27 June 2018

Notation and Definitions

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Conclusion function of an ID that maps $U \to \{-1,1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.
- δ Probe of any variable V parameterized by $v \in V$ such that:

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

- \wp Set of probes over $\Gamma(U)$.
- $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.
- \bar{F} Inverse. Given a function F over $U, F^{-1} = \bar{F} \equiv \{\{u : F(u) = f\} : f \in F(U)\}.$
- Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U) \text{ s.t. } \forall u \in U,$ $X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$
- >> Strong inference: a device (X_1, Y_1) strongly infers a device (X_2, Y_2) iff $\forall \delta \in \wp(Y_2)$ and all x_2 , $\exists x_1$ such that $X_1 = x_1 \implies X_2 = x_2, Y_1 = \delta(Y_2)$.

28 June 2018

Turing Machines

We construct an Inference Device (ID) such that it weakly infers a Turing Machine (TM). A TM behaves according to a set of rules (p, s, a, q) corresponding to a starting state, scanned input, action, and end state such that $p, q \in Q$, $s \in S = \{0, 1, B\}$, and $a \in A = \{0, 1, B, L, R\}$. Hence, a TM can be represented by a mapping between $Q \times S \to S \times Q$. Note that Q is a finite set of internal states. Any two distinctive (p, s, a, q) quadruples must differ in the first two elements, such that the Turing machine is deterministic.

Example 1 Consider a Turing machine T with a single internal state q. We construct a set of rules for T:

$$\begin{array}{c|c} (p,s) & (a,q) \\ \hline (q,0) & (0,q) \\ \hline (q,1) & (1,q) \\ \hline (q,B) & (B,q) \\ \end{array}$$

Now consider an inference device \mathcal{D} that can weakly infer T.

u	X(u)	Y(u)	$\Gamma(u)$
(q, 0)	(0, q)	1	(0, q)
(q, 0)	(1,q)	-1	(0, q)
(q,1)	(1,q)	1	(1, q)
(q,1)	(0, q)	-1	(1, q)
q, B	(B,q)	1	(B,q)
q, B	(1,q)	-1	(B,q)

We show that weak inference holds. Recall that the definition of weak inference is:

$$\mathcal{D} > \Gamma$$
 iff $\forall \gamma \in \Gamma(U), \exists x \in X(U)$ such that $\forall u \in U, X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u))$

Then,

$$\Gamma(U) = S \times Q = \{(0,q), (1,q), (B,q)\}$$

$$\Gamma((q,0)) = (0,q), x = (0,q) \in X(U) \implies Y(u) = 1 = \delta_{(0,q)}((0,q))$$

$$\Gamma((q,0)) = (0,q), x = (1,q) \in X(U) \implies Y(u) = -1 = \delta_{(0,q)}((1,q))$$

$$\Gamma((1,q)) = (1,q), x = (1,q) \in X(U) \implies Y(u) = 1 = \delta_{(1,q)}((1,q))$$

$$\Gamma((1,q)) = (1,q), x = (0,q) \in X(U) \implies Y(u) = -1 = \delta_{(1,q)}((0,q))$$

$$\Gamma((q,B)) = (B,q), x = (B,q) \in X(U) \implies Y(u) = 1 = \delta_{(B,q)}((B,q))$$

$$\Gamma((q,B)) = (1,q), x = (1,q) \in X(U) \implies Y(u) = -1 = \delta_{(B,q)}((1,q))$$

29 June 2018

Strong Inference of a Turing Machine