In [1]:

```
import numpy as np
   import pandas as pd
 3
   import matplotlib.pyplot as plt
 4
   from math import sqrt
 5
 6
   from sklearn.cross_validation import train_test_split
 7
   from sklearn import model selection
 8
   from sklearn import neighbors
9
   from sklearn import metrics
10
11
12
   from sklearn.ensemble import RandomForestClassifier
13
14
   %matplotlib inline
```

Задача 12

Предсказать сорт винограда из которого сделано вино, используя результаты химических анализов, с помощью KNN - метода k ближайших соседей с тремя различными метриками. Построить график зависимости величины ошибки от числа соседей k.

Данные: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data)
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data)

Считаем данные

In [210]:

Out[210]:

	Class	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proa
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
4										

In [3]:

1 wine.shape

Out[3]:

(178, 14)

Посмотрим, как выглядит распределение вин по классам

In [4]:

```
stat = wine.groupby('Class')['Class'].agg(lambda x : float(len(x))/wine.shape[0])
stat.plot(kind='bar', fontsize=14, width=0.9, color="red")
plt.xticks(rotation=0)
plt.ylabel('Proportion', fontsize=14)
plt.xlabel('Class', fontsize=14)
```

Out[4]:

Text(0.5, 0, 'Class')

Разделим нашу выборку на тестовую и обучающую

In [73]:

```
1 X_train, X_test, y_train, y_test = train_test_split(wine.loc[:, wine.columns != 'Class
2 stratify=wine[['Class']])
```

kNN-метод

Обучим нашу модель метода k ближайших соседей с тремя различными метриками для разных k

In [74]:

```
used_metrics = ['euclidean', 'manhattan', 'chebyshev']
2
  n_max = 100
3
  accuracy = np.zeros((3, n_max+1))
4
  for i in range(3):
5
       for num_neighbors in range(1, n_max+1):
6
           nb = neighbors.KNeighborsClassifier(n_neighbors = num_neighbors, metric = used)
7
           nb.fit(X_train, y_train)
8
           prediction = nb.predict(X_test)
9
           accuracy[i][num_neighbors] = metrics.accuracy_score(y_test, prediction)
```

Представим полученные результаты на графике и найдём наилучшее значение параметра k в смысле каждой метрики

In [207]:

```
plt.figure(figsize=(15, 8))
for i in range(3):
    plt.plot(np.linspace(1, n_max, n_max-1), accuracy[i][2:], label = used_metrics[i])
    print(used_metrics[i] + ': ' + str(np.argmax(accuracy[i][2:])))
plt.title('Dependency of accuracy from number of neighbors in kNN', fontsize=14)
plt.xlabel('Number of neighbors', fontsize=14)
plt.ylabel('Accuracy', fontsize=14)
plt.legend()
```

euclidean: 19
manhattan: 2
chebyshev: 19

Out[207]:

<matplotlib.legend.Legend at 0x177383c3cf8>

In [208]:

```
plt.figure(figsize=(15, 8))
plt.plot(np.linspace(1, n_max, n_max-1), sum(accuracy)[2:])
plt.title('Dependency of sum of accuracy from number of neighbors in kNN', fontsize=14
plt.xlabel('Number of neighbors', fontsize=14)
plt.ylabel('Accuracy', fontsize=14)
print("Maximun on " + str(np.argmax(sum(accuracy)[2:])) + " neighbors")
```

Maximun on 19 neighbors

Таким образом видим, что в целом качество довольно хорошее, но нет какой-либо четной зависимости от значения к колличества ближайших соседей, за исключением того, что ближе к 100 качество начинает падать. Оно и понятно, так как в нашей выбоке всего 174 элемента, а мы берём больше половины выборки и по всем этим точкам определяем класс одной.

Результаты вне задания

Посчитаем среднеквадратичную функцию потерь

In [77]:

```
nb = neighbors.KNeighborsClassifier(n_neighbors = np.argmax(sum(accuracy)[2:]))
nb.fit(X_train, y_train)
prediction = nb.predict(X_test)
sqrt(metrics.mean_squared_error(y_test, prediction))
```

Out[77]:

0.4944132324730442

Видим, что её значение не самое лучшее, поэтому не будем останавливаться на требованиях задания и попробуем улучшить модель

Посмотрим как располагаются облака точкек по каждой из характеристик в зависимости от класса

In [78]:

```
1
   def jitter(arr):
2
       return arr + np.random.uniform(low=-0.35, high=0.35, size=len(arr))
3
4
  plt.figure(figsize = (22, 24))
5
   for i in range (1, 14):
       plt.subplot(5, 4, i)
6
       plt.scatter(jitter(wine['Class']), wine.iloc[:, i], c=wine["Class"], edgecolors="b")
7
       plt.xlabel('Class', fontsize=14)
8
9
       plt.ylabel(str(wine.columns[i]), fontsize=14)
```


Видим, что классы довольно не плохо разделяются по некоторым признакам -- применим алгоритм построения случайного леса

Random Forest

```
In [79]:
 1 rf = RandomForestClassifier(n_estimators=5, min_samples_leaf=3)
In [80]:
   rf.fit(X_train, y_train)
Out[80]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=3, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=5, n_jobs=1,
            oob score=False, random state=None, verbose=0,
            warm_start=False)
Посчитаем среднеквадратичную функцию потерь
In [81]:
    sqrt(metrics.mean_squared_error(rf.predict(X_train), y_train))
Out[81]:
0.086710996952412
In [82]:
   sqrt(metrics.mean squared error(rf.predict(X test), y test))
```

Out[82]:

0.14907119849998599

Видим, что нам удалось кратно улучшить качество по сравнению с kNN

И это объяснимо, если мы посмотрим, какие вообще классы предсказываются нашеми моделями

In [209]:

```
plt.figure(figsize = (14,7))
 2
   plt.subplot(121)
 3
   plt.hist([rf.predict(X_test), y_test], bins=3, range=[0.5, 3.5], label=['Prediction',
4
 5
   plt.title('Random Forest')
   plt.legend()
 7
   plt.grid()
   plt.ylabel('Capacity', fontsize=14)
9
   plt.ylim(top = 20)
   plt.xlabel('Class', fontsize=14)
10
11
12
   plt.subplot(122)
   plt.hist([nb.predict(X_test), y_test], bins=3, range=[0.5, 3.5], label=['Prediction',
13
   plt.title('kNN')
   plt.legend()
15
16
   plt.grid()
   plt.ylabel('Capacity', fontsize=14)
17
   plt.ylim(top = 20)
18
   plt.xlabel('Class', fontsize=14)
```

Out[209]:

Text(0.5, 0, 'Class')

Ещё один интересный факт

Посмотрим, какие признаки обладают наибольшей предсказательной способностью в определении сорта винограда, из которого было сделано вино:

M

In [84]:

```
importances = pd.DataFrame(zip(X_train.columns, rf.feature_importances_))
importances.columns = ['feature name', 'importance']
importances.sort_values(by='importance', ascending=False)
```

Out[84]:

	feature name	importance
0	Alcohol	0.213719
11	OD280/OD315 of diluted wines	0.153593
10	Hue	0.141932
12	Proline	0.121977
4	Magnesium	0.091094
9	Color intensity	0.091038
8	Proanthocyanins	0.081232
6	Flavanoids	0.048706
1	Malic acid	0.024899
3	Alcalinity of ash	0.023975
7	Nonflavanoid phenols	0.007836
2	Ash	0.000000
5	Total phenols	0.000000

In []: