МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Проектирование и анализ алгоритмов»

Тема: Потоки в сети

Студент гр. 8382	 Нечепуренко Н.А.
Преподаватель	 Фирсов М.А.

Санкт-Петербург 2020

Цель работы.

Разработать программу для поиска максимального потока в графе между двумя заданными вершинами, использую алгоритм Форда-Фалкерсона.

Постановка задачи.

Найти максимальный поток в сети, а также фактическую величину потока, протекающего через каждое ребро, используя алгоритм Форда-Фалкерсона.

Сеть (ориентированный взвешенный граф) представляется в виде триплета из имён вершин и целого неотрицательного числа - пропускной способности (веса).

Входные данные:

```
N - количество ориентированных рёбер графаv_0 - исток
```

 v_n - сток

 $v_i \quad v_j \quad \omega_{ij}$ - ребро графа

 $v_i \quad v_j \quad \omega_{ij}$ - ребро графа

Выходные данные:

 P_{max} - величина максимального потока

 $v_i - v_j - \omega_{ij}$ - ребро графа с фактической величиной протекающего потока

 $v_i - v_j - \omega_{ij}$ - ребро графа с фактической величиной протекающего потока

В ответе выходные рёбра отсортируйте в лексикографическом порядке по первой вершине, потом по второй (в ответе должны присутствовать все указанные входные рёбра, даже если поток в них равен 0).

Sample Input:

7

a

f

a b 7

a c 6

b d 6

c f 9

de3

df4

e c 2

Sample Output:

12

a b 6

a c 6

b d 6

c f 8

de2

d f 4

e c 2

Индивидуальный вариант 1: Поиск в ширину. Поочерёдная обработка вершин текущего фронта, перебор вершин в алфавитном порядке.

Описание алгоритма.

Для нахождения максимального потока в графе в данной работе используется алгоритм Форда-Фалкерсона. На каждой итерации алгоритма происходит поиск пути из истока в сток, увеличивающего значение текущего потока. В результате для каждого ребра пути обновляется поток и строятся, если их нет, обратные ребра, чтобы выполнялось условие f(u, v) = -f(v, u). Алгоритм работает до тех пор, пока можно найти путь, увеличивающий текущий поток. Исследователи алгоритма доказали, что найденный поток будет максимальным.

Особенности реализации алгоритма.

Различные реализации алгоритма различаются, по существу, только способом поиска очередного пути от истока к стоку. Например, можно искать

путь поиском в глубину или поиском в ширину, притом поиск в ширину, как правило, быстрей сходится. Классический пример приведен на рисунке 1.

Рисунок 1 – Пример несбалансированного графа

Для такого графа поиску в ширину потребуется 2 итерации, поиску в глубину примерно в 1000 раз больше итераций. Некоторые модификации алгоритма, как алгоритм Эдмондса-Карпа или Диница, выполняют поиск кратчайшего пути. В данной работе используется поиск в ширину, притом для текущей вершины её смежные обрабатываются в лексикографическом порядке.

Поиск пути происходит в функции get_path, принимающей граф. Описание и реализация структур данных приведена в п. Функции и структуры данных, полных исходный код с исчерпывающими комментариями приведен в Приложении А.

Функции и структуры данных.

Для представления графа в программе используется класс полуребра, т.е. структуры, в которую входят: вершина, в которую ведет ребро, её пропускная способность, текущий поток, и флаг, были ли это ребро в изначальной сети. Сам граф представлен встроенной структурой данных dict, реализующий маппинг из вершины в массив полурёбер (исходный код см. в Прил. А).

В функции get_path используется словарь path_from для восстановления полученного поиском пути, словарь delta для отслеживания изменения потока,

сет visited для просмотра каждой вершины единожды. Очередь для поиска в ширину реализована с помощью интерфейса стандартной структуры list.

Сортировки производятся с помощью стандартных средств языка.

Оценка сложности алгоритма.

Для стандартной реализации алгоритма Форда-Фалкерсона имеет место оценка O(|E|F), где |E| – количество рёбер, F – максимальный поток. В худшем случае (см. рис. 1) необходимо F раз пройтись по рёбрам, их |E|, откуда и получается оценка. Более практически значимые оценки можно получить для реализаций Эдмондса-Карпа и Диница, $O(|V||E|^2)$ и $O(|V|^2|E|)$ соответственно. Стоит подчеркнуть вопрос сходимости алгоритма. В данной работе пропускные способности представлены целыми числами, что не создаёт проблем для сходимости, но в случае с иррациональными пропускными способностями существуют примеры, когда данный алгоритм не сходится.

Тестирование.

Проведём тестирование программы с выводом отладочной информации. Результат тестирования приведён в таблице 1

Таблица 1 – Тестирование программы

Входные данные	Выходные данные	
3	Считанный граф: {'a': [-> b, capacity:	
a	2, current_flow: 0, -> c, capacity: 2,	
c	current_flow: 0], 'b': [-> c, capacity: 1,	
a b 2	current_flow: 0]}	
a c 2	Рассматриваем вершину а	
b c 1	Добавляем в в очередь	
	Добавляем с в очередь	
	Рассматриваем вершину с	

```
Получен путь: ['a', 'c']
Изменение потока на 2
Добавлено обратное ребро (с,а)
Граф после итерации: {'a': [-> b,
capacity: 2, current_flow: 0, -> c,
capacity: 2, current_flow: 2], 'b': [-> c,
capacity: 1, current_flow: 0], 'c': [-> a,
capacity: 2, current_flow: -2]}
Рассматриваем вершину а
Добавляем b в очередь
Рассматриваем вершину b
Добавляем с в очередь
Рассматриваем вершину с
Получен путь: ['a', 'b', 'c']
Изменение потока на 1
Добавлено обратное ребро (b,a)
Добавлено обратное ребро (c,b)
Граф после итерации: {'a': [-> b,
capacity: 2, current_flow: 1, -> c,
capacity: 2, current_flow: 2], 'b': [-> c,
capacity: 1, current_flow: 1, -> a,
capacity: 2, current_flow: -1], 'c': [-> a,
capacity: 2, current_flow: -2, -> b,
capacity: 1, current_flow: -1]}
Рассматриваем вершину а
Добавляем в в очередь
```

Рассматриваем вершину в	
Получен путь: ['c']	
Изменение потока на 0	
Граф после итерации: {'a': [-> b,	
capacity: 2, current_flow: 1, -> c,	
capacity: 2, current_flow: 2], 'b': [-> c,	
capacity: 1, current_flow: 1, -> a,	
capacity: 2, current_flow: -1], 'c': [-> a,	
capacity: 2, current_flow: -2, -> b,	
capacity: 1, current_flow: -1]}	
Максимальный поток 3	
Список ребер с потоками:	
a b 1	
a c 2	
b c 1	

Ввиду большого объёма выходных данных предлагается выполнить дальнейшее тестирование на рабочей машине с выводом в текстовый файл. Тесты приложены к данному отчёту.

Вывод.

В результате выполнения работы была получена реализация алгоритма Форда-Фалкерсона с использованием поиска в ширину на языке Python. Была исследована асимптотика алгоритма и особенности реализации.

приложение а. исходный код программы.

```
** ** **
     Вариант 1 -- Поиск в ширину.
     Поочерёдная обработка вершин текущего фронта, перебор вершин в алфавитном
порядке.
     ** ** **
     class SemiEdge:
         11 11 11
         Структура для хранения полуребра, т.е. вершину, в которую ведет ребро,
еë
         пропускную способность, текущий поток, и флаг, были ли это ребро в
изначальной сети
          ** ** **
         to: str
          cost: int
          flow: int
         orig: bool
         def __init__(self, to_, cost_, flow_=0, orig_=False):
              self.to = to
              self.cost = cost
              self.flow = flow
              self.orig = orig
         def str (self):
             return f"-> {self.to}, capacity: {self.cost}, current flow:
{self.flow}"
          def repr (self):
             return self.__str__()
          ** ** **
          Переопределение сравнений для сортировки, чтобы получить корректный
формат вывода
         def lt (self, rhs):
             return self.to < rhs.to</pre>
         def gt (self, rhs):
```

```
return self.to > rhs.to
         def le (self, rhs):
              return not self > rhs
         def __eq_ (self, rhs):
              return self.to == rhs
      #Считывание данных
     edge count = int(input())
      source = input().strip()
     drain = input().strip()
     graph = dict()
      ** ** **
     Будем хранить отображения из вершины в массив полуребер, т.е. u ->
[SemiEdge(v, ...), SemiEdge(w, ...), ...]
     для представления графа
      ,, ,, ,,
     for in range (edge count):
         from , to , cost = input().split()
         graph[from_] = graph.get(from_, []) + [SemiEdge(to_, int(cost_), 0,
True)]
     print("Считанный граф: ", graph)
     def get path(graph):
          11 11 11
         Функция нахождения пути от истока к стоку, согласно варианту,
использует поиск в ширину
          ** ** **
         path from = dict() # мапа, для восстановления пути
          visited = set()
          queue = [source] # очередь для поиска в ширину
         delta = {source: 1e9} # для каждой вершины в пути необходимо знать
изменение потока
         while len(queue):
              ** ** **
             Поиск в ширину
```

11 11 11

```
cur = queue.pop()
             print(f"Paccмaтриваем вершину {cur}")
             visited.add(cur)
             if cur == drain: # дошли до стока
                 break
             if not graph.get(cur): # у вершины нет исходящих рёбер
                 continue
             for semi edge in sorted(graph[cur]): # перебираем соседние
вершины, отсортированные в лекс. граф. порядке
                 to , cost ,
                                  flow = semi edge.to, semi edge.cost,
semi edge.flow
                 if to not in visited and flow < cost : \# еще не были в
вершине и можно увеличить поток
                     queue.append(to )
                     print(f"Добавляем {to } в очередь")
                     path from[to ] = cur
                     delta[to ] = min(delta[cur], cost - flow )
         ** ** **
         Восстановление пути
         11 11 11
         result path = [drain]; cur = drain
         while path from.get(cur):
             result path.append(path from[cur])
             cur = path from[cur]
         return list(reversed(result path)), delta.get(drain, 0) # возвращаем
дельту, чтобы знать, когда закончить алгоритм
     flow = 0
     flow delta = 1
     while flow delta:
         path, flow_delta = get_path(graph)
         print("-" * 10)
         print("Получен путь: ", path)
         print(f"Изменение потока на {flow delta}")
         for cur in range(len(path)-1): # пройдем по пути и обновим потоки,
добавим обратные ребра, если необходимо
             for semi_edge_idx, semi_edge in enumerate(graph[path[cur]]):
```

```
if semi edge.to == path[cur+1]:
                      graph[path[cur]][semi edge idx].flow += flow delta
увеличим поток
                      if not graph.get(semi edge.to):
                          graph[semi edge.to]
                                                            [SemiEdge(path[cur],
graph[path[cur]][semi_edge_idx].cost, -flow_delta)] # добавим обратное ребро
                          print(f"Добавлено
                                                        обратное
                                                                            ребро
({semi edge.to}, {path[cur]})")
                      else:
                          """ Ищем обратное ребро, если оно есть, либо опять же
добавляем новое """
                          try:
                              to = graph[semi edge.to].index(path[cur])
                              graph[semi_edge.to][to].flow -= flow_delta
                          except:
                              graph[semi edge.to].append(SemiEdge(path[cur],
graph[path[cur]][semi_edge_idx].cost, -flow_delta))
                              print(f"Добавлено
                                                         обратное
                                                                            ребро
({semi_edge.to}, {path[cur]})")
          flow += flow delta # обновляем макс. поток
          print("Граф после итерации:", graph)
          print("-" * 10)
     print(f"Максимальный поток {flow}")
     edges = []
     Решаем проблему двойных ребер, формируем ответ
      for node in graph:
          for semi edge idx, semi edge in enumerate(graph[node]):
              if semi_edge.orig:
                  try:
                      idx = graph[semi edge.to].index(node)
                      if graph[semi\_edge.to][idx].orig: # ectb (u,v) и (v,u)
принадлежащие исходной сети.
                                    semi edge.flow
                                                           >
graph[semi edge.to][idx].flow > 0: # если оба положительные, то в одно разность,
в другое 0
                              if semi edge.flow > graph[semi edge.to][idx].flow:
```

```
semi edge.flow
graph[semi_edge.to][idx].flow
                                  graph[semi_edge.to][idx].flow = 0
                              else:
                                  graph[semi_edge.to][idx].flow
semi_edge.flow
                                  semi edge.flow = 0
                          else: # иначе зануляем отрицательное
                              if semi_edge.flow > graph[semi_edge.to][idx].flow:
                                  graph[semi_edge.to][idx].flow = 0
                              else:
                                  semi edge.flow = 0
                  except:
                      pass
                  edges.append((node, semi_edge.to, semi_edge.flow)) # добавляем
ребро в ответ
      print("Список ребер с потоками:")
      import operator # для сортировки по обеим ребрам
      edges.sort(key=operator.itemgetter(0, 1))
      for edge in edges:
          print(" ".join(map(str, edge))) # вывод списка ребер
```