18-01-2025 STEP Practice: Problem 14 (2000.01.01)

log2 = 0.301024446 log3 = 0.477121255

i) $loy 5 = log(\frac{10}{2}) = log 10 - log 2 = 1 - log 2 = 0.699$ $log 6 = log(2 \times 3) = log 2 + log 3 = 0.778$ 31-p.

 $log(5 \times 10^{47}) = log 5 + 47 = 47.699 \text{ Jd.p.}$ $log(3^{100}) = 100 log 3 = 47.712 \text{ Jd.p.}$ $log(6 \times 10^{47}) = log 6 + 47 = 47.778 \text{ Jd.p.}$ $log(5 \times 10^{47}) = log(3^{100}) < log(6 \times 10^{47})$ $log(5 \times 10^{47}) < log(3^{100}) < log(6 \times 10^{47})$ $log(5 \times 10^{47}) < log(6 \times 10^{47})$ $log(6 \times 10^{47}) < log(6 \times 10^{47})$ log(

(i) $log(2^{1000}) = 1000log 2 = 301.030$ zd.p. log 4 = 2log 3 = 0.454 zd.p. $log(1 \times 3^{301}) \leq log(2^{1000}) \leq log(2 \times 10^{301})$. First digit of 2^{1000} is 1.

> loy(2¹⁰⁰⁰⁰) = 10000 loy2 = 3010.300 zd.p. loy(1×10³⁰¹⁰) < 2¹⁰⁰⁰⁰ 2 loy(2×10³⁰¹⁰) ...First ligit of 2¹⁰⁰⁰⁰ is 1.

log(2¹⁰⁰⁰⁰⁰) = 100000 log2 = 30102.4446 MJ.p. log(4×10²⁰¹⁰²) < log(2¹⁰⁰⁰⁰⁰) < log(1×10²⁰¹⁰²) ... First digit of 2¹⁰⁰⁰⁰⁰ is 4.

We can do bis because the function lagre is strictly increasing. It allows us to take the bayanthm of an inequality and preserve the order. That, alongsiale some properties of logarithms, allowed for me to solve this ITEP problem pretty easily.