# Работа 3.4.2 Закон Кюри-Вейса

Гаврилин Илья Дмитриевич Б01-101

18 октября 2022 г.

#### 1 Аннотация

В работе изучили температурную зависимость магнитной восприимчивости ферромагнетика (гадолиний) выше точки Кюри. Определили значение температуры парамагнитной точки Кюри.

### 2 Теоретические сведения

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ( $\sim 50$  к  $\Gamma$ ц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером  $\sim 0.5$  мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом.

Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца  $\chi$ , а следовательно, самоиндукция катушки и период колебаний  $\tau$  автогенератора. Для измерения периода используется частотомер. Закон Кюри Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_o^2)}$$

где  $\tau_o$  - период колебаний в отсутствие образца. Измерения проводятся в интервале температур от 12°C до 40°C. С целью экономии времени следует начинать измерения с низких температур.



Рис. 1: Теоретическая зависимость магнитной восприимчивости от температуры

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой); рабочая жидкость постоянно перемешивается.

Величина стабилизируемой температуры задаётся на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, не показанный на рисунке.

Когда температура рабочей жидкости в сосуде приближается к заданной, непрерывный режим работы нагревателя автоматически переходит в импульсный (нагреватель то включается, то выключается) - начинается процесс стабилизации температуры.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла Заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконстантановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится ≤ 0,5°C. Чувствительность термопары K = 24 град /В

## 3 Ход работы

- 1. Подождем охлаждения установки и термостата, дождемся стабилизации показаний частотомера.
- 2. Дожидаясь момента когда разница между Температурой масла и воды станет < 0.5 %. При этом записываем напряжение с учетом знака, для последующей корректировки температуры.

$$T_{\rm действ} = T_{\rm термометр} + K U_{\rm вольтметр}, \, k = 24 \,\, {\rm град/мB}$$

3. Замерим показатели.

| $T, C^0$ | $\Delta U$ , мВ | $T_{ m ofpasua}, C^0$ | $\tau$ , MKC | $\tau^2 - \tau_0^2$ , MKC |
|----------|-----------------|-----------------------|--------------|---------------------------|
| 14.15    | -0.005          | 14.03                 | 8.0136       | 16.4807                   |
| 16.11    | -0.015          | 15.75                 | 7.9553       | 15.5497                   |
| 18.1     | -0.017          | 17.692                | 7.8463       | 13.8273                   |
| 20.1     | -0.017          | 19.692                | 7.6717       | 11.1179                   |
| 22.08    | -0.016          | 21.696                | 7.4618       | 7.9414                    |
| 24.09    | -0.015          | 23.73                 | 7.2824       | 5.2963                    |
| 26.08    | -0.018          | 25.648                | 7.2094       | 4.2384                    |
| 28.09    | -0.017          | 27.682                | 7.1673       | 3.6331                    |
| 30.09    | -0.011          | 29.826                | 7.1401       | 3.2439                    |
| 32.07    | -0.017          | 31.662                | 7.1222       | 2.9886                    |
| 34.07    | -0.017          | 33.662                | 7.1089       | 2.7994                    |
| 36.06    | -0.018          | 35.628                | 7.0994       | 2.6644                    |
| 38.06    | -0.019          | 37.604                | 7.0237       | 1.5953                    |
| 40.04    | -0.017          | 39.632                | 7.0086       | 1.3834                    |

Таблица 1: Экспериментальные данные

- 4. Погрешности: Для погрешности частотомера имеем  $\pm$  единицы последнего разряда, для итогового  $\tau^2 \tau_0^2$  получем погрешность  $\pm 0.0002$  мкс<sup>2</sup>, для температуры получим погрешность в среднем менее < 0.5%, точную укажем на графике.
- 5. Построим зависимость  $\frac{1}{\chi} = f(T)$



Рис. 2: Зависимость  $\frac{1}{\chi} = f(T)$ 

По этой зависимости определили парамагнитную температуру Кюри, она оказалась равна:  $\Theta_p = (16.6 \pm 1.2)~C^o$ .

## 4 Выводы

- 1. Проверили справедливость закона Кюри-Вейса, начиная с некоторой температуры Зависимость становится линейной.
- 2. Нашли парамагнитную температуру Кюри:  $\Theta_p = (16.6 \pm 1.2)~C^o$ , она оказалась сходной с точкой Кюри:  $T_k = 292~K$ .