Прокуди Дмитрий Алексеевич

телефон: 89529406790

e-mail: dmitriy179354@mail.ru

1. Глава Множества и Отображения

1.1. Множества

1.1.1. п. Понятие множества

Множестав – это совокупность различимых объектов произвольной природы, рассматриваемая как единое целое. Сами объекты называются элементами множества.

Для обозначения множеств будем использовать прописные буквы латинского алфавита (A, B, C, \ldots) , а для элементов строчные (a, b, c, \ldots) .

Тот факт, что некоторый объект x является элементом множества A, записывают $x \in A$ Если же x не является элементом A, записывают $x \notin A$

В в качестве синонимов синонимов термина "множество" будем использовать термины "класс "семейство "система "набор" и др.

Способы задания множества:

- 1. Если множества A состоят из конечного числа элементов, то можно просто все эти элементы перечислить, записав их в фигурных скобках через запятую. Например, если A есть множество букв, составляющих слово "математика то $A = \{ \text{м, a, т, e, u, k} \}$
- 2. Пусть P какое-либо свойство, и запись P(x), означает, что объект x обладает свойством P. Тот факт, что A есть множество объектов, обладающих свойством P, записывают $A = \{x | P(x)\} \mid$ это обозначение слов, "которые"или "такие что"

Если мы дополнительно потребуем, чтобы эти объекты выбирались из некоторого другого множества B, то запишем $A = \{x \in B | P(x)\}$

Читается это так: множество A состоит из тех (и только тех) элементов множества B, которые обладают свойством P.

Множества A и B равны (обозначение: A = B), если они состоят из одних и тех же элементов. Выражение $A \neg B$ означает, что множества A и B не равны, т.е. не все элементы одного множества являются элементами другого .

Равенство есть отношение эквивалентности между множествами, т.к. оно обладает следующими свойствами:

- 1. рефлексивностью (A = A)
- 2. симметричностью (если A = B, то B = A)
- 3. транзитивностью (если A = B и B = C, то A = C)

Если каждый элемент множества A является элементом множества B, то говорят, что A является подмножеством множества B (или A содержится в B). Обозначим: $A \subset B$

Свойства:

1. $A \subset A$;

- 2. если $A \subset B$ и $B \subset A$, то A = B;
- 3. если $A \subset B$ и $B \subset C$, то $A \subset C$

Удобно ввести множество, совсем не имеющие элементов и называемое пустым множеством . Обозначение: \emptyset

Пустое множество является подмножеством любого множества.

1.1.2. п. Логическая символика

Утверждение — это высказывание, которое может быть либо истинным, либо ложным. Пусть A и B утверждения, Тогда

- 1. Утверждение $\neg A$ (не A) истинно тогда и только тогда, когда A ложно;
- 2. Утверждение $A \wedge B$ (A и B) истинно тогда и только тогда, когда A и B истинны;
- 3. Утверждение $A \lor B$ (A или B) истинно тогда и только тогда, когда истинно хотя бы одно из утверждений A и B истинно;
- 4. Утверждение $A \Rightarrow B$ (из A следует B) означает, что если A истинно, то и B истинно;
- 5. Утверждение $A \Leftrightarrow B$ (A равносильно B) означает, что из истинности A следует истинности B и из истинности B следует истинности A;

В формулировках утверждений часто используется следующее: "если A, то B ", "для того, чтобы A, необходимо, что B ", "для того, чтобы B, достаточно, чтобы A ", что означает $A \Rightarrow B$