

Home Ga

<u>Gameboard</u>

Maths Geometry

Vectors

Angles Between a 3D Vector and the Axes

Angles Between a 3D Vector and the Axes

	444
Find the angles between the vector ${m i}+2{m j}+3{m k}$ and the x,y and z coordinate axes.	
Part A Angle with x axis	
What is the angle in degrees between the vector and the \boldsymbol{x} axis? Give your answer to 3 s.f.	
Part B Angle with y axis	
What is the angle in degrees between the vector and the \boldsymbol{y} axis? Give your answer to 3 s.f.	
Part C Angle with z axis	
What is the angle in degrees between the vector and the \boldsymbol{z} axis? Give your answer to 3 s.f.	

Adapted for Isaac Physics from NST IA Biology preparation work

<u>Home</u> <u>Gameboard</u> Maths Geometry Vectors Scalar Product 1

Scalar Product 1

Further A University P P P P P P

Pre-Uni Maths for Science I2.3

Find the scalar product $\underline{\boldsymbol{a}} \cdot \underline{\boldsymbol{b}}$, where $\underline{\boldsymbol{a}} = \hat{\underline{\boldsymbol{i}}} + 2\hat{\underline{\boldsymbol{j}}} + 4\hat{\underline{\boldsymbol{k}}}$ and $\underline{\boldsymbol{b}} = 2\hat{\underline{\boldsymbol{i}}} - 3\hat{\underline{\boldsymbol{j}}} + \hat{\underline{\boldsymbol{k}}}$. Hence, deduce the angle between $\underline{\boldsymbol{a}}$ and $\underline{\boldsymbol{b}}$. Give your answer to 3 s.f.

Created for isaacphysics.org by Julia Riley.

Gameboard:

STEM SMART Double Maths 37 - Vector Lines, Products

& Planes

Gameboard

Maths

Vectors: Geometry 1i

Vectors: Geometry 1i

Figure 1: The cube OABCDEFG with side length 2 units.

The diagram shows a cube OABCDEFG with sides of length 2 units. Unit vectors $\underline{\boldsymbol{i}}$, $\underline{\boldsymbol{j}}$ and $\underline{\boldsymbol{k}}$ are directed along OA, OC and OD respectively. The midpoint of AB is M and the midpoint of CG is N.

The point P on the line MN is such that $\vec{MP}=2\vec{PN}$.

Pa	rt L	1	\boldsymbol{P}

Give the x coordinate of P in exact form.
The following symbols may be useful: x
Give the y coordinate of P in exact form.
The following symbols may be useful: y
Give the z coordinate of P in exact form.
The following symbols may be useful: z
Part B Acute angle
Find the acute angle between OP and MN to 3 significant digits, in degrees to 3 significant figures.
Part C Intersection
To say a straight line XY is "produced" means that the line continues on beyond the second point stated, Y . For example, the line " OP produced" starts at O , goes from O to P , and then continues on in a straight line beyond P .

The lines "OP produced" and "EF produced" intersect.

Find the coordinates of the point of intersection. Give your answer in the form x y z with a space between x, y and z, with x, y and z in exact form.

Gameboard

Maths

Vectors: Intersection or Skew 2i

Vectors: Intersection or Skew 2i

The lines \emph{l}_1 and \emph{l}_2 have the equations

$$oldsymbol{\underline{r}} = egin{pmatrix} 3 \ 0 \ -2 \end{pmatrix} + s egin{pmatrix} 2 \ 3 \ -4 \end{pmatrix}$$

and

$$\underline{m{r}} = egin{pmatrix} 5 \ 3 \ 2 \end{pmatrix} + t egin{pmatrix} 0 \ 1 \ -2 \end{pmatrix}$$

respectively.

Part A Do they meet?

Do l_1 and l_2 intersect?

()	They	are o	skew.	lines

They are parallel lines.

They intersect at a point.

Part B Acute angle

Find the acute angle between l_1 and l_2 to 3 significant figures, in degrees.

Part C a

One of the numbers in the equation of line l_1 is changed so that the equation becomes

$$oldsymbol{\underline{r}} = egin{pmatrix} 3 \ 0 \ a \end{pmatrix} + s egin{pmatrix} 2 \ 3 \ -4 \end{pmatrix}$$

 l_1 and l_2 now intersect for some constant a.

Find a.

The following symbols may be useful: a

Adapted with permission from UCLES, A Level, Jan 2011, Paper 4724, Question 6.

Gameboard:

STEM SMART Double Maths 37 - Vector Lines, Products

& Planes

Gameboard

Maths

Vectors: Perpendiculars 1i

Vectors: Perpendiculars 1i

A straight line is given by the equation $\underline{r}=\begin{pmatrix} 3\\1\\1 \end{pmatrix}+t\begin{pmatrix} 1\\-1\\2 \end{pmatrix}$. O is the origin.

Part A Acute angle

The point P on the line is given by t = 1.

Calculate the acute angle between OP and the line. Give your answer in degrees, to 3 significant figures.

Pa	rt B	Q
		· ·

The point Q on the line is located such that OQ is perpendicular to the line. Find the position of Q. Give the x coordinate of Q in exact form.

The following symbols may be useful: xGive the y coordinate of Q in exact form.

The following symbols may be useful: yGive the z coordinate of Q in exact form.

The following symbols may be useful: z

Part C OQ

Find the length of OQ in exact form.

Adapted with permission from UCLES, A Level, Jan 2010, Paper 4724, Question 9.

Gameboard:

<u>STEM SMART Double Maths 37 - Vector Lines, Products</u>
<u>& Planes</u>

Gameboard

Maths

Vectors: Lines and Planes 1ii

Vectors: Lines and Planes 1ii

Two intersecting lines, lying in a plane p, have equations:

$$\frac{x-1}{2} = \frac{y-3}{1} = \frac{z-4}{-3}$$
 and $\frac{x-1}{-1} = \frac{y-3}{2} = \frac{z-4}{4}$.

Part A Finding the equation of p

Obtain the equation of p in the form 2x + by + z = d.

The following symbols may be useful: x, y, z

Part B Distance between p and q

Plane q has equation 2x - y + z = 21. Find the perpendicular distance between p and q.

Adapted with permission from UCLES, A Level, January 2011, Paper 4727, Question 2.

Gameboard:

STEM SMART Double Maths 37 - Vector Lines, Products

& Planes

Gameboard

Maths

Vectors: Intersecting Planes 3i

Vectors: Intersecting Planes 3i

The plane
$$\Pi_1$$
 has equation $\underline{m r}=\left(egin{array}{c}2\\2\\1\end{array}
ight)+\lambda\left(egin{array}{c}1\\1\\0\end{array}
ight)+\mu\left(egin{array}{c}1\\-5\\-2\end{array}
ight)$

Part A Equation of Π_1

Express the equation of Π_1 in the form $\underline{r} \cdot \underline{n} = p$ where:

$$\underline{\boldsymbol{n}} = \underline{\boldsymbol{i}} + a_y \boldsymbol{j} + a_z \underline{\boldsymbol{k}}$$

What is \underline{n} ? Write your answer in the form:

$$\underline{\boldsymbol{i}} + a_y \boldsymbol{j} + a_z \underline{\boldsymbol{k}}$$

The following symbols may be useful: i, j, k

What is p?

Part B Intersection of Π_1 and Π_2

The plane Π_2 has equation $\underline{m{r}}\cdot\left(egin{array}{c}7\\17\\-3\end{array}
ight)=21.$

Find an equation of the line of intersection of Π_1 and Π_2 .

Give your answer in the form:

$$\underline{\boldsymbol{r}} = (3\underline{\boldsymbol{i}} + a_y \boldsymbol{j} + a_z \underline{\boldsymbol{k}}) + t(2\underline{\boldsymbol{i}} + b_y \boldsymbol{j} + b_z \underline{\boldsymbol{k}})$$

You may wish to use this string to start your answer: r == 3*i + j + k + t*(2*i + j + k)

The following symbols may be useful: i, j, k, r, t

Adapted with permission from UCLES, A Level, June 2019, Paper 4727, Question 6.

Gameboard:

STEM SMART Double Maths 37 - Vector Lines, Products

& Planes

Gameboard

Maths

Vectors: Angles and Distances 1i

Vectors: Angles and Distances 1i

The plane Π has equation x + 2y - 2z = 5.

The line
$$l$$
 has equation $\frac{x-1}{2} = \frac{y+1}{5} = \frac{z-2}{1}$.

Part A Intersection of l and Π

Find the coordinates of the point of intersection of l with the plane Π .

What is the *x* coordinate?

What is the y coordinate?

What is the z coordinate?

Part B Angle between l and Π

Find the acute angle between l and Π .

Give your answer in radians to 3 significant figures.

Part C Points on l Equidistant From Π

Find the position vector of the two points on the line l such that the minimum distance of each point from the plane Π is 2.

Give your answer in the form:

$$(a_x \underline{m{i}} + a_y m{j} + a_z \underline{m{k}}) \pm (b_x \underline{m{i}} + b_y m{j} + b_z \underline{m{k}})$$

You may wish to use this string to start your answer: $i + j + k \pm (i + j + k)$

The following symbols may be useful: i, j, k

Adapted with permission from UCLES, A Level, June 2013, Paper 4727, Question 6.

Gameboard:

<u>STEM SMART Double Maths 37 - Vector Lines, Products</u>
<u>& Planes</u>

Gameboard

Maths

Vectors: Common Perpendiculars 2ii

Vectors: Common Perpendiculars 2ii

Two skew lines have the equations

$$\frac{x}{2} = \frac{y+3}{1} = \frac{z-6}{3}$$
 and $\frac{x-5}{3} = \frac{y+1}{1} = \frac{z-7}{5}$

Find the coordinates of \underline{n} , the vector in the direction of the common perpendicular to the lines in the form x y z with a space between x, y and z. Take x to be positive and for all the components to be integers of the simplest form.

Adapted with permission from UCLES, A Level, Jan 2009, Paper 4727, Question 3.

Gameboard:

STEM SMART Double Maths 37 - Vector Lines, Products

& Planes

Gameboard

Maths

Vectors: Angles and Distances 3ii

Vectors: Angles and Distances 3ii

Part A Distance between two lines

Find the shortest distance between the lines
$$\underline{\boldsymbol{r}} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 and $\underline{\boldsymbol{r}} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$.

Part B Distance from a point to a plane

Find the shortest distance from the point (3, -1, -2) to the plane with equation x - 2y + 4z = 11.

Part C Equation of a plane

Find a cartesian equation of the plane which passes through the point (3, -1, -2) and is parallel to the plane x - 2y + 4z = 11.

Give your answer in the form x + by + cz = d

The following symbols may be useful: x, y, z

Adapted with permission from UCLES, A Level, June 2018, Paper 4727, Question 2.