### Hadamard and conference matrices

Peter J. Cameron University of St Andrews & Queen Mary University of London

Mathematics Study Group



with input from Rosemary Bailey, Katarzyna Filipiak, Joachim Kunert, Dennis Lin, Augustyn Markiewicz, Will Orrick, Gordon Royle

# Happy Birthday, MSG!!



and many happy returns ...

### Hadamard's theorem

Let H be an  $n \times n$  matrix, all of whose entries are at most 1 in modulus. How large can det(H) be?

Now  $\det(H)$  is equal to the volume of the n-dimensional parallelepiped spanned by the rows of H. By assumption, each row has Euclidean length at most  $n^{1/2}$ , so that  $\det(H) \leq n^{n/2}$ ; equality holds if and only if

- every entry of H is  $\pm 1$ ;
- ▶ the rows of *H* are orthogonal, that is,  $HH^{\top} = nI$ .

A matrix attaining the bound is a Hadamard matrix. This is a nice example of a continuous problem whose solution brings us into discrete mathematics.

### Remarks

- ►  $HH^{\top} = nI \Rightarrow H^{-1} = n^{-1}H^{\top} \Rightarrow H^{\top}H = nI$ , so a Hadamard matrix also has orthogonal columns.
- Changing signs of rows or columns, permuting rows or columns, or transposing preserve the Hadamard property.

Examples of Hadamard matrices include

$$(+)$$
,  $\begin{pmatrix} + & + \\ + & - \end{pmatrix}$ ,  $\begin{pmatrix} + & + & + & + \\ + & + & - & - \\ + & - & + & - \\ + & - & - & + \end{pmatrix}$ .

### Orders of Hadamard matrices

#### Theorem

The order of a Hadamard matrix is 1, 2 or a multiple of 4.

We can ensure that the first row consists of all +s by column sign changes. Then (assuming at least three rows) we can bring the first three rows into the following shape by column permutations:

$$\begin{pmatrix} a & b & c & d \\ + \dots + & + \dots + & + \dots + & + \dots + \\ + \dots + & + \dots + & - \dots - & - \dots - \\ + \dots + & - \dots - & + \dots + & - \dots - \end{pmatrix}$$

Now orthogonality of rows gives

so a = b = c = d = n/4.

$$a + b = c + d = a + c = b + d = a + d = b + c = n/2,$$

## The Hadamard conjecture

The Hadamard conjecture asserts that a Hadamard matrix exists of every order divisible by 4. The smallest multiple of 4 for which no such matrix is currently known is 668, the value 428 having been settled only in 2005.

### Symmetric Hadamard matrices

A particularly attractive class of Hadamard matrices are those which are symmetric, have constant diagonal and constant row sum.

Such matrices must have square order  $4s^2$ ; the row sums are  $\pm 2s$ . [For the row sum  $\sigma$  is an eigenvalue of H, and hence  $\sigma^2$  is an eigenvalue of  $H^2 = HH^{\top}$ : thus  $\sigma^2 = n$ .]

They give rise to symmetric 2-(4 $s^2$ , 2 $s^2 \pm s$ ,  $s^2 \pm s$ ) designs and strongly regular graphs.

In the case where the order is a power of 2, these matrices can be constructed from bent functions (functions on a vector space whose distance from the space of linear functions is maximal).

There are connections with coding theory and cryptography.

### Skew-Hadamard matrices

A matrix *A* is skew if  $A^{\top} = -A$ .

A Hadamard matrix can't really be skew, since in characteristic not 2, a skew matrix has zero diagonal. So we compromise and define a skew-Hadamard matrix H to be one which has constant diagonal +1 and such that H-I is skew. The property is preserved by simultaneous row and column sign changes, so we can normalise the matrix so that its first row is +1 and its first column (apart from the first entry) is -1. It is conjectured that skew-Hadamard matrices of all orders divisible by 4 exist. The smallest unsolved case is 188.

## Doubly regular tournaments

If we delete the first row and column of a skew-Hadamard matrix, and replace the diagonal 1s by 0s, we obtain the adjacency matrix of a doubly regular tournament. This means a tournament on n=4t+3 vertices, in which each vertex has inand out-degree 2t+1, and for any two distinct vertices v and w, there are t vertices z with  $v \to z$  and  $w \to z$ .

Conversely, any doubly regular tournament on n vertices gives a skew-Hadamard matrix on n + 1 vertices.

In a forthcoming paper, Bailey, Cameron, Filipiak, Kunert and Markiewicz use Hamiltonian decompositions of doubly regular tournaments to construct universally optimal circular repeated-measurements designs.

#### **Problem**

Does every doubly regular tournament have a Hamiltonian decomposition?

Indeed, Kelly conjectured in the 1960s that every regular tournament has a Hamiltonian decomposition.

### An example

$$\begin{pmatrix} 0 & + & + & - & + & - & - \\ - & 0 & + & + & - & + & - \\ - & - & 0 & + & + & - & + \\ + & - & - & 0 & + & + & - \\ - & + & - & - & 0 & + & + \\ + & - & + & - & - & 0 \end{pmatrix} \qquad \begin{pmatrix} + & + & + & + \\ - & + & + & + \\ - & - & + & + \\ - & - & + & + \\ - & - & + & - \\ - & - & + & - \\ - & - & + & - \\ - & + & - & + \\ - & + & - & + \\ - & - & + & - \\ - & + & - & + \\ - & + & + & - \end{pmatrix}$$

This is related to the Fano plane:



## Paley tournaments

The simplest construction of doubly regular tournaments starts with a finite field of order  $q \equiv 3 \pmod{4}$ . The vertices are the elements of the field, and there is an arc  $x \to y$  if and only if y - x is a square. (This is a tournament because -1 is a non-square, and therefore y - x is a square if and only if x - y is not.)

If q is prime, then there is an obvious Hamiltonian decomposition: for each non-zero square s, take the Hamiltonian cycle

$$(0, s, 2s, 3s, \ldots, -s).$$

However, if *q* is not a prime, it is not so obvious how to proceed.

## Conference matrices

A conference matrix of order n is an  $n \times n$  matrix C with diagonal entries 0 and off-diagonal entries  $\pm 1$  which satisfies  $CC^{\top} = (n-1)I$ .

We have:

- ▶ The defining equation shows that any two rows of C are orthogonal. The contributions to the inner product of the ith and jth rows coming from the ith and jth positions are zero; each further position contributes +1 or -1; there must be equally many (namely (n-2)/2) contributions of each sign. So n is even.
- ▶ The defining equation gives  $C^{-1} = (1/(n-1))C^{\top}$ , whence  $C^{\top}C = (n-1)I$ . So the columns are also pairwise orthogonal.
- ▶ The property of being a conference matrix is unchanged under changing the sign of any row or column, or simultaneously applying the same permutation to rows and columns.

## Symmetric and skew-symmetric

Using row and column sign changes, we can assume that all entries in the first row and column (apart from their intersection) are +1; then any row other than the first has n/2 entries +1 (including the first entry) and (n-2)/2 entries -1. Let C be such a matrix, and let S be the matrix obtained from C by deleting the first row and column.

#### **Theorem**

*If*  $n \equiv 2 \pmod{4}$  *then S is symmetric; if*  $n \equiv 0 \pmod{4}$  *then S is skew-symmetric.* 

### Proof of the theorem

Suppose first that S is not symmetric. Without loss of generality, we can assume that  $S_{12} = +1$  while  $S_{21} = -1$ . Each row of S has m entries +1 and m entries -1, where n = 2m + 2; and the inner product of two rows is -1.

Suppose that the first two rows look as follows:

Now row 1 gives a + b = m - 1, c + d = m; row 2 gives a + c = m, b + d = m - 1; and the inner product gives a + d = m - 1, b + c = m. From these we obtain

$$a = \frac{1}{2}((a+b) + (a+c) - (b+c)) = (m-1)/2,$$

so *m* is odd, and  $n \equiv 0 \pmod{4}$ .

The other case is similar.

By slight abuse of language, we call a normalised conference matrix C symmetric or skew according as S is symmetric or skew

(that is, according to the congruence on  $n \pmod{4}$ ). A "symmetric" conference matrix really is symmetric, while a skew conference matrix becomes skew if we change the sign of the first column.

## Symmetric conference matrices

Let *C* be a symmetric conference matrix. Let *A* be obtained from S by replacing +1 by 0 and -1 by 1. Then A is the incidence matrix of a *strongly regular graph* of Paley type: that is, a graph with n-1 vertices in which every vertex has degree (n-2)/2, two adjacent vertices have (n-6)/4 common neighbours, and two non-adjacent vertices have (n-2)/4 common neighbours. The matrix *S* is called the *Seidel adjacency matrix* of the graph. The complementary graph has the same properties. Symmetric conference matrices are associated with other combinatorial objects, among them regular two-graphs, sets of equiangular lines in Euclidean space, switching classes of graphs. A conference matrix can produce many different strongly regular graphs by choosing different rows and columns for the normalisation.

Again the Paley construction works, on a field of order  $q \equiv +1 \pmod{4}$ ; join x to y if y-x is a square. (This time, -1 is a square, so y-x is a square if and only if x-y is.)

## An example

The Paley graph on 5 vertices is the 5-cycle. We obtain a symmetric conference matrix by bordering the Seidel adjacency matrix as shown.



$$\begin{pmatrix} 0 & + & + & + & + & + \\ + & 0 & - & + & + & - \\ + & - & 0 & - & + & + \\ + & + & - & 0 & - & + \\ + & + & + & - & 0 & - \\ + & - & + & + & - & 0 \end{pmatrix}$$

## Another example



A new first row and column, with 0 in the (1,1) position and other entries +, gives a symmetric conference matrix of order 10.

The MSG logo is the Paley graph on GF(9). (Exercise: Prove this!)

A theorem of van Lint and Seidel asserts that, if a symmetric conference matrix of order n exists, then n-1 is the sum of two squares. Thus there is no such matrix of order 22 or 34. They exist for all other orders up to 42 which are congruent to 2

(mod 4), and a complete classification of these is known up to order 30. The simplest construction is that by Paley, in the case where n-1 is a prime power: the matrix S has rows and columns

indexed by the finite field of order n-1, and the (i,j) entry is

+1 if j-i is a non-zero square in the field, -1 if it is a non-square, and 0 if i=j. Symmetric conference matrices first arose in the field of conference telephony.

### Skew conference matrices

Let C be a "skew conference matrix". By changing the sign of the first column, we can ensure that C really is skew: that is,  $C^{\top} = -C$ . Now  $(C+I)(C^{\top}+I) = nI$ , so H = C+I is a Hadamard matrix. It is a skew-Hadamard matrix, as defined earlier; apart from the diagonal, it is skew. Conversely, if H is a skew-Hadamard matrix, then H-I is a skew conference matrix.

If C is a skew conference matrix, then S is the adjacency matrix of a doubly regular tournament, as we saw earlier. (Recall that this is a directed graph on n-1 vertices in which every vertex has in-degree and out-degree (n-2)/2 and every pair of vertices have (n-4)/4 common in-neighbours (and the same number of out-neighbours).

Again this is equivalent to the existence of a skew conference matrix.

## Dennis Lin's problem

Dennis Lin is interested in skew-symmetric matrices C with diagonal entries 0 (as they must be) and off-diagonal entries  $\pm 1$ , and also in matrices of the form H=C+I with C as described. He is interested in the largest possible determinant of such matrices of given size. Of course, it is natural to use the letters C and H for such matrices, but they are not necessarily conference or Hadamard matrices. So I will call them *cold matrices* and *hot matrices* respectively.



Of course, if n is a multiple of 4, the maximum determinant for C is realised by a skew conference matrix (if one exists, as is conjectured to be always the case), and the maximum determinant for H is realised by a skew-Hadamard matrix. In

other words, the maximum-determinant cold and hot matrices C and H are related by H=C+I. In view of the skew-Hadamard conjecture, I will not consider multiples of 4 for which a skew conference matrix fails to exist. A skew-symmetric matrix of odd order has determinant zero; so there is nothing interesting to say in this case. So the

remaining case is that in which *n* is congruent to 2 (mod 4).

Lin made the first half of the following conjecture, and the second half seems as well supported:

### Conjecture

For orders congruent to 2 (mod 4), if C is a cold matrix with maximum determinant, then C+I is a hot matrix with maximum determinant; and, if H is a hot matrix with maximum determinant, then H-I is a cold matrix with maximum determinant.

Of course, he is also interested in the related questions:

- What is the maximum determinant?
- ► How do you construct matrices achieving this maximum (or at least coming close)?

### Hot matrices

Ehlich and Wojtas (independently) considered the question of the largest possible determinant of a matrix with entries  $\pm 1$  when the order is not a multiple of 4. They showed:

#### **Theorem**

For  $n \equiv 2 \pmod{4}$ , the determinant of an  $n \times n$  matrix with entries  $\pm 1$  is at most  $2(n-1)(n-2)^{(n-2)/2}$ .

Of course this is also an upper bound for the determinant of a hot matrix.

We believe there should be a similar bound for the determinant of a cold matrix.

## Meeting the Ehlich-Wojtas bound

Will Orrick (personal communication) showed:

#### **Theorem**

A hot matrix of order n can achieve the Ehlich–Wojtas bound if and only if 2n-3 is a perfect square.

This allows n = 6, 14, 26 and 42, but forbids, for example, n = 10, 18 and 22.

## Computational results

These are due to me, Will Orrick, and Gordon Royle. Lin's conjecture is confirmed for n=6 and n=10. The maximum determinants of hot and cold matrices are (160,81) for n=6 (the former meeting the EW bound) and (64000,33489) for n=10 (the EW bound is 73728). In each case there is a unique maximising matrix up to equivalence. Random search by Gordon Royle gives strong evidence for the truth of Lin's conjecture for n=14,18,22 and 26, and indeed finds only a few equivalence classes of maximising matrices in these cases.

Will Orrick searched larger matrices, assuming a special bi-circulant form for the matrices. He was less convinced of the truth of Lin's conjecture; he conjectures that the maximum determinant of a hot matrix is at least  $cn^{n/2}$  for some positive constant c, and found pairs of hot matrices with determinants around  $0.45n^{n/2}$  where the determinants of the corresponding

cold matrices are ordered the other way.