

Construction automatique d'un graphe de connaissances géographiques à partir d'entrées encyclopédiques

Bin YANG

9 septembre 2025

Laboratoire d'InfoRmatique en Images et Systèmes d'information (INSA Lyon)

Sous la supervision de

Ludovic Moncla, INSA Iyon

Fabien Duchateau, Université Claude Bernard Lyon 1

Frédérique Laforest, INSA Lyon

Contexte

➤ Projet ECoDA (2025-2026) : Étude sur les évolutions du savoir géographique dans les anciens dictionnaires (*Encyclopédie de Diderot et d'Alembert* (1751-1772), *Dictionnaires de Trevoux* (1704-1771))

Objectifs

- > Extraction d'entités géographiques et de relations spatiales
- Construction du graphe de connaissances en RDF

GRENOBLE, (*Géogr.*) ancienne <u>ville de</u> *France*, avec un évêché suffragant de *Vienne*, & un parlement érigé en 1493 par Louis XI. qui n'étoit encore que dauphin ; mais son pere ratifia cette érection deux ans après. *Grenoble* est <u>sur l'Isere</u>, <u>à onze lieues S O. de</u> *Chambéri*, <u>quarante-deux N. O. de Turin</u>, <u>seize S. E. de Vienne</u>, <u>cent vingt-quatre S. O. de</u> *Paris. Long.* suivant Harris, <u>23d. 31'. 15"</u>. suivant Cassini, <u>23d. 14'. 15"</u>. latit 45d. 11'.

EDdA (1751-1772)

PLAN

- 1 Modélisation du graphe
- 2 Peuplement du graphe
- 3 Évaluation du graphe
- 4 Conclusion et perspectives

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

L'ontologie spatiale

 Modèle formel qui représente et structure des concepts géographiques et des relations spatiales

M. Wick, T. Boutreux, and E. Nauer (2007). *The Geonames geographical database*. http://www.geonames.org R. Laurini (Lyon, France) & O. Kazar (Biskra, Algeria)(2016). *Geographic Ontologies: Survey and Challenges*. https://perso.liris.cnrs.fr/rlaurini/mri-pdf/5.pdf

Relations dans l'ontologie spatiale

1 Mondélisation du graphe

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Inclusion: "dans", "ville de"...

Adjacence: "à côté de", "est adjacent à"...

Orientation: "au sud de"...

Distance: "à 20 lieues de"...

Mouvement: "se jette dans"...

Crosses: "sur la rivière", "traverse la ville"...

Autre_relation: "par", "au dessous de"...

a_longueur: "2km"...

a surface: "25 kilo mètres carés"...

a_longitude: "Long. 23.31."...

a_latitude: "Lat. 45.11."...

M. Wick, T. Boutreux, and E. Nauer (2007). *The Geonames geographical database*. http://www.geonames.org
R. Laurini (Lyon, France) & O. Kazar (Biskra, Algeria)(2016). *Geographic Ontologies: Survey and Challenges*. https://perso.liris.cnrs.fr/rlaurini/mri-pdf/5.pdf

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

L'ontologie de provenance

• Modèle formel qui réprésente d'où viennent des informations extraites

Classes: Encyclopédie, Volume, Article

Relations: articleDe, volumeDe, numArticle, numVolume

Exemple de graphe

1 Mondélisation du graphe

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspective

2 Peuplement du graphe

- → Prétraitement d'articles
- → Extraction d'information

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

spatiales

14

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Segmentation en sous-articles

mistral-7b: 75.37% llama3-70b: 87.32% gpt4-turbo: 93.27% gpt4.1-mini: 89.19%

13476 single

Classification type de lieu des vedettes

Reconnaissance des entités nommées

Classification des entités nommées

Détection relations spatiales

728 multiple > 1977 sous-articles

15453

Exécution sur l'ensemble de l'EDdA:

15384 articles "Géographie" ______ 14204 Lieu

1 Mondélisation

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Classification type d'article

Classification single/multiple

Segmentation en sous-articles

bert-base-multilingual-cased-place-entry-classification

	Précision	Rappel	F-mesure
Ville	90.91%	100%	95.24%
Île	96.30%	96.30%	96.30%
Région	89.66%	92.86%	91.23%
Rivière	96.56%	100%	98.25%
Montagne	100%	95.45%	97.67%
Construction Humaine	90.00%	100%	94.74%
Autrelieu	88.89%	66.67%	76.19%
Mer	100%	91.67%	94.74%
Lac	100%	88.89%	94.12%
Pays	100%	92.31%	96.00%
average	94.63%	94.50%	94.37%

Précision, Rappel et F-mesure de la classification de type des vedettes

Exemples d'erreur:

-"promontoire de l'île"

Île 🗙 Autrelieu 🗸

- "lieu des Pays-bas"

Pays X Autrelieu 🗸

- "temple"

Autrelieu X Construction Humaine

Classification type de lieu des vedettes

Reconnaissance des entités nommées

Classification des entités nommées

Détection relations spatiales

https://hugqingface.co/GEODE/bert-base-multilingual-cased-place-entry-classification

2 Peuplement du graphe

3 Evaluation du

4 Conclusion et perspectives

Classification type d'article

Classification single/multiple

Segmentation en sous-articles

Camembert-base-edda-span-classification (GeoEDdA)

Exemple d'output du modèle

Moncla, L. and Zeghidi, H. (2025) *Token and Span Classification for Entity Recognition in French Historical Encyclopedias* https://doi.org/10.48550/arXiv.2506.02872

Dataset GeoEDdA: https://huggingface.co/datasets/GEODE/GeoEDdA-NER

Classification type de lieu des vedettes

Reconnaissance des entités nommées

Classification des entités nommées

Détection relations spatiales

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Classification type d'article

few-shot prompting

Classification single/multiple Segmentation en sous-articles

Classification type de lieu des

vedettes

Reconnaissance

des entités

nommées

Classification des entités nommées

Détection relations spatiales

F-mesure de la classification de type des entités par LLMs

Bert based fine-tuning

	précision	rappel	f-mesure	weighted accuracy
4-gramme précédents	82.53%	82.10%	82.03%	82.10%
4-gramme précédents et suivants	83.99%	83.32%	83.28%	83.32%
5-gramme précédents et suivants	85.12%	84.85%	83.80%	84.85%
8-grammes précédents et suivants	85.16%	84.54%	84.49%	84.54%

Précision, Rappel et F-mesure de la classification de type des entités de N-grammes

1-

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Classification type d'article

Classification single/multiple

Segmentation en sous-articles

➤ Bert-base-multilingual-cased-classification-relation

	Précision	Rappel	F-mesure
Inclusion	98.06%	91.18%	97.74%
Distance-Orientation	93.44%	99.13%	96.20%
Adjacence	95.71%	85.90%	90.54%
Crosses	76.45%	100%	86.67%
Mouvement	96.88%	91.18%	93.94%
Autre-relation	97.43%	88.37%	92.68%
	95.09%	94.69%	94.69%

Précision, Rappel et F-mesure de classification de

type de relations

Seule-distance: "90 lieues de"

Seule-Orientation: "à l'est de"

Cas mixed: "trois lieues au sud de"

Regex
distance ou/et Orientation

Classification type de lieu des vedettes

Reconnaissance des entités nommées

Classification des entités nommées

Détection relations spatiales

Relation-linking

Few-shot prompt

Approche probabiliste

Sujet objet

ILLESCAS, (Géog.) petite ville d'Espagne, dans la nouvelle Castille...

	nb_correct	nb_total	précision
llama3 :70b	106	124	85.48%
gpt-4-turbo	113	124	91.12%
gpt-4.1-mini	113	124	91.12%
approche probabiliste	115	124	92.74%

Précision de relation linking de LLMs et de l'approche probabiliste

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Exemple du graphe produit

3 Évaluation du graphe

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Description du graphe

classe	nombre d'instances (ou sous-classes)
Encyclopédie	1
Volume	17
Article	15,453
Lieu	10
Entité (URI)	32,047
Relation (Statement)	46,584
Entité ambigüe	395

M. Perry and J. Herring (2021). *Ogc geosparql - a geographic query language for rdf data*. https://www.ogc.org/standards/geosparql

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Distribution des types d'entités et des types de relations

Distribution des types de relations

Entités dominantes:

- Ville (48.3%)
- Région (14.5%) ≈ 80%
- Rivière(13.9%)

> Relations dominantes:

- Inclusion (52.9%)
- Orientation (11.4%)
- Distance (10.0%)
- Adjacence (8.0%)

4 Conclusion et perspectives

Conclusion

1 Mondélisation du graphe

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

- Définition de l'ontologie spatiale et l'ontologie de provenance dédiées
- Création du dataset GeoEDdA-TopoRel
- Entraînement de modèles de classification adaptés (type d'articles, single/multiple, type d'entités géographiques, type de relations spatiales)
- Une approche complète pour la construction de graphes de connaissances géographiques à partir de textes encyclopédiques
- ➤ Un pipeline automatique → support pour les travaux futurs en linguistique computationnelle, en histoire numérique et en sciences de l'information géographique ancienne

Perspectives

1 Mondélisation du graphe

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Désambiguisation des entités "ambigües" : calcul de similarité sémantique des noeuds voisins

1 Mondélisation

2 Peuplement du graphe

3 Evaluation du graphe

4 Conclusion et perspectives

Perspectives

- > Optimisation du modèle de classification de types des entités nommées
- Intégration d'un mécanisme de validation ontologique (e.g. un Pays ne peut pas être le sujet d'une relation de type "Mouvement")
- Application du pipeline à d'autres dictionnaires ou encyclopédies (e.g. Trévoux)
 - Étude diachronique sur les évolutions du savoir géographique
 - Comparaison entre dictionnaires ou entre éditions

Merci de votre attention et écoute!