ATTENDANCE QUIZ (WEEK 9)

COLTON GRAINGER (MATH 1300)

Your name (print clearly in capital letters):
This is an ungraded quiz that will count for attendance; it is due by the end of recitation.
Definitions
Let f be a function and A a set of numbers contained in the domain of f . (If you like, you may assume A is an interval of real numbers, like (a,b) or $(-\infty,\infty)$ or $[a,b]$. However, these definitions hold for any set of numbers A in the domain of f .)
1. A point x_{max} in A is a maximum point for f on A if
$f(x_{\text{max}}) \ge f(x)$ for every x in A .
i. The number $f(x_{\text{max}})$ is called the maximum value of f on A . ii. We also say that f "has its maximum value on A at x_{max} ".
2. A particular number y_{above} is a bound for f on A if
$y_{\text{above}} \ge f(x) $ for every x in A .
3. A point x_{local} in A is a local maximum point for f on A if:
There is a positive number $\delta > 0$ such that x_{local} is a maximum point for f on the set
{points in A whose distance to x_{local} is less than δ }.
Short answer
What $part(s)$ of which definition(s) above should be modified to instead define a minimum point and the minimum value for a function f on A ?
Your answer:
List five numbers, in decreasing order, that bound the function $\operatorname{arctan}: \mathbf{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}).$
Your answer:

1

 $Date \colon 2019\text{-}03\text{-}14.$

Suppose the function

$$f(x) := \begin{cases} -x^2 & \text{if } -1 < x < 1\\ 0 & \text{if } x \le -1 \text{ or } x \ge 1 \end{cases}$$

represents force (N) in the positive x-direction on the head of a pendulum when the pendulum is displaced by x (cm) from equilibrium. If there is a local maximum point for f on \mathbf{R} , find it; else, find a local minimum point for f on \mathbf{R} .

Your answer:		

- 4. Suppose f and g are increasing functions from \mathbf{R} to \mathbf{R} . (Recall that a function g is **increasing** on an interval if g(a) < g(b) whenever a and b are two numbers in the interval with a < b.) Which of the following functions is *not* guaranteed to be an increasing function from \mathbf{R} to \mathbf{R} ?
 - (A) f+g
 - (B) $f \cdot g$
 - (C) $f \circ g$
 - (D) All of the above, i.e., none of them is guaranteed to be increasing.
 - (E) None of the above, i.e., they are all guaranteed to be increasing.

References

As usual, question 4 is from Naik [1] and the definitions are from Spivak [2].

- [1] V. Naik, "Math 152 Course Notes," 2012.
- [2] M. Spivak, Calculus, 3rd ed. Publish or Perish, Inc., 1994.