Argomenti trattati

- Struttura e caratteristiche del convertitore Flyback
- Progetto di un convertitore Flyback multi-uscita

Convertitore Flyback

- è il più semplice schema a trasformatore
- l'induttanza del convertitore buck-boost viene sostituita da un mutuo induttore
- ha un basso fattore di utilizzo P_o/P_s

Flussi concatenati con gli avvolgimenti:

$$\lambda_{1} = \lambda_{11} + \lambda_{12} = N_{1}(\Phi_{11} + \Phi_{12})$$

$$= N_{1}\left(\frac{N_{1}i_{1}}{R} + \sigma_{12}\frac{N_{2}i_{2}}{R}\right)$$

Flussi concatenati con gli avvolgimenti:

$$\lambda_{2} = \lambda_{22} + \lambda_{21} = N_{2}(\Phi_{22} + \Phi_{21})$$

$$= N_{2}\left(\frac{N_{2}i_{2}}{R} + \sigma_{21}\frac{N_{1}i_{1}}{R}\right)$$

Coefficiente di accoppiamento:

$$\sigma_{12} = \frac{\Phi_{12}}{\Phi_{22}} = \sigma_{21} = \frac{\Phi_{21}}{\Phi_{11}} = \sigma$$

$$\Phi_{22} = \frac{N_2 I_2}{R}$$

$$\Phi_{12} = \sigma_{12} \Phi_{23}$$

$$\Phi_{12} = \sigma_{12} \Phi_{22}$$

$$\Phi_{21}=\sigma_{21}\Phi_{11}$$

Accoppiamento perfetto:

$$\sigma = 1 \Rightarrow \Phi_{12} = \Phi_{22}, \Phi_{21} = \Phi_{11}$$

Coefficienti di auto- e mutua induzione:

$$\lambda_1 = \frac{N_1^2 i_1}{R} + \sigma \frac{N_2 N_1 i_2}{R} = L_1 i_1 + L_M i_2$$

Coefficienti di auto- e mutua induzione:

$$\lambda_2 = \frac{N_2^2 i_2}{R} + \sigma \frac{N_1 N_2 i_1}{R} = L_2 i_2 + L_M i_1$$

Energia accumulata:

$$W = \frac{1}{2}\lambda_1 i_1 + \frac{1}{2}\lambda_2 i_2 = \frac{1}{2}L_1 i_1^2 + \frac{1}{2}L_2 i_2^2 + L_M i_1 i_2$$

Nota:

Contrariamente al trasformatore (R = 0), il mutuo induttore (R > 0) accumula energia. A tal fine vengono introdotti dei traferri.

Nota:

Contrariamente al trasformatore (R = 0), il mutuo induttore (R > 0) accumula energia. A tal fine vengono introdotti dei traferri.

Equazioni del mutuo induttore

$$\begin{cases} u_1 = \frac{d\lambda_1}{dt} = L_1 \cdot \frac{di_1}{dt} + L_M \cdot \frac{di_2}{dt} \\ u_2 = \frac{d\lambda_2}{dt} = L_M \cdot \frac{di_1}{dt} + L_2 \cdot \frac{di_2}{dt} \end{cases}$$

Funzionamento del convertitore flyback Fase di on (CCM)

S on
$$\Rightarrow$$
 $u_1 = U_i \Rightarrow i_2 = 0 \Rightarrow D$ off

Funzionamento del convertitore flyback Fase di on (CCM)

$$\begin{cases} u_1 = L_1 \cdot \frac{di_1}{dt} \\ u_2 = L_M \cdot \frac{di_1}{dt} \end{cases} \Rightarrow \frac{u_1}{u_2} = \frac{L_1}{L_M} = \frac{N_1}{N_2}$$

Funzionamento del convertitore flyback Fase di on (CCM)

$$i_1 = i_{\mu 1} = \frac{U_i}{L_1}t + I_{1min}$$
 $I_{1MAX} = I_{1min} + \frac{U_i}{L_1}t_{on}$

Funzionamento del convertitore flyback Fase di on (CCM)

$$\frac{u_1}{u_2} = \frac{L_1}{L_M} = \frac{N_1}{N_2}$$

$$u_1 = U_i$$

$$i_1 = i_{\mu 1} = \frac{U_i}{L_1}t + I_{1min}$$

$$i_2 = 0$$

Funzionamento del convertitore flyback Fase di off (CCM)

S off
$$\Rightarrow$$
 $i_1 = 0$ \Rightarrow $i_2 > 0$ \Rightarrow $u_2 = -U_0$

Funzionamento del convertitore flyback Fase di off (CCM)

$$\begin{cases} u_1 = L_M \cdot \frac{di_2}{dt} \\ u_2 = L_2 \cdot \frac{di_2}{dt} \end{cases} \Rightarrow \frac{u_1}{u_2} = \frac{L_M}{L_2} = \frac{N_1}{N_2}$$

Funzionamento del convertitore flyback Fase di off (CCM)

$$i_2 = i_{\mu 2} = I_{2MAX} - \frac{U_o}{L_2}t = \frac{N_1}{N_2}I_{1MAX} - \frac{U_o}{L_2}t$$

Funzionamento del convertitore flyback Fase di off (CCM)

Funzionamento del convertitore flyback Sollecitazioni sugli interruttori

Funzionamento del convertitore flyback Sollecitazioni sugli interruttori

Funzionamento discontinuo (DCM) Correnti a primario e a secondario

Funzionamento discontinuo (DCM) Correnti a primario e a secondario

Correnti a primario e a secondario

$$I_{1_{\text{max}}} = \frac{U_i}{L_1} t_{\text{on}}$$

Correnti a primario e a secondario

$$I_{1_{\text{max}}} = \frac{U_i}{L_1} t_{\text{on}}$$

$$I_{2_{\text{max}}} = \frac{N_1}{N_2} I_{1_{\text{max}}}$$

Correnti a primario e a secondario

$$I_{1_{\text{max}}} = \frac{U_i}{L_1} t_{\text{on}}$$

$$I_{2_{\text{max}}} = \frac{N_1}{N_2} I_{1_{\text{max}}}$$

$$t_r = \frac{N_2}{N_1} L_2 \frac{I_{1_{max}}}{U_o}$$

Fattore di conversione del convertitore Flyback

CCM (
$$I_o > I_{olim}$$
)
$$M = \frac{\dot{U}_o}{U_i} = \frac{N_2}{N_1} \frac{\delta}{1 - \delta}$$

Fattore di conversione del convertitore Flyback

$$CCM (I_o > I_{olim}) \qquad M = \frac{U_o}{U_i} = \frac{N_2}{N_1} \frac{\delta}{1 - \delta}$$

$$DCM (I_o < I_{olim}) \qquad M = \frac{U_o}{U_i} = \frac{I_N}{I_o} \delta^2$$

$$I_N = \frac{U_i}{I_o}$$

Fattore di conversione del convertitore Flyback

$$\begin{aligned} \text{CCM} & (I_o > I_{olim}) & M = \frac{U_o}{U_i} = \frac{N_2}{N_1} \frac{\delta}{1 - \delta} \\ \text{DCM} & (I_o < I_{olim}) & M = \frac{U_o}{U_i} = \frac{I_N}{I_o} \delta^2 \\ & I_N = \frac{U_i}{2 \, f_S \, L_1} \\ & I_{olim} = I_N \frac{N_1}{N_2} \delta \left(1 - \delta\right) \end{aligned}$$

CCM (
$$I_o > I_{olim}$$
)
$$M = \frac{U_o}{U_i} = \frac{N_2}{N_1} \frac{\delta}{1 - \delta}$$

$$CCM (I_o > I_{olim})$$

$$M = \frac{U_o}{U_i} = \frac{N_2}{N_1} \frac{\delta}{1 - \delta}$$

$$DCM (I_o < I_{olim})$$

$$M = \frac{U_o}{U_i} = \frac{\delta}{\sqrt{k}}$$

$$k = \frac{2 \, f_S \, L_1}{R_o}$$

$$\begin{aligned} \text{CCM} & (I_o > I_{olim}) & M = \frac{U_o}{U_i} = \frac{N_2}{N_1} \frac{\delta}{1 - \delta} \\ \text{DCM} & (I_o < I_{olim}) & M = \frac{U_o}{U_i} = \frac{\delta}{\sqrt{k}} \\ & k = \frac{2 f_S L_1}{R_o} \\ k_{lim} = \left[\frac{N_1}{N_2} (1 - \delta) \right]^2 \end{aligned}$$

Modo di utilizzo

Modo di utilizzo

Il convertitore flyback si usa normalmente in DCM perchè:

- si sfrutta l'intera escursione del flusso ($\Delta\Phi$ = B_{sat} S) e quindi il nucleo risulta più piccolo
- si ottengono migliori caratteristiche dinamiche

$$\frac{P_o}{P_S} = \delta (1 - \delta) \le \frac{1}{4}$$
 (CCM)

$$\frac{P_o}{P_S} = \delta (1 - \delta) \le \frac{1}{4}$$
 (CCM)

$$\frac{P_o}{P_S} = \frac{\delta(1-\delta)}{2} \le \frac{1}{8} \quad \text{(limite CCM - DCM)}$$

$$\frac{P_o}{P_S} = \delta (1 - \delta) \le \frac{1}{4}$$
 (CCM)

$$\frac{P_o}{P_S} = \frac{\delta (1-\delta)}{2} \le \frac{1}{8} \quad \text{(limite CCM - DCM)}$$

Poichè il tasso di utilizzo è basso il convertitore si usa a bassa potenza

Progetto di un convertitore Flyback multi-uscita

Progetto di un convertitore Flyback

Progetto di un convertitore Flyback

Progetto di un convertitore Flyback multi-uscita :

S + U_i

Ogni uscita richiede un solo diodo e condensatore

Le uscite sono bene accoppiate

Progetto di un convertitore Flyback multi-uscita

Applicazione:

Alimentatore per scheda di controllo e driver di un inverter per azionamento

Convertitore Flyback multi-uscita Specifiche di progetto

Potenza di uscita totale=18W

Frequenza di commutazione=50kHz

Tensione continua d'ingresso ...=180-710V

Specifiche per le singole uscite

Tensioni	Assorbimento
di uscita [V]	(min-max) [mA]

$$U_{01}$$
- U_{03} = +15 V 13-25
 U_{04} = +15 V 44-83
 U_{05} = +5 V 100-350
 U_{06} = +15 V 150-400
 U_{07} = -15 V 80-280
 U_{08} = +24 V 0-100
 U_{09} = +15 V 50
 U_{10} = +15 V 1.7

Riportando tutti i parametri a primario si possono utilizzare le relazioni del convertitore buck-boost

$$n_j = \frac{N_j}{N_p}$$

$$n_j = \frac{N_j}{N_p}$$
 $u_{op} = \frac{u_{oj}}{n_j}$

$$R_{op} = \frac{1}{G_{op}}$$

$$R_{op} = \frac{1}{G_{op}}$$
 $G_{op} = \sum_{j=1}^{N} G_{jp} = \sum_{j=1}^{N} n_j^2 G_j$

$$R_{op} = \frac{1}{G_{op}}$$
 $G_{op} = \sum_{j=1}^{N} n_j^2 G_j$ $C_p = \sum_{i=1}^{N} C_j n_j^2$

1) Calcolo dei rapporti spire

Ipotesi: funzionamento CCM fino alla corrente minima (I_{Olim} = 40% I_{Onom})

1) Calcolo dei rapporti spire

Ipotesi: funzionamento CCM fino alla corrente

 $minima (I_{Olim} = 40\% I_{Onom})$

Motivo: limitare inferiormente t_{onmin} (2 μs)

1) Calcolo dei rapporti spire

Ipotesi: funzionamento CCM fino alla corrente

minima ($I_{Olim} = 40\% I_{Onom}$)

Motivo: limitare inferiormente tonmin

Rapporti di conversione

$$M_{min} = \frac{U_{op}}{U_{i_{max}}} = \frac{\delta_{min}}{1 - \delta_{min}}$$

$$M_{max} = \frac{U_{op}}{U_{i}} = \frac{\delta_{max}}{1 - \delta_{max}}$$

1) Calcolo dei rapporti spire

Ipotesi: funzionamento CCM fino alla corrente

minima ($I_{\text{Olim}} = 40\% I_{\text{Onom}}$)

Motivo: limitare inferiormente tonmin

Rapporti di conversione

$$M_{\min} = \frac{U_{op}}{U_{i_{\max}}} = \frac{\delta_{\min}}{1 - \delta_{\min}}$$

$$\mathbf{M_{max}} = \frac{\mathbf{U_{op}}}{\mathbf{U_{i_{min}}}} = \frac{\delta_{max}}{1 - \delta_{max}}$$

 δ_{\min} e δ_{\max} dipendono dalla scelta di U $_{\mathrm{op}}$

Dimensionamento della parte di potenza 1) Calcolo dei rapporti spire

Il valore della tensione di carico riportata a primario (U_{op}) si determina in modo da limitare a valori opportuni:

- la tensione massima dell'interruttore
- il minimo t_{on} dell'interruttore

1) Calcolo dei rapporti spire

Tensione massima dell'interruttore

$$U_{s_{max}} = U_{i_{max}} + U_{op}$$

1) Calcolo dei rapporti spire

Tensione massima dell'interruttore

$$U_{s_{max}} = U_{i_{max}} + U_{op}$$

$$\delta_{min} = 1 - \frac{U_{i_{max}}}{U_{S_{max}}}$$

1) Calcolo dei rapporti spire

Minimo t_{on} dell'interruttore

$$t_{on_{min}} = \delta_{min}T_{S}$$
 $T_{S} = 20 \mu s$

Dimensionamento della parte di potenza 1) Calcolo dei rapporti spire

Minimo t_{on} dell'interruttore

$$t_{on_{min}} = \delta_{min}T_{S}$$
 $T_{S} = 20 \mu s$

NOTA: Se al diminuire della corrente di carico il convertitore entrasse in funzionamento intermittente si causerebbe una ulteriore diminuzione del duty-cycle. Per evitare ciò si tende ad evitare il DCM.

1) Calcolo dei rapporti spire

Posto: $\delta_{min} = 0.1$

Posto:
$$\delta_{min} = 0.1$$
 $t_{onmin} = 2 \mu s$

$$\mathbf{c}_{\mathsf{onmin}} = \mathbf{2} \mu \mathbf{s}$$

Posto:
$$\delta_{min} = 0.1$$
 $t_{onmin} = 2 \mu s$ $U_{op} \approx 80 \, V$

Posto:
$$\delta_{min} = 0.1$$
 $t_{onmin} = 2 \mu s$ $U_{op} \approx 80 \text{ V}$

$$n_j = \frac{U_{op}}{U_{oj}}, j = 1 \div N$$

Dimensionamento della parte di potenza 2) Calcolo dell'induttanza L (a primario)

Dimensionamento della parte di potenza 2) Calcolo dell'induttanza L (a primario)

Si assume: $\alpha = 0.4$

(α = frazione della potenza d'uscita cui corrisponde il funzionamento limite tra CCM e DCM)

Dimensionamento della parte di potenza 2) Calcolo dell'induttanza L (a primario)

Si assume: $\alpha = 0.4$

(α = frazione della potenza d'uscita cui corrisponde il funzionamento limite tra CCM e DCM)

Ciò garantisce un funzionamento CCM anche alla minima potenza di uscita, evitando ulteriori riduzioni del duty-cycle.

$$k_{crit} = \frac{1}{(1+M)^2}$$

$$k_{crit} = \frac{1}{(1+M)^2}$$

$$k_{crit} = \frac{2Lf_{S}}{R_{op_{max}}}$$

$$k_{crit} = \frac{1}{\left(1 + M\right)^{2}} \qquad k_{crit} = \frac{2Lf_{S}}{R_{op_{max}}}$$

$$R_{op_{max}} = \frac{R_{op_{nom}}}{\alpha}$$

$$k_{crit} = \frac{1}{(1+M)^{2}} \qquad k_{crit} = \frac{2Lf_{S}}{R_{op_{max}}}$$

$$R_{op_{max}} = \frac{R_{op_{nom}}}{\alpha}$$

$$L = \frac{R_{op_{nom}} \cdot 1}{2f_{S}(1+M_{min})^{2} \cdot \alpha}$$

$$I_{s_{max}} = I_{L} + \frac{\Delta i_{L}}{2} = I_{op}(1+M) \left(1 + \frac{1}{k(1+M)^{2}}\right)$$

$$\begin{split} I_{s_{max}} &= I_L + \frac{\Delta i_L}{2} = I_{op} (1+M) \left(1 + \frac{1}{k(1+M)^2}\right) \\ U_{s_{max}} &= U_{i_{max}} + U_{op} \end{split}$$

$$I_{s_{max}} = I_L + \frac{\Delta i_L}{2} = I_{op}(1+M) \left(1 + \frac{1}{k(1+M)^2}\right)$$

$$U_{s_{max}} = U_{i_{max}} + U_{op}$$

$$I_{s_{max}} = 0.59 A$$

$$U_{s_{max}} = 790 \, V$$

4) Dimensionamento del mutuo induttore

4) Dimensionamento del mutuo induttore

Nucleo in ferrite: ETD 34x17x11Sezione del nucleo: $A_e = 92 \text{ mm}^2$

Dimensionamento della parte di potenza 4) Dimensionamento del mutuo induttore

Nucleo in ferrite: ETD 34x17x11Sezione del nucleo: $A_e = 92 \text{ mm}^2$

Posto: $B_{max} = 200 \text{ mT}$

Dimensionamento della parte di potenza 4) Dimensionamento del mutuo induttore

Nucleo in ferrite: ETD 34x17x11Sezione del nucleo: $A_e = 92 \text{ mm}^2$

Posto: $B_{max} = 200 \text{ mT}$

$$N_p = \frac{LI_{s_{max}}}{B_{max}A_e}$$

Dimensionamento della parte di potenza 4) Dimensionamento del mutuo induttore

Nota: è necessario un traferro (air gap) per evitare la saturazione del nucleo e accumulare energia

4) Dimensionamento del mutuo induttore

Nota: è necessario un traferro (air gap) per evitare la saturazione del nucleo e accumulare energia

$$\mathsf{E}_\mathsf{L} = \frac{1}{2} \mathsf{L} \, \mathsf{I}_\mathsf{L_{max}}^2$$

4) Dimensionamento del mutuo induttore Trascurando la riluttanza del nucleo rispetto a quella del traferro si trova:

4) Dimensionamento del mutuo induttore Trascurando la riluttanza del nucleo rispetto a quella del traferro si trova:

$$\lambda_t = \frac{\mu_0 A_e N_p^2}{2L}$$

λ_t = lunghezza del traferro da realizzare su ciascuna colonna del nucleo

Dimensionamento della parte di potenza 5) Calcolo delle capacità di uscita

Dimensionamento della parte di potenza 5) Calcolo delle capacità di uscita Ondulazione (ripple statico):

Dimensionamento della parte di potenza 5) Calcolo delle capacità di uscita Ondulazione (ripple statico):

$$C_{j} = \frac{I_{oj}}{\Delta U_{oj}f_{S}} \cdot \delta_{max}$$