谓词逻辑

Lijie Wang

推理形式和推理规则

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

推理形式

Lijie Wang

推理形式

惟理规则

Definition

设 G_1, G_2, \cdots, G_n ,H 是公式,称 H 是 G_1, G_2, \cdots, G_n 的逻辑结果(或称 G_1, G_2, \cdots, G_n 共同蕴涵 H) 当且仅当对任意解释 I,若 I 同时满足 G_1, G_2, \cdots, G_n ,则 I 满足 H,记 为 $G_1, G_2, \cdots, G_n \Rightarrow H$,此时称 $G_1, G_2, \cdots, G_n \Rightarrow H$ 是有效的,否则称为无效的。 G_1, G_2, \cdots, G_n 称为一组前提 (premise),有时用集合 Γ 来表示,记 $\Gamma = \{G_1, G_2, \cdots, G_n\}$,H 称为结论 (conclusion),又称 H 是前提集合 Γ 的逻辑结果,记为 $\Gamma \Rightarrow H$ 。

推理形式

Lijie Wang

推理形式推理规律

作理规则

Definition

设 G_1,G_2,\cdots,G_n , H 是公式,称 H 是 G_1,G_2,\cdots,G_n 的逻辑结果(或称 G_1,G_2,\cdots,G_n 共同蕴涵 H) 当且仅当对任意解释 I,若 I 同时满足 G_1,G_2,\cdots,G_n ,则 I 满足 H,记 为 G_1,G_2,\cdots,G_n ⇒ H,此时称 G_1,G_2,\cdots,G_n ⇒ H 是有效的,否则称为无效的。 G_1,G_2,\cdots,G_n 称为一组前提 (premise),有时用集合 Γ 来表示,记 $\Gamma=\{G_1,G_2,\cdots,G_n\}$, H 称为结论 (conclusion),又称 H 是前提集合 Γ 的逻辑结果,记为 $\Gamma\Rightarrow H$ 。

Theorem

设 G_1, G_2, \dots, G_n , H 是公式,公式 H 是前提集合 $\Gamma = \{G_1, G_2, \dots, G_n\}$ 的逻辑结果当且仅 当 $G_1 \wedge G_2 \wedge \dots \wedge G_n \to H$ 为有效公式。

推理形式

Lijie Wang

推理形式 推理规律

Definition

设 G_1,G_2,\cdots,G_n , H 是公式,称 H 是 G_1,G_2,\cdots,G_n 的逻辑结果(或称 G_1,G_2,\cdots,G_n 共同蕴涵 H) 当且仅当对任意解释 I,若 I 同时满足 G_1,G_2,\cdots,G_n ,则 I 满足 H,记 为 G_1,G_2,\cdots,G_n \to H,此时称 G_1,G_2,\cdots,G_n \to H 是有效的,否则称为无效的。 G_1,G_2,\cdots,G_n 称为一组前提 (premise),有时用集合 Γ 来表示,记 $\Gamma=\{G_1,G_2,\cdots,G_n\}$,H 称为结论 (conclusion),又称 H 是前提集合 Γ 的逻辑结果,记为 $\Gamma\to H$ 。

Theorem

设 G_1, G_2, \dots, G_n , H 是公式,公式 H 是前提集合 $\Gamma = \{G_1, G_2, \dots, G_n\}$ 的逻辑结果当且仅 当 $G_1 \wedge G_2 \wedge \dots \wedge G_n \to H$ 为有效公式。

根据代入实例的特性,命题演算中的基本蕴涵公式 $I_1 - I_{11}$ 在谓词演算中仍然成立。

Lijie Wang

推理形式

推理规律

惟理规则

Theorem

假设 G(x), H(x) 是只含自由变元 x 的公式 , 则在全总个体域中 , 有

Lijie Wang

推理形式

推理规律

Theorem

假设 G(x), H(x) 是只含自由变元 x 的公式 , 则在全总个体域中 , 有

Lijie Wang

推理形式

推理规律

隹理规则

Theorem

假设 G(x), H(x) 是只含自由变元 x 的公式 , 则在全总个体域中 , 有

- $I_{13}: (\forall x) G(x) \lor (\forall x) H(x) \Rightarrow (\forall x) (G(x) \lor H(x));$ $I_{14}: (\exists x) (G(x) \land H(x)) \Rightarrow (\exists x) G(x) \land (\exists x) H(x).$

Lijie Wang

推理形式

推理规律

惟理规则

Theorem

假设 G(x), H(x) 是只含自由变元 x 的公式 ,则在全总个体域中 ,有

- 2 $I_{13}: (\forall x) G(x) \lor (\forall x) H(x) \Rightarrow (\forall x) (G(x) \lor H(x));$ $I_{14}: (\exists x) (G(x) \land H(x)) \Rightarrow (\exists x) G(x) \land (\exists x) H(x).$

Lijie Wang

推理形式

推理规律

Theorem

假设 G(x), H(x) 是只含自由变元 x 的公式 ,则在全总个体域中 ,有

对于多个量词的公式,设 G(x,y) 是含有自由变元 x,y 的谓词公式,则有

- - $I_{18}: (\forall x)(\forall y) G(x, y) \Rightarrow (\exists y)(\exists x) G(x, y);$
 - $I_{19}: (\forall y)(\forall x)G(x,y) \Rightarrow (\exists x)(\forall y)G(x,y);$
 - $I_{20}: (\exists y)(\forall x)G(x,y) \Rightarrow (\exists x)(\forall y)G(x,y);$
 - $I_{21}: (\forall x)(\exists y) G(x, y) \Rightarrow (\exists y)(\exists x) G(x, y);$
 - $I_{22}: (\forall y)(\exists x) G(x, y) \Rightarrow (\exists x)(\exists y) G(x, y);$

Lijie Wang

推理形式

T田 # 田 / 由

推理规则

US (全称特指规则):

 $(\forall x) G(x) \Rightarrow G(y)$, y 不在 G(x) 中约束出现

或: $(\forall x) G(x) \Rightarrow G(c)$, c 为任意个体常量

Lijie Wang

推理形式

作理规律

推理规则

US (全称特指规则):

 $(\forall x) G(x) \Rightarrow G(y)$, y 不在 G(x) 中约束出现

或: $(\forall x) G(x) \Rightarrow G(c)$, c 为任意个体常量

Example

设实数集中,语句 "不存在最大的实数" 可符号化为: $(\forall x)(\exists y)\,G(x,y)$ 。其中:G(x,y):y>x

Lijie Wang

推理形式

推理规律

推理规则

US (全称特指规则):

 $(\forall x) G(x) \Rightarrow G(y)$, y 不在 G(x) 中约束出现

或: $(\forall x) G(x) \Rightarrow G(c)$, c 为任意个体常量

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y)$ 。其中:G(x,y):y>x如下推导正确吗?为什么?

- (1) $(\forall x)(\exists y)G(x,y)$ P
- $(2) \quad (\exists y) G(y, y) \qquad \qquad US, (1)$

Lijie Wanı

推理形式

推理规律

推理规则

US (全称特指规则):

 $(\forall x) G(x) \Rightarrow G(y)$, y 不在 G(x) 中约束出现

或: $(\forall x) G(x) \Rightarrow G(c)$, c 为任意个体常量

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y)$ 。其中:G(x,y):y>x如下推导正确吗?为什么?

- (1) $(\forall x)(\exists y)G(x,y)$ P
- (2) $(\exists y) G(y, y)$ US, (1)

解 以上推导不正确。正确的推导应为:

- (1) $(\forall x)(\exists y)G(x,y)$
- (2) $(\exists y) G(z, y)$ US, (1)

推理形式和推理 规则

Lijie Wang

推理形式

推理规律

推理规则

ES (存在特指规则): $(\exists x) G(x) \Rightarrow G(c)$, c为使得 G(c) 为真的特定的个体常量。

当 G(x) 中还有除 x 之外的自由变元,则必须用关于这些变元的函数符号来取代 c。

Lijie Wang

推理形式

惟理规律

推理规则

ES (存在特指规则): $(\exists x) G(x) \Rightarrow G(c)$, c 为使得 G(c) 为真的特定的个体常量。

当 G(x) 中还有除 x 之外的自由变元,则必须用关于这些变元的函数符号来取代 c.

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y)$ 。其中:G(x,y):y>x

Lijie Wang

推理形式

性埋规征

推理规则

ES (存在特指规则): $(\exists x) G(x) \Rightarrow G(c)$, c为使得 G(c) 为真的特定的个体常量。

当 G(x) 中还有除 x 之外的自由变元,则必须用关于这些变元的函数符号来取代 c.

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y)$ 。其中:G(x,y):y>x如下推导正确吗?为什么?

- $(1) \quad (\forall x)(\exists y) G(x,y)$
- $(2) \quad (\exists y) G(z, y) \qquad \qquad US, (1)$
- $(3) \quad G(z,c) \qquad \qquad ES,(2)$

Lijie Wang

推理形式

推理规律

推理规则

ES (存在特指规则): $(\exists x) G(x) \Rightarrow G(c)$, c 为使得 G(c) 为真的特定的个体常量。

当 G(x) 中还有除 x 之外的自由变元,则必须用关于这些变元的函数符号来取代 c.

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y)$ 。其中:G(x,y):y>x如下推导正确吗?为什么?

 $(1) \quad (\forall x)(\exists y) G(x,y)$

Ρ

(2) $(\exists y) G(z, y)$

US, (1)

(3) G(z,c)

ES, (2)

解 以上推导不正确。正确的推导应为:

 $(1) \quad (\forall x)(\exists y) G(x,y)$

Ρ

(2) $(\exists y) G(z, y)$

US, (1)

(3) G(z, f(z))

ES, (2)

推理形式和推理 规则

Lijie Wang

推理形式

推理规律

推理规则

UG (全称推广规则): $G(y) \Rightarrow (\forall x) G(x)$, G(y) 中无变元 \times

Lijie Wang

推理形式

推理规律

推理规则

UG (全称推广规则): $G(y) \Rightarrow (\forall x) G(x)$, G(y) 中无变元 \times

Example

设实数集中,语句 "不存在最大的实数" 可符号化为: $(\forall x)(\exists y) G(x,y)$ 。其中:G(x,y): y>x

Lijie Wang

推理形式

推理规律

推理规则

UG (全称推广规则): $G(y) \Rightarrow (\forall x) G(x)$, G(y) 中无变元 x

Р

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y)G(x,y)$ 。其中:G(x,y):y>x如下推导正确吗?为什么?

- (1) $(\forall x)(\exists y)G(x,y)$
- (2) $(\exists y) G(z, y)$ US, (1)
- (3) $(\forall y)(\exists y)G(y,y)$ UG,(2)

Lijie Wang

推理形式

推理规律

推理规则

UG (全称推广规则): $G(y) \Rightarrow (\forall x) G(x)$, G(y) 中无变元 x

Example

设实数集中,语句"不存在最大的实数"可符号化为: $(\forall x)(\exists y) G(x, y)$ 。其中:G(x, y): y > x如下推导正确吗?为什么?

- (1) $(\forall x)(\exists y)G(x,y)$ P
- (2) $(\exists y) G(z, y)$ US, (1)
- (3) $(\forall y)(\exists y)G(y,y)$ UG,(2)

解 以上推导不正确。正确的推导应为:

- (1) $(\forall x)(\exists y)G(x,y)$ P
- (2) $(\exists y) G(z, y)$ US, (1)
- (3) $(\forall z)(\exists y)G(z,y)$ UG,(2)

Lijie Wang

推理形式

推理规律

推理规则

EG (存在推广规则):

 $G(c) \Rightarrow (\exists x) G(x)$, c 为特定个体常量

或: $G(y) \Rightarrow (\exists x) G(x)$, G(y) 中无变元 \times

Lijie Wang

推理形式

推理规律

推理规则

EG (存在推广规则):

 $G(c) \Rightarrow (\exists x) G(x)$, c 为特定个体常量

或: $G(y) \Rightarrow (\exists x) G(x)$, G(y) 中无变元 \times

Example

设:
$$G(x, y): y > x$$

Lijie Wang

推理规则

EG (存在推广规则):

 $G(c) \Rightarrow (\exists x) G(x)$, c 为特定个体常量

P

或: $G(y) \Rightarrow (\exists x) G(x)$, G(y) 中无变元 \times

Example

设:G(x, y): y > x

如下推导正确吗?为什么?

- (1) G(x,c)
- (2) $(\exists x) G(x, x)$

Lijie Wang

推理形式

推理规律

推理规则

EG (存在推广规则):

 $G(c) \Rightarrow (\exists x) G(x)$, c 为特定个体常量

或: $G(y) \Rightarrow (\exists x) G(x)$,G(y) 中无变元 \times

Example

设:G(x, y): y > x

如下推导正确吗?为什么?

(1) G(x,c)

- Ρ
- (2) $(\exists x) G(x, x)$
 - EG, (1)

解 以上推导不正确。正确的推导应为:

(1) G(x, c)

Ρ

(2) $(\exists y) G(x, y)$

EG, (1)

推理形式和推理 规则

Lijie Wang

推理形式

推理规律

推理规则

THE END, THANKS!