

MYC-JX8MPQ 产品手册

文件状态:	文件标识:	MYIR-MYC-JX8MPQ-HW-PM-ZH		
[] 草稿	当前版本:	V1.1		
[√]正式发布	作 者:	Dana		
	创建日期:	2021-09-13		
	最近更新:	2022-10-08		

Copyright © 2020 - 2030 版权所有 深圳市米尔电子有限公司

版本历史

版本	作者	参与者	日期	备注
V1.0	Dana		20210913	初始版本
V1.1	Dana		20221008	新增加产品型号

目 录

	版本历史	- 2	<u> </u>
	目 录	- 3	} -
1.	概述	- 5	; -
2.	产品介绍	- 7	7 _
	2.1. 芯片说明	- 8	} -
	2.1.1. i.MX8M Plus 系列资源比较		
	2.1.2. i.MX8M Plus 处理器主要特性		
	2.2. MYC-JX8MPQ 主要参数		
	2.3. 系统框图		
	2.4. 标准型号		
3.	引脚描述	14	ļ -
	3.1. 引脚示意图	1⊿	L -
	3.2. 核心板引脚对照表		
4.	电气特性	25) -
	4.1. 主要电源(VSYS_5V)	25	; -
	4.2. 电源域	25	; -
	4.3. 电源功耗	26	; -
	4.4. GPIO 直流特性	26	; -
5.	系统配置和启动	27	' -
	5.1. BOOT 模式设置	27	, _
	5.2. 复位和开关	28	} -
6.	接口说明	29) -
	6.1. uSDHC 接口	29) -
	6.1.1. 引脚定义		
	6.2. UART 接口		
	6.2.1. 引脚定义		
	6.3. USB 接口		
	6.3.1. 引脚定义		

6.4	I. Ethernet 接口	33 -
	6.4.1. 引脚定义	33 -
6.5	5. CSI 接口	35 -
	6.5.1. 引脚定义	35 -
6.6	5. I2C 接口	36 -
	6.6.1. 引脚定义	36 -
6.7	7. SPI 接口	37 -
	6.7.1. 引脚定义	37 -
6.8	3. DSI 接口	38 -
	6.8.1. 引脚定义	38 -
6.9	9. PCIE 接口	39 -
	6.9.1. 引脚定义	39 -
6.1	0. SAI 接口	40 -
	6.10.1. 引脚定义	40 -
6.1	1. GPIO 接口	41 -
	6.11.1. 引脚定义	41 -
7. 封装	信息	43 -
7.1	· 机械尺寸	43 -
7.2	2. 核心板推荐焊盘	45 -
7.3	B. 底板 PCB 要求	45 -
附录一	· 联系我们	46 -
	深圳总部	46 -
	上海办事处	
	北京办事处	
	销售联系方式	
	技术支持联系方式	46 -
附录二	售后服务与技术支持	47 -
	产品返修	47 -
	维修周期	47 -
	维修费用	47 -
	运输费用	- 47 -

1. 概述

i.MX 8M Plus 是首个集成专用神经处理单元(NPU)的 i.MX 系列产品,能够在工业和物联网等领域实现边缘端高级机器学习推理。

i.MX 8M Plus 提供 2.3 TOPS 算力(每秒兆级操作)的高性能 NPU、主频高达 1.8 GHz(工业级 1.6Ghz)的四核 Arm® Cortex-A53 子系统、主频可达 800MHz 的基于 Cortex-M7 的独立实时子系统、用于进行语音和自然语言处理的高性能 800 MHz 音频 DS P、双摄像头图像信号处理器(ISP)和用于丰富图形渲染的 3D GPU。

为了充分发挥 8MPLUS 处理器的强大边缘计算能力和其丰富的多媒体接口,米尔科技推出了全新的核心板系列: MYC-JX8MPQ。通过使用 MYC-JX8MPQ 核心板,用户可以在机器视觉、公共安全、边缘计算等高端应用领域找到合适的解决方案。在开发阶段,建议配合核心板配套的评估套件 MYD-JX8MPQ 来加速开发。

产品介绍链接: http://www.myir-tech.com/product/myc-jx8mpq.htm

资料下载链接: http://down.myir-tech.com/MYD-JX8MPQ

图 1-1 MYC-JX8MPQ 核心板

图 1-2 MYD-JX8MPQ 评估套件正面

2. 产品介绍

MYC-JX8MPQ 核心板采用高密度高速电路板设计,在大小为 45mm*82mm 的板卡上集成了处理器、DDR4、QSPI NOR Flash、eMMC、PMIC 电源管理等电路。处理器支持 i.MX 8M Plus Quad/i.MX 8M Plus Quad Lite/ i.MX 8M Plus Dual/i.MX 8M Plus Quad Lite 系列的型号,默认设计采用 i.MX 8M Plus Quad 子系列。

MYC-JX8MPQ 系列核心板包含 4 种具体产品型号:它们在存储配置、主 CPU 规格等方面有一些差异,客户可根据需求自行选择合适的型号。产品型号间的差异,请参见 2.4 章节的说明。

2.1. 芯片说明

i.MX8M Plus 提供 2.3 TOPS 算力 (每秒兆级操作)的高性能 NPU、主频高达 1.8GHz(工业级 1.6Ghz)的四核 Arm® Cortex-A53 子系统、主频可达 800MHz 的基于 Cortex-M7 的独立实时子系统、用于进行语音和自然语言处理的高性能 800 MHz 音频 DSP、双摄像头图像信号处理器 (ISP) 和用于丰富图形渲染的 3D GPU。

2.1.1. i.MX8M Plus 系列资源比较

i.MX8M Plus 家族主要包含 Quad, Quad Lite, Dual 处理器。Quad, Dual 分别表示 Cortex-A53 核的数量 4、2,Lite 表示是否裁剪了 VPU。

家族	物料型号	芯片核心差异	芯片工作温度
i.MX 8M Plus Quad	MIMX8ML8DVNLZAA	4x A53 (1.8Ghz), VPU, NPU, ISP	0°C - +95°C
i.MX 8M Plus Quad	MIMX8ML6DVNLZAA	4x A53 (1.8Ghz), VPU, ISP	0℃ - +95℃
i.MX 8M Plus Quad Lite	MIMX8ML4DVNLZAA	4x A53 (1.8Ghz)	0°C - +95°C
i.MX 8M Plus Dual	MIMX8ML3DVNLZAA	2x A53 (1.8Ghz), VPU, NPU, ISP	0℃ - +95℃
i.MX 8M Plus Quad	MIMX8ML8CVNKZAA	4x A53((1.6Ghz)), VPU, NPU, ISP, CAN-FD	-40°C - +105°C
i.MX 8M Plus Quad	MIMX8ML6CVNKZAA	4x A53((1.6Ghz)), VPU, ISP, CAN-FD	-40°C - +105°C
i.MX 8M Plus Quad Lite	MIMX8ML4CVNKZAA	4x A53((1.6Ghz)), CAN-FD	-40°C - +105°C
i.MX 8M Plus Dual	MIMX8ML3CVNKZAA	2x A53((1.6Ghz)), VPU, NPU, ISP, CAN-FD	-40℃ - +105℃

表 2-1 i.MX8M Plus 功能及各处理器资源差异

2.1.2. i.MX8M Plus 处理器主要特性

•	ARM Cortex-A53.	最高运行版率 1.8Ghz.	ARM Cortex-M7	800Mhz

- 16/32 位 DRAM 接口,支持 LPDDR4-4000,DDR4-3200,DDR3L-1600
- x1,8-bit NAND Flash
- x2,eMMC 5.1 Flash
- x3,SPI NOR FLASH
- x1, PCle Gen3
- X2 USB 3.0 Type C controllers with integrated PHY (also supported USB 2.0) interfaces
- x3 uSDHC interface with eMMC 5.1 compliance
- X2 Gigabit Ethernet controller
- x4 UART, x6 I2C, x3 SPI
- Video Processing Unit

1080p60 HEVC/H.265 Main, Main 10 (up to level 5.1)

1080p60 VP9 Profile0,2

1080p60 AVC/H.264 Baseline, Main, High decoder

1080p60 AVC/H.264 encoder

1080p60 HEVC/H.265 encoder

Graphic Processing Unit

GC7000UL with OpenCL and Vulkan support

166 million triangles/sec

Supports OpenGL ES 1.1, 2.0, 3.0, OpenCL 1.2, Vulkan

GC520L for 2D acceleration

LCDIF Display Controller

Support up to 1080p60 display per LCDIF if no more than 2 instances used simultaneously, or 1x 1080p60 + 2x 720p60 if all 3 instances used simultaneously.

One LCDIF drives MIPI DSI

One LCDIF drives LVDS Tx

One LCDIF drives HDMI Tx

MIPI Interface

4-lane MIPI DSI interface

Two instances of 4-lane MIPI CSI interface and HDR ISP

Audio

HiFi4 Audio DSP, SPDIF input and output, x6 SAI

• FCBGA, 0.5mm pitch, 15x15mm;

表 2-2 i.MX8M Plus 主要的特性

详细资料请参考芯片手册或者 NXP 官方网页链接:

https://www.nxp.com.cn/docs/en/data-sheet/IMX8MMIEC.pdf

2.2. MYC-JX8MPQ 主要参数

名称	主要参数			
主控芯片系列	i.MX 8M Plus Quad			
主控芯片型号	MIMX8ML8CVNKZAB			
处理器规格	x4 Cortex-A53、Cortex-M7、VPU、NPU			
内存	LPDDR4 (2GB/4GB)			
存储器	eMMC 8GB			
核心板尺寸	45mm*82mm			
接口类型	使用 314 pin 金手指连接器			
PCB 板规格	8层,沉金工艺生产,独立的接地信号层,无铅			
操作系统	Linux L5.10.9			

表 2-3 主要参数

2.3. 系统框图

PMIC PCA9450CHN POWER SDHC3 A8 bits EMMC 5.1 Sandisk 8.6B SDINBDG4-8G ORAM MICTOR 32MB MT25QU256ABA1E W9-0SIT I.MX 8M PLUS Gold Finger 314pin

图 2-1 MYC-JX8MPQ 核心板系统框图

2.4. 标准型号

根据 CPU 型号、工作温度等参数的不同,MYC-JX8MPQ 核心板标准产品有 4 种型号,请从以下列表中选择最适合您的型号。针对批量要求,米尔提供定制服务,可以选配核心板参数。

型号规格	MYC-JX8MPQ-8E2D-160-I	MYC-JX8MPQ-8E2D-160-C		
主芯片	MIMX8ML8CVNKZAB	MIMX8ML8CVNKZAB		
主芯片系列	i.MX 8M Plus Quad	i.MX 8M Plus Quad		
内核	4x Cortex-A53 + Cortex-M7	4x Cortex-A53 + Cortex-M7		
主频	A53 1.6GHz, M7 800Mhz	A53 1.6GHz, M7 800Mhz		
操作系统	Linux 5.10	Linux 5.10		
内存	2GB	2GB		
存储器	8GB	8GB		
MIPI DSI	1 x 4lane	1 x 4lane		
MIPI CSI	2 x 4lane	2 x 4lane		
UART	4路(最高)	4路(最高)		
USB	USB 3.0 OTG TypeC x1 USB 3.0 HOST TypeA x1	USB 3.0 OTG TypeC x1 USB 3.0 HOST TypeA x1		
以太网	1000M Ethernet(RGMII) x2	1000M Ethernet(RGMII) x2		
I2C	6路(最高)	6路(最高)		
SPI	3 路(最高)	3 路(最高)		
LVDS	2 x4lane,support dual link lvds	2 x4lane,support dual link lvds		
НДМІ	1x 1080p60	1x 1080p60		
AUDIO	HiFi4 Audio DSP	HiFi4 Audio DSP		
PCIE	PCIE3.0 x1lane	PCIE3.0 x1lane		
CAN	2 路	2 路		
uSDHC	uSDHC1:8bit width uSDHC2:4bit width	uSDHC1:8bit width uSDHC2:4bit width		
供电电压	+5V	+5V		
机械尺寸	45mm*82mm	45mm*82mm		

工作温度	-40°C ~ +85°C	0°C ~+70°C
封装引脚数	314 pin	314 pin
相关认证	CE ROHS	CE ROHS

表 2-4 MYC-JX8MPQ 核心板选型表

型号规格	MYC-JX8MPQ-8E4D-160-I	MYC-JX8MPQ-8E4D-160-C	
主芯片	MIMX8ML8CVNKZAB	MIMX8ML8CVNKZAB	
主芯片系列	i.MX 8M Plus Quad	i.MX 8M Plus Quad	
内核	4x Cortex-A53 + Cortex-M7	4x Cortex-A53 + Cortex-M7	
主频	A53 1.6GHz, M7 800Mhz	A53 1.6GHz, M7 800Mhz	
操作系统	Linux 5.10	Linux 5.10	
内存	4GB	4GB	
存储器	8GB	8GB	
MIPI DSI	1 x 4lane	1 x 4lane	
MIPI CSI	2 x 4lane	2 x 4lane	
UART	4路(最高)	4路(最高)	
USB	USB 3.0 OTG TypeC x1 USB 3.0 HOST TypeA x1	USB 3.0 OTG TypeC x1 USB 3.0 HOST TypeA x1	
以太网	1000M Ethernet(RGMII) x2	1000M Ethernet(RGMII) x2	
I2C	6 路 (最高)	6路(最高)	
SPI	3 路(最高)	3 路(最高)	
LVDS	2 x4lane,support dual link lvds	2 x4lane,support dual link lvds	
НОМІ	1x 1080p60	1x 1080p60	
AUDIO	HiFi4 Audio DSP	HiFi4 Audio DSP	
PCIE	PCIE3.0 x1lane	PCIE3.0 x1lane	
CAN	2路	2路	
uSDHC	uSDHC1:8bit width uSDHC2:4bit width	uSDHC1:8bit width uSDHC2:4bit width	
供电电压	+5V	+5V	
机械尺寸	45mm*82mm	45mm*82mm	
工作温度	-40°C ~ +85°C	0°C ~+70°C	
封装引脚数	314 pin	314 pin	
相关认证	CE ROHS	CE ROHS	

表 2-5 MYC-JX8MPQ 核心板选型表

3. 引脚描述

3.1. 引脚示意图

MYC-JX8MPQ 核心板和底板采用金手指连接器连接。核心板金手指规格为 314Pin MXM3.0 规格的通用金手指,底板需要使用相应的金手指连接器,型号为 ASOB821-S78 B-7H, 品牌 Foxconn。

图 3-1 模块引脚图 (Top 层)

图 3-2 模块引脚图 (Bottom 层)

3.2. 核心板引脚对照表

MYC-JX8MPQ 核心板接口引脚定义如下表所示,BSP 开发包的引脚功能均按下表的"默认功能"作了配置,如需改动管脚默认功能,请修改相关驱动配置代码,否则会出现驱动冲突等不确定异常情况。

位号	引脚	标号	默认功能	默认功能描述	电平	10	MPU 引脚	备注
	E1	VSYS_5V	POWER	5.0V 电源	5V	输入		
	E2	VDD_3V3	VDD_3V3	PMIC 芯片的 3.3V 输出	3.3V	输出		如果给底板外设供电,总电 流不超过 1A
	E3	VSYS_5V	POWER	5.0V 电源	5V	输入		
	E4	VDD_1V8	VDD_1V8	PMIC 芯片的 1.8V 输出	1.8V	输出		如果给底板外设供电,总电 流不超过 1A
	1	LVDS1_TX0_N	LVDS1	LVDS1接口TX0负信号	1.8V	输出	B26	
	3	LVDS1_TX0_P	LVDS1	LVDS1 接口 TX0 正信号	1.8V	输出	A26	
	5	GND	GND	电源地	0V			
	7	LVDS1_TX1_N	LVDS1	LVDS1 接口 TX1 负信号	1.8V	输出	B27	
	9	LVDS1_TX1_P	LVDS1	LVDS1 接口 TX1 正信号	1.8V	输出	A27	
	11	GND	GND	电源地	0V			
	13	LVDS1_CLK_P	LVDS1	LVDS1接口时钟 正信号	1.8V	输出	A28	
	15	LVDS1_CLK_N	LVDS1	LVDS1接口时钟 负信号	1.8V	输出	B28	
J1A/	17	GND	GND	电源地	0V			
В	19	LVDS1_TX3_N	LVDS1	LVDS1 接口 TX3 负信号	1.8V	输出	D28	
	21	LVDS1_TX3_P	LVDS1	LVDS1 接口 TX3 正信号	1.8V	输出	C29	
	23	GND	GND	电源地	0V			
	25	LVDS1_TX2_N	LVDS1	LVDS1 接口 TX2 负信号	1.8V	输出	C28	
	27	LVDS1_TX2_P	LVDS1	LVDS1 接口 TX2 正信号	1.8V	输出	B29	
	29	GND	GND	电源地	0V			
	31	SD2_RESET_B	GPIO	uSDHC2接口复位信号 (GPIO)	1.8 V/3.3V	输出	AD28	系统复位时该引脚为输入状 态,内部下拉
	33	SD2_DATA0	uSDHC2	uSDHC2接口数据位 0	1.8 V/3.3V	输入/ 输出	AC28	
	35	SD2_DATA1	uSDHC2	uSDHC2接口数据位1	1.8 V/3.3V	输入/ 输出	AC29	
	37	SD2_DATA2	uSDHC2	uSDHC2接口数据位2	1.8 V/3.3V	输入/ 输出	AA26	
	39	SD2_DATA3	uSDHC2	uSDHC2接口数据位3	1.8 V/3.3V	输入/ 输出	AA25	

41	SD2_WP	GPIO	USB3.0 TYPEC 接口使能	1.8 V	输出	AC26	系统复位时该引脚为输入状 态,内部下拉
43	SD2_nCD	uSDHC2	uSDHC2 接口检测	1.8 V/3.3V	输入	AD29	
45	SD2_CLK	uSDHC2	uSDHC2 时钟	1.8 V/3.3V	输出	AB29	
47	SD2_CMD	uSDHC2	uSDHC2 命令信号	1.8 V/3.3V	输出	AB28	
49	GND	GND	电源地	0V			
51	HDMI_TXP2	HDMI	HDMI接口TX2正信号	1.8V	输出	AH27	
53	HDMI_TXN2	HDMI	HDMI接口TX2负信号	1.8V	输出	AJ27	
55	GND	GND	电源地	0V			
57	HDMI_TXP1	HDMI	HDMI 接口 TX1 正信号	1.8V	输出	AH26	
59	HDMI_TXN1	HDMI	HDMI 接口 TX1 负信号	1.8V	输出	AJ26	
61	GND	GND	电源地	0V			
63	HDMI_TXP0	HDMI	HDMI 接口 TX0 正信号	1.8V	输出	AH25	
65	HDMI_TXN0	HDMI	HDMI接口TX0负信号	1.8V	输出	AJ25	
67	GND	GND	电源地	0V			
69	HDMI_TXCP	HDMI	HDMI 接口 TXC 正信号	1.8V	输出	AH24	
71	HDMI_TXCN	HDMI	HDMI 接口 TXC 负信号	1.8V	输出	AJ24	
73	GND						
75	HDMI_DDC_SCL	HDMI	HDMI 接口 I2C 时钟	1.8V	输出	AC22	
77	HDMI_DDC_SDA	HDMI	HDMI接口I2C数据传输	1.8V	输入/ 输出	AF22	
79	HDMI_HPD	HDMI	HDMI 接口检测信号	1.8V	输入	AE22	
81	HDMI_CEC	HDMI	HDMI 接口总线信号	1.8V	输入/ 输出	AD22	
83	GND	GND	电源地	0V			
85	CSI2_DP0	CSI2	CSI2 接口 LANE0 正信号	1.8V	输入	A25	
87	CSI2_DN0	CSI2	CSI2 接口 LANE0 负信号	1.8V	输入	B25	
89	GND	GND	电源地	0V			
91	CSI2_DP1	CSI2	CSI2 接口 LANE1 正信号	1.8V	输入	A24	
93	CSI2_DN1	CSI2	CSI2 接口 LANE1 负信号	1.8V	输入	B24	
95	GND	GND	电源地	0V			
97	CSI2_CKP	CSI2	CSI2 时钟正信号	1.8V	输入	A23	
99	CSI2_CKN	CSI2	CSI2 时钟负信号	1.8V	输入	B23	
101	GND	GND	电源地	0V			
103	CSI2_DP2	CSI2	CSI2接口LANE2正信号	1.8V	输入	A22	
105	CSI2_DN2	CSI2	CSI2 接口 LANE2 负信号	1.8V	输入	B22	

107	GND	GND	电源地	0V			
109	CSI2_DP3	CSI2	CSI2接口LANE3正信号	1.8V	输入	A21	
111	CSI2_DN3	CSI2	CSI2 接口 LANE3 负信号	1.8V	输入	B21	
113	GND	GND	电源地	0V			
115	UART3_CTS	UART3	UART3 接口流控制	1.8V	输入/ 输出	AD20	
117	UART3_RTS	UART3	UART3 接口流控制	1.8V	输入/ 输出	AE20	
119	UART3_TXD	UART3	UART3 数据发送	1.8V	输出	AC20	
121	UART3_RXD	UART3	UART3 数据接收	1.8V	输入	AF20	
123	SAI2_RXC	GPIO	ENETO 接口复位信号 (GPIO)	1.8V	输出	AJ16	
125	SAI2_RXFS	ENET0	ENETO 接口中断信号 (GPIO)	1.8V	输入	AH17	
133	SAI3_MCLK	SAI3	AUDIO 接口主时钟	1.8V	输出	AJ20	
135	SAI3_TXFS	SAI3	AUDIO DAC 左右时钟	1.8V	输出	AC16	
137	SAI3_TXC	SAI3	AUDIO 接口位时钟	1.8V	输出	AH19	
139	SAI3_TXD	SAI3	AUDIO 接口 DAC 数据	1.8V	输出	AH18	
141	SAI3_RXFS	SAI3	AUDIO ADC 左右时钟)	1.8V	输入	AJ19	
143	SAI3_RXC	GPIO4	通用 GPIO4_IO28	1.8V	输出	AJ18	系统复位时该引脚为输入状 态,内部下拉
145	SAI3_RXD	SAI3	AUDIO 接口 ADC 数据	1.8V	输入	AF18	
147	SPDIF_TX	CAN1	CAN1接口发送	1.8V	输出	AE18	
149	SPDIF_RX	CAN1	CAN1 接口接收	1.8V	输入	AD18	
151	SAI5_MCLK	CAN2	CAN2接口接收	1.8V	输入	AF14	
153	SAI5_RXD3	CAN2	CAN2接口发送	1.8V	输出	AE14	
155	SAI5_RXC	GPIO3	通用 GPIO3_IO20	1.8V	输入	AD14	系统复位时该引脚为输入状 态,内部下拉
157	SAI5_RXD0	GPIO3	通用 GPIO3_IO21	1.8V	输入	AE16	系统复位时该引脚为输入状 态,内部下拉
159	SAI5_RXD1	GPIO	DSI 接口复位信号 (GPIO)	1.8V	输出	AD16	系统复位时该引脚为输入状 态,内部下拉
161	SAI5_RXD2	SAI5	DSI 接口背光使能 (GPIO))	1.8V	输出	AF16	系统复位时该引脚为输入状 态,内部下拉
163	SAI5_RXFS	SAI5	DSI 接口 TP 复位信号 (GPIO))	1.8V	输出	AC14	系统复位时该引脚为输入状 态,内部下拉
165	GPIO1_IO07	GPIO1	通用 GPIO1_IO7	1.8V	输入/ 输出	F6	系统复位时该引脚为输入状 态,内部下拉
167	GPIO1_IO06	GPIO	CSI 接口复位信号	1.8V	输出	A3	系统复位时该引脚为输入状
		•	•			•	

			(GPIO)				态,内部下拉
169	GPIO1_IO05	GPIO1	通用 GPIO1_IO5	1.8V	输入/输出	B4	系统复位时该引脚为输入状 态,内部下拉
171	GPIO1_IO14	GPIO1	通用 GPIO1_IO4	1.8V	输入/ 输出	A4	系统复位时该引脚为输入状 态,内部下拉
173	GPIO1_IO01	GPIO1	通用 GPIO1_IO01	1.8V	输入/ 输出	E8	系统复位时该引脚为输入状 态,内部下拉
175	GPIO1_IO11	GPIO	通用 GPIO1_IO11	1.8V	输入/ 输出	D8	系统复位时该引脚为输入状 态,内部下拉
177	GPIO1_IO15	GPIO1	通用 GPIO1_IO15	1.8V	输出	B5	系统复位时该引脚为输入状 态,内部下拉
179	GPIO1_IO12	GPIO	通用 GPIO1_IO12	1.8V 输入/ 输出		A5	系统复位时该引脚为输入状 态,内部下拉
181	GPIO1_IO13	GPIO	通用 GPIO1_IO13	1.8V	输入/输出	A6	系统复位时该引脚为输入状 态,内部下拉
183	GPIO1_IO10	GPIO1	通用 GPIO1_IO10	1.8V	输入/输出	В7	系统复位时该引脚为输入状 态,内部下拉
185	GPIO1_IO00	GPIO	通用 GPIO1_IO00	1.8V	1.8V 输入/ 输出 A7		系统复位时该引脚为输入状 态,内部下拉
187	SAI1_TXD6	GPIO4	通用 GPIO4_IO18	1.8V	1.8V 输出 AC12		系统复位时该引脚为输入状 态,内部下拉
189	SAI1_TXD7	GPIO4	通用 GPIO4_IO19	1.8V	输入/	AJ13	系统复位时该引脚为输入状 态,内部下拉
191	GPIO1_IO09	GPIO4	通用 GPIO1_IO09	1.8V	输入/	В8	系统复位时该引脚为输入状 态,内部下拉
193	RESERVED						
195	GND	GND	电源地	0V			
197	SAI1_TXC	ENET1	ENET1 接收时钟	1.8V	输入	AJ12	
199	SAI1_TXFS	ENET1	ENET1 数据接收控制位	1.8V	输入	AF12	
201	SAI1_RXD7	ENET1	ENET1 接收数据 3	1.8V	输入	AH12	
203	SAI1_RXD6	ENET1	ENET1 接收数据 2	1.8V	输入	AH10	
205	SAI1_RXD5	ENET1	ENET1 接收数据 1	1.8V	输入	AE10	
207	SAI1_RXD4	ENET1	ENET1 接收数据 0	1.8V	输入	AD10	
209	SAI1_RXD0	ENET1	ENET1 接口复位信号 (GPIO)	1.8V	输出	AC10	系统复位时该引脚为输入状 态,内部下拉
211	SAI1_RXD1	ENET1	ENET1接口中断信号	1.8V	输入	AF10	
213	SAI1_RXD2	ENET1	ENET1 MDIO 时钟	1.8V	输出	AH9	
215	SAI1_RXD3	ENET1	ENET1 MDIO 数据	1.8V	输入/输出	AJ8	

217	GND	GND	电源地	0V			
219	USB2_DN	USB2	USB2 数据负	3.3V	输入/	E14	
221	USB2_DP	USB2	USB2 数据正	3.3V	输入/ 输出	D14	
223	GND	GND	电源地	0V			
225	USB2_ID	USB2	USB2 ID 信号	3.3V	输入	E12	
227	USB2_VBUS	USB2	USB2 总线电源监测信号	3.3V	输入	D12	
229	USB1_ID	USB1	USB1 ID 信号	3.3V	输入	B11	
231	USB1_VBUS	USB1	USB1 总线电源监测信号	3.3V	输入	A11	
233	GND	GND	电源地	0V			
235	USB1_DN	USB1	USB1 数据负	3.3V	输入/输出	E10	
237	USB1_DP	USB1	USB1 数据正	3.3V	输入/ 输出	D10	
239	GND	GND	电源地	0V	0V		
241	I2C4_SCL	I2C4	I2C4 总线时钟	3.3V	输出	AF8	
243	I2C4_SDA	I2C4	I2C4 总线数据传输	3.3V 输入		AD8	
245	GND	GND	电源地	0V			
247	UART1_TXD	UART1	UART1 接口数据发送	3.3V	输出	AJ3	
249	UART1_RXD	UART1	UART1接口数据接收	3.3V	输入	AD6	
251	UART1_CTS	UART1	UART1 CTS 信号	3.3V	输入/	AE6	
253	UART1_RTS	UART1	UART1 RTS 信号	3.3V	输入/	AJ4	
255	GND	GND	电源地	0V			
257	RESERVED						
259	ONOFF	ONOFF	核心板 ONOFF 信号	1.8V	输入	G22	
261	POR_B	POR_B	核心板复位输出信号	1.8V	输出	J29	复位输出信号,可用于同步 底板外设的复位
263	PMIC_ON_REQ	PMIC	核心板 POWER GOOD	1.8V	输出	F22	核心板上电完成后,该信号 由低变高
265	SYS_nRST	SYS_nRST	核心板上电复位信号	1.8V	输入		
267	BOOT_MODE0	воот	启动与下载模式控制	1.8V 输入 G1		G10	
269	BOOT_MODE1	воот	启动与下载模式控制	1.8V 输入 F8		F8	
271	BOOT_MODE2	воот	启动与下载模式控制	1.8V	输入	G8	
273	BOOT_MODE3	воот	启动与下载模式控制	1.8V	输入	G12	

275	GND	GND	电源地	0V			
277	VSD_3V3	VSD_3V3	SD 卡供电 3.3V 输出	3.3V	输出		只推荐用于底板 SD 卡供电
279	VSD_3V3	VSD_3V3	SD 卡供电 3.3V 输出	3.3V	输出		只推荐用于底板 SD 卡供电
281	VSD_3V3	VSD_3V3	SD 卡供电 3.3V 输出	3.3V	输出		只推荐用于底板 SD 卡供电
2	LVDS0_TX0_P	LVDS0	LVDS0接口TX0正信号	1.8V	1.8V 輸出 D29		
4	LVDS0_TX0_N	LVDS0	LVDS0接口TX0负信号	1.8V	输出	E28	
6	GND	GND	电源地	0V			
8	LVDS0_TX1_P	LVDS0	LVDS0 接口 TX1 正信号	1.8V	输出	E29	
10	LVDS0_TX1_N	LVDS0	LVDS0接口TX1负信号	1.8V	输出	F28	
12	GND	GND	电源地	0V			
14	LVDS0_CLK_P	LVDS0	LVDSO接口时钟 正信号	1.8V	输出	F29	
16	LVDS0_CLK_N	LVDS0	LVDS0接口时钟 负信号	1.8V	输出	G28	
18	GND	GND	电源地	0V			
20	LVDS0_TX2_P	LVDS0	LVDS0 接口 TX2 正信号	1.8V	输出	G29	
22	LVDS0_TX2_N	LVDS0	LVDS0 接口 TX2 负信号	1.8V	输出	H28	
24	GND	GND	电源地	0V	0V		
26	LVDS0_TX3_P	LVDS0	LVDS0接口TX3 正信号	1.8V 输出		H29	
28	LVDS0_TX3_N	LVDS0	LVDS0接口TX3负信号	1.8V	输出	J28	
30	GND	GND	电源地	0V			
32	SD1_STROBE	GPIO	uSDHC1 流控信号 (GPIO)	1.8V	输出	W26	系统复位时该引脚为输入状 态,内部下拉
34	SD1_RESET_B	GPIO	uSDHC1 接口复位信号 (GPIO)	1.8V	输出	W25	系统复位时该引脚为输入状 态,内部下拉
36	SD1_DATA4	uSDHC1	uSDHC1接口数据位4	1.8V	输入/	U26	
38	SD1_DATA7	uSDHC1	uSDHC1接口数据位7	1.8V	输入/	U25	
40	SD1_DATA3	uSDHC1	uSDHC1接口数据位3	1.8V	输入/	V28	
42	SD1_DATA2	uSDHC1	uSDHC1 接口数据位 2	1.8V	输入/ 输出	V29	
44	SD1_CLK	uSDHC1	uSDHC1 时钟	1.8V	输出	W28	
46	SD1_CMD	uSDHC1	uSDHC1 命令信号	1.8V	输出	W29	
48	SD1_DATA0	uSDHC1	uSDHC1 接口数据位 0	1.8V 输入/		Y29	
50	SD1_DATA1	uSDHC1	uSDHC1 接口数据位 1	1.8V	输入/	Y28	

					输出		
52	SD1_DATA5	uSDHC1	uSDHC1接口数据位5	1.8V	输入/ 输出	AA29	
54	SD1_DATA6	uSDHC1	uSDHC1接口数据位6	1.8V	输入/	AA28	
56	GND	GND	电源地	0V			
58	ECSPI2_SCLK	ECSPI2	SPI2 时钟	1.8V	输出	AH21	
60	ECSPI2_SS0	ECSPI2	SPI2 片选	1.8V	输出	AJ22	
62	ECSPI2_MOSI	ECSPI2	SPI2 数据输出	1.8V	输出	AJ21	
64	ECSPI2_MISO	ECSPI2	SPI2 数据输入	1.8V	输入	AH20	
66	GND	GND	电源地	0V			
68	CSI1_DN3	CSI1	CSI1 接口 LANE3 负信号	1.8V	输入	E26	
70	CSI1_DP3	CSI1	CSI1 接口 LANE3 正信号	1.8V	输入	D26	
72	GND						
74	CSI1_DN2	CSI1	CSI1 接口 LANE2 负信号	1.8V	输入	E24	
76	CSI1_DP2	CSI1	CSI1 接口 LANE2 正信号	1.8V	输入	D24	
78	GND	GND	电源地	0V			
80	CSI1_CKN	CSI1	CSI1 时钟负信号	1.8V	输入	E22	
82	CSI1_CKP	CSI1	CSI1 时钟正信号	1.8V	输入	D22	
84	GND	GND	电源地	0V			
86	CSI1_DN1	CSI1	CSI1 接口 LANE1 负信号	1.8V	输入	E20	
88	CSI1_DP1	CSI1	CSI1 接口 LANE1 正信号	1.8V	输入	D20	
90	GND	GND	电源地	0V			
92	CSI1_DN0	CSI1	CSI1 接口 LANE0 负信号	1.8V	输入	E18	
94	CSI1_DP0	CSI1	CSI1 接口 LANE0 正信号	1.8V	输入	D18	
96	GND	GND	电源地	0V			
98	ENET_RXC	ENET0	ENETO 接收时钟	1.8V	输入	AE29	
100	ENET_RX_CTL	ENET0	ENETO 数据接收控制位	1.8V	输入	AE28	
102	ENET_TX_CTL	ENET0	ENETO 数据发送控制位	1.8V	输出	AF24	
104	ENET_TXC	ENET0	ENETO 发送时钟	1.8V	输出	AE24	
106	ENET_TD0	ENET0	ENETO 发送数据 0	1.8V	输出	AC25	
108	ENET_TD1	ENET0	ENETO 发送数据 1	1.8V	输出	AE26	
110	ENET_TD2	ENET0	ENETO 发送数据 2	1.8V	输出	AF26	
112	ENET_TD3	ENET0	ENETO 发送数据 3	1.8V	输出	AD24	
114	ENET_RD2	ENET0	ENETO接收数据 2	1.8V	输入	AF29	

116	ENET_RD3	ENET0	ENETO 接收数据 3	1.8V	输入	AF28	
118	ENET_RD0	ENET0	ENETO 接收数据 0	1.8V	输入	AG29	
120	ENET_RD1	ENET0	ENETO 接收数据 1	1.8V	输入	AG28	
122	ENET_MDIO	ENET0	ENETO MDIO 数据	1.8V	输入/	AB27	
124	ENET_MDC	ENET0	ENET0 MDIO 时钟	1.8V	输出	AC27	
134	GND	GND	电源地	0V			
136	DSI_DP3	DSI	DSI 接口 LANE3 数据正	1.8V	输出	A20	
138	DSI_DN3	DSI	DSI 接口 LANE3 数据负	1.8V	输出	B20	
140	GND	GND	电源地	0V			
142	DSI_DP2	DSI	DSI 接口 LANE2 数据正	1.8V	输出	A19	
144	DSI_DN2	DSI	DSI 接口 LANE2 数据负	1.8V	输出	B19	
146	GND	GND	电源地	0V			
148	DSI_DP1	DSI	DSI 接口 LANE1 数据正	1.8V	输出	A17	
150	DSI_DN1	DSI	DSI 接口 LANE1 数据负	1.8V	输出	B17	
152	GND	GND	电源地	0V			
154	DSI_CKP	DSI	DSI 时钟正信号	1.8V	输出	A18	
156	DSI_CKN	DSI	DSI 时钟负信号	1.8V	输出	B18	
158	GND	GND	电源地	0V			
160	DSI_DP0	DSI	DSI接口 LANE0数据正	1.8V	输出	A16	
162	DSI_DN0	DSI	DSI接口 LANE0数据负	1.8V	输出	B16	
164	GND	GND	电源地	0V			
166	PCIE_CLKN	PCIE	PCIE 接口参考时钟负	1.8V	输入/ 输出	E16	
168	PCIE_CLKP	PCIE	PCIE 接口参考时钟正	1.8V	输入/ 输出	D16	
170	GND	GND	电源地	0V			
172	PCIE_TXN	PCIE	PCIE 接口发送负信号	1.8V	输出	B15	
174	PCIE_TXP	PCIE	PCIE 接口发送正信号	1.8V	输出	A15	
176	GND	GND	电源地	0V			
178	PCIE_RXN	PCIE	PCIE 接口接收负信号	1.8V	输入	B14	
180	PCIE_RXP	PCIE	PCIE 接口接收正信号	1.8V	输入	A14	
182	GND	GND	电源地	0V			
184	SAI2_TXFS	GPIO4	通用 GPIO4_IO24	1.8V	输入/ 输出	AJ17	系统复位时该引脚为输入状 态,内部下拉
186	SAI2_TXC	GPIO4	通用 GPIO4_IO25	1.8V	输入/	AH15	系统复位时该引脚为输入状

					1		
					輸出		态,内部下拉
188	SAI2_MCLK	GPIO4	通用 GPIO4_IO27	1.8V	输入/输出	AJ15	系统复位时该引脚为输入状 态,内部下拉
190	SAI2_RXD	SAI2	通用 GPIO4_IO22	1.8V	输入/ 输出	AJ14	系统复位时该引脚为输入状 态,内部下拉
192	SPDIF_EXT_CLK	GPIO5	通用 GPIO5_IO5	D5_IO5 1.8V		AC18	系统复位时该引脚为输入状 态,内部下拉
194	SAI2_TXD	GPIO4	通用 GPIO4_IO26	1.8V	输入/	AH16	系统复位时该引脚为输入状 态,内部下拉
196	SAI1_MCLK	GPIO	通用 GPIO4_IO20	1.8V	输入/ 输出	AE12	系统复位时该引脚为输入状 态,内部下拉
198	GPIO1_IO08	GPIO1	通用 GPIO1_IO08	1.8V	输入/输出	A8	系统复位时该引脚为输入状 态,内部下拉
200	SAI1_RXFS	GPIO	5G接口复位信号 (GPIO)	1.8V	输出	AJ9	系统复位时该引脚为输入状 态,内部下拉
202	SAI1_RXC	GPIO	PCIE 接口复位信号 (GPIO)	言 号 1.8V		AH18	系统复位时该引脚为输入状 态,内部下拉
204	RESERVED						
206	EARC_N_HPD	EARC	EARC接口数据负信号	1.8V	输入/ 输出	AH22	
208	EARC_P_UTIL	EARC	EARC接口数据正信号	1.8V	输入/输出	AJ23	
210	SAI1_TXD5	ENET1	ENET1 发送时钟	1.8V	输出	AH14	
212	SAI1_TXD4	ENET1	ENET1 数据发送控制位	1.8V	输出	AH13	
214	SAI1_TXD3	ENET1	ENET1 发送数据 3	1.8V	输出	AD12	
216	SAI1_TXD2	ENET1	ENET1 发送数据 2	1.8V	输出	AH11	
218	SAI1_TXD1	ENET1	ENET1 发送数据 1	1.8V	输出	AJ10	
220	SAI1_TXD0	ENET1	ENET1 发送数据 0	1.8V	输出	AJ11	
222	GND	GND	电源地	0V			
224	USB1_RXN	USB1	USB1 接收数据负	3.3V	输入	В9	
226	USB1_RXP	USB1	USB1 接收数据正	3.3V	输入	A9	
228	GND	GND	电源地	0V			
230	USB1_TXN	USB1	USB1 发送数据负	3.3V	輸出	B10	
232	USB1_TXP	USB1	USB1 发送数据正	3.3V	輸出	A10	
234	GND	GND	电源地	0V			
236	USB2_RXN	USB2	USB2 接收数据负	3.3V	输入	B12	
238	USB2_RXP	USB2	USB2 接收数据正	3.3V	输入	A12	
240	GND	GND	电源地	0V			

242	USB2_TXN	USB2	USB2 发送数据负	3.3V	输出	B13	
244	USB2_TXP	USB2	USB2 发送数据正	3.3V	输出	A13	
246	GND	GND	电源地	0V			
248	I2C2_SCL	I2C2	I2C2 总线时钟	3.3V	输出	AH6	
250	I2C2_SDA	I2C2	I2C2 总线数据传输	3.3V	输入/ 输出	AE8	
252	I2C3_SCL	I2C3	I2C3 总线时钟	3.3V	输出	AJ7	
254	I2C3_SDA	I2C3	I2C3 总线数据传输	3.3V	输入/ 输出	AJ6	
256	UART2_TXD	UART2	UART2接口数据发送	3.3V	输出	AH4	
258	UART2_RXD	UART2	UART2接口数据接收	3.3V	输入	AF6	
260	UART4_TXD	UART4	UART4接口数据发送	3.3V	输出	AH5	
262	UART4_RXD	UART4	UART4接口数据接收	3.3V	输入	AJ5	
264	JTAG_TMS	JTAG	JTAG TMS 信号	1.8V	输入	G14	
266	JTAG_TDO	JTAG	JTAG 接口数据输出	1.8V	输出	F14	
268	JTAG_TDI	JTAG	JTAG 接口数据输入	1.8V	输入	G16	
270	JTAG_MOD	JTAG	JTAG MODE 配置	1.8V	输入	G20	
272	JTAG_TCK	JTAG	JTAG 接口时钟信号	1.8V	输入	G18	
274	RESERVED						
276	RESERVED						
278	RESERVED						
280	RESERVED						

表 3-1 MYC-JX8MPQ 核心板 PIN LIST

4. 电气特性

4.1. 主要电源 (VSYS_5V)

MYC-JX8MPQ 核心板的主要供电电源是 VSYS_5V,对应 J1A 连接器 E1、E3 引脚。为了保证正常工作,底板必须提供 5V±10%的电压,并确保供电电路的输出能力可以满足核心板的功耗。4.4 章节列出了各条件下核心板的功耗和电流,在设计供电电路时请预留合适的余量。

4.2. 电源域

外部供电电压是需要底板提供的电压,内部产生电压是核心板自行产生的电压,不需要外部供电。

电源网络	描述	推荐电压值
VDD_5V	主要供应电压,5V 输入	5V
VDD_3V3 VSD_3V3	3.3V 输出	
VDD_1V8	1.8V 输出	

表 4-1 外部输入输出电压

电源网络	描述	电压值	
VDD_SOC	Power supply for SOC	0.8V/0.9V @3A	
VDD_ARM	Power supply for ARM core	0.8/0.9/1.0V @3A	
NVCC_DRAM_1V1	Power supply for DRAM	1.1V @2A	

表 4-2 内部产生电压

4.3. 电源功耗

工作条件	电源电压(V)	平均电流(A)	总功耗 (W)
mem 低功耗模式	5V	0.04	0.2
freeze 低功耗模式	5V	0.15	0.75
CPU light load	5V	0.45	2.25
CPU heavy load	5V	0.65	3.25
CPU full load	5V	1.1	5.5

表 4-3 电源功耗参数

4.4. GPIO 直流特性

参数	标号	最小值	推荐值	最大值	单位	说明
\$0.000 A	V _{OH (1.8V)}	0.8 x VDD	_	VDD	V	
高电平输出电压	V _{OH (3.3V)}	0.8 x VDD	_	VDD	V	
15-1	V _{OL (1.8V)}	0	_	0.2 x VDD	V	
低电平输出电压	V _{OL (3.3V)}	0	_	0.2 x VDD	V	
高电平输入电压	V _{IH(3.3V)}	0.7 x VDD	_	VDD + 0.3	V	
低电平输入电压	V _{IL(1.8V)}	-0.3	_	0.3 x VDD	V	

表 4-4 GPIO 直流特性

5. 系统配置和启动

5.1. BOOT 模式设置

i.MX8M Plus 系列处理器启动时首先执行芯片内部 Boot ROM 中的程序。Boot ROM 通过读取 Boot Mode 管脚进入不同的启动模式。具体对应如下:

Boot Mode [3:0]	功能	说明
0000	Boot From Internal Fuses	内部 Fuses 读取启动信息,NXP 建议量产时用此方式出货
0001	USB Serial Download	支持从 USB 口串口下载程序。
0010	USDHC3 (eMMC boot only, SD3 8-bit) Default	eMMC Boot 配置启动
0011	USDHC2 (SD boot only, SD2)	SD Boot 配置启动

表 5-1 处理器启动模式配置

Boot Mode 管脚在核心板内并未增加上拉或者下拉设计。但是芯片内部默认有下拉。

5.2. 复位和开关

MYC-JX8MPQ 核心板提供 2 个专用引脚,分别是 NRST 复位和 ONOFF,二者的功能不同,建议都接出来,作不同的用途。

管脚功能	说明
SYS_nRST (核心板 J1B.265 管脚)	核心板上电复位管脚,底板上可以采用 RC 复位电路或者硬件看门狗复位芯片。
ONOFF (核心板 J1B.259 管脚)	系统开关按钮。通常外接一个按键。 第一次上电启动后,按下按键系统自动关机,再次按下此按键,会开机。当系统处于休眠,此时按下此按键会唤醒系统。

表 5-2 复位和 ONOFF 引脚功能描述

6. 接口说明

6.1. uSDHC接口

MYC-JX8MPQ 核心板搭载了 3 路 uSDHC 接口,并引出了其中的 2 路,uSDHC1 和 uSDHC2。两个 uSDHC 接口均支持用作启动设备对应的接口,uSDHC2 通常用于设计 Micro SD 卡,uSDHC1 可以用于设计具有 SDIO 接口的模块之间的通信接口。

6.1.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	31	SD2_RESET_B	GPIO	uSDHC2 接口复位信号 (GPIO)	1.8 V/3.3V	输出	AD28	系统复位时该引 脚为输入状态, 内部下拉
	33	SD2_DATA0	uSDHC2	uSDHC2接口数据位 0	1.8 V/3.3V	输入/输出	AC28	
	35	SD2_DATA1	uSDHC2	uSDHC2接口数据位1	1.8 V/3.3V	输入/输出	AC29	
J1A	37	SD2_DATA2	uSDHC2	uSDHC2接口数据位2	1.8 V/3.3V	输入/输出	AA26	
	39	SD2_DATA3	uSDHC2	uSDHC2接口数据位3	1.8 V/3.3V	输入/输出	AA25	
	43	SD2_nCD	uSDHC2	uSDHC2 接口检测	1.8 V/3.3V	输入	AD29	
	45	SD2_CLK	uSDHC2	uSDHC2 时钟	1.8 V/3.3V	输出	AB29	
	47	SD2_CMD	uSDHC2	uSDHC2 命令信号	1.8 V/3.3V	输出	AB28	

表 6-1 uSDHC2 接口 PIN 定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	32	SD1_STROBE	GPIO	uSDHC1 流控信号 (GPIO)	1.8V	输入	10	系统复位时该引 脚为输入状态, 内部下拉
	34	SD1_RESET_B	GPIO	uSDHC1接口复位信号(GPIO)	1.8V	輸出		系统复位时该引脚为输入状态, 内部下拉
	36	SD1_DATA4	uSDHC1	uSDHC1接口数据位3	1.8V	输入/输出	U26	
J1A	38	SD1_DATA7	uSDHC1	uSDHC1接口数据位3	1.8V	输入/输出	U25	
	40	SD1_DATA3	uSDHC1	uSDHC1接口数据位3	1.8V	输入/输出	V28	
	42	SD1_DATA2	uSDHC1	uSDHC1接口数据位2	1.8V	输入/输出	V29	
	44	SD1_CLK	uSDHC1	uSDHC1 时钟	1.8V	输出	W28	
	46	SD1_CMD	uSDHC1	uSDHC1 命令信号	1.8V	输出	W29	
	48	SD1_DATA0	uSDHC1	uSDHC1接口数据位 0	1.8V	输入/输出	Y29	

50	SD1_DATA1	uSDHC1	uSDHC1接口数据位1	1.8V	输入/输出	Y28	
52	SD1_DATA5	uSDHC1	uSDHC1接口数据位5	1.8V	输入/输出	AA29	
54	SD1_DATA6	uSDHC1	uSDHC1接口数据位 6	1.8V	输入/输出	AA28	

表 6-2 uSDHC1 接口 PIN 定义

6.2. UART 接口

MYC-JX8MPQ 核心板拥有高达 4 路的异步串口,其中 UART1、UART3 带有流控制 (RTS 和 CTS 信号) 功能。

6.2.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	参考电平	输入/输出	MPU 引脚	备注
	115	UART3_CTS	UART3	UART3 接口流控制	1.8V	输入/输出	AD20	
	117	UART3_RTS	UART3	UART3接口流控制	1.8V	输入/输出	AE20	
	119	UART3_TXD	UART3	UART3 数据发送	1.8V	输出	AC20	
	121	UART3_RXD	UART3	UART3 数据接收	1.8V	输入	AF20	
	247	UART1_TXD	UART1	UART1 接口数据发送	3.3V	输出	AJ3	
11 A /D	249	UART1_RXD	UART1	UART1 接口数据接收	3.3V	输入	AD6	
J1A/B	251	UART1_CTS	UART1	UART1接口流控制	3.3V	输入/输出	AE6	
	253	UART1_RTS	UART1	UART1接口流控制	3.3V	输入/输出	AJ4	
	256	UART2_TXD	UART2	UART2接口数据发送	3.3V	输出	AH4	
	258	UART2_RXD	UART2	UART2 接口数据接收	3.3V	输入	AF6	
	260	UART4_TXD	UART4	UART4接口数据发送	3.3V	输出	AH5	
	262	UART4_RXD	UART4	UART4接口数据接收	3.3V	输入	AJ5	_

表 6-3 UART 接口 PIN 定义

6.3. USB 接口

MYC-JX8MPQ 核心板提供两个高速 USB 3.0 控制器, USB1 支持 DRP 模式, 搭配 TYPEC 接口; USB2 仅支持 HOST 模式, 搭配 TYPEA 接口。

6.3.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	219	USB2_DN	USB2	USB2 数据负	3.3V	输入/输出	E14	
	221	USB2_DP	USB2	USB2 数据正	3.3V	输入/输出	D14	
	225	USB2_ID	USB2	USB2 外设监测信号	3.3V	输入	E12	
	227	USB2_VBUS	USB2	USB2 总线电源监测信号	3.3V	输入	D12	
	236	USB2_RXN	USB2	USB2 接收数据负	3.3V	输入	B12	
	238	USB2_RXP	USB2	USB2 接收数据正	3.3V	输入	A12	
	242	USB2_TXN	USB2	USB2 发送数据负	3.3V	输出	B13	
J1B	244	USB2_TXP	USB2	USB2 发送数据正	3.3V	输出	A13	
716	224	USB1_RXN	USB1	USB1 接收数据负	3.3V	输入	В9	
	226	USB1_RXP	USB1	USB1 接收数据正	3.3V	输入	A9	
	229	USB1_ID	USB1	USB1 外设监测信号	3.3V	输入	B11	
	230	USB1_TXN	USB1	USB1 发送数据负	3.3V	输出	B10	
	231	USB1_VBUS	USB1	USB1 总线电源监测信号	3.3V	输入	A11	
	232	USB1_TXP	USB1	USB1 发送数据正	3.3V	输出	A10	
	235	USB1_DN	USB1	USB1 数据负	3.3V	输入/输出	E10	
	237	USB1_DP	USB1	USB1 数据正	3.3V	输入/输出	D10	

表 6-4 USB 接口 PIN 定义

6.4. Ethernet 接口

MYC-JX8MPQ 核心板支持两路干兆网,其中 ENET0 额外支持 TSN 功能,ENET1 不支持 TSN 功能。

6.4.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	98	ENET_RXC	ENET0	ENETO 接收时钟	1.8V	输入	AE29	
位号 J1A	100	ENET_RX_CTL	ENET0	ENETO 数据接收控制位	1.8V	输入	AE28	
	102	ENET_TX_CTL	ENET0	ENETO 数据发送控制位	1.8V	输出	AF24	
	104	ENET_TXC	ENET0	ENETO 发送时钟	1.8V	输出	AE24	
	106	ENET_TD0	ENET0	ENETO 发送数据 0	1.8V	输出	AC25	
	108	ENET_TD1	ENET0	ENETO 发送数据 1	1.8V	输出	AE26	
	110	ENET_TD2	ENET0	ENETO 发送数据 2	1.8V	输出	AF26	
	112	ENET_TD3	ENET0	ENETO 发送数据 3	1.8V	输出	AD24	
J1A	114	ENET_RD2	ENET0	ENETO 接收数据 2	1.8V	输入	AF29	
	116	ENET_RD3	ENET0	ENETO 接收数据 3	1.8V	输入	AF28	
	118	ENET_RD0	ENET0	ENETO 接收数据 0	1.8V	输入	AG29	
	120	ENET_RD1	ENET0	ENETO 接收数据 1	1.8V	输入	AG28	
	122	ENET_MDIO	ENET0	ENET0 MDIO 数据	1.8V	输入/输出	AB27	
	123	SAI2_RXC	GPIO	ENETO 接口复位信号 (GPIO)	1.8V	输出	AJ16	
	124	ENET_MDC	ENET0	ENET0 MDIO 时钟	1.8V	输出	AC27	
	125	SAI2_RXFS	ENET0	ENETO接口中断信号 (GPIO)	1.8V	输入	AH17	

表 6-5 Ethernet0 接口 PIN 定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	197	SAI1_TXC	ENET1	ENET1 接收时钟	1.8V	输入	AJ12	
	199	SAI1_TXFS	ENET1	ENET1 数据接收控制位	1.8V	输入	AF12	
	201	SAI1_RXD7	ENET1	ENET1 接收数据 3	1.8V	输入	AH12	
	203	SAI1_RXD6	ENET1	ENET1 接收数据 2	1.8V	输入	AH10	
	205	SAI1_RXD5	ENET1	ENET1 接收数据 1	1.8V	输入	AE10	
	207	SAI1_RXD4	ENET1	ENET1 接收数据 0	1.8V	输入	AD10	
	209	SAI1_RXD0	ENET1	ENET1 接口复位信号 (GPIO)	1.8V	输出	AC10	系统复位时该引 脚为输入状态, 内部下拉
J1B	210	SAI1_TXD5	ENET1	ENET1 发送时钟	1.8V	输出	AH14	
	211	SAI1_RXD1	ENET1	ENET1接口中断信号	1.8V	输入	AF10	
	212	SAI1_TXD4	ENET1	ENET1 数据发送控制位	1.8V	输出	AH13	
	213	SAI1_RXD2	ENET1	ENET1 MDIO 时钟	1.8V	输出	AH9	
	214	SAI1_TXD3	ENET1	ENET1 发送数据 3	1.8V	输出	AD12	
	215	SAI1_RXD3	ENET1	ENET1 MDIO 数据	1.8V	输入/输出	AJ8	
	216	SAI1_TXD2	ENET1	ENET1 发送数据 2	1.8V	输出	AH11	
	218	SAI1_TXD1	ENET1	ENET1 发送数据 1	1.8V	输入	AJ10	
	220	SAI1_TXD0	ENET1	ENET1 发送数据 0	1.8V	输入	AJ11	

表 6-6 Ethernet1 接口 PIN 定义

6.5. CSI 接口

MYC-JX8MPQ 核心板支持 2 路 4lane CSI 接口,用于外接摄像头输入信号。推荐同时购买配套的摄像头模块 MY-CAM003M 以评估 CSI 功能。

6.5.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	68	CSI1_DN3	CSI1	CSI1 接口 LANE3 负信号	1.8V	输入	E26	
	70	CSI1_DP3	CSI1	CSI1 接口 LANE3 正信号	1.8V	输入	D26	
	74	CSI1_DN2	CSI1	CSI1 接口 LANE2 负信号	1.8V	输入	E24	
	76	CSI1_DP2	CSI1	CSI1接口 LANE2 正信号	1.8V	输入	D24	
	80	CSI1_CKN	CSI1	CSI1 时钟负信号	1.8V	输入	E22	
	82	CSI1_CKP	CSI1	CSI1 时钟正信号	1.8V	输入	D22	
	86	CSI1_DN1	CSI1	CSI1 接口 LANE1 负信号	1.8V	输入	E20	
	88	CSI1_DP1	CSI1	CSI1接口 LANE1 正信号	1.8V	输入	D20	
	92	CSI1_DN0	CSI1	CSI1 接口 LANE0 负信号	1.8V	输入	E18	
J1A	94	CSI1_DP0	CSI1	CSI1 接口 LANE0 正信号	1.8V	输入	D18	
	85	CSI2_DP0	CSI2	CSI2 接口 LANE0 正信号	1.8V	输入	A25	
	87	CSI2_DN0	CSI2	CSI2 接口 LANE0 负信号	1.8V	输入	B25	
	91	CSI2_DP1	CSI2	CSI2 接口 LANE1 正信号	1.8V	输入	A24	
	93	CSI2_DN1	CSI2	CSI2 接口 LANE1 负信号	1.8V	输入	B24	
	97	CSI2_CKP	CSI2	CSI2 时钟正信号	1.8V	输入	A23	
	99	CSI2_CKN	CSI2	CSI2 时钟负信号	1.8V	输入	B23	
	103	CSI2_DP2	CSI2	CSI2 接口 LANE2 正信号	1.8V	输入	A22	
	105	CSI2_DN2	CSI2	CSI2 接口 LANE2 负信号	1.8V	输入	B22	
	109	CSI2_DP3	CSI2	CSI2接口LANE3正信号	1.8V	输入	A21	
	111	CSI2_DN3	CSI2	CSI2 接口 LANE3 负信号	1.8V	输入	B21	

表 6-7 CSI 接口 PIN 定义

6.6. I2C接口

i.MX8M Plus 最大支持 4 路 I2C 总线,由于 I2C1 专用于连接核心板 PMIC 电源管理 芯片,没有对外引出,因此 MYC-JX8MPQ 核心板实际最大支持 3 路 I2C 总线。

6.6.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	241	I2C4_SCL	I2C4	I2C4 总线时钟	3.3V	输出	AF8	
	243	I2C4_SDA	I2C4	I2C4 总线数据传输	3.3V	输入/输出	AD8	
J1B	248	I2C2_SCL	I2C2	I2C2 总线时钟	3.3V	输出	AH6	
	250	I2C2_SDA	I2C2	I2C2 总线数据传输	3.3V	输入/输出	AE8	
	252	I2C3_SCL	I2C3	I2C3 总线时钟	3.3V	输出	AJ7	
	254	I2C3_SDA	I2C3	I2C3 总线数据传输	3.3V	输入/输出	AJ6	

表 6-8 I2C 接口 PIN 定义

6.7. SPI 接口

MYC-JX8MPQ 核心板最大支持 3 路 SPI 控制器,支持主/从模式。SPI 信号包括 SPI_CLK、SPI_MOSI 和 SPI_MISO,设计时要先确认主从设备的关系,进而确认 MOSI 和 MISO 信号的方向。由于引脚复用关系,核心板上默认配置了 1 路 ECSPI2 接口,如果要使用更多的 SPI 接口,请查询芯片手册或者使用 Config Tools for i.MX 软件进行配置,并且修改驱动中的引脚配置。

6.7.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	58	ECSPI2_SCLK	ECSPI2	SPI2 时钟	1.8V	输出	AH21	
J1	60	ECSPI2_SS0	ECSPI2	SPI2 片选	1.8V	输出	AJ22	
	62	ECSPI2_MOSI	ECSPI2	SPI2 数据输出	1.8V	输出	AJ21	
	64	ECSPI2_MISO	ECSPI2	SPI2 数据输入	1.8V	输入	AH20	

表 6-9 SPI2 接口 PIN 定义

6.8. DSI 接口

MYC-JX8MPQ 核心板支持 1 路 4 lane MIPI DSI 接口,最高支持 1920x1080p60 显示输出。

6.8.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	参考电平	输入/输出	MPU 引脚	备注
	136	DSI_DP3	DSI	DSI接口 LANE3 数据正	1.8V	输出	A20	
	138	DSI_DN3	DSI	DSI接口 LANE3 数据负	1.8V	输出	B20	
	142	DSI_DP2	DSI	DSI接口 LANE2 数据正	1.8V	输出	A19	
	144	DSI_DN2	DSI	DSI接口 LANE2数据负	1.8V	输出	B19	
J1B	148	DSI_DP1	DSI	DSI接口 LANE1 数据正	1.8V	输出	A17	
715	150	DSI_DN1	DSI	DSI接口 LANE1 数据负	1.8V	输出	B17	
	154	DSI_CKP	DSI	DSI 时钟正信号	1.8V	输出	A18	
	156	DSI_CKN	DSI	DSI 时钟负信号	1.8V	输出	B18	
	160	DSI_DP0	DSI	DSI接口 LANE0 数据正	1.8V	输出	A16	
	162	DSI_DN0	DSI	DSI接口 LANE0数据负	1.8V	输出	B16	

表 6-10 DSI 接口 PIN 定义

6.9. PCIE 接口

MYC-JX8MPQ核心板支持1路1 lane PCIE 3.0接口。

6.9.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	参考电平	输入/输出	MPU 引脚	备注
	166	PCIE_CLKN	PCIE	PCIE 接口参考时钟负	1.8V	输入/输出	E16	
	168	PCIE_CLKP	PCIE	PCIE 接口参考时钟正	1.8V	输入/输出	D16	
14	172	PCIE_TXN	PCIE	PCIE 接口发送负信号	1.8V	输出	B15	
J1	174	PCIE_TXP	PCIE	PCIE 接口发送正信号	1.8V	输出	A15	
	178	PCIE_RXN	PCIE	PCIE 接口接收负信号	1.8V	输入	B14	
	180	PCIE_RXP	PCIE	PCIE 接口接收正信号	1.8V	输入	A14	

表 6-11 PCIE 接口 PIN 定义

6.10. SAI 接口

MYC-JX8MPQ 核心板最多支持 4 路 SAI 接口,出厂配置默认只使用 1 路 SAI 接口。 SAI 接口是一个同步音频接口,该接口可配置成其他具有帧同步的全双工串行接口,如 I2 S、AC97、TDM 和编解码器/DSP 接口。

出厂配置默认将该接口配成 I2S 接口,可将该接口连接外部音频 CODEC。

6.10.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
	133	SAI3_MCLK	SAI3	AUDIO 接口主时钟	1.8V	输出	AJ20	
	135	SAI3_TXFS	SAI3	AUDIO DAC 左右时钟	1.8V	输出	AC16	
	137	SAI3_TXC	SAI3	AUDIO 接口位时钟	1.8V	输出	AH19	
	139	SAI3_TXD	SAI3	AUDIO 接口 DAC 数据	1.8V	输出	AH18	
J1B	141	SAI3_RXFS	SAI3	AUDIO ADC 左右时钟)	1.8V	输入	AJ19	
	143	SAI3_RXC	GPIO4	通用 GPIO4_IO28	1.8V	输出	AJ18	系统复位时 该引脚为输 入状态,内 部下拉
	145	SAI3_RXD	SAI3	AUDIO 接口 ADC 数据	1.8V	输入	AF18	

表 6-12 AUDIO 接口 PIN 定义

6.11. GPIO 接口

MYC-JX8MPQ 可用的 GPIO 管脚丰富,这些管脚大多可以复用成特定功能。表 6-13 列出了默认当作 GPIO 使用的引脚。客户可以根据自身产品的具体需求对 GPIO 进行灵活配置,建议使用 Config Tools for i.MX 来分配管脚资源。

6.11.1. 引脚定义

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注	
	143	SAI3_RXC	GPIO4	通用 GPIO4_IO28	1.8V	输出	AJ18	默认配置为输入, 内部下拉	
	155	SAI5_RXC	GPIO3	通用 GPIO3_IO20	1.8V	输入	AD14	默认配置为输入, 内部下拉	
	157	SAI5_RXD0	GPIO3	通用 GPIO3_IO21	1.8V	输入	AE16	默认配置为输入, 内部下拉	
	165	GPIO1_IO07	GPIO1	通用 GPIO1_IO7	1.8V	输入/输出	F6	默认配置为输入, 内部下拉	
	169	GPIO1_IO05	GPIO1	通用 GPIO1_IO5	1.8V	输入/输出	B4	默认配置为输入, 内部下拉	
	171	GPIO1_IO14	GPIO1	通用 GPIO1_IO4	1.8V	输入/输出	A4	默认配置为输入, 内部下拉	
	173	GPIO1_IO01	GPIO1	通用 GPIO1_IO01	1.8V	输入/输出	E8	默认配置为输入, 内部下拉	
	175	GPIO1_IO11	GPIO	通用 GPIO1_IO11	1.8V	输入/输出	D8	默认配置为输入, 内部下拉	
	177	GPIO1_IO15	GPIO1	通用 GPIO1_IO15	1.8V	输出	B5	默认配置为输入, 内部下拉	
J1B	179	GPIO1_IO12	GPIO	通用 GPIO1_IO12	1.8V	输入/输出	A5	默认配置为输入, 内部下拉	
	181	GPIO1_IO13	GPIO	通用 GPIO1_IO13	1.8V	输入/输出	A6	默认配置为输入, 内部下拉	
	183	GPIO1_IO10	GPIO1	通用 GPIO1_IO10	1.8V	输入/输出	В7	默认配置为输入, 内部下拉	
	184	SAI2_TXFS	GPIO4	通用 GPIO4_IO24	1.8V	输入/输出	AJ17	默认配置为输入, 内部下拉	
	185	GPIO1_IO00	GPIO	通用 GPIO1_IO00	1.8V	输入/输出	A7	默认配置为输入, 内部下拉	
	186	SAI2_TXC	GPIO4	通用 GPIO4_IO25	1.8V	输入/输出	AH15	默认配置为输入, 内部下拉	
	187	SAI1_TXD6	GPIO4	通用 GPIO4_IO18	1.8V	输入/输出	AC12	默认配置为输入, 内部下拉	
	188	SAI2_MCLK	GPIO4	通用 GPIO4_IO27	1.8V	输入/输出	AJ15	默认配置为输入, 内部下拉	
	189	SAI1_TXD7	GPIO4	通用 GPIO4_IO19	1.8V	输入/输出	AJ13	默认配置为输入, 内部下拉	
	191	GPIO1_IO09	GPIO4	通用 GPIO1_IO09	1.8V	输入/输出	В8	默认配置为输入, 内部下拉	
	192	SPDIF_EXT_CLK	GPIO5	通用 GPIO5_IO5	1.8V	输出	AC18	默认配置为输入,	

位号	核心板引脚	标号	默认功能	功能描述	电平	输入/输出	MPU 引脚	备注
								内部下拉
	194	SAI2_TXD	GPIO4	通用 GPIO4_IO26	1.8V	输入/输出	AH16	默认配置为输入, 内部下拉
	198	GPIO1_IO08	GPIO1	通用 GPIO1_IO08	1.8V	输出	A8	默认配置为输入, 内部下拉

表 6-13 GPIO 接口 PIN 定义

7. 封装信息

7.1. 机械尺寸

图 7-1 MYC-JX8MPQ 核心板俯视图

图 7-2 MYC-JX8MPQ 核心板侧视图

7.2. 散热器尺寸

由于 CPU 本身功耗较大,MYC-JX8MPQ 核心板出货时配有专门的散热器辅助散热,如果在实际应用中产品的工作环境温度不高,或者 CPU 处于轻负荷运行状态,则散热器不是必须的,可以手动拆除。散热器的面积及高度信息如下图所示:

图 7-3 MYC-JX8MPQ 散热器尺寸图

7.3. 核心板推荐焊盘

米尔电子提供设计好的 PCB 封装,请访问 http://down.myir-tech.com/MYD-JX8 MP/以获取该封装文件。

7.4. 底板 PCB 要求

- a) 推荐 PCB 厚度 1.2mm, 注意覆铜的均衡, 如过炉出现 PCB 变形, 建议使用治具固定过炉。
- b) 为保证贴装和上锡质量,请确保 PCB 上模块与其它元器件之间的距离至少 3mm。
- c) 请按照 7.2 节设计核心板模块的封装,或者使用米尔电子提供的 PCB 封装。

附录一 联系我们

深圳总部

负责区域: 广东 / 四川 / 重庆 / 湖南 / 广西 / 云南 / 贵州 / 海南 / 香港 / 澳门

电话: 0755-25622735 18924653967

邮编: 518020

地址:深圳市龙岗区坂田街道发达路云里智能园 2 栋 6 楼 04 室

上海办事处

负责区域:上海/湖北/江苏/浙江/安徽/福建/江西

电话: 021-62087019 传真: 021-62087085

地址: 上海市浦东新区金吉路 778 号浦发江程广场 1 号楼 805 室

北京办事处

负责区域:北京/天津/陕西/辽宁/山东/河南/河北/黑龙江/吉林/山西/甘肃/内蒙古/宁夏

电话: 010-84675491 传真: 010-64125474

地址: 北京市大兴区荣华中路 8 号院力宝广场 10 号楼 901 室

武汉研发中心

地址: 武汉东湖新技术开发区关南园一路 20 号当代科技园 7 号楼 1903 号

电话: 027-59621648

销售联系方式

网址: www.myir-tech.com

邮箱: sales.cn@myirtech.com

技术支持联系方式

电话: 027-59621648

邮箱: support.cn@myirtech.com

在您通过邮件获取帮助时,请使用以下格式书写邮件标题,以便于相应开发组快速跟进并处理您的问题:

[公司名称/个人--开发板型号] 问题概述

附录二 售后服务与技术支持

凡是通过米尔科技直接购买或经米尔科技授权的正规代理商处购买的米尔科技全系列产品,均可 享受以下权益:

- 1、6个月免费保修服务周期
- 2、终身免费技术支持服务
- 3、终身维修服务
- 4、免费享有所购买产品配套的软件升级服务
- 5、免费享有所购买产品配套的软件源代码,以及米尔科技开发的部分软件源代码
- 6、可直接从米尔科技购买主要芯片样品,简单、方便、快速;免去从代理商处购买时,漫长的等待 周期
- 7、自购买之日起,即成为米尔科技永久客户,享有再次购买米尔科技任何一款软硬件产品的优惠政 策
 - 8、OEM/ODM 服务

如有以下情况之一,则不享有免费保修服务:

- 1、超过免费保修服务周期
- 2、无产品序列号或无产品有效购买单据
- 3、进液、受潮、发霉或腐蚀
- 4、受撞击、挤压、摔落、刮伤等非产品本身质量问题引起的故障和损坏
- 5、擅自改造硬件、错误上电、错误操作造成的故障和损坏
- 6、由不可抗拒自然因素引起的故障和损坏

产品返修

用户在使用过程中由于产品故障、损坏或其他异常现象,在寄回维修之前,请先致电米尔科技客服部,与工程师进行沟通以确认问题,避免故障判断错误造成不必要的运费损失及周期的耽误。

维修周期

收到返修产品后,我们将即日安排工程师进行检测,我们将在最短的时间内维修或更换并寄回。一般的故障维修周期为3个工作日(自我司收到物品之日起,不计运输过程时间),由于特殊故障导致无法短期内维修的产品,我们会与用户另行沟通并确认维修周期。

维修费用

在免费保修期内的产品,由于产品质量问题引起的故障,不收任何维修费用;不属于免费保修范围内的故障或损坏,在检测确认问题后,我们将与客户沟通并确认维修费用,我们仅收取元器件材料费,不收取维修服务费;超过保修期限的产品,根据实际损坏的程度来确定收取的元器件材料费和维修服务费。

运输费用

产品正常保修时,用户寄回的运费由用户承担,维修后寄回给用户的费用由我司承担。非正常保修产品来回运费均由用户承担。