

Business understanding

- The client is a housing planner
 - Must set prices and wants to use market data
 - It is necessary to know the impact on the housing price of various real estate metrics

Data understanding

- Housing data from a Northwestern county.
- Key variables: price, square footage and quality.
- Each row of data represents a different house sold.
 - Within past few years
 - About 30,000 in data set.
- nearly all observations within Greater Seattle, outliers cut.
 - high price center zone

Modelling Overview: Linear regressions

- Baseline model
 - 'sqft_living'
- Intermediate models:
 - Add new numeric variables and conservatively log transform move variables with each iteration.
 - to improve on linearity issue and heteroskedaticity issues and non-normality issues and to improve rsquared.
- Final model:
 - Log all numerical variables from prior model
 - Add categorical variables Waterfront and Jumbo to increase rsquared.
 - to improve on non-normality(despite improvement) and some heteroskedaticity

Linear regression model assumptions

• Final model heteroskedacities, linearity, and normality of residuals are improved from the baseline model.

- Residual histogram appears normally distributed, and is improved from previous model, however J-B test still failed suggesting non-normality.
- Multicollinearity is low, all correlations below .75.

Final model & Results

OLS Regression Results	
	coef
const	7.07
sqft_living_log	0.48
sqft_garage_log	-0.10
sqft_patio_log	0.04
WaterFront_Yes	0.30
grade_num_log	1.67
view_num_log	0.10
Jumbo	0.57

Results contd.

- Model Evaluation
 - Rsq: **0.51**
 - This means the model accounts for **51% of the variation** in the dependent variable.
 - Compared to baseline model of 0.38.
 - Mean squared error: **0.41.**
 - This is a measure of how far off the predictions of log(price) are from the actual log(price).
 - Root mean squared error: **0.64**
 - This is about the average of how far off the predictions of log(price) are from the actual log(price).

Interpretation of Coefficients

Interpretation of coefficie	nts table	
Categorical Variables	% Effect of its presence on price	
WaterFront	39.68	
Jumbo Area	76.84	
Numeric Variables	% Effect of its 1% increase on price	
sqft_living	0.5	
sqft_garage	-0.11	
sqft_patio	0.042	
grade_num	1.78	
view_num	0.11	

Recommendations

- To determine a price of a house, take a similar house with about 10% less sqft of living area and add 4.85% to that price.
- To determine a price of a house with a waterfront, take a similar house without a waterfront and add 39.68% to the non-waterfront price.
- To determine a price of a house in the Jumbo area, take a similar house not in the Jumbo area and add 76.84% to the non-Jumbo price.

Next Steps

- Establish a better interpretation of the root mean squared error.
- Further analyze the negative coefficient of garage size variable.
- Testing interaction variables (e.g. differing lot sizes and house sizes for different geographic areas.)

Thank you/Questions?