Discrete Events Simulation

Lecture Notes

Math 466

Random Numbers

Basic random generator in Matlab

rand

- gives you a number (0, 1)

Math Modeling

1. Deterministic

You started in the same situation, then the results are almost always the same

- Continuous Time
- Discrete Time (Many times we're limited to some kind of clock)
- 2. Stochastic

You started in the same situation, but ended up somewhere completely different

- Continuous Time
- Discrete Time

Often it's easier to see how a system changes, then see how it evolves

Fibonacci Sequence

$$x_0 = 1, x_1 = 1$$

1, 1, 2, 3, 5, 8, 13, 21...

This obeys a difference equation such that $x_{n+1} = x_n + x_{n-1}$ with initial conditions $x_0 = 1, x_1 = 1$. The way you solve it is by guessing a solution $x_n = \lambda^k$. Try to find λ .

$$\lambda^{k+1} = \lambda^k + \lambda^{k-1}$$

$$\lambda^{k+1} - \lambda^k - \lambda^{k-1} = 0$$

$$\lambda^{k-1} [\lambda^2 - \lambda - 1] = 0$$

$$\lambda^2 - \lambda - 1 = 0$$

$$\lambda = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

$$\approx 1.6$$

This is the Golden section. The solution is $x_n=c_1\lambda_+^k+c_2\lambda_-^k$. Find c_1 and c_2 . $x_0=1$, $x_1=1$. We can take the limit $\lim_{k\to\infty}\frac{x_{n+1}}{x_n}$ =the Golden section.

Towers of Hanoi

What is the minimum number of moves to achieve goal? Let y_k be that number. $y_1 = 1$, $y_2 = 3$. Turns out if we know how to do it for kth step, when doing k+1th step, we move once, and move the k over. $y_{k+1} = y_k + 1 + y_k = 2y_k + 1$. The fibonacci sequence was homogeneous because all terms involves some x_n , but this one is no longer homogeneous. But it is linear.

$$y_{k+1} = 2y_k$$

$$y_{k+1} - 2y_k = 0$$

$$y_k = \lambda^k$$

$$\lambda^{k+1} - 2\lambda^k = 0$$

$$\lambda^k(\lambda - 2) = 0$$

$$\lambda = 2$$

$$y_k^H = l \cdot 2^k$$

The particular solution, we can find $y_k^P=-1$. So $y_k=l\cdot 2^k-1$. Since we want $y_1=1,$ l=1, so $y_k=2^k-1$.