ADL HW1 Report

R10922124 林家毅

Q1

Intent Classification

- a. 因為在 data (train.json & valid.json) 裡面的 text 欄位都是一個完整的句子,所以在前處理的時候先把每個句子用空格拆開,紀錄每個 word 出現次數由大到小排序,並取最常出現的 10000 個字,未來看到這些 word 的時候用 index 對應; intent 欄位則是代表某個類別,所以利用一個 set 收集所有 unique 的類別,未來看到這些類別也可以用 index 對應。
- b. embedding 的部分是利用 glove.840B.300d.txt,將 glove 裡面每個出現在 data 裡面的字取出來,對應該字的 index 到 300 維向量,如果有一個 data 裡的字在 glove 裡面沒有出現過的話就賦予它一個隨機 300 維向量

Slot Tagging

- a. 因為 data (train.json & valid.json) 裡面的 tokens 欄位已經是一個字串陣列,所以 在前處理的時候直接算出每個 word 出現次數由大到小排序,並取最常出現的 10000 個字,未來看到這些 word 的時候用 index 對應; tags 欄位則是類別陣 列,一樣是利用一個 set 收集所有 unique 的類別,未來看到這些類別也可以用 index 對應。
- b. embedding 的部分跟 intent classification 的方法一樣,都是利用 glove.840B.300d.txt,將 glove 裡面每個出現在 data 裡面的字取出來,對應該字 的 index 到 300 維向量,如果有一個 data 裡的字在 glove 裡面沒有出現過的話就 賦予它一個隨機 300 維向量

Q2

a. model 是由 1 layer Bidirectional GRU 以及 1 layer fully-connected output layer 所組成,其中 GRU hidden dimension = 128,不過因為是 bidirectional 所以 fully-connected layer 的 input 會是 256 維,輸出則是 150 維 (number of classes = 150)

b. Public Score: 0.91466

c. Loss Function: Cross Entropy Loss

d. Optimization Algorithm: Adam with learning rate = 0.001 and batch size = 16

Q3

- 1. model 是由 1 layer Bidirectional LSTM、10 層 fully-connected hidden layers 以及 1 層 fully-connected output layer 所組成,其中 LSTM hidden dimension = 128,而所有的 hidden layers 都是 256 * 256 加上一層 relu 和一層 dropout (= 0.35),最後的 output layer 則是 256 * 9 (number of classes = 9)
- 2. Public Score: 0.75227
- 3. Loss Function: Cross Entropy Loss
- 4. Optimization Algorithm: AdamW with learning rate = 0.001 and batch size = 64

Q4

- eval.json 中共有 1000 筆 data,分別計算 Joint Accuracy, Token Accuracy 以及
 利用 seqeval 輸出 Classification Report 的結果如圖一
- 從圖中可以發現,Token Accuracy 比 Joint Accuracy 高出許多,這是因為 Joint Accuracy 要求一個句子所有 tags 都預測正確才算正確,而 Token Accuracy 只需要該 token 的 tag 預測正確。而在 Classification Report 中因為設定 scheme = 1082 , 所以會依照 Joint Accuracy 的方式,只有當 chunk 裡面的所有 tags 都被預測正確時才算正確

Joint Accuracy: 0.763 (763 / 1000) Token Accuracy: 0.960 (7578 / 7891) Classification Report:				
	recision	recall	f1-score	support
date first_name last_name people time	0.76 0.86 0.64 0.68 0.81	0.71 0.85 0.73 0.67 0.85	0.73 0.86 0.68 0.68 0.83	206 102 78 238 218
micro avg macro avg	0.75 0.75	0.75 0.76	0.75 0.76	842 842
weighted avg	0.75	0.75	0.75	842

圖一: Joint Accuracy, Token Accuracy and Classification Report

Q5

因為 Q2 的 model 看起來有 overfitting 的問題,因此把 model 的 GRU 改成用 LSTM 試試看,結果發現在 train set 上兩個方法都 fit 的很好,如圖二、圖三 (橘色線是 GRU,藍色線是 LSTM);而在 valid set 上, LSTM 的 loss 明顯比 GRU 更低, overfitting 的問題看起來減少了,如圖四、圖五 。從結果看來 LSTM 比 GRU 更適合 作為這個 intent classification problem 的 model。

圖二: Accuracy on Train set。(橘色線是GRU,藍色線是LSTM)

圖三: Loss on Train set。(橘色線是 GRU,藍色線是 LSTM)

圖四: Accuracy on Valid set。(橘色線是 GRU, 藍色線是 LSTM)

圖五: Loss on Valid set。(橘色線是 GRU,藍色線是 LSTM)

Reference

- 1. PyTorch Documentation
- 2. PyTorch 中的循環神經網絡模塊
- 3. pack padded sequence 和 pad packed sequence
- 4. SEQUENCE MODELS AND LONG SHORT-TERM MEMORY NETWORKS
- 5. Build Your First Text Classification model using PyTorch
- 6. LSTM Text Classification Using Pytorch
- 7. <u>Sequence Tagging With an RNN</u>
- 8. 序列標註算法評估模塊segeval 的使用
- 9. Pytorch crossentropy loss with 3d input