Математика для Data Science. Теория вероятностей. Шпаргалка

Содержание

${f B}$ 1	горая неделя. Случайные величины	2
	Теорема Байеса	2
	Комбинаторика в тервере, перестановки	2
	Биномиальные коэффициенты	2
	Случайная величина и математическое ожидание	3

Вторая неделя. Случайные величины

Теорема Байеса

Теорема Байеса. Для любых событий A и B, таких что $P(B) \neq 0$ выполнено

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}.$$

Формула полной вероятности.

Даны события A_1, A_2, \dots, A_n , такие что каждый элементарный исход из Ω лежит ровно в одном из этих событий. Другими словами,

- ullet эти события не пересекаются друг с другом, то есть $A_i \cap A_j = \emptyset$ для любых $i \neq j$
- и их объединение равно Ω , то есть $\bigcup_{i=1}^{n} A_i = \Omega$.

Тогда выполнено:

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i)$$
 или, эквивалентно,

$$P(B) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i).$$

Комбинаторика в тервере, перестановки

События $A, B \in F$ называются несовместными, если $A \cap B = \emptyset$.

Правило суммы. Если события A и B несовместны, то $P(A \cup B) = P(A) + P(B)$.

Утверждение. Пусть $A, B \in F$ — события. Тогда

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

 Π ерестановка чисел от 1 до n — это некоторая упорядоченная последовательность чисел от 1 до n, где каждое число встречается ровно один раз.

Ещё одно определение перестановки — функция из множества $\{1, 2, ..., n\}$ в множество $\{1, 2, ..., n\}$, такая, что значение функции для двух различных чисел не может совпадать.

 $n! := 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n$. Читается "n факториал". При этом 0! := 1. При этом 0! := 1.

Различных перестановок чисел от 1 до n всего n!

Биномиальные коэффициенты

Число $\frac{n!}{k!(n-k)!}$ обозначается $\binom{n}{k}$ и читается "n по k". Определено для целых неотрицательных n и k таких, что $n \geqslant k$. Все числа такого вида называются биномиальными коэффициентами. В русскоязычной литературе также используется обозначение C_n^k (цэ из n по k).

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ равно числу подмножеств размера k у n-элементного множества S.

Поскольку 0! := 1, то $\binom{n}{k} = 1$.

Бином Ньютона. Для любых $a,b\in\mathbb{R}$ и $n\in\mathbb{N}$ выполнено $(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^kb^{n-k}.$

Свойства биномиальных коэффициентов

- 1. Для любых n и k таких, что $k\leqslant n$ выполнено соотношение $\binom{n}{k}=\binom{n}{n-k}$
- 2. Для всех n выполнено

$$\sum_{k=0}^{n} \binom{n}{k} = \binom{n}{n} + \binom{n}{n-1} + \binom{n}{n-2} + \dots + \binom{n}{k} + \dots + \binom{n}{n-1} + \binom{n}{0} = 2^{n}$$

2

3. Для всех n и k таких, что $k\leqslant n$ выполнено $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$

Биномиальные коэффициенты можно визуализировать с помощью треугольника Паскаля, который получается так

- Первая строка состоит из одной 1
- Каждая следующая получается из предыдущей строки сложением её с самой собой со сдвигом 1

n = 0							1						
n = 1						1		1					
n=2					1		2		1				
n = 3				1		3		3		1			
n = 4			1		4		6		4		1		
n = 5		1		5		10		10		5		1	
n = 6	1		6		15		20		15		6		1

Случайная величина и математическое ожидание

Как и раньше, рассматриваем случай, когда пространство исходов Ω конечно, и алгебра событий F состоит из всевозможных подмножеств Ω .

 $\mathit{Cлучайная}$ величина это функция из пространства исходов Ω в $\mathbb{R}.$

Пусть дано вероятностное пространство Ω , состоящее из n элементарных исходов, и случайная величина X. Обозначим через P_i вероятность i-ого исхода, и через x_i значение случайной величины X на i-ом исходе.

Тогда математическим ожиданием случайной величины X называется число $E[X] := \sum_{i=1}^n x_i P_i$. Более коротко определение математического ожидания можно записать так: $E[X] := \sum_{i=1}^n X_i (\omega) P(\omega)$.

Операции со случайными величинами

Случайные величины, определённые на одном вероятностном пространстве, можно складывать друг с другом, умножать друг на друга, как и любые функции. Например, сумма случайных величин X и Y обозначается X+Y и определяется так: для любого исхода $\omega \in \Omega$ мы говорим $(X+Y)(\omega) := X(\omega) + Y(\omega)$.

Пусть дано число $c \in \mathbb{R}$ и пространство исходов Ω . Будем считать, что случайная величина, которая любому элементарному исходу сопоставляет число c, обозначается так же, как и число c. Тогда мы можем определить случайную величину, равную многочлену от случайных величин.

В дальнейшем, когда мы будем складывать или перемножать случайные величины, мы всегда будем предполагать, что они определены на одном и том же вероятностном пространстве.

Свойства математического ожидания

 Π усть X и Y — случайные величины. Тогда

- 1. если $c \in \mathbb{R}$, то $E[cX] = c \cdot E[X]$;
- 2. E[X + Y] = E[X] + E[Y];
- 3. $E[X \cdot Y]$ не всегда равно $E[X] \cdot E[Y]$