```
% Import data
data_HW3 = readtable("Top 100 Genes.xlsx","ReadRowNames",true);
```

```
% Inspect table head(data_HW3,5)
```

ans = 5×101 table

. .

	A_23_P342744	A_24_P246891	A_23_P24535	A_23_P75362	A_32_P76399
1 GENE_SYMBOL	'LIX1L'	'NEU4'	'TTC12'	'IFITM10'	'EIF3L'
2 GENE_NAME	'Lix1 homolog	'sialidase 4'	'tetratricope	'interferon i	'eukaryotic t
3 GSM1912920	'-0.0999'	'-0.96104'	'0.28358'	'-0.31814'	'-0.26628'
4 GSM1912921	'1.0914'	'1.6402'	'-1.4203'	'-0.54017'	'-0.089449'
5 GSM1912922	'-0.37438'	'1.7162'	'0.17951'	'0.75482'	'0.4971'

```
test_patients = readcell("Patient IDs - Test Set.xlsx");
train_patients = readcell("Patient IDs - Training Set.xlsx");
```

```
% Using readmatrix correctly loads data as class "double" %data_HW3_2 = readmatrix("Top 100 Genes & Rand 15 Patients.xlsx");
```

```
% Create new X and Y matrices (have to convert class if using readtable)
Xtrain = str2double(data_HW3{train_patients, 1:100});
Xtest = str2double(data_HW3{test_patients, 1:100});
Ytrain = table2array(data_HW3(train_patients, end));
Ytest = table2array(data_HW3(test_patients, end));
```

Multi-linear Regression using Hold-out Validation

Normal Regression

```
% Find correlation of all 100 genes and then extract data for top 15 genes
r_100 = corr(Xtrain,Ytrain);
[r_15,index_15] = maxk(abs(r_100),15);

% Create new training and test predictor data sets with top 15 genes
Xtrain_15 = Xtrain(:,index_15);
Xtest_15 = Xtest(:,index_15);
mdl = fitlm(Xtrain_15,Ytrain)
```

```
\label{eq:mdl} \begin{array}{l} \text{mdl =} \\ \text{Linear regression model:} \\ \text{y} \sim 1 + \text{x1} + \text{x2} + \text{x3} + \text{x4} + \text{x5} + \text{x6} + \text{x7} + \text{x8} + \text{x9} + \text{x10} + \text{x11} + \text{x12} + \text{x13} + \text{x14} + \text{x15} \end{array}
```

	Estimate	SE	tStat	pValue
(Intercept)	627.65	54.797	11.454	2.7843e-12
x1	163.8	175.67	0.93244	0.35881
x2	-31.076	115.96	-0.26799	0.79061
x 3	-1.6132	93.205	-0.017308	0.98631
x4	-4.73	140.2	-0.033738	0.97332
x 5	252.87	152.73	1.6557	0.10857
x 6	134.88	119.03	1.1332	0.26641
x 7	-56.536	128.64	-0.4395	0.66356
x8	107.58	63.946	1.6824	0.10322
x 9	145.38	70.929	2.0497	0.049532
x 10	141.14	51.1	2.762	0.0098648
x11	177.62	122.02	1.4556	0.15623
x12	-276.22	212.1	-1.3023	0.20306
x13	-19.133	92.052	-0.20785	0.8368
x14	-257.19	123.27	-2.0864	0.045844
x 15	48.972	119.86	0.40858	0.68585

```
Number of observations: 45, Error degrees of freedom: 29
Root Mean Squared Error: 212
R-squared: 0.718, Adjusted R-Squared: 0.572
F-statistic vs. constant model: 4.92, p-value = 0.00012
```

```
Ypred_norm = predict(mdl, Xtest_15);
r_norm = corr(Ytest, Ypred_norm)
```

```
r norm = 0.0816
```

```
r2_norm = r_norm^2
```

```
r2 norm = 0.0067
```

```
RMSE = sqrt(mean((Ypred_norm-Ytest).^2))
```

```
RMSE = 359.6592
```

```
avg_error = mean(abs(Ypred_norm-Ytest))
```

avg error = 296.3538

Lasso Regression

```
[B1, Fit] = lasso(Xtrain_15,Ytrain,'CV',5);
B1_coeff = B1(:,Fit.Index1SE)
```

```
B1_coeff = 15x1
143.2955
0
15.2578
0
28.6057
3.0056
0
34.1621
38.1426
30.7815
```

:

```
B1_intercept = Fit.Intercept(Fit.Index1SE)

B1_intercept = 599.6518

Ypred_lasso = Xtest_15 * B1_coeff + B1_intercept;

r_lasso = corr(Ypred_lasso,Ytest)

r_lasso = 0.1174

r2_lasso = r_lasso^2

r2_lasso = r_lasso^2

r2_lasso = sqrt(mean((Ypred_lasso-Ytest).^2))

RMSE_lasso = sqrt(mean(abs(Ypred_lasso-Ytest))

avg_error_lasso = mean(abs(Ypred_lasso-Ytest))

avg_error_lasso = 257.2454
```

Stepwise Regression

```
[B2,~,~,~,stats] = stepwisefit(Xtrain 15,Ytrain);
Initial columns included: none
Step 1, added column 1, p=3.57549e-06
Step 2, added column 10, p=0.000962066
Step 3, added column 15, p=0.0485883
Final columns included: 1 10 15
               'Std.Err.'
   'Coeff'
                           'Status'
   [393.7172] [ 90.9898]
                           'In'
                                      [9.4619e-05]
                           'Out'
                                      [ 0.9972]
   [ -0.3560] [ 99.5721]
                           'Out'
                                      [ 0.3568]
   [ 64.4157] [ 69.1039]
                           'Out'
                                         0.4206]
   [ 52.2210] [ 64.1681]
   [ 43.3180] [ 90.0316]
                           'Out'
                                      [ 0.6330]
   [ 42.2050] [ 67.8657]
                           'Out'
                                        0.5375]
                           'Out'
   [ 29.5171] [ 95.3956]
                                         0.7586]
   [ 74.9424] [ 55.4607]
                           'Out'
                                         0.18421
   [100.5944]
              [ 53.7852]
                           'Out'
                                         0.0688]
              [ 31.8982]
                           'In'
   [ 65.2065]
                                         0.04741
                           'Out'
   [131.6148]
              [ 87.8463]
                                         0.1419]
   [ 5.7396]
              [ 88.2548]
                           'Out'
                                         0.9485]
   [ 88.5513]
              [ 70.0971]
                           'Out'
                                         0.2138]
                                      ſ
   [-38.5347]
              [ 82.3811]
                           'Out'
                                      [
                                          0.6425]
   [149.7515] [ 73.6695]
                           'In'
                                      [
                                           0.0486]
Ypred step = X = X = 15(:,[1,10,15]) *B2([1,10,15]) + stats.intercept;
```

```
Ypred_step = Xtest_15(:,[1,10,15])*B2([1,10,15]) + stats.intercept;
r_stepwise = corr(Ypred_step,Ytest)
```

 $r_stepwise = 0.1894$

```
r2_stepwise = r_stepwise^2
```

 $r2_stepwise = 0.0359$

```
RMSE_stepwise = sqrt(mean((Ypred_step-Ytest).^2))

RMSE_stepwise = 347.2721

avg_error_stepwise = mean(abs(Ypred_step-Ytest))

avg_error_stepwise = 281.9262
```

Compare Results of 3 Methods

```
% Create labels for bar graphs
x = categorical({'Normal','Lasso','Stepwise'});
x = reordercats(x,{'Normal','Lasso','Stepwise'});
% Correlation bar graph
bar(x,[r_norm,r_lasso,r_stepwise])
xlabel("Regression Method")
ylabel("Correlation Coefficient, r")
```



```
% RMSE bar graph
bar(x,[RMSE,RMSE_lasso,RMSE_stepwise])
xlabel("Regression Method")
ylabel("RMSE")
```



```
% Avg Error bar graph
bar(x,[avg_error,avg_error_lasso,avg_error_stepwise])
xlabel("Regression Method")
ylabel("Average Error")
```



```
scatter(Ytest,Ypred_norm,"filled")
xlabel("Actual Survival Days")
ylabel("Predicated Survival Days")
hold on
scatter(Ytest,Ypred_lasso,"filled")
hold on
scatter(Ytest,Ypred_step,"filled")
hold off
legend("Normal","Lasso","Stepwise")
```


boxplot(data_HW3.SurvivalDays)

