NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{N_0 B}{1}$
- C) $\frac{N_0}{2B}$
- **D)** altro

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- **B)** $2f_0$
- C) non esiste tale frequenza
- **D)** $3f_0$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- **C**) $3f_0$
- \mathbf{D}) f_0

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.

- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$
- **D)** $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) $\frac{N_0}{2B}$
- **D**) $\frac{N_0 B}{1}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) B
- **D)** 4B

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 > 1$; $b_i \neq 0$ per 0 < i < 7.

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- **B**) 0
- C) altro
- **D**) $\frac{2N_0}{B}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.

D) H(z) non contiene poli nell'origine.

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B)** $2N_0B$
- C) altro
- $\mathbf{D)} \ \ \frac{2N_0}{B}$

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- B) non esiste tale frequenza
- **C**) 4B
- **D**) 2B

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	Ŀ				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 6B
- **C**) 2B
- **D**) 3B

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- **B**) 0
- C) altro
- $\mathbf{D)} \ \ \tfrac{N_0}{B}$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **C)** $b_0 = 0.25; b_i = 0 \text{ per } i \text{ dispari.}$
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{R}$
- C) N_0B
- **D**) 0

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- B) non esiste tale frequenza
- **C**) $2f_0$
- **D)** $3f_0$

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) nessuna delle altre risposte

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- B) H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 7. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.1; b_i = 0 \text{ per } i \text{ dispari.}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{4N_0}{B}$
- C) $4N_0B$
- D) altro

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di $A \in \theta$

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $2f_0$
- **C**) $f_0 + a$
- D) non esiste tale frequenza

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- B) altro
- \mathbf{C}) 0
- **D**) $\frac{2N_0}{R}$

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- **B)** $2f_0$
- **C**) $3f_0$
- **D)** non esiste tale frequenza

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=1/a.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) x(t) è stazionario per la media per ogni distribuzione di $A \in \theta$
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *B*
- **B**) 2B
- C) non esiste tale frequenza
- **D)** 4B

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B)** $2N_0B$
- C) altro
- **D**) $\frac{2N_0}{R}$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B)** $f_0 + a$
- **C**) a
- D) non esiste tale frequenza

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{B}$
- C) N_0B
- **D**) 0

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) è stazionario per la media per ogni distribuzione di α e β
- **D)** nessuna delle altre risposte
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- B) altro
- C) $\frac{4N_0}{B}$
- **D**) 0

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) a
- **D)** $f_0 + a$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- **B**) 0
- C) $\frac{2N_0}{R}$
- D) altro

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- B) $y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- B) non esiste tale frequenza
- **C**) 2B
- **D)** 4B

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=1/a.
- C) Il filtro è instabile per |a| > 1.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) 0
- C) altro
- **D**) $\frac{N_0 B}{1}$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- D) nessuna delle altre risposte
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- B) non esiste tale frequenza
- **C**) 4B
- **D)** 2B

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm i)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{N_0}{2B}$
- **D**) $\frac{N_0 B}{1}$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) *a*
- **C**) $2f_0$
- D) non esiste tale frequenza

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **E)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- D) nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{B}$
- B) altro
- C) N_0B

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B)** 4B
- C) non esiste tale frequenza
- **D**) *B*

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- B) $\frac{N_0}{B}$
- \mathbf{C}) 0
- **D)** altro

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- B) non esiste tale frequenza
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- B) H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 = 0.025$$
; $b_i = 0$ per $i > 4$.

B)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

C)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \le i \le 7$.

D) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1\pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- B) $\frac{N_0}{B}$
- C) altro
- **D**) 0

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Cognome Matricola Compito 17	Nome	
	Cognome	
Compito 17	Matricola	
	Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) h[n] assume valori non nulli solo per $0 \le n \le N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm i)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{2N_0}{B}$
- B) altro

- **C**) 0
- **D)** $2N_0B$

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) a
- **D)** $f_0 + a$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *B*
- B) non esiste tale frequenza
- **C**) 2B
- **D)** 4B

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{B}$
- B) altro
- \mathbf{C}) 0
- **D)** N_0B

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.

D) Il filtro è instabile per |a| > 1.

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- **B)** $3f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- B) altro
- C) $\frac{4N_0}{B}$
- **D**) 0

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media per ogni distribuzione di α e β
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) $\frac{N_0}{B}$
- **D)** N_0B

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- B) non esiste tale frequenza
- **C**) $f_0 + a$
- **D)** $2f_0$

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **E)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.

D) $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) $\frac{N_0}{R}$
- **D)** N_0B

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** a
- **B)** $f_0 + a$
- **C**) $2f_0$
- D) non esiste tale frequenza

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22
Fserc	igio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $4N_0B$
- **D**) $\frac{4N_0}{B}$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** 4B
- **C**) 2B
- **D**) *B*

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B)** $2f_0$
- **C**) a
- **D)** non esiste tale frequenza

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) 0
- C) altro
- **D**) $\frac{N_0 B}{1}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** 0
- B) altro
- C) $\frac{N_0}{R}$
- **D)** N_0B

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- D) nessuna delle altre risposte

E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *B*
- B) non esiste tale frequenza
- **C**) 2B
- **D)** 4B

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- C) x(t) è stazionario per la media per ogni distribuzione di α e β
- D) nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- **B**) 2*B*
- **C**) B
- D) non esiste tale frequenza

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B)** $4N_0B$
- C) altro
- **D**) $\frac{4N_0}{R}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- $\mathbf{B}) f_0$
- **C**) $2f_0$
- **D)** non esiste tale frequenza

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm i)/2$

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- **B)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) nessuna delle altre risposte

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) 0
- C) altro
- **D**) $\frac{N_0 B}{1}$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- B) non esiste tale frequenza
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ

E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{N_0}{2B}$
- **D**) $\frac{N_0 B}{1}$

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- **B**) 0
- C) altro
- **D)** $2N_0B$

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza

- \mathbf{C}) f_0
- **D)** $3f_0$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome							
Cognome							
Matricola							
Compito	29						

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) $\frac{4N_0}{B}$
- **C**) 0
- D) altro

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1; b_i = 0 \text{ per } i \text{ dispari.}$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B)** 4B
- \mathbf{C}) B
- ${f D})$ non esiste tale frequenza

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 = 0.025$$
; $b_i = 0$ per $i > 4$.

B)
$$b_0 = 0.025$$
; $b_i = 0$ per *i* dispari.

C)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \le i \le 7$.

D)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) nessuna delle altre risposte

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- B) non esiste tale frequenza
- C) f_0
- **D)** $2f_0$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) $\frac{4N_0}{R}$
- \mathbf{C}) 0
- **D)** $4N_0B$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 2. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) non esiste tale frequenza

- **B**) 2B
- \mathbf{C}) B
- **D)** 4B

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1\pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- B) altro
- **C**) 0
- $\mathbf{D)} \ \ \tfrac{N_0}{B}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- **B)** $2f_0$
- **C**) $3f_0$
- **D)** non esiste tale frequenza

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **C)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{2B}$
- C) $\frac{N_0 B}{1}$
- **D**) 0

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{N_0}{2B}$
- **D**) $\frac{N_0 B}{1}$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

E) nessuna delle altre risposte

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- **B)** $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- B) non esiste tale frequenza
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** Si ha $h[n] = 2^n u[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) N_0B
- C) $\frac{N_0}{B}$
- **D**) 0

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.

- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *B*
- **B**) 2B
- C) non esiste tale frequenza
- **D**) 4B

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- B) non esiste tale frequenza
- **C**) 4B
- **D)** 2B

Esercizio 2. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **E)** x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{R}$
- **B**) 0
- C) altro
- **D)** N_0B

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- \mathbf{B}) f_0
- **C**) $2f_0$
- **D)** $3f_0$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) $\frac{N_0 B}{1}$
- **B**) $\frac{N_0}{2B}$
- **C**) 0
- D) altro

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di A e θ
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- B) non esiste tale frequenza
- **C**) 2B
- **D**) *B*

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=1/a.
- C) Il filtro è instabile per |a| > 1.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{B}$
- $\mathbf{B)} \ N_0 B$
- **C**) 0
- D) altro

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 7. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- B) $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 3B
- C) non esiste tale frequenza
- **D)** 2B

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) 0
- C) altro
- **D**) $\frac{N_0 B}{1}$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm i)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B)** $4N_0B$

- C) $\frac{4N_0}{B}$
- **D**) 0

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$

Esercizio 8. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 6B
- **C**) 3B
- **D)** 2B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** 0
- B) altro
- C) N_0B
- $\mathbf{D)} \ \ \tfrac{N_0}{B}$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) a
- **B)** $2f_0$
- C) non esiste tale frequenza
- **D)** $f_0 + a$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- E) nessuna delle altre risposte

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.

- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) 0
- C) $\frac{4N_0}{B}$
- D) altro

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- $\mathbf{B}) f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) nessuna delle altre risposte

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 3B
- **C**) 2B
- **D)** 6B

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- **B**) 0
- C) $\frac{N_0}{2B}$
- D) altro

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- C) x(t) è stazionario per la media per ogni distribuzione di $A \in \theta$
- **D)** nessuna delle altre risposte
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.

- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- **B)** $2f_0$
- C) f_0
- D) non esiste tale frequenza

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **B)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- C) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** 0
- B) altro
- C) $\frac{N_0 B}{1}$
- $\mathbf{D)} \ \ \tfrac{N_0}{2B}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- B) altro
- C) $4N_0B$
- **D**) 0

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 4. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza

- **C**) 2B
- **D**) 3B

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- **D)** $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

ĺ	Esercizio	1	2	3	4	5	6	7	8
	Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- C) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- D) nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **C)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) *B*
- **C**) 4B
- **D**) 2B

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** 0
- **B**) $\frac{N_0}{2B}$
- C) altro
- **D**) $\frac{N_0 B}{1}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome							
Cognome							
Matricola							
Compito	46						
Eserc	izio 1 2 3 4 5 6 7 8						

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- **B**) 6*B*
- C) non esiste tale frequenza
- **D**) 2B

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* disparia
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) nessuna delle altre risposte

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- **C)** $4N_0B$
- **D**) $\frac{4N_0}{B}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) altro
- **B**) $\frac{N_0}{2R}$
- **C**) 0
- **D**) $\frac{N_0 B}{1}$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- B) non esiste tale frequenza
- **C)** $2f_0$
- **D**) *a*

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- B) altro
- **C)** $2N_0B$
- **D**) 0

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- B) non esiste tale frequenza
- **C**) 2B
- **D**) *B*

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) nessuna delle altre risposte

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0}{2B}$
- **B**) $\frac{N_0 B}{1}$
- \mathbf{C}) 0
- D) altro

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- **C**) 6B
- D) non esiste tale frequenza

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \leq i \leq 7$.

B)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

C)
$$b_0 = 0.025$$
; $b_i = 0$ per $i > 4$.

D)
$$b_0 = 0.025$$
; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0}{2B}$
- B) altro
- C) $\frac{N_0 B}{1}$
- **D**) 0

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 6. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) 3B
- **B)** 6B
- **C**) 2B
- D) non esiste tale frequenza

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

- C) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 > 1$; $b_i \neq 0$ per 0 < i < 7.

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{B}$
- **B**) 0
- C) altro
- **D)** N_0B

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) *B*
- C) non esiste tale frequenza
- **D)** 4B

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{N_0}{B}$
- **D)** N_0B

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza
- **C**) 2B
- **D)** 3B

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- **B**) 0
- C) $\frac{N_0}{R}$
- D) altro

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- D) nessuna delle altre risposte
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- $\mathbf{B)} \ f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) 4B
- B) non esiste tale frequenza
- \mathbf{C}) B
- **D**) 2B

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- $\mathbf{B)} \ \ \tfrac{2N_0}{B}$

- C) altro
- **D)** $2N_0B$

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** 0
- **B**) $\frac{N_0 B}{1}$
- C) $\frac{N_0}{2B}$
- D) altro

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z = 1/a.

- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- **B**) 2B
- C) non esiste tale frequenza
- **D**) *B*

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{R}$
- C) N_0B
- **D**) 0

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.

- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- B) non esiste tale frequenza
- **C**) 2B
- **D**) *B*

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome										
Cognome										
Matricola										
Compito					5	7				
Eserc	izio	1	2	3	4	5	6	7	8	i i

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- **B**) $\frac{2N_0}{R}$
- **C**) 0
- D) altro

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- **B**) 2B
- \mathbf{C}) B
- **D)** non esiste tale frequenza

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- D) nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58
Faore	igio 1 2 2 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **D)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β

Esercizio 2. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $2N_0B$
- **B**) $\frac{2N_0}{R}$

- C) altro
- **D**) 0

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $2f_0$
- **C)** $f_0 + a$
- **D)** non esiste tale frequenza

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- $\mathbf{B)} \ \ \tfrac{N_0}{2B}$
- **C**) $\frac{N_0 B}{1}$
- D) altro

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) H(z) non contiene poli nell'origine.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 8. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- C) non esiste tale frequenza
- **D**) 6B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- **B**) $\frac{2N_0}{R}$
- C) altro
- **D**) 0

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- **C**) $f_0 + a$
- **D**) *a*

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- B) non esiste tale frequenza
- **C)** $2f_0$
- **D**) *a*

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- **C)** $2N_0B$
- **D**) $\frac{2N_0}{B}$

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** h[n] è anticausale.

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.

D) $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- **B)** $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{2B}$
- **C**) $\frac{N_0 B}{1}$
- **D**) 0

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome								
Cognome								
Matricola								
Compito				6	3			
	_	_	_			_	 _	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- **B)** $2N_0B$
- C) altro
- **D**) 0

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 > 1$; $b_i \neq 0$ per 0 < i < 7.

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- **B)** $2f_0$
- **C**) $3f_0$
- D) non esiste tale frequenza

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) nessuna delle altre risposte

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Cognome Matricola	Nome	
	Cognome	
	Matricola	
Compito 64	Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{N_0}{2B}$
- **D**) $\frac{N_0 B}{1}$

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza
- **C**) 2B
- **D**) 3B

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) nessuna delle altre risposte

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) $\frac{4N_0}{B}$

- C) altro
- **D**) 0

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 6. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 6B
- **C**) 3B
- D) non esiste tale frequenza

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos\left(2\pi f_0 t\right) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- B) f_0
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- B) $\frac{N_0}{R}$
- **C**) 0
- D) altro

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 3. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- B) non esiste tale frequenza
- \mathbf{C}) f_0

D) $2f_0$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{4N_0}{R}$
- **D)** $4N_0B$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- D) nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- **B**) 0
- **C)** $4N_0B$
- D) altro

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B)** 4B
- C) non esiste tale frequenza
- **D**) *B*

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$
- **D)** $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- C) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome							
Cognome							
Matricola							
Compito			6	9			
					I a		

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B)** 6B
- **C**) 3B
- D) non esiste tale frequenza

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{R}$
- **B**) 0
- C) altro
- **D)** N_0B

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) $\frac{N_0 B}{1}$
- C) altro
- **D**) 0

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm i)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- **C**) $3f_0$
- $\mathbf{D}) f_0$

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 3B
- C) non esiste tale frequenza
- **D**) 2B

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{N_0 B}{1}$
- C) $\frac{N_0}{2R}$
- **D)** altro

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) è stazionario per la media per ogni distribuzione di α e β

- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- **B**) 0
- **C**) $2N_0B$
- D) altro

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B)** 6B
- **C**) 3B
- D) non esiste tale frequenza

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B)** $4N_0B$
- **C**) 0
- **D**) $\frac{4N_0}{R}$

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2(1\pm j)/4}$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **E)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- B) non esiste tale frequenza
- **C**) $2f_0$
- **D**) *a*

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- **B)** $2f_0$
- C) non esiste tale frequenza
- $\mathbf{D}) f_0$

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** h[n] è anticausale.

Esercizio 7. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- **B**) 0
- **C)** $2N_0B$
- D) altro

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7.	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
		izio	1	2	3	4	5	6	7	8	į

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

Risposta

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- B) altro
- **C**) 0
- **D**) $\frac{2N_0}{B}$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media per ogni distribuzione di $A \in \theta$

Esercizio 7. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- \mathbf{C}) f_0
- **D)** $3f_0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	76

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- **C**) $2f_0$
- D) non esiste tale frequenza

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) nessuna delle altre risposte

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z = 1/a.

- C) Il filtro è instabile per |a| > 1.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B)** $2N_0B$
- **C**) 0
- **D**) $\frac{2N_0}{B}$

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

A) $2f_0$

- **B**) *a*
- **C**) $f_0 + a$
- D) non esiste tale frequenza

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- **B**) 0
- C) altro
- **D)** $4N_0B$

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	78
Eserc	izio 1 2 3 4 5 6 7 8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **D)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- E) nessuna delle altre risposte

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) 2B
- **B**) *B*
- C) non esiste tale frequenza
- **D)** 4B

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) $\frac{4N_0}{B}$
- **C)** $4N_0B$
- **D**) 0

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- **B**) $\frac{N_0}{2B}$
- **C**) 0
- D) altro

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.

- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 8. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 2B
- C) non esiste tale frequenza
- **D**) 3B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) nessuna delle altre risposte

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) a
- **D)** $f_0 + a$

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.

- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- **C)** $2N_0B$
- **D**) $\frac{2N_0}{R}$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- **C)** $4N_0B$
- **D**) $\frac{4N_0}{R}$

Esercizio 2. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- \mathbf{C}) f_0
- **D)** $3f_0$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) $\frac{N_0 B}{1}$
- **C**) 0
- D) altro

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza
- **C**) 3B
- **D**) 2B

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di A e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) B
- B) non esiste tale frequenza
- **C**) 4B
- **D)** 2B

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- **B)** $4N_0B$
- C) altro
- **D**) 0

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					8	4				
	Eserci	izio	1	2	3	4	5	6	7	8	j

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- **C)** $4N_0B$
- **D**) $\frac{4N_0}{B}$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) altro
- $\mathbf{B)} \ \ \tfrac{N_0}{2B}$
- **C**) $\frac{N_0 B}{1}$
- **D**) 0

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.

D) h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) $3f_0$
- $\mathbf{D}) f_0$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **B)** $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- **B**) 0
- C) altro
- **D)** $2N_0B$

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **B)** $y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- C) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $f_0 + a$
- **C**) a
- **D)** $2f_0$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- B) H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) è stazionario per la media per ogni distribuzione di α e β
- **D)** nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- $\mathbf{B)} \ f_0$
- **C**) $2f_0$
- **D)** $3f_0$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **B)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- C) $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) 0
- C) altro
- **D**) $\frac{4N_0}{B}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **D)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) $\frac{N_0}{B}$
- C) altro
- **D)** N_0B

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.

- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 4B
- **C**) B
- D) non esiste tale frequenza

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2(1\pm j)/4}$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z=1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- **B**) 0
- C) altro
- **D**) $\frac{2N_0}{B}$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) *B*
- **C**) 2B
- **D)** 4B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- $\mathbf{B}) f_0$
- **C**) $3f_0$
- **D)** non esiste tale frequenza

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) nessuna delle altre risposte

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0}{2B}$
- **B**) 0
- C) $\frac{N_0B}{1}$
- D) altro

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- B) non esiste tale frequenza
- **C)** $2f_0$
- $\mathbf{D}) f_0$

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) $\frac{N_0}{2B}$
- **D**) $\frac{N_0 B}{1}$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $f_0 + a$
- **C**) a
- **D)** $2f_0$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) $\frac{4N_0}{R}$
- **D)** $4N_0B$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) a
- **D)** $f_0 + a$

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) $\frac{4N_0}{B}$
- B) altro
- **C**) 0
- **D)** $4N_0B$

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- **B)** $2f_0$
- C) f_0
- **D)** non esiste tale frequenza

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.

- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \leq i \leq 7$.

B)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

C)
$$b_0 = 0.25$$
; $b_i = 0$ per *i* dispari.

D)
$$b_0 = 0.25$$
; $b_i = 0$ per $i > 4$.

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) N_0B
- C) $\frac{N_0}{R}$
- D) altro

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- B) altro
- **C**) 0
- $\mathbf{D)} \ \ \tfrac{N_0}{R}$

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) *a*
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 5. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	96

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- **B**) 6*B*
- **C**) 2B
- **D)** non esiste tale frequenza

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di A e θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- B) $\frac{N_0}{B}$
- C) altro
- **D**) 0

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$
- C) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- B) H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{4N_0}{B}$
- **D)** $4N_0B$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $2f_0$
- **C**) $f_0 + a$
- D) non esiste tale frequenza

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B)** $2N_0B$
- C) $\frac{2N_0}{R}$
- **D**) 0

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) *B*
- **C**) 2B
- **D)** 4B

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- **B)** $4N_0B$
- **C**) 0
- D) altro

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- C) f_0
- **D)** $3f_0$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta

- A) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) nessuna delle altre risposte

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	100

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) nessuna delle altre risposte

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- B) altro
- **C**) 0
- **D**) $\frac{2N_0}{B}$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 6B
- C) non esiste tale frequenza
- **D**) 3B

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	101

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- B) x(t) è stazionario per la media per ogni distribuzione di $A \in \theta$
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) nessuna delle altre risposte

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $f_0 + a$
- **C**) $2f_0$
- **D**) *a*

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm i)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{B}$
- C) N_0B
- **D**) 0

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- **B)** $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	102

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- **B)** $2f_0$
- C) non esiste tale frequenza
- **D)** $3f_0$

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{4N_0}{R}$
- C) altro
- **D)** $4N_0B$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome									
Cognome									
Matricola									
Compito	103								
	 1	0	10	1	T P	- C		Ι.ο.	i

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 3f₀
- C) f_0
- **D)** $2f_0$

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) 0
- C) $\frac{N_0B}{1}$
- **D)** altro

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$
- D) nessuna delle altre risposte
- **E)** x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** Si ha $h[n] = 2^n u[n]$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	104

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- \mathbf{B}) f_0
- **C**) $3f_0$
- **D)** $2f_0$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$
- E) nessuna delle altre risposte

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.

D) h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) N_0B
- D) $\frac{N_0}{R}$

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	105

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- **D)** x(t) è stazionario per la media per ogni distribuzione di A e θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) $\frac{4N_0}{B}$
- **B**) 0
- C) altro
- **D)** $4N_0B$

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- B) non esiste tale frequenza
- **C**) 3B
- **D**) 2B

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome										
Cognome										
Matricola										
Compito		106								
Faore	iaio									

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media per ogni distribuzione di $A \in \theta$
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- $\mathbf{B)} \ \ \tfrac{N_0}{2B}$
- **C**) 0
- D) altro

Esercizio 6. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- C) non esiste tale frequenza
- **D**) 6B

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito		107								
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

Risposta

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 2. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 2B
- **C**) 6B
- **D**) 3B

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) 0
- C) $\frac{4N_0}{B}$
- D) altro

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm i)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	108

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- B) non esiste tale frequenza
- C) f_0
- **D)** $2f_0$

Esercizio 2. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{2N_0}{R}$
- C) altro
- **D)** $2N_0B$

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	109

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- B) non esiste tale frequenza
- **C**) 2B
- **D**) *B*

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ

- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) nessuna delle altre risposte

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- **D)** $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- **C)** $2N_0B$
- **D**) $\frac{2N_0}{B}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	110

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) 4B
- **B**) 2B
- C) non esiste tale frequenza
- **D**) *B*

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) 0
- **C**) $\frac{N_0 B}{1}$
- D) altro

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	111

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- **B**) 6B
- **C**) 2B
- D) non esiste tale frequenza

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **C)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** 0
- **B**) $\frac{2N_0}{R}$
- C) altro
- **D)** $2N_0B$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	112

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- B) altro
- **C**) 0
- $\mathbf{D}) \ \tfrac{N_0}{2B}$

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- **B)** $2f_0$
- **C**) $3f_0$
- D) non esiste tale frequenza

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	113

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** B
- **B**) 2*B*
- C) non esiste tale frequenza
- **D**) 4B

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** 0
- **B**) $\frac{2N_0}{B}$
- **C)** $2N_0B$
- **D)** altro

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- **D)** nessuna delle altre risposte
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	114

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- A) $\frac{N_0}{2B}$
- **B**) $\frac{N_0 B}{1}$
- C) altro
- **D**) 0

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *a*
- **B)** $2f_0$
- **C**) $f_0 + a$
- **D)** non esiste tale frequenza

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- **B)** $y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- D) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	115

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 < 1$; $b_i \neq 0$ per 0 < i < 7.
- C) $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{N_0}{R}$
- **D)** N_0B

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

A) x(t) è stazionario per la media per ogni distribuzione di A e θ

- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) nessuna delle altre risposte

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- $\mathbf{A}) f_0$
- **B)** $3f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	116

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- **B)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- B) non esiste tale frequenza
- **C**) a
- **D)** $2f_0$

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- B) $\frac{N_0}{2B}$
- C) altro
- **D**) 0

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	117

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) $\frac{N_0}{2B}$
- **B**) $\frac{N_0 B}{1}$
- **C**) 0
- D) altro

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $3f_0$
- B) non esiste tale frequenza
- **C)** $2f_0$
- $\mathbf{D}) f_0$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- C) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- E) x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n]=x[n]-\left(\frac{1}{2}\right)^Nx[n-N]+\frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	118

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{R}$
- **B)** $4N_0B$
- **C**) 0
- D) altro

Esercizio 2. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 6B
- C) non esiste tale frequenza
- **D**) 3B

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 7. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	119

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) 0
- C) $\frac{4N_0}{R}$
- D) altro

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per i > 4.

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 6B
- **D**) 3B

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	120

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 = 0.1$$
; $b_i = 0$ per $i > 4$.

B)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \le i \le 7$.

C)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

D)
$$b_0 = 0.1$$
; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

B)
$$\frac{4N_0}{B}$$

D)
$$4N_0B$$

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 6. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) a
- **B)** $f_0 + a$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	121

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $2N_0B$
- **B**) $\frac{2N_0}{B}$
- **C**) 0
- D) altro

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** *B*
- B) non esiste tale frequenza
- **C**) 4B
- **D**) 2B

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \leq i \leq 7$.

B)
$$b_0 = 0.25$$
; $b_i = 0$ per $i > 4$.

C)
$$b_0 = 0.25$$
; $b_i = 0$ per *i* dispari.

D)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	122

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B)** $4N_0B$
- C) $\frac{4N_0}{R}$
- D) altro

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- ${\bf C})\,$ non esiste tale frequenza
- **D**) 6B

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ

- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	123

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) $\frac{N_0}{2B}$
- **B**) 0
- C) $\frac{N_0 B}{1}$
- D) altro

Esercizio 4. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi^n} \delta(t - nT)$$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** f_0
- **B)** $3f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	124

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- B) non esiste tale frequenza
- **C**) 6B
- **D**) 2B

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{2N_0}{B}$
- **C)** $2N_0B$
- D) altro

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.1; b_i = 0 \text{ per } i \text{ dispari.}$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- E) nessuna delle altre risposte

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	125

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- **B**) 0
- C) altro
- $\mathbf{D)} \ \ \tfrac{N_0}{B}$

Esercizio 2. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- **E)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 6. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 6B
- **D**) 3B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	126

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- **B**) 0
- **C)** $4N_0B$
- D) altro

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- **B)** $3f_0$
- C) f_0
- D) non esiste tale frequenza

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	127

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- C) non esiste tale frequenza
- **D)** 6*B*

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

D) $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- **B**) 0
- C) $\frac{4N_0}{B}$
- **D)** $4N_0B$

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	128

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- **B)** $4N_0B$
- C) $\frac{4N_0}{B}$
- D) altro

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) *a*
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	129

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 4B
- C) non esiste tale frequenza
- **D**) *B*

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{R}$
- C) N_0B
- **D**) 0

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	130

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$$

B)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 4. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) $\frac{2N_0}{B}$

- C) altro
- **D)** $2N_0B$

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 8. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 3B
- C) non esiste tale frequenza
- **D)** 6B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	131

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) *a*
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- C) x(t) è stazionario per la media per ogni distribuzione di A e θ
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 4. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.

- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 6. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{B}$
- **B**) 0
- C) altro
- **D)** N_0B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	132

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- **C)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B)** 4B
- **C**) B

D) non esiste tale frequenza

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- D) nessuna delle altre risposte
- **E)** x(t) è stazionario per la media per ogni distribuzione di α e β

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** 0
- **B**) $\frac{N_0}{2B}$
- C) altro
- **D**) $\frac{N_0 B}{1}$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	133

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 4B
- B) non esiste tale frequenza
- **C**) B
- **D)** 2B

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- B) altro
- C) $\frac{N_0}{2R}$
- **D**) 0

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 4. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 > 1$; $b_i \neq 0$ per 0 < i < 7.

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	134

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- D) nessuna delle altre risposte
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 3. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) f_0
- **B)** $3f_0$
- **C)** $2f_0$
- D) non esiste tale frequenza

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A)** $\frac{N_0 B}{1}$
- **B**) $\frac{N_0}{2B}$
- C) altro
- **D**) 0

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t nT)$
- C) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	135

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- **A)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$
- B) $y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) 6*B*
- **C**) 3B

D) 2B

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- **B**) 0
- C) $\frac{N_0}{B}$
- D) altro

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- **D)** nessuna delle altre risposte
- E) x(t) è stazionario per la media per ogni distribuzione di α e β

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	136

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) x(t) è stazionario per la media per ogni distribuzione di A e θ

Esercizio 2. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $f_0 + a$

- **C)** $2f_0$
- **D**) *a*

Esercizio 5. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{2N_0}{R}$
- **D)** $2N_0B$

Esercizio 8. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	137

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma>0,\ r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- **D)** x(t) è stazionario per la media per ogni distribuzione di γ e θ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n]=x[n]-\left(\frac{1}{2}\right)^Nx[n-N]+\frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A) $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) altro
- B) $\frac{N_0}{R}$
- **C**) 0
- **D)** N_0B

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $2f_0$
- B) non esiste tale frequenza
- **C**) a
- **D)** $f_0 + a$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	138

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **C)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 3. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- C) nessuna delle altre risposte
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) *B*
- **C**) 2B
- **D)** 4B

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 6. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 7. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{2N_0}{B}$
- **B)** $2N_0B$
- **C**) 0
- D) altro

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	139

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi (t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/4 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{2}{T}$, la media di m(t) vale

- **A**) 0
- **B**) $\frac{N_0}{2R}$
- C) altro
- **D**) $\frac{N_0 B}{1}$

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 4. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A**) f_0
- **B)** $3f_0$
- C) non esiste tale frequenza
- **D)** $2f_0$

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero

Esercizio 6. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- B) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- C) nessuna delle altre risposte
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- E) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.1$; $b_i = 0$ per i > 4.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 8. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	140

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- **D)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di A e θ
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 2. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin[3\pi (tB+2k)]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 3B
- **B**) 2B
- \mathbf{C}) 6B
- D) non esiste tale frequenza

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 = 0.025$$
; $b_i = 0$ per $i > 4$.

- **B)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- C) $b_0 > 1$; $b_i \neq 0$ per 0 < i < 7.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n]=x[n]-\left(\frac{1}{2}\right)^Nx[n-N]+\frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- **B**) $\frac{4N_0}{R}$
- **C**) 0
- D) altro

Esercizio 7. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

- A) $y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$
- B) $y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- C) $y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$
- **D)** $y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t nT)$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

N	ome										
Cog	gnome										
Mat	tricola										
Con	mpito		141								
	Eserci	zio	1	2	3	4	5	6	7	8	

Esercizio 1. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

Risposta

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- **A)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- C) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- **D)** nessuna delle altre risposte
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 5. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- B) altro
- **C)** $4N_0B$
- **D**) 0

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 7. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B**) *B*
- **C**) 2B
- **D)** 4B

Esercizio 8. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	142

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- **B**) 0
- C) altro
- \mathbf{D}) $\frac{N_0}{R}$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) nessuna delle altre risposte

Esercizio 3. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 4B
- **D**) *B*

Esercizio 4. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 = 0.25$$
; $b_i = 0$ per $i > 4$.

B)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

C)
$$b_0 = 0.25$$
; $b_i = 0$ per *i* dispari.

D)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \le i \le 7$.

Esercizio 8. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	143

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** a
- **B)** $2f_0$
- C) non esiste tale frequenza
- **D)** $f_0 + a$

Esercizio 2. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{4N_0}{B}$
- **D)** $4N_0B$

Esercizio 3. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/4, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{2}{B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

C)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$
- **D)** x(t) è stazionario per la media per ogni distribuzione di α e β
- E) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α

Esercizio 5. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 = 0.025$; $b_i = 0$ per i > 4.
- **D)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.

Esercizio 6. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	144

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

A)
$$b_0 < 1$$
; $b_i \neq 0$ per $0 \leq i \leq 7$.

B)
$$b_0 = 0.025$$
; $b_i = 0$ per *i* dispari.

C)
$$b_0 = 0.025$$
; $b_i = 0$ per $i > 4$.

D)
$$b_0 \ge 1$$
; $b_i \ne 0$ per $0 \le i \le 7$.

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $\frac{4N_0}{B}$
- **B)** $4N_0B$
- **C**) 0
- D) altro

Esercizio 7. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 8. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 6B
- **B**) 3B
- C) non esiste tale frequenza
- **D)** 2B

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	145

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm i)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 2. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **B)** $b_0 = 0.25$; $b_i = 0$ per i > 4.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **D)** $b_0 = 0.25$; $b_i = 0$ per *i* dispari.

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media per ogni distribuzione di α e β
- B) nessuna delle altre risposte
- C) x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β
- **D)** x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **E)** x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\alpha \in \beta$

Esercizio 5. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) $\frac{N_0}{B}$
- B) altro
- C) N_0B
- **D**) 0

Esercizio 7. (2 punti) Il segnale

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{1}{\pi(t+2k/B)} \sin\left[3\pi \left(tB + 2k\right)\right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- B) non esiste tale frequenza
- **C**) 6B
- **D)** 3B

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/5, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = 5T \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = \frac{T}{5} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	146

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 2. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 3. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A)** $4N_0B$
- B) altro
- C) $\frac{4N_0}{R}$
- **D**) 0

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = Ar(t - \theta)$$

in cui A e θ sono due variabili casuali statisticamente indipendenti con varianza finita, r(t) è un impulso rettangolare causale di durata T e ampiezza 1 e A è una variabile casuale sempre positiva.

Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) è stazionario per la media per ogni distribuzione di A e θ
- C) x(t) è stazionario per la media se A è costante, per qualsiasi distribuzione di θ
- **D)** x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di A
- E) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $A \in \theta$

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 6. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e L < 7.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- C) $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** $f_0 + a$
- **B**) *a*
- C) non esiste tale frequenza
- **D)** $2f_0$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	147

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \leq 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.025$; $b_i = 0$ per i > 4.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.

Esercizio 2. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) \frac{\sin(\pi f_0 t)}{\pi t}$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) $3f_0$
- $\mathbf{D}) f_0$

Esercizio 3. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 4. (1 punto) Sia dato il processo casuale

$$x(t) = r_{\alpha}(t - \beta)$$

in cui α e β sono due variabili casuali statisticamente indipendenti con varianza finita, $\alpha > 0$, ed $r_{\alpha}(t)$ è un impulso rettangolare causale di durata α e ampiezza 1. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di α e β
- B) x(t) è stazionario per la media per ogni distribuzione di α e β
- C) x(t) è stazionario per la media se β è costante e per qualsiasi distribuzione di α
- **D)** x(t) è stazionario per la media se α è costante, per qualsiasi distribuzione di β

Esercizio 5. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- **C)** $2N_0B$
- **D**) $\frac{2N_0}{R}$

Esercizio 7. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

B)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	148

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Il segnale

$$x(t) = \cos(2\pi f_0 t) + e^{-at} u(t)$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- A) non esiste tale frequenza
- **B)** $2f_0$
- **C**) a
- **D)** $f_0 + a$

Esercizio 2. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.1 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 = 0.025$; $b_i = 0$ per *i* dispari.
- **B)** $b_0 < 1$; $b_i \neq 0$ per $0 \le i \le 7$.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.025$; $b_i = 0$ per i > 4.

Esercizio 5. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 6. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < 2B e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + \mathrm{e}^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- **A**) 0
- B) altro
- C) $\frac{4N_0}{R}$
- **D)** $4N_0B$

Esercizio 7. E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{(-1)^n}{\pi n} \delta(t - nT)$$

D)
$$y(t) = T \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

Esercizio 8. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) nessuna delle altre risposte
- B) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di $\gamma \in \theta$
- C) x(t) è stazionario per la media per ogni distribuzione di γ e θ
- **D)** x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- E) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MA-IUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	149

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) E' dato un filtro passabasso ideale con frequenza di taglio B e attenuazione 1/2, al cui ingresso è posto un segnale x(t) avente spettro $X(f) = \sum_{n=-\infty}^{+\infty} \delta(f-n/T)$. Qual è il segnale y(t) all'uscita del filtro?

A)
$$y(t) = \frac{T}{2} \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

B)
$$y(t) = \frac{T}{4} \sum_{n=-\infty}^{+\infty} \frac{\sin \pi B(t-nT)}{\pi(t-nT)}$$

C)
$$y(t) = \sum_{n=-\infty}^{+\infty} \frac{\sin 2\pi B(t-nT)}{\pi(t-nT)}$$

D)
$$y(t) = \frac{1}{2B} \sum_{n=-\infty}^{+\infty} \frac{\sin(n/T)}{n} \delta(t - nT)$$

Esercizio 2. (1 punto) Sia dato il processo casuale

$$x(t) = Ar_{\gamma}(t - \theta)$$

in cui γ e θ sono due variabili casuali statisticamente indipendenti con varianza finita, $\gamma > 0$, $r_{\gamma}(t)$ è un impulso rettangolare causale di durata γ e ampiezza 1 e A è una costante positiva. Indicare quale delle seguenti affermazioni è corretta.

- A) x(t) è stazionario per la media se θ è costante e per qualsiasi distribuzione di γ
- B) x(t) è stazionario per la media se γ è costante, per qualsiasi distribuzione di θ
- C) x(t) non è mai stazionario per la media, qualsiasi siano le distribuzioni di γ e θ
- **D)** nessuna delle altre risposte
- **E)** x(t) è stazionario per la media per ogni distribuzione di γ e θ

Esercizio 3. (1.5 punti) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z=1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1 punto) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 5. (1.5 punti) Il segnale

$$x(t) = \frac{1}{\pi^2 t^2} \left[\sin^2 \left(\frac{\pi t B}{2} \right) - \sin^2 \left(\pi t B \right) \right]$$

viene campionato per una conversione A/D. Indicare qual è la minima frequenza di campionamento che consente un'esatta ricostruzione del segnale a partire dai suoi campioni.

- **A)** 2B
- **B**) 4B
- **C**) B
- D) non esiste tale frequenza

Esercizio 6. (1 punto) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (1.5 punti) Un filtro numerico reale e causale ha una funzione di trasferimento con tre zeri $w_i = e^{ji\pi/4}$ (i = 1, 2, 3). Il filtro è realizzato per mezzo di un filtro trasversale con L coefficienti b_i . Inoltre H(z) è uguale a 0.4 quando z = 1 e $L \le 7$.

Dire quali delle seguenti affermazioni è vera.

- **A)** $b_0 < 1$; $b_i \neq 0$ per $0 \leq i \leq 7$.
- **B)** $b_0 = 0.1$; $b_i = 0$ per *i* dispari.
- C) $b_0 \ge 1$; $b_i \ne 0$ per $0 \le i \le 7$.
- **D)** $b_0 = 0.1$; $b_i = 0$ per i > 4.

Esercizio 8. (1 punto) Un processo casuale n(t) gaussiano, stazionario, con spettro di potenza $G_n(f)$ pari a $N_0/2$ per |f| < B/2 e nullo altrove passa attraverso un sistema LTI con funzione di trasferimento $H(f) = 1 + e^{-j2\pi fT}$. Il processo in uscita da tale sistema viene quindi elevato al quadrato. Sia m(t) il risultato di tale operazione. Nel caso $B = \frac{1}{T}$, la media di m(t) vale

- A) N_0B
- **B**) 0
- C) altro
- $\mathbf{D)} \ \ \tfrac{N_0}{B}$