Name: _____

Instructor: D. Kushary

- 1. The data (sheet=Logistic) represents the test firing results for 25 surface-to-air anti-aircraft missiles at targets of varying speed (in knots). The results of each test is either a hit (Y=1) or a miss (Y=0).
 - (a) Fit a logistic regression model to the response variable y and write down the estimated model. Use a simple linear regression model as the structure of the linear predictor.

R- output

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	6.0709	2.1090	2.88	0.0040
X	-0.0177	0.0061	-2.91	0.0036

Solution: The estimated model is $\hat{\pi} = \frac{1}{1 + e^{-(6.0709 - 0.0177 \times X)}}$

- (b) Find a 98% confidence interval for the odds ratio when speed goes up by 50 (knots) Solution: The odds ratio when speed goes up by 50 is $e^{50 \times \hat{\beta}_1} = 0.4126172$ and the 98% CI is (0.2035339, 0.8364847)
- (c) Does the model deviance indicate that the above model is adequate at 10% level?

	Df	Deviance	Resid. Df	Resid. Dev
NULL			24	34.62
X	1	14.25	23	20.36

Model deviance is 20.36 with df=23 which implies the p-value = 0.6199. Hence the model is adequate at 10% level.

(d) Expand the linear predicted to include a quadratic term in the Target speed. Is there any evidence that this quadratic term is required in the model. Use 5% significance level.

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	6.1927	9.0299	0.69	0.4928
X	-0.0185	0.0551	-0.33	0.7377
x2	0.0000	0.0001	0.01	0.9889

To test the significance of the quadratic term we set the hypothesis as $H_0: \beta_2 = 0$ vs $H_1: \beta_2 \neq 0$. Now from the above table we see that the p-value for the test is 0.9889. Hence the addition of the quadratic term is insignificant at 5% level.

- 2. Do average automobile insurance costs differ for different insurance companies? One of the other variables which determines the cost is location. To test the theory, estimates (in dollars) are taken for a fixed type of drivers from 3 insurance companies (1-State Farm 2-Allstate 3-AAA). Each of the three companies provided estimates for four different cities (A-Riverside, B-San Bernadino, C-Hollywood and D-Long Beach). Data was analyzed using two-way ANOVA model without interaction and one observation per cell. The following summary statistic are available. SST=86, SS(Location)=42 and F-Stat(Location) = 7. Total for each of the companies are $T_1 = 100.T_2 = 324$, $T_3 = 196$.
 - (a) Write down the model, factor and levels for the problem.

Model: $y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$ A=Insurance Company(3) B=Location(5)

(b) Complete the ANOVA table and test if there is sufficient evidence to indicate that average insurance premiums differ from company to company at 5% level?

Source	Sum of	Deg of	Mean	F - Stat	P -value
	Squares	Freedom	Squares		
Insurance Company	32	2	16	8	0.0203
Location	42	3	14	7	0.0219
Error	12	6	2		
Total	86	11			

Step - 1 DFs are
$$(k-1) = 3 - 1 = 2$$
, $b - 1 = 4 - 1 = 3$ and for error $(k-1)(b-1) = 6$.

Step - 2 - MSB =
$$SSB/(b-1) = 42/3 = 14$$

Step - 3 -
$$\frac{MSB}{MSE} = F_B - Stat$$
 \Rightarrow $MSE = \frac{MSB}{F_B - Stat} = \frac{14}{7} = 2$

Step - 4 -
$$SSE = 2 \times 6 = 12$$
 \Rightarrow $SSA = 86 - 12 - 42 = 32$

Step - 5
$$MSA = 32/2 = 16$$
 \Rightarrow $F_A - stat = MSA/MSE = 16/2 = 8$

To test the carriers we set

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$$
 vs $H_1:$ Not all of them 0.

As
$$F_A - Stat = 8 > F_{0.05,2.6} = 5.14$$
 we reject the null hypothesis.

Conclusion: The data provides sufficient evidence to support the fact that insurance companies are different in average cost at 5% level.

- 3. Over the past 20 years, inventory carrying costs for a large tire manufacturing facility have been as shown in the data file (sheet=Timeseries). Data are in thousands of dollars.
 - (a) Write down the time series model and plot the data and fit a simple linear regression using time (t) as the independent variable and test for positive autocorrelation at 5% level. (must write hypothesis and p-values)

The time series model is:

$$Y_t = \beta_0 + \beta_1 t + \epsilon_t$$
 where $\epsilon_t = \rho \epsilon_{t-1} + a_t$ and $a_t \sim N(0, \sigma^2)$

The estimated SLR model is: $\hat{y}_t = 4206.10 - 88.3789 \times t$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	4206.1032	145.8094	28.85	0.0000
t	-88.3789	12.1719	-7.26	0.0000

To the test the auto-correlation we set up the hypothesis as $H_0: \rho \leq 0$ vs $H_1: \rho > 0$. p-value ≈ 0 . Hence we reject the null hypothesis.

lag	Autocorrelation	D-W Statistic	p-value
1	0.681758	0.308722	0

(b) If positive autocorrelation is present, use Cochran-Orcutt method and write down the updated estimated model and then predict the carrying cost for the next year.

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	4229.8451	167.5960	25.24	0.0000
xprime	-247.2012	36.9878	-6.68	0.0000