HIGH-PERFORMANCE BIOLOGICAL COMPUTING University of Illinois at Urbana Champaign

Using High Performance Computing in Computational Genomics

Liudmila Sergeevna Mainzer SPIN June 27, 2016

High Performance Biological Computing A Core Facility Anchored in Research and Technology

IGB, Carver Biotechnology Center, NCSA

Infrastructure: hardware, software, data

User support: experimental design, analysis, statistics

Training: short courses, workshops

Applied R&D: scalability, optimal HPC architectures

Applied R&D at HPCBio

Testing and benchmarking new methods

- Survey of literature and social media, technology trends
- Benchmarking of new methods using our own datasets, comparison to current best practice
- Establishing consistent benchmarks for accuracy and performance (synthetic data, consistency checks)

Scaling of existing methods

- Sizes and numbers of datasets are constantly increasing → scaling issues
- Explore how to best use large scale computational resources (Blue Waters, Clouds) for the analysis of large and complex datasets

Computational systems research

Explore the behavior of best practice workflows when deployed on different systems architectures

Computational Genomics at NCSA and UIUC

Ravi Iyer, Professor of ECE

Architecture:

What kind of computer architecture is best suited for bioinformatics work?

• Performance bottlenecks:

What are the performance bottlenecks for bioinformatics work, on different architectures?

• Future:

How to structure the bioinformatics workflows for best performance on the architectures upcoming in the next 5, 10, 20 years?

What is Genomic Variant Calling? Why do we think it is important? Why does it need high performance computing?

Genomic Variant = a difference in the genetic code

Rahim et al. Genome Biology 2008 9:215

Even a single variant in a single gene can lead to a drastic difference in phenotype

Image from http://www.nhlbi.nih.gov/

Sickle-cell anemia is a Mendelian disease.

NHGRI:

Since 2011, Centers for Mendelian Genomics sequenced >20,000 human exomes.

Human exome ~ 2% human genome

1 sample ~ 10 GB sequencing data 20,000 samples ~ 200 TB sequencing data

Data footprint, scaling up

1 B "Hello World" = 12 B

x1000 = 1 KB 1 page of code ~ 6 KB

x1000 = 1 MB this presentation ~ 2.5 MB

x1000 = 1 GB Soybean sequencing data ~ 4 - 69 GB

x1000 = 1 TB human tumor/normal sample pair, WGS

x1000 = 1 PB daily data production

floppies, memory sticks

laptops, servers

clusters, supercomputers

Biocluster at IGB: 700 TB of project space

iForge at NCSA: 600 TB of project space

Blue Waters: 26 PB of disk storage

20,000 of the NHGRI WES samples ~ 200 TB sequencing data

Petascale storage requirements

Complex traits are influenced by many variants, frequently outside coding regions:

- BMI
- Human height
- Alzheimer's disease
- Diabetes
- Stroke
- Autism
- Heart disease
- Intelligence
- Fertility

NHGRI:

Centers for Common Disease Genomics plan to sequence ~200,000 whole human genomes.

1 sample ~ 200 GB sequencing data (depth-dependent)

200,000 samples ~ 40 PB sequencing data — input data to the variant calling process

2015: Obama announced Precision Medicine Initiative

" to bring us closer to curing diseases like cancer and diabetes – and to give all of us access to the personalized information we need to keep ourselves and our families healthier."

"I want the country that eliminated polio and mapped the human genome to lead <u>a new era</u> of medicine – one that delivers the right treatment at the right time,"

U.S. President Barack Obama delivers his State of the Union address to a joint session of the U.S. Congress on Capitol Hill in Washington, January 20, 2015. Reuters/Jonathan Ernst

NIH http://www.nih.gov/precisionmedicine/

<u>Precision medicine</u> is an emerging approach for disease treatment and prevention that takes into account individual <u>variability in genes</u>, environment, and lifestyle for <u>each</u> person.

Sustained Petascale and Exascale storage requirements

What if we had to genotype every baby being born? = 500 genomes/day in the state of Illinois NIH http://www.nih.gov/precisionmedicine/

NERVE CONDITION - PROBABILITY 60%, MANIC DEPRESSION - 42%, OBESITY - 66%, ATTENTION DEFICIT DISORDER - 89% HEART DISORDER - 99% EARLY FATAL POTENTIAL LIFE EXPECTANCY - 33 YEARS

Sustained Petascale and Exascale storage requirements

What if we had to genotype every baby being born? = 500 genomes/day in the state of Illinois NIH http://www.nih.gov/precisionmedicine/

Input

- > 300-600 GB/genome
- > 150-300 TB/day when analyzing 500 genomes/day

Intermediary

- > 3 TB per sample with intermediaries
- O.3-1.5 PB/day when analyzing 500 genomes/day

Output

➤ Tiny: < 500 M per sample

Compute requirements: Node count, not flops

- Split by chromosome25 chromosomes * 500 genomes = 12,500 jobs
- 3. Realign/Recalibrate 25 chromosomes * 500 genomes = 12,500 jobs
- 4. Variant calling25 chromosomes * 500 genomes = 12,500 jobs

Blue Waters

Node Type	Cray XE6	Cray XK7
CPU	2 x AMD "Interlagos" Opteron 6276	1 x AMD "Interlagos" Opteron 6276
GPU	NA	1 x Nvidia "Kepler" Tesla K20x
Total Nodes	22,640	4,224
Total x86 Cores	362,240	33,792
Cores/Node	16 FP x86_64 cores, 2.45 GHz	8 FP x86 Cores, 2.45 GHz; 2688 CUDA cores
Memory/Node	64 GB	32 GB (CPU) + 6 GB (GPU)
Storage	26.4 petabytes (disk), 380 petabytes (nearline)	
Interconnect	Cray "Gemini" 3D Torus	
OS	Cray Linux 6	

Large scale plant and animal genotyping

Ongoing and future projects

- 1000+ Arabidopsis genomes
- 3,000 Rice varieties
- 1000 Fungal genomes project
- Genome10K: 16,000 Vertebrates
- 5,000 Insect genomes

Complex traits of note

- Plant biomass
- Nutritive content of grain:
 oil, protein, vitamins, minerals
- Parasite resistance
- Milk volume
- Muscle mass

Red & White

Holstein

Jersey

Milking Shorthorn

Ayrshire

Brown Swiss

Guernsey

Purebreddairycattle.com

It won't stop here

Purebreddairycattle.com

The best computer for genomics

Next generation of Blue Waters:

- HPC expertise and a solid, dedicated support team like that on BW is absolutely essential
- Must have ~>256 GB RAM per node
- Nodes must have internal storage: 1-4 TB
- We want lots of cores: 32-64

Acknowledgements

INSTITUTE FOR GENOMIC BIOLOGY

HPCBio

Victor Jongeneel

Gloria Rendon

Chris Fields

NCSA Industry Engagement

Evan Burness

Jim Long

Wayne Hoyenga

Innovative Systems Lab

Volodymyr Kindratenko

Blue Waters support team

Greg Bauer

Victor Anisimov

Ryan Mokos

Kalyana Chadalavada

Alex Parga

Jeremy Enos

Andriy Kot

Jason Alt

Craig Steffen

CompGen

Ravi Iyer

Subho Banerjee

Arjun Athreya

Zachary Stephens

Bob Fiedler

Carlos Sosa

Pierre Carrier

Richard Walsh

Bill Long

Jef Dawson

H3A bionet: UCT **Gerrit Botha Ayton Meintjes** Nicola Mulder