Application No.: 10/763,377 Amendments to the Claims:

Please amend claim 1 and add new claim 16.

The Claim Listing below will replace all prior versions of the claims in the application.

Claim Listing:

- (Currently Amended) A process comprising the step of reacting a macrocyclic
 compound characterized by at least two nucleophilic moieties with a bifunctional
 bridging component characterized by its ability to form π-allyl metal complex in the
 presence of catalyst, whereby each of two nucleophilic moieties of the macrocyclic
 compound reacts with said bifunctional bridging component, thereby achieving a
 bridged macrocyclic product.
- (Original) The process of claim 1, wherein the macrocyclic compound is a macrolide antibiotic.
- (Original) The process of claim 1, wherein the macrocyclic compound is an erythromycin derivative.
- (Original) The process of claim 3, wherein the erythromycin derivative is azithromycin, desmethyl azithromycin, roxithromycin, clarithromycin, telithromycin, or cethromycin.
- 5. (Original) The process of claim 1, wherein the macrocyclic compound is selected from:

Page 3 of 11

wherein

D is selected from $-NHCH_{2^-}$, $-NHCHR_{1^-}$, $-NHCR_3R_{4^-}$, $-NR_1CH_{2^-}$, -NHC(O)-, $-NR_1C(O)$ -, -NHC(S)-, or $-NR_1C(S)$ -;

Each R_1 is independently selected from hydrogen, deuterium, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsaturated alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, saturated or unsaturated heterocyclic group;

R₃ and R₄ is independently selected from the group consisting of hydrogen, acyl, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, saturated or unsubstituted heteroaromatic group, saturated or unsubstituted heteroaromatic group; or can be taken together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic or heteroaromatic ring;

L is selected from hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsaturated alicyclic group, a

Application No.: 10/763,377

substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted heteroevelic group:

one of U or V is hydrogen and the other is independently selected from the group

consisting of: R₁, OR₁, OC(O)R₁, OC(O)NR₃R₄, S(O)_nR₁, carbohydrate or sugar moiety:

or U and V, taken together with the carbon atom to which they are attached, are C=0:

or UV and $R_e R_{\delta}$ taken together with the carbon atoms to which they are attached, are $-C(R_1)$ =CH-;

one of J or G is hydrogen and the other is selected from: R₁, OR₁, or NR₃R₄;

or J and G, taken together with the carbon atom to which they are attached, are selected from: C=O, C=NR₁, C=NOR₁, C=NO(CH₂)_mR₁, C=NNHR₁, C=NNHCOR₁, C=NNHCONR₁R₄, C=NNHS(O)_mR₁, or C=N-N=CHR₁;

 R_{as} R_{bs} R_{c} , and R_{d} are independently selected from $-R_{1s}$ $-OR_{1s}$ $-S(O)_nR_{1s}$ $-C(O)OR_{1s}$ $-OC(O)R_{1s}$ $-OC(O)R_{1s}$ -

or R_a and R_b , R_a and R_c , R_a and R_d , R_b and R_c , R_b and R_d , or R_c and R_d , taken together with the carbon atom or atoms to which they are attached, are selected from substituted or unsubstituted alicyclic or substituted or unsubstituted heterocyclic;

one of R_e and R_f is selected from hydrogen or methyl, and the other is independently selected from halogen, deuterium, or R_1 :

R_h is hydroxy;

 $R_{\rm g}$ is selected from hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsaturated alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted heteroaromatic group;

Application No.: 10/763,377

or $R_{\rm g}$ and $R_{\rm h}$ taken together with the carbon atom to which they are attached, are selected from an epoxide, a carbonyl, a substituted or unsubstituted olefin, a substituted or unsubstituted alicyclic, a substituted or unsubstituted heterocyclic;

W is NR₃R₄:

one of X and Y is hydrogen, substituted or unsubstituted aliphatic, and the other is independently selected from: hydroxy, -SH, -NH₂, or -NR₃H:

or X and Y, taken together with the carbon atom to which they are attached, are selected from: C=O, $C=NR_1$, $C=NOR_1$, $C=NO(CH_2)_mR_1$, $C=NNHR_1$, $C=NNHCOR_1$, $C=NNHCOR_3R_4$, $C=NNHS(O)_nR_1$, or $C=N-N=CHR_1$;

 R_{p} is selected from hydrogen, acyl, silane, or a hydroxy protecting group; $X_{H} \ is \ selected \ from \ hydrogen \ or \ halogen;$

m is an integer; and

n is 0, 1, or 2.

- (Previously presented) The process of claim 5, wherein, for the macrocylic compound,
 L is ethyl.
- (Previously presented) The process of claim 5, wherein, for the macrocylic compound, one of X and Y is hydrogen and the other is selected from hydroxy or amino.
- (Previously presented) The process of claim 5, wherein, for the macrocylic compound, X and Y, taken together with the carbon atom to which they are attached, are selected from the group consisting of: C=0, C=NH, C=N-OH, or C=N-NH₂.
- (Previously presented) The process of claim 5, wherein, for the macrocylic compound,
 R_e is methyl.
- (Previously presented) The process of claim 5, wherein, for the macrocylic compound,
 R_e is hydrogen and R_f is selected from methyl, allyl, or propargyl.

Application No.: 10/763,377 4014.1074 US1

11. (Previously presented) The process of claim 5, wherein, for the macrocyclic compound, one of U and V is hydrogen and the other is selected from -OH or -O-cladinose.

- (Previously presented) The process of claim 5, wherein, for the macrocylic compound,
 U and V, taken together with the carbon atom to which they are attached, are C=O.
- 13. (Canceled)
- 14. (Canceled)
- 15. (Canceled)
- 16. (New) The process of Claim 1 wherein each of the two nucleophilic moieties is alkylated by a functional group of the bridging component.