The False-Position Method $\frac{-f(b)}{x_{i-b}} - \frac{f(a)f(b)}{\alpha - b}$

$$\frac{2y-f(b)}{x_i-y-b} = \frac{f(a)-f(b)}{a-b}$$
If a real **root** is bounded by a

and b of f(x) = 0, then we can

estimate this root x_r by doing a

linear interpolation L(x)

between the points (a, f(a))

and (b, f(b)) to find the x_i

value such that $L(x_i) = 0$.

The False-Position Method

For the arbitrary equation of one variable, f(x) = 0

- 1. Find a pair of values a and b where f(a) < 0 and f(b) > 0.
- 2. Estimate the root x_r by the value

$$x_i = \frac{af(b) - bf(a)}{f(b) - f(a)}$$
 (i = 1, 2, ..., n).

- 3. If $f(x_i) = 0$ then $x_r = x_i$ will be the exact desired root.
- 4. For $f(x_i) \neq 0$, to start the next iteration, the value of x_i will be used as the new value of a if $f(x_i) < 0$ or it will be used as the new value of b if $f(x_i) > 0$.

The False-Position Method

- 5. Repeat steps 2, 3, and 4 by using the new interval [a, b].
- 6. The number of required iterations is n depending on the desired accuracy (ε) where the absolute error $|x_r x_n| < \varepsilon$ and the root will be $x_r \approx x_n$.

The False-Position Method (Example)

Use the false-position method to obtain the smaller positive root of the algebraic equation $x^3 - 7x + 1 = 0$ correct to three decimal places.

Solution:

Let
$$f(x) = x^3 - 7x + 1$$

$$f(0) = 1$$
 and $f(1) = -5$

So there is a root inside the interval [0, 1].

$$a = 0 \text{ and } b = 1.$$

Correct to 3 decimal places

$$\rightarrow \varepsilon = 5 \times 10^{-4}$$

The False-Position Method (Example)

i	a (f is +ve)	b (f is -ve)	$x_i = [af(b)-bf(a)]/[f(b)-f(a)]$	f(x _i)
0	0	1	0.166666667	-0.162037037
1	0	0.166666667	0.143426295	-0.001033627
2	0	0.143426295	0.143278199	-6.08357E-06

The root will be $x_r \approx 0.143$ correct to 3 decimal places.

Bisection
J—, Bracketing Methods
False-Position J—, Bracketing

Lecture 2: Roots of Equations

Open Methods

By

Dr. Khaled M. Abdelgaber

Open Methods

- Open methods are based on formulas that require only a single starting value of x or two starting values that do not necessarily bracket the root.
- They sometimes move away (diverge) from the true root as the computation progresses.
- However, when the open methods converge, they usually do so much more quickly than the bracketing methods.

Simple Fixed-point Iteration $3x = x^3 + 1$

For the arbitrary equation of one variable, f(x) = 0

Rearrange the function so that x is on the left side of the

$$f(x) = 0 \rightarrow x = g(x)$$

2. Estimate the **root**
$$x_r$$
 by the value $x_r = g(x_{i-1}), \quad i = 1, 2, \dots, n$

where the iteration process is started by assuming an initial guess x_0 .

Simple Fixed-point Iteration

Fixed-point methods may sometime "diverge", depending on the stating point (initial guess, x_0) and how the function g(x) looks like.

For example:

$$f(x) = x^2 - x - 2$$
, $x > 0$

$$f(x) = 0 \rightarrow x = x^2 - 2 \rightarrow g(x) = x^2 - 2$$

$$f(x) = 0 \to x^2 = x + 2 \to x = \sqrt{x + 2} \to g(x) = \sqrt{x + 2}$$

$$f(x) = 0 \to x^2 = x + 2 \xrightarrow{\div x} x = 1 + \frac{2}{x} \to g(x) = 1 + \frac{2}{x}$$

What is the suitable g(x) to converge to solution?

Simple Fixed-point Iteration

Fixed-point iteration converges if

$$|g'(x_i)| < 1$$
, for all x_i , $i = 0, 1, 2, \cdots$

$$i = 0, 1, 2, \cdots$$

For example:
$$f(x) = x^2 - x - 2, \quad x > 0$$

$$g(x) = x^2 - 2 \rightarrow g'(x) = 2x \rightarrow |g'(x)| = |2x| < 1 \text{ if } -\frac{1}{2} < x < \frac{1}{2}$$

→ Not suitable for all cases?!

$$g(x) = \sqrt{x+2} \to g'(x) = \frac{1}{2\sqrt{x+2}} \to |g'(x)| = \frac{1}{2\sqrt{x+2}} < 1$$

if $x > -\frac{7}{4} \rightarrow$ Suitable for all cases?!

$$g(x) = 1 + \frac{2}{x} \rightarrow g'(x) = -\frac{2}{x^2} \rightarrow |g'(x)| = \frac{2}{x^2} < 1$$

if $x > \sqrt{2}$ and $x < -\sqrt{2} \rightarrow$ Suitable for some cases?!

Simple Fixed-point Iteration (Example)

Use the simple fixed-point iteration to obtain the smaller positive root of the algebraic equation $x^3 - 7x + 1 = 0$ correct to three decimal places.

Solution:

$$f(x) = x^3 - 7x + 1$$

$$x = \frac{x^3 + 1}{7} \to \boxed{g(x) = \frac{1}{7}(x^3 + 1)}$$

Select the initial guess to be $x_0 = 0$

$$x_i = \frac{1}{7}(x_{i-1}^3 + 1), \qquad i = 1, 2, \dots, n$$

Simple Fixed-point Iteration (Example)

i	x_{i-1}	$x_i = \frac{1}{7} (x_{i-1}^3 + 1)$	$ x_i - x_{i-1} $
1	0	0.142857143	0.142857143
2	0.142857143	0.143273636	0.000416493

The root will be $x_r \approx 0.143$ correct to 3 decimal places.

$$f(b) [b-a] = (f(a)-f(b)) [x_i-b]$$

$$\frac{f(b) (b-a)}{f(a)-f(b)} = x_i-b$$

$$x_{i} = \frac{b + (a) - f(b)}{b + (a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

$$x_{i} = \frac{b + (a) - f(b)}{f(a) - f(b)}$$

Use the false-position method to obtain the smaller positive root of the algebraic equation $x^3 - 7x + 1 = 0$ correct to three decimal places.

Fred pt - x = g(x)f(x)=0 $\frac{2}{(x-1)^{2}} = \frac{2}{(x-1)^{2}}$ $4 \text{ all } x = 1/2 \times x + 1/2$ $\left[\frac{1}{9} \left(x \right) \right] = 1$ Condition $f(x) = x^2 - x - 2 = 0$ $x^2 = x + 2$ X = X²Z ix, x=1+2 X= VX+2 $|g(x)=x^2z|$ 191/21/21/21

Use the simple fixed-point iteration to obtain the smaller positive roof of the algebraic equation $x^3 - 7x + 1 = 0$ correct to three decimal places.

Use the simple fixed-point iteration to obtain the smaller positive root of the algebraic equation $x^3 - 7x + 1 = 0$ correct to three decimal places.

