NYU Computer Science Bridge to Tandon Course

Winter 2021

Homework 5 Q3-Q5

Name: Yiwen Cui

Question 3

```
a: 4.1.3 b Not a well-defined function, when x = 2 or x = -2. Thus not a function.
```

a: 4.1.3 c This is a function. Range of f is $\{f(x) \ge 0\}$

b: 4.1.5 b {4,9,16,25}

b: 4.1.5 d {0,1,2,3,4,5}

b: 4.1.5 h $\{(1,1),(2,1),(3,1),(1,2),(2,2),(3,2),(1,3),(2,3),(3,3)\}$

b: 4.1.5 i $\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$

b: 4.1.5 l $\{\emptyset, \{2\}, \{3\}, \{2,3\}\}$

Question 4

I a: 4.2.2 c

Not onto. For example, there is no integer x when y=2. One-to-one. If $x1 \neq x2$, then $f(x1) \neq f(x2)$

I a: 4.2.2 g

Not onto. For example, there is no pair (x,y), $x \in Z$ and $y \in Z$ when f(x,y) is (1,5). One-to-one. If $(x1,y1) \neq (x2,y2)$, then $f(x1,y1) \neq f(x2,y2)$

I a: 4.2.2 k

Not onto. For example, there is no pair (x,y), $x \in Z^+$ and $y \in Z^+$ when f(x,y)=1. One-to-one. If $(x1,y1) \neq (x2,y2)$, then $f(x1,y1) \neq f(x2,y2)$

I b: 4.2.4 b

Not Onto. There is no triple can make f = 000

Not One-to-one. For example, f(001) = f(101) = 101

I b: 4.2.4 c

Both Onto and One-to-one

I b: 4.2.4 d

One-to-one. But not Onto. Function f has a domain with 8 element and target with 16 elements. If it's Onto, domain should have at least 16 element.

I b: 4.2.4 g

Not One-to-one. $f(\{2,3\}) = f(\{1,2,3\}) = \{2,3\}$

Not Onto. There is no element in domain can make $f = \{1\}$

II a: $f: Z \to Z^+,$

$$f(x) = \begin{cases} 3x & x > 0\\ 3|x| + 1 & x \le 1 \end{cases}$$

II b: $f: Z \to Z^+, f(x) = |x| + 1$

II c: $f: Z \to Z^+,$

$$f(x) = \begin{cases} 2x+1 & x \ge 0\\ -2x & x < 0 \end{cases}$$

2

II d: $f: Z \to Z^+, f(x) = 1$

Question 5

a: 4.3.2 c
$$f^{-1}(x) = (x-3)/2$$

- a: 4.3.2 d Since $|D| \neq |T|$, The function is not a bijection. There is no inverse function.
- a: 4.3.2 g The output of f^{-1} is obtained by taking the input string and reversing the bits.

a: 4.3.2 i
$$f^{-1}(x,y) = (x-5,y+2)$$

b: 4.4.8 c fo
$$h(x) = 2x^2 + 5$$

b: 4.4.8 d h o
$$f(x) = 4x^2 + 12x + 10$$

c: 4.4.2 d h o
$$f(x) = [x^2/5]$$

e: 4.4.4 c No. We will show that if g o f is one-to-one, then f must be one-to-one. If g o f is one-to-one, which means if $f(x) \neq f(y)$ then $g(f(x)) \neq g(f(y))$. then $x \neq y$.

e: 4.4.4 d Yes. The diagram below illustrates an example: (see next page)

