METHOD OF PRODUCING GLASS-LIKE COATINGS ON INORGANIC MATERIAL ARTICLES

Patent number: SU885227
Publication date: 1981-11-30

Inventor: TARASEVICH BORIS P; KHITROV MIKHAIL YU;

SIROTKIN OLEG S; GONYUKH VALERIJ M; ZAVYALOV VIKTOR V; KUZNETSOV EVGENIJ V; SAJFULLIN RENAT S; ASHMARIN GENNADIJ D;

BEZDENEZHNYKH INNOKENTIJ S

Applicant:

KZ KHIM TEKH INST KIROVA (SU)

Classification:

-international: (IPC1-7): C04B41/06

- european:

Application number: SU19802902410 19800328 Priority number(s): SU19802902410 19800328

Report a data error here

Abstract not available for SU885227

Data supplied from the esp@cenet database - Worldwide

Союз Советских Социалистических Республик

Государственный комитет CCCP во делам изобретений и открытий

ОПИСАНИЕ (11)885227 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву

(22) Занилено 28.03.80 (21) 2902410/29-33

с присоединением заявки №

(23) Приоритет

Опубликовано 30.11.81. Бюллетень № 44

Дата опубликования описания 01.12.81

(51)M. Ka.

C 04 B 41/06

(53) УДК 666.97 · (088.8)

(72) Авторы изобретения Б. П. Тарасевич, М. Ю. Хитров, О. С. Сироткин, В. М. Тонек В. В. Завьялов, Е. В. Кузнецов, Р. С. Сайфуллин, Г. Д. Ашмарии и И. С. Безденежных

(71) Заявитель

Казанский химико-технопогический инстит им. С. М. Кирова

(54) способ получения стекловидных покрытий НА ИЗДЕЛИЯХ ИЗ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

Изобретение относится к производству изделий из керамики, стекла, ситалпов, асбеста, асбоцемента, метаплов и других термостойких неорганических материалов и может быть использовано при нанесении на них стекловидных защитно-декоративных покрытий.

Известен шпикерный способ получения стекловидных покрытий на изделиях из неорганических материалов в виде глазурных покрытий на керамике, эмалевых - на металиах [1.].

Однако получение стекловидных покрытий по данному способу отличается большим количеством операций, длительностью и трудоемкостью.

Наиболее близким техническим решением к предлагаемому является способ глазурования керамических изделий путем их нагрева и обработки парами пятиохиси фосфора и воды при температуре стеклообразования 950-1050°C с поспедующей выдержкой (термообработкой) изделий при 950-1100°С в нейтральной

среде в течение 30-60 мин и охлаждением до комнатной температуры.

Известный способ значительно упрощает процесс получения глазурного стекповидного покрытия в сравнении со шликерным способом 2.

Недостатком известного способа является то, что повержностный слой стекновидного покрытия имеет ультрафосфатный состав, т.е. обогащен РуО5, так как по мере наращивания толщины покрытия диффузия к его поверхности окислов из подложки затрудняется. Это приводит к необходиности проведения дополнительной операции термообработ ки покрытия в нейтральной среде для выравнивания состава покрытия по толшине, что усложняет процесс. В конвейерных аппаратах непрерывного действия проведение данной операции затруднено, в аппаратах же пернодического действия удлиняет процесс, что в свою очередь обуславливает в ряде случаев недостаточную химическую ус10

- 15

тойчивость покрытия, снижение его микротвердости. Наряду с этим получаемое согласно известному способу стекловидное покрытие является бесцветным и проэрачным, что не дает возможности получать цветовую гамму покрытий.

Кроме того, известный способ ограничен применением подложек, имеющих области стеклообразования с P_2O_5 , что сужает номенклатуру покрываемых материалов, в частности затруднено получение покрытий на некоторых моножисных, а также металлических подложках.

Цель изобретения - снижение температуры и упрощение процесса получения цветных глазурей.

Поставленная цель достигается тем, что в способе получения стекловидных покрытий на изделиях из неорганических материалов путем нагрева до температуры стеклообразования и обработки парами P_2O_5 в присутствии паров H_2O с последующим охлаждением, при обработке дополнительно вводят пары по крайней мере одного оксида из групны B_2O_3 , SiO_2 и по крайней мере одного оксида из группы RO_3 , RO_2 .

Обработка изделий парами Р4 040 - Н2С 30 в присутствии паров стеклообразовате ия B203 или SiO2 или B2O3 совместно с 5102 и RO или R₂03 или RO₂ или совместно RO, R203, RO2 позволяет получать многокомпонентные стекловидные покрытия, регулировать подачу в реакционную зону тех или иных окислов и варьировать их количественное соотношение в покрытии. Это дает возможность получить стекловидные покрытия с различными физико-механическими характеристиками и химической устойчивостью к тем или иным реагентам, с улучшенньми декоративными качествами и на разпичных подложках, включая моноокисные, метаплические и т.п.; одновремен- 45 но упростить процесс за счет ликвидации операции термообработки изделий в нейтральной среде, а также снижения в ряде случаев температуры стекнообразования.

Получают стекловидные глазурные покрытия на керамических изделиях из различных видов глинистого сырья, химический состав которых приведен в табл. 1, а также на изделиях из синтетической радиокерамики и асбеста, состав которых приведен в табл. 2. Пример 1. В качестве подложки используют керамические изделия на основе глин Кошаковского месторождения следующего химического состава, мас. 7: \$102 17.1; Al203+Ti02 12.06; Fe203 4.64; Ca0 2.42; Mg0 1.25; Na20 + K20 2.86; \$03 0.1; п.п.п. остальное.

Изделие помещают в реакционную ячейку, нагревают до 900-950°C, после чего осуществляют подачу паров P_4O_{40} - H_2O . При этом одновременно реакционную ячейку подают пары B_2O_3 - H_2O в количестве до 5-10 мол. в нарогазовой фазе. Подачу паров осуществляют путем сублимации неорганического борного сырья, например, борной кислоты с водяным паром. Длительность обработки зависит от заданной толщины покрытия. После обработки изделий в парогазовой фазе P_4O_{40} - B_2O_3 - H_2O изделия охлаждают до комнатной температуры.

Гидролитическая устойчивость попученного покрытия превосходит покрытие, получаемое по известному способу — потери массы покрытия при кипячении в воде в течении 1 ч составляют, мг/см²: соответственно 0,10-0,11 по известному способу и 0,05-0,06 по предлагаемому способу.

Пример 2. В условиях, аналогичных примеру 1, получают стекловидные глазурные покрытия на керамике и асбесте в присутствии паров СоО. Поспедний получается в парогазовой фазе пиролитическим разложением соединений кобальта, которые предварительно пульверизируют в реакционную ячейку, например:

 $\cos(N\theta_3)_2$ $\frac{7100^{\circ}\text{C}}{2}$ $\cos(-2N\theta_2 + \theta_2)_2$ В результате получают прозрачное глазурное покрытие, окрашенное в синий цвет.

Примерам I и 2, получают стекпогичных примерам I и 2, получают стекповидные глазурные покрытия в присутствии паров оксидов металлов, представленных в табл. 3, получая при этом покрытия, окрашенные в различные цвета либо заглушенные (непрозрачные).

Пример 4. В условиях, аналогичных примеру 1, получают также стекповидные покрытия на волокие из чистого кварцевого стекла. В результате получают волокно, у которого показатель преломления наружной оболочки изменяется от внутреннего к наружному слою от 1,458 до 1,536.

Пример 5. В качестве подложки используют трансформаторную сталь марок А-340, 3-310 (-в виде ленты, предназначенной для изготовления магнитопроводов), Подложку нагревают в реакционной ячейке до 800-850°С и осущестнляют подачу паров P_40_{40} – B_20_3 – H_20_5 , как описано в примере 1. При этом в реакционную ячейку одновременно подают пары стеклообразователя \$102, в ка-10 честве паров RO внодят \$20, а R203-А1203 и Со203, поддерживая соотнопения между окислами в парогазовой фазе в следующих пропорциях, мас. %: P205 15,24; B203 26,16; 5i02 5,16; 520 38,93; Al203 10,95; Co203 3,56, и используя в качестве исходных веществ соответствующие пиролитически разлагаемые соединения. Например, для получения паров 6102 используют 5114, 5iCl₄, 5i(OC₂H₅)₄ или другие кремнеорганические соединения.

Полученное стекловидное эмалевое покрытие имеет КТР $d=87\ 10^{-7}$ град, тангенс угла днэлектрических потерь tod=0.018, днэлектрическую проницаемость $t_{400}=6.0$, хорошую химическую устойчивость (потеря массы в воде, определяемая порошковым методом, составляет 0,8%) и может быть использовано при изготовлении магнитопроводов.

Предлагаемый способ позволяет упростить процесс получения стекловидных покрытий, расширить цветовую гамму покрытий и номенклатуру покрываемых материалов, например, производить
нанесение покрытий на кварц, осуществлять эмалирование металлов и, кроме
того, имеет место дополнительный попожительный эффект, выражающийся в
улучшении отдельных физико-механических показателей, повышение химической устойчивости получаемых покрытий.

Таблица 1 "

` ***********		الله الله الله الله الله الله الله		د سنب سه پټ هه					·
Месторождение	Химический состав, мас. %								
глинис того сыръя	\$10 ₂	Al203 Ti02	Fe ₂ 0 ₃	Ca0	Mg0	Nag0 K ₂ 0	\$0 ₃	й.п.п.	
Николаевское	65-67	19,4-22 0,81	5-7	0,72	1,35	0,2	-	Остальное	
Никифоровское	57-65	20-21 12,08	59-41	0,45	1,12	$\frac{0.3}{1.33}$	-	То же	
Агрызское	69,18	13,54	5,96	2,20	0,20	2,83	0,27	_#_	
Ивановское	70,36	13,45	2,12	3,85	1,75	2,50	0,30	6)	
Горномарий ~ ское	75,9	10,11	3,64	2,10	0,87	2,48	0,04	_ 11	
Йошкар-Олин- ское	75,31	11,50	3,46	1,25	1,17	2,42	0,48	_ 11	
, , , , , , , , , , , , , , , , , , ,						·	T_é	д п_н	ца 2
керамическая масса	Химический состав, мас. 7								
	SiO2	A1203 Ti02	Fe ₂ 0 ₃	Ca0	Mg0	8a0	Na <u>20</u> K ₂ 0	MnO	Cr203
CK-I	54,22	0,99	0,76	_	28,6	15,4	0,03	-	
	14,25		0,38	•		•		- .	-

~=~===								одолжени	е табл.	2	
Керамическая											
масса		S10 ₂	A1203 T102	Fe ₂ O ₃	CaO	Mg 0	Ba O	Na20 K20	Mn O	C r ₂ 0 ₃	
M-7		3,7	94,2	-	2,1	-	-	den.	-	-	
22 XC		2,76	94,4		-	•••	441-	eur	2,35	0,49	
Асбест		42	0,5	1,5	· •	43	Следы	n.n.n.	Оста	пъное	
~~~~~			. `					Таб	лица	3	
Окнсел металла	•			Схема реакции перевода соответствующего окисла в парогазовую фазу					Внешний вид получаемого глазурного - покрытия		
€u0		рат меді 10 ₃ ) ₂ . Зі		Cu (NO ₃ )2 ^{7320°C} Cu0+2NO ₂ +0 _{2/2}					Светло-зе- леное		
Cr ₂ 0 ₃	Бихромат натрия Na ₂ Cr ₂ C ₇ · 2H ₂ O			Na ₂ Cr ₂ Q, 2400°C cr ₂ O ₃ +Na ₂ O+3/2O ₂					Темно-зеленое		
MnO ₂	Перманганат калия КМпQ ₄			2KMn04 ^{200°C} 2Mn02+K20 + 3/202					Фиолетовое		
υ0 ₃ ·	Уранил-ацетат UO ₂ (СН ₃ СОО) ₂ -2H ₂ O				coo)2 ^{727.}	<b>20</b> 30	Золотистое				
Zr0 ₂	Сульфат циркония Zr (SO ₄ ) ₂ .4H ₂ O			Zr (SO ₄ ) ₂ 7450°C ZrO ₂ +2SO ₃					Молочное глу- шение		
T10 ₂		аэтоксі С ₂ Н ₅ ) ₄	нтитан	>T1 (0C2H	54 ^{&gt;600°(}	T102	+ H ₂ 0 +	CO ₂ To	же		

## Формуна изобретения

Способ получения стекловидных покрытий на издешиях из неорганических материалов путем нагрева до температуры стеклообразования и обработки парами Р₂ О₅ в присутствии паров II₂ О с последующим охлаждением, о т л и ч а ю щ и й с я тем, что, с целью снижения температуры и упрощения процесса получения цветных глазурей, при обработке дополнительно вводят пары

по крайней мере одного оксида из группы  $B_2O_3$ ,  $5iO_2$  и по крайней мере одного оксида металла из группы RO,  $R_2O_3$ ;  $RO_2$ .

Источники информации,

принятые во внимание при экспертизе 1. Энциклопедия неорганических материалов. Киев, 1977, т. 1, с. 290-291, т. 2, с. 795-796.

Авторское свидетельство СССР
 № 600119, кл. С 04 В 41/06, 1975.

вниили Заказ 10442/32 Тираж 663 Подписное

Филиал IIIII "Патент", г. Ужгород, ул. Проектная, 4