

Interpretando el mundo a través de imágenes y deep learning

Ph.D. Pedro Achanccaray Diaz

Researcher

p.diaz@tu-braunschweig.de

Contenido

1. Introducción

2. Aplicaciones en agricultura

- 3. Aplicaciones en el mar
- 4. Aplicaciones en conservación de patrimonio cultural

Contenido

1. Introducción

- 2. Aplicaciones en agricultura
- 3. Aplicaciones en el mar
- 4. Aplicaciones en conservación de patrimonio cultural

Síntesis y Muestreo [<u>Fuente</u>]

Vehículos autónomos [<u>Fuente</u>]

Analisis de Sentimientos [Fuente]

Síntesis y Muestreo [<u>Fuente</u>]

> Universität Braunschweig

Vehículos autónomos [<u>Fuente</u>]

Analisis de Sentimientos [Fuente]

Traducción Automática [Fuente]

Síntesis y Muestreo [<u>Fuente</u>]

Technische

Universität Braunschweig

Vehículos autónomos [Fuente]

Analisis de Sentimientos [Fuente]

Traducción Automática [Fuente]

Reconocimiento de Voz [Fuente]

Síntesis y Muestreo [Fuente]

Deep Learning (DL)

Utiliza multiples capas para extraer caracteristicas de nivel superior

Machine Learning (ML)

Aprender de datos o experiencias pasadas

Inteligencia Artificial (IA)

Sistemas que simulan la inteligencia humana

Primeras Capas

Ultimas Capas

Imágenes áereas, multi-espectrales, SAR

"obtención de información significativa de imágenes o videos digitales para tomar decisiones o dar recomendaciones basado en esa información"

"obtención de información significativa de imágenes o videos digitales para tomar decisiones o dar recomendaciones basado en esa información"

Entendimiento de escena (Scene understanding)

"obtención de información significativa de imágenes o videos digitales para tomar decisiones o dar recomendaciones basado en esa información"

Entendimiento de escena (Scene understanding)

- Detección de tumores/anomalias
- Detección de COVID-19/neumonía
- Reconstrucción de arterias

"obtención de información significativa de imágenes o videos digitales para tomar decisiones o dar recomendaciones basado en esa información"

Entendimiento de escena (Scene understanding)

- <u>Detección de tumores/anomalias</u>
- <u>Detección de COVID-19/neumonía</u>
- Reconstrucción de arterias

- Monitoreo de oceános/bosques
- Planificación urbana
- <u>Cuantificación de daños por</u> desastres naturales

Clasificación de Imágenes

Asignar una clase a toda la imagen

Clasificación de Imágenes

Asignar una clase a toda la imagen

Segmentación Semántica

Asignar una clase a cada pixel de la imagen

Clasificación de Imágenes

Asignar una clase a toda la imagen

Segmentación Semántica

Asignar una clase a cada pixel de la imagen

Detección de Objetos

Encontrar la ubicación de un objeto en la imagen

Clasificación de Imágenes

Asignar una clase a toda la imagen

Segmentación Semántica

Asignar una clase a cada pixel de la imagen

Detección de Objetos

Encontrar la ubicación de un objeto en la imagen

Segmentación de Instancias

Detectar y delinear cada objeto distinto en la imagen

1. Introducción – Teledetección

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

Cámaras Digitales [Fuente]

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

Cámaras Digitales [Fuente]

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

LiDAR [Fuente]

"adquisición de información sobre un objeto o fenómeno sin hacer contacto físico con él"

Cámaras Digitales [Fuente]

LiDAR [Fuente]

Satélites [Fuente]

Tipos de sensores

Tipos de sensores

Sensores Pasivos

[Fuente]

Tipos de sensores

Sensores Activos

Tipos de sensores

- Reflectancia de los objetos a diferentes longitudes de onda
- Afectado por nubes e iluminación
- Interpretación más intuitiva

- Afectado por viento, humedad
- Interpretación más compleja

Sensores Pasivos

Sensores Activos

[Fuente]

Imagen óptica | Sentinel-2A | 19 Junio 2018 | Bahia, Brasil

Imagen SAR | Sentinel-1A | 19 Junio 2018 | Bahia, Brasil

Sensor Pasivo Sensor Activo

Contenido

1. Introducción

2. Aplicaciones en agricultura

3. Aplicaciones en el mar

4. Aplicaciones en conservación de patrimonio cultural

2. Aplicaciones en Agricultura

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

2. Aplicaciones en Agricultura

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

Segmentación Semántica Imágenes de satélite

Fuente: Crops identification by using satellite images http://www.igik.edu.pl/en/remote-sensing-crop-recognition

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

Segmentación Semántica

Imágenes áreas

2. Aplicaciones en Agricultura

Reconocimiento de cultivos agrícolas

- Registros de rotación de cultivos
- Mapear productividad del suelo
- Inventarios sobre tipos de cultivos
- Predicción de rendimiento
- Monitoreo de actividades agrícolas

Segmentación Semántica
Imágenes de drones

Fuente: Feng, Q., Yang, J., Liu, Y., Ou, C., Zhu, D., Niu, B., ... & Li, B. (2020). Multi-temporal unmanned aerial vehicle remote sensing for vegetable mapping using an attention-based recurrent convolutional neural network. Remote Sensing, 12(10), 1668.

Contenido

1. Introducción

2. Aplicaciones en agricultura

3. Aplicaciones en el mar

4. Aplicaciones en conservación de patrimonio cultural

Industria Offshore de Petróleo y gas

Onshore

VS.

Offshore

- Industria Offshore de Petróleo y gas
- Actividades en el mar
 - Exploración
 - encontrar nuevas ubicaciones
 - mapeo de la vida marina
 - Monitoreo
 - estado de equipos
 - prevención
 - Extracción
 - perforación
 - estado de los reservatorios
 - pozos de petróleo

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

- Reportes diarios
- Eventos
 - Naturales

usando datos satelitales

Hechos por el hombre

Monitoreo de eventos marinos

- Datos
 - Radar
 - Ópticos

C. Bentz, Reconhecimento automático de eventos ambientais costeiros RADARSAT-1 03/04/02 e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

C. Bentz, Reconhecimento automático de eventos ambientais costeiros RADARSAT-1 03/04/02 e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

C. Bentz, Reconhecimento automático de eventos ambientais costeiros RADARSAT-1 03/04/02 e oceânicos em imagens de radares orbitais

Zonas de poco viento

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Descartes de embarcaciones en movimiento

C. Bentz, Reconhecimento automático de eventos ambientais costeiros e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Descartes de embarcaciones en movimiento

C. Bentz. Reconhecimento automático de eventos ambientais costeiros e oceânicos em imagens de radares orbitais

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- **Eventos**
 - **Naturales**
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

- Agua de producción (oleosa)
- Fluidos de perforación

Monitoreo de eventos marinos usando datos satelitales

- Reportes diarios
- Eventos
 - Naturales
 - Hechos por el hombre
- Datos
 - Radar
 - Ópticos

Segmentación Semántica

Liu, G., Xia, G. S., Yang, W., & Xue, N. (2014, July). SAR image segmentation via non-local active contours. In 2014 IEEE Geoscience and Remote Sensing Symposium (pp. 3730-3733).

Contenido

1. Introducción

2. Aplicaciones en agricultura

- 3. Aplicaciones en el mar
- 4. Aplicaciones en conservación de patrimonio cultural

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Fuente: Translating lost languages using machine learning https://news.mit.edu/2020/translating-lost-languages-using-machine-learning-1021

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Fuente: Assael, Y., Sommerschield, T., & Prag, J. (2019). Restoring ancient text using deep learning: a case study on Greek epigraphy. arXiv preprint arXiv:1910.06262.

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Fuente: Cooper, J., & Arandjelović, O. (2020). Learning to Describe: A New Approach to Computer Vision Based Ancient Coin Analysis. Sci, 2(2), 27.

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Detección automática de edificios del periodo de alto modernismo (1920-1970)

KT 60 L

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Detección automática de edificios del periodo de alto modernismo (1920-1970)

> DOP: Digital Orthophoto nDSM: Normalized Digital Surface Model

- Descifrando lenguas antiguas
- Restauración de texto antiguo
- Identificación automática
- Detección del patrimonio cultural desconocido

Detección automática de edificios del periodo de alto modernismo (1920-1970)

Manual (naranja) Automático (azul)

Interpretando el mundo a través de imágenes y deep learning

Ph.D. Pedro Achanccaray Diaz

Researcher

p.diaz@tu-braunschweig.de