Fourth Generation Programming Language

QAZI EJAZ UR REHMAN Avionics Engineer

Graduate Research Assistant Aeronautics & Astronautics Department Institute of Space Technology Islamahad

February 10, 2016

Outline (Lec 01)

- 1 Start
- 2 Matlab Basics
- 3 Scripts: Overview
- 4 Arrays
- 5 Practical Problems
- Built in
- indexing
- 8 Plotting

Course Layout

Start

Matlah Basics

Scripts: Overview Evercise

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting Exercise

- Archimedes and π approximation

Course Layout

Start

Matlah Basics

Scripts: Overview Evercise

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting

Exercise

- Variables, Scripts and Operations

- Archimedes and π approximation

Course Layout

Start

Matlah Basics

Scripts: Overview Evercise

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting Exercise

- Variables, Scripts and Operations
- Visualization and Programming

- Archimedes and π approximation

QAZI EJAZ UR REHMAI Avionics Engineer

Course Layout

Start

Matlab Basics

Scripts: Overview

Exercise

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting Exercise

- Variables, Scripts and Operations
- Visualization and Programming
- Solving Equations, Fitting
- Images, Animations, Advanced Methods
- Optionat. Symbolic Platif, Simutini
- Archimedes and π approximation
- Computational Fluid Dynamics

QAZI EJAZ UR REHMAN Avionics Engineer

Course Layout

Co Back

Forward

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

Lectures

MATLAB

- Variables, Scripts and Operations
- Visualization and Programming
- Solving Equations, Fitting
- Images, Animations, Advanced Methods
- Optional: Symbolic Math, Simulink
- lacktriangle Archimedes and π approximation
- Computational Fluid Dynamics

QAZI EJAZ UR REHMAN Avionics Engineer

Course Layout

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

- Variables, Scripts and Operations
- Visualization and Programming
- Solving Equations, Fitting
- Images, Animations, Advanced Methods
- Optional: Symbolic Math, Simulink
- lacktriangle Archimedes and π approximation
- Computational Fluid Dynamics

QAZI EJAZ UR REHMAN Avionics Engineer

Course Layout

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

- Variables, Scripts and Operations
- Visualization and Programming
- Solving Equations, Fitting
- Images, Animations, Advanced Methods
- Optional: Symbolic Math, Simulink
- ullet Archimedes and π approximation
- Computational Fluid Dynamics

QAZI EJAZ UR REHMAI Avionics Engineer

Course Layout

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

- Variables, Scripts and Operations
- Visualization and Programming
- Solving Equations, Fitting
- Images, Animations, Advanced Methods
- Optional: Symbolic Math, Simulink
- ullet Archimedes and π approximation
- Computational Fluid Dynamics

QAZI EJAZ UR REHMAN Avionics Engineer

Course Layout

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

Problem Sets / Office Hours

- One per day, should take about 3 hours to do
- Submit doc or pdf (include code, figures)
- No set office hours but available by email
- Requirements for passing
 - Attend all lectures
 - Complete all problem sets (-, √, +)
- Prerequisites
 - Basic familiarity with programming
 - Basic linear algebra, differential equations, and probability

Making Folders

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Plotting Exercise Use folders to keep your programs organized

- Folder making
 - Type mkdir foldername in command window (e.g mkdir aero)
- Access that folder by
 - Typing cd foldername (e.g. cd aero)
- Inquiry of Content of Folder
 - type ls, dir
 - pwd command will tell you where are you
 - what will list categorized folder contents

MATLAB

QAZI EJAZ UR REHMAN
Avionics Engineer

Customization

Allows you personalize your MATLAB experience

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Plottina

Exercise

MATLAB Basics

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

MATLAB can be thought of as a super-powerful graphing calculator

- Remember the TI-83 from calculus?
- With many more buttons (built-in functions)
- In addition it is a programming language
 - MATLAB is an interpreted language, like Java
 - Commands executed line by line

Help/Docs

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Exercise

Plotting Exercise

- >> help
 - The most important function for learning MATLAB on your own
- To get info on how to use a function:
 - \gg help sin
 - Help lists related functions at the bottom and links to the doc
- To get a nicer version of help with examples and easy-toread descriptions:
 - \gg doc sin
- To search for a function by specifying keywords:
 - ≫ doc + search

Start

Matlah Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting Exercise

Scripts: Overview

Scripts are

MATLAB

- collection of commands executed in sequence
- written in the MATI AB editor
- saved as MATLAB files (.m extension)
- To create an MATLAB file from command-line
 - edit helloWorld.m

Co Back

Forward

MATLAB

QAZI EJAZ UR REHMAN

Scripts: the Editor

Start

Help

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting Exercise

MATLAB

* Means that it's not saved Line numbers MATLAB file Real-time Debugging tools error check path Editor - C: Documents and Settings Danilo My Documents MATLAG Scoin Toss.m* Edit Text Go Cell Tools Debug Desktop Window Help X 5 K 10 - M - + ft D - 6 x coinToss.m ← Help file % a script that flips a fair coin and displays the output if rand<0.5 % if a random number is less than .5 sav heads disp('HEADS'); else % if greater than 0.5 say tails disp('TAILS'); Comments end Col 4 script In 8

10/43

Co Back

Forward

MATLAB

QAZI EJAZ UR REHMAN
Avionics Engineer

Scripts: Some Notes

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Plotting Exercise

COMMENT!

- Anything following a % is seen as a comment
- The first contiguous comment becomes the script's help file
- Comment thoroughly to avoid wasting time later
- Note that scripts are somewhat static, since there is no input and no explicit output
- All variables created and modified in a script exist in the workspace even after it has stopped running

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing Exercise

Plotting Exercise

Scripts: Exercise

Make a helloWorld script

• When run, the script should display the following text:

Hello World!

I am going to learn MATLAB!

 Hint: use disp to display strings. Strings are written between single quotes, like 'This is a string'

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Plotting Exercise

Scripts: Exercise

Make a helloWorld script

When run, the script should display the following text:

Hello World!

I am going to learn MATLAB!

- Hint: use disp to display strings. Strings are written between single quotes, like 'This is a string'
- Open the editor and save a script as helloWorld.m. This
 is an easy script, containing two lines of code:

```
1 % helloWorld.m
2 % my first hello world program in MATLAB
3
4 disp('Hello World!');
5 disp('I am going to learn MATLAB!');
```


QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Exercise

Arrays

Practical Problems

Exercise

Built in

indexing

Plotting Exercise

Variable Types

- MATLAB is a weakly typed language
 - No need to initialize variables!
- MATLAB supports various types, the most often used are
 - ≫ 3.84
 - 64-bit double (default)
- ≫ 'a'
 - 16-bit char
- Most variables you'll deal with will be vectors or matrices of doubles or chars
- Other types are also supported: complex, symbolic, 16-bit and 8 bit integers, etc. You will be exposed to all these types through the homework

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Plotting

Naming variables

- To create a variable, simply assign a value to a name:
 - \gg var1=3.14
 - >>> myString='hello world'
- Variable names
 - first character must be a LETTER
 - after that, any combination of letters, numbers and_
 - CASE SENSITIVE! (var1 is different from Var1)
- Built-in variables. Dont use these names!
 - i and j can be used to indicate complex numbers
 - pi has the value 3.1415926...
 - ans stores the last unassigned value (like on a calculator)
 - Inf and -Inf are positive and negative infinity
 - NaN represents 'Not a Number'

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing Exercise

Plotting Exercise A variable can be given a value explicitly

$$\gg$$
 a = 10

- shows up in workspace!
- Or as a function of explicit values and existing variables
 - \gg c = 1.3*45-2*a
- To suppress output, end the line with a semicolon
 - \gg cooldude = 13/3;

QAZI EJAZ UR REHMAI Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Exercise

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting

Exercise

Arrays

- Like other programming languages, arrays are an important part of MATLAB
- Two types of arrays

natrix of numbers (either double or complex)

cell array of objects (more advanced data structure)

17/43

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting Exercise

Column and Row vector

🔘 Row vector: comma or space separated values between brackets

$$\gg$$
 row = [1 2 5.4 -6.6]
 \gg row = [1, 2, 5.4, -6.6];

 Column vector: semicolon separated values between brackets

$$column = [4;2;7;4]$$

QAZI EJAZ UR REHMAI Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Array:

Practical Problems

Exercise

Built in

Exercise

indexing Exercise

Plotting

size & length

- You can tell the difference between a row and a column vector by:
 - Looking in the workspace
 - Displaying the variable in the command window
 - Using the size function
- To get a vector's length, use the length function

QAZI EJAZ UR REHMAI Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing Exercise

Plotting Exercise

Matrices

- Make matrices like vectors
 - Element by element
- \gg a= [1 2;3 4]; = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- By concatenating vectors or matrices (dimension matters)

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting Exercise

save/clear/load

- Use save to save variables to a file
 - ≫ save myFile a b
 - saves variables a and b to the file myfile.mat
 - myfile.mat file is saved in the current directory
 - Default working directory is
- Use clear to remove variables from environment
 - - look at workspace, the variables a and b are gone
- Use load to load variable bindings into the environment
 - ≫ load myFile
 - look at workspace, the variables a and b are back
- Can do the same for entire environment
 - save myenv; clear all; load myenv;

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Matlab Basic

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting

Exercise: Variables

Get and save the current date and time

- Create a variable start using the function clock
- What is the size of start? Is it a row or column?
- What does start contain? See help clock
- Convert the vector start to a string. Use the function datestr and name the new variable startString
- Save start and startString into a mat file named startTime

Co Back

Forward

Start

Matlah Basics

Scripts: Overview

Arravs

Practical Problems

Built in

Exercise

indexing Evercise

Plotting

Exercise

Exercise: Voriobles

Get and save the current date and time

- Create a variable start using the function clock
- What is the size of start? Is it a row or column?
- What does start contain? See help clock
- Convert the vector start to a string. Use the function datestr and name the new variable startString
- Save start and startString into a mat file named startTime

```
doc clock
start=clock;
size(start)
doc datestr
```

- startString=datestr(start);
- save startTime start startString

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exerci

Built in

indexing

Plotting Exercise

Exercise: Variables

Read in and display the current date and time

- In helloWorld.m, read in the variables you just saved using load
- Display the following text:
 I started learning MATLAB on *start date and time*
- Hint: use the disp command again, and remember that strings are just vectors of characters so you can join two strings by making a row vector with the two strings as sub- vectors.
- ≫ load startTime
- ≫ disp(['I started learning MATLAB on ' ... startString]);

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exerc

Built in

Exercise

Exercise

Plotting Exercise

Exercise: Variables

You will learn MATLAB at an exponential rate! Add the following to your helloWorld script:

- Your learning time constant is 1.5 days. Calculate the number of seconds in 1.5 days and name this variable tau
- This class lasts 5 days. Calculate the number of seconds in 5 days and name this variable endOfClass
- This equation describes your knowledge as a function of time t:

$$k = 1 - e^{\frac{-t}{\tau}}$$

- How well will you know MATLAB at endOfClass? Name this variable knowledgeAtEnd. (use exp)
- Using the value of knowledgeAtEnd, display the phrase:
 At the end of 6.094, I will know X% of MATLAB
- Hint: to convert a number to a string, use num2str

```
Start
```

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Everci

Built in

Exercise

indexing

Plottina

Exercise

```
secPerDay=60*60*24;
```

- tau=1.5*secPerDay;
- endOfClass=5*secPerDay
- 4 knowledgeAtEnd=1-exp(-endOfClass/
 tau);
- s disp(['At the end of 6.094, I will know' ...
- 6 num2str(knowledgeAtEnd*100) '% of MATLAB'])

1

¹Transpose, Addition and Subtraction, Element-Wise Functions

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Eversi

Built in

Exercise

indexing Exercise

Plotting Exercise

Exercise: Vector Operations

Calculate how many seconds elapsed since the start of class

- In helloWorld.m, make variables called secPerMin, secPerHour, secPerDay, secPerMonth (assume 30.5 days per month), and secPerYear (12 months in year), which have the number of seconds in each time period.
- Assemble a row vector called secondConversion that has elements in this order: secPerYear, secPerMonth, secPerDay, secPerHour, secPerMinute, 1
- TMake a currentTime vector by using clock
- Compute elapsedTime by subtracting currentTime from start
- Compute t (the elapsed time in seconds) by taking the dot product of secondConversion and elapsedTime (transpose one of them to get the dimensions right)

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Built in

Exercise

indexing

Plotting

Exercise: Vector Operations


```
secPerMin=60;
secPerHour=60*secPerMin;
secPerDay=24*secPerHour;
secPerMonth=30.5*secPerDay;
secPerYear=12*secPerMonth;
secondConversion=[secPerYear
   secPerMonth ...
secPerDay secPerHour secPerMin 1];
currentTime=clock;
elapsedTime=currentTime-start;
t=secondConversion*elapsedTime';
```


QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Evere

Built in

Exercise

indexing Exercise

Plotting

Exercise: Vector Operations

Display the current state of your knowledge

 Calculate currentKnowledgeusing the same relationship as before, and the t we just calculated:

$$k = 1 - e^{-t/\tau}$$

Display the following text:

At this time, I know X% of MATLAB

QAZI EJAZ UR REHMAN Avionics Engineer

Exercise: Vector Operations

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Evere

Built in

Exercise

indexing Exercise

Plotting

Display the current state of your knowledge

 Calculate currentKnowledgeusing the same relationship as before, and the t we just calculated:

$$k = 1 - e^{-t/\tau}$$

Display the following text:

At this time, I know X% of MATLAB

- >> tVec = linspace(0,endOfClass,10000);
- >> knowledgeVec=1-exp(-tVec/tau);

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting Exercise

Automatic Initialization

- Initialize a vector of ones, zeros, or random numbers
 - \gg o=ones(1,10)
 - row vector with 10 elements, all 1
 - \gg z=zeros(23,1)
 - column vector with 23 elements, all 0
 - \gg r=rand(1,45)
 - column vector with 23 elements, all 0
 - \gg n=nan(1,69)
 - row vector of NaNs (useful for representing uninitialized variables)

The general function call is:

var=zeros(M,N);

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting Exercise

Automatic Initialization

- To initialize a linear vector of values use linspace
 - \gg a=linspace(0,10,5)
 - starts at 0, ends at 10 (inclusive), 5 values
- Can also use colon operator (:)
 - \gg b=0:2:10
 - starts at 0, increments by 2, and ends at or before 10
 - increment can be decimal or negative
 - \gg c=1:5
 - if increment isnt specified, default is 1
- To initialize logarithmically spaced values use logspace
 - similar to linspace, but see help

QAZI EJAZ UR REHMAN Avionics Engineer

Start

Matlab Basics

Help

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercis

indexing

Exercise

Plotting Exercise

Exercise: Vector Functions

Calculate your learning trajectory

- In helloWorld.m, make a linear time vector tVec that has 10,000 samples between 0 and endOfClass
- Calculate the value of your knowledge (call it textcolorblueknowledgeVec) at each of these time points using the same equation as before:

$$k = 1 - e^{-t/\tau}$$

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercis

indexing

Plotting Exercise

Calculate your learning trajectory

- In helloWorld.m, make a linear time vector tVec that has 10,000 samples between 0 and endOfClass
- Calculate the value of your knowledge (call it textcolorblueknowledgeVec) at each of these time points using the same equation as before:

$$k = 1 - e^{-t/\tau}$$

- >> tVec = linspace(0,endOfClass,10000);
- >> knowledgeVec=1-exp(-tVec/tau);

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting Exercise

Vector Indexing

- MATLAB indexing starts with 1, not 0
 - We will not respond to any emails where this is the problem.
- a(n) returns the nth element

$$a = [13\ 5\ 9\ 10]$$
 a(1) a(2) a(3) a(4)

 The index argument can be a vector. In this case, each element is looked up individually, and returned as a vector of the same size as the index vector.

```
\Rightarrow x=[12 13 5 8];

\Rightarrowa=x(2:3); \longrightarrow a=[13 5];

\Rightarrowb=x(1:end-1); \longrightarrow b=[12 13 5];
```

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Plotting Exercise

Vector Indexing

🐠 Back

Forward

- MATLAB indexing starts with 1, not 0
 - We will not respond to any emails where this is the problem.
- a(n) returns the nth element

$$a = \begin{bmatrix} 13.5 & 9.10 \end{bmatrix}$$

a(1) a(2) a(3) a(4)

 The index argument can be a vector. In this case, each element is looked up individually, and returned as a vector of the same size as the index vector.

```
\Rightarrow x=[12 13 5 8];

\Rightarrowa=x(2:3); \longrightarrow a=[13 5];

\Rightarrowb=x(1:end-1); \longrightarrow b=[12 13 5];
```

Advanced Indexing 1

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting

Exercise

Calculate your learning trajectory

• To select rows or columns of a matrix, use the :

$$:= \begin{bmatrix} 12 & 5 \\ -1 & 13 \end{bmatrix}$$

$$d=c(1,:);$$
 \longrightarrow $d=[125];$ $e=c(:,2);$ \longrightarrow $e=[5;13];$ $c(2,:)=[36];$ %replaces second row of c

Advanced Indexing 2

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing

Exercise

Plotting Exercise MATLAB contains functions to help you find desired values within a vector or matrix

```
\gg vec = [5 3 1 9 7]
```

• To get the minimum value and its index:

```
>> [minVal,minInd] = min(vec);
```

- max works the same way
- To find any the indices of specific values or ranges

```
\gg ind = find(vec == 9);
```

$$\gg$$
 ind = find(vec $\stackrel{?}{\sim}$ 2 & vec $\stackrel{?}{\sim}$ 6);

- find expressions can be very complex, more on this later
- To convert between subscripts and indices, use ind2sub, and sub2ind. Look up help to see how to use them.

Exercise: Indexing

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing

Plotting Exercise

When will you know 50% of MATLAB?

- First, find the index where knowledgeVec is closest to 0.5. Mathematically, what you want is the index where the value of —KNOWLEDGEVEC 0.5— is at a minimum (use abs and min).
- Next, use that index to look up the corresponding time in tVec and name this time halfTime.
- Finally, display the string: I will know half of MATLAB after X days Convert halfTime to days by using secPerDay

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise
Built in

Exercise

indexing

Plotting

Exercise: Indexing

When will you know 50% of MATLAB?

- First, find the index where knowledgeVec is closest to 0.5. Mathematically, what you want is the index where the value of —KNOWLEDGEVEC 0.5— is at a minimum (use abs and min).
- Next, use that index to look up the corresponding time in tVec and name this time halfTime.
- Finally, display the string: I will know half of MATLAB after X days Convert halfTime to days by using secPerDay
- >> [val,ind]=min(abs(knowledgeVec-0.5));
- ≫ halfTime=tVec(ind);
- ⇒ disp(['I will know half of MATLAB after'...
- >> num2str(halfTime/secPerDay) ' days']);

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing Exercise

Plotting

Exercise

Plotting

- Example
 - x=linspace(0,4*pi,10);
 - y=sin(x);
- Plot values against their index
 - plot(y);
- Usually we want to plot y versus x
 - plot(x,y);

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

Exercise

indexing Exercise

Plotting

Exercise

What does plot do?

- plot generates dots at each (x,y) pair and then connects the dots with a line
- To make plot of a function look smoother, evaluate at more points
 - \gg x=linspace(0,4*pi,1000);
 - \gg plot(x,sin(x));
- x and y vectors must be same size or else youll get an error
 - \gg plot([1 2], [1 2 3])

Start

Help

Matlab Basics

Scripts: Overview Exercise

Arrays

Practical Problems

Exercise

Built in Exercise

indexing Exercise

Plotting

Exercise: Plotting

MATLAB

Plot the learning trajectory

- In helloWorld.m, open a new figure (use figure)
- Plot the knowledge trajectory using tVec and knowledgeVec. When plotting, convert tVec to days by using secPerDay
- Zoom in on the plot to verify that halfTime was calculated correctly

Exercise: Plotting 2

Start

Matlab Basics

Scripts: Overview

Arrays

Practical Problems

Exercise

Built in

indexing Exercise

Plotting

Exercis

Plot the learning trajectory

- In helloWorld.m, open a new figure (use figure)
- Plot the knowledge trajectory using tVec and knowledgeVec. When plotting, convert tVec to days by using secPerDay
- Zoom in on the plot to verify that halfTime was calculated correctly
- ≫figure
- >>> plot(tVec/secPerDay, knowledgeVec);

2 For further plotting options click here

