# CMSC 510 – L07 Regularization Methods for Machine Learning

**Instructor:** 

Dr. Tom Arodz



#### Recap: Logistic loss



$$\ell(h, z) = \ln(1 + e^{-yw^T x})$$

- Derived from:  $a(u) = \frac{1}{1 + e^{-u}}$ 
  - Cross-entropy loss over a(w<sup>T</sup>x)
  - Maximum likelihood estimate for P(y|x,w) =a(w<sup>T</sup>x)
    - We will see that later...



Good mathematical properties

#### Logistic regression

- Logistic loss Four samples:
  - x=7, y=1
  - x=4, y=1
  - x=-1, y=-1
- $\min \frac{1}{m} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$

loss

 $\ell(h,z) = \ln(1 + e^{-yw^T x})$ 

 $yw^Tx$ 

• x=-2, y=-1 x=-2 y=-1 y=-1



No local minima!



# Hinge loss

- Yet another loss: hinge loss
  - Loss =  $[1-yh(x)]_+$  = ReLU(1-yh(x)) = max(0,1-yh(x))
- Popularized by Support Vector Machines





Can be solved efficiently without gradients, using QP

#### Support Vector Machine

#### Hinge risk:







#### Logistic risk







#### Designing a classification method

- Define the space of possible decision boundaries
  - What will be the form of classifiers?
    - DONE: Space of all possible lines/planes/hyperplanes
- Define the loss/risk function
  - How to evaluate the quality of a specific classifier from the space of possible classifiers?
    - DONE: cross-entropy / logistic loss
      - Or hinge loss
- Define the method for minimizing the risk using data from the training set
  - How to reach a high-quality classifier?
    - DONE: gradient descent over the space of feature weights
- AND NOW... REGULARIZATION...

#### Logistic regression

- Logistic loss Four samples:
  - x=7, y=1
  - x=4, y=1
  - x=-1, y=-1

$$\min \frac{1}{m} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

loss

 $\ell(h,z) = \ln(1 + e^{-yw^T x})$ 

 $yw^Tx$ 

• x=-2, y=-1 x=-2 y=-1 y=-1





# Logistic regression

- $\ell(h,z) = \ln(\frac{1}{\epsilon} + e^{-yw^T x})$
- Logistic loss  $\min \frac{1}{m} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$



#### ■ log z-axis plots: empirical risk for any w, $w_0$



• Optimum: farther and farther: for w=15,  $w_0=-20$  risk still >0

- Our decision boundary is w<sup>T</sup>x
  - e.g 2 features, we have:  $w_1x_1+w_2x_2+w_3=0$
  - Let's say the perfect separation of classes comes for w=[-1,2,3]  $-x_1+2x_2+3=0$





Is w=[-1,2,3] the only vector w giving those exact same predictions?

- Our decision boundary is w<sup>T</sup>x=0
  - Let's say the perfect separation of classes comes for

$$w = [-1,2,3]$$

$$w = [-10, 20, 30]$$

$$-x_1+2x_2+3=0$$

$$-10x_1+20x_2+30=0$$





Vector w multiplied by any positive number gives the same decision line!



Logistic loss:  $\min \frac{1}{m} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$ 



# Global minimum escapes towards infinities

Solutions w,w<sub>0</sub> on the blue line represent the same

decision boundary!

But different value of the empirical risk

Do we care which one is picked?



- Our decision boundary is w<sup>T</sup>x=0
  - You know somehow that perfect separation is achieved by this decision boundary:



Now you have options of picking w:

$$w=[-1,2,3]$$
  $-x_1+2x_2+3=0$   $w=[-10,20,30]$   $-10x_1+20x_2+30=0$  and many other

In an ideal world,
 it doesn't matter which one you pick

# Large w affecting predictions?

- In real world, the feature values x<sub>i</sub> we see don't represent the true feature values x<sub>i</sub> accurately:
  - there's some measurement error  $\Delta_i$
  - $x_1 = \text{"true } x_1'' + \Delta_1 = \underline{x}_1 \pm \Delta_1$
  - $x_2 = \text{"true } x_2'' + \Delta_2 = \underline{x}_2 \pm \Delta_2$
- Say we get a sample with imperfectly measured features  $x_1$ ,  $x_2$  (say,  $\Delta_i$ =±0.1). What are the decisions?
  - $W_a = [-1,2,3]$   $-x_1 + 2x_2 + 3 = 0$ 
    - $h_{small}(x) = -x_1 + 2x_2 + 3 = -1(\underline{x}_1 \pm \Delta_1) + 2(\underline{x}_2 \pm \Delta_2) + 3$   $= (-\underline{x}_1 + 2\underline{x}_2 + 3) \pm (-\Delta_1 + 2\Delta_2)$   $h_{small}(x) = w_a^T \underline{x} \pm (-\Delta_1 + 2\Delta_2)$  => true prediction ±.3  $\Delta$  will influence our decision
  - $W_b = [-10,20,30]$   $-10x_1 + 20x_2 + 30 = 0$ 
    - $h_{big}(x) = -10x_1 + 20x_2 + 30 = -10(\underline{x}_1 \pm \Delta_1) + 20(\underline{x}_2 \pm \Delta_2) + 30$   $= (-10\underline{x}_1 + 20\underline{x}_2 + 30) \pm 10(-\Delta_1 + 2\Delta_2)$  $h_{big}(x) = W_b^T \underline{x} \pm 10(-\Delta_1 + 2\Delta_2) = 10 [W_a^T \underline{x} \pm (-\Delta_1 + 2\Delta_2)]$

exactly same decision! Large w => no problem !?

# Large w affecting training?

- Say we got two 1D samples x<sup>a</sup> (class +1) and x<sup>b</sup> (class -1) with imperfectly measured feature ( $\Delta = \pm 0.1$ ).
  - $\mathbf{x}^{a} = \underline{\mathbf{x}}^{a} \pm \Delta$   $\mathbf{x}^{b} = \mathbf{x}^{b} \pm \Delta$

- e.g:  $x^a > x^b$
- We want to make a decision threshold in the middle between them, to get a classifier  $h(x)=w^{T}x+w_{0}$ 
  - w=1,  $w_0=-\frac{1}{2}(\underline{x}^a+\underline{x}^b)$   $h(x)=x-\frac{1}{2}(\underline{x}^a+\underline{x}^b)$ 
    - If  $1*x > \frac{1}{2}(\underline{x}^a + \underline{x}^b)$  we predict class +1
  - $w=2, w_0=-(\underline{x}^a+\underline{x}^b)$   $h(x)=2x-(\underline{x}^a+\underline{x}^b)$ 
    - If  $2*x > (x^a + x^b)$  we predict class +1
- What will be the threshold?
  - W=1  $W_0 = \frac{1}{2}(x^a + x^b) = \frac{1}{2}(x^a + x^b) \pm 2\Delta$
  - w=2  $w_0=(\underline{x}^a+\underline{x}^b)\pm 4\Delta$

#### Large w affecting training?

- In real world:  $x_i = \text{``true } x_i'' + \Delta_i = \underline{x}_i + \Delta_i$
- We now have two classifiers:

• 
$$W=1$$
  $W_0 = \frac{1}{2}(x^a + x^b) = \frac{1}{2}(\underline{x}^a + \underline{x}^b) \pm 2\Delta$   
•  $W=2$   $W_0 = (x^a + x^b) \pm 4\Delta$ 

- A new sample x<sup>c</sup> comes and we want to classify it:
  - $\mathbf{x}_{c} = \mathbf{x}_{c} \mp \nabla_{c}$
- $h_{small}(x^c) = \underline{x^c} \pm \Delta^c \frac{1}{2}(\underline{x^a} + \underline{x^b}) \pm 2\Delta$ =  $\underline{x^c} - \frac{1}{2}(\underline{x^a} + \underline{x^b}) \pm (\Delta^c + 2\Delta)$
- $h_{big}(x^c) = 2\underline{x^c} \pm 2\Delta^c (\underline{x^a} + \underline{x^b}) \pm 4\Delta$ =  $2 \left[ \underline{x^c} - \frac{1}{2}(\underline{x^a} + \underline{x^b}) \pm (\Delta^c + 2\Delta) \right]$
- Same influence of error on decision, no matter what w
- Again, no problem with large w!?

# Large w

- In real world:  $x_i = \text{``true } x_i'' + \Delta_i = \underline{x}_i + \Delta_i'$ 
  - Measurement = signal + noise
- No problem with large w!?
- Large w amplified the noise
- but also amplified the signal

- In real world:  $x_i = \text{``true } x_i'' + \Delta_i = \underline{x}_i \pm \Delta$
- Let's say true classifier is: h(x)=x-t
  - Just one feature
- We saw that training and predictions are not affected if we change it to e.g.  $h_{biq}(x)=10x-10t$
- But now we have two copies of the feature:  $\underline{x}_1 = \underline{x}_2$ 
  - When we measure them,  $x_1 = \underline{x_1} \pm \Delta \neq \underline{x_2} \pm \Delta = x_2$
- Instead of the simple classifier:
  - $\bullet \quad h_{\text{orq}}(x) = x_1 t$
- Training may result in:

• 
$$h_{small}(x)=2x_1-x_2-t$$

or:

•  $h_{big}(x)=20x_1-19x_2-t$ 

Do we care which of these three classifiers is given to us?

• 
$$x_1 = \underline{x_1} \pm \Delta \neq \underline{x_2} \pm \Delta = x_2$$

- Instead of  $h_{org}(x)=x_1-t$
- Training may result in:
  - $h_{small}(x)=2x_1-x_2-t$  or:
  - $h_{biq}(x) = 20x_1 19x_2 t$
- What happens to our predictions?
  - $h_{small}(x) = 2\underline{x_1} \pm 2\Delta \underline{x_2} \pm \Delta t = \underline{x_1} t \pm 3\Delta$ 
    - $h_{small}(x) = h_{org}(x) \pm 3\Delta$
  - $h_{big}(x) = 20\underline{x_1} \pm 20\Delta 19\underline{x_2} \pm 19\Delta t = \underline{x_1} t \pm 39\Delta$ 
    - $h_{big}(x) = h_{org}(x) \pm 39\Delta$
- Large w => lower accuracy!

- In real world:
  - measurement = signal + noise
- In real world:
  - very often we have features that are highly correlated
- For example:
  - neighboring pixels in an image
  - expression of genes that perform some function together
- We want to avoid large weights!
  - But how?

- We want to avoid large weights!
  - But how?
- Let us address this problem probabilistically
  - We will rephrase our classification problem as an estimation problem
  - And then add a higher prior probability of small weights

- Finding parameter θ that maximizes likelihood of seeing what we see in the training set S
  - Choose  $\theta$  to maximize  $P(S|\theta) = L(\theta | S) = likelihood$  of  $\theta$  given dataset S

6

•  $L(\theta \mid S) = P(S \mid \theta) = \Pi_k P(x_k \mid \theta)$ 

 $P(S|\theta)$ 

- We assume  $\theta$  for each class is fixed, but unknown to us
  - Some values of  $\theta$  make the training set S more likely
  - Some values of  $\theta$  make the training set S less likely



#### Simple example:

true mean of a normal distribution vs. average of some samples

⋆x We have samples S

How can we estimate the mean  $(\theta)$ 

Try all possible means, calculate probability of seeing the samples

Pick mean with highest probability

- Finding θ that maximizes likelihood of seeing the training set S
  - Choose  $\theta$  to maximize  $P(S|\theta) = L(\theta | S) = likelihood$  of  $\theta$  given dataset S
  - $L(\theta \mid S) = P(S \mid \theta) = \Pi_k P(x_k \mid \theta)$
- We assume  $\theta$  for each class is fixed, but unknown to us
  - Some values of  $\theta$  make the training set S more likely
  - Some values of θ make the training set S less likely



- How to deal with the multiplication?
- Transform it into a sum, easier to deal with mathematically!
- Same as: choose θ to maximize
   In P(S|θ) = Σ<sub>k</sub> In P(x<sub>k</sub>|θ)

- Maximize *log-likelihood*: In  $P(S|\theta) = \sum_{k} \ln P(x_k|\theta)$
- How?
  - Math! We have the mathematical formula for the distribution P
  - Example: we have 1 feature x, we know  $P(x|\theta)$  is Gaussian
    - The unknown parameter  $\theta$  is a single number, the mean of the Gaussian
      - $P(x \mid \theta_i) = (2\pi\sigma^2)^{-.5} \exp(-(x-\theta_i)^2/2\sigma^2)$
      - In P( x |  $\theta_i$ ) = -.5 In  $2\pi\sigma^2$   $(x-\theta_i)^2/2\sigma^2$

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- At maximum, derivative is 0:  $d \Sigma_k \ln P(x_k | \theta_i) / d \theta_i = 0$
- $d \Sigma_k$  [-.5 In  $2\pi\sigma^2$   $(x-\theta_i)^2/2\sigma^2$  ] /  $d \theta_i = 0$
- $1/2\sigma^2 \Sigma_k d (x_k-\theta_i)^2 / d \theta_i = 0$
- $\Sigma_{k=1,...,m} d(x_k^2 + \theta_i^2 2x_k \theta_i) / d\theta_i = 0$
- $\theta_i = 1/m \Sigma_{k=1,...,m} x_k$  we just derived "average" as the estimator of mean
  - Average is the maximum likelihood estimator of the mean (for Gaussians, at least)

- Maximum likelihood (ML):
  - Choose  $\theta$  to maximize  $L(\theta|S)=P(S|\theta)=\Pi_k P(x_k,\theta)$
  - Maximize *log-likelihood*: In  $P(S|\theta) = \sum_{k} \ln P(x_k|\theta)$
- Maximum a posteriori (MAP):
  - Finding  $\theta$  that maximizes  $P(\theta|S) \sim P(S|\theta)P(\theta)$
  - maximize:  $P(S|\theta)P(\theta) = \Pi_k P(x_k|\theta)P(\theta)$
  - Max.:  $\ln P(S|\theta)P(\theta) = \sum_{k} \ln P(x_{k}|\theta) + \ln P(\theta)$
- In both versions:
  - We assume  $\theta$  for each class is fixed, but unknown to us
  - We find the best single estimate of θ based on how a choice of θ influences S
  - We use  $\theta$  for predictions

#### MLE/MAP vs Bayesian

 We're predicting something (some z) based on training set S and some new information u

Law of total probability (we can condition on "weather in Iceland", or  $\theta$ ):

- $p(z \mid S, u) = \Sigma_{\theta} p(z \mid \theta, S, u) p(\theta \mid S, u)$ or in fact  $= \int p(z \mid \theta, S, u) p(\theta \mid S, u) d\theta$
- Assume z and S are conditionally independent given  $\theta_i$  i.e., if we know  $\theta_i$ , knowing also S doesn't change our knowledge of z
  - Then:
    - $p(z \mid S, u) = \Sigma_{\theta} p(z \mid \theta, u) p(\theta \mid S, u)$
- Assume also that  $p(\theta \mid S, u) = p(\theta \mid S)$ 
  - the new info u alone (without z) does not impact our knowledge of θ
  - u may impact how we use  $\theta$ , but that's in p(z |  $\theta$ , u)
- End result:  $p(z \mid S, u) = \Sigma_{\theta} p(z \mid \theta, u) p(\theta \mid S)$