Section 4.4 — Combinations and Permutations

Chris Godbout

Outline

Introduction

Rules

Examples

Introduction

Movie tickets

Example

I have two movie tickets to a special screening of the *Entourage* movie. How many ways can I give them out if the order matters? What if it doesn't?

Movie tickets

Example

I have two movie tickets to a special screening of the *Entourage* movie. How many ways can I give them out if the order matters? What if it doesn't?

Example

What if I have 5 movie tickets?

Movie tickets

Example

I have two movie tickets to a special screening of the *Entourage* movie. How many ways can I give them out if the order matters? What if it doesn't?

Example

What if I have 5 movie tickets?

Example

What if I have tickets for everyone?

Definitions

Definition (Permutations)

Permutations of items are arrangements in which different sequences of the same items are counted separately. In other words, order matters.

Definitions

Definition (Permutations)

Permutations of items are arrangements in which different sequences of the same items are counted separately. In other words, order matters.

Combinations

Combinations of items are arrangements in which different sequences of the same items are **not** counted separately. In other words, order does **not** matter.

3

Definition (Factorial)

Definition (Factorial)

•
$$4! = 4 \cdot 3 \cdot 2 \cdot 1$$

Definition (Factorial)

- $4! = 4 \cdot 3 \cdot 2 \cdot 1$
- · 6! =?

Definition (Factorial)

- $4! = 4 \cdot 3 \cdot 2 \cdot 1$
- 6! = ?
- 0! = 1

Definition (Factorial)

- $4! = 4 \cdot 3 \cdot 2 \cdot 1$
- 6! = ?
- 0! = 1
- · Number of ways to arrange people in class?

Rules

Factorial Rule

Theorem (Factorial Rule)

The number of different permutations of n items when all n of them selected without replacement is n!.

Permutation Rule (Different Items)

Theorem (Permutation Rule)

The number of different permutations of n items when only r of them are selected without replacement is

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Permutation Rule (Some Identical Items)

Theorem (Permutation Rule)

The number of different permutations of n items when and all of them are selected without replacement, but some of them are identical is

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Where n_1 , n_2 , ... n_k are the different number of alike items.

Permutation Rule (Some Identical Items)

Theorem (Permutation Rule)

The number of different permutations of n items when and all of them are selected without replacement, but some of them are identical is

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Where n_1 , n_2 , ... n_k are the different number of alike items.

Example

How many ways are there to rearrange the letters in "banana"?

Combinations Rule

Theorem (Combinations)

The number of different combinations (order doesn't matter) of n items when only r of them are selected without replacement is

$$_{n}C_{r}=\binom{n}{r}=\frac{n!}{(n-r)!r!}$$

Examples

Coin flips

If I flip a coin 8 times, how many possible outcomes are there? What's the probability of getting no heads?

Coin flips

If I flip a coin 8 times, how many possible outcomes are there? What's the probability of getting no heads?

What is the probability of getting exactly 5 heads?

ATM PINS

An ATM PIN is made up of four digits. How many possible PINs are there? What's the probability of guessing it right on the first try?

Mix CD

You are making a mix CD of Iggy Azalea songs for your parents. How many different combinations of 12 of her 81 songs can you make?

Party time!

There are eight people hosting a party. One must take care of the food, one must bring drinks, and a third must bring flowers. How many ways can these jobs be assigned?

Party time!

There are eight people hosting a party. One must take care of the food, one must bring drinks, and a third must bring flowers. How many ways can these jobs be assigned?

What if instead the three people are put on a committee that is in charge of all three tasks?