

AGENDA

- Part I. What?
- Part II. Why?
- Part III. How?
- Part IV. Conclusion

PART I. WHAT?

What financial application areas are of interest to DL community?

ML/DL Use Cases in finance

PROGRAMMATIC TRADING &&DECISION SUPPORT SYSTEMS

— 1.1 Financial / invested programmatic trading

- based on the Trend Investment Methodology. They believe that 'Whatever has happened before will happen again. Whatever has been done before will be done again.' They only care about prices and trends, not intrinsic values and current market valuations.
- 'There's nothing new under the sun'. This is mainly an investment / trading methodology based on trading psychology and analysis of trends.

— 1.2 Decision Support Systems

- based on the Value Investment Methodology. They believe that fundamental analysis can help to identify the value opportunities of stock in. They do not care about short-term prices and trends, and focus on the intrinsic value of the company, but buying and selling will also consider the current market valuation and other factors, the safety margin is important. (Warren Buffett)
- It does not directly operate transactions, but provides support for transaction decisions.

PART II. WHY?

In the field of machine learning(ML), Numerous studies have been published resulting in various models. And deep learning (DL) has recently begun to receive Widely concerned, this is mainly due to its better performance than the classic model. [2] "Deep Learning for Financial"

Applications: A Survey" (source: https://arxiv.org/abs/2002.05786):

Why deep learning

How do data science techniques scale with amount of data?

PART II.WHY?

The final output of a trading strategy should answer the following questions

DIRECTION:

Identify is going rise of going down (or identify if an asset is cheap/expensive/fair value)

PRICE RANGE: Which price (or range) to make this trade at

ENTRY TRADE:

Identify the timing of buy trade(or if an asset is cheap/expensive, should you buy/sell it)

:YTITNAUC

Amount of capital to trade(example shares of a stock or percent of funding)

EXIT TRADE:

Identify the timing of sell trade, should you exit that position)

ML or DL can be used to answer each of these questions---- both for Programmatic Trading and Decision Support Systems.

PART II: WHY?

Data is the life of ML/DL

In general, the more data you feed, the more accurate are the results in ML/DL.

Coincidentally, there are huge datasets in the financial services industry, such as petabytes of data on transactions, customers, money transfers, news, reports.

Artificial Intelligence

Machine Learning

Deep Learning

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data.

A subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning

Any technique that enables computers to mimic human intelligence, using logic, if-then rules, machine learning (including deep learning)

PART III: HOW?

Our focus was on DL implementations for financial applications

Main:

From Survey

"Deep Learning for Financial Applications: A Survey"

I will introduce other studies of the applications of ML/DL in the financial / investment field on similar topics, such as:

- > <u>Application of Deep Learning to Algorithmic Trading</u>
- ➤ <u>Stock market index prediction using artificial</u> neural network
- > Use of emerging technologies for investment in programmatic trading
- > Machine Learning for day-trading
- > <u>Deep Learning-trading-hedge-funds</u>
- ➤ <u>The application of deep learning in foreign</u> exchange trading

PART III. HOW?

How to use DL in Finance / Investment?

PART III:HOW?

The basis of price prediction is <u>probability theory</u> and <u>statistics</u>, one of the most important assumptions is the <u>Bayers</u>' theorem.

Bayers' theorem

PART III:HOW?

The proposed deep learning (DL) models that the source papers have used for their research.

- Convolutional neural network(CNN)
- Recurrent Neural Networks (RNN)
- Long Short Term Memory (LSTM)
- Deep Belief Networks (DBNs)

CONVOLUTIONAL NEURAL NETWORK(CNN)

Typical CNN architecture

RECURRENT NEURAL NETWORKS (RNN)

In contrast to feed-forward neural networks, in recurrent neural networks, data can flow in any direction. They can learn the time series dependency well.

LONG SHORTTERM MEMORY (LSTM)

LSTM are also good at learning from sequential data, i.e. time series.

DEEP BELIEF NETWORKS (DBNS)

PART III. HOW?

Application domains

- —Algorithmic trading is defined as buying and selling decisions made only by algorithms. The most important role of algorithmic trading can overcome the aversion of human nature to loss.
- —Risk Assessment: Another study area that has been of interest to DL researchers is Risk Assessment which identifies the "riskiness" of any given asset, firm, person, product, bank, etc. Such as financial distress prediction to avoid choose the problem companies. This is part of **Decision Support Systems.**
- Portfolio Management is the process of choosing various assets within the portfolio for a predetermined period. This could be part of Financial / Invested Programmatic Trading or Decision Support Systems.
- Other Studies: Financial Sentiment Analysis and Behavioral Finance, Financial Text Mining, Theoretical or Conceptual Studies... This could be part of any of Financial / Invested Programmatic Trading or Decision Support Systems.

-ALGORITHMIC TRADING

Table 1: Algo-trading Applications Embedded with Time Series Forecasting Models

Art.	Data Set	Period	Feature Set	Method	Performance Cri- teria	Environment
[35]	GarantiBank in BIST, Turkey	2016	OCHLV, Spread, Volatility, Turnover, etc.	PLR, Graves LSTM	MSE, RMSE, MAE, RSE, Correlation R- square	Spark
[36]	CSI300, Nifty50, HSI, Nikkei 225, S&P500, DJIA	2010-2016	OCHLV, Technical Indicators	WT, Stacked au- toencoders, LSTM	MAPE, Correlation coefficient, THEIL- U	-
[37]	Chinese Stocks	2007-2017	OCHLV	CNN + LSTM	Annualized Return, Mxm Retracement	Python
[38]	50 stocks from NYSE	2007-2016	Price data	SFM	MSE	
[39]	The LOB of 5 stocks of Finnish Stock Market	2010	FI-2010 dataset: bid/ask and volume	WMTR, MDA	Accuracy, Precision, Recall, F1-Score	-
[40]	300 stocks from SZSE, Commodity	2014-2015	Price data	FDDR, DNN+RL	Profit, return, SR, profit-loss curves	Keras
[41]	S&P500 Index	1989-2005	Price data, Volume	LSTM	Return, STD, SR, Accuracy	Python, TensorFlow, Keras, R, H2O
[42]	Stock of National Bank of Greece (ETE).	2009-2014	FTSE100, DJIA, GDAX, NIKKE1225, EUR/USD, Gold	GASVR, LSTM	Return, volatility, SR, Accuracy	Tensorflow
[43]	Chinese stock-IF-IH-IC contract	2016-2017	Decisions for price change	MODRL+LSTM	Profit and loss, SR	-
[44]	Singapore Stock Market Index	2010-2017	OCHL of last 10 days of Index	DNN	RMSE, MAPE, Profit, SR	-
[45]	GBP/USD	2017	Price data	Reinforcement Learning + LSTM + NES	SR, downside de- viation ratio, total profit	Python, Keras, Ten- sorflow
[46]	Commodity, FX future, ETF	1991-2014	Price Data	DNN	SR, capability ratio, return	C++. Python
[47]	USD/GBP, S&P500, FTSE100, oil, gold	2016	Price data	AE + CNN	SR, % volatility, avg return/trans, rate of return	H2O
[48]	Bitcoin, Dash, Ripple, Monero, Litecoin, Doge- coin, Nxt, Namecoin	2014-2017	MA, BOLL, the CRIX returns, Eu- ribor interest rates, OCHLV	LSTM, RNN, MLP	Accuracy, F1- measure	Python, Ten- sorflow
[49]	S&P500, KOSPI, HSI, and EuroStoxx50	1987-2017	200-days stock price	Deep Q-Learning, DNN	Total profit, Corre- lation	-
[50]	Stocks in the S&P500	1990-2015	Price data	DNN, GBT, RF	Mean return, MDD, Calmar ratio	H2O
[51]	Fundamental and Tech- nical Data, Economic Data	-	Fundamental , tech- nical and market in- formation	CNN	-	-

Table 2: Classification (Buy-sell Signal, or Trend Detection) Based Algo-trading Models

Art.	Data Set	Period	Feature Set	Method	Performance Criteria	Environment
[52]	Stocks in Dow30	1997-2017	RSI	DMLP with ge- netic algorithm	Annualized return	Spark MLlib, Java
[53]	SPY ETF, 10 stocks from S&P500	2014-2016	Price data	FFNN	Cumulative gain	MatConvNet, Matlab
[54]	Dow30 stocks	2012-2016	Close data and several technical indicators	LSTM	Accuracy	Python, Keras, Tensorflow, TALIB
[55]	High-frequency record of all orders	2014-2017	Price data, record of all orders, trans- actions	LSTM	Accuracy	-
[56]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price and volume data in LOB	LSTM	Precision, Re- call, F1-score, Cohen's k	-
[57]	17 ETFs	2000-2016	Price data, techni- cal indicators	CNN	Accuracy, MSE, Profit, AUROC	Keras, Tensorflow
[58]	Stocks in Dow30 and 9 Top Volume ETFs	1997-2017	Price data, techni- cal indicators	CNN with feature imaging	Recall, precision, F1-score, annual- ized return	Python, Keras Tensorflow, Java
[59]	FTSE100	2000-2017	Price data	CAE	TR, SR, MDD, mean return	-
[60]	Nasdaq Nordic (Kesko Oyj, Outokumpu Oyj, Sampo, Rautaruukki, Wartsila Oyj)	2010	Price, Volume data, 10 orders of the LOB	CNN	Precision, Re- call, F1-score, Cohen's k	Theano, Scikit learn, Python
[61]	Borsa Istanbul 100 Stocks	2011-2015	75 technical indi- cators and OCHLV	CNN	Accuracy	Keras
[62]	ETFs and Dow30	1997-2007	Price data	CNN with feature imaging	Annualized return	Keras, Tensorflow
[63]	8 experimental assets from bond/derivative market	-	Asset prices data	RL, DNN, Genetic Algorithm	Learning and genetic algorithm error	-
[64]	10 stocks from S&P500	-	Stock Prices	TDNN, RNN, PNN	Missed oppor- tunities, false alarms ratio	-
[65]	London Stock Exchange	2007-2008	Limit order book state, trades, buy/sell orders, order deletions	CNN	Accuracy, kappa	Caffe
[66]	Cryptocurrencies, Bit- coin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-

Here some cases used text mining to extract information from the tweets and financial news and used LSTM, RNN, GRU for the generation of the trading signals. This could be part of **Decision** Support Systems too.

—RISK ASSESSMENT

Table 4: Credit Scoring or Classification Studies

Art.	Data Set	Period	Feature Set	Method	Performance Criteria	Env.
[77]	The XR 14 CDS con- tracts	2016	Recovery rate, spreads, sector and region	DBN+RBM	AUROC, FN, FP, Accuracy	WEKA
[78]	German, Japanese credit datasets	-	Personal financial variables	SVM + DBN	Weighted- accuracy, TP, TN	-
[79]	Credit data from Kaggle	-	Personal financial variables	DNN	Accuracy, TP, TN, G-mean	-
[80]	Australian, German credit data	-	Personal financial variables	GP + AE as Boosted DNN	FP	Python, Scikit- learn
[81]	German, Australian credit dataset	-	Personal financial variables	DCNN, MLP	Accuracy, False/Missed alarm	-
[82]	Consumer credit data from Chinese finance company	-	Relief algorithm chose the 50 most important features	CNN + Relief	AUROC, K-s statistic, Accu- racy	Keras
[83]	Credit approval dataset by UCI Machine Learn- ing repo	-	UCI credit ap- proval dataset	Rectifier, Tanh, Maxout DL	-	AWS EC2, H2O, R

— PORTFOLIO MANAGEMENT

Table 7: Portfolio Management Studies

Art.	Data Set	Period	Feature Set	Method	Performance Criteria	Env.
[66]	Cryptocurrencies, Bit- coin	2014-2017	Price data	CNN, RNN, LSTM	Accumulative portfolio value, MDD, SR	-
[127]	Stocks from NYSE, AMEX, NASDAQ	1965-2009	Price data	Autoencoder + RBM	Accuracy, confu- sion matrix	-
[128]	20 stocks from S&P500	2012-2015	Technical indica- tors	MLP	Accuracy	Python, Scikit Learn, Keras, Theano
[129]	Chinese stock data	2012-2013	Technical, funda- mental data	Logistic Regres- sion, RF, DNN	AUC, accuracy, precision, recall, f1, tpr, fpr	Keras, Tensorflow, Python, Scikit learn
[130]	Top 5 companies in S&P500	-	Price data and Fi- nancial ratios	LSTM, Auto- encoding, Smart indexing	CAGR	-
[131]	IBB biotechnology in- dex, stocks	2012-2016	Price data	Auto-encoding, Calibrating, Vali- dating, Verifying	Returns	-
[132]	Taiwans stock market	-	Price data	Elman RNN	MSE, return	-
[133]	FOREX (EUR/USD, etc), Gold	2013	Price data	Evolino RNN	Return	Python
[134]	Stocks in NYSE, AMEX, NASDAQ, TAQ intraday trade	1993-2017	Price, 15 firm characteristics	LSTM+MLP	Monthly return, SR	Python, Keras, Tensorflow in AWS
[135]	S&P500	1985-2006	monthly and daily log-returns	DBN+MLP	Validation, Test Error	Theano, Python, Matlab
[136]	10 stocks in S&P500	1997-2016	OCHLV, Price data	RNN, LSTM, GRU	Accuracy, Monthly return	Keras, Tensorflow
[137]	Analyst reports on the TSE and Osaka Ex- change	2016-2018	Text	LSTM, CNN, Bi- LSTM	Accuracy, R ²	R, Python, McCab
[138]	Stocks from Chi- nese/American stock market	2015-2018	OCHLV, Funda- mental data	DDPG, PPO	SR, MDD	-
[139]	Hedge fund monthly re- turn data	1996-2015	Return, SR, STD, Skewness, Kurto- sis, Omega ratio, Fund alpha	DNN	Sharpe ratio, Annual return, Cum. return	-
[140]	12 most-volumed cryp- tocurrency	2015-2016	Price data	CNN + RL	SR, portfolio value, MDD	

Asset Pricing and Derivatives Market (options, futures, forward contracts) could be a part of Portfolio Management.

Table 8: Asset Pricing and Derivatives Market Studies

Art.	Der.Type	Data Set	Period	Feature Set	Method	Performance Criteria	Env.
[137]	Stock ex- change	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi- LSTM	Accuracy, R ²	R, Python, McCab
[142]	Options	Simulated a range of call option prices	-	Price data, option strike/maturity, dividend/risk free rates, volatility	DNN	RMSE, the av- erage percentage pricing error	Tensorflov
[143]	Futures, Options	TAIEX Options	2017	OCHLV, fundamen- tal analysis, option price	MLP, MLP with Black scholes	RMSE, MAE, MAPE	-
[144]	Equity re- turns	Returns in NYSE, AMEX, NASDAQ	1975-2017	57 firm characteris- tics	Fama-French n-factor model DL	R ² ,RMSE	Tensorflov

Portfolio selection and smart indexing were the main focuses of and using AE and LSTM networks.[2]

— CRYPTOCURRENCY AND BLOCK CHAIN STUDIES:

As an early participant in the Cryptocurrency market, in my opinion, this market is very immature, the volatility is extremely large and the manipulation behavior is very serious. Participating in this transaction is actually no different from a casino.

I could suggest that only use a very small proportion of funds (such as 3% to 5%) to participate, perhaps this market may reach a very high price, or it may return to zero, it is not worth using deep learning algorithms to research.

In this part, my opinion is far different from the opinion of the *Survey*.

— OTHER STUDIES:

- Financial Sentiment Analysis and Behavioral Finance
- Financial Text Mining
- Theoretical or Conceptual Studies

	Table 10: Financi	al Sentiment	Studies c	oupled with	Text	Mining	for Forecasting	g
--	-------------------	--------------	-----------	-------------	------	--------	-----------------	---

Art.	Data Set	Period	Feature Set	Method	Performance Criteria	Env.
[137]	Analyst reports on the TSE and Osaka Exchange	2016-2018	Text	LSTM, CNN, Bi-LSTM	Accuracy, R ²	R, Python, McCab
[150]	Sina Weibo, Stock market records	2012-2015	Technical indica- tors, sentences	DRSE	F1-score, pre- cision, recall, accuracy, AU- ROC	Python
[151]	News from Reuters and Bloomberg for S&P500 stocks	2006-2015	Financial news, price data	DeepClue	Accuracy	Dynet soft- ware
[152]	News from Reuters and Bloomberg, Historical stock security data	2006-2013	News, price data	DNN	Accuracy	-
[153]	SCI prices	2008-2015	OCHL of change rate, price	Emotional Analysis + LSTM	MSE	-
[154]	SCI prices	2013-2016	Text data and Price data	LSTM	Accuracy, F1- Measure	Python, Keras
[155]	Stocks of Google, Mi- crosoft and Apple	2016-2017	Twitter sentiment and stock prices	RNN	-	Spark, Flume,Twitter API,
[156]	30 DJIA stocks, S&P500, DJI, news from Reuters	2002-2016	Price data and fea- tures from news ar- ticles	LSTM, NN, CNN and word2vec	Accuracy	VADER

Table 11: Text Mining Studies without Sentiment Analysis for Forecasting

Art.	Data Set	Period	Feature Set	Method	Performance Criteria	Env.
[69]	Energy-Sector/ Company- Centric Tweets in S&P500	2015-2016	Text and Price data		Return, SR, pre- cision, recall, ac- curacy	Python, Tweepy AP
[165]	News from Reuters, Bloomberg	2006-2013	Financial news, price data	Bi-GRU	Accuracy	Python, Keras
[166]	News from Sina.com, ACE2005 Chinese corpus	2012-2016	A set of news text	Their unique algorithm	Precision, Recall, F1-score	-
[167]	CDAX stock market data	2010-2013	Financial news, stock market data	LSTM	MSE, RMSE, MAE, Accuracy, AUC	TensorFlow Theano, Python, Scikit-Learn
[168]	Apple, Airbus, Amazon news from Reuters, Bloomberg, S&P500 stock prices	2006-2013	Price data, news, technical indica- tors	TGRU, stock2vec	Accuracy, precision, AUROC	Keras, Python
[169]	S&P500 Index, 15 stocks in S&P500	2006-2013	News from Reuters and Bloomberg	CNN	Accuracy, MCC	-
[170]	S&P500 index news from Reuters	2006-2013	Financial news titles, Technical indicators	SI-RCNN (LSTM + CNN)	Accuracy	-
[171]	10 stocks in Nikkei 225 and news	2001-2008	Textual informa- tion and Stock prices	Paragraph Vector + LSTM	Profit	-
[172]	NIFTY50 Index, NIFTY Bank/Auto/IT/Energy In- dex, News	2013-2017	Index data, news	LSTM	MCC, Accuracy	-
[173]	Price data, index data, news, social media data	2015	Price data, news from articles and social media	Coupled ma- trix and ten- sor	Accuracy, MCC	Jieba
[174]	HS300	2015-2017	Social media news, price data	RNN-Boost with LDA	Accuracy, MAE, MAPE, RMSE	Python, Scikit-learn
[175]	News and Chinese stock data	2014-2017	Selected words in a news	HAN	Accuracy, An- nual return	-
[176]	News, stock prices from Hong Kong Stock Ex- change	2001	Price data and TF-IDF from news	ELM, DLR, PCA, BELM, KELM, NN	Accuracy	Matlab

Table 15: Other Financial Applications

Art.	Subtopic	Data Set	Period	Feature Set	Method	Performance Criteria	Env.
[49]	Improving trad- ing decisions	S&P500, KOSPI, HSI, and EuroStoxx50	1987-2017	200-days stock price	Deep Q- Learning and DNN	Total profit, Correlation	-
193]	Identifying Top Sellers In Underground Economy	Forums data	2004-2013	Sentences and key- words	Recursive neural tensor networks	Precision, recall, f- measure	-
[195]	Predicting Social Ins. Pay- ment Behavior	Taiwan's National Pen- sion Insurance	2008-2014	Insured's id, area- code, gender, etc.	RNN	Accuracy, to- tal error	Python
199]	Speedup	45 CME listed commod- ity and FX futures	1991-2014	Price data	DNN	-	-

-- SUMMARY: MODELS

RNN, DMLP and CNN on the remaining models, because these models are the most commonly used models in general DL implementation

In RNN selection, most models actually belong to LSTM, which is very popular in time series prediction or regression problems. Also It is often used in algorithmic trading. Over 70% of RNN papers include LSTM model.

The hybrid model is preferred to go beyond the native model for better achievements. Many researchers configure topology and network parameters to achieve higher performance.

PART III. HOW?

How to use DL in Finance / Investment?

Explore innovation opportunities

- Develop trading strategy;
- Compare them;
- Performance show;

STRATEGIES

* How to develop a trading strategy?

There are Various difficulties

- Scaling data to train the deep network.
- Deciding on appropriate network architecture.
- Tuning the hyperparameters of the network and optimization algorithm.
- Dozens hyperparameters that affect the model.
- Cost function.
- Market data tends to be nonstationary

HOW DO YOU COMPARE DIFFERENT SYSTEMS?

Strategies comparison

You can read in detail about them here.

Some back-tester provides you with the following metrics to quantify your system's performance. These set of metrics are not exhaustive, but they're a good place to start:

- Total Return
- Annualized Return
- Annualized Volatility
- Sharpe Ratio
- Sortino Ratio
- Maximum Drawdown
- % Profitability
- Profit Factor

PERFORMANCE OF DL IN FINANCE:

PERFORMANCE OF DL IN FINANCE:

Performance Report

	All	Long	Short
Net P&L	2,830.20	2,230.50	599.70
Gross Profit	11,093.50	7,011.20	4,082.30
Gross Loss	-8,263.30	-4,780.70	-3,482.60
Profit Factor	1.34	1.47	1.17
Total # of Trades	771.00	459.00	312.00
Number Winning Trades	425.00	252.00	173.00
Number Losing Trades	346.00	207.00	139.00
Percent Profitable	0.55	0.55	0.55
Avg Trade Win Loss	3.67	4.86	1.92
Avg Winning Trade	26.10	27.82	23.60
Avg Losing Trade	-23.88	-23.10	-25.05
Ratio Avg Win Loss	1.09	1.20	0.94
Largest Winning Trade	275.50	275.50	165.30
Largest Losing Trade	-156.10	-156.10	-151.10
Opened P&L	0.00	0.00	0.00

Fig. 6: Cumulative daily return of the Buy-and-Hold (blue line), the LSTM-based (green), and the LWR-based (red line) strategies.

It seems very exciting from the above introduction.

-- BUT

Sometimes, DL network was prone to overfitting in short-time,

meaning it learned patterns in the train data very well but failed to make any meaningful predictions on test data. Accuracy was as good as a random guess.

DL network was prone to overfitting in predicting the next day/week price

-- AND... YOU NEVER KNOWN!

Over the years, the <u>Black Swan</u> incident has occurred from time to time.

None of the above algorithms and models can handle such small probability events. If the position is not properly controlled, it will bring disastrous consequences, but if you keep the position at a low level, it is likely that you will not be able to obtain sufficient returns in the long run.

Sentiment

 The existence of irrational traders makes price bubbles inevitable, and sometimes causes various tramples due to excessive panic in the market.

Bankrupt

 "In the capital market, anything bizarre can happen. All you have to do is handle your own affairs, and strive to survive when the most bizarre events happen.--"The time the market remains irrational may continue until you go bankrupt."

Epidemic

- Three times a week Fuse and Negative oil prices.
- In March and April 2020, we witnessed an extreme market that has never appeared in the history of investment, even Warren Buffett, who is already 90 years old never saw that.

-- PART IV: CONCLUSION

Deep Learning for Financial Applications:

- Financial text mining, Algo-trading, risk assessments, sentiment analysis, portfolio management and fraud detection are the most studied areas of finance research.
- -Behavioral finance and derivatives market have promising potentials for research.
- RNN based models (in particular LSTM), CNN and DMLP have been used extensively in implementations. LSTM is more successful and preferred in timeseries forecasting, while DMLP and CNN are better suited to applications requiring classification.

-- PART IV: CONCLUSION

Some important principles

- ◆ Apart from god and scammers, no one can predict the short-term trend of the stock, even with the help of high-tech technologies such as machine learning and deep learning.
- ◆ A crucial issue in investment activities: **Certainty.**The lower the certainty, the less money can be used to participate. Once this principle is violated, it may be eliminated in a small probability event.
- ◆ Machine learning and deep learning algorithms sometimes treat short-term historical data as random walks or white noise, but they are indeed important and sometimes produce terrible results. Fundamental analysis, Twitter analysis, news analysis, local / global economic analysis-things like this have the potential to improve forecasts.
- Stock market is a very complex system, and historical data alone is not enough to explain its behavior.

ALWAYS BE CAREFUL

Resources: <u>the story of long-term capital Management company</u>

CONCLUSION

After all, in the long run, the stock market will always be slightly higher than inflation.

REFERENCES:

- [1] Value investing, https://en.wikipedia.org/wiki/Value_investing
- [2] Deep Learning for Financial Applications: A Survey, https://arxiv.org/abs/2002.05786
- [3] How is deep learning used in finance? https://www.quora.com/How-is-deep-learning-used-in-finance
- [4] Application of Machine Learning Techniques to Trading, https://medium.com/auquan/https-medium-com-auquan-machine-learning-techniques-trading-b7120cee4f05
- [5] Application of Deep Learning to Algorithmic Trading, http://cs229.stanford.edu/proj2017/final-reports/5241098.pdf
- [6] Machine learning in finance: Why what & how, https://towardsdatascience.com/machine-learning-in-finance-why-what-how-d524a2357b56
- [7] Create Your Own Trading Strategies, https://www.investopedia.com/articles/trading/10/create-trading-strategies.asp
- [8] Machine Learning for Day Trading, <u>https://towardsdatascience.com/machine-learning-for-day-trading-27c08274df54</u>
- [9] Introduction to Deep Learning Trading in Hedge Funds,
- https://www.toptal.com/deep-learning/deep-learning-trading-hedge-funds
- [10] Deep Reinforcement Learning for Foreign Exchange Trading, https://arxiv.org/pdf/1908.08036.pdf
- [11] Black swan theory, <u>https://en.wikipedia.org/wiki/Black_swan_theory</u>
- [12] Long Term Capital Management, https://en.wikipedia.org/wiki/Long-Term_Capital_Management

THANK YOU

Jacky Chow

SJSU MSSE-Data Science

jie.zou@sjsu.edu