

دانشگاه تهران دانشکده ی مهندسی برق و کامپیوتر گروه هوش ماشین و رباتیک

Multi-Agent Deep Reinforcement Learning for Fighting Forest Fires

استفاده از یادگیری تقویتی عمیق چند عاملی برای مهار آتش جنگل ها

امیرحسین مصباح بنفشه کریمیان عرفان میرزایی

پروژه درس: یادگیری تعاملی استاد مربوطه: دکتر نیلی

اسفند ماه ۱۳۹۹

Initial Idea

Forest Fires:

- An Important part of natural and Economical damages
- Cost over 1 Billion dollars per year for fighting fires

- Save lives of firefighters and other humans
- Save Natural Resources and Animal lives

Initial Idea

Solution:

Using intelligent multi-agent robotics

Problem Definition

Main Parts:

Environment

Agents

Learning Method

Environment

- 1.Grid with any size
- 2.gird_env and grid_type
- 3.Init_fire
- 4.propagate(wind, table)
- 5.Terminate

video capturing from each episode

	Healthy	On-Fire	Burnt
Healthy	1 – P_fire	P_fire	0
On-Fire	0	1 - P_burnt	P_burnt
Burnt	0	0	1

Environment

Simplified model of UAV drones

Actions:

Fire retardant

Moving to 8 neighbors

Sensors:

- Camera: 3X3 environment type and 3X3 environment state
- Radio: communication and receive initial mean fire position (updated with camera data)

Group structure:

Levels:

- Level 0: queen
- Level 1: worker
- Level 2: scout

Finding the best architecture using Genetic algorithm:

Chromosome: Queen # Worker# Scout # Probability = 50 % Child 1 Parent 1 Queen # Worker# Scout # Worker# Queen # Scout # Child 2 Parent 2 Queen # Worker # Scout # Queen # Scout # Worker#

Fitness_function(X):

make architecture based on X

initialize Agent

live n episodes and receive reward (Pre-trained Network is used)

return fitness based on received reward

architecture based on chromosome

Challenges:

Partial Observation

- Non-Stationary Environment
- Social Rewarding
- Large State Action Space

Observation Space $\sim 3^{18} * size^4$ Action Space ~ 18

Algorithm 2

Initialize R_base, social_importance, individual_importance, home_fire_importance If action == fire retardant:

If type == home and on_fire: Individual_R += R_base * home_fire_importance

Elif type == tree and on_fire: Individual_R += R_base

Else: Individual_R -= R_base

If on_border and on_fire: Individual_R += R_base

If action == move:

If collision: Individual_R -= collision_importance* R_base

Social_R = count new grid cells on_fire or burnt

Return Social_R* social_importance + Individual_R* individual_importance

Learning Method

Double Deep Q-Network

	Input Layer	1 st Hidden Layer	2 nd Hidden Layer	Output Layer
Q- Network	22	256	256	18
Target- Network	22	128	128	18

Learning Method

choose best action with probability of 1- epsilon,
choose action random with probability of epsilon/2
choose action from heuristic with probability of epsilon/2
take action and get reward
communicate with other agents
observe new state
update Q_network

Results

Epsilon = 0.9

Epsilon_dec = 5e-4

Epsilon_min = 0.005

type_plane = [[0,1,2],[0.005,1,0.095]]

Size = 10 * 10 indiviual_reward_importance = 01 social_reward_importance = 0.1 p_change_wind = 0. 1 P_burn = 0.01

Results

Shortage in Computational power:

- Need to train More ...
- About 4 hour for 1000 episode on the network

Suggestions for future works

- Limit the capacity of fire retardant materials for agents
- Add Help request to agent actions
- Consider different altitudes for UAVs

- Consider effect of social and individual importance on agent behaviors
- Consider effect of Network Architecture
- Consider different soft policies
- Transfer Learned knowledge for larger environments and it effects on learning speed

Thanks for your attention