MATH 311

CHAPTER 1

SECTION 1.2: GAUSSIAN ELIMINATION

Contents

Matrix and Augmented Matrix	2
Row-Echelon Form of a matrix	3
Rank	8

Created by: Pierre-Olivier Parisé Spring 2024

Matrix and Augmented Matrix

The system

$$x + y + z = 1$$
$$2x + 2y + z = 3$$

can be put in **matrix form** (array of numbers):

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 3 \end{bmatrix}$$

DEFINITION 1.

- The matrix $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$ is called the **coefficient matrix** of the system.
- The matrix $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is called the **constant matrix** of the system.

Solving a system of linear equations requires to transform the coefficient matrix in the following form:

$$\begin{bmatrix} 1 & * & * \\ 0 & 1 & * \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & * & * \\ 0 & 0 & 1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & * & * \\ 0 & 0 & 0 \end{bmatrix}$$

where * denotes any real number.

ROW-ECHELON FORM OF A MATRIX

DEFINITION 2. A matrix is said to be in **row-echelon form** (REF for short) if it satisfies the following three conditions:

- 1. All **zero rows** are at the bottom.
- 2. The first nonzero entry from the left in each nonzero row is 1, called the **leading 1** for that row.
- 3. Each leading 1 is to the right of all leading 1s in the rows above it

DEFINITION 3. A row-echelon matrix is said to be in **reduced row-echelon form** (RREF for short) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

EXAMPLE 1. Circle the matrices in REF. Draw a square around the matrices in RREF.

$$\begin{bmatrix} 1 & * & * \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 0 & 3 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

THEOREM 1. Every matrix can be transformed, with row operations, to a REF (or RREF).

Algorithm 4. Gaussian Elinination. To solve a system of linear equations proceed as follows.

- 1. Carry the augmented matrix to a reduced row-echelon form using elementary row operations.
- 2. If a row $\begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix}$ occurs, the system is inconsistent.
- 3. Otherwise, find the parametric form of the solution set to the system of equations.

EXAMPLE 2. Solve the following system:

$$3x + y - 4z = -1$$
$$x + 10z = 5$$
$$4x + y + 6z = 1$$

EXAMPLE 3. Solve the following equation:

$$x_1 - 2x_2 - x_3 + 3x_4 = 1$$
$$2x_1 - 4x_2 + x_3 = 5$$
$$x_1 - 2x_2 + 2x_3 - 3x_4 = 4$$

Note: The variable called leading va	e corresponding to the ariables.	leading ones are
PO. Parisé	MATH 311	Page 7

RANK

It can be proved that the number r of leading 1s must be the same in each of the row-echelon matrices.

DEFINITION 5. The **rank** of a matrix A is the number of leading 1s in any REF to which A can be carried by row operations.

EXAMPLE 4. Compute the rank of

$$A = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -5 & 8 \end{bmatrix}$$

THEOREM 2. Suppose a system of m equations in n variables is consistent, and that the rank of the coefficient matrix is r.

- 1. The set of solutions involves n-r parameters.
- 2. If r < n, the system has infinitely many solutions.
- 3. If r = n, the system has a unique solution.

Three situations occur:

- No solution.
- Unique solution.
- Infinitely many solutions.

EXAMPLE 5. A system of equation with m=4 linear equations and n=5 variables has been carried to the following REF by row operations:

$$\begin{bmatrix} 1 & 2 & 1 & 3 & 1 & 1 \\ 0 & 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find the rank of the coefficient matrix. (b) Is there no solution, unique solution, or infinitely many solutions?