知乎

辉光管升压电路, 12V升压170V电路设计分析

Sadudu

来自侏罗纪的电子工程师

68 人赞了该文章

上一篇介绍了升压原理,这一篇来介绍以下升压方案的具体实施。

上一篇介绍,可以通过占空比来控制输出电压。准确来说,"占空比"这个概念是在PWM中的概念。而电源芯片根据控制方式不同可以分为两种,一种是PWM,另外一种就是PFM了。

PWM就是脉宽调制,直观来说,PWM就是方波的周期不变,而高电平的持续时间发生了变化,引起占空比的变化。

PFM是脉冲频率调制,与之对比,就是方波的高电平持续时间不变,而周期发生了变化,引起占空比的变化。

比起34063,复杂而又效率底下的方案,MAX1771绝对是一个极其简单没有门槛的升压方案。

这篇文章就以经典的PFM控制器MAX1771为例,讲解PFM的工作原理。先来看整体电路图。

知乎好像会压缩图片?感觉看上去不清晰了。

芯片原理简介

MAX1771的外围电路极其简单,几乎不需要我们去设计什么,只需要将反馈电阻设计好就行了。 但是外围简单的电路往往内部不简单。我们来看一下外围电路如此简单的芯片的内部结构是怎么样的。

搜了好久资料,自己也研究了好久,愣是没把RS锁存器部分的详细工作原理看懂,还需要查一些 文献才能看懂。

不过看不懂具体工作原理毫不影响我们的设计。

MAX1771有8个引脚, 官方的Boost电路图如下:

- 可以看到,这是一个经典的Boost电路模型,其中2脚为V+,电源的芯片引脚。我们在这里给的是12V。
- REF引脚由芯片内内部结构可知是一个电压基准源,为了提供和Feedback引脚相比较的电压。由于集成芯片内部不容易集成大电容(大电容体积比较大),所以这里需要外置一个电容进行稳压。0.1uF就行。
- SHDN为芯片的使能引脚,低电平有效。可以把此引脚拉高使芯片处于待机状态。

- AGND和GND是模拟地和数字地,连接后共同接地就行。
- EXT为芯片的脉冲输出引脚,直接与MOS的Gate相连提供脉冲驱动MOS管。
- CS为芯片的电流控制引脚,由芯片内部的结构图可知,此引脚输入到了一个电压比较器,比较电压为0.1V,当此引脚的电压大于0.1V时,芯片停止工作。在Boost电路图中,此引脚的输入电压为
- FB引脚为Feedback引脚,芯片就是通过此引脚感受外部的输出电压,从而调节占空比来调节输出电压趋于稳定状态。

$V_{cs} = I_{ds} imes Rsense$

详细引脚定义可以参考手册:

EXT V+	Gate Drive for External N-Channel Power Transistor Power-Supply Input. Also acts as a voltage-sense point when in bootstrapped mode.
V+	Power-Supply Input. Also acts as a voltage-sense point when in bootstrapped mode.
FB	Feedback Input for Adjustable-Output Operation. Connect to ground for fixed-output operation. Use a resistor divider network to adjust the output voltage. See Setting the Output Voltage section.
SHDN	Active-High TTL/CMOS Logic-Level Shutdown Input. In shutdown mode, V _{OUT} is a diode drop below V+ (due to the DC path from V+ to the output) and the supply current drops to 5μA maximum. Connect to ground for normal operation.
REF	1.5V Reference Output that can source 100μA for external loads. Bypass to GND with 0.1μF, The reference is disabled in shutdown.
AGND	Analog Ground
GND	High-Current Ground Return for the Output Driver
cs	Positive Input to the Current-Sense Amplifier. Connect the current-sense Sisting 65th earl 65th and GND.
	SHDN REF AGND GND

外围电路设计:

设计要求: Vin=12V, Vout=170V

MAX1771芯片的外围电路太简单了,以至于我们可以几乎不用怎么设计。。。

- 1. **MOS管**:由于输出电压较高,所以需要耐压值较高的MOSFET,建议选择耐压值250V以上MOS,其内阻越低越好。考虑到成本和体积限制,我选用的是IRFR224。其他的还有很多低内阻的MOS可以选择,例如TK8P65W等等。
- 2. **反馈电阻**: 芯片的参考电压为1.5V,两个电阻对输出电压进行分压之后送入FB引脚进行反馈。 显然,其中电阻的选择公式如下

$$R_2 = R_1(rac{V_o}{R_{ref}} - 1) = R_1(rac{170V}{1.5V} - 1) = 112.3$$

这里我们选择R2=1.8M Ω , R1=16K Ω 。

3. **Rsense**: Rsense为电流控制电阻,控制着MOS管的最大电流,可以防止意外情况发生,诸如输出短路引起MOS烧毁。这里要根据我们的需求进行选择。假设我们要求输出20mA的最大电流,效率80%情况下,可计算得到最大的Ids=354mA,此时由于比较电压为0.1V,可计算得到Rsense的最小值为0.1V/354mA=282mΩ。但是往往我们不这样做,因为这样子计算出来的Rsense非常大,会严重影响效率。对于这里,我们不需要对输出电流进行太大限制,所以我们适当选择一个防止输出短路引起MOS发烫烧毁就好,我设计时选择的限流电阻为10mΩ。

4.电感选择:根据手册

Select an inductor that allows the current to ramp up to ILIM. The standard operating circuits use a $22\mu H$ inductor. If a different inductance value is desired, select L such that:

$$L \ge \frac{V_{IN}(max) \times 2\mu s}{I_{LIM}}$$

这里的Ilim在手册中没找到,应该是最大电流(I limit),也就是通过电感的最大电流。我们假设输出为20mA的情况下,由上面的计算得到I=354mA,代入Vin=12V可以得到L>34uH,手册中给的最佳电感范围是10uH~300uH,挺好。

5.输出电容:輸入电容选择100uF的电容就行,越大越好。输出电容选择10uF就够用了,此处不多做分析。

实测:

做出成品的模块如下图,

(好像二维码会识别成网址,就打码了。二维码是公众号Sadudu)

板子回来后便迫不及待的把原件都弄好了,其中有一个不确定性的就是电感的选择。一开始我们计算的是34uH,但是实测用68uH电感的时候会有明显的电感啸叫声,于是加大电感,100uH,220uH,330uH,680uH,实测220uH的时候已经听不到啸叫声了。由于电感太大的时候带载能力太弱,所以就选用了220uH的电感。

实测数据如下:

???我的数据竟然忘了保存???

因为没有专业设备,靠着四台万用表测的数据,测起来很麻烦,所以就懒得再测了。我还记得数据,空载电流是3mA,测试的时候最大输出电流达到了17mA,带了8个SZ-8辉光管,相当于12个IN-14辉光管。此时模块电压值从170.6掉到了170.3V,掉了0.3V,因为手头辉光管数量有限,所以就没往上测下去。效率在84%左右,因为还没达到效率顶峰,所以当负载大于17mA的时候效率可能会更高一些,不过已经没意义了。

对于一般用户来说,带载6个辉光管轻轻松松,你都感受不到她的温度。

那天听说我把电路图开源之后随后就有人在另外一个群嘲笑效率低,呵呵。你效率高你开源啊,你敢开源吗?效率84%跟效率90%能多消耗你几度电?估计是开源砸了一些人的生意?看不惯?我就开源你来打我啊?

至于为什么要开源:笔者也是一名大学生,说实在话做升压模块也搞了有几个月,试过十几种升压芯片,过程确实很艰辛。最重要的是没有人指导,就是自己在摸索。到最后设计出来确实不容易,但是我觉得一项技术如果想要得到更好的发展,开源是一种很好的选择。比如这个模块,由于受资金限制,我能够买到的mos是IRFR224、IRF740、TK8P65W,这些MOS的内阻都很大,势必会影响到效率。如果我开源出去,那么可能就会有一些民间大神去改进电路优化设计,设计出效率更高的模块出来。我学知识的时候也遇到了很多开源的代码、电路图,很庆幸能够有这么多愿意分享技术的大神,让我在创作的时候有所参考。所以我愿意把我设计好的东西开源分享,希望能够让更多的辉光钟爱好者受益。

最后, 我已经做出来了5V升压模块, 如下图

这大概是目前为止体积最小的5V升压模块了,带6个IN-14轻轻松松,如果有需要5V升压的可以私信联系我或者去闲鱼也能找到,毕竟花了不少钱回点本不过分吧。这段时间在考虑要不要把5V升压模块也开源了。

过段时间再把我设计的第二版辉光钟制作过程分享出来,就是封面图中的辉光钟,有兴趣的可以关注一波。

可以关注一波我的公众号Sadudu,我都不好意思推广了,好像都没发过什么文章。

对了,这个MAX1771的空板子还有一些,如果有需要的可以私信联系我,免费送咯,送完为止。如果想自己设计pcb可以参考下图我设计的Layout:

最后分享一点经验,升压部分最好和辉光钟控制板隔离,也就是最好用模块。如果要画在一个板子 上,一定要注意单点接地。

下一期我会介绍一款经典的PWM电源控制器,UC3843的设计过程。

未完待续。。。

编辑于 14:08

电路设计 电路 电路原理

推荐阅读

9 条评论 ⇒ 切换为时间排序 写下你的评论... 🌉 ZnS、 18 小时前 存稿炸了么 (滑稽) ┢赞 一腔孤勇 15 小时前 图片是怎么做的 ┢赞 opdiao 8 小时前 sr锁存器是电流模脉宽调制时,将比较器输出和振荡器上升沿产生pwm ┢赞 Sadudu (作者) 回复 opdiao 8 小时前 对啊,但是我没搞懂两个脉冲触发器和SR锁存器的协调工作那一部分,画波形图图没画出来 ▲ 赞 🔍 查看对话 王远山 3 小时前 学习了。学校里老师讲boost电路pwm控制最多升3到4倍,升10倍以上就要用多倍压boost了,没 用过PFM,感谢分享(。・ω・。)ノ♡ ┢ 赞 ₩ 罗梦宇 2 小时前

┢赞

pechpo

2 小时前

石头门!!

┢赞

张点点

1 小时前

如果觉得马克西萌芯片贵,uc3843是你最好的选择,芯片结构是一样一样的

┢赞

fox0815 回复 王远山

50 分钟前

boost-up电路的升压倍数是被电感的储能能力限制的。如果用更大电流储能能力更好地电感,也 可以做到比较高的升压倍数——像是有人用34063+MOS管扩流,好像做到过12V→200V的升 压。