Boundary Value Problems
> Before rousidecine fully complicated PDEs.
>Before considering fully complicated PDEs, lets distinguish between two types of PDE archiver
PPE problems.
TE problems.
-> Until now, we have considered
Initial Value Problems (IVPs) with
ODEs where we know the solution at
some fritial time and then use
numerical methods to find the solution of
other time
-> Boundary value problems (BVPs)
Man Lill Man a []
are those in which the solution is
known at many "boundwits" of the
known at many "boundwits" of the system (physical or in time) and we search for a solution everywhere else
starch for a solution overwhere else
Example Heat conduction in the Earth
Crample Acal Coulder los fac lear 12
We can describe heal
conduction through a
We can describe heat conduction through a solid medium (in 1D)
vsting.
V

Heat/Diffusion: $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial z^2} - h(z)$ Equation

diffusion to source At steady-state: $\frac{\partial^2 T}{\partial z^2} = h(z)$ Consider two types of boundary conditions: DDirichlet boundary conditions budgets

-> set values of T@ points

T(z=a)=Ta and T(z=b)=Tb Neumann boundary conditions badis -> set derivatives of Te points $\frac{dI}{dz}\Big|_{z=a} = F$ $\frac{dI}{dz}\Big|_{z=b} = F$

$$\frac{\partial T}{\partial z}\Big|_{z_{2,5}} = \frac{T_3 - T_2}{\Delta z} \frac{\partial T}{\partial z}\Big|_{z_{1,5}} = \frac{T_2 - 7}{\Delta z}$$

$$\frac{\partial^2 T}{\partial z^2}\Big|_{z_{2,5}} = \frac{\partial T}{\partial z}\Big|_{z_{1,5}} - \frac{\partial T}{\partial z}\Big|_{z_{1,5}}$$

$$= \frac{T_3 - T_2 - (T_2 - T_1)}{(\Delta z)^2}$$

$$= \frac{T_3 - T_2 - (T_2 - T_1)}{(\Delta z)^2}$$

$$= \frac{T_3 - 2T_2 + T_1}{\Delta z^2}$$
Given a function for the heat source we have a system of equations to solve:
$$(T_2 - 2T_1 + T_1) / \Delta z^2 = h(z_1)$$

$$(T_3 - 2T_2 + T_1) / \Delta z^2 = h(z_2)$$

(TN+1-2TN+TN-1)/12=h(Zn) The first and last equations include the temperatures at the boundaries:
To and THI -These equations must be modified to accound for the budgy conditions Simply set T=Ta, T=Tb and we core left with Negrations and N unknowns (T,,...,TN) -SIf we have Neumann BCs, Then we must set the derivative at the bounderies

So now we have a lineous system of egrations that we would like to know of like to

(Dirichlet BCs)
$$\begin{bmatrix}
-\frac{2}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & 0 \\
\frac{1}{\Delta}z^{2} & -\frac{2}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
0 & \frac{1}{\Delta}z^{2} & -\frac{2}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} & \frac{1}{\Delta}z^{2} \\
\vdots & 0 & \frac{1}{\Delta}z^{2} &$$

Returning to the problem of the temperature of the solid Earth, we can solve for temperature through a vertical profile assuming:
the temperature of the solid Earth,
we can solve for temporature through
a vertical profile assumine:
-> We know h(z) -> The rate at which radiocenic heat it genoated in the Earlih
which radioccuic heat it centrated
in the Farth
-> <u>at</u> - ()
-> Dax 12=0 = heart flux at the core
->D== = heat flux at the surface ->D== ==================================
7=74 /: 0 100 1 100 1
Li.e. geo itesmoi real
flux measurement)
In general to solve a DE of the form (a-i) (a-i)
(r) = f(x, y, y', y', y', y', y', y', y', y', y',
Requires in boundary limitial conditions
Requires n boundary/initial conditions
· · · · · · · · · · · · · · · · · · ·

_

_

_
