Pre-requisites (*if any*): Knowledge of Basic Electronics.

Course Educational Objectives:

- To understand number representation and conversion between different representations in digital electronic circuits.
- To analyze logic processes and implement logical operations using combinational logic circuits.
- To understand concepts of sequential circuits and to analyze sequential systems in terms of state machines.

Course Content

Unit 1 (12 Hours)

Number Systems and Codes: Binary, Octal, Hexadecimal, and Decimal Number System and their Conversion; Representation of Signed Binary and Floating-Point Number; Binary Arithmetic using 1's and 2's Complements, Binary Codes - BCD Code, Gray Code, ASCII Character Code.

Boolean Algebra and Logic Gates: Axioms and Laws of Boolean Algebra; Reducing Boolean Expressions; Logic Levels and Pulse Waveforms; Logic Gates; Boolean Expressions and Logic Diagrams; Canonical and Standard Forms.

Unit 2 (12 Hours)

Gate-level Minimization: K-maps - Two, Three, and Four Variable K-maps, Don't-Care Conditions; NAND and NOR Implementation; Other Two-Level Implementations, Exclusive-OR Function.

Combinational Logic: Combinational Circuits; Analysis Procedure; Design Procedure; Adders; Subtractors; Parallel Binary Adders; Binary Adder-Subtractor; Binary Multiplier; Magnitude Comparator; Decoders; Encoders; Multiplexers; De-multiplexers.

Unit 3 (12 Hours)

Synchronous Sequential Logic: Sequential Circuits; Storage Elements: Latches, Flip-Flops, Master-Slave Flip-Flop; Conversion of Flip-Flops; Analysis of Clocked Sequential Circuits; Mealy and Moore Models of Finite State Machines; Design Procedure.

Registers and Counters: Shift Registers; Data Transmission in Shift Registers; SISO, SIPO, PISO, and PIPO Shift Registers; Counters; Asynchronous Counters; Design of Asynchronous Counters; Synchronous Counters; Design of Synchronous Counters; Ring Counter.

Unit 4 (8 Hours)

Memory and Programmable Logic: Introduction; Random-Access Memory; Memory Decoding; Error Detection and Correction; Read-Only Memory; Programmable Logic Array; Programmable Array Logic; Sequential Programmable Devices.

Text Books:

- [1] M. Morris Mano, and Michael D. Ciletti, *Digital Design: With an Introduction to the Verilog HDL, VHDL, and SystemVerilog.* Pearson Education, Sixth Edition, 2017.
- [2] A. Anand Kumar, *Fundamentals of Digital Circuits*. PHI Learning Pvt. Ltd., New Delhi, Fourth Edition, 2016.
- [3] R. P. Jain, *Modern Digital Electronics*. Tata McGraw-Hill Education Pvt. Ltd., Fourth Edition, 2009.

Reference Books:

- [1] John P. Uyemura, A First Course in Digital Systems Design: An Integrated Approach. Thomson Press (India) Ltd., India Edition, 2002.
- [2] William H. Gothmann, *Digital Electronics: An Introduction to Theory and Practice*, PHI Learning Pvt. Ltd., New Delhi, Second Edition, 2006.
- [3] D.V. Hall, Digital Circuits and Systems. Tata McGraw-Hill Education Pvt. Ltd., 1989.
- [4] Charles H. Roth, *Digital System Design using VHDL*. Tata McGraw-Hill Education Pvt. Ltd., Second Edition, 2012.

Course Outcomes:

At the end of this course, students will be able to

- CO1: Define and analyze the number system, Boolean algebra, binary codes, and logic gates.
- CO2: Analyze, design, and implement combinational logic circuits.
- CO3: Analyze, design, and implement sequential logic circuits.
- CO4: Explain, analyze, and design memories, and PLDs.

CO-PO & PSO matrices of Course

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	-	ı										
CO2	1	2	3	-										
CO3	1	2	3	1										
CO4	1	1	1	ı										
Average	1.25	1.5	2.33	1										

Pre-requisites (*if any*): Knowledge of Basic Electronics.

Course Educational Objectives:

- To know the concepts of combinational logic circuits.
- To understand the concepts of flip-flops, registers, and counters.

Course Content

List of Experiments:

(At least 10 experiments should be done, Experiment No. 1 and 2 are compulsory and out of the balance 8 experiments at least 3 experiments has to be implemented through both Verilog/VHDL and hardware implementation as per the choice of the student totaling to 6 and the rest 2 can be either through Verilog/VHDL or hardware implementation.)

- 1. Digital Logic Gates: Investigate logic behavior of AND, OR, NAND, NOR, EX-OR, EXNOR, Invert and Buffer Gates, use of Universal NAND/NOR Gate.
- 2. Gate-Level Minimization: Two-level and multi-level implementation of Boolean functions.
- 3. Combinational Circuits: Design, assemble, and test: adders and subtractors, code converters, gray code to binary, and 7 segment displays.
- 4. Design, implement and test a given design example with (i) NAND Gates only, (ii) NOR Gates only, and (iii) using the minimum number of Gates.
- 5. Design with Multiplexers and De-multiplexers.
- 6. Flip-Flop: Assemble, test, and investigate the operation of SR, D & JK flip-flops.
- 7. Shift Registers: Design and investigate the operation of all types of shift registers with the parallel load.
- 8. Counters: Design, assemble, and test various ripple and synchronous counters decimal counter, Binary counter with the parallel load.
- 9. Memory Unit: Investigate the behavior of the RAM unit and its storage capacity 16×4 RAM: testing, simulating, and memory expansion.
- 10. Clock-Pulse Generator: Design, implement, and test.
- 11. Parallel Adder and Accumulator: Design, implement, and test.
- 12. Binary Multiplier: Design and implement a circuit that multiplies 4-bit unsigned numbers to produce an 8-bit product.
- 13. Verilog/VHDL simulation and implementation of Experiments listed at Sl. No. 3 to 12.

Course Outcomes:

At the end of this course, students will be able to

CO1: List the truth tables of all the logic gates and their behaviors / Boolean expressions.

CO2: Construct basic combinational circuits and verify their functionalities.

CO3: Apply the design procedures to design basic sequential circuits.

CO4: Demonstrate different types of memory elements.

CO5: Simulate the logic circuits using VHDL and Verilog HDL.

CO-PO & PSO matrices of Course

	PO	PO	РО	PO	PO	PO	РО	РО	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-											
CO2	1	1	-											
CO3	2	1	1											
CO4	1	1	1											
CO5	2	1	-											
Average	1.6	1	1											