Matematika I

15. januára 09:00

Meno a priezvis	ko: Podpis:
Ročník:	študijný program:
1. (11b) Daná je v Doplňte	všeobecná rovnica kužeľosečky $4x^2 - y^2 - 24x + 4y + 28 = 0$.
a) (2b) Stredov	á rovnica kužeľosečky je
b) (1b) Kužeľos	ečka je typu
c) (3b) Popíšte	(ak existujú):
c_2) dĺžka v	lavnej poloosi jeedľajšej poloosi je
d) (4b) Napíšte	súradnice (ak existujú):
d_2) hlavnýc d_3) vedľajší	kužeľosečky h vrcholov kužeľosečky ch vrcholov kužeľosečky ce ohniska resp. ohnísk kužeľosečky
e) (1b) Znázorr	nite kužeľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi $A=[-1,-1],\,B=[1,-1],\,C=[2,2],\,D=[-2,2].$

Výsledok:

- 4. (4b) Bod M má v pravouhlej súradnicovej sústave súradnice: $M=[3,\sqrt{3},3].$
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v cylindrickej súradnicovej sústave sú:

a)
$$M = [2\sqrt{3}, -\frac{\pi}{6}, 3]$$

c)
$$M = [2\sqrt{3}, \frac{\pi}{3}, 3]$$

b)
$$M = [2\sqrt{3}, -\frac{\pi}{3}, 3]$$

d)
$$M = [2\sqrt{3}, \frac{\pi}{6}, 3]$$

b) (2b) Znázornite tento bod Mv cylindrickej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + y(x) = 3/sinx$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení je
c) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
d) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte, ak existuje
$\lim_{[x,y]\to[0,0]} \frac{\sin(3x+6y)}{x+2y}.$
${ m V} { m y}{ m sledok}{ m :}$
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x^2-2y}$ v bode $T=[1,y_0,3].$
(2b) Nájdite y_0 a uveďte súradnice dotykového bodu :
(4b) Rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y) = \ln(2x+y)$, bod $A = [1, 1]$ a vektor $\vec{l} = (-1, 2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=(x-1)^2+2y^2$ a oblasť $M.$ Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[0,-1],\ B=[1,-1],\ C=[1,1]$ a $D=[0,1].$
a) Načrtnite oblasť M :
Náčrt:
Pomocou matematických vzťahov popíšte hranice oblasti M :
(a) (2b) <i>AB</i>
(b) (2b) BC
(c) (2b) CD
(d) (2b) AD
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti $M.$ Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
Najväčšia hodnota funkcie $f(x,y)$ je:
Najmenšia hodnota funkcie $f(x,y)$ je: