Examen 2I003

Jeudi 17 décembre 2015, 2 heures aucun document autorisé

Exercice 1 – Arbres binaires et tas - 4.5 points

Question 1
Namas la définition industina de l'angualele AD des auleurs binaines deut les marrils ant étiquetés man des éléments
Donnez la définition inductive de l'ensemble AB des arbres binaires dont les nœuds sont étiquetés par des éléments le A . On rappelle que l'arbre vide est un arbre binaire. Donnez la définition (non inductive) d'un arbre parfait et d'un
as.
Question 2 Démontrez par induction sur la définition inductive de AB que, pour tout $T \in AB$, $h(T) \le n(T) \le 2^{h(T)} - 1$. En
definition region for the partial T , $2^{h(T)-1} \le n(T) < 2^{h(T)}$.

\sim	4 •	
1 111	estion	- 4
. ,,,,	->11111	. 1

(Triez par ordre décroissant en utilisant un tri par tas les valeurs de la liste $L=(37,42,10,2,28,16)$. Vous donnerez uniquement les valeurs successives du tableau courant après chaque opération de construction ou de destruction du tas.
2. (Quelle est la complexité du tri par tas dans le pire des cas ? Justifiez votre réponse.

Exercice 2 -	Graphes	et arbres	- 4 points

Dans cet exercice, G = (V, E) est un graphe non orienté.

A	-
Question	
Vacstion	-

Rappelez la définition du degré $d_G(x)$ pour tout $x \in V$. Calculer $d_G(x)$ pour le graphe G = (V, E) avec $V = \{1, 2, 3, 4, 5\}$ et $E = \{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}.$

Question 2

Démontrez par récurrence sur le nombre d'arêtes que, pour tout graphe non orienté $G=(V,E), \sum_{x\in V} d_G(x)=2|E|$. En déduire que tout graphe possède un nombre pair de sommets de degré impair.

nelle est la définition d'un graphe connexe? Quelle est la définition d'un graphe minimal connexe? Quelle est la finition d'un arbre?						
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
estion 4 nontrez par l'a fiez votre répo		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque
ontrez par l'a		est un arbre, al	lors G est minim	nal connexe. Qu	e pensez-vous	de la réciproque

Exercice 3 – Tri par sélection du min et du max - 12 points

On rappelle que l'indexation des tableaux commence à 0. Si $T = [a_0, \ldots, a_i, \ldots, a_j, \ldots a_{n-1}]$, on note $T[i..j] = [a_i, \ldots, a_j]$. Dans tout l'exercice, T est un tableau d'entiers dont la taille est notée n. On dispose de la fonction indMinMax (T, g, d) ainsi définie, pour $0 \le g \le d \le n-1$:

```
def indMinMax(T, g, d):
a = g; z = g; i = g + 1
while i <= d:
    if T[i] < T[a]:
        a = i
    elif T[i] >= T[z]:
        z = i
    i = i + 1
return (a, z)
```

La fonction indMinMax(T,g,d) renvoie le couple (a,z) où a est le plus petit indice appartenant à [g..d] tel que T[a] est le minimum de T[g..d] et z est le plus grand indice appartenant à [g..d] tel que T[z] est le maximum de T[g..d].

Question 1

- 1. On considère le tableau T0 = [6, 8, 1, 7, 4, 3, 9, 5]. Exécuter l'appel deindMinMax (T0, 0, 7), en donnant les valeurs de a, z et i à la fin de chaque itération, ainsi que la valeur retournée par la fonction.
- 2. Calculer le nombre minimum de comparaisons entre éléments du tableau effectuées par indMinMax (T,g,d). Donner un exemple de tableau pour lequel indMinMax effectue le minimum de comparaisons.
- 3. Calculer le nombre maximum de comparaisons entre éléments du tableau effectuées par indMinMax(T,g,d). Donner un exemple de tableau pour lequel indMinMax effectue le maximum de comparaisons.
- 4. Calculer le nombre maximum d'affectations (aux variables a et z) effectuées par indMinMax (T, g, d). Donner un exemple de tableau pour lequel indMinMax effectue le maximum d'affectations.

Г	
_	
Qu Mo	lestion 4 ontrer, par récurrence sur $d-g$, que la procédure trierGD (T, g, d) trie le sous-tableau $T[gd]$ en ordre croissant
et la	aisse les autres éléments de T inchangés.

estion 5				
	procédure trierGD (T,g,d), définir une procédure trier (T) qui trie	e le tableau T en ordre crois		
		c le tubleau 1 en orare erois		
nt. Justifier la réponse.				
stion 6				
Montrer of	que le nombre d'affectations aux éléments du tableau effectuées par trie	er (T) est en $\Theta(n)$.		
Montrer (que le nombre de comparaisons entre éléments du tableau effectuées par t	crier (T) est en $\Theta(n^2)$.		