```
import pandas as pd
In [1]:
         import warnings
         warnings.filterwarnings("ignore")
In [2]: data=pd.read csv("/home/placement/Desktop/fiat500.csv")
In [3]: #we are doing ridge
         data1=data.loc[(data.model=='lounge')]
         data1
Out[3]:
                 ID model engine_power age_in_days
                                                        km previous owners
                                                                                 lat
                                                                                          lon
                                                                                               price
                                                     25000
             0
                  1 lounge
                                     51
                                                882
                                                                         1 44.907242
                                                                                      8.611560
                                                                                               8900
                                     51
                                               2739
                                                     160000
                                                                         1 40.633171 17.634609
                                                                                               6000
                  4 lounge
                  7 lounge
                                     51
                                                731
                                                     11600
                                                                         1 44.907242
                                                                                     8.611560 10750
                     lounge
                                     51
                                               1521
                                                     49076
                                                                         1 41.903221 12.495650
                                                                                               9190
                                     51
                                                     17500
                                                                                      7.704920
            11
                  12 lounge
                                                366
                                                                         1 45.069679
                                                                                              10990
          1528 1529 lounge
                                     51
                                               2861 126000
                                                                         1 43.841980 10.515310
                                                                                               5500
               1530 lounge
                                     51
                                                     22551
                                                                         1 38.122070 13.361120
                                                                                               9900
          1529
                                                731
          1530 1531 lounge
                                     51
                                                670
                                                     29000
                                                                         1 45.764648
                                                                                      8.994500
                                                                                               10800
          1534 1535 lounge
                                     74
                                               3835
                                                    112000
                                                                         1 45.845692
                                                                                      8.666870
                                                                                               4600
          1536 1537 lounge
                                                                         1 45.000702
                                                                                     7.682270
                                     51
                                               2557
                                                     80750
                                                                                               5990
          1094 rows × 9 columns
In [4]: data1=data1.drop(['ID','lat','lon'],axis=1)
```

In [5]: data1=pd.get\_dummies(data1)
data1

## Out[5]:

|      | engine_power | age_in_days | km     | previous_owners | price | model_lounge |
|------|--------------|-------------|--------|-----------------|-------|--------------|
| 0    | 51           | 882         | 25000  | 1               | 8900  | 1            |
| 3    | 51           | 2739        | 160000 | 1               | 6000  | 1            |
| 6    | 51           | 731         | 11600  | 1               | 10750 | 1            |
| 7    | 51           | 1521        | 49076  | 1               | 9190  | 1            |
| 11   | 51           | 366         | 17500  | 1               | 10990 | 1            |
|      |              |             |        |                 |       |              |
| 1528 | 51           | 2861        | 126000 | 1               | 5500  | 1            |
| 1529 | 51           | 731         | 22551  | 1               | 9900  | 1            |
| 1530 | 51           | 670         | 29000  | 1               | 10800 | 1            |
| 1534 | 74           | 3835        | 112000 | 1               | 4600  | 1            |
| 1536 | 51           | 2557        | 80750  | 1               | 5990  | 1            |

1094 rows × 6 columns

```
In [6]: y=data1['price']
X=data1.drop('price',axis=1)
```

In [7]: from sklearn.model\_selection import train\_test\_split
X\_train,X\_test,y\_train,y\_test=train\_test\_split(X,y,test\_size=0.33,random\_state=42)

jun20ridge2 - Jupyter Notebook

```
In [8]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
         ridge = Ridge()
         parameters = {'alpha': alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge regressor.fit(X train, y train)
Out[8]:
          ▶ GridSearchCV
          ► estimator: Ridge
                ► Ridge
In [9]: ridge regressor.best params
Out[9]: {'alpha': 30}
In [10]: ridge=Ridge(alpha=30)
         ridge.fit(X train,y train)
         y pred ridge=ridge.predict(X test)
In [11]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[11]: 519771.8129989745
In [12]: from sklearn.metrics import r2 score
         r2 score(y test,y pred ridge)
Out[12]: 0.8373030813683994
```

```
In [13]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results
```

## Out[13]:

|     | index | price | predicted    | ID  |
|-----|-------|-------|--------------|-----|
| 0   | 676   | 10250 | 10045.347779 | 0   |
| 1   | 215   | 9790  | 9989.171535  | 1   |
| 2   | 146   | 5500  | 4769.099603  | 2   |
| 3   | 1319  | 9900  | 10048.683238 | 3   |
| 4   | 1041  | 8900  | 9813.944798  | 4   |
|     |       |       |              |     |
| 357 | 757   | 6000  | 5640.378648  | 357 |
| 358 | 167   | 10950 | 10431.681162 | 358 |
| 359 | 156   | 8000  | 8765.506865  | 359 |
| 360 | 1145  | 10700 | 10384.884273 | 360 |
| 361 | 1393  | 9400  | 9929.721685  | 361 |
|     |       |       |              |     |

362 rows × 4 columns

```
In [16]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

## Out[16]: []



In [ ]: