Pebbling

Andreas Fellner 1 * and Bruno Woltzenlogel Paleo 2 **

 Université Paul Sabatier, Toulouse joseph.boudou@matabio.net
 Vienna University of Technology bruno@logic.at

Abstract.

1 Introduction

2 Propositional Resolution Calculus

A literal is a propositional variable or the negation of a propositional variable. The complement of a literal ℓ is denoted $\bar{\ell}$ (i.e. for any propositional variable p, $\bar{p} = \neg p$ and $\bar{\neg p} = p$). The set of all literals is denoted \mathcal{L} . A clause is a set of literals. \bot denotes the empty clause.

Definition 1 (Proof). A directed acyclic graph $\langle V, E, \Gamma \rangle$, where V is a set of nodes and E is a set of edges labeled by literals (i.e. $E \subset V \times \mathcal{L} \times V$ and $v_1 \stackrel{\ell}{\to} v_2$ denotes an edge from node v_1 to node v_2 labeled by ℓ), is a proof of a clause Γ iff it is inductively constructible according to the following cases:

- 1. If Γ is a clause, $\widehat{\Gamma}$ denotes some proof $\langle \{v\}, \varnothing, \Gamma \rangle$, where v is a new node.
- 2. If ψ_L is a proof $\langle V_L, E_L, \Gamma_L \rangle$ and ψ_R is a proof $\langle V_R, E_R, \Gamma_R \rangle$ and ℓ is a literal such that $\bar{\ell} \in \Gamma_L$ and $\ell \in \Gamma_R$, then $\psi_L \odot_{\ell} \psi_R$ denotes a proof $\langle V, E, \Gamma \rangle$ s.t.

$$V = V_L \cup V_R \cup \{v\}$$

$$E = E_L \cup E_R \cup \left\{ v \xrightarrow{\overline{\ell}} \rho(\psi_L), v \xrightarrow{\ell} \rho(\psi_R) \right\}$$

$$\Gamma = \left(\Gamma_L \setminus \{\overline{\ell}\} \right) \cup \left(\Gamma_R \setminus \{\ell\} \right)$$

where v is a new node and $\rho(\varphi)$ denotes the root node of φ .

If $\psi = \varphi_L \odot_\ell \varphi_R$, then φ_L and φ_R are direct subproofs of ψ and ψ is a child of both φ_L and φ_R . The transitive closure of the direct subproof relation is the subproof relation. A subproof which has no direct subproof is an axiom of the proof. Contrary to the usual proof theoretic conventions but following the actual implementation of the data structures used by LowerUnivalents, edges are directed from children (resolvents) to their parents (premises). V_{ψ} , E_{ψ} and Γ_{ψ} denote, respectively, the nodes, edges and proved clause (conclusion) of ψ .

^{*} Supported by the Google Summer of Code 2012 program.

^{**} Supported by the Austrian Science Fund, project P24300.

```
Input: a proof \varphi
     Input: D a set of subproofs
     Output: a proof \varphi' obtained by deleting the subproofs in D from \varphi
 1 if \varphi \in D or \rho(\varphi) has no premises then
 2
          return \varphi;
 3 else
          let \varphi_L, \varphi_R and \ell be such that \varphi = \varphi_L \odot_{\ell} \varphi_R;
 4
          let \varphi'_L = \text{delete}(\varphi_L, D);
 5
          let \varphi_R' = \text{delete}(\varphi_R, D);
 6
 7
          if \varphi'_L \in D then
          8
 9
                return \varphi'_L;
10
          else if \overline{\ell} \notin \Gamma_{\varphi'_L} then
11
                return \varphi_L^{\prime L};
12
          else if \ell \notin \Gamma_{\varphi_R'} then
13
                return \varphi_R^{'};
14
15
          else
                return \varphi'_L \odot_\ell \varphi'_R;
16
```

Algorithm 1: delete

Definition 2 (Active literals). Given a proof ψ , the set of active literals $A_{\psi}(\varphi)$ of a subproof φ are the labels of edges coming into φ 's root:

$$A_{\psi}(\varphi) = \{ \ell \mid \exists \varsigma \in V_{\psi}. \ \varsigma \xrightarrow{\ell} \rho(\varphi) \}$$

Two operations on proofs are used in this paper: the resolution operation \odot_{ℓ} introduced above and the deletion of a set of subproofs from a proof, denoted $\psi \setminus (\varphi_1 \dots \varphi_n)$ where ψ is the whole proof and φ_i are the deleted subproofs. Algorithm 1 describes the deletion operation, with $\psi \setminus (\varphi_1 \dots \varphi_n)$ being the result of $\text{delete}(\psi, \{\varphi_1, \dots, \varphi_n\})$. Both the resolution and deletion operations are considered to be left associative.

The deletion algorithm is a minor variant of the RECONSTRUCT-PROOF algorithm presented in [?]. The basic idea is to traverse the proof in a top-down manner, replacing each subproof having one of its premises marked for deletion (i.e. in D) by its other direct subproof. The special case when both φ'_L and φ'_R belong to D is treated rather implicitly and deserves an explanation: in such a case, one might intuitively expect the result φ' to be undefined and arbitrary. Furthermore, to any child of φ , φ' ought to be seen as if it were in D, as if the deletion of φ'_L and φ'_R propagated to φ' as well. Instead of assigning some arbitrary proof to φ' and adding it to D, the algorithm arbitrarily returns (in line 8) φ'_R (which is already in D) as the result φ' . In this way, the propagation

of deletion is done automatically and implicitly. For instance, the following hold:

$$\varphi_1 \odot_{\ell} \varphi_2 \setminus (\varphi_1, \varphi_2) = \varphi_2 \tag{1}$$

$$\varphi_1 \odot_{\ell} \varphi_2 \odot_{\ell'} \varphi_3 \setminus (\varphi_1, \varphi_2) = \varphi_3 \setminus (\varphi_1, \varphi_2) \tag{2}$$

A side-effect of this clever implicit propagation of deletion is that the actual result of deletion is only meaningful if it is not in D. In the example (1), as $\varphi_1 \odot_\ell \varphi_2 \setminus (\varphi_1, \varphi_2) \in \{\varphi_1, \varphi_2\}$, the actual resulting proof is meaningless. Only the information that it is a deleted subproof is relevant, as it suffices to obtain meaningful results as shown in (2).

Proposition 1. For any proof ψ and any sets A and B of ψ 's subproofs, either $\psi \setminus (A \cup B) \in A \cup B$ and $\psi \setminus (A) \setminus (B) \in A \cup B$, or $\psi \setminus (A \cup B) = \psi \setminus (A) \setminus (B)$.

Definition 3 (Valent literal). In a proof ψ , a literal ℓ is valent for the subproof φ iff $\overline{\ell}$ belongs to the conclusion of $\psi \setminus (\varphi)$ but not to the conclusion of ψ .

Proposition 2. In a proof ψ , every valent literal of a subproof φ is an active literal of φ .

Proof. Lines 2, 12, 14 and 16 from Algorithm 1 can not introduce a new literal in the conclusion of the subproof being processed. Let ℓ be a valent literal of φ in ψ . Because there is only one subproof to be deleted, $\overline{\ell}$ can only be introduced when processing a subproof φ' such that $\rho(\varphi') \xrightarrow{\ell} \rho(\varphi)$.

Proposition 3. Given a proof ψ and a set $D = \{\varphi_1 \dots \varphi_n\}$ of ψ 's subproofs, $\forall \ell \in \mathcal{L} \text{ s.t. } \ell \text{ is in the conclusion of } \psi \setminus (D) \text{ but not in } \psi$'s conclusion, then $\exists i \text{ s.t. } \bar{\ell} \text{ is a valent literal of } \varphi_i \text{ in } \psi$.

3 Pebbling Game

4 Greedy Pebbling Algorithms

- 4.1 Last Child Heuristic
- 4.2 Node Distance Heuristic
- 4.3 Number of Children Heuristic

5 Experiments

LowerUnivalents and LUnivRPI have been implemented in the functional programming language Scala¹ as part of the Skeptik library². LowerUnivalents has been implemented as a recursive delete improvement.

¹ http://www.scala-lang.org/

² https://github.com/Paradoxika/Skeptik

```
Input: a proof \psi
Output: a compressed proof \psi'

1 Units \leftarrow \varnothing;

2 for every subproof \varphi in a bottom-up traversal do

3 if \varphi is a unit and has more than one child then

4 Enqueue \varphi in Units;

5 \psi' \leftarrow \text{delete}(\psi, \text{Units});

6 for every unit \varphi in Units do

7 let \{\ell\} = \Gamma_{\varphi};

8 if \bar{\ell} \in \Gamma_{\psi'} then \psi' \leftarrow \psi' \odot_{\ell} \varphi;
```

Algorithm 2: LowerUnits

Table 1: Number of proofs per benchmark category

Benchmark Category	Number of Proofs
$\mathrm{QF}_{-}\mathrm{UF}$	3907
QF_IDL	475
QF_LIA	385
QF_UFIDL	156
QF_UFLIA	106
$\operatorname{QF_RDL}$	30

The algorithms have been applied to 5059 proofs produced by the SMT-solver veriT³ on unsatisfiable benchmarks from the SMT-Lib⁴. The details on the number of proofs per SMT category are shown in Table 1. The proofs were translated into pure resolution proofs by considering every non-resolution inference as an axiom.

The experiment compared the following algorithms:

```
LU: the LowerUnits algorithm from [?]; LUniv: the LowerUnivalents algorithm;
```

RPILU: a non-sequential combination of RPI after LowerUnits;

RPILUniv: a non-sequential combination of RPI after LowerUnivalents;

LU.RPI: the sequential composition of LowerUnits after RPI;

LUnivRPI: the non-sequential combination of LowerUnivalents after RPI as described in Sect. 5;

RPI: the RecyclePivotsWithIntersection from [?];

Split: Cotton's **Split** algorithm ([?]);

RedRec: the Reduce&Reconstruct algorithm from [?];

Best RPILU/LU.RPI: which performs both RPILU and LU.RPI and chooses the smallest resulting compressed proof;

³ http://www.verit-solver.org/

⁴ http://www.smtlib.org/

Best RPILU/LUnivRPI: which performs RPILU and LUnivRPI and chooses the smallest resulting compressed proof.

For each of these algorithms, the time needed to compress the proof along with the number of nodes and the number of axioms (i.e. $unsat\ core$ size) have been measured. Raw data of the experiment can be downloaded from the web⁵.

The experiments were executed on the Vienna Scientific Cluster⁶ VSC-2. Each algorithm was executed in a single core and had up to 16 GB of memory available. This amount of memory has been useful to compress the biggest proofs (with more than 10^6 nodes).

The overall results of the experiments are shown in Table ??. The compression ratios in the second column are computed according to formula (3), in which ψ ranges over all the proofs in the benchmark and ψ' ranges over the corresponding compressed proofs.

$$1 - \frac{\sum |V_{\psi'}|}{\sum |V_{\psi}|} \tag{3}$$

The unsat core compression ratios are computed in the same way, but using the number of axioms instead of the number of nodes. The speeds on the fourth column are computed according to formula (??) in which d_{ψ} is the duration in milliseconds of ψ 's compression by a given algorithm.

$$\frac{\sum |V_{\psi}|}{\sum d_{\psi}} \tag{4}$$

For the Split and RedRec algorithms, which must be repeated, a timeout has been fixed so that the speed is about 3 nodes per millisecond.

Figure ?? shows the comparison of LowerUnits with LowerUnivalents. Subfigures (a) and (b) are scatter plots where each dot represents a single benchmark proof. Subfigure (c) is a histogram showing, in the vertical axis, the proportion of proofs having (normalized) compression ratio difference within the intervals showed in the horizontal axis. This difference is computed using formula (??) with $v_{\rm LU}$ and $v_{\rm LUniv}$ being the compression ratios obtained respectively by LowerUnits and LowerUnivalents.

$$\frac{v_{\text{LU}} - v_{\text{LUniv}}}{\frac{v_{\text{LU}} + v_{\text{LUniv}}}{2}} \tag{5}$$

The number of proofs for which $v_{\rm LU} = v_{\rm LUniv}$ is not displayed in the histogram. The *(normalized) duration differences* in subfigure (d) are computed using the same formula (??) but with $v_{\rm LU}$ and $v_{\rm LUniv}$ being the time taken to compress the proof by LowerUnits and LowerUnivalents respectively.

As expected, LowerUnivalents always compresses more than LowerUnits (subfigure (a)) at the expense of a longer computation (subfigure (d)). And even

⁵ http://www.matabio.net/skeptik/LUniv/experiments/

⁶ http://vsc.ac.at/

Table 2: Total compression ratios

Algorithm	Compression	Unsat Core Compression	Speed
LU	7.5 %	0.0 %	22.4 n/ms
LUniv	8.0 %	0.8 %	20.4 n/ms
RPILU	22.0~%	3.6~%	7.4 n/ms
RPILUniv	22.1~%	3.6~%	6.5 n/ms
LU.RPI	21.7~%	3.1 %	15.1 n/ms
LUnivRPI	22.0 %	3.6~%	17.8 n/ms
RPI	17.8 %	3.1 %	31.3 n/ms
Split	21.0~%	0.8~%	2.9 n/ms
RedRec	26.4 %	0.4~%	2.9 n/ms
Best RPILU/LU.RPI	22.0 %	3.7 %	5.0 n/ms
Best RPILU/LUnivRPI	22.2~%	3.7 %	5.2 n/ms

if the compression gain is low on average (as noticeable in Table ??), subfigure (a) shows that LowerUnivalents compresses some proofs significantly more than LowerUnits.

It has to be noticed that veriT already does its best to produce compact proofs. In particular, a forward subsumption algorithm is applied, which results in proofs not having two different subproofs with the same conclusion. This results in LowerUnits being unable to reduce unsat core. But as LowerUnivalents lowers non-unit subproofs and performs some partial regularization, it achieves some unsat core reduction, as noticeable in subfigure (b).

The comparison of the sequential LU.RPI with the non-sequential LUnivRPI shown in Fig. ?? outlines the ability of LowerUnivalents to be efficiently combined with other algorithms. Not only compression ratios are improved but LUnivRPI is faster than the sequential composition for more than 80 % of the proofs.

6 Conclusions and Future Work

Acknowledgments: