Analyze walting/ legged system

bootstrike one step

Poincaré nap/Poincaré section

footstrike (i)

subsequent footstrike (i+1)

Instant in the locombion [

Poincaya Section

02 = -20,

02 + 20,

Poincave mep: — mapping of the system degranies from one step to the next.

Test for stability
$$J = \frac{\partial F}{\partial x}\Big|_{x=x_0}$$

J = Jacob, an 6f the Poincare' map

If the largest eigenvalue of J is less that I then the syptem is stable else it is unstable

- F then is no analytical formula for F J=OF: need to do this numerically; central difference

Example:

$$x_{i+1} = F(x_i) = \frac{x_i^2}{2}$$

Find: (1) Find Xo such that Xo= F(Xo)

@ Find the stability of the fixed point.

Calculator:

giver an initial xi & see what mappens to Xiti when x is applied repeatedly. $0 \le Xi \le 1$ degrades to $Xiti \longrightarrow 0$ as $i \longrightarrow \infty$

 $x_i > 1$ then $\lambda_{i+1} \rightarrow \infty$. $i \rightarrow \infty$.

(i) Find fixed point
$$x_0 = F(x_0)$$

 $x_0 = x_0^2$

$$X_0 - X_0^2 = 0$$

 $X_0 (1 - X_0) = 0$
=> $X_0 = 0$ $X_0 = 1$ (2 kixed privates)

(2)
$$X_{i+1} = F(X_i) = X_i^2$$

$$J = \frac{\partial F(X_i)}{\partial X_i} = \frac{\partial (X_i)^2}{\partial X_i} = 2X_i$$

$$J|_{x_0=0} = 2 \times i|_{x_0=0} = 0 < 1$$
 stable
 $J|_{x_0=1} = 2 \times i|_{x_0=1} = 2 > 1$ unstable