

Finding the pattern behind the online shoppers purchasing intention

Naveen Raju Sreerama Raju Govinda Raju | A20516868

Karthik Kumar Kaiplody | A20523668

Professor - Jawahar Panchal
CSP571 Data Preparation and Analysis

Outline

- Problem Statement
- Data Sources
- Data Description
- Data Processing
- Data Analysis
- Model Training and Results
- Conclusion
- Bibliography

Problem Statement

Problem Statement

Analyze trends in the online shoppers purchasing intention dataset using exploratory data analysis techniques, and build machine learning models to predict the purchasing intentions of visitors to a store's website both using supervised and un-supervised techniques.

Project Planning

Team Structure

- Naveen Raju Sreerama Raju Govinda Raju Team Leader
- Karthik Kumar Kaiplody

Project Planing and execution

- Used <u>trello</u> for the planning and keeping track of the project.
- GMM was not implemented and put to the backlog, which will be including in the future work.
- Project Repository: <u>DPA-Project</u>
- Recording of the presentation

Workflow overview

Data Sources

- ▼ The data that is being used in this project was obtained from the UC Irvine Machine Learning Repository.
- Data set contributers:
 - C. Okan Sakar
 Department of Computer Engineering, Faculty of
 Engineering and Natural Sciences, Bahcesehir University,
 34349 Besiktas, Istanbul, Turkey
 - 2. Yomi Kastro Inveon Information Technologies Consultancy and Trade, 34335 Istanbul, Turke

Data description

- The dataset consists of feature vectors belonging to 12,330 sessions.
- The dataset consists of both numerical and categorical attributes. The 'Revenue' attribute can be used as the class label.

Attributes		
Administrative	Administrative Duration	
Informational	Informational Duration	
Product Related	Product Related Duration	
Bounce rate	Exit rate	
Page value	Special day	
Operating system	Browser	
Region	Traffic type	
Visitor type	Weekend	
Month of the year	Revenue	

Data Preprocessing

Data processing

- Check number of observations with NA values
- ✓ Fixing naming convention of month names in Month column "June" ->"Jun"
- Convert Month feature data type to factor data type
- ▼ Transforming categorical attributes(OperatingSystems, Browser, Region, TrafficType, VisitorType) into "factor" data type and then perform one-hot encoding
- Convert Revenue attribute data type to a factor.
- Transforming Boolean attributes(Weekend, Revenue) into "int" data type
- ▼ Train Test split : 70:30 split
- One hot encoding of train and test set

Data balancing:

- There is huge imbalance in data set as Revenue=0 is the majority. Hence the algorithm tries to over fit on majority class.
- Number of observations with Revenue as False = 10422
- Number of observations with Revenue as True = 1908
- Here we are trying to increase minority class observations using SMOTE(Synthetic Minority Over-sampling Technique) algorithm.

Data Analysis

Data Analysis

- 1) Exploring data distribution of different page category and time spent in it.
- a) Exploring data pattern of "Administrative" and "Administrative Duration"

b) Exploring data pattern of "Informational" and "Informational_Duration"

c) Exploring data pattern of "Product Related" and "Product Related Duration"

Summary

- Analysing number of page visit of 3 different page categories it clearly says that customers are interested more in Product related pages rather than knowing information of the product in detail.
- Analysing total time spent in 3 different page categories, it clearly says that customers spend most of the time in product related pages whereas they are not interested in spending time in information related pages.

2)Exploring the data distribution of different page categories versus the target variable Revenue, as well as the time spent on each page category versus the target variable Revenue.

Summary

- People who end up buying will mostly visit administrative page and spend almost 1min.
- People who end up not buying will mostly not visit administrative page.
- People are least interested in visiting informational page.
- People who end up buying will mostly visit product related page and spend almost 18mins.
- People who will end up buying will mostly visit product related page and spend almost 8.5mins.
- But people who end up buying will visit more product related than the ones who don't.

3) "<u>Bounce Rates</u>", "Exit Rates" and "Page Values" features versus the target variable Revenue respectively.

Summary

- There is no noticeable disparity in Bounce Rates between customers who made a purchase and those who did not.
- However, customers who ended up making a purchase had lower Exit Rates on average, indicating that they were more likely to remain on the website's pages.
- Additionally, customers who did not make a purchase had significantly lower Page Values, suggesting that they spent less time on related pages.

4) "Special Day" features versus the target variable Revenue

5) "Month" features versus the target variable Revenue.

6) "Operating Systems" features versus the target variable Revenue.

7) "Browser" features versus the target variable Revenue.

8)"Region" features versus the target variable Revenue.

9)"Traffic Type" features versus the target variable Revenue.

10) "Weekend" features versus the target variable Revenue.

11) "Visitor Type" features versus the target variable Revenue.

12) Data distribution of "Revenue" feature

FALSE	TRUE
10422	1908

Supervised

Model Training and Results

1) Naive Bayes

Results:

One hot encoding data

Average accuracy: 75.6%

Prediction	Reference	
	0	1
0	31.6	6.0
0	18.4	44.0

Data without one-hot encoding Average accuracy: 84.5%

Prediction		Reference	
	0	1	
0	84.5	15.5	
0	0	0	

2) k-Nearest Neighbor

Trained on one-hot encoded dataset

```
Confusion Matrix and Statistics
         Reference
Prediction
             0 1
        0 2847
                296
          280 277
              Accuracy : 0.8443
                95% CI: (0.8322, 0.8559)
    No Information Rate: 0.8451
    P-Value [Acc > NIR] : 0.5652
                 Kappa: 0.3984
 Mcnemar's Test P-Value: 0.5320
           Sensitivity: 0.9105
           Specificity: 0.4834
        Pos Pred Value: 0.9058
        Neg Pred Value: 0.4973
            Prevalence: 0.8451
        Detection Rate: 0.7695
   Detection Prevalence: 0.8495
      Balanced Accuracy: 0.6969
       'Positive' Class: 0
```


Visualizing KNN with different k values(number of nearest neighbor)

◄ Lowest error with k=1

3) Random Forest

Results:

		Attribute	Accuracy
Confusion Matrix and Statistics	14	Region	0.9667576
Reference	17	Weekend	0.9665521
Prediction 0 1 0 2955 189	13	Browser	0.9664835
1 172 384	16	VisitorType	0.9664151
Accuracy : 0.9024	15	TrafficType	0.9660722
95% CI : (0.8924, 0.9118) No Information Rate : 0.8451	12	OperatingSystems	0.9651126
P-Value [Acc > NIR] : <2e-16	11	Month	0.9651125
Kappa : 0.6227	10	SpecialDay	0.9644273
Mcnemar's Test P-Value : 0.3997	9	PageValues	0.9629195
Sensitivity: 0.9450	8	ExitRates	0.9603834
Specificity: 0.6702	7	BounceRates	0.9568190
Pos Pred Value : 0.9399 Neg Pred Value : 0.6906	6	ProductRelated_Duration	0.9446862
Prevalence : 0.8451 Detection Rate : 0.7986	5	ProductRelated	0.9267302
Detection Prevalence : 0.8497	4	Informational_Duration	0.9051401
Balanced Accuracy : 0.8076	1	Administrative	0.8694320
'Positive' Class : 0	3	Informational	0.8509948
Thus accuracy of random forest is 89.81%	2	Administrative Duration	0.8483216

Recursive Feature Elimination

Accuracy.

Attributo

Feature variable importance table

Feature variable importance table	MeanDecreaseAccuracy
Administrative	25.740664
Administrative_Duration	29.428259
Informational	22.772219
Informational_Duration	22.896964
ProductRelated	44.383527
ProductRelated Duration	37.415946
BounceRates	35.813305
ExitRates	34.568105
PageValues	135.122725
SpecialDay	8.007717
Month	68.915250
OperatingSystems	19.990634
Browser	45.293001
Region	62.972472
TrafficType	39.930089
VisitorType	12.686405
Weekend	25.540213

Number of features vs Accuracy plot

Variable importance plot

Random forest trained on top 10 features

Results

```
Reference
Prediction
        0 2933 190
           194 383
              Accuracy: 0.8962
                95% CI: (0.8859, 0.9059)
    No Information Rate: 0.8451
   P-Value [Acc > NIR] : <2e-16
                 Kappa: 0.6046
Mcnemar's Test P-Value: 0.8783
           Sensitivity: 0.9380
           Specificity: 0.6684
        Pos Pred Value: 0.9392
        Neg Pred Value: 0.6638
            Prevalence: 0.8451
        Detection Rate: 0.7927
   Detection Prevalence: 0.8441
     Balanced Accuracy: 0.8032
       'Positive' Class: 0
```

Top 10 features

PageValues
Month
Region
Browser
ProductRelated
TrafficType
ProductRelated_Duration
BounceRates
ExitRates Administrative Duration

4) Support Vector Machine

Kernel: Linear Kernel: Radial Result Result Confusion Matrix and Statistics Confusion Matrix and Statistics Reference Reference Prediction Prediction 0 0 2824 120 0 2794 121 1 303 453 1 333 452 Accuracy: 0.8857 Accuracy : 0.8773 95% CI: (0.875, 0.8958) 95% CI: (0.8663, 0.8877) No Information Rate: 0.8451 No Information Rate: 0.8451 P-Value [Acc > NIR] : 8.165e-13 P-Value [Acc > NIR] : 1.453e-08 Kappa: 0.6136 Kappa: 0.5928 Mcnemar's Test P-Value : < 2.2e-16 Mcnemar's Test P-Value : < 2.2e-16 Sensitivity: 0.8935 Sensitivity: 0.9031 Specificity: 0.7906 Specificity: 0.7888 Pos Pred Value: 0.9592 Pos Pred Value: 0.9585 Neg Pred Value: 0.5758 Neg Pred Value: 0.5992 Prevalence: 0.8451 Prevalence: 0.8451 Detection Rate: 0.7551 Detection Rate: 0.7632 Detection Prevalence: 0.7878 Detection Prevalence: 0.7957 Balanced Accuracy: 0.8412 Balanced Accuracy: 0.8468

'Positive' Class: 0

'Positive' Class: 0

5) XG Boost

Training parameters

- a)objective = "binary:logistic"
- b)eta = 0.3
- c)max_depth = 6
- d)eval_metric = "auc"
- e)Nrounds = 100
- f)Early stopping rounds = 10

Stopping. Best iteration:

[7] train-auc:0.961152

[1]	train	auc:0.940757	test	auc:0.909651
[2]	train	auc:0.949137	test	auc:0.918012
[3]	train	auc:0.952685	test	auc:0.922717
[4]	train	auc:0.954565	test	auc:0.926051
[5]	train	auc:0.957042	test	auc:0.926611
[6]	train	auc:0.958906	test	auc:0.927626
[7]	train	auc:0.961152	test	auc:0.927922
[8]	train	auc:0.963121	test	auc:0.927406
[9]	train	auc:0.963852	test	auc:0.926375
[10]	train	auc:0.965559	test	auc:0.925545
[11]	train	auc:0.967358	test	auc:0.925664
[12]	train	auc:0.969143	test	auc:0.924629
[13]	train	auc:0.970182	test	auc:0.924950
[14]	train	auc:0.970923	test	auc:0.924509
[15]	train	auc:0.973319	test	auc:0.923537
[16]	train	auc:0.974383	test	auc:0.923199
[17]	train	auc:0.975294	test	auc:0.923111

test-auc:0.927922

Un-supervised Learning

K-Means Clustering

Clusters has been identified using Elbow method, and from the clustered plot we can say that most of the data can be clustered into 3 clusters.

DBScan Clustering

As name says this is a density-based clustering algorithm that groups data points into clusters based on their density. DBSCAN is particularly useful for datasets with irregular shapes and noises. But our dataset was mostly without the noises and hence the results were as below

Hierarchical clustering:

This is another unsupervised learning algorithm that clusters data points into a tree-like structure based on the similarity between them. Hierarchical clustering can be either agglomerative (bottom-up) or divisive (top-down).

distances hclust (*, "ward.D2")

Future Work

Future Work

- We would plan to work more on the data gathering, we did look into it but couldn't find the similar datasets.
- Work on couple more research question for example, "How does web metrics influence the revenue."
- Will explore and try to implement MLOps best practices by designing and creating a end-to-end pipelines.
- Would explore Gaussian Mixture Models for the clustering and also analyse the clusters indepth.

Conculsion

Conclusion

- Analysing number of page visit of 3 different page categories it clearly says that customers are interested more in Product related pages rather than knowing information of the product in detail.
- Revenue is generated by the customers who visit the product page and spend more time on it, which intuitively mean whom ever spends more time on administrative and informational page will only hop around rather than end up buying.
- Discounts can be given to the ones who spend more time on Product related page.
- There is no noticeable disparity in Bounce Rates between customers who made a purchase and those who did not.
- However, customers who ended up making a purchase had lower Exit Rates on average, indicating that they were more likely to remain on the website's pages.
- Additionally, customers who did not make a purchase had significantly lower Page Values, suggesting that they spent less time on related pages.

Bibliography

- [1]. https://jurnal-ppi.kominfo.go.id/index.php/jppi/article/view/341
- [2]. Real-time prediction of online shoppers' purchasing intention using multilayer perceptron and LSTM recurrent neural networks [https://link.springer.com/article/10.1007/s00521-018-3523-0]
- [3]. Data Clustering: A Review [https://dl.acm.org/doi/pdf/10.1145/331499.331504]
- [4]. A Comparison Study of Credit Card Fraud Detection: Supervised versus Unsupervised
 [https://arxiv.org/pdf/1904.10604.pdf]
- [5].Real-Time Prediction of Online Shoppers Purchasing Intention Using Random Forest [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256375/].

Thank You

