Affinences in Cheomatic Homotopy theory

Deligne --> Derived -> Complex Mumford Stack Stack Orbifolds

 \mathcal{H} = upper half plane $\mathcal{H}/s_{1_2}z$ = moduli space of lattices

 Λ a lattice, \mathbb{C}/Λ - elliptic curve and hence also classifies elliptic curves

Moduli stack of cliptic curves $m_{\rm ell}$ classifies cliptic curves over arbitrary commutative sings.

points of $m_{\rm ell}$ = elliptic curves / kautor of points = autor of elliptic curves

To get a derived stack replace the structure sheaf \mathcal{Q} of moduli stack of elliptic curves day a sheaf \mathcal{Q}^{top} of E_ω -rings with $\pi_\epsilon \mathcal{Q}^{top}=\mathcal{Q}$

 $(m_{\rm ell}, O_{\rm top}) = {
m derived} \mod {
m duli} \ {
m stack} \ {
m of} \ {
m elliptic} \ {
m curves}.$ Def $^{\rm h}: {
m TMF} = {
m O}^{
m hp}(m_{\rm ell}) = {\Gamma(0^{
m hp})} - {
m Foo} \ {
m ring} \ {
m spectrum}$

Men - MFG - stack of a formal group laws $E \longrightarrow \hat{E}$ \hat{E} in the completion of E at identity (why is it a fgl)?

Oth is compatible with the map M_{EG} :

Spec R $\frac{c + dc}{c}$ M_{EG} $\longrightarrow M_{FG}$

 $\mathcal{O}^{tok}(spec\,R)$ is an oven periodic spectrum. That is Landweber exact with the formal group classified by $Spec\,R \longrightarrow m_{ell} \longrightarrow m_{FG}$

Abstract version of Nain Theorem:

- · H Stack (northerian, separated, Deligne-Mumford stick)
- . $\mathcal{H} \longrightarrow \mathcal{M}_{FG}$. compatible sheaf of E_{∞} ring apectra $\mathcal{O}^{\dagger \circ \flat}$ on \mathcal{H}

Quesi-affine: F: X -> mFG is guast affine if

- F defects automorphisms i.e. $x \in \mathcal{H}(R)$, lasto of x, then F(R) is an auto of F(x) and F(R) identity iff I is.
- . Fix is sample on X

Tame F is dame if any automorphism of order n is delected if show k/n.

The Assume F is quasi affine, then $\Gamma Q Coh (x; O^{top}) \longrightarrow \Gamma (O^{top}) - mod$ is an equivalence

Remark: In classical algebrais geometry this is only true if X is an affine scheme (spec R). The geometry of $(X,0^{-6})$ is determined by $\Gamma(0^{-6})$ and vice versa.

The $\mathcal{H} \xrightarrow{f} m_{FG}$ is quasi-affine and let y be a chalcip cover for a finite group G, then $\mathcal{O}^{op}(\mathcal{H}) \longrightarrow \mathcal{O}^{op}(y)^{2G} \xrightarrow{\chi} (y \to \chi \text{ etale}, y)$ is a faithful G-Galois ext of rings. $Gxy \xrightarrow{\cong} yxy$

Def: $R \longrightarrow S^{2G}$ of F_{∞} using S is realled a G-balois extension if $R \xrightarrow{\cong} S^{RG}$, $S \xrightarrow{\cong} T^{R}S$ $(\times g(y))_{y \in G}$

If $R \longrightarrow S^{2G}$ faithful datois $S_{RG} \stackrel{N}{\longrightarrow} S^{hG}$ TR^{h} , If $Y \longrightarrow X$ is G-falois and $X \longrightarrow m_{FG}$ tame, $U^{top}(y)_{hG} \cong U^{top}(y)^{hG}$

The \mathcal{G} $\mathcal{X} \to \mathfrak{I}_{FG}$ is dame, the descent espectral seg

 $H^{*}(\mathcal{A}, \Pi_{*} \mathcal{O}^{\text{tup}}) \rightarrow \Pi_{*} \mathcal{O}^{\text{tup}}(\mathcal{A})$ (g:THF) collapses at a finite page and has a horizontal vanishing line. Met → M_{FG} gu esi-affine idea of phroof: · Aut (E) is finite . End (E) is can integral domain · End (É) is forsion free

Suppose fEE has order n → 1+ f+··· -1 -1 = 0 obsume $\hat{f}=1$, $0=1+\hat{f}+\dots+\hat{f}=n\neq 0$

T(n) = { A & S|2 Z | A = (10) mod n}

≤ Sl2 7 normal 8 6 2/ (P(n) = SI2 (Ph)

 $\left[\mathcal{F}(n)\right] \longrightarrow \mathcal{M}\left(L(u)\right) \longrightarrow \mathcal{O}_{2^{\flat}}\left(\mathcal{M}\left(L(u)\right)\right)$ Galois is an SI2(2/n) Galois entension [N/S122] of TMF[h, Sn]

 $\overline{m}_{\rm ell} =$ "I point compactification" of $m_{\rm ell}$ There are no interesting galois covers of $\overline{m}_{\rm ell}$ $0^{\rm top}(\overline{m}_{\rm ell}) = {\rm Tmf}$ $\pi_{\bullet}(\mathsf{TMF}) \otimes \mathbb{Q} = \mathbb{Q} \left[(4, \zeta_{6}, \Delta^{-1}) \right]$ TT* (Imt) & 6 = & [c4, C6]

Shimura covers:

Let D be an indefinite quarkenion algebra. D/Q contal simple D-algebra of dim 4 such that $D\otimes_{Q}R=M_{2}R$

NSD of maximum order $D \longrightarrow D_R \longrightarrow M_2 R$ $\left(X /_{N=1} \right)$ Shimusa curve compact $M^{N=1} \longrightarrow SI_2 R$ integral version N=1 S12R