UNIVERSIDADE FEDERAL DO ABC

DB1BCN0407 Funções de várias variáveis - PROVA 2 - Turma B1 - 06/05/2019

Prof. André Pierro de Camargo

- 1. (2.0) Encontre, se houver, os pontos de máximo e mínimo locais (ou de cela) de $f(x,y) = xye^{-(x^2+y^2)}$. Justifique com base na análise das derivadas parciais de primeira e segunda ordem.
- 2. (2.0) Encontre o maior e o menor valor da função $f(x,y)=x^2+y^2$ no conjunto $\Omega=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 16\ \mathrm{e}\ x+y\geq 1\}.$
- 3. (1.0) Calcule $\iint\limits_B x\,y\,dx\,dy,$ onde $B=\{(x,y):0\leq x\leq 1,\sqrt{x}\leq y\leq x\}$.
- 4. (1.5) Calcule a área da Elipse $\left\{(x,y): \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\right\}$.
- 5. (1.5) Calcule $\iiint\limits_K x dx dy dz$, $K\{(x,y,z): x\geq 0, y\geq 0, z\geq 0, x+y+z\leq 1\}$.
- 6. (2.0) Aplicando a transformação T(u,v,w)=(u+w,v+w,w) no cilindro $C=\{(u,v,w):0\leq w\leq h,u^2+v^2\leq r^2\}$, obtemos o cilindro oblíquo $C_o=\{(x,y,z):0\leq z\leq h,(x-z)^2+(y-z)^2\leq r^2\}$. Calcule o volume de C_o .

Glossário:

- 1. Área $B = \iint_B 1 dx dy$.
- 2. Volume $B = \iiint_B 1 dx dy dz$.
- 3. Coordenadas polares: $\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \end{cases}$

4. Coordenadas esféricas: $\begin{cases} x = \rho \cos(\theta) \sin(\varphi) \\ y = \rho \sin(\theta) \sin(\varphi) \\ z = \rho \cos(\phi) \end{cases}$

