

Varianta 47

Subjectul I.

- **a**) a = 2.
- **b**) 5.
- **c**) |z| = 1.
- **d)** Raza cercului este r = 2.
- e) $\sin \frac{\pi}{4} + \sin \frac{5\pi}{4} = 0$.
- **f**) Aria pătratului este S = 4.

Subjectul II.

- 1.
- a) $y_V = -\frac{1}{4}$ este valoarea minimă a funcției f.
- **b**) $\frac{1}{a} + \frac{1}{b} = \frac{3}{2}$.
- c) $y \in \{0, \log_3 2\}.$
- **d**) $t \in \{2, 4\}$.
- e) $\begin{vmatrix} 3a & 2b \\ a & b \end{vmatrix} = 2$.
- 2
- **a)** $f'(x) = -\frac{2x}{(1+x^2)^2}, x \in \mathbf{R}.$
- **b**) $x \in (-\infty, -1] \cup [1, \infty)$.
- c) Ecuația asimptotei spre $+\infty$ la graficul funcției f este Ox: y = 0.
- **d**) $\lim_{n \to \infty} (n^2 \cdot f(n))^{2n} = 1$.
- e) $\int_{0}^{1} f(x) dx = \frac{\pi}{4}$.

Subjectul III.

- a) Se arată prin reducere la absurd.
- **b**) Funcția polinomială asociată polinomului f este strict crescătoare și de grad impar.
- c) Pentru $\hat{f} \in \mathbf{Q}[X]$, avem $f(\hat{a}) = 0$, deci $0 \in \mathbf{Q}(a)$.
- Considerăm polinomul $g = f + 1 \in \mathbb{Q}[X]$. Deoarece g(a) = f(a) + 1 = 1, $1 \in \mathbb{Q}(a)$.
- d) Evident.

- e) Se arată prin dublă incluziune. La " \subset " se folosește teorema împărțirii cu rest, pentru polinoamele g și f.
- f) Deoarece $a \in \mathbf{R} \setminus \mathbf{Q}$ este rădăcină a lui f, avem $a^3 = -2a 2 \in \mathbf{R} \setminus \mathbf{Q}$ Considerăm $p, q, r \in \mathbf{Q}$, astfel încât $p + qa + ra^2 = 0$.

Înmulțind relația precedentă cu $a \neq 0$ și reducându-l pe a^2 , deoarece $a \in \mathbf{R} \setminus \mathbf{Q}$, rezultă $pqr = 2r^2q + q^3 = -2r^3$, adică $q^3 + 2r^2q + 2r^3 = 0$ (1)

Dacă $r \neq 0$, împărțind relația precedentă la $r^3 \neq 0$ deducem că $\alpha = \frac{q}{r} \in \mathbf{Q}$ este o rădăcină a lui f, contradicție cu punctul \mathbf{a}). Obținem că r = 0 și din apoi q = 0 și p = 0.

g) Presupunem că $a^{2006} = t \in \mathbf{Q}$. Considerăm polinomul $g \in \mathbf{Q}[X]$, $g = X^{2006} - t$. Se arată că $g = f \cdot q$, deci toate rădăcinile lui f sunt și rădăcini ale lui g. Deoarece

toate rădăcinile lui g au același modul, rezultă că și rădăcinile a, x_2, x_3 ale lui f sunt de module egale. Avem $|a|^3 = |a \cdot x_2 \cdot x_3| = \left|-\frac{2}{1}\right| = 2$, de unde rezultă $a = -\sqrt[3]{2}$.

Cum $f(-\sqrt[3]{2}) = 2 \cdot \sqrt[3]{2} \neq 0$, am ajuns la o contradicție, așadar $a^{2006} \in \mathbf{R} \setminus \mathbf{Q}$.

Subjectul IV.

- a) Se arată prin calcul direct.
- b) Se arată prin calcul direct.

c)
$$f_2(x) = \frac{(x+1)^2}{2} + \frac{1}{2} \ge \frac{1}{2}$$
, $\forall x \in \mathbf{R}$.

- d) Se arată prin calcul direct.
- e) Se folosește principiul întâi al inducției matematice și punctul b).
- **f**) Din punctul **e**) știm că $f_{2006}(x) > 0$, $\forall x \in \mathbf{R}$ și cum $f'_{2007} = f_{2006}$, deducem că funcția f_{2007} este strict crescătoare pe \mathbf{R} , deci injectivă.

Deoarece f_{2007} este continuă pe \mathbf{R} , $\lim_{x \to -\infty} f_{2007}(x) = -\infty$ și $\lim_{x \to \infty} f_{2007}(x) = +\infty$,

rezultă că $\operatorname{Im} f = \mathbf{R}$, deci f este și surjectivă. În concluzie, f este bijectivă.

g) Din punctul a) deducem că $f_{2006}''(x) = f_{2005}(x) = f_{2004}(x) > 0$, $\forall x \in \mathbf{R}$, de unde rezultă că funcția f_{2006} este convexă pe \mathbf{R} .