DATA ANALYST WITH COGNOS

TEAM MEMBER

411421104054: S.VIJAYALAKSHMI Phase - 2 :Document Submission

Project: Customer churn prediction in telecommunication

Introduction:

Data analytics help the telecom industry boost profits through improved network services, security and customer experience. It helped the telecom companies to take sudden actions to prevent these behaviors in the market. Predictive Analytics helps in detecting telecommunications defects in real-time problem.. Predicting the future of telecommunications is essential for businesses, policymakers, and researchers to make informed decisions and investments. Implementing a telecommunication strategy to reduce churn involves a combination of data analysis, customer engagement, and targete actions. The main collection of this strategies to reduce churn by Data collection and Analysis, Segmentation, Churn prediction Models, Customer feedback and surveys, customer retention offers, quality of service, Documentation and Team reporting, Training and team developments. Remember that reducing churn is an ongoing effort that requires a holistic approach involving data analysis, customer engagement, and continuous improvement of your telecommunication services. By implementing these strategies, we can work to retain more customers and build stronger, lasting relationships with them. Implementing a telecommunication prediction models involves various techniques from science, Machine learning Models, Natural language Processing (NLP), Clustering Segmentation, Deep reinforcement learning and Statistical analysis To forecast trends and outcomes in the telecommunication industry.

1. Data Source:

Telecommunication companies collect a data from a wide range of sources includes a networks equipment, call detail records, customer relationship management system, billing system, network monitoring tools.

Dataset link: (https://www.kaggle.com/datasets/blastchar/telco-customer-churn)

	customerID	gender	SeniorCitizen		Partner	Dependents	tenure		PhoneService	MultipleLines
	7590-VHVEG	Female		0	Yes	No		1	No	No phone service
	5575-GNVDE	Male		0	No	No		34	Yes	No
	3668-QPYBK	Male		0	No	No		2	Yes	No
	7795-CFOCW	Male		0	No	No		45	No	No phone service
	9237-HQITU	Female		0	No	No		2	Yes	No
	9305-CDSKC	Female		0	No	No		8	Yes	Yes
	1452-KIOVK	Male		0	No	Yes		22	Yes	Yes
	6713-OKOMC	Female		0	No	No		10	No	No phone service
	7892-P00KP	Female		0	Yes	No		28	Yes	Yes
	6388-TABGU	Male		0	No	Yes		62	Yes	No
	9763-GRSKD	Male		0	Yes	Yes		13	Yes	No
	7469-LKBCI	Male		0	No	No		16	Yes	No
	8091-TTVAX	Male		0	Yes	No		58	Yes	Yes
	0280-XJGEX	Male		0	No	No		49	Yes	Yes
	5129-JLPIS	Male		0	No	No		25	Yes	No
	3655-SNQYZ	Female		0	Yes	Yes		69	Yes	Yes
	8191-XWSZG	Female		0	No	No		52	Yes	No
	9959-WOFKT	Male		0	No	Yes		71	Yes	Yes
	4190-MFLUW	Female		0	Yes	Yes		10	Yes	No
	4183-MYFRB	Female		0	No	No		21	Yes	No
	8779-QRDMV	Male		1	No	No		1	No	No phone service
	1680-VDCWW	Male		0	Yes	No		12	Yes	No
	1066-JKSGK	Male		0	No	No		1	Yes	No
	3638-WEABW	Female		0	Yes	No		58	Yes	Yes
	6322-HRPFA	Male		0	Yes	Yes		49	Yes	No
	6865-JZNKO	Female		0	No	No		30	Yes	No
	6467-CHFZW	Male		0	Yes	Yes		47	Yes	Yes
	8665-UTDHZ	Male		0	Yes	Yes		1	No	No phone service
	5248-YGIJN	Male		0	Yes	No		72	Yes	Yes
-[

2. Model Evaluation and Prediction:

Model evaluation is a critical step in the telecommunication prediction process. It helps assess the performance and accuracy of the prediction models we've developed. It can splitting the data, Selecting evaluation metrics and Some models are logistic regression, Decision Trees, Support vector machine (SVM), Neural Networks), Model Training and Validation, Visualization and plots, Comparative Analysis and Communication results. Effective model evaluation ensures that your telecommunication prediction models are accurate, reliable, and aligned with the goals of your organization.

Model Prediction Predictive modeling in telecommunication can be used for various purposes, such as predicting customer churn, forecasting network traffic, optimizing resource allocation, and improving customer satisfaction. It allows telecom companies to

make data-driven decisions and respond proactively to industry changes and customer needs.

3.Model 1: Logistic Regression

Logistic regression is a widely used model for binary classification problems, such as customer churn prediction. It models the probability of a customer churning based on input features. Evaluate the logistic regression model's performance on the testing dataset using appropriate metrics. Common metrics for binary classification include accuracy, precision, recall, F1-score, and the ROC-AUC curve.

Model intrepretation: Logistic regression models are interpretable, and you can examine the coefficients associated with each feature to understand their impact on the prediction. Positive coefficients indicate that an increase in the corresponding feature value increases the log-odds of churn, while negative coefficients decrease the log-odds of churn.

Deployment and Retraining: If the logistic regression model meets your performance criteria, we can deploy it in our environment to predict churn for new customers. Keep the model up-to-date by periodically retraining it with new data as customer interactions and churn events occur.

4. Model 2: Decision Trees

Implementing a decision tree model for customer churn prediction involves several steps, including data preparation, model training, evaluation, and potentially deployment. Decision trees are interpretable models that can be used effectively for this task.

Model Evaluation :Evaluate the decision tree model's performance on the testing dataset using appropriate metrics for binary classification. Common metrics include accuracy, precision, recall, F1-score, and the ROC-AUC curve.

Model Intrepretation:Decision tree models are interpretable, and you can visualize the tree structure to understand how the model makes decisions.

Deployment and Retraining:If the decision tree model meets your performance criteria, you can deploy it in your production environment to predict churn for new customers.Keep the model up-to-date by periodically retraining it with new data as customer interactions and churn events occur.

5.Model 3: Neural networks

Implementing neural networks for customer churn prediction involves several steps, including data pre processing, model design, training, evaluation, and deployment.

Model Evaluation: Evaluate the neural network's performance on the testing data set using appropriate metrics for binary classification. Common metrics include accuracy, precision, recall, F1-score, and the ROC-AUC curve. Plot training and validation curves to assess over fitting and convergence.

Deployment and Retraining: If the neural network model meets your performance criteria, you can deploy it in our production environment to predict churn for new customers. Keep the model up-to-date by periodically retraining it with new data as customer interactions and churn events occur.

Model Intrepretation: Deep learning models are often considered "black boxes" due to their complexity. To gain insights into feature importance, you can use techniques like SHAP (Shapley Additive explanations) to explain individual predictions. Implementing neural networks for customer churn prediction can be a powerful approach when you have a large and complex Data set. However, it also requires careful data pre processing, model design, and hyper parameter tuning to achieve
optimal results. Additionally, regular monitoring and retraining are essential to ensure that the model remains accurate over time.
Conclusion: Customer churn prediction in the telecommunications industry is a critical and complex task that requires a combination of data analytics, machine learning, and a customercentric approaches. In this prediction in the telecommunications industry is a multifaceted process that combines data analysis, machine learning, and a deep understanding of customer behavior. By using this techniques the telecommunications companies can reduce churn, improve customer satisfaction, and thrive in a highly competitive market.

