Math 761 HW 4

Jiaxi Huang
Due: Oct 3

1. Show that the map

$$\mathbb{R}^n \ni \vec{v} \longmapsto \left. D\vec{v} \right|_p \in T_p \mathbb{R}^n$$

is surjective, i.e. that every derivation comes from a directional derivative. *Hint:* To find \vec{v} , apply $w \in T_p \mathbb{R}^n$ to the coordinate functions. Then for any smooth function f use Taylor's theorem on f and the Leibniz property.

Proof. We can prove this by showing $\{\frac{\partial}{\partial x_i}|_p, 1 \leq i \leq n\}$ is a basis of $T_p\mathbb{R}^n$. First, they are linear independent. If $D = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i}|_p = 0$, then $D(x_j) = 0, 1 \leq j \leq n \Rightarrow a_i = 0$. So, they are linear independent. Now let $D \in T_p\mathbb{R}^n$, and $p = (p_1, \cdots, p_n)$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a smooth function. Then we can use Taylor Theorem: $f = f(p) + \sum_{i=1}^n (x_i - p_i) \int_0^1 \frac{\partial f}{\partial x_i} (p + t(x - p)) dt \Rightarrow D(f) = \sum_{i=1}^n D(x_i - p_i) \int_0^1 \frac{\partial f}{\partial x_i} (p) dt + (p_i - p_i) D\left(\int_0^1 \frac{\partial f}{\partial x_i} (p + t(x - p)) dt\right) = \sum_{i=1}^n \frac{\partial}{\partial x_i} |_p(f) D(x_i)$. Since f is a random smooth function, we know $D = \sum_{i=1}^n \frac{\partial}{\partial x_i} |_p D(x_i)$. So, $\{\frac{\partial}{\partial x_i}, 1 \leq i \leq n\}$ is a basis of $T_p\mathbb{R}^n$, which means this map is surjective.

2. Prove Proposition 3.6 from Lee (*Properties of Differentials*). Let M, N, P be smooth manifolds, let $F: M \to N$ and $G: N \to P$ be smooth maps, and let $p \in M$.

Here we use the definition of Lee's book. We define the $T_p(M)$ as the collection of linear map $v: C^{\infty}(M) \to \mathbb{R}$ which satisfies v(fg) = f(p)v(g) + g(p)v(f) $f, g \in C^{\infty}(M)$. And we define $dF_p: T_pM \to T_{F(p)}N$ by $dF_p(v)(f) = v(f \circ F)$ $f \in C^{\infty}(N), v \in T_pM$.

(a) $dF_p: T_pM \to T_{F(p)}N$ is linear.

Proof. $dF_p(v_1+v_2)(f) = (v_1+v_2)(f \circ F) = v_1(f \circ F) + v_2(f \circ F) = dF_p(v_1)(f) + dF_p(v_2)(f) \quad f \in C^{\infty}(N), v_1, v_2 \in T_pM \Rightarrow dF_p(v_1+v_2) = dF_p(v_1) + dF_p(v_2). \quad dF_p(av)(f) = av(f \circ F) = a \cdot dF_p(v)(f) \quad f \in C^{\infty}(N), v \in T_pM, \quad a \in \mathbb{R} \Rightarrow dF_p(av) = a \cdot dF_p(v). \text{ So, } dF_p \colon T_pM \to T_{F(p)}N \text{ is linear.}$

(b) $d(G \circ F)_p = dG_{F(p)} \circ dF_p \colon T_pM \to T_{G(F(p))}P$.

Proof. $d(G \circ F)_p(v)(f) = v(f \circ G \circ F) = v(f' \circ F) = dF_p(v)(f') = dF_p(v)(f \circ G) = dG_{F(p)} \circ dF_p(v)(f)$ $v \in T_p(M), f \in C^{\infty}(P) \Rightarrow d(G \circ F)_p = dG_{F(p)} \circ dF_p$

(c) $d(\operatorname{Id}_M)_p = \operatorname{Id}_{T_pM} : T_pM \to T_pM$.

Proof. $d(\operatorname{Id}_M)_p(v)(f) = v(f \circ Id_M) = v(f) \quad v \in T_p(M), f \in C^{\infty}(M) \Rightarrow d(\operatorname{Id}_M)_p = \operatorname{Id}_{T_pM}.$

(d) If F is a diffeomorphism, then $dF_p: T_pM \to T_{F(p)}N$ is an isomorphism, and

$$(dF_p)^{-1} = d(F^{-1})_{F(p)}.$$

Proof. $dF_p \circ d(F^{-1})_{F(p)} = d(F \circ F^{-1})_{F(p)} = d(\operatorname{Id}_N)_{F(p)} = \operatorname{Id}_{T_{F(p)}N}$. On the other direction, $d(F^{-1})_{F(p)} \circ dF_p = d(F^{-1} \circ F)_p = d(\operatorname{Id}_M)_p = \operatorname{Id}_{T_pM}$. This indicates $dF_p \colon T_pM \to T_{F(p)}N$ is an isomorphism, and $(dF_p)^{-1} = d(F^{-1})_{F(p)}$.

3. Note that if M is a smooth manifold and $U \subset M$ is open, then U is also a smooth manifold with smooth structure inherited from M (i.e. charts on U are given by intersecting U with charts on M). We say U is an open submanifold of M. Show that for $p \in U$ there is an isomorphism

$$T_pM \cong T_pU$$
.

Proof. Let $\iota: U \to M$ be the inclusion map. We claim $d\iota_p$ is the isomorphism $T_pU \to T_pM$. Here we continue to use the definition of Lee.

First, we prove a lemma: Let M be a smooth manifold, $p \in M$, and $v \in T_pM$. If $f, g \in C^{\infty}(M)$ agree on some neighborhood of p, then vf = vg.

Proof. Let h = f - g, so that h is a smooth function that vanishes in a neighborhood U of p. Let $\psi \in C^{\infty}(M)$ be a smooth bump function that is identically equal to 1 on the support of h(This is true, because we can find a closed set $p \in A \subset U$ (from class), which is disjoint with $Supp\ (h)$. Then we can use HW3 problem 5) and is supported in $M \setminus \{p\}$. Because $\psi \equiv 1$ where h is nonzero, the product ψh is identically equal to h. Since $h(p) = \psi(p) = 0$, $vh = v(\psi h) = 0$. By linearity, this implies vf = vg.

Injectivity: suppose $v \in T_pU$ and $d\iota_p(v) = 0 \in T_pM$. Let B be a neighborhood of p such that $\overline{B} \subseteq U$. If $f \in C^{\infty}(U)$ is arbitrary, the extension lemma for smooth functions guarantees that there exists $\tilde{f} \in C^{\infty}(M)$ such that $\tilde{f} \equiv f$ on \overline{B} (application of partition of unity from class). Then since f and $\tilde{f}|_U$ are smooth functions on U that agree in a neighborhood of p, the lemma we proved implies $vf = v(\tilde{f}|_U) = v(\tilde{f} \circ \iota) = d\iota(v)_p \tilde{f} = 0$. Since this holds for every $f \in C^{\infty}(U)$, it follows that v = 0, so $d\iota_p$ is injective.

On the other hand, to prove surjectivity, suppose $w \in T_pM$ is arbitrary. Define an operator $v: C^{\infty}(U) \to \mathbb{R}$ by setting

$$vf = w\tilde{f}$$
.

where \tilde{f} is any smooth function on all of M that agrees with f on \overline{B} (We have proved the existence of \tilde{f}). By the lemma we proved, vf is independent of the choice of \tilde{f} , so v is well defined, and it is easy to check that it is a derivation of $C^{\infty}(U)$ at p. For any $g \in C^{\infty}(M)$,

$$d\iota_{p}(v) q = v(q \circ \iota) = w(\tilde{q} \circ \iota) = wq,$$

where the last two equalities follow from the facts that $g \circ \iota$, $\tilde{g} \circ \iota$, and g all agree on \overline{B} . Therefore, $d\iota_p$ is also surjective.

4. Show that for a vector space V (with its canonical smooth structure) and any point $p \in V$, the tangent space T_pV is canonically isomorphic to V.

Proof. We will construct a map $\Psi: V \to T_p V$ and prove that it is a linear isomorphism. This construction will be entirely independent of any choice of basis. We define the map $\Psi: V \to T_p V$ as follows: For any $v \in V$, $\Psi(v)$ is an element of $T_p V$ (i.e., a derivation) whose action on any smooth function $f \in C^{\infty}(V)$ is given by:

$$[\Psi(v)](f) := \frac{d}{dt} \bigg|_{t=0} f(p+tv)$$

(Noticing that f(p+tv) is actually a smooth function on \mathbb{R}) This definition calculates the directional derivative of the function f at the point p in the direction v. We need to prove that for any $v \in V$, the

operator $\Psi(v)$ we defined satisfies the two conditions for an element of T_pV (linearity and the Leibniz rule). (i): For any constants $a, b \in \mathbb{R}$ and functions $f, g \in C^{\infty}(V)$:

$$\begin{split} [\Psi(v)](af+bg) &= \frac{d}{dt} \bigg|_{t=0} (af+bg)(p+tv) \\ &= \frac{d}{dt} \bigg|_{t=0} \left(af(p+tv) + bg(p+tv) \right) \\ &= a\frac{d}{dt} \bigg|_{t=0} f(p+tv) + b\frac{d}{dt} \bigg|_{t=0} g(p+tv) \quad \text{(by linearity of the derivative)} \\ &= a[\Psi(v)](f) + b[\Psi(v)](g) \end{split}$$

Thus, $\Psi(v)$ is a linear operator. (ii):

$$\begin{split} [\Psi(v)](f\cdot g) &= \frac{d}{dt}\bigg|_{t=0} (f\cdot g)(p+tv) = \frac{d}{dt}\bigg|_{t=0} \left(f(p+tv)\cdot g(p+tv)\right) \\ &= \left(\frac{d}{dt}\bigg|_{t=0} f(p+tv)\right) \cdot g(p+0) + f(p+0) \cdot \left(\frac{d}{dt}\bigg|_{t=0} g(p+tv)\right) \quad \text{(by the product rule)} \\ &= ([\Psi(v)](f)) \cdot g(p) + f(p) \cdot ([\Psi(v)](g)) \end{split}$$

The Leibniz rule is also satisfied. Therefore, our defined $\Psi(v)$ is indeed a tangent vector in T_pV . Now we must prove that the map Ψ itself is a linear isomorphism.

(a) :We need to show that $\Psi(av_1 + bv_2) = a\Psi(v_1) + b\Psi(v_2)$. This means they are the same operator, i.e., they have the same effect on any function f.

$$\begin{split} [\Psi(av_1 + bv_2)](f) &= \frac{d}{dt} \bigg|_{t=0} f(p + t(av_1 + bv_2)) \\ &= \frac{d}{dt} \bigg|_{t=0} f(p + (at)v_1 + (bt)v_2) \\ &= a \left(\frac{d}{ds} \bigg|_{s=0} f(p + sv_1) \right) + b \left(\frac{d}{ds} \bigg|_{s=0} f(p + sv_2) \right) \quad \text{(by the chain rule)} \\ &= a [\Psi(v_1)](f) + b [\Psi(v_2)](f) = [a\Psi(v_1) + b\Psi(v_2)](f) \end{split}$$

Since this holds for all f, we have $\Psi(av_1 + bv_2) = a\Psi(v_1) + b\Psi(v_2)$, so Ψ is linear.

(b) : To prove injectivity, we show its kernel is $\{0\}$. That is, if $\Psi(v) = 0$ (the zero derivation), then v must be the zero vector.

 $\Psi(v)=0$ means that for all smooth functions $f\in C^{\infty}(V)$, we have $[\Psi(v)](f)=0$. Let $\lambda:V\to\mathbb{R}$ be any linear functional (i.e., $\lambda\in V^*$, the dual space of V). Linear functionals are smooth functions. Apply $\Psi(v)$ to $f=\lambda$:

$$[\Psi(v)](\lambda) = \frac{d}{dt}\Big|_{t=0} \lambda(p+tv)$$

Because λ is linear, $\lambda(p + tv) = \lambda(p) + t\lambda(v)$.

$$[\Psi(v)](\lambda) = \frac{d}{dt} \bigg|_{t=0} (\lambda(p) + t\lambda(v)) = \lambda(v)$$

If $\Psi(v) = 0$, then $[\Psi(v)](\lambda) = \lambda(v) = 0$. This must hold for **all** linear functionals $\lambda \in V^*$. From a fundamental result in linear algebra, if the image of a vector v is zero under every linear functional, then the vector itself must be the zero vector. Thus, v = 0. This proves that Ψ is injective.

(c): We already know that $\dim(T_pV) = \dim(V)$. Ψ is a linear map from V to T_pV . For two finite-dimensional vector spaces of the same dimension, an injective linear map is necessarily also surjective, and thus is an isomorphism.

In summary, Ψ is a linear isomorphism. Because we made no choice of basis during this entire construction, this isomorphism is canonical.

5. Let (x, y) denote the standard coordinates on \mathbb{R}^2 . Verify that (\tilde{x}, \tilde{y}) are global smooth coordinates on \mathbb{R}^2 , where

$$\tilde{x} = x, \qquad \tilde{y} = y + x^3.$$

Let $p = (1,0) \in \mathbb{R}^2$ (in standard coordinates), and show that

$$\left. \frac{\partial}{\partial x} \right|_p \neq \left. \frac{\partial}{\partial \tilde{x}} \right|_p.$$

Proof. Let $\psi(x,y)=(x,y-x^3):\mathbb{R}^2\to\mathbb{R}^2$. Then $\phi\circ\psi=\psi\circ\phi=\mathrm{Id}$. Also, ϕ,ψ are smooth, because $x,y+x^3,y-x^3$ are some polynomials of x,y. So, ϕ is a diffeomorphism of \mathbb{R}^2 and \mathbb{R}^2 , which indicating ϕ is a global smooth coordinates. Let $f(x,y)=y:\mathbb{R}^2\to\mathbb{R}$. Then $\frac{\partial}{\partial x}|_p(f)=d\psi|_{\phi(p)}(\frac{\partial}{\partial x})(f)=\frac{\partial}{\partial x}|_{\phi(p)}(f\circ\psi)=\frac{\partial}{\partial x}|_{(1,1)}(y-x^3)=-3$. But $\frac{\partial}{\partial x}|_p(f)=\frac{\partial}{\partial x}|_{(1,0)}(y)=0\neq\frac{\partial}{\partial \tilde{x}}|_p(f)=-3$.