

Facultad de Ingeniería Universidad de Buenos Aires

66.44 Instrumentos Electrónicos

Trabajo Práctico N°3: Impedancímetro, RLC, Q-metro y puente de impedancias

Integrantes:

Padrón	Nombre	Email
92903	Sanchez, Eduardo Hugo	hugo_044@hotmail.com
91227	Soler, José Francisco	franciscotw@hotmail.com
xxx	Wawrynczak, Claudio	claudiozak@gmail.com

Índice

1. Objetivo				
2.	Desarrollo			
	2.1.	Mediciones con el Q-metro	4	
		2.1.1. Inductancia de una bobina con núcleo de aire	4	
	2.2.	Mediciones con el RLC	5	
		2.2.1. Inductancia de una bobina con núcleo de aire	5	
		2.2.2. Capacidad de un capacitor electroítico	5	
		2.2.3. Capacidad de un capacitor cerámico	5	
2.3. Mediciones con el puente de impedancias				
		2.3.1. Inductancia de una bobina con núcleo de aire	5	
	2.4.	Mediciones con el impedancímetro	5	
		2.4.1. Frecuencia de resonancia de una bobina con núcleo de aire	5	
		2.4.2. Inductancia de una bobina con nucleo de ferrite	5	
		2.4.3. Paramétros de una línea de transmisición	5	
		2.4.4. Parámetros de un cristal	5	
		2.4.5. Mediciones en un circuito activo	5	
3	Con	aclusiones	5	

1. Objetivo

El objetivo del presente trabajo práctico es determinar las diferentes impedancias medidas utilizando un osciloscopio con técnicas de reflectometría.

2. Desarrollo

Para llevar a cabo las mediciones, se utilizan los siguientes instrumentos:

- algo
- algo
- algo
- Cable coaxil para realizar las distintas conexiones entre instrumentos.

2.1. Mediciones con el Q-metro

2.1.1. Inductancia de una bobina con núcleo de aire

El circuito simplificado de un Q-metro se muestra en la Figura 1

Figura 1: Esquema simplificado del Q-metro

Donde el valor máximo obtenido de tensión para un determinado inductor L_x de inductancia L se da cuando $f=\frac{1}{2\pi\sqrt{LC}}$. Por otra parte puede mostrarse que el valor de Q es $Q=\frac{\omega L}{R}$.

Conocidos los valores de la capacidad, C, y la frecuencia, f, puede obtenerse el valor de la inductancia de L_x y también su resistencia serie equivalente con las siguientes expresiones

$$L = \frac{1}{(2\pi)^2 f^2 C}$$

$$L = \frac{2\pi f L}{Q}$$

En la tabla 1 se muestran los resultados obtenidos para un inductor haciendo un barrido de frecuencias

	Frecuencia	С	Q	L	R
	7,9722~MHz	75 pF	200	$5,31~\mu Hy$	$1,33 \Omega$
Ì	13,3~MHz	25 pF	182	$5,72~\mu Hy$	$2,62~\Omega$

Cuadro 1: Mediciones con el Q-metro

- 2.2. Mediciones con el RLC
- 2.2.1. Inductancia de una bobina con núcleo de aire
- 2.2.2. Capacidad de un capacitor electroítico
- 2.2.3. Capacidad de un capacitor cerámico
- 2.3. Mediciones con el puente de impedancias
- 2.3.1. Inductancia de una bobina con núcleo de aire
- 2.4. Mediciones con el impedancímetro
- 2.4.1. Frecuencia de resonancia de una bobina con núcleo de aire
- 2.4.2. Inductancia de una bobina con nucleo de ferrite
- 2.4.3. Paramétros de una línea de transmisición
- 2.4.4. Parámetros de un cristal
- 2.4.5. Mediciones en un circuito activo

3. Conclusiones

Viva Venezuela!