ПРИКЛАДНА КРИПТОЛОГІЯ 2 КОМП'ЮТЕРНИЙ ПРАКТИКУМ №2

Криптоаналіз шифру Віженера

Необхідні теоретичні відомості

Нехай $A = \{a_0, a_1, ..., a_{m-1}\}$ — алфавіт відкритого (ВТ) та шифрованого (ШТ) текстів, що складається з m букв. Природнім чином можна замінити символи алфавіту їх номерами і перевести множину A у кільце $Z_m = \{0, 1, ..., m-1\}$ із відповідними операціями додавання та множення.

Шифр Віженера ϵ прикладом поліалфавітної підстановки. Ключем цього шифру ϵ послідовність r букв алфавіту $(k_0, k_1, ..., k_{r-1})$, яку підписують під ВТ, повторюючи стільки разів, скільки потрібно. Часто в якості ключа використовують якусь фразу або уривок тексту. Число r називається nepiodom mudpy Biженеpa.

Позначимо BT через $X = x_0 x_1 x_2 ... x_{n-1}$, а ШТ через $Y = y_0 y_1 y_2 ... y_{n-1}$. Шифрування відбувається шляхом додавання букв BT до підписаних під ними букв ключа за модулем m, тобто

$$y_i = (x_i + k_{i \bmod r}) \operatorname{mod} m, \ i = \overline{0, n-1}.$$

Криптоаналіз шифру Віженера починають з визначення періоду r. Зробити це можна тому, що шифр Віженера зберігає деякі статистичні властивості мови. Дійсно, розіб'ємо шифртекст Y на блоки

$$Y_0 = y_0, y_r, y_{2r}, \dots$$

 $Y_1 = y_1, y_{r+1}, y_{2r+1}, \dots$
 $Y_{r-1} = y_{r-1}, y_{2r-1}, y_{3r-1}, \dots$

Кожен фрагмент Y_i фактично зашифрований шифром Цезаря з ключем k_i , $i=\overline{0,r-1}$. Звідси маємо, що значення частот символів у цих фрагментах будуть очікувано співпадати із значеннями імовірностей символів мови з точністю до перестановки. Це зауваження дозволяє побудувати розпізнавач періоду шифру Віженера, причому існує щонайменше два методи знаходження періоду.

Перший метод ґрунтується на понятті індексу відповідності. Індексом відповідності тексту У називається величина

$$I(Y) = \frac{1}{n(n-1)} \sum_{t \in Z_m} N_t(Y) (N_t(Y) - 1) ,$$

де $N_t(Y)$ — кількість появ букви t у шифротексті Y. Якщо вважати, що текст Y обирається із множини можливих відкритих текстів випадково та рівноімовірно, то індекс відповідності буде випадковою функцією, а його математичне очікування дорівнюватиме

 $MI(Y) = \sum_{t \in Z_m} p_t^2$, де p_t – імовірність появи літери t в мові. Однак, якщо Y є шифротекстом, одержаним в результаті роботи шифру Віженера, то величина індексу відповідності та його математичне очікування буде стрімко падати до мінімально можливого значення $I_0 = \frac{1}{m}$ із ростом довжини ключа r. В той же час для блоків Y_i значення індексу відповідності буде залишатись на рівні значення для мови.

Знаходження істинного значення r за допомогою індексу відповідності відбувається таким чином.

- 1) Для кожного кандидата r = 2,3,... розбити шифртекст Y на блоки $Y_1,Y_2,...,Y_r$.
- 2) Обчислити значення індексу відповідності для кожного блоку.
- 3) Якщо сукупність одержаних значень схиляється до теоретичного значення I для даної мови, то значення r вгадане вірне. Якщо сукупність значень схиляється до значення $I_0 = \frac{1}{m}$, що відповідає мові із рівноімовірним алфавітом, то значення r вгадане неправильно.

Замість розглядання великої сукупності індексів відповідності по кожному блоку на практиці зазвичай розглядають їх усереднене значення.

Другий метод визначення довжини ключа шифру Віженера використовує такий факт: в шифротексті на відстанях, що кратні періоду, однакові символи будуть зустрічатись частіше, ніж на будь-яких інших. Цей факт пояснюється тим, що у введених вище блоках Y_i однакові символи будуть зустрічатись із тією самою імовірністю, що й у відкритому тексті, а на інших відстанях потрібно, щоб співпадали значення відповідних сум $x_i + k_i$, що виконується із меншою імовірністю.

Отже, в цьому випадку пропонується такий порядок дій для знаходження істинного значення r: для кожного кандидата r = 2,3,... обчислити значення статистики збігів символів:

$$D_r = \sum_{i=1}^{n-r} [y_i = y_{i+r}],$$

де індикатор $[y_i = y_{i+r}]$ дорівнює 1, якщо $y_i = y_{i+r}$, та 0, якщо $y_i \neq y_{i+r}$. Іншими словами, D_r дорівнює кількості пар однакових літер шифротексту, які знаходяться на відстані r символів. Для кандидатів, що рівні та кратні істинному періоду, значення D_r будуть істотно більшими за інші одержані значення.

Після встановлення значення періоду шифру подальше його розшифрування зводиться до серії розшифрувань шифрів Цезаря. Дійсно, кожен фрагмент Y_i зашифрований шифром Цезаря з ключем k_i , $i=\overline{1,r}$. Найпростіший спосіб знаходження ключа полягає в обчисленні $k_i=(y^*-x^*) \, \text{mod} \, m$, де y^* — буква, що частіше за всіх зустрічається у фрагменті Y_i , а x^* — найімовірніша буква у мові, якою написано відкритий текст (для російської мови це буква «о», для англійської — буква «е» тощо). Цей метод на практиці дозволяє визначити більшу частину літер достатньо довгого ключа. Якщо деяку літеру ключа було вгадано невірно (що визначається за спотворенням відкритого тексту після дешифрування), у відповідному блоці замість x^* треба брати другу, третю і т.д. за імовірністю літеру, або коригувати значення ключа відповідно до реконструкції тексту за правильно розшифрованими фрагментами. При розшифруванні деякі фрагменти будуть

встановлені неправильно, але можливі помилки легко виправляються при аналізі розшифрованого тексту в цілому.

Більш надійний метод визначення ключа полягає в наступному. Для кожного блоку Y_i обчислюється функція

$$M_i(g) = \sum_t p_t N_{t+g}(Y_i),$$

де $N_x(Y_i)$ — кількість появ букви x у шифротексті, p_t — імовірність появи літери t в мові. Те значення g, на якому функція $M_i(g)$ буде досягати максимуму, дорівнює значенню літери ключа k_i . Цей метод враховує увесь розподіл частот літер у блоці, тому він дозволяє відновити літери ключа майже безпомилково.

Порядок виконання роботи

Завдання 1. Написати програми, які виконують шифрування та розшифрування шифром Віженера текстів російською мовою.

Програми повинні працювати із відфільтрованими текстами (див. комп'ютерний практикум 1). З алфавіту вилучається літера «ё»; відповідно, Загальна кількість літер у алфавіті m = 32. У текстах літера «ё» повинна бути замінена буквою «е»; модифікуйте ваш фільтр за необхідності.

Завдання 2. Дослідити поведінку індексу відповідності для шифротекстів.

Для виконання завдання вам необхідно самостійно підібрати текст для шифрування (3-5 кб) та ключі довжини r = 2, 3, 4, 5, 6, а також довжини 10, 15 та 20 знаків.

- 1) Зашифруйте обраний відкритий текст шифром Віженера з обраними ключами.
- 2) Обчисліть індекси відповідності I_r для відкритого тексту та всіх одержаних шифротекстів і порівняйте їх значення.

Одержані значення необхідно навести у звіті таблицею та діаграмою.

Завдання 3. Дешифрувати заданий шифротекст.

Використовуючи наведені теоретичні відомості, напишіть програму, яка реалізує атаку на шифр Віженера та розшифруйте з її допомогою наданий шифртекст (згідно свого номеру варіанта). Зокрема, необхідно:

- визначити довжину ключа, використовуючи або метод індексів відповідності, або статистику співпадінь D_r (на вибір); при цьому потрібно перевіряти довжини ключів щонайменше до r = 40;
- визначити символи ключа, прирівнюючи найчастіші літери у блоці до найчастішої літери у мові;
- розшифрувати текст, використовуючи знайдений ключ; в разі необхідності скорегувати ключ.

Кожен з наведених пунктів бажано реалізувати окремою функцією.

Додатково (але не обов'язково) можна написати функцію визначення символів ключа за допомогою функції $M_i(g)$. Реалізація цієї функції буде оцінена додатковими балами.

Оформлення звіту

Звіт повинен містити такі ключові моменти:

- 1) усі написані вами програмні коди; дозволяється надавати посилання на github замість включення текстів програм у звіт;
- 2) приклад роботи шифру Віженера: відфільтрований відкритий текст на **5-6 рядків**, використаний ключ, відповідний шифротекст;
- 3) обрані ключі для завдання 2 та обчислені значення індексів відповідності I_r для вказаних значень r (подати у вигляді таблиці та діаграми);
- 4) обчислену послідовність D_r або набори значень індексів відповідності, одержаних при знаходженні довжини ключа шифру Віженера при виконанні завдання 3 (подати у вигляді таблиці та діаграми);
- 5) значення ключа, одержане шляхом співставлення найчастіших літер блоків найчастішій літері мови, та результат розшифрування на такому ключі 5-6 рядків;
- 6) за необхідності: скореговане значення ключа та результат розшифрування на скорегованому ключі 5-6 рядків.

Наводьте у звіті ключі шифрування як послідовності символів алфавіту. Усі ключі, які необхідно зламати при виконанні завдання 3, ϵ змістовними фразами; це допоможе вам їх корегувати.