Box Models
A method for building simple models-
11084 10 mmon in Forth Sciences
-> Typically formulated as a consted
A method for building simple models- very common in Borth sciences -> Typically formulated as a coupled set of ODES-use one of our
ODE coluin methods
ODE solving methods
T1 toda: how come dit is
Idea tracking how some quantity moves between reservoirs within a system
retween reservoirs within a system
The "Box"
August of
Amount of
Sources stutt , M(E) Sinks/Losses
Sources "stuff", M(E) Sinks/Losses of stuff, 5
For this model dm - < -1
For this model $\frac{dM}{dt} = 5 - L$
-> If S, L do not depend on time, then for there to be a steady -state, 5=L
for these to be a stead state 5=1
/dm - n
(de - b)

-> A more common assumption is that L= LM -> loss rete of stuff is prepartional to amount of staff (e.g. rate of flow out of container depends on amount of water) dm = 5- kM steady-state 1 20 = 5-KM There is always a 5-5 if $5\ge0$, $k\ge0$ More complex systems with many boxes $\begin{array}{c|c}
F_{12} \\
\hline
F_{23} \\
\hline
F_{32}
\end{array}$ $\begin{array}{c|c}
F_{32} \\
\hline
F_{31}
\end{array}$ $\begin{array}{c|c}
F_{31} \\
\hline
F_{13}
\end{array}$

System of ODEs describing this system dm, = Fz + F31 - F12 - F13 This system is thought to be closed dm2 = F12+52-F21-F23 if All sources and sinks are within dM3 = F3+F3-F32-F31 J the system (i.e. E Fi; =0) The residence time of stuff in a box is the average time that stuff Losed systems must conserve M -> so dm.

dt =0

eventually spends in a box: $t_{.} = \frac{\text{amount}}{|b|}$ $t_{.} = \frac{|b|}{|b|}$ DDefinition (): Llosed systems and conservation Come buck to matrix formulation of This problem during lin. alg weeks

If Fi depend linearly on Mi, we can write this system as a matrix equation.

$$\frac{d}{dt} \left[\frac{m_i}{i} \right] = \left[A \right] \left[\frac{m_i}{i} \right]$$

Which, with the FE method is re-written

$$\begin{bmatrix} M_{i}(E+i) \end{bmatrix} = \begin{bmatrix} A' \end{bmatrix} \begin{bmatrix} M_{i}(E) \end{bmatrix}$$