FMI, Info, Anul I Logică matematică și computațională

Seminar 12

(S12.1) Fie \mathcal{L} un limbaj de ordinul I. Să se arate că:

(i) pentru orice formule φ , ψ și orice variabilă x,

$$\vDash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi);$$

(ii) pentru orice formulă φ și orice variabilă x cu $x \notin Var(\varphi)$,

$$\vDash \varphi \rightarrow \forall x \varphi;$$

(iii) pentru orice variabilă x și orice termen t cu $x \notin Var(t)$,

$$\vDash \exists x (x = t).$$

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$ o evaluare.

- (i) Vrem să arătăm că $\mathcal{A} \vDash (\forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi))[e]$. Pentru aceasta, presupunem că $\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e]$ deci pentru orice $a \in A$, vom avea că are loc $\mathcal{A} \vDash (\varphi \to \psi)[e_{x\leftarrow a}]$ (*) şi vrem să arătăm că $\mathcal{A} \vDash (\forall x\varphi \to \forall x\psi)[e]$. Presupunem prin absurd că nu e aşa atunci avem că $\mathcal{A} \vDash (\forall x\varphi)[e]$ şi $\mathcal{A} \nvDash (\forall x\psi)[e]$. Deci pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e_{x\leftarrow a}]$ (**) şi există un $b \in A$ cu $\mathcal{A} \nvDash \psi[e_{x\leftarrow b}]$ (***). Luând în (*) şi (**) a := b, obţinem că $\mathcal{A} \vDash (\varphi \to \psi)[e_{x\leftarrow b}]$ şi $\mathcal{A} \vDash \varphi[e_{x\leftarrow b}]$, de unde avem că $\mathcal{A} \vDash \psi[e_{x\leftarrow b}]$, ceea ce contrazice (***).
- (ii) Vrem să arătăm că $\mathcal{A} \vDash (\varphi \to \forall x \varphi)[e]$. Pentru aceasta, presupunem că $\mathcal{A} \vDash \varphi[e]$ şi vrem să arătăm $\mathcal{A} \vDash (\forall x \varphi)[e]$, i.e. că pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$. Fie $a \in A$. Clar $FV(\varphi) \subseteq Var(\varphi)$. Cum $x \notin Var(\varphi)$, $x \notin FV(\varphi)$. Avem că e şi $e_{x \leftarrow a}$ diferă cel mult pe "poziția" x, deci restricționate la $FV(\varphi)$ ele devin egale. Aplicând Propoziția 3.27, rezultă că avem într-adevăr $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$.

(iii) Trebuie arătat, folosind (S10.1).(ii), că există un $b \in A$ astfel încât $\mathcal{A} \models (x = t)[e_{x \leftarrow b}]$, i.e. că există un $b \in A$ astfel încât $b = t^{\mathcal{A}}(e_{x \leftarrow b})$. Cum $x \notin Var(t)$, aplicând Propoziția 3.26, avem $t^{\mathcal{A}}(e_{x \leftarrow b}) = t^{\mathcal{A}}(e)$. Deci trebuie arătat doar că există un $b \in A$ astfel încât $b = t^{\mathcal{A}}(e)$. Dar acest lucru e simplu, doar luăm $b := t^{\mathcal{A}}(e)$.

(S12.2) Dacă \mathcal{L} este un limbaj cu un singur simbol de relație de aritate 2, simbol notat cu \sim , să se scrie un enunț φ ce spune că relația asociată simbolului este o relație de echivalență cu proprietatea că fiecare clasă a sa are exact două elemente. Să se determine mulțimea acelor $n \in \mathbb{N}^*$ cu proprietatea că există o \mathcal{L} -structură cu n elemente care satisface φ .

Demonstraţie:

Enunțul φ va fi conjuncția celor trei proprietăți ale relațiilor de echivalență, împreună cu:

$$\forall x \exists y (x \sim y \land \neg (x = y) \land \forall z (z \sim x \rightarrow (z = x \lor z = y))).$$

Este imediat faptul că o mulțime finită poate fi înzestrată cu o asemenea relație dacă și numai dacă are un număr par de elemente. Așadar, mulțimea cerută este mulțimea numerelor naturale nenule pare. \Box

Fixăm acum \mathcal{L} un limbaj de ordinul întâi care conține

- două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- \bullet un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

(S12.3) Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

- (i) $\forall x (f(x) = c) \land \neg \forall z (g(y, z) = d);$
- (ii) $\forall y (\forall x P(x, y) \rightarrow \exists z Q(x, z));$
- (iii) $\exists x \forall y P(x,y) \lor \neg \exists y (S(y) \to \forall z R(z));$
- (iv) $\exists z (\exists x Q(x, z) \lor \exists x R(x)) \to \neg (\neg \exists x R(x) \land \forall x \exists z Q(z, x)).$

Demonstraţie:

(i)
$$\forall x(f(x)=c) \land \neg \forall z(g(y,z)=d) \quad \exists \forall x(f(x)=c) \land \exists z \neg (g(y,z)=d) \\ \exists \forall x \exists z(f(x)=c \land \neg (g(y,z)=d)). \end{aligned}$$
 (ii)
$$\forall y(\forall x P(x,y) \rightarrow \exists z Q(x,z)) \quad \exists \forall y \exists z(\forall x P(x,y) \rightarrow Q(x,z)) \\ \exists \forall y \exists z(\forall u P(u,y) \rightarrow Q(x,z)) \\ \exists \forall y \exists z \exists u(P(u,y) \rightarrow Q(x,z)). \end{aligned}$$
 (iii)
$$\exists x \forall y P(x,y) \lor \neg \exists y (S(y) \rightarrow \forall z R(z)) \quad \exists x (\forall y P(x,y) \lor \neg \exists y \forall z (S(y) \rightarrow R(z))) \\ \exists x (\forall y P(x,y) \lor \forall y \exists z \neg (S(y) \rightarrow R(z))) \\ \exists x (\forall u P(x,u) \lor \forall y \exists z \neg (S(y) \rightarrow R(z))) \\ \exists x (\forall u P(x,u) \lor \forall y \exists z \neg (S(y) \rightarrow R(z))) \\ \exists x \forall u \forall y \exists z (P(x,u) \lor \neg (S(y) \rightarrow R(z))). \end{aligned}$$
 (iv)
$$\exists z (\exists x Q(x,z) \lor \exists x R(x)) \rightarrow \neg (\neg \exists x R(x) \land \forall x \exists z Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow (\neg \neg \exists x R(x) \lor \neg \forall x \exists z Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow (\exists x R(x) \lor \exists x \forall z \neg Q(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x \exists x (Q(x,z) \lor R(x)) \rightarrow \exists x \forall x (R(x) \lor \neg Z(z,x)) \quad \exists x (R(x) \lor \neg Z(z$$

(S12.4) Să se găsească o formă normală Skolem pentru enunțul φ în formă normală prenex, unde φ este, pe rând:

 $\forall z \forall x \exists u \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u))).$

- (i) $\forall x \exists z (f(x) = c \land \neg (g(x, z) = d));$
- (ii) $\forall y \exists z \exists u (P(u, y) \rightarrow Q(y, z));$
- (iii) $\exists x \forall u \forall y \exists z (P(x, u) \lor \neg (S(y) \to R(z)));$
- (iv) $\forall z \forall x \exists u \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u))).$

Demonstrație:

- (i) Avem $\varphi^1 = \forall x (f(x) = c \land \neg (g(x, z) = d)_z(h(x)) = \forall x (f(x) = c \land \neg (g(x, h(x)) = d),$ unde h este un nou simbol de operație unară. Cum φ^1 este o formulă universală avem $\varphi^{Sk} = \varphi^1$.
- (ii) Avem $\varphi^1 = \forall y \exists u (P(u,y) \to Q(y,z))_z(p(y)) = \forall y \exists u (P(u,y) \to Q(y,p(y)))$, unde p este un nou simbol de operație unară, și $\varphi^2 = \forall y (P(u,y) \to Q(y,p(y)))_u(j(y)) = \forall y (P(j(y),y) \to Q(y,p(y)))$, unde j este un nou simbol de operație unară. Cum φ^2 este o formulă universală avem $\varphi^{Sk} = \varphi^2$.
- (iii) Avem $\varphi^1 = \forall u \forall y \exists z (P(x,u) \vee \neg (S(y) \to R(z)))_x(m) = \forall u \forall y \exists z (P(m,u) \vee \neg (S(y) \to R(z)))$, unde m este un nou simbol de constantă, și $\varphi^2 = \forall u \forall y (P(m,u) \vee \neg (S(y) \to R(z)))_z(k(u,y)) = \forall u \forall y (P(m,u) \vee \neg (S(y) \to R(k(u,y))))$, unde k este un nou simbol de operație binară. Cum φ^2 este o formulă universală avem $\varphi^{Sk} = \varphi^2$.
- (iv) Avem $\varphi^1 = \forall z \forall x \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u)))_u(n(z,x)) = \forall z \forall x \forall v ((Q(x,z) \lor R(x)) \to (R(n(z,x)) \lor \neg Q(v,n(z,x))))$, unde n este un nou simbol de operație binară. Cum φ^1 este o formulă universală avem $\varphi^{Sk} = \varphi^1$.