.

Лекция 1

Симметрическая группа перестановок

Содержание лекции:

В настоящей лекции мы коротко напомним об основных свойствах перестановок и действий с ними. В дайльнейшем приведенные здесь факты окажутся полезными.

Ключевые слова:

Перестановка, транспозиция, инверсия, четность перестановки, подстановка, четность подстановки, композиция подстановок, циклические подстановки.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы: mathdep.ifmo.ru/geolin

1.1 Перестановки

Nota bene Здесь мы будем рассматривать некоторое конечное множество M_n , состоящее из n элементов

$$M = \{a, b, \dots, x, y, z\},\,$$

которые могут быть перенумерованы при помощи первых n натуральных чисел. Так как свойства элементов множества M не будут играть никакой роли, примем, что элементами M являются сами числа $1,2,\ldots,n$, то есть

$$M = \{1, 2, \dots, n\}$$
.

Перестановкой элементов конечного множества M_n называется всякое упорядоченное расположение всех его элементов.

Пример 1.1. Некоторые перестановки из 4 чисел:

Лемма 1.1. Число перестановок из n символов равно

$$1 \cdot 2 \cdot \ldots \cdot n = n!$$

▶

Произвольная перестановка из n элементов имеет вид

$$(x_1, x_2, \ldots, x_n),$$

где x_i можно выбрать (n-i+1) различными способами. Число различных перестановок равно числу способов придать различные значения элементам x_i .

_

Транспозицией на множестве перестановок называется преобразование, при котором меняются местами какие-либо два символа перестановки, а остальные символы остаются на месте.

Лемма 1.2. От любой перестановки из n символов можно перейти к любой другой перестановке из тех же символов при помощи конечного числа транспозиций.

▶

Данное утверждение эквивалентно утверждению о том, что все n! перестановок из n символов можно расположить в таком порядке, что каждая следующая будет получаться из предыдущей одной транспозицией, причем начинать можно с любой перестановки. Используем индукцию:

• База индукции:

$$(1,2) \to (2,1), (2,1) \to (1,2).$$

- Предположение: пусть доказано для перестановок из (n-1) элементов.
- Переход: рассмотрим перестановку, состоящую из n элементов

$$(x_1,x_2,\ldots,x_n),$$

по индукционному предположению все перестановки, у которых x_1 стоит на первом месте можно упорядочить согласно требованиям теоремы, причем начиная с данной перестановки. В последней из полученных таким образом перестановок совершаем транспозицию символа x_1 с произвольным другим символом, например x_2 и упорядочим все перестановки, у которых на первом месте стоит x_2 . Таким образом перебираются все перестановки из n элементов.

Пример 1.2. Пример упорядочения перестановок из 3 символов согласно доказательству:

$$(1,2,3) \to (1,3,2) \to (2,3,1) \to (2,1,3) \to (3,1,2) \to (3,2,1).$$

Говорят, что в перестновке числа x_i и x_j образуют **инверсию**, если

$$x_i > x_j, \quad i < j.$$

Перестановка называется **четной**, если ее символы составляют четное число инверсий, и **нечетной** - в противном случае.

Nota bene Перестановка $(1,2,3,\ldots,n)$ четная при любом n, так как не содержит инверсий. Она называется базовой перестановкой.

Пример 1.3. Перестановки и четности:

$$(2,1,3,4)$$
 — 1 инверсия — нечетная; $(4,1,3,2)$ — 4 инверсии — четная.

Лемма 1.3. Всякая транспозиция меняет четность перестановки.

Сначала рассмотрим случай, когда транспонируемые символы стоят рядом:

$$(\ldots,x_i,x_j,\ldots).$$

В том случае транспозиция элементов x_i и x_j не меняет инверсий, которые данные элементы образуют со всеми остальными (x_i и x_j остались справа от предстоящих элементов и слева от последующих). Однако, если x_i и x_j не образовывали инверсию,

то после транспозиции будут. Таким образом число инверсий изменилось на одну, то есть сменило четность.

Докажем теперь общий случай, когда x_i и x_j не стоят рядом, то есть между ними находятся $k \geq 1$ элементов. Тогда, чтобы совершить транспозицию x_i и x_j необходимо совершить 2k+1 транспозиций: по k транспозиций каждого из x_i и x_j с этими k символами и еще одна транспозиция - переставить местами x_i и x_j . Таким образом общее число транспозиций нечетное и следовательно четность перестановки изменится.

4

Лемма 1.4. При $n \ge 2$ число четных перестановок из n символов равно числу нечетных, то есть равно n!/2.

▶

Все перестановки из n символов можно упорядочить так, что каждая получается из предыдущей одной транспозицией. Транспозиция меняет четность перестановки и значит любые две соседние перестановки будут иметь противоположные четности. Теперь утверждение следует из замечания о том, что при $n \geq 2$ число n!/2 - четное.

4

1.2 Подстановки

Подстановкой степени n будем называть следующий символ

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix},\,$$

который codepжит в каждой из строк перестановку из n элементов множества M_n и onpedеляеm в какой из элементов нижней строки переходит каждый элемент верхней строки.

Пример 1.4. Рассмотрим конкретный случай:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \Rightarrow \quad 1 \to 2, \quad 2 \to 1, \quad 3 \to 3.$$

Nota bene Каждая подстановка $\sigma: M_n \to M_n$ степени n определяет взаимно однозначное отображение множества M_n на себя:

$$\sigma: (x_1, x_2, \dots, x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$$

Пример 1.5. Действие подстановки на перестановку:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} (4, 3, 2, 1) = (1, 3, 4, 2).$$

Подстановка называется **четной**, если четности соответствующих ей двух перестановок совпадают и **нечетной** - в противном случае.

Nota bene Сформулируем несколько *очевидных* лемм, следующих прямо из определения подстановки:

Лемма 1.5. Общее число подстановок степени n равно n!

Лемма 1.6. Число четных подстановок равно числу нечетных и равно n!/2.

Лемма 1.7. Четная подстановка не меняет четность перестановки, тогда как нечетная подстановка - меняет.

1.3 Симметрическая группа

Определим на множестве S_n подстановок степени n операцию **композиции подстановок**. Пусть $\sigma, \chi \in S_n$ две подстановки:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}, \quad \chi = \begin{pmatrix} 1 & 2 & \dots & n \\ \chi(1) & \chi(2) & \dots & \chi(n) \end{pmatrix},$$

тогда результатом их композиции будет следующий символ

$$\chi \circ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \chi(\sigma(1)) & \chi(\sigma(2)) & \dots & \chi(\sigma(n)) \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ (\chi \circ \sigma)(1) & (\chi \circ \sigma)(2) & \dots & (\chi \circ \sigma)(n). \end{pmatrix}$$

Nota bene Композиция подстановок является подстановкой.

Пример 1.6. Пусть даны две подстановки:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}, \quad \chi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}.$$

Найдем их композицию:

$$\chi \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}, \quad \sigma \circ \chi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}.$$

Nota bene Композиция подстановок - некоммутативная операция:

$$\chi \circ \sigma \neq \sigma \circ \chi$$
.

Лемма 1.8. Операция композиции ассоциативна:

$$\forall \sigma, \chi, \varphi \quad (\sigma \circ \chi) \circ \varphi = \sigma \circ (\chi \circ \varphi)$$

Лемма 1.9. На множестве S_n относеительно закона композиции существует нейтральный элемент:

$$\exists \operatorname{id} \in S_n : \forall \sigma \in S_n \quad \sigma \circ \operatorname{id} = \sigma = \operatorname{id} \circ \sigma.$$

Предъявляем:

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

Лемма 1.10. Для каждого элемента $\sigma \in S_n$ сущесвует обратный σ^{-1} :

$$\forall \sigma \in S_n \quad \exists \sigma^{-1} \in S_n : \quad \sigma \circ \sigma^{-1} = \mathrm{id} = \sigma^{-1} \circ \sigma.$$

Предъявляем:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}, \quad \sigma^{-1} = \begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix},$$

Теорема 1.1. Операция композиции на множестве S_n индуцирует структуру некоммутативной группы - группы автоморфизмов $\operatorname{Aut}(M_n)$ множества M_n .

Nota bene Всякая транспозиция $t_{ij}^{(n)}$ элементов x_i и x_j перестановки является элементом $S_n = \operatorname{Aut}(M_n)$:

$$t_{ij}^{(n)} = \begin{pmatrix} \dots & i & \dots & j & \dots \\ \dots & j & \dots & i & \dots \end{pmatrix}$$

Лемма 1.11. Всякая подстановка σ представима в виде произведения транспозиций.

Все перестановки из n чисел можно получить из одной из них последовательным применением транспозиций. Следовательно, всякая подстановка может быть получена из тождественной подстановки путем последовательного применения транспозиций в нижней строке, то есть последовательных композиций с подстановками вида $t_{ij}^{(n)}$.

Пример 1.7. Разложение подстановки в композицию транспозиций:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} = (1,2)(1,5)(3,4), \quad (i,j) \triangleq t_{ij}^{(5)}.$$

Nota bene Разложение подстановки в композицию транспозиций не единственно.

Лемма 1.12. При любом разложении подстановки в композицию транспозиций четность числа элементов композиции совпадает с четностью подстановки.

Циклической (или циклом) называется подстановка, которая переставляет элементы некоторого подмножества $A \subset M_n$ циклическим образом. При этом мощность множества A называется **длиной цикла**.

Пример 1.8. Рассмотрим цикл:

$$\langle 1, 3, 2 \rangle = (1 \rightarrow 3 \rightarrow 2 \rightarrow 1),$$

Ему соответствует следующая подстановка:

$$\langle 1, 2, 3 \rangle = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}.$$

Nota bene Всякая транспозиция является циклической подстановкой:

$$t_{ij}^{(n)} = \langle i, j \rangle$$

Два цикла степени n называются **независимыми**, если они не имеют общих переставляемых символов.

Пример 1.9. Пример независимых циклов для подстановки степени 6:

$$\langle 1, 5 \rangle$$
, $\langle 2, 3, 4 \rangle$.

Лемма 1.13. Всякая подстановка может быть единственным образом разложена в композицию попарно независимых циклов.

Пример 1.10. Разложение подстановки степени 5 в композицию циклов:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix} = \langle 1, 3 \rangle \langle 2, 5, 4 \rangle.$$

Nota bene Наконец, напомним наиболее важные комбинаторные понятия:

ullet сочетанием из n по k называется набор из k элементов, выбранных из n-элементного множества, в котором $\mu e \ y + u m u b a e m c n$ -сочетаний равно

$$C_n^k = \frac{n!}{k!(n-k!)}.$$

• размещением из n по k называется набор из k элементов, выбранных из nэлементного множества, в котором y-umывается порядок элементов. Число сочетаний равно

$$A_n^k = \frac{n!}{(n-k)!}.$$