1. Measurement of Sompedance and Power.

A. Impedance Measurement: [can use for Case Study] Impedance (Z) is the total opposition that a circuit roffers to flow of alternating current (AC).

It consists of;

· Resistance (R): Opposition to current du to resistine elements.

Reactance (x): Opposition du to capacitors and inductors.

At microwane frequencies, impedance becomes complex (has both magnitude and phase) and highly dependent con frequency, transmission line characteristics and load conditions.

Mathematical Representation:

Z=R+jx

where; R = Resistance X = reactance

j = J-1

Measurement Tehniques:

. Slotted Line Method:

> A slotted Line is a Section of unwquide with a longitudinal slot and a movable probe.

7 3	he Perolie Densis Voltage variations valong the line.
1	Caltage Standing Wane Ratio (VSWR) is calculated by
	· and aviorally what
7 F	neasuring maximum and voltage minima, reflection nom VSWR and the location of voltage minima, reflection co-efficient and impedance are calculated.
	Advantages:
	c. D. and effective
7	Useful in waveguide Systems listations:
	Limitations:
>	Manual and time-Consuming Manual and time-Consuming Minited to Single-frequency measurements.
7	Junilla 1
2.	Vector Network Analyzer is a precision instrument A Vector Network Analyzer is a precision instrument used to measure the scattering Parameters (S-parameters) used to measure network.
7	A Vector Network the scattering Parameters (5- parameters
	used to microwane network.
	the greflection co-efficient para
>	of a microwane network. It measures the reflection wo-efficient r and computes Simbedance as;
	I=Io: 1+I 1-I where; Zo: characteristic impedance (weally 50-1) T = Measured reflection co-efficient. I = Measured reflection
	whene; Zo: character reflection co-efficient.

Advantages: → Accurate and fast → Works over a wide farquency range. > Displays results in Smith chart format. > Extended versions of Wheatstone buildges are used at microwane frequencies. > Compare unknown impedance with a known standard. > Can use marequide or waxial line formats. Advantages: → High precision → Suitable for laboratory- grade measurements. 4. Smith Chart: -> A graphical tool to represent complex impedances and reflection co-efficients. -> used for impedance matching, Analysing rejuit behaviour and designing matching networks → Normalized impedance Representation → Useful in Visualizing multiple frequency points.

Signal Analyzer - Unit 3 A Signal Analyzer is designed for detailed examination of complex, modulated signals commonly used in modern communication dystems. > It Provides measurements that go beyond simple frequency analysis, such as modulation quality and signal impairments: > It captures the imput signal and performs advanced digital signal pracessing to extract parameters like phase, amplitude and timing imformation. It can demodulate signals and measure key performance metries such vas: Error Vector Magnitude (EVM): Quantifies modulation accuracy by measuring the difference between the ideal and actual signal constellation points. Phase Noise: Measures Short-term frequency fluctuations, impartant for oscillator and transmitter quality. Adjacent Channel Power natio (ACPR): Measures power leakage into adjacent frequency channels, critical for minimizing interference.

in the time domain.

-> Useful in rador, pulsed communications and transient event analysis. Applications: > Testing modulation quality (EVM, constellation suuracy) -> Developing and optimizing communication Systems. -> Measuring phase noise of oscillators -> Analyzing adjacent channel interference (ACPR) > Analyzing radar and pulsed signals. > Troubleshooting signal distortion & noise. IF filter
(RBW)

Log
Amplifier Envelope ditector

Figure 1: Signal Amalyzer

Unit - 3: Microuane Measurements

- 1. Impedance Measurement Page 707 to 710 (15.11, 15.11.1, 15.11.2)

 Fig: 15.19
- 2. Promer Measurement Rage 695 to 699 [15.7, 15.7.1, 15.7.2, 15.7.4]

 Fig: 15.9, 15.10, 15.12
- 3. Frequency Measurement Page 710 to 712 [15.12, 15.12.1, 15.12.2, 15.12.

 Fig: 15.23, 15.24
- 4. Attenuation Measurements Page 700 to 702 [15.8]

 Fig: 15.14
- 5. Scattering Ranamters Page 724 to 726 [15.15, 15.15-1, 15.15.2]

 Fig: 15.32 (a), Fig 15.33
- 6. Network Analyzer Page 693 to 695 [15.6]

 Fig: 15.5, 15.6
- 7. Spectrum Analyzer Page 692 x 693 [15.5]

 Fig: 15.4
- 8. VSWR (voltage Standing Wave natio) Page 702, 704, 705 [15.9, 15.9.1]

 Frig: 15.15 (a), 15.16