Distribuições de Probabilidade das Temperaturas Diárias Máximas entre 1980 e 2021 em Brasília -DF

André Augusto Sak e Marcos da Silva Correia

Orientador: Me. Natália Ribeiro de Souza Evangelista

Brasília, 18 de junho de 2022.

Sumário

- 1 Introdução
- 2 Referencial Teórico
- 3 Metodologia
- 4 Considerações Finais

- A questão climática está entre os principais desafios enfrentados atualmente pela humanidade (Harari, 2018);
- Impacto negativo no crescimento e desenvolvimento das plantas (Estefanel et al., 1994) e
- Redução da produtividade agrícola em até 40% (Costa e Sediyama, 1999).

Estudo conduzido no Rio Grande do Sul:

 Temperaturas máximas acima de 35 °C resultaram em elevadas taxas de esterilidade.

- Importante ferramenta para o planejamento e organização de outras atividade humanas (de Assis et al., 2013) e
- Evitar prejuízos e alavancar lucros.

Objetivos

- Analisar os registros de temperaturas máximas em Brasília, no Distrito Federal, durante um período de 41 anos (de 1° de janeiro de 1980 até 31 de dezembro de 2021) e
- Aplicar quatro importantes funções de distribuição de probabilidade: Gama, Gumbel, Log-normal e Normal.

Trabalhos Semelhantes

Introdução

Araújo et al., 2010:

- Aplicação de distribuições de probabilidade a séries de temperatura máxima em Iguatu, Ceará.
- Normal e a Gama quando sua forma foi aproximada da Normal.

de Assis et al., 2013:

- Aplicação de distribuições de probabilidade a séries de umidade relativa mensal em Mossoró, Rio Grande do Norte.
- Gama, Gumbel e a Normal.

Supian; Hasan, 2013:

- Aplicação de distribuições de probabilidade a 17 estações meteorológicas na Malásia.
- Log-normal, Normal, Weibull ou Logística Generalizada.

Obtenção dos Dados

- Os dados diários das temperaturas máximas foram obtidos a partir do site do Instituto Nacional de Meteorologia (Inmet)¹.
- Estação meteorológica de Brasília nº 83377.
- Período: 01 de janeiro de 1980 a 31 de dezembro de 2021.

Figura 1: Localização da estação meteorológica nº 83377.

¹https://bdmep.inmet.gov.br/

Descrição dos Dados

Tabela 1: Medidas estatísticas:

Medida	°C
Mínimo	15,00
1° quartil	25,40
Moda	26,60
Mediana	26,80
Média	26,87
3° quartil	28,40
Máximo	36,30

Metodologia 000000000000000

Figura 2: Gráfico de densidade.

Teste de Homogeneidade

Teste de Variância

 A população foi dividida em dois grupos: um abaixo e outro acima da mediana.

Metodologia 000000000000000

- Hipótese nula (H_0) : há igualdade entre as variâncias dos grupos.
- Hipótese alternativa (H_1) : a razão entre as variâncias é menor do que 1.
- p valor = 0,9239.
- Os dados são homogêneos.

Agrupamento dos Dados

Figura 3: Procedimentos trazidas por (Dogan and Dogan, 2010):

Gama

$$f(x; k, \theta) = \begin{cases} \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k \Gamma(k)}, \text{se } x > 0 \text{ } e \text{ } k, \theta > 0 \\ 0, \text{ caso contrário.} \end{cases}$$
 (1)

Metodologia 000000000000000

Parametrização

$$\theta = \frac{S^2}{\overline{x}},\tag{2}$$

e

$$k = \frac{\overline{x}}{\theta}.$$
 (3)

Gumbel

$$F(x; \alpha, \beta) = \exp\left(-e^{-(x-\alpha)/\beta}\right), -\infty < \alpha < +\infty \ e \ \beta > 0. \tag{4}$$

Parametrização

$$\beta = \sqrt{(6\frac{S^2}{\pi^2})} \tag{5}$$

• e

$$\alpha = \beta \frac{\Gamma'(1)}{\Gamma(1)} + \overline{x}. \tag{6}$$

Log-normal

$$f(x; \mu, \sigma^2) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln(a) - \mu)^2}{2\sigma^2}\right), -\infty < \mu < +\infty \text{ e } \sigma^2 > 0. \quad (7)$$

Metodologia 0000000000000000

Parametrização

$$\sigma^2 = \ln((\frac{S^2}{\exp(2\ln(\overline{x}))}) + 1), \tag{8}$$

e

$$\mu = \frac{2\ln(\overline{x}) - \sigma^2}{2}.\tag{9}$$

Normal

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}, \quad -\infty < x < \infty.$$
 (10)

Metodologia 000000000000000

Parametrização

$$\mu = \overline{x},\tag{11}$$

e

$$\sigma^2 = S^2. \tag{12}$$

Método da Máxima Verossimilhança

Média populacional

$$E[\overline{x}] = \mu = 26,86551. \tag{13}$$

Variância populacional

$$E[S^2] = \sigma^2 = 6,019498. \tag{14}$$

Parâmetros calculados

Tabela 2: Parâmetros das distribuições Gama, Gumbel, Log-normal e Normal.

Distribuição	α	β
Gama	119,903	4,463082
Gumbel	25,76132	1,91296
	μ	σ^2
Normal	26,86551	6,019498
Log-normal	3,2866913	0,008305489

Fonte: Elaborado pelos autores (2022).

Análise Visual

Figura 4: Ajustamento visual das distribuições Gama, Gumbel, Log-normal e Normal.

Kolmogorov-Smirnov

$$KS = \max_{1 \le i \le n} |F(x_i) - F_e(x_i)|.$$
 (15)

Qui-Quadrado

$$\chi^2 = \sum_{i=1}^{S} \frac{(O_i - E_i)^2}{E_i} \,. \tag{16}$$

Lilliefors (Normal)

$$LF = max\{D^+, D^-\},$$
 (17)

$$D^{+} = \max_{i=1,...,n} \{ S(X) - E(X) \}, \tag{18}$$

$$D^{+} = \max_{i=1,\dots,n} \{ F(X) - E(X) \}.$$
 (19)

Anderson-Darling

$$AD = -n - \frac{1}{n} \sum_{i=1}^{n} \{ (2i-1) \times log_e[S(X)] + [2(n-i)+1] \times log_e[1-S(X)] \}.$$
 (20)

- Hipótese nula (H_0) : o conjunto de dados X tem distribuição f.
- Hipótese alternativa (H₁): o conjunto de dados X não tem distribuição f.

Problema encontrado:

- Para *n* pequeno (menor que 30) são pouco úteis para e
- Para n grande (maior que 1000) s\u00e30 demasiadamente sens\u00edveis (HAIR et al., 2009).

Metodologia 000000000000000

Introdução

Solução:

- Bootstrappings com 1000 reamostragens;
- n = 500:
- Calcular a média para a estatística de cada teste e
- O p − valor respectivo.

Testes de Aderência Kolmogorov-Smirnov com bootstrapping

Introdução

Figura 5: Distribuição das estatísticas do teste de aderência de *Kolmogorov-Smirnov* provenientes de *bootstrapping* com 1000 reamostragens e n = 500.

Testes de Aderência com bootstrapping

Tabela 3: Resultados dos testes não paramétricos para a distribuição Log-normal.

Teste	Estatística	P-valor
Kolmogorov-Smirnov Test	0,020816	0,000001759
Bootstrap Kolmogorov-Smirnov Test (1.000 de n=500)	0,03339355	0,3462551
Chi-Square Test	4637,652	0
Bootstrap Chi-Square Test (1.000 de n=500)	15,76	0,0274018
Anderson Darling Test	29,76	0,00000003924
Bootstrap Anderson Darling Test (1.000 de n=500)	2,068904	0,08422735

Fonte: Elaborado pelos autores (2022).

Tabela 4: Resultados dos testes não paramétricos para a distribuição Normal.

Teste	Estatística	P-valor
Kolmogorov-Smirnov Test	0,032155	0,0000000000001857
Bootstrap Kolmogorov-Smirnov Test (1.000 de n=500)	0,04239254	0,1804151
Lilliefors Test	0,032155	0,000000000000000022
Bootstrap Lilliefors Test (1.000 de n=500)	0,04481782	0,01791657
Chi-Square Test	4398,152	0
Bootstrap Chi-Square Test (1.000 de n=500)	13,92	0,002732447
Anderson Darling Test	19,307	0,000000000000000022
Bootstrap Anderson Darling Test (1.000 de n=500)	1,65203	0,144019

Fonte: Elaborado pelos autores (2022).

Testes de Aderência com bootstrapping

Tabela 5: Resultados dos testes não paramétricos para a distribuição Gama.

Teste	Estatística	P-valor
Kolmogorov-Smirnov Test	0,023812	0,00000002948
Bootstrap Kolmogorov-Smirnov Test	0,03544893	0,2792153
Chi-Square Test	4495,19	0
Bootstrap Chi-Square Test (1.000 de n=500)	13,52	0,003347909
Anderson Darling Test	23,827	0,00000003924
Bootstrap Anderson Darling Test (1.000 de n=500)	1,772153	0,1230396

Fonte: Elaborado pelos autores (2022).

Tabela 6: Resultados dos testes não paramétricos para a distribuição Gumbel.

Teste	Estatística	P-valor
Kolmogorov-Smirnov Test	0,044149	0,000000000000000022
Bootstrap Kolmogorov-Smirnov Test (1.000 de n=500)	0,04804161	0,09544168
Chi-Square Test	4798,192	0
Bootstrap Chi-Square Test (1.000 de n=500)	11,52	0,0002555464
Anderson Darling Test	263,17	0,00000003924
Bootstrap Anderson Darling Test (1.000 de n=500)	10,0396	0,000007505501

Fonte: Elaborado pelos autores (2022).

Conclusão

Introdução

- **Critério:** maior *p* − *valor*.
- Melhor aderência: distribuição Log-normal.

Figura 6: Curva da distribuição Log-normal teórica.

Momentos Estatísticos

Introdução

Momentos de ordem k

$$E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx,$$
 (21)

Momentos centrais de ordem k

$$E\left[\left(X-\mu\right)^{k}\right] = \int_{-\infty}^{+\infty} (x-\mu)^{k} f(x) dx, \tag{22}$$

Momentos da distribuição Log-normal

- 1° momento (*m*₁'): 26,87089;
- 2° momento (m_2) : 6,01853;
- 3° momento (m_3) : 3,902572;
- 4° momento (*m*₄): 113,0211.

Comparações

Introdução

Assimetria

$$\frac{m_3}{(m_2)^{2/3}}\tag{23}$$

Curtose

$$\frac{m_4}{(m_2)^2}$$
 (24)

Tabela 7: Comparações da média, variância, assimetria e curtose entre a distribuição empírica e a teórica.

Distribuição	Média	Variância	Assimetria	Curtose
Empírica	26,86551	6,019498	-0,03713757	3,672045
Teórica	26,87089	6,01853	0,264311	3,120173

Fonte: Elaborado pelos autores (2022).

FIM