Université Laval	Examen final traditionnel
Faculté des Sciences et de Génie	Hiver 2017
École d'actuariat	Date: 26 avril 2017

Act-2001 Introduction à l'actuariat 2

Professeur: Etienne Marceau

Nom de famille de l'étudiant	Prénom de l'étudiant	Matricule

- L'examen contient 12 questions à développement.
- Le total des points est de **120 points**.
- La durée est de 170 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le cahier de réponse seulement.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		12
2		14
3		15
4		10
5		10
6		8
7		10
8		10
9		12
10		8
11		8
12		10
Total		120 (7 points boni)

© Etienne Marceau, 2017.

1. (12 points). Soit les v.a. indépendantes X_1 et X_2 avec

$$X_1 \sim BNComp\left(r, q; F_{B_1}\right)$$
,

où
$$r=0.1, q=\frac{1}{3},\, B_1 \sim LNorm\left(\mu=\ln{(10)}-\frac{1}{2},\sigma=1\right)$$
et

$$X_2 \sim PComp(\lambda; F_{B_2})$$
,

où
$$\lambda = 0.2, B_2 \sim Gamma \left(\alpha = 5, \beta = \frac{5}{10}\right).$$

On définit

$$S = X_1 + X_2$$
.

On définit la mesure de risque

$$\rho_{\kappa}(Y) = E[Y] + \frac{1}{1 - \kappa} \sqrt{Var(Y)} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}.$$

Questions:

(a) (2 points). Montrer que la fonction

$$\varphi\left(X_{1}, X_{2}\right) = \rho_{\kappa}\left(S\right) = \rho_{\kappa}\left(X_{1} + X_{2}\right)$$

est homogène.

- (b) (4 points). Calculer $E[X_i]$ et $Var(X_i)$, i = 1, 2.
- (c) (3 points). Calculer $\rho_{\kappa}(S)$, pour $\kappa = 0.99$.
- (d) (3 points). Appliquer le théorème d'Euler à la mesure $\rho_{\kappa}(S)$ pour calculer les contributions $C_{\kappa}^{\rho}(X_1; S)$ et $C_{\kappa}^{\rho}(X_2; S)$, pour $\kappa = 0.99$. Commenter brièvement.

Solution:

(a) (2 points). Montrer que la fonction

$$\varphi(X_1, X_2,) = \rho_{\kappa}(S) = \rho_{\kappa}(X_1 + X_2)$$

est homogène.

On a

$$\varphi(\lambda X_{1}, \lambda X_{2}) = \rho_{\kappa} (\lambda X_{1} + \lambda X_{2})$$

$$= \rho_{\kappa} (\lambda S)$$

$$= E[\lambda S] + \frac{1}{1 - \kappa} \sqrt{Var(\lambda S)} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}$$

$$= \lambda \left(E[S] + \frac{1}{1 - \kappa} \sqrt{Var(S)} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}\right)$$

$$= \lambda \rho_{\kappa} (S)$$

$$= \lambda \varphi(X_{1}, X_{2}).$$

La fonction (i.e. la mesure) est homogène.

(b) (4 points). Calculer $E[X_i]$ et $Var(X_i)$, i = 1, 2.

$$-E[X_1] = r \frac{1-q}{q} E[B_1] = 0.1 \times \frac{1-\frac{1}{3}}{\frac{1}{3}} \times 10 = 2$$

$$-E[X_{2}] = \lambda E[B_{2}] = 0.2 \times \frac{\alpha}{\beta} = 0.2 \times 10 = 2$$

$$-Var(X_{1}) = 0.1 \times \frac{1 - \frac{1}{3}}{\frac{1}{3}} \times Var(B_{1}) + 0.1 \times \frac{1 - \frac{1}{3}}{\left(\frac{1}{3}\right)^{2}} E[B_{1}]^{2} = 0.2 \times \left(e^{2\left(\ln(10) - \frac{1}{2}\right) + 2 \times 1} - 10^{2}\right) + \frac{0.2}{\left(\frac{1}{3}\right)} \left(10^{2}\right) = 94.365637$$

$$-Var(X_{2}) = \lambda E[B_{2}^{2}] = 0.2 \times \left(\frac{5 \times 6}{\left(\frac{1}{5}\right)^{2}}\right) = 24$$

- (c) (3 points). Calculer $\rho_{\kappa}(S)$, pour $\kappa = 0.99$.
 - $-E[S] = E[X_1] + E[X_2] = 4$
 - $-Var(S) = Var(X_1) + Var(X_2) = 94.365637 + 24.00 = 118.365637$

$$-\rho_{0.99}(S) = 4 + \frac{1}{1 - 0.99} \sqrt{118.365637} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^2}{2}} = 32.964488887$$

(d) (3 points). Appliquer le théorème d'Euler à la mesure $\rho_{\kappa}(S)$ pour calculer les contributions $C_{\kappa}^{\rho}(X_1; S)$ et $C_{\kappa}^{\rho}(X_2; S)$, pour $\kappa = 0.99$. Commenter brièvement. Selon le Théorème d'Euler, on obtient

$$C_{\kappa}^{\rho}(X_{1};S) = E[X_{1}] + \frac{1}{1-\kappa} \frac{Var(X_{1})}{\sqrt{Var(S)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^{2}}{2}}$$

$$= 2 + \frac{1}{1-0.99} \frac{94.365637}{\sqrt{118.365637}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^{2}}{2}}$$

$$= 25.117083973$$

et

$$C_{\kappa}^{\rho}(X_2; S) = E[X_2] + \frac{1}{1 - \kappa} \frac{Var(X_2)}{\sqrt{Var(S)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\left(\Phi^{-1}(\kappa)\right)^2}{2}}$$

$$= 2 + \frac{1}{1 - 0.99} \frac{24}{\sqrt{118.365637}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(2.326348)^2}{2}}$$

$$= 7.87936491507$$

Pour cette mesure, comme $E[X_1] = E[X_2]$ et comme les risques sont indépendants, seules les variances (ou écart-types) permettent de distinguer de façon claire les contributions de chaque risques

- 2. (14 points). Soit les v.a. indépendantes $Y_1 \sim Pareto(1.2, 20)$ et $Y_2 \sim Pareto(1.3, 30)$. (NOTE: REMPLACER 50 PAR 500 ET 30 PAR 300)
 - La v.a. Y_i correspond aux coûts suit à une catastrophe naturelle dans une région i en Amérique du Nord, i = 1, 2, pendant la prochaine année.

Selon des ententes de réassurance, les engagements des réassureurs A et B sont répartis comme suit:

- région 1 : le réassureur A paiera les coûts entre 0 et 50 de la catastrophe; le réassureur B paiera les coûts de la catastrophe en excédant de 50;
- région 2 : le réassureur B paiera les coûts entre 0 et 30 de la catastrophe; le réassureur A paiera les coûts de la catastrophe en excédant de 30.

Définitions:

- v.a. X_1^A : engagements du réassureur A en lien avec la région 1;
- v.a. X_2^A : engagements du réassureur A en lien avec la région 2; v.a. X_1^B : engagements du réassureur B en lien avec la région 1;
- v.a. X_2^B : engagements du réassureur B en lien avec la région 2,

On définit

$$S^A = X_1^A + X_2^A = \text{coûts totaux pour le réassureur A}$$

 $S^B = X_1^B + X_2^B = \text{coûts totaux pour le réassureur B}$

Questions:

- (a) (2 points). Définir les v.a. X_1^A , X_2^A , X_1^B et X_2^B . (b) (6 points). Calculer $E\left[S^B\right]$.
- (c) **(6 points).** On fournit ci-dessous des réalisations $\left(U_1^{(j)}, U_2^{(j)}\right)$ du couple de v.a. i.i.d. (U_1, U_2) $(U_1 \sim U_2 \sim U(0, 1))$ et des réalisations de $\left(Y_1^{(j)}, Y_2^{(j)}\right)$ du couple (Y_1, Y_2) :

j	$U_1^{(j)}$	$U_2^{(j)}$	$Y_1^{(j)}$	$Y_2^{(j)}$
1	0.9765	0.8216		
2			1.6670	399.8622
3			2.5540	39.2601
4			21.2087	30.7173
5			74.5700	5.2724

On utilise la réalisation $U_i^{(j)}$ pour produire la réalisation $Y_i^{(j)}$, i=1,2 et j=1,2,3,4,5. i. Calculer la réalisation $\left(Y_1^{(1)},Y_2^{(1)}\right)$.

- ii. Calculer les réalisations de S^A
- iii. Calculer une approximation $\widetilde{\varphi}$ de $\varphi = VaR_{0.6} (S^A)$.

Solution:

(a) (2 points). Définir les v.a. X_1^A , X_2^A , X_1^B et X_2^B . On a

$$\begin{array}{rcl} X_1^A & = & Y_1 \times \min{(Y_1; 50)} \\ X_1^B & = & \max{(Y_1 - 50; 0)} \\ X_2^A & = & \max{(Y_2 - 30; 0)} \\ X_2^B & = & Y_2 \times \min{(Y_2; 30)} \end{array}$$

(b) (6 points). Calculer $E[S^B]$. On a $Y_1 \sim Pareto(1.2, 20)$ et $Y_2 \sim Pareto(1.3, 30)$ On a

$$S^B = X_1^B + X_2^B$$

On déduit

$$\begin{split} E\left[S^{B}\right] &= E\left[X_{1}^{B}\right] + E\left[X_{2}^{B}\right] \\ &= E\left[\max\left(Y_{1} - 50; 0\right)\right] + E\left[\max\left(Y_{2}; 30\right)\right] \\ &= \frac{20}{1.2 - 1} \left(\frac{20}{20 + 50}\right)^{1.2 - 1} \\ &\quad + \frac{30}{1.3 - 1} \times \left[1 - \left(\frac{30}{30 + 30}\right)^{1.3 - 1}\right] \\ &= 77.837054155 + 18.7747603644 \\ &= 96.6118145194 \end{split}$$

(c) **(6 points).** On fournit ci-dessous des réalisations $\left(U_1^{(j)}, U_2^{(j)}\right)$ du couple de v.a. i.i.d. (U_1, U_2) $(U_1 \sim U_2 \sim U(0, 1))$ et des réalisations de $\left(Y_1^{(j)}, Y_2^{(j)}\right)$ du couple (Y_1, Y_2) :

j	$U_1^{(j)}$	$U_2^{(j)}$	$Y_1^{(j)}$	$Y_2^{(j)}$
1	0.9765	0.8216		
2			1.6670	399.8622
3			2.5540	39.2601
4			21.2087	30.7173
5			74.5700	5.2724

On utilise la réalisation $U_i^{(j)}$ pour produire la réalisation $Y_i^{(j)},\,i=1,2$ et j=1,2,3,4,5.

i. Calculer la réalisation $(Y_1^{(1)}, Y_2^{(1)})$.

On a

$$Y_1^{(1)} = 20 \times \left(\frac{1}{(1 - 0.9765)^{\frac{1}{1.2}}} - 1\right) = 435.484333368$$

et

$$Y_2^{(1)} = 30 \times \left(\frac{1}{(1 - 0.8216)^{\frac{1}{1.3}}} - 1\right) =: 82.9721437770$$

ii. Calculer les réalisations de S^A . On obtient

j	$Y_1^{(j)}$	$Y_2^{(j)}$	$\min\left(Y_1^{(j)}; 50\right)$	$\max\left(Y_2^{(j)} - 30; 0\right)$	$S^{(j)}$
1	435.4843	82.9721	50	52.9721	102.9721
2	1.6670	399.8622	1.6670	369.8622	371.5292
3	2.5540	39.2601	2.5540	9.2601	11.8141
4	21.2087	30.7173	21.2087	0.7173	21.9260
5	74.5700	5.2724	50	0	50

iii. Calculer une approximation $\widetilde{\varphi}$ de $\varphi = VaR_{0.6}\left(S^A\right)$. On obtient $\widetilde{\varphi} = 50$

3. (15 points). On considère un portefeuille de m = 2000 contrats d'assurance discrète temporaire n = 3 ans à des individus d'âge x = 65 ans dont les durées de vie sont i.i.d.

La v.a. $T_{x,i}$ représente la durée de vie de l'assuré i d'âge x, i = 1, 2, ..., m.

La distribution de la v.a. $T_{x,i}$ est modélisée à partir d'une table de mortalité où

$$\ln\left(\frac{q_y}{1-q_y}\right) = -9.9 + 0.09 \times y$$
, pour les âges entiers $y = 40, 41, ..., 90$. (1)

La prestation de décès est de 1000, versée en fin d'année.

La valeur présente des coûts pour le contrat i est représentée par la v.a. Z_i qui est définie en fonction de la v.a. $T_{x,i}$ (i = 1, 2, ..., m).

La v.a. discrète Z_i correspond à la valeur présente des coûts pour le contrat i, et elle définie par

$$Z_i = b \times v^{[T_{x,i}]+1} \times 1_{\{T_{x,i} \leq n\}} = \left\{ \begin{array}{cc} b \times v^{[T_{x,i}]+1} &, \ T_{x,i} \leq n \\ 0 &, \ T_{x,i} > n \end{array} \right.,$$

pour i = 1, 2, ..., m.

Deux hypothèses pour la force d'intérêt δ sont proposées pour calculer les valeurs présentes (actualisées) :

- Hypothèse A : un étudiant du cours Act-2001 H2017, qui jouait frénétiquement avec son téléphone cellulaire pendant les séances en classe, propose d'utiliser une force d'intérêt de 12~%;
- Hypothèse B : une étudiante consciencieuse et attentive du cours Act-2001 H2017, qui laissait sont son téléphone cellulaire en mode avion pendant les séances en classe, propose d'utiliser une force d'intérêt de 2 %.

Pour faire un choix, on dispose des informations suivantes (Source : Banque du Canada) :

Rendements moyens des obligations négociables du gouvernement canadien de plus de 10 ans

On définit la v.a. Z_{PTF} comme étant la valeur présente des coûts pour l'ensemble du porte-feuille où

$$Z_{PTF} = Z_1 + \dots + Z_m.$$

Questions:

- (a) (1 point). Isoler l'expression de q_y , pour y = 40, 41, ..., 90.
- (b) (1.5 points). À partir de (1), calculer les valeurs de $\overline{F}_{T_x}(k)$, pour k=1, 2, 3.
- (c) (1 point). Choisir une seule hypothèse pour la force d'intérêt pour effectuer les calculs en (3d) et (3f). Justifier adéquatement ce choix en 2017.
- (d) (4.5 points). Calculer la prime pure et le revenu total de primes.

- (e) (4 points). Calculer les valeurs espérées des sorties de fonds pour les années 1, 2, 3.
- (f) (3 points). Déterminer les montants qui doivent être investis dans des obligations 0-coupon au temps 0 pour financer les valeurs espérées des sorties de fonds pour les années 1, 2, 3 (voir en (3e)). Les prix des obligations sont calculés en supposant le modèle de taux d'intérêt déterministe (avec force d'intérêt δ). Expliquer brièvement comment le revenu total de primes sera alloué en considérant les montants à investir au temps 0 (qui ont été déterminés en (3e)).

Solutions:

- (a) (1 point). Isoler l'expression de q_y , pour y = 40, 41, ..., 90.
- (b) (1.5 points). À partir de (1), calculer les valeurs de $\overline{F}_{T_x}(k)$, pour $k=1,\,2,\,3$.
- (c) (1 point). Choisir une seule hypothèse pour la force d'intérêt pour effectuer les calculs en (3d) et (3f). Justifier adéquatement ce choix en 2017.
- (d) (4.5 points). Calculer la prime pure et le revenu total de primes.
- (e) (4 points). Calculer les valeurs espérées des sorties de fonds pour les années 1, 2, 3.
- (f) (3 points). Déterminer les montants qui doivent être investis dans des obligations 0-coupon au temps 0 pour financer les valeurs espérées des sorties de fonds pour les années 1, 2, 3 (voir en (3e)). Les prix des obligations sont calculés en supposant le modèle de taux d'intérêt déterministe (avec force d'intérêt δ). Expliquer brièvement comment le revenu total de primes sera alloué en considérant les montants à investir au temps 0 (qui ont été déterminés en (3e)).

4. (10 points). On considère un portefeuille de m contrats de rente discrète temporaire n=3 ans à des individus d'âge x=65 ans dont les durées de vie sont i.i.d.

La v.a. $T_{x,i}$ représente la durée de vie de l'assuré i d'âge x, i = 1, 2, ..., m, qui est modélisée à partir d'une table de mortalité où

$$\ln\left(\frac{q_y}{1-q_y}\right) = -9.9 + 0.09 \times y$$
, pour les âges entiers $y = 40, 41, ..., 90$

La rente g est de 200, versée en début d'année.

La valeur présente des coûts pour le contrat i est représentée par la v.a. Z_i qui est définie selon les deux approches équivalentes comme suit :

approche #1:
$$Z_i = \sum_{k=0}^{n-1} gv^k \times 1_{\{T_{x,i} > k\}};$$

011

approche #2 :
$$Z = g \times \ddot{a}_{\overline{\min([T_{x,i}]+1;n)|}} = \begin{cases} g \times \ddot{a}_{\overline{[T_{x,i}]+1|}} &, T_{x,i} \leq n \\ g \times \ddot{a}_{\overline{n|}} &, T_{x,i} > n \end{cases}$$
.

La v.a. discrète Z_i correspond à la valeur présente des coûts pour le contrat i pour i = 1, 2, ..., m.

Les valeurs présentes (actualisées) sont calculées avec une force d'intérêt δ de 3%.

On définit la v.a. $W_{PTF,m}$ par

$$W_{PTF,m} = \frac{Z_1 + \dots + Z_m}{m}.$$

On définit les primes $\Pi_{m,\kappa}^{VaR} = VaR_{\kappa}\left(W_{PTF,m}\right)$ et $\Pi_{\kappa}^{TVaR} = TVaR_{\kappa}\left(W_{PTF,m}\right)$.

Questions:

- (a) (4 points). Calculer l'espérance et la variance de Z_i (i = 1, 2, ..., m).
- (b) (3 points). Calculer l'espérance et la variance de $W_{PTF,m}$ pour m=400.
- (c) (3 points). Utiliser l'approximation normale pour évaluer approximativement $\Pi_{m,\kappa}^{TVaR}$ pour m=400 et $\kappa=99\%$.

Solution:

- (a) (4 points). Calculer l'espérance et la variance de Z_i (i = 1, 2, ..., m). Espérance :
- (b) (3 points). Calculer l'espérance et la variance de $W_{PTF,m}$ pour m=400.
- (c) (3 points). Utiliser l'approximation normale pour évaluer approximativement $\Pi_{m,\kappa}^{TVaR}$ pour m=400 et $\kappa=99\%$.

5. (10 points). Soit les v.a. X et Y ($E[X] < \infty$, $E[Y] < \infty$) définies sur \mathbb{R} avec les fonctions de répartition F_X et F_Y , quantile F_X^{-1} et F_Y^{-1} , et stop-loss π_X et π_Y . (Note : on ne précise pas si les v.a. X et Y sont discrètes, continues, ou mixtes ; dépendantes ou indépendantes). La définition initiale de la TVaR de X est

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} \int_{\kappa}^{1} VaR_{u}(X) du$$
 , $\kappa \in (0,1)$. (2)

On examine trois preuves de la sous-additivité de la mesure TVaR.

Important : Les deux preuves sont distinctes et elles ne font pas intervenir les mêmes notions.Questions :

- (a) **(6 points). Preuve #1.**
 - i. Démontrer directement à partir de (2) que

$$TVaR_{\kappa}(X) = VaR_{\kappa}(X) + \frac{1}{1-\kappa}\pi_X(VaR_{\kappa}(X))$$
, pour $\kappa \in (0,1)$, (3)

οù

$$\pi_X(x) = E[\max(X - x; 0)]$$
 , pour $x \in \mathbb{R}$.

ii. Soit la fonction convexe

$$\varphi\left(x\right) = x + \frac{1}{1 - \kappa} \pi_X\left(x\right)$$

pour $x \in \mathbb{R}$. Alors, (3) peut être récrit sous la forme

$$TVaR_{\kappa}\left(X\right) = \inf_{x \in \mathbb{R}} \left\{\varphi\left(x\right)\right\} \tag{4}$$

En utilisant de façon astucieuse (3) et (4), démontrer que

$$TVaR_{\kappa}(X+Y) \le TVaR_{\kappa}(X) + TVaR_{\kappa}(Y)$$
 (5)

pour $\kappa \in (0,1)$.

(b) (4 points). Preuve #2. Hypothèse additionnelle : Les v.a. X et Y sont continues. Alors, (2) devient

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa}E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]. \tag{6}$$

pour toute v.a. continue X.

En utilisant de façon astucieuse (6), l'hypothèse de v.a. continues et les fonctions indicatrices, démontrer (5).

6. (8 points). Soit les v.a. indépendantes

$$I_1 \sim Bern(0.3)$$
, $B_1 \sim Gamma(0.5, \frac{1}{200})$, $I_2 \sim Bern(0.2)$, $B_2 \sim Gamma(1.5, \frac{1}{200})$.

Les coûts pour un contrat d'assurance maladie sont définis par la v.a. X où

$$X = I_1 \times B_1 + I_2 \times B_2 \quad .$$

Questions:

- (a) (3 points). Calculer \overline{F}_X (400).
- (b) (3 points). Calculer $E[X \times 1_{\{X>400\}}]$.
- (c) (2 points). Calculer $TVaR_{\kappa}(X)$ où la valeur de κ est telle que $VaR_{\kappa}(X) = 400$. Fournir la valeur de κ .

Solution:

(a) (3 points). Calculer \overline{F}_X (400).

$$\overline{F}_X(400) = 1 - F_X(400)$$

On a

$$F_X(400) = \Pr(I_1 = 0, I_2 = 0)$$

$$+ \Pr(I_1 = 0, I_2 = 1) H\left(400; 1.5, \frac{1}{200}\right)$$

$$+ \Pr(I_1 = 1, I_2 = 0) H\left(400; 0.5, \frac{1}{200}\right)$$

$$+ \Pr(I_1 = 1, I_2 = 1) H\left(400; 2.0, \frac{1}{200}\right)$$

$$= \dots$$

(b) (3 points). Calculer $E\left[X \times 1_{\{X>400\}}\right]$. On a

$$E\left[X \times 1_{\{X>400\}}\right] = \Pr\left(I_{1} = 0, I_{2} = 1\right) E\left[B_{2} \times 1_{\{B_{2}>400\}}\right] + \Pr\left(I_{1} = 1, I_{2} = 0\right) E\left[B_{1} \times 1_{\{B_{1}>400\}}\right] + \Pr\left(I_{1} = 1, I_{2} = 1\right) E\left[\left(B_{1} + B_{2}\right) \times 1_{\{(B_{1} + B_{2})>400\}}\right]$$

Ensuite, on a

$$E\left[X \times 1_{\{X > 400\}}\right] = \Pr(I_1 = 0) \times \Pr(I_2 = 1) \times 400 \times 1.5 \times \overline{H}\left(400; 2.5, \frac{1}{400}\right)$$
$$+ \Pr(I_1 = 1) \times \Pr(I_2 = 0) \times 400 \times 0.5 \times \overline{H}\left(400; 1.5, \frac{1}{400}\right)$$
$$+ \Pr(I_1 = 1) \times \Pr(I_2 = 1) \times 400 \times 2 \times \overline{H}\left(400; 3, \frac{1}{400}\right)$$

On obtient

• • •

(c) (2 points). Calculer $TVaR_{\kappa}(X)$ où la valeur de κ est telle que $VaR_{\kappa}(X)=400$. Fournir la valeur de κ .

On a

$$TVaR_{\kappa}(X) = \frac{1}{1-\kappa} E\left[X \times 1_{\{X > VaR_{\kappa}(X)\}}\right]$$
$$= \frac{1}{\overline{F}_{X}(400)} E\left[X \times 1_{\{X > 400\}}\right]$$

On obtient

$$TVaR_{\kappa}\left(X\right) =...$$

7. (10 points). Soit une v.a. X définie sur \mathbb{R} représentant les pertes pour une compagnie d'assurance avec une fonction de répartition F_X et une fonction quantile F_X^{-1} . (Note : on ne précise pas si la v.a. X est discrète, continues, ou mixte).

Une étudiante et un étudiant, attentifs et consciencieux, du cours ACT-2001 du semestre H2017 ont proposé la mesure de risque ρ_{κ} , où

$$\rho_{\kappa}(X) = \frac{1}{4} VaR_{1-\frac{1}{4}(1-\kappa)}(X) + \frac{2}{4} VaR_{1-\frac{2}{4}(1-\kappa)}(X) + \frac{1}{4} VaR_{1-\frac{3}{4}(1-\kappa)}(X) \quad , \quad \text{pour } \kappa \in [0,1).$$

Questions:

- (a) (1 point). En utilisant les propriétés de la VaR, démontrer que la mesure est invariante à la translation.
- (b) (1 point). En utilisant les propriétés de la VaR, démontrer que la mesure est positive homogène.
- (c) (1 point). En utilisant les propriétés de la VaR, démontrer que la mesure est monotone.
- (d) (7 points). Soit les v.a. indépendantes $X_1 \sim Exp(1)$ et $X_2 \sim Gamma(2,1)$.
 - i. (3 points). Calculer $\rho_0(X_1)$, $\rho_0(X_2)$ et $\rho_0(X_1+X_2)$. Interpréter la mesure.
 - ii. (3 points). Calculer $\rho_{0.9}(X_1)$, $\rho_{0.9}(X_2)$ et $\rho_{0.9}(X_1+X_2)$. Interpréter la mesure.
 - iii. (1 point). Utiliser un seul exemple parmi (7(d)i) et (7(d)ii) à titre de contre-exemple pour déduire que la mesure ρ_{κ} n'est pas sous-additive.

Solution:

(a) (1 point). En utilisant les propriétés de la VaR, démontrer que la mesure est invariante à la translation.

Soit $a \in \mathbb{R}$. Comme la mesure VaR est invariante à la translation, on a

$$\rho_{\kappa}(X+a) = \frac{1}{4} VaR_{1-\frac{1}{4}(1-\kappa)}(X+a) + \frac{2}{4} VaR_{1-\frac{2}{4}(1-\kappa)}(X+a) + \frac{1}{4} VaR_{1-\frac{3}{4}(1-\kappa)}(X+a)$$

$$= \frac{1}{4} \left(VaR_{1-\frac{1}{4}(1-\kappa)}(X) + a \right) + \frac{2}{4} \left(VaR_{1-\frac{2}{4}(1-\kappa)}(X) + a \right) + \frac{1}{4} \left(VaR_{1-\frac{3}{4}(1-\kappa)}(X) + a \right)$$

$$= \frac{1}{4} VaR_{1-\frac{1}{4}(1-\kappa)}(X) + \frac{2}{4} VaR_{1-\frac{2}{4}(1-\kappa)}(X) + \frac{1}{4} VaR_{1-\frac{3}{4}(1-\kappa)}(X) + a$$

$$= \rho_{\kappa}(X) + a$$

(b) (1 point). En utilisant les propriétés de la VaR, démontrer que la mesure est positive homogène.

Soit $c \in \mathbb{R}^+$. Comme la mesure VaR est homogène, on a

$$\begin{array}{ll} \rho_{\kappa}\left(cX\right) & = & \frac{1}{4}VaR_{1-\frac{1}{4}(1-\kappa)}\left(cX\right) + \frac{2}{4}VaR_{1-\frac{2}{4}(1-\kappa)}\left(cX\right) + \frac{1}{4}VaR_{1-\frac{3}{4}(1-\kappa)}\left(cX\right) \\ & = & \frac{1}{4}\left(cVaR_{1-\frac{1}{4}(1-\kappa)}\left(X\right)\right) + \frac{2}{4}\left(cVaR_{1-\frac{2}{4}(1-\kappa)}\left(X\right)\right) + \frac{1}{4}\left(cVaR_{1-\frac{3}{4}(1-\kappa)}\left(X\right)\right) \\ & = & c\times\left(\frac{1}{4}VaR_{1-\frac{1}{4}(1-\kappa)}\left(X\right) + \frac{2}{4}VaR_{1-\frac{2}{4}(1-\kappa)}\left(X\right) + \frac{1}{4}VaR_{1-\frac{3}{4}(1-\kappa)}\left(X\right)\right) \\ & = & c\times\rho_{\kappa}\left(X\right) \end{array}$$

(c) (1 point). En utilisant les propriétés de la VaR, démontrer que la mesure est monotone. Soit X et Y tq $\Pr(X \leq Y) = 1$. Alors, on a

$$VaR_{\kappa}(X) \leq VaR_{\kappa}(Y)$$
.

On applique

$$\rho_{\kappa}(X) = \frac{1}{4} V a R_{1-\frac{1}{4}(1-\kappa)}(X) + \frac{2}{4} V a R_{1-\frac{2}{4}(1-\kappa)}(X) + \frac{1}{4} V a R_{1-\frac{3}{4}(1-\kappa)}(X)
\leq \frac{1}{4} V a R_{1-\frac{1}{4}(1-\kappa)}(Y) + \frac{2}{4} V a R_{1-\frac{2}{4}(1-\kappa)}(Y) + \frac{1}{4} V a R_{1-\frac{3}{4}(1-\kappa)}(Y)
= \rho_{\kappa}(Y)$$

pour tout $\kappa \in (0,1)$

- (d) (7 points). Soit les v.a. indépendantes $X_1 \sim Exp(1)$ et $X_2 \sim Gamma(2,1)$.
 - i. (3 points). Calculer $\rho_0(X_1)$, $\rho_0(X_2)$ et $\rho_0(X_1 + X_2)$. Interpréter la mesure. On obtient : 0.7650677; 1.752652; 2.748956
 - ii. (3 points). Calculer $\rho_{0.9}(X_1)$, $\rho_{0.9}(X_2)$ et $\rho_{0.9}(X_1 + X_2)$. Interpréter la mesure. On obtient : 3.067653 ; 4.826878 ; 6.387312
 - iii. (1 point). Utiliser un seul exemple parmi (7(d)i) et (7(d)ii) à titre de contre-exemple pour déduire que la mesure ρ_{κ} n'est pas sous-additive.

On observe : $\rho_0(X_1) + \rho_0(X_2) = 2.51772 \le \rho_0(X_1 + X_2) = 2.748956 = \text{contre-exemple}$

⇒la mesure n'est pas sous-additive.

8. (10 points). Soit les v.a. i.i.d. $X_1, ..., X_n$ avec

$$X_i \sim BNComp\left(r, q; F_C\right)$$
,

où $r = 2.5, q = \frac{1}{3}, C \sim Pareto(\alpha = 1.5, \lambda = 5), \text{ pour } i = 1, 2, ..., n.$ On définit $S_n = \sum_{i=1}^n X_i$ et $W_n = \frac{1}{n} S_n$.

On ne peut pas identifier une forme explicite pour F_{W_n} .

Parmi les deux méthodes proposées, on choisit une **seule** méthode appropriée pour approximer F_{W_n} :

- méthode #1 approximation basée sur la loi normale;
- méthode #2 approximation basée sur la loi du montant de sinistre maximal.

Note : les méthodes ne sont pas utilisées deux fois dans ce numéro.

Questions:

- (a) (2 points). Calculez la valeur de $E[W_n]$.
- (b) (4 points). Démontrez que la part allouée W_n tend (en distribution) vers la v.a. Z où $Pr(Z = E[W_n]) = 1$.

(Note: il faut démontrer le résultat qui permet d'obtenir cette conclusion).

(c) (4 points). La prime pour un contrat du portefeuille est

$$\Pi_{\kappa,n}\left(X\right) = VaR_{\kappa}\left(W_{n}\right).$$

Pour $\kappa = 0.95$ et n = 200, évaluez approximativement $VaR_{\kappa}(W_n)$ en utilisant une seule des 2 méthodes proposées.

Précisez pourquoi vous pouvez prendre la méthode choisie et pourquoi vous ne pouvez pas prendre l'autre méthode (non-choisie).

Solution:

(a) (2 points). Calculer la valeur de $E[W_n]$. où $r=2.5, q=\frac{1}{3}, C \sim Pareto$ ($\alpha=1.5, \lambda=5$), pour i=1,2,...,n. On a

$$E[W_n] = E[X_1]$$

$$= 2.5 \times 2 \times \frac{5}{1.5 - 1}$$

$$= 50$$

(b) (4 points). Démontrer que la part allouée W_n tend (en distribution) vers $E[W_n]$. (Note: il faut démontrer le résultat qui permet d'obtenir cette conclusion). We define

$$W_n = \frac{X_1 + \dots + X_n}{n}$$

where

$$L_{W_{n}}\left(t
ight) =L_{X}\left(rac{t}{n}
ight) .$$

Near the origin, we have

$$L_X(t) = 1 - \mu t + o(t).$$

It implies that

$$\lim_{n \to \infty} L_{W_n}(t) = \lim_{n \to \infty} \left(1 - \mu \frac{t}{n}\right)^n$$
$$= e^{-\mu t}$$
$$= L_Z(t),$$

where the rv Z is defined such that

$$\Pr(Z = \mu) = 1.$$

Then, we conclude that W_n converges in distribution to the rv Z i.e.

$$W_n \stackrel{d}{\to} Z$$
.

We have proven Khinchine's version of the weak law of large numbers.

The proof requires the rvs $X_1, X_2, ...$ to be positive.

(c) (4 points). La prime pour un contrat du portefeuille est

$$\Pi_{\kappa,n}(X) = VaR_{\kappa}(W_n).$$

Pour $\kappa = 0.99$ et n = 100, évaluer approximativement $VaR_{\kappa}(W_n)$ en utilisant une seule des 2 méthodes proposées. Justifier brièvement votre choix.

On ne peut pas prendre la méthode #1, car elle est applicable si l'espérance et la variance de X existent, ce qui n'est pas le cas.

On applique la méthode #2 car elle est appropriée quand le montant de sinistre est de loi Pareto.

On propose d'approximer S_n par la v.a. V_n $(W_n = \frac{S_n}{n}, \text{ par } \frac{V_n}{n})$ et qui représente le montant maximal de sinistre pour l'ensemble du portefeuille.

Solution:

(a) On a

$$S_n \sim BNComp\left(nr, q; F_C\right)$$

On a

$$N_n \sim BN(nr,q)$$

On

$$F_{S_n}(x) \simeq F_{V_n}(x)$$

οù

$$F_{V_n}(x) = \dots$$

$$= P_{N_n}(F_B(x))$$

$$= \left(\frac{q}{1 - (1 - q)F_B(x)}\right)^{nr}$$

On observe

$$\kappa = \left(\frac{q}{1 - (1 - q)F_B(x)}\right)^{nr}$$

qui devient

$$\frac{q}{\kappa^{\frac{1}{nr}}} = 1 - (1 - q) F_C(x)$$

On obtient

$$F_{V_n}^{-1}(\kappa) = F_B^{-1} \left(\frac{1 - \frac{q}{\frac{1}{\kappa n r}}}{1 - q} \right)$$

$$= \lambda \left(\frac{1}{\left(1 - \frac{1 - \frac{q}{\frac{1}{n r}}}{1 - q}\right)^{\frac{1}{\alpha}}} - 1 \right)$$

Comme $r = 1.5, q = \frac{1}{3}, C \sim Pareto(\alpha = 1.5, \lambda = 5),$ on obtient

$$VaR_{\kappa}(S_n) \simeq VaR_{\kappa}(V_n)$$

$$= F_V^{-1}(\kappa)$$

$$= 5 \left(\frac{1}{\left(1 - \frac{1 - \frac{1}{3}}{0.99 \frac{250}{1 - \frac{1}{3}}}\right)^{\frac{1}{1.5}}} - 1 \right)$$

$$= 6758.276417$$

Alors, on a

$$VaR_{\kappa}(W_n) = \frac{1}{n}VaR_{\kappa}(S_n)$$

$$\simeq \frac{1}{n}VaR_{\kappa}(V_n)$$

$$= \frac{1}{100}6758.276417$$

$$= 67.58276417$$

9. (12 points). Soit un investissement d'un montant V(0) = 1000 effectué au début de la période.

La valeur de l'investissement à la fin de la période est définie par la v.a. $V\left(1\right)$ où

$$V(1) = V(0) \times e^R,$$

La v.a. R est une v.a. continue obéissant à une loi **symétrique** par rapport à μ avec

$$F_R(x) = \begin{cases} \frac{1}{2} e^{\frac{(x-\mu)}{\sigma}} &, & x < \mu \\ 1 - \frac{1}{2} e^{-\frac{(x-\mu)}{\sigma}} &, & x > \mu \end{cases}$$

et

$$E\left[R\right] = \mu, \quad Var\left(R\right) = 2\sigma^2, \quad M_R\left(t\right) = \frac{\mathrm{e}^{\mu t}}{1 - \sigma^2 t^2} \quad \left(-\frac{1}{\sigma} < t < \frac{1}{\sigma}\right).$$

On définit la perte liée à cet investissement par la v.a.

$$L = V(0) - V(1)$$
.

Hypothèses : $\mu = 0.08$ et $\sigma = 0.2$.

Questions:

- (a) (2 points). Calculer $F_L(0)$.
- (b) (5 points). Calculer $VaR_{0.1}(L)$, $VaR_{0.5}(L)$, $VaR_{0.9}(L)$. Mentionner clairement les propriétés des mesures de risque utilées pour effectuer vos calculs.
- (c) (5 points). Calculer E[L] et $\sqrt{Var(L)}$.

Solutions:

(a) (2 points). Calculer $F_L(0)$.

$$F_L(0) = \Pr(V(0) - V(1) \le 0)$$

= $\Pr(V(1) > V(0))$
= $\Pr(\exp(R) > 1)$

qui devient

$$\Pr(R > 0) = 1 - F_R(0)$$
.

On obtient

$$F_L(0) = \frac{1}{2} e^{\frac{(0-\mu)}{\sigma}} = \frac{1}{2} e^{\frac{-0.08}{0.2}} = 0.335160023018$$

Finalement,

$$F_L(0) = 1 - 0.335160023018$$

= 0.664839976982

(b) (5 points). Calculer $VaR_{0.1}(L)$, $VaR_{0.5}(L)$, $VaR_{0.9}(L)$. Mentionner clairement les propriétés des mesures de risque utilées pour effectuer vos calculs.

On a

$$\begin{array}{lll} VaR_{\kappa}\left(L\right) & = & VaR_{\kappa}\left(V\left(0\right) - V\left(1\right)\right) \\ & = & V\left(0\right) + VaR_{\kappa}\left(-V\left(1\right)\right) & \text{(invariante à la translation)} \\ & = & V\left(0\right) + V\left(0\right) \times VaR_{\kappa}\left(-\mathrm{e}^{R}\right) & \text{(homogène)} \\ & = & V\left(0\right) - V\left(0\right) \times VaR_{1-\kappa}\left(\mathrm{e}^{R}\right) & \text{(transformation décroissante)} \\ & = & V\left(0\right) - V\left(0\right) \times \mathrm{e}^{VaR_{1-\kappa}\left(R\right)} & \text{(transformation croissante)} \end{array}$$

On a

$$F_R(x) = \begin{cases} \frac{1}{2} e^{\frac{(x-\mu)}{\sigma}} &, & x < \mu \\ 1 - \frac{1}{2} e^{-\frac{(x-\mu)}{\sigma}} &, & x > \mu \end{cases}$$

On calcule

$$VaR_{0.1}(R) = \mu + \sigma \ln(2 \times \kappa) = 0.08 + 0.2 \times \ln(0.2) = -0.241\,887\,582\,487$$

$$VaR_{0.5}(R) = \mu = 0.08$$

$$VaR_{0.9}(R) = \mu - \sigma \ln(2 \times (1 - \kappa)) = 0.08 - 0.2 \times \ln(2 \times 0.1) = 0.401\,887\,582\,487$$

On obtient

$$VaR_{0.1}(L) = 1000 \times (1 - e^{0.401887582487}) = -494.643299149$$

 $VaR_{0.1}(L) = 1000 \times (1 - e^{0.08}) = -83.2870676750$
 $VaR_{0.1}(L) = 1000 \times (1 - e^{-0.241887582487}) = 214.855563424$

(c) (5 points). Calculer E[L] et $\sqrt{Var(L)}$.

On a besoin

$$M_X\left(t\right) = rac{\mathrm{e}^{\mu t}}{1 - \sigma^2 t^2} = E\left[\mathrm{e}^{Rt}\right]$$

On a obtient

$$E[L] = 1000 - 1000 \times E[e^{R}]$$

$$= 1000 \times \left(1 - \frac{e^{\mu}}{1 - \sigma^{2}1}\right)$$

$$= 1000 \times \left(1 - \frac{e^{0.08}}{1 - 0.2^{2}}\right)$$

$$= -128.424028828$$

On a

$$\begin{split} \sqrt{Var\left(L\right)} &= 1000 \sqrt{Var\left(e^{R}\right)} \\ &= 1000 \sqrt{E\left[e^{2R}\right] - E\left[e^{R}\right]^{2}} \\ &= 1000 \times \sqrt{\frac{e^{0.08 \times 2}}{1 - 0.2 \times 2^{2}} - \left(\frac{e^{0.08}}{1 - 0.2^{2}}\right)^{2}} \\ &= 2143.41166511 \end{split}$$

10. (8 points).

Le nombre de sinistres pour un contrat d'assurance IARD sont définis par la v.a. M. Soit la v.a. d'hétérogénéité $\Theta \sim LNorm\left(\mu = -\frac{1}{2}\sigma^2, \sigma = 1\right)$. Sachant $\Theta = \theta$, on a

$$(M|\Theta=\theta) \sim Pois(\lambda\theta)$$

avec $\lambda = 0.2$.

Questions:

- (a) (2 points). Calculer l'espérance et la variance du nombre de sinistre pour le contrat.
- (b) (4 points). Évaluation de $\varphi = \Pr(M = 0)$:
 - i. Écrire $\varphi = \Pr(M = 0)$ sous la forme d'une espérance.
 - ii. Soit les réalisations suivantes $W^{(j)}$ (j=1,2,3) de la v.a. $W \sim Norm(0,1)$:

$$0.4$$
; -1.1 ; 3.2 .

Utiliser ces réalisations pour calculer une approximation $\widetilde{\varphi}$ de φ .

(c) (2 points). Soit une v.a. Y dont l'espérance et la variance existent. Une variante de l'inégalité de Chebychev, due à l'actuaire italien Cantelli, est donnée par

$$\Pr(Y - E[Y] > x) \le \frac{Var(Y)}{Var(Y) + x^2}.$$

Utiliser cette inégalité pour calculer une borne à $Pr(M \ge 4)$.

Solution:

(a) (2 points). Calculer l'espérance et la variance du nombre de sinistre pour le contrat. On sait

$$\Theta \sim LNorm\left(\mu = -\frac{1}{2}\sigma^2, \sigma = 1\right)$$

On a

$$E[M] = E_{\Theta}[E[M|\Theta]]$$

$$= E[\lambda \times \Theta]$$

$$= \lambda \times E[\Theta]$$

$$= \lambda = 0.2$$

On a

$$Var(M) = Var_{\Theta}(E[M|\Theta]) + E_{\Theta}[Var(M|\Theta)]$$

= $\lambda^{2}Var(\Theta) + \lambda E[\Theta]$
= $0.04 \times (\exp(-1+2) - \exp(-1+1)) + 0.2 \times 1$
= 0.268731273138

- (b) (4 points). Évaluation de $\varphi = \Pr(M = 0)$:
 - i. Écrire $\varphi = \Pr(M = 0)$ sous la forme d'une espérance.

On a

$$\varphi = \Pr(M = 0)$$

$$= E_{\Theta} \left[\Pr(M = 0 | \Theta) \right]$$

$$= E \left[e^{-\Theta \lambda} \right]$$

ii. Soit les réalisations suivantes $W^{(j)}$ (j=1,2,3) de la v.a. $W \sim Norm\left(0,1\right)$:

$$0.4$$
; -1.1 ; 3.2 .

Utiliser ces réalisations pour calculer une approximation $\widetilde{\varphi}$ de φ . On a

$$\widetilde{\varphi} = \frac{1}{3} \sum_{j=1}^{3} e^{-\Theta^{(j)} \lambda}$$

$$= \frac{1}{3} \left(e^{-0.2 \times e^{-\frac{1}{2} + 1 \times 0.4}} + e^{-0.2 \times e^{-\frac{1}{2} - 1 \times 1.1}} + e^{-0.2 \times e^{-\frac{1}{2} + 1 \times 3.2}} \right)$$

$$= 0.615295572568$$

(c) (2 points). Soit une v.a. Y dont l'espérance et la variance existent. Une variante de l'inégalité de Chebychev, due à l'actuaire italien Cantelli, est donnée par

$$\Pr(Y - E[Y] > x) \le \frac{Var(Y)}{Var(Y) + x^2}.$$

Utiliser cette inégalité pour calculer une borne à $\Pr(M \ge 4)$. On a

$$\Pr(M - E[Y] \ge 4 - E[Y]) \le \frac{Var(M)}{Var(M) + (4 - E[Y])^2}$$

$$= \frac{0.268731273138}{0.268731273138 + (4 - 0.2)^2}$$

$$= 0.01827018715$$

11. (8 points). Deux questions distinctes.

(a) (4 points). On rappelle l'énoncé du Théorème d'Euler :

Théorème d'Euler. Soit $\varphi(x_1,...,x_n)$ une fonction définie sur \mathbb{R}^n avec valeur dans \mathbb{R} , que l'on suppose différentiable en tout point. Si la fonction φ est (positivement) homogène de degré m, alors on a

$$m\varphi(x_1,...,x_n) = \sum_{i=1}^{n} x_i \frac{\partial \varphi}{\partial x_i}(x_1,...,x_n)$$

pour tout $(x_1, ..., x_n) \in \mathbb{R}^n$.

Question: Démontrer le théorème.

(b) (4 points). On considère un contrat d'assurance continue vie entière émis à un assuré d'âge x = 40.

La v.a. T_x représentant la durée de vie d'un assuré d'âge x obéit à une loi Gompertz avec

$$F_{T_x}(t) = 1 - e^{-\frac{\beta}{\gamma}e^{\gamma x}\left(e^{\gamma t} - 1\right)},$$

où $\beta=0.00004$ et $\gamma=\ln{(1.1)}$. Voir en **annexe** des valeurs pertinentes pour cette question.

La prestation b = 2000 est versée au décès.

On utilise une force d'intérêt δ de 4% pour effectuer les calculs.

La valeur présente des coûts pour le contrat est définie par la v.a. Z où

$$Z = b \times v^{T_x} \quad , \quad T_x > 0.$$

Questions:

i. Calculer E[Z].

ii. Calculer $\Pr\left(Z \leq \frac{b}{2}\right) = \Pr\left(T_x \in \Omega\right)$. Préciser quel est l'ensemble Ω .

Rappel pour la notation actuarielle:

$$\overline{A}_{x} = \int_{0}^{\infty} e^{-\delta t} \times f_{T_{x}}(t) dt \quad \text{et} \quad \overline{a}_{x} = \int_{0}^{\infty} \overline{a_{\overline{t}|}} \times f_{T_{x}}(t) dt = \int_{0}^{\infty} e^{-\delta t} \times \overline{F}_{T_{x}}(t) dt.$$

Solution:

(a) (4 points). Question: Démontrer le théorème.

Si $\varphi(x_1,...,x_n)$ est homogène d'ordre m, on sait que

$$\varphi(\lambda x_1, ..., \lambda x_n) = \lambda^m \varphi(x_1, ..., \lambda_n)$$
(7)

pour tout $\lambda > 0$. On dérive de part d'autre par rapport à λ et on pose $\lambda = 1$. Du côté

gauche de l'égalité en (7), on a

$$\frac{d\varphi(\lambda x_1, ..., \lambda x_n)}{d\lambda} \Big|_{\lambda=1} = \sum_{i=1}^n \frac{\partial \varphi(\lambda x_1, ..., \lambda x_n)}{\partial (\lambda x_i)} \times \frac{\partial (\lambda x_i)}{\partial \lambda} \Big|_{\lambda=1}$$

$$= \sum_{i=1}^n \frac{\partial \varphi(\lambda x_1, ..., \lambda x_n)}{\partial (\lambda x_i)} \times x_i \Big|_{\lambda=1}$$

$$= \sum_{i=1}^n \frac{\partial \varphi(x_1, ..., x_n)}{\partial x_i} \times x_i.$$

Ensuite, pour le côté droit de l'égalité en (7), on a

$$\frac{d(\lambda^{m}\varphi(x_{1},...,x_{n}))}{d\lambda}\bigg|_{\lambda=1} = m\lambda^{m-1}\varphi(x_{1},...,x_{n})\bigg|_{\lambda=1}$$
$$= m\varphi(x_{1},...,x_{n}).$$

(b) (4 points). Questions:

i. Calculer E[Z]. On a

$$E[Z] = 2000 \times \overline{A}_{40} = \dots$$

ii. Calculer $\Pr\left(Z \leq \frac{b}{2}\right) = \Pr\left(T_x \in \Omega\right)$. Préciser quel est l'ensemble Ω . On a

$$\Pr\left(Z \le \frac{b}{2}\right) = \Pr\left(T_x > \tau_{\frac{b}{2}}\right)$$
$$= \Pr\left(T_x \in \Omega\right)$$

On déduit

$$\Omega = \left(\tau_{\frac{b}{2}}, \infty\right)$$

On calculer

$$au_{rac{b}{2}} = -rac{1}{0.04} \ln\left(rac{1}{2}
ight) =: 17.328\,679\,514\,0$$

On obtient

$$\Pr\left(Z \le \frac{b}{2}\right) = \Pr\left(T_x > \tau_{\frac{b}{2}}\right)$$

$$= \Pr\left(T_x > 17.3286795140\right)$$

$$=$$

Rappel pour la notation actuarielle :

$$\overline{A}_x = \int_0^\infty e^{-\delta t} \times f_{T_x}(t) dt$$
 et $\overline{a}_x = \int_0^\infty \overline{a}_{\overline{t}|} \times f_{T_x}(t) dt = \int_0^\infty e^{-\delta t} \times \overline{F}_{T_x}(t) dt$.

12. (10 points). Soit une v.a. X dont la fgm $M_X(t)$ existe pour $0 < t < t^*$, où $t^* < \infty$ ou $t^* = \infty$.

L'inégalité suivante est obtenue à partir de l'inégalité de Markov :

$$\overline{F}_X(x) = \Pr(X > x) \le e^{-tx} M_X(t), \tag{8}$$

pour t > 0.

On fixe $\kappa \in (0,1)$.

Questions:

(a) (2 points). Utiliser l'inégalité en (8) pour démontrer que

$$VaR_{\kappa}\left(X\right) \leq \varphi_{\kappa}\left(t\right) = \frac{1}{t}\ln\left(\frac{M_{X}\left(t\right)}{1-\kappa}\right),$$

pour $0 < t < t^*$.

Suggestion : poser $\overline{F}_X(x) = 1 - \kappa$ et isoler x (qui se trouve dans la borne).

On précise que $\varphi_{\kappa}(t)$ est convexe pour $0 < t < t^*$.

- (b) (4 points). Soit $X \sim Norm(\mu, \sigma^2)$. On définit $\varphi_{\kappa}(t) = \frac{1}{t} \ln\left(\frac{M_X(t)}{1-\kappa}\right), t > 0$.
 - i. Identifier l'expression de $\varphi_{\kappa}\left(t\right)$ selon ces hypothèses.
 - ii. Identifier $t_{\kappa} \in (0,1)$ où

$$t_{\kappa} = \underset{t>0}{\operatorname{arg\,min}} \varphi_{\kappa}\left(t\right),$$

i.e. trouver l'expression du t>0 qui minimise la fonction φ_{κ} .

iii. On définit la mesure de risque ρ_{κ} par

$$\rho_{\kappa}(X) = \varphi_{\kappa}(t_{\kappa}).$$

Démontrer que

$$\rho_{\kappa}(X) = \mu + \sigma \sqrt{-2\ln(1-\kappa)}.$$

- (c) **(4 points).** Soit $X \sim PoisComp(\lambda = 1, B)$ avec $B \sim Exp(1)$. On définit $\varphi_{\kappa}(t) = \frac{1}{t} \ln\left(\frac{M_X(t)}{1-\kappa}\right)$, 0 < t < 1.
 - i. Identifier l'expression de $\varphi_{\kappa}(t)$ selon ces hypothèses.
 - ii. Identifier $t_{\kappa} \in (0,1)$ où

$$t_{\kappa} = \underset{t \in (0,1)}{\arg\min} \varphi_{\kappa} \left(t \right)$$

i.e. trouver l'expression du t qui minimise la fonction φ_{κ} sur l'intervalle ouvert (0,1).

iii. On définit la mesure de risque ρ_{κ} par

$$\rho_{\kappa}(X) = \varphi_{\kappa}(t_{\kappa}).$$

Calculer $\rho_{0.9}(X)$.

Solutions:

(a) (2 points). Utiliser l'inégalité en (8) pour démontrer que

$$VaR_{\kappa}(X) \le \varphi_{\kappa}(t) = \frac{1}{t} \ln \left(\frac{M_X(t)}{1 - \kappa} \right),$$

pour $0 < t < t^*$.

Suggestion: poser $\overline{F}_X(x) = 1 - \kappa$ et isoler x (qui se trouve dans la borne).

On précise que $\varphi_{\kappa}\left(t\right)$ est convexe pour $0 < t < t^{*}.$

On a

$$\overline{F}_X(x) = \Pr(X > x) = 1 - \kappa \le e^{-tx} M_X(t)$$

On isole x

$$e^{-tx} \ge \frac{1 - \kappa}{M_X(t)}$$

et on trouve

$$x \le -\frac{1}{t} \ln \left(\frac{1-\kappa}{M_X(t)} \right) = \frac{1}{t} \ln \left(\frac{M_X(t)}{1-\kappa} \right)$$

On obtient le résultat souhaité:

$$VaR_{\kappa}(X) \leq \varphi_{\kappa}(t) = \frac{1}{t} \ln \left(\frac{M_X(t)}{1-\kappa} \right),$$

- (b) (4 points). Soit $X \sim Norm\left(\mu, \sigma^2\right)$. On définit $\varphi_{\kappa}\left(t\right) = \frac{1}{t}\ln\left(\frac{M_X(t)}{1-\kappa}\right), t > 0$.
 - i. Identifier l'expression de $\varphi_{\kappa}(t)$ selon ces hypothèses.

$$\varphi_{\kappa}(t) = \frac{1}{t} \left(\ln \left(e^{\mu t + \frac{1}{2}\sigma^2 t^2} \right) - \ln \left(1 - \kappa \right) \right)$$

$$= \frac{\mu t + \frac{1}{2}\sigma^2 t^2}{t} - \frac{\ln \left(1 - \kappa \right)}{t}$$

$$= \mu + \frac{1}{2}\sigma^2 t - \frac{\ln \left(1 - \kappa \right)}{t}$$

ii. Identifier $t_{\kappa} \in (0,1)$ où

$$t_{\kappa} = \underset{t>0}{\operatorname{arg\,min}} \varphi_{\kappa}\left(t\right),$$

i.e. trouver l'expression du t>0 qui minimise la fonction $\varphi_\kappa.$

On identifier $\varphi'(t)$:

$$\varphi'(t) = \frac{1}{2}\sigma^2 + \frac{\ln(1-\kappa)}{t^2} = 0.$$

On obtient

$$t_{\kappa} = \frac{1}{\sigma} \sqrt{-2\ln\left(1 - \kappa\right)}.$$

iii. On définit la mesure de risque ρ_{κ} par

$$\rho_{\kappa}(X) = \varphi_{\kappa}(t_{\kappa}).$$

Démontrer que

$$\rho_{\kappa}(X) = \mu + \sigma \sqrt{-2\ln(1-\kappa)}.$$

On remplace t_{κ} dans $\varphi_{\kappa}(t)$:

$$\begin{split} \rho_{\kappa}\left(X\right) &= \varphi_{\kappa}\left(t_{\kappa}\right) \\ &= \mu + \frac{1}{2}\sigma^{2}t_{\kappa} - \frac{\ln\left(1-\kappa\right)}{t_{\kappa}} \\ &= \mu + \frac{1}{2}\sigma^{2}\frac{1}{\sigma}\sqrt{-2\ln\left(1-\kappa\right)} - \frac{\ln\left(1-\kappa\right)}{\frac{1}{\sigma}\sqrt{-2\ln\left(1-\kappa\right)}} \\ &= \mu + \frac{1}{\sqrt{2}}\sigma\sqrt{-\ln\left(1-\kappa\right)} + \sigma\frac{1}{\sqrt{2}}\sqrt{-\ln\left(1-\kappa\right)} \\ &= \mu + \frac{2}{\sqrt{2}}\sigma\sqrt{-\ln\left(1-\kappa\right)} \\ &= \mu + \sigma\sqrt{-2\ln\left(1-\kappa\right)} \end{split}$$

- (c) **(4 points).** Soit $X \sim PoisComp(\lambda = 1, B)$ avec $B \sim Exp(1)$. On définit $\varphi_{\kappa}(t) = \frac{1}{t} \ln\left(\frac{M_X(t)}{1-\kappa}\right)$, 0 < t < 1.
 - i. Identifier l'expression de $\varphi_{\kappa}(t)$ selon ces hypothèses.

$$\varphi_{\kappa}(t) = \frac{1}{t} \left(\ln \left(e^{\lambda(M_B(t) - 1)} \right) - \ln \left(1 - \kappa \right) \right)$$

$$= \frac{\lambda \left(M_B(t) - 1 \right)}{t} - \frac{\ln \left(1 - \kappa \right)}{t}$$

$$= \frac{\lambda M_B(t) - 1 - \ln \left(1 - \kappa \right)}{t}$$

avec

$$M_B\left(t\right) = \frac{1}{1-t}.$$

ii. Identifier $t_{\kappa} \in (0,1)$ où

$$t_{\kappa} = \underset{t \in (0,1)}{\operatorname{arg\,min}} \varphi_{\kappa}\left(t\right)$$

i.e. trouver l'expression du t qui minimise la fonction φ_{κ} sur l'intervalle ouvert (0,1). On dérive

$$\varphi'(t) = \frac{1}{t} \lambda M_B'(t) - \frac{1}{t^2} \left(\lambda M_B(t) - 1 - \ln(1 - \kappa)\right)$$

On cherche t tel que

$$\varphi \prime (t) = 0.$$

On a

$$\lambda t M_B'(t) - (\lambda M_B(t) - 1 - \ln(1 - \kappa)) = 0$$

L'expression devient

$$\lambda t \frac{1}{(1-t)^2} - \left(\lambda \frac{1}{1-t} - 1 - \ln(1-\kappa)\right) = 0$$
$$\lambda t - \left(\lambda (1-t) - (1-t)^2 - (1-t)^2 \ln(1-\kappa)\right) = 0$$

On pose

$$u = 1 - t$$
.

On a

$$\lambda (1 - u) - (\lambda u - u^2 - u^2 \ln (1 - \kappa)) = 0$$
$$(1 + \ln (1 - \kappa)) u^2 - 2\lambda u + \lambda = 0$$

On obtient

$$t_{\kappa} = 1 - \frac{2\lambda - \sqrt{4\lambda^2 - 4\lambda \left(1 + \ln\left(1 - \kappa\right)\right)}}{2 \times \left(1 + \ln\left(1 - \kappa\right)\right)}$$
$$= 1 - \frac{\lambda - \sqrt{\lambda^2 - \lambda \left(1 + \ln\left(1 - \kappa\right)\right)}}{2 \times \left(1 + \ln\left(1 - \kappa\right)\right)}$$

iii. On définit la mesure de risque ρ_{κ} par

$$\rho_{\kappa}(X) = \varphi_{\kappa}(t_{\kappa}).$$

Calculer $\rho_{0.9}(X)$.

On calcule

$$t_{0.9} = 1 - \frac{1 - \sqrt{1 - (1 + \ln(1 - 0.9))}}{2 \times (1 + \ln(1 - 0.9))} = 0.801384519074$$

On obtient

$$\begin{split} \rho_{0.9}\left(X\right) &= \varphi_{\kappa}\left(t_{0.9}\right) \\ &= \frac{\lambda M_B\left(t_{0.9}\right) - 1 - \ln\left(1 - 0.9\right)}{t_{0.9}} \\ &= \frac{\lambda \frac{1}{1 - t_{0.9}} - 1 - \ln\left(1 - 0.9\right)}{t_{0.9}} \\ &= \frac{\frac{1}{1 - 0.801384519074} - 1 - \ln\left(1 - 0.9\right)}{0.801384519074} \\ &= 7.90811302307 \end{split}$$

FIN