Package 'OBRE'

June 9, 2023

Title Optimal B-Robust Estimator Tools
Date 2023-06-07
Version 0.2-0
Author Andrea Riboldi [aut], Ivan Luciano Danesi [aut], Fabio Piacenza [aut, cre], Oliver Kuehnle [aut], Davide Di Vincenzo [aut], Ruben Ciaponi [ctb], Stephen Allen [ctb], Novella Saccenti [ctb], Annarita Filippi [ctb]
Maintainer Fabio Piacenza <fabio.piacenza@unicredit.eu></fabio.piacenza@unicredit.eu>
Description An implementation for computing Optimal B-Robust Estimators of two-parameter distribution. The procedure is composed of some equations that are evaluated alternatively until the solution is reached. Some tools for analyzing the estimates are included. The most relevant is covariance matrix computation using a closed formula.
Depends R (>= 4.0.0), pracma(>= 1.7.3)
License GPL (>= 3)
Encoding UTF-8
ByteCompile true
RoxygenNote 7.2.3
Imports methods
NeedsCompilation no
Repository CRAN
Date/Publication 2023-06-09 16:20:13 UTC
R topics documented:
densityExpressions

2

2 densityExpressions

	fisherEl11Part1	3
	fisherEl11Part2	4
	fisherEl12Part1	4
	fisherEl12Part2	5
	fisherEl22Part1	5
	fisherEl22Part2	ϵ
	matFisherComputation	ϵ
	MLE	7
	NILike	7
	OBRE	8
	OBRECheckTolParameters	9
	OBRECovarianceMatrix	10
	OBREmatMArgumentA	11
	OBREmatMArgumentB	11
	OBREmatMArgumentC	12
	OBREMatMComputation	13
	OBREMatVMatMEl11	14
	OBREMatVMatMEl12	14
	OBREMatVMatMEl21	15
	OBREMatVMatMEl22	15
	OBREMatVMatQEl11	16
	OBREMatVMatQEl12	16
	OBREMatVMatQEl22	17
	OBREnvAComputation	17
	OBREnvADen	18
	OBREnvANum1	19
	OBREnvANum2	19
	OBREWeightsFun	20
	plot.OBREresult	20
	scoreComponent	21
	summary	22
	summary.OBREresult	22
Index		23

Description

densityExpressions

Function containing expressions of density and cumulative functions, plus the first and second derivatives.

Usage

```
densityExpressions(strDistribution = "normal", eDensityFun = NA)
```

Distributions formulas for OBRE

fisherEl11Part1 3

Arguments

strDistribution

Distribution input between "normal" (Normal distribution), "logNormal" (log-Normal distribution), "weibull" (Weibull distribution), "logLogistic" (logLogistic distribution), "gpd2" (Generalized Pareto Distribution with two parameters)

or "custom" if the distribution is written by the user.

eDensityFun The density of a two parameters distribution. This should be an expression

object, the two parameters should be called "nTheta1" and "nTheta2", the data

"nvData" and its formula should be derivable

Value

Returns list containing all the symbolic functions.

Examples

```
# Generates the Normal distribution input for OBRE
distrForOBRE <- densityExpressions(strDistribution = "normal")</pre>
# The same result can be generated by inserting manually the formula
distrForOBRE <- densityExpressions(strDistribution = "custom",</pre>
eDensityFun = expression((exp( -((nvData - nTheta1)^2) / (2 * nTheta2^2)) /
(sqrt(2 * pi) * nTheta2))))
```

fisherEl11Part1

Part 1 of element [1, 1] for Fisher Information matrix

Description

Function computing part 1 of element [1, 1] for Fisher Information matrix computation. The Fisher Information matrix is splitted in the four elements ([1, 1], [1, 2], [2, 1], [2, 2]). Each element is split in part 1 and part 2

Usage

```
fisherEl11Part1(nvData, nTheta1, nTheta2, lDensityExpr)
```

Arguments

nvData The vector of data. nTheta1 The first parameter. nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives. 4 fisherEI12Part1

fisherEl11Part2

Part 2 of element [1, 1] for Fisher Information matrix

Description

Function computing part 2 of element [1, 1] for Fisher Information matrix computation. The Fisher Information matrix is splitted in the four elements ([1, 1], [1, 2], [2, 1], [2, 2]). Each element is split in part 1 and part 2

Usage

```
fisherEl11Part2(nvData, nTheta1, nTheta2, lDensityExpr)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

fisherEl12Part1

Part 1 of element [1, 2] for Fisher Information matrix

Description

Function computing part 1 of element [1, 2] for Fisher Information matrix computation. The Fisher Information matrix is splitted in the four elements ([1, 1], [1, 2], [2, 1], [2, 2]). Each element is split in part 1 and part 2

Usage

```
fisherEl12Part1(nvData, nTheta1, nTheta2, lDensityExpr)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

fisherE112Part2 5

fisherEl12Part2	Part 2 of element [1, 1] for Fisher Information matrix
-----------------	--

Description

Function computing part 2 of element [1, 1] for Fisher Information matrix computation. The Fisher Information matrix is splitted in the four elements ([1, 1], [1, 2], [2, 1], [2, 2]). Each element is split in part 1 and part 2

Usage

```
fisherEl12Part2(nvData, nTheta1, nTheta2, lDensityExpr)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

fisherEl22Part1	Part 1 of element [2, 2] for Fisher Information matrix

Description

Function computing part 1 of element [2, 2] for Fisher Information matrix computation. The Fisher Information matrix is splitted in the four elements ([1, 1], [1, 2], [2, 1], [2, 2]). Each element is split in part 1 and part 2

Usage

```
fisherEl22Part1(nvData, nTheta1, nTheta2, lDensityExpr)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

fisherEl22Part2

Part 2 of element [2, 2] for Fisher Information matrix

Description

Function computing part 2 of element [2, 2] for Fisher Information matrix computation. The Fisher Information matrix is splitted in the four elements ([1, 1], [1, 2], [2, 1], [2, 2]). Each element is split in part 1 and part 2

Usage

```
fisherEl22Part2(nvData, nTheta1, nTheta2, lDensityExpr)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

matFisherComputation Fisher information matrix

Description

Function calculating the Fisher information matrix.

Usage

```
matFisherComputation(nTheta1, nTheta2, lDensityExpr)
```

Arguments

nTheta1 First parameter. nTheta2 Second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

Value

The Fisher information matrix.

MLE 7

MLE

Numerical Maximum Likelihood Estimator

Description

The parameters Maximum Likelihood Estimation is obtained by numerical optimization.

Usage

```
MLE(nvData, strDistribution, lDensityExpr)
```

Arguments

nvData The vector of the data.

strDistribution

The distribution name.

1DensityExpr The distribution expression,

Value

A list with distribution name, distribution parameters, value of the objective function corresponding to the parameters, additional information returned by the optimizer, convergence of the algorithm.

NlLike

Negative Log-Likelihood

Description

The function compute the Negative Log-Likelihood value that has to be used for optimization in MLE function.

Usage

```
NlLike(nvTheta, nvData, lDensityExpr)
```

Arguments

nvTheta Parameters of the distribution.

nvData The vector of the data.

1DensityExpr The distribution density espressions.

Value

Negative log likelihood value.

8 OBRE

OBRE

Optimal B-Robust Estimator

Description

Function for obtaining the Optimal B-Robust Estimates starting by a vector of data and a two parameters distribution.

Usage

```
OBRE(
   nvData,
   strDistribution,
   nCParOBRE,
   dfParOBRE = data.frame(nEta = 1e-06, nMaxIterLoopWc = 10, nMaxIterLoopA = 10, nRelTol =
      0.001, nAbsTol = 0.5, stringsAsFactors = FALSE),
   nTheta1Init = NA,
   nTheta2Init = NA,
   eDensityFun = NA
)
```

Arguments

nvData

The vector of data.

strDistribution

The distribution name between "normal" (Normal distribution), "logNormal" (logNormal distribution), "weibull" (Weibull distribution), "logLogistic" (logLogistic distribution), "gpd2" (Generalized Pareto Distribution with two parameters) or "custom" if the distribution is written by the user as an input of "eDensityFun" parameter. Alternatively, the input of "strDistribution" can be an object of class "OBREdist", obtained using function densityExpressions.

nCParOBRE

OBRE robustness parameter.

dfParOBRE

A data frame containing oprimization parameters, i.e. nEta, the precision between two parameters optimization, nMaxIterLoopWc and nMaxIterLoopA, the number of iterations in the optimization proceture, nRelTol and nAbsTol, the relative and absolute tolerances.

nTheta1Init

First parameter for the beginning of the computation.

nTheta2Init

Second parameter for the beginning of the computation.

eDensityFun

The density of a two parameters distribution. To be inserted if in strDistribution the "custom" option is chosen. This should be an expression object, the two parameters should be called "nTheta1" and "nTheta2", the data "nvData" and its

formula should be derivable

OBRECheckTolParameters 9

Value

A list with the vector containing the final parameters, the exit OBRE message, the values of vector a and matrix A, the OBRE tuning parameter c, the initial values of the parameters (if unspecified by the user, the values of MLE are reported), the vector of data, the density expression.

References

Bellio, R. (2007). Algorithms for bounded-influence estimation. Comput. Stat. Data Anal. 51, 2531-2541.

Hampel F (1968). Contributions to the theory of robust estimation. University of California.

Hampel, F., Ronchetti, E., Rousseeuw, P. & Stahel, W. (1985). Robust Statistics. The approach based on influence function. John Wiley and Sons Ltd., Chichester, UK.

Victoria-Feser, M.P. & Ronchetti, E. (1994). Robust methods for personal-income distribution models. Canadian Journal of Statistics 22, 247-258.

Examples

```
# Using the densityExpressions function for initialize the distribution
distrForOBRE <- densityExpressions(strDistribution = "normal")
simData = c(rnorm(1000, 12, 2),200,150)
try({estOBRE <- OBRE(nvData = simData, strDistribution = distrForOBRE, nCParOBRE = 3)
# Launching the generation of the density expression directly from OBRE
simData = c(rnorm(1000, 12, 2),200,150)
estOBRE <- OBRE(nvData = simData, strDistribution = "normal", nCParOBRE = 3)
# Using the "custom" option and using the normal distribution
simData = c(rnorm(1000, 12, 2),200,150)
estOBRE <- OBRE(nvData = simData, strDistribution = "custom", nCParOBRE = 3,
eDensityFun = expression((exp( -((nvData - nTheta1)^2) / (2 * nTheta2^2)) /
(sqrt(2 * pi) * nTheta2))))})</pre>
```

OBRECheckTolParameters

Check if OBRE matrix A and vector a are final.

Description

The function compute the relative distance from the past to the current iteration of matrix A, with respect to the relative tolerance if at the current iteration matrix A is not null. Otherwise the absolute error is checked. Then the vector a is checked in the same way.

Usage

```
OBRECheckTolParameters(matANew, matAOld, nvANew, nvAOld, nRelTol, nAbsTol)
```

10 OBRECovarianceMatrix

Arguments

matANew	Matrix A at the current iteration.
matAOld	Matrix A at the past iteration.
nvANew	Vector a at the current iteration.
nvAOld	Vector a at the past iteration.
nRelTol	Relative tolerance.
nAbsTol	Absolute tolerance.

Value

A flag indicating if condition on matrix A and vector a are both satisfied.

OBRECovarianceMatrix Function that computes the OBRE covariance matrix.

Description

The function computes matrices M (Jacobian) and Q (Variability) and uses them to evaluate the covariance matrix V.

Usage

```
OBRECovarianceMatrix(10BRE)
```

Arguments

10BRE List of all the variables resulting from the OBRE computation.

Value

A list containing Jacobian of the estimate function, variability and asymptotic covariance matrices, as well as the relative efficiency with respect to Maximum Likelihood Estimator

References

Hampel, F., Ronchetti, E., Rousseeuw, P. & Stahel, W. (1985). Robust Statistics. The approach based on influence function. John Wiley and Sons Ltd., Chichester, UK.

Heritier S, Cantoni E, Copt S, Victoria-Feser M (2011). Robust Methods in Biostatistics. John Wiley and Sons Ltd., Chichester, UK.

Examples

```
try({distrForOBRE <- densityExpressions(strDistribution = "normal")
simData = c(rnorm(1000, 12, 2),200,150)
estOBRE <- OBRE(nvData = simData, strDistribution = distrForOBRE, nCParOBRE = 3)
10BRECov = OBRECovarianceMatrix(estOBRE)})</pre>
```

OBREmatMArgumentA

OBREmatMArgumentA

Argument A for OBRE matrix M integrals.

Description

Function computing argument A for OBRE matrix M integrals.

Usage

```
OBREmatMArgumentA(
nvData,
nTheta1,
nTheta2,
lDensityExpr,
nCParOBRE,
matA,
nvA,
nK
)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A.
nvA Vector a.

nK Exponent which differentiate M_1 from M_2 .

 ${\tt OBREmatMArgumentB}$

Argument B for OBRE matrix M integrals.

Description

Function computing argument B for OBRE matrix M integrals.

Usage

```
OBREmatMArgumentB(
    nvData,
    nTheta1,
    nTheta2,
    lDensityExpr,
    nCParOBRE,
    matA,
    nvA,
    nK
)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

nK Exponent which differentiate M_1 from M_2.

 ${\tt OBREmatMArgumentC}$

Argument C for OBRE matrix M integrals.

Description

Function computing argument C for OBRE matrix M integrals.

Usage

```
OBREmatMArgumentC(
    nvData,
    nTheta1,
    nTheta2,
    lDensityExpr,
    nCParOBRE,
    matA,
    nvA,
    nK
)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

nK Exponent which differentiate M_1 from M_2.

OBREMatMComputation

Function computing the OBRE matrix M.

Description

The function evaluates integrals used to compute the M_1 and M_2 OBRE matrices. Element (1,1) uses argument (A,B,F); element (1,2) uses argument (B,D,E,F); elements (2,2) uses arguments (C,D,F).

Usage

```
OBREMatMComputation(
    nvData,
    nTheta1,
    nTheta2,
    lDensityExpr,
    nCParOBRE,
    matA,
    nvA,
    nK
)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

 ${\tt lDensityExpr} \qquad {\tt List\ of\ symbolic\ expressions\ of\ density,\ cumulative\ and\ derivatives.}$

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

nK Exponent which differentiate M_1 from M_2.

14 OBREMatVMatMEI12

Value

OBRE M matrix $(M_1 \text{ if } nK = 1; M_2 \text{ if } nK = 2)$.

OBREMatVMatMEl11

Element [1, 1] of matrix M.

Description

Function computing element [1, 1] of matrix M, for the computation of asymptotic covariance matrix V.

Usage

```
OBREMatVMatMEl11(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data. nTheta1 The first parameter. nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

OBREMatVMatMEl12

Element [1, 2] *of matrix M*.

Description

Function computing element [1, 2] of matrix M, for the computation of asymptotic covariance matrix V.

Usage

OBREMatVMatMEl12(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)

Arguments

nvData The vector of data. nTheta1 The first parameter. nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

OBREMatVMatMEl21 15

OBREMatVMatMEl21	Element l	12.1] of matrix M.
ODINEHACYHACHETZI	Liemeni	4, 1	O HIGH IA IVI.

Description

Function computing element [2, 1] of matrix M, for the computation of asymptotic covariance matrix V.

Usage

```
OBREMatVMatMEl21(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

OBREMatVMatME122

Element [2, 2] of matrix M.

Description

Function computing element [2, 2] of matrix M, for the computation of asymptotic covariance matrix V.

Usage

```
OBREMatVMatMEl22(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

OBREMatVMatQEl11 Element [1, 1] of matrix Q.

Description

Function computing argument element [1, 1] of matrix Q of asymptotic covariance matrix V.

Usage

```
OBREMatVMatQEl11(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

OBREMatVMatQEl12

Element [1, 2] of matrix Q.

Description

Function computing argument element [1, 2] of matrix Q of asymptotic covariance matrix V.

Usage

```
OBREMatVMatQEl12(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

OBREMatVMatQEI22

OBREMatVMatQE122

Element [2, 2] of matrix Q.

Description

Function computing argument element [2, 2] of matrix Q of asymptotic covariance matrix V.

Usage

```
OBREMatVMatQE122(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A.
nvA Vector a.

OBREnvAComputation

OBRE vector a.

Description

The function evaluates integrals used to compute the components of OBRE a vector.

Usage

```
OBREnvAComputation(
nvData,
nTheta1,
nTheta2,
lDensityExpr,
nCParOBRE,
matA,
nvA
)
```

OBREnvADen

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr The list of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA OBRE matrix A.

nvA OBRE vector a.

Value

The OBRE a vector.

OBREnvADen Denominator for nvA

Description

Function computing denominator for OBRE numeric vector nvA evaluation.

Usage

OBREnvADen(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

OBREnvANum1

OBREnvANum1	First part numerator for nvA	

Description

Function computing first part numerator for OBRE numeric vector nvA evaluation.

Usage

```
OBREnvANum1(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA Matrix A. nvA Vector a.

OBREnvANum2 Second part numerator for nvA

Description

Function computing second part numerator for OBRE numeric vector nvA evaluation.

Usage

```
OBREnvANum2(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

lDensityExpr List of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

20 plot.OBREresult

Description

Function for computing OBRE weights. The function computes the score function for both parameters and build the score matrix. The score matrix is then modified using OBRE parameters A matrix and a vector and an euclidean norm is derived. The weights are finally found as the minimum between the normalized nCParOBRE and 1.

Usage

```
OBREWeightsFun(nvData, nTheta1, nTheta2, lDensityExpr, nCParOBRE, matA, nvA)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

1DensityExpr The list of symbolic expressions of density, cumulative and derivatives.

nCParOBRE OBRE c parameter.

matA OBRE matrix A.

nvA OBRE vector a.

Value

A numeric vector containing OBRE weights.

```
plot.OBREresult Function that plot an OBREresult object.
```

Description

The function computes the plot of the OBRE computation

Usage

```
## S3 method for class 'OBREresult' plot(x, \ldots)
```

Arguments

x The OBREresult object (output of OBRE function) that has to be plotted.

. . . Added argument for consistency with the plot generic function.

scoreComponent 21

Value

A graphical representation of an OBREresult obect. The plot is composed by four plots: the value of input data in logaritmic scale, the values of score function evaluated in the input data, the OBRE weights, the values of OBRE components.

Examples

```
try({# Generates the Normal distribution input for OBRE
distrForOBRE <- densityExpressions(strDistribution = "normal")
# Generates input data
simData = c(rnorm(100, 12, 1), rnorm(10, 10, 10))
# Estimates OBREresult object
estOBRE = OBRE(nvData = simData, strDistribution = "normal", nCParOBRE = 3)
plot(estOBRE)})</pre>
```

scoreComponent

First component of the score function.

Description

The function evaluates the formula used to compute the first component of the score function. The missing elements are imputed with 0.

Usage

```
scoreComponent(nvData, nTheta1, nTheta2, lDensityExpr, nParIndex)
```

Arguments

nvData The vector of data.

nTheta1 The first parameter.

nTheta2 The second parameter.

 ${\tt 1DensityExpr} \qquad \text{The list of symbolic expressions of density, cumulative and derivatives.}$

nParIndex Which component parameter needs to be calculated.

Value

The first component of the score function.

summary

Generic summary method

Description

Generic summary method

Usage

```
summary(object)
```

Arguments

object .

summary.OBREresult

Function that summarize the results contained in an OBREresult object.

Description

The function shows the estimated parameters, the OBRE tuning parameter, the proportion of data weighted and the relative efficiency with respect to MLE of an OBREresult object.

Usage

```
## S3 method for class 'OBREresult'
summary(object)
```

Arguments

object

The OBREresult object (output of OBRE function) that has to be plotted.

Value

The summary an OBREresult obect with the estimated parameters, the OBRE tuning parameter, the proportion of data weighted and the relative efficiency with respect to MLE.

Examples

```
try({# Generates the Normal distribution input for OBRE
distrForOBRE <- densityExpressions(strDistribution = "normal")
# Generates input data
simData = c(rnorm(100, 12, 1), rnorm(10, 10, 10))
# Estimates OBREresult object
estOBRE <- OBRE(nvData = simData, strDistribution = distrForOBRE, nCParOBRE = 3)
# Summary of the results
summary(estOBRE)})</pre>
```

Index

```
densityExpressions, 2
fisherEl11Part1, 3
fisherEl11Part2,4
fisherEl12Part1,4
fisherEl12Part2, 5
fisherEl22Part1, 5
fisherEl22Part2, 6
matFisherComputation, 6
MLE, 7
NlLike, 7
OBRE, 8
OBRECheckTolParameters, 9
OBRECovarianceMatrix, 10
OBREmatMArgumentA, 11
OBREmatMArgumentB, 11
OBREmatMArgumentC, 12
OBREMatMComputation, 13
OBREMatVMatMEl11, 14
OBREMatVMatMEl12, 14
OBREMatVMatMEl21, 15
OBREMatVMatME122, 15
OBREMatVMatQEl11, 16
OBREMatVMatQEl12, 16
OBREMatVMatQEl22, 17
OBREnvAComputation, 17
OBREnvADen, 18
OBREnvANum1, 19
OBREnvANum2, 19
OBREWeightsFun, 20
plot.OBREresult, 20
scoreComponent, 21
summary, 22
summary.OBREresult, 22
```