YW-1051粉尘传感器

产品特性

- 高灵敏度,响应时间10毫秒
- 高一致性,+/-15%
- 可清洗
- 体积小 46*34*17.6毫米
- 高EMC性能

功能描述

本产品利用微小颗粒物对光的散射原理,当微小颗粒物经过检测孔时,对光线形成散射。散射光线的一部分通过光轴,经透镜聚集到感光元件,感光元件将光信号转换为电信号输出。

产品应用

- 家用/商用空气净化器
- 家用/商用空气调节器
- 家用/商用新风系统
- 民用空气质量监测系统(空气盒子、空 气果)
- 工业粉尘监测系统(建筑扬尘,工厂粉尘)

产品图片

1. 极限工作条件

	最小值	典型值	最大值	单位
--	-----	-----	-----	----

VCC	供电电压	0	/	5.5	V
V _{IN}	输入电压	-0.3	/	VCC+0.3	V
lo	输出电流	/	/	23	mA
V _{ripple} ^[1]	电源纹波	/	/	30	mV
Ts	存储温度	-20	/	80	$^{\circ}$
TA	工作温度	-10	/	65	$^{\circ}$
RH _s ^[2]	存储湿度	/	/	95	%
RH _A ^[2]	工作湿度	/	/	95	%

表1 极限工作条件

[1]0.3KHz 至 24KHz

[2] 无结露

2. 推荐工作条件

		最小值	典型值	最大值	单位
V _{CC}	供电电压	4.9	5.0	5.1	V
T _A	工作温度	/	25	/	$^{\circ}$
RH_A	工作湿度	45	50	55	%

表2 推荐工作条件

3. 功能描述

本产品利用微小颗粒物对光的散射原理, 当微小颗粒物经过检测孔时, 对光线形成散射。 散射光线的一部分通过光轴, 经透镜聚集到感光元件, 感光元件将光信号转换为电信号输出。 此外, 可根据客户需求, 对总线协议进行进一步定制开发。

3.1 功能框图

图1 功能框图

Revision 1.0 第 3 页

3. 2接口定义

图2 连接器示意图

引脚名称	引脚号	类型	描述
GND	1	电源管脚	电源负端输入,注意使用时与 设备金属外壳保持良好接地
VCC	2	电源管脚	电源正端输入
预留	3		
预留	4		
RXD	5	数字I/0	UART数据接收口
TXD	6	数字I/0	UART数据发送口

表3 引脚定义

Revision 1.0 第4页

3.3 外围电路

传感器应用示意图,主控通过串口RXD接收传感器数据,建议在VCC和GND之间增加220uF的电容。 串口通信参数参见3.4。

参数	设置
波特率	2400
停止位	1
奇偶校验	无

表4 默认UART 设置

上表为默认UART 出厂设置,可根据用户需求更改。

Revision 1.0 第 5 页

3.5 串口输出参数

- 1) 波特率: 2400 bit/s;
- 2) 每10ms发送一帧数据, 共7个字节, 其中校验位=Vout(H)+ Vout(L)+Vref(H)+ Vref(L);
- 3) 数据发送格式

起始位	VoutH	VoutL	VrefH	VrefL	校验位	结束位
0xaa	如:0x01	如:0x3a	如:0x00	如:0x7a	如:0xd0	0xff

表5 数据发送格式

3.6 灰尘浓度计算方法

灰尘浓度Ud = 浓度系数K×(VoutH×256+VoutL)×2.5/1024

式中:

VoutH: 传感器输出电压值的高位

VoutL: 传感器输出电压值的低位

浓度系数K表示传感器输出电压值VoutH、VoutL与特定种类灰尘的比例系数。

在粒径为2.5um的灰尘环境下,浓度系数K的取值请参考下图

图4 浓度系数

电压范围(V)	0-0.102	0. 103-0. 125	0. 126-0. 133	0. 134-0. 139	0. 140-0. 151	0.152以上
浓度系数 K	300	660	940	1340	1510	1760 以上

表6 浓度系数K的取值

4. 可靠性试验

	>4.21.x		
NO	试 验 项 目	试 验 条 件	供试数(n) 故障数(c)
1	温度周期	+80℃ 10 分钟以上 10 分钟以上 30min 20 个周期	n=11, c=0
2	高温高湿保存	+60°C、90%RH 500 hours	n=11, c=0
3	高温高湿动作	+60℃、90%RH、Vcc=5V、 500小时	n=11, c=0
4	高温保存	+80℃ 500小时	n=11, c=0
5	高温动作	+65℃、Vcc=5V 500小时	n=11, c=0
6	低温保存	-20℃ 500小时	n=11, c=0
7	低温动作	-10℃、Vcc=5V 500小时	n=11, c=0
8	冲击	$1000 m/s^2, 6.0 ms, 3 \text{ times/\pmX,\pmY,\pmZ}$ direction	n= 8, c=0
9	振动	5~55~5Hz / 1 min 2 hours each / X,Y,Z direction, total amplitude 1.5mm	n= 8, c=0

表7 可靠性实验数据

5. 连接器

图5 连接器尺寸图

Revision 1.0 第 9 页

6. 物理尺寸

图4 物理尺寸

单位mm

Revision 1.0 第 10 页