

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber Martin Unterguggenberger Lukas Maar Andreas Kogler Stefan Mangard

Graz University of Technology

NDSS 2025

> isec.tugraz.at

 Android sensor interface as a proxy for power measurements purely from software

- Android sensor interface as a proxy for power measurements purely from software
- Systematic analysis of 9 Android smartphones:
 - Recovering leakage properties: Integration interval, rotation-dependent leakage

- Android sensor interface as a proxy for power measurements purely from software
- Systematic analysis of 9 Android smartphones:
 - Recovering leakage properties: Integration interval, rotation-dependent leakage
- Local attack:
 - Malicious app leaking processed AES key bytes

- Android sensor interface as a proxy for power measurements purely from software
- Systematic analysis of 9 Android smartphones:
 - Recovering leakage properties: Integration interval, rotation-dependent leakage
- Local attack:
 - Malicious app leaking processed AES key bytes
- Remote web-based JavaScript attack:
 - → JavaScript sensor-based pixel-stealing attack leaking cross-origin pixels up to 5 s/pixel

Motivation & Background

CPU utilization

CPU utilization

Systematic Evaluation

18.9 % of evaluated sensors expose significant influence of CPU utilization (r > 0.7)

$$egin{pmatrix} \mathsf{a} \end{pmatrix} igoplus igoplus \mathsf{b} \end{pmatrix} = egin{pmatrix} \mathsf{c} \end{pmatrix}$$

$$a_0 \quad \bigoplus \quad b_0 \quad = \quad 00_2$$

 $\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array}$

Power

 $a_0 \quad \bigoplus \quad b_0 \quad = \quad 00_2$

$$a_2$$

$$\bigoplus$$

$$b_2$$

$$01_{2}$$

$$\bigoplus$$

$$\oplus$$

$$=$$
 1

$$\oplus$$

$$a_0$$

$$\bigoplus$$

$$o_0 =$$

$$a_2$$

$$b_2$$

$$a_2$$

$$\bigoplus$$

$$b_2$$

Power

43.8 % of evaluated sensors demonstrate statistically significant correlation ($r > r_{noise}$) with executed data operands

$$a_2 \quad \bigoplus \quad b_2 \quad = \quad 10_2$$

$$D_4 \quad \bigoplus \quad b_4 \quad = \quad 11_2$$

Geomagnetic Rotation Leakage Properties

Geomagnetic Rotation: Analysis of Integrating Behavior

Sensor Measurement

Sensor Measurement

? Sensor Measurement

Measurement Window

Attack Case Study:

JavaScript Pixel Stealing

Image:

Image: Time/Pixel (s): Accuracy (%):

Original

Magnetometer 5 90.2

Abs. Orientation 10 70

Attack Case Study: AES Correlation Power Analysis

 We demonstrated that the Android sensor interface serves as a proxy for power measurements from software

- We demonstrated that the Android sensor interface serves as a proxy for power measurements from software
- We presented a systematic analysis of 9 Android smartphones, discovering leakage properties

- We demonstrated that the Android sensor interface serves as a proxy for power measurements from software
- We presented a systematic analysis of 9 Android smartphones, discovering leakage properties
- We demonstrated a local attack leaking processed AES key bytes

Conclusion

- We demonstrated that the Android sensor interface serves as a proxy for power measurements from software
- We presented a systematic analysis of 9 Android smartphones, discovering leakage properties
- We demonstrated a local attack leaking processed AES key bytes
- We demonstrated a remote web-based JavaScript pixel-stealing attack

Power-Related Side-Channel Attacks using the Android Sensor Framework

Mathias Oberhuber Martin Unterguggenberger Lukas Maar Andreas Kogler Stefan Mangard

Graz University of Technology

NDSS 2025

> isec.tugraz.at