- 1.
- a) Sean $a,b,c\in\mathbb{R}$. Sin hacer cálculos, halle un autovalor λ y un autovector \vec{v} correspondiente a λ de la matriz. (3 puntos)

$$A = \left(\begin{array}{ccc} a & b & c \\ a & b & c \\ a & b & c \end{array}\right).$$

- b) Sea $\vec{b} \in \mathbb{R}^n$ un autovector de una matriz $n \times n$, C, correspondiente al autovalor $\lambda = 2$. Determine una solución del sistema $C\vec{x} = \vec{b}$. (3 puntos)
- 2.
- a) Aplique el proceso de Gram-Schmidt al conjunto $\left\{ \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$ de \mathbb{R}^3 para hallar una base auto-normal de \mathbb{R}^3 . (4 puntos)
- b) Sea $H=\operatorname{gen}\left\{\left(\begin{array}{c}2\\-2\\1\end{array}\right)\right\}$. Exhiba una base ortonormal de H^{\perp} . (2 puntos)
- c)) Halle $\operatorname{Proy}_{H^{\perp}} \left(egin{array}{c} 2 \\ 1 \\ 1 \end{array} \right)$. (2 puntos
- 3. De la transformación lineal $T:P_2\to P_3$, se conocen los transformados de los elementos de la base $B=\{-1+x+x^2,x+2x^2,x+x^2\}$ de $P_2:$

$$T(-1 + x + x^2) = 1 + x$$

 $T(x + 2x^2) = x^3$
 $T(x + x^2) = x^2$.

- a) Halle la imagen bajo T de un polinomio cualquiera $f=a+bx+cx^2$. (4 puntos)
- b) Halle la matriz de T con respecto a las bases $B_2=\{1,x,x^2\}$ de P_2 , y $B_3=\{1,x,x^2,x^3\}$ de P_3 . (3 puntos)
- c) Halle el núcleo de T y $\nu(T.)$ (2 puntos)
- 4. Para cada enunciado siguiente escriba al lado una V si los considera verdadero o una F si lo considera falso. Justifique luego su respuesta: (12 puntos)
 - a) En \mathbb{R}^2 , el producto $\langle (x_1,y_1),(x_2,y_2) \rangle = x_1x_2 y_1y_2$ define un producto interno.
 - b) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, y $T \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.
 - c) Si λ es un autovalor de la matriz A, entonces $\nu(A \lambda I) > 0$.
 - d) La matriz $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ es ortogonal.

- e) Vista como una transformación lineal de \mathbb{R}^2 , la matriz $\begin{pmatrix} 1 & 3 \\ 0 & 3 \end{pmatrix}$ es la composición de una expansión a lo largo del eje $y, \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ con la transformación de \mathbb{R}^2 dada por la matriz $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- f) Si la matriz A, 3×3 tiene tres autovalores distintos, entonces se puede escoger una base de \mathbb{R}^3 que conste de autovalores de A.