සියලුම හිමිකම් ඇවිරිණි / (ආශුට පුනිට්ටුල්කාංගයුනෙ $All\ Rights\ Reserved$)

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව යි ලංකා විභාග දෙපාර්තමේන්තුව මිභාග දෙපාර්තමේන්තුව இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்குளும் இடங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கை Salifulon ප**ණුඇ**தினைக்களம்**s, Sri Lanka Department of Examinations, Sri Lanka ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் அமெனைக்களம்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහ්බෝධ ධொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

<mark>භෞතික විදපාව II</mark> ධෙளதிகவியல் II Physics II

01 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

ව්භාග අංකය :	 	 • • • • • • • • •

වැදගත් :

- 🛠 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය f A සහ f B යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකටම** නියමිත කාලය **පැය** තුනකි.
- 🗚 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.

A කොටස - වනුහගත රචනා (පිටු 2 - 8)

සියලුම පුශ්නවලට පිළිතුරු මෙම පතුයේම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවීය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතුය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- * සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පසු A සහ B කොටස් එක් පිළිතුරු පත්‍රයක් වන සේ, A කොටස B කොටසට උඩින් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි				
	දෙවැනි පතුය	සඳහා		
කොටස	පුශ්න අංක	ලැබූ ලකුණු		
	1			
	2			
A	3			
	4			
	5			
	6			
	7			
	8			
В	9(A)			
	9(B)			
	10(A)			
	10(B)			
	ඉලක්කමෙන්			
එකතුව	අකුරෙන්			

	ක ංමකයා ඇංක
උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
ලකුණු පරීක්ෂා කළේ	
අධීක්ෂණය කළේ	

${f A}$ කොටස - වනුගගත රචනා පුශ්න **හතරටම** පිළිතුරු **මෙම පතුයේම** සපයන්න. $(g~=~10~{ m m~s^{-2}})$

මෙම තීරයේ කිසිවක් තොලියත්ත

1. පහළ කෙළවරෙහි කුරක් සම්බන්ධ කරන ලද හෙලික්සීය දුන්නකින් අවලම්බනය කර ඇති ස්කන්ධයක් (m) රූපයේ පෙන්වා ඇත. ස්කන්ධය (m) සහ එහි සිරස් දෝලන කාලාවර්තය (T) අතර සම්බන්ධය සතාහපනය කිරීමට හා පුස්තාරික කුමයක් භාවිත කරමින් දුන්නෙහි දුනු නියතය (k) නිර්ණය කිරීමට ශිෂායෙකුට නියමව ඇත.

(a)	(1) දුනු තියතය (k) වන ස්කන්ධය රහිත දුන්නකින් අවලම්බනය කරන ලද (m) ස්කන්ධයක සිරස් දෝලන කාලාවර්තය (T) සඳහා පුකාශනයක් ලියා දක්වන්න.
	(ii)) සුදුසු සරල රේඛීය පුස්තාරයක් ඇඳීමෙන් (m) ස්කන්ධය සහ (T) දෝලන කාලාවර්තය අතර සම්බන්ධය සතාහපනය කිරීමට ඉහත (a) (i) හි ලියා ඇති පුකාශනය නැවත සකස් කර ලියන්න.
(b)	(i)	ශිෂායාට 50 g පඩි කට්ටලයක් සපයා ඇත්නම් ඔහුට මෙම පරීක්ෂණය සිදුකිරීමට අතාවශා අනෙක් මිනුම් උපකරණය කුමක් ද?
	(ii)	මෙම පරීක්ෂණය සිදුකිරීමේදී යොමු කුරක් භාවිත කිරීම සුදුසු ය. ඉහත රූපයේ මෙම කුරෙහි සුදුසු පිහිටීම ඊතල හිසක් මගින් ඇඳ පෙන්වන්න.
	(iii)	මෙම යොමු කූර භාවිත කිරීමේ අරමුණ කුමක් ද?
	÷	
(c)	(i)	දුන්තෙහි දුනු නියතය (k) නිර්ණය කිරීමේ නිරවදානාව පුධාන වශයෙන් ස්කන්ධයෙහි දෝලන කාලාවර්තය (T) නිර්ණය කිරීමේ නිරවදානාව මත රඳා පවතින්නේ ඇයි?
	(ii)	කාලය මැනීමේ භාගික දෝෂයට බලපාන ඉහත (b) (i) හි සඳහන් කරන ලද උපකරණයේ ලාක්ෂණික ගුණය කුමක් ද $?$ (මෙම ගුණයේ අගය x යැයි සිතමු.)

)21(2022)/01-S-II		- 3 -	විභාග අංකය:	
	යක් ලබා ගැනීමට ගතයුතු		ා කාලාවර්තය නිර්ණය කිරීමේදී 1% ස ංඛාාව (n) සඳහා පුකාශනයක් x හා	
			······································	
				•
හෙලික්සීය දුන්නෙහි	ගි දුනු නියතය (<i>k</i>) ගණනය	. කිරීම සඳහා ශිෂ	ායා පහත පුස්තාරය ලබා ගත්තේය.	•
$T^2 (\times 10^{-2} \mathrm{s}^2)$	<u> </u>			
100				
90				
80				
70				
60				
50				
40 +				
30 -				
20				
10 +				
0	50 100 150 2	200 250 300	m (g)	
		ුන්නෙහි දුනු නියද	ාය (k) හි අගය ${f SI}$ ඒකකවලින් ගණනය	3
කරන්න. (π^2 =	=10 ලෙස ගන්න.)		•	
		••••••••		$\cdot $
•••••				
		••••••		

2 - කුෂාරාංකය මැනීම මගින් පරීක්ෂණාගාරය තුළ ඇති වාතයේ සාපේක්ෂ ආර්දුතාව නිර්ණය කිරීමට ඔබට සිඩිවිස් නොලියන්න නියමව ඇත. පිටත පෘෂ්ඨය ඔප දමන ලද තඹ කැලරිමීටරයක්, උෂ්ණත්වමානයක්, ජලය, අවශා තරමට වූ කුඩා අයිස් කැබලි පුමාණයක් සහ පාරදෘශා වීදුරු තහඩුවක් ඔබට සපයා ඇත. මේ සඳහා සැකසූ අසම්පූර්ණ පරීක්ෂණ ඇටවුමක් (1) රූපයේ පෙන්වා ඇත.

	(1) රූපය
(a)) ඔබට මෙම පරීක්ෂණය සිදු කිරීම සඳහා කැලරිමීටරය තුළට ජලය වත් කළ යුතුව ඇත. (1) රූපයෙ පෙන්වා ඇති A,B සහ C ජල මට්ටම් අතුරෙන් වඩාත්ම යෝගා මට්ටම තෝරා ගන්න.
	යෝගා මට්ටම :
(b)	පරීක්ෂණාගාරයේ ඇති P,Q සහ R උෂ්ණත්වමාන තුනකට පිළිවෙළින් -10 සිට $50^\circ\mathrm{C}$, -10 සිට $100^\circ\mathrm{C}$ සහ -10 සිට $200^\circ\mathrm{C}$ යන උෂ්ණත්ව පරිමාණ පරාස ඇත. මෙම පරීක්ෂණය සඳහා වඩාත්ම යෝගැ උෂ්ණත්වමානය තෝරා ගන්න.
	යෝගා උෂ්ණත්වමානය :
	ඔබගේ තෝරා ගැනීම සඳහා හේතුව දෙන්න :
(c)	මෙම පරීක්ෂණය සිදු කිරීම සඳහා දී නොමැති අනෙක් වැදගත් අයිතමය කුමක් ද?
(d)	තුෂාරාංකය නිර්ණය කිරීම සඳහා උෂ්ණත්ව දෙකක් ඔබට මැනිය යුතුව ඇත. පුථම උෂ්ණත්වය නිවැරදිව මැන ගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක පියවර ඔබ දකිනා නිරීක්ෂණය සමගින් ලියා දක්වන්න.
	පරීක්ෂණාත්මක පියවර :
	තිරීක්ෂණය :
	දෙවන උෂ්ණත්වය නිවැරදිව මැන ගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක පියවර ඔබ දකිනා නිරීක්ෂණය සමගින් ලියා දක්වන්න.
	පරීක්ෂණාත්මක පියවර :
	······································

@ @ @
තිරයේ
කිසිවක්
මෙම තීරයේ කිසිවක් තොලියන්න

	······································
) (i) මෙම පරීක්ෂණයේදී පාරදෘශා විදුරු තහඩුව භාවිත නොකිරීමෙන් ඇතිවිය හැකි දෝෂ දෙකක් දෙන්න. (මුව ආවරණයක් හෝ/සහ මුහුණු වැස්මක් භාවිත නොකරන්නේ යැයි උපකල්පනය කරන්න.)
	(1)
	(2)
(ii) පිළිවෙළින් $5\mathrm{cm} imes 5\mathrm{cm}$, $20\mathrm{cm} imes 20\mathrm{cm}$ සහ $80\mathrm{cm} imes 80\mathrm{cm}$ මාන සහිත L,M සහ N වීදුරු තහඩු තුනක් ඇත්නම් මෙම පරීක්ෂණය සිදුකිරීම සඳහා සුදුසුම තහඩුව කුමක් ද? අනෙක් තහඩු දෙක තෝරා නොගැනීමට හේතු දෙන්න.
	සුදුසුම තහඩුව :
	අනෙක් තහඩු ලදක තෝරා නොගැනිමට හේතු :
	(1)
	(2)
30 වාද දෙ:	(2) ම පරීක්ෂණයේදී මධානා තුෂාරාංක අගය සහ පරීක්ෂණාගාර උෂ්ණත්වය පිළිවෙළින් $26\cdot 0^{\circ}\mathrm{C}$ සහ $0^{\circ}\mathrm{C}$ ලෙස සොයා ගන්නා ලදී. (2) රූපයේ දී ඇති පුස්තාර භාවිත කොට පරීක්ෂණාගාරය තුළ ඇති හයේ සාපේක්ෂ ආර්දුතාව නිර්ණය කරන්න. පුස්තාරයේ X - අක්ෂයෙන් පරීක්ෂණාගාර උෂ්ණත්වය
30· වාස දෙ: 80	(2)ම පරීක්ෂණයේදී මධානා තුෂාරාංක අගය සහ පරීක්ෂණාගාර උෂ්ණත්වය පිළිවෙළින් $26\cdot 0^{\circ}\mathrm{C}$ සහ $0^{\circ}\mathrm{C}$ ලෙස සොයා ගන්නා ලදී. (2) රූපයේ දී ඇති පුස්තාර භාවිත කොට පරීක්ෂණාගාරය තුළ ඇති ගයේ සාපේක්ෂ ආර්දුතාව නිර්ණය කරන්න. පුස්තාරයේ X - අක්ෂයෙන් පරීක්ෂණාගාර උෂ්ණත්වය නු ලබන අතර Y - අක්ෂයෙන් තුෂාරාංකය දෙනු ලබයි. රූපයේ සරල රේඛා මගින් 100% , 90%
30· වාද දෙ: 80'	(2)
30· වාද දෙ: 80'	(2)
30· වාස දෙ: 80'	(2)

පරීක්ෂණාගාර උෂ්ණත්වය (°C) (2) රූපය

3.	වස් ලෙ	්තුවස ස ඔ	ා පුතිබිම්බගේ දෘශාා විස්ථාපනය භාවිතයෙන් පාරදෘශා දවයකු වර්තනාංකය (#) නිර්ණය කරන 🖟	තීරයේ කිසිවක් තොලියා
	අල්	පෙල	නත්තක් (O) , දුවයේ පාවෙන සිහින් ප්ලාස්ටික් කුඩු ටිකක් හා විශාල සිරින්ජයක් සපයා ඇත.	
	(a)	හා කුථ	රූපයේ පෙන්වා ඇති ආකාරයෙන් වාතයේ තබා ඇති ඝනකම (h) සාදා ඇති දවායේ වර්තනාංකය (n) වූ පාරදෘශා කුච්ටියක් මගින් ටීයේ පුතිවිරුද්ධ පැත්තේ තබා ඇති O වස්තුවක පුතිබිම්බයේ විවන දෘශා විස්ථාපනය (d) සඳහා පුකාශනයක් ලියන්න.	
		••••		
٠				
	<i>(b)</i>	පුති	න් O අල්පෙනෙන්න (2) රූපයේ දක්වා ඇති පරිදි හිස් සරාවේ පතුලේ නබා එහි \overline{A} ම්බය පැහැදිලිව පෙනෙන අයුරින් චල අන්වීක්ෂය ඉහළින් නාභිගත කර, පාඨාංකය ලබයි. එය x යැයි සිනමු. පසුව එක්තරා (h) උසක් දක්වා දුවය වත් කරනු ලැබේ.	
		(i)	නැවත අල්පෙනෙත්තේ පැහැදිලි පුතිබිම්බයක් බලා ගැනීම පිණිස චල අන්වීක්ෂයට කුමක් කළ යුතු ද? මෙම අවස්ථාවේදී චල අන්වීක්ෂ පාඨාංකය ලබා ගනු ලැබේ. (එය y යැයි සිතමු.)	
		(ii)	දුව කඳේ උස (h) මැන ගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක පියවර ලියන්න. (එහිදී ගන්නා පාඨාංකය z යැයි සිතමු.)	
	÷			
	!	(iii)	පාඨාංක x,y හා z භාවිතයෙන් දුව කඳේ උස (h) සහ පුතිබිම්බයේ දෘශා විස්ථාපනය O	
			h= (2) රූපය	
			d=	
((c)	(i)	පුස්තාරික කුමයකින් දුවයේ වර්තනාංකය (n_l) සෙවීම සඳහා ඔබ ඉහත (a) හි ලියන ලද සමීකරණය භාවිත කරන්නේ නම් එහි කුමන විචලාපය ඔබ වෙනස් කරන්නේ ද $?$	
		(ii)	ඔබ අඳිනු ලබන සරල රේඛීය පුස්තාරයේ පරායත්ත විචලාঃය කුමක් චේද?	
	(iii)	අක්ෂ පැහැදිලිව නම් කරමින් ඔබ බලාපොරොත්තු වන පුස්තාරයේ දළ සටහනක් අඳින්න.	
			0	
			(1)	

	(d)	පුස්තාරයේ අනුකුමණය (m) ඇසුරෙන් දුවයේ වර්තනාංකය $(n_{_{l}})$ සඳහා පුකාශනයක් ලියන්න.	මෙම තීරයේ කිසිවක් නොලියා
	(e)	අනුකුමණය $m=0\cdot 20$ නම් දුවයේ වර්තනාංකය (n_l) ගණනය කරන්න.	
			-
	<i>(f)</i>	දුව කඳේ උස $5\cdot0\mathrm{cm}$ විටදී එයට සෙමෙන් ජලය එකතු කළ විට දුවය ජලය මත පාවේ. අල්පෙනෙත්තේ	
		පුතිබිම්බයේ මුළු දෘශාෘ විස්ථාපනය $1.5\mathrm{cm}$ හා ජලයේ වර්තනාංකය $\frac{4}{3}$ වේ. සරාව තුළ ඇති ජල කඳේ උස සොයන්න.	
1.	ඉයා <i>R</i> ව	ර සේතුවක් ආධාරයෙන් දී ඇති කම්බියක් සාදා ඇති දුවායේ පුතිරෝධකතාවය (P) නිර්ණය කිරීම සඳහා දෙ ගන්නා පරීක්ෂණාත්මක සැකසුමක කොටසක් (1) රූපයේ දැක්වේ. පුතිරෝධ පෙට්ටියේ පුතිරෝධ අගය (P) න අතර දී ඇති කම්බියෙහි පුතිරෝධය (P) න වී මී වී ර සේතු කම්බියෙහි දිග (P) හා (P) ගැල්වනෝමීටරය (P) වී දෙ ගැල්වනෝමීටරයක් සම්බන්ධ කළ යුතුව ඇත. මැද බිංදු ගැල්වනෝමීටරය ආරක්ෂා කිරීම සඳහා (P) රූපයෙහි දක්වා ඇති පරිපථය භාවිත කළ හැක.	
		K_2 (2) ర్వాలు	
		(2) 0(000	
		(i) K_2 යතුරෙහි වර්ගය නම් කරන්න. \ldots (ii) 1Ω , 10Ω , 100Ω සහ 1000Ω යන පුතිරෝධ අතුරෙන් X පුතිරෝධය සඳහා සුදුසු අගය තෝරාගන්න.	

((b) මිනුම් ලබා ගැනීමට පෙර පරිපථය නිවැරදිව සම්බන්ධ වී ඇත් දැයි ඔබ පරීක්ෂා කරන්නේ කෙසේ ද $?$	තීරයේ කිසිවක් නොලියන්
((c) පුතිරෝධ පෙට්ටියේ පුතිරෝධ අගය R වන විට මීටර සේතු කම්බියෙහි සංතුලන දිග l $({ m cm}$ වලින්) වේ. $rac{R}{S}$ සඳහා පුකාශනයක් l ඇසුරෙන් ලියා දක්වන්න. මීටර සේතු කම්බියෙහි ආන්ත ශෝධන නොසලකා	
	හරින්න.	
	······································	
(6	d) $30^{\circ}\mathrm{C}$ හිදී $R=9~\Omega$, $26~\Omega$ සහ $56~\Omega$ සඳහා අනුරූප සංකූලන දිග පිළිවෙළින් $27\cdot0\mathrm{cm}$, $52\cdot0\mathrm{cm}$ සහ $70\cdot0\mathrm{cm}$ වේ.	:
	(i) S හි අගය නිවැරදිව ගණනය කිරීම සඳහා භාවිත කළ යුතු R හි වඩාත්ම සුදුසු අගය කුමක් ද? හේතුව දක්වන්න.	
	අගය :	
	oහ්තුව :	
	$(ext{ii})$ අදාළ සංකුලන දිග හා R භාවිතයෙන් S හි වඩාත් නිවැරදි අගය ගණනය කරන්න.	
		I
(e _.) දෙන ලද කම්බියෙහි වෙනස් තැන් හතරකදී මනින ලද විෂ්කම්භ අගයන් $0.39\mathrm{mm}, 0.40\mathrm{mm}$ සහ $0.41\mathrm{mm}$ වන අතර කම්බියෙහි දිග $48.0\mathrm{cm}$ වේ. කම්බිය සාදා ඇති දුවායේ පුතිරෝධකතාවය ගණනය කරන්න. ($\pi=3$ ලෙස ගන්න.)	
<i>(f)</i>	ඉහත කම්බිය $100^\circ\mathrm{C}$ හි ඇති තෙල් බහාලුමක තබා ඇති විට පුතිරෝධ පෙට්ටියෙහි $R=20~\Omega$ අගය සඳහා සංතුලන දිග $40\cdot0~\mathrm{cm}$ වේ. කම්බිය සාදා ඇති දුවායේ පුතිරෝධයේ උෂ්ණත්ව සංගුණකය ගණනය කරන්න.	
(g)	සමහර දුවා වර්ග සඳහා කාමර උෂ්ණත්වය ආසන්නයේදී පුතිරෝධයේ උෂ්ණත්ව සංගුණකය සෘණ අගයක් ගතී. මෙම දුවා වර්ගය නම් කරන්න.	

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව මූහතිගෙසේ uffl.කෑන් නිශාත්යයාග මූහතිකයේ uffl.කෑ**න් ලිංකින්වෙන්වේ මිදියට්ටන් මිදියට්ටන් මි**නගේයයාගේ මුහතිගෙසේ uffl.කෑන් නිශාත්යයාගේ Department of Examinations, Sri Lanka Department of Exami**ලුහාතිගෙන් Lift ක්රියාද්ය විභාග කියනාගේ සහ**ත්තියාගේ Sri Lanka Department of Examinations, Sri Lanka මි ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව මී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තුම්න්ත්තියේ පිරිධාරීම් Sripankyක දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව මූහතිගෙසට uffl.කෑලේ නිකාශ්යයාග මුහතිගෙසට uffl.කෑලේ නිකාශ්යයාගේ මුහතිගෙසට uffl.කෑලේ නිකාශ්යයාගේ

අධායන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහ්ඛ්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

<mark>භෞතික විදනව II</mark> ධෙණුනිසබ්|ධන් **II** Physics **II**

 ${f B}$ කොටස- රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. $(g=10~{
m m~s}^{-2})$

5. ජම්බාර පද්ධතියක් (1) රූපයේ පෙන්වා ඇත. A ලක්ෂායෙන් විවර්තනි කළ ස්කන්ධය $2000~{
m kg}$ වූ වානේ බාහුව එහි මාන සමග (2) රූපයේ පෙන්වා ඇත. වානේ බාහුවේ ගුරුත්ව කේන්දය G හි පිහිටා ඇත. බාහුවේ ඉහළ කෙළවරේ (B) ස්කන්ධය $200~{
m kg}$ වන කප්පියක් සවිකර ඇති අතර, එය වීදුලි මෝටරයකින් කරකැවිය හැක. කේබලයක් කප්පිය වටා ඔතා ඇති අතර, එහි නිදහස් කෙළවර ස්කන්ධය $800~{
m kg}$ වන වානේ සිලින්ඩරයකට සම්බන්ධ කර ඇත. කේබලයේ ස්කන්ධය නොසලකා හරින්න. AB සහ AC දිග පිළිවෙළින් $10~{
m m}$ සහ $2~{
m m}$ වේ. A ලක්ෂායේ සිට වානේ බාහුවේ බරෙහි කිුයා රේඛාවට ඇති තිරස් දුර $2~{
m m}$ වේ. බාහුව දාව පද්ධතියක් (hydraulic system) භාවිතයෙන් කිුයාත්මක වේ.

- (a) බාහුව සහ එහි ඇමුණුම් සමතුලිතව තබා ගැනීම සඳහා (2) රූපයේ පෙන්වා ඇති පරිදි දුාව පද්ධතිය භාවිතයෙන් C ලක්ෂායේදී F_1 බලයක් යෙදිය යුතුය. F_1 හි දිශාව AC දිගට ලම්බක වේ. A ලක්ෂාය වටා සූර්ණ ගැනීමෙන් මෙම F_1 බලයේ අගය ගණනය කරන්න. මෙම ගණනය කිරීම සඳහා කප්පියේ විශාලත්වය නොසලකා හරින්න.
- (b) ඉහත (a) හි F_1 බලය සපයනු ලබන්නේ (3) රූපයේ පෙන්වා ඇති පරිදි දාව පොම්පයක ඇති සම්පීඩිත තෙල් (compressed oil) මහිනි. පුධාන පොම්පයේ ඇති පිස්ටනයේ හරස්කඩ වර්ගඵලය $4~{\rm cm}^2$ වන අතර C ලක්ෂායේ ඇති පිස්ටනයේ හරස්කඩ වර්ගඵලය $60~{\rm cm}^2$ වේ. F_1 බලය ලබා ගැනීම සඳහා පුධාන පොම්පයේ පිස්ටනයට F_2 බලයක් යෙදිය යුතුය.
 - (i) F_2 බලය ගණනය කිරීම සඳහා භාවිත කළ යුතු මූලධර්මය නම් කරන්න.
 - (ii) F_2 හි අගය සොයන්න.
 - (iii) දුාව පොම්පයේ සම්පීඩිත තෙල්වල පීඩනය කොපමණ ද?

(3) රූපය

- (c) කප්පියේ අරය $10~{
 m cm}$ වේ. ස්කන්ධය M සහ අරය r වන කප්පියක එහි භුමණ අක්ෂය වටා I අවස්ථිති සූර්ණය, $I = rac{1}{2} M r^2$ මගින් ලබා දිය හැක. කේබලය ලිස්සා යාමකින් තොරව චලනය වේ.
 - (i) බාහුව (2) රුපයෙහි පෙන්වා ඇති පරිදි එහි උපරිම සිරස් පිහිටුමේ ඇති විට කප්පිය කරකැවීම මගින් වානේ සිලින්ඩරය $0.5~{
 m m~s^{-2}}$ නියන රේඛීය න්වරණයකින් ඉහළට රැගෙන යයි. සිලින්ඩරය එසවීම සඳහා මෝටරය මගින් කප්පියට යෙදිය යුතු වාාවර්තය ගණනය කරන්න.
 - (ii) සිලින්ඩරය යම් උසක් කරා ඉහළට චලනය වූ පසු මෝටරය කිුයාවිරහිත කරන අතර ටික චේලාවකට පසු සිලින්ඩරය මොහොතකට නතර වේ. පසුව කප්පිය නිදහසේ භුමණය වන අතර කේබලයට සම්බන්ධ කර ඇති සිලින්ඩරය, ටැඹ (pile) මතට වැටීමට සලස්වනු ලැබේ. සිලින්ඩරය ටැඹයේ වැදීමට පෙර සිලින්ඩරයේ ගුරුත්ව කේන්දුය $\frac{45}{8}$ m උසක සිට පහළට වැටේ. ටැඹයේ වැදීමට මොහොතකට පෙර සිලින්ඩරයේ පුවේගය ගණනය කරන්න. මෙම ගණනය කිරීම සඳහා භුමණයට එරෙහි සර්ෂණ වාාවර්ත නොසලකා හරින්න.
 - (iii) ගැටුමෙන් පසු කිසිදු පොළා පැනීමකින් තොරව සිලින්ඩරය සහ ටැඹ සංයුක්ත වස්තුවක් ලෙස පස තුළට කිඳා බසී. මෙය කුමන වර්ගයේ ගැටුමක් ද? චාලක ශක්ති හානිය අනුසාරයෙන් ඔබ මෙම වර්ගයේ ගැටුමක් හඳුනා ගන්නේ කෙසේ ද?
 - (iv) ගැටුමෙන් මොහොතකට පසු සිලින්ඩරයේ සහ ටැඹේ පුචේගය ගණනය කරන්න. ටැඹේ ස්කන්ධය $480~{
 m kg}$ කි.
 - (v) එක් පහරකින් ටැඹ කිඳා බසින දුර $20~{
 m cm}$ ක් නම් කිඳා බැසීමට එරෙහිව පස මගින් ඇති කරන පුතිරෝධක බලයේ සාමානා අගය ගණනය කරන්න. $[(6\cdot25)^2=39~{
 m cpt}$ ලෙස ගන්න.]
- 6. පහත ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

චොප්ලර් ආචරණය (Doppler effect) යනු තරංග නිපදවන පුභවය සහ නිරීක්ෂකයා අතර සාපේක්ෂ චලිතයක් ඇතිවිට තරංගයේ නිරීක්ෂිත සංඛාහතයේ ඇතිවත දෘශා වෙනසයි. මෙහිදී තරංග පුචාරණය වන මාධායට සාපේක්ෂව සියලුම චේග මැනිය යුතුය. පෘථිවියට සාපේක්ෂව වාතය නිශ්චලව පවතින බව උපකල්පනය කරන බැවින්, ධ්වනි තරංග සඳහා අදාළ පුචේග පොළොවට සාපේක්ෂව මැනීම සාමානාගෙන් සිදු කරනු ලැබේ. ඩොප්ලර් ආචරණයේ පුතිඵලයක් ලෙස සිදුවන සංඛාහත වෙනස්වීම Δf (= නිරීක්ෂිත සංඛාහතය – නිකුත් කරන ලද සංඛාහතය) ඩොප්ලර් මාරුව (Doppler shift) ලෙස හැඳින්වේ.

අාලෝක තරංග හෝ ක්ෂුදු තරංග (micro waves) වැනි විදයුත් චුම්බක තරංග සඳහා ද ඩොප්ලර් ආචරණය සිදු වේ. නිරීක්ෂකයාගේ සහ පුභවයේ වේග විදයුත් චුම්බක තරංගවල වේගය c ට වඩා බෙහෙවින් අඩු නම්, ධ්වනි තරංග සඳහා වයුත්පන්න කළ ඩොප්ලර් ආචරණ සම්බන්ධතාවන්හි ධ්වනි තරංග වේගය වෙනුවට c ආදේශ කිරීම මගින් විදයුත් චුම්බක තරංග සඳහා වන ඩොප්ලර් ආචරණ සම්බන්ධතා ලබාගත හැක.

විදාපුත් වුම්බක තරංග භාවිතකොට අදාළ ඩොප්ලර් මාරුව මැනීම මගින් ගමන් කරන වාහනවල වේගය නිර්ණය කළ හැක. මේ සඳහා භාවිත කරන උපකරණය වේග උගුලක් (speed trap) ලෙස හඳුන්වන අතර එය රේඩාර් (radar) සම්පේෂකයකින් (transmitter) සහ රේඩාර් පුතිගුාහකයකින් (receiver) සමන්විත වේ. සම්පේෂකයෙන් ක්ෂුදු තරංග කෙටි ස්පන්දවලින් නිකුත් වන අතර (1) රූපයේ පෙන්වා ඇති පරිදි ගමන් කරන මෝටර් රථයක් වෙත කෙලින්ම එල්ල වේ.

නිකුත් කරන ලද ක්ෂුදු තරංග වේගයෙන් ධාවනය වන මෝටර් රථයේ පෘෂ්ඨයෙන් පරාවර්තනය වන අතර වේග උගුලේ ඇති පුතිශුාහකය වෙත ආපසු පැමිණේ. මෙමගින් ඇතිවන ඩොප්ලර් මාරුව මැනීමෙන්, මෝටර් රථය ධාවනය වන චේගය නිර්ණය කර සටහන් කර ගනු ලැබේ. මේ ආකාරයේ යෙදුම්වලදී අනෙකුත් තරංගවලට වඩා ක්ෂුදු තරංග භාවිත කිරීමේ වාසියක් වන්නේ ඒවාට මීදුම, මද වැසි සහ දුම් විනිවිද යාමට හැකි බැවිනි.

- (a) ඩොප්ලර් ආචරණය යනු කුමක් ද?
- (b) ඩොප්ලර් ආචරණයේදී සාමානෲයෙන් ධ්වනි තරංග සඳහා පොළොවට සාපේක්ෂව අදාළ පුවේග මනිනු ලැබේ. මෙයට හේතුව කුමක් ද?
- (c) (i) වේඩාර් සම්පේෂකය f_0 සංඛාහතයෙන් යුත් ක්ෂුදු තරංග නිකුත් කරයි. (1) රූපයේ පෙන්වා ඇති මෝටර් රථය වේග උගුල දෙසට u වේගයකින් ළඟා වේ. වේග උගුලේ ඇති සම්පේෂකය නිශ්චල පුහවයක් ලෙසත් මෝටර් රථය චලනය වන නිරීක්ෂකයෙකු ලෙසත් සලකමින් මෝටර් රථය ගුහණය කරනු ලබන ක්ෂුදු තරංගවල සංඛාහනය f' සඳහා පුකාශනයක් f_0 , u සහ c වලින් ලියා දක්වන්න.
 - (ii) දැන් මෝටර් රථය f' සංඛාහතයෙන් ක්ෂුදු තරංග නිකුත් කරමින් චලනය වන පුභවයක් ලෙස කිුයා කරයි. වේග උගුලේ ඇති පුතිගුාහකය මගින් අනාවරණය කරනු ලබන ක්ෂුදු තරංගවල f'' සංඛාහතය සඳහා පුකාශනයක් f', u සහ c ඇසුරෙන් ලියා දක්වන්න.
 - (iii) ඉහත (c) (i) සහ (c) (ii) හි ලබාගත් පුකාශන ඒකාබද්ධ කිරීමෙන් f'' සඳහා පුකාශනයක් f_0 , u සහ c ඇසුරෙන් ව්යුත්පන්න කරන්න.

- (iv) u << c ලෙස ගෙන, වේග උගුල මගින් නිරීක්ෂණය කරන Δf ඩොප්ලර් මාරුව, $\Delta f = f_0 \frac{2u}{c}$ මගින් ලබාදෙන බව පෙන්වන්න.
- (v) $f_0 = 3.0 \times 10^{10} \,\mathrm{Hz}$ සහ $\Delta f = 7000 \,\mathrm{Hz}$ නම් මෝටර් රථයේ u වේගය km h $^{-1}$ වලින් ගණනය කරන්න. ($c = 3.0 \times 10^8 \,\mathrm{m\,s^{-1}}$ ලෙස ගන්න.)
- (d) මෝටර් රථයේ සිට වේග උගුල දෙසට සුළඟක් හමන්නේ යැයි සිතමු. මෙය මෝටර් රථයේ වේග මිනුමට බලපාන්නේ ද? ඔබගේ පිළිතුරට හේතුව දක්වන්න.
- (e) වේග උගුල මෝටර් රථයට සෘජුවම එල්ල නොවී එයට යම් කෝණයකින් ආනතව එල්ල වී තිබුණේ නම් මෝටර් රථයේ මැනෙන වේගය ඉහත (c) (v) හි ගණනය කළ අගයට වඩා වැඩි වේ ද? නැතහොත් එම අගයට සමාන වේ ද? නැත්නම් එම අගයට වඩා අඩු වේ ද? ඔබගේ පිළිතුර සඳහා හේතුව දෙන්න.
- (f) දැන් (2) රූපයේ පෙන්වා ඇති ආකාරයට u වේගයෙන් ධාවනය වන මෝටර් රථය පිටුපසින් ලුහුබඳින, වේග උගුල සමග V වේගයකින් ගමන් කරන පොලිස් මෝටර් රථයක් සලකන්න. මෙම අවස්ථාව සඳහා ඉහත (c) (iv) හි Δf සඳහා

ලබාගත් සම්බන්ධතාව $\Delta f = f_0 \frac{2(V-u)}{c}$ ලෙසින් විකරණය කළ යුතුය.

- (i) $V=100~{
 m km}~{
 m h}^{-1}$ නම් Δf නිර්ණය කරන්න. ඉහත (c) (v) හි ලබාගත් u අගය භාවිත කරන්න. (ඔබේ පිළිතූර Hz වලින් ආසන්නතම පූර්ණ සංඛ්‍යාවට ලබාදෙන්න.)
- (ii) මෙම අවස්ථාවේදී $\Delta f < 0$ වන්නේ මන්දැයි පැහැදිලි කරන්න.
- (iii) ඉහත (c) සහ (f) හි ලබාගත් ඩොප්ලර් මාරු සැලකූ විට එම කුම දෙක අතුරෙන් මෝටර් රථයේ u වේගය නිර්ණය කිරීම සඳහා වඩා නිවැරදි කුමය කුමක් ද? ඔබගේ පිළිතුර සාධාරණීකරණය කරන්න.

- (2) රූපය
- (g) මෙම ආකාරයේ යෙදුම්වලදී ක්ෂුදු තරංග භාවිත කිරීමේ එක් වාසියක් ලියා දක්වන්න.
- $7. \ (a) \ (i)$ දුස්සුාවිතා සංගුණකය η වන සමජාතීය නිසලව ඇති තරලයක v ආන්ත පුවේගයකින් ගමන් ගන්නා අරය r වූ කුඩා ගෝලයක් මත කිුියා කරන දුස්සුාවි බලය F සඳහා පුකාශනයක් ලියා දක්වන්න.
 - (ii) අරය r සහ සෑදී ඇති දුවායේ ඝනත්වය β වන කුඩා ගෝලයක් ඝනත්වය $\rho(\rho < \beta)$ සහ දුස්සුාවිතා සංගුණකය η වන සමජාතීය නිසලව ඇති තරලයක් තුළ v ආන්ත පුවේගයකින් සිරස්ව පහළට ගමන් කරයි. ආන්ත පුවේගය v සඳහා පුකාශනයක් ρ , β , r, η සහ g ඇසුරෙන් ලබා ගන්න.
 - (b) අදාළ ආන්ත පුවේග භාවිත කරමින් ගෝලාකාර අවසාදින (sediment) අංශු මිශුණයක් ඒවායේ පුමාණය $2~\mu m$ වඩා වැඩි හෝ අඩු වේ ද යන්න මත පදනම්ව වෙන් කර ගත යුතුව ඇත. මිශුණය ස්වල්ප ජල පුමාණයක් සමග මිශු කොට හොඳින් කලතා බීකරයක් තුළ ඇති ජල පෘෂ්ඨයක් මතට සෙමින් වත් කරනු ලැබේ. මෙයින් පසු බීකරයේ ඇති ජල කඳේ උස 10~cm කි. අවසාදින අංශු සෑදි ඇති දුවායේ සහ ජලයේ ඝනත්ව පිළිවෙළින් $1900~kg~m^{-3}$ සහ $1000~kg~m^{-3}$ වේ. ජලයේ දුස්සුාවිතා සංගුණකය $1\cdot0\times10^{-3}~Pa~s$ වේ. විෂ්කම්භය $2~\mu m$ ට සමාන සහ ඊට වැඩි සියලුම අංශු අවක්ෂේප වීමට කොපමණ කාලයක් ගතවේ ද? සියලුම අංශු ජලයට වත්කළ විගසම ඒවායේ ආන්ත පුවේගවලට ළඟාවන බව උපකල්පනය කරන්න.
 - (c) (i) මුව ආවරණයක් හෝ මුහුණු වැස්මක් පැළඳ නොසිටින පුද්ගලයෙක් කැස්ස මගින් $20~\mu m$ විෂ්කම්භයකින් යුතු කුඩා බිඳිති $20~m~s^{-1}$ ආරම්භක තිරස් පුවේගයකින් වායුගෝලයට මුදා හරියි. බිඳිතිවල ඝනත්වය $1080~kg~m^{-3}$ සහ වාතයේ ඝනත්වය නොසැලකිය හැකිනම් බිඳිති අයත් කර ගන්නා සිරස් ආන්ත පුවේගය කොපමණ ද? වාතයේ දුස්සුාවිතා සංගුණකය $2.0\times10^{-5}~Pa~s$ වේ. වාතය නිශ්චල බව උපකල්පනය කරන්න.
 - (ii) බිඳිත්තක පුවේගයේ
 - (I) සිරස් සංරචකය (v_v) සහ
 - $({
 m II})$ තිරස් සංරචකය $(
 u_{
 m H})$ සඳහා

පුවේග-කාල (t) පුස්තාරවල දළ රූප සටහන් වෙන වෙනම ඇඳ දක්වන්න.

- (iii) පොළොවේ සිට මුඛයට උස $1.50 \, \mathrm{m}$ නම් එම බිඳිති නිශ්චල වාතය තුළ කොපමණ කාලයක් රැඳී තිබේ ද? මෙම ගණනය කිරීම සඳහා සියලුම බිඳිති වායුගෝලයට ඇතුළු වූ වහාම ඒවායේ ආන්ත පුවේගයට ළඟා වන බව උපකල්පනය කරන්න.
- (iv) පුශ්වාස කරන බිඳිති වානය තුළ පවතින විට ඒවා වාෂ්පීභවනය වීම ප්‍රායෝගිකව සලකා බැලිය යුතු ය. වාතයේ ගමන් කරන කාලය තුළ වාෂ්පීභවනයේ ප්‍රතිඵලයක් ලෙසට බිඳිතිවල තිරස් විස්ථාපනයට කුමක් සිදුවේදැයි හේතු දක්වමින් කෙටියෙන් පැහැදිලි කරන්න.
- (v) අඩු වායුගෝලීය උෂ්ණත්ව හෝ ඉහළ සාපේක්ෂ ආර්දුතා තත්ත්වයන් නිසා බොහෝ බිඳිනි පොළොව මත තැන්පත් විය හැක. මෙම පුකාශය සාධාරණිකරණය කරන්න.

- $m{8}$. $(m{lpha})$ ස්කන්ධය m සහ ආරෝපණය +q වන v පුවේගයකින් ගමන් ගන්නා පුෝටෝනයක් සුාව ඝනත්වය $m{B}$ වූ ඒකාකාර චුම්බක ක්ෂේතුයකට ලම්බකව ඇතුළු වේ.
 - $egin{array}{ll} (i)$ චුම්බක ක්ෂේතුය හේතුවෙන් පුෝටෝනය මත ඇතිවන F බලයේ විශාලත්වය සඳහා පුකාශනයක් ලියන්න.
 - (ii) ඉහත බලය නිසා පුෝටෝනය වෘත්තාකාර මාර්ගයක ගමන් කරයි. මාර්ගයෙහි අරය r සඳහා පුකාශනයක් වුනුත්පන්න කරන්න.
 - (iii) පුෝටෝනය එක් වටයක් සම්පූර්ණ කිරීමට ගතවන කාලය T සඳහා පුකාශනයක් m,q සහ B ඇසුරෙන් ලබා ගන්න.
 - (iv) $m=1.6\times 10^{-27}~{\rm kg},~q=1.6\times 10^{-19}~{\rm C},~\nu=9.6\times 10^5~{\rm m~s^{-1}}$ සහ $B=3.0\times 10^{-5}~{\rm T}$ ලෙස සලකන්න. ($\pi=3$ ලෙස ගන්න).
 - $({
 m I})$ පුෝටෝනය ගමන් කරන වෘත්තාකාර පථයේ අරය (r) නිර්ණය කරන්න.
 - (II) පුෝටෝනය තත්පරයකට ගමන් කරන වට ගණන කීය ද?
 - (b) දැන් තවත් පුෝටෝනයක් එම u පුවේගයෙන්ම (1) රූපයේ පෙන්වා ඇති පරිදි චුම්බක ක්ෂේතුයේ දිශාව සමග heta කෝණයක් සාදන අයුරින් ඇතුළු වේ.
 - (i) පෝටෝනයේ පථයේ හැඩය නම් කරන්න. ක්ෂේතුයට සාපේක්ෂව පෝටෝනයේ පුවේගයේ සමාන්තර සහ ලම්බක සංරචක භාවිත කරමින් ඔබ පිළිතුරට එළැඹි ආකාරය පැහැදිලි කරන්න.
 - (ii) ඉහත (a) (iv) හි අගයන් භාවිත කරමින් පුෝටෝනයට එක් T ආවර්ත කාලයක් සම්පූර්ණ කිරීමට අවශා කරන කාලය ගණනය කරන්න.
 - (iii) පුෝටෝනය එම T ආවර්ත කාලය තුළදී චුම්බක ක්ෂේතුයට සමාන්තරව p දුරක් ගමන් කරයි. එම කාලය තුළදී පුෝටෝනය ගමන් කරන දුර p සඳහා පුකාශනයක් v,θ සහ T ඇසුරෙන් ලියා දක්වන්න.
 - (iv) $\theta=30^\circ$ නම් p හි අගය ගණනය කරන්න. ($\sqrt{3}=1.7$ ලෙස ගන්න)
 - (v) චුම්බක ක්ෂේතුයේ දිශාව ඔස්සේ පුෝටෝනය 16320 km දුරක් ගමන් කළේ නම්, මෙම දුර ගමන් කිරීමට ගතවන කාලය කොපමණ ද?

- (c) ධාරා ගෙන යන දඟර දෙකක් භාවිත කිරීමෙන් (2) රූපයේ දැක්වෙන පරිදි ඒකාකාර නොවන චුම්බක ක්ෂේතුයක් සාදා ගත හැක. මෙම වර්ගයේ චුම්බක ක්ෂේතු ''චුම්බක බෝනලයක් (magnetic bottle)'' සාදන අතර එය ආරෝපිත අංශු රඳවා තබා ගැනීමට ඉඩ සලසන සැකැස්මකි. ධන ආරෝපිත අංශුවක් ගමන් කරන පථය එම රූපයේම දැක්වේ.
 - (i) P ස්ථානයේදී අංශුවේ පථයේ අරය Q ස්ථානයේදී අරයට වඩා කුඩා වන්නේ ඇයි දැයි පැහැදිලි කරන්න.
 - (ii) P,Q සහ R යන ලක්ෂාවලට අනුරූප v හා B හි දිශාවන් (2) රූපයෙන් ඔබගේ පිළිතුරු පතුයට පිටපත් කර ආරෝපිත අංශුව මත එක් එක් ලක්ෂායේදී ඇති වන චුම්බක බලයේ දිශාව ඊතල භාවිතයෙන් ඇඳ පෙන්වන්න.
 - (iii) ආරෝපිත අංශුව චුම්බක බෝතලයේ දෙකෙළවර අතර එහා මෙහා දෝලනය විය හැකි බව හේතු දක්වමින් සනාථ කරන්න.

$oldsymbol{9}$. $({f A})$ කොටසට හෝ $({f B})$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (a) දිග l සහ හරස්කඩ වර්ගඵලය A වන විද_ාපුත් සන්නායක ලෝහ කම්බියක ඒකක පරිමාවක නිදහස් ඉලෙක්ටුෝන n සංඛාහාවක් ඇත. ඉලෙක්ටුෝනයේ ආරෝපණය e වේ.
 - (i) කම්බියේ ඇති සම්පූර්ණ නිදහස් ඉලෙක්ටෝන සංඛාාව සඳහා පුකාශනයක් ලියන්න.
 - (ii) කම්බියේ අගු අතරට විභව අන්තරයක් යෙදූ විට කම්බිය තුළින් I ධාරාවක් ගලායයි. කම්බියේ ඉලෙක්ටුෝනවල v ප්ලාවිත පුවේගය (drift velocity) සඳහා පුකාශනයක් I,n,e සහ A ඇසුරෙන් වසුත්පන්න කරන්න.
- (b) විදුලි කාර්මිකයෙක් එකම දුවායෙන් සාදා ඇති සමාන l දිග ඇති නමුත් හරස්කඩ වර්ගඵලය පිළිවෙළින් A_1 සහ A_2 වූ X හා Y කම්බී දෙකක් භාවිත කරයි. මෙම X හා Y කම්බී දෙක ශේණිගතව සහ පසුව සමාන්තරගතව වෙන වෙනම එකම නියත වෝල්ටීයතා පුභවයකට සම්බන්ධ කරයි.
 - (i) X සහ Y ශේුණිගතව සම්බන්ධ කළ විට X සහ Y කම්බිවල ගමන් කරන ඉලෙක්ටෝනවල අනුරූප ප්ලාවිත පුවේග යන්හි අනුපාතය $\left(rac{
 u_X}{
 u_y}
 ight)$ සඳහා පුකාශනයක් ලියා දක්වන්න.
 - (ii) X සහ Y සමාන්තරගතව සම්බන්ධ කළ විට X සහ Y කම්බවල ගමන් කරන ඉලෙක්ටෝනවල අනුරූප ප්ලාවිත පුවේගයන්හි අනුපාතය $\left(rac{v_X}{v_Y}
 ight)$ සඳහා පුකාශනයක් ලියා දක්වන්න.
 - (iii) ඉහත ශේණිගත හා සමාන්තරගත සම්බන්ධතාවන් හිදී l දිග සමග අනුරූප ප්ලාවිත පුවේගයන්හි ($\nu_{\rm x}$ සහ $\nu_{\rm y}$) විචලනය පෙන්වීමට පුස්තාර දෙකක් වෙන වෙනම අඳින්න. ($A_{\rm l}>A_{\rm p}$ ලෙස ගන්න.)
- (c) (i) තඹ කම්බියකට $2.5 \times 10^{-7}\,\mathrm{m}^2$ වූ හරස්කඩ වර්ගඑලයක් ඇත. කම්බිය තුළ ධාරාව $4.0\,\mathrm{A}$ වන විට එතුළින් ගමන් කරන ඉලෙක්ටෝනවල ප්ලාවිත පුවේගය ගණනය කරන්න. $(e=1.6 \times 10^{-19}\,\mathrm{C},\,\mathrm{තඹවල}\,\,\mathrm{ඒකක}\,\,\mathrm{පරිමාවක}\,\,\mathrm{ඇති}\,\,\mathrm{නිදහස් ඉලෙක්ටෝන}\,\,\mathrm{සංඛාහව}=8.0 \times 10^{28}\,\mathrm{m}^{-3})$
 - (ii) සන්නායකයක නිදහස් ඉලෙක්ටෝනවලට අහඹු චලිතයක් ඇති අතර යම් උෂ්ණත්වයකදී අහඹු වේගය (මධානා තාප වේගය), එම උෂ්ණත්වයේදී නිදහස් ඉලෙක්ටෝනවල මධානා චාලක ශක්තිය සහ මධානා තාප ශක්තිය සලකා බලා ගණනය කළ හැක. T උෂ්ණත්වයකදී නිදහස් ඉලෙක්ටෝනවල මධානා තාප ශක්තිය $\frac{3}{2}kT$ මගින් ලබා දෙන අතර මෙහිදී k යනු බෝල්ට්ස්මාන් නියතය වේ. උෂ්ණත්වය $27\,^{\circ}$ C හි දී තඹවල නිදහස් ඉලෙක්ටෝනවල මධානා තාප වේගය ගණනය කරන්න. (ඉලෙක්ටෝනයක ස්කන්ධය = $9\cdot0\times10^{-31}\,\mathrm{kg}$, බෝල්ට්ස්මාන් නියතය = $1\cdot4\times10^{-23}\,\mathrm{J}$ K $^{-1}$ ලෙස ගන්න.) ($\sqrt{1\cdot4}=1\cdot18$ ලෙස ගන්න.)
 - (iii) සන්නායකයක නිදහස් ඉලෙක්ටෝනවල මධානා කාප වේගය ඉලෙක්ටෝනවල ප්ලාවිත පුවේගයට සාපේක්ෂව ඉතා විශාල වේ. නමුත් සන්නායකයක මධානා කාප වේග සහිත නිදහස් ඉලෙක්ටෝනවලට බාහිර විදාපුත් ක්ෂේතුයක් යෙදීමෙන් තොරව ධාරාවක් ඇති කළ නොහැක්කේ ඇයි?
- (d) සන්නායකයක ආරෝපණ වාහකවල සචලතාව (μ) අර්ථ දක්වන්නේ බාහිරයෙන් යොදන ඒකක විදු<u>පු</u>ත් ක්ෂේතු තීවුතාවයකට ප්ලාවිත පුචේගයේ විශාලත්වය ලෙසයි.
 - (i) ඉහත (c) (i) හි තඹ කම්බිය දිගේ $50\,\mathrm{V\,m}^{-1}$ විදාුුත් ක්ෂේතු තීවුතාවක් යොදන්නේ නම්, තඹ කම්බියේ ඉලෙක්ටුෝනයන්හි සචලතාව ගණනය කරන්න.
 - (ii) කාබනික ආලෝක වීමෝචක දියෝඩ (organic light emitting diodes, OLED) වැඩි දියුණු කිරීමේදී කාබනික දවාවල ආරෝපණ වාහකයන්ගේ සචලතාව (mobility) වැඩි කිරීම සහ යොදන විදුපුත් ක්ෂේතුය අඩු කිරීම මගින් ඉහළ කාර්යක්ෂමතාවක් ලබා ගනී. කාබනික දවායක ආරෝපණ වාහකවල සචලතාව සහ ප්ලාවිත පුවේගය පිළිවෙළින් 20% සහ 10% කින් වැඩි කළහොත් යොදන විදුපුත් ක්ෂේතු තීවුතාවය කොපමණ පුතිශතයකින් අඩු කර ගත හැකි ද?

(B) කොටස

දියෝඩයක් සඳහා ධාරා (I) – චොල්ටීයතා (V) ලාක්ෂණික වකුයක් (1) රූපය මගින් පෙන්වයි.

- (a) පෙන්වා ඇති (1) රූපය මගින් නිරූපණය වන දියෝඩය නම් කරන්න.
- (b) සිලිකන් දියෝඩ සහ R_1 හා R_2 පුතිරෝධ සහිත පුතිරෝධක දෙකක් (2) සහ (3) රූප මගින් පෙන්වයි. A සහ B පුදාන $0\,\mathrm{V}$ හෝ $5\,\mathrm{V}$ විය හැක. සියලුම ගණනය කිරීම් සඳහා (1) රූපයේ දක්වා ඇති ලාක්ෂණික වකුය භාවිත කරන්න.

(i) පිළිවෙළින් (2) රූපයෙහි සහ (3) රූපයෙහි දක්වා ඇති පරිපථ සඳහා පහත දක්වා ඇති විවිධ පුදාන චෝල්ටීයතා සංයෝජනවලට, F හි පුතිදාන චෝල්ටීයතා V_F නිර්ණය කර පහත වගුව සම්පූර්ණ කරන්න. (මේ සඳහා වගුව දෙවරක් ඔබගේ පිළිතුරු පතුයට පිටපත් කර ගන්න.)

A(V)	B(V)	$V_F(V)$
0	0	
0	5	
5	0	
5	5	

- (ii) පුතිදානය F පමණක් සලකා බැලීමේදී, 5~V~ (හෝ 5~V~ ට ආසන්න) ද්වීමය 1~ නිරූපණය කරන්නේ නම්, සහ 0~V~ (හෝ 0~V~ ට ආසන්න) ද්වීමය 0~ නිරූපණය කරන්නේ නම් (2) සහ (3) රූපවල දැක්වෙන පරිපථවලට අනුරූප ද්වාර නම් කොට ඒවායේ සතාතා වගු ලියා දක්වන්න.
- (iii) එක් එක් පරිපථයේ ඇති දියෝඩ දෙකම හරහා ගලා යන සම්පූර්ණ ධාරාව $0.5~{
 m mA}$ ට සීමා කරන R_1 සහ R_2 හි සුදුසු අගයන් ගණනය කරන්න.
- (c) එක් දොරක් සහ එක් ජනේලයක් සහිත කාර්යාලයක කාර්යාල වේලාවෙන් පසුව දොර හෝ ජනේලය හෝ දෙකම විවෘතව පැවතියහොත් අනතුරු ඇඟවීමේ නළාවක් නාද කිරීමට අවශා තාර්කික පරිපථයක් තැනීමට ශිෂායෙක්ට අවශා වේ.

අදාළ තාර්කික වීචලායන් පහත පරිදි වේ.

පුදාන : කාලය: T=0 (කාර්යාල වේලාවල් තුළ); T=1 (කාර්යාල වේලාවෙන් පසුව)

ඉදාර: D=0 (දොර වැසී ඇත); D=1 (දොර විවෘතව ඇත)

ජනේලය: W=0 (ජනේලය වැසී ඇත); W=1 (ජනේලය විවෘතව ඇත)

පුතිදාන : F=0 (නළාව නාද නොවේ); F=1 (නළාව නාද වේ)

- (i) ඉහත සඳහන් T,D,W සහ F යන තාර්කික විචලාසයන් භාවිත කරමින් අවශා කොන්දේසි සපුරාලන සතානතා වගුව ලියා දක්වන්න.
- (ii) F සඳහා අනුරූප තාර්කික පුකාශනය ලබා ගන්න.
- (iii) ඉහත (c) (ii) හි ඔබ ලියන ලද තාර්කික පුකාශනය සුළු කරන්න. (සර්ව සාමායන් වන $W+\overline{W}=1$ සහ $\overline{D}W+D=D+W$ ඔබට භාවිත කළ හැකිය).
- (iv) මෙම කාර්යය සඳහා භාවිත කළ හැකි සරලම තාර්කික පරිපථය අඳින්න.

${f 10.}\,({f A})$ කොටසට හෝ ${f (B)}$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

වාහයාම කරන විට, මිනිස් සිරුර ශක්තිය තිපදවන අතර මෙම ශක්තියෙන් ඉහළ පුතිශතයක් තාපය බවට පරිවර්තනය වේ. මෙම තාපය ඉවත් නොකළහොත් ශරීර උෂ්ණත්වය ඉහළ යනු ඇත. සාමානා ශරීර උෂ්ණත්වය පවත්වා ගැනීම සඳහා, දහඩියේ ඇති ජලය වාෂ්පීභවනය කිරීමෙන් තාප උත්සර්ජනය සිදු කරනු ලැබේ. ජලය වාෂ්පීභවනයට අවශා තාපය ශරීරය විසින් සපයනු ලබයි.

- (a) ස්කන්ධය $75~{
 m kg}$ වූ පුද්ගලයෙක් වහායාම පාපැදියක් පැදීමේදී ශක්තිය නිපදවන ශීසුතාවය $800~{
 m W}$ වේ. මෙම ශක්තියෙන් $75~{
 m \%}$ තාපය බවට පරිවර්තනය වේ. ශ්වසන කිුිිියාවලියේදී සිදුවන තාප හානිය නොසලකා හරින්න.
 - (i) මිනිත්තු 30ක් පාපැදිය පැදීමේදී මෙම පුද්ගලයා විසින් නිපදවන තාප පුමාණය කොපමණ ද?
 - (ii) මෙම තාපය මුදා හැරීම සඳහා ජලය කොපමණ ස්කන්ධයක් වාෂ්ප කළ යුතු ද? ශරීර උෂ්ණත්වයේදී ජලයේ වාෂ්පීහවනයේ විශිෂ්ට තාපය $2\cdot 4\times 10^6\,{
 m Jkg}^{-1}$ වේ. (මේ සඳහා $\,Q=mL\,$ සමීකරණය භාවිත කළ හැක.)
 - (iii) ඉහත (a) (ii) හි ඔබ ගණනය කරන ලද ස්කන්ධයට අනුරූප වන ජල පරිමාව මිලිලීටර් වලින් කොපමණ ද 2 ජලයේ සනත්වය $1\cdot 0 imes 10^3~{
 m kg\,m}^{-3}$ වේ.
 - (iv) මෙම තාප පුමාණය ඔහුගේ ශරීරයෙන් පිට නොකළහොත් මිනිත්තු 30ක කාලය තුළදී ශරීරයේ උෂ්ණත්වය ඉහළ යාම ගුණනය කරන්න. ශරීරයේ මධානා විශිෂ්ට තාප ධාරිතාවය $3600~\mathrm{J}~\mathrm{kg}^{-1}\mathrm{K}^{-1}$ වේ.
- (b) එක් හුස්මකදී ඉහත පුද්ගලයා වායුගෝලීය පීඩනයේ හා 27° C පවතින වාතය $4.5 \times 10^{-4} \, \mathrm{m}^3$ පුමාණයක් ආශ්වාස කරයි. පුද්ගලයාගේ හුස්ම ගැනීමේ ශීඝුතාවය මිනිත්තුවකට හුස්ම ගැනීම් 20 කි. පෙනහළු තුළදී ආශ්වාස වාතය 37° C දක්වා උණුසුම් වේ.
 - (i) එක් හුස්මකට පසු ආශ්වාස කරනු ලැබූ වාතය පෙනහළු තුළ තිබෙන වීට වාතයේ අවසාන පරිමාව නිර්ණය කරන්න. ආශ්වාස කරනු ලැබූ වාතය පෙනහළු තුළ පවතින විට එහි පීඩනය වායුගෝලීය පීඩනයට සමාන බව උපකල්පනය කරන්න.
 - (ii) පුශ්වාස කරනවිට, ආශ්වාස කරනු ලැබූ සියලුම වාතය ඉවත් කිරීම සඳහා පෙනහළු මගින් කෙරෙන කාර්ය කිරීමේ ශීසුතාවය ගණනය කරන්න. (වායුගෝලීය පීඩනය $=1\cdot0\times10^5\,\mathrm{Pa})$
- (c) සංවෘත වනායාම ශාලාවක (gymnasium) වනායාම පාපැදි කිහිපයක් ඇත. මිනිසුන් වනායාම ශාලාවේ වනායාම නොකරත විට, එහි උෂ්ණත්වය $30\,^{\circ}\mathrm{C}$ ක් වන අතර සාපේක්ෂ ආර්දුතාවය $75\,\%$ කි. $30\,^{\circ}\mathrm{C}$ දී ජලයේ සංතෘප්ත වාෂ්ප පීඩනය $32\,$ mm Hg වේ.
 - (i) සාලේක්ෂ ආර්දුතාවය සඳහා පුකාශනයක් ජල වාෂ්ප පීඩන ඇසුරෙන් ලියා දක්වන්න.
 - (ii) වාාායාම ශාලාවේ පවතින ජල වාෂ්පවල පීඩනය නිර්ණය කරන්න.
 - (iii) වාහයාම ශාලාවේ පවතින ජල වාෂ්ප ස්කන්ධය කුමක් ද? $30\,^{\circ}$ C දී සංතෘප්ත ජල වාෂ්පවල නිරපේක්ෂ ආර්දුතාවය $30\,\mathrm{g\,m^{-3}}$ වේ. කාමරයේ පරිමාව $600\,\mathrm{m^3}$ වේ.
 - (iv) පුද්ගලයින් **හතර දෙනෙක්** පාපැදි පදිමින් වනායාම කරන්නේ යැයි සිතන්න. මිනිත්තු 30ක් තුළ වනායාම පාපැදිවල සිටින එක් එක් පුද්ගලයා විසින් නිකුත් කරන ජල වාෂ්ප ස්කන්ධය සමාන බවත් එක් පුද්ගලයකු විසින් නිකුත් කරන ජල වාෂ්ප ස්කන්ධය ඉහත (a) (ii) හි ලබාගත් අගයට සමාන බවත්, වනායාම ශාලාවේ උෂ්ණත්වය වෙනස් නොවන බවත්, උපකල්පනය කරන්න. මිනිත්තු 30කට පසු වනායාම ශාලාවේ නව සාපේක්ෂ ආර්දුතාවය කුමක් ද?
 - (v) වාහයාම පාපැදි පැදීම නතර කළ පසු වායුසමීකරණ යන්තුයක් මගින් වාහයාම ශාලාවේ උෂ්ණත්වය $20\,^{\circ}\mathrm{C}$ දක්වා සිසිල් කරන අතර යම් ජල වාෂ්ප පුමාණයක් ඉවත් කරනු ලැබේ. වායුසමීකරණ යන්තුයෙන් ඉවත් කරන ලද ජල වාෂ්ප ස්කන්ධය $6300\,\mathrm{g}$ වේ. $20\,^{\circ}\mathrm{C}$ දී වාහයාම ශාලාවේ අවසාන සාපේක්ෂ ආර්දුතාවය කුමක් ද? $20\,^{\circ}\mathrm{C}$ දී සංතෘප්ත ජල වාෂ්පවල නිරපේක්ෂ ආර්දුතාවය $20\,\mathrm{g}\,\mathrm{m}^{-3}$ වේ.

(**B**) කොටස

වෙනස් පෘෂ්ඨ වර්ග හතරකින් සමන්විත කුහර ලෝහ ඝනකයක් (1) රූපයේ පෙන්වා ඇත. උණුසුම් ජලයෙන් පුරවන ලද ඝනකයේ විවිධ පෘෂ්ඨ මගින් විමෝචනය වන තාප විකිරණ තීවුතාවන් උෂ්ණත්වය සමග විචලනය වීම අධ්‍යයනය කිරීමට මෙය භාවිත කරයි. මෙහිදී පෘෂ්ඨවල උෂ්ණත්වය මැනීම සඳහා තාප අනාවරක හතරක් එක් එක් පෘෂ්ඨයෙහි සිට එකම දුරින් තබා ඇත.

[ස්ටෙෆාන් නියතය $\sigma = 6.0 \times 10^{-8} \,\mathrm{W m}^{-2} \mathrm{K}^{-4}$

වීන්ගේ විස්ථාපන නියතය = 2900 µm K ලෙස ගන්න.]

පහත ගණනය කිරීම්වලදී $(300)^4 = 8 \times 10^9$, $(310)^4 = 9 \times 10^9$,

 $(360)^4 = 16 \times 10^9$ සහ $(373)^4 = 19 \times 10^9$ ලෙස ඔබට භාවිත කළ හැක.

- (1) රූපය
- (a) (i) පෘෂ්ඨයකින් තාප විකිරණ අවශෝෂණය හා විමෝචනයට බලපාන සාධක මොනවා ද?
 - (ii) තාප අනාවරකයක මිණුම් පරාසය $200\,\mathrm{K}$ සිට $400\,\mathrm{K}$ දක්වා වේ. මෙම තාප අනාවරකය භාවිතයෙන් කෘෂ්ණ වස්තුවක පෘෂ්ඨයෙහි මැනිය හැකි අවම හා උපරිම උෂ්ණත්වයන්ට අනුරූප වන උච්ච තරංග ආයාම λ_m (උපරිම තිවුතාවයේදී අනුරූප තරංග ආයාමය) ගණනය කරන්න.
 - $({
 m iii})$ ඉහත $(a)({
 m ii})$ හි ලබාගත් උච්ච තරංග ආයාම විදාුුත් චුම්බක වර්ණාවලියේ අයත්වන කලාපය නම් කරන්න.
- (b) ඉහත ඝනකයේ පැති හතර නොදිලිසෙන සුදු, නොදිලිසෙන කළු, දිලිසෙන රිදී හා දිලිසෙන කළු වන විවිධ පෘෂ්ඨයන්ගෙන් සමන්විත වේ. තාප අනාවරක අදාළ පෘෂ්ඨවලට අනුරුපව (පිළිවෙළට නොවේ) 87° C, 72° C, 47° C සහ 37° C යන කියවීම් පෙන්වයි.
 - (i) ඝනකයෙහි එක් එක් පෘෂ්ඨයට අනුරූප උෂ්ණක්ව කියවීම හඳුනාගෙන ලියා දක්වත්න.
 - (ii) උපරිම පෘෂ්ඨික විමෝචකතාවය ඇති පෘෂ්ඨය කුමක් ද?
 - (iii) කාමර උෂ්ණත්වය $27\,^{\circ}$ C නම්, ඉහත (b) (ii) හි හඳුනාගත් පෘෂ්ඨයෙහි විමෝචකතාවය 1 ලෙස උපකල්පනය කර, දිලිසෙන රිදී පෘෂ්ඨයෙහි **සාපේක්ෂ** විමෝචකතාවය ගණනය කරන්න.
- (c) පිළිවෙළින් උෂ්ණත්වය $T_1,\,T_2\,\,(T_1\!>\!T_2)$ සහ විමෝචකතාව e_1,e_2 වූ සමාන්තර පෘෂ්ඨ දෙකක් අතර ඒකක වර්ගඵලයකට සිදුවන Q සඵල විකිරණ තාප සංකාමණ ශීඝුතාව,

$$Q = rac{\sigma \left(T_1^4 - T_2^4
ight)}{\left(rac{1}{e_1} + rac{1}{e_2} - 1
ight)}$$
 මගින් දෙනු ලබයි.

පෙට්ටියක ආකාරයේ ඇති විශේෂිත ත'මොස් ප්ලාස්කුවක් (Thermos flask) (2) රූපයේ දැක්වෙන පරිදි A,B, සහ C බිත්ති තුනකින් සමන්විත වේ. A බිත්තියේ පිටත පෘෂ්ඨය සහ B බිත්තියේ අභාගන්තර පෘෂ්ඨය රිදී ආලේප කර ඇත. A හා B බිත්ති රික්තයකින් වෙන් කොට ඇත.

- (i) A හා B බිත්ති අතර රික්තයක් පවත්වා ගැනීමට හේතුව කුමක් ද?
- (ii) A හා B බිත්ති සඳහා රිදී ආලේපිත මතුපිටක් භාවිත කරන්නේ ඇයි?
- (iii) රිදී ආලේපිත පෘෂ්ඨයන්හි වීමෝචකතාවය 0.02 නම්, A හි පිටත බිත්තිය සහ B හි අභාවත්තර බිත්තිය අතර ඒකක වර්ගඵලයකට සිදුවන සඵල විකිරණ තාප සංකුාමණ ශීසුතාවය ගණනය කරන්න. ප්ලාස්කුවේ A හි පිටත බිත්තියේ උෂ්ණත්වය සහ B හි අභාවත්තර බිත්තියේ උෂ්ණත්වය පිළිවෙළින් $100\,^{\circ}\mathrm{C}$ සහ $27\,^{\circ}\mathrm{C}$ ලෙස උපකල්පනය කරන්න. ($\frac{1}{99}=0.01$ ලෙස ගන්න.)
- (iv) විකිරණය වෙනුවට සන්නයනයෙන් A හි පිටත බිත්තිය සහ B හි අභාගන්තර බිත්තිය අතර තාප සංකාමණය සිදු වූවා නම් ඉහත (c) (iii) හි ගණනය කරන ලද ඒකක වර්ගඵලයකට සිදුවන තාප සංකාමණ ශීඝුතාවය ලබා ගැනීම සඳහා යොදා ගත යුතු තාප සන්නායකතාවය $6 \cdot 6 \times 10^{-2} \, \mathrm{Wm}^{-1} \mathrm{K}^{-1}$ වූ පරිවාරක දුවායෙහි ඝනකම ගණනය කරන්න. මෙහිදී අනවරත අවස්ථා තත්ත්ව උපකල්පනය කරන්න.

