(54) PLASMA PROCESSING METHOD

(11) 1-30224 (A) (43) 1.2.1989 (19) JP (21) Appl. No. 62-187177 (22) 27.7.1987 (71) MATSUSHITA ELECTRIC IND CO LTD (72) TAKASHI HIRAO(3)

(51) Int. Cl. H01L21/302,H01L21/205,H01L21/265

PURPOSE: To improve the film quality of sidewall as well as the step coverage etc. in the formation of thin film by making the directivity of ion random by a method wherein deposition, etching and doping of the thin film or surface processing are performed in a specimen chamber while changing the magnetic field near the specimen chamber using a plasma device with a plasma producing chamber and the specimen chamber.

CONSTITUTION: Outer electromagnets 8 are provided outside the part near a specimen base 6 to modulate the magnetic field near the specimen base 6. The size and direction of the magnetic field are varied with time by changing the level or both the level and direction of the current fed to the electromagnets 8. For example, a part of magnetic force line 10 generated by the outer electromagnets 8 at a specified time generates the other magnetic force line 10 in the reverse direction to a divergence magnetic field 9 to modulate the magnetic field near the specimen 7. Through these procedures, the moving state of ion can be made random by changing the level and direction of current enabling the film quality e.g. in the sidewall of step difference part and other region to be equalized.

1: plasma chamber, 2: microwave oscillator, 3: waveguide

(54) PLASMA PROCESSOR

(11) 1-30225 (A) (43) 1.2.1989 (19) JP

(21) Appl. No. 62-185447 (22) 27.7.1987

(71) FUJITSU LTD (72) KEISUKE SHINAGAWA(1)

(51) Int. Cl. H01L21/302,H01L21/205,H01L21/31

PURPOSE: To enable steam to be fed at low pressure in parallel with gasses fed at high pressure by a method wherein multiple pipes comprising gas feeder means respectively and directly opening into a plasma producing chamber are respectively and independently actuated without interfering with each other.

CONSTITUTION: Multiple pipes 122 comprise gas feeder means 12; one pipe feeds oxygen and nitrogen or dinitrogen oxide; the other pipe feeds steam; and both pipes open into a plasma producing chamber 1. Furthermore, mass flows 121 as flow rate controllers are provided in respective pipes 122 comprising the gas feeder means 12; one pipe is provided with an oxygen source, nitrogen source, etc., in the upstream; the other pipe is provided with steam source 124 through the intermediary of a needle valve 123. When steam is added to a reactive gas in case down flow ashing process using oxygen gas is performed, the ashing rate is increased, however, oxygen and nitrogen or dinitrogen oxide as well as steam are smoothly and directly fed to the plasma producing chamber 1 by gas feeder means 12 to show the excellent ashing rate.

(54) DRY ETCHING DEVICE

(11) 1-30226 (A) (43) 1.2.1989 (19) JP (21) Appl. No. 62-186964 (22) 27.7.1987 (71) OKI ELECTRIC IND CO LTD (72) TOSHIRO MIHASHI

(51) Int. Cl. H01L21/302

PURPOSE: To contrive the equalization of an etching rare by a method wherein a heater located it a place to correspond to a part, in which the etching rate to a sample is slow, among a plurality of heaters is actuated independently and the part is heated. CONSTITUTION: A grounded tabular upper electrode 14 and a-tabular lower electrode

15 arranged in opposition to this electrode are provided in an etching chamber 11. The electrode 15 has a protruding part 20 for-holding such a sample A as a wafer to be etched at its upper part and moreover, with a circulating path 21 for a cooling water 21a provided in its interior for holding uniformly the temperature of the whole electrode, heaters 22 ranging from several pieces to several hundred pieces are buried uniformly on the circulating path 21 like the squares on a gobang. Variable power sources, 23 are respectively connected to each heater 22 and the heaters are respectively designed in a structure heatable independently. Some heater 22 located at a place to correspond to a part, in which an etching rate to the sample is slow, is actuated by the power source 23 connected to the heater 22 and the part is heated until the etching rate becomes an etching rate equal with that in other regions of the wafer. Thereby, the excellent uniformity of the etching rate can be obtained in the wafer simply and precisely.

19日本国特許庁(JP)

⑩特許出願公開

砂公開特許公報(A)

昭64-30225

Dint_Cl.4

識別記号

广内整理番号

母公開 昭和64年(1989)2月1日

H 01 L 21/302 21/205 21/302 21/31 B-8223-5F 7739-5F H-8223-5F

6708-5F

審査請求 未請求 発明の数 1 (全4頁)

9発明の名称

プラズマ処理装置

②特 頤 昭62-185447

委出 願 昭62(1987)7月27日

60発明者品川

啓 介

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

母兒 明 者 藤村

13 三

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

金出 願 人 富士通株式会社 金代 理 人 弁理士 寒川 賊一 神奈川県川崎市中原区上小田中1015番地

男 福 8

1. 発明の名称

プラズマ処理整備

2. 特許請求の範囲

【1】エネルギー供給手段(11)と、流量調却手段(12)を有するガス供給手段(12)とを具備する実空専門よりなるプラズマ発生車(1)と、はプラズマ発生車(1)と、スリット(21)を有する開盤(2)を介して連通し、被処理体を保持するステージ(31)を有し、排気手段(32)を有するアラスで処理装置において、

前記がス決論手段(12)は、それぞれが前紀プラズマ発生室(1)に直接関ロする複数の管(122)よりなる

ことを特徴とするプラズマ処理装置。

(2)前記ガス供給手段(12)を構成する管(122)の一つは水蒸気を給送することいされており、は水蒸気を給送する管(122)の水蒸気送出端と前記 波量調節手段(121)との間に減圧弁(123)が設け られてなることを特徴とする特許請求の範囲第1

3. 秦明の辞編な監察

(概要)

プラズマ処理装置の改良に関し、

再圧をもって輸送されるガスと並行して低圧を もって水震気を供給しうるプラズマ処理装置を提 供することを目的とし、

ガス供給手段のそれぞれが相互に干渉することなく、それぞれが独立に存動することができ、ガスも、水裏気も、スムーズに圧送されるように、それぞれがブラズマ発生室に直接閉口する複数の管をもって構成されている。

(産業上の利用分野)

本発明は、プラズマ処理装置の改良に関する。

(従来の技術)

プラズマエッチング方法、プラズマ堪様法、プ ラズマ酸化法等プラズマを被処理物に接触させて

特別昭64-30225(2)

なるプラズマ処理方法にはプラズマ処理職能が使 用される。

従来技術に係るプラズマ処理装置の1例を図を 参照して説明する。

第2回参展

図において、11は例えば電磁被等を導く事被管等のエネルギー供給手段であり、12はガス供給手段であり、この例にあっては、酸素と窒素をたは酸化二窒素とを供給するために分核管とされており、それぞれの分核にはマスフロー等の減量調節手段 121が段けられており、その上流に酸素源、窒素源、酸化二窒素源等が段けられる。1 はプラズマ発生室であり真空容器よりなる。

2 は隔壁でありスリット21を有し、このスリット21を介して、プラズマ発生章 1 と反応章 3 とが 遠遠している。反応章 3 には、半幕体ウェーへ等 彼処理体を保持するスナージ31が設けられ、神気 手段32によって内圧が例えば 0.8Torrに保持され

(発明が解決しようとする問題点)

酸素ガスを使用するグウンフローアッシング法 をなす場合、反応ガスに水高気を抵加すると酸素 減皮が高くなりアッシングレートの上昇に寄与す ることが知られている。

ところで、上記した従来のプラズマ処理装置 (プラズマ発生車の内圧は約 0.8Torr)を使用し で水葉気を供給しようとしても、再圧で供給される 高酸素が低圧(約24Torr)をもって供給される水 裏気保給管に逆流して、水葉気はプラズマ発生車 1 に結送されることができない。酸素ガスが流れることによって発生する圧力降下によって決定される分岐点の圧力が水葉気の圧送圧より高くなってしまうからである。

本発明の目的は、この欠点を解析することにあ り、再圧をもって結送されるガスと並行して低圧 をもって水蒸気を供給しつるプラズマ処理装置を 提供することにある。

(問題点を解決するための手段)

上記の目的は、エネルギー供給手段(11)と、 流量調節手段(121)を有するガス供給手段(12)と を具備し実空容器よりなるプラズマ発生室(1) と、はプラズマ発生度(1)とスリット(21)を有 する隔壁(2)を介して連通し、被処理体を保持 するステージ(31)を有し、換気手段(32)を有 する実空容器よりなる反応室(3)とを有するプ ラズマ処理装置において、前記ガス供給手段(12) は、それぞれが前記プラズマ発生室(1)に直接 隣口する複数の管(122)よりなることによって達 成される。

ところで、技量関節手段として使用されるマスフローに技体が流れはじめるときの技量・時間関係には、第3回に示すように、流れ始めに大量の流体が流れる傾向がある。そのため、水無気はマスフロー中で新能解似して水流と化し技器の研覧を原因する欠点がある。

この欠点を解消するため、本発型においては、 水高気を始送する質の送出端とその中で顕然影張 が発生するマスフローとの間にニードルパルプ等 の減圧弁 123を設け、水原気始送路中に水流が発 生して波路を閉塞することはない。

(作用)

本発明が解析しようとする欠点(2本の管が途中で合流する管路において、第1の管の送出端圧力が極めて高く、第2の管の送出端圧力が極めて高く、第2の管の送量が等になる欠点)は、すでに上配したとおり、第1の管の送出端と合流点の配元が第2の管の送出端圧力より高くなるからである。

本発明に係るプラズマ処理装置においては、高 圧をもってガスを圧送する第1の管も、低圧を もって水蒸気を圧送する第2の管も、ともに、プ ラズマ発生室内に関ロしており、このプラズマ発 生変の内圧は水震気を圧送する第2の管の送出端 圧力より高くされているから、ガスを圧送する第 1の管も、水蒸気を圧送する第2の管も、相互に

特開昭64-30225 (3)

干渉することなく、独立に作動することができ、 ガスも、水薫気も、スムーズに圧送される。

(実施例)

以下、図問を参照しつい、本発明の一変指例に 係るプラズマ処理策Vについて、さらに説明する。 第1図参照

図において、11は例えば電磁数等を再く事故管 等のエネルギー供給手段であり、 122はガス供給 手段12を検束する複数の管のそれぞれであり、一 方は敵衆と窒素または敵化二窒素とを供給するも のであり、他方は水薫気を供給するものであり、 双方の管とも、プラズマ発生窒1中に関ロしてい る。また、ガス供給手段12を構成する管 122のそ れぞれには、波量偶節手段としてのマスフロー 1 21が設けられており、その上流には、一方の管に は酸素源、窒素維等が設けられ、他方の管には ニードルパルプ 123を介して本事気線 124が設け られる。

2は隔盤でありスリット21を有し、このスリッ

ト21を介して、プラズマ発生室1と反応室3とが 通過している。反応室に、は、半導体ウェーハ等 被処理体を保持するスナージ31が設けられ、換気 手段32によって内圧が例えば 0.8Torrに保持される。

職業ガスを使用するダウンフローアッシング法 をなす場合、反応ガスに水震気を必加するとアッ シングレートが上昇するが、本実施例に係るアラ ズマ処理装置のガス供給手段12は、いずれもがプ ラズマ処生室1に直接関口している管 122をもっ で構成されているので、酸素と資素または酸化二 章素も、水震気も、スムーズにプラズマ発生室に 供給されて、すぐれたアッシングレートを実現し うる。

さらに、水薫気始送用の管 122に設けられているマスフロー 121の上流にはエードルパルプ 123 が設けられているので、この系のマスフロー 121 中で水道が発生して技路を閉塞することはない。

(発明の効果)

以上観明せるとおり、本発明に係るプラズで処理装置のガス供給手段は、それぞれがプラズで発生室に直接関口する複数の管であるから、相互に干渉することなく、それぞれが独立に作動することができ、ガスも、水重気も、スムーズに圧送され、酸素ガスを使用するダウンフローアッシング法をなすアッシング法のアッシングレートが向上される。

4. 西国の第単な設明

第1回は、本発明の一実施例に係るプラズマ処理 装置の構成図である。

第2回は、従来技術に係るプラズマ処理装置の排 点因である。

第3回は、マスフローの流量/時間特性を示すグ ラフである。

1・・・プラズマ発生宜、

11・・・エネルギー供給手段、

12・・・ガス供給手段、

121 ・・・マスフロー、

122 ・・・ガス供給手段を請収する質、

123 ・・・雑任弁、

124 · · · 水蒸気線、

2・・・属盤、

21・・・スリット、

3・・・反応重、

31・・・スチージ、

32 · · · 辞無不幾。

代理人 养理士 塞川雄一

特開昭64-30225(4)

