Regroupement et Visualisation de Protéines par les architectures de Domaines

Chadi Jaouadi

Paul Saïghi

Encadré par : Juliana Silva Bernardes

Sommaire

- ♦ I) Problématique
- II) Objectifs
- III) Regroupement hiérarchique
- IV) Visualisation graphique de protéines
- V) Résultats
- VI) Conclusion et Evolution

Problématique

Exemple de protéines

Figure 4-9 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Domaines

Architectures de domaines

MFRFALLCAFVADASAEGCCSMEDRQEVLNAWEALWSAEYTGRRVMIAQAAFQKLFEKAPDSKALFTRVNVDNIGSPQFRAHCIRVTNGFDTIINMAFDTDVLEELLTHLGNQHTKYQGMRAA

Helicase

Dead

DEADboxA

Identifiant Protéine	Taille	Domaine1	Confiance	Début	Fin	Domaine2	Confiance	Début	Fin
			o di mano					2 0 0 0 0	
Coscinodiscus	1300	PF00385	1.18e-14	39	76	PF00595	5.17e-09	305	342
Agaricus_bisporus_XP	2500	PF00145	9.16e-120	272	599	PF01485	0.000158	696	729
Amphiprora_paludosa	765	PF00145	8.62e-64	346	647				
Arabidopsis_thaliana1	497	PF00145	5.78e-115	19	377				
Arabidopsis_thaliana2	870	PF00145	3.79e-10	306	491	PF00145	3.88e-43	502	622
Aspergillus_arachidicola	1234	PF01426	3.73e-3	138	250	PF00145	3.07e-80	321	591
Aspergillus_niger	611	PF01426	2.83e-31	132	240	PF00145	5.62e-87	306	513
Table 1: Identification de domaines									

Objectifs

- Représentations textuelles non adaptées
- Le Biologiste a besoin d'une visualisation graphique interactive
- Nous avons:
 - Implémenté un algorithme de regroupement pour les protéines ayant des architectures de domaines similaires
 - Développé un site web

Regroupement hiérarchique

Clustering

 Cluster = un sous-ensemble composé de protéines ayant toutes des caractéristiques communes

Regroupement hiérarchique : Algorithme

- Entrée: [P1, P2, P3] et N = nombre de clusters
- Construit une Matrice comparaison inter-protéine
- Créer un Cluster par Protéine : { G1[P1],G2[P2],G3[P3] }
- Boucler
 - Mettre à jour la Matrice comparaison inter-cluster
 - Fusionner les deux clusters les plus similaires
- Arrêter si nombre de clusters est égal à N

Matrice comparaison inter-protéine

0

- Similarité entre deux Protéines
 Distance de Damerau Levenshtein :
- Transposition
- Suppression
- Insertion
- Substitution
- L'Architecture des Domaines comme critère de similarité

P1: D1

P2: D1-D2

P3: D1-D2-D3

	P1	P2	P3
P1	0	1	2
P2	1	0	1
P3	2	1	0

Créer un Cluster par Protéine

G1[P1] G2[P2] G3[P3]

On rentre dans la Boucle

	G1	G2	G3
G1	0	1	2
G2	1	0	1
G3	2	1	0

10

Matrice distance de la liste de clusters actuelle

Fusion des deux Clusters les plus similaires

G1[P1] G2[P2] G3[P3]

	G1	G2	G3
G1	0	1	2
G2	1	0	1
G3	2	1	0

Matrice distance de la liste de clusters actuelle

G2[P1, P2] G3[P3]

	G2	G3
G2	0	1.5
G3	1.5	0

Matrice distance de la nouvelle liste

De Clusters

Matrice de distance inter-cluster

Critère de Lien Moyen

Pour toute (prot1, prot2) appartenant à (G1,G2)

Similarité(G1,G2) =

MOY(similaritéProt(prot1,prot2))

= [similaritéProt(P1,P3)+simlaritéProt(P2,P3)] / 2

$$= [2 + 1] / 2$$

= 1.5

	P1	P2	P3
P1	0	1	2
P2	1	0	1
P3	2	1	0

Matrice distance inter-protéine

G2[P1, P2] G3[P3]

	G2	G3
G2	0	1.5
G3	1.5	0

Arrêter si nombre de cluster est égal à N

L'utilisateur peut choisir le nombre de cluster opportun à partir d'un Arbre Dendrogram

Entrée Initiale.

Une trentaine De Protéiens

Arrêter si nombre de cluster est égal à N

L'utilisateur peut choisir le nombre de cluster opportun à partir d'un Arbre Dendrogram

Entrée Initiale:

Une trentaine De Protéiens

Visualisation Graphique d'une Protéine

Distinguer les Domaines

Resultats

Interface Utilisateur

Dendrogram

Choisir le nombre de cluster opportun à partir d'un Arbre Dendrogram

Visualisation de Clusters

Capture Ecran 4 : Regroupement de Proteines

Visualisation Clusters - Show More

Capture Ecran 5 : Regroupement de Proteines - Show More Groupe 9

Sauvegarde en Tableur Nom de votre Excel monFichierExcel Extract to Excel Groupe 1 1 protéine .150 .Ajellomyces capsulatus CONHN8 Groupe 12 (4 protéines) Danio rerio Q588C7 113 PF00855 1,79E-17 7,91E-35 16 790 8,47E-07 1066 1116 2,93E-31 222 1,93E-06 478 530 PF00145 760 Homo sapiens Q9UBC3 851 PF00855 1,67E-19 576 973 PF10310 1.68E-25 Homo sapiens Q9Y6K1 172 PF00855 4,28E-29 290 364 9,1E-06 536 586 168 PF00855 3,73E-29 Mus musculus O88508 988 PF10310 1.7E-22 286 360 8.74E-06 532 582 Groupe 13 (10 protéines) Ascobolus immersus O42731 1426 PF12047 5,4E-42 93 248 6,6E-22 432 575 F01426 1.11E-09 638 744 Colletotrichum gloeosporioides L2GAQ2 8,28E-34 266 1.68E-33 450 539 1,26E-07 637 173 564 Cordyceps militaris G3JGU4 1147 PF12 6,81E-44 158 267 6,78E-35 436 527 1,07E-06 554 656 547 656 Paracoccidioides lutzii C1H2T7 1274 PF1 3,53E-47 189 296 2,38E-31 458 1,38E-09 569 Pseudogymnoascus_verrucosus_A0A1B8GCG9 1305 PF1 1,2E-36 164 258 3,88E-29 455 544 1,99E-06 582 680 Purpureocillium lilacinum A0A179HTB7 1,34E-40 5,13E-35 448 537 PF0142 1,14E-05 608 665 Mr Biologiste Rhizophagus irregularis A0A1C9IHL2 1,46E-30 208 9,9E-30 514 626 4,53E-20 683 825 1160 PF12 1.06E-39 197 1.55E-33 359 456 PF00145 4,9E-108 656 1056 Grosmannia clavigera F0XN91 383 PF00145 1,5E-107 Pochonia chlamydosporia A0A179FKN0 4,21E-38 16 4,84E-36 290 545 940 1296 PF12047 8.94E-45 1,82E-48 679 PF00567 8,37E-05 666 721 Neurospora crassa Q3Y3Z1 218 575 Groupe 14 (6 protéines) 328 PF12047 Bos taurus Q24K09 1626 PF06464 7.61E-45 17 106 PF12877 1.51E-18 124 5.4E-69 397 531 21 Homo sapiens P26358 1614 PF06464 8.47E-45 16 1.7E-24 125 4.86E-69 399 533 Ratus_norvegicus_Q9Z330 1619 PF06464 7,54E-45 106 PF12877 9.7E-10 93 344 PF12047 5,53E-65 405 539

Conclusion, Evolution

- Importance pour le Biologiste
- Evolution : Exploiter d'autres algorithmes de Regroupement

Merci!

Des questions?

Figure 1: Diagramme de Classes UML