Вербицкий — задачи

1 Вербицкий — функциональный анализ

1. 1.1. Конечная группа G свободно действует на хаусдорфовом многообразии M. Тогда фактор M/G — многообразие. Надо проверить, что у каждой точки в M/G есть окрестность, гомеоморфная \mathbb{R}^n . Возьмём некоторую точку $y \in M/G$. Пусть её прообразы при факторотображении

$$y_1, \ldots, y_m, m = |G|, y_i \in M, G = \{g_1, \ldots, g_m\}.$$

У точки y_1 выберем окрестность U_1 так, чтобы

$$\forall i \neq j \ g_i U_1 \cap g_i U_1 = \emptyset.$$

Почему такую окрестность можно выбрать? Потому что пространство M хаусдорфово, мы у каждой точки $g_iy_1, i=1,2,\ldots,m$, выберем окрестность W_i , так, что

$$W_i \cap W_j = \emptyset, i \neq j.$$

Тогда искомая окрестность U_1 точки y_1 есть

$$U_1 = \bigcap_{i=1}^m g_i^{-1} W_i.$$

Теперь выберем окрестность V_1 точки y_1 , гомеоморную \mathbb{R}^n , так, что её замыкание лежит в U_1 :

$$\overline{V_1} \subseteq U_1$$
.

Тогда g_iV_1 — окрестности, гомеоморфные \mathbb{R}^n , и их замыкания попарно не пересекаются. Тогда образ gV_1 при факторотображении и есть искомая окрестность $y \in M/G$.

- 1.2.
- 2. 2.1.

2 Вербицкий — теория меры

- 1.
- 2.

- 3.
- 4. 4.1.
 - 4.2.
 - 4.3.
 - 4.4.
 - 4.5.
 - 4.6.
 - 4.7. Из $\nu \ll \mu$ и $\nu(S) < \infty$ следует, что для любого $\delta > 0$ найдётся $\varepsilon > 0$, такое, что из $\mu(V) < \varepsilon$ вытекает $\nu(V) < \delta$. Допустим, это не так. Тогла для некоторого $\delta > 0$, каким бы ни выбрать ε , найдётся множество V такое, что $\mu(V) < \varepsilon, \nu(V) \geq \delta$. Выберем такие V_n , что

$$\mu(V_n) < \frac{1}{2^n}, \nu(V_n) \ge \delta.$$

Пусть A_n — множество тех $\omega \in S$, которые принадлежат не менее чем n множествам V_i . Ясно, что

$$A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots$$

Покажем, что $\nu(A_n) \geq \delta$ для всех n. Допустим, это не так. Найдём N такое, что $\nu(A_N) < \delta$. Пусть

$$\delta' = \delta - \mu(A_N) > 0.$$

Рассмотрим множества

$$W_n = V_n \setminus A_N$$
.

Ясно, что

$$\forall n \ \nu(W_n) \ge \nu(V_n) - \nu(A_N) \ge \delta - \mu(A_N) = \delta' > 0.$$

Но каждая точка множества S теперь принадлежит не более чем N множествам W_i . Пусть B_n — множество тех точек из S, которые принадлежат не менее чем n множествам W_i . Имеем

$$\sum_{n=1}^{\infty} \nu(W_n) = \nu(B_1) + \nu(B_2) + \ldots + \nu(B_N).$$

Левая часть равенства бесконечна, правая конечна. Противоречие. Итак,

$$\forall n \ \nu(A_n) \geq \delta.$$

Поэтому $\nu(\bigcap_{n=1}^\infty A_n) \ge \delta > 0$. Но ясно, что $\mu(\bigcap_{n=1}^\infty A_n) = 0$, поскольку $\sum_{n=1}^\infty \mu(V_n) < \infty$, и

$$\sum_{n=1}^{\infty} \mu(V_n) = \sum_{n=1}^{\infty} \mu(A_n),$$

откуда следует, что

$$\sum_{n=1}^{\infty} \mu(A_n) < \infty,$$

И

$$\mu(A_n) \to 0, n \to \infty.$$

Но

$$\nu\left(\bigcap_{n=1}^{\infty} A_n\right) > 0, \mu\left(\bigcap_{n=1}^{\infty} A_n\right) = 0$$

противоречит абсолютной непрерывностью $\nu \ll \mu$. Всё доказано.

4.8.