

Model: F-01C

TEST REPORT

For

Mobile phone

In conformity with

FCC CFR 47 Part15 for Bluetooth

Model: F-01C

FCC ID: VQK-F01C

Test Item: Mobile phone

Report No: RY1008J18R1

Issue Date: August 18, 2010

Prepared for

FUJITSU LIMITED

1-1, Kamikodanaka 4-chome, Nakahara-Ku, Kawasaki

211-8588 Japan

Prepared by

RF Technologies Ltd.

472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results in this report apply only to the sample tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.

RF Technologies Ltd. Page 1 of 32

Table of contents

1	Ger	neral information	. 3
	1.1	Product description	
	1.2	Test(s) performed/ Summary of test result	
	1.3	Test facility	
	1.4	Measurement uncertainty	
	1.5	Summary of test results	
	1.5.1	Table of test summary	5
	1.6	Setup of equipment under test (EUT)	
	1.6.1	Test configuration of EUT	5
	1.6.2	2 Operating condition:	4
	1.6.3	Setup diagram of tested system:	6
	1.7	Equipment modifications	
	1.8	Deviation from the standard	6
2	Tes	t procedure and test data	. 7
	2.1	Occupied Bandwidth (20 dB / 99%)	
2	2.2	Hopping Carrier Frequency Separation	
1	2.3	Number of Hopping Channel	
4	2.4	Average Time of Occupancy	
2	2.5	Peak Output Power	
2	2.6	Conducted Spurious Emissions (Antenna Port)	. 29
3	Tes	t setup photographst	
	3.1	Antenna Port Measurements	
			32
_	110	t VI Utiliztu test equipilielly ealiviativii	J 4

History

Report No.	Date	Revisions	Issued By
RY1008J18R1	August 18, 2010	Initial Issue	R.Kojima

Model: F-01C

1 General information

1.1 Product description

Test item : Mobile phone
Manufacturer : FUJITSU LIMITED

Address : 1-1, Kamikodanaka 4-chome, Nakahara-Ku, Kawasaki 211-8588 Japan

Model : F-01C FCC ID : VQK-F01C Serial numbers : 352136040015492

Fundamental Operated Frequency : Tx/Rx Freq. (2402 - 2480 MHz)

Oscillator frequencies : 26 MHz

Type of Modulation : FHSS (GFSK, π /4DQPSK, 8DPSK)

RF Output Power : 3.99 dBm (measured at the antenna terminal)

Antenna Gain : -1.50 dBi (λ /4 Monopole antenna)

Receipt date of EUT : August 4, 2010 Nominal power source voltages : DC 3.7V

1.2 Test(s) performed/ Summary of test result

Test specification(s) : FCC CFR 47. Part 15 (October 1, 2009)

Test method(s) : ANSI C63.4: 2003 Test(s) started : August 4, 2010 Test(s) completed : August 10, 2010

Purpose of test(s) : Grant for Certification of FCC

Summary of test result : Complied

Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result.

The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer

R.Kojima Engineer

EMC testing Department

Reviewer

K.Ohnishi Manager

EMC testing Department

RF Technologies Ltd. Page 3 of 32

Model: F-01C

1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at **RF**Technologies Ltd., located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 1, 2009. The description of the test facilities has been filed under registration number 319924 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Voluntary Control Council for Interference by Information Technology Equipment (VCCI) Each registered facility number is as follows;

Test site (Semi Anechoic chamber 3m) R-2393

Test site (Shielded room) C-2617

Registered by Industry Canada (IC) Each registered facility number is as follows;

Test site No.1 (Semi Anechoic chamber 3m): 6974A-1

Accredited by **National Voluntary Laboratory Accreditation Program** (NVLAP) for the emission tests stated in the scope of the certificate under Certificate Number 200780-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB CODE 200780-0

1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2003 "Uncertainty in EMC Measurements".

The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

RF Conducted level: ± 0.9 dB

RF Technologies Ltd. Page 4 of 32

Model: F-01C

1.5 Summary of test results

1.5.1 Table of test summary

Requirement of;	Section in FCC15	Result	Section in this report
1.5.1 Occupied Bandwidth (20 dB/99%)	15.247(a)(1)	-	2.1
1.5.2 Hopping Carrier Frequency Separation	15.247(a)(1)	Complied	2.2
1.5.3 Number of Hopping Channel	15.247(a)(1)(iii)	Complied	2.3
1.5.4 Average Time of Occupancy	15.247(a)(1)(iii)	Complied	2.4
1.5.5 Peak Output Power	15.247(a)(1)/(b)(1)	Complied	2.5
1.5.6 Conducted Spurious Emissions	15.247(d)	Complied	2.6
1.5.7 Transmitter Radiated Spurious Emissions	15.205(b)/15.209	-	-
1.5.8 Transmitter AC Power Line Conducted Emissions	15.207	-	-

1.6 Setup of equipment under test (EUT)

1.6.1 Test configuration of EUT

Equipment(s) under test:

	=quipment(s) unuer test						
Item		Item	Manufacturer	Model	Serial No.	Remarks	
				No.			
A		Mobile phone	FUJITSU LIMITED	F-01C	352136040015492	-	

Support Equipment(s):

- очрр	support Equipment(s).					
	Item	Manufacturer	Model No.	Serial No.		
В	Regulated	KIKUSUI ELECTRIC	PAN55-10A	EC000149		
	DC power supply	CORP.				

Connected cable(s):

No.	Item	Identification (Manu.e.t.c)	Shielded	Ferrite Core	Connector Type Shielded	Length (m)
			YES / NO	YES / NO	YES / NO	
1	DC power cable	FUJITSU LIMITED	No	No	No	0.5

1.6.2 Operating condition:

Operating mode:

The EUT was tested under the following test mode prepared by the applicant:

- (1-1) GFSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2402MHz)
- (1-2) GFSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2441MHz)
- (1-3) GFSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2480MHz)
- (1-4) π /4DQPSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2402MHz)
- (1-5) π /4DQPSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2441MHz)
- (1-6) $\pi/4$ DQPSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2480MHz)
- (1-7) 8DPSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2402MHz)
- (1-8) 8DPSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2441MHz)
- (1-9) 8DPSK, Max continuous transmission with DH1/3/5 PACKET at hopping off (2480MHz)
- (1-10) Continuous transmission with DH1/3/5 PACKET at hopping on

RF Technologies Ltd. Page 5 of 32

Setup diagram of tested system: 1.6.3

Equipment modifications 1.7

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

1.8 Deviation from the standard

No deviations from the standards described in clause 1.2.

Page 6 of 32 RF Technologies Ltd.

Model: F-01C

2 Test procedure and test data

2.1 Occupied Bandwidth (20 dB / 99%)

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 13.1.7. The EUT antenna port connected to the spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth bandwidth. The VBW is set to 3 times of the RBW. The sweep time is coupled appropriate.

Limitation

There are no limitations. The measurement value is used to calculation of the limitation of the channel separation and the emission designator.

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		

Test results

Operating Mode	Transmission Channel Transmissio		Bandwidth [MHz]	
		Frequency	20dB	99%
GFSK	Low (0ch)	2402	1.134	0.984
(1Mbps)	Middle (39ch)	2441	1.134	0.972
(Tiviops)	High (78ch)	2480	1.134	0.978
π/4DQPSK	Low (0ch)	2402	1.410	1.230
(2Mbps)	Middle (39ch)	2441	1.410	1.230
(21viops)	High (78ch)	2480	1.416	1.230
8DPSK	Low (0ch)	2402	1.404	1.230
(3Mbps)	Middle (39ch)	2441	1.404	1.230
(Siviops)	High (78ch)	2480	1.404	1.230

RF Technologies Ltd. Page 7 of 32

Test Data

Tested Date: August 10, 2010 Temperature: 26 °C Humidity: 51 %

Atmos. Press: 1013 hPa

20dB Bandwidth

Page 8 of 32 RF Technologies Ltd.

20dB Bandwidth

Page 9 of 32

Test Data

Tested Date: August 10, 2010

Temperature: 26 °C Humidity: 51 %

Atmos. Press: 1013 hPa

99% Occupied Bandwidth

Page 10 of 32 RF Technologies Ltd.

99% Occupied Bandwidth

Page 11 of 32

Model: F-01C

2.2 Hopping Carrier Frequency Separation

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to more than 1% of its span. The VBW is set to more than RBW. The sweep time is coupled appropriate.

Limitation

15.247(a)(1) frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test equipment used (refer to List of utilized test equipment)

SA06	CL27				
------	------	--	--	--	--

Test results – comply with the limitation

Operating	Measured	Measured Frequency	Two-third of	Frequency Separation
Mode	Channel	(MHz)	the 20dB bandwidth (MHz)	(MHz)
GFSK	Middle (39ch)	2441	0.756 (worst case)	1.0
π/4DQPSK	Middle (39ch)	2441	0.944 (worst case)	1.0
8DPSK	Middle (39ch)	2441	0.936 (worst case)	1.0

RF Technologies Ltd. Page 12 of 32

Model: F-01C

Test Data

Tested Date: August 9, 2010

Temperature: 25 °C

Humidity: 48 %

Atmos. Press: 1017 hPa

Operating mode: GFSK

Operating mode: $\pi/4DQPSK$

RF Technologies Ltd. Page 13 of 32

Operating mode: 8DPSK

Model: F-01C

2.3 Number of Hopping Channel

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to more than 1% of its span. The VBW is set to more than RBW. The sweep time is coupled appropriate. The span is set to cover the authorized band. The analyzer is set to MAX HOLD. The EUT is hopping operation.

Limitation

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		

Test results – Comply with the limitation

Hopping channel: 79 channels

RF Technologies Ltd. Page 15 of 32

Test Data

Tested Date: August 9, 2010 Temperature: 25 °C Humidity: 48 %

Atmos. Press: 1017 hPa

Operating mode: GFSK

Operating mode: $\pi/4DQPSK$

Operating mode: 8DPSK

Page 18 of 32

Model: F-01C

2.4 Average Time of Occupancy

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to 1 MHz. The VBW is set to more than RBW. The sweep time is coupled appropriate. The span is set to 0 MHz and single sweep with video triggered. The EUT is hopping operation.

The average time of occupancy within the 31.6 seconds (79 channels * 0.4) is calculated as follows in accordance with Bluetooth formula;

In case of DH1: (average time of occupancy) = (pulse width) * (1600/2)/79 * 31.6In case of DH3: (average time of occupancy) = (pulse width) * (1600/4)/79 * 31.6In case of DH5: (average time of occupancy) = (pulse width) * (1600/6)/79 * 31.6

Limitation

15.247(a)(1)(iii) The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test equipment used (refer to List of utilized test equipment)

•	or equipment	22500 (2010)	o Bist of atti	zeu test equi	P	
	SA06	CL27				

Test results – comply with the limitation.

Operating Mode Frequency [MH				Time of occupancy	
		Packet Type	(msec)	(msec)	
		DH1	0.384	122.880	
	2402	DH3	1.650	264.000	
		DH5	2.901	309.440	
		DH1	0.387	123.840	
GFSK	2441	DH3	1.650	264.000	
		DH5	2.892	308.480	
		DH1	0.384	122.880	
	2480	DH3	1.644	263.040	
		DH5	2.901	309.440	
		DH1	0.393	125.760	
	2402	DH3	1.650	264.000	
		DH5	2.901	309.440	
	2441	DH1	0.393	125.760	
π /4DQPSK		DH3	1.650	264.000	
		DH5	2.901	309.440	
	2480	DH1	0.390	124.800	
		DH3	1.650	264.000	
		DH5	2.901	309.440	
	2402	DH1	0.393	125.760	
		DH3	1.644	263.040	
		DH5	2.901	309.440	
	2441	DH1	0.390	124.800	
8DPSK		DH3	1.650	264.000	
		DH5	2.910	310.400	
		DH1	0.390	124.800	
	2480	DH3	1.650	264.000	
		DH5	2.910	310.400	

RF Technologies Ltd. Page 19 of 32

Test Data

Tested Date: August 4, 2010 Temperature: 26 °C Humidity: 66 %

Atmos. Press: 1015 hPa

Operating mode: GFSK

Page 20 of 32 RF Technologies Ltd.

Operating mode: GFSK

Page 21 of 32

Operating mode: $\pi/4DQPSK$

Operating mode: $\pi/4DQPSK$

Page 23 of 32

Operating mode: 8DPSK

Page 24 of 32 RF Technologies Ltd.

Operating mode: 8DPSK

Page 25 of 32

Model: F-01C

2.5 Peak Output Power

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to the greater than 20dB bandwidth. The VBW is set to three times of RBW. The sweep time is coupled appropriate. The span is set to cover the carrier output spectrum. The analyzer is set to MAX HOLD. The EUT is set measured transmission channel under hopping off mode.

Limitation

15.247(a) (1) Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW(21dBm).

Test equipment used (refer to List of utilized test equipment)

SA06	CL27		
57 100	CLLI		

Test results – comply with the limitation

Operating Mode	Transmission Channel (Frequency: MHz)	Cable loss (dB)	Output power (dBm) [Reading]	Output power (dBm) [Result]	Output power (mW) [Result]
	Low (2402)	0.90	-0.29	0.61	1.15
GFSK	Middle (2441)	0.90	0.28	1.18	1.31
	High (2480)	0.90	0.52	1.42	1.39
	Low (2402)	0.90	2.27	3.17	2.07
$\pi/4DQPSK$	Middle (2441)	0.90	2.83	3.73	2.36
	High (2480)	0.90	3.09	3.99	2.51
	Low (2402)	0.90	0.21	1.11	1.29
8DPSK	Middle (2441)	0.90	0.71	1.61	1.45
	High (2480)	0.90	0.87	1.77	1.50

RF Technologies Ltd. Page 26 of 32

Model: F-01C

Test Data

Tested Date: August 10, 2010 Temperature: 26 °C Humidity: 51 %

Atmos. Press: 1013 hPa

RF Technologies Ltd. Page 27 of 32

Model: F-01C

2.6 Conducted Spurious Emissions (Antenna Port)

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to 100 kHz. The VBW is set to 300 kHz. The sweep time is set to the coupled. The spectrum is cheated from 30 MHz to 26 GHz. The EUT is set measured transmission channel under hopping off mode.

Limitation

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test equipment used (refer to List of utilized test equipment)

TR06	CL27		

Test results – comply with the limitation.

There were no conducted spurious emissions with levels of more than 20 dB below the applicable limit.

RF Technologies Ltd. Page 29 of 32

Test Data

Tested Date: August 10, 2010 Temperature: 26 °C Humidity: 51 % Atmos. Press: 1013 hPa

Restricted Band Edge

Page 30 of 32 RF Technologies Ltd.

Worst Configuration (2402MHz, 8DPSK)

30MHz to 7GHz

7GHz to 13GHz

13GHz to 19GHz

19GHz to 26GHz

Page 31 of 32

Model: F-01C

3 Test setup photographs

3.1 Antenna Port Measurements

Picture of the E.U.T (Confidential)

4 List of utilized test equipment/ calibration

RFT ID No.	Kind of Equipment and Precision	Manufacturer	Model No.	Serial Number	Calibration Date	Calibrated until
CL26	RF Cable 2.0m	SUHNER	SUCOFLEX104	274754	2010/6/15	2011/6/30
CL27	RF Cable 0.5m	SUHNER	SUCOFLEX104	230286	2010/6/15	2011/6/30
PM04R	Power Meter	Anritsu	ML2487A	6K00004724	2009/09/10	2010/09/30
PU05R	Power Sensor	Anritsu	MA2475A	011720	2009/09/10	2010/09/30
SA06	Spectrum Analyzer (F/W: 3.60 SP1)	Rohde & Schwarz	FSP40	100071	2009/11/10	2010/11/30

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.