Training a Discriminator to Compare Generative Dialogue Model

Nicolas A.-Gontier

Reasoning and Learning Lab McGill University

COMP 652 - Final Project Presentation April 19th

Dialogue Evaluation

- Problem: How can we measure the quality of a response?
 - Previous work: A Dialogue Evaluation Model (R. Lowe, M. Noseworthy, I.V. Serban, N. A.-Gontier, Y. Bengio, and J. Pineau)
 - Adversarial evaluation: this presentation
 - Really a combination of both

Dialogue Evaluation

- **Goal**: Train a model that can discriminate between generated responses and true responses
- We will use the Adversarial framework from GANs
- Data-set used: On-line Tweets (~700,000 conversations for each model)
 - Random sampler (y=0)
 - TF-IDF context-response similarity (y=0)
 - The HRED ¹ model with random sampling (y=0)
 - The HRED model with beam-5 sampling (y=0)
 - The VHRED ² model with random sampling (y=0)
 - The VHRED model with beam-5 sampling (y=0)
- We oversampled true responses (y=1) in training set
- Work inspired by "Adversarial Evaluation of Dialogue Models" (A. Kannan, O. Vinyals, 2017)

¹I.V. Serban et al. (2015)

²I.V. Serban et al. (2016)

Dual-Encoder Discriminator Network

• Objective: minimize the binary cross-entropy:

$$J(\hat{y}, y) = -y * \log P(\hat{y}) - (1 - y) * \log(1 - P(\hat{y}))$$

Results

• Test set scores³:

Model	True negative	False positive
Random	67%	33%
TF-IDF	69%	31%
HRED (random)	53%	47%
HRED (beam-5)	99%	1%
VHRED (random)	62%	38%
VHRED (beam-5)	96%	4%

True positive	False negative
70%	30%

³Network is still improving...

Conclusions & Future work

Conclusions

- Discriminator networks are strong on generative models.
- Hard to discriminate doesn't mean it's a good dialogue system. Thus
 the need to combine this with a scoring machine like ADEM ^a

Future work

- Try different embeddings like Tweet2Vec or HRED embeddings.
- Train the discriminator only on true responses and one model responses. Maybe an ensemble of these discriminators (each which is only good at a single model type) would do better.

^aA Dialogue Evaluation Model (R. Lowe, M. Noseworthy, I.V. Serban, N. A.-Gontier, Y. Bengio, and J. Pineau)