Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

1

Plan

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

Chapter 9. Two-Sample Inferences

- § 9.1 Introduction
- § 9.2 Testing $H_0: \mu_X = \mu_Y$
- § 9.3 Testing $H_0: \sigma_X^2 = \sigma_Y^2$
- § 9.4 Binomial Data: Testing $H_0: p_X = p_Y$
- § 9.5 Confidence Intervals for the Two-Sample Problem

Mot. 1

Mot. 2 To test $H_0: \mu_X = \mu_Y$ under the assumption $\sigma_X^2 = \sigma_Y^2$, we need to first test $\sigma_X^2 = \sigma_Y^2$.

Mot. 1

Mot. 2 To test $H_0: \overline{\mu_X} = \mu_Y$ under the assumption $\sigma_X^2 = \sigma_Y^2$, we need to first test $\sigma_X^2 = \sigma_Y^2$.

Testing
$$H_0: \sigma_X^2 = \sigma_Y^2$$

v.s.

(at the α level of significance)

$$\begin{array}{lll} H_1: \sigma_X^2 < \sigma_Y^2 \colon & H_1: \sigma_X^2 \neq \sigma_Y^2 \colon & H_1: \sigma_X^2 > \sigma_Y^2 \colon \\ & \text{Reject H_0 if} & \text{Reject H_0 if} & \text{Reject H_0 if} \\ & s_Y^2 / s_X^2 \leq F_{\alpha,m-1,n-1} & s_Y^2 / s_X^2 \geq F_{1-\alpha/2,m-1,n-1} & s_Y^2 / s_X^2 \geq F_{1-\alpha,m-1,n-1} \\ & & \text{or} \\ & s_Y^2 / s_X^2 \leq F_{\alpha/2,m-1,n-1} & s_Y^2 / s_X^2 \geq F_{1-\alpha,m-1,n-1} \end{array}$$

E.g. Electroencephalograms (EEG).

Twenty inmates in a Canadian prison, randomly split into two groups of equal size: one in solitary confinement, one in their own cells.

Measure the alpha waves. Whether the observed difference in variability is significant (set $\alpha=0.05$.)

Sol. ..

E.g. Electroencephalograms (EEG).

Twenty inmates in a Canadian prison, randomly split into two groups of equal size: one in solitary confinement, one in their own cells.

Measure the alpha waves. Whether the observed difference in variability is significant (set $\alpha=0.05$.)

Table 9.3.1 Alpha-Wave Frequencies (CPS)	
Nonconfined, x_i	Solitary Confinement, y _i
10.7	9.6
10.7	10.4
10.4	9.7
10.9	10.3
10.5	9.2
10.3	9.3
9.6	9.9
11.1	9.5
11.2	9.0
10.4	10.9

Figure 9.3.2 Alpha-wave frequencies (cps).

Sol. ...

Another example here:

https://www.itl.nist.gov/div898/handbook/eda/section3/
eda359.htm