12. Расчёты по формулам Блок 1. ФИПИ ПРИМЕРЫ

Задание 1. В фирме «Родник» стоимость (в рублях) колодца из железобетонных колец рассчитывается по формуле $C = 6000 + 4100 \cdot n$, где n — число колец, установленных при рытье колодца. Пользуясь этой формулой, рассчитайте стоимость колодца из 7 колец.

$$n=7$$
 $C=6000+4100 \cdot n$ $C=6000+4100 \cdot 7=6000+28700=34700 \text{ (py6.)}$ OTBET: 34700

Задание 2. В фирме «Эх, прокачу!» стоимость поездки на такси (в рублях) рассчитывается по формуле $C=150+12\cdot(t-5)$, где t – длительность поездки, выраженная в минутах (t>5). Пользуясь этой формулой, рассчитайте стоимость 11-минутной поездки.

$$t=11 \,\text{мин}$$
 $C=150+12\cdot(t-5)$ $C=150+12\cdot(11-5)=150+12\cdot6=150+72=222 \,\text{(руб.)}$ Ответ: 222

Задание 3. Чтобы перевести значение температуры по шкале Цельсия в шкалу Фаренгейта, пользуются формулой $t_F = 1.8t_C + 32$, где t_C – градусы Цельсия, t_F – градусы Фаренгейта. Скольким градусам по шкале Фаренгейта соответствует –45 градусов по шкале Цельсия?

$$t_{\rm C} = -45 \, ^{\circ}{\rm C}$$
 $t_{\rm F} = 1.8t_{\rm C} + 32$ $t_{\rm F} = 1.8 \cdot (-45) + 32 = -81 + 32 = -49 \, (^{\circ}{\rm F})$ Other: -49

Задание 4. Чтобы перевести значение температуры по шкале Фаренгейта в шкалу Цельсия позволяет формула $t_C = \frac{5}{9}(t_F - 32)$, где t_C – температура в градусах Цельсия, t_F – температура в градусах Фаренгейта. Скольким градусам по шкале Цельсия соответствует 113 градусов по шкале Фаренгейта?

$$t_{\rm F} = 113 \, {}^{\circ}{\rm F}$$
 $t_{\rm C} = \frac{5}{9}(t_{\rm F} - 32)$
 $t_{\rm C} = \frac{5}{9}(113 - 32) = \frac{5}{9} \cdot 81 = 45 \, ({}^{\circ}{\rm C})$

Other: 45

Задание 5. Мощность постоянного тока (в ваттах) вычисляется по формуле $P = I^2R$, где I — сила тока (в амперах), R — сопротивление (в омах). Пользуясь этой формулой, найдите сопротивление R, если мощность составляет 101,25~BT, а сила тока равна 4,5~A. Ответ дайте в омах.

$$P = 101,25 \text{ BT} \qquad P = I^2 R \quad |: I^2$$

$$I = 4,5 \text{ A}$$

$$R = \frac{P}{I^2}$$

$$R = \frac{101,25}{4,5^2} = \frac{101,25}{4,5 \cdot 4,5} = \frac{10125}{45 \cdot 45} = 5 \text{ (OM)}$$

Задание 6. Центростремительное ускорение при движении по окружности (в м/с²) можно вычислить по формуле $a = \omega^2 R$, где ω – угловая скорость (в с¹), а R – радиус окружности. Пользуясь этой формулой, найдите радиус R (в метрах), если угловая скорость равна 7.5 с¹, а центростремительное ускорение равно 337.5 м/с². Ответ дайте в метрах.

$$a = 337.5 \text{ m/c}^2$$
 $a = \omega^2 R$ $|: \omega^2$
 $\omega = 7.5 \text{ c}^{-1}$ $R = \frac{a}{\omega^2}$
 $R = \frac{337.5}{7.5^2} = \frac{337.5}{7.5 \cdot 7.5} = \frac{3375 \cdot 10}{75 \cdot 75} = 6 \text{ (M)}$ Other: 6

Задание 7. Площадь четырёхугольника можно вычислить по формуле $S = \frac{d_1 d_2 \sin \alpha}{2}$, где d_1 и d_2 – длины диагоналей четырёхугольника, α – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d_2 , если $d_1 = 12$, $\sin \alpha = \frac{7}{9}$, а S = 46,2.

$$\begin{array}{c|c} d_1 = 12 \\ \sin\alpha = \frac{7}{9} \\ S = 46,2 \\ d_2 = ? \\ \end{array} \qquad \begin{array}{c|c} S = \frac{d_1 d_2 \sin\alpha}{2} \\ 2S = d_1 d_2 \sin\alpha \\ d_1 d_2 \sin\alpha = 2S \\ d_2 = \frac{2S}{d_1 \sin\alpha} \\ d_2 = \frac{2S}{d_1 \sin\alpha} \\ d_2 = \frac{2 \cdot 46,2}{12 \cdot \frac{7}{9}} = \frac{2 \cdot 46,2 \cdot 9}{12 \cdot 7} = \frac{46,2 \cdot 3}{2 \cdot 7} = 9,9 \end{array}$$

Ответ: 9,9

12. Расчёты по формулам Блок 2. ФИПИ. Расширенная версия ПРИМЕРЫ

Задание 8. Зная длину своего шага, человек может приближённо подсчитать пройденное им расстояние s по формуле s=nl, где n – число шагов, l – длина шага. Какое расстояние прошёл человек, если l = 60 см, n = 1300? Ответ выразите в километрах.

$$n=1300$$
 $s=nl$ $l=60 \text{ cm}$ $s=1300 \cdot 60 = 78 \cdot 000 \text{ (cm)}$ $s=7$ $78 \cdot 000 \text{ cm} = 780 \text{ m} = 0,78 \text{ km}$ Otbet: 0,78

Задание 9. Период колебания математического маятника T (в секундах) приближенно можно вычислить по формуле $T = 2\sqrt{l}$, где l- длина нити (в метрах). Пользуясь этой формулой, найдите длину нити маятника (в метрах), период колебаний которого составляет 11 секунд.

T=11c
$$T = 2\sqrt{l}$$

 $l-?$ $(T)^2 = (2\sqrt{l})^2$
 $T^2 = 4l$ |:4
 $l = \frac{T^2}{4}$ $l = \frac{11^2}{4} = \frac{121}{4} = 30\frac{1}{4} = 30\frac{25}{100} = 30,25$ (M) Other: 30,25

Задание 10. Закон Кулона можно записать в виде $F = k \frac{q_1 q_2}{r^2}$, где F – сила взаимодействия зарядов (в ньютонах), q_1 и q_2 – величины зарядов (в кулонах), k – коэффициент пропорциональности (в $H \cdot m^2 / K \Lambda^2$), а r – расстояние между зарядами (в метрах). Пользуясь формулой, найдите величину заряда q_2 (в кулонах), если $k = 9 \cdot 10^9 \ H \cdot m^2 / K \Lambda^2$, $q_1 = 0,008 \ K \Lambda$, $r = 400 \ M$, а $F = 0,225 \ H$.

$$\begin{array}{lll} k = 9 \cdot 10^9 \, \frac{\mathrm{H} \cdot \mathrm{m}^2}{\mathrm{K} \Lambda^2} & & & & \\ F = k \, \frac{q_1 q_2}{r^2} & & & \\ q_1 = 0,008 \, \mathrm{K} \Lambda & & & \\ F = 2 \cdot 200 \, \mathrm{m} & & & \\ F = 0,225 \, \mathrm{H} & & & \\ q_2 = \frac{\mathrm{F} r^2}{k q_1} = \frac{0,225 \cdot 400^2}{9 \cdot 10^9 \cdot 0,008} = \frac{0,225 \cdot 16}{9 \cdot 10^5 \cdot 0,008} = \\ q_2 = \frac{225 \cdot 16}{9 \cdot 10^5 \cdot 8} = 0,0005 \, (\mathrm{KA}) & & & \\ \end{array}$$

Задание 11. Закон всемирного тяготения можно записать в виде $F = \gamma \frac{m_1 m_2}{r^2}$, где F – сила притяжения между телами (в ньютонах), m_1 и m_2 – массы тел (в килограммах), r – расстояние между центрами масс (в метрах), а γ – гравитационная постоянная, равная $6.67 \cdot 10^{-11} \; \text{H·m}^2/\text{kr}^2$. Пользуясь формулой, найдите массу тела m_1 (в килограммах), если $F = 0.64032 \; \text{H}$, $m_2 = 4 \cdot 10^9 \; \text{kr}$, а $r = 5 \; \text{м}$.

$$\begin{array}{lll} \gamma = 6,67 \cdot 10^{-11} \, \frac{\mathrm{H} \cdot \mathrm{m}^2}{\mathrm{kr}^2} & \mathrm{F} = \gamma \, \frac{m_1 m_2}{r^2} & \Big| \cdot r^2 \\ \mathrm{F} = 0,64032 \, \mathrm{H} & \mathrm{F} r^2 = \gamma m_1 m_2 & \Big| : \gamma m_2 \\ m_2 = 4 \cdot 10^9 \, \mathrm{Ka} & m_1 = \frac{\mathrm{F} r^2}{\gamma m_2} = \frac{0,64032 \cdot 5^2}{6,67 \cdot 10^{-11} \cdot 4 \cdot 10^9} = \frac{0,64032 \cdot 25}{6,67 \cdot 10^{-2} \cdot 4} = \\ m_1 = \frac{0,64032 \cdot 10000}{6,67 \cdot 16} = \frac{64032 \cdot 10}{667 \cdot 16} = 60 \, (\mathrm{kg}) \end{array}$$

Задание 12. Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P -давление (в паскалях), V -объём (в M^3), $\nu -$ количество вещества (в молях), T -температура (в градусах Кельвина), а R -универсальная газовая постоянная, равная $8,31 \ Дж/(K\cdot моль)$. Пользуясь этой формулой, найдите объём V (в M^3), если $T = 300 \ K$, $P = 53.848,8 \ Па, <math>\nu = 32,4 \ моль$.

$$\begin{array}{ll} R=8,31\frac{\text{Дж}}{\text{K}\cdot\text{моль}} & PV=\nu RT \ | :P \\ V=\frac{\nu RT}{P} \\ V=53\,848,8\,\Pi a \\ \nu=32,4\,\text{моль} & V=\frac{32,4\cdot8,31\cdot300}{53\,848,8} \\ V-? & V=\frac{324\cdot831\cdot3}{53\,8488} = \frac{6\cdot54\cdot3\cdot277\cdot3}{18\cdot29916} = \frac{54\cdot3}{108} \\ V=1,5\,\text{(m}^3) & \end{array}$$

Задание 13. Закон Менделеева-Клапейрона можно записать в виде $PV = \nu RT$, где P – давление (в паскалях), V – объём (в м³), ν – количество вещества (в молях), T – температура (в градусах Кельвина), а R – универсальная газовая постоянная, равная 8,31~Дж/(K·моль). Пользуясь формулой, найдите температуру T (в градусах Кельвина), если P = 70~219,5~ Па, $\nu = 29,9~$ моль, V = 2,3~ м³.

Ответ: 1,5

$$\begin{array}{lll} R=8,31\frac{\mbox{${\cal I}$}\mbox{${\cal K}$}\mbox{${\cal M}$}\mbox{${\cal K}$}\mbox{${\cal K}$$

12. Расчёты по формулам Блок 3. Типовые экзаменационные варианты ПРИМЕРЫ

Задание 14. Высота деревянного стеллажа для книг равна h = (a+b)n + a миллиметров, где a – толщина одной доски (в мм), b – высота одной полки (в миллиметрах), n – число таких полок. Найдите высоту книжного стеллажа из 8 полок, если a = 18 мм, b = 310 мм. Ответ выразите в миллиметрах.

$$n=8$$
 $h=(a+b)n+a$ $a=18$ мм $h=(18+310)\cdot 8+18=328\cdot 8+18=2642$ (мм) $b=310$ мм $h-?$ Ответ: 2642

Ответ: 16

Задание 15. Закон Гука можно записать в виде F = kx, где F - cила (в ньютонах), с которой сжимают пружину, x -абсолютное удлинение (сжатие) пружины (в метрах), а k -коэффициент упругости. Пользуясь этой формулой, найдите x (в метрах), если $F = 80 \, \text{H}$ и $k = 5 \, \frac{\text{H}}{\text{M}}$.

F=80 H F=
$$kx$$
 |: k
 $k=5\frac{H}{M}$ $x=\frac{F}{k}$
 $x-?$ $x=\frac{80}{5}=16$ (M)

Задание 16. Закон Джоуля–Ленца можно записать в виде $Q = I^2Rt$, где Q – количество теплоты (в джоулях), I – сила тока (в амперах), R – сопротивление цепи (в омах), а t – время (в секундах). Пользуясь этой формулой, найдите время t (в секундах), если Q = 816,75 Дж, I = 5,5 A, R = 9 Ом.

$$Q=816,75$$
 Дж $Q=I^2Rt$ $|:I^2R$ $I=5,5$ A $E=9$ Ом $I=\frac{Q}{I^2R}$ $I=\frac{Q}{I^2R}$ $I=\frac{816,75}{5,5^2\cdot 9}=\frac{816,75}{5,5\cdot 5,5\cdot 9}=3$ (сек) Ответ: 3

Задание 17. Мощность постоянного тока (в ваттах) вычисляется по формуле $P = \frac{U^2}{R}$, где U – напряжение (в вольтах), R – сопротивление (в омах). Пользуясь этой формулой, найдите P (в ваттах), если R=9 Ом, U=18 B.

$$R = 9 \text{ OM}$$
 $U = 18 \text{ B}$
 $P = \frac{U^2}{R}$
 $P = \frac{18^2}{9} = 36 \text{ (BT)}$
Other: 36

Задание 18. Работа постоянного тока (в джоулях) вычисляется по формуле $A = \frac{U^2t}{R}$, где U — напряжение (в вольтах), R — сопротивление (в омах), t — время (в секундах). Пользуясь этой формулой, найдите A (в джоулях), если t = 8 с, U = 6 B, R = 2 Ом.

$$t = 8 c$$

 $U = 6 B$ $A = \frac{U^2 t}{R}$
 $R = 2 \text{ OM}$ $A = \frac{6^2 \cdot 8}{2} = 144 \text{ (Дж)}$ Ответ: 144

Задание 19. Кинетическая энергия тела (в джоулях) вычисляется по формуле $E = \frac{mv^2}{2}$, где m – масса тела (в килограммах), а v – его скорость (в метрах в секунду). Пользуясь этой формулой, найдите E (в джоулях), если v = 5 м/с и m = 12 кг.

$$v=5 \text{ м/c}$$
 $m=12 \text{ кг}$ $E=\frac{mv^2}{2}$ $E=\frac{12\cdot 5^2}{2}=150 \text{ (Дж)}$ $E-?$ Ответ: 150

Задание 20. Энергия заряженного конденсатора W (в Дж) вычисляется по формуле $W = \frac{\text{CU}^2}{2}$, где C – ёмкость конденсатора (в Ф), а U – разность потенциалов на обкладках конденсатора (в В). Найдите энергию конденсатора W (в Дж) ёмкостью 10^{-4} Ф, если разность потенциалов U на обкладках конденсатора равна 8 В.

$$C=10^{-4}$$
 Ф $W=\frac{CU^2}{2}$ $W=\frac{10^{-4}\cdot 8^2}{2}=0,0032$ (Дж) $W-?$ Ответ: 0,0032

Задание 21. Площадь треугольника можно вычислить по формуле $S = \frac{abc}{4R}$, где a, b и c – стороны треугольника, а R – радиус окружности, описанной около этого треугольника. Пользуясь этой формулой, найдите S, если a=11, b=13, c=20 и R= $\frac{65}{6}$.

$$a=11 b=13 c=20 R=65/6 S=\frac{11\cdot13\cdot20}{4\cdot\frac{65}{6}} = \frac{11\cdot13\cdot5\cdot6}{65} = 66 S=2$$

Задание 22. Радиус вписанной в прямоугольный треугольник окружности можно найти по формуле $r = \frac{a+b-c}{2}$, где a и b – катеты, а c – гипотенуза треугольника. Пользуясь этой формулой, найдите c, если a=12, b=35 и r=5.

$$a=12$$

 $b=35$
 $r = \frac{a+b-c}{2}$ | $\cdot 2$
 $r=5$
 $c-?$
 $c=a+b-2r$
 $c=12+35-2\cdot 5=37$

Ответ: 37

Задание 23. Теорему косинусов можно записать в виде $\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab}$, где a, b и c – стороны треугольника, а α – угол между сторонами a и b. Пользуясь этой формулой, найдите величину $\cos \alpha$, если a = 3, b = 8 и c = 7.

$$a=3$$

 $b=8$
 $c=7$
 $\cos \alpha = \frac{a^2 + b^2 - c^2}{2ab}$
 $c = 7$
 $\cos \alpha = \frac{3^2 + 8^2 - 7^2}{2 \cdot 3 \cdot 8} = \frac{24}{48} = \frac{1}{2} = \frac{5}{10} = 0,5$
Other: 0,5

Задание 24. Длина медианы m_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $m_c = \frac{\sqrt{2a^2 + 2b^2 - c^2}}{2}$. Найдите медиану m_c , если a = 4, b = 7 и c = 9.

$$a=4$$
 $b=7$ $m_c=\frac{\sqrt{2a^2+2b^2-c^2}}{2}$ $c=9$ $m_c=\frac{\sqrt{2\cdot 4^2+2\cdot 7^2-9^2}}{2}=\frac{\sqrt{49}}{2}=\frac{7}{2}=\frac{35}{10}=3,5$ Other: 3,5

Задание 25. Длина биссектрисы l_c , проведённой к стороне с треугольника со сторонами a, b и c, вычисляется по формуле $l_c = \frac{1}{a+b} \sqrt{ab((a+b)^2 - c^2)}$. Найдите длину биссектрисы l_c , если a=7, b=21 и c=26.

$$\begin{array}{ll} a=7 & l_c = \frac{1}{a+b} \sqrt{ab((a+b)^2-c^2)} \\ b=21 & l_c = 26 \\ l_c = \frac{1}{7+21} \sqrt{7 \cdot 21 \cdot ((7+21)^2-26^2)} = \\ = \frac{1}{28} \sqrt{7 \cdot 21 \cdot 108} = \frac{1}{28} \sqrt{7 \cdot 7 \cdot 3 \cdot 3 \cdot 36} = \frac{1}{28} \cdot 126 = 4,5 \end{array}$$
 Other: 4,5

Задание 26. Площадь треугольника вычисляется по формуле $S = \frac{1}{2}bcsin\alpha$, где b и c – две стороны треугольника, а α – угол между ними. Пользуясь этой формулой, найдите $sin\alpha$, если b = 10, c = 5 и S = 20.

$$b=10$$

$$c=5$$

$$S=\frac{1}{2}bcsin\alpha \quad | \cdot 2$$

$$S=20$$

$$2S=bcsin\alpha \quad | : bc$$

$$sin\alpha = \frac{2S}{bc} \quad sin\alpha = \frac{2\cdot 20}{10\cdot 5} = \frac{4}{5} = \frac{8}{10} = 0,8$$
Other: 0,8

Задание 27. Радиус описанной около треугольника окружности можно найти по формуле $R = \frac{a}{2\sin\alpha}$, где a – сторона треугольника, α – противолежащий этой стороне угол, а R – радиус описанной около этого треугольника окружности. Пользуясь этой формулой, найдите R, если $\alpha = 7$, а $\sin\alpha = \frac{5}{14}$.

$$\begin{array}{ll}
 a = 7 & R = \frac{\alpha}{2\sin\alpha} \\
 \sin\alpha = \frac{5}{14} & R = \frac{7}{2 \cdot \frac{5}{14}} = \frac{7 \cdot 14}{2 \cdot 5} = \frac{98}{10} = 9,8
 \end{array}$$

Задание 28. Теорему синусов можно записать в виде $\frac{\alpha}{\sin \alpha} = \frac{b}{\sin \beta}$, где α и b – две стороны треугольников, а α и β – углы треугольника, лежащие против них соответственно. Пользуясь этой формулой, найдите величину α , если b=15, $\sin \alpha = \frac{4}{5}$ и $\sin \beta = \frac{12}{13}$.

$$b=15$$

$$\sin \alpha = \frac{4}{5}$$

$$\sin \alpha = \frac{b}{\sin \beta}$$

$$a \cdot \sin \beta = b \cdot \sin \alpha \quad |: \sin \beta$$

$$\sin \beta = \frac{12}{13}$$

$$a - ?$$

$$\alpha = \frac{b \cdot \sin \alpha}{\sin \beta}$$

$$\alpha = \frac{15 \cdot \frac{4}{5}}{\frac{12}{13}} = \frac{3 \cdot 4 \cdot 13}{12} = 13$$

Ответ: 13

Ответ: 9,8

Задание 29. Площадь прямоугольника можно вычислить по формуле $S = \frac{d^2 \sin \alpha}{2}$, где d – длина диагонали, α – угол между диагоналями. Пользуясь этой формулой, найдите площадь S, d = 12 и $\sin \alpha = \frac{5}{6}$.