1. 対応表の作成

十進法		二边	進法		十六進法
0	0	0	0	0	0

1) 19(10)

2. 十進法で表した数を二進法で表す

例) 13(10)

2で割っていき余りを求める

2で割り切れなくなるまで割り、下から数を並べる

A. 1101₍₂₎

2) 31(10)

3. 二進法で表した数を十進法で表す

例) 1101(2)

1) 1011₍₂₎

2) 1110101₍₂₎

下 k 桁目の数と 2^{k-1} を掛けて、それらの数を足す。

- - A. 13₍₁₀₎
- 4. 二進法で表した数を十六進法で表す
- 例) 111010(2)

下の桁から 4bit ずつ区切る

1 1 1 0 1 0 ↓ ↓ ↓
3 A

対応表を見て置き換える

 $1\)\ 1101100_{(2)}$

 $2\;)\;\;11010110_{(2)}$

- A. 3A₍₁₆₎
- 5. 十六進法で表した数を二進法で表す

例) 3A₍₁₆₎

1) $B7_{(16)}$

[91] JA(16)

各桁をバラバラにする 3 A

3 A → ↓ 1 1 1 0 1 0 対応表を見て置き換える

A. 111010₍₂₎

2) 4DF₍₁₆₎

6. 十進法で表した数を十六進法で表す

例) 319(10)

1) $180_{(10)}$

2) 3245(10)

16 で割っていき余りを求める

16で割り切れるまで割り、 下から数を並べる。このとき、 余りの数が二桁の場合は対応 表を見て十六進法にするのを 忘れないこと。

A.
$$13F_{(16)}$$

7. 十六進法で表した数を十進法で表す

例) 13F₍₁₆₎

1) 2A4₍₁₆₎

 $2) A2B_{(16)}$

下 k 桁目の数と 16^{k-1} を掛けて、それらの数を足す。

A. 319₍₁₀₎

8. 二進法で表した数の加算 2) 例) 1) 1 1 1 1 1 1 0 1 0 1 0 10111 + 1 0 0 0 1 1 1+ 1 1 0 1 1 0 0+ 1 0 1 1 1 0 1 0 1 1 0

9. 十進法で表した数を 8bit 符号付きの二進法で表す

 $1) 19_{(10)}$

13(10)を二進法で表すと 1101(2)という数になる。 この数に、8bit になるように

頭に0を付加する。

A. $00001101_{(2)}$

 $2) 31_{(10)}$

10. 十進法で表した数を 8bit 符号付きの二進法で表す その2

 $1) -19_{(10)}$

例) -13(10)

例) 13(10)

13(10)を 8bit の符号付き二進 法で表すと 00001101(2)とい う数になる。

この数の各桁の 0 と 1 を 入れ替える(1の補数)。

 $11110010_{(2)}$

1の補数で求めた数に 1を 加える (2の補数)。

 $11110011_{(2)}$

A. 11110011₍₂₎

 $2) -31_{(10)}$

11. 各問題の指示通りに論理シフトを行え 例) 00110101 を 2bit 分左へ論理シフトせよ

2bit 分の論理左シフトということで各 bit を左 ~ 2 つ移動する。空白の bit には 0 を入れる。

1) 00110101 を 1bit 分左へ論理シフトせよ

2) 00110101 を 3bit 分左へ論理シフトせよ

3) 11010110 を 3bit 分左へ論理シフトせよ

例) 10110101 を 2bit 分右へ論理シフトせよ

2bit 分の論理右シフトということで各bit を右 ~2つ移動する空白のbit には0を入れる。

4) 00110101 を 1bit 分右へ論理シフトせよ

L !	<u>.</u>		<u> </u>	

5) 00110101 を 3bit 分右へ論理シフトせよ

1
i
1
1
i
1

6) 11010110 を 3bit 分右へ論理シフトせよ

į	į		1	l	
į	i	i	i	i	
	į	1	1	1	
!		!	1	1	
İ	į	ļ	ļ	ļ	
i		İ			

12. 各問題の指示通りに算術シフトを行え 例) 00110101 を 2bit 分左へ算術シフトせよ

算術シフトの場合、先頭 bit は符号ビットとして扱うので先頭 bit はシフトせず、それ以外の桁をシフトする。シフトを行い空白になったbit は 0 を入れる。

			<u> </u>

2) 00110101 を 3bit 分左へ算術シフトせよ

		į	į		!
		i	i		i
		:	:	 	1
- 1		!	!		
		į	į		1
		i	i		i
		:	:	 	
		!	!		!
- 1		į	į		1
- 1		i	i		
- 1					

3) 11010110 を 3bit 分左へ算術シフトせよ

1 1	i	i	i	i	i	i
1 :	1	1	1	1	:	:
1 :			1	!		
1 1	i	i	i	i	i	i
1	1	1	1	1		
1 :	i		1	i		
1	1	1	İ	İ	i	1
1 :	1	1	1	1		

例) 10110101 を 2bit 分右へ算術シフトせよ

算術シフトの場合、先頭 bit は符号ビットとして扱うので先頭 bit はシフトせず、それ以外の桁をシフトする。また右算術シフトの場合のみ、空白になった bit には符号ビットと同じ数を代入する。

4) 00110101 を 1bit 分右へ算術シフトせよ

5) 00110101 を 3bit 分右へ算術シフトせよ

6) 11010110 を 3bit 分右へ算術シフトせよ

1	1	1	1	1	
i		i	i	i	
i	i	i	i	i	
			1	1	
			i	i	

		1	 1	1

13. 次の事象をハフマン符号化し平均符号長を求めよ

	年間確率	符号	bit 数
快晴	20%		
晴れ	40%		
曇り	10%		
雨	25%		
雷	2%		
雪	3%		