Mathematics for Machine Learning (Al 512)

Amit Chattopadhyay

IIIT-Bangalore

M3: Random Walk

Syllabus

Topics

- M3: Markov Chains, Stationary Property and Random Walk
- M3:. Page Rank Algorithm
- M3. Markov Chain Monte Carlo (MCMC) Sampling
- M4. Multivariate Distributions, K-Means
- M4. EM Algorithm
- **M4.** EM Algorithm for GMM.

Reference Books

- 1. Foundations of Data Science. By John Hopcroft, Ravindran Kannan.
- 2. Finite Markov Chains and Algorithmic Applications. By OLLE HÄGGSTRÖM.
- 3. Introduction to Probability Models. By S.M. Ross.
- 4.Pattern Recognition and Machine Learning. By Christopher M. Bishop.
- 5. Mathematics for Machine Learning. By Marc Peter Deisenroth et al.

<**□** > 9 < @

Summary: What we have seen in Markov Chains

- $(X_0, X_1,...)$: a Markov chain (MC) with state space $S = \{s_1, s_2,...,s_N\}$ and transition Matrix \mathbb{P}
- **Initial distribution** of the chain, i.e. distribution of X_0 :

$$\underline{\mathbf{p}}^{(0)} = [p_1^{(0)}, p_2^{(0)}, \dots, p_N^{(0)}]$$

with
$$p_i^{(0)} \geq 0$$
 and $\sum_{i=1}^N p_i^{(0)} = 1$

• Transition probabilities: $p_{i,j} = P(X_{n+1} = s_j | X_n = s_i)$ and transition matrix

$$\mathbb{P} = \begin{bmatrix} p_{1,1} & p_{1,2} & \dots & p_{1,N} \\ p_{2,1} & p_{2,2} & \dots & p_{2,N} \\ \vdots & \vdots & \vdots & \vdots \\ p_{N,1} & p_{N,2} & \dots & p_{N,N} \end{bmatrix}$$

with
$$\sum_{i=1}^{N} p_{i,i} = 1$$
.

Summary: What we have seen in Markov Chains

• Distribution of X_n : $\underline{p}^{(n)} = [p_1^{(n)}, p_2^{(n)}, \dots, p_N^{(n)}]$ where $\underline{p}^{(n)} = \underline{p}^{(0)} \underline{\mathbb{P}}^n$

n-step transition probabilities:

for m > 0, n > 0

$$P(X_{m+n}=s_j|X_m=s_i)=(\mathbb{P}^n)_{i,j}$$

- Transition or State graph: pictorial representation of MC
 - Goal: To understand the conditions on \mathbb{P} so that the limiting distribution $\lim_{n\to\infty} \underline{\mathbf{p}}^{(n)}$ exists uniquely which is the **stationary** distribution $\pi = [\pi_1, \pi_2, \dots, \pi_N]$, i.e.

$$\pi=\pi\mathbb{P}$$

Random Walk

Random Walk

- A type of Stochastic Process in particular, a Markov Chain e.g.
 - path traced by a molecule in a liquid or gas
 - search path of a foraging animal
 - price of a fluctuating stock etc.

- Describes a path: succession of random steps on some "mathematical space"
- Mathematical space:
 - ightharpoonup Real line (\mathbb{R}^1)
 - Integer number line Z
 - d-dimensional integer lattice \mathbb{Z}^d
 - Graphs: Undirected or directed

Random Walk on Regular lattice

At each step –jump to 'another' site according to some probability distribution

Random Walk on Regular Lattice

- Simple Random Walk: The random walker can only jump to "neighbouring" sites of the lattice
- **Simple Symmetric Random Walk:** The probabilities of the random walker jumping to immediate "**neighbours**" are the same.
- Simple Bordered Symmetric Random Walk:
 - state space is limited to a finite domain
 - transition probabilities depend on the location of the state;
 - on margin and corner states the movement is limited.

Random Walk on a Graph

Graph: G = (V, E), V: set of vertices, E: set of edges

• Walk: an alternating sequence $\langle v_1, e_1, v_2, e_2, \dots, e_{N-1}, v_N \rangle$ of vertices and edges;

Start vertex: v_1 , End vertex: v_N and edge: $e_i = (v_i, v_{i+1}) \in E$, $\forall i = 1, 2, ..., N-1$.

- Random Walk: a sequence of vertices generated from a start vertex by selecting an edge **randomly** (following some rule) and repeating the process.
- Goal: Under what conditions, the fraction of time the random walk spends at various vertices converges to a **stationary probability**?

$$\underline{P} = \left(\underbrace{P_1}_{N_1}, \underbrace{P_2}_{N_2}, \dots, \underbrace{P_K}_{N_K} \right)$$

$$\underline{n_1}_{N_1} \underbrace{n_2}_{N_2} \dots \underbrace{n_K}_{N_K}$$
9/16

Examples

Example: Random walks on a graph G = (V, E)

Two vertices are said to be **neighbours** if they share an edge.

A **random walk** on G = (V, E) is a **Markov chain** with the state space $V = \{v_1, v_2, v_3, v_4, v_5\}$ and

Examples

$$P = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ v_4 & 0 & 0 & \frac{1}{2} & 0 \\ v_5 & 0 & 0 & \frac{1}{2} & 0 \\ v_7 & v_7 & v_7 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \end{bmatrix}$$

transition probabilities:

where d_i is the number of neighbours (**degree**) of a vertex v_i . (probability of the RW at vertex v_i at time n, selecting an edge $\langle v_i, v_j \rangle$ to move to vertex v_i at n+1)

Random Walk on a Directed Graph

 Directed graph: G = (V, E); V : set of vertices, E : ordered pair of vertices

$$V = \{v_1, v_2, v_3\}$$
 and $E = \{(v_1, v_1), (v_1, v_2), (v_2, v_1), (v_2, v_2), (v_2, v_3), (v_3, v_2), (v_3, v_3)\}.$

• State space: $V = \{v_1, v_2, v_3\}$; Transition matrix: \mathbb{P} (rule to be found depending on application)

Random Walk: Initial Distribution

• **Initial distribution:** If RW starts at vertex v_1 , $\underline{p}^{(0)} = [1, 0, 0]$.

In general,
$$\underline{p}^{(0)} = [p_1^{(0)}, p_2^{(0)}, p_3^{(0)}], \ p_i^{(0)} \geq 0 \ \text{for} \ i=1,2,3 \ \text{and} \ p_1^{(0)} + p_2^{(0)} + p_3^{(0)} = 1.$$

Q: What does it mean that a RW start at v_i with probability $p_i^{(0)}$?

Ans. Consider multiple (say, M) realizations of the RW and its ensemble. Let n_i be the number of realizations with start vertex v_i .

$$p_i^{(0)} = \lim_{M \to \infty} \tilde{p}_i = \lim_{M \to \infty} \frac{n_i}{M}$$

Random Walk: Initial Distribution

Q: Given an initial distribution: $\mathbf{p} = [p_1, p_2, \dots, p_N]$, what does it mean that a RW start with a vertex 'follows' \mathbf{p} ?

Ans. In stable situation, RW gives a **Sampling** from the distribution of \underline{p} (will be discussed in **MCMC sampling**)

Random Walk: Transition Probabilities

 $p_{i,j}$: probability of the RW at vertex v_i to select the edge to vertex v_i

probability of being a vertex v_j at t+1:

$$\begin{array}{c}
p_{j} = \sum_{i=1}^{N} p_{i}^{(t)} p_{i,j} \\
p_{j} = \sum_{i=1}^{N} p_{i}^{(t)} p_{i,j} \\
p_{j} = p_{j} = p_{j} \\
p_{j} = p_$$

•
$$p^{(t+1)} = p^{(t)} \mathbb{P}$$
 (for $t = 0, 1, 2, ...$)

Random Walk: Trellis View

- interpretation of $p_i^{(t+1)} = \sum_{i=1}^N p_i^{(t)} p_{i,j}$
- \bullet Limiting probability: Stationary distribution (if exists)

