Biostatistique

Inférence statistique: distributions d'échantillonnage

Anicet Ebou, Institut National Polytechnique Félix Houphouët-Boigny, ediman.ebou@inphb.ci

Plan

Statistique inférentielle	3
Échantillons aléatoires	5
Statistiques et distributions échantillonnales	8
Distribution échantillonnale de la moyenne	11
Distribution échantillonnale de la variance	16
Loi t de Student	25
Distribution échantillonnale d'une différence de deux moyennes	32
Distribution échantillonnale d'un rapport de variances	36

Statistique inférentielle

Présentation

But: Tirer des conclusion au sujet d'une population sans avoir à examiner toute la population.

Comment?: On prélève un sous-ensemble (échantillon) de la population et on tire des conclusions sur la population *à partir* des résultats obtenus avec l'échantillon.

Exemple: On estime la moyenne de la population avec la moyenne échantillonnale.

Échantillons aléatoires

Définition

Definition 1: Echantillon aléatoire.

Un échantillon aléatoire de taille n de la variable aléatoire X est une suite de variables aléatoires indépendantes $X_1, X_2, ..., X_n$ ayant toutes la même distribution que X.

Une suite $x_1, x_2, ..., x_n$ de valeurs prises par les v.a. X_i est une *réalisation* de l'échantillon.

Remarque: On suppose habituellement que la population est infinie ou que la taille de l'échantillon est beaucoup plus petite que la taille de la population.

Exemple: On fait l'hypothèse que la taille (en cm) de 4000 habitants d'une bourgarde est une variable aléatoire X distribuée normalement, c'est-à-dire que $X \sim N(\mu, \sigma^2)$. Un échantillon aléatoire de taille 50 de cette population est une suite de 50 variables aléatoires $X_i \sim N(\mu, \sigma^2)$, i=1,2,...,50.

Paramètres d'une population

- Une population (variable aléatoire) est *connue* si on connaît sa distribution, c'est-à-dire sa fonction de masse ou de densité.
- En pratique on peut connaître une population seulement partiellement, c'est-à-dire qu'on connaît la forme générale de sa distribution mais avec des *paramètres* inconnus.

Exemple: Dans l'exemple précédent, on a fait l'hypothèse que la taille des habitants est distribuée normalement: $X \sim N(\mu, \sigma^2)$ mais on ne connaît pas les paramètres μ et σ^2 (moyenne et variance).

Ce sont ces paramètres que l'on cherche à estimer.

échantillonnales

Statistiques et distributions

Définition d'une statistique

Definition 2: Une statistique.

Soit $X_1,X_2,...,X_n$ un échantillon aléatoire d'une variable aléatoire X. Une statistique est une fonction $h(X_1,X_2,...,X_n)$ ne dépendant que des variables aléatoires X_i .

Exemples de statistiques:

- La moyenne échantillonnale: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- La variance échantillonnale: $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i \overline{X} \right)^2$
- La médiane échantillonnale, etc.

Distribution échantillonnale

Puisque les X_i sont des variables aléatoires, toute statistique est aussi une variable aléatoire et on s'intéresse à sa distribution, appelée distribution échantillonnale.

Par exemple, on discute dans les prochaines sections de l'espérance et la variance de la moyenne et la variance échantillonnales, c'est-à-dire $\mathbb{E}(\overline{X}), \mathbb{V}(\overline{X}), \mathbb{E}(S^2)$, et $\mathbb{V}(S^2)$.

Distribution échantillonnale de la

moyenne

Distribution échantillonnale de la moyenne

Soit $X_1, X_2, ..., X_n$ un échantillon aléatoire d'une v.a. X de moyenne $\mu =$ $\mathbb{E}(X)$ et variance $\sigma^2 = \mathbb{V}(X)$.

Soit \overline{X} la moyenne échantillonnale. Alors

- 1. $\mathbb{E}\left(\overline{X}\right)=\mu,\overline{X}$ est un estimateur non-biaisé de μ 2. $\mathbb{V}\left(\overline{X}\right)=\frac{\sigma^2}{\pi}$.

Ces résultats découlent directement des règles de combinaisons linéaires.

Distribution échantillonnale de la moyenne (ii)

Exercice 1: Une population est constituée des nombres 2, 3, 6, 8 et 11.

L'ensemble des échantillons (avec remise) de taille 2 est

Calculer

- 1. La moyenne et la variance de la population: μ et σ^2 .
- 2. L'espérance et la variance de la moyenne échantillonnale \overline{X} : $\mathbb{E}(\overline{X})$ et $\mathbb{V}(\overline{X})$.

Distribution échantillonnale de la moyenne (iii)

En utilisant le théorème central limite, on peut donner la loi de probabilité de la moyenne échantillonnalle.

Si l'échantillon est suffisamment grand, \overline{X} suit approximativement une loi $N(\mu, \frac{\sigma^2}{n})$.

Remarques:

- 1. On a aussi (approximativement) $n\overline{X} \sim N(n\mu, n\sigma^2)$.
- 2. Si $X\sim N(\mu,\sigma^2)$, alors \overline{X} , et $n\overline{X}$ sont exactement normales, même pour de petits échantillons.

On peut également définir la variable aléatoire

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

qui suit approximativement une loi N(0,1).

Distribution échantillonnale de la moyenne (iv)

Remarques:

- 1. Si $X \sim N(\mu, \sigma^2)$, alors Z est exactement normale, même pour de petits échantillons.
- 2. On appelle *pivot* une variable aléatoire qui se calcule à partir d'une statistique et des paramètres de la population.
- 3. Nous verrons qu'un pivot dont la loi de probabilité ne dépend pas des paramètres de la population permet de définir un *intervalle de confiance*.

Exercice 2:

Toujours avec $X \sim N(\mu, \sigma^2)$, supposons que l'on connaisse la moyenne et la variance de la population: $\mu=175$ et $\sigma=10^2$.

On choisit 10 échantillons aléatoires de 50 étudiants chacun.

Pour combien de ces échantillons s'attend-on à avoir une moyenne comprise entre 174 et 176 cm ?

Distribution échantillonnale de la

variance

Distribution échantillonnale de la variance

Soit $X_1,X_2,...,X_n$ est un échantillon aléatoire d'une v.a. X de moyenne $\mu=\mathbb{E}(X)$, de variance $\sigma^2=\mathbb{V}(X)$ et de coefficient d'aplatissement $\beta_2=\frac{\mu_4}{\sigma^4}$.

Soit S^2 la variance échantillonnale. Alors

- 1. $\mathbb{E}(S^2) = \sigma^2$, S^2 est un estimateur non-biaisé de σ^2 .
- 2. $\mathbb{V}(S^2) = \sigma^4 \left(\frac{2}{n-1} + \frac{\beta_2 3}{n} \right)$

Remarques:

- 1. On peut montrer (difficile!) que S^2 suit approximativement une loi normale pour de grands échantillons.
- 2. En supposant que X suit une loi normale, on peut définir la distribution de S^2 pour de petits échantillons.

Distribution échantillonnale de la variance (ii)

Exercice 3: Une population est constituée des nombres 2, 3, 6, 8 et 11. Les variances échantilonnales

$$S^2 = \frac{1}{2-1} \Big(\left(X_1 - \overline{X} \right)^2 + \left(X_2 - \overline{X}^2 \right) \Big)$$

des 25 échantillons (avec remise) de taille 2 sont:

Retrouver manuellement ces valeurs et calculer $\mathbb{E}(S^2)$.

La fonction gamma (Γ)

Definition 3: Fonction gamma.

La fonction gamma est définie pour tout x > 0 par

$$\Gamma(x) = \int_{t=0}^{\infty} t^{x-1} e^{-t} \, \mathrm{d}t$$

Propriétés:

- 1. $\Gamma(1) = 1$
- 2. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- 3. $\Gamma(x) = (x-1)\Gamma(x-1)$ pour x > 1
- 4. Si $x = n \in \mathbb{N}$ alors $\Gamma(n) = (n-1)!$

Loi du khi-deux

Definition 4: Loi du khi-deux.

Soit $Z_1,Z_2,...,Z_k$ des variables aléatoires indépendantes et identiquement distribuées selon une loi normale N(0, 1). Alors la variable aléatoire

$$W = Z_1^2 + Z_2^2 + \dots + Z_k^2$$

suit une loi du khi-deux à k degrés de liberté, noté $W \sim \chi_k^2$.

La fonction de densité de W est

$$f(w) = \begin{cases} \frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})} w^{(\frac{k}{2})-1} e^{-\frac{w}{2}} & \text{si } w \ge 0, \\ 0 & \text{sinon} \end{cases}$$

Remarques: $\chi_1^2 \equiv (N(0,1))^2$ et $\chi_k^2 \equiv \Gamma\left(\frac{k}{2},\frac{1}{2}\right)$. De plus, si $\frac{k}{2}$ est entier, alors $X_1+X_2+...+X_{\frac{k}{2}}\sim \chi_k^2$ avec $\chi_i\sim \exp\left(\frac{1}{2}\right),$ $i\in\{1,2,...,n\}$.

Loi du khi-deux (ii)

Soit $W \sim \chi_k^2$. Alors

- 1. $\mathbb{E}(W) = k$
- 2. $\mathbb{V}(W) = 2k$
- 3. Le quantile $X_{\alpha;k}^2$ est défini par $P(W > \chi_{\alpha;k}^2) = \alpha$ avec $0 \le \alpha \le 1$.

Calculs avec la loi du khi-deux:

- Les quantiles de la loi du khi-deux sont données en annexe de ce cours sous la forme d'une table.
- En utilisant le logiciel R: $\chi^2_{\alpha:k}$ est donnée par qchisq(1- α , k).
- En utilisant le logiciel Excel: LOI . KHIDEUX . INVERSE . DROITE (α , k).

Exemple: Calculer $\chi^2_{0,1;3}$ et $P(X \le 11,07)$ si $X \sim X_5^2$.

Additivité de la loi du khi-deux

Theorem 1.

Soient $W_1,W_2,...,W_p$ des variables aléatoires khi-deux à $k_1,k_2,...,k_p$ degrés de liberté respectivement. Alors

$$Y = W_1 + W_2 + ... + W_p$$

suit une loi du khi-deux à $k=k_1+k_2+\ldots+k_p$ degrés de liberté.

Application du théorème d'additivité:

Soit $Z_1,Z_2,...,Z_n$ un échantillon aléatoire de $Z\sim N(0,1).$ On définit

$$A = \sum_{i=1}^{n} Z_i^2, B = \sum_{i=1}^{n} \left(Z_i - \overline{Z} \right)^2 \text{ et } C = n(\overline{Z})^2$$

On peut montrer que A=B+C. De plus, $A\sim\chi_n^2$ et $C\sim\chi_1^2$. On en déduit, d'après le théorème précédent, que $B\sim\chi_{n-1}^2$, car seule la loi χ_{n-1}^2 , additionnée à une loi χ_1^2 , peut donner une loi X_n^2 .

Distribution de la variance S^2 (suite)

Theorem 2.

Soit $X_1, X_2, ..., X_n$ un échantillon aléatoire de taille n d'une variable aléatoire normale $X \sim N(\mu, \sigma^2)$ et S^2 la variance échantillonnale. Alors la variable aléatoire

$$W = \frac{(n-1)S^2}{\sigma^2}$$

suit une loi khi-deux avec n-1 degrés de liberté.

Le théorème précédent nous permet de caractériser la distribution échantillonnale de S^2 .

Soit $W \sim \chi^2_{n-1}$, avec $\mathbb{E}(W) = n-1$ et $\mathbb{V}(W) = 2(n-1)$. On a:

1.
$$P(S^2 \le b) = P\left(\frac{(n-1)^2}{\sigma^2} \le \frac{(n-1)b}{\sigma^2}\right) = P\left(W \le \frac{(n-1)b}{\sigma^2}\right)$$
.

2.
$$\mathbb{E}(S^2) = \mathbb{E}\left(\frac{\sigma^2}{n-1}W\right) = \frac{\sigma^2}{n-1}\mathbb{E}(W) = \sigma^2$$

2.
$$\mathbb{E}(S^2) = \mathbb{E}\left(\frac{\sigma^2}{n-1}W\right) = \frac{\sigma^2}{n-1}\mathbb{E}(W) = \sigma^2$$
3.
$$\mathbb{V}(S^2) = \mathbb{V}\left(\frac{\sigma^2}{n-1}W\right) = \frac{\sigma^4}{(n-1)^2}\mathbb{V}(W) = 2\frac{\sigma^4}{n-1}.$$

Distribution de la variance S^2 (suite) (ii)

Remarque: Ces résultats ne sont valides que si la population X suit une loi $N(\mu, \sigma^2)$.

Exercice 4:

On fait l'hypothèse que la taille (en cm) des 4000 étudiants masculins d'une école de génie est une variable aléatoire normale X de moyenne 175 et variance 10^2 , c'est-à-dire $X \sim N(\mu = 175, \sigma^2 = 10)$.

On choisit 10 échantillons de taille 50 de la population X.

Pour combien de ces échantillons s'attend-on à avoir une variance échantillonnale S^2 d'au plus 101 ?

Loi t de Student

Loi t de Student

Rappel:

Si $X_1,X_2,...,X_n$ est un échantillon aléatoire de taille n de la variable aléatoire X, où $\mathbb{E}(X)=\mu$ et $\mathbb{V}(X)=\sigma^2$, alors

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

suit approximativement une loi N(0,1). Cette variable aléatoire est *un pivot* permettant de définir un *intervalle de confiance* pour μ .

Si la variance σ^2 de la population n'est pas connue, on remplace σ par l'écart-type échantillonal $S=\sqrt{S^2}, S^2$ étant la variance échantillonnale.

Loi t de Student (ii)

On obtient alors la variable aléatoire

$$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

Cette variable aléatoire est approximativement normale si n est suffisamment grand. Si $X \sim N(\mu, \sigma^2)$, on peut montrer que T suit une loi de Student. Cette loi est valide pour les petits et les grands échantillons.

Soit Z une variable aléatoire normale N(0,1) et W une variable aléatoire khideux à k degrés de liberté. Si Z et W sont indépendantes alors la variable aléatoire

$$T = \frac{Z}{\sqrt{\frac{W}{k}}}$$

suit une loi t de Student avec de degrés de liberté. On note $T \sim t_k$.

Loi t de Student (iii)

La fonction de densité de T est

$$f(T) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi}\Gamma\left(\frac{k}{2}\right)} \left(\frac{t^2}{k} + 1\right)^{\frac{-k+1}{2}}$$

pour tout $t \in \mathbb{R}$.

Soit $T \sim t_k$. Alors

- 1. $\mathbb{E}(T) = 0$
- 2. $\mathbb{V}(T) = \frac{k}{k-2}$ pour k > 2 (variance infinie pour k = 1 et 2).
- 3. On définit le quantile $t_{\alpha;k}$ de T par $P(T > t_{\alpha;k}) = \alpha$ avec $0 \le \alpha \le 1$.

Propriété: La fonction de densité f(t) est symétrique par rapport à sa moyenne 0 et alors $-t_{\alpha;k}=t_{1-\alpha;k}.$

Théorème: La loi t_k est approximativement identique à une loi normale N(0,1) lorsque k est grand.

Calculs avec la loi de Student

Si on cherche le quantile $t_{\alpha;k}$ tel que $P(t_k > t_{\alpha;k}) = \alpha$:

- 1. Les quantiles $t_{\alpha:k}$ de la loi de Student sont données en annexe.
- 2. En utilisant R: $t_{\alpha:k}$ est donnée par qt (1- α , k).
- 3. En utilisant Excel: -LOI.STUDENT.INVERSE.N(α , k).

Exercice 5: Calculer $t_{0,9;3}$ et $P(X \le 2,015)$ si $X \sim t_5$.

Utilisation de la loi de Student

Theorem 3.

Soit $X_1, X_2, ..., X_n$ un échantillon de taille n d'une variable aléatoire normale $X \sim N(\mu, \sigma^2)$. Soit aussi \overline{X} et S^2 la moyenne et la variance échantillonnale. On peut montrer que \overline{X} et S^2 sont indépendantes, de sorte que la statistique

$$T = \frac{\left(\overline{X} - \mu\right)}{\frac{S}{\sqrt{n}}}$$

suit une loi de Student avec n-1 degrés de liberté.

Utilisation de la loi de Student (ii)

Exercice 6: Supposons que l'on s'intéresse maintenant à la taille (en cm) des 2000 étudiantes d'une école de génie.

On suppose que la taille X suit une loi normale de moyenne $\mu=170$. La variance est inconnue. Si on choisit un échantillon de taille 25 de cette population, quelle est la probabilité que le rapport

$$\frac{\overline{X} - 170}{S}$$

soit inférieur à 0,26 ?

Distribution échantillonnale d'une

différence de deux moyennes

Distribution d'une différence de moyennes

Considérons maintenant deux échantillons aléatoires indépendants $X_1, X_2, ..., X_{nX}$ et $Y_1, Y_2, ..., Y_{nY}$ de deux variables aléatoires X et Y de moyenne et variance μ_X, σ_X^2 et μ_Y, σ_Y^2 respectivement. On s'intéresse à la différence des moyennes échantillonnales $\overline{X} - \overline{Y}$.

Theorem 4.

Dans la situation décrite ci-dessus:

1.
$$\mathbb{E}(\overline{X} - \overline{Y}) = \mu_X - \mu_Y$$

2. $\mathbb{V}(\overline{X} - \overline{Y}) = \frac{\sigma_X^2}{2} + \frac{\sigma_Y^2}{2}$

Distribution d'une différence de moyennes (ii)

Theorem 5.

La variable aléatoire

$$Z = \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma^2}{n_Y}}}$$

suit approximativement une loi normale N(0,1) lorsque n_X et n_Y sont grands.

Remarque: Z suit exactement une loi N(0,1) si $X\sim N(\mu_X,\sigma_X^2)$ et $Y\sim N(\mu_X,\sigma_X^2)$.

Distribution d'une différence de moyennes (iii)

Exercice 6:

Soit $X \sim N(175, 10^2)$ et $Y \sim N(170, 9^2)$ la taille (en cm) des étudiants et étudiantes d'une école de génie. On choisit un échantillon de taille 50 de X et un échantillon de taille 25 de Y. Quelle est la probabilité que la différence $\overline{X} - \overline{Y}$ soit inférieure à 4 cm?

Distribution échantillonnale d'un

rapport de variances

Distribution d'un rapport de variances

Considéreons à nouveau deux échantillons aléatoires indépendants, de taille n_X et n_Y , des variables aléatoires X et Y.

On suppose que X et Y suivent des lois normales $N(\mu_X,\sigma_X^2)$ et $N(\mu_Y,\sigma_Y^2)$ respectivement.

On s'intéresse au rapport des variances échantillonnales $\frac{S_X^2}{S_V^2}$.

Loi de Fisher

Definition 5.

Soient U et V deux variables aléatoire indépendantes suivant une loi du khi-deux avec u et v degrés de liberté, respectivement. Alors la variable aléatoire

$$Y = \frac{\frac{\underline{U}}{u}}{\frac{\underline{V}}{v}}$$

suit une loi de Fisher à u et v degrés de liberté. On note $Y \sim F_{u,v}$. La fonction de densité Y est

$$f(y) = \begin{cases} \frac{\Gamma(\frac{u+v}{2})(\frac{u}{v})^{\frac{u}{2}}}{\Gamma(\frac{u}{2})\Gamma(\frac{v}{2})} y^{\frac{u}{2}-1} \left(\left(\frac{u}{v}\right) y + 1 \right)^{-\frac{u+v}{2}} & \text{si } y \ge 0\\ 0 & \text{si } y < 0 \end{cases}$$

Loi de Fisher (ii)

Soit $Y \sim F_{u,v}$. Alors

1.
$$\mathbb{E}(Y) = \frac{v}{v-2} \text{ si } v > 2.$$

1.
$$\mathbb{E}(Y) = \frac{v}{v-2} \text{ si } v > 2.$$

2. $\mathbb{V}(Y) = \frac{2v^2(u+v-2)}{u(v-2)^2(v-4)} \text{ si } v > 4.$

3. Le quantile $F_{\alpha,u,v}$ est défini par $P(Y > F_{\alpha,u,v}) = \alpha$ avec $0 \le \alpha \le 1$.

Propriété:

Par la définition de la loi de Fisher, $\frac{1}{V} \sim F_{v;u}$ et on trouve que

$$F_{1-\alpha;u,v} = \frac{1}{F_{\alpha;v,u}}$$
 (attention à l'inversion des indices!)

Calculs avec la loi de Fisher

Si on cherche le quantile $F_{\alpha;u,v}$ tel que $P(Y > F_{\alpha;u,v}) = \alpha$:

- 1. Les quantiles de $F_{u,v}$ sont donnés en annexe.
- 2. En utilisant le logiciel R: $F_{\alpha;u,v}$ est donné par qf (1- α , u, v).
- 3. En utilisant le logiciel Excel: $F_{\alpha;u,v}$ est donné par INVERSE.L0I.F.N(1- α , u, v).

Exercice 7: Calculer $F_{0.75;11,10}$ et $P(X \le 200)$ si $X \sim F_{2,1}$.

Distribution d'un rapport de variances (suite)

Theorem 6.

Soit $X_1,X_2,...,X_{nX}$ et $Y_1,Y_2,...,Y_{nY}$ deux échantillons aléatoire indépendants, de taille n_X et n_Y , des variables aléatoires X et Y.

On suppose que X et Y suivent des lois normales $N(\mu_X,\sigma_X^2)$ et $N(\mu_Y,\sigma_Y^2)$ respectivement.

Soit S_X^2 et S_Y^2 les variances échantillonnales. Alors la variable aléatoire

$$\frac{\frac{S_X^2}{\sigma_X^2}}{\frac{S_Y^2}{\sigma_Y^2}}$$

suit une loi de Fisher à $n_X - 1$ et $n_Y - 1$ degrés de liberté.

Distribution d'un rapport de variances (suite) (ii)

Exercice 7:

Soit $X\sim N(175,10^2)$ et $Y\sim N(170,9^2)$ la taille (en cm) des étudiants et étudiantes d'une école génie.

On choisit un échantillon de taille 50 de X et un échantillon de taille 25 de Y. Quell est la probabilité que le rapport $\frac{S_X^2}{S_v^2}$ soit inférieur à 3?