Tema 8

3.1. Conceptos básicos

En este capítulo continuamos con el estudio de las sucesiones empezado en el capítulo anterior. La novedad es que ahora vamos a considerar un tipo *particular* de sucesiones que, sin exagerar, puede afirmarse que son las más útiles del Análisis. Estas sucesiones se llaman *series*.

En lo que sigue vamos a considerar sucesiones de números reales por lo que evitaremos esa innecesaria precisión.

3.1 Definición. Dada una sucesión $\{a_n\}$, podemos formar a partir de ella otra sucesión, $\{A_n\}$, cuyos términos se obtienen *sumando consecutivamente* los términos de $\{a_n\}$, es decir:

$$A_1 = a_1, A_2 = a_1 + a_2, A_3 = a_1 + a_2 + a_3, \dots, A_n = a_1 + a_2 + \dots + a_n, \dots$$

o, si te gusta más, $A_1 = a_1$ y, para todo $n \in \mathbb{N}$, $A_{n+1} = A_n + a_{n+1}$. La sucesión $\{A_n\}$ así definida se llama serie de término general a_n o serie definida por la sucesión $\{a_n\}$, y la representaremos por $\sum_{n \geqslant 1} a_n$ o, más sencillamente, $\sum a_n$. El número $A_n = \sum_{k=1}^n a_k$ se llama suma parcial de orden n de la serie $\sum a_n$.

Debe quedar claro desde ahora que una serie es una sucesión cuyos términos se obtienen sumando consecutivamente los términos de otra sucesión. Ni que decir tiene que, siendo las series sucesiones, los conceptos y resultados vistos para sucesiones conservan su misma significación cuando se aplican a series. En particular, es innecesario volver a definir qué se entiende cuando se dice que una serie es "acotada", "convergente" o "positivamente divergente".

Si una serie $\sum a_n$ es convergente se usa el símbolo $\sum_{n=1}^{\infty} a_n$ para representar el *límite de la serie* que suele llamarse *suma de la serie*. Naturalmente, $\sum_{n=1}^{\infty} a_n$ es el número definido por:

$$\sum_{n=1}^{\infty} a_n = \lim \{A_n\} = \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

La igualdad $\sum_{n=1}^{\infty} a_n = S$ quiere decir que para todo $\varepsilon > 0$, hay un $m_{\varepsilon} \in \mathbb{N}$ tal que para todo $n \ge m_{\varepsilon}$ se verifica que $\left| \sum_{k=1}^{n} a_k - S \right| < \varepsilon$.

3.3 Ejemplo (Serie armónica). La serie de término general 1/n, es decir, la sucesión $\{H_n\}$ donde $H_n = \sum_{k=1}^n \frac{1}{k}$, que simbólicamente representamos por $\sum_{n\geqslant 1} \frac{1}{n}$, se llama **serie armónica**. Se verifica que la serie armónica diverge positivamente:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \lim_{n \to \infty} \{1 + 1/2 + \dots + 1/n\} = +\infty.$$

En efecto, tomando logaritmos en las conocidas desigualdades:

$$\left(1+\frac{1}{k}\right)^k < e < \left(1+\frac{1}{k}\right)^{k+1}$$

deducimos

$$\frac{1}{k+1} < \log\left(1 + \frac{1}{k}\right) < \frac{1}{k}$$

que podemos escribir en la forma:

$$\frac{1}{k+1} < \log(k+1) - \log(k) < \frac{1}{k} \tag{3.3}$$

Dado $n \in \mathbb{N}$, sumamos las desigualdades (3.3) para k = 1, 2, ..., n y obtenemos

$$H_{n+1} - 1 < \log(n+1) < H_n$$
 $(n \in \mathbb{N})$ (3.4)

La desigualdad $H_n > \log(n+1)$ implica que la serie armónica es positivamente divergente. De las desigualdades (3.4) también se deduce que que para todo $n \in \mathbb{N}$, es:

$$1 < \frac{H_n}{\log(n+1)} < \frac{H_{n+1}}{\log(n+1)} < 1 + \frac{1}{\log n}$$

y, por el principio de las sucesiones encajadas, concluimos que $\{H_n/\log n\} \to 1$. Es decir las sucesiones $\{H_n\}$ y $\{\log(n)\}$ son asintóticamente equivalentes.

3.4 Ejemplo (Serie armónica alternada). Se llama así la serie de término general $\frac{(-1)^{n+1}}{n}$; es decir, la serie $\sum_{n\geqslant 1}\frac{(-1)^{n+1}}{n}$. Se verifica que la serie armónica alternada es convergente y su suma es igual a log 2.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log 2.$$

Para probarlo consideremos la sucesión $\{x_n\}$ dada por $x_n = H_n - \log(n)$. Teniendo en cuenta las desigualdades (3.3), obtenemos:

$$x_n - x_{n+1} = \log(n+1) - \log n - \frac{1}{n+1} = \log\left(1 + \frac{1}{n}\right) - \frac{1}{n+1} > 0.$$

Luego $\{x_n\}$ es estrictamente decreciente. Además, por (3.4), $x_n > H_n - \log(n+1) > 0$. Concluimos que $\{x_n\}$ es convergente.

Pongamos $A_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n}$. Tenemos que:

$$A_{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{1}{2n-1} - \frac{1}{2n} =$$

$$= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}\right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right) =$$

$$= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}\right) - \frac{1}{2}H_n = H_{2n} - \frac{1}{2}H_n - \frac{1}{2}H_n = H_{2n} - H_n =$$

$$= x_{2n} + \log(2n) - x_n + \log n = x_{2n} - x_n + \log 2$$

Como $\{x_{2n}\}$ es una sucesión parcial de la sucesión convergente $\{x_n\}$ tenemos que $\{x_{2n}-x_n\}\to 0$; y por tanto $\lim\{A_{2n}\}=\log 2$. Como $A_{2n-1}=A_{2n}+\frac{1}{2n}$, deducimos que también $\lim\{A_{2n-1}\}=\log 2$. Concluimos que $\lim\{A_n\}=\log 2$.

3.6 Proposición. Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones y supongamos que hay un número $q \in \mathbb{N}$ tal que para $n \ge q+1$ es $a_n = b_n$. Entonces se verifica que las series $\{a_1 + a_2 + \cdots + a_n\}$ y $\{b_1 + b_2 + \cdots + b_n\}$ o bien convergen ambas o no converge ninguna, y en el primer caso se verifica que:

$$\sum_{n=1}^{\infty} a_n - \sum_{i=1}^{q} a_i = \sum_{n=1}^{\infty} b_n - \sum_{i=1}^{q} b_i.$$

Demostración. Pongamos $A_n = a_1 + a_2 + \dots + a_n$, $B_n = b_1 + b_2 + \dots + b_n$, $\alpha = \sum_{j=1}^q a_j$, $\beta = \sum_{j=1}^q b_j$. Las afirmaciones hechas se deducen todas de que para todo $n \ge q+1$ se verifica la igualdad:

$$\sum_{k=q+1}^{n} a_{k} = A_{n} - \alpha = \sum_{k=q+1}^{n} b_{k} = B_{n} - \beta$$

Observa que los números α y β son constantes fijas. De la igualdad $A_n + \alpha = B_n + \beta$, válida para todo $n \ge q+1$, deducimos que las series $\sum a_n = \{A_n\}$ y $\sum b_n = \{B_n\}$ ambas convergen o ninguna converge. Cuando hay convergencia tenemos que:

$$\lim_{n\to\infty} \left\{ A_n - \alpha \right\} = \lim_{n\to\infty} \left\{ A_n \right\} - \alpha = \lim_{n\to\infty} \left\{ B_n - \beta \right\} = \lim_{n\to\infty} \left\{ B_n \right\} - \beta.$$

Lo que prueba la igualdad del enunciado.

Consideremos una serie $\sum_{n\geqslant 1}a_n$. Dado $q\in\mathbb{N}$ definamos $b_n=0$ para $1\leqslant n\leqslant q$, $b_n=a_n$ para todo $n\geqslant q+1$. La serie $\sum_{n\geqslant 1}b_n$ se llama **serie resto de orden** q de la serie $\sum_{n\geqslant 1}a_n$. Es usual representar dicha serie resto con la notación $\sum_{n\geqslant q+1}a_n$. De la proposición anterior deducimos que las series $\sum_{n\geqslant 1}a_n$ y $\sum_{n\geqslant q+1}a_n$ ninguna converge o ambas convergen y, cuando esto ocurre es:

$$\sum_{n=1}^{\infty} a_n - \sum_{k=1}^{q} a_k = \sum_{n=q+1}^{\infty} a_n.$$

3.7 Proposición (Condición necesaria para la convergencia de una serie). Para que la serie $\sum a_n$ sea convergente es necesario que $\lim \{a_n\} = 0$.

Demostración. Si la serie $\sum a_n$ es convergente, entonces $\lim\{A_n\} = \lim\{A_{n-1}\} = S$ es un número real. Como para todo $n \in \mathbb{N}$ con $n \geqslant 2$ tenemos que $a_n = A_n - A_{n-1}$, deducimos que $\lim\{a_n\} = \lim\{A_n\} - \lim\{A_{n-1}\} = S - S = 0$.

3.9 Proposición (Criterio básico de convergencia). Una serie de términos positivos $\sum_{n\geq 1} a_n$ es convergente si, y sólo si, está mayorada, es decir, existe un número M>0 tal que para todo $n\in\mathbb{N}$ se verifica que $\sum_{k=1}^{n} a_k \leq M$, en cuyo caso su suma viene dada por:

$$\sum_{n=1}^{\infty} a_n = \sup \left\{ \sum_{k=1}^{n} a_k : n \in \mathbb{N} \right\}.$$

Una serie de términos positivos que no está mayorada es (positivamente) divergente.

3.11 Proposición. La serie $\sum_{n=0}^{\infty} \frac{1}{n!}$ es convergente y su suma es el número e.

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$
 (3.7)

El número e es irracional.

Demostración. Recuerda que se define 0! = 1 por lo que la serie del enunciado es la sucesión:

$$\sum_{n\geq 0} \frac{1}{n!} = \left\{ \sum_{k=0}^{n} \frac{1}{k!} \right\} = \left\{ 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} \right\}$$

Pongamos $T_n = \left(1 + \frac{1}{n}\right)^n$ y $S_n = \sum_{k=0}^n \frac{1}{k!}$. Tenemos que:

$$T_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = 1 + \sum_{k=1}^n \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} \frac{1}{n^k} = 1 + \sum_{k=1}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) \leqslant S_n$$

Hemos probado que para todo $n \in \mathbb{N}$ es $T_n \leqslant S_n$.

Ahora, dado $m \in \mathbb{N}$ para todo $n \ge m$ se tiene que:

$$T_n \geqslant 1 + \sum_{k=1}^{m} \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right)$$

Sabemos que $\lim \{T_n\} = e$, por lo que tomando límites:

$$e = \lim_{n \to \infty} \{T_n\} \geqslant 1 + \sum_{k=1}^m \frac{1}{k!} \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) = 1 + \sum_{k=1}^m \frac{1}{k!} = S_m$$

La desigualdad obtenida $e \ge S_m$ es válida para todo $m \in \mathbb{N}$. Esto implica que la sucesión $\{S_n\}$ es convergente y $e \ge S = \lim \{S_n\}$. Pero también, tomando límites en la desigualdad $T_n \le S_n$, es $e \le S$. Por tanto:

$$e = S = \sum_{n=0}^{\infty} \frac{1}{n!}$$

De esta igualdad se deduce fácilmente que el número e es irracional. En efecto, para todo $n \in \mathbb{N}$ tenemos que:

$$0 < e - \sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=n+1}^{\infty} \frac{1}{k!} = \frac{1}{n!} \sum_{k=1}^{\infty} \frac{1}{(n+1)(n+2)\cdots(n+k)} < \frac{1}{n!} \sum_{k=1}^{\infty} \left(\frac{1}{n+1}\right)^k = \frac{1}{n!} \frac{1}$$

Si e fuera racional, $e = \frac{p}{q}$ con $p, q \in \mathbb{N}$, multiplicando por q! la desigualdad:

$$0 < e - \sum_{k=0}^{q} \frac{1}{k!} < \frac{1}{q!} \frac{1}{q}$$

se tiene que:

$$0<(q-1)!p-q!\sum_{k=0}^{q}\frac{1}{k!}<\frac{1}{q}\leqslant 1.$$

Pero el número $(q-1)!p-q!\sum_{k=0}^{q}\frac{1}{k!}$ es un número entero y por tanto es imposible que sea mayor que 0 y menor que 1. Esta contradicción muestra que e es irracional.

Si $\sum_{n\geqslant 1} a_n$ es una serie de términos positivos, suele escribirse $\sum_{n=1}^{\infty} a_n < +\infty$ para indicar que dicha serie converge. Diremos que una serie de términos positivos es divergente para indicar que es positivamente divergente.