Three-Dimensional Grid

(Time limit: 1 second)

An ant wants to travel in a three-dimensional wire grid from point O to point P. It can only crawl on the wire in the positive direction of every axis (no backward move). The situation is illustrated below for a wire grid of size 2 x 2 x 1.

On the simplest grid of size 1 x 1 x 1, the ant has six possible paths to travel from O to P, those are: XYZ, XZY, YXZ, YZX, ZXY and ZYX, where X means one step forward in x+ direction, Y means one step forward in y+ direction and Z means one step forward in z+ direction.

Your task is to compute the number of possible paths, N_P , for the ant to travel from O to P in a wire grid of size $N_x \times N_y \times N_z$

Input:

Three positive integers: N_x , N_y , N_z ($1 \le N_x$, N_y , $N_z \le 14$), separated by space.

Output:

Number of possible paths, N_P .

Sample Input	Output for Sample Input
1 1 1	6
1 2 3	60
2 2 3	210
2 5 4	6930
3 4 7	120120
11 5 8	3212537328