

Outline

- Introduction
- Related Work
- Problem Statement
- Methodology
 - Cohesion
 - Separation
 - Velocity
 - Escape
 - Goal
 - Starsh Vector
 - Leader Vector
- Experimental Results
- Application
- Conclusion

Introduction

- Flocking
 - Collective motion of a large number of self-propelled agents.
 - Stateless Algorithm
- Motivation
 - Steering behaviors
 - Leadership
 - Simulation with interactive interface

Introduction

- Application
 - Low cost duplication in movies
 - Developing real computer game environments
- Contribution
 - Natural and beautiful
 - Lower memory requirement
 - Enhancing experiences of user

Related Works

- Boids
 - C. W. Raynolds [Raynolds87]
 - Approach to computer simulation of flocking/herding/schooling behavior.
 - Implementation of a "control structure" for each individual.
- Effective leadership and decision making in animal groups
 - Iain D. Couzin, et al [Couzin05]
 - Animal Groups make consensus decisions by performing data analysis of group motion.

Problem Statement

Flocking

- Moving as a group
- Keeping distance from each other
- Avoiding obstacles or enemies
- No information is given to

Leadership

- Simulating a group movement towards a given point.
- The goal information is only given to a leader.
- Other starshes are also affected by the leader step by step.
- All starshes move to the goal together at last.

1. Cohesion

$$c_i(t + \Delta t) = k_c \sum_{j \neq i} \frac{p_j(t) - p_i(t)}{\left| p_j(t) - p_i(t) \right|}$$

c; : Cohesion vector

 k_c : Weight of cohesion

 p_j : Starshes' position

 p_i : Each starsh's position

- Starshes attempt to proceed into the center of its group.
- Each starsh turns its direction to the other starshes within its defined range excluding itself and approach to make a flock.

2. Separation

$$s_i(t+\Delta t) = -k_s \sum_{j\neq i} \frac{p_j(t) - p_i(t)}{\left|p_j(t) - p_i(t)\right|}$$

 s_i : Separation vector

 k_s : Weight of separation

 p_i : Starshes' position

 p_i : Each starsh's position

- Starshes tend to keep a distance from the other starshes from colliding with another.
- If a starsh is within a defined range from another starsh, it takes the separation vector to get out of the scope.

3. Velocity

$$d_i(t + \Delta t) = k_d \sum_{j=1}^{\infty} \frac{v_j(t)}{|v_j(t)|}$$

 d_i : Velocity vector

 k_d : Weight of velocity

 v_i : desired velocity of

each starsh at moment

- Starshes maintains the same velocity with the normalized sum of velocity of other starshes within its local neighborhood including itself.
- It makes a group of starshes as it is marching with a same direction.

4. Escape

$$e_i(t + \Delta t) = k_e \frac{p_i(t) - p_o}{|p_i(t) - p_o|}$$

e; : Escape vector

 $k_{\rm e}$: Weight of escape

 p_i : Each starsh's position

 p_o : position of an obstacle

- Each starsh regulates its movement when it finds an obstacle within its defined range to prevent collision.
- This can be also applied when starshes find their enemies.

5. Goal

$$r_i(t+\Delta t) = k_r \frac{p_g - p_i(t)}{\left|p_g - p_i(t)\right|}$$

 r_i : Goal vector

 k_r : Weight of goal

 p_i : Each starsh's position

 p_{σ} : position of the goal

- An additional vector towards the goal is given to the leader.
- It influences other starshes and leads them to the goal.

Starsh Vector

$$v_i = c_i + s_i + d_i + e_i$$

 v_i : Starsh vector

 c_i : Cohesion vector

 s_i : Separation vector

 d_i : Velocity vector

 e_i : Escape vector

■ The desired direction of a general starshes which is not a leader is the sum of all the vectors.

The desired direction of leader starsh is the sum of starsh vector and goal vector

Leader Vector

$$l_i = r_i + v_i$$

 l_i : Leader vector

 r_i : Goal vector

 v_i : Starsh vector

- OpenGL based simulation program with a control box.
- Using control box, we can set the number of starshes, camera, zoom ratio, and the goal position.

In the beginning, starshes are initially generated at the same point and have different velocities.

After that, the five behavior vectors are applied to the shoal motions.

- Leader starsh is attracted to the given goal position and leads other starshes to the goal.
- As time goes by, all starshes are affected by the leader starsh and go toward the goal step by step.

Leader starsh

The goal stage

Conclusion

- Virtual fish designed by the steering behaviors.
- Leadership in a shoal motion.
- Interaction of the simulation program.
- Natural and beautiful
- Lower memory requirement.
- Developing computer games and movies.

