- (11) Japanese Unexamined Patent Application Publication No. 60-107083
- (43) Publication Date: June 12, 1985
- (21) Application No. 58-214485
- (22) Application Date: November 15, 1983
- (72) Inventors: OKI et al.
- (71) Applicant: Fujitsu Ltd.
- (74) Agent: Patent Attorney, Koshiro MATSUOKA

SPECIFICATION

- 1. Title of the Invention: DISPLAY
- 2. Claims

[Claim 1] A display comprising: an active-matrix circuit including a gate-controlled diode having a drain electrode and a gate electrode, the drain electrode being connected to a displaying element provided on a semiconductor substrate, the gate electrode of the gate-controlled diode being provided in the form of a loop.

[Claim 2] The display according to Claim 1, further comprising: an information storage capacitor provided under the outer periphery of the gate electrode in the form of a loop, wherein the drain portion of the gate-controlled diode is provided at the portion being in contact with the inner

periphery of the looped gate electrode, and a luminescent area in the displaying element is provided at a portion surrounded by the looped gate electrode.

[Claim 3] The display according to Claim 1 or 2, wherein the drain region is provided under the entire portion surrounded the looped gate electrode, and the drain electrode also functions as a displaying electrode of the displaying element.

- 3. Detailed Description of the Invention
- (a) Technical Field of the Invention

The present invention relates to a display, particularly, to a display in which intensity modulation can be stably performed and improved quality of display images can be achieved.

(b) Background Art

In an electroluminescent (EL) panel or the like, a considerable number of displaying elements corresponding to its pixels is required for the construction of a predetermined screen. The same number of driving circuits as the elements or lines is required to individually drive the elements. Thus, a large number of driving circuits are required.

Therefore, each of the driving circuits preferably has a simple structure.

In addition, there is a demand for the displaying element in which intensity modulation can be stably performed and improved quality of display images can be achieved.

(c) Related Art and its Problem

As shown in Fig. 1, a known driving circuit for intensity modulation includes an active matrix a composed of one transistor and one capacitor (composed of Q1 and C3). A display element, for example, a liquid crystal element b is driven by the driving circuit. In this driving circuit, a voltage, which is corresponding to brightness information, applied to a data bus c charges a capacitor C3 via a transistor Q1 that is turned on by a scan pulse applied to a scan bus d. In this way, intensity modulation is performed for the element b.

In order to apply the driving circuit for driving an AC-driven displaying element, such as a thin-film EL element, the configuration of the driving circuit must be changed to a configuration composed of two transistors and one capacitor (Q1, Q2, and C3) as shown in Fig. 2. As a result, intermediate tones are particularly difficult to be stably generated by intensity modulation. Furthermore, the circuit has no means for improving the quality of display images.

(d) Object of the Invention

The present invention is conceived in view of the

above-described problems with the known circuit. It is an object of the present invention to provide a display in which stable intensity modulation is achieved and improved quality of display images can be achieved.

(e) Construction of the Invention

In order to achieve the object, a display of the present invention includes an active-matrix circuit including a gate-controlled diode having a drain electrode and a gate electrode, the drain electrode being connected to a displaying element provided on a semiconductor substrate, the gate electrode being provided in the form of a loop.

(f) Embodiment of the Invention

An embodiment according to the present invention will be described below with reference to the drawings.

Fig. 3 is a circuit diagram according to an embodiment of the present invention. Fig. 4 shows a devised configuration for the integration of the circuit shown in Fig. 3. In Fig. 3, reference numeral 1 represents an active-matrix circuit for driving an electroluminescent (EL) element and reference numeral 2 is an EL cell (displaying element). One electrode of the EL cell 2 is connected to a power terminal 3. Another electrode of the EL cell 2 is connected to the drain of a gate-controlled diode 4 (hereinafter, referred to as "GCD"). The substrate SUB of the diode 4 is connected to a reference potential, for

example, a ground potential.

The gate of the diode 4 is connected to one electrode of a storage capacitor 5 and to a data bus 7 via an address transistor 6. The address transistor 6 is, for example, a MOS transistor and its gate electrode is connected to a scan bus 8. Another electrode of the capacitor 4 is connected to the reference potential, for example, the ground potential.

In Fig. 4 showing an integrated circuit including the configuration of the circuit, (4-1) is a plan view and (4-2) is a cross-sectional view taken along line IV-IV. In these figures, a drain electrode D and a gate electrode G of the address transistor are connected to the data bus 7 and the scan bus 8, respectively, the data bus 7 and the scan bus 8 each being arrayed into a matrix. A source electrode of the transistor 6 is connected to a loop poly-Si electrode 10. The outer portion of the loop poly-Si electrode 10 and a p^{+} diffusion region are separated by a thermally grown oxide film 11 (part of a SiO₂ insulating film 16) having a thickness of 1,000 Å to define the storage capacitor 5 there. A thermally grown oxide film 12 (part of a SiO₂ insulating film 16), having a thickness of 1,000 Å, under the inner portion of the poly-Si electrode 10 functions as a gate insulating film of the GCD 4. Thus, the poly-Si electrode 10 on the gate insulating film functions as a gate electrode of the GCD 4. An n⁺ region is formed by diffusing

phosphorus into a portion (in p-type silicon substrate 13) surrounded the loop poly-Si electrode 10 through the loop poly-Si electrode 10 functioning as a mask. The n⁺ region functions as not only a drain electrode of the GCD 4, but also as a displaying electrode of the EL cell 2. Alternatively, a drain electrode of the GCD 4 may be connected to a displaying electrode of the EL cell 2 formed independently.

After the driving circuit is thus formed by a Si process, if necessary, a light shield and an electric shield are provided (not shown) so that the display electrode is exposed alone. Then, an electroluminescent layer 14 of the EL cell 2 is formed on the entire circuit by a thin-film forming process such as vapor deposition or sputtering. The electroluminescent layer 14 may be composed of a luminescent layer alone, or may further contain an insulating layer composed of, for example, Y2O3, Si3N4, or Al2O2. Then, a transparent conductive film 15 (common counter electrode) is formed on the electroluminescent layer 14 to complete an EL panel.

The operation of the display of the present invention including such a configuration will be described below.

A driving voltage V_A shown in Fig. 5 (5-1) is applied to the power terminal 3. A scan pulse V_Y , which is a frame frequency, shown in Fig. 5 (5-2) is supplied to the scan bus

8. A voltage V_X , which is shown in Fig. 5 (5-3), corresponding to brightness information including intermediate tones is applied to the data bus 7.

When the scan pulse V_Y is applied at the timing shown in Fig. 5 (5-2), the address transistor 6 turns on. As a result, a voltage V_{G1} at that time is maintained in the storage capacitor 5 for one frame (see Fig. 5 (5-4)), and then the voltage is applied to the gate of the gate-controlled diode 4.

The reverse breakdown voltage of the diode 4 changes depending on the gate voltage according to the relationship shown in Fig. 6. The characteristic of the diode 4 is explained by the following reason: As shown in Fig. 7, the diode 4 has a structure of a MOS transistor in which a source diffusion region is omitted. A potential distribution between the drain and the substrate is affected by the gate potential while a voltage is applied. A lower gate potential causes the steepening of the potential gradient of a depletion layer generated by a p-n junction under an edge of the gate, thus resulting in the occurrence of the breakdown at a lower drain voltage.

As described above, since the reverse breakdown voltage of the diode 4 changes, drain voltages V_D are clamped to different levels as shown in Fig. 5 (5-5). As shown in Fig. 5 (5-6), a positive peak value of a voltage across the EL

cell 2 $(V_{\text{cell}} = V_A - V_D)$ varies between $V_A - V_{Z1}$ and $V_A - V_{Z0}$ depending on the gate voltage V_G .

When V_{cell} is V_A-V_{Z0} , the thin-film EL device 1 having a steep threshold property emits light having a saturated luminance of B_0 . When V_{cell} is V_A-V_{Z1} , the thin-film EL device 1 emits light having a dark luminance of B_1 (see Fig. 8).

That is, the luminance of the EL cell can be changed by setting the values of the V_A and V_D . Thus, the gate voltage can control the luminance. Therefore, the application of the gate voltage having an intermediate voltage of V_{G2} causes the EL device to emit light having an intermediate luminance of B_2 .

As shown in Fig. 4, in the present invention, by increasing the gate length of the GCD 4 and reducing the area occupied by the gate, the luminescent area is increased; hence, a clamp operation can be performed at low impedance. As a result, a driving control for stable intermediate tones can be performed and a multifunctional display having high-quality display images can be achieved.

In the above-described embodiment, the GCD 4 having a single-loop gate has been described. A plurality of luminescent areas may be provided.

(g) Advantages of the Invention

As described above, the present invention has the advantages as follows: (1) a driving control for stable

intermediate tones can be performed; and (2) the quality of display images can be improved, etc.

4. Brief Description of the Drawings

Figs. 1 and 2 each show a driving circuit of a known display element. Fig. 3 is a circuit diagram of a display according to the present invention. Fig. 4 shows a configuration for the integration of the circuit shown in Fig. 3. Fig. 5 is a timing chart illustrating the operation of the circuit according to the present invention. Fig. 6 is a graph showing the characteristic of the gate-controlled diode. Fig. 7 is a schematic view illustrating the principle of operation of the gate-controlled diode. Fig. 8 is a graph illustrating the operation of the EL cell.

Among these figures, reference numeral 1 represents an active-matrix circuit, reference numeral 2 represents an EL cell, reference numeral 4 represents a gate-controlled diode, reference numeral 5 represents a storage capacitor, reference numeral 6 represents an address transistor, reference numeral 7 represents a data bus, reference numeral 8 represents a scan bus, reference numeral 10 represents a poly-Si electrode, reference numeral 13 represents a p-type silicon substrate, reference numeral 14 represents an electroluminescent layer, and reference numeral 15 represents a transparent conductive film.

FIG. 4

LUMINESCENT AREA

FIG. 6

1: GATE VOLTAGE

2: REVERSE BREAKDOWN VOLTAGE

FIG. 7

P-N JUNCTION

FIG. 8

LUMINANCE

® 日本国特許庁(JP)

①特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭60-107083

@int_Cl.4

識別配号

庁内整理番号

❷公開 昭和60年(1985)6月12日

9/30 G 09 F G 09 G 3/30 6615-5C 6940-5C

審査請求 未請求 発明の数 1 (全5頁)

❷発明の名称 **波示装置**

到特 瞬 昭58-214485

昭58(1983)11月15日 **63**H

砂発 明 者 擊 李 何発 明 Ш 史 渚 大 和 博 眀 原 電発 者 高 浩 Ż 者 ②発 眀 明 者 補 照信 砂発 富士通株式会社 ⑪出 换 人 弁理士 松岡 宏四郎 1990代 理

川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内 川崎市中原区上小田中1015番地 富士通株式会社内

川崎市中原区上小田中1015番地

Ш

1. 発明の名称

表示装置

2. 特許的求の範囲

(1) アクティブマトリクス国路のゲートコントロ ールダイオードのドレイン電極を表示素子に接続 した表示強體を半導体基板に構成する際に上記ゲ ートコントロールダイオードのゲート電極を環状 に形成したことを特徴とする表示装置。

② 上記環状ゲート電極の外周側に情報蓄積用容 量部を形成し、その内間に接する領域に上記ゲー トコントロールダイオードのドレイン部を形成し、 上記表示素子の西素発光領域を上記遺状ゲート電 極の内側に形成したことを特徴とする特許請求の 節囲第1項記載の表示装置。

(3) 上記環状ゲート電極の内間全体をドレイン領 級とし、故ドレイン領域を上記表示指子の表示電 極としたことを特徴とする特許請求の範囲第1項 又は第2項記載の表示装置。

3. 黎明の詳細な説明

(4)発明の技術分野

本発明は表示装置に係り、特に安定な輝度変揚 を行ない得て、しかも喪示品質の向上を達成し得 るよう工夫を凝らした表示装置に関する。

の技術の背景

BLパネル等では、その面素に相当する表示素 子の数は所定の舊面を構成し得るに足りるだけ必 要となり、その数は相当な素子数にのぼる。そし て、それら各案子は個別に駆動する必要性がある から、駆動回路は素子数若しくはライン数だけ必 更になり、その数は非常に多数になる。

従って、その駆動回路は簡略に構成されること が顰ましい。

又、そのような駆動回路であって、しかも表示 素子の輝度変調を為し得ることが要求されること に加えて、その輝度変調の安定性に優れ、しかも 表示品質の向上も望めるものが要求されるに至っ ている。

の従来技術と問題点。

従来の輝度変傷を生じさせる駆動回路として、

初期昭60-107083(2)

第1図に示すような1トランジスタ・1キャパシタ情版(Q1. C3から成るもの)のアクティブマトリクス a がある。この駆動回路により表示最子、例えば液晶素子 b が駆動されるように標成されている。この駆動回路は、デークパス c に保険的される輝度情報に対応する電圧がスキャンパス d に印加されるスキャンパルスでオンになるトランスタQ1を経てキャパシタC3を充電し、業子bの輝度変調を行なうものである。

この駆動回路を薄膜 B L のような交流駆動型の 表示条子の駆動に応用しようとすると、その駆動 回路は第2図に示すように、2 トランジスタ・1 キャパシタ構成(Q 1 、Q 2 、C 3)に変形しな ければならない上、蝉度変調、とりわけ安定した 中間調の変調を困難にしてしまうばかりでなく、 表示品質の向上を促す手段に欠けている。

山発明の目的

本発明は上述したような従来回路の有する欠点 に握みて創案されたもので、その目的は安定した 健度変額を実現しつつ、しかも表示品質も向上さ せ得る表示装包を提供することにある。 cu発明の構成

○発明の実施例

以下、添付図面を参照しなから本発明の実施例 を説明する。

第3図は本発羽実施例の回路図であり、第4図は第3図目路の集積目路化に工夫を凝らして構成した図である。第3図において、1はBL収動用のアクティブマトリクス回路で、2はBLセル(投示案子)である。BLセル2の一方の電極はゲートコントロールダイオード(以下、GCDと略称する。)4のドレインに接続され、ダイオード4の基板SUBは基準電位、例えばアース電位へ接

統されている。

ダイオード4のゲートはストレージキャパシタ5の一方の電極に投続されると共に、アドレストランジスタ6を経てデータバス7へ接続され得るように構成されている。トランジスタ6は例えばMOSトランジスタで、そのゲート電極はスキャンバス8に接続されている。キャパシタ4の他方の電極は基準電位、例えばアース電位に接続されている。

この回路構成の集積回路を示す第4図において、その(4-1)は平面図を示し、(4-2)はそのIV-IV線矢視縦断面図を示す。これらの図において、アドレストランジスタ6のドレイン電極D及びゲート電極Gは夫々、格子状に形成されるデータパス7及びスキャンパス8に接続されるものである。トランジスク6のソース電極は理状のPoly SI 鉱極 I 0 の外側部は厚さ1000人の無酸化膜(Si の。絶縁膜 I 6 の一部) 1 1 を隔てて P の鉱機関 地と向い会ってそこにストレージ容量を生成せし

このようにして、Siプロセスによって駆動間路 部を形成した後、必要に応じて図示してない光シ ールド及び電気シールドを設け、変示電極のみを 露出した状態において悪着、スパック等の審膜形 成技術を用いてBLセル2のBL発光層14を全 面に形成する。この発光層14はBL発光層のみ でもよいし、YzOv.Sis N4, Ala Oz 等の

特別昭60-107083 (3)

組織限を含んだ発光層であってもよい。そして、 発光層 1 4 の上に透明導電膜(共通の対向電極) 1 5 を形成してBLパネルを完成する。

このようにして構成される本発明装置の動作を 以下に説明する。

電源幅子 3 に第 5 図の(5-1)に示すような 駆動電圧 V_A が供給される一方、スキャンパス 8に第 5 図の(5-2)に示すようなフレーム関被 数のスキャンパルス V_T が供給され、且つデータ パス 7 に第 5 図の(5-3)に示すような中間観 を含む輝度情報に対応した電圧 V_X が供給されて いる。

従って、第5図の(5-2)に示すようなタイミングでスキャンパルス V_Y が供給されると、アドレストランジスタ 6 がオンになり、キャパンタ 5 にその時の電圧値 V_{G_1} が 1 フレームの間保持されて(第5図の(5-4)参照)、その電圧がダイオード 4 のゲートへ印加される。

ダイオード 4 はそのゲート電圧に応じて第6図 に示す関係に従ってその逆方向降伏竜圧を変える。 ダイオード4のこのような特性はダイオード4が 第7回に示すようにMOSトランジスタのソース 拡散領域を省略した構造を育し、ドレイン一基板 間の電圧印加時の電位分布は図示のようにゲート 電位の影響を受け、ゲート電圧が低い程ゲート始 部下のP-N接合空芝層の電位勾配が急域となり、 低いドレイン電圧で電圧降伏を起こすことから得 られるものである。

上述のように、ダイオード 4 の逆方向降伏電圧が変わるから、ダイオード 4 のドレイン電圧 V D は第 5 図の(5-5)に示すように、異なる値にクランプされる。 従って、E L セル 1 の 両端にかかる電圧 V C B L L = V A - V D は第 5 図の(5-6)に示すように、その正極性のピーク電圧値がゲート電圧 V G の値に応じて V B - V C の間で変化する。

このように、Vcsttが変化すると、怠慢なしきい値特性を育する障膜已しま子!はVcstがVc-Vsoにあるときには絶和状態の輝度Boで光り、VcsttがV。-Vs,にあると

きには暗状態の輝度日,で光る(第8図参照)。

つまり、BLセルの輝度はV。及びVュの役定値により変えられる。従って、ゲート電圧によって輝度制御をなしうることになる。このような制御が可能となるから、ゲート電圧として中間値Vsュを与えるようにすれば、中間関の輝度B。を得ることができる。

そして、本発明においては、第4図に示すよう に、GCD4のゲート長を長くし、しかもその占 有面積を小さくして発光領域を拡大しているから、 低インピーダンスでのクランプ動作により安定し た中間調の駆動制御が可能になると共に、多機能 高表示品質の表示装置を具現化し得る。

なお、上配実施例においては、CCD4のゲートエッジを単一の複状に形成する例について説明 したが、発光領域を複数にするようにしてもよい。 これらのいづれかの場合において、発光領域を外 側に形成してもよい。

(1)発用の効果

以上述べたように、本発明によれば、

①安定した中間間の駆動制御ができ、

②表示品質の向上も図れる、等の効果が得られ。 る。

4. 図面の簡単な説明

第1図及び第2図は従来の表示素子の思動回路を示す図、第3図は本発明表示装置の回路図、第4図は第3回路の業積回路図、第5図は本発明包路の動作を説明するためのタイミングチャート、第5図はゲートコントロールダイオードの特性を表す図、第7図はゲートコントロールダイオードの動作原理を図解する図、第8図はBLセルの動作を説明するための図である。

図中、1はアクティブマトリクス回路、2は日 しせル、4はゲートコントロールダイオード、5 はストレージキャパシク、6はアドレストランジ スク、7はデークパス、8はスキャンパス、10 はPoly SI 電極、13はP形シリコン基板、14 は発光順、15は透明導動機である。

> 特 許 出 騎 人 富士通株式会社 代理人 弁 理 士 松岡 宏四郎

特局昭60-107083(4)

BEST AVAILABLE COPY

特團昭60-107083 (5)

