数理逻辑第四次作业

201300035 方盛俊

第六讲习题.

1.

(1)

对于任何 $\Phi \cap \Psi$ 的有穷子集 Δ

- $\because \Delta \subseteq \Phi \cap \Psi$
- $\therefore \Delta \subseteq \Phi$, 即 Δ 也为 Φ 的有穷子集
- $:: Con(\Phi)$
- ∴ Δ \vdash 在 G 中不可证
- $\therefore Con(\Phi \cap \Psi)$

(2)

$$\diamondsuit \Phi = \{A\}, \Psi = \{\neg A\}$$

易知 Φ 的有穷子集 Δ 即为 $\{A\}$ 和 \emptyset

并且我们知道 $A \vdash 和 \vdash 在 G$ 中不可证.

同理 Ψ 的有穷子集 Δ 即为 $\{\neg A\}$ 和 \emptyset

并且我们知道 $\neg A \vdash$ 和 \vdash 在 G 中不可证.

而
$$\Phi \cup \Psi = \{A, \neg A\}$$

$$\mathop{\mathrm{I\!\!R}}\nolimits \Delta = \{A, \neg A\}$$

我们有
$$\frac{A \vdash A}{A, \neg A \vdash} \neg L$$

即 A, $\neg A \vdash$ 在 G 中可证

所以此时 $Con(\Phi \cup \Psi)$ 不成立

即有 $Con(\Phi \cup \Psi)$ 未必成立

2.

(1)

$$\because \frac{A \vdash A, B \quad A, B \vdash B}{A, A \to B \vdash B} \to L$$

 \therefore 存在 Φ 的有穷子集 $\{A,A \to B\}$ 使得 $\Delta \vdash B$ 可证

由命题 6.7 可知

 $\therefore B \in \Phi$

(2)

对于任何项t

$$\therefore \frac{A[\frac{t}{x}], \forall x.A \vdash A[\frac{t}{x}]}{\forall x.A \vdash A[\frac{t}{x}]} \forall L$$

 \therefore 存在 Φ 的有穷子集 $\{ orall x.A \}$ 使得 $\Delta \vdash A[rac{t}{x}]$ 可证

由命题 6.7 可知

$$\therefore A[\frac{t}{r}] \in \Phi$$

3.

先证明项是可数的, 即项的势为 \aleph_0 , 对项 t_n 的函数嵌套深度 n 进行数学归纳, 记 t_n 组成的集合为 S_n :

奠基 (Basic):

嵌套深度 n=0 时, 即项 t 为变元符 x 或常元符 c 时,

易知 $S_0=V\cup\mathcal{L}_c$, 而变元集的势 $|V|=\aleph_0$, 常元符的势 $|\mathcal{L}_c|=\aleph_0$

则有
$$|S_0| = |V| + |\mathcal{L}_c| = \aleph_0 + \aleph_0 = \aleph_0$$

归纳假设 (I.H.):

假设对于 n-1 满足 $|S_{n-1}|=\aleph_0$

归纳步骤 (I.S.):

我们记 S_n^i 为由元数为 i 的函数作为最外层函数的项 t_n 组成的集合.

我们已知元数为 i 的函数个数是可数的,我们对其中一个函数 f_{ij} 对应 t_n 集合为 S_n^{ij}

对于
$$t_n=f_{ij}(t_{k_1},t_{k_2},\cdots,t_{k_i})$$
, 其中 $0\leqslant k_i\leqslant n-1$, f_i 的元数为 i

由归纳假设可知 $S_k = \aleph_0, 0 \leqslant k \leqslant n-1$

$$|S_n^{ij}| = \sum_{k_1=0}^{n-1} \sum_{k_2=0}^{n-1} \cdots \sum_{k_i=0}^{n-1} |S_{k_1}| imes |S_{k_2}| imes \cdots imes |S_{k_2}| = leph_0$$

$$\therefore |S_n^i| = \sum_{i=0}^{\infty} |S_n^{ij}| = \aleph_0$$

$$\therefore |S_n| = \sum_{i=0}^{\infty} |S_n^i| = leph_0$$

归纳成立.

$$\therefore \{t|t \text{ is term}\} = S_0 \cup S_1 \cup \cdots \cup S_n \cup \cdots$$

$$\therefore |\{t|t \text{ is term}\}| = \sum_{n=1}^{\infty} |S_n| = \aleph_0$$

则我们可以证明出项的势为 🔾 0, 是可数的.

再证明公式是可数的, 即公式的势为 №

和项的推导过程一样,我们可以证明出原子公式,即只由谓词 $P(t_1,t_2,\cdots,t_n)$ 组成的公式的势是 \aleph_0 .

再对公式的逻辑连接词深度 n 进行数学归纳, 记深度为 n 的公式集合为 S_n :

奠基 (Basic): 已经有 S_0 为原子公式集合, 则 $|S_0|=\aleph_0$

归纳假设 (I.H.): 假设 $S_{n-1}=\aleph_0$

归纳步骤 (I.S.):

若最外层连接词为 \neg : 对于 $\neg A$ 有 $|S_n| = |S_{n-1}| = \aleph_0$

若最外层连接词为 *, *
$$\in \{\land,\lor,\to\}$$
: 对于 $A*B$ 有 $|S_n|=\sum_{k=0}^{n-1}|S_{n-1}| imes|S_k|=leph_0$

可知归纳成立.

则我们可知公式集合 $S_0 \cup S_1 \cup \cdots$ 的势为 \aleph_0 ,

即一阶语言 \mathcal{L} 的所有公式组成的集合是可数的.

假设所有公式组成的集合为 $\{A_1,A_2,\cdots\}$, $\mathcal L$ 的任意一个协调公式集为 Γ ,下面证其可以扩张为一个极大协调公式集 Γ' 进行数学归纳:

奠基 (Basic): 当 n=0 时, $\Gamma_0=\Gamma$, 易知 $Con(\Gamma_0)$

归纳假设 (I.H.): 假设当 n-1 时, 有 $Con(\Gamma_{n-1})$

归纳步骤 (I.S.):

由归纳假设可知 $Con(\Gamma_{n-1})$

若 $Con(\Gamma_{n-1} \cup \{A_n\})$, 则令 $\Gamma_n = \Gamma_{n-1} \cup \{A_n\}$

若 $Incon(\Gamma_{n-1} \cup \{A_n\})$, 则令 $\Gamma_n = \Gamma_{n-1}$

所以可知 $Con(\Gamma_n)$

归纳成立.

$$\diamondsuit \Gamma' = \Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \dots \cup \Gamma_n \cup \dots$$

下面证明 Γ' 极大协调.

由归纳的步骤我们可知,对于任何一个公式 A_n :

$$Con(\Gamma' \cup \{A_n\}) \Rightarrow Con(\Gamma_{n-1} \cup \{A_n\}) \Rightarrow A_n \in \Gamma_n \Rightarrow A_n \in \Gamma'$$

即对任何公式 A 均有若 $Con(\Gamma' \cup \{A\})$ 则 $A \in \Gamma'$

所以 Γ' 极大协调, 即

一阶语言 $\mathcal L$ 的一个协调公式集 Γ 均可扩张为 $\mathcal L$ 的一个极大协调公式集 Γ' .

4.

(2)

令谓词 $p(x):x\doteq s$, 则原式可以变为 $\vdash(s\doteq t)\to p(t)$

$$rac{s \doteq t, p(s) dash p(t) \qquad dash p(s)}{s \doteq t dash p(t)} rac{Cut}{dash (s \doteq t)
ightarrow p(t)}
ightarrow R$$

由等词公理 (1) 可知 $\vdash p(s)$ 可证, 等词公理 (3) 可知 $s \doteq t, p(s) \vdash p(t)$ 可证,

则
$$\vdash (s \doteq t) \rightarrow (t \doteq s)$$
 可证.

(3)

令谓词 $p(x):s\doteq x$, 则原式可以变为 $\vdash p(t) \to (t\doteq u \to p(u))$

$$\frac{t \doteq u, p(t) \vdash p(u)}{\underbrace{p(t) \vdash t \doteq u \rightarrow p(u)}} \rightarrow R$$
$$\vdash p(t) \rightarrow (t \doteq u \rightarrow p(u)) \rightarrow R$$

由等词公理 (3) 可知 $t \doteq u, p(t) \vdash p(u)$ 可证,

则
$$\vdash (s \doteq t) \rightarrow (t \doteq u \rightarrow s \doteq u)$$
可证.

5.

设 t 为项, 对 t 进行结构归纳定义 D(t) 如下:

1.
$$D(x)=\{\sigma(x)\}$$
, 这里 $x\in V$

2.
$$D(c)=\{c_M\}$$
, 这里 $c\in\mathcal{L}_c$

2.
$$D(c)=\{c_M\}$$
, 这里 $c\in\mathcal{L}_c$
3. $D(f(t_1,\cdots,t_n))=igcup_{i=1}^n D(t_i)$

设 A 为项, 对 A 进行结构归纳定义 D(t) 如下:

1.
$$D(t_1 \doteq t_2) = D(t_1) \cup D(t_2)$$

2.
$$D(P(t_1, \dots, t_n)) = \bigcup_{i=1}^n D(t_i)$$

3. $D(\neg A) = D(A)$

3.
$$D(\neg A) = D(A)$$

4.
$$D(A*B) = D(A) \cup D(B), * \in \{\lor, \land, \rightarrow\}$$

设 Γ 为公式集 $\{A_1, A_2, \cdots, A_n, \cdots\}$,对 Γ 归纳定义如下:

1.
$$D(\Gamma) = \bigcup_{i=1} D(A_i)$$

- ∵ Φ 为一个有模型的公式集合
- $\therefore \Phi$ 有对应的结构 (M,I) 和赋值 σ

所以我们由 $D(\Phi)$ 的归纳定义可知, $D(\Phi)\subseteq M$, 并且 Φ 中的公式只使用到了论域 M 的这个子集 $D(\Phi)$

又由我们的归纳步骤可知, $D(\Phi)$ 中的单独元素仅由 D(x) 和 D(c) 生成, 即有

$$|D(\Phi)| \leqslant |V| + |\mathcal{L}_c| = \aleph_0 + \aleph_0 = \aleph_0$$

即我们有 $D(\Phi)$ 是可数的.

我们将 $D(\Phi)$ 作为 Φ 的一个新模型 $(D(\Phi), I)$ 与赋值 σ 的论域.

即我们证明了, 当 \mathcal{L} 为可数的一阶语言, 若 Φ 有模型, 则 Φ 有论域为可数集的模型.

6.

 Γ , Γ , $\Lambda[\frac{c}{x}] \models B$, c 为新常元

由 Completeness 可知

 Γ , $A\left[\frac{c}{x}\right] \vdash B$, c 为新常元

令其证明树为 T, 在 T 中将 c 替换成新变元 y, 从而有

$$\Gamma, A[\frac{y}{x}] \vdash B$$

$$\cdots \frac{\Gamma, A[\frac{y}{x}] \vdash B}{\Gamma, \exists x.A \vdash B} \exists L$$

$$\Gamma, \exists x.A \vdash B$$

由 Completeness 可知

$$\Gamma, \exists x.A \models B$$

令论域 $M = \{0, 1\}$, 定义谓词 P(0) = F, P(1) = T

则其是 $\forall x(P(x) \rightarrow \forall y P(y))$ 的一个反例模型.

当 x=1,y=0 时, P(x)=T, P(y)=F, 因此 $\forall x(P(x)
ightarrow \forall y P(y))$ 不成立

 $\therefore \forall x (P(x) \rightarrow \forall y P(y))$ 不可证

(2)

$$\frac{\frac{P(r) \vdash P(r), \exists x P(x), Q(r)}{P(r) \vdash \exists x P(x), Q(r)} \exists R \quad \frac{Q(r), \forall y Q(y), P(r) \vdash Q(r)}{\forall y Q(y), P(r) \vdash Q(r)} \forall L}{\frac{\exists x P(x) \rightarrow \forall y Q(y), P(r) \vdash Q(r)}{\exists x P(x) \rightarrow \forall y Q(y) \vdash P(r) \rightarrow Q(r)}} \rightarrow L$$

$$\frac{\exists x P(x) \rightarrow \forall y Q(y) \vdash \forall z (P(z) \rightarrow Q(z))}{\exists x P(x) \rightarrow \forall y Q(y) \vdash \forall z (P(z) \rightarrow Q(z))} \rightarrow R$$

$$\vdash (\exists x P(x) \rightarrow \forall y Q(y)) \rightarrow \forall z (P(z) \rightarrow Q(z))$$

 $\therefore (\exists x P(x) \rightarrow \forall y Q(y)) \rightarrow \forall z (P(z) \rightarrow Q(z))$ 可证

(3)

令论域 $M = \{0,1\}$, 定义谓词 P(0) = F, P(1) = T, Q(0) = F, Q(1) = T

则其是 $\forall z(P(z) \to Q(z)) \to (\exists x P(x) \to \forall y Q(y))$ 的一个反例模型.

易知, 对于该模型来说, $\forall z(P(z) \to Q(z))$ 是成立的, 只需要证明 $\exists x P(x) \to \forall y Q(y)$ 是错误的.

可以看出, 当 x=1 时, P(x)=T, 即 $\exists x P(x)$ 是成立的, 只需证 $\forall y Q(y)$ 是错误的.

当 y=0 时, Q(0)=F, 因此 $\forall yQ(y)$ 是错误的.

 $\therefore orall z(P(z) o Q(z)) o (\exists x P(x) o orall y Q(y))$ 不可证

(4)

 \therefore $eg\exists y \forall x ((R(x,y) o
eg R(x,x)) \land (
eg R(x,x) o R(x,y)))$ 可证