A NON-REFLEXIVE BANACH SPACE ISOMETRIC WITH ITS SECOND CONJUGATE SPACE

By Robert C. James

University of California

Communicated by J. von Neumann, December 5, 1950

A Banach space B is isometric with a subspace of its second conjugate space B^{**} under the "natural mapping" for which the element of B^{**} which corresponds to the element x_0 of B is the linear functional F_{x_0} defined by $F_{x_0}(f) = f(x_0)$ for each f of B^* . If every F of B^{**} is of this form, then B is said to be reflexive and B is isometric with B^{**} under this natural mapping. The purpose of this note is to show that B can be isometric with B^{**} without being reflexive. The example given to show this is a space isomorphic with a Banach space known to not be reflexive, but to be isomorphic with its second conjugate space.

A sequence $\{x^n\}$ of elements of a Banach space B is said to be a basis for B if for each x of B there is a unique sequence of numbers $\{a_n\}$ such that $x = \sum_{1}^{\infty} a_i x^i$ in the sense that $\lim_{n \to \infty} \|x - \sum_{1}^{n} a_i x^i\| = 0$. A fundamental sequence $\{x^n\}$ is a basis if and only if there is a positive number ϵ such that $\|x\| = \|x\| = \|x\|$

THEOREM. Let B be a Banach space with an orthogonal basis $\{z^n\}$ for which $\lim_{n\to\infty} ||f||_n = 0$ for each f of B^* , where $||f||_n$ is the norm of f on $z^{n+1} \oplus z^{n+2} \oplus \ldots$ Then $\{g^n\}$ is a basis for B^* if $g^n(z^m) = \delta_m^n$ for each n and m. If $F \in B^{**}$, then $||F|| = \lim_{n\to\infty} ||\sum_{i=1}^n F_i z^i||$, where $F_i = F(g^i)$. If the sequence $\{F_n\}$ is such that $\lim_{n\to\infty} ||\sum_{i=1}^n F_i z^i|| < +\infty$, then $F \in B^{**}$ if one defines $F(f) = \sum_{i=1}^n F_i f_i$ for each $f = \sum_{i=1}^n f_i g^i$ of B^* .

Proof: It has been previously known that $\{g^n\}$ is a basis for B^* .⁴ It

follows from this that $F(f) = \sum_{i=1}^{\infty} F_i f_i$ for each F of B^{**} and each $f = \sum_{i=1}^{\infty} f_i g^i$ of B^* , where $F_i = F(g^i)$. But, for each $f = \sum_{i=1}^{n} f_i g^i$, $|\sum_{i=1}^{n} F_i f_i| = |f(\sum_{i=1}^{n} F_i z^i)|$ $\leq \|f\| \|\sum_{i=1}^{n} F_{i}z^{i}\|.$ Thus $\|\sum_{i=1}^{\infty} F_{i}f_{i}\| \leq \|f\| (\lim_{i \to \infty} \|\sum_{i=1}^{n} F_{i}z^{i}\|)$, and $\|F\| \leq \lim_{n \to \infty} \|F\| = \lim_{n$ $\|\sum_{i=1}^{n} F_{i}z^{i}\|$. For a fixed n, let $u^{n} = \sum_{i=1}^{n} F_{i}z^{i}$. Define a linear functional h by $h(z^{i}) = 0$ for i > n and $h(u^{n}) = ||u^{n}||$. Then $|h(au^{n} + \sum_{n+1}^{\infty} a_{i}z^{i})| = ||au^{n}|| \le ||au^{n} + \sum_{n+1}^{\infty} a_{i}z^{i}||$. Thus ||h|| = 1 on $u^{n} \oplus z^{n+1} \oplus z^{n+2} \oplus \dots$ Extend h to all of B so that ||h|| = 1 on B. Then, for this h, $h = \sum_{i=1}^{n} h_i g^i$ with $h_i = 0$ for i > n, so that $|\sum_{i=1}^{\infty} F_i h_i| = |\sum_{i=1}^{n} F_i h_i| = |h(u^n)| = ||u^n|| \le ||F||$. Since this can be done for each n, it follows that $||F|| \ge ||\sum_{i=1}^{n} F_{i}z^{i}||$ for each nand $||F|| \ge \lim_{n \to \infty} ||\sum_{i=1}^{n} F_{i}z^{i}||$. It has thus been shown that $\lim_{n \to \infty} ||\sum_{i=1}^{n} F_{i}z^{i}|| =$ ||F|| for each element $F = \{F_n\}$ of B^{**} . Now suppose that $\{F_n\}$ is a sequence such that $\lim_{n\to\infty} \|\sum_{i=1}^{n} F_{i}z^{i}\| = M < + \infty$. Then $\|\sum_{i=1}^{n+p} F_{i}z^{i}\| \leq 2M$. Thus for any fixed $f \in B^*$, $|\sum_{i=1}^{n+p} F_i f_i| = |f(\sum_{i=1}^{n+p} F_i z^i)| \le ||f||_n(2M)$, so that it follows from $\lim_{n\to\infty} ||f||_n = 0$ that $\sum_{i=1}^{\infty} F_i f_i$ is convergent. Thus F(f) = $\sum_{i=1}^{\infty} F_{i} f_{i} \text{ is defined for each } f \in B^{*} \text{ and } ||F|| = \lim_{n \to \infty} ||\sum_{i=1}^{n} F_{i} z^{i}||.$

Example: For $x = (x_1, x_2, x_3, \ldots)$, let

$$||x|| = l. \ u. \ b. \left[\sum_{i=1}^{n} (x_{p_i} - x_{p_{i+1}})^2 + (x_{p_{n+1}} - x_{p_1})^2 \right]^{1/2},$$
 (1)

where the l. u. b. is over all positive integers n and all finite increasing sequences of at least two positive integers $p_1, p_2, \ldots, p_{n+1}$. Let B be the Banach space of all x for which ||x|| is finite and $\lim_{n \to \infty} x_n = 0$. Then B is isometric with B**, but is isometric under the natural mapping with a closed maximal linear subspace of B^{**} .

Proof: For $x = (x_1, x_2, \ldots)$, let

$$|||x||| = 1$$
. u. b. $\left[\sum_{i=1}^{n} (x_{p_{2i-1}} - x_{p_{2i}})^2 + (x_{p_{2n+1}})^2 \right]^{1/2}$, (2)

where the 1. u. b. is over all positive integers n and finite increasing se-

quences of positive integers $p_1, p_2, \ldots, p_{2n+1}$. It follows from $\lim_{n\to\infty} x_n = 0$ and $||x|| \geq |x_n - x_p|$ that $||x|| \geq |x_p|$ for each p. Clearly $|||x||| \geq |x_p|$ for each p. But by grouping alternating terms of (1) and isolating x_{p_1} , one gets $||x|| \leq 1$. u. b. $\{|x_{p_1}| + [(x_{p_{n+1}})^2 + (x_{p_{n-1}} - x_{p_n})^2 + (x_{p_{n-3}} - x_{p_{n-2}})^2 + \ldots]^{1/2} + [(x_{p_n} - x_{p_{n+1}})^2 + (x_{p_{n-2}} - x_{p_{n-1}})^2 + \ldots]^{1/2} \} \leq 3|||x|||$. But extra terms can be introduced in (2) to give a sum of type (1), except for replacing $(x_{p_{2n+1}})$ by $(x_{p_{2n+1}} - x_{p_1})$. Thus $|||x||| \leq 2||x||$. Since $||x||| \leq ||x|| \leq 3|||x|||$, these two norms are equivalent. But the Banach space of all $x = (x_1, x_2, \ldots)$ for which $\lim_{n\to\infty} x_n = 0$ and |||x||| is finite is known to not be reflexive, but to be isometric under the natural mapping with a closed maximal linear subspace of its second conjugate space. Hence this is also true of the space B.

Let $z^n = (0, 0, ..., 0, 1, 0, ...)$ be the element of B whose components are all zero except for the nth component, which is 1. Then $z^1 \oplus z^2 \oplus ...$ $= B, \text{ so that } \{z^n\} \text{ is an orthogonal basis for } B \text{ if } \|\sum_{1}^{n} a_i z^i + \sum_{n=1}^{n+p} b_i z^i\| \geq \|\sum_{1}^{n} a_i z^i\| \text{ for all numbers } \{a_i\} \text{ and } \{b_i\} \text{ and positive integers } n \text{ and } p. \text{ Since } \sum_{1}^{n} a_i z^i \text{ has only a finite number of non-zero components, a sequence } p_1, p_2, \ldots, p_{k+1} \text{ can be chosen so that}$

$$\left\| \sum_{1}^{n} a_{i} \mathbf{z}^{i} \right\| = \left[\sum_{i=1}^{k} (a_{p_{i}} - a_{p_{i+1}})^{2} + (a_{p_{k+1}} - a_{p_{1}})^{2} \right]^{1/2}, \tag{3}$$

$$x = (x_1, x_2, \ldots) \longleftrightarrow (x_2 - x_1, x_3 - x_1, \ldots, x_n - x_1, \ldots) =$$

$$(F_1, F_2, \ldots) = F_r.$$

exist. Consider the correspondence:

To show that $||x|| = ||F_x||$, first consider a sum $\left| \sum_{i=1}^n (x_{p_i} - x_{p_{i+1}})^2 \right|$ $(x_{p_{n+1}}-x_{p_1})^2$. If $p_1\geq 2$, this is equal to $\left[\sum_{i=1}^n (F_{p_i-1}-F_{p_{i+1}-1})^2+\right]$ $(F_{p_{n+1}-1} - F_{p_1-1})^2$. If $p_1 = 1$, it is equal to $\sum_{i=0}^n (F_{p_{i-1}} - F_{p_{i+1}-1})^2 +$ $(F_{p_{n+1}-1}-F_N)^2+(F_N-F_{p_2-1})^2$, if $N>p_{n+1}-1$ and F_N is replaced by zero. Since $\|\sum_{i=1}^{n} F_{i}z^{i}\|$ is a monotonically increasing function of n, it follows that $||x|| \le ||F_z||$, where $||F_z|| = \lim_{n \to \infty} ||\sum_{i=1}^n F_i z^i||$. Now consider a sum $\left[\sum_{i=1}^{n} (F_{p_i} - F_{p_{i+1}})^2 + (F_{p_{n+1}} - F_{p_1})^2\right], \text{ formed for the element } \sum_{i=1}^{m} F_{i} z^i,$ where F_p is to be replaced by 0 if p > m. If $p_{n+1} \le m$, then this sum is equal to $\left| \sum_{i=1}^{n} (x_{p_{i+1}} - x_{p_{i+1}+1})^2 + (x_{p_{n+1}+1} - x_{p_{1+1}})^2 \right|$. Now suppose that $p_{k+1} > m$, but $p_i \le m$ if $i \le k$. Then the sum becomes $\sum_{i=1}^{k-1} (F_{p_i} - i)^{-1}$ $F_{p_{i+1}})^2 + (F_{p_k})^2 + (F_{p_1})^2 = \left[\sum_{i=1}^{k-1} (x_{p_{i+1}} - x_{p_{i+1}+1})^2 + (x_{p_k+1}^{-x_1})^2\right]$ $+ (x_1 - x_{p_1+1})^2$. Thus $||x|| \ge ||\sum_{i=1}^n F_i z^i||$ for each n. Hence $||x|| = ||F_z||$ and $x \longleftrightarrow F_x$ is an isometry with domain equal to B. But if $F = (F_1, F_2)$ F_2, \ldots) is an element of B^{**} , and $\lim F_n = L$, then $x_F = (-L, F_1 - L,$ $F_2 - L$, ...) is, by the above, an element of B for which $||x_F|| = ||F||$ and $x_F \longleftrightarrow F$. Thus the range of the isometry is B^{**} .

¹ James, R. C., "Bases and Reflexivity of Banach Spaces," Ann. Math., 52, 518-527 (1950).

³ Grinblum, M. M., "Certain théorèmes sur la base dans un espace du type (B)," C. R. (Doklady) Acad. Sci. URSS (N. S.), 31, 428-432 (1941).

Banach, S., Théorie des Opérations Linéaires, Warsaw, 1932, p. 111.

⁴ James, loc. cit., Theorem 3.