Overview

This project applies logistic regression (LR) to rank SNPs from several PGS datasets as predictors of Parkinson's disease.

Click on each dataset link to explore the details.

Cooper 142 SNPs set

Preparation

Import required packages.

```
import os, sys, warnings
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import GridSearchCV
from sklearn.exceptions import ConvergenceWarning
```

Read input matrix with genotypes

The matrix contains the genotypes from AMP-PD/MGRB dataset for 140 SNPs.

```
table = pd.read_csv("data/matrix.txt", sep="\t")
table
```

	participant_id	phenotype	cohort	gender	inv_genotype	rs2275579	rs144115304	rs115581042	rs79531911	rs138844738	rs	10448130	rs3428
0	SY- NIH_INVAA791MKCET	1	STEADY- PD3	М	NI	0	0	0	0	0		2	
1	SY- NIH_INVEP886EEYYL	1	STEADY- PD3	М	NI	0	0	0	0	0		0	
2	SY- NIH_INVFM717GWDX4	1	STEADY- PD3	F	NI	0	0	0	0	0		0	
3	SY- NIH_INVNN611MKKN9	1	STEADY- PD3	М	NI	0	0	0	0	0		1	
4	SY- NIH_INVRB171EXGUK	1	STEADY- PD3	М	II	0	1	1	1	0		1	
3107	BABQX	0	MGRB	М	II	0	0	0	0	0		1	
3108	BABRB	0	MGRB	F	II	0	0	0	0	0		0	
3109	BABRE	0	MGRB	М	NI	0	0	0	0	0		1	
3110	ZAAAB	0	MGRB	М	NI	0	0	0	0	0		2	
3111	AABUO	0	MGRB	F	NN	0	0	0	0	0		1	

3112 rows × 145 columns

Distribution of data

Distribution by phenotype

(0=Control, 1=Case)

```
table.groupby('phenotype')['participant_id'].nunique()

phenotype
0  1556
1  1556
Name: participant_id, dtype: int64
```

Distribution by gender/phenotype

Distribution by gender/phenotype/inv8_001 genotype

Name: participant_id, dtype: int64

```
table.groupby(['gender', 'phenotype', 'inv_genotype'])['participant_id'].nunique()
```

```
        gender F
        phenotype of inv_genotype of II
        195 of II
        195 of II
        195 of II
        195 of II
        11
        259 of II
        113 of II
        11
        175 of II
        175 of II
        175 of II
        175 of II
        180 of II
        318 of II
        480 of II
        180 of II
```

All participants

Logistic regression model

```
X = table[table.columns[5:]]
Y = table['phenotype']
Ir = LogisticRegression(random_state=42, solver='saga', n_jobs=-1,
penalty='elasticnet')
```

Grid search for 3 hyperparameters

```
➤ GridSearchCV

➤ estimator: LogisticRegression

Expression
```

Best estimator

```
best_lr = grid_lr.best_estimator_
max_auc_score = roc_auc_score(Y, best_lr.predict_proba(X)[:, 1])
coefs = best_lr.coef_[0, :]
num_coef = np.sum(coefs != 0)
X_header = np.array(X.columns)
data_array = np.vstack((X_header, coefs))
model_coefs = pd.DataFrame(data-data_array.T, columns=['SNP', 'Coefficient'])
print(f'Max_AUC_score:/max_auc_score}\n')
print(f'Max_AUC_score:/max_auc_score\n')
print(f'Best_estimator: (grid_lr.best_estimator_j')
print(f'Best_estimator: (grid_lr.best_estimator_j')
print(f'Best_params: (grid_lr.best_params_j')
print(f'Best_params: (grid_lr.best_params_j')
print(f'Best_params: [30, 100, 200])
model_coefs[model_coefs['Coefficient'] != 0 ]
```

```
Max AUC score:0.5551641873897212

Non-zero coefficients: 2

Best estimator: LogisticRegression(C=0.02, ll_ratio=1, max_iter=25, n_jobs=-1, penalty='elasticnet', random_state=42, solver='saga')

Scorer: make_scorer(roc_auc_score, needs_threshold=True)
Best params: {'c': 0.02, 'll_ratio': 1, 'max_iter': 25}
Best score: 0.5492252417764205
```

SNP Coefficient 82 rs11248057 0.055163

87 rs3806760 0.098122