

FIGURE 1

AGGCGGGCAGCAGCTGCAGGCTGACCTGCAGCTTGGCGGA**ATG**GACTGGCCTCACAAACCTGCTGTTCTT
CTTACCATTTCCATCTTCCTGGGCTGGGCCAGCCCAGGAGCCCCAAAAGCAAGAGGAAGGGCAAGGGC
GCCTGGGCCCTGGCCCTGGCCCTCACCAAGGTGCCACTGGACCTGGTGTACGGATGAAACCGTATGCC
GCATGGAGGAGTATGAGAGGAACATCGAGGAGATGGTGGCCAGCTGAGGAACAGCTCAGAGCTGGCCAG
AGAAAGTGTGAGGTCAACTTGAGCTGTGGATGTCCAACAAGAGGAGCCTGTCTCCCTGGGCTACAGCAT
CAACCACGACCCAGCCGTATCCCGTGGACCTGCCGGAGGCACGGTGCCTGTGTCTGGGCTGTGAACC
CCTTCACCATGCAGGAGGACCGCAGCATGGTAGCGTGCCGGTTCAGCCAGGTTCCGTGCGCCGCC
CTCTGCCGCCACGGCCCGCACAGGGCTTGCCGCCAGCGCAGTCATGGAGACCATCGCTGTGGGCTG
CACCTGCATCTTCT**TGA**ATCACCTGGCCCAGAACGCCAGCAGCCAGAACCATCCTCCTGACACCTT
GTGCCAAGAAAGGCCATTGAAAAGTAACACTGACTTTGAAAGCAAG

卷之三

FIGURE 2

MDWPHNLLFLLTISIFLGLGQPRSPKSKRKGQGRGPLAPGPHQVPLDLVSRMKPYARMEYERNIEEMVA
QLRNSSELAQRKCEVNQLQWMSNKRSLSPWGYSHDPSRIPVDSLPEARCLCLGCVNPFTMQEDRSMVSVP
VFSQVPVRRRLCPPPPRTGPCRQRAVMETIAVGCTCIF

FIGURE 3

GCCAGGTGTGCAGGCCGCTCCAAGCCCAGCCTGCCCGCTGCCGCCACCATGACGCTCCTCCCCGGCCTCC
TGTTTCTGACCTGGCTGCACACATGCCTGGCCCACCATGACCCCTCCCTCAGGGGGCACCCCCACAGTCAC
GGTACCCCACACTGCTACTCGGCTGAGGAACCTGCCCTCGGCCAGGCCCCCCCACACCTGCTGGCTCGAGG
TGCCAAGTGGGGCAGGCTTGCCTGTAGCCCTGGTGTCCAGCCTGGAGGCAGCAAGCCACAGGGGGAGGC
ACGAGAGGCCCTCAGCTACGACCCAGTGCCCGGTGCTGCGCCGGAGGAGGTGTTGGAGGCAGACACCCAC
CAGCGCTCCATCTCACCCCTGGAGATAACCGTGTGGACACGGATGAGGACCGCTATCCACAGAAAGCTGGCCTT
CGCCGAGTGCGTGTGCAGAGCCTGTATCGATGCACGGACGGGCCGCGAGACAGCTGCGCTCAACTCCGTGC
GGCTGCTCCAGAGCCTGCTGGTGTGCGCCGCCGCTGCTCCCGCACGGCTGGGCTCCCCACACCT
GGGCCTTGCCTCCACACCGAGTTCATCCACGTCCCCGTGGCTGCACCTGCGTGTGCCCCGTTCAAGT
GTGACCGCCGAGGCCGTGGGGCCCTAGACTGGACACGTGTGCTCCCCAGAGGGCACCCCCCTATTATGTG
TATTTATTGTTATTATGCCTCCCCAACACTACCCCTGGGTCTGGCATTCCCCGTGTGGAGGAC
AGCCCCCACTGTTCTCCATCTCAGCCTCAGTAGTTGGGGTAGAAGGAGCTCAGCACCTTCCAGC
CCTTAAAGCTGCAGAAAAGGTGTACACGGCTGCCTGTACCTGGCTCCCTGCTCCGGCTTCC
TACCCCTATCACTGGCCTCAGGCCCGCAGGCTGCCTTCCAACCTCCTTGGAAAGTACCCCTGTTCTTA
AACATTATTAAAGTGTACGTGTATTAAACTGATGAACACATCCCCAAA

1000457-000

FIGURE 4

MTLLPGLLFLTWLHTCLAHHDPSLRGHPHSHGTPHCYSAEELPLGQAPPPLLARGAKWGQALPVALVSSLE
AASHRGRHERPSATTQCPVLRPEEVLEADTHQRSISPWRYRVDTDEDRYPQKLAFAECLCRGCIDARTGRE
TAALNSVRLLQSLLVLRRRPCSRDGSGLPTPGAFAFHTEFIHVPVGCTCVLPRSV

Signal peptide:	Amino acids 1-18
Tyrosine kinase phosphorylation site:	Amino acids 112-121
N-myristoylation sites:	Amino acids 32-38;55-61;133-139
Leucine zipper pattern:	Amino acids 3-25
Homologous region to IL-17:	Amino acids 99-195

FIGURE 5

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGTCAGTC
GTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCAAGTGCAGAGGGCTGCCTGAGGGCT
GTGCTGAGAGGGAGAGGAGCAGAGATGCTGCTGAGGGTGGAGGGAGGCCAAGCTGCCAGGTTGGGCTGG
GGGCCAAGTGGAGTGAGAAACTGGGATCCCAGGGGAGGGTGCAG **ATG**AGGGAGCGACCCAGATTAGGTGA
GGACAGTTCTCTCATTAGCCTTTCTACAGGTGGTGCATTCTGGCAATGGTCAATGGGAACCCACACCT
ACAGCCACTGGCCCAGCTGCTGCCCCAGCAAAGGGCAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACT
GTGCCTGTGCCTCCCCTAGAGCCTGCTAGGCCAACGCCACCCAGAGTCCTGTAGGCCAGTGAAGATGGA
CCCCCTCAACAGCAGGGCCATCTCCCCCTGGAGATATGAGTTGGACAGAGACTGAAACGGCTCCCCCAGGA
CCTGTACCACGCCCGTGCCTGTGCCCGACTGCGTCAGCCTACAGACAGGCTCCACATGGACCCCCGGG
GCAACTCGGAGCTGCTCTACCACAACCAGACTGTCTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACC
CACAAGGGCTACTGCCTGGAGCGCAGGCTGTACCGTGTTCCTAGCTGTGTGTGTGCCGGCCCCGTGT
GATGGGCTAGCCGGACCTGCTGGAGGCTGGTCCCTTTGGGAAACCTGGAGCCAGGTGTACAACCACTTG
CCATGAAGGGCAGGATGCCAGATGCTGGCCCTGTGAAGTGCTGTGGAGCAGCAGGATCCGGGAC
AGGATGGGGGGCTTGGGAAAACCTGCACTTCTGCACATTGAAAAGAGCAGCTGCTGCTTAGGCCCGC
CGGAAGCTGGTGTCTGTCAATTCTCTCAGGAAAGGTTCAAAGTCTGCCATTCTGGAGGCCACCA
CTCTGTCTCTTCTCTTCCATCCCTGCTACCCCTGGCCAGCACAGGCACATTCTAGATATTCCCC
CTTGCTGGAGAAGAAAAGAGCCCTGGTTTATTGTTACTCATCACTCAGTGAGCATCTACTTTGG
GTGCATTCTAGTGTAGTTACTAGTCTTTGACATGGATGATTCTGAGGAGGAAGCTGTTATTGAATGTATA
GAGATTATCCAAAATAATCTTATTAAAAATGAAAAA

FIGURE 6

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCP SKGQDTSEELL RWSTVPVPPLEPARPNRHP
ESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHC VSLQTGSHMDPRGNSELLYHNQTVFYR
RPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Signal peptide: Amino acids 1-32

N-glycosylation site: Amino acids 136-140

Tyrosine kinase phosphorylation site: Amino acids 127-135

N-myristoylation sites: Amino acids 44-50;150-156

PROTEIN SEQUENCES

FIGURE 7

ATGCTGGTAGCCGGCTCCTGCTGGCGCTGCCGCCAGCTGGCCGGCGCCCCAGGGCGGGCAGGCG
CCCCCGCGGGCGCGGGGCTGCGCGGACCGCCGGAGGAGCTACTGGAGCAGCTGTACGGGCGCCTGGCG
CCGGCGTGCTCAGTGCCTTCCACACACGCTGCAGCTGGGCGCGTGAGCAGGCGCAACGCGAGCTGC
CCGGCAGGGGGCAGGCCCGCGACCGCCGCTTCCGGCCGCCACCAACCTGCGCAGCGTGTGCCCTGGC
CTACAGAATCTCCTACGACCCGGCGAGGTACCCCAGGTACCTGCCTGAAGCCTACTGCCTGTGCCGGGCT
GCCTGACCGGGCTGTTGGCGAGGAGGACGTGCGCTTCCGAGCGCCCCTGTCTACATGCCAACCGTC
CTGCGCCGCACCCCCGCGTGCGCCGGCGCCGTTCCGTCTACACCAGGCCTACGTACCATCCCCGTGG
CTGCACCTGCGTCCCCGAGCGGAGAAGGACGACAGACAGCATCAACTCCAGCATTGACAAACAGGGCGCA
AGCTCCTGCTGGGCCCCAACGACGCGCCCGTGGCCCTGAGGCCGGTCTGCCCGGGAGGTCTCCCCGG
CCCGCATCCGAGGCGCCAAGCTGGAGCCGCTGGAGGGCTCGTCCGGCACCTCTGAAGAGAGTGCACC
GAGCAAACCAAGTGCAGGAGCACCAGCGCCGCTTCCATGGAGACTCGTAAGCAGCTTCATCTGACACGG
GCATCCCTGGCTTGCTTTAGCTACAAGCAAGCAGCGTGGCTGGAAAGCTGATGGAAACGACCCGGCACGG
GCATCCTGTGTGCGGCCCGCATGGAGGGTTGGAAAAGTTACGGAGGCTCCCTGAGGAGCCTCTCAGATC
GGCTGCTGCGGGTGCAGGGCGTGACTCACCGCTGGGTGCTGCCAAAGAGATAAGGACGCAATGCTTTTT
AAAGCAATCTAAAATAATAAGTATAGCGACTATACCTACTTTAAAATCAACTGTTGAATAGA
GGCAGAGCTATTTATATTCAAATGAGAGCTACTCTGTTACATTCTAACATATAAACATCGTTTT
ACTTCTCTGGTAGAATTTTAAAGCATAATTGGAATCCTGGATAAATTTGTAGCTGGTACACTCTGG
CCTGGGTCTCTGAATTAGCCTGTACCGATGGCTGACTGATGAAATGGACACGTCTCATCTGACCCACTC
TTCCTCCACTGAAGGTCTTCACGGGCCTCCAGGTGGACCAAGGGATGCACAGCGGCTCGCATGCCCA
GGGCCAGCTAAGAGTTCAAAGATCTCAGATTGGTTAGTCATGAATACATAAACAGTCTCAAACCTCGC
ACAATTTTCCCCCTTTGAAAGCCACTGGGCAATTGTTAGGTTAAGAGGTGGTGGAGATAAGAAGTGG
ACGTGACATCTTGCCAGTTGTCAGAAGAATCCAAGCAGGTATTGGCTTAGTTGTAAGGGCTTAGGATCA
GGCTGAATATGAGGACAAAGTGGGCCACGTTAGCATCTGCAGAGATCAATCTGGAGGCTCTGTTCTGCA
TTCTGCCACGAGAGCTAGGTCTTGATCTTTCTTAGATTGAAAGTCTGTCTCTGAACACAATTATTGT
AAAAGTTAGTAGTTCTTTAAATCATTAAAAGAGGCTGCTGAAGGAT

FIGURE 8

MLVAGFLLALPPSWAAGAPRAGRPARPRGCADRPEELLEQLYGRILAAGVLSAFHHTLQLGPREQARNASC
PAGGRPGDRRFRPPTNLRSVSPWAYRISYDPARYPRYLPEAYCLCRGCLTGLFGEEDVRFRSAPVYMPVV
LR RTPACAGGRSVYTEAYVTIPVGCTCVPPEKDADSINSSIDKQGAKLLLGPNDAPAGP

Signal peptide: Amino acids 1-15

N-glycosylation sites: Amino acids 68-72; 181-185

Tyrosine kinase phosphorylation site: Amino acids 97-106

N-myristoylation sites: Amino acids 17-23; 49-55; 74-80;
118-124

Amidation site: Amino acids 21-25

BIOEDIT 2.6.0.4

FIGURE 9

CAACTGCACCTCGTTCTATCGATAGCCACCAGCGAACATGACAGTGAAGACCCCTGCATGGCCCAGCCAT
GGTCAAGTACTTGCTGCTGATATTGGGGCTTCGCCTTCTGAGTGAGGCGGCAGCTCGAAAATCCCCA
AAGTAGGACATACTTTTCCAAAAGCCTGAGAGTTGCCGCCTGTGCCAGGAGGTAGTATGAAGCTTGAC
ATTGGCATCATCAATGAAAACCAGCGCGTTCCATGTCACGTAACATCGAGAGCCGCTCCACCTCCCCCTG
GAATTACACTGTCACTTGGGACCCCAACCGGTACCCCTCGAAGTTGACAGGCCAGTGTAGGAACCTGG
GCTGCATCAATGCTCAAGGAAAGGAAGACATCTCCATGAATTCCGTTCCATCCAGCAAGAGACCTGGTCGTC
CGGAGGAAGCACCAAGGCTGCTCTGTTCTTCCAGTTGGAGAAGGTGCTGGTGAUTGTTGGCTGCACCTG
CGTCACCCCTGTCATCCACCATGTGCAGTAAGAGGTGCATATCCACTCAGCTGAAGAAG

4003152 - 300000

FIGURE 10

MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPVPGGSMKLDIGIINENQRVSMS
RNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRLGCINAQGKEDISMNSVPIQQETLVVRRKHQGCSVSFQ
LEKVLVTVGCTCVTPVIHHQ

Signal sequence: Amino acids 1-30

N-glycosylation site: Amino acids 83-86

N-myristoylation sites: Amino acids 106-111;136-141

FIGURE 11

CGGGCGATGTCGCTCGTGTGCTAACGCCGGCCGCTGTGCAGGAGCGCCGTACCCCGAGAGGCCGACCGT
TCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCCCCGGAGACTTGA
GGGACCTCCGAGTAGAACCTGTTACAACACTAGTGTGCAACAGGGACTATTCAATTGATGAATGTAAGC
TGGGTACTCCGGCAGATGCCAGCATCCGCTTGTGAAGGCCACCAAGATTGTGTGACGGGCAAAGCAA
CTTCCAGTCCTACAGCTGTGAGGTGCAATTACACAGAGCCTCCAGACTCAGACCAGACCCCTGGTG
GTAAATGGACATTTCTACATCGGCTTCCCTGTAGAGCTAACACAGTCTATTCAATTGGGCCATAAT
ATTCTTAATGCAAATATGAATGAAGATGGCCCTCCATGTCGTGAATTCACCTCACCAGGCTGCCTAGA
CCACATAATGAAATATAAAAAAAAGTGTGTCAAGGCCGAAGCCTGTGGGATCCGAACATCACTGCTTGT
AGAAGAATGAGGAGACAGTAGAAGTGAACCTCACAAACCACCCCCTGGGAAACAGATACTGGCTCTTATC
CAACACAGCACTATCATCGGGTTTCTCAGGTGTTGAGCCACACCAGAAGAAACAAACGCGAGCTCAGT
GGTATTCCAGTGACTIONGGGATAGTGAAGGTGCTACGGTGAGCTGACTCCATATTTCTACTGTGGCA
GCGACTGCATCCGACATAAGGAACAGTTGTGCTCTGCCACAAACAGGCGTCCCTTCCCTGGATAAAC
AACAAAAGCAAGCCGGAGGCTGGCTGCCTCTCCTGCTGTCTGCTGGTGGCACATGGTGCTGGT
GGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCCTTCTACCACCAACTACTGC
CCCCCATTAAGGTTCTGTGGTTACCCATCTGAAATATGTTCCATCACACAATTGTTACTCACTGAA
TTTCTCAAAACCATTGAGGACTGAGGTGATCTGAAAGTGGCAGAAAAGAAAATAGCAGAGATGGG
TCCAGTGCAGTGGCTTGCACACTAAAAGAAGGCAGCAGACAAAGTCGTTCTCTTCCAATGACGTCA
ACAGTGTGTGCGATGGTACCTGTGGCAAGAGCGAGGGCAGTCCAGTGAGAACTCTCAAGACCTCTCCCC
CTTGCCTTAAACCTTCTGAGTCTGATCTAAGAAGCCAGATTGATCTGACAAATACGTGGTGGTCTACTT
TAGAGAGATTGATACAAAAGACGATTACAATGCTCTCAGTGTCTGCCCAAGTACCAACCTCATGAAGGATG
CCACTGCTTCTGTGCAGAACCTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGC
CACGATGGCTGCTGCTCCTGTAG

40003152 41032002

FIGURE 12

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTSVATGDYSILMNVS梧
LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP
NANMNEGPMNSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH
STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNMK
SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTLLPPIKVLVVYPSEICFHHTICYFTEFL
QNHCRCSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA
FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVC PKYHLMKDATAFCAELLHV KQQVSAGKRSQACHD
GCCSL

Signal sequence:	Amino acids 1-14
Transmembrane domain:	Amino acids 290-309
N-glycosylation sites:	Amino acids 67-70;103-106;156-159; 183-186;197-200;283-286
cAMP- and cGMP-dependent protein kinase phosphorylation sites:	Amino acids 228-231;319-322
N-myristoylation site:	Amino acids 116-121
Amidation site:	Amino acids 488-491

FIGURE 13

ACACTGGCCAAACAAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGTCAGGACTCCCAGGACAGAG
AGTGCACAAACTACCCAGCACAGCCCCCTCGCCCCCTCTGGAGGCTGAAGAGGGATTCCAGCCCTGCCA
CCCACAGACACGGGCTGACTGGGGTGTCTGCCCTTGGGGGGGGCAGCACAGGGCTCAGGCCTGGG
GCCACCTGGCACCTAGAACAGAT**G**CCTGTGCCCTGGTCTGGCTGTCCCTGGCACTGGCGAAGCCCAGTGG
TCCTTCTCTGGAGAGGCTGTGGGCCTCAGGACGCTACCCACTGCTCTCCGGGCCTCTCTGCCGCCTC
TGGGACAGTACATACTCGCCTGCTGGGACATCGTGCCTGCTCCGGGCCCGTGTGGCGCTACGCA
CCTGCAGACAGAGCTGGTGCTGAGGTGCCAGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCC
ACTTGGCGTGCATGGCACTGGGAAGAGCCTGAAGATGAGGAAAAGTTGGAGGAGCAGCTGACTCAGGG
GTGGAGGAGCCTAGGAATGCCCTCTCCAGGCCAAGTCGTGCTCTCCAGGCCAACCTACTGCCCG
CTGCGCCTGCTGGAGGTGCAAGTGCTGCTGCCCTGTGCAGTTGGTCACTGTGTTGGCTGTGGTATAT
GACTGCTCGAGGCTGCCCTAGGGAGGTACGAATCTGGCCTATACTCAGGCCAGGTACGAGAAGGA
ACTCAACCACACACAGCAGCTGCCCTGCCCTGGCTAACGTGTCAGCAGATGGTACAACGTGCATC
TGGTCTGAATGTCTCTGAGGAGCAGCAGTCCGGCTCTCCCTGACTGGAATCAGGTCCAGGGCCCCCA
AAACCCCGGTTGCACAAAAACCTGACTGGACCCAGATCATTACCTGAACCACACAGACCTGGTCCCTG
CCTCTGTATTCAAGGTGCGCCTCTGGAACCTGACTCCGTTAGGACGAACATCTGCCCTCAGGGAGGACC
CCCGCGCACACCAGAACCTCTGGCAAGCCGCCACTGCGACTGCTGACCTGCAAGCTGGCTGCTGGAC
GCACCGTGCTCGCTGCCCGAGAAGCGGCACTGTGCTGGGGCTCCGGGTGGGACCCCTGCCAGCCACT
GGTCCCACCGCTTCTGGAGAACGTCAGTGTGACAAGGTTCTCGAGTTCCATTGCTGAAAGGCCACC
CTAACCTCTGTGTTCAAGGTGAACAGCTCGGAGAAGCTGCACTGCAAGGAGTGTGCTGTGGCTGACTCCCTG
GGGCTCTCAAAGACGATGTGCTACTGTTGGAGACACGAGGCCAGGACAACAGATCCCTGTGCCTT
GGAACCCAGTGGCTGTACTTCACTACCCAGCAAAGCCTCCACGAGGGCAGCTCGCCTGGAGAGTACTTAC
TACAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGAGCGCTATGGCCTGCC
ATGGACAAATACATCCACAAGCGTGGGCCCTCGTGTGGCTGGCCTGCCTACTCTTGCCGCTGCGCTTCC
CCTCATCCTCTCTCAAAGGATCACCGCAAAGGGTGGCTGAGGCTCTTGAAACAGGACGTCCGCTCGG
GGCGGCCGCCAGGGGCCGCGCGCTCTGCTCCTACTCAGCGATGACTCGGGTTCGAGCGCTGGT
GGGCCCTGGCTGGCCAGCTGCGCTGCCGTGGCGTAGACCTGTGGAGGCCGTGTAAGT
GAGCGCGCAGGGGCCGTGGCTGGTTACCGCGACGCGGCCAGACCTGCAGGAGGGCGCGTGGTGG
TCTGCTCTCTCTCCGGTGCCTGGCGCTGTGCAAGCGAGTGGCTACAGGATGGGTGTGGGGCCCGGG
GCGCACGGCCCGCACGACGCCCTCCGCCTCGCTCAGCTGCCTGCTGCCGACTCTTGCAAGGGGCC
GCCCGGCAGCTACGTGGGGCCTGCTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTCCGCA
CCGTGCCCTCTCACACTGCCCTCCAACTGCCAGACTTCTGGGCCCTGCAAGCAGCCTCGGCC
CGTCCGGCGCTCAAGAGAGAGCGGAGCAAGTGTCCCCGGCCCTTCAGCCAGCCCTGGATAGCTACTT
CCATCCCCCGGGACTCCCGCGCCGGACGCCGGTGGGACCGGGGGGGACCTGGGGCGGGGACGGGA
CTTAAATAAAGGCAGACGCTGTTTCTAAAAAAAA

FIGURE 14

MPVPWFLLSLALGRSPVVLSLERLVEPQDATHCSPGLSCRILWDS DILCLPGDIVPAPGPVLAPTHLQTELV
LRCQKETDCDLCLRVAVHLAVHGHWEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV
QVPAALVQFGQS VGSVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNV SADGDNVHLV LNV S
EEQHFGLSLYWNQVQGPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPD SVRTN ICPFREDPRAHQ N
LWQAARLRLITLQSWL LDAPCSL PAAEALCWRAPGGDPCQPLVPPLSWENVTVDK VLE FPLLKGHPNLCV Q
VNSSEKLQLQ ECLWADSLGPLKDDVLLTRGPQDNRS LCALEPSGCTSLPSKA STRAARLGEYLLQDIQS
GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALS LILLKKDHAKGWLRLLKQDVRSGAAARG
RAALLYSADD SGFERLV GALASALCQLPLRVA D LWSRREL SAQGPVAWF HAQRQTLQEGGVV VLLFSP
GAVALCSEWLQDG VSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPA LFRTV PVF T
LPSQLPDFLGALQQPRA PRSGRLQ ERAEQVSRALQP ALDSYFHPPGT PAPGRGV GPGAGPGAGDGT

signal sequence: Amino acids 1-20

transmembrane domain: Amino acids 453-473

N-glycosylation sites: Amino acids 118-121; 186-189; 198-201;
211-214; 238-241; 248-251; 334-337;
357-360; 391-394

Glycosaminoglycan attachment site: Amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site:
Amino acids 552-555

N-myristoylation sites: Amino acids 107-112; 152-157; 319-324;
438-443; 516-521; 612-617; 692-697;
696-701; 700-705

FIGURE 15

CGAGGGCTCTGCTGGTACTGTGTTGCTGCTGCACAGCAAGGCCCTGCCACCCACCTCAGGCCATGCAG
 CCATGTTCCGGGAGCCTAATTGCACAGAAGCCCATGGGGAGCTCCAGACTGGCAGCCCTGCTCCTGCCTC
 TCCTCCTCATAGTCATCGACCTCTGACTCTGCTGGGATTGGCTTCGCCACCTGCCACTGGAACACC
 CGCTGTCTCTGGCCTCCCACGGATGACAGTTCACTGGAAGTTCTGCCTATATCCCTGCCGCACCTG
 GTGGGCCCTCTCTCCACAAAGCCTGGTGTGCGAGTCTGGCACTGTCCTCCGCTGTTGTGCCAGCATCTG
 TGTCAGGTGGCTCAGGTTCAACGGGCCTCTCACCTGGTGCAGAAATCCAAAAGTCTTCCACA
 TTCAAGTTCTATAGGAGACACAAGATGCCAGCACCTGCTCAGAGGAAGCTGTCGCCCTCGTGCACCTG
 TGAGAAGAGCCATCACATTCCATCCCCTCCCCAGACATCTCCCACAAGGGACTTCGCTCTAAAGGACCC
 AACCTCGGATCCAGAGACATGGAAAGTCTCCCAGATTGGACTCACAAAGGCATGGAGGACCCGAGTTC
 TCCCTTGATTGCTGCCCTGAGGCCGGCTATTGGTGCACCATATCTCAGGCCCTGAGGTCAAGCGTGGC
 TCTTGTCACCAGTGGCACTGGAGTGTGAAGAGCTGAGCAGTCCCTATGATGTCAGAAAATTGTGTCTG
 GGGGCCACACTGTAGAGCTGCCATTGAATTCCCTCTGCCCTGTCTGTCATAGAGGCATCCTACCTGCAA
 GAGGACACTGTGAGGCCAAAAAATGTCCTCCAGAGCTGCCAGAACCTATGGCTGGACTTGGAA
 GTCAGTGCACCTCACTGACTACAGCCAGCACACTCAGATGGTCACTGCCCTGACACTCCGTCGCCACTGA
 AGCTGGAAGCTGCCCTTGCCAGAGGCACGACTGGCATAACCTTGCAAAGACCTCCGAATGCCACGGCT
 CGAGAGTCAGATGGTGTATGTTGGAGAAGGTGGACCTGCACCCCCAGCTGCTGTTCAAGTTCTTT
 TGGAAACAGCAGCCATGTTGAATGCCCTCACCAGACTGGTCTCTCACATCCTGAAATGTAAGCATGGATA
 CCCAAGCCCAGCAGCTGATTCTTCACTTCTCCTCAAGAATGCATGCCACCTCAGTGCTGCCCTGGAGCCTC
 CCAGGCTTGGGCAGGACACTTGGTGCCTCCGGTACACTGTCAGCCAGGCCGGCTCAAGCCCAGT
 GTCACTAGACCTCATCATTCCCTCTGAGGCCAGGGTGTGTCCTGGTGTGGCGGTCAAGATGTCAGTCCAGT
 TTGCCCTGGAAGCACCTTGTGTCCAGATGTCCTTACAGACACCTGGGCTCTGATCCTGGCACTGCTG
 GCCCTCCTCACCCACTGGTGTGTCCTGCCCTCACCTGCCGGCCACAGTCAGGCCGGGCCCCAGC
 GCGGCCAGTGTCTCCTGCACGCCGGACTCGGAGGCCAGCGGCCCTGGTGGAGGCCAGTGGCGCTGGCTGAAC
 TGCTACGGCAGCGCTGGCGGCCGGCGACGTGATCGTGACCTGTGGAGGGAGGCACGTGGCGCGCT
 'GGGCCGCTGCCGTGGCTCTGGCGCGCGACGCGCGTAGCGCGGGAGCAGGGCACTGTGCTGCTGCTG
 GGAGCGCGCGCGACCTCGCCCGGTACCGGCCGCTGCGCACCTGCCGCTGCTGCCCTGCTGCCCTGCTCCAC
 GCTGCCCGGCCCGCTGCTGCTGCTACTTCAGTCGCTCTGCCCAAGGGCACTGCCCTGCTGCCCTGCTGCC
 GCTGCCGCGCCCTGCCGCTACCGGCCGCTGCGCACCTGCCGCTGCTGCCGCTGCTGCCCTGCTGCC
 CTTGCGAGAGGCCACCAAGCTGGGCCCTGGGCCGGCAGCGCAGGCCAGAGGCCCTAGAGCTGTGC
 AGCCGGCTGAACGAGAGGCCCGACTTGCAGACCTAGGTTGAGCAGAGCTCCACCGCAGTCCGGGTGTCT

FIGURE 16

MGSSRLAALLPLLLIVIDLSDSAGIGFRHLPHWNTRCPLASHTDDSFTGSSAYIPCRTWWALFSTKPWCVRVWHCSRCLCQHLLSGGSGLQRGLFLLLQKSKSSTFKFYRRHKMPAPAQRKLLPRRHLSEKSHHISIIPS
PDISHKGLRSKRTQPSDPETWESLPRLDQRSRHHGPEFSFDLLPEARAIRVTISSGPEVSVRLCHQWALECE
ELSSPYDVQKIVSGGHTVELPYEFLLPCLCIEASYLQEDTVRRKKCPFQSWEAYGSDFWKSVHFTDYSQH
TQMVMALTLCPLKLEAACQRHDWHTLCKDLPNATARESDGWYVLEKVDLHPQLCFKFSFGNSSHVECPH
QTGSLT SWNVSMDTQAQQLILHFSSRMHATFSAAWSLPGILGQDTLVPPVYTVSQARGSSPVSLDLIIPFLR
PGCCVLVWRSDVQFAWKHLLCPDVSYRHLLGLLALLALLTLLGVVLALTCCRQPQSGPGPARPVLLHAAD
SEAQRRLVGALAEELLRAALGGGRDVIVDLWEGRHVARVGPLPWLAARTRVAREQGTVLLWSGADLRPVS
GPD PRAAPLLALLHAAPRPLL LAYFSRLCAKGDIPPLRALPRYRLLRDLPRLIRALDARPFAEATSWGR
LGARQRRQSRLECSRLEREAA RLADLG

Signal peptide: Amino acids 1-23

Transmembrane domain: Amino acids 455-472

N-glycosylation sites: Amino acids 318-322; 347-351; 364-368

Glycosaminoglycan attachment site: Amino acids 482-486

cAMP- and cGMP-dependent protein kinase phosphorylation sites:
Amino acids 104-108; 645-649

Tyrosine kinase phosphorylation site: Amino acids 322-329

N-myristoylation sites: Amino acids 90-96; 358-364; 470-476

Eukaryotic cobalamin-binding proteins: Amino acids 453-462

FIGURE 17

FIGURE 18

MPRASASGVPALFVSGEQGVGPASRNGLYNITFKYDNCTTYLNPGKHVIADAQNITISQYACHDQVAVT
ILWSPGALGIEFLKGFRVILEELKSEGRQCQQLILKDPKQLNSSFRTGMESQFLNMKFETDYFVKVVPF
PSIKNESNYHPFFFTRACDLLLQPDNLACKPFWKPRNLNISQHGSMDMQVSFDHAPHGSDMQVSFDHAPHN
FGFRFFYLHYKLKHEGPFRKTCKQEQTTEMTSCLLQNVS PGDYIIELVDDTNTRKVMHYALKPVHSPWA
GPIRAVAITVPLVVISAFATLFTVMCRKKQQENIYSHLDEESSSTYTAALPRERLRPRPKVFLCYSSKD
GQNHMNVVQCFAYFLQDFCGCEVALDLWEDFSLCREGQREWWVIQKIHESQFIIVVCSKGKMFYFVDKKNYKH
KGGRGSGKGELFLVAWSAIAEKLROAKQSSSAALSKFIAVYFDYSCEDVPGILDLSKYRLMDNLPQLC
SHLHSRDHGLQEPGQHTRQGSRRNYFRSKSGRSLYVAICNMHQFIDEEPDWFEKQFVPFHPPPLRYREPVL
EKFDGSLVLNDVMCKPGPESDFCLKVEAVLGATGPADSQHESQHGGLDQDGGEARPA LDGSAALQPLLHTV
KAGSPSDMPRDSGIYDSSVPSSELSLPLMEGLSTDQTESSLTESVSSSGLGEEEPALPSKLLSSGSCK
ADLGCRSYTDELHAVAPL

Transmembrane domain:	Amino acids 283-307
N-glycosylation sites:	Amino acids 31-34;38-41;56-59; 113-116;147-150;182-185;266-269
Glycosaminoglycan attachment sites:	Amino acids 433-436;689-692
cAMP- and cGMP-dependent protein kinase phosphorylation:	Amino acids 232-235
Tyrosine kinase phosphorylation sites:	Amino acids 312-319;416-424
N-myristoylation site:	Amino acids 19-24;375-380;428-433; 429-434;432-437;517-522;574-579; 652-657;707-712

FIGURE 19

h-IL17 1 - - - - - - - - - - - - - - M T P G K T S L V S L [L] L L S L E A I V K A G I T I P R
 h-IL17B 1 - - - - - M D W P H N L L F L L T I S I F L G L G Q P R S P K S K R K G O G R P G P L A P G P
 h-IL17C 1 M T L L P G L L F L T W L H T C L A H H D P S L R G H P K S H G T P H C Y S A E E L P L I G O A P P H
 h-IL17D 1 - - - - - - - - M L V A G F L L A L P P S W A A G A P R A G R R P A R P R G C A D R P
 h-IL17E 1 - - - - - - - - M R E R P R L G E D S S L I S L F L O V V A F L A M V M G T H T Y S H
 h-IL17F 1 - - - - - - - - M T V K T L H G P A M V K Y L L S I L G L A F L S E A A R K I P K V G

 h-IL17 30 N P G C P N S E D K N F P R T V M V N [L] N I H N R N T N T N P K - - - - - - - - R S S D
 h-IL17B 43 H Q V P L D L V S R M K P Y A R M E E Y E R N I E E M V A O L R N S S E L A O R K C E V N L O L W M
 h-IL17C 51 L L A R G A K W G Q A L P V A L V S S L E A K S H R G R H E R P S A T T O C P V L R A P E E V L E A D
 h-IL17D 36 E E L L E O L Y G R L A A G V I S A F H H T L Q L G P R E Q A R N A S C P A G G R P A D R R F R P P
 h-IL17E 36 W P S C C P S K G Q D T S E E L L R W S T V P V P P L E P A R P P N R H P E S C R A S - - - E D G P
 h-IL17F 38 H T F F Q K P E S C P P V P G G S M K L D I G I I N E N O R V S - - - - - - - - M S R N

 h-IL17 66 Y Y N R S T [S] P W N L H R N E D P E R Y P S V I W E A K [K] R H L G C I N A D - G N V D Y H M N S V P
 h-IL17B 93 S N K R S L S P W G Y S I N H D P S R I P Y P O V L P E A R C L C L G C V N P F T M O E D R S M V S V P
 h-IL17C 101 T H O R S I S P W R Y R V D T D E O R Y P O K L A F A E C L C R G C I D A R T G R E T A A L N S V R
 h-IL17D 86 T N L R S V I S P W R Y E L D R O D L N R L P Q D L Y H A R C L C L P H C V S L O T G S H M D P R G N S E
 h-IL17E 82 L N S R A I S P W R Y E L D R O D L N R L P Q D L Y H A R C L C L P H C V S L O T G S H M D P R G N S E
 h-IL17F 74 I E S R S T [S] P W N Y T V T W D P N R Y P S E V V O A Q C R N L G C I N A O - G K E D I S M N S V P

 h-IL17 115 I O [Q] E I L V L R R E - - P P H C P N S F P L E K I L V S V G C T C V T P I V H H V A
 h-IL17B 143 V F S O V P V R R R L C P P P - - - P R T G P C R O R A V M E T I A V G C T C I F - -
 h-IL17C 151 L L [Q] S L L V L R R R P C S P D G S G L P T P G A F A F H T E F I H V P V G C T C V L P R S V -
 h-IL17D 136 V Y M P T V V L R R T P A C A G - - - G R S V Y T E A Y V T I P V G C T C V P E P E K D A D
 h-IL17E 132 L L Y H N Q T V F Y R R P C H G E K - - G T H K G Y C L E R R L Y R V S L A C Y C V R P R V M G -
 h-IL17F 123 I O [Q] E T L V V R R K - - - - - H Q G C S V S F O L E K V L V T V G C T C V T P V I H H V O

 h-IL17D 179 S I N S S I D K Q G A K L L L G P N D A P A G P X

FIGURE 20

FIGURE 21**IL17C Distribution**

FIGURE 22

IL17D Distribution

FIGURE 23

Brain	uterus
heart	fetal brain
kidney	fetal liver
liver	spinal chord
lung	placenta
colon	adrenal
marrow	pancreas
intestine	salivary
spleen	trachea
stomach	mammary
thymus	
prostate	
muscle	
testis	

FIGURE 24

IL17 F Distribution

FIGURE 25

IL17Rhom-1 Distribution

FIGURE 26

RH2 distribution

FIGURE 27

RH3 distribution

FIGURE 28**IL17 RH4 distribution**

FIGURE 29

FIGURE 30

h-IL17	1 - - - - - M T P G K T S L V S L L L L S L E A I V K A G I T I P A - - - - -
h-IL17B	1 - - - - - M D W P H N L L F L L T I S I F L G L G O P R S P K S K R K G Q G R P G P - - - - -
h-IL17C	1 - - - - - M T L L P G L L F L T W L H T C L A H H O P S L R G H P H S H G T P H C Y S A E E L P L G
h-IL17E	1 M R E R P R L G E D S S L I S L F L Q V V A F L A M V M G T H T Y S H W P S C C P - - - - -
h-IL17	30 - - - - - N P G C P N S E D K N F P R T V M V N L N I H N R N T T N P K R - - -
h-IL17B	39 A P G P H O V P L D L V S R M K P Y A R M E E Y E R N T I E E M V A O L R N S S E L A Q R K C E V N
h-IL17C	47 A P P H L L A R G A K W G Q A L P V A L V S S L E A A S H R G R H E R P S A T T T Q C P V L R P E
h-IL17E	42 - - - - - S K G Q D T S E E L L R W S T T V P V P P L E P A R P N R H P E S C R A S E
h-IL17	63 - S S D Y Y N R S T I S P W N L H R N E D P E R Y P S V I W E A K R H L G C I N A D G - - N V D
h-IL17B	89 Q L W M S N K R S L I S P W G Y S I N H D P S R I P V D I P E A R C L C L G C V N P F T M Q E D R S
h-IL17C	97 L E A D T H Q R S T I S P W R Y R V D T O E D R Y P Q K L A F A E C L C R G C I D A R T G - R E T A
h-IL17E	79 - D G P L N S R A I S P W R Y E L D R D L N R L P Q D L Y H A R C L C P H C V S L Q T G S H M D P
h-IL17	110 M N S V P I Q O E I L V L R R E - - - - - P P H C P N S F R L E K I I L V S V G C T C V T P
h-IL17B	139 V S V P V F S Q V P V R R R L C P P - - - - - P R T G P C R Q R A V M E T I A V G C T C I F
h-IL17C	146 L N S V R L L Q S L L V L R R R P C S R D G S G L P T P G A F A E H T E F I H V P V G C T C V L P
h-IL17E	128 G N S E L L Y H N Q T V F Y R R P C H G E K - - - G T H K G Y C L E R A L Y R V S L A C V C V R P
h-IL17	151 V H H V A
h-IL17C	196 S V - - -
h-IL17E	175 V M G - -

FIGURE 31A

FIGURE 31B

FIGURE 32A

FIGURE 32B

FIGURE 33

FIGURE 34

IL-17 family of cytokines has complex pattern
of overlapping receptor-ligand specificities

37/70

FIGURE 35

FIGURE 36**A. HFF cells****B. THP1 cells**

FIGURE 37

FIGURE 38

FIGURE 39

IL-17 induces breakdown and inhibits synthesis of cartilage matrix

FIGURE 40

IL 17 increases basal and IL-1 α -induced nitric oxide release

FIGURE 41

Inhibition of nitric oxide release does not block the detrimental effects of IL-17 on matrix breakdown or synthesis

A.

B.

C.

FIGURE 42

INHIBITION of NO release enhances
 $\text{IL-}\alpha$ -induced matrix breakdown
 but not matrix synthesis

FIGURE 43

IL-17C

detrimental effects on articular cartilage

Inflammatory Bowel Disease: Expression of IL-17 Family in Mouse Model of IBD

FIGURE 44

IL-17D, present in brain, decreases rapidly
following stroke

FIGURE 45

FIGURE 46**FIG. 46A****FIG. 46B****FIG. 46C**

FIGURE 47

FIGURE 48

FIGURE 49

40000 45° 102000

A

B

C

FIGURE 50

*	
IL-17FRKIPKVG HTFFQKPES 17
IL-17AIVKAG ITIPRNP.G 14
IL-17BQPRS PKSKRKGQGR PGPLAPGPHQ VPLDLVSRMK PYARMEYER 44
IL-17C HHDPSLRGHF HSHGTPHYS AEELPLGQAP PHLLARGAKW GQALPVALVS 50	
IL-17EYS HWPS PSKG QDTSEELLRW 22

0 1

IL-17F PPVPGG....SMKLDI GIINENQRVS MERNIESRST	PWNYTWTWD 59
IL-17A PNSEDKNFPR	TVMVNLIHN RNTNTN..PK RSSDYYNRST	PWNLHRNED 62
IL-17B NIEEMVAQLR	..NSSELAQR K.EV...NL QLWMSNKRSI	PWGYSINHD 88
IL-17C SLEAAASHRGR	..HERPSATT Q.PVLRPEEV LEADTHQRSI	PWRYRVDTD 98
IL-17E STVPVPPLEP	..ARPNRHPE S.RASE.... .DGPLNSRAI	PWRYELDRD 65

2 3

IL-17F PNRYPSEVVQ	AQ RNLG IN A..QGKEDIS MN VPI.QQE TLVVRKHQG 106
IL-17A PERYPSVIWE	AK RHLG IN A..DGNVDYH MN VPI.QQE ILVLRREPPH 109
IL-17B PSRIPVDLPE	AR L.LG VN PF.TMQEDRS MV VPV.FSQ VPVRRR...L 133
IL-17C EDRYPQKLAF	AE L.RG ID AR.TGRETAAR LN VRL.LQS LLVLRR..RP 144
IL-17E LNRLPQDLYH	AR L.PH VS LQTGSHMDPR GN ELLYHNQ TVFYRRP... 112

4

*		
IL-17F SV.....SFQLEK VL..VTVG T VTPVIHHVQ ...	133
IL-17A PN.....SFRLEK IL..VSVG T VTPIVHHVA ...	136
IL-17B PPPRTGP.RQRA VMETIAVG T IF.....	160
IL-17C SRDGSGLPT	PGAFAFHTEF IH..VPVG T V.LPRSVAA ALE	184
IL-17E HGEKGTHKGYLER RLYRVSLA V VRPRVMG... ...	145

FIGURE 51

FIGURE 52

1.0inch 1.5" in 1.030000

IL-17E is highly conserved between human and mouse

mlL-17E	1	VAF LAMIV GTH T VSLR IQEGC SHL PSCCP S
hL-17E	1	MRERPRLGEDSSLISLFLQVVAFLAMVMG GTH T

mlL-17E	35	R E Q E P P E W K W S S A S V S P E P L S H T H A E S C R A S K D G P L N S R A I S P W SY
hL-17E	43	R G Q D T S E L R W S T V P V P LE P A R P N R H P E S C R A S K D G P L N S R A I S P W RY

mlL-17E	85	E L D R D L N R V P Q D L Y H A R C L C P H C V S L Q T G S H M D P L G N S V P F Y H N Q T V F Y R
hL-17E	93	E L D R D L N R L P Q D L Y H A R C L C P H C V S L Q T G S H M D P R G N S E L Y H N Q T V F Y R

mlL-17E	135	R P C H G E E F T H R R C L E R R L Y R V S L A C V C V R P R V MA
hL-17E	143	R P C H G E K G T H K G C L E R R L Y R V S L A C V C V R P R V MG

FIGURE 53

Tissue distribution of IL-17E

IL-17E (PCR then probed with cDNA)

FIGURE 54

mIL-17E transgenics are growth retarded

FIGURE 55

IL17E transgenics are jaundiced by 6 weeks of age

SPEC 347 11405 DATE 1-9-01

FIGURE 56

mIL-17E transgenics have elevated total bilirubin and liver enzymes

FIGURE 57

FIGURE 58A

Relative expression
(TG vs Non-TG)

FIGURES 58B - 58C

Gene profiling of IL-17E transgenics (Taqman)

FIGURES 58D - 58E

FIGURE 59

FIGURE 60

Elevated serum IL-5, IL-13 and TNF α in mIL-17E transgenics

FIGURE 61

Serum IgE and IgG1, but not IgG2a is elevated in mIL-17E transgenics

FIGURE 62

Neutrophilia in mIL-17E transgenics (8 wks, PBMC by FACS)

FIGURE 63

Neutrophilia and eosinophilia in mIL-17E transgenics (hematology)

FIGURE 64

G-CSF is elevated
in mIL-17E transgenics

FIGURE 65

FIGURE 66

4000157 403004