Comp 135 Introduction to Machine Learning and Data Mining

Fall 2016

Professor: Roni Khardon

Computer Science Tufts University

Clustering

- Here we assume data is in \mathbf{R}^n
- (some methods can work with distance directly without assuming \mathbb{R}^n)
- Task: partition data into groups in some sensible way
- There is more than one way to define desirable outcomes. For example ...

comp13

Roni Khardon, Tufts Universit

Clustering Evaluation

- How can we evaluate how good our clustering is?
 - Evaluation by our criterion
 - Evaluation by expert
 - Evaluation by using clustering result for other task.
- Comparing different clustering results (and/or comparing to labels)
 - Evaluation by NMI

comp135

Roni Khardon, Tufts University

Clustering Evaluation

 Sensitivity to feature scaling and transformations

-----105

Visualization from Carla Brodley's slides

Roni Khardon, Tufts University

Clustering

· Basic Definitions and Notation

Partition into
$$C_1, \ldots, C_k$$

$$\mu_j = \frac{1}{|C_j|} \sum_{x \in C_j} x$$

$$\mu = \frac{1}{N} \sum_{j} \sum_{x \in C_i} x$$

comp135

Roni Khardon, Tufts University

Some Clustering Criteria

· (Minimize) Cluster Scatter

$$\mathrm{CS} = \sum_{j} \sum_{x \in C_j} \|x - \mu_j\|^2$$

· (Maximize) Cluster Distance

$$CD = \sum_{j} |C_j| \cdot ||\mu_j - \mu||^2$$

· (Maximize) Spacing

$$Spacing = \min_{i,j} \min_{x \in C_i, y \in C_j} ||x - y||^2$$

comp135

Roni Khardon, Tufts University

Agglomerative Hierarchical Clustering

- · Init: each data point as single cluster
- · Repeat:
 - Find two clusters which are "most similar"
 - Replace them with their union
- This requires a distance function over clusters

comp13

Roni Khardon, Tufts University

Hierarchical Clustering

· Which distance for clusters?

$$d_{min}(C_i, C_j) = \min_{x \in C_i, y \in C_j} ||x - y||^2$$

$$d_{max}(C_i, C_j) = \max_{x \in C_i, y \in C_j} ||x - y||^2$$

$$d_{avg}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i} \sum_{y \in C_j} ||x - y||^2$$

 d_{min} optimizes Spacing and yields MST of data points

comp135

Roni Khardon, Tufts University

Divisive Hierarchical Clustering

- Init: all data points from one cluster
- · Repeat:
 - Pick a cluster and "the best split" of that cluster
 - Replace cluster with its sub-parts
- Requires quality criterion for split; can use distance function over clusters, or a global criterion for the resulting clustering.

comp135

Roni Khardon, Tufts University

k-Means Clustering

- Pick k cluster centers (how?)
- · Repeat:
 - Associate examples with centers pick nearest center
 - Re-calculate means
 as average of examples in cluster
- · Until convergence

comp13

Roni Khardon, Tufts University

Soft k-Means Clustering

- · Pick k cluster centers
- · Repeat:
 - Associate examples with centers
 p_{i,i} ~~ similarity b/w example i and center j
 - Re-calculate means as weighted average of examples in cluster
- Until convergence

comp13

Roni Khardon, Tufts University

k-Means Clustering

- · Result sensitive to initialization
- · Can we get around that?
- Calculation of mean is sensitive to outliers
- · Can we get around that?

comp135

Roni Khardon, Tufts University

k-Medoids Clustering

- Pick k cluster medoids
- · Repeat:
 - Associate examples with medoids pick nearest medoid
 - Re-calculate medoid the example in cluster that has the smallest mean distance to other points in the cluster
- Until convergence

Spectral Clustering

- · Can use any distance function
- · Or a weighted adjacency matrix of graph induced by examples
- To produce "Laplacian" similarity matrix
- Performs standard clustering on eigendecomposition of that matrix
- [details beyond scope of course]

How to Choose k?

- Solution 1:
 - Run algorithm with k=2,3,...
 - Evaluate criterion (e.g. CS) for each run
- · Hope to see big drop in criterion until we get "the right k" and moderate drop after that

How to Choose k?

- Solution 2: BIC criterion add penalty for number of clusters
- BIC = (min criterion) + k log(N)
- = (1/N)CS + k log(N)
- · Increase k:
- CS goes down, penalty goes up
- For some k total starts going up

Comparing Clustering Results

- · Sometimes it is useful to check if two results are close or not
- · For purpose of evaluating new clustering algorithm: we can compare its results to labels on a labeled dataset
- · How? NMI

Mutual Information

Joint entropy: uncertainty/code length for X,Y together
$$H(X,Y) = \sum_x \sum_y p(x,y) \mathrm{log} \frac{1}{p(x,y)}$$

$$H(Y|X) = \sum_{x} \sum_{y} p(x,y) \log \frac{1}{p(y|x)} = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x)}{p(x,y)}$$

Mutual Information: the average code-length-saving for encoding Y due to knowing X $n(x,y) \qquad \qquad n(x,y)$ for encoding X due to knowing Y

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
 for enco

$$= \sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x)} + \sum_{x} \sum_{y} p(x, y) \log \frac{1}{p(y)}$$
$$= H(Y) - H(Y|X) = H(X) - H(X|Y)$$

Comparing Clustering Results

U, V are two clustering results of R and C clusters respectively

$\mathbf{U} \backslash \mathbf{V}$	V_1	V_2		V_C	Sums
U_1	n_{11}	n_{12}		n_{1C}	a_1
U_2	n_{21}	n_{22}		n_{2C}	a_2
÷	÷	÷	٠.	÷	:
U_R	n_{R1}	n_{R2}		n_{RC}	a_R
Sums	b_1	b_2		b_C	$\sum_{ij} n_{ij} = N$

Table 1: The Contingency Table, $n_{ij} = |U_i \cap V_j|$

[from Vinh, Epps, Bailey 2010]

Comparing Clustering Results

$$\begin{split} H(\mathbf{U}) &= -\sum_{i=1}^R \frac{a_i}{N} \log \frac{a_i}{N}, \\ H(\mathbf{U}, \mathbf{V}) &= -\sum_{i=1}^R \sum_{j=1}^C \frac{n_{ij}}{N} \log \frac{n_{ij}}{N}, \\ H(\mathbf{U}|\mathbf{V}) &= -\sum_{i=1}^R \sum_{j=1}^C \frac{n_{ij}}{N} \log \frac{n_{ij}/N}{b_j/N}, \end{split}$$

 $I(\mathbf{U}, \mathbf{V}) = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{n_{ij}}{N} \log \frac{n_{ij}/N}{a_i b_j/N^2}.$

[from Vinh, Epps, Bailey 2010]

Comparing Clustering Results

- Mutual Information is sensitive to the number of clusters so that partitions into more clusters will artificially have higher mutual information
- Normalized Mutual Information corrects for that. Multiple formulations exist. Here we divide by the average entropy:

$$NMI_{sum} = \frac{2I(\mathbf{U}, \mathbf{V})}{H(\mathbf{U}) + H(\mathbf{V})}$$

[from Vinh, Epps, Bailey 2010]

Clustering

- Data Exploration
- · Evaluation by ...
- · Several possible criteria
- · Hierarchical vs. k-way-partition
- · Several algorithms discussed
- · Model selection (pick k)
- · Comparing different partitions