CS & IT ENGINEERING

Theory of Computation

Regular Languages

Lecture No.- 08

Recap of Previous Lecture

Topic

Regular Expressions: Basics

Topic

Simplification of Regular Expressions

Topics to be Covered

Topic

Regular Language Vs Regular Expression

TOPIC: Home WORK:

E aaa a aab

bab

bba

Z= {a,b}

** + (a) abas
()= ab* 15* ababe

Pw

R

 $(ab)^* + (b^*a)^*$

EX OX bX aax

EXAX

Densy sex Φ Emphy Expression - d 3 - 4 (4)

(a+b)2 a2b2+2ab In malks (a+b)2 = chatab+batbb In TOC = (a+6)·(a+6) a.b

b . b

δω WE fa, by*, |W = 2 } W€ (a+b)* W∈ { €, a, b, aa, ab, ba, bb, ... }

= daa, ab, ba, bby

TOPIC:			

Regular Exp.	Regular Language	Meaning
® a*	{E,a,a,}-{a ⁿ n≥o}	Set of all strings over as
9 (aa)*		en) = Set of all even length strings over
(10) a(aa)*		et of all odd length strings over a's
(i) (aa)*a	ea, à, à, - · ·	
(12) a	$\int_{0}^{\infty} x \leq 1$	set of all strings over às excluding zero length
(13) a.a	{a ⁿ /n>2} -	Schofall stirps over as wilk alleast 2 layll.
(13) a.a. * (14) (ana)*	$\{\varepsilon, \alpha, \alpha, \alpha, \alpha, \dots\} = \{\alpha \mid n\%3$	= of = fak/k>of A No-of as is multiple of 3
lide 5		

The same of	
	TODIC
l a	TOPIC:
10	

2= fa, b4

1			
	Regular Exp.	Regular Language	Meaning
0	ф	$\{ \} = \emptyset$	Set of Zero no. of Strings
2	3	₹ε}	Set of zero length strings = fw 1w1=0}
3	a	fo?	fw w=a }
4	Q+b	fa,6}	set of one lensk strings = fw w=1, w=fairly)
3	E+a+aa	€, a, a³}	fw we fe, a, ao z z
6	(a+b)2	faa, ab, ba, bb}	$\{w \mid w =2, w \in (a+b)^*\}$ = Set of all 2 lanslings
(4)	(a+b)100	JW/WE(a+b)*, W1=100}	= Set of all 100 length strings
Slide	5		

Slide 5

Regular Exp.	Regular Language	Meaning
(s) (a+b)*	€a,b}*	Set of all stonys over I = da, by By Long
(b) (a+b)+	fa,b} = fw w \ (a+b)*, w > 0}	= Set of all non zew length strings
(13) a (a+b)*		
(18) b (a+b)*		
(19) (a+b) a		
20) (a+b)* b		

TOPIC:

Regular Exp.	Regular Language	Meaning
(a) (ab) +		
$ (3) (3)^{\dagger} $		
23 (ab*)		
(bå*) [†]		
(xb)* a*		
26) (bay b		
(27) å (bå*)*		

Slide 5

TOPIC:

Z= d & ssymbly on skind E is not empty string

 $\Sigma = \{a\}$ $\Xi = \{s, a, aa, aaa, \dots \}$

$$\#Q1. (a+b)* a* =$$

a*

a* (a+b)*

(a+b)*

a* (a+b)* a*

$$\#Q2. (ab)* (a+b)* =$$

- A
- ab*
- 9
- a* (a+b)*

- В
- (ab)*

(a+b)* (ab)*

$$\#Q3. (a*b)*a* =$$

- A
- a*(a*b)
- 9
- b*(ab*)*

a*(ba*)*

$$\#Q4. (a+b)* a =$$

- A
- b*a
- C
- (b*a+)+

#Q5. Let L= a(a+b)*. Then Complement of L is ____

- **A** b(a+b)*
- (a*b)*

- epsilon + b(a+b)*
- (a+b)*

2 mins Summary

Topic

Operators

Topic

Properties

Topic

Simplification

Regular Language

THANK - YOU