

Ecuaciones Diferenciales y Cálculo Numérico

Grado en Ingeniería de Tegnologías de Telecomunicación

Convocatoria extraordinaria de septiembre

12 de septiembre de 2014

Apellidos:		Firma:
Nombre:	D.N.I. (o Pasaporte):	
Nombre.	D.W.I. (O'l asaporte).	

ACLARACIONES SOBRE EL EXAMEN

- La duración del examen es de 3 horas.
- No se permite el uso de calculadora programable.
- El examen corresponde a la parte de teoría y problemas, constando de 6 preguntas tipo test
 y 4 ejercicios. Será valorada sobre 9 puntos (1.8 el test y 7.2 los ejercicios).
- Dos ejercicios no se desarrollarán en una misma cara de una hoja de examen.

Preguntas tipo TEST (0.3 puntos cada pregunta)

1. La solución del problema de valores iniciales

$$\begin{cases} x'(t) = \ln\left(\frac{x^2(t) + 7}{18}\right), \\ x(0) = 2, \end{cases}$$

es . . .

- \square a) convexa en su dominio.
- \square b) cóncava en su dominio.
- \Box c) estrictamente creciente en su dominio.
- □ d) estrictamente decreciente en su dominio.
- 2. El cambio de variable $s=t^2$ transforma la ecuación diferencial

$$x''(t) + 3x'(t) + 5x(t) = t^2, \ \forall t > 0,$$

en la ecuación diferencial . . .

$$\Box$$
 a) $x''(\sqrt{s}) + 3x'(\sqrt{s}) + 5x(\sqrt{s}) = s, \forall s > 0.$

$$\Box$$
 b) $4sx''(s) + 2(1+3\sqrt{s})x'(s) + 5x(s) = s, \forall s > 0.$

$$\Box$$
 c) $4sx''(s) + 6\sqrt{s}x'(s) + 5x(s) = s, \forall s > 0.$

 \Box d) Ninguna de las anteriores afirmaciones es correcta.

3.	Se	considera	la	ecuación	diferencial	lineal	homogénea
----	----	-----------	----	----------	-------------	--------	-----------

$$tx'' + (3t - 1)x' - 3x = 0, \ \forall t > 0.$$

Si se aplica reducción de orden con $\phi(t)=e^{-3t}, \ \forall t>0$, se obtiene una nueva ecuación diferencial lineal homogénea cuyo sistema fundamental es . . .

- \Box a) $\{e^{3t}, e^{3t}(3t-1)\}, \forall t > 0.$
- \Box b) $\{1, e^{3t}\}, \forall t > 0.$
- \Box c) $\{1, e^{3t}(3t-1)\}, \forall t > 0.$
- \Box d) Ninguna de las anteriores afirmaciones es correcta.
- 4. Sea f una función continua en el intervalo [0,1] de forma que tiene una única raíz en el mismo. Para aproximar dicha raíz con un error inferior a 10^{-4} mediante el método de bisección tendremos que hacer . . .
 - \square a) Al menos 13 iteraciones.
 - \square b) Al menos 16 iteraciones.
 - \Box c) Al menos 19 iteraciones.
 - \square d) Ninguna de las anteriores afirmaciones es correcta.
- 5. Si se aumenta el número de nodos en un problema de interpolación polinomial entonces se verifica que \dots
 - \square a) siempre disminuye el error.
 - \Box b) a veces aumenta el error.
 - \Box c) nunca disminuye el error.
- 6. Se considera la función a trozos

$$s(x) = \begin{cases} -2x^3 - 12x^2 + 20x, & -2 \le x \le 0, \\ 7x^3 - 12x^2 + 20x, & 0 \le x \le 1, \\ -x^3 + 12x^2 - 4x + 8, & 1 \le x \le 4. \end{cases}$$

Entonces...

- \square a) s(x) es un spline cúbico natural.
- \Box b) s(x) es un spline cúbico periódico.
- \Box c) s(x) no es un spline cúbico.
- \Box d) Las opciones a) y b) son correctas.
- □ e) Ninguna de las opciones a), b), c) es correcta.

EJERCICIOS (1.8 puntos cada uno)

1. Se considera la ecuación diferencial

$$t^{2}x''(t) + (4t^{2} - 4t)x'(t) + (4t^{2} - 8t + 6)x(t) = 0.$$
(1)

- a) Determina los posibles dominios maximales de (1).
- b) Comprueba que, mediante el cambio de variable $y = \frac{x}{t^2}$, la ecuación (1) se transforma en una ecuación lineal de coeficientes constantes.
- c) Calcula <u>todas</u> las soluciones de la ecuación (1) usando la ecuación obtenida en el apartado anterior.
- d) Halla, si es posible, la solución del problema de valores iniciales

$$\begin{cases} t^2x''(t) + (4t^2 - 4t)x'(t) + (4t^2 - 8t + 6)x(t) = 0\\ x(-1) = 0, \ x'(-1) = 3. \end{cases}$$

2. Se considera el sistema de ecuaciones diferenciales lineales

$$\begin{cases} x_1'(t) = 2x_1(t) - 2x_2(t) - 3, \\ x_2'(t) = 3x_1(t) - 3x_2(t) - 2. \end{cases}$$
 (2)

- a) Sin usar la transformada de Laplace o pasar a una ecuación diferencial lineal equivalente, calcula <u>todas</u> las soluciones <u>reales</u> de (2).
- b) Halla <u>todas</u> las soluciones de (2) que satisfacen la condición inicial $\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
- 3. Se pretende estimar el valor de $\sqrt[5]{3}$ usando un método iterativo.
 - a) Determina justificadamente una función f(x), un intervalo [a,b] y un valor inicial x_0 que permitan asegurar que el método de Newton-Raphson asociado converge a $\sqrt[5]{3}$.
 - b) Realiza tres iteraciones del método de Newton-Raphson con el valor inicial x_0 del apartado anterior.
 - c) Se propone el método iterativo

$$x_{n+1} = \frac{9x_n + 2x_n^6}{6 + 3x_n^5} \,.$$

Tomando el mismo valor x_0 que en el apartado anterior, realiza tres iteraciones con este método.

- d) A la vista de las iteraciones obtenidas en los dos apartados anteriores, ¿cuál de los dos métodos consideras que converge más rápidamente a la solución? Justifica tu elección.
- 4. Se considera la siguiente tabla de valores de una cierta función f

- a) Calcula el polinomio que interpola los datos de la tabla anterior.
- b) Utiliza el polinomio que has calculado para estimar el valor de f(-0.5). Proporciona una cota del error cometido si se sabe que la función f cumple que $|f^{iv}(x)| < 3$, $\forall x \in [-1, 2]$.
- c) Calcula el spline lineal s(x) que interpola los datos de la tabla.
- d) Utiliza el spline obtenido para estimar los valores de f(-0.5), f'(0.5) y $\int_{-1}^{1} f(x) dx$.