Course 6: Databases and SQL for Data Science with Python

Week 1:

Lesson 1: Basic SQL

Welcome to SQL for Data Science

- Why?
 - Demand is high
 - Median salary: \$110,000
 - SQL is one of the top 3 skills for data scientists
- Big data
- Boost professional profile
- Given good understanding of relational databases

Introduction to Databases

- What is SQL
 - Language used for relational databases
 - Query data
- What is data?
 - Facts (words, numbers)
 - Pictures
 - One of the most critical assets of any business
 - Needs to be secure
- What is a database?
 - Repository of data
 - Program that stores data
 - Provides functionality for adding, modifying, and querying that data
 - Different kinds of databases store data in different forms
- Relational database
 - Data stored in tabular form
 - Columns contain item properties
 - Table is collection of related things
 - Relationships can exist between tables
- DBMS
 - Database: repository of data
 - DBMS: Database Management System software to manage databases
 - Database, database server, database system, data server, dbms often used interchangeably
- RDBMS

- Relational database management system
- Set of software tools that controls the data
 - Access, organization, storage
- Examples:
 - MySQL
 - Oracle Database
 - IBM Db2
 - Etc.
- Basic SQL Commands
 - Create a table
 - Insert
 - Select
 - Update
 - Delete

SELECT Statement

- Retrieving rows from a table
- After creating a table and inserting data into the table, we want to see the data
- SELECT
 - A data manipulation language (DML) statement used to read and modify data
- SELECT * FROM <tablename>
- Retrieve a subset of columns
 - SELECT <column 1>, <column 2> FROM
- Restricting the Result: WHERE Clause
 - Restricts the result set
 - Always requires a predicate:
 - Evaluates to:
 - True, False, or Unknown
 - Used in search condition of the Where clause

COUNT, DISTINCT, LIMIT

- Count
 - Built-in function that retrieves the number of rows matching the query criteria
- Distinct
 - Remove duplicate values from a result set
 - select DISTINCT country from medals
- Limit
 - Restricting number of rows retrieved from database

INSERT

- Populate table with data
- DML statement
- INSERT INTO [TableNam]
 - <(ColumnName,...)>

- VALUES (Value,...)
- Can insert multiple rows

UPDATE and DELETE Statements

- UPDATE
 - DML statement
 - Can alter data
 - UPDATE tableName
 - SET coulmnName = value
 - WHERE condition
 - If not specifying where, all rows will be affected
- DELETE
 - Remove 1 or more rows from the table
 - DML statement
 - DELETE FROM tableName
 - WHERE condition

Week 2:

Lesson 1: Introduction to Relational Databases and Tables

Relational Database Concepts

- Relational model
 - Most used
 - Data independence
 - Data is stored in tables
- ER model
 - Entity relationship model
 - Collection of entities
 - Used as a tool to design relational databases
- Mapping entity diagrams to tables
 - Entities become tables
 - Attributes get translated into columns
- Primary and foreign keys
 - Primary
 - Uniquely identifies each tuple / row in a table
 - Prevents duplication
 - Foreign
 - Primary keys from other tables

How to Create a Database Instance on Cloud

- Ease of use and access

- Api
- Web interface
- Cloud or remote applications
- Scalability & economics
 - sexpand/shrink storage & compute resources
 - Pay per use
- Disaster Recovery
 - Cloud backups and geographical distribution
- Examples
 - IBM Db2
 - Databases for PostgreSQL
 - Oracle Database Cloud Service
 - Microsoft Azure SQL Database
 - Amazon Relational Database Services (RDS)
- Database Service Instances
 - DBaaS provides users with access to database resources in cloud without setting up hardware and installing software
 - Database service instance holds data in data objects/tables
 - Once data is loaded, it can be queried using web interfaces and applications
- Creating a database instance on IBM Db2 on Cloud

Types of SQL Statements (DDL vs. DML)

- Data Definition Language vs. Data Manipulation Language
- DDL
 - Define, change, or drop data
 - CREATE, ALTER, TRUNCATE, DROP
- DML
 - Read and modify data
 - INSERT, SELECT, UPDATE, DELETE

CREATE TABLE Statement

- Syntax
 - CREATE TABLE table_name
 - .
 - column_name_1 datatype optional parameters,
 - column_name_2 datatype,
 - ...
 - column_name_n datatype
 - .
- Example
 - CREATE TABLE provines {
 - id char(2) PRIMARY KEY NOT NULL,
 - name varchar(24)
 - }

ALTER, DROP, and Truncate Tables

- ALTER TABLE ... ADD COLUMN
 - Add or remove columns
 - Modify the data type of columns
 - Add or remove keys
 - Add or remove constraints
- SET DATA TYPE changes column type
- DROP COLUMN
- DROP TABLE
 - Deletes all data along with table
- TRUNCATE TABLE
 - Deletes data (all rows) in table without deleting table itself
 - TRUNCATE TABLE table_name
 - IMMEDIATE;

Week 3:

Lesson 1: Refining your Results

Using String Patterns and Ranges

- WHERE requires a predicate
 - True, False, Unknown
- Use the LIKE predicate with string patterns for the search
 - WHERE columnName LIKE stringPattern
 - WHERE firstname LIKE R%
- Using a range
 - WHERE pages >= 290 AND pages <= 300
 - WHERE ... OR ...
 - WHERE ... IN (first value, second value, ...)

Sorting Result Sets

- ORDER BY ...
 - By default sorted in ascending order
- ORDER BY ... DESC
- ORDER BY 2 (2 refers to the column to order by)

Grouping Result Sets

- DISTINCT(value)
- GROUP BY value
- HAVING
 - Only works with GROUP BY clause

Lesson 2: Functions, Multiple Tables, and Sub-queries

Built-in Database Functions

- Most databases come with built-in SQL functions
- Built-in functions can be included as part of SQL statements
- Database functions can significantly reduce the amount of data that needs to be retrieved
- Can speed up data processing
- Aggregate or Column Functions
 - INPUT: Collection of values (ex. Entire column)
 - Output: Single Value
 - Ex: SUM(), MIN(), MAX(), AVG(), etc.
- SUM
 - Add up all values in a column
 - SUM(column name)
- MIN. MAX
 - Returns minimum, returns maximum
 - MIN(column_name), MAX(column_name)
- AVG
 - Return average value
 - AVG(column_name)
- SCALAR and STRING FUNCTIONS
 - ROUND(), LENGTH(), UCASE, LCASE

Date and Time Built-in Functions

- DATE
 - 8 digits
- TIME
 - 6 digits
- TIMESTAMP
 - 20 digits (includes microseconds
- Functions
 - YEAR(), MONTH(), DAY(), DAYOFMONTH(), DAYOFWEEK(), DAYOFYEAR(), WEEK(), HOUR(), MINUTE(), SECOND()

Sub-Queries and Nested Selects

- Query inside another query
- Example situation
 - Retrieve a list of employees who earn more than the average salary
 - select EMP ID, F NAME, L NAME, SALARY
 - from employees
 - where SALARY <
 - (select AVG(salary) from employees
- Column expression

- Substitute column name with a sub-query
- Derived Tables / Table Expressions
 - Substitute table name with sub-query

Working with Multiple Tables

- Access multiple tables in same query
 - Sub-queries
 - Implicit JOIN
 - JOIN operators (INNER, OUTER, etc.)

Week 4:

Lesson 1: Accessing Databases Using Python

How to Access Databases Using Python

- Benefits of using Python
 - Ecosystem: NumPy, pandas, matplotlib, SciPy
 - Easy to use
 - Portable
 - Supports relational database systems
 - Database API (DB-API)
 - Documentation is easily available
- Notebooks
 - Matlab
 - Jupyter
 - Open source web app to share data science stuff
 - Language of choice
 - Share notebooks
 - Interactive output
 - Big data integration
- SQL API
 - CONNECT
 - SEND
 - EXECUTE
 - STATUS_CHECK
 - OK
 - DISCONNECT
- APIS used by popular SQL-based DBMS systems

APIs used by popular SQL-based DBMS systems

Application or Database	SQL API
MySQL	MySQL C API
PostgreSQL	psycopg2
IBM DB2	ibm_db
SQL Server	dblib API
Database access for Microsoft Windows OS	ODBC
Oracle	OCI
Java	JDBC

Writing Code Using DB-API

- Python Programs <-> DB API calls <-> DBMS
- Benefits
 - Easy to implement and understand
 - Encourages similarity between python modules
 - Achieves consistency
 - Portable across databases
 - Broad reach of database connectivity from Python
- Concepts
 - Connection objects
 - Database connections
 - Manage transactions
 - Cursor objects
 - Database queries
 - Scroll through result set
 - Retrieve results
- Methods
 - .cursor()
 - .commit()
 - .rollback()
 - .close()

- .callproc()
- .execute()
- .executemany()
- .fetchone()
- .fetchmany()
- .fetchall()
- .nextset()
- .arraysize()
- .close()
- Database cursor
 - Control structure which allows transversal over a database
 - Keeps track of programs current position in query results
- from dbmodule import connect
- # Create Connection Object
- Connection = connect('databasename', 'username', 'pswd')
- # Create a Cursor Object
- Cursor=connection.cursor()
- # Run Queries
- Cursor.execute('select * from mytable')
- Results = cursor.fetchall()

- # Free Resources
- Cursor.close()
- Connection.close()

Connecting to a Database Using ibm db API

- Provides a variety of useful Python functions for accessing and manipulating data in an IBM data server Database
- Uses IBM Data Server Driver for ODBC and CLI APIs to connect to IBM DB2 and Informix

Creating Tables, Loading Data, and Querying Data

- Connect to database
- Creating tables
 - .exec_immediate()
 - Connection
 - Statement
 - Options
 - Ex.
- stmt = ibm_db.exec_immediate(conn, "...sql statement...")

SQL Magic Commands

- Cell magics
 - Start with a double %% sign and apply to the entire cell
- Line magics
 - Start with a single % sign and apply to a particular line in a cell
- Ex.
- %sql select * from tablename

Analyzing Data with Python

- Load CSV file into DB2 on cloud
 - Source
 - Load spreadsheet using console
 - Target
 - schema
 - Define
 - Create new table, specify table name and define columns
 - Finalize
 - Finish selections
- df.describe(include='all')

Week 5:

Lesson 1: Assignment Preparation

Working with Real World Datasets

- Many are .CSV files
 - Comma Separated Values
- DOGS.CSV
- First row: Headers (not always)
- Specify within "" for mixed case column names
- \ splits queries into multiple lines

Getting Table and Column Details

- select * from syscat.tables
- CREATE TIME
- select * from syscat.columns

Week 6:

Lesson 1: Views, Stored Procedures, and Transactions

Views

- Alternative way of representing data
- Can include specific columns from multiple base tables and existing views
- Shows selection of data for a given table
- Combine two or more tables
- CREATE VIEW viewname (columns)
 - AS SELECT
 - FROM

Stored Procedures

- Set of sql statements stored and executed on the database server
 - Can write in many different languages
 - Accept information as parameters
 - Return results to parent application
- Reduction in network traffic
- Improvement in performance
- Reuse of code
- Increase in security
- CREATE PROCEDURE procedureName (
 - LANGUAGE SQL
 - BEGIN

- · IF
- ELSE
- END IF
- END

ACID Transactions

- Transaction
 - Indivisible unit of work
 - Consists of one or more sql statements
 - Either all happens or none
- Atomic
 - All changes must be performed successfully or not at all
- Consistent
 - Data must be in a consistent state before and after the transaction
- Isolated
 - No other process can change the data while the transaction is running
- Durable
 - The changes made by the transaction must persist
- BEGIN
 - Commands here are part of the transaction
- COMMIT
- ROLLBACK

Lesson 2: JOIN Statements

Join Overview

- Combines rows from two or more tables
- Based on a relationship
- Primary key
 - Uniquely identifies each row in a table
- Foreign Key
 - Refers to primary keys of other tables

Inner Join

- Most common type
- Displays only the rows from two tables which have a matching value in a common column
- Rows that do not have a matching value do not appear

Outer Join

- Left
 - All rows from left table are included, only matching ones from the right are included

- Right
 - Vice versa
- Full
 - All rows from both tables