Foundations of Data Science, Fall 2020

7a. Feature Selection

Prof. Dan Olteanu

https://lms.uzh.ch/url/RepositoryEntry/16830890400

https://uzh.zoom.us/j/96690150974?pwd=cnZmMTduWUtCeWoxYW85Z3RMYnpTZz09

Feature Selection: Goal, Premise, and Motivation

Goal: Given a set of possible features, select features relevant to the model to learn

- · Data contains redundant or irrelevant features
 - Removing them does not incur loss of information
- Relevant features may be redundant in the presence of another relevant feature The two features may be strongly correlated

- Enhanced generalisation by reducing overfitting
- · Avoid the curse of dimensionality
- Shorter training times
- Simplified models that are easier to interpret by users

Feature Selection to Reduce Overfitting

Recall previous example with a small training set and many irrelevant features that is prone to overfitting

- · What if we discard irrelevant features and using training set with fewer features?
- Problem with exhaustive search: For n features, there are 2^n subsets of features

Feature Selection Methods

Component 1: Search technique for subsets of a given set of features

Component 2: Evaluation measure to score the different feature subsets - methods differ in the measure

1. Wrapper methods: Train a new model for each feature subset

- Score = count the number of mistakes on hold-out set
- Expensive, yet usually provides the best performing feature set
- Example: Forward stepwise selection

2. Filter methods: Use proxy measure as score instead of the actual test error

- · Expose relationships between features
- Typical scores: mutual information, Pearson correlation coefficient
- · Fast to compute, yet resulting feature set not tuned to a specific type of models
- 3. Embedded methods: Perform feature selection while constructing the model
 - LASSO: non-zero parameters for corresponding features
- Elastic net regularisation: combines ℓ_1 and ℓ_2 regularisations

Forward Stepwise Selection

For n features, we ask the following sequence of n questions $(1 < i \le n)$:

Q1: What is the best 1-feature model? Let the chosen feature be f_1 .

 Q_i : What is the best *i*-feature model that also has the previously selected features f_1, \ldots, f_{i-1} ? Let the newly chosen feature be f_i .

Output: The best seen k-feature model, for any $1 \le k \le n$.

Analysis of the algorithm:

- At step i, it trains and tests n-i+1 new models $\Rightarrow O(n^2)$ models to train and test in total
- For linear regression: Same complexity as building one model

Efroymson (1960): Multiple regression analysis. https://www.github.com/EFavDB/linselect

Feature Selection via Mutual Information

Mutual Information for two random variables X and Y:

$$I(X, Y) = \sum_{x} \sum_{y} \rho(X = x, Y = y) \cdot \log \frac{\rho(X = x, Y = y)}{\rho(X = x) \cdot \rho(Y = y)}$$

Approach:

- Compute mutual information for each feature and the label/target
- . Only keep the features that provide information about output
 - Ranking of features instead of finding the best subset
 - · Cut-off point using cross-validation

Computational considerations:

- Probabilities p(X = x), p(Y = y) and p(X = x, Y = y) can be empirically obtained from training set
 - p(X = x): fraction of the number of samples with X = x over the number of all samples
 - · Variables with continuous domains: first discretise their domains

Covariance vs Correlation

 $\begin{cal}C\end{cal} \begin{cal}C\end{cal} \begin{cal}C\end{ca$

$$\mathrm{cov}(X,Y) = \mathbb{E}\left[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y]) \right]$$

The (Pearson) correlation coefficient normalises the covariance to give a value between -1 and +1.

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{cov}(X,X) \cdot \operatorname{cov}(Y,Y)}}$$

Note: Independent variables are uncorrelated, but the converse is not true!