

Dissimilarity learning via Siamese network predicts brain imaging data

Aakash Agrawal

Why Algonauts?

Letter representation in the brain

Visual Search

Dissimilarity = 1/response time

Visual search space

Behaviour

New Results

A compositional shape code explains how we read jumbled words

Aakash Agrawal, K.V.S. Hari, S. P. Arun

HO

Behaviour + fMRI

New Results

Comment on

Reading Increases the Compositionality of Visual Word Representations

Aakash Agrawal, K.V.S. Hari, S. P. Arun

Behaviour

Pramod & Arun, 2016

fMRI

Khaligh-Razavi & Kriegeskorte, 2014

Siamese networks

Contrastive Loss

$$L = -(y)\log(p) + (1-y)\log(1-p)$$

where L is the loss function,
y the class label (0 or 1) and p is the prediction.

Modified siamese networks

Exploration list

- 1) Architecture
- 2) Layers to fine-tune
- 3) Feature extraction layer
- 4) Epoch
- 5) Loss function
- 6) Training dataset
- 7) Other hyperparameter learning rate, batch size, etc.

EVC/ MEG early – AlexNet IT/ MEG late – VGG16

Pre-processing

layer 12 from epoch 164 (MEG_early_RDMs)

layer 34 from epoch 13 of (MEG_late_RDMs)

MEG test RDMs

Which layers were affected by fine-tuning?

Which layers were affected by fine-tuning?

Summary

Exploration list

- 1) Architecture
- 2) Layers to fine-tune
- 3) Feature extraction layer
- 4) Epoch
- 5) Loss function
- 6) Training dataset
- Other hyperparameter –
 learning rate, batch size, etc.

Trained from scratch