EE 735 MSL

Assignment-4

Diffusion

What is diffusion?

- It is defined as movement of particle from a region of higher conc.to a region of lower conc.
- Diffusion is driven by concentration gradient
- Observed everywhere from atoms (in doping), electrons and holes(diffusion current) to ions in bio-molecular processes.

Flux:

- The flux of diffusing particles J is used to quantify how fast the process is.
- It is defined as no of particles diffusing per unit crosssectionalarea per unit time.

J=(1/A) dN/dt

Fick's First Law (steady-state diffusion):

• The diffusion along a fixed direction is proportional to the concentration gradient. $J = D * \{dC/dX\}$

Above equation is called Fick's 1st law.

{Equation 7.6 in VLSI Technology by Plummer}

Where, D is the diffusion coefficient called Diffusivity. It is a material property.

• The **minus** sign indicates that the diffusion is in the direction of decreasing concentration.

Fick's Second Law (Non-steady state diffusion):

- If a flux of particles in entering at x at time t and leaving at $x+\Delta x$ at time $t+\Delta t$
- The concentration change $dC = (J(x+\Delta x)-J(x))dtA/Adx$

{Fick's 2nd law, ref -7 (VLSI Tech by Plummer)}

This reduces to:

The diffusion equation:

The diffusion equation is

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \qquad \nabla^2 C = \frac{1}{D} \frac{\partial C}{\partial t}$$
 (3-D)

where D is diffusivity.

 If the concentration (C) is time-independent the equation reduces to {as, dC/dt =0}

$$\nabla^2 C = 0$$

Solving the equation numerically:

• The diffusion equation $\frac{d^2n}{dx^2} - \frac{1}{D}\frac{dn}{dt} = 0$

$$\left(\frac{d^2}{dx^2} - \frac{1}{D}\frac{d}{dt}\right)n = 0$$

• Any differential equation of the type

$$Of(x)=g(x)$$

where O is the differential operator f(x) is the response and g(x) is the source.

- Also, If g(x)=0, the equation is homogeneous.
- There can be various sources of non-homogeneity

Using Central Diff. Formula The equation can be written numerically

$$\frac{d^2n}{dx^2} = \frac{n_{i+1,m} - 2n_{i,m} + n_{i-1,m}}{h^2} \qquad \frac{dn}{dt} = \frac{n_{i,m} - n_{i,m-1}}{p}$$

 So diffusion equation becomes {After substituting above eqns}

$$\frac{n_{i+1,m}-2n_{i,m}+n_{i-1,m}}{h^2}-\frac{n_{i,m}-n_{i,m-1}}{Dp}=0$$

- Where i and m are indices in position domain and time domain.
- · For some source the equation will become

$$\frac{n_{i+1,m}-2n_{i,m}+n_{i-1,m}}{h^2}-\frac{n_{i,m}-n_{i,m-1}}{Dp}=S$$

Using
Backword
Diff.
Formula

Due date – 8th Sep 2023

Assignment-4

Diffusion

(Part-A)

Problem 1: Consider a region of length 10 μ m from point A (x=0 μ m) to point B (x=10 μ m).

a) Time-Independent Part:

$$D_{\overline{dx^2}}^{d^2n} = \frac{n}{\tau}$$

Consider diffusive transport of particles from point A to point B. The **concentration** of particles at A is $n=10^{12}$ cm⁻³, and at B is n=0 cm⁻³. Assume $\tau=10^{-7}$ s. Find the particle profile from A to B. What is the particle flux from A to B?

In continuation, assume that the **boundary condition at B** is such that J = kn, where J is the particle flux (outgoing), $k = 10^3$ cm/s, and n is the particle density. Again, find the particle profile from A to B and the particle flux at B. Explore the implications of this change in boundary conditions at B.

Note: Only Steady state Continuity equations
Without time dependence.

Now consider the injection of particle flux/density in between point A to B.

b) In Continuation:

Assume that **particle flux** is introduced midway at $\mathbf{x} = (3 + 0.5 * \mathbf{X}) \mu \mathbf{m}$ {where, $\mathbf{X} =$ last digit of Roll No. from 0 to 9} at the **rate of 10**¹³ cm⁻²/s. Assume that the particle densities at points A and B are held constant at $\mathbf{n} = \mathbf{0}$. Assume $\tau = \mathbf{10}^{-7}$ s. Find the **particle profile** from A to B, and the flux at A and B. Also, compare with the analytical resulting the same plot (use $\mathbf{D} = \mathbf{0.1} \, \mathbf{cm}^{-2} / \mathbf{s}$).

$$D_{\overline{dx^2}}^{d^2n} = \frac{n}{\tau}$$

Here, a x=5 mm J= 10¹³ cm⁻²/sec given
This equation @ x=5 will corresponds to a factional node in the matrix. Right??

How to incorporate that B.C:
J=-D dn = 10¹³ (from fick's first law)

from Back world deffere formula,

Ax = ni - ni-1 = 10¹³ (From fick's first law)

Te at Correspondy Nodes.

For Analytical solution,

- 1) Solve the differential equations using basic knowledge
- 2) Put boundary conditions
- 3) Match the simulations results with Analytical ones onsame plot. You are good to go.....
- 4) The plots that are shown are to just to give you an insight.

Problem_1 Part(b)

c) Time-Dependent Part:

$$\frac{d^2n}{dx^2} = \frac{1}{D}\frac{dn}{dt}$$

Assume that particles are injected midway at $x=5\mu m$ such that the density is $(1+XX)*10^6cm^{-3}$ {where, XX= last 2-digits of Roll No.} (i.e., the injection is a delta function in both space and time). Consider perfectly absorbing boundary conditions at **A** and **B**, at time t=0. Using the formalism described in class, plot the **evolution of particle density** with time over the specified domain. Compare with analytical results. Explore the significance of the parameter \sqrt{Dt} . (Use $D=10^{-4}cm^2/s$)

Plot the evolution of particle density with both (i) Implicit method, and (ii) Explicit method with C<0.5 & C>0.5, where C = $D^*\Delta t/\Delta x^2$.

Time Dependence in terms of particle injection at time t = 0

Means particles at x=5um will starts decreasing with time.

Queshon- 2nd Region of leight (L)= 10um 6
- Perfectly absorbing Bounday com as x=0=10 min - Perfectly absorbing Bounday com as x=0=10 min at time=0
out time = 106/cm3
- Particle Tjechon au (Delta fue)
Given: D=10-4 cm²/sec
To find! (i) Evolution of facilité density (ii) Analytical result (iii) Engusticance 8 J. Dit
(ii) Significance 8/ JDt
Solution! Now you also have Time-dependance.
30
There are I methods to do this question: A Topplict @ Backward Elwer Method [Stable] Forward Euler Method [Conditionally]
A Implict @ Back ward Elwer Method L Stable
B. Exhlict @ forward Euler Method [Conditionally]
B. Explict @ forward Euler Method [conditionally] Gendy (C= DAt < 0.5) Should be followed.
Rep to Read: Ch-7, VLSI Tech. Pg-405] Redd Whole Topic: For Dopart Diffusion
Redd whole Topic for Dopart Diffund
ce is sure issues Implicit meterod, when
"Hence we well use using Implicit method, when you need not to work about Conditions for stability"
et bility 1?
stabla
Backward Elder meens, you are very Backward
Backward Eliler means, you are using Backward deffered formular for the Calculation of $(\frac{dn}{dt})$ terr

Ephahon: - Non-Steady Diffusion Epin (7)

i > port Index

j > Time Judgy D 32n = 3n (with nexposito Time) (w. r. to position) Now for numerical solution $\sum_{i=1}^{\infty} \frac{1}{i} = \sum_{i=1}^{\infty} \frac{1}{$ $\frac{D \Delta P}{\Delta n^2} \left\{ \gamma_{i-1}^{j} - 2 \gamma_{i}^{j} + \gamma_{i+1}^{j} \right\} = \gamma_{i}^{j} - \gamma_{i}^{j-1}$ (i) Iterate the epr to find partiel frofte for lach j (time) Follow: (11) Then iterate for j (time) to get time Evolution effect on faithful fronte.

Problem 2: Consider a region of length 100um. Assume that the region is devoid of any particles at time t=0. Also assume perfectly absorbing boundary condition at x=100um. Solve for the diffusion of particles from the side x=0 as a function of time under the assumption that n(x=0,t)=2000. Plot the space and temporal evolution of the particle density profile. (Note that this scenario is very similar to doping of a semiconductor to form a PN junction diode). Compare the numerical solution with the analytical solution.

Time Dependence in terms of particle injection at all times time.

Means particles at x=0 will remain constant at all times.

Comment: Same equations as mentioned on the previous page will be used.

