Programa para Excelência em Microeletrônica

Módulo: Nivelamento

Matéria: Sistemas Digitais

Desenvolvimento de um Microcomputador

Aluno: Marlon Renan Melo da Costa

SUMÁRIO

ntrodução	3
eoria	3
Desenvolvimento do Projeto	4
ULA	4
Somador/Subtrator	4
Acumulador A	4
Registrador B	4
Unidade de controle	6
Contador de Programa	6
Registrador de instruções	6
Controlador-Sequencializador	7
Registrador de saída	. 10
Conclusões	. 11

INTRODUÇÃO

O projeto desenvolvido consiste de um processador SAP-1, este inicialmente proposto por Alberto Paul Malvino no seu livro Microcomputadores e Microprocessadores.

O objetivo deste projeto é compreender o funcionamento de um processador de forma sequencial, realizando instrução a instrução.

TEORIA

Especificamente, o SAP-1 é um circuito lógico que implementa uma máquina de estados. Assim, é possível verificar todas as operações realizadas pelo hardware de modo sequencial, com isso, exemplifica a operação de uma CPU em um nível inferior ao de execução de instrução por instrução. Na figura 1, vemos a arquitetura do SAP-1:

Figura 1 – Arquitetura do SAP 1

DESENVOLVIMENTO DO PROJETO

Tendo como base o SAP-1 de Malvino e Brown, deu-se início a adaptação do mesmo no programa Quartus II Prime (versão 16.0), da Altera. O mesmo se mostrou instável ou incompatível com ambos os sistemas operacionais instalados previamente (Mint Linux e Windows 10, provavelmente por não serem versões que recebem suporte da Altera) problema sanado após uma reinstalação do Windows.

Todo o projeto foi disponibilizado no seguinte repositório do GitHub: https://github.com/MarlonCosta/Marlon uC PEM

As unidades que compõem o SAP foram replicadas na representação em blocos do Quartus, blocos estes que contém a lógica interna de cada porção do SAP e são descritos a seguir.

ULA

A unidade lógica e aritmética (ULA) do SAP é composta pelo Acumulador A, o Somador/Subtrator e o Registrador B.

Somador/Subtrator

Aqui temos o bloco que realiza as operações aritiméticas do processador, neste caso em específico, sendo capaz de somar e subtrair em complemento de 2.

Figura 2 – Unidade Somadora/Subtratora

Acumulador A

Como o nome do bloco sugere, o acumulador A acumula os valores das operações realizadas pelo somador/subtrator, também sendo um de seus operandos em operações seguintes.

Figura 3 - Acumulador A

Registrador B

O registrador B recebe os dados vindos da memória e é o segundo operando inserido no somador/subtrator.

Exemplo: Se já realizamos a soma 3+2, temos o valor 5 (0101) no acumulador A, portanto caso realizemos a operação de subtração (0010) com valor 1 (0001), teremos o valor 1 carregado no registrador B e o resultado (0100) no acumulador A.

Figura 4 – Registrador B

Unidade de controle

É o grupo dos blocos que controla as instruções e operações realizadas no processador. É composta pelo Contador de programa, pelo registrador de instruções e pelo controlador/sequencializador.

Contador de Programa

O contador de programa provê ao computador o endereço da instrução a ser executada. Ele funciona através de contagem binária e é composto de flip-flops JK em cadeia, como mostra a figura 2:

Figura 5 – Contador de programa

Código	Instrução	Resultado
0000	LDA	Carrega o registrador B com o endereço
0001	ADD	Soma o valor do acumulador A com o do registrador B
0010	SUB	Subtrai o valor do acumulador A com o do
1110	OUT	Carrega o valor do acumulador A no registrador de saída
1111	HLT	Suspende o clock, parando as operações

Tabela 1 - Instruções

Registrador de instruções

Armazena a instrução atual juntamente com o endereço em que essa instrução irá operar. Durante a operação do computador, o conteúdo de um endereço de memória dado é transferido pro registrador de instruções. No caso do SAP, os 4 primeiros bits são a instrução a ser realizada e os 4 últimos bits dizem ao computador que endereço usar para a operação.

Figura 6 – Registrador de instruções

Controlador-Sequencializador

É o bloco de controle do processador, englobando matriz de controle, contador em anel e decodificador de instruções.

Figura 7 – Controlador-Sequencializador

Matriz de controle e contador em anel

A matriz de controle de um computador diz a cada parte quando receber e enviar valores. Existem vários estados para cada operação em um computador. Esses estados são ativados por um tipo de contador chamado contador de anel. Um contador de anel tem apenas 1 bit em valor alto de cada vez e alterna através de suas saídas consecutivamente. Por exemplo, se um contador em anel tem 4 saídas, ele irá primeiramente ativar a primeira saída. No próximo pulso de clock, ele irá ativar apenas a segunda saída e assim sucessivamente até a quarta. Esses estados são os chamados estados T, dos quais o nosso computador usa 6 deles (de T1 a T6).

T1	O conteúdo do contador de programa é transferido para a REM.	
T2	O contador de programas é incrementado em um.	
Т3	O byte endereçado na memória do programa é transferido para o registrador de instruções	
T4	Depende do comando sendo executado	
T5	Depende do comando sendo executado	
T6	Depende do comando sendo executado	

Tabela 2 – Descrições dos estados T.

Figura 8 - Matriz de controle

Figura 9 – Contador em anel

Decodificador de instruções

Recebe os dados do barramento e decodifica-os para que a matriz de controle possa definir a operação a ser realizada.

Figura 10 – Decodificador de instruções

Memória

Devido ao Quartus permitir a criação de blocos de RAM/ROM facilmente, não foi necessária a confecção da mesma através de flip-flops.

Também devido aos registradores inclusos na RAM, não foi necessária a confecção do bloco REM.

Registrador de saída

Em algum momento a pessoa operando o computador pode vir a querer ver o resultado de suas operações. Para isso, existe o registrador de saída, ele armazena os valores que serão mostrados ao operador, seja esses valores em binário, utilizando um display de 7-segmentos, etc.

Figura 12 – Registrador de saída

CONCLUSÕES

A confecção do SAP, apesar de não ter sido bem sucedida (pois na simulação, apenas foi obtido o resultado 0), trouxe o conhecimento de como funciona um processador SAP, seus estados, componentes, meios de comunicação entre os blocos, etc. Além de ter extrema importância pois nos habituou ao uso da ferramenta Quartus, a qual é usada mundialmente para confecção de microchips.

Com mais conhecimento e também esforço, creio que será possível confeccionar projetos bem mais complexos e principalmente, funcionais.