CS536 Homework 5

Weakest Preconditions 1 & 2; Domain Predicates

Group members: (Group 67)

- Jinit Priyutkumar Parikh (A20517770) (jparikh9@hawk.iit.edu)
- Henilkumar Hareshbhai Patel(A20513297) (hpatel154@hawk.iit.edu)
- Swathi Alapati (A20521251) (salapati3@hawk.iit.edu)

Answers: -

Question 1:

IFN = if B1
$$\rightarrow$$
 S1 \square B2 \rightarrow S2 fi

Then wp (IFN, q) \Leftrightarrow ((B1 \land W1) \lor (B2 \land W2) \lor (B1 \land B2 \land W1 \land W2)) But for

p' we need to conjunct B1 \wedge B2 \wedge W1 \wedge W2 Otherwise, wp (IFN, q) \rightarrow (B1 \wedge

This cannot be true -wp (IFN, q) \Leftarrow (B1 \land W1) V (B2 \land W2)

Because B1 and B2 both hold true then we need W1 and W2 to hold the same.

And for the third conjunct it never holds true because it requires B Λ -B.

Question 2:

$$\operatorname{Wp}(S, \operatorname{pVq}) \to \operatorname{wp}(S, \operatorname{p}) \vee \operatorname{wp}(S, \operatorname{q})$$

Here, if $\sigma \vDash wp(S, p \lor q)$, then $\vDash p \lor q$ but it does not imply $U \vDash p$ and $U \vDash q$

because $\tau \in U$ does not satisfy all p and q. So, this case is not valid. Wp $(S, p) \lor wp(S, q) \rightarrow wp(S, pVq)$

If $\sigma \models wp(S, p) \lor wp(S, q)$ then it implies that $\sigma \models wp(S, p)$ or $\sigma \models wp(S, q)$

therefore $\tau \in U$ which implies that $\tau \vDash p$ or $\tau \vDash q$, so either way it implies $\tau \vDash p \lor q$ that implies $\sigma \vDash wp$ $(S, p \lor q)$

• wp $(S, p \land q) \rightarrow and \leftarrow wp(S, p) \land wp(S,q)$

In this case, for S in a state σ satisfies $p \land q$ from wp therefore $\tau \in U$ satisfies $p \land q$ which implies that $\tau \models p$ and $\tau \models q$ which implies that $\sigma \models wp(S, p)$ and $\sigma \models wp(S, q)$

$$\operatorname{wp}(S, p) \wedge \operatorname{wp}(S, q) \rightarrow \operatorname{wp}(S, p \wedge q)$$

If $\sigma \models wp(S, p) \land wp(S, q)$ then it implies that

$$\sigma \vDash wp(S,p)$$
 and $\sigma \vDash wp(S,q)$

therefore $\tau \in U$ which implies that $\tau \models p$ and $\tau \models q$, So it implies that $\tau \models p^q$ that implies $\sigma \models wp(S, p^q)$

Question 3:

if S is deterministic, then \models tot {b} S {q}.

 $\models tot\{b\}S\{q\}$ is true, because b is stronger that wpw $(b\rightarrow w)$

• If S is nondeterministic, then there exists σ such that $\sigma \models \{\neg c\}$ S $\{\neg q\}$.

 $\sigma \vDash \{\neg\ c\}\ S\ \{\neg\ q\)$ is true because $\sigma \vDash \{\neg w\ \}\ S\ \{\ \neg q\}$ and $w \to c$ implies $\neg\ c \to \neg\ w$ that follows $\sigma \vDash \{\neg c\}S\{\neg q)$

• If S is nondeterministic, then there exist $\sigma \models \neg c$ and $\tau \in M(S, \sigma)$ such that $\tau \models q$.

True as per the definition of correctness. If $\tau \in (S, \sigma)$ such that $\tau \models q$ then σ is in the wp and wlp of S and q

Question 4

```
wlp(u := u*k; k := u, u > h(k))

\equiv wlp(u := u*k, wlp(k := u, u > h(k)))

\equiv wlp(u := u*k, u > h(u))

\equiv u*k > h(u*k)
```

Question 5

```
wlp(if x < 0 then x := -x fi, x^2 \ge x)

\equiv wlp(if x < 0 then x := -x else skip fi, x^2 \ge x)

\equiv (x < 0 \rightarrow wlp(x := -x, x^2 \ge x)) \land (x \ge 0 \rightarrow wlp(skip, x^2 \ge x))

\equiv (x < 0 \rightarrow -x<sup>2</sup> \ge -x) \land (x \ge 0 \rightarrow x<sup>2</sup> \ge x))
```

Question 6

wp(y := y/x, sqrt(y) < x)

- Let $S \equiv y := y/x$, $q \equiv sqrt(y) < x$, and $w \equiv wlp(S, q)$.
- We can expand $w \equiv wlp(S, q) \equiv wlp(y:=y/x, sqrt(y) < x) \equiv sqrt(y/x) < x$.
- We can calculate

```
We can calculate D(\operatorname{sqrt}(y/x) < x \\ \equiv D(y/x) \land y/x \ge 0 \equiv D(y) \land D(x) \land x \ne 0 \land y/x \ge 0 \equiv x \ne 0 \land y/x \ge 0  (D(y) and D(x) is T)
```

• $wp(S, q) \equiv D(S) \land w \land D(w)$ $\equiv D(y:=y/x) \land sqrt(y/x) < x \land D(sqrt(y/x) < x)$

$$\equiv (D(y) \land D(x) \land x \neq 0) \land sqrt(y/x) < x \land x \neq 0 \land y/x \geq 0$$

$$\equiv sqrt(y/x) < x \land x \neq 0 \land y/x \geq 0$$

Question 7

Wp (if
$$y \ge 0$$
 then $x := y / x$ else $x := -x/y$ fi, $r < x \le y$)

By definition,

$$wp(S, q) = D(S) \wedge D(w) \wedge w$$

where,

$$q=r < x \le y$$

So,
$$w = wlp(S, q)$$

= wlp (if
$$y \ge 0$$
 then $x := y/x$ else $x := -x/y$, $q=r < x \le y$)

=
$$(y \ge 0 \to wlp (x: = y/x, r < x \le y)) \land (y < 0 \to wlp (x: = -x/y, q=r < x \le y))$$

$$= (y \ge 0 \longrightarrow r < (y/x) \le y) \land (y < 0 \longrightarrow r < (-x/y) \le y)$$

Now,

$$\begin{split} D(w) &= D \; ((y \geq 0 \longrightarrow r < (y/x) \leq y) \; \land \; (y < 0 \longrightarrow r < (-x/y) \leq y)) \\ &= D \; (y \geq 0 \longrightarrow r < (y/x) \leq y) \; \land \; D \; (y < 0 \longrightarrow r < (-x/y) \leq y) \\ &= x \neq 0 \; \land \; y \neq 0 \end{split}$$

Now,

D(S)=D (if
$$y \ge 0$$
 then $x := y/x$ else $x := -x/y$)
= D ($y \ge 0$) \land ($y \ge 0 \rightarrow$ D ($x := y/x$)) \land ($z < 0 \rightarrow$ D ($x := -x/y$))
= T \land ($y \ge 0 \rightarrow x \ne 0$) \land ($z < 0 \rightarrow y \ne 0$)
= ($y \ge 0 \rightarrow x \ne 0$) \land ($z < 0 \rightarrow y \ne 0$)

So,

$$Wp(S, q) = D(S) \wedge D(w) \wedge w$$

$$(y \ge 0 \rightarrow x \ne 0) \land (z < 0 \rightarrow y \ne 0) \land x \ne 0 \land y \ne 0 \land (y \ge 0 \rightarrow r < (y/x) \le y) \land (y < 0 \rightarrow r < (-x/y) \le y)$$