NOIP2016 模拟

(请选手务必仔细阅读本页内容)

一. 题目概况

题目名称	公约数	树上路径	飞扬的小鸟
可执行文件名	gcd	path	bird
输入文件名	gcd.in	path.in	bird.in
输出文件名	gcd. out	path. out	bird.out
每个测试点时限	1s	1s	2.5s
测试点数目	10	10	10
每个测试点分值	10	10	10
附加样例文件	无	无	无
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统	传统	传统
运行内存上限	256M	256M	512M

二. 提交源程序文件名

对于 C++语言	gcd. cpp	path. cpp	bird.cpp
对于 C 语言	gcd. c	path. c	bird.c
对于 pascal 语言	gcd. pas	path. pas	bird.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。

1. 公约数

(gcd. cpp\c\pas)

【问题描述】

给定一个正整数,在[1,n]的范围内,求出有多少个无序数对(a,b)满足 gcd(a,b)=a xor b。

【输入格式】

输入共一行,一个正整数n。

【输出格式】

输出共一行,一个正整数表示答案。

【输入输出样例】

gcd. in	gcd. out	
3	1	
	解释: 只有(2,3)满足要求	

【数据范围】

对于30%的数据满足n<=1000

对于60%的数据满足n<=10⁵

对于100%的数据满足n<=10^7

2. 树上路径

(path. cpp\c\pas)

【问题描述】

给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E。(k为路径p上的边的权值和)

【输入格式】

第一行给出N, S, E。N代表树的点数, S, E如题目描述。下面N-1行给出这棵树的相邻两个节点的边及其权值W。

【输出格式】

输出共一行一个整数,表示答案。若无解输出-1。

【输入输出样例】

path. in	path. out
5 10 40	16
2 4 80	
2 3 57	
1 2 16	
2 5 49	

【样例解释】

1到2的路径即为答案。

【数据范围】

对于20%的数据满足n<=300

对于50%的数据满足n<=3000

对于60%的数据满足n<=10⁵

对于以上数据,满足|E-S|<=50

对于100%的数据满足n<=10^5, |E-S|<=10^6

对于所有数据满足1<=Wi<=1000, |E|, |S|<=10^9

3. 飞扬的小鸟

(bird. cpp\c\pas)

【问题描述】

Flappy Bird是一款风靡一时的休闲手机游戏。玩家需要不断控制点击手机 屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。如果 小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。

现在小鸟们遇到了一个难题,他们遇到了一堵巨大的墙,墙上仅有m个洞供他们通过,由于小鸟们的体型不同且墙上洞的形状也不同,所以每种体型的鸟通过每个洞的时间都不同,鸟的体型共有n种,第i种体型的鸟通过第j个洞需要的时间记为T(i,j),且一个洞必须前一只鸟通过之后后一只鸟才能开始通过。

从时刻0开始,鸟开始通过,而每一只鸟的等待时间为从时刻0到自己已经通过洞的时间。现在知道了第i种体型的鸟有pi只,请求出使所有鸟都通过墙的最少的等待时间之和。

【输入格式】

第1行包含两个正整数n和m,表示鸟的体型的种数和墙洞的数量。

第2行包含n个正整数,其中第i个数为pi,表示点第i种体型的鸟的只数。

接下来有n行,每行包含m个非负整数,这n行中的第i行的第j个数为t(i,j),表示第i种体型的鸟通过第j个墙洞所需的时间。输入文件中每行相邻的两个数之间均由一个空格隔开,行末均没有多余空格。

【输出格式】

输出仅一行包含一个整数,为总等待时间的最小值。

【输入输出样例】

bird.in	bird.out
3 2	47
3 1 1	
5 7	
3 6	
8 9	

【数据范围】

每组数据的n、m和p值如下:

序号	n=	m=	p=
1	5	5	10
2	40	1	400
3	40	2	300
4	40	40	40
5	5	40	100
6	10	50	200
7	20	60	400
8	40	80	600
9	40	100	800
10	40	100	800

对于 100%的数据, n<=40, m<=100, p<=800, t(i, j)<=1000(p 为鸟的总只数)