

香港中文大學 The Chinese University of Hong Kong

MAEG 4010 Computer-Integrated Manufacturing

Project Introduction

2024

Contact information

MAEG 4010

Computer-Integrated Manufacturing

Instructor Prof. FANG Guoxin

Room 112A, Ho Sin Hang Eng. Bldg.

Tel.: 3943 5320

E-mail: guoxinfang@cuhk.edu.hk

Tutors

Tutors	Email:@mae. cuhk.edu.hk		
LIN Feng	flin		
SU Zhou	zsu		
WEI Chunlei	clwei		

Technician Billy Yip (billyyip@cuhk.edu.hk)

Project Topic

Pipe-climbing Robot

- Each team (3-5 students) will <u>design</u>, <u>build</u> and <u>demonstrate</u> a simple prototype of a Pipe-Climbing Robot:
 - Can either be manual/ semi-automated / fully automated
 - Need to carry min. 2.5 kg payload
 - As cost-effective as possible (need to optimise the design)
 - As light-weight as possible (need to optimise the design)

$$Score\ for\ demo = 40 {\color{red}(e) \over 1} + 30 {\color{red}(\frac{p}{b})} + 20 {\color{red}(\frac{30}{c})} + 10 {\color{red}(\frac{6}{d})}$$

Score for demo (21%)

Score for demo =
$$40(e)\left(\frac{a}{1}\right) + 30\left(\frac{p}{b}\right) + 20\left(\frac{30}{c}\right) + 10\left(\frac{6}{d}\right)$$

Where:

e=2 (Fully automated); e=1 (manual / semi-automated)

a=1 (Compete climb 300mm up); a=0 (Not compete climb 300mm up)

p = Payload in g

b =Robot weight in g

c =Time in second

d = No. of pneumatic cylinders

Demo twice and select the best score

Previous idea

Project Topic

Pipe-climbing Robot

- For actuation air cylinder and its pneumatic actuation peripherals - solenoid valve, compressed airline, speed controller, manual switches will be available
 - The SMC Air Cylinder: SMC CDJ2B16-30 will be available (max. of 6 cylinder per group)
 - Working pressure @ 4 bar (0.4MPa)
 - Bore size = 16mm
 - Double-acting, single rod
 - Stroke = 30mm

Project Material

- 1st Material pick up and Demo (week 10)
 - 1. PCB Board
 - 2. 3 Solenoid valves with Manifold
 - 3. 2 Buttons
 - 4. 12 V Battery
 - 5. 3 Pneumatic actuators
 - 6. 6mm Tube
 - 7. Flow controller

- 2nd Material pick up and Build (After submit drawing file)
 - 1. Laser cutting (3/5mm Acrylic sheet), 3D Printing (PLA), Waterjet (2/3mm Aluminium, Stainless steel, Carbon fiber, etc.) Please preparing the suitable drawing file.
 - 2. More Pneumatic actuators, connectors, flow control, 6mm tube etc.
 - 3. Fastener (M3,M4,M5 screws and nuts), Bearings

Pneumatics Actuator

Double Acting actuator and Solenoid Valve

Example: 5/2 directional control valve with double acting

Where P is Pressure, F is normal force, A is contact area

Extend or Retract has larger force?

Flow control valve connect direction?

Double Acting Pneumatics Actuator

Example:

The bore size of cylinder is 16mm, operating pressure is 0.4MPa as shown below. Determine the max. payload?

https://ca01.smcworld.com/catalog/BEST-technical-data-en/pdf/6-2-1-m21-43-tech_en.pdf

Machine Support

Laser Cutter

3D Printer

Hand Tools

Waterjet cutter

CNC Machine

Fabrication process

• Common material used:

Material	Acrylic Sheet	PLA	Aluminum Tube	Aluminum/ Stainless steel/ Carbon Fibre Sheet	Aluminum
Method	Laser cutter	3D Printer	Mill/Drill	Water Jet	CNC
Strength	Strong in 2D Plane	Low	Strong	AL: Strong SS 304 & CF: Very strong	Strong
Time	Minutes	Hours/Day	Hours	Minutes/Hour	Weeks
Shape	Custom 2D	Any Shape	Standardized	Custom 2D	Any Shape
Cost	*	**	**	AI, SS 304: ** CF: ****	****
	Highly Recommend			Recommend	

Reminder

- Time management
 - Design process?

Design→ Manufacture → Assembly → Test → improvement

- Procedure
 - 1. Send an e-mail to Tutor and Billy to request their comments.
 - 2. Send the improved SOLIDWORKS files, including the drawing and STL file
 - 3. Collect the 3D printing/ Laser cutting/Waterjet cutting parts (It needs around **3 Days** to fabricate all parts, we will notify you via email once they are finished.)
 - 4. Book the time slot for assembly in ERB 104

Electronics Connection

Connect the wires as following:

- Pneumatic output 1 7 = pin 2, 3, 4, 5, 6, 7, 8
- Sensor input 1 4 = pin A0, A1, A2

Electronics & Programming

Arduino IDE

- Download the Arduino IDE at this website, https://www.arduino.cc/en/software
- Open the sample code afterwards. In "Tools", select "Board Arduino Nano"
- Select "Processors: ATmega328p(Old Bootloader)"
- Plug in the Nano to your computer then select the corresponding USB port in "Port". Upload the code to your board afterwards and test it out with the button.

Ref.: you can also follow this tutorial, https://youtu.be/R102xfcx751?t=665, to upload your program.

Arduino Program Structure

The program will be included:

void setup() {}
All the initial setup will be done in the
routine

void loop(){}
It will be looped endlessly for executing
all the processes (sensor checking ,
decision making, and)

start Setup() Loop() end

https://www.youtube.com/watch?v=fJWR7dBuc18 https://www.youtube.com/watch?v=nL34zDTPkcs

ULN2003 Features

ULN2003AN

ULN2003 Features

- Contains 7 high-voltage and high current Darlington pairs
- Each pair is rated for 50V and 500mA
- Input pins can be triggered by 3V (TTL)
- All seven Output pins can be connected to gather to drive loads up to (7×500mA) ~3.5A.
- Can be directly controlled by logic devices like Digital Gates, <u>Arduino</u>, ESP32 etc
- Available in 16-pin DIP, TSSOP, SOIC packages

Schematic Diagram

