

Métodos Numéricos de la Física Tarea IE-3 — Entrega 1 de septiembre de 2022

Profesor: Rodrigo Soto

Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile

[P1] Estimadores usando χ^2 (cont.)

Para el problema 2 de la tarea 2, grafique regiones de confianza conjuntas para *A* y *B* que correspondan a probabilidades 0.68 y 0.95.

[P2] Ajuste de Levenberg-Marquardt

El telescopio HESS ha medido el flujo de rayos gamma, midiendo el flujo F_i para algunas energías E_i . Los datos están en UCursos. Estos datos se pueden modelar como

$$F(E) = \frac{NE^2}{\left(\frac{E}{E_0}\right)^{\alpha_1} + \left(\frac{E}{E_0}\right)^{\alpha_2}} \tag{1}$$

donde E es la energía en TeV, E_0 es una escala de energía que (por simplicidad) fijaremos en $E_0=3\,\mathrm{TeV}$, y N (en unidades de $1\times 10^{-12}\,\mathrm{TeV/cm^2/s}$), α_1 y α_2 son los tres parámetros libres del modelo.

- (a) Usando el método de Levenberg-Marquardt encuentre los estimadores \hat{N} , $\hat{\alpha}_1$ y $\hat{\alpha}_2$, y graficar los datos con sus errores estándar junto con el modelo ajustado. No es necesario que programe el método y puede usar la rutina scipy.optimize.curve_fit.
- (b) Grafique la región de confianza considerando una probabilidad p = 0.68 para los parámetros N y α_2 marginalizados usando la matriz de covarianza obtenida en el método de Levenberg-Marquardt.
- (c) Grafique las curvas de nivel de $\chi^2(N, \hat{\alpha}_1, \alpha_2)$, es decir donde se ha fijado α_1 en su valor óptimo. Compare con (b).