In [1]:

- 1 import numpy as np
- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 **import** warnings
- 6 warnings.filterwarnings("ignore")
- 7 #importing all libraries

In [2]:

- 1 df=pd.read_csv("Sleep_health_and_lifestyle_dataset.csv")
- 2 df
- 3 #reaing CSV(Common Seperate Values)

Out[2]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blo Pressi
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125.
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140.
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140.
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140.
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140.
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140.
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140.

374 rows × 13 columns

4

```
In [3]:
            -Person ID: An identifier for each individual.
            -Gender: The gender of the person (Male/Female).
          3 -Age: The age of the person in years.
          4 -Occupation: The occupation or profession of the person.
            -Sleep Duration (hours): The number of hours the person sleeps per day.
            -Quality of Sleep (scale: 1-10): A subjective rating of the quality of sle
          7
            -Physical Activity Level (minutes/day): The number of minutes the person e
            -Stress Level (scale: 1-10): A subjective rating of the stress level exper
          8
          9 -BMI Category: The BMI category of the person (e.g., Underweight, Normal,
         10 -Blood Pressure (systolic/diastolic): The blood pressure measurement of th
         11
                diastolic pressure.
            -Heart Rate (bpm): The resting heart rate of the person in beats per minut
         12
            -Daily Steps: The number of steps the person takes per day.
         13
            -Sleep Disorder: The presence or absence of a sleep disorder in the person
         14
         15
         16
         17
            -The Sleep Health and Lifestyle Dataset comprises 400 rows and 13 columns,
         18 sleep and daily habits. It includes details such as gender, age, occupation
         19 activity level, stress levels, BMI category, blood pressure, heart rate, d
         20 disorders.
```

Total number of rows and columns

```
In [ ]: 1 print("Number of Row",df.shape[0])
2 print("Number of Column",df.shape[1])
3 #total number of rows and columns
```

EDA(Exploratory Data Analysis)

```
In [4]: 1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype			
0	Person ID	374 non-null	int64			
1	Gender	374 non-null	object			
2	Age	374 non-null	int64			
3	Occupation	374 non-null	object			
4	Sleep Duration	374 non-null	float64			
5	Quality of Sleep	374 non-null	int64			
6	Physical Activity Level	374 non-null	int64			
7	Stress Level	374 non-null	int64			
8	BMI Category	374 non-null	object			
9	Blood Pressure	374 non-null	object			
10	Heart Rate	374 non-null	int64			
11	Daily Steps	374 non-null	int64			
12	Sleep Disorder	374 non-null	object			
dtyn	es: float64(1) int64(7)	object(5)				

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

```
In [5]: 1 df.isna().sum()
2 #Checj for null values
```

```
Out[5]: Person ID
                                    0
        Gender
                                    0
        Age
                                    0
        Occupation
                                    0
        Sleep Duration
                                    0
        Quality of Sleep
                                    0
        Physical Activity Level
                                    0
        Stress Level
                                    0
        BMI Category
                                    0
        Blood Pressure
                                    0
        Heart Rate
                                    0
        Daily Steps
                                    0
        Sleep Disorder
                                    0
        dtype: int64
```

```
In [6]:
           1 df.isnull().sum()
           2 #Showing null values
Out[6]: Person ID
                                         0
         Gender
                                         0
         Age
                                         0
         Occupation
                                         0
         Sleep Duration
                                         0
         Quality of Sleep
                                         0
         Physical Activity Level
         Stress Level
                                         0
         BMI Category
                                         0
         Blood Pressure
                                         0
                                         0
         Heart Rate
         Daily Steps
                                         0
         Sleep Disorder
         dtype: int64
In [7]:
           1 df.columns
           2 #name of all columns
Out[7]: Index(['Person ID', 'Gender', 'Age', 'Occupation', 'Sleep Duration',
                  'Quality of Sleep', 'Physical Activity Level', 'Stress Level', 'BMI Category', 'Blood Pressure', 'Heart Rate', 'Daily Steps',
                  'Sleep Disorder'],
                dtype='object')
```

In [8]: 1 df.rename(columns={"Occupation":"Profession"})

2 #Changing name of column/temporary

Out[8]:

	Person ID	Gender	Age	Profession	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blo Pressi
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140.
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140.
	•••			***						
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140.
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140.
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140.
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140.

374 rows × 13 columns

In [9]:

- 1 df.describe()
- 2 #describe() method gives description of the dataframe

Out[9]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Da
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	37
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	681
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	161
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	300
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	560
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	700
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	800
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	1000
4								•


```
In [11]: 1 sns.distplot(df["Daily Steps"])
2 #It is right skewness.
3 #mean is greater than median.
```

Out[11]: <Axes: xlabel='Daily Steps', ylabel='Density'>

Out[12]:

	Gender	Daily Steps				
1	Male	1284000				
0	Female	1265500				

```
In [13]: 1 step=df.groupby(["Gender"], as_index=False)["Daily Steps"].sum().sort_valu
2 sns.barplot(x="Gender",y="Daily Steps",data=step)
3 #from the below graph we say that both take equal daily steps.
```

Out[13]: <Axes: xlabel='Gender', ylabel='Daily Steps'>


```
In [14]: 1 df["BMI Category"].value_counts()
2 #value counts of BMI Category
```

Out[14]: Normal 195
Overweight 148
Normal Weight 21
Obese 10

Name: BMI Category, dtype: int64

In [16]: 1 sns.displot(df["BMI Category"])
2 #Normal BMI Category count as more than other.

Out[16]: <seaborn.axisgrid.FacetGrid at 0x28a2c612050>


```
In [17]:
              df["Occupation"].value_counts()
              #value counts of Occupation
Out[17]: Nurse
                                  73
         Doctor
                                  71
         Engineer
                                  63
         Lawyer
                                  47
         Teacher
                                  40
         Accountant
                                  37
         Salesperson
                                  32
         Software Engineer
                                   4
         Scientist
                                   4
         Sales Representative
                                   2
         Manager
         Name: Occupation, dtype: int64
```

Name: Occupation, dtype: int64


```
In [21]: 1 df["Sleep Duration"].hist(color="c")
```

Out[21]: <Axes: >

In [25]: 1 sns.pairplot(df,hue="Gender")

Out[25]: <seaborn.axisgrid.PairGrid at 0x28a3941e770>

In [27]: 1 corr=df.corr()
2 corr

Out[27]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
Person ID	1.000000	0.990516	0.296305	0.431612	0.149882	-0.394287	-0.225467	0.043844
Age	0.990516	1.000000	0.344709	0.473734	0.178993	-0.422344	-0.225606	0.057973
Sleep Duration	0.296305	0.344709	1.000000	0.883213	0.212360	-0.811023	-0.516455	-0.039533
Quality of Sleep	0.431612	0.473734	0.883213	1.000000	0.192896	-0.898752	-0.659865	0.016791
Physical Activity Level	0.149882	0.178993	0.212360	0.192896	1.000000	-0.034134	0.136971	0.772723
Stress Level	-0.394287	-0.422344	-0.811023	-0.898752	-0.034134	1.000000	0.670026	0.186829
Heart Rate	-0.225467	-0.225606	-0.516455	-0.659865	0.136971	0.670026	1.000000	-0.030309
Daily Steps	0.043844	0.057973	-0.039533	0.016791	0.772723	0.186829	-0.030309	1.000000

In [28]: 1 sns.heatmap(corr,annot=True)

Out[28]: <Axes: >

In []: 1