

Chapter 2: Intro to Relational Model

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Example of a Relation

Attribute Types

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value *null* is a member of every domain
- The null value causes complications in the definition of many operations

Relation Schema and Instance

- \blacksquare $A_1, A_2, ..., A_n$ are attributes
- R = $(A_1, A_2, ..., A_n)$ is a relation schema Example:

instructor = (ID, name, dept_name, salary)

Notation: Relation ↔ table, tuple ↔ row

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: instructor relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts
 - instructor
 - student
 - advisor
- Bad design:

univ (instructor -ID, name, dept_name, salary, student_Id, ..)
results in

- repetition of information (e.g., two students have the same instructor)
- the need for null values (e.g., represent an student with no advisor)
- Normalization theory (Chapter 7) deals with how to design "good" relational schemas

Keys

- Let K ⊂ R
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal Example: {ID} is a candidate key for Instructor
- One of the candidate keys is selected to be the primary key.
 - which one?
- Foreign key constraint: Value in one relation must appear in another
 - Referencing relation
 - Referenced relation

Schema Diagram for University Database

Relational Query Languages

- Procedural vs.non-procedural, or declarative
- "Pure" languages:
 - Relational algebra
 - Relational operators
 - Tuple relational calculus
 - Domain relational calculus
- Query languages
 - SQL

Selection of tuples

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- Select tuples with A=B and D > 5
- $\bullet \sigma_{A=B \text{ and } D > 5}(r)$

A	В	C	D
α	α	1	7
β	β	23	10

Quiz Q1:

 $\sigma_{A \leftrightarrow B \ OR \ D \ < 7}$ (r) has (1) 1 tuple (2) 2 tuples (3) 3 tuples (4) 4 tuples

Selection of Columns (Attributes)

Relation r.

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

- Select A and C
 - Projection
 - $\blacksquare \Pi_{A, C}(r)$

A	C	A	C
α	1	α	1
α	1	β	1
β	1	β	2
β	2		

Quiz Q2:

The projection operation (1) removes duplicates (2) does not remove duplicates

Joining two relations – Cartesian Product

Relations r, s:

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

 \blacksquare $r \times s$:

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Composition of Operations

- Can build expressions using multiple operations
- **Example:** $\sigma_{A=C}(r \times s)$
- \blacksquare rxs

A	В	C	D	E
α	1	α	10	a
$ \alpha $	1	β	10	a
$ \alpha $	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

 $\sigma_{A=C}(r x s)$

A	В	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Union, Intersection and Set Difference

Relations *r*, *s*:

A	В
α	2
β	3

Union:r ∪ s

A	В
α	1
α	2
β	1
β	3

Intersection r ∩ s:

A	В
α	2

Set Difference r - s:

A	В
α	1
β	1

Natural Join Example

Relations r, s:

В	C	D
1	α	a
2	γ	a
4	β	b
1	γ	a
2	β	b
	1 2 4 1 2	$\frac{1}{2}$ γ

В	D	Ε
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	s	

- Natural Join
 - $r \bowtie s$

\boldsymbol{A}	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Quiz Q3: The natural join operation matches tuples (rows) whose values for common attributes are (1) not equal (2) equal (3) weird Greek letters (4) null

Joining two relations – Natural Join

- Let r and s be relations on schemas R and S respectively. Then, the "natural join" of relations R and S is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_S on s

\boldsymbol{A}	В	C	D
α	1	α	a
β	2	γ	a

В	D	Ε
1	a	α
3	a	β
	S	•

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ

Aggregate Functions and Operations

Aggregation function takes a collection of values and returns a single value as a result.

avg: average valuemin: minimum valuemax: maximum valuesum: sum of values

count: number of values

Aggregate operation in relational algebra

$$G_1, G_2, ..., G_n G_{F_1(A_1), F_2(A_2, ..., F_n(A_n))}(E)$$

E is any relational-algebra expression

- $G_1, G_2 ..., G_n$ is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A_i is an attribute name
- Note: Some books/articles use γ (gamma) instead of $\, \mathcal{G}$ (Calligraphic G)

Aggregate Operation – Example

Relation *r*.

 $\blacksquare \mathcal{G}_{\mathbf{sum(c)}}(\mathbf{r})$

sum(c) 27

Aggregate Operation – Example

Find the average salary in each department

 $dept_name\ \mathcal{G}\ \mathbf{avg}(\mathit{salary})\ (\mathit{instructor})$

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Aggregate Functions (Cont.)

- Result of aggregation does not have a name
 - Can use rename operation to give it a name
 - For convenience, we permit renaming as part of aggregate operation

dept_name Gavg(salary) as avg_sal (instructor)

End of Chapter 2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Division Operator

■ Given relations r(R) and s(S), such that S

R, r

s is the largest relation t(R-S) such that

$$t \times s \subset r$$

- E.g. let $r(ID, course_id) = \prod_{ID, course_id} (takes)$ and $s(course_id) = \prod_{course_id} (\sigma_{dept_name="Biology"}(course)$ then $r \div s$ gives us students who have taken all courses in the Biology department
- Can write r ÷ s as

$$temp1 \leftarrow \prod_{R-S} (r)$$

 $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$
 $result = temp1 - temp2$

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- May use variable in subsequent expressions.

Relation Schema and Instance

- \blacksquare $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema Example:

instructor = (ID, name, dept_name, salary)

- Formally, given sets D_1 , D_2 , D_n a **relation** r is a subset of $D_1 \times D_2 \times ... \times D_n$
 - Thus, a relation is a set of *n*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$
- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table