## ST456 Deep Learning

Assessment 1 background material

#### Set functions



Milan Vojnovic

https://github.com/lse-st456/lectures2023

#### Permutation invariant functions

• A function  $f: \mathbb{R}^{m \times d} \to \mathbb{R}$  is said to be permutation invariant if for every  $X = (x_1, ..., x_m)^\top \in \mathbb{R}^{m \times d}$  and  $X' = (x_{\pi_1}, ..., x_{\pi_m})^\top$  where  $\pi$  is an arbitrary permutation of 1, ..., m, it holds

$$f(X') = f(X)$$

- In other words, the output of the function does not change (is invariant) by changing the order of values (permuting) of coordinates of the input
- Examples of permutation invariant functions for d=1:
  - Statistics queries, e.g. count, max, min, mean, median, any quantile value
  - p-norm:  $f(x) = ||x||_p = (|x_1|^p + \dots + |x_m|^p)^{1/p}$
  - A nonlinear transformation of sum:  $f(\mathbf{x}) = g(x_1 + \dots + x_m)$

### Set functions

- A function f is said to be a set function if it maps every set  $X \subseteq \mathcal{X}$ , for some ground set of values  $\mathcal{X}$ , to a real number f(X)
- Set functions are permutation invariant
- Examples of set functions





Set valuation functions

Note that each element of a set may be a vector

## Sum decomposable functions

- Set functions can be represented by the class of sum-decomposable functions
- A set function f is said to be sum-decomposable via  $\mathcal{Z}$  if

$$f(X) = \rho(\sum_{x \in X} \phi(x))$$
 for all  $X \subseteq \mathcal{X}$ 

where  $\phi: \mathcal{X} \to \mathcal{Z}$  and  $\rho: \mathcal{Z} \to \mathbb{R}$  are some functions

- Function f is said to be continuously sum-decomposable via  $\mathcal Z$  if it is sum-decomposable with  $\phi$  and  $\rho$  being some continuous functions
- We will refer to  $\mathcal{Z}$  as a latent space and dimension of  $\mathcal{Z}$  as latent dimension

## Set and sum-decomposable functions

- Thm 1: Any set function f defined on subsets of a countable set  $\mathcal{X}$  is permutation invariant if, and only if, it is sum-decomposable via  $\mathbf{R}$
- Thm 2: Any continuous function  $f: \mathbb{R}^m \to \mathbb{R}$  is permutation invariant if, and only if, it is continuously sum-decomposable via  $\mathbb{R}^m$
- Thm 3: Any continuous function  $f: \mathbb{R}^{\leq m} \to \mathbb{R}$  is permutation invariant if, and only if, it is continuously decomposable via  $\mathbb{R}^m$

Note:  $\mathbb{R}^{\leq m}$  denotes the set of real vectors of dimension  $\leq m$ 

# Learning set functions



- Functions  $\phi$  and  $\rho$  are neural networks
- For example, we may take
  - $\phi$  to be a feedforward neural network
  - $\rho$  to be a feedforward neural network
- We refer to the entire network as a  $(\phi, \rho)$ sum-decomposition network

## Permutation equivariant functions

• Let  $f: \mathbb{R}^{m \times d} \to \mathbb{R}^{m \times d'}$ , and for every  $X = (x_1, ..., x_m)^{\top} \in \mathbb{R}^{m \times d}$ , we write

$$f(\mathbf{X}) = (f_1(\mathbf{X}), \dots, f_m(\mathbf{X}))^{\mathsf{T}} \in \mathbf{R}^{m \times d \cdot m}$$

• Function f is said to be permutation-equivariant if for every  $X = (x_1, ..., x_m)^{\top}$  and  $X' = (x_{\pi_1}, ..., x_{\pi_m})^{\top}$  where  $\pi$  is an arbitrary permutation of 1, ..., m, it holds

$$f(\mathbf{X}') = \left(f_{\pi_1}(\mathbf{X}), \dots, f_{\pi_m}(\mathbf{X})\right)^{\mathsf{T}}$$

• In other words, changing the order of inputs  $x_1, ..., x_m$  to function f according to an arbitrary permutation, changes the output of f only in changing the order of the outputs according to the same permutation

# Illustration





## Examples

- Feature selection: input is a feature vector, the output is a vector with 0 or 1 valued coordinates, with  $y_i = 1$  if feature i is selected, and  $y_i = 0$  otherwise
- Choice functions: input is a set of items, the output is a vector with 0 or 1 valued coordinates, with  $y_i = 1$  if item i is chosen, and  $y_i = 0$  otherwise
  - For example, exactly one item is chosen
- Ranking functions: input is set of feature vectors  $x_1, ..., x_m$  representing some items, and the output is a ranking of items with  $y_i$  denoting the rank of item i

## Affine equivariant transformations

• Let  $f: \mathbb{R}^m \to \mathbb{R}^m$  be an affine transformation, i.e.

$$f(x) = Wx + c$$
 for some  $W \in \mathbb{R}^{m \times m}$  and  $c \in \mathbb{R}^m$ 

Then, f is permutation equivariant if, and only if,

$$f(\mathbf{x}) = a \mathbf{x} + b \left(\frac{1}{m} \sum_{i=1}^{m} x_i\right) \mathbf{1} + c \mathbf{1}$$

for some real scalar parameters a, b, and c (Exercise: show this)

• An affine transformation  $f: \mathbb{R}^{m \times d} \to \mathbb{R}^{m \times d'}$  is permutation equivariant if, and only if,

$$f(X) = XA + \frac{1}{m} \mathbf{1} \mathbf{1}^{\mathsf{T}} XB + \mathbf{1} c^{\mathsf{T}}$$

where  $A \in \mathbb{R}^{d \times d'}$ ,  $B \in \mathbb{R}^{d \times d'}$ , and  $c \in \mathbb{R}^{d'}$  are parameters

**Note:** 1 denotes a column vector with all elements equal to 1 (in the context above it is a m-dimensional vector)

# Permutation equivariant neural networks

• An equivariant neural network f is a network with equivariant layers, i.e.

$$f(\mathbf{X}) = f_L \circ \sigma \circ \cdots \circ \sigma \circ f_1(\mathbf{X})$$

where  $\sigma$  is some activation function, and  $f_1, \dots, f_L$  are equivariant affine transformations

$$f_l(\mathbf{X}) = \mathbf{X}\mathbf{A}_l + \frac{1}{m}\mathbf{1}\mathbf{1}^{\mathsf{T}}\mathbf{X}\mathbf{B}_l + \mathbf{1}\mathbf{c}_l^{\mathsf{T}}$$

where  $A_l \in \mathbf{R}^{d_{l-1} \times d_l}$ ,  $B_l \in \mathbf{R}^{d_{l-1} \times d_l}$ , and  $c_l \in \mathbf{R}^{d_l}$  are parameters

• Note:  $\sigma \circ f_l(X)$  means applying  $\sigma$  to each element of matrix  $f_l(X)$ 



#### References

• N. Sego and Y. Lipman. On universal equivariant set networks. In ICLR 2020

• E. Wagstaff, F. Fuchs, M. Engelcke, I. Posner, and M. A. Osborne, On the limitations of representing functions on sets, ICML 2019

• M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. J. Smola, Deep sets, NeurIPS 2017

#### Solution for the exercise

- We have f(x) = Wx + c, where  $W \in \mathbb{R}^{m \times m}$  and  $c \in \mathbb{R}^m$  are parameters
- Let x and x' be equal except for swapping the values of elements i and j, for some arbitrarily fixed  $i, j \in \{1, ..., m\}$  such that  $i \neq j$
- Let y = f(x) and y' = f(x')
- The following three facts follow from permutation equivariance:
  - For every  $l \in \{1, \ldots, m\} \setminus \{i, j\}$ , it holds  $y_l = y'_l$  which is equivalent to  $w_{l,i}x_i + w_{l,j}x_j = w_{l,i}x_j + w_{l,j}x_i$ , from which it follows that all non-diagonal elements of W must be identical, say of value  $\beta$
  - It holds  $y_i = y'_j$ , i.e.  $w_{i,i}x_i + w_{i,j}x_j = w_{j,j}x_i + w_{j,i}x_j$ , from which it follows that all diagonal elements of W must be identical, say of value  $\alpha$
  - All the elements of c are identical, say of value c
- It follows that

$$f(\mathbf{x}) = (\alpha - \beta)\mathbf{x} + \beta(\sum_{i=1}^{m} x_i)\mathbf{1} + c\mathbf{1}$$

which corresponds to the claim by using the reparametrization  $\alpha = \alpha - \beta$  and  $b = \beta m$