electroussafi.ueuo.com 1/7

Compteurs asynchrones

Exercice 1

1. Q_0 a pour horloge H; donc à chaque front descendant de H, Q_0 change d'état (bascule de 0 à 1 ou de 1 à 0).

 Q_1 a pour horloge Q_0 ; donc à chaque front descendant de Q_0 , Q_1 change d'état.

 Q_2 a pour horloge Q_1 ; donc à chaque front descendant de Q_1 , Q_2 change d'état.

- 2. On obtient la séquence suivante : 0, 1, 2, 3, 4, 5, 6, 7,0
- **3.** On a un compteur modulo 8.
- **4.** Q_0 a pour horloge H; donc à chaque front descendant de H, Q_0 change d'état (bascule de 0 à 1 ou de 1 à 0).

 Q_1 a pour horloge $\overline{Q}_0;$ donc à chaque front descendant de \overline{Q}_0 (front montant de $Q_0),$ Q_1 change d'état.

 Q_2 a pour horloge $\overline{Q_1}$; donc à chaque front descendant de $\overline{Q_1}$ (front montant de Q_1), Q_2 change d'état.

5. On obtient la séquence suivante : 0, 7, 6, 5, 4, 3, 2, 1, 0

electroussafi.ueuo.com 2/7

- **6.** On a un décompteur modulo 8.
- 7. L'horloge de la $1^{\text{ère}}$ bascule dans les 2 cas est H. Pour le compteur l'horloge de la bascule n est \overline{Q}_{n-1} et pour le décompteur l'horloge de la bascule n est \overline{Q}_{n-1} . on doit choisir soit \overline{Q}_{n-1} , soit \overline{Q}_{n-1} . Pour faire le choix, on va utiliser une variable X, tel que :

X	horloge	Mode
0	Q_{n-1}	Compteur
1	$\overline{\mathbb{Q}}_{n-1}$	Décompteur

$$horloge = Q_{n-1}\overline{X} + \ \overline{Q}_{n-1}X = Q_{n-1} \oplus X$$

electroussafi.ueuo.com 3/7

Exercice 2

Compteur modulo 11

On veut que le compteur passe à 0 (l'entrée R (RESET) soit à 0) lorsqu'il atteint :

 $11_{10} = 1011_2$. Pour cela on peut écrire l'expression logique : $R = \overline{Q_3 \overline{Q}_2 Q_1 Q_0}$

On peut simplifier cette relation logique en ne tenant compte que des sorties à 1.En effet c'est la $1^{\text{ère}}$ fois que Q_3 , Q_1 et Q_0 soient à 1(voir table). On peut donc utiliser :

electroussafi.ueuo.com 4/7

Compteur modulo 12:

Remise à zéro : 1100 \Rightarrow R = $\overline{Q_3Q_2\overline{Q}_1\overline{Q}_0}$

On peut simplifier cette relation logique en ne tenant compte que des sorties à 1.En effet c'est la $1^{\text{ère}}$ fois que Q_3 et Q_2 soient à 1. On peut donc utiliser :

$$R = \overline{Q_3}\overline{Q_2} = \overline{Q}_3 + \overline{Q}_2$$

Puisque Q_1 et Q_0 sont à 0 (1100) ; on n'a pas besoin de les mettre à zéro.

Compteur modulo 13:

Remise à zéro : 1101 \Rightarrow $R = \overline{Q_3Q_2\overline{Q}_1Q_0}$

On peut simplifier cette relation logique en ne tenant compte que des sorties à 1.On peut donc utiliser :

$$R = \overline{Q_3}\overline{Q_2}\overline{Q_0} = \overline{Q}_3 + \overline{Q}_2 + \overline{Q}_0$$

electroussafi.ueuo.com 5/7

Compteur modulo 14:

Remise à zéro : 1110 \Rightarrow R = $\overline{Q_3Q_2Q_1}\overline{Q}_0$

On peut simplifier cette relation logique en ne tenant compte que des sorties à 1.On peut donc utiliser : $R = \overline{Q_3} \overline{Q_2} \overline{Q_1} = \overline{Q}_3 + \overline{Q}_2 + \overline{Q}_1$

Puisque Q_0 est à 0 (1110) ; on n'a pas besoin de la mettre à zéro.

Conclusion:

Dans un compteur asynchrone à base des bascules JK activent sur front descendant de l'horloge, on n'a pas besoin de mettre à zéro une sortie qui est déjà à zéro si elle n'est pas précédée d'une bascule qui a sa sortie à zéro. Autrement dit : si $Q_n = 0$ et $Q_{n+1} = 0$; on n'a pas besoin de mettre à zéro Q_{n+1} .

Mais si $Q_n = 1$ et $Q_{n+1} = 0$ si on ne force que Q_n à 0, Q_{n+1} va passer à 1 puisque Q_n est l'horloge de la bascule n+1.

electroussafi.ueuo.com 6/7

Dans le cas où Q0 = 0 on n'a pas besoin de la mettre à zéro.

Exercice 3

1. Le compteur passe à 0 (l'entrée R (RESET) soit à 0) lorsque : $R = \overline{Q_DQ_C} = 0$; c'est-à-dire : $Q_D = Q_C = 1$, ce qui correspond à $Q_D Q_C Q_B Q_A = 1100_2 = 12_{10}$.

- 2. L'horloge de la $1^{\text{ère}}$ bascule est CLK ; pour les autres bascules : l'horloge de la bascule n est Q_{n-1} . On a un compteur asynchrone modulo 12.
- 3. On modifie d'abord le compteur pour obtenir un compteur modulo 10 : 0-1-2-3-4-5-6-7-8-9-0. Il suffit de remettre le compteur à zéro lorsqu'il arrive à $10_{10} = 1010_2$: $R = \overline{Q_D Q_B}$.

 $10_{10} = 1010_2 \implies Q_D = 1$, $Q_C = 0$, $Q_B = 1$ et $Q_A = 0$; pour avoir un compteur réalisant le cycle suivant : 4 - 5 - 6 - 7 - 8 - 9 - 4, il suffit de remettre Q_D à 0 et Q_B à 0 (Q_C va se

electroussafi.ueuo.com 7/7

mettre à 1 puisque Q_B va passer de 1 à 0 (Q_B est l'horloge de la bascule Q_C)). Et le schéma devient :

4. Le défaut du compteur ci-dessus c'est que le premier cycle : 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9. Les autres cycles sont : 4 - 5 - 6 - 7 - 8 - 9. Le schéma suivant permet de résoudre ce problème. Lorsqu'on met le compteur sous tension et l'interrupteur est fermé, on obtient l'état 4₁₀ (0100₂). Lorsqu'on ouvre l'interrupteur, le compteur commence à compter à partir de 4 et réalise le cycle : 4 - 5 - 6 - 7 - 8 - 9.

