Multi-agent contract design with independent trials: Winners-take-all based on weight and priority

Sumit Goel¹ Wade Hann-Caruthers²

¹NYU Abu Dhabi

²Technion - Israel Institute of Technology

December 16, 2023

Introduction

- Principal delegates individual tasks to multiple agents
- Each agent may succeed or fail depending upon the effort they exert
- Principal can only observe final outcomes and not effort
- How should a budget-constrained principal design contracts so as to encourage agents to exert costly effort?
- Potential applications: crowdsourcing contests, sales contests

Outline

- Model
- Main results
- Application
- Proofs

Model

- $A = \{1, 2, ..., n\}$: set of n risk-neutral agents, each attempts an independent task
- ullet $O = \{0,1\}$: possible outcomes for each agent, success or failure
- $p_i \in [0,1]$: agent *i*'s choice of probability of success
- $c_i(p_i)$: cost incurred by agent i for its choice of p_i
- Assume c_i is strictly convex, with $c_i(0) = 0, c'_i(0) = 0, c'_i(1) > 1$

Principal

- Principal's payoff: $V(p_1, \ldots, p_n) = \sum_{i=1}^n w_i p_i$
- Assume the principal
 - cannot observe p_i
 - can observe the outcome for each agent
 - ▶ is budget constrained (B = 1)
- A contract is a function $f: \mathcal{P}(A) \to \mathbb{R}^n_+$ such that for each $S \subseteq A$,

$$\sum_{i\in A}f_i(S)\leq 1.$$

Timing and payoffs

- Timing:
 - ▶ Principal commits to a contract $f: \mathcal{P}(A) \to \mathbb{R}^n_+$
 - Agents simultaneously choose $p = (p_1, \dots, p_n)$
 - ► Each agent succeeds or fails, and is rewarded according to f
- Agent i's payoff under profile $p=(p_1,\ldots,p_n)$ equals

$$u_i(p) = \sum_{S \subset A} f_i(S) \operatorname{Pr}_p^A(S) - c_i(p_i)$$

where

$$\Pr_{\rho}^{A}(S) = \prod_{i \in S} p_{i} \prod_{j \in A \setminus S} (1 - p_{j}).$$

Equilibrium

- ullet Concave payoffs \Longrightarrow pure-strategy NE exists (Rosen [1965])
- If p is an equilibrium, then for all $i \in A$, either $p_i = 0$ or

$$\frac{\partial u_i(p)}{\partial p_i} = \sum_{S \subset A_{-i}} (f_i(S \cup \{i\}) - f_i(S)) \operatorname{Pr}_{p_{-i}}^{A_{-i}}(S) - c_i'(p_i) = 0$$

- Notation:
 - $ightharpoonup \mathcal{F}$: set of all contracts
 - ► E(f): NE under f
 - $\mathcal{E} := \bigcup_{f \in \mathcal{F}} E(f)$
 - $ightharpoonup \mathcal{P} := \mathsf{Pareto} \ \mathsf{frontier} \ \mathsf{of} \ \mathcal{E}$
- ullet Goal: characterize ${\mathcal P}$ and solve for some natural objectives V(p)

Some natural classes of contracts

• f is a failures-get-nothing (FGN) contract if $\forall i \in A$ and $\forall S$,

$$i \notin S \implies f_i(S) = 0.$$

• f is a successful-get-everything (SGE) contract if $\forall S$,

$$\sum_{i\in S} f_i(S) = 1.$$

• f is a priority-based weighted (PW) contract if there exists an ordered partition (X_1, \ldots, X_l) of A and weights $\lambda = (\lambda_1, \ldots, \lambda_n)$ s.t. $\forall S$,

$$f_i(S) = \begin{cases} \frac{\lambda_i}{\sum_{j \in S \cap X_k} \lambda_j}, & \text{if } S \cap X_m = \emptyset \text{ for } m < k \text{ and } i \in S \cap X_k \\ 0, & \text{otherwise} \end{cases}$$

Some examples

- Constant: $f_i(S) = \frac{1}{n}$ for all $i \in A$
- Piece-rate $(\sum_{i \in A} \lambda_i \leq 1)$:

$$f_i(S) = \begin{cases} \lambda_i, & \text{if } i \in S \\ 0, & \text{otherwise} \end{cases}$$

Weighted split among winners:

$$f_i(S) = \begin{cases} \frac{\lambda_i}{\sum_{j \in S} \lambda_j}, & \text{if } i \in S \\ 0, & \text{otherwise} \end{cases}$$

Priority-based:

$$f_i(S) = \begin{cases} 1, & \text{if } i = \min\{j : j \in S\} \\ 0, & \text{otherwise} \end{cases}$$

Result 1: $\mathcal{P} = \mathcal{E}(SGE)$

Theorem 1.

Suppose $p \in E(f)$. Then, $p \in \mathcal{P}$ if and only if f is SGE.

Complexity reduction

Theorem 2.

For any $p \in \mathcal{P}$, there exists a unique PW contract f such that $p \in E(f)$.

Corollary 3.

Suppose the principal's objective $V(p_1, p_2, ..., p_n)$ is increasing in p_i . Then,

$$\max_{f \in \mathcal{F}} V(p) = \max_{f \in \mathcal{F}_{PW}} V(p).$$

Application

- n=2 agents, $c_i(p_i)=\frac{1}{2}c_ip_i^2$ with $c_i>1$
- $V(p_1, p_2) = wp_1 + p_2$
- Optimal contest design problem is just to find $\lambda = f_1(\{1,2\})$.
- Unique pure-strategy Nash:

$$p_1(\lambda) = \frac{c_2 - (1 - \lambda)}{c_1 c_2 - \lambda (1 - \lambda)} \quad p_2(\lambda) = \frac{c_1 - \lambda}{c_1 c_2 - \lambda (1 - \lambda)}.$$

Optimal contract

Theorem 4.

 $\lambda^*(w)$ is increasing in w. In particular,

$$\lambda^*(w) = \begin{cases} 0, & \text{if } w \le \frac{c_1 c_2 - c_1}{c_1 c_2 + c_2 - 1} \\ \frac{1}{2}, & \text{if } w = 1 \\ 1, & \text{if } w \ge \frac{c_1 c_2 + c_1 - 1}{c_1 c_2 - c_2} \end{cases}$$

SGE \implies Pareto optimality

Claim 5.

If f is a SGE contract and $p \in E(f)$, then $p \in \mathcal{P}$.

Since p must satisfy the foc, we have

$$c'_i(p_i) = \sum_{S \subset A_{-i}} f_i(S \cup \{i\}) \Pr_{p_{-i}}^{A_{-i}}(S)$$

② Multiplying by p_i and adding for all i gives

$$\sum_{i\in A}p_i\cdot c_i'(p_i)=1-\mathsf{Pr}_p^n(\phi).$$

which implies

$$\sum_{i \in A} p_i \cdot c_i'(p_i) + \prod_{i=1}^n (1 - p_i) = 1.$$

③ Differentiating the lhs by p_i , we get

$$p_i c_i''(p_i) + c_i'(p_i) - \prod_{j \neq i} (1 - p_j) > 0$$

14 / 20

Pareto optimality \implies SGE

Lemma 6.

If p is Pareto optimal and $p \in E(f)$, then f must be a SGE contract.

Let

$$\mathcal{K}_p := \{S \subseteq A \,:\, \sum_{i \in S} f_i(S) < 1 \text{ for some } f \in E^{-1}(p) \cap \mathcal{F}_{FGN}\},$$

- $\textbf{ 1 Suppose } S \in \mathcal{K}_p. \text{ For any } T \subset S, \ T \in \mathcal{K}_p.$
- ② Suppose $S, T \in K_p$. Then, $S \cup T \in K_p$. It follows that $K_p = 2^{\kappa_p}$.
- **③** Suppose $f ∈ E^{-1}(p) ∩ \mathcal{F}_{FGN}$. Then, for all S ⊂ A such that $\kappa_p^C ∩ S \neq \phi$, $f_i(S) = 0$ for all $i ∈ \kappa_p$.
- **1** Suppose $\kappa_p \neq \phi$. Then there is a p' that Pareto dominates p.

$$\mathcal{P} = \mathcal{E}[F_{PW}]$$

Given a SGE contract f and any profile p, define,

$$Z_p(f) := \max_{i \in A} c'_i(\Psi_i(p_{-i}, f)) - c'_i(p_i).$$

Lemma 7.

If $p \in \mathcal{P}$, then

$$\inf_{f\in\mathcal{F}_{PW}}Z_p(f)=0.$$

• Let $z = \inf_{f \in \mathcal{F}_{PW}} Z_p(f) > 0$ and let $Z_p(f) = z$. Further, let i be the lowest priority agent such that

$$c_i'(\Psi_i(p_{-i},f)) - c_i'(p_i) = z$$

• Group agents that have i's priority and those that succeed i.

(□) (□) (□) (□) (□) (□)

Lit review

- Multi-agent contract design: Holmstrom [1982], Lazear and Rosen [1981], Green and Stokey [1983], Nalebuff and Stiglitz [1983], Malcomson [1986], Imhof and Kräkel [2014], Mookherjee [1984], Baiman and Rajan [1995], Castiglioni et al. [2023], Dütting et al. [2023]
- Crowdsourcing contests: Segev [2020], Taylor [1995], Halac et al. [2017], Gross [2020], Haggiag et al. [2022]

Summary

- Study a contract design problem between a principal and multiple agents with budget constraint
- Characterize the Pareto frontier of success probabilities that can be sustained in equilibrium as equilibrium of SGE contracts
- Identify a small class of PW contracts that can implement the Pareto frontier which provides a significant reduction in dimensionality of the optimal contract design problem
- Application to two agents suggests that the structure of optimal contract depends more on principal's bias than agents heterogeneity

Thank you!