RAPOR

Proje Katılımcıları

21220030052	Cuma Aktaş	İkinci ESP Kodları ve Kontrolü
20155018	Mehmet Emin Gündüzlü	Sensör Denetçisi
20155046	Fürkan Üzüm	Birinci ESP Kodları ve Kontrolü
20155016	Ömer Faruk Özalp	Görüntü İşleme Kodları ve Kontrolü

Sonuçlar

- 1. Kamera ile Parmak Sayısı Tespiti
- Bilgisayarın dahili kamerası kullanılarak gerçek zamanlı görüntü işleme gerçekleştirilir.
- OpenCV kütüphanesi ile elde edilen görüntüde sadece eldeki parmakların olduğu alan (ROI) işlenir. ROI (Region of Interest), sadece eldeki parmakların yer aldığı kısmı ifade eder
- Görüntü gri tonlamaya dönüştürülür, bulanıklaştırılır ve threshold yöntemiyle ikili bir görüntü haline getirilir.
 - Konturlar analiz edilerek parmakların sayısı tespit edilir.

2. ESP32'ye Parmak Sayısı Gönderimi

- Tespit edilen parmak sayısı, ESP32 cihazının IP adresine(`http://172.20.10.2/led`) HTTP GET isteği ile gönderilir.
- Bu sayede ESP32 cihazı, bilgisayar tarafından gönderilen veriyi alır ve işleyebilir. Parmak sayısı, ESP32 cihazına şu URL üzerinden HTTP GET isteği ile gönderilir: http://172.20.10.2/led?count=3. Buradaki 'count=3' değeri, tespit edilen parmak sayısını temsil eder.
- 3. ESP32'nin Parmak Sayısını İşlemesi
 - ESP32, gelen parmak sayısına göre bağlı olduğu donanımları kontrol eder.
- ESP32, gelen sayıya göre her bir LED'in durumunu değiştirir. Örneğin, 3 parmak tespit edilirse, 3. LED'i yakar.
- Aynı zamanda, bu sayı 7-segment display üzerinde rakamsal olarak görüntülenir. Her bir segment pini doğru şekilde kontrol edilerek sayı ekrana yansıtılır.

4. Verilerin Web Sitesine Aktarılması

- ESP32 cihazı, tespit edilen parmak sayısını bir URL'ye (`https://vyamacli.com/iot/lab/datatofile.php`) HTTP GET isteği ile gönderir.
- Web sitesi, alınan parmak sayısını veritabanına kaydeder ve kullanıcıların web sitesi üzerinden bu veriye erişmesini sağlar ve kayıt işlemlerini gerçekleştirir.
- Bu işlem sayesinde, tespit edilen parmak sayısı hem donanım hem de çevrimiçi bir ortamda görüntülenir.

5. Sonuçların Görselleştirilmesi

- Parmak sayısına göre LED'lerin yanması ve 7-segment display'de rakamların görüntülenmesi, verilerin fiziksel bir çıktısı olarak kullanılır.
- Web sitesine gönderilen veriler ise, kullanıcıların uzaktan erişimle sonuçları görmesine olanak sağlar.

6. Eş Zamanlı İkinci ESP32'nin Kullanımı

- İkinci bir ESP32 cihazı aynı URL'den parmak sayısı bilgisini alır ve kendi bağlı olduğu RGB LED, buzzer ve DHT11 sensörü gibi bileşenleri kontrol eder.
- Bu cihaz, parmak sayısına bağlı olarak RGB LED ile belirli renkleri yakar, buzzer ile ses çıkışı verir ve çevresel sıcaklık/nem değerlerini ölçer.

7. Projenin Genel Çalışma Akışı

- Kamera, parmak sayısını tespit eder ve veriyi ESP32 cihazına gönderir.
- ESP32, bu bilgiyi alır, LED'leri ve 7-segment display'i kontrol eder.
- Veriler, belirlenen bir URL'ye gönderilerek hem donanımsal hem de çevrimiçi olarak kullanıcıya sunulur.

Görüntü İşleme Kodları

```
import cv2
import requests
import numpy as np
import time
from threading import Thread
class CameraStream:
       self.cap = cv2.VideoCapture(src)
       self.cap.set(cv2.CAP PROP FRAME WIDTH, 320)
       self.cap.set(cv2.CAP PROP FRAME HEIGHT, 240)
       self.ret, self.frame = self.cap.read()
       self.running = True
       self.thread = Thread(target=self.update, args=())
       self.thread.daemon = True
       self.thread.start()
   def update(self):
       while self.running:
           self.ret, self.frame = self.cap.read()
   def read(self):
       return self.frame
   def stop(self):
       self.running = False
       self.thread.join()
       self.cap.release()
def send led command(finger count):
       response = requests.get(f"{ESP32 URL}?count={finger count}")
       print(f"ESP32 Yanıt: {response.text}")
   except Exception as e:
def process frame(frame):
   frame = cv2.flip(frame, 1)
   roi = frame[50:250, 50:250]
   cv2.rectangle(frame, (50, 50), (250, 250), (0, 255, 0), 2)
   gray = cv2.cvtColor(roi, cv2.COLOR BGR2GRAY)
   blur = cv2.GaussianBlur(gray, (15, 15), 0)
cv2.THRESH OTSU)
```

```
cv2.CHAIN APPROX SIMPLE)
    finger count = 0
   if contours:
       max contour = max(contours, key=cv2.contourArea)
       if cv2.contourArea(max contour) > 5000:
            hull = cv2.convexHull(max contour, returnPoints=False)
            defects = cv2.convexityDefects(max contour, hull)
            if defects is not None:
                for i in range(defects.shape[0]):
                    start = tuple(max contour[s][0])
                    end = tuple(max contour[e][0])
                    far = tuple(max contour[f][0])
                    a = np.linalg.norm(np.array(start) - np.array(end))
                    b = np.linalg.norm(np.array(start) - np.array(far))
                    c = np.linalg.norm(np.array(end) - np.array(far))
                    angle = np.degrees(np.arccos((b**2 + c**2 - a**2))
(2 * b * c))
                        finger count += 1
            finger count += 1
   cv2.putText(frame, f"Parmak Sayisi: {finger count}", (10, 30),
                cv2.FONT HERSHEY SIMPLEX, 1, (255, 0, 0), 2)
   return frame, finger count
camera = CameraStream(0)
while True:
   frame = camera.read()
   if frame is None:
   processed_frame, finger_count = process_frame(frame)
   cv2.imshow("Frame", processed frame)
   send led command(finger count)
   time.sleep(2) # Veri qönderimleri arasında 2 saniye qecikme
   if cv2.waitKey(1) & 0xFF == ord('q'):
       break
camera.stop()
cv2.destroyAllWindows()
```

Birinci ESP Kodları

```
#include <WebServer.h>
#include <HTTPClient.h>
WebServer server(80); // Port 80 üzerinden çalışacak
const int segmentPins[] = {25, 26, 27, 32, 33, 4, 5}; // A, B, C, D, E, F, G
String fingerCount = ""; // Gelen parmak sayısı
roid setup() {
  pinMode(segmentPins[i], OUTPUT);
WiFi.begin(ssid, password);
  delay(1000);
 server.on("/led", HTTP GET, handleLedRequest);
roid loop() {
 server.handleClient();
       digitalWrite(leds[i], LOW);
```

```
if (count >= 0 && count <= 9) {
    for (int i = 0; i < 7; i++) {
        digitalWrite(segmentPins[i], digits[count][i]);
    }
}
String response = sendDataToServer(fingerCount);
Serial.println("Site Yanıtı: " + response);
Server.send(200, "text/plain", "Parmak sayisi alindi: " + fingerCount);
} else {
    server.send(400, "text/plain", "Parametre eksik!"); // Eksik parametre hatası
}
String sendDataToServer(String count) {
    String payload = "";
    if (WiFi.status() == WL_CONNECTED) {
        HTTPCLient http;
        String url = "https://vyamacli.com/iot/lab/datatofile.php?fname=grup84&sayi=" +
count;
    http.begin(url);
    int httpResponseCode = http.GET();
    if (httpResponseCode > 0) {
        payload = http.getString();
        Serial.println("Weri gönderildi: " + count);
        Serial.println("Weri gönderildi: " + String(httpResponseCode));
} else {
        Serial.println("Veri gönderme hatası: " + String(httpResponseCode));
}
http.end();
} else {
        Serial.println("WiFi bağlantısı yok!");
}
return payload;
}
```

İkinci ESP Kodları

```
#include <WiFi.h>
#include <HTTPClient.h>
#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT_U.h>
const char* password = "covid 10";
#define DHTPIN 25
#define BUZZER_PIN 27
#define LED_RED_PIN 33
#define LED GREEN PIN 12
#define LED BLUE PIN 13
#define TRIG PIN 26
#define ECHO PIN 14
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
roid setup() {
 digitalWrite(BUZZER PIN, LOW);
 WiFi.begin(ssid, password);
```

```
delay(2000);
 int httpResponseCode = http.GET();
 if (httpResponseCode > 0) {
   String payload = http.getString();
   Serial.println("Alinan veri: " + payload);
   int receivedValue = payload.toInt();
   handleIncomingData(receivedValue);
   Serial.println("Veri alma hatas1: " + String(httpResponseCode));
 http.end();
digitalWrite(LED GREEN PIN, LOW);
```

```
readDHT11();
digitalWrite(TRIG PIN, LOW);
delayMicroseconds(10);
return distance;
float temperature = dht.readTemperature();
if (isnam(humidity) || isnam(temperature)) {
Serial.print(temperature);
```

Görüntü İşleme Ekran Görüntüsü

Birinci ESP Videosu

https://youtube.com/shorts/_X-tBcpf5Og?feature=share

İkinci ESP Videosu

https://youtu.be/iaPInkb580s