Simulating reaction of $Ne^* + OCS$ collision

Marcin Welter

Winter semester 2024/2025

1 Improved potential interpolations

Potential is now fitted to the force field instead of interpolation, because of smoothness issues. Gamma potentials now have correct vanishing derivatives for angles 0 and π .

Figure 1: Fitting of intermolecular potential

Figure 2: Interpolation of $X\Pi$ gamma potential

Figure 3: Interpolation of $B\Sigma$ gamma potential

Figure 4: Interpolation of $A\Pi$ gamma potential

2 Truth tests for coriolis effect

Comparison of the ground state of the system defined by the space-fixed Hamiltonian

$$\hat{H} = -\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + \frac{\hat{L}^2}{2\mu R^2} + V(R, \theta),\tag{1}$$

with our system in body-fixed frame for which we make rotational constant B=0 and the Hamiltonian is

$$\hat{H} = -\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + \frac{(\hat{J} - \hat{j})^2}{2\mu R^2} + V(R, \theta). \tag{2}$$

The conserved quantities for the first system is the angular momentum projection number m_l , in case of the body-fixed frame the conserved quantity is the total angular momentum J.

In the case of harmonic oscillator potential

$$V(r,\theta) = \frac{\mu\omega^2}{2}(r - r_0)^2.$$
 (3)

The calculated ground state of the space-fixed Hamiltonian is then ω for m=0. For the body-fixed Hamiltonian the calculated ground state for J=2 is also ω with coriolis effect and 1.15ω if we neglect coriolis effect.

Figure 5: Wave function calculated ground state for J=2 without coriolis effect.

Figure 6: Wave function calculated ground state for J=2 with coriolis effect.

For potential of the form $V(r, \theta, \phi)$ the space-fixed Hamiltonian doesn't have any conserved angular numbers,

however in body-fixed frame we have still J conserved. It can be deduced that in the case of $B=0,\,J$ gives additional infinite degeneracy, because of that for every conserved J the ground state is ω , however only after the inclusion of coriolis effect.

3 Reaction rate dependence on coriolis effect body-fixed projection cutoff

Animations of collisions with high $\Omega_{\rm max}$ showed that the mixing of total projection is up to $\Omega=45$. However reaction rate calculations converge for $\Omega_{\rm max}=2$, convergence test is shown below.

Figure 7: Calculated reaction rates dependence on Ω_{max} .

Figure 8: Calculated reaction rate ratio between j=1 and j=0, dependence on Ω_{max} .

For the initial state j=1 being the superposition of initial projections

$$|\psi\rangle = \frac{1}{3} \left(e^{i\phi_{-1}} |-1\rangle + |0\rangle + e^{\phi_1} |1\rangle \right),$$
 (4)

the reaction rate for different initial relative phases is shown below.

(a) Reaction rates for j=1 for different phases. (b) Reaction rate for j=1 for different phases

Figure 9: Calculated reaction rates dependence for different phases.

Figure 10: Calculated alignments during the collision for different relative phases.

4 Reaction rate ratios for force field scalings

Scaling the parameters of the force field did not change the reaction rate ratio from value of 1.