## Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КаФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа № 123

## Резонанс токов.

Автор: Алексей ДОМРАЧЕВ 615 группа Преподаватель: Николай Владимирович Дьячков



**Цель работы.** Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение АЧХ и ФЧХ, а также определение основных параметров контура.

**В работе используются:** генератор сигналов, источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

**Установка и краткая теория.** Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рис. 1 а, на рис. 1 б контур представлен почти в натуральную величину.



Рис. 1: Экспериментальная установка.

Выведем формулу для добротности:

$$U = Q\rho I \Rightarrow Q = \frac{UR_1}{\rho E_0} \tag{1}$$

 $R_{\Sigma}$  будет вычисляться по формуле, так как оно должно быть рассчитано при последовательном обходе контура:

$$R_{\Sigma} = R_L + R + R_S \tag{2}$$

Из курса общей физики известно, что частота резонанса можно вычислить по формуле

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{3}$$

Отсюда можно посчитать L:

$$L = \frac{1}{4\pi C f_0^2} \tag{4}$$

Для расчета  $Z_{\text{рез}}$  понадобится вычислить волновое сопротивление:

$$\rho = \sqrt{L/C} \tag{5}$$

Теперь можем рассчитать  $Z_{\text{pes}}$ :

$$Z_{\rm pes} = \rho Q^2 \tag{6}$$

Эквивалентное последовательное сопротивление связано с волновым соотношением:

$$R_S = \rho \cdot 10^{-3} \tag{7}$$

**Обработка и представление результатов.** Представим полученные и рассчитанные по формулам выше значения в таблице 1

Таблица 1: Расчеты пункта 11

| n | $C_n$ , н $\Phi$ | $  f_{0n}$ , к $\Gamma$ ц | U, B | E, B  | $L$ , мк $\Gamma$ н | $\rho$ , Om | $Z_{ m pes}, \ { m Om}$ | Q    | $R_{\Sigma}$ , OM | $R_{ m smax},$ Om | $R_L$ , OM |
|---|------------------|---------------------------|------|-------|---------------------|-------------|-------------------------|------|-------------------|-------------------|------------|
| 1 | 25.1             | 32.1                      | 1.12 | 0.185 | 979                 | 198         | 178945                  | 33.0 | 5.99              | 0.20              | 2.29       |
| 2 | 33.2             | 27.8                      | 0.91 | 0.186 | 987                 | 172         | 134405                  | 30.7 | 5.60              | 0.17              | 1.93       |
| 3 | 47.3             | 23.2                      | 0.66 | 0.188 | 995                 | 144         | 82602                   | 26.3 | 5.48              | 0.14              | 1.84       |
| 4 | 57.4             | 21.2                      | 0.55 | 0.188 | 982                 | 131         | 63191                   | 24.1 | 5.42              | 0.13              | 1.79       |
| 5 | 67.5             | 19.5                      | 0.47 | 0.189 | 987                 | 121         | 49512                   | 22.3 | 5.42              | 0.12              | 1.80       |
| 6 | 82.7             | 17.7                      | 0.39 | 0.189 | 978                 | 109         | 37735                   | 20.4 | 5.33              | 0.11              | 1.73       |
| 7 | 101.6            | 16.0                      | 0.32 | 0.190 | 974                 | 98          | 27863                   | 18.5 | 5.32              | 0.10              | 1.72       |

Сделаем несколько выводов из таблицы:

- 1.  $\langle L \rangle = 983, \, \Delta L = 3, \, \text{случайная погрешность равна 0.23.}$
- 2.  $\langle R_L \rangle = 1.87, \, \Delta R_L = 0,08, \, \text{случайная погрешность равна 0.01}.$

Построим и сравним графики АЧХ для  $C_1$  и  $C_7$ 

Таблица 2: АЧХ для  $C_1$ 

| $f$ , к $\Gamma$ ц |      |      |      |      |      |      |      |      |
|--------------------|------|------|------|------|------|------|------|------|
| U, B               | 0.67 | 0.67 | 0.78 | 0.85 | 0.99 | 0.94 | 0.89 | 0.78 |

Таблица 3: АЧХ для *C*<sub>7</sub>

| $f$ , к $\Gamma$ ц | 15.10 | 15.30 | 15.61 | 15.83 | 16.01 | 16.32 | 16.80 | 16.90 |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| U, B               | 0.14  | 0.17  | 0.24  | 0.28  | 0.32  | 0.28  | 0.17  | 0.16  |



Рис. 2: Амплитудно-частотные характеристики.

По графикам видно, что частоты, при которых достигается резонанс отличаются в два раза, а резонансные значения амплитуды примерно в 3 раза.

Также построим АЧХ в безразмерных координатах  $x \equiv f/f_{0n}, \ y \equiv U(x)/U(f_{0n}),$  чтобы определить добротность.



Рис. 3: Амплитудно-частотные характеристики в безразмерных координатах.

Ширина резонансных кривых на уровне 0.707 для  $C_1$  равна 0.03, тогда добротность равна  $Q=0.03^{-1}=30.0$ 

Ширина резонансных кривых на уровне 0.707 для  $C_7$  равна 0.06, тогда добротность равна  $Q=0.06^{-1}=16.7$ 

Проведем аналогичные действия с ФЧХ для  $C_1$  и  $C_7$ :

| Таблица 4: ФЧХ $C_1$ |                                        |      |      |      |       |       |       |        |  |  |
|----------------------|----------------------------------------|------|------|------|-------|-------|-------|--------|--|--|
| $f$ , к $\Gamma$ ц   | 30.4 30.9 31.3 31.8 32.5 32.9 33.2 33. |      |      |      |       |       |       |        |  |  |
| $f/f_0$              | 0.95                                   | 0.96 | 0.98 | 0.99 | 1.01  | 1.03  | 1.03  | 1.04   |  |  |
| $x_0$                | 1.6                                    | 1.6  | 1.6  | 1.5  | 0.3   | 0.4   | 0.5   | 0.6    |  |  |
| x                    | 0.9                                    | 1    | 1    | 1.3  | 1.5   | 1.5   | 1.5   | 1.6    |  |  |
| $x/x_0$              | 1.78                                   | 1.60 | 1.60 | 1.15 | -0.20 | -0.27 | -0.33 | -0.375 |  |  |

| Таблица 5: ФЧХ $C_7$ |      |      |      |      |      |      |      |       |       |       |       |
|----------------------|------|------|------|------|------|------|------|-------|-------|-------|-------|
| $f$ , к $\Gamma$ ц   | 14.7 | 15   | 15.2 | 15.6 | 15.8 | 16   | 16.3 | 16.6  | 17.2  | 17.4  | 17.6  |
| $f/f_0$              | 0.92 | 0.94 | 0.95 | 0.98 | 0.99 | 1.00 | 1.02 | 1.04  | 1.08  | 1.09  | 1.1   |
| $x_0$                | 3.4  | 3.3  | 3.3  | 3.2  | 3.1  | 3.2  | 0.6  | 0.8   | 1.2   | 1.2   | 1.2   |
| x                    | 2.1  | 2.1  | 2.2  | 2.4  | 2.6  | 3.2  | 3    | 3     | 2.8   | 2.8   | 2.8   |
| $x/x_0$              | 1.62 | 1.57 | 1.50 | 1.33 | 1.19 | 1    | -0.2 | -0.27 | -0.43 | -0.43 | -0.43 |



Рис. 4: Фазово-частотные характеристики.

По графикам рассчитаем добротность по расстоянию между точками по оси x, в которых у меняется от  $\pi/4$  до  $-\pi/4$ , равному 1/Q. Для  $C_1$  это расстояние равно 0.027, следовательно Q=36. Аналогично для  $C_7$  x=0.07, следовательно Q=14.

Также отобразим зависимость  $R_L$  от  $f_{0n}$ :



Рис. 5: Зависимость  $R_L$  от  $f_{0n}$ 

**Вывод:** мы исследовали резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью,получили АЧХ и ФЧХ, а также определили основные параметры контура.