

Organização dos Ficheiros no Disco

Visão de um Dispositivo do Tipo Disco

- Uma partição é uma subdivisão lógica de um dispositivo físico (disco, pen, etc.), dividida em blocos de tamanho fixo.
- Uma partição é vista pelo sistema operativo como um vetor de blocos ordenado a partir do número zero
- Cada partição é um contexto independente das outras, não existindo ficheiros repartidos por partições diferentes

Visão de um Dispositivo do Tipo Disco

- O Master Boot Record (MBR) e o bloco de boot são entidades fundamentais para localizar e executar um sistema operativo
- o MBR possui código, geralmente independente do sistema operativo, que localiza a partição que contém o sistema operativo a executar e transfere a execução para o código existente no primeiro bloco dessa partição o bloco de boot.

Boot

- O bloco de boot possui um programa específico de cada sistema operativo que sabe ler o sistema de ficheiros onde o sistema operativo se encontra, carregar o sistema operativo e executá-lo.
- Quando só existe uma partição com sistema operativo, o código do MBR escolhe imediatamente essa partição para transferir a execução durante a fase de boot
- Quando existem mais partições, usualmente é o utilizador que escolhe a partição a executar. Neste caso o código existente no MBR diz-se que é um boot loader porque permite escolher entre vários sectores de boot, de várias partições, para executar.

Organizações dos Ficheiros

- Dada esta organização do disco o problema interessante do ponto de vista de sistema operativo é como organizar os ficheiros
- Vamos ver diferentes alternativas que correspondem a evoluções de sistemas reais

Alternativa 1: Organização em

Organização em Lista

- Forma mais simples de organizar um sistema de ficheiros
- Cada ficheiro é constituído por um registo de dimensão variável com quatro campos

- No caso dos sistemas de ficheiros em CD/DVD, que só podem ser escritos uma vez, todos os ficheiros ficam compactados uns a seguir aos outros
 - No caso de sistemas onde é possível apagar ficheiros, é necessário manter também uma lista de espaços livres

Desvantagens?

Alternativa 1: desvantagens

- Tempo necessário para localizar um ficheiro através do seu nome
- Ficheiros que mudam de tamanho ou são apagados são problemáticos:
 - Espaço ocupado por cada ficheiro é contínuo
 - Fragmentação da memória

Todos estes problemas aplicam-se a sistemas de ficheiros em DVD?

Alternativa 2

Alternativa 2

Solução para a primeira desvantagem:

criando um directório único onde todos os nomes dos ficheiros estão

juntos

- os nomes dos ficheiros ficam perto uns dos outros no disco
- aumenta a eficência da procura de um ficheiro dado o seu nome

Organização em Lista – desvantagens (cont.)

 Solução para a segunda desvantagem: dividir os dados de cada ficheiro em blocos de dimensão fixa

 O sistema de ficheiros do CP/M (um dos primeiros para PCs, 1977) utilizava uma estrutura deste tipo

CP/M advertisement in the November 29, 1982 issue of InfoWorld magazine

Sistema de Ficheiros do CP/M

• Estrutura de uma entrada do diretório do sistema de ficheiros do CP/M:

- Neste sistema:
 - cada bloco possuía 1 Kbyte (por omissão)
 - mapa de blocos com 16 entradas, dimensão máxima de um ficheiro = 16 KBytes
- Como aumentar a dimensão máxima dos ficheiros?
 - Aumentar o mapa de blocos → ineficiente para fich. pequenos
 - Aumentar o tamanho dos blocos → maior fragmentação interna

Organização do Disco em Blocos

- A gestão do disco é feita em blocos de tamanho fixo com o objetivo de otimizar o acesso ao disco.
- Um bloco é a unidade mínima que pode ser indexada diretamente pelo sistema operativo
- Tamanho dos blocos
 - Quanto maior for o bloco maior é a taxa de transferência bruta pois os tempos de posicionamento e latência de sectores consecutivos são quase nulos, mas a taxa de transferência efetiva depende do número de bytes dentro do bloco com informação útil.
 - Se um bloco estiver apenas meio cheio a sua transferência efetiva é metade da transferência bruta, o que significa que quanto maiores forem os blocos, maiores serão as diferenças entre as taxas de transferência bruta e efetiva

Sistema de Ficheiros do MS-DOS

- Evoluiu a partir do sistema CP/M
- Possui uma estrutura de sistema de ficheiros semelhante
- Em vez de um mapa de blocos por ficheiro, no MS-DOS existe:

The original MS-DOS advertisement in 1981

- uma tabela de blocos global partilhada por todos os ficheiros
- esta tabela única é tão representativa da estrutura do sistema de ficheiros que deu origem ao nome do sistema de ficheiros mais popular que a usa: o sistema de ficheiros FAT (Tabela de Alocação de Ficheiros — File Allocation Table).

Sistemas de Ficheiros do Tipo FAT

- A partição contém três secções distintas:
 - a tabela de alocação (File Allocation Table, FAT),
 - uma diretoria com os nomes dos ficheiros presentes no sistema de ficheiros, e
 - uma secção com o espaço restante dividido em blocos, de igual dimensão, para conter os dados dos ficheiros

Sistemas de Ficheiros do Tipo FAT (cont.)

- FAT é vetor composto por 2ⁿ inteiros de *n* bits
 - Designado de FAT-16 (n=16) ou FAT-32 (n=32), etc.
- Dimensionado para:
 - Caber em memória RAM (FAT carregada do disco em RAM quando o FS é montado)
 - Ter tantas entradas quanto o número de blocos de dados na partição em disco
- As entradas da FAT:
 - com o valor zero indicam que o respectivo bloco está livre,
 - com valores diferentes de zero indicam que o respectivo bloco faz parte de um ficheiro

Sistemas de Ficheiros do Tipo FAT (cont.)

- Os blocos de um ficheiro são determinados assim:
 - 1º bloco: indicado por um número na respectiva entrada no directório.
 - restantes blocos: referenciados em lista ligada pelas entradas da FAT

Desvantagens do FAT

- Elevada dimensão da FAT quando os discos têm dimensões muito grandes:
 - Por exemplo, uma partição 1 Tbyte
 - Usando FAT-32 e blocos de 4 Kbytes...
 - ...a FAT pode ocupar 1 GByte (1TBytes/4KBytes × 4 bytes)
- Tabelas desta dimensão não são possíveis de manter em RAM permanentemente:
 - Ler à FAT do disco, prejudica muito o acesso à cadeia de blocos de um ficheiro

Alternativa 5: Organização com Descritores Individuais de Ficheiros (i-nodes)

- Manter a descrição do ficheiro num descritor próprio de cada ficheiro, chamado i-node
 - Exemplos de atributos incluídos no i-node: tipo de ficheiro, dono, datas de últimos acessos, permissões, dimensão, localizações dos blocos de dados
 - É a estrutura que está entre as entradas dos diretórios que referenciam o ficheiro e os seus blocos de dados
- Vantagem: podem existir várias entradas de diretório a apontar para o mesmo ficheiro
 - Noção de hard link

Organização com Descritores Individuais de Ficheiros (i-nodes)

 Os i-nodes são guardados numa estrutura especial de tamanho fixo antes dos blocos de dados

- No Linux tem o nome de tabela de inodes
- No Windows tem o nome:
 - MFT (Master File Table).
- O número máximo de ficheiros numa partição é dado pelo número máximo de i-nodes nessa tabela

A sequência de passos para aceder ao conteúdo de um ficheiro

Bloco de dados com os bytes relativos ao cursor atual

Organização com Descritores Individuais de Ficheiros (i-nodes)

- Um ficheiro é univocamente identificado, dentro de cada partição, pelo número de i-node (muitas vezes chamado inumber)
- Os directórios só têm que efetuar a ligação entre um nome do ficheiro e o número do seu descritor

NÚMERO DO INODE		DIMENSÃO DO REGISTO		DIMENSÃ O DO NOME	Тіро	Nome								
	 54 		1	2	1	2	•	\0	\0	\0				
	 79 		1	2	2	2	٠	•	\0	\0				
	 23 		1	6	6	1	с	a	r	1	o	S	\0	\0
2	256 256		1	6	7	1	m	a	r	q	u	e	S	\0
			54 79 23 23	DO INODE DO REG	DO NODE DO REGISTO	DO INODE DO REGISTO DO NOME	DO NOME	DO INODE DO REGISTO DO NOME	DO NODE DO REGISTO DO NOME	DO NODE DO REGISTO DO NOME	DO NODE DO REGISTO DO NOME	DO INODE DO REGISTO DO NOME	DO INODE DO REGISTO DO NOME	DO INODE DO REGISTO DO NOME

Sistemas Operativos – DEI - IST

Percorrer a árvore de diretórios

- 1. Começar pelo diretório raíz
 - i-number tem valor pré-conhecido (e.g., i-num=2)
- 2. Dado o i-number, obter o i-node do diretório
 - Na cache de i-nodes (em RAM) ou na tabela de i-nodes (em disco)
- A partir do i-node, descobrir os índices dos blocos de dados com o conteúdo do diretório
- 4. Ler cada bloco do diretório e pesquisar nele uma entrada com o próximo nome do *pathname*
- 5. Assim que seja encontrada, a entrada indica o i-num do próximo nome
- 6. Repetir a partir do passo 2 para este novo nome

Descritor do volume

Descritor do Volume:

possui a informação geral de descrição do sistema de ficheiros

 por exemplo, a localização da tabela de descritores e a estrutura da tabela de blocos livres

é geralmente replicado noutros blocos (a informação nele guardada é de importância fundamental)

 se se corromper pode ser impossível recuperar a informação do sistema de ficheiros

- Implementação do descritor de volume:
 - Unix bloco especial denominado superbloco
 - NTFS ficheiro especial
 - FAT a informação em causa é descrita directamente no setor de boot

Tabela de Blocos Livres (ou Tabela de Alocação)

 Mantém um conjunto de estruturas necessárias à localização de blocos livres:

i.e. blocos da partição que não estão ocupados por nenhum bloco de nenhum ficheiro.

Volume

Descritores

de ficheiros

Blocos

Tabela de

alocação

Descritor do

- Pode ser um simples bitmap:
 - um bit por cada bloco na partição,
 - indica se o respetivo bloco está livre ou ocupado
- Tabela de blocos livres desacoplada dos i-nodes tem vantagens:
 - é possível ter estruturas muito mais densas (a tabela de blocos livres possui, usualmente, apenas um bit por cada bloco)
 - pode-se organizar a tabela de blocos livres em várias tabelas de menor dimensão para blocos adjacentes

Sistema de ficheiros Ext

Principal Sistema de ficheiros do Linux Sistema referência para outros sistemas de ficheiros atuais

i-node (index node)

- Meta-dados do ficheiro
- Localização dos dados do ficheiro
 - Índices do 1º bloco, do 2º bloco, etc.

Campo	Descrição							
i_mode	Tipo de ficheiro e direitos de acesso							
i_uid	Identificador do utilizador							
i_size	Dimensão do ficheiro							
i_atime	Tempo do último acesso							
i_ctime	Tempo da última alteração do inode							
i_mtime	Tempo da última alteração do ficheiro							
i_dtime	Tempo da remoção do ficheiro							
i_gid	Identificador do grupo do utilizador							
i_links_count	Contador de hard links							
i_blocks	Número de blocos ocupado pelo ficheiro							
i_flags	Flags várias do ficheiro							
i_block[15]	Vector de 15 unidades para blocos de dados							
	Outros campos ainda não utilizados							

Exemplo de FS que usa i-nodes: ext3

- Índice dos blocos do ficheiro é mantido num vetor i_block do inode, com 15 posições
 - 12 entradas diretas
 - Caso dimensão > 12 blocos, 3 últimas posições do vector contêm referências para blocos com índices para outros blocos
 - Primeira entrada é indireção de 1 nível
 - Segunda é indireção de 2 níveis
 - Terceira é indireção de 3 níveis
- Só se usam as entradas (e blocos de índices) necessários

Exemplo de FS que usa i-nodes: ext3

dimensão máxima de um ficheiro = $B \times (12 + B/R + (B/R)^2 + (B/R)^3)$

B é a dimensão em bytes de um bloco de dados R é a dimensão em bytes de uma referência para um bloco Com blocos de 1 Kbyte e referências de 4 byte, a dimensão máxima de um ficheiro é ~16 Gbyte

Tabelas de Inodes e Bitmaps

- Cada partição tem um número máximo de *i-nodes*:
 - que servem para armazenar os *i-nodes* de todos os ficheiros da partição.
 - logo, existe um número máximo de ficheiros, correspondente à dimensão máxima da tabela de i-nodes
- Dentro de uma partição:
 - um i-node é univocamente identificado pelo índice dentro da tabela de inodes.
- Para além da tabela de inodes existem em cada partição ainda duas outras tabelas:
 - o bitmap de i-nodes posições dos i-nodes livres
 - o bitmap de blocos, posições dos blocos livres

Conclusões

- A organização do disco é em blocos de tamanho fixo.
- Diversas zonas do discos são atribuídas a funções específicas, bloco de boot, partições, diretórios, blocos de dados
- A indexação dos blocos de dados de um ficheiro é uma importante parte da organização porque tem elevado impacto no desempenho e na fragmentação do disco
- No Unix a estrutura de indexação é mantido nos inodes procurando um equilíbrio entre acesso rápido a ficheiros pequenos e possibilidade de ter ficheiro muito grandes