2. Suponiendo que R es un conjunto, demuestre que los conjuntos definidos en el ejemplo 3.29 existen.

Ejemplo 3.29. Recuerde que a una circunferencia en R^2 con centro en el punto $x \in R^2$ y radio r > 0, la podemos considerar como el conjunto $C(x,r) = \{y \in R^2 : ||x-y|| = r\}$. Sea E_x la familia de todas las circunferencias en R^2 con centro $x \in R^2$, es decir, $E_x = \{C(x,r) : r > 0\}$ y sea $\varepsilon = \{E_x : x \in R^2\}$. Entonces ε es un sistema de conjuntos cuyos elementos son familias de conjuntos. Note que ni los puntos de R^2 , ni las circunferencias son elementos de ε .

Siguiendo la definición dada veremos cada uno de los conjuntos definidos: C(x,r), E_x y ε .

Sobre la existencia de C(x,r) y E_x . Supondremos la existencia de $x \in R^2$ y de r, por lo que dicho conjunto $R \neq \emptyset$, ahora utilizamos las definiciones dadas

$$C(x,r) = \{ y \in R^2 : ||x - y|| = r \},\$$

vemos por tanto que x e y pertenecen al mismo conjunto (R^2) y por tanto por lo menos existirá un y=x, sin embargo si ello es así tendremos que siempre r=0, lo cual no se permite por las definiciones dadas, como sabemos que r existe y satisface la condición (G(r):r>0), debe existir un $y\in R^2$ tal que para todo x, $||x-y||=r\wedge G(r)$, si dichos elementos existen, C(x,r) existe y como la condición G(r) se satisface para algunos de sus elementos E_x también existe.

Sobre la existencia de ε . Su construcción requiere de la existencia de E_x y de que exista algúnn $x \in R^2$, sobre lo segundo, se garantiza mediante las primeras definiciones del problema y como vimos anteriormente la existencia de $x \in R^2$ es una condición necesaria también para la existencia de E_x , sinembargo, en el párrafo anterior vimos que E_x existe, por lo tanto ε existe.

Ejemplos

$$C((1,1)) = \{(0,0), (0.5,0.5), \dots\},\$$

$$E_{(1,1)} = \{\{(0,0), (0.5,0.5), \dots\}\},\$$

$$\varepsilon = \{E_{(1,1)}, E_{(0,0)}, \dots\}.$$

Nota. Nótese que estaríamos asumiendo que dichos elementos existen en R, lo cual necesariamente puede no ser así, lo hacemos de esta manera para ejemplificar.

4. Muestre que para cualquier conjunto $X, \cap \mathcal{P}(X) = \emptyset$.

La demostración es de manera directa, primero demostraremos que

4.a Para todo conjunto $A, A \cap \emptyset = \emptyset$.

Dem. 4.a Consideremos $x \in A \cap \emptyset$, por definición no pertenece al vacío y en general para todo $x \in A$ esto se cumple, luego $A \cap \emptyset = \emptyset$, aún si consideramos que $A = \emptyset$ por definición del conjunto vacío la intersección tampoco tendrá elementos.

Dem 4. Para todo conjunto $X, \emptyset \in \mathcal{P}(X)$, por *Dem. 4.a.* vemos que $\bigcap \mathcal{P}(X) = \emptyset$.