Vertex of the Quadratic

Given a quadratic $q(p) = a p^2 + b p + c$ compute its value at $p_1 = -\frac{b}{2a}$ namely $q(p_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{p}_{1^+}\mathsf{h}$, namely

 $q(p_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = q(p_1+h) - q(p_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum! Example 1.

$q(p) = 4p^2 - 16p - 34$

