Introduction

Kevin Murphy Ch. 1

CS 6140 Machine Learning Professor Olga Vitek

January 10, 2017

What is machine learning?

- Two general questions
 - How to construct computer systems that automatically improve through experience?
 - What are the fundamental statistical / computational / information-theoretical laws that govern all learning systems?

M. I Jordan and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects" *Science*, 349:255, 2015

Types of machine learning

- Supervised (predictive)
 - Data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
 - Goal: find associations between x_i and y_i
 - \mathbf{x}_i : often D-dimensional vectors of attributes, features, covariates; in $N \times D$ design matrix
 - Can be arbitrary complex (image, sentence, graph)
 - $-y_i$: response variable
 - When $y_i \in \{1, ..., C\}$ (categorical or nominal): classification or pattern recognition problem
 - When y_i continuous: regression
- Unsupervised (descriptive)
 - Data $\mathcal{D} = \{(\mathbf{x}_i)\}_{i=1}^N$
 - Goal: find "interesting patterns" in x_i
 - $-\mathbf{x}_i$ can also be arbitrary complex
 - Less well defined problem

Intermediate/blended types

- Reinforcement learning
 - An agent performs an action, and the environment returns a state (or reward)
 - The environment only gives an indication of whether the action was correct
 - Objective: maximize expected reward
 - * E.g., robotics
- Semi-supervised learning
 - Uses unlabeled data to augment labeled data in a supervised learning context

More terms

Machine learning

 Specific tasks associated with class discovery (unsupervised learning), class prediction (supervised learning)

Data mining

- Analysis of (often large) observational datasets to find unexpected relationships
- Often secondary, exploratory analysis of convenience (opportunity) datasets

Statistics

- Collection and analysis of data, to make inference beyond the current dataset.
- Characterized by measures of uncertainty, and of decision making in presence of uncertainty
- Often primary, confirmatory analysis of designed experiments or ad-hoc datasets

Data science

- Often used interchangeably with data mining
- Often used in 'data-driven decision making'

Supervised learning

Goals

• Training set:

- Learn mapping from inputs \mathbf{x}_i to outputs y_i
 - * $y_i \in \{1,2\}$: binary classification
 - * $y_i \in \{1, ..., C\}, C > 2$: multiclass classification

• Formalize:

- Approximate with unknown function $y = f(\mathbf{x})$
- Make predictions $\hat{y} = \hat{f}(\mathbf{x})$

• Generalize:

Make predictions on novel inputs

Example: color shape classification

		D features (attributes)				
		Color	Shape	Size (cm)	9	Label
N cases		Blue	Square	10		1
		Red	Ellipse	2.4		1
		Red	Ellipse	20.7		0

K. Murphy, Fig 1.1a

Example: color shape classification

• Data

- $-y = \{0, 1\}$
- x: color, shape, size

Generalize

- Predict on cases are not part of the training set
- Blue crescent 1? Yellow circle 0 or 1? Blue arrow?

Probabilistic predictions

- $p(y|\mathbf{x}, \mathcal{D})$: Probability distribution over y, conditional on \mathbf{x} and \mathcal{D}
 - If y is binary, return $p(y = 1|\mathbf{x}, \mathcal{D})$
 - Implicitly conditions on the probability model that links ${\bf x}$ and ${\it y}$
- Maximum a posteriori (MAP) estimate
 - "Best guess" prediction: most probable label
 - Characterizes uncertainty in the prediction
 - $\hat{y} = \hat{f}(\mathbf{x}) = argmax_{c=1,\dots,C} \ p(y = c | \mathbf{x}, \mathcal{D})$

Example: iris flower classification

K. Murphy, Fig 1.3 and 1.4

Examples

- Iris: challenges
 - Human feature extraction
 - Two species (blue and green circles) can only be distinguished by combination of two features
- Other examples
 - Document classification (e.g., spam detection)
 - Fraud detection
 - Image, object, speech classification
 - Early detection of disease, and prediction of therapy response

–

Regression

• Training set:

- Learn mapping from inputs \mathbf{x}_i to outputs y_i
 - * \mathbf{x}_i continuous

Examples

- Predict age of YouTube viewer
- Predict temperature inside a building using weather and sensor data
- Predict amount of prostate specific antigen (PSA) in the body from clinical measurements

Example

K. Murphy, Fig 1.7

Unsupervised learning (knowledge discovery)

Goals

- Training set:
 - Learn patterns in x_i
- Formalize:
 - Unconditional density estimation of form $p(\mathbf{x}_i|\theta)$
 - Multivariate density in the feature space
- Examples of tasks
 - Discovering clusters
 - Discovering latent factors
 - Discovering graph structure
 - * Find pairs of highly correlated items: correlated stocks, correlated patterns of behavior...
 - Missing value imputation
 - Image implainting

Example

Discovering clusters of people by weight and height

K. Murphy, Fig 1.8

Example

Discovering latent factors: dimensionality reduction

K. Murphy, Fig 1.9

Basic concepts in machine learning

Parametric vs non-parametric models

Parametric vs non-parametric models

- How to specify $p(y|\mathbf{x})$ or $p(\mathbf{x})$
- Parametric:
 - * Functions of a fixed (often relatively small) number of parameters
 - * Example: linear regression
 - + Simpler interpretation, faster, better performance if correct assumptions
 - Restrictive assumptions
- Non-parametric:
 - * Large # of parameters, often grows with with size of training data
 - * Example: K-nearest neighbor (KNN)
 - + Flexibility
 - Not assumption-free, slower, loss of accuracy if not making relevant assumptions

Linear regression

• ML:
$$y(\mathbf{x}) = \sum_{j=1}^{D} w_j x_j + \epsilon$$

- w: weights

- Statistics: $y(\mathbf{x}) = \sum_{j=1}^{D} \beta_j x_j + \epsilon$
 - $-\beta$: parameters
- Parameter estimation: least squares

$$- \hat{\beta} = argmin_{\beta} \sum_{i=1}^{N} (y_i - x_i'\beta)^2$$

- Probabilistic prediction:
 - ϵ : residual error, $\epsilon \sim \mathcal{N}(\mu, \sigma^2)$
 - $\theta = (\beta, \sigma^2)$
 - $p(y|\mathbf{x}, \theta) = \mathcal{N}(x_i'\beta, \sigma^2)$

Linear regression

$$y = \begin{cases} 0, & \text{if blue} \\ 1, & \text{if orange} \end{cases} \widehat{y} = \begin{cases} \text{blue}, & \text{if } \widehat{y} \le 0.5 \\ \text{orange}, & \text{if } \widehat{y} \ge 0.5 \end{cases}$$

Black line: decision boundary, relies on linearity (here likely suboptimal)

Hastie, Tibshirani, Friedman, Fig 2.1

K nearest neighbors, 2 predictors, K=3

Voronoi tesselation, K = 1

K. Murphy, Fig 1.14

 Example of memory-based learning or instance-based learning

•
$$p(y = c | \mathbf{x}, \mathcal{D}, K) = \frac{1}{K} \sum_{i \in N_K(\mathbf{x}, \mathcal{D})} I(y_i = c)$$

- Assigns label to y(x) according to the majority of K nearest labels in training set
- $N_K(\mathbf{x}, \mathcal{D})$ is the K-neighborhood
- Closeness requires a metric (e.g., Eucledian distance)
- I is the indicator function
- Apparent parameter: K
- ullet Effective number of parameters: N/K
 - Number of non-overlapping neighborhoods with same mean
 - Grows with N for a fixed K
 - Least squares not appropriate

K nearest neighbors, 2 predictors, K=15

Fewer misclassifications than linear regression

Hastie, Tibshirani, Friedman, Fig 2.2

K nearest neighbors, 2 predictors, K=1

No misclassifications, flexible

Hastie, Tibshirani, Friedman, Fig 2.3

Overfitting and model selection

- Model representation f(x) fits too closely to the training set
 - Typically: too many parameters
- Define misclassification rate

$$- err(f, D) = \frac{1}{N} \sum_{i=1}^{N} I(f(\mathbf{x}_i) \neq y_i)$$

- $-\uparrow$ # parameters $\Rightarrow \downarrow err(f, D)$ on training set
- Define generalization error rate
 - Average misclassification rate over future data
 - Use independent test set or cross-validation
 - Pick # parameters minimizing generalization error rate

Evaluation

Predictive performance on 10,000 independent validation observations

Hastie, Tibshirani, Friedman, Fig 2.4

Local methods in high dimensions

Curse of dimensionality

Curse of dimensionality

 Methods such as KNN do not work well with high-dimensional inputs

• Example:

- Uniformly distribute inputs in D-dim. unit cube
- Take a target data point x
- Build a small hypercube around it until it captures a fixed fraction r of data points
- This corresponds to fraction r of unit volume
- Expected length of the edge of the small hypercube is $e_D(r)=r^{1/D}$
- If D=10, and neighborhood is to contain 10% of data, extend the small hypercube by 80% in each direction
 - \Rightarrow Points so far away in each dimension may not predict well the label of ${\bf x}$

Curse of dimensionality

Hastie, Tibshirani, Friedman, Fig 2.6

Curse of dimensionality

 All sample points are close to the edge of the sample

Example:

- Uniformly distribute inputs in D-dim. unit ball, centered at origin
- Consider a nearest neighbor at origin
- The median distance from the origin to the closest data point is

$$d(D,N) = \left(1 - \frac{1}{2}^{1/N}\right)^{1/D}$$

- If N=500 and D=10, the median distance $d(D,N)\approx 0.52$
 - ⇒ Most data points are closer to the boundary than to the origin
 - ⇒ Prediction must extrapolate from neighboring sample, rather than interpolate

No free lunch theorem

- No single best model works optimally for all problems
 - (Wolpert 1996)
- Different models are needed for different real-world problems

Challenges and opportunities

- New problem formulations
 - Specialized domain knowledge
 - New sources of data
 - Data size and computer architecture
- Resource constraints
 - Privacy
 - Communication (e.g., data aggregation)
- Mimic human behavior
 - Multiple tasks
 - Continuous simple-to-difficult learning
 - Team based / mixed-initiative learning