

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе N2

Название Исследование псевдослучайных чисел
Дисциплина Моделирование
Студент Прохорова Л. А.
Группа <u>ИУ7-73Б</u>
Оценка (баллы)
Преподаватель Рудаков И. В.

1 Задание

Изучить методы генерирования псевдослучайных чисел, а также критерии оценки случайности последовательности. Реализовать критерий оценки случайной последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях целых чисел. Последовательности получать алгоритмическим и табличным способами. Предусмотреть возможность ввода десяти чисел для оценки их по критерию.

2 Теоретическая часть

Случайные числа — искусственно полученная последовательность реализаций случайной величины с заданным законом распределения.

На практике используется три основных способа получения случайных чисел:

- Аппаратный
- Табличный (файловый)
- Алгоритмический (программный)

Аппаратный способ получения случайных чисел

Аппаратные генераторы случайных чисел – это устройства, использующие для создания случайных чисел замеры параметров некоторых физических процессов. Как правило, аппаратный генератор случайных чисел состоит из источника энтропии и устройства, преобразующего значения, полученные с источника энтропии, в нужный формат.

Табличный способ получения случайных чисел

В данном способе в качестве источника случайных чисел используют заранее подготовленные таблицы, содержащие проверенные некоррелированные числа. Недостатки такого способа: использование внешнего ресурса для хранения чисел, ограниченность последовательности, предопределенность значений.

Алгоритмический способ получения случайных чисел

Алгоритмический генератор является комбинацией физического генератора и детерминированного алгоритма. Такой генератор использует ограниченный набор данных, полученный с выхода физического генератора для создания длинной последовательности чисел преобразованиями исходных чисел. Из-за дороговизны аппаратных генераторов случайных чисел в большинстве случаев, в качестве источника энтропии используются ресурсы вычислительной машины, на которой выполняется программа генерации ПСЧ. При отсутствии аппаратного генератора случайных чисел в качестве источника энтропии могут использоваться:

- состояние системных часов;
- время задержек между нажатиями клавиш клавиатуры или движениями мышки;
- содержимое буферов ввода/вывода;
- значения, получаемые при работе системы.

2.1 Выбранные методы

Для получения случайных чисел алгоритмическим способом выбран линейный конгруэнтный метод.

Линейный конгруэнтный метод

Для осуществления генерации чисел данным методом, необходимо задать 4 числа:

m > 0, модуль

Последовательность случайных чисел генерируется при помощи формулы:

(1)

При некоторых наборах чисел m, a, c, и X_0 последовательность не может быть "случайной". Поэтому важно правильно их подобрать. В конгруэнтной последовательности всегда существуют циклы - периоды, необходимо чтобы последовательность, которую мы используем, имела относительно длинный период.

Выбранный критерий оценки случайной последовательности - критерий "хи-квадрат". Это один из самых известных статистических критериев, также это основной метод, используемый в сочетании с другими критериями.

С помощью этого критерия можно узнать, удовлетворяет ли генератор случайных чисел требованию равномерного распределения или нет. Для оценки по этому критерию необходимо вычислить статистику V по формуле:

$$V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n \tag{2}$$

где n – количество независимых испытаний, k – количество категорий, Y_s — число наблюдений, которые действительно относятся к категории S, p_s — вероятность того, что каждое наблюдение относится к категории s.

Значение V является значением критерия «хи-квадрат» для экспериментальных данных. Приемлемое значение этого критерия можно определить по таблице 1. Для этого используем строку с v = k-1, где k = 10, 90, 900 для задания лабораторной. Р в этой таблице — это вероятность того, что экспериментальное значение Vэксп. будет меньше табулированного

(теоретического) Vтеор. или равно ему. Ее также можно рассматривать как доверительную вероятность.

Если вычисленное V окажется меньше 1% точки или больше 99% точки, можно сделать вывод, что эти числа недостаточно случайные. Если V лежит между 1% и 5% точками или между 95% и 99% точками, то эти числа «подозрительны». Если V лежит между 5% и 10% точками или 90%-95% точками, то числа можно считать «почти подозрительными». Проверка по "хи-квадрат"критерию часто производится три раза и более с разными данными. Если по крайней мере два из трех результатов оказываются подозрительными, то числа рассматриваются как недостаточно случайные.

Таблица 1 НЕКОТОРЫЕ ПРОЦЕНТНЫЕ ТОЧКИ χ^2 -РАСПРЕДЕЛЕНИЯ

	p = 1%	p = 5%	p = 25%	p = 50%	p = 75%	p = 95%	p = 99%
$\nu = 1$	0.00016	0.00393	0.1015	0.4549	1.323	3.841	6.635
$\nu = 2$	0.02010	0.1026	0.5754	1.386	2.773	5.991	9.210
$\nu = 3$	0.1148	0.3518	1.213	2.366	4.108	7.815	11.34
$\nu = 4$	0.2971	0.7107	1.923	3.357	5.385	9.488	13.28
$\nu = 5$	0.5543	1.1455	2.675	4.351	4.351 6.626 11.07		15.09
$\nu = 6$	0.8721	1.635	3.455	5.348	7.841	12.59	16.81
$\nu = 7$	1,239	2.167	4.255	6.346	9.037	14.07	18.48
$\nu = 8$	1.646	2.733	5.071	7.344	10.22	15.51	20.09
$\nu = 9$	2.088	3.325	5.899	8.343	11.39	16.92	21.67
$\nu = 10$	2.558	3.940	6.737	9.342	12.55	18.31	23.21
$\nu = 11$	3.053	4.575	7.584	10.34	13.70	19.68	24.72
$\nu = 12$	3.571	5.226	8.438	11.34	14.85	21.03	26.22
$\nu = 15$	5.229	7.261	11.04	14.34	18.25	25.00	30.58
$\nu = 20$	8.260	10.85	15.45	19.34	23.83	31.41	37.57
$\nu = 30$	14.95	18.49	24.48	29.34	34.80	43.77	50.89
$\nu = 50$	29.71	34.76	42.94	49.33	56.33	67.50	76.15
$\nu > 30$			$\nu + \sqrt{2\nu}x_p$	$+\frac{2}{3}x_p^2-\frac{2}{3}+$	$-O(1/\sqrt{\nu})$		
$x_p =$	-2.33	-1.64	674	0.00	0.674	1.64	2.33

Рисунок 1 — Некоторые процентные точки "хи-квадрат"распределения (Источник: Кнут Д. Э. «Искусство программирования»).

k - 1	p = 1%	ho = 5%	ho = 25%	m p=50%	ho = 75%	ho = 95%	p=99%
9	2.088	3.325	5.899	8.343	11.39	16.92	21.67
89	60.93	68.25	79.68	88.33	97.60	112.02	122.94
899	803.31	830.41	870.05	898.33	927.23	969.86	1000.57

Таблица 1 – Таблица значений Vтеор для количества степеней свободы по заданию

3 Результаты работы программы

Программа, реализованная в лабораторной работе, выводит на экран таблицу из 7 столбцов и 13 строк. 10 строк представлены для того, чтобы можно было пронаблюдать, какие числа возвращает генератор случайных чисел. Для каждого из реализованных методов в таблице есть по три столбца для чисел с разным количеством разрядов. В строке "коэффициент"выводится значение V, подсчитанное для каждого столбца (N = 10000). В последней строке выводится заключение, сделанное в результате анализа вычисленного значения по таблице 1.

Так же есть возможность ввести собственную последовательность и проанализировать ее.

На рисунках 2, 3, 4 приведен пример трех запусков программ.

Табличный метод									Алгоритмический метод					
			1 разряд		2 разряда		3 разряда		1 разряд	 2 разряда	3 разряда			
		1		ı	58	1	298	1		 51	977	-+ 		
											l 500			
							888							
					77						122			
					99									
					21		121				125			
							724				212			
Kos	ффициент		10.265999999999622		111.87800000000061		801.26000000000002		7.727999999999156	74.36599999999999	899.1800000000003			
	ритерий		Числа случайные		Числа случайные		Числа не случайные		Числа случайные	Числа случайные	Числа случайные			
Выбер Однор Введи 1 2 Коэфф	ите разм разрядные	и х ерн - дов 8	отите проанализиров пость вводимой после введите 1, двухразр ательность чисел (ч	ат до	ъ свою последовател вательности ные - введите 2, тр	1ЬН								

Рисунок 2 – Результат работы первого запуска программы

					ный метод				Алгоритмический		
			1 разряд		2 разряда		3 разряда	1 разряд	2 разряда	3 разряда	
					44		900		 51	977	
					13		570		92	500	
					38		896		31	223	
					19		494		84	122	
					48		931		19	673	
					84		613		20	180	
							308			695	
										986	
									99	125	
										212	
	ффициент	13.57	20000000000116	7	8.7939999999987		332.219999999999	7.727999999999156	74.36599999999999	399.18000000000003	
	ритерий		а случайные		Числа случайные		Числа случайные	Числа случайные	Числа случайные	Числа случайные	
веди			проанализиро	вать	свою последовате	льн	ность: 1				
ыбері	ите разм	ерность	вводимой посл	едов	ательности						
днор	азрядные	- введи	те 1, двухраз	рядн	ые - введите 2, т	pex	кразрядные - введи				
веди		дователь		чере	з пробел)						
(оэфф	ициент:										
	случайн	ые									

Рисунок 3 – Результат работы второго запуска программы

	Ta(5личный метод	Алгоритмический метод						
	† 1 разряд	2 разряда	I 3 разряда	I 1 разряд	2 разряда	I 3 разряда			
l 0	l 3	93	344	3	+ 51	977			
						l 500 l			
			998			122			
			214						
					J 99	l 125 l			
			l 500			212			
Коэффициент	5.373999999999796	62.486000000000786	831.8600000000006	7.727999999999156	74.36599999999999	899.1800000000003			
Критерий	Числа случайные	Числа подозрительные	Числа случайные	Числа случайные	Числа случайные	Числа случайные			
 Выберите разме Одноразрядные Введите послед	хотите проанализирою рность вводимой посли введите 1, двухразю овательность чисел (оядные - введите 2, тре нерез пробел)							

Рисунок 4 – Результат работы третьего запуска программы

Проанализируем три выведеных результата для каждого столбца для того чтобы сделать вывод об эффективности генератора случайных чисел.

Табличный способ получения случайных чисел

- Одноразрядные числа во всех трех экспериментах числа в последовательности случайные, соответсвенно одноразрядные числа, генерируемые с помощью табличного метода являются случайными при оценке критерием "хи-квадрат".
- Двухразрядные числа в двух экспериментах числа в последовательности случайные, в одном подозрительные. Так как количество экспериментов с ответом что числа подозрительные не 2 и не 3, то можно считать, что двухразрядные числа, генерируемые с помощью табличного метода являются случайными при оценке критерием "хиквадрат".
- Трехразрядные числа в двух экспериментах числа в последовательности случайные, в одном не являются случайными. Так как количество экспериментов с ответом что числа не случайные только 1 из 3, то можно считать это некоторой случайностью при генерации, которая не является закономерной. (После данного эксперимента было

проведено еще 20 экспериментов которые не отражены в отчете и каждый раз получался ответ - числа случайные). Можно считать что трехразрядные числа, генерируемые с помощью табличного метода являются случайными при оценке критерием "хи-квадрат".

Алгоритмический способ получения случайных чисел

Во всех трех экспериментах и для одноразрядных, и для двухразрядных, и для трехразрядных чисел было установлено, что они случайные.

Помимо таблиц на рисунках 2, 3, 4 представлен пример обработки последовательности, введенной пользователем.

Так как иногда числа, сгенерированные с помощью табличного способа получения случайных чисел оказывались не случайными или подозрительными, то можно считать что алгоритмический способ получения случайных чисел эффективнее.

4 Код программы

Программа разработана в интегрированной среде разработки для языка программирования Python - PyCharm. В листинге 1 приведена реализация лабораторной работы.

```
from prettytable import PrettyTable
from itertools import islice

COUNT = 10000
m = 2. ** 31
a = 1664525
c = 1013904223

theor_koef_one_digit = {'1': 2.088, '5': 3.325, '25': 5.899, '50': 8.343, '75': 11.39, '95': 16.92, '99': 21.67}
theor_koef_two_digits = {'1': 60.93, '5': 68.25, '25': 79.68, '50': 88.33, '75': 97.60, '95': 112.02, '99': 122.94}
```

```
theor_koef_three_digits = {'1': 803.31, '5': 830.41, '25': 870.05, '50':
     898.33, '75': 927.23, '95': 969.86, '99': 1000.57}
11 theor_koefs = {'one_digit': theor_koef_one_digit, 'two_digits':
     theor_koef_two_digits, 'three_digits': theor_koef_three_digits}
12
  class RandomGenerator:
13
      def __init__(self):
14
          self.current = 10
16
      def get_random_number(self, low, high):
17
          self.current = (a * self.current + c) % m
18
          result = int(low + self.current % (high - low))
19
          return result
20
21
  def table_rand():
22
2.3
      numbers = set()
      with open('digits.txt') as file:
2.4
          line_num = 0
25
          lines = islice(file, line_num, None)
26
          for l in lines:
               numbers.update(set(1.split(" ")[1:-1]))
               line_num += 1
               if len(numbers) >= 3 * COUNT + 1:
30
                   break
31
          numbers.remove("")
32
          numbers = list(numbers)[:3 * COUNT]
      one_digit = [int(i) % 10 for i in numbers[:COUNT]]
34
      two_digits = [int(i) % 90 + 10 for i in numbers[COUNT:COUNT * 2]]
35
      three_digits = [int(i) % 900 + 100 for i in numbers[COUNT * 2:3 *
36
     COUNT11
      return one_digit, two_digits, three_digits
37
38
39
  def alg_rand():
40
      random = RandomGenerator()
41
      one_digit = [random.get_random_number(0, 10) for i in range(COUNT)]
      two_digits = [random.get_random_number(10, 100) for i in range(COUNT)]
43
      three_digits = [random.get_random_number(100, 1000) for i in range(
44
     COUNT)]
      return one_digit, two_digits, three_digits
45
```

```
46
47
  def calc_hi(arr, start, end):
      n = len(arr)
49
      tab = [0 for i in range(start + end)]
50
      for i in range(n):
51
           tab[arr[i]] += 1
      s = 0
      for i in tab:
54
           s += i * i
      return s * (end - start) / n - n
56
  def check_with_criterion(prac_koef, digit_str):
      if prac_koef < theor_koefs[digit_str]['1'] or prac_koef > theor_koefs[
59
      digit_str]['99']:
60
           return "Числа не случайные"
61
      if prac_koef >= theor_koefs[digit_str]['1'] and prac_koef <=</pre>
62
      theor_koefs[digit_str]['5']:
           return "Числа подозрительные"
63
64
      if prac_koef <= theor_koefs[digit_str]['99'] and prac_koef >=
65
      theor_koefs[digit_str]['95']:
           return "Числа подозрительные"
66
      return "Числа случайные"
67
  def main():
      numbers = [i for i in range(10)]
69
      table_tbl = PrettyTable()
70
      one_tbl, two_tbl, three_tbl = table_rand()
71
72
      table_tbl.add_column("", numbers)
73
      table_tbl.add_column('1 разряд', one_tbl[:10])
74
      table_tbl.add_column('2 разряда', two_tbl[:10])
75
      table_tbl.add_column('3 разряда', three_tbl[:10])
76
77
      one_alg, two_alg, three_alg = alg_rand()
78
      table_tbl.add_column('1 разряд', one_alg[:10])
79
      table_tbl.add_column('2 разряда', two_alg[:10])
80
81
      table_tbl.add_column('3 разряда', three_alg[:10])
82
```

```
koef_tbl_one = calc_hi(one_tbl, 0, 10)
83
       koef_tbl_two = calc_hi(two_tbl, 10, 100)
84
       koef_tbl_three = calc_hi(three_tbl, 100, 1000)
85
       koef_alg_one = calc_hi(one_alg, 0, 10)
86
       koef_alg_two = calc_hi(two_alg, 10, 100)
87
       koef_alg_three = calc_hi(three_alg, 100, 1000)
88
89
       table_tbl.add_row(['Коэффициент', koef_tbl_one, koef_tbl_two,
90
      koef_tbl_three, koef_alg_one, koef_alg_two, koef_alg_three])
91
92
       table_tbl.add_row(['Критерий',
                           check_with_criterion(koef_tbl_one, 'one_digit'),
93
                           check_with_criterion(koef_tbl_two, 'two_digits'),
94
                           check_with_criterion(koef_tbl_three, 'three_digits')
95
96
                           check_with_criterion(koef_alg_one, 'one_digit'),
                           check_with_criterion(koef_alg_two, 'two_digits'),
97
                           check_with_criterion(koef_alg_three, 'three_digits')
98
      1)
                                           Tабличный метод\t \t \t \t \t
99
       print("\t\t\t
                              Алгоритмический метод")
100
       print(table_tbl)
101
102
       flag = input("Введите 1 если хотите проанализировать свою последовательность: "
      )
       if flag == '1':
104
           print("Выберите размерность вводимой последовательности")
105
           digit_str = input("Одноразрядные - введите 1, двухразрядные - введите 2,
106
      трехразрядные - введите 3: ")
           arr = []
           if digit_str in ['1', '2', '3']:
108
                print("Введите последовательность чисел через( пробел)")
109
                arr_str = list(input().split())
110
                for digit in arr_str:
111
                    if len(digit) != int(digit_str):
112
                         print("Некорректная разрядность")
113
                         return
114
115
                    try:
                         d = int(digit)
```

```
117
                     except:
                         print("Некорректное значение")
118
                         return
119
                     arr.append(d)
120
                if digit_str == '1':
121
122
                    hi_koef = calc_hi(arr, 0, 10)
                elif digit_str == '2':
123
                    hi_koef = calc_hi(arr, 10, 100)
124
                else:
125
                    hi_koef = calc_hi(arr, 100, 1000)
126
                print("Коэффициент: ", hi_koef)
127
                s = ['one_digit', 'two_digits', 'three_digits']
128
                print(check_with_criterion(hi_koef, s[int(digit_str) - 1]))
129
            else:
130
                print("Некорректный ввод")
131
132
                return
133
134 if __name__ == '__main__':
       main()
135
```