09. Comportamenti in UML

IS 2024-2025

Laura Semini, Jacopo Soldani

Corso di Laurea in Informatica Dipartimento di Informatica, Università of Pisa

DIAGRAMMA DI MACCHINA A STATI

Grafo stati-transizioni che descrive il comportamento delle istanze di una classe

- stati significativi in cui si può trovare un oggetto durante la sua vita
- come da ciascuno di questi stati l'oggetto può passare (transire) ad un altro

Le transizioni si attivano in risposta ad un evento, ad esempio

- messaggi inviati da altri oggetti
- eventi generati internamente

LIVELLO DI DETTAGLIO

La modellazione di un'aula

verrà implementata come

STATI E TRANSIZIONI

e le transizioni?

// Stato finale

STATI E TRANSIZIONI (CONT.)

eventi ::= evento | evento, eventi (disgiunzione) azioni ::= azione | azione; azioni (sequenza)

La transizione uscente da uno stato

- definisce risposta dell'oggetto all'occorrenza di un evento,
- viene presa solo se la condizione è vera quando occorre l'evento,
- comporta l'esecuzione delle azioni specificate

NB: Condizione e azioni sono opzionali, mentre deve esserci almeno un evento

UN ESEMPIO

Lampadina

- accesa: boolean = false
- + accendi()
- + spegni()

Gli eventi (anche se non tutti) corrispondono alle operazioni offerte dalla classe

UN ALTRO ESEMPIO

Classe Telefono, operazione dial digit(n)

EVENTI

Un evento occorre istantaneamente e va introdotto solo se ha degli effetti

Se un evento occorre in uno **stato** che

- non ha transizioni per quell'evento, viene ignorato
- ha più transizioni per lo stesso evento, ne viene scelta una in modo non-deterministico

Tipi di evento

- Operazione o segnale → ricezione di una chiamata di metodo o un segnale con parametri (e tipi) compatibili, es. op(a:T)
- Evento di variazione «when(exp)» → l'espressione exp (tempo assoluto o condizione) diventa vera
- Evento temporale «after(t)» → l'oggetto è stato fermo per un tempo t nello stato di partenza

ESEMPIO: SEGNALI

Due possibili segnali: busy e connected

EVENTI DI VARIAZIONE E TEMPORALI

Eventi di variazione

- Un evento occorre istantaneamente
- Una condizione non è istantanea
- Diventa «istantanea» nel momento in cui è vera

Eventi temporali

- Transizione dopo un dato intervallo di tempo
- Nell'esempio, dopo che l'oggetto è stato Scoperto per 3 mesi, diventa Congelato

UN (NUOVO) ESEMPIO

Macchina a stati che rappresenta l'occupazione di un'aula

ENTRY, EXIT, DO (E TRANSIZIONI INTERNE)

- entry → azione di entrata, eseguita all'ingresso in uno stato
- do → azione interna, eseguita in modo continuato mentre l'oggetto si trova in quello stato
 - non necessita di eventi scatenanti
 - a differenza di tutte le altre azioni (che sono atomiche)
 - consuma del tempo
 - può essere interrotta (quando un evento fa uscire dallo stato)
- exit → azione di uscita, eseguita all'ingresso in uno stato

Ma ci sono anche le transizioni interne, eseguite in risposta ad un evento

ESEMPIO

ALTRI ESEMPI

Scoperto

when(saldo<limiteScoperto) / notificaGestore

STATO COMPOSITO (SEQUENZIALE)

Include un'ulteriore macchina a stati

Ingresso: transizione che arriva nello stato

- se arriva sul bordo, si prosegue dallo stato iniziale della macchina interna
- se arriva su uno stato interno, si prosegue da tale stato (non nell'esempio)

Uscita: transizione che esce dallo stato

- una transizione (etichettata) che parte dal bordo è attivabile da qualsiasi stato interno
- dallo stato finale della macchina interna, si prosegue nella transizione di completamento (che non ha evento)
- transizioni uscenti da stati interni possono «attraversare il bordo» (non nell'esempio)

Fino a qui martedì 15

ESEMPIO (SENZA LO STATO COMPOSITO)

ESEMPIO: STATO COMPOSITO (SENZA STATO FINALE)

STATI COMPOSITI SEQUENZIALI VS PARALLELI

sequenziale ⇒ **solo un sottostato** attivo in ogni istante

parallelo ⇒ più sottostati attivi contemporaneamente, uno per regione

STATO COMPOSITO (PARALLELO)

Ingresso: transizione (default entry) che arriva sul bordo e prosegue in tutti i sottostati iniziali Uscita: transizione che esce dallo stato

- transizione di completamento attivata se si raggiungono tutti i sottostati finali
- se parte da un sottostato, è attivabile solo lì e fa uscire da tutti i sottostati
- se parte dal **bordo**, è attivabile sempre e **fa uscire da tutti i sottostati** (non nell'esempio)

SOTTOMACCHINE

Una sottomacchina consente di descrivere uno stato composito in un diagramma a parte

- migliore leggibilità
- favorisce riuso in altri contesti

La sottomacchina ha un **nome** (**tipo**) ⇒ le istanze di uso si indicano con **nomelstanza:Tipo**

submachine definition

This submachine can be used many times.

SOTTOMACCHINE: PUNTI DI INGRESSO/USCITA

Definire entry/exit point per collegare le sottomacchine alle transizioni della macchina principale

TRANSIZIONI DI COMPLETAMENTO: QUANDO?

Le transizioni di completamento (senza evento) scattano

- quando si raggiunge la terminazione di un'attività composita, aka
 - stato finale in un stato composito sequenziale
 - stati finali di tutte le regioni ortogonali di un stato composito parallelo
 - un exit point
- alla terminazione delle attività entry e/o do
 (NB: l'attività exit viene eseguita quando scatta la transizione di completamento)

ESEMPIO

TRANSIZIONI DI COMPLETAMENTO: QUANDO? (CONT.)

Le transizioni di completamento (senza evento) scattano

- quando si raggiunge la terminazione di un'attività composita, aka
 - stato finale in un stato composito sequenziale
 - stati finali di tutte le regioni ortogonali di un stato composito parallelo
 - un exit point
- alla terminazione delle attività **entry** e/o **do** (NB: l'attività **exit** viene eseguita quando scatta la transizione di completamento)
- quando si raggiunge uno pseudo-stato giunzione

PSEUDO-STATI

giunzione

history

scelta

SCELTA

Scelta basata su condizioni valutate dinamicamente

Come nei diagrammi di attività

- La disgiunzione delle guardie deve essere sempre vera
- È ammesso il **non-determinismo**

ESEMPIO DI CHOICE, CON SOTTOMACCHINA

ESEMPIO DI CHOICE, IN SOTTOMACCHINA

GIUNZIONE

Pseudo-stato da cui escono e/o entrano due o più transizioni

- eventuali condizioni sono valutabili staticamente e
- **prima degli eventi** che attivano le transizioni di ingresso (nell'esempio, prima dell'evento **ev**)

Consentono di **modellare più transizioni** che condividono lo **stesso evento** di attivazione Nell'esempio:

- ev [n=0] e ev [n>0]
- se n<0, e viene ignorato e si rimane in S₁

ESEMPIO, PIÙ COMPLESSO

Transizioni possibili:

- S₁ g [n=0] / a; c -> S₃
- S₁ g [n>0] / a; d –> S₄
- $S_2 h$ [m>0 and n=0] / b; c -> S_4
- $S_2 h \text{ [m>0 and n>0] / b; d} -> S_4$

E L'ESEMPIO DI PRIMA?

ESEMPIO, CON SOTTOMACCHINE

Transizioni possibili:

- $S_1 e / a; p; b; q; c -> S_2$
- $S_1 f/p; d; q \rightarrow S_2$

GIUNZIONE O SCELTA?

Giunzione:

- statica → guardie valutate prima di uscire dallo stato di partenza // S₁
- nell'esempio, se **n<0**, **ev** viene ignorato e non si prende nessuna transizione

Scelta:

- dinamica → guardie valutate quando occorre l'evento // ev(n)
- nell'esempio, si assume che valga sempre **n>=0** (altrimenti il diagramma non è valido)

HISTORY

ESEMPIO

Accensione	Ora	Riproduzione	
Prima	Corrente	Radio	
Successive	Corrente	Ultima*	*dipende da

FAQ: ATTIVITÀ O STATI?

Come scegliere il diagramma più appropriato per descrivere il modello dinamico?

FAQ: QUALI SONO I NOMI APPROPRIATI?

I nomi degli stati dovrebbero indicare la **permanenza** in tali stati (per un certo lasso di tempo)

aggettivi // active, idle

participi passati // opened, closed, pinned

gerundi // dialing, connecting

I nomi delle azioni dovrebbero indicare l'esecuzione di tale azione

verbi all'indicativo, imperativo o infinito // create, delete

sostantivi che indicano un'azione // DBConnection

Si tratta di una convenzione a volte disattesa (eccezioni anche negli esempi visti), ma

- aiuta a costruire diagrammi corretti e
- a non confondere stati e azioni nei compiti (errore comune)

HOMEWORK

Caso di riferimento: La Piscina

Descrivere con un diagramma di macchina a stati gli stati di un utente che vuole fare nuoto libero:

- partendo dallo stato in cui non è prenotato
- fino a quando è uscito

Trattare anche i casi di errore (ad esempio, l'arrivo fuori orario)

ESERCIZI CONSIGLIATI

Fornire diagrammi di macchina a stati che modellino

- l'evoluzione della classe Utente (o Situazione Utente) di Myair
- l'evoluzione del semaforo (ex. Semafori)

RIFERIMENTI

Contenuti

Capitolo 5 di "UML@Classroom" (M. Seidl et al., 2015)

// escludendo *deep history*

Approfondimenti

- Sezione 13.4 di "Software Engineering" (G. C. Kung, 2023)
- UML Reference Manual (vedi appendice)

Event Type	Description	Syntax
call event	Receipt of an explicit synchronous call request by an object	op(a:T)
change event	A change in value of a Boolean expression	when(exp)
signal event	Receipt of an explicit, named, asynchronous communication among objects	sname(a:T)
time event	The arrival of an absolute time or the passage of a relative amount of time	after(time)

Transition Kind	Description	Syntax
entry transition	The specification of an entry activity that is executed when a state is entered	entry / activity
exit transition	The specification of an exit activity that is executed when a state is exited	exit / activity
external transition	A response to an event that causes a change of state or a self-transition, together with a specified effect. It may also cause the execution of exit and/or entry activities for states that are exited or entered	e(a:T)[guard]/activity
Internal transition	A response to an event that causes the execution of an effect but does not cause a change of state or execution of exit or entry activities	e(a:T)[guard]/activity

State Kind	Description	Notation
simple state	A state with no substructure	(see manual)
orthogonal state	A state that is divided into two or more regions. One direct susbstate from each region is concurrently active when the composite state is active	(see manual)
nonorthogonal state	A composite state that contains one or more direct substates, exactly one of which is active at one time when the composite state is active	(see manual)
initial state	A pseudostate that indicates the starting state when the enclosing state is invoked	(see manual)
final state	A special state whose activations indicates the enclosing state has completed activity	(see manual)
terminate	A special state whose activation terminates execution of the object owning the state machine	(see manual)
junction	A pseudostate that chains transitions segments into a single run-to- completion transition	(see manual)
choice	A pseudostate that performs a dynamic branch within a single run-to- completion transition	(see manual)
history state	A pseudostate whose activation restores the previously active state within a composite state	(see manual)

State Kind	Description	Notation
submachine state	A state that references a state machine definition, which conceptually replaces the submachine state	(see manual)
entry point	A externally visible pseudostate within a state machine that identifies an internal state as a target	(see manual)
exit point	A externally visible pseudostate within a state machine that identifies an internal state as a source	(see manual)