P510/1 **PHYSICS** Paper 1 AUGUST, 2023 2½ hours

JINJA JOINT EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

MOCK EXAMINATIONS – AUGUST, 2023

PHYSICS

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Attempt not more than five questions including at least one but not more than two from each of the sections A, B and C.

Any additional question(s) answered will not be marked

Where necessary, assume the following constants:

 9.81 m s^{-2} Acceleration due to gravity, g 1.6×10^{-19} C Electronic charge, e $9.11 \times 10^{-31} \text{kg}$ Electronic mass $6.02 \times 10^{23} \, \text{mol}^{-1}$ Avogadro's number, NA $5.97 \times 10^{24} \text{kg}$ Mass on earth $1.8 \times 10^{11} CKg^{-1}$ Charge to mass ratio of an election = 1.6×10^{-19} J One electron volt, eV = $6.6 \times 10^{-34} \,\mathrm{J s}$ Planck's constant, h Radius of the earth $6.4 \times 10^{6} \text{m}$ $4.2 \times 10^3 \,\mathrm{J\,kg^{-1}K^{-1}}$ Specific heat capacity of water = Specific latent heat of fusion of ice 3.36 x 103JKg-1K-1 Stefan's - Boltzmann's constant, δ $5.67 \times 10^{-8} \,\mathrm{W} \,\mathrm{m}^{-2} \mathrm{K}^{-4}$ Speed of light in Vacuum, c $3.0 \times 10^{8} \,\mathrm{m \, s^{-1}}$ = Unified mass unit, U $1.66 \times 10^{-27} \text{kg}$ = Universal gravitational constant, G 6.67 x 10⁻¹¹NM²Kg⁻² = 8.31Jmol⁻¹K⁻¹ Gas constant, R = Permittivity of free space, €₀ $8.85 \times 10^{-12} \text{Fm}^{-1}$

© 2023 Jinja Joint Examinations Board

	the constant of the model of the model of the constant of the second of the constant of the co	
	SECTION B	111
5. (8	a) (i) Define specific heat capacity.	(1 mark)
	(ii) What is meant by the term specific heat capacity of water is 4200Jkg-1K	
(t	b) (i) Describe an experiment to determine specific heat capacity of water by o	
	flow method.	(6 marks
	(ii) State two advantages and two disadvantages of the method in (b) (i) abo	
(0	c) The temperature of 50g of a liquid contained in a calorimeter is raised from	
	45°C in 530s by an electrical heater dissipating 10.0W. When 100g of liquid	is used and
	the same change in temperature occurs in the same time, the power of the he	ater is
	16.1W. Calculate the specific heat capacity of the liquid.	(5 marks)
(0	d) Describe the steps taken to set up thermodynamic scale of temperature for al	cohol-in
	glass thermometer.	(3marks)
6. (a) i) Distinguish between Ideal and Real gases.	(2 marks
	ii) Define the term Critical temperature.	(1 mark)
b)	(i) Derive the ideal gas equation $P = \frac{1}{3}\rho \bar{C}^2$ where the terms take their usual me	aning
U)	(i) Derive the ideal gas equation $1 - \frac{1}{3}pc$ where the terms take their usual me	
••	The first of the control of the cont	(7 marks)
	Explain why oxygen and Nitrogen are gases found in the atmosphere close to surface	(3 marks)
c)	The total pressure in a closed vessel containing air and saturated vapor at 35°C	
	10 ⁵ Pa. If the saturation vapor pressure at 35 ^o C and 87 ^o C are 3.99 x 10 ³ Pa are	
	Pa respectively. Calculate the total pressure in the vessel at 87°C assuming the	ne air
	remains saturated.	(5 marks)
d) (i) define root mean square speed of molecules of a gas.	(1 mark)
	(ii) State the conditions required for an isothermal process to occur.	(2 marks)
7. (a)) (i) Define thermal conductivity.	(1 mark)
	(ii) State factors which determine the rate of heat transfer through a material.	(3 mark)
(b) (i) When a quantity of heat Q is supplied to a conductor of thickness L and of	cross-
	sectional area A, a temperature difference of θ_1 is set up across the ends of	of the
	thermal conductor of same cross-sectional area and equal thickness but to	wice the
	thermal conductivity, in the same time a temperature difference θ_2 is obtain	ained across
	its ends, show that $\theta_1 = 2\theta_2$.	(4marks)
(i	i) Water in an aluminum sauce pan of diameter 16cm and thickness 4mm is kep	pt boiling at
la i	100°C on a hot stove. The water boils off at rate of 2.28x10 ⁻⁴ kgs ⁻¹ . Calculate	_
	temperature of the underside of the sauce pan assuming it is uniformly heated	
	neglecting heat losses from the sides (Thermal conductivity of aluminum =2.	
	Wm ⁻¹ k ⁻¹ , latent heat of vaporization of water =2.26x10 ⁶ J kg ⁻¹)	(4marks)
(c) (i) Explain why the center of fire appears white?	(2marks)
(-	(ii) What is meant by a black body? How can it be realized in practice?	(5 marks)
	(iii) State two devices that can detect thermal radiations	(1 mark)
		(1 max)
	© 2023 Jinja Joint Examinations Board Turi	o Over

SECTION A

- 1. a) Sketch a graph of:
 - (i) Speed
 - (ii) Distance fallen as a function of time, for a body falling under the influence of gravity. (2 marks)
 - b) (i) Explain the term free fall of a body.

(3 marks)

- (ii) A stone is dropped from the roof of a high building. A second stone dropped 1.0s later. How far apart are the stones when the second one has reached a speed of 23ms⁻¹. (5 marks)
- c) (i) State the conditions under which a body is in equilibrium under the action of coplanar forces.
 (2 marks)
 - (ii) AB is a uniform beam of weight 200N and of length 4.0m. The beam is hinged to the wall at A.

Find the tension in the cable and the horizontal and vertical components of the force exerted on the beam at the wall. (5 marks)

d) Distinguish between conservative and non-conservative forces. Give one example of each. (3 marks)

300N

2. (a) (i) define the term angular velocity ω .

(1mark)

- (ii) A particle of mass 0.2kg moves in a circular path with an angular velocity 5 rads⁻¹ under the action of a centripetal force of 4N. Find the radius of the path. (3marks)
- (b) (i) State four characteristics of simple harmonic motion.

(4 marks)

- (ii) Show that the speed of a body moving with simple harmonic motion of angular frequency, ω is given by $V = \omega (A^2 X^2)^{\frac{1}{2}}$, where A is a the amplitude and X is the displacement from the equilibrium position. (4 marks)
- (iii) Sketch graphs to show the variation with displacement, of the kinetic and potential energies of a body moving with simple harmonic motion (2 marks)
- c) A satellite of mass 250kg moves in a circular equatorial orbit at a distance of 500km above the surface of the earth. Find;
 - (i). Period

(3 marks)

(ii). Total energy of the satellite

(3 marks)

© 2023 Jinja Joint Examinations Board

Turn Over

each.	ish between elastic a balls shown below				state an example of (03 marks)
\bigcirc	30ms-1 0	 30º	50ms ⁻¹	-O _{5kg}	
8kg		15ms ⁻¹			
collision p b) Explain brid c) (i) State the (ii) Prove d) Describe a two solid	e final velocity of the erfectly elastic effy what is meant be principle of conservathe work — energy the simple experiment to surfaces. ant by the following	y internal ener vation of mech leorem for a bo	gy of a subs anical energ ody moving e coefficient	tance. y. with constant of kinetic fri	(6 marks) (3 marks) (1 mark) t acceleration. (3 marks) action between (4 marks)
i) Vis ii) Vis iii) Ve b) (i) Explain	scosity scous drag elocity gradient the effect of tempera	ature on the vis	scosity of a	gas.	(1 mark) (1 mark) (1 mark) (3 marks)
(iii) Find	the terminal velocity he density of air. (Vis	of an oil drop	of radius 2.	5x10 ⁻⁶ m whic	ch falls through air. of $oil = 900 kgm^{-3}$)
) () P! 1.4	1'	la Madulua			(3 marks) (2 marks).
,	e dimensions of You		L ovo	a for a conna	1.70
and the second of the second o	the stress versus strass wire. State the diff				(5 marks)
needed to	el wire of cross section prevent it from expansivity	inding. (Young	g's modulus		
	© 2023	3 Jinja Joint E	xamination	s Board	Turn Over

SECTION C

	SECTIO:	Carles and account for the a	Mark Control
	ish between nuclear fission and nuclea	ir fussion and account for the e	nergy
release	d.		(3 marks)
b) With the	aid of a labeled diagram describe the v	Vorking of the Geiger Mulier to	(5 marks)
			(1 mark)
c) i) Define	the term Mass defect.	235, Lucing the following infor	nation.
ii) Calcula	ate the binding energy per nucleon of	920 using the renewing inter-	nation.
	of neutron $\binom{1}{0} \cap$ = 1.00767U		
	of $^{235}_{92}U = 235.03076U$		
	of proton(${}_{1}^{1}P$) = 1.00428U		
	of an electron $\binom{0}{1}e = 0.0055U$		(4 marks)
	931M _e v.		(· maks)
ii) Wood	be how the age of a fossil can be esting from a buried ship has a specific activate and living wood has an activity of 2. If-life of 14C is 5.7 x 10 ³ years.	nated using carbon dating. vity of 1.2 x 10 ² Bqkg ⁻¹ due to 1 0 x 10 ² Bqkg ⁻¹ . Find the age of	(3 mark) 4C whereas f the ship if (4 marks)
	D. I. S. A. J. A. S. Shout on atom of an	element.	(3 marks)
9. a) i) State	Bohr's postulates about an atom of an rive an expression for the total energy	of the electron in an atom.	(6 marks)
(11) De	he energy levels of mercury are shown	in the diagram below.	
	——— 0		
n=5	•		
n=4			
n=3			
n=2	5.5		
n=1	10.4		
Level	1 is the ground state level occupied by	y electrons in an unexcited stat	
	Calculate the ionization energy of mo	ercury atom in Joules.	(3 marks)
i)	Calculate the wave length of radiation	n emitted when an electron mo	ves from level
ii)	5 to level 3.		(5 mans)
) D C -			(1 mark)
c) i) Deiin	e the term X-rays.		on v. rov tube
ii) Desc	ribe with an aid of a labeled diagram h	ow x-rays can be produced in	(5 marks)
			(5 marks)
10. a) (i) V	Vith the aid of a diagram, describe how	cathode rays are produced.	(2 marks)
(ii) I	Explain how the sign of the charge of c	athode rays can be obtained.	(3 marks)
(iii) S	tate any three differences between the	positive and cathode rays.	•
b) In a M	illikan's oil drop experiment, a charge	d oil drop of radius 9.2×10°m	mia activity
880k	gm ⁻³ is held stationary in an electric fit	eld of intensity 4.0×10 viii .	(3 marks)
(i) He	ow many electron charges are on the dr	op	(5 mars)
a.co.			
	© 2023 Jinja Joint I	Examinations Board T	urn Over

c) d)	Explain briefly the mechanism of thermionic emission. What is meant by the term rectification?	(3 marks) (3 marks) (1 mark)
	the universal to ment of the second of the s	
	•	
ham E;		