Az UPPAAL egyes modellezési lehetőségeinek összefoglalása

Majzik István BME Méréstechnika és Információs Rendszerek Tanszék

Résztvevők együttműködése (1)

- Automaták interakciói üzenetküldéssel
 - Szinkron üzenetküldés
 - Alapértelmezett szemantika a csatorna (chan) esetén
 - Randevú (kölcsönös várakozás) közvetlenül támogatott
 - Aszinkron üzenetküldés
 - Csatorna explicit modellezése szükséges (átvesz és továbbít)
 - Konkurens üzenettovábbítás korlátozott (ha kézbesítésre vár, nem tud újat fogadni)
 - Broadcast üzenetküldés
 - Broadcast csatorna használata (broadcast chan)
 - Küldő feltétel nélkül továbbléphet (akkor is, ha nincs fogadó)
 - Az éppen várakozó fogadók szinkronizálódnak
- Paraméterezhető számú résztvevő
 - Paraméterezett méretű csatorna- és adatvektorok használata
 - Processz paraméterek, automatikus példányosítással is
 - Paraméterekre forall és exists kvantorok

Résztvevők együttműködése (2)

- Automaták interakciói megosztott változókkal
 - Globális változó deklarálása és használata
 - Megosztott beállítás és lekérdezés
 - Lazán csatolt elosztott rendszerekben az implementáció kérdéses
 - Konkurencia problémákat vethet fel (atomi hozzáférés)
- Üzenetküldés adattartalommal
 - Szinkron üzenetküldés és megosztott változó használata az adattartalomra
 - A megosztott változó beállítása majd a szinkronizáció kezdeményezése (külön átmeneteken, mert az Update a Sync után következik)
 - Ha több résztvevő írhatja a megosztott változót:
 Atomi végrehajtásra figyelni kell (beállítás és szinkronizáció egy atomi művelet, köztük committed állapot)
 - Modellezési technika lehet (nem implementációs mintaként!)

Konkurens viselkedés

Atomi műveletek

- Committed állapot: Bejövő állapotátmenet után csak committed állapotból kimenő állapotátmenet következhet
 - Könnyű modellezés, de használatát különösen meg kell gondolni (a modellezett valós világban valóban megoldható-e?)
 - Implementációs nehézségek lazán csatolt elosztott rendszerekben
- Hasonló hatású: Feltételvizsgálat és értékadás egy élen (egy állapotátmenet esetén)
 - Pl. test-and-set, nem ugyanaz, mintha külön átmeneten lenne
- Függvények belseje nincs lépésenként kezelve

Prioritás aktivitások között

- Prioritás processzek között
- Prioritás csatornák (azaz szinkronizációs lehetőségek) között
- Használhatók, de a modellellenőrzést korlátozzák:
 A<>, E[], -->, deadlock nem ellenőrizhető

Időbeliség

- Várakozás korlátozása
 - Vezérlési hely invariáns (legfeljebb meddig)
 - Időhöz kötött feltétel a kilépő átmeneten (legalább meddig)
- Várakozás tiltása (de nem atomi művelet)
 - Sürgős (urgent) állapot: Nem várakozhat az adott állapotban, ha kiléphet
 - Sürgős (urgent) csatorna: Ha lehetséges a szinkronizáció, akkor nem várakozhat

Adattípusok

- Adattípusok finomítása
 - Tömbök, rekordok létrehozhatók
 - Paraméterezhető méretű vektorok hasznosak
 - Értékek tartománya megadható
 - Célszerű a legkisebb tartományt megadni (tárigény csökkenthető modellellenőrzéskor)
 - Meta változók
 - Állapotvektorba bekerül, de nem számít különbségnek az állapotban, ha eltérő az értéke
- Processzek és függvények paraméterei
 - Érték és referencia szerinti paraméterek lehetnek

Adatmanipuláció

- Összetett feltételvizsgálat
 - Boole függvény használata őrfeltételben (áttekinthetőbb)
 - Konkurens viselkedést korlátozza (függvények belseje nincs lépésenként kezelve)
- Összetett adatmanipuláció
 - Függvény használata akcióban
 - Feltételes végrehajtás (if ... else...), iteráció (for, while, do) és return
 - Példák: Üzenetsor kezelés, adatvektorok inicializálása, ...
 - Konkurens viselkedést korlátozza (függvények belseje nincs lépésenként kezelve)

Nemdeterminisztikus választás és kiértékelés

Nemdeterminisztikus választás modellezése

- Választás (select) konstrukció egy átmenethez:
 Változót lehetséges értékekhez köti a típusa értéktartományából
 - Az átmeneten szinkronizációban, őrfeltételben, akcióban használható a kötött változó
 - Minden lehetséges választást bejár modellellenőrzéskor

A szekciók kiértékelése

- A választás (select) köt először
- A szinkronizációhoz az őrfeltételek teljesülése szükséges
- Szinkronizáló élek esetén a küldő Update-ja a fogadóé előtt fut le, de a fogadó Guard után
- Nem számíthatunk a (fogadó) őrfeltételében arra, hogy a (küldő) szinkronizáló él akciója már beállított egy globális változót

