

تمرینات جبر خطی سری شش مدرس درس: دکتر یاسمی از تمرینات تحویلی نیستند.

- اد. میدانیم $\mathcal{L}(\mathbb{R}^7,\mathbb{R})$ یک فضای برداری دوبعدی است. فرض کنید $T_7(x,y)=y$ و $T_7(x,y)=x$
- آ. نشان دهید $\{T_1,T_7\}$ مولد $\mathbb{C}(\mathbb{R}^7,\mathbb{R})$ است. یعنی هر تبدیل خطی دلخواه مانند T را میتوان به صورت ترکیب خطی T_1 و T_2 نوشت.
- T(x,y) = ax + by ب نشان دهید اگر $T = aT_1 + bT_7$ ، این تبدیل به فرم است و بالعکس.
 - پ. نشان دهید $\{T_1, T_7\}$ مستقل خطی هستند.
 - ت. با توجه به موارد بالا سعی کنید پایه ای برای $\mathcal{L}(\mathbb{R}^n,\mathbb{R})$ بیابید.
 - ۲. موارد زیر را ثابت کنید.
- آ. اگر $\langle u,v \rangle'' = \langle u,v \rangle + \langle u,v \rangle'$ دو ضرب داخلی باشند، $\langle u,v \rangle' = \langle u,v \rangle$ نیز ضرب داخلی است.
- $\langle u,v
 angle = [u]^T \mathcal{I}[v]$ بشان دهید $u,v\in\mathbb{R}^{\mathsf{T}}$ و $u,v\in\mathbb{R}^{\mathsf{T}}$ و $u,v\in\mathbb{R}^{\mathsf{T}}$ و داخلی است.
- ر نظر \mathbb{R}^n در نظر $u,v\in\mathbb{R}^n$ را به همراه ضرب داخلی معمول روی $u,v\in\mathbb{R}^n$ در نظر $\langle u+v,v+u\rangle=\langle u,u\rangle+\langle v,v\rangle$ داریم $\langle u+v,v+u\rangle=\langle u,u\rangle+\langle v,v\rangle$ بگیرید. نشان دهید اگر u و v متعامد باشند، داریم v کنید.

T. تبدیل خطی T خودالحاق است اگر و تنها اگر T خودالحاق.

 $T[T][T]^{\dagger} = [T]^{\dagger}[T]$ ب. تبدیل خطی T نرمال است اگر و تنها اگر

۵. ضرب داخلی زیر را روی $P_1(\mathbb{R})$ در نظر بگیرید.

$$\langle f, g \rangle = \int_{1}^{\tau} f(x)g(x)dx$$

یک پایه متعامد نرمال مانند $\{f_1, f_7\}$ برای $P_1(\mathbb{R})$ طوری بیابید که f_1 از درجه یک باشد.

 $k\in\mathbb{Z}$ ماتریسی وارونناپذیر و $\mathcal{I}=egin{bmatrix}1&1\\1&1\end{bmatrix}$ ، برای هر $A\in M_{\mathsf{T} imes\mathsf{T}}(\mathbb{Z})$.9 دلخواه نشان دهید $\det(A-k\mathcal{I})$ بر $\det(A-k\mathcal{I})$ برخشپذیر است.