Neural Networks

Introduction

- Rebirth of neural networks
- Inspired by the human brain (networks of neurons)

History of Deep Learning

Neural Networks

Neuron

- Based on how much these incoming neurons are firing, and how "strong" the neural connections are, our main neuron will "decide" how strongly it wants to fire.
- Learning in the brain happens by neurons becoming connected to other neurons, and the strengths of connections adapting over time.
- Receives input from D-many other neurons, one for each input feature. The strength of these inputs are the feature values.

Neural networks

-0.06

Firing is interpreted as being a positive example and not firing is nterpreted as being a negative example

W2

$$a = \sum_{d=1}^{D} w_d x_d$$

W3

1.4

-2.5

-0.06

 $\mathbf{W}1$

-2.5 <u>W2</u>

W3

$$x = -0.06 \times 2.7 + 2.5 \times 8.6 + 1.4 \times 0.002 = 21.34$$

1.4

-0.06

W1

Features with zero weight are ignored. Features with positive weights are indicative of positive examples because they cause the activation to increase. Features with negative weights are indicative of negative examples because they cause the activiation to decrease.

-2.5 <u>W2</u>

W3

$$x = -0.06 \times 2.7 + 2.5 \times 8.6 + 1.4 \times 0.002 = 21.34$$

$$a = \left[\sum_{d=1}^{D} w_d x_d\right] + b$$

Perceptron Algorithm

- Online. This means hat instead of considering the entire data set at the same time, it only ever looks at one example.
- error driven. This means that, so long as it is doing well, it doesn't bother updating its parameters

Perceptron Algorithm

Algorithm 5 PerceptronTrain(D, MaxIter)

```
1: w_d \leftarrow o, for all d = 1 \dots D
                                                                              // initialize weights
b \leftarrow 0
                                                                                  // initialize bias
_{3:} for iter = 1 \dots MaxIter do
      for all (x,y) \in D do
         a \leftarrow \sum_{d=1}^{D} w_d x_d + b
                                                        // compute activation for this example
    if ya \leq o then
             w_d \leftarrow w_d + yx_d, for all d = 1 \dots D
                                                                               // update weights
             b \leftarrow b + y
                                                                                    // update bias
8:
         end if
9:
      end for
10:
11: end for
return w_0, w_1, ..., w_D, b
```

Perceptron algorithm

- weight wd is increased by yxd and the bias is increased by y.
- goal of the update is to adjust the parameters so that they are "better' for the current example

$$a' = \sum_{d=1}^{D} w'_d x_d + b'$$

$$= \sum_{d=1}^{D} (w_d + x_d) x_d + (b+1)$$

$$= \sum_{d=1}^{D} w_d x_d + b + \sum_{d=1}^{D} x_d x_d + 1$$

$$= a + \sum_{d=1}^{D} x_d^2 + 1 > a$$

Perceptron algorithm

- If we make many many passes over the training data, then the algorithm is likely to overfit. On the other hand, going over the data only one time might lead to underfitting
- loop over all the training examples in a constant
- Order is a bad idea. re-permute the examples in each iteration.

Perceptron decision boundary

$$\mathcal{B} = \left\{ x : \sum_{d} w_d x_d = 0 \right\}$$

normalized weight vectors, **w x** is just the distance of **x**, **w** is exactly the activiation of that example

How do they learn?

A dataset

Fields		class
1.4 2.7	1.9	O
3.8 3.4	3.2	0
6.4 2.8	1.7	1
4.1 0.1	0.2	0
etc		

How do they learn?

Training data

Fie	lds	class	
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc			

Initialise with random weights

How do they learn?

Training data

_	Fields		class	
	1.4 2.7	1.9	0	
	3.8 3.4	3.2	0	
	6.4 2.8	1.7	1	
	4.1 0.1	0.2	0	
	etc			

Present a training pattern

How do they learn?

Training data

Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Feed it through to get output

How do they learn?

Training data

_	Fields		class	
	1.4 2.7	1.9	0	
	3.8 3.4	3.2	0	
	6.4 2.8	1.7	1	
	4.1 0.1	0.2	0	
	etc			

Compare with target output

आई आई टी हैदराबाद

How do they learn?

Training data

_Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Adjust weights based on error

How do they learn?

Training data

Fields class 1.4 2.7 1.9 0 0 3.8 3.4 3.2 0 0 6.4 2.8 1.7 1 1 4.1 0.1 0.2 0 0 etc ... 0

Present a training pattern

How do they learn?

Irainin	g aata		
Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	

Training data

Feed it through to get output

etc ...

How do they learn?

$\overline{}$	• •	1 ,
Ira	ınıng	data

Fields		class	
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Compare with target output

How do they learn?

Training data

	O			
Fiel	lds		class	
1.4	2.7	1.9	0	
3.8	3.4	3.2	0	
6.4	2.8	1.7	1	
4.1	0.1	0.2	0	
etc	• • •			

Adjust weights based on error

How do they learn?

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2

etc ...

Repeat this thousands, maybe millions of times – each time taking a random training instance, and making slight weight adjustments, reduce the error

And so on

Called "Gradient Descent"

Initial random weights

Present a training instance / adjust the weights

5-Nov-20

Present a training instance / adjust the weights

Present a training instance / adjust the weights

5-Nov-20

Present a training instance / adjust the weights

5-Nov-20

Eventually

