part2

Lulu

7/3/2020

Project Descriptions

- 1. Load the ToothGrowth data and perform some basic exploratory data analyses
- 2. Provide a basic summary of the data.
- 3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.
- 4. State your conclusions and the assumptions needed for your conclusions.

Point 1

1. Provide a basic summary of the data.

ToothGrowth is a "data frame" containing 60 observations of 3 variables: "len", numeric; "supp", factor; "dose", numeric. There are two supplements: VC and OJ. Each one contains three doses at 0.5, 1.0, and 2.0. There are 10 observations for each supp at each dose.

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
## # A tibble: 6 x 3
## # Groups:
               supp [2]
##
     supp
            dose `mean(len)`
##
     <chr> <dbl>
                        <dbl>
## 1 OJ
             0.5
                        13.2
## 2 OJ
                        22.7
             1
## 3 OJ
             2
                        26.1
                         7.98
## 4 VC
             0.5
## 5 VC
                        16.8
             1
## 6 VC
                        26.1
             2
```

```
## # A tibble: 6 x 3
   # Groups:
                supp [2]
##
     supp
             dose
                  `sd(len)`
##
     <chr>
           <dbl>
                       <dbl>
## 1 OJ
              0.5
                        4.46
## 2 OJ
              1
                        3.91
## 3 OJ
              2
                        2.66
## 4 VC
                        2.75
              0.5
## 5 VC
              1
                        2.52
## 6 VC
              2
                        4.80
```

As shown in the table, higher doses of VC or OJ induced more tooth growth. Maximum average of tooth growth 26.14 was observed at VC dose of 2.0.

Point 3

Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose.

- 1. Compare tooth growth associated with different doses for same supplement.
- $1.1~\mathrm{Run}$ t test to compare vc_half and vc_1. Hypothesis H0: same tooth growth at vc_1 and vc_half; Ha: more tooth growth at vc_1 compared to vc_half. Assumes same variance in two groups.

```
t.test(vc_1$len-vc_half$len, alternative="greater")
```

One sample t-test results show the 95 percent confidence interval of vc_ $1len - vc_half$ len is 6.16418 to Inf. Therefore, more tooth growth is associated with vc_1 compared to vc_half.

1.2 Run t test to compare vc_2 and vc_1. Hypothesis H0: same tooth growth at vc_2 and vc_1; Ha: more tooth growth at vc_2 compared to vc_1. Assumes same variance in two groups.

```
t.test(vc_2$len-vc_1$len, alternative="greater")
```

One sample t-test results show the 95 percent confidence interval of $vc_2len - vc_1len$ is 6.157075 to Inf. Therefore, more tooth growth is associated with vc_2 compared to vc_1 .

1.3 Run t test to compare oj_half and oj_1. Hypothesis H0: same tooth growth at oj_1 and oj_half; Ha: more tooth growth at oj_1 compared to oj_half. Assumes same variance in two groups.

```
t.test(oj_1$len-oj_half$len, alternative="greater")
```

One sample t-test results show the 95 percent confidence interval of oj_ $1len - oj_half$ len is 5.300497 to Inf. Therefore, more tooth growth is associated with oj 1 compared to oj half.

1.4 Run t test to compare oj_2 and oj_1. Hypothesis H0: same tooth growth at oj_2 and oj_1; Ha: more tooth growth at oj_2 compared to oj_1. Assumes same variance in two groups.

```
t.test(oj_2$len-oj_1$len, alternative="greater")
```

One sample t-test results show the 95 percent confidence interval of oj_ $2len - oj_1$ len is 0.1908169 to Inf. Therefore, more tooth growth is associated with oj_2 compared to oj_1.

Conclusion: more tooth growth is associated with higher doses for the same supplement.

- 2. Compare tooth growth associated with different supplement at the same doses.
- 2.1 Run t test to compare vc_half and oj_half. Hypothesis H0: same tooth growth at vc_half and oj_half; Ha: more tooth growth at oj_half compared to vc_half. Assumes same variance in two groups.

```
t.test(oj_half$len-vc_half$len, alternative="greater")
```

```
##
## One Sample t-test
##
## data: oj_half$len - vc_half$len
## t = 2.9791, df = 9, p-value = 0.007736
## alternative hypothesis: true mean is greater than 0
## 95 percent confidence interval:
## 2.019552    Inf
## sample estimates:
## mean of x
## 5.25
```

One sample t-test results show the 95 percent confidence interval of oj_halflen - vc_half len is 2.019552 to Inf. Therefore, more tooth growth is ssociated with oj_half compared to vc_half.

2.2 Run t test to compare vc_1 and oj_1. Hypothesis H0: same tooth growth at vc_1 and oj_1; Ha: more tooth growth at oj_1 compared to vc_1. Assumes same variance in two groups.

```
t.test(oj_1$len-vc_1$len, alternative="greater")
```

One sample t-test results show the 95 percent confidence interval of oj_ $1len - vc_1$ len is 2.706401 to Inf. Therefore, more tooth growth is associated with oj_1 compared to vc_1.

3.3 Run t test to compare vc_2 and oj_2. Hypothesis H0: same tooth growth at vc_2 and oj_2; Ha: different tooth growth at vc_2 compared to oj_2. Assumes same variance in two groups.

```
# Assumes same variance in two groups
t.test(vc_2$len-oj_2$len, alternative="two.sided")
```

```
##
## One Sample t-test
##
## data: vc_2$len - oj_2$len
## t = 0.042592, df = 9, p-value = 0.967
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -4.168976    4.328976
## sample estimates:
## mean of x
## 0.08
```

One sample t-test results show the 95 percent confidence interval of vc $_2len-oj_2$ len is -4.168976 to 4.328976. Therefore, accepting null hopothesis that same tooth growth at vc $_2$ and oj $_2$.