Towards automating the ontological representation of proteins in the Protein Ontology

Workshop on Synergizing Biomedical Ontologies July 14-16, 2021

Darren A. Natale

Smad 2	"canonical" isoform	•Cytoplasmic	SMAD2_HUMAN UniProtKB:Q15796-1
Smad 2	alternatively spliced short form	Forms complexNuclearTxn upregulation	SMAD2_HUMAN UniProtKB:Q15796-2
Smad 2 ×	point mutation (causative agent: large intestine carcinoma)	Forms complexNuclearTxn upregulation++	SMAD2_HUMAN VAR_011375
Smad 2 P P	TGF-β receptor phosphorylated	Forms complexCytoplasmicNo Txn upregulation	
Smad 2 P P	TGFBR+ERK1 phosphorylated	•Cytoplasmic	
P Smad 2 P P	TGFBR+CAMK2 phosphorylated	•Nuclear •Txn upregulation	
Smad 2	TGF-β receptor phosphorylated short form	Doesn't form complexCytoplasmicNo Txn upregulation	

What, precisely, is an ortho-proteoform?

Automating the creation of UniProtKB-based terms

Eligible:

- Proteins from human, mouse, rat, chicken, zebrafish, worm, fruit fly, slime mold, budding and fission yeasts, *Arabidopsis*, *E. coli*
- Reviewed (UniProtKB/Swiss-Prot) entries

Key Information:

- Protein name & synonyms
- Organism
- Gene name & synonyms

Other leverageable information:

- Type of sequence (isoform, variant)
- Sequence processing & PTMs

Technical policies:

- Well-described format
- Obsolescence

What, precisely, is a UniProtKB entry?

Whenever possible, all the protein products encoded by one gene in a given species are described in a single UniProtKB/Swiss-Prot entry, including isoforms generated by alternative splicing, alternative promoter usage, and alternative translation initiation (*). However, some alternative splicing isoforms derived from the same gene share only a few exons, if any at all, the same for some 'trans-splicing' events. In these cases, the divergence is obviously too important to merge all protein sequences into a single entry and the isoforms have to be described in separate 'external' entries.

(*) Important remark: Due to the increase of sequence data coming from large-scale sequencing projects, UniProtKB/TrEMBL may contain additional predicted sequences encoded by genes which are described in a UniProtKB/Swiss-Prot entry.

Example of a "split" UniProtKB entry

How PRO handles a "split" UniProtKB entry

PR:000027222 CALCA gene translation product		
PR:000030026 CALCA gene translation product (human)		
PR:P06881-1 calcitonin gene-related peptide 1 (human)		
PR:P01258 calcitonin isoforms 1/2 (human)		
PR:P01258-1 calcitonin isoform 1 (human)		
PR:P01258-2 calcitonin isoform h2 (human)		
PR:000027223 CALCA gene translation product (mouse)		
PR:000036869 CALCA gene translation product (rat)		

- 1) Create a "catch-all" term for each organism, the parent for all protein products from that gene in that organism
- 2) As these are actually isoforms, use the isoform designation
- 3) If a split entry has multiple isoforms, treat the "main" entry as a defined class

PRO treatment of TrEMBL entries

Might represent:

- 1) Existing isoform (already in a Swiss-Prot entry)
- 2) New isoform (for a protein already in Swiss-Prot)
- 3) Protein with no Swiss-Prot entry for the given gene
 - a) Sole entry for that gene
 - b) One of several possible
 - i. Canonical
 - ii. Alternative splice form
- 4) Natural variant of a sequence

PRO dynamic term generator

https://proconsortium.org
/
Retrieve a PRO entry (enter a PRO ID):

Example: PR:000025934 (sample output)

Enter UniProtKB accession

Protein Ontology report - protein lin-7 homolog A isoform M0R7K1 (rat)

MOR7K1 - http://purl.obolibrary.org/obo/PR_MOR7K1

This term was generated dynamically and will not appear in any downloadable version of PRO unless such is requested. Please note that a github login is required.

Show OBO stanza

Ontology Information	
PRO ID	PR:M0R7K1
PRO name	protein lin-7 homolog A isoform M0R7K1 (rat)

How it works: the queries

- 1. On-the-fly retrieval of the UniProtKB information file for the input accession.
- 2. Check to see if the accession for the returned entry is the same as input.
- 3. A query through UniProt's UniParc database to see which other accessions the requested one might be known by.
- 4. A gene-based query through UniProtKB to determine if there are multiple possible entries for that gene

```
Q9H633-2 RPP21 HUMAN 1 MAGPVKDREAFQRLNFLYQVSLRQGPHGDGARRPRVTAPLPQAAHCVLAQDPENQALARF 60 MAGPVKDRAFT 80 MAGPVKDRAFT 80
```

The next challenge: dealing with modified/variant Prerequisites: proteins

- 1) Known UniProtKB entry
- 2) Known range of sequence
- Known positions and type of modification
 Issues:
- 1) Disparities in sequence numbering or isoforms used
- 2) Disparities in how modifications are indicated
- 3) Identifying existing terms
 If isoform 1 of UniProtKB:P12345 is canonical, the following are all equivalent:
 - UniProtKB:P12345, Ser-77, MOD:00696
 - UniProtKB:P12345, Ser-77, MOD:00046
 - UniProtKB:P12345, Ser-77, CHEBI:45522
 - UniProtKB:P12345-1, Ser-77, MOD:00696
 - UniProtKB:P12345-1, Ser-77, MOD:00046
 - . UniDrot/CD:D1004E 1 Cor 77 CUEDI/4EE00

PRO/UniProt/Reactome: full

canonical

Alzforum: 'favorite' isoform

Histome: removed InitMet

PRO: PSI-MOD, GNOme

UniProt: internal controlled

vocabulary

Reactome/TDR: PSI-MOD, CHEBI

MOD:00696 = phosphorylated

residue

MOD:00046 = phosphorylated

serine

CHEBI:45522 = phosphorylated

serine