representação do conhecimento

ontologia

é uma forma geral de representar conceitos (conhecimento)

- classes / categorias
- objetos (podem ser instâncias de conceitos)
- propriedades
- relações

engenharia do conhecimento (EC próximo semestre)
desenvolve e manipula conhecimento e ontologias em particular

ontologia de nível superior

integradora de **ontologias específicas de domínio**

dificuldade em expresar conceitos genéricos

as exceções (ver adiante)

ontologia de nível superior

ontologias gerais ou específicas

qualquer ontologia é um tratado – um acordo social – entre pessoas com algum motivo comum para partilharem [conhecimento]

Tom Gruber (2004)

processos de criação de ontolgias

- 1. equipa de ontologistas/lógicos
 - ex: CYC (Lenat & Guha, 1990)
- 2. importação de categorias, atributos e valores de bases de dados ex: DBpedia a partir da Wikipedia (Bizer *et al.*, 2007)
- 3. análise de documentos de texto e extração de informação ex: TextRunner a partir de páginas web (Banko & Etzioni, 2008)
- 4. factos de senso comum por amadores
 - ex: OpenMind → ConceptNet (Singh et al., 2005; Chklovski & Gil, 2005)

herança

categoria herança sub-categoria sub-sub-categoria . . . taxonomia

ex: alimento (propriedade: comestível) fruta maçã herdam comestível

composição

uma coisa que é parte de outra: *PartOf*

PartOf(Lisboa, Portugal)

PartOf(Portugal, Europa)

PartOf(Europa, Terra)

PartOf(guiador, bicicleta)

é uma relação transitiva e reflexiva

 $PartOf(x, y) \land PartOf(y, z)$

 \Rightarrow PartOf(x, z).

PartOf(x, x).

o que permite inferir

PartOf(Lisboa, Terra)

medidas

```
quantitativas (são simples)
comprimento(L_1) = centímetros(3,81) = polegadas(1,5)
e conversão
centímetros(2,54 \times d) = polegadas(d)
```

medidas não quantificáveis numericamente (relação de ordem é útil)

```
e_1 \in Exercícios \land e_2 \in Exercícios \land De(e_1, Cálculo) \land De(e_2, IIA) \Rightarrow
Dificuldade(e_1) < Dificuldade(e_2).
```


objetos – coisas e coisa

contáveis

gatos, buracos, teoremas

não contáveis

arroz, água, energia

 $a \in arroz \land PartOf(p, a) \Rightarrow p \in arroz.$

 $b \in \acute{a}gua \Rightarrow PontoDeFus\~{a}o(b, Celsius(0)).$

propriedades de (não) contáveis

```
propriedades intrínsecas
relativas à substância do objeto (ex: cor, pH)
propriedades extrínsecas
relativas ao próprio objeto (ex: massa, forma)
```

categoria só com propriedades intrínsecas ⇒ não contável categoria com alguma propriedade extrínseca ⇒ contável

eventos – event calculus

```
tem em conta o tempo asserções com predicado de verdade, T
T(Em(Inês, FCUL), t)
t – instante temporal
Happens(E_1, i) evento E_1 acontece no intervalo i ou, em forma funcional
```

intervalos de tempo:

 $Extent(E_1) = i$

$$i = (t_1, t_2)$$
 t_1 instante de início; t_2 instante de fim

predicados de cálculo de eventos

T(f, t) f é verdadeiro no instante t

Happens (e, i) evento e acontece no intervalo de tempo i

Initiates(e, f, t) evento e causa f a ter valor verdadeiro no instante t

Terminates(e, f, t) evento e causa f a não ter valor verdadeiro no instante t

Clipped(f, i) f deixa de ser verdadeiro durante o intervalo i

Restored(f, i) f torna-se verdadeiro durante o intervalo i

Start evento específico que descreve o estado inicial indicando os termos que são iniciados ou terminados

cálculo de eventos

um termo é verdadeiro num instante se antes foi iniciado por um evento e não foi terminado por outro

Happens(e,
$$(t_1, t_2)$$
) \land Initiates(e, f, t_1) \land ¬Clipped(f, (t_1, t)) \land $t_1 < t \Rightarrow T(f, t)$

um termo não é verdadeiro se foi terminado por um evento e não foi restaurado por outro

Happens(e,
$$(t_1, t_2)$$
) \land Terminates(e, f, t_1) \land $\neg Restored(f, (t_1, t))$ \land $t_1 < t \Rightarrow \neg T(f, t)$

predicado *T* estendido a intervalos

$$T(f, (t_1, t_2)) \Leftrightarrow [\forall t, (t_1 \leq t < t_2) \Rightarrow T(f, t)]$$

exemplo de cálculo de eventos

Initiates(e, TemPão(a), t) \Leftrightarrow e = Start

Terminates(e, TemPão(a), t) \Leftrightarrow e \in Come(a)

agente a tem pão no estado incial e deixa de ter quando come

cálculo de eventos pode ser estendido para representar eventos simultâneos, acontecimentos externos, eventos contínuos

intervalos de tempo

relações entre intervalos

```
Meet(i, j) \Leftrightarrow End(i) = Begin(j)
Before(i, j) \Leftrightarrow End(i) < Begin(j)
After(j, i) \Leftrightarrow Before(i, j)
During(i, j) \Leftrightarrow Begin(j) < Begin(i) < End(j)
Overlap(i, j) \Leftrightarrow Begin(i) < Begin(j) < End(i) < End(j) (não simétrica)
Begins(i, j) \Leftrightarrow Begin(i) = Begin(j)
Finishes(i, j) \Leftrightarrow End(i) = End(j)
Equals(i, i) \Leftrightarrow Begin(i) = Begin(j) \land End(i) = End(j)
```


eventos e objetos mentais

conhecimento acerca de *crenças* ou de *deduções*

atitudes proposicionais

Crê, Sabe, Quer, Pretende, Informa, ...

ex:

Knows(Lois, CanFly(Superman)).

torna-se necessário aceder ao termo do predicado e não só aos objetos dos predicados (como na LPO, por ex.)

lógica modal – breve apontamento

tem operadores que recebem frases como argumentos

ex: "A sabe P" representa-se $\mathbf{K}_A P$

K é o operador modal para conhecimento

semântica mais complexa do que na LPO

coleção de mundos possíveis, ex. w_0 : P é verdade, w_1 : P é falso

relações de acessibilidade: w_1 é acessível desde w_0 com respeito ao operador \mathbf{K}_A se tudo em w_1 é consistente com o que A sabe em w_0

 $Acc(\mathbf{K}_A, W_0, W_1)$

dedução em lógica modal

em geral o átomo de conhecimento K_AP é verdade no mundo w sse P é verdade em qualquer mundo acessível desde w

permite derivações recursivas sobre conhecimento: o que um agente sabe acerca do conhecimento do outro agente, etc.

ex:

 \mathbf{K}_{Lois} [\mathbf{K}_{Clark} Identity(Superman, Clark) \mathbf{V} \mathbf{K}_{Clark} ¬Identity(Superman, Clark)]

a Lois sabe que o Clark sabe se é o Super-homem ou não

problema:

assume omnisciência lógica – agente sabe todas as consequências (deduções) dos axiomas que tem

