

Machine Learning and Data Mining Data management: generalized tools and techniques

https://powcoder.com

Add WeChat powcoder

Carlo Lipizzi clipizzi@stevens.edu

SSE

Knowledge Discovery Process, in practice

Preparation

Add WeChat powcoder

Data Preparation estimated to take 70-80% of the time and effort

Data Processing Flow

Types of Data Quality Problems:

Ambiguity

Uncertainty

Erroneous data values

Missing Values

Duplication

etc

Approaching Data Quality

We need a multi-disciplinary approach to attack data quality problems

- No one approach solves all problem
- Process management Project Exam Help
 - Ensure proper procedures der.com
- Statistics
 - Focus on analysis: Mind but a preparte nomalies in data.
- Database
 - Focus on relationships: ensure consistency.
- Metadata / domain expertise
 - What does it mean? Interpretation

Metadata

- Data about the data
- Data types, domains, and constraints help, but are often not enough
- Interpretation of spignment Project Exam Help
- Scale, units of measurement, meaning of labels
 Interpretation of tables
- - Frequency of refreshwere fightions definitions
- Most work done for scientific databases
 - Metadata can include programs for interpreting the data set

Process Management

Business processes which encourage data quality.

- Standardization of content and formats
- Enter data once, enter it correctly (incentives for sales, customent-Project Exam Help
- Automation https://powcoder.com
- Assign responsibility: data stewards
- End-to-end and Welithat represents
 - Transitions between organizations.
- Data Monitoring
- Data Publishing
- Feedback loops

Feedback Loops

Data processing systems are often thought of as openloop systems

- Do your processing then throw the results over the fence? Assignment Project Exam Help
- Computers don't make mistakes, do they?

Analogy to controlly stems: release k loops

- Monitor the system to detect difference between actual and intended
- Feedback loop to correct the behavior of earlier components
- Of course, data processing systems are much more complicated than linear control systems

Example

Sales, provisioning, and billing for telecommunications service

- Many stages involving handoffs between organizations and design the latest Exam Help
- Simplified pinture.//powcoder.com
 Transition between organizational boundaries is a common cause of problems powcoder
 Natural feedback loops
- Customer complains if the bill is to high
 Missing feedback loops
 - No complaints if we undercharge

Example

Monitoring

Use data monitoring to add missing feedback loops Methods:

- Data tracking / auditing
 Follow a sample of transactions through the workflow.
 - Build secondary processing system to detect possible problems
- Reconciliation Adding content to the poly content and a databases with original sources.
- Mandated consistency with a Database of Record
- Feedback loop sync-up
- Data Publishing

Statistical Approaches

No explicit DQ methods

- Traditional statistical data collected from carefully designed experiments, often tied to analysis
- But, there are methods for finding anomalies and repairing assignment Project Exam Help
- Existing methods specification DQ purposes Four broad categories can be adapted for DQ
 - Missing, incomplete, ambignous of damaged data e.g. truncated, censored
 - Suspicious or abnormal data e.g. outliers
 - Testing for departure from models
 - Goodness-of-fit

Statistics has two major chapters:

Descriptive Statistics

- Gives numerical and graphic procedures to summarize a sollection of the procedures to and understandable way

https://powcoder.com

Inferential statistics

Add WeChat powcoder

– Provides procedures to draw inferences
about a population from a sample

Descriptive Measures

Central Tendency measures

They are computed to give a "center" around which the measurements in the data are distributed Assignment Project Exam Help

Variation or Variability measures powerder.com

- They describe "dafa spread" or how far away the measuremeation that powerder

Relative Standing measures

 They describe the relative position of specific measurements in the data

Measures of Central Tendency

Mean

 Sum of all measurements divided by the number of measurements

Assignment Project Exam Help

Median

https://powcoder.com

– A number such that at most half of the measurements are above it

Mode

The most frequent measurement in the data

Example of Mean

Measurements	Deviation	
X	x - mean	
3	-1	
5	Assignment P	
5	1	
1	https://po	
7	3	
2	Add WeC	
6	2	
7	3	
0	-4	
4	0	
40	0	

• MEAN = 40/10 = 4

Notice that the sum of roject the and eviations" is 0

wcode Notice that every single observation intervenes hat payendecomputation of the mean

Excel Example

=AVERAGE(B72:B81)

Example of Median

Measurements	Measurements Ranked	
	Nankeu	
X	X	
3	Assignment	
5	1 155181	
5	https://p	
1	3	
7	Add We	
2	5	
6	5	
7	6	
0	7	
4	7	
40	40	

• Median: (4+5)/2 = 4.5

Notice that only the two Project Exam Help Central Values are used owcodein the computation

• The median is not Chat powcoder sensible to extreme values

Excel Example

=MEDIAN(B72:B81)

Example of Mode

Measurements
Х
3
5
5
1
7
7 2
6
7
0 4
4

- The mode in a list of numbers refers to the list of numbers that occur most frequently
- In this case the data have two modes: 5 and 7
 Assignment Project Exam Field
- Both measurements are repeated twice

https://powcoder.com

Add WeChat powcoder

Mode: 3

Notice that it is possible for a dataset not to have any mode

Measurements		
X		
3		
5		
1		
1		
4		
7		
3		
8		
3		

Excel Example

=MODE(B72:B81)

Maximum, Minimum, and Range

Excel **Example:**

- =MIN(cellrange) =MIN(D2:D81) =MAX(cellrange) Project Exam Help (D2:D81)

https://powcoder.com

- There is no explicit command to find the range
- However, it can be easily calculated
- = MAX(D2:D81) MIN(D2:D81)

Exercise – Companies Values

- Data set: Companies 1.xlsx
 - 25 companies

Assignment Project Exam Help

- For the 3 numeric variables calculate:

 - https://powcoder.comMean, Mode, Median, Max, Min, Range

Add WeChat powcoder

- Can you get any non explicit info from the values you calculated?
- Can you create any new variables to get more from your data? What is your goal?

Variance

- Variance is the average of the squared differences from the Mean
- Steps:
 - Computé et en de l'inforct Exam Help
 - Square each desiption coder.com
 - Sum all the squares
 - Divide by the data size (sample size) minus one: n-1

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} \qquad s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Example of Variance

Measurements	Deviations	Square of deviations
X	x - mean	gnment
3	-1	
5	1	https://p
5	1	mupp.//p
1	-3	A de Wo
7	3	Add W C
2	-2	4
6	2	4
7	3	9
0	-4	16
4	0	0
40	0	54

- Variance = 54/9 = 6
- It is a measure of "spread"
- Notice that the larger the Project Example Builtive or negative) the larger the owcoder cance

CEXECUEXCACTE

=VAR.P(B72:B81)

Calculates variance based on the entire population

=VAR.S(B72:B81)

Calculates variance based on a sample

The standard deviation

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \qquad s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Populationment Project Exam Halample

- It is defines as the southers: /opowicioneercriomce
- In the previous example Variance = 6
 Standard deviation = Square root of the variance = Square root of 6 = 2.45
- We use n-1 instead N (Bessel's correction) to compensate the fact that x_i in Samples tend to be closer to their average

Excel Example

=STDEV.P(B72:B81)

=STDEV.S(B72:B81)

The standard deviation: Sample vs Population

- A population includes each element from the set of observations that can be made, while a sample consists only of observations drawn from the population
- These two standard deviations sample and population standard deviations - are calculated differently. In statistics, we are usually presented with having to calculate sample standard deviations

Shape – Patterns of Frequency

Percentiles

- The pth percentile is a number such that at most p% of the measurements are below it and at most 100 – p percent of the data are above itnment Project Exam Help
- Example, if in a certain data the 85th percentile is 340 means that 15% of the rhttpsur/eprotents itethectata are above 340. It also means that 85% of the measurements are below 340
 Add WeChat powcoder
- Notice that the median is the 50th percentile

For any data

 At least 75% of the measurements differ from the mean less than twice the standard deviation

Assignment Project Exam Help

• At least 89% of the measurements differ from the mean less than three times the strand and victorion m

Add WeChat powcoder

Note: This is a general property and it is called Tchebysheff's Inequality: Given a number $k \ge 1$ and a population with n measurements, at least $1-1/k^2$ of the measurements will lie within k standard deviations of their mean. It is true for every dataset

Example of Tchebysheff's Inequality

Suppose that for a certain data is: Mean = 20

Then:

Standard deviation Standard deviation Standard deviation Project Exam Helpast 75% of the méasurements are between 14 and 26

https://powcoder.com

Bottom line: the Chat powcoder At least 89% of the guarantees that in any measurements are probability distribution, between 11 and 29 "nearly all" values are close to the mean

Further Notes

- When the Mean is greater than the Median the data distribution is skewed to the Right Assignment Project Exam Help
- When the Median is: greater than Mean the data distribution is skewed to the Left

Add WeChat powcoder

 When Mean and Median are very close to each other the data distribution is approximately symmetric

Exercise – Starting Salaries – 15'

- Data set: StartSalary.xlsx
 - 12 datapoint

Assignment Project Exam Help

Calculate:

https://powcoder.com -Mean, Mode, Median, Standard Deviation, Sample Variance, Skewneds Weard Mipo Rander

Knowledge Discovery Process, in practice

Preparation

Add WeChat powcoder

Data Preparation estimated to take 70-80% of the time and effort

Data Cleaning / Quality

Individual measurements

- Random noise in individual measurements
 - Outliers
 - Random data entry errors
 - Noise in lages sissignment (P.go jest laget in helpal data sets)
 - can be corrected or smoothed out
- Systematic errors https://powcoder.com
 - E.g.: all ages > 99 recorded as 99
 - More individuals Aded W.eC. Hatepotwooderected

Missing information

- Missing at random
 - Questions on a questionnaire that people randomly forget to fill in
- Missing systematically
 - Questions that people don't want to answer
 - Patients who are too ill for a certain test

Handling Missing Data: 3 alternatives

- Replace Missing Values with User-defined Constants
 - Missing numeric values replaced with ap
 - Missing categorical values replaced with "Missing" https://powcoder.com
- Replace Missing Values with Mode or Mean Add WeChat powcoder
- Replace Missing Values with Random Values
 - Values randomly taken from underlying distribution
 - Method superior compared to mean substitution

Exercise on Handling Missing Data

- Examine <u>cars.txt</u> dataset containing records for 261 automobiles stienwat Ureigin Proposition 1980s
- Examine the file and pandle missing data
 - -Use one or more of the three alternative methods Add WeChat powcoder

Identifying Outliers

- Outliers are values that lie near extreme limits of data range_{Assignment} Project Exam Help
- Outliers may represent errors in data entry https://powcoder.com
 Certain statistical methods may produce unstable results Add WeChat powcoder
- Some data mining algorithms benefit from normalized data

Graphical Methods for Identifying Outliers

- A histogram examines values of numeric fields
- Gives us the possibility to identify the outliers and then decide what to do
- Multidimensional graphs could provide more insights

Exercise on Handling Outliers

• Examine <u>cars full.txt</u> dataset containing full records for 261 automobisites midnotes to the property of th

Examine the file for outliers

Add WeChat powcoder

Data Transformation - Normalization

- Variables tend to have ranges different from each other
- Some data mining algorithms adversely affected by differences in variable ranges
- Variables with bitester angester tend to have larger influence on data model's results der
- Therefore, numeric field values should be normalized

Normalization – Min-Max

$$X^* = \frac{X - \min(X)}{\operatorname{range}(X)} = \frac{X - \min(X)}{\max(X) - \min(X)}$$
Assignment Project Exam Help

- Determines how much greater the selected field value is than minim we called the following the selected field
- Scales this difference by field's range

Min-Max - Example

- From the cars dataset, normalize the value for a vehicle taking 25 seconds to reach 60mph
- vehicle taking 25 seconds to reach 60mph

 Assignment Project Exam Help

 Max(time-to-60) = 25

$$X^* = \frac{\frac{\text{https://powcoder.com}}{X} = \frac{25}{8}}{\frac{\text{max(AY)WeGhatXpow25des}}{\text{max(AY)WeGhatXpow25des}}} = 1.0$$

- Maximum field values have Min-max Normalization value = 1
- Min-max Normalization values range [0, 1]

Z-score Standardization

$$X^* = \frac{X - mean(X)}{SD(X)}$$
Assignment Project Exam Help

- Widely used in https://pewspdgr.spm
- Takes difference detive and field value mean
- Scales this difference by field's standard deviation

Z-score - Example

 Same: From the cars dataset, normalize the value for a vehicle taking 25 seconds to reach 60mph Assignment Project Exam Help

$$X^* = \frac{X - mean(X)}{\text{https://poweoder.com}} 2.593$$

Add WeChat powcoder

Data values that lie below the mean have negative
 Z-score Standardization values

Z-score – Key points

- Z-score Standardization values typically range [-4, 4]
- Field values below field mean → negative Z-score Standardization Standardization Standardization Field mean → negative Z-score
- Field values equal to field many Z-score Standardization value = 0
- Field values above field mean positive Z-score Standardization values

Exercise on Normalization

- Using the <u>cars full.txt</u> dataset normalize the "time-to-60" values <u>Assignment Project Exam Help</u>
- Use either Min-Max:952-seare method

Add WeChat powcoder

Data Transformation – Data Reduction

-Dimension Reduction

- In general, incurs loss of information about x
- If dimensionality p is very large (e.g., 1000's), representing the data in a lower-dimensional lower-d
 - e.g.: clustering example
 - 100 dimensionary powcoder.com
 - if cluster structure is only present in 2 of the dimensions, the others are just noise chat powcoder
 - if other 98 dimensions are just noise (relative to cluster structure), then clusters will be much easier to discover if we just focus on the 2d space
- Dimension reduction can also provide interpretation/insight (e.g.: for 2d visualization purposes)

Data Reduction - Methods

Sampling

- Choose a representative subset of the data
 Simple random same ling rojector white parameters of skewed variables
- Principal Componettps://powcoder.com
 - One of several projection methods
 Add WeChat powcoder
 Idea: Find a projection of your data in a lower dimension,
 - Idea: Find a projection of your data in a lower dimension, that maximizes the amount of information retained

Data Reduction - Principal Component

Using orthogonal transformations, converts a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components

Assignment Project Exam Help

Data Reduction - Consolidation

- Consolidating variables to create new logical variables
 - This is very domain-dependent and may create new insights on the data Project Exam Help
- In the cars dataset, creating the variable "hp/weight" can provide an indication of power/whit and make vehicles more comparable one to the other

Add WeChat powcoder