线性分类器(line)

【题目描述】

考虑一个简单的二分类问题——将二维平面上的点分为A 和B 两类。

训练数据包含 n 个点,其中第 i 个点 $(1 \le i \le n)$ 可以表示为一个三元组 $(x_i, y_i, type_i)$,即该点的横坐标、纵坐标和类别。

在二维平面上,任意一条直线可以表示为 $\theta_0 + \theta_1 x + \theta_2 y = 0$ 的形式,即由 $\theta_0 \times \theta_1$ 和 θ_2 三个参数确定该直线,且满足 $\theta_1 \times \theta_2$ 不同时为 0。

基于这 n 个已知类别的点,我们想要在平面上找到一条直线作为一个线性分类器。具体来说,这条线要把训练数据中的A、B 两类点**完美分隔**开来,即一侧只有A 类点、另一侧只有B 类点。这样,对于任意一个的未知类别的点,我们就可以根据它是位于直线的哪一侧来预测它的类别了。

在本题中我们仅需要处理 m 个如下查询: 给定一条直线,判断它是否能将训练数据中的A、B 两类点完美分开。

【输入格式】

从标准输入读入数据。

输入共n+m+1行。

第一行包含用空格分隔的两个正整数 n 和 m,分别表示点和查询的个数。

第二行到第n+1 行依次输入n 个点的信息。第i+1 行($1 \le i \le n$)包含用空格分隔的三项 x_i 、 y_i 和 $type_i$,分别表示第i 个点的横、纵坐标和类别,其中坐标为整数、类别为一个大写英文字母A 或B。

第 n+2 行到第 n+m+1 行依次输入 m 个查询。第 j+n+1 行($1 \le j \le m$)包含用空格分隔的三个整数 θ_0 、 θ_1 和 θ_2 ,表示第 j 个查询中给定直线的三个参数。

【输出格式】

输出到标准输出。

输出共m行,每行输出一个字符串。

第 j 行($1 \le j \le m$)输出的字符串对应第 j 个查询的结果:如果给定直线可以完美分隔A、B 两类点,则输出Yes;否则输出No。

【样例 1 输入】

1	9 3	
2	1 1 A	
3	1 0 A	
4	1 -1 A	
5	2 2 B	
6	2 3 B	
7	0 1 A	
8	3 1 B	
9	1 3 B	
.0		
.1	0 2 -3	
.2	-3 0 2	
.3	-3 1 1	

【样例1输出】

只有第3个查询给出的直线能将A、B两类点完美分隔。

【样例1解释】

4 ×

输入数据保证**不存在**恰好落在给定直线上的点;

【子任务】

- 0 < n ≤ 10³、0 < m ≤ 20,且A、B两类点的数量均不为 0;
- 所有点的坐标和给定直线的三个参数均为整数,且绝对值≤10⁶;
- 任意两个点的坐标不完全相同。
- 测法点

测试点	θ_0	θ_1	θ_2
1,2,3,4,5	不为零	= 0	不为零
6,7,8,9,10	不为零	不为零	= 0
11,12,13,14,15	= 0	不为零	不为零
16,17,18,19,20	不为零	不为零	不为零