Elementos de Teoría de la Computación

Primer Parcial

18 de Septiembre de 2018

Ejercicio 1:

- a. ¿Cuántos números de cinco cifras distintas, se pueden formar con las cifras impares $\{1,3,5,7,9\}$? Como por ejemplo $13579,97531, \dots$
- b. ¿Cuántos de ellos se encuentran entre 50000 y 80000? Como por ejemplo 51379,79531,

Ejercicio 2: Determine si la siguiente relación R definida sobre \mathbb{Z} cumple las propiedades transitiva, reflexiva, simétrica y antisimétrica $xRy \Longleftrightarrow x = y - 1$

Ejercicio 3: Sea $A = \{n, o, c, s, p\}$

- a. Definir una relación de orden R en A (dar el conjunto de los pares ordenados que pertenecen a R) tal que:
 - n R c, n R o y c R o (c no está en relación con o).
 - p es elemento mínimo.
 - s es elemento máximo.
- b. Dibuje el diagrama de Hasse.

Ejercicio 4: Sea el conjunto $\mathbb{R}^* = \mathbb{R} - \{0\}$ (el conjunto de los reales sin el 0). Considere la siguiente relación $S \subseteq (\mathbb{R}^* \times \mathbb{R}^*) \times (\mathbb{R}^* \times \mathbb{R}^*)$ definida como

$$(a,b) S (c,d) \iff a.d = b.c$$

- a. Probar que S es una relación de equivalencia. ¿es un orden parcial?
- b. Dé al menos 4 clases de equivalencia que se generan a partir de S.
- c. Describa el conjunto cociente correspondiente.

Ejercicio 5: Dar la definición recursiva de conjuntos de todos los números naturales impares. Ejemplos de elementos que pertenecen al conjunto son: 1, 3, 5, 7, 9, 11, ..., 23..., 225.....