Минобрнауки России

Федеральное государственное бюджетное образовательное

учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИМ. Р.Е. АЛЕКСЕЕВА

ИНСТИТУТ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Курс "Сети и телекоммуникация"

Отчет по лабораторной работе №4

Выполнил: Гора К.А.

Проверил: Гай В.Е.

Нижний Новгород

Задание 1. Определите, какие IP-адреса не могут быть назначены узлам. Объясните, почему такие IP-адреса не являются корректными.

Задание 2. Выполните логическую операцию «И» с перечисленными ниже IP-адресами и маской подсети и определите, принадлежит ли IP-адрес получателя к локальной или удаленной сети.

ІР-адрес	11010010 11001101 10011010 00010001
отправителя	
Маска подсети	11111111 11111111 11111111 00000000
Результат	11010010 11001101 10011010 00000000
ІР-адрес получателя	11010010 11001101 10111010 00011001
Маска подсети	11111111 11111111 11111111 00000000
Результат	11010010 11001101 10011010 00000000

Ответ: принадлежат удаленной сети, так как результаты не совпадают

Задание 3. Для заданных ІР-адресов и предложенных масок определить:

- максимально возможное количество подсетей;
- диапазон изменения адресов подсетей;
- максимальное число узлов в подсетях;
- диапазон адресов узлов в каждой подсети.

No	Адрес	Маска						
1.	194.216.37.115	11111111.11111111.11111111.11000000						
2.	242.137.146.12	11111111.11111111.111111111.11110000						
3.	248.128.100.240	11111111.11111111.11111111111100						
4.	176.32.94.53	11111111.11111111.11111100.00000000						
5.	192.168.15.128	11111111.11111111.111111111111000						

<u>Адрес:</u> 194.216.37.115

<u>Маска:</u> 111111111.111111111.111111111.11000000

Максимально возможное количество подсетей: $2^2 = 4 - B$ последнем октете (11000000) первые 2 бита определяют число подсетей

Диапазон изменения адресов подсетей: 0-63, 64-127, 128-191, 192-255

<u>Максимальное число узлов в подсетях:</u> $2^6 - 2 = 62$ - В последнем октете (11000000) последние 6 бит определяют число хостов подсети, в нашем примере $2^6 = 64$. Но из них рабочих у нас только 62.

<u>Диапазон адресов узлов в каждой подсети:</u> 1-62, 65-126, 129-190, 193-254

Задание 4. По заданному количеству подсетей N и максимальному количеству компьютеров М1...МN в каждой подсети определить маску для разбиения на подсети. Сделать вывод о возможности такого разбиения. Если разбиение невозможно, то сформулируйте рекомендации по изменению каких-либо исходных данных для обеспечения возможности разбиения.

1.	N	4										
	M1MN	2			2				2	2		
2.	N	4										
	M1MN	16382			16382		16382		16382			
3.	N	8										
	M1MN	32	32	32		32	32	32	32		32	

Вариант 3.

Судя по количеству подсетей, нам нужно использовать маску /27 (255. 255. 255.224). Но в таком случае каждая подсеть может вмещать только 30 узлов. Следовательно, нам нужно уменьшить количество компьютеров в каждой из подсетей. Если количество узлов принципиально, то нужно поменять маску /26, чтобы каждая подсеть вмещала до 62 хостов, но тогда максимальное количество подсетей уменьшится до 4.

Задание 5. Сеть 192.168.215.0 разбита на одинаковые подсети максимальной емкости маской 255.255.255.192. Определить диапазон адресов узлов для каждой подсети. Назначить адреса интерфейсам подсетей и, по крайней мере, одной рабочей станции каждой подсети.

<u>1. Диапазон адресов узлов подсетей:</u> 192.168.215.(0-63)

Адрес первого узла: 192.168.215.1

Адрес последнего узла: 192.168.215.62

Адрес подсети: 192.168.215.0

Широковещательный адрес: 192.168.215.63

2. Диапазон адресов узлов подсетей: 192.168.215.(64-127)

Адрес первого хоста: 192.168.215.65

Адрес последнего хоста: 192.168.215.126

Адрес подсети: 192.168.215.64

Широковещательный адрес 192.168.215.127

<u>3. Диапазон адресов узлов подсетей:</u> 192.168.215.(128-191)

Адрес первого хоста: 192.168.215.129

Адрес последнего хоста: 192.168.215.190

Адрес подсети: 192.168.215.128

Широковещательный адрес: 192.168.215.191

<u>4. Диапазон адресов узлов подсетей:</u> 192.168.215.(192-255)

Адрес первого хоста: 192.168.215.193

Адрес последнего хоста: 192.168.215.254

Адрес подсети: 192.168.215.192

Широковещательный адрес: 192.168.215.255

Задание 6. Разбить адресное пространство сети 152.48.190.0 на 4 одинаковые подсети с максимальным числом узлов в каждой и назначить IP — адрес этим подсетям. Определить диапазон адресов узлов для каждой подсети. Как изменится результат, если сеть должна быть разбита на N=8, 10, 16 подсетей?

152.48.190.0/26

152.48.190.64/26

152.48.190.128/26

152.48.190.192/26

Если N=8, то нужно использовать /27 маску. Для N=10 и 16 нужно использовать маску /28.

Задание 7. Сеть Internet 178.63.170.0 разбита на одинаковые подсети маской 255.255.255.248. Какое максимальное число узлов и рабочих станций может иметь каждая подсеть и почему?

Маска подсети: 11111111111111111111111111111000

Максимально количество подсетей: $2^5 = 32$

Максимальное число узлов: $2^3 - 2 = 6$

<u>Диапазон адресов узлов в каждой подсети:</u> 0-7, 8-15, 16-23, 24-31, 32-39, 40-47, 48-55, 56-63, 64-71, 72-79, 80-87, 88-95, 96-103, 104-111, 112-119, 120-127, 128-135, 136-143, 144-151, 152-159, 160-167, 168-175, 176-183, 184-191, 192-199, 200-207, 208-215, 216-223, 224-231, 232-239, 240-247, 248-255