1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie współczynnika sprężystości sprężyn przy użyciu metody statycznej i dynamicznej. Ćwiczenie obejmowało również wyznaczenie współczynnika sprężystości dla układu sprężyn połączonych równolegle i szeregowo. Podczas opracowania przyjęliśmy $\Delta x=2$ mm chcąc uwzględnić podziałkę linijki oraz drobną oscylację ciężarka, a także $\Delta m=0$, ponieważ odczytywaliśmy masę z oznaczeń na ciężarkach oraz $\Delta t=0,5$ s.

2 Metoda statyczna

2.1 pomierzone dane

l.p.	m [g]	x_1 [cm]	x_2 [cm]
1	50	3,7	5.1
2	100	6,7	10,3
3	150	10,3	15,5
4	200	13, 9	20,6
5	250	17,0	$25,\!8$
6	300	20,6	31,0
7	350	24,7	36,1
8	400	27,7	41,3
9	450	31,3	46,4

 $[\]boldsymbol{m}$ - masa zawieszona na sprężynie

 x_i - zmiana wychylenia i-tej sprężyny od wychylenia początkowego po zawieszeniu ciężarków o określonej masie

2.2 wykres $x_1(m)$

a=0.69- wartość współczynnika kierunkowego prostej otrzymanej metodą regresji liniowej

2.3 wykres $x_2(m)$

a=1.03- wartość współczynnika kierunkowego prostej otrzymanej metodą regresji liniowej

2.4 obliczenie stałej sprężystości

korzystamy ze wzoru¹

$$k = \frac{g}{a}$$

gdzie $g=9,815\frac{N}{kg}$ - przyspieszenie grawitacyjne ziemi zatem $k_1=14,1\frac{N}{m},\;k_2=9,5\frac{N}{m}$

2.5 rachunek niepewności

Do wyliczenia niepewności k korzystamy ze wzorów $^{2\ 3}$

$$S_a = \sqrt{\frac{n}{n-2} * \frac{\sum y_i^2 - a\sum x_i y_i}{n\sum x_i^2}}$$
$$S_k = \frac{gS_a}{a^2}$$

 $^{^{-1}}$ https://pg.edu.pl/files/ftims/2021-03/Cwicz63_02.pdf (63.15)

 $^{^2 \}mathtt{https://ftims.pg.edu.pl/documents/10673/20436990/wstep.pdf} \ (42)$

https://pg.edu.pl/files/ftims/2021-03/Cwicz63_02.pdf (63.16)

3 Metoda dynamiczna

3.1 pomierzone dane

l.p.	m [g]	t_1 [s]	$T_1^2 [s^2]$	t_2 [s]	$T_2^2 [s^2]$
1	50	8,07	0,16	9,51	0,23
2	100	10,64	0,28	12,12	0,38
3	150	$12,\!55$	$0,\!39$	16,03	0,64
4	200	15,19	0,58	18,55	0,86
5	250	16,66	0,69	20, 11	1,01
6	300	17,94	0,80	22, 87	1,31
7	350	19,85	0,99	24, 14	1,46
8	400	21,41	1,15	$25,\!23$	1,59

 \boldsymbol{m} - masa zawieszona na sprężynie

 t_i - pomierzony czas 20 okresów

 $t_i = 20T_i$

3.2 wykres $T_1^2(m)$

3.3 wykres $T_2^2(m)$

obliczenie stałej sprężystości

korzystamy ze wzoru 4

$$k = \frac{4\pi^2}{a}$$

otrzymujemy $k_1=14,14\frac{N}{m},\,k_2=9,67\frac{N}{m}$

3.5 rachunek niepewności

przyjęliśmy $\Delta t = 0, 5s \rightarrow \Delta T = 0,025s$ do wyliczenia niepewności korzystamy ze wzoru $^5\,$

$$S_k = \frac{4\pi^2 S_a}{a^2}$$

co daje nam $S_{k1}=0,32,\,S_{k2}=0,46$

 $[\]frac{^4 \text{https://pg.edu.pl/files/ftims}}{^5 \text{https://pg.edu.pl/files/ftims}} \\ 2021-03/\text{Cwicz63_02.pdf} \ (63.17)$

Moduł sztywności

pomierzone dane 4.1

$_{ m dana}$	$\operatorname{wartość}_1$
r	$0.35 \mathrm{mm}$
${ m R}$	$7,05 \mathrm{mm}$
N	80 zwojów

r - promień drutu sprężyny R - promień sprężyny N - liczba zwojów sprężyny zmierzyliśmy sprężynę 1

obliczenie modułu sztywności 4.2

korzystamy ze wzoru 6

$$G = \frac{4NR^3k}{r^4}$$

przyjmując k = k_{d1} - k_1 z metody dynamicznej otrzymujemy G = 105,62 GPa

4.3rachunek niepewności

do wyliczenia niepewności korzystamy ze wzoru ⁷

$$|\Delta G| = G*(|\frac{\Delta N}{N}| + |\frac{3\Delta R}{R}| + |\frac{4\Delta r}{r}| + |\frac{\Delta k}{k}|)$$

gdzie przyjmujemy $\Delta R = \Delta r = 0.05mm, \, \Delta N = 5, \, \Delta k = 3S_k$ $\Delta G = 80$

 $[\]frac{6 \text{https://pg.edu.pl/files/ftims}}{7 \text{https://pg.edu.pl/files/ftims}} \\ 2021-03/\text{Cwicz63_02.pdf} \ (63.19) \\ 7 \text{https://pg.edu.pl/files/ftims} \\ 2021-03/\text{Cwicz63_02.pdf} \ (63.20)$

5 Układ sprężyn połączony równolegle

5.1 pomierzone dane

l.p.	$\Delta x [\mathrm{cm}]$	m [g]	t[s]	T^2 $[s^2]$
1	2,2	50	$5,\!18$	0,07
2	$_{4,3}$	100	8,95	0,20
3	6,6	150	$10,\!66$	0,28
4	8,8	200	$11,\!65$	0,34
5	10,9	250	$13,\!14$	$0,\!43$
6	12,7	300	14,49	0,53
7	14,6	350	$15,\!56$	0,61
8	17,1	400	16,92	0,67
9	19,2	450	$17,\!39$	0,76

oznaczenia jak w pozostałych podpunktach

5.2 wykres i opracowanie x(m)

a = 0,42 zatem k = 23,3, co zgadza się z założeniami teoretycznymi $k\approx k_1+k_2$

5.3 wykres i opracowanie $T^2(m)$

tym razem a=1,67a zatem k=23,75,co zgadza się z założeniami teoretycznymi $k\approx k_1+k_2$

5.4 rachunek niepewności dla metody statycznej

do wyliczenia niepewności korzystamy z tych samych wzorów co poprzednio i otrzymujemy $S_k=1,1~[{\rm N/m}]$

5.5 rachunek niepewności dla metody dynamicznej

do wyliczenia niepewności korzystamy z tych samych wzorów co poprzednio i otrzymujemy $S_k=1,52~[{\rm N/m}]$

6 Układ sprężyn połączony szeregowo

6.1 pomierzone dane

l.p.	x [cm]	m [g]	t[s]	$T^{2}[s^{2}]$
1	8,8	50	12,42	0,39
2	18,0	100	$17,\!80$	0,79
3	27,1	150	$21,\!13$	1,12
4	35,9	200	24,49	1,50
5	44,9	250	26,1	1,70

oznaczenia jak w pozostałych podpunktach

6.2 wykres i opracowanie x(m)

a = 1,80 zatem k = 5,5 co zgadza się z teoretycznymi przewidywaniami, bo $1/k\approx 1/k_1+1/k_2$

6.3 wykres i opracowanie $T^2(m)$

a = 6,68 zatem k = 5,90 co zgadza się z teoretycznymi przewidywaniami, bo $1/k\approx 1/k_1+1/k_2$

6.4 rachunek niepewności dla metody statycznej

do wyliczenia niepewności korzystamy z wyżej wymienionych wzorów i otrzymujemy $S_k=0,2[{\rm N/m}]$

6.5 rachunek niepewności dla metody dynamicznej

do wyliczenia niepewności korzystamy z tych samych wzorów co poprzednio i otrzymujemy $S_k=1,01~[{\rm N/m}]$

7 Wnioski

zadanie	współczynnik spreżystości $\left[\frac{N}{m}\right]$
metoda statyczna	14,1 i 9,5
metoda dynamiczna	14,14 i 9,67
układ połączony równolegle	23,3 i 23,75
układ połączony szeregowo	5,5 i 5,90

moduł sztywności G = 105,62 GPa

Korzystając z metody statycznej i dynamicznej do wyznaczenia współczynnika sprężystości badanych sprężyn otrzymaliśmy zbliżone do siebie wartości współczynników z obu metod. Z wykresów przedstawiających zależność wychylenia od masy obserwujemy linowy wzrost wychylenia. Co więcej, w przypadku metody dynamicznej tworząc wykres zależności kwadratu okresu drgań od obciążenia również otrzymujemy zależność liniową. W obu przypadkach zaobserwowaliśmy jedynie zakres stosowności prawa Hook'a, nie doprowadzając tym samym sprężyn do zakresu nieliniowych odkształceń nietrwałych i plastycznych. Taką samą sytuację obserwujemy dla układów sprężyn (szeregowego i równoległego). W połączeniu szeregowym i równoległym sprężyn uzyskujemy wyniki zbliżone do założeń teoretycznych tych połączeń. Współczynnik sprężystości dla układu szeregowego wzrósł, zaś dla układu równoległego zmalał względem współczynnika pojedynczej sprężyny.

W metodzie statycznej głównym czynnikiem wpływającym na błędy był błąd paralaksy, dokładność linijki oraz minimalne drgania podczas odczytu wartości. W metodzie dynamicznej był to czas reakcji przy pomiarach okresu drgań, a przy obliczaniu modułu sztywności dokładność suwmiarki.

Podczas obliczeń przyjęliśmy, że badane sprężyny są nieważkie oraz zaniedbaliśmy opory ruchu. Wszystkie pomiary zostały wykonane w temperaturze pokojowej.