HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

• \ll Alan Lee \gg : \ll alanlee2 \gg

 \bullet «Joshua Burke»: «joshuab
3»

• \ll Gerald Kozel \gg : \ll gjkozel $2\gg$

(100 PTS.) Then, shalt thou find two runs of three.

Let L be the set of all strings in $\{0,1\}^*$ that contain the substrings 000 and 111.

A (60 PTS.) Describe a DFA that over the alphabet $\Sigma = \{0, 1\}$ that accepts the language L. Argue that your machine accepts every string in L and nothing else, by explaining what each state in your DFA means.

Version: 1.0

You may either draw the DFA or describe it formally, but the states Q, the start state s, the accepting states A, and the transition function δ must be clearly specified.

B (40 PTS.) Give a regular expression for L, and briefly argue why the expression is correct.

5 Solution:

- A (See attached sheet for DFA.)
 - q0 is the starting state.
 - q1, q2, q3 are states for successive runs of 0; q6, q7, q8 are that for runs of 1. If a run is interrupted on either side, there is a transition back to either q1 or q6, depending on what run was interrupted. (q1 for a sudden 0, q6 for a sudden 1.)
 - q3 is a state representing the case when 000 has already occurred, but 111 hasn't.
 - q8 is similar to q3, but the opposite (111 has occurred but 000 hasn't).
 - States q4 and q5 follow a run of consecutive 1's. States q9 and q10 are that for 0's.
 - State q11 is the accepting state, and any number of 0's or 1's after reaching this state are acceptable.

B
$$((0+1)^*(000)(0+1)^*(111)(0+1)^*) + ((0+1)^*(111)(0+1)^*(111)(0+1)^*)$$

This expression is correct because the criteria which it must satisfy is that it must contain both sub-strings 000, and 111. The above expression satisfies both cases of either order of 000 111 or 111 000 with any combination of 0's an 1's in between.