Medyan Filtre

Farklı gürültü tipleri

Not: Çözüm Medyan filtre

Medyan Filtresi

Medyan Filtresi

Her bir sıralanmış 2x2 içerisindeki

Orijinal İmge

1. değer sonucu

2. değeri sonucu

 2
 2
 3
 0
 5
 3
 8
 0

 5
 6
 6
 0
 7
 7
 8
 0

 4
 6
 1
 0
 7
 7
 6
 0

 0
 0
 0
 0
 0
 0
 0

3. değeri sonucu

Matlab Kodu

B = medfilt2(A, [m n]) → mxn içerisindeki ortanca değerleri üretir

 $B = \text{ordfilt2}(A,n,ones(2,2)) \rightarrow n. değeri alır$

Medyan Filtresi

Adaptif Medyan Filtresi-1

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_I^2} [g(x,y) - m_L] \qquad \sigma_{\eta}^2 \le \sigma_L^2$$

g(x, y) Gürültülü imge

 $\hat{f}(x, y)$ Temizlenmiş imge

 σ_{η}^2 Global varyans

 σ_L^2 Lokal varyans

 m_L Lokal çerçeve ortalaması

Kenar bölgelerinde lokal çerçeve varyansı yüksektir. Bu durumda σ_n/σ_L oranı düşük çıkacağından dolayı g(x,y) değeri minimum değişir. Dolayısıyla gürültü elenirken kenarlar korunmuş olur.

Varyanslar birbirine eşitse aritmetik ortalama sonucunu verir. Lokal gürültü ortalama filtresi ile azaltılır.

Adaptif Medyan Filtresi-1

a b c d

FIGURE 5.13

(a) Image corrupted by additive Gaussian noise of zero mean and variance 1000. (b) Result of arithmetic mean filtering. (c) Result of geometric mean filtering. (d) Result of adaptive noise reduction filtering. All filters were of size 7×7 .

Dinamik Pencereli Adaptif Medyan Filtresi-2

Amaç

- 1) Salt and pepper noise'i kaldırmak
- 2) Diğer gürültüleri yumuşatmak
- 3) Nesne sınırlarındaki aşırı incelik veya kalınlık gibi bozulmayı azaltmak

Sonuç

Gürültü büyük değilse, o zaman iyi sonuç verir. Dikkat edilmelidir ki, filtre sonucu her zaman tek piksel üretir ve ilgili çerçevenin merkez pikselini günceller.

Çerçeveye ait bilgiler

```
z_{\min} = minimum intensity value in S_{xy}

z_{\max} = maximum intensity value in S_{xy}

z_{\max} = median of intensity values in S_{xy}

z_{xy} = intensity value at coordinates (x, y)

S_{\max} = maximum allowed size of S_{xy}
```

Algoritma: Dinamik pencere büyüklüğü

Stage A:
$$A1 = z_{\text{med}} - z_{\text{min}}$$

$$A2 = z_{\text{med}} - z_{\text{max}}$$
If $A1 > 0$ AND $A2 < 0$, go to stage B
Else increase the window size
If window size $\leq S_{\text{max}}$ repeat stage A
Else output z_{med}

Stage B :
$$B1 = z_{xy} - z_{\text{min}}$$

$$B2 = z_{xy} - z_{\text{max}}$$
If $B1 > 0$ AND $B2 < 0$, output z_{xy}
Else output z_{med}

Dinamik Pencereli Adaptif Medyan Filtresi-2

a b c

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_a = P_b = 0.25$. (b) Result of filtering with a 7 × 7 median filter. (c) Result of adaptive median filtering with $S_{\text{max}} = 7$.