^8 il faut d'abord 3 multiplications, et ensuite 2 nouvelles multiplications pour obtenir A^{13} , soit en tout 5 multiplications de matrices.
- L'algorithme de *l'exponentiation rapide* utilise ce principe. En voici une version en pseudo-code. Le résultat sera dans la variable produit; puissance joue le rôle des A^{2^k} ; le quotient de n par 2 est le quotient de la division euclidienne.

```
Entrées : A, n
Sortie : produit vaut A^n
produit ← identité
puissance \leftarrow A
tant que n > 0
         si n est impair :
                  produit ← produit * puissance
         fin si
         puissance ← puissance * puissance
         n \leftarrow \text{quotient de } n \text{ par } 2
fin tant que
```

- 1. Mettre en œuvre cet algorithme.
- 2. Énigme. Combien faut-il, selon l'algorithme décrit ci-dessus, de multiplications de matrices pour calculer

Indications : Considérez l'écriture binaire de *n*.

Testez d'abord votre comptage avec de petites valeurs de n; par exemple pour n=13, on effectue 7 multiplications.

3. Que vaut $P_{20\,000}$? Combien de chiffres constituent l'écriture décimale de ce nombre ?

3. Loi de Laplace

La loi de Laplace pour les gaz parfaits affirme que la pression P et le volume V d'un gaz sont reliés par une relation

$$PV^{\gamma} = C$$

où γ et C sont des constantes.

On relève les mesures suivantes :

P	110	55	30	18	11
V	2	4	6	9	10

On cherche quelles sont les constantes γ et C qui permettent d'approcher le mieux ces données.

- 1. On note $c = \ln C$. Trouver une équation linéaire d'inconnues γ et c.
- 2. Résoudre ce problème linéaire par la méthode des moindres carrés.
- 3. **Énigme.** Quelle est la fraction $\frac{p}{q}$, avec $1 \le p < 100$ et $1 \le q < 100$, qui est la plus proche de γ ? Vous donnerez la réponse sous la forme d'un entier à 4 chiffres. (Par exemple si la fraction est $\frac{37}{75}$, donner la réponse 3775.)

Indication: La fonction range() construit une liste d'entiers Python de type int tandis que la fonction srange() construit une liste d'entiers Sage de type sage.rings.integer.Integer.L'expression a/b lorsque a et b sont des int a pour valeur le quotient, lui-même de type int. La même expression pour deux sage.rings.integer.Integer donne un sage.rings.rational.Rational.

Pour votre recherche, utilisez donc la fonction srange() plutôt que range().

4. Transformations 3D

On considère un cube de l'espace qu'on va par la suite transformer, projeter...

Le cube initial a pour sommets $P_1 = (0,0,0)$, $P_2 = (1,0,0)$, $P_3 = (1,1,0)$, $P_4 = (0,1,0)$, $P_5 = (0,0,1)$, $P_6 = (1,0,1)$, $P_7 = (1,1,1)$, $P_8 = (0,1,1)$ et sa face supérieure (en rouge) est la face $(P_5P_6P_7P_8)$.

On peut translater ce cube, on peut aussi lui appliquer d'autres transformations de l'espace définies par $X \mapsto AX$ où $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et A est une matrice 3×3 . Une homothétie centrée à l'origine est alors caractérisée par la matrice kI. Une rotation d'axe (Ox) (resp. (Oy), resp. (Oz)) et d'angle θ est définie par la matrice $A_{R(Ox)}$ (resp. $A_{R(Oy)}$, resp. $A_{R(Oz)}$):

$$A_{R(Ox)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \qquad A_{R(Oy)} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \qquad A_{R(Oz)} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

La projection orthogonale sur le plan (Oyz) est définie par la matrice

$$A_P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1. Écrire des fonctions qui transforment (puis affichent en 3D, voir les indications en fin d'énoncé) le cube pour une translation ou pour une transformation donnée par une matrice.
- 2. Afficher le cube obtenu après la composition des transformations suivantes :
 - d'abord l'homothétie centrée à l'origine de rapport k = 3;
 - puis la rotation d'axe (*Oy*) d'angle $\theta = -\frac{\pi}{6}$;
 - puis la translation de vecteur (4, 3, 2);
 - puis la rotation d'axe (Ox) d'angle $\theta = \frac{\pi}{4}$.

Vérifier que le sommet de hauteur minimale du cube transformé vérifie $z = \frac{5\sqrt{2}}{2}$.

3. On éclaire la scène par une lumière verticale, chaque face reflète plus ou moins la lumière selon sa position. L'intensité reflétée est donné par la formule :

$$I = \left| \langle \vec{n} \mid \vec{\ell} \rangle \right|$$

où \vec{n} est un vecteur unitaire normal à la face, $\vec{\ell}$ est un vecteur unitaire dirigeant la lumière (ici $\vec{\ell} = (0,0,-1)$) et $\langle \vec{u} \mid \vec{v} \rangle$ désigne le produit scalaire.

Énigme. Quelle est l'intensité reflétée par la face rouge du cube transformé de la question 2?

Donner la réponse sous la forme d'un pourcentage arrondi à l'entier le plus proche. (Par exemple si I=89.237%, la réponse est 89.)

4. Afficher la projection du cube transformé de la question 2. sur le plan d'équation (x = -1).

Figure : le cube de l'énigme (à droite) et son projeté sur un plan (à gauche).

Indications. Voici des instructions qui affichent des sommets, des arêtes et la face rouge du cube initial.