

<110> Darrow, Andrew Qi, Jenson Andrade-Gordon, Patricia

<120> DNA ENCODING THE HUMAN SERINE PROTEASE T

<130> ORT-1560

<140> 10/041,054

<141> 2002-01-07

<150> 09/386,653

<151> 1999-08-31

<160> 11

<170> PatentIn version 3.3

<210> 1

<211> 1110

<212> DNA

<213> Homo sapiens

<400> 1

gaccacggcc ctgcgcccca gccaggcctg aggacatgag gcggccggcg gcggtgccgc 60

tcctgctgct gctgtgtttt gggtctcaga gggccaaggc agcaacagcc tgtggtcgcc 120

ccaggatgct gaaccgaatg gtgggcggc aggacacgca ggagggcgag tggccctggc 180

aagtcagcat ccagcgcaac ggaagccact tctgcggggg cagcctcatc gcggagcagt 240

gggtcctgac ggctgcgcac tgcttccgca acacctctga gacgtccctg taccaggtcc 300

tgctgggggc aaggcagcta gtgcagccgg gaccacacgc tatgtatgcc cgggtgaggc 360

aggtggagag caaccccctg taccagggca cggctccag cgctgacgtg gccctggtg 420

agctggaggc accagtgccc ttcaccaatt acatcctccc cgtgtgcctg cctgacccct 480

cggtgatctt tgagacggc atgaactgct gggtcactgg ctgggcagc cccagtgagg 540

aagacctcct gcccgaaccg cggatcctgc agaaactcgc tgtgcccatc atcgacacac 600

ccaagtgcaa cetgetetae ageaaagaca cegagtttgg etaccaacee aaaaceatea 660

agaatgacat getgtgegee ggettegagg agggcaagaa ggatgeetge aagggegaet 720

egggeggeee cetggtgtge etegtgggte agtegtgget geaggegggg gtgateaget 780

ggggtgaggg etgtgeeege eagaacegee eaggtgteta eateegtgte acegeeeace 840

acaactggat ecateggate ateceeaaac tgeagtteea geeagegagg ttgggeggee 900

agaagtgaga eceeegggge eaggageeee ttgageagag etetgeacee ageetgeeeg 960

eceacaceat eetgetggte eteeeagege tgetgttgea eetgtgagee ecaceagaet 1020

catttgtaaa tagegeteet teeteeeete teaaatacee ttattttatt tatgtttete 1080

ecaataaaaa eceageetgt gtgeeagetg 1110

<210> 2

<211> 20

<212> DNA

<213> Artificial

<220>

<223> ProtT PCRTP-U PCR primer

<400> 2

gccaggcctg aggacatgag

20

<210> 3

<211> 20

<212> DNA

<213> Artificial

<220>

<223> ProtT PCRTP-L PCR primer

<400> 3

tgcgctggat gctgacttgc

20

<210> 4

<211> 40

<212> DNA

<213> Artificial <220> <223> ProtT PCTTP-PP primer <400> 4 40 ccaggatgct gaaccgaatg gtgggcgggc aggacacgca <210> 5 <211> 30 <212> DNA <213> Artificial <220> <223> ProtT Xba-U PCR prmer <400> 5 30 aggatctaga ggagggcgag tggccctggc <210> 6 <211> 30 <212> DNA <213> Artificial <220> <223> ProtT Xba-L PCR primer <400> 6 ggggtctaga cttctggccg cccaacctcg 30 <210> 7 <211> 290 <212> PRT <213> Homo sapiens <400> 7 Met Arg Arg Pro Ala Ala Val Pro Leu Leu Leu Leu Cys Phe Gly 10 5 Ser Gln Arg Ala Lys Ala Ala Thr Ala Cys Gly Arg Pro Arg Met Leu 25 30 20

Page 3

	Gln Arg Asn G 55 6	•	ne Cys Gly Gly Se	r Leu
Ile Ala Glu Gln T	rp Val Leu Th 75	nr Ala Ala H 80	is Cys Phe Arg As	n Thr
Ser Glu Thr Ser I 85	Leu Tyr Gln V 90	al Leu Leu (95	Gly Ala Arg Gln Lo	eu Va
Gln Pro Gly Pro 1	His Ala Met T 105	yr Ala Arg V 110	/al Arg Gln Val G	lu Ser
Asn Pro Leu Tyr 115	Gln Gly Thr A	Ala Ser Ser A 125	ala Asp Val Ala Le	u Va
		he Thr Asn 1 140	Гуг Ile Leu Pro Va	l Cys
Leu Pro Asp Pro 145 150			ly Met Asn Cys Tr 60	p Val
Thr Gly Trp Gly 165	Ser Pro Ser Gl 170	u Glu Asp L 175	eu Leu Pro Glu Pr	o Arg
Ile Leu Gln Lys I 180	Leu Ala Val Pr 185	o Ile Ile Asp 190	Thr Pro Lys Cys A	Asn
Leu Leu Tyr Ser 1	Lys Asp Thr C 200	Glu Phe Gly 7 205	Гуг Gln Pro Lys Т	hr Ile

Asn Arg Met Val Gly Gly Gln Asp Thr Gln Glu Gly Glu Trp Pro Trp 35 40 45

Lys Asn Asp Met Leu Cys Ala Gly Phe Glu Glu Gly Lys Lys Asp Ala 215

Cys Lys Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Val Gly Gln Ser 230 235 240 225

Trp Leu Gln Ala Gly Val Ile Ser Trp Gly Glu Gly Cys Ala Arg Gln 245 250 255

Asn Arg Pro Gly Val Tyr Ile Arg Val Thr Ala His His Asn Trp Ile 260 265

His Arg Ile Ile Pro Lys Leu Gln Phe Gln Pro Ala Arg Leu Gly Gly 280 285 275

Gln Lys 290

<210> 8

<211> 1130

<212> DNA

<213> Artificial

<220>

<223> PFEK-PROTT-HIS fusion protein nucleic acid sequence

<400> 8

gaattcacca ccatggacag caaaggttcg tcgcagaaat cccgcctgct cctgctgctg 60 120 gtggtgtcaa atctactctt gtgccagggt gtggtctccg actacaagga cgacgacgac gtggacgcgg ccgctcttgc tgcccccttt gatgatgatg acaagatcgt tgggggctat 180 240 gctctagagg agggcgagtg gccctggcaa gtcagcatcc agcgcaacgg aagccacttc 300 tgcgggggca gcctcatcgc ggagcagtgg gtcctgacgg ctgcgcactg cttccgcaac 360 acctetgaga egtecetgta eeaggteetg etgggggeaa ggeagetagt geageeggga 420 ccacacgcta tgtatgcccg ggtgaggcag gtggagagca accccctgta ccagggcacg

geeteeageg etgaegtgge eetggtggag etggaggeae eagtgeeett eaceaattae 480 atcetecceg tgtgcetgce tgaceceteg gtgatetttg agaegggeat gaactgetgg 540 600 gtcactggct ggggcagccc cagtgaggaa gacctcctgc ccgaaccgcg gatcctgcag 660 aaactegetg tgeecateat egacacacee aagtgeaace tgetetacag caaagacace 720 gagtttggct accaacccaa aaccatcaag aatgacatgc tgtgcgccgg cttcgaggag 780 ggcaagaagg atgcctgcaa gggcgactcg ggcggccccc tggtgtgcct cgtgggtcag tegtggetge aggeggggt gateagetgg ggtgaggget gtgeeegeea gaacegeeca 840 ggtgtctaca teegtgteae egeceaeeae aaetggatee ateggateat eeceaaaetg 900 cagttccagc cagcgaggtt gggcggccag aagtctagac atcaccatca ccatcactag 960 eggeegette eetttagtga gggttaatge ttegageaga eatgataaga taeattgatg 1020 agtttggaca aaccacaact agaatgcagt gaaaaaaatg ctttatttgt gaaatttgtg 1080 1130 atgctattgc tttatttgta accattataa gctgcaataa acaagttgac

<210> 9

<211> 315

<212> PRT

<213> Artificial

<220>

<223> PFEK-PROTT-HIS fusion protein amino acid sequence

<400> 9

Met Asp Ser Lys Gly Ser Ser Gln Lys Ser Arg Leu Leu Leu Leu 1 5 10 15

Val Val Ser Asn Leu Leu Cys Gln Gly Val Val Ser Asp Tyr Lys 20 25 30

Asp Asp Asp Asp Val Asp Ala Ala Ala Leu Ala Ala Pro Phe Asp Asp 35 40 45

50 55	. 60		
Trp Gln Val Ser Ile C 65 70	Gln Arg Asn G 75	ly Ser His Phe Cys 80	Gly Gly Ser
Leu Ile Ala Glu Gln 7 85	Ггр Val Leu Tl 90	hr Ala Ala His Cys 95	Phe Arg Asn
Thr Ser Glu Thr Ser 1	Leu Tyr Gln V 105	al Leu Leu Gly Ala 110	a Arg Gln Leu
Val Gln Pro Gly Pro 115 12	His Ala Met T 20 12	-	g Gln Val Glu
Ser Asn Pro Leu Tyr 130 135	Gln Gly Thr A	ala Ser Ser Ala Asp	Val Ala Leu
Val Glu Leu Glu Ala 145 150	Pro Val Pro Pi 155	he Thr Asn Tyr Ile 160	Leu Pro Val
Cys Leu Pro Asp Pro 165	Ser Val Ile Ph 170	e Glu Thr Gly Met 175	Asn Cys Trp
Val Thr Gly Trp Gly 180	Ser Pro Ser Gl 185	u Glu Asp Leu Leu 190	ı Pro Glu Pro
Arg Ile Leu Gln Lys 195 20			Pro Lys Cys
Asn Leu Leu Tyr Ser 210 215	Lys Asp Thr 0 220	Glu Phe Gly Tyr G	In Pro Lys Thi

Asp Asp Lys Ile Val Gly Gly Tyr Ala Leu Glu Glu Gly Glu Trp Pro

Ile Lys Asn Asp Met Leu Cys Ala Gly Phe Glu Glu Gly Lys Lys Asp 225 230 235 Ala Cys Lys Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Val Gly Gln 245 250 255 Ser Trp Leu Gln Ala Gly Val Ile Ser Trp Gly Glu Gly Cys Ala Arg 265 270 260 Gln Asn Arg Pro Gly Val Tyr Ile Arg Val Thr Ala His His Asn Trp 275 280 285 Ile His Arg Ile Ile Pro Lys Leu Gln Phe Gln Pro Ala Arg Leu Gly 290 295 300 Gly Gln Lys Ser Arg His His His His His His 315 305 310 <210> 10 <211> 4 <212> PRT <213> Artificial <220> <223> Chromogenic substrate 5 <220> <221> MISC_FEATURE <222> (1)..(1) <223> N-Succinyl-alanine <220> <221> MISC_FEATURE <222> (4)..(4) <223> Phe-p-nitroanilide

Xaa Ala Pro Xaa

<400> 10

```
1
```

```
<210> 11
<211> 4
<212> PRT
<213> Artificial
<220>
<223> Chromogenic substrate 6
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> N-(methoxysuccinyl)-Ala
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Val-p-nitroanilide
<400> 11
Xaa Ala Pro Xaa
1
```