KOMPETISI ESSAY MESIN UDAYANA 2020

3S (Smart Sterilization System) Inovasi Lemari Sterilisasi Dengan Metode MH Dan UVGI Berbasis Artificial Intelligence Guna Mendukung Era New Normal Dalam Menyongsong Revolusi Industri 4.0

Oleh:

Afif Aliyfia Alfian/5301417023/Teknik Elektro/2017

UNIVERSITAS NEGERI SEMARANG SEMARANG 2020

3S (Smart Sterilization System) Inovasi Lemari Sterilisasi Dengan Metode MH Dan UVGI Berbasis Artificial Intelligence Guna Mendukung Era New Normal Dalam Menyongsong Revolusi Industri 4.0

Afif Alyfia Alfian

E-mail: AliyfiaAlfi@students.unnes.ac.id

Penyakit baru menyerupai pneumonia ditemukan pertama kali di Wuhan, China pada Desember 2019 [WHO, 2020a]. Penyakit ini disebut *COVID-19* yang disebabkan oleh virus *SARS-CoV-2* dengan penyebaran sangat cepat. **Gambar 1** menunjukkan bahwa rata-rata penyebaran *COVID-19* sebesar 320876 kasus setiap harinya. Pada 10 Oktober 2020, tercatat ada 37.423.660 kasus dengan total kematian 1.074.817 yang tersebar di 215 negara [WHO, 2020b]. Benua Amerika menempati peringkat pertama dengan 17.912.705 total kasus dan disusul oleh benua asia sebanyak 7.987.60 kasus [WHO, 2020b]. Menurut kementerian kesehatan, pada 10 Oktober 2020 Indonesia memiliki 336.716 kasus terkonfirmasi dengan 11.935 orang dinyatakan meninggal [Kemkes, 2020a]. Orang yang terinfeksi *SARS-CoV-2* akan mengalami gejala pada sistem pernapasan seperti demam, batuk, bersin, dan sesak napas [Rothan dkk, 2020].

Gambar 1. Grafik Penyebaran COVID-19 di Dunia Per 10 Mei 2020

[Sumber: World Health Organization, 2020b]

Saat ini, penyebaran utama *SARS-CoV-2* melalui perantara manusia ke manusia lainnya [Susilo, 2020]. Transmisi *SARS-CoV-2* juga dapat terjadi melalui *droplet* yang keluar saat batuk ataupun bersin penderita [Han, Y., & Yang, H., 2020]. *COVID-19* merupakan penyakit yang tergolong baru sehingga pengetahuan terkait cara pencegahannya masih terbatas. Berdasarkan *Center of Disease and Prevention* (CDC) penggunaan *filtering facepiece respirators* (*FFRs*) dinilai efektif dalam mencegah penyebaran virus *SARS-CoV-2* [Wang, X., Pan, Z., & Cheng, Z., 2020].

Selama pandemi *COVID-19*, pemerintah menghimbau kepada masyarakat umum untuk memakai APD terutama *FFRs*. Pernyataan tersebut berdasarkan anjuran dari WHO tentang cara mencegah penyebaran *COVID-19* [WHO, 2020c]. Hal tersebut mengakibatkan tingginya permintaan APD jenis *FFRs* sehingga menimbulkan krisis fasilitas medis. Kelangkaan ini menimbulkan risiko penularan dari pasien. Pemerintah menghimbau kepada masyarakat agar memakai masker kain agar masker medis tidak dipakai oleh masyarakat umum. Hal tersebut sesuai dengan anjuran WHO dan CDC mengenai strategi pencegahan sementara selama pandemi berlangsung [CDC, 2020a]. Penggunaan masker kain dinilai kurang efektif dengan dibuktikan bahwa efektivitas perlindungan dibawah 10% [Fadlurahman, 2018]. Oleh karena itu penggunaan masker kain tidak dianjurkan untuk tenaga medis.

FFRs yang banyak digunakan dalam dunia medis adalah masker jenis N95. Masker N95 dapat menyaring 95% partikel dengan ukuran 300 nm dan efektif untuk pencegahan COVID-19 walaupun ukuran virus SARS-CoV-2 (120-160 nm) [CDC, 2020b]. Eksperimen Van Doremalen dkk. tentang stabilitas SARS-CoV-2 terhadap benda mati menunjukkan bahwa virus dapat bertahan pada plastik dan stainless steel selama 72 jam [Van Doremalen dkk, 2929]. Data menunjukkan bahwa virus SARS-CoV-2 sangat stabil di permukaan FFRs bahkan setelah 7 hari [Chin dkk, 2020].

The Food and Drug Administration (FDA) menegaskan FFRs jenis N95 merupakan masker sekali pakai dan tidak dapat digunakan lagi [FDA, 2020]. Hal tersebut menimbulkan penumpukan limbah FFRs dan kelangkaan APD pada pekerja medis. Dikarenakan kebutuhan yang mendesak dan penggunaan ulang FFRs menjadi salah satu pilihan terakhir guna memenuhi fasilitas medis.

Solusi yang Ditawarkan

Penggunaan ulang kembali *FFRs* dilakukan untuk mengatasi kelangkaan APD khususnya pekerja medis. 3S (*Smart Sterilization System*) berfungsi untuk mensterilkan APD yang telah digunakan agar bisa dipakai kembali. Sterilisasi yang dilakukan menggunakan metode MH dan UVGI sehingga tidak merusak filter dari APD. Proses pembuatan alat didasarkan pada solusi inovatif guna mengatasi kelangkaan APD dan mengurangi limbah medis selama pandemi COVID-19. **Gambar 2** menunjukkan desain *prototype*. Alat ini tersusun dari lampu UV-C, jaring mesh, *induction hob* dan APD sebagai objek. Lampu UV-C digunakan untuk menerapkan metode UVGI, sedangkan *induction hub* berfungsi untuk mengatur MH di dalam box. Pembuatan alat menggunakan *prinsip low-cost sensor* sehingga dapat dibuat dan diimplementasikan oleh masyarakat umum.

Gambar 2. Desain Prototipe 3S (Smart Sterilization System)

[Sumber : Dokumentasi Pribadi, 2020]

Teknik Sterilisasi

Ultraviolet Gramadical Irradiation (UVGI) adalah metode yang paling menjanjikan keberhasilannya untuk membunuh virus dan bakteri. Efisiensi dari penggunaan lampu UV untuk membunuh virus didasarkan pada panjang gelombang dan intensitas cahaya. Oleh karena itu, tidak semua lampu UV bisa di pakai dalam metode UVGI. Penelitian terkait mengatakan kinerja sinar UV yang dapat diterima oleh masker berkisar 0.5 – 950 J / cm² [Cadnum dkk, 2020]. Pengujian yang dilakukan oleh Heimbuch dkk. tidak menemukan kerusakan filter pada 15 jenis masker yang disterilisasi [Heimbuch dkk, 2019a]. **Tabel 1** merupakan daftar jenisjenis masker N95 yang diuji oleh Heimbuch dkk.

Tabel 1. Jenis-jenis Masker N95 yang Diuji oleh Heimbuch dkk.

3M 1860	3M 1870	3M VFlex 1805
Alpha Protech 695	Gerson1730	Kimberly-Clark PFR
Moldex 1512	Moldex 1712	Moldex EZ-22
Preceep 65-3395	Prestige A RP88020	Sperian HC-NB095
Sperian HC-NB295	U.S. Safety AD2N95A	U.S. Safety AD2N95

[Sumber : Heimbuch dkk., 2019a]

Lindsley dkk. [2015] menambahkan pengurangan kualitas *FFRs* terjadi mulai 120-950 J / cm², namun pada dosis tersebut berhasil melumpuhkan virus *bakteriofag MS2*. Virus *bakteriofag MS2* merupakan virus yang memiliki kesamaan gentik dengan *SARS-CoV* [PLGBC, 2020]. Disisi lain, Virus *H1N1 influenza A / PR* / 8/34 dapat dilumpuhkan dengan dosis lebih rendah yaitu sekitar 1 J / cm² [Heimbuch dkk, 2011b]. Penelitian selanjutnya, Heimbuch dkk. menyelidiki tentang performa dosis 1 J / cm² terhadap *virus Influenza A (H1N1), virus Avian influenza A (H5N1), Influenza A (H7N9) A / Anhui / 1/2013, Influenza A (H7N9) A / Shanghai / 1/2013, MERS-CoV, dan <i>SARS-CoV* dengan hasil 99,999% virus berhasil dilumpuhkan [Heimbuch dkk., 2019a]. Berdasarkan data tersebut, penggunaan lampu UV-C dengan panjang gelombang 254 nm memiliki spesifikasi yang tepat untuk proses desinfeksi masker.

Moist Heat atau sering disebut MH dalam dunia medis merupakan suatu metode yang memanfaatkan panas dan kelembaban untuk membunuh virus. Penelitian terkait desinfeksi masker menggunakan metode Moist Heat (MH) mengatakan suhu yang diperlukan sekitar 60 °C dengan kelembaban 80% [Heimbuch dkk, 2011b; Bagerman dkk, 2020; Viscusi dkk, 2020]. Heimbuch dkk. melakukan percobaan desinfeksi masker yang terkontaminasi virus H1N1. Percobaan tersebut berhasil menghilangkan virus sebesar 99,99% dengan suhu 65 °C dan kelembaban 85% [Heimbuch dkk, 2011b]. H1N1 A/PR/8/34 merupakan virus influenza (penyebab flu babi) yang memiliki kesamaan dengan SARS-CoV-2 yaitu virus ssRNA. Penelitian lain menunjukkan metode MH telah diterapkan pada inaktivasi virus SARS-CoV yang terjadi pada suhu 56 °C selama 30-90 menit [Dong, 2003]. Inaktivasi sebagian virus SARS-CoV terjadi dengan suhu 65 °C selama 20-60 menit, dan total pada angka 75 °C selama 30-45 menit [Darnell dkk, 2004].

Sebuah penelitian terbaru membuktikan bahwa *SARS-CoV-2* akan mengalami inaktivasi total pada suhu 56 °C selama 30 menit dan 70 °C selama 5 menit [Han, Y., & Yang, H., 2020]. Oleh karena itu 3S dibuat untuk inaktivasi virus pada suhu 65 °C selama 30 menit.

Alat ini menggunakan kecerdasan *Internet of Things* (IoT) untuk pengaturan dengan tujuan agar pengguna tidak harus bersentuhan secara fisik. Pengaturan dan *monitoring* intensitas cahaya UV dan suhu dilakukan melalui aplikasi untuk menghindari bahaya yang timbul akibat paparan radiasi sinar UV. Sistem ini secara otomatis akan mensterilkan APD dengan arduino sebagai pusat kerja. **Gambar 3** menunjukkan skema kerja. Sensor akan menangkap data dan diunggah ke internet sehingga dapat dipantau melalui *mobile phone*. Sedangkan tampilan dari aplikasi dapat dipaparkan pada **Lampiran 6**. Pada **Lampiran 7** dijelaskan mengenai skema pemanfaatan *Artificial Intelligence* yang ditanamkan pada prototipe 3S (*Smart Sterilization System*).

Gambar 3. Skema Kerja 3S (Smart Sterilization System)

[Sumber : Dokumentasi Pribadi, 2020]

Kalibrasi dilakukan dengan membandingkan sensor pada prototipe dengan alat yang sudah ter standarisasi. Alat kalibrasi sensor suhu yang digunakan adalah termometer air raksa. *Source code* kalibrasi sensor suhu dapat dilihat pada **Lampiran 8**, sehingga didapatkan hasil yang terlihat pada **Gambar 4**. Berdasarkan penghitungan tersebut dapat diketahui bahwa rata-rata *error* ± 0,61 °C.

Gambar 4. Grafik Pengujian Sensor Suhu 3S

[Sumber : Dokumentasi Pribadi, 2020]

Penghitungan analisis *Break Even Point* (BEP) dilakukan dengan mempertimbangkan tiga poin penting yaitu *fixed cost*, *variabel cost* dan *revenue*. *Fixed cost* merupakan biaya pembuatan prototipe. *Variabel cost* didapat dari biaya yang dikeluarkan untuk pengoperasian prototipe tiap hari. *Revenue* adalah nilai keuntungan yang didapatkan tiap prototipe bekerja. Perhitungan ini dilakukan dengan *software* Excel. Uraian penghitungan secara lengkap dapat dilihat pada **Lampiran 9**. Hasil analisis nilai guna ditunjukkan pada **Gambar 5** yang memperlihatkan bahwa nilai tukar alat akan kembali setelah 0,63 kali pengoperasian dengan jumlah APD yang telah disterilkan sebanyak 91 buah per 144 buah setiap harinya. Waktu yang dibutuhkan untuk mengembalikan nilai tukar alat selama 14,4 jam beroperasi. Dari pemaparan data tersebut menunjukkan bahwa alat 3S (*Smart Sterilization System*) layak untuk dikembangkan dan diimplementasikan.

Grafik Nilai Guna Analisis Break Even Point 3S

Gambar 5. Hasil Analisis Break Even Point (Smart Sterilization System)

[Sumber : Dokumentasi Pribadi, 2020]

3S (*Smart Sterilization System*) merupakan alat yang ditanami kecerdasan buatan (*Artificial Intelligent*) dengan memanfaatkan teknologi *Internet of Things* untuk melakukan proses dekontaminasi masker. Sehingga dapat ditarik kesimpulan dari alat 3S

sebagai berikut:

- Integrasi sensor dengan aplikasi mobile pada alat 3S (Smart Sterilization System) memberikan keamanan dari paparan sinar radiasi UV
- Kecerdasan buatan atau Artificial Intelligence yang ditanamkan pada alat 3S (Smart Sterilization System) menyajikan kemudahan dalam pengorasian alat
- Pengoperasian 3S (*Smart Sterilization System*) memerlukan energi 28.744
 KWh per hari atau senilai Rp.42.167,45 dengan nilai guna akan kembali setelah 0,63 kali atau 14,4 jam beroperasi.
- Masyarakat dapat menggunakan masker dan APD lainnya dengan tingkat keamanan setara dengan tenaga medis sehingga mampu mencegah penyebaran virus SARS-CoV-2 lebih efektif

Konsep ini jika diimplementasikan, maka akan didapat beberapa manfaat bagi tenaga medis maupun masyarakat. Berdasarkan analisis yang telah dilakukan, dapat disimpulkan bahwa 3S (*Smart Sterilization System*) mampu secara nyata mengatasi krisis APD di era pandemi

DAFTAR PUSTAKA

- Bergman, M. S., Viscusi, D. J., Heimbuch, B. K., Wander, J. D., Sambol, A. R., & Shaffer, R. E. (2010). Evaluation of multiple (3-cycle) decontamination processing for filtering facepiece respirators. *Journal of Engineered Fibers and Fabrics*, 5(4), 155892501000500405.
- Bergman, M. S., Viscusi, D. J., Palmiero, A. J., Powell, J. B., & Shaffer, R. E. (2011). Impact of three cycles of decontamination treatments on filtering facepiece respirator fit. *Journal of the International Society of Respiratory Protection*, 28(1), 48.
- Cadnum, J. L., Li, D. F., Redmond, S. N., John, A. R., Pearlmutter, B., & Donskey,
 C. J. (2020). Effectiveness of ultraviolet-C light and a high-level disinfection
 cabinet for decontamination of N95 respirators. *Pathogens and Immunity*, 5(1), 52.
- Darnell, M. E., Subbarao, K., Feinstone, S. M., & Taylor, D. R. (2004). Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. *Journal of virological methods*, *121*(1), 85-91.
- Dong, J. H. X. P. (2003). Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation.
- Fadlurahman, M. H. (2018). Perbandingan Kadar Karbon Monoksida Udara Ekspirasi Pre dan Post Pemakaian Masker pada Masyarakat Lingkungan Fakultas Kedokteran USU.
- Fisher, E. M., & Shaffer, R. E. (2011). A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. *Journal of applied microbiology*, 110(1), 287-295.
- Han, Y., & Yang, H. (2020). The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. *Journal* of medical virology, 92(6), 639-644.
- Heimbuch, B., & Harnish, D. (2019). Research to Mitigate a Shortage of Respiratory Protection Devices During Public Health Emergencies. *Applied Research Associates*, 275.
- Heimbuch, B. K., Wallace, W. H., Kinney, K., Lumley, A. E., Wu, C. Y., Woo, M. H., & Wander, J. D. (2011). A pandemic influenza preparedness study: use

- of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets. *American journal of infection control*, 39(1), e1-e9.
- Lindsley, W. G., Martin Jr, S. B., Thewlis, R. E., Sarkisian, K., Nwoko, J. O., Mead, K. R., & Noti, J. D. (2015). Effects of ultraviolet germicidal irradiation (UVGI) on N95 respirator filtration performance and structural integrity. *Journal of occupational and environmental hygiene*, 12(8), 509-517.
- Mills, D., Harnish, D. A., Lawrence, C., Sandoval-Powers, M., & Heimbuch, B. K. (2018). Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators. *American journal of infection control*, 46(7), e49-e55.
- Pozzobon, V., Levasseur, W., Do, K. V., Palpant, B., & Perré, P. (2020). Household aluminum foil matte and bright side reflectivity measurements: Application to a photobioreactor light concentrator design. *Biotechnology Reports*, 25, e00399.
- <u>plgbc.org.pl</u>. (2020) Coronavirus i COVID-19 badania ActivTek. Accessed on 10-Oktober-2020, from: https://plgbc.org.pl/coronavirus-covid-19-badaniaactivtek/.
- Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. *Journal of autoimmunity*, 102433.
- Susilo, A., Rumende, C. M., Pitoyo, C. W., Santoso, W. D., Yulianti, M., Herikurniawan, H., ... & Chen, L. K. (2020). Coronavirus Disease 2019: Tinjauan Literatur Terkini. *Jurnal Penyakit Dalam Indonesia*, 7(1), 45-67.
- Van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., ... & Lloyd-Smith, J. O. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382(16), 1564-1567.
- Chin A, Chu J, Perera M, Hui K, Yen HL, Chan M, Peiris M, Poon L. Stability of SARS-CoV-2 in different environmental conditions. medRxiv. 2020 Jan 1.
- Viscusi, D. J., Bergman, M. S., Eimer, B. C., & Shaffer, R. E. (2009). Evaluation

- of five decontamination methods for filtering facepiece respirators. *Annals of occupational hygiene*, *53*(8), 815-827.
- Viscusi, D. J., Bergman, M. S., Novak, D. A., Faulkner, K. A., Palmiero, A., Powell, J., & Shaffer, R. E. (2011). Impact of three biological decontamination methods on filtering facepiece respirator fit, odor, comfort, and donning ease. *Journal of occupational and environmental hygiene*, 8(7), 426-436.
- Viscusi, D. J., King, W. P., & Shaffer, R. E. (2007). Effect of decontamination on the filtration efficiency of two filtering facepiece respirator models. *Journal-International Society for Respiratory Protection*, 24(3/4), 93.
- Wang, X., Pan, Z., & Cheng, Z. (2020). Association between 2019-nCoV transmission and N95 respirator use. *medRxiv*.
- www.cdc.gov. (2020, 29 April). Strategies for Optimizing the Supply of Facemasks. Accessed on 10-Oktober-2020, from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/face-masks.html.
- www.cdc.gov. (2020, 29 April). Frequently Asked Questions about Personal Protective Equipment. Accessed on 10-Oktober-2020, from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/respiratoruse-faq.html.
- www.fda.gov. (2020, May). Enforcement Policy for Face Masks and Respirators During the Coronavirus Disease (COVID-19) Public Health Emergency (Revised). Accessed on 10-Oktober-2020, from: https://www.fda.gov/media/136449/download.
- www.kemkes.go.id. (2014, 18 Agustus). PERATURAN MENTERI KESEHATAN REPUBLIK INDONESIA NOMOR 56 TAHUN 2014. Accessed on 10-Oktober-2020, from: https://manajemenrumahsakit.net/wp-content/uploads/2014/12/Permenkes-56-Tahun-2014.pdf.
- www.kemkes.go.id. (2020, 29 April). COVID-19. Accessed on 10-Oktober-2020, from: https://covid19.kemkes.go.id.
- www.who.int. (2020, 5 January). Pneumonia of unknown cause China. Accessed on 10-Oktober-2020, from: http://www.who.int/csr/don/05-january-2020pneumonia-of-unkown-cause-china/en/.
- www.who.int. (2020, 29 April). When to use a mask. Accessed on 10-Oktober-

2020, from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks.

www.who.int. (2020, 8 May). Coronavirus (COVID-19). Accessed on 10-Oktober-2020, from: https://covid19.who.int.

LAMPIRAN-LAMPIRAN

Lampiran 1. Desain Prototipe 3S (Smart Sterilization System)

Lampiran 2. Schematic Prototipe 3S (Smart Sterilization System)

Lampiran 3. Algoritma Cahaya pada Prototipe 3S (Smart Sterilization System)

Lampiran 4. Algoritma Suhu pada Prototipe 3S (Smart Sterilization System)

Lampiran 5. Model Prototipe Dan Tata Letak 3S (Smart Sterilization System)

Lampiran 6. Tampilan Aplikasi Mobile 3S (Smart Sterilization System)

Lampiran 7. Diagram Alir Kontrol Arduino 3S (Smart Sterilization System)

Lampiran 8. Source Code Kalibrasi Sensor Suhu 3S (Smart Sterilization System)

```
#include "Wire.h"
#include "OneWire.h"
#include "DallasTemperature.h"
#define ONE_WIRE_BUS_1 A0
OneWire ourWire1(ONE_WIRE_BUS_1);
DallasTemperature sensor1(&ourWire1);
float RawValue =0;
void setup(){
delay(1000);
 Serial.begin(9600);
 sensor1.begin();
 sensor1.setResolution(11);
void loop(){
 sensor1.requestTemperatures();
 float RawValue = sensor1.getTempCByIndex(0);
 Serial.print("Sens. 1 ");
 Serial.println(RawValue, 1);
}
```

Lampiran 9. Penghitungan Analisis Break Even Point (BEP)

Penghitungan Biaya Listrik			
Nama Barang	Daya Listrik (KWh)	Biaya (RP)	
Arduino dan	0,003	32,45	
Sensor			
Induction Hub	3,5	41.076,00	
Lampu UV-C	0,009	1.056,24	
Total KWh pada Alat	(KWh)	28.744	
Total Biaya Pengguna	an Per hari	42.167,45	
Total Biaya Pengguna	an Per Bulan	1.265.023,44	
Uraian Fixed Cost			
N:	ama Barang	Biaya (RP)	
Infrared Temperature Se	ensor	155.000	
Arduino UNO		100.000	
Seeed Base Shield V2		70.000	
Light Sensor (P) v1.1		50.000	
Seeed 12mm Domed Pu	ish Button	220.000	
Quad Alphanumeric Display - White 0.54" Digits w/ I2C		50.000	
Backpack			
piezo speaker		17.000	
Seeed Wall Adapter Pov	wer Supply 12VDC 1.2A	175.000	

Keterangan	Biaya Per	Biaya Per Bulan		
	Hari (RP)	(RP)		
Biaya Listrik Arduino dan sensor	32,45	973,44		
Biaya Listrik Induction Hub / Kompor	41.076,00	1.232.280,00		
Listrik	1210,0,00			
Biaya Listrik Lampu UV-C	1.056,24	31.697,20		
Jumlah	42.167,45	1.265.023,44		
Target Pengoperasian				
Keterangan		Jumlah		
Target Pensterilan APD Per Hari		144		
Target Pensterilan APD Per Bulan		4.320		
Revenue				
Keterangan		Harga (RP)		
Harga Jual Tiap Operasional		300.000		
BREAK EVEN I	POINT (BEP)			
Jumlah Pengoperasian Agar Nilai Prot	0,63 Kali			
Modal		Rp.4.559.500,00		
Waktu Nilai Kembali (Jam)		14,4 Jam		
Waktu Nilai Kembali (Hari)		0,6 Hari		

CURRICULUM VITAE

1. Nama : Afif Aliyfia Alfian

2. Tempat/Tgl Lahir : Kab. Semarang, 22 Agustus 1999

3. Jenis Kelamin : Laki – Laki

4. Nomor Telepon/HP : 0895385845454

5. Email : AliyfiaAlfi@gmail.com

6. Program Studi : Pendidikan Teknik Elektro

7. Kegiatan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam	Waktu dan Tempat
		Kegiatan	
1		Panitia	Universitas Negeri
	Training Legislatif Dasar		Semarang, 2018
2		Panitia	Universitas Negeri
	Sekolah Pemira		Semarang, 2018
3		Panitia	Universitas Negeri
	Robot Line Contest		Semarang, 2018
4	Green Sciencetic	Panitia	Universitas Negeri
	Competition 2019		Semarang, 2018
5	Seminar Strategi Online	Pemateri	Online, 2020
	Marketing		

8. Penghargaan yang Pernah Diraih

No	Jenis Penghargaan	Tahun
1	Juara 2 Indonesia Paper Contest 2019 tingkat	2019
	Nasional yang diselenggarakan oleh FMIPA	
	UNNES	
2	Mentor pada International Science Technology	2020
	and Engineering Competition 2020 Tingkat	
	Internasional yang diselenggarakan oleh	
	Indonesian Young Scientist Association 2020	

3	Juara 2 pada <i>National Essay Competition</i> Tingkat Nasional yang diselenggarakan oleh IAIN Madura	2020
4	Medali Perak pada Asian Invention Show- Singapore International Invention Show 2020 Tingkat Internasional yang diselenggarakan oleh Citizen Innovation	2020
5	Juara Favorit 2 pada Ramadhan Produktif Di Tengah COVID-19 Tingkat Nasional yang diselenggarakan oleh Staff Khusus Presiden Aminuddin Ma'ruf	2020
6	Juara 3 pada Lomba Essay Nasional HIMKA UNIKAL Tingkat Nasional yang diselenggarakan oleh HIMKA Universitas Pekalongan	2020
7	Juara 1 pada UNNES Online Competition kategori Essay Competition Tingkat Nasional yang diselenggarakan oleh Universitas Negeri Semarang	2020
8	Juara 2 pada Young Creative Idea kategori PKM Gagasan Tertulis Tingkat Nasional yang diselenggarakan oleh Universitas Negeri Malang	2020
9	Juara 3 pada National Essay Competition Tingkat Nasional yang diselenggarakan oleh HIMATIKA FMIPA UNNES	2020
10	Juara Harapan 2 pada Lomba Esai Mahasiswa Tingkat Nasional (LEMNAS) tingkat Nasional yang diselenggarakan oleh HIMAMIA FMIPA UNNES	2020
11	Juara Harapan 2 pada Lomba Essay Nasional yang diselenggarakan oleh Universitas Trunojoyo Madura	2020

12	Juara 3 pada Paper Competition and Webinar For	2020
	Indonesian Mining Engineering yang	
	diselenggarakan oleh Universitas Hasanudin	
13	Finalis Lomba Essay Nasional (LEON) Tingkat	2020
	Nasional yang diselenggarakan oleh UNESA	
14	Medali Emas pada Lomba Sahasak Nimavum	2020
	2020 International invention and Innovation	
	Competition Tingkat Internasional yang	
	diselenggarakan oleh Sri Langka	
15	Juara 1 pada Lomba Karya Tulis Ilmiah	2020
	LENTERA yang diselenggarakan oleh	
	Universitas Sultan Ageng Tirtayasa	
16	Juara 3 pada Lomba Social Business Model yang	2020
	diselenggarakan oleh Universitas Gajah Mada	
17	Juara 3 pada Lomba Kompetisi Karya 5 Bidang	2020
	Mahasiswa MIPA LPTK Indonesia yang	
	selenggarakan oleh Universitas Negeri Semarang	
18	Best Poster pada Lomba Kompetisi Karya 5	2020
	Bidang Mahasiswa MIPA LPTK Indonesia yang	
	selenggarakan oleh Universitas Negeri Semarang	
19	Juara 1 pada Lomba Gelar Teknologi Kimia	2020
	Chespection XXII yang diselengarakan oleh	
	Universitas Muhammadiyah Surakarta	

BIODATA DOSEN PEMBIMBING

A. Identitas Diri

1.	Nama Lengkap	Arimaz Hangga, S.T., M.T.
2.	Jenis Kelamin	L
3.	Program Studi	Pendidikan Teknik Elektro
4.	NIDN	0012089003
5.	Tempat dan Tanggal Lahir	Surabaya, 12 Agustus 1990
6.	Alamat Email	Ari.maz.hangga@gmail.com
7.	Nomor Telepon/HP	08563210670

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister
Nama Institusi	Institut Teknologi Sepuluh	Institut Teknologi
	Nopember (ITS)	Sepuluh Nopember (ITS)
Jurusan	Teknik Fisika	Teknik Fisika
Tahun Masuk - Lulus	2008-2012	2011-2013

C. Rekam Jejak Tri Dharma PT

1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Fisika	Wajib	2
2.	Medan Elektromagnetik	Wajib	2
3.	Teknik Digital	Wajib	2
4.	Matematika	Wajib	3
5.	Matematika Teknik II	Wajib	3
6.	Sistem Mikrokontroler	Wajib	4
7.	Dasar Sistem Kontrol	Wajib	4

2. Penelitian

No Judul Penelitian Penyandang Dana Tahun

1.	Rancang Bangun Sistem Kontrol dan	DIPA FT-UNNES	2017
	Monitoring Totok Wajah Pada Limbah		
	Manekin Kepala di Prodi Pendidikan		
	Tata Kecantikan Secara Online		
2.	Simulasi Sistem Deteksi Api pada	DIPA FT-UNNES	2017
	Pesawat Tanpa Awak		
3.	Penerapan Metode Leapfrogging untuk	DIPA FT-UNNES	2016
	Pengacak Soal Evaluasi dalam Computer		
	Based Test (CBT) Secara Online		
4.	Rancang Bangun Sistem Pengendalian	DIPA LP2M	2015
	Pemurnian Bioetanol dari Bagas Tebu	UNNES	
	Pada Prototipe Tabung Distilasi Bioetanol		
	Berbasis Logika Fuzzy		
5.	Penerapan Modifikasi Vigenere Cipher	DIPA LP2M	2015
	untuk Memberikan Prosedur Keamanan	UNNES	
	Pada Transaksi Data Finansial		
6.	Penerapan Metode Coupled Linear	DIPA FT-UNNES	2015
	Congruential Generator (CLCG) untuk		
	Pengacak Soal Evaluasi		
7.	Pengembangan Modeling di Teknologi	LIPI	2013
	Material		

3. Pengabdia Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1.	IBM Totok Wajah dengan Media Limbah	DIPA FT-UNNES	2017
	Manekin Kepala		
2.	Pelatihan Pembuatan Matching Game	DIPA FT-UNNES	2017
	dengan Menggunakan Perangkat Lunak		
	Flash di Sekolah Cahaya Ilmu Semarang		
3.	Pelatihan Penggunaan Perangkat Lunak	DIPA FT-UNNES	2017
	Flash di TK Islam Al Furqon Rembang		
4.	Penerapan <i>Game</i> Edukasi Pengenalan	DIPA LP2M	2016
	Kosakata Bahasa Inggris untuk Anak	UNNES	

	Usia Dini Berbasis Android pada TK		
	Islam Furqon Rembang		
5.	Penerapan Metode Coupled Linear	DIPA FT-UNNES	2015
	Congruential Generator (CLCG) untuk		
	Pengacak Soal Evaluasi Pada SMK		
	Negeri 1 Kendal		

Dosen Pendamping,

Arimaz Hangga S.T., M.T

Surat Pernyataan Orisinilitas

SURAT PERNYATAAN ORISINALITAS KOMPETISI ESSAY MAHASISWA 2020

Nama : Afif Aliyfia Alfian

Judul Essay : 3S (Smart Sterilization System) Inovasi Lemari Sterilisasi Dengan Metode MH Dan UVGI Berbasis Artificial Intelligence Guna Mendukung Era New Normal Dalam Menyongsong Revolusi Industri 4.0

Dengan ini saya menyatakan bahwa essay dengan judul seperti yang tertulis di atas adalah karya orisinal dan belum pernah diikutsertakan dalam perlombaan mana pun serta belum pernah dipublikasikan.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan di atas, maka saya bersedia didiskualifikasi dari kompetisi ini.

Demikian pernyataan ini dibuat dengan dan sebenar-benarnya.

Semarang, 14 Oktober 2020

(Afif Aliyfia Alfian)

NIM. 5301417023