



Center for Research in Applied Cryptography and Cyber Security

# DEFENCE AGAINST ADVERSARIAL EXAMPLES

Yishay Asher • Steve Gutfreund Instructor: Hanan Rosemarin

#### **Problem Description**

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks



# Background and Goal

- ✓ An adversarial example is an instance with small, intentional feature perturbations that cause a machine learning model to make a false prediction.
- ✓ The goal is to Find a way to train 'secured' models such that this sort of attacks should not affect them.
- ✓ Project based on the article <u>Bridging machine learning and cryptography in defence against adversarial attacks</u>



Figure 1: example of an adversarial image

#### Set-Up

- ✓ Mnist and Fashion-Mnist datasets
- ✓ Using well-known neural nets

# 1. Securing Models

Approach: training models on encrypted images.

Encryption techniques:

- ✓ Permutation
- ✓ AES in ECB, CBC and CTR modes



Figure 2: architecture for securing models

### 2. Cutting Loose Ends

Eliminated the models that did not learn well. Learning encrypted images is not very intuitive, as can be seen in figure 3.



Figure 3: Sample of the encrypted images. Interesting to see how for the human eye it's difficult to distinguish between various classes but a DNN model classifies quite well, as can be seen in table 1

# 3. Attacking

#### Attacks:

- ✓ Carlini & Wagner, CW
- ✓ Fast Gradient Sign Method, FGSM

'gray-box' scenario, i.e. the attacker knows the architecture of the model but has no access to the private key.



Figure 4: visualization of a CW attack secured by permutation

#### Results

There's a slight tradeoff between accuracy on the original images and the accuracy on the adversarial images, but overall, accuracies are good

| Classification error (%) on the first 1000 test samples |       |        |                             |            |                  |                 |             |  |
|---------------------------------------------------------|-------|--------|-----------------------------|------------|------------------|-----------------|-------------|--|
|                                                         |       | mnist  |                             |            | fashion mnist    |                 |             |  |
|                                                         | model |        | original adversarial images |            | original adversa |                 | rial images |  |
|                                                         |       | images | attack                      | gray box   | images           | attack          | gray box    |  |
| UNENCRYPTED                                             | A     | 1.49   | $CW\ l_2$                   | 100.00     | 8.30             | $CW\ l_2$       | 100.00      |  |
|                                                         |       |        | $CW\ l_0$                   | 100.00     |                  | $CW\ l_0$       | 100.00      |  |
|                                                         |       |        | CW $l_{\infty}$             | 100.00     |                  | CW $l_{\infty}$ | 100.00      |  |
|                                                         | В     | 2.10   | FGSM                        | 39.50      | 9.50             | FGSM            | 77.20       |  |
| PERMUTATED                                              | A     | 3.70   | $CW\ l_2$                   | 4.50       | 12.30            | $CW\ l_2$       | 12.70       |  |
|                                                         |       |        | $CW\ l_0$                   | 7.30       |                  | $CW\ l_0$       | 12.50       |  |
|                                                         |       |        | CW $l_{\infty}$             | 5.40       |                  | CW $l_{\infty}$ | 12.90       |  |
|                                                         | В     | 4.20   | FGSM                        | 8.60       | 12.00            | FGSM            | 29.80       |  |
| AES · ECB                                               | Α     | 18.40  | $CW\ l_2$                   | irrelevant | 54.60            | $CW\ l_2$       | irrelevant  |  |
|                                                         | В     | 19.30  | FGSM                        |            | 55.30            | FGSM            |             |  |
| AES · CBC                                               | Α     | 67.60  | $CW\ l_2$                   | irrelevant | 71.50            | $CW\ l_2$       | irrelevant  |  |
|                                                         | В     | 87.40  | FGSM                        |            | 90.30            | FGSM            |             |  |
| AES · CTR                                               | Α     | 3.70   | $CW\ l_2$                   | 4.20       | 17.40            | $CW\ l_2$       | 17.20       |  |
|                                                         | В     | 2.70   | FGSM                        | 4.90       | 16.70            | FGSM            | 26.50       |  |

Table 1: table containing all the results

## Success with Permutation, Coincidence?

To verify that the learning ability of a permutation model does not result from high density in small images, we trained models on padded images. Padding done with white pixels. See table 2 for results.

|               | image size | error rate |  |
|---------------|------------|------------|--|
|               | 28x28      | 3.70       |  |
| mnist         | 40x40      | 3.40       |  |
|               | 60x60      | 3.30       |  |
|               | 28x28      | 12.30      |  |
| fashion mnist | 40x40      | 14.40      |  |
|               | 60x60      | 10.80      |  |

Table 2: results for training permutated data, various image dimensions

# **Future Work**

- ✓ Improve accuracy on AES-ECB model
- ✓ Nicholas Carlini (the 'C' in CW attack) believes we still might defeat these defenses. (we contacted him)
- ✓ Test on more complicated datasets; i.e. Cifar-10





















