## Gaussian Processes An Introduction to Probabilistic Machine Learning

Pablo Martínez Olmos

Machine Learning, Nov. 2019 Master in Information Health Engineering



#### Outline

Probabilistic Machine Learning and Gaussian Models

Gaussian Processes

GPs for Classification



#### Section 1

# Probabilistic Machine Learning and Gaussian Models



## Probabilistic modelling

- Probabilistic modelling emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience.
- Represent and manipulate uncertainty about models and predictions.
- Plays a central role in scientific data analysis, machine learning, robotics, cognitive science, and artificial intelligence.

## Probabilistic modelling

- ► Learning can be thought of as inferring plausible models to explain observed data.
- Observed data can be consistent with many models, and therefore which model is appropriate given the data is uncertain.
- Similarly, predictions, about future data and the future consequences of actions, are uncertain.
- Probability theory provides a framework for modelling uncertainty.



## **REVIEW**

doi:10.1038/nature14541

## Probabilistic machine learning and artificial intelligence

Zoubin Ghahramani<sup>t</sup>



## Gaussian Density

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

▶ The sum of independent Gaussians is also Gaussian

$$p\left(\sum_{i=1}^{N} x_i\right) = \mathcal{N}\left(\sum_{i=1}^{N} x_i \,\Big|\, \sum_{i=1}^{N} \mu_i, \sum_{i=1}^{N} \sigma_i^2\right)$$

Scaling a Gaussian leads to a Gaussian

$$p(cx) = \mathcal{N}(cx|c\mu, c^2\sigma^2)$$



## Conditionals and Marginals of a Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

$$p(\mathbf{x}) = p\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}\right) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \middle| \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}\right)$$

$$p(\mathbf{x}_1) = \mathcal{N}(\mathbf{x}_1|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}) \qquad p(\mathbf{x}_2) = \mathcal{N}(\mathbf{x}_2|\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$$

$$ho(\mathbf{x}_1|\mathbf{x}_2) = \mathcal{N}\left(\mathbf{x}_1|oldsymbol{\mu}_1 + oldsymbol{\Sigma}_{12}oldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2 - oldsymbol{\mu}_2)\,,\,oldsymbol{\Sigma}_{11} - oldsymbol{\Sigma}_{12}oldsymbol{\Sigma}_{21}^{-1}oldsymbol{\Sigma}_{21}
ight)$$



## Probabilistic Discriminative Modeling

We observe some data  $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\} = (\mathbf{X}, \mathbf{y}),$  related by the unknown parameter  $\boldsymbol{\theta}$  through some  $p(y|\mathbf{x}, \boldsymbol{\theta})$ 

Joint distribution: 
$$p(y, \mathbf{x}, \theta)$$
 or  $p(\mathcal{D}, \theta) = p(\mathbf{X}, \mathbf{y}, \theta)$ 

Parameter Prior:  $p(\theta)$ 

Likelihood:  $p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$ 

Posterior: 
$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}, \theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathbf{y}|\mathbf{X}, \theta)p(\theta)}{p(\mathbf{y}|\mathbf{X})}$$

Evidence: 
$$p(\mathcal{D}) = \int p(\mathcal{D}, \theta) d\theta = \int p(\mathcal{D}|\theta) p(\theta) d\theta$$

Posterior predictive distribution:

$$p(y^*|\mathbf{x}^*, \mathcal{D}) = \int p(y^*|\mathbf{x}^*, \theta)p(\theta|\mathcal{D}) d\theta$$



## Probabilistic Regression with Linear Gaussian Models

$$y = \mathbf{w}^T \mathbf{x} + z$$

$$p(\mathbf{y}|\mathbf{w},\mathbf{X},\sigma_z^2) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w},\sigma_z^2\mathbf{I}) \qquad p(\mathbf{w}|\mathbf{0},\mathbf{V}_0) = \mathcal{N}(\mathbf{w}|\mathbf{0},\mathbf{V}_0)$$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \sigma_z^2, \mathbf{V}_0) \propto \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma_z^2\mathbf{I}) \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{V}_0) = \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$$

$$\mathbf{w}_N = \frac{1}{\sigma_z^2} \mathbf{V}_N \mathbf{X}^T \mathbf{y}$$
 $\mathbf{V}_N^{-1} = \mathbf{V}_0^{-1} + \frac{1}{\sigma_z^2} \mathbf{X}^T \mathbf{X}$ 



## Probabilistic Regression with Linear Gaussian Models



Figure: Source: Bishop's book



#### Predictive distribution

$$\rho(y^*|\mathbf{x}^*, \mathcal{D}, \sigma_z^2, \mathbf{V}_0) = \int \mathcal{N}(y^*|\mathbf{w}^T\mathbf{x}^*, \sigma_z^2) \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N) d\mathbf{w}$$
$$= \mathcal{N}(y^*|\mathbf{w}_N^T\mathbf{x}^*, \sigma_z^2 + \mathbf{x}^{*T}\mathbf{V}_N\mathbf{x}^*)$$

- ► The predicted mean is the product between the posterior mean of the weights and the test input.
- ► The predictive uncertainty grow with the magnitude of the test input ¹.

Indeed, it grows with  $\mathbf{x}^{*T}\mathbf{V}_{N}\mathbf{x}^{*}$ , which is the Mahalanobis distance betweetam  $\mathbf{x}$  and  $\mathbf{0}$  according to the eigenvectors of  $\mathbf{V}_{N}$  (See Bishop Chapter 2.3)

## Projections into Feature Space

Replace  ${\bf x}$  by  $\phi({\bf x})$  and  ${\bf X}$  by  ${\bf \Phi}$  everywhere in the above equations. If we design the right feature space ...



Figure: Source: Bishop's book



## Marginal Likelihood (a.k.a. Model Evidence)

Useful for both Bayesian model comparison and hyperparmeter optimization

$$\begin{split} \rho(\mathbf{y}|\mathbf{\Phi},\sigma_z^2,\mathbf{V}_0) &= \int \mathcal{N}(\mathbf{y}|\mathbf{\Phi}\mathbf{w},\sigma_z^2\mathbf{I}) \, \mathcal{N}(\mathbf{w}|\mathbf{0},\mathbf{V}_0) d\mathbf{w} = \mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}_y) \\ &= \frac{1}{(2\pi)^{N/2} \mid \mathbf{K}_y \mid^{1/2}} e^{-\frac{1}{2}\mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}} \end{split}$$

where  $\mathbf{K}_{v} = \frac{1}{\sigma}^{2} \mathbf{I} + \mathbf{\Phi} \mathbf{V}_{0} \mathbf{\Phi}^{T}$ .

**uc3m** 

## Section 2

Gaussian Processes



#### Gaussian Processes

Instead of modeling **w** as Gaussian in a linear model  $\mathbf{w}^T \mathbf{x} + z = f(\mathbf{x})$  we now model  $f(\mathbf{x})$  as Gaussian

- $\triangleright$   $p(f|\mathbf{X},\mathbf{y})$  is a distribution over functions
- ▶ A Gaussian Process (GP) assumes that  $p(f(\mathbf{x}_1), ..., f(\mathbf{x}_N))$  is jointly Gaussian with mean  $\mu(\mathbf{X}) = [m(\mathbf{x}_1), ..., m(\mathbf{x}_N)]^T$  and covariance  $\Sigma(\mathbf{X})$  given by  $\Sigma_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
- More formally

$$f(\mathbf{x}) \sim GP(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

where

$$m(\mathbf{x}) = E\{f(\mathbf{x})\}\$$
  
$$k(\mathbf{x}, \mathbf{x}') = E\{(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))^T\}\$$



#### Sampling from a Gaussian Process

$$f(\mathbf{x}) \sim GP(\mathbf{0}, k(\mathbf{x}, \mathbf{x}'))$$
$$k(\mathbf{x}, \mathbf{x}') = \theta_0 e^{-\frac{\theta_1}{2}||\mathbf{x} - \mathbf{x}'||^2} + \theta_2 + \theta_3 \mathbf{x}^T \mathbf{x}'$$



Figure: Source: Bishop's book



## Sampling from a Gaussian Process

Source: Murphy's book



## Predictions Using Noise-Free Observations

$$\begin{split} \rho\left(\begin{bmatrix}\mathbf{f}\\\mathbf{f}^*\end{bmatrix}\right) &= \mathcal{N}\left(\begin{bmatrix}\mathbf{f}\\\mathbf{f}^*\end{bmatrix} \middle| \begin{bmatrix}\boldsymbol{\mu}\\\boldsymbol{\mu}^*\end{bmatrix}, \begin{bmatrix}\mathbf{K} & \mathbf{K}^*\\\mathbf{K}^{*T} & \mathbf{K}^{**}\end{bmatrix}\right) \\ \rho(\mathbf{f}^*|\mathbf{X}^*, \mathbf{f}, \mathbf{X}) &= \mathcal{N}(\mathbf{f}^*|\boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*) \\ \boldsymbol{\mu}_* &= \boldsymbol{\mu}(\mathbf{X}^*) + \mathbf{K}^{*T}\mathbf{K}^{-1}(\mathbf{f} - \boldsymbol{\mu}(\mathbf{X})) \\ \boldsymbol{\Sigma}_* &= \mathbf{K}^{**} - \mathbf{K}^{*T}\mathbf{K}^{-1}\mathbf{K}^* \end{split}$$

Zero mean prior

$$p(\mathbf{f}^*|\mathbf{X}^*,\mathbf{f},\mathbf{X}) = \mathcal{N}(\mathbf{f}^*|\mathbf{K}^{*T}\mathbf{K}^{-1}\mathbf{f},\mathbf{K}^{**} - \mathbf{K}^{*T}\mathbf{K}^{-1}\mathbf{K}^*)$$



## Predictions Using Noise-Free Observations





## Predictions Using Noisy Observations

$$y = f(\mathbf{x}) + z$$
  $z \sim \mathcal{N}(z|0, \sigma_z^2)$ 

$$Cov(y_p, y_q) = k(\mathbf{x}_p, \mathbf{x}_q) + \sigma_z^2 \mathbb{I}(p = q) \quad Cov(\mathbf{y}|\mathbf{X}) = \mathbf{K}_y = \mathbf{K} + \sigma_z^2 \mathbf{I}_N$$

$$\rho\left(\begin{bmatrix}\mathbf{y}\\\mathbf{f}^*\end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix}\mathbf{y}\\\mathbf{f}^*\end{bmatrix} \ \middle|\ \mathbf{0}, \begin{bmatrix}\mathbf{K}_y & \mathbf{K}^*\\\mathbf{K}^{*T} & \mathbf{K}^{**}\end{bmatrix}\right)$$

$$\rho(\mathbf{f}^*|\mathbf{X}^*,\mathbf{y},\mathbf{X}) = \mathcal{N}(\mathbf{f}^*|\mathbf{K}^{*T}\mathbf{K}_y^{-1}\mathbf{y},\mathbf{K}^{**} - \mathbf{K}^{*T}\mathbf{K}_y^{-1}\mathbf{K}^*)$$
$$= \mathcal{N}(\mathbf{f}^*|\mathbf{K}^{*T}(\mathbf{K} + \sigma_z^2\mathbf{I}_N)^{-1}\mathbf{y},\mathbf{K}^{**} - \mathbf{K}^{*T}(\mathbf{K} + \sigma_z^2\mathbf{I}_N)^{-1}\mathbf{K}^*)$$

Single value prediction:

$$p(f^*|\mathbf{x}^*, \mathbf{y}, \mathbf{X}) = \mathcal{N}(f^*|\mathbf{k}^{*T}\mathbf{K}_y^{-1}\mathbf{y}, \mathbf{k}^{**} - \mathbf{k}^{*T}\mathbf{K}_y^{-1}\mathbf{k}^*)$$



## Predictions Using Noisy Observations



Source: Murphy's book



## Estimating the Kernel Parameters

Instead of exhaustive search by CV, we can optimize again the marginal likelihood or evidence

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{f}, \mathbf{X}) p(\mathbf{f}|\mathbf{X}) d\mathbf{f} = \mathcal{N}(\mathbf{0}, \mathbf{K}_y)$$
$$= \frac{1}{(2\pi)^{N/2} |\mathbf{K}_y|^{1/2}} e^{-\frac{1}{2}\mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}}$$

For a kernel parameter  $\theta$ 

$$\frac{\partial}{\partial \theta} \log p(\mathbf{y}|\mathbf{X}) = \frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta} \mathbf{K}_y^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left( \mathbf{K}_y^{-1} \frac{\partial \mathbf{K}_y}{\partial \theta} \right) \\
= \frac{1}{2} \operatorname{tr} \left( (\alpha \alpha^T - \mathbf{K}_y^{-1}) \frac{\partial \mathbf{K}_y}{\partial \theta} \right)$$

where  $\alpha = \mathbf{K}_{\nu}^{-1}\mathbf{y}$ . It takes  $\mathcal{O}(N^3)$  time to compute  $\mathbf{K}_{\nu}^{-1}$  and  $\mathcal{O}(N^2)$  time per hyperparameter to compute the gradient.



## Section 3

**GPs** for Classification



## Binary GP Classifier

The simplest way to obtain a binary classifier is to employ the same "trick" of logistic or probit regression:

$$p(y = +1|\mathbf{x}) = \sigma(f(\mathbf{x}))$$

where  $f(\mathbf{x})$  is a GP and  $\sigma(\cdot)$  is the logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$



## Binary GP Classifier

$$p(y=+1|\mathbf{x})=\sigma(f(\mathbf{x}))$$



Figure: Source: Bishop's book

0

0.5



$$p(y = +1|\mathbf{x}) = \sigma(f(\mathbf{x}))$$

- ► f(x) is a GP.
- Our goal is to determine the predictive distribution  $p(y^* = 1 | \mathbf{y}, \mathbf{X})$ :

$$p(y^* = 1|\mathbf{f}) = \int p(y^* = 1|f(\mathbf{x}^*))p(f(\mathbf{x}^*)|\mathbf{y})df(\mathbf{x}^*)$$

- ► This integral is analytically intractable.
- ► Find a Gaussian approximation to  $p(f(\mathbf{x}^*)|\mathbf{y})$  (Laplace's method or Expectation Propagation).

