

Lecture 9. Various CNN Architectures

Review

- 1. Gradient Descent
- 2. Stochastic Gradient Descent (SGD)
- 3. Momentum
- 4. Nesterov Accelerated Gradient (NAG)
- 5. Adagrad
- 6. RMSProp
- 7. AdaDelta
- 8. Adam

Review

Review

Dropout: A Simple Way to Prevent Neural Networks from Overfitting [Srivastava et al. 2014]

CNN Architectures

- 1. LeNet (AlexNet)
- 2. VGGNet
- 3. GoogLeNet
- 4. ResNetb

LeNet(1990 – 1998)

LeNet 5(1998)

8	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				X	X	X			X	X	Χ	X		X	Χ
1	\mathbf{X}	X				\mathbf{X}	X	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		Χ
2	\mathbf{X}	\mathbf{X}	\mathbf{X}				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}		\mathbf{X}	\mathbf{X}	X
3		\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	X	\mathbf{X}			\mathbf{X}		\mathbf{X}	X
4			\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}		X
5				\mathbf{X}	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}		\mathbf{X}	\mathbf{X}	X

CNN Architectures

AlexNet(2012)

AlexNet(2012)

- 1. GPU 2개를 이용한 특이한 구조
- 2. ReLU 처음으로 사용한 모델
- 3. 현재는 사용하지 않는 Normalization layer를 사용
- 4. Data Augmentation / Dropout 으로 overfitting 방지
- 5. SGD + Momentum (0.9)

Softmax

FC

FC

<u>FC</u>

Pool

Conv 3x3

Conv 3x3

Conv 3x3

Pool

Norm

Conv 5x5

Pool

<u>Norm</u>

Conv 11x11

<u>Input</u>

CNN Architectures

VGGNet

ConvNet Configuration								
A	A-LRN B C D E				E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
input (224 × 224 RGB image)								
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
maxpool								
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv1-512 conv3-5				conv3-512	conv3-512			
conv3								
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
conv3-51								
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								

VGGNet

VGGNet16

AlexNet
Softmax
FC
FC
FC
Pool
Conv 3x3
Conv 3x3
Conv 3x3
Pool
Norm
Conv 5x5
Pool
Norm
Conv 11x11
Input

Softmax					
FC					
FC					
FC					
Pool					
Conv					
Conv					
Conv					
Pool					
Conv					
Conv					
Conv					
Pool					
Conv					
Conv					
Conv					
Pool					
Conv					
Conv					
Pool					
Conv					
Conv					
Input					

VGGNet

CNN Architectures

GoogLeNet

* Network in Network (NIN)

GoogLeNet

(a) Inception module, naïve version

(b) Inception module with dimension reductions

CNN Architectures

ResNet

ResNet

ResNet

method	top-1 err.	top-5 err
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)		7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Activation Function

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

ReLU

tanh(x)

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Xavier initialize

 $np. \, random. \, randn(size = (D, H))/np. \, sqrt(D)$

Flip

Scale Rotate Translation

Dropout: A Simple Way to Prevent Neural Networks from Overfitting [Srivastava et al. 2014]

Preview on Next Ways

_	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

