Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

Sommerskoleaflevering 1 – Onsdag

Opgave a)

For at besvare spørgsmålet, køres følgende kode:

```
ods graphics/ imagemap=on TIPMAX=2200;
libname Data 'C:\Users\Bruger\OneDrive\Skrivebord\Videregaende Statistik
Sommerskole\Data';
run:
**Opgave a**;
proc contents data=data.usa 2022;
**Hele regressionen køres**;
proc reg data=data.usa 2022;
model Violent crime rate=share Black victim share White victim rate black
income 2018 rate income growth unemployment rate rate public health
rate non insured health rate private health percent biden trump 2016
Incarceration rate rate killed;
id state;
**Herefter køres regressionen med stepwise selection**;
proc reg data=data.usa 2022;
model Violent crime rate=share Black victim share White victim rate black
income 2018 rate income growth unemployment rate rate public health
rate non insured health rate_private_health percent_biden trump_2016
Incarceration rate rate killed/selection=stepwise slstay=0.1 slentry=0.1;
id state;
run:
**Herefter køres regressionen med backwards selection**;
proc reg data=data.usa 2022;
model Violent_crime_rate=share_Black_victim share_White_victim rate_black
income_2018 rate_income_growth unemployment_rate rate_public_health
rate non_insured_health rate_private_health percent_biden trump_2016
Incarceration rate rate killed/selection=b;
id state;
run:
**Herefter køres regressionen med forwards selection**;
proc reg data=data.usa 2022;
model Violent_crime_rate=share_Black_victim share_White_victim rate_black
income_2018 rate_income_growth unemployment_rate rate_public_health
rate non insured health rate_private_health percent_biden trump_2016
Incarceration rate rate killed/selection=f;
id state;
run;
**Vi kører nu de udvalgte forklarende varable fra stepwise selectionen**;
proc reg data=data.usa 2022;
model Violent_crime_rate=share_Black_victim rate_killed trump 2016;
id state;
run;
```

Først estimeres modellen for Violent crime rate som afhængig variabel og med alle

variablene beskrevet i opgaven, som forklarende variable.

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

KØBENHAVNS UNIVERSITET

Dette giver følgende estimater:

Parameter Estimates					
Variable	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	433.45948	1671.22444	0.26	0.7968	
share_Black_victim	288.62980	225.85632	1.28	0.2092	
share_White_victim	-102.16381	148.64642	-0.69	0.4962	
rate_black	31.59809	395.69657	0.08	0.9368	
income_2018	-0.00060009	0.00376	-0.16	0.8742	
rate_income_growth	-259.09761	506.19823	-0.51	0.6118	
unemployment_rate	19.45967	29.96532	0.65	0.5201	
rate_public_health	-68.87879	1419.19425	-0.05	0.9616	
rate_non_insured_health	-644.96946	2006.53291	-0.32	0.7497	
rate_private_health	-12.03432	1449.52058	-0.01	0.9934	
percent_biden	-1.80924	8.21733	-0.22	0.8269	
trump_2016	-432.64029	862.23268	-0.50	0.6188	
Incarceration_rate	0.08905	0.18635	0.48	0.6355	
rate_killed	7.85946	2.26607	3.47	0.0013	

Det ses herved, at kun Rate_killed er signifikant på et 5%-signifikansniveau, mens Share Black victim er den variabel, der er næstmest signifikant, men med en p-værdi på 0,209.

Derudover ses det, at modellen har en forklaringsgrad på: R-Square = 0.7009

Herefter er der kørt stepwise, backwards og forwards selektion, hvorved vi vælger modellen med stepwise og en 10%-signifikansgrænse.

Denne finder følgende 3 signifikante variable "rate_killed, share_Black_victim, trump_2016" og giver estimationen:

Parameter Estimates						
Variable Parameter Standard t Value Pr >						
	Estimate	Error				
Intercept	102.36265	79.28239	1.29	0.2030		
share_Black_victim	435.54100	78.13681	5.57	<.0001		
rate_killed	9.27022	1.02663	9.03	<.0001		
trump_2016	-247.91068	131.37083	-1.89	0.0653		

Det ses herved, at forklaringsgraden stort set ikke er faldet: R-Square = 0.6815. Vi vurderer derved, at denne markant reducerede model er signifikant.

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

Opgave b)

Følgende kode køres til at besvare opgaven:

```
**Opgave b**
**Oprettelse af samlet variabel**;
%let fvar= share Black victim rate killed trump 2016;
**Outliers**;
proc reg data=data.usa 2022;
model Violent crime rate = &fvar.;
output out=ny Rstudent=t covratio=c h=h cookd=d;
id state;
run;
proc sort data=ny out=nysort;
by t;
run;
proc print data=nysort;
var state t c h d;
where abs (t) > 2;
run:
**Herefter køres en outliertest**;
*I dette program er benyttet n=51, og abs(t)=2.62093
og 4 estimerede regressionskoefficienter inklusive interceptet;
*P3 er den rigtige signifikanssandsynlighed for sandsynligheden for outlieren*;
data a;
p1=probt( 2.62093,51-1-4);
/*pl Tager ikke hensyn til, at tallet er valgt som det største af 51 tal*/
p2=2*(1-p1);
p3=1-(1-p2)**51;
/*p3 tager hensyn til tallet er valgt som det største af 51 tal*/
tgraense=tinv(1-(1-(0.05)**(1/51))/2, 51-1-4);
/*tgraense er en kritisk grænse for outliertests for 51 uafhængige tal*/
tbonf=tinv(1-0.05/2/51, 51-1-4);
/*tbonf er en kritisk grænse for outliertests ud fra Bonferroni uligheden for 51
tal*/
run;
proc print;
```

Det et eksternt standardiseret residual, er observationen i's afstand fra den prædikterede værdi, når observation i ikke er med i regressionen. Vi angiver det som en outlier, når sandsynligheden, for at det eksternt standardiseret residual er mindre end 5%.

Vi finder følgende 4 eksternt standardiseret residualer med store t-værdier:

Obs	state	t	c	h	d
1	Mississippi	-2.51880	0.70271	0.07502	0.11550
2	Oklahoma	-2.11494	0.88463	0.15005	0.18383
50	Tennessee	2.37093	0.71977	0.04526	0.06066
51	Alaska	2.62093	0.72889	0.14313	0.25501

Vi ser herved, at det numerisk største eksternt standardiserede residual i den reducerede modellen er Alaska med t = 2.62093.

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

Vi tester sandsynligheden for, at observere en sådan t-værdi:

Obs	p1	p2	р3	tgraense	tbonf
1	0.99408	0.011845	0.45540	3.51319	3.52164

Her beskriver p3 den signifikanssandsynlighed for sandsynligheden for at observere outlieren givet de 50 andre observationer.

Her får vi en sandsynlighed på 45,5% og vi kan dermed ikke ikke afvise, at Alaska er en outlier.

Obs	state	Violent_crime_rate	share_Black_victim	rate_killed	trump_2016
1	Mississippi	278	0.45217	38.8346	0.5794
2	Oklahoma	432	0.23200	63.1416	0.6532
3	Maine	115	0.02500	29.3608	0.4487
4	New Jersey	207	0.52212	12.1649	0.4100
50	Tennessee	595	0.27982	31.5446	0.6072
51	Alaska	867	0.08163	66.8129	0.5128

Vi kan herved se, at Alaska har en utroligt høj Violent_crime_rate og rate_killed, men at deres share_Black_victim er meget lavere end alle andre stater. Dette kan skyldes, at næsten ingen sorte bor i Alaska. Da vores estimat på share_Black_victim = 435.5. Derved ville modellen prædiktere en lavere Violent_crime_rate for Alaska pga. den lave share_Black_victim. Dette forklarer hvorfor Alaska er en outlier.

```
Opgave c)
**Opgave 3**;
```

```
proc reg data=data.usa 2022 plots=all;
model Violent crime rate = &fvar./partial influence ;
output out=ny Rstudent=t covratio=c h=h cookd=d;
id state;
run;
proc sort data=ny out=nysortt;
by t;
run;
proc print data=nysortt;
var state t c h d;
where abs (t) > 2;
proc sort data=ny out=nysortc;
by c;
proc print data=nysortc;
var state t c h d;
where abs (c) > 1.1;
run:
proc sort data=ny out=nysortd;
by d;
run;
proc print data=nysortd;
```

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

```
KØBENHAVNS
UNIVERSITET
```

```
var state t c h d;
where abs (d)>0.05;
run;

proc sort data=ny out=nysorth;
by h;
run;

proc print data=nysorth;
var state t c h d;
where abs (h)>0.1;
run;
```


Vi kan udlede fra ovenstående diagram, at Discrit of Columbia og New Mexico har størst indflydelse/leverage på estimatorne. Disse er dog ikke outliers. Vores tidligere fundne outliers har ikke nogen stor betydning på estimatorne. Dette kan udledes, fordi de ligger i boksene over og under den samlede gruppering. Samtidig ligger DC og New Mexico langt ude ift leverage, hvor DC også ligger længere oppe mod outlier-delen uden at være dette. Det kan konkluderes, at New Mexico og DC er nogle gode punkter, mens Mississippi, Alaska, Oklahoma og Tennessee dårligere punkter, der dog pga. deres lave leverage ikke påvirker estimatorne betydeligt.

For Alaska kan det udledes, at set bort fra h-værdien, så har Alaska karakteristika af et dårligt punkt. Da den har en stor t-værdi, cov-ratio under 1 og stor cook-værdi., dog med lav leverage. Dette kan modsvares med New Mexico, der har lav t, stor h, c større end 1 og lav d-værdi:

Obs	state	t	c	h	d
47	Alaska	2.62093	0.72889	0.14313	0.25501
50	New Mexico	0.69740	1.49424	0.30069	0.05286

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

Opgave d)

Vi kører følgende mode:

```
**Opgave d**;
%let var2 = share_Black_victim share_White_victim rate_black income_2018
rate_income_growth unemployment_rate rate_public_health rate_non_insured_health
rate_private_health percent_biden trump_2016 Incarceration_rate rate_killed;

proc robustreg data=data.usa_2022 method=lts plots=all;
model Violent_crime_rate = &var2./diagnostics(all) leverage;
output out=Robustny outlier=yafvig leverage=xafvig;
id state;
run;
```

Dette giver følgende outlier leverage plot:

Ud af y-aksen ligger leverage. Dette beskriver punktets afstand fra resten af punkterne, h. Stor leverage betyder større variation i observationerne, hvilket sænker variansen.

x-aksen er residualerne størrelse, målt mod de modellens prædikterede værdier når den specifikke observation ikke er med i modellen, t.

Det bedste punkt er Utah, da der er stor leverage, men ikke stor residual. Derimod har Hawaii, DC og Alaska både stor leverage og store residualer og kan dermed trække estimaterne i forkert retning.

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

Opgave e)

```
Kode:
```

```
**Opgave e**;
proc reg data=robustny plots=all;
model Violent crime rate = &var2.;
where yafvig=0;
id state;
run;
**Herefter køres regressionen med stepwise selection**;
proc reg data=robustny plots=all;
model Violent crime rate = &var2./selection=stepwise slstay=0.1 slentry=0.1;
where yafvig=0;
id state;
run;
**Dette giver følgende OLS regression**;
proc reg data=robustny plots=all;
model Violent crime rate = share White victim income 2018 unemployment rate
percent biden rate killed;
where yafvig=0;
output out=robustny1 Rstudent=t covratio=c h=h cookd=d
id state;
run;
proc sort data=robustny1 out=nysortd1;
by d;
run;
proc print data=nysortd1;
var state t c h d;
where abs (d) > 0.05;
run;
```

Vi har fjernet de 7 outliers, der blev fundet i opgave d. Derefter er regressionen kørt igen, hvorved følgende estimater er fundet:

Variable	Parameter	Standard	t Value	Pr > t
	Estimate	Error		
Intercept	852.79522	1025.85185	0.83	0.4124
share_Black_victim	-96.81553	136.03803	-0.71	0.4822
share_White_victim	-395.41216	118.11089	-3.35	0.0022
rate_black	541.62671	247.25473	2.19	0.0364
income_2018	-0.00866	0.00244	-3.55	0.0013
rate_income_growth	-205.10559	315.01964	-0.65	0.5199
unemployment_rate	-51.97181	19.88090	-2.61	0.0139
rate_public_health	842.68964	962.31220	0.88	0.3882
rate_non_insured_health	455.87348	1280.33701	0.36	0.7243
rate_private_health	539.65311	913.50118	0.59	0.5591
percent_biden	-0.70766	4.63939	-0.15	0.8798
trump_2016	-533.65154	499.96041	-1.07	0.2943
Incarceration_rate	-0.13048	0.11503	-1.13	0.2657
rate_killed	5.29711	1.28547	4.12	0.

Fag: Videregående Statistik - Sommerskole

Dato: 06-07-2022

Det er stadig kun rate_killed, der er signifikant, men forklaringsgraden er steget fra: R-Square = 0.7009 til R-Square = 0.8493. Den er hermed steget med 0,149.

Vi kører herefter stepwise selektion med og en 10%-signifikansgrænse. Dette giver følgende estimater:

Parameter Estimates					
Variable	Parameter	Standard	t Value	Pr > t	
	Estimate	Error			
Intercept	931.52722	149.94735	6.21	<.0001	
share_White_victim	-391.53114	76.11184	-5.14	<.0001	
income_2018	-0.00977	0.00168	-5.82	<.0001	
unemployment_rate	-38.60913	16.96209	-2.28	0.0286	
percent_biden	5.99647	1.66340	3.60	0.0009	
rate killed	4.41523	0.76847	5.75	<.0001	

Dette giver os nu 6 signifikante variable, hvori kun rate_killed går igen fra opgave b. Dette giver nu en forklaringsgrad på R-Square = 0.7925. Der er lidt lavere end estimationen med alle variable.

Vi kan nu se at:

Obs	state	t	c	h	d
39	New Hampshire	0.86238	1.46145	0.28739	0.05033
40	Kentucky	-1.32609	1.06228	0.16390	0.05633
41	Rhode Island	-1.83552	0.79012	0.11953	0.07176
42	Arkansas	2.16852	0.63741	0.10193	0.08105
43	Colorado	-1.40082	1.18898	0.27613	0.12168
44	Maryland	1.83685	0.85776	0.18955	0.12379

Dette er de stater, der nu har højest Cook's D. Altså de punkter, der påvirker estimaterne mest. Disse har relativt høje t-værdier og høje d-værdier og er dermed relativt dårlige punkter.