------ indtast data ---- $hældning_1 = -0,00335 \cdot 1$ [C/s] hældning fra regression i excel på flaske 1 (øverst)t_{:1} = 20,03 [C] middeltemperatur fundet i excel $hældning_2 = -0,003662 \cdot 1$ [C/s] hældning fra regression i excel på flaske 2 (nederst)t_{;2} = 20,15 [C] middeltemperatur fundet i excel $hældning_3 = -0,003255 \cdot 1$ [C/s] hældning fra regression i excel på flaske 3 (øverst)t_{:3} = 21,51 [C] middeltemperatur fundet i excel $p_0 = 1$ [bar] tryk i flaskerne m_{vand;0} = 12 [kg] samlet masse af vandet ----- Energibalance for nedkøling ----- $\Phi_{\text{tot;1}} = -q_{\text{h;1}} \cdot m_{\text{vand;0}}$ Samlet varmetilførsel fra flasker baseret på flaske 1 $\Phi_{\text{flask;1}} = \frac{\Phi_{\text{tot;1}}}{40}$ Varmetilførsel fra flaske 1 ------ udregninger hertil ----- $q_{h;1} = q_{t;1} \cdot cp_{;1}$ Entalpiændring i flaske 1 q_{t;1} = hældning₁ Temperaturænding i flaske 1 $cp_{:1} = Cp$ (water; $T = t_{:1}$; $P = p_0$) middel cp-værdi for vandet i flasken ----- Energibalance for nedkøling ------ $\Phi_{\text{tot;2}} = -q_{\text{h;2}} \cdot m_{\text{vand;0}}$ $\Phi_{\text{flask;2}} = \frac{\Phi_{\text{tot;2}}}{40}$ ------ udregninger hertil $q_{h;2} = q_{t;2} \cdot cp_{;2}$ $q_{t:2} = hældning_2$ $cp_{:2} = Cp \text{ (water ; T = t_{:2}; P = p_0)}$ ----- Energibalance for nedkøling ------ $\Phi_{\text{tot;3}} = -q_{\text{h;3}} \cdot m_{\text{vand;0}}$ $\Phi_{\text{flask;3}} = \frac{\Phi_{\text{tot;3}}}{40}$

------ udregninger hertil ------

$$q_{h;3} = q_{t;3} \cdot cp_{;3}$$

 $q_{t:3} = hældning_3$

$$cp_{;3} = Cp (water; T = t_{;3}; P = p_0)$$

Fordi der står to flasker på øverste hylde, skal disse ikke tæller mere i gennnemsnittet end den på nederste

$$\Phi_{\text{tot;0}} = \frac{\frac{\Phi_{\text{tot;1}} + \Phi_{\text{tot;3}}}{2} + \Phi_{\text{tot;2}}}{2}$$

$$\Phi_{\text{flask;0}} = \frac{\frac{\Phi_{\text{flask;1}} + \Phi_{\text{flask;3}}}{2} + \Phi_{\text{flask;2}}}{2}$$

$$\Delta t = 11$$
 [C]

$$A_{tot} = 296 \cdot \left| 0,0001 \cdot \frac{m2}{cm2} \right|$$

$$\Phi_{\text{flask};0} = A_{\text{tot}} \cdot U_{\text{u}} \cdot \Delta t$$

 $U_t = 1,4$

Unit Settings: SI C bar J mass deg		
Variable±Uncertainty	Partial derivative	% of uncertainty
$\Phi_{\text{flask},0} = 4.371 \pm 0.0006183$ [W]		
$\overline{t}_1 = 20,03\pm1,4$ [C]	$\partial \Phi_{\text{flask},0} / \partial \overline{t}_1 = -0,0001749$	15,68 %
$\overline{t}_2 = 20,15\pm1,4$ [C]	$\partial \Phi_{flask,0} / \partial \overline{t}_2 = -0,0003779$	73,24 %
$\overline{t}_3 = 21,51\pm1,4$ [C]	$\partial \Phi_{\text{flask},0} / \partial \overline{t}_{3} = -0,000147$	11,08 %
$\Phi_{\text{tot},0} = 174.8 \pm 0.02473$ [W]		
$\overline{t}_1 = 20,03\pm1,4$ [C]	$\partial \Phi_{\text{tot},0} / \partial \overline{t}_1 = -0,006995$	15,68 %
$\overline{t}_2 = 20,15\pm1,4$ [C]	$\partial \Phi_{\text{tot},0} / \partial \overline{\mathbf{t}}_2 = -0.01512$	73,24 %
$\overline{t}_3 = 21,51\pm1,4$ [C]	$\partial \Phi_{\text{tot},0} / \partial \overline{t}_3 = -0,00588$	11,08 %
$U_u = 13,42\pm0,001899 \text{ [W/m2*C]}$		
$\overline{t}_1 = 20,03\pm1,4$ [C]	$\partial U_u / \partial \overline{t}_1 = -0,000537$	15,68 %
$\overline{t}_2 = 20,15\pm1,4$ [C]	$\partial U_u / \partial \overline{t}_2 = -0,001161$	73,24 %
$\overline{t}_3 = 21,51\pm1,4$ [C]	$\partial U_u / \partial \overline{t}_3 = -0,0004515$	11,08 %
No unit problems were detected.		
$A_{tot} = 0.0296 \text{ [m}^2\text{]}$ $U_u = 13.42 \text{ [W/m2*C]}$	$\Delta t = 11 [C]$	U _t = 1,4 [C]

No unit problems were detected.