

#### **International Olympiad in Informatics 2012**

23-30 September 2012 Sirmione - Montichiari, Italy Competition tasks, day 2: Leonardo's art and science

city

Hrvatski — 1.2

# Idealni grad

Leonardo je bio jako zainteresiran za urbanističke probleme svog vremena i pokušao je dizajnirati idealan grad.

#### Grad

Grad se sastoji od N blokova koji se nalaze na beskonačnoj mreži polja. Svako polje je određeno koordinatama (redak, stupac). Za svako polje (i, j), susjedna polja su: (i - 1, j), (i + 1, j), (i, j - 1), i (i, j + 1). Svaki blok na mreži zauzima točno jedno polje. Blok se može nalaziti na polju (i, j) jedino ako je  $1 \le i, j \le 2^{31}$  - 2. Koordinate polja ćemo također koristiti i za koordinate blokova koji su na njima. Dva bloka su susjedna ako su smješteni na susjednim poljima. U idealnom gradu, svi blokovi su međusobno povezani na način da ne postoje "rupe" unutar blokova tj. polja moraju zadovoljavati sljedeće uvjete.

- Za svaka dva *prazna* polja, postoji barem jedan niz susjednih *praznih* polja kojih ih povezuje.
- Za svaka dva ne-prazna polja, postoji barem jedan niz susjednih ne-praznih polja koji ih povezuje.

#### Prvi primjer

Niti jedna od dolje prikazanih konfiguracija ne predstavlja idealan grad: prvi i drugi ne zadovoljavaju prvi uvjet, treći ne zadovoljava drugi uvjet, a četvrti ne zadovoljava niti jedan uvjet.



#### Udaljenost

Prilikom putovanja gradom, *korak* predstavlja pomak iz jednog bloka u drugi susjedni blok. Ne može se putovati praznim poljima. Neka su vo, v1, ...,  $v_{N-1}$  koordinate od N blokova na mreži. Za svaka dva međusobno različita bloka na koordinatama  $v_i$  i  $v_j$ , njihova udaljenost  $d(v_i, v_j)$  je najmanji potreban broj koraka da bi se doputovalo od jednog do drugog bloka.

#### Drugi primjer

city - hr 1/3

Konfiguracija ispod predstavlja idealan grad koji se sastoji od N = 11 blokova na koordinatama  $v_0$  = (2, 5),  $v_1$  = (2, 6),  $v_2$  = (3, 3),  $v_3$  = (3, 6),  $v_4$  = (4, 3),  $v_5$  = (4, 4),  $v_6$  = (4, 5),  $v_7$  = (4, 6),  $v_8$  = (5, 3),  $v_9$  = (5, 4), i  $v_{10}$  = (5, 6). Primjerice,  $d(v_1, v_3)$  = 1,  $d(v_1, v_8)$  = 6,  $d(v_6, v_{10})$  = 2, i  $d(v_9, v_{10})$  = 4.



### Zadatak

Napišite program koji će izračunati sumu udaljenosti svih međusobno različitih blokova  $v_i$  i  $v_j$  za koje vrijedi i  $\leq$  j. Preciznije, vaš program mora izračunati sljedeću sumu:

$$\sum d(v_i, v_j), 0 \le i < j \le N - 1$$

Potrebno je napisati funkciju DistanceSum(N, X, Y) koja će, za zadani broj N i 2 niza X i Y koji opisuju grad, izračunati gornju formulu. Oba niza, X i Y su veličine N; blok i je na koordinatama (X[i], Y[i]) za sve for  $0 \le i \le N$  - 1, and  $1 \le X[i]$ , Y[i]  $\le 2^{31}$  - 2. Kako rezultat može biti prevelik da bi mogao biti predstavljen varijablom od 32 bits, rezultat mora biti prikazan modulo 1 000 000 000 (milijarda).

In primjeru 2, postoji  $11 \times 10 / 2 = 55$  porova blokova. Tražena suma je 174.

### Podzadatak 1 [11 bodova]

■  $N \le 200$ .

### Podzadatak 2 [21 bod]

■  $N \le 2000$ .

# Podzadatak 3 [23 boda]

■  $N \le 100000$ .

Dodatno, vrijede sljedeća dva uvjeta: za svaka dva neprazna polja i i j takvi da je X[i] = X[j], svako polje između njih je također neprazno; za svaka dva neprazna polja i i j takvi da je Y[i] = Y[j], svako polje između njih je također neprazno.

city - hr 2/3

## Podzadatak 4 [45 bodova]

■  $N \le 100000$ .

# Implementacija

Morate predati točno jednu datoteku, pod nazivom city.c, city.cpp ili city.pas. Datoteka mora implementirati gore opisani potprogram koristeći sljedeće deklaracije.

#### C/C++ programi

```
int DistanceSum(int N, int *X, int *Y);
```

### Pascal programi

```
function DistanceSum(N : LongInt; var X, Y : array of LongInt) : LongInt;
```

Vaš potprogram se mora ponašati kao što je gore opisano. Naravno, možete slobodno implementirati druge pomoćne funkcije. Ne smijete koristiti standardni ulaz ili izlaz, kao i pisanje ili čitanje po bilo kakvim datotekama.

### Primjer sustava za testiranje

Sustav za testiranje na raspologanju prima ulaz kako slijedi:

linija 1: N;linije 2, ..., N + 1: X[i], Y[i].

## Vremenska i memorijska ograničenja

Vremensko ograničenje: 1 sekunda.
Memorijsko ograničenje: 256 MiB.

city - hr 3/3