FUNGSI

MATEMATIKA SISTEM INFORMASI 1

PENGERTIAN FUNGSI

- A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f.
- Nama lain untuk fungsi adalah pemetaan atau transformasi.

PENGERTIAN FUNGSI

Definisi: Misalkan A dan B dua himpunan takkosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B.

- ATURAN:

- Setiap anggota A harus habis terpasang dengan anggota B.
- Tidak boleh membentuk cabang.

ILUSTRASI FUNGSI

- □Pada gambar 1, 3 dan 4 setiap anggota himpunan A mempunyai pasangan tepat satu anggota himpunan B. Relasi yang memiliki ciri seperti itu disebut fungsi atau pemetaan.
- □Pada gambar 2 bukan fungsi karena ada anggota A yang punya pasangan lebih dari satu anggota B.

Dari diagram-diagram panah berikut, manakah yang merupakan fungsi?

Jawab:

- Diagram panah (a) merupakan fungsi karena setiap anggota A dipasangkan dengan tepat satu anggota B.
- Diagram panah (b) bukan merupakan fungsi karena ada anggota A, yaitu a, mempunyai dua pasangan anggota B, yaitu 1 dan 2.
- Diagram panah (c) bukan merupakan fungsi karena ada anggota A, yaitu a, tidak mempunyai pasangan anggota B

☐ Diketahui :

- $\{(-1,2), (-4,51), (1,2), (8,-51)\}$
- { (13,14), (13,5), (16,7), (18,13) }
- 2. { (13,14), (13,5), (25, 7) 3. { (3,90), (4,54), (6,71), (8,90) }
- 5. { (3,4), (4,5), (6,7), (3,9) }
- $\{(-3,4), (4,-5), (0,0), (8,9)\}$
- { (8, 11), (34,5), (6,17), (8,19) }

Ditanya :

Carilah yang merupakan fungsi

☐ Jawab: 1, 3, 4,6

- Jika f(a) = b, maka b dinamakan **bayangan** (image) dari a dan a dinamakan **pra-bayangan** (pre-image) dari b.
- Himpunan yang berisi semua nilai pemetaan f disebut **jelajah** (range) dari f. Perhatikan bahwa jelajah dari f adalah himpunan bagian (mungkin proper subset) dari B.

D_f = domain fungsi f

 R_f = range kodomain

PENYAJIAN FUNGSI

- Fungsi dapat disajikan dalam berbagai bentuk, diantaranya:
 - 1. Himpunan pasangan terurut.

Seperti pada relasi.

Formula pengisian nilai (assignment). Contoh: f(x) = 2x + 10, $f(x) = x^2$, dan f(x) = 1/x.

✓ Contoh 1:

Relasi $f = \{(1, u), (2, v), (3, w)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B.

Di sini f(1) = u, f(2) = v, dan f(3) = w.

Daerah asal dari f adalah A dan daerah hasil adalah B. Jelajah dari f adalah $\{u, v, w\}$, yang dalam hal ini sama dengan himpunan B.

√ Contoh 2:

Relasi $f = \{(1, u), (2, u), (3, v)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B,

meskipun u merupakan bayangan dari dua elemen A. Daerah asal fungsi adalah A, daerah hasilnya adalah B, dan jelajah fungsi adalah $\{u, v\}$.

✓ Contoh 3.

Relasi $f = \{(1, u), (2, v), (3, w)\}$ dari $A = \{1, 2, 3, 4\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena tidak semua elemen A dipetakan ke B.

✓ Contoh 4.

Relasi $f = \{(1, u), (1, v), (2, v), (3, w)\}$ dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena 1 dipetakan ke dua buah elemen B, yaitu u dan v.

FUNGSI SURJEKTIF (ONTO)

- Fungsi f dikatakan dipetakan pada (onto) atau surjektif (surjective) jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A.
- Dengan kata lain seluruh elemen B merupakan jelajah dari f. Fungsi f disebut fungsi pada himpunan B.

Diketahui Relasi:

$$f = \{(1, u), (2, u), (3, v)\}\$$
 dari $A = \{1, 2, 3\}\$ ke $B = \{u, v, w\}\$

bukan fungsi pada karena w tidak termasuk jelajah dari f.

Diketahui Relasi:

$$f = \{(1, w), (2, u), (3, v)\}$$
 dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$

Fungsi pada

karena semua anggota B merupakan jelajah dari f.

f fungsi surjektif dari himpunan A ke himpunan B

FUNGSI SATU-SATU (INJEKTIF)

Fungsi f dikatakan satu-ke-satu (one-to-one) atau injektif (injective) jika tidak ada dua elemen himpunan A yang memiliki bayangan sama.

CONTOH
$$f = \{(1, w), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w, x\}$ adalah fungsi satu-ke-satu,

Tetapi relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi satu-ke-satu, karena f(1) = f(2) = u.

LATIHAN

1. Jika A = (a,b,c,d,e), dan B himpunan dari huruf dalam abjad. Misalkan f, g dan h dari A ke dalam B didefinisikan oleh:

a.
$$f(a) = r$$
, $f(b) = a$, $f(c) = s$, $f(d) = r$, $f(e) = e$

b.
$$g(a) = a$$
, $g(b) = c$, $g(c) = 3$, $g(d) = r$, $g(e) = s$

c.
$$h(a) = z$$
, $h(b) = y$, $h(c) = x$, $h(d) = y$, $h(e) = z$

Nyatakan apakah tiap-tiap fungsi di atas Injektif/surjektif atau tidak keduanya?

- 2. Diberikan fungsi f dari {a, b, c, d} ke {1, 2, 3, 4, 5} dengan f(a)=4,f(b)=5, f(c)=1 dan f(d) = 3 merupakan fungsi satu-kesatu (injektif)?
- 3. Apakah fungsi f: R → R dengan f(x) = x² merupakan fungsi surjektif?
- 4. Apakah fungsi dari R ke R ini g(x) = x+5 merupakan fungsi injektif?

FUNGSI BIJEKTIF

Fungsi f : A → B dikatakan berkoresponden satusatu atau bijektif bila ia injektif dan surjektif. Pada fungsi bijektif, setiap anggota B mempunyai tepat satupra-bayangan di A.

fungsi bijektif

Apakah fungsi f: $\{a,b,c,d\} \rightarrow \{1,2,3,4\}$ dengan f(a)=4, f(b)=2, f(c)=1 dan f(d)=3 bijektif.

PENYELESAIAN:

karena semua nilainya berbeda maka fungsi ini satu-satu (Injektif). Karena semua anggota B habis terpasang maka ia surjektif (Onto).

Jadi fungsi ini bijektif.

Fungsi f(x) = x - 1 merupakan fungsi yang berkoresponden satuke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada.

Bukan fungsi satu-ke-satu maupun pada

Fungsi pada, bukan satu-ke-satu

Bukan fungsi

KOMPOSISI FUNGSI

 $(g \circ f)(x) = g(f(x))$, artinya: f(x) masuk ke g(x)

Jika
$$f(x) = 2x - 5$$
 dan $g(x) = 3x + 1$

tentukan: a.
$$(f \circ g)(x)$$
 b. $(g \circ f)(x)$ c. $(f \circ g)(4)$

b.
$$(g \circ f)(x)$$

c.
$$(f \circ g)(4)$$

Jawab:

a.
$$(f \circ g)(x) = f(g(x)) = 2(3x + 1) - 5 = 6x - 3$$

b.
$$(g \circ f)(x) = g(f(x)) = 3(2x - 5) + 1 = 6x - 14$$

c.
$$(f \circ g)(4) = 6.4 - 3 = 21$$

 $(f \circ g)(x) \neq (g \circ f)(x)$ Jadi pada komposisi fungsi tidak berlaku sifat komutatif.

Jika $(f \circ g)(x) = 6x - 5$ dan g(x) = 2x + 1 maka f(x) = ?

Jawab:

Cara 1: $(f \circ g)(x) \& g(x) linear \rightarrow misal f(x) = ax + b$

(fog)(x) = f(g(x))
$$6x-5 = a(2x+1) + b = 2ax + a + b$$

 $2a = 6 \rightarrow a = 3$ $a + b = -5 \rightarrow b = -8$
didapat f(x) = 3x - 8 cek (fog)(x) =?

Cara 2: yg diketahui (f o g)(x) dan g(x)

misal g(x) = 2x + 1 =
$$\epsilon$$
 $x = \frac{a-1}{2}$ $f(a) = 6\left(\frac{a-1}{2}\right) - 5$

$$f(x) = 3x - 8$$

FUNGSI INVERS

- Jika f adalah fungsi berkoresponden satu-ke-satu dari A ke B, maka kita dapat menemukan balikan (invers) dari f.
- Balikan fungsi dilambangkan dengan f⁻¹. Misalkan a adalah anggota himpunan A dan b adalah anggota himpunan B, maka f⁻¹(b) = a jika f(a) = b.

FUNGSI INVERS

 Fungsi yang berkoresponden satu-ke-satu sering dinamakan juga fungsi yang invertible (dapat dibalikkan), karena kita dapat mendefinisikan fungsi balikannya. Sebuah fungsi dikatakan not invertible (tidak dapat dibalikkan) jika ia bukan fungsi yang berkoresponden satu-ke-satu, karena fungsi balikannya tidak ada.

Relasi f = {(1, u), (2, w), (3, v)} dari A = {1, 2, 3} ke B = {u, v, w} adalah fungsi yang berkoresponden satuke-satu. Balikan fungsi f adalah

$$f^{-1} = \{(u, 1), (w, 2), (v, 3)\}$$

❖Jadi, f adalah fungsi invertible.

Tentukan balikan fungsi f(x) = x - 1.

Penyelesaian:

Fungsi f(x) = x - 1 adalah fungsi yang berkoresponden satu-ke-satu, jadi balikan fungsi tersebut ada.

Misalkan f(x) = y, sehingga y = x - 1, maka x = y + 1.

Jadi, balikan fungsi balikannya adalah $f^1(y) = y + 1$.

☐ Tentukan rumus fungsi invers dari fungsi f(x) = 2x + 6

□Jawab:

$$y = f(x) = 2x+6$$

 $y = 2x+6$
 $2x = y-6$
 $x = \frac{1}{2}(y-6)$

Jadi: $f^{-1}(y) = \frac{1}{2}(y-6)$ atau $f^{-1}(x) = \frac{1}{2}(x-6)$

☐ Diketahui:

$$f(x) = x+3$$

$$g(x) = 5x - 2$$
Hitunglah $(f \circ g)^{-1}(x)$

Cara 1

$$(f \circ g)(x)$$
 = $f(g(x))$
= $g(x) + 3$
= $5x-2+3$

$$=5x+1$$

$$(f \circ g)^{-1}(x) = y = 5x+1$$

5x = y-1

$$x = (y-1)/5$$

$$(f \circ g)^{-1}(x) = \frac{1}{5} x - \frac{1}{5}$$

☐ Cara 2 :

$$f(x) = x + 3$$

$$\Leftrightarrow$$
 $y = x + 3$

$$\Leftrightarrow x = y - 3$$

$$\Leftrightarrow f^{-1}(x) = x - 3$$

$$g(x) = 5x - 2$$

$$\Leftrightarrow$$
 $y = 5x - 2$

$$\Leftrightarrow x = \frac{1}{5}y + \frac{2}{5}$$

$$\Leftrightarrow g^{-1}(x) = \frac{1}{5}x + \frac{2}{5}$$

$$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$$

= $g^{-1}(f^{-1}(x))$

$$= \frac{1}{5}(x-3) + \frac{2}{5}$$

$$=\frac{1}{5}x-$$

LATIHAN

- 1. Misalkan f fungsi dari {a, b, c} ke {1, 2, 3} dengan aturan f(a)=2, f(b)=3 dan f(c)=1. Apakah f invertibel? Jika ya, tentukan inversnya!
- 2. Misalkan f fungsi dari Z ke Z dengan f(x) = x². Apakah f invertibel? Jika ya, tentukan inversnya!
- 3. Diketahui:

$$f(x) = x - 2$$

 $g(x) = -2x + 1$
Hitunglah
 $1.(f \circ g)^{-1}(x)$
 $2.(g \circ f)^{-1}(x)$

- 4. Diketahui : $f(x) = x^2 + 1$ dan g(x) = 2x 3. Maka ($f \circ g$)(x) dan ($g \circ f$)(x)
- 5. Jika $(f \circ g)(x) = 6x 5$ dan f(x) = 2x + 1 maka g(x) = ?

FINISH...