CODH 作业 3

张博厚 PB22071354

单周期部分

4.1

- 1. 控制信号: RegWrite=1, ALUSrc=0, ALU operation=4'd4, MemRead=0, MemWrite=0, MemtoReg=0.
- 2. 所用到的部件为 Registers, ALU 和两个 MUX.
- 3.ImmGen 没有产生输出, DataMemory 的输出没有被用到.

4.7

- 1. R-type: 30+250+150+25+200+25+20 = 700ps.
- 2. ld: 30+250+150+25+200+250+25+20 = 950ps.
- 3. sd: 30+250+150+200+25+250 = 905ps.
- 4. beq: 30+250+150+25+200+5+25+20 = 705ps.
- 5. I-type: 30+250+150+25+25+20 = 700ps.
- 6. 最短时钟周期为 950ps.

思考题

1. 寻址方式如何实现?

Registers: 通过指令译码得到地址.

DataMemory: 通过 ALU 计算得到地址.

InstMemory: 通过 PC 得到地址.

2. 周期宽度如何确定?

需要观察数据通路,找到最长的一条通路,计算该通路上各功能部件延迟 以得到数据通路最大延迟,周期宽度应不小于这个值. 3. 能否"在一个 clk 内完成"

同 2, 分别计算最大时延和周期宽度后比较, 若周期宽度大于等于最大延迟, 则可以在一个 clk 内完成, 否则不能.

4. 能否将两个 adder 合而为一?

不可以. 对单周期 CPU 而言, 两个 adder 的使用在同一个时钟周期内完成, 同时进行, 若合二为一会造成冲突.

5. 能否将两个 Memory 合而为一?

不可以. 单周期 CPU 中对指令的读取和对数据的读写操作在同一个是时钟周期内完成, 若将两个 Memory 合成为一个单端口 ram, 则不能同时满足.

多周期部分

1. 每一类指令的指令周期内包含多少时钟周期?

R 型指令: 4. I 型指令: 4.

S 型指令: 5. B 型指令: 3.

2. 分别分析 R/I/S/B-type 指令的多周期设计方案中每个周期用到的功能 部件.

R 型指令: Memory, IR, Registers, A, B, ALU, MUX, ALUOut.

I 型指令: Memory, IR, Registers, SignExtend, A, B, ALU, ALUOut, MUX, MDR(对 lw).

S 型指令: Memory, IR, Registers, A, B, ALU, MUX, ALUOut, B 型指令: Memory, IR, Registers, A, B, ALU, MUX, ALUOut, PCMUX.