

mmHRR: Monitoring Heart Rate Recovery with Millimeter Wave Radar

Ziheng Mao¹, Yuan He¹†, Jia Zhang¹, Yimiao Sun¹, Yadong Xie¹, Xiuzhen Guo²

¹Tsinghua University ²Zhejiang University

Background

- > Cardiovascular disease (CVD) is the leading cause of human mortality worldwide.
- ➤ Heart rate recovery (HRR), i.e., the decrease in heart rate (HR) after exercise, is a measure of cardiac autonomic function in both CVD patients and healthy individuals.

Limitations of Existing Work

- > Users are still and relaxed, maintain a relatively low and stable HR.
- > The heartbeat signal is seldom affected by the respiratory signal.

These characteristics are difficult to achieve in our scenario.

Monitoring HRR with mmWave Radar

Main Challenges

> Challenge 1: Non-stationary property of heartbeat signal

Main Challenges

- > Challenge 1: Non-stationary property of heartbeat signal
- > Challenge 2: Interference of Respiratory Harmonics

mmHRR Overview

Challenge 2

Interference of Respiratory
Harmonics

Challenge ²

Non-stationary property of heartbeat signal

Chest Motion

Mixture Model

$$x(t) = x_r(t) + x_h(t) + n(t)$$
Respiratory Heartbeat Noise

Respiratory Signal

$$x_r(t) = \frac{a_{r0}}{2} + \sum_{n=1}^{\infty} a_{rn} \cos(n\omega t)$$

Similarity between modes

$$\max \left\{ r_{ij} = \frac{E(u_i u_j) - E(u_i)E(u_j)}{\sqrt{D(u_i)D(u_j)}} \right\} < \mu_1$$

Information loss

$$p = \frac{\|f - \Sigma u_k\|_2^2}{\|f\|_2^2} < \mu_2$$

XMED Hive orithm

Selection of parameter α

- A smaller value can lead to mode aliasing.
- A larger value can cause over-decomposition.

Select any value within the range by binary search.

Heartbeat Mode Selection

Heart Rate Estimation

Original Signal

The left and right endpoints of the window coincide with the peaks.

The window has moved out of this range.

Normalized Heartbeat Signal

Implementation

TI IWR1642BOOST mmWave Radar

- 77-81 GHz 1Tx 4Rx used
- 200 samples/s
- Data captured by TI DCA1000EVM

Polar H10 Heart Rate Sensor

- 130 samples/s ECG waveform
- Synchronization of data timestamps via PC

Evaluation – Overall Performance

Error = |Measured HR - Ground Truth HR|

mmHRV: VMD-like algorithm for HRV estimation. mmHRV(raw) overlooks the interference from the respiratory harmonics, therefore sometimes misidentifies the heartbeat signal.

The performance with this part of data removed is marked as mmHRV

The performance of mmHRV is mainly limited by the lack of signal preprocessing and a suboptimal selection of VMD parameters.

[mmHRV]: F. Wang, X. Zeng, C. Wu, B. Wang and K. J. R. Liu, "mmHRV: Contactless Heart Rate Variability Monitoring Using Millimeter-Wave Radio," in IEEE Internet of Things Journal

Evaluation

Error vs. HR variations

mmHRR can accurately track the rapid changes in HR.

Evaluation

Error vs. distance

Error vs. postures

Error vs. angle

Error vs. multiple users

mmHRR exhibits good robustness under different experimental conditions.

Conclusion

- We propose mmHRR, a contactless technique for monitoring HRR based on mmWave radar.
- We introduce customized preprocessing techniques and an adaptive VMD method for extracting the heartbeat signal.
- We estimate the HR from the non-stationary heartbeat signal using a novel peak counting algorithm.
- Our experiment results show that mmHRR achieves accurate and robust estimation of HR across
 diverse environmental conditions.