Recall from last time ...

The Problem of Overfitting

Underfitting (High Bias)

Overfitting (High Variance)

Diagnosing Bias us. Variance

Diagnosing Bias us. Variance

Diagnosing Bias us. Variance

Diagnosing Bias vs. Variance

Cost Function

Regularization

 $J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \sum_{j=1}^{n} \theta_{j}^{2} \right]$ to fit the training to keep the data well parameters small

Regularization parameter

Regularized Linear Function

Gradient Descent

repeat { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$

(simultaneously update θ_j for j = 1, ..., n)

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient Descent

repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right]$$

} (simultaneously update θ_j for j = 1, ..., n)

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient Descent

$$h_{\theta}(x) = \theta^T x \implies h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right]$$

} (simultaneously update θ_j for j = 1, ..., n)

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 4
- Pattern Recognition and Machine Learning, Chap. 3
- Understanding the Bias-Variance Tradeoff:
 http://scott.fortmann-roe.com/docs/BiasVariance.html

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 3 & 6

Testing and Error Metrics Machine Learning and Pattern Recognition

(Largely based on slides from Luis Serrano)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

How well is my model doing?

Today's Agenda

- ---
- Testing and Error Metrics
 - Training, Testing
 - Accuracy
 - Precision
 - Recall
 - F-Score

Which model is better?

Which model is better?

Which model is better?

Friends don't let friends use testing data for training

$$k = 5$$

$$k = 5$$

$$k = 5$$

 $k \text{ times} = k \times 2 \text{ folds}$

- Training
- Validation

- Training
- Validation

- Training
- Validation

- Training
- Validation

- Training
- Validation

- Training
- Validation

MO850A: Tópicos Avançados em Ciência da Computação I — Scientific Methodology

Prof. Jacques Wainer (IC/Unicamp)

Evaluation Metrics

How well is my model doing?

Model: All transactions are good.

Model: All transactions are good.

Correct =
$$\frac{284,335}{284.807}$$
 = 99.83%

Model: All transactions are good.

Problem: I'm not catching any of the bad ones!

Model: All transactions are fraudulent.

Model: All transactions are fraudulent.

Problem: I'm accidently catching all the good

ones!

Medical Model

Spam Classifier Model

Not Spam

Spam

	Diagnosed Sick	Diagnosed Healthy
Sick		
Healthy		

	Diagnosed Sick	Diagnosed Healthy
Sick	True Positive	
Healthy		

	Diagnosed Sick	Diagnosed Healthy
Sick	True Positive	
Healthy		True Negative

	Diagnosed Sick	Diagnosed Healthy
Sick	True Positive	False Negative
Healthy		True Negative

Diagnosis

	Diagnosed Sick	Diagnosed Healthy
Sick	1000	200
Healthy	800	8000

Patients

Folder

1,000 emails

		Spam Folder	Inbox
Email	Spam	100	170
	Not Spam	30	700

Prediction

	Guessed Positive	Guessed Negative
Positive		
Negative		

	Guessed Positive	Guessed Negative
Positive	6 True positives	
Negative		

	Guessed Positive	Guessed Negative
Positive	6 True positives	
Negative		5 True negatives

	Guessed Positive	Guessed Negative
Positive	6 True positives	
Negative	2 False positives	5 True negatives

	Guessed Positive	Guessed Negative
Positive	6 True positives	1 False negative
Negative	2 False positives	5 True negatives

Class 2:

Class 1: ▲

Class 3:

Class 1: ▲
Class 2: ■

Class 3:

Class

Predicted Class

	Guessed Class 1	Guessed Class 2	Guessed Class 3
Class 1			
Class 2			
Class 3			

Class 1: ▲
Class 2: ■

Class 3:

Predicted Class

	Guessed Class 1	Guessed Class 2	Guessed Class 3
Class 1	5	2	1
Class 2	3	6	0
Class 3	0	1	7

Diagnosis

	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Accuracy:

Out of all the **patients**, how many did we classify correctly?

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Accuracy:

Out of all the **patients**, how many did we classify correctly?

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Accuracy:

Out of all the **patients**, how many did we classify correctly?

$$\frac{1,000 + 8,000}{10,000} = 90\%$$

,		Folder	
		Spam Folder	Inbox
בווומור	Spam	100	170
	Not Spam	30	700

Accuracy:

Out of all the **emails**, how many did we classify correctly?

mail

	Folder	
	Spam Folder	Inbox
Spam	100	170
Not Spam	30	700

Accuracy:

Out of all the **emails**, how many did we classify correctly?

$$\frac{100 + 700}{1,000} = 80\%$$

mail

Accuracy:

Out of all the **data**, how many points did we classify correctly?

Accuracy:

Out of all the **data**, how many points did we classify correctly?

Accuracy =

Correctly Classified Points

All points

Accuracy:

Out of all the **data**, how many points did we classify correctly?

Accuracy =

Correctly Classified Points

All points

$$\frac{11}{11+3}$$
 = 78.57%

	Prediction	
	Fraudulent	Not Fraudulent
Fraudulent	0	472
Not Fraudulent	0	284,335

Accuracy:

Out of all the **transactions**, how many did we classify correctly?

Accuracy =

$$\frac{0 + 284,335}{284,807} = 99.83\%$$

	Prediction	
	Fraudulent	Not Fraudulent
Fraudulent	0	472
Not Fraudulent	0	284,335

	Prediction	
	Fraudulent	Not Fraudulent
Fraudulent	0	472
Not Fraudulent	0	284,335

Normalized Accuracy =

$$\frac{\frac{TP}{TP + FN} + \frac{TN}{TN + FP}}{2} =$$

	Prediction	
	Fraudulent	Not Fraudulent
Fraudulent	0	472
Not Fraudulent	0	284,335

Normalized Accuracy =

$$\frac{TP}{TP + FN} + \frac{TN}{TN + FP} = \frac{2}{2}$$

$$\frac{0}{0 + 472} + \frac{284,335}{284,335 + 0} = \frac{2}{2}$$

	Prediction	
	Fraudulent	Not Fraudulent
Fraudulent	0	472
Not Fraudulent	0	284,335

Normalized Accuracy =

$$\frac{TP}{TP + FN} + \frac{TN}{TN + FP} = 2$$

$$\frac{0}{0 + 472} + \frac{284,335}{284,335 + 0} = 2$$

$$0 + 100$$

Accuracy = 80%

	Folder	
	Spam Folder	Inbox
Spam	100	170
Not Spam	30	700

Normalized Accuracy =

$$\frac{\text{TP}}{\text{TP + FN}} + \frac{\text{TN}}{\text{TN + FP}} = \frac{100}{2} = \frac{100}{100 + 170} + \frac{700}{700 + 30} = \frac{37.0 + 95.9}{2} = 66.5\%$$

Accuracy = 90%

	Diag	nosis
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Normalized Accuracy =

$$\frac{TP}{TP + FN} + \frac{TN}{TN + FP} = \frac{1000}{2} = \frac{8000}{1000 + 200} + \frac{8000}{8000 + 800} = \frac{83.3 + 90.9}{2} = 87.1\%$$

	Diagnosed Sick	Diagnosed Healthy
Sick		False Negative
Healthy	False Positive	

Evaluation Metrics

Medical Model

False positives ok False negatives **NOT** ok

Spam Detector

False positives **NOT** ok False negatives ok

Evaluation Metrics

Medical Model

False positives ok False negatives **NOT** ok **High Recall**

Spam Detector

False positives **NOT** ok False negatives ok **High Precision**

Diagnosis

	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Precision:

Out of all the patients we diagnosed with illness, how many were actually sick?

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Precision:

Out of all the patients we diagnosed with illness, how many were actually sick?

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Precision:

Out of all the patients we diagnosed with illness, how many were actually sick?

Precision =

$$\frac{1,000}{1,000 + 800} = 55.7\%$$

		Folder	
		Spam Folder	Inbox
	Spam	100	170
	Not Spam	30	700

Precision:

Out of all the emails sent to the spam inbox, how many did were actually spam?

mail

		Folder	
		Spam Folder	Inbox
רווומוו	Spam	100	170
	Not Spam	30	700

Precision:

Out of all the emails sent to the spam inbox, how many did were actually spam?

Precision =

$$\frac{100}{100 + 300} = 76.9\%$$

mail

Precision

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision

Precision:

Out of all the points we've predicted to be positive, how many are correct?

Precision =

True Positives

True Positives + False Positives

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Patients

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Recall:

Out of all the sick patients, how many did we correctly diagnose as sick?

atients

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Recall:

Out of all the sick patients, how many did we correctly diagnose as sick?

atients

	Diagnosis	
	Diagnosed Sick	Diagnosed Healthy
Sick	1,000	200
Healthy	800	8,000

Recall:

Out of all the sick patients, how many did we correctly diagnose as sick?

Recall =

$$\frac{1,000}{1,000 + 200} = 83.3\%$$

atients

,		Folder	
		Spam Folder	Inbox
	Spam	100	170
	Not Spam	30	700

Recall:

Out of all the spam emails, how many were correctly sent to the spam folder?

mail

	Folder	
	Spam Folder	Inbox
Spam	100	170
Not Spam	30	700

Recall:

Out of all the spam emails, how many were correctly sent to the spam folder?

$$\frac{100}{100 + 170} = 37\%$$

mail

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall =

True Positives

True Positives + False Negatives

Recall:

Out of all the points labelled positive, how many did we correctly predict?

Recall =

True Positives

True Positives + False Negatives

$$\frac{6}{6+1}$$
 = 85.7%

Precision and Recall

Medical Model

Precision: 55.7%

Recall: 83.3%

Spam Detector

Precision: 76.9%

Recall: 37%

One Score?

Medical Model

Precision: 55.7%

Recall: 83.3%

Average = 69.5%

Spam Detector

Precision: 76.9%

Recall: 37%

Average = 56.9%

Credit Card Fraud

Model: All transactions are fraudulent.

Credit Card Fraud

Model: All transactions are fraudulent.

Precision =
$$\frac{472}{284,807}$$
 = 0.016%

Credit Card Fraud

Model: All transactions are fraudulent.

Precision =
$$\frac{472}{284,807}$$
 = 0.016% Recall = $\frac{472}{472}$ =

Arithmetic Mean =
$$\frac{x + y}{2}$$

Arithmetic Mean =
$$\frac{x + y}{2}$$
 Harmonic Mean = $\frac{2xy}{x + y}$

Precision: 1

Recall: 0

Average = 0.5

Harmonic Mean = 0

Precision: 1

Recall: 0

Average = 0.5

Harmonic Mean = 0

Precision: 0.2

Recall: 0.8

Average = 0.5

Harmonic Mean = 0.32

F1 Score = Harmonic Mean (Precision, Recall)

F1 Score

Medical Model

Precision: 55.7%

Recall: 83.3%

Average = 69.5%

F1 Score = 66.8%

F1 Score

Spam Detector

Precision: 76.9%

Recall: 37%

Average = 56.9%

F1 Score = 50.0%

F1 Score

Precision: 75%

Recall: 85.7%

Average = 80.3%

F1 Score = 80%

F_{β} Score

F_{β} Score

Precision

Recall

F_{β} Score

Precision

F0.5 Score F1 Score

F2 Score

Recall

Precision

F0.5 Score F1 Score

F2 Score

Recall

Precision F0.5 Score F1 Score

F2 Score

Recall

Precision F0.5 Score F1 Score

F2 Score

Recall

F1 Score = Harmonic Mean (Precision, Recall)

F1 Score = Harmonic Mean (Precision, Recall)

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

F1 Score = Harmonic Mean (Precision, Recall)

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

$$F_1 = 2 \frac{1}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}} = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision}}$$

$$F_1 = 2 \frac{\text{precison} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precison} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$$

Type I Error (false positive)

Type II Error (false negative)

References

- https://en.wikipedia.org/wiki/Precision_and_recall
- https://en.wikipedia.org/wiki/Binary_classification
- https://en.wikipedia.org/wiki/F1_score
- https://www.quora.com/What-is-an-intuitive-explanation-of-F-score
- "Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms", Neural Computation, p. 1895-1923, 1998 https://www.mitpressjournals.org/doi/10.1162/089976698300017197

Machine Learning Courses

Luis Serrano: https://www.youtube.com/watch?v=aDW44NPhNw0