The Digital Image

Problems: Transmission interference, compression artifacts, spilling, scratches, sensor noise, bad contrast and resolution, motion blur

Pixel: Discrete samples of an continuous image function.

Charge Coupled Device (CCD)

Has an array of photosites (a bucket of electrical charge) that charge proportional to the incident light intensity during exposure. ADC happens line by Image Segmentation

Blooming: oversaturation of finite capacity photosites causes the vertical channels to "flood" (bright vertical line)

Bleeding/Smearing: While shifting down, the pixels above get some photons on bright spot with electronic shutters.

Dark Current: CCDs produce thermally generated charge they give non-zero output even in darkness (fluctuates randomly) due to spontaneous generation of electrons due to heat \rightarrow cooling. can be avoided by cooling, worse with age.

CMOS:

Same sensor elements as CCD, but each sensor has its own amplifier \rightarrow faster readout, less power consumption, cheaper, more noise.

more noise, lower sensitivity

vs CCD cheaper, lower power, less sensitive, per pixel amplification random pixel access, no blooming, on chip integration

Sampling methods

Cartesian (grid), hexagonal, non-uniform

Quantization: Real valued function will get digital values (integers). A lossy process (original cannot be reconstructed). Simple version: equally spaced $2^b = \#bits$ levels

Bilinear Interpolation: TODO

Resolution: Image resolution (cropping), geomet- Region growing ric resolution (#pixels per area), radiometric resolu- Start with seed point or region, add neighboring tion (#bits per pixel, color)

Image noise: commonly modeled by additive we include no more pixels. Gaussian noise: I(x,y) = f(x,y) + c, poisson noise **Seed region:** by hand or automatically by conser-(shot noise for low light, depends on signal & ap- vative Thresholding ature time), multiplicative noise: I = f + f * c, Inclusion criteria: quantization errors, salt-and-pepper noise SNR or greylevel distribution model (include if (I(x, y) - convolution)peak SNR is used as an index of image quality μ^2)² < $(n\sigma)^2$ and update μ and σ after each itera- Continuous: (f*g)(t)

$$c \sim N(0, \sigma^2), p(c) = \frac{1}{\sigma\sqrt{2\pi}} * e^{\frac{(c-\mu)^2}{2*\sigma^2}}, SNR : S = \frac{F}{\sigma}$$

where $F = \frac{1}{XY} \sum_{x=1}^{x} \sum_{y=1}^{y} f(x, y)$

Color cameras:

Prism need 3 sensors and good alignment Filter mosaic coat directly on sensor Wheel multiple filters in front of same sensor **New CMOS sensor** layers that absorb color at different depths \rightarrow better quality

Complete segmentation

Finite set of non-overlapping regions that cover the neighboring pixels whole image $I = \bigcup_{i=1}^{n} R_i$ and $R_i \cap R_j = \emptyset \ \forall i, j, i \neq j$ erode delete FG pixels with 8-connected BG pixels greylevel with a threshold to decide if in or out.

Chromakeying: when planning to segment, use Uses: smooth regions, remove noise and artifacts. special backgroundcolor. (Problems variations due Image Filtering to lighting, noise, ... mixed pixels (hard α -mask does not work)) $I_{\alpha} = |I - g| > T$

Receiver Operating Characteristic (ROC) analysis:

false positives (FP)

 $\frac{FP}{FP+TN}$ **TODO**

Picxel connectivity

TODO

Connected component raster scanning: scanning row by row, if foreground & label if connected to other label, alse give new label. (second pass to

carry on (contour-based method)

pixels that satisfy a criteria defining a region until

tion) color or texture information

Snakes: active contour, a polygon and each point $=\int_{-\infty}^{\infty} f(t-\tilde{t})g(\tilde{t})dt$ moves away from seed while criteria is met (can have smoothness constraint) Iteratively minimize Kernels enery function $E = E_{tension} + E_{stiffness} + E_{image}$

background subtraction

simple: $I_{\alpha} = |I - I_{bg}| < T$ better: $I_{\alpha} =$ $\sqrt{(I-I_{bg})^T\Sigma^{-1}(I-I_{bg})}$ where Σ is the background pixel appearance covariance matrix, computed seperately for each pixel.

Morphological operators

Logical transformations based on comparison of

Thresholding: simple segmentation by comparing dilate every BG pixels with 8-connected FG pixel make a FG pixel

Modify the pixels of an image based on some func- $D_{LP} > D_{HP}$ tion of the local neighborhood of the pixels- If sum Image sharpening: increases high frequency comgreater 1 get brighter, if smaller darker.

separable: if a kernel can be written as a product high-pass filter, α : scalar $\in [0,1]$ ROC curve characterizes performance of binary of two simpler filters ightarrow computationally faster classifier Classification errors: False negative (FN), (filter $P \times Q$, image $N \times M$: (P+Q) * NM instead of *PQNM*)

ROC curve plots TP fraction $\frac{TP}{TP+FN}$ vs FP fraction shift invariant: Doing the same thing, applying the same function over all pixels (in the formula below if K does not depend on x, y)

linear: linear combination of neighbors can be second derivative. written as: $I'(x,y) = \sum_{(i,j) \in \mathbb{N}(i,j)} K(x,y,i,j) I(x+1)$ i, y + j) TODO

Filter at edges: clip filter (black), wrap around,

Correlation

e.g. template matching: search for best match by minimizing mean squared error or maximizing Roberts: area correlation. (remove mean (from filter, from $K_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, K_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ image) to avoid bias)

Convolution

 $I' = K * I, I'(x, y) = \sum_{(i, j) \in \mathbb{N}(i, j)} K(i, j) I(x - i, y - j)$ Gradient Angle: greylevel thresholding, if $K(i,j) = K(-i,-j) \Longrightarrow corrolation = \frac{\partial f}{\partial x} / \frac{\partial f}{\partial x}$

 $=\int_{-\infty}^{\infty} f(\tilde{t})g(t-\tilde{t})d\tilde{t}$

$$\int_{-\infty}^{\infty} f(t-\tilde{t})g(\tilde{t})dt$$

Box filter: all same values normalized to sum = 1

Gaussian Kernel: $K(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$ is separable, e.g. $\sigma = 1$

Rotationally symmetric, has single lobe, single lobe in frequency domain, simple relationship to σ easy to implement efficiently, neighbors decrease monotonically, no corruption from higher frequency. Subtracting one from central element of low-pass

filter gives a high-pass filter with inverted sign, because.

$$(f - \delta) * a = f * a - \delta * a = f * a - a = -(a - (f * a))$$

Band pass filter: do LPF and HPF with cutoffs $D_{LP} < D_{HP}$

Band reject filter: do LPF and HPF with cutoffs

ponents to enhance edges: $I' = I + \alpha |K * I| K$:

Features

Edge Detection

How to tell if there is an edge? Local maxima of the first derivative and the zero crossing of the

Edge detection filters:

Filter at edges: clip filter (black), wrap around, copy edge, reflect across edge, vary filter near edge
$$K_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
, $K_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

find equivalent labels) Correlation
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, K_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 carry on (contour-based method) e.g. template matching: search for best match

$$K_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, K_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Gradient Magnitude:

$$M(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\alpha(x,y) = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Laplacian operator

detect discontinuities by considering second deriva-

TODO
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

are discrete space approximations. isotropic(rotationally invariant), zero crossings make edge locations. Sensitive to fine details and noise (\rightarrow smoothing before applying).

blur image first (LoG)

Laplacian of Gaussian (LoG): convolve gaussian blurring and laplacian operator in LoG operator

(cheaper)
$$LoG(x,y) = -\frac{1}{\pi\sigma^4} (1 - \frac{x^2 + y^2}{2\sigma^2}) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Canny Edge Detector: 5 Steps

- 1. smooth image with a Gaussian filter
- 2. compute gradient magnitude and angle
- 3. apply non-maximum suppression to gradient magnitude image (Quantize edge normal to one of four directions: horizontal, +45°, vertical, -45°. If M(x, y) smaller thn either of its neighbors in edge normal direction suppress, else keep)
- weak edge pixels
- 5. Reject weak edge pixels not connected to strong edge pixels

Hough Transform

Fitting a straight line to a set of edge TODO

Fr circles: if r known: calculate circles with radius r around edge pixels → intersection of circles gives Aliasing: Happens when undersampling e.g. takcenter.

else: use 3D hough transform with parameters (x_0, y_0, r)

Corner Detection

detect corners.

variance against shift, rotation, scale, brightness $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-2\pi i(ux,vy)}dxdy$ change, robust against noise, high repeatability

Linear approximation for small $\Delta x \Delta y$: (Taylor) vectorized image, U: Fourier matrix

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + f_x(x, y) \Delta x + f_y(x, y) \Delta y$$

Local displacement sensitivity (Harris cor- $c_n=rac{1}{T}\int_{-rac{T}{T}}^{rac{T}{2}}f(t)e^{rac{-i2\pi nt}{T}}dt$

$$S(\Delta x, \Delta y) = (\Delta x \Delta y)(\sum_{x,y \in window}) \begin{bmatrix} f_x^2 & f_x f_y \\ f_x f_y & f_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$
 Properties of Fourier transform Linearity: $F(ax(t) + by(t)) = aX(t)$

Find points where $\min \Delta^T M \Delta$ is large for $||\Delta|| = 1$ i. e. maximize the eigenvalues of M

$$C(c,y) = \det(M) - k * trace(M)^2 = \lambda_1 * \lambda_2 + k *$$
 Scaling: $F(x(at)) = \frac{1}{|a|} X\left(\frac{f}{a}\right)$ $(\lambda_1 + \lambda_2)$ Harris cornerness: Measure of cornerness Convolution: $F(x(t) * y(t)) = X(f) \cdot Y(f)$

Robustness of Harris corner detector: Invariant **Duality:** $F(X(t)) \longleftrightarrow x(-f)$ to brightness offset, invariant to shift and rotation but not to scaling! $\lambda_1 >> \lambda_2 \rightarrow \text{edge}$, λ_1 and λ_2 large \rightarrow corner, else \rightarrow flat region.

not scale invariant: TODO

Overcome issues: look for strong DoG response or consider local maxima in position and scale space, Gaussian weighing.

Lowe's SIFT features

Look for strong responses of difference of Gaussians (DoG) filter, only look at local maxima in both position and scale.

DoG:
$$DoG(x,y) = \frac{1}{k} * e^{-\frac{x^2 + y^2}{(k\sigma)^2}} - e^{-\frac{x^2 + y^2}{\sigma^2}}$$
 e.g. $k = \sqrt{2}$

4. Double thresholding to detect strong and Orientation: create histogram of local gradient directions computed at selected scale, assign canonical orientation at peak of smoothed histogram. Get a SIFT descriptor (threshold image gradients are sampled over 16×16 array of locations in scale space) and do matching with these. Invariant to scale, rotation, illumination and viewpoint.

Fourier Transform

ing every second pixel, else characteristic errors apwhere lots of them meet is the center of a circle. pear: typically small phenomena look bigger, fast phenomena look slower. (e.g. wagon wheels backwards in movies, checkerboards misrepresented)

Fourier Transform

Represent function on a new basis with ba-Edges are only well localized in one direction \rightarrow sis elements $e^{i2\pi(ux+vy)} = \cos(2\pi(ux+vy)) +$ $i\sin(2\pi(ux+vy))$

Desirable properties: Accute localization, in-
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi fx}dx$$
, **2D:** $F(u,v) =$ variance against shift, rotation, scale, brightness $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-2\pi i(ux,vy)}dxdy$

For images: transformed image $\rightarrow F = U * f \leftarrow$

 $f(x+\Delta x,y+\Delta y)\approx f(x,y)+f_x(x,y)\Delta x+f_y(x,y)\Delta y$ For discrete: $F(u,v)=\sum_{x=0}^{N-1}\sum_{v=0}^{M-1}f(x,y)e^{-2\pi i(\frac{ux}{N},\frac{vy}{M})}$

1D-periodic function: $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{i2\pi nt}{T}},$

Time Shift: $F(x(t \pm t_0)) = X(t)e^{\pm i2\pi ft_0}$

Frequency Shift: $F(e^{i2\pi f_0 t}x(t)) = X(f - f_0)$