MachLe - Résumé Olivier D'Ancona

Evaluation Metrics

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TP}{TN + FP}$$

$$Fscore = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

Activation Functions

Sigmoid: $\frac{1}{1+e^{-x}}$

Hyperbolic tangent : $\frac{e^x - e^{-x}}{e^x + e^{-x}}$

Gaussian : e^{-x^2} Softmax : $\frac{1}{\sum_{k=1}^{K} e^{z_k}}$

Neural Network

-Structure

Biais: b, An extra weight that can be learned using a learning algorithm. The purpose is to replace threshold.

Input I. Input vector Weights: W, Vector of weights

Learning algorithm

- 1. Randomly initialize weights
- 2. Compute the neuron's output for a fiven input vector X
- 3. Update weights: $W_i(t+1) = W_i(t) +$ $\eta(\hat{y_i} - y) x$ with η the learning rate and \hat{y}_i the desired output.
- 4. Repeat steps 2 and 3 for the number of epochs you need or until the error is smaller than a threshold.

KNN for classification and regression Complexity: O(knd)

Choose a value for k:

Linear Regression

Soit un tableau de données :

$$x = \mathrm{Soap}(\mathbf{g}) \ , \, y = \mathrm{Height}(\mathbf{cm}) \ , \, x \cdot y \ , \, x^2$$

$$X = [1, Soap]$$

$$X^T X = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} = \begin{bmatrix} 7 & 38.5 \\ 38.5 & 218.95 \end{bmatrix}$$

$$X^T y = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix} = \begin{bmatrix} 348 \\ 1975 \end{bmatrix}$$

$$\hat{\theta} = (X^T X)^{-1} X^T y = \begin{bmatrix} -2.67\\ 9.51 \end{bmatrix}$$

Inverse d'une matrice 2x2:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

System engineering / Data preparation / Tuning

Logistic regression / Overfitting

SVM

Clustering

Decision Trees

Convolutional Neural Networks

Recurrent Neural Networks

Dimensionality Reduction

Reinforcement Learning

Computational Complexity of ML Algorithms

Algorithm	Assumption	Train Time/Space	Inference Time/Space
KNN (Brute Force)	Similar things exist in close proximity	$O(knd) \ / \ O(nd)$	$O(knd) \ / \ O(nd)$
KNN (KD Tree)	Similar things exist in close proximity	$O(nd\log(n)) \ / \ O(nd)$	$O(k\log(n)d) \ / \ O(nd)$
Naive Bayes	Features are conditionally independent	$O(ndc) \ / \ O(dc)$	$O(dc) \ / \ O(dc)$
Logistic Regression	Classes are linearly separable	$oxed{O(nd) / O(nd)}$	$O(d) \ / \ O(d)$
Linear Regression	Linear relationship between variables	$oxed{O(nd) / O(nd)}$	$O(d) \ / \ O(d)$
SVM	Classes are linearly separable	$O(n^2d^2) \ / \ O(nd)$	$O(kd) \ / \ O(kd)$
Decision Tree	Feature selection by information gain	$O(n\log(n)d) \ / \ O(ext{nodes})$	$O(\log(n)) \ / \ O(\mathrm{nodes})$
Random Forest	Low bias and variance trees	$O(kn\log(n)d) \ / \ O(\mathrm{nodes} \times k)$	$O(k \log(n)) \ / \ O(\mathrm{nodes} \times k)$
GBDT	High bias, low variance trees	$O(Mn\log(n)d) / O(\operatorname{nodes} \times M + \gamma_m)$	$O(M \log(n)) / O(\operatorname{nodes} \times M + \gamma_m)$