AVL-Tree

Rotation- To switch children and parents among two or three adjacent nodes to restore balance of a tree.

Types of Rotation

- Single Rotation is applied when imbalanced node and child has same sign of BF (in the direction of new inserted node).
 - LL Rotation is applied in case of +ve sign. It mean left
 - tree is heavy and so LL rotation is done.
 - RR Rotation is applied in case of -ve sign. It mean right tree is heavy and so RR rotation is done.
- Double Rotation is applied when imbalanced node and child has different signs of BF (in the direction of new inserted node).

RR Rotation

Construct a AVL Tree by inserting from 1 to 5 numbers

Construct a AVL Tree by inserting from 1 to 5 numbers

Construct a AVL Tree by inserting from 1 to 5 numbers

Construct AVL Tree with data items: 51, 26, 11, 6, 8, 4, 31

Insertion in AVL Tree

Insertion in AVL Tree

Deletion in AVL Tree

It is also possible to delete an item from AVL Tree.

Deletion in AVL Tree

Just like insertion, deletion can cause an imbalance, which will need to be fixed by applying one of the four rotations.

Balanced AVL

Imbalanced AVL

- The deletion is also the same as in BST. However, in imbalanced tree due to deletion, one or more rotations need to be applied to balance the AVL tree.
- The Right(R) imbalance is classified into R0, R1, R-1
- The Left(L) imbalance is classified into L0, L1, L-1

Deletion in AVL Tree

- LL Rotation is same to R0 and R1
- RR Rotation is same to L0 and L-1
- LR Rotation is same to R-1
- RL Rotation is same to L1

R0 Rotation Example

R0 Rotation Example

R1 Rotation Example

R1 Rotation Example

R-1 Rotation Example

R-1 Rotation Example

R-1 Rotation Example

L1 F

