MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

minden vizsgázó számára

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám nem lehet negatív.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás,
$$n!$$
, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

2213 írásbeli vizsga 3 / 18 2022. május 3.

I.

1. a)		
$9 \cdot 9^x + 15 \cdot 3^x - 6 = 0$	1 pont	
Mivel $9^x = (3^x)^2$, ezért az egyenlet 3^x -ben másodfokú: $9 \cdot (3^x)^2 + 15 \cdot 3^x - 6 = 0$.	1 pont	
$3^x = -2 \text{ vagy } 3^x = \frac{1}{3}.$	1 pont	
Az első eset nem lehetséges (mert $3^x > 0$),	1 pont	
a második esetből pedig $x = -1$ adódik.	1 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalens átalakításokra való hivatkozással.	1 pont	
Összesen:	6 pont	

1. b)		
$\sin\left(2x - \frac{\pi}{3}\right) = \frac{1}{2}$	1 pont	
$2x - \frac{\pi}{3} = \frac{\pi}{6} + k \cdot 2\pi \text{ vagy } 2x - \frac{\pi}{3} = \frac{5\pi}{6} + k \cdot 2\pi, k \in \mathbb{Z}.$	2 pont	
$x = \frac{\pi}{4} + k \cdot \pi \text{ vagy } x = \frac{7\pi}{12} + k \cdot \pi, k \in \mathbf{Z}.$	2 pont	
Összesen:	5 pont	

Megjegyzések:

- 1. Ha a vizsgázó a megoldásokat fokban helyesen adja meg, akkor legfeljebb 4 pontot kaphat.
- 2. Ha a vizsgázó a válaszát periódus nélkül vagy hibás periódussal adja meg, akkor legfeljebb 3 pontot kaphat.
- 3. Ha a vizsgázó a válaszát periódussal adja meg, de a $k \in \mathbb{Z}$ feltételt egyszer sem említi, akkor legfeljebb 4 pontot kaphat.

2. a)		
A számtani sorozat összegképletét használva:		
$\frac{2 \cdot 5 + 3(n-1)}{n} \cdot n = 4900$.	1 pont	
2		
$3n^2 + 7n - 9800 = 0$	2 pont	
$n_1 = 56$ (ami valóban megoldása a feladatnak),	1 pont	
$n_2 = -58, \dot{3} < 0$, ami nem megoldás.	1 pont	
Összesen:	5 pont	

2. b) első megoldás		
Jelölje a mértani sorozat első tagját <i>a</i> , hányadosát <i>q</i> .		
a+aq=6	2 pont	
$a + aq = 6$ $aq^2 + aq^3 = 96$	1	
A második egyenlet átalakítva:		
$q^2(a+aq)=96.$	2 nont	
Ezt az egyenletet elosztva az elsővel megkapjuk,	2 pont	
$hogy q^2 = 16,$		
amiből $q = 4$ vagy $q = -4$.	1 pont	
(Az első egyenletből) $q = 4$ esetén $a = \frac{6}{5}$,	1 pont	Az első négy tag:
$\frac{(12) \operatorname{ciso} \operatorname{egy} \operatorname{emeteor}) \operatorname{q}}{5},$	1 point	1,2; 4,8; 19,2; 76,8,
q = -4 esetén $a = -2$.	1 pont	<i>vagy</i> −2; 8; −32; 128.
Ellenőrzés:		
$\left \frac{6}{5} + \frac{24}{5} \left(= \frac{30}{5} \right) \right = 6 \text{ és } \frac{96}{5} + \frac{384}{5} \left(= \frac{480}{5} \right) = 96,$	1 pont	
illetve $(-2) + 8 = 6$ és $(-32) + 128 = 96$.		
Összesen:	8 pont	

2. b) második megoldás		
Jelölje a mértani sorozat első tagját a, hányadosát q.		
a+aq=6	2 pont	
$aq^2 + aq^3 = 96$		
Az első egyenletből q -t kifejezve: $q = \frac{6-a}{a} \ (a \neq 0)$.		
Ezt a második egyenletbe behelyettesítve:	1 pont	
$\frac{(6-a)^2}{a} + \frac{(6-a)^3}{a^2} = 96.$		
(26, 12, 12, 12), (216, 109, 119, 2, 3), 06, 2		$(6-a)^2(a+6-a) = 96a^2$
$a(36-12a+a^2)+(216-108a+18a^2-a^3)=96a^2$	1 pont	$(6-a)^2 = (4a)^2$
Rendezve és 18-cal osztva: $5a^2 + 4a - 12 = 0$,		6 - a = 4a vagy a - 6 = 4a
amiből $a = \frac{6}{5}$ vagy $a = -2$.	1 pont	
$a = \frac{6}{5} \text{ esetén } q = 4,$	1 pont	
a = -2 esetén $q = -4$.	1 pont	
Ellenőrzés:		
$\left \frac{6}{5} + \frac{24}{5} \left(= \frac{30}{5} \right) \right = 6 \text{ és } \frac{96}{5} + \frac{384}{5} \left(= \frac{480}{5} \right) = 96,$	1 pont	
illetve $(-2) + 8 = 6$ és $(-32) + 128 = 96$.		
Összesen:	8 pont	

3. a)		
A lakók közül 19 nő, 31 férfi, illetve 16 szeműveges, 34 nem szeműveges.	1 pont	
Legfeljebb 31 nem szemüveges férfi lehet,	1 pont	
ha egyik férfi sem szeműveges.	1 pont	N(19) F(31) Sz 3 16 0 31
Legalább $(31 - 16 =) 15$ nem szeműveges férfi van,	1 pont*	
ha minden szemüveges lakó férfi.	1 pont*	N(19) F(31) Sz 19 0 16 15
Összesen:	5 pont	

Megjegyzés: A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

A férfiak és a nem szeművegesek számának összege 31 + 34 = 65, de csak 50 lakó van, így legalább 15-öt mindkét részhalmazban megszámoltunk,	1 pont	
tehát legalább 15 nem szeműveges férfi van.	1 pont	

3. b)		
A feladat megértését tükröző ábra.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 pont	
(Használjuk az ábra betűzéseit: A füvesített terület az <i>ADC</i> háromszög. Az öntözött terület a <i>D</i> középpontú negyedkör. Keressük a sötétített síkidom területét.)		
(Az ADC derékszögű háromszögből) tg $\alpha = \frac{15}{10}$,	1 pont	
innen $\alpha \approx 56,3^{\circ}$.	1 pont	
Mivel $DA = DM = 10$ (m), ezért DAM háromszög egyenlőszárú, így $\beta = 180^{\circ} - 2\alpha \approx 67,4^{\circ}$.	1 pont	

A füvesített terület: $T_1 = \frac{10.15}{2} = 75 \text{ (m}^2\text{)}.$	1 pont*	
A $\gamma = 90^{\circ} - \beta \approx 22,6^{\circ}$ középponti szögű, 10 méter sugarú körcikk területe: $T_2 = \frac{22,6}{360} \cdot 10^2 \cdot \pi \approx 19,7$ (m²).	1 pont*	
A <i>DAM</i> háromszög területe: $T_3 = \frac{10 \cdot 10 \cdot \sin 67, 4^{\circ}}{2} \approx 46,2 \text{ (m}^2\text{)}.$	1 pont*	
A locsolásból kimaradó füvesített terület nagysága: $T_1 - (T_2 + T_3) = 75 - 65,9 = 9,1 \text{ m}^2$.	1 pont*	
Összesen:	8 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

DM = DA = 10 (m) és $DC = 15$ (m), valamint $\gamma = 90^{\circ} - \beta \approx 22.6^{\circ}$,	1 pont	
így a CDM háromszög területe: $T_4 = \frac{15 \cdot 10 \cdot \sin 22,6^{\circ}}{2} \approx 28,8 \text{ (m}^2\text{)}.$	1 pont	
A γ középponti szögű, 10 méter sugarú körcikk területe: $T_2 = \frac{22,6}{360} \cdot 10^2 \cdot \pi \approx 19,7 \text{ (m}^2\text{)}.$	1 pont	
A locsolásból kimaradó füvesített terület nagysága: $T_4 - T_2 = 9.1 \text{ m}^2$.	1 pont	

Megjegyzés: A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó. Jelölje T_1 a füvesített területet, T_3 a DAM háromszög területét, T_5 az AD = 10 méter sugarú negyedkör területét, T_6 a β középponti szögű, 10 méter sugarú körcikk területét, végül T_7 az AM húr által határolt kisebbik körszelet területét.

$$\begin{split} T_1 &= \frac{10 \cdot 15}{2} = 75 \text{ m}^2, \ T_3 = \frac{10 \cdot 10 \cdot \sin 67, 4^{\circ}}{2} \approx 46,2 \text{ m}^2, \ T_5 = \frac{10^2 \cdot \pi}{4} \approx 78,5 \text{ m}^2, \\ T_6 &= \frac{67,4}{360} \cdot 10^2 \cdot \pi \approx 58,8 \text{ m}^2, \ T_7 = T_6 - T_3 = 12,6 \text{ m}^2. \\ Ezekkel: \ T_{\text{kimarad\'o}} &= T_{\text{f\"uves\'itett}} - T_{\text{meglocsolt f\"uves\'itett}} = T_1 - (T_5 - T_7) = T_1 - (T_5 - (T_6 - T_3)) = \\ &= T_1 - T_5 + T_6 - T_3 = 9,1 \text{ m}^2. \end{split}$$

4. a)		
Az első két kritériumnak megfelel a készlet.	1 pont	Ez a pont akkor is jár, ha a vizsgázó a kiszámolt szórásra hivatkozva he- lyesen válaszol.
A mért tömegek átlaga		
$\left(\frac{5 \cdot 163 + 164 + 165 + 2 \cdot 166}{9} = \frac{1476}{9} = \right) 164 \text{ (gramm)}.$	1 pont	Ezek a pontok akkor is
9 - 9 101 (gramm).		járnak, ha a vizsgázó szá-
A mért tömegek szórása:		mológéppel helyesen szá-
$5 \cdot (163 - 164)^2 + (165 - 164)^2 + 2 \cdot (166 - 164)^2$	1 pont	mol.
$\sqrt{{9}}$		
$=\frac{\sqrt{14}}{3}\approx 1,25 \text{ (gramm)}.$	1 pont	
A készlet nem hitelesíthető.	1 pont	
Összesen:	5 pont	

4. b) első megoldás		
P(lesz piros) = 1 - P(mindkettő kék)	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Két kék golyót (a sorrendre való tekintet nélkül)		
$\binom{7}{2}$ (= 21)-féleképpen tudunk kiválasztani (kedvező	1 pont	A sorrendet is figyelembe véve 7 · 6 (= 42).
esetek száma).		
Két golyót összesen $\binom{10}{2}$ (= 45)-féleképpen tudunk	1 pont	10 · 9 (= 90)
kiválasztani (összes eset száma).		
A keresett valószínűség tehát $1 - \frac{21}{45} = \frac{8}{15} \approx 0,533$.	1 pont	
Összesen:	4 pont	

4. b) második megoldás		
P(lesz piros) = P(1 piros) + P(2 piros)	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$P(1 \text{ piros}) = \frac{\binom{3}{1} \cdot \binom{7}{1}}{\binom{10}{2}} \left(=\frac{21}{45}\right)$	1 pont	$\frac{3\cdot 7+7\cdot 3}{10\cdot 9}$
$P(2 \text{ piros}) = \frac{\binom{3}{2}}{\binom{10}{2}} \left(=\frac{3}{45}\right)$	1 pont	$\frac{3\cdot 2}{10\cdot 9}$
A keresett valószínűség tehát $\frac{21}{45} + \frac{3}{45} = \frac{8}{15} \approx 0,533.$	1 pont	
Összesen:	4 pont	

4. c) első megoldás		
$P(AB) = P(A) = {3 \choose 2} \cdot 0.3^2 \cdot 0.7 (= 0.189)$	2 pont	
$P(B) = 1 - P(\overline{B}) = 1 - 0.7^{3} (= 0.657)$	2 pont	$P(B) = P(1 \ piros) + + P(2 \ piros) + P(3 \ piros) = = 0.441 + 0.189 + 0.027$
$P(A B) = \frac{P(AB)}{P(B)} = \frac{0.189}{0.657} \approx 0.288$	1 pont	
Összesen:	5 pont	

4. c) második megoldás		
$10^3 - 7^3 = 657$ olyan eset van, amelyben a kihúzott golyók közt van piros (ez az összes eset száma a keresett feltételes valószínűségre vonatkozóan).	2 pont	
Ezek közül $3 \cdot 3^2 \cdot 7 = 189$ esetben van 2 piros golyó (kedvező esetek száma).	2 pont	
Tehát a keresett valószínűség $\frac{189}{657} \approx 0,288$.	1 pont	
Összesen:	5 pont	

II.

5. a)		
A mogyorókrémes palacsinta árát <i>m</i> -mel,		
a túrósét <i>t</i> -vel, és a fahéjasét <i>f</i> -fel jelölve:		
(1) 3m + t + 2f = 1500,	2 pont	
(2) 4m + 2t + f = 1740,		
(3) $m + 2t + 2f = 1170$.		
(2) és (3) különbsége: $3m - f = 570$,	2 mont	
(1) és (3) különbsége: $2m - t = 330$.	2 pont	
Amiből $f = 3m - 570$ és $t = 2m - 330$.	1 pont	
Ezeket visszahelyettesítve bármelyik eredeti egyen-		
letbe: $m = 270$, $t = 210$, $f = 240$.	2 mont	
(Egy mogyorókrémes palacsinta 270 Ft-ba, egy túrós	2 pont	
210 Ft-ba, egy fahéjas pedig 240 Ft-ba kerül.)		
Ellenőrzés a szöveg alapján:		
$3 \cdot 270 + 210 + 2 \cdot 240 = 1500,$	1	
$4 \cdot 270 + 2 \cdot 210 + 240 = 1740,$	1 pont	
$270 + 2 \cdot 210 + 2 \cdot 240 = 1170$ valóban.		
Összesen:	8 pont	

5. b)		
100 Ft-osból 0 vagy 1 darab lehetett a 6 érme között		
(2 db 100 Ft-os esetén legfeljebb 4 érmét használt	1 pont	
volna).		
1 darab 100 Ft-os esetén, 50 Ft-os nélkül legfeljebb		
200 Ft-ot tudna kifizetni;		
legalább 2 db 50 Ft-ossal pedig legfeljebb 5 érmét	1 pont	
használt volna, így 1 db 50 Ft-os volt.	1 point	
A maradék 60 Ft-ot 20-20-10-10 összeállításban		
tudja 4 db érmével kifizetni.		
Ha nem volt 100 Ft-os, akkor lehetett 4 db 50 Ft-os,	1 pont	
és mellette 2 db 5 Ft-os;	1 point	
ha pedig 3 db 50 Ft-os volt, akkor a maradék 60 Ft-ot		
20-20-20 összeállításban tudja 3 db érmével kifi-	1 pont	
zetni.		
Háromnál kevesebb 50 Ft-os esetén legfeljebb		
180 Ft-ot tudna kifizetni. Tehát valóban 3 különböző	1 pont	
lehetőség van.		
Összesen:	5 pont	

Megjegyzések:

- 1. Ha a vizsgázó megadja a 3 különböző lehetőséget (100-50-20-20-10-10, 50-50-50-50-5-5, 50-50-50-20-20), akkor ezért 3 pontot kapjon. Annak igazolásáért, hogy több lehetőség nincs, további 2 pont jár.
- 2. Ha a vizsgázó egy (például az alábbihoz hasonló) táblázatban megvizsgálja az összes lehetőséget, akkor teljes pontszámot kapjon.

100 Ft-os	50 Ft-os	20 Ft-os	10 Ft-os	5 Ft-os	darab- szám összesen
2		legfelje	bb 2 db		≤ 4
1	2	le	egfeljebb 2 d	lb	≤ 5
1	1	3	0	0	5
1	1	2	2	0	6
1	1	2	2 2-nél kevesebb 10 Ft-os esetén legalább 3 db		
1	1	2-nél kevesebb 20 Ft-os esetén legalább 5 db			≥ 7
1	0	1	egalább 6 dl	b	≥ 7
0	4	0	1	0	5
0	4	0	0	2	6
0	3	3	0	0	6
0	3	3-nál kevesebb 20 Ft-os esetén legalább 4 db			≥ 7
0	2	legalább 6 db			≥8
0	≤1	legalább 8 db			≥ 8

5. c)		
A 100-50-20-20-10-10 esetben $\frac{6!}{1! \cdot 1! \cdot 2! \cdot 2!} (=180)$,		Az első esetben $6.5 \cdot \binom{4}{2}$,
az 50-50-50-50-5-5 esetben $\frac{6!}{4! \cdot 2!} (=15)$,	2 pont	a második esetben $\binom{6}{4}$,
az 50-50-20-20-20 esetben $\frac{6!}{3! \cdot 3!}$ (= 20) külön-		a harmadik esetben $\binom{6}{3}$
böző sorrendben vehette elő a zsebéből Lali a 6 érmét.		különböző sorrend lehet- séges.
Összesen $180 + 15 + 20 = 215$ sorrend lehetséges.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó a b) feladat megoldásából származó rossz adatokkal helyesen számol, és a megoldandó probléma lényegében nem változott meg, akkor a megfelelő pontok járnak.

6. a) első megoldás		
Az AB oldal felezőpontja F (41; 0), így az AFC derékszögű háromszögben $tg \alpha = \frac{71}{41}$. Ebből $\alpha \approx 59,9951^\circ$.	2 pont*	
Mivel $AC = BC$, ezért a B csúcsnál fekvő szög $\beta \approx 59,9951^{\circ}$.	1 pont	
$\gamma = 180^{\circ} - (\alpha + \beta) \approx 180^{\circ} - 119,9902^{\circ} = 60,0098^{\circ}.$	1 pont	
Három tizedesjegyre kerekítve a háromszög szögei 59,995°, 59,995° és 60,010°. (Tehát Gézának nincs igaza, a háromszög nem szabályos.)	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	5 pont	

Megjegyzés: A *-gal jelölt 2 pont akkor is jár, ha a vizsgázó az \overrightarrow{AB} és \overrightarrow{AC} vektorok skaláris szorzatát kétféleképpen felírja, és ezek egyenlőségéből fejezi ki $\cos \alpha$ -t:

$$\cos \alpha = \frac{82 \cdot 41 + 0 \cdot 71}{82 \cdot \sqrt{6722}} \ (\approx 0,50007). \ Ebből \ \alpha \approx 59,9951^{\circ}.$$

6. a) második megoldás				
$AB = 82, BC = CA = \sqrt{6722}$	1 pont			
Koszinusztétellel: $\cos \gamma = \frac{2 \cdot 6722 - 82^2}{2 \cdot 6722} \ (\approx 0,49985),$	1 pont			
amiből $\gamma \approx 60,0098^{\circ}$.	1 pont			
$\alpha = \beta = \frac{180^{\circ} - \gamma}{2} \approx 59,9951^{\circ}$	1 pont			
Három tizedesjegyre kerekítve a háromszög szögei 59,995°, 59,995° és 60,010°. (Tehát Gézának nincs igaza, a háromszög nem szabályos.)	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.		
Összesen:	5 pont			

6. b)		
$AC = \sqrt{6722} \ (\approx 81,9878)$	1 pont	
Így $\frac{AC}{AB} = \frac{\sqrt{6722}}{82} \approx 0.999851$.	1 pont	
Négy tizedesjegyre kerekítve az arány 0,9999.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	3 pont	

Megjegyzések: 1. Az $\frac{AB}{AC}$ arány (\approx 1,0001) is elfogadható.

2. Kerekítési hiba miatt a vizsgázó a feladatban összesen legfeljebb 1 pontot veszítsen.

6. c) első megoldás		
A csonkakúp magassága $\sqrt{10^2 - 6^2} = 8$ (cm),	2 pont	D 8 8 C 10 m A 6 T 14 B
térfogata $V_{cs} = \frac{8\pi}{3} (14^2 + 14 \cdot 8 + 8^2) = 992\pi \ (\approx 3116)$ (cm ³).	2 pont	
A közelítő henger alapkörének sugara ((14 + 8):2 =) 11 (cm),	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
térfogata $V_h = 8.11^2 \cdot \pi = 968\pi \ (\approx 3041) \ (\text{cm}^3).$	1 pont	
Ez a pontos értéknek (3041:3116 \approx) 0,976-szerese, azaz 97,6%-a.	1 pont	$968\pi:992\pi\approx0,976$
A relatív hiba tehát –2,4%.	1 pont	A 2,4% is elfogadható.
Összesen:	8 pont	

6. c) második megoldás				
A csonkakúp térfogata $V_{cs} = \frac{m\pi}{3} (14^2 + 14 \cdot 8 + 8^2)$.	2 pont			
A közelítő henger alapkörének sugara ((14 + 8):2 =) 11 (cm),	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.		
térfogata $V_h = 8 \cdot 11^2 \cdot \pi$.	1 pont			
A két térfogat hányadosa: $\frac{V_h}{V_{cs}} = \frac{m \cdot 11^2 \cdot \pi}{\frac{m\pi}{3} (14^2 + 14 \cdot 8 + 8^2)}.$	1 pont			
Egyszerűsítve: $\frac{V_h}{V_{cs}} = \frac{11^2}{\frac{14^2 + 14 \cdot 8 + 8^2}{3}} \left(= \frac{121}{124} \right) \approx$	1 pont			
$\approx 0.976,$ azaz a henger térfogata a csonkakúp térfogatának 97,6%-a.	1 pont			
A relatív hiba tehát –2,4%.	1 pont	A 2,4% is elfogadható.		
Összesen:	8 pont			

7. a) első megoldás		
Összesen $450 + 400 + 500 = 1350$ gramm lisztből sütött kenyeret Flóra.	1 pont	
Ehhez $1350 \cdot \frac{5}{9} = 750$ gramm búzaliszt kell.	1 pont	
Tehát a hozzáadott lisztből (750 – 450 =) 300 gramm volt a búzaliszt.	1 pont	
Összesen:	3 pont	

7. a) második megoldás		
Jelölje <i>x</i> a hozzáadott búzaliszt tömegét (grammban).		
Ekkor a rozsliszt tömege $500 - x$ (gramm).		
A kétfajta liszt tömegének aránya:	1 pont	
450+x 5	1	
$\frac{1}{400+(500-x)} = \frac{1}{4}$		
1800 + 4x = 4500 - 5x	1 pont	
x = 300 (Tehát a hozzáadott lisztből 300 gramm volt	1 nont	
a búzaliszt.)	1 pont	
Összesen:	3 pont	

7. a) harmadik megoldás		
50 gramm búzaliszt hozzáadásával éppen elérhető az előírt arány (500 : 400 = 5 : 4).	1 pont	
A maradék 450 gramm hozzákevert lisztben is 5:4 arányban kell lennie a búzalisztnek és a rozslisztnek, azaz $\left(450 \cdot \frac{5}{9}\right) = 250$ gramm a búzaliszt mennyisége.	1 pont	
Tehát a hozzáadott lisztből (50 + 250 =) 300 gramm volt a búzaliszt.	1 pont	
Összesen:	3 pont	

7. b)		
Ha $0 < x < 5$, akkor x^2 pozitív,	1 pont	
tehát pontosan akkor van nyereség, ha $(x-3)(1,5-x) > 0$.	1 pont	
Ez akkor teljesül, ha a két tényező azonos előjelű. A két tényező egyszerre nem lehet pozitív. Mindkettő negatív, ha $1,5 < x < 3$. (Ezzel az állítást beláttuk.)	2 pont	1 1,5 3 x
Összesen:	4 pont	

7. c)		
A nyereségfüggvény: $n(x) = -0.8x^4 + 3.6x^3 - 3.6x^2$.	1 pont	
Ennek deriváltfüggvénye:	1 mant	
$n'(x) = -3.2x^3 + 10.8x^2 - 7.2x$.	1 pont	
Az n függvénynek szélsőértéke lehet, ha $n'(x) = 0$.	14	
$-3,2x^3+10,8x^2-7,2x=0$	1 pont	
Kiemelve x-et, az $x(-3,2x^2+10,8x-7,2)=0$	2 mant	
egyenlet gyökei: $x_1 = 0, x_2 \approx 0.91, x_3 \approx 2.46.$	2 pont	
Mivel csak $1,5 \le x \le 3$ esetén nyereséges a termelés,		
ezért az $x \approx 2,46$ helyen kell megvizsgálni a függ-	1 pont	
vényt.		
A második derivált: $n''(x) = -9, 6x^2 + 21, 6x - 7, 2$.		
n''(2,46) < 0, tehát az <i>n</i> függvénynek itt (abszolút)	1 pont	
maximuma van.		
$n(2,46) = 0.8 \cdot 2.46^2 \cdot (-0.54) \cdot (-0.96) \approx 2.51.$	1 pont	
A legnagyobb elérhető napi nyereség tehát körülbelül		
25 100 tallér, ami kb. 2,46 tonna liszt előállításával	1 pont	
és eladásával érhető el.	_	
Osszesen:	9 pont	

8. a) első megoldás		
Két lány között $\binom{5}{2} = 10$,	1 pont	
egy lány és egy fiú között $5 \cdot 7 = 35$ ölelés volt.	1 pont	
Összesen (10 + 35 =) 45 találkozásnál volt ölelés.	1 pont	
Összesen:	3 pont	

8. a) második megoldás		
Összesen $\binom{12}{2}$ = 66 köszöntés volt,	1 pont	
ebből $\binom{7}{2}$ = 21 volt kézfogás.	1 pont	
Tehát $(66 - 21 =) 45$ találkozásnál volt ölelés.	1 pont	
Összesen:	3 pont	

8. b) első megoldás		
Ha a lejátszott 9 mérkőzést a hatpontú <i>ABCDEF</i> egyszerű gráffal szemléltetjük, akkor a gráfban a csúcsok fokszámának összege (2 · 9 =) 18.	1 pont	
A feladat szövege szerint <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> fokszáma 1, 3 vagy 5 lehet, és az öt fokszám összege 17 (mert <i>A</i> fokszáma 1).	1 pont	
Legalább egy 5 fokszámú csúcsnak lennie kell közöttük (ha nem lenne, akkor a fokszámok összege legfeljebb $5 \cdot 3 = 15$ lenne).	1 pont	
Csak a <i>B</i> csúcsnak lehet 5 a fokszáma, mert csak <i>B</i> játszott <i>A</i> -val.	1 pont	
Ezekkel a feltételekkel a <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i> csúcsok fokszáma csak 3 lehet (mert a négy csúcs fokszámának összege 12).	1 pont	Ekkor CDEF részgráfban minden csúcs fokszáma 2,
Mivel C és E között nincs él, ezért a CB, CD, CF élek és az EB, ED, EF élek is léteznek.	1 pont	és a CE él nem létezik.
Így a <i>D</i> -ből induló 3 él <i>DB</i> , <i>DC</i> és <i>DE</i> . A <i>DF</i> él tehát nem létezik: Dóra nem játszott még Fanni ellen.	1 pont	Ez csak úgy lehetséges, hogy a DF él sem létezik.
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó további indoklás nélkül helyesen felrajzolja a már lejátszott mérkőzések gráfját, és ez alapján jól válaszol, akkor ezért 4 pontot kapjon.

8. b) második megoldás		
Ha a lejátszott 9 mérkőzést a hatpontú <i>ABCDEF</i> egyszerű gráffal szemléltetjük, akkor a <i>BCDEF</i> részgráfban 8 élt kell behúzni az összesen lehetséges 10-ből (mert az <i>A</i> -ból csak <i>B</i> -be indul él).	3 pont	
A két hiányzó él közül az egyik a CE.	1 pont	
A másik hiányzó él nem indulhat sem <i>C</i> -ből, sem <i>E</i> -ből, mert akkor annak a pontnak a fokszáma 2 lenne (tehát páros), sem <i>B</i> -ből, mert akkor ennek a fokszáma 4 lenne (tehát páros).	2 pont	
A másik nem behúzott él ezért csak a <i>DF</i> lehet, azaz Dóra nem játszott még Fanni ellen.	1 pont	
Összesen:	7 pont	

8. c)		
András, Csaba és Dóra összes lehetséges dobásainak száma 6 ³ (= 216).	1 pont	
Bori pontosan akkor nyer, ha – a többiek mindhárman 5-nél kisebbet dobnak, – vagy a többiek mindhárman 6-ost dobnak, – vagy pontosan ketten dobnak 6-ost, egy valaki pedig 5-nél kisebbet dob.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Mindhárman 5-nél kisebbet 4 ³ (= 64)-féleképpen dobhatnak.	1 pont	
Mindhárman 6-ost csak 1-féleképpen dobhatnak.	1 pont	
A három dobás között pontosan két 6-os és egy 5-nél kisebb dobás $\binom{3}{2} \cdot 1 \cdot 1 \cdot 4$ (= 12)-féleképpen lehetséges.	1 pont	
A kérdezett valószínűség: $\frac{64+1+12}{216} = \frac{77}{216} \ (\approx 0.356).$	1 pont	
Összesen:	6 pont	

9. a)		
A parabola egyenlete átrendezve: $y = -\frac{1}{2}x^2 + 8$.	1 pont	
Ez tehát egy "lefelé nyíló" parabola, melynek paramétere $p = 1$, tengelypontja pedig a $(0; 8)$ pont.	1 pont	
A parabola fókuszpontja ezért a (0; 7,5) pont.	1 pont	
A kör középpontja a <i>C</i> (0; 3) pont.	1 pont	
Összesen:	4 pont	

9. b) első megoldás		
$(2\sqrt{2})^2 + 2 \cdot 4 = 16,$		
valamint $(2\sqrt{2})^2 + (4-3)^2 = 9$ is igaz (ezért Q való-	2 pont	
ban pontja a parabolának és a körnek is).		
A kör $Q(2\sqrt{2};4)$ pontbeli érintőjének egy normál-	1	
vektora $\mathbf{n} = \overrightarrow{CQ} = (2\sqrt{2};1)$,	1 pont	
egyenlete $2\sqrt{2}x + y = 2\sqrt{2} \cdot 2\sqrt{2} + 1 \cdot 4 = 12$.	1 pont	
Az érintő egyenletéből y-t kifejezve és beírva a para-	1 nont	
bola egyenletébe: $x^2 + 24 - 4\sqrt{2}x = 16$.	1 pont	
Rendezve $x^2 - 4\sqrt{2}x + 8 = 0$, azaz $(x - 2\sqrt{2})^2 = 0$.	1 pont	
Ennek az egyenletnek egy megoldása van $(x = 2\sqrt{2})$,		
ezért a kör érintőjének egy közös pontja van a para-	1 pont	
bolával (és nem párhuzamos az y tengellyel), tehát	1	
érinti a parabolát is.	7	
Osszesen:	7 pont	

9. b) második megoldás		
$(2\sqrt{2})^2 + 2 \cdot 4 = 16,$		
valamint $(2\sqrt{2})^2 + (4-3)^2 = 9$ is igaz (ezért Q való-	2 pont	
ban pontja a parabolának és a körnek is).		
A kör $Q(2\sqrt{2};4)$ pontbeli érintőjének egy normál-	1 pont	
vektora $\mathbf{n} = \overrightarrow{CQ} = (2\sqrt{2}; 1)$,		
ezért az érintő meredeksége $-\frac{2\sqrt{2}}{1} = -2\sqrt{2}$.	1 pont	Az érintő egyenlete
ezert az erinto meredeksege $-\frac{1}{1} = -2\sqrt{2}$.		$2\sqrt{2}x + y = 12.$
Az $f(x) = -\frac{1}{2}x^2 + 8$ $(x \in \mathbf{R})$ függvény deriváltfüggvénye $f'(x) = -x$,	1 pont	
		4 / - , // 1 ,
ezért a parabolához a <i>Q</i> -ban húzott érintő meredek-	1 pont	Az érintő egyenlete
sége $f'(2\sqrt{2}) = -2\sqrt{2}$.	1 point	$y = -2\sqrt{2}x + 12.$
A két görbének tehát valóban közös a <i>Q</i> -beli érintője.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó megoldásához közelítő értéket is felhasznál, akkor legfeljebb 6 pontot kapjon.

9. c)		
Az $x^2 = 16$ egyenlet megoldásaiból kapjuk, hogy a parabola –4-ben és 4-ben metszi az x tengelyt.	1 pont	
A parabola és az x tengely által közrezárt korlátos síkidom területe $\int_{-4}^{4} \left(-\frac{1}{2}x^2 + 8 \right) dx =$	1 pont	
$= \left[-\frac{1}{2} \cdot \frac{x^3}{3} + 8x \right]_{-4}^{4} =$	1 pont	
$= \left(-\frac{32}{3} + 32\right) - \left(\frac{32}{3} - 32\right) =$	1 pont	
$=\frac{128}{3}.$	1 pont	
Összesen:	5 pont	