Importar Datos:: Guía RÁPIDA

El **tidyverse** de R se basa en **datos ordenados** (tidy data) almacenados en **tibbles**, que son data frames mejorados.

El frente de esta hoja muestra cómo leer archivos de texto en R con **readr.**

El reverso muestra cómo crear tibbles con **tibble** y diseñar datos ordenados con **tidyr.**

OTROS TIPOS DE DATOS

Prueba uno de los siguientes paquetes para importar otros tipos de archivos

- haven archivos SPSS, Stata y SAS
- **readxl** archivos excel (.xls y .xlsx)
- **DBI** base de datos
- jsonlite json
- xml2 XML
- httr Web APIs
- rvest HTML (Web Scraping)

Guardar datos

Guardar x, un objeto de R, a **path**, una ruta de acceso a un archivo, como:

Archivo separado por comas

write_csv(xpath, na = "NA", append = FALSE,
 col_names = !append)

Archivo con separador arbitrario

write_delim(x path, delim = " ", na = "NA",
 append = FALSE, col_names = !append)

CSV para excel

write_excel_csv(x path, na = "NA", append =
 FALSE, col_names = !append)

Cadena (string) a archivo

write_file(x path, append = FALSE)

Vector de cadena a archivo, un elemento por

write lines(x,path, na = "NA", append = FALSE)

Objecto a archivo RDS

write_rds(x, path, compress = c("none", "gz",
 "bz2", "xz"), ...)

Archivo separado por tabulaciones

write_tsv(x, path, na = "NA", append = FALSE,
 col_names = !append)

Leer datos tabulares - Estas funciones comparten estos argumentos:

read_*(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"),
 quoted_na = TRUE, comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(1000,
 n_max), progress = interactive())

Archivo separado por comas

read_csv("archivo.csv")

Para generar archivo .csv ejecuta: write_file(x = "a,b,c\n1,2,3\n4,5,NA", path = "archivo.csv")

Archivo separado por punto y coma

read_csv2("archivo2.csv")

write_file(x = "a;b;c\n1;2;3\n4;5;NA", path = " archivo 2.csv")

Archivo con cualquier separador

read_delim("archivo.txt", delim = "|")

write_file(x = "a|b|c\n1|2|3\n4|5|NA", path = "archivo.txt")

Archivos de ancho fijo

read_fwf("archivo.fwf", col_positions = c(1, 3, 5))
write_file(x = "a b c\n1 2 3\n4 5 NA", path = "archivo.fwf")

Archivo separado por tabulaciones

read tsv("archivo.tsv") también con read table().

 $write_file(x = "a\tb\tc\n1\t2\t3\n4\t5\tNA", path = "archivo.tsv")$

ARGUMENTOS ÚTILES

4 5 NA

Leer datos no tabulares

Leer un archivo en una sola cadena

read_file(file, locale = default_locale())

Lee cada línea en una cadena

read_lines(file, skip = 0, n_max = -1L, na = character(),
locale = default_locale(), progress = interactive())

Lee ficheros de log estilo Apache

read_log(file, col_names = FALSE, col_types = NULL, skip = 0, n_max = -1, progress = interactive())

Leer un archivo en un vector

read_file_raw(file)

Lee cada línea en un vector

read_lines_raw(file, skip = 0, n_max = -1L,
 progress = interactive())

Tipos de datos

Las funciones de readr interpretan los tipos de cada columna y convierten los tipos cuando corresponde (pero NO convertirá cadenas en factores automáticamente).

Un mensaje muestra el tipo de cada columna en el resultado.

1. Usa **problems()** para diagnosticar problemas.

x <- read_csv("archivo.csv"); problems(x)</pre>

- 2. Usa una col_function para guiar el parseado.
- col_guess() el valor por defecto
- col character()
- col_double(), col_euro_double()
- col_datetime(format = "") Tambiéncol_date(format = ""), col_time(format = "")
- col_factor(levels, ordered = FALSE)
- col integer()
- col_logical()
- col_number(), col_numeric()
- col_skip()

```
x <- read_csv("archivo.csv", col_types = cols(
    A = col_double(),
    B = col_logical(),
    C = col_factor()))</pre>
```

- 3. Sino, leé como vectores de caracteres y luego parsea con una parse_ function.
- parse_guess()
- parse_character()
- parse_datetime() También parse_date() y parse_time()
- parse_double()
- parse_factor()
- parse_integer()
- parse_logical()
- parse_number()

x\$A <- parse_number(x\$A)

Tibbles - un data frame mejorado

El paquete **tibble** proporciona una nueva clase S3 para almacenar datos tabulares, el tibble. Tibbles hereda la clase data frame, pero mejora tres comportamientos:

- Creación de subconjuntos [siempre retorna un nuevo tibble, [[y \$ siempre retornan un
- Sin coincidencias parciales- se deben utilizar los nombres completos de las columnas al crear subconjuntos

Impresión en la consola – Cuando imprimes un

[reached getOption("max.print") --omitted 68 rows]

Vista data frame

• Controla la apariencia por defecto con las opciones:

Una tabla larga

para visualizar

options(tibble.print_max = n, tibble.print_min = m, tibble.width = Inf)

- Ver el conjunto de datos completo con View() o glimpse()
- Convierte a data frame con as.data.frame()

CONSTRUYE UN TIBBLE DE DOS MANERAS

as_tibble(x, ...) Convierte un data frame a un tibble.

enframe(x. name = "name", value = "value") Convierte un vector con nombre en un tibble

is_tibble(x) Comprueba si x es un tibble.

Studio

Tidy Data con tidyr

Tidy data es una forma de organizar datos tabulares. Proporciona una estructura de datos consistente entre paquetes

Una tabla es tidy si:

una columna

Cada observación o caso es una fila

Tidy data:

+-61-2

Preserva los casos durante las operaciones vectorizadas.

Remoldear Datos - cambiar la forma de los valores en una tabla

Usa gather() y spread() para reorganizar los valores de una tabla en una nueva forma.

gather(data, key, value, ..., na.rm = FALSE, convert = FALSE, factor_key = FALSE)

gather() mueve los nombres de las columnas a una columna key, reuniendo los valores de la columna en una sola columna value.

ta						
pais	1999	2000		pais	anio	casos
Α	0.7K	2K	\rightarrow	Α	1999	0.7K
В	37K	80K		В	1999	37K
С	212K	213K		С	1999	212K
				Α	2000	2K
				В	2000	80K
				С	2000	213K
					key	value

gather(table4a, `1999`, `2000`, key = "anio", value = "casos")

spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)

spread() mueve los valores únicos de una columna key como nombres de columnas, esparciendo los valores de una columna value a través de las nuevas columnas.

table2								
pais	anio	tipo	cuenta		pais	anio	casos	pob
Α	1999	cases	0.7K	_	Α	1999	0.7K	19M
Α	1999	pop	19M		Α	2000	2K	20M
Α	2000	cases	2K		В	1999	37K	172M
Α	2000	pop	20M		В	2000	80K	174M
В	1999	cases	37K		С	1999	212K	1T
В	1999	pop	172M		С	2000	213K	1T
В	2000	cases	80K					
В	2000	pop	174M					
С	1999	cases	212K					
С	1999	pop	1T					
С	2000	cases	213K					
С	2000	pop	1T					
		key	value					

spread(table2, tipo, cuenta)

Manejar Valores Perdidos

drop_na(data, ...) Elimina las filas que contienen NA's en las columnas especificadas (...)

drop na(x, x2)

fill(data, ..., .direction = c("down", "up")) Completa los NA's en las columnas especificadas (...) con el valor no-NA más cercano.

fill(x, x2)

replace na(data,

replace = list(), ...Reemplaza NA's por columna.

replace na(x, list(x2 = 2))

Expandir tablas - crea rápidamente tablas con combinaciones de valores

complete(data, ..., fill = list())

Completa los datos con combinaciones faltantes de las variables listadas en ... usando los valores de fill o NA's. expand(data, ...)

Crea un nuevo tibble con todas las combinaciones posibles de los valores de las variables listadas en ...

complete(mtcars, cyl, gear, carb)

expand(mtcars, cyl, gear, carb)

Separar Celdas

Usa estas funciones para dividir o combinar celdas en valores individuales aislados.

separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE, extra = "warn", fill = "warn", ...)

Separa cada celda en una columna para hacer varias columnas.

table3

pais	anio	tasa		pais	anio	casos	pob
Α	1999	0.7K / 19M		Α	1999	0.7K	19M
Α	2000	2K/20M	\rightarrow	Α	2000	2K	20M
В	1999	37K / 172M		В	1999	37K	172M
В	2000	80K / 174M		В	2000	80K	174M
С	1999	212K/1T		С	1999	212K	1T
С	2000	213K/1T		С	2000	213K	1T

separate(table3, tasa, sep = "/", into = c("casos", "pob"))

separate_rows(data, ..., sep = "[^[:alnum:].]+", convert = FALSE)

Separa cada celda en una columna para formar varias filas.

table3

pais	anio	tasa		pais	anio	tasa
Α	1999	0.7K / 19M		Α	1999	0.7K
Α	2000	2K / 20M	\rightarrow	Α	1999	19M
В	1999	37K / 172M		Α	2000	2K
В	2000	80K / 174M		Α	2000	20M
С	1999	212K / 1T		В	1999	37K
С	2000	213K / 1T		В	1999	172M
				В	2000	80K
				В	2000	174M
				С	1999	212K
				С	1999	1T
				С	2000	213K
				С	2000	1T

separate rows(table3, tasa, sep = "/")

unite(data, col, ..., sep = "_", remove = TRUE)

Une múltiples columnas en una única columna

table5

siglo	anio		pais	anic
19	99		Afghan	1999
20	00	\rightarrow	Afghan	2000
19	99		Brazil	1999
20	00		Brazil	2000
19	99		China	1999
20	00		China	2000
	19 20 19 20 19	19 99 20 00 19 99 20 00 19 99	19 99 20 00 19 99 20 00 19 99	19 99 Afghan 20 00 Afghan 19 99 Brazil 20 00 Brazil 19 99 China

unite(table5, siglo, anio, col = "anio", sep = "")