# MATH 302

# Chapter 5

## SECTION 5.1: HOMOGENEOUS LINEAR EQUATIONS

# Contents

| General Solutions            |      |      |      |  |  |  |  |  |
|------------------------------|------|------|------|--|--|--|--|--|
| Linear combinations          | <br> | <br> | <br> |  |  |  |  |  |
| Fundamental Set of Solutions | <br> | <br> | <br> |  |  |  |  |  |
| General Solutions            | <br> | <br> | <br> |  |  |  |  |  |

CREATED BY: PIERRE-OLIVIER PARISÉ

Fall 2022

## WHAT IS A SECOND ORDER LINEAR ODE?

We will be mainly interested in the following specific ODEs:

$$y'' + p(x)y' + q(x)y = f(x)$$
 (1)

where p, q, and f are continuous functions of the variable x.

- When f(x) = 0 for any x, the ODEs is called **homogeneous**.
- When  $f(x) \neq 0$ , the ODEs is called **non-homogeneous**.
- The function f is called the **forcing function**.
- The IVP associated to a second order ODE of the form (1) is

$$y'' + p(x)y' + q(x)y = f(x), \quad y(x_0) = k_0, \ y'(x_0) = k_1$$

for some point  $x_0$  in an interval (a, b) and  $k_0, k_1$  are arbitrary numbers.

Goal: To solve the homogeneous equation

$$y'' + p(x)y' + q(x)y = 0.$$

### **EXAMPLE 1.** Consider the ODE

$$y'' - y = 0.$$

- a) Identify the functions p and q.
- b) Verify that  $y_1(x) = e^x$  and  $y_2(x) = e^{-x}$  are solutions of the ODE on  $(-\infty, \infty)$ .
- c) Verify that if  $c_1$  and  $c_2$  are arbitrary constants, then  $y(x) = c_1 e^x + c_2 e^{-x}$  is a solution to the ODE on  $(-\infty, \infty)$ .
- d) Solve the initial value problem

$$y'' - y = 0$$
,  $y(0) = 1$ ,  $y'(0) = 3$ .

## **EXAMPLE 2.** Let $\omega$ be a positive number. Consider

$$y'' + \omega^2 y = 0.$$

- a) Identify the functions p(x) and q(x).
- b) Verify that  $y_1(x) = \cos(\omega x)$  and  $y_2(x) = \sin(\omega x)$  are solutions to the ODE.
- c) Verify that  $y(x) = c_1 \cos(\omega x) + c_2 \sin(\omega x)$  is a solution to the ODE.

Sometimes, the ODE will be given in the following form:

$$P_0(x)y'' + P_1(x)y' + P_2(x)y = 0$$

where  $P_0$ ,  $P_1$ , and  $P_2$  are continuous functions.

## **EXAMPLE 3.** Consider the equation

$$x^2y'' + xy' - 4y = 0.$$

- a) Identify the functions p(x) and q(x).
- b) Verify that  $y_1(x) = x^2$  and  $y_2(x) = 1/x^2$  are solutions to the ODE.
- c) Verify that if  $c_1$  and  $c_2$  are arbitrary numbers, then  $y(x) = c_1 x^2 + c_2/x^2$  is a solution of the ODE.
- d) Solve the IVP

$$x^2y'' + xy' - 4y = 0$$
,  $y(1) = 2$ ,  $y'(1) = 0$ .

### GENERAL SOLUTIONS

#### Linear combinations

If  $y_1$  and  $y_2$  are functions, we say that the function

$$y(x) = c_1 y_1(x) + c_2 y_2(x),$$

where  $c_1$  and  $c_2$  are numbers, is a **linear combination** of  $y_1$  and  $y_2$ .

#### Fact:

• If  $y_1$  and  $y_2$  are solutions to (1), then any linear combinations of  $y_1$  and  $y_2$  is a solution to (1).

#### **Fundamental Set of Solutions**

We say that  $\{y_1, y_2\}$  is a **fundamental set of solutions** for (1) if every solutions of the ODE is a linear combination of  $y_1$  and  $y_2$ .

#### Facts:

•  $\{y_1, y_2\}$  is a fundamental set of solutions for (1) if and only if neither  $y_2/y_1$  or  $y_1/y_2$  is a constant.

### **EXAMPLE 4.** Show that

- The functions  $\{y_1, y_2\}$  where  $y_1, y_2$  are as in Example 1 is a foundamental set of solutions.
- Same question for  $y_1$ ,  $y_2$  from Example 2.
- Same question for  $y_1$ ,  $y_2$  from Example 3.

#### General Solutions

If  $\{y_1, y_2\}$  is a fundamental set of solutions for (1), then we call the linear combination  $y(x) = c_1y_1 + c_2y_2$  the **general solution** to (1).

## EXISTENCE AND UNIQUENESS OF SOLUTIONS

It is always clever to verify if an ODE has solutions. Here are some important facts about existence and uniqueness of solutions to an ODE of the form (1).

#### Existence

Assume that p and q are continuous on an open interval (a,b). Then the ODE

$$y'' + p(x)y' + q(x)y = 0$$

has at least one solution on the interval (a, b).

## Uniqueness

Assume again that p and q are continuous on an open interval (a,b) and let  $x_0$  be any point in (a,b). Then the IVP

$$y'' + p(x)y' + q(x)y = 0$$
,  $y(x_0) = k_0$ ,  $y'(x_0) = k_1$ 

has a unique solution on (a, b).