Week 4 - Codebook

October 25, 2024

1 Week 4: Visualizing Data

1.1 Clear the entire workspace

```
[1]: rm(list = ls())
```

1.2 Load libraries

```
[3]: ReqdLibs =

⇔c("readxl","ggplot2","ggthemes","dplyr","tidyr","forcats","janitor","IRdisplay")

invisible(lapply(ReqdLibs, library, character.only = TRUE))
```

2 A. The Anatomy of a GGPLOT

Image Source: https://ggplot2.tidyverse.org/articles/ggplot2.html

2.1 The Data

This is the foundation of the your whole graphic edifice, which you define through the function ggplot(). Make sure it is not wrong (or absent!)

2.2 The Mapping

This is where you define the fundamental descriptors of the graph through the function aes(). What you define here are the elements of your graph and those elements are directly linked to the number of information carrying dimensions of your data (Tufte, Chap. 2, Visual Display of Quantitative Information, 2^{nd} Ed).

```
[5]: ggplot(mpg, mapping = aes(x = cty, y = hwy))
```


2.3 The Layers

This is where you define the geometric, statistical, or positional elements of the data through the geom_*(), stat_*(), or position_* function respectively. This is where all the action happens and something actually appears on your plot!

```
[6]: ggplot(mpg, aes(cty, hwy)) +
    # to create a scatterplot
    geom_point() +
    # to fit and overlay a loess trendline
    geom_smooth(formula = y ~ x, method = "lm")
```


2.4 Enhancements

2.4.1 Scales

```
[7]: ggplot(mpg, aes(cty, hwy, colour = class)) +
    geom_point() +
    scale_colour_viridis_d()
```


2.4.2 Facets

```
[8]: options(repr.plot.width = 10, repr.plot.height = 8)
ggplot(mpg, aes(cty, hwy)) +
    geom_point() +
    facet_grid(year ~ drv)
```


2.4.3 Coordinates

```
[9]: ggplot(mpg, aes(cty, hwy)) +
    geom_point() +
    coord_fixed()
```


2.4.4 Theme

```
[10]: ggplot(mpg, aes(cty, hwy, colour = class)) +
    geom_point(size = 4) +
    theme_minimal() +
    theme(
        legend.position = "top",
        legend.text=element_text(size=16,face="bold"),
        axis.line = element_line(linewidth = 0.75),
        axis.text = element_text(colour = "black",size=35),
        text = element_text(colour = "black",size=35)
)
```


2.5 All together

3 B. Reproducing a figure using GGPLOT

3.1 Import data

```
[12]: dat.raw = read.csv(file = "rawdata.csv", header = TRUE)
head(dat.raw)
dim(dat.raw)
```

		X	\mathbf{t}	\mathbf{R}	VT	VE	VO2	Sub	trial
A data.frame: 6×8		<int></int>	<int $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<chr $>$	<chr $>$
	1	1	2	0.9855204	0.7548531	13.97876	408.6987	Sub1	rest
	2	2	5	0.9628962	0.5538989	11.62026	304.7868	Sub1	rest
A data.name. 0 × 6	3	3	8	0.9976182	0.7058896	12.87337	347.7043	Sub1	rest
	4	4	10	0.9754142	0.7823950	19.97604	614.8135	Sub1	rest
	5	5	13	0.9758078	0.4957548	10.89571	253.6431	Sub1	rest
	6	6	16	0.9630747	0.7874953	14.90527	437.0967	Sub1	rest

1. 15062 2. 8

3.2 Transform data

3.2.1 Reordering Sub factor

so that it is sorted numerically rather than alphabetically

1. 'Sub1' 2. 'Sub2' 3. 'Sub3' 4. 'Sub4' 5. 'Sub5' 6. 'Sub6' 7. 'Sub7' 8. 'Sub8' 9. 'Sub9' 10. 'Sub10' 11. 'Sub11' 12. 'Sub12' 13. 'Sub13'

3.2.2 Trial = experimental manipulations!

All participants did 1 single trial walking under different conditions. Hence, we have 6 trials + rest. But, trial as a variable is pretty uninformative. We want to understand what these trials mean so that we can plot how some response, $y(VO_2 \text{ etc})$ changed as a result of the independently manipulated variable, x (incline or speed).

Trial 1	Level, 1.3 m/s
Trial 2	Level, 0.8 m/s
Trial 3	Uphill, 1.3 m/s
Trial 4	Uphill, 0.8 m/s
Trial 5	Downhill, 1.3 m/s
Trial 6	Downhill, 0.8 m/s

```
[14]: # based on above, we define trial number (conditions) that match the incline
       ⇔and speeds
      # these are 'condition sets' which we will call when we apply conditional
       ⇔logics next.
      # inclines
      lev = c("1","2")
      uph = c("3","4")
      dwh = c("5","6")
      # speeds
      fs = c("1","3","5")
      sl = c("2","4","6")
[15]: dat.raw %>%
      # so we can refer to those trial conditions more succinctly
      # let's separate these characters into workable parts
      separate(trial,into=c("prefix","num"), sep = " ",fill="right",remove = FALSE)_
       →%>%
      # rest is coded differently from them, so we fill out the new variable type_{\sqcup}
       ⇔with "rest"
      mutate(num = if_else(prefix == "rest", prefix, num)) %>%
      # now we are ready to define some new informative variables from our \Box
       ⇔non-informative variable "type"
      mutate(cond = if_else(num == "rest", num, "walk"),
             incline = case_when(num %in% lev ~ "level",
                                 num %in% uph ~ "uphill",
                                 num %in% dwh ~ "downhill",
                                 num == "rest" ~ "rest",
                                 TRUE ~ NA_character_),
             speed = case_when(num %in% fs ~ 1.3,
                               num %in% sl ~ 0.8,
                               cond == "rest" ~ 0,
                                 TRUE ~ NA_real_)) %>%
      # remove unwanted variables
      select(!c("X","prefix","num")) %>%
      # assign to a new 'defined' data frame
      {.->> dat.def}
```

tail(dat.def)

		t	R	VT	VE	VO2	Sub	trial	cond
		<int></int>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<fct $>$	<chr $>$	<chr></chr>
A data.frame: 6×10	15057	426	0.8729754	0.6416436	14.473163	509.72379	Sub9	trial 6	walk
	15058	429	0.9632060	0.5324928	11.055213	361.50629	Sub9	trial 6	walk
	15059	431	0.9126303	0.8946287	23.963267	873.85555	Sub9	trial 6	walk
	15060	434	0.8497735	0.5273923	14.582274	494.51991	Sub9	trial 6	walk
	15061	435	0.8142049	0.4304827	14.675545	394.51961	Sub9	trial 6	walk
	15062	437	0.4978951	0.1407739	4.590455	35.72638	Sub9	trial 6	walk

3.2.3 Trimming time t

From the Koelewijn et al paper: "The first 30 seconds of the resting trial, and the first three minutes of each walking trial were disregarded. The rate of oxygen consumption, VO_2 in mL/min/kg, and respiratory quotient, R were averaged over time."

	Sub <fct></fct>	cond <chr></chr>	incline <chr></chr>	speed <dbl></dbl>	R <dbl></dbl>	VT <dbl></dbl>	VE <dbl></dbl>	VO2 <dbl></dbl>
-	Sub1	rest	rest	0.0	1.0537845	0.7031141	12.16978	328.9456
	Sub1	walk	downhill	0.8	0.9019424	0.7859465	20.33910	728.5032
A grouped_df: 7×8	Sub1	walk	downhill	1.3	0.8661119	0.8409442	25.83893	1005.2468
	Sub1	walk	level	0.8	0.8727268	1.0036957	26.00091	992.9288
	Sub1	walk	level	1.3	0.8340541	1.0104406	32.61279	1368.0726
	Sub1	walk	uphill	0.8	0.8661413	1.2505480	40.73454	1687.3811
	Sub1	walk	uphill	1.3	0.8315770	1.4630620	58.84244	2540.5691

3.2.4 Calculating new variables, W & C_{meas}

...from constants and measured variables

$$W = \frac{4.184}{60}(3.972 + 1.078R)\dot{V}O_2$$

```
Subject No Age
                                    Reported Weight (kg)
                                                           Reported Length (cm)
                                                                                  Gender
                                                                                           Level Slow L
               <chr>
                            <dbl>
                                    <dbl>
                                                           <dbl>
                                                                                   <chr>
                                                                                            <dbl>
               Sub8
                                                           173
                                                                                   F
                            21
                                    57
                                                                                            599.2760
                                                                                                        59
                            25
               Sub9
                                    58
                                                           170
                                                                                   Μ
                                                                                            575.0346
                                                                                                        58
A tibble: 6 \times 8
               Sub10
                            20
                                                           170
                                                                                   F
                                                                                                        6
                                    66
                                                                                            673.0147
               Sub11
                            20
                                                                                   Μ
                                                                                                        78
                                    76
                                                           188
                                                                                            783.6798
               Sub12
                            33
                                    70
                                                           178
                                                                                   М
                                                                                            715.1903
                                                                                                        7
               Sub13
                            21
                                    56
                                                           169
                                                                                   F
                                                                                            661.9267
                                                                                                        6
```

```
[18]: # TIP! you could use clean_names function from the janitor package
# to clean var names so that they don't contain spaces and parentheses..
# also makes it easyt to use dplyr to mutate later #uncomment below

demo.clean = demo %>% clean_names()
dat.summdemo = merge(dat.summ,demo.clean,by.x = 'Sub', by.y = 'subject_no')
head(demo.clean)
```

	$\operatorname{subject}$ _no	age	reported_weight_kg	$reported_length_cm$	gender	$level_slow$	$level_{_}$
$\begin{array}{c} <\text{chr}>\\\hline \text{Sub1}\\ \text{Sub2}\\ \text{Sub3}\\ \text{Sub4}\\ \text{Sub5} \end{array}$	<chr $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<chr $>$	<dbl $>$	<dbl< td=""></dbl<>
	26	86	185	M	885.5529	891.5	
	Sub2	28	77	178	F	767.7686	760.2
	Sub3	21	52	170	M	530.6408	558.2
	Sub4	25	73	168	\mathbf{M}	NA	NA
	$\mathrm{Sub}5$	34	86	173	\mathbf{M}	878.6303	898.5
	Sub6	19	54	160	F	553.4936	558.2

3.2.5 ...after normalizing VO_2 by weight

```
[19]: dat.summdemo %>%
    mutate(adjV02 = V02/weight_from_force_plates_kg) %>%
    mutate(W = 4.184/60 * (3.972 + 1.078 * R) * adjV02) %>%
    {.->>dat.calc1}
    head(dat.calc1)
```

		Sub	cond	incline	speed	R	VT	VE	VO2	8
A data frame: 6×17		<fct></fct>	<chr $>$	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<
	1	Sub1	rest	rest	0.0	1.0537845	0.7031141	12.16978	328.9456	2
	2	Sub1	walk	downhill	0.8	0.9019424	0.7859465	20.33910	728.5032	2
A data. Hame. 0×17	3	Sub1	walk	downhill	1.3	0.8661119	0.8409442	25.83893	1005.2468	2
	4	Sub1	walk	level	0.8	0.8727268	1.0036957	26.00091	992.9288	2
	5	Sub1	walk	level	1.3	0.8340541	1.0104406	32.61279	1368.0726	2
	6	Sub1	walk	uphill	0.8	0.8661413	1.2505480	40.73454	1687.3811	2

3.2.6 Now calculating C_{meas} :

From the Koelewijn et al paper: "The resting trial was subtracted from each walking trial. The metabolic rate was divided by walking speed to find the measured metabolic cost in J/kg/m:"

$$C_{meas} = \frac{W}{v}$$

```
[20]: # extracting the rest trials only so we can merge it as a column next
dat.calc1 %>%
  filter(cond=="rest") %>%
  select(Sub,W) %>%
{.->>dat.rest}

# now merging it with the original
merge(dat.calc1,dat.rest,by='Sub',suffixes = c('','_rest')) %>%
  filter(cond!="rest") %>%
  mutate(W_adj = W - W_rest) %>%
  mutate(C_meas = W_adj/speed) %>%
  {.->>dat.calc2}

head(dat.calc2)
```

		Sub	cond	incline	speed	R	VT	VE	VO2	8
-		<fct></fct>	<chr $>$	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<
	1	Sub1	walk	downhill	0.8	0.9019424	0.7859465	20.33910	728.5032	4
A data.frame: 6×20	2	Sub1	walk	downhill	1.3	0.8661119	0.8409442	25.83893	1005.2468	6
A data. Hame. 0×20	3	Sub1	walk	level	1.3	0.8340541	1.0104406	32.61279	1368.0726	4
	4	Sub1	walk	uphill	0.8	0.8661413	1.2505480	40.73454	1687.3811	4
	5	Sub1	walk	uphill	1.3	0.8315770	1.4630620	58.84244	2540.5691	6
	6	Sub1	walk	level	0.8	0.8727268	1.0036957	26.00091	992.9288	6

3.3 Visualizing metabolic cost C_{meas}

Finally after all that we have the variable we want to plot. Let's now reproduce the bottom-right panel of Figure 5 from the paper. It's shown below for reference:


```
[69]: thm = theme(
                legend.text=element text(size=16,face="bold"),
                legend.position = "top",
                legend.title=element_text(size=16,face="bold"),
                title =element_text(size=14, face='bold'),
                text = element_text(colour = "black", size=18),
                plot.title = element_text(colour = "black", size = 35, face = "bold", u
       \rightarrowhjust = 0.5),
                axis.ticks.length = unit(-0.3, "cm"),
                axis.line = element line(colour = "black", size=1),
                axis.ticks = element_line(colour = "black", size=1),
                axis.text = element text(colour = "black", size=35),
                axis.text.x = element_text(lineheight = 1.1, margin = margin(t = 20)),
                axis.title.y = element_text(size=35, colour = "grey35", face =_

¬"plain",
                                            lineheight = 1.1, margin = margin(r = 10)))
```

Pulmonary Gas Exchange

Saving your graph

```
[71]: # saving your figures as image files
ggsave(file='reproduced_figure.svg', plot=repro.fig, width=12, height=8)
```

3.4 Additional Resources

- 1) GGPLOT book: https://ggplot2-book.org/introduction.html#what-is-the-grammar-of-graphics
- 2) R Graphics Cookbook: https://r-graphics.org

Try it yourself!

- 1) Can you plot the graph above as a boxplot where the color is determined by speed?
 - What aspects of the graph would you be changing?
- 2) Can you overlay individual data points on top of that new boxplot?
- 3) Can you plot a scatterplot that shows Age on the x against metabolic cost C_meas on the y?
 - Then, facet it by incline and speed?

4 The End