Chapter 3. Sequential Multiplication/Division

§1. Shift Operations

In hardware, shifting is a very convenient and low-cost operation and it is very useful in many algorithms for multiplication and division. However, to perform shifting operations, one need to view a representation as an infinite sequence.

Given a representation $X=(x_{n-1},\ldots,x_0)$, we have its infinite extension can be obtained as follows.

• The S-m method:

$$\cdots, 0, 0, \{x_{n-2}, \cdots, x_0\}.0, 0, \cdots$$

• The radix complement method:

$$\cdots, x_{n-1}, x_{n-1}, \{x_{n-1}, \cdots, x_0\}.0, 0, \cdots$$

• The diminished-radix complement method:

$$\cdots, x_{n-1}, x_{n-1}, \{x_{n-1}, \cdots, x_0\}.x_{n-1}, x_{n-1}, \cdots$$

Example 1

- Let $X = 1011_2$ be represented with s-m method. Then a representation of X with k = 6 and m = 2 is $X = 001011.00_2$.
- Let $X = 1011_2$ be represented with 2's complement method. Then a representation of X with k = 6 and m = 2 is $X = 111011.00_2$.
- Let $X = 1011_2$ be represented with 1's complement method. Then a representation of X with k = 6 and m = 2 is $X = 111011.11_2$.

§2. Multiplication

Let the multiplier and the multiplicand be denoted by X and A, respectively, with the following sequence of digits

$$X = x_{n-1} \dots, x_0, \quad A = a_{n-1} \dots, a_0,$$

where x_{n-1} and a_{n-1} are the sign digits. Let P be the product of X and A,

$$P = X \cdot A = (p_{2n-1}p_{2n-2}\cdots p_0)$$
, where p_{2n-1} is the sign bit.

§2.1. Sequential Multiplication algorithm

In the following we will introduce sequential multiplication algorithm in 2's complement representation. Sequential multiplication using other signed representation methods, such like sign-magnitude and 1's complement method, can be derived in a similar manner. For a two's complement number X, we have

$$X = (x_{n-1}..., x_0) = -x_{n-1}2^{n-1} + \tilde{X},$$

where

$$\tilde{X} = (x_{n-2}\dots, x_0) = \sum_{i=0}^{n-2} x_i 2^i.$$

Let $\tilde{X} = (x_{n-2}, \dots, x_0)$, then we have the following multiplication algorithm for $U = \tilde{X} \cdot A$.

Algorithm 1 Multiplication of \tilde{X} and A

Input: \tilde{X} and A

Output: $2^{-(n-1)}\tilde{X} \cdot A$

- 1: $P^{(0)} = 0$;
- 2: **for** j = 0 To n 2 **do**
- 3: $P^{(j+1)} = (P^{(j)} + x_j \cdot A)2^{-1}$
- 4: end for
- 5: $P^{(n-1)}$ is the output.

A proof of the correctness of the algorithm:

$$P^{(n-1)} = (P^{(n-2)} + x_{n-2} \cdot A)2^{-1}$$

$$= ((P^{(n-3)} + x_{n-3} \cdot A)2^{-1} + x_{n-2} \cdot A)2^{-1}$$

$$\vdots$$

$$= ((x_0 2^{-(n-1)} + x_1 2^{-(n-2)} + \dots + x_{n-3} 2^{-2} + x_{n-2} 2^{-1})A$$

$$= 2^{-(n-1)} \sum_{i=0}^{n-2} x_i 2^i A$$

$$= 2^{-(n-1)} \tilde{X} A.$$

Case 1. If $X \ge 0$, then $x_{n-1} = 0$. The product of $X \cdot A$ can be obtain as

$$2^{n-1}P^{(n-1)} = \tilde{X} \cdot A = X \cdot A.$$

Case 2. If X < 0, then $x_{n-1} = 1$. The it follows

$$X \cdot A = (-2^{n-1} + \tilde{X}) \cdot A = -2^{n-1}A + \tilde{X} \cdot A = 2^{n-1}(-A + P^{(n-1)}).$$

So a final correction step is needed:

$$P^{(n-1)} + (-A).$$

Algorithm 2 shows Algorithm 1 after incorporating the final correction step.

Algorithm 2 Multiplication of X and A

Input: X and A

Output: $2^{-(n-1)}X \cdot A$

- 1: Call Algorithm 1;
- 2: **if** $x_{n-1} = 1$ **then** 3: $P^{(n-1)} = P^{(n-1)} + (-A)$;
- 4: **end if**
- 5: $P^{(n-1)}$ is the output.

Example 2 The multiplier is positive and the multiplicand A is negative, both in the two's complement representation. Let X=3 and A=-5, and then the product can be obtained by using Algorithm 1 as shown in follows.

	tis site wit til je tre wet									
	A		1	0	1	1				-5
	X	×	0	0	1	1				3
-	$P^{(0)} = 0$		0	0	0	0				
	$x_0 = 1 \Rightarrow Add A$	+	1	0	1	1				
			1	0	1	1				
	Shift to get $P^{(1)}$		1	1	0	1	1			
	$x_1 = 1 \Rightarrow Add A$	+	1	0	1	1				
			1	0	0	0	1			
	Shift to get $P^{(2)}$		1	1	0	0	0	1		
	$x_2 = 0 \Rightarrow \textit{Shift to get } P^{(3)}$		1	1	1	0	0	0	1	
	$x_3 = 0 \Rightarrow output P^{(3)}$		1	1	1	0	0	0	1	$=2^{-3}\times(-15)$

Example 3 The multiplier is negative and the operands are in the two's complement form. Let X = -3 and A = -5, in n-bit 2's complement form, where n = 4.

A		1	0	1	1				<i>−5</i>
X	×	1	1	0	1				-3
$P^{(0)} = 0$		0	0	0	0				
$x_0 = 1 \Rightarrow Add A$		1	0	1	1				
		1	0	1	1				
Shift to get $P^{(1)}$		1	1	0	1	1			
$x_1 = 0 \Rightarrow Shift to get P^{(2)}$		1	1	1	0	1	1		
$x_2 = 1 \Rightarrow Add A$	+	1	0	_	1				
		1	0	0	1	1	1		
Shift to get $P^{(3)}$		1	1	0	0	1	1	1	
$x_3 = 1 \Rightarrow Correction (Add - A)$	+	0	1	0	1				
Get $P^{(3)}$		0	0	0	1	1	1	1	$=2^{-3}\times15$

§2.2. Sequential Multiplier (optional)

Can you design a circuit architecture that performs Algorithm 1?

§3. Division

Given a dividend X and divisor D, a quotient Q and a remainder R have to be calculated so as to satisfy

$$X = Q \cdot D + R \text{ with } R < D \text{ and } D \neq 0. \tag{1}$$

In most fixed-point arithmetic structures, we assume the size of the operands as follows. For multiplication operation,

(multiplier: single-length) \times (multiplicand: single-length) = (product: double-length).

While for division operation we have

 $(dividend: double-length) = (quotient: single-length) \times (divisor: single-length) + (remainder: single-length).$

There are two main types of division algorithms, restoring and non-restoring. In the following we introduce only the restoring division algorithm.

§3.1. Sequential Restoring Division

For simplicity we assume that

- (i). X, D, Q and R are non-negative numbers.
- (ii). Let X < D so that Q is always a fraction and has a form of $Q = 0.q_1q_2\cdots q_m$, where m = n 1.

Algorithm 3 Sequential Division 1 (Restoring)

Input: X and D, $D > X \geqslant 0$.

Output: $Q = 0.q_1 \cdots q_m$ and $r_m = 2^m \cdot R$

- 1: $r_0 = X$;
- 2: **for** i = 1 To m **do**
- 3: IF $2r_{i-1} > D$ THEN $q_i = 1$ ELSE $q_i = 0$
- 4: $r_i = 2r_{i-1} q_i \cdot D$
- 5: end for
- 6: The output are $Q = 0.q_1q_2\cdots q_m$ and $r_m = 2^m \cdot R$.

The most complicated step in the above division algorithm is the comparison between $2r_{i-1}$ and D. The output of r_m can be verified as follows.

$$r_{m} = 2r_{m-1} - q_{m} \cdot D$$

$$= 2(2r_{m-2} - q_{m-1} \cdot D) - q_{m} \cdot D$$

$$\vdots$$

$$= 2^{m}r_{0} - (q_{m} + 2q_{m-1} + \dots + 2^{m-1}q_{1}) \cdot D$$

Since $r_0 = X$ it follows

$$r_m \cdot 2^{-m} = X - (q_1 2^{-1} + q_2 2^{-2} + \dots + q_m \cdot 2^{-m}) \cdot D$$

= $X - Q \cdot D$
= R

Example 4 (restoring) Let $X = (0.100000)_2 = 1/2$ and $D = (0.110)_2 = 3/4$. Since X < D, we have

The final results are $Q = (0.101)_2 = 5/8$ and $r_3 = 1/4 \Rightarrow R = r_m 2^{-m} = r_3 2^{-3} = 1/32$.

When the operands are integers, we can verify that the condition for performing division using Algorithm 3 is that $X < 2^{n-1}D$ where n denotes single-length. In this case, $Q = q_1 \cdots q_m$ is an m = n - 1 bits integer and the remainder $R = r_{n-1}$.

Algorithm 4 Sequential Division 2(Restoring)

Input: X and D, $2^{n-1}D > X \geqslant 0$.

Output: $Q = q_1 \cdots q_m$ and $r_m = R$ 1: $r_0 = X$;

2: for i = 1 To m do

3: IF $2r_{i-1} > D$ THEN $q_i = 1$ ELSE $q_i = 0$ 4: $r_i = 2r_{i-1} - q_i \cdot D$

5: end for

6: The output are $Q = q_1 q_2 \cdots q_m$ and $r_m = R$.

Example 5 (restoring) Let $X = (0100000)_2 = 32$ and $D = (0110)_2 = 6$. Since $X < 2^{n-1}D$, we have

$r_0 = X$			0	1	0	0	0	0	0	
$2r_0$		0	1	0	0	0	0	0		
Add - D	+	1	1	0	1	0				
$r_1 = 2r_0 - D > 0$		0	0	0	1	0	0	0		$set q_1 = 1$
$2r_1$		0	0	1	0	0	0			
Add - D	+	1	1	0	1	0				
$2r_1 - D < 0$		1	1	1	1	0	0			$set q_2 = 0$
$r_2 = 2r_1$		0	0	1	0	0	0			
$2r_2$		0	1	0	0	0				
Add - D	+	1	1	0	1	0				
$r_3 = 2r_2 - D > 0$		0	0	0	1	0				$set q_3 = 1$

The final results are $Q = (101)_2 = 5$ and $R = r_3 = 2$.

§3.2. Sequential Restoring Divider (optional)

Can you design a circuit architecture that performs restoring division algorithm (Algorithms 3 or 4)?