Nội dung

- Xử lý truy vấn phân tán
 - □ Phân rã và cục bộ hóa truy vấn
 - □ Tối ưu hóa truy vấn phân tán
 - Trình tư kết nối
 - Xử lý truy vấn thích ứng

18

Bước 1 – Phân rã truy vấn

Tương tự như xử lý truy vấn tập trung.

Đầu vào: Truy vấn tính toán trên quan hệ toàn cục

- Chuẩn hóa: Biến đổi câu truy vấn thành một dạng chuẩn để xử lý tiếp.
 - □ Thao tác lượng từ hóa truy vấn và xác định đủ điều kiện
- Phân tích
 - □ Phát hiện và từ chối các truy vấn "không đúng"
- Đơn giản hóa
 - Loại bỏ các vị từ dư thừa
- Tái cấu trúc truy vấn
 - □ Truy vấn tính toán → Truy vấn đại số
 - Sử dụng các quy tắc chuyển đổi

19

Bước 2 – Cục bộ hóa dữ liệu

Đầu vào: Truy vấn đại số trên các quan hệ phân tán

- □ Xác định những mảnh nào có liên quan
- □ Chương trình cục bộ hóa
 - Thay thế mỗi truy vấn toàn cục bằng chương trình cụ thể hóa của nó
 - Tối ưu hóa

Ví dụ

- Giả thiết
 - □ EMP được phân thành các mảnh như sau:
 - EMP₁= σ_{ENO≤"E3"}(EMP)
 - EMP₂= σ_{"E3"<ENO≤"E6"}(EMP)
 - EMP₃= σ_{ENO} ="E6"(EMP)
 - ASG được phân mảnh như sau:
 - ASG₁= σ_{ENO≤"E3"}(ASG)
 - ASG₂= $\sigma_{ENO>"E3"}$ (ASG)
- Trong bất kỳ truy vấn nào: Chương trình cục bộ hóa cho quan hệ phân mảnh ngang là hợp của các mảnh.
 - Thay thế EMP bởi (EMP₁ ∪ EMP₂ ∪ EMP₃)
 - □ Thay thế ASG bởi (ASG₁ ∪ ASG₂)

2

Rút gọn phân mảnh ngang cơ sở

- Rút gọn bằng phép chọn
 - □ Quan hệ R và F_R ={ R_1 , R_2 , ..., R_w } trong đó R_j = $\sigma_{p_j}(R)$ $\sigma_{p_i}(R_i)$ = \varnothing nếu $\forall x$ trong R: $\neg(p_i(x) \land p_i(x))$

22

Rút gọn phân mảnh ngang cơ sở

- Rút gọn với phép kết nối
 - Có thể nếu việc phân mảnh được thực hiện trên thuộc tính kết nối
 - Phân tán phép kết nối trên phép hợp

$$(R_1 \cup R_2) \bowtie S \Leftrightarrow (R_1 \bowtie S) \cup (R_2 \bowtie S)$$

• Cho $R_i = \sigma_{p_i}(R)$ và $R_j = \sigma_{p_i}(R)$

 $R_i \bowtie R_j = \emptyset$ nếu $\forall x$ trong R_j , $\forall y$ trong R_j : $\neg (p_j(x) \land p_j(y))$

23

Rút gọn phân mảnh ngang cơ sở

 Giả sử EMP được phân mảnh như trước và

- ASG₁: σ_{ENO ≤ "E3"}(ASG)
- ASG₂: σ_{ENO > "E3"}(ASG)
- Xét câu truy vấn

 EMP_1

SELECT

FROM EMP

NATURAL JOIN ASG

- Phân tán phép kết nối trên phép hợp
- Áp dụng quy tắc rút gọn

Rút gọn phân mảnh dọc

■ Các các quan hệ trung gian (không rỗng) không được sử dụng

Quan hệ R được xác định trên các thuộc tính $A = \{A_1, ..., A_n\}$ được phân mảnh dọc như sau $R_i = \Pi_{A'}(R)$ trong đó $A' \subseteq A$:

 $\Pi_{D,K}(R_i)$ là không được sử dụng khi tập các thuộc tính chiếu D không nằm trong A'

Ví dụ: $EMP_1=\Pi_{ENO,ENAME}$ (EMP); $EMP_2=\Pi_{ENO,TITLE}$ (EMP)

25

Rút gọn phân mảnh ngang dẫn xuất

- Quy tắc:
 - Phân tán các phép kết nối trên phép hợp
 - Áp dụng rút gọn kết nối cho phân mảnh ngang
- Ví du

```
\begin{split} & \mathsf{ASG}_1 \colon \mathsf{ASG} \bowtie_{\mathsf{ENO}} \mathsf{EMP}_1 \\ & \mathsf{ASG}_2 \colon \mathsf{ASG} \bowtie_{\mathsf{ENO}} \mathsf{EMP}_2 \\ & \mathsf{EMP}_1 \colon \sigma_{\mathsf{TITLE}^{=\mathsf{"Programmer"}}}(\mathsf{EMP}) \\ & \mathsf{EMP}_2 \colon \sigma_{\mathsf{TITLE}^{=\mathsf{"Programmer"}}}(\mathsf{EMP}) \end{split}
```

Truy vấn

SELECT

FROM EMP NATURAL JOIN ASG
WHERE EMP.TITLE = "Mech. Eng."

26

Rút gọn phân mảnh ngang dẫn xuất Phép kết nối trên phép hợp Loại bỏ các quan hệ trung gian rỗng (cây con bên trái)

Rút gọn phân mảnh lai

- Kết hợp các quy tắc đã được xác định:
 - Loại bỏ các quan hệ rỗng được tạo ra bởi các phép chọn mâu thuẫn trên các mảnh ngang;
 - Loại bỏ các quan hệ không được sử dụng được tạo ra bởi các phép chiếu trên các mảnh dọc;
 - Phân tán các phép kết nối trên các phép hợp để cô lập và loại bỏ các phép kết nối không được sử dụng.

29

