4.1 Vector Spaces & Subspaces

Many concepts concerning vectors in \mathbb{R}^n can be extended to other mathematical systems.

We can think of a *vector space* in general, as a collection of objects that behave as vectors do in \mathbb{R}^n . The objects of such a set are called *vectors*.

A **vector space** is a nonempty set V of objects, called *vectors*, on which are defined two operations, called *addition* and *multiplication by scalars* (real numbers), subject to the ten axioms below. The axioms must hold for all \mathbf{u} , \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

- 1. u + v is in V.
- 2. u + v = v + u.
- 3. (u + v) + w = u + (v + w)
- 4. There is a vector (called the zero vector) $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each \mathbf{u} in V, there is vector $-\mathbf{u}$ in V satisfying $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. cu is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$.
- 9. (cd)**u** = c(d**u**).
- 10. 1u = u.

Vector Space Examples

EXAMPLE: Let
$$M_{2\times 2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ are real} \right\}$$

In this context, note that the **0** vector is

EXAMPLE: Let $n \ge 0$ be an integer and let

 \mathbf{P}_n = the set of all polynomials of degree at most $n \geq 0$.

Members of P_n have the form

$$\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

where a_0, a_1, \dots, a_n are real numbers and t is a real variable. The set \mathbf{P}_n is a vector space.

We will just verify 3 out of the 10 axioms here.

Let $\mathbf{p}(t) = a_0 + a_1t + \cdots + a_nt^n$ and $\mathbf{q}(t) = b_0 + b_1t + \cdots + b_nt^n$. Let c be a scalar.

Axiom 1:

The polynomial $\mathbf{p} + \mathbf{q}$ is defined as follows:

 $(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$. Therefore,

$$(\mathbf{p} + \mathbf{q})(t) = \mathbf{p}(t) + \mathbf{q}(t)$$

$$=$$
 $(\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})t + \cdots + (\underline{\hspace{1cm}})t^n$

which is also a _____ of degree at most

_____. So $\mathbf{p} + \mathbf{q}$ is in \mathbf{P}_n .

Axiom 4:

$$\mathbf{0} = 0 + 0t + \cdots + 0t^n$$
 (zero vector in \mathbf{P}_n)

$$(\mathbf{p} + \mathbf{0})(t) = \mathbf{p}(t) + \mathbf{0} = (a_0 + 0) + (a_1 + 0)t + \dots + (a_n + 0)t^n$$

$$= a_0 + a_1t + \dots + a_nt^n = \mathbf{p}(t)$$
and so $\mathbf{p} + \mathbf{0} = \mathbf{p}$

Axiom 6:

$$(c\mathbf{p})(t) = c\mathbf{p}(t) = (\underline{\hspace{1cm}}) + (\underline{\hspace{1cm}})t + \cdots + (\underline{\hspace{1cm}})t^n$$
 which is in \mathbf{P}_n .

The other 7 axioms also hold, so P_n is a vector space.

Subspaces

Vector spaces may be formed from subsets of other vectors spaces. These are called *subspaces*.

A **subspace** of a vector space V is a subset H of V that has three properties:

- a. The zero vector of V is in H.
- b. For each \mathbf{u} and \mathbf{v} are in H, $\mathbf{u} + \mathbf{v}$ is in H. (In this case we say H is closed under vector addition.)
- c. For each \mathbf{u} in H and each scalar c, $c\mathbf{u}$ is in H. (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.

EXAMPLE: Let
$$H = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a \text{ and } b \text{ are real} \right\}$$
. Show that H is a subspace of \mathbb{R}^3 .

Solution: Verify properties a, b and c of the definition of a subspace.

- a. The zero vector of \mathbb{R}^3 is in H (let $a = \underline{\hspace{1cm}}$ and $b = \underline{\hspace{1cm}}$).
- b. Adding two vectors in H always produces another vector whose second entry is _____ and therefore the sum of two vectors in H is also in H. (H is closed under addition)
- c. Multiplying a vector in H by a scalar produces another vector in H (H is closed under scalar multiplication).

Since properties a, b, and c hold, V is a subspace of \mathbb{R}^3 .

Note: Vectors (a,0,b) in H look and act like the points (a,b) in \mathbb{R}^2 .

EXAMPLE: Is
$$H = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \text{ is real} \right\}$$
 a subspace of

I.e., does *H* satisfy properties a, b and c?

Solution:

All three properties must hold in order for H to be a subspace of \mathbf{R}^2 .

Property (a) is not true because

Therefore H is not a subspace of \mathbb{R}^2 .

Another way to show that H is not a subspace of \mathbb{R}^2 :

Let

$$\mathbf{u} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

and so $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, which is ____ in H. So property (b)

fails and so H is not a subspace of \mathbb{R}^2 .

A Shortcut for Determining Subspaces

THEOREM 1

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, then $\text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

Proof: In order to verify this, check properties a, b and c of definition of a subspace.

a. **0** is in Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ since

$$\mathbf{0} = _{\mathbf{v}_1} + _{\mathbf{v}_2} + \cdots + _{\mathbf{v}_p}$$

b. To show that Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ closed under vector addition, we choose two arbitrary vectors in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$:

$$\mathbf{u} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_p \mathbf{v}_p$$

and
 $\mathbf{v} = b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \dots + b_p \mathbf{v}_p$.

Then

$$\mathbf{u} + \mathbf{v} = (a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_p \mathbf{v}_p) + (b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + \dots + b_p \mathbf{v}_p)$$

$$= (\underline{\quad} \mathbf{v}_1 + \underline{\quad} \mathbf{v}_1) + (\underline{\quad} \mathbf{v}_2 + \underline{\quad} \mathbf{v}_2) + \dots + (\underline{\quad} \mathbf{v}_p + \underline{\quad} \mathbf{v}_p)$$

$$= (a_1 + b_1) \mathbf{v}_1 + (a_2 + b_2) \mathbf{v}_2 + \dots + (a_p + b_p) \mathbf{v}_p.$$

So $\mathbf{u} + \mathbf{v}$ is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

c. To show that $Span\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ closed under scalar multiplication, choose an arbitrary number c and an arbitrary vector in $Span\{\mathbf{v}_1, ..., \mathbf{v}_p\}$:

$$\mathbf{V} = b_1 \mathbf{V}_1 + b_2 \mathbf{V}_2 + \cdots + b_p \mathbf{V}_p.$$

Then

$$c\mathbf{V} = c(b_1\mathbf{V}_1 + b_2\mathbf{V}_2 + \dots + b_p\mathbf{V}_p)$$

$$= \underline{\qquad} \mathbf{V}_1 + \underline{\qquad} \mathbf{V}_2 + \dots + \underline{\qquad} \mathbf{V}_p$$

So $c\mathbf{v}$ is in Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$.

Since properties a, b and c hold, Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a subspace of V.

Recap

- **1.** To show that *H* is a subspace of a vector space, use Theorem 1.
- 2. To show that a set is not a subspace of a vector space, provide a specific example showing that at least one of the axioms a, b or c (from the definition of a subspace) is violated.

EXAMPLE: Is $V = \{(a+2b, 2a-3b) : a \text{ and } b \text{ are real}\}$ a subspace of \mathbb{R}^2 ? Why or why not?

Solution: Write vectors in V in column form:

$$\begin{bmatrix} a+2b \\ 2a-3b \end{bmatrix} = \begin{bmatrix} a \\ 2a \end{bmatrix} + \begin{bmatrix} 2b \\ -3b \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

So $V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and therefore V is a subspace of _____ by Theorem 1.

EXAMPLE: Is
$$H = \left\{ \begin{bmatrix} a+2b \\ a+1 \\ a \end{bmatrix} : a \text{ and } b \text{ are real} \right\}$$
 a

subspace of R³? Why or why not?

Solution: **0** is not in H since a = b = 0 or any other combination of values for a and b does not produce the zero vector. So property _____ fails to hold and therefore H is not a subspace of \mathbf{R}^3 .

EXAMPLE: Is the set *H* of all matrices of the form

$$\begin{bmatrix} 2a & b \\ 3a+b & 3b \end{bmatrix}$$
 a subspace of $M_{2\times 2}$? Explain.

Solution: Since

$$\begin{bmatrix} 2a & b \\ 3a+b & 3b \end{bmatrix} = \begin{bmatrix} 2a & 0 \\ 3a & 0 \end{bmatrix} + \begin{bmatrix} 0 & b \\ b & 3b \end{bmatrix}$$
$$= a \begin{bmatrix} \\ \\ \end{bmatrix} + b \begin{bmatrix} \\ \\ \end{bmatrix}.$$

Therefore $H = \operatorname{Span} \left\{ \begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \right\}$ and so H is a subspace of $M_{2\times 2}$.