

 ${\sf LEnsE} \ / \ {\sf Institut} \ {\sf d'Optique} \ {\sf Graduate} \ {\sf School}$

TD10

TD 10 / MODÉLISER UN MONTAGE TRANSIMPÉDANCE

Objectifs pédagogiques

A la fin de cette thématique, les étudiant es seront capables de :

• Modéliser un montage de photodétection de type transimpédance

Activités pédagogiques

- Lectures (hors temps présentiel en ligne)
 - $\,\vartriangleright\,$ TD7 du Semestre 5 : Détecter des photons
 - ⊳ Fiche résumé : Analyse Harmonique / Ordre 1
 - $\,\vartriangleright\,$ Fiche résumé : Analyse Harmonique / Ordre 2
 - ⊳ Fiche résumé : Photodétection
- Séance de **TD10**
- Séances de TP (module TP CéTI)

Ressources Complémentaires

- Modélisations sous MATLAB (http://lense.institutoptique.fr/simuler/):
 - > Photodétection : Comparaison entre système de photodétection simple et transimpédance
 - ⊳ Photodétection : Montage transimpédance / Réponse en fréquence
 - > Photodétection : Montage transimpédance / Comparaison

LEnsE / Institut d'Optique Graduate School

TD10

TD 10 / MODÉLISER UN MONTAGE TRANSIMPÉDANCE

Exercice 1 - Montage transimpédance - Etude simple

Notions abordées

- ⊳ Modélisation d'une photodiode et d'un oscilloscope
- ▷ Intérêt de l'ALI pour un système de photodétection

On considère le montage récepteur à photodiode suivant. L'amplificateur linéaire intégré (ALI) est alimenté en ± 15 V. On note $\Phi_{lum}(t)$ le flux lumineux reçu par la photodiode et k sa sensibilité.

- 1. A quoi correspondent les différents éléments de ce montage?
- 2. Dans quel mode de fonctionnement est l'ALI?
- 3. Exprimez la tension de sortie $V_S(f)$ en fonction de i_{Phd} et des éléments du montage.

Exercice 2 - Montage de contre-réaction

Notions abordées

 $\,\rhd\,$ Filtre linéaire

On étudie le montage suivant :

- 1. Calculez les courants i_R et i_C en fonction des éléments du montage.
- 2. Quel est le lien entre i_R , i_C et i_{Phd} ?
- 3. Que vaut alors V^- en fonction de V_S et i_{Phd} ?
- 4. Dans le cas où $i_{Phd} = 0$, quel est le comportement en fréquence du système entre V_S et V^- ?

Exercice 3 - Transimpédance et modèle du premier ordre pour l'ALI

Notions abordées

- ⊳ Modèle de l'ALI du premier ordre
- ⊳ Système linéaire

Soit le montage suivant :

On modélisera l'ALI par son modèle du premier ordre :

$$A(j \cdot \omega) = \frac{A_0}{1 + \frac{j \cdot \omega}{\omega_0}}$$

où A_0 est l'amplification différentielle statique et $\omega_0 = \frac{GBP}{A_0}$ la pulsation de coupure, avec GBP la bande-passante unitaire.

- 1. Que vaut V_S en fonction de V^+ et V^- ?
- 2. Quel est le lien avec le montage de l'exercice 2?
- 3. Que vaut alors V_S en fonction de i_{Phd} ? On notera $\omega_c = \frac{1}{R_F \cdot C_{Phd}}$ et $K = \frac{A_0}{1+A_0}$.
- 4. Quelle est la fonction de transfert de ce montage?
- 5. Calculez les valeurs de la pulsation propre ω_T , le facteur d'amortissement m_T et le gain statique G_T de ce système.
- 6. Que deviennent ces valeurs si on suppose que $A_0 >> 1$?

On prendra les valeurs suivantes pour la suite :

 $A_0=2\cdot 10^5,~GBP=3~\mathrm{MHz},~R_F=100~\mathrm{k}\Omega$ et une photodiode de type SFH206 (dont une courbe caractéristique est donnée ci-après).

Capacitance

- 7. Que valent ω_T et m_T pour $V_R=0$ V ? Pour $V_R=30$ V ?
- 8. Quelles formes ont les réponses en fréquence pour ces deux valeurs de tension de polarisation?
- 9. Parmi les deux réponses indicielles suivantes, laquelle est celle pour $V_R=0\,\mathrm{V}$? Pour $V_R=30\,\mathrm{V}$?

