Models of Synchronous Grammar Induction for SMT

Workshop 2010

The Center for Speech and Language Processing Johns Hopkins University

June 28, 2010

1 / 31

Statistical machine translation

• Statistical machine translation: Learn how to translate from parallel corpora.

Statistical machine translation:

$\mathsf{Urdu} \to \mathsf{English}$

اس حملہ کے بعد بڑی تعداد میں مقامی باشندوں نے علاقوں کو خالی کردیا ہے .

After this incident, a large number of local residents fled from these areas.

 Statistical machine translation: Learn how to translate from parallel corpora

Statistical machine translation: state-of-the-art

$\mathsf{Urdu} \to \mathsf{English}$

اس حملہ کے بعد بڑی تعداد میں مقامی باشندوں نے علاقوں کو خالی کردیا ہے .

In this attack a large number of local residents has should vacate areas.

 Current state-of-the-art translation models struggle with language pairs which exhibit large differences in structure.

4 / 31

Who wrote this letter?
من الذي كتب هذه الرسالة؟
(function-word) (who) (wrote) (this) (the-letter)
这封信是谁写的?
(this) (letter) (be) (who) (write) (come-from) (function-word)

Who wrote this letter?
من الذي كتب هذه الرسالة؟
(function-word) (who) (wrote) (this) (the-letter)
这封信是谁写的?
(this) (letter) (be) (who) (write) (come-from) (function-word)

English	Who wrote this letter?
Arabic	من الذي كتب هذه الرسالة؟
	(function-word) (who) (wrote) (this) (the-letter)
	这封信是谁写的?
	(this) (letter) (be) (who) (write) (come-from) (function-word)

Who wrote this letter?
من الذي كتب هذه الرسالة؟
(function-word) (who) (wrote) (this) (the-letter)
这封信是谁写的?
(this) (letter) (be) (who) (write) (come-from) (function-word)
_

- Phrasal translation equivalences
- Constituent reordering
- Morphology

Statistical machine translation: successes

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{2}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle & X \rightarrow \langle \textit{will}, \ \textit{wants to} \rangle \\ X \rightarrow \langle \textit{eine Tasse Kaffee, a cup of coffee} \rangle & X \rightarrow \langle \textit{trinken, drink} \rangle \end{array}$$

Example Derivation

$$S\Rightarrow \langle X_{\boxed{1}},\ X_{\boxed{1}}\ \rangle \quad \Rightarrow \langle X_{\boxed{2}}\ X_{\boxed{3}},\ X_{\boxed{2}}\ X_{\boxed{3}}\rangle$$

$$\Rightarrow \langle Sie\ X_{\boxed{3}},\ She\ X_{\boxed{3}}\rangle \quad \Rightarrow \langle Sie\ X_{\boxed{4}}\ X_{\boxed{5}},\ She\ X_{\boxed{4}}\ X_{\boxed{5}}\rangle$$

$$\Rightarrow \langle Sie\ will\ X_{\boxed{5}},\ She\ wants\ to\ X_{\boxed{7}}\rangle \langle Sie\ will\ sine\ Tasse\ Kaffee\ X_{\boxed{7}},\ She\ wants\ to\ X_{\boxed{7}}\ a\ cup\ of\ coffee}\rangle$$

 \Rightarrow \langle Sie will eine Tasse Kaffee trinken, She wants to drink a cup of coffee

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \longrightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \longrightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \longrightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{2}} \ X_{\boxed{1}} \rangle & X \longrightarrow \langle Sie, \ She \rangle & X \longrightarrow \langle will, \ wants \ to \rangle \\ X \longrightarrow \langle eine \ Tasse \ Kaffee, \ a \ cup \ of \ coffee \rangle & X \longrightarrow \langle trinken, \ drink \rangle \end{array}$$

Example Derivation

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{2}} \ X_{\boxed{1}} \rangle & X \rightarrow \langle Sie, \ She \rangle & X \rightarrow \langle will, \ wants \ to \rangle \\ X \rightarrow \langle eine \ Tasse \ Kaffee, \ a \ cup \ of \ coffee \rangle & X \rightarrow \langle trinken, \ drink \rangle \end{array}$$

Example Derivation

$$S \Rightarrow \langle X_{\boxed{1}}, X_{\boxed{1}} \rangle \quad \Rightarrow \langle X_{\boxed{2}} X_{\boxed{3}}, X_{\boxed{2}} X_{\boxed{3}} \rangle$$

$$\Rightarrow \langle Sie \ X_{\boxed{3}}, \ She \ X_{\boxed{3}} \rangle \quad \Rightarrow \langle Sie \ X_{\boxed{4}} \ X_{\boxed{5}}, \ She \ X_{\boxed{4}} \ X_{\boxed{5}} \rangle$$

$$\Rightarrow \langle Sie \ will \ X_{\boxed{5}}, \ She \ wants \ to \ X_{\boxed{7}} X_{\boxed{6}} \rangle$$

$$\Rightarrow \langle Sie \ will \ eine \ Tasse \ Kaffee \ X_{\boxed{7}}, \ She \ wants \ to \ X_{\boxed{7}} \ a \ cup \ of \ coffee \rangle$$

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{2}} \ X_{\boxed{1}} \rangle & X \rightarrow \langle \textit{Sie}, \ \textit{She} \rangle & X \rightarrow \langle \textit{will}, \ \textit{wants to} \rangle \\ X \rightarrow \langle \textit{eine Tasse Kaffee, a cup of coffee} \rangle & X \rightarrow \langle \textit{trinken, drink} \rangle \end{array}$$

Example Derivation

$$S \Rightarrow \langle X_{\boxed{1}}, X_{\boxed{1}} \rangle \quad \Rightarrow \langle X_{\boxed{2}} X_{\boxed{3}}, X_{\boxed{2}} X_{\boxed{3}} \rangle$$
$$\Rightarrow \langle Sie X_{\boxed{3}}, She X_{\boxed{3}} \rangle \quad \Rightarrow \langle Sie X_{\boxed{4}} X_{\boxed{5}}, She X_{\boxed{4}} X_{\boxed{5}} \rangle$$

 $\Rightarrow \langle \textit{Sie will X}_{\boxed{5}}, \textit{ She wants to X}_{\boxed{5}} \rangle \qquad \Rightarrow \langle \textit{Sie will X}_{\boxed{6}} X_{\boxed{7}}, \textit{ She wants to X}_{\boxed{7}} X_{\boxed{6}} \rangle$

 \Rightarrow \langle Sie will eine Tasse Kaffee $X_{\boxed{7}}$, She wants to $X_{\boxed{7}}$ a cup of coffee \rangle

 \Rightarrow \langle Sie will eine Tasse Kaffee trinken, She wants to drink a cup of coffee \rangle

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle & X \rightarrow \langle Sie, \ She \rangle & X \rightarrow \langle will, \ wants \ to \rangle \\ X \rightarrow \langle eine \ Tasse \ Kaffee, \ a \ cup \ of \ coffee \rangle & X \rightarrow \langle trinken, \ drink \rangle \end{array}$$

Example Derivation

$$\begin{split} S &\Rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \,\rangle &\Rightarrow \langle X_{\boxed{2}} \ X_{\boxed{3}}, \ X_{\boxed{2}} \ X_{\boxed{3}} \rangle \\ &\Rightarrow \langle \textit{Sie} \ X_{\boxed{3}}, \ \textit{She} \ X_{\boxed{3}} \rangle &\Rightarrow \langle \textit{Sie} \ X_{\boxed{4}} \ X_{\boxed{5}}, \ \textit{She} \ X_{\boxed{4}} \ X_{\boxed{5}} \rangle \end{split}$$

$$\Rightarrow \langle \textit{Sie will X}_{\boxed{5}}, \textit{ She wants to X}_{\boxed{5}} \rangle \qquad \Rightarrow \langle \textit{Sie will X}_{\boxed{6}} X_{\boxed{7}}, \textit{ She wants to X}_{\boxed{7}} X_{\boxed{6}} \rangle$$

 $\Rightarrow \langle Sie \ will \ eine \ Tasse \ Kaffee \ X_{\boxed{7}}, \ She \ wants \ to \ X_{\boxed{7}} \ a \ cup \ of \ coffee \rangle$

 \Rightarrow \langle Sie will eine Tasse Kaffee trinken, She wants to drink a cup of coffee \rangle

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{2}} \ X_{\boxed{1}} \rangle & \\ X \rightarrow \langle Sie, \ She \rangle & X \rightarrow \langle will, \ wants \ to \rangle \\ X \rightarrow \langle eine \ Tasse \ Kaffee, \ a \ cup \ of \ coffee \rangle & X \rightarrow \langle trinken, \ drink \rangle \end{array}$$

Example Derivation

$$\begin{array}{ccc} S\Rightarrow \langle X_{\boxed{1}},\ X_{\boxed{1}}\ \rangle & \Rightarrow \langle X_{\boxed{2}}\ X_{\boxed{3}},\ X_{\boxed{2}}\ X_{\boxed{3}}\rangle \\ \Rightarrow \langle \textit{Sie}\ X_{\boxed{3}},\ \textit{She}\ X_{\boxed{3}}\rangle & \Rightarrow \langle \textit{Sie}\ X_{\boxed{4}}\ X_{\boxed{5}},\ \textit{She}\ X_{\boxed{4}}\ X_{\boxed{5}}\rangle \end{array}$$

$$\Rightarrow \langle \textit{Sie will } X_{\boxed{\texttt{b}}}, \textit{ She wants to } X_{\boxed{\texttt{b}}} \rangle \qquad \Rightarrow \langle \textit{Sie will } X_{\boxed{\texttt{c}}} X_{\boxed{\texttt{c}}}, \textit{ She wants to } X_{\boxed{\texttt{c}}} X_{\boxed{\texttt{c}}} \rangle$$

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{2}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{2}} \ X_{\boxed{1}} \rangle & \\ X \rightarrow \langle Sie, \ She \rangle & X \rightarrow \langle will, \ wants \ to \rangle \\ X \rightarrow \langle eine \ Tasse \ Kaffee, \ a \ cup \ of \ coffee \rangle & X \rightarrow \langle trinken, \ drink \rangle \end{array}$$

Example Derivation

$$S \Rightarrow \langle X_{\boxed{1}}, X_{\boxed{1}} \rangle \quad \Rightarrow \langle X_{\boxed{2}} X_{\boxed{3}}, X_{\boxed{2}} X_{\boxed{3}} \rangle$$
$$\Rightarrow \langle Sie X_{\boxed{3}}, She X_{\boxed{3}} \rangle \quad \Rightarrow \langle Sie X_{\boxed{4}} X_{\boxed{5}}, She X_{\boxed{4}} X_{\boxed{5}} \rangle$$

 $\Rightarrow \langle \textit{Sie will X}_{\boxed{5}}, \textit{ She wants to X}_{\boxed{5}} \rangle \qquad \Rightarrow \langle \textit{Sie will X}_{\boxed{6}} X_{\boxed{7}}, \textit{ She wants to X}_{\boxed{7}} X_{\boxed{6}} \rangle$

 \Rightarrow \(Sie will eine Tasse Kaffee $X_{\boxed{7}}$, She wants to $X_{\boxed{7}}$ a cup of coffee \(\)

 \Rightarrow \langle Sie will eine Tasse Kaffee trinken, She wants to drink a cup of coffee \rangle

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{2}} \ X_{\boxed{1}} \rangle & X \rightarrow \langle \textit{sie}, \ \textit{She} \rangle & X \rightarrow \langle \textit{will}, \ \textit{wants to} \rangle \\ X \rightarrow \langle \textit{eine Tasse Kaffee}, \ \textit{a cup of coffee} \rangle & X \rightarrow \langle \textit{trinken}, \ \textit{drink} \rangle \end{array}$$

Example Derivation

$$S\Rightarrow \langle X_{\boxed{1}},\ X_{\boxed{1}}\ \rangle \quad \Rightarrow \langle X_{\boxed{2}}\ X_{\boxed{3}},\ X_{\boxed{2}}\ X_{\boxed{3}}\rangle$$

$$\Rightarrow \langle Sie\ X_{\boxed{3}},\ She\ X_{\boxed{3}}\rangle \quad \Rightarrow \langle Sie\ X_{\boxed{4}}\ X_{\boxed{5}},\ She\ X_{\boxed{4}}\ X_{\boxed{5}}\rangle$$

$$\Rightarrow \langle Sie\ will\ X_{\boxed{5}},\ She\ wants\ to\ X_{\boxed{7}}\rangle \quad \Rightarrow \langle Sie\ will\ x_{\boxed{6}}\ x_{\boxed{7}},\ She\ wants\ to\ X_{\boxed{7}}\ X_{\boxed{6}}\rangle$$

$$\Rightarrow \langle Sie\ will\ eine\ Tasse\ Kaffee\ X_{\boxed{7}},\ She\ wants\ to\ X_{\boxed{7}}\ a\ cup\ of\ coffee}\rangle$$

 \Rightarrow \langle Sie will eine Tasse Kaffee trinken, She wants to drink a cup of coffee

Synchronous Context Free Grammar (SCFG)

$$\begin{array}{lll} S \rightarrow \langle X_{\boxed{1}}, \ X_{\boxed{1}} \rangle & X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle \\ X \rightarrow \langle X_{\boxed{1}} \ X_{\boxed{2}}, \ X_{\boxed{1}} \ X_{\boxed{2}} \rangle & X \rightarrow \langle \textit{will}, \ \textit{wants to} \rangle \\ X \rightarrow \langle \textit{eine Tasse Kaffee, a cup of coffee} \rangle & X \rightarrow \langle \textit{trinken, drink} \rangle \end{array}$$

Example Derivation

$$S \Rightarrow \langle X_{\boxed{1}}, X_{\boxed{1}} \rangle \quad \Rightarrow \langle X_{\boxed{2}} X_{\boxed{3}}, X_{\boxed{2}} X_{\boxed{3}} \rangle$$
$$\Rightarrow \langle Sie X_{\boxed{3}}, She X_{\boxed{3}} \rangle \quad \Rightarrow \langle Sie X_{\boxed{4}} X_{\boxed{5}}, She X_{\boxed{4}} X_{\boxed{5}} \rangle$$

 $\Rightarrow \langle \textit{Sie will X}_{\boxed{5}}, \textit{ She wants to X}_{\boxed{5}} \rangle \qquad \Rightarrow \langle \textit{Sie will X}_{\boxed{6}} X_{\boxed{7}}, \textit{ She wants to X}_{\boxed{7}} X_{\boxed{6}} \rangle$

 \Rightarrow \langle Sie will eine Tasse Kaffee $X_{\boxed{7}}$, She wants to $X_{\boxed{7}}$ a cup of coffee \rangle

 \Rightarrow \langle Sie will eine Tasse Kaffee trinken, She wants to drink a cup of coffee \rangle

- $\begin{array}{c} \bullet \;\; S \; -> \; \left\langle \;\; X_{\boxed{1}}, \;\; X_{\boxed{1}} \;\; \right\rangle, \\ S \; -> \; \left\langle \;\; S_{\boxed{1}} \;\; X_{\boxed{2}}, \;\; S_{\boxed{1}} \;\; X_{\boxed{2}} \;\; \right\rangle \end{array}$
- $\begin{array}{ll} \bullet \ X \ -> \ \langle \ \ \text{Je}, \ \ I \ \rangle, & X \ -> \ \langle \ \ \text{ne} \ X_{\boxed{\tiny{\mathbb{I}}}} \ \text{pas, do not} \ X_{\boxed{\tiny{\mathbb{I}}}} \ \rangle, \\ X \ -> \ \langle \ \ \text{veux, want to} \rangle, \ X \ -> \ \langle \ \ \text{travailler, work} \ \rangle \\ \end{array}$

- Only requires the parallel corpus.
- But weak model of sentence structure.

Supervised SCFG: Syntactic Tree-to-String TO RB want want to / work not travailler travailler veux pas veux

- $\begin{array}{l} \bullet \;\; \mathsf{S} \; -> \; \langle \;\; \mathsf{NP}_{\boxed{1}} \;\; \mathsf{VP}_{\boxed{2}}, \;\; \mathsf{NP}_{\boxed{1}} \;\; \mathsf{VP}_{\boxed{2}} \; \rangle, \\ \mathsf{NP} \; -> \; \langle \;\; \mathsf{PRP}_{\boxed{1}}, \;\; \mathsf{PRP}_{\boxed{1}} \; \rangle \end{array}$
- PRP -> \langle Je, I \rangle ,
 - $VP -> \langle \text{ ne veux pas } VB_{\boxed{\square}}, \text{ do not want to } VB_{\boxed{\square}} \rangle,$

VR - / travailler work \

CLSP Workshop 2010 (Baltimore) Models of SCFG Induction

- Strong model of sentence structure.
- Reliant on a treebank to train the parser.

Impact

Language	Words	Domain
English	4.5M	Financial news
Chinese	0.5M	Broadcasting news
Arabic	300K (1M planned)	News
Korean	54K	Military

Table: Major treebanks: data size and domain

Impact

Parallel corpora far exceed treebanks (millions of words):

	312 315		H			•		S.		9	#	#		J		1		1	Ē
洲长	7	90	83	55	40	50	55	28	29	12	12	8	10	8	7	21	6	6	9
	90	7	34	24	29	12	10	11	11	9	11	7	6	6	7	4	5	5	(
	83	34	7	17	16	12	10	12	11	9	10	8	6	6	7	6	6	5	(
	52	24	17	6	14	12	9	9	10	9	10	7	5	5	6	3	5	5	4
	39	29	16	14	6	9	10	7	8	8	10	8	6	6	6	3	5	5	4
•	48	12	12	12	9	3	25	5	5	22	6	2	3	2	3	3	3	3	-
**	55	10	10	9	10	26	2	2	2	8	5	2	2	2	2	2	2	2	:
8	26	11	12	9	7	5	2	7	12	3	4	6	5	4	7	3	5	5	4
8	29	11	11	10	8	5	2	12	6	3	4	6	6	5	6	3	5	5	4
(e)	12	9	9	9	8	23	8	3	3	2	6	1	2	2	2	2	2	2	:
丰	11	11	10	10	10	6	5	4	4	6	4	5	3	3	4	1	3	3	:
==	8	7	8	7	8	2	2	6	6	1	5	5	4	4	5	2	4	4	:

Phrase extraction:

Je ne veux pas travailler

I do not want to work

Phrase extraction:

 Use a word-based translation model to annotate the parallel corpus with word-alignments

Phrase extraction: Je ne veux pas travailler do not want to work

• \langle Je, I \rangle, \langle veux, want to \rangle, \langle travailler, work \rangle

Phrase extraction: pas travailler veux want not

• \langle Je, I $\rangle,$ \langle veux, want to $\rangle,$ \langle travailler, work $\rangle,$ \langle ne veux pas, do not want to \rangle

Phrase extraction: travailler pas veux want work not

• \langle Je, I \rangle , \langle veux, want to \rangle , \langle travailler, work \rangle , \langle ne veux pas, do not want to \rangle , \langle ne veux pas travailler, do not want to work \rangle

Phrase extraction: veux pas travailler want work not to

• \langle Je, I \rangle , \langle veux, want to \rangle , \langle travailler, work \rangle , \langle ne veux pas, do not want to \rangle , \langle ne veux pas travailler, do not want to work \rangle , \langle Je ne veux pas, I do not want to \rangle

Phrase extraction:

• \langle Je, I \rangle , \langle veux, want to \rangle , \langle travailler, work \rangle , \langle ne veux pas, do not want to \rangle , \langle ne veux pas travailler, do not want to work \rangle , \langle Je ne veux pas, I do not want to \rangle , \langle Je ne veux pas travailler, I do not want to work \rangle

SCFG Rule extraction: travailler Je veux pas ne want work not

• X -> \langle ne veux pas, do not want to \rangle

SCFG Rule extraction:

- X -> \langle ne veux pas, do not want to \rangle ,
- \bullet X -> \langle ne $X_{\fbox{\scriptsize 1}}$ pas, do not $X_{\fbox{\scriptsize 1}}$ \rangle

SCFG Rule extraction:

- $VP/NN \rightarrow \langle$ ne veux pas, do not want to \rangle ,
- \bullet VP/NN -> \langle ne $V_{\tiny{[1]}}$ pas, do not $V_{\tiny{[1]}}\,\rangle$

SCFG Rule extraction:

- X10 -> \langle ne veux pas, do not want to \rangle ,
- \bullet X10 -> \langle ne X14 $_{\!\scriptscriptstyle{[1]}}$ pas, do not X14 $_{\!\scriptscriptstyle{[1]}}$ \rangle

- $\bullet \ \ \mathsf{S} \ -> \ \langle \ \ \mathsf{X4}_{\boxed{\tiny{1}}} \ \ \mathsf{X2}_{\boxed{\tiny{2}}}, \ \ \mathsf{X4}_{\boxed{\tiny{1}}} \ \ \mathsf{X2}_{\boxed{\tiny{2}}} \ \rangle, \ \ \mathsf{X4} \ -> \ \langle \ \ \mathsf{X1}_{\boxed{\tiny{1}}} \ \ \mathsf{X10}_{\boxed{\tiny{2}}}, \ \ \mathsf{X1}_{\boxed{\tiny{1}}} \ \ \mathsf{X10}_{\boxed{\tiny{2}}} \ \rangle$
- X1 -> \langle Je, I \rangle , X10 -> \langle ne X14 $_{\square}$ pas, do not X14 $_{\square}$ \rangle , X14 -> \langle veux, want to \rangle , X10 -> \langle travailler, work \rangle

Models of translation

- Only requires the parallel corpus.
- But also gives a strong model of sentence structure.

Workshop overview

Input:

• Existing procedures for unlabelled synchronous grammar extraction

Output:

- New unsupervised models for large scale synchronous grammar extraction,
- A comparison and analysis of the existing and proposed models,
- Extended decoders (cdec/Joshua) capable of working efficiently with these models.

Workshop Streams

Expand, describing challenges faced in each stream.

- Implement scalable SCFG grammar extraction algorithms.
- Improve SCFG decoders to efficiently handle the grammars produce.
- Investigate discriminative training regimes to leverage features extracted from these grammars.

Ngram overlap metrics:

Source: 欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内

Candidate: the chinese embassy in australia and the eu representative office in the same building

- the eu office and the australian embassy are housed in the same building
- the european union office is in the same building as the australian embassy
- the european union 's office and the australian embassy are both located in the same building
- the eu 's mission is in the same building with the australian embassy

Ngram overlap metrics: 1-gram precision $p_1=rac{11}{14}$

Source: 欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内

Candidate: the chinese embassy in australia and the eu representative office in the same building

- the eu office and the australian embassy are housed in the same building
- 2 the european union office is in the same building as the australian embassy
- the european union 's office and the australian embassy are both located in the same building
- the eu 's mission is in the same building with the australian embassy

Ngram overlap metrics: 2-gram precision $p_2=\frac{5}{13}$

Source: 欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内

Candidate: the chinese embassy in australia and the eu representative office in the same building

- the eu office and the australian embassy are housed in the same building
- the european union office is in the same building as the australian embassy
- the european union 's office and the australian embassy are both located in the same building
- the eu 's mission is in the same building with the australian embassy

Ngram overlap metrics: 3-gram precision $p_3 = \frac{2}{12}$

Source: 欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内

Candidate: the chinese embassy in australia and the eu representative office in the same building

- the eu office and the australian embassy are housed in the same building
- the european union office is in the same building as the australian embassy
- the european union 's office and the australian embassy are both located in the same building
- the eu 's mission is in the same building with the australian embassy

Ngram overlap metrics: 4-gram precision $p_4=\frac{1}{11}$

Source: 欧盟 办事处 与 澳洲 大使馆 在 同 一 建筑 内

Candidate: the chinese embassy in australia and the eu representative office in the same building

- the eu office and the australian embassy are housed in the same building
- the european union office is in the same building as the australian embassy
- the european union 's office and the australian embassy are both located in the same building
- the eu 's mission is in the same building with the australian embassy

BLEU

$$BLEU_n = BP \times \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ \exp\left(1 - \frac{R'}{C'}\right) & \text{if } c <= r \end{cases}$$

- BP is the Brevity Penalty, w_n is the ngram length weights (usually $\frac{1}{n}$), p_n is precision of ngram predictions, R' is the total length of all references and C' is the sum of the best matching candidates.
- statistics are calculate over the whole document, i.e. all the sentences.

Language pairs

- BTEC Chinese-English:
 - 44k sentence pairs, short sentences
 - Widely reported 'prototyping' corpus
 - ► Hiero baseline score: 57.0 (16 references)
- NIST Urdu-English:
 - ▶ 50k sentence pairs
 - ▶ Hiero baseline score: 21.1 (4 references)
 - Major challenges: major long-range reordering, SOV word order
- Europarl Dutch-French:
 - ▶ 100k sentence pairs, standard Europarl test sets
 - ► Hiero baseline score: Europarl 2008 26.3 (1 reference)
 - Major challenges: V2 / V-final word order, morphology

- 1:55pm Experimental Setup. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

3:15pm Training models with rich features spaces. Vlad

- 4:00pm Closing remarks. Phil
- 4:05pm Finish.

Remember:

- Idea: Learn synchronous grammar labels which encode substituteability; phrases which occur in the same context should receive the same label.
- Result: Better models of translation structure, morphology and improved decoding algorithms.

This slide is intentionally left blank.

- 1:55pm Motivation and experimental methodology. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

- 1:55pm Motivation and experimental methodology. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

- 1:55pm Motivation and experimental methodology. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

- 1:55pm Motivation and experimental methodology. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

- 1:55pm Motivation and experimental methodology. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

- 1:55pm Motivation and experimental methodology. Trevor
- 2:10pm Non-parametric models of category induction. Chris
- 2:25pm Inducing categories for morphology.
 Jan
- 2:35pm Smoothing, backoff and hierarchical grammars. Olivia
- 2:45pm Parametric models: posterior regularisation. Desai
- 3:00pm Break.

 3:15pm Training models with rich features spaces. Vlad

- 4:00pm Closing remarks. Phil
- 4:05pm Finish.

3:15pm Training models with rich features spaces. Vlad

- 4:00pm Closing remarks. Phil
- 4:05pm Finish.

3:15pm Training models with rich features spaces. Vlad

- 4:00pm Closing remarks. Phil
- 4:05pm Finish.

• 3:15pm Training models with rich features spaces. Vlad

- 4:00pm Closing remarks. Phil
- 4:05pm Finish.

This slide is intentionally left blank.

Statistical machine translation: state-of-the-art

$\mathsf{Urdu} \to \mathsf{English}$

اس حملہ کے بعد بڑی تعداد میں مقامی باشندوں نے علاقوں کو خالی کردیا ہے .

In this attack a large number of local residents has should vacate areas.

 Current state-of-the-art translation models struggle with language pairs which exhibit large differences in structure.

Statistical machine translation: our unsupervised grammars

$Urdu \rightarrow English$

اس حملہ کے بعد بڑی تعداد میں مقامی باشندوں نے علاقوں کو خالی کردیا ہے .

After this attack, a large number of local residents have to vacate the areas.

• In this workshop we've made some small steps towards better translations for difficult language pairs.

Statistical machine translation: our unsupervised grammars

$\mathsf{Urdu} \to \mathsf{English}$

اس حملہ کے بعد بڑی تعداد میں مقامی باشندوں نے علاقوں کو خالی کردیا ہے .

After this attack, a large number of local residents have to vacate the areas.

 In this workshop we've made some small steps towards better translations for difficult language pairs.

Google Translate:

*After the attack a number of local residents has blank areas.

Induced Translation Structure

What we've achieved:

- •

We're we'll go from here:

- •
- •