

FCC RF TEST REPORT

APPLICANT

Shenzhen Sang Fei Consumer

Communications Co., Ltd

PRODUCT NAME

Mobile Phone

MODEL NAME

Philips S326

TRADE NAME

PHILIPS

BRAND NAME

PHILIPS

FCC ID

VQRCTS326

STANDARD(S)

47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

ISSUE DATE

Certification

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Tel: 86-755-36698555 Fax: 86-755-36698525 Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com E-mail: service@morlab.cn

DIRECTORY

TEST	REPORT DECLARATION			 	
<u>1. (</u>	GENERAL INFORMATION			 	
1.1	EUT DESCRIPTION ······			 	 !
1.2	TEST STANDARDS AND RESULTS			 	 (
1.3	FACILITIES AND ACCREDITATIONS				
1.3.1				 	 ,
1.3.2	TEST ENVIRONMENT CONDITIONS			 	 .
2. 4	17 CFR PART 2, PART 22H & 24E REC	QUIREMENTS	<u></u>	 	
RLAN					
2.1	CONDUCTED RF OUTPUT POWER ······			 	
2.1.1		······································		 	 8
2.1.2					
2.1.3					
2.2	PEAK TO AVERAGE RADIO				
2.2.1	DEFINITION ······			 	 20
2.2.2	TEST DESCRIPTION			 	 20
2.2.3	TEST VERDICT······			 ···· // O/2	 20
2.3	99% OCCUPIED BANDWIDTH			 <u> </u>	 2
2.3.1	DEFINITION ······			 	 20
2.3.2	TEST DESCRIPTION			 	 26
2.3.3	TEST VERDICT······	,		 	 26
2.4	FREQUENCY STABILITY			 	 49
2.4.1	REQUIREMENT			 	 49
2.4.2	TEST DESCRIPTION			 	 49
2.4.3				 	 5(
2.5	CONDUCTED OUT OF BAND EMISSIONS			 	 5
2.5.1				 	 56
2.5.2					
2.5.3					
2.6	BAND EDGE ·····				
2.6.1					
2.6.2	TEST DESCRIPTION			 	 94

2 6 2	Test Result	OFF ME
2.7	TRANSMITTER RADIATED POWER (EIRP/ERP)	107
2.7.1	REQUIREMENT·····	107
2.7.2	TEST DESCRIPTION ······	107
2.7.3	Test Result	108
	RADIATED OUT OF BAND EMISSIONS	
2.8.1	REQUIREMENT·····	118
2.8.2	TEST DESCRIPTION ·····	118
2.8.3	Test Result	118

	Change History							
Issue	Issue Date Reason for change							
1.0	2016-04-20	First edition						
HIC	.0	TARE TOPLE HOT LE THE TARE TOPLE HOT						

TEST REPORT DECLARATION

Applicant	Shenzhen Sang Fei Consumer Communications Co., Ltd
Applicant Address	11,Science And Technology Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen City, 518057, Guangdong, PEOPLE'S REPUBLIC OF CHINA
Manufacturer	Shenzhen Sang Fei Consumer Communications Co., Ltd
Manufacturer Address	11,Science And Technology Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen City, 518057, Guangdong, PEOPLE'S REPUBLIC OF CHINA
Product Name	Mobile Phone
Model Name	Philips S326
Brand Name	PHILIPS
HW Version	F1-FS086-MB-V3.0
SW Version	S326_T9830L_1610_V01A_AR
Test Standards	47 CFR Part 22 Subpart H 47 CFR Part 24 Subpart E
Test Date	2016-03-23 to 2016-04-06
Test Result	PASS

Tested by	Zou Jian	
	Zou Jian	

Qiu Xiaojus Reviewed by Qiy Xiaojun

Approved by

Peng Huarui

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type Mobile Phone

Serial No. (n.a, marked #1 by test site)

Hardware Version F1-FS086-MB-V3.0

Software Version.....: S326 T9830L 1610 V01A AR

Applicant Shenzhen Sang Fei Consumer Communications Co., Ltd

11, Science And Technology Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen City, 518057, Guangdong,

PEOPLE'S REPUBLIC OF CHINA

Manufacturer.....: Shenzhen Sang Fei Consumer Communications Co., Ltd

11, Science And Technology Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen City, 518057, Guangdong,

PEOPLE'S REPUBLIC OF CHINA

Frequency Range: GSM 850MHz:

Tx: 824.20 - 848.80MHz (at intervals of 200kHz);

Rx: 869.20 - 893.80MHz (at intervals of 200kHz)

GSM 1900MHz:

Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);

Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)

WCDMA 850MHz

Tx: 826.4 - 846.6MHz (at intervals of 200kHz);

Rx: 871.4 - 891.6MHz (at intervals of 200kHz)

WCDMA 1900MHz

Tx: 1852.4 - 1907.6MHz (at intervals of 200kHz);

Rx: 1932.4 - 1987.6MHz (at intervals of 200kHz)

Modulation Type...... GSM, GPRS Mode with GMSK Modulation

EDGE Mode with 8PSK Modulation WCDMA Mode with QPSK Modulation HSDPA Mode with QPSK Modulation HSUPA Mode with QPSK Modulation

HSPA+ Mode with QPSK Modulation

Multislot Class GPRS: Multislot Class12; EGPRS: Multislot Class12

Antenna Type PIFA Antenna

Emission Designators: GSM 850:252KGXW,GSM 1900:248KGXW

EGPRS850:238KG7W, EGPRS1900:245KG7W, WCDMA 850:4M10F9W ,WCDMA1900:4M10F9W

- Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- Note 3: The transmitter (Tx) frequency arrangement of the WCDMA 850MHz band used by the EUT can be represented with the formula F(n)=826.4+0.2*(n-4132), 4132<=n<=4233; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 4132 (826.4MHz), 4175(835MHz) and 4233 (846.6MHz).
- Note 4: The transmitter (Tx) frequency arrangement of the WCDMA 1900MHz band used by the EUT can be represented with the formula F(n)=1852.4+0.2*(n-9262), 9262<=n<=9538; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 9262 (1852.4MHz), 9400 (1880MHz) and 9538 (1907.6MHz).
- Note 5: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 for the EUT FCC ID Certification:

No.	Identity	Document Title
10 Pal	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General
la.	(10-1-12 Edition)	Rules and Regulations
2	47 CFR Part 22	Dublic Makile Comices
LAB	(10-1-12 Edition)	Public Mobile Services
3	47 CFR Part 24	Derechal Communications Convince
ORL	(10-1-12 Edition)	Personal Communications Services

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1084	2.1046	Conducted RF Output Power	PASS
2.	24.232(d)	Peak to average radio	PASS
2	2.1049,22.917, 24.238,	99% Occupied Bandwidth	PASS
3	2.1055,22.355, 24.235	Frequency Stability	PASS
4	2.1051,2.1057, 22.917, 24.238,	Conducted Out of Band Emissions	PASS
5	2.1051, 2.1057, 22.917, 24.238	Band Edge	PASS
6	22.913, 24.232	Transmitter Radiated Power (EIPR/ERP)	PASS
7	2.1053, 2.1057, 22.917, 24.238	Radiated Out of Band Emissions	PASS

NOTE: Measurement method according to TIA/EIA 603.D-2010

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, No.8 LongChang Road,Block 67, BaoAn District, ShenZhen, GuangDong Province,P. R. China 518101. The test site is constructed in conformance with the requirements of ANSI C63.7-2009, ANSI C63.4-2014 and CISPR Publication 22:2010; the FCC registration number is 695796.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35	IIO. NE	ALAE CLAS	ORL
Relative Humidity (%):	30 -60	2LAB TOPLE	MO	B W.
Atmospheric Pressure (kPa):	86-106	MO. B.	AB OF	21.1

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS

2.1 Conducted RF Output Power

2.1.1 Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

Test Setup:

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

The Power Meter was just used for the Conducted RF Output Power test of WCDMA Model.

Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
Spectrum Analyzer	Agilent	E7405A	US44210471	2016.03.02	2017.03.01
Power Meter	Agilent	E4418B	GB43318055	2016.03.02	2017.03.01
Power Sensor	Agilent	8482A	MY41091706	2016.03.02	2017.03.01
Power Splitter	Weinschel	1506A	NW521	2016.03.02	2017.03.01
Attenuator 1	Resnet	20dB	(n.a.)	2016.03.02	2017.03.01
Attenuator 2	Resnet	3dB	(n.a.)	2016.03.02	2017.03.01

2.1.3 Test Results

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

GSM Model Test Verdict:

Dond	Channal	Frequency	Frequency Measured (Limit	\/ordigt
Band	Channel	(MHz)	dBm	Refer to Plot	dBm	Verdict
GSM 850MHz	128	824.2	32.19	Diet A4 to	AB.	PASS
	9 190	836.6	32.19	Plot A1 to	35	PASS
63UIVIITZ	251			PASS		
CCM	512	1850.2	28.96	Diet D4 to	INC	PASS
GSM	661	1880.0	28.73	Plot B1 to	32	PASS
1900MHz	810	1909.8	28.57	B3	o.B	PASS
CDDC	128 824.2 30.67 Pt+ 04.45	MORL	PASS			
GPRS	190	836.6	30.71	Plot C1 to C3 ^{Note 1}	35	PASS
850MHz	251	848.8	30.56	ALIO C3	WO,	PASS
CDDC	512	1850.2	27.12	Dist D4 to	LAB	PASS
GPRS	661	1880.0	27.00	Plot D1 to D3 ^{Note 1}	32	PASS
1900MHz	810	1909.8	26.74	_ D3	NORLA	PASS
FODDO	128	824.2	28.63	Diet E4 te		PASS
EGPRS	190	836.6	28.81	Plot E1 to	35	PASS
850MHz	251	848.8	28.24	E3 (W)	LAB	PASS
FODDO	512	1850.2	27.74	Diet E4 te	.0	PASS
EGPRS	661	1880.0	27.62	Plot F1 to	32	PASS
1900MHz	810	1909.8	27.07	F3	lu,	PASS

Note 1: For the GPRS and EGPRS model, all the slots were tested and just the worst data was record in this report.

WCDMA Model Test Verdict:

	- AV - AO'					
band	WCDMA 850			WCDMA 1900		
ARFCN	4132	4175	4233	9262	9400	9538
subtest		dBm			dBm	
non	23.87	23.85	23.97	23.70	23.80	23.39
w ⁰ 1	23.75	23.79	23.78	23.55	23.72	23.26
2	23.73	23.77	23.75	23.57	23.70	23.25
3	23.24	23.28	23.24	23.05	23.18	22.76
4	23.23	23.27	23.25	23.06	23.19	22.75
1,48	23.22	23.07	23.16	23.10	22.98	22.77
2	21.21	21.06	21.17	21.08	20.97	20.79
3	22.10	22.08	22.18	22.09	21.99	21.81
4	21.20	21.07	21.18	21.07	20.98	20.80
5	23.21	23.08	23.17	23.11	22.99	22.76
1 🔊	23.19	23.09	23.11	23.14	22.98	22.85
	ARFCN subtest non 1 2 3 4 1 2 3 4 5	ARFCN 4132 subtest non 23.87 1 23.75 2 23.73 3 23.24 4 23.23 1 23.22 2 21.21 3 22.10 4 21.20 5 23.21	ARFCN 4132 4175 subtest dBm non 23.87 23.85 1 23.75 23.79 2 23.73 23.77 3 23.24 23.28 4 23.23 23.27 1 23.22 23.07 2 21.21 21.06 3 22.10 22.08 4 21.20 21.07 5 23.21 23.08	ARFCN 4132 4175 4233 subtest dBm non 23.87 23.85 23.97 1 23.75 23.79 23.78 2 23.73 23.77 23.75 3 23.24 23.28 23.24 4 23.23 23.27 23.25 1 23.22 23.07 23.16 2 21.21 21.06 21.17 3 22.10 22.08 22.18 4 21.20 21.07 21.18 5 23.21 23.08 23.17	ARFCN 4132 4175 4233 9262 subtest dBm 23.85 23.97 23.70 1 23.75 23.79 23.78 23.55 2 23.73 23.77 23.75 23.57 3 23.24 23.28 23.24 23.05 4 23.23 23.27 23.25 23.06 1 23.22 23.07 23.16 23.10 2 21.21 21.06 21.17 21.08 3 22.10 22.08 22.18 22.09 4 21.20 21.07 21.18 21.07 5 23.21 23.08 23.17 23.11	ARFCN 4132 4175 4233 9262 9400 subtest dBm dBm non 23.87 23.85 23.97 23.70 23.80 1 23.75 23.79 23.78 23.55 23.72 2 23.73 23.77 23.75 23.57 23.70 3 23.24 23.28 23.24 23.05 23.18 4 23.23 23.27 23.25 23.06 23.19 1 23.22 23.07 23.16 23.10 22.98 2 21.21 21.06 21.17 21.08 20.97 3 22.10 22.08 22.18 22.09 21.99 4 21.20 21.07 21.18 21.07 20.98 5 23.21 23.08 23.17 23.11 22.99

Note: The Conducted RF Output Power test of WCDMA /HSDPA /HSUPA /HSPA+ was tested by power meter.

GSM Model Test Plots:

(Plot A1: GSM 850MHz Channel = 128)

(Plot A2: GSM 850MHz Channel = 190)

(Plot A3: GSM 850MHz Channel = 251)

(Plot B1: GSM 1900MHz Channel = 512)

(Plot B2: GSM 1900MHz Channel = 661)

(Plot B3: GSM 1900Hz Channel = 810)

(Plot C1: GPRS 850MHz Channel = 128)

(Plot C2: GPRS 850MHz Channel = 190)

(Plot C3: GPRS 850MHz Channel = 251)

(Plot D1: GPRS 1900MHz Channel = 512)

(Plot D2: GPRS 1900MHz Channel = 661)

(Plot D3: GPRS 1900Hz Channel = 810)

(Plot E1: EGPRS 850MHz Channel = 128)

(Plot E2: EGPRS 850MHz Channel = 190)

(Plot E3: EGPRS 850MHz Channel = 251)

(Plot F1: EGPRS 1900MHz Channel = 512)

(Plot F2: EGPRS 1900MHz Channel = 661)

(Plot F3: EGPRS 1900Hz Channel = 810)

2.2 Peak to Average Radio

2.2.1 Definition

According to FCC section 2.1049 and FCC 24.232(d) the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2 Test Description

See section 2.1.2 of this report.

2.2.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio.

Test procedures:

- A .For GSM/EGPRS operating mode:
- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average radio.
- B. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

Test Verdict:

Dond	Channel	Frequency	Peak to Average radio		Limit	Verdict
Band	Channel	(MHz)	dB	Refer to Plot	dB	verdict
GSM	512	1850.2	0.26	RLAL		PASS
1900MHz	661	1880.0	0.19	Plot A1 to A3	13	PASS
1900101112	810	1909.8	0.20		Mo.	PASS
EGPRS	512	1850.2	1.59	AB RLAD	ano ^R	PASS
1900MHz	661	1880.0	1.42	Plot B1 to B3	13	PASS
190010172	810	1909.8	1.34			PASS
MCDMA	9262	1852.4	2.91	Mo. OB	QLAB	PASS
WCDMA	9400	1880.0	3.12	Plot C1 to C3	13	PASS
1900MHz	9538	1907.6	2.85	NE THE SLAE	, OR	PASS

(Plot A1: GSM 1900 MHz Channel = 512)

(Plot A2: GSM 1900 MHz Channel = 661)

(Plot A3: GSM 1900MHz Channel = 810)

(Plot B1: EGPRS 1900 MHz Channel = 512)

(Plot B2: EGPRS 1900 MHz Channel = 661)

(Plot B3: EGPRS 1900MHz Channel = 810)

(Plot C1: WCDMA 1900MHz Channel = 9262)

(Plot C2: WCDMA 1900MHz Channel = 9400)

(Plot C3: WCDMA 1900MHz Channel = 9538)

2.3 99% Occupied Bandwidth

2.3.1 Definition

According to FCC section 2.1049 and FCC § 22.917 &24.238, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

2.3.2 Test Description

See section 2.1.2 of this report.

2.3.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the 99% occupied bandwidth.

Test Verdict:

Band	Channel	Frequency	26dB	99% Occupied	Refer to Plot
		(MHz)	bandwidth	Bandwidth	
GSM 850MHz	128	824.2	323.713 KHz	249.5079 KHz	Plot A1 to A3
	190	836.6	323.870 KHz	251.6351 KHz	
	251	848.8	330.676 KHz	249.1273 KHz	
GSM 1900MHz	512	1850.2	325.202 KHz	243.9768 KHz	Plot B1 to B3
	661	1880.0	324.457 KHz	246.4922 KHz	
	810	1909.8	326.509 KHz	246.1276 KHz	
GPRS 850MHz	128	824.2	319.286 KHz	247.1909 KHz	Plot C1 to C3
	190	836.6	323.601 KHz	247.2351 KHz	
	251	848.8	318.890 KHz	247.7630 KHz	
GPRS 1900MHz	512	1850.2	316.973 KHz	248.1697 KHz	Plot D1 to D3
	661	1880.0	318.414 KHz	244.6996 KHz	
	810	1909.8	326.432 KHz	248.3417 KHz	
EGPRS 850MHz	128	824.2	313.010 KHz	237.6282 KHz	Plot E1 to E3
	190	836.6	301.579 KHz	238.3292 KHz	
	251	848.8	308.024 KHz	235.3745 KHz	
EGPRS 1900MHz	512	1850.2	311.102 KHz	239.4288 KHz	Plot F1 to F3
	661	1880.0	312.852 KHz	239.5126 KHz	
	810	1909.8	316.008 KHz	245.6672 KHz	
WCDMA 850MHz	4132	826.4	4.628 MHz	4.0852 MHz	Plot G1 to G3
	4175	835.0	4.632 MHz	4.0875 MHz	
	4233	846.6	4.632 MHz	4.0725 MHz	

7.					
Band	Channel	Frequency (MHz)	26dB bandwidth	99% Occupied Bandwidth	Refer to Plot
WCDMA 1900MHz	9262	1852.4	4.656 MHz	4.0959 MHz	Plot H1 to H3
	9400	1880.0	4.641 MHz	4.0885 MHz	
	9538	1907.6	4.643 MHz	4.0891 MHz	
HSDPA 850MHz	4132	826.4	4.642 MHz	4.0875 MHz	Plot - I1 to I3
	4175	835.0	4.639 MHz	4.0805 MHz	
	4233	846.6	4.646 MHz	4.0797 MHz	
HSDPA 1900MHz	9262	1852.4	4.662 MHz	4.0956 MHz	Plot J1 to J3
	9400	1880.0	4.630 MHz	4.0816 MHz	
	9538	1907.6	4.645 MHz	4.0885 MHz	
HSUPA 850MHz	4132	826.4	4.626 MHz	4.0884 MHz	Plot K1 to K3
	4175	835.0	4.642 MHz	4.0928 MHz	
	4233	846.6	4.633 MHz	4.0822 MHz	
HSUPA 1900MHz	9262	1852.4	4.656 MHz	4.0901 MHz	Plot L1 to L3
	9400	1880.0	4.641 MHz	4.0800 MHz	
	9538	1907.6	4.651 MHz	4.0923 MHz	
HSPA+ 850MHz	4132	826.4	4.638 MHz	4.0967 MHz	Plot M1 to M3
	4175	835.0	4.640 MHz	4.0906 MHz	
	4233	846.6	4.636 MHz	4.0831 MHz	
HSPA+ 1900MHz	9262	1852.4	4.666 MHz	4.0917 MHz	Plot
	9400	1880.0	4.635 MHz	4.0931 MHz	N1 to N3
	9538	1907.6	4.653 MHz	4.0942 MHz	INT TO INS

Test Plots:

(Plot A1: GSM 850MHz Channel = 128)

(Plot A2: GSM 850MHz Channel = 190)

(Plot A3: GSM 850MHz Channel = 251)

(Plot B1: GSM1900MHz Channel = 512)

(Plot B2: GSM1900MHz Channel = 661)

(Plot B3: GSM 1900MHz Channel = 810)

(Plot C1: GPRS 850MHz Channel = 128)

(Plot C2: GPRS 850MHz Channel = 190)

(Plot C3: GPRS 850MHz Channel = 251)

(Plot D1: GPRS1900MHz Channel = 512)

(Plot D2: GPRS1900MHz Channel = 661)

(Plot D3: GPRS 1900MHz Channel = 810)

(Plot E1: EGPRS 850MHz Channel = 128)

(Plot E2: EGPRS 850MHz Channel = 190)

(Plot E3: EGPRS 850MHz Channel = 251)

(Plot F1: EGPRS1900MHz Channel = 512)

(Plot F2: EGPRS1900MHz Channel = 661)

(Plot F3: EGPRS 1900MHz Channel = 810)

(Plot G1: WCDMA 850MHz Channel = 4132)

(Plot G2: WCDMA 850 MHz Channel = 4175)

(Plot G3: WCDMA 850MHz Channel = 4233)

(Plot H1: WCDMA 1900MHz Channel = 9262)

(Plot H2: WCDMA 1900 MHz Channel = 9400)

(Plot H3: WCDMA1900MHz Channel = 9538)

(Plot I1: HSDPA 850MHz Channel = 4132)

(Plot I2: HSDPA 850 MHz Channel = 4175)

(Plot I3: HSDPA 850MHz Channel = 4233)

(Plot J1: HSDPA 1900MHz Channel = 9262)

(Plot J2: HSDPA 1900 MHz Channel = 9400)

(Plot J3: HSDPA 1900MHz Channel = 9538)

(Plot K1: HSUPA 850MHz Channel = 4132)

(Plot K2: HSUPA 850 MHz Channel = 4175)

(Plot K3: HSUPA 850MHz Channel = 4233)

(Plot L1: HSUPA 1900MHz Channel = 9262)

(Plot L2: HSUPA 1900 MHz Channel = 9400)

(Plot L3: HSUPA 1900MHz Channel = 9538)

(Plot M1: HSPA+ 850MHz Channel = 4132)

(Plot M2: HSPA+ 850 MHz Channel = 4175)

(Plot M3: HSPA+ 850MHz Channel = 4233)

(Plot N1: HSPA+ 1900MHz Channel = 9262)

(Plot N2: HSPA+ 1900 MHz Channel = 9400)

(Plot N3: HSPA+ 1900MHz Channel = 9538)

2.4 Frequency Stability

2.4.1 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.4.2 Test Description

Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
DC Power Supply	Good Will	GPS -3030DD	EF920938	2016.03.02	2017.03.01
Temperature Chamber	YinHe Experimental Equip.	HL4003T	(n.a.)	2016.03.02	2017.03.01

2.4.3 Test Verdict

The nominal, highest and lowest extreme voltages are separately 3.8VDC, 4.2VDC and 3.45VDC, which are specified by the applicant; the normal temperature here used is 25°C. The frequency deviation limit of 850MHz band is ±2.5ppm, and 1900MHz is ±1ppm.

1. GSM 850MHz Band

Test	Conditions		F	requenc	y Deviation		X	
Power	Temperature		nel = 128 .2MHz)		nel = 190 .6MHz)		el = 251 8MHz)	Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
LAL	-20	8.38	RL.P	4.96	ORL	-12.71	,B	RLAB
, AB	-10	-14.25		3.84	RLAB	9.13	Mc	NB.
MORL	0	-9.74		3.92	Mo.	-20.01	RLAB	MORL
_0	+10	4.41		8.04	MORI	20.72	io.	- a)
3.80	+20	-5.08		1.06	OB III	22.13	MORL	MO.
LAB	+30	8.34	±2060.5	7.38	±2091.5	-14	±2122	PASS
n.B	+40	26.31		-4.94	RLAB	20.72	Mo	
MORL	+50	-13.75		-2.81	Mo.	15.33	QLAB	MORLE
	+60	-4.06		7.26	, ORI	-12.64	lo,	W. 01
4.35	+25	-14.25		8.83	OB W.	9.13	NORLA	More
3.40	+25	-9.74		11.06	RL	-14.08	B W.	2LAB

2. GSM 1900MHz Band

Test	Conditions		F	requenc	y Deviation				
Power	Temperature		nel = 512).2MHz)		nnel = 661			Verdict	
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits		
LAB	-20	-12.52	B	12.44	ORLA	-12.3	BW	LAB	
Mole	-10	31		22.23	3 111	1.37	ORLAN	MOE	
OR	0	-8.51		-14.11	MOE	26.09	LAB	ORI	
BHILL	+10	-14.15		-12.74	LAB	24.5	MORE	E MIC	
3.80	+20	-24.51		36.43	Jan a	-10.71	, D	al.A.	
LAB	+30	12.65	±1850.2	-7.09	±1880.0	27.09	±1909.8	PASS	
MORL	+40	-14.95		-12.7	MIC	20.7	ORLAN		
OR	+50	23.17		15.63	MOE	-6.89	, AB		
E MIC	+60	16.82		22.77	AB	14.71	MORI	MO	
4.35	+25	35.03		-23.15	Jan a	1.37	9	ALAR	
3.40	+25	-18.27	MIC	12.24	RLAD	26.11	2 1110	AB	

3. EDGE 850MHz Band

Test 0	Conditions			Frequenc	y Deviation				
Power	Power Temperature (VDC) (°C)		Channel = 128 (824.2MHz)		Channel = 190 (836.6MHz)		Channel = 251 (848.8MHz)		
(VDC)	(C)	Hz	Limits	Hz	Limits	Hz	Limits		
LAB	-20	12.34	B	-20.52	ORLA	0.97	S W	AB	
Moles	-10	28.11	ALA M	25.65		23.01	ORLAN	MORL	
, OP	0,000	29	LAB	41.67		17.01	AB	ORLE	
BIND	+10	-11.05	MORE	-19.76		3.87	MORL	S MC	
3.80	+20	23.14	ORLA	8.54		-9.96	.B .AP	LAL	
AB	+30	8.03	±2060.5	4.26	±2091.5	33.18	±2122	<u>PASS</u>	
MORE	+40	-9.24	ALAL M	26.56		16.01	GRLAN	MORI	
OR	+50	-15.75	AB	16.85		-9.96	, AB	RLA	
Z MIC	+60	33.8	MOKE	19.82		1.97	MORI	A MO	
4.35	+25	-0.05	ORLA	24.42		18.16	,B 1	LAL	
3.40	+25	10.12	MIC	16.56	RLAD	-34.45	W.	AB .	

4. EDGE 1900MHz Band

Test	Conditions			Frequen	cy Deviatio	n		
Dower	Tomporatura	Chanr	nel = 512	Chan	nel = 661	Chan	Verdict	
Power (VDC)	Temperature	(1850	0.2MHz)	(1880	0.0MHz)	(190	9.8MHz)	verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
3	-20	-13.92	O.	14.74	AB NOT	3.36	MO.	W. SLA
Mc	-10	-11.41	MORLIN	-15.04	OB III.	-25.65	ORLA	MOL
QLAE	0	12.13	8 11.	40.61	ORLA	-4.13	VB W.	AB .C
o. s	+10	4.13	MOL	-19.55	a. alae	-21.55	ruo Mor	~B 1111
3.80	+20	34.06	ZLAB	-13.6	MOL	-24.48	ZLAB	ORLAN
3 60	+30	-27.98	±1850.2	20.27	±1880.0	11.71	±1909.8	PASS
MC	+40	18.34	ORLA	18.15	-B 411	-3.55	ORLA	Mole
3LAB	+50	-17.87	8 111	19.84	ORLA	34	-B M	AB
0	+60	25.59	Mole	-15.04	LAB	0.8	ry, Mok	B
4.35	+25	-11.96	OLAE.	-14.2	Moke	14.08	LAB	ORLAN
3.40	+25	6.58	310	-13.19	AB OF	32.36	MOR	M -LAF

5. WCDMA 850MHz Band

		-			70.	100	~~	
Test	Conditions			Frequenc	cy Deviation)		
Dawar	To man a water wa	Chann	el = 4123	Chann	el = 4175	Chann	el = 4233	\/o #d:o4
Power	Temperature	(826	.4MHz)	(83	5MHz)	(846.6MHz)		Verdict
(VDC)	(°C)	Hz	Limit	Hz	Limit	Hz	Limit	
LAB	-20	24.98	B	13.44	ORLA	-20.7	S III	LAB
Moles	-10	10.49		14.36	3 1110	26.17	ORLAN	MORL
OP	0	22.49		5.3	MOR	7.57	AB	ORI
E W	+10	-13.94		-7.93	AB	43.75	MORE	a mo
3.80	+20	8.09		0.72	DRIV G	59.48	AB AB	LAP
AB	+30	6.71	±2066	16.16	±2087.5	-7.08	±2116.5	PASS
MORL	+40	14.33		8.16	a me	0.02	RLAD	MORI
08	+50	8.53		8.16	MOKI	-2.32	AE AE	, Pl
E MC	+60	11.09		0.27	AB	-2.26	MORI	Mo
4.35	+25	24.38		20.43	Per	5.98	AB AB	AB
3.40	+25	9.46	a mo	-15.18	RLAB	4.71	Wo.	nB

6. WCDMA 1900MHz Band

Test	Conditions			Frequenc	cy Deviation	1		
Power	Power Temperature (VDC) (°C)		el = 9262 2.4MHz)	Channel = 9400		Verdict		
(VDC)	(C)	Hz	Limits	Hz	Limits	Hz	Limits	
Mo.	-20	10.21	RL	-17.06	9 4	-20.08	ORL	Wo.
, nor	-10	1.15		36.11		33.09	" ZLAE	"OBT
12 W.	0	-12.08		-24.1		-27.12	MOLO	TB W
al a second	+10	-3.43		-18.15		-21.17	AE AOF	Line
3.80	+20	12.01		15.72		12.7	VB W	2LAB
MOL	+30	4.01	±1852.4	13.6	±1880	10.58	±1907.6	PASS
, nor	+40	-3.88		1.63		-1.39	LAB	ORL
7B W	+50	9.29		11.91		8.89	Mole	-B III.
A. P.	+60	11.19		-19.59		-22.61	NO. 054	LA
4.35	+25	10.21		11.91		8.89	"B III.	OLAB
3.40	+25	-19.09	RLIE N	14.18	8 41	11.16	ORLA	Mole

7. HSDPA 850MHz Band

Test	Conditions			Frequenc	cy Deviation	1		
Power	Power Temperature (VDC) (°C)		el = 4123 .4MHz)	Channel = 4175				Verdict
(VDC)	(C)	Hz	Limit	Hz	Limit	Hz	Limit	
LAB	-20	4.02	· G	9.22	ORLA	14.46	S W	AB
MORE	-10	-5.02		18.26	S W	-7.06	ORLAN	MORI
OP	0 100	18.93		9.72	MOR	8.2	AE	ORLI
E W	+10	-32.84		1.42	AB	11.09	MORI	E MIC
3.80	+20	4.02		-7.62	ORL	9.24	AB AR	LAL
AB	+30	-5.02	±2066	16.33	±2087.5	6.63	±2116.5	PASS
MORL	+40	19.92		-35.44	a Mic	-20.64	GRLAD	MORI
000	+50	-30.34		25.27	MOE	-6.23	AB	RLI
S MC	+60	23.07		21.9	AB	-17.12	MORL	Mo
4.35	+25	4.02		-38.9	BRI	-11.66	AB AR	LAB
3.40	+25	-15.37	a mo	19.69	RLAD	11.94	"Mo.	AB

8. HSDPA 1900MHz Band

Test	Conditions			Frequenc	cy Deviation)		
Dower	Temperature	Chann	el = 9262	Chann	el = 9400	Chann	el = 9538	Verdict
Power	(VDC) (°C)		2.4MHz)	(1880).0MHz)	(190	7.6MHz)	verdict
(VDC)	(0)	Hz	Limits	Hz	Limits	Hz	Limits	
	-20	17.15	, all	21.24	, NOR	15.16	VO.	W. ST.
	-10	20.96		-21.28		-17.05	ORLA	MOL
	10 kg 0	29.69		-16.69		-1.78	TB W.	LAB
	+10	-18.58		-17.17		0.67	MOL	AB NI
3.80	+20	-15.87		-4.46		-15.65	QLAE	ORLA
	+30	19.99	±1852.4	-15.93	±1880	-11.13	±1907.6	PASS
	+40	-7.3		25.49		0.22	ORLA	Mole
	+50	12.42		-15.87		0.67	BW	AB
	+60	27.09		-4.52		24.42	MOE	
4.35	+25	27.75		4.63		-3.91	LAB	ORLA
3.40	+25	-9.11		8.46		16.91	OR	W. T.

9. HSUPA 850MHz Band

Test	Conditions			Frequen	cy Deviation	1		
Power	Temperature		el = 4123 .4MHz)		Channel = 4175 (835MHz)		Channel = 4233 (846.6MHz)	
(VDC)	(°C)	Hz	Limit	Hz	Limit	Hz	Limit	
LAB	-20	9.25	B	30.51	ORLA	-6.92	S III	AB
Moles	-10	4.57		26.07	3 1112	5.53	ORLAN	MORE
.08	0 1010	-3.19		5.56	MOR	5.88	AB	ORL
BHILL	+10	17.94		0.25	AB	19.69	MORE	S MIC
3.80	+20	-0.2		-6.79	ORT S	-9.38	AB OR	LAL
LAB	+30	25.08	±2066	14.16	±2087.5	-5.92	±2116.5	PASS
MORE	+40	1.18		-3.61	a mo	5.43	ORLAN	MORI
OP	+50	-10.29		21.1	MOKI	7.02	AB	RL
S MIC	+60	-4.35		11.73	AB	-2.07	MORI	MIC
4.35	+25	27.04		-9.14	DEL S	12.68	AB AB	LAL
3.40	+25	-15.22	MIC	19.52	RLAB	3.04	Mo.	AB

10. HSUPA 1900MHz Band

Test	Conditions			Frequenc	cy Deviation	1		
Power	Power Temperature (VDC) (°C)		Channel = 9262 (1852.4MHz)		el = 9400).0MHz)	Chann (190	Verdict	
(VDC)	(*C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-20	16.03	, GB	9.68	ORI	26.79	, S	arb.
MOL	-10	-16.1	MORLIN	23.55		22.35	NORLA	MOL
2LAB	10/2/ 0	-10.56	W. STU	32.14		1.84	E W.	AB
, B	+10	0.79	Morr	-12.19		-3.47	MOL	VB III
3.80	+20	1.24	ALAB .	-9.78		-10.51	ZLAB	OPLIM
3 60	+30	-5.41	±1852.4	16.48	±1880	10.44	±1907.6	PASS
MOL	+40	25.48	ORLA	-10.81		-7.33	ORLA	Mole
2LAB	+50	10.86	W. STU	8.91		17.38	E W	AB
-3	+60	24.99	MOL	23.58		8.01	MOR	-B 41
4.35	+25	-3.34	LAB	24.24		-12.86	CLAB	ORLA
3.40	+25	6.28	- B	-12.67	OPL	15.8	Oh	in Th

11. HSPA+ 850MHz Band

Test	Conditions			Frequenc	cy Deviation	1		
Power	ower Temperature /DC) (°C)		el = 4123 .4MHz)	Channel = 4175 (835MHz)		Channel = 4233 (846.6MHz)		Verdict
(VDC)	(C)	Hz	Limit	Hz	Limit	Hz	Limit	
LAB	-20	-7.78	B	4.02	ORLA	5.09	S W	, AB
MOER	-10	17.94		-23.4		-7.1	ORLAN	MORL
.09	0	10.6		13.27		-11.54	AB	ORL
G III	+10	-14.98		-9.86		-7.03	MOKE	a mo
3.80	+20	6.83		14.86		7.12	AB AB	LAL
AB	+30	-8.58	±2066	13.27	±2087.5	-2.37	±2116.5	PASS
MORE	+40	30.54		-21.86		11.05	RLAD	MORI
08	+50	4.59		15.86		29.02	AE AE	ORL.
a mo	+60	-29.65		9.47		-11.04	MORL	Mo
4.35	+25	25.76		-17.13		-1.35	AB AR	LAB
3.40	+25	-6.14	MIC	3.78	RLAB	17.9	W _O .	oB.

12. HSPA+ 1900MHz Band

Test Conditions		Frequency Deviation						
Dower	To man a water wa	Channel = 9262		Channel = 9400		Channel = 9538		Verdict
Power	Temperature	(1852.4MHz)		(1880.0MHz)		(1907.6MHz)		
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-20	22.31	, and	7.41	NORL	-14.96	io.	W. Orl
Mo.	-10	-13.71		8.01		-4.55	ORLAN	Morra
2LAB	10 til. 0 110	16.5		14.17		45.64	B W.	AB
N. C.	+10	8.73		-31.77		2.1	WOL	VB W
3.80	+20	-18.9		-21.36		-3.54	QLAE	OPLA
la.	+30	4.63	±1852.4	27.83	±1880	-13.96	±1907.6	PASS
MOR	+40	-5.64		-15.71		23.29	ORLA	Mole
LAB	+50	12.99		-21.35		-4.34	BIN	AB
	+60	-27.76		18.97		33.78	MOR	BW
4.35	+25	25.88	LAB	0.52		18.34	LAB	ORLA
3.40	+25	14.36	- G W	-4.62	OPL	-21.8	OF	W.

2.5 Conducted Out of Band Emissions

2.5.1 Requirement

According to FCC section 22.917(a) and FCC section 24.238(a) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.5.2 Test Description

See section 2.1.2 of this report.

2.5.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

Equipment List

1 AV. 10.					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
Spectrum Analyzer	Agilent	E7405A	US44210471	2016.03.02	2017.03.01
Power Meter	Agilent	E4418B	GB43318055	2016.03.02	2017.03.01
Power Sensor	Agilent	8482A	MY41091706	2016.03.02	2017.03.01
Power Splitter	Weinschel	1506A	NW521	2016.03.02	2017.03.01
Attenuator 1	Resnet	20dB	(n.a.)	2016.03.02	2017.03.01
Attenuator 2	Resnet	3dB	(n.a.)	2016.03.02	2017.03.01

Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128	824.2	-29.92	Plot A1 to A1.1		PASS
	190	836.6	-29.44	Plot A2 to A2.1	-13	PASS
850MHz	251	848.8	-29.23	Plot A3 to A3.1	2LAB	PASS
0014	512	1850.2	-19.99	Plot B1 to B1.1	0.	PASS
GSM 1900MHz	661	1880.0	-19.72	Plot B2 to B2.1	-13	PASS
	810	1909.8	-19.17	Plot B3 to B3.1	G W	PASS
EGPRS 850MHz	128	824.2	-28.93	Plot E1 to E1.1	4	PASS
	190	836.6	-29.62	Plot E2 to E2.1	-13	PASS
	251	848.8	-29.14	Plot E3 to E3.1	OF	PASS
EGPRS 1900MHz	512	1850.2	-18.88	Plot F1 to F1.1	ORL	PASS
	661	1880.0	-19.12	Plot F2 to F2.1	-13	PASS
	810	1909.8	-19.58	Plot F3 to F3.1	- 4	PASS

Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
WCDMA	4132	826.4	< -25	Plot G1 to G1.1	Ole	PASS
850MHz	4175	835.0	< -25	Plot G2 to G2.1	-13	PASS
OSUMINZ	4233	846.6	< -25	Plot G3 to G3.1	S MIC	PASS
WCDMA	9262	1852.4	< -25	Plot H1 to H1.1	A.C.	PASS
1900MHz	9400	1880.0	< -25	Plot H2 to H2.1	-13	PASS
1900IVITZ	9538	1907.6	< -25	Plot H3 to H3.1	ORL	PASS
LICDDA	4132	826.4	< -25	Plot I1 to I1.1	QR1	PASS
HSDPA	4175	835.0	< -25	Plot I2 to I2.1	-13	PASS
850MHz	4233	846.6	< -25	Plot I3 to I3.1	A	PASS
HSDPA	9262	1852.4	< -25	Plot J1 to J1.1	AB	PASS
	9400	1880.0	< -25	Plot J2 to J2.1	-13	PASS
1900MHz	9538	1907.6	< -25	Plot J3 to J3.1	-	PASS
LICLIDA	4132	826.4	< -25	Plot K1 to K1.1	Mo	PASS
HSUPA	4175	835.0	< -25	Plot K2 to K2.1	-13	PASS
850MHz	4233	846.6	< -25	Plot K3 to K3.1	-13	PASS
HSUPA	9262	1852.4	< -25	Plot L1 to L1.1	ORL	PASS
	9400	1880.0	< -25	Plot L2 to L2.1	-13	PASS
1900MHz	9538	1907.6	< -25	Plot L3 to L3.1	410,	PASS
HSPA+	4132	826.4	< -25	Plot M1 to M1.1		PASS
	4175	835.0	< -25	Plot M2 to M2.1	-13	PASS
850MHz	4233	846.6	< -25	Plot M3 to M3.1	ORLA	PASS
LAB	9262	1852.4	< -25	Plot N1 to N1.1	- AU	PASS
HSPA+	9400	1880.0	< -25	Plot N2 to N2.1	-13	PASS
1900MHz	9538 1907.6		< -25	Plot N3 to N3.1		PASS

Test Plots for the Whole Measurement Frequency Range:

Note: the power of the EUT transmitting frequency should be ignored.

(Plot A1: GSM 850MHz Channel = 128, 30MHz to 1GHz)

(Plot A1.1: GSM 850MHz Channel = 128, 1GHz to 9GHz)

(Plot A2: GSM 850MHz Channel = 190, 30MHz to 1GHz)

(Plot A2.1: GSM 850MHz Channel = 190, 1GHz to 9GHz)

(Plot A3: GSM 850MHz Channel = 251, 30MHz to 1GHz)

(Plot A3.1: GSM 850MHz Channel = 251, 1GHz to 9GHz)

(Plot B1: GSM 1900MHz Channel = 512, 30MHz to 1GHz)

(Plot B1.1: GSM 1900MHz Channel = 512, 1GHz to 20GHz)

(Plot B2: GSM 1900MHz Channel = 661, 30MHz to 1GHz)

(Plot B2.1: GSM 1900MHz Channel = 661, 1GHz to 20GHz)

(Plot B3: GSM 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot B3.1: GSM 1900MHz Channel = 810, 1GHz to 20GHz)

(Plot E1: EGPRS 850MHz Channel = 128, 30MHz to 1GHz)

(Plot E1.1: EGPRS 850MHz Channel = 128, 1GHz to 9GHz)

(Plot E2: EGPRS 850MHz Channel = 190, 30MHz to 1GHz)

(Plot E2.1: EGPRS 850MHz Channel = 190, 1GHz to 9GHz)

(Plot E3: EGPRS 850MHz Channel = 251, 30MHz to 1GHz)

(Plot E3.1: EGPRS 850MHz Channel = 251, 1GHz to 9GHz)

(Plot F1: EGPRS 1900MHz Channel = 512, 30MHz to 1GHz)

(Plot F1.1: EGPRS 1900MHz Channel = 512, 1GHz to 20GHz)

(Plot F2: EGPRS 1900MHz Channel = 661, 30MHz to 1GHz)

(Plot F2.1: EGPRS 1900MHz Channel = 661, 1GHz to 20GHz)

(Plot F3: EGPRS 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot F3.1: EGPRS 1900MHz Channel = 810, 1GHz to 20GHz)

(Plot G1: WCDMA850MHz Channel = 4132, 30MHz to 1GHz)

(Plot G1.1: WCDMA850MHz Channel = 4132, 1GHz to 9GHz)

(Plot G2: WCDMA850MHz Channel = 4175, 30MHz to 1GHz)

(Plot G2.1: WCDMA850MHz Channel = 4175, 1GHz to 9GHz)

(Plot G3: WCDMA850MHz Channel = 4233, 30MHz to 1GHz)

(Plot G3.1: WCDMA850MHz Channel = 4233, 1GHz to 9GHz)

(Plot H1: WCDMA1900MHz Channel = 9262, 30MHz to 1GHz)

(Plot H1.1: WCDMA1900MHz Channel = 9262, 1GHz to 20GHz)

(Plot H2: WCDMA1900MHz Channel = 9400, 30MHz to 1GHz)

(Plot H2.1: WCDMA1900MHz Channel = 9400, 1GHz to 20GHz)

(Plot H3: WCDMA1900MHz Channel = 9538, 30MHz to 1GHz)

(Plot H3.1: WCDMA1900MHz Channel = 9538 1GHz to 20GHz)

(Plot I1: HSDPA 850MHz Channel = 4132, 30MHz to 1GHz)

(Plot I1.1: HSDPA 850MHz Channel = 4132, 1GHz to 9GHz)

(Plot I2: HSDPA 850MHz Channel = 4175, 30MHz to 1GHz)

(Plot I2.1: HSDPA 850MHz Channel = 4175, 1GHz to 9GHz)

(Plot I3: HSDPA 850MHz Channel = 4233, 30MHz to 1GHz)

(Plot I3.1: HSDPA 850MHz Channel = 4233, 1GHz to 9GHz)

(Plot J1: HSDPA 1900MHz Channel = 9262, 30MHz to 1GHz)

(Plot J1.1: HSDPA 1900MHz Channel = 9262, 1GHz to 20GHz)

(Plot J2: HSDPA 1900MHz Channel = 9400, 30MHz to 1GHz)

(Plot J2.1: HSDPA1900MHz Channel = 9400, 1GHz to 20GHz)

