Lecture 3: Advanced Strategic Form Games

Instructor: Fei Tan

@econdojo BusinessSchool101

Saint Louis University

Date: September 18, 2025

The Road Ahead

- 1. Probability Distributions
- 2. Mixed Strategies Nash Equilibria
- 3. Rock-Paper-Scissors Analysis
- 4. Indifference Principle
- 5. Generalized Rock-Paper-Scissors
- 6. Mixed Strategies as Population Parameters

Probability Distributions

A **probability distribution** is a set of events and the probability each event occurs **Examples**:

- Coin flip: P(Heads) = 1/2, P(Tails) = 1/2
- Die roll: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6
- Roulette: P(Red) = 18/38, P(Black) = 18/38, P(Green) = 2/38

Connection to game theory: Mixed strategies are probability distributions over pure strategies. Why This Matters?

- We'll work with complex probabilities like $\frac{x}{x+y+z}$
- Need to verify whether expressions form valid probability distributions
- Foundation for solving multi-strategy games

Golden Rules of Probability Distributions

Rule 1: All events occur with probability ≥ 0

Rule 2: The sum of all probabilities equals 1

Four key implications:

- 1. **No probability > 1**: If some probability exceeded 1, others would need to be negative to sum to 1
- 2. **Complete specification**: Cannot leave gaps (e.g., "world ends tomorrow with probability 1/100")
- 3. **Solving for unknowns**: If probabilities sum to 1, unknown probability = 1 sum of known probabilities
- 4. Pure strategies are special cases: P(chosen strategy) = 1, P(all others) = 0

Generalized Battle of Sexes

Payoff matrix with variables constraints: A > B > C and a > b > c

	Left	Right
Up	В, а	C, c
Down	C, c	A, b

Mixed strategy equilibrium:

- Player 1 plays Up with probability $\frac{b-c}{a+b-2c}$
- Player 1 plays Down with probability $\frac{a-c}{a+b-2c}$
- Player 2 plays Left with probability $\frac{A-C}{A+B-2C}$
- Player 2 plays Right with probability $\frac{B-C}{A+B-2C}$

Key insight: Each player's mixing probability depends on the opponent's payoffs!

Generalized Prisoner's Dilemma

Payoff matrix with variable constraints: T > R > P > S and t > r > p > s

	Left (Cooperate)	Right (Defect)
Up (Cooperate)	R, r	S, t
Down (Defect)	T, s	Р, р

Variable meanings:

- **T** = Temptation (defect when opponent cooperates)
- **R** = Reward (mutual cooperation)
- **P** = Punishment (mutual defection)
- **S** = Sucker (cooperate when opponent defects)

Result: Unique pure strategy Nash equilibrium at (Down, Right) = (Defect, Defect)

Why No Mixed Strategy Equilibrium?

Strict dominance analysis:

- Down strictly dominates Up for Player 1 (T > R and P > S)
- Right strictly dominates Left for Player 2 (t > r and p > s)

Mixed strategy algorithm:

Setting Player 2 indifferent $ightarrow \sigma_{up}(r+p-s-t)=p-s$

- 1. Case 1: $r+p-s-t=0 \Rightarrow 0=p-s \Rightarrow$ Contradiction since p>s
- 2. Case 2: r+p-s-t<0 $ightarrow \sigma_{up}<0$ ightarrow Invalid probability
- 3. Case 3: r+p-s-t>0 $ightarrow \sigma_{up}>1$ ightarrow Invalid probability

Key insight: Strict dominance eliminates all mixed strategy possibilities

Comparative Statics

Study of how changes in game parameters affect equilibrium outcomes

Four-step process:

- 1. Solve for the game's equilibria
- 2. Calculate the element of interest (probabilities, payoffs, outcomes)
- 3. Take the derivative with respect to the parameter
- 4. Analyze how parameter changes affect the element

Key insight: Game theory often produces counterintuitive results!

Example: Soccer Penalty Kicks

Kicker has perfect accuracy right, accuracy x (where 0 < x < 1) aiming left

	Goalie: Left	Goalie: Right
Kicker: Left	0, 0	x, -x
Kicker: Right	1, -1	0, 0

Mixed Strategy Nash Equilibrium:

- Goalie dives left with probability $\frac{x}{1+x}$
- Kicker aims left with probability $\frac{1}{1+x}$

Comparative static: $\frac{d}{dx} \left(\frac{1}{1+x} \right) = -\frac{1}{(1+x)^2} < 0 \rightarrow$ As kicker's left accuracy improves, he kicks left less frequently!

Strategic interaction: Goalie anticipates kicker's improved left accuracy and guards left more → kicker exploits the now less-defended right side → improved accuracy paradoxically shifts play toward the strong side.

The Volunteer's Dilemma

Two neighbors hear woman being attacked, must decide whether to call police

Payoffs:

- Woman's life worth 1, death worth 0
- ullet Calling costs c where 0 < c < 1
- If anyone calls, woman lives; if no one calls, she dies

	Call	Ignore	
Call	1-c, 1-c	1-c, 1	
Ignore	1, 1-c	0, 0	

Mixed Strategy Nash Equilibrium:

- ullet Each player ignores with probability c
- ullet Each player calls with probability 1-c

Volunteer's Dilemma: Tragic Implications

Probability no one calls: c^2

Comparative static analysis:

$$\frac{d}{dc}(c^2) = 2c > 0$$

Result: As selfishness (c) increases, probability of woman's death increases

Bystander effect: Multiple potential helpers can lead to less help

- Each assumes someone else will act
- Coordination failure despite shared preferences
- Real-world relevance: Kitty Genovese case, public goods provision

Policy implication: Clear assignment of responsibility reduces coordination failure

Hawk-Dove Game: War and Peace

Crisis bargaining model: Two states decide whether to be aggressive (Hawk) or peaceful (Dove)

	Hawk			
Hawk	$\frac{v}{2}-c, \frac{v}{2}-c$	v,0		
Dove	0, v	$\frac{v}{2}, \frac{v}{2}$		

Equilibrium depends on parameters:

- If $\frac{v}{2}>c$: Both play Hawk (war certain)
- ullet If $rac{v}{2} < c$: Mixed strategy with $P(\mathrm{Hawk}) = rac{v}{2c}$

Probability of war in mixed equilibrium: $\left(\frac{v}{2c}\right)^2 = \frac{v^2}{4c^2}$

Comparative static: $rac{d}{dc} \left(rac{v^2}{4c^2}
ight) = -rac{v^2}{2c^3} < 0$

Paradox of peace: Higher war costs → lower probability of war!

Baseball: Curveballs with Runner on Third

Setup: Pitcher chooses fastball/curveball, batter guesses. Curveball risk: ball might get past catcher

	Guess Fastball	Guess Curveball
Throw Fastball	-1, 1	0, 0
Throw Curveball	-x, x	-1-x, 1+x

Mixed Strategy Nash Equilibrium (when 0 < x < 1):

- ullet Batter guesses fastball with probability $rac{1+x}{2}$
- Pitcher throws fastball with probability $\frac{1}{2}$

Comparative statics:

- Batter: $\frac{d}{dx}\left(\frac{1+x}{2}\right)=\frac{1}{2}>0$ (more fastball guesses as risk increases)
- Pitcher: Strategy independent of x! Always throws 50-50 mix

Insight: Pitcher's strategy unaffected by wildness level (on relevant interval)

When Comparative Statics Don't Matter

Take or Share game: Some games have trivial comparative statics

	Take	Share
Take	$\frac{v}{2}, \frac{v}{2}$	v, 0
Share	0, v	$\frac{v}{2}, \frac{v}{2}$

Partially Mixed Strategy Nash Equilibria: $\langle {
m Take}, \sigma_{
m take} \rangle$ where $0 < \sigma_{
m take} < 1$ Comparative static with respect to v:

$$\frac{d\sigma_{\text{take}}}{dv} = 0$$

Result: Mixing probabilities completely independent of payoff magnitude

Lesson: Not all parameter changes affect strategic behavior!

Lecture 3: Advanced Strategic Form Games

Classic Rock-Paper-Scissors

	Rock	Paper	Scissors
Rock	0, 0	-1, 1	1, -1
Paper	1, -1	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

Observations:

- No pure strategy Nash equilibria (no cell with two positive payoffs)
- Each strategy beats one other and loses to one other
- Symmetric and zero-sum structure

No Pure Strategy Equilibria

Checking for pure strategy Nash equilibria:

Looking for cells where both players are playing best responses:

- (Rock, Rock): Player 1 gets 0, but could get 1 by switching to Paper
- (Paper, Paper): Player 1 gets 0, but could get 1 by switching to Scissors
- (Scissors, Scissors): Player 1 gets 0, but could get 1 by switching to Rock
- All off-diagonal cells: The losing player wants to deviate

Conclusion: No pure strategy Nash equilibria exist

Next step: Look for mixed strategy equilibria

Why Not Mix Between Only Two Strategies?

Consider Player 1 mixing between Rock and Paper only:

Player 2's analysis:

- If Player 2 plays Scissors, they beat both Rock (-1 to Player 1) and Paper (1 to Player 2)
- Scissors guarantees Player 2 a positive payoff regardless of Player 1's mixture

Player 1's expected payoff: Must be negative since Player 2 can guarantee positive payoff

Problem: This violates the zero-sum symmetry rule - Player 1 cannot have negative expected payoff in equilibrium

Same logic applies to all other two-strategy mixtures: Rock-Scissors, Paper-Scissors

The Mixed Strategy Nash Equilibrium

Since no pure strategy or two-strategy mixed equilibria exist, both players must mix among all three strategies.

Intuition: Each player must make the opponent indifferent among all three pure strategies

Let Player 2 use probabilities: $(\sigma_{
m rock}, \sigma_{
m paper}, \sigma_{
m scissors})$

Player 1's expected utilities:

- ullet Playing Rock: $0 \cdot \sigma_{
 m rock} + (-1) \cdot \sigma_{
 m paper} + 1 \cdot \sigma_{
 m scissors}$
- ullet Playing Paper: $1 \cdot \sigma_{
 m rock} + 0 \cdot \sigma_{
 m paper} + (-1) \cdot \sigma_{
 m scissors}$
- ullet Playing Scissors: $(-1) \cdot \sigma_{
 m rock} + 1 \cdot \sigma_{
 m paper} + 0 \cdot \sigma_{
 m scissors}$

Solving for the Mixed Strategy Equilibrium

Indifference conditions: Player 1 must be indifferent among all strategies

$$EU_{
m Rock} = EU_{
m Paper} = EU_{
m Scissors}$$

$$-\sigma_{
m paper} + \sigma_{
m scissors} = \sigma_{
m rock} - \sigma_{
m scissors} = -\sigma_{
m rock} + \sigma_{
m paper}$$

Plus the constraint: $\sigma_{
m rock} + \sigma_{
m paper} + \sigma_{
m scissors} = 1$

Solution:

From the first equality: $\sigma_{
m rock} = \sigma_{
m paper} = \sigma_{
m scissors}$

Since they sum to 1: $\sigma_{
m rock}=\sigma_{
m paper}=\sigma_{
m scissors}=rac{1}{3}$

Mixed Strategy Nash Equilibrium: Both players play each strategy with probability

 $\frac{1}{3}$

Generalized Rock-Paper-Scissors

	Rock	Paper	Scissors
Rock	0, 0	-x, x	у, -у
Paper	x, -x	0, 0	-z, z
Scissors	-у, у	z, -z	0, 0

Constraints: x>0, y>0, z>0 (maintains the cyclical dominance structure)

Interpretation: Different strategies have different "lethality" against each other

- Large x: Paper devastates Rock
- Large y: Rock crushes Scissors
- Large z: Scissors obliterate Paper

Solving the Generalized Game

Player 1's expected utilities (assuming Player 2 uses $\sigma_{\rm rock}$, $\sigma_{\rm paper}$, $\sigma_{\rm scissors}$):

$$EU_{\mathrm{Rock}} = -x\sigma_{\mathrm{paper}} + y\sigma_{\mathrm{scissors}}$$

$$EU_{
m Paper} = x\sigma_{
m rock} - z\sigma_{
m scissors}$$

$$EU_{
m Scissors} = -y\sigma_{
m rock} + z\sigma_{
m paper}$$

Setting equal for indifference:

$$EU_{
m Rock} = EU_{
m Paper} = EU_{
m Scissors}$$

Using constraint $\sigma_{
m scissors} = 1 - \sigma_{
m rock} - \sigma_{
m paper}$

Solution to Generalized Game

Solving the system of equations:

From $EU_{\mathrm{Rock}} = EU_{\mathrm{Scissors}}$:

$$\sigma_{ ext{paper}} = rac{y}{x+y+z}$$

From $EU_{Paper} = EU_{Scissors}$:

$$\sigma_{
m rock} = rac{z}{x+y+z}$$

From the constraint:

$$\sigma_{
m scissors} = rac{x}{x+y+z}$$

Mixed Strategy Equilibrium:

- Play Rock with probability $\frac{z}{x+y+z}$
- Play Paper with probability $\frac{y}{x+y+z}$
- Play Scissors with probability $\frac{x}{x+y+z}$

Counterintuitive Results

Surprising insight: The probability of playing each strategy depends on the **other strategies' effectiveness**!

- Probability of Scissors = $\frac{x}{x+y+z}$ where x is Paper's advantage over Rock
- ullet As Paper gets better at beating Rock (x increases), players use Scissors more often
- This happens because opponents anticipate the increased Paper usage

Intuition:

- 1. Larger x makes Paper more attractive against Rock
- 2. Anticipating more Paper play, Scissors becomes more valuable
- 3. Equilibrium shifts toward more Scissors usage to counteract Paper's strength

Real-world application: Character selection in fighting video games

Example: Specific Values

Consider the game with x=2, y=1, z=1:

	Rock	Paper	Scissors
Rock	0, 0	-2, 2	1, -1
Paper	2, -2	0, 0	-1, 1
Scissors	-1, 1	1, -1	0, 0

Equilibrium probabilities:

• Rock: $\frac{1}{4}$, Paper: $\frac{1}{4}$, Scissors: $\frac{1}{2}$

Paper's doubled effectiveness against Rock leads to **doubling** the Scissors probability!

Mixed Strategies as Population Parameters

Alternative interpretation: Mixed strategies represent **population distributions** rather than individual randomization

Video game example:

- Players don't randomize between characters in each match
- Instead, they specialize in one character (pure strategy)
- The population contains different types of players

Population game:

- Individual players choose pure strategies (e.g., always Rock)
- Random matchmaking pairs players from large population
- Mixed strategy equilibrium tells us population distribution needed for individual indifference

Population Equilibrium Analysis

Setup: Large population where:

- Fraction $\frac{z}{x+y+z}$ specialize in Rock
- Fraction $\frac{y}{x+y+z}$ specialize in Paper
- Fraction $\frac{x}{x+y+z}$ specialize in Scissors

Individual optimality: A Rock specialist's expected payoff when randomly matched:

$$EU_{ ext{Rock}} = 0 \cdot rac{z}{x+y+z} + (-x) \cdot rac{y}{x+y+z} + y \cdot rac{x}{x+y+z} = 0$$

Key insight: All specialists earn the same expected payoff (zero), so no individual wants to switch specializations

Result: Everyone plays pure strategies, yet the population achieves mixed strategy equilibrium proportions

Applications and Implications

Real-world examples:

- 1. Online gaming: Character selection in multiplayer games
- 2. **Business strategy**: Product positioning in competitive markets
- 3. **Evolution**: Species adaptation and survival strategies
- 4. Financial markets: Trading strategy distributions

Why this matters:

- Explains diversity in competitive environments
- No central coordination needed emerges from individual optimization
- Stable population distributions even with pure strategy players
- Provides foundation for evolutionary game theory

Key takeaway: Mixed strategy equilibria can represent **aggregate behavior** of purely strategic individuals

Computational Example

Given: x=3, y=2, z=1 in generalized Rock-Paper-Scissors

Step 1: Calculate total x + y + z = 6

Step 2: Find equilibrium probabilities

•
$$\sigma_{\mathrm{rock}} = \frac{z}{x+y+z} = \frac{1}{6}$$

•
$$\sigma_{\text{paper}} = \frac{y}{x+y+z} = \frac{2}{6} = \frac{1}{3}$$

•
$$\sigma_{\text{scissors}} = \frac{x}{x+y+z} = \frac{3}{6} = \frac{1}{2}$$

Verification: Each player's expected payoff equals zero

•
$$EU_{\text{Rock}} = -3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{2} = -1 + 1 = 0 \checkmark$$

Interpretation: When Scissors devastates Paper (z=3), half the population should specialize in Scissors

Strategy-Proofness and Robustness

Important properties of mixed strategy equilibria in symmetric zero-sum games:

- 1. Individual rationality: No player can improve by unilateral deviation
- 2. Population stability: No subset of players can coordinate profitable changes
- 3. **Robustness to information**: Equilibrium maintained even with limited knowledge of opponent strategies
- 4. Scale invariance: Results hold regardless of population size

Contrast with other games:

- Coordination games: Multiple equilibria, focal points matter
- Prisoner's dilemma: Unique equilibrium, but Pareto inefficient
- Battle of the sexes: Coordination problems, communication valuable

Unique feature: Symmetric zero-sum games have conflict-free mixed equilibria

Summary and Takeaways

Key insights from Chapter 3:

- 1. Zero-sum symmetry principle: Players earn zero expected payoff in equilibrium
- 2. **Indifference principle**: Mixed strategies make opponents indifferent among pure strategies
- 3. **Counterintuitive effects**: Strategy probabilities depend on **other** strategies' payoffs
- 4. **Population interpretation**: Mixed strategies as distributions of specialized players
- 5. **Computational methods**: System of indifference equations plus probability constraints

Next steps:

- Games with infinite strategy spaces (continuous choices)
- Incomplete information and Bayesian games
- Evolutionary stability and dynamics Fei Tan | Made on Earth by humans.

31

Takeaway Points

- 1. In symmetric, zero-sum games, each player's payoff in equilibrium must equal 0.
- 2. Mixed strategies can be thought of as population parameters instead of single players randomizing over choices.
- 3. The indifference principle: In mixed strategy equilibria, players must be indifferent among all strategies in their support.
- 4. Counterintuitive result: The probability of playing a strategy often depends more on other strategies' payoffs than its own direct payoffs.