Міністерство освіти і науки України Національний центр «Мала академія наук України» LIX Всеукраїнська учнівська олімпіада з фізики, м. Львів, 2025 Теоретичний тур, 10-й клас

1. «Доплер-трамваї»

Два однакові швидкісні трамваї їдуть назустріч один одному і час від часу подають сигнали на однаковій частоті ν_0 . Водії кожного з трамваїв вимірюють частоту прийнятих ними сигналів від іншого трамваю мобільними телефонами.

Коли трамваї зближувалися, водій першого трамваю фіксував частоту $\nu_1=2323.2$ Гц сигналу від другого. Коли ж трамваї вже роз'їхалися, частота звуку сигналу від другого трамваю суттєво впала з ν_1 до $\nu'_1=1694.0$ Гц. Водій другого трамваю в цей самий час побачив, що частота сигналів від першого трамваю склала $\nu'_2=1687.5$ Гц. Вважати, що в обох випадках відстань між трамваями була набагато більшою за відстань між коліями.

- А. Знайдіть частоту сигналів ν_0
- Б. Знайдіть швидкості трамваїв, уважаючи, що швидкість звуку у повітрі дорівнює 330 м/с.
- В. Дайте відповіді на питання А і Б, врахувавши, що весь час в напрямку руху першого трамваю дув вітер зі швидкістю 4 м/с.

Підказка: Коли відстань між джерелом сигналів і приймачем зменшується, приймач реєструє коротший проміжок часу між сигналами, а коли збільшується – більший. Так само змінюється і період звукових хвиль.

2. «Клубок нервів резисторів»

Учениця знайшла клубок резисторів, з якого стирчать три контакти. Позначимо їх A, B, C. Щоб дослідити цей клубок вона увімкнула джерело невідомої постійної напруги між контактами AB та амперметр між контактами AC. Амперметр показав струм I_1 . Не відключаючи джерело, учениця увімкнула цей самий амперметр між контактами BC, і він показав такий самий струм I_1 . Нарешті, вона увімкнула цей амперметр послідовно з джерелом між контактами AB. Тепер амперметр показав інший струм I_2 .

Уважаючи амперметр та джерело ідеальними, знайдіть **силу струму**, який протікатиме через амперметр, якщо його увімкнути послідовно з джерелом між контактами BC.

Підказка. Можна змоделювати клубок резисторів схемою з мінімально можливою їх кількістю.

3. «Гумова електростатика»

Гумове кільце радіуса R, рівномірно заряджене зарядом Q, зафіксоване в горизонтальній площині. Діелектричний важкий стрижень довжини a, рівномірно заряджений по довжині

зарядом q протилежного знаку, знаходиться на осі кільця на великій відстані від нього. Щоб утримувати стрижень в рівновазі, до його верхнього кінця прикладають силу F_1 , а сила натягу в його середині дорівнює T_1 . У другому експерименті стрижень пересунули так, що його нижній кінець опинився на висоті a від кільця. При цьому необхідна для утримання сила, прикладена до верхнього кінця стрижня, становила F_2 , а сила натягу в середині стрижня дорівнювала T_2 (див. рис.). У третьому експерименті стрижень ще додатково піднімають на відстань a вгору, а гумове кільце розтягають удвічі. Якою силою можна тепер утримувати стрижень в рівновазі? Поляризацією матеріалу стрижня та його деформацією знехтуйте.

4. «Прискорений шприц»

Шприц з маленьким «носиком» повністю заповнили водою і утримують у вертикальному положенні з отвором від «носику» вгору, підтримуючи поршень шприца так, щоб вода не витікала. Висота води в шприці дорівнює h, «носик» при цьому незаповнений, площа поперечного перерізу шприца дорівнює S_1 , площа перерізу «носика» S_2 (S_2 можна вважати набагато меншою за S_1). На поршень почала діяти сила F, спрямована вертикально вгору і більша за силу, потрібну для утримання його в нерухомому стані. Через деякий короткий час під її дією поршень починає

рухатися з невеликим прискоренням. Знайдіть величину цього прискорення, уважаючи його сталим.

Поверхневими явищами, в'язкістю води та тертям між поршнем та стінками шприца знехтувати.

5. «Титан»

370 років тому, 25 березня 1655 року, нідерландський вчений Християн Гюйгенс відкрив супутник Сатурна Титан. Титан — єдиний супутник планет Сонячної системи, що має щільну атмосферу. Більш того, атмосферний тиск на його поверхні перевищує земний майже в 1,5 рази і дорівнює P = 146,7 кПа.

Гравітаційна стала $G = 6,674 \cdot 10^{-11} \, \text{H} \cdot \text{M}^2/\text{кг}^2$, прискорення вільного падіння на поверхні Титану 1,352 м/с².

20 років тому, 14 січня 2005 р. космічний зонд Гюйгенс Європейського космічного агентства здійснив м'яку посадку на поверхню Титану. На Рис. фрагмент відеоінтерпретації перших секунд після посадки зонду і падіння парашуту, розрахований на основі отриманих даних.

Б.Враховуючи, що сила опору повітря залежить від швидкості руху зонду, густини атмосфери і площі поперечного перерізу (безрозмірний коефіцієнт пропорційності у відповідному співвідношенні вважати рівним порядку одиниці), **оцініть швидкість зонду** перед зіткненням з поверхнею. Діаметр зонду d=1,3 м, маса m=320 кг. Атмосфера Титану (як і Землі) складається переважно з азоту N_2 , але має температуру -180°C. Універсальна газова стала

R = 8.3 Дж/(моль · K). Азот вважати ідеальним газом.

В. Титан зі швидкістю 5,6 км/с за 16 діб робить оберт навколо Сатурна в тому ж напряму, в якому Сатурн зі швидкістю 9,7 км/с за 29 років обертається навколо Сонця. Вважаючи, що орбіта Титану лежить в площині орбіти Сатурну, зобразіть у системі відліку Сонця фрагмент траєкторії Титану і визначте мінімальний та максимальний радіуси її кривизни.

Задачі запропонували: 1. Орлянський О.Ю., 2. Рідкокаша І.П. З.Майзеліс З.О., 4. Олійник А.О., 5. Орлянський О.Ю.