Linear Regression

Ibrahim Sharaf ElDen | Abdelrahman Hamdy | FCIS'17 ML Course

- Linear Regression
- Cost Function: Intuition
- Cost Function: Examples
- Gradient Descent
- Gradient Descent for Linear Regression
- Multi-variable Linear Regression

Housing Prices (Portland, OR)

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real--valued output

Classification: Discrete-valued output

Training	set	of
housing	prio	ces
(Portlan	id, O	R)

Size	in feet ²	(x)	Price (\$)	in 1000	0's (y)
	2104			460	
	1416			232	
	1534			315	
	852			178	
	•••			•••	

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

$$\begin{array}{c} (1) & = 2104 \\ (2) & = 1416 \\ (3) & = 460 \end{array}$$

How do we represent h?

$$h_{e}(x) = 0_{0} + 0_{1} \times \overline{Shorthand: h(x)}$$

Linear regression with one variable. Univariate linear regression.

Lone variable

- Linear Regression
- Cost Function: Intuition
- Cost Function: Examples
- Gradient Descent
- Gradient Descent for Linear Regression
- Multi-variable Linear Regression

-	• /	•			
Tra	In	In	O		
\mathbf{I}				C	U

Size	in feet ² ((x)	Price (\$)	in 100	0's (y)
	2104			460	7
	1416			232	> M= 47
	1534			315	
	852			178	
	•••				

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

minimize
$$\frac{1}{2m} \approx \left(h_{\bullet}(x^{(i)}) - y^{(i)}\right)^2$$

$$h_{\bullet}(x^{(i)}) = \theta_{\bullet} + \theta_{i}x^{(i)}$$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Minimize 5(00,01)
00,01
Cost function
Squared error faction

- Linear Regression
- Cost Function: Intuition
- Cost Function: Examples
- Gradient Descent
- Gradient Descent for Linear Regression
- Multi-variable Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \theta_{1}x$$

$$\theta_{1}$$

$$h(x)$$

$$h(x)$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\underset{\theta_1}{\text{minimize }} J(\theta_1) \qquad \bigcirc_{\mathbf{x}} \mathbf{x}^{(i)}$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$= \frac{2m}{1} \sum_{i=1}^{\infty} \left(O(x_{(i)} - A_{(i)})_{3} = \frac{2m}{1} \left(O_{3} + O_{3} + O_{5} \right) = O_{5}$$

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{ heta}(x)$$
 $heta_0, heta_1$, this is a function of x)

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

- Linear Regression
- Cost Function: Intuition
- Cost Function: Examples
- Gradient Descent
- Gradient Descent for Linear Regression
- Multi-variable Linear Regression

Have some function $J(heta_0, heta_1)$ Want $\min_{ heta_0, heta_1}J(heta_0, heta_1)$

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

$$(\text{for } j = 0 \text{ and } j = 1)$$

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

- Linear Regression
- Cost Function: Intuition
- Cost Function: Examples
- Gradient Descent
- Gradient Descent for Linear Regression
- Multi-variable Linear Regression

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 1 \text{ and } j = 0)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{\partial \theta_{j}} \frac{1}{2m} \frac{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)}\right)^{2}}{\sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} + x^{(i)} - y^{(i)}\right)^{2}}$$

$$= \frac{2}{\partial \theta_{j}} \frac{1}{2m} \frac{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)}\right)^{2}}{\sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} + x^{(i)} - y^{(i)}\right)^{2}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{m}}{\leq} \left(h_{\bullet} (\chi^{(i)}) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{m}}{\leq} \left(h_{\bullet} (\chi^{(i)}) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \left| \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \right|$$

$$\theta_1 := \theta_1 - \alpha \left| \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \right|$$

update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{ heta}(x)$ $J(heta_0, heta_1)$

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $h_{\theta}(x)$ $J(\theta_0, \theta_1)$

(for fixed θ_0 , θ_1 , this is a function of x)

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Outline

- Linear Regression
- Cost Function: Intuition
- Cost Function: Examples
- Gradient Descent
- Gradient Descent for Linear Regression
- Multi-variable Linear Regression

Multiple features (variables).

Size (feet ²)	Price (\$1000)		
$\rightarrow x$	$y \leftarrow$		
2104	460		
1416	232		
1534	315		
852	178		
	1		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of	Number of	Age of home	Price (\$1000)	
*1	bedrooms × 2	floors ×3	(years)	y	
2104	5	1	45	460 7	
-> 1416	3	2	40	232	m= 41
1534	3	2	30	315	, ,
852	2	1	36	178	

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
 ($x_0 = 1$)

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_1 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$y = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{m_1$$

Questions