(*) Phan c

Cau 1:

X= 0,5 mm

R=b=1m

d=0,2cm > rk=0,1cm

+) Số đời câu mà lỗ tron ban kinh r_k = 0,1cm chữa được:

r_k = \[\frac{kRb\lambda}{P+b} \]

 $\Rightarrow K = \frac{r_{\kappa^2}(R+b)}{R.b.\lambda} = \frac{(0.1.10^{-2})^2.(1+1)-4}{1.1.0.5.10^{-6}}$

Vì k chấn nên tâm nhiều xa là vân tôi

+) Để tam nhiều xa sang nhất, ban kinh lỗ tròn phải bằng ban kinh đới câu thứ 1 (K=1)

$$r_1 = \sqrt{\frac{Rb\lambda}{R+b}} = \sqrt{\frac{0.5.10^{-6}}{2}} = 5.10^{-4} (m)$$

+) Đế tâm nhiều xạ tối nhất, ban kinh lỗ tron phải bằng ban kinh đới câu thứ 2 (K=2)

$$r_2 = \sqrt{\frac{kRb\lambda}{R+b}}$$

$$= \frac{\sqrt{2.0,5.10^{-6}}}{\sqrt{2}} = 7,07.10^{-4} \text{ (m)}$$

Câu 2:

$$R = \infty$$
 $\lambda = 0.5 \, \mu \text{m}$
 $b = 400 \, \text{cm}$
 $k = 5$

Ban kinh của 5 đới câu Fresnel đầu tiên:

 $r_5 = \sqrt{\frac{kRb\lambda}{Rtb}} = \sqrt{\frac{kb\lambda}{Rtb}}$
 $= \sqrt{kb\lambda} = \sqrt{5.1.0.5.40^{-6}}$
 $= 1.58.10^{-3} \, (\text{m})$

Câu 3:

 $R = 1 \, \text{m}$
 $b = 1.25 \, \text{m}$

Khi lỗ trôn có bán kinh r₄ = 1 mm thì lỗ trôn chứa k đới câu, bán kinh tỗ tròn bằng bán kinh đổi câu thư k:

 $r_1 = r_k = \sqrt{\frac{kRb\lambda}{Rtb}} \Rightarrow k.\lambda = \frac{r_k^2 (Rtb)}{Rtb} = 1.8.10^{-6} \, \text{c}$

Khi lỗ trôn có bán kinh $r_2 = 1.29 \, \text{mm}$ thì lỗ tròn chứa k t2 đổi câu, bán kinh $r_2 = 1.29 \, \text{mm}$ thì lỗ tròn chứa k t2 đổi câu, bán kinh lỗ tròn bằng bán kinh đối thư kt2:

 $r_2 = r_{k+2} = \sqrt{\frac{(k+2)Rb\lambda}{Rtb}}}$
 $\Rightarrow (k+2)\lambda = \frac{r_k^2 \cdot (Rtb)}{Rtb} = 2.995.10^{-6} \, \text{c}$

Rb

Lây $(2 - 4) \Rightarrow 2\lambda = 1.195.10^{-6}$

 $\Rightarrow \lambda = 0,5975.10^{-6} (m)$

Cau 4:

Dia tron đặt chính giữa nguồn sang và màn quan sát nên: $R = b = \frac{x}{2}$

Để tâm nhiều xa có độ sang gần giống như khi chưa đặt đi ã câu thi bán kinh điã câu bằng bán kinh đối câu thứ 1:

6)

$$\Rightarrow$$
 0,5. $10^{-3} = \sqrt{\frac{x^2, 0, 6, 10^{-6}}{4x}}$

$$\Rightarrow x = \frac{(0.5.10^{-3})^2.4}{0.6.10^{-6}} \approx 1.67 \text{ (m)}$$

Câu 5:

$$\lambda = 0.6 \mu m$$

 $h = 0.1 mm$

T (----

a) Goi ch là goc nhiều xạ ủng với cuic tiểu bậc nhất sin ch = $\frac{\lambda}{b}$

Đặt x là khoảng cách từ cực tiêu bác nhất đến định cực đại trung tâm

$$tancp = \frac{x}{D}$$

Vi cp rất nhỏ nên sin cp ≈ tan cp

$$\Rightarrow \frac{\lambda}{b} = \frac{x}{D}$$

$$\Rightarrow x = \frac{\lambda D}{b} = \frac{0.6.10^{-6}.1}{0.1.10^{-3}} = 6.10^{-3} \text{ (m)}$$

Độ rộng cức đại trung tâm: 2x= 6.10-3.2= 0,012(m)

Câu
$$\frac{1}{2}$$
:

 $\lambda = 0,7 \mu m$
 $cp = 48^{\circ}36'$

a)

Diêu kiện cực đại chính hậc $\frac{1}{2}$:

 $\sin cp = \frac{1}{2} \lambda$
 $d = \frac{1}{2} \cos c$

Số khe trên 1cm chiếu dài cách tử:

 $n = \frac{1}{2} - \frac{1}{2} \cos c$
 $\sin cp = \frac{1}{2} \cos c$

b)

Diêu kiện cực đại chính:

 $\sin cp = \frac{1}{2} \cos c$

Diêu kiện cực đại chính:

 $\sin cp = \frac{1}{2} \cos c$
 $\sin cp = \frac{1}{2} \cos c$

Số cực đại chính nằm trong khoảng giữa cực tiểu chính bậc nhất:

 $\lambda = \frac{1}{2} \cos c$
 $\lambda =$

Câu 10:
$$d = 2\mu m$$

$$\lambda_{4} = 0.7 \mu m$$

$$\lambda_{2} = 0.4 \mu m$$
Piêu kiên cức đại chính:
$$\sin c\rho = m \lambda$$

$$d$$

$$\sqrt{a} - 1 \leq \sin c\rho \leq 1$$

$$\Rightarrow -1 \leq m \lambda \leq 1$$

$$\Rightarrow -d \leq m \leq d$$

$$\lambda$$
+) Với $\lambda_{1} = 0.7 \mu m$

$$-2.10^{-6} \leq m \leq 2.10^{-6}$$

$$0.7.10^{-6} \leq m \leq 2.10^{-6}$$

$$0.7.10^{-6} \leq m \leq 2.10^{-6}$$

$$\Rightarrow m \in \S 0, \pm 1, \pm 2\S$$

$$\Rightarrow m_{2}max = 2$$
+) Với $\lambda_{2} = 0.4 \mu m$

$$m \leq 2.10^{-6} = 5$$

$$0.4.10^{-6}$$

$$\Rightarrow m_{2}max = 5$$