Unit 2

SVM, Types, Problems, Kernel functions

Support Vector Machine – Introduction

- Support Vector Machine or SVM is one of the most popular Supervised
 Learning algorithms, which is used for Classification as well as Regression problems.
- However, primarily, it is used for Classification problems in Machine Learning.
- The goal of the <u>SVM algorithm</u> is to create the best line or decision boundary
 that can segregate n-dimensional space into classes so that we can easily put
 the new data point in the correct category in the future.
- This best decision boundary is called a hyperplane.

Support Vector Machine – Hyperplane

 There can be multiple lines/decision boundaries to segregate the classes in n-dimensional space, but we need to find out the best decision boundary that helps to classify the data points.

This best boundary is known as the hyperplane of SVM.

Support Vector Machine – Hyperplane

- The dimensions of the hyperplane depend on the features present in the dataset, which means if there are 2 features (as shown in image), then hyperplane will be a straight line.
- And if there are 3 features, then hyperplane will be a 2-dimension plane.
- We always create a hyperplane that has a maximum margin, which means the maximum distance between the data points.

SVM can be of two types:

- Linear SVM: Linear SVM is used for linearly separable data, which means if a
 dataset can be classified into two classes by using a single straight line, then
 such data is termed as linearly separable data, and classifier is used called as
 Linear SVM classifier.
- 2. Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a dataset cannot be classified by using a straight line, then such data is termed as non-linear data and classifier used is called as Non-linear SVM classifier.

· Linear SVM:

· Linear SVM:

Non-Linear SVM:

- If data is linearly arranged, then we can separate
 it by using a straight line, but for non-linear data,
 we cannot draw a single straight line.
- So to separate these data points, we need to add one more dimension.
- For linear data, we have used two dimensions x and y, so for non-linear data, we will add a third dimension z.
- It can be calculated as: Z=x² +y²√

Example on Linear SVM

Suppose we are given the following positively labeled data points,

$$\left\{ \left(\begin{array}{c} 3\\1 \end{array}\right), \left(\begin{array}{c} 3\\-1 \end{array}\right), \left(\begin{array}{c} 6\\1 \end{array}\right), \left(\begin{array}{c} 6\\-1 \end{array}\right) \right\}$$

and the following negatively labeled data points,

$$\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \left(\begin{array}{c} 0 \\ -1 \end{array}\right), \left(\begin{array}{c} -1 \\ 0 \end{array}\right) \right\}$$

B

Each vector is augmented with a 1 as a bias input

• So,
$$s_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, then $\widetilde{s_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Similarly,

•
$$s_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
, then $\widetilde{s_2} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ and $s_3 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, then $\widetilde{s_3} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$

$$\alpha_1 \tilde{s_1} \cdot \tilde{s_1} + \alpha_2 \tilde{s_2} \cdot \tilde{s_1} + \alpha_3 \tilde{s_3} \cdot \tilde{s_1} = -1$$

$$\alpha_1 \tilde{s_1} \cdot \tilde{s_2} + \alpha_2 \tilde{s_2} \cdot \tilde{s_2} + \alpha_3 \tilde{s_3} \cdot \tilde{s_2} = +1$$

$$\alpha_1 \tilde{s_1} \cdot \tilde{s_3} + \alpha_2 \tilde{s_2} \cdot \tilde{s_3} + \alpha_3 \tilde{s_3} \cdot \tilde{s_3} = +1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = -1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} = 1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = 1$$

$$\alpha_{1}\tilde{s_{1}} \cdot \tilde{s_{1}} + \alpha_{2}\tilde{s_{2}} \cdot \tilde{s_{1}} + \alpha_{3}\tilde{s_{3}} \cdot \tilde{s_{1}} = -1 \qquad \alpha_{1}(1+0+1) + \alpha_{2}(3+0+1) + \alpha_{3}(3+0+1) = -1$$

$$\alpha_{1}\tilde{s_{1}} \cdot \tilde{s_{2}} + \alpha_{2}\tilde{s_{2}} \cdot \tilde{s_{2}} + \alpha_{3}\tilde{s_{3}} \cdot \tilde{s_{2}} = +1 \qquad \alpha_{1}(3+0+1) + \alpha_{2}(9+1+1) + \alpha_{3}(9-1+1) = 1$$

$$\alpha_{1}\tilde{s_{1}} \cdot \tilde{s_{3}} + \alpha_{2}\tilde{s_{2}} \cdot \tilde{s_{3}} + \alpha_{3}\tilde{s_{3}} \cdot \tilde{s_{3}} = +1 \qquad \alpha_{1}(3+0+1) + \alpha_{2}(9-1+1) + \alpha_{3}(9+1+1) = 1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = -1 \\ 2\alpha_1 + 4\alpha_2 + 4\alpha_3 = -1 \\ 4\alpha_1 + 11\alpha_2 + 9\alpha_3 = 1$$

$$\alpha_1\begin{pmatrix}1\\0\\1\end{pmatrix}\begin{pmatrix}3\\1\\1\end{pmatrix}+\alpha_2\begin{pmatrix}3\\1\\1\end{pmatrix}\begin{pmatrix}3\\1\\1\end{pmatrix}+\alpha_3\begin{pmatrix}3\\-1\\1\end{pmatrix}\begin{pmatrix}3\\1\\1\end{pmatrix}=1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = 1$$

$$\alpha_{1} = -3.5$$

 $4\alpha_1 + 9\alpha_2 + 11\alpha_3 = 1$

$$\alpha_2 = 0.75$$

$$\alpha_3 = 0.75$$

$$\tilde{w} = \sum_{i} \alpha_{i} \tilde{s}_{i}$$

$$= -3.5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 0.75 \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + 0.75 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

- Finally, remembering that our vectors are augmented with a bias.
- We can equate the last entry in \widetilde{w} as the hyperplane offset b and write the separating
- Hyperplane equation y = wx + b
- with $w = \binom{1}{0}$ and b = -2.

Suppose we are given the following positively labeled data points,

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\2 \end{array}\right) \right\}$$

and the following negatively labeled data points,

$$\left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\ \end{array}\right) \right\}$$

- Our goal, again, is to discover a separating hyperplane that accurately discriminates the two classes.
- Of course, it is obvious that no such hyperplane exists in the input space
- Therefore, we must use a nonlinear SVM (that is, we need to convert data from one feature space to another.

$$\Phi_{1} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{cases} \begin{pmatrix} 4 - x_{2} + |x_{1} - x_{2}| \\ 4 - x_{1} + |x_{1} - x_{2}| \end{pmatrix} & \text{if } \sqrt{x_{1}^{2} + x_{2}^{2}} > 2 \\ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} & \text{otherwise} \end{cases}$$

$$\Phi_{1} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{cases} \begin{pmatrix} 4 - x_{2} + |x_{1} - x_{2}| \\ 4 - x_{1} + |x_{1} - x_{2}| \end{pmatrix} & \text{if } \sqrt{x_{1}^{2} + x_{2}^{2}} > 2 \\ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} & \text{otherwise} \end{cases}$$

Positive Examples

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\2 \end{array}\right) \right\}$$

$$\Phi_{1} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{cases} \begin{pmatrix} 4 - x_{2} + |x_{1} - x_{2}| \\ 4 - x_{1} + |x_{1} - x_{2}| \end{pmatrix} & \text{if } \sqrt{x_{1}^{2} + x_{2}^{2}} > 2 \\ \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} & \text{otherwise} \end{cases}$$

Positive Examples

$$\left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\-2 \end{array}\right), \left(\begin{array}{c} -2\\2 \end{array}\right) \right\} \rightarrow \left\{ \left(\begin{array}{c} 2\\2 \end{array}\right), \left(\begin{array}{c} 10\\6 \end{array}\right), \left(\begin{array}{c} 6\\6 \end{array}\right), \left(\begin{array}{c} 6\\10 \end{array}\right) \right\}$$

Negative Examples

$$\left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} -1\\1 \end{array}\right), \left(\begin{array}{c} -1\\1 \end{array}\right) \right\} \quad \Rightarrow \quad \left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\1 \end{array}\right) \right\}$$

Now we can easily identify the support vectors,

$$\left\{s_1 = \left(\begin{array}{c} 1\\1 \end{array}\right), s_2 = \left(\begin{array}{c} 2\\2 \end{array}\right)\right\}$$

Each vector is augmented with a 1 as a bias input

$$\widetilde{s_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 $\widetilde{s_2} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

$$\alpha_1 \tilde{s_1} \cdot \tilde{s_1} + \alpha_2 \tilde{s_2} \cdot \tilde{s_1} = -1 \qquad \alpha_1 (1+1+1) + \alpha_2 (2+2+1) = -1$$

$$\alpha_1 \tilde{s_1} \cdot \tilde{s_2} + \alpha_2 \tilde{s_2} \cdot \tilde{s_2} = +1 \qquad \alpha_1 (2+2+1) + \alpha_2 (4+4+1) = 1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$3\alpha_1 + 5\alpha_2 = -1$$

$$5\alpha_1 + 9\alpha_2 = 1$$

$$\alpha_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = 1$$

$$\tilde{w} = \sum_{i} \alpha_{i} \tilde{s}_{i} = -7 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 4 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$$

- Finally, remembering that our vectors are augmented with a bias.
- We can equate the last entry in \widetilde{w} as the hyperplane offset b and write the separating
- Hyperplane equation y = wx + b
- with $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and b = -3.

