ÉTUDE DU RUBIK'S CUBE

SOEUNG Raphaël, candidat n°10019

Année scolaire 2023-2024

Summary

- 1 Modélisation
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube
- **3** Merci pour votre attention

- Modélisation

- 1 Modélisation
 - Deux paradigmes : les états et les mélanges Dévissage du groupe des mélanges du Rubik's cub
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube
- 3 Merci pour votre attentior

Vocabulaire

<u>Figure 1</u> – Image éditée à partir d'une illustration de l'article de Matthieu Barreau.

Sur les états du Rubik's cube

- X : ensemble des coins ;
- Y: ensemble des bords;
- E_X: ensemble des états des coins;
- E_Y: ensemble des états des bords;
- $E = E_X \times E_Y$: ensemble des états du Rubik's cube.

Dénombrement:

- $|E_X| = 8! \times 3^8$;
- $|E_Y| = 12! \times 2^{12}$;
- $|E| = |E_X| \times |E_Y| = 5.19024039 \times 10^{20}$.

Sur les mélanges du Rubik's cube

- (G_X, \circ) : groupe des mélanges des coins ;
- (G_Y, ○) : groupe des mélanges des bords;
- (G, \circ) : groupe des mélanges du Rubik's cube, produit direct de G_X et G_Y .
- (π_X, π_Y) : on définit pour tout $g \in G$, $\pi_X(g) \in G_X$ et $\pi_Y(g) \in G_Y$ par $g = (\pi_X(g), \pi_Y(g))$.

G et *E* sont en bijection.

 π_X et π_Y sont des morphismes de groupe.

- 1 Modélisation
 - Deux paradigmes : les états et les mélanges
 - Dévissage du groupe des mélanges du Rubik's cube
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube
- 3 Merci pour votre attentior

Le groupe des mélanges des coins

- $(Perm_X, \circ)$: groupe des permutations de X;
- (Rot_X, \circ) : groupe des rotations des coins;

Il existe un morphisme $g: G_X \longrightarrow Perm_X$ surjectif.

$$Rot_X = Ker(g).$$

$$Rot_X \cong (\mathbb{Z}/3\mathbb{Z})^X$$
.

$$\forall g \in G_X, \exists ! (\rho, \sigma) \in Rot_X \times Perm_X, g = \rho \circ \sigma.$$

Le groupe des mélanges des bords

- $\bullet \ (\textit{Perm}_{Y}, \circ) : \text{groupe des permutations de } Y; \\$
- ullet (Rot_Y, \circ) : groupe des retournements des bords;

Il existe un morphisme $g: G_Y \longrightarrow Perm_Y$ surjectif.

$$Rot_Y = Ker(g).$$

$$Rot_{\mathbf{Y}} \cong (\mathbb{Z}/2\mathbb{Z})^{\mathbf{Y}}$$
.

$$\forall g \in G_Y, \exists ! (\rho, \sigma) \in Rot_Y \times Perm_Y, g = \rho \circ \sigma.$$

- 1 Modélisation
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube
 - Notion de rotation totale Signature de la permutation des faces des bords Le groupe de Rubik
- 3 Merci pour votre attention

- 1 Modélisation
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube Notion de rotation totale
 - Signature de la permutation des faces des bords Le groupe de Rubik
- 3 Merci pour votre attention

Rotation totale des coins

Pour tout $g = \rho \circ \sigma \in G_X$ ($\rho \in Rot_X$ et $\sigma \in Perm_X$), il existe, avec l'isomorphisme ϕ de G_X à $(\mathbb{Z}/3\mathbb{Z})^X$, $\tilde{\rho} \in (\mathbb{Z}/3\mathbb{Z})^X$ tel que $\tilde{\rho} = \phi(\rho)$.

On définit alors rt_X la rotation totale du mélange des coins g par :

$$rt_X(g) = \sum_{x \in X} \tilde{g}(x).$$

 $rt_X: G_X \longrightarrow (\mathbb{Z}/3\mathbb{Z})$ est un morphisme de groupe.

Rotation totale des bords

Pour tout $g = \rho \circ \sigma \in G_Y$ ($\rho \in Rot_Y$ et $\sigma \in Perm_Y$), il existe, avec l'isomorphisme ϕ de G_Y à $(\mathbb{Z}/2\mathbb{Z})^Y$, $\tilde{\rho} \in (\mathbb{Z}/2\mathbb{Z})^Y$ tel que $\tilde{\rho} = \phi(\rho)$.

On définit alors rt_Y la rotation totale du mélange des bords g par :

$$rt_{Y}(g) = \sum_{y \in Y} \tilde{g}(y).$$

 $rt_X: G_Y \longrightarrow (\mathbb{Z}/2\mathbb{Z})$ est un morphisme de groupe.

- 1 Modélisation
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube Notion de rotation totale Signature de la permutation des faces des bords Le groupe de Rubik
- 3 Merci pour votre attention

- F: ensemble des faces visibles des bords;
- $(Perm_F, \circ)$: groupe des permutations de F.

Il existe un morphisme de groupe $\sigma_F: G_Y \longrightarrow Perm_F$.

Signature de la permutation des faces des bords pour un mélange des bords ${\it g}$

Théorème 1.

Pour tout $g \in G_Y$, on a :

$$(-1)^{rt_Y(g)} = \operatorname{sign}(\sigma_F(g)).$$

- 1 Modélisation
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube Notion de rotation totale Signature de la permutation des faces des bords Le groupe de Rubik
- 3 Merci pour votre attentior

Mouvements élémentaires du Rubik's cube

Figure 2 – Image éditée à partir d'une illustration de l'article de Matthieu Barreau

Le groupe de Rubik

- Rub : sous-groupe de G engendré par les 6 mouvements élémentaires, appelé groupe de Rubik;
- ε : on définit $\varepsilon: G \longrightarrow \{-1,1\}$ par :

$$\forall g \in G, \varepsilon(g) = \operatorname{sign}(\sigma_X \circ \pi_X(g)) \times \operatorname{sign}(\sigma_Y \circ \pi_Y(g));$$

• rt: on définit $rt: G \longrightarrow (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times \{-1,1\}$ par :

$$\forall g \in G, rt(g) = (rt_X \circ \pi_X(g), rt_Y \circ \pi_Y(g), \varepsilon(g)).$$

• H: H = Ker(rt)

Le groupe du Rubik comme noyau de rt

Théorème 2.

$$Rub = H$$

rt étant surjectif, H est d'indice 12 dans G.

Donc Rub est d'indice 12 dans G.

Ce faisant :

$$|Rub| = \frac{1}{12} \times |G|.$$

- 1 Modélisation
- 2 Cardinal de l'ensemble des états possibles du Rubik's cube
- 3 Merci pour votre attention