Topics in Statistical Learning

Analysis of transcriptomic differences between iPSC and ESC

Luca Fusar Bassini

Alessandro Marincioni

Andrea Ghigi

What are ESC and iPSC?

Embryonic stem cells (ESC)

- Derive from the first cell divisions of the zygote.
- Can differentiate into any type of cell of the adult body.

Induced pluripotent stem cells (iPSC)

- Are obtained by artificially reprogramming mature cells.
- Retain some differences in gene expression when compared to ESC.

Data collection from Gene Expression Omnibus (GEO)

In every spot of a microarray the intensity of the signal is proportional to the gene expression of a gene

We identified 130 samples, but gene expression was measured with different algorithms.

An overview on the dataset

Preliminary analysis on the dataset

The distribution is not normal at all!

Preliminary analysis on the dataset

Histogram coloured by experiment confirms a strong experiment-effect

PCA also confirms that most of the variability is explained by experiment

Scaling by sample or by experiment?

PCA after scaling with **Z**-score normalization

PCA after scaling by experiment using ANOVA

Managing outliers

PC1-PC3 plot of the dataset

Scree plot

Reducing the number of features with GO

	Gene/product	Gene/product name	Organism	PANTHER family	Туре	Source	Synonyms
	FBN2	Fibrillin-2	Homo sapiens	Rbritin-related pthr24009	protein	UniProtKB	
0	FENT	Fibrillin-1	Homo sapiens	fibrilin-related pthr24009	protein	UniProcKB	FBN
3	MSX2	Homeobox protein M5X-2	Homo saplens	homeobex protein msx pthc24338	protein	UniProtKB	HOX8
3	PTCHI	Protein patched homolog 1	Homo sapietes	protein patched pthr46022	protein	UniProtKB	PTCH
3	TCF15	Transcription factor 15	Homo sapiens	basic helix-toop-helix transcription factor, twist pthr23349	protein	UniProtKB	BHLHA40 BHLHEC2
)	WNT9A	Protein Wnt-9a	Homo sapiens	wint related pitir12027	protein	UniProtKB	WNT14
	GRSF1	G-rich sequence factor 1	Homo sapiens	heterogeneous nuclear ribonucleoprofein-related pffrr13976	protein	UniProticB	
)	LIF	Laukemia inhibitory factor	Homo sapiens	leuksemia inhibitory factor pthr10633	protein	UniProtKB	HILDA
3	BPTF	Nucleosome-remodeling factor subunit BPTF	Homo sapiens	hadeosome-remodeling factor subunit bptf pthr45975	protein	UniProticB	FAC1 FALZ
)	EFEMP1	EGF-containing fibulin-like extracellular matrix protein 1	Homa saplens	fibritin-related pth:24039	protein	UniProtKB	FBLN3 FBNL
1	ATPBA2	Phospholipid-transporting ATPase IB	Homo sapiens	probable phospholipid-transporting alpase pth/24092	protein	UniProticB	ATPIB
j	PAX5	Paired box protein Pax-5	Homo sapiens	paired box protein pair-6-related related pthr45636	protein	UniProticB	
3	103	DNA-binding protein inhibitor ID-3	Homo sapienn	dria-binding protein inhibitor pthr11723	protein	UniProtKB	1R21 BHLHB25

Reduced dataset

Choosing the optimal number of clusters

We use the Silhouette method to choose the number, and then compare the results with the corresponding silhouette and wss plot.

Average silhouette width: 0.54

Dendrogram clusters

Complete Linkage Dendrogram on the original feature space

Origin tissue classification with knn

- Task: Predict origin tissue from gene expression.
- 6 classes: "ESC", "cord blood", "adult fibroblast", "embryonic liver", "neonatal fibroblast", "AD specific fibroblast"

Using a proxy dataset obtained from PCA

The dashed line shows the 85% cutoff

Model performance over different values of k

Origin tissue classification with knn

- Task: Predict origin tissue from gene expression.
- 6 classes: "ESC", "cord blood", "adult fibroblast", "embryonic liver", "neonatal fibroblast", "AD specific fibroblast"

Using the dataset obtained from GO

Model performance over different values of k

Confusion matrices comparison

Results using the 12 PC proxy

AD apporting floriblast reconstat from bhastembrannic liver adult 50xxbiast cord blood: ESC-EBC: Prediction

Results using the feature space from GO

Accuracy: 87.5%

Accuracy: 93.75%

Which genes are markedly differentially expressed?

Which genes can discriminate ESCs versus IPSCs?

Two genes are enough!

Partition Plot

Who are these two genes?

ZFP-732

Log ₂ -fold change	Species	Gene name	Comparison	Experimental variables	Experiment name
	1	RNU5B-	'human intestinal organoids derived from H9 stem cells' vs 'Undifferentiated H9 Stem Cells'	cell type	Transcriptional Profiling of human pluripotent stem cells and and derived tissues
	1	RNU58-	'neural stem cell' vs 'induced pluripotent stem cell' in 'normal'	cell type, disease	Human iPSC-Derived Cerebellar Neurons from a Patient wit Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks
	1	RNU5B.	'Ataxia-telangiectasia' vs 'normal' in 'neural stem cell'	cell type, disease	Human iPSC Derived Cerebellar Neurons from a Patient wit Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks
	1	RNU5B-	'DISC1 exon 2 mut/mut' vs 'wild type' in 'neural progenitor cell' at 'embryoid body, day 17'	cell type, genotype, sampling time point	Transcriptome profiling of human neural progenitor cells an neurons with DISC1 interruption

U5B sn1 RNA

Does accuracy improve if we add more genes?

Any biological meaning?

GENEONTOLOGY Unifying Biology

iPSC upregulated GO Terms

- mesenchyme migration and morphogenesis
- Wnt signaling pathway
- heart development
- negative regulation of morphogenesis of an epithelium
- outflow tract septum morphogenesis
- chromatin organization involved in negative regulation of transcription
- negative regulation of gene expression, epigenetic
- endoderm development

Different protocols and tissues of origin still affect some gene modules, making *iPSCs imprecise replicas of ESCs*.

References

- Nygaard, V., Rødland, E. A. & Hovig, E. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics 17, 29–39 (2016).
- Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733–739 (2010).
- Fajarda, O., Duarte-Pereira, S., Silva, R. M. & Oliveira, J. L. Merging microarray studies to identify a common gene expression signature to several structural heart diseases. BioData Min. 13, 8 (2020).
- Kapushesky, M. et al. Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res. 38, D690–D698 (2010).
- 5. Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676 (2006).