

- Data from Danmark and London
- The Delta and Omicron variants coexist without directly affecting each other
- Indirect interaction via competing for common ressources, i,e., first come, first served

TECHNISC UNIVERSIT DRESDEN

Latest observation 2

- ► The share of Omicron can be well described by a logistic function with growth rate *r*
- First transform the observed Omicron share p into the **odds ratio** y = p/(1-p)
- From Observation 1 (coexistence), if follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^r$$

➤ Transforming back gives the s-shaped predicted Omicron share (logistic function)

$$p(t) = \frac{y(t)}{1 + y(t)}$$

- ► The share of Omicron can be well described by a logistic function with growth rate *r*
- ► From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^r$$

► Transforming back gives the s-shaped predicted Omicron share (logistic function)

$$p(t) = \frac{y(t)}{1 + y(t)}$$

- ► The share of Omicron can be well described by a logistic function with growth rate *r*
- First transform the observed Omicron share p into the odds ratio y = p/(1-p)
- ► From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

► Transforming back gives the s-shaped predicted Omicron share (logistic function)

$$p(t) = \frac{y(t)}{1 + y(t)}$$

- ► The share of Omicron can be well described by a logistic function with growth rate *r*
- First transform the observed Omicron share p into the odds ratio y = p/(1-p)
- ► From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

 Transforming back gives the s-shaped predicted Omicron share (logistic function)

$$p(t) = \frac{y(t)}{1 + y(t)}$$

Latest observation 2: Update

► The share of Omicron can be well described by a logistic function with growth rate *r*

TECHNISC UNIVERSIT DRESDEN

Latest observation 2: Update

- lacktriangle The share of Omicron can be well described by a logistic function with growth rate r
- First transform the observed Omicron share p into the odds ratio y=p/(1-p)
- From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

Latest observation 2: Update

- ► The share of Omicron can be well described by a logistic function with growth rate *r*
- First transform the observed Omicron share p into the **odds ratio** y = p/(1-p)
- From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

► This means, the **log-odds** are essentially linear in time:

$$ln y(t) = ln y_0 + rt$$

Assumed efficiency against Delta infections

"First vaccinatedfirst boostered" principle

Assumed efficiency against Omicron infections

Only fresh full vaccinations or boosters help against Omicron

Assumed immunity by infections

- ▶ 100 % immunity of Delta against Delta reinfections
- ▶ 100 % immunity of Omicron against Omicron reinfections
- 100 % no cross immunity (people can get both Delta and Omicron infections)

Assumed immunity by infections

- ▶ 100 % immunity of Delta against Delta reinfections
- ▶ 100 % immunity of Omicron against Omicron reinfections
- ▶ 100 % no cross immunity (people can get both Delta and Omicron infections)

Assumed immunity by infections

- ▶ 100 % immunity of Delta against Delta reinfections
- ▶ 100 % immunity of Omicron against Omicron reinfections
- ▶ 100 % no cross immunity (people can get both Delta and Omicron infections)

(1) The spreading of the fraction p new variant (Omicron) at the cost of the old variants (Delta) is logistic:

$$p(t) = \frac{y_0 e^{rt}}{1 + y_0 e^{rt}}, \quad y_0 = \frac{p_0}{1 - p_0}$$

- (2) The growth rate r of the logistic growth depends or
 - ▶ the base reproduction numbers R_{10} and R_{20} ,
 - be the total population immunities (vaccination, boosters, infections) I_1 and I_2 against each variant,
 - ightharpoonup the generation time T of the infections (assumed to be equal, 5 days):

according to

$$r = \frac{1}{T} \left[\frac{R_{20}(1 - I_2)}{R_{10}(1 - I_1)} - 1 \right]$$

(1)

(1) The spreading of the fraction p new variant (Omicron) at the cost of the old variants (Delta) is logistic:

$$p(t) = \frac{y_0 e^{rt}}{1 + y_0 e^{rt}}, \quad y_0 = \frac{p_0}{1 - p_0}$$

- (2) The growth rate r of the logistic growth depends on
 - ▶ the base reproduction numbers R_{10} and R_{20} ,
 - be the total population immunities (vaccination, boosters, infections) I_1 and I_2 against each variant
 - ightharpoonup the generation time T of the infections (assumed to be equal, 5 days):

according to

$$r = \frac{1}{T} \left[\frac{R_{20}(1 - I_2)}{R_{10}(1 - I_1)} - 1 \right]$$

(1)

(1) The spreading of the fraction p new variant (Omicron) at the cost of the old variants (Delta) is logistic:

$$p(t) = \frac{y_0 e^{rt}}{1 + y_0 e^{rt}}, \quad y_0 = \frac{p_0}{1 - p_0}$$

- (2) The growth rate r of the logistic growth depends on
 - ▶ the base reproduction numbers R_{10} and R_{20} ,
 - ightharpoonup the total population immunities (vaccination, boosters, infections) I_1 and I_2 against each variant,
 - ightharpoonup the generation time T of the infections (assumed to be equal, 5 days):

according to

$$r = \frac{1}{T} \left[\frac{R_{20}(1 - I_2)}{R_{10}(1 - I_1)} - 1 \right] \tag{1}$$

(1) The spreading of the fraction p new variant (Omicron) at the cost of the old variants (Delta) is logistic:

$$p(t) = \frac{y_0 e^{rt}}{1 + y_0 e^{rt}}, \quad y_0 = \frac{p_0}{1 - p_0}$$

- (2) The growth rate r of the logistic growth depends on
 - ▶ the base reproduction numbers R_{10} and R_{20} ,
 - be the total population immunities (vaccination, boosters, infections) I_1 and I_2 against each variant,
 - ightharpoonup the generation time T of the infections (assumed to be equal, 5 days):

according to

$$r = \frac{1}{T} \left[\frac{R_{20}(1 - I_2)}{R_{10}(1 - I_1)} - 1 \right] \tag{1}$$

(1) The spreading of the fraction p new variant (Omicron) at the cost of the old variants (Delta) is logistic:

$$p(t) = \frac{y_0 e^{rt}}{1 + y_0 e^{rt}}, \quad y_0 = \frac{p_0}{1 - p_0}$$

- (2) The growth rate r of the logistic growth depends on
 - ▶ the base reproduction numbers R_{10} and R_{20} ,
 - ightharpoonup the total population immunities (vaccination, boosters, infections) I_1 and I_2 against each variant,
 - ightharpoonup the generation time T of the infections (assumed to be equal, 5 days):

according to

$$r = \frac{1}{T} \left[\frac{R_{20}(1 - I_2)}{R_{10}(1 - I_1)} - 1 \right] \tag{1}$$

- (3) Assuming no cross effects, the effective R_t value caused by the mixture of the Delta and Omicron viruses depends on
 - ► the Omicron percentage *p*
 - \blacktriangleright the base reproduction numbers R_{10} and R_{20} of Delta and Omicron, respectively,
 - ▶ the immunity escape fractions $(1 I_1)$ and $(1 I_2)$,
 - the seasonal multiplicator f^{season}
 - the stringency (lockdown) multiplicator f^{stringency}:

$$R_t = [(1-p)R_{10}(1-I_1) + pR_{20}(1-I_2)] f_{\text{season}} f_{\text{stringency}}$$
 (2)

- Notice: Both the growth rate r of the increase of the Delta share and the growth rate $(R_t-1)/T$ of the actual infection wave depend on $P_1=R_{10}(1-I_1)$ and $P_2=R_{20}(1-I_2)$ such that a positive (negative) value of r implies an increase (decrease) of R_t
- A positive Omicron spreading r does not imply that the new variant is more infectious; only the products P_1 and P_2 matter
- A positive spreading r can be related to a negative infection growth $(R_t 1)/T$ both before and after the new variant dominates since, for given I_1 and I_2 , r is only related to the ratio R_{20}/R_{10} of the base immunities \Rightarrow next slide

- (3) Assuming no cross effects, the effective R_t value caused by the mixture of the Delta and Omicron viruses depends on
 - ▶ the Omicron percentage *p*
 - \blacktriangleright the base reproduction numbers R_{10} and R_{20} of Delta and Omicron, respectively,
 - ▶ the immunity escape fractions $(1 I_1)$ and $(1 I_2)$,
 - ▶ the seasonal multiplicator f^{season}
 - the stringency (lockdown) multiplicator f^{stringency}:

$$R_t = [(1-p)R_{10}(1-I_1) + pR_{20}(1-I_2)] f_{\text{season}} f_{\text{stringency}}$$
 (2)

- Notice: Both the growth rate r of the increase of the Delta share and the growth rate $(R_t-1)/T$ of the actual infection wave depend on $P_1=R_{10}(1-I_1)$ and $P_2=R_{20}(1-I_2)$ such that a positive (negative) value of r implies an increase (decrease) of R_t
- A positive Omicron spreading r does not imply that the new variant is more infectious; only the products P_1 and P_2 matter
- A positive spreading r can be related to a negative infection growth $(R_t-1)/T$ both before and after the new variant dominates since, for given I_1 and I_2 , r is only related to the ratio R_{20}/R_{10} of the base immunities \Rightarrow next slide

- (3) Assuming no cross effects, the effective R_t value caused by the mixture of the Delta and Omicron viruses depends on
 - ► the Omicron percentage *p*
 - \blacktriangleright the base reproduction numbers R_{10} and R_{20} of Delta and Omicron, respectively,
 - ▶ the immunity escape fractions $(1 I_1)$ and $(1 I_2)$,
 - the seasonal multiplicator f^{season}
 - the stringency (lockdown) multiplicator f^{stringency}:

$$R_t = [(1-p)R_{10}(1-I_1) + pR_{20}(1-I_2)] f_{\text{season}} f_{\text{stringency}}$$
 (2)

- Notice: Both the growth rate r of the increase of the Delta share and the growth rate $(R_t-1)/T$ of the actual infection wave depend on $P_1=R_{10}(1-I_1)$ and $P_2=R_{20}(1-I_2)$ such that a positive (negative) value of r implies an increase (decrease) of R_t
- A positive Omicron spreading r does not imply that the new variant is more infectious; only the products P_1 and P_2 matter
- A positive spreading r can be related to a negative infection growth $(R_t-1)/T$ both before and after the new variant dominates since, for given I_1 and I_2 , r is only related to the ratio R_{20}/R_{10} of the base immunities \Rightarrow next slide

- (3) Assuming no cross effects, the effective R_t value caused by the mixture of the Delta and Omicron viruses depends on
 - ightharpoonup the Omicron percentage p
 - \blacktriangleright the base reproduction numbers R_{10} and R_{20} of Delta and Omicron, respectively,
 - \blacktriangleright the immunity escape fractions $(1-I_1)$ and $(1-I_2)$,
 - ► the seasonal multiplicator f^{season}
 - ▶ the stringency (lockdown) multiplicator f^{stringency}:

$$R_t = [(1-p)R_{10}(1-I_1) + pR_{20}(1-I_2)] f_{\text{season}} f_{\text{stringency}}$$
 (2)

- Notice: Both the growth rate r of the increase of the Delta share and the growth rate $(R_t-1)/T$ of the actual infection wave depend on $P_1=R_{10}(1-I_1)$ and $P_2=R_{20}(1-I_2)$ such that a positive (negative) value of r implies an increase (decrease) of R_t
- A positive Omicron spreading r does not imply that the new variant is more infectious; only the products P_1 and P_2 matter
- A positive spreading r can be related to a negative infection growth $(R_t-1)/T$ both before and after the new variant dominates since, for given I_1 and I_2 , r is only related to the ratio R_{20}/R_{10} of the base immunities \Rightarrow next slide

Estimating the base reproduction numbers

Assume at time $t=t^*$ given population immunities I_1^* and I_2^* (see later), and estimations of the Omega share p^* , Omicron spreading rate r^* , and effective reproduction number R_t^* of the mixture. Then, we can use Eq (1) to obtain the ratio

$$\frac{R_{20}}{R_{10}} = \frac{(r^*T+1)(1-I_1^*)}{1-I_2^*} \tag{3}$$

and, with Eq (2) determine the base reproduction numbers individually:

$$R_{10} = \frac{R_t^*}{(1 + p^*r^*T)f_{\text{season}}f_{\text{stringency}}} \tag{4}$$

For $t > t^*$, I assume fixed base reproduction numbers and calculate the future Omicron spreading and the future wave using (1) and (2) with time varying I_1 , I_2 , p, f_{season} , and $f_{\text{stringency}}$

Estimating the base reproduction numbers

Assume at time $t=t^*$ given population immunities I_1^* and I_2^* (see later), and estimations of the Omega share p^* , Omicron spreading rate r^* , and effective reproduction number R_t^* of the mixture. Then, we can use Eq (1) to obtain the ratio

$$\frac{R_{20}}{R_{10}} = \frac{(r^*T + 1)(1 - I_1^*)}{1 - I_2^*} \tag{3}$$

and, with Eq (2) determine the base reproduction numbers individually:

$$R_{10} = \frac{R_t^*}{(1 + p^*r^*T)f_{\text{season}}f_{\text{stringency}}} \tag{4}$$

For $t > t^*$, I assume fixed base reproduction numbers and calculate the future Omicron spreading and the future wave using (1) and (2) with time varying I_1 , I_2 , p, f_{season} , and $f_{\text{stringency}}$

Here, I make following assumptions

- $lackbox{ Vaccination efficiency curves }I_1^{
 m V}(au)$ and $I_2^{
 m V}(au)$ against Delta and Omega as shown,
- lacktriangle corresponding booster efficiencies $I_1^{
 m b}(au)$ and $I_2^{
 m b}(au)$
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\mathsf{vacc}}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\mathsf{v}}(t-t') + \sum_{t'=t_v}^t r_{t'}^b I_1^{\mathsf{b}}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Here, I make following assumptions

- lacktriangle Vaccination efficiency curves $I_1^{
 m v}(au)$ and $I_2^{
 m v}(au)$ against Delta and Omega as shown,
- \blacktriangleright corresponding booster efficencies $\mathit{I}_{1}^{\mathrm{b}}(\tau)$ and $\mathit{I}_{2}^{\mathrm{b}}(\tau)$,
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\sf vacc}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\sf v}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\sf b}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Here, I make following assumptions

- lackbox Vaccination efficiency curves $I_1^{
 m V}(au)$ and $I_2^{
 m V}(au)$ against Delta and Omega as shown,
- \blacktriangleright corresponding booster efficencies $\mathit{I}_{1}^{\mathrm{b}}(\tau)$ and $\mathit{I}_{2}^{\mathrm{b}}(\tau)$,
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\mathrm{vacc}}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\mathrm{v}}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\mathrm{b}}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Here, I make following assumptions

- lacktriangle Vaccination efficiency curves $I_1^{
 m V}(au)$ and $I_2^{
 m V}(au)$ against Delta and Omega as shown,
- \blacktriangleright corresponding booster efficencies $\mathit{I}_{1}^{\mathrm{b}}(\tau)$ and $\mathit{I}_{2}^{\mathrm{b}}(\tau)$,
- First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\text{vacc}}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\text{v}}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\text{b}}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Determining the population immunities II: infections and total

Everybody can only be infected once with any variant but there is no cross immunity, so the immunity is just equal to the total percentage X_1 and X_2 of people infected with either variant:

$$I_1^x = X_1, \quad I_2^x = X_2$$

Notice: X_i is not just the cumulated number of cases divided by the population because any infection, whether detected or not detected, counts

► There is no correlation between vaccinations and infections:

$$1 - I_1 = (1 - I_1^v)(1 - I_1^x), \quad 1 - I_2 = (1 - I_2^v)(1 - I_2^x)$$
(5)

Determining the population immunities II: infections and total

Everybody can only be infected once with any variant but there is no cross immunity, so the immunity is just equal to the total percentage X_1 and X_2 of people infected with either variant:

$$I_1^x = X_1, \quad I_2^x = X_2$$

Notice: X_i is not just the cumulated number of cases divided by the population because any infection, whether detected or not detected, counts

▶ There is no correlation between vaccinations and infections:

$$1 - I_1 = (1 - I_1^v)(1 - I_1^x), \quad 1 - I_2 = (1 - I_2^v)(1 - I_2^x)$$
 (5)

Simulation

All items I_1 , I_2 , p, R_{10} , R_{20} , f_{season} and $f_{\text{stringency}}$ are displayed in the simulation