

In data preprocessing, we often talk about **converting categorical data into numbers** (e.g., via one-hot or label encoding). But sometimes, we also need to do the **reverse**:

"Encoding numerical data as categorical" means converting continuous or discrete numbers into meaningful categories or groups.

Why Convert Numerical to Categorical?

- Improve model interpretability E.g., instead of using exact ages, group into "Child", "Adult",
 "Senior".
- 2. **Handle non-linear relationships** Some models (like decision trees) perform better when numeric variables are grouped.
- 3. Domain knowledge E.g., Income brackets: <30k, 30k-60k, >60k.

How to Convert?

1. Binning / Bucketing

Divide a numerical range into fixed intervals.

- pandas.cut() → equal-width bins
- pandas.qcut() → equal-frequency bins (quantiles)

```
pd.cut(df['Age'], bins=[0, 18, 60, 100], labels=['Child', 'Adult', 'Senior'])
```

2. Custom Mapping

Based on domain logic:

```
def age_group(age):
    if age < 18:
        return 'Child'
    elif age < 60:
        return 'Adult'
    else:
        return 'Senior'

df['Age_Group'] = df['Age'].apply(age_group)</pre>
```

3. Quantile-based Categories

Automatically splits based on percentiles (e.g., quartiles):

```
pd.qcut(df['Income'], q=4, labels=['Low', 'Mid', 'High', 'Very High'])
```

Start coding or generate with AI.

Encoding Numerical to Categorical Data: Theory & Methods

Numerical data can be converted into categorical data (bins, groups, or labels) for better analysis, visualization, or modeling. This process is called **numerical-to-categorical encoding** or **discretization**.

1. Why Convert Numerical to Categorical?

- **Simplification**: Easier interpretation (e.g., "Young", "Middle-aged", "Senior" instead of exact ages).
- Handling non-linear relationships: Some ML models (e.g., Decision Trees) work better with categories.
- Reduce noise: Binning smooths out fluctuations in continuous data.
- Privacy: Hiding exact values (e.g., income ranges instead of exact salaries).

2. Common Techniques for Discretization

(1) Equal-Width Binning (Uniform Binning)

- Divides data into equal-sized intervals.
- Formula:

[\text{Bin width} = \frac{\text{Max value} - \text{Min value}}{\text{Number of bins}}]

• Example:

```
Data: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
Bins: [10-30), [30-50), [50-70), [70-90), [90-110]
```

Labels: ["Low", "Medium", "High", "Very High"]

(2) Equal-Frequency Binning (Quantile Binning)

- Divides data into bins with equal number of samples.
- Uses percentiles (e.g., quartiles, deciles).
- Example:

```
o Data: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

• 4 bins \rightarrow Quartiles: [1-3), [3-5), [5-7), [7-10]

(3) K-Means Binning

- Uses clustering (KMeans) to group similar numerical values.
- Better for non-uniform distributions.

(4) Custom Binning (Domain Knowledge)

- Manually define bins based on business logic.
 - Example (Age Groups):
 - 0-18 → "Child"
 - 19-35 → "Young Adult"
 - 36-60 → "Adult"
 - 60+ → "Senior"

3. Implementation in Python

(A) Pandas cut() (Equal-Width Binning)

```
import pandas as pd

data = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
bins = [0, 30, 50, 70, 90, 110]
labels = ["Low", "Medium", "High", "Very High", "Extreme"]

df = pd.DataFrame({"Values": data})
df["Category"] = pd.cut(df["Values"], bins=bins, labels=labels)

print(df)
```

Output:

```
Values Category
0
       10
                Low
       20
1
                Low
2
       30
            Medium
       40
3
            Medium
4
       50
             High
5
              High
       60
6
       70 Very High
7
       80 Very High
8
       90 Extreme
      100 Extreme
9
```

(B) Pandas qcut() (Equal-Frequency Binning)

```
df["Quantile_Bin"] = pd.qcut(df["Values"], q=4, labels=["Q1", "Q2", "Q3", "Q4"])
print(df)
```

Output:

```
Values Quantile_Bin
0
        10
                      Q1
1
        20
                      Q1
2
        30
                      Q2
3
                      Q2
        40
4
        50
                      Q3
5
        60
                      Q3
6
        70
                      Q4
7
        80
                      Q4
8
        90
                      Q4
9
      100
                      Q4
```

(C) Scikit-Learn KBinsDiscretizer

```
from sklearn.preprocessing import KBinsDiscretizer
import numpy as np

X = np.array(data).reshape(-1, 1)
encoder = KBinsDiscretizer(n_bins=3, strategy='uniform', encode='ordinal')
df["KBins"] = encoder.fit_transform(X)

print(df)
```

Output:

```
Values KBins
             0.0
0
       10
1
       20
             0.0
2
       30
           1.0
3
            1.0
       40
            2.0
4
       50
5
       60
             2.0
6
       70
             2.0
7
       80
             2.0
```

4. Choosing the Right Method

Method	When to Use	Pros & Cons
Equal-Width (cut)	Uniformly distributed data	Simple, but sensitive to outliers
Equal-Freq (qcut)	Skewed data	Balanced bins, but may have irregular ranges
K-Means Binning	Non-linear distributions	Better clustering, but computationally heavy
Custom Binning	Domain-specific grouping (e.g., age)	Flexible, but requires manual effort

5. Key Considerations

- 1. **Number of Bins**: Too few \rightarrow loss of info; too many \rightarrow overfitting.
- 2. **Outliers**: Use robust strategies (e.g., quantiles) if outliers exist.
- 3. ML Impact: Some models (e.g., linear regression) perform worse with categorical data.
- 4. Ordinality: If categories have order (e.g., "Low", "Medium", "High"), use ordinal encoding.

Final Thoughts

- **Use** pd.cut()/pd.qcut() for quick binning in Pandas.
- Use KBinsDiscretizer for ML pipelines.
- Custom binning works best when business rules are known.

Start coding or generate with AI.

Practical Implementation

our terget

- applying Decision Tree on Titanic Data set
- · without Descritization and With Desctritization
- and see the changes for data

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split,cross_val_score
```

from sklearn.compose import ColumnTransformer

 $from \ sklearn.preprocessing \ import \ Function Transformer, Power Transformer, One Hot Encoder$

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import KBinsDiscretizer

from sklearn.pipeline import Pipeline,make_pipeline

from sklearn.tree import DecisionTreeClassifier

df=pd.read_csv('/content/Titanic-Dataset.csv')
df.head()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ca
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
	1	Cumings, Mrs. John 2 1 1 Bradley (Florence Briggs Th		0	PC 17599	71.2833						
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

df=df.iloc[:,[1,2,4,5,6,7,9,11]]

df.head(2)

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.0	1	0	7.2500	S
	1	1	1	female	38.0	1	0	71.2833	С
	4 (

from sklearn.preprocessing import Binarizer

```
df2=df
df2['Family']=df2['SibSp']+df2['Parch']

# df2['Family']=df2['Family'].map(lambda x: 1 if x>0 else 0) #check it instede of next 2 line complete the c
```

<ipython-input-52-8df40fad088d>:2: SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidf2 df2['Family']=df2['SibSp']+df2['Parch']

<ipython-input-52-8df40fad088d>:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guidf2['Family']=bin.fit transform(df2[['Family']])

	Survived	Pclass	Sex	Age	Fare	Embarked	Family
0	0	3	male	22.0	7.2500	S	1
1	1	1	female	38.0	71.2833	С	1
2	1	3	female	26.0	7.9250	S	0
3	1	1	female	35.0	53.1000	S	1
4	0	3	male	35.0	8.0500	S	0
5	0	3	male	NaN	8.4583	Q	0
6	0	1	male	54.0	51.8625	S	0
7	0	3	male	2.0	21.0750	S	1
8	1	3	female	27.0	11.1333	S	1
9	1	2	female	14.0	30.0708	С	1

df.head()

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Family
	0	0	3	male	22.0	1	0	7.2500	S	1
	1	1	1	female	38.0	1	0	71.2833	С	1
	2	1	3	female	26.0	0	0	7.9250	S	0
	3	1	1	female	35.0	1	0	53.1000	S	1
	4	0	3	male	35.0	0	0	8.0500	S	0
	7 7									

Befor Descritization

```
X=df.drop(['Survived', 'Family'],axis=1)
y=df['Survived']
#corrs score: 0.78

# X=df2.drop(['Survived'],axis=1)
# y=df2['Survived']
# #0.79 (improved)

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
X_train.head(2)

Pclass Sex Age SibSp Parch Fare Embarked
```

EDA Befor Descritization

```
#EDA Perform
plt.figure(figsize=(10,5))
plt.title('Before Descritization')
plt.subplot(121)
sns.histplot(X_train['Age'])
plt.title('Age before Descritization')

plt.subplot(122)
sns.histplot(X_train['Fare'])
plt.title('Fare before Descritization')

plt.tight_layout()
```



```
age_pipe=Pipeline([
    ('age_imp',SimpleImputer())
])
emb_pipe=Pipeline([
    ('emb_imp',SimpleImputer(strategy='most_frequent'))
])
sex_emb_pipe=Pipeline([
         ('emb_imp',SimpleImputer(strategy='most_frequent')),
         ('ohe',OneHotEncoder(dtype=np.int32,handle_unknown='ignore',sparse_output=False))
])
```

```
ct=ColumnTransformer([
    ('age',age_pipe,['Age']),
    # ('emb',emb_pipe,['Embarked']),
    ('sex_emb',sex_emb_pipe,['Sex','Embarked'])
],remainder='passthrough')

pipe_without_des=Pipeline([
    ('tf',ct),
    ('model',DecisionTreeClassifier())
])

pipe_without_des.fit(X_train,y_train)
```

 $\overline{2}$

/usr/local/lib/python3.11/dist-packages/sklearn/compose/_column_transformer.py:1667: Future The format of the columns of the 'remainder' transformer in ColumnTransformer.transformers_ At the moment the remainder columns are stored as indices (of type int). With the same Colu To use the new behavior now and suppress this warning, use ColumnTransformer(force_int_rema


```
y_pred=pipe_without_des.predict(X_test)
y pred
   array([0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
           0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1,
           0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1,
           0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
            1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0,
           0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,
           0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
           0, 1, 0])
from sklearn.metrics import accuracy score
accuracy score(y test,y pred)
→ 0.770949720670391
from sklearn.model_selection import cross_val_score
cross val score(pipe without des,X train,y train,cv=5,scoring='accuracy').mean()
    np.float64(0.7598345316655176)
```

After Descritization(Numarical to Catagorical)

```
age_pipe=Pipeline([
    ('age_imp',SimpleImputer()),
```

```
('age_des',KBinsDiscretizer(n_bins=10,strategy='uniform',encode='ordinal'))
])

fare_pipe=Pipeline([
    ('fare_des',KBinsDiscretizer(n_bins=10,strategy='quantile',encode='ordinal'))
])

sex_emb_pipe=Pipeline([
         ('emb_imp',SimpleImputer(strategy='most_frequent')),
          ('ohe',OneHotEncoder(dtype=np.int32,handle_unknown='ignore',sparse_output=False))
])

ct2=ColumnTransformer([
        ('age',age_pipe,['Age']),
        ('fare',fare_pipe,['Fare']),
        ('sex_emb',sex_emb_pipe,['Sex','Embarked'])
],remainder='passthrough')
```

EDA After Discretisation

```
dzt=ct2.fit_transform(X_train)
dzt
\rightarrow array([[5., 7., 0., ..., 1., 0., 0.],
            [2., 4., 0., ..., 2., 0., 0.],
            [3., 2., 0., \ldots, 3., 0., 0.],
            [5., 4., 0., \ldots, 3., 2., 0.],
            [1., 9., 1., \ldots, 1., 1., 2.],
            [2., 9., 0., ..., 1., 0., 1.]])
#EDA Perform
plt.figure(figsize=(10,5))
plt.title('Before Descritization')
plt.subplot(121)
sns.histplot(dzt[:,0])
plt.title('Age before Descritization')
plt.subplot(122)
sns.histplot(dzt[:,1])
plt.title('Fare before Descritization')
plt.tight layout()
```



```
pipe_with_des=Pipeline([
    ('tf',ct2),
    ('model',DecisionTreeClassifier())
])
pipe_with_des.fit(X_train,y_train)
```

/usr/local/lib/python3.11/dist-packages/sklearn/compose/_column_transformer.py:1667: Future The format of the columns of the 'remainder' transformer in ColumnTransformer.transformers_ At the moment the remainder columns are stored as indices (of type int). With the same Column To use the new behavior now and suppress this warning, use ColumnTransformer(force_int_remains.

note: After Descritization Accuracy improved

Custom Binning

df.head()

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Family
	0	0	3	male	22.0	1	0	7.2500	S	1
	1	1	1	female	38.0	1	0	71.2833	С	1
	2	1	3	female	26.0	0	0	7.9250	S	0
	3	1	1	female	35.0	1	0	53.1000	S	1
	4	0	3	male	35.0	0	0	8.0500	S	0

```
sns.countplot(data=df,x='Family')
```



```
def rangeAge(age):
    if age<18:
        return 1
    elif age>=18 and age<=40:
        return 2
    elif age>40:
        return 3
```

```
# df['new age']=df['Age'].map(lambda x:rangeAge(x))
df['new age']=df['Age'].apply(lambda x:rangeAge(x))
```

df.sample(10)

→	Su	rvived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Family	new age	
	579	1	3	male	32.0	0	0	7.9250	S	0	2.0	
	153	0	3	male	40.5	0	2	14.5000	S	1	3.0	
	251	0	3	female	29.0	1	1	10.4625	S	1	2.0	
<pre>sns.histplot(data=df,x='new age')</pre>												
→	< 37.5 s: x	label <u>l</u>	'new age	· female	^Б ГЛа	unt'> ¹	0	82.1708	С	1	NaN	
		C.									NaN	
											NaN	
	400	1									2.0	
											2.0	
	300										1.0	
	ŧ									- [
	Count											
	200	1										
	100	-										
	9											
	0	1.00	1.25	1.50	1.75	2.0	0 2.2	5 2.50	2.75	3.00		
						new a	age					

Start coding or generate with AI.