4. Reguläre Ausdrücke

Regeln für Reguläre Ausdrücke:

- 1. Reguläre Ausdrücke besitzen folgende Operatoren:
 - a. Vereinigung ∪ ("Oder")
 - b. Komplexprodukt · (Verkettung von Ausdrücken)
 - c. Kleene Star * (Beliebige Wiederholung von Ausdrücken)
- 2. Der L Operator macht aus einem Regulären Ausdruck eine Sprache

Aufgabe 1

Geben Sie zu nachfolgenden Sprachen L je einen Regulären Ausdruck G an, für den gilt L(G) = L

- a) $L = \{ a^n b \mid n \in \mathbb{N} \}$
- b) $L = \{ww \mid w \in \{a, b\}\}\$
- c) L = { awbaⁿ | w ∈ {a, b, c}*, n ∈ \mathbb{N}_0 }

Aufgabe 2

Konstruieren Sie mit aus der Vorlesung bekannten Methoden aus den folgenden Regulären Ausdrücken R einen endlichen Automaten A mit L(A) = L(R).

- a) $R = aca^*$
- b) $R = (a \cup b)c$
- c) $R = (a(a \cup b))^*$

Aufgabe 3

Gegeben seien die Regulären Ausdrücke R. Geben Sie alle Wörter der Sprache L = $\{ w \in L(R) \mid |w| \le 3 \}$ an

- a) $R = (a \cup \epsilon) \cdot (xy)^*$
- b) $R = 1 \cdot (1 \cup 0)^*$
- c) $R = a^*$

Aufgabe 4

Gegeben ist der folgende nichtdeterministische Automat $A = \{\{a, b, c\}, \{S_0, S_1, S_2, S_3, S_4\}, \{S_0, S_4\}, \delta$ gem. Tabelle, $\{S_3, S_4\}$). Geben Sie einen Regulären Ausdruck R an, mit L(R) = L(A).

δ	a	b	c
S_0	S_1, S_2	S_0	
S_1		S ₂	
S ₂		S ₄	
S ₃	S ₃		
S_4			$\overline{S_4}$