

Центр непрерывного образования Факультета компьютерных наук

National Research University Higher School of Economics

Введение

Опираются на инвариантности

Granny Smith 0.95 pomegranate 0.01 lemon 0.01 fig 0.01 custard apple 0.01

— Как найти правильные? Augerino

— Оптимизируем параметр аугментации параллельно с обучением

Что нового? Фокусируемся на цветовых

Новая дифференцируемая аугментация оттенка

— Регуляризация

— Датасет Fruits 360

Методы и эксперименты

Методы

- DDA: Kornia
 - RGB \rightarrow HSV (NB: цветовой круг) \rightarrow RGB
- Аугментационный бонус (разница границ)
- Pytorch Lightning (Класс с Augerino и TTA (CNN))

Эксперименты

- Незначимые гиперпараметры:
 - Скорость обучения (0.01/0.01)
 - **—** Инициализация (в разумных пределах)
 - Кол-во эпох при значении > 3
- Важнейший регуляризация аугментаций
- Результат контринтуитивен

Яркость [-0,6, 0,7] Оттенок [-1; 1] (нормиров. [-π; π])

Эксперименты – таблицы

	Рег. ауг.	Иниц.	Нижн.	Верхн.	Train	Test
1	1	0.5	-0.57	0.67	0.92	0.93
2	0	0.5	0.21	0.21	1.00	0.88
3	1	0.1	-0.50	0.61	0.92	0.92
4	0.1	0.5	0.13	0.13	1.00	0.89
5	1	5	-0.62	0.69	0.89	0.89

Яркость

	Рег. ауг.	Иниц.	Нижн.	Верхн.	Train	Test
1	1	0.5	-1.00	1.00	0.92	0.92
2	1	1	-1.00	1.00	0.92	0.91
3	0	1	-0.04	0.04	1.00	0.91
4	0.1	0.5	0.01	0.04	0.92	0.95
5	1	5	-1.00	1.00	0.83	0.92

Интерпретация

$$I_{\neg x} - I_{\neg x} * \theta_x * K_x = I_{\neg x} * (1 - \theta_x * K_x)$$

Почему $|\theta_b| < |\theta_h|$?

- $I_{\neg b} < I_{\neg h}$?
- $K_b > K_h$

x — ось цветового пространства (например, b - яркость, h - оттенок) $I_{\neg x}$ — информация от прочих осей θ_x — параметр аугментации K_x — характеристика аугментации; степень потери информации по прочим осям при воздействии аугментации на ось x

Условная инвариантность – инвариантность при условии остальных характеристик

$$Inv_{x|I_{\neg x},K_x}$$

Нипочем экстремальные перекрашивания – полная условная инвариантность по оттенку

$$Inv_{h|I_{\neg h},K_h} \sim |\theta_h|_{Augerino} = max$$

Нижн.	Верхн.	Acc
-0.45	0.45	0.95
-0.75	0.75	0.91
-1.00	1.00	0.91

0

— Условная инвариантность по яркости в границах, определенных Augerino

$$|\theta_b| < |\theta_b|_{Augerino}$$

$$|\theta_b| > |\theta_b|_{Augerino}$$

$$Inv_{b|I_{\neg b},K_b} \sim |\theta_b|_{Augerino} < |\theta_h|_{Augerino}$$

Нижн.	Верхн.	Acc
-0.45	0.45	0.89
-0.75	0.75	0.71
-1.00	1.00	0.58

—— Результат работы модели, ставшая в процессе обучения предположительно сильно менее инвариантна к оттенку, на аугментированных по оттенку же изображения

$$\uparrow Inv_{b|I_{\neg h},K_h} \rightarrow \downarrow Inv_{h|I_{\neg h},K_h}$$

Нижн.	Верхн.	Acc
-0.45	0.45	0.53
-0.75	0.75	0.42
-1.00	1.00	0.28

Результат работы модели, ставшая в процессе обучения предположительно сильно менее инвариантна к яркости, на аугментированных по яркости же изображениях

$$\uparrow Inv_{h|I_{\neg h},K_h} \rightarrow \downarrow Inv_{b|I_{\neg b},K_b}$$

Нижн.	Верхн.	Acc
-0.45	0.45	0.38
-0.75	0.75	0.23
-1.00	1.00	0.20

Заключение

Направления дальнейшей работы

- Использование отличных от равномерного распределений
- Построение аугментации оттенка для случая мультимодального распределения
- Более глубокая и строгая математическая проработка концепций

