r)
$$\int_{0}^{1} \cos x^{2} dx$$
; $\int_{0}^{1/3} \frac{\sin x}{x} dx$; $\int_{0}^{1/3} \frac{dx}{1+x^{3}}$;
x) $\int_{0}^{1/3} \frac{dx}{\sqrt[3]{1-x^{2}}}$; $\int_{0}^{1} \frac{dx}{\sqrt{1+x^{4}}}$;
h) $\int_{10}^{100} \frac{\ln (1+x)}{x} dx$; $\int_{0}^{1/2} \frac{\arcsin x}{x} dx$; $\int_{0}^{1} x^{x} dx$.

2933. Найти с точностью до 0,01 длину дуги одной полуволны синусоиды

$$y = \sin x \quad (0 \leqslant x \leqslant \pi).$$

2934. Найти с точностью до 0,01 длину дуги эллипса с полуосями a = 1 и b = 1/2.

2935. Провод, подвешенный на двух столбах, расстояние между которыми равно 2l=20 м, имеет форму параболы. Вычислить с точностью до 1 см длину провода, если стрелка прогиба h=40 см.

§ 6. Ряды Фурье

1°. Теорема разложения. Если функция $f_i(x)$ кусочно-непрерывна и имеет кусочно-непрерывную производную $f_i'(x)$ в интервале (-l,l), причем ее точки разрыва ξ регуляриы (т. е. $f_i(\xi) = \frac{1}{2} \{f_i(\xi-0) + f_i(\xi+0)\}$), то функция $f_i(x)$ в этом интервале может быть представлена рядом Фурье

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right), \quad (1)$$

где

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
 $(n = 0, 1, 2, ...)$ (2)