Ophthalmologic Issues in VHL

Mark W. Johnson, MD *University of Michigan Kellogg Eye Center*

VHL Disease

- · Autosomal dominant neoplastic disorder
- Multiple benign or malignant tumors and cysts
 - CNS (brain, spinal cord, retina, inner ear)
 - visceral organs (kidney, adrenal gland, pancreas, epididymis)
- Rare disorder (1:36,000 live births)
- Penetrance over 90% by 65 years of age

A Brief History of VHL Disease

- von Hippel (1904)
 - retinal capillary hemangioblastomas
 - several generations of family members
 - several pedigrees
- Lindau (1926)
 - observed familial syndrome
 - hemangioblastomas (retina and cerebellum)
 - cysts (kidney, pancreas, epididymis)
- Melmon and Rosen (1965)
 - criteria for clinical diagnosis

Ocular Manifestations

Retinal Capillary Hemangioblastoma

- May be the first manifestation of VHL disease
- Range from tiny lesions to large tumors with major visual impairment
- Located predominantly in retinal periphery (85%)
- Initial appearance
 - subtle red or gray dot
- With growth, appears as distinct nodule
 - dilated feeding and draining

Ocular Manifestations

Optic Nerve Capillary Hemangioblastoma

- May occur on or immediately adjacent to optic disc
- Occasionally difficult to recognize
 - feeding/draining vessels less prominent

Retinal & Optic Nerve Hemangioblastoma Natural History

- Can appear at any age
 - patients typically have no symptoms initially
 - often discovered on routine or screening exam
- · Without treatment
 - rarely regress spontaneously
 - usually grow slowly and progressively
 - often begin leaking as they enlarge
 - eventually displace normal structures
 - may completely fill the eye

Retinal & Optic Nerve Hemangioblastoma

Natural History/Secondary Complications

- Leakage
 - retinal edema (swelling)
 - lipid (yellow) exudates
- Fibrosis (scar tissue)
- Retinal detachment
 - exudative (from leakage)
 - tractional (from fibrosis and vitreous traction)
- Bleeding
- Neovascular glaucoma

Diagnosis

Ocular Hemangioblastoma

- Diagnosis typically based on clinical appearance
- · No definitive diagnostic tool
- · Confirmatory/useful studies
- wide-angle fundus photography
- fluorescein angiography
- ultrasonography
- optical coherence tomography
 - · detection of associated macular edema

Diagnosis VHL Disease

CLINICAL CRITERIA Family History + CNS* hemangiobastoma, Pheochromocytoma, or Clear cell renal carcinoma Family History - 2 or more CNS hemangioblastomas or CNS hemangioblastoma + visceral tumor

- Up to 20% of cases arise de novo (first affected member of family)--genetic testing extremely helpful in such patients
- Regular clinical screening studies recommended for family members with mutations
 - ophthalmoscopy yearly starting in infanc

* CNS includes retina

Epidemiology

Ocular Manifestations

- Large NEI study (Wong WT, et al, 2008)
 - 38% of patients had ocular involvement
 - mean age 36 years (range, 7 to 84)
 - 47% male
 - 95% white
 - laterality
 - 42% unilateral
 - 58% bilateral
 - location
 - 85% peripheral
 - 15% optic nerve

Vision Loss in VHL Prevalence

- NEI study77% had 20/20 vision
 - 5.7% legally blind
 - 20% had visual impairment in one eye

Vision Loss in VHL

Causes

- · Tumor exudation (leakage)
 - macular edema
 - exudative retinal detachment
- Glial proliferation (scar tissue)
 - retinal distortion
 - traction retinal detachment
- Neovascularization
 - vitreous hemorrhage or retinal traction
 - neovascular glaucoma
- Neurological lesions
 - increased intracranial pressure leading to optic atrophy
 - hemangioblastomas affecting RB optic nerve or optic tract

Ablative Treatment

Retinal Hemangioblastomas

Lesion size/location	Treatment modality
Very small (1-2 mm)	Laser (direct)
Small (3-5 mm)	Laser (feeder vessel + direct)
Small, very peripheral	Cryotherapy
Moderate to large (> 5 mm)	Cryotherapy (consider adjunctive steroid or anti-VEGF)
Complicated (traction, retinal detachment, vitreous hemorrhage)	Vitrectomy and/or scleral buckling surgery (with laser, diathermy and/or cryotherapy)

The smaller the lesion, the easier and safer it is to treat

Pharmacologic Treatment

Anti-Angiogenic Agents

- VHL involves high levels of vascular endothelial growth factor (VEGF)
 - drives tumor growth and vessel leakage
- Anti-VEGF treatment is rational approach
- · Studies to date
 - decreased leakage
 - no change in tumor size
 - anti-VEGF treatment alone appear inadequate
- Successful pharmacologic approaches may need to target multiple proteins upregulated in VHL

Ablative Treatment

Optic Nerve Hemangioblastomas

- · Treatment difficult—no consensus
 - Laser treatment
 - risk of visual acuity and/or visual field loss
 - serial, low-intensity treatments promising
 - Photodynamic therapy
 - mixed results
 - risk of optic nerve injury
 - Transpupillary thermotherapy
 - risk of significant nerve injury (little data)
 - Radiation
 - should be avoided (increases VEGF production)