MATLAB: Assignment 1

Problem 1

The pressure-drop Δp (in Pa) for a fluid flowing in a pipe with a sudden increase in diameter is given by:

$$\Delta p = \frac{1}{2} \left[1 - \left(\frac{d}{D} \right)^2 \right]^2 \rho v^2,$$

where ρ is the density of the fluid, v, the velocity of the flow, and d and D are the diameters of the pipes. Write a program in a *script file* that calculates the pressure-drop Δp . Use $\rho = 700 \, \text{kg/m}^3$ at $v = 5 \, \text{m/s}$ and the ratios of diameters: d/D = 0.9, 0.8, 0.7, 0.6, 0.5, 0.2.

Problem 2

Write an anonymous MATLAB function for

$$y(x) = x e^{-0.7x} \sqrt{1+x}.$$

The input to the function is x and output is y. Write the function such that x can be a vector.

- (a) Use the function to calculate y(8).
- (b) Use the function to make a plot of the function y(x) for $0 \le x \le 10$.

Problem 3

Write a well-commented script program that graphs the functions $\sin^2 x$, $x^2 - \frac{2^3 x^4}{4!}$, $x^2 - \frac{2^3 x^4}{4!} + \frac{2^5 x^6}{6!}$ for $0 \le x \le 4.5$ on **one plot**. (note: matlab command for n! is factorial(n)) Use a sufficiently small step size to make all the graphs smooth.

Problem 4

Use loops to create a *script file* that generates 4×6 matrix in which the value of each element is 2 times its row number minus 3 times its column number. For example, the value of the element (2,5) is $2 \times 2 - 3 \times 5 = -11$.

Problem 5

The first derivative $\frac{df(x)}{dx}$ of a function f(x) at a point $x = x_0$ can be approximated with the two-point central difference formula:

$$\frac{df}{dx} \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

where h is a small number relative to x_0 .

Here is a user-defined function that calculates the derivative of a math function by using the two-point central difference formula.

```
function dfdx2pt = twoptderi(myfunc,x0,h)

% dfdx2pt approximates the derivative using
% the two-point central difference formula
% x0 is the point where the derivative is calculated
% h is a number relative to x0
dfdx2pt = (myfunc(x0+h)-myfunc(x0-h))/(2*h);
end
```

- (a) Create the above function (please retype \equiv).
- (b) Use the user-defined function twoptderi(myfunc,x0,h) to calculate the following:
 - (i) the derivative of $f(x) = x^3$ at $x_0 = 0.6$ and $h = \frac{x_0}{100}$.
 - (ii) the derivative of $f(x) = x^3 e^{2x}$ at $x_0 = 2.5$ and $h = \frac{x_0}{100}$.

In both cases compare the answer obtained from twoptderi with the analytical solution.

Here is the matlab script file that you should modify.

```
clc; clear; close all; format long % you may want to read about the 'format' myfunc = Q(x)(x^3); % define the function x0 = 0.6; h = x0/100; dfdx2pt = twoptderi(myfunc,x0,h)
```