EE4C5 Digital Signal Processing

Lecture 15 – Spectral Analysis

This lecture

- Based on Chapter 10 of O&S
- All images from O&S book unless otherwise stated

Window length for analysis

- Lecture #13 showed that long window (of the correct shape) yields better frequency resolution in DFT
- The example of two sinusoids were fixed in time
 - No time varying property, no change in frequency content
- Many real signals of interest are non-stationary
 - Radar, sonar, comms data stream, audio, video...
- Conflicts with the idea of a single long window
 - Not adequate or informative for such a signal
- Short-time Fourier Transform
 - Aka the time-dependant Fourier Transform

Short-time Fourier Transform

• STFT of signal x[n] defined as:

$$X[n,\lambda) = \sum_{m=-\infty}^{\infty} x[n+m]w[m]e^{-j\lambda m}$$

- where w[n] is the window signal
- 1-D sequence x[n] which is a function of a single discrete variable, is now converted into a 2-D function of the time variable n, which is discrete, and the frequency variable λ , which is continuous.
- STFT is periodic in λ with period 2π => only need to consider values of λ for $0 \le \lambda < 2\pi$
- STFT can be interpreted as the DTFT of the shifted signal x[n+m] as it moves past the stationary window w[m].

Chirp signal

• Consider a discrete time signal which is a linear chirp

$$x[n] = \cos(\alpha_0 n^2)$$

- Over a short interval, the signal looks sinusoidal, but the spacing between peaks becomes smaller and smaller as time progresses
 - increasing frequency with time.
- Next page shows taking different windows of the signal

Signal moving past the window...

Figure 10.11 Two segments of the linear chirp signal $x[n] = \cos(\alpha_0 n^2)$ for $\alpha_0 = 15\pi \times 10^{-6}$ with a 400-sample Hamming window superimposed. (a) $X[n, \lambda)$ at n = 320 would be the DTFT of the top trace multiplied by the window. (b) $X[720, \lambda)$ would be the DTFT of the bottom trace multiplied by the window.

DTFT

Figure 10.12 DTFTs of segments of a linear chirp signal:

- (a) DTFT of 20,000 samples of the signal $x[n] = \cos(\alpha_0 n^2)$.
- (b) DTFT of x [5000 + m]w[m] where w[m] is a Hamming window of length L = 401; i.e., X[5000, λ).
- (c) DTFT of x[15,000 + m]w[m] where w[m] is a Hamming window of length L = 401; i.e., $X[15,000, \lambda)$.

STFT is more informative

• To illustrate what we will see in a STFT, let's use a new signal:

$$y[n] = \begin{cases} 0 & n < 0 \\ \cos(\alpha_0 n^2) & 0 \le n \le 20,000 \\ \cos(0.2\pi n) & 20,000 < n \le 25,000 \\ \cos(0.2\pi n) + \cos(0.23\pi n) & 25,000 < n. \end{cases}$$

- Signal y[n] is equal to x[n] of slide #5 for $0 \le n \le 20,000$
- Then it abruptly changes to cosine components with fixed frequencies for $n>20{,}000\,$

STFT of y[n]

Figure 10.13 The magnitude of the time-dependent Fourier transform of y[n] from slide #8

- (a) Using a Hamming window of length L = 401.
- (b) Using a Hamming window of length L = 101.

Spectrogram

- This time-frequency plot is a spectrogram
 - a graphical display of the magnitude of the time-varying discrete STFT
- Have plotted $20 \log_{10} |Y[n,\lambda)|$ as a function of $\lambda/2\pi$ in the vertical dimension
 - Will also just see it plotted in Hz
 - Typically linear or log spacing (other perceptual scales for speech)
 - The "frequency" axis
- Plot the time index n in the horizontal dimension
 - The time axis
- Value $20 \log_{10} |Y[n,\lambda)|$ over a restricted range of 50dB is represented by the darkness of the marking at $[n,\lambda)$

Shorter window?

- 401-sample window provides good frequency resolution at almost all points in time
- at $n=20{,}000$ and 25,000 the signal properties change abruptly,
 - the window contains samples from both sides of the change.
- can improve the ability to resolve events in the time dimension by shortening the window to 101-samples
 - But now can't resolve our two frequencies
- Time-frequency resolution trade-off
 - Different windows will emphasise different features

Another conceptual diagram

- Taken from Matlab documentation at https://uk.mathworks.com/ /help/signal/ref/spectrogram.html
- Though I haven't matched notation to ours so watch out!

Examples in class

• In lectures, we'll have a look at many different spectrograms and see what features we can pick out for different signals...

Note C5 Piano versus Violin (in class)

 Mechanical differences in sound production result in different spectrogram patterns between different instruments producing the same isolated note

Piano

- Observe a well-defined attack with a sharp onset
 - when a key is pressed, a hammer strikes the strings abruptly, creating a sudden and well-defined start to the sound
- Rich set of harmonics that decay gradually over time.
- The sustain in a piano note contributes to a consistent presence of harmonics throughout its duration

Violin

- The attack gentler due to the nature of bowing
- Harmonics exhibit a different distribution, influenced by the violin's unique tonal qualities
- Resonances, sympathetic vibrations, and expressive nature of bowing add complexity to the spectrogram, creating peaks and troughs

Required Reading & other material

- Oppenheim & Schafer, Chapter 10
- Entertaining animated spectrograms (but little to do with 4C5)
 - https://www.youtube.com/watch?v=Hxx6Gqf1Q4w
- Audacity is free software for recording and editing audio
 - Great spectrogram capabilities
 - https://www.audacityteam.org/
- We'll be using MATLAB in Lab 4, some intro material at:
 - https://uk.mathworks.com/help/signal/ug/spectrogram-computation-withsignal-processing-toolbox.html