

Ensembles Methods for Classification

Ensemble Methods

• In a nutshell:

- A combination of multiple learning algorithms with the goal of achieving better predictive performance than could be obtained from any of these classifiers alone
- A meta-algorithm that can be considered to be, in itself, a supervised learning algorithm since it produces a single hypothesis
- Tend to work better when there is diversity among the models
- Examples:
 - Bagging
 - Boosting
 - Stacking
 - Random Forests

Methods for Constructing Ensembles

- 1. By manipulating the training set. Create multiple training sets by resampling the original data according to some sampling distribution.
- **2. By manipulating the input features.** Choose a subset of input features to form each training set.
- 3. By manipulating the class labels. Transform the training data into a binary class problem by randomly partitioning the class labels into two disjoint subsets.
- **4. By manipulating the learning algorithm.** Manipulate the learning algorithm to generate different models.

Ensemble Methods Illustrated

Traditional:

Ensemble Method:

Boostrap aggregating (Bagging)

- An ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms
- Can be used in both regression and classification
- Reduces variance and helps to avoid overfitting
- Usually applied to decision trees, though it can be used with any type of method

Bagging

- The idea:
 - 1. Create *N* boostrap samples $\{S_1, ..., S_N\}$ of *S* as follows:
 - For each S_i , randomly draw |S| examples from S with replacement
 - 2. For each i = 1, ..., N $h_i = \text{Learn}(S_i)$
 - 1. Output $H = \langle \{h_1, ..., h_N\}, majorityVote \rangle$

Most Notable Benefits

- 1. Surprisingly competitive performance & rarely overfits
- 2. Is capable of reducing variance of constituent models
- 3. Improves ability to ignore irrelevant features

Remember:

$$error(x) = noise(x) + bias(x) + variance(x)$$

Variance: how much does prediction change if we change the training set?

Bagging Example 1

Bagging Example 2

Bagging: Neural Net

Bagging Example 3 (2)

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1
True Class	1	1	1	-1	-1	-1	-1	1	1	1

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Accuracy: 100%

10

Bagging Summary

- Works well if the base classifiers are unstable (complement each other)
- Increased accuracy because it reduces the variance of the individual classifier
- Does not focus on any particular instance of the training data
 - Therefore, less susceptible to model over-fitting when applied to noisy data

- Key differences with respect to bagging:
 - It is iterative:
 - Bagging: Each individual classifier is independent
 - Boosting:
 - Looks at the errors from previous classifiers to decide what to focus on for the next iteration
 - Successive classifiers depend on their predecessors
 - Key idea: place more weight on "hard" examples (i.e., instances that were misclassified on previous iterations)

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of a boosting round
 - Different implementations vary in terms of (1) how the weights of the training examples are updated and (2) how the predictions are combined

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1:	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

- Equal weights are assigned to each training instance (1/N for round 1) at first round
- After a classifier C_i is learned, the weights are adjusted to allow the subsequent classifier C_{i+1} to "pay more attention" to data that were misclassified by C_i .
- Final boosted classifier C^* combines the votes of each individual classifier
 - Weight of each classifier's vote is a function of its accuracy
- Adaboost popular boosting algorithm

Adaboost (Adaptive Boost)

- Input:
 - -Training set D containing N instances
 - -T rounds
 - A classification learning scheme
- Output:
 - A composite model

Adaboost: Training Phase

- Training data *D* contain *N* labeled data :
 - $-(X_1, y_1), (X_2, y_2), (X_3, y_3), \dots (X_N, y_N)$
- Initially assign equal weight 1/N to each data
- To generate *T* base classifiers, we need *T* rounds or iterations
- Round *i*:
 - data from D are sampled with replacement, to form D_i (size N)
- Each data's chance of being selected in the next rounds depends on its weight
 - Each time the new sample is generated directly from the training data
 D with different sampling probability according to the weights; these
 weights are not zero

Adaboost: Training Phase

- Base classifier C_i , is derived from training data of D_i
- Error of C_i is tested using D_i
- Weights of training data are adjusted depending on how they were classified
 - -Correctly classified: Decrease weight
 - -Incorrectly classified: Increase weight
- Weight of a data indicates how hard it is to classify it (directly proportional)

Adaboost: Testing Phase

- The lower a classifier error rate, the more accurate it is, and therefore, the higher its weight for voting should be
- Weight of a classifier C_i 's vote is

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

- Testing:
 - For each class c, sum the weights of each classifier that assigned class c to
 X (unseen data)
 - The class with the highest sum is the WINNER!

$$C^*(x_{test}) = \underset{y}{\operatorname{arg max}} \sum_{i=1}^{T} \alpha_i \delta(C_i(x_{test}) = y)$$

20

Example: Error and Classifier Weight in AdaBoost

- Base classifiers: C_1 , C_2 , ..., CT
- Error rate:
 - -i = index of classifier
 - *j*=index of instance

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Example: Data Instance Weight in AdaBoost

- Assume: *N* training data in *D*, *T* rounds, (x_j, y_j) are the training data, C_i , a_i are the classifier and weight of the i^{th} round, respectively
- Weight update on all training data in D:

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \begin{cases} \exp^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ \exp^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

where Z_i is the normalization factor

$$C * (x_{test}) = \underset{y}{\operatorname{arg max}} \sum_{i=1}^{T} \alpha_{i} \delta(C_{i}(x_{test}) = y)$$

Illustrating AdaBoost

Illustrating AdaBoost

Bagging and Boosting Summary

Bagging:

- Resample data points
- Weight of each classifier is the same
- Only variance reduction
- Robust to noise and outliers

Boosting:

- Reweight data points (modify data dis tribution)
- Weight of classifier varies depending on accuracy
- Reduces both bias and variance
- Can hurt performance with noise and outliers

Boosting Python Code

Cute Kitten Picture Intermission

Stacked Generalization (Stacking)

- **Underlying idea:** Learn whether training data have been properly learned
- 2 tiers of classifiers
 - If a particular base-classifier incorrectly learned a certain region of the feature space, the second tier (meta) classifier may be able to detect this undesired behavior
 - Along with the learned behaviors of other classifiers, it can correct such improper training

- There are two approaches for combining models:
 voting and stacking
- Difference between the stacking framework and those previously discussed:
 - In contrast to stacking, no learning takes place at the metalevel when combining classifiers by a voting scheme
 - Label that is most often assigned to a particular instance is chosen as the correct prediction when using voting

- Stacking is concerned with combining multiple classifiers generated by different learning algorithms $L_1, ..., L_N$ on a single dataset S, which is composed by a feature vector $s_i = (x_i, y_i)$.
- The stacking process can be broken into two phases:
 - 1. Generate a set of base-level classifiers C_1, \dots, C_N
 - Where $C_i = L_i(S)$
 - 2. Train a meta-level classifier to combine the outputs of the base-level classifiers

• The training set for the meta-level classifier is generated through a leave-one-out cross validation process.

$$\forall i = 1, ... n \text{ and } \forall k = 1, ..., N: C_k^i = L_k(S - S_i)$$

- The learned classifiers are then used to generate predictions for s_i : $\hat{y}_i^k = C_k^i(x_i)$
- The meta-level dataset consists of examples of the form $((\widehat{y}_i^1, ..., \widehat{y}_i^n), y_i)$, where the features are the predictions of the base-level classifiers and the class is the correct class of the example in hand.

Mathematical Insight Into Stacking

- If an ensemble has M base models having an error rate e < 1/2 and if the errors are independent, then the probability that the ensemble makes an error is the probability that more than M/2 base models misclassify that instance
- In essence, the meta-classifier is trained to learn the error of the base classifiers
- Adding the estimated errors to the output of the base classifiers can improve prediction

The Netflix Challenge

- Netflix provided a training dataset of 100,480,507 ratings that 480,189 users gave to 17,770 movies.
 - Each training rating (or instance) is of the form <user, movie, date of rating, rating >
 - The user and movie fields are integer IDs, while ratings are from 1 to 5 (integral) stars.

More on the Netflix Challenge

- **BellKor's Pragmatic Chaos** (1st place) was a hybrid team: KorBell (AT&T Research), which won the first Progress Prize milestone in the contest, combined with the Austrian team Big Chaos to improve their score
- The Ensemble (2nd place) was also a composite team
- BellKor's Pragmatic Chaos submitted their solution 10 minutes earlier than the second-place team, The Ensemble, while the two teams' algorithms were a perfect tie, score-wise
- The dataset is still available (if you want to beat them)

More on the Netflix Challenge

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ▼ leaders.

Rank	Team Name	Best	Test Sco	re <u>%</u>	Improvement	Best Submit Time
Grand	1 Prize - RMSE = 0.8567 - Winning	Team: B	ellKor's P	ragm	atic Chaos	
1	BellKor's Pragmatic Chaos		0.8567	1	10.06	2009-07-26 18:18:28
2	The Ensemble	1	0.8567	1	10.06	2009-07-26 18:38:22
3	Grand Prize Team	1	0.8582	1	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United		0.8588	1	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	1	0.8591	1	9.81	2009-07-10 00:32:20
6	PragmaticTheory	1	0.8594	1	9.77	2009-06-24 12:06:56
7	BellKor in BiqChaos	1	0.8601	1	9.70	2009-05-13 08:14:09
8	Dace	1	0.8612	1	9.59	2009-07-24 17:18:43

Random Forests Method

- A class of ensemble methods specifically designed for decision tree classifiers.
- Combines predictions made by many decision trees.
- Each tree is generated based on a bootstrap sample and the values of an independent set of random vectors.
- The random vectors are generated from a fixed probability distribution.

Random Forests: A Visual Explanation

Why use Random Vectors?

- Recall that an underlying assumption of the ensemble process is that the base learners are *independent*.
- As the trees become more correlated (less independent), the generalization error bound tends to increase.
- Randomization helps to reduce the correlation among decision trees.

Random Forests Advantages

- Empirically comparable classification accuracies to AdaBoost.
- More robust to outliers and noise than AdaBoost.
- Runs much faster than AdaBoost.
- Produces useful internal estimates of error, strength, correlation, and variable importance.
- Simple and easy to parallelize.

Random Forests Summary

- Random forests can be thought of as combining bagging and random subspaces.
 - Bootstrap aggregated (bagged) trees.
 - Random subset of the input space (random subspaces).

