Data Visualization Final Project

The main goal of this project is to apply the Machine Learning methods we studied this semester and reflect the knowledge we have gained since the previous Data Science course.

Jupyter Notebooks:

1. 1SB ML Hotel Bookings:

We were asked to improve our classification notebook from the Introduction to Data Science project, using new algorithms and theories we acquired.

Models and methods used:

- Random Forest
- KNN
- Logistic Regression
- XGBoost
- Fine-Tuning with Grid Search
- Voting Classifiers (hard and soft voting)
- Stacking

Final Model: Soft Voting Classifier.

Result: F1 score improved by 0.7%.

2. 1SB ML Fashion-MNIST:

A continuation to the famous MNIST Digits dataset, the Fashion-MNIST is a multiclass dataset that contains images of clothing items.

Models and methods used:

- Image Pre-Processing (transformations: grayscale, black and white)
- Logistic Regression (softmax, OvR, OvO)
- KNN
- Decision Tree
- Random Forest
- PCA
- Extra Trees
- AdaBoost
- XGBoost
- Fine-Tuning with Grid Search
- Voting Classifiers (hard and soft voting)
- Data Augmentation

Final Model: XGBoost.

Result: 89.57% Accuracy.

3. 1SB ML Dogs vs. Cats:

This image dataset is made up of pictures of dogs and cats. This classification task was challenging to tackle with Machine Learning algorithms.

Models and methods used:

- Image Pre-Processing (progressive resizing, transformations: color, grayscale, canny)
- Logistic Regression
- KNN
- Decision Tree
- Random Forest
- K-Means Clustering (for dimensionality reduction)
- PCA
- Extra Trees
- AdaBoost
- XGBoost
- Fine-Tuning with Grid Search
- Voting Classifiers (hard and soft voting)
- Stacking

Final Model: Stacking.

Result: 67.24% Accuracy.

4. 1SB Interpersonal Physical Alignment:

This notebook uses real data from an academic study. The data contains recorded hand motions that were gathered using the Leap Motion controller. Each participant was recorded in 3 different states: alone, spontaneous and sync. The goal is to train a Machine Learning algorithm to correctly predict the state when given unseen data.

Models and methods used:

- Data Preparation
- Logistic Regression (softmax)
- KNN
- Decision Tree
- Random Forest
- PCA
- Gaussian Naive Bayes
- AdaBoost
- XGBoost
- Fine-Tuning
- Voting Classifiers (hard and soft voting)

Final Model: Hard Voting Classifier.

Result: 86.74% Accuracy.