The Euler Totient is Even

After pondering about some stuff relating to modular matrices from a while back, I thought of a very quick, and easy to derive way of showing that the Euler totient function $\phi(n)$ is even (except in the case of n=2). We'll first start with a review.

Definition. The **Euler totient function** $\phi(n)$ is defined to be the number of natural numbers less than n that are relatively prime to n (that is $\gcd(n,k)=1$ for the natural k).

While there are definitely number theory proofs of this always being even, we shall show this is true with group theory.

Let A_n denote the set, of natural numbers less than n that are relatively prime to n. We assert that this set forms a group when equipped with multiplication modulo n, and we shall denote this group by \mathbb{Z}_n^{\times} .

Theorem. \mathbb{Z}_n^{\times} forms a group.

Proof. We shall prove the three necessary conditions: associativity, the existence of an identity, and inverses for each element.

- **Associativity**: This one is obvious, as multiplication is associative and even commutative.
- Identity element: This condition is also obvious, as one can verify that 1 is in \mathbb{Z}_n^{\times} and satisfies the conditions to be the identity.
- Inverse elements: By the Extended Euclidean algorithm, we know that for any $a \in \mathbb{Z}_n^{\times}$, a^{-1} exists in general. Thus, it suffices to prove that this a^{-1} is in \mathbb{Z}_n^{\times} ; that is, we must prove that $\gcd(a^{-1}, n) = 1$.

Observe that for any k, $\gcd(ka^{-1},n) \ge \gcd(a^{-1},n)$. If we take k=a, however, we see that $\gcd(ka^{-1},n) = \gcd(1,n) = 1$, so clearly $\gcd(a^{-1},n) = 1$.

This group has a direct correlation with the original problem at hand. Indeed, $|\mathbb{Z}_n^{\times}|=$

 $|A_n| = \phi(n)$. Now that we have a group structure over the set, however, we can use some fun group theory concepts. In particular, recall Lagrange's theorem, or a certain version of it at least.

Theorem (Lagrange's theorem). For any subgroup H of some group G, |H| divides |G|.

Using this we can trivially show that the Euler totient is even.

Theorem. $\phi(n)$ is even for $n \geq 3$.

Proof. We have that \mathbb{Z}_n^{\times} is a group and $|\mathbb{Z}_n^{\times}| = \phi(n)$. Observe, however, that $\{1, -1\} \subseteq \mathbb{Z}_n^{\times}$ is a subgroup of this group, and it clearly has order 2. Thus, we must have that $2 \mid \phi(n)$.

The only exception to this is the case of n=2, where $\phi(2)=1$. The reason that this argument fails in this case is because the subgroup is actually of order 1, as 1 is congruent to -1 modulo 2.