A rapid review of light waves

Photons have energy and momentum,

and this determines

their Conventors their frequency and their wavelength. I don't want to get into that. I just want to work with light sometimes as if it were photons, and sometimes as if it were waves. If the repetition in the wave (from crest-to-crest or trough-to-trough) is in a distance λ , and you are watching the wave crests = ip by, they repeat in a time T that is $T = \frac{\lambda}{2}$.

We define f, the frequency, as $f = \frac{\lambda}{T}$. The typical units for frequency are Hertz (Hz) and $1 \text{Hz} = \overline{1} \text{sec}$ To summarize what we have so far: $T = \frac{1}{c}$ and $f = \frac{1}{T}$ Out of these, we can make at least four more equations (e.g., $f = \frac{C}{\lambda}$, $cT = \lambda$, $\lambda = \frac{C}{4}$, $cT = \lambda$). The two other things we looked at were (1) the electromagnetic spectrum shorter wavelendh Longer wavelength

radio waves microwaves infrared visible oftraviolet X-rays Y-rays and (z) The Hydrogen-a at 656.46 nm. If you it is easy to compute line which is a deep red round up to 2=6577mm, $77 = \frac{\lambda}{c} = \frac{657nm}{3\times10^8 \text{m/s}} = 219 \frac{10^{-9} \text{m}}{10^8 \text{m/s}} = 219 \times 10^{-17} = 2.19 \times 10^{-18}$