Отчет

Алексеенко М. Д.

Постановка задачи

Simultaneous localization and mapping (SLAM) - метод, используемый в мобильных автономных средствах для построения карты в неизвестном пространстве или для обновления карты в заранее известном пространстве с одновременным контролем текущего местоположения и пройден ного пути. Если бы это преобразование (SLAM) было выражено в виде дифференцируемой функции, можно было бы использовать сигналы ошибок на основе задач для изучения представлений, оптимизирующих производительность задачи. Однако несколько компонентов типичной плотной системы SLAM являются недифференцируемыми. Предлагается вычисление *grad* SLAM, методология представления систем SLAM в виде дифференцируемых вычислительных графов, которые позволяют применить обучение на основе градиентных методов к системам SLAM.

Содержание

Ключевая идея заключается в том, что SLAM систему можно рассматривать не как единое целое, а по частям. Таким образом, если мы сможем дифференцировать каждую часть, то вся система станет дифференцируемой. С этой точки зрения мы можем рассматривать SLAM как вычислительный граф, где каждый узел содержит операнд или оператор, и каждое (направленное) ребро указывает поток управления. Кроме того, каждый узел в графе также определяет правила вычисления для градиента выходных данных узла относительно входных данных узла. Как видно, это это очень похоже на архитектуру нейронной сети, проблема заключается в дифференцируемости каждой части системы.

Одна из них связана с оптимизацией расчета состояния робота и карты. Целевая функция имеет вид $\frac{1}{2} \sum r(x)^2$, где r(x) - нелинейная функция остатка. Чтобы свести его к минимуму, такие целевые функции линейно приближаются в каждой точке x_0 с $\mathbf{r}(x+\delta x) = \mathbf{r}(x_0) + J(x_0) \delta x$ и общая задача решается в основном методом Левенбергом-Марквардтом (LM), который недифференцируемый. Предлагается сглаживающая модификация метода:

$$\lambda_{1} = Q_{\lambda}(r_{0}, r_{1}) = \lambda_{min} + \frac{\lambda_{max} - \lambda_{min}}{1 + De^{\sigma(r_{1} - r_{0})}}$$
 (1)

$$Q_x(r_0, r_1) = x_0 + \frac{\delta x_0}{1 + e^{-(r_1 - r_0)}}$$
 (1)

Еще одна плохо дифференцируемая часть - это построение карты. Для решения этой проблемы предлагаются следующие шаги:

- 1) Измерение поверхности, выполненное каждым допустимым пикселем ${\bf p}$ в реальном фрейме (т.е. $p\in P_{valid}$), не является функцией зависящей только от ${\bf p}$. Скорее, это функция зависит от ${\bf p}$ и его (активных/неактивных) соседей nbd(p), как определено ядром K(p,nbd(p)).
- 2) Когда измерение поверхности преобразуется в глобальный фрейм, вместо того, чтобы использовать жесткую (one-one) связь между измерением поверхности и элементом карты, мы используем мягкую связь с несколькими элементами карты в соответствии с характеристиками.
- 3) Предполагается, что каждое измерение поверхности по умолчанию представляет новый элемент карты, который передается на этап дифференцируемого слияния (для управления увеличением количества элементов карты).

Подход

Для проекта повторно реализовывались идеи, предложенные выше. На этом этапе была написан дифференцируемый вариант метода Левенберга-Марквардта (LM). Он содержит две обобщенные логистические функции $Q_{_{\chi}}$ и $Q_{_{\chi}}$ определенные в (1) для вычисления функции затухания. Для проверки правильности реализации были проведены некоторые эксперименты. Для этого разработался тестовый набор нелинейных задач подбора кривой. Рассматривались две нелинейных функции: экспоненциальная, синусоидальная с разными параметрами.

Рис 1. Результаты для функции $5e^{x} + 10$

Рис 2. Результаты для функции 5sinx + 10

На обоих графиках представлены результаты с $\lambda_{min}=0.1, \lambda_{max}=1,$ $D=1, \, \sigma=10^{-5}$

Дальнейшая работа над проектом предполагает внедрение механизма дифференцируемого отображения. Из-за большого объема работы и отсутствия необходимых данных эту часть работы пришлось отложить. В результате можно сделать вывод, что идея интересна с точки зрения дальнейшего развития технологии SLAM и применения к ней методов самообучения.