下次保养时间与公里数预测模型

陆琴

目录

- ▶ 数据说明和目标
- ▶ 难点
- ▶ 业务宽表重构
- ▶ 数据清洗
- ▶ 补充缺失值
- ▶ 特征工程
- ▶ 模型
- ▶ 规则
- ▶ 模型和规则评价结果展示
- > 主要创新
- ▶ 模型落地方案简介

数据说明与目标

1.静态数据

车主信息: 姓名、性别、身份证、出生日期、车主性质等

车辆信息:车型、车型代码、购车时间、购车经销商、发动机型号、变速箱型号、

技术代码、排量、是否电动车等

会员卡信息:会员卡生成时间、会员卡类型、会员卡状态、会员升降级日期、是否绑定微信等

2. 动态数据

维修主单信息:即历史用户进店的动态数据,包括了:进店日期、当下公里数、所去经销商、维修类型、消费金额、是否给了折扣等

3.目标

- 预测全量用户的下次进店保养时间和公里数

难点

1.进店日期脏数据多,比如昨天进店保养了,今天又进店保养了

用户id	进店日期	经销商代码	维修类型
ld1	2020-09-01	dealer1	常规保养
id1	2020-09-07	dealer1	首保;常规保养

- 2.人工录入的公里数脏数据更多
- (1)比如后面多一个0
- (2)比如前面少掉一个1
- (3)比如同样一个进店日期,公里数可能是大相径庭的
- (4)比如今天的公里数比半年后的公里数还要小
- 3.最重要的字段是购车时间,存在脏数据多、缺失值多的情况
- 4.多种训练方式,该如何选择?

业务宽表重构

(1) 原先的宽表形式:一个vin一个进店保养日期下有多条动态样本

vin	修理日期	维修站 号	委托书号	结算单号	金额	维修类型
vin1	2020/1/1	站 号 1	1	1	300	常规保养
vin1	2020/1/1	站 号 1	1	2	300	一般维修
vin1	2020/1/1	站 号 1	2	1	0	常规保养

(2) 重构业务宽表形式:一个vin一个进店保养日期代表一条动态样本

vin	修理日期	维修站 号	总金额	维修类型	常规保养	一般维修
vin1	2020/1/1	站 号 1	600	常规保养,一般 维修	300	300

数据清洗

- (1) 保养日期清洗
- --经多次数据试验,对于非多频快用户设置14天限制,上次与本次进店保养如果小于14天的,默认为上次保养造成的未完待续事宜,非真实意愿下进店保养行为;
- --对于多频快用户,比如出租车网约车用户,设置为7天,同时满足间隔必须不小于日常保养天数习惯的一半;
- (2)公里数清洗
- --对于一个进店日期下有多个不同的公里数的情况,经测试,直接取最大值可以保证得到的公里数脏数据的比例最少;
- --对于公里数脏数据的情况,如果脏数据处于VIN历史的一头一尾的情况,则会使用近期的日均与天数差进行纠正拟合;
- --如果是处于Vin历史数据中间的情况,曾经试过使用统计法、随机森林、插值法去拟合,但是出现动一发牵全身的情况,所以这类脏数据的情形,则直接舍弃这个VIN的数据,不再放入模型,而是放入规则中;

预测方式	筛选条件	占比
模型预测	被清洗干净的数据	69%
规则预测	没有保养记录的、新车用户、无首保用户、存在无法清洗掉公里数脏数据	31%

补充缺失值

主要特征工程

单维度统计特征群

- -不同车型代码/性别/年龄/车龄等下的人数统计
- -每次保养工时费和零件费的合计、 占比的统计
- -用户不同时间维度下的历史保养次数、有折扣的次数、占比等

群体统计特征群

-相同车型/车龄/地区等的群体的历史 保养天数差/公里数差/日均的 min,max,median,mean,std等 -以及交叉特征下的关于天数差/公里 数差/日均的统计特征群

用户个人天数差/公里数差/日均统计特征群

- -用户个人历史保养天数差/公里数差/日均的min,max,median等
- -用户个人历史保养天数差/公里数差/日均的环比、间隔比、 依次间隔比、环比增长率、间隔比增长率、依次间隔比增长 率等趋势统计特征

模型

序号	训练法	重构y	优缺点	采用
训练方法	每一天保养样本即为一个 数据	这一个样本的下次保养时间/公 里数就是y	提取特征的时候容易穿越	
训练方法2	窗格法,以1年为窗口,即转化为预测之后1年的第一次进店保养时间	以1年为窗口,即接下去1年的第一次保养时间/公里数就是y	大数据, 单机测试版上 提取特征跑起来太慢	
训练方法3	Batch训练法,即用历史 保养n次的人去预测历史 保养次数为n-1次的人的 第n次保养时间和公里数	即用户的最后一次进店保养时间和公里数就是Y	batch式训练,速度快了一倍多,精度也得到了提升	\

模型预测的框架

模型评价结果展示

天数模型						
	mae_train	mae_vali	r2_train	r2_vali	mse_train	mse_vali
1	9324.07	10758.46	0.72	0.67	63.00	66.19
2	13536.83	15962.75	0.82	0.78	70.58	74.46
3	10837.43	13199.56	0.90	0.87	63.38	67.53
4	8524.76	10663.83	0.94	0.92	57.41	61.82
5	6539.60	8906.39	0.96	0.94	51.32	57.47
6	6063.85	8490.78	0.97	0.95	49.86	56.13
7	4835.22	7402.92	0.98	0.96	45.25	52.38
8	3615.69	6434.28	0.98	0.97	39.79	49.27
9	2480.78	5210.62	0.99	0.97	33.69	45.09
10	2464.51	5087.99	0.99	0.98	33.27	44.10
11	2807.38	7161.02	0.99	0.96	37.53	54.18
avg	6457.28	9025.33	0.93	0.91	49.55	57.15

公里数模	型					
batch	mae_train	mae_vali	r2_train	r2_vali	mse_train	mse_vali
1	19733381.93	22736271.62	0.37	0.27	2129.01	2183.54
_						
2	27488291.09	33447261.43	0.67	0.60	2606.29	2720.89
3	24944614.58	31571774.99	0.79	0.74	2433.40	2535.78
4	23962478.75	31638790.55	0.85	0.80	2394.12	2522.46
_	2017/252 22	2044455 74		2.24	2222.44	0.450.55
5	22176259.00	29411655.76	0.89	0.86	2303.61	2452.57
6	19562577.57	27311136.53	0.92	0.89	2217.81	2394.14
7	14973739.29	23275357.98	0.95	0.92	2097.11	2375.34
0	22522704.24	2/705/00 02	0.04	0.04	2202 42	2447.47
8	23532704.21	36705699.02	0.94	0.91	2202.42	2447.17
9	19325650.83	30385285.03	0.96	0.93	2050.81	2363.60
10	16849638.61	27467175.20	0.97	0.94	2006.89	2388.58
4.4	20020007 05	20202057.72	0.00	0.00	2500.02	2440.07
11	20939097.85	39383057.73	0.99	0.98	2508.83	3110.07
avg	21226221.25	30303042.35	0.85	0.80	2268.21	2499.47
_						

规则

序号	细分人群	规则
1	有首保,无常规,预测第1次常规	使用首保习惯相同的同车型群体的天数/公里数/日均的趋势比喂入
2	有首保,1常规,预测第2次常规	使用首保和常规保养习惯都相同的同车型群体的天数/公里数/日均的趋势比喂入
3	有首保,2次常规,预测第3次常规	根据用户个人最近2次常规保养的趋势系数,
4	3次及以上常规,预测接下去常规	给予不同的权重融和得到下一次天数间隔/公 里数间隔/日均
5	无首保,1次常规,预测第2次常规 (购车)	使用保养习惯相同的群体的天数/公里数/日均的趋势比喂入
6	无首保,2次常规,预测第3次常规	使用2次常规保养习惯都相同的同车型群体的天数/公里数/日均的趋势比喂入
7	无保养记录,预测首保	使用用户标签、车型相同的群体的第一次首保的天数间隔/公里数间隔/日均喂入
8	无保养习惯	100%属于已流失客户,所以直接用车型群体的趋势喂入

模型和规则评价结果展示

模型

1 tongji1(dt, '天数偏差分类1')

天数偏差分类1 fenzi fenmu ratio 0 30-60天 68418 316906 0.215894 1 30天以内 126972 316906 0.400661 2 60-90天 40412 316906 0.127520 3 90天以上 81104 316906 0.255924

1 tongji1(dt,'公里数偏差分类1')

公里数偏差分类1 fenzi fenmu ratio 0 2500-5000公里 56457 316906 0.178151 1 2500公里以内 221241 316906 0.698128 2 5000-7500公里 15433 316906 0.048699 3 7500公里以上 23775 316906 0.075022

规则全量

1 tongji1(rule, '天数偏差分类1')

天数偏差分类1 fenzi fenmu ratio 0 30-60天 99440 480498 0.206952 1 30天以内 146486 480498 0.304863 2 60-90天 63439 480498 0.132028 3 90天以上 171133 480498 0.356158

1 tongji2(rule,'公里数偏差分类1')

公里数偏差分类1 cnt ratio 1 2500公里以内 412725 0.858953 0 2500-5000公里 35121 0.073093 3 7500公里以上 20658 0.042993 2 5000-7500公里 11994 0.024962

去掉模型VIN以后的规则人群的统计

1 tongji1(ruledf,'天数偏差分类1')

天数偏差分类1 fenzi fenmu ratio 0 30-60天 31465 163592 0.192338 1 30天以内 44319 163592 0.270912 2 60-90天 21804 163592 0.133283 3 90天以上 66004 163592 0.403467

1 tongji1(ruledf,'公里数偏差分类1')

公里数偏差分类1 fenzi fenmu ratio 0 2500-5000公里 12000 163592 0.073353 1 2500公里以内 136011 163592 0.831404 2 5000-7500公里 4798 163592 0.029329 3 7500公里以上 10783 163592 0.065914

主要创新

- ▶ 1.了解业务的时候挖掘出VIN隐含的业务逻辑;
- ▶ 2.业务宽表的重构,即让数据形式变成更加符合业务逻辑,一个VIN一个进店日期一个样本,也让后续的无论是业务统计还是KPI统计的结果更加精准更加符合实际情况;(如下附表);
- ▶ 3.训练方式的创新;

业务宽表的转	业务宽表的转换方式的不同,几乎影响了所有统计!!							下的平均单车	产值统计			
1。原先的是不做任何处理与转换的												
vin	修理日期	维修站号	委托书号	结算单号	金额	维修类型	vin	总金额	台次	平均单车产值	维修类型	
vin1	2020/1/1	站号1	1	1	300	常规保养	vin1	600	3	200	所有	低估
vin1	2020/1/1	站号1	1	2	300	一般维修	vin1	300	2	150	常规保养	低估
vin1	2020/1/1	站号1	2	1	0	常规保养	vin1	300	1	300	一般维修	正常
2。优化2: 渋	步及到整体统计的	的时候没问题,	但是涉及到维	修类型下的统计	也会出现不	精确的问题						
vin	修理日期	维修站号	总金额	维修类型	常规保养	一般维修	vin	总金额	台次	平均单车产值	维修类型	
vin1	2020/1/1	站号1	600	!规保养,一般维!	300	300	vin1	600	1	600	所有	正常
							vin1	300	1	300	常规保养	正常
							vin1	300	1	300	一般维修	正常

模型落地方案简介

谢谢

Thank You