Machine Learning Project for an online music store that recommends music albums, that users are likely to buy Importing the data: import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy score import joblib data = pd.read_csv("C:\\Users\\Gudise Dharani\\Desktop\\music.csv") Data cleaning: • It's just a demo sample for this project, yet it's capable enough to work for large dataset using this program.

• There is nothing much to clean in this dataset.

Split into input and output sets:

In [11]: input_set = data.drop(columns = ['genre']) input_set Out[11]: age gender **0** 20 **1** 23 **2** 25 **3** 26 **4** 29 **5** 30 **6** 31 **7** 33 **8** 37 **9** 20 **10** 21 **11** 25 **12** 26 **13** 27 **14** 30 **15** 31 **16** 34 **17** 35 In [12]: output_set = data.drop(columns = ['age', 'gender'])

output_set

0 HipHop **1** HipHop **2** HipHop Jazz Jazz Jazz **6** Classical **7** Classical 8 Classical Dance **10** Dance **11** Dance **12** Acoustic **13** Acoustic **14** Acoustic **15** Classical

16 Classical

17 Classical

genre

Out[12]:

Split into training and testing sets:

input_train, input_test, output_train, output_test = train_test_split(input_set, output_set, test_size = 0.2)

Building the model:

model = DecisionTreeClassifier()

Training the model:

model.fit(input_train, output_train)

DecisionTreeClassifier()

Testing the model and evaluating the accuracy:

predictions = model.predict(input_test) score = accuracy_score(output_test, predictions) Out[19]: 1.0

Persisting models:

saving model into file

joblib.dump(model, "music_recommender.joblib")

['music_recommender.joblib'] Out[20]:

loading model from file and asking it to make predictions

model = joblib.load("music_recommender.joblib") predictions = model.predict(input_test)

Out[21]: 1.0

In []: