Engineering FIRST YEAR

- * Harder questions. † Straightforward questions.
- \dagger 1. Complete the truth tables for the logic circuits in Figures 1 and 2.

Figure 1:

Inputs			Table for Figure 1			
A	$\mid B \mid$	\overline{A}	$\overline{A}.B$			X
0	0					
0	1					
1	0					
1	1					

Figure 2:

Inputs			Table for Figure 2			
A	B	\overline{A}	$\overline{A} + B$			Y
0	0					
0	1					
1	0					
1	1					

 \dagger 2. Find the state of inputs A, B and C for which the circuit of Figure 3 has output Z at logic 1.

Figure 3:

3. The NMOS field-effect transistor with characteristics shown in Figure 4(b) is connected into the inverter circuit shown in Figure 4(a).

Figure 4:

- (a) Draw a load line on Figure 4(b) and determine the output voltage V_o corresponding to input voltages of 0V and +10V.
- (b) Calculate the power dissipated in the 500Ω resistor and the transistor for each input voltage.

- (c) The capacitor C is now connected to the output of the circuit, as shown in the figure. V_i is initially 10V. At time t=0, V_i falls to 0V, switching the transistor off. Show that V_o as a function of time is $10-9\exp(-t/(CR))$. If C=40pF, find the time for V_o to rise from 1V to 8V.
- 4. Figure 5(a) shows a NMOS gate where a second transistor T_1 replaces the load resistor. The characteristics of T_1 are identical to that shown in Figure 4(b). Using the fact that $V_{DS} = V_{GS}$ for this transistor, construct a graph showing the relationship between V_{DS} and I_{DS} for T_1 .

Show that T_1 is equivalent to a voltage drop V_1 in series with a resistor R_1 , so that the circuits of Figures 5(a) and 5(b) are identical. Find V_1 and R_1 .

Draw a new load line on Figure 4(b) to represent the possible working points of T_2 . Assume $V_{DD} = 10$ V, and hence find the output voltage X corresponding to input voltages of 2V and 10V.

The table shown in Figure 5(c) summarises the operation of the circuit; complete the second line.

† 5. Figures 6(a) and 6(b) show simple extensions of the inverter circuit of Figure 5(a). By completing the tables,

Inputs		Table for (a)			
A	B	T_2	T_3	X	
0	0				
0	1				
1	0				
1	1				

Inputs		Table for (b)			
A	B	T_4	T_5	Y	
0	0				
0	1				
1	0				
1	1				

determine what function the outputs X and Y are of the inputs A and B.

- * 6. A CMOS (Complementary MOS) inverter circuit is shown in Figure 7(a) in which the 500Ω resistor of Figure 4(a) has been replaced by a PMOS transistor T_1 with characteristics shown in Figure 7(b). The characteristic of the NMOS transistor is repeated as Figure 7(c).
 - (a) Determine the output voltages V_o corresponding to input voltages V_i of 0V and 10V (Low and High inputs).
 - (b) Check that the power dissipated in each transistor for high and low inputs is negligible.
 - (c) If, due to a faulty lead, the input is floating and becomes +4V, determine V_o , the power dissipated in each transistor, and the power taken from the supply.

7. Use Boolean algebra to prove the following identities:

$$A.B.C + A.B.\overline{C} = A.B$$

$$A.(\overline{A} + B) = A.B$$

$$A.B + \overline{A}.C = (A + C).(\overline{A} + B)$$

$$(A + C).(A + D).(B + C).(B + D) = A.B + C.D$$

- \dagger 8. The circuit of Figure 8 does not make efficient use of logic gates. Write a Boolean expression for Z and hence show how Z can be realised more simply.
 - 9. A logic 'voter' circuit has four inputs A, B, C, D and one output V. The output is to be logic 1 if any three or all four inputs are at logic 1. Design a circuit using AND and OR gates to satisfy this requirement.

Figure 8:

- * 10. Devise circuits to solve question 9 if
 - (a) NAND gates only;
 - (b) NOR gates only are to be used.

HINT for part (b): consider when no output is wanted from the circuit and write a new Boolean expression. Then use de Morgan's theorem.

11. Following the examples on pages 67 and 68 of handout 1, write a VHDL definition of an OR gate.

Using this definition, and the gates defined in the handout, produce a VHDL description of the circuit shown in Figure 3.

R V Penty Lent 2019

Revision tripos questions: 2012 Paper 3 Question 6

2014 Paper 3 Question 6

2016 Paper 3 Question 6

2017 Paper 3 Question 6.

ANSWERS

1.

Inp	outs	Outputs		
A	B	X	Y	
0	0	0	1	
0	1	1	0	
1	0	1	0	
1	1	0	1	

- 2. Z = 1 for ABC in the states 000, 001 and 101.
- 3. 10V, 1V, 0mW, 0mW, 162mW, 18mW, 30.1ns.
- 4. $1.5V, 395\Omega, 8V, 1.2V, 1 ON 0.$
- 5. NAND, NOR.
- 6. 10V, 0V, approx 9V, 63mW, 7mW, 70mW.
- 8. Z = A + B
- 9. V = A.B.C + A.B.D + A.C.D + B.C.D

10.

$$\begin{array}{rcl} V & = & \overline{\overline{(A.B.C).(A.B.D).(A.C.D).(B.C.D)}} \\ V & = & \overline{\overline{(A+B)} + \overline{(A+C)} + \overline{(A+D)} + \overline{(B+C)} + \overline{(B+D)} + \overline{(C+D)}} \end{array}$$