- Due date: 24th March 2020. No submissions accepted after deadline.
- Total questions to be done: 8 (already given in class) + 5 (add acc. to RollNo)
- Refrain from copying.

Roll No 01-33

1. What do you mean by histogram equalisation? Illustrate the process of histogram equalisation for the following 3-bit image.

7	6	5	3
0	7	4	5
6	2	2	1
0	1	1	3

2. The table below shows a 3 symbol source with their respective probabilities.

Symbol	Probability
S1	0.8
S2	0.02
S3	0.18

- a) Determine the code word to be assigned to each of the symbols using Huffman Coding.
- b) Determine the coding redundancy and the compression ratio.
- 3. Given a binary image X and a Structuring Element B with origin as center. Calculate:

- a) $Y1 = X \Theta B$ (Erosion)
- b) $Y2 = X \oplus B$ (Dilation)
- 4. Mention one application each of erosion and dilation.
- 5. Consider a 3 X 3 spatial mask that averages the four closest neighbours of a point (x,y), but excluded the point itself from the average. Find the equivalent filter H(u,v) is the frequnecy domain. [hint: make use of translation property]

- Due date: 24th March 2020. No submissions accepted after deadline.
- Total questions to be done: 8 (already given in class) + 5 (add acc. to RollNo)
- Refrain from copying.

Roll no 33-70

1. What do you mean by histogram equalisation? Illustrate the process of histogram equalisation on the following image:

9	8	7	6
8	7	13	5
7	6	5	4
6	1	4	3

2. Construct the Huffman Code for the following:

Characters	A	В	С	D	Е	F	G
Frequency	37	18	29	13	30	17	6

The fixed length code is 3 bit. Calculate average bit length and compression ratio.

3. Given a binary image X and a Structuring Element B with origin as center. Calculate:

- a) $Y1 = X \Theta B$ (Erosion)
- b) $Y2 = X \oplus B$ (Dilation)
- 4. Mention one application each of opening and closing.
- 5. Consider a 3 X 3 spatial mask given below. Find the equivalent filter H(u,v) is the frequnecy domain. [hint: make use of translation property]

0	-1	0
-1	8	-1
0	-1	0