Lecture 19: Finding Interval Estimators

Mathematical Statistics II, MATH 60062/70062

Tuesday April 12, 2022

Reference: Casella & Berger, 9.2.2-9.2.4

Interval estimation methods

Methods of finding interval estimators

- Inverting a test statistic
- Using pivotal quantities
- Pivoting a CDF
- Bayesian credible intervals

Methods of evaluating interval estimators

- Coverage probability
- Interval length

Recap: Inverting a test statistic

Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ using the size α test function

$$\phi(\boldsymbol{x}) = I(\boldsymbol{x} \in R_{\theta_0}) = \begin{cases} 1 & \boldsymbol{x} \in R_{\theta_0} \\ 0 & \boldsymbol{x} \in R_{\theta_0}^c, \end{cases}$$

where R_{θ_0} is the rejection region and $P_{\theta_0}(\boldsymbol{X} \in R_{\theta_0}) = \alpha$. Let $A_{\theta_0} = R_{\theta_0}^c$ be the **acceptance region** of this level α test. For each $\boldsymbol{x} \in \mathcal{X}$, define a set $C(\boldsymbol{x})$ in the parameter space by

$$C(\boldsymbol{x}) = \{\theta_0 : \boldsymbol{x} \in A_{\theta_0}\}.$$

Clearly, $\theta_0 \in C(x) \iff x \in A_{\theta_0}$. Based on the duality between hypothesis testing and confidence intervals,

$$P_{\theta_0}(\theta_0 \in C(\mathbf{X})) = P_{\theta_0}(\mathbf{X} \in A_{\theta_0}) = 1 - P_{\theta_0}(\mathbf{X} \in R_{\theta_0}) = 1 - \alpha.$$

The same argument holds for all $\theta_0 \in \Theta$. Therefore,

$$C(\boldsymbol{X}) = \{\theta \in \Theta : \boldsymbol{x} \in A_{\theta}\}$$

is a $1-\alpha$ confidence set.

Recap: Pivotal quantities

A random variable $Q=Q(\boldsymbol{X},\theta)$ is a **pivotal quantity** (or **pivot**) if the distribution of Q is independent of θ .

If $Q=Q(\boldsymbol{X},\theta)$ is pivot, then a $1-\alpha$ confidence interval can be found by setting

$$1 - \alpha = P_{\theta}(a \le Q(\boldsymbol{X}, \theta) \le b),$$

where a and b are quantiles of the distribution of Q that satisfy the condition.

This is equivalent to inverting the acceptance region of a size α test of $H_0: \theta = \theta_0$

$$A_{\theta_0} = \{ \boldsymbol{x} : a \le Q(\boldsymbol{x}, \theta_0) \le b \},$$

to obtain

$$C(\boldsymbol{x}) = \{\theta_0 : a \le Q(\boldsymbol{x}, \theta_0) \le b\}$$

and $C(\boldsymbol{X})$ is a $1-\alpha$ confidence set for θ .

Recap: Normal pivotal intervals

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Both parameters are unknown. Set $\theta = (\mu, \sigma^2)$.

We know that

$$Q_1 = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

The distribution of Q_1 is free of θ , so it is a pivot. Therefore

$$\begin{split} 1 - \alpha &= P_{\pmb{\theta}} \left(-t_{n-1,\alpha/2} \leq \frac{\bar{X} - \mu}{S/\sqrt{n}} \leq t_{n-1,\alpha/2} \right) \\ &= P_{\pmb{\theta}} \left(\bar{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \right), \end{split}$$

which gives a $1-\alpha$ confidence interval for μ ,

$$C_1(\boldsymbol{X}) = \left(\bar{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}\right).$$

We also know that

$$Q_2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

The distribution of Q_2 is free of θ , so it is a pivot. Therefore

$$1 - \alpha = P_{\theta} \left(\chi_{n-1, 1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1, \alpha/2}^2 \right)$$
$$= P_{\theta} \left(\frac{(n-1)S^2}{\chi_{n-1, \alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1, 1-\alpha/2}^2} \right),$$

which gives a $1-\alpha$ confidence interval for σ^2 ,

$$C_2(\mathbf{X}) = \left(\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}\right).$$

We also know that

$$Q_2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

The distribution of Q_2 is free of θ , so it is a pivot. Therefore

$$1 - \alpha = P_{\theta} \left(\chi_{n-1, 1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1, \alpha/2}^2 \right)$$
$$= P_{\theta} \left(\frac{(n-1)S^2}{\chi_{n-1, \alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1, 1-\alpha/2}^2} \right),$$

which gives a $1-\alpha$ confidence interval for σ^2 ,

$$C_2(\mathbf{X}) = \left(\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}\right).$$

Suppose we wanted to find a confidence set for $\theta = (\mu, \sigma^2)$ simultaneously. Is $C_1(\mathbf{X}) \times C_2(\mathbf{X})$ a $1 - \alpha$ confidence set for θ ?

Confidence set with Bonferroni adjustment

To find a confidence set for $\boldsymbol{\theta}=(\mu,\sigma^2)$ simultaneously, the Cartesian product of $C_1(\boldsymbol{X})$ and $C_2(\boldsymbol{X})$, $C_1(\boldsymbol{X})\times C_2(\boldsymbol{X})$, is not a $1-\alpha$ confidence set for $\boldsymbol{\theta}$.

By Bonferroni's Inequality,

$$P_{\theta}(\theta \in C_1(\mathbf{X}) \times C_2(\mathbf{X})) \ge P_{\theta}(\mu \in C_1(\mathbf{X})) + P_{\theta}(\sigma^2 \in C_2(\mathbf{X})) - 1$$
$$= (1 - \alpha) + (1 - \alpha) - 1$$
$$= 1 - 2\alpha.$$

So, $C_1(X) \times C_2(X)$ is a $1 - 2\alpha$ confidence set for θ .

$$P(C1 \setminus C2) = P(C1) + P(C2) - P(C1 \setminus C2) \le 1$$

 $P(C1 \setminus C2) >= P(C1) + P(C2) - 1$
 $P(C1 \setminus C2) >= P(C1) + P(C2) - 1$

Confidence set with Bonferroni adjustment

To find a confidence set for $\boldsymbol{\theta}=(\mu,\sigma^2)$ simultaneously, the Cartesian product of $C_1(\boldsymbol{X})$ and $C_2(\boldsymbol{X})$, $C_1(\boldsymbol{X})\times C_2(\boldsymbol{X})$, is not a $1-\alpha$ confidence set for $\boldsymbol{\theta}$.

By Bonferroni's Inequality,

$$P_{\theta}(\theta \in C_1(\mathbf{X}) \times C_2(\mathbf{X})) \ge P_{\theta}(\mu \in C_1(\mathbf{X})) + P_{\theta}(\sigma^2 \in C_2(\mathbf{X})) - 1$$
$$= (1 - \alpha) + (1 - \alpha) - 1$$
$$= 1 - 2\alpha.$$

So, $C_1(X) \times C_2(X)$ is a $1 - 2\alpha$ confidence set for θ .

Bonferroni adjustment: Adjust the confidence coefficient for $C_1(X)$ and $C_2(X)$ individually to be $1-\alpha/2$. The Cartesian product of the adjusted $1-\alpha/2$ sets for μ and σ^2 is a $1-\alpha$ confidence set.

Confidence set without adjustment

Consider the quantity

$$Q = Q(\boldsymbol{X}, \boldsymbol{\theta}) = \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)S^2}{\sigma^2}.$$

Confidence set without adjustment

Consider the quantity

Chi_1 Chi_{n-1}
$$Q = Q(\boldsymbol{X}, \boldsymbol{\theta}) = \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)S^2}{\sigma^2}.$$

Since $Q \sim \chi_n^2$, it is a pivot. Therefore, we can write

$$1 - \alpha = P_{\theta}(Q \le \chi_{n,\alpha}^2) = P_{\theta}\left(\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)S^2}{\sigma^2} \le \chi_{n,\alpha}^2\right),\,$$

which gives a $1-\alpha$ confidence set for $\boldsymbol{\theta}$

$$C(\mathbf{X}) = \{ \boldsymbol{\theta} : Q(\mathbf{X}, \boldsymbol{\theta}) \le \chi_{n,\alpha}^2 \}.$$

The boundary of C(X) is

$$Q(\boldsymbol{x}, \boldsymbol{\theta}) = \chi_{n,\alpha}^2 \iff \left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)s^2}{\sigma^2} = \chi_{n,\alpha}^2$$
$$\iff (\mu - \bar{x})^2 = \frac{\chi_{n,\alpha}^2}{n} \left[\sigma^2 - \frac{(n-1)s^2}{\chi_{n,\alpha}^2}\right],$$

which is a parabola in $\Theta = \{ \theta = (\mu, \sigma^2) : -\infty < \mu < \infty, \sigma^2 > 0 \}$. The parabola has vertex at

$$\left(\bar{x}, \frac{(n-1)s^2}{\chi_{n,\alpha}^2}\right)$$

and it opens upward. The confidence set is the interior of the parabola.

The boundary of C(X) is

$$Q(\boldsymbol{x}, \boldsymbol{\theta}) = \chi_{n,\alpha}^2 \iff \left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)s^2}{\sigma^2} = \chi_{n,\alpha}^2$$
$$\iff (\mu - \bar{x})^2 = \frac{\chi_{n,\alpha}^2}{n} \left[\sigma^2 - \frac{(n-1)s^2}{\chi_{n,\alpha}^2}\right],$$

which is a parabola in $\Theta = \{ \theta = (\mu, \sigma^2) : -\infty < \mu < \infty, \sigma^2 > 0 \}$. The parabola has vertex at

$$\left(\bar{x}, \frac{(n-1)s^2}{\chi_{n,\alpha}^2}\right)$$

and it opens upward. The confidence set is the interior of the parabola.

For other confidence sets for θ , see Arnold and Shavelle (1998), Joint Confidence Sets for the Mean and Variance of a Normal Distribution, *The American Statistician*, 52(2): 133:140.

Find pivots

In location-scale families, there are many pivotal quantities. A few important pivots are

Family	Form of PDF	Parameter	Pivot example
Location	$f(x-\mu)$	μ	$\bar{X} - \mu$
Scale	$\frac{1}{\sigma}f\left(\frac{x}{\sigma}\right)$	σ	$\frac{ar{X}}{\sigma}$
Location-scale	$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$	μ , σ	$\frac{X-\mu}{S}$

In general, **differences** are pivotal in location problems, while **ratios** are pivotal for scale problems.

Pivoting a continuous CDF

The CDF of any random variable is from a Unif(0, 1) distribution. Thus CDF itself is a pivot.

Let T(X) be the statistic with continuous CDF $F_T(t \mid \theta)$. Then

$$F_T(T \mid \theta) \sim \text{Unif}(0,1).$$

Suppose $\alpha_1 + \alpha_2 = \alpha$. Suppose for all $t \in \mathcal{T}$, the functions $\theta_L(t)$ and $\theta_U(t)$ are defined as follows:

- When $F_T(t \mid \theta)$ is a **decreasing** function of θ ,
 - $-F_T(t \mid \theta_U(t)) = \alpha_1$
 - $F_T(t \mid \theta_L(t)) = 1 \alpha_2.$
- When $F_T(t \mid \theta)$ is a **increasing** function of θ ,
 - $-F_T(t \mid \theta_U(t)) = 1 \alpha_2$
 - $F_T(t \mid \theta_L(t)) = \alpha_1.$

Then the random interval $(\theta_L(T), \theta_U(T))$ is a $1 - \alpha$ confidence interval for θ .

Exponential interval estimator

Suppose X_1, \ldots, X_n are iid with population PDF

$$f_X(x \mid \theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta, \end{cases}$$

where $-\infty < \theta < \infty$.

The first order statistic, $T=T(\boldsymbol{X})=X_{(1)}$, is a sufficient statistic for θ with CDF

$$F_T(t \mid \theta) = \begin{cases} 0, & t \le \theta \\ 1 - e^{-n(t-\theta)}, & t > \theta. \end{cases}$$

Because $F_T(T \mid \theta) \sim \text{Unif}(0, \theta)$, we can write

$$\begin{aligned} 1 - \alpha &= P_{\theta}(\alpha/2 \le F_T(T \mid \theta) \le 1 - \alpha/2) \\ &= P_{\theta}(\alpha/2 \le 1 - e^{-n(T - \theta)} \le 1 - \alpha/2) \\ &= P_{\theta}\left(T + \frac{1}{n}\log\left(\frac{\alpha}{2}\right) \le \theta \le T + \frac{1}{n}\log\left(1 - \frac{\alpha}{2}\right)\right). \end{aligned}$$

Therefore,

$$\left(T + \frac{1}{n}\log\left(\frac{\alpha}{2}\right), T + \frac{1}{n}\log\left(1 - \frac{\alpha}{2}\right)\right)$$

is a $1-\alpha$ confidence interval for θ .

Pivoting a discrete CDF

The discrete case is handled in the same way as in the continuous case except that the integrals are replaced by sums.

Let $T(\boldsymbol{X})$ be a discrete statistic with CDF $F_T(t \mid \theta)$. Suppose $\alpha_1 + \alpha_2 = \alpha$. Suppose for all $t \in \mathcal{T}$, the functions $\theta_L(t)$ and $\theta_U(t)$ are defined as follows:

- When $F_T(t \mid \theta)$ is a **decreasing** function of θ ,
 - $P(T \le t \mid \theta_U(t)) = \alpha_1$
 - $P(T \ge t \mid \theta_L(t)) = \alpha_2.$
- When $F_T(t \mid \theta)$ is a **increasing** function of θ ,
 - $P(T \ge t \mid \theta_U(t)) = \alpha_1$
 - $P(T \le t \mid \theta_U(t)) = \alpha_2.$

Then the random interval $(\theta_L(T), \theta_U(T))$ is a $1 - \alpha$ confidence interval for θ .

Poisson interval estimator

Suppose X_1, \ldots, X_n are iid $Pois(\theta)$, where $\theta > 0$.

Recall that $T=\sum_{i=1}^n X_i$ is sufficient for θ and $T\sim \mathrm{Pois}(n\theta)$. To find a $1-\alpha$ confidence interval for θ , with an observed value $T=t_0$, we set

$$P_{\theta}(T \le t_0) = \alpha/2$$
 and $P_{\theta}(T \ge t_0) = \alpha/2$

and solve each equation for θ .

Poisson interval estimator

Suppose X_1, \ldots, X_n are iid $Pois(\theta)$, where $\theta > 0$.

Recall that $T = \sum_{i=1}^{n} X_i$ is sufficient for θ and $T \sim \operatorname{Pois}(n\theta)$. To find a $1 - \alpha$ confidence interval for θ , with an observed value $T = t_0$, we set

$$P_{\theta}(T \le t_0) = \alpha/2$$
 and $P_{\theta}(T \ge t_0) = \alpha/2$

and solve each equation for θ .

See CB Example 9.2.15 for a closed-form expression for the confidence set using a relationship between the Poisson and Gamma distributions.

Bayesian intervals

In the Bayesian framework, all inference is carried out using the posterior distribution $f(\theta \mid x)$.

Since the posterior $f(\theta \mid x)$ is a legitimate probability distribution of θ , we can calculate probabilities involving θ directly by using this distribution.

For any set $\mathcal{A} \subset \mathbb{R}$, the **credible probability** associated with \mathcal{A} is

$$P(\theta \in \mathcal{A} \mid \mathbf{X} = \mathbf{x}) = \int_{\mathcal{A}} f(\theta \mid \mathbf{x}) d\theta.$$

If the credible probability is $1 - \alpha$, \mathcal{A} is called a $1 - \alpha$ credible set.

If $f(\theta \mid x)$ is discrete, we replace integrals with sums.

Interpretations of credible and confidence intervals

- 1α credible interval: The probability that θ is inside the interval is 1α .
- $1-\alpha$ confidence interval: Under the same condition, if we perform the experiment over and over again and calculate a $1-\alpha$ confidence interval each time, then $100(1-\alpha)$ percent of these intervals would contain the true value of θ .

Multiple intervals