# PS6: Op-Amps

Thursday, April 1, 2021 4:28 PM



PS6-OpAmp

S

Op-Amp Problem Set

## Problem set: Op-amps

<u>Goal:</u> Experience how the operational amplifier ("Op-amp") functions and how it can be used to get more accurate voltage measurements. Why? The reason is in the puzzle, page 2.

### Overview

In this problem set, you're going to use an op-amp in two configurations that are schematically represented below, OPEN LOOP and with negative feedback, as a VOLTAGE FOLLOWER:



# **VOLTAGE FOLLOWER**



You'll be using the LMC6484 \( \text{LM} \) chip which has the pin configuration pictured below.





V and V\* are source or "rail" voltages that supply all the op-amps.

To use this chip as indicated in the above schematic,

1

As you work through this problem set, you'll need to recall the behavior of op-amps:

- 1.  $I_{+} = I_{-} = 0$
- 2. When  $V_{in}^+ > V_{in}^-$ ,  $V_{out} = V_s^+$ , When  $V_{in}^+ < V_{in}^-$ ,  $V_{out} = V_s^-$
- 3. For  $V_s^- < V_{out} < V_s^+$ ,  $V_{in}^+ = V_{in}^-$ ,
- 4. It takes time for  $\,V_{\it out}\,$  to switch states from  $V_s^- \rightarrow V_s^+$



Source: Anastasia Armstrong, https://slideplayer.com/slide/11113908/

First, a puzzle...

In general, we want our decisions to be based on objective facts. But sometimes, the act of observing distorts what's being observed.

In ISIM, the O-scope has been our observer.



Under what conditions are the observations distorted by the observer



## I. Open loop behavior

1. Create the circuit below using any op-amp within the LMC6484 C chip.



2. Connect the O-scope



Op-Amp Problem Set

3. Set the WAVEGEN conditions (+2.5V offset, ±2.5V amplitude triangle wave) and run.





Given the input, what are you expecting for?

[Hint: See behavior of op-amps, page 1]

Sketch the expected on the v. time graph, left.

- 4. Observe the V<sub>in</sub> and V<sub>out</sub>(t)
- Confirm that you get Figure 5.3 in book (**note**:  $V_{-} = 3.5 \text{ V}$  in Fig. 5.3, *not* 2.5V).

Save a screenshot to turn in.

5. Use the X-Y plot pull out to see how  $\,V_{\it out}\,(t)\,$  changes with  $\,V_{\it in}\,(t)\,.$ 



Of and, which is the independent variable that you would assign to the x-axis? Vin

That is, which of the two can you vary, independently of the other?

See for yourself that you get Figure 5.4 (p. 65).

Save this x-y plot to turn in.



## II. Op-amp voltage follower

One of the simplest and most useful op-amp circuits is called a <u>voltage follower</u> , described in section 5.3 of the book. The circuit consists of simply wiring the op-amp's output to the negative input.

1. Alter your circuit from the **open loop** observations to create a voltage follower.



2. Change the input signal to 2.5 V offset sine wave of 1V amplitude,



Given the input, what are you expecting for ?

[Hint: See behavior of op-amps, page 1]

Sketch the expected on the v. time graph, left.

3. Use the O-scope to monitor V<sub>out</sub> (t). It does, the input equals the output

Does the follower work as expected? Record your observations on the last page.



You don't need a figure to turn in.

- 4. Maximize the input signal frequency. Notice that the output signal is the same size, but lags behind the input signal? Quantify the size of this effect; what is your theory of this effect? ~750ms, opamp latency
- 5. Set the input frequency back to 1 kHz. Amplitude = 1 V, centered about 0 V. What do you notice about both input and output signals. Explain what is happening.

Both are clipped at V=0, because you can't have negative voltage

6. Just for fun, reconfigure the circuit as shown:





There is no need to turn in any plots.

Nothing: V out = 0

1

### III. Follower as a buffer

This follower circuit is useful since the input to the op amp draws no current, the follower can be added between components of a system in order to isolate the components from each other. A simple example is found in the difference between the two circuits shown in Figures 1a and 1b.



Figure 1. a) Voltage divider; b) Voltage divider with voltage follower.

Test the measurement of a simple voltage divider as shown in Figure 1 and see the difference between the circuit Figure 1a and 1b.



How do you expect the results to be different?

Why? The o-scope has an internal resistor, so less voltage drop in (a)

[Hint: Consider your answer to the puzzle]

Report the value of V<sub>out</sub> for circuits a and b.



A: 2.25V B: 2.58V