

Appendix to:

EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance methoxyfenozide. EFSA Journal 2017;15(8):4978, 30 pp. doi:10.2903/j.efsa.2017.4978

© European Food Safety Authority, 2017

Appendix A — List of end points for the active substance and the representative formulation

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Methoxyfenozide
	(Codes used prior to the common name methoxyfenozide: RH-2485 (RH2485), RH-112485 (RH-112,485))
Function (e.g. fungicide)	Insecticide
Rapporteur Member State	UK
Co-rapporteur Member State	Slovakia

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	<i>N-tert</i> -butyl- <i>N'</i> -(3-methoxy- <i>o</i> -toluoyl)-3,5-xylohydrazide
Chemical name (CA)	3-methoxy-2-methylbenzoic acid 2-(3,5-dimethylbenzoyl)-2-(1,1-dimethylethyl)hydrazide
CIPAC No	656
CAS No	161050-58-4
EC No (EINECS or ELINCS)	605-245-2
FAO Specification (including year of publication)	None
Minimum purity of the active substance as manufactured	970 g/kg
Identity of relevant impurities (of toxicological,	butylhydrazine (RH-84078/RH-99838/TBZ) at level
ecotoxicological and/or environmental concern) in the active substance as manufactured	<0.001 g/kg
the active substance as manufactured	Open for others.
Molecular formula	$C_{22}H_{28}N_2O_3$
Molar mass	368.47 g/mol

Structural formula

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Melting point (state purity)

Boiling point (state purity)

Temperature of decomposition (state purity)

Appearance (state purity)

Vapour pressure (state temperature, state purity)

Henry's law constant

Solubility in water (state temperature, state purity and pH)

Solubility in organic solvents (state temperature, state purity)

Surface tension (state concentration and temperature, state purity)

Partition coefficient (state temperature, pH and purity)

Dissociation constant (state purity)

UV/VIS absorption (max.) incl. ϵ (state purity, pH)

 $184.8\text{-}188.9\,^{\circ}\text{C (low melting form)}\\206.0\text{-}207.9\,^{\circ}\text{C (high melting form)}$

(99.8%)

The test substance decomposes at 262.9-264.8 °C without boiling (99.7%)

262.9-264.8 °C

White powder (97.6%)

<1.33 x 10⁻⁵ Pa (at 25, 35 and 45 °C, 99.8%)

<1.64 x 10⁻⁴ Pa m³ mol⁻¹ at 20 °C

3.3 mg/L in unbuffered de-ionised water at $20^{\circ}\text{C} \pm 0.5$ °C (99.6%)

Solvent	g/L at 20 °C (98.5%)	
methanol	115	
acetone	69	
xylene	0.6	
1,2-dichloroeth	ane 28	
ethyl acetate	21	
heptane	0.03	
1-octanol	15	

58 mN/m at 20 °C (90 % saturated solution, 99.4%)

log $P_{OW} = 3.72 \pm 0.04$ in unbuffered water at 24.7 ± 1.4 °C (99.0%)

pKa = 12.20 (99.7%)

Solution: 96 µg/mL in methanol (99.9% purity)

 $\lambda_{max} \ (nm); \ \epsilon \ (L \ mol^{\text{--}1} \ cm^{\text{--}1})$

216; 12,819 (pH7) 280; 2,503 (pH7) 290; 1,561(pH7)

216; 12,881 (pH<2) 279; 2,916 (pH<2) 290; 1,912 (pH<2)

225; 11,312 (pH>10) 276; 2,937 (pH>10) 290; 1,548 (pH>10)

No UV absorption maxima > 290 nm:

Not highly flammable (98.2%)

Not explosive (98.2%)

Explosive properties (state purity)

Oxidising properties (state purity)	Not oxidising (98.5%)

Summary of representative uses evaluated, for which all risk assessments needed to be completed (methoxyfenozide) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop and/or situation	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Fori	mulation Application						ion rate per t	reatment	PHI (days)	Remarks:
(u)					Type (d-f)	Conc. of as	Method kind (f-h)	Growth stage & season (j)	Number min max (k)	Interval between applications (min)	g as/hl min max	water l/ha min max	g as/ha min max		
Table grapes	SZ	GF-837	F	POLYBO, CLYSAM, SPARPI	SC	240	Broadcast Foliar	BBCH 71-85 May to Sep	1	NA	5.8 - 120	80 - 1000	58 - 96	7	
Wine grapes	SZ	GF-837	F	POLYBO, CLYSAM, SPARPI	SC	240	Broadcast Foliar	BBCH 71-85 May to Sep	1	NA	5.8 - 120	80 - 1000	58 - 96	14	
Table grapes	CZ	GF-837	F	POLYBO, CLYSAM, SPARPI	SC	240	Broadcast Foliar	BBCH 71-85 May to Sep	1	NA	3.6 - 48	200 - 1600	58 - 96	7	
Wine grapes	CZ	GF-837	F	POLYBO, CLYSAM, SPARPI	SC	240	Broadcast Foliar	BBCH 71-85 May to Sep	1	NA	3.6 - 48	200 - 1600	58 - 96	14	
Maize	SZ, CZ	GF-837	F	PYRUNU, SESANO	SC	240	Broadcast Foliar	BBCH 51-75 May to Sep	1	NA	9.6 - 144	100 - 1000	96 - 144	28	
Sweet corn	SZ, CZ	GF-837	F	PYRUNU, SESANO	SC	240	Broadcast Foliar	BBCH 51-75 May to Sep	1	NA	9.6 - 144	100 - 1000	96 - 144	7	
Fruiting	SZ	GF-837	F	SPODSP,	SC	240	Broadcast	BBCH 51-87	1	NA	6.4 -	200 -	96 - 144	1	

Crop and/or situation	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Fori	nulation		Application Application rate per treatment						PHI (days)	Remarks:
					Type (d-f)	Conc. of as	Method kind (f-h)	Growth stage & season (j)	Number min max (k)	Interval between applications (min)	g as/hl min max	water l/ha min max	g as/ha min max		
vegetables – Solanaceae – Tomatoes, Peppers, Aubergines				loopers, PYRUNU, HELIAR			Foliar	May to Sep			72	1500			
Fruiting vegetables – Solanaceae – Tomatoes, Peppers, Aubergines	EU	GF-837	G	SPODSP, loopers, PYRUNU, HELIAR	SC	240	Broadcast Foliar	BBCH 51-87 Feb to Nov	1	NA	6.4 - 72	200 - 1500	96 - 144	1	
Leaf vegetables – Lettuce and other salad plants including Brassicacea – Lamb's lettuce, Lettuce, Cress, Land cress, Rocket, Rucola, Red	SZ	GF-837	F	SPODSP, HELIAR	SC	240	Broadcast Foliar	BBCH 41-49 May to Sep	1	NA	9.6 - 40	300 - 1000	96 - 120	3	

Crop and/or situation	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Fori	nulation		Application Application rate per treatment						PHI (days)	Remarks:
`,					Type (d-f)	Conc. of as	Method kind (f-h)	Growth stage & season (j)	Number min max (k)	Interval between applications (min)	g as/hl min max	water l/ha min max	g as/ha min max		
mustard, Leaves and sprouts of Brassica spp., including turnip greens, others															
Leaf vegetables – Spinach & similar (leaves)	SZ	GF-837	F	SPODSP, HELIAR	SC	240	Broadcast Foliar	BBCH 41-49 May to Sep	1	NA	9.6 - 40	300 - 1000	96 - 120	3	
Leaf vegetables – Herbs	SZ	GF-837	F	SPODSP, HELIAR	SC	240	Broadcast Foliar	BBCH 41-49 May to Sep	1	NA	9.6 - 40	300 - 1000	96 - 120	3	

necessary. Uses should be crossed out when the notifier no longer supports this use(s).

- (a) For crops, the EU and Codex classification (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
- Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) e.g. biting and suckling insects, soil born insects, foliar fungi, weeds
- e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- GCPF Codes GIFAP Technical Monograph N° 2, 1989
- All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant (l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 type of equipment used must be indicated

7

- For uses where the column "Remarks" in marked in grey further consideration is (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
 - (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
 - (k) Indicate the minimum and maximum number of application possible under practical conditions of use
 - kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha

Crop and/or situation	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Forn	nulation		Applicat	ion		Applicati	ion rate per t	reatment	PHI (days)	Remarks:
					Type (d-f)	Conc. of as	Method kind (f-h)	Growth stage & season (j)	Number min max (k)	Interval between applications (min)	g as/hl min max	water l/ha min max	g as/ha min max		

(m) PHI - minimum pre-harvest interval

Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (methoxyfenozide)

Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Importun	-	caej, en .	11 (11)	incitui fisik u	iid I isix	to mama	ms by ca	posure other t	nan via ti	ich diet hav	TOT DEC.	п авверве	TOT THESE	шьсь		
Crop	Member		F	Pests or	Prepa	aration		Applic	ation		Applicati	ion rate per	treatment			
and/or situation (a)	State or Country	Product name	G or I (b)	or I	Group of pests controlled (c)	Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s /hL min-max (l)	Water L/ha min-max	kg a.s./ha min-max (1)	PHI (days) (m)	Remarks
MRL A _l	pplication	(according	g to A	Article 8.1(g)	of Regul	lation (E	C) No 11	07/2009)								
Vine leaves	SEU	GF-837 Runner	F	POLYBO, CLYSAM, SPARPI	SC	240	Broad cast Foliar	BBCH 71-85	1	n.a.	0.0096	1000	0.096	10	Grape leaves is not a representative use of methoxyfenozide. Application rate is specified in terms of the concentration of the spray solution.	
Sweet	NEU	GF-837 Runner	F	PYRUNU, SESANO	SC	240	Broad cast Foliar	BBCH 51-75	1-3	28	0.0144 – 0.144	100 - 1000	0.144	7	Sweet corn is a representative use of methoxyfenozide, but at a less critical GAP (1 application). The residue trials available were conducted in compliance with this more critical GAP of 3 applications.	

- (a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant-type of equipment used must be indicated
- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of applications possible under practical conditions of use
- The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Sufficient information has been provided on the effectiveness of methoxyfenozide for the representative uses.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

Sufficient information has been provided to establish there are no adverse effects for the representative uses.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

Sufficient information has been provided to establish there are no undersirable effects for the representative uses.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism

RH-131154 (M08)

No

Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)

Impurities in technical a.s. (analytical technique)

Plant protection product (analytical technique)

HPLC-UV (254 nm)

HPLC-UV (254 nm)

Methoxyfenozide: HPLC-UV (220 nm)

Relevant impurities:

tert-butylhydrazine –GS-NPD

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin

Food of animal origin

Soil

Sediment

Water surface

drinking/ground

Air

Body fluids and tissues

Methoxyfenozide

Methoxyfenozide

Methoxyfenozide

Methoxyfenozide, M08 (pending), M14 (pending)

Methoxyfenozide

Methoxyfenozide

Methoxyfenozide

Methoxyfenozide

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)

Food/feed of animal origin (analytical technique

and LOQ for methods for monitoring purposes)

Soil (analytical technique and LOQ)

HPLC-MS/MS (LOQ: 0.01 mg/kg)

Orange (high acid), apple (high water), oilseed rape seed (high oil), wheat grain (dry). Also validated for honey.

HPLC-MS/MS (LOQ: 0.01 mg/kg)

HPLC-MS/MS

Methoxyfenozide: LOQ 0.01 mg/kg RH-117236 (M14): LOQ 0.01 mg/kg RH-131154 (M08): LOQ 0.01 mg/kg

Water (analytical technique and LOQ)

HPLC-MS/MS

Methoxyfenozide: LOQ 0.05 μg/L RH-117236 (M14): LOQ 0.05 μg/L RH-131154 (M08): LOQ 0.05 μg/L

Air (analytical technique and LOQ)

Body fluids and tissues (analytical technique and LOO)

HPLC-MS/MS

Methoxyfenozide: LOQ 2.79 μg/m³

Body fluids

HPLC-MS/MS

Methoxyfenozide: LOQ 0.05 mg/L

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Methoxyfenozide
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] ¹ :	Not classified
Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:	No classification proposed

_

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.

Section 2 Mammalian Toxicology Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic About 60-70% within 72h in the rat (biliary excretion bioavailability taken into account) following a single gavage dose of 10 mg/kg bw The value for oral absorption chosen for calculation of the AOEL was 60%. Pre-treatment of animals with methoxyfenozide in the diet for 2 weeks did not appreciably alter the absorption, distribution or elimination findings **Toxicokinetics** The maximum concentrations of radioactivity in blood and plasma were observed 15 to 30 minutes post-dose. Peak blood levels were not proportional to the dose level administered. Elimination of ¹⁴C-label from plasma followed a biphasic pattern. Distribution Widely distributed. Highest absorbed levels after 15 min to 2 h in the liver. Highest levels after 5 days also chiefly in liver. Potential for bioaccumulation No evidence for accumulation Rate and extent of excretion The majority of the administered dose was excreted in faeces (c.90%) and to a lesser extent in the urine (c.5-10%). There was significant biliary excretion. Metabolism in animals The metabolism of methoxyfenozide was rapid and extensive (a total of 31 metabolites, of which 25 were identified). Mostly, the main part of the methoxyfenozide molecule remained intact, ie the dibenzoyl-tert-butylhydrazine structure) was present in most metabolites. In vitro metabolism No data, data gap identified Toxicologically relevant compounds Parent and metabolites M14 and its conjugates (M115 (animals and plants) and M40). M24 and conjugates and M16. Toxicologically relevant compounds Parent and M08 (environment)

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD ₅₀ oral	LD ₅₀ > 5000 mg/kg bw
Rat LD ₅₀ dermal	$LD_{50} > 5000 \text{ mg/kg bw}$
Rat LC ₅₀ inhalation	LC ₅₀ > 4.3 mg/l (4h, nose only, maximum achievable concentration)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Non-sensitiser in submitted study (M &K)

Phototoxicity Not required

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Rats, dogs: Liver (increased weight, hypertrophy), hemopoietic system (haemolytic anaemia) Mouse: reduced body weight gain.	
Relevant oral NOAEL	2-week, dog: 18 mg/kg bw per day 1-year, dog: 9.8 mg/kg bw per day 90-day, rat: 69 mg/kg bw per day 90-day, mouse: 428 mg/kg bw per day	
Relevant dermal NOAEL	>1000 mg/kg bw per day 28-day rat	
Relevant inhalation NOAEL	No data - not required.	

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies	Ames test (OECD TG 471): Negative. Mammalian Cell Gene Mutation Test (OECD TG 476): Negative
	Mammalian Chromosome Aberration Test (OECD TG 473): Negative.
In vivo studies	Micronucleus Test (OECD TG 474): Negative
Photomutagenicity	Not required
Potential for genotoxicity	Methoxyfenozide is unlikely to be genotoxic

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)	Rat: Liver (increased weight, hypertrophy), hemopoietic system (haemolytic anaemia), thyroid (hypertrophy) Mouse: no effects.	
Relevant long-term NOAEL	80-90 week, rat:10.2 mg/kg bw per day 18-months, mouse: Highest dose tested 1020 mg/kg bw per day	
Carcinogenicity (target organ, tumour type)	Rat: thyroid C-cell adenoma and hepatocellular adenoma. Mouse: No tumours considered to be substance related.	H351 Carc. 2
Relevant NOAEL for carcinogenicity	2-year, rat: 10.2 mg/kg bw per day 18-month, mouse: Highest dose tested 1020 mg/kg bw per day	

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6) Reproduction toxicity

Reproduction target / critical effect	Parental toxicity: Reduced bodyweight gain and liver effects (increased weight, hepatocellular hypertrophy and vacuolation, pigment in Kupffer cells). Reproductive toxicity: no adverse effect observed in rat 2-generation study
	Offspring's toxicity: No effects
Relevant parental NOAEL	153 mg/kg bw per day
Relevant reproductive NOAEL	1552 mg/kg bw per day
Relevant offspring NOAEL	1552 mg/kg bw per day
Developmental toxicity	
Developmental target / critical effect	Rat: No evidence of substance-related adverse effects up to limit dose Rabbit: No evidence of substance-related adverse effects up to limit dose
Relevant maternal NOAEL	Rat: 1000 mg/kg bw per day Rabbit: 1000 mg/kg bw per day
Relevant developmental NOAEL	Rat: 1000 mg/kg bw per day Rabbit: 1000 mg/kg bw per day

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity	NOAEL (acute neurotoxicity rat) > 2000 mg/kg bw	
Repeated neurotoxicity	NOAEL (90-day neurotoxicity rat) >1318 mg/kg bw per day	
Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)	-	

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

Effects on liver enzymes and thyroid function

The Notifier provided a study on the effect of methoxyfenozide on liver enzymes and thyroid function in rats and liver enzymes at doses relevant to the relevant carcinogenicity studies. Significant increases in microsomal protein and cytochrome P-450 were seen in the rat as well as increased pentoxyresorufin O-dealkylase, and ethoxycoumarin O-dealkylase. In the mouse significant increases in CYP2B and CYP3A contents.

Immunotoxicity

The Sheep Red Blood Cell Assay demonstrated that methoxyfenozide did not cause a treatment-related decrease in the primary immune response to SRBCs in female rats up to a limit dose of 1000 mg/kg bw per day.

No additional testing of endocrine disrupting properties was performed. However no substance-related adverse reproductive and/or developmental effects were seen in a multigeneration study in rats up to a dose in excess of the limit dose for such a study or in a developmental toxicity study in rats with doses up to the limit dose. Similarly, in a developmental study in rabbits, also using doses up to the limit dose, there were no clear substance-related adverse findings. Indications of a possible effect on sexual maturation and differentiation at the top dose in the rat multigeneration study, and in the rabbit developmental study, are not considered to be substance related.

However during the Pesticides Peer Review Meeting 159 (06-09 June 2017) experts agreed that more data (level 2 and level 3 studies according to OECD conceptual framework) are needed in the light of the observed effects on thyroid such as changes in thyroid weight sometimes correlating with follicular cell hypertrophy and C-cell adenomas. A data gap was identified for endocrine disrupting potential. RMS disagreed with such proposal.

Endocrine disrupting properties

Studies performed on metabolites or impurities

Metabolite M14

Ames test (OECD TG 471): Negative.

Mammalian Cell Gene Mutation Test (OECD TG 476): Negative

Mammalian Chromosome Aberration Test (OECD TG 473): Negative.

Metabolite M08

Ames test (OECD TG 471): Negative.

Mammalian Cell Gene Mutation Test (OECD TG 476): Negative

Mammalian Chromosome Aberration Test (OECD TG 473): Negative.

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Production of Methoxyfenozide has been undertaken at one site since 1998, and to date, on average, 44 personnel have been directly involved in production. All personnel are offered a health program, consisting of an annual physical examination and blood screen, and more extensive testing at 3 and 5 years. No specific abnormalities were detected from the health screening over these years deemed attributable to methoxfenozide exposure.

For the general population and end users in the USA and Canada, the Notifier has records of 15 reports of possible human exposure and adverse effects to methoxyfenozide between 2005 and current date. Of these, 13 were reported as minor or asymptomatic. One reported as moderate – a truck driver reported headaches with respiratory irritation and dyspnoea after a crop sprayer dumped a considerable amount of product plus cotton seed oil onto the cab of his truck. The driver was evaluated in hospital and no specific findings were noted.

Summary 3 (Regulation (EU) $N^{\circ}1107/2009$, Annex II, point 3.1 and 3.6)

Acceptable Daily Intake (ADI)

Acute Reference Dose (ARfD) (a)

Acceptable Operator Exposure Level (AOEL) (a)

Acute Acceptable Operator Exposure Level (AAOEL)

Value	Study	Uncertainty
(mg/kg bw (per		factor
day))		

0.1	rot 2 voor	100
0.1	rat, 2-year	100
0.1	1 year dog study supported by the 2- week dog study	100
0.06 ^(b)	1 year dog study supported by the 2- week dog study	100
0.06 ^(b)	1 year dog study supported by the 2- week dog study	100

(a)Reference values different from previously set by European Commission (2004).

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (GF-837; 240 g/litre; WP)

Concentrate (251.9 g/L): **0.5%**Field dilution I (1.58 g/L): **8%**Field dilution II (0.16 g/L): **4%**

Based on a 240 g/litre suspension concentrate formulation (in vitro human data) considered similar to GF-837.

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

<u>Use</u>: grapes, tractor mounted broadcast air assisted sprayer, application rate 0.096 kg a.s/ha

% of the AOEL

German model

Without PPE: 17%

UK POEM (500 L/ha model)

Without PPE: 91%

<u>Use</u>: maize/sweetcorn and vegetables, tractor mounted field crop boom sprayer, application rate 0.144 kg a.s/ha

% of the AOEL

German model

Without PPE: 12%

UK POEM

With gloves during all operations: 23%

www.efsa.europa.eu/efsajournal

⁽b)Including correction for limited oral absorption/bioavailability (60 %).

⁽a) ³ If available include also reference values for metabolites

10% 38%

52%

19%

45%

Use: grapes and vegetables, hand-held application (outdoor), application rate 0.096 kg a.s/ha % of the AOEL German model Without PPE: 11% **UK POEM** With gloves during all operations and coveralls during application: <u>Use</u>: fruiting vegetables, hand-held application (indoor), application rate 0.144 kg a.s/ha % of the AOEL **EUROPOEM** Without PPE: 37% Knapsack sprayer

Workers

Bystanders and residents

Spray drift (based on surrogate data)

Fruiting vegetables (indoor)

EUROPOEM II worker re-entry model

Without PPE:

Sweet-corn

Grapes (outdoor)
Vegetables (outdoor)

Maize

Tractor mounted field crop boom sprayer <1%
Tractor mounted broadcast air assisted sprayer 10%

Vapour (based on surrogate data)

6% and 14% of the AOEL for an adult and a child respectively.

<u>Drift fallout (based on published drift data and EPA SOPs)</u>

Tractor mounted field crop boom sprayer <1%
Tractor mounted broadcast air assisted sprayer <1%

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance:

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁴:

Methoxyfenozide

Not listed in Annex VI

EFSA Journal 2017;15(8):4978

⁽b) ⁴ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

Peer review proposal ⁵ for harmonised classification according to Regulation (EC) No 1272/2008:

Carc. 2 H351 "Suspected of causing cancer"

⁵ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.

Section 3 Residues

Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops	Crop groups	Crop(s)	Application	on(s)	DAT (days)	
(Plant groups covered) OECD Guideline 501	Emit arons	Apples	2 x 1.1 kg a.s. (33 days inter		0, 7, 14 and 36	
	Fruit crops	Grapes	2 x 1.12 kg a.s (28 days inter		27	
	Root crops	-	-		-	
	Leafy crops	-	-		-	
	Cereals/grass crops	Rice	2 x 0.6 kg a.s./ha (B-ring/t-butyl) (36 days interval) 0.6 kg a.s./ha + 0.31 kg as/ha (A-ring)		14, 31, 62	
	Pulses/Oilseeds	Cotton	2 x 1.1 kg a.s. (31 days inter		7, 14, 21	
	Miscellaneous	-	-		-	
	¹ - Mixture of non-labelled, ¹³ - t-butyl labelled [¹⁴ C]/[¹³ C] ³ - ¹⁴ C-methoxyfenozide, sepa	methoxyfenozide		thoxyphenyl) labelled methoxyfe		
Rotational crops	Crop groups	Crop(s)	PBI (days)		Comments	
(metabolic pattern) OECD Guideline 502	Root/tuber crops	White radish	31, 91, 364	methox	5 kg a.s./ha of ¹⁴ C- cyphenyl-, ¹⁴ C-	
	Leafy crops	Mustard	31, 91, 364	dimethylphenyl- or ¹⁴ C butyl-labelled methoxyfenozide – Ba		
	Cereal (small grain)	Wheat	31, 91, 364			
	Other	-	_	soil ap	plication	
Rotational crop and primary crop metabolism similar?	Yes Although the metabol extensive, it proceeds in Open for M08 (see data	similar pathwa		rotational crops is more y plants.		
Processed commodities ⁽⁴⁾	Conditions					
(standard hydrolysis	20 min, 90°C, pH 4					
study) OECD Guideline 507	60 min, 100°C, pH 5	Methoxyfenozide residues considered stable under these conditions.				
OECD Guidellie 30/	20 min, 120°C, pH 6					
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes					

(4): The need for additional data to address the nature of the residues at processing will be revised pending upon the finalization of the residue definition for risk assessment in plants.

Plant residue definition for monitoring (RD-Mo)

OECD Guidance, series on pesticides No 31

1

Methoxyfenozide

Plant residue definition for risk assessment (RD-RA)

Primary crops: Methoxyfenozide

Rotational crops: Methoxyfenozide plus M14 and its conjugates (M15 and M40), expressed as

methoxyfenozide – provisional.

Conversion factor (monitoring to risk assessment)

Open for rotational crops

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment		
Animals covered	Laying hen	1 x 50 mg/kg feed	7	38 N		
	Goat	A-ring: 2.21	7	42 N		
		B-ring: 1.76		33 N		
		t-butyl: 1.72		33 N		
	Pig	N/A		Not required		
	Fish	N/A		Not required		
		enozide, separately labelled in the A-ring (methoxyphenyl ring), B-ring yl ring) and t-butyl site.				
Time needed to reach a plateau concentration in milk and eggs (days)		Not observed for eggs and milk over the 7 days dosing period.				
Animal residue definition for monitori	ng (RD-Mo)	Methoxyfenozide				
OECD Guidance, series on pesticide	s No 31					
Animal residue definition for risk asse RA)	ssment (RD-	Methoxyfenozide, M24 (free and conjugated-M26) and M16, expressed as methoxyfenozide – provisional				
Conversion factor (monitoring to risk	Open					
Metabolism in rat and ruminant simila	Yes					
Fat soluble residues (Yes/No) (FAO, 2009)		Yes				

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study

(Quantitative aspect)

OECD Guideline 502

Field rotational crop study

OECD Guideline 504

Methoxyfenozide was found to be extensively degraded in all crop parts and was observed mainly in mustard leaves and radish leaves and root but was never detected or at negligible levels in wheat forage, straw and grain. M15 was found to be a major compound of the total residues in mustard leaves, radish leaves/roots and in wheat forage and straw. M40 was also identified at significant levels in wheat forage only whilst M14 accounted for significant levels in wheat straw and grain.

US trials: 5x0.45 kg a.s./ha on lettuce (cover crop) (PBI: 7 days) analysing for methoxyfenozide, M14 and M15 in different crop categories.

EU trial: 2x0.144 kg a.s./ha-Bare soil treatment (PBIs: 30, 60, 120, 270 days) analysing for methoxyfenozide only in lettuce, radish leaves/root, rape seed and wheat grain/straw.

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1) OECD Guideline 506

Plant products		T	Stabilit	y (Months)
(Category)	Commodity	(°C)	Methox	xyfenozide
High water content	Apples	-20		12
	Tomatoes	-20		12
High oil content	Cotton seed	-20		23.5
	Corn (maize) Oil	-10		6
High protein content	Beans, dry	<-20)	11
	Peas, dry	<-20)	14
High starch content	Maize grain	-20	20 13	
High acid content	Oranges	-18		15
	Grapes			
	Animal	T	Stability	(Month)
Animal	commodity	(°C)	Methoxyfenozide	M16
Cow	Muscle	-20	5.5	N/A
		-20	9	2 weeks

9

3.5

-20

-20

Kidney

Milk

Cow

9

N/A

Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Сгор	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative us	es					
Table Grapes (7 day PHI)	NEU	0.08, 0.12, 2 x 0.14, 0.19		0.4	0.19	0.14
Wine Grapes (14 day PHI)		0.02, 0.08, 0.12, 2 x 0.14, 0.19, 0.20	7 trials to support representative use on a major crop in the NEU. 1 additional trial required.	0.4 (provisional)	0.20	0.14
Table Grapes (7 day PHI)	SEU	0.039, 0.040, 0.049, 0.10, 0.20, 0.25	6 trials to support representative use on a major crop in the SEU. 2 additional trials required.	0.5 (provisional)	0.25	0.075
Wine Grapes (14 day PHI)		0.024, 0.069, 0.13, 0.14, 0.17, 0.20, 0.21	7 trials to support representative use on a major crop in the SEU. 1 additional trial required.	0.4 (provisional)	0.21	0.14
Tomatoes	Indoor	Unscaled residues: 0.019, 0.023, 0.038, 0.043, 0.05, 0.07, 0.11, 0.128 Scaled residues: 0.018, 0.023, 0.029, 0.033, 0.048, 0.070, 0.079, 0.125	Possible extrapolation to aubergines. Proportionality concept was applied to the whole residue dataset.	0.2	0.125	0.041
	SEU	Unscaled residues: 0.055, 0.075, 0.084, 0.13 Scaled residues: 0.039, 0.057, 0.062, 0.101	4 trials to support representative use on a major crop in the SEU. 4 additional trials required — Possible extrapolation to aubergines. Proportionality concept was applied to the whole residue dataset.	0.2 (provisional)	0.101	0.060
Peppers	Indoor	Unscaled residues: 0.058, 0.079, 0.12, 0.14, 0.139, 0.17, 0.25, 0.201 Scaled residues: 0.058, 0.077, 0.086, 0.096, 0.133, 0.138, 0.188, 0.201	Proportionality concept was applied to the whole residue dataset.	0.4	0.201	0.115

Сгор	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
	SEU	Unscaled residues: 0.15, 0.26, 0.29, 0.4 Scaled residues: 0.12, 0.19, 0.23, 0.29	4 trials to support representative use on a major crop in the SEU. 4 additional trials required. Proportionality concept was applied to the whole residue dataset.	0.7 (provisional)	0.29	0.21
Sweet corn	NEU	0.02, 0.031, 0.033, 0.044	Residue trials to support the representative NEU GAP on sweet corn not available. The representative NEU use is covered by residue trials on sweet corn submitted in the framework of the MRL application.	0.1	0.044	0.032
	SEU	-	No trials conducted in accordance with the representative SEU GAP are available. 4 residue trials compliant with the representative SEU use on sweet corn are requested.	-	-	-
Maize	NEU+SEU	8 x <0.01	NEU and SEU datasets combined.	0.01*	0.01	0.01
Maize stover (rest of plant)	NEU	0.055, 0.199, 0.220, 0.372	Data taken from "rest of plant" samples at harvest (PHI <i>ca.</i> 27-29 days)		0.372	0.21
	SEU	0.355, 0.932, 1.674, 5.65	Data taken from "rest of plant" samples at harvest (PHI <i>ca</i> . 27-29 days)		5.650	1.3
Lettuces and salad plants (except escaroles/broad- leaved endives), Herbs and edible flowers, Spinaches and similar leaves	SEU	0.52, 0.62, 0.80, 0.92, 2 x 1, 1.7, 2.6	8 residue trials on lettuces, "open leaf" varieties to support the representative uses. Possible extrapolation to other salad plants (except escaroles/broad-leaved endives), herbs and edible flowers and spinaches and similar leaves.	4.0	2.6	0.96
MRL application						
Grape leaves and	SEU	1.0, 4.6, 5.7, 12		30	12	5.15

Crop	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)			
similar species									
Sweet corn	NEU	0.02, 0.031, 0.033, 0.044		0.1	0.044	0.032			
Summary of the d	ata on formul	ation equivalence OECD Guideline 509							
Crop	Region	Residue data (mg/kg)	Recommendations/comments						
N/A – All trials we	N/A – All trials were conducted using the same formulation type (SC) as the representative formulation.								
Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)									
Product(s)	Region	Residue data (mg/kg)	Recommendations/comments						
Data gap: Residues	Data gap: Residues of methoxyfenozide in pollen and bee products cannot be excluded and further information is requested.								

⁽a): NEU or SEU for northern or southern **outdoor** trials in EU member states (N+SEU if both zones), **Indoor** for glasshouse/protected crops, **Country** if non-EU location.

⁽b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use **Mo/RA** to differentiate data expressed according to the residue definition for **Mo**nitoring and **R**isk **A**ssessment.

⁽c): **HR**: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).

⁽d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).

Inputs for animal burden calculations

Food commodites	Media	n dietary burden	Maximum dietary burden				
Feed commodity	(mg/kg)	Comment	(mg/kg)	Comment			
Representative uses							
Maize grain	0.01		0.01				
Maize stover	1.3		5.65	Data taken from "rest of plant" samples at harvest (PHI <i>ca.</i> 27-29 days).			

Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4) OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations	Rumina		Ruminant		Pig/Swine		Poultry		Fish	
Highest expected intake	Beef cattle	0.041	Ram/Ewe	0.000	Breeding	0.032	Broiler	0.001	Carp	N/A
(mg/kg bw/d)	Dairy cattle	0.053	Lamb	0.000	Finishing	0.000	Layer	0.001	Trout	N/A
(mg/kg DM for fish)							Turkey	0.001	Fish intake >0	.1 mg/kg DM
Intake >0.004 mg/kg bw	,	Yes	N	No	Y	l'es	N	О	N	0
Feeding study submitted		Yes	1	No		No	N	Ío	Not requested methoxyfenozide res in maize grain are mg/kg.	
Representative feeding	Level	Beef: 18.5 N	Level	Lamb: N	Level	N rate	Level	B or T: N	Level	N rate
level (mg/kg bw/d,	0.760	Dairy: 14.4 N		Ewe: N		Breed/Finish		Layer: N		Carp/Trout
mg/kg DM for fish) and N rates	Estimated HR ^(a) at 1N	MRL proposals	Estimated HR ^(a) at 1N	MRL proposals						
Muscle	0.000	0.01*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fat	0.003	0.01*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Meat ^(b)	0.000		N/A		N/A		N/A			
Liver	0.002	0.01*	N/A	N/A	N/A	N/A	N/A	N/A		
Kidney	0.001	0.01*	N/A	N/A	N/A	N/A	N/A	N/A		
Milk ^(a)	0.000	0.01*	N/A	N/A						
Eggs							N/A	N/A		
Method of calculation ^(c)	Ln		N/A		N/A		N/A		N/A	

⁽a): Estimated HR calculated at 1N level (estimated mean level for milk).

⁽b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

⁽c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

STMR calculations	Ruminant				Pig/Swine		Poultry		Fish	
Median expected intake	Beef cattle	0.010	Ram/Ewe	0.000	Breeding	0.007	Broiler	0.001	Carp	N/A
(mg/kg bw/d)	Dairy cattle	0.012	Lamb	0.000	Finishing	0.000	Layer	0.001	Trout	N/A
(mg/kg DM for fish)							Turkey	0.001		
Representative feeding	Level	Beef: 78.3N	Level	Lamb : N	Level	N rate	Level	B or T: N	Level	N rate
level (mg/kg bw/d,	0.760	Dairy: 61N	N/A	Ewe: N	N/A	Breed/Finish	N/A	Layer: N	N/A	Carp/Trout
mg/kg DM for fish) and N rates	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N	Mean level in feeding level	Estimated STMR ^(b) at 1N
Muscle	0.000	0.000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fat	0.007	0.000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Meat ^(a)	0.001	0.000	N/A	N/A	N/A	N/A	N/A	N/A		
Liver	0.023	0.000	N/A	N/A	N/A	N/A	N/A	N/A		
Kidney	0.000	0.000	N/A	N/A	N/A	N/A	N/A			
Milk	0.000	0.000	N/A	N/A						
Eggs							N/A	N/A		
Method of calculation ^(c)	Ln		N/A		N/A		N/A		N/A	

STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry

When the mean level is set at the LOQ, the STMR is set at the LOQ.

The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

^{(5):} Validity of the ruminant feeding study is pending upon the outcome of the data gap identified for further information on the validation data of the analytical method for the determination of M16 residues in animal.matrices.

Conversion Factors (CF) for monitoring to risk assessment

Open for plant and animal matrices.

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part or	Number	Processing Factor	Conversion		
Crop (RAC)/Processed product	of studies ^(a)	Individual values	Median PF ^(c)	Factor (CF _P) for RA ^(b)	
Representative uses					
Oranges/pulp	3	<0.4, <0.3, <0.2	< 0.3	N/A	
Oranges/marmalade	3	0.8, 0.5, 0.24	0.5	N/A	
Oranges/juice	2	<0.05, <0.05	< 0.05	N/A	
Apples/fruit, washed	3	0.6, 0.7, 0.8	0.7	N/A	
Apples/juice	3	<0.4, <0.4, <0.5	< 0.4	N/A	
Apples/sauce	3	0.4, <0.5, 0.5	0.5	N/A	
Apples/pomace, wet	3	2, 2.3, 2.3	2.3	N/A	
Apples/pomace, dried	3	7, 7.5, 8.1	7.5	N/A	
Wine grapes / juice	2	<0.4, <0.3	< 0.35	N/A	
Wine grapes / must	6	<0.3, <0.3, 0.3, <0.4, 1.7, 1.3	0.35	N/A	
Wine grapes / wine ^(d)	ine grapes / wine ^(d) 4 (red wine) 4 (white wine)		0.35	N/A	
Table grapes / juice	2	<0.1, <0.2	<0.15	N/A	
Table grapes / raisins	3	2.1, 2.4, 3.0	2.4	N/A	
Tomato / fruit, washed	4	<0.4, <0.6, 0.4, 0.6	0.5	N/A	
Tomato / fruit, peeled	4	<0.2, 0.2, <0.4, <0.4	0.3	N/A	
Tomato / preserve	4	<0.4, 0.3, <0.4, 0.2	0.35	N/A	
Tomato / paste	4	1.7, 3.4, 3.0, 2.2	2.6	N/A	
Tomato / juice	4	<0.4, 0.4, 0.4, 0.3	0.4	N/A	
Tomato / pomace, wet	1	3.6	3.6	N/A	

⁽a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration).

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)⁽⁶⁾ Including all uses (representative uses and uses related to an MRL application).

ADI	0.1 mg/kg bw per day
TMDI according to EFSA PRIMo	Highest TMDI: 4.2 % ADI (WHO Cluster diet B)
IEDI (% ADI), according to EFSA PRIMo	Not relevant

⁽b): When the residue definition for risk assessment differs from the residue definition for monitoring.

⁽c): Processing factors with '<' were used to derive the median processing factors where there were insufficient data to derive the processing factors without reliance on these 'uncertain' factors; however, where possible, greater reliance was placed on the individual processing factor values without '<'.

⁽d): (R) = red wine; (W) = white wine.

EFSA Journal 2017;15(8):4978

Factors included in the calculations	N/A				
ARfD	0.1 mg/kg bw				
IESTI (% ARfD), according to EFSA PRIMo	Highest IESTI:70% ARfD (Lettuce, DE child)				
Factors included in IESTI and NESTI	N/A				

Consumer risk assessment limited to the representative uses

ADI	0.1 mg/kg bw per day
TMDI according to EFSA PRIMo	Highest TMDI: 4.2 % ADI (WHO Cluster diet B)
IEDI (% ADI), according to EFSA PRIMo	Not relevant
Factors included in the calculations	N/A
ARfD	0.1 mg/kg bw
IESTI (% ARfD), according to EFSA PRIMo	Highest IESTI:70% ARfD (Lettuce, DE child)
Factors included in IESTI and NESTI	N/A

^{(6):} The consumer dietary risk assessment is regarded as not finalised for the products of plant and animal origin.

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code ^(a)	Commodity/Group	MRL (mg/kg)	
Plant comr	nodities		
Representa	ntive uses		
0151010	Table grapes	0.5	
		(provisional)	
0151020	Wine grapes	0.4	
		(provisional)	
0231010	Tomatoes	0.2	
		(Indoor)	
	Tomatoes	0.2	
		(outdoor)	
		(provisional)	
0231030	Aubergines	0.2	
		(Indoor)	
	Aubergines	0.2	
		(outdoor)	
		(provisional)	
0231020	Sweet Peppers/Bell	0.4	
	peppers	(Indoor)	
	Sweet Peppers/Bell	0.7	
	peppers	(outdoor)	
	F-FF	(provisional)	
0234000	Sweet corn	0.1	
		(provisional)	
0251000	Lettuces and salad		
	plants, except	4	
	escaroles/broad-leaved	4	
	endives		

0252000	Spinaches and similar leaves	4	
0256000	Herbs and edible flowers	4	
0500030	Maize	0.01*	
MRL appl	ication		
0253000	Grape leaves and similar species	30	
0234000	Sweet corn	0.1	
Animal co	mmodities		
1011000	Swine tissues	Open	
1012000	Bovine tissues	Open	
1013000	Sheep tissues	Open	
1014000	Goat tissues	Open	
1016000	Poultry tissues	Open	
1020000	Milk	Open	
1030000	Birds eggs	Open	

⁽a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

⁽b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.

Section 4 Environmental fate and behaviour

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Mineralisation after 100 days 0.9-3.6 % after 120 d, A- ring label (n= 4) at 25°C 2.6 % after 120 d, B-ring label (n= 4) at 25°C 2.7 % after 120 d, t- label (n= 4) at 25°C 3.5-24.25 % after 119 d, A-ring label (n= 4) at 20°C Non-extractable residues after 100 days 12-27% after 120 d, A- ring label (n= 4) at 25°C 26% after 120 d, B-ring label (n= 4) at 25°C 24% after 120 d, t- label (n= 4) at 25°C 9.6-24.1% after 119 d, A-ring label (n= 4) at 20°C Metabolites requiring further consideration *RH-131154 (M08)* A-ring label - name and/or code, % of applied (range and Range: 0.64 - 15.83 %. Maximum 15.83 % at 120 d maximum) (n=10)

A-ring label = methoxymethylbenzoyl-phenyl-UL-¹⁴C label , B-ring label = [3,5-dimethylbenzoyl-phenyl-UL-14C], t- label = label on tertiary butyl group.

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Mineralisation after 100 days	5.9-6.0 % after 120 d after system flooding, (n= 1, replicate sampling) A-ring and B-ring label
Non-extractable residues after 100 days	12.7-13.0 % after 120 d after system flooding, (n= 1) A-ring and B-ring label
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	RH-131154 (M08) Máximum 9.4 % at 21 d after system flooding (n= 1) Bring label
	RH-117236 (M14) Maximum 8.8 % at 120 d after system flooding (n= 1) B-ring label (not considered in the risk assessment as formed at a very late timepoint)

 $A-ring\ label = methoxymethylbenzoyl-phenyl-UL-{}^{14}C\ label\ ,\ B-ring\ label = [3,5-dimethylbenzoyl-phenyl-UL-14C]$

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)

Mineralisation at study end

No novel photolytic metabolites were identified.

0.61 % after 30 d, [14C]-B-ring-label (n=1)

Non-extractable residues at study end

7.39 % after 30 d, [14C]-B ring label (n= 1)

B-ring label = [3,5-dimethylbenzoyl-phenyl-UL-14C]

Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark ae	robic co	nditions				
Soil type	USDA texture	pH ^{a)} in CaCl ₂	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ^2)	Method of calculation
Hoefchen am Hohenseh	Silt Loam	6.4	20 /62.8	125.4 / 417	125.4	2.81	SFO
Laacherhof AIIIa	Loam	6.2	20 /43.7	87.2 / 290	81.0	2.36	SFO
Laacherhof AXXa	Sandy Loam	5.7	20 /48.9	347.9 / 1160	347.9	1.98	SFO
Laacherhof Wurmwiese	Sandy Loam	5.0	20 /59.4	208.2 / 692	208.2	2.20	SFO
Bagnolo	Clay Loam	7.25	20/ 67.91	199 / 661	195	1.8	SFO
Hoefchen	Silt Loam	6.25	20/66.37	656 / 2180	537	1.7	SFO
Laacherhof	Sandy Loam	6.01	20/48.37	841 / 2790	841	1.5	SFO
Negroni	Clay Loam	7.30	20/72.93	599 / 1990	519	5.6	SFO
Agrifoglio	Sandy Loam	7.41	20/40.59	453 / 1500	453	1.4	SFO
Emstek	Loamy Sand	5.98	20/50.76	1910 / 6340	1000*	1.0	SFO
Thurston	Sandy Clay Loam	7.27	20/74.46	268 / 890	268	2.6	SFO
Wellesbourne	Sandy Loam	6.21	20/49.80	439 / 1460	439	1.0	SFO
Marsonnas	Silt Loam	4.98	20/57.21	1381 / 4590	1000*	1.2	SFO
Fresne	Silt Loam	5.90	20/50.44	514 / 1710	375	1.0	SFO
California**	Clay loam		25/ 75% FMC at 1/3 bar	313/1.04x10 ³	491.1	2.74	SFO
Ohio**	Loamy sand		25/ 75% FMC at 1/3 bar	460/1.53x10 ³	721.7	2.52	SFO

Georgia**	Loamy sand	25/ 75% FMC a 1/3 bar	211/701	331.1	5.14	SFO
Texas**	Clay loam	25/ 75% FMC a 1/3 bar	385/1.28X10 ³	604.1	5.79	SFO
Geometric mean (if not pH dependent)				392.0		
pH dependence,				No		

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

RH-131154 (M08)	Dark aerobic conditions precursor from which the f.f. was derived was methoxyfenozide							
Soil type	USDA texture	pH ^{a)} in water	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} f.\ f.\ k_f \\ /\ k_{dp} \end{array}$	DT ₅₀ (d) 20 °C pF2/10kPa ^{b)}	St. (χ^2)	Method of calculation
Hoefchen am Hohenseh	Silt Loam	6.6	20 /62.8	49.6/ 164.83	0.459	49.6	11.17	SFO
Laacherhof AIIIa	Loam	6.6	20 /43.7	30.8/ 102.24	0.385	28.6	5.8	SFO
Laacherhof AXXa	Sandy Loam	6.0	20 /48.9	42.2/ 140.04	0.524	42.2	16.59	SFO
Laacherhof Wurmwiese	Sandy Loam	5.3	20 /59.4	38.1/ 126.67	0.877	38.1	8.70	SFO
Bagnolo				73.1	0.6345	71.7		
Agrigfolio				1000	1	1000*		
Thurston				1000	1	1000*		
Fresne				1000	1	1000*		
Geometric mean (if not pH dependent)				_		141.8		
Arithmetic mean					0.73			
pH dependence						No		

a) Measured in [medium to be stated, usually calcium chloride solution or water]

^{*} Default maximum

^{**}Data from days 0-120 only, since microbial decline was accepted as the cause for decreased degradation over longer time periods. Initially the soils from California, Ohio, Georgia and Texas were not included in the generation of the geomean DT₅₀ and therefore a value of 362.3 d was utilised in tier I of groundwater modelling.

b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

^{*}moisture correction not required

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Parent	Aerobic cond	Aerobic conditions							
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	USDA soil type	pH ^{a)} in CaCl	Depth (cm)* *	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	DT ₅₀ (d) Norm ^{b)} .	Method of calculation
Emstek (Bare*)	Germany	Sandy Loam	5.57	40	206.0	685.0	5.3	206.0	SFO
Negroni (Bare)	Italy	Loam	7.77	40	17.2	911.0	11.7 9	938.6***	DFOP
Agrifolio (Bare)	Italy	Sandy Loam	7.89	40	4.3	429.0	7.96	190.0***	HS
Wellesbourne (Bare)	United Kingdom	Sandy Loam	6.25	50	166.0	963.0	6.71	343.0***	HS
Hofchen (Bare)	Germany	Silt Loam	6.47	40	109.0	363.0	5.68	109.0	SFO
Laacherhof (Bare)	Germany	Sandy Loam	6.47	30	88.3	293.0	9.06	88.3	SFO
Geometric mean (if not pH dependent)								222.5	
pH dependence					No				

b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

^{***}based on slow phase kinetics

Met 1		No metabolites were recorded in field studies
-------	--	---

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

Plateau concentration of 0.219 mg/kg reached after 12 years

Based on 2 applications of 120g/ha to leafy vegetables with 70 day interval and using the longest non-normalised DT₅₀ field of 470days, soil depth of 5cm and soil density of 1.5g/cm³.

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark an	Dark anaerobic conditions							
Soil type	USDA texture	pH(0. 01 M CaCl ₂)	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	DT ₅₀ (d) 20 °C ^{b)}	St. (χ^2)	Method of calculation		
Laacherhof AIIIa	Loam	6.2)	20°C /*	496/>1000	496	1.97	SFO		
Geometric mean (it	f not pH o	lependen	t)						

a) Measured in [medium to be stated, usually calcium chloride solution or water]

^{*} Trial terminated early due to excessive lichen and moss formation after day120.

^{**}including depths for which values related to LOD and LOQ were included in the kinetics assessment

b) Normalised using a Q10 of 2.58

* System was flooded

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Met 1	No metabolite transformation rates were determined. Metabolite RH-131154 was formed at larger quantities in the aerobic studies, and the rate of degradation in aerobic lab studies is shown above. Metabolite RH-117236 was not formed in excess of 5% in the anaerobic
	study until after 93 days of system flooding. It was considered unlikely that such a prolonged period of flooding would occur during cultivation.

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3

Methoxyfenozide	Soil pho	Soil photolysis							
Soil type	UK classifi cation	pH ^{a)}	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d) calculated at 40°N	St. (χ^2)	Method of calculation			
Ohio	Loamy sand	6.9	25°C/ 9.8% moisture at 1/3 bar	173d/	R ² =0.8 2	First order extrapolation beyond the study (30 days)			

a) Measured in [medium to be stated, usually calcium chloride solution or water]

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Parent							
Soil Type	OC %	Soil pH ^{a)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
California	1.56	6.9			4.2	267	1.00
Minnesota	2.85	7.9			6.2	219	0.94
Newtown	1.05	7.0			3.8	365	1.06
BBA 2.2	2.48	6.0			5.0	200	0.93
Laacher Hof A2	0.86	8.1			2.7	314	1.00
Laacher Hof A20a	1.8	7.0			6.0	331	0.95
Soil LUFA-Speyer	0.64	7.6			2.0	318	1.00
Bagnolo	1.04	7.3			1.43	138	0.914
Hoefchen	1.51	6.3			3.16	209	0.911
Laacherhof	1.04	6.0			2.49	239	0.889
Agrifoglio	0.62	7.4			1.66	269	0.937
Emstek	1.84	6.0			5.36	291	0.849
Thurston	1.76	7.3			2.33	132	0.895
Wellesbourne	1.17	6.2			2.32	198	0.90
Marsonnas	0.75	5.0			1.53	204	0.92
Fresne	1.0	5.9			1.63	163	0.91

Geometric mean (if not pH dependent)		2.87	231	
Arithmetic mean (if not pH dependent)				0.938
pH dependence	No			

a) Measured in calcium chloride solution

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

RH-131154 (M08)							
Soil Type	OC %	Soil pH ^{a)}	K _d (mL/g)	K _{doc} (mL/g)	K _F (mL/g)	K _{Foc} (mL/g)	1/n
AXXA	2.1	6.2			0.348	17	0.76
Hoefchen	2.4	6.6			0.378	16	0.87
Wurmweise	1.6	5.1			0.348	22	0.86
Hanscheiderhof	2.2	5.3			0.604	27	0.93
Geometric mean (if not pH dependent	0.408	20					
Arithmetic mean (if not pH dependent)							0.86
pH dependence	No						

a) Measured in calcium chloride solution

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching studies with the active substance are not required.

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching studies with the metabolites of methoxyfenozide are not required.

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies

Not required.

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1

Hydrolytic degradation of the active substance and metabolites > 10 %

pH 5: At 25°C, with 30 days incubation, no significant degradation of a.s. detected. No metabolites detected.

pH 7: At 25°C, with 30 days incubation, no significant degradation of a.s. detected. No metabolites detected.

pH 9: At 25°C, with 30 days incubation, no significant degradation of a.s. detected. No metabolites detected.

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above $10\ \%$

Sterile aqueous photolysis:

Light comparable to natural summer sunlight in New Jersey, 40°N.

DT₅₀: 2166d

Metabolites:

M08 (RH-131154) maximum 0.56% A.R.

Two further metabolites both below 0.4% A.R.

Photolysis in Pond water:

Light comparable to natural summer sunlight in New Jersey, 40°N.

DT50: 77d

Seven minor metbolites observed with mean values at each time point below 5% A.R. The metabolites were not identified.

Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm

Mean value: 1.91 x10⁻³ mol · Einstein⁻¹

'Ready biodegradability' (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

No data submitted, substance considered not readily biodegradable

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Methoxyfenozide										
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed a)	t. °Cb)	30		St. (χ^2)	DT ₅₀ /DT ₉₀ Water (pelagic test) At Norma study lised to x		St. (χ^2)	Method of calculation
Natural pond water	7.4		21.2 ±2	Mineralisation did not exceed 1%, Two minor metabolites were formed both below 1% during the 60 days study. It was not feasible to determine degradation rates						
Natural pond water	7.8		21.2 ±2	Mineralisation did not exceed 1%, Two minor metabolites were formed both below 1% during the 60 days study. It was not feasible to determine degradation rates						

a) Measured in [medium to be stated, usually calcium chloride solution or water]

	-
3.5 4.41	
l Metabolite	No metabolites were found above 1%
Metabolite	1 to metabolites were round above 170

c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Mineralisation and non extractable residues (for parent dosed experiments)								
System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation <1 % after 61 d. (end of the study).	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)			
Natural pond water	7.4		<1% after 61 days		n/a			
Natural pond water	7.8		<1% after 61 days	note that aqueous phas	se was never below 93.9%			

b) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C c) Normalised using a Q10 of 2.58

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Parent	Distribu	Distribution (e.g. max in water 91.1 after 0d. Max. sed 68.25 % after 91 d)								
Water / sediment system	pH water phase	pH sed in CaCl	t. °C	DT ₅₀ /DT ₉₀ whole sys.	St. (χ^2)	DT ₅₀ /DT ₉₀ water	St. (χ^2)	DT ₅₀ /DT ₉₀ sed	St. (χ^2)	Method of calculation
Honniger weiher (Loam)	7.9	5.7	20 ±	159.1 /528.6	1.6	8.6/28.6	17. 9	223.1/741. 1	3.8	SFO
Angler weiher (Loamy sand)	7.7	6.6	20 ±	273.5 /908.7	1.1	19.3/64.0	23. 0	359.1/1193	2.0	SFO
Geometric mean at 20°Cb)				208.6						

a) Measured in [medium to be stated, usually calcium chloride solution or water]

b) Normalised using a Q10 of 2.58

RH-117236 (M14)		Distribution (e.g. max in water 5.02% after 60 d. Max. sed 12.62 % after 91 d). Max in total system 15.75 % after 91 days,								
Water / sediment system	pH water phase	pH sed ^{a)}	t. °C	DT ₅₀ /DT ₉₀ whole sys.	St. (χ ²)	DT ₅₀ /DT ₉₀ water	St. (χ ²)	DT ₅₀ /DT ₉₀ sed	St. (χ^2)	Method of calculation
Geometric mean at 20°Cb)		1000		1000		1000		Default values		

a) Measured in [medium to be stated, usually calcium chloride solution or water]

b) Normalised using a Q10 of 2.58

Mineralisation an	Mineralisation and non extractable residues (from parent dosed experiments)							
Water / sediment system	pH water phase	pH sed	Mineralisation x % after n d. (end of the study).	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)			
Texas	9.13	5.7	5.94% (365d)	9.61% (270d)	7.67% (365d)			
California	8.89	5.4	4.94% (365d)	43.82% (270d)	43.20% (365)			
Honniger Weiher	7.9	5.0 (in water)	1.7% (120d)	26.1% (120d)	26.1% (120d)			
Angler Weiher	7.7	7.1 (in water	2.9% (120d)	17.2% (90d)	17.1% (120d)			

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air

Photochemical oxidative degradation in air

Volatilisation

Not studied - no data requested.

DT₅₀ of 3.3 hours derived by the Atkinson model. OH (12 h) concentration assumed = $1.5x10^6$.

from plant surfaces (BBA guideline): <5 % after 24

hours

from soil surfaces (BBA guideline): negligible after x24 hours

Metabolites

No information available

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

Soil: Methoxyfenozide, RH-131154 (M08)

Surface water: Methoxyfenozide, RH-131154 (M08),

RH-117236 (M14)

Sediment: Methoxyfenozide, RH-131154 (M08), RH-

117236 (M14)

Ground water: Methoxyfenozide, RH-131154 (M08)

Air: Methoxyfenozide by default

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

Soil (indicate location and type of study)	No data relied upon
Surface water (indicate location and type of study)	No data relied upon
Ground water (indicate location and type of study)	No data relied upon
Air (indicate location and type of study)	No data relied upon

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent

Method of calculation

Application data

DT₅₀ (d): 470 days

Kinetics: SFO

Field: longest non-normalised field DT_{50} .

Crop: Leafy veg

Depth of soil layer: 5cm Soil bulk density: 1.5g/cm³ % plant interception: 70

Interval (d): 70
Application rate(s):

Leafy Veg: 1 or 2 x 120 g a.s./ha (1 application per

successive crop)

 $\boldsymbol{PEC}_{(s)}$

(mg/kg)

	1 application	per year	2 applications per year	ar, 2 successive crops
DAT	Leafy veg	Leafy veg	Leafy veg*	Leafy veg*
	PECs, Actual	PECs, TWA	PECs, Actual	PECs, TWA
0	0.048	0.048	0.091	0.091
1	0.048	0.048	0.091	0.091
2	0.048	0.048	0.091	0.091
4	0.048	0.048	0.091	0.091
7	0.048	0.048	0.090	0.091
14	0.047	0.048	0.089	0.090
21	0.047	0.047	0.089	0.090
28	0.046	0.047	0.088	0.089
50	0.045	0.046	0.085	0.088
100	0.041	0.045	0.079	0.085

^{* 70} day interval. DAT= Days after treatment, C.I. = crop interception, TWA = Time weighted average.

PECsoil Plateau concentration (Using the longest non-normalised field DT_{50} of 470days)

Crop	Application rate (g/ha)	Number of applications per year	Crop interception (%)	Steady state mg/kg	Peak occurrence mg/kg	Time to reach peak (years)
Maize	144	1	75	0.067	0.115	10
Leafy veg	120	1	70	0.067	0.115	10
Leafy veg	120	2 (70d interval)	70	0.142	0.219	12
Vines	96	1	75	0.077	0.045	10
Fruiting veg	144	1	80	0.054	0.092	11

Metabolite RH 131154 (M08)

Method of calculation

Application data

Molecular weight relative to the parent: 1.08

Application rate assumed: assumed RH-131154 is

formed at a mean maximum of 15.83 % of the applied dose

Maximum Single application: 24.7 g/ha to maize (based on 144g a.s./ha, to be modelled using 75% crop interception)

Multiple application: 41.1g/ha (calculation based on total dose approach of 2x120ga.s./ha to leafy veg, to be modelled using 70% crop interception)

PECsoil accumulation based on DT50soil of 1000 days

Crop	Methoxyfenozide Application Rate (g/ha)	RH-131154 (M08) application rate	Crop interception (%)	PECsoil initial (mg/Kg)	PECsoil accumulation peak value (mg/kg)
Vine	1 x96	16.4	75	0.005	0.024
Maize/Corn	1x144	24.7	75	0.008	0.037
Fruiting vegetables	1x144	24.7	80	0.007	0.029
Leafy vegetables	1x120	20.5	70	0.008	0.036
Leafy vegetables	2x 120 (70 day interval)	41.1 (total dose approach)	70	0.016	0.071

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (*e.g.* modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used -

Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Model(s) used: PELMO v5.5.3, PEARL v 4.4.4

A tiered modelling scheme was assessed using a range of standard and time dependent sorption (TDS) parameterised. The following Tiers were evaluated:

Tier I: Laboratory DT_{50} with batch sorption Koc input parameterisation

Tier II: Laboratory DT₅₀ with lab time dependent sorption input parameterisation

Tier III: Field DT_{50} with batch sorption Koc input parameterisation

Tier IV: Field DT_{50} with field derived sorption Koc input parameterisation.

Inputs/results not presented as approach utilised by the Notifier not accepted by the UK RMS.

Tier V: Field DT_{50} with lab time dependent sorption input parameterisation

Crop:

OUTDOOR: Vines, Maize, Fruiting Vegetables, Leafy

Vegetables

GREENHOUSE: Fruiting Vegetables

Crop uptake factor: 0

Water solubility (mg/L): 3.3 at pH 7 and 20°C

Vapour pressure: 1.3 x 10⁻⁵ Pa at 20°C

1/n (arithmetic mean batch sorption): 0.938 (all Tiers)

Tier I: Laboratory DT_{50} with batch sorption Koc input parameterisation

DT50 soil lab geomean 362.3 d*

(days)

Kfoc/Kfom ml/g

(geomean batch sorption 231/134

value, n = 16)

Tier III: Field DT_{50} with batch sorption Koc input parameterisation

DT50 soil (k1 fast phase field geomean) 37.3 d

DT50 soil (k2 slow phase field geomean) 222.5 d

Kfoc/Kfom ml/g (geomean batch sorption value n = 16) 231/134

1/n 0.938 Metabolite RH-131145

(M08)

 DT_{50} soil 141.8d

Maximum mean

formation in soil	15.83%	
Transformation rate (k)		
to M08 fast phase	0.0136	
slow phase .	0.0023	
Transformation rate (k)		
to CO ₂ fast phase	0.0050	
slow phase	0.0008	

GREENHOUSE

Crop uptake factor: 0

DT50 soil lab geomean (days): 225 days (field geomean). Note, as safe use was demonstrated, this modelling was not repeated with the revised geomean field DT_{50} of 222.5 days.

Kf_{OC}/Kfom: 231/134.

1/n (arithmetic mean batch sorption): 0.938

PEARL (v4.4.4) was parameterised according to the EFSA guidance on assessment of risk to the environment from the use of plant protection products on protected crops. The default Piacenza scenario crop parameterisation for tomato was used with emergence and harvest dates changed to reflect those detailed in the example EFSA greenhouse scenario with consequent changes to the crop growth stages.

A weather file specific to the Piacenza scenario which modifies the standard FOCUSgw Piacenza scenario weather file using data presented in the guidance document.

Metabolites:

RH-131154 (M-08)

Crop:

Crop uptake factor: 0

Water solubility (mg/L): 3.3 at pH 7 and 20°C

Vapour pressure: 1.3 x 10⁻⁵ Pa at 20°C

Kinetic formation fraction: 0.73 DT50 soil lab geomean (days): 41.8

Kf_{OC}/Kfom: 20/11.6.

1/n (arithmetic mean batch sorption): 0.86

The groundwater exposure modelling for glasshouse uses has not been re-run with the updated input parameters for the parent and the metabolite RH-131154 (M-08) as the RMS considers that the outdoor uses modelled in the previous section are protective of the glasshouse use.

Application rate

	Crop	Applicatio n rate (g/ha)	Number of applications per year	Application Timing BBCH	Effective Soil Loading (g a.s./ha)	Application Date
	Vines	96	1	71-85	24.0	1 Aug (aprox 60 days before harvest)
	Maize	144	1	51-75	36	50 days after emergence
OUTDOOR	Fruiting veg (tomato)	144	1	51-87	28.8	40 days after emergence
	Leafy Veg (cabbage)	120	1	41-49	36	50 days after emergence
	Leafy veg (cabbage)	120	2 (70d interval)	41-49 multi-cropping	2 x 36	50 & 120 days after emergence
GREEN- HOUSE	Fruiting veg	144	1	51-87	28.8	18 Feb – 21 Aug

^{*} Subsequent to this modelling four additional soils were included in the generation of the Lab soil DT₅₀. This resulted in the geomean value changing to 392.0 d. However, since it was clearly demonstrated that the groundwater assessment had to progress beyond Tier I, the modelling was not repeated with this new value.

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

<u>Tier I Results</u>: Laboratory DT_{50} with batch sorption Koc input parameterisation, modelled using PELMO v5.5.3. (See footnote under table above)

METHOXYFENO	OZIDE				
Scenario	Vines	Maize	Fruiting Veg (tomato)	Leafy Veg (cabbage)	Leafy veg (cabbage) X 2
Chateaudun	1.429	1.865	1.447	-	3.674
Hamburg	1.441	2.185	-	2.136	4.732
Jokioinen	-	-	-		ı
Kremsmunster	1.307	1.893	-	-	3.622
Okehampton	-	1.824	-	1.561	-
Piacenza	1.024	1.353	1.328	1.13	-
Porto	0.678	1.192	0.959	1.19	2.642
Sevilla	0.794	0.301	0.231	0.444	1.042
Thiva	0.321	1.581	0.998	1.243	-

RH131154 (M08))				
Scenario	Vines	Maize	Fruiting Veg (tomato)	Leafy Veg (cabbage)	Leafy veg (cabbage) X 2
Chateaudun	0.493	0.738	0.56	0.636	1.490
Hamburg	0.616	0.988		1.025	2.281
Jokioinen	-	-	-	0.800	-
Kremsmunster	0.484	0.746		0.682	1.483
Okehampton	-	0.720		-	-

Piacenza	0.303	0.525	0.508	-	-
Porto	0.255	0.502	0.392	0.471	1.017
Sevilla	0.345	0.209	0.189	0.280	0.689
Thiva	0.096	0.569	0.357	0.463	-

<u>Tier III Results</u>: Field DT₅₀ with batch sorption Koc input parameterisation

METHOXYFENOZIDE PEARL v.4.4.3						
Scenario	Vines	Maize	Fruiting Veg (tomato)	Leafy Veg (cabbage)		
Chateaudun	0.366	0.413	0.313	0.324		
Hamburg	0.324	0.613	-	0.474		
Jokioinen	-	-	-	0.206		
Kremsmunster	0.244	0.414	-	0.354		
Okehampton	-	0.516	-	-		
Piacenza	0.322	0.464	0.316	-		
Porto	0.187	0.281	0.204	0.256		
Sevilla	0.252	0.037	0.036	0.049		
Thiva	0.273	0.387	0.211	0.189		
	METHOXYF	ENOZIDE PEI				
Scenario	Vines	Maize	Fruiting Veg (tomato)	Leafy Veg (cabbage)		
Chateaudun	0.313	0.277	0.195	0.264		
Hamburg	0.305	0.415	-	0.400		
Jokioinen	-	-	-	0.159		
Kremsmunster	0.271	0.351	-	0.331		
Okehampton	-	0.392	-	-		
Piacenza	0.237	0.356	0.244	-		
Porto	0.085	0.225	0.176	0.248		
Sevilla	0.099	0.020	0.012	0.030		
Thiva	0.028	0.265	0.138	0.136		

The groundwater modelling was repeated for M08 using; the revised soil M08 geomean DT_{50} of 141.8 days and the methoxyfenozide geomean soil DT_{50} of 222.5 days slow phase as a worst case as well as the revised formation fraction of 0.73. Although new PECgw values for methoxyfenozide were produced from this modelling they were not included as they did not take into account the fast and slow phase transformation rates which are worst-case for the parent.

Scenario	Vines	Maize	Fruiting Veg (tomato)	Leafy Veg (cabbage)
Chateaudun	3.657	5.081	4.761	5.003
Hamburg	2.983	7.246	-	5.972
Jokioinen	-	-	-	4.666
Kremsmunster	2.126	4.248	-	4.005
Okehampton	-	3.632	-	-
Piacenza	3.967	5.623	4.243	-
Porto	1.636	2.708	2.298	2.542
Sevilla	3.163	3.477	2.887	3.536
Thiva	4.596	7.478	4.888	3.504

RH131154 (M-08) PELMO v.5.5.3

Scenario	Vines	Maize	Fruiting Veg (tomato)	Leafy Veg (cabbage)
Chateaudun	3.276	4.649	3.638	4.501
Hamburg	2.926	5.326	-	4.901
Jokioinen	-	-	-	3.906
Kremsmunster	2.508	4.299	-	3.996
Okehampton	-	3.054	-	-
Piacenza	2.026	2.586	3.000	-
Porto	0.868	2.166	1.808	2.095
Sevilla	2.196	2.704	2.774	3.006
Thiva	0.487	5.411	3.679	2.718

<u>GREENHOUSE USE RESULTS:</u> Applications of methoxyfenozide to fruiting vegetables as simulated with the constructed Piacenza greenhouse scenario.

Application date	Methoxyfenozide PECgw (μg/L)	RH-131154 (M08) PECgw
18 February	0.0788	(μg/L) 0.0919
18 March	0.0829	0.0939
1 April	0.0794	0.0894
1 May	0.0684	0.0779
1 June	0.0599	0.0702
1 July	0.0566	0.0683
1 August	0.0542	0.0685
21 August	0.0545	0.0704

Note that this modelling is based on a methoxyfenozide soil DT_{50} of 225 days and has not been re-run with the revised DT_{50} value of 222.5 days; but the UK RMS considers that the amounts leached would decrease as a

result of the changed endpoint. Therefore the results in can be considered to be a worst case assessment of leaching.

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent

Parameters used in FOCUSsw step 1 and 2

Version control no. of FOCUS calculator:

FOCUS surface water STEP 1 and 2 v2.1

Molecular weight (g/mol): 368.5

K_{OC}/K_{OM} (mL/g): 231/134

DT₅₀ soil (d): 225days (field normalised value)

Note revised field geomean of 222.5 days should be used in future assessments by MS. Remodelling with the

revised value of 222.5 was not conducted.

DT₅₀ water/sediment system (d): 208.6d

DT₅₀ water (d): 1000d DT₅₀ sediment (d): 1000d

Crop interception (%): full canopy

Modelled using whole system DT₅₀ for water and default value for sediment compartment.

Parameters used in FOCUSsw step 3 (if performed)

Version control no.'s of FOCUS software:

SWASH v3.1

TOXWA v3.3.1

PRZM v3.1.1

MACRO v4.4.2

Water solubility (mg/L): 3.3mg/L (20°C)

Vapour pressure: $1.33x10^{-5}$ Pa at 20° C

Kom/Koc (mL/g): 231/134

1/n: (Freundlich exponent general or for soil, susp. solids

or sediment respectively) 0.938

Q10=2.58, Walker equation coefficient 0.7

Crop uptake factor: 0.0

Application rate

Crop and growth stage: Vines BBCH 71-85

Number of applications: 1 Application rate(s): 96 g a.s./ha

Application window: May-Sept* late spray drift selected for vines

Crop and growth stage: Maize BBCH 51-75

Number of applications: 1

Application rate(s): 144 g a.s./ha
Application window: May –Sept*

Crop and growth stage: Fruiting vegetables BBCH 51-87

Number of applications: 1

Application rate(s): 144 g a.s./ha

Application window: May-Sept*

Crop and growth stage: Leafy vegetables BBCH 41-49

Number of applications: 1 or 2

Interval (d): 70d

Application rate(s): 120 g a.s./ha Application window: May- Sept*

*Note: The application window relative to growth stage did not always coincide with May-Sept. Therefore at STEP 3 a comprehensive approach was taken to cover all potential application windows i.e. those relative to both calendar timings AND growth stages.

FOCUS STEP 1 Scenario	Application	Max. PEC _{sw}	TWA PEC _{SW}	TWA PEC _{sw}	Max. PEC _{SED}	$\begin{array}{c} \text{TWA} \\ \text{PEC}_{\text{SED}} \end{array}$	TWA PEC _{SED}
		$(\mu g/L)$	7 day	21 day	(µg/kg dw)	7 day	21 day
Vine	1 x 96 g/ha	27.03	26.17	25.54	60.85	60.02	58.86
Maize	1 x 144g/ha	38.02	36.84	36.43	86.82	85.94	84.08
Fruiting vegetables	1 x 144 g/ha	38.02	37.30	36.43	86.82	85.94	84.08
Leafy vegetables	1 x 120 g/ha	31.68	31.08	30.36	72.35	71.61	70.07
Leafy vegetables	2 x 120 g/ha	63.37	62.16	60.72	144.70	143.23	140.14
	(70 day interval)						

FOCUS STEP 2 Scenario	Application	Max. PEC _{SW}	TWA PEC _{sw}	TWA PEC _{sw}	Max. PEC _{SED}	TWA PEC _{SED}	TWA PEC _{SED}
		(µg/L)	7 day	21 day	(µg/kg)	7 day	21 day
Vine NEU	1 x 96 g/ha	3.58	3.41	3.39	7.87	7.85	7.81
Vine SEU	1 x 96 g/ha	5.03	4.86	4.83	11.22	11.19	11.13
Maize NEU	1 x 144g/ha	2.91	2.82	2.80	6.51	6.50	6.47
Maize SEU	1 x 144g/ha	4.72	4.63	4.60	10.70	10.67	10.62
Fruiting vegetables NEU	1 x 144 g/ha	3.27	3.18	3.16	7.35	7.33	7.30
Fruiting vegetables SEU	1 x 144 g/ha	5.45	5.35	5.32	12.37	12.34	12.28
Leafy vegetables NEU	1 x 120 g/ha	2.73	2.65	2.64	6.13	6.11	6.08
Leafy vegetables SEU	1 x 120 g/ha	4.54	4.46	4.44	10.31	10.28	10.24
Leafy vegetables NEU	2 x 120 g/ha (70 day interval)	4.85	4.72	4.69	10.91	10.88	10.83
Leafy vegetables SEU	2 x 120 g/ha (70 day interval)	8.12	7.99	7.94	18.46	18.42	18.33

NEU = Northern EU, SEU = Southern EU

STEP 3 PECsw (µg/L) for Vines with different application windows

~ (8 -	_,			
Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to
	(µg/L)*	$30^{\text{th}} (\mu g/L)^*$	earliest BBCH code	latest BBCH code

			71 (μg/L)*	85 (μg/L)*
D6 (Ditch)	1.65 (SD)	1.65 (SD)	1.65 (SD)	1.65 (SD)
R1 (Pond)	0.06 (SD)	0.06 (SD)	0.06 (SD)	0.06 (SD)
R1 (Stream)	1.18 (SD)	1.18 (SD)	1.21 (SD)	1.21 (SD)
R2 (Stream)	1.61 (SD)	1.62 (SD)	1.62 (SD)	1.62 (SD)
R3 (Stream)	1.69 (SD)	1.70 (SD)	1.73 (R)	1.70 (SD)
R4 (Stream)	1.19 (SD)	1.21 (SD)	1.21 (SD)	1.79 (R)

^{*}Event resulting in global maximum PECsw: SD = spray drift, D= drainflow, R= runoff.

STEP 3 PECsw (µg/L) for Maize with different application windows

Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to
	(µg/L)*	$30^{th} (\mu g/L)^*$	earliest BBCH code	latest BBCH code
			51 (μg/L)*	75
D3 (Ditch)	0.88 (SD)	0.84 (SD)	0.86 (SD)	-
D4 (Pond)	2.20 (D)	1.32 (D)	1.86 (D)	-
D4 (Stream)	2.00 (D)	1.15 (D)	1.79 (D)	-
D5 (Pond)	1.40 (D)	0.66 (D)	0.65 (D)	-
D5 (Stream)	0.96 (D)	0.74 (SD)	0.74 (SD)	-
D6 (Ditch)	1.03 (D)	1.78 (D)	1.01 (D)	-
R1 (Pond)	0.11 (R)	0.04 (R)	0.15 (R)	-
R1 (Stream)	1.97 (R)	0.97 (R)	2.80 (R)	-
R2 (Stream)	1.41 (R)	0.70 (SD)	0.70 (SD)	-
R3 (Stream)	4.12 (R)	2.86 (R)	3.25 (R)	-
R4 (Stream)	4.34 (R)	3.04 (R)	2.20 (R)	-

⁻ Modelling was not performed because the suggested dates for the latest BBCH code fell within the may-September window

STEP 3 PECsw (µg/L) for Fruiting veg with different application windows

Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to
	(μg/L)*	30^{th}	earliest BBCH code	latest BBCH code
		(μg/L)*	51	87 (μg/L)*
			(μg/L)*	
D6 (Ditch)	1.14 (D)	3.42 (D)	1.13 (D)	-
R2 (Stream)	1.17 (R)	0.81 (SD)	0.92 (R)	-
R3 (Stream)	4.09 (R)	2.77 (R)	2.46 (R)	-
R4 (Stream)	4.41 (R)	4.64 (R)	1.98 (R)	-

⁻ Modelling was not performed because the suggested dates for the latest BBCH code fell within the may-September window

STEP 3 PECsw (µg/L) for Leafy veg with different application windows

Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to
	(µg/Kg)	$30^{\text{th}} (\mu g/\text{Kg})$	earliest BBCH code	latest BBCH code
			41 (µg/Kg)	49 (μg/Kg)
D3 (Ditch) 1st	0.87 (SD)	#	0.84 (SD)	-
D3 (Ditch) 2nd	#	0.88 (SD)	0.83 (SD)	0.82 (SD)
D4 (Pond)	1.94 (D)	#	1.66 (D)	1.64 (D)
D4 (Stream)	1.38(D)	#	1.38 (D)	1.49 (D)
D6 (Ditch)	#	3.31 (D)	3.70 (D)	4.35 (D)
R1 (Pond) 1st	0.10 (R)	#	0.23 (R)	-
R1 (Pond) 2nd	#	0.06 (R)	0.08 (R)	0.16 (R)
R1 (Stream) 1st	1.43 (R)	#	1.78 (R)	-
R1 (Stream) 2nd	#	0.77 (R)	0.85 (R)	1.70 (R)
R2 (Stream) 1st	0.80 (R)	#	0.80 (R)	-
R2 (Stream) 2nd	#	0.84 (R)	0.68 (SD)	0.67 (SD)
R3 (Stream) 1st	2.49 (R)	#	1.26 (R)	-

^{*}Event resulting in global maximum PECsw: SD = spray drift, D= drainflow, R= runoff.

^{*}Event resulting in global maximum PECsw: SD = spray drift, D= drainflow, R= runoff.

R3 (Stream) 2nd	#	2.69 (R)	2.34 (R)	-
R4 (Stream) 1st	2.66 (R)	#	2.91 (R)	-
R4 (Stream) 2nd	#	3.04 (R)	2.79 (R)	-

⁻ Modelling was not performed because the suggested dates for the latest BBCH code fell within the may-September window

STEP 3 PECsed (µg/Kg) for Vines with different application windows

Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to
	(µg/Kg)	$30^{th} (\mu g/Kg)$	earliest BBCH code	latest BBCH code
			71 (µg/Kg)	85 (μg/Kg)
D6 (Ditch)	1.52	1.56	1.55	1.583
R1 (Pond)	0.16	0.15	0.15	0.154
R1 (Stream)	0.13	0.08	0.14	0.143
R2 (Stream)	0.21	0.11	0.11	0.298
R3 (Stream)	0.22	0.33	0.62	0.401
R4 (Stream)	0.30	0.27	0.34	0.645

STEP 3 PECsw (µg/Kg) for Maize with different application windows

Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to
	(µg/Kg)	$30^{th} (\mu g/Kg)$	earliest BBCH code	latest BBCH code
			51 (μg/Kg)	75 (µg/Kg)
D3 (Ditch)	1.54	0.96	1.112	-
D4 (Pond)	9.85	6.16	7.893	-
D4 (Stream)	3.45	2.15	2.748	-
D5 (Pond)	7.03	3.44	3.432	-
D5 (Stream)	1.83	0.88	0.877	-
D6 (Ditch)	1.80	2.21	1.482	-
R1 (Pond)	0.33	0.17	0.389	-
R1 (Stream)	0.46	0.22	0.789	-
R2 (Stream)	0.45	0.48	0.475	-
R3 (Stream)	1.02	1.23	1.381	-
R4 (Stream)	1.39	1.00	0.698	-

⁻ Modelling was not performed because the suggested dates for the latest BBCH code fell within the may-September window

STEP 3 PECsw (µg/Kg) for Fruiting veg with different application windows

51E1 51 ECsw (µg/Kg) for Fruiting veg with different application windows							
Scenario	May1st-July 15 th	July 15 th -September	window relative to	window relative to			
	(µg/Kg)	30 th	earliest BBCH code	latest BBCH code			
		(µg/Kg)	51	87 (μg/Kg)			
			(µg/Kg)				
D6 (Ditch)	2.04	3.47	1.974	-			
R2 (Stream)	0.43	0.51	0.643	-			
R3 (Stream)	1.02	1.06	1.003	-			
R4 (Stream)	1.41	1.24	0.628	-			

⁻ Modelling was not performed because the suggested dates for the latest BBCH code fell within the may-September window

STEP 3 PECsw (µg/Kg)for Leafy veg with different application windows

Scenario	Mav1st-July 15 th	July 15 th -September	window relative to	window relative to
Section	ina fist bar, 15	bully 15 September	Willias W Telative to	Willias Wilciam Co

[#] Modelling was not performed in this window because either a successive crop scenario was modelled in which case the 1st crop was in the May-July window and the 2nd crop was in the July-September window, or because the model only simulated one crop in the scenario and the crops growth stage as per the FOCUS sw guidance was more suited to either May-July, or July-September window.

^{*}Event resulting in global maximum PECsw: SD = spray drift, D= drainflow, R= runoff.

	(µg/Kg)	$30^{\text{th}} (\mu g/\text{Kg})$	earliest BBCH code	latest BBCH code
			41 (µg/Kg)	49 (μg/Kg)
D3 (Ditch) 1st	1.29	#	0.940	=
D3 (Ditch) 2nd	#	1.40	0.728	0.588
D4 (Pond)	10.12	#	7.912	7.517
D4 (Stream)	3.86	#	2.912	2.772
D6 (Ditch)	#	5.46	3.351	4.571
R1 (Pond) 1st	0.30	#	0.680	=
R1 (Pond) 2nd	#	0.21	0.717	0.549
R1 (Stream) 1st	0.37	#	0.350	=
R1 (Stream) 2nd	#	0.25	0.319	0.375
R2 (Stream) 1st	0.35	#	0.952	=
R2 (Stream) 2nd	#	0.49	0.293	0.248
R3 (Stream) 1st	0.66	#	0.210	=
R3 (Stream) 2nd	#	1.02	0.270	-
R4 (Stream) 1st	0.87	#	0.943	=
R4 (Stream) 2nd	#	0.99	0.920	-

⁻ Modelling was not performed because the suggested dates for the latest BBCH code fell within the may-September window

Metabolite *RH-117236 (M14)*

Parameters used in FOCUSsw step 1 and 2

Molecular weight:354.5

Soil or water metabolite: water metabolite

Koc/Kom (mL/g): No Koc was available, therefore both

10 and 10,000 were assessed

DT₅₀ soil (d): *1000day default value* DT₅₀ water/sediment system (d): 1000d

DT₅₀ water (d):1000d DT₅₀ sediment (d):1000d

Crop interception (%): full canopy

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 15.75%

Soil: 0.01% (default value for modelling purposes)

Parameters used in FOCUSsw step 3 (if performed)

Application rate

Not performed

Crop and growth stage: Vines BBCH 71-85

Number of applications: 1 Application rate(s): 96 g a.s./ha Application window: May-Sept *late spray drift selected for vines*

Crop and growth stage: Maize BBCH 51-75

Number of applications: 1 Application rate(s): 144 g a.s./ha Application window: May -Sept

Crop and growth stage: Fruiting vegetables BBCH 51-87

Number of applications: 1

[#] Modelling was not performed in this window because either a successive crop scenario was modelled in which case the 1st crop was in the May-July window and the 2nd crop was in the July-September window, or because the model only simulated one crop in the scenario and the crops growth stage as per the FOCUS sw guidance was more suited to either May-July, or July- September window.

Application rate(s): 144 g a.s./ha Application window: May-Sept

Crop and growth stage: Leafy vegetables BBCH 41-49

Number of applications: 1 or 2

Interval (d): 70d

Application rate(s): 120 g a.s./ha Application window: May- Sept

Main routes of entry

Metabolite RH-117236 PECsw/PECsed Values based on Koc of 10 ml/g

Values based on Koc of 10 ml/g	Max. PEC _{SW} (μg/L)*	TWA PEC _{sw} 7 day (μg/L)	TWA PEC _{SW} 21 day (µg/L)	Max. PEC _{SED} (μg/kg dw)	TWA PEC _{SED} 7 day (µg/kg dw)	TWA PEC _{SED} 21 day (μg/kg dw)		
Vine (1x96g/ha)			1		1	1		
NEU / SEU STEP 1	0.39	0.39	0.38	0.04	0.04	0.04		
NEU STEP 2	0.39	0.39	0.38	0.04	0.04	0.04		
SEU STEP 2	0.39	0.38	0.38	0.04	0.04	0.04		
Maize (1x144g/ha)								
NEU/ SEU STEP 1	0.21	0.20	0.20	0.02	0.02	0.02		
NEU STEP 2	0.20	0.20	0.20	0.02	0.02	0.02		
SEU STEP 2	0.20	0.20	0.20	0.02	0.02	0.02		
Fruiting vegetables (1 x 14	4g/ha)							
NEU /SEU STEP 1	0.21	0.20	0.20	0.02	0.02	0.02		
NEU STEP 2	0.20	0.20	0.20	0.02	0.02	0.02		
SEU STEP 2	0.20	0.20	0.20	0.02	0.02	0.02		
Leafy vegetables (1x120g/l	ha)							
NEU / SEU STEP 1	0.17	0.17	0.17	0.02	0.02	0.02		
NEU STEP 2	0.17	0.17	0.16	0.02	0.02	0.02		
SEU STEP 2	0.17	0.17	0.16	0.02	0.02	0.02		
Leafy vegetables (2x120g/ha) 70 day interval								
NEU / SEU STEP 1	0.34	0.34	0.34	0.03	0.03	0.03		
NEU STEP 2	0.29	0.29	0.28	0.03	0.03	0.03		
SEU STEP 2	0.29	0.29	0.28	0.03	0.03	0.03		

^{*}See calculation below the following table, for the maximum PECsw value.

Metabolite RH-117236 PECsw/PECsed Values based on Koc of 10,000 ml/g

Values based on Koc of	Max. PEC _{SW}	TWA	TWA	Max.	TWA	TWA
10,000 ml/g	(µg/L)*	PEC_{SW}	PEC _{sw}	PEC_{SED}	PEC_{SED}	PEC_{SED}
		7 day	21 day	(µg/kg dw)	7 day	21 day
		(µg/L)	(µg/L)		(µg/kg dw)	(µg/kg dw)
Vine (1x96g/ha)						
NEU / SEU Step1	0.39	0.05	0.04	2.74	2.54	2.65
NEU Step2	0.39	0.08	0.05	2.71	2.70	2.69
SEU Step2	0.39	0.08	0.05	2.71	2.70	2.69
Maize (1x144g/ha)						
NEU/ SEU Step1	0.20	0.03	0.02	1.43	1.33	1.39
NEU Step2	0.20	0.04	0.02	1.40	1.39	1.39
SEU Step2	0.20	0.04	0.02	1.40	1.39	1.39
Fruiting vegetables (1 x 14	4g/ha)					
NEU /SEU Step1	0.20	0.03	0.02	1.43	1.33	1.39
NEU Step2	0.20	0.04	0.02	1.40	1.39	1.39
SEU Step2	0.20	0.04	0.02	1.40	1.40	1.39
Leafy vegetables (1x120g/	ha)					
NEU / SEU Step1	0.17	0.02	0.02	1.19	1.11	1.16
NEU Step2	0.17	0.04	0.02	1.16	1.16	1.16
SEU Step2	0.17	0.04	0.02	1.17	1.16	1.16
Leafy vegetables (2x120g/	ha) 70day interv	al				
NEU / SEU Step1	0.33	0.05	0.03	2.39	2.21	2.31
NEU Step2	0.16	0.04	0.03	2.01	2.00	1.99
SEU Step2	0.16	0.04	0.03	2.01	2.00	2.00

^{*}Due to RH-117236 being a water metabolite only, the RMS also determined a PECsw based on the maximum parent PECsw value adjusted for the molecular weight correction and maximum occurrence of RH-117236. This gave a PECsw value of $0.83\mu g/L$. The UK RMS considers this value to be the appropriate value to use in the risk assessment.

Metabolite RH-131154 (M08)

Parameters used in FOCUSsw step 1 and 2

Molecular weight:398.5

Soil or water metabolite: soil and water

Koc/Kom (mL/g): 20/11.6

DT₅₀ soil (d): 141.8 d(geomean normalised lab value)

DT₅₀ water/sediment system (d): 1000d

DT₅₀ water (d): 1000d DT₅₀ sediment (d): 1000d

Crop interception (%): full canopy

Maximum occurrence observed (% molar basis with

respect to the parent)

Total Water and Sediment: 2.43%

Soil: 15.83%

Parameters used in FOCUSsw step 3 (if performed)

Not performed

Application rate

Crop and growth stage: Vines BBCH 71-85

Number of applications: 1 Application rate(s): 96 g a.s./ha Application window: May-Sept late spray drift selected for vines

Crop and growth stage: Maize BBCH 51-75

Number of applications: 1

Application rate(s): 144 g a.s./ha Application window: May -Sept

Crop and growth stage: Fruiting vegetables BBCH 51-87

Number of applications: 1

Application rate(s): 144 g a.s./ha Application window: May-Sept

Crop and growth stage: Leafy vegetables BBCH 41-49

Number of applications: 1 or 2

Interval (d): 70d

Application rate(s): 120 g a.s./ha Application window: May- Sept

Main routes of entry

	Max. PECsw (μg/L)	TWA PECsw	TWA PECsw	Max. PECsed	TWA PECsed	TWA PECsed
		7 day	21 day	(µg/kg dw)	7 day	21 day
Vine (1x96g/ha)						
NEU / SEU Step1	5.36	5.34	5.32	1.07	1.07	1.06
NEU Step2	0.34	0.34	0.33	0.07	0.07	0.07
SEU Step2	0.65	0.65	0.65	0.13	0.13	0.13
Maize (1x144g/ha)						
NEU/ SEU Step1	8.04	8.02	7.98	1.61	1.60	1.60
NEU Step2	0.43	0.43	0.42	0.09	0.08	0.08
SEU Step2	0.82	0.82	0.81	0.16	0.16	0.16
Fruiting vegetables (1 x 14	4g/ha)					
NEU /SEU Step1	8.04	8.02	7.98	1.61	1.60	1.60
NEU Step2	0.51	0.50	0.50	0.10	0.10	0.10
SEU Step2	0.98	0.97	0.97	0.19	0.19	0.19
Leafy vegetables (1x120g/	ha)					
NEU / SEU Step1	6.70	6.68	6.65	1.34	1.34	1.33
NEU Step2	0.42	0.42	0.42	0.08	0.08	0.08
SEU Step2	0.81	0.81	0.81	0.16	0.16	0.16
Leafy vegetables (2x120g/	ha) 70 day inter	val				
NEU / SEU Step1	13.4	13.36	13.3	2.68	2.67	2.66
NEU Step2	0.72	0.72	0.71	0.14	0.14	0.14
SEU Step2	1.39	1.39	1.38	0.28	0.28	0.28

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

Vapour pressure $<1.33 \times 10^{-5}$ Pa, water solubility 3.3 mg/l, calculated Henry's law constant $<1.64 \times 10^{-4}$ Pa m³ mol and calculated dimensionless Henry's Law coefficient at $20^{\circ}\text{C} < 6.7 \times 10^{-8}$, indicate that methoxyfenozide exhibits low volatility and has the potential for only very slight volatility from aqueous solutions / soil water. A theoretical Atkinson calculation of the potential for photo-oxidation of methoxyfenozide in the upper atmosphere led to a DT₅₀ value in the upper atmosphere of 3.3 hours.

n	г	•	7
r.	Ľ	l	

Maximum concentration

N/A			

Section 5 Ecotoxicology

Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds	·		·	
Bobwhite quail (Colinus virginianus)	a.s.	Acute	LD ₅₀	>2250
Bobwhite quail (Colinus virginianus)	Preparation RH112,485 2F	Acute	LD ₅₀	>2250 mg/kg bw formulation (>531 mg/kg bw a.s.)
	Metabolite 1	Acute	LD_{50}	
Bobwhite quail (Colinus virginianus)	a.s.	Short-term dietary	LC ₅₀ NOEC	>5620 ppm a.s. 5620 ppm a.s.
Mallard duck (Anas platyrhynchos)	a.s.	Short-term dietary	LC ₅₀	>5620 ppm a.s. 562 ppm a.s.
Bobwhite quail (Colinus virginianus)	a.s.	Long-term	LD ₅₀ /10	> 225 mg a.s./kg bw
Bobwhite quail (Colinus virginianus)	a.s.	Long-term	NOEC	1000 ppm a.s., i.e. NOEL = 82.7 mg a.s./kg b.wt./d.
Mallard duck (Anas platyrhynchos)	a.s.	Long-term	NOEC	1000 ppm a.s., i.e. NOEL = 138 mg/kg bw/d
Mammals				
Rat	a.s.	Acute	LD ₅₀	> 5000 mg/kg bw
Mouse	a.s.	Acute	LD50	> 5000 mg/kg bw
Rat	Preparation GF-837	Acute	LD ₅₀	>5000 mg/kg bw* (i.e. >1167 ¹ mg a.s./kg bw)
Mouse	Preparation GF-837	Acute	LD ₅₀	LD ₅₀ >5000 mg/kg bw
Mouse	Metabolite M14	Acute	LD ₅₀	> 5000 mg /kg bw

Rat	a.s.	Long-term	NOAEL	2000 ppm (153
		[for first tier risk assessment]		mg/kg bw/day in males; 181 mg/kg bw/day
				in females)

Endocrine disrupting properties (Annex Part A, points 8.1.5)

Considering the available information, it is unlikely that methoxyfenozide is an endocrine disruptor for fish via the estrogenic, androgenic and steroidogenic modalities. An amphibian metamorphosis assay was available which did not provide any evidence of endocrine activity or potential endocrine related adverse effects via the thyroid modality. Pending on the data gap in Section 2, further consideration of the endocrine potential of methoxyfenozide via the thyroid modality may be needed. No firm conclusion could be drawn for birds.

Additional higher tier studies (Annex Part A, points 10.1.1.2):

[To be provided if the tier 1 risk assessment fails]

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3): [To provide available data]

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

[Vineyard] at [0.096] g a.s./ha [x 1 number of applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step	(Birds)				
All	Small omnivorous bird	Acute	9.15	>246	10
All	Small omnivorous bird	Long-term	1.98	41.8	5
			_		
Tier 1 (Mamma)	ls)				
BBCH ≥ 40	Large herbivorous mammal "lagomorph"	Long-term	0.17	900	5
BBCH ≥ 20	Small Insectivorous mammal "shrew"	Long-term	0.097	1577	5
Application crop directed BBCH ≥ 40	Small herbivorous mammal "vole	Long-term	1.1	139	5
Application crop directed BBCH ≥ 40	Small omnivorous mammal "mouse"	Long-term	0.12	1275	5

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	$PEC_{dw}xDWR$	TER	Trigger
Leaf scenario	Birds	acute	-	-	5

Puddle scenario, Screening step

 $1) Application\ rate\ (g\ a.s./ha)/relevant\ endpoint\ < 50\ (koc < 500\ L/kg),\ TER\ calculation\ not\ needed$

Maize, fruiting and leafy vegetables] at [0.144] g a.s./ha [x 1 number of applications]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger	
Screening Step (Birds)						
All	Small omnivorous bird	Acute	22.9	>98.3	10	

^{*} Maximum dose tested

¹ Converted to a.s. accounting for the purity of 23.35% methoxyfenozide for the lot tested in the study.

			1	DDD	T	
Growth stage	Indicator or focal species	Time scale	(mg/	kg bw per day)	TER	Trigger
All	Small omnivorous bird	Long-term		4.95	16.7	5
		•	•			
Tier 1 (Mammal	,		_			
Maize	Small insectivorous	Long-term		0.15	1020	5
BBCH ≥ 20	mammal "shrew"			1.20	111	
Maize BBCH ≥ 40	Small herbivorous mammal "vole	Long-term		1.38	111	5
Maize BBCH ≥ 40	Small omnivorous mammal "mouse"	Long-term		0.15	1020	5
Fruiting	Frugivorous mammal "rat"			1.92	79.7	
vegetables Fruit stage BBCH 71-89		Long-term				5
Fruiting	Small insectivorous			0.15	1020	
vegetables BBCH ≥ 20	mammal "shrew"	Long-term				5
Fruiting	Small herbivorous mammal			1.66	92.2	
vegetables BBCH ≥ 50	"vole	Long-term		1.00	7 - 12	5
Fruiting	Small omnivorous mammal "mouse"	I on a town		0.18	850	5
vegetables BBCH ≥ 50	mouse	Long-term				3
Leafy	Small insectivorous			0.12	1275	
vegetables BBCH ≥ 20	mammal "shrew"	Long-term				5
Leafy	Small herbivorous mammal			4.6	33.3	
vegetables BBCH 40-49	"vole	Long-term				5
Leafy	Large herbivorous mammal			0.91	168.1	
vegetables All season	"lagomorph"	Long-term				5
Leafy	Small omnivorous mammal			0.5	306	
vegetables BBCH 10-49	"mouse"	Long-term				5
	ccumulation and food chain b	ehavior				
Methoxyfenozio	16			DDD		
Indi	cator or focal species	Time sca	,	mg/kg bw per day)	TER	Trigger
Earthworm-eatin	ng birds	Long-ter		3.175	48	5
Earthworm-eatin	ng mammals	Long-ter		3.871	40	5
Fish-eating birds		Long-ter		0.1108	1381	5
Fish-eating mam	nmals	Long-ter	m	0.099	1545	5
Metabolite RH-	117236*				1	
Indicator or focal species		Time sca		DDD mg/kg bw per day)	TER	Trigger
Fish-eating birds		Long-ter		0.000665	124432	5
Fish-eating mam		Long-ter		0.000594	25777	5
	umption of contaminated wate					
Scenarios	Indicator or focal s	pecies Time	e scale	PEC _{dw} xD		Trigger
Leaf scenario	Birds	acute	2	80 x 0.4	6 > 61.14	5

Puddle scenario, Screening step

1)Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed

*In the absence of toxicity data on metabolite RH-117236, this metabolite was considered as 10 times more toxic than the parent compound.

Risk assessment for metabolite RH-117236* (worst case- Maize, Fruiting and Leafy vegetables)						
Indicator or focal species	Time scale	DDD** (mg/kg bw per day)	TER	Trigger		
Small omnivorous bird	acute	2.10	107	5		
Small omnivorous bird	Long-term	0.453	18.3	10		
Small herbivorous mammal	acute	1.8	278	5		
Small herbivorous mammal	Long-term	0.506	30.2	10		

^{*}In the absence of toxicity data on metabolite RH-117236, this metabolite was considered as 10 times more toxic than the parent compound.

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Laboratory tests				
Fish				
Oncorhynchus mykiss (rainbow trout)	Methoxyfenozide	Acute 96 hr (flow through)	Mortality, LC ₅₀	> 4.2 mg a.s./L _(mm)
Lepomis macrochirus (bluegill sunfish)	Methoxyfenozide	Acute 96 hr (flow through)	Mortality, LC ₅₀	> 4.3 mg a.s./L _(mm)
Cyprinus carpio (Common carp)	Methoxyfenozide	Acute 96 hr (static renewal)	Mortality, LC ₅₀	> 4.9 mg a.s./L _(nom)
Pimephales promelas (Fathead minnow)	Methoxyfenozide	Acute 96 hr (flow through)	Mortality, LC ₅₀	> 3.8 mg a.s./L _(mm)
Cyprinodon variegatus (sheephead minnow)	Methoxyfenozide	Acute 96 hr (flow through)	Mortality, LC ₅₀	> 2.8 mg a.s./L _(mm)

^{**} the BCF value from the parent compound was used in the assessment

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Oncorhynchus mykiss (rainbow trout)	Preparation RH112,485 2F ²	Acute 96 hr (flow- through)	Mortality, LC ₅₀	>130 * (i.e. >30.7 mg a.s./L) _(nom)
Lepomis macrochirus (bluegill sunfish)	Preparation RH112,485 2F ²	Acute 96 hr (flow- through)	Mortality, LC ₅₀	>130 * (i.e. >30.7 mg a.s./L) _(nom)
Pimephales promelas (fathead minnow)	Methoxyfenozide	33 d Chronic (28d post hatching) (static)	Growth, development NOEC	2.4 mg a.s./L _(mm)
Cyprinodon variegatus (Sheepshead minnow)	Methoxyfenozide	32 d Chronic (28d post hatching) (static)	Growth, development NOEC	2.6 mg a.s./L (mm)
Pimephales promelas (fathead minnow)	Methoxyfenozide	262 d, Chronic (full life- cycle) (flow- through)	Growth, reproduction NOEC	0.53 mg a.s./L (mm)
Aquatic invertebrates	·			•
Daphnia magna (water flea)	Methoxyfenozide	Acute 48 hr (flow through)	Mortality, EC ₅₀	3.7 mg a.s./L _(mm)
Daphnia magna (water flea)	Preparation RH2485 SC 240 ²	Acute 48 hr (static)	Mortality, EC ₅₀	>420 * (i.e. >100 mg a.s./L) _(nom)
Daphnia magna (water flea)	Methoxyfenozide	21 d chronic (flow through)	Reproduction, NOEC	0.39 mg a.s./L _(mm)
Sediment-dwelling organism	ms			
Chironomus riparius (Midge)	Methoxyfenozide	Acute 48 hr (static)	Mortality, EC ₅₀	0.257 mg a.s./L _(mm)
Chironomus riparius (Midge)	Methoxyfenozide	28 d chronic (static)	NOEC	0.018 mg a.s./L _(nom) (spiked water)
Chironomus riparius (Midge)	Methoxyfenozide	28 d chronic (static)	NOEC EC10	0.0065 mg a.s./L (measured day 0) (spiked water) 0.010 mg a.s./L
Chironomus riparius (Midge)	Metabolite RH-131154	Acute 48 hr (static)	Mortality, EC ₅₀	71 mg a.s./L

Group	Test substance	Time-scale (Test type)	End point	Toxicity ¹
Chironomus riparius (Midge)	Metabolite RH-117236	28 d chronic (static)	NOEC	0.1 mg a.s./L _(nom) (spiked water)

Algae

Higher plant

No data submitted.

Further testing on aquatic organisms

Applicant has carried out and submitted a mesocosm study that assessed the toxicity of GF-837 – Jenkins (2014). Overall, it is considered that the exposure in the mesocosm study is appropriate for use in risk assessment. On the basis of the assessment carried out by the RMS and CoRMS, the NOEC is considered to be $10~\mu g$ a.s./L and this is based on the effects on Coenagrionidae larvae. However, there are concerns regarding the high variability of certain species and the low numbers of other species, and therefore it is proposed that an assessment factor of 3 is applied to the NOEC, hence the regulatory acceptable concentration (RAC) is $3.3~\mu g$ a.s./L.

It is noted that this study was not considered as sufficient to address the risk to sediment dwellers.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

Test organism	Test substance	Timescale (test type)	Endpoint	Toxicity value (mg test substance /L)
Fathead minnow (Pimephales promelas)	Methoxyfenozide	21 d, Short term, (reproduction), (Flow-through)	NOEC	0.0962 * (mm)
African clawed frog (Xenopus laevis)	Methoxyfenozide	21 d, (flow-through)	NOEC	0.0747 * (mm)

^{*} maximum concentration tested

Considering the available information, it is unlikely that methoxyfenozide is an endocrine disruptor for fish via the estrogenic, androgenic and steroidogenic modalities. An amphibian metamorphosis assay was available which did not provide any evidence of endocrine activity or potential endocrine related adverse effects via the thyroid modality. Pending on the data gap in Section 2, further consideration of the endocrine potential of methoxyfenozide via the thyroid modality may be needed. No firm conclusion could be drawn for birds.

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Methoxyfenozide	Metabolite RH-117236 (M14)
$log P_{O/W}$	3.72	3.24
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	11 mL/g	20*
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)		
Annex VI Trigger for the bioconcentration factor		

^{(&}lt;sub>nom</sub>) nominal concentration; (_{mm}) mean measured concentration; prep.: preparation; a.s.: active substance

² The formulation 'RH 112, 485 2F' and RH-2485 240SC are considered to be equivalent to 'GF-837' (formulation details are given in Volume 4, Section C.1.3.).

Clearance time (days) (CT ₅₀)	0.31	
(CT ₉₀)	1.0	
Level and nature of residues (%) in organisms after the 14 day depuration phase	15% whole fish	

^{*} Software versions used were BCF model (CAESAR) 2.1.14, BCF model (Meylan) 1.0.3, BCF model (KNN/Read-Across) 1.1.0

Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2)

FOCUS_{sw} step 1-3 - TERs for Methoxyfenozide – vine at 1 x 96 g a.s./ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Microcosm / Mesocosm
		Cyprinodon variegatus LC ₅₀ > 2800	Pimephales promelas NOEC = 530	Daphnia magna EC ₅₀ > 3700	Chironomus riparius EC ₅₀ = 257	Daphnia magna NOEC = 390	Chironomus riparius NOEC = 6.5	NOEC = 3.3
FOCUS Step 1	27.03	>103	19.6	>137	9.5	14.4	0.24	-
FOCUS Step 2								
North Europe Single	3.58	-	-	-	71.8	-	1.8	-
South Europe Single	5.03	-	-	-	51.1	-	1.3	-
FOCUS Step 3								
D6/ ditch	1.65	-	-	-	156	-	3.9	2
R1 / pond	0.06	-	-	-	4283	-	108	-
R1 / stream	1.21	-	-	-	212	-	5.4	2.7
R2 / stream	1.62	-	-	-	159	-	3.9	2.0
R3 / stream	1.73	-	-	-	148	-	3.7	1.9
R4 / stream	1.788	-	-	-	144	-	3.63	1.8
Trigger		100	10	100	100	10	10	1

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1-3 - TERs for Methoxyfenozide – maize at 1 x 144 g a.s./ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Microcosm / Mesocosm
		Cyprinodon	Pimephales	Daphnia	Chironomus	Daphnia	Chironomus	
		variegatus	promelas	magna	riparius	magna	riparius	
		$LC_{50} > 2800$	NOEC = 530	$EC_{50} > 3700$	$EC_{50} = 257$	NOEC = 390	NOEC = 6.5	NOEC = 3.3
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
FOCUS Step 1	38.02	>73.6	13.9	>97.3	6.7	10.3	0.17	-
FOCUS Step 2								
North Europe Single	2.91	>962	-	>1271	88.3	-	2.2	-
South Europe Single	4.72	> 593	-	> 784	54.4	-	1.4	-
FOCUS Step 3								
D3 / ditch	0.88	-	-	-	292	-	7.4	3.8
D4 / pond	2.2	-	-	-	117	-	2.9	1.5
D4 / stream	2.00	-	-	-	128	-	3.2	1.7
D5 / pond	1.4	-	-	-	184	-	4.6	2.4
D5 / stream	0.96	-	-	-	268	-	6.8	3.4
D6/ ditch	1.78	-	-	-	144	-	3.7	1.9
R1 / pond	0.148	-	-	-	1736	-	44	-
R1 / stream	2.798	-	-	-	92.1	-	2.3	1.2
R2 / stream	1.41	-	-	-	182	-	4.6	2.3
R3 / stream	4.12	-	-	-	62.4	-	1.6	0.8
R4 / stream	4.34	-	-	-	59.2	-	1.5	0.8
Trigger		100	10	100	100	10	10	1

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1-3 - TERs for Methoxyfenozide – fruiting vegetables at 1 x 144 g a.s./ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Microcosm / Mesocosm
		Cyprinodon variegatus	Pimephales promelas	Daphnia magna	Chironomus riparius	Daphnia magna	Chironomus riparius	
		$LC_{50} > 2800$	NOEC = 530	$EC_{50} > 3700$	$EC_{50} = 257$	NOEC = 390	NOEC = 6.5	NOEC = 3.3
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
FOCUS Step 1	38.02	>73.6	13.9	>97.3	6.7	10.3	0.17	-
FOCUS Step 2								
North Europe Single	3.27	>856	-	>1131	78.6	-	2.0	-
South Europe Single	5.45	> 513	-	> 679	47.2	-	1.2	-
FOCUS Step 3								
D6/ ditch	3.42	-	-	-	75.1	-	1.9	0.96
R2 / stream	1.17	-	-	-	219	-	5.5	2.8
R3 / stream	4.09	-	-	-	62.8	-	1.6	0.8
R4 / stream	4.64	-	-	-	55.4	-	1.4	0.7
Trigger		100	10	100	100	10	10	1

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1-3 - TERs for Methoxyfenozide – leafy vegetables at 1 x 120 g a.s./ha

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates	Aquatic invertebrates prolonged	Sed. dweller prolonged	Microcosm / Mesocosm
		Cyprinodon	Pimephales	Daphnia	Chironomus	Daphnia	Chironomus	
		variegatus	promelas	magna	riparius	magna	riparius	
		$LC_{50} > 2800$	NOEC = 530	$EC_{50} > 3700$	$EC_{50} = 257$	NOEC = 390	NOEC = 6.5	NOEC = 3.3
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
FOCUS Step 1	31.68	>88.4	16.7	>117	8.1	12.3	0.21	-
FOCUS Step 2								
North Europe	2.73	>1026	-	-	94.1	-	2.4	-
Single								
South Europe	4.54	> 617	-	-	56.6	-	1.43	-
Single								
FOCUS Step 3								
D3 / ditch	0.87	-	-	-	295	-	7.5	3.8
D4 / pond	1.94	-	-	-	132	-	3.4	1.7
D4 / stream	1.488	-	-	-	173	-	4.4	2.2
D6/ ditch	4.353	-	-	-	59.0	-	1.5	0.76
R1 / pond	0.23	-	-	-	1117	-	28	-
R1 / stream	1.779	-	-	-	144	-	3.6	1.8
R2 / stream	0.803	-	-	-	320	-	8.1	4.1
R3 / stream	2.49	-	-	-	103	-	2.6	1.3
R4 / stream	2.906	-	-	-	88.4	-	2.2	1.1
Trigger		100	10	100	100	10	10	1

^{*[}Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FOCUS_{sw} step 1 - TERs for metabolites RH-131154 (M08), RH-117236 (M14) - vine at 1 x 96 g a.s./ha

Metabolite	RH-131154 (M08)	RH-117236 (M14)
Species	Chironomus riparius	Chironomus riparius
	$EC_{50} = 71000$	NOEC = 100
	μg/L	μg/L
Scenario		
FOCUS Step 1 PEC global max (µg L)	5.36	0.83
TER	13246	120
Trigger	100	10

FOCUS_{sw} step 1 - TERs for metabolites RH-131154 (M08), RH-117236 (M14) - maize and fruiting vegetables at 1 x 144 g a.s./ha

Metabolite	RH-131154 (M08)	RH-117236 (M14)
Species	Chironomus riparius	Chironomus riparius
	$EC_{50} = 71000$	NOEC = 100
	μg/L	μg/L
Scenario		
FOCUS Step 1 PEC global max (µg L)	8.04	0.83
TER	8831	120
Trigger	100	10

FOCUS_{sw} step 1 - TERs for metabolites RH-131154 (M08), RH-117236 (M14) – leafy vegetables at 1 x 120 g a.s./ha

Metabolite	RH-131154 (M08)	RH-117236 (M14)
Species	Chironomus riparius	Chironomus riparius
	$EC_{50} = 71000$	NOEC = 100
	μg/L	μg/L
Scenario		
FOCUS Step 1 PEC global max (µg L)	6.70	0.83
TER	10597	120
Trigger	100	10

FOCUS_{sw} step 1 - TERs for metabolites RH-131154 (M08), RH-117236 (M14) – leafy vegetables at 2 x 120 g a.s./ha

Metabolite	RH-131154 (M08)	RH-117236 (M14)
Species	Chironomus riparius	Chironomus riparius
	$EC_{50} = 71000$	NOEC = 100
	μg/L	μg/L
Scenario		
FOCUS Step 1 PEC global max (µg L)	13.4	0.83
TER	5298	120
Trigger	100	10

Appendix

Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)

THIS PART REFLECTS THE NEW EFSA GD ON BEES WHICH HAS NOT YET BEEN TAKEN NOTE BY EC. THIS WAS BECAUSE OF DIFFERENCES BETWEEN THE DATA REQUIREMENTS AND THE MORE DETAILED APPROACHES PROPOSED BY THE NEW EFSA GD ON BEES.

Species	Test substance	Time scale/type of endpoint	Endpoint	toxicity
Apis mellifera	a.s., Methoxyfenozide	Acute, 72h	Oral toxicity (LD ₅₀)	>2000 μg a.s./bee
Apis mellifera	RH-2485 240 SC	Acute, 48h		>289 μg form/bee >68.8 μg a.s./bee
Apis mellifera	a.s., Methoxyfenozide	Acute, 48h Contact toxicity (LD ₅₀)		>100 µg a.s./bee
Apis mellifera	RH-2485 240 SC	Acute, 48h		>200 μg form/bee >47.6 μg a.s. /bee
	a.s.,	Chronic*	10 d-LC50	μg/bee/day
	preparation	Chronic*		
	a.s.,	Bee brood development*	NOEClarvae	μg/larva/developmental period
	preparation	Bee brood development*		
	a.s.,	Sub-lethal effects (behavioural and reproductive)*	NOEC hypopharyngeal glands	
	preparation	Sub-lethal effects (behavioural and reproductive)*		

 $[\]ast$ No study submitted – data point address via the use of bee brood studies and field studies.

Potential for accumulative toxicity: Not determined

Honey bee brood feeding (acc. to Oomen *et al.*, 1992): A study using RH-2485 SC 240 was carried based on Oomen *et al* (1992). Three free-flying honey bee colonies were fed with 1 litre of commercial syrup containing 0.04% 'RH-2485 240 SC'. All traps were examined daily for dead adults, larvae and pupae for the duration of the study. Dead larvae and pupae were examined for specific symptoms known to be caused by insect growth regulators (eg. white eye rims and malformations) in the laboratory. No dead bees were found in the feeding bowls. No behavioural abnormalities occurred during the checks in none of the colonies. Normal brood development was seen in the untreated and the 'RH-2485 240 SC' hives. 86% of eggs and 85% of larvae in hives treated with 'RH-2485 240 SC' successfully developed to adult stage compared to 80% of eggs and 89% of larvae in untreated hives. It was concluded that under the conditions of the study a concentration of 0.04% did not result in any adverse effects on brood development.

An additional study was conducted using the Oomen *et al* methodology, colonies were each administered with 6.25, 12.5, 25, 50, 100 mg methoxyfenozide/colony. Measured concentrations were: 5.01, 10.1, 21.8 and 45.8

mg/kg were used. Exposure was to the a.s. only. Colonies in the control group were each dosed with one litre of untreated sucrose solution (containing 1% acetone; as was used in the methoxyfenozide doses). The study was conducted under natural field conditions. The 1 litre of sucrose solution in each colony was consumed in 3-4 days. Overall survival in marked cells from the methoxyfenozide treatments was 76.8-85.5% in the five dose levels, compared with 85.3% in controls. Pupae from cells marked as eggs and young larvae in the 25 and 50 mg a.s./colony treatments were slightly lighter (statistically significant) than those of the control, but no adverse effect was observed in the highest dose level (100 mg a.s./colony). In the dead bee traps, no significant adult or pupal mortality was observed at any dose level (there were occasional peaks associated with robbing due to poor forage availability at this time of year). No adverse effects were observed in any treatment group. Two colonies in the 50 mg a.s./colony group and one in the control group became queenless, and this is reflected in the mean levels of brood in these groups. These were re-queened at the end of the brood assessment period. Overwintering of the colonies was assessed in March 2012. There was no effect on overwintering success of the methoxyfenozide-dosed colonies compared with the controls. There were no long-term adverse effects on adult bees, brood or on colony development or overwintering following direct feeding of honeybee colonies with methoxyfenozide at up to and including 100 mg/colony delivered in a 1 L sucrose solution.

Semi-field test (Cage and tunnel test): A study was carried out according to EPPO 170 on *Phacelia* and used RH-2485 240SC at the 0.8 L/ha. On the basis of the study, it was concluded that RH-2485 240 SC does not have harmful effect on honey bees and brood development when applied at its maximum recommended use rate of 0.8 L/ha.

A further study was carried out according to EPPO 170 in *Phacelia* at the rate of 0 (control), 48 g a.s. in 400 L water/ha = 207.79 g product/ha (corresponding to 519 mg product/L), 480 g a.s. in 400 L water/ha = 2077.9 g product/ha (corresponding to 5.19 g product/L) and 960 g a.s. in 400 L water/ha = 4155.8 g product/ha (corresponding to 10.39 g product/L). Due to issues with the control and the fact that it was replaced during the study, the study is not considered to be robust and hence can only be used in a qualitative manner.

A semi-field study was carried out to investigate the residues in honey bee products and larvae. The study was conducted using *Phacelia* and GF-837 and was based on EPPO 170.

Following an application of GF-837 to flowering *Phacelia* during bee flight at 144 g a.s./ha, samples of pollen and nectar from foragers were taken at 1, 2, and 6 DAA. Nectar from colonies was sampled at 7 DAA only. Results in terms of measured concentrations of methoxyfenozide are given below.

• Highest measured residue for an individual sample:

Pollen from forager bees:

Nectar from forager bees:

Nectar from combs:

Nectar from combs:

2.751 mg/kg

0.035 mg/kg

<0.00011 mg/kg

Larvae from combs:

0.053 mg/kg

• Highest mean measured residue in pollen and nectar from forager bees and in larvae from the combs:

Pollen from forager bees: 2.263 mg/kg
Nectar from forager bees: 0.022 mg/kg
Larvae from combs: 0.029 mg/kg

The study was not designed to assess effects of methoxyfenozide on the colonies and their development (there was only one replicate in the control, compared with four test item replicates), but the parameters which were assessed showed no obvious differences between the condition of the colonies from the control and test item treated tunnels. It should be noted that the study was not considered to be sufficiently robust and has only be used in a qualitative manner.

Field test A field study was carried out using GF-837 at the rate of 210 g a.s./ha on almond trees in the USA. The main aim of the study was to determine residues in honey bees and honey bee products. There were no effects on the condition of honey bee colonies following application of methoxyfenozide at 209.8 or 192.5 g a.s./ha during flowering of almond orchards, during bee flight/foraging.

Residues in the test samples were analysed to be in the range <0.005 to 9.42 mg/kg. Residues in all matrices declined relatively rapidly in the period after application. An overview of the highest measured residues in the different matrices is provided below.

• Highest measured residue for an individual sample (for field trial samples):

Pollen from flower: 6.43 mg/kg
Pollen from forager bees: 9.42 mg/kg
Nectar from forager bees: 0.794 mg/kg
Pollen from combs: 3.87 mg/kg
Larvae from combs: 0.021 mg/kg

• Highest mean measured residue:

Pollen from flower: 6.433 mg/kg
Pollen from forager bees: 6.359 mg/kg
Nectar from forager bees: 0.339 mg/kg
Pollen from combs: 1.508 mg/kg
Larvae from combs: 0.013 mg/kg

It should be noted that due to issues with the residues found in samples before application and the fact that there was observed high variation between residue analysis in pollen at two tested sites, the study is not considered to be robust and hence can only be used in a qualitative manner.

A further field study was carried on which used pome fruit applied at the rate of 142 g a.s./ha. in this study, honeybee colonies were exposed to methoxyfenozide treatment during full flowering of a 3 ha apple orchard in Northern Italy at a rate of 142.4 g a.s./ha. Foraging by worker bees occurred during and shortly after application. There were no effects by the test item on: brood development, colony development, observed, adult mortality, and return rate of foragers to the colony.

The residues data gathered during the study are summarised below as methoxyfenozide concentrations.

• Highest measured residue for an individual sample:

	GF-837 tretment	Control
Forager bees (without pollen)	1.949 mg/kg	
Pollen from forager bees	6.663 mg/kg	
Pollen from colonies (bee bread)	4.043 mg/kg	0.231 mg/kg
Nectar from forager bees	0.096 mg/kg	
Nectar from colonies	0.028 mg/kg	0.006 mg/kg
Larvae from colonies	0.012 mg/kg	<loq< td=""></loq<>
Harvested honey	<loq *<="" td=""><td><loq< td=""></loq<></td></loq>	<loq< td=""></loq<>

^{- -} only bees from the treatment orchard were analysed

• Individual values at 1 DAA (n=2) and highest mean measured residue at 3 DAA (n=7) in pollen and nectar from forager bees:

Pollen from forager bees (1 DAA): 2.091 and 6.663 mg/kg

Pollen from forager bees (3 DAA): 1.736 mg/kg
Nectar from forager bees (1 DAA): 0.022, 0.032 mg/kg
Nectar from forager bees (3 DAA): 0.054 mg/kg

It should be noted that due to the potential reliability of the study, it is not considered to be robust and hence can only be used in a qualitative manner.

^{*} three colonies swarmed (i.e. colonies 2/1, 2/6 and 2/9) and could not be harvested LOQ <0.005 mg/kg

Risk assessment for maize and sweet corn at 144 g a.s./ha g a.s./ha once per year

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	RH-2485 240 SC	HQcontact	<3.03	50
Apis mellifera	RH-2485 240 SC	HQoral	<2.09	50

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Test	End point	Toxicity
Substance		
RH 2485 SC 240	Mortality, LR ₅₀	LR ₅₀ >0.8 L/ha* (i.e. >192 g a.s./ha)
		Adult mortality (%):
		Control = 3.3%
		Formulation = 10.0%
		Mummies/female:
		control 13.0
		0.8 l/ha 9.1
		70% parasitisation compared to control
	•	
RH 2485 SC 240	ER ₅₀	ER ₅₀ >0.8 L/ha* (i.e. >192 g a.s./ha)
		Mortality (%):
		Control = 5
		Formulation = 5
		Feeding of treated spiders 33% greater than control
RH 2485 SC 240	ER ₅₀	ER ₅₀ >0.8 L/ha* (i.e. >192 g a.s./ha)
		Exposure phase mortality:
		Control = 15%
		Formulation = 33% (corrected value 22%)
		Reproduction (eggs/female):
		control 31.8
		0.8 l/ha 61.3
		Egg hatching (%):
		control 79.3 0.8 l/ha 78.8
	RH 2485 SC 240 RH 2485 SC 240	RH 2485 SC 240 Mortality, LR ₅₀

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Tim e scale	Dose (g/ha)	End point	% effect	ER ₅₀
Aphidius rhopalosiphi	adult	RH 2485 SC 240	48 hr expo sure and 12 days fecu ndity asses sme nt	0 and 192 g a.s./ha	Mortality Repro	Adult mortality (%): 0 0 Mummies/f emale: Control = 12.3% Formulation = 10.9 89% parasitisatio n compared to control	ER ₅₀ >0.8 L/ha* (i.e. >192 g a.s./ha)
Trichogramma cacoeciae	adult	RH 2485 SC 240	7 days	0, 2x0.8 l/ha with 10 day interval	Mortality and parasitisati on	Adult survival: 100% 100% 166% parasitisatio n compared to control	ER ₅₀ >0.8 L/ha* (i.e. >192 g a.s./ha)
Trichogramma cacoeciae	adult	RH 2485 SC 240	10 days expo sure	0, 0.16 L/ha	Mortality and parasitisati on	Adult emergence: 80% 86% 89% parasitisation compared to control	ER ₅₀ >38.4 g/ha*
Typhlodromus pyri		RH 2485 SC 240		0 and 192 g a.s./ha	Mortality Repro	No effects >50% on fecundity and fertility	ER ₅₀ >192 g a.s./ha

Species	Life stage	Test substance, substrate	Tim e scale	Dose (g/ha)	End point	% effect	ER ₅₀
Typhlodromus pyri	adults	RH 2485 SC 240	18 days	0, 4x0.4 l/ha with 10 day interval	Mortality and repro	Mortality: Control = 13.8% Formulation = 17.5% Eggs per female 67% relative to control. Larvae per female 73% relative to control. Larvae per egg 105% relative to control	>4x96 g a.s./ha with 10 day interval
Chrysoperla carnea	larvae	RH 2485 SC 240	105 days	control 3 x 0.4 1/ha with 10 day interval	Mortality Repro	Adult emergence from pupae: 86% 74% Eggs/femal e 82% relative to control Egg hatch 102% relative to control	ER ₅₀ >3× 0.4 L/ha* (i.e. >3× 96 g a.s./ha), 10-d interval
Poecilus cupreus*	larvae	Intrepid 2F and Methoxyfenozide	45- days	0 (control), 0.064, 0.64 and 1.28 mg a.s./kg soil	Mortality Repro	No effects >50% on body weight and emergence	LR50 = >1.28 mg a.s./kg soil and >5.54 mg formn/k g soil
Typhlodromus pyri*	proton ymphs	Intrepid 2F	14- days	0 (control), 4000, 2000 and 200 mL product/ha (nominally 960, 480 and 48 g a.s./ha)	Mortality Repro	-53% on fecundity +21% on fecundity	Day 0 residues: LR ₅₀ >4 L/ha i.e. >960 g a.s./ha Day 7 residues: LR ₅₀ >4 L/ha

Species	Life stage	Test substance, substrate	Tim e scale	Dose (g/ha)	End point	% effect	ER ₅₀
Stethorus punctillum	larvae	Intrepid 2F	7- days	0 (control), 48, 480 and 960 g a.s./ha	Mortality Repro	50.1% mortality No effects >50% on fecundity and fertility	Day 0 residues: LR ₅₀ = 4 L/ha* (i.e. = 960 g a.s./ha) Day 7 residues: LR ₅₀ >4 L/ha*

^{*} multiple rate test

Risk assessment

Species	ER ₅₀ (g/ha)	In-field rate	Off-field rate ¹
---------	-------------------------	---------------	-----------------------------

Assessment not considered relevant due to the mode of action of methoxyfenozide and the fact that it is needs to be ingested.

Semi-field tests

_

Field studies

Typhlodromus pyri: at most -26.2% difference in number of mites per 25 leaves from control at 4×0.4 L RH-2485 SC250 /ha (i.e. >4× 96 g a.s./ha), 10/15-d interval

Typhlodromus pyri: at most -22% difference in number of mites per 25 leaves from control at 4×0.4 L RH-2485 SC250 /ha (i.e. >4× 96 g a.s./ha), 10/11-d interval

Additional specific test

Community of arthropods in apple orchard: NOEC = 2×144 g a.s./ha (as GF-837), 30-d interval. the following key points were noted:

Pitfall traps: there were no overall adverse effects of either treatment, noting that some species/groups were present, in both treatments and the control, at low numbers.

Visual assessment: no overall adverse effects of either treatment, i.e. numbers were in line with treatment.

Yellow water traps: there were no overall adverse effects of either treatment, noting that some species/groups were present, in both treatments and the control, at low numbers.

Inventory sampling: there were no overall adverse effects of either treatment, noting that some species/groups were present, in both treatments and the control, at low numbers.

Data gap

Further information to address the risk to sensitive life stages of non-target arthropods in-field and off-field and further information to address the off-field risk to Lepidoptera

¹indicate distance assumed to calculate the drift rate and if 3D or 2D.

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./	Time scale	End point	Toxicity
Earthworms	•			·	•
Eisenia andrei	RH 2485 SC 240:	Artificial soil with 10% peat content, test item mixed into artificial soil	Chronic	Reproduction, 56 d	NOEC = 2.04 mg a.s./kg dry soil*
Eisenia foetida	RH-131154 (M08)	Artificial soil with 10% peat content, test item mixed into artificial soil	Chronic	Reproduction, 56 d	NOEC = 20 mg/kg dry soil*
Other soil m	acroorganisms				·
Folsomia candida	Methoxyfenozide	Artificial soil with 10% peat content, test item mixed into artificial soil	Chronic	Reproduction, 28 d	NOEC = 0.64 mg/kg dry soil*
	GF-837	(5% peat in test soil) test item mixed into artificial soil	Chronic	Reproduction, 28 d	NOEC = 20.48 mg a.s./kg dry soil*
	RH-131154 (M08)	(5% peat in test soil) test item mixed into artificial soil	Chronic	Reproduction, 28 d	NOEC = 20 mg/kg dry soil*
Hypoaspis aculeifer	RH-131154 (M08)	(5% peat in test soil) test item mixed into artificial soil	Chronic	Reproduction, 14 d	NOEC = 1000 mg/kg dry soil*

¹To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).

Higher tier testing (e.g. modelling or field studies)

Nitrogen transformation	Methoxyfenozide		<25% effects at (Day 28) 1.96 kg/ha* (i.e. 2.61 mg/kg dry soil)
	GF-837	dose equivalent to 3.75 kg product/ha (= 0.9 kg a.s./ha)	<25% effects at (Day 28) 3.75 kg/ha* (i.e. 5 mg/kg dry soil) (i.e. 1.18 mg a.s./kg dry soil)
	RH-131154 (M08)	Dose 2: 5 mg RH-131154/kg soil dry weight	<25% effects at (Day 28) 5 mg/kg dry soil

Toxicity/exposure ratios for soil organisms

Test organism	Test substance	Time scale	Soil PEC ¹		TER	Trigger
			Earthworms			
Eisenia	RH 2485 SC	Chronic	Maize	0.115	17.7	
andrei			Vines	0.219	9.3	5
			Fruiting veg	0.045	45.3	3
			Leafy veg	0.092	22.2	
Eisenia	RH-131154	Chronic	Vine	0.005	4000	
foetida			Maize	0.008	2500	
			Fruiting veg	0.007	4000	_
			Leafy veg	0.008	2500	5
			Leafy veg (total dose)	0.016	1250	
Eisenia foetida	RH-131154	Chronic	Maximum accumulated PEC	0.071	281	5
Other soil n	nacroorganisms			•		
Folsomia	GF-837	Chronic	Maize	0.115	178	
candida			Vines	0.077	266	_
			Fruiting veg	0.092	222.6	5
			Leafy veg	0.219	93.5	
Folsomia	RH-131154	Chronic	Maize	0.008	2500	
candida			Vines	0.005	4000	_
			Fruiting veg	0.007	2857	5
			Leafy veg	0.016	1250	
Folsomia candida	RH-131154	Chronic	Maximum accumulated PEC	0.071	281	5
Hypoaspis	RH-131154	Chronic	Maize	0.008	125000	5

^{*}Toxicity endpoints have been amended by a factor of 2.

Test organism	Test substance	Time scale	Soil PEC ¹		TER	Trigger
aculeifer			Vines	0.005	200000	
			Fruiting veg	0.007	142857	
			Leafy veg	0.016	62500	

¹indicate which PEC soil was used (e.g. plateau PEC)

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER_{50} tests should be provided

Laborato	ry dose	response	tests
----------	---------	----------	-------

Species	Test substance	ER ₅₀ (g/ha) ² vegetative vigour	ER ₅₀ (g/ha) ² emergence	Exposure ¹ (g/ha) ²	TER	Trigger
Maize/sweet corn and fruiting vegetables	RH 2485 SC 240	5 monocots + 6 dicots ER ₅₀ >1000 g a.s./ha NOER = 1000 g a.s./ha	5 monocots + 6 dicots ER ₅₀ >1000 g a.s./ha NOER = 1000 g a.s./ha	3.99	>250	5
Leaf Vegetable	RH 2485 SC 240	5 monocots + 6 dicots ER ₅₀ >1000 g a.s./ha NOER = 1000 g a.s./ha	5 monocots + 6 dicots ER ₅₀ >1000 g a.s./ha NOER = 1000 g a.s./ha	2.77	>301	5
Grapes	RH 2485 SC 240	5 monocots + 6 dicots ER ₅₀ >1000 g a.s./ha NOER = 1000 g a.s./ha	5 monocots + 6 dicots ER ₅₀ >1000 g a.s./ha NOER = 1000 g a.s./ha	8.02	>129	5

Extended laboratory studies: No study presented Semi-field and field test: No study presented

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	EC50 >10000mg a.s./l.
Pseudomonas sp	

¹ explanation of how exposure has been estimated should be provided (e.g. based on Ganzelmeier drift data)

² for preparations indicate whether dose is expressed in units of a.s. or preparation

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.
None.
Available monitoring data concerning effect of the PPP.
None.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds¹

Compartment	
soil	Parent (methoxyfenozide)
water	Parent (methoxyfenozide)
sediment	Parent (methoxyfenozide)
groundwater	Parent (methoxyfenozide)

¹ metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁶:

Peer review proposal⁷ for harmonised classification according to Regulation (EC) No 1272/2008:

Methoxyfenozide
-
Aquatic Acute 1 and Aquatic Chronic 1-(Acute M-factor
10; Chronic M-factor 1)

_

⁶ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁷ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.

Abbreviations

1/*n* slope of Freundlich isotherm

 λ wavelength

ε decadic molar extinction coefficient

a.s. active substanceAChE acetylcholinesteraseADE actual dermal exposureADI acceptable daily intake

AF assessment factor

AAOEL acute acceptable operator exposure level

AOEL acceptable operator exposure level

AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose

AST aspartate aminotransferase (SGOT)

AUC area under the blood concentration/time curve

AV avoidance factor

BCF bioconcentration factor
BUN blood urea nitrogen

bw body weight

CAS Chemical Abstracts Service

CFU colony-forming units

ChE cholinesterase

CI confidence interval

CIPAC Collaborative International Pesticides Analytical Council Limited

CL confidence limits

Cmax concentration achieved at peak blood level

DAA days after application
DAT days after treatment
DDD daily dietary dose

DM dry matter

 DT_{50} period required for 50% dissipation (define method of estimation) DT_{90} period required for 90% dissipation (define method of estimation)

dw dry weight

EbC₅₀ effective concentration (biomass)

EC₅₀ effective concentration

ECHA European Chemicals Agency

EEC European Economic Community

EMDI estimated maximum daily intake

 ER_{50} emergence rate/effective rate, median ErC_{50} effective concentration (growth rate)

ETR exposure toxicity ratio

ETR_{acute} exposure toxicity ratio for acute exposure
ETR_{larvae} exposure toxicity ratio for chronic exposure

ETR_{larvae} exposure toxicity ratio for larvae

ETR_{HPG} exposure toxicity ratio for effects on honeybee hypopharygeal glands

EU European Union

EUROPOEM European Predictive Operator Exposure Model

f(twa) Time-weighted average factor

FAO Food and Agriculture Organization of the United Nations

FID flame ionisation detector

FIR food intake rate

FOB functional observation battery

FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use

GAP Good Agricultural Practice

GC gas chromatography

GCPF Global Crop Protection Federation (formerly known as International Group of National

Associations of Manufacturers of Agrochemical Products; GIFAP)

GGT gamma glutamyl transferase

GM geometric mean
GS growth stage
GSH glutathione
Hb haemoglobin
Hct haematocrit

HPLC high-pressure liquid chromatography

or high-performance liquid chromatography

HPLC-MS high-pressure liquid chromatography—mass spectrometry

HPG hypopharygeal glands

HQ hazard quotient

 $HQ_{contact}$ hazard quotient for contact exposure

HR hazard rate

IEDI international estimated daily intake

IESTI international estimated short-term intake

ISO International Organization for Standardization

IUPAC International Union of Pure and Applied Chemistry

iv intravenous

JMPR Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the

Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on

Pesticide Residues)

K_{doc} organic carbon linear adsorption coefficient

K_{Foc} Freundlich organic carbon adsorption coefficient

LC liquid chromatography

LC₅₀ lethal concentration, median

LC-MS liquid chromatography—mass spectrometry

LC-MS-MS liquid chromatography with tandem mass spectrometry

LD₅₀ lethal dose, median; dosis letalis media

LDD₅₀ lethal dietary dose; median

LDH lactate dehydrogenase

LOAEL lowest observable adverse effect level

LOD limit of detection

LOQ limit of quantification M/L mixing and loading

MAF multiple application factor

MCH mean corpuscular haemoglobin

MCHC mean corpuscular haemoglobin concentration

MCV mean corpuscular volume

mm millimetre (also used for mean measured concentrations)

mN milli-newton

MRL maximum residue level
MS mass spectrometry

MSDS material safety data sheet MTD maximum tolerated dose

MWHC maximum water-holding capacity

NESTI national estimated short-term intake

NOAEC no observed adverse effect concentration

NOAEL no observed adverse effect level NOEC no observed effect concentration

NOEL no observed effect level

NPD nitrogen-phosphorus detector

OECD Organisation for Economic Co-operation and Development

OM organic matter content

Pa pascal

PD proportion of different food types

PEC predicted environmental concentration

PEC_{air} predicted environmental concentration in air

 PEC_{gw} predicted environmental concentration in groundwater

PEC_{sed} predicted environmental concentration in sediment

PEC_{soil} predicted environmental concentration in soil

PEC_{sw} predicted environmental concentration in surface water

PHED pesticide handler's exposure data

PHI pre-harvest interval

PIE potential inhalation exposure

pK_a negative logarithm (to the base 10) of the dissociation constant

P_{ow} partition coefficient between *n*-octanol and water

PPE personal protective equipment

ppm parts per million (10^{-6})

PT proportion of diet obtained in the treated area

PTT partial thromboplastin time

QSAR quantitative structure—activity relationship

r² coefficient of determination

RPE respiratory protective equipment

RUD residue per unit dose SC suspension concentrate

SD standard deviation SFO single first-order

SMILES simplified molecular-input line-entry system

SPG specific protection goal

SSD species sensitivity distribution
STMR supervised trials median residue

 $t_{1/2}$ half-life (define method of estimation)

TER toxicity exposure ratio

TER_A toxicity exposure ratio for acute exposure

TER_{LT} toxicity exposure ratio following chronic exposure
TER_{ST} toxicity exposure ratio following repeated exposure

TK technical concentrate
TLV threshold limit value

Tmax time until peak blood levels achieved TMDI theoretical maximum daily intake

TRR total radioactive residue

TSH thyroid-stimulating hormone (thyrotropin)

TWA time-weighted average

UDS unscheduled DNA synthesis

UF uncertainty factor

UV ultraviolet

W/S water/sediment

w/v weight per unit volumew/w weight per unit weight

WBC white blood cell

WG water-dispersible granule
WHO World Health Organization