

Inventor: DiFoggio Title: A Method And Apparatus For Downhole Quantification... Serial No.: 10/798,686; Filed: March 11, 2004; Confirmation No.: 6263; Docket No.: 584-30872-US

FIG. 1

FIG. 2

FIG. 3

Inventor: DiFoggio
Title: A Method And Apparatus For Downhole Quantification...

Serial No.: 10/798,686; Filed: March 11, 2004; Confirmation No.: 6263; Docket No.: 584-30872-US

FIG. 4

+

Inventor: DiFoggio Title: A Method And Apparatus For Downhole Quantification... Serial No.: 10/798,686; Filed: March 11, 2004; Confirmation No.: 6263; Docket No.: 584-30872-US

Equations Correlating Weight Fraction Methane in Mixtures of Crude Oil and Methane to Optical Absorbance and Temperature

Inventor: DiFoggio Title: A Method And Apparatus For Downhole Quantification... Serial No.: 10/798,686; Filed: March 11, 2004; Confirmation No.: 6263; Docket No.: 584-30872-US

			- -			4	/6												
	nm - Absorbance_1682_nm) m) m3 ade	grees C	Equation for Optical Absorbance per mm of Methane as a Function of Density and Wavelength at 11 nm FWHM, Center λ range of 1668-1684 nm,	for 100-30,000 psia and 75-200 C, is fitted by $\Delta_{\rm Pl}$ R2 = 94145159		B -19.9061 = Intercept	Methane Density 0.7747 for Density in g/cc	Waveruniner/ 1000				ions Relating Gas Oil Ratio, GOR, to Weight Fraction of Methane, f _w , and Stock Tank Density, po, of Oil	= is 0.042358 lbs = 19.21327 grams.	.04258 bm/tt² te M for Mothane and O for Oil	(1 bb//158.983 cc)			- 1) which substitutes into above.	ρ_0 is in g/cc, and $\rho_0 = vv$. Fig. of inequality
.2 * Var2 + B3 * Var3 + B4 * Var4	SQ70-82 = SQUARE(Absorbance_at_1670_nm - Absorbance_1682_nm) SRSA1670 = SQRT(Absorbance_at_1670_nm) SRSA1682 = SQRT(Absorbance_at_1682_nm) TEMP_C = Temperature in Degrees Centigrade	TEMP_SQR = Square of Temperature in Degrees C	Equation for Density of Methane [g/cc] as a Function of Pressure and Temperature from 100- 30,000 psia and 75-200 C	is fitted by Adj. R² = .99911359	В	2.771E-03 = Intercept P 2.480E-05	P ² -1.120E-09 for Pressure in psi	•	1.455E-03	(P/T)² -4.922E-06 (P/T)³ -5.934E-09	00-3400:0	ng Gas Oil Ratio, GOR, to Weight Fraction of	1bbl = 0.159 m ³ = 5.615 cu ft = 42 U.S. gal 14.7 psia & 60° F is 0.042358 lbs = 19.21327 grams.	Density of Methane at 60°F and 14.7 psia is 0.0006787 gr/cc = 0.04258 lbm/ft ³	Cetting $V = V_{\text{Methods}}(V) = V_{\text{Cit}}(V) = V_{\text{Cit}}(V)$ and using subscripts in 101 methods and $V_{\text{Cit}}(V) = V_{\text{Methods}}(V)$ (1 bb/158.983 cc)	nt Fraction of Methane,	0/ (1/f _M -1)	$V_{\rm O} = \rho_{\rm M} V_{\rm M} / (\rho_{\rm M} V_{\rm M} + \rho_{\rm O} V_{\rm O}) $ so $W_{\rm O} = W_{\rm M} / (1/f_{\rm M})$	oz " $ ho_0$ / GUR) where $ m v_G$ and $ m v_0$ are in grams,
Methane Weight Fraction = METHWTF = B0 + B1 * Var1 + B2 * Var2 + B3 * Var3 + B4 * Var4	Regression Summary for Dependent Variable: METHWRF R = .98093203 R ² = .96222765 Adjusted R ² = .96151158 F(4,211) = 1343.8 p<0.0000 Std. Error of estimate: .04992	മ	0.06514 = B0 = Intercept Var1 = SQ70-82			R = .98190316 R ² = .96413381 Adjusted R ² = .96327986 F(5.210) = 1129.0 p<0.0000 Std. Error of estimate: .04876	8	0.03143 = B0 = Intercept		Varz = SKSA168z -2.55766 = Bz Var3 = SQ70-82 11.9135 = B3	0.0019 = B4	Var5 = TEMP_SQR -6.2E-06 = B5 Equations Relati	$1bbl = 0.159 \text{ m}^3 = 1 \text{ Standard Cubic}$	Density of Methan	GOR = V _{Metrans} (S	Letting f _M = Weigh	60R = 82/4.62 p	M = M / M = M	M = 11(1+07/4)

+

Inventor: DiFoggio Title: A Method And Apparatus For Downhole Quantification... Serial No.: 10/798,686; Filed: March 11, 2004; Confirmation No.: 6263; Docket No.: 584-30872-US

Title: A Method And Apparatus For Downhole Quantification...

Serial No.: 10/798,686; Filed: March 11, 2004; Confirmation No.: 6263; Docket No.: 584-30872-US

6/6

FIG. 8

+