

Ensemble Max-Pooling: Is Only the Maximum Activation Useful When Pooling?

Learning And Mining from DatA http://lamda.nju.edu.cn

Hao Zhang and Jianxin Wu

National Key Laboratory for Novel Software Technology, Nanjing University {zhangh, wujx}@lamda.nju.edu.cn

I Introduction

汇合层(pooling layer)的作用

- 减少特征映射(feature map)的空间大小,降低对局部敏感程度
- 有效提高感受野 (receptive field)

2 Related Works

1	7	dropout	1	7	max	7	
3	8		0	0		/	

Max-pooling Dropout [Wu & Gu. 2015]/Stochastic Max-pooling [Huang et al. 2015]

3 Proposed Method: Ensemble Max-pooling

测试阶段

作用

- 网络集成: 指数级多的基础潜在网络集成
- 数据扩充(data augmentation): 作用在中间层

实现

- 容易实现, 修改汇合源代码得到
- 可直接应用于现有网络结构

4 Comparisons with Related Works: CIFAR-10 Results

Model	Error Rate	Relative Improve Compared to Max-pooling
Max-pooling	15.25%	0.00%
Average Pooling	16.20%	-6.23%
Ensemble Max-pooling (p=0.05)	15.51%	-1.70%
Ensemble Max-pooling (p=0.1)	15.14%	0.72%
Ensemble Max-pooling (p=0.2)	15.07%	1.18%
Ensemble Max-pooling (p=0.3)	14.28%	6.36%
Ensemble Max-pooling (p=0.4)	14.27%	6.43%
Ensemble Max-pooling (p=0.5)	14.62%	4.13%
Ensemble Max-pooling (p=0.7)	14.89%	2.36%
Stochastic Pooling	15.81%	-3.67%
Max-pooling Dropout/Stochastic Max-pooling (p=0.05)	15.22%	0.20%
Max-pooling Dropout/Stochastic Max-pooing (p=0.1)	15.17%	0.52%
Max-pooling Dropout/Stochastic Max-pooing (p=0.2)	14.97%	1.84%
Max-pooling Dropout/Stochastic Max-pooling (p=0.3)	16.59%	-6.96%
Max-pooling Dropout/Stochastic Max-pooling (p=0.4)	25.93%	-67.18%
Max-pooling Dropout/Stochastic Max-pooling (p=0.5)	Not Converge	-
Max-pooling Dropout/Stochastic Max-pooling (p=0.7)	Not Converge	-

5 Towards State-of-the-art: CIFAR-10 Results

ResNet [He et al. 2016] - 许多基础潜在网络集成 - 足够多的基础潜在网络

DFN-MR [Zhao et al. 2016]

DFN-MR (Ensemble Max-pooling) - 替换DFN-MR中步长(stride)为2的卷积层

10.73%

1.88%/2.87%

- 避免极深网络 - 比ResNet更好的效果

Error Rate Relative Improve Compared to DFN-MR ModelDFN-MR 5.50% 0.00%56 DFN-MR (Classical Max-pooling) 5.44% 1.14% DFN-MR (Ensemble Max-pooling, p=0.05) 5.13% 6.82%DFN-MR (Ensemble Max-pooling, p=0.1) 56 4.62% 16.00%DFN-MR (Ensemble Max-pooling, p=0.2) 7.95% 5.06% DFN-MR (Ensemble Max-pooling, p=0.5) 4.69% 14.77%

4.91%

ResNet^[4] 110 6.61% -20.19% ResNet^[16] 6.41% -16.54% ResNet (Pre-activation)^[9] 0.72%164 5.46% ResNet (Pre-activation)^[9] 1001 4.62% 16.00% ResNet (Stochastic Depth)[16] 5.23% 4.91%

1202

6 ImageNet Results

ResNet (Stochastic Depth)[16]

Ensemble Max-pooling (p=0.7)

Model	Error Rate (Top-1/Top-5)	Relative Improve Compared to Pre-trained Model (Top-1/Top-5
CaffeNet Pre-trained Model	43.10%/19.97%	0.00%/0.00%
Ensemble Max-pooling (<i>p</i> =0.05)	42.69%/19.53%	0.94%/2.20%
Ensemble Max-pooling (<i>p</i> =0.1)	42.37%/19.47%	1.68%/2.50%
Ensemble Max-pooling (<i>p</i> =0.15)	42.61%/19.52%	1.13%/2.53%
Ensemble Max-pooling (<i>p</i> =0.3)	42.81%/19.69%	0.65%/1.41% Tain from
Ensemble Max-pooling (<i>p</i> =0.5)	42.71%/19.67%	0.89%/1.51% Scratch
Ensemble Max-pooling (<i>p</i> =0.7)	42.85%/19.81%	0.58%/0.80%
CaffeNet Pre-trained Model	43.10%/19.97%	0.00%/0.00%
Ensemble Max-pooling (p=0.05)	42.11%/19.19%	2.30%/3.93%
Ensemble Max-pooling (<i>p</i> =0.1)	41.97%/19.14%	2.60%/4.18%
Ensemble Max-pooling (<i>p</i> =0.15)	42.05%/19.23%	2.43%/3.70%
Ensemble Max-pooling (<i>p</i> =0.3)	42.22%/19.25%	2.03%/3.61% Fine-tuning
Ensemble Max-pooling (<i>p</i> =0.5)	42.25%/19.33%	1.95%/3.21%

42.28%/19.40%