## Supervised Learning: Coursework 1

## Matineh Akhlaghinia, Abdul Faiz Punakkath

November 14, 2018



- (b) k = 1:2.5
  - k = 2: 1.5 + 0.4 \* x
  - $k = 3:9 7.1 * x + 1.5 * x^2$
- (c) k = 1:3.25

  - k = 3: 0.79999999999998
  - $k = 4:6.589355141311112*10^{-27}$

2. (a) i.















- 4. (a)  $Train\ MSE = 74.94491097922847$   $Test\ MSE = 130.8907648716782$ 
  - (b) Constant function in the above question will be the average of all the outputs. Since f(x) = (averageofall the house prices) will achieve the minimum MSE for a constant function.

| Attributes  | Train MSE         | Test MSE           |  |
|-------------|-------------------|--------------------|--|
| 1: CRIM     | 71.13968241182597 | 73.85021859717854  |  |
| 2: ZN       | 73.11604863223906 | 74.76428861359675  |  |
| 3: INDUS    | 64.47064841447379 | 65.39468687518753  |  |
| 4: CHAS     | 81.16463035498536 | 83.8633011280258   |  |
| 5: NOX      | 68.81917327442122 | 69.78392360937791  |  |
| 6: RM       | 43.78222803786089 | 43.740061995511425 |  |
| 7: AGE      | 73.88134430479434 | 70.01600700106209  |  |
| 8: DIS      | 78.85716721087809 | 80.20163857248215  |  |
| 9: RAD      | 72.34832512917372 | 72.08181955662278  |  |
| 10: TAX     | 65.5366146679282  | 67.04818858708646  |  |
| 11: PTRATIO | 62.73194016874686 | 62.89616046358227  |  |
| 12: BLACK   | 73.68884487908194 | 78.03805991786986  |  |
| 13: LSTAT   | 38.44191281643897 | 38.89767608243805  |  |

(c)

- (d)  $Train\ MSE = 21.11943099906709 / Test\ MSE = 25.155269280832382$
- 5. (a) The best sigma and gama are 128.0 and  $2^{-40}$ , respectively.

(b)



(c) Train MSE = 0.029Test MSE =  $2.23 * 10^{-6}$ 

|     | Method                                     | MSETrain         | MSETest                            |
|-----|--------------------------------------------|------------------|------------------------------------|
|     | Naive Regression                           | $84.88 \pm 4.7$  | $82.90 \pm 9.4$                    |
| (d) | Linear Regression (attribute 1 (CRIM))     | $66.02 \pm 4.1$  | $64.12 \pm 7.1$                    |
|     | Linear Regression (attribute 2 (ZN))       | $69.72 \pm 4.8$  | $68.47 \pm 9.1$                    |
|     | Linear Regression (attribute 3 (INDUS)     | $59.83 \pm 3.4$  | $61.52 \pm 6.8$                    |
|     | Linear Regression (attribute 4 (CHAS))     | $80.37 \pm 3.2$  | $83.49 \pm 6.2$                    |
|     | Linear Regression (attribute 5 (NOX))      | $66.94 \pm 4.3$  | $71.82 \pm 9.3$                    |
|     | Linear Regression (attribute 6 (RM))       | $36.75 \pm 2.8$  | $39.19 \pm 5.3$                    |
|     | Linear Regression (attribute 7 (AGE))      | $69.32 \pm 5.7$  | $71.55 \pm 11.7$                   |
|     | Linear Regression (attribute 8 (DIS))      | $73.31 \pm 6.4$  | $78.22 \pm 12.8$                   |
|     | Linear Regression (attribute 9 (RAD))      | $69.27 \pm 4.8$  | $67.87 \pm 9.8$                    |
|     | Linear Regression (attribute 10 (TAX))     | $57.52 \pm 2.6$  | $58.17 \pm 5.8$                    |
|     | Linear Regression (attribute 11 (PTRATIO)) | $61.03 \pm 3.8$  | $62.43 \pm 7.8$                    |
|     | Linear Regression (attribute 12 (BLACK))   | $67.79 \pm 4.2$  | $71.18 \pm 8.6$                    |
|     | Linear Regression (attribute 13 (LSTAT))   | $27.69 \pm 1.8$  | $26.45 \pm 4.8$                    |
|     | Linear Regression (all attributes)         | $0.0074\pm0.041$ | $3.41 * 10^{-5} \pm 6.1 * 10^{-4}$ |
|     | Kernel Ridge Regression (all attributes)   | $0.012 \pm 0.34$ | $1.21 * 10^{-5} \pm 4.3 * 10^{-4}$ |

$$\mathcal{E}(f) = E[L_c(y, \hat{y})] = E[[y \neq \hat{y}]c_y] = \sum_{x \in X} \sum_{y \in Y} [y \neq f(x)]c_y p(x, y)$$

Applying Bayes rule, we can write:

$$\mathcal{E}(f) = \sum_{x \in X} \left[ \sum_{y \in Y} [y \neq f(x)] c_y p(y|x) \right] p(x)$$

Now let's find the value of the Bayes Estimator at a specific point x = x':

$$\mathcal{E}(f(x')) = \left[\sum_{y \in Y} [y \neq f(x')] c_y p(y|x')\right] p(x')$$

As we can see if for any  $y, y \neq f(x)$  the cost would be  $c_y$ , hence we want to choose f(x') in a way that would increase the number of times we get y = f(x') to have more 0 costs, which would give us the minimum error. As a result, the Bayes Estimator f(x') is mode of the probability distribution.

(b) 
$$\mathcal{E}(f) = E[L(y, \hat{y})] = E[|y - \hat{y}|] = \int |y - f(x)| \ dP(x, y)$$

In order to derive Bayes Estimator, we need to minimize the expected error. First we need to apply Bayes rule:

$$\mathcal{E}(f) = \int_{x \in X} \left\{ \int_{y \in Y} |y - f(x)| \ dP(y|x) \right\} dP(x)$$

Then we need to find the value of f(x') at a fixed point x=x':

$$\mathcal{E}(f(x')) = \int_{y \in Y} \{ |y - f(x')| \ dP(y|x') \} dP(x')$$

$$= \int_{y < f(x')} (f(x') - y) \ dP(y|x') \ dP(x') + \int_{y \ge f(x')} (y - f(x')) \ dP(y|x') \ dP(x')$$

Now let's assume z = f(x'), we need to differentiate  $\mathcal{E}(f(x'))$  w.r.t z in order to find the Bayes Estimator:

$$\frac{\partial e}{\partial z} = \int_{y < z} dP(y|x') - \int_{y \ge z} dP(y|x') = 0$$

$$\int_{y \le z} dP(y|x') = \int_{y \ge z} dP(y|x')$$

As P(y|x') is a distribution,

$$\int_{y \in Y} dP(y|x') = 1$$

Hence we can conclude that:

$$\int_{y < z} dP(y|x') = \int_{y \ge z} dP(y|x') = 1/2$$

So the Bayes Estimator is the median of the probability distribution P(y|x').

## 7. (a) We have:

$$K_c(\mathbf{x}, \mathbf{z}) = c + \sum_{i=1}^n x_i z_i$$

where  $x, z \in \mathbb{R}^n$ 

 $K_c$  would be positive semidefinite if and only if:

$$K_c(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

if  $\phi(x) = (x_{i_1}x_{i_2}x_{i_{13}}...x_{i_n})$  then  $\sum_{i=1}^n x_iz_i = (x^Tz)$  which is already a positive semidefinite by definition. So for any c >= 0,  $K_c$  is positive semidefinite.

(b) c will act as a bias term if  $K_c$  is used as kernel for linear regression.

$$\epsilon(f) = \sum_{i=1}^{l} (\sum_{j=1}^{l} \alpha_j(x_i, x_j) + c\alpha_j - y_i)^2$$
 where f is predictor.

As you can see, in the expected error, c acts as a bias term when we use  $K_c$  for linear regression.

8. As  $\beta \to \infty$ , Guassian kernel  $K_{\beta}$  starts to simulate 1-Nearest Neighbour. We illustrate this below by defining the classifier as follows,

$$f(x) = \begin{cases} -1 & \sum_{i=1}^{m} \alpha_i K_{\beta}(x_i, x) < 0\\ 1 & otherwise \end{cases}$$

Since  $K_{\beta}(x_i, x_j) = \exp(-\beta ||x_i - x_j||^2)$ , as  $\beta \to \infty$ ,  $K_{\beta} = 0$  if  $i \neq j$  and  $K_{\beta} = 1$  if i = j. Which means, if there are no duplicate points, all the other points except i = j becomes negligible.

From the notes,

$$\alpha_i = \frac{1}{2\lambda} V' \left( y_i, \sum_{j=1}^m \alpha_j K_\beta(\mathbf{x}_i, \mathbf{x}_j) \right)$$

so  $\alpha_i$  becomes  $\alpha_i = \frac{1}{2\lambda}V'(y_i, \alpha_i)$  $\alpha_i = \frac{1}{\lambda}(\alpha_i - y_i)$ 

hence  $\alpha_i = ky_i$ 

We also know that  $\forall ij, \alpha_i = \alpha_j$ 

Now we can modify our classifier to be,

$$f(x) = \begin{cases} -1 & \sum_{i=1}^{m} k y_i K_{\beta}(x_i, x) < 0\\ 1 & otherwise \end{cases}$$

Our classifier needs to predict  $y_p$  if x is closer to  $x_p$ . Which means,

$$|y_p K_{\beta}(\mathbf{x}_p, \mathbf{x})| > \sum_{i \in \{1, \dots, m\} \setminus \{p\}} |y_i K_{\beta}(\mathbf{x}_i, \mathbf{x})|$$

Since as  $\beta \to \infty$ ,  $|y_p K_{\beta}(\mathbf{x}_p, \mathbf{x}_p)| \to \infty$  and  $|y_i K_{\beta}(\mathbf{x}_i, \mathbf{x}_j)| \to 0$ , our classifier f(x) will predict  $y_p$  when x is closer to  $x_p$ . Hence as  $\beta \to \infty$ , our Guassian kernel  $K_{\beta}$  simulate a 1-NN.

9. Let's represent the initial configuration of a Whack-A-Mole as a vector of 1s and 0s, which 1 represents a mole being present in the square and 0 represents an empty square without a mole. For example, for the configuration given in the question the initial representation of the grid would look like: INITIAL = (0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1)

We will also represent the moves that need to be made to solve the Whack-A-Mole problem as a vector of 1s and 0s, where 1s would represent whacking a mole and 0 not whacking a mole. This way, we can represent all the possible moves and its affects in a matrix where each row (i) would represent the affect of a hit in the ith square in the

grid and the columns of the matrix would represent the squares that are affected by that move.

Now we can solve Whack-A-Mole by solving the below equation:

$$MOVES * X + INITIAL = FINAL$$
 (1)

Where X represents the moves that we need to actually make to reach to the final configuration of all squares being 0. Which means that if there's a solution to this equation, there exist a series of moves that would give us the final configuration.

$$X = MOVES^{-1} * (FINAL - INITIAL)$$
 (2)

Computational complexity of this equation is polynomial. Computing the inverse of a n \* n matrix is  $O(n^3)$  and matrix multiplication is  $O(n^2)$ . So the overall complexity would be:  $O(n^3 + n^2) \approx O(n^3)$