数据理解与准备

数据理解

主要是理解数据,包括分析抽样偏差,数据粒度,数据得精确含义,变量类型,冗余变量,完整性,缺省值,数据链接。这里主要先查看数据,处理冗余变量,进行缺失值的分析等。

获取并查看数据:

首先读取 bankloan.csv 文件中的数据为数据框 bankLoan ,并且使用R语言中的 summary(bankLoan) 初步查看数据的位置分布特征。

```
library(dplyr)
library(purrr)
library(xlsx)
setwd("D:/lagua/CODING/R-learn/R-code/Chap2-DataPreparation")
bankLoan = read.csv("bankloan.csv", header=TRUE,
                  fileEncoding ="GBK")
colnames(bankLoan) = c("Age", "Edu", "WorkAge",
                    "Address", "Income",
                    "DebtRatio", "CreditDebt",
                    "OtherDebt", "Default")
# -----数据空值检查-----
#----列检查-----
colnames(bankLoan)
length(colnames(bankLoan))
#-----行检查-----
summary(bankLoan)
```

得到:

	年齢	教育	工齢	地址	收入	负债率	信用卡负债	其他负债	违约
count	700.000000	700.000000	700.000000	700.000000	700.000000	700.000000	700.000000	700.000000	700.000000
mean	34.860000	1.722857	8.388571	8.278571	45.601429	10.260571	1.553553	3.058209	0.261429
std	7.997342	0.928206	6.658039	6.824877	36.814226	6.827234	2.117197	3.287555	0.439727
min	20.000000	1.000000	0.000000	0.000000	14.000000	0.400000	0.011696	0.045584	0.000000
25%	29.000000	1.000000	3.000000	3.000000	24.000000	5.000000	0.369059	1.044178	0.000000
50%	34.000000	1.000000	7.000000	7.000000	34.000000	8.600000	0.854869	1.987568	0.000000
75%	40.000000	2.000000	12.000000	12.000000	55.000000	14.125000	1.901955	3.923065	1.000000
max	56.000000	5.000000	31.000000	34.000000	446.000000	41.300000	20.561310	27.033600	1.000000

> summary(bankLoan)

Age	Edu	WorkAge	Address
Min. :20.00	Min. :1.000	Min. : 0.000	Min. : 0.000
1st Qu.:29.00	1st Qu.:1.000	1st Qu.: 3.000	1st Qu.: 3.000
Median :34.00	Median :1.000	Median : 7.000	Median : 7.000
Mean :34.86	Mean :1.723	Mean : 8.389	Mean : 8.279
3rd Qu.:40.00	3rd Qu.:2.000	3rd Qu.:12.000	3rd Qu.:12.000
Max. :56.00	Max. :5.000	Max. :31.000	Max. :34.000
Income	DebtRatio	CreditDebt	OtherDebt
Min. : 14.0	Min. : 0.40	Min. : 0.010	Min. : 0.050
1st Qu.: 24.0	1st Qu.: 5.00	1st Qu.: 0.370	1st Qu.: 1.048
Median : 34.0	Median : 8.60	Median : 0.855	Median : 1.985
Mean : 45.6	Mean :10.26	Mean : 1.553	Mean : 3.058
3rd Qu.: 55.0	3rd Qu.:14.12		-
Max. :446.0	Max. :41.30	Max. :20.560	Max. :27.030
Default			
Min. :0.0000			
1st Qu.:0.0000			
Median :0.0000			
Mean :0.2614			
3rd Qu.:1.0000			
Max. :1.0000			

冗余变量:

在对原始数据的初步分析之后,发现数据中不存在一些变量可以由其他的变量推导出来,也即没有冗余变量,所以在冗余变量处理部分,不作任何的处理。

缺失值:

如上图所示的summary(bankLoan)得到的结果所示,变量没有缺省值,即数据是完整的,故在这一步也不对数据进行任何的处理。

数据准备

清除变量,处理分类自变量,处理时间变量,异常值,极值,数据分箱,缺失数据,降维,欠采样与过抽样

根据生活的经验,所有的变量,年龄、教育、工龄、地址、收入、负债率、信用卡负债、其它负债等自变量都与是否违约有关。所以初步判定所有变量都是有效的,不用清除。

以下根据统计理论进行进一步地分析。

数据属性与描述:

处理分类型变量

分类自变量的类型,包括分类自变量和定序自变量。

关于分类自变量而言,对于<u>属性变量</u>,最常用的转换是将该自变量转变成哑变量;对于<u>定序自变量</u>,将 该变量的序号转换成数值自变量。 经过以上 summary(bankLoan)以及对原始数据的初步分析知,地址是<u>属性变量</u>,所以使用 as.factor 将变量的类型转变成因子类型,即**分类变量**;教育是定序变量,所以首先将其排序,并且转换成整数型自变量;而对于剩下的年龄、工龄、收入、信用卡负债、其他负债自变量,全部都转换成数值型变量,而其中的年龄、工龄需要转变成整数型变量。

使用R的实现代码如下:

查看数据描述

主要查看数据的分布,其中包括均值、标准差、最小值、下四分位数、中位数、上四分位数、最大值、缺失值的数量,得到:

> loan_nvars_description

	nmiss	mean	std	min	Q1	median	Q3	max
Age	0	34.8600000	7.9973422	20.00	29.0000	34.000	40.0000	56.00
Edu	0	1.7228571	0.9282055	1.00	1.0000	1.000	2.0000	5.00
WorkAge	0	8.3885714	6.6580390	0.00	3.0000	7.000	12.0000	31.00
Address	0	8.2785714	6.8248765	0.00	3.0000	7.000	12.0000	34.00
Income	0	45.6014286	36.8142264	14.00	24.0000	34.000	55.0000	446.00
DebtRatio	0	10.2605714	6.8272336	0.40	5.0000	8.600	14.1250	41.30
CreditDebt	0	1.5534571	2.1172091	0.01	0.3700	0.855	1.9050	20.56
OtherDebt	0	3.0582286	3.2875242	0.05	1.0475	1.985	3.9275	27.03
Default	0	0.2614286	0.4397271	0.00	0.0000	0.000	1.0000	1.00

异常值:

首先介绍一下**异常值的影响**,自变量中会因为很多的因素导致在收集数据的时候出现异常值,这些异常值的存在会影响我们的分析。尤其是在进行回归分析时,当出现一个距离大部分数据比较远的离群点。我们在进行模型拟合之前,如果不去除这些异常值的话,会将我们的回归模型往离群点处"拉"。所以在数据建模之前,在进行数据准备时,需要分析数据中异常值,以获得预测以及应用分析效果比较好的模型。

其次,对于**异常值的探测**,由于异常值一般是比较少的点,偏离主要的群体比较远的那些观测值。一般对于异常值的探测使用的方法根据维度一般分为以下几类:

1、一维

2、二维及以上

在一维下,对于异常值的检验主要有两种方法:**直方图法**和**箱线图法**。其中直方图法,首先将我们的一维变量数据分组,对所有的数据都排序之后分组,计算数据落到每个组的频数,就可以得到直方图。直方图可以显示出原始数据的分布。

<u>百方图法:</u>一般情况下,如果数据没有异常数据的话,数据一般是比较集中的,而异常的数据往往距离中间的数据比较远,从直观上来看,数据在左边或者右边会产生"拖尾"的现象,我们需要处理的是这些"两边"的数据。由于在大数定律下,数据的分布满足

$$p(|X - \mu| < 2\sigma) = 95.44\%$$

而且假设检验中的 α 的一般取值为0.05,所以控制正常数据落到 2σ 的范围之内是合理的。由此原理,我们将 2σ 之外的数据看作异常值。

<u>箱线图法:</u>箱线图主要是使用分位数来确定数据中是否有异常值。其中有50%的数据在箱子中,即(Q1,Q3)中,当数据超过上界 $Q_3+1.5\Delta Q$ 和下界 $Q_3-1.5\Delta Q$ 之后,使用圈来表示,这是异常值。

对于多维数据,分别有距离法、分类预测模型(聚类)、基于树模型法、基于密度法来识别数据。

距离法: 当d>3或一个阈值之后,就认为这些数据是异常值。注:距离一般使用的是欧氏距离。

<u>分类预测模型法</u>: k-means,在最小化误差函数的基础上将数据划分为预定的类数K. 在聚类完成之后,计算一个类中每个点到类的族中心的距离,如果超过某个阈值,就认为这个点是异常值点。

其次,是对**异常值的处理**。

主要有四种方法:

- 1. 删除含有异常值的记录
- 2. 将异常值视为缺失值, 最后跟缺失值一起处理。
- 3. 使用平均值来修正
- 4. 不处理

根据下面的直方图来看,数据的分布呈现出极值分布,对于年龄,没有异常值;对于教育分布,虽然在右边有一个拖尾的数据,但是这并不是异常的数据,因为在显示中贷款的人群中是存在少部分高学历人群的,这是正常的现象,并不是异常数据,故不对其进行处理;同上,我也认为工龄的分布右边的拖尾是正常的;同理,收入、负债率、信用卡负债、其他负债的右边拖尾数据的存在是非常正常的。又因为在实际中存在有这种看似"异常"的数据,我们可以更加关注他们,对于是否给予他们贷款,需要具体情况具体分析,这就是不是仅仅剔除异常值,或者使用上面包含的四种方法的任意一种方法来处理的。在这些异常值中,我们需要单独拿出这些更加细致地根据具体情况分析,而不是在数据挖掘的初期就剔除这些异常值。

综上,在异常值处理部分,先不对数据进行预处理。

极值处理:

极值化:实际数据中自变量或因变量的分布会呈现出偏斜有极值的现象,例如下图所示的图4 收入就有明显的极值分布。这回对一些模型产生很大的影响,所以我们需要对这些自变量进行极值化处理。

极值化处理一般有两种方法:

- Box-Cox转化
- 将具有极值化的变量转换为秩, 然后再进行分组。

其中Box-Cox变换是指对变量u进行:

$$z = \left\{ egin{array}{ll} \dfrac{(u+r)^{\lambda-1}}{\lambda} & \lambda
eq 0 \ log(u+r) & \lambda = 0 \end{array}
ight.$$

r是一个常数,对u的所有可能取值都满足u+r>0,对数转换时Box-Cox转换的一种特殊情形。 首先对本案例数据的所有变量画图,得到:

如图所示,在经过数据筛选得到整数和数值型的数据中,教育、工龄、收入、信用卡负债、其他负债存在有极值分布,这里仅仅只针对**数值型**的数据<u>收入、信用卡负债、其他负债</u>变换来进行极值处理,但是对整数型变量<u>教育、工龄</u>不进行极致化处理。因为如果进行极值化处理,这些整数型数据就不再是整数了,这在数据分析中是不合理的,因为这改变了数据的变量类型。

这里我们首先对数据收入、信用卡负债、其他负债进行简单的数据变换,即z = log(u+1),得到:

上图的图1-图3看出,数据的分布不再是极值分布了,至此,极值处理完毕。

缺失数据:

根据上一张图片显示的对lona.nvars的描述可知,本案例数据中不存在缺失值。故不对缺失数据进行处理。

降维:

冗余变量不做处理,因为这里从summary(bankLoan)就已经知道所有的变量的中没有不变化的变量。

变量选择:

- 1. 针对因变量为二分变量
- (1) 对于数值自变量而言,可以使用两样本**t检验**考察因变量取一种值时,与因变量取另外一种值时, 该自变量的均值是否相等,然后选择哪些检验**结果显著**(不相等的)自变量。
- (2) 对于分类型自变量而言,可以使用**卡方检验**考察自变量的取值是否独立于因变量的取值,然后选择那些**结果显著**(不独立)的自变量。

注:以上检验显著,说明不同的自变量对因变量的取值是有显著影响的,这就说明这些自变量会影响因变量的取值,故不进行特征筛选。

2. 因变量为分类变量

可以将因变量取值两两配对,针对每对取值进行上述**t检验或者卡方检验**,然后选择那些对因变量的**任何一对**取值检验**结果显著**的自变量。

3. 因变量为数值型变量

可选择将因变量取值离散化之后,再使用上面的方法,或者使用以下:

- (1) 计算个数值自变量与因变量的相关系数,剔除相关系数小或不显著的变量。
- (2) 对每个分类自变量,将其取值两两配对,针对每个取值,用**t检验**考察因变量的均值是否相等,只要对任何一对取值检验**结果显著**,就选择该自变量。

关于变量的选择,还有逐步选择的方法,包括向前选择,向后剔除,向前选择与向后剔除的结合。

针对本案例数据进行分析:

本案例数据情况:因变量违约,它只有两个取值0和1,其中1代表违约,0代表正常数据。由此可知,本例因变量是**二分变**量,所以针对以上提及到的第一种情况进行处理。

对分类型自变量Address进行卡方检验,得到

> chisq.test(table(loanNew\$Address, loanNew\$Default))

Pearson's Chi-squared test

data: table(loanNew\$Address, loanNew\$Default)
X-squared = 65.001, df = 30, p-value = 0.0002193

其中p值是小于0.01的,所以拒绝原假设,认为Address的取值对Default的取值有显著影响。

因为数据过多,我们不可能对所有的自变量都计算对所有因变量Default来进行检验,所以我们首先选出与因变量Default相关性比较小的变量来进行t检验。

如上图所示,相关系数绝对值最小的前四个:年龄、教育、变换后的收入、变换后的其他负债。

分别对其检验,得到结果:

```
> t.test(loanNew$Age ~ loanNew$Default)
```

```
Welch Two Sample t-test
```

如图所示, [t.test(loanNew\$Age ~ loanNew\$Default) 显示变量关于Default的两个取值是显著的。 所以不考虑剔除此变量。

```
> t.test(loanNew$Edu ~ loanNew$Default)
```

```
Welch Two Sample t-test
```

如图所示, t.test(loanNew\$Edu ~ loanNew\$Default) 也是显著的, 所以不考虑剔除此变量。

如图所示, t.test(loanNew\$Income.1 ~ loanNew\$Default)也是显著的, 所以不考虑剔除此变量。

> t.test(loanNew\$OtherDebt.1 ~ loanNew\$Default)

Welch Two Sample t-test

```
data: loanNew$OtherDebt.1 by loanNew$Default
t = -3.6003, df = 291.97, p-value = 0.0003734
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.31109109 -0.09118377
sample estimates:
mean in group 0 mean in group 1
1.129340 1.330477
```

如图所示,(t.test(loanNew\$OtherDebt.1 ~ loanNew\$Default) 也是显著的,所以不考虑剔除此变量。

综上,**不剔除任何的变量**,认为所有的自变量都对因变量Default的取值有影响。

欠采样与过采样

观察数据:

```
> dim(loanNew[loanNew$Default==1, ])
[1] 183  9
> dim(loanNew[loanNew$Default==0, ])
[1] 517  9
```

其中响应变量占比比较少,因此对其进行过采样处理,以使得相应变量与非相应变量之间的比为1:2.

参考

R语言绘制热图(其实是相关系数图)实践(二)corrplot包

数据预处理之异常值处理

数据清洗中异常值 (离群值) 的判别和处理方法

附录

```
setwd("D:/lagua/CODING/R-learn/R-code/Chap2-DataPreparation")
bankLoan = read.csv("bankloan.csv", header=TRUE,
                    fileEncoding = "GBK")
# -----数据观察: 数据空值检查-----
# ------列检查-----
# 注意: 需要检查一下数据是否有列是NA,
# 使用: 以下查看
colnames(bankLoan)
length(colnames(bankLoan))
# 如果是,
# 1, 手动将看到的最后几列(这里是3列)删除, 无论是否看见有数据
# 2. 使用na.omit()直接将所有的具有空的行或者列删除。有风险!!!
# 参考: [R语言 -- 删除 dataFrame/matrix 中含有NA或全为NA的行或列]
# (https://www.jianshu.com/p/26edb1b1e6c7)
# ------行检查------
# 行中是否有空的值也需要查看,使用summary(bankLoan)查看
colnames(bankLoan) = c("Age", "Edu", "WorkAge",
                      "Address", "Income",
                      "DebtRatio", "CreditDebt",
                      "OtherDebt", "Default")
# -----列检查-----
summary(bankLoan)
# 调整数据框列的类型
bankLoan = bankLoan %>%
  mutate_at(.vars = vars("Address"),
           .fun = as.factor) %>%
  mutate_at(.vars = vars("Age", "WorkAge", "Income",
                     "DebtRatio", "CreditDebt", "OtherDebt"),
           .fun = as.numeric) %>%
  mutate_at(.vars = vars("Age", "Edu", "WorkAge"),
           .fun = as.integer)
# ------查看数据-----
# 找出列变量的所有整数型或者数值型的数据
loan.nvars <- bankLoan[,lapply(bankLoan,class)=="integer"</pre>
                     | lapply(bankLoan,class)=="numeric"]
summary(loan.nvars)
# -----查看数据描述-----
descrip <- function(nvar)</pre>
 nmiss <- length(which(is.na(nvar)))</pre>
  mean <- mean(nvar,na.rm=TRUE)</pre>
  std <- sd(nvar,na.rm=TRUE)</pre>
  min <- min(nvar,na.rm=TRUE)</pre>
 Q1 <- quantile(nvar, 0.25, na.rm=TRUE)
  median <- median(nvar,na.rm=TRUE)</pre>
  Q3 <- quantile(nvar, 0.75, na.rm=TRUE)
  max <- max(nvar,na.rm=TRUE)</pre>
  return(c(nmiss, mean, std, min, Q1, median, Q3, max))
```

```
loan_nvars_description <- lapply(loan.nvars,descrip) %>%
  as.data.frame() %>% t()
colnames(loan_nvars_description) <- c("nmiss", "mean", "std", "min", "Q1",</pre>
                                    "median", "Q3", "max")
loan_nvars_description
library(vioplot)
# 主要使用直方图来查看异常值的大致分布
for (col in colnames(bankLoan)[-c(4, 9)]){
 # vioplot(bankLoan[[col]], ylab=col)
 hist(bankLoan[[col]], xlab=col,
      main=paste("Histogram of ", col, sep=""))
}
# a = cut(bankLoan$Age, breaks = seq(10, 60, 10)) %>% unique()
# hist(cut(bankLoan$Age, breaks = seq(10, 60, 10)))
# ------极值处理: (观察)数值变量直方图输出------
# -----查看极值-----
library(showtext)
library(sysfonts)
library(showtextdb)
font_add("SIMHEI","SIMHEI.ttf")
font_add("SIMSUN","SIMSUN.TTC")
font_add("kaishu","simkai.ttf")
par(family='STKaiti')
# 设置family='GB1'
pdf("./ch2_case2-2_histogram.pdf",family='GB1')
par(c(3, 3))
for (i in 1:length(loan.nvars)){
 hist(loan.nvars[,i],
      xlab=names(loan.nvars)[i],
      main=paste("Histogram of",names(loan.nvars)[i]),
      col = "grey")
dev.off()
# ------极值处理-----
colnames(bankLoan)
colnames(loan.nvars)
library(MASS)
par(c(1, 3))
# log.vars = c("Income", "CreditRatio", "OtherDebt") # 需要处理的极值
log.vars = c(4, 6, 7)
# new_col = list()
for (i in log.vars){
 var.names = colnames(loan.nvars)
  cur_name = paste(var.names[i], '.', 1, sep = '')
  new\_col = log(loan.nvars[, i] + 1)
```

```
loan.nvars[[cur_name]] = new_col
 hist(loan.nvars[[cur_name]],
      xlab=paste(var.names[i], '.', 1, sep = ''),
      main=paste("Histogram of",cur_name),
      col = "grey")
}
loanNew = cbind(bankLoan, loan.nvars[,9:11])
loanNew = loanNew[, -c(5, 7, 8)]
colnames(loanNew)
# -----数据分箱-----
# TODO
# -----变量选择-----
##删除冗余变量,生成新数据集loanNew
# > colnames(loanNew)
                               "WorkAge" "Address"
# [1] "Age" "Edu"
# [5] "Income"
                 "DebtRatio" "CreditDebt" "OtherDebt"
# [9] "Default" "Income.1" "CreditDebt.1" "OtherDebt.1"
chisq.test(table(loanNew$Address, loanNew$Default))
# -----变量筛选第一步: 画相关系数图------
cor(loanNew[,-c(4)])
cor.test(loanNew[,-c(4)])
library(corrplot)
corrplot(corr=cor(loanNew[,-c(4)]))
corrplot(corr=cor(loanNew[,-c(4)]), method="number")
# -----变量筛选第二步: 进行t检验------
test_vars = c("Age", "Edu", "Income.1", "OtherDebt.1")
t.test(loanNew$Age ~ loanNew$Default)
t.test(loanNew$Edu ~ loanNew$Default)
t.test(loanNew$Income.1 ~ loanNew$Default)
t.test(loanNew$OtherDebt.1 ~ loanNew$Default)
# ------欠采样与过采样------
##进行欠抽样使得响应者的比例达到1/3
loan1 <- loanNew[loanNew$Default==1,]</pre>
loan0 <- loanNew[loanNew$Default==0,]</pre>
n1 <- dim(loan1)[1]</pre>
n0 < - 2*n1
# 响应观测数是非响应观测数的1/2
loan0 <- loan0[sample(1:dim(loan0)[1],n0),]</pre>
loanNew1 <- rbind(loan1,loan0)</pre>
# ------存储数据-----
write.csv(loan_nvars_description, "static/loan_nvars_description.csv")
write.csv(loanNew,"static/loanNew.csv",row.names=FALSE)
write.csv(loanNew1, "static/loanNew1.csv", row.names=FALSE)
```