Brief Report HAI, Assignment 2

Modal-Based SVM Model:

I use 8 features for the SVM classification. Vector features include 1D feature as magnitude and length, and 2D features by combining them.

A cross validation approach of 5 folds shows that the accuracy is 90% for the given set, and 81.8% for my own gesture set. The confusion matrix is as below:

[[1 0 0 0 0 0 0 0 0 0]	[[1 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0]	[0 0 0 1 0 0 0 0 0 0 0]
$[0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]$	$[0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$
[0 0 0 1 0 0 0 0 0 0]	$[0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]$
$[0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$	$[0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]$
$[0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$	$[0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$
$[0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$	$[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$
$[0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$	$[0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0]$
$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0]$	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0]$
$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1]]$	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0]$
-	[0000000010]]
	[0 0 0 0 0 0 0 0 1 0]]

My own set per gesture accuracy is as below:

precision recall f1-score support									
At Rest	1.00	1.00	1.0	0	1				
Backhand Tennis	1.0	0 1	1.00	1.00	1				
Baseball Throw	1.00) 1.	00	1.00	1				
Forehand Tennis	0.5	50 1	.00	0.67	1				
Midair Clockwise O	1.0	00 1	1.00	1.00	1				
Midair Counter Clockwise	0	1.00	1.00	1.0	0	1			
Midair S	1.00	1.00	1.0	0	1				
Midair Zorro Z	1.00	1.0	0 1	.00	1				
Shake	1.00	1.00	1.0	0	1				
Underhand Bowling) 0	.00	0.00	0.00) 1				
Your Custom Gestur	e 1	.00	1.00	1.00	1				
avg / total	0.86	0.91	0.8	88	11				

The given set [er gesture accuracy is as below:

precision recall f1-score support										
At Rest	1.00	1.0	0	1.00	1					
Backhand Tennis	1	.00	1.00) 1.	.00	1				
Baseball Throw	1.0	00	1.00	1.0	00	1				
Forehand Tennis	0	.50	1.00	0	.67	1				
Midair Clockwise O	1	1.00	1.00) 1	.00	1				
Midair Counter Clockwise	0	1.00) 1	.00	1.00		1			
Midair S	1.00	1.0	00	1.00	1					
Midair Zorro Z	1.0	0 1	1.00	1.00)	1				
Shake	1.00	1.0	0	1.00	1					
Underhand Bowling	J	0.00	0.0	00	0.00		1			
Your Custom Gestur	е	1.00	1.0	00	1.00		1			
avg / total	0.86	0.	91	0.88	1	1				

For Dynamic Time Wrapping, I calculated a euclidean distance using it. But I haven't figured out how to use it as a shape-matching classifier and be applied to machine learning process.

Overall, the assignment is very challenging for me. I spent quite a lot time understanding the frequency analysis, and eventually chose to visualize Fourier transform. Another problem is the integration of multi-feature into SVM. The data structure of SVM input is complicated to me. I spent several hours on debugging the training data structure, testing data structure, and feature inputs.

Since I have no experience with machine learning, or data science before, I learned a lot from the basics to high level concepts. For instance, how data visualization works in python and what kinds of visualization should we choose are basic but useful - since data is becoming a common design material nowadays.

I also gained practical understanding of model based machine learning - how they train and test, how to perform cross validation evaluations on them.

Link to work:

https://github.com/ZFengyi/HAI