

PhD Course: Digital Design of Embedded Systems in the IoT and RISC-V Open Core Era

Hardware Design and Implementation of the Salsa20 Cryptosystem

Andrea Maioli (Politecnico di Milano, Italy)

Stream cipher

Salsa20 Cryptosystem - Encryption / Decryption

- Salsa20 relies on a One Time Pad to encrypt/decrypt an input stream
 - XOR operator

- XOR is an involutory function
 - Encryption and decryption functions are the same
 - Low hardware resource utilization

1. Create a 64 Bytes matrix

Constants

1. Create a 64 Bytes matrix

Cons	tants				
			Cons	tants	
Cons	tants				
			Cons	tants	

1. Create a 64 Bytes matrix

Key

Cons	tants				
			Cons	tants	
Cons	tants				
			Cons	tants	

1. Create a 64 Bytes matrix

Cons	tants		Ke	Э У	
Κe	∋y	Key			
Κe	∋y	Constants			
Cons	tants		Ke	Э	
Ke	Э У	Key			
Kϵ	еу		Cons	tants	

1. Create a 64 Bytes matrix

Nonce

Cons	tants		Ke	е у	
Κŧ	ey .	Key			
Ke	ey .	Constants			
Cons	tants	Key			
Kϵ	еу	Key			
Kϵ	еу 💮		Cons	tants	

1. Create a 64 Bytes matrix

Constants	Key		
Key	Key		
Key	Constants		
Nonce	Nonce		
Constants	Key		
Key	Key		
Key	Constants		

1. Create a 64 Bytes matrix

BLOCK ID

Block Identifier:

- > 8 Bytes
- Allows to generate unique keys
- > Initialized to 0
- Incremented every 64 bytes of input

Constants	Key			
Key	Key			
Key	Constants			
Nonce	Nonce			
Constants	Key			
Key	Key			
Key	Constants			

1. Create a 64 Bytes matrix

Constants	Key
Key	Key
Key	Constants
Nonce	Nonce
BLOCK ID	BLOCK ID
Constants	Key
Key	Key
Key	Constants

2. Transform the matrix

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₄
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈
N ₁	N_2	N_3	N ₄	N ₅	N_6	N ₇	N ₈
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₂₀
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₂₈
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆

2. Transform the matrix – QuarterRound function

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₄
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈
N_1	N ₂	N_3	N ₄	N ₅	N ₆	N ₇	N ₈
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₂₀
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₂₈
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆

2. Transform the matrix – QuarterRound function

2. Transform the matrix - QuarterRound function

2. Transform the matrix – QuarterRound function

 Z_0

 Z_1

 Z_2

 Z_3

2. Transform the matrix – QuarterRound function

	Z	, ·0		Z ₁				
	Z ₂				Z ₃			
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈	
N ₁	N ₂	N ₃	N ₄	N ₅	N ₆	N ₇	N ₈	
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₂₀	
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₂₈	
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆	

2. Transform the matrix – RowRound function

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₄
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈
N ₁	N ₂	N ₃	N ₄	N_5	N ₆	N ₇	N ₈
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₂₀
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₂₈
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆

2. Transform the matrix – RowRound function

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₄	OuartarPound
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂	← QuarterRound
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈	← QuarterRound
N ₁	N ₂	N ₃	N ₄	N_5	N ₆	N_7	N ₈	Quarternound
		•						
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	OuartorPound
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	← QuarterRound
	_		·					QuarterRound QuarterRound

2. Transform the matrix – RowRound function

Z ₁	Z ₂	Z ₃	Z ₄	Z ₅	Z ₆	Z ₇	Z ₈	OuartarPound
Z ₉	Z ₁₀	Z ₁₁	Z ₁₂	Z ₁₃	Z ₁₄	Z ₁₅	Z ₁₆	← QuarterRound
Z ₁₇	Z ₁₈	Z ₁₉	Z ₂₀	Z ₂₁	Z ₂₂	Z ₂₃	Z ₂₄	← QuarterRound
Z ₂₅	Z ₂₆	Z ₂₇	Z ₂₈	Z ₂₉	Z ₃₀	Z ₃₁	Z ₃₂	Quarternound
Z ₃₃	Z ₃₄	Z ₃₅	Z ₃₆	Z ₃₇	Z ₃₈	Z ₃₉	Z ₄₀	• OuarterPound
Z ₃₃	Z ₃₄	Z ₃₅	Z ₃₆	Z ₃₇	Z ₃₈	Z ₃₉	Z ₄₀	← QuarterRound
								← QuarterRound ← QuarterRound

2. Transform the matrix – ColumnRound function

2. Transform the matrix – ColumnRound function

2. Transform the matrix - DoubleRound function

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₄
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈
N ₁	N ₂	N_3	N ₄	N_5	N ₆	N ₇	N ₈
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₂₀
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₂₈
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆

RowRound + ColumnRound

Z ₁	Z ₉	Z ₁₇	Z ₂₅	Z ₃₃	Z ₄₁	Z ₄₉	Z ₅₇
Z ₂	Z ₁₀	Z ₁₈	Z ₂₆	Z ₃₄	Z ₄₂	Z ₅₀	Z ₅₈
Z ₃	Z ₁₁	Z ₁₉	Z ₂₇	Z ₃₅	Z ₄₃	Z ₅₁	Z ₅₉
Z ₄	Z ₁₂	Z ₂₀	Z ₂₈	Z ₃₆	Z ₄₄	Z ₅₂	Z ₆₀
Z ₅	Z ₁₃	Z ₂₁	Z ₂₉	Z ₃₇	Z ₄₅	Z ₅₃	Z ₆₁
Z ₆	Z ₁₄	Z ₂₂	Z ₃₀	Z ₃₈	Z ₄₆	Z ₅₄	Z ₆₂
Z ₇	Z ₁₅	Z ₂₃	Z ₃₁	Z ₃₉	Z ₄₇	Z ₅₅	Z ₆₃
Z ₈	Z ₁₆	Z ₂₄	Z ₃₂	Z ₄₀	Z ₄₈	Z ₅₆	Z ₆₄

2. Transform the matrix - DoubleRound function

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₄
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₁₂
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C ₆	C ₇	C ₈
N_1	N_2	N_3	N ₄	N ₅	N ₆	N_7	N ₈
B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₂₀
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₂₈
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	C ₁₆

DoubleRound

Z ₁	Z ₉	Z ₁₇	Z ₂₅	Z ₃₃	Z ₄₁	Z ₄₉	Z ₅₇
Z ₂	Z ₁₀	Z ₁₈	Z ₂₆	Z ₃₄	Z ₄₂	Z ₅₀	Z ₅₈
Z ₃	Z ₁₁	Z ₁₉	Z ₂₇	Z ₃₅	Z ₄₃	Z ₅₁	Z ₅₉
Z ₄	Z ₁₂	Z ₂₀	Z ₂₈	Z ₃₆	Z ₄₄	Z ₅₂	Z ₆₀
Z ₅	Z ₁₃	Z ₂₁	Z ₂₉	Z ₃₇	Z ₄₅	Z ₅₃	Z ₆₁
Z ₆	Z ₁₄	Z ₂₂	Z ₃₀	Z ₃₈	Z ₄₆	Z ₅₄	Z ₆₂
Z ₇	Z ₁₅	Z ₂₃	Z ₃₁	Z ₃₉	Z ₄₇	Z ₅₅	Z ₆₃
Z ₈	Z ₁₆	Z ₂₄	Z ₃₂	Z ₄₀	Z ₄₈	Z ₅₆	Z ₆₄

2. Transform the matrix - DoubleRound function

- DoubleRound applied *n* times
- *n* = number of **rounds** in the Salsa **version**
 - Salsa20 -> n = 10
 - Salsa12 -> n = 6
 - Salsa8 -> n = 4

3. Compute the expanded key

C ₁	C ₂	C ₃	C ₄	K ₁	K ₂	K ₃	K ₁	K ₂	K ₃	K ₄	K ₅	K ₆	K ₇	K ₈	Z ₉	Z ₁₇	Z ₂₅	Z ₃₃	Z ₄₁	Z ₄₉	Z ₅₇
K ₅	K ₆	K ₇	K ₈	K ₉	K ₁₀	K ₁₁	K ₉	K ₁₀	K ₁₁	K ₁₂	K ₁₃	K ₁₄	K ₁₅	K ₁₆	Z ₁₀	Z ₁₈	Z ₂₆	Z ₃₄	Z ₄₂	Z ₅₀	Z ₅₈
K ₁₃	K ₁₄	K ₁₅	K ₁₆	C ₅	C_6	C ₇	K ₁₇	K ₁₈	K ₁₉	K ₂₀	K ₂₁	K ₂₂	K ₂₃	K ₂₄	Z ₁₁	Z ₁₉	Z ₂₇	Z ₃₅	Z ₄₃	Z ₅₁	Z ₅₉
N ₁	N ₂	N_3	N ₄	N_5	N_6	N ₇	K ₂₅	K ₂₆	K ₂₇	K ₂₈	K ₂₉	K ₃₀	K ₃₁	K ₃₂	Z ₁₂	Z ₂₀	Z ₂₈	Z ₃₆	Z ₄₄	Z ₅₂	Z ₆₀
B ₁	B ₂	B ₃	B ₄	B ₅	B_6	B ₇	K ₃₃	K ₃₄	K ₃₅	K ₃₆	K ₃₇	K ₃₈	K ₃₉	K ₄₀	Z ₁₃	Z ₂₁	Z ₂₉	Z ₃₇	Z ₄₅	Z ₅₃	Z ₆₁
C ₉	C ₁₀	C ₁₁	C ₁₂	K ₁₇	K ₁₈	K ₁₉	K ₄₁	K ₄₂	K ₄₃	K ₄₄	K ₄₅	K ₄₆	K ₄₇	K ₄₈	Z ₁₄	Z ₂₂	Z ₃₀	Z ₃₈	Z ₄₆	Z ₅₄	Z ₆₂
K ₂₁	K ₂₂	K ₂₃	K ₂₄	K ₂₅	K ₂₆	K ₂₇	K ₄₉	K ₅₀	K ₅₁	K ₅₂	K ₅₃	K ₅₄	K ₅₅	K ₅₆	Z ₁₅	Z ₂₃	Z ₃₁	Z ₃₉	Z ₄₇	Z ₅₅	Z ₆₃
K ₂₉	K ₃₀	K ₃₁	K ₃₂	C ₁₃	C ₁₄	C ₁₅	K ₅₇	K ₅₈	K ₅₉	K ₆₀	K ₆₁	K ₆₂	K ₆₃	K ₆₄	Z ₁₆	Z ₂₄	Z ₃₂	Z ₄₀	Z ₄₈	Z ₅₆	Z ₆₄

3. Compute the expanded key

K ₁	K ₂	K ₃	K ₄	K ₅	K ₆	K ₇	K ₈
K ₉	K ₁₀	K ₁₁	K ₁₂	K ₁₃	K ₁₄	K ₁₅	K ₁₆
K ₁₇	K ₁₈	K ₁₉	K ₂₀	K ₂₁	K ₂₂	K ₂₃	K ₂₄
K ₂₅	K ₂₆	K ₂₇	K ₂₈	K ₂₉	K ₃₀	K ₃₁	K ₃₂
K ₃₃	K ₃₄	K ₃₅	K ₃₆	K ₃₇	K ₃₈	K ₃₉	K ₄₀
K ₄₁	K ₄₂	K ₄₃	K ₄₄	K ₄₅	K ₄₆	K ₄₇	K ₄₈
K ₄₉	K ₅₀	K ₅₁	K ₅₂	K ₅₃	K ₅₄	K ₅₅	K ₅₆
K ₅₇	K ₅₈	K ₅₉	K ₆₀	K ₆₁	K ₆₂	K ₆₃	K ₆₄

The 64 bytes key is **valid** for 64 bytes of input

• After 64 bytes the block identifier is incremented and a new key is computed

3. Compute the expanded key

K ₁	K ₂	K ₃	K ₄	K ₅	K ₆	K ₇	K ₈
K ₉	K ₁₀	K ₁₁	K ₁₂	K ₁₃	K ₁₄	K ₁₅	K ₁₆
K ₁₇	K ₁₈	K ₁₉	K ₂₀	K ₂₁	K ₂₂	K ₂₃	K ₂₄
K ₂₅	K ₂₆	K ₂₇	K ₂₈	K ₂₉	K ₃₀	K ₃₁	K ₃₂
K ₃₃	K ₃₄	K ₃₅	K ₃₆	K ₃₇	K ₃₈	K ₃₉	K ₄₀
K ₄₁	K ₄₂	K ₄₃	K ₄₄	K ₄₅	K ₄₆	K ₄₇	K ₄₈
K ₄₉	K ₅₀	K ₅₁	K ₅₂	K ₅₃	K ₅₄	K ₅₅	K ₅₆
K ₅₇	K ₅₈	K ₅₉	K ₆₀	K ₆₁	K ₆₂	K ₆₃	K ₆₄

Salsa20 is a **stream cipher**

- Expanded key does not rely on previous encrypted or decrypted data
 - Key expansion requires only key, nonce, and block identifier
 - Main difference with respect to a block cipher
- > Advantages:
 - > The key can be **used** in **chunks**
 - **No** need to **wait** for 64 bytes of input data
 - Multiple keys can be generated beforehand

Salsa20 Cryptosystem - Design

• Same logical division of the Salsa20 cryptosystem

The design supports multiple Salsa20 versions

- ➤ Number of rounds specified during initialization
 - No need to resynthesize the design

Salsa20 Cryptosystem - Design

• Same logical division of the Salsa20 cryptosystem

Salsa20 Cryptosystem - Workflow

Three different steps

1. Cryptosystem initialization

Initialize the cryptosystem (n, keylength, key, nonce)

2. Key generation

Generate a new key

3. Data encryption/decryption

Encrypt/decrypt the input stream

Cryptosystem Initialization

➤ Constraint: low number of inputs/outputs

Workflow – Cryptosystem Initialization

Workflow – Cryptosystem Initialization

Registers

Workflow – Key Generation

Design overview – Key Generation Modules

- Salsa20Key initializes the 64 bytes matrix
- Salsa20Hash uses a **feedback system** to transform the matrix *n* times

Design overview – Key Generation Modules

- Salsa20Key initializes the 64 bytes matrix
- Salsa20Hash uses a **feedback system** to transform the matrix *n* times

- No need to re-synthesize the design to change the number of rounds
- Transformations the matrix using only one DoubleRound module

Design overview – Key Generation Modules

- The DoubleRound module transforms the matrix
 - Uses combinatorial logic
 - This is where most of the LUTs are used

Salsa20 Cryptosystem – Workflow

Workflow – Key Generation

Encryption
Decryption

- > The key is saved in a circular buffer of two keys
- > The block identifier is incremented

Workflow – Key Generation

- > A key generation requests is sent whenever the circular buffer is not full
- > Every time a key is used, the record in the circular buffer is invalidated

Salsa20 Cryptosystem - Workflow

Workflow – Key Generation

Workflow – Data Encryption / Decryption

Workflow – Data Encryption / Decryption

Workflow – Data Encryption / Decryption

Design Evaluation - Validation

Design available at https://github.com/Maiux92/Salsa20SystemVerilog

✓ Technical report available in the repo

Target platform: Xilinx Artix 7 model 7a100tcsg324-1

- Data provided in Salsa20 whitepaper for Salsa20 core functionalities
- Python implementation of Salsa20 for validating encryption and decryption

Design Evaluation - Resources Utilization

	Synthesis	Implementation
LUTs	2586 (4.08%)	2582 (4.07%)
Slice Registers	2590 (2.04%)	2590 (2.04%)
F7 Muxes	128 (0.40%)	128 (0.40%)
F8 Muxes	64 (0.40%)	64 (0.40%)
IOB Ports	139 (66.19%)	139 (66.19%)

- The **DoubleRound** module uses **82%** of the **LUTs** (2136)
- > Each expanded **key** requires **1000** registers
 - > Key Buffer module requires 85% of the registers (2200)
- > The **Key Buffer** module uses **all** the F7 and F8 **muxes**

Design Evaluation – Timing

System Timing

- > The **DobuleRound** module is responsible for the **critical path**
 - Only combinatorial logic
- ➤ Minimum cock **period**: **23.33***ns*
- Maximum clock **frequency**: **43.33***MHz*

Design Evaluation - Performance

System Performance

- Initialization:
 - 4 clock cycles with 16 bytes key
 - 6 clock cycles with 32 bytes key

- **Key Buffer first key** wait cycles: n + 2 clock cycles
- Key buffer worst case: key consumed after 8 clock cycles (64 bytes of input)
 - **Next keys wait** cycles: (n + 2) 8 clock cycles
 - Salsa20: 4 clock cycles
 - Salsa12: **0** clock cycles
 - Salsa8: **0** clock cycles

Without key buffer: n + 2 clock cycles

- Salsa20: **12** clock cycles
- Salsa12: 8 clock cycles
- Salsa8: 6 clock cycles
- Encryption/decryption throughput: 8 bytes of plaintext/ciphertext per clock cycle

Conclusion

Conclusion:

- **Design, synthesize**, and **implement** the Salsa20 cryptosystem
 - Support various Salsa20 versions, without re-synthesizing the design
 - Support 16 bytes and 32 bytes keys
 - A feedback system limits LUTs utilization
 - A circular buffer increases system throughput
- General evaluation of the implemented design

