

percent inhibition

FIG.7A

 $[\gamma$ -32P] ATP

1338A 1338S

FIG.7C

 $[\gamma$ -32P] ATP

1338A 1338G

FIG.7B

 $[\gamma$ -32P] N⁶-cyclopentyl ATP

1338A 1338S

FIG.7D

 $[\gamma$ -32P] N⁶-cyclopentyl ATP

1338A 1338G

FIG. 8

Autoradiogram

Anti - PY Western Blot

FIG. IIA

FIG. IIB

FIG. 12A IC₅₀ (μM)

	Molecule	WT XD4	I338G XD4	WT Fyn	T339G Fyn	WT Abl	T120A Abl
а		35	0.13	0.05			<<10
b			200	>300			
С	25		300	>300			
d			>300	>300			
е	350	>300	75	>300	100		>10
f	300	>300	250	>300	26		>10
g	300	>300	85	>300	63		>10
h	25						
i	24						

FIG. 12B

j	24						
k	7. C.						
ı	9,50	>300	12	6.5	5		
m	500	>300	19	80	9		
n	350	>300	20	50	5		
ο	9:50	>300	150	15	19		
p	340	>300	10	300	11		(10
q	360	>300	10	300	6		(10
r	\$\$\$\tag{\frac{1}{2}}\$		1.2				<10
s	350		0.63				
t	540 340		(0.411		,		1.8
u	3504	>300	0.43	300	0.83	300	(10
v	Fig.						

FIG. 12C

					_	
w	J. Ca					
x	Ha					>10
Ī						
у		100	(0.05	0.1		
Z	\$tio		>100	>300		
aa	4			2		·
bb				7		
сс	\$5					
dd	\$4 \$4 \$4					
ee						
ff	35					

FIG. 12D

99	\$\frac{1}{1}						
hh	97						
ii	\$ \ \$0						
ij	0,0						
kk	960						
11	300						
mm							
nn		>1000	0.510	0.4		<<6.5	
00	35	>300	>10	>300	,		
рp	35	>300	>10	>300			

FIG. 12E

_					 	
qq	35	>300	>10	>300		
rr		>300	>10	>300		
SS	344	>300	>10	>300		
††	35+	>300	>10	>300		
uu		>300	>10	>300		
vv		>300	>10	>300		
ww		>300	>10	>300		
хх	350	>300	>10	>300		Ì
уу						

FIG. 12F

zz	<10	2.5	<<10		
aaa	>300	>10	>300		
bbb	>300	>10	>300		
ccc	>300	>10	>300		
ddd	>300	>10	>300		
eee	>300	>10	>300		
fff	>300	>10	>300	,	

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 16

FIG. 21A

FIG. 22A C(7)

(+)-Staurosporine (2) **FIG. 22B** (+)-K252a (1)

FIG. 23B

FIG. 24

FIG. 25A

All S. cerevisiae genes (6,200)

- no cell cycle peak (87%)
- ☐ G1 peak (5%)
- ☑ S peak (1%)
- ☑ S/G2 peak (2%)
- ☑ M/G1 peak (2%)

FIG. 25B

Decreases - 120 min (66)

- no cell cycle peak (9%)
- ☐ G1 peak (14%)
- S peak (3%)
- S/G2 peak (0%)
- □ G2/M peak (49%)
- M/G1 peak (25%)

Unreg		S		РНОЗ	-21.5	M/G1	
AMI1	-3	HTB2	-4.6	PHO5	-10.6	AGA2	-6.5
BAR1	-5.1	MET14	-2.9	PRY1	-3.2	EGT2	-28.3
PUT4	-3.2			RPI1	-2.7	FAA3	-4.7
SUN4	-4.1	G2/M		SDL1	-3.8	GYP6	-2.5
YBR077C	-2.6	ALK1	-3.5	SKN1	-2.5	IAH2	-3.4
YER067W	-5,5	ATF2	-5.1	STE2	-2.5	ICS4	-4.7
12/100/11	-,-	BNS1	-3.7	STE6	-5.8	мсмз	-2.6
G1		CDC20	-4.1	SUR7	-2.5	PCL9	-4.9
CTS1	-28.4	CDC5	-3	SWI5	-3.1	PIR1	-3.7
GPH1	-2.9	CLB2	-4.1	UTH1	-2.5	PTS1	-3.5
MFA1	-3.2	DBF2	-2.6	WSC4	-6.9	SPI1	-2.6
PRY3	-2.7	FAR1	-20.4	YDR033W	-13.6	YGP1	-5.5
RME1	-3.1	HST3	-4.1	YIL158W	-3.1	YNL046W	-5.7
RPC10	-41.2	MFA2	-6.9	YJL051W	-4	YNR067C	-19.4
SCW11	-16.4	MYO1	-3	YLR254C	-4.2	YOR066W	-3.7
YER124C	-9.8	PHO11	-4.9	YML119W	-4.1	YOR264W	-4.7
YHR218W	-3	PHO12	-5.9	YNL058C	-3.1	YPL158C	-4.6
				VPO2	-7 A		

FIG. 25D

F16. 26A

Specificity Cellular Function Tyr oncogenic transformation Tyr lymphocyte activation Tyr F-actin binding, transcription	long-term potentiation, memory mammalian cell cycle progression S. cerevisiae cell cycle progression S. cerevisiae mating
Specificity	Ser/Thr
Tyr	Ser/Thr
Tyr	Ser/Thr
Tyr	Ser/Thr
Kinase Family Src Src Abl	calcium/calmodulin dependent Ser/Thr cyclin dependent Ser/Thr cyclin dependent Ser/Thr mitogen-activated Ser/Thr
Protein Kinase	CAMK II
v-Src	CDK2
c-Fyn	CDC28
c-Abl	Fus3

∞	_
7)	
~)	

F1G. 26B

V-Src	(318)	RHEKLVOLYAMVSEEPIYIVĪBYMSKGSLLDFLKGEMGKY
A	, —	HDKLVOLYAVVSE-
ع, ۲	ισ	HPNIVOLLGVCTRE
) (, α	######################################
יייווף.		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Cakz	(va)	O TATIONITY TO THE TOTAL OF THE PROPERTY OF TH
Cdc28	(99)	KDDNIVRLYDIVHSDAHKLYLVFEFLDLDLKRYMEGIPKDQP
Fus3	(67)	KHENIITIFNIQRPDSFENFNEVYIIQELMQTDLHRVISTQM

	12	>33	>33	3.7	0.54		0.0021	0.0043	9.6	0.037	0.0040
	3.6	30	>33	1.0	0.13		0.0012	0.0018	<u></u>	0.15	0.39
	· F	×33	>33	10	0.49		0.019	0.057	<u>+</u>	10	>1.2
	° 26	>33	>33	ა. დ	0.82		0.092	0:30	<u>*</u>	>3.7	>3.7
\$ \$\frac{1}{5}\$	° ° ° ^	>33	>33	22	1.7		0.00023	0.00055	3.1	0.070	0.95
	° × ×	>33	>33	56	2.7		0.044	0.12	<u>*</u>	6.1	2.3
	ِ د د د د د د د د د د د د د د د د د د د	0.17	2.2	0.020	0.054		•				
3. 27 C20 (Wild Type	P P P P P P P P P P P P P P P P P P P	c-Abl	CDK2	CAMK =	Engineered	v-Src	c-Fyn C	c-Abl F	CDK2 C	CAMK II

F16.2

FIG. 28

Wild Type

v-Src	2.2	1.0	28
c-Fyn	0.050	0.60	1.0
C-Abl	0.30	0.60	3.4
CDK2	22	18	29
CAMKII	17	22	24

Engineered

v-Src C	0.0015	0.0043
c-Fyn	0.0065	0.0032
C-Abl C	0.0070	0.12
CDK2 C	0.015	0.0050
CAMKII	0.097	0.0080