

PAC-bayesian bounds

Theoretical Deep Learning #2: generalization ability

Eugene Golikov MIPT, fall 2019

Neural Networks and Deep Learning Lab., MIPT

Notation and goal

- Data distribution: \mathcal{D} ;
- Dataset: $S_n = \{(x_i, y_i)\}_{i=1}^n \sim \mathcal{D}^n$, where all $y_i \in \{-1, 1\}$, all $x_i \in X$;
- Model: $f: X \to \mathbb{R}$;
- Loss function I(y, f(x));
- Risk: $R(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}} I(y, f(x));$
- Empirical risk: $\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n I(y_i, f(x_i));$
- Result of learning on dataset S_n : $\hat{f}_n = \mathcal{A}(S_n) \in \mathcal{F}$.

Our goal is to bound the risk difference:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \le \text{bound}(N(\hat{f}_n), n, \delta)$$
 w.p. $\ge 1 - \delta$ over S_n .

1

PAC-bayesian bounds

Bounds for deterministic A:

• Finite \mathcal{F} :

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sqrt{rac{1}{2n} \left(\log rac{1}{\delta} + \log |\mathcal{F}|
ight)} \quad ext{w.p. } \geq 1 - \delta ext{ over } S_n.$$

At most countable F:

$$R(\hat{f}_n) - \hat{R}_n(\hat{f}_n) \leq \sqrt{\frac{1}{2n} \left(\log \frac{1}{\delta} + \log \frac{1}{P(\hat{f}_n)}\right)} \quad \text{w.p. } \geq 1 - \delta \text{ over } S_n,$$

where P is a distribution over \mathcal{F} (**prior**).

PAC-bayesian bounds

Consider stochastic learning algorithm: $\hat{f}_n = \mathcal{A}(S_n) \sim Q|S_n$.

Corresponding bound:

$$\mathbb{E}_{Q|S_n}\left(R(\hat{f}_n) - \hat{R}_n(\hat{f}_n)\right) \leq \operatorname{bound}(\textit{N}(Q|S_n), n, \delta) \quad \text{w.p. } \geq 1 - \delta \text{ over } S_n.$$

PAC-bayesian bound (McAllester, 1999)1:

$$\mathbb{E}_{Q|S_n}\left(R(\hat{f}_n) - \hat{R}_n(\hat{f}_n)\right) \leq \sqrt{\frac{1}{2n}\left(\log\frac{1}{\delta} + \textit{KL}(Q|S_n \parallel P)\right)} \quad \text{w.p. } \geq 1 - \delta.$$

 $^{^{1}} http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.1908\&rep=rep1\&type=pdf$