1 Problemi considerati

1.1 Alcune definizioni fondamentali

Per definire formalmente il concetto di grafo è necessario introdurre la definizione di relazione binaria.

Definizione 1.1.1. Chiameremo relazione binaria su A, B qualsiasi sottoinsieme del prodotto cartesiano $A \times B$.

Chiameremo relazione binaria su A qualsiasi sottoinsieme del prodotto cartesiano $A \times A$.

Diremo che u, v sono in relazione rispetto a b se $(u, v) \in b$. In questo caso useremo la notazione u b v.

Definizione 1.1.2. Sia b una relazione binaria su N. Diamo le seguenti definizioni

- Chiusura riflessiva: $b_r = b \cup \{(x, x) \ \forall x \in N\}$
- Chiusura simmetrica: $b_s = b \cup \{(y, x) \ \forall x, y : (x, y) \in b\}$
- Chiusura transitiva: $b_t = b \cup \{(x, z) \ \forall x, z : \exists y : (x, y) \in b \land (y, z) \in b\}$

Definizione 1.1.3. Sia $N \neq \emptyset$. Sia \rightarrow una relazione binaria su N. Chiameremo grafo la coppia $G = (N, \rightarrow)$. In questo caso

- N è l'insieme dei nodi:
- \rightarrow è la relazione di raggiungibilità: $a \rightarrow b \ (a, b \in N)$ significa "nel grafo G esiste un arco dal nodo a al nodo b".

Esempio 1.1.1. Il grafo di Figura 1 è descritto dalla coppia

- $N = \{A, B, C, D, E\}$
- $\bullet \rightarrow = \{(A, B), (A, D), (B, C), (D, C), (C, E), (D, E)\}$

Figura 1

1.2 Bisimulazione

Definizione 1.2.1. Siano $G_1 = (N_1, E_1), G_2 = (N_2, E_2)$ due grafi. Diremo che G_1, G_2 sono bisimili rispetto alla relazione binaria b su N_1, N_2 se $\forall u \in N_1, v \in N_2$ valgono congiuntamente le seguenti condizioni

- $\forall u' \in N_1 : u \to u', u \, b \, v \implies \exists v' \in N_2 : (u' \, b \, v' \land v \to v')$
- $\forall v' \in N_2 : v \to v', u \, b \, v \implies \exists u' \in N_1 : (u' \, b \, v' \land u \to u')$

Per introdurre risultati che verranno presentati in seguito risulta utile definire la bisimulazione su un grafo:

Definizione 1.2.2. Sia $G = (N, \rightarrow)$ un grafo, e b una relazione binaria su N. Diremo che b è una bisimulazione su G se $\forall u, v \in N$ valgono congiuntamente le sequenti condizioni

- $\forall u' \in N : u \to u', u \, b \, v \implies \exists v' \in N : (u' \, b \, v' \land v \to v')$
- $\forall v' \in N : v \to v', u \, b \, v \implies \exists u' \in N : (u' \, b \, v' \land u \to u')$

Proposizione 1.2.1. Sia b una bisimulazione sul grafo G. La sua chiusura riflessiva, simmetrica o transitiva è ancora una bisimulazione su G.

Dimostrazione. Considero separatamente le tre relazioni b_r, b_s, b_t , rispettivamente la chiusura riflessiva, simmetrica e transitiva:

- b_r Per definizione $b \subset b_r$, quindi è sufficiente dimostrare che b_r è una bisimulazione solo quando gli argomenti $u, v \in N$ non sono distinti. Sia $u \in N$. Chiaramente $u \, b_r \, u$. Se $\exists u' \in N : u \to u' \implies u' \, b_r \, u'$.
- b_s Per definizione $b \subset b_s$, quindi è sufficiente dimostrare che b_s è una bisimulazione quando per gli argomenti $u, v \in N$ si ha $u \, b \, v$ ma non $v \, b \, u$.

Sia $(u, v) \in N \times N$ una coppia con questa proprietà. Allora vale $u \, b \, v \wedge v \, b_s \, u$. Per la prima relazione si deduce che se $\exists v' \in N : v \to v' \implies \exists u' \in N : (u \to u' \wedge u' \, b \, v')$. Allora $v' \, b_s \, u'$. In modo speculare si dimostra la seconda parte della proprietà caratteristica della bisimulazione.

- b_t Per definizione $b \subset b_t$, quindi è sufficiente dimostrare che b_t è una bisimulazione quando per gli argomenti $u, v, z \in N$ si ha $u \, b \, v, \, v \, b \, z$ ma non $u \, b \, z$.
 - Sia $(u, v, z) \in N \times N \times N$ con questa proprietà. Allora se $\exists u', v' \in N$:

 $u \to u' \implies \exists v' \in N : v \to v' \land u' \, b \, v'.$ Inoltre $\exists z' : z \to z' \land v' \, b \, z'.$ Ricapitolando si ha $u' \, b \, v', v' \, b \, z'.$ Allora per definizione di $b_t : u' \, b_t \, z'.$ In modo speculare si ottiene la seconda parte della proprietà caratteristica della bisimulazione.

Corollario 1.2.1. Ad ogni bisimulazione b si può associare una bisimulazione $\widetilde{b}:b\subset\widetilde{b}$ \wedge \widetilde{b} è una relazione di equivalenza.