

BK5812 API Reference Design

BK5812 應用參考設計

V0.1

Beken Corporation 電通集成由路(上海)有限公司

博通集成电路(上海)有限公司 电话: (86)21 5108 6811

传真: (86)21 6087 1089

更改记录

版本号	日期	作者	注释

本文内容

主要提供 BK5812 控制流程的程式參考設計, 在初始化、測試功能、連續傳輸應用上可以快速導入產品開發, 主要使用頻段是 2.4GHz 的 GFSK 250kbps、1Mbps、2Mbps、4Mbps 和 6Mbps 空中数据速率。

爲了應用 6Mbps Air Rate 選擇使用 PIC32MX795F512L 平台開發,其中支援了 CLOCK 12M Hz 以上的 SPI 硬體,可以在連續傳送資料上做到最佳的控制。

BK5812 參考程式在"uart_basic" Project 的\firmware\src 資料夾中,將對rf_config / uart_cmd / rf_app / rf_task 進行說明。

rf_config.c/.h

定義 BK5812 暫存器設置與參數, 詳細說明參考文件:BK5812 Datasheet。 依據使用的 Air Rate 定義 Bank 1 Register 參數設定如下:

250K bps	1M bps	2M bps	4M bps	6M bps
REG_0x0,0158F803	REG_0x0,0158F81F	REG_0x0,0158F81F	REG_0x0,0158F81F	REG_0x0,0158F81F
REG_0x1,D0582225	REG_0x1,D0582225	REG_0x1,D0582225	REG_0x1,D0582225	REG_0x1,D0582225
REG_0x2,004C2D90	REG_0x2,004C2D90	REG_0x2,004C2D90	REG_0x2,004C2D90	REG_0x2,004C2D90
REG_0x3,DC241557	REG_0x3,DC241457	REG_0x3,DC241457	REG_0x3,DC2438AB	REG_0x3,DC2438EB
REG_0x4,03807CFA	REG_0x4,36807CFA	REG_0x4,36807CFA	REG_0x4,03807CFA	REG_0x4,03807CFA
REG_0x5,42FC5F67	REG_0x5,02F44F5F	REG_0x5,02F44F5F	REG_0x5,02FC5F67	REG_0x5,02FC5F67
REG_0x6,44857FF1	REG_0x6,44857FF1	REG_0x6,44857FF1	REG_0x6,44857FF1	REG_0x6,44857FF1
REG_0x7,10E69FFF	REG_0x7,10E69FFF	REG_0x7,10E69FFF	REG_0x7,10E69FFF	REG_0x7,10E69FFF
REG_0x8,00000000	REG_0x8,00000000	REG_0x8,00000000	REG_0x8,00000000	REG_0x8,00000000
REG_0x9,00000096	REG_0x9,00000096	REG_0x9,00000096	REG_0x9,00000096	REG_0x9,00000096
REG_0x10,03054000	REG_0x10,03058000	REG_0x10,03058000	REG_0x10,03058000	REG_0x10,43058000
REG_0x11,FAD92E21	REG_0x11,FAE02E21	REG_0x11,FAE02E21	REG_0x11,FAE02E61	REG_0x11,FAE02E61
REG_0x12,001B7305	REG_0x12,001B7305	REG_0x12,001B7305	REG_0x12,001B7305	REG_0x12,001B7305
REG_0x13,36B48004	REG_0x13,36B48004	REG_0x13,36B48005	REG_0x13,36B48000	REG_0x13,36B48000
REG14,412008048120 CFF7FEFFFF	REG14,412008048120 CFF7FEFFFF	REG14,412008048120 CFF7FEFFFF	REG14,412008048120 CFF7FEFFFF	REG14,412008048120 CFF7FEFFFF

Note:列表資料(LSB->MSB), Register SPI format 規範請參考 BK5812 規格書

SPI 硬體介面函式:

配合 MCU 硬體 SPI 控制 BK5812, 發送 Command&讀/寫 暫存器等功能。 Project 驅動請參考 drv_spi_static.c 中 Initialize:

PLIB_SPI_BaudRateSet(SPI_ID_1,SYS_CLK_PeripheralFrequencyGet(CLK_BUS_PERIPHERAL_2), 12000000);

void SPI_Write_Reg(uint8_t reg, uint8_t data)

寫入1	Byte 暫存器資料		
參數	reg:暫存器位置	參數	data:寫入數值

uint8_t SPI_Read_Reg(uint8_t reg)

讀出 11	Byte 暫存器資料		
參數	reg:暫存器位置	返回値	暫存器資料

void SPI_Write_RegBuf(uint8_t reg, uint8_t bytes)

Buffer	寫入暫存器		
參數	reg:暫存器位置	參數	bytes:寫入 byte 數量

void SPI_Read_RegBuf(uint8_t reg, uint8_t bytes)

讀出暫	存器到 Buffer		
參數	reg:暫存器位置	參數	bytes:讀出 byte 數量

void SPI_Write_Buffer(uint8_t* cmd, uint8_t len, uint8_t *pBuf, uint16_t bytes)

寫入 F	IFO 資料		
參數	cmd: SPI command	參數	len: command 長度
參數	* pBuf : Buffer point	參數	bytes: Buffer 長度

void SPI_Read_Buffer(uint8_t* cmd, uint8_t len, uint8_t *pBuf, uint16_t bytes)

讀出 F	IFO 資料		
參數	cmd: SPI command	參數	len: command 長度
參數	*pBuf: Buffer point	參數	bytes: Buffer 長度

BK5812 初始化流程:

void initFSKReg(uint8_t fskMode)

BK58	12 Initialization sequence
參數	fskMode: 250K · 1M · 2M · 4M · 6M

包含 Kmod calibration 和 IF filter calibration, 更換 fskMode 請重新執行初始化。

BK5812 CONFIG FUNCTON:

void SwitchToRxMode(void)

切換至]接收模式
參數	void

void SwitchToTxMode(void)

切換到	發送模式
參數	void

void SetAirRate(uint8_t rate)

設定 RF Air rate

參數 rate: 250K、1M、2M、4M、6M

void SetRFChannel(uint8_t ch)

設定 RF 頻段

參數 ch: RF channel

void setRFPower(uint8_t PahpEN, uint8_t PwrLVL)

設定發射功率

參數 PahpEN: bank1.Reg7<12> PwrLVL: bank1.Reg6<21:16>

2.4G TX Power (dBm)

pwrLVL(HEX)	PAHPEN=0	PAHPEN=1
0	-31	-30
F	-30	-32
10	-29	-31
11	-27	-31
12	-25.5	-29
13	-24	-25
17	-18	-4.5
1B	-13.5	2.2
1F	-10	5.3
23	-7.5	7.1
27	-5.2	8.5
2B	-3.3	9.6
2F	-1.8	10.5
33	-0.6	11.3
37	0.5	11.8
3B	1.3	12.4
3F	2	12.8

BK5812 TEST FUNCTON:

void set_SingleWave(uint8_t ch)

發送單載波			
參數	ch: RF channel		

void set_Pn9Tx(uint8_t ch)

發送 PN9 測試訊號			
參	數	ch: RF channel	

void read_BER(uint8_t ch)

讀出 bi	t error rate 資料,由 uart 串口打印訊原	息。	A		
參數	ch: RF channel	1	1	*	

void tx_packet_test(uint8_t ch)

連續發	送測試封包	
參數	ch: RF channel	

void rx_packet_test(uint8_t ch)

接收退	車續測試封包資料,由 uart 串口打印訊息。
參數	ch: RF channel

更換 BK5812 TEST FUNCTON 請先執行初始化, 相關操作說明請參考 BK5812_Application_Note。

1. uart_cmd.c/.h

使用 uart interface(9600 baud rate)由終端機程式控制 BK 5812,發送 Hex type 串口命令,命令格式 = Head (0x55 0x30) + Length + command + End(0x7E):

```
{ // Command define
                         // e.g.
 CMD_RF_INITIAL = 1,
                         // initial RF 4M = 55 30 02 01 03 7E
 CMD_RF_SNGWAVE = 2,
                         // signal wave ch0 = 55 30 02 02 00 7E
 CMD_RF_BER = 3,
                         // read ch40 BER = 55 30 02 03 28 7E
 CMD_RF_PN9 = 4,
                        // Send ch0 PN9 signal = 55 30 02 04 00 7E
 //
 CMD_RF_SET_DEVIDE = 20,
                        // Set Master 6M RF API link= 55 30 03 14 00 04 7E
                         // Set Slave 6M RF API link = 55 30 03 14 01 04 7E
 CMD RF SEND TEST = 21,
                          // Master device send 0x100000 bytes
                          // = 55 30 05 15 00 00 10 00 7E
};
在測試板上電執行 "uart_basic" API Project 的裝置,於連接終端機會顯示:
==== BEKEN 5812 APP UART CMD. ====
System initial OK!
表示可以進行各種 RF Command 測試,
先執行 CMD_RF_INITIAL 選擇測試的 RF 數據速度,
接著可使用 CMD_RF_SNGWAVE 確認 RF 訊號,
或使用CMD_RF_TX_PACKET / CMD_RF_RX_PACKET 確認收發功能正常。
```


2. rf task.c/.h

RF_TASK 主要處理 Master 和 Slave 兩個裝置同步、連接和使用 API 傳送/接收資料的工作,當使用 CMD_RF_SET_DEVIDE 定義 Master/Slave 裝置設定,

SLAVE 終端機顯示:

2G 4M Slave Device.

Linked.

另一邊 MASTER 終端機則顯示:

2G 4M Master Device.

Linked.

於 Master 執行 CMD_RF_SEND_TEST 設定要傳送的資料長度

Master device 顯示:

Send 1048576 bytes.

Send 2681mSec.

Slave device 顯示:

Read 1048576 Bytes, 0 Err.

等訊息。

表示傳送完成,平均每秒傳送 3.1Mbits 的資料。

3. rf_app.c/.h

規劃 API 資料傳送透過 ff Task Buf [16384] 來暫存, 若定義 Buffer 的空間太小會使 API 容易丢失資料,參考使用下面函式就可以完成高效率的資料傳送。

void init_rf_data_fifo(void)

重設 A	PI buffer 設置
參數	void

發送端:

uint16_t get_rf_data_fifo_space(void)

讀取 Buffer 閒置空間。			
返回値	空間大小(bytes)		

void write_rf_data_fifo(uint8_t* data, uint16_t len)

填寫資料於 buffer 空間,等待傳送。

BK5812 API REFERENCE DESIGN

v0.1

接收端:

uint16_t get_rf_data_fifo_length(void)

取得 Buffer 接收資料長度。			
返回値	資料大小(bytes)		

void read_rf_data_fifo(uint8_t* data, uint16_t len)

讀取打	接收資料於釋放 buffer 空間。			
參數	*data:接收資料指標 t	參數	len:資料長度	

BK5812 封包傳送規劃:

- 1. 使用 RF 4M/6M Air rate 時目前 Payload FIFO 達到 256bytes,設定上需注意調整傳送資料長度應該是 8 的整數倍。
- 2. RF 4M/6M 連續傳送封包時應使用動態封包(Dynamic payload length)設置。而 RF 6M 時 FIFO 傳送資料長度需符合:

(address bytes + payload len. + crc bytes) *8 + 1) /3= 整數的規範。

3. 6M RF 傳送時 Address 設定最高的 3 bits 定義需要固定是 010(b)。