

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C12N 15/12, 15/62, 5/10, 1/21, C07K 14/515, 14/52		A1	(11) International Publication Number: WO 00/37642 (43) International Publication Date: 29 June 2000 (29.06.00)
<p>(21) International Application Number: PCT/US99/30900</p> <p>(22) International Filing Date: 23 December 1999 (23.12.99)</p> <p>(30) Priority Data: 60/113,387 23 December 1998 (23.12.98) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): REGENERON PHARMACEUTICALS, INC. [US/US]; 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): DAVIS, Samuel, J. [US/US]; 332 W. 88th Street, #B2, New York, NY 10024 (US). GALE, Nicholas, W. [US/US]; Apartment 46V, 177 White Plains Road, Tarrytown, NY 10591 (US). YANCOPOULOS, George, D. [US/US]; 1519 Baptist Church Road, Yorktown Heights, NY 10598 (US). STAHL, Neil [US/US]; RD # 10, Kent Shore Drive, Carmel, NY 10512 (US).</p> <p>(74) Agents: PALLADINO, Linda, O.; Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591 (US) et al.</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
<p>(54) Title: METHOD OF ENHANCING THE BIOLOGICAL ACTIVITY OF LIGANDS</p> <p>(57) Abstract</p> <p>Novel fusion polypeptide ligands that bind Eph family receptors or the Tie-2 receptor are identified, and methods for making the fusion polypeptide ligands in biologically active form are described. Nucleic acids encoding these novel fusion polypeptide ligands enable production of the fusion polypeptide ligands. The method of making the nucleic acids and the fusion polypeptide ligands is broadly applicable to the production of polypeptide ligands in general, resulting in improved affinity and/or increased activity of the ligand when compared to its native form.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

METHOD OF ENHANCING THE BIOLOGICAL ACTIVITY OF LIGANDS

This application claims priority of U.S. Application No. 60/113,387, filed December 23, 1998. Throughout this application, various publications are 5 cited. The disclosures of each and all of those publications are hereby incorporated by reference in their entireties into this application.

INTRODUCTION

- 10 The present invention provides for novel methods for producing novel fusion polypeptide ligands that have enhanced biological activity as compared to the polypeptide ligands in their native form. The invention also provides for nucleic acids useful for producing biologically active fusion polypeptide ligands, and the fusion polypeptide ligands themselves.

15

BACKGROUND OF THE INVENTION

The ability of polypeptide ligands to bind cells and thereby elicit a phenotypic response such as cell growth, survival or differentiation is often 20 mediated through transmembrane tyrosine kinases. The extracellular portion of each receptor tyrosine kinase (RTK) is generally the most distinctive portion of the molecule, as it provides the protein with its ligand-recognizing characteristic. Binding of a ligand to the extracellular domain results in signal transduction via an intracellular tyrosine kinase 25 catalytic domain which transmits a biological signal to intracellular target proteins. The particular array of sequence motifs of this cytoplasmic, catalytic domain determines its access to potential kinase substrates (Mohammadi, et al., 1990, Mol. Cell. Biol., 11: 5068-5078; Fantl, et al., 1992, Cell, 69:413-413).

30

RTKs appear to undergo dimerization or some related conformational change following ligand binding (Schlessinger, J., 1988, Trend Biochem. Sci.

13:443-447; Ullrich and Schlessinger, 1990, Cell, 61:203-212; Schlessinger and Ullrich, 1992, Neuron 9:383-391); molecular interactions between dimerizing cytoplasmic domains lead to activation of kinase function. In some instances, such as the growth factor platelet derived growth factor

- 5 (PDGF), the ligand is a dimer that binds two receptor molecules (Hart, et al., 1988, Science, 240: 1529-1531; Heldin, 1989, J. Biol. Chem. 264:8905-8912) while, for example, in the case of EGF, the ligand is a monomer (Weber, et al., 1984, J. Biol. Chem., 259:14631-14636).

10 Throughout the history of the biotechnology industry, many novel genes and associated proteins have been identified by virtue of their sequence homology with known genes. Many such proteins are purported to be receptors, but since their cognate ligands have not been identified, they are referred to as orphan receptors. The screening of many of these orphan

15 receptors often leads to the identification of ligands that are capable of binding to the receptor, although the binding is often not associated with activation of any intracellular kinases or any other phenotypic change. Such was the case for members of the Eph receptor family. For sake of clarity, applicants incorporate by reference herein a letter cited as Eph

20 Nomenclature Committee, 1997, published in Cell vol. 90: 403-403 (1997) which sets forth a nomenclature for the Eph Receptor and Eph Ligand Families.

Little, if any, biological activity had been observed in response to binding of 25 a ligand to an Eph family receptor prior to the discovery as set forth in U.S. Patent No. 5,747,033 issued May 5, 1998. That patent describes the concept of "clustering" whereby the soluble domains of ligands were combined to create multimers capable of activating the cognate receptors. Applicants have now extended the concept of clustering to additional ligands outside 30 the Eph family, for example, the Tie-2 receptor ligands known as the angiopoietins, and have also discovered that this method for production of homogeneous forms of clustered ligands is broadly applicable to improve

the affinity and/or increase the activity of a ligand as compared to the native form of the ligand.

Angiopoietin-1 (Ang) is one of two known ligands for the Tie-2 receptor
5 and has been shown to be an agonist for Tie-2 (Davis, et al, 1996, Cell 87:1161-1169), whereas the second known ligand, angiopoietin-2, has been shown to be a naturally occurring antagonist of the Tie-2 receptor (Maisonpierre, et al., 1997, Science 277:55-60). Ang1* is a mutant form of angiopoietin-1 that comprises the N-terminal domain of angiopoietin-2
10 fused to the coiled-coil domain and the fibrinogen domain of angiopoietin-1 and that has a Cys to Ser mutation at amino acid 245. Ang1* has been shown to be a potent agonist for the Tie-2 receptor.

Experiments with mutants of angiopoietin-1 and angiopoietin-2 have
15 demonstrated that the fibrinogen domains (FD) are the receptor-binding domains, and that dimerized versions of, for example Ang-1-FD-Fc, (i.e., the fibrinogen domain of Ang-1 fused to an Fc domain), can bind to the Tie-2 receptor with much higher affinity than monomeric Ang-1-FD (dimerization occurs due to the interaction between the Fc components of
20 adjacent molecules). However, Ang-1-FD-Fc is not able to induce phosphorylation (activate) the Tie-2 receptor on endothelial cells unless it is further clustered with goat anti-human Fc antibodies (Jackson Immunoresearch). For this reason, mutant versions of Ang-1-FD and Ang-2-FD (i.e., the fibrinogen domain of Ang-2) were designed that were
25 intrinsically more highly clustered.

SUMMARY OF THE INVENTION

The present invention provides for novel, biologically active, soluble forms
30 of polypeptide ligands that bind to receptors on cells. Such polypeptide ligands are useful in promoting a differential function and/or influencing the phenotype, such as growth and/or proliferation, of receptor-bearing

cells. The invention also provides for nucleic acids encoding such polypeptide ligands, and both prokaryotic and eukaryotic expression systems for producing such polypeptide ligands. According to the invention, soluble forms of the polypeptide ligands described herein may be used to 5 promote biological responses in receptor-expressing cells. In particular, a general method is described herein which produces fusion polypeptide ligands that may then be clustered, which functions to make otherwise inactive soluble polypeptide ligands biologically active, or which enhances the biological activity of polypeptide ligands that, absent such clustering, 10 would have lower levels of biological activity. This method may be used to cluster a plurality of (more than one) receptor binding domains from any ligand which has improved affinity and/or increased activity (i.e. signaling ability) when clustered as compared to the native form of the ligand.

15

DESCRIPTION OF THE FIGURES

- Figure 1A-1E - Nucleic acid sequence and deduced amino acid sequence of Ang-1-FD-FD-Fc.
20 Figure 2A-2E - Nucleic acid sequence and deduced amino acid sequence of Ang-2-FD-FD-Fc.
Figure 3A-3E - Nucleic acid sequence and deduced amino acid sequence of Ang-1-FD-Fc-FD.
25 Figure 4A-4E - Nucleic acid sequence and deduced amino acid sequence of Ang-2-FD-Fc-FD.
Figure 5 - Molecular Weight Analysis of Ang-1-FD-Fc-FD protein. SDS
30 PAGE analyses showing a band running at about 210kD under non-reducing conditions (lane 3) and a band running at about 85kD under reducing conditions (lane 7).

Figure 6 - Light scatter analysis to confirm the molecular weight of Ang-1-FD-Fc-FD and to determine whether or not the protein is a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent is monitored with an on line light scattering detector and a refractive index and/or a UV detector. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) is used to calculate the protein concentration. The molecular weight of protein is then calculated from the angular dependence of light scattering. The molecular weight of the dimeric protein appears to be approximately 200kD and presence of a single peak implies that the protein solution is homogenous.

15

Figure 7 - Molecular Weight Analysis of Ang-2-FD-Fc-FD. SDS PAGE analyses showing a band running at about 200kD under non-reducing conditions (lanes 7 and 8) and a band running at about 88kD under reducing conditions (lanes 3 and 4).

20

Figure 8 - Light scatter analysis to confirm the molecular weight of Ang-2-FD-Fc-FD and to determine whether or not the protein is a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent is monitored with an on line light scattering detector and a refractive index and/or a UV detector. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) is used to calculate the protein concentration. The molecular weight of protein is then calculated from the angular dependence of light scattering. The molecular weight of the dimeric protein appears to be approximately 171kD and presence of a single peak implies that the

protein solution is homogenous.

Figure 9 - Ang1*-mediated vs. Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells. A standard phosphorylation assay 5 revealed that Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926.

Figure 10 - Ability of Ang-2-FD-Fc-FD to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells. In a standard phosphorylation 10 assay, Ang-2-FD-Fc-FD is able to block Ang1* stimulation of the Tie-2 receptor when it is present in at least a 10-15 fold molar excess of Ang1*.

Figure 11 - Ability of angiopoietin-2 to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells. In a standard phosphorylation assay, at a 15 20 fold molar excess, angiopoietin-2 is not able to reduce the Ang1*-mediated phosphorylation level to 50%. This result, coupled with the results described in Figure 10 implies that Ang-2-FD-Fc-FD is a more potent inhibitor of Ang1*-mediated Tie-2 receptor phosphorylation than angiopoietin-2.

20

Figure 12 - Ability of Ang-2-FD-Fc-FD to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells. In a standard phosphorylation assay, it is shown that while there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in 25 these cells, Ang-2-FD-Fc-FD seems to be more effective at blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 10.

Figure 13 - Ability of angiopoietin-2 to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells. In a standard 30 phosphorylation assay, it is shown that there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, but, like Ang-2-FD-Fc-FD, angiopoietin-2 seems to be more effective at

blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 11.

Figure 14A-14E - Nucleic acid sequence and deduced amino acid sequence of Ephrin-B1-Ephrin-B1-Fc.

5

Figure 15A-15E - Nucleic acid sequence and deduced amino acid sequence of Ephrin-B2-Ephrin-B2-Fc.

Figure 16 - Comparison of Ephrin-B1-Fc, Ephrin-B1-Ephrin-B1-Fc, Ephrin-B2-Fc and Ephrin-B2-Ephrin-B2-Fc in standard EphB2 phosphorylation assays. COS cells were serum-starved and then left untreated (UT), lane 1, or were treated with unclustered and clustered Ephrin-B1-Fc (Efn-B1), lanes 2 and 3. COS cells were also treated with unclustered and clustered Ephrin-B1-Ephrin-B1-Fc (Efn-B1 DD), lanes 4 and 5. In addition cells were likewise treated with unclustered and clustered Ephrin-B2-Fc (Efn-B2), lanes 6 and 7 and with unclustered and clustered Ephrin-B2-Ephrin-B2-Fc (Efn-B2 DD), lanes 8 and 9. The extent of EphB2 phosphorylation was assessed by anti-phosphotyrosine western blotting (upper panels) and the relative amounts of EphB2 in each lane was determined by anti-EphB2 western blotting (lower panels).

Figure 17 - Ang1*-mediated vs. stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells. EAhy926 cells were stimulated with 0.4 µg/ml Ang1* or 0.2 µg/ml or 0.4 µg/ml stable CHO clone-derived Ang-1-FD-Fc-FD protein. A standard phosphorylation assay revealed that stable CHO clone-derived Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926 cells.

30 Figure 18 - Ability of stable CHO clone-derived Ang-2-FD-Fc-FD to block stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells. EAhy926 cells were treated with 0.2

μg/ml of the Tie-2 agonist Ang-1-FD-Fc-FD and 2 μg/ml, 4 μg/ml, 8 μg/ml or 16 μg/ml of stable CHO clone-derived Ang-2-FD-Fc-FD. Ang-2-FD-Fc-FD is able to block or stable CHO clone-derived Ang-1-FD-Fc-FD stimulation of the Tie-2 receptor when it is present in at least a 40 fold molar excess of 5 stable CHO clone-derived Ang-1-FD-Fc-FD.

DETAILED DESCRIPTION OF THE INVENTION

As described in greater detail below, applicants have discovered a method 10 for "clustering" polypeptide ligands, which functions to make otherwise inactive soluble polypeptide ligands biologically active, or which enhances the biological activity of polypeptide ligands that, absent such clustering, would have lower levels of biological activity. This method may be used to cluster a plurality of (more than one) receptor binding domains from any 15 ligand which has improved affinity and/or increased activity (i.e. signaling ability) when clustered as compared to the native form of the ligand.

The present invention provides for a nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises a first subunit 20 comprising at least one copy of the receptor binding domain of a ligand, the first subunit being fused to the N-terminal end of a multimerizing component, said multimerizing component being fused at its C-terminal end to a second subunit comprising at least one copy of the receptor binding domain of a ligand.

25 In one embodiment of the invention, the receptor binding domains of the first and second subunits are copies of the receptor binding domain of the same ligand. The first and second subunits may each have one or more than one copy of the receptor binding domain of the ligand. In specific 30 embodiments of the invention, the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2. Alternatively, the

receptor binding domain is from a ligand selected from the group consisting of the EPH family of ligands (i.e., the ephrins).

- In another embodiment of the invention, the receptor binding domains of the first subunit are copies of the receptor binding domain of a different ligand from the receptor binding domains of the second subunit. For example, the first subunit may comprise the receptor binding domain of an angiopoietin and the second subunit may comprise the receptor binding domain of vascular endothelial growth factor (VEGF). Alternatively, the first subunit may comprise the receptor binding domain of VEGF and the second subunit may comprise the receptor binding domain an angiopoietin. Still further, the first and second subunits may each have one or more than one copy of the receptor binding domain of their respective ligand.
- 15 By "receptor binding domain" what is meant is the minimal portion of the ligand that is necessary to bind its receptor.

In preferred embodiments of the invention, the multimerizing component comprises an immunoglobulin derived domain. More specifically, the immunoglobulin derived domain may be selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG. In another embodiment, the multimerizing component may be an Fc domain from which the first five amino acids (including a cysteine) have been removed to produce a multimerizing component referred to as Fc(ΔC1).

The present invention also provides for fusion polypeptides encoded by the nucleic acid molecules of the invention. Preferably, the fusion polypeptides are in multimeric form, due to the function of the multimerizing component. In a preferred embodiment, the multimer is a dimer. Suitable multimerizing components are described in European Patent Application of ZymoGenetics, Inc., Publication No. EP 0 721 983 A1 published 17 July 1996

and include S. cerevisiae repressible acid phosphatase (Mizunaga et al., 1988, J. Biochem. (Tokyo) 103:321-326); the S. cerevisiae type 1 killer preprotoxin (Sturley et al., 1986, EMBO J. 5:3381-3390); the S. calsbergensis alpha galactosidase melibiase (Sumner-Smith, et al., 1985, Gene 36:333-340); and
5 the Neurospora crassa ornithine decarboxylase (Digangi, et al., 1987, J. Biol. Chem. 262:7889-7893). Sequences encoding an immunoglobulin heavy chain hinge region (Takahashi et al., 1982, Cell 29:671-679); the S. cerevisiae SUC2 gene (Carlson et al., 1983, Mol. Cell. Biol. 3:439-447); immunoglobulin gene sequences, and portions thereof. In a preferred embodiment of the
10 invention, immunoglobulin gene sequences, especially one encoding the Fc domain, are used to encode the multimerizing component.

The present invention also contemplates a vector which comprises the nucleic acid molecule of the invention as described herein.

15

Also provided is an expression vector comprising a nucleic acid molecule of the invention as described herein, wherein the nucleic acid molecule is operatively linked to an expression control sequence. Also provided is a host-vector system for the production of a fusion polypeptide which
20 comprises the expression vector of the invention which has been introduced into a host cell suitable for expression of the fusion polypeptide. The suitable host cell may be a bacterial cell such as E. coli, a yeast cell, such as Pichia pastoris, an insect cell, such as Spodoptera frugiperda, or a mammalian cell, such as a COS or CHO cell.

25

The present invention also provides for methods of producing the fusion polypeptides of the invention by growing cells of the host-vector systems described herein, under conditions permitting production of the fusion polypeptide and recovering the fusion polypeptide so produced.

30

The fusion polypeptides useful for practicing the present invention may be prepared by expression in a prokaryotic or eukaryotic expression system.

The recombinant gene may be expressed and the polypeptide purified utilizing any number of methods. The gene may be subcloned into a bacterial expression vector, such as for example, but not by way of limitation, pCP110.

5

- The fusion polypeptides may be purified by any technique which allows for the subsequent formation of a stable, biologically active protein. For example, and not by way of limitation, the factors may be recovered from cells either as soluble proteins or as inclusion bodies, from which they may 10 be extracted quantitatively by 8M guanidinium hydrochloride and dialysis. In order to further purify the factors, conventional ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography or gel filtration may be used.
- 15 The present invention also provides for a nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises more than one copy of the receptor binding domain of a ligand in tandem, and wherein either the N-terminal or the C-terminal receptor binding domain is also fused to a multimerizing component. In one embodiment of the invention, the 20 receptor binding domains are fused contiguously. In another embodiment of the invention, the receptor binding domains are from a ligand that is not a member of the EPH family of ligands (i.e., not an ephrin). In specific embodiments of the invention, the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2. In an alternative 25 embodiment, the receptor binding domain is from vascular endothelial growth factor (VEGF). In another embodiment, the receptor binding domain is from an ephrin.

By "receptor binding domain" what is meant is the minimal portion of the 30 ligand that is necessary to bind its receptor.

- In preferred embodiments of the invention, the multimerizing component comprises an immunoglobulin derived domain. More specifically, the immunoglobulin derived domain may be selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG. In another embodiment, the multimerizing component may be an Fc domain from which the first five amino acids (including a cysteine) have been removed to produce a multimerizing component referred to as Fc(ΔC1).
- The present invention also provides for fusion polypeptides encoded by the nucleic acid molecules of the invention. Preferably, the fusion polypeptides are in multimeric form, due to the function of the multimerizing component. In a preferred embodiment, the multimer is a dimer. Suitable multimerizing components are described in European Patent Application of ZymoGenetics, Inc., Publication No. EP 0 721 983 A1 published 17 July 1996 and include S. cerevisiae repressible acid phosphatase (Mizunaga et al., 1988, J. Biochem. (Tokyo) 103:321-326); the S. cerevisiae type 1 killer preprotoxin (Sturley et al., 1986, EMBO J. 5:3381-3390); the S. calsbergensis alpha galactosidase melibiase (Sumner-Smith, et al., 1985, Gene 36:333-340); and the Neurospora crassa ornithine decarboxylase (Digangi, et al., 1987, J. Biol. Chem. 262:7889-7893). Sequences encoding an immunoglobulin heavy chain hinge region (Takahashi et al., 1982, Cell 29:671-679); the S. cerevisiae SUC2 gene (Carlson et al., 1983, Mol. Cell. Biol. 3:439-447); immunoglobulin gene sequences, and portions thereof. In a preferred embodiment of the invention, immunoglobulin gene sequences, especially one encoding the Fc domain, are used to encode the multimerizing component.

The present invention also contemplates a vector which comprises the nucleic acid molecule of the invention as described herein.

30

Also provided is an expression vector comprising a nucleic acid molecule of the invention as described herein, wherein the nucleic acid molecule is

operatively linked to an expression control sequence. Also provided is a host-vector system for the production of a fusion polypeptide which comprises the expression vector of the invention which has been introduced into a host cell suitable for expression of the fusion polypeptide.

- 5 The suitable host cell may be a bacterial cell such as E. coli, a yeast cell, such as Pichia pastoris, an insect cell, such as Spodoptera frugiperda, or a mammalian cell, such as a COS or CHO cell.

- 10 The present invention also provides for methods of producing the fusion polypeptides of the invention by growing cells of the host-vector systems described herein, under conditions permitting production of the fusion polypeptide and recovering the fusion polypeptide so produced.

- 15 The fusion polypeptides useful for practicing the present invention may be prepared by expression in a prokaryotic or eukaryotic expression system. The recombinant gene may be expressed and the polypeptide purified utilizing any number of methods. The gene may be subcloned into a bacterial expression vector, such as for example, but not by way of limitation, pCP110.

- 20 The fusion polypeptides may be purified by any technique which allows for the subsequent formation of a stable, biologically active protein. For example, and not by way of limitation, the factors may be recovered from cells either as soluble proteins or as inclusion bodies, from which they may 25 be extracted quantitatively by 8M guanidinium hydrochloride and dialysis. In order to further purify the factors, conventional ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography or gel filtration may be used.

- 30 The Examples describe the preparation of novel polypeptide ligands that comprise a receptor binding domain of a member of the Eph (Eph transmembrane tyrosine kinase family ligands) family of ligands or of a

member of the angiopoietin family of ligands that can bind the Tie-2 receptor.

- For a description of novel Eph family ligands, methods of making and
5 using them, as well as the sequences of EHK-1L, B61 and ELK-L, together
with a description of a method of enhancing the biological activity of EPH
family ligands by clustering them, applicants refer to U.S. Patent No.
5,747,033 issued on May 5, 1998 which is hereby incorporated by reference in
its entirety. Applicants further refer to International Application
10 PCT/US93/10879, published as WO 94/11020 on May 26, 1994; and
International Application PCT/US96/17201 published as WO 97/15667
entitled "Biologically Active EPH Family Ligands" each of which is hereby
incorporated by reference in its entirety.
- 15 As has been previously reported, a family of ligands for the TIE-2 receptor
has been discovered and named the Angiopoietins. This family, consisting
of TIE-2 ligand 1 (Ang-1); TIE-2 ligand 2 (Ang-2); TIE ligand 3 (Ang-3); and
TIE ligand 4 (Ang-4) has been extensively characterized. For a description of
the cloning, sequencing and characterization of the angiopoietins, as well as
20 for methods of making and uses thereof, including the production and
characterization of modified and chimeric ligands thereof, reference is
hereby made to the following publications, each of which is incorporated by
reference herein in its entirety: U.S. Patent No. 5,521,073 issued May 28,
1996; U.S. Patent No. 5,643,755 issued July 1, 1997; U.S. Patent No. 5,650,490
25 issued July 22, 1997; U.S. Patent No. 5,814,464 issued September 29, 1998; U.S.
Patent No. 5,879,672 issued March 9, 1999; U.S. Patent No. 5,851,797 issued
December 22, 1998; PCT International Application entitled "TIE-2 Ligands
Methods of Making and Uses Thereof," published as WO 96/11269 on 18
April 1996 in the name of Regeneron Pharmaceuticals, Inc.; PCT
30 International Application entitled "TIE-2 Ligands Methods of Making and
Uses Thereof," published as WO 96/31598 on 10 October 1996 in the name of
Regeneron Pharmaceuticals, Inc.; PCT International Application entitled

"TIE-2 Receptor Ligands (TIE Ligand-3; TIE Ligand-4) And Their Uses," published as WO 97/48804 on 24 December 1997 in the name of Regeneron Pharmaceuticals, Inc; and PCT International Application entitled "Modified TIE-2 Receptor Ligands," published as WO 98/05779 on 12 February 1998 in
5 the name of Regeneron Pharmaceuticals, Inc.

When used herein, fusion polypeptide includes functionally equivalent molecules in which amino acid residues are substituted for residues within the sequence resulting in a silent or conservative change. For example, one
10 or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent or conservative alteration. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, the nonpolar
15 (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic)
20 amino acids include aspartic acid and glutamic acid. Also included within the scope of the invention are proteins or fragments or derivatives thereof which exhibit the same or similar biological activity and derivatives which are differentially modified during or after translation, e.g., by glycosylation, proteolytic cleavage, linkage to an antibody molecule or other cellular
25 ligand, etc.

Cells that express the fusion polypeptides of the invention are genetically engineered to produce them by, for example, transfection, transduction, electroporation, or microinjection.

The present invention encompasses the nucleic acid sequences encoding the fusion polypeptides of the invention, as well as sequences that hybridize under stringent conditions to nucleic acid sequences that are
5 complementary to the nucleic acid sequences of the invention. Stringent conditions are set forth in, for example, Sambrook, et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1, pp. 101-104, Cold Spring Harbor Laboratory Press (1989). In addition, the present invention encompasses nucleic acid sequences that are different from the nucleic acid sequences of
10 the invention but which nevertheless encode the fusion polypeptides of the invention due to the degeneracy of the genetic code.

In addition, the present invention contemplates use of the fusion polypeptides described herein in tagged forms.

15 Any of the methods known to one skilled in the art for the insertion of DNA fragments into a vector may be used to construct expression vectors encoding the fusion polypeptides of the invention using appropriate transcriptional/translational control signals and the protein coding
20 sequences. These methods may include in vitro recombinant DNA and synthetic techniques and in vivo recombinations (genetic recombination). Expression of nucleic acid sequence encoding the fusion polypeptides of the invention may be regulated by a second nucleic acid sequence so that the fusion polypeptide is expressed in a host transformed with the recombinant
25 DNA molecule. For example, expression of the fusion polypeptides described herein may be controlled by any promoter/enhancer element known in the art. Promoters which may be used to control expression of the fusion polypeptide include, but are not limited to the long terminal repeat as described in Squinto et al., (1991, Cell 65:1-20); the SV40 early
30 promoter region (Bernoist and Chambon, 1981, Nature 290:304-310), the CMV promoter, the M-MuLV 5' terminal repeat the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980,

Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:144-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the b-lactamase promoter (Villa-Kamaroff, et al., 5 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731), or the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25), see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADH (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) 10 promoter, alkaline phosphatase promoter, and the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 15 1987, Hepatology 2:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985, Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumor virus control 20 region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58); alpha 1-antitrypsin 25 gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94); myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712); 30 myosin light chain-2 gene control region which is active in skeletal muscle (Shani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene

control region which is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).

Thus, according to the invention, expression vectors capable of being
5 replicated in a bacterial or eukaryotic host comprising Eph fusion
polypeptide encoding or angiopoietin fusion polypeptide encoding nucleic
acids as described herein, are used to transfect the host and thereby direct
expression of such nucleic acid to produce fusion polypeptides which may
then be recovered in biologically active form. As used herein, a biologically
10 active form includes a form capable of binding to the relevant receptor and
causing a differentiated function and/or influencing the phenotype of the
cell expressing the receptor. Such biologically active forms would, for
example, induce phosphorylation of the tyrosine kinase domain of the Etk-
1, Elk, or Tie2 receptor, or stimulation of synthesis of cellular DNA.

15 Expression vectors containing the nucleic acid inserts can be identified by
three general approaches: (a) DNA-DNA hybridization, (b) presence or
absence of "marker" gene functions, and (c) expression of inserted
sequences. In the first approach, the presence of a foreign nucleic acids
20 inserted in an expression vector can be detected by DNA-DNA hybridization
using probes comprising sequences that are homologous to an inserted
nucleic acid sequences. In the second approach, the recombinant
vector/host system can be identified and selected based upon the presence
or absence of certain "marker" gene functions (e.g., thymidine kinase
25 activity, resistance to antibiotics, transformation phenotype, occlusion body
formation in baculovirus, etc.) caused by the insertion of foreign nucleic
acid sequences in the vector. For example, if an efl nucleic acid sequence is
inserted within the marker gene sequence of the vector, recombinants
containing the insert can be identified by the absence of the marker gene
30 function. In the third approach, recombinant expression vectors can be
identified by assaying the foreign nucleic acid product expressed by the
recombinant. Such assays can be based, for example, on the physical or

functional properties of the nucleic acid product of interest, for example, by binding of a ligand to a receptor or portion thereof which may be tagged with, for example, a detectable antibody or portion thereof or binding to antibodies produced against the protein of interest or a portion thereof.

5

Cells of the present invention may transiently or, preferably, constitutively and permanently express the ephrin or angiopoietin fusion polypeptide as described herein.

10 The ephrin fusion polypeptides of the invention may be useful in methods of treating a patient suffering from a neurological disorder comprising treating the patient with an effective amount of the ephrin fusion polypeptide.

15 For example, the Elk receptor is expressed primarily in brain. Accordingly, it is believed that an Elk binding ephrin fusion polypeptide ligand will support the induction of a differential function and/or influence the phenotype, such as growth and/or survival of neural cells that express this receptor.

20

The present invention also provides for pharmaceutical compositions comprising the ephrin fusion polypeptide in a suitable pharmacologic carrier. The compositions may be administered systemically or locally. Any appropriate mode of administration known in the art may be used, 25 including, but not limited to, intravenous, intrathecal, intraarterial, intranasal, oral, subcutaneous, intraperitoneal, or by local injection or surgical implant. Sustained release formulations are also provided for.

As our understanding of neurodegenerative disease/neurotrauma becomes 30 clearer, it may become apparent that it would be beneficial to decrease the effect of endogenous Efl-6. Therefore, in areas of nervous system trauma, it may be desirable to provide Efl-6 antagonists, including, but not limited to,

fusion polypeptide forms of Efl-6 which may compete with cell-bound ligand for interaction with Elk receptor. It may be desirable to provide such antagonists locally at the injury site rather than systemically. Use of an Efl-6 antagonist providing implant may be desirable.

5

Alternatively, certain conditions may benefit from an increase in Efl-6 responsiveness. It may therefore be beneficial to increase the number or binding affinity of Efl-6 in patients suffering from such conditions.

10 The invention herein further provides for the development of a fusion polypeptide, as a therapeutic for the treatment of patients suffering from disorders involving cells, tissues or organs which express the TIE-2 receptor. Such molecules may be used in a method of treatment of the human or animal body, or in a method of diagnosis.

15

Because TIE-2 receptor has been identified in association with endothelial cells and, as was previously demonstrated, blocking of agonists of the receptor such as TIE-2 ligand 1 (Ang-1) has been shown to prevent vascularization, applicants expect that TIE-2 agonist fusion polypeptides of
20 the invention may be useful for the induction of vascularization in diseases or disorders where such vascularization is indicated. Such diseases or disorders would include wound healing, ischemia and diabetes. The ligands may be tested in animal models and used therapeutically as described for other agents, such as vascular endothelial growth factor
25 (VEGF), another endothelial cell-specific factor that is angiogenic. Ferrara, et al. U.S. Patent No. 5,332,671 issued July 26, 1994. The Ferrara reference, as well as other studies, describe in vitro and in vivo studies that may be used to demonstrate the effect of an angiogenic factor in enhancing blood flow to ischemic myocardium, enhancing wound healing, and in other therapeutic
30 settings wherein neoangiogenesis is desired. [see Sudo, et al., European Patent Application 0 550 296 A2 published July 7, 1993; Banai, et al. Circulation 89:2183-2189 (1994); Unger, et al. Am. J. Physiol. 266:H1588-H1595

(1994); Lazarous, et al. Circulation 91:145-153 (1995)]. According to the invention, the agonist fusion polypeptides may be used alone or in combination with one or more additional pharmaceutically active compounds such as, for example, VEGF or basic fibroblast growth factor (bFGF).

Conversely, antagonists of the TIE-2 receptor, such as TIE-2 receptorbodies or TIE-2 ligand 2 (Ang-2) as described in Example 9 in International Publication No. WO 96/31598 published 10 October 1996, have been shown to prevent or attenuate vascularization, and are thus expected to be useful in preventing or attenuating, for example, tumor growth. Similarly then, TIE-2 antagonist fusion polypeptides of the invention would also be useful for those purposes. These antagonists may be used alone or in combination with other compositions, such as anti-VEGF antibodies, that have been shown to be useful in treating conditions in which the therapeutic intent is to block angiogenesis.

For example, applicants have determined that TIE-2 ligands are expressed in cells within, or closely associated with, tumors. For example, TIE-2 ligand 2 (Ang-2) appears to be tightly associated with tumor endothelial cells. Accordingly, TIE-2 antagonist fusion polypeptides of the invention may also be useful in preventing or attenuating, for example, tumor growth.

In other embodiments, the TIE-2 agonist fusion polypeptides of the invention described herein may be used as hematopoietic factors. A variety of hematopoietic factors and their receptors are involved in the proliferation and/or differentiation and/or migration of the various cell types contained within blood. Because the TIE-2 receptors are expressed in early hematopoietic cells, the TIE-2 ligands are expected to play a comparable role in the proliferation or differentiation or migration of these cells. Thus, for example, TIE-2 agonist fusion polypeptide compositions may be prepared, assayed, examined in in vitro and in vivo biological systems and

used therapeutically as described in any of the following: Sousa, U.S. Patent No. 4,810,643, Lee, et al., Proc. Natl. Acad. Sci. USA 82:4360-4364 (1985) Wong, et al. Science, 228:810-814 (1985); Yokota, et al. Proc. Natl. Acad. Sci (USA) 81:1070 (1984); Bosselman, et al. WO 9105795 published May 2, 1991
5 entitled "Stem Cell Factor" and Kirkness, et al. WO 95/19985 published July 27, 1995 entitled "Haemopoietic Maturation Factor". Accordingly, the fusion polypeptides may be used to diagnose or treat conditions in which normal hematopoiesis is suppressed, including, but not limited to anemia, thrombocytopenia, leukopenia and granulocytopenia. In a preferred embodiment, the fusion polypeptides may be used to stimulate differentiation of blood cell precursors in situations where a patient has a disease, such as acquired immune deficiency syndrome (AIDS) which has caused a reduction in normal blood cell levels, or in clinical settings in which enhancement of hematopoietic populations is desired, such as in
10 conjunction with bone marrow transplant, or in the treatment of aplasia or myelosuppression caused by radiation, chemical treatment or chemotherapy.

The fusion polypeptides of the present invention may be used alone, or in
20 combination with another pharmaceutically active agents such as, for example, cytokines, neurotrophins, interleukins, etc. In a preferred embodiment, the fusion polypeptides may be used in conjunction with any of a number of factors which are known to induce stem cell or other hematopoietic precursor proliferation, or factors acting on later cells in the
25 hematopoietic pathway, including, but not limited to, hemopoietic maturation factor, thrombopoietin, stem cell factor, erythropoietin, G-CSF, GM-CSF, etc.

In an alternative embodiment, TIE-2 receptor antagonist fusion
30 polypeptides are used to diagnose or treat patients in which the desired result is inhibition of a hematopoietic pathway, such as for the treatment of myeloproliferative or other proliferative disorders of blood forming organs

such as thrombocythemias, polycythemias and leukemias. In such embodiments, treatment may comprise use of a therapeutically effective amount of the fusion polypeptides as described herein.

- 5 Effective doses useful for treating these or other diseases or disorders may be determined using methods known to one skilled in the art [see, for example, Fingl, et al., *The Pharmacological Basis of Therapeutics*, Goodman and Gilman, eds. Macmillan Publishing Co., New York, pp. 1-46 ((1975))]. Pharmaceutical compositions for use according to the invention include the
- 10 fusion polypeptides described above in a pharmacologically acceptable liquid, solid or semi-solid carrier, linked to a carrier or targeting molecule (e.g., antibody, hormone, growth factor, etc.) and/or incorporated into liposomes, microcapsules, and controlled release preparation prior to administration *in vivo*. For example, the pharmaceutical composition may
- 15 comprise a fusion polypeptide in an aqueous solution, such as sterile water, saline, phosphate buffer or dextrose solution. Alternatively, the active agents may be comprised in a solid (e.g. wax) or semi-solid (e.g. gelatinous) formulation that may be implanted into a patient in need of such treatment. The administration route may be any mode of administration
- 20 known in the art, including but not limited to intravenously, intrathecally, subcutaneously, by injection into involved tissue, intraarterially, intranasally, orally, or via an implanted device.

- 25 Administration may result in the distribution of the active agent of the invention throughout the body or in a localized area. For example, in some conditions which involve distant regions of the nervous system, intravenous or intrathecal administration of agent may be desirable. In some situations, an implant containing active agent may be placed in or near the lesioned area. Suitable implants include, but are not limited to,
- 30 gelfoam, wax, or microparticle-based implants.

The present invention also provides for pharmaceutical compositions comprising the fusion polypeptides described herein, in a pharmacologically acceptable vehicle. The compositions may be administered systemically or locally. Any appropriate mode of administration known in the art may be
5 used, including, but not limited to, intravenous, intrathecal, intraarterial, intranasal, oral, subcutaneous, intraperitoneal, or by local injection or surgical implant. Sustained release formulations are also provided for.

10 The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

15

EXAMPLES

Angiopoietin ligands:

20 As described *supra*, experiments with mutants of Ang-1 and Ang-2 have demonstrated that the fibrinogen domains (FD) are the receptor-binding domains, and that dimerized versions (dimerization occurs due to the interaction between the Fc components of adjacent molecules), for example Ang-1-FD-Fc, can bind to the Tie-2 receptor with much higher affinity than
25 monomeric Ang-1-FD. However, Ang-1-FD-Fc is not able to induce phosphorylation (activate) the Tie-2 receptor on endothelial cells unless it is further clustered with goat anti-human Fc antibodies (Jackson Immunoresearch). For this reason, mutant versions of Ang-1-FD and Ang-2-FD were designed that were intrinsically more highly clustered.

30

Two general types of nucleic acid molecules were constructed. The first type consisted of two tandem copies of Ang-1-FD fused to an Fc tag, thus leading

to a secreted polypeptide molecule that is dimeric with respect to the Fc tag but tetrameric with respect to Ang-1-FD. Similarly, two tandem copies of Ang-2-FD fused to an Fc tag constituted the angiopoietin-2 version of this type of construct. These molecules were designated Ang-1-FD-FD-Fc and
5 Ang-2-FD-FD-Fc, respectively.

In the second type of nucleic acid molecule constructed, two copies of Ang-1-FD were connected by an Fc tag bridging between them, thus creating the structure Ang-1-FD-Fc-FD that is still dimeric with respect to the Fc, as well
10 as tetrameric with respect to Ang-1-FD. An angiopoietin-2 version was also constructed and these two molecules were designated Ang-1-FD-Fc-FD and Ang-2-FD-Fc-FD, respectively.

For either type of construct, similar properties were observed: unlike
15 dimeric Ang-1-FD-Fc, which fails to activate Tie-2 in endothelial cells, both Ang-1-FD-FD-Fc and Ang-1-FD-Fc-FD could readily activate Tie-2 in endothelial cells, with a potency comparable to that of the native ligand. Also, like native angiopoietin-2, Ang-2-FD-Fc-FD could antagonize
20 angiopoietin-1 activity with a potency that is comparable to that of native angiopoietin-2, and with much greater potency than the marginally antagonistic activity of the Ang-2-FD-Fc dimer.

Construction of mutant angiopoietin nucleic acid molecules.

25 All of the following nucleic acid molecules were constructed by standard recombinant DNA techniques (See e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY), sequence-verified by standard
30 techniques using an ABI 373A DNA sequencer and Taq Dideoxy Terminator Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA), and subcloned into the mammalian expression vector pMT21 (Genetics

Institute, Inc.) with a Kozak sequence (Kozak, M., 1987, Nucleic Acids Res. 15:8125-8148) at the 5' end to promote protein translation. The bridging sequences described *infra* were introduced to provide convenient restriction sites and to give flexibility to the junctions between the domains, but there
5 is no indication that there is a very critical nature to these bridging sequences (though varying the length of the linker in some of these constructs led to some variation in the amount of protein produced).

10 **Example 1: Construction of the Ang-1-FD-FD-Fc, Ang-2-FD-FD-Fc, Ang-1-FD-Fc-FD, and Ang-2-FD-Fc-FD nucleic acid molecules.**

15 **Ang-1-FD-FD-Fc:** Ang-1-FD-FD-Fc consists of a trypsin signal sequence at its amino terminus to allow for secretion (bases 1-45 of Figure 1A) followed by the angiopoietin-1 fibrinogen domain (FD) (bases 46-690 of Figure 1A-Figure 1B), a short bridging sequence consisting of the amino acids Gly-Pro Ala-Pro (bases 691-702 of Figure 1B), a second angiopoietin-1 FD (bases 703-1750 of Figure 1B-Figure 1D), another bridging sequence consisting of the amino acids Gly-Pro-Gly (bases 1351-1359 of Figure 1D), and the coding sequence for the Fc portion of human IgG1 (bases 1360-2058 of Figure 1D-Figure 1E).
20

25 **Ang-2-FD-FD-Fc:** The Ang-2-FD-FD-Fc nucleic acid molecule was similarly constructed. It consists of a trypsin signal sequence (bases 1-45 of Figure 2A), an angiopoietin-2 FD (bases 46-690 of Figure 2A- Figure 2B), a bridging amino acid sequence Gly-Gly-Pro-Ala-Pro (bases 691-705 of Figure 2B), a second angiopoietin-2 FD (bases 706-1353 of Figure 2B-Figure 2D), another bridging amino acid sequence Gly-Pro-Gly (bases 1354-1362 of Figure 2D), and the coding sequence for the Fc portion of human IgG1 (bases 1363-2061 of Figure 2D-Figure 2E).

30 **Ang-1-FD-Fc-FD:** The Ang-1-FD-Fc-FD consists of a trypsin signal sequence (bases 1-45 of Figure 3A), an angiopoietin-1 FD (bases 46-690 of Figure 3A-3B), the bridging amino acid sequence Gly-Pro-Gly (bases 691-699 of Figure

3B), the coding sequence for the Fc portion of human IgG1 (bases 700-1395 of Figure 3B-3D), another bridging amino acid sequence Gly-Gly-Gly-Gly-Ser-Gly-Ala-Pro (bases 1396-1419 of Figure 3D), and a second angiopoietin-1 FD (bases 1420-2067 of Figure 3D-Figure 3E).

5

Ang-2-FD-Fc-FD: The Ang-2-FD-Fc-FD nucleic acid molecule consists of a trypsin signal sequence (bases 1-45 of Figure 4A), an angiopoietin-2 FD domain (bases 46-690 of Figure 4A-Figure 4B), the bridging amino acid sequence Gly-Gly-Pro-Gly (bases 691-702 of Figure 4B), the coding sequence 10 for the Fc portion of human IgG1 (bases 703-1398 of Figure 4B- Figure 4D), the bridging amino acid sequence Gly-Gly-Gly-Gly-Ser-Gly-Ala-Pro (bases 1399-1422 of Figure 4D), and a second angiopoietin-2 FD (bases 1423-2067 of Figure 4D-Figure 4E).

15 **Example 2: Characterization of Ang-1 FD-Fc-FD protein.**

Molecular Weight Analysis: The predicted molecular weight for Ang-1-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT) The monomeric form (with 20 respect to the Fc) has a predicted weight of 76,349. In addition, there are three predicted N-linked glycosylation sites, approximately 2500 MW/site, that could potentially increase the molecular weight of the monomeric protein to 83,849. Due to the interaction between the Fc components of adjacent molecules, the protein actually exists as a dimer with a predicted 25 molecular weight, including possible N-linked glycosylation, of 167,698. Subsequent SDS PAGE analyses of COS cell-derived protein described *infra* confirmed these approximate molecular weights, with a band running at about 210kD under non-reducing conditions and a band running at about 85kD under reducing conditions (Figure 5). Light scatter analysis was 30 performed to further confirm the molecular weight and, more importantly, determine whether or not the protein was a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To

determine molecular weight, the protein sample was injected onto a gel filtration column and the effluent was monitored with an on line light scattering detector and a refractive index and/or a UV detector. The light scattering detector is a MiniDawn laser light scattering detector was from
5 Wyatt Technology Corporation (Santa Barbara, CA). This instrument measures static light at three different angles. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) was used to calculate the protein concentration based on either dn/dc (dn = change of
10 refractive index; dc = concentration) or the extinction coefficient of the protein. The molecular weight of protein is then calculated from the angular dependence of light scattering. Figure 6 shows the results of this analysis using COS cell-derived protein. The molecular weight of the dimeric protein appears to be approximately 200kD and presence of a single
15 peak implies that the protein solution is, in fact, homogenous.

Expression Level in COS Cells: COS cell supernatant containing recombinant Ang-1-FD-Fc-FD protein was generated by transiently transfecting COS cells with the Ang1-FD-Fc-FD DNA construct described
20 *supra*. All transfections were performed using standard techniques known in the art. The COS cell supernatant was analyzed using Biacore technology (Pharmacia, Inc.) to quantitate the amount of Ang-1-FD-Fc-FD protein present in the supernatant. This analysis resulted in an RU value of 765, which is equivalent to 0.9mg of recombinant protein/liter of COS cell
25 supernatant. These values represent very high levels of expression.

Purification of COS Supernatants: Because the Ang-1-FD-Fc-FD protein contains an Fc domain, purification is relatively simple and straight forward using standard Protein A column chromatography (Pharmacia,
30 Inc.) followed by standard size exclusion chromatography (Pharmacia, Inc.). In fact, the relative ease of purification of the Ang-1-FD-Fc-FD protein gives it a distinct advantage over the parent protein, angiopoietin-1, from which

it is derived, and the mutant version of angiopoietin-1 called Ang1* that consists of the N-terminal of angiopoietin-2 fused to the coiled-coil domain and fibrinogen domain of angiopoietin-1 and that has a Cys to Ser mutation at amino acid 245. (See PCT International Application entitled "Modified 5 TIE-2 Receptor Ligands," published as WO 98/05779 on 12 February 1998 in the name of Regeneron Pharmaceuticals, Inc., especially Figure 27, which is hereby incorporated by reference).

Both angiopoietin-1 and Ang1* require extensive, expensive and labor-10 intensive purification schemes that result in relatively poor yields of recombinant protein. The need for cost-effective, simple purification schemes for biologicals intended for clinical use can not be over-emphasized.

15 The COS cell supernatant was purified as described *supra* and yielded approximately 1 mg of purified Ang-1-FD-Fc-FD protein that was used in the studies described *infra* to further characterize the protein.

N-terminal sequencing of COS cell-derived Ang-1-FD-Fc-FD protein:

20 Purified Ang-1-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. This was of concern because the mutant molecule, Ang1*, has a history of containing between 10-20% N-terminally truncated species. The analysis revealed only one N-terminal sequence, Arg-Asp-X-Ala-Asp, 25 wherein X is Cys. This sequence can be found at amino acids 16-20 of Figure 3A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 Figure 3A.

Receptor binding analysis of COS cell-derived Ang-1-FD-Fc-FD: Previous 30 studies have determined that the fibrinogen domain (FD) of the angiopoietin molecules is necessary for ligand/receptor interaction. Furthermore, in order for high affinity binding to the Tie-2 receptor to

occur, native angiopoietin-1, angiopoietin-2, and the mutant Ang1* must form at least tetrameric, and possibly higher order, multimers. To determine whether the COS cell-derived Ang-1-FD-Fc-FD protein, which is tetrameric with respect to the FD domain, could bind to Tie-2 with high affinity, standard Biacore analysis was performed. Briefly, Tie-2-Fc receptor body protein, which is a fusion protein comprising the ectodomain of Tie-2 fused to the Fc domain of human IgG1, was immobilized on a Biacore chip. Ang-1-FD-Fc-FD-containing solution was passed over the chip and binding between Tie-2 ectodomain and Ang-1-FD-Fc-FD was allowed to occur. The binding step was followed by a 0.5 M NaCl high salt wash. The high salt wash was not able to disrupt the interaction between the Ang-1-FD-Fc-FD protein and the Tie-2 receptor ectodomain, implying that there is a strong interaction between the mutant ligand and receptor. This result is consistent with earlier Biacore results in which both Ang-1-FD-Fc-FD parent molecule, angiopoietin-1 and the mutant Ang1* molecule, have been shown to interact strongly with the Tie-2-Fc receptor and that this interaction is not disrupted by high salt. In contrast, several mutant molecules derived from the parent angiopoietin-1 molecule are readily dissociated from the Tie-2-Fc receptor when treated with high salt. The mutant molecules, designated Ang-1/FD (a monomer with respect to the FD), Ang-1/FD-Fc (also a monomer with respect to the FD, but which is able to form a dimer due to the presence of the Fc domain), and Ang-1/C/FD (a monomer with respect to the FD, but which also contains the coiled-coil domain of angiopoietin-1), do not exist in multimeric forms sufficient for high affinity binding to the Tie-2 receptor.

Example 3: Characterization of COS cell-derived Ang-2-FD-Fc-FD protein.

Molecular Weight Analysis: As described for Ang-1-FD-Fc-FD *supra*, the predicted molecular weight for Ang-2-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT) The monomeric form of Ang-2-FD-Fc-FD has a predicted

weight of 76,052, with three predicted N-linked glycosylation sites that could potentially increase the molecular weight of the monomeric protein to 83,552. Like Ang-1-FD-Fc-FD, the protein exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,104.

- 5 SDS PAGE analyses of COS cell-derived protein confirmed these approximate molecular weights, with a band running at about 200kD under non-reducing conditions and a band running at about 88kD under reducing conditions (Figure 7). Light scatter analysis confirmed the molecular weight (171kD) and revealed that the Ang-2-FD-Fc-FD protein, like Ang-1-FD-Fc-FD, exists as a homogeneous species (Figure 8).
- 10

Expression Level in COS Cells: COS cell supernatant containing recombinant Ang-2-FD-Fc-FD protein was generated by transiently transfecting COS cells with the Ang-2-FD-Fc-FD DNA construct described 15 *supra*. The COS cell supernatant was analyzed by Biacore to quantitate the amount of Ang-2-FD-Fc-FD protein present in the supernatant. This analysis resulted in an RU value of 606, which is equivalent to 0.7mg of recombinant protein/liter of COS cell supernatant. These values represent relatively high levels of expression.

20

Purification of COS Supernatants: As with Ang-1-FD-Fc-FD, Ang-2-FD-Fc-FD protein contains an Fc domain, so purification is relatively simple and straight forward using standard Protein A column chromatography followed by standard size exclusion chromatography. The COS cell 25 supernatant was purified as described for Ang-1-FD-Fc-FD *supra* and yielded approximately 2 mg of purified Ang-2-FD-Fc-FD protein that was used in the studies described *infra* to further characterize this protein.

N-terminal sequencing: Purified COS cell-derived Ang-2-FD-Fc-FD protein 30 was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. The analysis revealed only one N-terminal sequence, Arg-Asp-X-Ala-Glu, wherein X is Cys. This

sequence can be found at amino acids 16-20 of Figure 4A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 of Figure 4A.

5 **Receptor binding analysis of COS cell-derived protein:** To determine whether the COS cell-derived Ang-2-FD-Fc-FD protein could bind to the Tie-2 receptor, standard Biacore analysis was performed as described for Ang-1-FD-Fc-FD *supra*. As with Ang-1-FD-Fc-FD, a high salt wash was not able to disrupt the interaction between the Ang-2-FD-Fc-FD protein and the
10 Tie-2-Fc receptor, again implying that there is a strong interaction between mutant ligand and receptor.

Example 4: Effects of COS cell-derived Ang-1-FD-Fc-FD and Ang-2-FD-Fc-FD on Tie-2 receptor phosphorylation in EAhy926 cells.

15

Because Ang-1-FD-Fc-FD is a mutant molecule derived from the agonist angiopoietin-1 and Ang-2-FD-Fc-FD is a mutant molecule derived from the antagonist angiopoietin-2, we wanted to determine whether or not these two mutant molecules would retain the activity associated with the parent
20 molecule from which it was derived.

25 **Assay system:** All of the experiments described *infra* utilized the cell line EAhy926 (Edgell, C. J., et al., (1983) Proc. Natl. Acad. Sci. USA 80:3734-3737) and standard phosphorylation assays and reagents familiar to those of skill in the art.

(A) Ang1*-mediated vs. Ang-1-FD-Fc-FD-mediated Tie-2 receptor

phosphorylation in EAhy926 cells: EAhy926 cells were stimulated with either 0.1 µg/ml, 0.2 µg/ml, or 0.8 µg/ml Ang1* or Ang-1-FD-Fc-FD protein.

30 A standard phosphorylation assay revealed that Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926 cells (Figure 9).

(B) Ability of Ang-2-FD-Fc-FD to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells:

EAhy926 cells were treated with 0.4 µg/ml of the Tie-2 agonist Ang1* and 1 µg/ml, 2 µg/ml, 4 µg/ml, 6 µg/ml, or 8 µg/ml of Ang-2-FD-Fc-FD. As shown in Figure 10, Ang-2-FD-Fc-FD is able to block Ang1* stimulation of the Tie-2 receptor when it is present in at least a 10-15 fold molar excess of Ang1*.

(C) Ability of angiopoietin-2 to block Ang1*-mediated Tie-2 receptor phosphorylation in EAhy926 cells:

To compare the blocking effects of the naturally occurring antagonist angiopoietin-2 with that of Ang-2-FD-Fc-FD, the same experiment described in (B) *supra* was performed, substituting angiopoietin-2 for Ang-2-FD-Fc-FD. The results of this experiment are shown in Figure 11. At a 20 fold molar excess, the angiopoietin-2 has not reduced the phosphorylation level to 50%. This result, coupled with the results described in (B) *supra* implies that Ang-2-FD-Fc-FD is a more potent inhibitor of Ang1*-mediated Tie-2 receptor phosphorylation than angiopoietin-2.

(D) Ability of Ang-2-FD-Fc-FD to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells:

EAhy926 cells were treated with 0.2 µg/ml of the naturally occurring Tie-2 agonist angiopoietin-1 and 1 µg/ml, 2 µg/ml, 4 µg/ml, 6 µg/ml, or 8 µg/ml of Ang-2-FD-Fc-FD. The results of this experiment, shown in Figure 12, show that while there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, Ang-2-FD-Fc-FD seems to be more effective at blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 10 and described in (B) *supra*.

(E) Ability of angiopoietin-2 to block angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in EAhy926 cells:

EAhy926 cells were treated with 0.2 µg/ml of the angiopoietin-1 and 1 µg/ml, 2 µg/ml, 4 µg/ml,

6 µg/ml, or 8 µg/ml of angiopoietin-2. The results of this experiment, shown in Figure 13, show that there is a trend toward blocking angiopoietin-1-mediated phosphorylation of the Tie-2 receptor in these cells, but, like Ang-2-FD-Fc-FD, angiopoietin-2 seems to be more effective at 5 blocking Ang1*-mediated phosphorylation of Tie-2, as shown in Figure 11 and described in (C) *supra*.

Example 5: Construction of Ang-1-FD-Fc-FD CHO cell expression vector pRG763/Ang-1-FD-Fc-FD.

10

The pRG763/Ang-1-FD-Fc-FD CHO cell expression vector was constructed by isolating from the plasmid pCDNA3.1/Ang1-FD-Fc-FD a 2115 base pair EcoRI - NotI fragment containing Ang1-FD-Fc-FD and ligating this fragment into pRG763 vector digested with EcoRI and NotI. A large scale (2L) culture 15 of E. coli DH10B cells carrying the pRG763/Ang-1-FD-Fc-FD plasmid was grown overnight in TB + ampicillin and the plasmid DNA was extracted using a Promega Wizard Plus Maxiprep kit, following the manufacturer's protocol. The concentration of the purified plasmid DNA was determined in a UV spectrophotometer and fluorometer. The plasmid DNA was 20 verified by digestion of aliquots with NcoI and HincII restriction enzymes. All restriction enzyme digest fragments corresponded to the predicted sizes in a 1% agarose gel.

Example 6: Expression of Ang-1-FD-Fc-FD in CHO cells.

25

Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of 4 x 10⁶ cells/plate. Plating media was Gibco Ham's F-12 w/10% Hyclone Fetal Bovine Serum (FBS) + penicillin/streptomycin and supplemented with glutamine. The following day each plate was transfected with 6 µg of 30 pRG763/Ang-1-FD-Fc-FD using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after adding the transfection mix to the cells 12 ml/plate of Optimem w/ 10%

FBS was added. Plates were incubated at 37°C in a 5% CO₂ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II w/ glutamine + 1mM sodium butyrate) was added. The plates were incubated at 37°C for 3 days. After 3 days of incubation the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was decanted into sterile 1L bottles and purified as described *infra*.

10 **Example 7: Construction of Ang-2-FD-Fc-FD CHO cell expression vector pRG763/Ang-2-FD-Fc-FD.**

The plasmid pRG763/Ang-2-FD-Fc-FD was constructed by isolating from the plasmid pCDNA3.1/Ang-2-FD-Fc-FD a 2097 base pair EcoRI - NotI fragment containing Ang-2-FD-Fc-FD and ligating this fragment into the pRG763 vector digested with EcoRI and NotI. A large scale (1L) culture of E. coli DH10B cells carrying the pRG763/Ang-2-FD-Fc-FD plasmid was grown overnight in TB + ampicillin and the plasmid DNA was extracted using a Promega Wizard Plus Maxiprep kit, following the manufacturer's protocol. The concentration of the purified plasmid DNA was determined in a UV spectrophotometer and fluorometer. The plasmid DNA was also verified by digestion of plasmid DNA with NcoI and Ppu10I restriction enzymes. All restriction enzyme digest fragments corresponded to the predicted sizes in a 1% agarose gel.

25 **Example 8: Expression of Ang-2-FD-Fc-FD in CHO cells.**

Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of 4 × 10⁶ cells/plate. Plating media was Gibco Ham's F-12 w/10% Hyclone Fetal Bovine Serum (FBS) + penicillin/streptomycin and supplemented with glutamine. The following day each plate was transfected with 6 µg of pRG763/Ang-2-FD-Fc-FD using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after

adding the transfection mix to the cells 12 ml/plate of Optimem w/ 10% FBS was added. Plates were incubated at 37°C in a 5% CO₂ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II w/ glutamine + 1mM sodium butyrate) was added. The plates were incubated at 37°C for 3 days. After 3 days of incubation the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was decanted into sterile 1L bottles purified as described infra.

10 **Example 9: Characterization of stable CHO clone-derived Ang-1-FD-Fc-FD protein.**

Molecular Weight Analysis: The predicted molecular weight for stable CHO clone-derived Ang-1-FD-Fc-FD protein was determined using the
15 MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT). The monomeric form (with respect to the Fc) has a predicted weight of 76,349. In addition, there are three predicted N-linked glycosylation sites, approximately 2500 MW/site, that could potentially increase the molecular weight of the monomeric protein to 83,849. Due to the interaction between
20 the Fc components of adjacent molecules, the protein actually exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,698. Subsequent SDS PAGE analyses confirmed these approximate molecular weights, with a band running at about 210kD under non-reducing conditions and a band running at about 85kD under reducing
25 conditions. Light scatter analysis was performed to further confirm the molecular weight and, more importantly, determine whether or not the protein was a homogeneous species. Light scattering is a function of mass and concentration of a macromolecule. To determine molecular weight, the protein sample was injected onto a gel filtration column and the
30 effluent was monitored with an on line light scattering detector and a refractive index and/or a UV detector. The light scattering detector is a MiniDawn laser light scattering detector was from Wyatt Technology

Corporation (Santa Barbara, CA). This instrument measures static light at three different angles. The on line refractive index detector or UV detector serve to measure protein concentration. Astra 4.7 Software (Wyatt Technology Corporation, Santa Barbara, CA) was used to calculate the protein concentration based on either dn/dc (dn = change of refractive index; dc = concentration) or the extinction coefficient of the protein. The molecular weight of protein is then calculated from the angular dependence of light scattering. The results of this analysis show that the dimeric protein appears to be approximately 173.9kD and the presence of a single peak implies that the protein solution is homogenous.

Expression level of Ang-1-FD-Fc-FD in stable CHO clones: CHO cell supernatant containing recombinant Ang-1-FD-Fc-FD protein was generated by stably transfecting CHO cells with the Ang-1-FD-Fc-FD DNA construct described *supra*. The CHO cell supernatant was analyzed by standard ELISA using an anti-human IgG antibody as a capture antibody and an anti-human IgG antibody conjugated to alkaline phosphatase as a reporter antibody to quantitate the amount of Ang-1-FD-Fc-FD protein present in the supernatant. This analysis revealed expression levels of 2-3 pg/cell/day.

Purification of Ang-1-FD-Fc-FD protein derived from stable CHO clone supernatants: Because the Ang-1-FD-Fc-FD protein contains an Fc domain, purification is relatively simple and straight forward using standard Protein A column chromatography (Pharmacia, Inc.) followed by standard size exclusion chromatography (Pharmacia, Inc.). The CHO cell supernatant was purified as described *supra* and the purified ANG-1-FD-Fc-FD protein was used in the studies described *infra* to further characterize the protein.

N-terminal sequencing of stable CHO clone-derived Ang-1-FD-Fc-FD protein: Purified Ang-1-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. The analysis revealed only one N-terminal

sequence, Arg-Asp-X-Ala-Asp, wherein X is Cys. This sequence can be found at amino acids 16-20 of Figure 3A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 Figure 3A.

5 **Example 10: Characterization of stable CHO clone-derived Ang-2-FD-Fc-FD protein.**

Molecular Weight Analysis: As described for stable CHO clone-derived Ang-1-FD-Fc-FD *supra*, the predicted molecular weight for stable CHO 10 clone-derived Ang-2-FD-Fc-FD protein was determined using the MacVector Program (Kodak, Scientific Imaging Systems, New Haven, CT). The monomeric form of Ang-2-FD-Fc-FD has a predicted weight of 76,052, with three predicted N-linked glycosylation sites that could potentially increase the molecular weight of the monomeric protein to 83,552. Like 15 Ang-1-FD-Fc-FD, the protein exists as a dimer with a predicted molecular weight, including possible N-linked glycosylation, of 167,104. SDS PAGE analyses confirmed these approximate molecular weights, with a band running at about 200kD under non-reducing conditions and a band running at about 85kD under reducing conditions. Light scatter analysis confirmed 20 the molecular weight (176.6kD) and revealed that the stable CHO clone-derived Ang-2-FD-Fc-FD protein, like stable CHO clone-derived Ang-1-FD-Fc-FD, exists as a homogeneous species.

Expression level of Ang-2-FD-Fc-FD derived from stable CHO clones: CHO 25 cell supernatant containing recombinant Ang-2-FD-Fc-FD protein was generated by stably transfecting CHO cells with the Ang-2-FD-Fc-FD DNA construct described *supra*. The CHO cell supernatant was analyzed by standard ELISA using an anti-human IgG antibody as a capture antibody and an anti-human IgG antibody conjugated to alkaline phosphatase as a 30 reporter antibody to quantitate the amount of Ang-2-FD-Fc-FD protein present in the supernatant. This analysis revealed expression levels of approximately 1-2 pg/cell/day.

Purification of stable CHO clone-derived Ang-2-FD-Fc-FD from cell supernatants:

As with Ang-1-FD-Fc-FD, Ang-2-FD-Fc-FD protein contains an Fc domain, so purification is relatively simple and straight forward using standard Protein A column chromatography followed by standard size exclusion chromatography. The CHO cell supernatant was purified as described for stable CHO clone-derived Ang-1-FD-Fc-FD *supra* and was used in the studies described *infra* to further characterize this protein.

N-terminal sequencing of stable CHO clone-derived Ang-2-FD-Fc-FD protein:

Purified stable CHO clone-derived Ang-2-FD-Fc-FD protein was subjected to standard N-terminal sequence analysis to determine if any truncated species of the protein were being generated. The analysis revealed only one N-terminal sequence, Asp-X-Ala-Glu-Val, wherein X is Cys. This sequence can be found at amino acids 17-21 of Figure 4A, and immediately follows the protein's signal sequence corresponding to amino acids 1-15 of Figure 4A.

Example 11: Effects of stable CHO clone-derived Ang-1-FD-Fc-FD and Ang-2-FD-Fc-FD on Tie-2 receptor phosphorylation in EAhy926 cells.

Assay system: All of the experiments described *infra* utilized the cell line EAhy926 (Edgell, C. J., et al., (1983) Proc. Natl. Acad. Sci. USA 80:3734-3737) and standard phosphorylation assays and reagents familiar to those of skill in the art.

(A) Ang1*-mediated vs. stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells: EAhy926 cells were stimulated with 0.4 µg/ml Ang1* or 0.2 µg/ml or 0.4 µg/ml stable CHO clone-derived Ang-1-FD-Fc-FD protein. A standard phosphorylation assay revealed that or stable CHO clone-derived Ang-1-FD-Fc-FD was equivalent to Ang1* in its ability to stimulate phosphorylation of the Tie-2 receptor in EAhy926 cells (Figure 17).

(B) Ability of stable CHO clone-derived Ang-2-FD-Fc-FD to block stable CHO clone-derived Ang-1-FD-Fc-FD-mediated Tie-2 receptor phosphorylation in EAhy926 cells:

EAhy926 cells were treated with 0.2 µg/ml of the Tie-2 agonist Ang-1-FD-Fc-FD and 2 µg/ml, 4 µg/ml, 8 µg/ml or 16 µg/ml of stable CHO clone-derived Ang-2-FD-Fc-FD. As shown in Figure 18, Ang-2-FD-Fc-FD is able to block stable CHO clone-derived Ang-1-FD-Fc-FD stimulation of the Tie-2 receptor when it is present in at least a 40 fold molar excess of stable CHO clone-derived Ang-1-FD-Fc-FD.

10

Ephrin ligands:

In previous experiments (Davis et al., 1994, Science, 266:816-819; Gale et al., 1996, Neuron 17:9-19, Gale and Yancopoulos, 1997, Cell Tissue Research 290:227-241), soluble, unclustered Ephrin-B1-Fc and Ephrin-B2-Fc, which dimerize at their respective Fc domains and therefore are dimeric with respect to either the Ephrin-B1 or Ephrin-B2 ectodomain, failed to induce EphB2 receptor phosphorylation. However, when either molecule was multimerized by pre-clustering with an anti-Fc antibody, they became potent agonists for the EphB2 receptor, as judged by tyrosine phosphorylation of the EphB2 receptor in a COS cell reporter assay. Because multimerization of both Ephrin-B1 and Ephrin-B2 appears to be necessary for induction of receptor phosphorylation, we theorized that a molecule that contained tandem repeats of either Ephrin-B1 or Ephrin-B2 ectodomains fused to an Fc domain, which would be dimeric with respect to the Fc domain but which would be tetrameric with respect to Ephrin ectodomains, might be sufficiently clustered to induce receptor phosphorylation. To test this hypothesis, the following DNA constructs were constructed, recombinant proteins produced, and reporter assays performed.

Construction of tandem Ephrin ectod main/Fc domain nucleic acid molecules.

All of the following nucleic acid molecules were constructed by standard
5 recombinant DNA techniques (See e.g., Molecular Cloning, A Laboratory Manual (Sambrook, et al., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), Current Protocols in Molecular Biology (Eds. Ausubel, et al., Greene Publ. Assoc., Wiley-Interscience, NY), sequence-verified by standard techniques using an ABI 373A DNA sequencer and Taq Dideoxy Terminator
10 Cycle Sequencing Kit (Applied Biosystems, Inc., Foster City, CA), and subcloned into either the mammalian expression pJFE14 (Ephrin-B1-Ephrin-B1-Fc) or pMT21 (Ephrin-B2-Ephrin-B2-Fc), each with a Kozak sequence (Kozak, M., 1987, Nucleic Acids Res. 15:8125-8148) at the 5' end to promote protein translation. The bridging sequences described *infra* were
15 introduced to provide convenient restriction sites and to give flexibility to the junctions between the domains, but there is no indication that there is a very critical nature to these bridging sequences (though varying the length of the linker in some of these constructs led to some variation in the amount of protein produced).

20

Example 12: Construction of Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc nucleic acid molecules.

(A) Ephrin-B1-Ephrin-B1-Fc: The Ephrin-B1-Ephrin-B1-Fc DNA molecule
25 consists of the coding sequence of the ectodomain of Ephrin-B1 (Davis et al., ibid.), which corresponds to nucleotides 1-711 of Figure 14A-Figure 14B, followed by a bridging sequence consisting of the amino acids Gly-Pro-Gly (nucleotides 712-720 of Figure 14B), followed by a second copy of the ectodomain of Ephrin-B1 (corresponding to nucleotides 721-1344 of Figure
30 14B-Figure 14D), except that in this copy of the Ephrin-B1 ectodomain the signal sequence has been removed. This second copy is followed by a second Gly-Pro-Gly amino acid bridge (nucleotides 1345-1353 of Figure 14D),

followed by the coding sequence for the Fc portion of human IgG1 (nucleotides 1354-2049 of Figure 14D-Figure 14E).

(B) Ephrin-B2-Ephrin-B2-Fc: The Ephrin-B2-Ephrin-B2-Fc DNA molecule
5 consists of the coding sequence of the ectodomain of Ephrin-B2 (Bergemann et al., 1995, Mol. Cell Biol. 15:4821-4929), which corresponds to nucleotides 1-675 of Figure 15A-Figure 15B, followed by a bridging sequence consisting of the amino acids Gly-Pro-Gly (nucleotides 676-684 of Figure 15B), followed by a second copy of the ectodomain of Ephrin-B2 (corresponding to nucleotides 10 685-1270 of Figure 15B-Figure 15D), except that in this copy the signal sequence has been removed. This second copy is followed by a second Gly-Pro-Gly amino acid bridge (nucleotides 1270-1278 of Figure 15D), followed by the coding sequence for the Fc portion of human IgG1 (nucleotides 1279-1977 of Figure 15D-Figure 15E).

15

As with the angiopoietin nucleic acid molecules described *supra*, the bridging sequences were introduced to provide convenient restriction sites and to give flexibility to the junctions between the domains.

20 Example 13: Expression of tandem Ephrin recombinant proteins in COS cells.

COS cells were transiently transfected with either the Ephrin-B1-Ephrin-B1-Fc or Ephrin-B2-Ephrin-B2-Fc nucleic acid molecules described *supra* using
25 standard transfection techniques known in the art. Two days subsequent to transfection, the growth medium (DMEM supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine, and 10% calf serum) was aspirated and replaced with serum-free medium (DMEM supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine). Cell
30 were grown for an additional three days and then the serum-free medium containing the recombinant proteins was collected. Recombinant protein concentration was determined by performing dot blots and comparing the

signal obtained to a standard curve. Once approximate protein concentrations were determined, the Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc recombinant proteins were used in the cell reporter assays described *infra*.

5

Example 14: Characterization of the COS cell-derived tandem Ephrin ectodomain/Fc domain recombinant proteins.

Reporter Assay: COS cells, which endogenously express the Eph family receptor EphB2 (Gale et al., 1996, *Neuron* 17:9-19), were used in reporter assays to evaluate the ability of Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc to induce receptor phosphorylation. The assays were performed as previously described (Davis et al., *ibid.*; Gale et al., *ibid.*). Briefly, COS cells were grown to 80-90% confluence in standard growth medium described *supra*. After growth, the medium was aspirated, and replaced with serum-free medium (described *supra*) for 1-2 hours prior to treatment with either Ephrin-B1-Ephrin-B1-Fc or Ephrin-B2-Ephrin-B2-Fc recombinant protein. The cells were stimulated with 500 ng/ml Ephrin-B1-Ephrin-B1-Fc or Ephrin-B2-Ephrin-B2-Fc for 30 minutes at 37°C, with or without affinity purified human IgG1 Fc-specific goat anti-human antibody (Jackson Immunoresearch, West Grove, PA) at a final concentration of 17 µg/ml. This antibody is capable of clustering the Fc tagged fusion. Subsequent to treatment, the COS cells were harvested and cell lysates were prepared as described in Davis, et al. and Gale, et al., *supra*. The EphB2 receptor protein was immunoprecipitated from the cell lysates using an anti-EphB2 antisera (Henkemeyer et al., 1994, *Oncogene* 9:1001-1014). Immunoprecipitates were resolved by standard SDS PAGE and transferred to PVDF membranes (Millipore) for western blot analysis. The membranes were probed with either anti-phosphotyrosine antibody 4G10 (Upstate Biotechnology Institute, Lake Placid, NY) or anti-EphB2 antibodies (Henkemeyer, et al., *ibid.*) to determine the extent of EphB2

phosphorylation and the relative quantities of EphB2 in the experimental conditions described *supra*.

Results: Both Ephrin-B1-Ephrin-B1-Fc and Ephrin-B2-Ephrin-B2-Fc were
5 shown to be approximately as active as anti-Fc antibody-clustered Ephrin-B1-Fc in their ability to induce EphB2 receptor phosphorylation in the COS cell reporter assay. Furthermore, if either of the proteins were further clustered with the goat anti-human Fc antibody, they became even more potent in their ability to induce EphB2 receptor phosphorylation. Figure 16
10 shows the results of this phosphorylation assay.

Example 15: Construction of Ephrin-B2-Ephrin-B2-Fc CHO expression vector.

15 The Ephrin-B2-Ephrin-B2-Fc DNA molecule consists of the coding sequence of the ectodomain of Ephrin-B2 (Bergemann et al., 1995, Mol. Cell Biol. 15:4821-4929), which corresponds to nucleotides 1-675 of Figure 15A-Figure 15B, followed by a bridging sequence consisting of the amino acids Gly-Pro-Gly (nucleotides 676-684 of Figure 15B), followed by a second copy of the
20 ectodomain of Ephrin-B2 (corresponding to nucleotides 685-1270 of Figure 15B-Figure 15D), except that in this copy the signal sequence has been removed. This second copy is followed by a second Gly-Pro-Gly amino acid bridge (nucleotides 1270-1278 of Figure 15D), followed by the coding sequence for the Fc portion of human IgG1 (nucleotides 1279-1977 of Figure
25 15D-Figure 15E). This molecule was subcloned into the HindIII and NotI polylinker sites in the expression vector pRG763 and was designated pRG763-m(Ephrin-B2)2-Fc. As with the angiopoietin nucleic acid molecules described *supra*, the bridging sequences were introduced to provide convenient restriction sites and to give flexibility to the junctions between
30 the domains.

Example 16: Expression of Ephrin-B2-Ephrin-B2-Fc in CHO-K1 (E1A) cells.

Forty 15 cm petri plates were seeded with CHO-K1/E1A cells at a density of 4 x 10⁶ cells/plate. Plating media was Gibco Ham's F-12 w/10% Hyclone Fetal Bovine Serum (FBS) + penicillin/streptomycin and supplemented with glutamine. The following day each plate was transfected with 6 µg of pRG763-m(Ephrin-B2)2-Fc using Gibco Optimem and Gibco Lipofectamine in 12 ml volume, following the manufacturer's protocol. Four hours after adding the transfection mix to the cells 12 ml/plate of Optimem w/ 10% FBS was added. Plates were incubated at 37°C in a 5% CO₂ incubator overnight. The following day the media was removed from each plate and 25 ml expression media (Gibco CHO-S-SFM II w/ glutamine + 1mM sodium butyrate) was added. The plates were incubated at 37°C for 3 days. After 3 days of incubation the media was aspirated from each plate and centrifuged at 400 rpm in a swinging bucket rotor to pellet cells. The supernatant was decanted into sterile 1L bottles and purified as described *supra*.

WHAT IS CLAIMED IS:

1. A nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises a first subunit comprising at least one copy of the receptor binding domain of a ligand, the first subunit being fused to the N-terminal end of a multimerizing component, said multimerizing component being fused at its C-terminal end to a second subunit comprising at least one copy of the receptor binding domain of a ligand.
2. The nucleic acid of claim 1, wherein the receptor binding domains of the first and second subunits are copies of the receptor binding domain of the same ligand.
3. The nucleic acid of claim 1, wherein the receptor binding domains of the first subunit are copies of the receptor binding domain of a different ligand from the receptor binding domains of the second subunit.
4. The nucleic acid of claim 2, wherein the first and second subunits each have one copy of the receptor binding domain of the ligand.
5. The nucleic acid of claim 3, wherein the first and second subunits each have one copy of the receptor binding domain of the ligand.
6. The nucleic acid of claim 2, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.
7. The nucleic acid of claim 4, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.

8. The nucleic acid of claim 2, wherein the ligand is selected from the group consisting of the EPH family of ligands.
9. The nucleic acid of claim 4, wherein the ligand is selected from the group consisting of the EPH family of ligands.
10. The nucleic acid of claims 1 through 9, wherein the multimerizing component comprises an immunoglobulin derived domain.
11. The nucleic acid molecule of claim 10, wherein the immunoglobulin derived domain is selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG.
12. A fusion polypeptide encoded by the nucleic acid molecule of claims 1 through 11.
13. A composition comprising a multimer of the fusion polypeptide of claim 12.
14. The composition of claim 13, wherein the multimer is a dimer.
15. A vector which comprises the nucleic acid molecule of claims 1 through 11.
16. An expression vector comprising a nucleic acid molecule of claims 1 through 11, wherein the nucleic acid molecule is operatively linked to an expression control sequence.
17. A host-vector system for the production of a fusion polypeptide which comprises the expression vector of claim 16, in a suitable host cell.

18. The host-vector system of claim 17, wherein the suitable host cell is a bacterial cell, yeast cell, insect cell or mammalian cell.
19. The host-vector system of claim 17, wherein the suitable host cell is E. coli.
20. The host-vector system of claim 17, wherein the suitable host cell is a COS cell.
21. The host-vector system of claim 17, wherein the suitable host cell is a CHO cell.
22. A method of producing a fusion polypeptide which comprises growing cells of the host-vector system of claims 17 through 21, under conditions permitting production of the fusion polypeptide and recovering the polypeptide so produced.
23. A nucleic acid encoding a fusion polypeptide wherein the fusion polypeptide comprises more than one copy of the receptor binding domain of a ligand in tandem, and wherein either the N-terminal or the C-terminal receptor binding domain is also fused to a multimerizing component.
24. The nucleic acid of claim 23, wherein the receptor binding domains are fused contiguously.
25. The nucleic acid of claim 23, wherein the ligand is not a member of the EPH family of ligands.
26. The nucleic acid of claim 24, wherein the ligand is not a member of

the EPH family of ligands.

27. The nucleic acid of claim 23, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.
28. The nucleic acid of claim 24, wherein the receptor binding domain is the fibrinogen domain of angiopoietin-1 or angiopoietin-2.
29. The nucleic acid of claims 23 through 28, wherein the multimerizing component comprises an immunoglobulin derived domain.
30. The nucleic acid molecule of claim 29, wherein the immunoglobulin derived domain is selected from the group consisting of the Fc domain of IgG, the heavy chain of IgG, and the light chain of IgG.
31. A fusion polypeptide encoded by the nucleic acid molecule of claims 23 through 30.
32. A composition comprising a multimer of the fusion polypeptide of claim 31.
33. The composition of claim 32, wherein the multimer is a dimer.
34. A vector which comprises the nucleic acid molecule of claims 23 through 30.
35. An expression vector comprising a nucleic acid molecule of claims 23 through 30, wherein the nucleic acid molecule is operatively linked to an expression control sequence.

36. A host-vector system for the production of a fusion polypeptide which comprises the expression vector of claim 35, in a suitable host cell.
37. The host-vector system of claim 36, wherein the suitable host cell is a bacterial cell, yeast cell, insect cell or mammalian cell.
38. The host-vector system of claim 36, wherein the suitable host cell is E. coli.
39. The host-vector system of claim 36, wherein the suitable host cell is a COS cell.
40. The host-vector system of claim 36, wherein the suitable host cell is a CHO cell.
41. A method of producing a fusion polypeptide which comprises growing cells of the host-vector system of claims 36 through 40, under conditions permitting production of the fusion polypeptide and recovering the polypeptide so produced.

1/42
Figure 1A

10 20 30 40

ATG TCT GCA CTT CTG ATC CTA GCT CTT GGT GGA GCT GCA GTT GCT
 Met Ser Ala Leu Leu Ile Leu Ala Leu Val Gly Ala Ala Val Ala>
aaaaTRYPSIN SIGNAL SEQUENCEaaaa>

50 60 70 80 90

* * * * *
 AGA GAC TGT GCA GAT GTA TAT CAA GCT GGT TTT AAT AAA AGT GGA
 Arg Asp Cys Ala Asp Val Tyr Gln Ala Gly Phe Asn Lys Ser Gly>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

100 110 120 130

* * * * *
 ATC TAC ACT ATT TAT ATT AAT AAT ATG CCA GAA CCC AAA AAG GTG
 Ile Tyr Thr Ile Tyr Ile Asn Asn Met Pro Glu Pro Lys Lys Val>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

140 150 160 170 180

* * * * *
 TTT TGC AAT ATG GAT GTC AAT GGG GGA GGT TGG ACT GTA ATA CAA
 Phe Cys Asn Met Asp Val Asn Gly Gly Trp Thr Val Ile Gln>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

190 200 210 220

* * * * *
 CAT CGT GAA GAT GGA AGT CTA GAT TTC CAA AGA GGC TGG AAG GAA
 His Arg Glu Asp Gly Ser Leu Asp Phe Gln Arg Gly Trp Lys Glu>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

230 240 250 260 270

* * * * *
 TAT AAA ATG GGT TTT GGA AAT CCC TCC GGT GAA TAT TGG CTG GGG
 Tyr Lys Met Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

280 290 300 310

* * * * *
 AAT GAG TTT ATT TTT GCC ATT ACC AGT CAG AGG CAG TAC ATG CTA
 Asn Glu Phe Ile Phe Ala Ile Thr Ser Gln Arg Gln Tyr Met Leu>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

320 330 340 350 360

* * * * *
 AGA ATT GAG TTA ATG GAC TGG GAA AAC CGA GCC TAT TCA CAG
 Arg Ile Glu Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr Ser Gln>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

370 380 390 400

* * * * *
 TAT GAC AGA TTC CAC ATA GGA AAT GAA AAG CAA AAC TAT AGG TTG
 Tyr Asp Arg Phe His Ile Gly Asn Glu Lys Gln Asn Tyr Arg Leu>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

410 420 430 440 450

* * * * *
 TAT TTA AAA GGT CAC ACT GGG ACA GCA GGA AAA CAG AGC AGC CTG
 Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu>
bbbbANG1 FIBRINOGEN-LIKE DOMAINbbbb>

2/42
Figure 1B

460 470 480 490

ATC TTA CAC GGT GCT GAT TTC AGC ACT AAA GAT GCT GAT AAT GAC
Ile Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp>
bbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

500 510 520 530 540

AAC TGT ATG TGC AAA TGT GCC CTC ATG TTA ACA GGA GGA TGG TGG
Asn Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp>
bbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

550 560 570 580

TTT GAT GCT TGT GGC CCC TCC AAT CTA AAT GGA ATG TTC TAT ACT
Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr>
bbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

590 600 610 620 630

GCG GGA CAA AAC CAT GGA AAA CTG AAT GGG ATA AAG TGG CAC TAC
Ala Gly Gln Asn His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr>
bbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

640 650 660 670

TTC AAA GGG CCC AGT TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT
Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ser Thr Thr Met Met Ile>
bbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

680 690 700 710 720

CGA CCT TTA GAT TTT GGC CCC GCG CCT TTT AGA GAC TGT GCA GAT
Arg Pro Leu Asp Phe>
ANG1 FIBRINO>

Gly Pro Ala Pro>
GPAP BRI>

Phe Arg Asp Cys Ala Asp>
ANG1 FIBRINOGEN>

730 740 750 760

GTA TAT CAA GCT GGT TTT AAT AAA AGT GGA ATC TAC ACT ATT TAT
Val Tyr Gln Ala Gly Phe Asn Lys Ser Gly Ile Tyr Thr Ile Tyr>
dddANG1 FIBRINOGEN-LIKE DOMAIN_dddd>

770 780 790 800 810

ATT AAT AAT ATG CCA GAA CCC AAA AAG GTG TTT TGC AAT ATG GAT
Ile Asn Asn Met Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp>
dddANG1 FIBRINOGEN-LIKE DOMAIN_dddd>

820 830 840 850

GTC AAT GGG GGA GGT TGG ACT GTA ATA CAA CAT CGT GAA GAT GGA
Val Asn Gly Gly Trp Thr Val Ile Gln His Arg Glu Asp Gly>
dddANG1 FIBRINOGEN-LIKE DOMAIN_dddd>

3/42
Figure 1C

860 870 880 890 900
 * * * * *
 AGT CTA GAT TTC CAA AGA GGC TGG AAG GAA TAT AAA ATG GGT TTT
 Ser Leu Asp Phe Glu Arg Gly Trp Lys Glu Tyr Lys Met Gly Phe>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 910 920 930 940
 * * * *
 GGA AAT CCC TCC GGT GAA TAT TGG CTG GGG AAT GAG TTT ATT TTT
 Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu Phe Ile Phe>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 950 960 970 980 990
 * * * * *
 GCC ATT ACC AGT CAG AGG CAG TAC ATG CTA AGA ATT GAG TTA ATG
 Ala Ile Thr Ser Gln Arg Gln Tyr Met Leu Arg Ile Glu Leu Met>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 1000 1010 1020 1030
 * * * *
 GAC TGG GAA GGG AAC CGA GCC TAT TCA CAG TAT GAC AGA TTC CAC
 Asp Trp Glu Gly Asn Arg Ala Tyr Ser Gln Tyr Asp Arg Phe His>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 1040 1050 1060 1070 1080
 * * * * *
 ATA GGA AAT GAA AAG CAA AAC TAT AGG TTG TAT TTA AAA GGT CAC
 Ile Gly Asn Glu Lys Gln Asn Tyr Arg Leu Tyr Leu Lys Gly His>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 1090 1100 1110 1120
 * * * *
 ACT GGG ACA GCA GGA AAA CAG AGC AGC CTG ATC TTA CAC GGT GCT
 Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu Ile Leu His Gly Ala>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 1130 1140 1150 1160 1170
 * * * * *
 GAT TTC AGC ACT AAA GAT GCT GAT AAT GAC AAC TGT ATG TGC AAA
 Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp Asn Cys Met Cys Lys>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 1180 1190 1200 1210
 * * * *
 TGT GCC CTC ATG TTA ACA GGA GGA TGG TGG TTT GAT GCT TGT GGC
 Cys Ala Leu Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

 1220 1230 1240 1250 1260
 * * * * *
 CCC TCC AAT CTA AAT GGA ATG TTC TAT ACT GCG GGA CAA AAC CAT
 Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln Asn His>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

4/42
Figure 1D

1270 1280 1290 1300

GGA AAA CTG AAT GGG ATA AAG TGG CAC TAC TTC AAA GGG CCC AGT
 Gly Lys Leu Asn Gly Ile Lys Trp His Tyr Phe Lys Gly Pro Ser>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

1310 1320 1330 1340 1350

TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT CGA CCT TTA GAT TTT
 Tyr Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe>
d d d ANG1 FIBRINOGEN-LIKE DOMAIN d d d d >

1360 1370 1380 1390

GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA
 Gly Pro Gly>
e e >
 Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro>
f f f FC TAG [SPLIT] f f f f >

1400 1410 1420 1430 1440

CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC
 Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu>
f f f f f FC TAG [SPLIT] f f f f f >

1450 1460 1470 1480

TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT
 Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro>
f f f f f FC TAG [SPLIT] f f f f f >

1490 1500 1510 1520 1530

GAG GTC ACA TGC GTG GTG GAC GTG AGC CAC GAA GAC CCT GAG
 Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu>
f f f f f FC TAG [SPLIT] f f f f f >

1540 1550 1560 1570

GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC
 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala>
f f f f f FC TAG [SPLIT] f f f f f >

1580 1590 1600 1610 1620

AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG
 Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val>
f f f f f FC TAG [SPLIT] f f f f f >

1630 1640 1650 1660

GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG
 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys>
f f f f f FC TAG [SPLIT] f f f f f >

5/42

Figure 1E

1670 1680 1690 1700 1710
 * * * * *
 GAG TAC AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC
 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1720 1730 1740 1750
 * * * * *
 GAG AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA GAA CCA CAG
 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1760 1770 1780 1790 1800
 * * * * *
 GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC CAG
 Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1810 1820 1830 1840
 * * * * *
 GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC ATC
 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1850 1860 1870 1880 1890
 * * * * *
 GCC GTG GAG TGG GAG AGC AAT GGG CAG CGG GAG AAC AAC TAC AAG
 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1900 1910 1920 1930
 * * * * *
 ACC ACG CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC
 Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1940 1950 1960 1970 1980
 * * * * *
 AGC AAG CTC ACC GTG GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC
 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 1990 2000 2010 2020
 * * * * *
 TTC TCA TGC TCC GTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACG
 Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr>
 —f—f—f—f—f—FC TAG [SPLIT] —f—f—f—f—f—>

 2030 2040 2050
 * * * *
 CAG AAG ACC CTC TCC CTG TCT CCG GGT AAA TGA
 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys ***>
 —f—f—f—FC TAG [SPLIT] —f—f—f—>

6/42
Figure 2A

10	20	30	40	
*	*	*	*	*
ATG TCT GCA CTT CTG ATC CTA GCT CTT GTT GGA GCT GCA GTT GCT Met Ser Ala Leu Leu Ile Leu Ala Leu Val Gly Ala Ala Val Ala>				
<u>a a a a a</u> TRYPSIN SIGNAL SEQUENCE <u>a a a a a</u> >				
50	60	70	80	90
*	*	*	*	*
AGA GAC TGT GCT GAA GTA TTC AAA TCA GGA CAC ACC ACA AAT GGC Arg Asp Cys Ala Glu Val Phe Lys Ser Gly His Thr Thr Asn Gly>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
100	110	120	130	
*	*	*	*	*
ATC TAC ACG TTA ACA TTC CCT AAT TCT ACA GAA GAG ATC AAG GCC Ile Tyr Thr Leu Thr Phe Pro Asn Ser Thr Glu Glu Ile Lys Ala>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
140	150	160	170	180
*	*	*	*	*
TAC TGT GAC ATG GAA GCT GGA GGA GGC GGG TGG ACA ATT ATT CAG Tyr Cys Asp Met Glu Ala Gly Gly Gly Trp Thr Ile Ile Gin>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
190	200	210	220	
*	*	*	*	*
CGA CGT GAG GAT GGC AGC GTT GAT TTT CAG AGG ACT TGG AAA GAA Arg Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Thr Trp Lys Glu>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
230	240	250	260	270
*	*	*	*	*
TAT AAA GTG GGA TTT GGT AAC CCT TCA GGA GAA TAT TGG CTG GGA Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
280	290	300	310	
*	*	*	*	*
AAT GAG TTT GTT TCG CAA CTG ACT AAT CAG CAA CGC TAT GTG CTT Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
320	330	340	350	360
*	*	*	*	*
AAA ATA CAC CTT AAA GAC TGG GAA GGG AAT GAG GCT TAC TCA TTG Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr Ser Leu>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
370	380	390	400	
*	*	*	*	*
TAT GAA CAT TTC TAT CTC TCA ACT GAA GAA CTC AAT TAT AGG ATT Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Ile>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				
410	420	430	440	450
*	*	*	*	*
CAC CTT AAA GGA CTT ACA GGG ACA GCC GGC AAA ATA AGC AGC ATC His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile>				
<u>b b b</u> ANG2 FIBRINOGEN-LIKE DOMAIN #1 <u>b b b</u> >				

7/42

Figure 2B

460 470 480 490

AGC CAA CCA GGA AAT GAT TTT AGC ACA AAG GAT GGA GAC AAC GAC
 Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp>
bbbANG2 FIBRINOGEN-LIKE DOMAIN #1bbb>

500 510 520 530 540

AAA TGT ATT TGC AAA TGT TCA CAA ATG CTA ACA GGA GGC TGG TGG
 Lys Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp>
bbbANG2 FIBRINOGEN-LIKE DOMAIN #1bbb>

550 560 570 580

TTT GAT GCA TGT GGT CCT TCC AAC TTG AAC GGA ATG TAC TAT CCA
 Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro>
bbbANG2 FIBRINOGEN-LIKE DOMAIN #1bbb>

590 600 610 620 630

CAG AGG CAG AAC ACA AAT AAG TTC AAC GGC ATT AAA TGG TAC TAC
 Gln Arg Gln Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr>
bbbANG2 FIBRINOGEN-LIKE DOMAIN #1bbb>

640 650 660 670

TGG AAA GGC TCA GGC TAT TCG CTC AAG GCC ACC ACC ATG ATG ATC
 Trp Lys Gly Ser Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile>
bbbANG2 FIBRINOGEN-LIKE DOMAIN #1bbb>

680 690 700 710 720

CGA CCA GCA GAT TTC GGG GGC CCC GCG CCT TTC AGA GAC TGT GCT
 Arg Pro Ala Asp Phe>
ANG2 FIBRINO>

Gly Gly Pro Ala Pro>

GGPAP BRIDGE>

Phe Arg Asp Cys Ala>

ANG2 FIBRINO>

730 740 750 760

GAA GTA TTC AAA TCA GGA CAC ACC ACA AAT GGC ATC TAC ACG TPA
 Glu Val Phe Lys Ser Gly His Thr Thr Asn Gly Ile Tyr Thr Leu>
dddANG2 FIBRINOGEN-LIKE DOMAIN#2ddd>

770 780 790 800 810

ACA TTC CCT AAT TCT ACA GAA GAG ATC AAG GGC TAC TGT GAC ATG
 Thr Phe Pro Asn Ser Thr Glu Glu Ile Lys Ala Tyr Cys Asp Met>
dddANG2 FIBRINOGEN-LIKE DOMAIN#2ddd>

820 830 840 850

GAA GCT GGA GGA GGC GGG TGG ACA ATT ATT CAG CGA CGT GAG GAT
 Glu Ala Gly Gly Gly Gly Trp Thr Ile Ile Gln Arg Arg Glu Asp>
dddANG2 FIBRINOGEN-LIKE DOMAIN#2ddd>

8/42
Figure 2C

860	870	880	890	900
*	*	*	*	*
GGC AGC GTT GAT TTT CAG AGG ACT TGG AAA GAA TAT AAA GTG GGA				
Gly Ser Val Asp Phe Gln Arg Thr Trp Lys Glu Tyr Lys Val Gly>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
910	920	930	940	
*	*	*	*	*
TTT CGT AAC CCT TCA GGA GAA TAT TGG CTG GGA AAT GAG TTT GTT				
Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu Phe Val>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
950	960	970	980	990
*	*	*	*	*
TCG CAA CTG ACT AAT CAG CAA CGC TAT GTG CTT AAA ATA CAC CTT				
Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu Lys Ile His Leu>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
1000	1010	1020	1030	
*	*	*	*	*
AAA GAC TGG GAA GGG AAT GAG GCT TAC TCA TTG TAT GAA CAT TTC				
Lys Asp Trp Glu Gly Asn Glu Ala Tyr Ser Leu Tyr Glu His Phe>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
1040	1050	1060	1070	1080
*	*	*	*	*
TAT CTC TCA AGT GAA GAA CTC AAT TAT AGG ATT CAC CTT AAA GGA				
Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Ile His Leu Lys Gly>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
1090	1100	1110	1120	
*	*	*	*	*
CTT ACA GGG ACA GCC GCC AAA ATA AGC AGC ATC AGC CAA CCA GGA				
Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile Ser Gln Pro Gly>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
1130	1140	1150	1160	1170
*	*	*	*	*
AAT GAT TTT AGC ACA AAG GAT GGA GAC AAC GAC AAA TGT ATT TGC				
Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys Cys Ile Cys>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
1180	1190	1200	1210	
*	*	*	*	*
AAA TGT TCA CAA ATG CTA ACA GGA GGC TGG TGG TTT GAT GCA TGT				
Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				
1220	1230	1240	1250	1260
*	*	*	*	*
GGT CCT TCC AAC TTG AAC GGA ATG TAC TAT CCA CAG AGG CAG AAC				
Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln Asn>				
<u>_d_d_d_</u> ANG2 FIBRINOGEN-LIKE DOMAIN#2 <u>_d_d_d_</u> >				

9/42
Figure 2D

1270	1280	1290	1300	
*	*	*	*	
ACA AAT AAG TTC AAC GGC ATT AAA TGG TAC TAC TGG AAA GGC TCA Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser> _d_d_d_ANG2 FIBRINOGEN-LIKE DOMAIN#2_d_d_d_>				
1310	1320	1330	1340	1350
*	*	*	*	*
GGC TAT TCG CTC AAG GCC ACA ACC ATG ATG ATC CGA CCA GCA GAT Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp> _d_d_d_ANG2 FIBRINOGEN-LIKE DOMAIN#2_d_d_d_>				
1360	1370	1380	1390	
*	*	*	*	
TTC GGA CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC Phe> _>				
Gly Pro Gly> _e_e_>				
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys> _f_f_f_f_FC TAG_f_f_f_f_>				
1400	1410	1420	1430	1440
*	*	*	*	*
CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe> _f_f_f_f_f_f_FC TAG_f_f_f_f_>				
1450	1460	1470	1480	
*	*	*	*	
CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr> _f_f_f_f_f_f_FC TAG_f_f_f_f_>				
1490	1500	1510	1520	1530
*	*	*	*	*
CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro> _f_f_f_f_f_f_FC TAG_f_f_f_f_>				
1540	1550	1560	1570	
*	*	*	*	
GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn> _f_f_f_f_f_f_FC TAG_f_f_f_f_>				
1580	1590	1600	1610	1620
*	*	*	*	*
GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg> _f_f_f_f_f_f_FC TAG_f_f_f_f_>				
1630	1640	1650	1660	
*	*	*	*	
GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly> _f_f_f_f_f_f_FC TAG_f_f_f_f_>				

10/42

11/42
Figure 3A

10 20 30 40

ATG TCT GCA CTT CTG ATC CTA GCT CTT GTT GGA GCT GCA GTT GCT
Met Ser Ala Leu Leu Ile Leu Ala Leu Val Gly Ala Ala Val Ala>
a_a_a_a_a TRYPSIN SIGNAL SEQUENCE a_a_a_a_a>

50 60 70 80 90

AGA GAC TGT GCA GAT GTA TAT CAA GCT GGT TTT AAT AAA AGT GGA
Arg Asp Cys Ala Asp Val Tyr Gln Ala Gly Phe Asn Lys Ser Gly>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

100 110 120 130

ATC TAC ACT ATT TAT ATT AAT AAT ATG CCA GAA CCC AAA AAG GTG
Ile Tyr Thr Ile Tyr Ile Asn Asn Met Pro Glu Pro Lys Lys Val>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

140 150 160 170 180

TTT TGC AAT ATG GAT GTC AAT GGG GGA GGT TGG ACT GTA ATA CAA
Phe Cys Asn Met Asp Val Asn Gly Gly Trp Thr Val Ile Gln>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

190 200 210 220

CAT CGT GAA GAT GGA AGT CTA GAT TTC CAA AGA GGC TGG AAG GAA
His Arg Glu Asp Gly Ser Leu Asp Phe Gln Arg Gly Trp Lys Glu>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

230 240 250 260 270

TAT AAA ATG GGT TTT CGA AAT CCC TCC GGT GAA TAT TGG CTG GGG
Tyr Lys Met Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

280 290 300 310

AAT GAG TTT ATT TTT GCC ATT ACC AGT CAG AGG CAG TAC ATG CTA
Asn Glu Phe Ile Phe Ala Ile Thr Ser Gln Arg Gln Tyr Met Leu>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

320 330 340 350 360

AGA ATT GAG TTA ATG GAC TGG GAA GGG AAC CGA GCC TAT TCA CAG
Arg Ile Glu Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr Ser Gln>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

370 380 390 400

TAT GAC AGA TTC CAC ATA GGA AAT GAA AAG CAA AAC TAT AGG TTG
Tyr Asp Arg Phe His Ile Gly Asn Glu Lys Gln Asn Tyr Arg Leu>
b_b_b_b ANG1 FIBRINOGEN-LIKE DOMAIN b_b_b_b>

12/42
Figure 3B

410 420 430 440 450

TAT TTA AAA GGT CAC ACT GGG ACA GCA GGA AAA CAG AGC AGC CTG
 Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu>
bbbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

460 470 480 490

* * * * *

ATC TTA CAC GGT GCT GAT TTC AGC ACT AAA GAT GCT GAT AAT GAC
 Ile Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp>
bbbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

500 510 520 530 540

* * * * *

AAC TGT ATG TGC AAA TGT GCC CTC ATG TTA ACA GGA GGA TGG TGG
 Asn Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp>
bbbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

550 560 570 580

* * * * *

TTT GAT GCT TGT GGC CCC TCC AAT CTA AAT GGA ATG TTC TAT ACT
 Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr>
bbbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

590 600 610 620 630

* * * * *

GCG GGA CAA AAC CAT GGA AAA CTG AAT GGG ATA AAG TGG CAC TAC
 Ala Gly Gln Asn His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr>
bbbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

640 650 660 670

* * * * *

TTC AAA GGG CCA AGT TAC TCC TTA CGT TCC ACA ACT ATG ATG ATT
 Phe Lys Gly Pro Ser Tyr Ser Leu Arg Ser Thr Thr Met Met Ile>
bbbbANG1 FIBRINOGEN-LIKE DOMAIN_bbbb>

680 690 700 710 720

* * * * *

CGA CCT TTA GAT TTT GGC CCG GGC GAG CCC AAA TCT TGT GAC AAA
 Arg Pro Leu Asp Phe>
ANG1 FIBRINO>

Gly Pro Gly>
cc>

Glu Pro Lys Ser Cys Asp Lys>
ddFC TAG_dd>

730 740 750 760

* * * * *

ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA
 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly>
dddddFC TAG_ddddd>

770 780 790 800 810

* * * * *

CCG TCA GTC TTC CTC CCC CCA AAA CCC AAG GAC ACC CTC ATG
 Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met>
dddddFC TAG_ddddd>

13/42
Figure 3C

14/42
Figure 3D

1270 1280 1290 1300

TCC TTC TCC CTC TAC AGC AAG CTC ACC GTG GAC AAG AGC AGG TGG
 Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp>
d d d d d d FC TAG d d d d d d d d >

1310 1320 1330 1340 1350

CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG GCT CTG
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu>
d d d d d d FC TAG d d d d d d >

1360 1370 1380 1390

CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG GGT AAA
 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys>
d d d d d d FC TAG d d d d d d >

1400 1410 1420 1430 1440

GGC GGT GGC GGT TCT GGC GCG CCT TTT AGA GAC TGT GCA GAT GTA
 Gly Gly Gly Ser Gly Ala Pro>
G4S LINKER/ASC BRIDGE (N) >

Phe Arg Asp Cys Ala Asp Val>
ANG1 FIBRINOGEN-LIKE >

1450 1460 1470 1480

TAT CAA GCT GGT TTT AAT AAA AGT GGA ATC TAC ACT ATT TAT ATT
 Tyr Gln Ala Gly Phe Asn Lys Ser Gly Ile Tyr Thr Ile Tyr Ile>
f f f ANG1 FIBRINOGEN-LIKE DOMAIN f f f f f >

1490 1500 1510 1520 1530

AAT AAT ATG CCA GAA CCC AAA AAG GTG TTT TGC AAT ATG GAT GTC
 Asn Asn Met Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp Val>
f f f ANG1 FIBRINOGEN-LIKE DOMAIN f f f f f >

1540 1550 1560 1570

AAT GGG GGA GGT TGG ACT GTA ATA CAA CAT CGT GAA GAT GGA AGT
 Asn Gly Gly Trp Thr Val Ile Gln His Arg Glu Asp Gly Ser>
f f f ANG1 FIBRINOGEN-LIKE DOMAIN f f f f f >

1580 1590 1600 1610 1620

CTA GAT TTC CAA AGA GGC TGG AAG GAA TAT AAA ATG GGT TTT GGA
 Leu Asp Phe Gln Arg Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly>
f f f ANG1 FIBRINOGEN-LIKE DOMAIN f f f f f >

1630 1640 1650 1660

AAT CCC TCC GGT GAA TAT TGG CTG GGG AAT GAG TTT ATT TTT GCC
 Asn Pro Ser Gly Glu Tyr Trp Leu Gly Asn Glu Phe Ile Phe Ala>
f f f ANG1 FIBRINOGEN-LIKE DOMAIN f f f f f >

15/42
Figure 3E

1670 1680 1690 1700 1710
 * * * * *
 ATT ACC AGT CAG AGG CAG TAC ATG CTA AGA ATT GAG TTA ATG GAC
 Ile Thr Ser Gln Arg Gln Tyr Met Leu Arg Ile Glu Leu Met Asp>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1720 1730 1740 1750
 * * * * *
 TGG GAA GGG AAC CGA GCC TAT TCA CAG TAT GAC AGA TTC CAC ATA
 Trp Glu Gly Asn Arg Ala Tyr Ser Gln Tyr Asp Arg Phe His Ile>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1760 1770 1780 1790 1800
 * * * * *
 GGA AAT GAA AAG CAA AAC TAT AGG TTG TAT TTA AAA GGT CAC ACT
 Gly Asn Glu Lys Gln Asn Tyr Arg Leu Tyr Leu Lys Gly His Thr>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1810 1820 1830 1840
 * * * * *
 GGG ACA GCA GGA AAA CAG AGC AGC CTG ATC TTA CAC GGT GCT GAT
 Gly Thr Ala Gly Lys Gln Ser Ser Leu Ile Leu His Gly Ala Asp>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1850 1860 1870 1880 1890
 * * * * *
 TTC AGC ACT AAA GAT GCT GAT AAT GAC AAC TGT ATG TGC AAA TGT
 Phe Ser Thr Lys Asp Ala Asp Asn Asp Asn Cys Met Cys Lys Cys>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1900 1910 1920 1930
 * * * * *
 GCC CTC ATG TTA ACA GGA GGA TGG TGG TTT GAT GCT TGT GGC CCC
 Ala Leu Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1940 1950 1960 1970 1980
 * * * * *
 TCC AAT CTA AAT GGA ATG TTC TAT ACT GCG GGA CAA AAC CAT GGA
 Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln Asn His Gly>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 1990 2000 2010 2020
 * * * * *
 AAA CTG AAT GGG ATA AAG TGG CAC TAC TTC AAA GGG CCA AGT TAC
 Lys Leu Asn Gly Ile Lys Trp His Tyr Phe Lys Gly Pro Ser Tyr>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

 2030 2040 2050 2060
 * * * * *
 TCC TTA CGT TCC ACA ACT ATG ATG ATT CGA CCT TTA GAT TTT
 Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe>
 ___f___f___f___ANG1 FIBRINOGEN-LIKE DOMAIN_f___f___f___f___>

16/42

Figure 4A

10 20 30 40

ATG TCT GCA CTT CTG ATC CTA GCT CTT GTT GGA GCT GCA GTT GCT
 Met Ser Ala Leu Leu Ile Leu Ala Leu Val Gly Ala Ala Val Ala>
a a a a a TRYPSIN SIGNAL SEQUENCE a a a a a>

50 60 70 80 90

AGA GAC TGT GCT GAA GTA TTC AAA TCA GGA CAC ACC ACA AAT GGC
 Arg Asp Cys Ala Glu Val Phe Lys Ser Gly His Thr Thr Asn Gly>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

100 110 120 130

ATC TAC ACG TTA ACA TTC CCT AAT TCT ACA GAA GAG ATC AAG GCC
 Ile Tyr Thr Leu Thr Phe Pro Asn Ser Thr Glu Glu Ile Lys Ala>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

140 150 160 170 180

TAC TGT GAC ATG GAA GCT GGA GGA GGC GGG TGG ACA ATT ATT CAG
 Tyr Cys Asp Met Glu Ala Gly Gly Gly Trp Thr Ile Ile Gln>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

190 200 210 220

CGA CGT GAG GAT GGC AGC GTT GAT TTT CAG AGG ACT TGG AAA GAA
 Arg Arg Glu Asp Gly Ser Val Asp Phe Gln Arg Thr Trp Lys Glu>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

230 240 250 260 270

TAT AAA GTG GGA TTT GGT AAC CCT TCA GGA GAA TAT TGG CTG GGA
 Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu Tyr Trp Leu Gly>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

280 290 300 310

AAT GAG TTT GTT TCG CAA CTG ACT AAT CAG CAA CGC TAT GTG CTT
 Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg Tyr Val Leu>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

320 330 340 350 360

AAA ATA CAC CTT AAA GAC TGG GAA GGG AAT GAG GCT TAC TCA TTG
 Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr Ser Leu>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

370 380 390 400

TAT GAA CAT TTC TAT CTC TCA AGT GAA GAA CTC AAT TAT AGG ATT
 Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg Ile>
b b b ANG2 FIBRINOGEN-LIKE DOMAIN b b b>

17/42
Figure 4B

410 420 430 440 450

CAC CTT AAA GGA CTT ACA GGG ACA GCC GGC AAA ATA AGC AGC ATC
 His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile>
b_b_b ANG2 FIBRINOGEN-LIKE DOMAINb_b_b_b>

460 470 480 490

* * * * *
 AGC CAA CCA GGA AAT GAT TTT AGC ACA AAG GAT GGA GAC AAC GAC
 Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp>
b_b_b ANG2 FIBRINOGEN-LIKE DOMAINb_b_b_b>

500 510 520 530 540

* * * * *
 AAA TGT ATT TGC AAA TGT TCA CAA ATG CTA ACA GGA GGC TGG TGG
 Lys Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp>
b_b_b ANG2 FIBRINOGEN-LIKE DOMAINb_b_b_b>

550 560 570 580

* * * * *
 TTT GAT GCA TGT GGT CCT TCC AAC TTG AAC GGA ATG TAC TAT CCA
 Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro>
b_b_b ANG2 FIBRINOGEN-LIKE DOMAINb_b_b_b>

590 600 610 620 630

* * * * *
 CAG AGG CAG AAC ACA AAT AAG TTC AAC GGC ATT AAA TGG TAC TAC
 Gln Arg Gln Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr>
b_b_b ANG2 FIBRINOGEN-LIKE DOMAINb_b_b_b>

640 650 660 670

* * * * *
 TGG AAA GGC TCA GGC TAT TCG CTC AAG GCC ACA ACC ATG ATG ATC
 Trp Lys Gly Ser Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile>
b_b_b ANG2 FIBRINOGEN-LIKE DOMAINb_b_b_b>

680 690 700 710 720

* * * * *
 CGA CCA GCA GAT TTC GGG GGC CCG GCC GAG CCC AAA TCT TGT GAC
 Arg Pro Ala Asp Phe>
ANG2 FIBRINO>
Gly Gly Pro Gly>
GGPG BRI>
Glu Pro Lys Ser Cys Asp>
d_Fc TAG_d_d>

730 740 750 760

* * * * *
 AAA ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG
 Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly>
d_d_d_d_d_d_d FC TAGd_d_d_d_d_d_d>

770 780 790 800 810

* * * * *
 GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC
 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu>
d_d_d_d_d_d_d FC TAGd_d_d_d_d_d_d>

18/42
Figure 4C

820 830 840 850

ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG
 Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val>
d d d d d d FC TAG d d d d d d d >

860 870 880 890 900

AGC CAC GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC
 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly>
d d d d d d FC TAG d d d d d d >

910 920 930 940

GTG GAG GTG CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC
 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr>
d d d d d d FC TAG d d d d d d >

950 960 970 980 990

AAC AGC ACG TAC CGT GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG
 Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln>
d d d d d d FC TAG d d d d d d >

1000 1010 1020 1030

GAC TGG CTG AAT GCC AAG GAG TAC AAG TGC AAG GTC TCC AAC AAA
 Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys>
d d d d d d FC TAG d d d d d d >

1040 1050 1060 1070 1080

GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA GGG
 Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly>
d d d d d d FC TAG d d d d d d >

1090 1100 1110 1120

CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT
 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp>
d d d d d d FC TAG d d d d d d >

1130 1140 1150 1160 1170

GAG CTG ACC AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC
 Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly>
d d d d d d FC TAG d d d d d d >

1180 1190 1200 1210

TTC TAT CCC AGC GAC ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG
 Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln>
d d d d d d FC TAG d d d d d d >

1220 1230 1240 1250 1260

CCG GAG AAC AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC GAC
 Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp>
d d d d d d FC TAG d d d d d d >

19/42

20/42
Figure 4E

1670 1680 1690 1700 1710

CTG ACT AAT CAG CAA CGC TAT GTG CTT AAA ATA CAC CTT AAA GAC
 Leu Thr Asn Gln Gln Arg Tyr Val Leu Lys Ile His Leu Lys Asp>
ffffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1720 1730 1740 1750

TGG GAA GGG AAT GAG GCT TAC TCA TTG TAT GAA CAT TTC TAT CTC
 Trp Glu Gly Asn Glu Ala Tyr Ser Leu Tyr Glu His Phe Tyr Leu>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1760 1770 1780 1790 1800

TCA AGT GAA GAA CTC AAT TAT AGG ATT CAC CTT AAA GGA CTT ACA
 Ser Ser Glu Glu Leu Asn Tyr Arg Ile His Leu Lys Gly Leu Thr>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1810 1820 1830 1840

GGG ACA GCC GGC AAA ATA AGC AGC ATC AGC CAA CCA GGA AAT GAT
 Gly Thr Ala Gly Lys Ile Ser Ser Ile Ser Gln Pro Gly Asn Asp>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1850 1860 1870 1880 1890

TTT AGC ACA AAG GAT GGA GAC AAC GAC AAA TGT ATT TGC AAA TGT
 Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys Cys Ile Cys Lys Cys>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1900 1910 1920 1930

TCA CAA ATG CTA ACA GGA GGC TGG TGG TTT GAT GCA TGT GGT CCT
 Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp Ala Cys Gly Pro>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1940 1950 1960 1970 1980

TCC AAC TTG AAC GGA ATG TAC TAT CCA CAG AGG CAG AAC ACA AAT
 Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln Asn Thr Asn>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

1990 2000 2010 2020

AAG TTC AAC GGC ATT AAA TGG TAC TAC TGG AAA GGC TCA GGC TAT
 Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser Gly Tyr>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

2030 2040 2050 2060 2070

TCG CTC AAG GCC ACA ACC ATG ATG ATC CGA CCA GCA GAT TTC TGA
 Ser Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp Phe>
fffANG2 FIBRINOGEN-LIKE DOMAIN_ffff>

21/42

Figure 5

Ang 1-FD-Fc-FD

22/42

Figure 6
Molar Mass vs. Volume

23/42

Figure 7

Ang2-FD-Fc-FD

24/42

Figure 8

25/42

Figure 9

26/42

Figure 10

27/42

Figure 11

28/42

Figure 12

29/42

Figure 13

30/42

Figure 14A

10 20 30 40

ATG GCT CGG CCT GGG CAG CGT TGG CTC GGC AAG TGG CTT GTG GCG
 Met Ala Arg Pro Gly Gln Arg Trp Leu Gly Lys Trp Leu Val Ala>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

50 60 70 80 90

ATG GTC GTG TGG GCG CTG TGC CGG CTC GCC ACA CCG CTC GCC AAG
 Met Val Val Trp Ala Leu Cys Arg Leu Ala Thr Pro Leu Ala Lys>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

100 110 120 130

AAC CTG GAG CCC GTA TCC TGG AGC TCC CTC AAC CCC AAG TTC CTG
 Asn Leu Glu Pro Val Ser Trp Ser Ser Leu Asn Pro Lys Phe Leu>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

140 150 160 170 180

AGT GGG AAG GGC TTG GTG ATC TAT CCG AAA ATT GGA GAC AAG CTG
 Ser Gly Lys Gly Leu Val Ile Tyr Pro Lys Ile Gly Asp Lys Leu>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

190 200 210 220

GAC ATC ATC TGC CCC CGA GCA GAA GCA GGG CGG CCC TAT GAG TAC
 Asp Ile Ile Cys Pro Arg Ala Glu Ala Gly Arg Pro Tyr Glu Tyr>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

230 240 250 260 270

TAC AAG CTG TAC CTG GTG CGG CCT GAG CAG GCA GCT GCC TGT AGC
 Tyr Lys Leu Tyr Leu Val Arg Pro Glu Gln Ala Ala Ala Cys Ser>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

280 290 300 310

ACA GTT CTC GAC CCC AAC GTG TTG GTC ACC TGC AAT AGG CCA GAG
 Thr Val Leu Asp Pro Asn Val Leu Val Thr Cys Asn Arg Pro Glu>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

320 330 340 350 360

CAG GAA ATA CGC TTT ACC ATC AAG TTC CAG GAG TTC AGC CCC AAC
 Gln Glu Ile Arg Phe Thr Ile Lys Phe Gln Glu Phe Ser Pro Asn>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

370 380 390 400

TAC ATG GCC CTG GAG TTC AAG AAG CAC CAT GAT TAC TAC ATT ACC
 Tyr Met Gly Leu Glu Phe Lys Lys His His Asp Tyr Tyr Ile Thr>
 ____a____a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ____a____a>

31/42

Figure 14B

410 420 430 440 450

TCA ACA TCC AAT GGA AGC CTG GAG GGG CTG GAA AAC CGG GAG GGC
 Ser Thr Ser Asn Gly Ser Leu Glu Gly Leu Glu Asn Arg Glu Gly>
 ___a___a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___a___a___>

460 470 480 490

GGT GTG TCC CGC ACA CGC ACC ATG AAG ATC ATC ATG AAG GTT GGG
 Gly Val Cys Arg Thr Arg Thr Met Lys Ile Ile Met Lys Val Gly>
 ___a___a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___a___a___>

500 510 520 530 540

CAA GAT CCC AAT GCT GTG ACG CCT GAG CAG CTG ACT ACC ACC AGG
 Gln Asp Pro Asn Ala Val Thr Pro Glu Gln Leu Thr Thr Ser Arg>
 ___a___a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___a___a___>

550 560 570 580

CCC AGC AAG GAG GCA GAC AAC ACT GTC AAG ATG GCC ACA CAG GCC
 Pro Ser Lys Glu Ala Asp Asn Thr Val Lys Met Ala Thr Gln Ala>
 ___a___a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___a___a___>

590 600 610 620 630

CCT GGT AGT CGG GGC TCC CTG GGT GAC TCT GAT GGC AAG CAT GAG
 Pro Gly Ser Arg Gly Ser Leu Glu Asp Ser Asp Gly Lys His Glu>
 ___a___a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___a___a___>

640 650 660 670

ACT GTG AAC CAG GAA GAG AAG AGT GGC CCA GGT GCA AGT GGG GGC
 Thr Val Asn Gln Glu Lys Ser Gly Pro Gly Ala Ser Gly Gly>
 ___a___a_ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___a___a___>

680 690 700 710 720

AGC AGC GGG GAC CCT GAT GGC TTC TTC AAC TCC AAG GGC CCG GGT
 Ser Ser Gly Asp Pro Asp Gly Phe Phe Asn Ser Lys>
 ___ELK-L ECTODOMAIN 1 (WITH SIGNAL PEPTIDE) ___>
 Gly Pro Gly>
 ___b___b___>

730 740 750 760

AAG AAC CTG GAG CCC GTA TCC TGG AGC TCC CTC AAC CCC AAG TTC
 Lys Asn Leu Glu Pro Val Ser Trp Ser Ser Leu Asn Pro Lys Phe>
 ___c___c___c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ___c___c___c___>

770 780 790 800 810

CTG AGT GGG AAG GGC TTG GTG ATC TAT CCG AAA ATT GGA GAC AAG
 Leu Ser Gly Lys Gly Leu Val Ile Tyr Pro Lys Ile Gly Asp Lys>
 ___c___c___c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ___c___c___c___>

32/42
Figure 14C

820 830 840 850

CTG GAC ATC ATC TGC CCC CGA GCA GAA GCA GGG CGG CCC TAT GAG
Leu Asp Ile Ile Cys Pro Arg Ala Glu Ala Gly Arg Pro Tyr Glu>
____c____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

860 870 880 890 900

TAC TAC AAG CTG TAC CTG GTG CGG CCT GAG CAG GCA GCT GCC TGT
Tyr Tyr Lys Leu Tyr Leu Val Arg Pro Glu Gln Ala Ala Ala Cys>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

910 920 930 940

AGC ACA GTT CTC GAC CCC AAC GTG TTG GTC ACC TGC AAT AGG CCA
Ser Thr Val Leu Asp Pro Asn Val Leu Val Thr Cys Asn Arg Pro>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

950 960 970 980 990

GAG CAG GAA ATA CGC TTT ACC ATC AAG TTC CAG GAG TTC AGC CCC
Glu Gln Glu Ile Arg Phe Thr Ile Lys Phe Gln Glu Phe Ser Pro>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

1000 1010 1020 1030

AAC TAC ATG GGC CTG GAG TTC AAG AAG CAC CAT GAT TAC TAC ATT
Asn Tyr Met Gly Leu Glu Phe Lys Lys His His Asp Tyr Tyr Ile>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

1040 1050 1060 1070 1080

ACC TCA ACA TCC AAT GGA AGC CTG GAG GGG CTG GAA AAC CGG GAG
Thr Ser Thr Ser Asn Gly Ser Leu Glu Gly Leu Glu Asn Arg Glu>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

1090 1100 1110 1120

GGC GGT GTG TGC CGC ACA CGC ACC ATG AAG ATC ATC ATG AAG GTT
Gly Gly Val Cys Arg Thr Arg Thr Met Lys Ile Ile Met Lys Val>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

1130 1140 1150 1160 1170

GGG CAA GAT CCC AAT GCT GTG ACG CCT GAG CAG CTG ACT ACC AGC
Gly Gln Asp Pro Asn Ala Val Thr Pro Glu Gln Leu Thr Thr Ser>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

1180 1190 1200 1210

AGG CCC AGC AAG GAG GCA GAC AAC ACT GTC AAG ATG GCC ACA CAG
Arg Pro Ser Lys Glu Ala Asp Asn Thr Val Lys Met Ala Thr Gln>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

1220 1230 1240 1250 1260

GCC CCT GGT AGT CGG GGC TCC CTG GGT GAC TCT GAT GGC AAG CAT
Ala Pro Gly Ser Arg Gly Ser Leu Gly Asp Ser Asp Gly Lys His>
____c____c____c_ELK-L ECTODOMAIN 2 (NO SIGNAL) ____c____c____c____>

33/42
Figure 14D

1270 1280 1290 1300

GAG ACT GTG AAC CAG GAA GAG AAG AGT GGC CCA GGT GCA AGT GGG
 Glu Thr Val Asn Gln Glu Glu Lys Ser Gly Pro Gly Ala Ser Gly>
 ___c___c___c___ELK-L ECTODOMAIN 2 (NO SIGNAL) ___c___c___c___>

1310 1320 1330 1340 1350

GGC AGC AGC GGG GAC CCT GAT GGC TTC TTC AAC TCC AAA GGC CCG
 Gly Ser Ser Gly Asp Pro Asp Gly Phe Phe Asn Ser Lys>
 ___c___c___ELK-L ECTODOMAIN 2 (NO SIGNAL) ___c___c___>
 Gly Pro>
 ___d___>

1360 1370 1380 1390

GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC ACA TGC CCA CCG TGC
 Gly>
 ___>
 Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

1400 1410 1420 1430 1440

CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA GTC TTC CTC TTC CCC
 Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

1450 1460 1470 1480

CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC
 Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

1490 1500 1510 1520 1530

ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA GAC CCT GAG GTC AAG
 Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

1540 1550 1560 1570

TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT AAT GCC AAG ACA
 Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

1580 1590 1600 1610 1620

AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT GTG GTC AGC
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

1630 1640 1650 1660

GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC
 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr>
 ___e___e___e___e___HUMAN IGG1 FC TAG___e___e___e___e___>

34/42
Figure 14E

1670	1680	1690	1700	1710
*	*	*	*	*
AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1720	1730	1740	1750	
*	*	*	*	*
ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA GAA CCA CAG GTG TAC Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1760	1770	1780	1790	1800
*	*	*	*	*
ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG AAC CAG GTC AGC Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1810	1820	1830	1840	
*	*	*	*	*
CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC ATC GCC GTG Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1850	1860	1870	1880	1890
*	*	*	*	*
GAG TGG GAG AGC AAT GGG CAG CGG GAG AAC AAC TAC AAG ACC ACG Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1900	1910	1920	1930	
*	*	*	*	*
CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC CTC TAC AGC AAG Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1940	1950	1960	1970	1980
*	*	*	*	*
CTC ACC GTG GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
1990	2000	2010	2020	
*	*	*	*	*
TGC TCC GTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACG CAG AAG Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys> <u>e_e_e_e_HUMAN IGG1 FC TAG_e_e_e_e_></u>				
2030	2040	2050		
*	*	*		
AGC CTC TCC CTG TCT CCG GGT AAA TGA Ser Leu Ser Leu Ser Pro Gly Lys ***> <u>e_HUMAN IGG1 FC TAG_e_e_></u>				

35/42
Figure 15A

10 20 30 40

ATG GCC ATG GCC CGG TCC AGG AGG GAC TCT GTG TGG AAG TAC TGT
Met Ala Met Ala Arg Ser Arg Arg Asp Ser Val Trp Lys Tyr Cys>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

50 60 70 80 90

TGG GGA CTT TTG ATG GTT TTG TGC AGA ACT GCG ATC TCC AGA TCG
Trp Gly Leu Leu Met Val Leu Cys Arg Thr Ala Ile Ser Arg Ser>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

100 110 120 130

ATA GTT TTA GAG CCT ATC TAC TGG AAT TCC TCG AAC TCC AAA TTT
Ile Val Leu Glu Pro Ile Tyr Trp Asn Ser Ser Asn Ser Lys Phe>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

140 150 160 170 180

CTA CCC GGA CAA GGC CTG GTA CTA TAC CCA CAG ATA GGA GAC AAA
Leu Pro Gly Gln Gly Leu Val Leu Tyr Pro Gln Ile Gly Asp Lys>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

190 200 210 220

TTG GAT ATT ATT TGC CCC AAA GTG GAC TCT AAA ACT GTC GGC CAG
Leu Asp Ile Ile Cys Pro Lys Val Asp Ser Lys Thr Val Gly Gln>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

230 240 250 260 270

TAT GAA TAT TAT AAA GTT TAT ATG GTT GAT AAA GAC CAA GCA GAC
Tyr Glu Tyr Tyr Lys Val Tyr Met Val Asp Lys Asp Gln Ala Asp>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

280 290 300 310

AGA TGC ACA ATT AAG AAG GAG AAT ACC CCG CTG CTC AAC TGT GCC
Arg Cys Thr Ile Lys Lys Glu Asn Thr Pro Leu Leu Asn Cys Ala>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

320 330 340 350 360

AGA CCA GAC CAA GAT GTG AAA TTC ACC ATC AAG TTT CAA GAA TTC
Arg Pro Asp Gln Asp Val Lys Phe Thr Ile Lys Phe Gln Glu Phe>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

370 380 390 400

AGC CCT AAC CTC TGG GGT CTA GAA TTT CAG AAG AAC AAA GAT TAC
Ser Pro Asn Leu Trp Gly Leu Glu Phe Gln Lys Asn Lys Asp Tyr>
____a_EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) ____a__>

36/42
Figure 15B

410 420 430 440 450

TAC ATT ATA TCT ACA TCA AAT GGG TCT TTG GAG GGC CTG GAT AAC
 Tyr Ile Ile Ser Thr Ser Asn Gly Ser Leu Glu Gly Leu Asp Asn>
a EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) a>

460 470 480 490

CAG GAG GGA GGG GTG TGC CAG ACA AGA GCC ATG AAG ATC CTC ATG
 Gln Glu Gly Gly Val Cys Gln Thr Arg Ala Met Lys Ile Leu Met>
a EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) a>

500 510 520 530 540

AAA GTT GGA CAA GAT GCA AGT TCT GCT GGA TCA GCC AGG AAT CAC
 Lys Val Gly Gln Asp Ala Ser Ser Ala Gly Ser Ala Arg Asn His>
a EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) a>

550 560 570 580

GGT CCA ACA AGA CGT CCA GAG CTA GAA GCT GGT ACA AAT GGG AGA
 Gly Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr Asn Gly Arg>
a EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) a>

590 600 610 620 630

AGT TCA ACA ACA AGT CCC TTT GTG AAG CCA AAT CCA GGT TCT AGC
 Ser Ser Thr Thr Ser Pro Phe Val Lys Pro Asn Pro Gly Ser Ser>
a EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) a>

640 650 660 670

ACC GAT GGC AAC AGC GCG GGG CAT TCC GGG AAC AAT CTC CTG GGG
 Thr Asp Gly Asn Ser Ala Gly His Ser Gly Asn Asn Leu Leu Gly>
a EPHRIN-B2 ECTO DOMAIN 1 (WITH SIGNAL PEPTIDE) a>

680 690 700 710 720

GGC CCG GGA ATA GTT TTA GAG CCT ATC TAC TGG AAT TCC TCG AAC
 Gly Pro Gly>
b b>
 Ile Val Leu Glu Pro Ile Tyr Trp Asn Ser Ser Asn>
EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE) b>

730 740 750 760

TCC AAA TTT CTA CCC GGA CAA GGC CTG GTA CTA TAC CCA CAG ATA
 Ser Lys Phe Leu Pro Gly Gln Gly Leu Val Tyr Pro Gln Ile>
EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE) c>

770 780 790 800 810

GGA GAC AAA TTG GAT ATT ATT TGC CCC AAA GTG GAC TCT AAA ACT
 Gly Asp Lys Leu Asp Ile Ile Cys Pro Lys Val Asp Ser Lys Thr>
EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE) c>

37/42
Figure 15C

820 830 840 850

GTT GGC CAG TAT GAA TAT TAT AAA GTT TAT ATG GTT GAT AAA GAC
Val Gly Gln Tyr Glu Tyr Tyr Lys Val Tyr Met Val Asp Lys Asp>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

860 870 880 890 900

CAA GCA GAC AGA TGC ACA ATT AAG AAG GAG AAT ACC CCG CTG CTC
Gln Ala Asp Arg Cys Thr Ile Lys Lys Glu Asn Thr Pro Leu Leu>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

910 920 930 940

AAC TGT GCC AGA CCA GAC CAA GAT GTG AAA TTC ACC ATC AAG TTT
Asn Cys Ala Arg Pro Asp Gln Asp Val Lys Phe Thr Ile Lys Phe>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

950 960 970 980 990

CAA GAA TTC AGC CCT AAC CTC TGG GGT CTA GAA TTT CAG AAG AAC
Gln Glu Phe Ser Pro Asn Leu Trp Gly Leu Glu Phe Gln Lys Asn>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

1000 1010 1020 1030

AAA GAT TAC TAC ATT ATA TCT ACA TCA AAT GGG TCT TTG GAG GGC
Lys Asp Tyr Tyr Ile Ile Ser Thr Ser Asn Gly Ser Leu Glu Gly>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

1040 1050 1060 1070 1080

CTG GAT AAC CAG GAG GGA GGG GTG TGC CAG ACA AGA GCC ATG AAG
Leu Asp Asn Gln Glu Gly Val Cys Gln Thr Arg Ala Met Lys>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

1090 1100 1110 1120

ATC CTC ATG AAA GTT GGA CAA GAT GCA AGT TCT GCT GGA TCA GCC
Ile Leu Met Lys Val Gly Gln Asp Ala Ser Ser Ala Gly Ser Ala>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

1130 1140 1150 1160 1170

AGG AAT CAC GGT CCA ACA AGA CGC CCA GAG CTA GAA GCT GGT ACA
Arg Asn His Gly Pro Thr Arg Arg Pro Glu Leu Glu Ala Gly Thr>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

1180 1190 1200 1210

AAT GGG AGA ACT TCA ACA ACA AGT CCC TTT GTG AAG CCA AAT CCA
Asn Gly Arg Ser Ser Thr Thr Ser Pro Phe Val Lys Pro Asn Pro>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

1220 1230 1240 1250 1260

GGT TCT AGC ACC GAT GGC AAC AGC GCG GGG CAT TCC GGG AAC AAT
Gly Ser Ser Thr Asp Gly Asn Ser Ala Gly His Ser Gly Asn Asn>

—EPHRIN-B2 ECTO DOMAIN 2 (WITHOUT SIGNAL PEPTIDE)_e—>

38/42
Figure 15D

1270 1280 1290 1300

CTC CTG GGG G GC CCG GGC GAG CCC AAA TCT TGT GAC AAA ACT CAC
 Glu Pro Lys Ser Cys Asp Lys Thr His>
 _____c_____ HUMAN IGG1 FC TAG_c_c_c_c_>
 Gly Pro Gly>
 _d_d_d_d_>
 Leu Leu Gly Xxx>
 _____e_e_e_e_>

1310 1320 1330 1340 1350

ACA TGC CCA CCG TGC CCA GCA CCT GAA CTC CTG GGG GGA CCG TCA
 Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1360 1370 1380 1390

GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC ATG ATC TCC
 Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1400 1410 1420 1430 1440

CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA
 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1450 1460 1470 1480

GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG
 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1490 1500 1510 1520 1530

CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG
 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1540 1550 1560 1570

TAC CGT GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG
 Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1580 1590 1600 1610 1620

AAT GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA
 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro>
 _____c_c_c_c_c_____ HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

1630 1640 1650 1660

CCC CCC ATC GAG AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA
 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg>
 .c..c..c..c..c.. HUMAN IGG1 FC TAG_c_c_c_c_c_c_>

39/42
Figure 15E

1670 1680 1690 1700 1710
 * * * * *
 GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC
 Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—c—>

 1720 1730 1740 1750
 * * * * *
 AAG AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC
 Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—c—>

 1760 1770 1780 1790 1800
 * * * * *
 AGC GAC ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CCG GAG AAC
 Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—c—>

 1810 1820 1830 1840
 * * * * *
 AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC TCC GAC GGC TCC TTC
 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—c—>

 1850 1860 1870 1880 1890
 * * * * *
 TTC CTC TAC AGC AAG CTC ACC GTG GAC AAG AGC AGG TGG CAG CAG
 Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—c—>

 1900 1910 1920 1930
 * * * * *
 GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG GCT CTG CAC AAC
 Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—c—>

 1940 1950 1960 1970
 * * * * *
 CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG GGT AAA TGA
 His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys ***>
 —c—c—c—c—HUMAN IGG1 FC TAG—c—c—c—c—>

40/42

Figure 16

41/42

Figure 17

42/42

Figure 18

1 2 3 4 5 6 7 8 9

INTERNATIONAL SEARCH REPORT

In. National Application No
PCT/US 99/30900

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7 C12N15/12 C12N15/62 C12N5/10 C12N1/21 C07K14/515 C07K14/52					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category *	Citation of document, with indication, where appropriate, of the relevant passages				Relevant to claim No.
X	WO 96 37621 A (MORPHOSYS PROTEINOPTIMIERUNG ;PACK PETER (DE); HOESS ADOLF (DE)) 28 November 1996 (1996-11-28) abstract page 1, line 12 - line 15 page 2, line 4 - line 9 page 14, line 6 - line 11 page 16, line 29 - line 34 figure 1A				1-5, 12-22
Y					8-11 6,7 -/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.					
* Special categories of cited documents : "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed					
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family					
Date of the actual completion of the international search			Date of mailing of the international search report		
22 May 2000			09/06/2000		
Name and mailing address of the ISA			Authorized officer		
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016			Galli, I		

INTERNATIONAL SEARCH REPORT

In. .ational Application No PCT/US 99/30900
--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 92 03569 A (SANGSTAT MEDICAL CORP) 5 March 1992 (1992-03-05) abstract page 1 -page 3 page 19, line 14 - line 23	23-26, 29,32-41
Y	—	30
A	—	27,28
Y	WO 95 27060 A (REGENERON PHARMA) 12 October 1995 (1995-10-12) cited in the application abstract page 23, line 21 -page 24, line 8 claims 4,8	8-11,30
A	EP 0 816 510 A (TORAY RESEARCH CENTER INC ;TORAY INDUSTRIES (JP)) 7 January 1998 (1998-01-07) abstract	1-22
A	DAVIS S. ET AL.: "Isolation of Angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning" CELL, vol. 87, 27 December 1996 (1996-12-27), pages 1161-1169, XP002138354 cited in the application the whole document	6,7,27, 28
A	MAISONPIERRE P.C. ET AL.: "Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis." SCIENCE, vol. 277, 4 July 1997 (1997-07-04), pages 55-60, XP002138355 cited in the application the whole document	6,7,27, 28
A	TOURNAY C. ET AL.: "Uptake of recombinant myeloperoxidase, free or fused to Fc-gamma, by macrophages enhances killing activity towards micro-organisms" DNA CELL BIOLOGY, vol. 15, no. 8, 1996, pages 617-624, XP000907279 abstract page 618	21,40

INTERNATIONAL SEARCH REPORT

Information on patent family members

In	ational Application No
PCT/US 99/30900	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9637621 A	28-11-1996	CA EP JP	2222055 A 0827544 A 11508126 T	28-11-1996 11-03-1998 21-07-1999
WO 9203569 A	05-03-1992	CA EP JP US	2090105 A 0547163 A 6502301 T 5672486 A	01-03-1992 23-06-1993 17-03-1994 30-09-1997
WO 9527060 A	12-10-1995	US AU AU CA EP JP ZA	5747033 A 691915 B 2278995 A 2187167 A 0758381 A 9511401 T 9502762 A	05-05-1998 28-05-1998 23-10-1995 12-10-1995 19-02-1997 18-11-1997 20-02-1996
EP 0816510 A	07-01-1998	CA WO	2213512 A 9723639 A	03-07-1997 03-07-1997

THIS PAGE BLANK (USPTO)