หายโลลเป กุขสมบุรณ์ 62010mesner sec 1
Came Eng Math. HWOR 3.1.2 The cumulative distribution function of the continuous random variable V is $F_V(v) = \begin{cases} 0 & v < -5, \\ c(v+5)^2 & -5 \le v < 7, \\ 1 & v > 7. \end{cases}$ (a) What is c? (b) What is P[V > 4]? (c) $P[-3 < V \le 0]$? (d) What is the value of a such that P[V > a] =Moranian Continuous RV a) c) P[-3< V 5 0] = Fy(0) - Fy(-3) = 25 - 4 $194 \quad 144$ $P[-3 < V \le 0] = 21$ 144 $F_{V}(7) = F_{V}(7^{\dagger})$ $C(7+5)^{2} = 1$ $C = \frac{1}{144}$ d) P[V >a] = 2/3 1 - P[V < a] = 2/3P[V < a] = 1/3 $(a+5)^{\frac{2}{3}} = \frac{144}{3}$ EQN; a = -11.928, 1.928 a = 1.928 regardent a = -1.928∴ P[V>4] <u>63</u> × The cumulative distribution function of random variable X is $F_X(x) = \begin{cases} 0 & x < -1, \\ (x+1)/2 & -1 \le x < 1, \\ 1 & x > 1. \end{cases}$ Find the PDF $f_X(x)$ of X. Mn ความ สิมพันธ์ของ PDF & CDF $f_{\chi}(x) = \frac{d}{dx} F_{\chi}(x)$ 9:1677 $\int_{X} (x) = \begin{cases} \frac{d}{dx} (x+1)/2, -1 \le x < 1 \\ 0, \text{ otherwise} \end{cases}$ uso $\int_{X} (x) = \begin{cases} \frac{1}{2}, -1 \le x < 1 \\ 0, \text{ otherwise} \end{cases}$

3.6 The cumulative distribution function of random variable
$$V$$
 is

$$F_{V}(v) = \begin{cases} 0 & (v+5)^{2}/14 & v < -5 \\ v = 2 & v < 7, \end{cases}$$
(a) What is $E[V]^{2}$
(b) What is $V_{M}(V)^{2}$
(c) What is $E[V]^{3}$
(d) What is $E[V]^{3}$
(e) What is $E[V]^{3}$
(for V (v) = $\frac{d}{dx}F_{V}(V)$ — (A)

$$F_{V}(V) = \frac{d}{dx}F_{V}(V) - \frac{dx}{dx}$$

$$F_{V}(V) = \frac{2}{dx}F_{V}(V) - \frac{dx}{dx}$$

$$F_{V}(V) = \frac{dx}{dx}F_{V}(V) + \frac{dx}{dx}F_{V}(V)$$

$$F_{V}(V) = \frac{$$

ithoram
$$x$$
 into uniform PV and in PDF $f_{x}(x) = \frac{1}{b-a} = \frac{1}{6}$

if $f_{x}(x) = \begin{cases} \frac{1}{6} \\ 0 \end{cases}$, otherwise x

James muy 61

meren

The peak temperature
$$T$$
, in degrees Fahrenheit, on a July day in Antarctica is a Gaussian random variable with a variance of 225. With probability $1/2$, the temperature T exceeds 10 degrees. What is $P[T>32]$, the probability the temperature is above freezing? What is $P[T<0]$? What is $P[T>60]$?

ds 10 degrees. What is the temperature is above 0]? What is
$$P[T > 60]$$
?

temperature is above What is
$$P[T > 60]$$
?

what is
$$P[T > 60]$$
?

$$\frac{1}{2} = 1 - \rho \left[T < 10 \right]$$

$$\frac{1}{2} = 1 - \phi \left[\frac{10 - \mu \tau}{15} \right]$$

$$\phi(z) = 1/2$$
 $\Rightarrow z = 0$ $\Rightarrow \text{Franks}$ Standard Normal 15 $\Rightarrow \mu_T = 10$

= 1 - 0.9278

$$P[T > 32] = 1 - P[T < 32]$$

$$= 1 - \phi[32 - 10]$$
15

9 PET<0]-
$$\phi \left[0 - 10 \right]$$
= $\phi \left[-\frac{2}{3} \right]$
= $1 - \phi \left[\frac{2}{3} \right]$
= $1 - 15 e^{-\frac{1}{12}} du$
= $1 - 0.7495$
:. PET<0] = $0.2525 \times 10^{-\frac{1}{12}}$
= $1 - \phi \left[\frac{60}{15} \right]$
= $1 - \phi \left[\frac{60}{15} \right]$
= $1 - \phi \left[\frac{10}{3} \right] \frac{1}{12} \frac{1}{12$

3.6.8 With probability 0.7, the toss of an Olympic shot-putter travels
$$D=60+X$$
 feet, where X is an exponential random variable with expected value $\mu=10$. Otherwise, with probability 0.3, a foul is committed by stepping outside of the shot-put circle and we say $D=0$. What are the CDF and PDF of random variable D ?

3.7.6 X is uniform random variable with parameters 0 and 1. Find a function $g(x)$ such that the PDF of $Y=g(X)$ is

$$f_Y(y)=\begin{cases} 3y^2 & 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

4u X time, Uniform RV oblines $T=0$, 1]

322 $T=0$ of the following $T=0$ of $T=0$

For the point $P[Y \leq y] = P[gcx \leq y]$ $= y^3, \quad o \leq y \leq 1$ $= y^3, \quad o$

$$= \int_{0}^{\infty} S_{y}(y) dy$$

$$= \int_{0}^{2} 3y^{2} dy$$

$$= \int_{0}^{2} 3y^{3} dy$$

hal PDF 400 Y
$$Cy) = \begin{cases} 24y^2 \end{cases}$$

$$S_{Y|R}(y) = \begin{cases} 24y^2, & 0 = y = 1/2 \\ 0, & otherwise \end{cases}$$

$$cy) = \begin{cases} 24y^2 \\ 0 \end{cases}$$

11a: Var[YIR] = E[Y2IR]-(E[YIR])

:. Yay [Y[R] = 3 320

 $= \frac{3}{20} - \left(\frac{3}{8}\right)^2$