Forecast_Farming_Crop_Yield

November 11, 2020

1 1 Setting up the Notebook

1.1 1.1 User Input

- If you want this script to run "quickly", please set the number of epochs (int_epochs) to 5.
 - This will take about 5 minutes for the whole script to run.
- If you have more time, please set a higher number for int_epochs:
 - 100 epochs take about 15 minutes.
 - 500 epochs take about 30 minutes.
- The input for int_epochs will affect the performance of the neural network models but not the linear and non-linear regression models.

1.2 **1.2 Formatting Extension**

This extension formats the code to general programming standards - %load_ext lab_black for jupyter lab - %load_ext nb_black for jupyter notebook

```
In [1]: # %load_ext lab_black
```

1.3 1.3 Importing Libraries

1.3.1 General Libraries

```
In [2]: import pandas as pd
    import numpy as np
    import sys
    import warnings
```

1.3.2 1.3.2 Scikit-learn Libraries

```
In [3]: from sklearn import preprocessing
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.svm import LinearSVR
from sklearn.feature_selection import RFECV
from sklearn.exceptions import DataConversionWarning, ConvergenceWarning
from sklearn.linear_model import LinearRegression
```

```
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.svm import SVR
```

1.3.3 1.3.3 Keras Libraries

1.4 1.4 Jupyter/Lab Notebook Display Settings

1.5 Class for Formatting Display Outputs

```
In [5]: class color:
    PURPLE = "\033[95m"
    CYAN = "\033[96m"
    DARKCYAN = "\033[36m"
    BLUE = "\033[94m"
    GREEN = "\033[92m"
    YELLOW = "\033[93m"
    RED = "\033[91m"
    BOLD = "\033[1m"
    UNDERLINE = "\033[4m"
    END = "\033[0m"
```

2 2 Data Pre-processing

2.1 2.1 Loading the Dataset

3

4

d

c,d

```
In [6]: df = pd.read_csv("dataset.csv")
       df.head()
Out[6]:
           id water
                          uv
                               area fertilizer_usage
                                                     yield pesticides region
       0
          169 5.615 65.281 3.230
                                                     7.977
                                                                   8.969
                                                                              0
         476 7.044 73.319 9.081
                                                   0 23.009
                                                                  7.197
                                                                              0
       1
       2 152 5.607 60.038 2.864
                                                   2 23.019
                                                                  7.424
                                                                              0
       3
          293
              9.346 64.719 2.797
                                                   2 28.066
                                                                  1.256
                                                                              0
           10 7.969
                         NaN 5.407
                                                   1 29.140
                                                                   0.274
                                                                              0
         categories
       0
              b,a,c
       1
              c,a,d
       2
                d,a
```

2.2 2.2 Dataset Structure

```
In [7]: print(color.BOLD + "columns: " + color.END, df.shape[1])
        print(color.BOLD + "of rows: " + color.END, df.shape[0], "\n")
        print(color.BOLD + "columns in dataset:" + color.END)
        list(df)
columns: 9
of rows: 1000
columns in dataset:
Out[7]: ['id',
         'water',
         'uv',
         'area',
         'fertilizer_usage',
         'yield',
         'pesticides',
         'region',
         'categories']
```

2.3 Vull Values

The dataset contains several null values

```
In [8]: # the dataset contains whitespaces instead of empty cells <-- replacing whiespaces wit
        df.replace(" ", np.nan, inplace=True)
        # list with a count of null values for each column in the df
        lst_count_null_values = df.count() - len(df)
        # list with column names in the df <-- if a column has null values then the count will
        lst column names = list(df)
        # list to put the columns with null values <--[column name, # of null values]
        lst_col_null_values = np.empty(shape=[0, 2], dtype=object)
        # loop thru each column in the df and check whether it has null values
        for i in range(len(lst_count_null_values)):
            if lst_count_null_values[i] < 0:</pre>
                lst_col_null_values = np.vstack(
                    (
                        lst_col_null_values,
                        np.array((lst_column_names[i], abs(lst_count_null_values[i]))),
                    )
                )
```

```
print(color.BOLD + "column(s) with null values" + color.END, "\n")
        for col in range(len(lst_col_null_values)):
            print(
                color.BOLD + lst_col_null_values[col][0] + color.END,
                color.BOLD + 1st col null values[col][1] + color.END,
                "null values",
            )
column(s) with null values
water with 42 null values
uv with 51 null values
2.3.1 Values Details
In [9]: int_count_total_null_values = 0
        for i in range(len(lst_col_null_values)):
            int_count_total_null_values += int(lst_col_null_values[i][1])
        int_count_total_values = df.shape[1] * df.shape[0]
        print(
            color.BOLD + "total null values in dataset:" + color.END,
            int_count_total_null_values,
        print(
            color.BOLD + "total size of dataset:" + color.END,
            df.shape[1],
            "columns",
            "*",
            df.shape[0],
            "rows",
            ^{\rm H} = ^{\rm H} ,
            int_count_total_values,
            "values",
        print(
            color.BOLD + "percentage of null values in dataset:" + color.END,
            "%.4f" % ((int_count_total_null_values / int_count_total_values) * 100),
            "%",
        )
total null values in dataset: 93
total size of dataset: 9 columns * 1000 rows = 9000 values
percentage of null values in dataset: 1.0333 %
```

2.3.2 Valle Value Replacement Options

Columns with missing values - Water - the average amount of water received by hectare - UV - the average amount of light received by hectare

Option 1: Replace all null values with 0 - This wouldn't make sense as it's impossible to have 0 water and 0 uv. - The minimum water for any farm was 0.072 and for water 45.254.

Option 2: Replace all null values with a constant value - This wouldn't make sense as water or uv isn't a constant.

Option 3: Forecast replacement values using machine learning - Without investigating all the variables further, it's clear that the following variables have no affect on either water or uv: area, fertilizer_usage, yield, pesticides usage, pesticides used. - This leaves only the variable region to have a direct effect on water and uv. - Since there's only 1 variable (region) to use, any regression or oder ML model wouldn't have much data to work with.

Option 4: Replace null values with an average/median <- chosen option - I could assign the average/median values of uv and water of the whole data set to the null values. - However, since the region dirrectly affects the water and uv, it would make more sense to use the average/median per region to fill the null values. - To be sure of this correlation, I'd have to additionally look at the correlation between region and water/uv - The average can be heavily influenced by extreme outliers. Therefore, I decided to use the median which better caputures the overall water and uv by region.

2.3.3 Null Value Replacement with Median per Region

2.4 2.4 Outlier Detection

- Looking at the table below, it's very clear that the maximum for water (5,340) must be an error in the data.
- The maximum numbers of the other variables seem to be correct but could still include outliers.

In [11]: df.describe()

Out[11]:		id	water	uv	area	fertilizer_usage	\
	count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	
	mean	499.500000	11.981543	73.939665	8.098848	2.12300	
	std	288.819436	168.677972	9.650628	2.692632	1.52256	
	min	0.000000	0.072000	45.264000	0.263000	0.00000	
	25%	249.750000	4.695500	66.931500	6.297000	1.00000	
	50%	499.500000	6.452000	73.713500	7.987500	2.00000	
	75%	749.250000	8.611000	80.220250	9.900250	3.00000	
	max	999.000000	5340.000000	106.310000	18.311000	5.00000	
		yield	pesticides	region			
	count	1000.000000	1000.000000	1000.000000			
	mean	58.758571	3.452301	3.039000			

std	24.563683	2.076921	1.883886
min	2.843000	0.014000	0.000000
25%	40.698000	1.804500	2.000000
50%	55.602500	3.275500	2.000000
75%	73.645500	4.916000	5.000000
max	148.845000	9.532000	6.000000

2.5 2.4.1 Correct Value in 'water'

I'll check whether there's more erroneous values in 'water' by sorting the DataFrame by water

```
In [12]: df.sort_values(["water"], ascending=(False)).head()
```

Out[12]:		id	water	uv	area	fertilizer_usage	yield	pesticides	\
	36	586	5340.000	91.224	8.429	2	67.321	2.933	
	182	594	15.214	66.904	8.438	3	86.742	1.910	
	412	756	14.217	65.374	7.549	3	64.370	0.769	
	739	434	13.832	85.961	11.295	4	140.702	3.091	
	260	886	13.529	86.763	3.507	1	35.012	3.844	
		rogi	on categor	ri og					
		regr	on categor	TEP					
	36		0	c,a					
	182		1 a,b,	c,d					
	412		2	С					
	739		4 a,d,	c,b					

2.5.1 2.4.1.1 Finding Wrong Value

2

260

Looking at the above table, there seems to be only one erroneous value in 'water': 5,340

2.5.2 2.4.1.2 Replacing Wrong Value

I'm replacing the wrong value with the median 'water' by 'region

a,c

2.5.3 2.4.1.3 Checking Maximum again

Now the maximum value for 'water' seems to be within a correct range as shown in the table below

```
In [14]: df.describe()
```

```
Out[14]:
                         id
                                   water
                                                               area fertilizer_usage \
                                                    uv
         count 1000.000000
                             1000.000000
                                          1000.000000 1000.000000
                                                                            1000.00000
                 499.500000
                                 6.647815
                                             73.939665
                                                           8.098848
                                                                               2.12300
         mean
                 288.819436
                                2.759887
                                              9.650628
                                                           2.692632
                                                                               1.52256
         std
```

min	0.000000	0.072000	45.264000	0.263000	0.00000
25%	249.750000	4.695500	66.931500	6.297000	1.00000
50%	499.500000	6.439500	73.713500	7.987500	2.00000
75%	749.250000	8.609250	80.220250	9.900250	3.00000
max	999.000000	15.214000	106.310000	18.311000	5.00000
	yield	pesticides	region		
count	1000.000000	1000.000000	1000.000000		
mean	58.758571	3.452301	3.039000		
std	24.563683	2.076921	1.883886		
min	2.843000	0.014000	0.000000		
25%	40.698000	1.804500	2.000000		
50%	55.602500	3.275500	2.000000		
75%	73.645500	4.916000	5.000000		
max	148.845000	9.532000	6.000000		

2.5.4 2.4.2 Removal of Outliers

}

- I'm using the IQR, which is the middle 50% of the data, to identify outliers.
- If a value is 3x outside the IQR, I'm removing the entire row from the dataset.
- To compare the performance between the dataset with and without the outliers, I'm creating 2 separate DataFrames:
 - with outliers: df_w_outliers
 - without outliers: df_wo_outliers
- The 2 DataFrames are stored within a dictionary (dict_df) for easy looping through later on.

```
In [15]: df_w_outliers = df.copy()
         df_wo_outliers = df.copy()
         # setting up percentiles
         Q1 = df_wo_outliers.quantile(0.25)
         Q3 = df_wo_outliers.quantile(0.75)
         IQR = Q3 - Q1
         # removing rows with outliers from the df
         df_wo_outliers = df_wo_outliers[
             \sim ((df_wo_outliers < (Q1 - 1.5 * IQR)) | (df_wo_outliers > (Q3 + 1.5 * IQR))).any(
                 axis=1
             )
         ]
         # creating a dictionary with both dfs
         dict_df = {
             "df_w_outliers": ["with outliers", df_w_outliers],
             "df_wo_outliers": ["without outliers", df_wo_outliers],
```

```
# creating a list
list_dfs = list(dict_df.keys())

# deleting the duplicate DataFrames

df_w_outliers = pd.DataFrame()

df_wo_outliers = pd.DataFrame()

df = pd.DataFrame()

print(
    color.BOLD + "rows with outliers removed:" + color.END,
    dict_df["df_w_outliers"][1].shape[0] - dict_df["df_wo_outliers"][1].shape[0],
)
```

rows with outliers removed: 32

2.6 2.4 Shuffling the DataFrame

The dataset seems to be ordered by region Because I'll later split the data into train and test data, I need to shuffle the data into a random order.

2.7 2.5 Creating Dummy Variables

1 112 10.110 79.7420 5.594

2.7.1 **2.5.1 Pesticides**

2.5.1.1 Splitting 'categories' (used pesticides) into multiple boolean columns Since the pesticides used are comma separated in the column 'categories', I need to split these values up into multiple columns with boolean values. Splitting into multiple columns is required for data input of the model as well as the correlation analysis.

```
In [17]: # List of different kinds of pesticides
         lst_pesticide_categories = ["a", "b", "c", "d"]
        for iter_df in list_dfs:
             # Creating a new column stating whether a certain pesticide was used
            for str_pesticide_category in lst_pesticide_categories:
                 result = dict_df[iter_df][1].categories.str.contains(pat=str_pesticide_categories)
                 dict_df[iter_df][1]["pesticide_contains_" + str_pesticide_category] = result
        dict_df[iter_df][1].head()
Out [17]:
            id
                 water
                                 area fertilizer_usage yield pesticides region \
        0 792
                 9.031 73.7135 7.764
                                                       2 63.153
                                                                       2.561
```

3 64.496

4.515

```
2 343
         5.141 75.3150 5.833
                                                1 50.170
                                                                2.458
                                                                             0
3 955
         5.695
                70.5400 5.017
                                                3 35.066
                                                                4.605
                                                                             5
                                                                0.221
                                                                             2
4 538
         2.925 60.8330 8.633
                                                1 39.785
  categories pesticide_contains_a pesticide_contains_b
0
       c,d,b
                             False
                                                     True
1
       c,b,d
                             False
                                                     True
                                                    False
2
           С
                             False
3
                             False
                                                     True
       d,b,c
                             False
                                                    False
4
  pesticide_contains_c pesticide_contains_d
0
                   True
                                          True
                   True
                                          True
1
2
                   True
                                         False
3
                   True
                                          True
4
                  False
                                          True
```

2.5.1.2 Convert Boolean Values to Integers As some models can only work with numerical data, I'm converting the boolean values to integers (0/1) I could have done this in one step but I wanted to do it in seperate steps to clearly show my work.

```
In [18]: for iter_df in list_dfs:
             for str_pesticide_category in lst_pesticide_categories:
                 dict_df[iter_df][1]["pesticide_contains_" + str_pesticide_category] = dict_df
                     iter df
                 [1]["pesticide_contains_" + str_pesticide_category].astype(int)
         dict_df[iter_df][1].head()
Out[18]:
                                                                    pesticides
             id
                  water
                                                             yield
                              uv
                                   area fertilizer_usage
                                                                                region
         0 792
                  9.031
                         73.7135
                                 7.764
                                                         2 63.153
                                                                         2.561
                                                                                     2
                        79.7420 5.594
                                                         3 64.496
                                                                                     2
         1
           112 10.110
                                                                         4.515
         2 343
                  5.141
                        75.3150 5.833
                                                         1 50.170
                                                                         2.458
                                                                                     0
         3 955
                  5.695
                        70.5400 5.017
                                                         3
                                                           35.066
                                                                         4.605
                                                                                     5
                  2.925 60.8330 8.633
         4 538
                                                                         0.221
                                                                                     2
                                                            39.785
           categories pesticide_contains_a
                                            pesticide_contains_b
                c,d,b
                                          0
                                                                 1
         0
                                          0
         1
                c,b,d
                                                                 1
                                                                 0
         2
                                          0
                    С
                                          0
                                                                 1
         3
                d,b,c
         4
                    d
                                          0
                                                                 0
            pesticide_contains_c pesticide_contains_d
         0
                               1
                                                      1
         1
                               1
                                                      1
         2
                               1
                                                      0
```

```
3 1 1
4 0 1
```

2.5.1.3 Sorting the Pesticides within the 'categories' Column To get the unique combinaton of categories (pesticides) used together, I need to sort the categories alphabetically.

```
In [19]: for iter_df in list_dfs:
             dict_df[iter_df][1]["categories_sorted"] = np.nan
             for str_pesticide_category in lst_pesticide_categories:
                 dict_df[iter_df][1]["categories_sorted"] = np.where(
                     dict_df[iter_df][1]["pesticide_contains_" + str_pesticide_category] == 1,
                     dict_df[iter_df][1]["categories_sorted"].fillna("")
                     + str_pesticide_category,
                     dict_df[iter_df][1]["categories_sorted"],
         dict_df[iter_df][1].head()
Out[19]:
             id
                  water
                              uv
                                   area fertilizer_usage
                                                            yield pesticides region
                  9.031 73.7135
                                                        2 63.153
                                                                        2.561
           792
                                 7.764
                                                        3 64.496
                                                                                     2
           112 10.110
                        79.7420 5.594
                                                                        4.515
          343
                 5.141 75.3150 5.833
                                                        1 50.170
                                                                        2.458
                                                                                     0
         3 955
                                                                        4.605
                                                                                    5
                  5.695 70.5400 5.017
                                                        3 35.066
         4 538
                  2.925 60.8330 8.633
                                                        1 39.785
                                                                        0.221
                                                                                     2
           categories pesticide_contains_a pesticide_contains_b
                c,d,b
         0
                                          0
         1
                c,b,d
                                          0
                                                                1
         2
                                          0
                                                                0
                    С
         3
                d,b,c
                                          0
                                                                1
                    d
            pesticide_contains_c pesticide_contains_d categories_sorted
         0
                                                     1
                               1
                                                                     bcd
         1
                               1
                                                     1
                                                                     bcd
         2
                               1
                                                     0
                                                                       С
         3
                               1
                                                     1
                                                                     bcd
                               0
                                                     1
                                                                       d
```

2.5.1.4 Splitting the Sorted Categories into multiple boolean Columns Splitting into multiple columns is required for data input of the model as well as the correlation analysis.

```
Out [20]:
              id
                   water
                                           fertilizer_usage
                                                                yield pesticides
                                                                                    region
                                uv
                                     area
            792
                                                               63.153
                   9.031
                          73.7135
                                    7.764
                                                            2
                                                                              2.561
                                                                                           2
                                                                                           2
         1
            112
                 10.110
                          79.7420
                                    5.594
                                                            3
                                                               64.496
                                                                             4.515
         2
           343
                   5.141
                                                               50.170
                                                                             2.458
                                                                                           0
                          75.3150
                                    5.833
                                                            1
                                                                                           5
         3
            955
                   5.695
                          70.5400
                                    5.017
                                                            3
                                                               35.066
                                                                             4.605
            538
                   2.925
                                                                             0.221
                                                                                           2
                          60.8330
                                    8.633
                                                               39.785
           categories
                       pesticide_contains_a
                                               pesticide_contains_b
         0
                 c,d,b
                                             0
                                             0
                                                                     1
         1
                 c,b,d
         2
                                             0
                                                                     0
                     С
         3
                                             0
                 d,b,c
                                                                     1
                                                                     0
         4
                                             0
                     d
             pesticide_contains_c
                                   pesticide_contains_d categories_sorted
         0
                                 1
                                                         1
         1
                                 1
                                                         1
                                                                          bcd
                                                         0
         2
                                 1
                                                                            С
         3
                                 1
                                                         1
                                                                          bcd
         4
                                 0
                                                         1
                                                                             d
             pesticide_bcd pesticide_c pesticide_d pesticide_abcd pesticide_bc \
         0
                      True
                                   False
                                                 False
                                                                   False
                                                                                  False
                      True
                                   False
                                                 False
                                                                   False
                                                                                  False
         1
         2
                     False
                                    True
                                                 False
                                                                   False
                                                                                  False
         3
                                   False
                                                 False
                                                                   False
                                                                                  False
                      True
         4
                     False
                                   False
                                                                   False
                                                                                  False
                                                  True
             pesticide_abc
                            pesticide_b
                                           pesticide_a
                                                         pesticide_ad pesticide_acd
         0
                     False
                                   False
                                                 False
                                                                False
                                                                                 False
                     False
                                   False
                                                 False
                                                                False
                                                                                 False
         1
         2
                     False
                                   False
                                                 False
                                                                False
                                                                                 False
         3
                     False
                                   False
                                                 False
                                                                False
                                                                                 False
         4
                     False
                                   False
                                                 False
                                                                False
                                                                                 False
             pesticide_bd
                           pesticide_ac
                                           pesticide_abd pesticide_ab
                                                                          pesticide_cd
         0
                    False
                                   False
                                                    False
                                                                   False
                                                                                  False
         1
                    False
                                   False
                                                   False
                                                                   False
                                                                                  False
         2
                    False
                                   False
                                                   False
                                                                   False
                                                                                  False
         3
                    False
                                   False
                                                   False
                                                                   False
                                                                                  False
                    False
                                   False
                                                                                  False
                                                    False
                                                                   False
```

2.5.1.5 Convert boolean Values to Integers As some models can only work with numerical data, I'm converting the boolean values to integers (0/1).

```
]["pesticide_" + str_category_combination].astype(int)
         dict_df[iter_df][1].head()
Out[21]:
             id
                  water
                               uv
                                    area fertilizer_usage
                                                             yield pesticides region \
         0 792
                  9.031
                        73.7135
                                 7.764
                                                         2 63.153
                                                                          2.561
                                                                                       2
         1 112 10.110
                         79.7420 5.594
                                                         3 64.496
                                                                          4.515
                                                                                      2
         2 343
                  5.141
                         75.3150 5.833
                                                         1
                                                             50.170
                                                                          2.458
                                                                                      0
         3 955
                  5.695
                         70.5400 5.017
                                                         3
                                                            35.066
                                                                          4.605
                                                                                      5
         4 538
                                                                                       2
                  2.925
                         60.8330 8.633
                                                            39.785
                                                                          0.221
           categories pesticide_contains_a pesticide_contains_b \
         0
                c,d,b
                                           0
                                                                  1
         1
                c,b,d
         2
                                           0
                                                                  0
                    С
         3
                d,b,c
                                           0
                                                                  1
         4
                    d
            pesticide_contains_c pesticide_contains_d categories_sorted \
         0
                                1
                                                      1
         1
                                1
                                                      1
                                                                       bcd
         2
                                1
                                                      0
                                                                         С
         3
                                1
                                                      1
                                                                       bcd
         4
                                0
                                                      1
                                                                         d
            pesticide_bcd pesticide_c pesticide_d pesticide_abcd pesticide_bc \
         0
                                                   0
                                      0
                                                   0
         1
                        1
                                                                    0
                                                                                  0
         2
                        0
                                      1
                                                   0
                                                                    0
                                                                                  0
         3
                        1
                                      0
                                                   0
                                                                                  0
                        0
                                                   1
                                                                                  0
            pesticide_abc pesticide_b pesticide_a pesticide_ad pesticide_acd \
         0
                        0
                                      0
                                                   0
                                                                  0
                        0
                                      0
                                                   0
                                                                  0
                                                                                 0
         1
         2
                        0
                                      0
                                                   0
                                                                  0
                                                                                 0
         3
                        0
                                      0
                                                   0
                                                                  0
                                                                                 0
                                      0
                                                   0
                                                                  0
                                                                                 0
            pesticide_bd pesticide_ac pesticide_abd pesticide_ab pesticide_cd
         0
                                                     0
                       0
                                      0
                                                     0
                                                                    0
                                                                                  0
         1
         2
                                      0
                                                     0
                                                                                  0
         3
                       0
                                      0
                                                     0
                                                                                  0
                                                                    0
                       0
                                                     0
                                                                                  0
```

2.7.2 2.5.2 Regions

2.5.2.1 Creating a separate Column for each Region Depending on the model, splitting into multiple columns is required for data input as well as the correlation analysis. Unlike the previous method where I used a loop, I'm using a cleaner built-in function to get dummy columns.

```
In [22]: for iter_df in list_dfs:
             dict_df[iter_df][1]["region_temp"] = "region_" + dict_df[iter_df][1][
                  "region"
             ].astype(str)
             df_dummies = pd.get_dummies(dict_df[iter_df][1]["region_temp"])
             dict_df[iter_df][1] = pd.concat([dict_df[iter_df][1], df_dummies], axis=1)
             df dummies = pd.DataFrame()
         dict_df[iter_df][1].head()
Out [22]:
             id
                  water
                                          fertilizer_usage
                                                               yield pesticides
                                                                                   region
                               uv
                                     area
            792
                  9.031
                          73.7135
                                   7.764
                                                             63.153
                                                                            2.561
                                                                                         2
                10.110
                          79.7420 5.594
                                                           3
                                                             64.496
                                                                            4.515
                                                                                         2
            112
                                                                            2.458
                                                                                         0
         2
            343
                  5.141
                         75.3150 5.833
                                                              50.170
                                                           1
         3
            955
                  5.695
                          70.5400 5.017
                                                           3
                                                              35.066
                                                                            4.605
                                                                                         5
         4 538
                  2.925 60.8330 8.633
                                                              39.785
                                                                            0.221
                                                                                         2
                                                           1
           categories pesticide_contains_a pesticide_contains_b
                c,d,b
                                            0
         0
                                                                   1
         1
                c,b,d
                                            0
                                                                   1
                                            0
                                                                   0
         2
                     С
         3
                                            0
                                                                   1
                d,b,c
                                            0
         4
                     d
            pesticide_contains_c pesticide_contains_d categories_sorted \
         0
                                1
                                                        1
                                                                        bcd
         1
                                1
                                                        1
                                                                         bcd
         2
                                1
                                                        0
                                                                           С
         3
                                1
                                                        1
                                                                         bcd
         4
                                0
                                                        1
                                                                           d
            pesticide_bcd pesticide_c pesticide_d pesticide_abcd
                                                                        pesticide_bc
         0
                         1
                                       0
                                                    0
                                                                     0
                                                                                    0
                                       0
                                                    0
                         1
                                                                     0
                                                                                    0
         1
         2
                         0
                                       1
                                                    0
                                                                     0
                                                                                    0
         3
                         1
                                       0
                                                    0
                                                                     0
                                                                                    0
         4
                                       0
                                                    1
            pesticide_abc
                            pesticide_b
                                          pesticide_a
                                                       pesticide_ad pesticide_acd
         0
                         0
                                       0
                                                                   0
         1
                         0
                                       0
                                                    0
                                                                   0
                                                                                   0
         2
                         0
                                       0
                                                    0
                                                                   0
                                                                                   0
         3
                         0
                                       0
                                                    0
                                                                   0
                                                                                   0
         4
                         0
                                       0
                                                    0
                                                                   0
                                                                                   0
```

```
pesticide_bd pesticide_ac pesticide_abd pesticide_ab pesticide_cd \
0
               0
                              0
                                              0
                                                             0
                                                                            0
1
2
               0
                              0
                                              0
                                                             0
                                                                            0
3
               0
                              0
                                              0
                                                             0
                                                                            0
4
               0
                              0
                                              0
                                                             0
                                                                            0
  region_temp region_0 region_1 region_2 region_3 region_4 region_5
     region_2
                       0
                                             1
0
     region_2
                       0
                                  0
                                             1
                                                        0
                                                                   0
                                                                             0
1
                                  0
                                                        0
2
     region_0
                       1
                                             0
                                                                   0
                                                                             0
3
     region_5
                       0
                                  0
                                             0
                                                        0
                                                                   0
                                                                             1
                                  0
                       0
                                             1
                                                        0
                                                                   0
                                                                             0
4
     region_2
   region_6
0
          0
1
          0
2
          0
3
          0
4
          0
```

2.8 2.6 Removing unused Columns

```
In [23]: for iter_df in list_dfs:
             dict_df[iter_df][1].drop(
                 columns=["id", "categories", "categories_sorted", "region_temp", "region"],
                 inplace=True,
             )
         dict_df[iter_df][1].head()
Out [23]:
                                                      yield pesticides \
             water
                         uv
                              area
                                    fertilizer_usage
             9.031
                   73.7135
                            7.764
                                                   2 63.153
                                                                   2.561
         0
           10.110 79.7420 5.594
                                                   3 64.496
                                                                   4.515
         2
             5.141
                   75.3150 5.833
                                                   1 50.170
                                                                   2.458
         3
             5.695
                  70.5400 5.017
                                                   3 35.066
                                                                   4.605
             2.925 60.8330 8.633
                                                      39.785
                                                                   0.221
            pesticide_contains_a pesticide_contains_b pesticide_contains_c
                               0
         0
                                                     1
                                                                           1
         1
                               0
                                                     1
                                                                           1
         2
                                                     0
                               0
                                                                           1
         3
                               0
                                                     1
                                                                           1
                               0
            pesticide_contains_d pesticide_bcd pesticide_c pesticide_d \
         0
                               1
                                                           0
                                              1
                               1
                                              1
                                                           0
                                                                        0
         1
```

```
3
                                                        0
                                                                       0
                         1
                                          1
4
                                                         0
                         1
                                                                       1
   pesticide_abcd pesticide_bc pesticide_abc pesticide_b
                                                                   pesticide_a \
0
                  0
                                  0
                                                                 0
                                                                                0
                  0
                                                   0
                                                                 0
                                                                                0
1
                                  0
2
                  0
                                  0
                                                                 0
                                                                                0
3
                  0
                                  0
                                                   0
                                                                 0
                                                                                0
                                                                 0
                                                                                0
4
                  0
   pesticide_ad pesticide_acd pesticide_bd pesticide_ac pesticide_abd
0
                                 0
                                                0
                0
                                 0
                                                                                 0
                                                0
                                                                0
1
2
                0
                                 0
                                                0
                                                                                  0
                                                                0
3
                0
                                 0
                                                0
                                                                0
                                                                                  0
4
                0
                                 0
                                                0
                                                                0
                                                                                  0
                   pesticide_cd region_0 region_1
   pesticide_ab
                                                         region_2
0
                               0
                                           0
                                                      0
                                                                  1
               0
                                                                             0
1
                0
                                0
                                           0
                                                      0
                                                                  1
                                                                             0
2
                0
                                0
                                           1
                                                      0
                                                                 0
                                                                             0
3
                                0
                                           0
                                                      0
                                                                 0
                                                                             0
                                           0
                                                                  1
                                                                             0
   region_4 region_5 region_6
0
           0
                      0
                                  0
           0
                      0
                                  0
1
2
           0
                      0
                                  0
3
           0
                      1
                                  0
4
```

3 3 Exploratory Data Analysis

3.1 Calculating the Correlation between all Features and the Target Feature 'yield'

I'm using the Spearman method as it's better able to catch non-linear relationships. **Spearman Correlation Coefficient Range** - .00 - .19: very weak - .20 - .39: weak - .40 - .59: moderate - .60 - .79: strong - .80 - 1.0: very strong

```
df_correlations.correlation.abs().sort_values(ascending=False).index
).reset_index(drop=True)

print(color.BOLD + "Spearman correlation with", "yield" + color.END, "\n")
display(df_correlations)
```

Spearman correlation with yield

	feature	correlation
0	yield	1.000000
1	area	0.474607
2	fertilizer_usage	0.459740
3	region_4	0.237172
4	water	0.225665
5	region_6	-0.107846
6	region_5	-0.104509
7	pesticides	0.092768
8	region_2	-0.076822
9	pesticide_d	0.073817
10	pesticide_bcd	-0.067945
11	pesticide_contains_c	-0.060950
12	region_1	0.057477
13	pesticide_c	-0.053120
14	region_3	0.044820
15	uv	0.039300
16	pesticide_contains_b	-0.031860
17	pesticide_cd	0.028711
18	pesticide_abd	-0.025466
19	pesticide_a	0.025348
20	pesticide_b	0.023533
21	pesticide_ac	-0.017978
22	region_0	-0.015709
23	pesticide_ad	0.014146
24	pesticide_acd	0.010759
25	pesticide_bc	0.009510
26	pesticide_ab	0.007755
27	pesticide_contains_d	0.006533
28	pesticide_contains_a	0.005487
29	pesticide_bd	-0.005125
30	pesticide_abcd	-0.001571
31	pesticide_abc	0.000918
	-	

3.2 Quick Findings from EDA

Looking at the above table with the Spearman correlation I can tell that - there's a moderate positive correlation between the area and the yield - this means the larger the area the higher the

yield - there's a moderate positive correlation between the fertilizer_usage and the yield - this means the more fertilizer is used the higher the yield - region 4 has a weak correlation with the yield - this means that having the farm in region 4 will lead to a somewhat higher yield - all the other regions have a correlation that's close to 0 - this means that having the farm in any of these areas will not really affect the yield - region 4, 5, and 6 have a negative correlation with the yield - this means that having the farm in these regions will actually lead to a smaller yield - since the correlation is so close to 0 this won't make much of a difference though - the use of pesticides has a correlation with the yield that's very close to 0 (0.048380) - this means that using more or less pesticides will not lead to a higher/smaller yield - this finding is further backed as the pesticide combination 'd' has the the largest correlation with yield of merely 0.072035 - statistically 0.072035 is irrelevant and will barely affect the yield - some pesticide combinations actually have a negative correlation with the yield - this means that using these pesticide combinations will lead to a lower yield - since the correlation of all pesticide combinations is so close to 0 this won't make much of a difference though - however, I wouldn't recommend to any farms to stop using pesticides - not a single farm in the dataset chose to not use any pesticides (lowest pesticide usage was 0.014) - we therefore do not have enough data to confidentelly say that not using any pesticide wouldn't negatively affect the yield - furthermore, not all pesticides are meant to directly affect the yield/crop - some pesticides act as a protection just in case for eg. insects or weather (freezing, etc) - this protection can be looked at as an insurance and is therefore needed to potentially protect the crop even if this won't show in the data - it is interesting to note that the correlation between uv and the yield is very close to zero with 0.053070 - this means that whether there's more or less uv will almost have no effect on the yield - however, we can not say that there's no need for uv at all - no farm in the dataset had 0 uv - the farm with the least amount of uv had 45.264 uv by the hectare - we can therefore not recommend to any farm to move their crop inside or cover up their crop outside with uv protective material - we can say however that as long as a farm gets at least 45.264 uv by the hectare the yield will not be largely affected by not having enough uv - similar to uv, water also has a correlation to the yield that is very close to zero with 0.014631 - just by going with this very low correlation, I'd say that having more water will not lead to a higher yield - however, it is not clear from the data whether the dataset only shows the natural water received through precipitation - if the weather is very dry with a lack of precipitation, I'd assume that a farm will water their crop themselves - adding water manually will throw off the data and lead to wrong conclusions - therefore, based on the data given, I wouldn't make a statement whether adding more water helps with achieving a higher yield

4 4 Data Preparation for the Model Input

4.1 4.1 Normalizing the Data

For the data input to the model I need to normalize the data.

```
min_max_scaler = preprocessing.MinMaxScaler()
             x_scaled = min_max_scaler.fit_transform(x)
             dict_df_normalized[iter_df][1] = pd.DataFrame(
                 x_scaled, columns=list(dict_df[iter_df][1])
             )
         dict_df_normalized[iter_df][1].head()
Out [25]:
                                     area fertilizer_usage
               water
                                                                 yield pesticides
                             uv
         0 0.633369
                      0.502709
                                 0.478981
                                                         0.4 0.494466
                                                                          0.267598
         1 0.709650
                      0.620212 0.324632
                                                         0.6 0.506502
                                                                          0.472893
         2 0.358360
                      0.533925
                                 0.341632
                                                         0.2 0.378118
                                                                          0.256777
         3 0.397526
                                 0.283591
                                                         0.6 0.242761
                                                                          0.482349
                     0.440854
         4 0.201697 0.251652 0.540792
                                                         0.2 0.285051
                                                                          0.021748
            pesticide_contains_a pesticide_contains_b pesticide_contains_c \
         0
                              0.0
                                                     1.0
                                                                            1.0
                              0.0
                                                    1.0
         1
                                                                            1.0
         2
                              0.0
                                                    0.0
                                                                            1.0
         3
                                                     1.0
                              0.0
                                                                            1.0
         4
                              0.0
                                                     0.0
                                                                            0.0
            pesticide_contains_d pesticide_bcd pesticide_c pesticide_d \
         0
                              1.0
                                             1.0
                                                           0.0
                                                                         0.0
         1
                              1.0
                                             1.0
                                                           0.0
                                                                        0.0
         2
                              0.0
                                             0.0
                                                           1.0
                                                                        0.0
                                              1.0
         3
                              1.0
                                                           0.0
                                                                        0.0
         4
                              1.0
                                             0.0
                                                           0.0
                                                                         1.0
            pesticide abcd pesticide bc pesticide abc pesticide b pesticide a \
         0
                       0.0
                                      0.0
                                                      0.0
                                                                   0.0
                                                                                 0.0
                       0.0
                                      0.0
                                                      0.0
                                                                   0.0
                                                                                 0.0
         1
         2
                                                      0.0
                                                                                 0.0
                       0.0
                                      0.0
                                                                   0.0
         3
                       0.0
                                      0.0
                                                      0.0
                                                                   0.0
                                                                                 0.0
         4
                       0.0
                                      0.0
                                                      0.0
                                                                   0.0
                                                                                 0.0
            pesticide_ad pesticide_acd pesticide_bd pesticide_ac pesticide_abd
         0
                     0.0
                                     0.0
                                                    0.0
                                                                  0.0
                                                                                  0.0
                     0.0
         1
                                     0.0
                                                    0.0
                                                                  0.0
                                                                                  0.0
         2
                     0.0
                                     0.0
                                                    0.0
                                                                  0.0
                                                                                  0.0
         3
                     0.0
                                     0.0
                                                    0.0
                                                                  0.0
                                                                                  0.0
         4
                                     0.0
                      0.0
                                                    0.0
                                                                  0.0
                                                                                  0.0
            pesticide_ab
                          pesticide_cd region_0
                                                   region_1 region_2
                                                                        region_3 \
         0
                     0.0
                                    0.0
                                              0.0
                                                         0.0
                                                                   1.0
                                                                              0.0
                     0.0
                                    0.0
                                              0.0
                                                         0.0
                                                                   1.0
                                                                             0.0
         1
         2
                     0.0
                                    0.0
                                              1.0
                                                         0.0
                                                                   0.0
                                                                             0.0
         3
                     0.0
                                    0.0
                                              0.0
                                                         0.0
                                                                   0.0
                                                                             0.0
         4
                     0.0
                                    0.0
                                              0.0
                                                         0.0
                                                                             0.0
                                                                   1.0
```

```
region_4 region_5 region_6
0
        0.0
                   0.0
                              0.0
1
        0.0
                   0.0
                              0.0
2
        0.0
                   0.0
                              0.0
3
        0.0
                   1.0
                              0.0
4
        0.0
                   0.0
                              0.0
```

4.2 4.2 Moving the Target Variable 'yield' to the End

The target variable 'yield' needs to be at the end of the dataframe for further data processing and model input.

```
In [26]: str_target = "yield"
        for iter_df in list_dfs:
             lst_columns = dict_df_normalized[iter_df][1].columns.tolist()
             # putting the target variable to the end of the list
             lst_columns.insert(
                 dict_df_normalized[iter_df][1].shape[1] + 1,
                 lst_columns.pop(lst_columns.index(str_target)),
             )
             dict_df_normalized[iter_df][1] = dict_df_normalized[iter_df][1].reindex(
                 columns=lst columns
        dict_df_normalized[iter_df][1].head()
Out [26]:
                                    area fertilizer_usage pesticides \
               water
                            uv
                                                       0.4
                                                              0.267598
        0 0.633369 0.502709 0.478981
         1 0.709650 0.620212 0.324632
                                                       0.6
                                                              0.472893
         2 0.358360 0.533925 0.341632
                                                       0.2
                                                              0.256777
        3 0.397526 0.440854 0.283591
                                                       0.6
                                                              0.482349
         4 0.201697 0.251652 0.540792
                                                       0.2
                                                              0.021748
            pesticide_contains_a pesticide_contains_b pesticide_contains_c \
        0
                             0.0
                                                   1.0
                                                                         1.0
        1
                             0.0
                                                   1.0
                                                                         1.0
         2
                             0.0
                                                   0.0
                                                                         1.0
        3
                             0.0
                                                   1.0
                                                                         1.0
         4
                             0.0
                                                   0.0
                                                                         0.0
            pesticide_contains_d pesticide_bcd pesticide_c pesticide_d \
        0
                             1.0
                                            1.0
                                                         0.0
                                                                      0.0
                             1.0
                                            1.0
                                                         0.0
                                                                      0.0
         1
         2
                             0.0
                                            0.0
                                                         1.0
                                                                      0.0
        3
                             1.0
                                            1.0
                                                         0.0
                                                                      0.0
```

4		1.0	0.0	C	0.0	1.0	
	pesticide_abcd	l pesticide_b	c pestició	le_abc p	esticide_b	pesticide_a	. \
0	0.0	0.	0	0.0	0.0	0.0	1
1	0.0	0.	0	0.0	0.0	0.0	1
2	0.0	0.	0	0.0	0.0	0.0	1
3	0.0	0.	0	0.0		0.0	1
4	0.0	0.	0.0		0.0	0.0	
	pesticide_ad	pesticide_acd	pesticide	e_bd pes	sticide_ac	pesticide_ab	d \
0	0.0	0.0		0.0	0.0	0.	0
1	0.0	0.0		0.0	0.0	0.	0
2	0.0	0.0		0.0	0.0	0.	0
3	0.0	0.0		0.0	0.0	0.	0
4	0.0	0.0		0.0	0.0	0.	0
	pesticide_ab	pesticide_cd	region_0	region_1	l region_2	region_3 \	
0	0.0	0.0	0.0	0.0	1.0	0.0	
1	0.0	0.0	0.0	0.0	1.0	0.0	
2	0.0	0.0	1.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	1.0	0.0	
	region_4 regi	on_5 region_	6 yield	l			
0	0.0	0.0 0.	0 0.494466	3			
1	0.0	0.0 0.	0 0.506502	2			
2	0.0	0.0 0.	0 0.378118	3			
3	0.0	1.0 0.		-			
4	0.0	0.0 0.	0 0.285051	-			

5 5 Forecast Model

6 5.1 Error Function

This is an error function returning the following errors: - Root Mean Squared Error (RMSE) - R-squared (r2)

7 5.2 Feature Selection

To compare performance between different subsets of the dataset, I'll run the forecast with the following variables: - all variables in the DataFrame - only selected variables that have at least

somewhat of a correlation with the target feature 'yield' - "water", - "fertilizer_usage", - "uv", - "area", - "pesticides", - "region_1", - "region_2", - "region_3", - "region_4", - "region_5", - "region_6",

7.0.1 5.2.1 Setting up the 2 lists with the above columns selected

```
In [28]: lst_columns_feature_selection = [
             "water",
             "fertilizer_usage",
             "uv",
             "area",
             "pesticides",
             "region_1",
             "region_2",
             "region 3",
             "region_4",
             "region_5",
             "region_6",
             "yield",
         lst all columns = dict df normalized["df w outliers"][
         ].columns # all columns except the target variable 'yield'
         lst_columns = [
             [lst_all_columns, "all features"],
             [lst_columns_feature_selection, "selected features"],
         ]
```

7.1 5.3 Non-Linear and Linear Regression with Cross Validation

Because the dataset is relatively small with 1,000 records, I'll try to get a more constant performance with Cross Validadation. I'm running the same kernels/models as before with the Cross Validation being the only difference.

```
# setting up the cross validation
int_splits = 5
cv = KFold(n_splits=int_splits, shuffle=False)
print("running cross validation in", int_splits, "splits", "\n")
# create a df to store error values in
df scores = pd.DataFrame(
    columns=[
        "type",
        "kernel",
        "root_mean_squared_error",
        "r_quared",
        "dataset",
        "with_cross_validation",
        "selected_columns",
    ]
)
for iter_df in list_dfs:
    for svr in svrs:
        for column_selection in lst_columns:
            array = dict_df_normalized[iter_df][1][column_selection[0]].values
            # convert pandas df to an array for the model
            X = array[:, 0 : array.shape[1] - 1]
            Y = array[:, array.shape[1] - 1]
            scores_rmse = []
            scores_r2 = []
            scores_mae = []
            for train_index, test_index in cv.split(X):
                # setting up the data
                x_train, x_test = X[train_index], X[test_index]
                y_train, y_test = Y[train_index], Y[test_index]
                # data fitting and prediction
                pred = svr[0].fit(x_train, y_train).predict(x_test)
                # calculating the errors
                float_rmse, float_r2 = get_errors(y_test, pred)
                scores_rmse.append(float_rmse)
                scores_r2.append(float_r2)
            float_rmse = np.mean(scores_rmse)
            float_r2 = np.mean(scores_r2)
            # storing the errors
```

```
df_scores.loc[len(df_scores)] = [
                         "regression",
                         svr[1],
                         float_rmse,
                         float r2,
                         dict_df_normalized[iter_df][0],
                         "TRUE",
                         column_selection[1],
         print('running of model completed. Please move to the next cell.')
         # display(
         #
               df_scores[
                   (df_scores["type"] == "regression")
                   & (df_scores["with_cross_validation"] == "TRUE")
         # )
running cross validation in 5 splits
```

7.2 5.4 Forecast Performance

7.2.1 5.4.1 Table with Errors

Here's a table of the 5 best models and their respective errors.

running of model completed. Please move to the next cell.

```
In [30]: # SORT ERRORS BY R SQUARED
        df_scores = df_scores.sort_values(
            ["r_quared", "root_mean_squared_error"], ascending=(False, True)
        )
        df_scores.reset_index(drop=True, inplace=True)
        df_scores.head(5)
Out [30]:
                           kernel root_mean_squared_error r_quared \
                 type
        0 regression
                              RBF
                                                 0.074041 0.865658
        1 regression Polynomial
                                                 0.074677 0.863072
        2 regression
                                                 0.061816 0.862148
        3 regression Polynomial
                                                 0.062385 0.859235
        4 regression Polynomial
                                                 0.087075 0.813502
                    dataset with_cross_validation selected_columns
        0 without outliers
                                            TRUE selected features
        1 without outliers
                                            TRUE selected features
              with outliers
                                            TRUE selected features
        3
              with outliers
                                            TRUE selected features
        4 without outliers
                                            TRUE
                                                       all features
```

7.2.2 5.4.2 Results

- Using the dataset without the outliers and a subset of all features performed better than the dataset with the outliers.
 - This indicates that an improvement was achieved by further processing and filtering the data.
- The R Squared value of ~0.87 means that this particular model is able to explain the crop outcome by ~87% using the selected features.

If I was to proceed further with this project, I would

- go more detailed on the region.
 - This would give me more data on the climate, temperatures, precipitation, uv, etc.
 - Having the zip code would enable me to feed official weather forecasts to the model, and improve model forecasts for the next season/year
- go more detailed on the pesticides.
 - In the current dataset there's no information on the ratio of each pesticide if there were
 2 or more pesticides used.
 - * Knowing the exaction ration could make a difference.
- do a cost benefit analysis.
 - with the more information such as costs/prices for:
 - * land
 - * yield
 - * workforce/labor
 - * pesticides
 - * etc
 - E.g., region 4 has the biggest positive effect on the yield.
 - * However, if the cost of land in region 4 outweights the added return of the increase in yield, then a farm in another region may have a better profit by having lower costs.
 - The costs for labor is higher in certain regions and could reduce the profits compared to other regions.
 - With the cost of the pesticides I could calculate the optimal amount of pesticides to use in regards to profits and yields.
 - Overall I could forecast the best combination in order to get the biggest profit possible.
- calculate the optimal occupation of the land.
 - The data shows that the bigger the area, the higher the yield.
 - However, this could also mean that farms with less land tend to over plant, whereas farms with more land have the luxury of being able to spread out their crops.
 - With the crop occupation data I could calculate the idea amount of crops per hecare/square meter, etc.
- Since a selection of features had better forecasts than using all features, I could further try to find an even better subset of features.

- Since the non-linear regression models performed well, I could try other non-linear models such as
 - KNeighborsRegressor
 - DecisionTreeRegression()
- In this analyais I only did supervised learning and calculated the correlation between non-dependant and the target variable 'yield.
 - However, I could also perform unsupervised learning and try to find non-dependant variables that are correlated.