Sprawozdanie z Laboratorium 5

Natan Tułodziecki

31 marca 2025

1 Wstęp

Celem laboratorium było przeanalizowanie odpowiedzi impulsowej i skokowej systemu oraz zaprojektowanie regulatora LQR. Badano stabilność układu oraz wpływ parametrów regulatora na jego zachowanie.

2 Analiza układu

2.1 Bieguny układu

Bieguny układu: [1.973, 0.830, 0.397].

Wnioski: Układ jest niestabilny, ponieważ istnieje biegun o wartości dodatniej.

2.2 Odpowiedź impulsowa

Dane odpowiedzi impulsowej dla różnych chwil czasu przedstawiono w tabeli:

$\operatorname{Czas} t$	Odpowiedź impulsowa $h(t)$
0	0.0000
1	1.0000
2	4.2000
3	11.6900
19	784327.0900

Obserwujemy, że odpowiedź impulsowa narasta wykładniczo, co potwierdza niestabilność układu.

2.3 Odpowiedź skokowa

Dane odpowiedzi skokowej:

zas t	Odpowiedź skokowa $y(t)$
0	0.0000
1	1.0000
2	5.2000
3	16.8900
19	1590101.0200

Również w tym przypadku widzimy, że układ jest niestabilny.

3 Projekt regulatora LQR

Macierze stanu układu:

$$A = \begin{bmatrix} 3.2 & -2.75 & 0.65 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \quad D = 0.$$

Zaprojektowano regulator LQR z wzmocnieniem:

$$K = \begin{bmatrix} 2.3984 & -2.4084 & 0.5985 \end{bmatrix}$$

Macierz P uzyskana iteracyjnie:

$$P = \begin{bmatrix} 11.6144 & -6.9115 & 1.5590 \\ -6.9115 & 8.4796 & -1.5655 \\ 1.5590 & -1.5655 & 1.3890 \end{bmatrix}$$

4 Odpowiedź układu zamkniętego

Odpowiedź układu zamkniętego z regulatorem LQR:

1	
Czas t	$y_{LQR}(t)$
0	3.0000
1	2.5115
2	1.6315
3	0.6044
19	0.0000

Układ osiąga stabilność po kilku iteracjach.

5 Wpływ parametrów c_1 i c_2 na odpowiedź układu y[n] i sygnał sterujący u[n]

Dobór stałych c_1 i c_2 ma istotny wpływ na dynamikę układu, w szczególności na szybkość stabilizacji odpowiedzi y[n] oraz amplitudę i charakterystykę sygnału sterującego u[n].

5.1 Analiza wpływu c_1

- Mała wartość c_1 powoduje wolniejsze tłumienie odpowiedzi y[n], co oznacza dłuższy czas stabilizacji układu.
- \bullet Duża wartość c_1 skutkuje szybszym tłumieniem drgań i stabilizacją odpowiedzi y[n] w krótszym czasie.

5.2 Analiza wpływu c_2

- Mała wartość c_2 pozwala na silniejsze sterowanie u[n], co oznacza większe amplitudy sygnału sterującego.
- Duża wartość c_2 tłumi sygnał sterujący u[n], co może prowadzić do oscylacji odpowiedzi y[n].

5.3 Podsumowanie wpływu c1 i c2 na układ stabilizowany LQR

Na podstawie przeprowadzonych symulacji można stwierdzić, że dobór parametrów c_1 i c_2 ma istotne znaczenie dla dynamiki układu:

- \bullet Wysokie wartości c_1 przyspieszają stabilizację odpowiedzi układu, podczas gdy niskie wartości wydłużają czas stabilizacji.
- Niskie wartości c_2 pozwalają na większą kontrolę poprzez sygnał sterujący, natomiast wysokie wartości tłumią u[n], co może prowadzić do oscylacji w odpowiedzi układu.

6 Podsumowanie

Z przeprowadzonych badań wynika, że początkowy układ jest niestabilny. Po zastosowaniu regulatora LQR osiągnięto stabilizację układu. Zmienność parametrów regulatora wpływa na szybkość tłumienia odpowiedzi układu.