Funzioni analitiche in campo complesso 1

Definizione

 $f:\Omega$ aperto $\subset \mathbb{C} \to \mathbb{C}$ si dice analitica su Ω se $\forall z_0 \in \Omega, \ \exists \ u(z_0)$ tale che

$$f(z) = \sum_{k>0} c_k (z - z_0)^k \quad \forall z \in u(z_0)$$

Serie di potenze in \mathbb{C}

$$\sum_{k>0} c_k (z-z_0)^k$$

$$S_N(z) := \sum_{k=0}^{N} c_k (z - z_0)^k$$

Tipi di convergenza

La serie conv. puntualmente in $z \in \mathbb{C}$ se

$$\lim_{N\to+\infty} S_N(z) \in \mathbb{C}$$

La serie conv. uniformemente in Ω a S(z) se

$$\exists \lim_{N \to +\infty} \sup_{z \in \Omega} |S_N - S(z)| = 0$$

La serie conv. assolutamente in $z \in \mathbb{C}$ se converge

$$\sum_{k>0} |c_k| |z-z_0|^k$$

Dominio di convergenza della serie

 $\mathcal{D} := \{ z \in \mathbb{C} : \text{ la serie converge puntualmente in } z \}$

Proprietà

1.
$$in(D) = \{z \in \mathbb{C} : |z - z_0| < R\}$$
 dove $R := 2$. $R = \frac{1}{L}$ dove

2.
$$R = \frac{1}{7} \text{ dove}$$

$$L = \lim_{k \to +\infty} (\sup) \sqrt{|c_k|}$$

Con la convenzione $\frac{1}{0}=+\infty, \ \frac{1}{+\infty}=0$ 3. La serie delle derivate n-esime

$$\sum_{k>0} D^n(c_k(z-z_0)^k)$$

ha lo stesso raggio di convergenza della serie di partenza

Calcolo dei coefficienti c_k

$$f(z) = \sum_{k \ge 0} c_k (z - z_0)^k = c_0 + c_1 (z - z_0) + c_2 (z - z_0)^2 + \dots$$

$$f'(z) = \sum_{k>1} kc_k(z-z_0)^{k-1} = c_1 + 2c_2(z-z_0) + \dots$$

$$f^{(n)}(z) = \sum_{k \ge n} k(k-1) \dots (k-n+1) c_k (z-z_0)^{k-n}$$

Si ottiene infine

$$f(z_0) = c_0, \ f'(z_0) = c_1, \ f''(z_0) = 2c_2$$
$$f^{(n)}(z_0) = n!c_n$$
$$\implies c_n = \frac{f^{(n)}(z_0)}{n!}$$

1.2 Un altro modo di calcolare i coefficienti c_k

Sia f analitica in Ω , sia $z_0 \in \Omega$, R := raggio di conv. Fissato $r \in (0, R)$, e fissato $k \ge 0$, calcoliamo

$$I_k := \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

Dove $C_r(z_0)$ è una circonferenza centrata in z_0 di raggio r percorso una volta in senso antiorario parametrizzato $r(t)=z_0+re^{it}$ $t\in[0,2\pi]$, scrivibile anche come $(x_0+r\cos t)+i(y_0+r\sin t)$

$$I_k = \int_{C_r(z_0)} \frac{\sum_{n \ge 0} c_n (z - z_0)^n}{(z - z_0)^{k+1}} dz = \sum_{n > 0} c_n \int_{C_r(z_0)} (z - z_0)^{n-k-1} dz$$

È permesso per la convergenza uniforme della serie

$$\int_{C_r(z_0)} (z - z_0)^n dz = \begin{cases} 0 & m \neq -1 \\ 2\pi i & m = -1 \end{cases}$$

Dunque tutti gli integrali nella somma si annullano tranne per $n-k-1=-1 \implies n=k$

$$= c_k \cdot 2\pi i \implies c_k = \frac{I_k}{2\pi i} = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

Formula di Cauchy per la derivata k-esima:

$$\frac{f^{(k)}(z_0)}{k!} = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz$$

In particolare con k = 0

$$f(z_0) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(z)}{z - z_0} dz$$

Dove r è un qualsiasi raggio appartenente all'intervallo (0,R) Osservazione: $z \to \frac{f(z)}{(z-z_0)^{k+1}}$ è olomorfa su $D\{z_0\}$

$$\implies \int_{C_r(z_0)} \frac{f(z)}{(z-z_0)^{k+1}} dz$$
 è indipendente dalla scelta di $r \in (0,R)$

Per k=0 vale in realtà una proprietà più forte

Formula di Cauchy

f olomorfa su Ω contenente $\overline{B_r(z_0)}$, allora $\forall z \in B_r(z_0)$

$$f(z) = \frac{1}{2\pi i} \int_{C_r(z_0)} \frac{f(\xi)}{\xi - z} d\xi$$

Precisazione: $B_r(z_0) := \{ z \in \mathbb{C} : |z - z_0| < r \}$

Questa formula è estremamente forte e generica poiché vale per tutte le funzioni

olomorfe, non è necessaria l'ipotesi di funzione analitica. Osservazione: $z \to \frac{f(\xi)}{\xi-z}$ è somma di una serie di potenze

$$\frac{1}{1-z} = \sum_{k} z^k$$

È dunque una funzione analitica.

1.3 Analiticità e olomorfia

Teorema di analiticità delle funzioni olomorfe

Sia folomorfa su $\Omega \implies f$ analitica su Ω

Osservazioni

- ⇐ (implicazione inversa) è ovvia
- Differenza rispetto al caso reale

Valgono gli sviluppi già noti dall'analisi reale.