Prep 3

final revision

## FIRST:ALGEBRA

#### **Choose the correct answer:**

| 1) | If: $n_1(x) = \frac{x+2}{x-1}$ , $n_2(x) = \frac{x-5}{x+3}$ | , then the common domain of the |
|----|-------------------------------------------------------------|---------------------------------|
|    | two function $n_1$ and $n_2$ is                             |                                 |

(
$$\mathbb{R}-\{1,-2\}$$
 or  $\mathbb{R}-\{-3,5\}$  or  $\mathbb{R}$  or  $\mathbb{R}-\{1,-3\}$ )

2) The set of zeroes of the function f where  $f(x) = 2x^2$  is .......

(
$$\{0\}$$
 or  $\mathbb{R} - \{0\}$  or  $\mathbb{R} - \{2\}$  or  $\mathbb{R}$ )

3) If (2, 1) is a solution of the equation: 2x + ay = 6, then  $a = \frac{1}{2}$ 

4) If A and B are two mutually exclusive events, then  $P(A \cap B) = \cdots$ 

$$(1 \quad \text{or} \quad 0 \quad \text{or} \quad \emptyset \quad \text{or} \quad \frac{1}{2})$$

5) The point of intersection of the two straight lines which equations are X + y = 3 and X - y = 1 is.....

$$((1,2) \text{ or } (4,-1) \text{ or } (2,1) \text{ or } (5,-2))$$

If A and B are two events from the sample space of a random experiment P(B) = 0.7 and P(A) = 0.2 and  $A \subset B$ , then  $P(A \cup B)$ 

$$(2,7 \text{ or } 3,6 \text{ or } 4,5 \text{ or } 1,8)$$

8) The S.S. of the two equations: x + y = 0, x - 2 = 0 in  $\mathbb{R} \times \mathbb{R}$  is  $\{(0,2)\}$  or  $\{(2,2)\}$  or  $\{(2,2)\}$  or  $\{(2,2)\}$ 

#### **ALSHAMEKH**

**AT MATH** 

9) If a regular dice is rolled once then the probability of getting an even number equal .......

 $(3 \text{ or } 1 \text{ or } \frac{1}{2} \text{ or } \frac{1}{3})$ 

10) The simplest form of the function f where:

$$f(x) = \frac{2x^2 + x}{x}$$
 and  $x \neq 0$  ......

 $(3x \text{ or } 2x^2 + 1 \text{ or } x^2 + 1 \text{ or } 2x + 1)$ 

11) If: p (A) =  $\frac{1}{3}$ , than p ( $\lambda$ ) = ......

 $(\frac{1}{3} \text{ or } \frac{2}{3} \text{ or } 1 \text{ or } \frac{1}{2})$ 

If the domain of the function:  $n(x) = \frac{1}{x} + \frac{9}{x+b}$  is  $\mathbb{R} - \{0, 4\}$ , than  $b = \dots$ 

(0 or 4 or -4 or 3)

13) If A and B are mutually exclusive events and if P (A) =  $\frac{1}{3}$ ,

$$P(A \cup B) = \frac{7}{12}$$
, then  $P(B) = \cdots$ 

 $(\frac{1}{3} \text{ or } \frac{1}{4} \text{ or } \frac{1}{2} \text{ or } \frac{2}{3})$ 

14) The set of zeroes of f where: f(x) = -3x is ......

( $\{0\}$  or  $\{-3\}$  or  $\{-3,0\}$  or  $\mathbb{R}$ )

15) If A and B are two events from S where  $B \subset A$ , then  $P(A \cap B) = \dots$ 

( zero or P(B) or P(A) or P(A-B)

16) The solution set of the two equations: x + 3y = 4, 3y + x = 1 is ......

 $\{(3,1)\}$  or  $\{(1,3)\}$  or  $\emptyset$  or  $\{(1,0)\}$ 

17) If:  $P(A) = P(\lambda)$ , than  $P(A) = \cdots$ 

(zero or 1 or  $\frac{1}{2}$  or  $\frac{1}{3}$ )

#### **ALSHAMEKH**

**AT MATH** 

```
The domain of the function n : n(x) = \frac{x}{x^2 + 9} is .....
18)
```

$$(\mathbb{R} \quad or \quad \mathbb{R} - \{3\} \quad or \quad \mathbb{R} - \{-3\} \quad or \quad \mathbb{R} - \{3 \ , -3\} \ )$$

If: 
$$n(x) = \frac{3}{x+l}$$
 and the domain of the function is  $\mathbb{R} - \{-2\}$ , than  $l = \frac{3}{x+l}$ 

$$(-2 \text{ or } 3 \text{ or } 2 \text{ or } -3)$$

20) If A is an event of the sample space of a random experiment and 
$$P(A) = P(\hat{A})$$
, then  $P(A) = \cdots$ 

(1 or zero or 
$$\frac{1}{2}$$
 or  $\emptyset$ )

The number of the solutions of the two equations: 21)

$$X - 2y = 2$$
 and  $3X - 6y = 6$  is ......

If: 
$$x = 3$$
 is a root of the equation:  $x^2 + m x = 3$ , then  $m = \dots$ 

$$(-1 \text{ or } -2 \text{ or } 2 \text{ or } 1)$$

(zero or 
$$P(A)$$
 or  $P(B)$  or  $P(A \cup B)$ )

$$(\mathbb{R} \ \mathbf{or} \ \mathbb{R} - \{-3\} \ \mathbf{or} \ \mathbb{R} - \{3\} \ \mathbf{or} \ \mathbb{R} - \{3\}$$

(R or R – {-3} or R – {3} or R – {3, -3})

The set of zeroes of the function 
$$f: f(x) = \frac{x^2 - 4}{x^2 - 5x + 6}$$
 is ......

$$(\{-2\} \text{ or } \{2,3\} \text{ or } \{2,-2\} \text{ or } \{2,-2,3\})$$

The ordered pair which satisfy the two equations: **26**)

$$x \ y = 2$$
,  $x - y = 1$  is ......

$$((1,2) \text{ or } (2,1) \text{ or } (1,1) \text{ or } (3,1))$$

#### **ALSHAMEKH**

**AT MATH** 

**27**) The simplest form of the function  $f: f(x) = \frac{5-x}{x-5}$ ,  $x \ne 5$  is .......

(5 or 0 or -1 or 1)

If A and B are two events,  $P(A) = P(\lambda)$ , then  $P(A) = \cdots$ 28)

 $(0 \text{ or } \frac{1}{2} \text{ or } 1 \text{ or } \frac{1}{4})$ 

**29**) The common domain of functions:  $f_1(x) = \frac{1}{x-1}$ ,  $f_2(x) = \frac{1}{x^2+4}$ 

 $(\mathbb{R} \text{ or } \mathbb{R} - \{1\} \text{ or } \mathbb{R} - \{1,2\} \text{ or } \mathbb{R} - \{1,2,-2\})$   $30) \text{ If: } P(A) = \frac{2}{3}, P(B) = \frac{1}{2}, P(A \cap B) = \frac{1}{3}, \text{ then } P(A \cup B) = \dots$ 

 $(\frac{5}{6} \text{ or } \frac{1}{3} \text{ or } \frac{1}{2} \text{ or } \frac{1}{4})$ 

31) If:  $P(A) = P(\lambda)$ , then  $P(A) = \cdots$ 

(zero or  $\frac{1}{2}$  or  $\frac{1}{3}$  or 1)

32) If the two equations: x + 4y = 7, 3x + ky = 21 have infinite solutions k = ""

(4 or 12 or 7 or 21)

The set of zeros of f where  $f(x) = x^2 - 6x + 9$  is ...... 33)

 $(\mathbb{R} \text{ or } \{2,3\} \text{ or } \{zero\} \text{ or } \{3\})$ 

The point of intersection of the two straight lines: 34)

3x + 5y = 0, 5x - 3y = 0 is ......

((0,0) or (-3,5) or (3,5) or (-5,3))

35) If: A, B are two events in sample space of random experiment and  $P(A) = \frac{1}{2}, P(B) = \frac{1}{3}, P(A \cup B) = \frac{5}{6}, \text{ then ......}$ 

> or B complement A  $\mathbf{B} \subset \mathbf{A}$

A, B mutually exclusive  $A \subset B$ . or

#### **ALSHAMEKH**

**AT MATH** 

**36)** The two numbers whose sum 7 and their product 12 are ......

$$(2,5 \text{ or } 3,4 \text{ or } 2,6 \text{ or } 1,6)$$

37) If A and B are two events of the sample space of a random

experiment and if P (A) = 0.7, P (A - B) = 0.5, then P (A 
$$\cap$$
 B) = ....

38) If A and B are two mutually exclusive events from a sample space, then  $P(A \cap B) = \cdots$ 

$$(\frac{1}{2}$$
 or 1 or zero or 3)

If the algebraic fraction  $n : n(x) = \frac{x}{x-2}$  has a multiplicative inverse, then the domain of n(x) is ........

$$(\mathbb{R} \text{ or } \mathbb{R} - \{0\} \text{ or } \mathbb{R} - \{2\} \text{ or } \mathbb{R} - \{0, 2\})$$

40) The S.S. of the two equations: x - y = 0 and x y = 4 in  $\mathbb{R} \times \mathbb{R}$  is ....

$$\{(0\,,0)\} \ or \ \{(2\,,2)\}$$

$$\{(-2,-2)\}$$
 or  $\{(2,2),(-2,-2)\}$ 

The set of zeros of the function f where:  $f(x) = \frac{(x-5)(x-4)}{x^2+16}$  is.....

(
$$\{5,4\}$$
 or  $\{5\}$  or  $\{4,-4\}$  or  $\mathbb{R} - \{4,-4\}$ )

42) If:  $x \neq 5$ , then  $\frac{x-5}{5-x} = \dots$ 

$$(1 \text{ or } -1 \text{ or zero or } 5)$$

43) The common domain of the two fractions:

$$\mathbf{n}_{1}(x) = \frac{x}{3} \text{ and } \mathbf{n}_{2}(x) = \frac{3}{x} \text{ is ......}$$

$$(\mathbb{R}-\{\textbf{0}\,,\textbf{3}\}\ \ \textbf{or}\ \ \mathbb{R}-\{\textbf{3}\}\ \ \textbf{or}\ \ \mathbb{R}-\{\textbf{0}\}\ \ \textbf{or}\ \ \mathbb{R})$$

The S.S. in  $\mathbb{R} \times \mathbb{R}$  of the two equations: x + 3y = 4 and x + 3y = 1 is ......

$$\{(1,3)\}$$
 or  $\{(0,0)\}$  or  $\emptyset$  or  $\{(4,1)\}$ 

#### **ALSHAMEKH**

**AT MATH** 

 $n(x) = \frac{x-1}{x}$  has multiplicative inverse in the domain ......

$$(\mathbb{R} - \{\mathbf{0}\} \quad \mathbf{or} \quad \mathbb{R} - \{\mathbf{1}\} \quad \mathbf{or} \quad \mathbb{R} - \{\mathbf{0}, \mathbf{1}\} \quad \mathbf{or} \quad \{\mathbf{0}, \mathbf{1}\})$$

46) One of the solutions for the equation: 2x - y = 1 is ......

$$(2,1)$$
 or  $(1,2)$  or  $(2,3)$  or  $(0,0)$ 

47) If the regular coin is tossed once, then the probability of getting head and tail together equal .......

48) If  $A \subset B$ , then  $P(A \cap B) = \cdots$ 

$$(0 \quad \text{or} \quad P(A) \quad \text{or} \quad P(B) \quad \text{or} \quad P(\cap B)$$

49) The simplest form of the function n:

$$n(x) = \frac{x^3 - x}{x}, x \neq 0 \text{ is } n(x) = \frac{x^3 - x}{x}$$

$$(x^2 \text{ or } x^2 - 1 \text{ or } x^2 - x \text{ or } x^3 - 1)$$

The domain of the function  $f: f(x) = \frac{x-2}{x^2-4}$  is ......

$$\{-2,2\}$$
 or  $\mathbb{R}-\{2\}$  or  $\mathbb{R}-\{-2\}$  or  $\mathbb{R}-\{-2,2\}$ 

51) If  $Z(f) = \{2\}$  and  $f(x) = x^3 + m$ , then  $m = \dots$ 

$$(-8 \text{ or } 8 \text{ or } 2 \text{ or } -2)$$

52) One of the solutions for the two equation: x - y = 3, x y = 4 is ......

$$(1,4)$$
 or  $(2,-1)$  or  $(4,1)$  or  $(1,-2)$ 

53) The S.S. in  $\mathbb{R} \times \mathbb{R}$  of the two equations: y - 3 = 0 and x + y = 0 is .......

$$\{3,3\}$$
 or  $\{(-3,3)\}$  or  $\{(3,0)\}$  or  $\{(0,3)\}$ 

- If A and B are two events in the sample space of a random experiment and P(A) = 0.7,  $P(A \cap B) = 0.2$ , then  $P(A B) = \cdots$ 
  - (0.5 or 0.9 or 0.7 or 0.2)
- The solution set of the two equations : x y = 0, xy = 9 is ......

$$\{(-3,3)\}$$
 or  $\{(3,3),(-3,-3)\}$   
 $\{(0,0)\}$  or  $\{(3,-3)\}$ 

The set of zeros of the function f in  $\mathbb{R}$  where  $: f(x) = \frac{x+7}{4}$  is ......

$$\{-7\}$$
 or  $\{-4\}$  or  $\mathbb{R}$  or  $\emptyset$ )

**59)** The S.S. in of the two equations: x + y = 0, y = 4 in  $\mathbb{R} \times \mathbb{R}$  is......

$$\{(4,4)\}$$
 or  $\{(0,4)\}$  or  $\{(-4,4)\}$  or  $\{(4,-4)\}$ 

60) The two straight lines: x + 3 = 0, y = 4 are intersected in ....... quadrant.

(third or fourth or first or second)

1) (a) Find: n(x) in its simplest form showing the domain of n

where: 
$$n(x) = \frac{3x-4}{x^2-5x+6} + \frac{2x+6}{x^2+x-6}$$

(b) Find algebraically the S.S. in  $\mathbb{R} \times \mathbb{R}$  of the two equations:

$$x - 3 y = 6$$
 and  $2 x + y = 5$ 

2) (a) Find the solution set in  $\mathbb{R}$  of the equation :

 $x^2 - 5x + 3 = 0$  approximating the roots to the nearest tenth.

- (b) The perimeter of a rectangle is 14 cm. and its area 12 cm.<sup>2</sup> Find each of its two dimensions.
- (a) If:  $n(x) = \frac{x^2 + x + 1}{x^2 9} \div \frac{x^3 1}{x^2 4 + x + 3}$ , then find n(x) in its simplest form showing the domain of n.
  - (b) Find in  $\mathbb{R} \times \mathbb{R}$  the solution set of the two equations: x + y = 3 and  $xy + y^2 = 6$

(a) If A and B are two events from the sample space of a random experiment, P(A) = 0.7, P(B) = 0.4 and  $P(A \cap B) = 0.2$ , then find

- **(1) P** (À)
- (2) **P** (**A** U **B**)
- (b) Graph the quadratic function f where f
- $(x) = x^2 4x + 3$ ,  $x \in [-1, 5]$ , then from the graph deduce:
  - 1) The coordinates of the vertex of the curve.
  - 2) The minimum value of the function.
- 3) The S.S. in  $\mathbb{R}$  of the equation :  $x^2 4x + 3 = 0$
- 5) (a) Find algebraically the S.S. of the two equations:

2x - y + 3 = 0 and x + 2y + 4 = 0 in  $\mathbb{R} \times \mathbb{R}$ 

(b) The difference between two numbers is 5 and the product of them is 36 find the two numbers.

- (a) If A and B are two events in the sample space of a random experiment and P (A) = 0.6, P (B) = 0.3, P (A  $\cap$  B) = 0.2, then find:

  1) P (A  $\cup$  B)

  2) P (A B)
  - (b) Simplify to its simplest form showing the domain of n where:

$$n(x) = \frac{3x}{x^2 - 2x} - \frac{12}{x^2 - 4}$$

7) (a) Find the S.S. of the two equations :

$$3 x + 4 y = 24$$
 and  $x - 2 y = -2$  in  $\mathbb{R} \times \mathbb{R}$ 

(b) Find by using the general formula the solution set of the

equation: 
$$3 x^2 - 6 x + 1 = 0$$

8) (a) Find: n(x) in the simplest form showing the domain where:

$$n(x) = \frac{x^2 - 3x + 2}{x^2 - 49} \div \frac{x - 2}{x + 7}$$

- (b) Graph the function  $f: f(x) = x^2 1$  taking  $x \in [-2, 2]$  and from the graph deduce:
- 1) The coordinates of the vertex of the curve.
- 2) The minimum or maximum value of the function.
- 3) The two roots of the equation f(x) = 0
- (a) Find the S.S. of the equation :  $x^2 2x 4 = 0$  in  $\mathbb{R}$  approximating the result to the nearest tenth.
  - (b) Find n(x) in the simplest from showing the domain of n where:

$$n(x) = \frac{x^2 + x + 1}{x} \times \frac{x^2 - x}{x^{3-1}}$$

- (a) Find graphically, then verify algebraically the S.S. in  $\mathbb{R} \times \mathbb{R}$  to the equations: y = x + 4 and x + y = 4
  - (b) Put in the simplest form with determining the domain of the

function n: n (x) = 
$$\frac{x^2 - 4}{x^2 + 3x + 2} - \frac{x^2 - 2x}{x^2 - x - 2}$$
 then, find n (1)

- 11) (a) 12 cards numbered from 1 to 12, if a card is picked randomly, what's the probability of getting an odd number divisible by 3
  - (b) Find algebraically the solution set of the two equations:

$$y-x=2$$
,  $x^2+xy-4=0$ 

- (a) Represent graphically the function  $f: f(x) = 4 x^2$  on the interval [-3, 3] and from the drawing deduce the :
  - 1) Roots of the equation : f(x) = 0
  - 2) Equation of symmetric axis.
  - (b) A rectangle with a length more than its width by 4 cm. If the perimeter of the rectangle is 28 cm., find area of the rectangle.
- 13) (a) Find in  $\mathbb{R} \times \mathbb{R}$  the S.S. of the two equations :

$$y - x = 3$$
 and  $x^2 - 2x + 3y = 15$ 

- (b) If:  $n(x) = \frac{x^2 2x + 1}{x^3 1} \div \frac{x 1}{x^2 + x + 1}$ , then find n(x) in the simplest form showing the domain of n
- 14) (a) Find the solution set of the equation by using the general rule rounding the result to the nearest two decimal digits:

$$3 x^2 - 5 x + 1 = 0$$

(b) A rectangle whose length is greater than its width by 3 cm., if twice its length is smaller than four times its width by 2 cm., find length and width of the rectangle.

15) (a) Find the solution set of the two equations:

2x - y = 3, x + 3y = 5 algebraically

(b) Find n(x) in the simplest form showing its domain where:

 $\mathbf{n}(x) = \frac{2x+6}{x^2+x-6} + \frac{3x-4}{x^2-5x+6}$ 

- 16) (a) Represent graphically the function :  $f(x) = x^2 + 3$ , where  $x \in [-3, 3]$  and from the drawing deduce :
  - 1) The S.S. of the equation f(x) = 0
  - 2) The equation of the symmetry axis.
  - (b) If A and B are two events of a sample space of a random experiment and P (A) =  $\frac{4}{9}$ , P (B) =  $\frac{1}{3}$ , P (A  $\cup$  B) =  $\frac{2}{3}$

Find:  $P(A \cap B)$ 

17) (a) Find n(x) in the simplest form showing the domain of n where:

 $n(x) = \frac{x^2-4}{x^2+3x+2} \div \frac{x^2-2x}{x^2-x-2}$ , then find n (-1) if possible.

- (b) Two acute angles in a right-angled triangle, the difference between their measure 40°, find the measure of each angle.
- 18) (a) Find the S.S. of the two equations :

x + y = 7 and  $x^2 + y^2 = 25$  in  $\mathbb{R} \times \mathbb{R}$ 

(b) Find the solution set of the equation (using formula) to:

x(x+2) = 1, rounding the results to two decimal places.

(a) Find the solution set for each pair of the following two equations algebraically or graphically:

x - 2y = 0 and 2x - y = 3

(b) Find n(x) in the simplest form showing the domain of n where:

 $n(x) = \frac{3}{12 x^2 - 3} - \frac{2 x}{4 x^2 - 2 x}$  then find n (0) if possible.

20) (a) A bag contains 20 identical card numbered from 1 to 20 a card is randomly drawn.

Find the probability that number on the card is:

- (1) divisible by 3
- (2) an odd and divisible by 5
- (b) Draw the graphical form of the function f where:
- $f(x) = x^2 2x 3$  in the interval [-2, 4] and from the drawing find:
- 1) The vertex of the curve.
- 2) The maximum value or the minimum value of the function.
- 3) The two roots of the equation f(x) = 0
- 21) (a) Find graphically or algebraically the S.S. of the two equations : x + y = 4, 2x y = 2 in  $\mathbb{R} \times \mathbb{R}$ 
  - (b) The sum of two integers is 9 and the difference between their squares is 27 find the two numbers.
- 22) (a) Find the function n in its simplest form showing its domain

where:  $n(x) = \frac{x-1}{x^2-1} \div \frac{x^2-5x}{x^2-4x-5}$ 

- (b) Find the S.S. of two equations : x y = 1,  $x^2 + y^2 = 13$
- (a) Using formula find SS. of :  $x^2 4x + 1 = 0$ , approximated to two decimals.

(b) If:  $n(x) = \frac{x^2 - 2x + 4}{x^3 + 8} + \frac{x^2 - x - 2}{x^2 - 4}$ 

Put n(x) in the simplest form showing its domain.

- 24) (a) A box contains 20 symmetrical balls, 8 red 7 white and the rest is green one ball was drawn randomlly find probability that it was.
  - 1) Red
- 2) White or green
- 3) Not white
- (b) Draw the graph of function f where  $f(x)x^2 4x + 3$ ,  $x \in [0, 4]$  From the graph find : 1) The maximum or minimum value

2) The S.S. of  $x^2 - 4x + 3 = 0$ 

(a) If : n  $(x) = \frac{x^2 - 1}{x^2 + 3x + 2} \div \frac{x^2 - x}{x^2 + 2x}$ , then find n (x) in the simplest from showing the domain of n

(b) Find in  $\mathbb{R} \times \mathbb{R}$  graphically and algebraically the S.S. of the two equations: y = x + 1 and y = 2x - 1

26) (a) A rectangle is with a length more that its width by 2 cm. If the perimeter of the rectangle is 32cm. Find the area of the rectangle.

(b) If A and B are two events of the sample space of a random experiment, P(A) = 0.5 and  $P(A \cup B) = 0.8$  and P(B) = x, then find the value of x if:

1) 
$$P(A \cap B) = 0.1$$

$$(2)$$
 A  $\subset$  B

(a) Graph the function f where :  $f(X) = x^2 - 4x + 3$ , on the interval [-1, 5] and from the graph find :

1)The minimum value of the function.

2) The equation of the axis of symmetry.

3) The S.S. of the equation f(X) = 0

(b) Find The S.S. of the equation:

 $3x^2 = 5x - 1$  approximating the result to the nearest two decimal digits.

28) (a) Find in  $\mathbb{R} \times \mathbb{R}$  the S.S. of the two equations :

$$y - x = 2$$
 and  $x^2 + xy - 4 = 0$ 

(b) Find n(x) in the simplest form showing the domain of n:

$$\mathbf{n}(x) = \frac{3x-15}{x^2-8x+15} - \frac{x^2-3x-18}{9-x^2}$$

29) (a) Find n (x) in the simplest form showing the domain of n where:

$$n(x) = \frac{x}{x^2 + 2x} - \frac{x - 2}{4 - x^2}$$
, then find : n (-2) if possible.

- (b) A rectangle whose diagonal length 5 cm. and perimeter 14 cm. find its two dimensions.
- 30) (a) Find n(x) in the simplest from identifying the domain, where:

$$n(x) = \frac{x^2 - 49}{x^3 - 8} \div \frac{x + 7}{x - 2}$$

- (b) Find the solution set for the two equations: x y = 0, x = 0
- 31) (a) Find graphically or algebraically the S.S. in  $\mathbb{R} \times \mathbb{R}$  of the two equation: 2x + y = 1, x + 2y = 5
  - (b) Find the solution set of :  $x^2 x = 4$ , using the general rule. Given that  $\sqrt{17} = 4.12$
- (a) Draw the graphical representation of the function f where:  $f(x) = x^2 2 x \text{ in the interval } [-1, 3] \text{ and from the drawing find}$ the roots of the equation f(x) = 0
  - (b) If A and B are two events in sample space of a random experiment where  $P(A) = \frac{3}{8}$ ,  $P(B) = \frac{1}{2}$ ,  $P(A \cup B) = \frac{5}{8}$ Find: P(A) and  $P(A \cap B)$
- 33) (a) Find n(x) in the simplest form determining the domain of n

where: 
$$n(x) = \frac{x^2 - 2x + 4}{x^3 + 8} + \frac{x^2 - x - 2}{x^2 - 4}$$

(b) A rectangle whose length exceeds width by 4 cm., if the perimeter of the triangle is 28 cm. Find its area.

**34)** (a) Find in  $\mathbb{R} \times \mathbb{R}$  the S.S. of the two equations :

$$x - 2y = 4$$
 and  $3x + y = 5$ 

(b) Find the solution set for the two equations :

$$x = y + 2$$
,  $x^2 + xy = 0$ 

- (a) Find the solution set of the equations :  $x^2 + x = 3$  rounding the result to one decimal digit.
  - (b) Find n(x) in the simplest form identifying its domain where :

$$n(x) = \frac{x^3 - 8}{x^2 + x - 6} \div \frac{x^2 + 2x + 4}{x - 3}$$

36) (a) Represent graphically the function f where:

 $f(x) = (x-2)^2, x \in \mathbb{R}$  where  $x \in [-1, 5]$  and from the drawing find the roots of the equation f(x) = 0

- (b) If A and B are two events from a sample space of a random experiment and P(A) = 0.5,  $P(A \cup B) = 0.9$  and  $P(B) = \mathcal{X}$ , then find the value of  $\mathcal{X}$  if A and B are mutually exclusive events.
- (a) Find n ( $\mathcal{X}$ ) in the simplest form showing the domain of n :

$$n(x) = \frac{x^2 + 2x - 3}{x + 3} \div \frac{x^2 - 1}{x + 1}$$

- (b) Find the S.S. of the two equations : y x = 2,  $x^2 + xy 4 = 0$  in  $\mathbb{R} \times \mathbb{R}$
- (a) A number formed from two digits their sum is 11 and twice the units digit exceeds three times the tens digit by 2 find the number.
  - (b) Find the solution set of the equation :  $x^2 4x + 1 = 0$  in  $\mathbb{R}$  rounding the result to two decimal place.

(a) Find n ( $\mathcal{X}$ ) in the simplest form identifying the domain, where :

$$\mathbf{n}(x) = \frac{x}{x^2 + 2x} + \frac{x - 2}{x^2 - 4}$$

(b) Find the solution set of the two equations :

$$x+y=7$$
 , 5  $x-y=5$ 

- 40) (a) A bag contains 20 identical cards numbered from 1 to 20, a card is randomly drawn, find the probability that the number is:
  - 1) divisibly by 5
- 2) divisibly by both numbers 5 or 7
- (b) Represent the quadratic function  $f(x) = x^2 4$ , graphically in the interval [-2, 2] and from the graph find:
- 1) The minimum or maximum value of the function.
- 2) The set of zeros of the function f



# **ALSHAMEKH**

# AT MATH

# The answer

| 1)  | $\mathbb{R}-\{1,-3\}$ | 2)  | <b>{0</b> }              | 3)  | 2                        |
|-----|-----------------------|-----|--------------------------|-----|--------------------------|
| 4)  | 0                     | 5)  | (2,1)                    | 6)  | 0.7                      |
| 7)  | 1,8                   | 8)  | $\{(2,-2)\}$             | 9)  | $\frac{1}{2}$            |
| 10) | 2x + 1                | 11) | $\frac{2}{3}$            | 12) | - 4                      |
| 13) | $\frac{1}{4}$         | 14) | (0)                      | 15) | P (B)                    |
| 16) | Ø                     | 17) | $\frac{1}{2}$            | 18) | R                        |
| 19) | 2                     | 20) | $\frac{1}{2}$            | 21) | an infinite              |
| 22) | - 2                   | 23) | P (A)                    | 24) | $\mathbb{R} - \{3, -3\}$ |
| 25) | <b>{−2}</b>           | 26) | (2,1)                    | 27) | -1                       |
| 28) | $\frac{1}{2}$         | 29) | <b>ℝ</b> − {1}           | 30) | 5 6                      |
| 31) | $\frac{1}{2}$         | 32) | 12                       | 33) | (3)                      |
| 34) | (0,0)                 | 35) | A , B mutually exclusive | 36) | 3,4                      |
| 37) | 0.2                   | 38) | ZERO                     | 39) | ℝ − {2}                  |
| 40) | $\{(2,2),(-2,-2)\}$   | 41) | (5,4)                    | 42) | -1                       |
| 43) | $\mathbb{R}-\{0\}$    | 44) | Ø                        | 45) | $\mathbb{R}-\{0,1\}$     |
| 46) | (2,3)                 | 47) | 0 %                      | 48) | P (A)                    |
| 49) | $x^2 - 1$             | 50) | $\mathbb{R} - \{-2, 2\}$ | 51) | -8                       |
| 52) | (4,1)                 | 53) | $\{(-3,3)\}$             | 54) | 0.5                      |
| 55) | $\mathbb{R}-\{2,5\}$  | 56) | $\{(3,3),(-3,-3)\}$      | 57) | {-7}                     |
| 58) | 0.4                   | 59) | {(-4,4)}                 | 60) | second                   |

### ALSHAMEKH

### AT MATH

1) (a) n (x) = 
$$\frac{3x-4}{(x-3)(x-2)} + \frac{2(x+3)}{(x-2)(x+3)}$$

 $\therefore \text{ the domain of } n = \mathbb{R} - \{3, 2, -3\}$ 

$$n(x) = \frac{3x-4}{(x-3)(x-2)} + \frac{2}{x-2}$$

$$= \frac{3x-4+2x-6}{(x-3)(x-2)} = \frac{5x-10}{(x-3)(x-2)}$$

$$= \frac{5(x-2)}{(x-3)(x-2)} = \frac{5}{x-3}$$

(b) 
$$x - 3y = 6$$
 (1)

$$2x + y = 5$$
 i.e.  $6x + 3y = 15$  (2)

Adding (1) and (2):  $\therefore 7 x = 21$ 

$$\therefore x = 3$$
, substituting in (1)

$$\therefore 3 - 3 y = 6 \qquad \therefore -3 y = 3$$

$$\therefore y = -1$$

$$\therefore$$
 the S.S. = {(3, -1)}

3)(a) n(x) = 
$$\frac{x^2+x+1}{(x-3)(x+3)} + \frac{(x-1)(x^2+x+1)}{(x-1)(x-3)}$$

 $\therefore \text{ The domain of } n = \mathbb{R} - \{3, -3, 1\}$ 

$$n(x) = \frac{x^2 + x + 1}{(x - 3)(x + 3)} \times \frac{(x - 1)(x - 3)}{(x - 1)(x^2 + x + 1)}$$
$$= \frac{1}{x + 3}$$

(b) 
$$\because x y + y^2 = 6$$
  $\therefore y (x + y) =$ 

$$\therefore y = 2 \qquad \qquad \therefore x = 1$$

$$\therefore$$
 The S.S. = {(1,2)}

2) (a) 
$$: x^2 - 5x + 3 = 0$$

$$a = 1, b = -5 \text{ and } c = 3$$

$$\therefore x = \frac{5 \pm \sqrt{(-5)^2 - 4x \cdot 1x \cdot 3}}{2 \times 1}$$

$$\therefore x \simeq 4.3$$
 or  $x \simeq 0.7$ 

$$\therefore$$
 the S.S. = {4.3, 0.7}

(b) Let the length be x cm. and the

width be y cm.

$$\therefore 2(x+y) = 14 \qquad \therefore x+y=7$$

(1)

$$x y = 12$$
, substituting by (1)

$$\therefore (7 - y) y = 12 \quad \therefore 7y - y^2 = 12$$

$$y^2 - 7y + 12 = 0$$

$$(y-3)(y-4)=0$$

$$\therefore y = 3$$
, from (1):  $\therefore x = 4$ 

or 
$$y = 4$$
, from  $(1)$ :  $x = 3$ 

.. The two dimensions are 3 cm.

and 4 cm.

## **ALSHAMEKH**

### AT MATH

4)(a)(1) 
$$P(A) = 1 - P(A) = 1 - 0.7 = 0.3$$

(2) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.7 + 0.4 - 0.2 = 0.9$$

(b) 
$$f(x) = x^2 - 4x + 3$$

| X | -1 | 0 | 1 | 2  | 3 | 4 | 5 |
|---|----|---|---|----|---|---|---|
| y | 8  | 3 | 0 | -1 | 0 | 3 | 8 |



From the graph:

- The vertex point is (2, -1)
- The minimum value = 1

The S.S. of the equation:  $x^2 - 4x + 3 = 0$ 

is {1,3}

5) (a) 
$$2x - y = -3$$
 (1)  $x + 2y = -4$ 

i.e. 
$$2x + 4y = -8$$
 (2)

Subtracting (1) from (2):  $\therefore$  5 y = -5

$$x = -2$$
 : The S.S. = {(-2, -1)}

(b) Let the two numbers be x and y where x > y

$$x - y = 5$$
 i.e.  $x = 5 + y$  (1)

x y = 36, from (1):

$$\therefore$$
 (5 + y) y = 36  $\therefore$  5 y + y<sup>2</sup> = 36

$$y^2 + 5y - 36 = 0$$
  $(y + 9)(y - 4) = 0$ 

or 
$$y = 4$$
 and hence  $x = 9$ 

6) (a) (1) 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.6 + 0.3 - 0.2 = 0.7$$

(2) 
$$P(A - B) = P(A) - P(A \cap B)$$

$$=0.6-0.2=0.4$$

(b) 
$$n(x) = \frac{3x}{x(x-2)} - \frac{12}{(x-2)(x+2)}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{0, 2, -2\}$ 

$$n(x) = \frac{3}{x-2} - \frac{12}{(x-2)(x+2)}$$

$$= \frac{3x+6-12}{(x-2)(x+2)} = \frac{3x-6}{(x-2)(x+2)}$$

$$= \frac{3(x-2)}{(x-2)(x+2)} = \frac{3}{x+2}$$

### ALSHAMEKH

### AT MATH

7) (a) 
$$3x + 4y = 24$$

$$\therefore x - 2y = -2$$

$$x - 2y = -2$$
 i.e.  $2x - 4y = -4$  (2)

, Adding (1) and (2): 
$$\therefore$$
 5 x = 20  $\therefore$  x = 4

Substituting in (1): 
$$\dot{y} = 3$$

$$\therefore$$
 The S.S. = {(4,3)}

(b) 
$$: 3 x^2 - 6 x + 1 = 0$$

$$a=3$$
,  $b=-6$  and  $c=1$ 

$$\therefore x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times 1}}{2 \times 3} = \frac{6 \pm \sqrt{24}}{6}$$

$$x \approx 1.82$$
 or  $x \approx 0.18$ 

9)(a) 
$$: x^2 - 2x - 4 = 0$$

$$a = 1$$
,  $b = -2$  and  $c = -4$ 

$$\therefore x = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times - 4}}{2 \times 1} = \frac{2 \pm \sqrt{20}}{2}$$

$$\therefore x \approx 3.2 \text{ or } x \approx -1.2$$

$$\therefore$$
 The S.S. =  $\{3.2, -1.2\}$ 

(b) n (x) = 
$$\frac{x^2+x+1}{x} \times \frac{x(x-1)}{(x-1)(x^2+x+1)}$$

$$\therefore$$
 The domain of  $n = \mathbb{R} - \{0, 1\}$ 

$$, n(x) = 1$$

8)(a) 
$$\pi(x) = \frac{(x-2)(x-1)}{(x-7)(x+7)} \div \frac{x-2}{x+7}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{7, -7, 2\}$ 

$$n(x) = \frac{(x-2)(x-1)}{(x-7)(x+7)} \times \frac{(x+7)}{(x-2)}$$

$$n(x) = \frac{x-1}{x-7}$$

(b) 
$$f(x) = x^2 - i$$

| х | -2 | -1 | 0  | 1 | 2 |
|---|----|----|----|---|---|
| у | 3  | 0  | -1 | 0 | 3 |



- (1) The vertex point = (0, -1)
- (2) The minimum value = 1
- (3) The two roots of the equation :

$$F(x) = 0 are - 1.1$$

### ALSHAMEKH

AT MATH

10)(a) Graphically:

|   | y = x | +4 |    |
|---|-------|----|----|
| X | 0     | 1  | -2 |
| у | 4     | 5  | 2  |

| X | 0 | 2 | 4 |
|---|---|---|---|
| y | 4 | 2 | 0 |



From the graph: The S.S. =  $\{(0, 4)\}$ 

(b) 
$$n(x) = \frac{(x-2)(x+2)}{(x+2)(x+1)} \times \frac{x(x-2)}{(x-2)(x+1)}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{-2, -1, 2\}$ 

$$n(x) = \frac{x-2}{x+1} - \frac{x}{x+1} = \frac{-2}{x+1}$$

$$n(1) = \frac{-2}{2} = -1$$

11) (a)  $\frac{1}{6}$ 

(b) 
$$: y = x + 2$$

(1)

, Substituting in the other equation

$$x^2 + x(x+2) - 4 = 0$$

$$x^2 + x^2 + 2x - 4 = 0$$

$$2x^2 + 2x - 4 = 0$$
  $x^2 + x - 2 = 0$ 

$$(x+2)(x-1)=0$$

x = -2 and hence y = 0

or x = 1 and hence y = 3

$$\therefore$$
 The S.S. = {(-2,0), (1,3)}

#### 12)(a) $f(x) = 4 - x^2$

| X | -3 | -2 | -1 | 0 | 1 | 2 | 3  |
|---|----|----|----|---|---|---|----|
| у | -5 | 0  | 3  | 4 | 3 | 0 | -5 |



- (1) Roots of the equation: f(x) = 0 are -2,2
- (2) The axis of symmetry is: x = 0

(b) :: 
$$L - W = 4$$

$$(1)$$
,  $: 2(L+W) = 28$ 

(2)

, Adding (1) and (2): .. 2 L = 18

$$\therefore$$
 L = 9, then W = 5

∴ Area of the rectangle =  $L \times W = 9 \times 5 =$ 45 cm<sup>2</sup>.

### ALSHAMEKH

### AT MATH

13)(a) y = 3 + x (1), Substituting in the other equation | 14) (a)  $= 3 \times 2 - 5 \times 1 = 0$ 

$$x^2 - 2x + 3(3 + x) = 15$$

$$x^2 - 2x + 9 + 3x = 15$$
  $x^2 + x - 6 = 0$ 

$$(x-2)(x+3) = 0$$

$$x = 2$$
 and hence  $y = 5$ 

or x = -3 and hence y = 0

 $\therefore$  The S.S. ={(2,5),(-3,0)}

(b) 
$$n(x) = \frac{(x-1)^2}{(x-1)(x^2+x+1)} \div \frac{x-1}{x^2+x+1}$$

∴ The domain of n = ℝ -{1}

$$n(x) = \frac{(x-1)^2}{(x-1)(x^2+x+1)} \div \frac{x^2+x+1}{x-1}$$

$$n(x) = 1$$

(1)15)(a) 2x - y = 3

$$x + 3y = 5$$
 i.e.  $2x + 6y = 10$ 

Substituting (1) from (2):  $\therefore$  7 y = 7

$$\therefore y = 1$$
 and hence  $x = 2$ 

: The S.S. {(2,1)}

(b) n (x) = 
$$\frac{2(x+3)}{(x-2)(x+3)} + \frac{3x-4}{(x-2)(x-3)}$$

: The domain of  $n = \mathbb{R} - \{2, -3, 3\}$ 

$$n(x) = \frac{2}{x-2} + \frac{3x-4}{(x-2)(x-3)}$$

$$= \frac{2x-6+3x-4}{(x-2)(x-3)} = \frac{5x-10}{(x-2)(x-3)}$$

$$= \frac{5(x-2)}{(x-2)(x-3)} = \frac{5}{x-3}$$

14) (a) 
$$: 3 \times^2 - 5 \times + 1 = 0$$

$$a = 3$$
,  $b = -5$  and  $c = 1$ 

$$\therefore x = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 3 \times 1}}{2 \times 3} = \frac{5 \pm \sqrt{13}}{6}$$

$$\therefore x \simeq 1.43 \text{ or } x \simeq 0.23$$

(b) Let the length be x cm. and the width

be y cm.

$$\therefore x - y = 3 \tag{1}$$

$$4y-2x=2$$
  $2y-x=1$  (2)

, Adding (1) and (2): 
$$\dot{y} = 4$$
  $\dot{x} = 7$ 

16)(a) 
$$f(x) x^2 + 3$$

| X | - 3 | -2 | -1 | 0 | 1 | 2 | 3  |
|---|-----|----|----|---|---|---|----|
| у | 12  | 7  | 4  | 3 | 4 | 7 | 12 |



- The S.S. of the equation: f (x) = 0 is Ø
- (2) The equation of the axis of symmetry

is: x = 0

### MR. AHMED SHAMEKH

### ALSHAMEKH

AT MATH

16) (b) :  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

$$\therefore \frac{2}{3} = \frac{4}{9} + \frac{1}{3} - P(A \cap B)$$

$$\therefore P(A \cap B) = \frac{1}{9}$$

17) (a) n (x) = 
$$\frac{(x-2)(x+2)}{(x+2)(x+1)} \div \frac{x(x-2)}{(x-2)(x+1)}$$

 $\therefore \text{ The domain of } n = \mathbb{R} - \{-2, -1, 0, 2\}$ 

$$n(x) = \frac{(x-2)(x+2)}{(x+2)(x+1)} \times \frac{(x-2)(x+1)}{x(x-2)} = \frac{x-2}{x}$$

(b) Let the measure of the two angle are

x and y where: x > y

$$x + y = 90^{\circ}$$
 (1)  $x - y = 40^{\circ}$  (2)

Adding (1) and (2):  $2x = 130^{\circ}$ 

$$x = 65^{\circ}, y = 25^{\circ}$$

65° and 25°

.. The measure of the two angle are

18)(a) x = 7 - y(1), Substituting in the other equation

$$(7-y)^2 + y^2 = 25 \quad (49-14y+y^2+y^2=25)$$

$$\therefore 2y^2 - 14y + 24 = 0$$

$$y^2 - 7y + 12 = 0$$
  $(y - 3)(y - 4) = 0$ 

 $\therefore$  y = 3 and hence x = 4 or y = 4 and

hence 
$$x = 3$$

 $\therefore$  The S.S. = {(4,3), (3,4)}

(b) 
$$\forall x (x+2) = 1$$
  $\therefore x^2 + 2x - 1 = 0$ 

$$a = 1, b = 2 \text{ and } c = -1$$

$$\therefore x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-1)}}{2 \times 1} = \frac{-2 \pm \sqrt{8}}{2}$$

$$\therefore x \simeq 0.41$$
 or  $x \simeq -2.41$ 

19) (a) 
$$x - 2y = 0$$
 (1),  $2x - y = 3$ 

i.e. 
$$-4x + 2y = -6$$

, Adding (1) and (2): 
$$-3 x = -6$$

$$\therefore x = 2$$
, Substituting in (1):  $\therefore y = 1$ 

: The S.S. = 
$$\{(2, 1)\}$$

(b) n (x) = 
$$\frac{3}{3(2x-1)(2x+1)} - \frac{2x}{2x(2x-1)}$$

$$\therefore \text{ The domain of } n = \mathbb{R} - \left\{ \frac{1}{2}, -\frac{1}{2}, 0 \right\}$$

, n (x) = 
$$\frac{1}{(2x-1)(2x+1)} - \frac{1}{2x-1}$$

$$= \frac{1-2x-1}{(2x-1)(2x+1)} = \frac{-2x}{(2x-1)(2x+1)}$$

, n (0) is undefined.

### ALSHAMEKH

AT MATH

$$(20)(a)(1)\frac{3}{10}$$

$$(2)\frac{1}{10}$$

(b) 
$$f(x) = x^2 - 2x - 3$$

| X | - 2 | -1 | 0  | 1  | 2  | 3 | 4 |
|---|-----|----|----|----|----|---|---|
| у | 5   | 0  | -3 | -4 | -3 | 0 | 5 |



- (1) The vertex of the curve is (1, -4)
- (2) The minimum value of the function is 4
- (3) The two roots of the equation: f(x) = 0are - 1,3

$$(21)(a) x + y = 4$$

$$(1), 2x - y = 2$$

(2)

, Adding (1) and (2):

$$\therefore 3x = 6$$

x = 2, Substituting in (1)

$$\therefore y = 2$$

y = 2  $\therefore$  The S.S. = {(2,2)}

(b) Let the two integers x and y

$$x + y = 9$$
 i.e.  $x = 9 - y$ 

e. 
$$x = 9 - y$$
 (1)

$$x^2 - y^2 = 27$$

(2)

Substituting from (1) in (2):

$$(9-y)^2-y^2=27$$

$$31 - 18y + y^2 - y^2 = 27$$
  $18y = 54$ 

$$y = 3$$
 and hence  $x = 6$ 

.: The two integers are : 6 and 3

22)(a) n (x) = 
$$\frac{x-1}{(x-1)(x+1)} \div \frac{x(x-5)}{(x-5)(x+1)}$$

∴ The domain of n = ℝ - {1, -1, 0, 5}

$$n(x) = \frac{1}{x+1} \times \frac{x+1}{x} = \frac{1}{x}$$

(b) x = 1 + y (1), Substituting in the other

equation

$$(1 + y)^2 + y^2 = 13$$

$$\therefore 1 + 2y + y^2 + y^2 = 13 \quad \therefore 2y^2 + 2y - 12 = 0$$

$$\therefore y2 + y - 6 = 0$$

$$y^2 + y - 6 = 0$$
  $(y + 3)(y - 2) = 0$ 

$$\therefore$$
 y = -3 and hence x = -2

or 
$$y = 2$$
 and hence  $x = 3$ 

$$\therefore$$
 The S.S. =  $\{(-2, -3), (3, 2)\}$ 

### ALSHAMEKH

### AT MATH

23)(a) 
$$x^2 - 4x + 1 = 0$$

$$a = 1, b = -4 \text{ and } c = 1$$

$$\therefore x = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 1}}{2 \times 1} = \frac{4 \pm \sqrt{12}}{2}$$

$$x \approx 3.73$$
 or  $x \approx 0.27$ 

$$\therefore$$
 The S.S. =  $\{3.73, 0.27\}$ 

(b) n (x) = 
$$\frac{x^2 - 2x + 4}{x^3 + 8} + \frac{x^2 - x - 2}{x^2 - 4}$$
  
=  $\frac{x^2 - 2x + 4}{(x+2)(x^2 - 2x + 4)} + \frac{(x-2)(x+1)}{(x-2)(x+2)}$ 

$$\therefore$$
 The domain of  $n = \mathbb{R} - \{-2, 2\}$ 

$$n(x) = \frac{1}{x+2} + \frac{x+1}{x+2} = \frac{x+2}{x+2} = 1$$

25) (a) (x) = 
$$\frac{(x-1)(x+1)}{(x+2)(x+1)} \div \frac{x(x-1)}{x(x+2)}$$

$$\therefore$$
 The domain of  $n = \mathbb{R} - \{-2, -1, 0, 1\}$ 

$$n(x) = \frac{x-1}{x+2} \times \frac{x+2}{x-1} = 1$$

(b) Graphically:

From the graph: The S.S. =  $\{(2,3)\}$ 

Algebraically:

Y = x + 1 (1) Substituting in the other equation

$$x + 1 = 2x - 1$$

$$x = 2$$
, Substituting in (1):  $y = 3$ 

$$\therefore$$
 The S.S. = [ (2,3)]

24)(a) (1) 
$$\frac{2}{5}$$
 (2)  $\frac{3}{5}$  (3)  $\frac{13}{20}$ 

$$(2)\frac{3}{5}$$

$$(3)\frac{13}{20}$$

(b) 
$$f(x) = x^2 - 4x + 3$$

| x | 0 | 1 | 2  | 3 | 4 |
|---|---|---|----|---|---|
| у | 3 | 0 | -1 | 0 | 3 |



From the graph:

- (1) The minimum value = 1
- (2) The S.S. of the equation:

$$X^2 - 4x + 3 = 0$$
 is [1,3]



| x | -1 | 0 | 1 |  |
|---|----|---|---|--|
| у | 0  | 1 | 2 |  |

#### y = 2X - 1

| X | 0  | 2 | 3 |
|---|----|---|---|
| У | -1 | 3 | 5 |



### **ALSHAMEKH**

AT MATH

$$(26)(a) : L - W = 2$$

(1) 
$$, 2(L+W) = 3$$

i.e. 
$$L + W = 16(2)$$

, Adding (1) and (2): 
$$\therefore$$
 2 L = 18

$$\therefore L = 9, W = 7$$

: Area of the rectangle =  $9 \times 7 = 63 \text{cm}^2$ .

$$(b)(1) :: P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.8 = 0.5 + X - 0.1$$
  $X = 0.4$ 

$$(2) :: A \subset B \text{ , then } P(A \cup B) = P(B) = X$$

28)(a) y = x + 2, Substituting in the other equation

$$x^2 + x(x+2) - 4 = 0$$

$$x^2 + x^2 + 2x - 4 = 0$$

$$\therefore 2x^2 + 2x - 4 = 0$$

$$x^2 + x - 2 = 0$$
  $x(x-1)(x+2) = 0$ 

 $\therefore x = 1$  and hence y = 3

or 
$$x = -2$$
 and hence  $y = 0$ 

$$\therefore$$
 The S.S. = { (1,3), (-2,0)}

(b) 
$$n(x) = \frac{3(x-5)}{(x-3)(x-5)} + \frac{(x-6)(x+3)}{(x-3)(x+3)}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{3, 5, -3\}$ 

$$n(x) = \frac{3}{x-3} \times \frac{x-6}{x-3} = \frac{x-3}{x-3} = 1$$

27) (a) 
$$f(x) = x^2 - 4x + 3$$

| X | -1 | 0 | 1 | 2  | 3 | 4 | 5 |
|---|----|---|---|----|---|---|---|
| у | 8  | 3 | 0 | -1 | 0 | 3 | 8 |



From the graph:

- (1) The minimum value of the function = -1
- (2) The equation of the axis of symmetry is: x = 2
- (3) The S.S. of the equation: f(x) = 0 is  $\{1,3\}$

(b) 
$$= 3 x^2 - 5 x + 1 = 0$$

$$a = 3$$
,  $b = -5$  and  $c = 1$ 

$$\therefore x = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 3 \times 1}}{2 \times 3} = \frac{5 \pm \sqrt{13}}{6}$$

$$x \simeq 1.43$$
 or  $x \simeq 0.23$ 

### ALSHAMEKH

### AT MATH

29)(a) n (x) = 
$$\frac{x}{x(x+2)} + \frac{x-2}{(x-2)(x+2)}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{0, -2, 2\}$ 

, n (x) = 
$$\frac{1}{x+2} \times \frac{1}{x+2} = \frac{2}{x+2}$$

, n (-2) is undefined

(b)2 (L+W) = 14 
$$\therefore$$
 L+W=7

$$L + W = 7$$

 $v L^2 + W^2 = 25$ , Substituting from (1)

$$\therefore (7 - w)^2 + w^2 = 25$$

$$49 - 14 w + w^2 + w^2 = 25$$

$$2 w^2 - 14 w + 24 = 0$$

$$w^2 - 7w + 12 = 0$$
  $(W-3)(W-4) = 0$ 

or 
$$W = 4$$
 and hence  $L = 3$  (refused

∴ The length = 4 cm. and the width = 3cm.

31) (a) 
$$\div 2x + y = 1$$
 (1),  $x + 2y = 5$ 

$$(1), x + 2y = 5$$

i.e. 
$$-2x-4y=-10$$

, Adding (1) and (2): -3y = -9

$$\therefore$$
 y = 3, from (1):  $\therefore$  x = -1

$$\therefore$$
 The S.S. = {  $(-1,3)$ }

(b) 
$$x^2 - x - 4 = 0$$

$$a = 1, b = -1 \text{ and } c = -4$$

$$\therefore x = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 1 \times - 4}}{2 \times 1} = \frac{1 \pm \sqrt{17}}{2}$$

$$x \simeq \frac{1+4.12}{2} \text{ or } \simeq \frac{1-4.12}{2}$$

i.e. 
$$x \approx 2.56$$
 or  $x \approx 1.56$ 

30)(a) n (x) = 
$$\frac{(x-7)(x+7)}{(x-2)(x^2+2x+4)} \div \frac{x+7}{x-2}$$

∴ The domain of n = ℝ - { 2, -7}

$$n(x) = \frac{(x-7)(x+7)}{(x-2)(x^2+2x+4)} \times \frac{x-2}{x+7}$$
$$= \frac{x-7}{x^2+2x+4}$$

(b) 
$$: x - y = 0$$

i.e. x = y, Substituting in the other equation

$$x^2 = 9$$

$$\therefore x = 3$$
 and hence  $y = 3$ 

or 
$$x = -3$$
 and hence  $y = -3$ 

$$\therefore$$
 The S.S. = { (3,3), (-3,-3)}

32) (a) 
$$f(x) = x^2 - 2x$$

| X | -1 | 0 | 1  | 2 | 3 |
|---|----|---|----|---|---|
| у | 3  | 0 | -1 | 0 | 3 |



From the graph:

The S.S. of the equation : f(x) = 0 is  $\{0, 2\}$ 

(b) 
$$P(A) = 1 - P(A) = 1 - \frac{3}{8} = \frac{5}{8}$$

, 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\therefore \frac{5}{8} = \frac{3}{8} + \frac{1}{2} \cdot P(A \cap B)$$

$$\therefore P(A \cap B) = \frac{1}{4}$$

## MR. AHMED SHAMEKH

### **ALSHAMEKH**

AT MATH

33) (a) n (x) = 
$$\frac{x^2-2X+4}{(x+2)(x^2-2X+4)} + \frac{(X-2)(X+1)}{(x-2)(X+2)}$$

 $\therefore \text{ The domain of } n = \mathbb{R} - \{-2, 2\}$ 

, n (x) = 
$$\frac{1}{x+2} + \frac{x+1}{x+2} = \frac{x+2}{x+2} = 1$$

(b)L-W=4 (1), 
$$2(L+W) = 28$$

, Adding (1) and (2):  $\therefore 2L = 18$ 

$$\therefore$$
 L = 9 and W = 5

∴ Area of the rectangle = L × W = 45cm².

35)(a) 
$$\because x^2 + x - 3 = 0 \quad \therefore a = 1$$
, b = 1 and c = -3

$$\therefore x = \frac{-1 \pm \sqrt{(-1)^2 - 4 \times 1 \times -3}}{2 \times 1} = \frac{-1 \pm \sqrt{13}}{2}$$

 $\therefore x \approx 1.3$  or  $x \approx 2.3$ 

(b) n (x) = 
$$\frac{(x-2)(x^2+2X+4)}{(x+3)(x-2)} \div \frac{x^2+2X+4}{x-3}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{-3, 2, 3\}$ 

, n (x) = 
$$\frac{x+2x+4}{x+3} \times \frac{x-3}{x^2+2x+4} = \frac{x-3}{x+3}$$

$$34)(a) x - 2 y = 4 (1)$$

$$3x + y = 5$$
 i.e.  $6x + 2y = 10$  (2)

, Adding(1)and(2): 
$$\therefore 7x=14 \therefore x=2 \therefore y=-1$$

: The S.S. = 
$$\{(2, -1)\}$$

(b)  $\because x = y + 2$  (1), Substituting in the other equation

$$\therefore (y+2)^2 + (y+2)y = 0$$

$$y^2 + 4y + 4 + y^2 + 2y = 0$$

$$\therefore 2y^2 + 6y + 4 = 0$$
  $\therefore y^2 + 3y + 2 = 0$ 

$$(y + 2)(y + 1) = 0$$
  $y = -2$  and hence  $x = 0$ 

or y = -1 and hence x = 1

:. The S.S. = 
$$\{(0, -2), (1, -1)\}$$

| 36)(a) | f(x) = | $(x-2)^2$ |
|--------|--------|-----------|
|--------|--------|-----------|

| X | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
|---|----|---|---|---|---|---|---|
| у | 9  | 4 | 1 | 0 | 1 | 4 | 9 |

(b) - A and B are two mutually exclusive

$$\therefore P(A \cup B) = P(A) + P(B)$$

$$0.9 = 0.5 + x$$
  $x = 0.4$ 



### ALSHAMEKH

AT MATH

37)(a) n (x) = 
$$\frac{(x-1)(x+3)}{x+3} + \frac{(x-1)(x+1)}{x+1}$$

 $\therefore$  The domain of  $n = \mathbb{R} - \{-3, 1, -1\}$ 

$$n(x) = (x-1) \times \frac{1}{(x-1)} = 1$$

(b) y = 2 + x (1), Substituting in the other equation

$$x^2 + x(2 + x) - 4 = 0$$

$$x^2 + 2x + x^2 - 4 = 0$$
  $2x^2 + 2x - 4 = 0$ 

$$\therefore x^2 + x - 2 = 0$$

$$(x+2)(x-1)=0$$

x = -2 and hence y = 0 or x = 1 and hence y = 3

$$\therefore$$
 The S.S. = {  $(-2,0),(1,3)$ }

39)(a) n (x) = 
$$\frac{x}{x(x+2)} + \frac{x-2}{(x+2)(x-2)}$$

 $\therefore \text{ The domain of } n = \mathbb{R} - \{0, -2, 2\}$ 

, n (x) = 
$$\frac{1}{x+2} \times \frac{1}{x+2} = \frac{2}{x+2}$$

(b) 
$$x + y = 7$$

(b) 
$$x + y = 7$$
 (1),  $5x - y = 5$  (2)

, Adding (1) and (2):  $6 \times 6 \times 12$ 

 $\therefore x = 2$ , Substituting in (1):  $\therefore y = 5$ 

:. The S.S. = 
$$\{(2,5)\}$$

38)(a) Let the unite digit is x and the tens digit is y

$$x + y = 11$$
 (1)  $x - 3y = 2$  (2)

Multiplying (1) by 
$$2: : 2x + 2y = 22$$
 (3)

Substituting (2) from (3): 
$$45 \text{ S} = 20$$

$$\therefore$$
 y = 4  $\therefore$  x = 7  $\therefore$  The number is 47

(b) 
$$x^2 - 4x + 1 = 0$$
  $a = 1$ ,  $b = -4$  and  $c = 1$ 

$$\therefore \chi = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 1}}{2 \times 1} = \frac{4 \pm \sqrt{12}}{2}$$

$$x = 3.73 \text{ or } x = 0.27$$

$$40)(a)(1)\frac{1}{5}$$
 (2) $\frac{3}{10}$ 

$$(2)\frac{3}{10}$$

(b) 
$$f(x) = x^2 - 4$$

| Х | -2 | -1 | 0  | 1  | 2 |
|---|----|----|----|----|---|
| у | 0  | -3 | -4 | -3 | 0 |



From the graph

- The minimum value of the function is: 4
- The set of zeroes of the function is:

$$\{(-2,2)\}$$

MR. AHMED SHAMEKH

29

01010354592



# Choose the correct answer:

|    | The domain of the                    | function $n : n(X) =$                        | <u>x</u> is                                                     |                                                            |
|----|--------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|
| 1. |                                      |                                              | (c) $\mathbb{R} - \{0, 1\}$                                     | (d) $\mathbb{R} - \{-1\}$                                  |
|    |                                      | itions of the two equat                      | ions: $x + y = 2$ and $y +$                                     | $-x = 3 \text{ together in } \mathbb{R} \times \mathbb{R}$ |
| 2. | is<br>(a) zero                       | (b) 1                                        | (c) 2                                                           | (d) 3                                                      |
| 3. | If $x \neq 0$ , then $\frac{5}{x^2}$ | $\frac{x}{x+1} \div \frac{x}{x^2+1} = \dots$ | •••••                                                           |                                                            |
| 5. |                                      |                                              | (c) 1                                                           | (d) <b>5</b>                                               |
| 4. | If the ratio between areas = ·····:: | -                                            | wo squares is 1:2, th                                           | en the ratio between their                                 |
|    | (a) 1:2                              | (b) 2:1                                      | (c) 1:4                                                         | (d) 4:1                                                    |
| 5. | The equation of the                  | e symmetric axis of t                        | he curve of the function                                        | on f where $f(x) = x^2 - 4$                                |
|    | (a) $X = -4$                         | (b) $X = 0$                                  | (c) y = 0                                                       | (d) $y = -4$                                               |
|    | If A ⊂ S of rando                    | m experiment and P                           | $(\mathring{A}) = 2 P (A)$ , then F                             | ' (A) =                                                    |
| 6. | (a) $\frac{1}{3}$                    | (b) $\frac{1}{2}$                            | (c) $\frac{2}{3}$                                               | (d) 1                                                      |
| 7  |                                      | f the two equations:                         | $x=3$ , $y=4$ in $\mathbb{R}$                                   | ( R is                                                     |
| 7. | (a) $\{(3,4)\}$                      | (b) $\{(4,3)\}$                              | (c) IR                                                          | (d) Ø                                                      |
| 0  | The set of zeroes of                 | of the function f whe                        | $\operatorname{re} f(X) = X^2 + 4 \operatorname{in} \mathbb{R}$ | is                                                         |
| 8. | (a) {2}                              | (b) $\{2, -2\}$                              | (c) <b>R</b>                                                    | (d) Ø                                                      |

|              | Prepa                                                                                   | ratory Three – Seco                                        | nd Term Revision -                                 | 2022                        |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-----------------------------|--|--|--|--|
| 9.           | If A and B are two mu                                                                   | itually exclusive events of                                | of a random experiment                             | then $P(A \cap B) = \cdots$ |  |  |  |  |
| <i>)</i> .   | (a) 0                                                                                   | (b) 1                                                      | (c) 0.5                                            | (d) Ø                       |  |  |  |  |
| 10.          | The domain of the                                                                       | multiplicative inverse                                     | of the function $f: f$                             | $(x) = \frac{x+2}{x-3}$ is  |  |  |  |  |
| 10.          |                                                                                         | (b) $\mathbb{R} - \{-2, 3\}$                               |                                                    |                             |  |  |  |  |
| 11.          | The two straight lin                                                                    | nes: $3 X + 5 y = 0,5$                                     | x - 3 y = 0 are interse                            | ect in                      |  |  |  |  |
| 11.          | (a) first quadrant.                                                                     | (b) second quadran                                         | t. (c) the origin point                            | t. (d) fourth quadrant.     |  |  |  |  |
| 12.          | If $P(A) = 0.6$ , the                                                                   | n P (Å) = ······                                           |                                                    |                             |  |  |  |  |
| 12.          | (a) 0.4                                                                                 | (b) 0.6                                                    | (c) 0.5                                            | (d) 1                       |  |  |  |  |
| 12           | The solution set of                                                                     | the two equations: X                                       | z = 2 and $x y = 6$ is                             |                             |  |  |  |  |
| 13.          | (2 <b>,</b> 3)                                                                          | (2) <b>{2,3}</b>                                           | (3,2)                                              | <b>(3)</b>                  |  |  |  |  |
| 14.          | The domain of the additive inverse of the fraction n : n ( $x$ ) = $\frac{x-2}{x-5}$ is |                                                            |                                                    |                             |  |  |  |  |
| 1 <b>T</b> . | $\mathbb{R}-\{2\}$                                                                      | $\mathbb{R}-\{5\}$                                         | $\mathbb{R}-\{2,5\}$                               | {2,5}                       |  |  |  |  |
| 1.7          | The multiplicative inverse of the algebraic fraction $\frac{3}{x^2+1}$ is               |                                                            |                                                    |                             |  |  |  |  |
| 15.          | $\frac{-3}{x^2+1}$                                                                      | $\frac{x^2+1}{-3}$                                         | $(e) \frac{x^2+1}{3}$                              | $\frac{x^2-1}{3}$           |  |  |  |  |
| 1.6          | The domain of the fraction n : n ( $x$ ) = $\frac{x+2}{x-1}$ is                         |                                                            |                                                    |                             |  |  |  |  |
| 16.          | (a) IR - {-2}                                                                           | (%) R-{1}                                                  | $\mathbb{R}-\{1,-2\}$                              | (c) R-{2}                   |  |  |  |  |
| 1.77         | If y = 2 and $x^2 - y^2 = 5$ , then $x = \dots$                                         |                                                            |                                                    |                             |  |  |  |  |
| 17.          | (E) <b>-3</b>                                                                           | (b) <b>3</b>                                               | (c) ± <b>3</b>                                     | (6) 9                       |  |  |  |  |
| 1.0          | The two straight lin                                                                    | The two straight lines: $x + 2y = 1$ and $2x + 4y = 6$ are |                                                    |                             |  |  |  |  |
| 18.          | (a) parallel                                                                            | (a) intersecting                                           | perpendicular                                      | (C) coincide                |  |  |  |  |
| 10           | The set of zeroes o                                                                     | f the function $f$ : whe                                   | $\operatorname{cre} f(X) = -3 X \text{ is } \dots$ |                             |  |  |  |  |
| 19.          | (a) {0}                                                                                 | (b) {3}                                                    | (c) {-3}                                           |                             |  |  |  |  |
|              | I                                                                                       | -2                                                         | )-                                                 |                             |  |  |  |  |

|     | Pı                              | reparatory Three – Sec                 | ond Term Revision -              | 2022                     |
|-----|---------------------------------|----------------------------------------|----------------------------------|--------------------------|
| • 0 | If A ⊂ S of a                   | random experiment, P                   | (A) = P(A), then $P(A)$          | <b>A</b> ) =             |
| 20. | (a) 1                           | (b) $\frac{1}{2}$                      | (c) $\frac{1}{4}$                | (d) $\frac{1}{8}$        |
|     | If X is a negat                 | ive number, then the gre               | atest number of the fo           | llowing is               |
| 21. | (a) 5 X                         | (b) $\frac{5}{x}$                      | (c) 5 + X                        | (d) 5 – X                |
|     | The domain of                   | f the function $f: f(X) =$             | $\frac{x-3}{4}$ is               |                          |
| 22. | (a) IR                          |                                        | (c) $\mathbb{R} - \{-4, 3\}$     | (d) Ø                    |
| 23. | If the sum of a after 10 years: | ges of a father and his su             | n now is 47 years, the           | en the sum of their ages |
|     | (a) 27                          | (b) 37                                 | (c) 57                           | (d) 67                   |
| 24. | If A, B are two, then $P(A) =$  | vo mutually exclusive e                | vents $P(B) = 0.5$ and           | $dP(A \cup B) = 0.7$     |
|     | (a) 0.02                        | (b) 0.2                                | (c) 0.5                          | (d) 0.13                 |
| 25  | $(x+1)^2 = \cdots$              |                                        |                                  | _                        |
| 25. | (a) $\chi^2 + 1$                | (b) $X^2 - 1$                          | (c) $X^2 - X + 1$                | (d) $X^2 + 2X + 1$       |
| 26  | The additive in                 | nverse of the fraction $\frac{1}{x^2}$ | $\frac{3}{2+1}$ is               |                          |
| 26. | $(a) \frac{-3}{x^2 + 1}$        | (b) $\frac{x^2+1}{3}$                  | $(c) \frac{x^2 + 1}{-3}$         | $(d) \frac{3}{x^2-1}$    |
|     |                                 | ive real number, then the              | ne greatest number of            | the following numbers    |
| 27. | is                              | (b) 3 X                                | (c) $3 - x$                      | (d) $\frac{3}{x}$        |
| 20  | If $x = 2$ and y                | $= 3$ , then $(y - 2 X)^{10} =$        | :                                |                          |
| 28. | (a) 10                          | (b) – 1                                | (c) - 10                         | (d) 1                    |
| 20  | The point of in                 | ntersection of the two str             | raight lines $x = 2$ and $x = 2$ | x + y = 6 is             |
| 29. | (a) (2,6)                       | (b) $(2,4)$                            | (c) (4,2)                        | (d) (6,2)                |
|     |                                 |                                        |                                  |                          |

|     | Prep                                                                                | aratory Three – Se              | cond Term Revision                       | ı <b>- 2022</b>               |  |  |
|-----|-------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|-------------------------------|--|--|
| 20  | Twice the number                                                                    | $x \times x$ subtracted by 3 is |                                          |                               |  |  |
| 30. | (a) <b>X-3</b>                                                                      | $(2.2 \times +3)$               | $2 \times -3$                            | 3-2 X                         |  |  |
|     | The domain of the                                                                   | e function $f$ where $f$        | $(x) = \frac{x+2}{5x} \text{ is } \dots$ |                               |  |  |
| 31. | (a) <b>R</b> – <b>{5</b> }                                                          |                                 | R                                        | $\mathbb{R}-\{zero\}$         |  |  |
| 22  | If $P(A) = 4P(A)$                                                                   | ) , then P (A) =                |                                          |                               |  |  |
| 32. | (a) <b>0.8</b>                                                                      | (5) 0.6                         | 0.4                                      | 0.2                           |  |  |
| 22  | If X is a negative                                                                  | number, then the gre            | eatest number of the fe                  | ollowing is                   |  |  |
| 33. | (a) <b>5 – X</b>                                                                    | ( 5 + <b>x</b>                  | $\frac{5}{x}$                            | 12 <b>5 X</b>                 |  |  |
| 2.4 | If $2^7 \times 3^7 = 6^k$ , the                                                     | hen k =                         |                                          |                               |  |  |
| 34. | (a) 14                                                                              | (b) <b>7</b>                    | (c) <b>6</b>                             | (d) <b>5</b>                  |  |  |
| 2.5 | If $x^2 - y^2 = 2(x + y)$ where $(x + y) \neq \text{zero}$ , then $(x - y) = \dots$ |                                 |                                          |                               |  |  |
| 35. | (a) 2                                                                               | (b) <b>4</b>                    | (c) 6                                    | (d) 8                         |  |  |
|     | In the experimen                                                                    | t of rolling a regular          | die once, the probal                     | bility of appearance of an    |  |  |
| 36. | even number on                                                                      | <del></del>                     |                                          |                               |  |  |
|     | (a) $\frac{1}{6}$                                                                   | (b) $\frac{1}{3}$               | (c) $\frac{1}{2}$                        | (d) $\frac{5}{6}$             |  |  |
|     | The set of zeroes                                                                   | of the function $f:f$           | $(X) = X^2 + 1$ is                       | •••••                         |  |  |
| 37. | (a) {1}                                                                             | (b) $\{-1\}$                    | (c) $\{-1,1\}$                           | (d) Ø                         |  |  |
| 20  | The point of inter                                                                  | rsection of the two str         | raight lines $X + 2 = 0$                 | and $y - 3 = 0$ is            |  |  |
| 38. | (a) $(-2, -3)$                                                                      | (b) $(-2,3)$                    | (c) $(2, -3)$                            | (d) (2,3)                     |  |  |
| 20  | If $2^5 \times 3^5 = m \times 6$                                                    | 6 <sup>4</sup> , then m =       | •••                                      |                               |  |  |
| 39. | (a) 1                                                                               | (b) 2                           | (c) 3                                    | (d) 6                         |  |  |
| 40  | The domain of th                                                                    | action $\frac{x+2}{x+5}$ is     |                                          |                               |  |  |
| 40. | (a) IR                                                                              |                                 |                                          | (d) $\mathbb{R} - \{-2, -5\}$ |  |  |
|     |                                                                                     |                                 |                                          |                               |  |  |
|     |                                                                                     |                                 | -4-                                      |                               |  |  |

#### Preparatory Three – Second Term Revision - 2022

# Essay problems:

By using the general formula, find in  $\mathbb{R}$  the solution set of the equation:

1.  $2x^2 - 5x + 1 = 0$  "approximate the result to the nearest one decimal".

Find n (X) in the simplest form showing the domain where :

2.  $n(x) = \frac{x-3}{x^2-7x+12} - \frac{4}{x^2-4x}$ 

Find in  $\mathbb{R} \times \mathbb{R}$  the solution set of the two equations :

3. x-y=0 and  $x^2+xy+y^2=27$ 

Find n (x) in the simplest form showing the domain where :

4.  $n(x) = \frac{x^2 + 4x + 3}{x^3 - 27} \div \frac{x + 3}{x^2 + 3x + 9}$  then find n(2), n(-3) if possible.

A rectangle with a length more than its width by 4 cm. If the perimeter of the rectangle is 28 cm., find the area of the rectangle.

If n (x) =  $\frac{x^2 - 2x}{x^2 - 3x + 2}$ ,

6. (1) Find  $n^{-1}(x)$  in simplest form showing the domain of  $n^{-1}$ 

(2) If  $n^{-1}(X) = 3$ , then find the value of X

7. If  $n_1(x) = \frac{x^2}{x^3 - x^2}$  and  $n_2(x) = \frac{x^3 + x^2 + x}{x^4 - x}$ , then prove that :  $n_1 = n_2$ 

#### In the opposite figure:

If A and B are two events in a sample space S

of a random experiment, then find:

(1)  $P(A \cap B)$ 

(a) P(A-B)

(3) The probability of non-occurrence of the event A



Find in  $\mathbb{R}$  the solution set of the equation :  $3 x^2 - 5 x + 1 = 0$ 

by using the formula "approximate the result to the nearest two decimal places".

10. Find in  $\mathbb{R} \times \mathbb{R}$  the solution set of the two equations: x - y = 1,  $x^2 + y^2 = 25$ 

|     | Preparatory Three – Second Term Revision - 2022                                                               |
|-----|---------------------------------------------------------------------------------------------------------------|
|     | Simplify:                                                                                                     |
| 11. | $n(x) = \frac{x^3 - 8}{x^2 + x - 6} \times \frac{x + 3}{x^2 + 2x + 4}$ , showing the domain of n.             |
|     | If A and B are two events of a random experiment and                                                          |
| 12. | $P(A) = 0.3$ , $P(B) = 0.6$ , $P(A \cap B) = 0.2$                                                             |
|     | Find: (1) $P(A \cup B)$ (2) $P(A-B)$                                                                          |
| 13. | Solve the following two equations in $\mathbb{R} \times \mathbb{R} : 2 \times \mathbb{R} = 3$ , $x + 2 y = 4$ |
|     | Simplify:                                                                                                     |
| 14. | $n(X) = \frac{X^2 + 3X}{X^2 - 9} \div \frac{2X}{X + 3}$ , showing the domain of n.                            |
|     | Simplify:                                                                                                     |
| 15. | $n(x) = \frac{x^2 + 2x}{x^2 - 4} + \frac{x + 3}{x^2 - 5x + 6}$ , showing the domain of n.                     |
|     | Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two following equations algebraically:         |
| 16. | x + 3y = 7, $5x - y = 3$                                                                                      |
|     | Find $n(x)$ in its simplest form, showing the domain of $n$ :                                                 |
| 17. | $n(x) = \frac{x^2 + x}{x^2 - 1} - \frac{x + 5}{x^2 + 4x - 5}$                                                 |
|     |                                                                                                               |
| 18. | Find in $\mathbb{R}$ the solution set of the following equation by using the general rule:                    |
|     | $x^2 - 4x + 1 = 0$ rounding the results to two decimal places.                                                |
| 19. | If $n_1(x) = \frac{2x}{2x+6}$ , $n_2(x) = \frac{x^2+3x}{x^2+6x+9}$ , then prove that : $n_1 = n_2$            |
|     | If A and B are two events from a sample space of a random experiment, and                                     |
| 20. |                                                                                                               |
|     | $(1) P(A \cup B) \qquad (2) P(A - B)$                                                                         |
|     | Find n $(X)$ in its simplest form, showing the domain of n:                                                   |
| 21. | $n(x) = \frac{x^3 - 8}{x^2 - 3x + 2} \times \frac{x + 1}{x^2 + 2x + 4}$                                       |

#### **Preparatory Three – Second Term Revision - 2022** Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two following equations : 22. X - y = 1 , $X^2 - y^2 = 25$ If n ( $\chi$ ) = $\frac{\chi^2 - 3 \chi}{(\chi^2 + 2)}$ 23. • then find: $n^{-1}(x)$ in the simplest form • showing the domain of $n^{-1}$ If A and B are two events of the sample space (S) of a random experiment such that: 24. P(A) = 0.7, $P(A \cap B) = 0.3$ Find: P(A - B)Find n(x) in the simplest form showing the domain of n, where: $n(X) = \frac{X^2 + 2X + 4}{Y^3 - 8} - \frac{9 - X^2}{Y^2 + X - 6}$ 25. Find the common domain of $n_1$ , $n_2$ to be equal such that : $n_1(X) = \frac{X^2 + 3X + 2}{Y^2 - 4}$ , $n_2(X) = \frac{X^2 - 1}{Y^2 - 3X + 2}$ 26. Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations : x + y = 7, $x^2 + y^2 = 25$ 27. Find n(X) in the simplest form showing the domain of n, where: $n(x) = \frac{x}{x-2} \div \frac{x+3}{x^2-x-2}$ 28. Find in $\mathbb{R}$ the solution set of the equation : $3 x^2 - 5 x - 4 = 0$ 29. , by using the general rule, rounding the result to two decimal places. Find in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations graphically: 30. X + y = 4 , 2X - y = 2If set of zeroes of the function $f: f(x) = a x^2 + x + b$ is $\{0, 1\}$ 31. find the value of each two constants a and b If n (x) = $\frac{x^3 - 8}{x^2 - x - 2}$ ÷ $\frac{x^2 + 2x + 4}{2x^2 - x - 3}$ 32. Find n(x) in its simplest form showing the domain of nFind in $\mathbb{R} \times \mathbb{R}$ the solution set of the two equations : 33. 2 X = 1 - y, X + 2 y = 5 in $\mathbb{R} \times \mathbb{R}$ Find the solution set of the two equations : y - x = 3 , $x^2 + y^2 - xy = 13$ in $\mathbb{R}^2$ 34. -7-

#### Preparatory Three – Second Term Revision - 2022

If A, B are two events in a random experiment, P(A) = 0.7, P(B) = 0.6

35. and P (A  $\cap$  B) = 0.4

Find: (1)  $P(A \cup B)$ 

- (2) P (A B)
- 36. If  $n(x) = \frac{x^2 + x}{x^2 1} \frac{x 5}{x^2 6x + 5}$  Find n(x) in its simplest form, showing the domain of n
- By using the formula, find in  $\mathbb{R}$  the solution set of the equation:  $x^2 2x 6 = 0$  (Approximate to the nearest one decimal)
- 38. If  $n_1(x) = \frac{x^2 + 2x}{x^2 + 4x + 4}$ ,  $n_2(x) = \frac{2x}{2x + 4}$ , prove that:  $n_1 = n_2$
- 39. If  $n(x) = \frac{x-2}{x+1}$

Find: (1) The domain of n<sup>-1</sup>

 $(2) n^{-1} (3)$ 

40. If  $n_1(x) = \frac{x^2 - 3x + 9}{x^3 + 27}$ ,  $n_2(x) = \frac{2}{2x + 6}$  Prove that:  $n_1 = n_2$ 





| 3 <sup>rd</sup> Prep. 2 <sup>n</sup>                                                           | term 2019                                                              |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| (Da=3,b=-5,c=1                                                                                 | (5) $n(x) = \frac{x(x+2)}{(x-2)(x+2)} + \frac{(x+3)}{(x-2)(x-3)}$      |
| <u>5.5. = {4.43, 0.23}</u>                                                                     | (x-2)(x/42) $(x-2)(x-3)$                                               |
|                                                                                                | D=R-{2,-2,3}                                                           |
| 10 x-y=1 x2+y2=25+0                                                                            |                                                                        |
| 2= +++ + From @ in@                                                                            |                                                                        |
| (y+1)2+ y2=25                                                                                  | $\frac{-x^{2}-3x+x+3}{(x-2)(x-3)} = \frac{x^{2}-2x+3}{(x-2)(x-3)}$     |
| +24+1+42-25=c                                                                                  | (2-2)(2-3)                                                             |
| 242+24-24=0 (÷2)                                                                               | (b) x+3 / =7 → 10 5x-y =3 → 2                                          |
| <del>- 42+4-12=0</del>                                                                         | 15x-3/=9-3 by adding                                                   |
| 61 -                                                                                           | 16x = 16 => \( \in \tag{1} \)                                          |
| - <del>                                     </del>                                             | 1+3/=7, 3/=6, [=2]                                                     |
| in ()                                                                                          | ∴ 5.5. = { (1,2)}                                                      |
| 2=4 of x=-3                                                                                    | (17) n(x) = x (x+1) (x+5)                                              |
| S.S. = {(4, 3) , (-3, -4)}                                                                     |                                                                        |
| $ \frac{\text{(1)} n(x) = \frac{(x-2)(x^2+2x+4)}{(x-2)(x+3)} \times \frac{(x+3)}{(x^2+2x+4)} $ | D=R-{1,-1,-5} D= 2-1 - 1                                               |
| (x-2)(x+3) (x2+2x+4)                                                                           | 2-1                                                                    |
| D=R-{2,-3}, n(x) = 1                                                                           | (Ba=1, b=-4, c=1                                                       |
| <del></del>                                                                                    | S.s. = {3.73 , 0.27}                                                   |
| 12 0 0.3+0.6-0.2-0.7                                                                           |                                                                        |
| <u> </u>                                                                                       |                                                                        |
| 13 2x-y=3×2 x+2y=4→@                                                                           | $n_2(x) = \frac{x(x+3)}{(x+3)(x+3)} = \frac{x}{x+3}, 0_2 = R - \{-3\}$ |
| by adding 4x=2y=6-0                                                                            | (2+3)(x+3) x+3 '                                                       |
| 5x=10                                                                                          | ∴ NIENZ                                                                |
| 2=2 in 3                                                                                       |                                                                        |
| - 5+5A=4 5A=5 A=1                                                                              | (20 (1) 0.7+0.6-0.4:0.9                                                |
| —— → S.S.= { (2,1)}                                                                            | 2 0.7-0.4 = 0.3                                                        |
| $\omega_{n(x)} \propto (x+3) = 2x$                                                             | (2) = (2) (2/2) (2/2) (2/2) (2/2)                                      |
| (2-3)(x+3): $\frac{2x}{(x-3)(x+3)}$ : $\frac{2x}{x+3}$                                         | $(x-2)(x-1) \times (x^2+2x+4)$ $(x-2)(x-1) \times (x^2+2x+4)$          |
| D=R-{3,-3,0}                                                                                   | D=R-[1,2], n(x)= 2+1                                                   |
| $n(x) = \frac{x}{x-3} \times \frac{x+3}{2x} = \frac{(x+3)}{2(x-3)}$                            | ~-1                                                                    |
| <u> احداد/ محمود أحمد محب</u>                                                                  |                                                                        |
|                                                                                                |                                                                        |







#### Choose the correct answer:

| (1) | If the domain of | $n(x) = \frac{x-1}{x-a}$ | is R - {2}, | then $a =$ |  |
|-----|------------------|--------------------------|-------------|------------|--|
|-----|------------------|--------------------------|-------------|------------|--|

- **a** -2
- **b** -1
- **G** 1
- **d** 2

(2) If 
$$x-y=1$$
 and  $(x-y)^2+y=1$ , then  $x = \dots$ 

- **a** -2
- **6** -1
- **G** 1
- **d** 2

(3) If A is an event in a sample space of a random experiment and 
$$P(A) = 4 P(A^*)$$
, then  $P(A) = \dots$ 

- **a** 4
- **b** 1

(4) If the two equations: 
$$3x-2y=5$$
 and  $3x-2y=k$  have infinite number of solutions, then  $k = \dots$ 

- a 3
- **6** 2
- **G** -5
- **d** 5

(5) If 
$$x=1$$
 is one of the set of zeros of  $f(x)=x^2-3x+c$ , then  $c=...$ 

- **a** 0
- **b** 1
- **G** 2
- **(1)** 3

- $\frac{x+1}{x^2+1}$
- $\frac{x+1}{x^2-1}$
- $\frac{x}{x^2 + x}$

(7) If 
$$f(x)=x-3$$
, then  $Z(f)=....$ 

- a R
- **b** R {3}
- **G** {3}
- **(1)** 3

(8) The two straight lines: 
$$x = 4$$
 and  $y = 3$  intersects at point .......

- **a** (4,3)
- **(**0,0)
- **G** (3,4)
- (-3,-4)

(9) If X and Y are two mutually exclusive events, then 
$$P(X \cap Y) = ...$$

- **a** Ø
- **(b)** 0
- **G** {}
- **d** 1



(a) parallel

- coincident
- intersecting at one point
- disjoint

(11) If  $f(x) = \frac{7+x}{7-x}$ , where  $x \in R - \{7,-7\}$ , then  $f(-2) = \dots$ 

- (a)  $\frac{-1}{f(-2)}$  (b)  $\frac{-1}{f(2)}$  (c)  $\frac{1}{f(2)}$

(12) If the domain of the function  $n(x) = \frac{x-2}{x^2+k}$  is R, then k ..... zero.

(13) The intersection point of the two lines: x+2=0 and y=x is .....

- **a** (2,2)
- (2,0)
- (-2,-2)

(14) If  $n(x) = \frac{x+1}{x-2}$ , then the domain of its multiplicative inverse is ...

- **a** R {2}

(15) If the two equations: x+2y=1 and x+ky=2 have a one solution in R  $\times$  R, then  $k \neq \dots$ 

- **a** 2
- -2

If the curve of the quadratic function is passing through the points (2,0) and (-3,0), then the S.S. of f(x)=0 in R is ......

- $\{-2,3\}$
- **(b)** {3,2}
- $\bigcirc$  {2,-3}

(17) The simplest form of  $n(x) = \frac{3-x}{x-3}$  where  $x \notin \{3\}$  is ......

(18) If A is an event in a sample space of a random experiment, then  $P(A) = \dots$ 

- $\bigcirc$  -1
- **G** 1-P(A) **d** P(A)-1



- **a** Ø
- **(**) {2}
- **G** {-2}
- **d** {2, -2}

(20) If 
$$a^2-b^2=6$$
 and  $a-b=\sqrt{3}$ , then  $(a+b)^2=.....$ 

- (a)  $2\sqrt{3}$
- **b**  $3\sqrt{3}$
- **⊙** √3
- **d** 12

(21) If A and B are two mutually exclusive events, then 
$$P(A \cap B) = ...$$

- **a** 0
- **b** Ø
- $\mathbf{G} \quad \frac{1}{6}$
- **d**

(22) If 
$$f(x) = -3x$$
, then  $Z(f) = \dots$ 

- a Ø
- **(b)** {0}
- **G** {3}
- **6R** ${3}$

(23) The simplest form of 
$$n(x) = \frac{x-7}{7-x}$$
 where  $x \neq 7$  is ......

- **a** 1
- **6** -1
- **G** 7
- **d** -7

(24) If the domain of 
$$n(x) = \frac{x+1}{x^2 - kx + 4}$$
 is R - {2}, then  $k = \dots$ 

- **a** 2
- **b** -2
- **G** 4
- **d** -4

(25) The S.S. of the two equations: 
$$x-3=0$$
 and  $y=4$  in R×R is .....

- **a** {3,4}
- **(3,4)**
- **G** {(4,3)}
- **(3,4)**

(26) If A and B are two events in a sample space of a random experiment and 
$$A \subset B$$
, then  $P(A \cup B) = \dots$ 

- **a** P(B)
- **(b)** P(A)
- $\bigcirc$  P(A $\cap$ B)
- 0

(27) If 
$$3^y \times 5^y = 225$$
, then  $y = \dots$ 

- **a** 2
- **(b)** 15
- **G** 0
- **d** 20

(28) If 
$$n(x) = \frac{x+2}{x-3}$$
, then the domain of its additive inverse is .......

- **a** R-{3}
- **b** R-{-2}
- $\bullet$  R-{-2,3}
- **(1)** R

(29) If 
$$f(x)=x^2+9$$
, then  $Z(f)=.....$  in R

- a R
- **b** Ø
- **G** {3}
- **(1)** {3, -3}



- (0,b)
- (b,0)
- $\mathbf{G}$  (c,0)

(31) If the two equations x-3y=5 and 2x+ky=10 have infinite number of solutions, then k= .......

- **a** 10
- **6**
- **G** -6
- **d** 3

(32) If  $f(x) = x^3 - m$  and  $Z(f) = \{3\}$ , then  $m = \dots$ 

- **a** 9
- **b** 27
- **G** 3
- **3√3**

(33) If A B = 3 and  $A B^2 = 9$ , then  $A^2 B = \dots$ 

- a 3
- **b** 9
- $\bigcirc \frac{1}{3}$

(34) If the probability that a student is succeeded in an exam is  $\frac{4}{5}$ , then the probability of his failure is .......

- **a** 10%
- **(b)** 20%
- **G** 0
- **d** 1

(35) If the domain of  $f(x) = \frac{1}{x} - \frac{5}{x+k}$  is R - {0,3}, then  $k = \dots$ 

- **a** 3
- **6**
- **G** 5
- **d** -3

(36) If P(A) = 0.6, then  $P(A) = \dots$ 

- **a** 0.4
- **(b)** 0.6
- **G** 0.5
- **d** 1

(37) If x is a negative number, then the greatest one of the following is .......

- **a** 7 x
- **b** 7 + x
- **G** 7 x

(38) If the two equations x+2y=1 and 2x+ky=2 have one solution, then  $k \neq \dots$ 

- **a** 1
- **b** 2
- **G** 4
- **d** -4

(39) If the domain of  $n_1(x) = \frac{5}{x-8}$  equals the domain of  $n_2(x) = \frac{x-3}{x+k}$ , then  $k = \dots$ 

- **a** 8
- **6** -8
- **G** 24
- **d** 3



- (a) 2y + 10x
- 0 + 20x
- 2x + 10y

(41) A bag contains 20 cards numbered from 1 to 20, one card is chosen randomly, the probability of that the chosen card caries a number divisible by 2 and 3 together is .......

- $\frac{6}{20}$
- $\frac{3}{20}$
- 13

(42) If  $f(x) = \frac{x^2 - x - 2}{x^2 - 4}$ , then  $Z(f) = \dots$  in R.

- **a** {2}
- **(b)** {-1} **(c)** {-1,2}
- **d** {-2,2}

(43) If  $x^2 + y^2 = 2xy$ , then  $x - y = \dots$ 

- (a)  $\sqrt{2x}y$
- $\sqrt{2}$
- ±1

(44) If x = -3 is a root of the equation:  $x^2 + mx = 9$ , then  $m = \dots$ 

- **a** 3
- **b** -3
- **a**

(45) The domain of the additive inverse of  $n(x) = \frac{x}{x-3}$  is ......

- $\mathbf{a}$   $\mathbf{R}$
- $R \{0\}$
- **G** R {3}
- $\mathbf{0}$  R  $\{0,3\}$

(46) Number of solutions of the two equations:  $x - \frac{1}{2}y = 4$  and 2x-y=2 in R  $\times$  R is ...... solution(s).

- a one
- **b** two
- **C** infinite

If A is an event in a sample space of a random experiment and (47) P(A) = 4 P(A), then P(A) = .....

- **a** 0.8
- 0.6
- **G** 0.4
- 0.2

(48) If the set of zeros of f(x)=ax+6 is  $\{-2\}$ , then  $a=\dots$ 

- **a** 3
- 2 **(**

(49) If y=1-x and  $(x+y)^2+y=5$ , then y=...

- $\mathbf{C}$  3

(50) The two straight lines 3x+5y=0 and 5x-3y=0 intersects at ...

- a origin point b 1st quad. G 2nd quad.

- 4<sup>th</sup> quad.

The additive inverse of the fraction  $\frac{x+7}{x-5}$  where  $x \neq 5$  is ......

- $\frac{7-x}{x+5}$
- **b**  $\frac{x+7}{5-x}$  **c**  $\frac{-(x+7)}{5-x}$  **d**  $\frac{x-7}{5-x}$

(52) If A is an event in a sample space of a random experiment and 2 P(A) = 3 P(A), then P(A) = .....

- **a** 0.8
- **(b)** 0.6
- **G** 0.4
- 0.2 **d**

In the equation:  $ax^2 + bx + c = 0$ , if  $b^2 - 4ac < 0$ , then the number of real roots of this equation is .......

- **6** 2
- **Infinite**

(54) If  $n(x) = \frac{x-1}{x+2}$ , then  $n^{-1}(4) = \dots$ 

- undefined **d**

(55) If  $x^2 - y^2 = 6$  and  $x - y = \sqrt{3}$ , then  $(x + y)^2 = \dots$ 

- (a)  $2\sqrt{3}$
- **(b)**  $3\sqrt{3}$
- $\bigcirc$   $\sqrt{3}$
- **a** 12

If the two equations: x + 4y = m and 3x + ky = 21 have infinite number of solutions in  $R \times R$ , then  $k + m = \dots$ 

- **a** 19
- **(b)** 20
- **G** 21
- 22

(57) The common domain of the fractions:  $\frac{2}{x^2-1}$  and  $\frac{5x}{x^2-x}$  is ......

- (a)  $R-\{1\}$
- $\bullet$  R-{0,1}
- $R \{\pm 1\}$
- $R = \{0, \pm 1\}$

If a coin flipped once, the probability of landing a tail = .......

- **a** 100%
- 50%
- **C** 25%

If the S.S. of the equation  $4x^2 + 4x + c = 0$  in R is  $\left\{\frac{-1}{2}\right\}$ , then the value of c is .......

- 2
- **(b)** 1

(60) If 
$$n(x) = \frac{x^2 - x}{x^2 - 1}$$
 and  $n^{-1}(k) = 3$ , then  $k = \dots$ 

- $\frac{-1}{2}$
- $\frac{1}{2}$
- $\bigcirc \frac{3}{4}$
- $1\frac{1}{3}$
- (61) If the domain of  $f(x) = \frac{x+b}{x+a}$  is R {-2} and f(0) = 3, then  $a + b = \dots$ 
  - **a** 2
- **6**
- **G** 8
- **d** 10
- (62) The solution set of the two equations: x=2 and xy=6 is ......
  - **a** {(2,3)}
- **(b)** {2,3}
- **G** {(3,2)}
- **(3)**

### Essay problems:

- (1) Without using the calculator, find the S.S. of the equation  $x^2 8x + 3 = 0$  in R. where  $\sqrt{13} \cong 3.6$
- (2) Without using the calculator, find the S.S. of the equation  $x + \frac{1}{x} = 5$  in R. where  $\sqrt{17} \cong 4.12$
- (3) Without using the calculator, find the S.S. of the equation x(x-3)=-1 in R. to the nearest one decimal place.
- (4) Without using the calculator, find the S.S. of the equation  $\frac{5}{x^2} \frac{2}{x} = 1$  in R. where  $\sqrt{6} \approx 2.45$
- (5) Without using the calculator, find the S.S. of the equation  $\frac{x^2}{9} + \frac{4}{3}x = -2 \text{ in R. to the nearest one decimal place.}$
- Find each of  $n_1(x) = \frac{2x}{2x+4}$  and  $n_2(x) = \frac{x^2+2x}{x^2+4x+4}$  in the simplest form, showing the domain of each one, state that if  $n_1 = n_2$  or not? Give reason.

(7) If 
$$n_1(x) = \frac{x^2 + 5x}{x^2 + 10x + 25}$$
 and  $n_2(x) = \frac{2x}{2x + 10}$ , prove that  $n_1 = n_2$ 

- (8) If  $n_1(x) = \frac{x^2 4}{x^2 + x 6}$  and  $n_2(x) = \frac{x^2 x 6}{x^2 9}$ , prove that  $n_1(x) = n_2(x)$  in the common domain, and find this domain.
- (9) If  $n_1(x) = \frac{x-1}{x}$  and  $n_2(x) = \frac{x^2-1}{x^2+x}$ , show that if  $n_1 = n_2$  or not? Give reason.
- (10) Find algebraically the S.S. in R  $\times$  R of the two equations: x-y=0 and  $x=\frac{4}{y}$
- (11) Find algebraically the S.S. in R  $\times$  R of the two equations: x = 2y + 3 and  $y^2 x = 0$
- (12) Find algebraically the S.S. in R  $\times$  R of the two equations: x-y=0 and xy=4
- (13) Find algebraically in the S.S. R  $\times$  R of the two equations: x+y=3 and  $x^2+xy=6$
- (14) Find algebraically in the S.S. R  $\times$  R of the two equations: x = y + 4 and 3x + 4y = 5
- (15) Find algebraically in the S.S. R  $\times$  R of the two equations: 3x-y=5 and x+2y=4
- (16) Find graphically the S.S. in R  $\times$  R of the two equations: y=2x-5 and x=-3y-1.
- (17) Find graphically the S.S. of the equation  $x^2-2x=3$  in R on the interval [-2,4].
- (18) A rectangle which its length is more than its width by 5 cm. And its perimeter is 18 cm. Find the area of rectangle.

| (19) | If the perimeter of rectangle is 14 cm, and its area is 12 cm <sup>2</sup> . |
|------|------------------------------------------------------------------------------|
|      | Find its two dimensions.                                                     |

- (20) A point lies on the straight line 5x-2y=1 where its y-coordinate is twice the square of its x-coordinate. Find the coordinates of this point.
- (21) The area of a rectangle is 77 cm<sup>2</sup>. If its length decreases by 2 cm and the width increases by 2 cm it will be a square. Find the area of the square.
- (22) If the length of a diagonal of a rectangle is 5 cm and its perimeter is 14 cm. Find its area.
- Simplify showing the domain:  $n(x) = \frac{x^2 3x + 2}{x^2 + x 6} \times \frac{x^2 + 2x}{x^2 + x 2}$ , and then find n(1) if possible.
- (24) Simplify showing the domain:  $n(x) = \frac{x^2 9}{x^2 x 6} \frac{x^2 4x}{x^2 2x 8}$
- (25) Simplify showing the domain:  $n(x) = \frac{x^2 + x + 1}{x^3 1} \div \frac{x^2 x}{x^2 2x + 1}$
- (26) Simplify showing the domain:  $n(x) = \frac{3x-6}{x^2-4} \frac{9}{2-x-x^2}$
- (27) Simplify showing the domain:  $n(x) = \frac{x^2 + x}{x^2 1} \frac{5 x}{x^2 6x + 5}$
- [28] If A and B are two events of a sample space of a random experiment and  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{2}{5}$  and  $P(A \cap B) = \frac{1}{10}$ . Find:

  (a)  $P(A \cup B)$  (b) P(A B)
- (29) If A and B are two events of a sample space of a random experiment and P(A) = 0.8, P(B) = 0.7 and P(A∩B) = 0.6. Find:
  (a) The probability of non occurrence of the event A.
  (b) The probability of occurrence one of the two events at least.

(30) If A and B are two events of a sample space of a random experiment and  $P(A) = \frac{1}{4}$  and  $P(B) = \frac{2}{3}$ . Find  $P(A \cup B)$  if:

(a) 
$$P(A \cap B) = \frac{1}{6}$$

(31) If A and B are two events of a sample space of a random experiment and P(A) = 0.3, P(B) = m and  $P(A \cup B) = 0.7$ . Find the value of m if:

(a) 
$$P(A \cap B) = 0.2$$
.

(b) A and B are two mutually exclusive events.



# **ACCUMULATIVE SKILS**

### Choose the correct answer:

1 IF 3 x = 45, then  $\frac{1}{5}x = \dots$ 

- **a** 3
- **(b)** 5
- **G** 15
- **d** 45

2 If  $5^x = 1$ , then  $5^{x-1} = \dots$ 

- **a** -1
- $\frac{1}{5}$
- **G** 1
- **(1)** 5

3 If  $\sqrt{25-16} = 5-k$ , then  $k = \dots$ 

- **a** 4
- **b** -4
- **G** 2
- **d** 3

4 If ab = 3 and  $ab^2 = 12$ , then b = .....

- **a** -4
- **(**) -2
- **G** 2
- **d** 4

5 Half of the number 2° is ......

- **a** 2<sup>3</sup>
- **b** 2<sup>5</sup>
- **C** 2<sup>6</sup>
- 211

6 If  $ab^{20} = 40$ ,  $ab^{19} = 20$ ,  $a \ne 0$ ,  $b \ne 0$ , then  $b = \dots$ 

- **a** 1
- **(**) 2
- **G** 3
- **(1)** 4

7 If  $2^{x-3} = 1$ , then  $x = \dots$ 

- **a** 2
- **(**) -2
- **G** 3
- **(1)** -3

8 The solution set of the equation  $x^2 + 9 = 0$  in R is .....

- **a** {3}
- **()** {-3}
- **G** {±3}
- **(1) (2)**

9 If  $2^5 \times 3^5 = 6^x$ , then  $x = \dots$ 

- **a** 5
- **6**
- **G** 10
- **①** 25

10  $3 \times 4 - 4 \div 2 = \dots$ 

- **a** 6
- **(b)** 8
- **G** 10
- **d** 12

 $11 \qquad \sqrt{\sqrt{81}} = \dots$ 

- **a** 9
- **(b)** -3
- **G** -9
- **(1)** 3

- **a** 1
- **(**) -1
- **G** 5
- **d** 3

 $\frac{1}{3} + \frac{1}{6} = \dots$ 

- $\frac{2}{9}$
- $\frac{1}{9}$
- $\mathbf{G} \quad \frac{1}{2}$

14 A rectangle of perimeter 30 cm, its width is 5 cm, then its length is ... cm

- **a** 5
- **(b)** 10
- **G** 15
- **d** 20

**15** The probability of the impossible event = .....

- **a** 0
- **(b)** 0.5
- **G** -1
- **d**

16 If x + y = 2,  $x^2 - y^2 = 10$ , then  $y - x = \dots$ 

- **a** 5
- **(b)** -5
- **G** ±5
- **d** 10

17 If a(c+d)-b(c+d)=12 and c+d=4, then a-b=...

- **a** 3
- **b** -3
- **G** 48
- **(1)** 8

**18** The solution set of the equation:  $x^2 = x$  in R is .....

- a Ø
- **(**0)
- **G** {1}
- **(1) (0,1)**

19 If  $x^3 + k = (x-10)(x^2 + 10x + 100)$ , then  $k = \dots$ 

- **a** 1000
- -1000
- **G** 99
- **d** 999

20 If  $5^x = 3$  and  $5^y = 7$ , then  $5^{x-y} = \dots$ 

- **G** 21
- **d** 4

21 If  $\frac{1}{3}x = 6$ , then  $\frac{1}{2}x = \dots$ 

- **a** 6
- **b** 9
- **G** 3
- **d** 18

22 |-4|+|4| = .....

- **a** 0
- **6**-8
- **G** 8
- **d** 16

23 If  $\sqrt{16+9} = 4+k$ , then  $k = \dots$ 

- **a** 1
- **(**) 0
- **O** 0.5
- **d** -1

The probability of the certain event = .....

- **a** 1
- **(b)** 0
- **G** 0.5
- **d** -1

**25**  $R^+ \cap R^- = \dots$ 

- a R
- **b** Z
- o Ø
- **(1)** R-{0}

The arithmetic mean of the values: 2, 3, 4, 7 and 9 is ......

- **a** 4
- **b** 5
- **6**
- **6** 8

27 If  $2^7 \times 3^7 = 6^k$ , then  $k = \dots$ 

- **a** 14
- **(b)** 5
- **G** 7
- **(1)** 0

28 If  $\frac{1}{5}x = \frac{1}{10}$ , then  $2x = \dots$ 

- **a** 0.5
- **(**) 20
- **G** 2
- **d** 1

If x is the additive identity and y is the multiplicative identity, then  $7^x + 2^y = \dots$ 

- **a** 2
- **b** 3
- **G** 7
- **d** 9

The S. S. of the inequality x < 2 in R is ......

- **a** [2,∞[
- **(b)** ]2,∞[
- **⊙**]-∞,2[
- **(1)** [-∞,2[

If 5 times a number is 45, then the ninth of this number  $= \dots$ 

- **a** 1
- **6** 5
- **G** 9
- **6** 81

32 If  $x^2 + kx + 36$  is a perfect square, then  $k = \dots$ 

- **a** ±6
- **(b)** ±8
- G ±18
- ① ±12

33 If  $x^3 = 64$ , then  $\sqrt{x} = \dots$ 

- **a** 2
- (b) ±2
- **G** -2
- **d** 4

34 If  $5^{x-3} = 1$ , then  $x = \dots$ 

- **a** 1
- **(**) 5
- **G** 0
- **d** 3

35 If |x| = 7, then x = .....

- **a** 7
- **(**) -7
- **G** ±7
- **d** 14

Half of the number 46 is ......

- a 2<sup>3</sup>
- **(b) 2**<sup>6</sup>
- **2**<sup>11</sup>

In the experiment of throwing a fair die once, the probability of getting an odd prime number is ......

- **(b)**

If  $3a = \sqrt{4}b$ , then  $\frac{a}{b} = \dots$ 

- **(1)**

The middle proportional between 9 and 16 is ......

- **a** ±9
- **b** ±12
- ±16
- ±25

If  $x^3 y^{-3} = 27$ , then  $\frac{y}{x} = \dots$ **40** 

- a **27**
- **b**
- 3 **a**



| 1) | Find algebraically | the S.S i | in $\mathbb{R}$ : | $\times \mathbb{R}$ | of the | two | equation | s: |
|----|--------------------|-----------|-------------------|---------------------|--------|-----|----------|----|
|    |                    |           |                   |                     |        |     |          |    |

$$x - y = 4$$

$$x + y = 4$$

**2)** Find algebraically the S.S in  $\mathbb{R} \times \mathbb{R}$  of the two equations :

$$x - y = 4$$

$$3x + 2y = 7$$

3) Find algebraically the S.S in  $\mathbb{R} \times \mathbb{R}$  of the two equations :

$$x - 3y = 6$$

$$2x + y = 5$$



|                         | e S.S in $\mathbb{R} 	imes \mathbb{R}$ of the two equations : |
|-------------------------|---------------------------------------------------------------|
| x + 2y = 4 	 ,          | 2x - y = 3                                                    |
| ••••••                  |                                                               |
| •••••                   |                                                               |
| •••••                   |                                                               |
| •••••                   |                                                               |
| •••••                   |                                                               |
| ••••••••                |                                                               |
|                         | e S.S in $\mathbb{R} 	imes \mathbb{R}$ of the two equations : |
| $3x + 4y = 24 \qquad ,$ | x - 2y = -2                                                   |
|                         |                                                               |
|                         |                                                               |
|                         |                                                               |
| ••••••                  |                                                               |
|                         |                                                               |
|                         |                                                               |
| •                       | e S.S in $\mathbb{R}	imes\mathbb{R}$ of the two equations :   |
| 2x - y = 3              | x + 3y = 5                                                    |
|                         |                                                               |
|                         |                                                               |
| •••••                   |                                                               |
|                         |                                                               |
|                         |                                                               |
|                         | 1585213                                                       |

MR.AMR ALFEKY : 010 928 0 99 58

| m | ผา | THIS. | മ | 9 | ക്ഷ |
|---|----|-------|---|---|-----|

#### **SECOND TERM**

$$3x + 4y = 11$$

$$2x + y - 4 = 0$$

8) Find algebraically the S.S in  $\mathbb{R} \times \mathbb{R}$  of the two equations :

$$2 y = 3x - 1$$

$$x - y + 1 = 0$$

9) Find graphically and algebraically the S.S in  $\mathbb{R} \times \mathbb{R}$  of the two equations :

$$y = x + 1$$

$$y = 2x - 1$$



| 10) Find graphically and algebraically the S.S in $\mathbb{R} \times \mathbb{R}$ of two equations:<br>2x + y = 1 , $x + 2y = 5$ | the             |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • •   |
|                                                                                                                                 | • • • • • • •   |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
| 11) Find algebraically the S.S in $\mathbb{R} \times \mathbb{R}$ of the two equations                                           | ons :           |
| 1) $x - y = 0$ , $xy = 9$                                                                                                       |                 |
|                                                                                                                                 |                 |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
| <b>12)</b> Find algebraically the S.S in $\mathbb{R} \times \mathbb{R}$ of the two equations $x - y = 2$ , $x^2 + y^2 = 20$     | ons:            |
|                                                                                                                                 | • • • • • • •   |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | • • • • • • • • |
|                                                                                                                                 | 6872            |

| $\sim$ | aт  | 1 10 | 0    | 200  |    |
|--------|-----|------|------|------|----|
|        | AII | LIS. | יושו | ۲⊢۱۶ | ッズ |

#### **SECOND TERM**

| 13) Find algebraically the S.S i | n $\mathbb{R} 	imes \mathbb{R}$ of the two equations : |
|----------------------------------|--------------------------------------------------------|
|----------------------------------|--------------------------------------------------------|

$$x + y = 7$$
 ,  $x^2 + y^2 = 25$ 

14) Find algebraically the S.S in  $\mathbb{R} \times \mathbb{R}$  of the two equations :

$$x = y + 2$$
 ,  $x^2 + xy = 0$ 



15) Find algebraically the S.S in  $\mathbb{R} \times \mathbb{R}$  of the two equations :

$$x + y = 3$$
 ,  $xy + y^2 = 6$ 



| <i>16)</i> Find algebraic                         | ally the S.S in                         | $\mathbb{R}	imes\mathbb{R}$ of the two ( | equations :                             |
|---------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|
| $y-x=2 \qquad ,$                                  | $x^2 + xy - 4 = 0$                      |                                          |                                         |
|                                                   |                                         |                                          | •••••                                   |
| •••••                                             | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • •  | • • • • • • • • • • • • • • • • • • • • |
|                                                   |                                         |                                          | •••••                                   |
| ••••••                                            |                                         | • • • • • • • • • • • • • • • • • • • •  | • • • • • • • • • • • • • • • • • • • • |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | ••••••                                  |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | •••••                                   |
| ••••                                              |                                         | • • • • • • • • • • • • • • • • • • • •  |                                         |
| <b>17)</b> Find algebraic $y + 2x = 7$ ,          | •                                       |                                          | equations :                             |
| •••••                                             | • • • • • • • • • • • • • • • • • • • • |                                          |                                         |
|                                                   |                                         |                                          | •••••                                   |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | ••••••                                  |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | •••••                                   |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | • • • • • • • • • • • • • • • • • • • • |
|                                                   |                                         | • • • • • • • • • • • • • • • • • • • •  |                                         |
| <b>18)</b> Find the solution results to two decim | -                                       | ion $3x^2$ - 6 $x$ +1 = 0                | O rounding the                          |
| results to two decim                              | ai piaces.                              |                                          |                                         |
|                                                   |                                         | • • • • • • • • • • • • • • • • • • • •  |                                         |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | •••••                                   |
| •••••                                             | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • •  | • • • • • • • • • • • • • • • • • • • • |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  | ••••••                                  |
| •••••                                             |                                         | • • • • • • • • • • • • • • • • • • • •  |                                         |
|                                                   |                                         |                                          | \$ 530 E                                |

| MATUS PREP3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SECOND TERM                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| <b>19)</b> Find the solution set of the equation $x^2$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2x - 6 = 0 rounding the                 |
| results to two decimal places.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •••••                                   |
| ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| <b>20)</b> Find the solution set of the equation $x^2$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $+3 \times -3 = 0$ using general        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| formula, rounding the results to two decima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i piaces.                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 4 0                                   |
| <b>21)</b> Find the solution set of the equation $x^2$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| formula rounding the results to two decimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | places.                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •••••                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • • |
| •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| 150555<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>1505<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055<br>15055 |                                         |

| <b>22)</b> Find the solution set of the equation $x^2 + x = 3$ using general formula rounding the results to one decimal places.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>13)</b> Find the solution set of the equation $x^2$ - $x=4$ using general formula given that $\sqrt{17} \simeq 4.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $463C_{\text{max}} + k_{\text{max}} + $ |
| <b>14)</b> Graph the quadratic Function $f(x) = x^2 - 4x + 3$ , $x \in [-1,5]$ Then from the graph deduce :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul><li>1) The coordinates of the vertex of the curve</li><li>2) The minimum value of the function</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3) the S.S in R of the equation $x^2 - 4x + 3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

MATHS PREP3

**SECOND TERM** 

**25)** Graph the quadratic Function  $f(x) = x^2 - 1$ ,  $x \in [-2, 2]$ 

Then from the graph deduce:

- 1) The coordinates of the vertex of the curve
- 2) The minimum or the maximum value of the function
- 3) The two roots of f(x) = 0
- **26)** Graph the quadratic Function  $f(x) = 4 x^2$ ,  $x \in [-3, 3]$

Then from the graph deduce:

- 1) The two roots of f(x) = 0
- 2) Equation of axis of symmetry
- **27)** Graph the quadratic Function  $f(x) = x^2 + 3$ ,  $x \in [-3, 3]$

Then from the graph deduce:

- 1) The two roots of f(x) = 0
- 2) Equation of axis of symmetry
- **28)** Graph the quadratic Function  $f(x) = x^2 2x 3$ ,  $x \in [-2, 4]$

Then from the graph deduce:

- 1) The coordinates of the vertex of the curve
- 2) The minimum value of the function
- 3) the S.S in R of the equation  $x^2 2x 3 = 0$

| <b>29)</b> Graph the quadratic Function $f(x) = (x-2)^2$ , $x \in [-1, 5]$                                                              |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Then from the graph deduce : The S.S of the equation $f(x) = 0$                                                                         |  |  |  |
| <b>30)</b> The difference between two numbers is 5 and the product of them is 36, Find the two numbers                                  |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
| $\mbox{\it 31)}$ Two acute angles in right angled triangle , the difference between their measure is $40^{\circ}$ , find the two angles |  |  |  |
| ••••••                                                                                                                                  |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
| <b>32)</b> A rectangle with length more than width by 2cm , if the perimeter of the rectangle is 32 cm , find the area of the rectangle |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |
|                                                                                                                                         |  |  |  |

MATHS PREP3

SECOND TERM

unit digit exceed three times the tens by 2, Find the number

33) A number formed from two digits, their sum is 11, if twice the

## 34) Choose the correct answer:

1) The solution set of the two equations x + y = 0, x - 2 = 0 is :

a)  $\{(0, 2)\}$ 

*6*) {(2, 2)}

e) {(-2, 2)}

d) {(2, -2)}

2) The two straight lines : 3x + 5y = 0, 5x - 3y = 0 are intersected in

a) The origin

6) First quadrant c) Second quadrant d) Fourth quadrant

3) The solution set of the two equations x - 2y = 1, 3x + y = 10 is :

a)  $\{(5, 2)\}$ 

6)  $\{(2,4)\}$ 

e)  $\{(1,3)\}$  d)  $\{(3,1)\}$ 

4) The solution set of the two equations x - y = 0 and x y = 9 is :

a)  $\{(0,0)\}$ 

**6)** {(-3, -3)}

e)  $\{(3,3)\}$  d)  $\{(-3,-3),(3,3)\}$ 

6) One of the solutions for the two equation: x - y = 2,  $x^2 + y^2 = 20$  is :

a) (-4, 2)

(2, -4)

c) (3, 1) d) (4, 2)

6) If the sum of two positive numbers is 7 and their product is 12 then the two numbers are:

a) 5, 2

*6*) 2, 6

c) 3, 4 d) 1, 6

7) Two numbers their sum = 13 and their difference is 5, then the two numbers are

a) 7, 6

*6*) 8, 5

*c*) 10, 3

d) 9, 4







## 1) Find n(x) in the simplest form showing its domain where :

| n(x) = | _ 5      | 4               |
|--------|----------|-----------------|
|        | $-{x-3}$ | $\frac{1}{x-3}$ |

### 2) Find n(x) in the simplest form showing its domain where:

$$n(x) = \frac{5}{x-2} + \frac{4}{x+3}$$

## 3) Find n(x) in the simplest form showing its domain where:

$$n(x) = \frac{x}{x^2 + 2x} + \frac{x - 2}{x^2 - 4}$$

.....



| Find n(x) in the simplest form showing its domain where : $n(x) = \frac{3x - 4}{x^2 - 5x + 6} + \frac{2x + 6}{x^2 + x - 6}$                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5) Find n(x) in the simplest form showing its domain where : $n(x) = \frac{x^2 - 4}{x^2 + 3x + 2} - \frac{x^2 - 2x}{x^2 - x - 2} \text{ , then find n(0)}$ |
| 6) Find n(x) in the simplest form showing its domain where : $n(x) = \frac{3x}{x^2 - 2x} - \frac{12}{x^2 - 4}$                                             |
|                                                                                                                                                            |

| m | ATI | ရန | P | RF. | P |
|---|-----|----|---|-----|---|

#### **SECOND TERM**

7) Find n(x) in the simplest form showing the domain of n

where :  $n(x) = \frac{12}{12x^2 - 3} + \frac{2}{2x - 4x^2}$  then find f(0), f(-1) if possible

8)  $n_1(x) = \frac{x}{x^2 + 2x}$  ,  $n_2(x) \frac{x+2}{x^2 - 4}$ 

Find  $n(x) = n_1(x) + n_2(x)$  show the domain of n.

9) Find n(x) in the simplest form showing its domain where:

 $n(x) = \frac{x^2 - 2x + 4}{x^3 + 8} + \frac{x^2 - x - 2}{x^2 - 4}$ 



| 10) Find n(x) in the simplest form showing its domain where :                 |
|-------------------------------------------------------------------------------|
| $n(x) = \frac{x}{x^2 + 2x} - \frac{x-2}{4-x^2}$ Then find $n(-2)$ if possible |
| $x^2 + 2x \qquad 4 - x^2$                                                     |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
| 11) Find n(x) in the simplest form showing its domain where:                  |
| $n(x) = \frac{x^2 + x + 1}{x} \times \frac{x^2 - x}{x^3 + 1}$                 |
| $x \qquad x^{3}-1$                                                            |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
| 12) Find n(x) in the simplest form showing its domain where:                  |
| $x^3-1$ $x+3$                                                                 |
| $\frac{x^3-1}{x^2-x} \times \frac{x+3}{x^2+x+1}$                              |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |

MATHS PREPS

13) Find n(x) in the simplest form showing its domain where:

$$n(x) = \frac{x^2 - 12x + 36}{x^2 - 6x} \times \frac{4x + 24}{36 - x^2}$$

14) Find n(x) in the simplest form showing its domain where:

$$n(x) = \frac{x^2 - 49}{x^3 - 8} \div \frac{x + 7}{x - 2}$$

15) Find n(x) in the simplest form showing its domain where:

$$n(x) = \frac{x^2 + 2x - 3}{x + 3} \div \frac{x^2 - 1}{x + 1}$$

| $x^2 - 4$                               | $x^2-2x$                                         |           |
|-----------------------------------------|--------------------------------------------------|-----------|
| $\frac{x^2-4}{x^2+3x+2}$                | $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$  |           |
| X-+3X+Z                                 | $x^{-}-x^{-}z$                                   |           |
|                                         |                                                  |           |
|                                         |                                                  |           |
| •••••                                   |                                                  |           |
| • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • •          | • • • • • |
|                                         |                                                  | • • • • • |
|                                         |                                                  |           |
| •••••                                   | ,                                                |           |
| • • • • • • • • • • • • • • • • • • • • |                                                  | • • • •   |
| 17) Find n(                             | x) in the simplest form showing its domain where | •         |
| $\sim x$                                | $x^{2}-3x+2$ $x-2$                               |           |
| $n(x) = \frac{\pi}{2}$                  | $\frac{x^2-3x+2}{x^2-49} \div \frac{x-2}{x+7}$   |           |
|                                         | λ —49                                            |           |
|                                         |                                                  |           |
|                                         |                                                  |           |
| • • • • • • • • • • • • • • • • • • • • |                                                  |           |
| • • • • • • • • • • • • • • • • • • • • |                                                  | • • • • • |
|                                         |                                                  |           |
|                                         |                                                  |           |
|                                         | ,                                                | ,         |
| • • • • • • • • • • • • • • • • • • • • |                                                  |           |
|                                         |                                                  |           |
| 18) Find n(                             | x) in the simplest form showing its domain where | •         |
| •                                       | ·                                                | •         |
| $n(x) = \frac{x}{1-x}$                  | $\frac{-x+1}{x^2-9} \div \frac{x^3-1}{x^2-4x+3}$ |           |
| $\chi^2$                                | $x^2 - 9$ $x^2 - 4x + 3$                         |           |
|                                         |                                                  |           |
| • • • • • • • • • • • • • • • • • • • • | ,                                                |           |
| • • • • • • • • • • • • • • • • • • • • |                                                  |           |
|                                         |                                                  |           |
|                                         |                                                  |           |
|                                         | ,                                                | ,         |
| • • • • • • • • • • • • • • • • • • • • |                                                  |           |
|                                         |                                                  |           |
|                                         |                                                  |           |
|                                         | 300                                              | 974       |

|   |     |          | _ |    |    |
|---|-----|----------|---|----|----|
| m | ДΤ  | <b>S</b> | ര | രെ | മാ |
|   | A I | തര       | 1 | スし | ര  |

#### **SECOND TERM**

#### 19) Find n(x) in the simplest form showing its domain where:

| $x^3 - 8$            | $x^2 + 2x + 4$ |
|----------------------|----------------|
| $\overline{x^2-x-6}$ | x-3            |

| <br> | <br> |
|------|------|
|      | <br> |

#### 19) Find n(x) in the simplest form showing its domain where:

| $x^3 - 8$                | <u>.</u> | $x^2$ | + | 2 <i>x</i> | + | 4 |
|--------------------------|----------|-------|---|------------|---|---|
| $\overline{x^2 - x - 6}$ | •        |       | x | <b>—</b> 3 | ) |   |

20) If  $n(x)=\frac{x^3+3x^2+2x}{x^2+2x}$  find  $n^{-1}(x)$  in the simplest form showing the domain of  $n^{-1}$ , then find  $n^{-1}(-2)$  if it is possible



If A and B are two events in the sample space of a random experiment where P (A) =  $\frac{1}{2}$ , P (B) =  $\frac{2}{3}$ , P (A \cap B) =  $\frac{1}{3}$  then

- a) Find P (A  $\cup$  B)
- c) Find P (A ∪ B)`
- e) Find P (A')

- b) Find P (A B)
- d) Find P (A  $\cap$  B)
- e) Find P (B')

22) If A and B are two events in the sample space of a random experiment where P (A) = 0.7, P (B) = 0.4, P (A  $\cap$  B) = 0.2 then

a) Find P (A  $\cup$  B)

b) Find P (A - B)

c) Find P (A  $\cup$  B)

d) Find P (A  $\cap$  B)

e) Find P (A`)

e) Find P (B')

23) If A and B are two events of a random experiment where  $P(A) = \frac{1}{2}$ ,  $P(B) = \frac{1}{3}$ ,  $P(A \cap B) = \frac{1}{8}$  then **Find P(A \cup B)** 

#### MATHS PREPA

#### SECOND TERM

24) If A and B are two events in the sample space of a random experiment where P (A) =  $\frac{3}{8}$ , P (B) =  $\frac{1}{2}$ , P (A U B) =  $\frac{5}{8}$  then

a) Find P (A  $\cup$  B)

b) Find P (A - B)

c) Find P (A  $\cup$  B)

d) Find P (A  $\cap$  B)

e) Find P (A')

e) Find P (B')

25) If A and B are two mutually exclusive events of a random experiment where P (A) =  $\frac{1}{2}$ , P (B) =  $\frac{1}{3}$ , then :

- a) Find P (A  $\cup$  B)
- b) Find the probability of non occurrence of A

26) If A and B are two mutually exclusive events of a random experiment where P (A) =  $\frac{1}{8}$ , P (A U B) =  $\frac{3}{8}$ , then :

- a) Find P (B)
- a) Find P (A`)

### 26) Choose the correct answer

1)  $P(A) = 0 \cdot 3$ , then probability of  $P(A) = \dots$ 

a) 1

**6)** 0

- c)  $\frac{1}{2}$
- **d)** 0.7

2)  $P(A) = \frac{5}{7}$ , then probability of  $P(A) = \dots$ 

a) 1

**6)** 0

- **c)**  $\frac{2}{7}$

**3)** P(A) = 30%, then probability of P(A) = ....

a) 1

**6)** 0

- *c*) 70%
- **d)** 30%

4) If a regular dice is rolled once, then the probability of getting an even number = .....

a) Ø

- **6)** 0
- c) 0.5

**d)** 0.3

5) If a regular dice is rolled once, then the probability of getting an even number = .....

 $a) \emptyset$ 

**6)** 0

- c)  $\frac{1}{2}$

6) If A and B are two mutually exclusive events then P (A  $\cap$  B)

a) Ø

- **6)** 0 **c)** 0.5
- **d)** 0.3

**7)** If  $A \subset B$ , then  $P(A \cup B) = \dots$ 

a) Ø

**6)** 0

- e) P(A) d) P(B)

**8)** If  $A \subset B$ , then  $P(A \cap B) = \dots$ 

 $a) \emptyset$ 

**6)** 0

- c) P(A)
- **d)** P(B)



#### MATHS PREP3

#### SECOND TERM

9) If a regular coin is tossed once, then the probability of getting head or tail =.....

a) 0 %

**6)** 25 %

c) 50 %

**d)** 100%

10) If a die is rolled once, then the probability of getting an odd number and even number together =.....

a) Ø

**6)** 0

c) 1

d) 0.5

11) If a die is rolled once, then the probability of getting an odd number or even number equals =.....

a) Ø

6) 0

c) 1

d) 0.5

12) If A and B are two events from the sample space of random experiment and if P (B)=0.7 and P (A)=0.2 ,  $A \subset B$ then P (A  $\cap$  B) =.....

a) ()

6) 02

**d**) 1

13) If A and B are two events from the sample space of random experiment and if P (B)=0.7 and P (A)=0.2 ,  $A \subset B$ then P (A UB) =.....

a) 0

**6)** 0.2

c) 0.7

d) 1

**14)** The set of zeroes of f: where f(x) = -3x is:

a)  $\{0\}$ 

**6)** {-3} **c)** {-3,0}

d)  $\mathbb{R}$ 

**15)** The set of zeroes of the function f where  $f(x) = 2x^2$ , is

a)  $\{0\}$ 

6) $\mathbb{R} - \{0\}$  c) $\mathbb{R} - \{2\}$  d) $\mathbb{R} - \{-1\}$ 



**16)** The set of zeroes of the function f where f(x) = x + 1, is

a) 
$$\{0\}$$

**6)**
$$\mathbb{R} - \{0\}$$

d) 
$$\{-1\}$$

**17)** The set of zeroes of f: where  $f(x) = x(x^2 - 2x + 1)$  is:

**18)** If 
$$z(f) = \{2\}$$
 ,  $f(x) = x^3 - m$  , then  $m = .....$ 

(a) 
$$\sqrt[3]{2}$$

**19)** If  $z(f) = \{5\}$ ,  $f(x) = x^3 - 3x^2 + a$ , then a =.....

a) 
$$-5$$

**20)** If 
$$z(f) = \{1, -2\}$$
 ,  $f(x) = x^2 + x + a$ , then a =.....

**22)** If  $n(x) = \frac{x}{x+5}$  then the domain of the function is .....

a) 
$$\{0\}$$

**6)**
$$\mathbb{R} - \{-5\}$$

*c*)
$$\mathbb{R} - \{7\}$$

**a)** 
$$\{0\}$$
 **b)**  $\mathbb{R} - \{-5\}$  **c)**  $\mathbb{R} - \{7\}$  **d)**  $\mathbb{R} - \{-5,7\}$ 

**23)** If  $n(x) = \frac{3}{x^2 + 2x - 15}$  then the domain of the function is .....

a) 
$$\{0\}$$

**6)**
$$\mathbb{R} - \{-5,3\}$$

$$c)\mathbb{R} - \{7\}$$

a) 
$$\{0\}$$
 b)  $\mathbb{R} - \{-5,3\}$  c)  $\mathbb{R} - \{7\}$  d)  $\mathbb{R} - \{5,-3\}$ 

**24)** If  $n_1(x) = \frac{x}{x+5}$  ,  $n_2(x) = \frac{x-1}{x-7}$  , then the common domain of the two functions is .....

**6)**
$$\mathbb{R} - \{-5\}$$

*c*)
$$\mathbb{R} - \{7\}$$

a) 
$$\{0\}$$
 b)  $\mathbb{R} - \{-5\}$  c)  $\mathbb{R} - \{7\}$  d)  $\mathbb{R} - \{-5,7\}$ 

MATHS PREP3

SECOND TERM

**25)** If  $n_1(x) = \frac{x+2}{x-1}$  ,  $n_2(x) = \frac{x-1}{x+3}$ , then the common domain of the two functions is

a)  $\mathbb{R}$ 

**6)**
$$\mathbb{R} - \{-1\}$$

6)
$$\mathbb{R} - \{-1\}$$
 c) $\mathbb{R} - \{1, -3\}$  d) $\mathbb{R} - \{-1, 3\}$ 

**d)**
$$\mathbb{R} - \{-1,3\}$$

**26)** If  $n_1(x) = \frac{x+2}{x-1}$  ,  $n_2(x) = \frac{x-1}{x^2+4}$  , then the common domain of the two functions is ...

a)  $\mathbb{R}$ 

**6)**
$$\mathbb{R} - \{-1\}$$

$$c)\mathbb{R} - \{1\}$$

**6)**
$$\mathbb{R} - \{-1\}$$
 **c)** $\mathbb{R} - \{1\}$  **d)** $\mathbb{R} - \{-1, -2\}$ 

**27)** If  $n(x) = \frac{3}{x+1}$  and the domain of the function is  $\mathbb{R} - \{-2\}$ Then l = .....

a) -2

**28)** If  $n(x) = \frac{x-3}{x+3}$  then the domain of  $n^{-1}(x) = \dots$ 

**a)** R

6)
$$\mathbb{R} - \{-3\}$$
 c) $\mathbb{R} - \{3\}$  d) $\mathbb{R} - \{3\}$ 

$$c)\mathbb{R} - \{3\}$$

$$d)\mathbb{R}$$
 –

$${3, -3}$$

**29)** The simplest form of the function f , where  $f(x) = \frac{2x^2 + x}{x}$ is .....

a) 3x

**6)** 
$$2x^2 + 1$$

(c) 
$$x^2 + 1$$

**d)** 
$$x + 1$$



MR AMR ALFEKY Qowesna, Monofia

010 928 0 99 58





Al Gebra

# FINAL REVISIO

#### Prep 3 - Second term 2021

Al Basit in Mathematics

| -81        | THE PROPERTY OF THE PROPERTY O | The Marie Law Place Co. (4) | A SECURE AND A SECURITION OF S | THE OWNER WHEN |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| <b>6</b> 8 | Choose the correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | anewer ir                   | om those                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | amen           |
|            | Choose the correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

| 1 | The S.S of the two equations: | x + y = 0 , | <i>y</i> - | -5 = 0 | is |  |
|---|-------------------------------|-------------|------------|--------|----|--|
|---|-------------------------------|-------------|------------|--------|----|--|

(a)  $\{5, -5\}$ 

(b)  $\{(5, -5)\}$ 

 $(c) \{(-5,5)\}$ 

(-5,5)

The S.S of the two equations: x - 2y = 1, 3x + y = 10 is .....

(a)  $\{(5,2)\}$ 

(b)  $\{(2,4)\}$ 

(c) {(1,3)}

(d)  $\{(3,1)\}$ 

First quadrant

(b) Second quadrant (c) The origin point (d) Fourth quadrant

The S.S of the two equations: x = 3, y = 4 is ......

(a)  $\{(3,4)\}$ 

(b)  $\{(4,3)\}$ 

The number of solutions of the two equations: x + y = 2, y + x = 3 together is ......

zero

The two straight lines representing the two equations: 2x - y = 4, 2x - 3 = y are ......

Parallel

Coincident

Perpendicular

(d) intersecting

The two straight lines representing the two equations: 6x - 9y = 15, 2x - 3y = 5 are ......

Parallel

Coincident

(c) Perpendicular

intersecting

If The two straight lines representing the two equations: x + 3y = 4,  $x + \alpha y = 7$  are parallel

Then:  $a = \dots$ 

If there is only one solution for the two equations: x + 2y = 1, 2x + ky = 2.

Then: k cannot equal .....

If the point of intersection of the two equations: x - 3 = 0, y + 2k = 5 lies on the fourth quadrant

Then: k may be equal

The number of solutions of the equation : x + y = 5 in  $\mathbb{R} \times \mathbb{R}$  is ......

Infinite numbers

| 12        | If th                                      | ne point (9,2) belon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g to th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne set of solutions of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the e                                                        | quation: $x - k y = 3$                                                                                                                                                               | , the    | en : k =                 |  |  |  |  |
|-----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|--|--|--|--|
|           | <b>a</b>                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ©                                                            | 3                                                                                                                                                                                    | <b>d</b> | 6                        |  |  |  |  |
| 13        | Two                                        | numbers their sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 = 13 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and their difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is 5 , tl                                                    | hen the two number                                                                                                                                                                   | are .    |                          |  |  |  |  |
|           | <b>a</b>                                   | 7 and 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 and 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ©                                                            | 9 and 4                                                                                                                                                                              | <b>d</b> | 10 and 3                 |  |  |  |  |
| 14        | Thr                                        | ee years ago , ahmed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d's age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | was $\boldsymbol{x}$ years , then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his ag                                                       | e after 5 years is                                                                                                                                                                   | У        | rears                    |  |  |  |  |
|           | <b>a</b>                                   | x + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x + 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ©                                                            | x + 8                                                                                                                                                                                | <b>d</b> | x + 2                    |  |  |  |  |
| 15        | If th                                      | e age of ahmed now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | years , then his age 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | years                                                        | ago isyears                                                                                                                                                                          |          |                          |  |  |  |  |
|           | <b>a</b>                                   | x + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ©                                                            | x                                                                                                                                                                                    | <b>d</b> | 4 X                      |  |  |  |  |
| 16        | A tw                                       | vo-digit-number , o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nes di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | git is $x$ and tens dig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | it is <i>y</i>                                               | , then the number is                                                                                                                                                                 | s        |                          |  |  |  |  |
|           | <b>a</b>                                   | x + 10 y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y + 10 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ©                                                            | x y                                                                                                                                                                                  | <b>d</b> | x + y                    |  |  |  |  |
| 17        | The                                        | solution set of the e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | quatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $on: x^2 + 4 = 0 \text{ in } \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is                                                           |                                                                                                                                                                                      |          |                          |  |  |  |  |
|           | <b>a</b>                                   | {2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | {2,-2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ©                                                            | {-2}                                                                                                                                                                                 | <b>d</b> | ф                        |  |  |  |  |
| 18        | If th                                      | e curve of the quadr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | atic fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbf{nction} f \mathbf{does} \mathbf{not} \mathbf{in}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iterse                                                       | t X-axis at any poin                                                                                                                                                                 | ts.      |                          |  |  |  |  |
|           | then                                       | the number of solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ition o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f the equation : $f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) = 0                                                        | then the number of solution of the equation : $f(x) = 0$ in $\mathbb{R}$ is                                                                                                          |          |                          |  |  |  |  |
|           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                                                                                                                                                      |          |                          |  |  |  |  |
|           | (a)<br>(c)                                 | A unique solution zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>b</b>                                                     | An infinite solution One solution                                                                                                                                                    | S        |                          |  |  |  |  |
| 19        | (a)<br>(c)<br>If th                        | Company with the property of the second section of the property of the second section of the property of the second section of the section of the section of the second section of the section of th  | atic fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nction f passes thre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d)<br>ough t                                                | One solution                                                                                                                                                                         |          | ),(3,0).                 |  |  |  |  |
| 19        |                                            | zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | One solution he points (2,0),(0                                                                                                                                                      |          | ),(3,0).                 |  |  |  |  |
| 19        | then                                       | zero<br>ne curve of the quadr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n ℝ is                                                       | One solution he points (2,0),(0                                                                                                                                                      | , – 3    | ),(3,0).<br>{-3}         |  |  |  |  |
| <b>19</b> | then                                       | zero<br>ne curve of the quadr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uation: $f(x) = 0$ in $\{2,3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R is                                                         | One solution he points (2,0),(0                                                                                                                                                      | , – 3    |                          |  |  |  |  |
| 20        | then                                       | zero ne curve of the quadr n the solution set of { 2 , - 3 }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uation: $f(x) = 0$ in $\{2,3\}$ unction $f$ has a mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R is                                                         | One solution he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ .                                                                                                                 | , – 3    |                          |  |  |  |  |
| 20        | a<br>If th                                 | zero  ne curve of the quadr  the solution set of  { 2 , - 3 }  ne curve of the quadr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the equation for the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uation: $f(x) = 0$ in $\{2,3\}$ unction $f$ has a mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R is                                                         | One solution he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ .                                                                                                                 | , – 3    |                          |  |  |  |  |
| 20        | then<br>a<br>If then<br>a                  | zero  ne curve of the quadr  the solution set of  { 2 , - 3 }  ne curve of the quadr  the solution set of the solution set of the solution set of the quadr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the equation the e | uation: $f(x) = 0$ in $\{2,3\}$ unction $f$ has a miniuation: $f(x) = 0$ in $\{-1\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R is                                                         | One solution  he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ .                                                                                                                | , – 3    |                          |  |  |  |  |
| 20        | then<br>a  If then  The                    | zero  ne curve of the quadr  the solution set of the curve of the quadr  the solution set of the quadr  the solution set of the quadrate  Intersect X-axis in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the equation the equation the function the equation the e | uation: $f(x) = 0$ in $\{2,3\}$ unction $f$ has a minimation: $f(x) = 0$ in $\{-1\}$ uction $f$ where $f(x)$ oints.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbb{R}$ is mum $\mathbb{R}$ is $\mathbb{C}$             | One solution he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ . $\mathbb{R}$ Intersect X-axis in                                                                                | (d)      | { - з }<br>ooint.        |  |  |  |  |
| 20        | then<br>a<br>If then<br>a<br>The<br>a<br>c | zero  ne curve of the quadr  the solution set of the curve of the quadr  the solution set of the quadr  the solution set of the quadrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the equation the equation the function the equation the e | uation: $f(x) = 0$ in $\{2,3\}$ unction $f$ has a minimation: $f(x) = 0$ in $\{-1\}$ uction $f$ where $f(x)$ oints. s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbb{R}$ is mum $\mathbb{R}$ is $\mathbb{C}$             | One solution  he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ . $\mathbb{R}$ Intersect X-axis in Passes through the                                                            | one p    | φ<br>ooint.<br>in point. |  |  |  |  |
| 21        | then<br>a<br>If then<br>a<br>The<br>a<br>c | zero  ne curve of the quadr the solution set of the curve of the quadr the solution set of the function se | the equation the equation the function the equation the e | that ion: $f(x) = 0$ in $\{2,3\}$ Inction $f$ has a minimation: $f(x) = 0$ in $\{-1\}$ Inction $f$ where $f(x)$ oints. Solution is $f(x) = 0$ in | $\mathbb{R}$ is mum $\mathbb{R}$ is $\mathbb{C}$             | One solution  he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ . $\mathbb{R}$ Intersect X-axis in Passes through the                                                            | one p    | φ<br>oint.<br>n point.   |  |  |  |  |
| 21        | then<br>a<br>If then<br>a<br>The<br>a<br>c | zero  ne curve of the quadr the solution set of the curve of the quadr the solution set of the function set of the function set of the function set of the quadrate for the function set of the function set o | the equation the equation the function the equation the e | that ion: $f(x) = 0$ in $\{2,3\}$ Inction $f$ has a minimation: $f(x) = 0$ in $\{-1\}$ Inction $f$ where $f(x)$ oints. Solution is $f(x) = 0$ in | $\mathbb{R}$ is mum $\mathbb{R}$ is $\mathbb{C}$             | One solution  he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y=1$ . $\mathbb{R}$ Intersect X-axis in Passes through the                                                            | one p    | φ<br>oint.<br>n point.   |  |  |  |  |
| 21        | then a  If th then a  The a  If: 2         | zero  ne curve of the quadr the solution set of the curve of the quadr the solution set of the function set of the function set of the function set of the quadrate for the function set of the function set o | the equation two positions are successful to the equation of t | uation: $f(x) = 0$ in $\{2,3\}$ unction $f$ has a minimation: $f(x) = 0$ in $\{-1\}$ uction $f$ where $f(x)$ oints. s. s of the function $f$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbb{R}$ is $\mathbb{R}$ is $\mathbb{R}$ is $\mathbb{C}$ | One solution  he points $(2,0)$ , $(0)$ $\{2,3,-3\}$ value at $y = 1$ . $\mathbb{R}$ Intersect X-axis in Passes through the $x^2 - ax + 3$ , The $x^2 - ax + 3$ , The $x^3 - ax + 3$ | one p    | φ<br>oint.<br>n point.   |  |  |  |  |

| Al GI | BRA                                                                                          |                               |                  |                      |         |                     |          |         | Final Revision                          |
|-------|----------------------------------------------------------------------------------------------|-------------------------------|------------------|----------------------|---------|---------------------|----------|---------|-----------------------------------------|
| 24    | in the equation : $x^2 + ax + 1 = 0$ , if : $a \in ]-2$ , $2[$ , then the number of solution |                               |                  |                      |         |                     |          |         |                                         |
|       | of th                                                                                        | he equation in $\mathbb R$ is |                  |                      |         |                     |          |         |                                         |
|       | <b>a</b>                                                                                     | zero                          | Ь                | 1                    | ©       | 2                   | <b>d</b> | 3       |                                         |
| 25    | Two                                                                                          | numbers , their sur           | n = 9            | and their multiplyin | g is 20 | , then the two numl | ber aı   | e       |                                         |
|       | <b>a</b>                                                                                     | 10 and 2                      | в                | 4 and 5              | ©       | - 4 and - 5         | <b>d</b> | 8 and 1 |                                         |
| 26    | If:                                                                                          | $x + y = 3$ and $x^2 -$       | y <sup>2</sup> = | = 6, then: $x - y =$ |         |                     |          |         |                                         |
|       | <b>a</b>                                                                                     | 18                            | в                | 9                    | ©       | 3                   | <b>d</b> | 2       |                                         |
|       |                                                                                              | $x^2 + y^2 = 9$ and (x        |                  |                      |         |                     | ••••••   | •••••   | •                                       |
|       | <b>a</b>                                                                                     | 16                            | в                | 8                    | ©       | 4                   | <b>d</b> | 2       |                                         |
| 28    | The                                                                                          | S.S of the two equat          | ions             | x - y = 0 , $xy = 0$ | 9 in R  | × R is              |          |         | ••••••••••••••••••••••••••••••••••••••• |
|       | <b>a</b>                                                                                     | {(0,0)}                       | Ь                | {(-3,-3)}            | ©       | {(3,3)}             | <b>d</b> | {(3,3), | (-3,-3)}                                |

one of the solutions of the two equations : x - y = 2,  $x^2 + y^2 = 20$  in  $\mathbb{R} \times \mathbb{R}$  is ......

The set of zeroes of the function : f:f(x)=-3x is

If:  $z(f) = \mathbb{R}$ , f(x) = (a - 3)x + b - 2, then:  $a + b = \dots$ 

The set of zeroes of the function: f:f(x)=0 is ...... (a) { 0 } (b) R-{0}

The set of zeroes of the function:  $f: f(x) = x(x^2 - 2x + 1)$  is ......

(a) {1} (b) {0,1} © {0,-1}

33 If:  $z(f) = \{2\}$ ,  $f(x) = x^3 - m$ , then:  $m = \dots$ 

If:  $z(f) = \{5\}$ ,  $f(x) = x^3 - 3x^2 + a$ , then:  $a = \dots$ 50

The Domain of the function  $f: f(x) = x^2 - 3x + 2$  is .....

(a)  $\mathbb{R} - \{2,1\}$  (b)  $\{2,1\}$  $\mathbb{R} - \{0\}$ 

- The Domain of the function  $n: n(x) = \frac{x}{x^2 16}$  is .....
  - (a)  $\mathbb{R} \{4, -4\}$  (b)  $\mathbb{R} \{4\}$
- © ℝ-{-4}
- The Domain of the algebraic function  $n: n(x) = \frac{x}{x^2 + 4}$  is ......
  - (a)  $\mathbb{R} \{2, -2\}$  (b)  $\{2\}$

- (d) ℝ { 2 }
- If the Domain of the algebraic function n is  $\mathbb{R} \{2, 3, 4\}$ , then:  $n(3) = \dots$

- Undefined

- The set of zeroes of the function  $f: f(x) = \frac{x^2 9}{x 3}$  is ......
  - (a)  $\{3,-3\}$
- (b) {3}

- - (a)  $\mathbb{R} \{0,1\}$
- ©  $\mathbb{R} \{0, 1, -1\}$  d  $\mathbb{R} \{1, -1\}$
- If: x = 3 is one of zeroes of the function  $f: f(x) = \frac{x^2 2x k}{x^2 25}$ , then:  $k = \dots$

- If the common Domain of the two algebraic function:  $\frac{-7}{x+2}$  and  $\frac{x-3}{x-a}$  is  $\mathbb{R} \{-2,7\}$ 
  - , then :  $\alpha = \dots$

- The simplest form of the fraction  $n: n(x) = \frac{4x^2 2x}{2x}$ ,  $x \neq 0$  is ......
  - $\frac{x-2}{2}$

- The simplest form of the fraction  $n: n(x) = \frac{x}{x-1} + \frac{1}{1-x}$ ,  $x \ne 1$  is ......
- $\frac{x+1}{1-x}$

- The additive inverse of the fraction  $n: n(x) = \frac{x-1}{x+3}$ ,  $x \neq -3$  is ......
- $\frac{x+1}{-(x+3)}$
- The fraction  $n: n(x) = \frac{x-4}{x-7}$  has an additive inverse to each  $x \in \mathbb{R}$ 
  - (a)  $\mathbb{R} \{4,7\}$  (b)  $\mathbb{R} \{4\}$
- © ℝ-{7}

- (b)  $\mathbb{R} \{2\}$  (c)  $\mathbb{R} \{-5\}$  (d)  $\mathbb{R} \{2, -5\}$

If:  $n(x) = \frac{x}{x^2 + 9}$ , then the domain of  $n^{-1}$  is ......

- (b)  $\mathbb{R} \{-3,3\}$  (c)  $\mathbb{R} \{0\}$

The fraction  $n: n(x) = \frac{x-4}{x-7}$  has an multiplicative inverse to each  $x \in \mathbb{R}$ 

- (a)  $\mathbb{R} \{4,7\}$  (b)  $\mathbb{R} \{4\}$  (c)  $\mathbb{R} \{7\}$

If:  $n(x) = \frac{x-3}{x^2-4}$ , then the domain of  $n^{-1}(3) = \dots$ 

Undefined

If:  $n(x) = \frac{x-2}{x^2-5x+6}$  and  $n^{-1}(x) = 5$ , then:  $x = \frac{x}{x^2-5x+6}$ 

Find algebraically in  $\mathbb{R} imes\mathbb{R}$  the solution set  $\,$  of each pair of the following equations

- 2x y = 3
- x + 2y = 4

 $\{(2,1)\}$ 

- 3x + 4y = 24
- x 2y = -2

- 3 x + 2y = 11
- 2x + 3y = 14

 $\frac{x}{6} + \frac{y}{3} = \frac{1}{3}$ 

x - y = 1

 $\frac{x}{2} + \frac{2y}{3} = 1$ 

 $x^2 + y^2 = 25$ 

- x + y = 7
- $y^2 x^2 = 7$

- y x = 3
- $x^2 + y^2 xy = 13$

- x + y = 2
- $, \qquad \frac{1}{x} + \frac{1}{v} = 2$

Find in  ${\mathbb R}$  the solution set of each of the following equations using the general formula

1 2  $x^2$  - 4 x + 1 = 0 (rounding the result to three decimal numbers)

{0.293, 1.707}

x(x-1) = 4 (rounding the result to three decimal numbers)

- 1.562 , 2.562

- 0.828 , 4.828

 $x - \frac{x}{x} = 4$  (rounding the result to three decimal numbers)

{-3.372, 2.372}

 $\frac{8}{x^2} - \frac{1}{x} = 1$  (rounding the result to three decimal numbers)  $(x-3)^2 - 5x = 0$  (rounding the result to three decimal numbers)

{0.890, 10.110}

## in each of the following Find $\mathbf{n}(x)$ in the simplest form showing the domain of each of them

1 
$$n(x) = \frac{x^2 - 25}{x^2 - 3x - 10}$$

3 
$$n(x) = \frac{x}{x-4} + \frac{x+4}{x^2-16}$$

$$\mathbf{n}(x) = \frac{x^2 + 2x + 4}{x^3 - 8} - \frac{9 - x^2}{x^2 + x - 6}$$

$$n(x) = \frac{x^3 - 4x}{x^3 - 5x^2 + 6x}$$

$$\mathbf{1} \quad \mathbf{n}(x) = \frac{x-6}{2\,x^2 - 15\,x + 18} + \frac{x-5}{15-13\,x + 2\,x^2}$$

6 
$$n(x) = \frac{x^2 - 3x + 2}{1 - x^2} \div \frac{3x - 15}{x^2 - 6x + 5}$$

$$n(x) = \frac{x^2 - 5x}{x^2 - 8x + 15} - \frac{x^2 + 3x + 9}{x^3 - 27}$$
, then find n(1) and n(5)

8 
$$n(x) = \frac{x^3 - 1}{x^2 - 2x + 1} \times \frac{2x - 2}{x^2 + x + 1}$$

10 
$$n(x) = \frac{x^2 + 2x - 3}{x + 3} \div \frac{x^2 - 1}{x + 1}$$

12 
$$n(x) = \frac{x^2 - 49}{x^3 - 8} \div \frac{x + 7}{x - 2}$$
, then find n(1)

9 
$$n(x) = \frac{x^3 - 1}{x^2 - x} \times \frac{x + 3}{x^2 + x + 1}$$

11 
$$n(x) = \frac{x^2 - 2x - 15}{x^2 - 9} \div \frac{2x - 10}{x^2 - 6x + 9}$$

# 5 Answer the following question

If the Domain of the algebraic function  $n: n(x) = \frac{x-1}{x^2 + ax + 9}$  is  $\mathbb{R} - \{3\}$ , then.

Find the value a.

If the Domain of the algebraic function  $n: n(x) = \frac{x+2}{x^2 + ax + b}$  is  $\mathbb{R} - \{2, 3\}$ .

Find the value a and b.

3 If: 
$$n_1(x) = \frac{x^2 - x}{x^3 - 2x^2}$$
 and  $n_2(x) = \frac{x^2 - 3x + 2}{x^3 - 4x^2 + 4x}$ . Prove that:  $n_1 = n_2$ .

- If the set of zeros of the function  $f: f(x) = ax^2 + bx + 15$  is  $\{3,5\}$  Find the value a and b.
- A length of a rectangle is 3 cm. more than its width and its area is 28 cm. Find its perimeter.
- A right angled triangle in which the length of the hypotenuse = 13 cm. and its perimeter = 30 cm. Find the area of the triangle.
- **Graph the function**  $f: f(x) = x^2 6x + 5$  in the interval [0, 6], and from the graph and its **Find** the solution set of the equation :  $x^2 6x + 5 = 0$ .
- A two-digit number, the sum of its digits is 11, if the two digits reversed, then the resulted number is 27 more than the original number, what is the original number.
- Two acute angles in a right-angled triangle, the difference between their measures = 50°
  Find the measure of each angle.
- Find the value a and b, if (3, -1) is the solution set of the two equations:

$$a x + b y = 5$$
 and  $3 a x + b y = 17$ 

an meste in mestemeties . A new sterting

# Choose the correct answer from those given

| 1 | 1  | ( – 5 | 5)   | ļ |
|---|----|-------|------|---|
| - | יו | (- )  | , )) | 1 |

9 and 4

17 **Φ** 

Intersect X-axis in one point

25 4 and 5

29 (4,2)

33 8

**37** ℝ - { **4** , - **4** }

41 { - 3 }

45 2x - 1

49 R - { 2, - 5 }

53 Undefined

## 2 {(3,1)}

6 Parallel

10 k = 3

14 x + 8

18 zero

22 4

26 2

30 {0}

34 - 50

38 R

42  $\mathbb{R} - \{0,1,-1\}$ 

46 1

50  $\mathbb{R} - \{0\}$ 

54 8

3 The origin point

7 Coincident

11 Infinite numbers

15 x-4

19 {2,3}

23 1

27 4

31 R

35 5

39 Undefined

43 3

 $\frac{1-x}{x+3}$ 

51 X

 $\{(3,4)\}$ 

a = 3

12 k = 3

16 x + 10 y

20 **Φ** 

24 zero

28 {(3,3),(-3,-3)}

32 {0,1}

36 R

40 >

44 7

48 R - {7}

3x + 4y = 24 1

52 R - {4,7}

# Find algebraically in $\mathbb{R} \times \mathbb{R}$ the solution set of each pair of the following equations

#### 1 2x - y = 3 1

$$x + 2y = 4$$

Multiply the two sides of equation 1 by 2

We get: 4x - 2y = 6

adding (3) + (2) (4x - 2)y = 6

x + 2y = 4

 $\therefore 5 x = 10 \qquad \therefore x = 2$ 

By substituting in (2)  $\therefore 2+2y=4$ 

 $\therefore 2 y = 4 - 2 = 2$ 

 $\therefore y = 1$ 

 $\therefore S.S = \{(2,1)\}$ 

3 3x + 2y = 11 1

 $\therefore y = 3$ 

$$2x + 3y = 14$$
 ②  $\frac{x}{6} + \frac{y}{3} = \frac{1}{3}$  ①  $\frac{x}{2} + \frac{2y}{3} = 1$  ②

 $:. S.S = \{(4,3)\}$ 

(3)

Multiply the two sides of equation 1 by 3

We get: 9 x + 6 y = 33

Multiply the two sides of equation ② by – 2

We get: -4x - 6y = -28

adding 3 + 4 9x + 6y = 33

-4x-6y=-28

By substituting in  $\bigcirc$   $\therefore$  3 + 2  $\mathcal{Y}$  = 11

 $\therefore 2y = 11 - 3 = 8$   $\therefore y = 4$ 

 $\therefore 5 x = 5$   $\therefore x = 1$ 

 $\therefore S.S = \{(1,4)\}$ 

 $\therefore 5 x = 20 \qquad \therefore x = 4$ 

Multiply the two sides of equation 1 by 10

x - 2y = -2 2

Multiply the two sides of equation 2 by 2

adding (3) + (1) 2x - 4y = -4

 $\therefore 4y + 12 = 24$   $\therefore 4y = 24 - 12 = 12$ 

We get: 2 x + 4 y = 4

We get: 2x - 4y = -4

Multiply the two sides of equation 2 by - 6

We get: -3x - 4y = -12

adding 3 + 4 2x + 4y = 4

-3x-4y=-6

 $\therefore -x = -2$   $\therefore x = 2$ 

By substituting in 3  $\therefore 4 + 4 y = 4$ 

 $\therefore 4y = 4 - 4 = 0 \qquad \qquad \therefore y = 0$ 

 $\therefore S.S = \{(2,0)\}$ 

Geometry **Final Revision** 

$$^{2} + y^{2} = 25$$

6 x + y = 7 (1)  $y^2 - x^2 = 7$ 

From eq 1 x + y = 7 We get y = 7 - x 3

By substituting in (2)  $\therefore (7-x)^2 - x^2 = 7$ 

 $\therefore -14x + 42 = 0$   $\therefore -14x = -42$ 

From eq ① 
$$x - y = 1$$
 We get  $x = 1 + y$  ③

By substituting in (2)  $\therefore (1+y)^2 + y^2 = 25$ 

$$1 + 2y + y^2 + y^2 = 25$$

$$\therefore 2y^2 + 2y + 1 - 25 = 0$$

$$\therefore 2y^2 + 2y - 24 = 0$$
 divide both sides by 2

$$\therefore y^2 + y - 12 = 0 \quad \therefore (y - 3)(y + 4) = 0$$

$$\therefore y = 3 \text{ or } y = -4$$

By substituting in 3

At: 
$$y = 3$$

At: 
$$y = 3$$
 :  $x = 1 + 3 = 4$ 

At: 
$$y = -4$$

At: 
$$y = -4$$
 :  $x = 1 + (-4) = -3$ 

$$:. S.S = \{(-3, -4), (4, 3)\}$$

By substituting in 
$$3$$

 $\therefore -14x + 49 - 7 = 0$ 

 $\therefore 49 - 14x + x^2 - x^2 = 7$ 

$$At: \mathcal{X} = 3$$

 $\therefore x = 3$ 

At: 
$$x = 3$$
 :  $y = 7 - 3 = 4$ 

$$\therefore S.S = \{(3,4)\}$$

7 
$$y-x=3$$
 1  $x^2+y^2-x$   $y=13$ 

From eq 1 y - x = 3 We get y = 3 + x 3

By substituting in 2

$$x^2 + (3+x)^2 - x(3+x) = 13$$

$$\therefore x^2 + 9 + 6x + x^2 - 3x - x^2 - 13 = 0$$

$$x^2 + 3x - 4 = 0$$
  $(x - 1)(x + 4) = 0$ 

$$\therefore x = 1$$
 or  $x = -4$ 

By substituting in ③

At: 
$$x = 1$$
 :  $y = 3 + 1 = 4$ 

At: 
$$x = -4$$

At: 
$$x = -4$$
 :  $y = 1 + (-4) = -1$ 

$$\therefore S.S = \{(-4, -1), (1, 4)\}$$

# 8 x + y = 2 1 $\frac{1}{x} + \frac{1}{y} = 2$

Multiply the two sides of equation 2 by xy

We get: 
$$y + x = 2xy$$

From eq 1 
$$y + x = 2$$
 We get  $y = 2 - x$  3

By substituting in 3

$$\therefore 2 - x + x = 2x(2 - x)$$
  $\therefore 2 = 4x - 2x^2$ 

$$\therefore 2 = 4x - 2x^2$$

$$\therefore 2x^2 - 4x + 2 = 0$$
 divide both sides by 2

$$x^2 - 2x + 1 = 0$$
  $(x - 1)^2 = 0$ 

$$(x-1)^2 = 0$$

$$\therefore x = 1$$

By substituting in 1

At: 
$$x = 1$$

At: 
$$x = 1$$
 :  $y = 2 - 1 = 1$ 

# Find in $\mathbb R$ the solution set of each of the following equations using the general formula

1  $2x^2 - 4x + 1 = 0$ 

$$a = 2$$
,  $b = -4$  and  $c = 1$ 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{16 - 4 \times 2 \times 1}}{2 \times 2}$$
$$= \frac{4 \pm \sqrt{8}}{4} \quad \therefore x = \frac{4 + \sqrt{8}}{4} = 1.707$$

or 
$$x = \frac{4 - \sqrt{8}}{4} = 0.293$$

$$\therefore$$
 S.S =  $\{1.707, 0.293\}$ 

2 
$$x(x-1) = 4$$
 :  $x^2 - x - 4 = 0$ 

$$a = 1$$
,  $b = -1$  and  $c = -4$ 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 - 4 \times 1 \times - 4}}{2 \times 1}$$
$$= \frac{1 \pm \sqrt{17}}{2} \qquad \therefore x = \frac{1 + \sqrt{17}}{2} = 2.562$$

or 
$$x = \frac{1 - \sqrt{17}}{2} = -1.562$$

$$\therefore$$
 S.S =  $\{-1.562, 2.562\}$ 

3  $x - \frac{4}{x} = 4$  Multiply both sides by x

$$x^2 - 4 = 4x$$
  $x^2 - 4x - 4 = 0$ 

a = 1, b = -4 and c = -4

Complete by yourself

 $\frac{8}{x^2} - \frac{1}{x} = 1$  Multiply both sides by  $x^2$ 

$$\therefore 8 - x = x^2 \quad \therefore x^2 + x - 8 = 0$$

 $\alpha = 1$ , b = 1 and c = -8

Complete by yourself

$$(x-3)^2-5x=0$$

$$x^2 - 6x + 9 - 5x = 0$$

$$\therefore x^2 - 11x + 9 = 0$$

a = 1, b = -11 and c = 9

Complete by yourself

in each of the following Find  $\mathbf{n}(x)$  in the simplest form showing the domain of each of them

1 
$$n(x) = \frac{x^2 - 25}{x^2 - 3x - 10} = \frac{(x - 5)(x + 5)}{(x - 5)(x + 2)}$$

$$\therefore Domain = \mathbb{R} - \{5, -2\}$$

$$n(x) = \frac{(x-5)(x+5)}{(x-5)(x+2)} = \frac{(x+5)}{(x+2)}$$

2 
$$n(x) = \frac{x^3 - 4x}{x^3 - 5x^2 + 6x} = \frac{x(x - 2)(x + 2)}{x(x - 3)(x - 2)}$$
  
 $\therefore \text{ Domain} = \mathbb{R} - \{0, 3, 2\}$   
 $n(x) = \frac{x(x - 2)(x + 2)}{x(x - 3)(x - 2)} = \frac{(x + 2)}{(x - 3)}$ 

3 
$$n(x) = \frac{x}{x-4} + \frac{x+4}{x^2-16}$$
  
=  $\frac{x}{x-4} + \frac{x+4}{(x-4)(x+4)}$ 

$$\therefore Domain = \mathbb{R} - \{4, -4\}$$

$$n(x) = \frac{x}{x-4} + \frac{x+4}{(x-4)(x+4)}$$
$$= \frac{x}{x-4} + \frac{1}{x-4} = \frac{(x-1)}{(x-4)}$$

14 
$$n(x) = \frac{x-6}{2x^2-15x+18} + \frac{x-5}{15-13x+2x^2}$$
  

$$= \frac{x-6}{(2x-3)(x-6)} + \frac{x-5}{(2x-3)(x-5)}$$
  

$$\therefore \text{ Domain } = \mathbb{R} - \left\{6,5,\frac{3}{2}\right\}$$
  

$$n(x) = \frac{x-6}{(2x-3)(x-6)} + \frac{x-5}{(2x-3)(x-5)}$$
  

$$= \frac{1}{2x-3} + \frac{1}{2x-3} = \frac{2}{2x-3}$$

5 
$$n(x) = \frac{x^2 + 2x + 4}{x^3 - 8} - \frac{9 - x^2}{x^2 + x - 6}$$
  

$$= \frac{x^2 + 2x + 4}{(x - 2)(x^2 + 2x + 4)} + \frac{x^2 - 9}{(2x - 3)(x - 5)}$$

$$= \frac{x^2 + 2x + 4}{(x - 2)(x^2 + 2x + 4)} + \frac{(x - 3)(x + 3)}{(x + 3)(x - 2)}$$

$$\therefore Domain = \mathbb{R} - \{2, -3\}$$

$$, n(x) = \frac{1}{x-2} + \frac{x-3}{x-2} = \frac{x-2}{x-2} = 1$$

6 
$$n(x) = \frac{x^2 - 3x + 2}{1 - x^2} \div \frac{3x - 15}{x^2 - 6x + 5}$$
  
 $= \frac{(x - 1)(x - 2)}{-(x^2 - 1)} \div \frac{3(x - 5)}{(x - 5)(x - 1)}$   
 $= \frac{(x - 1)(x - 2)}{-(x - 1)(x + 1)} \times \frac{(x - 5)(x - 1)}{3(x - 5)}$   
 $\therefore \text{ Domain } = \mathbb{R} - \{1, -1, 5\}$   
 $\therefore n(x) = \frac{x - 2}{x + 1} + \frac{x - 1}{3} = \frac{(x - 1)(x - 2)}{3(x + 1)}$ 

7 
$$n(x) = \frac{x^2 - 5x}{x^2 - 8x + 15} - \frac{x^2 + 3x + 9}{x^3 - 27}$$
  
 $= \frac{x(x - 5)}{(x - 3)(x - 5)} - \frac{x^2 + 3x + 9}{(x - 3)(x^2 + 3x + 9)}$   
 $\therefore \text{ Domain } = \mathbb{R} - \{3, 5\}$   
 $\therefore n(x) = \frac{x}{x - 3} + \frac{1}{x - 3} = \frac{x + 1}{x - 3}$   
 $\therefore 1 \in \text{ Domain } \therefore n(1) = \frac{1 + 1}{1 - 3} = -2$   
 $\therefore 5 \notin \text{ Domain } \therefore n(5) \text{ undefined}$ 

Complete by yourself

Answer the following question

- 1 : domain =  $\mathbb{R} \{3\}$  :  $x^2 + a x + 9 = 0$  at x = 3 substituting by 3 in the denominator
  - $\therefore 9 + 3a + 9 = 0$
- $\therefore$  3 a = -18

- 2 : domain =  $\mathbb{R} \{2,3\}$ 
  - $\therefore x^2 + a x + b = 0$  at x = 2 and 3

substituting by 2 in the denominator  $\therefore 4 + 2a + b = 0$   $\therefore 2a + b = -4$ 

substituting by 3 in the denominator  $\therefore 9 + 3a + b = 0$   $\therefore 3a + b = -9$ 

Multiply the two sides of equation (1) by – 1 We get: -2a - b = 4

adding 3 + 2 We get: a = -5 By substituting in 1 : b = 6

- 3 :  $n_1(x) = \frac{x^2 x}{x^3 2x^2} = \frac{x(x 1)}{x^2(x 2)} = \frac{(x 1)}{x(x 2)}$  and its domain =  $\mathbb{R} \{0, 2\}$  1

Geometry Final Revision

$$\ln_{1}(x) = \frac{x^{2} - 3x + 2}{x^{3} - 4x^{2} + 4x} = \frac{(x - 1)(x - 2)}{x(x - 2)(x - 2)} = \frac{(x - 1)}{x(x - 2)} \text{ and its domain} = \mathbb{R} - \{0, 2\}$$

From  $\bigcirc$  and  $\bigcirc$   $\therefore$   $n_1 = n_2$ 

4 :  $z(f) = \{3,5\}$ 

$$\therefore f(3) = 0 \qquad \therefore 9a + 3b + 15 = 0 \qquad \therefore 9a + 3b = -15 \qquad (1)$$

$$a + 3b = -15$$

$$f(5) = 0$$

$$f(5) = 0$$
  $\therefore 25 a + 5 b + 15 = 0$   $\therefore 25 a + 5 b = -15$ 

$$a = -15$$

We get: 
$$75 a + 15 b = -45$$

adding 
$$3 + 4$$
 We get:  $30 a = 30$ 

$$\therefore a = 1$$

By substituting in  $\bigcirc$   $\therefore b = -8$ 

## $\therefore$ let length = x and width = y

A length of a rectangle is 3 cm. more than its width means: x - y = 3area is 28 cm<sup>2</sup> means: xy = 28

Multiply the two sides of equation (1) by – 5 We get : -45a - 15b = 75

solve the two equations together by yourself x = 7 and y = 3

6 : let the lengths of the two sides of the right-angle are x and y

the length of the hypotenuse = 13 cm.

$$\Rightarrow x^2 + y^2 = 169$$

perimeter = 30 cm.  $\Rightarrow x + y + 13 = 30$ 

solve the two equations together by yourself x = 12 and y = 5

try yourself

8 : let the digit of ones is x and the digit of tens is y then : the number is x + 10y

the sum of its digits is 11

$$\Rightarrow x + y = 11$$
 ①

if the two digits reversed (y + 10x), then the resulted number is 27 more than the original number

$$(y + 10x) - (x + 10y) = 27$$

$$(y + 10x) - (x + 10y) = 27 \implies 9x - 9y = 27$$
 divide both sides by 9  $\implies x - y = 3$ 

$$\Rightarrow x - y = 3$$

solve the two equations together by yourself x = 7 and y = 4

9 : let the measures of the two angles are x and y

Two acute angles in a right-angled triangle

$$\Rightarrow x + y = 90$$

the difference between their measures = 50°

$$\Rightarrow x - y = 50$$

solve the two equations together by yourself x = 70 and y = 20

10 : (3, -1) is the solution set of the equation: ax + by = 5 : a - b = 5

 $\therefore$  (3, -1) is the solution set of the equation: 3ax + by = 17  $\therefore 9a - b = 17$ 

Multiply the two sides of equation (1) by – 1 We get: -3a + b = -5

adding 3 + 2 We get: 6a = 12By substituting in  $\bigcirc$   $\therefore b = 1$ 

 $\therefore a = 2$ 

at media in methaneties . A new sterting

# Final revision

SECOND TERM

# Al gebra

# (1) Choose the correct answer:

|                    | - | ents in a sample space for a random |
|--------------------|---|-------------------------------------|
| experiment where A | B | . then P (A ∩ B) =                  |

- (a) P (B)
- (b) P (A)
- (c) zero
- (d) Ø

(2) If 
$$x^2 - y^2 = 15$$
 and  $x - y = 3$ , then  $x + y = \dots$ .

- (a) -5
- (b) 3
- (c) 3

(d) 5

$$(3) (-1)^{99} + (-1)^{100} = \dots$$

- (a) 2
- (b) zero
- (c) 1

(d) 2

(4) The set of zeroes of the function 
$$f(x) \neq \frac{2-x}{7}$$
 is ......

(a) {7}

- (b) {2, 7}
- (c) {2}
- (d) Ø

(5) If 
$$x$$
 is a negative number, then the greatest number from the following numbers is ......

- (a) 5 x
- (b) 5/+x
- (c) x
- (d) 5x

(6) The function 
$$f$$
 where  $f(x) = \frac{x - 2}{x - 5}$  has a multiplicative inverse if its domain is .....

- (a) R
- (b)  $\mathbb{R} \{5\}$
- (c)  $\mathbb{R}-\{2\}$
- (d) R

 $-\{2,5\}$ 

x = 4



is .....

(a) (4, 3)

(a) (3,4) (a) (3,4) (b) (-4,3) (c) (-3,4) (d) (3,4) (d) (3,4)



(9) If a regular die is tossed once, the probability of a appearance of a number less than 3 equals .....

(a) 
$$\frac{1}{6}$$

(b) 
$$\frac{1}{3}$$

$$(d) \frac{2}{3}$$

(10) The set of zeroes of  $f(x) = x^2 + 9$  is ................

(a) 
$$\{3, -3\}$$

$$(d) \{ -3 \}$$

(11) If the two equations: x + 4y = 7 and 3x + ky = 21 have infinite number of solutions in  $\mathbb{R} \times \mathbb{R}$ , then  $k = \dots$ 

(12) If  $y^{-3} = 8$ , then y = .......

(a) 
$$\frac{1}{512}$$

(b) 
$$\frac{1}{8}$$

(d) 
$$\frac{1}{2}$$

Mr. Khaled

(13) [2, 5] is the solution set of the inequality .......

(a) 
$$1 \le x - 1 \le 4$$

(b) 
$$1 < x - 1 < 4$$

(c) 
$$1 \le x - 1 < 4$$

(d) 
$$1 < x - 1 \le 4$$

(a) 
$$\frac{1}{2}$$

(b) zero

(c) 
$$\frac{\sqrt{3}}{4}$$

(d) 1

$$(15)\sqrt[3]{27} - \sqrt[3]{-27} = \dots$$

(d) -6

(16) The number of solutions for the two equations:  $x - \frac{1}{2}y = 4$ ,

$$2 x - y = 2 \text{ in } \mathbb{R}^2 = \dots$$

(d) zero

(17) The domain of the algebraic fraction  $\frac{x-5}{3}$  equals the domain of the algebraic fraction .....

(a) 
$$\frac{x}{x^2 + 1}$$

(b) 
$$\frac{x}{x/-3}$$

$$(c) \frac{x}{x-5}$$

(d)

(18) The ordered pair which satisfies the two equations:

$$x y = 2$$
 and  $x - y = 1$  is ......

(d) 
$$(\frac{1}{2}, 1)$$

Mr. Khaled



| (29) If A , B ar       | e two events fro                    | om the sample of a ra                                | andom experiment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|-------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P(A) = 0.7  and        | P(A - B) = 0.5                      | , then P( A ∩ B) =                                   | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (a) 0.6                | (b) 0.4                             | (c) 0.3                                              | (d) 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                                     | hich represent the to                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x+2y=4                 | 2x + ky = 11                        | are parallel, then k                                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (a) 7                  | (b) 6                               | (c) 4                                                | (d) -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (31) The comi          | mon d <mark>oma</mark> in of t      | he two fractions:                                    | $\frac{2}{7}$ , $\frac{7}{2x-6}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ***                    |                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) ℝ<br>- {3, -3}     | (b) $\mathbb{R} - \{0$ ,            | 3} (c) ℝ - {3}                                       | (d) R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (32) The two s         | traight lines: 🗶 =                  | = 4 $y = 3$ are inter                                | rsect <mark>i</mark> ng in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (a) (4, 3)             | (b) (0,0)                           | (c) (3 4)                                            | (d) $(-3, -4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | two mutually ement, then P (X       | (c) {                                                | ample space of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | r of solutions ar                   | degree in two va <b>rial</b><br>e represented by two | Control of the Contro |
| (a) parallel           | (b) intersec                        | ing (c) distance                                     | e (d) coincident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (35) If $f(x) =$       | $\frac{7+x}{7-x}, x \in \mathbb{R}$ | $\mathbb{R}-\{7,-7\}$ , then                         | $(-2) = \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (a) $\frac{-1}{f(-2)}$ | $\frac{-1}{f(2)}$                   | $\frac{\text{(c)} \frac{1}{f(2)}}$                   | (d) $\frac{1}{f(-2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (36) If the sun        | n of two number                     | s is 8 , and their pro                               | duct is 15, then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| two numbers a          | re                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



(c) intersect and non-perpendicular (d) parallel (46) If (5, A - 4) = (B + 2, 3), then A + B = ...(a) 2 (c) 10 (d) 5 (47) The multiplicative identity in  $\mathbb{Z}$  is ...... (a) zero (b) 1 (d) 2 (48) The arithmetic mean of the values 2, 3, 4, 7 and 9 is ..... (a) 4 (d) 8 (c) 6 (49) If  $z(f) = \{3\}$ , f(x) = 2x + a, then  $a = \dots$ (a) zero (d) 3  $y^2 = x$ (50) If x - 3 = 06, then  $y = \dots$ (b) 3 (d) 9 (a) -3 $(51) (99)^2 - 1 = \dots$  $(98)^2$ (b) 10000 (d) 9900 (a) 9800 

(55) If the curve of the function  $f(x) = x^2 - a$  passing through the point (2,0), then  $a = \dots$ 

- (a) 4
- (b) 7

- (c) 9
- (d) 16

(56) If the point (5, b + 7) lies on the  $\chi$ -axis, then b = ........

(a) 2

(b) 3

- (c) 5
- (d) 7

Answer the following questions:

(1) Find in  $\mathbb{R} \times \mathbb{R}$  the solution set of the following two equations simultaneously:

$$x - 2y = 0$$
 and  $x^2 - y^2 = 3$ 

- (2) Using the general formula to find the solution set of the equation:  $x^2 2x 4 = 0$  approximating the result to the nearest one decimal place
- (3) Find n(x) in the simplest form showing the domain of n where:

$$n(x) = \frac{x^2 + 2x + 1}{2x - 8} \times \frac{x - 4}{x + 1}$$

- (4) If A and B are two events in a sample space for a random experiment, P(A) = 0.6, P(B) = 0.5 and  $P(A \cap B) \neq 0.3$ , then Find:
  - (1) P (A U B)
- (2) P (A B)
- (3) P (B)

- (5) If n (x) =  $\frac{x 5}{x + 3}$  Find:
  - (1)  $n^{-1}(x)$  showing the domain
  - $(2)n^{-1}(4)$

Mr. Khaled

(6) If 
$$n_1(x) = \frac{2x}{2x+4}$$
,  $n_2(x) = \frac{x^2+2x}{x^2+4x+4}$ , prove that :  $n_1 = n_2$ 

(7) Find n ( $\chi$ ) in the simplest form showing the domain of n where:

n (x) = 
$$\frac{x^2 - 2x - 15}{x^2 - 9}$$
  $\frac{2x - 10}{x^2 - 6x + 9}$ 

(8) Find in  $\mathbb{R} \times \mathbb{R}$  the solution set of the following two equations graphically:

$$2x + y = 1$$
,  $x + 2y = 5$ 

(9) A box contains 30 identical cards numbered from 1 to 30 and a card was drawn randomly.

Calculate the probability that the number on the drawn card is :

(1) Divided by 4

- (2) A prime number
- (10) By using a general rule, Find in  $\mathbb R$  the solution of the equation:  $x^2+7$  x+2=zero, approximating the result to the nearest tenth
- (11) If A, B are two events in a random experiment where:
  P(A) = 0.7, P(B) = 0.6, P(A∩B) = 0.3
  Calculate the value of:
  - (1) P (A')

- (2) P (A B)
- (3) P (A U B)
- (12) Solve in  $\mathbb{R}$  the equation:  $x^2 3x + 1 = zero$  by using the general rule, knowing that:  $\sqrt{5} \simeq 2.24$

# Mr. Khaled

(14)

Find the values of a, b knowing that (1, -1) is the solution of the two ax + by = 7 and ax - by = 3equations:

- (15) Find the number which is formed from two digits, if the units digit is twice the tens digit, and if the product of the two digits equals  $\frac{1}{3}$  the original number
- (16) Find n(x) in the simplest form showing the domain of n where:

$$n(x) = \frac{x^2 - x}{x^2 - 1} - \frac{-x - 5}{x^2 + 6x + 5}$$

(17) If 
$$n_1(x) = \frac{x^2 - 4}{x^2 + x + 6}$$
,  $n_2(x) = \frac{x^3 - x^2 - 6x}{x^3 - 9x}$ , prove that

(17) If the domain of the function  $n(x) = \frac{b}{x-2} + \frac{6}{2x+a}$ Is  $\mathbb{R} - \{2\}$ , n(5) = 8. Find the value of each a and b(17) If  $n_1(x) = \frac{x^2-4}{x^2+x+6}$ ,  $n_2(x) = \frac{x^3-x^2-6x}{x^3-9x}$ , prove that :  $n_1(x) = n_2(x)$  for the values of x which belong to the common domain and find the domain

(18) IF A and B are two events from the sample space of a random experiment where:  $P(B) = \frac{1}{12}$ ,  $P(A \cup B) = \frac{1}{3}$ 

Find P (A) in each of the following cases:

- A and B mutually exclusive
- $B \subset A$ (2)
- (19) Find in  $\mathbb{R} \times \mathbb{R}$  algebraically the solution set of two equations: x - y = 0 and  $2x^2 - y^2 = 4$

- (20) A two digit number the sum of each digits is 11 if the two digits are reversed, then the result number is 27 more than the origin number. What is the original number
- (21) If  $f(x) = \frac{3x + 1}{x 2} \div \frac{3x^2 + 16x}{x^2 + 5x}$ -, then Find f(x) in the simplest form and identify the domain of f, then Find f(0), f(-1)
- Find in  $\mathbb{R}$  the solution set of the equation:  $x^2 2x 4 = 0$ approximate to the nearest two decimals
- approximate to the nearest two decimals

  (23) Draw the function curve f where f(x) = x² 2x + 1 in the interval [-1, 3] from the drawing Find:
  The solution set of the equation x² 2x + 1 = 0

  (24) A bag contains 21 symmetric balls, 8 white, 6 red and the rest is black, one ball was drawn randomly, Find the probability that it was:

  (1) White

  (2) Not black

  (3) Red or black

  (25) Find the common domain of n₁, n₂ to be equal such that:





Mr. Kaled