Tutorat 8

Primimplikantentafel, Methode von Petrick, XOR, Quine-McCluskey, Primimplikanten, Tiefe

Gruppe 9

Präsentator:
Jürgen Mattheis
(juergmatth@gmail.com)

Vorlesung von: Prof. Dr. Scholl

Übungsgruppenbetreuung: Tobias Seufert

21. August 2023

Universität Freiburg, Lehrstuhl für Rechnerarchitektur

Gliederung

Aufgabe 1

Aufgabe 2

Aufgabe 3

Appendix

Aufgabe 1

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Primimplikantentafel

Aufgabe 1.1

/

Lösung 1.1

/

	0000	0001	0100	0101	0110	0111	1000	1010	1100	1110	1111
-00	1		1				1		1		
-1-0			1		1				1	1	
-11-					1	1				1	1
1–0							1	1	1	1	
0-0-	1	1	1	1							
01-			1	1	1	1					

Primimplikantentafel - Anwenden der Reduktionsregeln in richtiger Reihenfolge

Lösung 1.1

/

	0001	0110	0111	1000	1010	1100	1110	1111
-00				1		1		
-1-0		1				1	1	
-11-		1	1				1	1
1–0				1	1	1	1	
0-0-	1							
01-								

Aufgabe 1 II

Primimplikantentafel - Anwenden der Reduktionsregeln in richtiger Reihenfolge

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Aufgabe 1 III

Primimplikantentafel - Anwenden der Reduktionsregeln in richtiger Reihenfolge

Primimplikantentafel - Anwenden der Reduktionsregeln in falscher Reihenfolge

2. Regel: 0000, 0100, 0101 dominieren 0001 ⇒ Lösche 0000, 0100 und 0101

1-0

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

1

1

Aufgabe 1 II

Primimplikantentafel - Anwenden der Reduktionsregeln in falscher Reihenfolge

Lösung 1.1

V

9/34

	0001	1000	1010	1100	1111
-00		1		1	
-1-0				1	
-11-					1
1–0		1	1	1	
0-0-	1				
01-					

▶ 2. Regel: 0110, 0111 und 1110 dominieren 1111 ⇒ Lösche 0110, 0111 und 1110

Aufgabe 1 III

Primimplikantentafel - Anwenden der Reduktionsregeln in falscher Reihenfolge

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Aufgabe 1 IV

Primimplikantentafel - Anwenden der Reduktionsregeln in falscher Reihenfolge

Aufgabe 2

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Methode von Petrick

Voraussetzungen 2.1

- ightharpoonup Absorption: A + AB = A
- \blacktriangleright Korollar: AA = A

Aufgabe 2 II

Methode von Petrick

Aufgabe 2.3

 a
 b
 c
 d
 e
 f

 A
 1
 1
 1
 ...

 B
 1
 1
 1
 1
 ...

 C
 ...
 1
 1
 1
 1

 D
 1
 ...
 1
 1
 ...

 E
 ...
 1
 1
 1
 ...
 1

 F
 1
 1
 ...
 1
 ...
 1

- Primimplikanten: $\{A, B, C, D, E, F\}$

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

:/

Aufgabe 2 III

Methode von Petrick

Lösung 2.1

15/34

	а	Ь	С	e	f
Α		1			
В	1		1		
С			1		1
D		1		1	
Ε			1	1	
F	1	1			1

Regel 2: d dominiert $c \Rightarrow L\"{o}sche d$.

Aufgabe 2 IV

Methode von Petrick

Lösung 2.1

16/34

	a	b	С	е	f
В	1		1		
С			1		1
D		1		1	
Ε			1	1	
F	1	1			1

Regel 3: D (oder F) dominiert $A \Rightarrow L\"{o}sche A$

Aufgabe 2 V

Methode von Petrick

Lösung 2.1

Z

17/34

	a	Ь	С	e	f
В	1		1		
С			1		1
D		1		1	
Ε			1	1	
F	1	1			1

Keine weitere Reduktionsregel mehr anwendbar ⇒ Petrick

Aufgabe 2 VI

Methode von Petrick

Lösung 2.1

1

18/34

Petrick:

```
(B+F) \underbrace{(D+F)}_{\text{überdecken a überdecken b}} \underbrace{(B+C+E)(D+E)(C+F)}_{\text{usw.}}
= (BD+BF+FD+F) \cdot (BD+BE+CD+CE+ED+E) \cdot (C+F)
= (BD+BF+FD+F) \cdot (BDC+BEC+CD+CE+EDC+BDF+BEF+CDF+CEF+EDF+EF)
= (BD+BF+FD+F) \cdot (CD+CE+BDF+EF)
= BDC+BDCE+BDF+BDEF+BFCD+BFCE+BFD+BFE+FDC+FDCE+FDB+FDE+FCD+FCE+FBD+FE
= BDC+BDF+BFD+FDC+FBD+FE
```

Jürgen Mattheis Tutorat 8. Gruppe 9 Universität Freiburg

Aufgabe 3

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Lösung 3.1

/

20 / 34

► Minterme: x'₁x'₂x₃, x'₁x₂x'₃, x₁x'₂x'₃, x₁x₂x₃ ► Quine-McCluskev:

$L_0^{x_1,x_2,x_3}$
001
010
100
111

- $ightharpoonup Prim(xor_3) = \emptyset$
- Es gibt keine Kombinationsmöglichkeiten der Minterme aus L₀. Daher sind alle L₁-Mengen leer und die Primmenge im nächsten Schritt enthält alle vier Minterme. Der Grund ist, dass sich alle Minterme in (mindestens) zwei Literalen unterscheiden, d.h. alle Minterme sind Primimplikanten.

Aufgabe 3 II

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Aufgabe 3 III

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Lösung 3.2

V

 $\bigvee (x_1^{b_1} \wedge \ldots \wedge x_n^{b_n})$, wobei $x_i^0 := x_i'$ und $x_i^1 := x_i$

 $(b_1,\ldots,b_n){\in}\mathbb{B}^n$ mit $\sum_{i=1}^n b_i$ ungerade

Der angegebene Ausdruck ist die Disjunktion aller Minterme für xor_n. In Aufgabenteil a) haben wir schon gesehen, dass alle Minterme wesentlich sind um xor_n darzustellen, da weder durch Quine-McCluskey noch Primimplikantentafel Reduktionen erreicht werden können. Deswegen beschreibt auch hier die Disjunktion der Minterme das Minimalpolynom. Es sind 2ⁿ⁻¹ Primimplikanten, je mit Länge n.

Voraussetzungen 3.3

22 / 34

 \triangleright $xor_n(x_1,...,x_n) = g(xor_i(x_1,...,x_i),xor_{n-i}(x_{i+1},...,x_n))$ für $1 \le i \le n-1$

Aufgabe 3 IV

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Lösung 3.3

23 / 34

- Sei $b_1 := xor_i(x_1, ..., x_i), b_2 := xor_{n-i}(x_{i+1}, ..., x_n)$
 - 1. Fall $b_1 = 0$, $b_2 = 0$:

Dann ist
$$\sum_{j=1}^{i} x_j$$
 gerade, $\sum_{j=i+1}^{n} x_j$ gerade $\Rightarrow \sum_{j=1}^{n} x_j$ gerade $\Rightarrow g(0,0) = 0 = xor_2(0,0)$

2. Fall $b_1 = 1$, $b_2 = 0$:

Dann ist
$$\sum_{j=1}^{j} x_j$$
 ungerade, $\sum_{j=i+1}^{n} x_j$ gerade $\Rightarrow \sum_{j=1}^{n} x_j$ ungerade $\Rightarrow g(1,0) = 1 = xor_2(1,0)$

3. Fall $b_1 = 0$, $b_2 = 1$:

Dann ist
$$\sum_{j=1}^{n} x_j$$
 gerade, $\sum_{j=i+1}^{n} x_j$ ungerade $\Rightarrow \sum_{j=1}^{n} x_j$ ungerade $\Rightarrow g(0,1) = 1 = xor_2(0,1)$

4. Fall $b_1 = 1$, $b_2 = 1$:

Dann ist
$$\sum_{j=1}^{n} x_j$$
 ungerade, $\sum_{j=i+1}^{n} x_j$ ungerade $\Rightarrow \sum_{j=1}^{n} x_j$ gerade \Rightarrow $g(1,1) = 0 = xor_2(1,1)$

Aufgabe 3 V

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Aufgabe 3 VI

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Lösung 3.4

V

25/34

▶ Ein balancierter Baum hat die geringste Tiefe. D.h. wähle $i = \lceil \frac{n}{2} \rceil$

Aufgabe 3 VII

XOR, Quine-McCluskey, Primimplikanten, Tiefe

Lösung 3.5

/

26 / 34

Für einen balancierten Baum ist Kosten = #XOR-Gatter = n-1 und längster Pfad = $\lceil log(n) \rceil$. Bzw. da vorgegeben, dass $n = 2^k$ gilt, ist auch log(n) korrekt.

Appendix

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Primimplikantentafel, 1te Regel

b da es nur darum geht, dass alle Minterme vom Anfang abgedeckt sind und die wesentlichen Minterme auf jeden Fall genommen werden müssen, werden auch die Minterme, die sie abdecken auf jeden Fall genommen. Aus diesem Grund ist es nicht mehr notwendig diese Minterme in der Primimplikantentafel miteinzubeziehen, da man Minterme nur in der Primimplikantentafel miteinbezieht, wenn man noch eine Abdeckung für diese Minterme sucht.

Primimplikantentafel, 2te Regel

29 / 34

eines der Momome, das den Minterm abdeckt der dominiert wird, wird irgendwann aufgrund weiterer Reduktionen mit der ersten und dritten Reduktionsregel wesentlich und wird dann genommen. Sobald dieses Monom genommen wird ist es aufgrund der Teilmengenbeziehung sicher, dass dieses Monom auch den Minterm der den ersteren Minterm dominiert hat abdeckt. Der zweitere Minterm ist somit nicht mehr von Interesse für die Primimplikantentafel, weil man bereits eine Abdeckung für diesen Minterm gefunden hat und es nur darum geht. dass man alle Minterme vom Anfang abgedeckt hat.

Primimplikantentafel, 3te Regel

Wenn die On-Menge eines Monoms Teilmenge der On-Menge eines anderen Monoms ist, dann nimmt das Monom mit der größeren On-Menge, da größere ON-Menge weniger Literale bedeutet und somit weniger Kosten. Mit einer größeren On-Menge kann man mehr Minterme auf einmal abdecken und es geht nur darum, dass man am Ende alle Minterme vom Anfang irgendwie abgedeckt hat.

Primimplikantentafel am Hypercube

	0000	0001	0100	0101	0110	0111	1000	1010	1100	1110	1111
0-0-	1	1	1	1							
-00	1		1				1		1		
01-			1	1	1	1					
-11-			1		1				1	1	
-1-0					1	1				1	1
1-0							1	1	1	1	

Primimplikantentafel am Hypercube

	0000	0001	0100	0101	0110	0111	1000	1010	1100	1110	1111
0-0-	1	1	1	1							
-00	1		1				1		1		
01-			1	1	1	1					
-11-			1		1				1	1	
-1-0					1	1				1	1
1–0							1	1	1	1	

 $(\overline{x_0}\overline{x_2}) \vee (x_1\overline{x_3}) \vee (x_0\overline{x_3}), \{0-0-, -1-0, 1--0\}$

Primimplikantentafel am Hypercube

Jürgen Mattheis Tutorat 8, Gruppe 9 Universität Freiburg

Binärbaum, wobei $n = 2^k$

- Anzahl Blätter (vollständiger Binärbaum): $n = 2^d = 2^3 = 8$
- Anzahl Knoten: $k = \sum_{i=0}^{d} 2^i = \frac{2^{d+1} 1}{2 1} = 2^{d+1} 1 =$
- $2^{3+1} 1 = 1 + 2 + 4 + 8 = 15$ Tiefe mithilfe Anzahl Blätter: $d = log_2(n) = log_2(8) = 3$
- ► Tiefe mithilfe Anzahl Knoten (vollständiger Baum):

► Tiefe mithilfe Anzahl Knoten:

$$d = \lfloor (log_2(k_{real})) \rfloor = \lfloor log_2(10) \rfloor = 3$$

$$d = \lfloor (log_2(k_{real})) \rfloor = \lfloor log_2(8) \rfloor = 3$$

$$d = \lfloor (log_2(k_{real})) \rfloor = \lfloor log_2(7) \rfloor = 2$$

