TD ACCQ 201

Julien Béguinot, Duong Hieu Phan

Télécom Paris

1 Reminder

Theorem 1 (Wilson). Let p > 1. p is prime if and only if

$$(p-1)! + 1 = 0 \mod p$$

Theorem 2 (Euler). Let φ be Euler indicator function and n > 1. If k is coprime with n then $k^{\varphi(n)} = 1 \pmod{n}$.

Definition 1 (Legendre Symbol). Let p be a prime odd number. The Legendre symbol (n/p) is defined as

$$\left(\frac{n}{p}\right): \begin{cases} 0 \text{ if } p \text{ divides } n \\ +1 \text{ if } p \text{ does not divide } n \text{ and } n \text{ is a square mod } p \\ -1 \text{ if } p \text{ is not a square mod } p \end{cases}.$$

Theorem 3 (Quadratic Residuosity). Let $a \in \mathbb{Z}$, $p \not| a$, p odd prime.

$$a^{\frac{p-1}{2}} = \left(\frac{a}{p}\right) \pmod{p}.$$

Definition 2 (Jacobi Symbol). Let $a \in \mathbb{Z}$ and $n \in 2\mathbb{N} + 1$. We assume that $n = \prod_{i=1}^k p_i$. Then the Jacobi symbol generalizes the Legendre symbol as

$$\left(\frac{a}{n}\right) = \prod \left(\frac{a}{p_i}\right).$$

It verifies the following properties:

- it is zero if and only if a and n are not co-prime
- it is multiplicative in a and in n
- if $a = b \pmod{n}$ then (a/n) = (b/n).

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = (-1)^{\frac{(m-1)(n-1)}{4}} \qquad \left(\frac{-1}{n}\right) = (-1)^{\frac{n-1}{2}} \qquad \left(\frac{2}{n}\right) = (-1)^{\frac{n^2-1}{8}}$$

Definition 3. Let A be a commutative ring. A GCD for A is a mapping GCD: $(a, b) \in$ $A^2 \mapsto d \in A$ such that

- d divides both a and b
- If e divides a and b then d divides d.

Definition 4. The fraction field of the integral ing A is the smallest field that contains A. For instance the fraction field of $\mathbb Z$ is $\mathbb Q.$

2 TD ACCQ 201

Definition 5. A unitary polynomial is a polynomial whose leading coefficient is equal to 1.

Definition 6. A polynomial with coefficient in a factorial ring A is said to be primitive if the greatest common divisors of its coefficient is 1.

Definition 7. A field K is said to be algebraicaly closed if every polynomial P of K[X] of degree at least 1 admits at least one root in K.

Theorem 4. The following assertions are equivalent:

- All non constant polynomials of K[X] splits as a product of polynomial of degree 1 in K[X]
- All non constant polynomials of K[x] admits at least one root in K.
- All irreducible polynomials of K[X] is of degree 1.

Definition 8 (Field Extension). An extension L of a field K is a field that contains K. The extension degree [L:K] is the dimension of L seen as K-vectorial space. The extension L is said to be algebraic if all elements of L is the root of a polynomial in K[X], else it is said to be transcendant.

Theorem 5. The extension degree is multiplicative. Namely if $K \subseteq L \subseteq M$ then

$$[K:M] = [K:L][L:M].$$

Definition 9 (Minimal Polynomial). Let K be a field and L an algebraic extension of K. Let $a \in L$. The minimal polynomial $\mu_a \in K[X]$ of a over K is the unitary polynomial with minimal degree such that $\mu_a(a) = 0$. This polynomial is always irreducible.

Definition 10. The other roots of μ_a are termed the **conjugates** of a.

Definition 11 (Rupture/Splitting Field). Let P be a polynomial over the field K, irreducible over K. A rupture field of K is a minimal extension L of K such that P has a root in a. A splitting field of P is a minimal extension L of K such that P splits has a product of factors of degree 1 in E. For instance E is a rupture/splitting field of E is a rupture-splitting field of E in the splitting field of E in the splitting field of E is a rupture-splitting field o

Theorem 6. Let P be a polynomial over the field K, irreducible over K. The splitting field of P is unique up to isomorphism.

Theorem 7. Let $d = \deg \mu_a$. Let $K \subseteq M \subseteq L$ be a rupture field of μ_a , then [M:K] = d. We also write $M \triangleq K(a) = K[X]/(\mu_a)$ the smallest subfield of L containing a. In particular K(a) can be seen as a K vectorial space with basis $(1, a, \ldots, a^{d-1})$.

2 Exercices

Exercice 1. Let $G \subset K^*$ be a finite subgroup of the group of invertible of the field K. Prove that G is a cyclic group. As a consequence \mathbb{Z}_p^* is cyclic.

Solution 1. Let $n \triangleq |G|$ be the order of the considered subgroup. n is uniquely decomposed as a product of primes $n = \prod_{i=1}^q p_i^{\nu_i}$ We write $G \triangleq \{g_1, \ldots, g_n\}$. Let $m \triangleq \text{LCM}(\text{ord}(g_1), \ldots, \text{ord}(g_n))$ and $\text{ord}(g_j) = \prod_{i=1}^q p_i^{\nu_{i,j}}$. Then $m = \prod_{i=1}^q p_i^{\max_j \nu_{i,j}}$ we first show that m = n.

- By Lagrange theorem $\operatorname{ord}(g_i)|n$ i.e. for all $i \in \{1, \ldots, q\}, j \in \{1, \ldots, n\}$ we have $\nu_{ij} \leq \nu_i$. It follows that $m \leq n$.
- Let $P(X) = X^m 1$. Then all the *n* distinct g_i a roots of *P* so $n \leq m$.

So far we proved that m=n. It remains to exhibit an element of order m in G. By construction of the LCM for all i there exist an index j_i such that the p_i -adic valuation of $\operatorname{ord}(g_{j_i})$ is equal to the p_i -adic valuation of m i.e. $\operatorname{ord}(g_{j_i}) = p_i^{\nu_i} u_i$. But then $\operatorname{ord}(g_{j_i}^{u_i}) = p_i^{\nu_i}$. Then $\prod_{i=1^q} g_{j_i}^{u_i}$ is of order $\prod p_i^{\nu_i} = m$. We used the lemma that $\operatorname{ord}(ab) = \operatorname{LCM}(\operatorname{ord}(a), \operatorname{ord}(b))$.

Exercice 2. Let $n \ge 2$ and a_1, \ldots, a_n distinct elements of \mathbb{Z} . Show that $P(X) = (X - a_1) \ldots (X - a_n) - 1$ is irreducible in $\mathbb{Z}[X]$.

Solution 2. Assume P = QR with $Q, R \in \mathbb{Z}[X]$. Then for all k,

$$P(a_k) = Q(a_k)R(a_k) = -1.$$

In particular,

$$Q(a_k) + R(a_k) = 0.$$

Hence the polynomial Q + R has at least n roots. If $\deg(Q + R) < n$ then Q + R = 0 and $P = -Q^2$. This is absurd since then P is always negative while its limit in $+\infty$ is clearly $+\infty$. This implies that $\deg(Q + R) = n$. But then either Q or R is constant equal to ± 1 . This shows that P is irreducible over $\mathbb{Z}[X]$.

Exercice 3 (Gauss Lemma). The product of two primitive polynomial in $\mathbb{Z}[X]$ is primitive. A polynomial $P \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Z}[X]$ is and only if it is irreducible in $\mathbb{Q}[X]$ and primitive in $\mathbb{Z}[X]$. We show Gauss lemma in a step by step proof.

- Show that the product of two primitive polynomial in $\mathbb{Z}[X]$ is primitive.
- Prove that c(PQ) = c(P)c(Q) for $P,Q \in \mathbb{Z}[X]$ where C(P) is the GCD of the coefficient of the polynomial.
- Concludes the proof.
- **Solution 3.** We first show that if the prime number p divides all the coefficient of PQ then it necessarily divides all the coefficient of P or the coefficient of Q. If we project P, Q, PQ to \mathbb{Z}_p we obtain that $0 = P\bar{Q} = \bar{P}\bar{Q}$. Since \mathbb{Z}_p is integral $\mathbb{Z}_p[X]$ is integral so either $\bar{P} = 0$ or $\bar{Q} = 0$. As a consequence the product of two primitive polynomials is primitive.
 - Now we can show that C(PQ) = c(P)c(Q). For $\mathbb{Z}[X]$ we can define the content as the GCD of all the coefficient. Let $\tilde{P} = \frac{1}{c(P)}P \in Z[X]$ and $\tilde{Q} = \frac{1}{c(Q)}Q \in \mathbb{Z}[X]$ then $c(\tilde{P}) = c(\tilde{Q}) = 1$. Let $R = \tilde{P}\tilde{Q}$ we have c(R) = 1. Indeed if by absurd p divides c(R) then it divides all the coefficient of R os by the previous remark it divides all the coefficient of \tilde{P} (or \tilde{Q}). But \tilde{P} is primitive which is a contradiction. This implies that c(PQ) = c(P)c(Q).
 - Let R be irreducible in $\mathbb{Z}[X]$ we show it is irreducible in $\mathbb{Q}[X]$. By the absurd if R = PQ where $P, Q \in \mathbb{Q}[X]$ then by taking α the product of the denominator of the coefficient of P and β the product of the denominator of the coefficient of Q we have $\alpha \in \mathbb{Z}[X]$ and $\beta Q \in \mathbb{Z}[X]$. It follows that

$$\alpha\beta R = (\alpha P)(\beta Q) = P_1Q_1 = c(P_1)(\frac{1}{c(P_1)}P_1)c(Q_1)(\frac{1}{c(Q_1)}Q_1) = c(P_1)c(Q_1)P_2Q_2.$$

Then

$$\alpha \beta R = \alpha \beta c(R) P_2 Q_2$$

i.e.

$$R = c(R)P_2Q_2.$$

But R is irreducible in $\mathbb{Z}[X]$ and $P_2, Q_2 \in \mathbb{Z}[X]$ so necessarly P_2 or Q_2 is a constant which concludes the proof. Further if R be irreducible in $\mathbb{Z}[X]$ it is necessarily primitive. The other direction of the implication is clear.

Exercice 4 (Eisenstein). Let $P(X) = a_n X^n + \ldots + a_1 X + a_0$ be a polynomial in $\mathbb{Z}[X]$. Let p be a prime number such that

TD ACCQ 201

•
$$p|a_i$$
 for $i=0,\ldots,n-1$ • $p \nmid a_n$

then P(X) is irreducible in $\mathbb{Q}[X]$. If further $GCD(a_0, \ldots, a_n) = 1$ then it is irreducible in $\mathbb{Z}[X]$.

Solution 4. By absurd. If P is reducible in $\mathbb{Q}[X]$ then it is reducible in $\mathbb{Z}[X]$. Let P=QR with $Q,R\in\mathbb{Z}[X]$ of degree at least 1. We consider the projection in \mathbb{Z}_p . We have $\bar{P}=\bar{a_n}X^n=\bar{QR}$. So necessarily $\bar{Q}=\bar{q_a}X^a$ and $\bar{R}=r_{n-a}^-X^{n-a}$ where n>a>1. So $\bar{q_0}=\bar{r_0}=0$. But then $p|r_0$ and $p|q_0$ so $p^2|p_0$.

Exercice 5. Show that $3X^2 + 25X + 10$ is irreducible in $\mathbb{Q}[X]$

Solution 5. Apply Eisenstein with p = 5.

Exercise 6. Show that in $\mathbb{Q}[X]$ there exists irreducible polynomials of all degrees $n \ge 1$.

Solution 6. Apply Eisenstein to $P_n(X) = X^n - 2$ and p = 2.

Exercice 7. Let p be a prime number. Let $\Phi_p(X) = \sum_{i=0}^{p-1} X^i$. Show that $\Phi_p(X)$ is irreducible in $\mathbb{Z}[X]$.

Solution 7.

$$X\Phi_p(X+1) = (X+1)^p - 1$$

so

$$\Phi_p(X+1) = \sum_{k=1}^p \binom{p}{k} X^{k-1}.$$

The result then folloows from Eisenstein lemma.

Exercise 8. Compute $\left(\frac{2585}{5031}\right), \left(\frac{122}{237}\right)$.

Solution 8. Use the relation on Jacobi coefficient to reduce the numerator and denomiator by successive euclidean division.

Exercice 9. Determine when q = 3, 11 is a square modulo p.

Solution 9. We use the quadratic residue criterium from Euler. For example for q=3. We know that q is a square modulo p if and only if (3/p)=1. But $(3/p)=(p/3)(-1)^{\frac{p-1}{2}}$. If p-1=4k then we need (p/3)=1 i.e. p=3k'+1. It follows by Euclide lemma that in this case we need p=12k''+1. If p-3=4k then we need (p/3)=-1 i.e. p=3k'+2. By the chinese reminder theorem we copnclude that necessarily $p=3(3^{-1}(4))3+4(4^{-1}(3))2+12k''=9+4+12k''=1+12k'''$. In any case we obtain that 3 is a square modulo p if and only if p is equal to 1 modulo 12. Apply the same method to q=11.

Exercice 10 (Finite Fields Cannot Be algebraically Closed). Show that a finite field cannot be algebraically closed.

Solution 10. Let $K = \{\alpha_1, \dots, \alpha_q\}$. Then $P(X) = 1 + \prod_{i=1}^q (X - \alpha_i)$ has no roots in K.

Exercice 11 (D'Alembert's Theorem). Prove that \mathbb{C} is algebraically closed.

Solution 11.

Finally I give this nice results that is out of the scope of the class but has a nice proof by Ram Murty.

Theorem 8 (Cohn's Criterion). Let $b \in \mathbb{N}$, $b \ge 2$, and $P(X) = \sum a_k X^k$ with $a_k \in 0, \ldots, b-1$. If P(b) is a prime integer then P is irreducible in $\mathbb{Z}[X]$ and as a consequence over $\mathbb{Q}[X]$.