Section 1.6: A Greedy Algorithm

A natural greedy choice would be to "pay" as little as possible for each additional covered element:

Alg 1.2 for Set Cover: Greedy

$$T \leftarrow \emptyset$$

For $j \leftarrow 1$ to m
 $\hat{S}_{i} \leftarrow S_{j}$ (uncovered part of S_{j})

While $fS_{i} \mid j \in T_{j}$ is not a set cover

 $l \leftarrow arg min \frac{w_{j}}{|\hat{S}_{i}|}$ (S_{i} : set with smallest $j: \hat{S}_{i} \neq \emptyset$ cost per uncovered element)

 $T \leftarrow T \cup fl_{i}^{2}$

For $j \leftarrow 1$ to m
 $\hat{S}_{i} \leftarrow \hat{S}_{i} - S_{g}$

The greedy alg. is an Hn-approx. alg

Recall: $H_n = [+\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \approx ln(n)]$

It is "likely" that no significantly better approx. ratio can be obtained:

Thm 1.13:

Approx. factor $\frac{\ln n}{c}$, c>1, for unweighted Set Cover $\Rightarrow n^{O(\log \log n)}$ -approx alg. for NPC

$$\frac{W_1}{|S_1|} = \frac{12}{3} = 4$$

$$\int_{\omega_{z}=15}^{S_{z}} \frac{\omega_{z}}{|S_{z}|} = \frac{15}{3} = 5$$

$$\frac{\omega_3}{|S_3|} = \frac{|2}{4} = 3$$

$$\frac{W_{y}}{|S_{y}|} = \frac{y}{2} = 2$$
 — price per element in first iteration

$$W_1 = 12$$

$$S_1$$

$$E_1$$

$$E_2$$

$$E_3$$

$$E_4$$

$$E_3$$

$$E_5$$

$$E_5$$

$$E_5$$

$$E_7$$

$$\frac{\omega_1}{|\hat{S}_1|} = \frac{12}{\lambda} = 6$$

$$\frac{\omega_2}{1\hat{S}.1} = \frac{15}{3} = 5$$

$$\frac{W_3}{|\hat{S}_3|} = \frac{12}{3} = 4 \leftarrow \text{price}$$
per element in second it.

Pick S3

$$W_1 = 12$$

$$S_1$$

$$E_1$$

$$E_2$$

$$E_3$$

$$E_4$$

$$E_3$$

$$E_4$$

$$E_3$$

$$E_5$$

$$E_4$$

$$E_3$$

$$E_4$$

$$E_5$$

$$E_4$$

$$E_5$$

$$E_7$$

$$\frac{W_1}{|\hat{S}_1|} = \frac{12}{1} = \frac{12}{12} \leftarrow \text{price}$$

$$\frac{W_2}{|\hat{S}_2|} = \frac{15}{1} = 15$$
third it.

Greedy = 28
=
$$W_{4} + W_{3} + W_{1}$$

= $4 + 12 + 12$
= $2 + 2 + 4 + 4 + 4 + 4 + 12$
= $\sum_{i=1}^{6} \text{price}(e_{i})$
OPT = 24
= $W_{3} + W_{1}$
= $12 + 12$
= $4 + 4 + 4 + 4 + 4 + 6 + 6$

We will now use this ex. to illustrate the proof of Thm 1-11 Stating that Greedy is an H_n -approx. alg.:

H₆ - approximation:

$$(H_6 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{147}{60} < 2.5)$$

OPT > 6. price(e₁)
OPT > 6. price(e₂)
Since Sy gives the best
average weight per element.

Sy cannot cover any of the elements e_3 , e_4 , e_5 , e_6 . Thus, the average weight of these elements cannot be lower than price (e_5) , ever for OPT:

OPT > 4. price (e3)

OPT > 4. price (e4)

OPT > 4 · price (es)

Similarly: OPT > price (e6)

$$W_{1}=12$$

$$S_{1}$$

$$E_{2}$$

$$E_{3}$$

$$E_{4}$$

$$E_{5}$$

$$E_{5}$$

$$W_{2}=15$$

$$W_{3}=12$$

$$\Leftrightarrow$$
 price $(e_3) \leq \frac{OPT}{4}$

$$\Leftrightarrow$$
 price $(e_{y}) \leq \frac{OPT}{4}$

$$\Leftrightarrow$$
 price $(e_5) \leq \frac{Opt}{4}$

Greedy =
$$\sum_{i=1}^{6} \text{price}(e_i)$$

 $\leq \frac{\text{OPT}}{6} + \frac{\text{OPT}}{6} + \frac{\text{OPT}}{4} + \frac{\text{OPT}}$

Thm 1.11

Alg. 1.2 is an Hn-approx. alg. for Set Cover

Proof:

nk: #uncovered elements at the beginning of the k'th iteration

Above ex.: $N_1=6$, $N_2=4$, $N_3=1$, $N_4=0$ $N_1-N_2=2$, $N_2-N_3=3$, $N_3-N_4=1$

Any algorithm, including OpT, has to cover these n_k elements using only sets in $\mathcal{G}-\int S_j \mid_{j\in \mathbb{Z}} f$, since none of them are contained in $\int S_j \mid_{j\in \mathbb{Z}} f$.

Hence, three must be at least one clement with a price of at most OPT/nk. Otherwise, OPT would not be able to cover the nk elements (and certainly not all n elements) at a cost of only OPT.

Hence, the n_k-n_{k+1} elements covered in iteration ker cost at most (n_k-n_{k+1}) OPT/ n_k in total.

Thus, the cost of the set cover produced by the greedy alg. is

$$\sum_{k=1}^{\infty} w_{k} \leq \sum_{k=1}^{\infty} \frac{n_{k} - n_{k+1}}{n_{k}} OPT$$

$$= OPT \sum_{k=1}^{\infty} (n_{k} - n_{k+1}) \cdot \frac{1}{n_{k}}$$

$$= OPT \sum_{k=1}^{\infty} \left(\frac{1}{n_{k}} + \frac{1}{n_{k-1}} + \dots + \frac{1}{n_{k+1}} + \dots + \frac{1}{n_{k$$

Let
$$g = \max \{ |S_i| | S_i \in G \}$$
.

Thm 1.12

Alg. 1.2 is an Hy-approx. alg. for Set Caver

<u>Proof</u>: By Dual Fitting:

Consider the dual D of the LP for Set Cover. We will construct

- · an infeasible solution if and
- · a jeasible solution y'

such that

•
$$\sum_{i=1}^{n} y_i = \sum_{j \in I} w_j$$
 (obtained, if $y_i = price(e_i)$)

•
$$y_i = \frac{1}{H_3} \cdot y_i$$

Ther,

$$\sum_{j\in I} w_j = \sum_{i=1}^{n} y_i^2 = H_g \sum_{i=1}^{n} y_i^2 \leq H_g \sum_{j=1}^{n} y_j^2 \leq H_g \sum_{j=1}^{n} y$$

proving the claimed approximation Jactor.

ratio
$$H_g$$

$$Z_{0}^{*} = Z_{0}^{*} = Z_{TP}^{*}$$

$$= Z_{P}^{*} = Z_{TP}^{*}$$

$$= Z_{P}^{*} = Z_{TP}^{*}$$

For $| \leq i \leq n$, let $y_i = \text{price}(e_i)$. Then, $\sum_{1 \leq i \leq n} y_i = \sum_{j \in I} w_j$.

Hence, we just need to show that \vec{y} is feasible:

Consider an arbitrary set Sj.

Let are be #uncovered elements in Sj at the beginning of the k'th iteration.

Let Sp be the set chosen by Greedy in the k'th iteration.

Sp covers ak-ak+1 previously uncovered elements in S;

The price per elem. in S_i covered in the kth it. is $\frac{w_p}{|\hat{S}_i|} \leq \frac{w_i}{|\hat{S}_i|} \leq \frac{w_i}{a_k}$

since otherwise Sj would be a more greedy choice.

Thus,

Total #toms =
$$|S_i|$$
, since $a_i = |S_i|$ and $a_{r+1} = 0$

$$\sum_{k=1}^{r} y_k^2 \leq \sum_{k=1}^{r} (a_k - a_{k+1}) \frac{w_i^2}{a_k^2}$$

$$\leq w_i \sum_{k=1}^{|S_i|} \frac{1}{i}, \text{ by the same arguments as in the proof of Thun 1.12.}$$

$$\leq w_i \sum_{k=1}^{r} \frac{1}{i}$$

$$= w_i \cdot H_j$$
Hence,
$$\sum_{e_i \in S_i} y_i^2 = \frac{1}{H_j} \sum_{e_i \in S_i} y_i^2 \leq w_i^2$$

Compare the proof of Thm 1.12 (dual fitting) to the proof of Thm 1.11:

• Simpler: Compare prices to W; instead of OPT

• Stronger result: Hy instead of Hn

(could also have been obtained with the

technique of the proof of Thm 1.11)

Ex from before:

$$g = 4 \implies H_{3} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12} < 2.1$$

$$y_{1} = y_{2} = 2$$

$$y_{3} = y_{4} = y_{5} = 4$$

$$y_{6} = 12$$

$$y_{1} = y_{2}' = \frac{1}{2}$$

$$y_{3} = y_{4}' = y_{5}' = 1$$

$$y_{6} = 3$$

Oual constraints:

$$y_1' + y_3' + y_6' \le 12$$

 $y_4' + y_5' + y_6' \le 15$
 $y_2' + y_3' + y_4' + y_5' \le 12$
 $y_1' + y_2' \le 4$

$$\frac{1}{2} + 1 + 3 = 4.5 < 12$$

$$1 + 1 + 3 = 5 < 15$$

$$\frac{1}{2} + 1 + 1 + 1 = 3.5 < 12$$

$$\frac{1}{2} + \frac{1}{2} = 1$$

$$2 + 4$$

If it is, the matching lower bound must come from an instance with

- one set containing all elements

(Jollows from the upper bound of Hg)

- only one additional element covered in each it.

(otherwise, some of the terms in \(\frac{1}{n+1} + \frac{1}{n-1} + \frac{1}{

Ex:

Summary

Greedy

$$H_n$$
-approx:
 $Price(e_i) \leq \frac{OPT}{n-i}$, $i = 0,1,...,n-1$
 H_g -approx: $(g: size of largest sut)$
 $Pual fitting:$
 $y_i^* \leftarrow \frac{Price(e_i)}{H_g}$ is a feasible sol. to dual $\frac{1}{H_g}$