2022 年 12 月 20 日 B3 西村昭賢

進捗報告

1 今调やったこと

● 研究発表会の準備 (スライド, 資料)資料とスライドに関して修正, アドバイス頂いた方々ありがとうございました.

● 実際の TCG ルールに寄せた環境におけるルールベースで作成した敵に対するエージェントの 学習実験

2 先週までの進捗とステップを増やした場合の実験

先週は以下に示すようにプレイヤーの HP , マナコスト, カードの特殊効果など実際の TCG ルールに寄せた環境を作成し実験した.

- プレイヤー
 - HP 最大 20,0 となればゲーム敗北
 - マナコスト ゲーム開始時1,最大5,ターンごとに1増加
 - ライブラリ ライブラリは30枚のカードを持つ
- カード
 - コスト盤面にプレイする際にカードのコスト分プレイヤーのマナコスト減少
 - 特殊効果
 - * 盤面に出したら (攻撃力, HP) = (1,1)のユニット追加で出す. (召喚)
 - *盤面に出したら自プレイヤーの HP を 2 回復 (治癒)
 - * 盤面に出したら敵プレイヤーの HP を 2 削る (攻撃)
 - *盤面に出したら自プレイヤーは1枚カードをドロー (循環)
 - *盤面に出たターンに攻撃できる(速攻)
- 終了条件

どちらかのプレイヤーの体力が 0 以下となった,または デッキ切れの状態でドローしようとした時

2.1 実験条件

お互いのライブラリは等しくした、表1にライブラリの内容を示す.

また、ゲームバランス調整のためのシミュレーションのために学習したエージェントを用いる予定のため学習相手にはルールベースで作成した好戦的な行動ルーチンを組んだ、アルゴリズム1に作成した対戦相手の行動ルーチンを示す.

表 1: ライブラリの内容

攻擊力	HP	コスト	特殊効果	枚数
1	1	0	無し	2
2	1	1	無し	2
3	2	2	無し	2
4	3	3	無し	2
5	4	4	無し	2
2	2	2	召喚	2
2	3	3	召喚	2
1	1	1	循環	2
1	3	2	循環	2
2	1	2	速攻	2
3	1	3	速攻	2
1	2	2	攻擊	2
2	3	3	攻擊	2
1	1	1	治癒	2
2	1	3	治癒	2

表 2: 定義した状態空間

状態説明	次元数	最小値	最大値
自, 敵プレイヤーの HP	2	0	20
自, 敵プレイヤーのコスト	2	0	5
手札 1 ~9 の HP と攻撃力	18	0	20
手札 1 ~ 9 のコスト	9	0	5
手札 1 ~ 9 の特殊効果	9	0	5
自盤面 1 ~ 5 の HP と攻撃力	10	0	20
敵盤面 1 ~ 5 の HP と攻撃力	10	0	20
自盤面 $1\sim5$ がターン中行動可能かどうか	5	0	1
お互いのライブラリの残り枚数	2	0	15

また、表 2, 3 に定義し直した状態空間、行動空間を示す、報酬は以下のように定義した.

$$reward = 0.0, \quad 1$$
 エピソード終了後 $reward = \begin{cases} 1.0 & ($ 学習プレイヤーの勝利 $) \\ -1.0 & ($ 敵プレイヤーの勝利 $) \end{cases}$

2.2 実験 1

先週は 先攻側で DQN を用いて 1000000 ステップ実験を行い, 10000 回ゲームを実行し算出された勝率は 0.1461 とかなり低い数値だった。そこで, ステップ数の問題かどうか調べるため学習ステップを 10 倍の 10000000 ステップに増やして実験した.

Algorithm 1 敵の行動

- 1: for 手札のカード do
- 2: if 盤面にプレイできる then
- 3: カードをプレイ
- 4: **else**
- 5: pass
- 6: end if
- 7: end for
- 8: for 自盤面のカード do
- 9: if 敵の盤面に 1 回の攻撃で倒せるカードがある then
- 10: そのカードを選んで攻撃
- 11: **else**
- 12: 敵プレイヤーを攻撃
- 13: **end if**
- 14: end for

表 3: 定義した行動空間

行動説明	次元数
手札 $1\sim 9$ を自盤面に出す	9
手札 $1\sim 9$ を自盤面に出さない	9
自盤面 1 が敵盤面 $1\sim5$ に攻撃 or 何もしない or 敵プレイヤーに攻撃	7
自盤面 2 が敵盤面 $1\sim5$ に攻撃 or 何もしない or 敵プレイヤーに攻撃	7
自盤面 3 が敵盤面 $1\sim5$ に攻撃 or 何もしない or 敵プレイヤーに攻撃	7
自盤面 4 が敵盤面 $1\sim5$ に攻撃 or 何もしない or 敵プレイヤーに攻撃	7
自盤面 5 が敵盤面 $1\sim5$ に攻撃 or 何もしない or 敵プレイヤーに攻撃	7

2.3 実験 1 結果

図1に実験1における学習時の獲得報酬の平均の推移を示す.

200 エピソードにおける平均獲得報酬が -0.9 付近で安定しており学習が進んでいないことが判明した. 勝率は記録していませんでした. 申し訳ありません.

3 実験 2

実験 1 の結果を受けてエージェントの行動空間に 2 種類変更を施して学習 \to 勝率計算の流れで実験した. また, 共通して DQN における $\epsilon-\mathrm{greedy}$ に改良を施した.

● 変更前

$$\epsilon = \max(\epsilon_{\min} \quad , \quad -\frac{\epsilon_{\max} - \epsilon_{\min}}{\text{stepnum}}(stepcount) + \epsilon_{\max})$$

学習時に, stepcount が stepnum ステップに達するまで ϵ_{max} から ϵ_{min} へと線形的に減少する.

● 変更後

$$\epsilon = \max(\epsilon_{\min} \quad , \quad \epsilon_{\min} + (\epsilon_{\max} - \epsilon_{\min}) \exp(-\frac{stepcount}{\epsilon_{decay}}))$$

学習時に, $\epsilon_{
m decay}$ に応じて, $\epsilon_{
m max}$ から $\epsilon_{
m min}$ へと指数的に減少する.

図 1: 実験 1 における獲得報酬平均の推移

表 4 にこの方策に基づいた実験 2 における DQN のパラメータを示す.

表 4: DQN のパラメータ

方策	-greedy
$\epsilon_{ m max}$	1.0
$\epsilon_{ m min}$	0.05
$\epsilon_{ m decay}$	学習ステップ数 / 10.0
全結合層の活性化関数	ReLU
全結合層の次元	64
最適化アルゴリズム	Adam
Target Network 更新重み	0.5
Exprience Memory への書き込み開始 step	10000
Experience Replay のメモリ量	50000

3.1 実験 2-1

盤面にあるカードに対して「相手プレイヤーに攻撃」という選択肢があるにもかかわらず「何もしない」という選択肢を選ぶのは特にメリットがないと感じたため表5のように行動空間を変更した.

この条件下で先攻側を 3000000 ステップ学習し, 10000 回ゲームを実行し勝率を計算した.

3.2 実験 2-1 結果

図 2 に実験 2 - 1 における学習時の 500 エピソードの平均獲得報酬の推移を示す. また, 表 6 に勝率を示す.

表 5: 実験 2-1 で定義した行動空間 (太字は変更した箇所)

行動説明		
手札 $1\sim 9$ を自盤面に出す		
手札 $1\sim 9$ を自盤面に出さない	9	
自盤面 1 が敵盤面 $1\sim5$ に攻撃 ${ m or}$ 敵プレイヤーに攻撃	6	
自盤面 2 が敵盤面 $1\sim5$ に攻撃 ${ m or}$ 敵プレイヤーに攻撃	6	
自盤面 3 が敵盤面 $1\sim5$ に攻撃 ${ m or}$ 敵プレイヤーに攻撃	6	
自盤面 4 が敵盤面 $1\sim5$ に攻撃 ${ m or}$ 敵プレイヤーに攻撃	6	
自盤面 5 が敵盤面 $1\sim5$ に攻撃 ${ m or}$ 敵プレイヤーに攻撃	6	

図 2: 実験 2-1 における平均獲得報酬の推移

実験 1 に比べ、学習は進んでいくにつれ平均の報酬が高くなり、約 6 割の勝率を記録した. しかし、先攻側にアルゴリズム 1 で示した行動ルーチンを持つプレイヤーを配置した場合の勝敗に比べると小さく、ルールベースな敵 AI よりも強化学習を用いる意味がない.

3.3 実験 2-2

手札において「盤面に出さない」という選択肢が学習が進まなくなる要因であると当たりをつけ、プレイヤーの選択肢に「ターンエンド」を追加した。表7に定義した行動空間を示す。

この条件下で先攻側を 3000000 ステップ学習し, 10000 回ゲームを実行し勝率を計算した.

3.4 実験 2-2 結果

図 3 に実験 2 - 2 における学習時の 500 エピソードの平均獲得報酬の推移を示す. また, 表 8 に勝率を示す.

表 6: 実験 2-1 結果

手法	勝率
DQN	0.6022
対戦相手と同じ戦略	0.6425

表 7: 実験 2-2 で定義した行動空間 (太字は変更した箇所)

行動説明	
手札 1 ~ 9 を自盤面に出す	9
自盤面 1 が敵盤面 $1\sim5$ に攻撃 or 敵プレイヤーに攻撃	6
自盤面 2 が敵盤面 $1\sim5$ に攻撃 or 敵プレイヤーに攻撃	6
自盤面 3 が敵盤面 1 ~ 5 に攻撃 or 敵プレイヤーに攻撃	6
自盤面 4 が敵盤面 $1\sim5$ に攻撃 or 敵プレイヤーに攻撃	6
自盤面 5 が敵盤面 1 ~ 5 に攻撃 or 敵プレイヤーに攻撃	6
ターンエンド	1

学習時の獲得平均報酬が大きく上昇し、ルールベースで作成した敵に対して 9 割 5 分以上の勝率を記録することができた. 学習したエージェントの行動を見てみると先攻プレイヤーらしく、積極的に相手プレイヤーに攻撃し、手札からも攻撃の特殊効果を持つカードを優先的にプレイしていた.

4 後攻側の学習

高い勝率を記録した実験 2-2 の条件で学習プレイヤーを後攻に配置して, 1000000 ステップ学習後 10000 回ゲームを実行して勝率を計算した. 図 4 に学習時の 500 エピソードの平均獲得報酬の推移を示す.

また, 表 9 に勝率を示す.

後攻側の学習においてもルールベースで作成した敵に対して高い勝率を記録した.

5 今後の課題

• 対戦相手の行動の改善

今回の実験で、エージェントの行動空間の定義を改善することができ学習によりルールベースで作成した敵よりも高い勝率を残すエージェントを作成することができた。しかし現在は学習の際、対戦相手は好戦的な行動ルーチンに基づいて行動している。バランス調整のシミュレーション回す際に学習したエージェントを用いる予定なので防戦的な行動ルーチンを作成し、エピソードごとに敵のルーチンを変えるなどしてどちらにも勝てるようなエージェントを作成する必要がある。

図 3: 実験 2 - 2 における平均獲得報酬の推移

表 8: 実験 2 - 2 結果

手法	勝率
DQN	0.9708
対戦相手と同じ戦略	0.6425

図 4: 学習時における平均獲得報酬の推移

表 9: 実験結果

手法	勝率
DQN	0.7969
対戦相手と同じ戦略	0.3575