「你是有信用的人嗎?」 信用卡風險預測

01/研究目的、資料介紹

02/資料探索

03/模型預測

04 / 結論

研究目的 資料介紹

研究目的、資料介紹

研究目的

希望透過這次的分析了解銀行審核信用卡申請時,會因為那些條件的不同,進而將申請人評估為高風險、低風險。

例如:

對於不同的收入類型,風險是否相同

對於不同的學歷,風險是否相同

對於不同的性別,風險是否相同

藉此進一步預測:

一位用戶申辦信用卡時, 銀行會將其評估為高風險還是低風險?

研究目的、資料介紹

資料介紹 — Credit Card Classification

資料集來源 Kaggle

變數 20

樣本數目 9709

ID	客戶ID	int	Account_length	擁有信用卡的月數	int
Gender	性別	int	Total_income	總收入(人民幣)	num
Own_car	是否有車	int	Age	年齡	num
Own_property	是否有財產	int	Years_employed	年資	int
Work_phone	是否有工作手機	int	Income_type	收入類型	chr
Phone	是否有手機	chr	Education_type	教育程度	chr
Email	是否有信箱	chr	Family_status	婚姻狀況	chr
Unemployed	是否失業	chr	Housing_type	居住類型	chr
Num_children	小孩人數	Int	Occupation_type	工作職位	chr
Num_family	家庭成員人數	int	Target	是否為高風險	int

研究目的、資料介紹

資料處理

- 將部分欄位之型態轉換為factor
- 將教育程度(chr)轉換為分數(int)
- 將客戶ID刪除

ID	客戶ID	int	Account_length	擁有信用卡的月數	int
Gender	性別	factor	Total_income	總收入(人民幣)	num
Own_car	是否有車	factor	Age	年齡	num
Own_property	是否有財產	factor	Years_employed	年資	int
Work_phone	是否有工作手機	factor	Income_type	收入類型	factor
Phone	是否有手機	factor	Escore	教育程度	int
Email	是否有信箱	factor	Family_status	婚姻狀況	factor
Unemployed	是否失業	factor	Housing_type	居住類型	factor
Num_children	小孩人數	Int	Occupation_type	工作職位	chr
Num_family	家庭成員人數	int	Target	是否為高風險	factor

低專業技術勞工族群有較高的風險

學生族群有較高的風險

Account_length

高風險族群持有信用卡月數較長

高風險族群平均收入較高

高風險族群較年輕

高風險族群工作年資較短

03 模型預測

模型預測

	TR
總筆數	6796
0	5898
1	898

	TS
總筆數	2913
0	2528
1	385

模型預測_KNN

AUC: 0.5638679

Recall: 0.0976

Precision: 0.01

F1-score: 0.01814

accuracy: 0.8514

模型預測_隨機森林

AUC: 0.5523

Recall: 0.6

Precision: 0.008 F1-score: 0.016

模型預測_邏輯式回歸

accuracy: 0.869

AUC: 0.5774669

Recall: 0.008

Precision: 1.000 F1-score: 0.015

模型預測_XGBoost

AUC: 0.5031312

Recall: 0.013

Precision: 0.227 F1-score: 0.025

模型預測_共同重要變數

KNN	隨機森林	邏輯式回歸	XGBoost
Age	Age	Num_children	Age
Years_employed	Years_employed	Num_family	Years_employed
Account_length	Account_length	Account_length	Account_length

模型預測_準確度比較

04

結論

結論

开

邏輯式回歸在Accuracy跟AUC表現較好

年齡較<mark>低、有信用卡的月數較久、工作年資短,</mark> 較有可能成為高風險族群

資料中的變數大多與結果沒有關係、原始變數 無法衍生其他變數協助預測,導致模型的表現 不好

Thanks For Listening