1

Assignment 19

Sri Harsha CH

Abstract—This document explains the representation of transformations by matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment19 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment19

1 Problem

Let **A** be an $m \times n$ matrix of rank m with n > m. If for some non-zero real number α , we have $\mathbf{x}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{x} = \alpha\mathbf{x}^{T}\mathbf{x}$, for all $x \in \mathbf{R}^{m}$, then $\mathbf{A}^{T}\mathbf{A}$ has,

- 1. exactly two distinct eigenvalues.
- 2. 0 as an eigenvalue with multiplicity n m.
- 3. α as a non-zero eigenvalue.
- 4. exactly two non-zero distinct eigenvalues.

2 EXPLANATION

Refer Table 0.

3 Solution

Refer Table 1.

Given	Derivation		
Given	A is a $m \times n$ matrix of rank m with $n > m$.		
	A non-zero real number α . To find eigenvalues of $\mathbf{A}^{T}\mathbf{A}$.		
Eigenvalues of AA ^T	$\mathbf{A}\mathbf{A}^{\mathrm{T}}$ is a $m \times m$ matrix. Given,		
	$\mathbf{x}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{x} = \alpha \mathbf{x}^{T} \mathbf{x}$	(2.0.1)	
	$\mathbf{x}^{\mathbf{T}}(\mathbf{A}\mathbf{A}^{\mathbf{T}} - \alpha \mathbf{I})\mathbf{x} = 0$	(2.0.2)	
	$\implies \mathbf{A}\mathbf{A}^{\mathrm{T}} - \alpha \mathbf{I} = 0$	(2.0.3)	
	$\implies \mathbf{A}\mathbf{A}^{\mathrm{T}} = \alpha \mathbf{I}$	(2.0.4)	
	where I is a $m \times m$ identity matrix,		
	$\mathbf{A}\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} \alpha & 0 & 0 & \cdots & 0 \\ 0 & \alpha & 0 & \cdots & 0 \\ & \vdots & & \\ 0 & 0 & 0 & \cdots & \alpha \end{pmatrix}$	(2.0.5)	
	$\mathbf{A}\mathbf{A}^{\mathrm{T}}$ has an eigenvalue α with multiplicity m .		
Eigenvalues of A^TA	We know that, $\mathbf{A}^{T}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{T}$ have same number of non-zero eigenvalues and if one of them has more number of eigenvalues than the other then these eigenvalues are zero. 1. From above, as α is non-zero, $\mathbf{A}^{T}\mathbf{A}$ has α as its eigenvalue with multiplicity 2. $\mathbf{A}^{T}\mathbf{A}$ has 0 as its eigenvalue with multiplicity $n-m$ 3. Therefore, the two distinct eigenvalues of $\mathbf{A}^{T}\mathbf{A}$ are α and 0.		

TABLE 0: Explanation

$A^{T}A$ has exactly two distinct eigenvalues.	True statement
$\mathbf{A}^{T}\mathbf{A}$ has 0 as an eigenvalue with multiplicity $n-m$	True statement
A^TA has α as a non-zero eigenvalue	True statement
$A^{T}A$ has exactly two non-zero distinct eigenvalues.	False statement

TABLE 1: Solution