PCT/EP2004/014118

10/582285

Keto lactam compounds and use thereof

AP3 Rec'd PCIPTO Og JUNZZAF

## Description

30

35

40

The present invention relates to novel keto lactam compounds, hydrogenated derivatives and tautomers thereof. These compounds possess valuable therapeutic properties and are suitable especially for the treatment of diseases which respond to the modulation of the dopamine D<sub>3</sub> receptor.

1

Neurons obtain their information from sources including G protein-coupled receptors. There are numerous substances which exert their action via these receptors. One of these is dopamine. Confirmed findings about the presence of dopamine and its physiological function as a neurotransmitter have been published. Disturbances in the dopaminergic transmitter system result in diseases of the central nervous system which include, for example, schizophrenia, depression or Parkinson's disease. One possible treatment of these and other diseases is based on the administration of substances which interact with the dopamine receptors.

Up to 1990, two subtypes of dopamine receptors were clearly defined

20 pharmacologically, specifically the D₁ and D₂ receptors. More recently, a third subtype
has been found, specifically the D₃ receptor, which appears to mediate some effects of
antipsychotics and antiparkinsonian drugs (J.C. Schwartz et al., The Dopamine D₃
Receptor as a Target for Antipsychotics, in Novel Antipsychotic Drugs, H.Y. Meltzer,
Ed. Raven Press, New York 1992, pages 135-144; M. Dooley et al., Drugs and Aging

25 1998, 12, 495-514, J.N. Joyce, Pharmacology and Therapeutics 2001, 90, p. 231-59
"The Dopamine D₃ Receptor as a Therapeutic Target for Antipsychotic and
Antiparkinsonian Drugs").

The dopamine receptors are now divided into two families: firstly the D<sub>2</sub> group consisting of D<sub>2</sub>, D<sub>3</sub> and D<sub>4</sub> receptors, secondly the D<sub>1</sub> group consisting of D<sub>1</sub> and D<sub>5</sub> receptors. While D<sub>1</sub> and D<sub>2</sub> receptors are widespread, D<sub>3</sub> receptors, in contrast, appear to be expressed regioselectively. Thus, these receptors are found preferentially in the limbic system, the projection regions of the mesolimbic dopamine system, in particular in the nucleus accumbens, but also in other regions such as the amygdala. Owing to this comparatively regioselective expression, D<sub>3</sub> receptors are considered to be a target with low side effects, and it is assumed that a selective D<sub>3</sub> ligand should have the properties of known antipsychotics but not their dopamine D<sub>2</sub> receptor-mediated neurological side effects (P. Sokoloff et al., Localization and Function of the D<sub>3</sub> Dopamine Receptor, Arzneim. Forsch./Drug Res. 42(1), 224 (1992); P. Sokoloff et al. Molecular Cloning and Characterization of a Novel Dopamine Receptor (D<sub>3</sub>) as a Target for Neuroleptics, Nature, 347, 146 (1990)).

10

15

20

25

30

Compounds having dopamine  $D_3$  receptor affinity have been described variously in the prior art, for example, in WO 96/02519, WO 96/02520, WO 96/02249, WO 96/02246, WO 97/25324, WO 00/42036, DE 10131543 and WO 99/02503. Some of these compounds have high affinities for the dopamine  $D_3$  receptor. They are therefore proposed for the treatment of diseases of the central nervous system.

However, there is a fundamental need to provide further compounds with dopamine  $D_3$  receptor affinity, whether it be to improve the pharmacological binding profile or because the prior art compounds cause undesired side effects, have poor cerebral availability or only low bioavailability. It is therefore an object of the invention to provide further compounds which act as selective dopamine  $D_3$  receptor ligands.

This object is achieved by the derivatives of keto lactams which have the general formula. I

where

the nitrogen atom and where

 $R^p$  and  $R^q$  are each independently selected from hydrogen, halogen, optionally substituted  $C_1\text{-}C_6\text{-}alkyl,\ C_3\text{-}C_6\text{-}cycloalkyl,\ C_2\text{-}C_6\text{-}alkenyl,\ C_2\text{-}C_6\text{-}alkynyl,\ C_1\text{-}C_6\text{-}alkoxy,\ C_3\text{-}C_6\text{-}cycloalkyloxy,\ C_3\text{-}C_6\text{-}cycloalkyl-}C_1\text{-}C_4\text{-}alkyloxy$  and optionally substituted phenyl;

W is O, S or an N-R<sup>z</sup> group where R<sup>z</sup> is selected from optionally substituted  $C_1$ - $C_6$ -alkyl,  $C_3$ - $C_6$ -cycloalkyl,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_1$ - $C_6$ -alkoxy,  $C_3$ - $C_6$ -cycloalkyl- $C_1$ - $C_4$ -alkyloxy and optionally substituted phenyl

and \* denotes the bonding sites;

20

25

30

40

<u>----</u>

is a bond or where R<sup>m</sup> and R<sup>n</sup> are each independently selected from hydrogen, halogen, optionally substituted C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl, C<sub>1</sub>-C<sub>6</sub>-alkoxy, C<sub>3</sub>-C<sub>6</sub>-cycloalkyloxy, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl-C<sub>1</sub>-C<sub>4</sub>-alkyloxy and optionally substituted phenyl, or, when the nitrogen in the A group is bonded to B, may also be a carbonyl group, and \* denotes the bonding sites;

represents a single bond or a double bond;

 $R^m$   $R^n$ 

- 10  $R^v$ ,  $R^w$  are each independently hydrogen, halogen, optionally substituted  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -alkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ -cycloalkyl- $C_1$ - $C_4$ -alkyloxy or  $C_3$ - $C_6$ -cycloalkyl;
- $R^{x}$ ,  $R^{y}$  are each independently hydrogen, halogen, optionally substituted  $C_{1}$ - $C_{6}$ alkyl,  $C_{1}$ - $C_{6}$ -alkoxy,  $C_{2}$ - $C_{6}$ -alkenyl,  $C_{2}$ - $C_{6}$ -alkynyl,  $C_{3}$ - $C_{6}$ -cycloalkyl- $C_{1}$ - $C_{4}$ -alkyloxy or  $C_{3}$ - $C_{6}$ -cycloalkyl, or
  - $R^x$ ,  $R^y$  together with the carbon atoms to which they are bonded, may also form a fused phenyl ring or a fused 5- or 6-membered aromatic heterocycle which has 1, 2, 3 or 4 heteroatoms which are selected from N, O and S, where the fused phenyl ring and the fused aromatic heterocycle may have 1, 2 or 3 substituents which are selected from optionally substituted  $C_1$ - $C_6$ -alkyl, CN,  $OR^1$ ,  $NR^2R^3$ ,  $NO_2$ ,  $SR^4$ ,  $SO_2R^4$ ,  $SO_2NR^2R^3$ ,  $CONR^2R^3$ ,  $COOR^5$ ,  $COR^6$ ,  $C_1$ - $C_4$ -haloalkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyloxy,  $C_3$ - $C_6$ -cycloalkyl,  $C_3$ - $C_6$ -cycloalkyloxy and halogen; where

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$  and  $R^6$  are each independently H, optionally substituted  $C_1$ - $C_6$ -alkyl or optionally substituted phenyl, where  $R^3$  may also be a  $COR^7$  group where  $R^7$  is hydrogen, optionally substituted  $C_1$ - $C_4$ -alkyl or optionally substituted phenyl, where  $R^2$  with  $R^3$  may also together form a 5- or 6-membered, saturated or unsaturated carbocycle which may have a heteroatom selected from O, S and  $NR^8$  as a ring member, where  $R^8$  is hydrogen or  $C_1$ - $C_4$ -alkyl,

is a linear or branched 2- to 10-membered alkylene chain which may have, as chain members, a heteroatom group K which is selected from O, S, S(O), S(O)<sub>2</sub>, N-R<sup>8</sup>, CO-O, C(O)NR<sup>8</sup>, and/or 1 or 2 nonadjacent carbonyl groups and which may include a cycloalkanediyl group and/or may have a double or triple bond;

 $R^{a}$ 



is a saturated or monounsaturated, monocyclic nitrogen heterocycle having from 5 to 8 ring members or a bicyclic saturated nitrogen heterocycle having from 7 to 12 ring members, where the mono- and the bicyclic nitrogen heterocycle optionally has, as a ring member, a further heteroatom selected from oxygen, sulfur or nitrogen, where the mono- or bicyclic nitrogen heterocycle may be unsubstituted or bears an R<sup>a</sup> radical, where

10

5

is  $C_1$ - $C_{10}$ -alkyl,  $C_2$ - $C_{10}$ -alkenyl,  $C_1$ - $C_{10}$ -alkoxycarbonyl,  $C_1$ - $C_{10}$ -alkylcarbonyl,  $C_1$ - $C_{10}$ -alkylsulfonyl,  $C_1$ - $C_{10}$ -cyanoalkyl,  $C_3$ - $C_{10}$ -cycloalkyl,  $C_3$ - $C_{10}$ -cycloalkyl- $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_{10}$ -cycloalkylcarbonyl,  $C_3$ - $C_{10}$ -cycloalkylcarbonyl- $C_1$ - $C_4$ -alkyl, phenylcarbonyl, phenylcarbonyl,  $C_1$ - $C_4$ -alkyl, phenoxycarbonyl, phenyl- $C_1$ - $C_1$ -alkyloxycarbonyl, 3- to 8-membered heterocyclylcarbonyl or 3- to 8-membered heterocyclylcarbonyl- $C_1$ - $C_4$ -alkyl, where heterocyclyl in the aforementioned radicals may have one, two or three heteroatoms selected from S, O and N, and

20

15

where the last 6 radicals may have, on the heterocycle or on the phenyl ring, 1, 2 or 3 substituents Rb which are each independently selected from optionally substituted C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>alkynyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl, C<sub>4</sub>-C<sub>10</sub>-bicycloalkyl and C<sub>6</sub>-C<sub>10</sub>-tricycloalkyl, where the last three groups may optionally be substituted by halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl, halogen, CN, OR<sup>1</sup>, NR<sup>2</sup>R<sup>3</sup>, NO<sub>2</sub>, SR<sup>4</sup>, SO<sub>2</sub>R<sup>5</sup>, CONR<sup>2</sup>R<sup>3</sup>, SO<sub>2</sub>NR<sup>2</sup>R<sup>3</sup>, COOR<sup>5</sup>, COR<sup>6</sup>, O-COR<sup>6</sup>, 5- or 6-membered heterocyclyl having 1, 2 or 3 heteroatoms selected from O, S and N, and phenyl, where phenyl and heterocyclyl in the last two substituents Rb may optionally bear one or two substituents which are each independently selected from C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, NR<sup>2</sup>R<sup>3</sup>, CN, C<sub>1</sub>-C<sub>2</sub>fluoroalkyl and halogen, and where 2 substituents Rb bonded to adjacent carbon atoms of the and halogen, and where 2 substituents Rb bonded to adjacent carbon atoms of the aromatic radical may together be C<sub>3</sub>- or C<sub>4</sub>-alkylene, or, together with the carbon atoms to which they are bonded, may be a fused-on, unsaturated 5- or 6membered carbocycle or a 5- or 6-membered heterocycle having 1 or 2 nitrogen atoms as ring members; or

25

30

35

R<sup>a</sup> is an E-Ar group wherein E is a bond or linear or branched alkylene having from 1 to 4 carbon atoms and in particular (CH<sub>2</sub>)<sub>p</sub> where p is 0, 1, 2, 3 or 4, and Ar is selected from phenyl, naphthyl and 5- or 6-membered heteroaryl which has one, two or three heteroatoms se-

40

lected from S, O and N as ring members and which may optionally have 1, 2 or 3 of the aforementioned substituents R<sup>b</sup>; or



5

10

is a saturated monocyclic nitrogen heterocycle having from 5 to 7 ring atoms which bears a fused-on benzene ring of the formula

where \* denotes the bonding sites to the saturated monocyclic heterocycle; R<sup>c</sup> may be the same or different and is as defined for R<sup>b</sup>, and n is 0, 1, 2 or 3;

where Z may optionally also have 1, 2, 3 or 4 further  $C_1$ - $C_4$ -alkyl groups as substituents;

the physiologically acceptable acid addition salts of this compound and the tautomer of the formula I'

$$R \xrightarrow{B} A - D - N Z \qquad (I)$$

where R is halogen, an O-R<sup>1</sup> group where R<sup>1</sup> is as defined above, or an O-C(O)R<sup>9</sup> group where R<sup>9</sup> is hydrogen, optionally substituted C<sub>1</sub>-C<sub>6</sub>-alkyl, benzyl or phenyl, where the last two radicals are optionally substituted by one or two radicals which are each independently selected from C<sub>1</sub>-C<sub>4</sub>-alkyl, OH, C<sub>1</sub>-C<sub>4</sub>-alkoxy, NR<sup>2</sup>R<sup>3</sup>, CN, C<sub>1</sub>-C<sub>2</sub>-fluoroalkyl or halogen, and the physiologically acceptable acid addition salts of the tautomer l'.

The present invention therefore provides the compounds of the general formula I, the tautomers of the formula I' and the physiologically tolerated acid addition salts of the compounds I and their tautomers I'.

30

The present invention also provides for the use of compounds of the general formula I, the tautomers of the formula I' and the physiologically tolerated acid addition salts of the compounds I and their tautomers I' for producing a pharmaceutical composition for

treating diseases which respond to the influence of dopamine  $D_3$  receptor antatongists or agonists.

The diseases which respond to the influence of dopamine D<sub>3</sub> receptor antagonists or agonists include in particular disorders and diseases of the central nervous system, especially affective disorders, neurotic disorders, stress disorders and somatoform disorders and psychoses, specifically schizophrenia and depression and also renal function disorders, especially renal function disorders caused by diabetes mellitus (see WO 00/67847).

10

15

20

25

5

According to the invention, the aforementioned indications are treated by using at least one compound of the general formula I, a tautomer of the general formula I' or a physiologically tolerated acid addition salt of a compound I or of a tautomer I'. When the compounds of the formula I or their tautomers I' have one or more centers of asymmetry, it is also possible to employ mixtures of enantiomers, especially racemates, mixtures of diastereomers, mixtures of tautomers, but preferably the particular substantially pure enantiomers, diastereomers and tautomers.

It is likewise possible to use physiologically tolerated salts of the compounds of the formula I and of the tautomers I', in particular acid addition salts with physiologically tolerated acids. Examples of useful physiologically tolerated organic and inorganic acids include hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, C<sub>1</sub>-C<sub>4</sub>-alkylsulfonic acids such as methanesulfonic acid, aromatic sulfonic acids such as benzenesulfonic acid and toluenesulfonic acid, oxalic acid, maleic acid, fumaric acid, lactic acid, tartaric acid, adipic acid and benzoic acid. Further acids which can be used are described in Fortschritte der Arzneimittelforschung, volume 10, pages 224 ff., Birkhäuser Verlag, Basle and Stuttgart, 1966.

Halogen here and hereinafter is fluorine, chlorine, bromine or iodine.

30

35

40

 $C_n$ - $C_m$ -alkyl (including in radicals such as alkoxy, alkoxyalkyl, alkylthio, alkylamino, dial-kylamino, alkylcarbonyl, etc.) is a straight-chain or branched alkyl group having n to m carbon atoms, for example 1 to 6 and especially 1 to 4 carbon atoms. Examples of an alkyl group are methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, neopentyl, n-hexyl and the like.

The expression "optionally substituted  $C_n$ - $C_m$ -alkyl" represents an alkyl radical which has from n to m carbon atoms, which may be partly or fully substituted by halogen, in particular by chlorine or fluorine, and which may have one or more, for example 1, 2 or 3, non-halogen substituents which are selected from halogen, CN,  $C_3$ - $C_7$ -cycloalkyl,  $C_3$ - $C_7$ -heterocycloalkyl, optionally substituted phenyl,  $OR^{11}$ ,  $COOR^{11}$ ,  $NR^{12}R^{13}$ ,

 $SO_2NR^{12}R^{13}$ ,  $CONR^{12}R^{13}$ ,  $O-CONR^{12}R^{13}$ ,  $S-R^{14}$ ,  $SOR^{15}$ ,  $SO_2R^{15}$ ,  $OCOR^{16}$  and  $COR^{16}$ . In these,  $R^{11}$  is as defined for  $R^1$ ,  $R^{12}$  is as defined for  $R^2$ ,  $R^{13}$  is as defined for  $R^3$ ,  $R^{14}$  is as defined for  $R^4$ ,  $R^{15}$  is as defined for  $R^5$  and  $R^{16}$  is as defined for  $R^6$ . In particular,  $R^{11}-R^{16}$  are hydrogen,  $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloalkyl,  $C_3-C_7$ -cycloalkyl, optionally substituted benzyl or optionally substituted phenyl. Preferred substituents on alkyl are selected from OH,  $C_1-C_4$ -alkoxy, halogen,  $C_3-C_7$ -cycloalkyl and optionally substituted phenyl. In the case of OH,  $C_1-C_4$ -alkoxy,  $C_3-C_7$ -cycloalkyl and phenyl there is in particular only one substituent. Such radicals are also referred to hereinafter as  $C_1-C_4$ -alkoxy- $C_1-C_6$ -alkyl such as methoxymethyl, 1- or 2-methoxyethyl, 1-methoxy-1-methylethyl or 2-methoxy-1-methylethyl, 1-, 2- or 3-methoxypropyl, ethoxymethyl, 1- or 2-ethoxyethyl, hydroxy- $C_1-C_6$ -alkyl, 1-hydroxymethyl, 1- or 2-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-, 2- or 3-hydroxypropyl etc.,  $C_3-C_6$ -cycloalkyl- $C_1-C_6$ -alkyl such as cyclopropylmethyl, cyclohexylmethyl or phenyl- $C_1-C_6$ -alkyl. In the case of halogen substituents, these radicals are also referred to as haloalkyl.

15

10

5

 $C_1$ - $C_6$ -Haloalkyl (including in radicals such as  $C_1$ - $C_6$ -haloalkoxy) represents an alkyl group which has 1 to 6 and in particular 1 to 4 carbon atoms as defined above, in which all or some, for example 1, 2, 3, 4 or 5, of the hydrogen atoms are replaced by halogen atoms, in particular by chlorine or fluorine. Preferred haloalkyl is  $C_1$ - $C_2$ -fluoroalkyl, in particular  $C_3$ ,  $CH_2$ - $C_2$ - $C_3$ - $CH_2$ - $C_3$ - $CH_3$ - $CH_3$ - $CH_4$ - $CH_5$ - $CH_5$ - $CH_5$ - $CH_6$ -

20

 $C_3$ - $C_{10}$ -cycloalkyl, including in radicals such as cycloalkylalkyl, cycloalkylcarbonyl and cycloalkylcarbonylalkyl, represents a cycloaliphatic radical having 3 to 10 and preferably 3 to 6 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.

25

C<sub>3</sub>-C<sub>10</sub>-Heterocycloalkyl, including in radicals such as heterocycloalkylalkyl, heterocycloalkylcarbonyl and heterocycloalkylcarbonylalkyl, represents a saturated heterocyclic radical having ring members, where 1, 2 or 3 ring members are a heteroatom selected from N, O and S, such as oxiranyl, oxetanyl, aziranyl, azetanyl, tetrahydrofurfuryl, tetrahydrothienyl, pyrrolidinyl, pyrazolinyl, imidazolinyl, piperidinyl, piperazinyl or morpholinyl.

35

30

 $C_4$ - $C_{10}$ -Bicycloalkyl represents a bicycloaliphatic radical having 4 to 10 carbon atoms as in bicyclo[2.1.0]pentyl, bicyclo[2.1.1]hexyl, bicyclo[3.1.0]hexyl, bicyclo[2.2.1]heptanyl, bicyclo[3.2.0]heptanyl, bicyclo[2.2.2]octanyl, bicyclo[3.2.1]octanyl, bicyclo[3.3.1]nonyl and bicyclo[4.4.0]decyl.

40

 $C_{6}$ - $C_{10}$ -Tricycloalkyl represents a tricycloaliphatic radical having 6 to 10 carbon atoms as in adamantyl.

 $C_2$ - $C_6$ -alkenyl represents a monounsaturated linear or branched hydrocarbon radical having 2, 3, 4, 5 or 6 carbon atoms, for example vinyl, allyl (2-propen-1-yl), 1-propen-1-yl, 2-propen-2-yl, methallyl (2-methylprop-2-en-1-yl) and the like.  $C_3$ - $C_4$ -alkenyl is in particular allyl, 1-methylprop-2-en-1-yl, 2-buten-1-yl, 3-buten-1-yl, methallyl, 2-penten-1-yl, 3-penten-1-yl, 4-penten-1-yl, 1-methylbut-2-en-1-yl, 2-ethylprop-2-en-1-yl.

 $C_2$ - $C_6$ -Haloalkenyl represents an alkenyl group as defined above, in which all or some, for example 1, 2, 3, 4 or 5, of the hydrogen atoms are replaced by halogen atoms, in particular by chlorine or fluorine.

10

20

25

5

 $C_2$ - $C_6$ -alkynyl represents a hydrocarbon radical having 2, 3, 4, 5 or 6 carbon atoms and having a triple bond, for example propargyl (2-propyn-1-yl), 1-methylprop-2-yn-1-yl, 2-butyn-1-yl, 3-butyn-1-yl, 2-pentyn-1-yl, 1-pentyn-3-yl, etc.

15 C<sub>2</sub>-C<sub>6</sub>-Haloalkynyl represents an alkenyl group as defined above, in which all or some, for example 1, 2, 3, 4 or 5, of the hydrogen atoms are replaced by halogen atoms, in particular by chlorine or fluorine.

phenyl- $C_1$ - $C_4$ -alkyl represents a  $C_1$ - $C_4$ -alkyl radical as defined above, in which a hydrogen atom is replaced by a phenyl radical, as in benzyl or 2-phenylethyl.

Optionally substituted phenyl represents phenyl that optionally has one or more, for example 1, 2 or 3, of the following substituents: halogen, nitro, cyano, optionally substituted  $C_1$ - $C_4$ -alkyl,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ -cycloalkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkoxy,  $OR^{21}$ ,  $COOR^{21}$ ,  $NR^{22}R^{23}$ ,  $SO_2NR^{22}R^{23}$ ,  $CONR^{22}R^{23}$ , O- $CONR^{22}R^{23}$ , S- $R^{24}$ ,  $SOR^{25}$ ,  $SO_2R^{25}$ ,  $OCOR^{26}$  and  $COR^{26}$ . Examples of suitable substituents on phenyl are in particular halogen,  $C_1$ - $C_4$ -alkyl,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ -cycloalkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl, hydroxy- $C_1$ - $C_4$ -alkyl, hydroxy, nitro,  $NH_2$ , cyano, COOH,  $C_1$ - $C_4$ -alkoxycarbonyl,  $C_1$ - $C_4$ -alkylcarbonyl,  $C_1$ - $C_4$ -alkylamino,  $C_1$ - $C_4$ -alkylsulfonyl,  $C_1$ - $C_4$ -alkylsulfonylamino and/or  $C_1$ - $C_4$ -alkylaminosulfonyl. In these,  $R^{21}$  is as defined for  $R^1$ ,  $R^{22}$  is as defined for  $R^2$ ,  $R^{23}$  is as defined for  $R^3$ ,  $R^{24}$  is as defined for  $R^4$ ,  $R^{25}$  is as defined for  $R^5$ , and  $R^{26}$  is as defined for  $R^6$ . In particular,  $R^{21}$  -  $R^{26}$  are hydrogen,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_3$ - $C_7$ -cycloalkyl, optionally substituted benzyl or optionally substituted phenyl.

35

40

30

The term "alkylene" encompasses in principle straight-chain or branched radicals having preferably from 2 to 10 and more preferably from 3 to 8 carbon atoms such as prop-1,2-ylene, prop-1,3-ylene, but-1,2-ylene, but-1,3-ylene, but-1,4-ylene, 2-methylprop-1,3-ylene, pent-1,2-ylene, pent-1,3-ylene, pent-1,4-ylene, pent-1,5-ylene, pent-2,3-ylene, pent-2,4-ylene, 1-methylbut-1,4-ylene, 2-methylbut-1,4-ylene, hex-1,3-ylene, hex-2,4-ylene, hex-1,5-ylene, hex-1,6-ylene and the like. Co-alkylene

10

15

20

25

30

35

40

represents a single bond,  $C_1$ -alkylene represents methylene and  $C_2$ -alkylene represents 1,1-ethylene or 1,2-ethylene.

The term 3 to 8 membered heterocyclyl encompasses saturated (= heterocycloalkyl), partly unsaturated heterocyclic radicals and aromatic heterocycles (heteroaryl) of ring size 3, 4, 5, 6, 7 and 8, in particular of ring size 5 or 6, having 1, 2 or 3 heteroatoms as ring members. The heteroatoms in this case are selected from O, S and N.

Examples of saturated 3- to 8-membered heterocyclyl are oxiranyl, oxetanyl, aziranyl, piperidinyl, piperazinyl, morpholinyl, pyrrolidinyl, oxazolidinyl, tetrahydrofuryl, dioxolanyl, dioxanyl, hexahydroazepinyl, hexyhydrooxepinyl, and hexahydrothiepinyl.

Examples of partly unsaturated 3- to 8-membered heterocyclyl are di- and tetrahydro-pyridinyl, pyrrolinyl, oxazolinyl, dihydrofuryl, tetrahydroazepinyl, tetrahydrooxepinyl, and tetrahydrothiepinyl.

Examples of 5-membered heteroaromatic radicals (= 5-membered heteroaryl) are those having 1, 2, 3 or 4 heteroatoms as ring members which are selected independently of one another from O, N and S, for example pyrrole, thiophene, furan, oxazole, isoxazole, selected from O, N and S, for example pyrrole, thiophene, furan, oxazole, isoxazole, thiazole, isothiazole, imidazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,3,4-thiadiazole, 1,2,4-thiadiazole, 1,3,4-thiadiazole, 1,2,3-triazole, 1,2,4-triazole, 1,3,4-triazole, tetrazole. Examples of 6-membered heteroaromatic radicals (= 6-membered heteroaryl) having 1 or 2 nitrogen atoms as ring members are in particular 2-, 3- or 4-pyridinyl, 2-, 4- or 5-pyrimidinyl, 2- or 3-pyrazinyl and 3- or 4-pyridazinyl. The 6-membered heteroaromatic radicals may have the substituents specified above and/or be fused with a nonaromatic or aromatic carbocycle, in particular a benzene or cyclohexene ring as in benzo[b]pyridine (= quinoline), benzo[c]pyridine (isoquinoline), benzo[b]pyrimidine (quinazoline), cinnoline, phthalazine or quinoxaline. In the 5- or 6-membered heteroaromatic Ar radicals, the bonding to the (CH<sub>2</sub>)<sub>p</sub> group is preferably via a carbon atom.

In connection with the D group, the two bonding sites of the alkylene chain are generally not on the same carbon atom but rather form, optionally together with the heteroatom group K and/or the carbonyl group, an at least two-, preferably at least three- and in particular at least four-membered chain which separates the nitrogen atom in the A group from the nitrogen atom of the nitrogen heterocycle NZ by at least 3, preferably by at least 4 and in particular by at least 5 bonds from one another. When D has no carbonyl group and no heteroatom group K, D comprises preferably from 3 to 10 carbon atoms, in particular from 4 to 8 carbon atoms and more preferably from 4 to 6 carbon atoms as chain members. The chain between the atom A and the nitrogen atom of NZ then has at least 3 and in particular at least 4 carbon atoms. When D has a carbonyl

group or a heteroatom group K, D comprises, in addition to these groups, generally from 1 to 10 carbon atoms, in particular from 2 to 8 carbon atoms and especially from 3 to 5 carbon atoms as chain members. The number of chain members including the K group and/or the carbonyl group is selected such that the nitrogen atom in the A group is separated from the nitrogen atom of the nitrogen heterocycle NZ by at least 3, preferably by at least 4 and in particular by at least 5 bonds from one another. Moreover, the saturated C-C bonds in alkylene may be replaced by unsaturated bonds (alkenylene; alkynylene). Thus, straight-chain or branched unsaturated radicals can arise, whose number and arrangement of the carbon atoms corresponds to that of the aforementioned alkylene radicals, except that one or more single bonds have been replaced by corresponding unsaturated double or triple bonds. Also, D may comprise a cycloalkanediyl radical, preferably a C<sub>3</sub>-C<sub>7</sub>-cycloalkanediyl radical, in particular a C<sub>4</sub>-C<sub>7</sub>cycloalkane-1,2-, -1,3- or -1,4-diyl radical, for example cyclopropane-1,2-diyl, cyclobutane-1,2- or -1,3-diyl, cyclopentane-1,2- or -1,3-diyl, cyclohexane-1,2-, -1,3- or -1,4-diyl radical, or a cycloheptane-1,2-, -1,3- or 1,4-diyl radical. This cycloalkanediyl radical is part of the chain D. In other words, some of the cycloalkanediyl radicals form the chain D with the remaining chain members, the smaller part of the cycloalkanediyl radical being crucial with regard to the separation of the nitrogen atoms into B and NZ.

When the alkylene group in D comprises at least one heteroatom, a heteroatom group K and/or a carbonyl group, these may be arranged in any position in the alkylene chain. The heteroatom is preferably not bonded to the nitrogen atom of the A group or to the nitrogen atom of NZ. A carbonyl group is preferably bonded to the nitrogen atom of the A group or to the nitrogen atom of the NZ group.

25

30

5

10

15

Examples of suitable D groups are:  $(CH_2)_k$  where k = 2, 3, 4, 5, 6, 7, 8, 9 or 10,  $CH(CH_3)(CH_2)_i$  with I = 1, 2, 3, 4, 5, 6, 7, 8 or 9,  $CH_2CH(CH_3)(CH_2)_{k'}$  with k' = 0, 1, 2, 3, 4, 5, 6, 7 or 8, cis- and trans- $CH_2$ - $CH=CH-CH_2$ ,  $CH_2$ - $C(CH_3)=CH-CH_2$ ,  $CH_2$ - $C(CH_3)=CH-CH_2$ ,  $CH_2$ - $CH_2$ -CH

$$-CH_{2} \longrightarrow -CH_{2} \longrightarrow -CH_{2} - CH_{2} - CH_{2}$$

)

5

10

20

25

30

With regard to the use of the inventive compounds as dopamine  $D_3$  receptor ligands, particular preference is given to those compounds I where D in formula I or I' is  $C_3$ - $C_{10}$ -alkylene, in particular  $C_4$ - $C_8$ -alkylene and especially  $C_4$ - $C_6$ -alkylene, which may have a double bond, or  $C(O)C_2$ - $C_9$ -alkylene, in particular  $C(O)C_3$ - $C_8$ -alkylene and especially  $C(O)C_3$ - $C_5$ -alkylene, which may have a double bond. In particular, D is a  $(CH_2)_k$  group or a  $C(O)(CH_2)_l$ , where k and I are each independently as defined above and are in particular each an integer from 3 to 8. More preferably, k is 4, 5 or 6 and I is 3, 4 or 5.

When A is a group or B is a carbonyl group, D is preferably  $C_3$ - $C_{10}$ -alkylene, in particular  $C_4$ - $C_8$ -alkylene and especially  $C_4$ - $C_6$ -alkylene, which may have a double bond, especially  $C_4$ - $C_6$ -alkylene which may have a double bond, and especially  $(CH_2)_k$  where k is as defined above, in particular as defined above with preference.

W is in particular oxygen.

When A is , D is preferably a  $C(O)C_2$ - $C_9$ -alkylene group, in particular  $C(O)C_3$ - $C_8$ -alkylene, which may have a double bond. In particular D is a  $C(O)(CH_2)_1$ , where I is as defined above and is in particular 3, 4 or 5.

In a first embodiment of the invention, B in the formulae I and I' is a carbonyl group or a  $CR^mR^n$  group, where  $R^m$  and  $R^n$  are each as defined above and are in particular hydrogen or  $C_1$ - $C_4$ -alkyl. In particular, at least one of the  $R^m$  or  $R^n$  radicals and especially both  $R^m$  and  $R^n$  radicals are hydrogen.

In a second embodiment of the invention, B in the formulae I and I' is a bond.

With regard to the use of the inventive compounds I and I' as dopamine  $D_3$  receptor ligands, preference is given to those compounds I and I' where the nitrogen atom of the A group is joined to the carbon atom which bears the  $R^x$  group.

In particular, A is a group of the formula

When A is a group of the formula  $^{*}$ ,  $R^{p}$  and  $R^{q}$  are each independently in particular hydrogen or  $C_{1}$ - $C_{4}$ -alkyl. In particular, at least one of the  $R^{p}$  or  $R^{q}$  radicals and especially both  $R^{p}$  and  $R^{q}$  radicals are hydrogen.

The R $^{v}$  and R $^{w}$  radicals are each independently hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl. In particular, at least one of the R $^{v}$  or R $^{w}$  radicals and especially both R $^{v}$  and R $^{w}$  radicals are hydrogen.

- Among the compounds of the formula I, preference is given to those compounds where 5 Rx and Ry, together with the carbon atoms to which they are bonded, are a fused benzene ring or a fused 5- or 6-membered aromatic heterocycle which has 1, 2, 3 or 4 heteroatoms which are selected from N, O and S, where the fused phenyl ring and the fused aromatic heterocycle may have 1, 2 or 3 substituents which are selected from  $C_1-C_4-alkyl,\ C_1-C_4-hydroxyalkyl,\ C_1-C_4-alkoxy-C_1-C_4-alkyl,\ CN,\ OR^1,\ NR^2R^3,\ NO_2,\ SR^4,$ 10  $SO_2R^4$ ,  $SO_2NR^2R^3$ ,  $CONR^2R^3$ ,  $COOR^5$ ,  $COR^6$ ,  $C_1$ - $C_2$ -fluoroalkyl,  $C_1$ - $C_2$ -fluoroalkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_2$ - $C_6$ -alkenyloxy,  $C_2$ - $C_6$ -alkynyloxy,  $C_3$ - $C_6$ -cycloalkyl, C<sub>3</sub>-C<sub>6</sub>-cycloalkyl and halogen; where R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are each independently as defined above. Preferred substituents are C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy and halogen. Among these, preference is given in particular to those compounds of the 15 formula I where Rx and Ry, together with the carbon atoms to which they are bonded, are a fused benzene ring optionally substituted in the manner described above.
  - In another embodiment of the invention,  $R^x$  and  $R^y$  are each independently hydrogen,  $C_1$ - $C_6$ -alkyl which is optionally substituted by OH, halogen, CN,  $C_1$ - $C_4$ -alkoxy or optionally substituted phenyl,  $C_1$ - $C_6$ -alkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl or  $C_3$ - $C_6$ -cycloalkyl, and in particular hydrogen or  $C_1$ - $C_4$ -alkyl. In that case, the bond  $\frac{1}{2}$  is in particular a single bond.
- The groups of the formula , also referred to hereinafter as NZ, are a saturated or monounsaturated, mono- or bicyclic nitrogen heterocycle which optionally comprises a further heteratom which is selected from nitrogen, oxygen and sulfur as a ring member. In the case of the bicyclic groups NZ, the two rings forming the bicyclic system are typically each independently 4-, 5-, 6- or 7-membered, the total number of ring members being in the range from 7 to 12. The NZ group may have an R<sup>a</sup> group or a fused-on benzene ring which may in turn be substituted in the manner described above. In addition, NZ may be a one, two, three or four further C<sub>1</sub>-C<sub>4</sub>-alkyl groups, in particular methyl groups.
- 35 Examples of suitable NZ groups are the mono- and bicyclic radicals NZ-1 to NZ-24 specified below.



In the NZ-1 to NZ-24 radicals, R<sup>a'</sup> is hydrogen or is as defined above for R<sup>a</sup>. The variable q is 0, 1, 2, 3 or 4, in particular 0 or 1, and Alk is an alkyl group having from 1 to 4 carbon atoms. Among the NZ radicals, preference is given to monocyclic radicals.

When  $R^a$  is an  $R^a$  radical other than hydrogen,  $R^a$  in the radicals NZ-3 to NZ-5 and NZ-7 to NZ-15 is arranged in the 4- or in the 5-postion based on the nitrogen atom which is bonded to D. In the bicyclic radicals NZ-16 to NZ-24, when  $q \neq 0$ , Alk may be arranged on one or both of the rings.

5

With regard to the use of the inventive compounds for modulating the dopamine  $D_3$  receptor, preference is given to those compounds where NZ has an  $R^a$  group, and among these in particular monocyclic NZ radicals which have an  $R^a$  group.

10 With regard to the use of the inventive compounds as dopamine D<sub>3</sub> receptor ligands, particular preference is given to those compounds I where the NZ group, as an R<sup>a</sup> radical, has an E-Ar radical and in particular a (CH<sub>2</sub>)<sub>p</sub>-Ar radical. In these, Ar and E are each as defined above, and p is 0, 1, 2, 3 or 4 and in particular 0 or 1.

Among the inventive compounds I and I' in which the NZ group has, as the  $R^a$  radical, a group of the formula  $(CH_2)_p$ -Ar, preference is given in particular to those compounds where p=0 and Ar is phenyl, pyridyl, pyrimidinyl or s-triazinyl, which have 1, 2 or 3 of the aforementioned  $R^b$  radicals, In particular, Ar is then a radical of the formula Ar-1

$$D^{1} = \begin{pmatrix} R^{f} \\ D^{2} \\ D^{3} \end{pmatrix}$$
 Ar-1

20

where the variables  $D^1$  to  $D^3$  are each independently N, CH or C-R<sup>b</sup>. In this, Rb has one of the definitions specified above. Rf and Rg are each independently hydrogen or have one of the definitions specified for Rb.

25

30

35

In a first preferred embodiment of the invention, at least one of the variables  $D^1$  to  $D^3$  in formula Ar-1 is N and the remaining variables are each CH, where one of the variables  $D^1$  to  $D^3$  may also be  $C-R^b$  when one of the variables  $R^f$  is hydrogen. Among these, preference is given to compounds I and I' where  $D^1$ , and especially  $D^1$  and  $D^2$ , are nitrogen and the remaining variables are each CH. In this embodiment,  $R^f$  and  $R^g$  are preferably each independently the following groups: hydrogen,  $OR^1$ ,  $NR^2R^3$ , CN,  $C_1-C_6$ -alkyl which is optionally substituted by OH,  $C_1-C_4$ -alkoxy, halogen or phenyl,  $C_2-C_6$ -alkenyl,  $C_2-C_6$ -alkynyl,  $C_3-C_6$ -cycloalkyl,  $C_4-C_{10}$ -bicycloalkyl,  $C_6-C_{10}$ -tricycloalkyl, where the last three groups may optionally be substituted by halogen or  $C_1-C_4$ -alkyl, halogen, CN,  $OR^1$ , 5- or 6-membered heterocyclyl having 1, 2 or 3 heteroatoms selected from O, S and S0, and phenyl, where phenyl and heterocyclyl optionally bear one or two substituents which are each independently selected from  $C_1-C_4$ -alkyl,  $C_1-C_4$ -alkoxy,  $NR^2R^3$ , CN,  $C_1-C_2$ -fluoroalkyl and halogen.  $R^x$  is preferably different from hydrogen. In particular, both  $R^f$  and  $R^g$  are different from hydrogen. In particular,  $R^f$  is  $C_1-C_6$ -alkyl, more

35

40

preferably branched  $C_3$ - $C_6$ -alkyl and especially tert-butyl.  $R^9$  is is preferably selected from  $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_6$ -cycloalkyl and  $C_1$ - $C_2$ -fluoroalkyl. More preferably,  $R^f$  and  $R^9$  both have the definitions specified as preferred.

- In another embodiment of the invention, all variables D1 to D3 in Ar-1 are CH or a C-Rb 5 group. In this embodiment, Rf, Rg and Rb are each preferably selected from hydrogen, OR1, NR2R3, CN, C1-C6-alkyl which is optionally substituted by OH, C1-C4-alkoxy, halogen or phenyl,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ -cycloalkyl,  $C_4$ - $C_{10}$ -bicycloalkyl,  $C_6$ -C<sub>10</sub>-tricycloalkyl, where the last three groups may optionally be substituted by halogen or C<sub>1</sub>-C<sub>4</sub>-alkyl, halogen, CN, OR<sup>1</sup>, 5- or 6-membered heterocyclyl having 1, 2 or 3 het-10 eroatoms selected from O, S and N, and phenyl, where phenyl and heterocyclyl optionally bear one or two substituents which are each independently selected from C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, NR<sup>2</sup>R<sup>3</sup>, CN, C<sub>1</sub>-C<sub>2</sub>-fluoroalkyl and halogen. In that case, Ar-1 more preferably has at least one substituent other than hydrogen. In this case, preferred substituents other than hydrogen are selected from halogen, especially chlorine 15 or fluorine,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ haloalkoxy and CN. In a particularly preferred embodiment, Ar-1 is then 2,3dichlorophenyl.
- Among the inventive compounds I and I', in which the NZ group has an R<sup>a</sup> radical of the formula (CH<sub>2</sub>)<sub>p</sub>-Ar, preference is further given to those compounds where p = 1 and Ar is as defined above. In particular, Ar is phenyl, naphthyl, pyridyl, pyridinyl, pyrazinyl, pyridazinyl, thienyl, furyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1-oxa-3,4-diazolyl or 1-thia-3,4-diazolyl, which are unsubstituted or may have 1, 2 or 3 of the abovementioned R<sup>b</sup> radicals. In that case, Ar is especially phenyl, pyridyl, thiadiazolyl, thienyl or imidazolyl, which may have 1, 2 or 3 of the abovementioned R<sup>b</sup> radicals. In that case, preferred R<sup>b</sup> radicals are in particular halogen, especially chlorine or fluorine, nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkyl and/or C<sub>1</sub>-C<sub>4</sub>-haloalkoxy.

In the compounds I in which NZ bears a radical of the formula E-Ar, Ar, when it is phenyl, or a heteroaromatic radical, may also be fused with an aromatic or heteroaromatic 5- or 6-membered cyclic system of the type mentioned above, for example with a 5- or 6-membered aromatic or nonaromatic heterocycle which has 1, 2 or 3 heteroatoms selected from O, N and S, for example with pyridine, pyrimidine, pyrazine, pyridazine, furan, thiophene, oxazole, isoxazole, thiazole, isothiazole, 1,4-dioxane, 1,4-oxazinane or 1,3-dioxolane, such as in quinoline, isoquinoline, 4H-quinolizine, 1,5-, 1,6-, 1,7-, 1,8-, 2,6- or 2,7-naphthyridine, indole, indolizine, 1- or 2-benzofuran, 1- or 2-benzothiophene, 1,3-benzoxazole, benzo[1,2-b and 1,2-c]oxazole, 1,3-benzothiazole, 1,3-benzomene, chroman, 1,4-benzopiperazine, 1- or 2-benzopiperidine, benzo[1,4-b]oxazinane, benzo[1,3-

10

15

20

25

b]dioxolane or benzo[1,4-b]dioxane. Phenyl and the aromatic heterocycles, especially phenyl and pyridyl, may also be fused with a 5- or 6-membered carbocycle, for example with benzene, cyclohex(adi)ene, cylopent(adi)ene, such as in naphthalene, indane, indene, quinoline, isoquinoline, di- or tetrahydronaphthalene. In such radicals, the bonding of Ar is via the phenyl, pyridyl or pyrimidinyl moiety of the bicyclic radical.

Preference is likewise given to  $R^a$  groups which are selected from nonaromatic hydrocarbon radicals having from 1 to 14 carbon atoms, in particular  $C_1$ - $C_{10}$ -alkyl,  $C_2$ - $C_{10}$ -alkyl,  $C_3$ - $C_{10}$ -cycloalkyl,  $C_3$ - $C_{10}$ -cycloalkyl- $C_1$ - $C_4$ -alkyl,  $C_3$ - $C_{10}$ -beterocycloalkyl- $C_1$ - $C_4$ -alkyl and  $C_3$ - $C_{10}$ -heterocycloalkyl is then in particular cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. The same applies to the  $C_3$ - $C_{10}$ -cycloalkyl- $C_1$ - $C_4$ -alkyl and  $C_3$ - $C_{10}$ -cycloalkylcarbonyl- $C_1$ - $C_4$ -alkyl radicals.  $C_3$ - $C_{10}$ -Heterocycloalkyl is then in particular tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, piperidinyl or morpholinyl. The same applies to the  $C_3$ - $C_{10}$ -heterocycloalkyl- $C_1$ - $C_4$ -alkyl radicals. In this embodiment, particular preference is given to compounds where  $R^a$  is  $C_1$ - $C_4$ -alkyl.

In particular, the NZ radicals obey the formula:

-N-X-Ra

where

R<sup>a</sup> is as defined above and in particular as defined above with preference;

J is CH<sub>2</sub>, CH<sub>2</sub>-CH<sub>2</sub> or CH<sub>2</sub>-CH<sub>2</sub>, and in particular CH<sub>2</sub>-CH<sub>2</sub>;

X is CH or N and

30 Y is CH<sub>2</sub>, CH<sub>2</sub>-CH<sub>2</sub> or CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>, or Y-X together are CH=C or CH<sub>2</sub>-CH=C, preference being given to those radicals where X is N;

Re is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl and in particular hydrogen.

Examples of such radicals are the aforementioned NZ-1, NZ-3 to NZ-15 radicals, a-mong which particular preference is given to the NZ-3, NZ-4 and NZ-5 radicals. Most preferably, NZ is the NZ-5 radical.

In a first preferred embodiment of the invention, NZ is a radical of the formula NZ-A

where J, X, Y, R<sup>e</sup> and Ar are each as defined above and in particular as defined above with preference, and Ar is in particular Ar-1.

In a second preferred embodiment of the invention, NZ is a radical of the formula NZ-B

$$-N$$
 $X$ 
 $CH_2$ 
 $Ar$ 
 $(NZ-B)$ 

10

15

where J, X, Y,  $R^e$  and Ar are each as defined above and in particular as defined above with preference. In particular, Ar is phenyl, naphthyl, pyridyl, pyridinyl, pyrazinyl, pyridazinyl, thienyl, furyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, 1-oxa-3,4-diazolyl or 1-thia-3,4-diazolyl, which are unsubstituted or may have 1, 2 or 3 of the abovementioned  $R^b$  radicals. Ar is then especially phenyl, pyridyl, thienyl or imidazolyl, which may have 1, 2 or 3 of the abovementioned  $R^b$  radicals. Preferred  $R^b$  are then in particular halogen, especially chlorine or fluorine, nitro, cyano,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -haloalkyl and/or  $C_1$ - $C_4$ -haloalkoxy.

20

In a further preferred embodiment of the invention, NZ is a radical of the formula NZ-C

$$-N + X - R^{aa}$$
 (NZ-C)

25

30

where Re, J, X and Y are each as defined above and Raa is a nonaromatic hydrocarbon radical having from 1 to 14 carbon atoms, in particular  $C_1\text{-}C_{10}\text{-}alkyl$ ,  $C_2\text{-}C_{10}\text{-}alkenyl$ ,  $C_3\text{-}C_{10}\text{-}cycloalkyl$ ,  $C_3\text{-}C_{10}\text{-}cycloalkyl$ ,  $C_3\text{-}C_{10}\text{-}cycloalkyl$ ,  $C_3\text{-}C_{10}\text{-}cycloalkyl$ ,  $C_3\text{-}C_{10}\text{-}heterocycloalkyl}$ ,  $C_3\text{-}C_1\text{-}heterocycloalkyl}$ ,  $C_3\text{-}C_1\text{-}heterocycloalkyl}$ ,  $C_3\text{-}C_1\text{-}heterocycloalkyl}$ ,  $C_3\text{-}C_1\text{-}heterocycloalkyl}$ , cyclopentyl or cyclohexyl. The same applies to the  $C_3\text{-}C_1\text{-}cycloalkyl}$ - $C_1\text{-}C_4\text{-}alkyl}$  and  $C_3\text{-}C_1\text{-}cycloalkyl}$ - $C_1\text{-}C_4\text{-}alkyl}$  and  $C_3\text{-}C_1\text{-}cycloalkyl}$ - $C_1\text{-}C_4\text{-}alkyl}$  and  $C_3\text{-}C_1\text{-}cycloalkyl}$ - $C_1\text{-}C_4\text{-}alkyl}$ - $C_3\text{-}C_1\text{-}cycloalkyl}$ - $C_3\text{-}cycloalkyl}$ - $C_3\text{-}$ 

heterocycloalkyl- $C_1$ - $C_4$ -alkyl and  $C_3$ - $C_{10}$ -heterocycloalkylcarbonyl- $C_1$ - $C_4$ -alkyl radicals. In this embodiment, particular preference is given to compounds where  $R^a$  is  $C_1$ - $C_4$ -alkyl.

In a further embodiment of the invention, the NZ group bears a fused-on benzene ring of the formula

In this formula, n is preferably 1 or 2. R<sup>a</sup> is preferably as defined for R<sup>b</sup> and is in particular C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, CN, OR<sup>1</sup>, NR<sup>2</sup>R<sup>3</sup>, NO<sub>2</sub>, SR<sup>4</sup>, SO<sub>2</sub>R<sup>4</sup>, SO<sub>2</sub>NR<sup>2</sup>R<sup>3</sup>, COOR<sup>5</sup>, COR<sup>6</sup>, C<sub>1</sub>-C<sub>2</sub>-fluoroalkyl and halogen and especially C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, CN, COR<sup>6</sup>, C<sub>1</sub>-C<sub>2</sub>-fluoroalkyl and halogen.

In particular, the NZ group is then a radical of the formula NZ-D

$$-N \xrightarrow{J'} (R^c)_n$$

$$-N \xrightarrow{P'} (NZ-D)$$

15

where n and R<sup>c</sup> are each as defined above,

J' is CH<sub>2</sub> or CH<sub>2</sub>-CH<sub>2</sub>;

20 Y' is a bond or CH<sub>2</sub> and

Re is hydrogen or C<sub>1</sub>-C<sub>4</sub>-alkyl.

In the compounds of the formula I, the group of the formula

25

is preferably one of the A or B groups specified below:

10

15

$$O = A - (A)$$

$$O = N - (B)$$

$$(R^d)_m$$

$$(R^d)_m$$

In formula A, the variables A and B are each as defined above, in particular as defined above with preference. In particular, the variable A in formula A is N-C(O), where the carbon atom is bonded to the variable B. B in formula A is in particular  $CH_2$ . The variable m is 0, 1, 2 or 3, in particular 0 or 1.  $R^d$  is independently  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -hydroxyalkyl,  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl, CN,  $OR^1$ ,  $NR^2R^3$ ,  $NO_2$ ,  $SR^4$ ,  $SO_2R^4$ ,  $SO_2NR^2R^3$ ,  $CONR^2R^3$ ,  $COOR^5$ ,  $COR^6$ ,  $C_1$ - $C_2$ -fluoroalkyl,  $C_1$ - $C_2$ -fluoroalkoxy,  $C_2$ - $C_6$ -alkenyloxy,  $C_2$ - $C_6$ -alkynyloxy,  $C_3$ - $C_6$ -cycloalkyl,  $C_3$ - $C_6$ -cycloalkyl or halogen, and is in particular selected from  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_2$ -fluoroalkyl and halogen. Compounds of the general formula I or their tautomers I' which have an A group are also referred to hereinafter as compounds I-A or I-A'.

In Formel B,  $R^{x1}$  and  $R^{y1}$  are each independently hydrogen, halogen, optionally substituted  $C_1$ - $C_6$ -alkyl,  $C_1$ - $C_6$ -alkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ -cycloalkyl- $C_1$ - $C_4$ -alkyloxy or  $C_3$ - $C_6$ -cycloalkyl, and in particular hydrogen or alkyl. Compounds of the general formula I or their tautomers I' which have a B group are also referred to hereinafter as compounds I-B or I-B'.

Among the groups of the formulae A, mention should be made in particular of the A1, A2 and A3 groups:

In the formulae A1, A2 and A3, the variables m and R<sup>d</sup> are each as defined above, in particular as defined above with preference. In formula A1, R<sup>m</sup> and R<sup>n</sup> are each as defined above and in particular as defined above with preference. In particular, at least one of the R<sup>m</sup> or R<sup>n</sup> radicals and especially both R<sup>m</sup> and R<sup>n</sup> radicals are hydrogen. B' is CR<sup>p</sup>R<sup>q</sup> or CO, where R<sup>p</sup> and R<sup>q</sup> are each as defined above and in particular as defined above with preference. In particular, B' is CO. In formula A3, B is as defined above and is in particular CO or CH<sub>2</sub>. Among the compounds IA or the tautomers IA', prefer-

25

30

ence is given in particular to those compounds which have, as the A group, a group of the formula A1 or A2.

Among the compounds of the formula IA, a preferred embodiment relates to compounds of the formula I-Aa defined below and its tautomers I-Aa':

$$O = A - D - N X - R^{a}$$

$$(I-Aa)$$

$$(R^{d})_{m}$$

$$R = A - D - N X - R^{a}$$

$$(I-Aa')$$

$$(R^{d})_{m}$$

In the formulae I-Aa and I-Aa', A, B, D, m, J, X, Y, R, R<sup>a</sup> and R<sup>d</sup> are each as defined above and in particular as defined above with preference.

In particular, J in the formulae I-Aa and I-Aa' is  $CH_2$ - $CH_2$ . The variable X in the formulae I-Aa and I-Aa' is in particular N, and Y is in particular  $CH_2$ .

Among the compounds I-Aa and I-Aa', particular preference is given to those where D is a  $(CH_2)_k$  or a  $C(O)(CH_2)_l$  group, where and I are each as defined above, where k is in particular 4, 5 or 6 and I is in particular 3, 4 or 5.

Among the compounds I-Aa and I-Aa', particular preference is given to those where A is N-C(O), where the carbon atom is bonded to the variable B.

Among the compounds I-Aa and I-Aa', particular preference is given to those where B is CH<sub>2</sub>.

Among the compounds I-Aa and I-Aa', particular preference is given to those where  $R^a$  is an E-A group and in particular  $(CH_2)_p$ -Ar, where E, p and Ar are each as defined above, where, in particular, p = 0 or 1.

When p = 0, Ar is in particular as defined in connection with the NZ-A group. When p = 1, Ar is in particular as defined in connection with the NZ-B group. Among the com-

pounds I-Aa and I-Aa', preference is further given to those where R<sup>a</sup> is a nonaromatic hydrocarbon radical having from 1 to 14 carbon atoms. R<sup>a</sup> is then in particular as defined for R<sup>aa</sup> in the NZ-C group.

Among the compounds of the formula I-B, a preferred embodiment relates to compounds of the formula I-Ba defined below and its tautomers:

$$O = \begin{pmatrix} O \\ N-D-N \end{pmatrix} X - R^{a}$$
 (I-Ba)

In formula I-Ba, A, B, D, m, J, X, Y, R, R<sup>a</sup>, R<sup>x1</sup> and R<sup>y1</sup> are each as defined above and in particular as defined above with preference.

In particular, J in formula I-Ba is  $CH_2$ - $CH_2$ . The variable X in the formulae I-Aa and I-Aa' is in particular N, and Y is in particular  $CH_2$ .

Among the compounds I-Ba, particular preference is given to those where D is a  $(CH_2)_k$  group or a  $C(O)(CH_2)_i$ , where and I are each as defined above, where k is in particular 4, 5 or 6 and I is in particular 3, 4 or 5.

Among the compounds I-Ba, particular preference is given to those where  $R^a$  is an E-A group and in particular  $(CH_2)_p$ -Ar, where E, p and Ar are each as defined above, where, in particular, p = 0 or 1.

When p = 0, Ar is in particular as defined in connection with the NZ-A group. When p = 1, Ar is in particular as defined in connection with the NZ-B group. Among the compounds I-Aa and I-Aa', preference is further given to those where R<sup>a</sup> is a nonaromatic hydrocarbon radical having from 1 to 14 carbon atoms. R<sup>a</sup> is then in particular as defined for R<sup>aa</sup> in the NZ-C group.

Among the compounds of the formula I where NZ is a group of formula NZ-D, preference is given in particular to the compounds of the formula I-Ab and the tautomers I-Ab' defined below:

$$O = A - D - N$$

$$R^{e}$$

$$(I-Ab)$$

$$R \xrightarrow{B} A - D - N \xrightarrow{J' - V'} (R^c)_n$$

$$(I-Ab')$$

$$(R^d)_m$$

In the formulae I-Ab and I-Ab', A, B, D, J', Y', R, R<sup>c</sup>, R<sup>e</sup> and n are each as defined above and in particular as defined above with preference.

The variable n is 0, 1, 2 or 3, in particular 0 or 1 and especially 0.  $R^d$  are each independently  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -hydroxyalkyl,  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl, CN,  $OR^1$ ,  $NR^2R^3$ ,  $NO_2$ ,  $SR^4$ ,  $SO_2R^4$ ,  $SO_2NR^2R^3$ ,  $CONR^2R^3$ ,  $COOR^5$ ,  $COR^6$ ,  $C_1$ - $C_2$ -fluoroalkyl,  $C_1$ - $C_2$ -fluoroalkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_2$ - $C_6$ -alkynyl,  $C_2$ - $C_6$ -alkynyl,  $C_3$ - $C_6$ -cycloalkyl or halogen, and is in particular selected from  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_2$ -fluoroalkyl and halogen.

In particular, J' in the formulae I-Ab and I-Ab' is  $CH_2$ . Y' is in particular  $CH_2$ .

Among the compounds I-Ab and I-Ab', particular preference is given to those where D is a  $(CH_2)_k$  group or a  $C(O)(CH_2)_l$  group, where and I are each as defined above, where k is in particular 4, 5 or 6 and I is in particular 3, 4 or 5.

Among the compounds I-Ab and I-Ab', particular preference is given to those where A is N-C(O), in which the carbon atom is bonded to the variable B.

Among the compounds I-Ab and I-Ab', particular preference is given to those where B is CH<sub>2</sub>.

Among the compounds of the formula I where NZ is a group of the formula NZ-D, preference is also given to the compounds of the formula I-Bb defined below and its tautomers:

20

10

10

25

30

35

$$O \longrightarrow (R^c)_n$$

$$R^{y1} \longrightarrow R^e$$
(I-Bb)

In formula I-Bb, n, D, J', Y',  $R^c$ ,  $R^e$ ,  $R^{x1}$  and  $R^{y1}$  are each as defined above and in particular as defined above with preference.

The variable n is 0, 1, 2 or 3, in particular 0 or 1 and especially 0.  $R^d$  are each independently  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -hydroxyalkyl,  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl, CN,  $OR^1$ ,  $NR^2R^3$ ,  $NO_2$ ,  $SR^4$ ,  $SO_2R^4$ ,  $SO_2NR^2R^3$ ,  $CONR^2R^3$ ,  $COOR^5$ ,  $COR^6$ ,  $C_1$ - $C_2$ -fluoroalkyl,  $C_1$ - $C_2$ -fluoroalkoxy,  $C_2$ - $C_6$ -alkenyl,  $C_2$ - $C_6$ -alkynyl,  $C_2$ - $C_6$ -alkynyloxy,  $C_3$ - $C_6$ -cycloalkyl,  $C_3$ - $C_6$ -cycloalkyl or halogen, and is in particular selected from  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_2$ -fluoroalkyl and halogen.

In particular, J' in formula I-Bb is CH2. Y' is in particular CH2.

Among the compounds I-Bb, particular preference is given to those where D is a (CH<sub>2</sub>)<sub>k</sub> group or a C(O)(CH<sub>2</sub>)<sub>1</sub> group, where k and I are each as defined above, where k is in particular 4, 5 or 6 and I is in particular 3, 4 or 5.

In substituents OR<sup>1</sup>, OR<sup>11</sup> and OR<sup>21</sup>, R<sup>1</sup>, R<sup>11</sup> and R<sup>21</sup> are frequently H, C<sub>1</sub>-C<sub>4</sub>-alkyl, CF<sub>3</sub>, CHF<sub>2</sub> or phenyl. Especially preferably, OR<sup>1</sup>, OR<sup>11</sup> and OR<sup>21</sup> are each methoxy, trifluoromethoxy or phenoxy.

In substituents  $CONR^2R^3$  (and analogously in  $CONR^{12}R^{13}$  and  $CONR^{22}R^{23}$ ),  $R^2$  is preferably H or  $C_1$ - $C_4$ -alkyl, and  $R^3$  is preferably H,  $C_1$ - $C_4$ -alkyl or  $COR^7$ . Especially preferably,  $CONR^2R^3$ ,  $CONR^{12}R^{13}$  and  $CONR^{22}R^{23}$  are each  $CONH_2$ ,  $CONHCH_3$ ,  $CON(CH_3)_2$  or  $CONHCOCH_3$ .

In substituents  $NR^2R^3$  (and analogously in  $NR^{12}R^{13}$  and  $NR^{22}R^{23}$ ),  $R^2$  is preferably H,  $C_1$ - $C_4$ -alkyl or phenyl-substituted  $C_1$ - $C_4$ -alkyl, and  $R^3$  is H,  $C_1$ - $C_4$ -alkyl or  $COR^7$ . Especially preferably,  $NR^2R^3$ ,  $NR^{12}R^{13}$  and  $NR^{22}R^{23}$  are each  $NH_2$ ,  $NHCH_3$ ,  $N(CH_3)_2$ , NH-benzyl or  $NHCOCH_3$ .

In substituents  $SO_2NR^2R^3$  (and analogously in  $SO_2NR^{12}R^{13}$  and  $SO_2NR^{22}R^{23}$ ),  $R^2$  is preferably H or  $C_1$ - $C_4$ -alkyl, and  $R^3$  is preferably H,  $C_1$ - $C_4$ -alkyl or  $COR^7$ . Especially preferably,  $SO_2NR^2R^3$ ,  $SO_2NR^{12}R^{13}$  and  $SO_2NR^{22}R^{23}$  are each sulfamoyl.

20

25

30

35

40

When R<sup>2</sup>, R<sup>3</sup> in the substituents NR<sup>2</sup>R<sup>3</sup>, CONR<sup>2</sup>R<sup>3</sup>, SO<sub>2</sub>NR<sup>2</sup>R<sup>3</sup> (analogously in CONR<sup>12</sup>R<sup>13</sup>, CONR<sup>22</sup>R<sup>23</sup>, NR<sup>12</sup>R<sup>13</sup>, NR<sup>22</sup>R<sup>23</sup>, SO<sub>2</sub>NR<sup>12</sup>R<sup>13</sup> and SO<sub>2</sub>NR<sup>22</sup>R<sup>23</sup>), together with the nitrogen atom to which they are bonded, are a 5- or 6-membered, saturated or unsaturated N-heterocycle, the NR<sup>2</sup>R<sup>3</sup>, NR<sup>12</sup>R<sup>13</sup> and NR<sup>22</sup>R<sup>23</sup> groups in these radicals are, for example, N-pyrrolidinyl, N-piperidinyl, morpholin-1-yl or 4-methylpiperazin-1-yl.

In substituents  $SR^4$ ,  $SR^{14}$  and  $SR^{24}$ ,  $R^4$ ,  $R^{14}$  and  $R^{24}$  are preferably each  $C_1$ - $C_4$ -alkyl. Especially preferably,  $SR^4$  is thiomethyl.

In substituents  $SO_2R^4$ ,  $SO_2R^{14}$  and  $SO_2R^{24}$ ,  $R^4$ ,  $R^{14}$  and  $\dot{R}^{24}$  are preferably each  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl or phenyl which optionally has a  $C_1$ - $C_4$ -alkyl group as substituent. Especially preferably,  $SO_2R^4$ ,  $SO_2R^{14}$  and  $SO_2R^{24}$  are each methylsulfonyl.

In substituents COOR<sup>5</sup>, COOR<sup>15</sup> and COOR<sup>25</sup>, R<sup>5</sup>, R<sup>15</sup> and R<sup>25</sup> are frequently H or C<sub>1</sub>15 C<sub>4</sub>-alkyl. Especially preferably, COOR<sup>5</sup>, COOR<sup>15</sup> and COOR<sup>25</sup> are each C<sub>1</sub>-C<sub>4</sub>alkoxycarbonyl, such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl,
i-propoxycarbonyl, n-butoxycarbonyl or t-butoxycarbonyl.

In substituents COR<sup>6</sup> (analogously in COR<sup>16</sup> and COR<sup>26</sup>), R<sup>6</sup> is preferably H, C<sub>1</sub>-C<sub>4</sub>-alkyl or optionally substituted phenyl. Especially preferably, COR<sup>6</sup>, COR<sup>16</sup> and COR<sup>26</sup> are each formyl, acetyl or benzoyl.

In substituents O-COR $^6$  (analogously in O-COR $^{16}$  and O-COR $^{26}$ ), R $^6$  is preferably H, C<sub>1</sub>-C<sub>4</sub>-alkyl or optionally substituted phenyl. Especially preferably, OCOR $^6$ , O-COR $^{16}$  and O-COR $^{26}$  are each formyloxy, acetyloxy or benzoyloxy.

In substituents COR<sup>7</sup> (analogously in COR<sup>17</sup> and COR<sup>27</sup>), R<sup>7</sup> is preferably H, C<sub>1</sub>-C<sub>4</sub>-alkyl or optionally substituted phenyl. Especially preferably, COR<sup>7</sup>, COR<sup>17</sup> and COR<sup>27</sup> are each formyl, acetyl or benzoyl.

In the NR<sup>8</sup> group, R<sup>8</sup> is preferably hydrogen or methyl.

In substituents  $COR^9$ ,  $R^9$  is preferably H,  $C_1$ - $C_4$ -alkyl or optionally substituted phenyl. Especially preferably,  $COR^9$  is formyl, acetyl or benzoyl.

In the  $=N-R^z$  group,  $R^z$  is preferably OH,  $C_1-C_4$ -alkyl or  $C_1-C_4$ -alkoxy.

With regard to the use of the inventive compounds as dopamine  $D_3$  receptor ligands, particular preference is given to the compounds IA and IB and in particular to the compounds IAa and IBa.

Very particular preference is given to the compounds of the formula I-Aa.a, where the variables D, E and Ar are each as defined above, in particular as defined above with preference. Examples of such compounds are the compounds I-Aa.a.1 to I-Aa.a.708, in which the variables D, E and Ar together are each as defined in one line of Table A.

5

$$O$$
 $N-D-N$ 
 $N-E-Ar$ 
 $O$ 
 $O$ 
 $O$ 
 $O$ 

Table A:

|      | D                                                                  | E | Rª                                           |
|------|--------------------------------------------------------------------|---|----------------------------------------------|
| A-1  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-2  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-3  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-4  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-5  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-6  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-7  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-isopropylpyrimidin-6-yl       |
| A-8  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2,4-bis(tert-butyl)pyrimidin-6-yl            |
| A-9  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl     |
| A-10 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl      |
| A-11 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-12 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-13 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-14 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-15 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-16 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-17 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-isopropylpyrimidin-6-yl       |
| A-18 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2,4-bis(tert-butyl)pyrimidin-6-yl            |
| A-19 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl     |
| A-20 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | - | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl      |
| A-21 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | - | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-22 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      |   | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-23 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      |   | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-24 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      |   | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-25 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      |   | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-26 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      |   | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-27 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      |   | 2-tert-butyl-4-isopropylpyrimidin-6-yl       |

|              | D                                                                                        | E                | Rª                                           |
|--------------|------------------------------------------------------------------------------------------|------------------|----------------------------------------------|
| A-28         | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>                            | -                | 2,4-bis(tert-butyl)pyrimidin-6-yl            |
| A-29         | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>                            | -                | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl     |
| A-30         | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>                            | -                | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl      |
| A-31         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-32         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-33         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-34         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-35         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-36         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-37         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | <del> </del>     | 2-tert-butyl-4-isopropylpyrimidin-6-yl       |
| A-38         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | <del> </del>     | 2,4-bis(tert-butyl)pyrimidin-6-yl            |
| A-39         | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | <del> </del>     | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl     |
| A-39<br>A-40 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>                   | -                | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl      |
| A-40<br>A-41 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> </del>     | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-42         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | -                | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-43         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> -</del>    | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-44         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> </del>     | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-45         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> </del> -   | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-46         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> </del> -   | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-47         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | -                | 2-tert-butyl-4-isopropylpyrimidin-6-yl       |
| A-48         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> </del>     | 2,4-bis(tert-butyl)pyrimidin-6-yl            |
| A-49         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  |                  | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl     |
| A-49         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> )                  | <del> </del>     | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl      |
| A-50         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | -                | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-52         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | -                | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-53         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | <del> </del> -   | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-54         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | -                | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-55         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   |                  | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-56         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | <del> </del>     | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-57         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   |                  | 2-tert-butyl-4-isopropylpyrimidin-6-yl       |
|              | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   |                  | 2,4-bis(tert-butyl)pyrimidin-6-yl            |
| A-58         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | <del>- </del> -  | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl     |
| A-59         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                                   | <del>-   -</del> | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl      |
| A-60         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  |                  | 2-tert-butyl-4-trifluoromethylpyrimidin-6-yl |
| A-61         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  |                  | 2-tert-butyl-4-difluoromethylpyrimidin-6-yl  |
| A-62         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - <del> </del> - | 2-tert-butyl-4-phenylpyrimidin-6-yl          |
| A-63         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -<br> -          | 2-tert-butyl-4-methylpyrimidin-6-yl          |
| A-64         | ` '                                                                                      |                  | 2-tert-butyl-4-ethylpyrimidin-6-yl           |
| A-65         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | _  <del>-</del>  | 2-tert-butyl-4-n-propylpyrimidin-6-yl        |
| A-66         | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -                | 2-tert-butyl-4-11-propylpyrinniain-0-yr      |

|       | D                                                                       | Ε             | Rª                                         |
|-------|-------------------------------------------------------------------------|---------------|--------------------------------------------|
| A-67  | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -GH <sub>2</sub> -CH <sub>2</sub> | -             | 2-tert-butyl-4-isopropylpyrimidin-6-yl     |
| A-68  | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -             | 2,4-bis(tert-butyl)pyrimidin-6-yl          |
| A-69  | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -             | 2-tert-butyl-4-cyclopropylpyrimidin-6-yl   |
| A-70  | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -             | 2-tert-butyl-4-cyclobutylpyrimidin-6-yl    |
| A-71  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | •             | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-72  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -             | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-73  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -             | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-74  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | _             | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-75  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -             | 2-tert-butyl-4-ethylpyridin-6-yl           |
| A-76  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -             | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-77  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -             | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-78  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -             | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-79  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                       | -             | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-80  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | •             | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-81  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-82  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-83  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-84  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-85  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-ethylpyridin-6-yl           |
| A-86  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-87  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-88  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-89  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-90  | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -             | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-91  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-92  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-93  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-94  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-95  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-ethylpyridin-6-yl           |
| A-96  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-97  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-98  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-99  | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-100 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -             | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-101 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -             | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-102 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -             | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-103 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -             | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-104 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -             | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-105 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | <del> -</del> | 2-tert-butyl-4-ethylpyridin-6-yl           |

|       | D                                                                       | E           | Rª                                         |
|-------|-------------------------------------------------------------------------|-------------|--------------------------------------------|
| A-106 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -           | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-107 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -           | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-108 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -           | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-109 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -           | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-110 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -           | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-111 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-112 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-113 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-114 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-115 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-ethylpyridin-6-yl           |
| A-116 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-117 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-118 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | 1-          | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-119 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | T-          | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-120 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -           | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-121 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-122 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-123 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-124 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-125 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-ethylpyridin-6-yl           |
| A-126 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-127 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-128 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-129 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -           | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-130 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | 1-          | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-131 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-trifluoromethylpyridin-6-yl |
| A-132 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-difluoromethylpyridin-6-yl  |
| A-133 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-phenylpyridin-6-yl          |
| A-134 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-methylpyridin-6-yl          |
| A-135 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-ethylpyridin-6-yl           |
| A-136 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-n-propylpyridin-6-yl        |
| A-137 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-isopropylpyridin-6-yl       |
| A-138 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2,4-bis(tert-butyl)pyridin-6-yl            |
| A-139 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-cyclopropylpyridin-6-yl     |
| A-140 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -           | 2-tert-butyl-4-cyclobutylpyridin-6-yl      |
| A-141 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -           | 2-tert-butyl-4-trifluoromethyltriazin-6-yl |
| A-142 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -           | 2-tert-butyl-4-difluoromethyltriazin-6-yl  |
| A-143 | CH₂-CH₂-CH₂-CH₂                                                         | -           | 2-tert-butyl-4-phenyltriazin-6-yl          |
| A-144 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | <del></del> | 2-tert-butyl-4-methyltriazin-6-yl          |

| D                                                                       | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-ethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-n-propyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-isopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-bis(tert-butyl)triazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclobutyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-trifluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-difluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-phenyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-methyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-ethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-n-propyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-isopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-bis(tert-butyl)triazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclobutyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-tert-butyl-4-trifluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-difluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-phenyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-methyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-ethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-n-propyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-isopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-bis(tert-butyl)triazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclobutyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-trifluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-difluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-phenyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-methyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-ethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-n-propyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-isopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,4-bis(tert-butyl)triazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclopropyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-cyclobutyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-trifluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-difluoromethyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-tert-butyl-4-phenyltriazin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                         | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub> trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> trans-CH <sub>2</sub> -C(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH2-CH2-CH2-CH2         -           trans-CH2-CH2-CH2         -           trans-CH2-CH3-CH2-CH2         -           trans-CH2-C(CH3)=CH-CH2         -           CH2-CH(CH3)-CH2-CH2         - |

|       | D                                                                       | E          | Rª                                         |
|-------|-------------------------------------------------------------------------|------------|--------------------------------------------|
| A-184 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2-tert-butyl-4-methyltriazin-6-yl          |
| A-185 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2-tert-butyl-4-ethyltriazin-6-yl           |
| A-186 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2-tert-butyl-4-n-propyltriazin-6-yl        |
| A-187 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2-tert-butyl-4-isopropyltriazin-6-yl       |
| A-188 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2,4-bis(tert-butyl)triazin-6-yl            |
| A-189 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2-tert-butyl-4-cyclopropyltriazin-6-yl     |
| A-190 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -          | 2-tert-butyl-4-cyclobutyltriazin-6-yl      |
| A-191 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-trifluoromethyltriazin-6-yl |
| A-192 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-difluoromethyltriazin-6-yl  |
| A-193 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | <b> </b> - | 2-tert-butyl-4-phenyltriazin-6-yl          |
| A-194 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-methyltriazin-6-yl          |
| A-195 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-ethyltriazin-6-yl           |
| A-196 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-n-propyltriazin-6-yl        |
| A-197 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-isopropyltriazin-6-yl       |
| A-198 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | ]-         | 2,4-bis(tert-butyl)triazin-6-yl            |
| A-199 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-cyclopropyltriazin-6-yl     |
| A-200 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -          | 2-tert-butyl-4-cyclobutyltriazin-6-yl      |
| A-201 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-trifluoromethyltriazin-6-yl |
| A-202 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-difluoromethyltriazin-6-yl  |
| A-203 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-phenyltriazin-6-yl          |
| A-204 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | <b> </b> - | 2-tert-butyl-4-methyltriazin-6-yl          |
| A-205 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-ethyltriazin-6-yl           |
| A-206 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-n-propyltriazin-6-yl        |
| A-207 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-isopropyltriazin-6-yl       |
| A-208 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2,4-bis(tert-butyl)triazin-6-yl            |
| A-209 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-cyclopropyltriazin-6-yl     |
| A-210 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -          | 2-tert-butyl-4-cyclobutyltriazin-6-yl      |
| A-211 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -          | 4-tert-butyl-2-trifluoromethylpyridin-6-yl |
| A-212 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -          | 4-tert-butyl-2-difluoromethylpyridin-6-yl  |
| A-213 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                       | ]-         | 4-tert-butyl-2-phenylpyridin-6-yl          |
| A-214 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                       | -          | 4-tert-butyl-2-methylpyridin-6-yl          |
| A-215 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -          | 4-tert-butyl-2-ethylpyridin-6-yl           |
| A-216 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                       | -          | 4-tert-butyl-2-n-propylpyridin-6-yl        |
| A-217 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -          | 4-tert-butyl-2-isopropylpyridin-6-yl       |
| A-218 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -          | 4-tert-butyl-2-cyclopropylpyridin-6-yl     |
| A-219 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | -          | 4-tert-butyl-2-cyclobutylpyridin-6-yl      |
| A-220 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -          | 4-tert-butyl-2-trifluoromethylpyridin-6-yl |
| A-221 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -          | 4-tert-butyl-2-difluoromethylpyridin-6-yl  |
| A-222 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | -          | 4-tert-butyl-2-phenylpyridin-6-yl          |

|       | D                                                                       | E | Rª                                         |
|-------|-------------------------------------------------------------------------|---|--------------------------------------------|
| A-223 | trans-CH2-CH=CH-CH2                                                     | - | 4-tert-butyl-2-methylpyridin-6-yl          |
| A-224 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 4-tert-butyl-2-ethylpyridin-6-yl           |
| A-225 | trans-CH2-CH=CH-CH2                                                     | - | 4-tert-butyl-2-n-propylpyridin-6-yl        |
| A-226 | trans-CH2-CH=CH-CH2                                                     | - | 4-tert-butyl-2-isopropylpyridin-6-yl       |
| A-227 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 4-tert-butyl-2-cyclopropylpyridin-6-yl     |
| A-228 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 4-tert-butyl-2-cyclobutylpyridin-6-yl      |
| A-229 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-trifluoromethylpyridin-6-yl |
| A-230 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-difluoromethylpyridin-6-yl  |
| A-231 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-phenylpyridin-6-yl          |
| A-232 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-methylpyridin-6-yl          |
| A-233 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-ethylpyridin-6-yl           |
| A-234 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-n-propylpyridin-6-yl        |
| A-235 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | _ | 4-tert-butyl-2-isopropylpyridin-6-yl       |
| A-236 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-cyclopropylpyridin-6-yl     |
| A-237 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-tert-butyl-2-cyclobutylpyridin-6-yl      |
| A-238 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-trifluoromethylpyridin-6-yl |
| A-239 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-difluoromethylpyridin-6-yl  |
| A-240 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-phenylpyridin-6-yl          |
| A-241 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-methylpyridin-6-yl          |
| A-242 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-ethylpyridin-6-yl           |
| A-243 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-n-propylpyridin-6-yl        |
| A-244 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-isopropylpyridin-6-yl       |
| A-245 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-cyclopropylpyridin-6-yl     |
| A-246 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-tert-butyl-2-cyclobutylpyridin-6-yl      |
| A-247 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-trifluoromethylpyridin-6-yl |
| A-248 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-difluoromethylpyridin-6-yl  |
| A-249 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-phenylpyridin-6-yl          |
| A-250 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-methylpyridin-6-yl          |
| A-251 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-ethylpyridin-6-yl           |
| A-252 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-n-propylpyridin-6-yl        |
| A-253 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-isopropylpyridin-6-yl       |
| A-254 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-cyclopropylpyridin-6-yl     |
| A-255 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-tert-butyl-2-cyclobutylpyridin-6-yl      |
| A-256 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-trifluoromethylpyridin-6-yl |
| A-257 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-difluoromethylpyridin-6-yl  |
| A-258 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-phenylpyridin-6-yl          |
| A-259 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-methylpyridin-6-yl          |
| A-260 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-ethylpyridin-6-yl           |
| A-261 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-n-propylpyridin-6-yl        |

|          | D                                                                       | E | Rª                                           |
|----------|-------------------------------------------------------------------------|---|----------------------------------------------|
| A-262    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-isopropylpyridin-6-yl         |
| A-263    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-cyclopropylpyridin-6-yl       |
| A-264    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-tert-butyl-2-cyclobutylpyridin-6-yl        |
| A-265    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-trifluoromethylpyridin-6-yl   |
| A-266    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-difluoromethylpyridin-6-yl    |
| A-267    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-phenylpyridin-6-yl            |
| A-268    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | _ | 4-tert-butyl-2-methylpyridin-6-yl            |
| A-269    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-ethylpyridin-6-yl             |
| A-270    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-n-propylpyridin-6-yl          |
| A-271    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-isopropylpyridin-6-yl         |
| A-272    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-cyclopropylpyridin-6-yl       |
| A-273    | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 4-tert-butyl-2-cyclobutylpyridin-6-yl        |
| A-274    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-275    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-276    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-277    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-278    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-279    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |
| A-280    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl       |
| A-281    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2,6-bis(tert-butyl)pyrimidin-4-yl            |
| A-282    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl     |
| A-283    | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl      |
| A-284    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-285    | trans-CH2-CH=CH-CH2                                                     | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-286    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-287    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-288    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-289    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |
| A-290    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl       |
| A-291    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2,6-bis(tert-butyl)pyrimidin-4-yl            |
| A-292    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl     |
| A-293    | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl      |
| A-294    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-295    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-296    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-297    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-298    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CḤ <sub>2</sub>           | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-299    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |
| A-300    | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl       |
| <u> </u> | ·                                                                       |   |                                              |

|       | D                                                                       | E | Rª                                           |
|-------|-------------------------------------------------------------------------|---|----------------------------------------------|
| A-301 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2,6-bis(tert-butyl)pyrimidin-4-yl            |
| A-302 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl     |
| A-303 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl      |
| A-304 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-305 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-306 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-307 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-308 | CH₂-CH(CH₃)-CH₂-CH₂                                                     | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-309 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |
| A-310 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl       |
| A-311 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2,6-bis(tert-butyl)pyrimidin-4-yl            |
| A-312 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl     |
| A-313 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl      |
| A-314 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-315 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-316 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-317 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-318 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-319 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |
| A-320 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl       |
| A-321 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | • | 2,6-bis(tert-butyl)pyrimidin-4-yl            |
| A-322 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl     |
| A-323 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl      |
| A-324 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-325 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-326 | C(O)-CH₂-CH₂-CH₂                                                        | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-327 | C(O)-CH₂-CH₂-CH₂                                                        | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-328 | C(O)-CH₂-CH₂-CH₂                                                        | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-329 | C(O)-CH₂-CH₂-CH₂                                                        | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |
| A-330 | C(O)-CH₂-CH₂-CH₂                                                        | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl       |
| A-331 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2,6-bis(tert-butyl)pyrimidin-4-yl            |
| A-332 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl     |
| A-333 | C(O)-CH₂-CH₂-CH₂                                                        | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl      |
| A-334 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-trifluoromethylpyrimidin-4-yl |
| A-335 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-difluoromethylpyrimidin-4-yl  |
| A-336 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-phenylpyrimidin-4-yl          |
| A-337 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-methylpyrimidin-4-yl          |
| A-338 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-ethylpyrimidin-4-yl           |
| A-339 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-n-propylpyrimidin-4-yl        |

|       | D                                                                       | E | Rª                                       |
|-------|-------------------------------------------------------------------------|---|------------------------------------------|
| A-340 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-isopropylpyrimidin-4-yl   |
| A-341 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2,6-bis(tert-butyl)pyrimidin-4-yl        |
| A-342 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-cyclopropylpyrimidin-4-yl |
| A-343 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | - | 2-tert-butyl-6-cyclobutylpyrimidin-4-yl  |
| A-344 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 5-tert-butyl-3-trifluoromethylphenyl     |
| A-345 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 5-tert-butyl-3-difluoromethylphenyl      |
| A-346 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 5-tert-butyl-3-phenylphenyl              |
| A-347 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 3-tert-butyl-5-methylphenyl              |
| A-348 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 3-tert-butyl-5-ethylphenyl               |
| A-349 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 3-tert-butyl-5-n-propylphenyl            |
| A-350 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 3-tert-butyl-5-isopropylphenyl           |
| A-351 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 3,5-bis(tert-butyl)phenyl                |
| A-352 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                       | - | 3-tert-butyl-5-cyclopropylphenyl         |
| A-353 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | - | 3-tert-butyl-5-cyclobutylphenyl          |
| A-354 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 5-tert-butyl-3-trifluoromethylphenyl     |
| A-355 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 5-tert-butyl-3-difluoromethylphenyl      |
| A-356 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 5-tert-butyl-3-phenylphenyl              |
| A-357 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3-tert-butyl-5-methylphenyl              |
| A-358 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3-tert-butyl-5-ethylphenyl               |
| A-359 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3-tert-butyl-5-n-propylphenyl            |
| A-360 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3-tert-butyl-5-isopropylphenyl           |
| A-361 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3,5-bis(tert-butyl)phenyl                |
| A-362 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3-tert-butyl-5-cyclopropylphenyl         |
| A-363 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                            | - | 3-tert-butyl-5-cyclobutylphenyl          |
| A-364 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 5-tert-butyl-3-trifluoromethylphenyl     |
| A-365 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 5-tert-butyl-3-difluoromethylphenyl      |
| A-366 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 5-tert-butyl-3-phenylphenyl              |
| A-367 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3-tert-butyl-5-methylphenyl              |
| A-368 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3-tert-butyl-5-ethylphenyl               |
| A-369 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3-tert-butyl-5-n-propylphenyl            |
| A-370 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3-tert-butyl-5-isopropylphenyl           |
| A-371 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3,5-bis(tert-butyl)phenyl                |
| A-372 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3-tert-butyl-5-cyclopropylphenyl         |
| A-373 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 3-tert-butyl-5-cyclobutylphenyl          |
| A-374 | CH₂-CH(CH₃)-CH₂-CH₂                                                     | - | 5-tert-butyl-3-trifluoromethylphenyl     |
| A-375 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 5-tert-butyl-3-difluoromethylphenyl      |
| A-376 | CH₂-CH(CH₃)-CH₂-CH₂                                                     | _ | 5-tert-butyl-3-phenylphenyl              |
| A-377 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-tert-butyl-5-methylphenyl              |
| A-378 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-tert-butyl-5-ethylphenyl               |

|       | D                                                                       | E            | Rª                                   |
|-------|-------------------------------------------------------------------------|--------------|--------------------------------------|
| A-379 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -            | 3-tert-butyl-5-n-propylphenyl        |
| A-380 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | 1-           | 3-tert-butyl-5-isopropylphenyl       |
| A-381 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | 1-           | 3,5-bis(tert-butyl)phenyl            |
| A-382 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -            | 3-tert-butyl-5-cyclopropylphenyl     |
| A-383 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | -            | 3-tert-butyl-5-cyclobutylphenyl      |
| A-384 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 5-tert-butyl-3-trifluoromethylphenyl |
| A-385 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 5-tert-butyl-3-difluoromethylphenyl  |
| A-386 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 5-tert-butyl-3-phenylphenyl          |
| A-387 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 3-tert-butyl-5-methylphenyl          |
| A-388 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 3-tert-butyl-5-ethylphenyl           |
| A-389 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 3-tert-butyl-5-n-propylphenyl        |
| A-390 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | 1-           | 3-tert-butyl-5-isopropylphenyl       |
| A-391 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | <b> </b> -   | 3,5-bis(tert-butyl)phenyl            |
| A-392 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 3-tert-butyl-5-cyclopropylphenyl     |
| A-393 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | -            | 3-tert-butyl-5-cyclobutylphenyl      |
| A-394 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 5-tert-butyl-3-trifluoromethylphenyl |
| A-395 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 5-tert-butyl-3-difluoromethylphenyl  |
| A-396 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 5-tert-butyl-3-phenylphenyl          |
| A-397 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 3-tert-butyl-5-methylphenyl          |
| A-398 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 3-tert-butyl-5-ethylphenyl           |
| A-399 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 3-tert-butyl-5-n-propylphenyl        |
| A-400 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 3-tert-butyl-5-isopropylphenyl       |
| A-401 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | T-           | 3,5-bis(tert-butyl)phenyl            |
| A-402 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -            | 3-tert-butyl-5-cyclopropylphenyl     |
| A-403 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | Ţ-           | 3-tert-butyl-5-cyclobutylphenyl      |
| A-404 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 5-tert-butyl-3-trifluoromethylphenyl |
| A-405 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 5-tert-butyl-3-difluoromethylphenyl  |
| A-406 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 5-tert-butyl-3-phenylphenyl          |
| A-407 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3-tert-butyl-5-methylphenyl          |
| A-408 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3-tert-butyl-5-ethylphenyl           |
| A-409 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3-tert-butyl-5-n-propylphenyl        |
| A-410 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3-tert-butyl-5-isopropylphenyl       |
| A-411 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3,5-bis(tert-butyl)phenyl            |
| A-412 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3-tert-butyl-5-cyclopropylphenyl     |
| A-413 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -            | 3-tert-butyl-5-cyclobutylphenyl      |
| A-414 | -                                                                       | 1            |                                      |
| A-415 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | <del> </del> | 2-methylphenyl                       |
| A-416 | CH₂-CH₂-CH₂-CH₂                                                         | -            | 2-fluorophenyl                       |
| A-417 | CH₂-CH₂-CH₂-CH₂                                                         | <del> </del> | 2,3-dimethylphenyl                   |

|       | D                                                                  | E        | Rª                                     |
|-------|--------------------------------------------------------------------|----------|----------------------------------------|
| A-418 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2-methoxyphenyl                        |
| A-419 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2-chlorophenyl                         |
| A-420 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2-ethoxyphenyl                         |
| A-421 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-trifluoromethylphenyl                |
| A-422 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2,4-dichlorophenyl                     |
| A-423 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3,5-dichlorophenyl                     |
| A-424 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2,3-dichlorophenyl                     |
| A-425 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-chloro-6-methoxyphenyl               |
| A-426 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3,5-dimethylphenyl                     |
| A-427 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2-cyanophenyl                          |
| A-428 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 4-chloro-3-trifluoromethylphenyl       |
| A-429 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3,5-trifluoromethylphenyl              |
| A-430 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2-methylpyridin-6-yl                   |
| A-431 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-cyanopyridin-2-yl                    |
| A-432 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-cyanopyridin-6-yl                    |
| A-433 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-trifluoromethylpyridin-2-yl          |
| A-434 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-trifluoromethylpyridin-6-yl          |
| A-435 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-436 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 3,5-dichloropyridin-4-yl               |
| A-437 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 4-trifluoropyrimidin-2-yl              |
| A-438 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 5-bromopyrimidin-2-yl                  |
| A-439 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 5-fluoropyrimidin-2-yl                 |
| A-440 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 2-cyanopyridazin-3-yl                  |
| A-441 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 5-nitrothiadiazol-2-yl                 |
| A-442 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -        | 4-methylthiadiazol-2-yl                |
| A-443 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2-methylphenyl                         |
| A-444 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2-fluorophenyl                         |
| A-445 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | <u> </u> | 2,3-dimethylphenyl                     |
| A-446 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2-methoxyphenyl                        |
| A-447 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2-chlorophenyl                         |
| A-448 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2-ethoxyphenyl                         |
| A-449 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 3-trifluoromethylphenyl                |
| A-450 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2,4-dichlorophenyl                     |
| A-451 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 3,5-dichlorophenyl                     |
| A-452 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2,3-dichlorophenyl                     |
| A-453 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 3-chloro-6-methoxyphenyl               |
| A-454 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 3,5-dimethylphenyl                     |
| A-455 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 2-cyanophenyl                          |
| A-456 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | -        | 4-chloro-3-trifluoromethylphenyl       |

|       | D                                                             | E | Rª                                     |
|-------|---------------------------------------------------------------|---|----------------------------------------|
| A-457 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 3,5-trifluoromethylphenyl              |
| A-458 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 2-methylpyridin-6-yl                   |
| A-459 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 3-cyanopyridin-2-yl                    |
| A-460 | trans-CH2-CH=CH-CH2                                           | - | 3-cyanopyridin-6-yl                    |
| A-461 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 3-trifluoromethylpyridin-2-yl          |
| A-462 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 3-trifluoromethylpyridin-6-yl          |
| A-463 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-464 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 3,5-dichloropyridin-4-yl               |
| A-465 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 4-trifluoropyrimidin-2-yl              |
| A-466 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 5-bromopyrimidin-2-yl                  |
| A-467 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 5-fluoropyrimidin-2-yl                 |
| A-468 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 2-cyanopyridazin-3-yl                  |
| A-469 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 5-nitrothiadiazol-2-yl                 |
| A-470 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                  | - | 4-methylthiadiazol-2-yl                |
| A-471 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-methylphenyl                         |
| A-472 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-fluorophenyl                         |
| A-473 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2,3-dimethylphenyl                     |
| A-474 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-methoxyphenyl                        |
| A-475 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-chlorophenyl                         |
| A-476 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-ethoxyphenyl                         |
| A-477 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3-trifluoromethylphenyl                |
| A-478 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2,4-dichlorophenyl                     |
| A-479 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3,5-dichlorophenyl                     |
| A-480 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2,3-dichlorophenyl                     |
| A-481 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3-chloro-6-methoxyphenyl               |
| A-482 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3,5-dimethylphenyl                     |
| A-483 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-cyanophenyl                          |
| A-484 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 4-chloro-3-trifluoromethylphenyl       |
| A-485 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | 1 | 3,5-trifluoromethylphenyl              |
| A-486 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 2-methylpyridin-6-yl                   |
| A-487 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | İ | 3-cyanopyridin-2-yl                    |
| A-488 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3-cyanopyridin-6-yl                    |
| A-489 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3-trifluoromethylpyridin-2-yl          |
| A-490 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3-trifluoromethylpyridin-6-yl          |
| A-491 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-492 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 3,5-dichloropyridin-4-yl               |
| A-493 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 4-trifluoropyrimidin-2-yl              |
| A-494 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 5-bromopyrimidin-2-yl                  |
| A-495 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> | - | 5-fluoropyrimidin-2-yl                 |

|       | D                                                                       | E | Rª                                     |
|-------|-------------------------------------------------------------------------|---|----------------------------------------|
| A-496 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 2-cyanopyridazin-3-yl                  |
| A-497 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 5-nitrothiadiazol-2-yl                 |
| A-498 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | - | 4-methylthiadiazol-2-yl                |
| A-499 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-methylphenyl                         |
| A-500 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-fluorophenyl                         |
| A-501 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2,3-dimethylphenyl                     |
| A-502 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-methoxyphenyl                        |
| A-503 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-chlorophenyl                         |
| A-504 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-ethoxyphenyl                         |
| A-505 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-trifluoromethylphenyl                |
| A-506 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2,4-dichlorophenyl                     |
| A-507 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3,5-dichlorophenyl                     |
| A-508 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2,3-dichlorophenyl                     |
| A-509 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-chloro-6-methoxyphenyl               |
| A-510 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3,5-dimethylphenyl                     |
| A-511 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-cyanophenyl                          |
| A-512 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-chloro-3-trifluoromethylphenyl       |
| A-513 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3,5-trifluoromethylphenyl              |
| A-514 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 2-methylpyridin-6-yl                   |
| A-515 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-cyanopyridin-2-yl                    |
| A-516 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-cyanopyridin-6-yl                    |
| A-517 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-trifluoromethylpyridin-2-yl          |
| A-518 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-trifluoromethylpyridin-6-yl          |
| A-519 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-520 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 3,5-dichloropyridin-4-yl               |
| A-521 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-trifluoropyrimidin-2-yl              |
| A-522 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 5-bromopyrimidin-2-yl                  |
| A-523 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 5-fluoropyrimidin-2-yl                 |
| A-524 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  |   | 2-cyanopyridazin-3-yl                  |
| A-525 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 5-nitrothiadiazol-2-yl                 |
| A-526 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | - | 4-methylthiadiazol-2-yl                |
| A-527 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-methylphenyl                         |
| A-528 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) |   | 2-fluorophenyl                         |
| A-529 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2,3-dimethylphenyl                     |
| A-530 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-methoxyphenyl                        |
| A-531 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-chlorophenyl                         |
| A-532 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-ethoxyphenyl                         |
| A-533 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-trifluoromethylphenyl                |
| A-534 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2,4-dichlorophenyl                     |

| A-535         CH2-CH2-CH2-CH(CH3)         -         3,5-dichlorophenyl           A-536         CH2-CH2-CH2-CH(CH3)         -         2,3-dichlorophenyl           A-537         CH2-CH2-CH2-CH(CH3)         -         3-chloro-6-methoxyphenyl           A-537         CH2-CH2-CH2-CH(CH3)         -         3,5-dimethylphenyl           A-538         CH2-CH2-CH2-CH(CH3)         -         2-cyanophenyl           A-540         CH2-CH2-CH2-CH(CH3)         -         4-chloro-3-trifluoromethylphenyl           A-541         CH2-CH2-CH2-CH(CH3)         -         3,5-trifluoromethylphenyl           A-542         CH2-CH2-CH2-CH(CH3)         -         3-cyanopyridin-2-yl           A-543         CH2-CH2-CH2-CH(CH3)         -         3-cyanopyridin-2-yl           A-544         CH2-CH2-CH2-CH(CH3)         -         3-trifluoromethylpyridin-2-yl           A-545         CH2-CH2-CH2-CH(CH3)         -         3-trifluoromethylpyridin-6-yl           A-546         CH2-CH2-CH2-CH(CH3)         -         3-trifluoromethylpyridin-6-yl           A-547         CH2-CH2-CH2-CH(CH3)         -         3-trifluoromethylpyridin-6-yl           A-548         CH2-CH2-CH2-CH(CH3)         -         3-trifluoromethylpyridin-6-yl           A-549         CH2-CH2-CH2-CH(CH3)         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | D                                                                       | E | R <sup>a</sup>                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------|---|----------------------------------------|
| A-537 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) 3.5-dimethylphenyl A-538 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-dimethylphenyl A-539 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2.cyanophenyl A-540 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4.chloro-3-trifluoromethylphenyl A-541 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-trifluoromethylphenyl A-541 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3.cyanopyridin-6-yl A-542 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-543 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylpyridin-6-yl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylpyridin-6-yl A-567 C(O)-CH <sub>2</sub> -CH <sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-535 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3,5-dichlorophenyl                     |
| A-538 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) 3,5-dimethylphenyl A-539 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanophenyl A-540 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-chloro-3-trifluoromethylphenyl A-541 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-trifluoromethylphenyl A-542 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-methylpyridin-6-yl A-543 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-2-yl A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-introfluidiazol-2-yl A-556 C(O)-CH <sub>2</sub> -CH <sub></sub> | A-536 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2,3-dichlorophenyl                     |
| A-539 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanophenyl A-540 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-chloro-3-trifluoromethylphenyl A-541 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-trifluoromethylphenyl A-542 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-methylpyridin-6-yl A-543 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-tromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-trimopyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-555 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-556 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-methylphenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-550 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-fidinoromethylphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-fidinoromethylphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-537 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-chloro-6-methoxyphenyl               |
| A-540 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-chloro-3-trifluoromethylphenyl A-541 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-trifluoromethylphenyl A-542 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-methylpyridin-6-yl A-543 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-540 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-540 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-550 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-550 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-550 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-560 C(O)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A-538 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3,5-dimethylphenyl                     |
| A-541 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-methylpyridin-6-yl A-542 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-2-yl A-543 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-2-yl A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cinloro-5-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-550 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-560 C(O)-CH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A-539 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-cyanophenyl                          |
| A-542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-540 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-chloro-3-trifluoromethylphenyl       |
| A-543 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-2-yl A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-thifluoromethylphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-thifluoromethylphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-thifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thylpyridin-6-yl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanophyridin-2-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanophyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A-541 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3,5-trifluoromethylphenyl              |
| A-544 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-cyanopyridin-6-yl A-545 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-2-yl A-546 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-trifluoromethylpyridin-6-yl A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-dichloropyridin-4-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-555 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 2,4-dichlorophenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dinoro-6-methoxyphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophyldin-6-yl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A-542 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-methylpyridin-6-yl                   |
| A-545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-543 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-cyanopyridin-2-yl                    |
| A-546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-544 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-cyanopyridin-6-yl                    |
| A-547 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3-chloro-5-trifluoromethylpyridin-2-yl A-548 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 3,5-dichloropyridin-4-yl A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thlorophenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thlorophenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thlorophenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dichlorophenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thlorophenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-3-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-3-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylpyridin-6-yl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-2-yl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A-545 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-trifluoromethylpyridin-2-yl          |
| A-548         CH₂-CH₂-CH₂-CH(CH₃)         - 3,5-dichloropyridin-4-yl           A-549         CH₂-CH₂-CH₂-CH(CH₃)         - 4-trifluoropyrimidin-2-yl           A-550         CH₂-CH₂-CH₂-CH(CH₃)         - 5-bromopyrimidin-2-yl           A-551         CH₂-CH₂-CH₂-CH(CH₃)         - 5-fluoropyrimidin-2-yl           A-552         CH₂-CH₂-CH₂-CH(CH₃)         - 2-cyanopyridazin-3-yl           A-553         CH₂-CH₂-CH₂-CH(CH₃)         - 5-nitrothiadiazol-2-yl           A-554         CH₂-CH₂-CH₂-CH(CH₃)         - 4-methylthiadiazol-2-yl           A-555         C(O)-CH₂-CH₂-CH₂         - 2-methylphenyl           A-555         C(O)-CH₂-CH₂-CH₂         - 2-fluorophenyl           A-556         C(O)-CH₂-CH₂-CH₂         - 2-fluorophenyl           A-557         C(O)-CH₂-CH₂-CH₂         - 2-chlorophenyl           A-558         C(O)-CH₂-CH₂-CH₂         - 2-chlorophenyl           A-559         C(O)-CH₂-CH₂-CH₂         - 2-ethoxyphenyl           A-560         C(O)-CH₂-CH₂-CH₂         - 3-trifluoromethylphenyl           A-561         C(O)-CH₂-CH₂-CH₂         - 2,4-dichlorophenyl           A-562         C(O)-CH₂-CH₂-CH₂         - 3,5-dichlorophenyl           A-563         C(O)-CH₂-CH₂-CH₂         - 2,3-dichlorophenyl           A-564         C(O)-CH₂-CH₂-CH₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A-546 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-trifluoromethylpyridin-6-yl          |
| A-549 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-trifluoropyrimidin-2-yl A-550 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-bromopyrimidin-2-yl A-551 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-fluoropyrimidin-2-yl A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-granopyridazin-3-yl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-granopyridazin-3-yl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-granopyridain-2-yl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-granopyridin-2-yl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A-547 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-550         CH₂-CH₂-CH(CH₃)         -         5-bromopyrimidin-2-yl           A-551         CH₂-CH₂-CH(CH₃)         -         5-fluoropyrimidin-2-yl           A-552         CH₂-CH₂-CH₂-CH(CH₃)         -         2-cyanopyridazin-3-yl           A-553         CH₂-CH₂-CH₂-CH(CH₃)         -         5-nitrothiadiazol-2-yl           A-554         CH₂-CH₂-CH₂-CH(CH₃)         -         4-methylthiadiazol-2-yl           A-555         C(O)-CH₂-CH₂-CH₂         -         2-fluorophenyl           A-556         C(O)-CH₂-CH₂-CH₂         -         2-fluorophenyl           A-557         C(O)-CH₂-CH₂-CH₂         -         2,3-dimethylphenyl           A-558         C(O)-CH₂-CH₂-CH₂         -         2-ethoxyphenyl           A-559         C(O)-CH₂-CH₂-CH₂         -         2-ethoxyphenyl           A-560         C(O)-CH₂-CH₂-CH₂         -         2-ethoxyphenyl           A-561         C(O)-CH₂-CH₂-CH₂         -         3-filluoromethylphenyl           A-562         C(O)-CH₂-CH₂-CH₂         -         2,4-dichlorophenyl           A-563         C(O)-CH₂-CH₂-CH₂         -         3,5-dichlorophenyl           A-564         C(O)-CH₂-CH₂-CH₂         -         3,5-dimethylphenyl           A-565         C(O)-CH₂-CH₂-CH₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A-548 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 3,5-dichloropyridin-4-yl               |
| A-551       CH₂-CH₂-CH₂-CH(CH₃)       - 5-fluoropyrimidin-2-yl         A-552       CH₂-CH₂-CH₂-CH(CH₃)       - 2-cyanopyridazin-3-yl         A-553       CH₂-CH₂-CH₂-CH(CH₃)       - 5-nitrothiadiazol-2-yl         A-554       CH₂-CH₂-CH₂-CH(CH₃)       - 4-methylthiadiazol-2-yl         A-555       C(O)-CH₂-CH₂-CH₂       - 2-methylphenyl         A-556       C(O)-CH₂-CH₂-CH₂       - 2-fluorophenyl         A-557       C(O)-CH₂-CH₂-CH₂       - 2,3-dimethylphenyl         A-558       C(O)-CH₂-CH₂-CH₂       - 2-methoxyphenyl         A-559       C(O)-CH₂-CH₂-CH₂       - 2-methoxyphenyl         A-560       C(O)-CH₂-CH₂-CH₂       - 2-thoxyphenyl         A-561       C(O)-CH₂-CH₂-CH₂       - 3-trifluoromethylphenyl         A-562       C(O)-CH₂-CH₂-CH₂       - 2,4-dichlorophenyl         A-563       C(O)-CH₂-CH₂-CH₂       - 3,5-dichlorophenyl         A-564       C(O)-CH₂-CH₂-CH₂       - 3,5-dichlorophenyl         A-565       C(O)-CH₂-CH₂-CH₂       - 3-chloro-6-methoxyphenyl         A-566       C(O)-CH₂-CH₂-CH₂       - 3,5-dimethylphenyl         A-567       C(O)-CH₂-CH₂-CH₂       - 2-cyanophenyl         A-568       C(O)-CH₂-CH₂-CH₂       - 3,5-dimethylphenyl         A-569       C(O)-CH₂-CH₂-CH₂       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-549 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-trifluoropyrimidin-2-yl              |
| A-552 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 2-cyanopyridazin-3-yl A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,4-dichlorophenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-3-trifluoromethylphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-3-trifluoromethylphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A-550 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 5-bromopyrimidin-2-yl                  |
| A-553 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 5-nitrothiadiazol-2-yl A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dimethylphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-thoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-ethoxyphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-trifluoromethylphenyl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-2-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-551 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 5-fluoropyrimidin-2-yl                 |
| A-554 CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) - 4-methylthiadiazol-2-yl A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dimethylphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-chlorophenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-ethoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dichlorophenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-trifluoromethylphenyl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-2-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A-552 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 2-cyanopyridazin-3-yl                  |
| A-555 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylphenyl A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dimethylphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-chlorophenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-ethoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,4-dichlorophenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dichlorophenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-3-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 4-chloro-3-trifluoromethylphenyl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-553 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 5-nitrothiadiazol-2-yl                 |
| A-556 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-fluorophenyl A-557 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dimethylphenyl A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-chlorophenyl A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-ethoxyphenyl A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,4-dichlorophenyl A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dichlorophenyl A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dichlorophenyl A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 4-chloro-3-trifluoromethylphenyl A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-trifluoromethylphenyl A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-554 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | - | 4-methylthiadiazol-2-yl                |
| A-557         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2,3-dimethylphenyl           A-558         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2-methoxyphenyl           A-559         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2-ethoxyphenyl           A-560         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         3-trifluoromethylphenyl           A-561         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2,4-dichlorophenyl           A-562         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2,4-dichlorophenyl           A-563         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         3,5-dichlorophenyl           A-564         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2,3-dichlorophenyl           A-565         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         3-chloro-6-methoxyphenyl           A-566         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         3,5-dimethylphenyl           A-567         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2-cyanophenyl           A-568         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         4-chloro-3-trifluoromethylphenyl           A-569         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2-methylpyridin-6-yl           A-570         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         2-methylpyridin-6-yl           A-572         C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -         3-cyan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A-555 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-methylphenyl                         |
| A-558 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methoxyphenyl  A-559 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-chlorophenyl  A-560 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-ethoxyphenyl  A-561 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylphenyl  A-562 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,4-dichlorophenyl  A-563 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dichlorophenyl  A-564 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2,3-dichlorophenyl  A-565 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-chloro-6-methoxyphenyl  A-566 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl  A-567 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl  A-568 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-dimethylphenyl  A-569 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-cyanophenyl  A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3,5-trifluoromethylphenyl  A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 2-methylpyridin-6-yl  A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-2-yl  A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-556 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-fluorophenyl                         |
| A-559       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-chlorophenyl         A-560       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-ethoxyphenyl         A-561       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-trifluoromethylphenyl         A-562       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,4-dichlorophenyl         A-563       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dichlorophenyl         A-564       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,3-dichlorophenyl         A-565       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dimethylphenyl         A-567       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-cyanophenyl         A-568       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-557 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2,3-dimethylphenyl                     |
| A-560       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-ethoxyphenyl         A-561       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-trifluoromethylphenyl         A-562       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,4-dichlorophenyl         A-563       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dichlorophenyl         A-564       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,3-dichlorophenyl         A-565       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dimethylphenyl         A-567       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-cyanophenyl         A-568       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A-558 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-methoxyphenyl                        |
| A-561       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-trifluoromethylphenyl         A-562       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,4-dichlorophenyl         A-563       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dichlorophenyl         A-564       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,3-dichlorophenyl         A-565       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dimethylphenyl         A-567       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-cyanophenyl         A-568       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A-559 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-chlorophenyl                         |
| A-562       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,4-dichlorophenyl         A-563       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dichlorophenyl         A-564       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2,3-dichlorophenyl         A-565       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-dimethylphenyl         A-567       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-cyanophenyl         A-568       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-560 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-ethoxyphenyl                         |
| A-563       C(O)-CH2-CH2-CH2       -       3,5-dichlorophenyl         A-564       C(O)-CH2-CH2-CH2       -       2,3-dichlorophenyl         A-565       C(O)-CH2-CH2-CH2       -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH2-CH2-CH2       -       3,5-dimethylphenyl         A-567       C(O)-CH2-CH2-CH2       -       2-cyanophenyl         A-568       C(O)-CH2-CH2-CH2       -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH2-CH2-CH2       -       3,5-trifluoromethylphenyl         A-570       C(O)-CH2-CH2-CH2       -       2-methylpyridin-6-yl         A-571       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-2-yl         A-572       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A-561 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3-trifluoromethylphenyl                |
| A-564       C(O)-CH2-CH2-CH2       -       2,3-dichlorophenyl         A-565       C(O)-CH2-CH2-CH2       -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH2-CH2-CH2       -       3,5-dimethylphenyl         A-567       C(O)-CH2-CH2-CH2       -       2-cyanophenyl         A-568       C(O)-CH2-CH2-CH2       -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH2-CH2-CH2       -       3,5-trifluoromethylphenyl         A-570       C(O)-CH2-CH2-CH2       -       2-methylpyridin-6-yl         A-571       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-2-yl         A-572       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A-562 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2,4-dichlorophenyl                     |
| A-565       C(O)-CH2-CH2-CH2       -       3-chloro-6-methoxyphenyl         A-566       C(O)-CH2-CH2-CH2       -       3,5-dimethylphenyl         A-567       C(O)-CH2-CH2-CH2       -       2-cyanophenyl         A-568       C(O)-CH2-CH2-CH2       -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH2-CH2-CH2       -       3,5-trifluoromethylphenyl         A-570       C(O)-CH2-CH2-CH2       -       2-methylpyridin-6-yl         A-571       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-2-yl         A-572       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A-563 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3,5-dichlorophenyl                     |
| A-566       C(O)-CH2-CH2-CH2       -       3,5-dimethylphenyl         A-567       C(O)-CH2-CH2-CH2       -       2-cyanophenyl         A-568       C(O)-CH2-CH2-CH2       -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH2-CH2-CH2       -       3,5-trifluoromethylphenyl         A-570       C(O)-CH2-CH2-CH2       -       2-methylpyridin-6-yl         A-571       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-2-yl         A-572       C(O)-CH2-CH2-CH2       -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A-564 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2,3-dichlorophenyl                     |
| A-567       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-cyanophenyl         A-568       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-565 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3-chloro-6-methoxyphenyl               |
| A-568       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       4-chloro-3-trifluoromethylphenyl         A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A-566 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3,5-dimethylphenyl                     |
| A-569       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3,5-trifluoromethylphenyl         A-570       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       2-methylpyridin-6-yl         A-571       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-2-yl         A-572       C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -       3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A-567 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-cyanophenyl                          |
| A-570 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 2-methylpyridin-6-yl  A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-2-yl  A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A-568 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 4-chloro-3-trifluoromethylphenyl       |
| A-571 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-2-yl A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A-569 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3,5-trifluoromethylphenyl              |
| A-572 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-cyanopyridin-6-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A-570 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 2-methylpyridin-6-yl                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-571 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3-cyanopyridin-2-yl                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-572 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3-cyanopyridin-6-yl                    |
| A-573 C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> - 3-trifluoromethylpyridin-2-yl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A-573 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | - | 3-trifluoromethylpyridin-2-yl          |

|       | D                                                                       | E               | Rª                                     |
|-------|-------------------------------------------------------------------------|-----------------|----------------------------------------|
| A-574 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 3-trifluoromethylpyridin-6-yl          |
| A-575 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-576 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 3,5-dichloropyridin-4-yl               |
| A-577 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 4-trifluoropyrimidin-2-yl              |
| A-578 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | 1-              | 5-bromopyrimidin-2-yl                  |
| A-579 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 5-fluoropyrimidin-2-yl                 |
| A-580 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | 1               | 2-cyanopyridazin-3-yl                  |
| A-581 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 5-nitrothiadiazol-2-yl                 |
| A-582 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | -               | 4-methylthiadiazol-2-yl                |
| A-583 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | 1-              | 2-methylphenyl                         |
| A-584 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2-fluorophenyl                         |
| A-585 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2,3-dimethylphenyl                     |
| A-586 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2-methoxyphenyl                        |
| A-587 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2-chlorophenyl                         |
| A-588 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2-ethoxyphenyl                         |
| A-589 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-trifluoromethylphenyl                |
| A-590 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | <b> </b> -      | 2,4-dichlorophenyl                     |
| A-591 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3,5-dichlorophenyl                     |
| A-592 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2,3-dichlorophenyl                     |
| A-593 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-chloro-6-methoxyphenyl               |
| A-594 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3,5-dimethylphenyl                     |
| A-595 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2-cyanophenyl                          |
| A-596 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 4-chloro-3-trifluoromethylphenyl       |
| A-597 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3,5-trifluoromethylphenyl              |
| A-598 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 2-methylpyridin-6-yl                   |
| A-599 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-cyanopyridin-2-yl                    |
| A-600 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-cyanopyridin-6-yl                    |
| A-601 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-trifluoromethylpyridin-2-yl          |
| A-602 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-trifluoromethylpyridin-6-yl          |
| A-603 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3-chloro-5-trifluoromethylpyridin-2-yl |
| A-604 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 3,5-dichloropyridin-4-yl               |
| A-605 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 4-trifluoropyrimidin-2-yl              |
| A-606 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 5-bromopyrimidin-2-yl                  |
| A-607 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 5-fluoropyrimidin-2-yl                 |
| A-608 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | 1-              | 2-cyanopyridazin-3-yl                  |
| A-609 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | -               | 5-nitrothiadiazol-2-yl                 |
| A-610 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | 1-              | 4-methylthiadiazol-2-yl                |
| A-611 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | CH <sub>2</sub> | 3,4-methylphenyl                       |
| A-612 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>      | CH₂             | 3-piperonyl                            |

| <del></del> | D                                                                  | E                | R <sup>a</sup>          |
|-------------|--------------------------------------------------------------------|------------------|-------------------------|
| A-613       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | _<br>CH₂         | 2,5-bis(methoxy)phenyl  |
|             | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub>  | 3,5-dichlorophenyl      |
| A-614       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub>  | 3-cyanophenyl           |
| A-615       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂              | 4-cyanophenyl           |
| A-616       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub>  | 2-pyridyl               |
| A-617       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub>  | 3-pyridyl               |
| A-618       |                                                                    | CH <sub>2</sub>  | 4-pyridyl               |
| A-619       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub>  | 2,3-dichlorophenyl      |
| A-620       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> |                  | 2,5-dimethylphenyl      |
| A-621       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂              |                         |
| A-622       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub>  | 2-methylnaphthalen-1-yl |
| A-623       | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂              | 2-thienyl               |
| A-624       | CH₂-CH₂-CH₂-CH₂                                                    | CCH <sub>3</sub> | phenyl                  |
| A-625       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 3,4-methylphenyl        |
| A-626       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 3-piperonyl             |
| A-627       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 2,5-bis(methoxy)phenyl  |
| A-628       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 3,5-dichlorophenyl      |
| A-629       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 3-cyanophenyl           |
| A-630       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 4-cyanophenyl           |
| A-631       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 2-pyridyl               |
| A-632       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 3-pyridyl               |
| A-633       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 4-pyridyl               |
| A-634       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 2,3-dichlorophenyl      |
| A-635       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 2,5-dimethylphenyl      |
| A-636       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 2-methylnaphthalen-1-yl |
| A-637       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂              | 2-thienyl               |
| A-638       | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CCH₃             | phenyl                  |
| A-639       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 3,4-methylphenyl        |
| A-640       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 3-piperonyl             |
| A-641       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 2,5-bis(methoxy)phenyl  |
| A-642       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 3,5-dichlorophenyl      |
| A-643       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH <sub>2</sub>  | 3-cyanophenyl           |
| A-644       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 4-cyanophenyl           |
| A-645       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 2-pyridyl               |
| A-646       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 3-pyridyl               |
| A-647       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 4-pyridyl               |
| A-648       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂              | 2,3-dichlorophenyl      |
| A-649       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | <u> </u>         | 2,5-dimethylphenyl      |
| A-650       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | 1                | 2-methylnaphthalen-1-yl |
| A-651       | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | <u> </u>         | 2-thienyl               |
|             |                                                                    | <u> </u>         | <u> </u>                |

|       | D                                                                       | E               | Rª                      |
|-------|-------------------------------------------------------------------------|-----------------|-------------------------|
| A-652 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | CCH₃            | phenyl                  |
| A-653 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 3,4-methylphenyl        |
| A-654 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 3-piperonyl             |
| A-655 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 2,5-bis(methoxy)phenyl  |
| A-656 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 3,5-dichlorophenyl      |
| A-657 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 3-cyanophenyl           |
| A-658 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 4-cyanophenyl           |
| A-659 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 2-pyridyl               |
| A-660 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 3-pyridyl               |
| A-661 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH <sub>2</sub> | 4-pyridyl               |
| A-662 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 2,3-dichlorophenyl      |
| A-663 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 2,5-dimethylphenyl      |
| A-664 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH <sub>2</sub> | 2-methylnaphthalen-1-yl |
| A-665 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂             | 2-thienyl               |
| A-666 | CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CCH₃            | phenyl                  |
| A-667 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 3,4-methylphenyl        |
| A-668 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 3-piperonyl             |
| A-669 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 2,5-bis(methoxy)phenyl  |
| A-670 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 3,5-dichlorophenyl      |
| A-671 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 3-cyanophenyl           |
| A-672 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 4-cyanophenyl           |
| A-673 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 2-pyridyl               |
| A-674 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH <sub>2</sub> | 3-pyridyl               |
| A-675 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 4-pyridyl               |
| A-676 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH <sub>2</sub> | 2,3-dichlorophenyl      |
| A-677 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 2,5-dimethylphenyl      |
| A-678 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 2-methylnaphthalen-1-yl |
| A-679 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂             | 2-thienyl               |
| A-680 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CCH₃            | phenyl                  |
| A-681 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH <sub>2</sub> | 3,4-methylphenyl        |
| A-682 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 3-piperonyl             |
| A-683 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 2,5-bis(methoxy)phenyl  |
| A-684 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 3,5-dichlorophenyl      |
| A-685 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH <sub>2</sub> | 3-cyanophenyl           |
| A-686 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 4-cyanophenyl           |
| A-687 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 2-pyridyl               |
| A-688 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH <sub>2</sub> | 3-pyridyl               |
| A-689 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH <sub>2</sub> | 4-pyridyl               |
| A-690 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 2,3-dichlorophenyl      |

|       | D                                                                       | E               | Rª                      |
|-------|-------------------------------------------------------------------------|-----------------|-------------------------|
| A-691 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 2,5-dimethylphenyl      |
| A-692 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 2-methylnaphthalen-1-yl |
| A-693 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂             | 2-thienyl               |
| A-694 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CCH₃            | phenyl                  |
| A-695 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂             | 3,4-methylphenyl        |
| A-696 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂             | 3-piperonyl             |
| A-697 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂             | 2,5-bis(methoxy)phenyl  |
| A-698 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 3,5-dichlorophenyl      |
| A-699 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂             | 3-cyanophenyl           |
| A-700 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 4-cyanophenyl           |
| A-701 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 2-pyridyl               |
| A-702 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂             | 3-pyridyl               |
| A-703 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂             | 4-pyridyl               |
| A-704 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 2,3-dichlorophenyl      |
| A-705 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 2,5-dimethylphenyl      |
| A-706 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 2-methylnaphthalen-1-yl |
| A-707 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> | 2-thienyl               |
| A-708 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CCH₃            | phenyl                  |

Particular preference is further given to the compounds of the formula I-Aa.b where the variables D, E and Ar are each as defined above, in particular as defined above with preference. Examples of such compounds are the compounds I-Aa.b.1 to I-Aa.b.708 in which the variables D, E and Ar together are each as defined in one line of Table A.

Particular preference is further given to the compounds of the formula I-Ba.a where the variables D, E and Ar are each as defined above, in particular as defined above with preference. Examples of such compounds are the compounds I-Ba.a.1 to I-Ba.a.708, in which the variables D, E and Ar together are each as defined in one line of Table A.

Particular preference is further given to the compounds of the formula I-Aa.c where the variables D, E and Ar are each as defined above, in particular as defined above with preference. Examples of such compounds are the compounds I-Aa.c.1 to I-Aa.c.708, in which the variables D, E and Ar together are each as defined in one line of Table A.

$$O = N - D - N - E - Ar$$
 (I-Aa.c)

Preference is further given to the compounds of the formulae I-Aa.d and I-Aa.e where the variables D, E and Ar are each as defined above, in particular as defined above with preference. Examples of such compounds are the compounds I-Aa.d.1 to I-Aa.d.708 and the compounds I-Aa.e.1 to I-Aa.e.708 in which the variables D, E and Ar in each case together are as defined in one line of Table A.

5

$$O$$
 $N-D-N$ 
 $N-E-Ar$ 
(I-Aa.e)

Preference is further given to the compounds of the formulae I-Aa.f, I-Aa.g, I-Aa.h, I-Aa.i, I-Aa.k and I-Ba.b, where the variables D and R<sup>aa</sup> are each as defined above, in particular as defined above with preference. Examples of such compounds are the compounds I-Aa.f.1 to I-Aa.f.98, I-Aa.g.1 to I-Aa.g.98, I-Aa.h.1 to I-Aa.h.98, I-Aa.i.1 to I-

Aa.i.98, I-Aa.k.1 to I-Aa.k.98 and the compounds I-Ba.b.1 to I-Ba.b.98, in which the variables D and R<sup>aa</sup> in each case together are as defined in one line of Table B.

$$\begin{array}{c|c} O & & \\ N-D-N & N-R^{aa} \end{array} \qquad \text{(I-Aa.f)}$$

5  $H_3CO$   $OCH_3$  N-D-N  $N-R^{aa}$  (I-Aa.g)

$$O = \bigvee_{N-D-N} N - R^{aa}$$
 (I-Aa.h)

$$\begin{array}{c|c} O & & \\ \hline & O & \\ \hline & N \\ \hline & D-N & N-R^{aa} \end{array}$$
 (I-Aa.k)

N-D-N  $N-R^{aa}$ (I-Ba.b)

Table B:

10

|      | D                                                                  | R <sup>aa</sup>                     |
|------|--------------------------------------------------------------------|-------------------------------------|
| B-1  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> -cyclohexyl         |
| B-2  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> -CH=CH <sub>2</sub> |
| B-3  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | pyrrolidin-1-ylcarbonylmethyl       |
| B-4  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | acetyl                              |
| B-5  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂CH₂-cyclohexyl                   |
| B-6  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | cyclopentyl                         |
| B-7  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | cyclohexyl                          |
| B-8  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | piperazin-1-ylcarbonylmethyl        |
| B-9  | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | cyclopropylcarbonyl                 |
| B-10 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | oxolan-2-ylcarbonyl                 |
| B-11 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | oxolan-2-ylmethyl                   |
| B-12 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | methyl                              |
| B-13 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | ethyl                               |
| B-14 | CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | n-propyl                            |
| B-15 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂-cyclohexyl                      |
| B-16 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH <sub>2</sub> -CH=CH <sub>2</sub> |
| B-17 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | pyrrolidin-1-ylcarbonylmethyl       |
| B-18 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | acetyl                              |
| B-19 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | CH₂CH₂-cyclohexyl                   |
| B-20 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | cyclopentyl                         |
| B-21 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | cyclohexyl                          |
| B-22 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | piperazin-1-ylcarbonylmethyl        |
| B-23 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | cyclopropylcarbonyl                 |
| B-24 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | oxolan-2-ylcarbonyl                 |
| B-25 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | oxolan-2-ylmethyl                   |
| B-26 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | methyl                              |
| B-27 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | ethyl                               |
| B-28 | trans-CH <sub>2</sub> -CH=CH-CH <sub>2</sub>                       | n-propyl                            |
| B-29 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂-cyclohexyl                      |
| B-30 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂-CH=CH₂                          |
| B-31 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | pyrrolidin-1-ylcarbonylmethyl       |
| B-32 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | acetyl                              |
| B-33 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | CH₂CH₂-cyclohexyl                   |
| B-34 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | cyclopentyl                         |
| B-35 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | cyclohexyl                          |
| B-36 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | piperazin-1-ylcarbonylmethyl        |
| B-37 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | cyclopropylcarbonyl                 |
| B-38 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | oxolan-2-ylcarbonyl                 |
| B-39 | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>      | oxolan-2-ylmethyl                   |
|      | I                                                                  | J                                   |

| D                                                                       | R <sup>aa</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | methyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub>           | n-propyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂-cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂-CH=CH₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | pyrrolidin-1-ylcarbonylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | acetyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | CH₂CH₂-cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | cyclopentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | piperazin-1-ylcarbonylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | cyclopropylcarbonyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | oxolan-2-ylcarbonyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | oxolan-2-ylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | methyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub>  | n-propyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂-cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH₂-CH=CH₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | pyrrolidin-1-ylcarbonylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | acetyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | CH <sub>2</sub> CH <sub>2</sub> -cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | cyclopentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | piperazin-1-ylcarbonylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | cyclopropylcarbonyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | oxolan-2-ylcarbonyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | oxolan-2-ylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | methyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | ethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) | n-propyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂-cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH₂-CH=CH₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | pyrrolidin-1-ylcarbonylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | acetyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | CH <sub>2</sub> CH <sub>2</sub> -cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | cyclopentyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | cyclohexyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | piperazin-1-ylcarbonylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                         | trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> trans-CH <sub>2</sub> -C(CH <sub>3</sub> )=CH-CH <sub>2</sub> CH <sub>2</sub> -CH(CH <sub>3</sub> )-CH <sub>2</sub> -CH <sub>2</sub> CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH(CH <sub>3</sub> ) CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> |

|      | D                                                                       | R <sup>aa</sup>                     |
|------|-------------------------------------------------------------------------|-------------------------------------|
| B-79 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | cyclopropylcarbonyl                 |
| B-80 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | oxolan-2-ylcarbonyl                 |
| B-81 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | oxolan-2-ylmethyl                   |
| B-82 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | methyl                              |
| B-83 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | ethyl                               |
| B-84 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub>                  | n-propyl                            |
| B-85 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂-cyclohexyl                      |
| B-86 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH <sub>2</sub> -CH=CH <sub>2</sub> |
| B-87 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | pyrrolidin-1-ylcarbonylmethyl       |
| B-88 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | acetyl                              |
| B-89 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | CH₂CH₂-cyclohexyl                   |
| B-90 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | cyclopentyl                         |
| B-91 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | cyclohexyl                          |
| B-92 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | piperazin-1-ylcarbonylmethyl        |
| B-93 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | cyclopropylcarbonyl                 |
| B-94 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | oxolan-2-ylcarbonyl                 |
| B-95 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | oxolan-2-ylmethyl                   |
| B-96 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | methyl                              |
| B-97 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | ethyl                               |
| B-98 | C(O)-CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> | n-propyl                            |

The inventive compounds I can be prepared in analogy to the prior art cited at the outset and by known processes for preparing keto lactams. An important route to the inventive compounds is shown in scheme 1.

#### Scheme 1:

5

10

$$O = A-H \qquad L_1-D-L_2 \qquad A-D-L_2 \qquad H-N \qquad Z$$

$$R^x \qquad R^y \qquad (IV)$$

$$(II) \qquad \qquad (III)$$

In scheme 1, A, B, D,  $R^x$ ,  $R^y$  and NZ are each as defined above.  $L_1$  and  $L_2$  are each nucleophilically displaceable leaving groups. Examples of suitable nucleophilically displaceable leaving groups are halogen, in particular chlorine, bromine or iodine, alkyland arylsulfonate such as mesylate, tosylate.  $L_1$  and  $L_2$  are preferably different from one another and have different reactivity. For example,  $L_1$  is bromine or iodine and  $L_2$  is

chlorine. The reaction conditions required for the reaction correspond to the reaction conditions customary for nucleophilic substitutions. When D is a C(O)alkylene group,  $L_1$  is in particular halogen and especially chlorine.

- Compounds of the general formula IV are either known from the literature, for example from WO 96/02519, WO 97/25324, WO 99/02503, WO 00/42036, DE 10304870.7 or the literature cited in these documents, or can be prepared by the processes described there.
- The compounds of the formula II are likewise known and some are commercially available or can be prepared in analogy to known processes, as described, for example, in: J. Am. Chem. Soc. 1958, 80, p. 2172-2178; J. Chem. Soc. 1959, p. 3111; J. Chem. Soc. 1934, p. 1326; Heterocycles 1977, 8, p. 345-350; Tetrahedron Lett. 1993, 34, 5855; Arch. Pharm. 1991, 324, 579; J. Med. Chem. 1990, 33, 633; J. Med. Chem. 2000, 43, 1878; J. Org. Chem. 1972, 37, p. 2849, Monatsh. Chem. 1965, 96, 418, Synlett 2002, 8, p. 1350, Tetrahedron Lett, 1993, 34, p. 5855 and J. Photochem. 28 (1985) p. 69-70.

Some of the inventive compounds can also be prepared by the synthesis shown in scheme 2:

Scheme 2:

20

35

$$O = A-H + L_1-D-N Z$$
(II)
$$(V)$$

In scheme 2, A, B, R<sup>x</sup>, R<sup>y</sup> and NZ are each as defined above. D is C<sub>2</sub>-C<sub>3</sub>-alkylene or a CO-C<sub>2</sub>-C<sub>10</sub>-alkylene group where CO is bonded to L<sub>1</sub>. L<sub>1</sub> is a nucleophilically displaceable leaving group. For example, L<sub>1</sub> is chlorine, bromine or iodine when D is alkylene. The reaction conditions required for the reaction correspond to the reaction conditions customary for nucleophilic substitutions. When D is a C(O)alkylene group, L<sub>1</sub> is in particular halogen and especially chlorine.

Compounds of the general formula V are likewise known from the literature, for example from WO 96/02519, WO 97/25324, WO 99/02503, WO 00/42036, DE 10304870.7, or from the literature cited in these documents, or can be prepared by the processes described there, for example by reacting a compound of the formula IV shown in scheme 1 with a compound L<sub>1</sub>-D-L<sub>2</sub> where L and D are each as defined in scheme 1.

10

15

20

25

30

35

Compounds of the formula I where  $-A - I - N - CH_2$  may also be prepared by re-

ducing compounds of the formula I where A is Suitable reducing agents include, for example, aluminum hydrides such as lithium aluminum hydride. Suitable methods for this purpose are known from the prior art, for example from J. Org. Chem. 1972, 37, p. 2849 and can be used analogously for this reaction.

The tautomers I' can be prepared analogously to the preparation of the compound I described here. For example, the tautomers I' can be prepared by the synthesis route shown in scheme 1. The compounds I' where R is alkoxy or an OC(O)R<sup>9</sup> group can also be prepared from the compounds I by reacting with a suitable alkylating agent or a suitable acylating agent of the formula X'-C(O)R<sup>9</sup> where X' is halogen and in particular chlorine, optionally in the presence of an auxiliary base, for example by the methods described in Chem. Commun. 1998, p. 2621 or J. Org. Chem. 1959, 24, p. 41-43. The compound I can also be converted to its tautomers I' where R = halogen by treating them with a suitable halogenating agent such as PCI<sub>3</sub> or POCI<sub>3</sub>.

Unless stated otherwise, the above-described reactions are generally effected in a solvent at temperatures between room temperature and the boiling point of the solvent used. Usable solvents are, for example, ethers such as diethyl ether, diisopropyl ether, methyl tert-butyl ether or tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, dimethoxyethane, toluene, xylene, acetonitrile, ketones such as acetone or methyl ethyl ketone, or alcohols such as methanol, ethanol or butanol.

If desired, it is possible to work in the presence of a base for neutralization of protons released in the reactions. Suitable bases include inorganic bases such as sodium carbonate or potassium carbonate, sodium hydrogencarbonate or potassium hydrogencarbonate, and also alkoxides such as sodium methoxide, sodium ethoxide, alkali metal hydrides such as sodium hydride, organometallic compounds such as butyllithium or alkylmagnesium compounds, or organic nitrogen bases such as triethylamine or pyridine. The latter can simultaneously also serve as solvents.

The crude product is isolated in a customary manner, for example by filtration, distilling off the solvent or extraction from the reaction mixture, etc. The resulting compounds can be purified in a customary manner, for example by recrystallization from a solvent, chromatography or by conversion to an acid addition salt.

The acid addition salts are typically prepared by mixing the free base with the corresponding acid, optionally in a solution in an organic solvent, for example a low molecular weight alcohol such as methanol, ethanol or propanol, an ether such as methyl tert-

butyl ether, diisopropyl ether, a ketone such as acetone or methyl ethyl ketone, or an ester such as ethyl acetate.

The inventive compounds of the formula I are generally highly selective dopamine  $D_3$  receptor ligands which, because of their low affinity for other receptors such as  $D_1$  receptors,  $D_4$  receptors,  $\alpha 1$ - and/or  $\alpha 2$ -adrenergic receptors, muscarinergic receptors, histaminic receptors, opiate receptors and, in particular, for dopamine  $D_2$  receptors, have fewer side effects than classical neuroleptics which comprise  $D_2$  receptor antagonists.

10

5

The high affinity of the inventive compounds for  $D_3$  receptors is reflected in very low in vitro  $K_i$  values of ordinarily less than 100 nM (nmol/l) and especially of less than 50 nM. Binding affinities for  $D_3$  receptors can, for example, be determined via the displacement of  $\Gamma^{125}$  l-iodosulpride in receptor-binding studies.

15

Of particular significance in accordance with the invention are compounds whose  $K_i(D_2)/K_i(D_3)$  selectivity is preferably at least 10, even better at least 30 and particularly advantageously at least 50. Receptor-binding studies on  $D_1$ ,  $D_2$  and  $D_4$  receptors can be carried out for example via the displacement of [ $^3$ H]SCH23390, [ $^{125}$ I]iodosulpride and [ $^{125}$ I]spiperone.

20

The compounds can, because of their binding profile, be used for the treatment of conditions which respond to dopamine D<sub>3</sub> ligands, i.e. they are effective for the treatment of those disorders or conditions where an influencing (modulation) of dopamine D<sub>3</sub> receptors leads to an improvement in the clinical condition or to cure of the disease. Examples of such conditions are disorders or conditions of the central nervous system.

30

25

Disorders or conditions of the central nervous system mean disorders affecting the spinal cord and, in particular, the brain. The term "disorder" in the inventive sense refers to abnormalities which are usually regarded as pathological states or functions and may reveal themselves in the form of particular signs, symptoms and/or dysfunctions. The inventive treatment may be directed at individual disorders, i.e. abnormalities or pathological states, but it is also possible for a plurality of abnormalities, which are causally connected together where appropriate, to be combined into patterns, i.e. syndromes, which can be treated in accordance with the invention.

35

40

The disorders which can be treated in accordance with the invention include in particular psychiatric and neurological disorders. These comprise in particular organic disorders, symptomatic disorders included, such as psychoses of the acute exogenous reaction type or associated psychoses with an organic or exogenous cause, e.g. associated with metabolic disorders, infections and endocrinopathies; endogenous psycho-

10

15

20

25

30

35

40

ses such as schizophrenia and schizotypal and delusional disorders; affective disorders such as depressions, mania and manic/depressive states; and combined forms of the disorders described above; neurotic and somatoform disorders, and disorders associated with stress; dissociative disorders, e.g. deficits, clouding and splitting of consciousness and personality disorders; disorders of attention and waking/sleeping behavior, such as behavioral disorders and emotional disorders starting in childhood and adolescence, e.g. hyperactivity in children, intellectual deficits, especially attention deficit disorders, disorders of memory and cognition, e.g. learning and memory impairment (impaired cognitive function), dementia, narcolepsy and sleeping disorders, e.g. restless legs syndrome; developmental disorders; anxiety states; delirium; disorders of the sex life, e.g. male impotence; eating disorders, e.g. anorexia or bulimia; addiction; and other undefined psychiatric disorders.

The disorders which can be treated in accordance with the invention also include parkinsonism and epilepsy and, in particular, the affective disorders associated therewith. Addictive disorders include the psychological disorders and behavioral disorders caused by the abuse of psychotropic substances such as pharmaceuticals or drugs, and other addictive disorders such as, for example, compulsive gambling and impulse control disorders not elsewhere classified. Examples of addictive substances are: opioids (e.g. morphine, heroin, codeine); cocaine; nicotine; alcohol; substances which interact with the GABA chloride channel complex, sedatives, hypnotics or tranquilizers, for example benzodiazepines; LSD; cannabinoids; psychomotor stimulants such as 3,4-methylenedioxy-N-methylamphetamine (Ecstasy); amphetamine and amphetamine-like substances such as methylphenidate or other stimulants, including caffeine. Addictive substances requiring particular attention are opioids, cocaine, amphetamine or amphetamine-like substances, nicotine and alcohol.

With regard to the treatment of addictive disorders, the inventive compounds of the formula I which are particularly preferred are those which themselves have no psychotropic effect. This can also be observed in a test on rats which reduce the self-administration of psychotropic substances, for example cocaine, after administration of compounds which can be used in accordance with the invention.

According to a further aspect of the present invention, the inventive compounds are suitable for the treatment of disorders whose causes can at least in part be attributed to an abnormal activity of dopamine D<sub>3</sub> receptors.

According to another aspect of the present invention, the treatment is directed in particular at those disorders which can be influenced by a binding of, preferably exogenously added, binding partners (ligands) to dopamine D<sub>3</sub> receptors in the sense of an appropriate medical treatment.

10

15

20

25

30

35

40

The conditions which can be treated with the inventive compounds are frequently characterized by a progressive development, i.e. the states described above change over the course of time, the severity usually increasing and, where appropriate, states possibly interchanging or other states being added to previously existing states.

The inventive compounds can be used to treat a large number of signs, symptoms and/or dysfunctions associated with the disorders of the central nervous system and in particular the aforementioned states. These include for example a distorted relation to reality, lack of insight and the ability to comply with the usual social norms and demands of life, changes in behavior, changes in individual urges such as hunger, sleep, thirst etc. and in mood, disorders of memory and association, personality changes, especially emotional lability, hallucinations, ego disturbances, incoherence of thought, ambivalence, autism, depersonalization or hallucinations, delusional ideas, staccato speech, absence of associated movement, small-step gait, bent posture of trunk and limbs, tremor, mask-like face, monotonous speech, depression, apathy, deficient spontaneity and irresolution, reduced associationability, anxiety, nervous agitation, stammering, social phobia, panic disorders, withdrawal syndromes associated with dependence, expansive syndromes, states of agitation and confusion, dysphoria, dyskinetic syndromes and tic disorders, e.g. Huntington's chorea, Gilles de la Tourette syndrome, vertigo syndromes, e.g. peripheral postural, rotational and vestibular vertigo, melancholia, hysteria, hypochondria and the like. A treatment in the inventive sense includes not only the treatment of acute or chronic signs, symptoms and/or dysfunctions but also a preventive treatment (prophylaxis), in particular as recurrence or episode prophylaxis. The treatment may be symptomatic, for example directed at suppression of symptoms. It may take place short-term, be directed at the medium term or may also be a longterm treatment, for example as part of maintenance therapy.

The inventive compounds are preferably suitable for the treatment of disorders of the central nervous system, especially for the treatment of affective disorders; neurotic disorders, stress disorders and somatoform disorders and psychoses and specifically for the treatment of schizophrenia and depression. Owing to their high selectivity in relation to the D<sub>3</sub> receptor, the inventive compounds I are also for the treatment of renal function disorders, especially of renal function disorders caused by diabetes mellitus (see WO 00/67847).

The inventive use of the described compounds comprises a method within the scope of the treatment. This entails the individual to be treated, preferably a mammal, in particular a human or agricultural or domestic animal, being given an effective amount of one or more compounds, usually formulated in accordance with pharmaceutical and veterinary practice. Whether such a treatment is indicated, and the form it is to take, de-

pends on the individual case and is subject to a medical assessment (diagnosis) which takes account of the signs, symptoms and/or dysfunctions present, the risks of developing certain signs, symptoms and/or dysfunctions, and other factors.

The treatment usually takes place by administration once or more than once a day, where appropriate together or alternately with other active ingredients or active ingredient-containing products, so that an individual to be treated is given a daily dose preferably of about 0.1 to 1000 mg/kg of body weight on oral administration or of about 0.1 to 100 mg/kg of body weight on parenteral administration.

10

15

35

40

The invention also relates to the production of pharmaceutical compositions for the treatment of an individual, preferably a mammal, in particular a human or agricultural or domestic animal. Thus, the ligands are usually administered in the form of pharmaceutical compositions which comprise a pharmaceutically acceptable excipient with at least one ligand of the invention and, where appropriate, further active ingredients. These compositions can be administered for example by the oral, rectal, transdermal, subcutaneous, intravenous, intramuscular or intranasal route.

Examples of suitable pharmaceutical formulations are solid pharmaceutical forms such as oral powders, dusting powders, granules, tablets, especially film-coated tablets, pastilles, sachets, cachets, sugar-coated tablets, capsules such as hard and soft gelatin capsules, suppositories or vaginal pharmaceutical forms, semisolid pharmaceutical forms such as ointments, creams, hydrogels, pastes or patches, and liquid pharmaceutical forms such as solutions, emulsions, especially oil-in-water emulsions, suspensions, for example lotions, preparations for injection and infusion, eye drops and ear drops. Implanted delivery devices can also be used to administer inhibitors of the invention. A further possibility is also to use liposomes or microspheres.

The compositions are produced by mixing or diluting inhibitors of the invention usually with an excipient. Excipients may be solid, semisolid or liquid materials which serve as vehicle, carrier or medium for the active ingredient.

Suitable excipients are listed in the relevant pharmaceutical monographs. The formulations may additionally comprise pharmaceutically acceptable carriers or conventional excipients such as lubricants; wetting agents; emulsifying and suspending agents; preservatives; antioxidants; antiirritants; chelating agents; tablet-coating aids; emulsion stabilizers; film formers; gel formers; odor-masking agents; masking flavors; resins; hydrocolloids; solvents; solubilizers; neutralizers; permeation promoters; pigments; quaternary ammonium compounds; refatting and superfatting agents; ointment, cream or oil bases; silicone derivatives; spreading aids; stabilizers; sterilants; suppository bases; tablet excipients, such as binders, fillers, lubricants, disintegrants or coatings;

15

25

30

40

propellants; desiccants; opacifiers; thickeners; waxes; plasticizers; white oils. An arrangement concerning this is based on expert knowledge as set forth for example in Fiedler, H.P., Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete [Dictionary of Excipients for Pharmacy, Cosmetics and Associated Fields], 4th edition, Aulendorf: ECV-Editio-Cantor-Verlag, 1996.

The following examples serve to illustrate the invention without limiting it.

The nuclear magnetic resonance spectral properties (NMR) relate to chemical shifts (δ) expressed in parts per million (ppm). The relative area for the shifts in the <sup>1</sup>H NMR spectrum corresponds to the number of hydrogen atoms for a particular functional type in the molecule. The nature of the shift in terms of multiplicity is indicated as singlet (s), broad singlet (s. br.), doublet (d), broad doublet (d br.), triplet (t), broad triplet (t br.), quartet (q), quintet (quint.), multiplet (m).

# A) Preparation Examples:

## Example 1

2-(3-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}propyl)-3,4-dihydro-20 1*H*-2-benzazepine-1,5(2*H*)-dione

3,4-Dihydro-1*H*-2-benzazepine-1,5(2*H*)-dione (2.85 mmol, 0.50 g; prepared according to Tetrahedron Lett. 1993, 34, 5855) in dimethylformamide (5 ml) was added at 10°C to a suspension of sodium hydride (3.40 mmol, 0.13 g, 60%, deoiled) in dimethylformamide (10 ml), and the mixture was stirred at room temperature for 1 h. Subsequently, 2-*tert*-butyl-4-[4-(3-chloropropyl)piperazin-1-yl]-6-(trifluoromethyl)-pyrimidine (3.00 mmol, 1.09 g; prepared according to WO 99/02503) in dimethylformamide (5 ml) was added dropwise. The reaction mixture was stirred further at room temperature for 12 h. The oil remaining after the evaporative concentration was taken up in a 1:1 mixture of ethyl acetate and water, extracted and washed with a saturated aqueous sodium chloride solution. The organic phase was dried over sodium sulfate and concentrated. The residue was purified by chromatography on silica gel (eluent: 95:5 v/v dichloromethane:methanol).

The second fraction obtained was the title compound, 2-(3-{4-[2-*tert*-butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}propyl)-3,4-dihydro-1*H*-2-benzazepine-1,5(2*H*)-dione, in a yield of 20 mg.

ESI-MS: [M+Na<sup>†</sup>] = 526.2, 505.2, [M+H<sup>†</sup>] = 504.2, 252.6; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.90 (1H, d), 7.68-7.54 (3H, m), 6.57 (1H, s), 3.773.65 (8H, m), 2.99 (2H, m sym.), 2.53 (4H, t), 2.47 (2H, t), 1.89 (2H, quint.), 1.33 (9H, s).

## Example 2

5 1-(3-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}propyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

Analogously to Example 1, 30.0 mg of the title compound were obtained from 3,4-dihydro-1*H*-1-benzazepine-2,5-dione (2.85 mmol, 0.50 g; preparation according to Arch. Pharm. 1991, 324, 579).

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.59-7.53 (2H, m), 7.33-7.24 (2H, m), 6.53 (1H, s), 3.96 (2H, s br.), 3.59 (4H, s br.), 3.02-2.92 (2H, m), 2.81 (2H, t), 2.36 (4H, t), 2.28 (2H, t), 1.73 (2H, quint.), 1.32 (9H, s).

15 Example 3:

25

10

1-(4-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

20 a) 1-(4-Chlorobutyl)-3,4-dihydro-1H-1-benzazepine-2,5-dione

Analogously to the procedure described in Example 1, reaction of 3,4-dihydro-1*H*-1-benzazepine-2,5-dione (11.42 mmol, 2.00 g) and bromo-4-chlorobutane (13.7 mmol, 2.35 g) afforded 1.78 g of the title compound, contaminated with reactants to an extent of 30%. The mixture thus obtained was reacted without further purification.

- b) 1-(4-{4-{2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione
- 1-(4-Chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione (3.29 mmol, 1.75 g, 70%), 2-tert-butyl-4-piperazin-1-yl-6-(trifluoromethyl)pyrimidine (3.56 mmol, 1.03 g; preparation according to WO 99/02503) and triethylamine (13.17 mmol, 1.33 g) in dimethylformamide (100 ml) were stirred at 100°C for 12 h. Afterward, ethyl acetate was added and the mixture was washed twice with water. The combined organic phases were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The oily residue was purified by chromatography on silica gel (eluent: 95:5 v/v dichloromethane:methanol); yield 0.42 g.

ESI-MS: 519.2,  $[M+H^{+}]$  = 518.2, 259.6;

 $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>) δ (ppm): 7.57-7.52 (2H, m), 7.29 (1H, t), 7.25 (1H, d+CHCl<sub>3</sub>), 6.57 (1H, s), 3.92 (2H, s br.), 3.63 (4H, s br.), 3.01-2.95 (2H, m), 2.80 (2H, t), 2.41 (4H, t), 2.28 (2H, t), 1.53 (2H, quint.), 1.42 (2H, quint.), 1.34 (9H, s).

- 5 Example 4:
  - $1-((2E)-4-\{4-[2-tert-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl\}but-2-enyl)-3,4-dihydro-1<math>H$ -1-benzazepine-2,5-dione
- Analogously to Example 1, 0.78 g of the title compound was obtained from 3,4-dihydro10 1*H*-1-benzazepine-2,5-dione (4.42 mmol, 0.78 g; preparation according to Arch.
  Pharm. 1991, 324, 579) and 2-*tert*-butyl-4-{4-[(2*E*)-4-chlorobut-2-en-1-yl]piperazin-1yl}-6-(trifluoromethyl)pyrimidine (4.64 mmol, 1.75 g, preparation according to
  WO 99/02503).
- ESI-MS: 517.3, [M+H<sup>+</sup>] = 516.3, 258.6; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ (ppm): 7.53 (1H, d), 7.48 (1H, t), 7.27-7.21 (m+CHCl<sub>3</sub>), 6.56 (1H, s), 5.60 (2H, m sym.), 4.45 (2H, m), 3.64 (4H, s br.), 3.02-2.94 (4H, m), 2.84 (2H, t), 2.35 (4H, t), 1.35 (9H, s).
- 20 Example 5:

25

30

- 2-(4-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butyl)-3,4-dihydro-1*H*-2-benzazepine-1,5(2*H*)-dione
- a) 2-(4-Chlorobutyl)-3,4-dihydro-1H-2-benzazepine-1,5(2H)-dione
- Analogously to Example 3a, 1.04 g of the title compound contaminated with reactant to an extent of 50% were obtained from 3,4-dihydro-1*H*-2-benzazepine-1,5(2*H*)-dione and bromo-4-chlorobutane (13.7 mmol, 2.35 g). The substance was reacted without further purification.
- b) 2-(4-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butyl)-3,4-dihydro-1*H*-2-benzazepine-1,5(2*H*)-dione
- The preparation was analogous to Example 3b. 0.15 g of the title compound was obtained from 2-(4-chlorobutyl)-3,4-dihydro-1*H*-2-benzazepine-1,5(2*H*)-dione (1.88 mmol, 1.00 g).
  - ESI-MS: $[M+Na^{\dagger}] = 540.3$ , 519.3,  $[M+H^{\dagger}] = 518.3$ , 259.6.
- 40 Example 6:

1-(4-{4-[2-tert-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butyl)-7,8-dimethoxy-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

a) 1-(4-Chlorobutyl)-7,8-dimethoxy-3,4-dihydro-1H-1-benzazepine-2,5-dione

Analogously to Example 1, reaction of 7,8-dimethoxy-3,4-dihydro-1H-1-benzazepine-2,5-dione (1.70 mmol, 0.40 g, preparation according to Arch. Pharm. 1991, 324, 579) and bromo-4-chlorobutane (2.04 mmol, 0.35 g) afforded 0.20 g of the contaminated title compound. The compound is reacted further without purification.

10

25

30

35

5

b) 1-(4-{4-[2-tert-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butyl)-7,8dimethoxy-3,4-dihydro-1H-1-benzazepine-2,5-dione

Reaction of 1-(4-chlorobutyl)-7,8-dimethoxy-3,4-dihydro-1H-1-benzazepine-2,5-dione (0.49 mmol, 0.20 g) analogously to Example 3b afforded 0.12 g of the title compound. 15

ESI-MS: 579.2,  $[M+H^{+}] = 578.3$ ;

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ (ppm): 7.09 (1H, s), 6.68 (1H, s), 6.56 (1H, s), 3.94 (3H, s), 3.92 (3H, s), 3.65 (4H, s br.), 2.97-2.92 (2H, m), 2.79 (2H, m br.), 2.40 (4H, t), 2.29 20 (2H, t), 1.49 (2H, quint.), 1.41 (2H, quint.), 1.31 (9H, s).

## Example 7:

1-{4-[4-(2-tert-Butyl-6-propylpyrimidin-4-yl)piperazin-1-yl]butyl}-3,4-dihydro-1H-1benzazepine-2,5-dione hydrochloride

Analogously to Example 3b, reaction of 2-tert-butyl-4-piperazin-1-yl-6-propylpyrimidine (2.68 mmol, 0.70 g) with 1-(4-chlorobutyl)-3,4-dihydro-1H-1-benzazepine-2,5-dione affords the free base of the title compounds. Subsequent reaction of the free base with HCI afforded 0.39 g of the title compound as the hydrochloride.

ESI-MS: 493.5,  $[M+H^{+}] = 492.5$ , 246.7;

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.56-7.49 (3H, m), 7.31-7.18 (2H+CHCl<sub>3</sub>, m), 6.10 (1H, s), 3.92 (2H, t br.), 3.58 (4H, s br.), 3.02-2.94 (2H, m), 2.81 (2H, t), 2.53 (2H, t), 2.40 (4H, s br.), 2.28 (2H, t), 1.72 (1H, q), 1.51 (2H, quint.), 1.43 (2H, quint.), 1.33 (9H, s), 0.92 (1H, t).

# Example 8:

1-{4-[4-(2-tert-Butyl-6-cyclobutylpyrimidin-4-yl)piperazin-1-yl]butyl}-3,4-dihydro-1H-1benzazepine-2,5-dione hydrochloride 40

Analogously to Example 3b, reaction of 2-tert-butyl-4-cyclobutyl-6-piperazin-1-ylpyrimidine (1.97 mmol, 0.54 g) with 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione afforded 0.39 g of the title compound.

5 ESI-MS:  $[M+H^{\dagger}] = 504.5$ , 252.9.

Example 9:

10

20

30

40

1-{4-[4-(2-*tert*-Butyl-6-methylpyrimidin-4-yl)piperazin-1-yl]butyl}-3,4-dihydro-1*H*-1-benzazepine-2,5-dione hydrochloride

Analogously to Example 3b, reaction of 2-tert-butyl-4-methyl-6-piperazin-1-ylpyrimidine (1.97 mmol, 0.46 g) with 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione afforded 0.31 g of the title compound.

15 ESI-MS:  $[M+H^{\dagger}] = 464.4$ , 232.6.

Example 10:

1-{4-[4-(2,6-Di-*tert*-butylpyrimidin-4-yl)piperazin-1-yl]butyl}-3,4-dihydro-1*H*-1-benzazepine-2,5-dione hydrochloride

Analogously to Example 3b, reaction of 2,4-di-*tert*-butyl-6-piperazin-1-ylpyrimidine (1.26 mmol, 0.35 g) with 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione afforded 0.04 g of the title compound.

25 ESI-MS:  $[M+H^{+}] = 506.4$ , 233.8

Example 11:

1-{4-[4-(2-*tert*-Butyl-6-isopropylpyrimidin-4-yl)piperazin-1-yl]butyl}-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

Analogously to Example 3b, reaction of 2-tert-butyl-4-isopropyl-6-piperazin-1-ylpyrimidine (0.95 mmol, 0.25 g) with 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione afforded 0.04 g of the title compound.

35 ESI-MS:  $[M+H^{+}]$  = 492.5, 246.7.

Example 12:

1-(5-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}pentanoyl)-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one

a) 1-(5-Chloropentanoyl)-1,2,3,4-tetrahydro-5H-1-benzazepin-5-one

10

5-Chlorovaleryl chloride (18.61 mmol, 2.89 g) in dimethylformamide (20 ml) was added dropwise at 10° to a suspension of 1,2,3,4-tetrahydro-5H-1-benzazepin-5-one (12.41 mmol, 2.00 g, preparation according to J. Org. Chem 1972, 37, 2849) and potassium carbonate (14.89 mmol, 2.06 g) in dimethylformamide (40 ml). The reaction mixture was stirred first at 10°C for 1 h and then under reflux for 3 h. The precipitated salts were filtered off and the filtrate was concentrated to dryness.  $CH_2Cl_2$  was added to the oil obtained in this way and the mixture was washed three times with 50 ml each time of a 5% aqueous sodium hydrogencarbonate solution, neutralized with 0.1N HCl (20 ml) and then washed three times with a saturated sodium chloride solution. The organic phase was dried over  $Na_2SO_4$  and concentrated under reduced pressure; yield 3.90 g (80% pure).

ESI-MS: [M+H+] = 280.1;

b) 1-(5-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}pentanoyl)-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one

1-(5-Chloropentanoyl)-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one from Example 12a (1.43 mmol, 0.50 g), 2-tert-butyl-4-piperazin-1-yl-6-(trifluoromethyl)pyrimidine
(1.43 mmol, 0.41g, preparation according to DE 19735410), NaBr (7.14 mmol, 0.74 g), DIPEA (diisopropylethylamine) (14.01 mmol, 1.81 g) and N-methylpyrrolidinone (0.6 ml) were heated to 120°C for 5 h. Subsequently, the reaction mixture was filtered and the resulting filtrate was concentrated to dryness. Afterward, ethyl acetate was added to the resulting residue and it was washed with saturated, aqueous sodium chloride solution. The organic phase was dried and then concentrated to dryness. The residue was purified by chromatography on silica gel, eluent: methyl tert-butyl ether/methanol (0-100%); to obtain 0.31 g of the title compound.

ESI-MS:  $[M+H^{\dagger}] = 532.7, 267.0.$ 

Example 13:

30

1-{5-[4-(2-*tert*-Butyl-6-propylpyrimidin-4-yl)piperazin-1-yl]pentanoyl}-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one hydrochloride

- Analogously to the method for Example 12b, 0.40 g of the title compound was obtained from 1-(5-chloropentanoyl)-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one (1.61 mmol, 0.50 g) and 2-tert-butyl-4-piperazin-1-yl-6-propylpyrimidine (1.61 mmol, 0.42 g, preparation according to DE 19735410).
- 40 ESI-MS: [M+H<sup>+</sup>] = 506.4, 253.6.

## Example 14:

1-(4-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butanoyl)-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one

5 a) 1-(4-Chlorobutyryl)-1,2,3,4-tetrahydrobenzo[b]azepin-5-one

Analogously to the method for Example 12a, 0.24 g of 1-(4-chlorobutyryl)-1,2,3,4-tetra-hydrobenzo[b]azepin-5-one was obtained from 1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one (1.24 mmol, 0.20 g, preparation according to J. Org. Chem 1972, *37*, 2849) and 4-chlorobutyryl chloride (1.86 mmol, 0.27 g) in dioxane (10 ml).

- b) 1-(4-{4-[2-*tert*-Butyl-6-(trifluoromethyl)pyrimidin-4-yl]piperazin-1-yl}butanoyl)-1,2,3,4-tetrahydro-5*H*-1-benzazepin-5-one
- Analogously to the method for Example 12b, 0.40 g of the title compound was obtained from 1-(4-chlorobutyryl)-1,2,3,4-tetrahydrobenzo[b]azepin-5-one (0.45 mmol, 0.12 g) from Example 14a and 2-tert-butyl-4-piperazin-1-yl-6-(trifluoromethyl)pyrimidine (0.45 mmol, 0.12, prepared according to DE 19735410).
- 20 ESI-MS:  $[M+H^{\dagger}] = 518.3, 259.6$ .

#### Example 15:

1-{4-[4-(2-tert-Butyl-6-propylpyrimidin-4-yl)piperazin-1-yl]butyryl}-1,2,3,4-tetrahydrobenzo[b]azepin-5-one

25

10

Analogously to the method for Example 12b, 85.0 mg of the title compound are obtained from 1-(4-chlorobutyryl)-1,2,3,4-tetrahydrobenzo[b]azepin-5-one from Example 14a (0.45 mmol, 0.12 g) and 2-tert-butyl-4-piperazin-1-yl-6-propylpyrimidine (0.45 mmol, 0.12 g, prepared according to DE 19735410).

30

35

40

ESI-MS:  $[M+H^{+}] = 492.4$ , 246.7.

#### Example 16:

1-{4-[4-(2-tert-Butyl-6-cyclopropylpyrimidin-4-yl)piperazin-1-yl]butyl}-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

Analogously to the method for Example 12b, 45.0 mg of the title compound are obtained from 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione from Example 3a (0.38 mmol, 0.10 g) and 2-tert-butyl-4-cyclopropyl-6-piperazin-1-ylpyrimidine (0.40 mmol, 0.05 g; prepared according to DE 19728996).

ESI-MS:  $[M+H^{+}] = 490.4$ , 245.7.

### Example 17:

1-{4-[4-(2-*tert*-Butyl-6-trifluoromethylpyrimidin-4-yl)piperazin-1-yl]butyl}-1H-quinoline-2.4-dione trifluoracetate

a) 1-(4-Chlorobutyl)-4-hydroxy-1H-quinolin-2-one

Analogously to the procedure described in Example I, reaction of 4-hydroxy-1Hquinolin-2-one (24.82 mmol, 4.00 g, prepared according to Monatsh. Chem. 1965, 96,
418) and bromo-4-chlorobutane (29.78 mmol, 5.11 g) afforded 6.70 g of the title compound which is contaminated with reactant. The mixture thus obtained was used in the next step without further purification.

b) 1-{4-[4-(2-*tert*-Butyl-6-trifluoromethylpyrimidin-4-yl)piperazin-1-yl]butyl}-1H-quinoline-2,4-dione

Analogously to the method from Example 3b, 3.20 g of the title compound were obtained from 1-(4-chlorobutyl)-4-hydroxy-1H-quinolin-2-one from Example 17a (4.00 g).

ESI-MS: [M+Na+] = 526.5, 505.5, [M+H+] = 504.5, 454.5, 252.7; 1H NMR (500 MHz, CDCI3)  $\delta$  (ppm): 11.75 (1H, s br.), 7.85 (1H, d), 7.42 (t, 1H), 7.26-7.20 (2H+CHCI3, m), 6.66 (1H, s.), 5.98 (1H, s), 4.18 (2H, m sym.), 3.29 (2H, m sym.), 2.21 (2H, quint.), 2.04 (2H, quint.), 1.33 (9H, s).

Example 18:

20

25

35

40

1-[4-(7-Propionyl-3,4-dihydroisoquinolin-2(1*H*)-yl)butyl]-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

a) 2-(Trifluoroacetyl)-1,2,3,4-tetrahydroisoquinoline:

Trifluoroacetic anhydride (2.13 mol, 452.0 g) was initially charged in dichloromethane (452 ml) at 10 – 15°C. A solution of tetrahydroisoquinoline (1.94 mol, 268.3 g) in dichloromethane (90 ml) was added thereto at this temperature. The reaction mixture was stirred further at room temperature overnight and then hydrolyzed with ice-water (813 g). After stirring for 1 h, the phases were separated. The organic phase was washed successively with water (813 ml), with semiconcentrated NaHCO<sub>3</sub> solution (550 ml) and again with water (500 ml). Subsequently, the mixture was concentrated under reduced pressure to obtain 446 g of crude product which was used in the subsequent reaction.

10

b) 1-[2-(Trifluoroacetyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]propan-1-one

Aluminum trichloride (0.78 mol, 103.7 g) was suspended in dichloromethane (93 ml) at 10-15°C. Subsequently, the trifluoroacetyltetrahydroisoquinoline from step a) (2.13 mol, 452.0 g) and propionyl chloride (0.47 mol, 43.2 g) were added successively with cooling at this temperature. Subsequently, the mixture was heated to reflux (heating bath temperature 60°C; reflux about 43°C) and the heating bath temperature was retained for 5 h. In the course of this, the internal temperature rose slowly from 43°C to 51°C. The mixture was then cooled to 5-10°C and then diluted with 70 ml of dichloromethane. The reaction solution was subsequently introduced rapidly with ice bath cooling into a mixture of 1000 g of ice and 500 ml of methyl tert-butyl ether. After 30 min, the phases were separated and the organic phase was washed successively with 500 ml of water, with 500 ml of semiconcentrated NaHCO<sub>3</sub> solution and again with 300 ml of water. The organic phase was subsequently concentrated under reduced pressure to obtain 89.9 g of a mixture of the title compound with its 6-isomer (7-isomer:6-isomer 15 isomeric ratio: about 75:25 (by means of <sup>13</sup>C NMR)) which was used in the next stage.

- c) 7-Propionyl-1,2,3,4-tetrahydroisoquinoline (hydrochloride)
- The product from step b) (0.39 mol, 111.0 g) was dissolved in n-propanol (744 ml) and 20 hydrochloric acid (32%, 3.5 mol, 400 g) was added thereto. Subsequently, the mixture was heated to reflux for 5 h. Afterward, a further 300 ml of n-propanol were added and water was distilled off in an azeotrope with n-propanol. A total of 890 ml of distillate were distilled off. In the course of this, the hydrochloride of the propionylisoquinoline precipitated out; another 1500 ml of n-propanol were added and distilled off again. 25 Subsequently, 1200 ml of methyl tert-butyl ether were added, and the mixture was cooled to 5°C and stirred for 30 min. The resulting solid was filtered off and dried at 40-50°C under reduced pressure. In this way, 82.9 g of a mixture of 6- and 7-propionyl-1,2,3,4-tetrahydroisoquinoline were obtained as the hydrochloride with an isomer ratio of 7-isomer:6-isomer of about 80:20 (determined by means of <sup>13</sup>C NMR). 30
  - d) 1-[4-(7-Propionyl-3,4-dihydroisoquinolin-2(1H)-yl)butyl]-3,4-dihydro-1H-1benzazepine-2,5-dione
- Analogously to the method for Example 3b, 0.37 g of the title compound was obtained 35 from 7-propionyl-1,2,3,4-tetrahydroisoquinolinium hydrochloride (3.00 mmol, 0.68 g).

ESI-MS: $[M+Na^{\dagger}] = 441.4, 420.4, [M+H^{\dagger}] = 419.4.$ 

Example 19: 40

1-[4-(6-Chloro-1,2,4,5-tetrahydro-3*H*-3-benzazepin-3-yl)butyl]-3,4-dihydro-1*H*-1benzazepine-2,5-dione

Analogously to Example 3b, reaction of 6-chloro-2,3,4,5-tetrahydro-1*H*-3-benzazepinium-(2*E*)-3-carboxyacrylate (0.95 mmol, 0.28 g, preparation according to J. Med. Chem. 1990, 33, 633) with 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione afforded 13.0 mg of the title compound.

ESI-MS: 414.2, 413.1,  $[M+H^{+}]$  = 411.2.

Example 20:

5

15

2-[4-(2,5-Dioxo-2,3,4,5-tetrahydro-1*H*-1-benzazepin-1-yl)butyl]-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile trifluoroacetate

Analogously to the method for Example 3b, reaction of 1,2,3,4-tetrahydroisoquinoline-6-carbonitrile (0.94 mmol, 0.15 g, preparation according to J. Med. Chem. 2000, 43, 1878) with 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione afforded 26.5 mg of the title compound.

ESI-MS: 389.2,  $[M+H^{+}] = 388.1$ .

20 Example 21:

1-[4-(4-Methylpiperazin-1-yl)butyl]-3,4-dihydro-1*H*-1-benzazepine-2,5-dione hydrochloride

Analogously to the method for Example 3b, 0.02 g of the title compound was obtained from 1-methylpiperazine (1.23 mmol, 0.12 g).

ESI-MS:  $[M+H^{\dagger}] = 330.2$ .

Example 22:

30 1-[4-(4-Ethylpiperazin-1-yl)butyl]-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

Analogously to the method for Example 3b, 0.01 g of the title compound was obtained from 1-ethylpiperazine (1.26 mmol, 0.14 g).

35 ESI-MS:  $[M+H^{+}] = 344.3$ .

Example 23:

1-[4-(4-Isobutylpiperazin-1-yl)butyl]-3,4-dihydro-1*H*-1-benzazepine-2,5-dione hydro-chloride

Analogously to the method for Example 3b, 0.13 g of the title compound was obtained from 1-isobutylpiperazine (0.97 mmol, 0.14 g).

ESI-MS:  $[M+H^{+}] = 372.4$ , 186.8;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.58-7.51 (2H, m), 7.32-7.23 (m, 2H+CHCl<sub>3</sub>), 3.87 (2H, t), 2.97 (2H, m), 2.78 (2H, t), 2.40 (s br.), 2.25 (2H, t), 2.06 (2H, d), 1.75 (1H, sept.), 1.50 (2H, quint.).

Example 24:

10 1-[4-(2,4,6-Trimethylpiperazin-1-yl)butyl]-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

Analogously to the method for Example 3b, 0.08 g of the title compound was obtained from 1,3,5-trimethylpiperazine (0.97 mmol, 0.12 g).

15 ESI-MS: [M+H<sup>+</sup>] = 358.3, 179.1, 157.1, 129.1.

Example 25:

1-[4-(4-Propylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

Analogously to the method for Example 12b, 0.10 g of the title compound was obtained from 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione (0.50 mmol, 0.13 g) and 1-propylpiperazine dihydrobromide (0.47 mmol, 0.14 g).

ESI-MS:  $[M+H^{\dagger}] = 358.3$ ;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.58-7.50 (2H, m), 7.33-7.21 (2H+ CHCl<sub>3</sub>, m), 3.87 (t, 2H), 2.95 (2H, t), 2.79 (2H, t), 2.41 (8H, s br.), 2.27 (2H, quart.), 1.49 (2H, quint.), 1.39 (2H, quint.), 0.89 (3H, t).

Example 26:

30 1-[4-((R)-3-Methylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

Analogously to the method for Example 12b, 0.07 g of the title compound was obtained from 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione (0.56 mmol, 0.15 g) and (R)-(-)-2-methylpiperazine (0.54 mmol, 0.05 g).

ESI-MS:  $[M+H^{+}] = 330.1$ .

Example 27:

35

40

1-[4-(4-Ethyl-(R)-3-methylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

30.0 mg of the title compound were obtained by reductive amination by the method specified by A. Magid et al. in Tetrahedron Lett. 31 (1990), p. 5595 from 1-[4-((R)-3-methylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione from Example 26 (0.18 mmol, 60.0 mg) and acetaldehyde (0.18 mmol, 8.0 mg).

5

ESI-MS:  $[M+H^{+}] = 358.3$ ;

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.60-7.46 (2H, m), 7.35-7.14 (2H+ CHCl3, m), 3.87 (t, 2H), 2.97 (2H, t), 2.92-2.74 (4H, m), 2.71 (1H, d), 2.61 (1H, d), 2.50-2.03 (6H, m incl. 2.22 (2H, t)), 1.84 (1H, s br.), 1.50 (2H, quint.), 1.38 (2H, quint.), 1.14-0.91 (6H, m).

10

Example 28:

1-[4-((S)-3-Methylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

Analogously to the method for Example 12b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-15 1*H*-1-benzazepine-2,5-dione (0.56 mmol, 0.15 g) with (S)-(+)-2-methylpiperazine (0.54 mmol, 0.05 g) afforded 40.0 mg of the title compound.

ESI-MS:  $[M+H^{+}] = 330.2$ .

20

Example 29:

1-[4-(4-Ethyl-(S)-3-methylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

25

Analogously to the method from Example 27, reductive amination afforded 10.0 mg of the title compound from 1-[4-((S)-3-methylpiperazin-1-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione from Example 28 (0.12 mmol, 40.0 mg) and acetaldehyde (0.12 mmol, 5.0 mg).

ESI-MS:  $[M+H^{\dagger}] = 358.3$ .

30

Example 30:

1-[4-(4-Ethylpiperazin-1-yl)-4-oxobutyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

35

a) Methyl 4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butanoate

Analogously to the method for Example 1, 100 mg of the title compound were obtained from 3,4-dihydro-1H-benzo[b]azepine-2,5-dione (5.71, 1.00 g, prepared according to Tetrahedron Lett. 1993, 34, 5855) and methyl 4-iodobutanoate (5.71 mmol, 1.37 g).

40 ESI-MS:  $[M+H^{\dagger}] = 276.15$ ;

b) 4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butanoic acid

Methyl 4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butanoate from step a (100 mg, 0.36 mmol) in water/methanol (0.7:2.0 ml) was treated with NaOH (1N, 0.80 ml) to obtain 63.0 mg of 4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butanoic acid.

ESI-MS:  $[M+H^{+}] = 262.0$ ;

10 c) 1-[4-(4-ethylpiperazin-1-yl)-4-oxobutyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

On the basis of the method described by M.K. Dhaon et al. in J. Org. Chem. 47 (1982) p. 1962, reaction of 4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butanoic acid (0.06 g) from step b and 1-ethylpiperazine (0.25 mmol, 0.03 g) in the presence of EDC·HCl (N'-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride) (0.36 mmol, 0.07 g), Et<sub>3</sub>N (0.48 mmol, 0.05 g) in tetrahydrofuran (5 ml) afforded 10.0 mg of the title compound.

ESI-MS:  $[M+H^{+}] = 358.3$ .

20

15

5

The preparation of the compounds of Examples 31 – 60 was based on the above-described methods.

Example 31:

25 1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-isopropylpiperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 358.2$ .

30 Example 32:

4-sec-Butyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 372.3$ .

35

Example 33:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(1-methylbutyl)piperazin-1-jum trifluoroacetate

40 ESI-MS:  $[M+H^{\dagger}] = 386.1$ .

Example 34:

4-Butyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

5 ESI-MS:  $[M+H^{+}] = 372.1$ .

Example 35:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(1-ethylpropyl)piperazin-1-ium trifluoroacetate

10

ESI-MS:  $[M+H^{+}] = 386.1$ .

Example 36:

4-Cyclopentyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 384.4$ .

Example 37:

20 4-Cyclohexyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 398.5$ .

25 Example 38:

4-(3-Cyclohexylpropyl)-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}]$  = 440.4, 238.9, 211.0.

30

Example 39:

4-Cyclohexylmethyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

35 ESI-MS:  $[M+H^{+}]$  = 412.4, 279.0, 183.0.

Example 40:

4-(2-Cyclohexylethyl)-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

40

ESI-MS:  $[M+H^{+}]$  = 426.4, 307.1, 197.0.

Example 41:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(tetrahydrofuran-2-ylmethyl)piperazin-1-ium trifluoroacetate

5

ESI-MS:  $[M+Na^{+}] = 422.4$ ,  $[M+H^{+}] = 400.4$ , 170.9.

Example 42:

4-Benzyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium

10 trifluoroacetate

ESI-MS:  $[M+H^{+}] = 406.3$ .

Example 43:

15 1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-pyrrol-1-yl-ethyl)piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 409.2$ .

20 Example 44:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-imidazol-1-ylethyl)piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+Na^{+}] = 432.0$ ,  $[M+H^{+}] = 410.0$ , 342.0, 113.0.

25

Example 45:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-thiophen-2-ylethyl)piperazin-1-ium trifluoroacetate

30 ESI-MS:  $[M+H^{+}] = 426.4$ .

Example 46:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-methoxyethyl)-piperazin-1-ium trifluoroacetate

35

40

ESI-MS:  $[M+H^{+}] = 374.2$ .

Example 47:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(3-methoxypropyl)-piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 388.1$ .

### Example 48:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-ethoxyethyl)piperazin-

5 1-ium trifluoroacetate

ESI-MS:  $[M+Na^{+}] = 410.0$ ,  $[M+H^{+}] = 388.2$ .

## Example 49:

4-(2-Dimethylaminoethyl)-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)-butyl]piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 387.1$ , 341.9.

15 Example 50:

4-(3-Cyanopropyl)-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]- piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+Na^{+}] = 405.0$ ,  $[M+H^{+}] = 383.1$ , 153.9.

20

### Example 51:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-oxo-2-pyrrolidin-1-ylethyl)piperazin-1-ium trifluoroacetate

25 ESI-MS:  $[M+Na^{+}] = 449.0$ ,  $[M+H^{+}] = 427.1$ , 197.9.

### Example 52:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-morpholin-4-yl-2-oxoethyl)piperazin-1-ium trifluoroacetate

30

ESI-MS:  $[M+Na^{+}] = 465.0$ ,  $[M+H^{+}] = 443.2$ .

#### Example 53:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(2-oxo-2-piperidin-1-yl)piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+Na^{+}] = 463.1$ ,  $[M+H^{+}] = 441.3$ .

## Example 54:

4-Cyclopropanecarbonyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)-butyl]piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+Na^{\dagger}] = 405.9$ ,  $[M+H^{\dagger}] = 384.2$ , 127.9.

Example 55:

5 4-Acetyl-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 358.0$ .

10 Example 56:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(tetrahydrofuran-2-carbonyl)piperazin-1-ium trifluoroacetate

ESI-MS:  $[M+Na^{+}] = 436.1$ ,  $[M+H^{+}] = 414.2$ , 315.9.

15

Example 57:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-(furan-2-carbonyl)-piperazin-1-ium trifluoroacetate

20 ESI-MS:  $[M+H^{\dagger}] = 410.2$ .

Example 58:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-ethanesulfonylpiperazin-1-ium trifluoroacetate

25

30

ESI-MS:  $[M+Na^{+}] = 430.0$ ,  $[M+H^{+}] = 408.0$ .

Example 59:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-methyl[1,4]diazepan-1-ium trifluoroacetate

ESI-MS:  $[M+H^{\dagger}] = 344.0$ .

Example 60:

35 1-[4-(4-Allylpiperazin-1-yl)butyl]-3,4-dihydro-1*H-*1-benzazepine-2,5-dione

Analogously to the method for Example 3b, 0.08 g of the title compound was obtained from 1-allylpiperazinediium dichloride (0.97 mmol, 0.19 g).

40 ESI-MS: [M+H<sup>+</sup>] = 356.3, 178.6;

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 7.53 (2H, t), 7.39-7.18 (m, 2H+CHCl<sub>3</sub>), 5.85 (1H, sext.), 5.15 (2H, t), 3.87 (2H, t), 2.98 (4H, m), 2.79 (2H, t), 2.42 (6H, s br.), 2.27 (2H, t), 1.50 (2H, quint.), 1.39 (2H, quint.).

5 Example 61:

tert-Butyl 4-[4-(2,5-dioxo-2,3,4,5-tetrahydro-1*H*-1-benzazepin-1-yl)butyl]piperazine-1-carboxylate

Analogously to the method for Example 3b, 3.44 g of the title compound were obtained from tert-butyl piperazine-N-carboxylate (10.01 mmol, 1.86 g)

ESI-MS:  $[M+H^{+}] = 416.2$ ;

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.53 (2H, t), 7.37-7.20 (m, 2H+CHCl<sub>3</sub>), 3.88 (2H, t), 3.37 (4H, t), 2.96 (2H, t), 2.80 (2H, t), 2.36-2.16 (6H, m), 1.57-1.32 (13H, m incl. 1.47, s, 9H).

Example 62:

1-(4-Piperazin-1-ylbutyl)-3,4-dihydro-1H-1-benzazepine-2,5-dione

20 tert-Butyl 4-[4-(2,5-dioxo-2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl)butyl]piperazine-1-carboxylate from Example 61 (8.28 mmol, 3.44 g) in diethyl ether (40 ml) was admixed with saturated ethereal HCl (30 ml) and the mixture was stirred at room temperature for 12 h. The reaction mixture was then filtered and the resulting residue was washed with diethyl ether to obtain 0.93 g of the title compound.

25

15

ESI-MS:  $[M+H^{+}] = 316.1$ , 158.6;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.52 (2H, t), 7.29-7.18 (m, 2H+CHCl<sub>3</sub>), 3.91 (2H, t), 2.91 (2H, m), 2.78 (4H, t), 2.73 (2H, t), 2.26 (4H, s br.), 2.17 (2H, t), 1.73 (1H, s br.), 1.46 (2H, quint.), 1.35 (2H, quint.).

3Ò

Example 63:

1-{4-[(1S,4S)-5-Methyl-2,5-diazabicyclo[2.2.1]hept-2-yl]butyl}-3,4-dihydro-1*H-*1-benzazepine-2,5-dione

Analogously to the method for Example 3b, 0.01 g of the title compound was obtained from (1*S*,4*S*)-5-methyl-5-aza-2-azoniabicyclo[2.2.1]heptane trifluoroacetate (0.56 mmol, 0.21 g).

ESI-MS: 343.2,  $[M+H^{+}]$  = 342.2, 171.6.

40

Example 64

1-[4-(Hexahydropyrrolo[1,2-a]pyrazin-2(1*H*)-yl)butyl]-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

Analogously to the method for Example 12b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione (0.40 mmol, 0.11 g) and octahydropyrrolo[1,2-a]pyrazine (0.40 mmol, 0.05 g) afforded 0.05 g of the title compound.

ESI-MS: 357.2,  $[M+H^{+}] = 356.3$ , 178.6.

# 10 Example 65:

Benzyl (1R,5R)-6-[4-(2,5-dioxo-2,3,4,5-tetrahydro-1*H*-1-benzazepin-1-yl)butyl]-3,6-diazabicyclo[3.2.0]heptane-3-carboxylate

Analogously to the method for Example 12b, 0.22 g of the title compound were obtained from benzyl (1*R*,5*R*)-3,6-diazabicyclo[3.2.0]heptane-3-carboxylate (1.43 mmol, 0.33g, prepared according to WO 01/81347).

ESI-MS:  $[M+H^{\dagger}] = 462.3$ .

## 20 Example 66

 $1-\{4-[(1R,5R)-3,6-Diazabicyclo[3.2.0]hept-6-yl]butyl\}-3,4-dihydro-1H-1-benzazepine-2,5-dione$ 

In the presence of Pd/C (0.01g, 10%), benzyl (1*R*,5*R*)-6-[4-(2,5-dioxo-2,3,4,5-tetrahydro-1*H*-1-benzazepin-1-yl)butyl]-3,6-diazabicyclo[3.2.0]heptane-3-carboxylate from Example 65 (0.45 mmol, 0.21 g) in methanol (7 ml) was reacted with hydrogen to obtain 0.10 g of the title compound.

### Example 67:

30 Benzyl (1*S*,5*S*)-6-[4-(2,5-dioxo-2,3,4,5-tetrahydro-1*H*-1-benzazepin-1-yl)butyl]-3,6-diazabicyclo[3.2.0]heptane-3-carboxylate

Analogously to Example 3b, 0.21 g of the title compound was obtained from benzyl (1*S*,5*S*)-3,6-diazabicyclo[3.2.0]heptane-3-carboxylate (1.42 mmol, 0.33 g, prepared according to WO 0/181347).

ESI-MS:  $[M+H^{+}] = 462.3$ .

## Example 68:

35

40 1-{4-[(1*S*,5*S*)-3,6-Diazabicyclo[3.2.0]hept-6-yl]butyl}-3,4-dihydro-1*H*-1-benzazepine-2,5-dione

On the basis of the method for Example 66, hydrogenation of benzyl (1*S*,5*S*)-6-[4-(2,5-dioxo-2,3,4,5-tetrahydro-1*H*-1-benzazepin-1-yl)butyl]-3,6-diazabicyclo[3.2.0]heptane-3-carboxylate from Example 67 (0.46 mmol, 0.21 g) afforded 0.12 g of the title compound.

Example 69:

 $1-\{4-[(1S,5S)-3-Ethyl-3,6-diazabicyclo[3.2.0]hept-6-yl]butyl\}-3,4-dihydro-1$ *H-*1-benzazepine-2,5-dione

10

5

Analogously to the method in Example 27, reductive amination of 1-{4-[(1S,5S)-3,6-diazabicyclo[3.2.0]hept-6-yl]butyl}-3,4-dihydro-1*H*-1-benzazepine-2,5-dione from Example 68 (0.21 mmol, 0.07 g) and acetaldehyde (0.21 mmol, 9 mg) afforded 0.01 g of the title compound.

15

20

25

35

ESI-MS:  $[M+H^{+}] = 356.3$ .

Example 70:

 $1-\{4-[(1R,5R)-3-Methyl-3,6-diazabicyclo[3.2.0]hept-6-yl]butyl\}-3,4-dihydro-1H-benzo[b]azepine-2,5-dione$ 

Analogously to the method from Example 27, reductive amination of 1-{4-[(1*R*,5*R*)-(3,6-diazabicyclo[3.2.0]hept-6-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione from Example 66 (0.27 mmol, 0.09 g) and formaldehyde (0.30 mmol, 25.0 mg, 37% solution) afforded 0.02 g of the title compound.

ESI-MS:  $[M+K^{+}] = 380.1$ ,  $[M+H^{+}] = 342.3$ .

Example 71:

tert-Butyl 5-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-(3S,6S)-hexahydropyrrolo[3,4-c]pyrrole-2-carboxylate

Analogously to the method from Example 12b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione (1.14 mmol, 0.30 g) and tert-butyl (3*S*,6*S*)-hexahydropyrrolo[3,4-c]pyrrole-2-carboxylate (1.08 mmol, 0.23 g; prepared according to WO 01/81347) afforded 0.25 g of the title compound.

ESI-MS:  $[M+H^{\dagger}] = 442.4$ ;

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.63-7.50 (2H, m), 7.36-7.17 (2H+ CHCl<sub>3</sub>, m), 3.89 (t, 2H), 3.50 (2H, s br.), 3.15 (2H, s br.), 2.95 (2H, m sym.), 2.87-2.69 (4H, m), 2.60 (2H, s br.), 2.41-2.19 (4H, m), 1.77-1.22 (13H, m incl. 1.45 (9H,s)).

## Example 72:

1-[4-((3S,6S)-Hexahydropyrrolo[3,4-c]pyrrol-2-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

5

The reaction of tert-butyl 5-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-(3S,6S)-hexahydropyrrolo[3,4-c]pyrrole-2-carboxylate from Example 71 (0.54 mmol, 02.4 g) with trifluoroacetic acid (2.69 ml) gave 0.17 g of the title compound.

## 10 Example 73:

1-[4-((3S,6S)-5-Methylhexahydropyrrolo[3,4-c]pyrrol-2-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

Analogously to the method in Example 27, reductive amination of 1-[4-((3S,6S)-hexahydropyrrolo[3,4-c]pyrrol-2-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione from Example 72 (0.24 mmol, 82.0 mg) and formaldehyde (0.26 mmol, 21.4 mg, 37% solution) afforded 10.0 mg of the title compound.

 $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.61-7.47 (2H, m), 7.39-7.17 (2H+ CHCl<sub>3</sub>, m), 3.88 (t, 2H), 2.96 (2H, t), 2.80 (4H, t), 2.47-2.17 (7H, m), 1.91-1.14 (10H, m).

### Example 74:

1-[4-(Octahydropyrido[1,2-a][1,4]diazepin-2-yl)butyl]-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

25

Analogously to the method for Example 12b, 65.0 mg of the title compound were obtained from 1-(4-chlorobutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione (0.75 mmol, 0.20 g) and decahydropyrido[1,2-a][1,4]diazepine (0.75 mmol, 0.12 g; prepared according to *Pol. J. Chem.* 1985, 59, 1243-6).

30

ESI-MS:  $[M+K^{\dagger}] = 422.2$ ,  $[M+H^{\dagger}] = 384.2$ .

#### Example 75:

 $1-\{4-[(1S,5R,6S)-6-(4-Fluorophenyl)-3-azabicyclo[3.2.0]hept-3-yl]butyl\}-3,4-dihydro-1$ *H*-1-benzazepine-2,5-dione hydrochloride

Analogously to the method for Example 3b, 0.25 g of the title compound was obtained from (1S,5R,6S)-6-(4-fluorophenyl)-3-azabicyclo[3.2.0]heptane (1.97 mmol, 0.38 g, prepared according to WO 00/23423).

35

 $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>) δ (ppm): 7.58-7.48 (2H, m), 7.32-7.22 (m+CHCl<sub>3</sub>), 7.22-7.12 (2H, m), 6.98 (2H, t), 3.92 (2H, m br.), 3.16 (1H, m br.), 3.06-2.93 (2H, m), 2.93-2.65 (6H, m; incl. t at 2.88), 2.45 (2H, t), 2.16 (2H, t), 2.09-1.92 (2H, m), 1.61 (m+H<sub>2</sub>O), 1.49 (2H, quint.).

5

Example 76:

1-(4-Piperidin-1-ylbutyl)-3,4-dihydro-1*H*-1-benzazepine-2,5-dione hydrochloride

Analogously to the method for Example 3b, 0.02 g of the title compound was obtained from piperidine (1.24 mmol, 0.11 g).

ESI-MS:  $[M+H^{+}] = 315.2$ .

In an analogous manner, the compounds of Examples 77 to 82 were prepared.

15

Example 77:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-methylpiperidinium trifluoroacetate

20 ESI-MS:  $[M+H^{+}] = 329.0$ .

Example 78:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]azepanium trifluoroacetate

25 ESI-MS:  $[M+H^+]$  = 329.0.

Example 79:

1-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-3-methylpiperidinium tri-fluoroacetate

30

35

ESI-MS:  $[M+H^{+}] = 329.0$ .

Example 80:

1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]-4-propylpiperidinium trifluoroacetate

ESI-MS:  $[M+H^{+}] = 357.1$ .

Example 81:

40 4-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]morpholin-4-ium trifluoroa-cetate

ESI-MS:  $[M+H^{\dagger}] = 317.0$ .

Example 82:

5 4-[4-(2,5-Dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]thiomorpholin-4-ium trifluo-roacetate

ESI-MS:  $[M+H^{\dagger}] = 333.0$ .

10 Example 83:

1-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl}-3,4-dihydro-1H-benzo[b]azepine-2,5-dione

Analogously to Example 3b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-1Hbenzo[b]azepine-2,5-dione with 1-(2,3-dichlorophenyl)piperazine afforded the title compound.

ESI-MS: 462.4,[M+H<sup>+</sup>] = 461.4, 460.4;

<sup>1</sup>H NMR (400 MHz, DMSO) δ (ppm): 7.62 (1H, t), 7.51-7.45 (2H, m), 7.34 (1H, t), 7.28 (2H, m), 7.18-7.05 (1H, m), 3.88 (2H, t), 2.91 (6H, m), 2.66 (2H, m), 2.39 (4H, s br.), 2.19 (2H, t), 1.36 (2H, quint.), 1.26 (2H, quint.).

Example 84:

25

35

4-(2,4-Dichlorobenzyl)-1-[4-(2,5-dioxo-2,3,4,5-tetrahydrobenzo[b]azepin-1-yl)butyl]piperazinium as the fumarate

Analogously to Example 3b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione with 1-(2,4-dichlorobenzyl)piperazine afforded the title compound.

30 ESI-MS: 476.1,  $[M+H^{+}]$  = 475.1, 474.1, 237.6;

Example 85:

1-{4-[4-(2-tert-Butyl-6-trifluoromethylpyrimidin-4-yl)piperazin-1-yl]butyl}azepane-2,5-dione

a) 1-(4-Chlorobutyl)azepane-2,5-dione

Analogously to Example 3a, 0.17 g of the contaminated title compound was obtained from azepane-2,5-dione (2.36 mmol, 0.30 g, preparation according to J. Photochem.

40 28 (1985), 569-570) and bromo-4-chlorobutane (2.83 mmol, 0.49 g). The compound is reacted further without purification.

- b) 1-{4-[4-(2-tert-Butyl-6-trifluoromethylpyrimidin-4-yl)piperazin-1-yl]butyl}azepane-2,5-dione
- Analogously to Example 3b, 0.04 g of the title compound was obtained from 2-tert-butyl-4-piperazin-1-yl-6-trifluoromethylpyrimidine (0.59 mmol, 0.17 g) and 1-(4-chlorobutyl)azepane-2,5-dione (0.62 mmol, 0.17 g).

ESI-MS:  $[M+H^{+}] = 470.2, 235.6;$ 

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 6.57 (1H, s), 3.71 (4H, s br.), 3.60-3.46 (4H, m), 2.73-2.57 (6H, m), 2.49 (4H, s br.), 2.41 (2H, s br.), 1.33 (9H, s).

Example 86:

20

25

30

15 1-{4-[4-(3,5-Dichlorophenyl)-2,5-piperazin-1-yl]butyl}-3,4-dihydro-1H-benzo[b]azepine-2,5-dione fumarate

In analogy to Example 3b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione with 1-(3,5-dichlorophenyl)piperazine afforded the title compound.

ESI-MS: 462.5, [M+H<sup>+</sup>] = 461.5, 460.5; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  (ppm): 7.62 (1H, t), 7.47 (2H, t), 7.35 (1H, t), 6.90 (2H, s), 6.85 (1H, s), 3.88 (2H, m), 3.15 (4H, m), 2.92 (2H, t), 2.67 (2H, t), 2.36 (4H, m), 2.20 (2H, t), 1.35 (2H, quint.), 1.28 (2H, quint.).

Example 87:

1-{4-[4-(3,5-Bis(trifluoromethyl)phenyl)piperazin-1-yl]butyl}-3,4-dihydro-1H-benzo[b]azepine-2,5-dione fumarate

In analogy to Example 3b, reaction of 1-(4-chlorobutyl)-3,4-dihydro-1H-benzo[b]azepine-2,5-dione with 1-(3,5-bis(trifluoromethyl)phenyl)piperazine afforded the title compound.

- 35 ESI-MS: [M+H<sup>+</sup>] = 528.55;

  <sup>1</sup>H NMR (400 MHz, DMSO) δ (ppm): 7.64 (1H, t), 7.54-7.41 (4H, m), 7.34 (1H, t), 7.27 (1H, s), 3.88 (2H, m), 3.30 (4H, m br,), 2.91 (2H, t), 2.65 (2H, t), 2.40 (4H, s br,), 2.23 (2H, t), 1.36 (2H, quint.), 1.30 (2H, quint.),
- 40 B) Examples of pharmaceutical administration forms

Tablets:

5

10

15

35

40

Tablets of the following composition are compressed in a tablet press in a conventional way:

40 mg of substance of example 2

120 mg of corn starch

13.5 mg of gelatin

45 mg of lactose

2.25 mg of Aerosil® (chemically pure silica in submicroscopically fine distribution)

6.75 mg of potato starch (as 6% strength paste)

Sugar-coated tablets:

20 mg of substance of example 2

60 mg of core composition

70 mg of sugar-coating composition

The core composition consists of 9 parts of corn starch, 3 parts of lactose and 1 part of vinylpyrrolidone/vinyl acetate 60:40 copolymer. The sugar-coating composition consists of 5 parts of sucrose, 2 parts of corn starch, 2 parts of calcium carbonate and 1 part of talc. The sugar-coated tablets produced in this way are subsequently provided with an enteric coating.

C) Biological investigations – receptor binding studies:

25

The substance to be tested was dissolved either in methanol/Chremophor® (BASF-AG) or in dimethyl sulfoxide and then diluted with water to the desired concentration.

30 I. Dopamine D<sub>3</sub> receptor:

The mixture (0.250 ml) was composed of membranes from  $\sim 10^6$  HEK-293 cells with stably expressed human dopamine D<sub>3</sub> receptors, 0.1 nM [ $^{125}$ I]-iodosulpride and incubation buffer (total binding) or with additional test substance (inhibition plot) or 1  $\mu$ M spiperone (nonspecific binding). Triplicate mixtures were carried out.

The incubation buffer comprised 50 mM Tris, 120 mM NaCl, 5 mM KCl, 2 mM  $CaCl_2$ , 2 mM  $MgCl_2$  and 0.1% bovine serum albumin, 10  $\mu$ M quinolone, 0.1% ascorbic acid (prepared fresh each day). The buffer was adjusted to pH 7.4 with HCl.

II. Dopamine D<sub>2L</sub> receptor:

10

15

20

25

30

The mixture (1 ml) was composed of membranes from  $\sim 10^6$  HEK-293 cells with stably expressed human dopamine  $D_{2L}$  receptors (long isoform) and 0.01 nM [ $^{125}$ l]-iodospiperone and incubation buffer (total binding) or with additional test substance (inhibition plot) or 1  $\mu$ M haloperidol (nonspecific binding). Triplicate mixtures were carried out.

The incubation buffer comprised 50 mM Tris, 120 mM NaCl, 5 mM KCl, 2 mM CaCl<sub>2</sub>, 2 mM MgCl<sub>2</sub> and 0.1% bovine serum albumin. The buffer was adjusted to pH 7.4 with HCl.

#### III. Measurement and evaluation:

After incubation at 25°C for 60 minutes, the mixtures were filtered under vacuum through Whatman GF/B glass fiber filters using a cell harvester. The filters were transferred by a filter transfer system into scintillation vials. After addition of 4 ml of Ultima Gold® (Packard), the samples were shaken for one hour and then the radioactivity was counted in a beta counter (Packard, Tricarb 2000 or 2200CA). The cp values were converted into dpm by means of a standard quench series with the aid of the instrument's own program.

Evaluation of the inhibition plots took place by iterative nonlinear regression analysis using the Statistical Analysis System (SAS) similar to the "LIGAND" program described by Munson and Rodbard.

In these assays, the inventive compounds show very good affinities for the  $D_3$  receptor (< 100 nM, frequently < 50 nM) and bind selectively to the  $D_3$  receptor.

The results of the binding assays are indicated in table 1.

#### Table 1:

| Example | K <sub>i</sub> (D <sub>3</sub> ) [nM] | Selectivity vs. D <sub>2</sub> L |
|---------|---------------------------------------|----------------------------------|
| 3       | 0.83                                  | 296                              |
| 4       | 1.74                                  | 155                              |
| 6       | 4.50                                  | 104                              |
| 7       | 1.33                                  | 118                              |
| 10      | 1.24                                  | 74                               |
| 16      | 0.96                                  | 62                               |
| 86      | 2.0                                   | 56                               |
| 87      | 7.4                                   | 129                              |

<sup>\*</sup>  $K_i(D_{2L})/K_i(D_3)$