<u>אלגברה ב – הוכחה של משפט הפירוק הפרימרי</u>

T(W) < W נקרא T-אינווריאנטי אם W < V יהי T אופרטור, F מ"ו מעל V יהי עור יהי V

משפט הפירוק הפרימרי: יהי V מ"ו מעל F ממימד משפט הפירוק הפרימרי: יהי V משפט הפירוק הפרימרי: עבוח עד אוו מעל F ממימד מתוקנים אוו עד אוו אוו עד אוו אוו עד אוו מעל אוו אוו מעל $p=p_1^{r_1}\cdot\ldots\cdot p_k^{r_k}$ אורמים אוו משותפים. עבור עבור $W_i=\ker(p_i^{r_i}(T))$ מתקיים:

- $V = W_1 \oplus ... \oplus W_k$.1
- . אינווריאנטי. W_i הוא W_i
- . $p_i^{r_i}$ הוא T_i המינימלי של $T_i = T|_{W_i}$.3

ביותר הגדול המשותף המשותף הגדול ביותר f_i שונים אזי הפולינומים, $f_i = \frac{p}{p_i^{r_i}}$ נסמן

שלהם הוא 1, לכן קיימים g_i כך ש $f_i=1$ (לפי תרגיל 8, שאלה 1 סעיף ב'). $\sum_{i=1}^k g_i f_i=1$ (תבעת 1 הצבת 1 $E_1+...+E_k=(h_1+...+h_k)(T)=Id$ מתקיים $E_1+...+E_k=(h_1+...+h_k)(T)=Id$ מתקיים $i\neq j$ מתקיים $i\neq j$ מתקיים

 $f_i \cdot f_j$ כי $E_i E_j = h_i \cdot h_j(T) = f_i(T) g_i(T) f_j(T) g_j(T) = f_i(T) f_j(T) (g_i(T) g_j(T)) = 0$ מתחלק ב $E_i = E_i \cdot E_j$ את השיוויון $E_i = E_i \cdot E_j = 0$ את השיוויון $E_i = E_i \cdot E_j = 0$ (כי ראינו ש $E_i = E_i \cdot E_j = 0$), לכן $E_i = E_i \cdot E_j \cdot E_j = 0$

. $E_i(V)=W_i$ נוכיח כי $V=E_1(V)\oplus ...\oplus E_k(V)$ נוכיח כי $v=E_1(V)\oplus ...\oplus E_k(V)$ נניח $p_i^{r_i}f_i=p$ אז $e_i(v)=v$ לכן $e_i(v)=v$ אז $e_i(v)=v$ או $v\in Image(E_i)$ הפולינום $i\neq i$ מתקיים $i\neq i$ מתקיים $i\neq i$ מתקיים $i\neq i$

ע $e_i(v)$ לכן $v=E_i(v)$ לכן $e_j(v)=h_j(T)(v)=0$ לכן , $e_i^{r_i}$ - מתחלק ב $e_i(v)$ מתקיים $v\in W_i=ker(p_i^{r_i}(T))$ עבור $e_i(v)=ker(p_i^{r_i}(T))$ מתקיים

.(בכון) (לכן (2) נכון). $T(v) \in W_i$ לכן $p_i^{r_i}(T)(Tv) = T p_i^{r_i}(T)(v) = 0$

ברור כי $g\in F[x]$ מאפס את T_i מההגדרה של , $g(T_i)=0$ מקיים $g\in F[x]$ מאפס את T_i מאפס את g-1 ו $g\neq i$ לכן f_i אז מאפס את g מאפס את g מאפס את g לכן $g \in g$ מחלק את $g \in g$ מתחלק בg, ז"א $g \in g$, מחלק את $g \in g$ מחלק את $g \in g$.