

planetmath.org

Math for the people, by the people.

y-homeomorphism

Canonical name Yhomeomorphism
Date of creation 2013-03-22 15:42:26
Last modified on 2013-03-22 15:42:26
Owner juanman (12619)
Last modified by juanman (12619)

Numerical id 8

Author juanman (12619)

Entry type Definition
Classification msc 54C10
Synonym crosscap slide
Related topic CrosscapSlide

The **y-homeomorphism** also dubbed **crosscap slide**, is an auto-homeomorphism (or self-homeomorphism) which can be defined only for **non orientable surfaces** whose genus is greater than one.

To define it we take a punctured Klein bottle $K_0 = K \setminus \text{int } D^2$ which can be consider as a pair of closed Möbius bands M_1, M_2 , one sewed in the other by perforating with a disk (being disjoint from ∂M_1) and then identify the boundary of the second with the boundary of that disk, in symbols:

$$K_0 = (M_1 \setminus \text{int } D^2) \cup_{\partial} M_2$$

where $\partial = \partial D^2 = \partial M_2$. Other way to visualizing that, is by consider K_0 as the connected sum of int M_1 with a projective plane $\mathbb{R}P^2$.

Now, thinking that the removed disk D^2 was located with its center at some point in the core of M_1 , the second band, M_2 will have a pair of points on that part of the core in common with ∂M_2 .

So, the y-homeomorphism is defined by a isotopy leaving the boundary ∂M_1 fixed by sliding the second band M_2 one turn around the core of M_1 till the original position. The result is an automorphism of K_0 which maps M_2 into itself but reversing it.

To define this for genus greater than two just consider any other non orientable surface as a connected sum of a Kein bottle plus projective planes.

- 1. D.R.J. Chillingworth. A finite set of generators for the homeotopy group of a non-orientable surface, Proc. Camb. Phil. Soc. 65(1969), 409-430.
- 2. M. Korkmaz. Mapping Class Groups of Non-orientable Surfaces, Geometriae Dedicata 89 (2002), 109-133.
- 3. W.B.R. Lickorish. *Homeomorphisms of non-orientable two-manifolds*, Math. Proc. Camb. Phil. Soc. 59 (1963), 307-317.