인공지능 기반 스마트 홈 트레이닝 시스템

2022 경남대학교 컴퓨터공학부 졸업작품 최종발표

목차

서론

• 팀원 구성 및 역할 분담 • 구성도

• 개발 배경

• 목적

본론

• 인공지능 기반 홈 트레 이닝 시스템

• 개발 방법

• 개발 결과

결론

• 요약

• 기대 효과 및 향후 연구

서론

팀원 구성 및 역할 분담 개발 배경 목적

팀원 구성 및 역할 분담

• 팀장 – 이현우	• 팀원 – 신정헌	• 팀원 – 박성우
 알 개발 포즈 추정 인공지능 모델 개발 포즈 분류 인공지능 모델 개발 데이터 수집 	➤ 앱 개발 ➤ 데이터 베이스 자료 조사 및 구축 ➤ 데이터 수집 ➤ 데이터 처리	▶ 앱 개발 ▶ 데이터 수집 ▶ PPT 작성

개발 배경

- COVID-19발생에 따라 사회적 거리두기로 인해 홈 트레이닝을 하는 사람들 이 증가 함에 있어 잘못된 자세로 인해 부상을 당하는 점에서 착안을 하여 작품 주제를 선정.
- 또한 팀원들 중 운동을 하다 사회적 거리두기로 인해 헬스장을 가지 못하여 홈 트레이닝을 하며 자세의 정확도에 불확실한 점에서 아이디어 착안.

구분	2016년	2017년	2018년	합계	(비율)
10세 미만	40	46	38	124	(61.4)
10 ^C H	11	3	5	19	(9.4)
20CH	3	3	3	9	(4.5)
30 ^{CH}	-4	3	4	11	(5.4)
40 ^{CH}	3	1	2	6	(3.0)
50 ^{CH}	4	3	5	12	(5.9)
60세 이상	8	9	4	21	(10.4)
합계	73	68	61	202	(100.0)

인령별 줌트 사고 현황. 한국소비자원 제공

목적

- 사용자가 트레이너 없이 정확한 자세로 홈 트레이닝을 할 수 있도록 학습 시킨 딥러닝 모델을 사용하여 각각의 자세에 대한 정확도를 알려주어 사용자가 자세 교정을 할 수 있도록 하여 부상을 방지 하는 목적.
- 단순 동영상을 보고 따라하는 운동이 아닌 사용자가 집적 정확한 자세로 효율적이게 운동할 수 있도록 운동을 도와주는 목적.
- 사용자 인터페이스를 직관적으로 만들어 누구나 사용하기에 불편함이 없게 개발.
- 각 운동 별 소모한 칼로리 량을 직관적으로 알려주어 좀더 운동에 흥미를 가질 수 있게 하기 위한 목적.

본론

구성도 인공지능 기반 홈 트레이닝 시스템 개발 방법 개발 결과

구성도

검증

테스트데이터세트

테스트데이터를 대입

하여 검증

학습/검증

정면촬영

레터럼 레이즈

레이즈 준비자

레터럴

세 운동별 데

		ш				
레이즈		Ш	레터럴레이즈			
다양한건	낙도촬영	П	Train		Test	
레터럴 레이즈	레터럴 레이즈 준비자 세		레터럴레 이즈	레터럴레 이즈 준 비자세	레터럴레 이즈	레 0 ㅂ
이터 수진		П	영상음	프레인	단위로	자

인공지능 기반 홈 트레이닝 시스템

- 데이터 수집으로는 각 운동의 자세의 세부 동작을 먼저 찾고 각 세부동작을 집적 촬영.
- 각 자세를 정면에서 찍은 데이터와 다양한 각도에서 찍은 데이터를 영상으로 촬영하여 수집
- 촬영한 영상을 프레임단위로 캡쳐 하여 각 자세에 대한 파일로 저장.
- 총6,443장 Train 5,843장 / Test 600장

푸쉬업

푸쉬업 레디

레터럴레이즈

레러럴레이즈 레디

스쿼트

스쿼트 레디

인공지능 기반 홈 트레이닝 시스템

- 운동의 학습으로는 각 세부동작의 키포인트를 추출하여 DNN 알고리즘을 사용해 학습 시키고 학습모델을 생성.
- 생성된 학습모델에 테스트 데이터세트를 대입 했을 때 각각의 운동마다 검 증된 결과.

인공지능 기반 홈 트레이닝 시스템

- 자세 예측으로 사용한 딥러닝 모델로는 Tensorflow의 Movenet_thunder모델을 사용하여 사용자의 17개의 관절의 위치를 예측.
- 사람의 중심을 찾고 먼저 17개의 키포인트를 찾아, 키포인트로 edge를 만들어 자세를 추정.

개발 방법

- 어플리케이션은 안드로이드 스튜디오를 사용하여 개발.
- 사용자의 데이터 관리로는 Firebase를 사용하여 회원가입시 사용자의 정보를 저장
- 도움말 버튼에서 앱의 사용방법을 표기함.
- 운동하기에서 원하는 운동을 선택 후 운동의 정확도를 수치화 하여 직관적으로 화면에 송출.
- 운동이 끝난 후 마이페이지에서 사용자의 운동에 대한 칼로리 소모량을 표기.

개발 결과

WWW.BANDICAM.com	
MY Fit	
이메일 비밀변호	
ਵੜਦੇ ਸੂਬ	
1 • 1	

결론

요약 기대 효과 및 향후 연구

요약

- 잘못된 자세로 인한 홈 트레이닝의 부상을 방지 하기 위해 인공지능 기반 홈 트레이닝 시스템을 개발.
- TF의 자세추정 모델과 운동자세 분류 기술을 접목.
- 사용자의 계정을 저장하기 위해 데이터베이스를 구축.
- 사용하기 편리한 GUI 제작과 각 운동에 대한 직관적인 칼로리 소모량 확인.

기대 효과 및 향후 연구

기대효과

- 홀로 홈 트레이닝을 할 때 전문 트레이너 없이 정확한 자세로 운동 가능.
- 정확한 자세로 운동을 하여 사전에 부상을 방지.
- 운동을 잘 알지 못하는 사람도 쉽게 접근하여 흥미 유발.
- 시간과 공간의 제약이 없기에 운동을 할 수 있는 시간이 별로 없는 사람도 운동을 할 수 있는 효과도 기대.

향후연구

- 운동의 종류를 다양하게 추가.
- TTS 기능을 추가해 운동을 할 때 카운트.
- 상대방과 운동 겨루기.

이상입니다.

Q&A