タイタニック号生存に関する解析

目次

]	1. 序論 .			3
	1-1. 解枯	折の背景		3
	1-2. 解析	斤の目的		3
	1-3. 解析	斤の方針		3
2.	使用する	るデータ		4
3.	. 解析結5	果と考察		5
	3-1. 要約	勺統計量		5
	3-2. 度数	效表		8
	3-3. ロミ	ブスティッ	・ク回帰 1(0
4.	. 結論			2

1. 序論

1-1. 解析の背景

1912年4月に沈没したタイタニック号の悲劇は、史上最も有名な海難事故の一つである。この事件では多数の犠牲者を出し、社会的・歴史的な関心を集め続けている。特に、乗客の客室クラス、性別、年齢といった個人属性が生存にどのように影響を与えたかについては、長年にわたり多くの分析が行われてきた。本解析では、これらの要因を再検証し、生存者の特徴を統計的に分析する。

1-2. 解析の目的

本解析の目的は、タイタニック号の乗客データを用いて生存者の特徴を統計的に分析し、 生存率に影響を与えた要因を明らかにすることである。具体的には、要約統計量、度数 表、ロジスティック回帰分析を用いた解析を行い、性別、客室クラス、年齢、運賃、乗船 地といった要因が生存確率に及ぼす影響を検証する。

1-3. 解析の方針

本解析では、タイタニック号の乗客データを統計的に分析するために、要約統計量、度数表、ロジスティック回帰分析の3つの手法を用いる。まず、要約統計量を算出することで、データの基本的な傾向を把握し、生存者と非生存者の特徴を比較する。次に、度数表を用いて性別や客室クラスなどのカテゴリ変数ごとの生存率を可視化し、要因ごとの影響を直感的に示す。最後に、ロジスティック回帰分析を用いることで、生存率に影響を与えた要因を定量的に評価し、それぞれの変数が生存確率に及ぼす影響の大きさを検証する。これらの手法を組み合わせることで、生存率を左右した要因を包括的に分析することを目指す。

2. 使用するデータ

本解析で使用するデータは、タイタニック号の乗客情報をまとめたものである。このデータには、891人の乗客の個人情報(年齢、性別、客室クラスなど)と、生存の有無が含まれている。

データに含まれている変数は以下の12個である。

PassengerId (乗客 ID)

Survived (生死 0:死亡, 1:生存)

Pclass (客室クラス 1:1st, 2:2nd, 3:3rd)

Name (氏名)

Gender (性別)

Age (年齢)

SibSp (同乗している兄弟,配偶者の数)

Parch (同乗している親,子供の数)

Ticket (チケット番号)

Fare (運賃)

Cabin (客室番号)

Embarked (出港地)

なお、データには欠損値が存在する。特に、Age で 177 件、Cabin で 687 件、Embarked で 2 件の欠損が確認されている。本解析では、欠損値のあるデータを削除して解析を行う。

3. 解析結果と考察

3-1. 要約統計量

title "生存と性別と客室クラスにおける年齢と運賃の要約統計";

proc means data=titanic mean median var std min max;

class Survived Gender Polass;

var Age Fare;

run;

MEANS プロシジャ										
Survived	Gender	Pclass	Obs 数	変数	平均	中央値	分散	標準偏差	最小値	最大値
0	female	1	3	Age Fare	25.6666667 110.6041667	25.0000000 151.5500000	576.3333333 5029.68	24.0069434 70.9202637	2.0000000 28.7125000	50.0000000 151.5500000
		2	6	Age Fare	36.0000000 18.2500000	32.5000000 17.0000000	166.8000000 48.5750000	12.9151074 6.9695767	24.0000000 10.5000000	57.0000000 26.0000000
		3	72	Age Fare	23.8181818 19.7730931	22.0000000 14.4791500	164.6978114 212.3511931	12.8334645 14.5722748	2.0000000 6.7500000	48.000000 69.5500000
	male	1	77	Age Fare	44.5819672 62.8949104	45.5000000 42.4000000	209.0265027 3606.31	14.4577489 60.0525449	18.0000000 0	71.0000000
		2	91	Age Fare	33.3690476 19.4889648	30.5000000 13.0000000	147.8199943 247.1356350	12.1581246 15.7205482	16.0000000 0	70.0000000 73.5000000
		3	300	Age Fare	27.2558140 12.2044693	25.0000000 7.8958000	147.2753749 120.6681187	12.1357066 10.9849041	1.0000000	74.000000 69.550000
1	female	1	91	Age Fare	34.9390244 105.9781593	35.0000000 82.1708000	174.8480879 5585.90	13.2230136 74.7388969	14.0000000 25.9292000	63.0000000 512.3292000
		2	70	Age Fare	28.0808824 22.2889886	28.0000000 23.0000000	162.9373903 124.1204771	12.7646931 11.1409370	2.0000000 10.5000000	55.0000000 65.0000000
		3	72	Age Fare	19.3297872 12.4645264	19.0000000 9.4687500	151.3698543 35.8167990	12.3032457 5.9847138	0.7500000 7.2250000	63.0000000 31.3875000
	male	1	45	Age Fare	36.2480000 74.6373200	36.0000000 35.5000000	223.1063138 10219.58	14.9367437 101.0919479	0.9200000 26.2875000	80.0000000 512.3292000
		2	17	Age Fare	16.0220000 21.0951000	3.0000000 18.7500000	382.0899600 96.6788797	19.5471215 9.8325419	0.6700000 10.5000000	62.0000000 39.0000000
		3	47	Age Fare	22.2742105 15.5796957	25.0000000 8.0500000	133.5361926 232.0256353	11.5557861 15.2323877	0.4200000	45.0000000 56.4958000

本表は、生存、性別、客室クラスごとの乗客の年齢および運賃に関する要約統計量を示している。この結果から、1等客室の乗客は他のクラスよりも生存率が高く、特に女性の生存率が顕著に高いことが確認された。一方で、3等客室の乗客は生存率が低く、特に男性の死亡率が高いことが分かった。また、運賃が高いほど生存率が高い傾向が見られ、経済的な地位が救助の際に影響を与えた可能性が示唆された。

title "生死ごとの年齢と運賃の要約統計量";

proc means data=titanic mean median var std min max;

class Survived;

var Age Fare;

run;

生死ごとの年齢と運賃の要約統計量

MEANS プロシジャ

Survived	Obs 数	変数	平均	中央値	分散	標準偏差	最小値	最大値
0	549	Age Fare	30.6261792 22.1178869	28.0000000 10.5000000	200.8486984 985.2195092	14.1721099 31.3882065	1.0000000	74.0000000 263.0000000
1	342	Age Fare	28.3436897 48.3954076	28.0000000 26.0000000	223.5309652 4435.16	14.9509520 66.5969981	0.4200000	80.0000000 512.3292000

生存者と非生存者の年齢と運賃を比較した結果、生存者の平均年齢は28.34歳、非生存者は30.63歳であり、わずかに非生存者の方が高い傾向が見られた。運賃については、生存者の平均が48.40であるのに対し、非生存者の平均は22.12と低く、生存者の方がより高額のチケットを購入していたことが示唆された。

title "生死と性別ごとの年齢と運賃の要約統計量";

proc means data=titanic mean median var std min max;

class Survived Gender;

var Age Fare;

run;

生死と性別ごとの年齢と運賃の要約統計量

MEANS プロシジャ

Survived	Gender	Obs 数	変数	平均	中央値	分散	標準偏差	最小値	最大値
0	female	81	Age Fare	25.0468750 23.0243852	24.5000000 15.2458000	185.4660218 616.0963131	13.6185910 24.8212875	2.0000000 6.7500000	57.0000000 151.5500000
	male	468	Age Fare	31.6180556 21.9609929	29.0000000 9.4166500	197.5716787 1050.40	14.0560193 32.4097992	1.0000000	74.0000000 263.0000000
1	female	233	Age Fare	28.8477157 51.9385734	28.0000000 26.0000000	200.9326861 4109.10	14.1750727 64.1022561	0.7500000 7.2250000	63.0000000 512.3292000
	male	109	Age Fare	27.2760215 40.8214844	28.0000000 26.2875000	272.4085220 5091.67	16.5048030 71.3559670	0.4200000	80.0000000 512.3292000

性別ごとに生存者と非生存者の年齢および運賃を分析した結果、女性の生存率が男性よりも著しく高いことが明らかとなった。特に1等および2等客室の女性の生存率は高く、3等客室の男性の生存率が極めて低いことが分かった。また、女性の運賃の平均値は男性よりも高く、上級クラスの女性が救助の優先度が高かったことを示唆している。

3-2. 度数表

title "性別ごとの生存確率度数表";

proc freq data=titanic;

tables Survived*Gender / norow nopercent;

run;

性別で	ごとの生存 FREQ プロ		数表			
度数	表: Survived * Gender					
列のパーセント		Gender				
	Survived	female	male	合計		
	0	81 25.80	468 81.11	549		
	1	233 74.20	109 18.89	342		
	合計	314	577	891		

性別ごとの生存確率を確認した結果、女性の生存率は74.2%であったのに対し、男性の生存率は18.89%と著しく低かった。この結果は、救助活動の際に「女性と子供が優先された」という方針が統計的に裏付けられることを示している。

title "性別ごとの客室クラス分布度数表";

proc freq data=titanic;

tables Pclass*Gender / norow nopercent;

run;

性別ごとの客室クラス分布度数表 FREQ プロシジャ 度数 表: Pclass * Gender 列のパーセント Gender 合計 Pclass female male 1 122 94 216 29.94 21.14 108 2 76 184 24.20 18.72 144 347 491 45.86 | 60.14

合計

314

客室クラスごとの男女の分布を確認すると、1等および2等客室では女性の割合が比較的高い一方、3等客室では男性の割合が大幅に高いことが分かった。これは、3等客室には移民層の乗客が多く含まれていたことを示唆している。

577

891

3-3. ロジスティック回帰

```
proc logistic data=titanic;
    class Gender(ref='male') Pclass(ref='3') Embarked(ref='S');
    model Survived(event='1') = Pclass Gender Age Fare Embarked;
run;
```

LOGISTIC プロシジャ

モデルの情報				
データセット	WORK.TITANIC			
応答変数	Survived			
応答の水準数	2			
モデル	binary logit			
最適化の手法	Fisher's scoring			

	読み込んだオブザベーション数	891
ĺ	使用されたオブザベーション数	712

	反応プロフ	アイル
順番	Survived	度数の合計
1	0	424
2	1	288

分類変数の水準の情報					
分類	値	デザイ	ン変数		
Gender	female	1			
	male	-1			
Pclass	1	1	0		
	2	0	1		
	3	-1	-1		
Embarked	С	1	0		
	Q	0	1		
	S	-1	-1		

モデル収束状態

収束基準(GCONV=1E-8)は満たされました。

モデルの適合度統計量					
基準	切片のみ	切片と共変量			
AIC	962.904	658.674			
sc	967.472	695.218			
-2 Log L	960.904	642.674			

包括的帰無仮説: BETA=0 の検定							
検定	カイ 2 乗値	自由度	Pr > ChiSq				
尤度比	318.2302	7	<.0001				
スコア	278.9918	7	<.0001				
Wald	190.5832	7	<.0001				

効果に対する Type 3 分析						
効果	自由度	Wald カイ2 乗値	Pr > ChiSq			
Pclass	2	57.8085	<.0001			
Gender	1	143.3593	<.0001			
Age	1	21.5252	<.0001			
Fare	1	0.0032	0.9546			
Embarked	2	3.9563	0.1383			

最尤推定値の分析								
パラメータ		自由度	推定値	標準誤差	Wald カイ 2 乗値	Pr > ChiSq		
Intercept		1	1.1655	0.3283	12.6039	0.0004		
Pclass	1	1	1.1903	0.2014	34.9286	<.0001		
Pclass	2	1	0.0381	0.1553	0.0602	0.8062		
Gender	female	1	1.2584	0.1051	143.3593	<.0001		
Age		1	-0.0361	0.00779	21.5252	<.0001		
Fare		1	-0.00013	0.00229	0.0032	0.9546		
Embarked	С	1	0.4375	0.2405	3.3098	0.0689		
Embarked	Q	1	-0.3791	0.3533	1.1509	0.2834		

オッズ比の推定						
効果	点推定	95% Wald 信頼限界				
Pclass 1 vs 3	11.232	5.849	21.570			
Pclass 2 vs 3	3.548	2.183	5.769			
Gender female vs male	12.390	8.206	18.707			
Age	0.965	0.950	0.979			
Fare	1.000	0.995	1.004			
Embarked C vs S	1.642	0.968	2.786			
Embarked Q vs S	0.726	0.260	2.024			

予測確率と観測データの応答との関連性						
一致の割合	85.4	Somers O D	0.709			
不一致の割合	14.5	ガンマ	0.709			
タイの割合	0.0	Tau-a	0.342			
組	122112	С	0.854			

ロジスティック回帰分析の結果、客室クラスと性別が生存確率に最も大きな影響を与えていたことが確認された。1等客室の乗客の生存確率は3等客室よりも11.23倍高く、女性の生存確率は男性の12.39倍高いことが示された。また、年齢が1歳増加するごとに生存確率は0.965倍低下し、高齢者が避難に不利であった可能性が示唆された。一方で、運賃や乗船地の影響は統計的に有意ではなかった。モデルの予測一致率は85.4%であり、生存確率を比較的高精度で予測できることが示唆された。

4. 結論

本解析では、タイタニック号の乗客データを用いて生存確率に影響を与えた要因を分析した。その結果、客室クラスと性別が生存率に最も大きな影響を与える要因であることが明らかになった。特に 1 等客室に乗船した女性の生存率が高く、3 等客室の男性の生存率が極めて低かったことが統計的に示された。また、年齢も有意な影響を持つが、客室クラスや性別ほどの影響は確認されなかった。一方で、運賃や乗船地の影響は統計的に有意ではなかった。これらの結果は、タイタニック号の救助活動において「女性と子供の優先」および「客室クラスによる救助格差」が存在していたことを示唆している。今後の解析では、交互作用の分析や、さらに詳細なデータを用いた解析を行うことで、より精緻な知見を得ることが期待される。