BEEBOTS, ESTRUCTURA DE DATOS PARA PREDECIR COLISIONES ENTRE DOS O MÁS OBEJETOS

Andres Almanzar Restrepo Santiago Hincapié Murillo Santiago Arango Valencia Medellín, Mayo 21 d 2018

Estructuras de Datos Diseñada

Gráfico 1: Se observa un grafo con nodos. Al principio todos los nodos salen de un nodo padre o raíz.

Gráfico 2: inimás nodos so que se observabejas robótic

n dividir en da punto o son las

Operaciones de la Estructura de Datos

VAL

123

43

21

231

Abeja1

Abeja2

Abeia3

	Х	γ	VAL
Abeja1	21	123	1
Abeja2	231	43	2
Abeja3			

Gráfico 3: Metodo abeja, crea una abeja en cordenadas espaciales

Grafico 4: Metodo agregar abeja, convierte las cordenadas espaciales a posiciones en el plano

Gráfica 5: cantidad de abejas en el mapa de Bello, Medellín.

Abeja: crea una abeja en coordenadas espaciales

AgregarAbeja: lee las cordenas espaciales y las convierte a posiciones en el plano

Mostrar: dibuja las abejas en el plano

Principal: llama a agregar abejas y luego a mostrar

Quadtree: tiene los métodos insertar, dividir, distancia entre abejas, colisionan (boleano).

Criterios de Diseño de la Estructura de Datos

La elección del QuadTree para el desarrollo del proyecto radica en diversos factores:

Representación de imágenes gracias a la estructura que posee.

Detección eficiente de la colisión entre objetos en un campo 2D(dos dimensiones)

Al compararlo con otras estructuras de datos, posee mejor organización del espacio de los objetos. (esto debido a su constante división en cuadrantes).

-Se encarga de descomponer de manera recursiva el espacio.

Complejidad

Abeja	O(1)
AgregarAbeja	O(n)
Mostrar	O(n)
Quadtree	O(log(n))
PorgramaPrincipal	O(n)

Tabla 1: análisis de complejidad

Consumo de Tiempo

	Conjunto de Datos 1	Conjunto de Datos 2	Conjunto de Datos n
Creación	10 sg	20 sg	5 sg
Operación 1	12 sg	10 sg	35 sg
Operación 2	15 sg	21 sg	35 sg
Operación n	12 sg	24 sg	35 sg

Tabla 2: Tiempos de ejecución de las operaciones de la estructura de datos con diferentes conjuntos de datos

Consumo de Memoria

	Conjunto de	Conjunto de	Conjunto de
	Datos 1	Datos 2	Datos n
Consumo de memoria	10 MB	20 MB	5 MB

Tabla 3: Consumo de memoria de la estructura de datos con diferentes conjuntos de datos

Software Desarrollado

Gráfico 6: abejas en el mapa de bello

