

Ingeniería En Ingeniería EN Tecnologías DE LA Información Y Comunicaciones

RAFAEL PATRON MARCO ANTONIO

TAREA 2

14/02/25

TOPICOS DE IA

12-13PM

SISTEMA EXPERTO

Un **sistema experto** es una aplicación informática que utiliza conocimientos y reglas de inferencia para resolver problemas que normalmente requerirían la intervención de un experto humano. Estos sistemas son ampliamente utilizados en áreas como la medicina, la ingeniería, la gestión financiera y más.

LOGICA DIFUSA

Es una extensión de la lógica clásica que permite manejar conceptos vagos o imprecisos, como "alto", "bajo", "caliente", "frío", etc. A diferencia de la lógica booleana, que solo permite valores verdaderos o falsos la lógica difusa permite grados de verdad, representados por valores entre 0 y 1. OSEA CODIGO BINARIO

Conjuntos Difusos: En la lógica difusa, los conjuntos no tienen límites claros. Un elemento puede pertenecer a un conjunto en un grado determinado. Por ejemplo, una temperatura de 25°C puede ser considerada "caliente" en un grado de 0.7 y "templada" en un grado de 0.3.

Funciones de Pertenencia: Estas funciones definen cómo un valor de entrada se mapea a un grado de pertenencia en un conjunto difuso. Las funciones más comunes son triangulares, trapezoidales y gaussianas.

Reglas Difusas: Son reglas del tipo "SI... ENTONCES..." que utilizan conjuntos difusos. Por ejemplo, "SI la temperatura es alta ENTONCES el ventilador debe girar rápido".

Inferencia Difusa: Es el proceso de aplicar las reglas difusas a los datos de entrada para obtener una salida difusa. El método más común es el de Mamdani.

Defusificación: Es el proceso de convertir la salida difusa en un valor nítido que pueda ser utilizado en el mundo real. Los métodos comunes incluyen el centroide y el máximo.

Aplicaciones de Sistemas Expertos con Lógica Difusa

Control de Procesos Industriales: En la industria, los sistemas expertos con lógica difusa se utilizan para controlar procesos complejos donde las condiciones pueden variar de manera imprecisa. Por ejemplo, en el control de temperatura en un horno.

Diagnóstico Médico: En medicina, estos sistemas pueden ayudar a diagnosticar enfermedades basándose en síntomas que no son claramente definidos. Por ejemplo, un sistema podría evaluar el grado de "dolor" reportado por un paciente.

Sistemas de Recomendación: En comercio electrónico, los sistemas expertos con lógica difusa pueden recomendar productos basándose en preferencias difusas del usuario, como "me gusta mucho" o "no me gusta tanto".

Gestión de Tráfico: En la gestión del tráfico urbano, estos sistemas pueden optimizar los semáforos basándose en el flujo de vehículos, que puede ser impreciso y variable.

Ventajas:

Manejo de Incertidumbre: La lógica difusa permite manejar información imprecisa o incompleta.

Flexibilidad: Las reglas difusas son más flexibles que las reglas booleanas, lo que permite una mayor adaptabilidad.

Simplicidad: Los sistemas expertos con lógica difusa pueden ser más fáciles de entender y mantener que los sistemas basados en lógica clásica.

Desventajas:

Complejidad Computacional: La inferencia difusa puede ser computacionalmente costosa, especialmente en sistemas con muchas reglas.

Dificultad en el Diseño: Definir las funciones de pertenencia y las reglas difusas puede ser complicado y requiere un conocimiento profundo del dominio.

Riesgo de Subjetividad: Las funciones de pertenencia y las reglas pueden ser subjetivas, lo que puede llevar a resultados inconsistentes.

Conclusiones

Los sistemas expertos con lógica difusa son herramientas poderosas para manejar problemas complejos donde la información es imprecisa o incompleta. Su capacidad para manejar la incertidumbre y la vaguedad los hace ideales para aplicaciones en control de procesos, diagnóstico médico, sistemas de recomendación y más. Sin embargo, su diseño y implementación requieren un conocimiento profundo del dominio y pueden ser computacionalmente costosos.

