ДЗ по линейной алгебре на 01.12.2021

Кожевников Илья 2112-1

12 декабря 2021 г.

№1

Необходимо доказать, что $\langle 2x^2+x+1,x^2-x+1,x\rangle=\mathbb{R}[x]_{\leq 2}$. Но любой многочлен степени ≤ 2 представим в виде ax^2+bx+c , где $a,b,c\in\mathbb{R}$. Значит, если мы покажем, что каждое из слагаемых ax^2,bx,c может быть получено в виде линейной комбинации системы векторов $2x^2+x+1,x^2-x+1,x$, то высказывание будет доказано.

Тогда пронумеруем все векторы из нашей системы:

$$2x^{2} + x + 1 - (1)$$
$$x^{2} - x + 1 - (2)$$
$$x - (3)$$

Тогда распишем, как мы можем получить каждое из слагаемых ax^2, bx, c :

$$ax^{2} = a \cdot ((1) - (2) - 2 \cdot (3)) = ax^{2}$$

$$bx = b \cdot (3) = bx$$

$$c = c \cdot (-(1) + 2 \cdot (2) + 3 \cdot (3)) = c \cdot 1 = c$$

Значит, мы любой многочлен вида ax^2+bx+c мы можем получить с помощью суммы вышеописанных слагаемых, умноженных на необходимые коэффициенты a,b,c. Ч.Т.Д.

№2

1)
$$\begin{cases}
x_1 - 2x_2 - x_3 + 2x_4 = 0 \\
-x_1 + 2x_2 + 2x_3 - 7x_4 = 0
\end{cases}$$

$$\begin{pmatrix}
1 & -2 & -1 & 2 \\
-1 & 2 & 2 & -7
\end{pmatrix} + (1) \rightarrow \begin{pmatrix}
1 & -2 & -1 & 2 \\
0 & 0 & 1 & -5
\end{pmatrix} + (1) \rightarrow \begin{pmatrix}
1 & -2 & 0 & -3 \\
0 & 0 & 1 & -5
\end{pmatrix}$$

$$\begin{vmatrix}
x_1 & x_2 & x_3 & x_4 \\
2 & 1 & 0 & 0 \\
3 & 0 & 5 & 1
\end{vmatrix}$$

Otbet: $(2, 1, 0, 0)^T$, $(3, 0, 5, 1)^T$

$$\begin{cases} 12x_1 + 9x_2 + 3x_3 + 10x_4 = 0 \\ 4x_1 + 3x_2 + 1x_3 + 2x_4 = 0 \\ 8x_1 + 6x_2 + 2x_3 + 5x_4 = 0 \end{cases}$$

$$\begin{pmatrix} 12 & 9 & 3 & 10 \\ 4 & 3 & 1 & 2 \\ 8 & 6 & 2 & 5 \end{pmatrix} - (2) \cdot 3 \rightarrow \begin{pmatrix} 0 & 0 & 0 & 4 \\ 4 & 3 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \frac{1}{4} \rightarrow \begin{pmatrix} 1 & \frac{3}{4} & \frac{1}{4} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{3}{4} & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{x_1}{-\frac{3}{4}} \begin{vmatrix} x_2 & x_3 & x_4 \\ -\frac{3}{4} & 1 & 0 & 0 \\ -\frac{1}{4} & 0 & 1 & 0 \end{cases}$$

Otbet: $(-\frac{3}{4}, 1, 0, 0)^T, (-\frac{1}{4}, 0, 1, 0)^T$

3)

$$\begin{cases} x_1 - 2x_2 + 4x_3 + 3x_4 + x_6 = 0 \\ 3x_4 + 2x_5 + 17x_6 = 0 \end{cases}$$

$$\begin{cases} 2x_1 - 4x_2 + 8x_3 + 2x_5 - 5x_6 = 0 \\ 2x_1 - 4x_2 + 8x_3 + 2x_5 - 5x_6 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 3 & 2 & 17 \\ 2 & -4 & 8 & 0 & 2 & -5 \\ 0 & 0 & 0 & 3 & -2 & -1 \end{pmatrix} - (1) \cdot 2 \rightarrow \begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 3 & 2 & 17 \\ 0 & 0 & 0 & 0 & -4 & -18 \end{pmatrix} + (2) \cdot 2 \rightarrow \begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 3 & 2 & 17 \\ 0 & 0 & 0 & 0 & 6 & 27 \\ 0 & 0 & 0 & 0 & 6 & 27 \\ 0 & 0 & 0 & 0 & -4 & -18 \end{pmatrix} + (3), \cdot \frac{1}{2} \rightarrow \begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & \frac{2}{3} & \frac{17}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{2}{3} & \frac{17}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{9}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & \frac{2}{3} & \frac{17}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{9}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & \frac{2}{3} & \frac{17}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{9}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 4 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & \frac{2}{3} & \frac{17}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{9}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 4 & 0 & 0 & -7 \\ 0 & 0 & 0 & 1 & 0 & \frac{8}{3} \\ 0 & 0 & 0 & 0 & 1 & \frac{9}{2} \end{pmatrix}$$

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad$$

OTBET: $(2, 1, 0, 0, 0, 0)^T$, $(-4, 0, 1, 0, 0, 0)^T$, $(7, 0, 0, -\frac{8}{3}, -\frac{9}{2}, 1)^T$

4)

$$\begin{cases} x_1 + 2x_2 - 4x_3 = 0 \\ x_1 - 2x_2 + x_3 = 0 \\ \begin{pmatrix} 1 & 2 & -4 \\ 1 & -2 & 1 \end{pmatrix} \xrightarrow{-(2)} \xrightarrow{} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 4 & -5 \end{pmatrix}$$

$$\begin{array}{c|cccc} \hline x_1 & x_2 & x_3 \\ \hline -1 & \frac{5}{4} & 1 \end{array}$$

Ответ: $(-1, \frac{5}{4}, 1)^T$

5)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ (1 \ 2 \ 3) \\ \hline x_1 \ x_2 \ x_3 \\ \hline -2 \ 1 \ 0 \\ \hline -3 \ 0 \ 1 \\ \end{bmatrix}$$

Ответ: $(-2, 1, 0)^T$, $(-3, 0, 1)^T$

6)

$$\begin{cases} x_2 + 5x_3 + 5x_4 = 0 \\ 5x_3 + 2x_4 = 0 \end{cases}$$

$$\begin{pmatrix} 0 & 1 & 5 & 5 \\ 0 & 0 & 5 & 2 \end{pmatrix}$$

$$\begin{array}{c|cccc} x_1 & x_2 & x_3 & x_4 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & -\frac{2}{5} & 1 \\ \end{pmatrix}$$

Ответ: $(1,0,0,0)^T$, $(0,0,-\frac{2}{5},1)^T$

7)

$$\begin{cases} x_1 + 3x_2 = 0 \\ 2x_1 + x_2 = 0 \\ x_1 - x_2 = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}$$

Заметим, что количество векторов в ФСР равняется количеству свободных переменных. Но тут свободных переменных не будет, т.к. количество строк больше количества столбцов. Значит, в ФСР не будет векторов.

№3

$$\begin{cases} \alpha_{3} + \alpha_{2} + \alpha_{1} + \alpha_{0} = 0 \\ 3\alpha_{3} + 2\alpha_{2} + \alpha_{1} = 0 \end{cases}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 3 & 2 & 1 & 0 & | & 0 \end{pmatrix} - (1) \cdot 3 \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 0 & -1 & -2 & -3 & | & 0 \end{pmatrix} \cdot (-1) \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 0 & 1 & 2 & 3 & | & 0 \end{pmatrix}$$

$$\begin{vmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\ 1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1 \end{vmatrix}$$

Тогда базис будут составлять многочлены $(\alpha_3 x^3, -2\alpha_2 x^2, \alpha_1 x, 0)^T, (2\alpha_3 x^3, -3\alpha_2 x^2, 0, \alpha_0)^T$, а размерность будет 2.

Other: $(\alpha_3 x^3, -2\alpha_2 x^2, \alpha_1 x, 0)^T, (2\alpha_3 x^3, -3\alpha_2 x^2, 0, \alpha_0)^T, 2$

Докажем три свойства:

- 1) в множестве есть нулевой элемент
- 2) Если есть x и y, то x + y также принадлежит множеству
- 3) Если есть x и скаляр λ , то λ x также принадлежит множеству.
- 1) При х, являющейся, нулевой матрицей, выполняется tr(XY)=0. Значит, 1) свойство выполняется.
- 2) Т.к. $tr(X_1Y)=0$ и $tr(X_2Y)=0$, то $tr(X_1Y)+tr(X_2Y)=0+0=0$. Значит, 2) свойство выполняется.
- 3) Т.к. $tr(\lambda XY) = \lambda tr(XY) = \lambda \cdot 0 = 0$. Значит, 3) свойство выполняется.

Из выполнения всех трех свойств следует, что множество таких матриц составляет подпространство.

Запишем нашу матрицу Y и X в виде векторов: $(2,3,5,4)^T, (x_1,x_2,x_3,x_4)^T$

Тогда $XY = (2x_1 + 5x_2, 3x_1 + 4x_2, 2x_3 + 5x_4, 3x_3 + 4x_4)$

Тогда $2x_1 + 5x_2 + 3x_3 + 4x_4 = 0 \rightarrow (1, \frac{5}{2}, \frac{3}{2}, 2)$

x_1	x_2	x_3	x_4
$-\frac{5}{2}$	1	0	0
$-\frac{3}{2}$	0	1	0
-2	0	0	1

Тогда базис будет состоять из $\begin{pmatrix} -\frac{5}{2} & 1\\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} -\frac{3}{2} & 0\\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} -2 & 0\\ 0 & 1 \end{pmatrix}$, а размерность будет равна 3.

Ответ:
$$\begin{pmatrix} -\frac{5}{2} & 1 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} -\frac{3}{2} & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$, размерность - 3.

№5

Запишем векторы в строки матрицы.

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\
2 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 3 & 4
\end{pmatrix} - (1) \cdot 2 \rightarrow
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 3 & 4
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 3 & 4
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 3 & 4
\end{pmatrix} - (2) \rightarrow
\begin{pmatrix}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 3
\end{pmatrix}$$

Тогда базис будут составлять векторы $(1,0,0,-1,0)^T,(0,1,1,2,1)^T,(0,0,0,1,3)^T$

Otbet: $(1,0,0,-1,0)^T$, $(0,1,1,2,1)^T$, $(0,0,0,1,3)^T$