考试课程

多元微积分期末考题

- 1. 设b > a > 0,积分 $\int_0^{+\infty} \frac{e^{-ax} e^{-bx}}{x} dx =$ ______
- 2. 设函数 f(x,y) 在 \Re^2 上连续, 交换累次积分的顺序 $\int_{0}^{1} dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x, y) dx = _{-}$
- 3. $\mbox{if } D = \{(x,y) \in \Re^2 | x^2 + y^2 \le 2x \}, \ \ \mbox{if } \int \int \left(y + \sqrt{x^2 + y^2} \right) dx dy = \underline{\hspace{1cm}}_{\circ}$
- 4. 设 Ω 是锥面 $z=\sqrt{x^2+y^2}$ 和球面 $x^2+y^2+z^2=R^2$ 所围成的区域,积分 $\iiint (x^2 + y^2 + z^2) dx dy dz = \underline{\qquad}$
- 5. 圆柱面 $x^2 + y^2 = 2x$ 被曲面 $z = x^2 + y^2$ 及平面 z = 0 所截部分的面积为______。
- 6. 设 A(1,0,0), $B(1,0,2\pi)$ 为曲线 $L: x = \cos t$, $y = \sin t$, z = t 上两点,则第二类曲线积分 $\int_{L(A)}^{(B)} y dx + x dz = \underline{\hspace{1cm}}$
- 7. 设第二类曲线积分 $\int_{L^+} (1+x^k e^{2y}) dx + (x^2 e^{2y} y^2) dy$ 与积分路径无关,则
- 8. 微分方程 $e^y dx + (xe^y 2y)dy = 0$ 的通解为______
- 9. 设 S 为球面 $x^2 + y^2 + z^2 = a^2$,则 $\iint_S \frac{x + y + z}{x^2 + y^2 + z^2} dS = \underline{\hspace{1cm}}$
- 10. 设S为 R^3 中的闭圆域: $x^2 + y^2 \le 1$, z = 0, 规定S的正法向量向下, 则第二类曲面
- 11. 曲面S是中心在原点,半径为a的球面,正方向为外法向量方向,则第二类曲面积分 $\iint x dy \wedge dz + y dz \wedge dx + z dx \wedge dy = \underline{\hspace{1cm}}_{\circ}$
- 12. 设 $\mathbf{A}(x, y, z) = x\mathbf{i} + e^{y}\mathbf{j} + (xyz)\mathbf{k}$, 则 rot $\mathbf{A}(x, y, z) =$

13. 三阶常系数齐次线性常微分方程有两个解为 xe^{x}, e^{-x} ,则该常微分方程的通解为

- 15. 微分方程 $x^2y'' + 2xy' 2y = 0$ 的通解为 _
- 二. 计算题 (每题 10 分, 共 40 分)
- 1. 设**Ω** 是由曲面 $z = x^2 + y^2$ 和 $z = 2 x^2 y^2$ 包围的空间区域,求 $\iiint_{\Omega} (x^2 + y^2) dx dy dz$ 。
- 2. 计算积分 $\oint_{L^+} (y-z)dx + (z-x)dy + (x-y)dz$, 其中 L^+ 是柱面 $x^2 + y^2 = R^2$ 与平面 $\frac{x}{a} + \frac{z}{b} = 1$ 的交线 (a>0,b>0) ,其正向从 Oz 轴向下看为逆时针方向。
- 3. 设 S^+ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, 内侧为正,求 $\iint_{S^+} \frac{(x,y,z)}{(x^2+y^2+z^2)^{\frac{3}{2}}} \cdot d\mathbf{S}$ 。
- 4. 假设函数 $\varphi(x)$, $\psi(x)$ 连续可导,且满足 $\varphi(0) = -2$, $\psi(0) = 1$,对平面上任意一条分段光滑的曲线 L,第二类曲线积分

$$I = \int_{L} 2(x\varphi(y) + \psi(y))dx + (x^{2}\psi(y) + 2xy^{2} - 2x\varphi(y))dy$$
与路径无关,求 $\varphi(x)$, $\psi(x)$ 。

三. 证明题

- 1. (7分)设 f(x) 在闭区间[0,1]上连续,证明 $2\int_0^1 f(x)dx \int_x^1 f(y)dy = \left(\int_0^1 f(x)dx\right)^2$ 。
- 2. (8 分)设 Ω 为 \Re^3 中的有界闭区域,其边界面 $\partial\Omega$ 为光滑闭曲面,函数u(x,y,z),v(x,y,z)在 Ω 上二阶连续可微,
- (I)证明:

$$\iint_{\partial\Omega} v \frac{\partial u}{\partial \vec{n}} dS = \iiint_{\Omega} v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) dx dy dz + \iiint_{\Omega} \left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial v}{\partial z} \right) dx dy dz$$

其中 \vec{n} 为 $\partial\Omega$ 的外法线方向:

(II) 若u(x,y,z)为调和函数,即 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$, $\forall (x,y,z) \in \Omega$,且 $u(x,y,z) \Big|_{\partial\Omega} = 0$,即函数u 在边界面 $\partial\Omega$ 上取值为0,证明: $u(x,y,z) \equiv 0$, $\forall (x,y,z) \in \Omega$ 。