SEQUENCE LISTING

5 <110> Andrade-Gordon, Patricia
Darrow, Andrew L.
Qi, Jenson

10 <120> DNA encoding human serine protease C-E

15 <130> ORT-1030

<140> <141>

25 <160> 11

<170> PatentIn Ver. 2.0

<210> 1

35 <211> 1430

<212> DNA

<213> Homo sapiens

<400> 1

	cgttccgcct	cccaggataa	aacctggggc	gacctgcagg	gaacctacac	accetgacee	: 60
5	gcatcgccct	gggtctctcg	agcctgctgc	ctgctcccc	gccccaccag	ccatggtggt	120
	ttctggagcg	g cccccagccc	tgggtgggg	ctgtctcggc	accttcacct	ccctgctgct	180
10	gctggcgtcg	, acagccatcc	tcaatgcggc	caggatacct	gttcccccag	cctgtgggaa	240
	gccccagcag	ctgaaccggg	ttgtgggcgg	cgaggacagc	actgacagcg	agtggccctg	300
	gatcgtgagc	atccagaaga	atgggaccca	ccactgcgca	ggttctctgc	tcaccageeg	360
15	ctgggtgatc	actgctgccc	actgtttcaa	ggacaacctg	aacaaaccat	acctgttctc	420
	tgtgctgctg	ggggcctggc	agctggggaa	ccctggctct	cggtcccaga	aggtgggtgt	480
20	tgcctgggtg	gagccccacc	ctgtgtattc	ctggaaggaa	ggtgcctgtg	cagacattgc	540
	cctggtgcgt	ctcgagcgct	ccatacagtt	ctcagagegg	gtcctgccca	tctgcctacc	600
	tgatgcctct	atccacctcc	ctccaaacac	ccactgctgg	atctcaggct	gggggagcat	660
25	ccaagatgga	gttcccttgc	cccaccctca	gaccctgcag	aagctgaagg	ttcctatcat	720
	cgactcggaa	gtctgcagcc	atctgtactg	gcggggagca	ggacagggac	ccatcactga	780
30	ggacatgctg	tgtgccggct	acttggaggg	ggagcgggat	gcttgtctgg	gcgactccgg	840
	gggccccctc	atgtgccagg	tggacggcgc	ctggctgctg	gccggcatca	tcagctgggg	900
	cgagggctgt	gccgagcgca	acaggcccgg	ggtctacatc	agcctctctg	cgcaccgctc	960
35	ctgggtggag	aagatcgtgc	aaggggtgca	gctccgcggg	cgcgctcagg	ggggtggggc	1020
	cctcagggca	ccgagccagg	gctctggggc	cgccgcgcgc	tcctagggcg	cagcgggacg	1080
40	cggggctcgg	atctgaaagg	cggccagatc	cagatctgga	tctggatctg	cggcggcctc	1140
	agacaatttc	cccaccat a	aatagggtga	tataaatata	aatataaaaa		1200

	tgctgcggaa	aggaaacccc	ctccccgacc	cgcccgacgg	cctcaggccc	cgcctccaag	1260
	gcatcaggcc	ccgcccaacg	gcctcatgtc	cccgccccca	cgacttccgg	ccccgccccc	1320
5	gggccccagc	gcttttgtgt	atataaatgt	taatgatttt	tataggtatt	tgtaaccctg	1380
	cccacatatc	ttatttattc	ctccaatttc	aataaattat	ttattctcca		1430

<210> 2

<211> 1166

15 <212> DNA

<213> Artificial Sequence

20

<220>

<223> Description of Artificial Sequence: C-E catalytic

domain in a zymogen activated construct

<400> 2

gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60
gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac 120
gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctat 180
gctctagagg acagcgagtg gccctggatc gtgagcatcc agaagaatgg gacccaccac 240
tgcgcaggtt ctctgctcac cagccgctgg gtgatcactg ctgcccactg tttcaaggac 300

aacctgaaca aaccatacet gttetetgtg etgetggggg eetggeaget ggggaaceet 360

	ggctctcggt	cccagaaggt	gggtgttgcc	tgggtggagc	cccaccctgt	gtattcctgg	420
	aaggaaggtg	cctgtgcaga	cattgccctg	gtgcgtctcg	agcgctccat	acagttctca	480
5	gagegggtee	tgcccatctg	cctacctgat	gcctctatcc	acctccctcc	aaacacccac	540
	tgctggatct	caggctgggg	gagcatccaa	gatggagttc	ccttgcccca	ccctcagacc	600
10	ctgcagaagc	tgaaggttcc	tatcatcgac	tcggaagtct	gcagccatct	gtactggcgg	660
10	ggagcaggac	agggacccat	cactgaggac	atgctgtgtg	ccggctactt	ggaggggag	720
	cgggatgctt	gtctgggcga	ctccgggggc	cccctcatgt	gccaggtgga	cggcgcctgg	780
15	ctgctggccg	gcatcatcag	ctggggcgag	ggctgtgccg	agcgcaacag	gcccggggtc	840
	tacatcagcc	tctctgcgca	ccgctcctgg	gtggagaaga	tcgtgcaagg	ggtgcagctc	900
20	cgcgggcgcg	ctcagggggg	tggggccctc	agggcaccga	gccagggctc	tggggccgcc	960
20	gcgcgctcct	ctagacatca	ccatcaccat	cactagegge	cgcttccctt	tagtgagggt	1020
	taatgcttcg	agcagacatg	ataagataca	ttgatgagtt	tggacaaacc	acaactagaa	1080
25	tgcagtgaaa	aaaatgcttt	atttgtgaaa	tttgtgatgc	tattgcttta	tttgtaacca	1140
	ttataagctg	caataaacaa	gttgac				1166

<210> 3

<211> 22

35 <212> DNA

<213> Artificial Sequence

40

<220>

<223> Description of Artificial Sequence: primer oligonucleotide 5 <400> 3 ggataaaacc tggggcgacc tg 22 10 <210> 4 15 <211> 24 <212> DNA <213> Artificial Sequence 20 <220> 25 <223> Description of Artificial Sequence: primer oligonucleotide 30 <400> 4 teegggeeee eagaggtaga tgag 24 35 <210> 5 <211> 20 40 <212> DNA

	<213> Artificial Sequence	
5	<220>	
	<223> Description of Artificial Sequence: primer	
10	oligonucleotide	
	<400> 5	
15	ctgcagaagc tgaaġgttcc	20
20	<210> 6	
20	<211> 20	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
30	<223> Description of Artificial Sequence: primer	
	oligonucleotide	
35		
	<400> 6	
40	cagagaggct gatgtagacc	20

<210> 7 <211> 317 <212> PRT <213> Homo sapiens <400> 7 Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Gly Cys Leu Gly Thr Phe Thr Ser Leu Leu Leu Ala Ser Thr Ala Ile Leu Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys Ala Gly Ser Leu Leu

Thr Ser Arg Trp Val Ile Thr Ala Ala His Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro

Gln Thr Leu Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys

195 200 205

5

Ser His Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp

10

Met Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly

225
230
235
240

Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu Leu

245
250
255

Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn Arg Pro

260 265 270

Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val Glu Lys Ile

275 280 285

35

40

Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly Gly Gly Ala Leu
290 295 300

Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala Arg Ser

305

310

315

5

<210> 8

<211> 327

<212> PRT

15 <213 > Artificial Sequence

<220>

20

<223> Description of Artificial Sequence: C-E catalytic

domain fusion protien

25

<400> 8

1

Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu

30

10

15

35 Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys

20

25

30

40

Asp Asp Asp Val Asp Ala Ala Ala Leu Ala Ala Pro Phe Asp Asp

and the first of t

5	Asp As	sp Ly	s Ile	e Val	. Gly	Gly	Tyr	Ala	ı Leı	ı Glu	ı Asp	Sei	Glu	ı Trp) Pro
	5	50				55	;				60)			
10			_												
	Trp Il	e Va.	Ser	` Ile	Gln	Lys	Asn	Gly	Thr	His	His	Cys	Ala	Gly	Ser
	65				70					75					80
15															
	Leu Le	u Thr	Ser	Arg	Trp	Val	Ile	Thr	Ala	Ala	His	Cys	Phe	Lys	Asp
20				85					90					95	
	Asn Lei	ı Asn	Lys	Pro	Tyr	Leu	Phe	Ser	Val	Leu	Leu	Gly	Ala	Trp	Gln
25			100					105					110		
20	Leu Gly	/ Asn	Pro	Gly	Ser	Arg	Ser	Gln	Lys	Val	Gly	Val	Ala	Trp	Val

35 Glu Pro His Pro Val Tyr Ser Trp Lys Glu Gly Ala Cys Ala Asp Ile

40 Ala Leu Val Arg Leu Glu Arg Ser Ile Gln Phe Ser Glu Arg Val Leu

Pro Ile Cys Leu Pro Asp Ala Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp

Leu Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn

260 265 270

Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val Glu

275
280
285

Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly Gly Gly

290 295 300

Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala Arg Ser Ser

305 310 315 320

Arg His His His His His

25 325

30
<210> 9

Com that or the other than the state of the

<211> 40

35 <212> DNA
<213> Artificial Sequence

40 <220>

	<223> Description of Artificial Sequence: nested primer	
	oligonucleotide	
5		
	<400> 9	
10	ggacatgctg tgtgccggct acttggaggg ggagcgggat	40
	<210> 10	
15	<211> 33	
	<212> DNA	
20	<213> Artificial Sequence	
	<220>	
25	<223> Description of Artificial Sequence: primer	
	oligonucleotide	
30		
	<400> 10	
	aggatetaga ggacagegag tggeeetgga teg	33
35		
	<210> 11	
40	<211> 33	
	<212> DNA	

-
200
-
ţū
Ų
3
ũ
ķ÷
,
W.

5	<220>
	<223> Description of Artificial Sequence: primer
10	oligonucleotide
	<400> 11
5	gtgctctaga ggagcgcgcg gcggccccag agc

<213> Artificial Sequence