

Soutenance de Traitement Images et Vidéos

Application de reconnaissance automatique d'icônes

Encadrants:

BABEL Marie
PASTEAU François
COÜASNON Bertrand
ANQUETIL Eric
RICQUEBOURG Yann

Étudiants:

Tino Imbrogno Firmin Cadot

Objectif et Contexte

2

14 classes

Vue d'ensemble du projet

Choix et extraction des features

Pré-processing

Flou gaussien -> Supprimer les bruits

Seuil: Algorithme d'**Otsu**

Pré-processing - Seuil Otsu

Pré-processing

Taille: 256 x 256 pixels

Pré-processing

Zoning sur Densité et Centre de gravité

Histogram of Oriented Gradients - HOG

for x-direction:
$$gx = \partial I/\partial x = f(x+1, y) - f(x-1, y)$$

for y-direction: $gy = \partial I/\partial y = f(x, y+1) - f(x, y-1)$

gradient magnitude:
$$M(x, y) = (gx^2 + gy^2)^{1/2}$$

gradient orientation: $\theta(x, y) = tan^{-1} (gy/gx)$

Utilisé pour la détection d'objets dans une image

Histogram of Oriented Gradients - Procédé

Division de l'imagette

Construction de l'histogramme sur pondération de la magnitude des gradients

Histogram of Oriented Gradients - Procédé

Histogram of Oriented Gradients - Visualisation

Histogram of Oriented Gradients - Similarité

Histogram of Oriented Gradients - Similarité

Chaîne globale de l'extraction de caractéristique

Organisation des données

Séparation des données

Base de test finale

350 imagettes utilisées pour le test final

Classification

K-Nearest Neighbors (KNN)

Cross Validation (10 folds)

	F - mesure				
K	Distance Euclidienne	Distance Manhattan			
1	96.24 %	96.70 %			
2	96.04 %	96.21 %			
3	96.44 %	96.77 %			
4	96.36 %	96.70 %			
5	96.38 %	96.67 %			
6	96.21 %	96.64 %			

Multilayer Perceptron (MLP)

Cross Validation (10 folds)

	F - mesure		
Neurones par couche(s) cachée(s)	Learning Rate = 0.25	Learning Rate = 0.3	
(31)	96.20 %	96.23 %	
(31) (15)	95.90 %	95.89 %	

Support Vector Machine (SVM)

Cross Validation (5 folds)

	F - mesure
GridSearch	
cost = 0.001 gamma = 0.001	96.19 %

Evaluation

Comparaison et résultats des différents modèles de classifieurs

Base de test finale (350 imagettes)

			_	Précision	Rappel	F-mesure
KNN	K=3	Di	stance Euclidienne	96.9 %	96.5 %	96.57 %
		Di	stance Manhattan	97.7 %	97.6 %	97.71 %
MLP	LR = 0.3		Neurones (31)	98.1 %	98.0 %	98.0 %
SVM	cost = 0.001 gamma = 0.001		98.8 %	98.5 %	98.57 %	

Résultats du SVM

=== Confusion Matrix ===

Base de test finale (350 imagettes)

5 imagettes "electricity" classés en tant que "bomb"

```
<-- classified as
25
                                              a = accident
                                              b = bomb
                                              c = car
                                              d = casualty
                                              e = electricity
                                              f = fire
                                              g = firebrigade
                                              h = flood
                                                  gas
                           25
                                              j = injury
                                              k = paramedics
                                              1 = person
                                     25
                                              n = roadblock
```

Imagettes mal-classifiées (SVM sur base finale)

electricity_5_5_4_1.png

electricity_5_5_4_2.png

electricity_5_5_4_3.png

electricity_5_5_4_4.png

Imagettes provenant du même scripter

Comparaison des imagettes

Conclusion

Résultats satisfaisants -> 98,5 % de F-mesure (SVM) sur la base de test finale

Questions