Performance Improvement for Hotspot Prediction Model Using SBi-LSTM-XGBoost and SBi-GRU-XGBoost

Husni Teja Sukamana a,1,*, Saepul Aripiyanto a,2, Aryajaya Alamsyah b,3, Amir Acalapati Henry a,5

^a Departement of Informatics Technology , State Islamic University Syarif Hidayatullah, Jl. Ir. H. Djuanda No. 95, South Tangerang, 15412, Indonesia ^b Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Jl. Meranti, IPB Dramaga Campus. Bogor, 16680, West Java, Indonesia ¹ husniteja@uinjkt.ac.id*; ² saepul.aripiyanto@uinjkt.ac.id; ³ kusinalamsyah@apps.ipb.ac.id; ⁴ amir.acalapati@uinjkt.ac.id;

(Received July 1, 2019 Revised October 21, 2019 Accepted October 29, 2019, Available online October 29, 2019)

Abstract

Iaculis nunc sed augue lacus viverra vitae congue eu consequat ac felis donec et odio pellentesque diam volutpat commodo sed egestas egestas fringilla phasellus faucibus scelerisque eleifend donec pretium vulputate sapien nec sagittis aliquam malesuada bibendum arcu vitae elementum curabitur vitae nunc sed velit dignissim sodales ut eu sem integer vitae justo eget magna fermentum iaculis eu non diam phasellus vestibulum lorem sed risus ultricies tristique nulla aliquet enim tortor at auctor urna nunc id cursus metus aliquam eleifend mi in nulla posuere sollicitudin aliquam ultrices sagittis orci a scelerisque purus semper eget duis at tellus at urna condimentum mattis pellentesque id nibh tortor id aliquet lectus proin nibh nisl condimentum id venenatis a condimentum vitae sapien pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas sed tempus urna et pharetra pharetra massa massa ultricies mi quis hendrerit dolor magna eget est lorem ipsum dolor sit amet consectetur adipiscing elit pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas integer eget aliquet nibh praesent tristique magna sit amet purus gravida quis blandit turpis cursus in hac habitasse platea dictumst quisque sagittis purus sit amet volutpat consequat mauris nunc congue nisi vitae suscipit tellus mauris a diam maecenas sed enim ut sem viverra aliquet eget sit amet tellus cras adipiscing enim eu turpis egestas pretium aenean pharetra magna ac placerat vestibulum lectus mauris.

Keywords: Type your keywords here, separated by semicolons;

1. Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Masalah Penelitian.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Hubungan Kebakaran hutan dengan titik panas dan enso.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. – Solusi Penelitian, Beberapa riset tentang prediksi titik panas.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus etnetus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Tujuan Penelitian.

2. Related Works

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus. – 1. Kenapa melakukan penelitian prediksi titik panas

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus. – 2. Bagaimana hubungan titik panas dengan enso

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque. – 3. Apa parameter untuk hyperparameter tuning dan metode untuk pencariannya

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus. – 4. Kenapa memilih metode SBi-LSTM, SBi-GRU, dan XGBoost.

3. Method

3.1. Data Collections

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

3.2. Data Preprocessing

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

$$Normalization = a + \frac{(x - min(x)) * (b - a)}{max(x) - min(x)}$$
(1)

3.3. Exploration Data Analysis

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

3.4. Time Series Analysis

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

$$\Delta Y_t = \alpha_0 + \alpha_1 t + \gamma Y_{t-1} + \beta_i \sum_{i=1}^p \Delta Y_{t-i} + e_t$$
(2)

$$\overline{t_a} = t_a \left(\frac{Y_0}{f_0}\right)^{1/2} - \frac{T(f_0 - Y_0)(se(\hat{\alpha}))}{2 * f_0^{1/2} * s}$$
(3)

$$Y_t = \delta_t + r_t + e_t \tag{4}$$

3.5. Data Splitting

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

3.6. Model Prediction Hotspot

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus. — Penjelasan SBi-LSTM

$$f_t = \sigma(w_f.[s_{t-1}, x_t] + b_f) \tag{5}$$

$$i_t = \sigma(w_i.[s_{t-1}, x_t] + b_i) \tag{6}$$

$$\widetilde{C}_t = \tanh(w_c, [s_{t-1}, x_t] + b_c) \tag{7}$$

$$C_t = f_i * C_{t-1} + i_t * \widetilde{C}_t \tag{8}$$

$$o_t = \sigma(w_0, [s_{t-1}, x_t] + b_0) \tag{9}$$

$$s_t = \sigma * \tanh(C_t) \tag{10}$$

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus. — Penjelasan SBi-GRU

$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r) \tag{11}$$

$$z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z) \tag{12}$$

$$\hat{h}_t = \phi(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \tag{13}$$

$$h_t = \phi(1 - z_t) \odot h_{t-1} + z_t \odot \hat{h}_t \tag{14}$$

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. — Penjelasan XGBoost

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoqu. – The our perpose algorithm, SBi-LSTM-XGBoost dan SBi-GRU-XGBoost

Algorithms	:	SBi-LSTM-XGBoost		Algorithms	:	SBi-GRU-XGBoost
Input	:	xtrue, ytrue, lstm_pred		Input	:	xtrue, ytrue, gru_pred
Output	:	xgb_pred		Output	:	xgb_pred
# 1. calculate residuals = yt		siduals - lstm_pred[:, 0]		# 1. calcula residuals =		residuals ue - grud_pred[:, 0]
# 2. xgboost m xgb_model = XG		l on residuals gressor()		# 2. xgboost xgb_model =		del on residuals Regressor()
# 3. fitting m xgb_model.fit(ls ue, residuals)		# 3. fitting xgb_model.fi		dels true, residuals)
	<pre># 4. predict models predictions = xgb_model.predict(xtrue)</pre>					dels gb_model.predict(xtrue)
		l with XGBoost predictions lstm_pred[:, 0] + predictions				del with XGBoost predictions = grud_pred[:, 0] + predictions

3.7. Model Evaluations

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

$$R = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$
(15)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$
 (16)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$
 (17)

$$MAPE = \sum_{i=1}^{n} \left| \frac{\hat{y}_i - y_i}{y_i} \right| \tag{18}$$

4. Results and Discussion

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

4.1. Data Collections

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Characteristics	SST Nino 3.4	Index ONI	Index SOI	Hotspot
Count	276,00	276,00	276,00	276,00
Mean	0,01	-0,03	0,39	595,02
Std	0,77	0,82	1,53	1664,50
Min	-1,59	-1,64	-5,20	3,00
25%	-0,55	-0,61	-0,60	20,00
50%	-0,07	-0,14	0,30	54,00
75%	0,47	0,47	1,32	255,75
Max	2,72	2,64	4,80	14437,00

Tabel 1. Metdadata of dataset

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Fig 2. Results of Data Collections

4.2. Data Preprocessing

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. – Pemotongan data menggunakan clips di QGIS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus etnetus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. – Seleksi atribut titik panas, aggregasi data, penggabungan data.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida.. – Normalisasi Data

Fig 2. Results of normalized min-max

4.3. Exploration Data Analysis

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. — Deteksi Pencilan

Fig 3. Hasil deteksi pencilan

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Distribusi Data

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus etnetus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida.. – Linieritas

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Korelasi antar fitur

Fig6. Analisa korelasi antar fitur

4.4. Time Series Analysis

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibu. — Analisis Stasioneritas

		•	•	
Modhoda	Dl	Cri	tical values	
Methods	P-value —	1%	5%	10%
ADF				
Lag 1	0,000	-3,99	-3,43	-3,14
Lag 6	0,000	-3,99	-3,43	-3,14
Lag 12	0,004	-3,99	-3,43	-3,14
Lag 24	0,074	-4,00	-3,43	-3,14
PP				
Lag 1	0,000	-3,99	-3,43	-3,14
Lag 6	0,000	-3,99	-3,43	-3,14
Lag 12	0,000	-3,99	-3,43	-3,14
Lag 24	0,000	-3,99	-3,43	-3,14
KPSS				
Lag 1	0,815	0,22	0,15	0,12
Lag 6	0,304	0,22	0,15	0,12
Lag 12	0,232	0,22	0,15	0,12
Lag 24	0,201	0,22	0,15	0,12

Tabel 2. Statistical Analysis of Stationarity

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibu. – Analisis ACF dan PACF

Fig 7. Analisa ACF dan PACF

4.5. Data Splitting

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas.

Fig8. Analisa distribusi data

4.6. Model Prediction Hotspot

4.6.1 Initialisation of neural network parameters and model

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. — Pencarian Parameter Terbaik

Tabel 3. Initialization of tuning hyperparameters

Parameter tuning	Values
Activation function	ReLU, SeLU, ELU, Softplus.
Optimizers	Adam, Adamax, RMSprop, SGD.
Dropout	0.05, 0.10, 0.15, 0.20, 0.25
Batch Size	2, 4, 8, 16, 32
Epoch	1500

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. — Desain Neural Network untuk LSTM dan GRU

Desain NN yang dibuat:

- 1 input layers dengan 4 neuron (hotspot, sst nina 3.4, index oni, index soi pada t-1 sebagai input)
- 3 hidden layers dengan 10 neuron. Setiap hidden layers mewakili 1 layes lstm atau gru. (Sehingga terdapat 3 layers lstm atau gru yang ditumpuk).
- 1 dropout layer
- 1 output layers (hotspot pada t+1 sebagai output)

Note:

Desain ini berlaku umum untuk M1 dan M2.

Fig 9. Desain Neural Network for LSTM-RNN dan GRU-RNN

4.6.2 Results of finding the best parameters.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. – Hasil pencarian parameter terbaik.

Tabel 4. Results of hyperparameter tuning with gridsearch algorithm

Algorithms		Paramete	er Tuning		
	Activation function	Optimizers	Dropout	Batch Size	Epoch
SBi-LSTM					
Univariate	SeLU	SGD	0,15	8	1500
Multivariate	ReLU	RMSprop	0.20	32	
SBi-GRU					
Univariate	SeLU	SGD	0,25	8	1500
Multivariate	ReLU	RMSprop	0.20	16	1500

Univariate = hanya titik panas (M1) Multivariate

= titik panas + enso (M2)

4.6.3 Results of training and validation models

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibu. – Hasil training model prediksi berdasarkan perncarian parameter.

Fig 10. Results of training models univariate

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibu. — Hasil training model prediksi berdasarkan perncarian parameter.

Fig11. Results of training models multivariate

4.6.3 Results of prediction hotspot with univariate and multivariate models

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Hasil prediksi titik panas berdasarkan pencarian parameter terbaik.

Fig12. Results of training models univariate

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibu. – Hasil prediksi titik panas berdasarkan pencarian parameter terbaik.

Fig13. Results of training models multivariate

tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. – Analisa hasil dari proses training dan prediksi

Author name / JADS 00 (2019) 000-000

tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. — Hasil lengkap prediksi titik panas.

Fig4. Results of prediction hotspot using univariate SBi-LSTM

Year		Month														
rear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des				
2019		31	30	33	34	57	43	80	618	2314	2266	1307				
2020	44	37	36	50	50	37	36	37	52	37	41	38				
2021	30	29	29	32	51	49	51	83	68	64	46	34				
2022	35	29	31	42	32	43	38	52	61	41	32	31				
2023	31	28	31	31	39	45	46	48	121	1675	2108	282				

Fig5. Results of prediction hotspot using multivariate SBi-LSTM

Year		Month													
1 ear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des			
2019		35	14	33	26	36	43	112	890	4102	3613	2180			
2020	47	36	78	83	86	45	39	42	40	34	25	22			
2021	39	62	35	32	40	46	58	37	59	51	34	31			
2022	34	30	33	65	35	34	36	36	33	35	35	27			
2023	32	37	38	44	80	24	23	22	175	4755	508	20			

Fig6. Results of prediction hotspot using univariate SBi-GRU

Year		Month														
1 ear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des				
2019		55	55	59	60	85	70	106	528	2237	2159	1098				
2020	70	62	61	77	77	62	61	63	80	63	68	64				
2021	55	54	54	57	78	76	78	109	94	90	73	59				
2022	61	54	56	68	57	69	64	79	88	68	57	55				
2023	56	53	56	56	66	72	73	75	147	1441	1907	269				

Fig7. Results of prediction hotspot using multivariate SBi-GRU

Year		Month														
1 ear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des				
2019		50	36	40	44	48	51	61	1669	5849	2948	1745				
2020	53	53	64	72	157	69	66	88	48	44	27	27				
2021	43	42	40	43	44	70	111	53	89	81	39	38				
2022	34	34	43	42	40	35	44	45	35	40	42	30				
2023	39	40	45	112	150	45	42	39	39	3526	608	46				

tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus et malesuada fames ac turpis egestas. Nam exaugue, semper attempus, tincidunt anibh. Fusce efficitur ex nisl, sed gravida. – Analisa hasil dari prediksi selama 5 tahun 2019 – 2023.

Letak kebaharuan dari sisi penerapan SBi-LSTM-XGBoost dan SBi-GRU-XGBoost

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus etnetus. – Hasil prediksi titik panas berdasarkan kebaharuan penelitian.

Fig9. Results of training models univariate

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. — Hasil prediksi titik panas berdasarkan kebaharuan penelitian.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis. — Hasil lengkap prediksi titik panas.

Fig8. Results of prediction hotspot using univariate SBi-LSTM-XGBoost

Year		Month													
rear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des			
2019		13	12	32	54	43	96	809	4205	3969	1736	53			
2020	43	32	35	61	43	32	35	41	39	41	26	38			
2021	12	12	12	35	85	60	85	101	87	50	36	33			
2022	29	12	34	27	35	30	38	81	47	26	35	13			
2023	13	11	13	34	40	47	48	168	2238	3190	402	49			

Fig9. Results of prediction hotspot using multivariate SBi-LSTM-XGBoost

Year		Month														
r ear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des				
2019		11	18	28	65	49	104	812	4202	3973	1743	57				
2020	30	26	58	62	45	24	32	62	39	48	27	12				
2021	4	13	14	53	64	55	106	96	86	55	27	23				
2022	13	14	37	23	33	24	50	73	38	14	16	12				
2023	1	12	21	37	51	50	57	184	2236	3202	388	46				

Author name / JADS 00 (2019) 000-000

Fig10. Results of prediction hotspot using univariate SBi-GRU-XGBoost

Year		Month														
1 ear	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des				
2019		13	12	32	42	43	94	808	4207	3968	1735	52				
2020	46	33	36	60	44	33	36	44	38	44	29	39				
2021	12	11	11	35	85	63	85	101	87	51	32	33				
2022	29	11	34	29	35	30	39	82	46	29	35	13				
2023	13	10	13	34	41	47	48	167	2238	3189	402	49				

Table 11. Results of prediction hotspot using multivariate SBi-GRU-XGBoost

Year		Month										
	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des
2019		14	14	25	70	51	105	814	4207	3985	1737	49
2020	31	24	57	61	33	25	32	70	34	48	26	13
2021	11	6	17	52	59	60	113	96	86	59	26	24
2022	14	14	36	14	31	24	49	73	35	20	21	13
2023	4	12	14	34	56	51	57	179	2239	3199	386	48

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique. — Hasil analisa antara prediksi SBi-LSTM, SBi-LSTM-XGBoost, SBi-GRU, SBi-GRU-XGBoost.

4.7. Model Evaluations

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus etnetus. – Evaluasi model univariate

Table 12. Results of model evaluation using univariate models

		SBi-LS	TM		SBi-GRU					
Runing		Model eva	luations		Model evaluations					
_	R	MAE	RMSE	MAPE	R	MAE	RMSE	MAPE		
1	0,6430	0,0343	0,0956	0,0566	0,6473	0,0338	0,0973	0,0581		
2	0,6389	0,0344	0,0961	0,0569	0,6457	0,0337	0,0974	0,0577		
3	0,6417	0,0344	0,0960	0,0569	0,6460	0,0352	0,0971	0,0594		
4	0,6409	0,0342	0,0958	0,0569	0,6463	0,0343	0,0979	0,0586		
5	0,6436	0,0358	0,0951	0,0581	0,6479	0,0335	0,0972	0,0576		
6	0,6420	0,0341	0,0958	0,0566	0,6462	0,0337	0,0983	0,0583		
7	0,6390	0,0347	0,0959	0,0572	0,6484	0,0356	0,0969	0,0597		
8	0,6359	0,0345	0,0963	0,0571	0,6482	0,0341	0,0973	0,0581		
9	0,6417	0,0351	0,0955	0,0575	0,6452	0,0334	0,0977	0,0577		
10	0,6400	0,0352	0,0958	0,0578	0,6484	0,0337	0,0965	0,0574		
11	0,6456	0,0339	0,0960	0,0570	0,6475	0,0353	0,0964	0,0591		
12	0,6427	0,0342	0,0957	0,0567	0,6439	0,0336	0,0974	0,0577		
13	0,6419	0,0342	0,0963	0,0571	0,6456	0,0335	0,0975	0,0577		
14	0,6442	0,0344	0,0954	0,0567	0,6458	0,0341	0,0973	0,0583		
15	0,6458	0,0344	0,0952	0,0568	0,6462	0,0335	0,0973	0,0575		

Table 13. Summary Results of model evaluation using univariate models

		SBi-LS	STM		SBi-GRU Model evaluations					
Experiment		Model eva	luations							
_	R	MAE	RMSE	MAPE	R	MAE	RMSE	MAPE		
Minimum	0,6359	0,0339	0,0951	0,0566	0,6439	0,0334	0,0964	0,0574		
Maximum	0,6458	0,0358	0,0963	0,0581	0,6484	0,0356	0,0983	0,0597		
Avegare	0,6418	0,0345	0,0958	0,0571	0,6466	0,0341	0,0973	0,0582		

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam iderat eget justo mollis posuere autsem. Donec porttitor molestie ultricies. Sed tristique urna sit amet dui semper accumsan insem. Proin sapien nisi, varius in aliquet non, convallis tincidunt est. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Pellentesque habitant morbi tristique senectus. – Evaluasi model multivariate

Table 14. Results of model evaluation using multivariate models

		SBi-LS	STM		SBi-GRU Model evaluations					
Runing		Model eva	luations							
	R	MAE	RMSE	MAPE	R	MAE	RMSE	MAPE		
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										

Table 15. Summary Results of model evaluation using univariate models

		SBi-LS	STM		SBi-GRU Model evaluations				
Experiment		Model eva	luations						
	R	MAE	RMSE	MAPE	R	MAE	RMSE	MAPE	
Minimum									
Maximum									
Avegare									

5. Conclusion

Provide a statement that what is expected, as stated in the "Introduction" chapter can ultimately result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can also be added the prospect of the development of research results and application prospects of further studies into the next (based on result and discussion).

Acknowledgment (HEADING 5)

The preferred spelling of the word "acknowledgment" in America is without an "e" after the "g." Avoid the stilted expression "one of us (R. B. G.) thanks ...". Instead, try "R. B. G. thanks...". Put sponsor acknowledgments in the unnumbered footnote on the first page.

References

The template will number citations consecutively within brackets [1]. The sentence punctuation follows the bracket [2]. Refer simply to the reference number, as in [3]—do not use "Ref. [3]" or "reference [3]" except at the beginning of a sentence: "Reference [3] was the first ..."

Number footnotes separately in superscripts. Place the actual footnote at the bottom of the column in which it was cited. Do not put footnotes in the reference list. Use letters for table footnotes.

Unless there are six authors or more give all authors' names; do not use "et al.". Papers that have not been published, even if they have been submitted for publication, should be cited as "unpublished" [4]. Papers that have been accepted for publication should be cited as "in press" [5]. Capitalize only the first word in a paper title, except for proper nouns and element symbols.

Author name / JADS 00 (2019) 000-000

For papers published in translation journals, please give the English citation first, followed by the original foreign-language citation [6].

- [1] G. Eason, B. Noble, and I.N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955. (references)
- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.
- [3] I.S. Jacobs and C.P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271-350.
- [4] K. Elissa, "Title of paper if known," unpublished.
- [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.