from google.colab import files
uploaded = files.upload()

Choose Files abalone.csv

• **abalone.csv**(text/csv) - 191962 bytes, last modified: 11/7/2022 - 100% done Saving abalone.csv to abalone.csv

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.api.types import is_numeric_dtype
sns.set()
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
sns.set_style("darkgrid")
from sklearn.linear model import LinearRegression
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics
%matplotlib inline
abalone = pd.read csv('abalone.csv', sep=',')
abalone.head()
```

Shucked Viscera Whole Shell Sex Length Diameter Height Rings weight weight weight weight 0 M 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.150 15 1 M 0.350 0.265 0.090 0.2255 0.0995 0.0485 0.070 7 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9 3 0.440 0.365 0.2155 0.155 10 M 0.125 0.5160 0.1140 7 4 Ι 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.055

```
rows = 2
cols = 2
i = 0

plt.figure(figsize=(cols * 5, rows * 5))
i += 1
```

```
plt.subplot(rows, cols, i)
plt.xticks(range(0, 31, 4))
plt.xlim(0, 30)
_ = sns.distplot(abalone['Rings'], kde=False, bins=range(0, 31, 2))
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Rings'])
i += 1
plt.subplot(rows, cols, i)
plt.xticks(range(0, 31, 4))
plt.xticks(range(0, 31, 4))
plt.xlim(0, 30)
_ = sns.boxplot(abalone['Rings'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning


```
abalone = abalone[abalone['Height'] < 0.4]</pre>
plt.figure(figsize=(15, 15))
colors = sns.color_palette()
lines = 3
rows = 3
i = 0
i += 1
plt.subplot(lines, rows, i)
_ = sns.distplot(abalone['Length'], color=colors[i % 3])
i += 1
plt.subplot(lines, rows, i)
_ = sns.distplot(abalone['Diameter'], color=colors[i % 3])
i += 1
plt.subplot(lines, rows, i)
_ = sns.distplot(abalone['Height'], color=colors[i % 3])
i += 1
plt.subplot(lines, rows, i)
_ = sns.distplot(abalone['Length'], kde=False, bins=np.arange(0.0, 0.9, 0.05), color=colors[i
i += 1
plt.subplot(lines, rows, i)
_ = sns.distplot(abalone['Diameter'], kde=False, bins=np.arange(0.0, 0.7, 0.05), color=colors
i += 1
plt.subplot(lines, rows, i)
_ = sns.distplot(abalone['Height'], kde=False, bins=10, color=colors[i % 3])
i += 1
plt.subplot(lines, rows, i)
_ = sns.boxplot(abalone['Length'], color=sns.color_palette()[i % 3])
i += 1
plt.subplot(lines, rows, i)
_ = sns.boxplot(abalone['Diameter'], color=colors[i % 3])
i += 1
plt.subplot(lines, rows, i)
_ = sns.boxplot(abalone['Height'], color=colors[i % 3])
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d warnings.warn(msg, FutureWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning


```
plt.figure(figsize=(20, 15))
colors = sns.color_palette()
rows = 3
cols = 4
i = 0
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Whole weight'], color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Shucked weight'], color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Viscera weight'], color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Shell weight'], color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Whole weight'], kde=False, bins=14, color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Shucked weight'], kde=False, bins=14, color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Viscera weight'], kde=False, bins=16, color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.distplot(abalone['Shell weight'], kde=False, bins=20, color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.boxplot(abalone['Whole weight'], color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.boxplot(abalone['Shucked weight'], color=colors[i % cols])
```

```
i += 1
plt.subplot(rows, cols, i)
_ = sns.boxplot(abalone['Viscera weight'], color=colors[i % cols])
i += 1
plt.subplot(rows, cols, i)
_ = sns.boxplot(abalone['Shell weight'], color=colors[i % cols])
```


plt.figure(figsize=(7, 7))
_ = sns.boxplot(data=abalone, x='Sex', y='Rings')

plt.figure(figsize=(7, 7))
_ = sns.boxplot(data=abalone, x='Sex', y='Height')


```
g = sns.FacetGrid(abalone, col='Sex', margin_titles=True, size=5)
_ = g.map(sns.distplot, 'Height', kde=False, bins=10)
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The `size` warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d warnings.warn(msg, FutureWarning)

plt.figure(figsize=(7, 7))
_ = sns.boxplot(data=abalone, x='Sex', y='Shell weight')

g = sns.FacetGrid(abalone, col='Sex', margin_titles=True, size=5)
_ = g.map(sns.distplot, 'Height', kde=False, bins=10)

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning: The `size` warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `d warnings.warn(msg, FutureWarning)

plt.figure(figsize=(10, 10))
corr = abalone.corr()
_ = sns.heatmap(corr, annot=True)


```
plt.figure(figsize=(20, 5))
```

```
_ = sns.jointplot(data=abalone, x='Rings', y='Height', kind='reg')
_ = sns.jointplot(data=abalone, x='Rings', y='Shell weight', kind='reg')
```

<Figure size 1440x360 with 0 Axes>

runga

abalone.describe().T

	count	mean	std	min	25%	50%	75%	max
Length	4175.0	0.523965	0.120084	0.0750	0.45000	0.5450	0.61500	0.8150
Diameter	4175.0	0.407856	0.099230	0.0550	0.35000	0.4250	0.48000	0.6500
Height	4175.0	0.139189	0.038489	0.0000	0.11500	0.1400	0.16500	0.2500
Whole weight	4175.0	0.828468	0.490027	0.0020	0.44150	0.7995	1.15300	2.8255
Shucked weight	4175.0	0.359195	0.221713	0.0010	0.18600	0.3360	0.50175	1.4880
Viscera weight	4175.0	0.180536	0.109534	0.0005	0.09325	0.1710	0.25275	0.7600
Shell weight	4175.0	0.238791	0.139162	0.0015	0.13000	0.2340	0.32875	1.0050
Rings	4175.0	9.934132	3.224802	1.0000	8.00000	9.0000	11.00000	29.0000

df = pd.DataFrame(abalone)
df.isnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
4172	False	False	False	False	False	False	False	False	False
4173	False	False	False	False	False	False	False	False	False
4174	False	False	False	False	False	False	False	False	False
4175	False	False	False	False	False	False	False	False	False
4176	False	False	False	False	False	False	False	False	False

4175 rows × 9 columns

df.fillna(0)

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4175 rows × 9 columns

sns.boxplot(df['Length'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

sns.boxplot(df['Diameter'],data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f572766a210>

sns.boxplot(df['Height'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f57294bc290>

sns.boxplot(df['Whole weight'],data=df)

<matplotlib.axes. subplots.AxesSubplot at 0x7f57274b0650>

sns.boxplot(df['Shucked weight'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f5729378d50>

sns.boxplot(df['Viscera weight'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f57294bc990>

sns.boxplot(df['Shell weight'],data=df)

<matplotlib.axes. subplots.AxesSubplot at 0x7f572956a610>

sns.boxplot(df['Rings'],data=df)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f57273f63d0>

Q1 = abalone.quantile(0.25)

Q3 = abalone.quantile(0.75)

IQR = Q3-Q1

print(IQR)

Length	0.16500
Diameter	0.13000
Height	0.05000
Whole weight	0.71150

Shucked weight 0.31575 Viscera weight 0.15950 Shell weight 0.19875 Rings 3.00000

dtype: float64

abalone = abalone[\sim ((abalone < (Q1 - 1.5 * IQR)) | (abalone > (Q3 + 1.5 * IQR))).any(axis=1)] abalone.shape

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Automati """Entry point for launching an IPython kernel.
(3781, 9)

sns.boxplot(abalone['Rings'],data=abalone)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f57290b7210>

sns.boxplot(abalone['Length'],data=abalone)

<matplotlib.axes. subplots.AxesSubplot at 0x7f5729a98710>

sns.boxplot(abalone['Height'],data=abalone)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f57295c24d0>

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 Height

sns.boxplot(abalone['Diameter'],data=abalone)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f57290d8410>

sns.boxplot(abalone['Whole weight'],data=abalone)

<matplotlib.axes. subplots.AxesSubplot at 0x7f57291d5c10>

sns.boxplot(abalone['Shucked weight'],data=abalone)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f57291e7910>

sns.boxplot(abalone['Shell weight'],data=abalone)

<matplotlib.axes. subplots.AxesSubplot at 0x7f572767ba50>

sns.boxplot(abalone['Viscera weight'],data=abalone)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f57276cdfd0>

le=LabelEncoder()
abalone['Sex']=le.fit_transform(abalone['Sex'])

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user

→

abalone

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
	1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
	2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
	3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
	4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
	4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
	4173	2	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
Spliting the Data into dependent and Independent Variables										
	4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
<pre>X = abalone.iloc[:, :-1].values y = abalone.iloc[:, -1].values</pre>										

Scaling independent variables

Spliting training and test data

```
train_X,val_X,train_y,val_y = train_test_split(X, y, test_size = 0.2, random_state = 0)
print("Shape of Training X : ",train_X.shape)
print("Shape of Validation X : ",val_X.shape)

Shape of Training X : (3024, 8)
Shape of Validation X : (757, 8)

print("Shape of Training y : ",train_y.shape)
print("Shape of Validation y : ",val_y.shape)

Shape of Training y : (3024,)
Shape of Validation y : (757,)
```

LINEAR REGRESSION

```
lr = LinearRegression()
lr.fit(train_X,train_y)
     LinearRegression()
%%time
y pred val lr = lr.predict(val X)
print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_lr))
print("\n")
print('MSE on Validation set :',metrics.mean_squared_error(val_y, y_pred_val_lr))
print("\n")
print('RMSE on Validation set :',np.sqrt(metrics.mean absolute error(val y, y pred val lr)))
print("\n")
print('R2 Score on Validation set :',metrics.r2 score(val y, y pred val lr))
print("\n")
     MAE on Validation set : 1.2719689486359298
     MSE on Validation set: 2.7606215450501024
     RMSE on Validation set: 1.127816008325795
     R2 Score on Validation set : 0.5119499107890585
     CPU times: user 11.2 ms, sys: 56 μs, total: 11.2 ms
     Wall time: 29.2 ms
```

SUPPORT VECTOR MACHINE

```
svm = SVR()
svm.fit(train_X,train_y)

SVR()

%time
y_pred_val_svm = svm.predict(val_X)
print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_svm))
print("\n")
print('MSE on Validation set :',metrics.mean_squared_error(val_y, y_pred_val_svm))
print("\n")
print('RMSE on Validation set :',np.sqrt(metrics.mean_absolute_error(val_y, y_pred_val_svm)))
print('RMSE on Validation set :',np.sqrt(metrics.mean_absolute_error(val_y, y_pred_val_svm)))
print("\n")
print('R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_svm))
print("\n")
```

```
MAE on Validation set: 1.2208952787270895

MSE on Validation set: 2.7012620714060267

RMSE on Validation set: 1.1049413010323623

R2 Score on Validation set: 0.5224440679687887

CPU times: user 170 ms, sys: 0 ns, total: 170 ms Wall time: 190 ms
```

DECISION TREE REGRESSOR

```
dc = DecisionTreeRegressor(random_state = 0)
dc.fit(train_X,train_y)
     DecisionTreeRegressor(random state=0)
%%time
y_pred_val_dc = dc.predict(val_X)
print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_dc))
print("\n")
print('MSE on Validation set :',metrics.mean_squared_error(val_y, y_pred_val_dc))
print("\n")
print('RMSE on Validation set :',np.sqrt(metrics.mean_absolute_error(val_y, y_pred_val_dc)))
print("\n")
print('R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_dc))
print("\n")
     MAE on Validation set: 1.6393659180977542
     MSE on Validation set: 4.88110964332893
     RMSE on Validation set: 1.2803772561623212
     R2 Score on Validation set : 0.13706896870869845
     CPU times: user 10.4 ms, sys: 0 ns, total: 10.4 ms
     Wall time: 13.4 ms
```

OVERVIEW OF R2 SCORES OF ALL MODELS

print('Logistic Regression R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_]
print('SVR R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_svm))
print('Decision Tree Regressor R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_score)

Logistic Regression R2 Score on Validation set : 0.5119499107890585 SVR R2 Score on Validation set : 0.5224440679687887 Decision Tree Regressor R2 Score on Validation set : 0.13706896870869845

Colab paid products - Cancel contracts here

✓ 0s completed at 3:33 PM

×