Dataset GSM3215435

Loading data

Ввод [2]:

Ввод [2]:

```
adata = ad.AnnData(matrix.T, var=genes, obs=barcodes)
```

C:\Users\yulia\AppData\Local\Temp\ipykernel_20496\4018781955.py:1: FutureWar ning: X.dtype being converted to np.float32 from int64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.

adata = ad.AnnData(matrix.T, var=genes, obs=barcodes)
C:\Users\yulia\AppData\Local\Programs\Python\Python38\scanpy\lib\site-packag
es\anndata_core\anndata.py:121: ImplicitModificationWarning: Transforming t

o str index.
warnings.warn("Transforming to str index.", ImplicitModificationWarning)

Ввод [3]:

```
sc.pp.filter_cells(adata, min_genes=20)
sc.pp.filter_genes(adata, min_cells=20)
```

Ввод [4]:

adata

Out[4]:

```
AnnData object with n_obs x n_vars = 3781 x 12145
  obs: 'cells', 'n_genes'
  var: 'gene_name', 'gene_symbol', 'n_cells'
```

Ввод [5]:

```
adata.var_names = adata.var['gene_symbol']
adata.var
```

Out[5]:

	gene_name	gene_symbol	n_cells
gene_symbol			
Mrpl15	ENSMUSG00000033845	Mrpl15	1349
Lypla1	ENSMUSG00000025903	Lypla1	1181
Tcea1	ENSMUSG00000033813	Tcea1	1863
Atp6v1h	ENSMUSG00000033793	Atp6v1h	1329
Rb1cc1	ENSMUSG00000025907	Rb1cc1	917
AC125149.2	ENSMUSG00000079794	AC125149.2	26
AC168977.1	ENSMUSG00000079808	AC168977.1	65
PISD	ENSMUSG00000095041	PISD	2263
DHRSX	ENSMUSG00000063897	DHRSX	1017
CAAA01147332.1	ENSMUSG00000095742	CAAA01147332.1	39

12145 rows × 3 columns

Ввод [6]:

adata.obs.head(10)

Out[6]:

	cells	n_genes
0	AAACCTGAGATGCCTT-1	2218
1	AAACCTGAGCTAGTGG-1	1209
2	AAACCTGCAAGCTGTT-1	2084
3	AAACCTGCACCGAATT-1	1961
4	AAACCTGCACGCTTTC-1	908
5	AAACCTGCAGGACCCT-1	2985
6	AAACCTGGTCACAAGG-1	2028
7	AAACCTGGTCACCTAA-1	1727
8	AAACCTGGTCCGTGAC-1	3000
9	AAACCTGGTCTCACCT-1	1156

Ввод [7]:

```
sc.pl.highest_expr_genes(adata, n_top=20, )
```


Visualization and filtering out poor-quality cells

```
Ввод [8]:
```

```
adata.var['mt'] = adata.var_names.str.startswith('mt-')
adata.var['mt'].value_counts()
```

Out[8]:

False 12132 True 13

Name: mt, dtype: int64

Ввод [9]:

sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=True, inplace=Tru

Ввод [10]:

```
sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')
sc.pl.scatter(adata, x='n_genes_by_counts', y='pct_counts_mt')
```


Plots are similar to my plots from seurat:

Ввод [11]:

Ввод [12]:

```
adata = adata[adata.obs.n_genes_by_counts > 1000, :].copy()
adata = adata[adata.obs.pct_counts_mt < 5, :].copy()</pre>
```

Ввод [13]:

```
import scanpy as sc
import seaborn as sns

sns.jointplot(
    data=adata.obs,
    x="total_counts",
    y="n_genes_by_counts",
    kind="hex",
)
```

Out[13]:

<seaborn.axisgrid.JointGrid at 0x122e0cebc70>

Data normalization and scaling

Ввод [14]:

```
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
```

Ввод [15]:

```
sc.pl.highest_expr_genes(adata, n_top=20, )
```


Identification of highly variable features

Ввод [16]:

```
import matplotlib.pyplot as plt
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
gca = sc.pl.highly_variable_genes(adata, show=False, log=False)
```


Ввод [17]:

```
adata.var['highly_variable'].value_counts()
```

Out[17]:

False 10904 True 1241

Name: highly_variable, dtype: int64

Volcano plot from seurat

PCA

Ввод [18]:

```
sc.tl.pca(adata, svd_solver='arpack')
sc.pl.pca_variance_ratio(adata, log=True)
```


PCA plot from seurat

UMAP

Ввод [19]:

```
sc.pp.neighbors(adata, n_neighbors=30, n_pcs=10)
sc.tl.umap(adata)
sc.pl.umap(adata)
```


UMAP plot from seurat

Ввод [20]:

```
sc.tl.leiden(adata, resolution=0.6)
sc.pl.umap(adata, color='leiden')
```


Clusters from seurat

T-SNE (authors use T-SNE method in publication)

Ввод [21]:

```
sc.pp.neighbors(adata, n_neighbors=10, n_pcs=10)
sc.tl.tsne(adata)
```

C:\Users\yulia\AppData\Local\Programs\Python\Python38\scanpy\lib\site-packag
es\sklearn\manifold_t_sne.py:795: FutureWarning: The default initialization
in TSNE will change from 'random' to 'pca' in 1.2.
 warnings.warn(

Ввод [22]:

sc.pl.tsne(adata)

T-SNE plot from Seurat

Ввод [23]:

```
sc.tl.leiden(adata, resolution=0.6)
sc.pl.tsne(adata, color='leiden')
```


T-SNE plot and markers from publication

Detection of cluster markers

Ввод [24]:

```
sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon')
pd.DataFrame(adata.uns['rank_genes_groups']['names']).head(1)
```

Out[24]:

	0	1	2	3	4	5	6	7	8	9	10	11
0	Pf4	Cx3cr1	Junb	Atf3	lfrd1	Folr2	Jun	Napsa	Lgals3	Stmn1	Bst2	Rps15a

Markers detceted by Seurat "Pf4" "Ccl4" "Hspa1a" "Plac8" "II1b" "Retnla" "Spp1" "Ifitm1" "Isg15" "Stmn1" "Ccl7" "Ccl5"

Common detected markers "Pf4" "II1b" "Stmn1"

Expression of marker genes among clusters

Ввод [25]:

```
markers = ['Pf4', 'Cx3cr1','Junb', 'Atf3', 'Ifrd1','Folr2', 'Jun', 'Napsa', 'Lgals3', 'Stmn
sc.pl.dotplot(adata, markers, 'leiden', dendrogram=True)
```

WARNING: dendrogram data not found (using key=dendrogram_leiden). Running `s c.tl.dendrogram` with default parameters. For fine tuning it is recommended to run `sc.tl.dendrogram` independently.

Expression of principal hematopoietic markers in the identified cell clusters (comparison between the publication and my results)

"Fcgr1", "Mrc1" expression

Ввод [26]:

Ввод [27]:

sc.pl.violin(adata, ["Fcgr1", "Mrc1"], groupby='leiden')

"Mafb", "Itgax" expression

Ввод [28]:

Ввод [29]:

sc.pl.violin(adata, ["Mafb", "Itgax"], groupby='leiden')

"Lyve1", "Flt3" expression

Ввод [30]:

Ввод [31]:

"Cd3e", "Abcg1" expression

Ввод [32]:

Ввод [33]:

Expression of principal hematopoietic markers is ditributed in a similar way comparing to the publication results.