B.E. METALLURGICAL AND MATERIAL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2018 SUBJECT: ADVANCED CHARACTERISATION TECHNIQUES

Time: Three Hours Full Marks: 100

(Use separate Answer Script for each part)

Part-1

	(Answer question 1 and any three from the rest)	
1.	Complare the mechanism of scattering of X-ray and electrons by matters.	10
2.	(a) Write down the one-dimensional differential equation of running wave and discuss the D'Alembert solution	2+12
	(b)Outline the principle of Atomic Absorption Spectroscopy.	6
3.	(a) Find the expression of the resultant amplitude of scattering from a pair of identical point scatterers and discuss its graphical representation	7+3
	(b) Find an expression of the wavelength of electrons and explain its relativistic corrections.	10
4	(a) For one dimensional; array of atoms having translational periodicity \vec{a} , so that Laue condition of diffraction is given by $\vec{a}, \vec{s} = \hbar$, where s is the scattering vector and h is an integer.	10
	(b) Define reciprocal lattice. Show that the magnitude of the reciprocal lattice vector $(\overrightarrow{R^s})$ is given by, $ \overrightarrow{R^s} = \overrightarrow{s} = \frac{1}{d_{BH}}$	4+6
	Where d_{hkl} is interplanar spacing.	
5	(a) In reciprocal lattice diffraction from a crystal is never a point but a spot. Estimate the size of the diffraction spot.	10
	(b) Discuss the mechanism of image contrast in TEM (c) Discuss the concept of limiting sphere in TEM	5 5
6	(a) Define the term transmittance of UV-VIS spectroscopy. Explain how you could estimate the band gap of a semiconductor from its UV-VIS spectrum.	2+4
	(b) Discuss the mechanism of interaction of electromagnetic radiation with IR active molecules. Explain what you understand by energy of 10cm ⁻¹	6+2
	(c) Explain why the line broadening of IR spectrum occurs.	6

[Turn over

Ref. No.: Ex/Met / T / 424A/2018

B.E. METALLURGICAL AND MATERIAL ENGINEERING FOURTH YEAR SECOND SEMESTER EXAM 2018 SUBJECT: ADVANCED CHARACTERISATION TECHNIQUES

Time: Three Hours Full Marks: 100

PART – II (Use separate answerscript)

Answer any two from the following:

- Q1. (a) Discuss the principles for formation of images in a scanning electron microscope? How does SEI images differ from BSE images?
 - (b) How can SEM be used to know the local composition of a material?

10+5 = 15

- Q2. (a) What are the advantages of AFM over SEM?
 - (b) Describe the principles for obtaining topographic images of a specimen in an AFM under contact, tapping and non-contact mode of operation.

 3+12 = 15
- Q3. (a) Describe the principle to obtain the phase transformation temperature a material and the nature of the transformation.
 - (b) Discuss the principle of the technique that can be used to know the austenite formation kinetics of a plain carbon eutectoid steel. 8+7 = 15