Problem 1: Orthogonality and projections

- (a) In the span of $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$ and $\begin{bmatrix} 1\\-2\\3\\-4 \end{bmatrix}$ find a non-zero vector \mathbf{v} orthogonal to $\begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$.
- (b) Here is a geometric analogue to the algebra in (a): for a plane P through the origin in \mathbf{R}^3 and a nonzero 3-vector \mathbf{w} not orthogonal to P, why should there always be nonzero vectors in P orthogonal to \mathbf{w} ? (Hint: visualize the plane W through $\mathbf{0}$ with normal vector \mathbf{w} , and think about how it meets the plane P).
- (c) Find a nonzero vector $\mathbf{u} \in \mathbf{R}^3$ for which the projections of $\mathbf{v} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ onto \mathbf{u} are equal. (Recall that the projection of \mathbf{x} onto a nonzero vector \mathbf{u} is given by the formula $\left(\frac{\mathbf{x} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$.) There are many answers. Informally, the condition says that \mathbf{v} and \mathbf{w} make the same "shadow" onto the line spanned by \mathbf{u} .

Problem 2: An orthogonal basis

Let V be the set of vectors $\mathbf{v} \in \mathbf{R}^3$ satisfying $\mathbf{v} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \mathbf{v} \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ (this says that both of these explicit 3-vectors have the same projection onto \mathbf{v} , or in other words make the same "shadow" onto the line spanned by \mathbf{v}).

- (a) Express V as the collection of 3-vectors orthogonal to a single nonzero 3-vector.
- (b) By fiddling with orthogonality equations, build an orthogonal basis of V. There are many possible answers.
- (c) Use your answer to (b) to give an orthonormal basis for V.

Problem 3: Subspaces defined by orthogonality, orthogonal bases, and shortest distances in ${\bf R}^3$

(a) For each linear subspace V_i in \mathbb{R}^3 given below, exhibit the set

$$V_i' = \{ \mathbf{x} \in \mathbf{R}^3 \mid \mathbf{x} \text{ is orthogonal to every vector in } V_i \}$$

as the span of a finite collection of vectors (so, as a linear subspace), and give a basis for V_i' .

(i)
$$V_1 = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}\right)$$

- (ii) V_2 is the set of solutions in ${\bf R}^3$ to the pair of equations $\begin{cases} x_1+2x_2+3x_3=0,\\ 4x_1+5x_2+6x_3=0. \end{cases}$ (Hint: relate this to V_1 and think geometrically.)
- (b) For each of the two V_i 's given above, compute an orthogonal basis for it and $set\ up$ how you'd find the distance from the point $\begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix}$ to V_i (i.e. the minimal distance from $\begin{bmatrix} 7 \\ 0 \\ 0 \end{bmatrix}$ to a point in V_i) using such a basis. Finally, compute each distance.

(Hint for computation: first treat the case of V_2 . For the case of the plane V_1 , use projections to compute an orthogonal basis and to give an expression for a vector whose length is the distance you want. It gets cumbersome to carry out that distance calculation by hand, so instead compute the distance to V_1 by relating it to the distance to V_2 . Try drawing a picture of an orthogonal line and plane to get an idea.)

Problem 4: Building another orthogonal vector (Extra)

If $\{\mathbf{v}, \mathbf{w}\}$ is a pair of nonzero orthogonal vectors in \mathbf{R}^3 then we can always enlarge it to an orthogonal basis $\{\mathbf{v}, \mathbf{w}, \mathbf{u}\}$ of \mathbf{R}^3 by taking \mathbf{u} to be a nonzero normal vector to the plane $\mathrm{span}(\mathbf{v}, \mathbf{w})$. If n > 3 and $\mathbf{v}_1, \dots, \mathbf{v}_{n-1}$ are mutually orthogonal nonzero vectors in \mathbf{R}^n then can we always find a nonzero \mathbf{v}_n orthogonal to those (so $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthogonal basis of \mathbf{R}^n)?