Работа 1.1.1.

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

Ход работы:

1. Определим точность приборов: штангенциркуль - 0.1 мм, микрометр - 0.01 мм

2. Измерим диаметр проволоки в нескольких местах штангенциркулем (d_1) и микрометром (d_2) :

	1	2	3	4	5	6	7	8	9	10
d_1 , mm	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
d_2 , mm	0.37	0.36	0.36	0.35	0.36	0.36	0.37	0.35	0.36	0.36
$\langle d_1 \rangle = 0.4$ mm $\langle d_2 \rangle = 0.360$ mm										

При измерении d_1 штангенциркулем случайная погрешность отсутствует, следовательно, точность результата определяется только точностью штангенциркуля (систематическая погрешность):

$$d_1 = (0.4 \pm 0.1) \text{ MM}$$

Измерения микрометром содержат как ситематическую, так и случайную погрешности:

$$\sigma_{\mathrm{cuct}} = 0.01 \; \mathrm{mm}$$

$$\sigma_{\text{сл}} = \frac{1}{2} \sqrt{\sum_{i=1}^{N} (d_i - \langle d \rangle)^2} = \frac{1}{2} \sqrt{4 * 10^{-4}} = 2 * 10^{-3} \text{ MM}$$

$$\sigma = \sqrt{\sigma_{\text{chct}}^2 + \sigma_{\text{ch}}^2} = \sqrt{(0.01)^2 + (0.002)^2} \approx 0.01 \text{ mm}$$

Так как $\sigma_{\text{сл}}^2 \ll \sigma_{\text{сист}}^2$, то можно считать проволоку однородной, а погрешность диаметра $\sigma_d = \sigma_t ext$:

$$d_2 = \langle d_2 \rangle \pm \sigma_d = (3.60 \pm 0.10) * 10^{-2} \text{ cm}$$

3. Определим площадь поперечного сечения проволоки S:

$$S = \frac{\pi * (d_2)^2}{4} = \frac{3.14 * (3.60 * 10^{-2})^2}{4} = 1.02 * 10^{-3} \text{ cm}$$

Погрешность σ_s найдем по формуле:

$$\sigma_s = 2\frac{\sigma_d}{d} * S = 2 * \frac{0.01}{0.36} * 1.02 * 10^{-3} \approx 6 * 10^{-5} \text{ cm}^2$$

Таким образом, $S = (1.02 \pm 0.06) * 10^{-3} \text{ cm}^2$, то есть S определена с точностью 6%.

4. Определим основные характеристики приборов:

	Вольтметр	Миллиамперметр
Предел измерений x_n		0.75 A
Число делений <i>п</i>		150 дел
Цена делений x_n/n		5 мА/дел
Чувствительность n/x_n		200 дел/мА
Внутреннее сопротивление	200 МОм	87/750 = 0.12 Om

5. Для нахождения значения сопротивления проволоки мы можем воспользоваться двумя схемами (рис. 1), где:

 R_A - внутренее сопротивление амперметра;

 R_V - внутреннее сопротивление вольтметра;

 R_n - сопротивление куска нихромовой проволоки;

R - реостат.

Рис. 1: Схемы установок

Если обозначить показания вольтметра и амперметра через V и I, то значения $R_{n1} = \frac{V_a}{I_a}$ и $R_{n2} = \frac{V_b}{I_b}$ будут отличаться от реального R_n :

$$R_{n1} = \frac{V_a}{I_a} = R_n \frac{R_V}{R_V + R_n} \Rightarrow R_n \approx R_{n1} \left(1 + \frac{R_{n1}}{R_V} \right)$$
$$R_{n2} = \frac{V_b}{I_b} = R_n + R_A \Rightarrow R_n \approx R_{n2} \left(1 - \frac{R_A}{R_{n2}} \right)$$

Зная, что $R_n \approx 5$ Ом, оценим величину поправок:

- 1a) $R_n/R_V = 5/(2*10^2) = 2.5*10^{-6}$
- 1b) $R_A/R_n = 0.12/5.00 = 2.4 * 10^{-2}$

Вывод: меньшую ошибку в данном случае (R_n мало) дает схема 1a).

- 6. Соберем схему 1а).
- 7. Проведем опыт для трех длин проволоки:

$$l_1 = (20.0 \pm 0.1) \text{ cm};$$

 $l_2 = (30.0 \pm 0.1) \text{ cm};$
 $l_3 = (50.0 \pm 0.1) \text{ cm}.$

$l_1 = 20 \text{ cm}$			$l_2 = 30 \text{ cm}$				$l_3 = 50 \text{ cm}$				
V,дел	І,дел	V,B	І,мА	V,дел	І,дел	V,B	І,мА	V,дел	І,дел	V,B	І,мА
0	30	0,3270	150	0	30	0,4950	150	0	30	0,7937	150
0	50	0,5563	250	0	61	1,0253	305	0	40	1,0570	200
0	75	0,8200	375	0	90	1,5130	450	0	101	2,7331	505
0	114	1,2590	570	0	116	1,9625	580	0	125	3,4138	625
0	150	1,6670	750	0	146	2,4778	730	0	145	3,9446	725
0	123	1,3704	615	0	105	1,7678	525	0	112	3,0424	560
0	101	1,1247	505	0	73	1,2195	365	0	79	2,1354	395
0	90	0,9942	450	0	44	0,7601	220	0	37	0,9819	185
0	60	0,6540	300								
0	40	0,4388	200								

Измерения проведем для возрастающих и убывающих значений тока.

8. Построим ВАХ (I=f(V)) для всех трех отрезков проволоки, проводя прямые через экспериментальные точки (рис. 2). Из графиков видно, что зависимость линейна и при возрастании, и при убывании тока. Также видно, что случайный разброс точек пренебрежимо мал.

Рис. 2: ВАХи

- 9. Для каждой длины l находим среднее значение сопротивления по угловому коэффициенту соответствующей прямой: $R_{\rm cp}=V/I$, где V и I значения тока и напряжения, взятые на прямой в некоторой точке у ее конца.
 - 10. Погрешность $R_{\rm cp}$ оценим по формуле

$$\frac{\sigma_{R_{\rm cp}}}{R_{\rm cp}} = \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$$

где I и V — максимальные значения силы тока и напряжения, полученные в эксперименте, а σ_I и σ_V - среднеквадратичные ошибки измерения вольтметром и амперметром.

Ошибка $\sigma_V = 0.001~\mathrm{B}$ (вольтметр электронный, при измерениях колебался четвертый знак после запятой).

Ошибка $\sigma_I = x_n/2 = 3$ мА (1/2 цены деления).

11. Для всех трех длин l вносим поправку в измеренное значение сопротивления по формуле:

$$R_{\rm n} = R_{\rm cp} + \frac{R_{\rm cp}^2}{R_V}$$

В виду малости поправки считаем $\sigma_{R_{\rm n}}=\sigma_{R_{\rm cp}}$. Также так как R_V « $R_{\rm cp}$, то значения $R_{\rm n}$ и $R_{\rm cp}$ разлличаться практически не будут.

$l_1 = 20 \text{ cm}$	$l_2 = 30 \text{ cm}$	$l_3 = 50 \text{ cm}$
$R_{\rm cp} = 2.223 \; {\rm Om}$	$R_{\rm cp} = 3.394 \; {\rm Om}$	$R_{\rm cp} = 5.441 \; {\rm Om}$
$R_{\rm n} = 2.223 \; {\rm Om}$	$R_{\rm n} = 3.394 \; {\rm Om}$	$R_{\rm n} = 5.441 \; {\rm Om}$
$\sigma_{R_{\rm n}} = 0.004 \; \mathrm{Om}$	$\sigma_{R_{\mathrm{n}}} = 0.004 \; \mathrm{Om}$	$\sigma_{R_{\mathrm{n}}} = 0.004 \; \mathrm{Om}$
	$R_0 = 3.407 \text{ Om}$	$R_0 = 5.449 \text{ Om}$

- 12. Заметим, что результаты измерений при помощи вольтметра и амперметра совпадают с результатами, полученными при помощи моста в пределах погрешности.
 - 13. Определим удельное сопротивление нихрома ρ и погрешность σ_{ρ} :

$$\rho = \frac{R_{\rm n}}{l} \frac{\pi d^2}{4}$$

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right) + \left(\frac{\sigma_l}{l}\right)}$$

l, cm	$\rho, 10^{-4} \text{ Om*cm}$	$\sigma_{\rho}, 10^{-6} \text{ Om*cm}$
20	1.13	0.07
30	1.15	0.07
50	1.11	0.07

Отсюда:

$$\rho = (1.13 \pm 0.07) * 10^{-4} \text{ Om*cm}$$

Таким образом, мы определили удельное сопротивление нихромовой проволоки. В процессе измерений стало ясно, что при точности измерений диаметра проволоки с точностью около 3% измерения силы тока и напряжения производились с избыточной точностью. В данном случае основную погрешность в конечный результат внесла именно погрешность измерения диаметра, ошибка, связанная с измерениями тока и напряжения оказалась на ее фоне пренебрежимо малой.

Отдельно стоит отметить то, что в процессе выполнения работы я получил опыт обращения с мостом постоянного тока.

Список использованной литературы:

- 1. "Лабораторный практикум по общей физике: Учебное пособие. В трех томах. Т1. Механика"/А.Д.Гладун, Д.А.Александров, Ф.Ф.Игошин и др.; Под редакцией А.Д.Гладуна. МФТИ, 2004.
 - 2. "Набор и верстка в системе L 4 Т $_{2}$ Х"/С.М.Львовский. 2003.