Taylor loves trees, and this new challenge has him stumped!

Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, c_i , attached to it.

A *query* on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers (i, j) such that the following four conditions are all satisfied:

- $i \neq j$
- $i \in \text{the path from node } w \text{ to node } x$.
- $j \in \text{path from node } y \text{ to node } z$.
- $c_i = c_j$

Given t and q queries, process each query in order, printing the pair count for each query on a new line.

Input Format

The first line contains two space-separated integers describing the respective values of n (the number of nodes) and q (the number of queries).

The second line contains n space-separated integers describing the respective values of each node (i.e., (c_1,c_2,\ldots,c_n) .

Each of the n-1 subsequent lines contains two space-separated integers, u and v, defining a bidirectional edge between nodes \boldsymbol{u} and \boldsymbol{v} .

Each of the q subsequent lines contains a w x y z query, defined above.

Constraints

- $1 \le n \le 10^5$ $1 \le q \le 50000$
- $1 \le c_i \le 10^9$
- $1 \le u, v, w, x, y, z \le n$

Scoring for this problem is Binary, that means you have to pass all the test cases to get a positive score.

Output Format

For each query, print the count of ordered pairs of integers satisfying the four given conditions on a new line.

Sample Input

```
10 2 3 5 10 5 3 6 2 1
1 3
3 4
3 5
3 6
4 7
5 8
7 9
2 10
8 5 2 10
3 8 4 9
1 9 5 9
4 6 4 6
5 8 5 8
```

Sample Output

0 1 3

2

Explanation

We perform q = 5 queries on the following tree:

- 1. Find the number of valid ordered pairs where i is in the path from node b to node b and b is in the path from node b to node
- 2. Find the number of valid ordered pairs where i is in the path from node 3 to node 3 and j is in the path from node 4 to node 9. One such pair, (3,7), exists, so we print 1.
- 3. Find the number of valid ordered pairs where i is in the path from node 1 to node 9 and j is in the path from node 5 to node 9. Three such pairs, (1,5), (3,7), and (7,3) exist, so we print 3.
- 4. Find the number of valid ordered pairs where i is in the path from node 4 to node 6 and j is in the path from node 4 to node 6. Two such pairs, (4,6) and (6,4), exist, so we print 2.
- 5. Find the number of valid ordered pairs where i is in the path from node 5 to node 8 and j is in the path from node 5 to node 8. No such pair exists, so we print 0.