Simulation

Total Profit Function:

$$P_T = nP_V$$

Where:

 \mathbf{P}_{T} is the total profit \mathbf{n} is the number of vehicles sold \mathbf{P}_{V} is the profit per vehicle

PART A

Computing Bin Increment and Ranges

Given:

n follows a uniform distribution with minimum of 1 and maximum 10

 P_{v} follows a normal distribution with a mean of \$8000 and a standard deviation of \$1000

Number of bins: 5

Using plus/minus 3 standard deviations for P_v:

Minimum bin value = $nMin * P_vMin = 1 * 5000 = 5000$

Maximum bin value = $nMax * P_vMax = 10 * 11000 = 110000$

Range of bins = 110000 - 5000 = 105000

Bin increment = 105000 / 5 = 21000

<u>Bin #</u>	<u>Range</u>
1	\$5,000 - \$26,000
2	\$26,001 - \$47,000
3	\$47,001 - \$68,000
4	\$68,001 - \$89,000
5	\$89,001 - \$110,000

PART B

GetRandomUniform

```
uniform = rand.Next(min, max + 1);
```

GetRandomNormal

GetBinIndex