

Outline

- Introduzione
- Model-based reinforcement learning
- Architetture integrate
 - Learning e Planning
 - Esperienza reale e simulata
- Monte-Carlo Tree Search
- Use case Go

Model-based Reinforcement Learning

Lezioni precedenti

- Apprendimento di una value function dall'esperienza
- Apprendimento di una policy dall'esperienza
- Model-free RL

Oggi

- Apprendimento di un modello dall'esperienza
- Planning per costruire una value function o una policy
- Integrare learning e planning in un'unica architettura

Model-Based & Model-Free RL

- Model-Free RL
 - Nessun modello
 - Apprendimento della value function (e/o della policy) dall'esperienza
- Model-Based RL
 - Apprendimento di un modello dall'esperienza
 - ▶ Pianificare la value function (e/o la policy) dal modello

Model-Free RL

Model-Based RL

Model-based RL

Model-Based RL - Ciclo di vita

Model-Based RL - Pro e contro

Vantaggi

- Può apprendere in modo efficiente il modello con metodi di apprendimento supervisionato
- Può ragionare sull'incertezza del modello

Svantaggi

- Prima si apprende un modello, poi si costruisce una value function
 - => Ovvero due fonti di errore di approssimazione

Cosa è un Modello?

- Un modello M_{η} è una rappresentazione di un MDP <*S*, *A*, **P**, *R*> parametrizzato tramite η
- Si supponga che lo spazio degli stati S e lo spazio delle azioni A siano noti
- Quindi un modello $M_{\eta} = \langle P_{\eta}, R_{\eta} \rangle$ rappresenta le transizioni di stato $P_{\eta} \approx P$ e le ricompense $R_{\eta} \approx R$

$$S_{t+1} = P_{\eta}(S_{t+1}|S_t, A_t)$$

$$R_{t+1} = \mathcal{R}_{\eta}(R_{t+1}|S_t, A_t)$$

In genere si assume l'indipendenza condizionale tra le transizioni di stato e le ricompense

$$P(S_{t+1}, R_{t+1}|S_t, A_t) = P(S_{t+1}|S_t, A_t)P(R_{t+1}|S_t, A_t)$$

Model Learning

• Obiettivo: stimare il modello M_{η} dall'esperienza $\{S_1, A_1, R_2, ..., S_T\}$ Questo è un problema di apprendimento supervisionato

$$S_1, A_1 \rightarrow R_2, S_2$$

 $S_2, A_2 \rightarrow R_3, S_3$

 $S_{T-1}, A_{T-1} \rightarrow R_T, S_T$

- ▶ Apprendere $s,a \rightarrow r$ è un problema di regressione
- ▶ L'apprendimento di $s,a \rightarrow s'$ è un problema di stima della densità
- Scegli la loss function, ad es. errore quadratico medio, ...
- Trova i parametri η che minimizzano la perdita empirica

Alcuni Learning Model

- Table Lookup Model
- Linear Expectation Model
- Linear Gaussian Model
- Gaussian Process Model
- Deep Belief Network Model
- ...

Model Learning con Table Lookup

- Il modello è un MDP esplicito $\langle \hat{P}, \hat{R} \rangle$
- Conta le visite N(s,a) per ogni coppia stato-azione

$$\hat{P}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1}(S_t, A_t, S_{t+1}; s, a, s')$$

$$\hat{R}_s^{a} = \frac{1}{N(s,a)} \sum_{t=1}^{T} \mathbf{1}(S_t, A_t; s, a) R_t$$

- Alternativamente
 - Ad ogni time-step t si memorizza la tupla esperienza $\langle S_t, A_t, R_{t+1}, S_{t+1} \rangle$
 - Per campionare il modello si scelgono casualmente le tuple corrispondenti <s, a,·,·>

Esempio AB

- Due stati A; B; nessuna scontistica; 8 episodi di esperienza
 - A, 0, B, 0
 - ▶ B, 1
 - ▶ B, 0

Abbiamo costruito un modello table lookup dall'esperienza

Planning con un Modello

- ▶ Dato un modello $M_{\eta} = \langle \hat{P}, \hat{R} \rangle$
- Risolvere il MDP <*S*, *A*, P_{η} , R_{η} >
- Utilizzando un algoritmo di planning
 - Value iteration
 - Policy iteration
 - Tree search
 - **...**

Sample-Based Planning

- Un approccio semplice ma efficace per pianificare
- Utilizzare il modello solo per generare campioni
- Campione di esperienza dal modello

$$S_{t+1} \sim P_{\eta}(S_{t+1}|S_t, A_t)$$

$$R_{t+1} = \mathcal{R}_{\eta}(R_{t+1}|S_t, A_t)$$

- ▶ Applicare il model-free RL ai campioni, ad esempio:
 - Monte-Carlo control
 - Sarsa
 - Q-learning
- I metodi sample-based planning sono spesso più efficienti

Esempio AB

- Costruire un table-lookup model dall'esperienza reale
- Applicare il model-free RL all'esperienza campionata

Real experience

- 1. A, 0, B, 0
- 2. B, 1
- 3. B, 1
- 4. B, 1
- 5. B, 1
- 6. B, 1
- 7. B, 1
- 8. B, 0

e.g. Monte-Carlo learning: V(A) = 1; V(B) = 0.75

Sampled experience

- 1. B, 1
- 2. B, 0
- 3. B, 1
- 4. A, 0, B, 1
- 5. B, 1
- 6. A, 0, B, 1
- 7. B, 1
- 8. B, 0

Planning con un Modello Poco Accurato

- ▶ Dato un modello imperfetto $< P_{\eta}$, $R_{\eta} > \neq < P$, R > P
 - Le performance del model-based RL sono limitate a policy ottimali per MDP approssimati $\langle S, A, P_{\eta}, R_{\eta} \rangle$
 - Ovvero, il model-based RL è efficace quanto il modello stimato
- Quando il modello è poco accurato, il processo di planning calcolerà una policy sub-ottimale
 - Soluzione 1 Quando il modello è sbagliato, utilizzare il modelfree RL
 - Soluzione 2 Ragionare esplicitamente sull'incertezza del modello

Integrated Architectures

Esperienza reale e simulata

- Consideriamo due fonti di esperienza
- Esperienza reale Campionata dall'ambiente (true MDP)

$$S' \sim \mathcal{P}_{S,S}^{a_{l}}$$

$$R = \mathcal{R}_{S}^{a}$$

Esperienza simulata – Campionata dal modello (MDP approssimato)

$$S' \sim P\eta(S'|S, A)$$

 $R = \mathcal{R}\eta(R|S, A)$

Integrare Learning e Planning

- Model-Free RL
 - Nessun modello
 - Apprendere la value function (e/o la policy) da un'esperienza reale
- Model-based RL (usando Sample-Based Planning)
 - Apprendere un modello dall'esperienza reale
 - Pianificare la value function (e/o la policy) dall'esperienza simulata
- Dyna
 - Apprendere un modello dall'esperienza reale
 - Apprendere e pianificare la value function (e/o la policy) a partire da esperienze reali e simulate

Architettura Dyna

Algoritmo Dyna-Q

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in A(s)$ Do forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \varepsilon$ -greedy(S, Q)
- (c) Execute action A; observe resultant reward, R, and state, S'
- (d) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) Q(S,A) \right]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Repeat n times:

 $S \leftarrow$ random previously observed state

 $A \leftarrow$ random action previously taken in S

$$R, S' \leftarrow Model(S, A)$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$$

Esempio Maze - Learning curve

Esempio Maze – Policy at 2[^] episode

WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)

Learning with Simulation

Forward Search

- Gli algoritmi forward search selezionano l'azione migliore tramite il lookahead
- \blacktriangleright Costruiscono un albero di ricerca con lo stato corrente s_t alla radice
- Usare un modello del MDP per 'guardare in avanti'
- Non è necessario risolvere l'intero MDP, ma solo i sub-MDP da ora

Simulation-Based Search

- Si basano sul paradigma forward search ed usano il sample-based planning
- Simulare episodi di esperienza da ora con il modello
- Applicare il model-free RL a episodi simulati

Simulation-Based Search (2)

Simulare episodi di esperienza con il modello

$$\{s_t^k, A_t^k, R_{t+1}^k; \dots, S_T^k\} \sim \mathcal{M}_{v}$$

- Applicare il model-free RL a episodi simulati
 - ▶ Monte-Carlo control ⇒ Monte-Carlo search
 - \rightarrow SARSA \Longrightarrow TD search

Simple Monte-Carlo Search

- Dato un modello M_v e una simulation policy π
- ▶ Per ogni azione $a \in A$
 - ightharpoonup Simulare K episodi a partire dallo stato attuale (reale) s_t

$$\{st, a, R_{t+1}^k; S_{t+1}^k, A_{t+1}^k \dots, S_T^k\} \sim \mathcal{M}\nu, \pi$$

Valutare le azioni in base al guadagno medio (Monte-Carlo evaluation)

$$Q(s_t, a) = \frac{1}{K} \sum_{k=1}^{K} G_t \to^{P} q_{\pi}(s_t, a)$$

Selezionare l'azione corrente (reale) con il valore massimo

$$a_t = \arg\max_{a \in \mathcal{A}} Q(s_t, a)$$

Questo corrisponde ad 1 passo di miglioramento di policy

Monte-Carlo Tree Search (MCTS) - Evaluate

- lacktriangle Dato un modello $M_{oldsymbol{v}}$
- Simulare K episodi a partire dallo stato attuale s_t usando la simulation policy π

$$\{s_t, A_t^k, R_{t+1}^k; S_{t+1}^k, A_{t+1}^k \dots, S_T^k\} \sim \mathcal{M}_{\nu}, \pi$$

- Costruire un albero di ricerca contenente gli stati visitati e le azioni
- Valutare gli stati Q(s, a) attraverso il guadagno medio degli episodi da s, a

$$Q(\mathbf{s}, \mathbf{a}) = \frac{1}{N(\mathbf{s}, \mathbf{a})} \sum_{k=1}^{K} \sum_{u=1}^{T} \mathbf{1}(S_u, A_u; \mathbf{s}, \mathbf{a}) G_u \rightarrow^P q_{\pi}(\mathbf{s}, \mathbf{a})$$

 Al termine della ricerca, selezionare l'azione corrente (reale) con il valore massimo nell'albero di ricerca

$$a_t = \arg\max_{a \in \mathcal{A}} Q(s_t, a)$$

Monte-Carlo Tree Search (MCTS) - Simulate

- In MCTS la simulation policy π migliora
- Ogni simulazione consiste in due fasi (in-tree, out-of-tree)
 - Tree policy (migliora): scegliere le azioni per massimizzare Q(S, A)
 - Default policy (fissa): scegliere le azioni in modo casuale
- Ripetere (per ogni simulazione)
 - \triangleright Valutare gli stati Q(S, A) tramite la Monte-Carlo evaluation
 - ▶ Migliorare la tree policy, ad esempio attraverso ϵ -greedy(Q)
- Monte-Carlo control applicato all'esperienza simulata
- ▶ Converge all'albero di ricerca ottimale, $Q(S, A) \rightarrow q_*(S, A)$

Monte-Carlo Tree Search (MCTS)

Vantaggi di MCTS

- Ricerca best-first altamente selettiva
- Valuta gli stati in modo dinamico (a differenza di DP)
- Utilizza il campionamento per risolvere la curse of dimensionality
- Funziona per modelli black-box (richiede solo i campioni)
- Efficiente dal punto di vista computazionale, in qualsiasi momento, parallelizzabile

Temporal-Difference Search

- Simulation-based search
- Utilizzo di TD invece di MC (bootstrapping)
- MCTS applica il MC Control al sub-MDP
- La TD search applica SARSA al sub-MDP

MC vs TD search

- ▶ Per il model-free RL, il bootstrapping è utile
 - ▶ Il TD learning riduce la varianza ma aumenta il bias
 - Il TD learning è solitamente più efficiente di quello MC
 - TD(λ) può essere molto più efficiente di MC
- Per la simulation-based search, il bootstrapping è utile
 - La TD search riduce la varianza ma aumenta il bias
 - La TD search è solitamente più efficiente della MC search
 - La TD(λ) search può essere molto più efficiente della MC search

TD search

- \triangleright Simulare episodi a partire dallo stato attuale (reale) s_t
- Stima della action-value function Q(s, a)
- Per ogni passo della simulazione, aggiornare gli action-value tramite SARSA

$$\Delta Q(S,A) = \alpha (R + \gamma Q(S',A') - Q(S,A))$$

- Selezionare le azioni in base agli action-value Q(s, a) (ad esempio ϵ -greedy)
- ▶ Può anche utilizzare una funzione di approssimazione per Q

GO Case Study

Go

- L'antico gioco orientale GO risale a 2500 anni fa
- Considerato il più difficile gioco da tavolo classico
- Considerato un compito complesso per l'IA (da McCarthy)
- La ricerca tradizionale basata su game-tree ha da sempre fallito per GO

Regole

- Di solito si gioca su un tavolo 19x19, ma anche 13x13 o 9x9
- Regole semplici, strategia complessa
- I due giocatori posizionano le pietre alternativamente
- Le pietre circondate vengono catturate e rimosse
- Il giocatore con più territori vince la partita

Valutazione della posizione in GO

- Quanto è valida una posizione s?
- Reward function (non scontata):
 - $ightharpoonup R_t = 0$ per tutti gli step non terminali t < T
 - $ightharpoonup R_T = 1$ se il giocatore nero vince
 - $R_T = 0$ se il giocatore bianco vince
- La policy $\pi = \langle \pi_B, \pi_W \rangle$ seleziona le mosse per entrambi i giocatori (B,W)
- Value function (quanto è valida la posizione s)

$$v_{\pi}(s) = \mathbb{E}[R_T|S = s] = P(\text{Black wins}|S = s)$$

 $v_*(s) = \max_{\pi_B} \min_{\pi_W} v_{\pi}(s)$

Go – Monte-Carlo Evaluation

$$V(s) = 2/4 = 0.5$$

Applicazione Monte-Carlo Tree Search

Applicazione Monte-Carlo Tree Search (2)

Applicazione Monte-Carlo Tree Search (3)

Applicazione Monte-Carlo Tree Search (4)

Applicazione Monte-Carlo Tree Search (5)

Alpha-Go

Reti neurali convoluzionali per estrarre una rappresentazione significativa dello stato

- Combinando quanto visto finora
 - Apprendimento della value function
 - Policy gradient
 - Monte-Carlo Tree Search

Deep Learning in Alpha-Go

Value network

Il giocatore vincerà con la tavola attuale?

P(a|s)

Policy network

Quanta preferenza per una mossa specifica nella tavola attuale?

Supervised-Reinforcement Learning Pipeline (Offline phase)

Max likelihood policy on human expert games

Policy gradient on self-play

Value function learning on self-play (by policy)

Progress in Computer Go

Take home messages

Model-based RL è efficace

- Se si conoscono le regole del mondo (gioco) è possibile utilizzarle per simulare l'esperienza
- Può utilizzare il modello dell'ambiente per simulare le esperienze
- Può integrare esperienze simulate con esperienze del mondo reale (Dyna)

Monte-Carlo Tree Search

- Valutare il valore di uno stato attuale guardando avanti negli episodi campionati nella simulazione
- Funziona per modelli black-box ed è altamente efficiente

TD Search

- Aggiornamento degli action-state value tramite SARSA su episodi simulati
- Come al solito, riduce la varianza rispetto a MCTS, ma aumenta il bias
- Probabilmente più efficiente di MCTS