E6312: Problem Set 4

Miles Sherman

March 13, 2013

1 Bullet Point 1

INSERT SCAN HERE

2 Bullet Point 2

INSERT SCAN HERE

To build the folded cascade OTA, I began by sizing transistors M0, M1, and M2 (see figure 1 for instance names). Because I want $160\mu A$ through transistor M9 and that transistor is sized with $W=42\mu m$ and I want $320\mu A$ through transistor M2, I sized M2 at $84\mu A$. For the sake of convenience, I decided to use a $320\mu A$ current source so I sized transistors M0 and M1 at $84\mu A$ as well. In addition, because I will eventually put this circuit into feedback and I would like my output to be close to mid-rail, I set $V_{cm}=800mV$ which is close to the ceiling of input voltage. This is an acceptable value because the small signal input will never be above 1V.

To bias V_{b1} , V_{b2} , and V_{b3} I utilized two branches of self-biasing current mirrors (see Figure 1). The first branch, which consists of one PMOS and four NMOS transistors, serves a number of purposes. The PFET (M21) mirrors current from M0 and cuts it in half (sized $42\mu A$). The four NMOS receive the $160\mu A$ of current and are sized as follows. M28 will have half the current of M14 and its gate voltage will bias V_{b1} so it must be half the width of M14, $10.5\mu m$. M29 will have the same current as M13 and its gate voltage will bias V_{b2} so it must be the same width as M13, $10.5\mu A$. M27 will also take the same width as M29 and M28. M20 will take one third of that width. Using a very similar methodology, I built the second self-biasing current mirror branch but this time mirroring the current with an NMOS and receiving the current with four PMOS transistors. M31 mirrors the current of $160\mu A$ so it is sized the same as M28. M44, M45, and M40 will all have the same current as M10 and the gate of M45 will bias V_{b3} so they are all sized the same as M10 at $42\mu A$. M4 is sized one third of that. As can be seen in Figure 2, the biasing is successful.

Figure 1: Schematic Diagram for the Folded Cascode OTA with Associated Biasing Circuitry

Figure 2: Schematic Diagram for the Folded Cascode OTA with Annotated DC Operating Point Values

I performed a DC sweep of V_{out-OL} against V_{in-OTA} with the OTA in stand alone and the expected transfer function for a differential amplifier is attained (see Figure 3).

Figure 3: Voltage Transfer Characteristic for the Folded Cascode OTA in Stand Alone

I applied a small-signal differential input as well as some DC feedback circuitry in order to simulate the open loop gain. Because the open loop gain does not consider small signal feedback, I wanted to build a circuit that would block all AC feedback. However, I wanted to use this feedback to bias V_{cm} . To do this I implemented an RC lowpass filter with a negligible cutoff voltage as can be seen in Figure 4. I performed an AC simulation of the open loop gain of the circuit (see Figure 5) and was able to attain $A(s) = 521.19 \frac{V}{V} = 54.34 dB$. Please note that since transistor M44 does not directly affect the biasing, I was able to reduce its size to $16\mu A$ and optimize my gain.

From the phase plot of my optimized open loop circuit (Figure 5), I estimate that there are poles at 227kHz and 471MHz and a zero at 945MHz. I estimate the gain-bandwidth product (taken at -3dB from the maximum gain) to be 72.2MHz.

Figure 4: Schematic Diagram for the Folded Cascode OTA for Open Loop Gain Simulation

Figure 5: Bode Plot of the Open Loop Gain of the OTA

INSERT SCAN HERE

6 Bullet Point 6

I placed my OTA in AC feedback as shown in Figure 6 with $V_{cm} = 0.8V$. To find the feedback factor, β , from this configuration, I plotted the current through the feedback resistor over the voltage at the output (see Figure 7).

$$\beta = \frac{I_f}{v_{out}} \tag{1}$$

From my simulation, I attained a value of $\beta = 0.577 mA/V$. This is comparable to the ideal value of

$$\beta_{ideal} = \frac{1}{R_f} = 0.4 mA/V \tag{2}$$

Figure 6: Schematic Diagram for the Folded Cascode OTA for Closed Loop Gain Simulation

Figure 7: Frequency Response of the Feedback Network

- 7 Bullet Point 7
- 8 Bullet Point 8
- 9 Bullet Point 9

With an ideal op-amp (infinite gain and bandwidth), a small-signal step at the input should cause an immediate small-signal step at the output. The reason for this is that with infinite bandwidth, τ is defined as

$$\tau = \frac{1}{2\pi f_{3dB}} = \infty. ag{3}$$

To determine the output function, we use the equation

$$v_{OUT} = \mu(t)\{1 - e^{-\frac{t}{\tau}}\} = \mu(t). \tag{4}$$

Therefore, with a small-signal step function at the input, we will observe a small-signal step function at the output.

To determine the ideal output step for the various small-signal step inputs, I first had to simulate the closed loop gain of my circuit. To do this I constructed the circuit shown in Figure 8 and acquired a gain of $A_{closed-loop} = 0.53V/V = -5.51dB$ (see Figure 9). I then set out to simulate the step response at various input magnitudes and sample at times 2τ and 100Ts. My transient step responses can be seen in Figure 10 and my voltage transfer characteristic for V_{ideal}, V_{out1} , and V_{out2} can be seen in Figure 11.

The absolute and percent errors are shown in the Chart 1.

Figure 8: Schematic to Measure Closed Loop Gain

Figure 9: Closed Loop Frequency Response of the OTA in Feedback

Figure 10: Step Responses for Various Small-Signal Input Step Sizes

Figure 11: Transfer Function of the OTA Step Response

$v_{in}[\mathrm{mV}]$	$v_{ideal}[\mathrm{mV}]$	Absolute Error	Percent Error	Absolute Error	Percent Error
		at $t = 2\tau [\mathrm{mV}]$	at $t = 2\tau [\%]$	at	at
				$t = 200Ts[\mathrm{mV}]$	t=200Ts[%]
10	5.30	0.33	6.17	0.03	0.51
20	10.60	0.71	6.70	0.05	0.47
30	15.90	1.06	6.67	0.07	0.44
-10	5.30	0.31	5.89	0.04	0.79
-20	10.60	0.74	7.00	0.08	0.82
-30	15.90	1.15	7.23	0.14	0.86

Table 1: Error Values for Small Signal Step Response

13 Bullet Point 13

I extended my step response plot for input steps of $\pm 100mV$, $\pm 200mV$, and $\pm 500mV$ to show the effects of slewing. As can be seen in Figure 12, slewing is most obvious in the 500mV response.

Figure 12: Step Responses for Various Large-Signal Input Step Sizes