Дискретная оптимизация

МФТИ, осень 2015

Александр Дайняк

www.dainiak.com

Линейное программирование

Общая форма задачи ЛП:

- $c_1x_1 + \cdots + c_nx_n \rightarrow \min$ или $\rightarrow \max$
- $a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$, ..., $a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$
- $a'_{1,1}x_1 + \dots + a'_{1,n}x_n \ge b'_1$, ..., $a'_{m',1}x_1 + \dots + a'_{m',n}x_n \ge b'_{m'}$
- $a_{1,1}^{\prime\prime}x_1 + \dots + a_{1,n}^{\prime\prime}x_n \le b_1^{\prime\prime}$, ..., $a_{m^{\prime\prime},1}^{\prime\prime}x_1 + \dots + a_{m^{\prime\prime},n}^{\prime\prime}x_n \le b_{m^{\prime\prime}}^{\prime\prime}$

Стандартная форма задачи ЛП:

- $c_1x_1 + \cdots + c_nx_n \rightarrow \min$ или $\rightarrow \max$
- $a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$, ..., $a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$
- $x_1 \ge 0, ..., x_n \ge 0$

Векторная форма записи задач ЛП

- $cx \rightarrow \max$
- Ax = b или $Ax \ge b$ и т.д.
- $x \ge 0$

Переход от общей формы к стандартной

• От неравенств переходим к равенствам, вводя новые переменные: неравенство вида $a_1x_1+\dots+a_nx_n\geq b$ заменяется парой неравенств

$$\begin{cases} a_1 x_1 + \dots + a_n x_n - y = b \\ y \ge 0 \end{cases}$$

• Чтобы все переменные сделать неотрицательными, переменную вида x заменяем везде на (y-z), где $y \ge 0$ и $z \ge 0$.

Формы задач ЛП

Общая форма задачи ЛП:

- Оптимизируется линейная форма
- Любые линейные ограничения на x_i

Стандартная форма задачи ЛП:

- Ограничения типа равенства
- Неотрицательность значений переменных

Каноническая форма задачи ЛП:

- Ограничения типа неравенства
- Неотрицательность значений переменных

Что ещё можно задать линейными ограничениями

• Ограничения вида $\max\{x_1, ..., x_k\} \le x_l$ можно задать системой $(x_l - x_1 > 0)$

$$\begin{cases} x_l - x_1 \ge 0 \\ \vdots \\ x_l - x_k \ge 0 \end{cases}$$

• Ограничения вида $x_l \geq |x_k|$ можно задать системой

$$\begin{cases} x_l \ge x_k \\ x_l \ge -x_k \end{cases}$$

• Равенство $a_1x_1+\cdots+a_nx_n=b$ можно задать системой

$$\begin{cases} a_1 x_1 + \dots + a_n x_n \ge b \\ a_1 x_1 + \dots + a_n x_n \le b \end{cases}$$

Свойства решений задач ЛП

- Линейные ограничения на $x_1, ..., x_n$ задают в пространстве \mathbb{R}^n либо пустое множество (если им нельзя удовлетворить), либо многогранник (возможно, неограниченный).
- Если оптимум в задаче ЛП существует, то он достигается на одной из вершин многогранника.
- Вершины многогранника определяются подмножествами из n линейно независимых ограничений.

Факты из линейной алгебры

- Гиперплоскость в \mathbb{R}^n задаётся уравнением $a^Tx = b$, где $a \in \mathbb{R}^n \setminus \{0\}$ константный вектор-столбец, $b \in R$, $x = (x_1, ..., x_n)$ вектор координатных переменных.
- Неравенство $\boldsymbol{a}^T \boldsymbol{x} \leq \boldsymbol{b}$ задаёт полупространство.
- Система линейных неравенств задаёт либо пустое множество, либо выпуклый многогранник в \mathbb{R}^n . Этот многогранник может быть неограниченным.
- Если система неравенств $Ax \leq b$ задаёт многогранник в \mathbb{R}^n , то вершины многогранника это те точки, для которых не менее n из неравенств обращаются в равенство.

Идея симплекс-метода

- Максимум целевой функции, если он существует, обязательно достигается на вершине многогранника (возможно, не только на вершине).
- Оптимальное решение ищем только среди вершин.
- Движемся от вершины к соседней вершине, пока можем улучшить значение целевой функции.
- Т.е. осуществляем локальный поиск на множестве вершин многогранника.

Базисные допустимые решения

Рассмотрим задачу

$$\begin{cases}
\min \mathbf{c}^T \mathbf{x} \\
A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge \mathbf{0}
\end{cases}$$

где $x \in \mathbb{R}^n$ — вектор переменных, и $A \in \mathbb{R}^{m \times n}$ — матрица ранга m.

Базисом матрицы A называется набор из m лнз столбцов.

По-другому, базис — это невырожденная $m \times m$ -подматрица в A.

Базисным решением называется вектор (x_1, \dots, x_n) , в котором $x_i = 0$, если i-й столбец не входит в базис, а остальные x_i подобраны так, что $A {m x} = {m b}$.

Базисное решение *допустимо*, если в нём все $x_i \ge 0$.

Пример особенности задачи ЦЛП

Решение системы

$$\begin{cases} x_1 - 3x_2 + 3x_3 \to \max \\ 2x_1 + x_2 - x_3 \le 4 \\ 4x_1 - 3x_2 \le 2 \\ -3x_1 + 2x_2 + x_3 \le 3 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

без требования целочисленности: $x_1 = \frac{1}{2}$, $x_2 = 0$, $x_3 = \frac{9}{2}$.

Если добавить требование целочисленности переменных, то решение такое: $x_1 = 2$, $x_2 = 2$, $x_3 = 5$.

Видно, что решение задачи ЦЛП — вовсе не «округлённое» решение задачи ЛП.

Попробуем сформулировать в терминах ЛП:

- 0, ..., n номера вершин в графе,
- c_{ij} стоимость пути из i-й вершины в j-ю
- $x_{ij} \in \{0,1\}$ индикатор того, что есть дуга из i-й вершины в j-ю
- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях:
- $\sum_i x_{ij} = \sum_j x_{ij} = 1$ из каждой вершины выходит и в каждую вершину входит ровно одна дуга

- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях $\sum_i x_{ij} = \sum_j x_{ij} = 1$
- Проблема, как избежать такого:

• Формально условия регулярности соблюдены, но граф получился несвязным

- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях $\sum_i x_{ij} = \sum_j x_{ij} = 1$
- Проблема: несвязность.
- Плохой выход из положения: $\forall S \subset \{0, ..., n\}$ $\sum_{i \in S, j \notin S} x_{ij} \geq 1$

• Экспоненциально много неравенств!

- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях $\sum_i x_{ij} = \sum_j x_{ij} = 1$
- Проблема: несвязность.
- Выход из положения: условия Миллера—Таккера—Землина (Miller, Tucker, Zemlin, 1960) [MTZ constraints]:
 - $\forall i \neq j \in \{1, ..., n\}$ $u_i u_j + nx_{ij} \leq n 1$
 - (дополнительно n новых переменных и n(n-1) неравенств)

C. E. Miller, A. W. Tucker, and R. A. Zemlin, Integer programming formulations and traveling salesman problems, J. ACM, 7 (1960), pp. 326–329.

- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях $\sum_i x_{ij} = \sum_j x_{ij} = 1$
- $\forall i \neq j \in \{1, ..., n\}$ $u_i u_j + nx_{ij} \leq n 1$
- Если x_{ij} задают ГЦ, то условия Таккера выполнены:

Считаем, что начало маршрута в вершине с номером 0. Полагаем $u_i=p$, если вершина с номером i посещалась на p-м шаге. Тогда если $x_{ij}=1$, то $u_i-u_i=-1$.

- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях $\sum_i x_{ij} = \sum_j x_{ij} = 1$
- $\forall i \neq j \in \{1, ..., n\}$ $u_i u_j + nx_{ij} \leq n 1$
- Допустим теперь, что x_{ij} задают объединение нескольких циклов. В нём есть цикл (i_1,i_2,\ldots,i_t,i_1) , не проходящий через вершину 0. Возьмём неравенства:
 - $u_{i_1} u_{i_2} + nx_{i_1 i_2} \le n 1$
 - $u_{i_2} u_{i_3} + nx_{i_2i_3} \le n 1$
 - ...
 - $u_{i_t} u_{i_1} + nx_{i_t i_1} \le n 1$

- Минимизируем $\sum_{ij} c_{ij} x_{ij}$ при ограничениях $\sum_i x_{ij} = \sum_j x_{ij} = 1$
- $\forall i \neq j \in \{1, ..., n\}$ $u_i u_j + nx_{ij} \leq n 1$
- Складываем неравенства:
 - $u_{i_1} u_{i_2} + nx_{i_1 i_2} \le n 1$
 - $u_{i_2} u_{i_3} + nx_{i_2i_3} \le n 1$
 - ...
 - $u_{i_t} u_{i_1} + nx_{i_t i_1} \le n 1$
- Получаем: $tn \le t(n-1)$ противоречие!

Транспортная задача

- Требуется перевезти T единиц товара с m складов в n магазинов
- Количество товара на i-м складе равно a_i
- Количество, требующееся в j-м магазине, равно b_j

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = T$$

- Стоимость перевозки с i-го склада в j-й магазин равна $c_{i\,i}$
- Задача: найти x_{ij} количество, которое надо перевозить с i-го склада в j-й магазин, минимизировав при этом сумму

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to min$$

• Пришли к задаче линейного программирования!

Транспортная задача

- $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j = T$
- $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to min$

• Если a_i, b_j, c_{ij} целые, то оптимальное решение задачи тоже можно искать среди целочисленных, например, симплексметодом. В данной задаче ограничение на целочисленность решения не создаёт дополнительных трудностей.

Задача о назначениях

- В страховой компании работают n агентов, продающих n разных типов услуг. Эффективность i-го агента при продаже услуг j-го типа равна c_{ij} . Сил каждого агента хватает только на продажу одного типа услуг.
- Продажу какого типа p_i нужно назначить i-му агенту, чтобы максимизировать суммарную эффективность $\sum_i c_{ip_i}$?

Задача о назначениях

$$\sum_{i} c_{ip_i} \to max$$

- Можно переформулировать задачу в виде задачи ЛП:
 - x_{ij} кодировка того, что кому назначено: $x_{ij}=1$, если продажа j-го типа услуг назначена i-му агенту. В противном случае $x_{ij}=0$.
 - Тогда надо подобрать целые x_{ij} так, чтобы

$$\sum_{i,j} c_{ij} x_{ij} o max$$
 при ограничении $\sum_i x_{ij} = \sum_j x_{ij} = 1$

Задача о назначениях

$$\sum_{i} c_{ip_i} \to max$$

• Можно переформулировать в терминах теории графов: это задача о построении совершенного паросочетания

максимального веса

