Math 542-Modern Algebra II

Taylor Lee

March 3, 2014

Problem:

(Mon Feb 24) Let R be a commutative ring with 1. Let I be a maximal ideal in R. Suppose ab=0. Prove that $a\in I$ or $b\in I$.

Problem:

(Mon Feb 24) Consider $p(x) = x^3 + x + 1$ as a polynomial in $\mathbb{Z}_2[x]$. Suppose p has a root α is in some field extension. Construct the multiplication table for $\mathbb{Z}_2[\alpha] = ^{def} \{a + b\alpha + c\alpha^2 | a, b, c \in \mathbb{Z}_2\}$

Solution:

(a)

0	0	1	α	$1+\alpha$	$\alpha + \alpha^2$	$1+\alpha+\alpha^2$
0	0	0	0	0	0	0
1	0	1	α	$1+\alpha$	$\alpha + \alpha^2$	$1+\alpha+\alpha^2$

- (b) The multiplicative group of \mathbb{Z}_{17} is the cyclic group C_{16} . This group has 8 generators.
- (c) The multiplicative group of \mathbb{Z}_{31} is the cyclic group C_{30} . This group has 8 generators.