Orders and Exponents

EVAN CHEN

BNW-ORDERS

§1 Lecture Problems

We will follow *Orders Modulo a Prime* fairly closely, but you need not read it before-hand. Tools:

- Orders / Fermat-Euler
- $n^2 + 1$ Theorem
- Lifting the Exponent

However, basically everything is really just based off two things: the fact that $x^k + 1$ factors, and the fact that $a^{\varphi(n)} \equiv 1 \pmod{n}$.

§1.1 Orders

Definition. The *order* of $x \pmod{n}$ (where gcd(x, n) = 1) is the smallest positive integer e > 0 such that $x^e \equiv 1 \pmod{n}$.

Theorem 1.1

If $x^m \equiv 1 \pmod{n}$ then the order of $x \pmod{n}$ divides m.

Proof. Division algorithm.

Theorem 1.2 (Primitive roots)

For any prime p there exists a $g \pmod{p}$ with order exactly p-1.

Problem 1.3. How many primitive roots are there?

Theorem 1.4 (Fermat's Christmas theorem)

Let p be prime. Then there exists n such that $p \mid n^2 + 1$ if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Problem 1.5 (Online Math Open, Evan Chen). Find the sum of all integers m with $1 \le m \le 300$ such that for any integer n with $n \ge 2$, if 2013m divides $n^n - 1$ then 2013m also divides n - 1.

Evan Chen BNW-ORDERS

§1.2 Lifting

Problem 1.6. Compute

$$\nu_3(2^{3^n}+1).$$

Theorem 1.7 (Lifting the Exponent)

For p > 2, assume $0 \not\equiv x \equiv y \pmod{p}$. Then

$$\nu_p(x^n - y^n) = \underbrace{\nu_p(x - y)}_{>0} + \nu_p(n).$$

Problem 1.8. Show that there are no primitive roots modulo 2^n for $n \geq 3$.

Problem 1.9. What about other prime powers?

§2 Practice Problems

Problem 2.1 (British MO). A number written in base 10 is a string of 3²⁰¹³ digit 3's. No other digit appears. Find the highest power of 3 which divides this number.

Problem 2.2. Prove that 2 is a primitive root modulo 3^n for $n \ge 1$.

Problem 2.3 (PUMaC 2012). Let $p_1 = 2012$ and $p_n = 2012^{p_{n-1}}$. Compute $\nu_{2011}(p_{2012} - p_{2011})$.

Problem 2.4 (IMO 2005/4). Determine all positive integers relatively prime to all the terms of the infinite sequence

$$a_n = 2^n + 3^n + 6^n - 1, \ n \ge 1.$$

Problem 2.5 (HMMT November 2014). Determine all positive integers $1 \le m \le 50$ for which there exists an integer n for which m divides $n^{n+1} + 1$.

Problem 2.6. For which primes p does there exist an integer x such that p divides $x^2 + 3$?