BAN440 - Term Paper Code

Candidate numbers: xx, xx, xx

Table of contents

Packages used	1
Data	2
Vinmonopolet API	2
Dimpostnummer merge	4
Vinmonopolet 2024	4
Kommuneendringer 2017	6
Kommuneendringer 2018	7
Kommuneendringer 2020	8
Kommuneendringer 2024	9
Kommune 2025	10
Demography data	11
Distance data	12
Model variables merge	17
Model applications	25
Data preparation	25
Model selection and basic regressions	25
Demand estimation	32
Logit model	34

Packages used

relevant libraries
library(tidyverse)

```
library(readxl)
library(fastDummies)
library(knitr)
library(stargazer)
library(caret)
library(here)
library(httr)
library(jsonlite)
library(readr)
library(stringr)
library(tidyr) # Load tidyr for unnesting
library(writexl)
library(geosphere)
library(caret)
```

Data

Vinmonopolet API

Detailed descriptions of each Vinmonopolet store per 2024

```
data <- content(response, as = "text", encoding = "UTF-8")</pre>
  store_data <- fromJSON(data)</pre>
  # View first few rows
 print(head(store_data))
} else {
 print(paste("Error:", status_code(response)))
           ----- Combine API with Vinmonopol Data ----
# Ensure store_data_clean is correctly formatted
store_data_clean <- store_data %>%
  unnest_wider(address) %>% # Expands nested address fields
  select(
    storeId,
    storeName,
    status,
    postalCode,
    city,
    gpsCoord
  ) %>%
 rename(
    Store_ID = storeId,
   Store_Name = storeName,
   Store_Status = status,
    Postal_Code = postalCode,
    City = city,
   GPS_Coordinates = gpsCoord
  )
# Transforming to normal characters
store_data_clean$Store_Name <- iconv(store_data_clean$Store_Name, from = "UTF-8", to = "ASC
store_data_clean$Store_Name <- trimws(store_data_clean$Store_Name)</pre>
```

Dimpostnummer merge

As stores have postal codes instead of municipality codes, we need a merge data set inbetween

```
# Read the Dimpostnummer data
dimpostnummer_xlsx <- here("Data", "Vinmonopolet", "dimpostnummer.xlsx")

dimpostnummer_data <- read_excel(dimpostnummer_xlsx) %>%
    select("Postnummer", "Poststed", "Fylke", "KommuneKode", "Kommune")

# Merge with store_data_clean
store_data_clean <- store_data_clean %>%
    left_join(dimpostnummer_data, by = c("Postal_Code" = "Postnummer"))
```

Vinmonopolet 2024

The "foundation" with store names and sales data for 2024

```
# Set locale to UTF-8
Sys.setlocale("LC_ALL", "en_US.UTF-8")

# Use here package to define the working directory
Vinmonopolet_2024 <- here("Data", "Vinmonopolet", "Vinmonopolet_2024.xlsx")

# Get the names of all sheets in the Excel file
sheet_names <- excel_sheets(Vinmonopolet_2024)

# Read each sheet into a list of data frames, skipping the first row
list_of_dfs <- lapply(sheet_names, function(sheet) {
    read_excel(Vinmonopolet_2024, sheet = sheet, skip = 2)
})

# Combine all data frames into a single data frame
combined_data <- bind_rows(list_of_dfs)

# View the combined data frame
print(combined_data)

# Unique values in the first column</pre>
```

```
unique_values <- unique(combined_data$...1)</pre>
print(unique_values)
# Transforming to normal characters
combined_data$...1 <- iconv(combined_data$...1, from = "UTF-8", to = "ASCII//TRANSLIT")</pre>
combined_data$...1 <- trimws(combined_data$...1)</pre>
# Define the values to filter out
values to exclude <- c(
  "Svakvin", "Rodvin", "Hvitvin", "Musserende vin", "Rosevin",
  "Perlende vin", "Aromatisert vin", "Sider", "Fruktvin",
  "Brennevin", "Vodka", "Likor", "Whisky", "Akevitt",
  "Brennevin, annet", "Gin", "Druebrennevin",
  "Brennevin, noytralt < 37,5 %", "Rom", "Bitter",
  "Fruktbrennevin", "Genever", "01", "Alkoholfritt", "Sterkvin", "Totalsum",
  "eLager"
# Column names of combined data
colnames(combined_data)
# Filter out the specified values from the first column
filtered_data <- combined_data %>%
  mutate("2024" = as.numeric(`2024`),
         "Store" = as.character(`...1`)) %>%
  filter(!.[[1]] %in% values_to_exclude) %>%
  select("Store", "2024")
# Export the filtered data to an Excel file
#write_xlsx(filtered_data, "filtered_data.xlsx")
# Standardize store names to improve matching
filtered_data <- filtered_data %>%
  mutate(Store = str_trim(str_to_lower(Store))) # Trim spaces and convert to lowercase
store_data_clean <- store_data_clean %>%
  mutate(Store_Name = str_trim(str_to_lower(Store_Name))) # Trim spaces and convert to low
# Remove unwanted characters from store names
```

```
store_data_clean <- store_data_clean %>%
 mutate(Store_Name = case_when(
   Store Name == "oslo, thereses gate (stengt ja" ~ "oslo, thereses gate",
    Store_Name == "sandnes, sentrum" ~ "sandnes sentrum",
   Store_Name == "buvika" ~ "buvika, apent 24. oktober",
   Store_Name == "sola, tananger" ~ "sola, tananger, apnet 3. oktober",
   Store Name == "oslo, bjorvika" ~ "oslo, bjorvika, apnet 14. mars 2024",
   Store_Name == "melhus" ~ "melhus, butikken stengt i 2023 pga kranvelt",
   Store Name == "bergen, valkendorfsgt." ~ "bergen, valkendorfsgate",
   TRUE ~ Store_Name # This keeps all other values unchanged
 ))
# Merge filtered_data (sales) with store_data_clean (store details)
final_data <- filtered_data %>%
  left_join(store_data_clean, by = c("Store" = "Store_Name")) # Match by store name
# Check merged data
head(final_data)
# Write to excel
#write_xlsx(final_data, "final_data.xlsx")
```

```
### Kommuneendringer 2017 ###

data_df <- final_data %>%
    rename(
        Municipality_Code = KommuneKode,
        Municipality_Name = Kommune
)

Kommuneendringer_17_xlsx <- here("Data", "Vinmonopolet", "Kommuneendringer_17.xlsx")

kommuneendringer_df <- read_excel(Kommuneendringer_17_xlsx)

# Clean up column names by using the correct column names
colnames(kommuneendringer_df) <- c("New Codes", "Old Codes")</pre>
```

```
# Split old municipality numbers into separate elements if they are separated by spaces
kommuneendringer df$0ld_Codes <- str_split(kommuneendringer_df$0ld_Codes, " ")
# Extract the first four digits from each element in Old_Codes
old_codes_numeric <- lapply(kommuneendringer_df$0ld_Codes, function(x) substr(x, 1, 4))
# Create a lookup list that maps old municipality codes to new codes
kommune_mapping <- setNames(rep(kommuneendringer_df$New_Codes, times = sapply(old_codes_num</pre>
                            unlist(old codes numeric))
# Update Municipality_Code and Municipality_Name in data_df
data_df <- data_df %>%
  rowwise() %>%
  mutate(
    new_val = if (Municipality_Code %in% names(kommune_mapping)) kommune_mapping[[Municipal
    Municipality_Code = if (!is.na(new_val)) substr(new_val, 1, 4) else Municipality_Code,
    Municipality_Name = if (!is.na(new_val)) {
      # Remove the municipality number and hyphen from the new value to get the municipalit
      str_trim(str_remove(new_val, "^[0-9]{4}\\s*-\\s*"))
    } else {
      Municipality_Name
    }
  ) %>%
  ungroup() %>%
  select(-new_val)
# Save the updated data to a new Excel file
#write_xlsx(data_df, "final_data_17.xlsx")
```

```
# Read in data from Excel files
Kommuneendringer_18_xlsx <- here("Data", "Vinmonopolet", "Kommuneendringer_18.xlsx")
kommuneendringer_df <- read_excel(Kommuneendringer_18_xlsx)
# Clean up column names by using the correct column names
colnames(kommuneendringer_df) <- c("New_Code", "Old_Codes")</pre>
```

```
# Split old municipality numbers (in case multiple old municipalities are separated by space
kommuneendringer_df$0ld_Codes <- str_split(kommuneendringer_df$0ld_Codes, " ")
# Create a lookup list for old codes to new codes (one-way mapping)
kommune_mapping <- setNames(rep(kommuneendringer_df$New_Code, times = sapply(kommuneendring
                            unlist(kommuneendringer_df$0ld_Codes))
# Update both Municipality_Code and Municipality_Name in data_df
data_df <- data_df %>%
 rowwise() %>%
  mutate(
    new_val = if (Municipality_Code %in% names(kommune_mapping)) kommune_mapping[[Municipal
   Municipality_Code = if (!is.na(new_val)) substr(new_val, 1, 4) else Municipality_Code,
    Municipality_Name = if (!is.na(new_val)) str_trim(str_remove(new_val, "^[0-9]{4}\\s*-\\
  ) %>%
  ungroup() %>%
  select(-new_val)
# Save the updated file
#write_xlsx(data_df, "final_data_18.xlsx")
```

```
# Read in data from Excel files
Kommuneendringer_20_xlsx <- here("Data", "Vinmonopolet", "Kommuneendringer_20.xlsx")

kommuneendringer_df <- read_excel(Kommuneendringer_20_xlsx)

# Clean up column names by using the correct column names
colnames(kommuneendringer_df) <- c("New_Code", "Old_Codes")

# Split old municipality numbers (in case multiple old municipalities are separated by spackommuneendringer_df$Old_Codes <- str_split(kommuneendringer_df$Old_Codes, " ")

# Create a lookup list for old codes to new codes (one-way mapping)
kommune_mapping <- setNames(rep(kommuneendringer_df$New_Code, times = sapply(kommuneendringer_unlist(kommuneendringer_df$Old_Codes))</pre>
```

```
# Update both Municipality_Code and Municipality_Name in data_df
data_df <- data_df %>%
    rowwise() %>%
    mutate(
        new_val = if (Municipality_Code %in% names(kommune_mapping)) kommune_mapping[[Municipal
        Municipality_Code = if (!is.na(new_val)) substr(new_val, 1, 4) else Municipality_Code,
        Municipality_Name = if (!is.na(new_val)) str_trim(str_remove(new_val, "^[0-9]{4}\\s*-\\) ) %>%
    ungroup() %>%
    select(-new_val)

# Save the updated file
#write_xlsx(data_df, "final_data_20.xlsx")
```

```
# Read in data from Excel files
Kommuneendringer_24_xlsx <- here("Data", "Vinmonopolet", "Kommuneendringer_24.xlsx")
kommuneendringer_df <- read_excel(Kommuneendringer_24_xlsx)</pre>
# Clean up column names by using the correct column names
colnames(kommuneendringer_df) <- c("New_Code", "Old_Codes")</pre>
# Split old municipality numbers (in case multiple old municipalities are separated by space
kommuneendringer_df$0ld_Codes <- str_split(kommuneendringer_df$0ld_Codes, " ")
# Create a lookup list for old codes to new codes (one-way mapping)
kommune_mapping <- setNames(rep(kommuneendringer_df$New_Code,</pre>
                                 times = sapply(kommuneendringer_df$Old_Codes, length)),
                             unlist(kommuneendringer_df$0ld_Codes))
# Update both Municipality_Code and Municipality_Name in data_df
data_df <- data_df %>%
  rowwise() %>%
  mutate(
    new_val = if (Municipality_Code %in% names(kommune_mapping)) kommune_mapping[[Municipal
```

```
Municipality_Code = if (!is.na(new_val)) substr(new_val, 1, 4) else Municipality_Code,
    Municipality_Name = if (!is.na(new_val)) str_trim(str_remove(new_val, "^[0-9]{4}\\s*-\\
) %>%
    ungroup() %>%
    select(-new_val)

# Hardcode row 121 to set "Municipality_Code" to 1580 and "Municipality_Name" to Haram
data_df[121, "Municipality_Code"] <- "1580"
data_df[121, "Municipality_Name"] <- "Haram"

# Save the updated file
#write_xlsx(data_df, "final_data_24.xlsx")</pre>
```

Kommune 2025

Municipality data, including municipality number, population and Area

```
# Kommune data file path
Kommune_data_xlsx <- here("Data", "Vinmonopolet", "Kommune_data.xlsx")</pre>
# Read data for total population and area of each municipality
kommune_data <- read_excel(Kommune_data_xlsx, skip = 3) %>%
 rename("Municipality" = "...1",
         "Population" = "2025...2",
         "Area" = "2025...3") %>%
 separate(Municipality, into = c("Mun_num", "Mun_name"), sep = " ", extra = "merge", fill
 filter(Population != 0,
         Area != 0) \% > \%
 mutate(Population = as.numeric(Population),
         Area = as.numeric(Area))
# Demographic data file path
Kommune_demo_xlsx <- here("Data", "Vinmonopolet", "Kommune_demo.xlsx")</pre>
# Read data for demographic data
demographic_data <- read_excel(Kommune_demo_xlsx, skip = 4) %>%
  rename("Municipality" = "...1",
         "0-17" = "0-17 år",
         "18+" = "18 år eller eldre") %>%
```

Demography data

```
final_data <- data_df
# Transforming to normal characters
final_data$Municipality_Name <- iconv(final_data$Municipality_Name, from = "UTF-8", to = "A
final_data$Municipality_Name <- trimws(final_data$Municipality_Name)</pre>
# Standardize store names to improve matching
final_data <- final_data %>%
  mutate(Municipality_Name = str_trim(str_to_lower(Municipality_Name))) # Trim spaces and
# Loading the kommune data
kommune_data <- kommune_data_final</pre>
# Standardize the kommune data
kommune data <- kommune data %>%
  mutate(Mun_name = iconv(Mun_name, from = "UTF-8", to = "ASCII//TRANSLIT"),
         Mun_name = str_trim(str_to_lower(Mun_name))) # Trim spaces and convert to lowerca
# Perform a full join to include all rows from both datasets
merged_data <- final_data %>%
  full_join(kommune_data, by = c("Municipality_Code" = "Mun_num"))
```

```
# Replace NA values in store-related columns with 0
# Assuming 'Store_Info_Column' is the column in final_data that contains store information
# Replace 'Store_Info_Column' with the actual column names you want to fill with 0
merged_data <- merged_data %>%
    mutate(across(where(is.numeric), ~ replace_na(.x, 0)))
# If you have specific columns to replace NA with 0, you can specify them like this:
# merged_data <- merged_data %>%
# mutate(Store_Info_Column = replace_na(Store_Info_Column, 0))
# Write the merged data to an Excel file
#write_xlsx(merged_data, "final_data_mun.xlsx")
```

Distance data

This is just our code for the calculation of dist_nearest. As the actual data file is too large to submit, we jump to the next step with the resulting data saved as "final_data_mun_dist.xlsx"

```
#data <- left_join(data, admin_centers_final, by = c("Municipality_Code" = "kommunenummer")</pre>
# Overwrite old coordinates with admin center coordinates
#data <- data %>%
# mutate(
 Latitude = as.numeric(lat),
# Longitude = as.numeric(lon)
# )
# -----
# 3. Parse Store GPS Coordinates
# -----
# Split store GPS into separate numeric lat/lon
# -----
# STEP 1: Load dataset
# -----
# Read merged dataset with both Vinmonopolet store info and municipality info
#data <- read_excel("final_data_mun.xlsx")</pre>
# STEP 2: Parse store coordinates
# -----
# GPS_Coordinates column contains both latitude and longitude as a string separated by ";"
# We split this into two separate numeric columns: store_lat and store_lon
#data <- data %>%
# separate(GPS_Coordinates, into = c("store_lat", "store_lon"), sep = ";", convert = TRUE)
# mutate(
    store_lat = as.numeric(store_lat), # ensure store latitude is numeric
    store_lon = as.numeric(store_lon) # ensure store longitude is numeric
# )
# -----
# 4. Build Store Location Matrix
# Extract distinct (lon, lat) of all Vinmonopolet stores
```

```
#store_locations <- data %>%
# filter(!is.na(store_lon), !is.na(store_lat)) %>%
# STEP 3: Ensure municipality center coordinates are numeric
# These are already separate in the dataset, but stored as characters - we convert them
#data <- data %>%
# mutate(
    Longitude = as.numeric(Longitude), # longitude of the municipality center
# Latitude = as.numeric(Latitude) # latitude of the municipality center
# )
# STEP 4: Extract store coordinates for distance calculation
# We only want to use valid store locations for calculating distances
# (some rows in the dataset are just municipality data with no store info)
#store_data <- data %>%
# filter(!is.na(store_lat), !is.na(store_lon))
# Extract a unique matrix of all Vinmonopolet store locations
# Format required by geosphere is matrix of (longitude, latitude)
#store_locations <- store_data %>%
# select(store_lon, store_lat) %>%
# distinct() %>%
# as.matrix()
# STEP 5: Define function to calculate distance to nearest store
# For a given municipality center (lon, lat), compute distance to nearest store
# Uses Haversine formula (accounts for Earth's curvature)
#min_distance_to_store <- function(lon, lat) {</pre>
# if (is.na(lon) || is.na(lat)) {
# return(NA) # return NA if municipality coordinates are missing
```

```
# muni_coord <- matrix(c(lon, lat), nrow = 1) # convert to matrix format for geosphere</pre>
# dists <- distHaversine(muni_coord, store_locations) # distances in meters
# return(min(dists) / 1000) # convert to kilometers
#}
# STEP 6: Apply distance function to each municipality
# -----
# For each row (i.e., each municipality center), calculate distance to closest Vinmonopolet
# Note: This includes all rows (even ones without a store)
#data$dist_nearest_store <- mapply(</pre>
# min_distance_to_store,
# data$Longitude,
# data$Latitude
#)
# -----
# STEP 7: Quick check (optional)
# Check that coordinates are numeric
#str(data$Longitude)
#str(data$Latitude)
# -----
# 7. Optional: Drop Redundant Columns
# -----
#data <- data %>%
# select(
# -lat, -lon, -multikurve, -kommunenavn
# -----
# 8. Final Checks (Optional)
# -----
```

```
#str(data$dist_nearest_store)
#summary(data$dist_nearest_store)
# 9. Does VInmonopolets 30 km threshold 97% goal work based on our data
# -----
# 1. Total population (all municipalities)
#total_pop <- sum(data$Population, na.rm = TRUE)</pre>
# 2. Population in municipalities with distance > 30 km
#pop_far_away <- data %>%
# filter(dist_nearest_store > 30) %>%
# summarise(total = sum(Population, na.rm = TRUE)) %>%
# pull(total)
# 3. Share of population far away
#share_far_away <- pop_far_away / total_pop</pre>
# 4. Share WITH access (within 30 km)
#share_within_30km <- 1 - share_far_away</pre>
# 5. Print results
#cat(sprintf("Share of population within 30 km of a Vinmonopolet: %.2f%%\n", #share_within_
#cat(sprintf("Target (Vinmonopolet): 97%%\n"))
#underserved <- data %>%
# filter(dist_nearest_store > 30) %>%
# select(,Mun_name, Population, dist_nearest_store) %>%
# arrange(desc(dist_nearest_store))
\#print(underserved, n = 50)
# -----
# 10. Export the final data to an Excel file
# -----
#library(writexl)
#write_xlsx(data, "final_data_mun_dist.xlsx")
```

Model variables merge

```
### Independent variables merge ###
final_data_mun_dist <- here("Data", "Vinmonopolet", "final_data_mun_dist.xlsx")
# Load data
Vinmonopolet <- read_excel(final_data_mun_dist) %>%
  select(-c(Store_ID, Store_Status, Postal_Code, Poststed,
            PostnummerKategoriKode, PostnummerKategori, Region_Code,
            Municipality_Name)) %>%
 mutate(
   Municipality_Name = Mun_name,
   Region_Name = case_when(
     Region_Name == "AUST-AGDER" ~ "Agder",
     Region Name == "VEST-AGDER" ~ "Agder",
     Region_Name == "AKERSHUS" ~ "Akershus",
     Region Name == "OPPLAND" ~ "Innlandet",
     Region Name == "BUSKERUD" ~ "Buskerud",
      Region_Name == "VESTFOLD" ~ "Vestfold",
      Region_Name == "FINNMARK" ~ "Finnmark",
     Region_Name == "HEDMARK" ~ "Innlandet",
     Region_Name == "MØRE OG ROMSDAL" ~ "Møre og Romsdal",
      Region_Name == "NORDLAND" ~ "Nordland",
      Region_Name == "OSLO" ~ "Oslo",
      Region_Name == "ROGALAND" ~ "Rogaland",
      Region_Name == "TELEMARK" ~ "Telemark",
      Region_Name == "TROMS" ~ "Troms",
     Region_Name == "SØR-TRØNDELAG" ~ "Trøndelag",
     Region_Name == "NORD-TRØNDELAG" ~ "Trøndelag",
     Region Name == "SOGN OG FJORDANE" ~ "Vestland",
     Region_Name == "HORDALAND" ~ "Vestland",
     Region Name == "ØSTFOLD" ~ "Østfold",
      is.na(Region_Name) & str_starts(Municipality_Code, "03") ~ "Oslo",
      is.na(Region Name) & str_starts(Municipality_Code, "11") ~ "Rogaland",
      is.na(Region_Name) & str_starts(Municipality_Code, "15") ~ "Møre og Romsdal",
      is.na(Region Name) & str_starts(Municipality_Code, "18") ~ "Nordland",
     is.na(Region_Name) & str_starts(Municipality_Code, "31") ~ "Østfold",
      is.na(Region_Name) & str_starts(Municipality_Code, "32") ~ "Akershus",
      is.na(Region Name) & str_starts(Municipality_Code, "33") ~ "Buskerud",
```

```
is.na(Region Name) & str starts(Municipality Code, "34") ~ "Innlandet",
     is.na(Region_Name) & str_starts(Municipality_Code, "39") ~ "Vestfold",
     is.na(Region Name) & str_starts(Municipality_Code, "40") ~ "Telemark",
     is.na(Region_Name) & str_starts(Municipality_Code, "42") ~ "Agder",
     is.na(Region Name) & str_starts(Municipality Code, "46") ~ "Vestland",
     is.na(Region_Name) & str_starts(Municipality_Code, "50") ~ "Trøndelag",
     is.na(Region Name) & str starts(Municipality Code, "55") ~ "Troms",
     is.na(Region_Name) & str_starts(Municipality_Code, "56") ~ "Finnmark",
     TRUE ~ Region Name # Keep existing Region Name if no conditions are met
   )
 ) %>%
 select(-Mun name)
# Aggregating per municipality data
Vinmonopolet_market <- Vinmonopolet %>%
 group_by(Municipality_Code) %>%
 summarise(
   Mun_name = first(Municipality_Name),
   Region_Name = first(Region_Name),
   Population = first(Population),
   Area = first(Area),
   Number of stores = sum(`2024` > 0), # Count non-zero sales
   Sales = sum(2024),
   Lat = first(Latitude),
   Lon = first(Longitude),
   Dist_nearest = first(dist_nearest_store),
 )
# Scaling the variables that have nt been scaled yet
Vinmonopolet_market <- Vinmonopolet_market %>%
 mutate(Population = Population / 1000,
        Sales = Sales / 1000)
# Now we have loaded and wrangled the main data set, but we can use some
# new variables for our analysis
Grensehandel_weights <- here("Data", "Vinmonopolet", "Grensehandel_weights.xlsx")</pre>
```

```
# Load the weights datas
weights <- read_excel(Grensehandel_weights, skip = 3) %>%
  slice(1) %>%
 select(-'...1') %>%
 mutate(
   mean_weight = (as.numeric(`2024K1`) + as.numeric(`2024K2`) + as.numeric(`2024K3`) + as.
 )
weight_grensehandel <- weights$mean_weight / 100</pre>
# Load the regional data
Grensehandel_regions <- here("Data", "Vinmonopolet", "Grensehandel_regions.xlsx")</pre>
regional <- read_excel(Grensehandel_regions)</pre>
total_grensehandel <- sum(regional$"2024")</pre>
# Calculate grensehandel per region
regional <- regional %>%
 rename(
   Region = `Fylker`,
   Total_sale = `2024`
 ) %>%
 mutate(
   Grensehandel = Total_sale * weight_grensehandel
# Split the "Vestlandet" region row into three new rows: "Rogaland", "Vestland" and "MC8re
regional <- regional %>%
 rbind(
   regional %>% filter(Region == "Vestlandet") %>% mutate(Region = "Rogaland"),
   regional %>% filter(Region == "Vestlandet") %>% mutate(Region = "Vestland"),
   regional %>% filter(Region == "Vestlandet") %>% mutate(Region = "Møre og Romsdal")
  ) %>%
 filter(Region != "Vestlandet")
# Divide the grensehandel value by three for "Rogaland", "Vestland" and "MC8re og Romsdal"
regional <- regional %>%
 mutate(
   Grensehandel = case_when(
```

```
Region == "Rogaland" ~ Grensehandel * 0.35,
     Region == "Vestland" ~ Grensehandel * 0.46,
     Region == "Møre og Romsdal" ~ Grensehandel * 0.19,
     TRUE ~ Grensehandel # Keep the original value for other regions
 )
# Split the "Nord-Norge" region row into three new rows: "Nordland", "Troms" and "Finnmark"
# And divide the grensehandel value by three
regional <- regional %>%
 mutate(
   Grensehandel = ifelse(Region == "Nord-Norge", Grensehandel / 3, Grensehandel)
 ) %>%
 rbind(
   regional %>% filter(Region == "Nord-Norge") %>% mutate(Region = "Nordland"),
   regional %>% filter(Region == "Nord-Norge") %>% mutate(Region = "Troms"),
   regional %% filter(Region == "Nord-Norge") %% mutate(Region = "Finnmark")
 ) %>%
 filter(Region != "Nord-Norge")
# Divide the grensehandel value by three for "Nordland", "Troms" and "Finnmark"
regional <- regional %>%
 mutate(
   Grensehandel = case_when(
     Region == "Nordland" ~ Grensehandel * 0.5,
     Region == "Troms" ~ Grensehandel * 0.35,
     Region == "Finnmark" ~ Grensehandel * 0.15,
     TRUE ~ Grensehandel # Keep the original value for other regions
   )
 )
# Split the "Agder, Telemark, Buskerud og Vestfold" column into four new columns: "Agder",
# And divide the grensehandel value by four
regional <- regional %>%
   Grensehandel = ifelse(Region == "Agder, Telemark, Buskerud og Vestfold", Grensehandel /
 ) %>%
 rbind(
   regional %>% filter(Region == "Agder, Telemark, Buskerud og Vestfold") %>% mutate(Region
   regional %>% filter(Region == "Agder, Telemark, Buskerud og Vestfold") %>% mutate(Region
```

```
regional %>% filter(Region == "Agder, Telemark, Buskerud og Vestfold") %>% mutate(Region
   regional %>% filter(Region == "Agder, Telemark, Buskerud og Vestfold") %>% mutate(Region
  ) %>%
 filter(Region != "Agder, Telemark, Buskerud og Vestfold")
# Divide the grensehandel value by four for "Agder", "Telemark", "Buskerud" and "Vestfold"
regional <- regional %>%
 mutate(
   Grensehandel = case_when(
     Region == "Agder" ~ Grensehandel * 0.31,
     Region == "Telemark" ~ Grensehandel * 0.17,
     Region == "Buskerud" ~ Grensehandel * 0.26,
     Region == "Vestfold" ~ Grensehandel * 0.26,
     TRUE ~ Grensehandel # Keep the original value for other regions
   )
 )
# Removing the "total_sale" column from the regional data set
regional <- regional %>% select(-Total_sale)
# Merge the regional data with the main data set on Region_Name in the Vinmonopolet_market
Vinmonopolet_market <- left_join(Vinmonopolet_market, regional, by = c("Region_Name" = "Reg
# Add a new column "Region_pop" where "Population" is summarized for each region
Vinmonopolet_market <- Vinmonopolet_market %>%
  group_by(Region_Name) %>%
 mutate(Region_pop = sum(Population)) %>%
  ungroup()
Vinmonopolet_market <- Vinmonopolet_market %>%
  mutate(Kommune_share = Population / Region_pop,
        Grensehandel_mun = Grensehandel * Kommune_share) %>%
  select(-c("Region_pop", "Kommune_share", "Grensehandel")) %>%
 rename(Grensehandel = Grensehandel_mun)
```

```
Tourism_xlsx <- here("Data", "Vinmonopolet", "Tourism.xlsx")</pre>
# Reading tourism data
Tourism <- read_excel(Tourism_xlsx, skip = 4) %>%
 rename(
   Mun = '...1',
   H = 'Hotell og liknande overnattingsbedrifter',
   C = 'Campingplassar, hyttegrender og vandrarheim',
  ) %>%
  select(-'...2') %>%
  mutate_at(vars(H, C), ~as.numeric(str_replace_all(., ":", "0"))) %>%
  mutate(n_stays = H + C) \%
  separate(Mun, into = c("Municipality_Code", "Municipality_Name"), sep = " ", remove = FAI
  select(-c("Mun", "H", "C", "Municipality_Name")) %>%
  filter(!is.na(Municipality_Code))
# Merging the data
Vinmonopolet market <- left_join(Vinmonopolet_market, Tourism, by = "Municipality_Code") %>
   n_stays = ifelse(is.na(n_stays), 0, n_stays),
   n_{stays} = n_{stays} / 1000
# There is a great deal of missing data, so we do not know the relevance of
# this data yet
# Average monthly salary per inhabitant in the municipality
# Load data
Monthly Salary <- here("Data", "Vinmonopolet", "Monthly Salary.xlsx")
data <- read_excel(Monthly_Salary)</pre>
# Cleaning data by removing rows with missing values and rows with dots
clean_data <- data %>%
  filter(!apply(., 1, function(row) any(grepl("\\.", row)))) %>%
 na.omit()
```

```
# Remove the last two rows from the data, using tidyverse
clean_data <- clean_data %>%
 slice(1:(n() - 2)) %>%
 select(-'...2') %>%
 rename(
   Mun = `12852: Kommunefordelt månedslønn, etter region, statistikkmål, statistikkvariabe
   Monthly_salary = '...3'
 separate(Mun, into = c("Municipality_Code", "Municipality_Name"), sep = " ", remove = FAI
 select(-c("Municipality_Name", "Mun")) %>%
 mutate(Monthly_salary = as.numeric(Monthly_salary),
        Monthly_salary = Monthly_salary / 1000)
# Merge with the main data set
Vinmonopolet market <- left_join(Vinmonopolet_market, clean_data, by = "Municipality_Code")
# Load data
Concentration_xlsx <- here("Data", "Vinmonopolet", "Concentration.xlsx")</pre>
concentration <- read excel(Concentration xlsx, skip = 5) %>%
 slice(1:357) %>%
 select('...1',
        'Spredtbygd strøk...3') %>%
 rename(Mun = '...1',
        Spread = 'Spredtbygd strøk...3') %>%
 separate(Mun, into = c("Municipality_Code", "Municipality_Name"), sep = " ", remove = FAL
 select(-c("Municipality_Name", "Mun")) %>%
 mutate(Spread = as.numeric(Spread),
        Spread = Spread / 1000)
# Remove the first two characters of each cell in the "Municpality_Code" column
concentration $Municipality_Code <- substr(concentration $Municipality_Code, 3, nchar(concent
# Merge with the main data set
```

```
Vinmonopolet market <- left_join(Vinmonopolet_market, concentration, by = "Municipality_Cod
# Load data
Active_xlsx <- here("Data", "Vinmonopolet", "Active.xlsx")</pre>
A1 <- read excel(Active xlsx, sheet = 1, skip = 2)
A2 <- read excel(Active xlsx, sheet = 2, skip = 2)
# Merge the two data sets
Active <- A1 %>%
  bind_rows(A2) %>%
  select(-c('1', '...3', Fylke))
# Rename columns
names(Active)[1] <- "Mun_name"</pre>
# Remove unncessary spaces and numbers from the "Mun_name" column
Active$Mun_name <- substr(Active$Mun_name, 4, nchar(Active$Mun_name))</pre>
Active$Mun_name <- trimws(Active$Mun_name, which = "left")</pre>
# Replace norwegian special letters with english ones and make all letters lowercase
Active$Mun_name <- tolower(iconv(Active$Mun_name, from = "UTF-8", to = "ASCII//TRANSLIT"))</pre>
# Recode the "Mun_name" column
Active$Mun_name <- case_when(</pre>
  Active$Mun_name == "hamaroy" ~ "habmer - hamaroy",
  Active$Mun_name == "hattfjelldal" ~ "aarborte - hattfjelldal",
  Active$Mun_name == "valer (viken)" ~ "valer (ostfold)",
  TRUE ~ Active$Mun_name)
# Merge with the main data set
# Make a dummy variable for active stores
Vinmonopolet_market$Active <- ifelse(Vinmonopolet_market$Mun_name %in% Active$Mun_name, 1,
```

Model applications

Data preparation

Model selection and basic regressions

Df Sum of Sq RSS AIC

```
+ Population 1 238655412 3275767 2263.6

+ Number_of_stores 1 232719071 9212107 2508.6

+ n_stays 1 213396224 28534954 2776.6

+ Grensehandel 1 121971827 119959351 3116.9

+ Monthly_salary 1 46654218 195276960 3232.4

+ Spread 1 4307259 237623919 3278.9

<none> 241931178 3281.2

+ Area 1 1750943 240180236 3281.4
```

Step: AIC=2263.56
Sales ~ Population

		Df	Sum of Sq	RSS	AIC
+	Number_of_stores	1	655940	2619827	2212.6
+	n_stays	1	611748	2664019	2216.6
+	Grensehandel	1	487930	2787837	2227.3
+	Spread	1	228325	3047442	2248.4
+	Area	1	76705	3199061	2259.9
<1	none>			3275767	2263.6
+	Monthly_salary	1	2240	3273527	2265.4

Step: AIC=2212.6

Sales ~ Population + Number_of_stores

		\mathtt{Df}	Sum of	Sq	RSS	AIC
+	Grensehandel	1	2674	194	2352332	2189.1
+	n_stays	1	250	512	2369314	2190.8
+	Spread	1	45:	130	2574697	2210.5
+	Area	1	449	973	2574854	2210.5
+	Monthly_salary	1	353	351	2584475	2211.4
<1	none>				2619827	2212.6

Step: AIC=2189.08

Sales ~ Population + Number_of_stores + Grensehandel

		Df	Sum of Sq	RSS	AIC
+	n_stays	1	116034	2236298	2179.1
+	Area	1	32495	2319837	2187.8
+	Spread	1	32037	2320296	2187.8
+	Monthly_salary	1	25822	2326510	2188.5
<1	none>			2352332	2189.1

```
Step: AIC=2179.09
Sales ~ Population + Number_of_stores + Grensehandel + n_stays
                Df Sum of Sq
                                 RSS
                                        AIC
+ Monthly_salary 1
                       94136 2142163 2170.9
+ Spread
                       19793 2216505 2179.0
                 1
<none>
                             2236298 2179.1
+ Area
                       13717 2222581 2179.6
                 1
Step: AIC=2170.9
Sales ~ Population + Number_of_stores + Grensehandel + n_stays +
   Monthly_salary
         Df Sum of Sq
                         RSS
                                AIC
               36877 2105286 2168.8
+ Area
<none>
                     2142163 2170.9
+ Spread 1
                8522 2133640 2171.9
Step: AIC=2168.78
Sales ~ Population + Number_of_stores + Grensehandel + n_stays +
   Monthly_salary + Area
        Df Sum of Sq
                         RSS
                                AIC
<none>
                      2105286 2168.8
+ Spread 1
              9654.8 2095631 2169.7
summary(forward_model)
Call:
lm(formula = Sales ~ Population + Number_of_stores + Grensehandel +
   n_stays + Monthly_salary + Area, data = train_data)
Residuals:
   Min
            1Q Median
                            ЗQ
                                   Max
-338.11 -48.12 -6.81 35.54 364.74
Coefficients:
```

Estimate Std. Error t value Pr(>|t|)

```
(Intercept)
                -4.980e+02 1.249e+02 -3.986 9.03e-05 ***
Population
                 1.358e+01 6.778e-01 20.040 < 2e-16 ***
Number_of_stores 7.744e+01 1.329e+01 5.825 1.91e-08 ***
Grensehandel
                -4.198e+00 1.369e+00 -3.068 0.00242 **
n_stays
                 1.780e-01 4.175e-02 4.263 2.94e-05 ***
Monthly_salary
                 7.956e+00 2.222e+00 3.580 0.00042 ***
                 1.278e-02 6.366e-03 2.007 0.04590 *
Area
___
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 95.67 on 230 degrees of freedom
                              Adjusted R-squared: 0.9911
Multiple R-squared: 0.9913,
F-statistic: 4367 on 6 and 230 DF, p-value: < 2.2e-16
# Backward selection
backward_model <- step(lm(Sales ~ Population + Grensehandel + n_stays + Monthly_salary + Ar
                         data = train data),
                      direction = "backward")
Start: AIC=2169.69
Sales ~ Population + Grensehandel + n_stays + Monthly_salary +
    Area + Number_of_stores + Spread
                  Df Sum of Sq
                                  RSS
                                         AIC
- Spread
                          9655 2105286 2168.8
<none>
                               2095631 2169.7
                         38010 2133640 2171.9
- Area
                   1
- Grensehandel
                   1
                        86637 2182268 2177.3
- Monthly_salary
                   1 104814 2200445 2179.3
- n_stays
                   1
                       148519 2244150 2183.9
- Number_of_stores 1 253669 2349299 2194.8
- Population
                       3321080 5416711 2392.8
Step: AIC=2168.78
Sales ~ Population + Grensehandel + n_stays + Monthly_salary +
    Area + Number_of_stores
                  Df Sum of Sq
                                   RSS
                                          AIC
<none>
                               2105286 2168.8
```

36877 2142163 2170.9

1

- Area

```
- Grensehandel
                       86135 2191421 2176.3
              1
Monthly_salary
                  1 117295 2222581 2179.6
                  1 166368 2271653 2184.8
- n_stays
- Number_of_stores 1 310561 2415847 2199.4
- Population
                  1
                      3676078 5781364 2406.2
summary(backward_model)
Call:
lm(formula = Sales ~ Population + Grensehandel + n_stays + Monthly_salary +
   Area + Number_of_stores, data = train_data)
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-338.11 -48.12 -6.81 35.54 364.74
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
               -4.980e+02 1.249e+02 -3.986 9.03e-05 ***
(Intercept)
Population
                1.358e+01 6.778e-01 20.040 < 2e-16 ***
Grensehandel
               -4.198e+00 1.369e+00 -3.068 0.00242 **
n stays
                1.780e-01 4.175e-02 4.263 2.94e-05 ***
Monthly_salary
                7.956e+00 2.222e+00 3.580 0.00042 ***
                 1.278e-02 6.366e-03 2.007 0.04590 *
Area
Number_of_stores 7.744e+01 1.329e+01 5.825 1.91e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 95.67 on 230 degrees of freedom
Multiple R-squared: 0.9913,
                             Adjusted R-squared: 0.9911
F-statistic: 4367 on 6 and 230 DF, p-value: < 2.2e-16
```

```
lm_Area <- lm(Sales ~ Area, data = train_data)
summary(lm_Area)</pre>
```

Call:

```
lm(formula = Sales ~ Area, data = train_data)
Residuals:
   Min
            1Q Median
                           3Q
                                  Max
-426.0 -304.2 -213.1 -23.7 12804.5
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 463.91339 88.30921 5.253 3.35e-07 ***
Area
            -0.08325
                       0.06360 -1.309
                                         0.192
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1011 on 235 degrees of freedom
Multiple R-squared: 0.007237, Adjusted R-squared: 0.003013
F-statistic: 1.713 on 1 and 235 DF, p-value: 0.1919
lm_pop <- lm(Sales ~ Population, data = Vinmonopolet_market)</pre>
summary(lm_pop)
Call:
lm(formula = Sales ~ Population, data = Vinmonopolet_market)
Residuals:
   Min
            1Q Median
                           3Q
                                 Max
-595.79 -25.26 5.15 33.18 417.61
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -27.397 5.466 -5.012 8.52e-07 ***
Population
             18.128
                        0.112 161.791 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Adjusted R-squared: 0.9866

Residual standard error: 97.81 on 355 degrees of freedom

F-statistic: 2.618e+04 on 1 and 355 DF, p-value: < 2.2e-16

Multiple R-squared: 0.9866,

```
small_data <- Vinmonopolet_market %>%
 filter(Number_of_stores == 1 | 0)
lm_pop_test <- lm(Sales ~ Population, data = small_data)</pre>
summary(lm_pop_test)
Call:
lm(formula = Sales ~ Population, data = small_data)
Residuals:
   Min 1Q Median 3Q
                                 Max
-309.98 -36.54 -5.05 38.74 346.01
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
             37.038 7.977 4.643 6.31e-06 ***
(Intercept)
Population
            Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 71.84 on 194 degrees of freedom
Multiple R-squared: 0.7121, Adjusted R-squared: 0.7106
F-statistic: 479.8 on 1 and 194 DF, p-value: < 2.2e-16
# Linear regression model for predicting sales with all the variables
var_test <- lm(Sales ~ Population + Grensehandel + n_stays + Monthly_salary + Area +</pre>
               Number_of_stores + Spread,
              data = Vinmonopolet_market)
stargazer(var_test, type = "text")
                      Dependent variable:
                            Sales
```

Population	14.497*** (0.490)
Grensehandel	-4.610*** (1.117)
n_stays	0.159*** (0.034)
Monthly_salary	4.740*** (1.518)
Area	0.010** (0.005)
Number_of_stores	63.026*** (8.444)
Spread	-6.040*** (2.236)
Constant	-289.696*** (83.210)
Observations R2 Adjusted R2 Residual Std. Error F Statistic	357 0.991 0.991 79.155 (df = 349) 5,737.855*** (df = 7; 349)
Note:	*p<0.1; **p<0.05; ***p<0.01

[#] From these regressions we see that we want to remove the "Area" and "prop_spread" variable # from the regressions as they are not significant.

Demand estimation

```
## Linear regression
# Predicting sales using the training data
reg1 <- lm(Sales ~ Population + Grensehandel + n_stays + Monthly_salary,
         data = train_data)
summary(reg1)
Call:
lm(formula = Sales ~ Population + Grensehandel + n_stays + Monthly_salary,
   data = train_data)
Residuals:
   Min
        1Q Median
                        3Q
                              Max
-435.51 -46.33 0.49 42.36 402.63
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -270.08466 125.33620 -2.155 0.032201 *
             Population
Grensehandel
              -5.26373 1.45612 -3.615 0.000369 ***
              n stays
Monthly_salary 4.88463 2.28962 2.133 0.033944 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 102.6 on 232 degrees of freedom
Multiple R-squared: 0.9899, Adjusted R-squared: 0.9897
F-statistic: 5683 on 4 and 232 DF, p-value: < 2.2e-16
# Applying the model on the test data
test_data$Sales_pred <- predict(reg1, newdata = test_data)</pre>
## Merge predicted data into the original data
# Deselect unnecessary columns to merge the data easier
```

```
test_data <- test_data %>%
    select(Municipality_Code, Sales_pred)

# Merge predicted demand (sales) back into the original data
Vinmonopolet_market <- Vinmonopolet_market %>%
    left_join(test_data, by = "Municipality_Code") %>%
    mutate(Sales = ifelse(Sales == 0, Sales_pred, Sales)) %>%
    select(-Sales_pred) %>%
    mutate(Sales = ifelse(Sales < 0, 0, Sales),
        Number_of_stores = as.integer(Number_of_stores)) %>%
    filter(Number_of_stores < 2)</pre>
```

Logit model

```
# Make sure the factor for Number_of_stores has valid R variable names
# that won't cause errors in caret. For instance, rename "0" -> "NoStore"
# and "1" -> "OneStore".
data_for_logit <- Vinmonopolet_market %>%
 mutate(Number_of_stores = as.factor(Number_of_stores))
# Rename factor levels (originally "0" and "1") to "NoStore" and "OneStore"
data_for_logit$Number_of_stores <- factor(</pre>
 data_for_logit$Number_of_stores,
 levels = c("0", "1"),
 labels = c("NoStore", "OneStore")
# Set up k-fold cross-validation parameters
set.seed(123) # for reproducibility
my_control <- trainControl(</pre>
 method = "cv",
                        # k-fold CV
                        # 5 folds
 number = 5,
                     # needed for probability output
 classProbs = TRUE,
 summaryFunction = twoClassSummary
)
```

```
data = data_for_logit,
  method = "glm",
  family = binomial,
  trControl = my_control,
  metric = "ROC"
                            # use AUC (Area Under the Curve) as our metric
)
# Review cross-validation results
print(cv_model)
Generalized Linear Model
316 samples
  1 predictor
  2 classes: 'NoStore', 'OneStore'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 252, 253, 253, 253, 253
Resampling results:
  ROC
             Sens
                        Spec
  0.9397703 0.8666667 0.8670513
print(cv_model$results)
                  ROC
                           Sens
                                      Spec
                                                ROCSD
                                                         SensSD
                                                                     SpecSD
  parameter
       none 0.9397703 0.8666667 0.8670513 0.02518379 0.1078515 0.04987575
# Get predicted probabilities from the final trained model
# caret retrains on the entire dataset after CV by default
Vinmonopolet_market$prob <- predict(cv_model, newdata = data_for_logit, type = "prob")[, "C</pre>
# Use the probabilities for your recommendations
recommended_stores <- Vinmonopolet_market %>%
```

Train the logistic model with cross-validation

cv_model <- train(</pre>

Number_of_stores ~ Sales,

```
mutate(Number_of_stores = as.integer(as.character(Number_of_stores))) %>%
filter(Number_of_stores == 0, Dist_nearest > 0) %>%
arrange(desc(prob)) %>%
select(Mun_name, prob, Dist_nearest, Sales, Population, Region_Name, Active)
head(recommended_stores, 10) # for example, show top 10
```

A tibble: 10 x 7

	Mun_name	prob	Dist_nearest	Sales	Population	Region_Name	Active
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
1	giske	0.995	3.41	156.	8.77	Møre og Romsdal	0
2	lunner	0.993	7.32	150.	9.42	Akershus	1
3	rade	0.967	12.9	118.	7.85	Østfold	0
4	hareid	0.857	9.83	87.2	5.32	Møre og Romsdal	1
5	<pre>valer (ostfold)</pre>	0.823	10.8	82.1	6.16	Østfold	1
6	aurland	0.817	36.6	81.3	1.84	Vestland	1
7	birkenes	0.752	12.7	73.8	5.41	Agder	0
8	eidskog	0.729	23.3	71.5	6.06	Innlandet	1
9	aure	0.683	28.0	67.0	3.39	Møre og Romsdal	1
10	austrheim	0.658	16.3	64.8	2.92	Vestland	1

```
# Output the top 10 recommended stores as a nice table using kable
# And save it
kable(head(recommended_stores, 10), format = "markdown")
```

Mun_name	prob	Dist_nearest	Sales	Population	Region_Name	Active
giske	0.9950643	3.407605	156.13987	8.773	Møre og	0
					Romsdal	
lunner	0.9932445	7.323172	149.94498	9.420	Akershus	1
rade	0.9672041	12.891027	118.41978	7.850	Østfold	0
hareid	0.8573922	9.828661	87.21263	5.320	Møre og	1
					Romsdal	
valer (ostfold)	0.8226703	10.788931	82.12523	6.162	Østfold	1
aurland	0.8166871	36.608030	81.33082	1.836	Vestland	1
birkenes	0.7517656	12.695963	73.75601	5.413	Agder	0
eidskog	0.7294726	23.342412	71.47769	6.059	Innlandet	1
aure	0.6827221	28.029241	67.04993	3.394	Møre og	1
					Romsdal	

Mun_name	prob	Dist_nearest	Sales	Population	Region_Name	Active
austrheim	0.6575973	16.315532	64.81866	2.915	Vestland	1

```
# Use the probabilities for your recommendations
Active_stores <- Vinmonopolet_market %>%
   mutate(Number_of_stores = as.integer(as.character(Number_of_stores))) %>%
   filter(Active == 1, Dist_nearest > 0) %>%
   arrange(desc(prob)) %>%
   select(Mun_name, prob, Dist_nearest, Sales, Population, Region_Name, Active)
head(Active_stores, 10) # for example, show top 10
```

A tibble: 10 x 7

	Mun_name	prob	Dist_nearest	Sales	Population	Region_Name	Active
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
1	lunner	0.993	7.32	150.	9.42	Akershus	1
2	hareid	0.857	9.83	87.2	5.32	Møre og Romsdal	1
3	<pre>valer (ostfold)</pre>	0.823	10.8	82.1	6.16	Østfold	1
4	aurland	0.817	36.6	81.3	1.84	Vestland	1
5	eidskog	0.729	23.3	71.5	6.06	Innlandet	1
6	aure	0.683	28.0	67.0	3.39	Møre og Romsdal	1
7	austrheim	0.658	16.3	64.8	2.92	Vestland	1
8	aukra	0.644	14.9	63.6	3.76	Møre og Romsdal	1
9	vaksdal	0.617	19.2	61.4	3.88	Vestland	1
10	sokndal	0.544	20.9	55.5	3.37	Rogaland	1

```
# Output the top 10 recommended stores as a nice table using kable
# And save it
kable(head(Active_stores, 10), format = "markdown")
```

Mun_name	prob	Dist_nearest	Sales	Population	Region_Name	Active
lunner	0.9932445	7.323172	149.94498	9.420	Akershus	1
hareid	0.8573922	9.828661	87.21263	5.320	Møre og	1
					Romsdal	
valer (ostfold)	0.8226703	10.788931	82.12523	6.162	Østfold	1
aurland	0.8166871	36.608030	81.33082	1.836	Vestland	1
eidskog	0.7294726	23.342412	71.47769	6.059	Innlandet	1

Mun_name	prob	Dist_nearest	Sales	Population	Region_Name	Active
aure	0.6827221	28.029241	67.04993	3.394	Møre og	1
					Romsdal	
austrheim	0.6575973	16.315532	64.81866	2.915	Vestland	1
aukra	0.6436248	14.936345	63.61235	3.759	Møre og	1
					Romsdal	
vaksdal	0.6172827	19.244243	61.39293	3.875	Vestland	1
sokndal	0.5442250	20.880302	55.49285	3.371	Rogaland	1