Ambrose Bonnaire-Sergeant & Caner Derici

1) x1B.16 For restriction, let F(u, n + 1) be the function that constructs u up to the n^{th} factor.

$$F(u,0) = \langle \rangle$$

 $F(u,n+1) = append(F(u,n),(u)_n)$

So $F(u,0) = \langle \rangle$, $F(u,1) = \langle u_0 \rangle$, $F(u,2) = \langle u_0, u_1 \rangle$, and so on. Then $u \upharpoonright i$ is defined as follows.

$$u \upharpoonright i = \left\{ \begin{array}{ll} F(u,i), & \text{if } i \leq n \\ 0, & \text{otherwise} \end{array} \right\}$$

We could also define it just as a division as follows.

$$u \upharpoonright i = \left\{ \begin{array}{l} quot(u, \Pi_{i \leq j \leq lh(u)} p_j^{(u)_j + 1}), & \text{if } u = \langle u_0, \dots, u_{n-1} \rangle with i \leq lh(u) \\ 0, & \text{otherwise} \end{array} \right\}$$

For concatenation, let F(u, v) be the function that appends v to u one by one.

$$\begin{array}{lcl} F(u,\langle\rangle) & = & u \\ F(u,v) & = & append(F(u,v \upharpoonright lh(v) \div 1),(v)_{lh(v) \div 1}) \end{array}$$

So e.g.

$$F(\langle u_0 \rangle, \langle v_0, v_1 \rangle) = append(F(\langle u_0 \rangle, \langle v_0 \rangle), v_1)$$

$$= append(append(F(\langle u_0 \rangle, \langle \rangle), v_0), v_1)$$

$$= append(append(\langle u_0 \rangle, v_0), v_1)$$

$$= append(\langle u_0, v_0 \rangle, v_1)$$

$$= \langle u_0, v_0, v_1 \rangle$$

Then define u * v as follows.

$$u * v = \left\{ \begin{array}{ll} F(u, v), & \text{if } u = \langle u_0, \dots, u_{n-1} \rangle, v = \langle v_0, \dots, v_{m-1} \rangle \\ 0, & \text{otherwise} \end{array} \right\}$$

Similarly to the restriction, we could define the concatenation also as a multiplication as follows.

$$u * v = u.\Pi_{0 \le j < lh(v)} p_{n+j}^{(v)_j + 1}$$

2) x1B.20

We know that

$$X_P(y, \overrightarrow{x}) = X_H(\langle X_P(0, \overrightarrow{x}), \dots, X_P(y-1, \overrightarrow{x}) \rangle, \overrightarrow{x})$$

So in order to show that X_P is primitive recursive, instead of trying to define X_H by primitive recursion in terms of X_P (for which we try to define X_H by primitive recursion in the first place), let

$$\begin{array}{rcl} F(0,\overrightarrow{x'}) & = & 1 \\ F(y+1,\overrightarrow{x'}) & = & append(F(y,\overrightarrow{x'}),X_H(F(y,\overrightarrow{x'}),y,\overrightarrow{x'})) \end{array}$$

and let

$$X_P(y, \overrightarrow{x}) = (F(y+1, \overrightarrow{x}))_y$$

= i.e. the last element of $F(y+1, \overrightarrow{x})$

3) x1B.21