Universidad de la República Facultad de Ingeniería - IMERL

Cálculo diferencial e integral en varias variables Segundo semestre 2018

Segundo parcial.

Duración: 3 horas.

No. Parcial	Apellido y nombre	Firma	Cédula	Asiste a teórico

PARA USO DOCENTE									
Ej 1	Ej 2	Ej 3	Ej 4	Ej 5	Ej 6	Total			

Ejercicios de Múltiple Opción.

Total: 32 puntos.

 $8~\mathrm{puntos}$ respuesta correcta, -1.5 puntos respuesta incorrecta.

1. El límite

$$\lim_{\substack{(x,y)\to(0,0)}} \frac{1-\sqrt{1+x^2+y^2}}{x^2+y^2}$$

es igual a:

(A) 0.
$$\square$$
 (B) $\frac{1}{2}$. \square

$$(C)$$
 -1 .

(D)
$$-\frac{1}{2}$$
.

2. Sea $f(x,y) = \frac{\log(\frac{x+y}{2})}{y^2}$. Entonces el polinomio de Taylor de orden 2 de f en el punto (1,1) es:

(A)
$$\frac{1}{8}(x^2 - 10xy - 9y^2 + 4x + 4y)$$
.

(B)
$$\frac{1}{2}(x-1) + \frac{1}{2}(y-1) + \frac{1}{4}(x-1)^2 - \frac{5}{2}(x-1)(y-1) - \frac{9}{4}(y-1)^2$$
.

(C)
$$\frac{1}{8}(-x^2 - 10xy - 9y^2 + 16x + 32y - 28)$$
.

(D)
$$\frac{1}{2}(x-1) + \frac{1}{2}(y-1) + \frac{1}{8}(x-1)^2 - \frac{5}{8}(x-1)(y-1) - \frac{9}{8}(y-1)^2$$
.

3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida como

$$f(x,y) = \begin{cases} y^2 + x^2 \sin\frac{1}{x} & x \neq 0 \\ y & x = 0 \end{cases}$$

Indicar la opción correcta:

- (A) f no es diferenciable en (0,0), pero existen las derivadas parciales en un entorno de (0,0).
- (B) f no es diferenciable en (0,0), pero sus derivadas parciales son continuas en un entorno de (0,0).
- (C) f no es diferenciable en (0,0) pero existen todas sus derivadas direccionales en (0,0). \square
- (D) f es diferenciable en (0,0), pero sus derivadas parciales no son continuas en un entorno de (0,0).
- **4.** Se considera el conjunto $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\geq 4,\ \frac{x^2}{12}+\frac{y^2}{4}\leq 1,\ y\leq x,\ y\geq 0\},$ entonces el área de D es igual a:

$$(A) \frac{\pi}{3}$$
.

(B)
$$\frac{\pi}{2\sqrt{3}}$$
.

(C)
$$\left(\frac{4-\sqrt{3}}{2\sqrt{3}}\right)\pi$$
.

(D)
$$\left(\frac{\sqrt{3}-1}{2}\right)\pi$$
.

Recordar que: $\tan(\frac{\pi}{4}) = 1$, $\tan(\frac{\pi}{3}) = \sqrt{3}$, $\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}$

Ejercicios de Desarrollo

Total: 28 puntos.

Ejercicio 5: 18 puntos. Ejercicio 6: 10 puntos.

- 5. Sea $f:\mathbb{R}^2 \to \mathbb{R}$ una función diferenciable en un punto $(x_0,y_0).$ Probar que:
- 1. f es continua en (x_0, y_0) .
- 2. existen $\frac{\partial f}{\partial x}(x_0, y_0)$ y $\frac{\partial f}{\partial y}(x_0, y_0)$.
- 3. si $v = (v_1, v_2)$ entonces $\frac{\partial f}{\partial v}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)v_1 + \frac{\partial f}{\partial x}(x_0, y_0)v_2$.
- **6.** Sea R > 0 fijo, $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le R^2, \ z \ge \sqrt{x^2 + y^2}, \ z \ge 0\}.$ Calcular el volumen de D.