

Author Index

Ahn, K.Y., see Lee, Z.H. (75) 237

Ambrosini, A., Tininini, S., Barassi, A., Racagni, G., Sturani, E. and Zippel, R. cAMP cascade leads to Ras activation in cortical neurons (75) 54

Ambrosio, S., see Goren, N. (75) 138

Anisman, H., see Plata-Salamán, C.R. (75) 248

Arancibia, S., see Givalois, L. (75) 166

Arimura, A., see Zhou, C.J. (75) 150

Bae, C.S., see Lee, Z.H. (75) 237

Bae, H.R., see Lee, S.A. (75) 16

Bae, K.W., see Lee, S.A. (75) 16

Barassi, A., see Ambrosini, A. (75) 54

Bartrons, R., see Goren, N. (75) 138

Bayliss, D.A., see Talley, E.M. (75) 159

Bechtold, D.A. and Brown, I.R. Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia (75) 309

Bernabeu, R., Di Scala, G. and Zwiller, J. Odor regulates the expression of the mitogen-activated protein kinase phosphatase gene *hVH-5* in bilateral entorhinal cortex-lesioned rats (75) 113

Blank, T., see Radulovic, J. (75) 271

Bond, B.C., see Harrison, D.C. (75) 143

Bowery, N.G., see Ingram, E.M. (75) 96

Bramham, C., see Valentine, G. (75) 337

Broberger, C., Nylander, I., Geijer, T., Terenius, L., Hökfelt, T. and Georgieva, J. Differential effects of intrastriatally infused fully and endcap phosphorothioate antisense oligonucleotides on morphology, histochemistry and prodynorphin expression in rat brain (75) 25

Brown, I.R., see Bechtold, D.A. (75) 309

Bureau, Y., see Plata-Salamán, C.R. (75) 248

Burke, R.E., see Kholodilov, N.G. (75) 281

Campbell, C.A., see Harrison, D.C. (75) 143

Cavallaro, S., see D'Agata, V. (75) 345

Chakravarty, S., see Valentine, G. (75) 337

Chan, S.L., see Gary, D.S. (75) 89

Chen, N. and Justice Jr., J.B. Differential effect of structural modification of human dopamine transporter on the inward and outward transport of dopamine (75) 208

Christakos, S., see Gary, D.S. (75) 89

Coker, T.N., see Scammell, J.G. (75) 8

Corbitt, J., see Sands, S.A. (75) 1

Craft, C.M. and Zhan-Poe, X. Identification of specific histidine residues and the carboxyl terminus are essential for serotonin *N*-acetyltransferase enzymatic activity (75) 198

Cuvelier, L., see Depaepe, V. (75) 76

D'Agata, V., Zhao, W. and Cavallaro, S. Cloning and distribution of the rat parkin mRNA (75) 345

Damm, A., see Mielke, K. (75) 128

David Clark, J., see Li, X. (75) 179

Davis, R.P., see Harrison, D.C. (75) 143

De Kloet, E.R., see Schaaf, M.J.M. (75) 342

Depaepe, V., Cuvelier, L., Thöny, B. and Résoisbois, A. Peripherin-4 α -carbinolamine dehydratase in rat brain. I. Patterns of co-localization with tyrosine hydroxylase (75) 76

Depaulis, A., see Talley, E.M. (75) 159

Di Scala, G., see Bernabeu, R. (75) 113

Dixon, W.T., see Weaver, S.A. (75) 46

Doi, T., Ueda, Y., Tokumaru, J., Mitsuyama, Y. and Willmore, L.J. Sequential changes in glutamate transporter mRNA levels during Fe³⁺-induced epileptogenesis (75) 105

Durston, A.J., see Holling, T.M. (75) 70

Duurland, R., see Schaaf, M.J.M. (75) 342

Eggold, J.R., see Naeve, G.S. (75) 185

Emson, P.C., see Ingram, E.M. (75) 96

Ernfors, P., see Linnarsson, S. (75) 61

Fernald, R.D., see Latimer, V.S. (75) 287

Flynn, M.C., see Plata-Salamán, C.R. (75) 248

Forsayeth, J., see Sweileh, W. (75) 293

Foster, A.C., see Naeve, G.S. (75) 185

Gale, K., see Kondratyev, A. (75) 216

Gary, D.S., Sooy, K., Chan, S.L., Christakos, S. and Mattson, M.P. Concentration- and cell type-specific effects of calbindin D28k on vulnerability of hippocampal neurons to seizure-induced injury (75) 89

Garyfallou, V.T., see Latimer, V.S. (75) 287

Gayle, D., see Plata-Salamán, C.R. (75) 248

Geijer, T., see Broberger, C. (75) 25

Georgieva, J., see Broberger, C. (75) 25

Givalois, L., Arancibia, S. and Tapia-Arancibia, L. Concomitant changes in CRH mRNA levels in rat hippocampus and hypothalamus following immobilization stress (75) 166

Goren, N., Manzano, A., Rierra, L., Ambrosio, S., Ventura, F. and Bartrons, R. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase expression in rat brain during development (75) 138

Green, C.B., see Zhu, H. (75) 303

Hardy, S., see Sweileh, W. (75) 293

Harrison, D.C., Medhurst, A.D., Bond, B.C., Campbell, C.A., Davis, R.P. and Philpott, K.L. The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia — caspase-3 as a case study (75) 143

Herdegen, T., see Mielke, K. (75) 128

Herkenham, M., see Valentine, G. (75) 337

Hirabayashi, T., see Zhou, C.J. (75) 150

Hökfelt, T., see Broberger, C. (75) 25

Holling, T.M., Van Herp, F., Durston, A.J. and Martens, G.J.M. Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during *Xenopus laevis* development (75) 70

Huynh, K.A. and Powell, F.L. Time-dependent changes in dopamine D₂-receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia (75) 264

Hung, H.-C., Tsai, M.J., Wu, H.C. and Lee, E.H.Y. Age-dependent increase in *C7-I* gene expression in rat frontal cortex (75) 330

Hutson, S.M., see Kholodilov, N.G. (75) 281

Ilyin, S.E., see Plata-Salamán, C.R. (75) 248

Ingram, E.M., Tessler, S., Bowery, N.G. and Emson, P.C. Glial glutamate transporter mRNAs in the genetically absence epilepsy rat from Strasbourg (75) 96

Inoue, M., see Renbäck, K. (75) 350

Justice Jr., J.B., see Chen, N. (75) 208

Kammermeier, J., see Radulovic, J. (75) 271
 Kang, E.K., see Lee, S.A. (75) 16
 Kelly, M.E., see Plata-Salamán, C.R. (75) 248
 Kholodilov, N.G., Neystat, M., Oo, T.F.,
 Hutson, S.M. and Burke, R.E.
 Upregulation of cytosolic branched chain
 aminotransferase in substantia nigra following
 developmental striatal target injury (75)
 281
 Kikuyama, S., see Zhou, C.J. (75) 150
 Kim, H.-H., see Lee, Z.H. (75) 237
 Kim, J.K., see Lee, Z.H. (75) 237
 Kim, K.K., see Lee, Z.H. (75) 237
 Kohama, S.G., see Latimer, V.S. (75) 287
 Kojima, T., Nakajima, K. and Mikoshiba, K.
 The *disabled 1* gene is disrupted by a re-
 placement with L1 fragment in *yotari* mice
 (75) 121
 Kondo, H., see Kudo, M. (75) 172
 Kondratyev, A. and Gale, K.
 Intracerebral injection of caspase-3 inhibitor
 prevents neuronal apoptosis after kainic
 acid-evoked status epilepticus (75) 216
 Kudo, M., Saito, S., Owada, Y., Suzuki, H. and
 Kondo, H.
 Localization of mRNA for SHIP2, SH2 do-
 main-containing inositol polyphosphate 5-
 phosphatase, in the brain of developing and
 mature rats (75) 172
 LaRue, S., see Zhu, H. (75) 303
 Latimer, V.S., Rodrigues, S.M., Garyfallou,
 V.T., Kohama, S.G., White, R.B., Fernald,
 R.D. and Urbanski, H.F.
 Two molecular forms of gonadotropin-re-
 leasing hormone (GnRH-I and GnRH-II)
 are expressed by two separate populations
 of cells in the rhesus macaque hypothala-
 mus (75) 287
 Lee, E.H.Y., see Hung, H.-C. (75) 330
 Lee, S.A., Park, J.K., Kang, E.K., Bae, H.R.,
 Bae, K.W. and Park, H.T.
 Calmodulin-dependent activation of p38 and
 p42/44 mitogen-activated protein kinases
 contributes to *c-fos* expression by calcium
 in PC12 cells: modulation by nitric oxide
 (75) 16
 Lee, Z.H., Kim, H.-H., Ahn, K.Y., Seo, K.H.,
 Kim, J.K., Bae, C.S. and Kim, K.K.
 Identification of a brain specific protein that
 associates with a Refsum disease gene prod-
 uct, phytanoyl-CoA alpha-hydroxylase (75)
 237
 Lemaigne-Dubreuil, Y., see Vernet-der Garabedian, B. (75) 259
 Li, X. and David Clark, J.
 Chronic morphine exposure and the expres-
 sion of heme oxygenase type 2 (75) 179
 Ling, N., see Naeve, G.S. (75) 185
 Linnarsson, S., Willson, C.A. and Ernfors, P.
 Cell death in regenerating populations of
 neurons in BDNF mutant mice (75) 61
 Loring, R.H., see Sweileh, W. (75) 293
 Manzano, A., see Goren, N. (75) 138
 Mariani, J., see Vernet-der Garabedian, B. (75)
 259
 Martens, G.J.M., see Holling, T.M. (75) 70
 Mattson, M.P., see Gary, D.S. (75) 89
 McIntyre, D.C., see Plata-Salamán, C.R. (75)
 248
 Medhurst, A.D., see Harrison, D.C. (75) 143
 Middendorff, R., see Müller, D. (75) 321
 Mielke, K., Damm, A., Yang, D.D. and
 Herdegen, T.
 Selective expression of JNK isoforms and
 stress-specific JNK activity in different neu-
 ral cell lines (75) 128
 Mikoshiba, K., see Kojima, T. (75) 121
 Mitsuyama, Y., see Doi, T. (75) 105
 Morilak, D.A., see Sands, S.A. (75) 1
 Mukhopadhyay, A.K., see Müller, D. (75) 321
 Müller, D., Olcese, J., Mukhopadhyay, A.K.
 and Middendorff, R.
 Guanylyl cyclase-B represents the predomi-
 nantly natriuretic peptide receptor expressed
 at exceptionally high levels in the pineal
 gland (75) 321
 Naeve, G.S., Vana, A.M., Eggold, J.R., Verge,
 G., Ling, N. and Foster, A.C.
 Expression of rat insulin-like growth factor
 binding protein-6 in the brain, spinal cord,
 and sensory ganglia (75) 185
 Nakajima, K., see Kojima, T. (75) 121
 Nakajo, S., see Zhou, C.J. (75) 150
 Neystat, M., see Kholodilov, N.G. (75) 281
 Nijholt, I., see Radulovic, J. (75) 271
 Nikolopoulos, S.N., see Scammell, J.G. (75) 8
 Nyberg, F., see Renbäck, K. (75) 350
 Nylander, I., see Broberger, C. (75) 25
 Olcese, J., see Müller, D. (75) 321
 Oo, T.F., see Kholodilov, N.G. (75) 281
 Owada, Y., see Kudo, M. (75) 172
 Park, H.T., see Lee, S.A. (75) 16
 Park, J.K., see Lee, S.A. (75) 16
 Perez-Reyes, E., see Talley, E.M. (75) 159
 Philpott, K.L., see Harrison, D.C. (75) 143
 Plata-Salamán, C.R., Ilyin, S.E., Turrin, N.P.,
 Gayle, D., Flynn, M.C., Romanovitch, A.E.,
 Kelly, M.E., Bureau, Y., Anisman, H. and
 McIntyre, D.C.
 Kindling modulates the IL-1 β system, TNF- α ,
 TGF- β 1, and neuropeptide mRNAs in
 specific brain regions (75) 248
 Powell, F.L., see Huey, K.A. (75) 264
 Racagni, G., see Ambrosini, A. (75) 54
 Radulovic, J., Blank, T., Nijholt, I., Kammermeier, J. and Spiess, J.
 In vivo NMDA/dopamine interaction re-
 sulting in Fos production in the limbic sys-
 tem and basal ganglia of the mouse brain
 (75) 271
 Reddy, S., see Scammell, J.G. (75) 8
 Redman, C., see Rife, T.K. (75) 225
 Renbäck, K., Inoue, M., Yoshida, A., Nyberg,
 F. and Ueda, H.
 Vzg-1/lysophosphatidic acid-receptor in-
 volved in peripheral pain transmission (75)
 350
 Résibois, A., see Depaepe, V. (75) 76
 Riera, L., see Goren, N. (75) 138
 Rife, T.K., Xie, J., Redman, C. and Young,
 A.P.
 The 5'2 promoter of the neuronal nitric
 oxide synthase dual promoter complex me-
 diates inducibility by nerve growth factor
 (75) 225
 Rodrigues, S.M., see Latimer, V.S. (75) 287
 Romanovitch, A.E., see Plata-Salamán, C.R.
 (75) 248
 Ross, R.A., see Scammell, J.G. (75) 8
 Saito, S., see Kudo, M. (75) 172
 Sands, S.A., Strong, R., Corbitt, J. and Morilak,
 D.A.
 Effects of acute restraint stress on tyrosine
 hydroxylase mRNA expression in locus
 coeruleus of Wistar and Wistar-Kyoto rats
 (75) 1
 Sarvey, J., see Valentine, G. (75) 337
 Scammell, J.G., Reddy, S., Valentine, D.L.,
 Coker, T.N., Nikolopoulos, S.N. and Ross,
 R.A.
 Isolation and characterization of the human
 secretogranin II gene promoter (75) 8
 Schaaf, M.J.M., Duurland, R., De Kloet, E.R.
 and Vreugdenhil, E.
 Circadian variation in BDNF mRNA ex-
 pression in the rat hippocampus (75) 342
 Schaefer, A.L., see Weaver, S.A. (75) 46
 Seo, K.H., see Lee, Z.H. (75) 237
 Shibanuma, M., see Zhou, C.J. (75) 150
 Shiota, S., see Zhou, C.J. (75) 150
 Solórzano, G., see Talley, E.M. (75) 159
 Sooy, K., see Gary, D.S. (75) 89
 Spiess, J., see Radulovic, J. (75) 271
 Steeves, T.D.L., see Zhu, H. (75) 303
 Strong, R., see Sands, S.A. (75) 1
 Sturani, E., see Ambrosini, A. (75) 54
 Suzuki, H., see Kudo, M. (75) 172
 Sweileh, W., Wenberg, K., Xu, J., Forsayeth,
 J., Hardy, S. and Loring, R.H.
 Multistep expression and assembly of neu-
 ronal nicotinic receptors is both host-cell-
 and receptor-subtype-dependent (75) 293
 Takahashi, J.S., see Zhu, H. (75) 303
 Talley, E.M., Solórzano, G., Depaulis, A.,
 Perez-Reyes, E. and Bayliss, D.A.
 Low-voltage-activated calcium channel sub-
 unit expression in a genetic model of ab-
 sence epilepsy in the rat (75) 159
 Tapia-Arancibia, L., see Givaldo, L. (75) 166
 Terenius, L., see Broberger, C. (75) 25
 Tessler, S., see Ingram, E.M. (75) 96
 Thöny, B., see Depaepe, V. (75) 76
 Tinini, S., see Ambrosini, A. (75) 54
 Tokumaru, J., see Doi, T. (75) 105
 Tsai, M.J., see Hung, H.-C. (75) 330
 Turrin, N.P., see Plata-Salamán, C.R. (75) 248
 Ueda, H., see Renbäck, K. (75) 350
 Ueda, Y., see Doi, T. (75) 105
 Urbanski, H.F., see Latimer, V.S. (75) 287
 Valentine, D.L., see Scammell, J.G. (75) 8
 Valentine, G., Chakravarty, S., Sarvey, J.,
 Bramham, C. and Herkenham, M.
 Fragile X (*fmr1*) mRNA expression is dif-

ferentially regulated in two adult models of activity-dependent gene expression (75) 337
Vana, A.M., see Naeve, G.S. (75) 185
Van Herp, F., see Holling, T.M. (75) 70
Ventura, F., see Goren, N. (75) 138
Verge, G., see Naeve, G.S. (75) 185
Vernet-der Garabedian, B., Lemaigne-Dubreuil, Y. and Mariani, J.
Central origin of IL-1 β produced during peripheral inflammation: role of meninges (75) 259
Vreugdenhil, E., see Schaaf, M.J.M. (75) 342

Weaver, S.A., Schaefer, A.L. and Dixon, W.T.
The effects of mutated skeletal ryanodine receptors on calreticulin and calsequestrin expression in the brain and pituitary gland of boars (75) 46
Wenberg, K., see Sweileh, W. (75) 293
White, R.B., see Latimer, V.S. (75) 287
Whiteley, A., see Zhu, H. (75) 303
Willmore, L.J., see Doi, T. (75) 105
Willson, C.A., see Linnarsson, S. (75) 61
Wu, H.C., see Hung, H.-C. (75) 330
Xie, J., see Rife, T.K. (75) 225
Xu, J., see Sweileh, W. (75) 293
Yang, D.D., see Mielke, K. (75) 128
Yoshida, A., see Renbäck, K. (75) 350
Young, A.P., see Rife, T.K. (75) 225

Zhan-Poe, X., see Craft, C.M. (75) 198
Zhao, W., see D'Agata, V. (75) 345
Zhou, C.J., Kikuyama, S., Shibanuma, M., Hirabayashi, T., Nakajo, S., Arimura, A. and Shiota, S.
Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclase-activating polypeptide (PAC₁-R) in the rat brain by *in situ* RT-PCR (75) 150
Zhu, H., LaRue, S., Whiteley, A., Steeves, T.D.L., Takahashi, J.S. and Green, C.B.
The *Xenopus Clock* gene is constitutively expressed in retinal photoreceptors (75) 303
Zippel, R., see Ambrosini, A. (75) 54
Zwiller, J., see Bernabeu, R. (75) 113