

单位代码______ 学 号 <u>ZY2303803</u> 分 类 号_____

北京航空航天大學

深度学习与自然语言处理(NLP)第二次课后作业

院(糸)名称	自动化科学与电气工程学院		
专业名称	自动化		
学 生 姓 名	董晨辉		

2024年05月

深度学习与自然语言处理(NLP)第二次课后作业

董晨辉 1127666815@qq.com

Abstract

从给定的语料库中均匀抽取 1000 个段落作为数据集(每个段落可以有 K 个 token, K 可以取 20, 100, 500, 1000, 3000),每个段落的标签就是对应段落所属的小说。利用 LDA 模型在给定的语料库上进行文本建模,主题数量为 T,并把每个段落表示为主题分布后进行分类(分类器自由选择),分类结果使用 10 次交叉验证 (i.e. 900 做训练,剩余 100 做测试循环十次)。实现和讨论如下的方面: (1) 在设定不同的主题个数 T 的情况下,分类性能是否有变化?;(2)以"词"和以"字"为基本单元下分类结果有什么差异?(3)不同的取值的 K 的短文本和长文本,主题模型性能上是否有差异?

Introduction

LDA 是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。LDA 中文翻译为:潜在狄利克雷分布。LDA 主题模型是一种文档生成模型,是一种非监督机器学习技术。它认为一篇文档是有多个主题的,而每个主题又对应着不同的词。一篇文档的构造过程,首先是以一定的概率选择某个主题,然后再在这个主题下以一定的概率选出某一个词,这样就生成了这篇文档的第一个词。不断重复这个过程,就生成了整篇文章(当然这里假定词与词之间是没有顺序的,即所有词无序的堆放在一个大袋子中,称之为词袋,这种方式可以使算法相对简化一些)。LDA的使用是上述文档生成过程的逆过程,即根据一篇得到的文档,去寻找出这篇文档的主题,以及这些主题所对应的词。LDA是NLP领域一个非常重要的非监督算法。

Methodology

M1: 数据预处理

- (1) 抽取每本小说的有效段落
- 要求段落大于 500 字,选择"倚天屠龙记","笑傲江湖","天龙八部"等小说作为数据样本。
 - (2) 均匀抽取段落
- 一共抽取 1000 个段落,每本小说均匀随机抽取,其中 900 个段落为训练集,剩下 100 个段落为测试集,段落标签为对应的小说名。

(3) 段落处理

去除空格;使用 jieba 进行分词;去除停用词;过滤词性,只保留名词词性;只保留中文字符。

M2: LDA 模型和 SVM 模型实现

(1) LDA 模型实现

调用函数 gensim.models.ldamodel.LdaModel()。该函数的重要参数设置如下:

corpus=train_corpus: 由操作[id2word.doc2bow(text)fortextintrain_data]得到 train_corpus, 词典转化为词袋, 是一组向量, 记录了 train_data 中每个段落的词袋, 每个向量的 item 为(词 id, 词频)。

id2word=id2word: 由函数 corpora.Dictionary(train_data+test_data)生成词典 id2word, 不重复地记录文本中的单词。

num topics=5:设置的主题分布的主题数,即主题分布向量维度。

(2) SVM 模型实现

调用 sklearn 的包 from sklearn.svm import SVC

M3: 训练

- 1. 统计段落中的所有不重复单词得到的字典:
- 2. 得到段落的词袋向量:
- 3. 将 1, 2 的数据放入 LDA 模型中训练得到五个主题的词分布:

Experimental Studies

使用数据集进行试验结果如下所示:

(1) 在设定不同的主题个数 T 的情况下, 分类性能是否有变化?

针对主题个数 T 分别设置为 5, 10, 15, 20, 25, 30, 50, 100, 200, 300, 1000, 3000 进行实验。针对不同的 k 值,分别设定 k 为 20、100、500、1000、3000 进行试验,得到的结果如下图所示:

农 1 个向工题 数种 token 数 中的力关性能及功					
主题个数\token 数	20	100	500	1000	3000
5	0.14	0.36	0.26	0.49	0.75
10	0.24	0.32	0.49	0.53	0.92
20	0.26	0.3	0.49	0.64	0.84
30	0.25	0.36	0.53	0.65	0.93
40	0.24	0.32	0.56	0.7	0.92
50	0.33	0.3	0.32	0.52	0.84
70	0.29	0.35	0.43	0.7	0.86
100	0.33	0.41	0.44	0.77	0.76
150	0.26	0.39	0.52	0.79	0.37
200	0.3	0.42	0.21	0.66	0.62
300	0.33	0.5	0.45	0.71	0.78
1000	0.19	0.54	0.45	0.65	0.71
3000	0.19	0.27	0.41	0.62	0.54

表 1 不同主题个数和 token 个数下的分类性能表现

可以看出随着主题个数的增加, 训练准确度和测试准确度在增高, 针对不同的 k 值, 主

题数的增加所带来的准确率的提升不太一样,但都符合先增加后逐渐减小的特征。

(2) 以"词"和以"字"为基本单元下分类结果有什么差异?

在主题数 T 为 50, k 为 1000, 使用 SVC 分类器的情况下分类性能的变化如下表所示, 其中分词使用 jieba 分词:

表 2 不同分词方法下的分类性能表现

基本单元	Token = 100 准确度	Token = 10 准确度
词	0.55	0.22
字	0.87	0.14

从表 2 可以看出以字为基本单元在 token 数较大的情况下准确度较高。这可能与先进行分词再进行去除停用词的操作有关,由于按字分割情况下产生的停用词较多,再满足相同 token 的情况下取的信息量更大导致准确度高。而 token 数较少的情况下反而按词分类的效果更好,这是有与按词分割保存的信息量较多。

(3) 不同的取值的 K 的短文本和长文本, 主题模型性能上是否有差异?

从表 1 中的数据可以看出,随着 token 个数的增加,准确度不断的增加。

Conclusions

经过实验可以看出,随着主题数的增加,分类准确率先升高再下降这可能与真实的主题个数为 16 (一共有 16 本小说)有关,当主题数小于 5 时属于欠拟合状态,当主题数较大时则会出现过拟合。并且每次重复实验发现分类准确率有较大的误差,可能是 SVM 参数需要改进。同时,在 token 数增加时,准确度能够较大地增加,这是由于随着 token 数增加,信息量更大,LDA 的性能更好。

经过本次作业与课堂学习, 我对 LDA 主题模型有了全局的认识, 系统地学习了其原理, 通过学习, 对 LDA 主题模型生成文档的原理有了深刻的理解。此次作业应用主题分布和文本分类, 加深了我们 LDA 如何进行训练并求得主题分布过程的熟悉程度。