Tweede orde lineaire differentiaalvergelijkingen

1 Homogene vergelijkingen met constante coëfficiënten

Deze zijn van de vorm

$$ay'' + by' + cy = 0.$$

Om de oplossing te vinden zoekt men de wortels van de karakteristieke vergelijking

$$ar^2 + br + c = 0.$$

Noem deze wortels r_1 en r_2 . Dan zijn er drie gevallen te beschouwen:

• $r_1 \neq r_2 \in \mathbb{R}$:

$$y_c(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}.$$

• $r_1 = r_2$:

$$y_c(t) = c_1 e^{r_1 t} + c_2 t e^{r_1 t}.$$

• $r_1 = \lambda + i\mu$, $r_2 = \lambda - i\mu$:

$$y_c(t) = c_1 e^{\lambda t} \cos \mu t + c_2 e^{\lambda t} \sin \mu t.$$

2 Niet-homogene vergelijkingen

Deze zijn van de vorm

$$ay'' + by' + cy = g(t).$$

2.1 Methode van de onbepaalde coëfficiënten

Deze methode gebruik je best als g(t)

- exponentieel
- sinus, cosinus
- veelterm

of sommen/producten van dergelijke functies is. De oplossing bepaalt men dan als volgt:

- 1. Bepaal de algemene oplossing van de homogene vergelijking $\rightarrow y_c(t)$.
- 2. Zoek een particuliere oplossing Y(t) door een goed voorstel te doen.
- 3. $y(t) = y_c(t) + Y(t)$.

2.2 Variatie van de parameters

Indien een algemene oplossing van de homogene vergelijking gegeven wordt door

$$c_1y_1(t) + c_2y_2(t),$$

dan vervangen we de constanten c_1 en c_2 door functies $u_1(t)$ en $u_2(t)$. We zoeken dan deze functies zodat

$$y(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

een oplossing is van de niet-homogene vergelijking. $u_1(t)$ en $u_2(t)$ bepalen we als volgt:

- Bereken y'(t).
- Leg als eerste voorwaarde op dat y'(t) geen afgeleiden van $u_1(t)$ en $u_2(t)$ bevat.
- Bereken ook y''(t).
- Vul alles in in de niet-homogene vergelijking, je bekomt een tweede voorwaarde.
- Via de opgelegde voorwaarden bekom je een stelsel in de onbekenden $u'_1(t)$ en $u'_2(t)$ waaruit je dan $u_1(t)$ en $u_2(t)$ kan vinden.