Collaboration haptique étroitement couplée pour la manipulation moléculaire interactive

Jean SIMARD

sous la direction de Philippe TARROUX et l'encadrement scientifique de Mehdi Ammi

Université de Paris-Sud

CNRS-LIMSI

12 mars 2012

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Caractérisation des approches collaboratives en environnement moléculaire
- 4 Communication haptique pour les approches collaboratives
- **5** Conclusion et perspectives

Sommaire

- Introduction
 - Docking moléculaire
 - Approches centrées sur l'humain
 - Distribution des charges de travail
 - Approches collaboratives
 - Objectifs de la thèse
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Caractérisation des approches collaboratives en environnement moléculaire
- Communication haptique pour les approches collaboratives
- 5 Conclusion et perspectives

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Docking moléculaire

Facteurs de complexité

Nombreux atomes

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Docking moléculaire

- Nombreux atomes
- Déplacement et orientation

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Docking moléculaire

- Nombreux atomes
- Déplacement et orientation
- Flexibilité

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

- Nombreux atomes
- Déplacement et orientation
- Flexibilité
- Physico-chimie

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

- Nombreux atomes
- Déplacement et orientation
- Flexibilité
- Physico-chimie
- Complémentarité
 - géométrique
 - physico-chimie

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Docking moléculaire

- Nombreux atomes
- Déplacement et orientation
- Flexibilité
- Physico-chimie
- Complémentarité
 - géométrique
 - physico-chimie

Approches centrées sur l'humain

Interface haptique à 5 DDL [LAI-YUEN et al. 2006]

Docking moléculaire rigide [DAUNAY et al. 2009]

Visualisation multimodale [FÉREY et al. 2009]

Synthèse

Haptique souvent utilisé pour la manipulation moléculaire mais...

- molécules simples
- docking rigide

Distribution des charges de travail

Définition [CONEIN 2004]

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Système cognitif distribué

Approches collaboratives

Manipulation synchrone [KRIZ et al. 2003]

Inter-référencement [CHASTINE 2007]

Manipulation guidée par des experts [PARK et al. 2006]

Synthèse

Peu de travaux sur la communication dans les approches collaboratives

Objectifs de la thèse

Problématiques

- Quels sont les avantages de la collaboration étroitement couplée?
- Quelles problématiques la collaboration pose-t-elle?
- Comment améliorer la collaboration dans un environnement complexe?

Démarche

- Étudier et caractériser les approches collaboratives étroitement couplée
- Identifier les limites et les contraintes
- Proposer des solutions haptiques pour améliorer la collaboration
- Évaluer ces solutions dans une tâche de docking moléculaire

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
 - Cahier des charges
 - Organisation matérielle
 - Organisation logicielle
 - Outils supplémentaires proposés
- 3 Caractérisation des approches collaboratives en environnement moléculaire
- Communication haptique pour les approches collaboratives
- 5 Conclusion et perspectives

Cahier des charges

Objectif

Élaborer une plateforme permettant la collaboration étroitement couplée pour la manipulation moléculaire

Contraintes à respecter

- Collaboration interactive synchrone avec des molécules
- Simulation de la dynamique moléculaire
- Manipulation à l'aide de plusieurs interfaces haptiques
- Différents outils pour la manipulation moléculaire

Solutions proposées

- Modularité logicielle
- Modularité matérielle
- Plateforme basée sur des logiciels de biologistes
- Utilisation de modules dédiés à la réalité virtuelle
- Développement de nouveaux outils

Fonctionnalités

- Colocalisé synchrone
- Communication orale et gestuelle

Plate-forme expérimentale

- Colocalisé synchrone
- Communication orale et gestuelle
- Vue partagée

Plate-forme expérimentale

- Colocalisé synchrone
- Communication orale et gestuelle
- Vue partagée
- Différents outils
 - déplacement
 - orientation

 - déformation

Plate-forme expérimentale

- Colocalisé synchrone
- Communication orale et gestuelle
- Vue partagée
- Différents outils
 - déplacement
 - orientation
 - déformation

Plate-forme expérimentale

- Colocalisé synchrone
- Communication orale et gestuelle
- Vue partagée
- Différents outils
 - déplacement
 - orientation
 - déformation
- Multiples interfaces

Plate-forme expérimentale

Organisation logicielle

Diagramme de déploiement UML de la plateforme Shaddock

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

 Sélection difficile (nombre d'atomes important, cibles en mouvement, ...)

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

 Attraction haptique sur les structures (champ de potentiel [SIMARD et al. 2009])

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

 Attraction haptique sur les structures (champ de potentiel [SIMARD et al. 2009])

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

Possibilité de pointer un atome. . .

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

... ou un résidue (ou d'autres structures moléculaires)

Objectif

Faciliter le processus de sélection d'une structure moléculaire dans VMD

■ Pour enfin le sélectionner

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Recherche Identifier une cible (atome, résidue, ...)

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire identifiée

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire identifiée

Manipulation Déplacer ou orienter la structure moléculaire

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Évaluation Évaluer l'équilibre physico-chimique

Manipulation moléculaire

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Évaluation Évaluer l'équilibre

physico-chimique

Recommencer Si l'évaluation n'est pas

satisfaisante

Description

Basé sur les PC Virtuelles [FUCHS et al. 2006]

Recherche Identifier une cible (atome, résidue, ...)

Sélection Sélectionner la structure moléculaire

identifiée

Manipulation Déplacer ou orienter la

structure moléculaire

Évaluation Évaluer l'équilibre

physico-chimique

Recommencer Si l'évaluation n'est pas

satisfaisante

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- 3 Caractérisation des approches collaboratives en environnement moléculaire
 - Étude 1 Recherche et sélection collaborative de résidus
 - Objectifs
 - Présentation de la tâche proposée
 - Résultats
 - Synthèse
 - Étude 2 Déformation collaborative de molécules
 - Étude 3 Dynamique de groupe
- Communication haptique pour les approches collaboratives
- 5 Conclusion et perspectives

Objectifs

Objectif principal

Étudier la contribution et les contraintes de la collaboration dans une tâche de recherche et de sélection de structures moléculaires

Hypothèses

- Amélioration des performances (individuel vs. collaboratif)
- Identifier les stratégies de travail
- Utilisabilité de la plate-forme

Variables

Nombre de sujets monôme (24 sujets) ou binôme (12 couples)

Complexité de la tâche Forme, nature, position, similarités...

Présentation de la tâche proposée

Residue 4 and 9 Residue 5 and 10

Répartitions des residues sur les molécules (TRP-Cage et Prion)

Temps de réalisation de la tâche

Temps de réalisation de la tâche

Synthèse

Pas d'évolution sur les tâches simples

Temps de réalisation de la tâche

- Pas d'évolution sur les tâches simples
- Une amélioration significative de la collaboration sur les tâches complexes

Temps de réalisation de la tâche

- Pas d'évolution sur les tâches simples
- Une amélioration significative de la collaboration sur les tâches complexes

Temps de réalisation de la tâche

- Pas d'évolution sur les tâches simples
- Une amélioration significative de la collaboration sur les tâches complexes

Stratégies de travail

Distance moyenne entre le curseur des sujets

Synthèse

Trois stratégies liée à l'affinité entre les collaborateurs

Champs distants Peu de collaboration avec peu de conflits de coordination

Champs voisins Bonne collaboration avec conflits de coordination

Champs proches Forte collaboration mais conflits de coordination importants

Synthèse

Complexité de la tâche

Résultats

- Amélioration des performances sur les tâches complexes
- Distribution des charges de travail dépendante de la nature de la tâche

Limites

- Comment définir une tâche complexe?
- La complexité de la tâche influe-t-elle sur les performances?

Stratégie de travail

Résultats

- Trois stratégies différentes
- Meilleurs résultats avec une stratégie en champs voisins

Limites

- Modification du comportement naturel des groupes
- Conflits de coordination en champs voisins

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Caractérisation des approches collaboratives en environnement moléculaire
 - Étude 1 − Recherche et sélection collaborative de résidus
 - Étude 2 Déformation collaborative de molécules
 - Objectifs
 - Présentation de la tâche proposée
 - Résultats
 - Synthèse
 - Étude 3 Dynamique de groupe
- Communication haptique pour les approches collaboratives
- Conclusion et perspectives

Primitives Comportementales (PC)

Manipulation moléculaire

Objectifs

Objectif principal

Quantifier et qualifier les conflits de coordination en fonction de la complexité de la tâche

Hypothèses

- Amélioration des performances (bimanuel vs. collaboratif)
- 2 La complexité de la tâche influence différemment les performances individuelles et collaboratives

Variables

Nombre de sujets monôme (12 sujets) ou binôme (12 couples)

Complexité de la molécule 2 molécules (TRP-ZIPPER et TRP-CAGE)

Outil de déformation 2 configuration de déformation (atom et residue)

Présentation de la tâche proposée

Scénarios

- 2 niveaux de manipulation
 - Résiduel
 - Atomique
- 4 niveaux de complexité
 - Nombre d'atomes
 - Cassures
 - Champ de force

Tâche de déformation

Amélioration des performances

Synthèse

Manipulation plus efficace en monomanuel

Distances passive et active

Synthèse

Meilleure utilisation des ressources disponibles

Nombre de sélections

Influence de la complexité de la tâche

Temps de réalisation des scénarios

Difficulté	Description	Exemple
Simple	1 outil est nécessaire1 manipulation	Tâche 1a
Avancé	 1 outil est suffisant mais 2 sont préférables 2 manipulations peuvent être coordonnées 	Tâche 2a, 2b
Expert	 2 outils sont nécessaires 2 manipulations doivent être coordonnées 	Tâche 1b

Synthèse

Charge de travail

Résultats

- Gestion d'un espace de travail plus grand
- Meilleur rendement des ressources disponibles

Limites

Comment répartir équitablement la charge de travail? Conflits de coordination

Résultats

 Certaines manipulations nécessitent une coordination

Limites

- La coordination est plus efficace en individuel mais...
 - ...espace de travail restreint
 - ...nombre réduit de tâches élémentaires en parallèle

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- 3 Caractérisation des approches collaboratives en environnement moléculaire
 - Étude 1 − Recherche et sélection collaborative de résidus
 - Étude 2 Déformation collaborative de molécules
 - Étude 3 Dynamique de groupe
 - Notions importantes sur la dynamique de groupe
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse
- Communication haptique pour les approches collaboratives
- 5 Conclusion et perspectives

Notions importantes sur la dynamique de groupe

Facilitation sociale [TRIPLETT 1898]

Une action collaborative préparée ou en progression possède une réponse; la stimulation sociale provoque une augmentation de cette réponse par la perception de collaborateurs effectuant les mêmes mouvements.

Performances de cyclistes

Paresse sociale [RINGELMANN 1913]

Tendance à fournir un effort moindre lorsqu'une tâche est effectuée en groupe plutôt que de manière individuelle.

Performances au tir à la corde

Objectifs

Objectif principal

Observer la dynamique de groupe lors d'une coordination étroitement couplée

Hypothèses

- 1 Amélioration des performances en fonction du nombre de sujets
- Analyse des rôles dans le groupe
- Influence d'une étape de *brainstorming* sur les performances

Variables

Nombre de participants 8 couples et 4 groupes

Tâches différentes 2 molécules (tâche faiblement et fortement couplées)

Stratégie de travail Étape de brainstorming

Présentation de la tâche proposée

Scénarios

2 niveaux de complexité

- faiblement couplé
- fortement couplé

Tâche de déformation

Amélioration des performances

Synthèse

Une vitesse moyenne de travail supérieur : phénomène de facilitation sociale

Vitesse moyenne

Nombre d'échanges verbaux

Synthèse

Paresse sociale

- Spécialisation
- Personnalité
- Paresse

Influence du brainstorming

Synthèse

Le *brainstorming* permet l'élaboration d'une stratégie : gain en performances

Temps de réalisation

Synthèse

Meilleur rendement des actions effectuées

Fréquence des sélections

Synthèse

Paresse sociale

Résultats

- Déséquilibre important dans la répartition des charges de travail
- Potentiel collaboratif non-exploité au maximum

Limites

Comment redonner de l'importance à chaque membre du groupe?

Brainstorming

Résultats

- Amélioration importante des performances
- Conflits de communication pendant le brainstorming
- Réduit les conflits de coordination

Limites

Comment optimiser cette étape?

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Caractérisation des approches collaboratives en environnement moléculaire
- 4 Communication haptique pour les approches collaboratives
 - Étude 4 Assistance haptique et stratégie de travail
 - Synthèse des études effectuées
 - Présentation des solutions proposées
 - Objectifs
 - Résultats
- Conclusion et perspectives

Solutions

Solutions

Solutions

Synthèse des problématiques

Synthèse des problématiques

Outil de désignation

Outil de désignation

Étapes de la désignation

Recherche d'une structure à manipuler (coordinateur)

Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)

Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)
- 3 Acceptation par le manipulateur

Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)
- 3 Acceptation par le manipulateur

Outil de désignation

- Recherche d'une structure à manipuler (coordinateur)
- Désignation de la structure (coordinateur)
- 3 Acceptation par le manipulateur
- Sélection par le manipulateur

Objectifs

Objectif principal

Proposer et évaluer des outils haptiques pour assister la coordination

Hypothèses

- Influence de l'outil proposé associé à la configuration
- Influence des propositions sur la communication
- Évaluations des propositions par des bio-informaticiens

Variables

Nombre de participants 8 trinômes

Tâches différentes 2 molécules (tâche faiblement et fortement couplée)

Métaphore haptique Avec ou sans assistance

Efficacité de la collaboration

Synthèse

Manipulation plus efficace sur le scénario le plus complexe

Temps pour atteindre le score RMSD minimum

Synthèse

Meilleur rendement pour l'utilisation des ressources

Nombre de sélections par seconde effectuées

Amélioration de la communication

Temps d'acceptation d'une désignation

Nombre de désignations acceptées

Synthèse

Communication haptique plus rapide que la communication verbale

Synthèse

Meilleur taux d'acceptation pour les désignations du coordinateur

Conclusion

Plateforme Shaddock

- Plateforme validée
- Des améliorations sont encore nécessaires

Travail collaboratif

- Adapté pour l'appréhension de tâches très complexes
- Nécessité d'améliorer les canaux de communication

Communication haptique

- Remplace la communication verbale dans certains cas
- Plus efficace et plus rapide

Perspectives

Plus loin dans l'étude du travail collaboratif...

- Collaboration distante
- Collaboration multi-experts
- Apprentissage en collaboration

Comment expérimenter le travail collaboratif?

- Comment mesurer les conflits de coordination et de communication?
- Comment définir un protocole expérimental pour le collaboratif?
- Comment mesure la charge de travail de chaque collaborateur?

Publications internationales

Journaux internationaux avec comité de relecture

GIRARO, Adrien, Mehdi AMMI, Jean Simard et Malika AUVRAY (2012a). « Collaborative metaphor for haptic designation in complex 3D environments ». Dans: Transaction on Haptics.

Simard, Jean, Mehdi Ammi et Malika Auvray (2012b). « Collaborative strategies for 3D targets search during the molecular design process ». Dans: Transaction on Multimedia Computing, Communications and Applications.

Simard, Jean, Mehdi AMMI et Anaïs MAYEUR (2012c). « Comparative study of the bimanual and collaborative modes for closely coupled manipulations ». Dans: International Journal of Human-Computer Studies.

Simard, Jean et Mehdi AMMI (11/2011a). « Haptic interpersonal communication: gesture coordination for collaborative virtual assembly task ». Dans: Springer on Virtual Reality, pages 1–14.

Journaux internationaux avec comité de relecture

GIRARO, Adrien, Mehdi AMMI, Jean Simard et Malika AUVRAY (2012b). « Improvement of collaborative selection in 3D complex environments ». Dans: Haptics Symposium.

Simard, Jean et Mehdi AMMI (06/2012a). « Haptic communication tools for collaborative deformation of molecules ». Dans : Proceedings of Eurohaptics.

Simard, Jean, Mehdi AMMI et Anaïs MAYEUR (2012d). « How to improve group performances on collocated synchronous manipulation tasks? » Dans: International Symposium on Haptic Audio-Visual Environments and Games (IEEE HAVE).

Simard, Jean, Mehdi Ammi et Anaïs MAYEUR (09/2011b). « How to improve group performances on collocated synchronous manipulation tasks? » Dans: Proceedings of Joint Virtual Reality Conference (JVRC – EuroVR-EGVE).

Simard, Jean et Mehdi Ammi (09/2010a). « Gesture coordination in collaborative tasks through augmented haptic feedthrough ». Dans:

Proceedings of Joint Virtual Reality Conference (JVRC), pages 43-50.

Simard, Jean, Mehdi Ammi et Malika Auvrav (11/2010b). « Closely coupled collaboration for search tasks ». Dans: Proceedings of the 17th ACM symposium on Virtual Reality Software and Technology (VRST), pages 181–182.

Simard, Jean, Mehdi Ammi et Malika AUNRAY (09/2010c). « Study of synchronous and colocated collaboration for search tasks ». Dans : Proceedings of Joint Virtual Reality Conference (JVRC), pages 51–54.

Simard, Jean, Mehdi AMMI, Flavien PICON et Patrick BOURDOT (05/2009). « Potential field approach for haptic selection ». Dans: Proceedings of Graphics Interface (GI), pages 203–206.

Questions

Merci pour votre attention