Spin Injection and Nonlocal Spin Transport in Magnetic Nanostructures

S. Takahashi and S. Maekawa

Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan, and CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan (Dated: September 1, 2005)

We theoretically study the nonlocal spin transport in a device consisting of a nonmagnetic metal (N) and ferromagnetic injector (F1) and detector (F2) electrodes connected to N. We solve the spin-dependent transport equations in a device with arbitrary interface resistance from a metallic-contact to tunneling regime, and obtain the conditions for efficient spin injection, accumulation, and transport in the device. In a device containing a superconductor (F1/S/F2), the effect of superconductivity on the spin transport is investigated. The spin-current induced spin Hall effect in nonmagnetic metals is also discussed.

PACS numbers:

1. Introduction

There has been considerable interest in spin transport in magnetic nanostructures, because of their potential applications as spin-electronic devices [1]. The spin polarized electrons injected from a ferromagnet (F) into a nonmagnetic material (N) such as a normal metal, semiconductor, and superconductor create a nonequilibrium spin accumulation in N. The efficient spin injection, accumulation, and transport are central issues for utilizing the spin degree of freedom as in spin-electronic devices. It has been demonstrated that the injected spins penetrate into N over the spin-diffusion length (l_N) of the order of $1 \,\mu \text{m}$ using spin injection and detection technique in F1/N/F2 trilayer structures (F1 is an injector and F2 a detector) [2]. Recently, several groups have succeeded in observing spin accumulation by the nonlocal spin injection and detection technique [3, 4, 5, 6, 7, 8, 9].

In this paper, we study the spin accumulation and spin current, and their detection in the nonlocal geometry of a F1/N/F2 nanostructure. We solve the diffusive transport equations for the electrochemical potential (ECP) for up and down spins in the structure of arbitrary interface resistances ranging from a metallic-contact to a tunneling regime, and examine the optimal conditions for spin accumulation and spin current. Efficient spin injection and detection are achieved when a tunnel barrier is inserted at the interface, whereas a large spin-current injection from N into F2 is realized when N is in metallic contact with F2, because F2 plays the role of strong spin absorber. In a tunnel device containing a superconductor (F1/S/F2), the effect of superconductivity on the spin transport is discussed. The spin-current induced anomalous Hall effect is also discussed.

2. Spin injection and accumulation

We consider a spin injection and detection device consisting of a nonmagnetic metal N connected to ferromagnetic injector F1 and detector F2 as shown in Fig. 1. The

F1 and F2 are the same ferromagnets of width $w_{\rm F}$ and thickness $d_{\rm F}$ and are separated by distance L, and N of of width $w_{\rm N}$ and thickness $d_{\rm N}$. The magnetizations of F1 and F2 are aligned either parallel or antiparallel.

In the diffusive spin transport, the current \mathbf{j}^{σ} for spin channel σ in the electrodes is driven by the gradient of ECP (μ^{σ}) according to $\mathbf{j}^{\sigma} = -(1/e\rho^{\sigma})\nabla\mu^{\sigma}$, where ρ^{σ} is the resistivity. The continuity equations for the charge and spin currents in a steady state yield [2, 11, 12, 13, 14]

$$\nabla^2 \left(\mu^{\uparrow} / \rho^{\uparrow} + \mu^{\downarrow} / \rho^{\downarrow} \right) = 0, \tag{1}$$

$$\nabla^2 \left(\mu^{\uparrow} - \mu^{\downarrow} \right) = l^{-2} \left(\mu^{\uparrow} - \mu^{\downarrow} \right), \tag{2}$$

where l is the spin-diffusion length and takes $l_{\rm N}$ in N and $l_{\rm F}$ in F. We note that $l_{\rm N}$ ($l_{\rm Cu} \sim 1 \mu {\rm m}$ [3], $l_{\rm Al} \sim 1 \mu {\rm m}$ [2, 4]) is much larger than $l_{\rm F}$ ($l_{\rm Py} \sim 5 \, {\rm nm}$, $l_{\rm CoFe} \sim 12 \, {\rm nm}$, $l_{\rm Co} \sim 50 \, {\rm nm}$) [15].

We employ a simple model for the interfacial current across the junctions [11]. Due to the spin-dependent interface resistance R_i^{σ} (i = 1, 2), the ECP is discontinuous at the interface, and the current I_i^{σ} across the interface

FIG. 1: (a) Spin injection and detection device (side view). The current I is applied from F1 to the left side of N. The spin accumulation at x=L is detected by measuring voltage V_2 between F2 and N. (b) Spatial variation of the electrochemical potential (ECP) for up and down spin electrons in N.

(z=0) is given by $I_i^\sigma=(1/eR_i^\sigma)\,(\mu_{\rm F}^\sigma|_{z=0^+}-\mu_{\rm N}^\sigma|_{z=0^-}),$ where the current distribution is assumed to be uniform over the contact area [16, 17]. In a transparent contact (tunnel junction) the discontinuous drop in ECP is much smaller (larger) than the spin splitting of ECP. The interfacial charge and spin currents are $I_i=I_i^\uparrow+I_i^\downarrow$ and $I_i^{\rm spin}=I_i^\uparrow-I_i^\downarrow$.

When the bias current I flows from F1 to the left side of N $(I_1 = I)$, there is no charge current on the right side $(I_2 = 0)$. The solution for Eqs. (1) and (2) takes the form $\mu_N^{\sigma}(x) = \bar{\mu}_N + \sigma \delta \mu_N$ with the average $\bar{\mu}_N = -(eI\rho_N/A_N)x$ for x < 0 and $\bar{\mu}_N = 0$ for x > 0, and the splitting $\delta \mu_N = a_1 e^{-|x|/l_N} - a_2 e^{-|x-L|/l_N}$, where the a_1 -term represents the spin accumulation due to spin injection at x = 0,

while the a_2 -term the decrease of spin accumulation due to the contact of F2. Note that the pure spin current $I_N^{\rm spin} = I_N^{\uparrow} - I_N^{\downarrow}$ flows in the region of x > 0.

In the F1 and F2 electrodes, the solution takes the form $\mu_{\mathrm{F}i}^{\sigma}(z) = \bar{\mu}_{\mathrm{F}i} + \sigma b_i \left(\rho_{\mathrm{F}}^{\sigma}/\rho_{\mathrm{F}}\right) e^{-z/l_{\mathrm{F}}}$, with $\bar{\mu}_{\mathrm{F}1} = -(eI\rho_{\mathrm{F}}/A_{\mathrm{J}})z + eV_1$ in F1 and $\bar{\mu}_{F2} = eV_2$ in F2, where V_1 and V_2 are the voltage drops across junctions 1 and 2, and $A_{\mathrm{J}} = w_{\mathrm{N}}w_{\mathrm{F}}$ is the contact area of the junctions.

Using the matching condition for the spin current at the interfaces, we can determine the constants a_i , b_i , and V_i . The spin-dependent voltages detected by F2 are $V_2^{\rm P}$ and $V_2^{\rm AP}$ for the parallel (P) and antiparallel (AP) alignment of magnetizations. The spin accumulation signal detected by F2, $R_s = (V_2^{\rm P} - V_2^{\rm AP})/I$, is given by [14]

$$R_{s} = 4R_{N} \frac{\left(\frac{P_{1}}{1 - P_{1}^{2}} \frac{R_{1}}{R_{N}} + \frac{p_{F}}{1 - p_{F}^{2}} \frac{R_{F}}{R_{N}}\right) \left(\frac{P_{2}}{1 - P_{2}^{2}} \frac{R_{2}}{R_{N}} + \frac{p_{F}}{1 - p_{F}^{2}} \frac{R_{F}}{R_{N}}\right) e^{-L/l_{N}}}{\left(1 + \frac{2}{1 - P_{1}^{2}} \frac{R_{1}}{R_{N}} + \frac{2}{1 - p_{F}^{2}} \frac{R_{F}}{R_{N}}\right) \left(1 + \frac{2}{1 - P_{2}^{2}} \frac{R_{2}}{R_{N}} + \frac{2}{1 - p_{F}^{2}} \frac{R_{F}}{R_{N}}\right) - e^{-2L/l_{N}}},$$
(3)

where $R_{\rm N}=\rho_{\rm N}l_{\rm N}/A_{\rm N}$ and $R_{\rm F}=\rho_{\rm F}l_{\rm F}/A_{\rm J}$ are the spin-accumulation resistances of the N and F electrodes, $A_{\rm N}=w_{\rm N}d_{\rm N}$ is the cross-sectional area of N, $R_i=R_i^\uparrow+R_i^\downarrow$ is the interface resistance of junction $i,\,P_i=|R_i^\uparrow-R_i^\downarrow|/R_i$ is the interfacial current spin-polarization, and $p_{\rm F}=|\rho_{\rm F}^\uparrow-\rho_{\rm F}^\downarrow|/\rho_{\rm F}$ is the spin-polarization of F. In metallic contact junctions, the spin polarizations, P_i and $p_{\rm F}$, range around 40–70% from GMR experiments [15] and point-contact Andreev-reflection experiments [18], whereas in tunnel junctions, P_i ranges around 30–55% from superconducting tunneling spectroscopy experiments with alumina tunnel barriers [19, 20, 21], and $\sim 85\,\%$ in MgO barriers [22, 23].

The spin accumulation signal R_s strongly depends on whether each junction is either a metallic contact or a tunnel junction. By noting that there is large disparity between $R_{\rm N}$ and $R_{\rm F}$ ($R_{\rm F}/R_{\rm N}\sim 0.01$ for Cu and Py [3]), we have the following limiting cases. When both junctions are transparent contact $(R_1, R_2 \ll R_{\rm F})$, we have [3, 12, 13]

$$R_s/R_{\rm N} = \frac{2p_{\rm F}^2}{(1-p_{\rm F}^2)^2} \left(\frac{R_{\rm F}}{R_{\rm N}}\right)^2 \sinh^{-1}(L/l_{\rm N}).$$
 (4)

When junction 1 is a tunnel junction and junction 2 is a transparent contact (e.g., $R_2 \ll R_F \ll R_N \ll R_1$), we have [14]

$$R_s/R_{\rm N} = \frac{2p_{\rm F}P_1}{(1-p_{\rm F}^2)} \left(\frac{R_{\rm F}}{R_{\rm N}}\right) e^{-L/l_{\rm N}}.$$
 (5)

When both junctions are tunnel junctions (R_1, R_2)

 $R_{\rm N}$), we have [2, 4]

$$R_s/R_N = P_1 P_2 e^{-L/l_N},$$
 (6)

where $P_{\rm T}=P_1=P_2$. Note that R_s in the above limiting cases is independent of R_i .

We compare our theoretical result to experimental data measured by several groups. Figure 2 shows the theoretical curves and the experimental data of R_s as a function of L. The solid curves are the values in a tunnel device, and the dashed curves are those in a

FIG. 2: Spin accumulation signal R_s as a function of distance L between the ferromagnetic electrodes in tunnel devices: (\bullet, \circ) Co/I/Al/I/Co [4], and in metallic-contact devices: (\Box, \blacksquare) Py/Cu/Py [24, 25], where (\bullet, \blacksquare) are the data at 4.2K and (\circ, \Box) at room temperature.

metallic-contact device. We see that R_s in a metallic contact device is smaller by one order of magnitude than R_s in a tunnel device, because of the resistance mismatch $(R_{\rm F}/R_{\rm N}\ll 1)$. Fitting Eq. (6) to the experimental data of Co/I/Al/I/Co (I=Al₂O₃) in Ref. [4] yields $l_{\rm N}=650$ nm (4.2 K), $l_{\rm N}=350$ nm (293 K), $P_1=0.1$, and $R_{\rm N}=3\,\Omega$. Fitting Eq. (4) to the data of Py/Cu/Py in Ref. [24] at 4.2 K yields $l_{\rm N}=920$ nm, $R_{\rm N}=5\,\Omega$, $[p_{\rm F}/(1-p_{\rm F}^2)](R_{\rm F}/R_{\rm N})=5\times10^{-3}$, and fitting to the data in Ref. [25] at 293 K yields $l_{\rm N}=700$ nm, $R_{\rm N}=1.75\,\Omega$, and $[p_{\rm F}/(1-p_{\rm F}^2)](R_{\rm F}/R_{\rm N})=8\times10^{-3}$.

The spin splitting in N in the tunneling case is

$$2\delta\mu_{\mathcal{N}}(x) = P_1 e R_{\mathcal{N}} I e^{-|x|/l_{\mathcal{N}}}.$$
 (7)

In the case of Co/I/Al/I/Co, $\delta\mu_{\rm N}(0)\sim 15\,\mu{\rm V}$ for $P_1\sim$

0.1, $R_{\rm N} = 3 \Omega$, and $I = 100 \,\mu{\rm A}$ [4], which is much smaller than the superconducting gap $\Delta \sim 200 \mu{\rm eV}$ of an Al film.

3. Nonlocal spin injection and manipulation

We next study how the spin-current flow in the structure is affected by the interface condition, especially, the spin current through the N/F2 interface, because of the interest in spin-current induced magnetization switching [26].

The spin current injected nonlocally across the N/F2 interface is given by [14]

$$I_{\text{N/F2}}^{\text{spin}} = 2I \frac{\left(\frac{P_1}{1 - P_1^2} \frac{R_1}{R_N} + \frac{p_F}{1 - p_F^2} \frac{R_F}{R_N}\right) e^{-L/l_N}}{\left(1 + \frac{2}{1 - P_1^2} \frac{R_1}{R_N} + \frac{2}{1 - p_F^2} \frac{R_F}{R_N}\right) \left(1 + \frac{2}{1 - P_2^2} \frac{R_2}{R_N} + \frac{2}{1 - p_F^2} \frac{R_F}{R_N}\right) - e^{-2L/l_N}}.$$
(8)

A large spin-current injection occurs when junction 2 is a metallic contact $(R_2 \ll R_N)$ and junction 1 is a tunnel junction $(R_1 \gg R_N)$, yielding

$$I_{\text{N/F2}}^{\text{spin}} \approx P_1 I e^{-L/l_{\text{N}}},$$
 (9)

for F2 with very short $l_{\rm F}$. The spin current flowing in N on the left side of F2 is $I_{\rm N}^{\rm spin}=P_1Ie^{-x/l_{\rm N}},$ which is two times larger than that in the absence of F2, while on the right side left $I_{\rm N}^{\rm spin}\approx 0$. This indicates that F2 like Py and CoFe works as a strong absorber (sink) for spin current, providing a method for magnetization reversal in nonlocal devices with reduced dimensions of F2 island [27].

4. Spin injection into superconductors

The spin transport in a device containing a superconductor (S) such as Co/I/Al/I/Co is of great interest, because R_s is strongly influenced by opening the superconducting gap. In such tunneling device, the spin signal would be strongly affected by opening the superconducting gap Δ .

We first show that the spin diffusion length in the superconducting state is the same as that in the normal state [28, 29]. This is intuitively understood as follows. Since the dispersion curve of the quasiparticle (QP) excitation energy is given by $E_k = \sqrt{\xi_k^2 + \Delta^2}$ with one-electron energy ξ_k [30], the QP's velocity $\tilde{v}_k = (1/\hbar)(\partial E_k/\partial k) = (|\xi_k|/E_k)v_k$ is slower by the factor

 $|\xi_k|/E_k$ compared with the normal-state velocity $v_k(\approx v_F)$. By contrast, the impurity scattering time [31] $\tilde{\tau}=(E_k/|\xi_k|)\tau$ is longer by the inverse of the factor. Then, the spin-diffusion length in S, $l_{\rm S}=(\tilde{D}\tilde{\tau}_{sf})^{1/2}$ with $\tilde{D}=\frac{1}{3}\tilde{v}_k^2\tilde{\tau}_{\rm tr}=(|\xi_k|/E_k)D$ turns out to be the same as $l_{\rm N}$, owing to the cancellation of the factor $|\xi_k|/E_k$.

The spin accumulation in S is determined by balancing the spin injection rate with the spin-relaxation rate:

$$I_1^{\text{spin}} - I_2^{\text{spin}} + e \left(\partial S / \partial t \right)_{\text{sf}} = 0, \tag{10}$$

where S is the total spins in S, and $I_1^{\rm spin}$ and $I_2^{\rm spin}$ are the rates of incoming and outgoing spin currents through junction 1 and 2, respectively. At low temperatures the spin relaxation is dominated by spin-flip scattering via the spin-orbit interaction $V_{\rm so}$ at nonmagnetic impurities or grain boundaries. The scattering matrix elements of $V_{\rm so}$ over QP states $|\mathbf{k}\sigma\rangle$ with momentum \mathbf{k} and spin σ has the form: $\langle \mathbf{k}'\sigma'|V_{\rm so}|\mathbf{k}\sigma\rangle = i\eta_{\rm so}\left(u_{k'}u_k - v_{k'}v_k\right)\left[\vec{\sigma}_{\sigma'\sigma}\cdot(\mathbf{k}\times\mathbf{k}')/k_{\rm F}^2\right]V_{\rm imp}$, where $\eta_{\rm so}$ is the spin-orbit coupling parameter, $V_{\rm imp}$ is the impurity potential, σ is the Pauli spin matrix, and $u_k^2 = 1 - v_k^2 = \frac{1}{2}\left(1 + \xi_k/E_k\right)$ are the coherent factors [30]. Using the golden rule for spin-flip scattering processes, we obtain the spin-relaxation rate in the form [32, 33]

$$(\partial S/\partial t)_{\rm sf} = -S/\tau_{\rm sf}(T),$$
 (11)

where $S = \chi_s(T)S_N$ with S_N the normal-state value and $\chi_s(T)$ the QP spin-susceptibility called the Yosida func-

FIG. 3: Temperature dependence of the spin relaxation time τ_s in the superconducting state. The inset shows χ_s and $2f_0(\Delta)$ vs. T.

tion [34], and

$$\tau_s(T) = \left[\chi_s(T)/2f_0(\Delta)\right]\tau_{\rm sf},\tag{12}$$

where $\tau_{\rm sf}$ is the spin-flip scattering time in the normal state. Equation (12) was derived earlier by Yafet [33] who studied the electron-spin resonance (ESR) in the superconducting state. Figure 3 shows the temperature dependence of $\tau_s/\tau_{\rm sf}$. In the superconducting state below the superconducting critical temperature T_c , τ_s becomes longer with decreasing T according to $\tau_s \simeq (\pi \Delta/2k_{\rm B}T)^{1/2}\tau_{\rm sf}$ at low temperatures.

Since the spin diffusion length in the superconducting state is the same as that in the normal state, the ECP shift in S is $\delta\mu_{\rm S}=\left(\tilde{a}_1e^{-|x|/l_{\rm N}}-\tilde{a}_2e^{-|x-L|/l_{\rm N}}\right)$, where \tilde{a}_i is calculated as follows. In the tunnel device, the tunnel spin currents are $I_1^{\rm spin}=P_1I$ and $I_2^{\rm spin}\approx 0$, so that Eqs (10) and (11) give the coefficients $\tilde{a}_1=P_1R_{\rm N}eI/[2f_0(\Delta)]$ and $\tilde{a}_2\approx 0$, leading to the spin splitting of ECP in the superconducting state [14]

$$\delta\mu_{\rm S}(x) = \frac{1}{2} P_1 \frac{R_{\rm N}eI}{2f_0(\Delta)} e^{-|x|/l_{\rm N}},$$
 (13)

indicating that the splitting in ECP is enhanced by the factor $1/[2f_0(\Delta)]$ compared with the normal-state value (see Eq. 7). The detected voltage V_2 by F2 at distance L is given by $V_2 = \pm P_2 \delta \mu_{\rm S}(L)$ for the P (+) and AP (-) alignments. Therefore, the spin signal R_s in the superconducting state becomes [14]

$$R_s = P_1 P_2 R_N e^{-L/l_N} / [2f_0(\Delta)]. \tag{14}$$

The above result is also obtained by the replacement $\rho_{\rm N} \to \rho_{\rm N}/[2f_0(\Delta)]$ in the normal-state result of Eq. (6), which results from the fact that the QP carrier density decreases in proportion to $2f_0(\Delta)$, and superconductors

become a low carrier system for spin transport. The rapid increase in R_s below T_c reflects the strong reduction of the carrier population. However, when the splitting $\delta\mu_{\rm S}\sim\frac{1}{2}eP_1R_{\rm N}I/[2f(\Delta)]$ at x=0 becomes comparable to or larger than Δ , the superconductivity is suppressed or destroyed by pair breaking due to the spin splitting [35, 36, 37, 38, 39, 40]. This prediction can be tested by measuring R_s in Co/I/Al/I/Co or Py/I/Al/I/Py in the superconducting state.

5. Spin-current induced spin Hall effect

The basic mechanism for the spin Hall effect (SHE) is the spin-orbit interaction in N, which causes a spin-asymmetry in the scattering of conduction electrons by impurities; up-spin electrons are preferentially scattered in one direction and down-spin electrons in the opposite direction. Spin injection techniques makes it possible to cause SHE in *nonmagnetic* conductors. When spin-polarized electrons are injected from a ferromagnet (F) to a nonmagnetic electrode (N), these electrons moving in N are deflected by the spin-orbit interaction to induce the Hall current in the transverse direction and accumulate charge on the sides of N [41, 42, 43].

We consider a spin-injection Hall device shown in Fig. 4. The magnetization of F electrode points to the z direction. Using the Boltzmann transport equation which incorporates the asymmetric scattering by non-magnetic impurities, we obtain the total charge current in N [43]

$$\mathbf{j}_{\text{tot}} = \alpha_{\text{H}} \left[\hat{\mathbf{z}} \times \mathbf{j}_{\text{spin}} \right] + \sigma_{\text{N}} \mathbf{E},\tag{15}$$

where the first term is the Hall current \mathbf{j}_{H} induced by the spin current, the second term is the Ohmic current, \mathbf{E} is the electric field induced by surface charge, and $\alpha_{\mathrm{H}} \sim \eta_{\mathrm{so}} N(0) V_{\mathrm{imp}}$ (skew scattering). In the open circuit condition in the transverse direction, the y component of $\mathbf{j}_{\mathrm{tot}}$ vanishes, so that the nonlocal Hall resistance

FIG. 4: Spin injection Hall device (top view). The magnetic moment of F is aligned perpendicular to the plane. The anomalous Hall voltage $V_{\rm H} = V_{\rm H}^+ - V_{\rm H}^-$ is induced in the transverse direction by injection of spin-polarized current.

TABLE I: Spin-orbit coupling parameter of Cu and Al.

	$l_{\rm N}~({\rm nm})$	$\rho_{\rm N}~(\mu\Omega{\rm cm})$	$ au_{ m imp}/ au_{ m sf}$	$\eta_{ m so}$
Cu	$1000^{\rm a}$	$1.43^{\rm a}$	0.70×10^{-3}	0.040
Cu	$546^{\rm b}$	$3.44^{\rm b}$	0.41×10^{-3}	0.030
Al	$650^{\rm c}$	5.90^{c}	0.36×10^{-4}	0.009
Al	$705^{\rm d}$	$5.88^{\rm d}$	0.30×10^{-4}	0.008
Ag	$195^{\rm e}$	$3.50^{\rm e}$	0.50×10^{-2}	0.110

^aRef. [3], ^bRef. [8], ^cRef. [4], ^dRef. [45], ^eRef. [10].

 $R_{\rm H} = V_{\rm H}/I$ becomes

$$R_{\rm H} = \frac{1}{2} \left(P_1 \alpha_{\rm H} \rho_{\rm N} / d_{\rm N} \right) e^{-L/l_{\rm N}},$$
 (16)

in the tunneling case. Recently, SHE induced by the spin-current have been measured in a Py/Cu structure using the spin injection technique [44, 45, 46].

It is noteworthy that the product $\rho_N l_N$ is related to the spin-orbit coupling parameter η_{so} as [48]

$$\rho_{\rm N} l_{\rm N} = \frac{\sqrt{3}\pi}{2} \frac{R_{\rm K}}{k_{\rm F}^2} \sqrt{\frac{\tau_{\rm sf}}{\tau_{\rm imp}}} = \frac{3\sqrt{3}\pi}{4} \frac{R_{\rm K}}{k_{\rm F}^2} \frac{1}{\eta_{\rm so}}, \tag{17}$$

where $R_{\rm K}=h/e^2\sim 25.8\,{\rm k}\Omega$ is the quantum resistance. The formula (17) provides a method for obtaining information for spin-orbit scattering in nonmagnetic metals. Using the experimental data of $\rho_{\rm N}$ and $l_{\rm N}$ and the Fermi momentum $k_{\rm F}$ [49] in Eq. (17), we obtain the value of the spin-orbit coupling parameter $\eta_{\rm so}=0.01$ –0.04 in Cu and Al as listed in Table 1. Therefore, Eq. (16) yields $R_{\rm H}$ of the order of 1 m Ω , indicating that the spin-current induced SHE is observable by using the nonlocal geometry.

Acknowledgement

The authors thank M. Ichimura, H. Imamura, and T. Yamashita for valuable discussions. This work is supported by a Grant-in-Aid for Scientific Research from MEXT and the NAREGI Nanoscience Project.

- [1] Concept in Spin Electronics, edited by S. Maekawa (Oxford Univ Press, 2006).
- [2] M. Johnson and R.H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985); ibid. 60, 377 (1988); M. Johnson, ibid. 70, 2142 (1993).
- [3] F. J. Jedema, A. T. Filip and B. J. van Wees, Nature (London) 410, 345 (2001)
- [4] F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature (London) 416, 713 (2002).
- [5] T. Kimura, J. Hamrle, Y. Otani, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 85, 3795 (2004); T. Kimura,
 J. Hamrle, Y. Otani, Phys. Rev. B 72, 14461 (2005).

- [6] M. Urech, J. Johansson, V. Korenivski and D. B. Haviland, J. Magn. Magn. Mater. 272-276, E1469 (2004).
- [7] Y. Ji, A. Hoffmann, J. S. Jiang, and S. D. Bader, Appl. Phys. Lett. 85, 6218 (2004).
- [8] S. Garzon, I. Žutić, and R. A. Webb, Phys. Rev. Lett. 94, 176601 (2005).
- [9] K. Miura, T. Ono, S. Nasu, T. Okuno, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 286, 142 (2005).
- [10] R. Godfrey and M. Johnson, Phys. Rev. Lett. 96 (2006) 136601.
- [11] T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
- [12] A. Fert and S.F. Lee, Phys. Rev. B 53, 6554 (1996).
- [13] S. Hershfield and H.L. Zhao, Phys. Rev. B 56, 3296 (1997).
- [14] S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
- [15] J. Bass and W.P. Pratt Jr., J. Magn. and Magn. Mater. 200 (1999) 274.
- [16] M. Ichimura, S. Takahashi, K. Ito, and S. Maekawa, J. Appl. Phys. 95, 7225 (2004).
- [17] J. Hamrle, T. Kimura, T. Yang, and Y. Otani, Phys. Rev. B 71, 094434 (2005).
- [18] R. J. Soulen Jr. et al., Science 282, 85 (1998).
- [19] R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994).
- [20] J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).
- [21] D. J. Monsma and S. S. P. Parkin, Appl. Phys. Lett. 77, 720 (2000).
- [22] S. S. P. Parkin et al Nature Materials 3, 862 (2004).
- [23] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Materials 3, 868 (2004).
- [24] S. Garzon, Ph.D. Thesis (Univ. Maryland, 2005).
- [25] T. Kimura, J. Hamrle, and Y. Otani, J. Magn. Soc. Jpn. 29, 192 (2005).
- [26] J. C. Slonczewski, J. Mag. Mag. Mater. 159, L1 (1996).
- [27] T. Kimura, Y. Otani, and J. Hamrle, Phys. Re. Lett. **96**, 037201 (2006). In their device of Py/Cu/Py, the junctions are both metallic contact, so that $I_{\rm N/F2}^{\rm spin} \approx [p_{\rm F}/(1-p_{\rm F}^2)]I(R_{\rm F}/R_{\rm N})\sinh^{-1}(L/l_{\rm N})$.
- [28] T. Yamashita, S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. B 65, 172509 (2002).
- [29] J. P. Morten, A. Brataas, and W. Belzig [Phys. Rev. B 70, 212508 (2004)] have pointed out that, in the *elastic* transport regime, the spin-diffusion length is renormalized in the superconducting state.
- [30] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996).
- [31] J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 982 (1959).
- [32] S. Takahashi, T. Yamashita, H. Imamura, S. Maekawa, J. Magn. Magn. Mater. 240, 100 (2002).
- [33] Y. Yafet, Phys. Lett. 98, 287 (1983).
- 34 K. Yosida, Phys. Rev. 110, 769 (1958).
- [35] S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999).
- [36] S. Takahashi, H. Imamura, and S. Maekawa, J. Appl. Phys. 85, 5227 (2000); Physica C 341-348, 1515 (2000).
- [37] C. D. Chen, Watson Kuo, D. S. Chung, J. H. Shyu, and C. S. Wu, Phys. Rev. Lett. 88, 047004 (2002).
- [38] J. Johansson, M. Urech, D. Haviland, and V. Korenivski, J. Appl. Phys. 93, 8650 (2003).
- [39] D. Wang and J. G. Lu, J. Appl. Phys. 97, 10A708 (2005).

- [40] T. Daibou, M. Oogane, Y. Ando, and T. Miyazaki, (unpublished).
- [41] J. E. Hirsch, Phys. Rev. Lett. 83 (1999) 1834.
- [42] S. Zhang, Phys. Rev. Lett. **85** (2001) 393.
- [43] S. Takahashi and S. Maekawa, Phys. Rev. Lett. 88, 116601 (2002).
- [44] T. Kimura, Y. Otani, K. Tsukagoshi and Y. Aoyagi, J. Magn. Magn. Mater. 272-276, e1333 (2004).
- [45] S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
- [46] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, cond-mat/0609304.
- [47] F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees, Phys. Rev. B 67, 085319 (2003).
- [48] S. Takahashi, H. Imamura, and S. Maekawa, Chapter 8 in *Concept in Spin Electronics*, edited by S. Maekawa (Oxford Univ Press, 2006).
- [49] N. W. Ashcroft and D. Mermin, *Solid State Physics*, (Saunders College, 1976).