PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-029503

(43) Date of publication of application: 04.02.1997

(51)Int.Cl.

1/00 B23B B23B 5/08 B23B 25/00 B23Q 11/00 G03G 15/10

(21)Application number : **07-205170**

(71)Applicant : CANON INC

(22)Date of filing:

19.07.1995

(72)Inventor: YOKOMATSU TAKAO

(54) METHOD AND DEVICE FOR PROCESSING LONG OBJECT

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent chatter vibration when a long object is processed.

SOLUTION: Both end of an object to be processed W1 are held by work chucks 10 and 11 and outer diameter of the object to be processed W1 is cut by a cutting tool 5 turned by rotation of a main shaft 4. Adjacent portion of a processing point of the object to be processed W1 is held between a pair of ball bearings 22 coupled with an overlapping block 21 of an overlapping unit 20 and the overlapping block 21 is resiliently supported by a coil spring 23a, whereby resonant frequency of the object to be processed W1 is reduced.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-29503

(43)公開日 平成9年(1997)2月4日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ			技術表示箇所	
B 2 3 B	1/00			B23B	1/00		Z	
	5/08				5/08			
	25/00			25/00		Z		
B23Q 1	1/00			B 2 3 Q	11/00 A			
G03G 1	15/10	112	7820-2C	G03G	15/10	112		
				水箭查審	末龍未 5	請求項の数8	FD (全 7 頁)	
(21)出願番号		特願平7-205170		(71)出願人	(71)出願人 000001007			
(00) (1) EE P						ン株式会社		
(22)出願日		平成7年(1995)7月19日		(TO) The win of		大田区下丸子3门	丁目30番2号	
			.*	(72)発明者				
						大田区 卜丸子 3 7 式会社内	「目30番2号 キヤ	
				(74)代理人		阪本 善朗		
				1				

(54) 【発明の名称】 長尺物の加工方法および加工装置

(57)【要約】

【目的】 長尺物を加工する時のビビリ振動を防ぐ。

【構成】 工作物W1 の両端をワークチャック10、1 1によって保持し、主軸4の回転によって旋回するバイト5によって工作物W1 の外径切削を行なう。工作物W1 の加工点の近傍を、重りユニット20の重りブロック21に結合された一対のボールベアリング22の間に挟持し、重りブロック21をコイルバネ23aによって弾力的に支持することで、工作物W1 の共振周波数を低下させる。

20

【特許請求の範囲】

【請求項1】 一対の保持手段によって工作物を保持し、これを、両保持手段の間に配設された加工手段によって加工する工程を有し、重りに結合された挟持手段によって前記工作物を挟持するとともに前記重りを弾力的に支持することで、前記工作物の共振周波数を所定の値に低減した状態で加工することを特徴とする長尺物の加工方法。

【請求項2】 工作物の内部に防振具を充填することを 特徴とする請求項1記載の長尺物の加工方法。

【請求項3】 工作物が長尺の円筒体であることを特徴とする請求項1または2記載の長尺物の加工方法。

【請求項4】 一対の保持手段と、両者の間に配設された加工手段と、前記一対の保持手段によって保持された工作物を挟持するための挟持手段と、該挟持手段に結合された重りと、該重りを弾力的に支持する弾性支持手段を有する加工装置。

【請求項5】 挟持手段が、工作物の送り方向と直交する軸のまわりに回転自在である少なくとも1個の回転部材を有することを特徴とする請求項4記載の加工装置。

【請求項6】 加工手段が、工作物のまわりを旋回する 少なくとも1個のバイトを有することを特徴とする請求 項4または5記載の加工装置。

【請求項7】 重りが貫通口を有し、該貫通口に挟持手段が配設されていることを特徴とする請求項4ないし6いずれか1項記載の加工装置。

【請求項8】 弾性支持手段が重りの一端を支持し、該 重りの他端にその振動を吸収する防振手段が設けられて いることを特徴とする請求項4ないし7いずれか1項記 載の加工装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真用の現像 スリーブ等の長尺物の外表面等を高い形状精度で仕上げ 加工する場合等に好適な長尺物の加工方法および加工装 置に関するものである。

[0002]

【従来の技術】電子写真用の現像スリーブ等の薄肉でしかも長尺である工作物を加工する場合には、加工中の工作物が切削抵抗等によってビビリ振動等を発生しやすい 40 ため、これを抑制するための振動抑制装置が必要である。特に、現像スリーブ等はその外表面に高い形状精度(真直度、真円度および表面粗さ等)を要求されるものであり、加工中の工作物がビビリ振動等を発生すると、必要とする形状精度を得ることができない。

【0003】しかも工作物としての現像スリーブの本体は、長尺であるうえに薄肉の円筒体であり従って共振周波数が小さいために極めて振動を発生しやすい傾向がある。

【0004】図4は、このような円筒体である工作物W 50 ことができない。

の円筒面を、中空軸に保持されて旋回するバイトによって切削する切削装置Moを示すもので、これは、ベース101と一体である門型コラム102に支持された軸受103と、該軸受103に回転自在に支持され図示しないモータによって回転される中空の主軸104と、これに保持されたバイト105と、ベース101と一体であるベースガイド101aに沿って往復移動自在である送りスライダ106と、これに立設された固定側チャックポスト107と、送りスライダ106上を送りスライダ106に沿って往復移動自在であるチャック開閉スライダ108と、これに立設された可動側チャックポスト109と、それぞれ固定側チャックポスト107と可動側チャックポスト109に支持された固定側チャックポスト107と可動側チャックポスト10111を有する。

【0005】中空の主軸104に保持されたバイト105は、両ワークチャック110,111によって保持された工作物Woのまわりを旋回することで工作物Woの外周面を切削する。工作物Woの送りは、図示しない駆動装置によって、門型コラム102の開口を貫通する送りスライダ106をベースガイド101aに沿って移動させることによって行なわれる。

【0006】工作物Woの外周面の切削が完了したら、送りスライダ106と一体である送りスライダガイド106aに沿ってチャック開閉スライダ108を図示しない駆動装置によって移動させ、これによって可動側のワークチャック111を後退させることで加工済みの工作物Woを開放し、図示しないハンド等によって搬出する

【0007】このような加工工程において、工作物Wo は前述のように長尺でしかも薄肉の円筒体であり、その 両端をワークチャック110,111によって把持されているのみであるために加工中にビビリ振動を発生しやすい。そこで、工作物Wo の内部に防振具112を挿入していわゆるマスダンバの効果によって工作物Wo の動剛性を強化し、ビビリ振動を防ぐ工夫がなされている。【0008】なお、防振具112としては、薄肉円筒状のゴム部材に複数の重りを詰めたものが用いられるのが一般的である。

[0009]

【発明が解決しようとする課題】しかしながら上記従来の技術によれば、主軸の回転数が10,000rpm程度であれば工作物内に重りを詰めるだけで充分な防振効果を得ることができるが、加工速度を速くするために主軸の回転数を増やすと外乱周波数が工作物の共通周数に近づいてビビリ振動が発生する。また、加工サイクルタイムを短縮するために工作物の送りを多くした場合も、外乱周波数は同じであっても切削抵抗が増大するためにやはり振動しやすくなる。工作物の加工中にこのような振動があると表面粗さが増大し、必要な形状精度を得ることができない。

3

【0010】例えば、外径が12mm、肉厚が1mmの 工作物の場合に従来例の切削装置によって防振具を詰め て切削したときのコンプライアンス (変位/力) の周波 数特性は図3の曲線(a)で示すとおりである。従っ て、この工作物を現行の主軸回転数10,000rpm で切削加工すると外乱周波数が167Hzであり、この ときのコンプライアンスは曲線(a)のほぼフラットな 領域にあるためビビリ振動は発生しない。ところが、主 軸の回転数が増加して外乱周波数が200Hz付近にな ると共振点 a1 に近づくためにビビリ振動を発生する。 【0011】このように、工作物の中に防振具を詰める だけでは、加工速度を速くして加工サイクルを短縮し現 像スリーブ等の生産性を向上させることはできない。単 に工作物の振動を抑制することのみを目的とする場合は 工作物の加工点の近傍を剛に支持すれば事足りる。しか しながら、工作物を剛に支持して加工を行なうと、工作 物にわずかでも曲がりがある場合には、工作物を過度に 拘束し加工点の近傍を弾性変形させながら加工する結果 となり、加工後の工作物の真直度が大きく損われるおそ れがある。従って、工作物を剛に支持した状態で加工す 20 ると必要な形状精度を得ることはできない。

【0012】本発明は上記従来の技術の有する問題点に 鑑みてなされたものであり、加工中の工作物のビビリ振 動等を防ぎ、長尺で形状精度の高い工作物を高速加工す ることのできる長尺物の加工方法および加工装置を提供 することを目的とするものである。

[0013]

【課題を解決するための手段】上記の目的を達成するために本発明の長尺物の加工方法は、一対の保持手段によって工作物を保持し、これを、両保持手段の間に配設さるので、(a)はその一部断面模式側面図、(b)はれた加工手段によって加工する工程を有し、重りに結合された挟持手段によって前記工作物を挟持するとともに前記重りを弾力的に支持することで、前記工作物の共振周波数を所定の値に低減した状態で加工することを特徴とする。

【0014】工作物の内部に防振具を充填するとよい。 【0015】工作物が長尺の円筒体であるとよい。

【0016】本発明の加工装置は、一対の保持手段と、両者の間に配設された加工手段と、前記一対の保持手段によって保持された工作物を挟持するための挟持手段と、該挟持手段に結合された重りと、該重りを弾力的に支持する弾性支持手段を有することを特徴とする。

【0017】挟持手段が、工作物の送り方向と直交する軸のまわりに回転自在である少なくとも1個の回転部材を有するとよい。

【0018】加工手段が、工作物のまわりを旋回する少なくとも1個のバイトを有するとよい。

【0019】重りが貫通口を有し、該貫通口に挟持手段が配設されているとよい。

【0020】弾性支持手段が重りの一端を支持し、該重 50 ースガイド1 a に沿って移動させることによって行なわ

りの他端にその振動を吸収する防振手段が設けられているとよい。

[0021]

【作用】一対の保持手段によって長尺の工作物を保持し、両保持手段の間に配設された加工手段によって工作物の外表面等を加工する場合には、加工手段の切削抵抗等によって加工中の工作物がビビリ振動等を発生しやすい。そこで、重りに結合された挟持手段によって工作物の加工点近傍を挟持するとともに、前記重りを弾力的に支持することで、工作物を過度に拘束することなくその動剛性を強化し、加工手段の切削抵抗等による外乱周波数より工作物の共振周波数の方が低くなるように設定して加工中のビビリ振動の発生を防ぐ。

【0022】このように、弾力的に支持された重りによって工作物の動剛性を強化し共振周波数を低くすれば、加工手段の加工速度を上げて外乱周波数を高くした場合でも、加工手段の切削抵抗等によって工作物にビビリ振動等を発生するおそれがない。また、重りが弾力的に支持されているために、工作物が重りによって過度に拘束されることなく、例えば工作物に曲がり等があっても重りが弾力的に移動してこれに追従するため、工作物が弾性変形した状態で加工されるのを回避できる。

【0023】従って、形状精度の高い工作物であっても 加工速度を上げて工作物の加工サイクルタイムを短縮 し、生産性を大きく向上できる。

[0024]

【発明の実施の形態】本発明の実施の形態を図面に基づいて説明する。

【0025】図1は一実施例による切削装置M1を示す もので、(a)はその一部断面模式側面図、(b)は (a)のAーA線からみた部分模式立面図である。切削装置M1は、図1の(a)に示すように、ベース1と一体である門型コラム2に支持された軸受3と、該軸受3に回転自在に支持され図示しないモータによって回転自在に支持されのであるベースガイド1aに沿って往復移動自在である送りスライダ6と、これに立設された固定側のチャックポスト7と、送りスライダ6上を送りスライダがイド6aに沿って往復移動自在であるチャック開閉スライダ8と、これに立設された可動側のチャックポスト9と、それぞれ固定側のチャックポスト9に支持された保持手段である固定側と可動側のワークチャック10,11を有する。

【0026】中空の主軸4に保持されたバイト5は、両ワークチャック10,11によって保持された工作物W1のまわりを旋回することで工作物W1の外周面を切削し、工作物W1の送りは、図示しない駆動装置によって、門型コラム2の開口を貫通する送りスライダ6をベースガイド10に沿って移動されることによって行われ

5

れる。

【0027】工作物W1の外周面の切削が完了したら、送りスライダ6と一体である送りスライダガイド6aに沿ってチャック開閉スライダ8を図示しない駆動装置によって移動させ、これによって可動側のワークチャック11を後退させることで加工済みの工作物W1を開放し、図示しないハンド等によって搬出する。

【0028】このような加工工程において、工作物 W_1 は長尺でしかも薄肉の円筒体であり、その両端をワークチャック10, 11によって把持されているのみであるために加工中にビビリ振動を発生しやすい。そこで、工作物 W_1 の内部に防振具12を挿入していわゆるマスダンパの効果によって工作物 W_1 の動剛性を強化し、ビビリ振動を防ぐ工夫がなされている。

【0029】なお、防振具12としては、薄肉円筒状のゴム部材に複数の重りを詰めたものが用いられるのが一般的である。

【0030】工作物W1の内部に防振具12を挿入しただけでは、主軸4の回転数を上げたときにバイト5の切削抵抗による外乱周波数が工作物W1の共振周波数に近20づいてビビリ振動を発生するのを回避できない。そこで、バイト5の近傍において工作物W1に重りを付加し、該重りの慣性によって工作物W1の動剛性を強化して共振周波数を高くするための重りユニット20を配設する。

【0031】重りユニット20は、図1の(b)に示すように費通口21aを備えた重りである重りプロック21を有し、該重りプロック21は貫通口21a内で工作物W1を上下方向から挟持する挟持手段である一対の回転部材であるボールベアリング22を支持している。重30りプロック21の下端中央部は弾性支持手段であるコイルバネ23aを介して重りフレーム24に支持され、重りプロック21の下端両側部および上端両側部はそれぞ板バネ23bを介して重りフレーム24に結合され、さらに、重りプロック21の上端中央部は防振手段である粘弾性体23cを介して重りフレーム24に結合される。

【0032】重りフレーム24はその下端に設けられた 足部24aを門型コラム2に固定され、頂部に設けられた た支持部材24bは、図3に示すように軸受3と一体的 40 に設けられる。

【0033】このように、重りユニット20は、工作物 W1 をバイト5の近傍でボールベアリング22の間に挟持することによって重りプロック21の重さを付加し、これによって工作物W1 の動剛性を強化する。例えば、工作物W1 が外径12mmのA1製の円筒体であれば、これを外径10mmのボールベアリング22で挟んで重りを付加する。ボールベアリング22はømm3程度のベアリングシャフト22aに回転自在に支持され、工作物W1 の送りを妨げないようにこれを挟持する。

【0034】ベアリングシャフト22aはそれぞれ軸固 定部材22bの穴に圧入され固定され、両軸固定部材2 2 b は重りブロック 2 1 にそれぞれボルト固定されてい る。下方の軸固定部材22bのボルト穴は長穴であり、 上下方向の位置を調整することができる。工作物W₁の 直径は個々に或いは場所により異なるため、寸法精度の 下限値よりもボールペアリング22の隙間を20μ m前 後小さく設定し、工作物W1 とボールベアリング22の 間に隙間がないようにする。例えば、工作物Wiの寸法 精度が ø 12 mm ± 20 μ m であれば、ベアリング隙間 を11.96mmとする。工作物Wiのつぶし代が大き いと送り抵抗が大きくなり、つぶし代が小さすぎると工 作物Wi と重りブロック21の動きが一体でなくなり、 防振効果が得られない。隙間調整は、ボールベアリング 22の間に所定の厚さのブロックゲージをはさみ、軸固 定部材22bをプロックゲージに押し当てて行なう。

【0035】重りブロック21は前述のように上下左右 4枚の板ばね23 bによって、上下に柔らかく、水平面 内に固く固定されている。各板ばね23bの一端は板ば ね抑えに挟まれて重りブロック21にボルト締結されて いる。また、各板ばね23bの他端は板ばね抑えに挟ま れて重りフレーム24にボルト締結されている。各板ば ね23bの上下剛性は、工作物W1 を挟持した状態での 工作物W1 の最も弱い位置での上下剛性よりかなり弱く 設定する。現像スリーブを製造する場合の工作物Wi は 未加工状態での真直度が数十μ m である。これを挟持し た際に上下に曲がってセッティングされると、板ばね2 3 b の上下剛性が大きい場合には加工時に工作物W1 の 曲がりに重りブロック21が追従せず、工作物Wiを弾 性変形させた状態で加工するため、加工後の工作物Wi の真直度が悪くなる。真直度の要求精度にもよるが、例 えば工作物Wiの中央での剛性が0.2N/μmであれ ばトータルの板ばね剛性をその1/20すなわち0.0 1 N / μ m程度にしておく。

【0036】重りブロック21の左右方向の支持剛性は 十分高くすべきである。工作物W1 に左右方向の切削抵 抗が加わった場合、ボールベアリング22と工作物Wi の間に静止摩擦力が作用するまでの力は重りブロック 2 1を介して各板ばね23bが受けるからである。従っ て、ボールベアリング22のような剛体でなければ、工 作物W1 の左右支持剛性を高められない。例えば、切削 抵抗を数Nとし、目標表面粗さをサブ μ mとすれば 1 0 $N / \mu m$ 以上の剛性が必要である。なお、ボールベアリ ング22の替わりに、ボールやローラによる転がりスラ イド、あるいは、摩擦のない静圧軸受等も使用できる。 【0037】重りブロック21の重さは、工作物W1を 挟持した状態で、工作物Wiの共振点が外乱周波数より 十分低くなるように設定する。工作物Wi を挟持した状 態での工作物の共振点は工作物Wiの位置により変化す 50 る。最も剛性が高いのは短い方のワークチャック10側

である。バネ、マス系の共振周波数を求める式f=(k /m) 0.5 / (2π) に、この部分での剛性と、目標と する周波数を入れて必要な重さを決定する。外乱周波数 が最低167H2(主軸回転数が10,000rpm) とすると、少なくともその1/2の80H2以下を目標 とし、工作物Ψιの最も高い部分の剛性が0.5N/μ mであれば0.5kg程度の重りが必要である。これに より、80Hzの共振ピークが現れるがそれ以上の周波 数では重りの慣性により動剛性が高く外乱に対して振動 しにくくなる。

【0038】共振点より外乱周波数が高ければ共振は起 りにくいが、全く振動しないわけではないため、この周 波数でのバイト5の軌跡が工作物W₁ の表面粗さとして 現れる。従って、粗さの規格が厳しい場合は問題になる ことがある。

【0039】そこで、重りブロック21と重りフレーム 24を粘弾性体23cで結合することで、振動振幅を下 げて表面粗さを向上させる。粘弾性体23cは剛性が小 さく減衰効果の高い材質が望ましい。例えば、重りプロ ック21と重りフレーム24の隙間が2mm程度の場合 は、厚さ2mm、幅10mm程度で硬度60°前後の無 反発ゴムを用いる。これにより、80Hzの振動のピー クレベルをその1/10程度に抑えることが可能で、表 面粗さを約1/2にすることができる。また、粘弾性体 23 cの上下方向剛性は各板ばね23 bと同レベルであ るため、工作物W1 の真直度を劣化させることもない。 【0040】重りブロック21の自重は、コイルバネ2 3 a とそのばね受けを介して調節ねじ25で支えられて いる。重りブロック21が柔に支持される方向は垂直で も水平でもよいが、重りユニット20を切削装置M1 に 30 切り粉を排出するスペースが必要であるため、重りユニ 装着する際、ボールベアリング22間の中央と主軸4の 軸芯の位置をある程度合わせる必要があり、そのために は重りブロックが重力方向に柔らかいばねで支持され て、そのバランス位置を調節ねじ25で調整するこの方 法が最も簡単である。

【0041】すなわち、重りユニット20をセットする 際、重りブロック21は各板ばね23bと粘弾性体23 cとコイルバネ23aが並列に結合された状態の剛性で 支持され、重りブロック21の重さと総合ばね剛性が釣 り合った位置で停止する。並列結合状態での剛性が大き いと前述のように加工後の工作物W: の真直度を劣化さ せるので、粘弾性体23cもコイルバネ23aも板ばね 23bと同じ0.01N/μm程度にしておく。この状 態でのボールベアリング22間の中央位置と主軸4の軸 芯とのズレをなくすため調整ねじ25を回転させ重りプ ロック21全体を上下させる。基準は重りブロック20 をセットしない場合の工作物保持状態であり、ベース基 準で工作物上面の上下方向位置をハイトゲージ等で測定 しておき、重りユニット20をセットした際に、工作物

トする。左右方向のボールベアリング22に対する位置 合わせは振動特性、加工精度にほとんど影響しないため 位置合わせはラフでよい。

【0042】以上の構成によって、工作物W1 はボール ベアリング22により加工送り方向(2軸方向)には拘 束されることなく、上下方向(Y軸方向)には各板ばね 23b等による弱いばね力と重りブロック21の重さが 付加されて共振周波数が加工時の外乱周波数よりかなり 低下し、横方向(X軸方向)はボールベアリング22と 10 の摩擦を介して各板ばね22bの伸び方向の強い剛性が 得られる。その結果、工作物W1 の円周方向の全方向に 高い動剛性が得られ切削抵抗に対して振動しにくくな

【0043】防振具12の重量が重りブロック21と同 等であればかなり動剛性の向上が望めるが、例えば、工 作物Wi の長さが250mm程度ありしかも曲げ剛性が 低く0.5kgの重量があると、工作物中央では約10 0 μ m たわむため、加工後の真直度が非常に劣化する。 このため真直度の規格とのかねあいで防振具12の重量 は約0.05kgに設定する。このときの伝達特性が図 3の曲線(a)に示すものと同じであり、340Hz付 近に共振点 a1 があるため、現行の主軸回転数 10,0 00 r p m以上に高速化して生産性を向上させるために は重りユニット20を付加しなければならない。

【0044】工作物W1 はワークチャック10、11に より主軸4の軸芯にアライメントされている。ボールベ アリング22による工作物W1の挟持位置とバイト5の 加工点の送り方向の距離は短いほうが切削抵抗に対する 振動抑制効果が高いが、加工点にオイルミストをかけ、 ット20の挟持位置はバイト5の加工点から30mm程 度離れたところに設ける。

【0045】バイト5はダイヤモンドバイトでありこれ を主軸4に取り付けて回転させ、工作物W1 を送りスラ イダ6によって右から左方向に送れば工作物W1 の外径 切削ができる。このように重りユニット20を装着した 状態で切削加工したときの工作物中央における上下方向 の伝達特性が図3の曲線(b)で示されている。現行の 外乱周波数167Hzにおいて、曲線(a)の特性より コンプライアンスが20dB程度小さくなり同じ外乱に 対して10倍振動しにくくなる。これにより高い周波数 では曲線(a)のような顕著なピークはなく、ほぼフラ ットな特性で曲線 (a) の場合の静剛性に対して約3倍 の剛性が得られている。従って、主軸4の回転数をかな り高くしてもビビリ振動は起きない、例えば、主軸回転 数を20,000 rpmとし、1回転当たりの送りを従 来の0.1mm/revで加工すると、バイト先端と送 りから決まる理論表面粗さに近い値を得ることができ る。また、剛性に余裕があるため、1回転当たりの送り W1 が所定の位置になるよう調整ねじ25でアライメン 50 を1.5倍程度増やしても基準内の表面粗さが得られ

る。その結果、加工サイクルタイムを従来の1/3に短縮できる。主軸4の回転数をさらに上げれば、加工時間もより一層短縮可能である。従って、決まった量を生産する際、必要な加工機の台数が減るとともに装置を管理する人員も削減できる。その結果、現像スリーブ等の加工コストを大幅に低減できる。

【0046】本実施例においては、一対のボールペアリングが重りプロックに結合されているが、重りプロックに付いているボールペアリングは1個で、工作物の反対 個から単に予圧をかける構成でもよい。また、工作物の 10 送りが鉛直方向であるような外径切削機で、重りユニットが水平面内に配置されても振動抑制効果は変わらない。さらに、上記の具体例は現像スリーブの円筒体の外径切削の例であるが、長尺ものの端面フライス加工等でも、同様な構成の重りユニットを付加することで、高速加工時のビビリ振動を抑制できる。ただしこの場合には、工作物の軸方向への移動を自在に支持する機構は必要でない。

[0047]

【発明の効果】本発明は上述のように構成されているの 20 で、以下に記載するような効果を奏する。

【0048】加工中の工作物のビビリ振動等を防ぎ、現 像スリーブ等の長尺で形状精度の高い工作物を高速加工 することができる。これによって、現像スリーブ等の加 エサイクルタイムを短縮し、生産性を大きく向上でき る。

【図面の簡単な説明】

【図1】一実施例による切削接置を示すもので、(a)はその一部断面模式側面図、(b)は(a)のA-A線から見た部分模式立面図である。

10

【図2】図1の(b)のB-B線に沿ってとった模式部分断面図である。

【図3】工作物のコンプライアンスの周波数特性を示す グラフである。

70 【図4】一従来例を示す一部断面模式立面図である。 【符号の説明】

- 1 ベース
- 2 門型コラム
- 4 主軸
- 5 バイト
- 10,11 ワークチャック
- 20 重りユニット
- 21 重りブロック
- 22 ボールベアリング
- 23a コイルバネ
- 23b 板バネ
- 23 c 粘弾性体
- 24 重りフレーム
- 25 調節ねじ

[図2]

【図3】

| Temp | 12 防振具 | 20 重りユニット | 4 軸 | 3 5 バイト | 7 チャック ポスト | 7 チャック ポスト | 10 ワークチャック ポスト | 10 フークチャック ポスト | 10 フークチャック ポスト | 21 ボール | 22 ボール | 22 ボール | 22 ボール | 27 リング | 22 ボール | 27 リング |

