

Active Learning for Level Set Estimation

Alkis Gotovos, Nathalie Casati, Gregory Hitz and Andreas Krause

ETHzürich

Problem

Determine the regions where the value of some unknown function lies above or below a given threshold level.

Pose as a classification problem (into super- and sublevel sets) with *sequential* measurements, which are assumed to be *ex*pensive and noisy.

Example applications

Environmental monitoring

Estimate regions of (a vertical transect of) Lake Zurich where chlorophyll/algal concentration is "abnormally high".

Geolocating internet latency

Estimate regions of the world with "acceptable" latency to our PC, e.g. for trouble-free online gaming.

Gaussian processes

Classification

For each point, we use the GP-derived confidence intervals to either classify it into the super- or sublevel sets, or leave it unclassified.

Measurement selection

To obtain informative measurements, sample at the most ambiguous point among the yet unclassified.

Ambiguity \approx Difficulty in classifying a point w.r.t. the given threshold level.

The LSE algorithm

We propose the Level Set Estimation (LSE) algorithm:

- Input: Sample space D (e.g. fine grid of function domain) - Threshold level h
- Idea: Iteratively *sample* and *classify* based on GP-derived confidence bounds

while there exist unclassified points in Dfor each unclassified point if its confidence interval lies above h then classify into superlevel set **else if** its confidence interval lies below h **then** classify into sublevel set else leave unclassified select max. ambiguity (yet unclassified) point obtain a noisy measurement at that point

Fine print

- Enforce monotonically shrinking confidence intervals
- Relax classification by an accuracy parameter ϵ

Sample complexity bound

perform GP inference and update conf. intervals

Theorem

For any $h \in \mathbb{R}$, $\delta \in (0,1)$, and $\epsilon > 0$, if $\beta_t = 2\log(|D|\pi^2t^2/(6\delta))$, LSE terminates after at most T iterations, where T is the smallest positive integer satisfying

$$\frac{T}{\beta_T \gamma_T} \ge \frac{C_1}{4\epsilon^2},$$

where $C_1 = 8/\log(1 + \sigma^{-2})$. Furthermore, with probability at least $1-\delta$, the algorithm returns an ϵ -accurate solution, that is

$$\Pr\left\{\max_{\boldsymbol{x}\in D}\ell_h(\boldsymbol{x})\leq\epsilon\right\}\geq 1-\delta.$$

Experimental results

Chlorophyll dataset

STR
VAR
LSE

100 150 Samples

 F_1 -score $\frac{1}{2}$

Compare LSE to:

- State-of-the-art "straddle" heuristic (Bryan et al., 2005)
- Maximum variance sampling

300

200 Samples

Extension 1: Implicit threshold level

What if we do not have a predefined threshold level h? (E.g. determine *relative* hotspots of algal concentration.)

Implicitly defined thr. level: $h = \omega \max f(\boldsymbol{x}), \ 0 < \omega < 1$

We propose the LSE_{imp} extension of LSE:

• h is now an estimated quantity with associated uncertainty, which leads to slower classification.

- · We need to accurately estimate the function maximum, therefore we need to keep sampling at regions where the maximum may lie.
- Similar theoretical guarantees to LSE.

Experimental results -18_{c} 400 1,000 1,400 Length (m)

Compare to LSE and to a naive extension of "straddle" for implicit threshold levels.

Extension 2: Batch sampling

We propose the LSE_{batch} extension of LSE for selecting a batch of B measurements at a time.

Latency geolocation Send multiple ping requests

in parallel at essentially the same cost as a single request, thus increasing sampling throughput.

Environmental monitoring Reduce the total traveling distance by planning ahead:

- Select a batch of sampling locations
- Connect them using a Euclidean TSP path
- Traverse path and collect measurements

Extra: Proof outline of LSE bound

