Sprawozdanie z laboratorium nr 2: Zagadnienie numerycznego wyznaczania zer nieliniowych funkcji

Zachariasz Jażdżewski 193648, Iga Kobryń 198872

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z iteracyjnymi metodami wyznaczania miejsc zerowych funkcji nieliniowych oraz porównanie ich zbieżności i dokładności. W ramach laboratorium zaimplementowano trzy klasyczne metody:

- metodę bisekcji,
- metodę Newtona (stycznych),
- metodę siecznych.

2. Wstęp teoretyczny

Metoda bisekcji. Metoda bisekcji polega na stopniowym zawężaniu przedziału [a, b], w którym funkcja f(x) zmienia znak (czyli f(a)f(b) < 0), zgodnie z zasadą:

$$x_{n+1} = \frac{a_n + b_n}{2}.$$

Jeżeli $f(a_n) \cdot f(x_{n+1}) < 0$, to $b_{n+1} = x_{n+1}$, w przeciwnym wypadku $a_{n+1} = x_{n+1}$.

Metoda Newtona (stycznych). Metoda Newtona jest zbieżna kwadratowo w pobliżu miejsca zerowego i opiera się na wzorze:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Metoda ta wymaga znajomości pochodnej funkcji.

Metoda siecznych. Metoda siecznych nie wymaga znajomości pochodnej, korzysta z przybliżenia jej wartością różnicową:

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

3. Opis programu

Program został napisany w języku Python z wykorzystaniem bibliotek numpy oraz math. Zaimplementowano trzy funkcje odpowiadające kolejno metodom iteracyjnym:

- bisection_method(f, a, b, ...)
- newton_method(f, df, x0, ...)
- secant_method(f, x0, x1, ...)

Każda funkcja zwraca przybliżone miejsce zerowe oraz liczbę wykonanych iteracji. Program posiada zabezpieczenia przed brakiem zbieżności (np. dzieleniem przez zero lub pochodną równą zero).

4. Funkcje testowe

Program przetestowano na trzech funkcjach:

•
$$f_1(x) = x^2 - 2$$
,

$$\bullet \ f_2(x) = \cos(x) - x,$$

•
$$f_3(x) = x^3 - 2x + 2$$
.

Dla każdej z metod analizowano zbieżność oraz liczbę iteracji potrzebnych do osiągnięcia dokładności $\varepsilon=10^{-7}$.

5. Wyniki i analiza zbieżności

Dla każdej z trzech funkcji testowych przeprowadzono obliczenia trzema metodami: bisekcji, Newtona oraz siecznych.

Funkcja 1: $f(x) = x^2 - 2$

Metoda	Dane początkowe	Liczba iteracji	Przybliżony pierwia-
			stek
Bisekcji	[-1, 3]	22	$x \approx 1.4142141$
Newtona	$x_0 = 10$	6	$x \approx 1.4142136$
Siecznych	$(x_0, x_1) = (0, 5)$	8	$x \approx 1.4142136$

Komentarz: Dla pierwszej funkcji metoda Newtona osiąga zbieżność po 6 iteracjach, a metoda siecznych daje podobną dokładność w 8 krokach. Metoda bisekcji wymaga 22 iteracji, ale jest najbezpieczniejsza.

Funkcja 2: $f(x) = \cos(x) - x$

Metoda	Dane początkowe	Liczba iteracji	Przybliżony pierwia-
			stek
Bisekcji	[-2, 2]	22	$x \approx 0.7390852$
Newtona	$x_0 = 2$	3	$x \approx 0.7390851$
Siecznych	$(x_0, x_1) = (1.5, 2)$	4	$x \approx 0.7390852$

Komentarz: Dla drugiej funkcji metody Newtona i siecznych działają wyjątkowo efektywnie — wystarcza kilka iteracji, aby uzyskać wynik z dużą dokładnością.

Funkcja 3: $f(x) = x^3 - 2x + 2$

Metoda	Dane początkowe	Liczba iteracji	Przybliżony pierwia-
			stek
Bisekcji	[-3,1]	22	$x \approx -1.7692919$
Newtona	$x_0 = 2$	8	$x \approx -1.7692924$
Siecznych	$(x_0, x_1) = (0, 2)$	11	$x \approx -1.7692924$

Komentarz: Funkcja sześcienna ma bardziej skomplikowany przebieg przez co metoda Newtona wymagała więcej iteracji. Wszystkie metody zbieżne są do tego samego miejsca zerowego.

6. Porównanie metod

Metoda	Liczba iteracji	Charakter zbież-	Zalety	Wady
		ności		
Bisekcji	22	Liniowa	Zawsze zbieżna	Wolna i wymaga
				znajomości prze-
				działu
Newtona	3–8	Kwadratowa	Bardzo szybka,	Wymaga pochod-
			precyzyjna	nej i dobrego
				punktu starto-
				wego
Siecznych	4–11	Nadliniowa	Nie wymaga po-	Może nie być
			chodnej	zbieżna dla złych
				startów

Rysunek 1: Wykresy obrazujące zbieżności metod bisekcji, Newtona i siecznych.

7. Wnioski końcowe

- Wszystkie metody zbieżne są do tych samych wartości pierwiastków, lecz różnią się szybkością.
- Metoda bisekcji jest najwolniejsza, lecz najbardziej niezawodna.
- Metoda Newtona jest najszybsza i wymaga najmniejszej liczby iteracji.
- Metoda siecznych stanowi kompromis pomiędzy prostotą (brak pochodnej) a efektywnością.
- Wyniki potwierdzają teoretyczne własności metod iteracyjnych przedstawione na wykładzie.

8. Bibliografia

- 1. "Analiza numeryczna" David Kincaid, Ward Cheney
- 2. Materiały do wykładu zamieszczone przez dr. Pawła Wojdę w platformie eNauczanie