Understanding the spectrum of a blackbody

Sudheendra B.R.

Suhas P.K.

Shahsank K.K.

March 2020

Guided by V.H. Belvadi

Dept. of Physics

Yuvaraja's College, Mysuru

Part 3

$$oldsymbol{\phi}$$
 = Probability amplitude

$$\mathbf{P} = |\boldsymbol{\phi}|^2$$

$$oldsymbol{\phi} = oldsymbol{\phi}_1 + oldsymbol{\phi}_2$$

$$\mathbf{P} = \mid \boldsymbol{\phi}_1 + \boldsymbol{\phi}_2 \mid^2$$

•	Detector 1 is set to detect only $lpha$
	particles and Detector 2 is set to detect

only oxygen atoms.

- Detector 1 is set to detect only α
 particles and Detector 2 is set to detect
 only oxygen atoms.
- Probability amplitude of the scattering is given by $f(\theta)$ when they are at an angle θ .

- Detector 1 is set to detect only α particles and Detector 2 is set to detect only oxygen atoms.
- Probability amplitude of the scattering is given by $f(\theta)$ when they are at an angle θ .
- The probability of this event = $|f(\theta)|^2$

 Set up the detectors such that the
detectors would detect either $lpha$ particle
or oxygen atom.

• Set up the detectors such that the detectors would detect either α particle or oxygen atom.

 We will not distinguish which particle is which entering the detector.

- Set up the detectors such that the detectors would detect either α particle or oxygen atom.
- We will not distinguish which particle is which entering the detector.
- This means that if oxygen atom in position θ , then α particle on the opposite side is at an angle $\pi-\theta$.

• Probability amplitude of oxygen atom = $f(\pi - \theta)$

- Probability amplitude of oxygen atom = $f(\pi \theta)$
- Probability amplitude of α particle = $f(\theta)$

- Probability amplitude of oxygen atom = $f(\pi \theta)$
- Probability amplitude of α particle = $f(\theta)$
- The probability of a particle being detected at detector 1 = $|f(\theta)|^2$ + $|f(\pi-\theta)|^2$

• Consider if both are α particles,

- Consider if both are lpha particles,
- Then we would not know which particle entered the detector, so the total probability changes to,

- Consider if both are α particles,
- Then we would not know which particle entered the detector, so the total probability changes to,
- The probability of a α particle being detected at detector 1 = $|f(\theta) + f(\pi \theta)|^2$

• If $\theta=\frac{\pi}{2}$, then applying this to the expression $|f(\theta)+f(\pi-\theta)|^2$ we get,

- If $\theta=\frac{\pi}{2}$, then applying this to the expression $|f(\theta)+f(\pi-\theta)|^2$ we get,
- Probability = $4|f\left(\frac{\pi}{2}\right)|^2$, if the particles are indistinguishable.

• Suppose the particles were distinguishable, then the probability for $\theta=rac{\pi}{2}$ when applied for

$$|f(\theta)|^2+|f(\pi-\theta)|^2$$

is given by

• Suppose the particles were distinguishable, then the probability for $\theta=\frac{\pi}{2}$ when applied for

$$|f(\theta)|^2 + |f(\pi - \theta)|^2$$

is given by

• Probability =
$$2|f\left(\frac{\pi}{2}\right)|^2$$

• Suppose the particles were distinguishable, then the probability for $\theta=rac{\pi}{2}$ when applied for

$$|f(\theta)|^2 + |f(\pi - \theta)|^2$$

is given by

- Probability = $2|f\left(\frac{\pi}{2}\right)|^2$
- This shows that the probability gets doubled for indistinguishable particles.

 Can we apply the same logic to the electron-electron scattering? 	

• Can we apply the same logic to the electron-electron scattering ?
 OBSERVATION: When we have situation in which the identity of the electron which is arriving at a point is exchanged with another one, the new amplitude interfere with old one with an opposite phase.

•	Can we apply the same la	oaic to the electron-electron	n scatterina ?

 OBSERVATION: When we have situation in which the identity of the electron which is arriving at a point is exchanged with another one, the new amplitude interfere with old one with an opposite phase.

In electrons case, the interfering amplitude for exchange interfere with a negative sign.

- Can we apply the same logic to the electron-electron scattering?
- OBSERVATION: When we have situation in which the identity of the electron which is arriving at a point is exchanged with another one, the new amplitude interfere with old one with an opposite phase.
- In electrons case , the interfering amplitude for exchange interfere with a negative sign. Probability for electron = $|f(\theta) f(\pi \theta)|^2$

$\frac{1}{4}$	up	up	ир	ир	$ f(\theta)-f(\pi-\theta) ^2$
$\frac{1}{4}$	down	down	down	down	$ f(\boldsymbol{\theta}) - f(\boldsymbol{\pi} - \boldsymbol{\theta}) ^2$
$\frac{1}{4}$	up	down	up	down	$ f(\boldsymbol{\theta}) ^2$
			down	up	$ f(\pi-\theta) ^2$
$\frac{1}{4}$	down	up	up	down	$ f(\pi-\theta) ^2$
			down	up	$ f(\theta) ^2$

Probability

Fraction of cases | Particle 1 | Particle 2 | Spin at D1 | Spin at D2

Identical Particles

• Consider particle 'a' and particle 'b'.

- Consider particle 'a' and particle 'b'.
- Let the two particle collide and get scattered in two different directions say '1' and '2' over a surface element ds_1 and ds_2 of the detector respectively.

- Consider particle 'a' and particle 'b'.
- Let the two particle collide and get scattered in two different directions say '1' and '2' over a surface element ds_1 and ds_2 of the detector respectively.
- If the particles are indistinguishable then the amplitudes of these process will add up.

- Consider particle 'a' and particle 'b'.
- Let the two particle collide and get scattered in two different directions say '1' and '2' over a surface element ds_1 and ds_2 of the detector respectively.
- If the particles are indistinguishable then the amplitudes of these process will add up.
- Probability that the two particles arrive at ds_1 and ds_2 is

- Consider particle 'a' and particle 'b'.
- Let the two particle collide and get scattered in two different directions say '1' and '2' over a surface element ds_1 and ds_2 of the detector respectively.
- If the particles are indistinguishable then the amplitudes of these process will add up.
- Probability that the two particles arrive at ds_1 and ds_2 is

$$|\langle 1|a\rangle\langle 2|b\rangle + \langle 2|a\rangle\langle 1|b\rangle|^2 ds_1 ds_2$$

of surface elements dS_1 and dS_2 .

 (ΔS) . we could count each part of the area twice since the expression

• Integrating over the area of the detector, if we let dS_1 and dS_2 range over the whole area

 $|\langle 1|a\rangle\langle 2|b\rangle + \langle 2|a\rangle\langle 1|b\rangle|^2 ds_1 ds_2$ contains everything that can happen with any pair

• Integrating over the area of the detector, if we let ds_1 and ds_2 range over the whole area (ΔS) , we could count each part of the area twice since the expression $|\langle 1|a\rangle\langle 2|b\rangle+\langle 2|a\rangle\langle 1|b\rangle|^2ds_1ds_2$ contains everything that can happen with any pair

• Probability_{BOSE} =
$$\frac{(4|a|^2|b|^2)}{2}$$
 (ΔS)

of surface elements ds_1 and ds_2 .

• Integrating over the area of the detector, if we let ds_1 and ds_2 range over the whole area (ΔS) , we could count each part of the area twice since the expression $|\langle 1|a\rangle\langle 2|b\rangle+\langle 2|a\rangle\langle 1|b\rangle|^2ds_1ds_2$ contains everything that can happen with any pair

• Probability_{BOSE} =
$$\frac{(4|a|^2|b|^2)}{2}$$
 (ΔS)

of surface elements ds_1 and ds_2 .

This is just twice what we got the probability for distinguished particles.

State with n Bosons

- Consider n particles say a, b, c...scattered in n direction say 1, 2, 3 \dots

State with n Bosons

- Consider n particles say a, b, c...scattered in n direction say 1, 2, 3 ...
- Probability that each particle acting alone would go into an element of the surface ds of the detector is $|\langle \cdot \cdot \cdot \rangle|^2 ds$.

• Assumption: All particles are distinguishable.

• Probability that n particles will be counted together in n different surface elements =

 $|a_1b_2c_3...|^2ds_1ds_2...$

- Assumption: All particles are distinguishable.
- Probability that n particles will be counted together in n different surface elements = $|a_1b_2c_3...|^2ds_1ds_2...$
- If the amplitude does not depend on where ds is located in the detector, then the

Probability =
$$(|a|^2|b|^2...)(ds_1ds_2...)$$

- Integrating each dS over the surface $\Delta \mathsf{S}$ of the dectector

• Integrating each dS over the surface ΔS of the dectector $(P_n)_{different} = (|a|^2|b|^2\dots)(\Delta S)^n$

- Integrating each dS over the surface ΔS of the dectector $(P_n)_{different} = (|a|^2|b|^2\dots)(\Delta S)^n$
- Now suppose that all the particle are bosons.
- For n particles, there are n! different, but indistinguishable possibilities for which we must add the amplitudes.

- Integrating each dS over the surface ΔS of the dectector $(P_n)_{different} = (|a|^2|b|^2\dots)(\Delta S)^n$
- Now suppose that all the particle are bosons.
- For n particles, there are n! different, but indistinguishable possibilities for which we must add the amplitudes.

• Probability that n particles will be counted on the n surface elements is given by

• Probability that n particles will be counted on the n surface elements is given by $Probability = (|a_1b_2c_3...+a_1b_2c_2...|^2) (ds_1ds_2...)$

- Probability = $(|a_1b_2c_3...+a_1b_3c_2...|^2)$ $(ds_1ds_2...)$
- Probability = $(|n!abc...|^2)$ $(ds_1ds_2...)$

• Integrate each ds over the area ΔS of the detector

- Probability that n particles will be counted on the n surface elements is given by
- Probability = $(|a_1b_2c_3...+a_1b_3c_2...|^2)$ $(ds_1ds_2...)$

• Integrate each ds over the area ΔS of the detector

 $(P_n)_{BOSE} = n! (|abc...|^2) (\Delta S)^n$

• Probability = $(|n!abc...|^2)$ $(ds_1ds_2...)$

• Comparing the probability when the particles are distinguishable and indistinguishable $(P_n)_{BOSE} = n! (|abc...|^2) (\Delta S)^n$

• Comparing the probability when the particles are distinguishable and indistinguishable

$$(P_n)_{BOSE} = n! (|abc...|^2) (\Delta S)^n$$

 $(P_n)_{different} = (|a|^2|b|^2...) (\Delta S)^n$

 $(P_n)_{different} = (|u|^-|D|^- \dots) (D_n)_{different}$

• $(P_n)_{BOSE} = n!(P_n)_{different}$

• What is the probability that a boson will go into particular state when there are already n

particles present?

Emission and Absorption of photons

• When the light is emitted, a photon is "created".

Emission and Absorption of photons

• When the light is emitted, a photon is "created".

• Consider that there are some atom emitting n photons.

Emission and Absorption of photons

- When the light is emitted, a photon is "created".
- Consider that there are some atom emitting n photons.
- OBSERVATION: The probability that an atom will emit a photon into a particular final state is increased by the factor (n+1) if there are already n photons in that state.

• In quantum mechanics we can show that

$$\langle \chi | \phi
angle = \langle \phi | \chi
angle^*$$

• In quantum mechanics we can show that $\langle \chi | \phi
angle = \langle \phi | \chi
angle^*$

• The amplitude to get from any condition
$$\phi$$
 to any other condition χ .

• The amplitude to get from any condition
$$\phi$$
 to any other condition χ .

 We have that amplitude that a photon will be added to some state, say j, when there are already n photons present we can express this condition as

• The amplitude to get from any condition
$$\phi$$
 to any other condition χ .

• We have that amplitude that a photon will be added to some state, say j, when there are already n photons present we can express this condition as

$$\langle n+1|n\rangle = (\sqrt{n+1})a$$

• The amplitude to get from any condition
$$\phi$$
 to any other condition χ .

• We have that amplitude that a photon will be added to some state, say j, when there are already n photons present we can express this condition as

$$\langle n+1|n\rangle = (\sqrt{n+1})a$$

 $\langle n|n+1\rangle = (\sqrt{n+1})a^*$

• The amplitude to get from any condition
$$\phi$$
 to any other condition χ .

• We have that amplitude that a photon will be added to some state, say j, when there are already n photons present we can express this condition as

$$\langle n+1|n\rangle=(\sqrt{n+1})a$$

 $\langle n|n+1\rangle=(\sqrt{n+1})a^*$
where $a=\langle i|a\rangle$ is the amplitude when there are no other photons are present

where $a=\langle j|a\rangle$ is the amplitude when there are no other photons are present.

• The amplitude to absorb a photon when there are n photons present is given by

 $\langle n-1|n\rangle = (\sqrt{n})a^*$

• The amplitude to absorb a photon when there are n photons present is given by

• The amplitude to absorb a photon when there are n photons present is given by $\langle n-1|n\rangle=(\sqrt{n})a^*$

•
$$\langle n+1|n\rangle = (\sqrt{n+1})a$$

• The amplitude to absorb a photon when there are n photons present is given by

$$\langle n-1|n\rangle=(\sqrt{n})a^*$$

•
$$\langle n+1|n\rangle = (\sqrt{n+1})a$$

 $\langle n|n+1\rangle = (\sqrt{n+1})a^*$

• The amplitude to absorb a photon when there are n photons present is given by $\langle n-1|n\rangle=(\sqrt{n})a^*$

•
$$\langle n+1|n\rangle = (\sqrt{n+1})a$$

 $\langle n|n+1\rangle = (\sqrt{n+1})a^*$

• The above two equation shows that they are symmetric in nature.

• Thought Experiment: Lets us consider that there are n photons that are created in the

same state, that of same frequency but they cannot be distinguished.

• Thought Experiment: Lets us consider that there are n photons that are created in t same state, that of same frequency but they cannot be distinguished .	he
• The probability that an atom can emit another poton into same state is	

- Thought Experiment: Lets us consider that there are n photons that are created in the same state, that of same frequency but they cannot be distinguished .
- The probability that an atom can emit another poton into same state is $(Probability)_{emit} = (n+1)|a|^2$

• Thought Experiment: Lets us consider that there are n photons that are created in the same state, that of same frequency but they cannot be distinguished .

• The probability that an atom can emit another poton into same state is $(Probability)_{emit} = (n+1)|a|^2$

• The probability that an atom absorbs a photon into the same state is

- Thought Experiment: Lets us consider that there are n photons that are created in the same state, that of same frequency but they cannot be distinguished .
- The probability that an atom can emit another poton into same state is $(Probability)_{emit} = (n+1)|a|^2$
- The probability that an atom absorbs a photon into the same state is $(Probability)_{absorb} = (n)|a|^2$

• Rate at which an atom will make a transition to downwards has two parts.

• Probability that it will make a spontaneous transition $|a|^2$ is proportional to the number

• Rate at which an atom will make a transition to downwards has two parts.

of photons.

•	Rate at which an atom will make a transition to downwards has two parts.
	Probability that it will make a spontaneous transition $ a ^2$ is proportional to the number of photons.
•	The co-efficient of absorption, of induced emission and spontaneous emission are all

equal and are related to the probability of spontaneous emission.

• For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.

- For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.
- Let N_e and N_g be the average numbers of atoms that are in excited state and ground state.

- For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.
- Let N_e and N_g be the average numbers of atoms that are in excited state and ground state.
- In thermal equilibrium at temperature T, from statistical mechanics

- For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.
- Let N_e and N_g be the average numbers of atoms that are in excited state and ground state.
- In thermal equilibrium at temperature T, from statistical mechanics

$$\frac{N_e}{N_g} = e^{\left(\frac{-\Delta E}{\omega \hbar}\right)}$$

- For each light frequency ω , there are certain N number of atoms which have two energy states separated, given by the equation $E = \omega \hbar$.
- Let N_e and N_g be the average numbers of atoms that are in excited state and ground state.
- In thermal equilibrium at temperature T, from statistical mechanics $(-\Delta F)$

$$\frac{N_e}{N_g} = e^{\left(\frac{-\Delta L}{\omega \hbar}\right)}$$

 NOTE: Each atom in the ground state can absorb a photon and go into the excited state and each atom in the excited state can emit a photon and go to the ground state.

• At equilibrium, the rate of these two process must be equal.	

At equilibrium, the rate of these two process must be equal.
Rate is proportional to the probability of the event and the number of atoms present.

At equilibrium, the rate of these two process must be equal.
• Rate is proportional to the probability of the event and the number of atoms present.
• \overline{n} is the average number of photons present in a given state with the frequency ω .

• The absorption rate from the state is $N_q \overline{n} |a|^2$, and the emission rate into that state is

 $N_e(\overline{n}+1)|a|^2$.

• At equilibrium $N_q \overline{n} |a|^2 = N_e (\overline{n} + 1) |a|^2$

• Solving for the average number of photons present in a given state with the frequency ω

- Solving for the average number of photons present in a given state with the frequency ω

$$\overline{n} = \frac{1}{\sqrt{n}}$$

• Solving for the average number of photons present in a given state with the frequency ω $\overline{n}=\frac{1}{e^{\hbar\omega/k_BT}-1}$

• The energy of each photon is given by $\frac{\hbar\omega}{e^{\hbar\omega}/k_Bt-1}$

• Solving for the average number of photons present in a given state with the frequency ω $\overline{n} = \frac{1}{e^{\hbar\omega/k_{\rm B}T}-1}$

• The energy of each photon is given by
$$\frac{\hbar\omega}{e^{\hbar\omega}/k_Bt-1}$$

• For any harmonic oscillator, the quantum mechanical energy levels are equally spaced with a seperation $\hbar\omega$.

The energy leventhe oscillator.	els are equally	/ spaced and	the n^{th} ener	gy level is the	the mean er	iegry of

• The energy levels are equally spaced and the n^{th} energy level is the mean energy of the oscillator.

$$(E)_{mean} = \frac{\hbar \omega}{e^{\hbar \omega/k_B t} - 1}$$

• The energy levels are equally spaced and the n^{th} energy level is the mean enegry of the oscillator.

$$(E)_{mean} = \frac{\hbar \omega}{e^{\hbar \omega/k_B t} - 1}$$

Considering the boson which do not interact with each other, and in that state the whole system of particles behaves (for all quantum mechanical purpose) exactly like an harmonic oscillator.

 Analysing the Electro-magnetic field in a box, it show the properties of an harmonic oscillation.
• Thus, the number of photons in a particular state in a box, can be equated to the number

of energy levels associated with the particular modes of oscillation of the

electromagnetic fields.

• Mean energy in any particular modes in a box at a temperature T is given by

 $(E)_{mean} = \frac{\hbar \omega}{e^{\hbar \omega/k_B t} - 1}$

 $(E)_{mean} = \frac{\hbar \omega}{e^{\hbar \omega/k_B t} - 1}$

ASSUMPTION
For every mode there are some atoms in the box, which have energy levels that can
radiate into that mode so that each mode can get into thermal equilibrium.

• There will be billions of modes in the box and there will be many small frequency intervals $\Delta\omega$.

• The wave number k is given by
$$k = \frac{j\pi}{\lambda}$$
.

• The δR between successive modes is given by

- The wave number k is given by $k=rac{j\pi}{\lambda}$.
- The δk between successive modes is given by

$$\delta k = k_{j+1} - k_j = \frac{\pi}{L}$$

- The wave number k is given by $R = \frac{j\pi}{\lambda}$.
- The δk between successive modes is given by

$$\delta k = k_{j+1} - k_j = \frac{\pi}{l}$$

• An assumption is made that kL is large that in small interval Δk , there are many modes.

• ΔW is the number of modes in the interval Δk .

• This is given by
$$\Delta W = \frac{\Delta k}{\delta k}$$
 and $\delta k = \frac{j\pi}{l}$.

- ΔW is the number of modes in the interval Δk .

• This is given by
$$\Delta W = \frac{1}{\delta k}$$
 and $\delta k = \frac{1}{L}$

• Thus, $\Delta W = \frac{L(\Delta k)}{\pi}$

• This is given by $\Delta W = \frac{\Delta R}{\delta R}$ and $\delta R = \frac{j\pi}{L}$.

• This is given by
$$\Delta W = \frac{\Delta k}{\delta k}$$
 and $\delta k = \frac{j\pi}{l}$.

• Thus, $\Delta W = \frac{L(\Delta R)}{\pi}$

- ΔW is the number of modes in the interval Δk .

- A standing wave in a rectangular box must have an integral number of half waves along
- each axis.

• Thus, ΔW the number of modes for a vector wave number **k** between the axes

components k and $k + \Delta k$ is

- A standing wave in a rectangular box must have an integral number of half waves along each axis.
- Thus, ΔW the number of modes for a vector wave number **k** between the axes components k and $k+\Delta k$ is

$$\Delta W = \frac{L_X L_Y L_Z}{(2\pi)^3} (\Delta k_X \Delta k_Y \Delta k_Z) \tag{1}$$

$$dW(K) = V \frac{d^3k}{(2\pi)^3} \tag{2}$$

- Applying the above result to find number of photon modes for photons with frequencies in the range $\Delta k.$
- In vacuum the magnitude of $\ensuremath{\mathbf{k}}$ is related to the frequency by

- Applying the above result to find number of photon modes for photons with frequencies in the range Δk .
- In vacuum the magnitude of k is related to the frequency by

$$|k| = \frac{\omega}{c}$$
.

- Applying the above result to find number of photon modes for photons with frequencies in the range Δk .
- In vacuum the magnitude of k is related to the frequency by

$$|k| = \frac{\omega}{c}$$
.

- In the frequency interval $\Delta \omega$, these are all the modes which correspond to k's with magnitude between k and $k+\Delta k$, independent of the direction.
- The "volume in the k-space" between k and $k+\Delta k$ is a spherical shell of volume

- Applying the above result to find number of photon modes for photons with frequencies in the range Δk .
- In vacuum the magnitude of k is related to the frequency by

$$|k| = \frac{\omega}{c}$$
.

- In the frequency interval $\Delta \omega$, these are all the modes which correspond to k's with magnitude between k and $k + \Delta k$, independent of the direction.
- The "volume in the k-space" between k and $k+\Delta k$ is a spherical shell of volume $4\pi(k^2)\Delta k$.

• The number of modes is then,

$$\Delta W = \frac{V4\pi k^2 \Delta k}{(2\pi)^3}.$$

• The number of modes is then,

$$\Delta W = \frac{V4\pi k^2 \Delta k}{(2\pi)^3}.$$

substitute
$$k = \frac{\omega}{c}$$

• The number of modes is then,

$$\Delta W = \frac{V4\pi k^2 \Delta k}{(2\pi)^3}.$$

substitute $k = \frac{\omega}{c}$

 $\Delta W(\boldsymbol{\omega}) = \frac{V4\pi\boldsymbol{\omega}^2\Delta\boldsymbol{\omega}}{(2\pi\epsilon)^3}$

• These modes are independent, we must for double the number of modes.

· This is given by,

- These modes are independent, we must for double the number of modes.
- This is given by,

$$\Delta W(\pmb{\omega}) = rac{V(\pmb{\omega}^3)\Delta \pmb{\omega}}{\pmb{\pi}^2 \epsilon^3}$$
 (for light).

• We have shown that each mode has an average the energy

$$\overline{n}\hbar\omega=rac{\hbar\omega}{e^{\hbar\omega/k_{B}T}-1}$$

- We have shown that each mode has an average the energy

$$\overline{n}\hbar\omega=rac{\hbar\omega}{
ho^{\hbar\omega/k_{B}T}-1}$$

- Multiplying This by the number of modes, we get the energy ΔE in the modes that lie in

the interval
$$\Delta\omega$$
 :
$$\Delta E = \left(\frac{\hbar\omega}{e^{\hbar\omega/k_BT}-1}\right)\left(\frac{{\it V}\omega^3\Delta\omega}{\pi^2c^3}\right)$$

The photons are the bosons, which have tendency to try to get to all into the same state.

