5.6. Поверхностные интегралы

Поверхностные интегралы І рода (по участку поверхности)

Задача: найти массу поверхности. Дана функция u = u(x, y, z) (ее физический смысл плотность)

Элементарная масса: $dm = u_{\rm cp.}(\xi, \eta, \zeta)d\sigma$, $d\sigma$ – элемент поверхности

$$M = \iint_S dm = \iint_S u(x,y,z)$$
 — поверхностный интеграл I рода

- (a) Дробление S на элементы $\Delta \sigma_k$ координатными плоскостями $x=x_i,y=y_i$
- (b) Определение средней точки (ξ_k, η_k, ζ_k)
- (c) Интегральная сумма $v_n = \sum_{k=1}^n u(\xi_k, \eta_k, \zeta_k) \Delta \sigma_k$
- (d) **Def.** $\iint_S u(x,y,z)\Delta\sigma = \lim_{\substack{n\to\infty\\ \tau=\max\Delta\sigma_k\to 0}} \nu_n$ поверхностный интеграл первого рода

Свойства: смена обхода поверхности S не меняет знака интеграла: $\iint u d\sigma = \iint u d\sigma$

Вычисление

Mem. Криволинейный интеграл $\int_L f(x,y) dl$ мы вычисляли через параметризацию кривой одной переменной $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $t \in [\alpha,\beta]$, замену элементарного участка dl = 0

$$\sqrt{\varphi'^2(t)+\psi'^2(t)}|dt|$$
 и функции $f(x,y)$ на $\tilde{f}(t)$. Получаем $\iint_L f(x,y)dl = \int_{lpha}^{\ eta} \tilde{f}(t)\sqrt{\varphi'^2(t)+\psi'^2(t)}|dt|$

Аналогично для поверхностного: $\iint_{C} u(x,y,z)d\sigma$

- (a) Параметризация S: самая частая $z=z(x,y), (x,y)\in D$ пределы интегрирования
- (b) $d\sigma = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} |dxdy|$, но так как в двойном интеграле договорились, что dxdy > 0 (площадь), модуль можно не ставить (область D проходится в направлении против часовой стрелки)

(c)
$$u(x,y,z) = \tilde{u}(x,y,z(x,y)) = \tilde{u}(x,y)$$

$$\iint_S u(x,y,z)d\sigma = \iint_{D^+} \tilde{u}(x,y)\sqrt{1+z_x'^2+z_y'^2}dxdy$$

Ex. S:
$$x^2 + y^2 = z^2$$
, $z = 0$, $z = 1$

$$\iint_{S} z d\sigma = \begin{bmatrix} S: z = \sqrt{x^2 + y^2} \\ D: \text{круг}, x^2 + y^2 = 1 \\ d\sigma = \sqrt{1 + \frac{x^2}{x^2 + y^2}} + \frac{y^2}{x^2 + y^2} dx dy = \sqrt{2} dx dy \end{bmatrix} = \iint_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} \sqrt{2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} dx dy = \left[\text{переход в ПСК}\right] = \int_{D} \sqrt{x^2 + y^2} dx dy = \left[\text{переход в ПСК}$$

$$\sqrt{2} \int_0^{2\pi} d\varphi \int_0^{\rho} \rho \underbrace{\rho d\rho}_{|I|} = \sqrt{2} 2\pi \frac{\rho^3}{3} \Big|_0^1 = \frac{2\sqrt{2}\pi}{3}$$

2* Поверхностный интеграл II рода.

Задача: нахождение потока

Будем говорить о потоке вектора $\vec{F} = (P,Q,R)$ через площадку S в направлении нормали $\vec{n^+}$ или $\vec{n^-}$

Если задано поле жидких скоростей, то потоком называют количество жидкости, протекающей через S за время Δt

В простой ситуации поток $\Pi = FS$ $(\vec{F} \perp S, \vec{F} = \text{const})$

В общем случаем \vec{F} – переменная, S – искривленная и $\angle \vec{F}, S \neq \frac{\pi}{2}$

Переходим к вычислению элементарного потока $d\Pi$

 $d\sigma$ – малый элемент поверхности (почти плоский)

В пределах $d\sigma$ \vec{F} меняется мало, за среднее берем $\vec{F}=(P,Q,R),$ где P=P(x,y,z),Q=Q(x,y,z),R(x,y,z)

Разберемся с наклоном: если площадка перпендикулярна, то $d\Pi = F d\sigma$, но в нашем случае высота цилиндра равна проек. $\vec{n} = (\vec{n}, \vec{F}) = F \cos \varphi$, где \vec{n} – единичный вектор нормали, φ – угол между нормалью и потоком, $d\Pi = (\vec{F}, \vec{n}) d\sigma = F_n d\sigma$

Пусть $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)$, тогда $d\Pi = (\vec{F}, (\cos \alpha, \cos \beta, \cos \gamma)) d\sigma = (P\cos \alpha, Q\cos \beta, R\cos \gamma) d\sigma$ Итак, $\Pi = \iint_{S^{\vec{n}}} d\Pi = \iint_{S^{\vec{n}}} F_n d\sigma = \iint_{S^{\vec{n}}} (\vec{F}, \vec{n}) d\sigma = \iint_{S^{\vec{n}}} (P\cos \alpha + Q\cos \beta + R\cos \gamma) d\sigma$

Но, еще нет координатной записи подынтегрального выражения. Спроектируем $d\sigma$ на координатные плоскости: сначала разрежем поверхность S на элементы плоскостями x = const, y = const (и, таким образом, уточним форму $d\sigma$). Так как $d\sigma$ мал, то можно считать его плоским параллелограммом

Тогда $\cos \gamma d\sigma = \pm dxdy \ (\gamma - \text{угол между нормалью и осью } Oz)$

Нашли последнее слагаемое $\iint_{S^{\vec{n}}} R\cos\gamma d\sigma$ в исходном интеграле (I рода, так как по участку $d\sigma$)

Найдем $\iint_{S^{\vec{n}}} Q \cos \beta d\sigma$, разобьем поверхность на участки $d\sigma$ плоскостями $x={\rm const.}$

Аналогично $\cos \beta d\sigma = \pm dxdz$

Тогда в $\iint_{S^{\vec{n}}} P \cos \alpha d\sigma$ $\cos \alpha d\sigma = \pm dy dz$

Окончательно, поток $\Pi = \iint_{S^{\vec{n}}} \pm P dy dz \pm Q dx dz \pm R dx dy = \iint_{S^{\vec{n}}} (P\cos\alpha + Q\cos\beta + R\cos\gamma) d\sigma$ связь интегралов I и II рода

Nota. Формулу интеграла можно получить еще так: $(\vec{F}, \vec{n})d\sigma = \vec{F}\vec{n}d\sigma = \vec{F}d\vec{\sigma}$, где $d\vec{\sigma} = (\pm dydz, \pm dxdz, \pm dxdy)$

$$\mathbf{Def.}\ I = \iint_{S^{\vec{n}}} \vec{F}(x,y,z) d\vec{\sigma} = \lim_{\substack{n \to \infty \\ \tau = \max \Delta s_k \to 0}} \sum_{k=1}^n \vec{F}(\xi_k,\eta_k,\zeta_k) \Delta s_k$$
 — поверхностный интеграл второго

рода ($\Delta s_k = \Delta x \Delta y$ — любого знака, согласованного с обходом)

Свойства: интеграл меняет знак при смене обхода с \vec{n}^+ на \vec{n}^-

Вычисление:

(a) Параметризация S:

• для
$$\iint Rdxdy \quad z = z(x,y)$$

• для
$$\iint Qdxdz$$
 $y = y(x,z)$

• для
$$\iint Pdydz \quad x = x(y,z)$$

Пределы интегрирования: D_{xy} = проек. $_{Oxy}S$ для $\iint Rdxdy$, D_{xz} = проек. $_{Oxz}S$ для $\iint Qdxdz$, D_{yz} = проек. $_{Oyz}S$ для $\iint Pdydz$

- (b) $d\vec{x}dy \to \pm dxdy$, если обход D_{xy} в направлении против часовой стрелки ($\pm dxdy$, если угол между \vec{n} и Oz острый, иначе -dxdy, аналогично с другими в зависимости от угла между нормалью и осью)
- (c) $R(x, y, z) = \tilde{R}(x, y, z(x, y)), P(x, y, z) = \tilde{P}(x(y, z), y, z), Q(x, y, z) = \tilde{Q}(x, y(x, z), z)$

(d)
$$\iint_{S^{\overrightarrow{n}}} \tilde{F}(x,y,z) d\vec{\sigma} = \iint_{D} \pm \tilde{P} dy dz \pm \tilde{Q} dx dz \pm \tilde{R} dx dy = \iint_{D_{yz}} \pm \tilde{P} dy dz + \iint_{D_{xz}} \pm \tilde{Q} dx dz + \iint_{D_{xy}} \pm \tilde{R} dx dy$$