α) Αρκεί να αποδειχθεί ότι υπάρχει $\mu \in R$ έτσι ώστε $\overrightarrow{B\Gamma} = \mu \overrightarrow{BM}$.

Πράγματι, θεωρώντας το Β ως σημείο αναφοράς, είναι:

$$\overrightarrow{AB} - 2\overrightarrow{AM} + \overrightarrow{A\Gamma} = \overrightarrow{0} \Rightarrow$$

$$\overrightarrow{AB} - 2(\overrightarrow{BM} - \overrightarrow{BA}) + (\overrightarrow{B\Gamma} - \overrightarrow{BA}) = \overrightarrow{0} \Rightarrow$$

$$\overrightarrow{AB} + 2\overrightarrow{BA} + \overrightarrow{B\Gamma} - \overrightarrow{BA} = 2\overrightarrow{BM} \Rightarrow$$

$$\overrightarrow{AB} + \overrightarrow{BA} + \overrightarrow{B\Gamma} = 2\overrightarrow{BM} \Rightarrow \overrightarrow{B\Gamma} = 2\overrightarrow{BM}$$

β) Το Μ είναι το μέσο του τμήματος ΒΓ, διότι

$$\overrightarrow{B}\overrightarrow{\Gamma} = 2\overrightarrow{B}\overrightarrow{M} \Rightarrow \overrightarrow{B}\overrightarrow{\Gamma} - \overrightarrow{B}\overrightarrow{M} = \overrightarrow{B}\overrightarrow{M} \Rightarrow \overrightarrow{M}\overrightarrow{\Gamma} = \overrightarrow{B}\overrightarrow{M}$$

γ) i. Επειδή τα σημεία A, B, Γ ως κορυφές τριγώνου δεν είναι συνευθειακά, έπεται ότι τα μη μηδενικά διανύσματα \overrightarrow{AB} , $\overrightarrow{A\Gamma}$ δεν είναι παράλληλα.

Eίναι $\kappa \overrightarrow{A\Gamma} = \lambda \overrightarrow{AB}$.

An
$$\kappa \neq 0$$
, that $\kappa \overrightarrow{A\Gamma} = \lambda \overrightarrow{AB} \Rightarrow \overrightarrow{A\Gamma} = \frac{\lambda}{\kappa} \overrightarrow{AB} \Rightarrow \overrightarrow{A\Gamma} / / \overrightarrow{AB}$.

Av
$$\lambda \neq 0$$
, tóte $\kappa \overrightarrow{A\Gamma} = \lambda \overrightarrow{AB} \Rightarrow \overrightarrow{AB} = \frac{\kappa}{\lambda} \overrightarrow{A\Gamma} \Rightarrow \overrightarrow{A\Gamma} / / \overrightarrow{AB}$.

Επομένως πρέπει $\kappa = \lambda = 0$.

ii) Τότε είναι:
$$\left\{ \begin{array}{l} \overrightarrow{AB} \cdot \overrightarrow{A\Gamma} = 0 \\ \overrightarrow{AM} \cdot \overrightarrow{B\Gamma} = 0 \end{array} \right.$$

Αφού $\overrightarrow{AB} \cdot \overrightarrow{A\Gamma} = 0$ έπεται ότι τα διανύσματα \overrightarrow{AB} , $\overrightarrow{A\Gamma}$ είναι κάθετα. Επομένως, το τρίγωνο είναι ορθογώνιο, με $\hat{A} = 90^\circ$.

Αφού $\overrightarrow{AM} \cdot \overrightarrow{B\Gamma} = 0$ έπεται ότι η διάμεσος AM του ορθογώνιου τριγώνου είναι κάθετη στην πλευρά $B\Gamma$, δηλαδή είναι και ύψος.

 Ω ς εκ τούτου το τρίγωνο είναι και ισοσκελές με $AB = A\Gamma$.