Lecture 2 OriC finding

Aaron McKenna - 2023/4/5

Survey results

- We talked about this a little bit last time, but I got a chance to read through all the responses
- Lots of interest in RNA sequencing and single-cell sequencing, the needed tools / applications
- Good feedback on the grades, lots of thoughtful comments, everyone has a personal but generally well thought-out idea on passing
- Some interest in pipelines, specific tools, things we'd like to cover but are going to be stretched already. Projects can be a place to fit this in

Schedule (draft)

			1		
Month	Day	Room	Class #	Content	
March	28	-	1	I'm out of town, no class	
	30	Kellogg 100	2	Overview of the class, 'the semi-flipped experiment', final project discussions. python notebooks, genomic structure and information content, genome assembly	
April	4	Kellogg 100	3	chapter 1: finding enriched sequences, motif finding, kmers, regulatory sequences	
	6	Kellogg 100	4	chapter 2: In-class entropy and hidden messages	
	11	Kellogg 100	5	chapter 2: probabilistic motif finding, gibbs sampling	
	13	No class	6	chapter 2: In-class motif 'thought experiment'	
	18	Kellogg 100	7	chapter 3: How do we assemble genomes? -	
	20	Kellogg 200	8	chapter 3: In class assembly exercise - maybe move down?	
	25	Kellogg 100	9	chapter 5: Aligning two sequences: Dynamic programming	
	27	Kellogg 200	10	chapter 5: In-class walking around NYC exercises	
May	2	Kellogg 100	11	chapter 8/9: RNA sequencing, read mapping, counting, and enrichment maybe move up?	
	4	Kellogg 200	12	chapter 8/9: In-class RNA sequencing experimental design exercise	
	9	Chilcott	13	chapter 8: clustering: RNA to identity	
	11	Chilcott	14	chapter 8: In-class exploring k-means	
	16	Kellogg 200	15	chapter 10: probabilistic modeling of hidden states using HMMs	
	18	Vail 120 Auditorium	16	chapter 10: In-class HMM and CpG island exercise	
	23	Vail 120	17	chapter 10: HMMs wrap-up, extensions to more complex models	
	25	Chilcott	18	final project presentations	
	30	Kellogg 200	19	final project presentations	
June	1	Kellogg 100	20	final project presentations (if needed)	

Group choices

- Contacted personal project people, most people have gotten back to me
- Email me if you have an established group set-up with the members today
- I'll assign groups for the rest tomorrow, taking into account people's interests

Personal project
No Idea
Join a project
Existing comp. Tools
Public dataset

Where we left off

 We're interested in solving a central problem for cells: where do you start replicating a genome

Where we left off

Let's run a very simple computational analysis: take frequency of each nucleotide in 100,000 nucleotide windows of *E. coli*

Let's run a very simple computational analysis: take frequency of each nucleotide in 100,000 nucleotide windows of *E. coli*

Why would there be more C on half the genome?

Let's run a very simple computational analysis: take frequency of each nucleotide in 100,000 nucleotide windows of *E. coli*

Why would there be more C on half the genome?

And why would the story be opposite when we count G's?

The pattern is even more stark if we take the difference between the frequency of G and the frequency of C

DNA Replication

Not DNA Replication

5' 3' 11 5' 5'

Simple, but wrong: DNA polymerases are unidirectional: they can only traverse a parent strand in the $3' \rightarrow 5'$ direction.

DNA Replication is done, with implications

Deamination is the answer

Cytosine (C) rapidly mutates into thymine (T)* through deamination; deamination rates rise **100-fold** when DNA is single-stranded

Deamination is the answer

Cytosine (C) rapidly mutates into thymine (T)* through deamination;

Intuition for where we'll see the G/C skew

C high/G low → #G - #C is DECREASING as we walk along the LEADING half-strand

Clow/G high → #G - #C is INCREASING as we walk along the LAGGING half-strand

Which we can turn into a diagram

And use as a readout for OriC detection

Next week

- K-mers onto motifs!
- Gibbs sampling!
- PWM and more!
- No Thursday class!
- 'Quiz' on material so far, exercise today, class material switches

Motifs

а

G	Τ	С	t
С	С	g	G
a	С	t	а

а

Profile(*Motifs*)

		,	-	
A:	0.4	0.2	0.2	0.2
C:	0.2	0.4	0.2	0.2
G:	0.2	0.2	0.4	0.2
T:	0.2	0.2	0.2	0.4

Lets try group work