Statistical Foundations of Data Science

Jianqing Fan

Princeton University

https://fan.princeton.edu

ZOOM ID Lectures: **970 4936 8998** Office Hours: **996 4030 7631**

Annotated Lecture Notes: web view

990

ORF 525, S21: Statistical Foundations of Data

10. Applications of Factor Models and PCA

- 10.1. Factor-Adjusted Regularized Model Selection(§11.1)
- R FarmSelect

10.2. Factor-Adjusted Robust Multiple Testing (§11.2)

- R FarmTest
- 10.3. Factor Augmented Regression Methods for Prediction(§11.3) FarmPredict
- 10.4. Community Detection (§11.4.1)
- 10.5. Topic Modeeling (§11.4.2)
- 10.6. Matrix completion(§11.4.3)
- 10.7. Item Ranking (§11.4.4)

10.1 Factor-adjusted Regularized Model Selection

Factor Adjusted Model Selection

High-dim model: $Y_t = \alpha + \beta^T \mathbf{X_t} + \varepsilon_t$,

β sparse

★LASSO breaks down due to high-correlation of X

Factor-adjusted model selection: $X_t = Bf_t + u_t$

$$Y_t = \alpha + \underbrace{\beta^T \mathbf{Bf_t} + \beta^T \mathbf{u_t}}_{\gamma^T \mathbf{f_t} + \beta^T \mathbf{u_t}} + \varepsilon_t$$

★same β

★u weak-depend.

reg. M-est work (Fan, Wang, Ke, 17)

FarmSelect: (factor-adjusted regularized model selection)

Robustly estimate \mathbf{f}_t and \mathbf{B} . Use \mathbf{u}_t and \mathbf{f}_t as predictors

Factor-adjusted versus direct approach

<u>Parameters</u>: $n = 100, p = 250, N_{sim} = 100.$

Factor-Adjusted Regularized Model Selection

 \bigstar Decompose $\mathbf{X}_i = \mathbf{B}\mathbf{f}_i + \mathbf{u}_i$

u weak-depend.

★ Fit $Y_i = f(\alpha + \mathbf{X}_i^T \beta, \varepsilon_i)$ via lifting: New Predictors: $\{(\mathbf{f}_i, \mathbf{u}_i)\}$

$$Y_i = f(\alpha + \underbrace{\beta^T \mathbf{B} \mathbf{f}_i + \beta^T \mathbf{u}_i}_{\mathbf{\gamma^T} \mathbf{f}_i + \beta^T \mathbf{u}_i}, \varepsilon_i).$$

★ Apply to GLIM and M-estimation.

R FarmSelect

By including f_i , we decorrelate.

Simulation Results: Logistic regression with s = 3 and n = 200

	Factor model with $K=3$									
	F	armSelect	LASSO							
	Selection rate	Ave size	Selection	Screening	Ave size					
p = 300	0.94	1.00	3.07	0.07	0.98	12.61				
p = 400	0.90	0.99	3.12	0.05	0.95	12.94				
p = 500	0.83	0.98	3.18	0.03	0.93	15.07				
		Equa	l correlated	case ($\rho = 0$.	8)					
	F	armSelect		LASSO						
	Selection Screening		Ave size	Selection	Screening	Ave size				
p = 300	0.93	1.00	3.09	0.07	0.85	9.90				
p = 400	0.89	1.00	3.14	0.05	0.80	10.82				
p = 500	0.85	0.99	3.19	0.02	0.69	11.79				
			Uncorrelat	ed case						
	F	armSelect			LASSO					
	Selection rate Screening		Ave size	Selection	Screening	Ave size				
p = 300	0.97	1.00	3.03	0.95	1.00	3.14				
p = 400	0.93	1.00	3.07	0.91	1.00	3.34				
p = 500	0.91	1.00	3.10	0.89	1.00	3.42				
				4.0	148143	- 2 E - 2				

Prediction bond risk premia

Covariates: 131 disaggregated macroeconomic times series

■rolling window of 60 months

to forecast Y_{t+1} .

Out of sample R^2 and average selected model size

Maturity of Bond	Out of	sample <i>R</i>	Average model size		
	FarmSelect LASSO P		PCR	FarmSelect	Lasso
2 Years	0.2586	0.2295	0.2012	8.80	22.72
3 Years	0.2295	0.2166	0.1854	8.92	21.40
4 Years	0.2137	0.1801	0.1639	9.03	20.74
5 Years	0.2004	0.1723	0.1463	9.21	20.21

Applications to Neuroblastoma Data

■Predict '3-y Event Free Survival", using gene expressions

■Run the penalized logistic regression (56 "+" and 190 "-")

FarmSelect: 17 genes, Lasso: 40, SCAD: 34, Elastic Net: 86

Comparing bootstrap PE: Learning 200, testing 46

Bootstrap sample average	Model selection methods							
	FARMselect	Lasso	SCAD	elastic net				
Model size	17.6	46.2	34.0	90.0				
Correct prediction rate	0.813	0.807	0.809	0.790				
Prediction performance with first 17 variables enter the solution path								
	FARMselect	Lasso	SCAD	elastic net				
Correct prediction rate	0.813	0.733	0.764	0.705				

10.2. Factor-adjusted robust multiple testing

R FarmTest

FarmTest

■How many mutual funds have positive alpha? (Barras, et al, 10, JF)

A synthetic three-factor model:
$$\mathbf{X}_i = \mu + \underbrace{\mathbf{B}\mathbf{f}_i + \mathbf{u}_i}_{\mathcal{E}_i}, i = 1, \dots, n,$$

$$\mathbf{f}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_3), \quad \mathbf{B} = (b_{i\ell}) \sim_{\text{IIID}} \mathcal{U}(-1, 1) \& \mathbf{u}_i \sim \mathbf{t}_3(\mathbf{0}, \mathbf{I}_p).$$

Model setup: $(n,p) = (100,500), \mu_j = 0.6$ for $j \le p/4$; **0**, otherwise.

Naive : $\overline{\mathbf{X}}_i$

FarmTest: $\overline{X_i} - \overline{Bf_i}$

Importance of Robust Adjustments

Decreased noise!

Factors Adjusted Robust Multiple testing

Factor adjusted data: $\widehat{Y}_{ti} \approx \mu_i + u_{ti}$,

$$\widehat{Y}_{tj} \approx \mu_j + u_{tj}$$
,

$$\bigstar \widehat{Y}_{tj} = X_{tj} - \widehat{\mathbf{b}}_j^T \widehat{\mathbf{f}}_t.$$

- Control false discovery rate as if independent normal data $\{Y_{ti}\}$.
- Proposed and studied by Fan, Ke, Sun, and Zhou (2020)

FarmTest

- ★ For each H_{j0} : $\mu_j = 0$, compute the robust two-sided test \hat{T}_i
- \star Compute the P-value $P_i = 2\Phi(-|\widehat{T}_i|)$ for testing H_{0i} .
- Provide alternative ranking of P-values from those without adjust.
- Reduce noise and increase power.

FDP approximation

Total discoveries:
$$\widehat{R}(z) = \sum_{j=1}^{p} 1(|\widehat{T}_j| \ge z)$$

z: critical value

$$\operatorname{FDP}(z) = \underbrace{\frac{\sum_{j \in \mathsf{Null}} 1(|\widehat{T}_j| \geq z)}{\widehat{R}(z)}}_{\text{definition, unknown}}, \qquad \widehat{\operatorname{FDP}}_{\mathsf{N}}(z) = \underbrace{\frac{2p_0 \Phi(-z)}{\widehat{R}(z)}}_{\text{estimate, known}}.$$

$$\widehat{\text{FDP}}_{N}(z) = \underbrace{\frac{2p_{0}\Phi(-z)}{\widehat{R}(z)}}_{\text{estimate, known}}$$

- $\blacksquare p_0 = \#$ true null \longleftarrow bounded by p (conservative).
- **Usage**: Report sig. tests and FDP for given z

★Choose z to control FDP

Valid approximation of FDP over a wide range

$$\max_{0 \leq z \leq \Phi^{-1}(1-m_p/(2p))} \left| \frac{\widehat{\mathsf{FDP}}(z)}{\widehat{\mathsf{FDP}}_N(z)} - 1 \right| \to 0 \ \ \text{in probability}.$$

Remarks

- True FDP can be well approximated by normal dist., after factor adj, as if data are weakly dep. with reduced noise.
- 2 Proportion of true nulls p_0/p can be estimated (Storey, 02):

$$\widehat{\pi}_0(\lambda) = \frac{1}{(1-\lambda)\rho} \sum_{j=1}^{\rho} 1(\widehat{P}_j > \lambda).$$

FDP and power comparisons: Models and Methods

Factor model:
$$\mathbf{X}_i = \mu + \mathbf{B}\mathbf{f}_i + \mathbf{u}_i, \ n \in \{100, 150, 200\}, p = 500.$$

$$\mathbf{B} = (b_{j\ell}) \sim_{\mathrm{IID}} \mathcal{U}(-1, 1), \ \mathbf{f}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I_3}), \ \mathbf{u_i} \sim \mathcal{N}(\mathbf{0}, \mathbf{4I_3}) \ \text{or} \ \mathbf{t_3}(\mathbf{0}, \mathbf{I_3}),$$

$$\mu_j = 0.5, \ 1 \le j \le 25; \ \mu_j = 0, \ \text{otherwise}.$$

Competing methods:

- FARM-H: FARM-Test with adaptive Huber covariance estimator;
- FARM-U: FARM-Test with U-type covariance estimator;
- FAM: A non-robust counterpart of FARM (sample mean + cov.);
- PFA: Principal factor approximation ((Fan and Han, 17+));
- Naive: Multiple t-tests ignoring factors.

FDP Control

Empirical mean abs. error between estimated & oracle FDP (t = 0.01, z = 2.576)

		p = 500							
\mathbf{u}_i	n	FARM-H	$\mathbf{FARM}\text{-}U$	FAM	PFA	Naive			
	100	0.0601	0.0683	0.0594	0.0611	0.1902			
Normal	150	0.0559	0.0645	0.0544	0.0563	0.1582			
	200	0.0525	0.0538	0.0510	0.0531	0.1348			
t ₃	100	0.0799	0.0848	0.1540	0.1796	0.3305			
	150	0.0723	0.0712	0.1329	0.1510	0.2944			
	200	0.0643	0.0619	0.1228	0.1366	0.2663			

Non-robust methods break down!

Power Comparisons

Empirical power

		p = 500							
\mathbf{u}_i	n	FARM-H	$\mathbf{FARM}\text{-}U$	FAM	PFA	Naive			
	100	0.844	0.835	0.881	0.867	0.591			
Normal	150	0.868	0.861	0.902	0.893	0.629			
	200	0.896	0.891	0.927	0.914	0.679			
	100	0.882	0.874	0.633	0.582	0.389			
<i>t</i> ₃	150	0.904	0.889	0.675	0.607	0.417			
	200	0.914	0.905	0.709	0.628	0.457			

Little price to pay for robustness!

Applications to Neuroblastoma Data

671 and 420 genes respect. have kurtosis heavier than t_5 (p = 10,707).

- At t = 0.01, FARM-U, FAM and naive methods identify 3855, 3509, 3236 differently expressed genes.
- ■Penalized logistic regression gives 56 "+" and 190 "-"

FarmSelect: 17 genes, Lasso: 40, SCAD: 34, Elastic Net: 86

10.3. Factor augmented regression methods for prediction

FarmPredict

Principal Component Regression

<u>Data</u>: $\{(\mathbf{X}_i, Y_i)\}_{i=1}^n$, \mathbf{X}_i is high-dim

 \star Regression Y on the principal components of **X**

Explanatory model: $\begin{cases} X_i = a + Bf_i + u_i, \\ Y_i = g(f_i) + \varepsilon_i, \end{cases}$

★Provide very different motivation for classical one

Augmented Factor Models

<u>Data</u>: $\{(\mathbf{W}_i, \mathbf{X}_i, Y_i)\}_{i=1}^n$, \mathbf{X}_i is high-dim

Model:
$$Y_i = g(\hat{\mathbf{f}}_i, \mathbf{W}_i) + \varepsilon_i$$
, $i \in [n]$.

also called augmented PCR

- $\blacksquare X_i^* = (f_i', W_i')' = (latent factors, augmented variables)$
 - ★ <u>linear model</u>: $Y_i = \alpha + \beta^T \mathbf{X}_i^* + \varepsilon_i$, $i \in [n]$.
 - ★ multi-index model: $Y_i = g(\phi_1^T \mathbf{X}_i^*, \dots, \phi_L^T \mathbf{X}_i^*) + \varepsilon_i$
 - ★ Machine Learning: kernel, RandomForest, Deep Learning

Extension:
$$Y_i = g(\widehat{\mathbf{f}}_i, \widehat{\mathbf{u}}_i, \mathbf{W}_i) + \varepsilon_i$$
.

New data: $\{(\widehat{\mathbf{f}}_i, \widehat{\mathbf{u}}_i, \mathbf{W}_i, y_i)\}_{i=1}^n$

Forecast Bond Risk Premia

Linear prediction: Out-of-sample R² (%)

predictors	PPCA				PCA			
	Maturity(Year)				Maturity(Year)			
	2 3 4 5			2	3	4	5	
\mathbf{f}_t	38.0	38.0 32.7 25.6 22.9			23.0	20.7	16.8	16.5
$(\mathbf{f}_t^T, \ \mathbf{W}_t^T)^T$	37.7					21.4	17.4	17.5

Multi-index prediction: Out-of-sample R² (%)

Predictors	PPCA				PCA			
	Maturity(Year)				Maturity(Year)			
	2	2 3 4 5			2	3	4	5
\mathbf{f}_t	44.6	44.6 43.0 38.8 37.3				25.5	23.2	21.3
$(\mathbf{f}_t^T, \ \mathbf{W}_t^T)^T$	41.5	41.5 38.7 35.2 33.8				26.3	24.6	22.0

10.4. Community Detection

Community detection

<u>Data</u>: adjacency matrix $A \in \{0,1\}^{n \times n}$, indicating if nodes i and j has a link.

Stochastic Block Model: K disjoint

communities C_1, \dots, C_K , with

$$P(A_{kl} = 1) = p_{ij}$$
, for $k \in C_i$, $l \in C_j$, indep.

Edge probability: $P = (p_{i,j})_{K \times K}$.

Erdös-Rényi graph: $p_{ii} = p$, degenerate

Planted partition model: $p_{ii} = p$ and $p_{ij} = q$ for $i \neq j$, $p \neq q$.

Simulated graphs

A realization from Erdos-Renyi

A realization from SBM

(a) (b)

Simulated network data from (a) Erdös-Rényi graph and (b) SBM with n = 100, $p = 5 \log(n)/n$, and q = p/4.

R-functions: sample_gnp and sample_sbm in R package igraph

Methods of Estimation

Likelihood:
$$\prod_{i>j} p_{C(i)C(j)}^{a_{ij}} (1 - p_{C(i)C(j)})^{1-a_{ij}}$$
,
parameters: $\{C(i)\}_{i=1}^K$ and $\mathbf{P} = (p_{ij}) \in R^{K \times K}$.

★hard to opt

<u>Method of Moment</u>: Let Γ = membership matrix, with i^{th} row = membership of node i. Then (except diagnal elements, negligible)

$$\mathsf{E} \mathbf{A} = \underbrace{\Gamma}_{n \times K} \underbrace{\mathbf{P}}_{K \times K} \Gamma^{T}.$$

- $\blacksquare \Gamma = \text{eigen-space spanned by top } K \text{ eigenvectors.}$
 - \bigstar Get top K eigenvector matrix $\widehat{\Gamma}$ from **A**
 - \bigstar Run k-means algorithm on n (normalized) rows of $\widehat{\Gamma}$ to cluster

Example: Stochastic block model

Example:
$$K = 2$$
, $|J| = \frac{n}{2}$, $E(A) = \begin{pmatrix} p\mathbf{1}_{J,J} & q\mathbf{1}_{J,J^c} \\ q\mathbf{1}_{J^c,J} & p\mathbf{1}_{J^c,J^c} \end{pmatrix}$ has spectral

$$u_1^* = \frac{1}{\sqrt{n}}\mathbf{1}, \ u_2^* = \frac{1}{\sqrt{n}}(\mathbf{1}_J - \mathbf{1}_{J^c}), \ \lambda_1^* = \frac{n(p+q)}{2}, \ \lambda_2^* = \frac{n(p-q)}{2}.$$

■2nd eigenvector identifies memberships

$$n = 5000$$
, $p = \frac{4.5 \log n}{n}$, $q = \frac{\log n}{4n}$.

Red: entries of $\sqrt{n}u_2^*$.

Blue: entries of $\sqrt{nu_2}$.

 $sgn(u_2)$ recovers memberships,

if uniformly approx.

Spectral analysis of network data

Simulated network data given before.

★Top panel: data generated from Erdös-Rényi model

★Bottom: data generated from SMB.

Mixed Memberships

- A university karate club network data for 34 members (Girvan & Newman, 2002)
- Edge links two members spent much time together outside club meetings
- At some point members split into two communities (led by H and by A)

Mixed Membership Model

<u>Data</u>: Adjacency matrix $\mathbf{A} = (A_{ij}) \in \mathbb{R}^{n \times n}$ follow

$$A_{ij} \sim_{indep} \mathsf{Bernoulli}(h_{ij}), \mathsf{for}\ i > j$$

Connection Probability: With degree heterogeneity θ_i ,

$$P(A_{ij} = 1 | i \in C_k, j \in C_l) = \theta_i \theta_j p_{kl},$$

Edge probability: $\pi_{\mathbf{i}} = (\pi_i(1), \cdots, \pi_i(K))^T \in \mathbb{R}^K$ is membership profile

$$P(A_{ij}=1) = \theta_i \theta_j \sum_{k=1}^K \sum_{l=1}^K \pi_i(k) \pi_j(l) p_{kl} = h_{ij}. \label{eq:power_power}$$

Spectral Clustering and Inference

Mixed Membership Model: With
$$\Pi = (\pi_1, \dots, \pi_n)^T \in \mathbb{R}^{n \times K}$$

$$\mathbf{E}\mathbf{A} = \mathbf{H} = \Theta \Pi \mathbf{P} \Pi^T \Theta, \qquad \Theta = \operatorname{diag}(\theta_1, \cdots, \theta_n)$$

- **①** Compute top K eigenvector matrix $\widehat{\Gamma}$ from **A**
- **2** Get SCORE $Y_{ik} = \widehat{\gamma}_{ik}/\widehat{\gamma}_{i1}$, $k = 2, \dots, K$ (ratio eliminates Θ , Jin, 2015)
- **3** Run k-means algorithm on n rows of $\mathbf{Y}_i \in R^{K-1}$ to cluster
- ★ Applicable to both cases. No ratios is better in homogeneous case.
- ★ Fan et al (2021) gives uncertainty quantification.

10.5. Topic Modeling

Latent Semantic Indexing

Data: Text corpus $\mathbf{D} = (\mathbf{d}_1, \dots, \mathbf{d}_n)$,

 $d_{ii} = \text{prop. of word } i \text{ in doc } j.$

<u>Multinomial</u>: n_i = document length, $d_{m+1,i}$ = other words

$$n_j(d_{1,j},\cdots,d_{m,j}) \sim \text{Multinomial}(n_j,d_{1,j}^*,\cdots,d_{m,j}^*).$$

Topic: doc *j* mixes *K* topics, with prob. $\pi_{i1}, \dots, \pi_{iK}$.

(Hofmann, 1999)

$$d_{ij}^* = \sum_{k=1}^K \pi_{jk} \rho_{ik}, \quad \text{ED} = \underbrace{\textbf{P} \boldsymbol{\Pi}^T}_{\text{rank } \textbf{K}}, \qquad \boldsymbol{\Pi} = \left(\pi_{jk}\right)_{n \times K}, \quad \textbf{P} = \left(\rho_{ik}\right)_{m \times K}$$

$$\Pi = (\pi_{jk})_{n \times K}, \quad \mathbf{P} = (p_{ik})_{m \times K}$$

where $p_{ik} = \text{prob of word } i \text{ in topic } k$.

Goal: learn Π and Θ and cluster them.

For \pm news, π_{i1} measures sentiment; p_{ik} semantic.

Document Classification and Vertice Hunting

Anchor words: words with only one non-zero row.

- **①** Singular-value-decomposition: $\mathbf{D} = \mathbf{L}\Lambda\mathbf{R}$. L estimates \mathbf{P} up to a right $K \times K$ matrix \mathbf{U} , identified by anchor words.
- Use K-mean algorithm and rows L for grouping words and rows of R for clustering documents.
- **3** Use anchor words to identify estimates Π and **P** (Ke and Wang, 19).

<u>Vertex Hunting</u>: Anchor words correspond to vertices of eigen-vector $(L_2/L_1, \cdots, L_K/L_1)$. Use this to identify **U** and hence **P**.

10.6. Matrix completion

The problem

Netflix problem: Customer *i* rates movie *j* if watched; otherwise missing.

Similarly for books, music and CDs in collaborative filtering

<u>Models</u>: Let Θ be preference matrix. Observe **X** on a subset Ω , corrupted with

noise:
$$X_{ij} = \theta_{ij} + \varepsilon_{ij}$$
, for $(i,j) \in \Omega$.

$$\underline{\mathbf{Factor\ models}} \colon \Theta = \underbrace{\mathbf{B}}_{n \times K} \underbrace{\mathbf{F}^T}_{K \times m} \text{low rank}$$

Missing at random: entry (i,j) is observed with prob p, indep.

Methods of Estimation

Penalized least-squares: min $\sum_{(i,j)\in\Omega}(X_{ij}-\theta_{ij})^2+\lambda\|\Theta\|_*$

<u>Data matrix</u>: Let $\mathbf{Y} = (X_{ij}I_{(i,j)\in\Omega}/p)$. Then, $\mathbf{E}\mathbf{Y} = \Theta$.

 $\star p$ estimated by observed frequencies

Spectral method: Let $\mathbf{Y} = \sum_{i=1}^{\min(m,n)} \lambda_i \mathbf{u}_i \mathbf{v}_i^T$ be SVD. Set

$$\widehat{\Theta} = \sum_{i=1}^{K} \lambda_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}.$$

10.7. Item Ranking

Ranking top K items based on many pairwise comparisons

Example: Top *K* **Ranking**

web search, recomm. systems, admissions, sports, voting, ...

Page ranking (Dzenan Hamzic)

Ranking of tennis players (Bozóki, Csató)

Bradley-Terry-Luce model

Assign latent score to each of n items $\mathbf{w}^* = [w_1^*, \dots, w_n^*]$

$$P\{\text{item } j \text{ beats item } i\} = \frac{w_j^*}{w_i^* + w_i^*}$$

★ Goal: identify the set of top-K items

Sampling and likelihood based methods

- \bigstar Comparison graph: Erdős–Rényi graph $\mathcal{G}\sim\mathcal{G}(n,p)$
- ★ For each $(i,j) \in \mathcal{G}$, obtain L_{ij} paired comparisons

$$y_{i,j}^{(k)} \stackrel{\text{ind.}}{=} \begin{cases} 1, & \text{with prob. } \frac{w_j^*}{w_i^* + w_j^*} \\ 0, & \text{else} \end{cases}$$

<u>Likelihood</u>: $L(\mathbf{w}) = \prod_{(i,j) \in \mathcal{E}} \left(\frac{w_j}{w_i + w_j} \right)^{L_{ij}\widehat{p}_{ij}} \left(\frac{w_i}{w_i + w_j} \right)^{L_{ij}(1 - \widehat{p}_{ij})}$ or its reparametrized $\mathbf{w} = \exp(\theta)$ regularized version $-\log L(\exp(\theta)) + \lambda \|\theta\|^2$.

A spectral method

$$\underline{\mathbf{Transition\ matrix}}:\ P_{ij}^* = \begin{cases} \frac{1}{d} \cdot \frac{w_j^*}{w_i^* + w_j^*}, & \text{if } (i,j) \in \mathcal{G} \\ \mathbf{remaining} & \text{if } i = j \\ 0, & \text{if } (i,j) \notin \mathcal{G} \end{cases}, \text{ for given } d.$$

Invariant distribution: $\pi^* \propto \mathbf{w}^*$, due to the reversibility:

$$\pi \mathbf{P}^* = \pi, \qquad \qquad \sum_{i=1}^n \pi_i P_{ij}^* = \sum_{i=1}^n \pi_i P_{ji}^* = \pi_j$$

Spectral ranking: based on $\mathbf{P} = (\frac{1}{d}\widehat{\rho}_{ij}I_{(i,j)\in\mathcal{G}})$, ranked by its 1st left-eigenvector.

 $d \geq d_{\text{max}}$, maximum degree; e.g. $d = 2 * d_{\text{max}}$

