Institut Polytechnique de Grenoble

ENSIMAG

PRINCIPES ET MÉTHODES STATISTIQUES TABLES de LOIS et GRAPHIQUES de lois avec R

ANNÉE 2008-2009

Olivier GAUDOIN Maryse BÉGUIN

 $Olivier. Gaudoin@imag.fr \quad Maryse. Beguin@imag.fr$

Table des matières

1 Lois de probabilités usuelles

5

Chapitre 1

Lois de probabilités usuelles

VARIABLES ALÉATOIRES RÉELLES DISCRÈTES

Dans le tableau ci dessous, on suppose $n \in \mathbb{N}^*$, $p \in]0,1[$ et $\lambda \in \mathbb{R}_+^*$.

Loi et Symbole $X \leadsto$	Probabilités	$\mathbb{E}(X)$	Var(X)	Fonction caractéristique $\phi_X(t) = \mathbb{E}(e^{itX})$
Bernouilli $\mathcal{B}(p)$	$\mathbb{P}(X=0) = 1 - p$ $\mathbb{P}(X=1) = p$	p	p(1-p)	$1 - p + pe^{it}$
Binomiale $\mathcal{B}(n,p)$	$\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k} \mathbb{1}_{\{0,\dots,n\}}(k)$	np	np(1-p)	$(1 - p + pe^{it})^n$
Binomiale négative $\mathcal{BN}(n,p)$	$\mathbb{P}(X=k) = C_{k-1}^{n-1} p^n (1-p)^{k-n} \mathbb{1}_{\{n\}}(k)$	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$	$\left(\frac{pe^{it}}{(1-(1-p)e^{it}}\right)^n$
Poisson $\mathcal{P}(\lambda)$	$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!} \mathbb{1}_{\mathbb{N}}(k)$	λ	λ	$e^{\lambda(e^{it}-1)}$
Géométrique $\mathcal{G}(p)$	$\mathbb{P}(X = k) = p(1 - p)^{k - 1} \mathbb{1}_{\mathbb{N}^*}(k)$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$
Hypergéométrique $\mathcal{H}(N, m, n)$ $(m, n) \in \{1, \dots, N\}^2$	$\mathbb{P}(X=k) = \frac{C_m^k C_{N-m}^{n-k}}{C_N^n} \mathbb{1}_{\{0,\dots,\min(m,n)\}}(k)$	$\frac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	

VARIABLES ALÉATOIRES RÉELLES CONTINUES

La fonction Gamma est définie pour a>0 par $\Gamma(a)=\int_0^{+\infty}e^{-x}x^{a-1}dx$.

On a :
$$\forall n \in \mathbb{N}^*$$
, $\Gamma(n)=(n-1)!$, $\Gamma(1)=1$, $\Gamma(\frac{1}{2})=\sqrt{\pi}$,
$$\forall a \in]1,+\infty[\,,\,\,\Gamma(a)=(a-1)\Gamma(a-1)\,\,.$$

Dans le tableau ci dessous, $[a,b]\subset\mathbb{R},\,m\in\mathbb{R},\,\sigma\in\mathbb{R}_+^*,\,\lambda\in\mathbb{R}_+^*,\,\alpha\in\mathbb{R}_+^*,\,n\in\mathbb{N}^*$

Loi et Symbole $X \leadsto$	Densité	Espérance	Var(X)	Fonction caractéristique $\phi_X(t) = \mathbb{E}(e^{itX})$
Loi Uniforme $\mathcal{U}[a,b]$	$f_X(x) = \frac{1}{b-a} 1_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Loi Normale $\mathcal{N}(m,\sigma^2)$	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}} 1_{\mathbb{R}}(x)$	m	σ^2	$e^{itm-rac{\sigma^2t^2}{2}}$
Loi Exponentielle $\mathcal{E}xp(\lambda) = \mathcal{G}(1,\lambda)$	$f_X(x) = \lambda e^{-\lambda x} 1_{\mathbb{R}_+}(x)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(1-\frac{it}{\lambda}\right)^{-1}$
Loi Gamma $\mathcal{G}(lpha,\lambda)$	$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1} 1_{\mathbb{R}_+^*}(x)$	$\frac{lpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(1-\frac{it}{\lambda}\right)^{-\alpha}$
Loi du Chi-deux $\chi_n^2 = G(\frac{n}{2}, \frac{1}{2})$	$f_X(x) = \frac{2^{-\frac{n}{2}}}{\Gamma(\frac{n}{2})} e^{-\frac{x}{2}} x^{\frac{n}{2} - 1} \mathbb{1}_{\mathbb{R}_+}(x)$	n	2n	$(1-2it)^{-\frac{n}{2}}$
Première loi de Laplace	$f_X(x) = \frac{1}{2}e^{- x } 1_{\mathbb{R}}(x)$	0	2	$\frac{1}{1+t^2}$

La fonction Beta est définie pour a > 0 et b > 0 par

$$\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$

Dans le tableau suivant, on suppose $a \in \mathbb{R}_+^*$, $b \in \mathbb{R}_+^*$ et $\eta \in \mathbb{R}_+^*$, $\beta \in \mathbb{R}_+^*$.

Loi et Symbole $X \leadsto$	Densité	$\mathbb{E}(X)$	Var(X)
Loi Beta de 1 ^{ère} espèce $\beta_1(a,b)$	$f_X(x) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1} \mathbb{1}_{[0,1]}(x)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
Loi Beta de 2 ^{ième} espèce $\beta_2(a,b)$	$f_X(x) = \frac{1}{\beta(a,b)} \frac{x^{a-1}}{(1+x)^{a+b}} 1_{\mathbb{R}_+^*}(x)$	$ \frac{\frac{a}{b-1}}{\text{si } b > 1} $	$\frac{a(a+b-1)}{(b-1)^2(b-2)}$ si $b > 2$
Loi de Weibull $\mathcal{W}(\eta,\beta)$	$f_X(x) = \frac{\beta}{\eta^{\beta}} x^{\beta - 1} e^{-\left(\frac{x}{\eta}\right)^{\beta}} 1_{\mathbb{R}_+^*}(x)$	$\eta\Gamma(1+rac{1}{eta})$	$\eta^2 \left[\Gamma(1 + \frac{2}{\beta}) - \Gamma(1 + \frac{1}{\beta})^2 \right]$

VECTEURS ALÉATOIRES DANS \mathbb{N}^d ET DANS \mathbb{R}^d

Dans le tableau suivant, on a :

$$n \in \mathbb{N}^*, p = (p_1, p_2, \dots, p_d) \in]0, 1[^d, \sum_{i=1}^d p_i = 1 \text{ et } k = (k_1, k_2, \dots, k_d) \in \mathbb{N}^d, \sum_{i=1}^d k_i = n.$$
 $m \in \mathbb{R}^d \text{ et } \Sigma \in M_{d,d}.$

Loi et Symbole $X \leadsto$	Probabilités ou Densité	$\mathbb{E}(X)$	Matrice de covariance	Fonction Caractéristique
Loi Multinomiale $\mathcal{M}_d(n,p)$	$\mathbb{P}(X=k) = \frac{n!}{k_1! \dots k_d!} p_1^{k_1} p_2^{k_2} \dots p_d^{k_d} \mathbb{1}_{\mathbb{N}^d}(k)$	np	$c_{i,i} = np_i(1 - p_i)$ $c_{i,j} = -np_i p_j, i \neq j$	$\left[\sum_{i=1}^d p_i z_i\right]^n$
Loi normale $\mathcal{N}_d(m,\Sigma)$	$f_X(x) = \frac{1}{\sqrt{\det \Sigma}(\sqrt{2\pi})^d} e^{-\frac{1}{2}^t(x-m)\Sigma^{-1}(x-m)}$	m	Σ	$e^{i^t mt - \frac{1}{2}^t t \Sigma t}$

Relations entre lois de probabilité

Les variables aléatoires X et Y sont supposées indépendantes

Si
$$X \leadsto \mathcal{N}(0,1)$$
, alors $X^2 \leadsto \chi_2^1$

Si
$$X \leadsto \mathcal{G}(\alpha, \lambda)$$
 et $Y \leadsto \mathcal{G}(\beta, \lambda)$, alors $X + Y \leadsto \mathcal{G}(\alpha + \beta, \lambda)$.

Loi de **Fisher**
$$\mathcal{F}(n,m)$$
 : $X \leadsto \chi_2^n$, $Y \leadsto \chi_2^m$ alors $\frac{\frac{X}{n}}{\frac{Y}{m}} \leadsto \mathcal{F}(n,m)$.

Loi de **Student**
$$St(n): X \leadsto \mathcal{N}(0,1), Y \leadsto \chi_2^n$$
 alors $\frac{X}{\sqrt{\frac{Y}{n}}} \leadsto St(n)$.

Table 1 de la loi normale centrée réduite

U étant une variable aléatoire de loi $\mathcal{N}(0,1)$, la table donne la valeur de $\Phi(u) = \mathbb{P}(U \leq u)$.

En R, la commande correspondante est pnorm(u).

u	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5	0.504	0.508	0.512	0.516	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.591	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.648	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.67	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.695	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.719	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.758	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.791	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.834	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.879	0.881	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.898	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.937	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.975	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.983	0.9834	0.9838	0.9842	0.9846	0.985	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.992	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.994	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.996	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.997	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.998	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Grandes valeurs de u

u	3.0	3.5	4.0	4.5
$\Phi(u)$	0.9987	0.99977	0.999968	0.999997

Table 2 de la loi normale centrée réduite

U étant une variable aléatoire de loi $\mathcal{N}(0,1)$ et α un réel de [0,1], la table donne la valeur de

$$u_{\alpha} = \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$
 telle que $\mathbb{P}(|U| > u_{\alpha}) = \alpha$.

En R, la commande correspondante est qnorm(1-alpha/2).

α	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	$+\infty$	2.5758	2.3263	2.1701	2.0537	1.96	1.8808	1.8119	1.7507	1.6954
0.1	1.6449	1.5982	1.5548	1.5141	1.4758	1.4395	1.4051	1.3722	1.3408	1.3106
0.2	1.2816	1.2536	1.2265	1.2004	1.175	1.1503	1.1264	1.1031	1.0803	1.0581
0.3	1.0364	1.0152	0.9945	0.9741	0.9542	0.9346	0.9154	0.8965	0.8779	0.8596
0.4	0.8416	0.8239	0.8064	0.7892	0.7722	0.7554	0.7388	0.7225	0.7063	0.6903
0.5	0.6745	0.6588	0.6433	0.628	0.6128	0.5978	0.5828	0.5681	0.5534	0.5388
0.6	0.5244	0.5101	0.4959	0.4817	0.4677	0.4538	0.4399	0.4261	0.4125	0.3989
0.7	0.3853	0.3719	0.3585	0.3451	0.3319	0.3186	0.3055	0.2924	0.2793	0.2663
0.8	0.2533	0.2404	0.2275	0.2147	0.2019	0.1891	0.1764	0.1637	0.151	0.1383
0.9	0.1257	0.113	0.1004	0.0878	0.0753	0.0627	0.0502	0.0376	0.0251	0.0125

Petites valeurs de α

α	0.002	0.001	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}	10^{-9}
u_{α}	3.0902	3.2905	3.8906	4.4171	4.8916	5.3267	5.7307	6.1094

Pour
$$p < \frac{1}{2}, \Phi^{-1}(p) = -u_{2p}$$

Pour
$$p \ge \frac{1}{2}$$
, $\Phi^{-1}(p) = u_{2(p-1)}$

Table de la loi du
$$\chi^2$$

X étant une variable aléatoire de loi du χ^2 à n degrés de libertés et α un réel de [0,1], la table donne la valeur de

$$z_{n,\alpha} = F_{\chi_n^2}^{-1} (1 - \alpha)$$
 telle que $\mathbb{P}(X > z_{n,\alpha}) = \alpha$.

En R, la commande correspondante est qchisq(1-alpha, n).

0.995 0.9 0.7 0.005 0.990 0.975 0.95 0.8 0.5 0.3 0.2 0.1 0.05 0.025 0.01 0.001 $\frac{5.02}{7.38}$ 0.71 $\frac{5.99}{7.81}$ 0.01 0.02 0.05 0.210.45 1.39 3 22 4.61 9.21 10.6 13.82 0.07 0.11 0.22 0.58 9.35 3 4 5 6 7 8 9 10 0.35 1.01 2.37 3.66 4.64 6.25 11.34 12.84 16.27 $0.21 \\ 0.41$ $0.3 \\ 0.55$ $\frac{1.06}{1.61}$ $\frac{5.99}{7.29}$ $7.78 \\ 9.24$ $11.14 \\ 12.83$ 18.47 20.520.482.193.36 9 49 14.86 0.83 4.35 11.07 16.75 $8.56 \\ 9.8$ $14.45 \\ 16.01$ $16.81 \\ 18.48$ $22.46 \\ 24.32$ 0.68 0.87 1.24 2.2 3.07 3.83 5.35 7.23 10.64 12.59 18.55 0.99 2.83 14.07 1.34 1.65 2.18 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 17.53 20.09 21.95 26.12 2.09 2.56 19.02 27.88 29.59 4.17 8.34 14.68 16.92 21.67 10.66 3.25 2.16 3.94 9.34 11.78 13.44 18.31 20.48 23.21 2.6 3.05 3.82 4.57 5.58 6.99 8.15 10.34 12.9 14.63 17.28 19.68 21.92 24.72 26.76 31.26 12 13 3.07 3.57 3.57 5.23 7.81 9.03 11.34 18.55 23.34 24.74 26.22 27.69 14.01 21.03 7.04 7.79 8.55 4.11 5.01 5.89 8.63 9.93 12.34 15.1216.98 19.81 22.36 29.82 34.53 14 15 16 174.07 9.47 27.49 28.85 $\frac{4.6}{5.14}$ 5.23 6.26 $7.26 \\ 7.96$ 10.31 11.7214.34 17.3219.31 22.31 25 30.58 32.8 26.3 27.5939.25 40.79 5.81 9.31 12.62 15.34 20.47 23.54 34.27 33.41 19.51 21.61 24.775.7 6.417.56 8.67 10.09 13.53 16.34 30.19 35.727.01 7.63 12.86 13.7217.34 18.34 22.76 23.9 18 19 6.26 9.39 8.91 38.58 43.82 6.84 10.12 11.65 15.35 21.69 27.230.14 32.85 36.19 $26.17 \\
27.3 \\
28.43 \\
29.55$ 8.03 8.9 10.28 13.24 14.0415.4420.34 23.86 29.62 32.67 38.93 21 22 23 24 25 26 16.31 17.19 18.06 8.64 9.54 10.98 12.34 21.34 30.81 33.92 36.78 40.29 42.8 9.26 9.89 14.85 15.66 19.02 19.94 22.34 23.34 26.02 27.1 38.08 39.36 41.64 42.9844.18 45.56 49.73 51.18 10.2 11.69 13.09 32.01 35.17 10.86 12.413.85 33.2 36.42 13.12 13.8416.47 17.2918.94 19.82 20.87 21.79 $30.68 \\ 31.79$ $34.38 \\ 35.56$ 37.65 38.89 $46.93 \\ 48.29$ $52.62 \\ 54.05$ 10.52 11.5214.6124.34 40.65 44.3112.2 25.34 29.25 41.92 45.64 11.16 15.38 27 28 $11.81 \\ 12.46$ 12.88 13.56 $14.57 \\ 15.31$ $16.15 \\ 16.93$ 18.11 18.94 $20.7 \\ 21.59$ 22.72 23.6526.34 27.34 $\frac{32.91}{34.03}$ $\frac{36.74}{37.92}$ $40.11 \\ 41.34$ 43.19 44.46 $\frac{46.96}{48.28}$ $49.64 \\ 50.99$ 55.48 56.8913.12 13.79 22.48 23.36 24.58 25.5139.09 40.26 17.71 19.77 35.14 45.72

Pour
$$n > 30$$
, on admet que $z_{n,\alpha} \approx \frac{1}{2} \left(u_{2\alpha} + \sqrt{(2n-1)} \right)^2$ si $\alpha < \frac{1}{2}$
$$z_{n,\alpha} \approx \frac{1}{2} \left(\sqrt{(2n-1)} - u_{2(1-\alpha)} + \right)^2 \text{ si } \alpha \geq \frac{1}{2}$$

Table de la loi de Student

X étant une variable aléatoire de loi St(n) et α un réel de [0,1], la table donne la valeur de

$$t_{n,\alpha} = F_{St(n)}^{-1} \left(1 - \frac{\alpha}{2}\right)$$
 telle que $\mathbb{P}(|X| > t_{n,\alpha}) = \alpha$.

En R, la commande correspondante est qt(1-alpha/2). Pour $n=+\infty,\,t_{+\infty,\alpha}=u_{\alpha}.$

$n \atop n$	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.001
1	0.158	0.325	0.51	0.727	1	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	0.142	0.289	0.445	0.617	0.816	1.061	1.386	1.886	2.92	4.303	6.965	9.925	31.599
3	0.137	0.277	0.424	0.584	0.765	0.978	1.25	1.638	2.353	3.182	4.541	5.841	12.924
4	0.134	0.271	0.414	0.569	0.741	0.941	1.19	1.533	2.132	2.776	3.747	4.604	8.61
5	0.132	0.267	0.408	0.559	0.727	0.92	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.131	0.265	0.404	0.553	0.718	0.906	1.134	1.44	1.943	2.447	3.143	3.707	5.959
7	0.13	0.263	0.402	0.549	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.13	0.262	0.399	0.546	0.706	0.889	1.108	1.397	1.86	2.306	2.896	3.355	5.041
9	0.129	0.261	0.398	0.543	0.703	0.883	1.1	1.383	1.833	2.262	2.821	3.25	4.781
10	0.129	0.26	0.397	0.542	0.7	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.129	0.26	0.396	0.54	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.128	0.259	0.395	0.539	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.128	0.259	0.394	0.538	0.694	0.87	1.079	1.35	1.771	2.16	2.65	3.012	4.221
14	0.128	0.258	0.393	0.537	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.14
15	0.128	0.258	0.393	0.536	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.128	0.258	0.392	0.535	0.69	0.865	1.071	1.337	1.746	2.12	2.583	2.921	4.015
17	0.128	0.257	0.392	0.534	0.689	0.863	1.069	1.333	1.74	2.11	2.567	2.898	3.965
18	0.127	0.257	0.392	0.534	0.688	0.862	1.067	1.33	1.734	2.101	2.552	2.878	3.922
19	0.127	0.257	0.391	0.533	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	0.127	0.257	0.391	0.533	0.687	0.86	1.064	1.325	1.725	2.086	2.528	2.845	3.85
21	0.127	0.257	0.391	0.532	0.686	0.859	1.063	1.323	1.721	2.08	2.518	2.831	3.819
22	0.127	0.256	0.39	0.532	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.127	0.256	0.39	0.532	0.685	0.858	1.06	1.319	1.714	2.069	2.5	2.807	3.768
24	0.127	0.256	0.39	0.531	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.127	0.256	0.39	0.531	0.684	0.856	1.058	1.316	1.708	2.06	2.485	2.787	3.725
26	0.127	0.256	0.39	0.531	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.707
27	0.127	0.256	0.389	0.531	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.69
28	0.127	0.256	0.389	0.53	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	0.127	0.256	0.389	0.53	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659
30	0.127	0.256	0.389	0.53	0.683	0.854	1.055	1.31	1.697	2.042	2.457	2.75	3.646
40	0.126	0.255	0.388	0.529	0.681	0.851	1.05	1.303	1.684	2.021	2.423	2.704	3.551
80	0.126	0.254	0.387	0.526	0.678	0.846	1.043	1.292	1.664	1.99	2.374	2.639	3.416
120	0.126	0.254	0.386	0.526	0.677	0.845	1.041	1.289	1.658	1.98	2.358	2.617	3.373
+∞	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282	1.645	1.96	2.326	2.576	3.291

Tables de la loi de Fisher-Snedecor

X étant une variable aléatoire de loi $F(\nu_1, \nu_2)$, les tables donnent les valeurs de $f_{\nu_1,\nu_2,\alpha} = F_{F(\nu_1,\nu_2)}^{-1} (1-\alpha) \ \text{telles que } \mathbb{P}(X>f_{\nu_1,\nu_2,\alpha}) = \alpha \ \text{pour } \alpha=5\% \text{ et } \alpha=1\% \ .$

En R, la commande correspondante est qf(1-alpha, nu1, nu2). $f_{\nu_2,\nu_1,\alpha}=\frac{1}{f_{\nu_1,\nu_2,1-\alpha}}$.

Table 1 : $\alpha = 5\%$.

2 3 4 5	1 161.4 18.51 10.13 7.71 6.61	2 199.5 19 9.55	3 215.7	4 224.6	5	6		8	10	12	16	20	24	40	60	100	$+\infty$
2 3 4 5	18.51 10.13 7.71	19		224.6			7	Ü	10		10			10	00	100	100
3 4 5	$10.13 \\ 7.71$				230.2	234	236.8	238.9	241.9	243.9	246.5	248	249	251.1	252.2	253	254.3
4 5	7.71	9.55	19.16	19.25	19.3	19.33	19.35	19.37	19.4	19.41	19.43	19.45	19.45	19.47	19.48	19.49	19.5
5			9.28	9.12	9.01	8.94	8.89	8.85	8.79	8.74	8.69	8.66	8.64	8.59	8.57	8.55	8.53
	6.61	6.94	6.59	6.39	6.26	6.16	6.09	6.04	5.96	5.91	5.84	5.8	5.77	5.72	5.69	5.66	5.63
6		5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.74	4.68	4.6	4.56	4.53	4.46	4.43	4.41	4.36
	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.06	4	3.92	3.87	3.84	3.77	3.74	3.71	3.67
	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.64	3.57	3.49	3.44	3.41	3.34	3.3	3.27	3.23
	5.32	4.46	4.07	3.84	3.69	3.58	3.5	3.44	3.35	3.28	3.2	3.15	3.12	3.04	3.01	2.97	2.93
	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.14	3.07	2.99	2.94	2.9	2.83	2.79	2.76	2.71
10	4.96	4.1	3.71	3.48	3.33	3.22	3.14	3.07	2.98	2.91	2.83	2.77	2.74	2.66	2.62	2.59	2.54
11	4.84	3.98	3.59	3.36	3.2	3.09	3.01	2.95	2.85	2.79	2.7	2.65	2.61	2.53	2.49	2.46	2.4
12	4.75	3.89	3.49	3.26	3.11	3	2.91	2.85	2.75	2.69	2.6	2.54	2.51	2.43	2.38	2.35	2.3
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.67	2.6	2.51	2.46	2.42	2.34	2.3	2.26	2.21
14	4.6	3.74	3.34	3.11	2.96	2.85	2.76	2.7	2.6	2.53	2.44	2.39	2.35	2.27	2.22	2.19	2.13
15	4.54	3.68	3.29	3.06	2.9	2.79	2.71	2.64	2.54	2.48	2.38	2.33	2.29	2.2	2.16	2.12	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.49	2.42	2.33	2.28	2.24	2.15	2.11	2.07	2.01
17	4.45	3.59	3.2	2.96	2.81	2.7	2.61	2.55	2.45	2.38	2.29	2.23	2.19	2.1	2.06	2.02	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.41	2.34	2.25	2.19	2.15	2.06	2.02	1.98	1.92
19	4.38	3.52	3.13	2.9	2.74	2.63	2.54	2.48	2.38	2.31	2.21	2.16	2.11	2.03	1.98	1.94	1.88
20	4.35	3.49	3.1	2.87	2.71	2.6	2.51	2.45	2.35	2.28	2.18	2.12	2.08	1.99	1.95	1.91	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.32	2.25	2.16	2.1	2.05	1.96	1.92	1.88	1.81
22	4.3	3.44	3.05	2.82	2.66	2.55	2.46	2.4	2.3	2.23	2.13	2.07	2.03	1.94	1.89	1.85	1.78
	4.28	3.42	3.03	2.8	2.64	2.53	2.44	2.37	2.27	2.2	2.11	2.05	2.01	1.91	1.86	1.82	1.76
	4.26	3.4	3.01	2.78	2.62	2.51	2.42	2.36	2.25	2.18	2.09	2.03	1.98	1.89	1.84	1.8	1.73
	4.24	3.39	2.99	2.76	2.6	2.49	2.4	2.34	2.24	2.16	2.07	2.01	1.96	1.87	1.82	1.78	1.71
	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.16	2.09	1.99	1.93	1.89	1.79	1.74	1.7	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.08	2	1.9	1.84	1.79	1.69	1.64	1.59	1.51
	4.03	3.18	2.79	2.56	2.43	2.29	2.23	2.13	2.03	1.95	1.85	1.78	1.74	1.63	1.58	1.52	1.44
60	4.03	3.15	2.76	2.53	2.37	2.25	2.17	2.13	1.99	1.92	1.82	1.75	1.74	1.59	1.53	1.48	1.39
	3.96	3.11	2.72	2.49	2.33	2.21	2.17	2.06	1.95	1.88	1.77	1.75	1.65	1.54	1.48	1.43	1.32
	3.94	3.09	2.7	2.46	2.31	2.19	2.13	2.03	1.93	1.85	1.75	1.68	1.63	1.52	1.45	1.39	1.28
	3.84	3.09	2.6	2.37	2.21	2.19	2.01	1.94	1.83	1.75	1.64	1.57	1.52	1.39	1.32	1.24	1.00

Tables de la loi de Fisher-Snedecor

Table 2 : $\alpha = 1\%$.

$\begin{array}{c} \nu_1 \\ \nu_2 \end{array}$	1	2	3	4	5	6	7	8	10	12	16	20	24	40	60	100	$+\infty$
1	4052	4999	5403	5625	5764	5859	5928	5981	6056	6106	6170	6209	6235	6287	6313	6334	6366
2	98.5	99	99.17	99.25	99.3	99.33	99.36	99.37	99.4	99.42	99.44	99.45	99.46	99.47	99.48	99.49	99.5
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.23	27.05	26.83	26.69	26.6	26.41	26.32	26.24	26.13
4	21.2	18	16.69	15.98	15.52	15.21	14.98	14.8	14.55	14.37	14.15	14.02	13.93	13.75	13.65	13.58	13.46
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.05	9.89	9.68	9.55	9.47	9.29	9.2	9.13	9.02
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.1	7.87	7.72	7.52	7.4	7.31	7.14	7.06	6.99	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.62	6.47	6.28	6.16	6.07	5.91	5.82	5.75	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.81	5.67	5.48	5.36	5.28	5.12	5.03	4.96	4.86
9	10.56	8.02	6.99	6.42	6.06	5.8	5.61	5.47	5.26	5.11	4.92	4.81	4.73	4.57	4.48	4.41	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.2	5.06	4.85	4.71	4.52	4.41	4.33	4.17	4.08	4.01	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.54	4.4	4.21	4.1	4.02	3.86	3.78	3.71	3.6
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.5	4.3	4.16	3.97	3.86	3.78	3.62	3.54	3.47	3.36
13	9.07	6.7	5.74	5.21	4.86	4.62	4.44	4.3	4.1	3.96	3.78	3.66	3.59	3.43	3.34	3.27	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.94	3.8	3.62	3.51	3.43	3.27	3.18	3.11	3
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4	3.8	3.67	3.49	3.37	3.29	3.13	3.05	2.98	2.87
16	8.53	6.23	5.29	4.77	4.44	4.2	4.03	3.89	3.69	3.55	3.37	3.26	3.18	3.02	2.93	2.86	2.75
17	8.4	6.11	5.18	4.67	4.34	4.1	3.93	3.79	3.59	3.46	3.27	3.16	3.08	2.92	2.83	2.76	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.51	3.37	3.19	3.08	3	2.84	2.75	2.68	2.57
19	8.18	5.93	5.01	4.5	4.17	3.94	3.77	3.63	3.43	3.3	3.12	3	2.92	2.76	2.67	2.6	2.49
20	8.1	5.85	4.94	4.43	4.1	3.87	3.7	3.56	3.37	3.23	3.05	2.94	2.86	2.69	2.61	2.54	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.31	3.17	2.99	2.88	2.8	2.64	2.55	2.48	2.36
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.26	3.12	2.94	2.83	2.75	2.58	2.5	2.42	2.31
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.21	3.07	2.89	2.78	2.7	2.54	2.45	2.37	2.26
24	7.82	5.61	4.72	4.22	3.9	3.67	3.5	3.36	3.17	3.03	2.85	2.74	2.66	2.49	2.4	2.33	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.13	2.99	2.81	2.7	2.62	2.45	2.36	2.29	2.17
30	7.56	5.39	4.51	4.02	3.7	3.47	3.3	3.17	2.98	2.84	2.66	2.55	2.47	2.3	2.21	2.13	2.01
40	7 01	F 10	4.01	0.00	0.51	0.00	0.10	0.00	0.0	0.00	0.40	0.05	0.00	0.11	0.00	1.04	1.0
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.8	2.66	2.48	2.37	2.29	2.11	2.02	1.94	1.8
50	7.17	5.06	4.2	3.72	3.41	3.19	3.02	2.89	2.7	2.56	2.38	2.27	2.18	2.01	1.91	1.82	1.68
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.63	2.5	2.31	2.2	2.12	1.94	1.84	1.75	1.6
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.55	2.42	2.23	2.12	2.03	1.85	1.75	1.65	1.49
100	6.9	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.5	2.37	2.19	2.07	1.98	1.8	1.69	1.6	1.43
$+\infty$	6.63	4.61	3.78	3.32	3.02	2.8	2.64	2.51	2.32	2.18	2	1.88	1.79	1.59	1.47	1.36	1.00

Probabilités et histogrammes de lois discrètes

Fig. 1.1 – probabilités et histogrammes de tirages aléatoires de lois binomiales

Probabilités et histogrammes de lois discrètes

Fig. 1.2 – probabilités et histogrammes de tirages aléatoires de lois binomiales

Probabilités de lois discrètes

Fig. 1.3 – Probabilités de lois géométriques et hypergéométriques

Fig. 1.4 – Probabilités de lois de Poisson

Fig. 1.5 – densités de lois normales

Fig. 1.6 – densités de lois exponentielles

Fig. 1.7 – densités de lois gammas

Fig. 1.8 – densités de lois chi-deux

Fig. 1.9 – densités de lois de Student et de Fisher

Fig. 1.10 – densités de lois de weibull

Fig. 1.11 – densités de lois betas