

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC AACCCTAACCCTAACCCTAACCCTA ACCCTAACCCCAACCCCAACCCCAAC CTACCCTAACCCTAACCCTAACCCTA ACCCTAACCCTAACCCTAACCCTAA

Supplementary Learning Materials

TA: 叶永鑫(Adam Y. Ye) 北京大学生物信息学中心

Center for Bioinformatics, Peking University

Outline

Homology & Similarity

Similarity Matrix

Dot Matrix

Homology

- Homology
 - derived from a common ancestor

- ortholog: derived from speciation
- paralog: derived from duplication

Ortholog vs Paralog

Ortholog comes with speciation Paralog comes with duplication

Similarity vs Identity

Similarity

Identity

(Adopted from Prof. Jingchu Luo)

Homology vs Similarity

How to let computer do this job?

- How to measure similarity?
 - Similarity matrix

Similarity Matrix

- For nucleotides,
 - usually only distinguish match / mismatch (identity matrix) for sequence alignment
 - but a more complicated substitution model is used for phylogeny reconstruction

	Α	Т	С	G
Α	1	-2	-2	-2
Т	-2	1	-2	-2
С	-2	-2	1	-2
G	-2	-2	-2	1

Similarity Matrix

- For amino acids,
 - PAM (1978, Margaret Dayhoff)
 - Two sequences are 1 PAM apart if they differ in 1 % of the residues.
 - 1 PAM = one step of evolution
 - BLOSUM (1992, Steven Henikoff & Jorja Henikoff)
 - computed by looking at "blocks" of conserved sequences found in multiple protein alignments

PAM

PAM 1

1	Α	В	С		
Α	0.8	0.1	0.1		
В	0.05	0.9	0.05		
C	0.15	0.05	0.8		

PAM 2 ?

$$P(A->?->A) = P(A->A->A) + P(A->B->A) + P(A->C->A)$$

= $P(A->A)P(A->A) + P(A->B)P(B->A) + P(A->C)P(C->A)$
 $P(A->?->B) = P(A->A->B) + P(A->B->B) + P(A->C->B)$
= $P(A->A)P(A->B) + P(A->B)P(B->B) + P(A->C)P(C->B)$

. . .

PAM

- PAM 1
- PAM $2 = (PAM 1)^2$

1	Α	В	С		
А	0.8	0.1	0.1		
В	0.05	0.9	0.05		
С	0.15	0.05	0.8		

	1	А	В	C		
,	А	0.8	0.1	0.1		
<	В	0.05	0.9	0.05		
	С	0.15	0.05	0.8		

	2 /	A	В	С		
	Α	0.66	0.175	0.165		
-	В	0.093	0.817	0.09		
	С	0.243	0.1	0.657		

TT

PAM

• PAM 1

- PAM 250 = $(PAM 1)^{250}$
- Log odds of PAM 250 $\log \text{ odds} = \log(p/(1-p))$

S		12	2	\																	
T P	Thr Pro	-2 -3	1	3	6	\															
A G	Ala Gly	-2 -3	1	0	1 -1	2	5	\													
N D	Asn Asp	-4 -5	1	0	-1 -1	0	0	2	4	\											
E Q	Glu Gln	-5 -5	0 -1	0	-1 0	0	0	1	3	4 2	4	\									
н	His	-3	-1	-1	0	-1	-2	2	1	1	3	6	\								
R K	Arg Lys	-4 -5	0	-1 0	-1	-2 -1	-3 -2	1	-1 0	-1 0	1	0	3	5							
	Met Ile	-5 -2	-2 -1	-1 0	-2 -2	-1 -1	-3 -3	-2 -2	-3 -2	-2 -2	-1 -2	-2 -2	0 -2	0 -2	6	5	\				
L	Leu Val	-6 -2	-3 -1	-2 0	-3 -1	-2 0	-4 -1	-3 -2	-4 -2	-3 -2	-2 -2	-2 -2	-3 -2	-3 -2	4 2	2	6	4			
F	Phe	-4	-3	-3	-5	-4	-5	-4	-6	-5	-5	-2	-4	-5	0	1	2	-1	9	\	
W	Tyr Trp	-8	-3 -2	-3 -5	-5 -6	-3 -6	-5 -7	-2 -4	-4 -7	-4 -7	-4 -5	-3	-4	-4 -3	-2 -4	-1 -5	-1 -2	-2\ -6	7	10 0	17
		Cys	\$ Ser	T Thr	P Pro	A Ala	G G1 y	N Asn	D Asp	E G1 u	Q Gln	His	R Arg	K Lys	M Met	I Ne	L Leu	V Val	F Phe	Y Tyr	W Trp

BLOSUM

Less divergent

More divergent

BLOSUM 80

BLOSUM 62

BLOSUM 45

PAM 1

PAM 120

PAM 250

How to let computer do this job?

- How to measure similarity?
 - Similarity matrix
- How to find out alignment?
 - Dot matrix
 - Dynamic programming
 - BLAST

Dot Matrix

ATAGCTA ATAGC-TA

ATAGCTA AT-GCCTA

	А	Τ	А	G	С	Τ	Α
Α	7		1				1
Т		7				7	
Α	1		7				1
G				7			
С					1		
Т		1				1	
Α	1/		1				1

	А	Τ	Α	G	С	Т	Α
A	1		1				1
Т		1				1	
G				1			
С					1		
С					7		
Т		1				1	
Α	1		1				1,1

Copyright © Peking University

Dot Matrix

- PQRACGTGCTAGCTAGCT-GACGTAGCTGACPQR
- PQRAC-TGCTACCTAGCTCGACGTATCTGACPQR

Thank you for your attention

