

Tokyo Fish Market ("Tsukiji" to Toyosu)

Background:

- Established in 1935
 - Relocated following the Great Kanto Earthquake in 1923
 - Relocated again in 2018 for the Olympics
- The largest wholesale fish and seafood market in the world
- Hub for Culinary wonders, Marine Industry & Tourism

Tsukiji Tuna Dataset

January 2003 - December 2016

Quantity

Cumulative Monthly Quantity in Metric Tonnes (1000 kgs)

Species

Bluefin Tuna, Bigeye Tuna, Southern Bluefin Tuna

State

Fresh, Frozen

Fleet

Japanese Fleet, Foreign Fleet, Unknown Fleet

1

2

3

4

Tsujiki Tuna - Price v Quantity

species

- Bigeye Tuna
- Bluefin Tuna
- Southern Bluefin Tuna

Tsujiki Tuna -Price Trends

Species Trends

Fleet Trends

State (of fish storage) Trends

Tsukiji Tuna Dataset

January 2003 - December 2016

Bluenn Tuna, Fresn, Japanese

Bluenn Tuna, Fresn, Japanese

Fleet

Diueilli Tulia, Flesii, vapaliese

Forecasting Process

(Our Path Taken)

1 Explore for Models

Viewing the STL decomposition can help understand the trend and seasonal components of the data to assist with model selection.

Because it appears that the trend is somewhat **linear** and there is apparent **seasonality**, we will move forward with the following models:

- auto ETS model
- the auto ARIMA model
- a time series linear regression model
- seasonal naive model.

2 Assess Models

2 Assess Models

RMSE	MAE	MPE	MAPE
168	124	-39.6	39.8
65.6	54	8.12	17.6
74.3	52.2	8.56	13.6
43.5	32.3	3.64	8.58
	168 65.6 74.3	168 124 65.6 54 74.3 52.2	168 124 -39.6 65.6 54 8.12 74.3 52.2 8.56

2 Assess Models - ETS(M,N,M)

Model	RMSE	MAE	MPE	MAPE
ETS(M,N,M)	168	124	-39.6	39.8

2

Assess Models - Seasonal Naive

Model	RMSE	MAE	MPE	MAPE
SNAIVE	65.6	54	8.12	17.6

2

Assess Models -Time Series Linear Regression

Model	RMSE	MAE	MPE	MAPE
REG	74.3	52.2	8.56	13.6

2 Assess Models - ARIMA

Model	RMSE	MAE	MPE	MAPE
ARIMA	43.5	32.3	3.64	8.58

2

Assess Models - Cross Validation

Model	RMSE	MAE	MPE	MAPE
Auto_ARIMA	88	55.6	-12.9	19
TSLR	93.9	67.6	-20.9	27.7

3 Choose Final Model - ARIMA

4 Predict

4 Predict

4 Predict

Date	.mean	95%_lower	95%_upper
2017 Jan	307.7826	173.0202	442.5451
2017 Feb	250.0182	99.19982	400.8367
2017 Mar	266.6017	111.9929	421.2105
2017 Apr	283.249	127.6978	438.8003
2017 May	372.0632	216.275	527.8515
2017 Jun	675.2784	519.4304	831.1265
2017 Jul	395.5412	239.678	551.4043
2017 Aug	330.3864	174.5195	486.2534
2017 Sep	310.6118	154.7439	466.4797
2017 Oct	300.8849	145.0168	456.7531
2017 Nov	307.8657	151.9975	463.7339
2017 Dec	589.3663	433.4981	745.2346

Questions and or comments?