1 Differentiation

1.1 Derivatives of Measures

Theorem 1. Suppose μ is a complex Borel measure on \mathbb{R}^1 and

$$f(x) = \mu((-\infty, x)) \text{ for } x \in \mathbb{R}^1$$
 (1)

If $x \in \mathbb{R}^1$ and A is a complex number, TFAE

- (a) f is differentiable at x and f'(x) = A.
- (b) For all $\epsilon > 0$, there exists $\delta > 0$ such that

$$\left|\frac{\mu(I)}{m(I)} - A\right| < \epsilon \tag{2}$$

for every open segment I that contains x and whose length is less than δ . Note m is the Lebesgue measure on \mathbb{R}^1 .

Proof. (a) \Rightarrow (b) Since f'(x) = A, we have, for all $\epsilon > 0$ there is a $\delta > 0$ such that for (t, x) with $|t - x| < \delta$:

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = \left| \frac{\mu([t, x))}{t - x} - A \right| = \left| \frac{\mu([t, x))}{m([t, x))} - A \right| < \epsilon \tag{\dagger}$$

So for I = (a, b) is any open interval containg x, of length less than δ . Now let $\{t_n\}$ be such that $a < \ldots < t_n < t_{n-1} < \ldots < t_1$.

Definition 1.1. Let us fix a dimension k, denote the open ball with center $x \in \mathbb{R}^k$ and radius r > 0 by

$$B(x,r) = \{ y \in \mathbb{R}^k : |y - x| < r \}$$

We associate to any Borel measure μ on \mathbb{R}^k the quotients:

$$(Q_r\mu)(x) = \frac{\mu(B(x,r))}{m(B(x,r))}$$

Where m is the Lebesgue measure on \mathbb{R}^k .

We define the **symmetric derivative** to be

$$(D\mu)(x) = \lim_{r \to 0} (Q_r\mu)(x)$$

Definition 1.2. Using the same notation as above we define the **maximal function** $M\mu$, for $\mu \geq 0$, to be defined by

$$(M\mu)(x) = \sup_{0 < r < \infty} (Q_r\mu)(x)$$

Remark. The maximal function of a complex Borel measure μ is, by definition, its total variation $|\mu|$.

Proposition 1. The functions $M\mu$: $R^k \to [0,\infty]$ are lower semicontinuous, hence measurable.

Proof. Assume $\mu \geq 0$, and let $\lambda > 0$ and $E = \{M\mu > \lambda\}$. Fix $x \in E$. Then there is an r > 0 such that:

$$\mu(B(x,r)) = tm(B(x,r))$$
 for some $t > \lambda$

Indeed since $\sup_{0 < r < \infty} \frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. So for some r, we have $\frac{\mu(B(x,r))}{m(B(x,r))} > \lambda$. Letting $t = \frac{\mu(B(x,r))}{m(B(x,r))}$ gives us the desired result

Furthermore there is a $\delta > 0$ such that:

$$(r+\delta)^k < \frac{r^k t}{\lambda}$$

If $|y-x| < \delta$, then $B(y,r+\delta) \supseteq B(x,r)$. Therefore

$$\mu(B(y,r+\delta)) \ge \mu(B(x,r)) = tm(B(x,r)) = t\left[\frac{r}{(r+\delta)^k}m(B(y,r+\delta)) > \lambda m(B(y,r+\delta))\right]$$

Thus $B(x, \delta) \subseteq E$. So E is open.

Lemma 2. If W is the union of a finite collection of balls $B(x_i, r_i)$, with $i \le i \le N$. Then there is a set $S \subseteq \{1, ..., N\}$ so that:

(a) the balls $B(x_i, r_i)$ with $i \in S$ are disjoint,

$$W \subseteq \bigcup_{i \in S} B(x_i, 3r_i),$$

$$m(W) \le 3^k \sum_{i \in S} m(B(x_i, r)i).$$

Proof. Order the balls $B_i = B(x_i, r_i)$ such that $r_1 \ge r_2 \ge \cdots \ge r_N$. Put $i_1 = 1$, discard all the B_j that intersect with B_{i_1} . Let B_{i_2} the first of our remaining balls, and discard all B_j with $j > i_2$ that intersect B_{i_2} , and let B_{i_3} be the first of the remaining ones, etc...

This process stops after a finite number of steps, since we only have a finite collection of balls, and we let $S = \{i_1, i_2, \ldots\}$. (a) holds by definition and (c) follows from (b) since $m(B(x_i, 3r_i)) = 3^k m(B(x_i, r_i))$.

So we just need to show (b). But notice for every discarded B_j , $B_j \cap B_i \neq \emptyset$ for some $i \in S$, where $r_i > r_j$. Assume that $X \in B_j \cap B_i$. We see that for all $x \in B_j$ we have:

$$\begin{aligned} |x - x_i| &\leq |x - X| + |X - x_i| \\ &\leq |x - x_j| + |x_j - X| + |X - x_i| \\ &< r_j + r_j + r_i \text{ since } x, X \in B_j \text{ and } X \in B_i \\ &< 3r_i \text{ since } r_j \leq r_i \end{aligned}$$

So we see that $B_i \subseteq B(x_i, 3r_i)$. This gives us (b).

The maximal theorem

Theorem 3. If μ is a complex Borel measure on \mathbb{R}^k and λ is a positive number, then

$$m\{M\mu > \lambda\} \le 3^k \lambda^{-1} ||\mu|| \tag{i}$$

Here $||\mu|| = |\mu|(\mathbb{R}^k)$ and $m\{M\mu > \lambda\}$ is an abbreviation of $m(\{x \in \mathbb{R}^k : (M\mu)(x) > \lambda\})$

Proof. Fix μ and λ . Let K be a compact subset of the open set $\{M\mu > \lambda\}$. Each $x \in K$ is the center of an open ball B for which

$$|\mu|(B) > \lambda m(B)$$

Some finite collection of these B's covers K and Lemma 2 tells us there is a disjoint subcollection $\{B_1, \ldots, B_n\}$ such that:

$$m(K) \le 3^k \sum_{i=1}^n m(B_i) \le 3^k \lambda^{-1} \sum_{i=1}^n |\mu|(B_i) \le 3^l \lambda^{-1} |\mu|$$

The disjointess of the B_i 's was used in the last inequality. So (i) follows by taking the supremum over all compact $K \subseteq \{M\mu > \lambda\}$.

Weak L^1 If $f \in L^1(\mathbb{R}^k)$ and $\lambda > 0$, then

$$m\{|f| > \lambda\} \le \lambda^{-1}||f||_1$$

because, if we let $E = \{|f| > \lambda\}$, we have:

$$\lambda m(E) \le \int_{B} |f| dm \le \int_{\mathbb{D}^{k}} |f| dm = ||f||_{1}$$

Definition 1.3. Any measurable function f for which:

$$\lambda m\{|f| > \lambda\}$$

is a bounded funtion of λ on $(0,\infty)$ is said to belong to weak L^1

So from above we see that the weak L^1 contains L^1 . But it is also larger since for example if we let $f = \frac{1}{x}$ on (0,1), then for any $\lambda > 0$, we have

$$\frac{1}{x} > \lambda \iff x < \frac{1}{\lambda}$$

So we have $\lambda \cdot m\{|f| > \lambda\} \le \lambda \cdot m(0, \frac{1}{\lambda}) = 1 < \infty$. So $\frac{1}{x}$ is weak L^1 .

Definition 1.4. We associate to each $f \in L^1(\mathbb{R}^k)$ its maximal function $Mf \colon \mathbb{R}^k \to [0, \infty]$ by setting

$$(Mf)(x) = \sup_{0 < r < \infty} \frac{1}{m(B_r)} \int_{B(x,r)} |f| \ dm$$

If we identify f with the measure μ given by $d\mu = f \ dm$, we see that this defintion agrees with the previously defined $M\mu$. So theorem 3 states that the "maximal operator" M sends L^1 to weak L^1 , with abound (namely 3^k) that depends only on the space \mathbb{R}^k , i.e. For every $f \in L^1(\mathbb{R}^k)$ and every $\lambda > 0$

$$m\{Mf > \lambda\} \le 3^k \lambda^{-1} ||f||_1$$

Lebesgue points

Definition 1.5. If $f \in L^1(\mathbb{R}^k)$, any $x \in \mathbb{R}^k$ for which it is true that

$$\lim_{r \to 0} \frac{1}{m(B_r)} \int_{B(x,r)} |f(y) - f(x)| \ dm(y) = 0$$

is called a **Lebesgue point** of f.

For example this equation holds if f is continuous at the point x. More generally this equation holds, if the averages of |f - f(x)| are not too small on the balls centered at x, i.e. The Lebesgue points of f are the points where f doesn't oscillate too much.

Theorem 4. If $f \in L^1(\mathbb{R}^k)$, then almost every $x \in \mathbb{R}^k$ is a Lebesgue point of f.

\mathbf{Index}

Lebesgue point, 3 maximal function, 1, 3 symmetric derivative, 1 weak, 2 weak L^1 , 2