CSE2006 Microprocessor & Interfacing

Module – 6
Co-Processor

Dr. E. Konguvel

Assistant Professor (Sr. Gr. 1),
Dept. of Embedded Technology,
School of Electronics Engineering (SENSE),
konguvel.e@vit.ac.in
9597812810

Module 6: Co-Processor

- Introduction
- 8087 Numeric Data Processor
- Block Diagram
- Pin Description
- Interfacing 8087 with 8086
- Addressing Modes & Data Formats
- Instruction Sets
- Assembly Language Programs

Write an assembly-language program to find out $z = \sqrt{x^2 + y^2}$. Assume x is stored in memory location 0200H and y is stored in memory location 0202H and the result z will be stored at 0300H.

Mnemonics	Comments
MOV BX,0200H	Store memory location (0200H) of first data x in Register BX
FLD (BX)	Load first data x into top of stack
FMUL	Multiply x with x and get x^2
FSTP ST(1)	Load x^2 in ST(1)
MOV BX,0202H	Store memory location (0202H) of second data in Register BX
FLD (BX)	Load second data y into top of stack
FMUL	Multiply y with y and get y^2
FADD ST(1)	$Add x^2$ with y^2 and result is stored in the top of stack
FSQRT	Find $z = \sqrt{x^2 + y^2}$
MOV BX,0300H	Store memory location 0300H in Register BX
FST (BX)	Store the result from top of stack to memory location 0300H
INT 3	Break

Write a procedure in assembly-language to compute volume of a sphere $V = \frac{4}{3}\pi r^3$ where r is the radius of sphere.

```
DATA SEGMENT
```

RADIUS DD 2.57 CONSTANT EQU 1.333 VOLUME DD 01 DUP(?)

DATA ENDS

ASSUME CS: CODE, DS:DATA

Volume PROC NEAR

Code SEGMENT

Start MOV AX, DATA Initialize data segment

MOV DS,AX

FILD RADIUS Load radius of sphere into top of stack

FSTP ST(2) Store top of stack into register ST(2)

FMUL ST(2) Multiply r with r and get r^2 , ST(0) = ST(0) × ST(2) = ST(2)²

FMUL ST(2) Multiply r with r^2 and get r^3 , ST(0) = ST(0)² × ST(2)

FSTP ST(1) Load r^3 in ST(1)

FLD CONSTANT Load $\frac{4}{3}$ = 1.333 into top of stack

FMUL ST(0), ST(1) Multiply 1.333 with r^3

Write a procedure in assembly-language to compute volume of a sphere $V = \frac{4}{3}\pi r^3$ where r is the radius of sphere.

FSTP ST(3)

FLDPI

FMUL ST(0), ST(3)

FST VOLUME

RETP

Volume ENDP

Code ENDS

END Start

Store the result of 1.333 r^3 in ST(3) Load the value of π into top of stack Multiply π with 1.333 r^3

Store volume of sphere

Write an assembly-language program to find out $\frac{xy}{x^2 + y^2}$. Assume x and y are integers.

Mnemonics	Comments
FILD x	Load first data x into top of stack
FMUL	Multiply x with x and get x^2
FSTP ST(1)	Load x^2 in ST(1)
FILD y	Load second data into top of stack
FMUL	Multiply y with y and get y^2
FADD ST(1)	Add x^2 with y^2 and result is stored in the top of stack
FSTP ST(2)	Store the result of $x^2 + y^2$ in ST(2)
FILD x	Load first data x into top of stack
FISTP ST(1)	Load x in $ST(1)$
FILD y	Load second data y into top of stack
FMUL ST, ST(1)	Multiply x with y and get x y
FDIV ST,ST (2) INT 3	Find $z = \frac{xy}{x^2 + y^2}$ and store the result into top of stack Break