

自然语言处理

人工智能研究院

主讲教师 沙磊

基于统计的句法分析

- 句法分析, 理论上可由两个阶段完成生成句子的所有句法树 句法排歧, 找出正确的句法树
- 如何评价所有的句法树
- •引入概率,建立基于统计的句法分析
- 统计句法分析在一段时间内引起了较多的关注, 并取得了较好的研究成果。

统计句法分析的基本思路

• 对给定的句子S, 该句子的统计句法分析结果为:

$$\hat{T} = \arg\max_{T} P(T|S)$$

•根据贝叶斯公式,有:

$$\hat{T} = \arg\max_{T} P(T, S)$$

- 如何计算句法树的概率?
 - 概率上下文无关文法 (PCFG)
 - · 改进的 PCFG

- •属于基于CFG的句法分析算法(与GLR、Earley类似)
- 由Cocke、Kasami及Younger,上世纪60年代提出,故命名为:Cocke-Kasami-Younger算法,简称CKY算法。
- •属于自底而上的分析算法。
- 可以处理一般的文法, 但更适于处理乔姆斯基范式。
- 什么是乔姆斯基范式? 文法中只能有下面两种形式的重写规则:
 - $A \rightarrow BC$
 - $\bullet A \rightarrow w$

- •可以证明,对任何一个CFG,都存在与之等价的乔姆斯基范式。
 - $S \rightarrow aAB|BA \ A \rightarrow BBB|a$
 - $B \rightarrow AS|b$
- 假定文法符合乔姆斯基范式不会损失CKY算法的一般性。 CKY 算法的主要数据结构是一个二维表T[n,n], 其中每个表元素定义如下:

$$t_{i,j} = \{A \mid A \stackrel{+}{\Longrightarrow} w_i w_{i+1} \dots w_j\}$$

·即可以推导出词串wiWi+1...wi的非终结符号所组成的集合。

· CKY算法自底而上填写表格,首先

$$t_{i,i} = \{A \mid A \rightarrow w_i \in P\}$$

- 若有 $A \rightarrow BC \in P$, $B \in t_{i,k} \mathcal{R} C \in t_{k+1,j}$, 则有 $A \in t_{i,j}$ 。为什么?
- 分析过程举例, 给定文法

$$S \rightarrow AA|AS|b$$

 $A \rightarrow SA|AS|a$
试分析句子abaab。

	1	2	3	4	5
1	A	S,A	S,A	S,A	S,A
2		S	A	S	S,A
3			A	S	S,A
4				A	S,A
5			,		S

end.

```
FUNCTION CKYRecognizer() begin
      boolean chart[1..n][1..|N|][1..n] \leftarrow FALSE;
      for k \leftarrow 1 to n do
             for each rule A \rightarrow w_k \in P do
                    chart[k,A,k] \leftarrow TRUE;
      for l \leftarrow 2 to n do
             for p \leftarrow 1 to n - l + 1 do
                    for t \leftarrow 1 to l-1 do
                           q \leftarrow p+l-1; d \leftarrow p+t-1;
                           for each rule A \rightarrow BC \subseteq P do
                                 chart[p,A,q] \leftarrow chart[p,A,q] \vee
                                               (chart[p,B,d] \land chart[d+1,C,q]);
      return chart [1,S,n];
```

8

什么是概率上下文无关文法?

- PCFG是CFG的一种扩展。 一个PCFG
- G是一个四元组 $G = (N, \Sigma, S, P)$

其中:

- N有限个非终结符号组成的集合
- Σ 有限个终结符号组成的集合
- S文法的开始符号
- P 是一组带有概率信息的重写规则组成的集合, 每条规则形式如下:

$$A \rightarrow \alpha \quad [P(A \rightarrow \alpha)]$$

$$\alpha \in (V_N \cup V_T)^*, P(A \to \alpha)$$
 是重写规则的概率。且: $\sum_j P(A \to \alpha_j) = 1$

概率上下文无关文法举例

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	$NP \rightarrow astronomers$	0.1
$VP \rightarrow VNP$	0.7	$NP \rightarrow ears$	0.18
$VP \rightarrow VP PP$	0.3	$NP \rightarrow saw$	0.04
$P \rightarrow with$	1.0	$NP \rightarrow stars$	0.18
$V \rightarrow saw$	1.0	$NP \rightarrow telescopes$	0.1

利用PCFG计算分析树的概率

$$P(t,S) = \prod_{i=1..n} P(r_i)$$

❖ 句子"astronomers saw stars with ears"的分析树

利用PCFG计算分析树的概率

$P(t_1) = 1.0 \times 0.1 \times 0.7 \times 1.0 \times 0.4 \times 0.18 \times 1.0 \times 1.0 \times 0.18$
=0.0009072

$S \rightarrow NP VP$	1.0	
$PP \rightarrow P NP$	1.0	
$VP \rightarrow V NP$	0.7	
$VP \rightarrow VP \ PP$	0.3	
$P \rightarrow with$	1.0	
$V \rightarrow saw$	1.0	
$NP \rightarrow NP PP$		0.4
NP→astronome	rs	0.1
$NP \rightarrow ears$		0.18
NP→saw		0.04
$NP \rightarrow stars$		0.18
$NP \rightarrow telescopes$		0.1

利用PCFG计算分析树的概率

$P(t_2) = 1.0 \times 0.1 \times 0.3 \times 0.7 \times 1.0 \times 0.18 \times 1.0$	$0 \times 1.0 \times 0.18$
=0.0006804	

$S \rightarrow NP VP$	1.0	
$PP \rightarrow P NP$	1.0	
$VP \rightarrow V NP$	0.7	
$VP \rightarrow VP PP$	0.3	
P→with	1.0	
$V \rightarrow saw$	1.0	
NP→NP PP		0.4
NP→astronom	ers	0.1
NP→ears		0.18
NP→saw		0.04
NP→stars		0.18
NP→telescopes	;	0.1

PCFG 用于句法分析

- · 基于PCFG可以计算分析树的概率值。
- 若一个句子有多个分析树,可以依据概率值对所有的分析树进行排序。
- PCFG可以用来进行句法排歧。面对多个分析结果,选择概率最大者为最终分析结果。

PCFG 用作语言模型

• 基于概率上下文无关文法,一个句子w1m的概率为:

$$P(S) = \sum_{t} P(S, t)$$

- 句子 "astronomers saw stars with ears"的概率
 - P(S) = P(t1) + P(t2) = 0.0009072 + 0.0006804 = 0.0015876
- PCFG提供了一种统计语言模型,同 n-gram 模型相比,基于 PCFG的语言模型考虑了句子的结构信息,而n-gram模型则认为句子是线性结构。

PCFG的基本问题

- •①给定一部概率上下文无关文法G,如何计算句子S的概率?即计算P(S|G)的问题。(语言模型)
- •②给定一部概率上下文无关文法G以及句子S,最为可能的分析树是什么,即计算 $\max_t P(t|S,G)$ 的问题。(句法分析)
- •③如何为文法规则选择概率,使得训练句子的概率最大?即计算 $\underset{G}{\operatorname{arg\,max}} P(S,G)$ 的问题。(模型训练)
- 可以通过计算每个分析树的概率,然后以求和或求最大值的方式解决上述第①、②个问题,缺点是效率不高.

向内变量和向外变量

- 为了有效解答PCFG的三个问题,定义向外变量(outside variable)和向内变量(inside variable)。
 - 向外变量

$$\alpha_A(p, q) = P(S \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_{p-1} A w_{q+1} \dots w_n) = P(w_1 w_2 \dots w_{p-1} A w_{q+1} \dots w_n | S)$$

文法开始符号S推导出句型 $w_1w_2...w_{p-1}Aw_{q+1}...w_n$ 的概率。

■ 向内变量

$$\beta_A(p, q) = P(A \stackrel{*}{\Longrightarrow} w_p w_{p+1} \dots w_q) = P(w_p w_{p+1} \dots w_q | A)$$

非终结符号A推导出句子中子串 $w_p w_{p+1} \dots w_q$ 的概率,或者说以A为根、叶子为 $w_p w_{p+1} \dots w_q$ 的所有子树的概率。

向内变量和向外变量

计算句子W_{1m}的概率

• 向内变量和句子概率的关系

$$\beta_{S}(1, n) = P(S \stackrel{*}{\Longrightarrow} w_1 w_2 \dots w_n)$$

• 另有

$$\beta_A(k, k) = P(A \stackrel{*}{\Longrightarrow} w_k)$$

向内算法(Inside Algorithm)

- 如何计算 $\beta_A(p,q)$, 其中p < q
- 因为限制文法为Chomsky范式,因此第一条使用的重写规则必为 $A \rightarrow BC$
- 子串 w_{pq} 一定在某个位置d被分成两个部分,使得B支配子串 w_{pd} ,而C支配子串 $w_{(d+1)q}$,

向内算法

$$P(A \Longrightarrow BC \Longrightarrow w_p w_{p+1} \dots w_d w_{d+1} \dots w_q) = P(A \Longrightarrow BC) P(B \Longrightarrow w_p w_{p+1} \dots w_d) P(C \Longrightarrow w_{d+1} w_{d+2} \dots w_q)$$
$$= P(A \Longrightarrow BC) \beta_B(p, d) \beta_C(d+1, q)$$

而计算 $\beta_A(p,q)$ 应考虑所有可能的以 A 为左部的重写规则,而选定重写规则后,也应考虑将 $w_p w_{p+1} \dots w_q$ 分割成两个子串的不同情况,即要考虑为 d 做所有可能的选择。故有:

$$\beta_A(p,q) = \sum_{B,C} \sum_d P(A \Longrightarrow BC \stackrel{*}{\Longrightarrow} w_p w_{p+1} \dots w_d w_{d+1} \dots w_q)$$

$$\beta_{A}(p,q) = \sum_{B,C} \sum_{d=p}^{q-1} P(A \to BC) \beta_{B}(p,d) \beta_{C}(d+1,q)$$

向内算法

① 初始化

$$\beta_A(k, k) = P(A \rightarrow w_k)$$

② 归纳计算 $\beta_{A}(p,q)$, 其中p < q

$$\beta_{A}(p,q) = \sum_{B,C} \sum_{d=p}^{q-1} P(A \to BC) \beta_{B}(p,d) \beta_{C}(d+1,q)$$

③ 归纳终止

$$P(w_1w_2...w_n) = \beta_S(1,n)$$

向内算法自底而上的递归计算句子概率。

向内算法计算实例

	1	2	3	4	5
1	$eta_{N\!P}=0.1$		$\beta_{S} = 0.0126$		$\beta_{S} = 0.0015876$
2		$eta_{N\!P}=0.04$ $eta_{\mathcal{V}}=1.0$	$\beta_{V\!P}=0.126$		$\beta_{V\!P}=0.015876$
3			$\beta_{NP} = 0.18$		$\beta_{\rm NP}=0.01296$
4				$\beta_{\rm g} = 1.0$	$\beta_{\scriptscriptstyle FF}=0.18$
5					$\beta_{N\!P}=0.18$
	Astronomers	saw	stars	with	ears

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	$NP \rightarrow astronomers$	0.1
$VP \rightarrow V NP$	0.7	NP→ears	0.18
$VP \rightarrow VP PP$	0.3	NP→saw	0.04
$P \rightarrow with$	1.0	NP→stars	0.18
V→saw	1.0	NP→telescoves	0.1

单元格(p,q)内为 向内概率 $\beta_i(p,q)$

基于CKY算法的向内概率计算

```
FUNCTION InsideProbability()
begin
      float inside[1..n][1..|N][1..n] \leftarrow 0;
      for k \leftarrow 1 to n do
             for each rule A \rightarrow w_k \subseteq P do
                    inside(k, A, k) \leftarrow P(A \rightarrow w_k);
      for l \leftarrow 2 to n do
             for p \leftarrow 1 to n-l+1 do
                    for t \leftarrow 1 to l-1 do
                           q \leftarrow p+l-1; d \leftarrow p+t-1;
                           for each rule A \rightarrow BC \subseteq P do
                                  inside(p, A, q) \leftarrow inside(p, A, q) +
                                                       inside(p, B, d) \times inside(d+1, C, q) \times P(A \rightarrow BC)
      return inside(1, S, n);
end.
```

向外算法(outside algorithm)

• 如何计算 $\alpha_A(p,q)$?

向外变量 $\alpha_A(p,q)$ 指的是S推导出句型 $w_1w_2...w_{p-1}Aw_{q+1}...w_n$ 的概率。因为限制文法是乔姆斯基范式,因此必然存在重写规则 $X \rightarrow AY$ 或重写规则 $X \rightarrow YA$,使得:

$$S \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_{p-1} X w_{e+1} \dots w_n \Rightarrow w_1 w_2 \dots w_{p-1} A Y w_{e+1} \dots w_n 且 Y \stackrel{*}{\Rightarrow} w_{q+1} w_{q+2} \dots w_e$$
 或者,

$$S \stackrel{*}{\Rightarrow} w_1 w_2 \dots w_{e-1} X w_{g+1} \dots w_n \Rightarrow w_1 w_2 \dots w_{e-1} Y A w_{g+1} \dots w_n \perp Y \stackrel{*}{\Rightarrow} w_e w_{e+1} \dots w_{p-1}$$

若结点A作为父结点X的左子女,即:

$$P(S \stackrel{*}{\Longrightarrow} w_1 \dots w_{p-1} X w_{e+1} \dots w_n \Rightarrow w_1 \dots w_{p-1} A Y w_{e+1} \dots w_n, Y \stackrel{*}{\Longrightarrow} w_{q+1} \dots w_e)$$

= $\alpha_X(p, e) P(X \rightarrow A Y) \beta_Y(q+1, e)$

同理,若结点A作为父结点X的右子女,则有:

$$P(S \stackrel{*}{\Longrightarrow} w_1 \dots w_{e-1} X w_{q+1} \dots w_n \Rightarrow w_1 \dots w_{e-1} Y A w_{q+1} \dots w_n, Y \stackrel{*}{\Longrightarrow} w_e \dots w_{p-1})$$

$$= \alpha_X(e, q) P(X \rightarrow Y A) \beta_Y(e, p-1)$$

所以,如何求 $\alpha_A(p,q)$? (5min)

向外算法

计算 $\alpha_A(p,q)$ 时,对于这两种情况,都需要考虑各种可能的重写规则及选择所有可能的 e值,故:

$$\begin{split} \alpha_{A}(p,q) &= \sum_{X,Y} \sum_{e=q+1}^{n} \alpha_{X}(p,e) P(X \to AY) \beta_{Y}(q+1,e) \\ &+ \sum_{X,Y} \sum_{e=1}^{p-1} \alpha_{X}(e,q) P(X \to YA) \beta_{Y}(e,p-1) \end{split}$$

因为句法树的根结点总是文法的开始符号,而不会是其它非终结符号,所以有 $P(S \Longrightarrow S)$ $\models 1$ 及 $P(S \Longrightarrow X) = 0$,即:

$$\alpha_{S}(1, n) = 1$$
, $\alpha_{X}(1, n) = 0 \ (X \neq S)$

此外,根据向内变量及向外变量的定义,有:

$$P(S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{p-1}Aw_{q+1}...w_{n} \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{p-1}w_{p}...w_{q}w_{q+1}...w_{n})$$

$$= P(S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{p-1}Aw_{q+1}...w_{n}) P(A \stackrel{*}{\Longrightarrow} w_{p}w_{p+1}...w_{q})$$

$$= \alpha_{A}(p, q) \beta_{A}(p, q)$$

向外算法

(1) 初始化,令

$$\alpha_{A}(1,n) = \begin{cases} 1, & \text{if } A = S \\ 0, & \text{if } A \neq S \end{cases}$$

(2) 归纳计算,对所有的p, q,且p < q,令

$$\alpha_{A}(p,q) = \sum_{X,Y} \sum_{e=q+1}^{n} \alpha_{X}(p,e) P(X \to AY) \beta_{Y}(q+1,e)$$

$$+ \sum_{X,Y} \sum_{e=1}^{p-1} \alpha_{X}(e,q) P(X \to YA) \beta_{Y}(e,p-1)$$

(3) 归纳终止,对任意非终结符号

$$P(w_1w_2...w_n) = \sum_{A} \alpha_A(p,q) \beta_A(p,q)$$

向外算法自顶向下 递归计算句子的概率

基于CKY算法的向外概率计算

 ${\bf FUNCTION}\ Outside Probability ()$

```
begin
       float outside [1..n][1..|N][1..n] := 0;
       outside[1, S, n+1] \leftarrow 1;
       for l \leftarrow n down to 2 do
              for s \leftarrow 1 to n-l+1 do
                      for t \leftarrow 1 to l-1 do
                            p_1 \leftarrow s; e_1 \leftarrow s+l-1; q_1 \leftarrow s+t-1;
                            p_2 \leftarrow s + t; e_2 \leftarrow s; q_2 \leftarrow s + l - 1;
                             for each rule A \rightarrow BC \subseteq P do
                                    outside(p_1, B, q_1) = outside(p_1, B, q_1) +
                                                   outside(p_1, A, e_1) \times inside(q_1+1, C, e_1) \times P(A \rightarrow BC)
                                    outside(p_2, C, q_2) = outside(p_2, C, q_2) +
                                                   outside(e_2, A, q_2) \times inside(e_2, B, p_2-1) \times P(A \rightarrow BC)
```

end.

寻找最佳的分析树

- PCFG的第二个基本问题是在给定文法G和句子 w_{1m} 的前提下,如何有效找出最为可能的分析树,这可以通过韦特比算法求得。
- 韦特比变量 $\delta_{A}(p,q)$
- •以A为根并且叶结点是 $w_p w_{p+1} ... w_q$ 的所有子树中概率最大的子树的概率。

 $S_A(p, q) = max (P(t_1), P(t_2), \dots P(t_k))$

韦特比算法(Viterbi Algorithm)

- (1) 初始化,对所有的 k (1 $\leq k \leq n$),令 $\delta_A(k,k) = P(A \rightarrow w_k)$
- (2) 归纳计算,对所有的p、q, 且p < q, 令 $\delta_A(p,q) = \max_{\substack{p \le d < q \\ B,C \in N}} P(A \to BC) \delta_B(p,d) \delta_C(d+1,q)$

$$\psi_{A}(p,q) = \underset{(B,C,d)}{\operatorname{arg\,max}} P(A \to BC) \delta_{B}(p,d) \delta_{C}(d+1,q)$$

(3) 归纳终止

$$P(\hat{t}) = \delta_{s}(1,n)$$

- (4) 根据数组 $\psi_A(p,q)$ 中记录的信息构造概率最大的分析树 \hat{t} 。
 - a) \hat{t} 的根结点为 S。
 - b) 若 A 是 \hat{t} 的内部结点(非叶子结点),并且若 $\psi_A(p,q)=(B,C,d)$,则 A 的左子女是 B,右子女是 C。且 B 支配子串 $w_pw_{p+1}...w_d$,C 支配子串 $w_{d+1}w_{d+2}...w_a$ 。

模型训练

•如何为文法规则选择概率,使得训练句子的概率最大?也就是如何得到文法规则的概率的问题。

- 有指导训练
- 无指导训练, 向内向外算法

模型训练

- 有指导的训练
- 树库(Treebank), 是标记了句法树结构的语料库。

$$\hat{P}(A \to BC) = \frac{C(A \to BC)}{\sum_{\gamma} C(A \to \gamma)} \qquad \hat{P}(A \to w) = \frac{C(A \to w)}{\sum_{\gamma} C(A \to \gamma)}$$

- 树库的构建的工作量巨大, 耗时耗力, 但在没有可靠的无指导训练技术的前提下, 树库的构造必须进行
- 美国宾夕法尼亚大学一直致力于树库的构建工作,其构建的树库被称作 Penn Treebank。其中英文树库规模 较大、汉语树库的规模较小
- Penn treebank尽管规模很小,但为统计句法分析研究 提供了一个很好的基础。

向内向外算法(inside-outside算法)

- · 无指导训练算法是IO算法
- 同Baum-Welch 算法类似, IO算法也是一个反复迭代、逐步求精的算法。
- 通常要首先给定一组不准确的参数,以反复迭代计算的方式调整模型参数,最终使参数稳定在一个可以接受的精度。
- · IO算法不能保证求得最优模型,一般能得到一个局部最优模型。

向内向外算法的基本原理

- 没有树结构, 无法准确统计:
- $C(A \rightarrow BC)$, $C(A \rightarrow w)$
- 通过CKY算法,可得到给定句子的所有树结构。 基于所有树结构, 计算规则的期望频次。

$$C'(A) = \sum P(t|S)C(A)$$

$$C'(A \to BC) = \sum P(t|S)C(A \to BC)$$

$$C'(A \to w) = \sum P(t|S)C(A \to w)$$

• 基于上述期望频次, 进行参数估计

$$P'(A \rightarrow BC) = C'(A \rightarrow BC) \div C'(A)$$
$$P'(A \rightarrow w) = C'(A \rightarrow BC) \div C'(A)$$

向内向外算法的基本原理

- 如何计算P(t|S)?
- 前提是参数已知。"蛋生鸡、鸡生蛋"的问题。
- 循环迭代、逐步求精
- 首先给定一组初始参数;
 循环,直到得到一组合理的参数基于当前参数, 计算P(t|S)
 计算C'(A)、C'(A→BC)以及C'(A→w)
 计算新参数
- 计算实例
- 效率问题: 逐棵计算树的概率

外算 法 的 基本原 理

首先,非终结符号 A 在句法树中支配子串 $w_p w_{p+1} \dots w_q$ 的期望次数,可由下面的公式

给出:

$$P(A \stackrel{*}{\Longrightarrow} w_{p}w_{p+1}...w_{q}|S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{n})$$

$$= \frac{P(A \stackrel{*}{\Longrightarrow} w_{p}w_{p+1}...w_{q}, S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{n})}{P(S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{n})}$$

$$= \frac{P(S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{p+1}Aw_{q+1}...w_{n} \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{p+1} w_{p}...w_{q} w_{q+1}...w_{n})}{P(S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{n})}$$

$$= \frac{\alpha_{A}(p,q)\beta_{A}(p,q)}{P(S \stackrel{*}{\Longrightarrow} w_{1}w_{2}...w_{n})} \qquad (#1#)$$

考虑到所有可能的p < q,则非终结符号A在句法树中出现的期望次数为:

$$P(A$$
在句法树中出现) = $\sum_{p=1}^{n} \sum_{q=p}^{n} \frac{\alpha_A(p,q)\beta_A(p,q)}{\pi}$

回内向外算法 的基本原

同理,考虑重写规则 $A \rightarrow BC$ 在句法树中出现的期望次数:

$$P(A \Longrightarrow BC \xrightarrow{*} w_p w_{p+1} \dots w_q | S \xrightarrow{*} w_1 w_2 \dots w_n)$$

$$= \frac{P(A \Longrightarrow BC \Longrightarrow w_p w_{p+1} \dots w_q, B \Longrightarrow w_p \dots w_d, C \Longrightarrow w_{d+1} \dots w_q, S \Longrightarrow w_1 w_2 \dots w_n)}{P(S \Longrightarrow w_1 w_2 \dots w_n)}$$

$$=\frac{\sum_{d=p}^{q-1}\alpha_{A}(p,q)P(A\to BC)\beta_{B}(p,d)\beta_{C}(d+1,q)}{\pi}$$

考虑到所有可能的p < q,重写规则 $A \rightarrow BC$ 在句法树中出现的期望次数为

思到所有可能的
$$p < q$$
, 里 与规则 $A \rightarrow BC$ 在可宏例中出现的期望伏奴为
$$\sum_{p=1}^{n-1} \sum_{q=p+1}^{n} \sum_{d=p}^{q-1} \alpha_A(p,q) P(A \rightarrow BC) \beta_B(p,d) \beta_C(d+1,q)$$
 $P(A \rightarrow BC$ 在句法树中出现) = $\frac{p=1}{p} \frac{q=p+1}{q}$ $\frac{1}{p} \frac{1}{p} \frac{1}$

因此有:

$$\hat{P}(A \to BC) = \frac{P(A \to BC$$
在句法树中出现)}{P(A在句法树中出现)}

$$= \frac{\sum_{p=1}^{n-1} \sum_{q=p+1}^{n} \sum_{d=p}^{q-1} \alpha_A(p,q) P(A \to BC) \beta_B(p,d) \beta_C(d+1,q)}{\sum_{p=1}^{m} \sum_{q=p}^{m} \alpha_A(p,q) \beta_A(p,q)}$$
(#4#)

向外算法 的基本原理

对
$$A \rightarrow w$$
,也可做类似的推导,若 $w_k = w$,有:
$$P(A \rightarrow w_k | S \stackrel{*}{\Rightarrow} w_1 w_2 ... w_n) \qquad \qquad \left(\# 3 \# \right)$$

$$= \frac{P(A \rightarrow w_k, S \stackrel{*}{\Rightarrow} w_1 w_2 ... w_{k-1} A w_{k+1} ... w_n)}{P(S \stackrel{*}{\Rightarrow} w_1 w_2 ... w_n)}$$

$$= \frac{\alpha_A(k, k) \beta_A(k, k)}{P(k, k)}$$

考虑到所有可能的位置 k,根据 w_k 是否为 w,则:

$$P(A \to w 在 句 法 树 中 出 现) = \frac{\sum_{k=1}^{n} \alpha_{A}(k,k) \beta_{A}(k,k) \delta(w_{k},w)}{\pi}$$

IO算法描述

- EM算法特例
- 不保证收敛到全局最优点
- 对初始参数较敏感
 - (1) 任意设定一组概率文法参数 $P_0(A \rightarrow BC)$ 及 $P_0(A \rightarrow w)$
 - (2) \diamondsuit i ← 1
 - (3) 循环执行下面的步骤,直到文法参数收敛
 - 1) E-Step: 基于 $P_{i-1}(A \to BC)$ 及 $P_{i-1}(A \to w)$ 计算公式(#1#)、(#2#)、(#3#)的值
 - 2) M-Step: 将 E-Step 的计算结果代入公式(#4#)和(#5#), 得到一组更新的参数 $\hat{P}_i(A \rightarrow BC)$ 及 $\hat{P}_i(A \rightarrow w)$
 - 3) $\Leftrightarrow i \leftarrow i+1$
 - (4) 算法结束,输出概率文法参数

基于PCFG的句法分析

- PCFG把概率引入上下文无关文法,将统计方法和规则方法进行了有效的融合,具有十分重要的意义,但是PCFG缺陷也是十分明显的。
- · 作为一种统计句法分析方法,基于PCFG的句法分析效果有限。
 - · PCFG没有考虑结构之间的依存关系。
 - · PCFG没有考虑词汇对句法结构的影响。
- · 需要针对PCFG的句法分析表现出来的缺陷进行改进。

结构依存关系

- 代词作为主语的可能性高于作为宾语的可能性
 - ■主题与述题
 - ■主题通常是已知信息,在句子中做主语
 - ■代词用来指代已经陈述过的已知信息
 - ■述题引入新信息
 - 统计数据,来自Switchboard corpus:
 - ◆ 陈述句中91%的主语是代词
 - ◆ 陈述句中66%的直接宾语不是代词

 $NP \rightarrow Pron$ $NP \rightarrow Det Noun$ 的概率应和其在句中所处的位置有关,处在VP前后概率应该不同。

词汇依存关系

Moscow sent troops into Afghanistan

正确的句法树

PP可以修饰 VP, PP也可以修饰 NP, 但不同的动词, PP修饰NP和VP的可能性并不相同。

基于PCFG的统计语言模型

•作为一种统计语言模型,其效果甚至还不如n-gram模型以及HMM模型(原因同上)

• the green banana the green time

句法分析的评价

◆ 标记准确率

Labeled Precision = $\frac{number\ of\ correct\ constituents\ in\ proposed\ parse}{number\ of\ constituents\ in\ proposed\ parse}$

◆ 标记召回率

 $Labeled Recall = \frac{number \ of \ correct \ constituents \ in \ proposed \ parse}{number \ of \ constituents \ in \ treebank \ parse}$

◆ 括号交叉数

Crossing Brackets = number of constituents which violate constituent boundaries with a constituent in the treebank parse

词汇化的句法分析简介


```
S(\text{sent}) \rightarrow NP(\text{Moscow}) VP(\text{sent})
NP(\text{Moscow}) \rightarrow NNP(\text{Moscow})
VP(\text{sent}) \rightarrow VBD(\text{sent}) NP(\text{troops}) PP(\text{into})
NP(\text{troops}) \rightarrow NNS(\text{troops})PP(\text{into})
PP(\text{into}) \rightarrow IN(\text{into}) NP(\text{Afghansitan})
NP(Afghanistan) \rightarrow NNP(Afghanistan)
NNP(Moscow) \rightarrow Moscow
NNP(Afghanistan) \rightarrow Afghanistan
IN(into) \rightarrow into
VBD(sent) \rightarrow sent
NNS(troops) \rightarrow troops
非终结符号的数量激烈膨胀。
参数估计时,数据稀疏问题十分严重!
```

- 为避免数据稀疏问题, 概率计算需要分解
- · 在词汇化PCFG中

 $P(h) \rightarrow L_n(l_n)...L_1(l_1)H(h)R_1(r_1)...R_m(r_m)$ 其中,H是短语的中心成分 h是成分的中心词 $L_i n R_i$ 分别是中心成分左右的修饰性成分 $l_i n r_i$ 分别是左右修饰成分的中心词

- 在左右两端增加STOP
- $\diamondsuit L_{n+1} = STOP \quad R_{n+1} = STOP$

$$P(L_{n+1}(l_{n+1}) \dots L_1(l_1)H(h)R_1(r_1) \dots R_{m+1}(r_{m+1})|P(h)) =$$

$$P_h(H|P(h)) \times$$

$$\prod_{i=1...n+1} P_l(L_i(l_i)|L_1(l_1) \dots L_{i-1}(l_{i-1}), P(h), H) \times$$

$$\prod_{j=1...n+1} P_r(R_j(r_j)|L_1(l_1) \dots L_{n+1}(l_{n+1}), R_1(r_1) \dots R_{j-1}(r_{j-1}), P(h), H)$$

• 作如下的独立性假设

$$P_l(L_i(l_i)|L_1(l_1)\dots L_{i-1}(l_{i-1}), P(h), H) = P_l(L_i(l_i)|P(h), H)$$

$$P_r(R_j(r_j)|L_1(l_1)\dots L_{n+1}(l_{n+1}), R_1(r_1)\dots R_{j-1}(r_{j-1}), P(h), H) = P_r(R_j(r_j)|P(h), H)$$

$$P(L_{n+1}(l_{n+1}) \dots L_1(l_1)H(h)R_1(r_1) \dots R_{m+1}(r_{m+1})|P(h)) = P(H|P(h)) \times \prod_{i=1...n+1} P_l(L_i(l_i)|P(h), H) \times \prod_{j=1...m+1} P_r(R_j(r_j)|P(h), H)$$

- 句法树可以视为自顶向下按照三个步骤产生:
 - 1. 以概率 $P_H(H|P,h)$ 生成短语的中心成分标签;
 - 2. 以概率 $\prod_{i=1..n+1} P_{L}(L_{i}(l_{i})|P,h,H)$ 生成中心词左面的修饰性成分,其中 $L_{n+1}(l_{n+1}) = STOP$ 。 STOP 可视作一个特殊的非终结符号,模型在生成 STOP 标记时结束生成。
 - 3. 以概率 $\prod_{i=1.m+1} P_R(R_i(r_i)|P,h,H)$ 生成中心词左面的修饰性成分,其中 $R_{m+1}(r_{m+1}) = STOP$ 。

TOP S(bought) NP(week) NP(IBM) VP(bought) NNJJNNP NP(Lotus) \overline{VBD} Last week **IBM** NNPbought Lotus

• 例子

 $S(bought) \rightarrow NP(week)NP(IBM)VP(bought)$

 $P_{l}(VP | S,bought) \times P_{l}(NP(IBM) | S,VP,bought) \times P_{l}(NP(week) | S,VP,bought) \times P_{l}(STOP | S,VP,bought) \times P_{l}(STOP | S,VP,bought) \times P_{l}(STOP | S,VP,bought)$

Thank you!