CS7800: Advanced Algorithms

Lecture II: Linear Programming II

- Duality
- The Ellipsoid Algorithm

Jonathan Ullman 10-14-2022

Geometry of Linear Programs

Algebra

How do we know we found an optimal solution?

Find an upper bound on opt

optimization problem

How do we know we found an optimal solution?

Find an upper bound on opt

optimization problem

optimal value = 800

Derve an upper bound on the optimal value by combining contraints.

Rules: · coefficient on each constraint >,0 · coefficient on each variable greater than that of the objective

The Dual of a Linear Program

primal (P) optimization problem

optimal value = 800

dual (D) optimization problem

```
min 480C+160H+1190M

C,H,M

5C+4H+35M7,13

15C+4H+20M7,23

C,H,M7,O
```

optimal value = 800

- . Any feasible solution to D gives an upper bound on P
- · Any feasible solution to P gives a lower bound on D

The Dual of a Linear Program

primal (P) optimization problem

$$\begin{bmatrix} -y^{\tau} - 1 \\ -\alpha_m - \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}$$

The Dual of a Linear Program

Fact. Can take a dual of an arbitrary LP using the following recipe

Primal (P)	maximize
constraints	$a x = b_i$ $a x \le b$ $a x \ge b_i$
variables	$x_j \ge 0$ $x_j \le 0$ unrestricted

minimize	Dual (D)
y_i unrestricted $y_i \ge 0$ $y_i \le 0$	variables
$a^{T}y \ge c_j$ $a^{T}y \le c_j$ $a^{T}y = c_j$	constraints

Fact: The dual of the dual is the primal

Linear Programming Duality

Thm: If the primal and dual are both feasible and bounded then the value of the primal and dual are equal.

Strong Duality: Proof Sketch

Idea #1: Separating Hyperplane Theorem Thm: If C = IR" is a closed, convex set

Thm: It CEIK is a closed, conserved and zeR" is any point not in C, there exists deR", BER s.t.

O dTx > B for all xeC ② dTz < B

Strong Duality: Proof Sketch

Idea #2: (Farkas' Lemma) Remains to prove that

given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$,

exactly one of the following is true:

(1) There is an $x \in \mathbb{R}^{n}$ s.t. x > 0 and A = b(2) There exists $y \in \mathbb{R}^{m}$ s.t. $y^{T}A > 0$ and $y^{T}b < 0$

$$y^TA \times > 0$$
 for any $\times > 0$

$$\Rightarrow Z \times > 0 \text{ s.t. } A \times = b$$

$$y^Tb < 0$$

Interesting Start: 7(1) => (2)

Strong Duality: Proof Sketch

Given A & IR " and b & R",
exactly one of the following is true:

(1) There is an x & IR" s.t. \$x>0 and Ax=b

(2) There exists y & IR" s.t. y TA>0 and y Tb < 0

"Proof":

• If (1) is false then be Q, so there exists & & IRM s.t.

small trick 7 for all WEQ 76 0

• Goal is to show that setting $y = \alpha$ satisfies (2)

- $y^Tb = \alpha^Tb < O$ (easy)

- $y^TA = \alpha^TA > O$ (harder)

(xTA); is d. (jtb col of A)

elt of Q

therefore dTA; >0 for all j

Strong Duality: Proof Sketch

Idea #3: Apply Farkas, Lemma

(P)
$$\max_{x} c^{T}x$$
 $s.t. Ax = b$
 $x > 0$

V* is the opt value

Application: Zero-Sum Games and the Minimax Thm

· Two players Colin and Rowerd

· Payoff matrix & A & Rman Rowera gets R $\begin{bmatrix} 0 & -i & +i \end{bmatrix}$ Rowera plays: \Rightarrow A; jS $\begin{bmatrix} -1 & +i & 0 \end{bmatrix}$ Colon plays: \Rightarrow Colon ge

· Randomized strategies

Rowers: r=(r,...rm) \(\frac{1}{2}r;=1\) \(\frac{1}{2}\) \(\frac{1}{2}\)

(d.n: c=(c1...(n) [c;=1 c; 30

· How would Colm/Rowena play if helshe went first?

max min rTAc Rouna goes first

Colin ger -A: rTAC = experted payoff to
Rowera

min max rTAc Colm goes first

Application: Zero-Sum Games and the Minimax Thm

Minimax Theorem:

max (min xTAy) = min (max xTAy)

x y x

Rowena goes first

Colin goes first

Proof Sketch via LP Duality:

Application: Zero-Sum Games and the Minimax Thm

max (min xTAy) = min (max xTAy) Minimax Theorem: Colin goes first Rowena goes first Proof Sketch via LP Duality: 1 Write an LP 5.4.

m ンス・Aはかったのりはころ、ハハ 3 Show that Σ x; =1 Rowera and Colm have dual LPs!

Can we solve I mear programs in polynomial time?

1) Find an ellipsoid containing P. How?

(2) Check if the center of the ellipsoid is feasible. How?

3 Find a violated constraint and use it to improve the ellipsoid

Key Theorem (Hard):

Can choose E' so that

$$Vol(E') \approx (1 - \frac{1}{2(n+1)}) Vol(E)$$
 $Vol(E') \approx (1 - \frac{1}{2(n+1)}) Vol(E)$

$$E_{j} = \begin{cases} x: \left(\frac{u}{n+1}\right)_{5} \left(\frac{1}{n+1} - 1\right)_{5} + \frac{u_{5} - 1}{u_{5}} \sum_{i=5}^{n} x_{i} \neq 1 \end{cases}$$

$$\frac{\operatorname{Vol}(E)}{\operatorname{Vol}(E)} = \left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}} \left(\frac{n}{n+1}\right)$$

$$= \left(1 + \frac{1}{n^2-1}\right)^{\frac{n-1}{2}} \left(1 - \frac{1}{n+1}\right)$$

$$\approx \sqrt{n^2-1} \cdot \binom{n-1}{2} \cdot \frac{n^2}{n+1} = \sqrt{2(n+1)} \cdot \frac{1}{2(n+1)}$$

(2) Check if the center of the ellipsoid is fearable. How?

