Nesse trabalho escolhi como características do algoritmo de ES mutar de forma não correlacionada com apenas um sigma por cromossomo; o método de seleção foi realizado de forma (30+210), sendo que cada pai produz 6 filhos por mutação e 1 por combinação; o método de combinação feito foi de escolha de 2 pais fixos e o filho produzido é a média de ambos os pais.

O algoritmo de DE foi feito conforme com a descrição do artigo *FSDE-Forced Strategy Differential Evolution used for data clustering*, com a única diferença que a taxa Cr para crossover é fixa e igual 0,66. Com isso, se um número escolhido de forma aleatória entre 0 e 1, se for menor que 0,66, o filho recebe o gene do pai mutado, caso contrário recebe o gene do pai original.

Uma das métricas utilizadas nesse trabalho foi a soma dos erros quadráticos (*sum of squred errors* – SSE) dado pela fórmula abaixo:

$$SSE = \sum_{i=1}^{K} \sum_{x_j \in C_i} ||x_j - m_i||^2$$

onde m_i é o centroide do cluster C_i e x_j é um vetor de característica pertencente ao cluster C_i .

Abaixo é apresentado uma tabela apresentando a média seguida da variância dos valores SSE dos algoritmos DE, ES e suas respectivas versões hibridizadas com K-means. Esses valores foram obtidos após 10 execuções de cada algoritmo.

	ES	DE	ES-K-	DE-K-
			means	Means
Iris	117,79 ±	90,55± 14,51	$78,94 \pm 0,0$	$78,94 \pm 0,0$
	15,3			
Breast -	36154, 95 ±	19753,36±	19718,39 ±	19718,39 ±
cancer	5783,25	53,13	0,0	0,0
Wine	2397663,97	2489018,58±	2370689,69	2370689,69
	± 43401,03	45283,47	± 0,0	± 0,0

Uma outra métrica utilizada nesse foi a distância entre os clusters (inter cluster distance – ICE) dado pela fórmula abaixo:

$$ICE = \min (c_i - c_i)^2$$

onde c_i e c_i são centroides de um cluster e $i \neq j$.

Abaixo é apresentado uma tabela apresentando a média seguida da variância dos valores ICE dos algoritmos DE, ES e suas respectivas versões hibridizadas com K-means. Esses valores foram obtidos após 10 execuções de cada algoritmo.

	ES	DE	ES-K-	DE-K-
			means	Means
Iris	$3,81\pm 2,26$	$2,95 \pm 0,42$	$4,55 \pm 2,93$	$3,22 \pm 0,0$
Breast -	134,74 ±	189,07±	109,57 ±	189,26 ±
cancer	43,12	2,29	40,86	0,0
Wine	35504,66±	76570,81±	72008,18 ±	73087,79 ±
	30725,24	14282,76	80595,65	0,0

As versões hibridizadas com uso do K-means tanto DE e do ES, apresentaram melhores resultados no SSE do que suas versões normais, já que o valor do SSE é menor nas suas versões hibridizadas do que nas suas versões normais. Já para a métrica do ICE, as versões híbridas com uso do K-means tanto DE e do ES, apresentaram bons resultados, pois para as versões hibridizadas foram melhores em 2 datasets do que suas respectivas versões normais, já que apresentaram maiores resultados para o ICE.