Dimensionality Reduction

Week 10 Discussion

A Review: PCA

- dimensionality reduction by projecting data onto the principal components
- principal components correspond to directions of highest variance

PCA Three Ways

- Project data onto the leading left-singular vectors of the mean-centered X (using SVD)
- Project Data onto the leading eigenvectors of the covariance matrix (using Eigendecomposition)
- Project data to k-dimensions such that the projected data has the highest variance (solving the equation below)

$$\mathbf{w}_{(1)} = rg \max_{\|\mathbf{w}\|=1} \left\{ \sum_i \left(\mathbf{x}_{(i)} \cdot \mathbf{w}
ight)^2
ight\}$$

The Two Common Algorithms

Algorithm 1	Algorithm 2
. Mean center the data	· Form the Sample Covariance matrix C
compute the global mean m	(Compute global mean)
	$C = \frac{1}{h} \stackrel{?}{\underset{i=1}{\sim}} (\vec{x_i} - \vec{m}) (\vec{x_i} - \vec{m})^T$
for i=1 n Xi = Xi-mi	[2]
end	· Take top-k eigen val/eigenvectors of C
• Take K-SVD of $\tilde{\chi}$ $\tilde{\chi}_{k} = U_{k} \geq_{k} V_{k}^{T}$	Take top-k eigenval/eigenvectors of C $C_k = d U_k {}^k $
	· project using Uk
	· project using Uk Žproj = UJX
· Project data using Uk:	

PCA for Visualization ° 10 2d map (drop 1 dimension) 25 20 pc2 2d dimensionality reduction with PCA

Dataset photos from http://nghiaho.com/?page_id=1030

A Real World Example: Image Compression

Original Image

An Image has 512x512 pixels, each pixel represents a feature

(a) 1 principal component

(d) 13 principal component

(b) 5 principal component

(e) 17 principal component

(c) 9 principal component

(f) 21 principal component

(g) 25 principal component

(h) 29 principal component

Nonlinear Dimensionality Reduction

Manifold Learning

Finding distances between high-dimensional data and mapping to low-dimensional space

- Isomaps
- Laplacian Eigenmaps
- Self-Organizing Map (SOMs)

t-Distributed Stochastic Neighbor Embedding

- A non-linear dimensionality reduction technique consisting of the following steps:
- construct a probability distribution over pairs of high-dimensional objects in such a way that
 - similar objects have a high probability of being picked
 - dissimilar points have an extremely small probability of being picked
- 2. t-SNE defines a similar probability distribution over the points in the low-dimensional map, and minimizes the KL divergence between the two distributions with respect to the locations of the points in the map

Digits Dataset

(1797 8x8 images of handwritten digits)

MNIST Dataset

