

IRAM Gen2

*i*MOTION[™]Series 15A, 600V

Integrated Power Module for Appliance Motor Drive Applications

Description

International Rectifier's IRAM256-1567A is a 15A, 600V Integrated Power Hybrid IC with Open Emitter pins for advanced Appliance Motor Drives applications such as energy efficient Air Conditioner and Washing Machine. IR's technology offers an extremely compact, high performance AC motor-driver in a single isolated package to simplify design.

This advanced HIC is a combination of IR's low VCE (on) Trench IGBT technology and the industry benchmark 3 phase high voltage, high speed driver (3.3V compatible) in a fully isolated thermally enhanced package. A built-in high precision temperature monitor and over-current protection feature, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation. Using a Single in line package with full transfer mold structure and CTI>600 minimizes PCB space and resolves isolation problems to heatsink.

Features

- Integrated gate drivers and bootstrap diodes
- Temperature monitor
- Protection shutdown pin
- Low VCE (on) Trench IGBT technology
- Undervoltage lockout for all channels
- Matched propagation delay for all channels
- 3.3V Schmitt-triggered input logic
- Cross-conduction prevention logic
- Motor Power range 0.5~1kW / 85~253Vac
- Isolation 2000VRMS min and CTI> 600
- High operating case temperature, T_{CMAX}=125°C

Base Part Number	Package Type	Standar	d Pack	Orderable Part Number	
base Fait Nulliber	rackage Type	Form	Quantity		
IRAM256-1567A	SIP1A, option 1 LF	10 tubes	80	IRAM256-1567A	
IRAM256-1567A2	SIP1A, option 2 LF	10 tubes	80	IRAM256-1567A2	

Internal Electrical Schematic - IRAM256-1567A

Absolute Maximum Ratings

Symbol	Description	Min	Max	Unit
V _{CES} / V _{RRM}	IGBT/ FW Diode Blocking Voltage		600	V
V ⁺	Positive Bus Input Voltage		450	
I _O @ T _C =25°C	RMS Phase Current (Note 1)		15	
I _O @ T _C =100°C	RMS Phase Current (Note 1)		7.5	Α
I _{PK}	Maximum Peak Phase Current (Note 2)		22.5	
F _P	Maximum PWM Carrier Frequency		20	kHz
P _D	Maximum Power dissipation per IGBT @ TC =25°C		32	W
V _{ISO}	Isolation Voltage (1min)		2000	V _{RMS}
T _J (IGBT/Diode/IC)	Operating Junction Temperature	-40	150	
T _C	Operating Case Temperature Range	-40	125	°C
T _{STG}	Storage Temperature Range	-40	125	
Т	Mounting torque Range (M3 screw)	0.8	1.0	Nm
I _{BDF}	Bootstrap Diode Peak Forward Current		1.0	Α
P _{BR_Peak}	Bootstrap Resistor Peak Power (Single Pulse)		15	W
V _{S1,2,3}			V _{B1,2,3} +0.3	V
V _{B1,2,3}	High side floating supply voltage		600	V
V _{CC}	Low Side and logic fixed supply voltage	-0.3	20	V
V _{IN}	Input voltage LIN, HIN, ITRIP, FLT/EN		7	V

Note 1: See Figure 4 and IR IPM Design Tool.

Note 2: t_P<100ms.

Inverter Section Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS1,2,3})=15V, T_J=25^{\circ}C$ unless otherwise specified.

Symbol	Description	Min	Тур	Max	Unit	Conditions
V _{(BE)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V _{IN} =0V, I _C =250μA
$\Delta V_{(BR)CES}$ / ΔT	Temperature Coeff. Of Breakdown Voltage		0.3		V/°C	V _{IN} =0V, I _C =250A (25°C - 150°C)
V	Collector-to-Emitter Saturation		1.5	1.7	V	I _C =5A
$V_{CE(ON)}$	Voltage		1.7		\ \	I _C =5A, T _J =150°C
1	Zero Gate Voltage Collector		6	80		VIN=0V, V ⁺ =600V
I _{CES}	Current		100		μA	V _{IN} =0V, V ⁺ =600V, T _J =150°C
	Diede Fermad Veltere Deer		1.85	2.35	V	I _F =5A
V_{FM}	Diode Forward Voltage Drop		1.5		V	I _F =5A, T _J =150°C
W	Bootstrap Diode Forward		1.65	1.8	V	I _F =1A
V_{BDFM}	Voltage Drop		1.3		V	I _F =1A, T _J =150°C
R _{BR}	Bootstrap Resistor Value		22		Ω	
$\Delta R_{BR}/R_{BR}$	Bootstrap Resistor Tolerance			±5	%	
C _{1,2,3,4}	VCC / VBS Capacitor Value		47		nF	
C ₆	I _{TRIP} Capacitor Value		1		nF	
C ₇	NTC Capacitor Value		2.2		nF	

Inverter Section Switching Characteristics

V_{BIAS}(V_{CC}, V_{BS1,2,3})=15V, T_J=25°C unless otherwise specified.

Symbol	Description	Min	Тур	Max	Unit	Conditions
Eon	Turn-On Switching Loss		240			I _C =5A, V ⁺ =400V
E _{OFF}	Turn-Off Switching Loss		65			V _{CC} =15V, L=1.2mH
Етот	Total Switching Loss		305		μJ	Energy losses include "tail" and
E _{REC}	Diode Reverse Recovery energy		15			diode reverse recovery
T _{RR}	Diode Reverse Recovery time		115		ns	See CT1
E _{ON}	Turn-On Switching Loss		330			I _C =5A, V ⁺ =400V
E _{OFF}	Turn-Off Switching Loss		105			V _{CC} =15V, L=1.2mH, T _J =150°C
Етот	Total Switching Loss		435		μJ	Energy losses include "tail" and
E _{REC}	Diode Reverse Recovery energy		40			diode reverse recovery
T _{RR}	Diode Reverse Recovery time		150		ns	See CT1
Q _G	Turn-On IGBT Gate Charge		19		nC	I _C =8A, V ⁺ =400V, V _{GE} =15V
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			T _J =150°C, I _C =30A, V _P =600V V ⁺ = 450V, V _{CC} =+15V to 0V See CT3	
SCSOA	Short Circuit Safe Operating Area	5			μs	T _J =25°C, V ⁺ = 400V, V _{GE} =+15V to 0V
SCSOA	Short Circuit Safe Operating Area	3			μs	T _J =100°C, V ⁺ = 400V, V _{GE} =+15V to 0V
I _{CSC}	Short Circuit Collector Current	11			Α	T _J =150°C, V _{CE} = 50V, V _{GE} =11V

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to COM. The VS offset is tested with all supplies biased at 15V differential (Note 3)

differential (N					
Symbol	Description		TYP	Max	Unit
V _{B1,2,3}	High side floating supply voltage		V _S +15	V _S +17.5	V
V _{S1,2,3}	High side floating supply offset voltage			450	V
V _{CC}	Low side and logic fixed supply voltage		15	16.5	V
V _{IN}	Input voltage LIN, HIN, ITRIP, FLT/EN	V _{SS}		V _{SS} +5	V
HIN	High side PWM pulse width				μs
Deadtime	External dead time between HIN and LIN	0.5			μs

Note 3: For more details, see IR21364 data sheet

Note 4: Logic operational for V_S from COM-5V to COM+600V. Logic state held for V_S from COM-5V to COM-V_{BS}. (please refer to DT97-3 for more details)

Static Electrical Characteristics Driver Function

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$)=15V, T_J =25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM and are applicable to all six channels. (Note 3)

Symbol	Description	Min	TYP	Max	Unit
V _{IN,TH+}	Positive going input threshold for LIN, HIN, FLT/EN	2.5			V
$V_{\text{IN,TH-}}$	Negative going input threshold for LIN, HIN, FLT/EN			0.8	V
V _{CCUV+} , V _{BSUV+}	VCC/VBS supply undervoltage, Positive going threshold	10.6	11.1	11.6	V
V _{CCUV-, VBSUV-}	VCC/VBS supply undervoltage, Negative going threshold	10.4	10.9	11.4	V
V _{CCUVH, VBSUVH}	VCC and VBS supply undervoltage lock-out hysteresis		0.2		V
I _{QBS}	Quiescent VBS supply current			150	μΑ
I _{QCC}	Quiescent VCC supply current			3.2	mA
I _{LK}	Offset Supply Leakage Current			50	μΑ
I _{IN+}	Input bias current VIN=3.3V for LIN, HIN, FLT/EN		100	195	μΑ
I _{IN-}	Input bias current VIN=0V for LIN, HIN, FLT/EN	-1			μΑ
I _{TRIP+}	I _{TRIP} bias current V _{ITRIP} =3.3V		3.3	6	μΑ
I _{TRIP-}	I _{TRIP} bias current V _{ITRIP} =0V	-1			μΑ
V _{ITRIP}	I _{TRIP} threshold Voltage	0.44	0.49	0.54	V
V _{ITRIP_HYS}	I _{TRIP} Input Hysteresis		0.07		V
R _{FLT}	Fault low on resistance		50	100	Ω

Dynamic Electrical CharacteristicsV_{BIAS} (V_{CC}, V_{BS1,2,3})=15V, T_J=25°C, unless otherwise specified. Dynamic parameters are guaranteed by design. (Note 3)

Symbol	Description	Min	Тур	Max	Unit	Conditions
T _{ON}	Input to Output propagation turn-on delay time (see Fig.12)			1.15	μs	I _C =5A, V ⁺ =300V
T _{OFF}	Input to Output propagation turn-off delay time (see Fig.12)			1.15	μs	10-5A, V =500V
T_{FILIN}	Input filter time (HIN,LIN)		310		ns	V _{IN} =0 or V _{IN} =5V
T _{FILEN}	Input filter time (FLT/EN)	100	200		ns	V _{EN} =0 or V _{EN} =5V
T _{EN}	EN low to six switch turn-off propagation delay (see fig. 3)			1.35	μs	V _{IN} =0 or V _{IN} =5V, V _{EN} =0
T_{FLT}	I _{TRIP} to Fault propagation delay	400	600	800	ns	V _{IN} =0 or V _{IN} =5V, V _{ITRIP} =5V
T _{BLT-TRIP}	I _{TRIP} Blanking Time	100	150		ns	V _{IN} =0 or V _{IN} =5V, V _{ITRIP} =5V
T _{ITRIP}	I _{TRIP} to six switch turn-off propagation delay (see fig. 2)			1.5	μs	I _C =5A, V ⁺ =300V
D _T	Internal Dead Time injected by driver	220	290	360	ns	V _{IN} =0 or V _{IN} =5V
M _T	Matching Propagation Delay Time (On & Off) all channels		40	75	ns	External dead time> 400ns
т	Post I _{TRIP} to six switch turn-off	1.1	1.7	2.3	ma	$T_C = 25^{\circ}C$
T _{FLT-CLR}	clear time (see fig. 2)	1	1.5	1.9	ms	T _C = 100°C

5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback September 4, 2015

Thermal and Mechanical Characteristics

Symbol	Description	Min	Тур	Max	Unit	Conditions
R _{TH(J-C)}	Thermal resistance, per IGBT		3.2	4.0		Inverter Operating Condition
R _{TH(J-C)}	Thermal resistance, per Diode		5.0	6.3	°C/W	Flat, greased surface. Heatsink compound thermal conductivity
R _{TH(C-S)}	Thermal resistance, C-S		0.1			1W/mK
CTI	Comparative Tracking Index	600			V	
BKCurve	Curvature of module backside	0			μm	Convex only

Note 5: Flatness of the heatsink should be between -50µm to 100µm.

Internal NTC - Thermistor Characteristics

Symbol	Description	Min	Тур	Max	Unit	Conditions
R ₂₅	Resistance	44.65	47	49.35	kΩ	T _C = 25°C
R ₁₂₅	Resistance	1.27	1.41	1.56	kΩ	T _C = 125°C
В	B-constant (25-50°C)	3989	4050	4111	k	$R_2 = R_1 e^{[B(1/T_2 - 1/T_1)]}$
Temperature Range		-40		125	°C	
Typ. Dissipation constant			1		mW/°C	T _C = 25°C

Input-Output Logic Level Table

FLT/EN	I _{TRIP}	HIN1,2,3	LIN1,2,3	U,V,W
1	0	1	0	V ⁺
1	0	0	1	0
1	0	0	0	Off
1	0	1	1	Off
1	1	Х	Х	Off
0	Х	Х	Х	Off

Qualification Information[†]

Qualification information				
Qualification Level		Industrial†† (per JEDEC JESD 47E)		
ESD	Machine Model	Class C (per JEDEC standard JESD22-A115-A)		
230	Human Body Model	Class 1C (per JEDEC standard JESD22-A114-D)		
RoHS Compliant		Yes		

[†] Qualification standards can be found at International Rectifier's web site http://www.irf.com/

www.irf.com © 2015 International Rectifier Submit Datasheet Feedback September 4, 2015

^{††} Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.

Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.

Module Pin-Out Description

Pin	Name	Description				
1	VB3	High Side Floating Supply Voltage 3				
2	W,VS3	Output 3 - High Side Floating Supply Offset Voltage				
3	N/A	None				
4	IN/A	NOTE				
5	VB2	High Side Floating Supply Voltage 2				
6	V,VS2	Output 2 - High Side Floating Supply Offset Voltage				
7	N/A	None				
8	IN/A	Notic				
9	VB1	High Side Floating Supply Voltage 1				
10	U,VS1	Output 1 - High Side Floating Supply Offset Voltage				
11	N/A	None				
12	IN/A	Notic				
13	V ⁺	Positive Bus Input Voltage				
14	N/A	None				
15	IN/A	Notic				
16	I _{TRIP}	Current Protection Pin				
17	VRU	Low Side Emitter Connection - Phase 1				
18	FLT/EN	Fault Output and Enable Pin				
19	VRV	Low Side Emitter Connection - Phase 2				
20	HIN1	Logic Input High Side Gate Driver - Phase 1				
21	VRW	Low Side Emitter Connection - Phase 3				
22	HIN2	Logic Input High Side Gate Driver - Phase 2				
23	HIN3	Logic Input High Side Gate Driver - Phase 3				
24	LIN1	Logic Input Low Side Gate Driver - Phase 1				
25	LIN2	Logic Input Low Side Gate Driver - Phase 2				
26	LIN3	Logic Input Low Side Gate Driver - Phase 3				
27	VTH	Temperature Feedback				
28	VCC	+15V Main Supply				
29	VSS	Negative Main Supply				

Typical Application Connection IRAM256-1567A

- 1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. In order to provide good decoupling between VCC-VSS and VB1,2,3-VS1,2,3 terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically $0.1\mu F$, are strongly recommended.
- 3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9. Bootstrap capacitor value must be selected to limit the power dissipation of the internal resistor in series with the VCC. (see maximum ratings Table on page 3).
- 4. After approx. 2ms the FAULT is reset. (see Dynamic Characteristics Table on page 5).
- 5. PWM generator must be disabled within Fault duration to guarantee shutdown of the system, overcurrent condition must be cleared before resuming operation.

Figure 4. Maximum Sinusoidal Phase Current vs. PWM Switching Frequency Sinusoidal Modulation, T_J=150°C, MI=0.8, PF=0.6, fmod=50Hz

Figure 5. Maximum Sinusoidal Phase Current vs. Modulation Frequency Sinusoidal Modulation, $T_J=150$ °C, $T_C=100$ °C, MI=0.8, PF=0.6

Figure 6. Total Power Losses vs. PWM Switching Frequency Sinusoidal Modulation, V⁺=400V, T_J=150°C, MI=0.8, PF=0.6, fmod=50Hz

Figure 7. Total Power Losses vs. Output Phase Current Sinusoidal Modulation, V⁺=400V, T_J=150°C, MI=0.8, PF=0.6, fmod=50Hz

Figure 8. Maximum Allowable Case Temperature vs. Output RMS Current per Phase Sinusoidal Modulation, V⁺=400V, T₁=150°C, MI=0.8, PF=0.6, fmod=50Hz

Figure 9. Estimated Maximum IGBT Junction Temperature vs. Thermistor Temperature Sinusoidal Modulation, V⁺=400V, Iphase=5Arms, fsw=16kHz, fmod=50Hz, MI=0.8, PF=0.6

Figure 10. Thermistor Readout vs. Temperature (4.7kohm pull-up resistor, 5V) and Normal Thermistor Resistance values vs. Temperature Table.

Figure 11. Recommended Bootstrap Capacitor Value vs. Switching Frequency

Figure 12a. Input to Output propagation turnon delay time.

Figure 12b. Input to Output propagation turnoff delay time.

Figure 12c. Diode Reverse Recovery.

Figure CT1. Switching Loss Circuit

Figure CT2. S.C.SOA Circuit

 I_N I_{O}

Figure CT3. R.B.SOA Circuit

Package Outline IRAM256-1567A

Dimensions in mm For mounting instruction see AN-1049 Missing pins: 3,4,7,8,11,12,14,15

note1: Unit tolerance is +/-0.5mm, Unless Otherwise Specified.

note2: Mirror Surface Mark indicates Pin 1 Identification.

note3: Part Number Marking. Characters Font in this drawing differs from Font shown on Module.

note4: Lot Code Marking. Characters Font in this drawing differs from Font shown on Module.

note5: Date Code Marking. Characters Font in this drawing differs from

Font shown on Module.

Missing pins: 3,4,7,8,11,12,14,15

Package Outline IRAM256-1567A2

Dimensions in mm For mounting instruction see AN-1049

note1: Unit tolerance is +/-0.5mm, Unless Otherwise Specified.

note2: Mirror Surface Mark indicates Pin 1 Identification.

note3:

Part Number Marking. Characters Font in this drawing differs from Font shown on Module.

note4: Lot Code Marking.
Characters Font in this drawing differs from Font shown on Module.

note5: Date Code Marking.

Characters Font in this drawing differs from Font shown on Module.

Data and Specifications are subject to change without notice IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information