

Mathématiques et Calcul : Examen de rattrapage Mercredi 11 juin 2014

L1 : Licence Sciences et Technologies, mention Mathématiques, Informatique et Applications

Nombre de pages de l'énoncé : 2. Durée 1h30.

Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

On rappelle les développements limités suivants. Ils sont donnés au voisinage de 0 (n et p sont des entiers quelconques).

$$\exp(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p})$$

$$\sin(x) = x - \frac{x^3}{6} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+1})$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)$$

Exercice 1. a) Mettre sous la forme trigonométrique (càd sous la forme $\rho e^{i\theta}$, avec $\rho > 0, \theta \in \mathbb{R}$) le nombre complexe $\Delta = 1 + i\sqrt{3}$.

- b) Trouver un nombre complexe δ tel que $\delta^2 = \Delta$.
- c) Résoudre, dans \mathbb{C} , l'équation $\frac{z^2}{4} + z i\sqrt{3} = 0$ (les solutions seront données sous la forme algébrique, càd sous la forme a + ib, avec $a, b \in \mathbb{R}$).

1+2+3 points

a) $\Delta = 2e^{i\pi/3}$ b) $\delta = \sqrt{2}e^{i\pi/6}$ vérifie $\delta^2 = \Delta$. c) Le discriminant est le nombre Δ introduit au dessus, donc les solutions sont

$$\frac{-1 \pm \delta}{1/2} = -2 \pm 2\sqrt{2}e^{i\pi/6} = -2 \pm (\sqrt{6} + i\sqrt{2})$$

Exercice 2. a) Montrer que pour tout $\theta \in \mathbb{R}$,

$$2\cos^2(\theta) = 1 + \cos(2\theta).$$

b) Soit $\alpha \in [0, \pi/2]$. On définit la suite (u_n) par

$$u_0 = 2\cos(\alpha)$$
 ; $u_{n+1} = \sqrt{2 + u_n}$ pour tout $n \geqslant 0$.

Montrer, par récurrence, que pour tout $n \ge 0$,

$$u_n = 2\cos\left(\frac{\alpha}{2^n}\right).$$

- c) En déduire la limite de (u_n) .
- d) On définit les suites

$$v_n = \arccos(u_n/2)$$
 ; $S_n = \sum_{k=0}^n v_k$.

Exprimer v_n puis S_n fonction de α et de n, puis en donner les limites de v_n et S_n lorsque n tend vers l'infini.

e) On pose maintenant

$$w_n = 4^n(2 - u_n).$$

Donner la limite de w_n lorsque n tend vers l'infini.

$$2+3+2+4+3$$
 points
a) Utiliser $\cos(\theta) = \frac{e^{i\theta}+e^{-i\theta}}{2}$. b) Rec facile. c) $\lim = 2\cos(0) = 2$. d) $v_n = \frac{\alpha}{2^n} \to 0$, $S_n = 2\alpha(1-2^{-(n+1)}) \to 2\alpha$. e) $u_n = 2-\frac{\alpha^2}{4^n} + o(4^{-n})$ dc $\lim w_n = \alpha^2$.

Exercice 3. Donner le développement limité au voisinage de 0 de

a)
$$\frac{1}{2-4x+6x^2}$$
 à l'ordre 2 b) $\frac{e^x}{1-2x}$ à l'ordre 3

c)
$$\frac{\ln(1+x)}{\cos(x)}$$
 à l'ordre 3 d) $e^x \sin(x)$ à l'ordre 3

3+3+3+3 points

$$\frac{1}{2-5x+x^2} = \frac{1}{2} \frac{1}{1-2x+3x^2} = \frac{1}{2} (1+2x-3x^2+(2x-3x^2)^2+o(x^2)) = \frac{1}{2} (1+2x+x^2+o(x^2))$$

$$\frac{e^x}{1-2x} = (1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3))(1+2x+4x^2+8x^3+o(x^3))$$

$$= 1+3x+(4+2+\frac{1}{2})x^2+(8+4+1+\frac{1}{6})x^3+o(x^3)$$

$$= 1+3x+\frac{13}{2}x^2+\frac{79}{6}x^3+o(x^3)$$

$$\frac{\ln(1+x)}{\cos(x)} = (x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^2))(1+\frac{x^2}{2}+o(x^3)) = x-\frac{x^2}{2}+\frac{5}{6}x^3+o(x^3)$$

$$e^{x}\sin(x) = (1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o(x^{3}))(x-\frac{x^{3}}{6}+o(x^{3}))$$
$$= x+x^{2}+(\frac{1}{2}-\frac{1}{6})x^{3}+o(x^{3})$$
$$= x+x^{2}+\frac{x^{3}}{3}+o(x^{3})$$

Exercice 4. Donner les limites des fonctions suivantes lorsque x tend vers 0

$$f(x) = \frac{e^{x^2} - \cos(x)}{x^2} \qquad g(x) = \frac{\ln(1+x) - \sin(x)}{x} \qquad h(x) = \frac{\cos(x) - \sqrt{1-x^2}}{x^4}$$

$$3 + 3 + 3 + 3 \text{ points. } \lim f = \frac{3}{2}, \ \lim g = 0, \ \lim h = \frac{1}{4!} + \frac{1}{8} = \frac{4}{4!} = \frac{1}{6}$$

Exercice 5. Soit
$$\mathcal{B} = \{\vec{u}_1 = (1,2), \vec{u}_2 = (3,1)\}$$
. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+2y,3x-y)$

- a) Montrer que f est linéaire.
- b) Donner la matrice $M_{f,\mathcal{B}_0,\mathcal{B}_0}$ de f dans la base canonique $\mathcal{B}_0 = \{\vec{e}_1 = (1,0), \vec{e}_2 = (0,1)\}$ de \mathbb{R}^2 .
- c) Montrer que \mathcal{B} est une base de \mathbb{R}^2 .
- d) Donner la matrice de passage $P = M_{Id,\mathcal{B},\mathcal{B}_0}$ de \mathcal{B}_0 à \mathcal{B} .
- e) En déduire la matrice $M_{f,\mathcal{B},\mathcal{B}}$ de f dans la base \mathcal{B} .
- f) Soient

$$F = \{(x,y) \in \mathbb{R}^2 / 2x - 3y = 0\} \qquad G = \{f(\vec{u}) / \vec{u} \in F\} \qquad H = \{\vec{v} \in \mathbb{R}^2 / f(\vec{v}) \in F\}.$$

Montrer que F,G et H sont des sous-espaces vectoriels de \mathbb{R}^2 . Quelles sont leurs dimensions?

$$3+3+3+3+5+6$$
 points

a)
$$f(\alpha u + \beta v) = \dots$$
 b) $\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ c) liberté d) $P = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$ e) On a $P^{-1} = -\frac{1}{5} \begin{pmatrix} 1 & -3 \\ -2 & 1 \end{pmatrix}$, donc

$$M_{f,\mathcal{B},\mathcal{B}} = P^{-1}M_{f,\mathcal{B}_{0},\mathcal{B}_{0}}P$$

$$= -\frac{1}{5} \begin{pmatrix} 1 & -3 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$

$$= -\frac{1}{5} \begin{pmatrix} 1 & -3 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 5 & 5 \\ 1 & 8 \end{pmatrix}$$

$$= -\frac{1}{5} \begin{pmatrix} 2 & -19 \\ -9 & -2 \end{pmatrix}$$

f) Ss-ev : stablilité par comb. lin. Dimensions = 1, on peut donner des bases (le fait qu'un isomorphisme conserve la dim des ss-ev n'est pas dans le cours).