

THEME: GEOMETRY AND MEASURES

TOPIC: CIRCLE PROPERTIES – Lesson 4

KAZIBA STEPHEN

LEARNING OUTCOME

 By the end of this lesson, you should be able to understand and apply the Cyclic Quadrilateral Theorem

Activity: Verifying the Cyclic Quadrilateral Theorem

Materials Needed:

- A piece of plain paper or box cardboard, or a used cake board(Remove the polythene).
- A cup or any object with a circular base for tracing the circle.
- A cutter, razor blade, knife or sharp object to cut the paper (use carefully to avoid injury)
- Mathematical set
- A pencil or pen

Instructions

Draw the Circle:

• Use a compass to draw a circle on the paper or cardboard.

• Mark Four Points:

o Mark four points on the circumference of the circle. Label them AA, BB, CC, and DD.

Form the Quadrilateral:

• Use a ruler to connect A to B, B to C, C to D, and D to A, forming the cyclic quadrilateral ABCDA.

Measure Opposite Angles:

- Use a protractor to measure ∠A and ∠C. Add these two angles.
- \circ Similarly, measure $\angle B$ and $\angle D$. Add these two angles.

• Check the Theorem:

 \circ Verify if $\angle A+\angle C=180\circ$ and $\angle B+\angle D=180\circ$

• Test the Exterior Angle Property (Optional):

- Extend one side of the quadrilateral, such as BC, beyond point C.
- Measure the angle formed between this extended line and the opposite side of the quadrilateral (∠DAB\angle DAB).
- Compare this angle with the opposite interior angle (∠BCD\angle BCD) to verify if they are equal.

Outcome

- The sum of opposite angles in the cyclic quadrilateral is always 180°180°\circ180°.
- The exterior angle of the cyclic quadrilateral equals the opposite interior angle.

Angles in a cyclic quadrilateral

- **Theorem**: The opposite angles in a cyclic quadrilateral total 180°...
- The sum of the four angles of any quadrilateral must be 360°.

Activity

• In the circle below, find the size of the angle marked x

Activity

• In the circle below, find the size of the angles marked **x and y**

Exercise

Calculate the size of the marked angles

