

7. 神經網路與損失函數

黃志勝 (Tommy Huang) 義隆電子 人工智慧研發部 國立陽明交通大學 AI學院 合聘助理教授 國立台北科技大學 電資學院合聘助理教授

Outline

- 1.類神經網路(Neural Network, NN)
- 2. 感知機(Perception)
- 3. Multi-layer perception (MLP)
- 4. How NN work?
- 5. Loss function

類神經網路

基本上神經網路是基於感知機(Perceptron)神經網路開始,主要是希望用數學

模型去模擬神經細胞的運作模式。

權重(w_i): Dendrite

Input(x_i) and output (y) node: Synapse

Node: Cell body

Output: Axon

NN for classification problem

x2

Perception

Perception can learn the nonlinear representation by activation function.

Perception

Output

$$y = f(w_{10} + w_{11}x_{1+}w_{12}x_2 + \dots + w_{1d}x_d) = f(\mathbf{W}^T \mathbf{x})$$

$$X_1$$
 W_1 activation X_2 W_2 W_0 W_0

Classification:
$$f = \begin{cases} 1 & \mathbf{W}^T \mathbf{x} \ge 0 \\ 0 & O.W. \end{cases}$$

Regression: $f(\mathbf{W}^T \mathbf{x})$

$$\boldsymbol{W} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}, \, \boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

神經元與回歸

神經元

Inputs

Output

Perception with linear output is the linear regression.

NN: backpropagation

Regression: OLSE (ordinary least squares estimator).

回歸

$$f(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

$$y = \sigma(f(x)) = \frac{1}{1 + e^{-f(x)}} = \frac{1}{1 + e^{-\beta^T x}}$$

- Exclusive OR (XOR Boolean function)
- It's impossible to find a single straight line to separate two classes.

Truth Table for the XOR problem					
x1	x2	AND	Class		
0	0	0	В		
0	1	1	A		
1	0	1	A		
1	1	0	В		

OR
$$h_1(x) = x_1 + x_2 - 0.5 = 0$$

$$h_2(x) = x_1 + x_2 - 1.5 = 0$$

OR
$$h_1(x) = x_1 + x_2 - 0.5 = 0$$

AND
$$h_2(x) = x_1 + x_2 - 1.5 = 0$$

OR
$$h_1(x) = x_1 + x_2 - 0.5 = 0$$

AND
$$h_2(x) = x_1 + x_2 - 1.5 = 0$$

Truth Table for XOR problem						
x1	x2	$h_1(x)$	$h_2(x)$	Class		
0	0	0(-)	0(-)	В		
0	1	1(+)	0(-)	A		
1	0	1(+)	0(-)	A		
1	1	1(+)	1(+)	В		

Two Layer Perception

類神經網路

但神經訊息傳遞不會像只有一層Single layer perceptron運作,神經網路應該是多個細胞部段將訊息傳遞下去運作的模式,這就是Multilayer perception (MLP),也就是一般認知的類神經網路。

Activation

· 如果沒有activation function會有什麼影響

$$X_2 = W_1 X_1$$

 $X_3 = W_2 X_2$
 $X_4 = W_3 X_3$
 $Y = W_4 X_4$

$$Y = W_4 W_3 W_2 W_1 X_1$$
 $Y = W X_1$
 $W = W_4 W_3 W_2 W_1 X_1$
結果就只是一層的神經網路而已。

Activation

· 如果沒有activation function會有什麼影響

Activation Function

- Sigmoid Tanh •
- ReLU(Rectified Linear Unit)系列:
- ReLU
- Leaky ReLU
- ReLU6
- PReLU
- RReLU
- ELU (Exponential Linear Unit)
- SELU (Scaled Exponential Linear Units)

Activation function

Sigmoid近似法

$$y = approxSigmoid(x) = \begin{cases} 0.5 * \left(\frac{x}{2} \frac{1}{1 + \frac{x}{2}}\right) + 1 & if \ 0 \le x < 3.4 \\ 0.5 * (0.9444 + 0.0459 * (\frac{x}{2} - 1.7) + 1) & if \ 3.4 \le x \le 5.8 \\ 0.9997 & x \ge 5.8 \end{cases}$$

Black: sigmoid

Red: approximate sigmoid

```
def fast_sigmoid2(x):
    x = 0.5 * x
    flag_neg=0
    if x<0:
        x=-x
        flag_neg=1

if x < 1.7:
    z = (1.5 * x / (1 + x))
    elif x < 2.9:
    z = (0.9444 + 0.0459 * (x - 1.7))

else:
    z = 0.9997
    if flag_neg==1:
        z=-z
    return 0.5 * (z + 1.)</pre>
```


Activation function: ReLU系列

• ReLU(x) = max(0,x) =
$$\begin{cases} x & \text{if } x > 0 \\ 0 & O.W. \end{cases}$$

• ReLU6(x) = min(max(0,x),6) =
$$\begin{cases} 6 & \text{if } x \ge 6 \\ x & \text{if } 0 < x < 6 \\ 0 & 0.W. \end{cases}$$

• LeakyReLU(x) =
$$\max(0,x) + a * \min(0,x) = \begin{cases} x & \text{if } x > 0 \\ ax & 0.W. \end{cases}$$
 (default $a = 0.1$)

• PReLU(
$$x$$
) = max($0,x$) + $a*min(0,x)$ = $\begin{cases} x & \text{if } x \geq 0 \\ ax & O.W. \end{cases}$ (a是訓練得到, $init$ 設定: 0.25)

・ RReLU(
$$x$$
) = max(0 , x) + a * min(0 , x) =
$$\begin{cases} x & \text{if } x > 0 \\ ax & O.W. \end{cases}$$
 (a 是隨機 U ($lower = \frac{1}{8}$, $upper = \frac{1}{3}$)選取)

• ELU(x) =
$$\max(0,x) + \min(0,\alpha * (e^x - 1)) = \begin{cases} x & \text{if } x > 0 \\ \alpha * (e^x - 1) & 0. \text{ } W. \end{cases}$$

・ SELU(
$$x$$
) = scale($\max(0,x) + \min(0,\alpha*(e^x-1))$)) = scale $\begin{cases} x & \text{if } x > 0 \\ \alpha*(e^x-1) & 0.W. \end{cases}$ $\alpha=1.6732632423543772848170429916717$ scale= $1.0507009873554804934193349852946$ 實驗驗證,小數取兩位數即可, $\alpha=1.67$, scale= 1.05

SELU係數精度實驗

• Model: LeNet 加強版

• Database: Cifar-10

· 看分類正確率隨著learning epoch變化的影響

SELU係數小數位數全取

SELU(x) = scale(max(0, x) + min(0,
$$\alpha * (e^x - 1))$$
)
= scale $\begin{cases} x & \text{if } x > 0 \\ \alpha * (e^x - 1) & 0.W. \end{cases}$
x=1.6732632423543772848170429916717

 α =1.6732632423543772848170429916717 scale=1.0507009873554804934193349852946

Activation function: ReLU系列

Polyhedral Regions

Polyhedral Regions

activation function = step function

The first layer of neurons divides the input d-dimensional space into polyhedral, which are formed by hyperplane intersections.

Polyhedral Regions

All vectors located within one of these polyhedral regions are mapped onto a specific vertex of the unit hypercube.

Dimension Reduction(Feature Projection)

Principle Component Analysis

NN and Dimension Reduction

$$\boldsymbol{x}' = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \boldsymbol{W}^T \boldsymbol{x}$$

拓展 為d維

NN and Dimension Reduction

Principle Component Analysis

$$\boldsymbol{x}' = \begin{bmatrix} x_1' \\ \vdots \\ x_d' \end{bmatrix} = W^T \boldsymbol{x} = \begin{bmatrix} w_{11} & \dots & w_{1d} \\ \vdots & \ddots & \vdots \\ w_{d1} & \dots & w_{dd} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

PCA是NN的一個special case

NN and Ensemble Learning

Ensemble Learning

Introduction (loss function)

In learning algorithm, there is an assumption, which may accompany with an object function.

Regression: minimizing the mean square errors (MSE)

K-mean: minimizing the mean of square error between data and centers.

PCA: maximizing the variance of project data.

SVM: maximizing the margin.

Sometimes the same model but different object function can lead different results. (Linear regression and ridge regression)

Regression

Ridge regression

$$\min_{\beta} \{ MSE(\hat{y}, y) \}$$

$$\min_{\beta} \{ MSE(\hat{y}, y) + \lambda L_2 norm(\beta) \}$$
$$L_2 norm(\beta) = \sum_{i} \beta_i^2$$

Neural Network (Number of output node)

Regression case: Number of output node of NN architecture is 1.

<u>Classification case</u>: Number of output node of NN architecture is *L* (Number of class in define problem). ->memberships (call logits in DL) for each class (such as posterior probability in ML).

Q: Why number of output node in this toy case is 1?

ANS: It's a binary classification problem.

A simple threshold can be defined as decision boundary, see the Logistic regression.

Neural Network (Number of output node)

羅吉斯迴歸

 $f(\mathbf{x})$

Neural Network

Logistic Regression	NN	Activation
f(x)	h(x)	None
$\sigma(f(x))$	f(h(x))	Sigmoid

Introduction

1. Regression

MSE, MAE, Huber Loss

2. Classification

Cross entropy, Focal loss

3. Triple loss

Residual

Residual: predicted value v.s. target value.

Regression:

$$y - \hat{y}$$

Classification (error):

$$sign(\hat{y}, y) = \begin{cases} 1 & \hat{y} = \hat{y} \\ 0 & \hat{y} \neq \hat{y} \end{cases}$$

$$error \ rate = \frac{1}{n} \sum_{i=1}^{n} sign(\hat{y}_i, y_i)$$

MSE & MAE

Mean Square Error (MSE)

Mean Absolute Error (MAE)

Why square or absolute?

Target value: $y_1 = 0$, $y_2 = 1$

Predicted value: $\hat{y}_1 = 100$, $\hat{y}_2 = 99$

Residual 1= $y_1 - \hat{y}_1 = 0 - 100 = -100$

Residual $2=y_2 - \hat{y}_2 = 1 - (-99) = 100$

Residual 1+ Residual 2 = -100 + 100 = 0

MSE & MAE

Mean Square Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

MSE & MAE

Trend of residual (target value =0)

With a fair baseline, RMSE (root MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Change ID5 with a outliner

ID	residual	residual	residual ²					
1	-10	10	100					
2	-5	5	25					
3	0	0	0					
4	5	5	25					
5	10	10	100					
	MAE=6, RMSE=7.07							

ID	residual	residual	residual ²					
1	-10	10	100					
2	-5	5	25					
3	0	0	0					
4	5	5	25					
5	100	100	10000					
N	MAE=24, RMSE=45.06							

Problem of MSE: more outlier sensitivity.

- Problem of MAE: same gradient value.
- When loss is small, it's difficult to reach the optimal target.

$$f_1(x) = x^2, f_1'(x) = 2x$$

 $f_2(x) = |x|, f_2'(x) = \frac{x}{|x|}$

Gradient update:

$$x^{t+1} \rightarrow x^t + rf'(x)$$

Suppose: $x^0 = 2$, r = 0.3

	$f(x)=x^2$					f(x)=	x	
t	x t	f'(x)	x **1		t	x t	f'(x)	x *+1
1	2	4	0.8		1	2	1	1.7
2	0.8	1.6	0.32		2	1.7	1	1.4
3	0.32	0.64	0.128		3	1.4	1	1.1
4	0.128	0.256	0.0512		4	1.1	1	0.8
5	0.0512	0.1024	0.02048		5	0.8	1	0.5
6	0.02048	0.04096	0.008192		6	0.5	1	0.2
7	0.008192	0.016384	0.003277		7	0.2	1	-0.1
8	0.003277	0.006554	0.001311		8	-0.1	-1	0.2
9	0.001311	0.002621	0.000524		9	0.2	1	-0.1
10	0.000524	0.001049	0.00021		10	-0.1	-1	0.20
11	0.000210	0.000419	0.000084		11	0.20	1	-0.1
12	0.000084	0.000168	0.000034		12	-0.10	-1	0.20
13	0.000034	0.000067	0.000013		13	0.20	1	-0.10
14	0.000013	0.000027	0.000005		14	-0.10	-1	0.20
15	0.000005	0.000011	0.000002		15	0.20	1	-0.10
16	0.000002	0.000004	0.000001		16	-0.10	-1	0.20
17	0.000001	0.000002	0.000000		17	0.20	1	-0.10
18	0.000000	0.000001	0.000000		18	-0.10	-1	0.20
19	0.000000	0.0000000	0.0000000		19	0.20	1	-0.10
20	0.0000000	0.0000000	0.0000000		20	-0.10	-1	0.20

Huber Loss

Huber loss:

$$Loss(y, \hat{y})$$

$$= \begin{cases} \frac{1}{2}(y-\hat{y})^2, & |y-\hat{y}| \le \delta \\ \delta(|y-\hat{y}| - \frac{1}{2}\delta), & O.W. \end{cases}$$

 δ : parameter of Huber loss.

MAE, MSE & Huber Loss

ID	residual	residual	residual ²	Huber (δ =1)	Huber (δ=10)
1	-10	10	100	9.5	50
2	-5	5	25	4.5	12.5
3	0	0	0	0	0
4	5	5	25	4.5	12.5
5	10	10	100	9.5	50

MAE=6, RMSE=7.07 MeanHuber(δ =1)=5.6, MeanHuber(δ =10)=25

ID	residual	residual	residual ²	Huber (δ =1)	Huber (δ=10)
1	-10	10	100	9.5	50
2	-5	5	25	4.5	12.5
3	0	0	0	0	0
4	5	5	25	4.5	12.5
5	100	100	10000	99.5	950

MAE=24, RMSE=45.06 MeanHuber(δ=1)=23.6, MeanHuber(δ=10)=205

Classification

Classification:

$$sign(\hat{y}, y) = \begin{cases} 1 & y = \hat{y} \\ 0 & y \neq \hat{y} \end{cases}$$

$$error\ rate = 1 - \frac{1}{n} \sum_{i=1}^{n} sign(\hat{y}_i, y_i)$$

We hope less error rate more better in classification.

Can we use the classification error rate/accuracy as loss function?

Classification

		Model 1 (輸出)				Model 2 (輸出)			
	機率輸出		機率輸出		判斷	7	幾率輸出	1	stert bisiere.
	Target (Label)	男生	女生	其他	ナリ 岡	男生	女生	其他	判斷
data 1	男生	0.4	0.3	0.3	男生 (正確)		0.1	0.2	男生 (正確)
data 2	女生	0.3	0.4	0.3	女生(正確)	0.1	0.8	0.1	女生 (正確)
data 3	男生	0.5	0.2	0.3	男生 (正確)	0.9	0.1	0	男生 (正確)
data 4	其他	0.8 0.1 0.1		男生 (錯誤)	0.4	0.3	0.3	男生 (錯誤)	
		模型1錯誤率: 1/4=0.25					模型2	錯誤率:	1/4=0.25

Can we observe any difference between model 1 & 2 from error rate? NO...

BUT we can observe that model 2 has better probability outputs than model 1. Error rate cannot as learning object for learning updating, it's just a metric for evaluating model performance.

Classification

- How do we make decision for a new sample in classification model?
- ANS: posterior probability.

Cross-entropy

- Cross-entropy is usually used in classification loss.
- **Entropy**: the average of information which is produced by a stochastic source of data.
- Information gain: (suppose X is a random variable)

$$I(x) = -\log_2(p(x))$$

Information gain

A is stupid, and his grades usually are around 50 marks.

B is smart, and his grades usually are almost 100 marks.

Probability to pass the exam for A: $p(x_A) = 0.4$

$$I(x_A) = -log_2(p(x_A)) = 1.322$$

Probability to pass the exam for B: $p(x_B) = 0.99$

$$I(x_B) = -log_2(p(x_B)) = 0.014$$

Entropy: the average of information which is produced by a stochastic source of data.

In information theory,

Entropy = Shannon entropy

$$H(X) = \sum_{i} -p_i log_2(p_i)$$

Generally, entropy refers to uncertainty for the random variable X.

$$p(x_A = pass) = 0.4,$$
 $p(x_A = fail) = 0.6$
 $p(x_B = pass) = 0.99,$ $p(x_B = fail) = 0.01$

$$H(X) = \sum_{i} -p_{i} \log_{2}(p_{i})$$

$$H(X_{A}) = -0.4 \log(0.4) - 0.6 \log(0.6) = 0.971$$

$$H(X_{B}) = -0.99 \log(0.99) - 0.01 \log(0.01) = 0.081$$

Same conclusion for information gain.

$$I(x_A) = -log_2(p(x_A)) = 1.322$$

 $I(x_B) = -log_2(p(x_B)) = 0.014$

When p=0.5 has the largest entropy.

$$p(X_A) = \begin{cases} 0.1 & x = 1 \\ 0.15 & x = 2 \\ 0.5 & x = 3 \\ 0.15 & x = 4 \\ 0.1 & x = 5 \end{cases} \qquad p(X_A) = \begin{cases} 0.01 & x = 1 \\ 0.09 & x = 2 \\ 0.8 & x = 3 \\ 0.09 & x = 4 \\ 0.01 & x = 5 \end{cases} \qquad p(X_B) = \begin{cases} 0.2 & x = 1 \\ 0.2 & x = 2 \\ 0.2 & x = 3 \\ 0.2 & x = 4 \\ 0.2 & x = 5 \end{cases}$$

$$H(X_A) = 1.985 \qquad H(X_A) = 1.016 \qquad H(X_B) = 2.322$$

Cross-entropy

Formula of cross- entropy:

$$CE = \sum_{i=1}^{n} \sum_{c=1}^{C} -y_{c,i} log_2(p_{c,i})$$

C: number of class (male, female, other)

n: number of data

 $y_{c,i}$: binary indicator (0 or 1) from one hot encode (i-th data assigns to c-class)

 $p_{c,i}$: probability of *i*-th data assigns to *c*-class

One hot encode (Dummy variable)

Data 1	Male
Data 2	Female
Data 3	Male
Data 4	Other

Male Female Other

	Male	Female	Other
Data 1	1	0	0
Data 2	0	1	0
Data 3	1	0	0
Data 4	0	0	1

Cross-entropy

$$CE = \sum_{i=1}^{n} \sum_{c=1}^{C} -y_{c,i} log_2(p_{c,i})$$

		Model 1 (輸出)						
		榜	幾率輸出	占	實際O	ne-hot	encode	
	Target (Label)	男生	女生	其他	男生	女生	其他	
data 1	男生	0.4	0.3	0.3	1	0	0	
data 2	女生	0.3	0.4	0.3	0	1	0	
data 3	男生	0.5	0.2	0.3	1	0	0	
data 4	其他	0.8	0.1	0.1	0	0	1	
			模型1錯誤率: 1/4=0.25 Cross-entropy=6.966					

SO less probability data has larger loss function (entropy value)→learning target.

Data 1:

$$\sum_{c=1}^{C} -y_{c,1}log_2(p_{c,1})$$
= -1 * log(0.4) - 0 * log(0.3) - 0
* log(0.3) = 1.322

Data 4:

$$\sum_{c=1}^{c} -y_{c,4}log_2(p_{c,4})$$

$$= -0 * log(0.8) - 0 * log(0.1) - 1$$

$$* log(0.1) = 3.3219$$

Cross-entropy for evaluating the model performance

		Model 1 (輸出)							
		榜	幾率輸出	L	實際O	ne-hot e	encode		
	Target (Label)	男生	女生	其他	男生	女生	其他		
data 1	男生	0.4	0.3	0.3	1	0	0		
data 2	女生	0.3	0.4	0.3	0	1	0		
data 3	男生	0.5	0.2	0.3	1	0	0		
data 4	其他	0.8	0.1	0.1	0	0	1		
			1年24	「1~11~11~11~11~11~11~11~11~11~11~11~11~1	* . 1 / 1 _	0.25			

_		_	_
莫型	1錯誤	率: 1/4=	0.25
Cro	ss-entr	opy=6.9	166

		Model 2 (輸出)								
		機率輸出			實際O	ne-hot	encode			
	Target (Label)	男生	女生	其他	男生	女生	其他			
data 1	男生	0.7	0.1	0.2	1	0	0			
data 2	女生	0.1	0.8	0.1	0	1	0			
data 3	男生	0.9	0.1	0	1	0	0			
data 4	其他	0.4	0.3	0.3	0	0	1			
			模型1錯誤率: 1/4=0.25 Cross-entropy= 2.310							

Cross-entropy for loss function

$$CE\ loss = \sum_{i=1}^{n} \sum_{c=1}^{C} -y_{c,i} log_2(p_{c,i})$$

Focal loss (1/3)

Cross-entropy (CE) for $y \in \{\pm 1\}$

$$CE(p,y) = \begin{cases} -\log(p), & if \ y = 1 \\ -\log(1-p), & if \ y = -1 \end{cases}$$

$$CE(p,y) = CE(p_t) = -\log(p_t), \qquad p_t = \begin{cases} p, & if \ y = 1 \\ 1-p, & if \ y = -1 \end{cases}$$

Focal loss (2/3)

α-balanced cross-entropy:

$$CE(p_t) = -\alpha \log(p_t)$$

BUT it's not effect for larger class unbalance problem.

Modulating factor:

$$(1 - p_t)^r$$

r: focusing parameter, $r \ge 0$.

Focal loss:

$$FL(p_t) = -(1 - p_t)^r \log(p_t)$$

α-balanced focal loss:

$$FL(p_t) = -\alpha (1 - p_t)^r \log(p_t)$$

Focal loss (3/3)

Why Focal loss? (Proposed in RetainNet)

在訓練階段的特徵圖對應的Anchor有90%都是沒用的背景anchor,所以要怎麼抑制背景的anchor。**怎麼強化判錯的Anchor的loss?**

Focal loss •

3*3的特徵圖

7*7的特徵圖

Triple

Anchor: a randomly training data with label c

Positive: training data in label c

Negative: training data in other labels

Anchor: x_i^a

Encoder network : f(x)

triple loss aims to

Positive: x_i^p

Anchor: $f(x_i^a)$

 $dist(f(x_i^a),(x_i^p)) \downarrow$

Negative: x_i^n

Positive: $f(x_i^p)$

 $dist(f(x_i^a),(x_i^n)) \uparrow$

Negative: $f(x_i^n)$

$$dist(f(x_i^a), f(x_i^p)) + \alpha < dist(f(x_i^a), f(x_i^n))$$

$$\Rightarrow \|f(x_i^a) - f(x_i^p)\|_2^2 + \alpha < \|f(x_i^a) - f(x_i^n)\|_2^2$$

$$\arg\min\{\sum_{i}\left(\left\|f(x_{i}^{a})-f(x_{i}^{p})\right\|_{2}^{2}+\alpha-\left\|f(x_{i}^{a})-f(x_{i}^{n})\right\|_{2}^{2}\right)\}$$

$$\arg\min\sum_{i} \left[\left\| f(x_{i}^{a}) - f(x_{i}^{p}) \right\|_{2}^{2} + \alpha - \left\| f(x_{i}^{a}) - f(x_{i}^{n}) \right\|_{2}^{2} \right]_{+}$$

$$[d_{p} - d_{n} + \alpha]_{+} = \begin{cases} d_{p} - d_{n} + \alpha & d_{p} - d_{n} + \alpha > 0 \\ 0 & d_{p} - d_{n} + \alpha < 0 \end{cases}$$

Conclusion

MSE, MAE, Huber loss, triple loss do the same thing.

Similarity measurement.

Cosine loss

Negative