1 Electrons in a metal as an ideal Fermi gas (7 points)

A metal contains conduction electrons in a volume V. The temperature is T=0 so that the chemical potential is $\mu=\varepsilon_F$. The magnetic moment of the electrons is μ_m . A magnetic field B is switched on, hence the energy of particles with spin parallel (+) and anti-parallel (-) to the magnetic field is

$$\varepsilon_{\pm}(p) = \frac{p^2}{2m} \mp \mu_m B \tag{1}$$

respectively. In the following the magnetic field is assumed so weak that only its first order effect should be considered.

a) Calculate the mean number $\langle N_{\pm} \rangle$ of electrons with spin parallel and anti-parallel to the magnetic field, respectively. (3 points)

$$Z = Z_{+} + Z_{-}??? (2)$$

$$Z_{\pm} = \int_{0}^{\infty} d\varepsilon \cdot \left(1 + \exp(-\beta \varepsilon)\right) \cdot n_{\pm}(\varepsilon)$$
 (3)

$$\langle N \rangle = -\frac{1}{\beta} \partial_{\mu} \ln(Z) \tag{4}$$

b) Calculate the mean magnetization M and the magnetic susceptibility χ . (2 points)

$$M = \mu_m \cdot (\langle N_+ \rangle - \langle N_- \rangle) \tag{5}$$

$$\chi = \left(\frac{\partial M}{\partial B}\right) \tag{6}$$

c) Express the chemical potential μ in terms of the mean total number of electrons $\langle N \rangle$ and eliminate the chemical potential from the formula for the susceptibility. (2 points)

$$\langle N \rangle = \langle N_{+} \rangle + \langle N_{-} \rangle \tag{7}$$

0 1 0/7 2 0/4 3 4/9 7 4/15

2 Particle-hole symmetry for fermions (4 points)

Consider a system of spin 1/2 fermions at temperature T, that occupy a finite number M of energy levels ε_i with i = 1, 2, ..., M.

a) Determine the grand canonical partition sum Z_G . (1 point)

HINT: Pay attention to the degeneracy.

0/4

$$Z_G = \sum_{i=1}^{M} \left[1 + 2e^{-\beta(\varepsilon_i - 2\mu)} + e^{-\beta(\varepsilon_i - \mu)} \right] ???$$
(8)

b) Use the relation $F = -k_B T \ln Z_G + \mu \langle N \rangle$ between the free energy, the grand canonical partition sum, the chemical potential and the mean particle number to show: the thermodynamic properties of the system stay the same if one, instead of considering the $\langle N \rangle$ particles, distributes $2M - \langle N \rangle$ "holes" with chemical potential μ on the energy levels $-\varepsilon_i$.

For each state
$$\epsilon_i$$
, have
 ϵ_i and ϵ_i are ϵ_i and ϵ_i and ϵ_i and ϵ_i are ϵ_i and ϵ_i and ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i and ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i and ϵ_i are ϵ_i and ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i are ϵ_i are ϵ_i are ϵ_i and ϵ_i are ϵ_i and ϵ_i a

3 Ultra-relativistic ideal Fermi fluid (4 points)

An ultra-relativistic ideal Fermi fluid is contained in a volume V. The chemical potential is μ . Consider only the special case T=0 in the following. Calculate the mean particle number $\langle N \rangle$ and the mean total energy $\langle E \rangle$. Express $\langle E \rangle$ in terms of $\langle N \rangle$ and μ .

HINT: Ultra-relativistic means that you can neglect the mass term in the relativistic formula for the energy of the particles:

$$\varepsilon(\vec{p}) = \sqrt{m^2 c^4 + \vec{p}^2 c^2} \approx pc. \tag{9}$$

We use the following identity from the lecture script:

$$\sum_{\vec{k},ms} (...) = 2 \cdot \frac{V}{h^3} \int d\vec{p} (...) = \frac{2V}{h^3} \int_0^\infty dp \, 4\pi p^2 (...).$$
 (10)

Thus, the mean particle number is given by

$$\langle N \rangle = \sum_{\vec{k}, m_S} n_{\vec{k}, m_S} = \frac{8\pi V}{c^3 h^3} \int_0^\infty d\varepsilon \, \varepsilon^2 n(\varepsilon) \,,$$
 (11)

where we used the linear dispersion relation $\varepsilon(p) = pc$ for ultra-relativistic particles. In the limit T = 0, the Fermi function becomes $n(\varepsilon) = \theta(\mu - \varepsilon)$:

$$\langle N \rangle = \frac{8\pi V}{c^3 h^3} \int_0^\mu d\varepsilon \, \varepsilon^2 = \frac{8\pi V}{3c^3 h^3} \mu^3 \,. \tag{12}$$

A similar calculation is done for the mean energy:

$$\langle E \rangle = \frac{8\pi V}{c^3 h^3} \int_0^\infty d\varepsilon \, \varepsilon^2 n(\varepsilon) \varepsilon = \frac{8\pi V}{c^3 h^3} \int_0^\mu d\varepsilon \, \varepsilon^3 = \frac{2\pi V}{c^3 h^3} \mu^4 = \frac{3}{4} \langle N \rangle \mu. \tag{13}$$

4/4