last update: Dec. 21th, 2020 Changes are purple marked

電磁學 (一) Electromagnetics (I)

14. 磁性物質

Magnetic Material

授課老師:國立清華大學 電機工程學系 黃衍介 教授

Yen-Chieh Huang, National Tsing Hua University, Taiwan

In this lecture, we will introduce the magnetic dipole and generalize it to understand magnetic materials.

- 14.1 Magnetic Dipole 磁耦極
- 14.2 Magnetization 磁化
- 14.3 Modification of Ampere's Law 安培定律 的修正
- 14.4 Magnetic Boundary Conditions 磁場邊界 條件
- **■14.5 Review** 單元回顧

磁性物質 Magnetic Material

14.1 磁耦極 Magnetic Dipole

Magnetic Dipole

Due to symmetry $\vec{A} = A_{\omega} \hat{a}_{\omega}$

The vector potential due to current at P' is

 $dA_{\varphi} = dA_{(-\hat{a}_x)} = \frac{\mu_0 I}{4\pi} \times \frac{-b\sin\varphi' d\varphi'}{\mathbf{p}}$

 $R_1^2 = R^2 + b^2 - 2bR\cos\psi$

 $=R^2+b^2-2bR\sin\theta\sin\varphi'$

In the far zone $R >> b \rightarrow \frac{1}{R_1} \approx \frac{1}{R} \left(1 + \frac{b}{R} \sin \theta \sin \varphi' \right)$

Recall $\vec{A} = \frac{\mu_0 I}{4\pi} \oint_{C'} \frac{dl'}{R}$

where

(a basic magnetic element in materials)

 $P(R, \theta, \pi/2)$

 $R \times \sin\theta$

 $dl'=bd\varphi'$

 $R\cos\psi$

 $= R \sin \theta \sin \varphi'$

Magnetic Dipole Moment

Integrate over the whole current loop to obtain

The grate over the whole current loop to obtain
$$A = \frac{\mu_0 I \pi b^2}{\sin \theta}$$

 $A_{\varphi} = \frac{\mu_0 I \pi b^2}{4 \pi R^2} \sin \theta$ S = area of I Define the magnetic dipole moment $\vec{m} = I \pi b^2 \hat{a}_z = (I\vec{S})$

The vector potential has a general form $\vec{A} = \frac{\mu_0 \vec{m} \times \hat{a}_R}{4\pi P^2}$

*As a comparison, the electric dipole $V(R) = \frac{\vec{p} \cdot \hat{a}_R}{4\pi\varepsilon_0 R^2}$ potential was

From $\vec{B} = \nabla \times \vec{A}$, the far-zone dipole field is

$$\vec{B} = \frac{\mu_0 m}{4 \pi R^3} (\hat{a}_R 2 \cos \theta + \hat{a}_\theta \sin \theta)$$

Electric dipole field (note the field starts from positive charge and ends on negative one)

Magnetic dipole field (note the field closes upon itself)

$$\vec{E} = \frac{p}{4\pi\varepsilon_0 R^3} (\hat{a}_R 2\cos\theta + \hat{a}_\theta \sin\theta) \qquad \vec{B} = \frac{\mu_0 m}{4\pi R^3} (\hat{a}_R 2\cos\theta + \hat{a}_\theta \sin\theta)$$

14.1 磁耦極

Magnetic Dipole

- A magnetic dipole is a basic building block of a magnetic material.
- The magnetic moment is defined as the area of a current loop S multiplying the current on the loop I (direction determined from right hand rule). $\vec{m} \equiv \vec{IS}$
- In the far zone, the magnetic-dipole and the electric-dipole fields have the same pattern

$$\vec{B} = \frac{\mu_0 m}{4\pi R^3} (\hat{a}_R 2\cos\theta + \hat{a}_\theta \sin\theta)$$

$$\vec{E} = \frac{p}{4\pi\varepsilon_0 R^3} (\hat{a}_R 2\cos\theta + \hat{a}_\theta \sin\theta)$$

磁性物質 Magnetic Material

14.2 磁化 Magnetization In a material, an orbiting or spinning charge generates a magnetic dipole moment

orbiting electron spinning proton
In materials, some magnetic dipoles form a magnetic domain.

Those domains could be random or could be aligned.

Magnetization Vector

Define the magnetization vector as the averaged sum of magnetic dipole moments $\vec{M} = \lim_{\Delta v \to 0} \frac{\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{A}}{\Delta v}$ (A/m) per unit volume in a point volume.

From
$$\vec{A} = \frac{\mu_0 \vec{m} \times \hat{a}_R}{4\pi R^2}$$
, the differential vector potential in a material is

After integration
$$\vec{A} = \frac{\mu_0 \vec{M} \times \hat{a}_R}{4\pi R^2}$$
, the differential vector potential in a material is $d\vec{A} = \frac{\mu_0 \vec{M} \times \hat{a}_R}{4\pi R^2} dv' = \frac{\mu_0 \vec{M} \times \nabla' \left(\frac{1}{R}\right)}{4\pi} dv'$

As a comparison, the polarization charges $\nabla' \cdot \vec{P} = -\rho_p, \vec{P} \cdot \hat{a}_n = \rho_{ps}$

After integration $\vec{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\vec{J}_m}{R} dv' + \frac{\mu_0}{4\pi} \oint_{S'} \frac{\vec{J}_{ms}}{R} ds'$

After integration
$$\vec{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\vec{J}_m}{R} dv' + \frac{\mu_0}{4\pi} \oint_{S'} \frac{\vec{J}_{ms}}{R} ds'$$
 where the magnetization volume current density $\vec{J}_m \equiv \nabla' \times \vec{M}$

magnetization surface current density $\vec{J}_{ms} \equiv \vec{M} \times \hat{a}_{n}$

In a homogeneously magnetized material, there is no spatial variation of magnetization and therefore

Interface volume currents J_m are all cancelled inside the volume.

$$\vec{J}_{m} \equiv \nabla' \times \vec{M} = 0$$

$$\vec{A} = \frac{\mu_{0}}{4\pi} \int_{V'} \frac{\vec{J}_{m}}{R} dv' + \frac{\mu_{0}}{4\pi} \oint_{S'} \frac{\vec{J}_{ms}}{R} ds'$$

 $\Rightarrow \vec{A} = \frac{\mu_0}{4\pi} \oint_{S'} \frac{\vec{J}_{ms}}{R} ds'$ What is left is the surface current J_{ms} . Going out of paper

⇒ A magnet can be modeled with surface magnetization currents

E.g. Find \vec{B} at point P(0, 0, z) with the magnet having $\vec{M} = M_0 \hat{a}_z$, as shown below.

Z = P(0, 0, z) $\vec{M} = M_0 \hat{a}_z,$

The equivalent magnetization surface current density is $\vec{J}_{ms} \equiv \vec{M} \times \hat{a}_n = M_0 \hat{a}_z \times \hat{a}_r = M_0 \hat{a}_\phi$

Recall (Lecture 13)
$$I \rightarrow dI = J_{ms}dz'$$

$$\vec{B} = \hat{a}_z \frac{\mu_0 I b^2}{2(z^2 + b^2)^{3/2}} \quad z \rightarrow z - z'$$
at $P(0, 0, z)$ for a single current loop carrying a current I

The total magnetic field is then the integration

$$\vec{B} = \hat{a}_z \int_0^L \frac{\mu_0 b^2 J_{ms} dz'}{2((z-z')^2 + b^2)^{3/2}} = \hat{a}_z \int_0^L \frac{\mu_0 b^2 M_0 dz'}{2((z-z')^2 + b^2)^{3/2}}$$

14.2 磁化

Magnetization

- The magnetization vector is the vector sum of all the magnetic dipole moments in a material.
- Both volume and surface current densities of a magnetic material contribute to the field associated with it, described by $\vec{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\vec{J}_m}{R} dv' + \frac{\mu_0}{4\pi} \oint_{S'} \frac{\vec{J}_{ms}}{R} ds'$
- A homogeneously magnetized material, such as a magnet, can be modeled with surface currents on the magnet.

磁性物質 Magnetic Material

14.3 安培定律的修正 Modification of Ampere's Law

Modification to the Ampere's Law In vacuum, $\nabla \times \vec{B} = \mu_0 \vec{J}$

In a magnetic material, the magnetic field is modified due to aligned magnetic domains in the material.

 \Rightarrow Magnetization current J_m has to be considered

be considered
$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \vec{J}_m = \mu_0 \vec{J} + \mu_0 \nabla \times \vec{M}$$

$$abla imes \vec{H} = \vec{J}$$
efine magnetic field intensity H

Define magnetic field intensity *H* related to the source current J

Modified Ampere's Circuit Law

Differential form Integral form

Don't forget the 1st postulate $\int_{S'} \nabla \times \vec{H} \cdot d\vec{s} = I \qquad \nabla \cdot \vec{B} = 0 \qquad \oint_{S} \vec{B} \cdot d\vec{s} = 0$

$$\nabla \times \vec{H} = \vec{J}$$

$$\int_{S} \nabla \times \vec{H} \cdot d\vec{s} =$$

In a simple (linear, isotropic, and nondispersive) material, M is linearly proportional to H

$$ec{M}=\chi_{\scriptscriptstyle m}ec{H}$$

The proportional factor χ_m is called *magnetic susceptibility*.

$$\vec{H} \equiv \frac{\vec{B}}{B} - \vec{M} \implies \vec{B} = \mu \vec{H} \equiv \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H}$$

The relative permeability is defined as $\mu_r = 1 + \chi_m = \frac{\mu}{\mu_0}$ For magnetic materials, $\mu_r \sim 10^6!$ Eg. A long solenoid with and without a ferromagnetic core, find *B*.

i.Without the ferromagnetic material From Ampere's law:

$$\oint_C \vec{H} \cdot d\vec{l} = NI \Rightarrow \vec{H} = H_z \hat{a}_z = \hat{a}_z nI \Rightarrow \vec{B} = \mu_0 \vec{H} = \hat{a}_z \mu_0 nI$$

$$n = N/L : \text{# of loops per length}$$

ii. With the ferromagnetic material having
$$\mu_r$$

Again, from Ampere's law $\Rightarrow \vec{H} = H_z \hat{a}_z = \hat{a}_z nI$ $\Rightarrow \vec{B} = \mu_r \mu_0 \vec{H} = \hat{a}_z \mu_r \mu_0 nI$

solenoid

Note that
$$\mu_r$$
 can be a big number

Magnetic Materials

Diamagnetism $\mu_r \le 1$ or $\chi_m \le 0$ All materials show diamagnetism

Lenz's law: The induced magnetic dipole moment from electron orbits always opposes the applied external field.

This effect is usually weak, $\left|\mathcal{X}_{m}\right| \approx 10^{-8} \sim 10^{-5}$ and is often obscured in materials with intrinsic magnetism.

Paramagnetism $\mu_r \ge 1 \text{ or } \chi_m \ge 0$

Dipole moments in electrons, atoms, or molecules tend to partially align with an applied external field.

Ferromagnetism $\mu_r >> 1$ or $\chi_m >> 0$

A small external magnetic field intensity (from, say, a current loop) aligns magnetic domains in such a material, resulting in a large magnetic flux density *B*.

14.3 安培定律的修正

Modification of Ampere's Law

- The modified Ampere's law relates the magnetic field intensity H to a source current density J or current I, given by $\nabla \times \vec{H} = \vec{J}$ and $\int_{S'} \nabla \times \vec{H} \cdot d\vec{s} = I$
- The magnetic flux density B is now expressed as

$$|\vec{B} = \mu \vec{H} \equiv \mu_0 (1 + \chi_m) \vec{H} = \mu_0 \mu_r \vec{H}|$$

where μ_0 is the vacuum permeability, μ_r is the relative permeability, and χ_m is the magnetic susceptibility.

磁性物質 Magnetic Material

14.4 磁場邊界條件 Magnetic Boundary Conditions

Electrostatics vs. Magnetostatics

The equations in electrostatics and magnetostatics are *dual* equations. Systematic substitutions of the following table of symbols transform an equation in one system into another.

electrostatics	magnetostatics	S F a
E	В	$\nabla \times \vec{E} = 0 \leftrightarrow \nabla \cdot \vec{B} = 0$
D	H	$\mathbf{V} \times \mathbf{E} = 0 \leftrightarrow \mathbf{V} \cdot \mathbf{B} = 0$
$oldsymbol{arepsilon}$	$1/\mu$	$ abla \cdot \vec{D} = \rho \leftrightarrow abla imes \vec{H} = \vec{J}$
P	-M	1
ho	J	$D = \varepsilon E \longleftrightarrow H = \frac{1}{\mu} B$ etc.
V	A	
	X	$\vec{E} = -\nabla V \leftrightarrow \vec{B} = \nabla \times \vec{A}$ (not totally valid as dual equations)

Boundary Conditions – Normal Components

I. From
$$\nabla \cdot \vec{B} = 0 \Rightarrow \oint_{S} \vec{B} \cdot d\vec{s} = 0$$

*Recall

$$\nabla \cdot \vec{D} = 0$$

$$D_{1n} = D_{2n}$$

$$\Rightarrow B_{n1}\Delta S = B_{n2}\Delta S$$

$$\Rightarrow B_{n1} = B_{n2} \text{ or } \mu_1 H_{n1} = \mu_2 H_{n2}$$

The normal component of a magnetic flux density B_n is continuous across a boundary.

Boundary Conditions – Tangential Components

II. From
$$\nabla \times \vec{H} = \vec{J} \Rightarrow \oint_C \vec{H} \cdot d\vec{l} = I$$

$$\Rightarrow \oint_C \vec{H} \cdot d\vec{l} = H_{1t} \Delta l - H_{2t} \Delta l = \pm J_s \Delta l$$

$$\Rightarrow H_{1t} - H_{2t} = \pm J_s \text{ on directions of } H \text{ and } J)$$
Tangential components of a magnetic field intensity are discontinuous for a surface current density J_s at a boundary.

The relative direction between H and J_s follows the right-hand rule or
$$\hat{a}_{n2} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$$

For non-conductive materials, $J_s = 0$ and $H_{1t} = H_{2t}$

E.g. Find \vec{H}_{γ} or $H_{\gamma_t}, H_{\gamma_n}$ in Material 2, assuming no J_s .

 $H_{1t} = H_{2t}$ and $B_{1n} = B_{2n}$ Tangential component

$$H_{1t} = H_1 \sin \theta_1 \implies H_{2t} = H_1 \sin \theta_1$$

$$= H \cdot \cos \theta \rightarrow$$

$$H_{1n} = H_1 \cos \theta_1 \implies B_{2n} = B_{1n} = \mu_1 H_1 \cos \theta_1$$

Thus
$$H_{2n} = \frac{B_{2n}}{\mu_2} = \frac{\mu_1}{\mu_2} H_1 \cos \theta_1$$

$$H_2 = \sqrt{H_{2t}^2 + H_{2n}^2}$$
 and $\tan \theta_2 = \frac{H_{2t}}{H_2} = \frac{\mu_2}{\mu_1} \tan \theta_1$

Material 1

$$\theta_2$$
 θ_2 \vec{H}_2 Material 2

$$H_{2n}$$
 \vec{H}_2 Material

Magnetic flux line enters a high μ_r surface at a right angle

$$\tan \theta_2 = \frac{\mu_2}{\mu_1} \tan \theta_1 \Rightarrow \tan \theta_1 = \frac{\tan \theta_2}{\mu_r} \Rightarrow \theta_1 \xrightarrow{\mu_r \to \infty} 0$$

14.4 磁場邊界條件

Magnetic Boundary Conditions

 Across a boundary, the normal components of the magnetic flux density are continuous, or

$$B_{n1} = B_{n2}$$

- Across a non-conducting boundary, the tangential components of the magnetic field intensity are continuous.
- Across a conducting boundary, the tangential components of the magnetic field intensity are discontinuous, described by $\hat{a}_{n2} \times (\vec{H}_1 \vec{H}_2) = \vec{J}_s$

磁性物質 Magnetic Material 14.5 單元回顧 Review

1. A magnetic dipole is the basic building block of a magnetic material and its dipole moment is defined as

$$\vec{m} = I\vec{S}$$

2. In the far zone, the magnetic flux density of a magnetic dipole is described by $\vec{B} = \frac{\mu_0 m}{4\pi R^3} (\hat{a}_R 2\cos\theta + \hat{a}_\theta \sin\theta).$

*compare it with the electric dipole field

$$\vec{E} = \frac{p}{4\pi\varepsilon_0 R^3} (\hat{a}_R 2\cos\theta + \hat{a}_\theta \sin\theta)$$

3. A material contains orbiting and spinning charges, or magnetic dipoles.

4. The magnetization vector is the vector sum of all the magnetic dipole moments in a material.

$$\vec{M} = \lim_{\Delta v \to 0} \frac{\sum_{k=1} \vec{m}_k}{\Delta v}$$
 (A/m)

5. Magnetic dipoles can form domains in a material. Aligned domains show strong magnetization.

random domains aligned domains

6. The total vector potential of a magnetic material with magnetization is

$$\vec{A} = \frac{\mu_0}{4\pi} \int_{V'} \frac{\vec{J}_m}{R} dv' + \frac{\mu_0}{4\pi} \oint_{S'} \frac{\vec{J}_{ms}}{R} ds'$$

where $\vec{J}_m \equiv \nabla' \times \vec{M}$ is the magnetization volume current density, and $\vec{J}_{ms} \equiv \vec{M} \times \hat{a}_n$ is the magnetization surface current density.

7. The modified Ampere's law relates the magnetic field intensity H to a source current density J or a source current I, given by

$$\nabla \times \vec{H} = \vec{J}$$
 and $\int_{S'} \nabla \times \vec{H} \cdot d\vec{s} = I$

 $\vec{B}=\mu\vec{H}\equiv\mu_0(1+\chi_m)\vec{H}=\mu_0\mu_r\vec{H}$ where μ_0 is the vacuum permeability, $\mu_{\rm r}$ is the relative permeability, and $\chi_{\rm m}$ is the magnetic susceptibility.

Material 2

9. Across a boundary, the normal components of the magnetic flux density are continuous, or

$$B_{n1} = B_{n2}$$

10. Across a boundary, the tangential components of the magnetic field intensity are governed by

$$\hat{a}_{n2} \times (\vec{H}_1 - \vec{H}_2) = \vec{J}_s$$
, where J_s is the surface current density existing in a conducting interface.

THANK YOU FOR YOUR ATTENTION