Bounded Trajectories

Numerically solving the equations parametrically, with parameter μ (mass ratio) for bounded trajectories and generating plots for various μ .

 $l_{n[\theta]} = \text{Table}[ParametricPlot[Evaluate[\{r[\mu][t] Sin[\theta[\mu][t]], -r[\mu][t] Cos[\theta[\mu][t]]\} /. sol],$

 $\{t, 0, 10\}, PlotLegends \rightarrow \{\mu\}], \{\mu, 1, 20, 0.1\}];$

In[•]:= ListAnimate[fr]

Plots for varying μ , with μ indicated on right edge

 $\begin{aligned} &\inf_{\boldsymbol{\theta}} & \text{ } &$

-0.5

-1.0

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Singular Trajectories

Numerically solving for for singular trajectories with initial conditions r(0) = 0, $\theta(0) = 90^{0}$, v(0) = 4 and $\omega(0) = 0$ and generating plots:

 $ln[\cdot] := fr1 = Table[ParametricPlot[Evaluate[\{r[\mu][t] Sin[\theta[\mu][t]], -r[\mu][t] Cos[\theta[\mu][t]]\} /. sol1],$ $\{t, 0, 50\}$, PlotLegends $\rightarrow \{\mu\}$, Frame -> True], $\{\mu, 1, 10, 0.1\}$]

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

0.0

0.5

0.0

0.5

Terminating Trajectories

Varying the initial angle $\theta(0)$ for mass ratio $\mu = 3$, we obtain terminating trajectories that always return to the origin

```
ln[\cdot] := sol2 = ParametricNDSolve[{v'[t] == (r[t] \times \omega[t]^2 + 9.8 (Cos[\theta[t]] - 3))/(4)},
                                                                 \omega'[t] == (-2 \, v[t] \times \omega[t] - 9.8 \, Sin[\theta[t]]) / \, r[t], \, r'[t] == v[t], \, \theta'[t] == \omega[t], \, r[0] == 10 \, (-10), \, r[0] == 10 \, (-1
                                                                \boldsymbol{\theta}[0] == \boldsymbol{\theta}[0] + \boldsymbol{\theta}[0] == \boldsymbol{\theta}[0] + \boldsymbol{\theta}[0] == \boldsymbol{\theta}[0], \; \{r, \, v, \; \boldsymbol{\theta}[0], \; \boldsymbol{\theta}[0], \; \{t, \, 0, \, 50\}, \; \{\boldsymbol{\theta}[0], \; \mathsf{MaxSteps} \rightarrow 200000]
v → ParametricFunction
                                                                                                                                                                                                                                                                                         Expression: \theta Parameters: \{\theta 0\}
                                                \theta \rightarrow \text{ParametricFunction} 
                                               \omega \rightarrow ParametricFunction
```

 $ln[\bullet] := Table[ParametricPlot[Evaluate[\{r[\theta 0][t] Sin[\theta[\theta 0][t]], -r[\theta 0][t] Cos[\theta[\theta 0][t]]\} /. sol2],$ $\{t, 0, 50\}$, PlotLegends $\rightarrow \{\theta 0\}$, Frame -> True], $\{\theta 0, 0.6, Pi, 0.5\}$]

