MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2014 SOLUTION KEY

Round 2

- A) -1 cannot be an exponent, since this would result in $N = A^B + C^D$ being a non-integer. So we consider $(-1)^3 + 2^4$, $(-1)^3 + 4^2$, $(-1)^4 + 2^3$, and $(-1)^4 + 3^2$. The winner (i.e. the minimum) is $(-1)^4 + 2^3 = \underline{9}$.
- B) Given $\frac{1+x}{x-\frac{5}{2x-3}}$, clearly $x=\frac{3}{2}$ causes division by 0. Considering the denominator of the complex fraction, $x-\frac{5}{2x-3}=\frac{2x^2-3x-5}{2x-3}=\frac{(2x-5)(x+1)}{2x-3}$ and this expression is zero for $x=-1,\frac{5}{2}$. Even though (x+1) is a common factor and the expression simplifies to $\frac{2x-3}{2x-5}$, for x=-1, the original fraction becomes $\frac{0}{0}$ which is still undefined.

Thus the fraction is undefined for three values, namely, $-1, \frac{3}{2}, \frac{5}{2}$.

C) Given
$$\begin{cases} \frac{2^{x^2 + Bx}}{4^{Ax}} = \frac{1}{32} \\ 3^{2A + B + 4} = 5^{2(A + B) + 3} = 7^{\frac{2A + 5}{B}} \end{cases}$$
 The only way powers of 3, 5 and 7 can be equal for

rational exponents would be if each exponent is zero. Therefore, $A = -\frac{5}{2}$ and substituting for the powers of 3 and 5, we have B - 1 = 0 and $-5 + 2B - 3 = 0 \Rightarrow B = 1$

$$\frac{2^{x^2 + Bx}}{4^{Ax}} = \frac{1}{32} \Leftrightarrow \frac{2^{x^2 + Bx}}{2^{2Ax}} = 2^{-5} \Leftrightarrow 2^{x^2 + (B - 2A)x} = 2^{-5} \Rightarrow$$
$$x^2 + (B - 2A)x + 5 = 0 \Leftrightarrow x^2 + 6x + 5 = (x + 1)(x + 5) = 0 \Rightarrow x = -1, -5$$