```
from sklearn.datasets import make classification
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.metrics import r2_score, explained_variance_score, confusion_matrix, accuracy_score, classificat
from math import sgrt
from sklearn.model_selection import cross_val_score
from sklearn.linear model import Lasso
from sklearn import svm
df = pd.read csv("CellDNA.csv", header= None)
df.columns =['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12', 'x13']
df.loc[:, 'x13'] = np.where(df.x13>0, 1, 0)
```

df

	x0	x1	x2	ж3	x4	x 5	x6	x 7	x8	x 9	x10	x11
0	222	31.189189	40.342342	35.579087	8.883917	0.968325	-80.113673	222	1	16.812471	0.816176	0.578125
1	73	29.493151	271.397260	15.517202	6.407490	0.910764	76.042946	73	1	9.640876	0.858824	0.608333
2	256	58.816406	289.941406	37.226013	9.863895	0.964256	85.324742	256	1	18.054067	0.752941	0.562637
3	126	71.023810	477.412698	13.112980	12.790672	0.220351	63.523477	126	1	12.666025	0.881119	0.646154
4	225	90.808889	541.946667	44.463110	7.858879	0.984256	-52.874983	225	1	16.925688	0.728155	0.252525
1212	216	738.527778	216.449074	38.229761	9.556174	0.968254	12.847813	216	1	16.583719	0.640950	0.397059
1213	328	748.896341	47.664634	63.138991	9.101974	0.989555	57.919494	328	1	20.435816	0.607407	0.205257
1214	97	761.690722	207.288660	22.751513	8.230351	0.932275	-24.674618	97	1	11.113246	0.591463	0.384921
1215	223	770.654708	235.502242	53.491654	8.643053	0.986860	73.244715	223	1	16.850294	0.557500	0.252834
1216	87	764.954023	265.655172	13.459738	8.521929	0.774035	18.595633	87	1	10.524820	0.956044	0.743590

1217 rows x 14 columns

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df[['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7','x8','x9','x10','x11','x12']] = scaler.fit_transform(df[['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7','x8','x9','x10','x11','x12']]
```

```
numeric_cols = ['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7','x8','x9','x10','x11','x12']
scaler = StandardScaler()
scaler.fit(df[numeric cols])
scaled inputs = scaler.transform(df[numeric cols])
scaled inputs
    array([[ 0.15952762, -1.80200559, -1.20813407, ..., 0.34511514,
             0.65289142, -0.00691284],
           [-0.93921222, -1.80987674, 0.42436331, ..., 0.7072868,
             0.84374979, -0.81411281],
           [0.41024678, -1.67379037, 0.55538528, ..., -0.19189804,
             0.55503945, 0.20875597],
           ...,
           [-0.76223399, 1.58818067, -0.02859014, ..., -1.56321582,
            -0.56778731, -0.23578419],
           [0.16690172, 1.62978166, 0.17075035, ..., -1.85164337,
            -1.40231699, 0.69144818],
           [-0.83597492, 1.60332534, 0.38379311, ..., 1.53291195,
             1.69830929. -0.9560196111)
```

df

	x0	x1	x2	x 3	x4	x 5	x6	x 7	x8	x9	x1
0	0.159528	-1.802006	-1.208134	0.114420	-0.135689	0.538311	-1.587426	0.135833	0.233292	0.329626	0.34511
1	-0.939212	-1.809877	0.424363	-0.933511	-0.817247	0.019258	1.500586	-0.909580	0.233292	-1.221986	0.70728
2	0.410247	-1.673790	0.555385	0.200447	0.134019	0.501621	1.684134	0.374384	0.233292	0.598252	-0.19189
3	-0.548385	-1.617137	1.879947	-1.059096	0.939523	-6.206504	1.253012	-0.537722	0.233292	-0.567479	0.89662
4	0.181650	-1.525316	2.335905	0.578476	-0.417798	0.681969	-1.048779	0.156881	0.233292	0.354121	-0.40238
1212	0.115283	1.480684	0.036132	0.252878	0.049329	0.537678	0.250896	0.093736	0.233292	0.280134	-1.14296
1213	0.941181	1.528803	-1.156399	1.554010	-0.075675	0.729753	1.142193	0.879550	0.233292	1.113556	-1.42781
1214	-0.762234	1.588181	-0.028590	-0.555628	-0.315562	0.213238	-0.491114	-0.741192	0.233292	-0.903431	-1.56321
1215	0.166902	1.629782	0.170750	1.050082	-0.201979	0.705453	1.445251	0.142849	0.233292	0.337809	-1.85164
1216	-0.835975	1.603325	0.383793	-1.040983	-0.235315	-1.213681	0.364560	-0.811354	0.233292	-1.030740	1.53291

1217 rows × 14 columns

check distribution of target_class column

round(df.describe(),2)

	ж0	x1	x2	x 3	x4	x 5	x6	x 7	x8	x9	x10	x11	x 1
count	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00	1217.0
mean	0.00	0.00	-0.00	0.00	-0.00	0.00	0.00	0.00	-0.00	0.00	-0.00	0.00	-0.(
std	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
min	-0.96	-1.82	-1.30	-1.21	-1.73	-6.23	-1.77	-0.93	-12.80	-1.27	-4.37	-2.28	-1.(
25%	-0.69	-0.82	-0.81	-0.76	-0.51	-0.21	-0.82	-0.66	0.23	-0.78	-0.62	-0.77	-0.6
50%	-0.30	-0.02	-0.19	-0.29	-0.25	0.37	-0.01	-0.29	0.23	-0.22	0.12	-0.00	-0.2
75%	0.38	0.89	0.58	0.58	0.12	0.63	0.81	0.35	0.23	0.57	0.77	0.74	0.3
max	6.55	1.64	2.57	6.37	9.39	0.81	1.77	6.71	0.23	4.75	1.91	2.72	8.5

clf = svm.SVC(probability=True)

clf.fit(x, y)

results = clf.predict_proba(x)[0]

```
clf.support_vectors_
    array([[-0.5483853 , -1.61713701, 1.87994654, ..., 0.89662564,
             1.08270245, -0.71950145],
           [0.64621776, -1.43758979, -0.16636889, ..., 0.56531025,
             1.66590892, 0.16941486],
           [1.64909439, -1.39855593, 0.13882352, ..., -1.97568425,
            -0.32889369. 2.485763471.
           [0.55772864, -0.13732092, -0.58518741, ..., -0.71172753,
            -0.8172806 , 0.59786186],
           [0.98542603, 0.3343214, 1.61671055, ..., -0.35219228,
            -1.12730684, 0.88169595],
           [0.94118147, 1.52880321, -1.15639909, ..., -1.42781464,
            -1.70291747. 1.0763514 11)
clf.n support
    array([169, 143], dtype=int32)
print(clf.score(x, y), '\n')
    0.9276910435497124
clf.predict(x)
    array([0, 0, 0, ..., 0, 0, 0])
```

```
print(clf.decision_function(x), '\n')
    [-1.08084927 -1.25233452 -1.33365989 ... -1.76057738 -0.20813551
        -1.41115986]

clf= svm.SVC(kernel = 'linear')
```

```
# import SVC classifier
from sklearn.svm import SVC
# import metrics to compute accuracy
from sklearn.metrics import accuracy_score
# instantiate classifier with default hyperparameters
svc=SVC()
# fit classifier to predictors & target set
svc.fit(x,y)
# make predictions on predictors set
y_pred=svc.predict(x)
# compute and print accuracy score
print('Model accuracy score with default hyperparameters: {0:0.4f}'. format(accuracy_score(y, y_pred)))
    Model accuracy score with default hyperparameters: 0.9277
# instantiate classifier with rbf kernel and C=1000
clf= svm.SVC(kernel = 'linear', C = 1000)
# fit classifier to predictors & target set
clf.fit(x,y)
# of support vectors in EACH class
print(clf.n_support_)
# indices of support vectors
```

```
print(clf.support_)
# coefficients in "primary" form
print(clf.coef )
# coefficients in "dual" form
print(clf.dual coef )
# make predictions on predictors set
y pred=clf.predict(x)
# compute and print accuracy score
print('Model accuracy score with rbf kernel and C=1000 : {0:0.4f}'. format(accuracy score(y, y pred)))
                    1.9395231
                                             0.50224639 0.05799626 0.11239126
       -0.1925175
                                 0.44159776
        0.17183158]]
     [-1000.
                      -1000.
                                        -75.78627518 -1000.
       -1000.
                       -435.36631657 -1000.
                                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
        -121.39315922 -1000.
                                      -1000.
                                                      -1000.
         -22.51789822 -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                        -10.29747767
       -1000.
                                      -1000.
                      -1000.
                                                      -1000.
       -435.4082784 -1000.
                                      -1000.
                                                       -468.59191986
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                       -682.0842007
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                                                      -1000.
                      -1000.
                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
       -193.81243475 -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
       -1000.
                      -1000.
                                      -1000.
                                                      -1000.
```

-1000.	-1000.	-1000.	-1000.
-1000.	-1000.		
		-1000.	-1000.
-1000.	-1000.	-1000.	-1000.
-1000.	-1000.	-1000.	-832.50547975
-1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
90.30512186	1000.	1000.	1000.
1000.	1000.	1000.	1000.
183.180635	1000.	1000.	10.69531106
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	251.92106332
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
1000.	1000.	1000.	1000.
741.66130908	1000.	1000.	1000.
1000.	1000.	1000.]]
	10001		1000 - 0 0244

Model accuracy score with rbf kernel and C=1000: 0.9244

```
# Support vectors content values
print(clf.support_vectors_)

[[-0.04694698 -1.31338801  2.50887484  ...  0.11107933 -1.22335795  0.03939855]
  [ 0.04891623 -1.05894919  1.70865549  ...  0.99108125  2.27380761  -0.19629958]
  [ 2.75520833 -0.87846275 -0.41747922  ...  -1.52948211 -0.646354  2.90504659]
  ...
  [ 0.41024678  1.24591731 -0.16948148  ...  -0.01803752 -0.64883306  0.34523004]
  [ 0.24801674  1.56018396 -0.75703818  ...  -0.37610604 -0.92911486  0.39525208]
  [ 0.98542603  0.3343214  1.61671055  ...  -0.35219228 -1.12730684  0.88169595]]
```

```
# Print the Confusion Matrix and slice it into four pieces
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y, y_pred)
print('Confusion matrix\n\n', cm)
print('\nTrue Positives(TP) = ', cm[0,0])
print('\nTrue Negatives(TN) = ', cm[1,1])
print('\nFalse Positives(FP) = ', cm[0,1])
print('\nFalse Negatives(FN) = ', cm[1,0])
    Confusion matrix
     [[976 41]
     [ 51 149]]
    True Positives(TP) = 976
    True Negatives(TN) = 149
    False Positives(FP) = 41
    False Negatives(FN) = 51
```

visualize confusion matrix with seaborn heatmap

sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')

<matplotlib.axes. subplots.AxesSubplot at 0x7f7dafef49d0>

from sklearn.metrics import classification_report
print(classification_report(y, y_pred))

precision recall f1-score support 0.95 0.96 0.95 1017 0 0.78 0.74 0.76 200 0.92 1217 accuracy 0.86 1217 macro avg 0.87 0.85 weighted avg 0.92 0.92 0.92 1217

```
TP = cm[0,0]

TN = cm[1,1]

FP = cm[0,1]

FN = cm[1,0]
```

print classification accuracy

```
classification_accuracy = (TP + TN) / float(TP + TN + FP + FN)
```

print('Classification accuracy : {0:0.4f}'.format(classification_accuracy))

Classification accuracy: 0.9244

```
x = df.drop('x13', axis = 1).values[50:, 2:4]
v = df['x13'][50:]
C = 1.0
# SVM regularization parameter
clf = svm.SVC(kernel = 'linear', C = C, probability=True)
clf.fit(x, y)
yhat = clf.predict proba(x)
y pred = clf.predict(x)
print(y.shape, y.size)
print(y_pred)
print(yhat)
    (1167,) 1167
     [0 0 0 ... 0 0 0]
    [[0.98563836 0.01436164]
     [0.97646447 0.02353553]
     [0.65174412 0.34825588]
      [0.9650246 0.0349754 ]
     [0.62450023 0.37549977]
      [0.98598946 0.01401054]]
from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_curve, confusion_matrix, auc, accuracy
fpr_0, tpr_0, _=roc_curve(y, yhat[:,0])
roc_auc_0=roc_auc_score(y, yhat[:,0])
fpr_1, tpr_1, _=roc_curve(y, yhat[:,1])
roc_auc_1=roc_auc_score(y, yhat[:,1])
# plot ROC curves
print('roc_auc_0: ', roc_auc_0)
```

```
print('roc_auc_1: ', roc_auc_1, '\n')
plt.plot(fpr_0, tpr_0, marker='.', label='Class 0', color='b')
plt.plot(fpr_1, tpr_1, marker='.', label='Class 1', color='r')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.show()
```

roc_auc_0: 0.07844799271039722 roc auc 1: 0.9215520072896027


```
# compute ROC AUC
from sklearn.metrics import roc_auc_score
ROC_AUC = roc_auc_score(y, y_pred)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
    ROC AUC : 0.6722
# calculate cross-validated ROC AUC
from sklearn.model_selection import cross_val_score
linear_svc=SVC(kernel='linear', C=1.0)
Cross_validated_ROC_AUC = cross_val_score(linear_svc, x, y, cv=10, scoring='roc_auc').mean()
print('Cross validated ROC AUC : {:.4f}'.format(Cross_validated_ROC_AUC))
    Cross validated ROC AUC: 0.9285
```

✓ 0s completed at 5:34 PM

×