Министерство науки и высшего образования РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет» Институт математики и информационных систем Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Исследование многослойного персептрона с обучением по методу с обратным распространением ошибки

Отчёт Лабораторная работа № 2 по дисциплине «Системы обработки знаний»

Выполнил студент группы ИВТб-41_	/Седов М.Д./
Проверил доцент кафедры ЭВМ	/Ростовцев В.С./

Цель:

Ознакомиться с основными командами создания, обучения и применения многослойных нейронных сетей в Neural Network Toolbox для аппроксимации заданной функции.

Задание:

- 1. Ознакомиться с демонстрационными программами персептрона. Создать в рабочем пространстве MATLAB каскадную сеть с прямой передачей данных и исследовать ее структуру с оценкой качества обучения mse.
 - 2. Обучить сеть в заданной число циклов (до 100 циклов).
- 3. Построить графики зависимостей обучения нейросетей от количества циклов.

Данные для обучения:

	•
D	
Входные	•
В АОДПЫС	•

				, ,																					
IN1	IN2	IN3	IN4	IN5	IN6	IN7	IN8	IN9	IN10	IN11	IN12	IN13	IN14	IN15	IN16	IN17	IN18	IN19	IN20	IN21	IN22	IN23	IN24	IN25	IN26
-0,7	-0,7	-0,7	0,7	-0,7	-0,7	0,7	-0,8	-0,8	-0,8	0,8	-0,8	-0,7	0,7	-0,7	0,7	-0,7	-0,7	-0,7	-0,7	0,65	-0,8	-0,8	-0,8	-0,8	0,75
-0,6	-0,6	-0,6	-0,6	0,6	-0,7	0,7	-0,6	-0,6	-0,6	0,6	-0,6	-0,6	0,55	-0,6	-0,6	0,55	-0,6	-0,6	-0,6	0,6	-0,5	-0,5	-0,5	0,5	-0,5
-0,7	-0,7	0,7	-0,7	-0,7	-0,8	0,8	0,6	-0,6	-0,6	-0,6	-0,6	0,7	-0,7	-0,6	-0,6	0,6	-0,6	-0,7	-0,7	0,65	0,6	-0,6	-0,6	-0,6	-0,6
-0,7	-0,7	-0,7	-0,7	0,7	-0,7	0,7	-0,6	0,6	-0,6	-0,6	-0,6	-0,6	0,55	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,7	-0,7	0,7	-0,7	-0,7	-0,7
0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,7	-0,7	-0,7	-0,8	0,75	-0,8	-0,8	0,75	-0,8	0,75	-0,8	-0,8	-0,7	-0,7	0,7	-0,7	-0,7
0,65	-0,7	-0,7	-0,7	-0,7	0,8	-0,8	-0,8	-0,8	0,75	-0,8	-0,8	-0,7	0,7	-0,8	-0,8	-0,8	0,8	0,7	-0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,7
-0,8	0,8	-0,8	-0,8	-0,8	-0,7	0,7	-0,8	-0,8	-0,8	-0,8	0,8	-0,7	0,65	-0,7	-0,7	-0,7	0,65	-0,7	0,7	-0,7	0,6	-0,6	-0,6	-0,6	-0,6
-0,8	0,8	-0,8	-0,8	-0,8	-0,9	0,9	-0,7	-0,7	-0,7	-0,7	0,7	-0,8	0,75	0,75	-0,8	-0,8	-0,8	-0,7	0,7	-0,7	0,7	-0,7	-0,7	-0,7	-0,7
0	0	0	0	0	-0,6	0,6	0	0	0	0	0	-0,5	0,5	-0,3	-0,3	0,3	-0,3	-0,6	-0,6	0,55	0	0	0	0	0
-0,6	0,6	-0,6	-0,6	-0,6	-0,7	0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,6	0,6	0	0	0	0	-0,7	0,7	-0,7	0,75	-0,8	-0,8	-0,8	-0,8
0	0	0	0	0	-0,7	0,7	0	0	0	0	0	0	0	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,7	0	0	0	0	0
0,7	-0,7	-0,7	-0,7	-0,7	0,7	-0,7	-0,7	-0,7	0,65	-0,7	-0,7	-0,8	0,75	0	0	0	0	0,6	-0,6	-0,6	0	0	0	0	0
0	0	0	0	0	-0,7	0,7	0	0	0	0	0	0	0	0,4	-0,4	0,4	0,4	0	0	0	0,8	-0,8	-0,8	-0,8	-0,8
0	0	0	0	0	0	0	0	0	0	0	0	-0,7	0,65	0,2	-0,2	0,2	0,2	0,25	-0,3	0,25	-0,9	-0,9	-0,9	0,85	0,85
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,8	-0,8	0,75	-0,8	0,3	-0,3	0,3	0	0	0	0	0
-0,4	-0,4	-0,4	0,4	-0,4	-0,9	0,9	-0,3	-0,3	-0,3	0,3	-0,3	-0,4	0,4	0	0	0	0	-0,2	0,2	0,2	-0,5	-0,5	-0,5	-0,5	0,45
-0,4	-0,4	-0,4	-0,4	0,35	-0,4	0,4	0,2	0,2	0,2	-0,2	0,2	-0,4	0,35	-0,3	-0,3	0,3	-0,3	-0,4	-0,4	0,35	-0,4	0,4	-0,4	-0,4	-0,4
0,45	-0,5	-0,5	-0,5	-0,5	0,4	-0,4	-0,3	-0,3	0,3	-0,3	-0,3	-0,4	0,35	-0,3	-0,3	0,25	0,25	0,4	-0,4	-0,4	-0,5	-0,5	0,45	-0,5	-0,5
0,25	0,25	0,25	0,25	-0,3	-0,4	0,4	-0,4	-0,4	-0,4	-0,4	0,35	-0,3	0,3	0,35	-0,4	-0,4	0,35	-0,3	0,3	-0,3	0,3	-0,3	-0,3	-0,3	-0,3
0	0	0	0	0	0	0	0	0	0	0	0	-0,3	0,3	-0,3	-0,3	0,3	0,3	0	0	0	0	0	0	0	0

Выходные:

OUT1	OUT2	OUT3	OUT4	OUT5	OUT6	OUT7
0,83765	-0,8354	-0,9998	-0,9956	-0,9998	-0,9993	-0,997
-0,88	0,88794	-0,9597	-0,7715	-0,9609	-0,9842	-0,9186
-0,9998	-0,9948	0,8878	-0,9934	-0,9998	-0,9999	-0,9932
-0,9987	-0,917	-0,9921	0,95892	-0,9926	-0,9973	-0,9866
-1	-0,9969	-1	-0,9975	0,88755	-0,9046	-0,9999
-1	-0,9991	-1	-0,9995	-0,8188	0,88635	-0,9996
-1	-0,9978	-1	-0,9972	-0,9998	-0,9997	0,88576
-0,9999	-0,996	-0,9999	-0,9948	-1	-0,9999	0,75143
-0,6416	0,46973	-0,0571	0,46973	-0,4314	-0,9136	-0,657
-0,9993	-0,99	-0,9996	-0,9954	-0,9995	-0,9998	0,88443
-0,986	0,67432	0,67432	0,67432	-0,4657	-0,9964	-0,9843
-1	-0,9996	-1	-0,9989	0,95193	0,95193	-0,9999
-0,9991	-0,9947	0,99814	-0,9989	-1	-0,9999	0,99364
-0,9783	0,76335	-0,9999	-0,9534	-0,9534	0,79075	-0,9994
-0,9961	0,46362	0,46362	0,46362	0,46362	-0,9938	-0,9894
0,60023	-0,5668	-0,9686	-0,6374	-0,985	-0,9911	-0,9163
-0,9393	-0,8476	-0,9201	0,48905	-0,8337	-0,9225	-0,9086
-0,9913	-0,962	-0,9958	-0,924	0,58751	-0,45	-0,9926
-0,9383	-0,949	-0,8804	-0,9361	-0,9577	-0,9593	0,17704
-0,7599	0,20854	-0,1156	0,20854	0,20854	-0,657	-0,657

Обучение НС:

- traingd функция обучения HC с использованием алгоритма градиентного спуска GD.
- trainlm функция обучения HC с использованием алгоритма Левенберга-Марквардта LM.
- trainbr функция обучения НС с использованием алгоритма Левенберга-Марквардта, дополненная регуляцией по Байесу BR.

Обучение проводилось в 100 итераций.

Аппроксимация функции будет выполняться на различных архитектурах нейронной сети (двухслойной и трехслойной) с оценкой качества MSE.

Для аппроксимации будут подобраны различное количество нейронов:

На выходном слое 7 нейронов и линейная функция активации, на скрытых слоях подобраны 5, 12, 20 нейронов и сигмоидальная функция активации.

Результаты обучения:

На рисунках 1-18 представлены графики зависимости среднеквадратичной ошибки от количества итераций при аппроксимации заданной функции.

Рисунок 1 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 5 7) при аппроксимации заданой функции.

Рисунок 1 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 5 7) при аппроксимации заданой функции.

Рисунок 2 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 12 7) при аппроксимации заданой функции.

Рисунок 3 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 20 7) при аппроксимации заданой функции.

Рисунок 4 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 5 5 7) при аппроксимации заданой функции.

Рисунок 5 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 12 12 7) при аппроксимации заданой функции.

Рисунок 6 - график зависимости среднеквадратичной ошибки от количества итераций (trainlm 20 20 7) при аппроксимации заданой функции.

Рисунок 7 - график зависимости среднеквадратичной ошибки от количества итераций (traingd 5 7) при аппроксимации заданой функции.

Рисунок 8 - график зависимости среднеквадратичной ошибки от количества итераций

(traingd 12 7) при аппроксимации заданой функции.

Рисунок 9 - график зависимости среднеквадратичной ошибки от количества итераций (traingd 20 7) при аппроксимации заданой функции.

Рисунок 10 - график зависимости среднеквадратичной ошибки от количества итераций

(traingd 5 5 7) при аппроксимации заданой функции.

Рисунок 11 - график зависимости среднеквадратичной ошибки от количества итераций (traingd 12 12 7) при аппроксимации заданой функции.

Рисунок 12 - график зависимости среднеквадратичной ошибки от количества итераций (traingd 20 20 7) при аппроксимации заданой функции.

Рисунок 13 - график зависимости среднеквадратичной ошибки от количества итераций (trainbr 5 7) при аппроксимации заданой функции.

Рисунок 14 - график зависимости среднеквадратичной ошибки от количества итераций (trainbr 12 7) при аппроксимации заданой функции.

Рисунок 15 - график зависимости среднеквадратичной ошибки от количества итераций (trainbr 20 7) при аппроксимации заданой функции.

Рисунок 16 - график зависимости среднеквадратичной ошибки от количества итераций (trainbr 5 5 7) при аппроксимации заданой функции.

Рисунок 17 - график зависимости среднеквадратичной ошибки от количества итераций (trainbr 12 12 7) при аппроксимации заданой функции.

Рисунок 18 - график зависимости среднеквадратичной ошибки от количества итераций (trainbr 20 20 7) при аппроксимации заданой функции.

4 Выводы

Наилучшие результаты аппроксимации функции были получены с архитектурой trainbr 20 7 (MSE = 0.0001152). Аппроксимация градиентным спуском дала наихудшие результаты.

Алгоритм градиентного спуска проявил очень медленную работу при обучении НС. Увеличение количества слоев и нейронов в слоях дает улучшение среднеквадратичной ошибки.

Алгоритм Левенберга-Марквардта, дополненная регуляцией по Байесу BR дает неплохой результат при обучении нейронной сети с двумя слоями, но при добавлении третьего слоя наблюдается переобучение HC при любом количестве нейронов в слоях, среднеквадратичная ошибка остается практически неизменной. Увеличение количества нейронов в двухслойной нейронной сети дает улучшение среднеквадратичной ошибки.

Алгоритм Левенберга-Марквардта LM показал наилучшие результаты. Увеличение количества слоев и нейронов в слоях дает улучшение среднеквадратичной ошибки. При использовании 5 нейронов в скрытых слоях как в двухслойной, так и в трехслойной НС наблюдается переобучение сети.