Michael Calle – Assignment III Report:

Table of length of tour found and time taken for Nearest Neighbor:

Country	Length of Tour	Time Taken in ms
Djibouti	9748.95	1
Argentina	1.05557e+06	2790
China	5.67147e+06	255857
Sweden	1.08313e+06	26076

Best known stats from the website:

Country	Length of Tour	Time Taken
Djibouti	6656	240ms
Argentina	837,479	N/A
China	4566506	N/A
Sweden	855597	84.8 years

It was interesting to see (as in the case of Djibouti) how the computation time increases in order to find shorter tours. It was also satisfying for me to implement the strategies of sort algorithms from the previous project into this one. My nearest neighbor algorithm doesn't create a new list to represent the final tour. Rather, it uses std::swap to rearrange the already preexisting list.

One thing this project helped to solidify in my head is the usage of standard move and swap in practical applications, especially those pertaining to the traversing and sorting of arrays.