A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 5ED

Bookmark

Show all steps: (

ON

Problem

If $\alpha = \sqrt[4]{2}$ is a real fourth root of 2, then the four fourth roots of 2 are $\pm \alpha$ and $\pm i\alpha$. Explain parts 1–6, briefly but carefully:

 $\{1, \alpha, \alpha^2, \alpha^3, i, i\alpha, i\alpha^2, i\alpha^3\}$ is a basis for (α, i) over.

Step-by-step solution

Step 1 of 2

The objective is to explain $\{1,\alpha,\alpha^2,\alpha^3,i,i\alpha,i\alpha^2,i\alpha^3\}$ is a basis for $\mathbb{Q}(\alpha,i)$ over \mathbb{Q} .

Comment

Step 2 of 2

Clearly, $\sqrt[4]{2}$ is the root of $x^4 - 2$.

Also, x^4-2 is irreducible polynomial of lowest degree 4 over $\mathbb Q$ by Eisenstein (p=2).

Therefore
$$, \left[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}\right] = \deg(x^4 - 2) = 4.$$

Because $\mathbb{Q}(\sqrt[4]{2})$ is a subfield of the reals and so $i \notin \mathbb{Q}(\sqrt[4]{2})$.

Hence, $x^2 + 1$ is irreducible over $\mathbb{Q}(\sqrt[4]{2})$.

So
$$, \left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\left(\sqrt[4]{2}\right)\right]$$
 is at least 2 .

But i is a root of $x^2 + 1 \in \mathbb{Q}(\sqrt[4]{2})[X]$, so the degree of $\mathbb{Q}(\sqrt[4]{2},i)$ over $\mathbb{Q}(\sqrt[4]{2})$ is at most 2, and therefore is exactly 2.

Hence
$$\cdot \left[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})\right] = 2$$
.

Thus ,
$$\left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\left(\sqrt[4]{2}\right)\right]\left[\mathbb{Q}\left(\sqrt[4]{2}\right):\mathbb{Q}\right]$$
 = 2 · 4 = 8. So , $\left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\left(\sqrt[4]{2}\right)\right] = 2$ with basis $\left\{1,i\right\}$, and $\left[\mathbb{Q}\left(\sqrt[4]{2}\right):\mathbb{Q}\right] = 4$ with basis $\left\{1,\alpha,\alpha^2,\alpha^3\right\}$.

Therefore *a basis for degree 6 field over Q is obtained by multiplying the bases together:

$$\{1,\alpha,\alpha^2,\alpha^3,i,i\alpha,i\alpha^2,i\alpha^3\}$$

Comment