1. N Refers to all the positive integers. (Called as Natural Numbers)

$$f: N \longrightarrow N f(n) = x^4 - 2x + 1$$

2. N Refers to all the positive integers. (Called as Natural Numbers)

f: N _____ N f(n) =
$$x^3 - 2x^2 + 5$$

3. Consider the function $f : R \rightarrow R f(x) = x$

4. N Refers to all the positive integers. (Called as Natural Numbers)

$$f: N \longrightarrow N f(n) = n^3 + 3$$

3. N Refers to all the positive integers. (Called as Natural Numbers)

$$f: N \longrightarrow N f(n) = x^3 -3$$

_	Set Lanks Institute of Information Fecunity	
ed on	N Refers to all the positive integers. (Called as Natural Numbers) $f: N \to N \ f(n) = x^3 - 3$	
	Is f a One to one function?	Choose ~
	is f an onto function?	Choose *
	Does f has an inverse function?	Choose V

5. Consider the following function. Find $g^{-1}(-3)$

g:R
$$R g(x) = (12 - 3x)$$

Consider the following function. $g\colon R\to R\quad g(x)=\frac{(12-3x)}{4}$ Find $g^{-1}(-3)$ Hint : Find the inverse of g and substitute -3.

6. Consider the function $f : R -> R f(x) = x^2 - 1$

