

FIG. 1

FIG. 1A
PRIOR ART

FIG. 2

FIG. 3

FIG. 6

FIG. 5

FIG. 8

FIG. 9
LASER SLOPE EFFICIENCY

FIG. 11

VCSEL PACKAGE
PLASTIC ENCAPSULATION
W/ ANGLED WINDOW

Plastic encapsulation replacement for TO56 package without impacting other packaging config.

FIG. 12

FIG. 13

Small Form Factor Concept

PLASTIC ENCAPSULATED

FIG. 14

FIG. 15

FIG. 16

VCSEL structure	Oxide ^{Medium} Match Thickness (Å)	Transmission in air (%)	Transmission in plastic (%)
4 periods +	0	0.017	0.025
4 periods +	200	0.017	0.025
4 periods +	400	0.018	0.025
4 periods +	600	0.020	0.024
4 periods +	800	0.023	0.024
4 periods +	840	0.024	0.024
4 periods +	1000	0.027	0.024
4 periods +	1200	0.032	0.023
4 periods +	1400	0.034	0.023

FIG. 17

FIG. 18

Tuning Layer Thickness (layer 8)	Medium Match Thickness (layer 1)	Transmission in air or plastic	Loss	Optical Efficiency	Scaled
as grown	No mirror	0.256	0.3	0.460	1
1062	840	0.024	0.3	0.074	0.161
850	1050	0.025	0.3	0.077	0.167
637	1300	0.029	0.3	0.088	0.191
425	1550	0.036	0.3	0.107	0.233
212	1930	0.042	0.3	0.123	0.267
0	2330	0.045	0.3	0.130	0.283

FIG. 19

FIG. 20

FIG. 21

FIG. 21A

Figure 1. Prior Art Phase-Matching Layers

Figure 2. Prior Art Tuning Layer

$$R_1 = (\rho_1)^2$$

$$T_1 = 1 - R_1$$

$$R_2 = (\rho_2)^2$$

$$T_2 = 1 - R_2$$

medium

air

$$\rho_1 = \frac{n_s - n_m}{n_s + n_m}$$

$$\rho_2 = \frac{n_s - n_a}{n_s + n_a}$$

E_{T1}

E_{R1}

E_{I1}

n_s

n_s

E_{T2}

E_{R2}

E_{I2}

substrate

substrate

NOTE: $R_1 \neq R_2$ & $T_1 \neq T_2$, because $n_m \neq n_a$

Figure 3. Elementary Example of the Problem

$$R_1 = f(\rho_{1b}, \rho_a, k, d)$$

$$T_1 = 1 - R_1$$

$$R_2 = f(\rho_{2b}, \rho_a, k, d)$$

$$T_2 = 1 - R_2$$

$$k = \frac{2\pi n_p}{\lambda}$$

Figure 4. Elementary Example of the Solution

$$R_1 = \frac{(\rho_a + \rho_{1b})^2 - 4\rho_a \rho_{1b} \sin^2 kd}{(1 + \rho_a \rho_{1b})^2 - 4\rho_a \rho_{1b} \sin^2 kd}$$
$$R_2 = \frac{(\rho_a + \rho_{2b})^2 - 4\rho_a \rho_{2b} \sin^2 kd}{(1 + \rho_a \rho_{2b})^2 - 4\rho_a \rho_{2b} \sin^2 kd}$$

Figure 5. Formulas for the R1 & R2 in figure 4

