WHAT IS CLAIMED IS:

1. A method of processing a silver halide photosensitive material comprising:

processing, with a developer in which a solution physical development arises, the silver halide photosensitive material containing at least one compound selected from the group consisting of compounds of the following types 1 to 4:

(Type 1)

5

20

25

a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation product is capable of releasing further two or more electrons accompanying a subsequent bond cleavage reaction;

(Type 2)

a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation product is capable of releasing further one electron accompanying a subsequent carbon-carbon bond cleavage reaction, and the compound having, in its molecule, two or more groups adsorptive to silver halide;

(Type 3)

a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation

product is capable of releasing further one or more electrons after going through a subsequent bond forming reaction; and

(Type 4)

5

10

15

a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation product is capable of releasing further one or more electrons after going through a subsequent intramolecular ring cleavage reaction.

2. The method of processing a silver halide photosensitive material according to claim 1, wherein the compound of type 1 is represented by the following general formula (1-1) or (1-2), the compound of type 2 is represented by the following general formula (2), the compound of type 3 is represented by the following formula (3), and the compound of type 4 is represented by the following formula (4):

wherein in the general formula (1-1), RED_{11} represents a reducing group; L_{11} represents a split-off group; R_{112} represents a hydrogen atom or substituent; and R_{111} represents a group of nonmetallic atoms capable of forming a cyclic structure corresponding to a tetrahydro form, hexahydro form or octahydro form of a 5-membered or 6-membered aromatic ring (including an aromatic heterocycle) together with the carbon atom (C) and RED_{11} ,

wherein in the general formula (1-2), RED_{12} and L_{12} have the same meanings as those of RED_{11} and L_{11} of the general formula (1-1), respectively; each of R_{121} and R_{122} represents a hydrogen atom or substituent capable of substituting on the carbon atom; and ED_{12} represents an electron-donating group, wherein the groups R_{121} and RED_{12} , the groups R_{121} and R_{122} , or the groups ED_{12} and RED_{12} may be bonded with each other to thereby form a cyclic structure,

wherein in the general formula (2), ${\rm RED}_2$ has the same meaning as that of ${\rm RED}_{12}$ of the general formula

20

25

5

10

15

(1-2); L_2 represents a split-off group; and each of R_{21} and R_{22} represents a hydrogen atom or substituent, wherein RED_2 and R_{21} may be bonded with each other to thereby form a cyclic structure, provided that the compound represented by the general formula (2) is a compound having, in its molecule, two or more groups adsorptive to silver halide,

5

10

15

20

25

wherein in the general formula (3), RED $_3$ has the same meaning as RED $_{12}$ of the general formula (1-2); Y_3 represents a reactive group having a carbon-carbon double bond moiety or a carbon-carbon triple bond moiety, which moiety being capable of forming a new bond by reacting with a one-electron oxidized RED $_3$, and Y_3 ,

wherein in the general formulae (4-1) and (4-2), each of RED_{41} and RED_{42} has the same meaning as RED_{12} of the general formula (1-2); each of R_{40} to R_{44} and R_{45} to R_{49} represents a hydrogen atom or substituent; and in the general formula (4-2), Z_{42} represents $-\operatorname{CR}_{420}\operatorname{R}_{421}$, $-\operatorname{NR}_{423}$ or -O-, wherein each of R_{420} and R_{421} represents a hydrogen atom or substituent; and R_{423} represents a hydrogen atom, alkyl group, aryl group or heterocyclic group.

3. The method of processing a silver halide photosensitive material according to claim 1, wherein the compound selected from the group consisting of

those of types 1 to 4 is one having, in its molecule, an adsorptive group or a partial structure of sensitizing dye.

4. A silver halide reversal photosensitive material comprising at least one compound selected from the group consisting of those of types 1 to 4 described in claim 1.

5

10

15

20

25

- 5. The silver halide reversal photosensitive material according to claim 4, wherein the silver halide reversal photosensitive material has a photosensitive layer containing a silver halide emulsion, on a support, and the at least one compound selected from the group consisting of those of types 1 to 4 is incorporated in the silver halide emulsion.
- 6. The silver halide reversal photosensitive material according to claim 4, wherein the silver halide reversal photosensitive material has a layer containing at least one compound whose oxidation potential is in the range of 0.18 to 0.90 eV.
- 7. The silver halide reversal photosensitive material according to claim 4, wherein the silver halide reversal photosensitive material contains silver halide emulsion grains each having a shell provided on a core, wherein the shell is formed with silver halide after a chemical sensitization step and the average shell thickness of each grain is 20 nm or less.
 - 8. The silver halide reversal photosensitive

material according to claim 4, wherein the silver halide reversal photosensitive material is a color reversal photosensitive material containing at least one azole magenta coupler represented by the following general formula (MC-I):

5

10

15

$$\begin{array}{c|c} R_1 & X \\ N & NH \\ G_1 = G_2 \\ R_2 \end{array} \qquad (MC-I)$$

wherein R_1 represents a hydrogen atom or substituent; one of G_1 and G_2 represents a carbon atom, and the other represents a nitrogen atom; and R_2 represents a substituent that substitutes one of G_1 and G_2 which is a carbon atom, wherein R_1 and R_2 may further have a substituent, a polymer of the general formula (MC-I) may be formed via R_1 or R_2 , and polymer chain may be bonded via R_1 or R_2 ; X represents a hydrogen atom or a group that is capable of splitting off by a coupling reaction with an oxidized aromatic primary amine color developing agent.