THE STATES BEFARMENT OF COMMERCE

THE RESERVE TO THE PARTY.

R.W. Reightlemer, Chief

MONTHLY WEATHER REVIEW

NOVEMBER 1941

CONTENTS

The thermodynamic properties of water and water were.	Militage of the Arp Contagorogon Dava—Continued. Westber on the Worth Peelle Omen
Peul J. Kleiter.	Blog Stages and Phoble-1
Review	
	Below Rechetter Chapterions
Aerological Chargestone 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Provident Selective Comput Numbers

CORRECTIONS

Mostrate Westide, Revery Structures No. 46.
Page 18. Int abbase, Inf has for "gaint" rend "gaint".
Mostrate Whatman Ravery, Statement 1941, vol.
4, page 264, table 2, the 18 Civin Palls, 2d solumn,
"U. S. Herent of Plant Industry" should be "U. S.
Beeting of Batomology and Plant Quaranties".

MONTHLY WEATHER REVIEW

Editor, EDGAR W. WOOLARD

Vol. 69, No. 11 W. B. No. 1341

NOVEMBER 1941

CLOSED JAN. 3, 1942 ISSUED JAN. 27, 1942

THE THERMODYNAMIC PROPERTIES OF WATER AND WATER VAPOR

By PAUL J. KIEFER IU. S. N. Postgraduate School, Annapolis, Md., June 19411

Extensive international research has been conducted within about the last 10 years for the purpose of ascertaining, with maximum accuracy, the thermodynamic properties of water and water vapor. Experiments were carried out to this end at the National Bureau of Standards, the Massachusetts Institute of Technology, and Harvard University in the United States; and other experiments were conducted by agencies in England, Germany, and Czechoslovakia. By international conferences, the individual findings of these agencies were then collected and cross-checked for consistency by means of the general thermodynamic equations; when inconsistencies were disclosed, the apparatus was investigated and the data redetermined. The final results have been made available in this country in tables of the Thermodynamic Properties of Steam, prepared by J. H. Keenan and F. G. Keyes of the Massachusetts Institute of Technology (New York, John Wiley and Sons, 1936).

The range of pressures and temperatures covered by

these data extends far beyond that which is of importance to the meteorologist, as the project was sponsored by the American Society of Mechanical Engineers and hence included the properties at the high pressures and temperatures employed in power generation. However, both the extreme care taken and the wide range covered would seem to make the results exceptionally reliable within the

lesser range that is of meteorological concern.

From these tables, the writer has therefore prepared the accompanying tabulation of some of the properties of water in the solid, liquid, and vapor states, over the range from -40° C. to $+50^{\circ}$ C. In preparing this tabulation, the units of temperature, pressure, and energy were changed from those conventionally employed by the engineer in this country to the ones preferred by the meteorologist; and various thermodynamic checks were employed to insure consistency in the results.

The first three columns of the table contain the tem-

peratures and the corresponding saturated vapor pressures and densities; the latter are given both for ordinary equilibrial conditions throughout the temperature range of the table, and also for vapor in equilibrium with subcooled

Over the range of the table, the saturated vapor pressures of the liquid phase may be represented with great accuracy by the equation

$$ln(p/p_0) = 6887 (1/T_0 - /T) - 5.31 ln(T/T_0);$$
 (1)

or, taking T_0 as the ice-point temperature 273° K. (or 434991-42-1

more exactly, 273°.16) and p_0 as the corresponding saturation pressure of 6.105 mb., we have

$$ln\left(\frac{p}{6.105}\right) = 25.21 \frac{t}{t + 273} - 5.31 \ln \frac{t + 273}{273},$$
 (1a)

or
$$\log_{10}\left(\frac{p}{6.105}\right) = 10.95 \frac{t}{t + 273} - 5.31 \log_{10}\frac{t + 273}{273}$$
 (1b)

Equation (1) conforms to the requirements of the Clapeyron equation (see Brunt, *Physical and Dynamical Meteorology*, 2 ed., pp. 101–104). The form (1b) may be compared with the relation

$$\log_{10}\left(\frac{p}{6.105}\right) = 10.78 \frac{t}{t+273} - 5.01 \log_{10}\frac{t+273}{273}$$

proposed by Whipple (Monthly Weather Review,

55: 131, 1927).

For the range of ice-vapor states, Keenan and Keyes accepted the data given by Washburn, Monthly Weather Review 52:488-490, 1924, although they noted that some thermodynamic inconsistency exists in these data. Slight inconsistencies in this range, however, are of minor concern to the meteorologist because of the very small mixing ratios that are associated with it. The Washburn pressure-temperature data may be represented by the relation

$$ln(p/p_0)=4332(1/T_0-1/T)+2.31 ln(T/T_0).$$

It may be shown that the requirements of the Clapeyron equation would be more nearly met by a relation of the form

$$ln (p/p_0) = 6150 (1/T_0 - 1/T),$$

or one approaching the Whipple relation for the ice-vapor states,

$$ln(p/p_0) = 6260(1/T_0 - 1/T) - 0.445 ln(T/T_0).$$

The density, pressure, and temperature data in the table show the ratio $p/\rho T$ to be substantially constant, with the value 0.461 joules/(gm., °K.). This fact justifies the commonly accepted hypothesis that water vapor, at the low pressures that are of concern to the meteorologist, may be regarded as a perfect gas; and also confirms the values of the perfect gas constant that have been regularly employed for water vapor in meteorological literature.

The quantities in the next three columns of the table, viz, h_f , h_f , h_g , and h_i , h_g , h_g , are in a sense those that have long been referred to in the literature as, respectively, the "total heat of the liquid (or the solid)," the "latent heat of vaporization (or sublimation)" and the "total heat of the vapor." It may seem that the use of the above symbols and the technical name "enthalpy" is a matter merely of change of nomenclature; it is, however, somewhat more than that, and the use of a distinctive term such as enthalpy (ĕn-thăl'-py) to designate these functions has become virtually universal in the engineering and chemical professions within the last decade.

One reason for the adoption of this practice is that much unnecessary confusion has resulted from the indiscriminate use of the same word heat to designate several essentially different quantities, as, e. g.: (a) energy which is transferred by radiation or conduction between a system and its environment, producing changes of state in each, but not itself a function of the state of either; (b) internal energy, stored in a system by reason of its molecular and atomic state, and depending on the thermodynamic state of the system; (c) this stored energy plus the product of the pressure and specific volume, this sum frequently being known as the "total heat"; (d) even the temperature, although technical literature cannot be generally accused of this usage.

To avoid confusion, it has now become the accepted practice in engineering literature to employ the word heat (symbol, Q) only for the energy that may enter or leave a system by thermal radiation or conduction, just as the word work relates only to energy entering or leaving by mechanical processes; this meaning is the one implied in connection with "specific heats" or "adiabatic" processes. Heat, so understood, may not be regarded as a function of the state of a substance.

The energy that is stored in the molecular system of a substance is designated as its molecular or internal energy (symbol, E). Although we have no means for an absolute evaluation of the energy so stored, its relative amount per unit mass is determinable, and is a function of the state of the substance.

The further function of state given by the sum of the internal energy E and the product of the pressure P by the specific volume V is the one referred to above as the enthalpy: H=E+PV.

The general significance of this function may be illustrated by the so-called "steady-flow energy equation," $gZ_1+U_1^2/2+E_1+P_1V_1+_1Q_2=gZ_2+U_2^2/2+E_2+P_2V_2$, (2) a formulation of the principle of the conservation of energy (First Law of Thermodynamics) as applied to a stream of fluid flowing steadily into and out of any selected region. E.g., in a steadily ascending convectional current in the atmosphere, subscripts (1) and (2) refer to a lower elevation Z_1 and an upper elevation Z_2 . The quantities gZ_1 and gZ_2 are then the potential energy or geopotential per unit mass at those levels; $U_1^2/2$ and $U_2^2/2$ are the kinetic energies per unit mass (U=velocity); E_1 and E_2 , the initial and final internal energy per unit mass; and U_2 represents the heat energy absorbed or emitted per unit mass between the two levels, vanishing if the process be effectively adiabatic.

The products P_1V_1 and P_2V_2 represent the mechanical energy expended in the work done by the action of the force in effecting the flow of each unit mass against the pressures existing at the two levels: To sustain a flow over a cross section A into a region at pressure P, requires a force PA; the distance L through which that force must act to effect the entry of a unit mass of fluid of volume V equals V/A; and the "flow-work" energy so entering the

region is thus
$$PA\frac{V}{A} = PV$$
.

Now in equation (2), E, P and V are each functions of the state, so that the quantity (E+PV) must likewise be a function of state; and since the latter quantity must invariably appear in the energy equation for any flow process, it is advantageous to identify it by a single name and symbol—the enthalpy, H. Then equation (2) for steady flow becomes

$$gZ_1 + U_1^2/2 + H_1 + {}_1Q_2 = gZ_2 + U_2^2/2 + H_2,$$
 (3)

or in differential form,

$$gdZ + UdU + dH = d'Q. (3a)$$

For flow with negligible change of elevation and velocity, dH=d'Q or ${}_1Q_2=H_2-H_1$; i. e., since such flow can occur only at constant pressure, the change of the enthalpy function for a fluid during an isobaric process evaluates the energy concurrently entering or departing by radiation or conduction. This property led to the earlier designation of the function as the total heat or heat content; but as shown by the following example, it might equally well be called the "total geopotential" or "geopotential content":

In an adiabatic ascent with negligible velocity change, gdZ=-dH. If the enthalpy change in such a process be expressed as a function of the temperature change (dT), the lapse rate may be ascertained; for a perfect gas, since dH=dE+d(PV) by definition, and $dE=c_rdT$, we have $dH=c_rdT+RdT=(c_r+R)$ $dT=c_rdT$, whence the adiabatic lapse rate is $dT/dZ=-g/c_r$.

The so-called "stream-function" $gZ+c_pT$, which has recently been included in routine daily meteorological reports, is in a limited sense the equivalent of the quantity gZ+H of equation (3); the limitation lies in the fact that c, T evaluates only the enthalpy of the dry air component of the atmosphere (relative to that for air at 0° abs.). Thus the stream-function does not take into account the very important source of energy which exists in the water vapor component of atmospheric air; whereas, the enthalpy function, properly interpreted as the aggregate enthalpy of the air and vapor, takes into account the energy of both components. As an illustration, for air at 10° C. and 2,000 meters height, with a mixing ratio of 10 g./kg., the geopotential is 19 joules per gram and the enthalpies of the air and the vapor are respectively 83 and 27 joules per gram of air (relative to dry air at 200° K.), the vapor thus contributing nearly 30 percent additional energy. The data on the relative enthalpy of water vapor in the accompanying table should facilitate the extension of the stream-function to include the vapor energy and so enhance appreciably the effectiveness of that function in meteorological analyses. If the vapor energy be included in the stream-function, this function becomes highly conservative for all adiabatic processes, including those involving adiabatic saturation by evapo-

Another useful property of this function is the following: Since the enthalpy is a function of the state, it may be employed as one of a pair of coordinates with which the properties and property changes of a fluid may conveniently be represented graphically. Energy may then be ascertained directly, simply by reading the enthalpy scale, avoiding the evaluation of integrals or "areas" (such as VdP, PdV or TdS). An "enthalpy-entropy diagram" has therefore become the primary practical indicator diagram of the engineer. The writer has prepared such an enthalpy-entropy diagram for the air-vapor mixtures that exist in the atmosphere.

The particular data listed in the table are the enthalpy

of saturated water (h_f) , joules per gram) and saturated water vapor (h_f) at the indicated temperatures; the change of enthalpy (h_f) , or the familiar "latent heat," L) for vaporization at those temperatures and the corresponding saturation pressures; the enthalpy of ice (or snow, h_i) and of saturated vapor (h_o) at 0° C. and below, and the change of enthalpy $(h_{i\phi})$ for sublimation at such temperatures. The symbols are those currently employed by the engineering physicist and recently standardized by the thermo-dynamics subcommittee of the American Standards Association. As the internal energy component of the enthalpy function (E+PV) is capable only of relative evaluation, any evaluation of the enthalpy function must also be relative. In order to avoid negative magnitudes, the quantities in the table are relative to an arbitrarily-assigned value of zero for ice at -73° C. (200° K.); the units employed, joules per gram, seem particularly suitable for meteorological purposes. The values in the Keenan-Keyes Tables are in B. t. u. per lb. and relative to a zero for water at 0° C.

Inspection of the table shows that ht, exhibits a relatively minor variation; the mean value of about 2838 j./g., or 677.9 cal. per gm., agrees well with the value of 677 cal./gm. frequently quoted in meteorological literature. The quantities h_g and h_{f_g} are almost linear functions of temperature within the given temperature range:

$$h_{e}$$
=2969+1.81 t° C.
=2477+1.81 T° K. j./g. (4)
 $h_{f_{\theta}}$ =2502-2.38 t° C.
=3142-2.38 T° K. j./g. (5)

$$h_{f_0} = 2502 - 2.38 \text{ f}^{\circ} \text{ C},$$

= $3142 - 2.38 \text{ T}^{\circ} \text{ K}, \text{ i./g},$ (5)

From the Clapeyron equation, $h_{f_g} = VT \frac{dP}{dT}$, and the gas

constant
$$PV/T=0.461$$
 for the vapor, we have $h_{12}=3142-2.38T=0.461T^2P^{-1}(dP/dT)$,

that is.

$$\frac{dP}{P} = \frac{3142}{.461} T^{-2} dT - \frac{2.38}{.461} \frac{dT}{T},$$

or

$$ln(P/P_0) = 6820(1/T_0 - 1/T) - 5.26 ln(T/T_0)$$

The agreement with equation (1) is quite satisfactory in view of the general approximations employed. However, some disagreement is apparent between equation (5) and the relation

often given in the literature (see, e. g., Brunt, Physical and Dynamical Meteorology, 2d ed., p. 58). The indicated value of 1.81 j./g. deg. or 0.435 cal./gm. deg. for $d h_g/dT$ does not agree closely with the values of about 0.465 that have frequently been quoted in meteorological literature for the specific heat of water vapor at constant pressure; but in view of the reliability of these most recent data, it is to be regarded as the more probable

The remaining columns of the table contain the entropy, in joules per gram, 'Kelvin (or C. abs.) of

saturated liquid (s_f) or ice (s_i) and of saturated vapor (s_t) , and the associated changes of entropy for evaporation (s_{f_0}) or sublimation (s_{f_0}) . The values are again relative to an arbitrarily assigned value of zero for ice at -73° C. Although it may not seem conventional to employ such specific magnitudes of the relative entropy in meteorological computations relating to ice, liquid, or vapor and their mixtures with air, the writer has found it very convenient to do so in computations associated with wet-adiabatics.

Thermal properties of water—solid, and saturated liquid and vapor phases $+50^{\circ}$ to -40° C.

[Values based on results of international research as tabulated by Keenan and Keyes, 1936, but with magnitudes in metric units and relative to zero values of enthalpy and entropy for ice at 200° K., or -73° C.]

Temperature °C		rated r pres-	vapo	rated r den- gm./		Enthal _j joules/g	py, m.	joul	Entropy les/gm.,	₹ K.
	sure	mb.		m.	Af	Afe	h,	81	agu	
50 18 14		. 5	78 68 61	. 1 . 6 . 8 . 5	676 668 659 651 643	2, 383 2, 388 2, 398 2, 398 2, 402	3, 059 3, 056 2, 052 3, 049 3, 045	2.49 2.46 2.44 2.41 2.39	7.37 7.43 7.49 7.56 7.62	9.80 9.80 9.90 10.00
0 8 16 4 2	59 53	.7 .2 .4 .2 .5	46 41 37	. 2 . 3 . 8 . 6	634 626 618 610 601	2, 407 2, 412 2, 416 2, 421 2, 426	3, 041 3, 038 3, 034 3, 031 3, 027	2.36 2.33 2.30 2.28 2.25	7. 68 7. 75 7. 82 7. 88 7. 95	10. 0 10. 0 10. 1 10. 1 10. 2
0 3 0 4	37 33 29	. 43 . 78 . 65 . 82 . 40	27 24 21	.8 .8	592 584 576 567 569	2, 431 2, 436 2, 441 2, 446 2, 450	3, 023 3, 020 3, 016 3, 013 3, 009	2. 22 2. 19 2, 17 2. 14 2, 11	8, 02 8, 09 8, 16 8, 22 8, 30	10, 20 10, 20 10, 33 10, 33 10, 41
0 8 6 4 2	20 18 15	. 37 . 61 . 16 . 98 . 03	15 13 12	. 31 . 37 . 65 . 09	551 543 534 526 517	2, 454 2, 459 2, 464 2, 468 2, 473	3, 005 3, 002 2, 998 2, 994 2, 990	2.08 2.06 2.03 2.00 1.97	8. 37 8. 44 8. 52 8. 59 8. 67	10. 45 10. 56 10. 56 10. 56
0 6 4 2	10. 9. 8. 7.	. 28 . 73 . 35 . 13 . 05 . 105	8 7. 6. 5.	. 41 . 29 . 27 . 37 . 56 . 85	509 501 492 484 475 467	2, 478 2, 482 2, 487 2, 492 2, 497 2, 502	2, 987 2, 983 2, 979 2, 976 2, 972 2, 969	1. 94 1. 91 1. 88 1. 85 1. 82 1. 79	8. 75 8. 83 8. 91 8. 99 9. 07 9. 16	10. 66 10. 74 10. 76 10. 84 10. 89 10. 95
	Over water	Over ice	Over water	Over ice	Ai	hie	A.,	84	Big	8,
0 -2 -4 -6 -8	6. 105 5. 27 4. 54 3. 90 3. 34 2. 86	6. 105 5. 17 4. 37 3. 69 3. 10 2. 60	4.85 4.22 3.66 3.17 2.74 2.36	4.85 4.14 3.53 3.00 2.54 2.14	134 129 125 121 117 113	2, 835 2, 836 3, 836 2, 837 2, 837 2, 837	2, 969 2, 965 2, 961 2, 958 2, 954 2, 950	0. 57 0. 55 0. 54 0. 52 0. 51 0. 49	10. 38 10. 45 10. 53 10. 61 10. 60 10. 78	10. 98 11. 00 11. 07 11. 13 11. 20 11. 27
12 14 16 18 20	2.07 1.75 1.48	2. 18 1. 80 1. 51 1. 25 1. 04	2.03 1.74 1.48 1.26 1.07	1.81 1.51 1.28 1.06 .892	109 105 101 97 93	2, 838 2, 838 2, 838 2, 839 2, 839	2, 947 2, 943 2, 939 2, 936 2, 932	0, 48 0, 46 0, 44 0, 43 0, 41	10.86 10.95 11.04 11.12 11.21	11. 34 11. 41 11. 48 11. 58 11. 62
22 24 26 28 30		. 854 . 702 . 576 . 468 . 381		. 738 . 612 . 506 . 414 . 340	89 85 81 77 74	2, 839 2, 839 2, 840 2, 840 2, 840	2, 928 2, 924 2, 921 2, 917 2, 914	0.40 0.38 0.37 0.35 0.34	11. 39 11. 48 11. 58 11. 67	11. 70 11. 77 11. 85 11. 93 12. 01
32		. 310 . 250 . 202 . 163 . 131	******	. 279 . 227 . 185 . 151 . 122	70 67 63 60 56	2,840 2,839 2,839 2,839 2,839 2,839	2, 910 2, 906 2, 902 2, 899 2, 895 2, 836	0.32 0.30 0.29 0.27 0.26	11, 77 11, 87 11, 97 12, 07 12, 17	12,09 12,17 12,26 12,34 12,43

NOTES AND REVIEWS

W. E. Knowles-Middleton. Meteorological Instruments. Toronto (University of Toronto Press), 1941. 213 pp., 160 figs.

This volume is the first general textbook on its subject in the English language to be published since Cleveland Abbe's Treatise on Meteorological Apparatus and Methods in the "Report of the Chief Signal Officer for 1887." The successive chapters cover the instruments commonly used to measure atmospheric pressure, surface temperature (air, soil, and water), humidity, precipitation and evaporation, surface wind (speed and direction), upperair wind velocity, the motions and heights of clouds and the sizes of cloud or fog droplets, and the duration of sunshine. A concluding chapter is devoted to meteorographs and radiosondes. Numerous references to the literature are included throughout the book.

Charles B. Tuch, the designer of the barometer cistern that bears his name, died in Washington, D. C., on August 1, 1941, at the age of 91, and was buried in Arlington National Cemetery with military honors.

During the early years of the Weather Bureau, first under the Signal Corps (in which he enlisted on April 11, 1879) and later under the Department of Agriculture, Mr. Tuch was engaged in the instrument work of the Bureau, where his faithful and conscientious services were of the greatest value. He became the head instrument maker; and had charge particularly of the repair, calibration, and shipping of mercurial barometers, in which he excelled anyone else. Prior to about 1890, the only self-recording instrument at any of the field stations

was the Gibbon anemometer register; as barographs, thermographs, and other self-recording instruments were introduced later, their care was also assigned to Mr. Tuch.

The two mercurial barometers with which each station has always been equipped were perhaps the most important of all the instruments at the stations. Mr. Tuch's chief duties were to maintain the readings of these at the highest possible accuracy. At that time the barometers were of the so-called "Fortin" type, having glass and boxwood cisterns with chamois skin bags permitting of the adjustment of the mercury level. The maintenance of these instruments involved not only the cleaning and frequent renewal of the cisterns, but also the fitting of new glass barometer tubes, which had first to be filled with vacuum-distilled mercury of the highest possible purity. Before issue for use, each instrument had to be carefully compared, by readings extending over several days, with the primary standards of the Bureau, and its scale adjusted until the correction for instrumental error was found to be no greater than four thousandths of an inch. The experience gained in this work led to the invention of the so-called Tuch barometer cistern, in which the perishable boxwood chamois skin container for the mercury was replaced by a sturdy metal cylinder with mercury-tight plunger to adjust the level of the mercury to the ivory point for a reading.

Mr. Tuch remained connected with the Weather Bureau until 1916.

METEOROLOGICAL AND CLIMATOLOGICAL DATA FOR NOVEMBER 1941

[Climate and Crop Weather Division, J. B. KINCER in charge]

AEROLOGICAL OBSERVATIONS

By Homer D. Dyck

Mean surface temperatures for November were from 2° to 4° F. above normal over most of the country with the exception of an area in the central Gulf States which was slightly below normal.

At 1,500 meters above sea level the 5 a. m. resultant winds for November were from directions to the south of normal over most of the country with the exception of Texas and Oklahoma, where they were from directions to north of normal. Although a comparison of the morning resultant winds at 3,000 meters was not possible for the lake region, the Ohio Valley, California, and Nevada, the winds at this level were from directions to the south of normal over most of the rest of the United States with the exception of New Mexico, Oklahoma, and Texas, where resultant winds were to north of normal. At 5,000 meters a good comparison of the 5 p. m. resultant winds with the corresponding 5 a.m. normals was not possible over most of the country. It may be noted, however, that these afternoon winds were from directions to north of normal over California and the southern plateau region and from south of normal over the central Great Plains.

At 1,500 meters resultant wind velocities were above normal over the northern half of the country, west of the Rockies generally and over the central Gulf States, and below normal elsewhere. At 3,000 meters a comparison, of wind velocities, was not possible over the lake region, the Ohio Valley, California, and Nevada, but resultant velocities were below normal generally over the southeast, the southern plateau and extreme northern Montana and

above normal elsewhere. At 5,000 meters all stations where a comparison of the 5 p. m. resultant velocities with the corresponding 5 a. m. normals was possible, had above normal velocities. These stations were located over the western half of the country and the central and southern Great Plains.

A correlation between mean surface temperature departures and deviations from normal resultant wind directions is evident. At both 1,500 and 3,000 meters there are areas where a turning to northward of normal took place which have the same general shape as the area where below normal surface temperatures occurred. These areas where the winds turned to northward are, however, displaced somewhat to westward of the area where belownormal temperatures were recorded. The remainder of the country recorded above-normal temperatures and resultant winds to south of normal generally.

When the 5 p. m. resultant directions are compared to the corresponding 5 a. m. resultant directions, a turning to northward during the day is noted at the 1,500 meter level over the lake region, the upper Mississippi Valley, Alabama, Georgia, and South Carolina, while a turning to southward occurred over the rest of the country generally. At the 3,000 meter level no well marked pattern of change was evident; it may be noted, however, that the number of stations where turning to southward during the day occurred was about double the number where the opposite shift countried.

opposite shift occurred.

The 5 p. m. resultant velocities at 1,500 meters were lower than the corresponding 5 a. m. velocities over the Atlantic States, the Ohio Valley, the Gulf States, and the northwest generally and were above the morning velocities

over the rest of the country. At 3,000 meters no comparison was possible over the northern part of the country east of the Mississippi, but elsewhere the afternoon wind velocities were generally higher than the morning velocities with the exception of a few scattered stations.

The upper-air data discussed above are based on 5 a.m. (E. S. T.) pilot balloon observations (charts VIII and IX) as well as on observations made at 5 p. m. (table 2 and

charts X and XI).

Radiosonde and airplane stations located in the southern part of the country recorded on the average the highest mean monthly pressures at each of the several standard levels from 2,000 to 17,000 meters. The highest mean monthly pressure occurred over both Brownsville and Miami at standard levels from 2,000 to 6,000 meters, inclusive. From 7,000 to 14,000 meters, inclusive, Miami recorded the highest mean monthly pressures while at 14,000 meters San Antonio also recorded the maximum. The maximum pressures at the 15,000, 16,000, and 17,000 meter levels were recorded over San Antonio. The lowest mean monthly pressure occurred over Sault Ste. Marie at all levels from 2,000 to 17,000 meters, inclusive. At the 15,000 and 16,000 meter levels, Portland, Maine, also

recorded minimum pressures.

Mean pressures at the surface and at 1,000 meters were higher this month than in October over the southern Great Plains, California, and the plateau region with the exception of the State of Washington, and below last month at these levels elsewhere. Up to and including the 3,000 meter level, mean pressures for November were higher than during October over the southern plateau region and California and below last month over the remainder of the country. With the exception of Oakland, which recorded pressures higher than the previous month up to 9,000 meters, all other stations recorded pressures lower than those for October for all levels above 3,000 meters. The decreases from the previous month were quite substantial over the eastern half of the United States amounting to as much as 12 or 13 millibars at from 7,000 to 9,000 meters over some stations in the Lake region and the Mississippi Valley. Pressure gradients this month were steeper than last month over the far northwest and over the South and about the same elsewhere. The steepest upper level pressure gradient for November occurred between Sault Ste. Marie and Joliet at the 6,000 and 7,000 meter levels where there was a change of 1 mb. pressure for each 37 miles of horizontal distance between the two stations.

The mean temperatures for November were considerably lower than October's for all stations and all levels up to about 12,000 meters. Above this level temperatures this month were higher than last month's east of the Rocky Mountains generally and below last month's over the

remainder of the country

Mean temperatures for November 1941 were considerably higher than those for November 1940 over most of the United States at nearly all levels with a few scattered exceptions. These exceptions where lower temperatures occurred were over Brownsville, at levels up to 13,000 meters; over Charleston from 3,000 to 19,000 meters inclusive; over Miami from 3,000 to 13,000 meters, and over Portland, Maine, from 5,000 to 11,000 meters.

At 1,000 meters mean temperatures for November were above normal generally. At 3,000 meters they were also above normal, except for California and the Northeast, while at 5,000 meters mean temperatures were below normal generally over the Pacific coast and the central plateau region, the western lake region, the central Great Plains and the Northeast.

The mean relative humidities for the month at the 1,000meter level were somewhat below normal over the Middle Atlantic States and parts of the South and somewhat above normal elsewhere. At the 3,000- and 5,000- meter levels, humidities were below normal over the Missouri Valley and Oklahoma and above normal generally elsewhere.

The altitude at which the mean monthly temperature of 0° C. for November occurred varied from the lowest (500 meters) over Sault Ste. Marie, to the highest (4,300 meters) over Miami, Fla. The level, at which, on the average, freezing conditions occurred was lower this month than last over all of the United States. This level was much lower than it was last month over the Lake region, being 2,000 meters lower over Sault Ste. Marie,

The lowest free-air temperature recorded during the month over the United States was -84.0° C. $(-119.2^{\circ}$ F.). This temperature occurred over Charleston, S. C., on the morning of November 25 at an altitude of 16,000 meters (about 10 miles) above sea level. The lowest temperature for the month over San Juan, P. R., was -87.3° C. (-125.1° F.), observed at 18,100 meters (about 11.2) miles) above sea level on November 24.

Table 3 shows the maximum free-air wind velocities for various sections of the United States during November as determined by pilot-balloon observations. The highest observed wind velocity for the month was 85 m.p.s. (190 miles per hour) observed over Greensboro, N. C., on November 8. This wind was blowing from the southsouthwest at an elevation of 7,650 meters (about 4.8 miles) above sea level.

The highest November wind velocity observed during the last 5 years in the free-air layer from the surface to 2,500 meters was 55.8 m.p.s. (125 miles per hour) observed blowing from the west-northwest on November 14, 1938, over Washington, D. C., at an altitude of 2,500 meters (about 1.6 miles). On this same date and over the same station and blowing from the same direction as the maximum wind described above, the maximum wind in the last 5 years for the level from 2,500 to 5,000 meters was recorded. This wind had a velocity of 69.1 m.p.s. (154 miles per hour) and was blowing at an elevation of 2,620 meters (1.6 miles). During the same 5-year period a still higher wind velocity, 98.4 m.p.s. (220 miles per hour) was observed in the layer above 5.000 meters. This wind was observed in the layer above 5,000 meters. was blowing from the north at an elevation of 11,120 meters (about 6.9 miles) over Winnemucca, Nev.; on November 22, 1940,

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during November 1941

	T								ALC:	17.	nd rad	_			s in me	7/17	7 114			100	11/41		,MUII-					
	1	lbuqu Mex.	erque, (1,620 m	N.	1		nta, Ga.		Bi		k, N. D			Boise	e, Idaho		1	rown	sville, T	ex.	T	Buffal (22	lo, N. Y		0	harles	ton, S.	C.
Altitude (meters) m. s. 1.	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Delative horniditer
Surface	30 30 30 30 30 29 29 29 29 29 29 29 29 29 29 29 29 29	840 802 755 710 626 552 484 423 368 320 276 238 203 174 148 126 107 91 77	8. 0 8. 5 5. 7 2. 6 -3. 3 -9. 4 -16. 1 -22. 9 -30. 1 -37. 1 -43. 8 -49. 6 -54. 2 -58. 2 -60. 7 -63. 1 -64. 8 -65. 0 -64. 3	48 47 46 47 45 37 33 32 31 28	30 30 30 30 30 30 30 30 30 30 29 29 29 29 29 29 29 29 29 29 29 29 29	985 962 906 853 802 755 709 626 551 483 423 368 319 276 238 204 1149 126 108 91 77 65 55	8. 9 11. 2 9. 7 7. 6 5. 7 3. 8 43. 8 -9. 6 -15. 9 -22. 6 -29. 4 -47. 8 -57. 6 -61. 1 -65. 4 -66. 3 -65. 9 -64. 8	75 60 55 54 46 38 37 33 299 30 30 299	30 30 30 30 30 30 30 30 30 30 30 30 29 29 29 28 27 27 27 27 27 27 26 66	955 898 844 793 745 699 614 539 479 409 355 306 225 193 164 120 120 87 74	0.3 0.4 -0.6 -2.8 -5.3 -11.3 -17.6 -24.3 -31.1 -38.3 -45.0 -50.5 -54.5 -56.5	81 76 65 60 56 56 54 53 51 49 48 48		920 905 852 801 753 707 623 547 478 417 362 312 209 231 197 164 123 104 123 104 123	4. 2 6. 6 5. 9 3. 4 0. 7 -2. 6 -8. 4 -14. 7 -28. 5 -35. 8 -49. 8 -54. 1 -56. 0 -57. 1 -58. 7 -59. 8 -61. 2 -60. 4	79 711 61 59 50 60 58 58 58 54 52	30 30 30 30 30 30 30 30 30 30 29 29 29 26 26 26 24 22 21 22 21 20 13 8	1, 018 961 906 854 805 758 714 631 557 490 375 325 243 208 178 151 128 108 92 77	17. 8 17. 4 14. 8 12. 8 11. 4 9. 8 7. 4 1. 1 -4. 6 -11. 2 -25. 1 -32. 8 -40. 5 -47. 5 -59. 4 -64. 7 -69. 6 -72. 5 -74. 5 -71. 9	87 75 72 68 61 55 51 52 48 43 41 39 38	29 29 29 29 29 29 29 28 26 25 25 23 21 11 11 12 10 8 6	989 956 899 845 794 745 615 539 471 410 356 306 265 227 195 166 142 122 104 90	5. 7 5. 4 2. 6 0. 5 -1. 3 -4. 0 -5. 9 -10. 6 -16. 2 -22. 6 -29. 1 -35. 9 -42. 4 -48. 1 -51. 6 -56. 5 -56. 5 -57. 5 -58. 2 -58. 2	72 72 73 69 68 66 59 53 48 45 43 41	30 30 30 30 30 30 30 30 30 29 29 28 27 27 27 27 27 27 27 27 27 27 27 27 27	1, 018 961 906 853 803 756 628 552 485 424 370 320 277 238 204 173 147 125 105 89 75 63	11. 2 14. 0 11. 4 9. 5 7. 4 5. 4 2. 9 -8. 0 -14. 7 -21. 8 -29. 1 -36. 5 -44. 0 -50. 5 -68. 6 -71. 1 -72. 0 -71. 3 -70. 1	
,000						00	-03.0	1			Station	e wit	helev	etions	in mete	are al	OVe S	on low	al									1
		Denve	er, Colo. 16 m.)]	Detroi (19	t, Mich			El Pa (1,1	so, Tex. 93 m.)			Ely.	Nev. 08 m.)			eat F	alls, Mo 28 m.)	nt.	Hu		on, W. 2 m.)	Va.		Jolie (17	et, III. 8 m.)	
Altitude (meters) m. s. l.	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity
urface	28 28 28 28 28 27 25 24 23 20 20 17 16 16 14 10 9	839 753 707 624 548 479 418 363 314 271 232 199 170 145 124 106	1. 8 6. 4 3. 6 0. 1 -7. 2 -13. 5 -20. 1 -26. 9 -34. 2 -40. 9 -52. 1 -54. 9 -57. 3 -58. 5 -59. 7 -60. 9	65 49 43 41 41 41 39 37 37	30 30 30 30 30 30 30 29 29 29 29 28 28 28 28 28 26 26 24 19	991 955 898 844 793 745 699 615 540 472 411 357 308 265 228 195 166 142 121 103 88	3.7 4.5 3.0 1.2 -0.2 2.2 2.2 2.3 -10.1 -15.8 -22.3 -35.9 -42.9 -52.4 -54.6 0-56.8 -58.0 -59.0	83 76 71 64 56 52 51 48 44 43 42 42	25 25 25 25 25 25 24 23 23 23 23 23 23 23 23 23 23 23 23 23	884 853 803 756 711 628 553 485 425 321 278 239 204 174 148 126 107 91	9. 7 11. 8 9. 2 6. 5 3. 7 -1. 8 -8. 1 -14. 1 -20. 7 -28. 2 -3/. 5 -42. 1 -30. 1 -56. 2 -59. 8 -62. 2 -65. 3 -66. 8 -67. 9	67 57 55 54 53 48 43 39 38 37 36	30 30 30 30 29 28 28 27 27 27 27 27 27 21 25 21 10	803 755 709 625 550 481 420 365 315 272 234 200 145 124 105 89	-1.5 1.9 2.4 -0.1 -6.0 -12.1 -19.2 -26.2 -33.3 -40.0 -52.6 -55.9 -60.3 -62.4 -64.5 -65.2	77 71 63 59 57 53 51 51 50 48	29 29 29 29 29 29 29 29 29 28 28 28 27 22 20 17 11 6	886 796 748 706 618 542 473 412 357 308 264 227 194 165 141 120 102 86	3.9 4.8 1.9 -1.4 -4.3 -10.6 -17.0 -23.8 -31.0 -38.3 -45.3 -51.1 -54.4 -56.6 -57.2 -59.0 -60.0	59 55 53 53 51 48 46 45 44 42	30 30 30 30 30 30 30 29 29 28 27 27 27 27 26 26 23 21 18 15	999 960 903 850 798 750 621 545 477 416 362 313 270 232 232 199 170 145 123 105	3.8 7.8 5.8 3.4 1.6 -0.3 -2.3 -7.3 -13.2 -19.9 -26.7 -33.5 -39.9 -50.2 -53.8 -56.6 -6.4 -6.2 2	85 65 60 56 53 50 46 40 34 33 32 31	30 30 30 30 30 30 30 30 30 30 30 28 28 26 25 23 20 10 8	995 956 900 846 794 747 700 616 541 474 413 358 309 266 228 195 167 142 121 103 88	4. 0 5. 3 3. 5 1. 8 0. 4 -1. 2 -3. 6 -8. 9 -14. 8 -21. 2 -28. 1 -35. 6 -42. 8 -52. 8 -54. 6 -56. 0 7 -57. 7 -58. 5 7	

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during November 1941—Continued

				-			airple	anes	and	l rad					ovembe					d								-
	L		harles,	La.	1	akehu (3)	urst, N.	3,1		Medfe (46	erd, Ore	-	in ele	Mia	mi, Fla.	_	1	Nashv	ille, Ter 80 m.)	m.		Norfo (1	lk, Va.1	,	Г	Oakia ()	nd, Cali	ir.
Altitude (meters) m. s. l.	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity
Surface 600 1,000 1,000 1,500 2,500 3,000 4,000 5,5000 6,000 7,000 8,000 11,000	30 30 30 30 30 30 29 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	1, 020 962 968 853 803 756 628 553 370 321 278 240 206 149 127 108 92 77	11. 0 12. 7 11. 3 9. 7 8. 3 6. 5 4. 1. 7 -7. 4 -13. 7 -20. 9 -27. 8 -34. 9 -41. 5 -48. 0 -53. 8 -58. 3 -66. 8 -68. 7 -60. 2	88 67 58 52 43 39 39 39 35 34 36 36 36	29 29 29 29 29 29 29 29 29 29 27 27 26 24 23 22 17 12 8 6	1, 014 959 903 849 797 749 703 618 542 474 414 360 311 268 230 197 168 122 103 87 74	6. 4 6. 9 4. 4 2. 3 0. 4 -1. 5 -3. 4 -8. 9 -14. 4 -21. 1 -27. 9 -34. 5 -40. 9 -47. 1 -52. 6 -61. 0 -62. 3 -62. 7 -63. 4	60 51 40 51 49 49 46 44 43 83 37 45	30 30 30 30 30 30 30 30 30 30 30 30 30 3	970 950 903 850 800 752 547 479 417 363 314 270 232 198 144 122 104 88 74	8.1 9.5 9.6 7.8 5.2 2.2 2.2 2.2 2.0 5.2 20.5 3.4 8.2 20.5 3.4 8.7 -54.0 4.8 7.5 9.1 -60.1 9.6 1.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9	86 81 67 63 60 57 51 46 44 44 43 42	30 30 30 30 30 30 30 30 30 29 29 29 29 27 26 25 24 24 18 10 6	1, 016 900 906 854 805 778 631 857 490 430 376 283 244 209 179 182 128 109 91 77 65	20. 6 19. 8 16. 5 13. 7 11. 7 9. 3 7. 1 2. 1 -4. 2 -10. 2 -17. 0 -24. 1 -31. 3 -39. 3 -47. 1 -67. 2 -71. 2 -71. 2 -74. 0 -74. 4 -70. 6 -67. 0	65 60 46 42 39 39 38 38 38	299 299 299 299 288 288 277 277 265 244 233 211 211 210 188 188 161 144 114 114 117 7	999 961 905 851 800 752 707 623 548 480 419 364 312 223 234 200 101 145 124 105 89 75 63		79 65 58 53 48 41 38 33 30 27 26 26	27 27 27 26 26 26 26 24 16	1, 020 960 904 851 801 763 707 623 548	9.0 10.7 8.6 7.3 5.5 3.2 0.7 -8.0 -11.0	80 62 57 49 44 39 37 34 31	300 300 300 300 300 300 300 300 300 300	1, 018 900 905 852 902 755 710 6226 552 484 423 360 319 276 237 203 174 148 126 107 91 78	12. 2 14. 0 12. 9 10. 8 8. 4 5. 6 2. 8 -3. 2 -9. 5 -15. 9 -22. 8 -37. 0 -43. 7 -50. 3 -56. 8 -58. 9 -60. 9 -62. 1 -62. 6 -62. 9	
	Oki		City, (Okja,			a, Nebr			Phoen	Stations nix, Ariz		1	Portla	s in met		bove	St. La	vei ouis, Me).			al, Min	n,	8	an An	tonio, T	lex.
Altitude (meters) m. s. l.	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-		Temperature	Relative humidity	Number of observa-		Temperature	Relative humidity	Number of observa-		Temperature	Relative humidity	Number of observa-		Temperature	Relative humidity
Surface	30 30 30 30 30 30 30 30 30 30 29 28 27 26 22 21 20 18 18 16 14 9	974 961 905 852 802 754 709 625 550 482 422 367 318 275 236 202 172 124 106 90 76 64	8. 5 9. 7 9. 1 7. 8 6. 1 1. 1 -3. 9 -10. 2 -16. 8 -30. 7 -43. 7 -49. 4 -58. 3 -60. 5 -62. 7 -63. 6 -63. 8 -62. 6	80 70 59 53 52 47 43 36 33 31 29 28 28	30 30 30 30 30 29 29 28 27 27 28 26 26 26 23 22 20 17 12	311 268 230 197 168 143	3.6 5.3 4.9 4.0 2.1 -0.1 -2.5 -8.4 -14.7 -21.9 -36.3 -42.9 -48.1 -51.5 -55.4 -56.9 -57.6	82 72 64 87 51 47 42 38 35 34 33 33 33 33	30 30 30 30 30 30 30 29 29 29 29 29 29 29 27 26 25 21 14 6 5	975 957 903 851 802 754 710 627 553 486 425 370 240 206 176 150 128 109 92 78 66 56	13. 0 18. 2 17. 2 14. 2 10. 7 7. 5 4. 5 -1. 0 -7. 0 -13. 5 -20. 2 -27. 0 -47. 0 -47. 0 -47. 0 -53. 0 -57. 9 -61. 6 -63. 8 -64. 3 -62. 8 -64. 3 -62. 8	64 44 35 34 35 35 35 29 27 27 27 27 27	30 30 30 30 30 30 30 30 30 30 30 28 28 27 27 27 26 22 25 22 16	1, 013 955 896 843 792 743 697 613 537 469 408 353 305 262 224 192 163 139 118	2.7 3.2 0.9 -0.9 -2.7 -4.9 -7.1 -12.2 -18.3 -24.8 -31.5 -38.7 -45.3 -50.8 -55.4 -59.8 -61.8 -63.2	777 711 609 68 64 63 62 56 51 51 51	30 30 30 30 30 30 29 28 27 27 26 26 25 24 24 22 22 20 13 6	998 959 902 849 798 750 620 545 477 416 361 312 269 232 198 169 144 123 105 76	6. 7 7. 8. 8 6. 1 4. 5 2. 5 0. 7 -2. 0 -7. 4 -13. 1 -19. 8 -34. 1 -50. 8 -55. 6 -55. 6 -60. 3 -61. 0	76 67 63 60 53 51 50 49 46 44 41 41	29 29 29 29 28 28 26 25 25 25 25 25 25 20 19 18 13 10	968 958 898 843 792 744 698 613 538 470 400 355 306 263 226 194 165 141 121 103 88	2. 2 2. 0 0. 5 -0. 1 -3. 4 -5. 6 -11. 2 -17. 7 -24. 1 -31. 0 -38. 2 -45. 1 -53. 0 -54. 6 -54.	777 74 700 61 53 45 41 37 37 36 36 35 35	30 30 30 30 30 30 30 30 30 29 28 26 26 26 25 24 22 22 21 19 13 10 5	1, 000 962 907 855 804 778 713 630 556 488 428 373 324 281 242 208 178 152 129 110 93 78 66	13. 3 15. 6 13. 3 11. 5 10. 1 7. 8 4 -0. 2 -8. 6 -11. 9 -18. 5 -25. 3 -32. 3 -39. 7 -46. 4 -57. 1 -60. 2 -67. 0 -68. 3 -67. 1 -65. 2	8 6 6 6 8 8 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by airplanes and radiosondes during November 1941—Continued

								1111			Stations	wit	h elev	ations	in mete	rs a	bove	sea lev	rel								
	84	n Die	go, Cali m.)	f,i			e. Marie (221 m			Seattle	, Wash.	1	8	pokar (59	e, Wash 8 m.)	١.	W		gton, D.	c.	A		ge, Alas m.)	ka	1	Barrov (6	r, Alasi m.)
Altitude (meters) m. s. l.	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature
nrface	27 27 27 27 27 27 27 27 27 27 27 27 27 2	1, 013 957 902 850 801 753 706 626 551 484 424 369 320 277 238 204 175 149 126 107	16. 5 16. 7 14. 5 11. 9 9. 4 6. 7 -1. 7 -7. 6 -1. 2 -21. 4 -28. 8 -35. 9 -42. 7 -48. 9 -54. 8 -58. 7 -61. 8 -65. 3	81 60 48 41 35 31 27 26 26 34 37	30 30 30 30 30 30 30 30 29 27 26 25 25 25 20 11 10 7	985 952 894 839 788 739 692 608 532 464 403 349 300 258 222 190 162 138 118 101 86	1.5 0.0 -2.4 -4.2 -4.9 -6.5 -9.1 -14.6 -20.8 -27.4 -34.1 -40.9 -45.2 -49.6 -52.4 -53.0 -53.3 -54.4 -55.2 -55.2	82 82 82 82 82 69 68 66 64 60	30 30 30 30 30 30 30 30 30 30 30 30 29 28 27 26 25 23 21 18 14 7	1, 014 958 902 848 797 748 702 618 542 473 357 308 265 227 194 166 142 121 103 87	8.9 7.8 5.3 2.6 0.1 -2.2 -4.7 -10.8 -17.4 -24.3 -38.5 -45.3 -56.3 -56.3 -56.3 -59.8 -59.8 -60.0	87 75 72 72 65 60 58 50 64 64 66 68	30 30 30 30 29 29 28 27 27 27 27 24 23 22 18 18 17 14	948 902 848 797 749 703 618 542 474 412 357 308 204 227 194 166 141 120 103 88	3.6 4.8 2.7 0.2 -2.4 -5.0 -10.7 -17.4 -24.5 -31.5 -38.6 -45.9 -51.8 -54.6 -57.8 -58.9 -58.9 -58.9	88 78 71 67 65 62 55 54 54 56 56	30 30 30 30 30 30 30 29 27 25 24 23 23 23 23 22 21 19 17 15 6	1, 016 960 904 850 799 751 705 621 546 478 418 363 314 271 233 199 170 144 122 104 88 75	9.0 9.5 6.8 4.8 0.9 -1.3 -6.7 -12.2 -18.9 -25.8 -32.8 -32.8 -30.6 -61.7 -50.6 -61.2 -62.6 -64.1 -64.9 -65.1	64 55 53 50 49 48 45 41 37 35 35 34 34	30 29 29 29 29 29 29 29 27 27 27 26 25 25 24 23 20 15 13	999 943 884 829 777 681 595 518 449 388 334 287 246 210 180 154 132 113 97	-6. 2 -6. 0 -7. 1 -9. 1 -11. 6 -14. 2 -17. 3 -30. 9 -42. 9 -47. 9 -51. 5 -52. 9 -52. 6 -50. 8 -50. 8 -40. 9	73 68 65 63 60 57 55 53 52 50	30 30 30 30 30 30 30 30 30 30 30 29 29 27 27 25 21 15	1, 014 950 889 832 778 679 591 513 444 382 327 280 239 205 175 150 128 110 94	-19.6 -15.3 -15.6 -17.0 -19.2 -21.8 -24.1 -29.6 -35.9 -42.5 -48.6 -54.9 -53.3 -56.6 -54.9 -51.7 -51.7 -51.7 -51.7

											Station	s wit	h ele	vation	in met	ers a	bove	sea le	vel									
		Bethel (7	, Alaska m.)		Co		o, C. Z. m.)	1.0	Fa		ks, Alas 6 m.)	ka	1		, Alaski m.)		K	etchiks (26	n, Alas m.)	ka		Nome,	Alaska m.)		S	an Jus (15	n, P. F m.)	R.
Altitude (meters) m. s. l.	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity	Number of observa-	Pressure	Temperature	Relative humidity
Surface	24 24 24 24 24 24 24 24 22 22 22 22 22 2		-9. 1 -6. 4 -8. 2 -10. 1 -12. 0 -13. 7 -16. 4 -22. 4 -28. 3 -34. 8 -40. 9 -46. 9 -51. 5 -53. 2 -53. 7 -52. 2 -50. 5 -49. 5 -48. 9 -49. 1				26. 3 24. 4 21. 2 18. 1 15. 3 12. 8 10. 1 3. 7	89 87 87 76 73 63 50 38	30 30 30 30 30 30 30 30 30 29 28 28 22 27 24 22 20 18 11 16 11 6 5	992 949 888 831 778 728 680 594 514 386 332 285 244 209 179 154 132 114 97	-15.8 -14.2 -14.8 -16.2 -18.0 -20.4 -26.0 -32.0 -38.3 -44.6 -49.6 -52.6 -53.8 -52.9 -51.5 -50.6 -50.2 -50.6	81 83 80 78 77 73 69 65 63 61	29 29 28 27 27 27 27 24 23 20 19 16 12 11 11 11 8 8 5	1,000 946 888 833 781 732 686 600 523 454 393 338 290 248 212 181 155 133 113	2.0 -0.8 -3.8 -6.2 -8.2 -11.0 -13.7 -19.6 -25.7 -31.9 -38.9 -45.3 -50.1 -53.3 -54.3 -52.5 -52.3 -52.5	76 76 79 80 80 79 75 63 59 55 52	28 28 28 27 27 27 27 27 25 21 20 18 16 16 14 12 11 11 9 7	1, 004 948 891 837 786 690 605 529 460 399 344 296 251 186 159 136 116	5.5 3.3 0.2 -2.7 -5.3 -7.9 -10.6 -16.7 -23.4 -29.6 -36.2 -43.0 -48.7 -51.7 -50.7 -50.6 -50.8	83 84 84 82 79 73 68 62 59 57 57	30 30 30 30 30 30 30 27 26 22 21 17 17 13 13 12 11 9 9 7 6	1, 009 948 889 832 780 683 596 520 451 386 288 242 182 116 100 86	-7. 2 -7. 5 -10. 2 -12. 2 -13. 7 -16. 1 -18. 6 -24. 3 -30. 2 -36. 7 -42. 9 -48. 3 -51. 8 -53. 1 -53. 8 -51. 3 -50. 5 -49. 5 -49. 1 -49. 6	79 80 77 72 66 62 59 55 54 53	30 30 30 30 30 30 30 30 30 29 29 29 29 29 29 28 25 25 25 24 22 20 19 16	1, 012 958 905 854 805 758 714 633 559 493 433 379 248 214 183 156 132 112 94 78 66 56	24. 8 22. 4 19. 5 16. 7 14. 3 12. 2 10. 0 4. 5 -1. 1 -7. 0 -13. 5 -20. 4 -27. 6 -34. 6 -41. 7 -56. 0 -63. 4 -69. 9 -74. 8 -78. 2 -77. 8 -74. 6 -69. 9	

NOTES FOR TABLE I

All observations taken at 11 p. m., 75th meridian time, except at Lakehurst, N. J., where they are taken near 5 a. m., at Norfolk, Va., at about 6 a. m., at Coco Solo, C. Z., at about 7 a. m., at St. Thomas, V. I., at about 8 a. m., and at Pearl Harbor, T. H., at about 7 a. m., E. S. T.

Number of observations refers to pressure only as temperature and humidity data are missing for some observations at certain levels also, the humidity data are not used in daily observations when the temperature is below -40.0° .

None of the means included in this table are based on less than 15 surface or 5 standard level observations.

¹ U. S. Navy.
² Airplane observations.

LATE REPORTS

						Осто	SER 1941							SEPTEN	IBER 1941	
Altitude (meters) m. s. l.	В	arrow, A	Alaska (6 m	.)	Pea	rl Harbo	r, T. H. (7	m.)	Swa	n Island	, W. I. (10	m.)	I	larrow, A	laska (6m.	.)
m. s. l.	Number of ob- serva- tions	Pres- sure	Tempera- ture	Relative humid- ity	Number of ob- serva- tions	Pres- sure	Tempera- ture	Relative humid- ity	Number of ob- serva- tions	Pres- sure	Tempera-	Relative humid- ity	Number of ob- serva- tions	Pres- sure	Tempera- ture	Relative humid- ity
Burface	31	1,011	-10.5	92 87	27	1, 014	24.1	78	31	1, 012	27.1	83	31	1, 017	0.0	86
00	31	949	-8.6	87	27	958	20.6	84 80	30	958	24.2	90 84	31 31 31 31	956	0.2	71
,000000,	31	889	-8.8	79	27	904	17.3	89	- 30	905	21.4	84	31	898	-0.4	61
,500	31	833	-10.4	76	27	853	14.7	86	30	854	18.8	76	31	844	-1.8	6
,000	31	781	-13.1	74	27	804	12.4	77	31	805	16. 2	73	31	792	-3.6	8
,500	31	731	-15.6	73	27	757	10.7	56	31	759	13.7	70	31	743	-5.8	04
,000	31	684	-18.2	72	27	713	9.0	41	31	715	11.2	65	31	607	-8.4	5: 5: 5:
,000	31	597	-23.8	68	26	631	3.8	32 27	31	634	6.0	61	31	612	-14.3	5
,000	30	520	-29.6	- 64	26	557	-2.1	27	31	561	1.0	56	30	536	-20.9	56
,000	29	451	-36.4 -43.4	61	25	490	-8.8	28	30	404	-4.5	52 51	30	467	-28.0	4
,000	28	389 334	-43.4		24	430	-15.0	39	30	435	-10.3	51	29	405	-35.2	4
,000	28	287	-53.9	*******	24 24	376 327	-21.8 -29.0	42 43	30	381 333	-16.6 -23.5	47	29	350 301	-42.4	******
0.000	28	245	-53.5		24	285	-20.0		30	290	-23.5	45	29	258	-49.0 -53.6	******
	28	210	-51.0		22	246	-45.3		30	251	-38.4	43	29 29	208	-53. 1	
2.000	20	180	-50.3		21	211	-54.0		30	217	-46.4	40	29	190	-51.0	
3,000	28 27	154	-50.3		19	180	-61.9		26	186	-54.4		29	162	-49.7	
4.000	27	132	-50.5		17	153	-68.8		24	159	-62.3		29	139	-49.5	
5,000	24	114	-50.6		13	129	-74.4		23	135	-70.0	********	29	119	-49.5	*******
6,000	19	97	-51.4		10	109	-79.1	********	23	114	-76.8		28	102	-49.5	
7,000	15	84	-52.1		8	91	-79.2	********	20	95	-81.2		23	88	-49.8	*******
8,000	6	72	-52.7		6	76	-78.1		20 18	80	-82.8	*********	15	75	-50.1	
9,000									11	67	-78.7		5	65	-50.6	
0.000									6	56	-72.9	********	0	00	-07.0	*******

Table 2.—Free-air resultant winds based on pilot balloon observations made near 5 p. m. (75th meridian time) during November 1941. Directions given in degrees from North ($N=360^{\circ}$, $E=90^{\circ}$, $S=180^{\circ}$, $W=270^{\circ}$)—Velocities in meters per second

		biler Tex 537 r		que	N	Mex.		da. Ga. 299 n		1	illing Mont 095 r	t.	N	sma i. Do	ak.		Bois Idah 866 m	0	vil	rown le, T (7 m.	ex.	1	uffal N. Y 20 n			Vt.	ton,		arles 8. C 17 m			hica Ill. 192 n			Ohio 152 n)		Colo.,627 n
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
Surface	29 25 25 24 23 23 16	226 237 253 277 277 281 285 285 287	2.9 4.7 5.8 7.0 7.8	29 29 29 28 27 25 22	241 285 299	1.7	28 28 26 24 24 24 22 20 18 15	326 282 304 284 283 276 270 280 274 279	1. 2 0. 9 1. 6 3. 1 5. 2 7. 0	28 28 27 26 24 18	262 282 284 285 295 297	3.8 8.6 9.3 9.6 12.5 13.3 15.3	29 22 19 19 18 17	306 293 292 293 289 292 293		30 30 30 26 24 21 18 15	166	1.2	29 24 22 19 17 14 13	283 286 249	1.2 2.2 3.1 5.0	27 25 22 19 15 11	261 265 269 272	6.3 9.9 13.7 13.6 15.5 15.9 18.9		****	1.6 5.9 8.2 9.9 12.0	30 30 29 27 27 24 24 22 16 15	258 248 251	0. 5 0. 8 1. 5 3. 1 5. 1 7. 4 9. 2 12. 2 13. 4 16. 0	28 24 21 18 16 16 13 13	260 264 271 270 271 275 281	3. 8 6. 6 11. 0 12. 1 13. 4 15. 1 16. 0 15. 2 17. 8 19. 3 23. 7	28 26 23 19 18 14	274 278 280	5. 2 7. 2	29 29 28 27 27 24 22 16	296 301 296 310 308 312 304
		l Pa Tex			y. N ,910		J	Gran Incti Cole ,413	on,	bot	reer o, N	. C.	50	Havi Mon 767 z	t.	vi	ackselle, l	Tla.		s Ver Nev 570 m		Ro	Littl ck, A	krk.		edfo Oreg			fiam Fla. 10 m		oli	inne s, M 265 n	inn.		Ala (8 m.		1	ashvi Tenn 194 m
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
Surface	30 30 29 27 26 24 23 21 21	287 259 270 283 284 282 285 296 289 308	1.9 3.8 5.9 7.4	29 29 29 25 24 23 21 10	270 254 252 276 288	0. 4 1. 0 1. 3 4. 2 7. 3	30 30 30 29 25 20	284 253 267 308 326 320	1.9 3.3 5.6	29 29 29 29 27 27 25 25	234 245 261 270 266 263 261 259 265 272 274	3.1 4.1 4.6 6.5	28 28 28 26 20 13 12	292	3. 1 7. 7 12. 5 12. 8 12. 8 13. 4 13. 5 14. 3	19 20 14	258 260 261	1.5 0.7 2.7 5.4 7.0 8.5 11.4	30 30 30 30 30 30 29 28	19 24 339 316 305 293 302 301 296 294 302 302	18. 8 21. 3 20. 7		216 219 237 266 273 274 271 270 295 296	2.0 3.4 5.3 6.2 7.5 6.8 7.7	27 27 27 25 23 22 21 20	316	0.4 2.0 2.7 3.9 4.2 4.5	29 29 25 21 17 17 13 14 14 12	267	0.3 2.5 4.8 4.7 6.1	29 26 23 18 17 16 16 14 10	272 275 275 277 280 283 286 288	2. 1 3. 5 6. 3 10. 5 13. 6 14. 3 15. 8 19. 3 24. 3 28. 4	28 26 24 21 18 14	274	2.0 1.7 1.7 5.2 5.7 6.4	28 27 25 23 21 21 17 13	220 242 241 262 263 264 272 272

-Free-air resultant winds based on pilot balloon observations made near 5 p. m. (75th meridian time) during November 1941. Directions given in degrees from North ($N=360^{\circ}$, $E=90^{\circ}$, $S=180^{\circ}$, $W=270^{\circ}$)—Velocities in meters per second—Continued

	100	w Y N. Y 15 n	ork, Y. n.)		akla Cali (8 m	ſ.	Ci	klaho ty,Ol 402 n	kla.)mal Neb 306 r	r.		hoer Aris 338 r	£.	(Rapi City, Dak 982 n	id 8. t. n.)		Mo ISI I		to	San A nio, 180 r	Tex.	Sa	n Di Cali (15 m	ego, f. i.)		Mari Mici 230 n	ie,		Seatt Was [12 m	h.		poka Wasi 603 n	h.	to	vashin n, D. (24 m.
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
Surface	28 28 28 25 18 15 12	271 268 271 279 271 270 264	4. 0 7. 2 9. 0 10. 4 10. 9 12. 4 11. 3	27 27 20 20 19 18 17 17 15 15	253 291 76 163 266 341 353 327 338 328	1.7 0.9 0.2 1.0 0.9 1.5 2.5 4.3 6.0 8.1	29 29 29 27 24 24 23 20 19 16 12	227 231 232 267 278 278 267 270 268 284 312	2.5 2.9 4.2 6.3 7.6 7.8 8.4 10.1 12.5 13.4 13.6	27 27 27 25 19 19 19 17 15 10	231 232 265 277 262 269 271 273 278 282 282	2.6 3.4 6.9 8.4 10.7 11.2 12.9 14.4 15.2 19.2	30 30 30 30 30 30 28 26 24		0.4 0.8 1.0 0.9 0.2 0.9 3.3 6.7 10.1 16.9 18.5 18.5		337 314 301 304 304 306 308 322	4. 0 5. 9 9. 0 10. 6 12. 3 13. 6 15. 0 16. 3	27	242 247 253 257 260 268 269 272 280 284	2.9 4.9 6.6 8.4 10.5 10.4 12.0 13.6 15.6	29 27 26 25 22 19	288	1.3 1.1 0.6 2.0 4.4 6.1 8.2 9.8 11.4 12.3 17.0 18.7	29 28 28 27 21 17 14	295 290 70 69 14 335 325 300 299 299	2.8 2.4 0.2 1.2 1.4 1.9 3.1 6.3 8.1 8.2		300 276 272 272		24	206 190 194 206 206 221 234 258 275	1.3 3.4 6.1 7.6 7.5 7.7 7.1 9.4 12.7	27 24 23 21 18 14 14 11	207 225 241 254 269 284 290	3.2 5.7 6.4 7.6 9.7 9.3	30 29 29 29 23 22 20 16	263 273 279 1 281 1 279 1 268 1 270 1

Table 3.—Maximum free-air wind velocities, (m. p. s.), for different sections of the United States based on pilot-balloon observations during November 1941

		Surface	to 2,50	0 me	ters (m. s. l.)		Between 2,	500 and	5,00	0 meters (m. s. l.)		Abo	ove 5,000	met	ers (m. s. l.)
Section	Maximum ve-	Direc- tion	Altitude (m.) m. s. l.	Date	Station	Maximum ve-	Direc- tion	Altitude (m.) m. s. l.	Date	Station	Maximum ve-	Direc- tion	Altitude (m.) m. s. l.	Date	Station
Northeast 1 East-Central 2 Southeast 3 North-Central 4 Central 3 South-Central 6 Northwest 7 West-Central 1	48.0 36.1 35.8 35.2 38.1 31.5 43.5 36.6 31.8	WNW WSW WNW SW SSW	2,500 2,500 2,500 2,500 1,100 1,920 2,300 2,500 1,370	27 1 9 26 18 18 24 24 17	Boston, Mass Knoxville, Tenn Tallahassee, Fla Duluth, Minn Des Moines, Iowa Tulsa, Okla Havre, Mont Cheyenne, Wyo Las Vegas, Nev.	61. 0 49. 0 43. 0 48. 4 49. 6 43. 2 55. 0 44. 4 46. 6	WNW SW WNW WNW SW NNW W	4, 820 4, 150 5, 000 4, 770	27 24 8 15 20 19 8) 24 16 17	Boston, Mass Richmond, Va Jacksonville, Fla Minneapolis, Minn Springfield, Ill Oklahoma City, Okla. Waco, Tex. Great Falls, Mont Reno, Nev.	63. 5 85. 0 58. 0 65. 0 62. 4 76. 8 71. 0 73. 0 73. 0	WSSWWNWWNWWNWWNWWNW	6, 190 7, 650 11, 900 { 6, 150 12, 890 16, 560 8, 860 10, 545 15, 360 10, 480	27 8 16 25 12 14 23 19 29 23	Portland, Maine. Greensboro, N. C. Miami, Fla. Huron, S. Dak. Minneapolis, Minn. Wichita, Kan. Abilene, Tex. Medford, Oreg. Rock Springs, Wyo. El Paso, Tex.

Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and northern Ohio.
 Delaware, Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina, Georgia, Florida, and Alabama.
 South Carolina, Georgia, Florida, and Alabama.
 Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota.
 Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri.

WEATHER ON THE NORTH ATLANTIC OCEAN

By H. C. HUNTER

Atmospheric pressure. - During November 1941 the pressure over those areas of the North Atlantic which are well covered by available reports was in the main lower than normal. This was notably the case near the Azores, where the average pressure at Horta was 5.2 millibars (0.15 inch) less than the normal November mean, owing to almost continuously subnormal pressure during the first half of the month. There were less notable deficiencies near the coast of Portugal and the east coast of the United States. On the other hand, near southeastern Nova Scotia the average pressure exceeded the monthly normal.

The extremes of pressure in the vessel reports that have been received were 1,035.2 and 985.1 millibars (30.57 and 29.09 inches). The high mark was recorded at a very early hour of the 29th near 42° N., 65° W. The low mark was noted not far to southwestward of the westernmost Azores shortly before sunrise of the 2d. A pressure substantially the same as the low mark mentioned was noted at Horta on the 7th, as table 1 indicates.

⁶ Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and western

* Minassipp, All Tennessee.

† Montana, Idaho, Washington, and Oregon.

† Montana, Idaho, Washington, and Oregon.

† Wyoming, Colorado, Utah, northern Nevada, and northern California.

† Southern California, southern Nevada, Arizona, New Mexico, and extreme west

Table 1.—Averages, departures, and extremes of atmospheric pressure (sea level) at selected stations for the North Atlantic Ocean and its shores, November 1941

Station	Average pressure	Depar- ture from normal	Highest	Date	Lowest	Date
Lisbon, Portugal ¹ Horta, Azores Belle Isle, Newfoundland Halifax, Nova Scotia. Nantucket Hatteras. Turks Island Key West.	Millibers 1,015.9 1,015.1 1,008.1 1,016.6 1,016.9 1,019.0 1,015.0 1,016.3	Millibars -1.4 -5.2 .0 +2.47663	Millibars 1, 025 1, 030 1, 023 1, 032 1, 035 1, 032 1, 019 1, 023	23-25 27 2 29 28 28 28 29 10	Millibars 995 985 986 990 997 1,001 1,011 1,010	11 7 22 21 7 6 16, 21

Note.—All data based on available observations, departures compiled from best available normals related to time of observation, except Hatteras, Key West, Nantucket, and New Orleans, which are 24-hour corrected means.

Cyclones and gales.—No storms worthy of special comment affected the lower latitudes this month, and in the middle latitudes, as far as reports that have come to hand indicate, the month was comparatively undisturbed for November, save for a few days near southwestern Europe. In the portion of the ocean west of longitude 30° W. the especially quiet periods were 8th to 12th, 18th to 20th, and 27th to 29th.

A small number of vessels noted strong gales (force 9) about the middle of the month, and one ship near midocean encountered a whole gale (force 10) on the 17th.

In the eastern North Atlantic a storm seems to have

In the eastern North Atlantic a storm seems to have formed about the 1st, and during the forenoon of the 2d was indicated as having attained considerable strength, while central a short distance to west-southwestward of the western Azores. The course was apparently to southeastward during the next 3 days, then from 5th to 7th it returned northward and on the 7th was central over the island of Fayal. Afterward the movement was eastward, with apparently less intensity, and on the 11th the center was close to northern Portugal.

Much information about this storm has been received from Lt. Col. J. Agostinho, Director of the Meteorological Service of the Azores, who reports that gusts of 100 kilometers (62 miles) per hour or more were noted locally on the islands.

Waterspout on Gulf of Mexico.—On November 5 a waterspout was observed over the Gulf of Mexico. The following is a ship's account of it:

In latitude 27°00′ N., longitude 88°45′ W., passed a large water-spout about 1 mile off, in vicinity of a rain squall. The spout resembled a big lawn sprinkler at base; then to a large column in the sky to the clouds. Air temperature 80° F.; wind variable, force 4 to 5, then to west, 3; barometer dropped 0.08 inch during squall (from 29.90 to 29.82, corrected readings).

Fog.—As is usual in the case of a fall month, comparatively little fog has been reported. Indeed, there are but 6 of the 5°-squares which include North Atlantic waters that are known to have had any fog, and only one of these has furnished reports for more than a single day. This leading square is the one from 40° to 45° N., 70° to 75° W., and even there only 3 days, well scattered in time, brought fog.

The first report since late April of fog over the Gulf of Mexico states that it was noted on the 16th, over the northwestern portion.

OCEAN GALES AND STORMS, NOVEMBER 1941

Vessel		at time of parometer	Gale began No-	Time of lowest barometer,	Gale ended No-	Lowest ba-	Direction of wind when	Direction and force of wind at time	Direction of wind when	Direction and highest force of	Shifts of wind ner
	Latitude	Longitude	ber	November	ber	Tombuer	gale began	of lowest barometer	gale ended	wind	barometer
NORTH ATLANTIC OCEAN											
	38 30N.	48 18W.				Millibare	ATAPHT	MATE 4	NW	ATATTE O	AVAVE AVAVE
vessel	38 30N. 44 30N.	63 00W.	2 2	2p, 1	2	1,004.4 1,001.7	NNW	NNE, 4	W8W	NNW, 8 88E, 8	NNE-NNW.
Do	33 59N.	74 26W.		12m, 6	7	1,006.8	8W	W8W, 8 83W, 8	8W	88W. 8	None.
Do	1 32 39N.	73 58W.	6 6 7	36. 7.	7	1,004.7	8W	W8W, 9	W	WSW, 9	SW-W.
Do	38 00N.	72 00W.	7	40. 7	8	1,001.4	8W	8, 5	wsw	WSW. S	8-8W.
Do	36 00N.	68 12W.	7	11p. 7	7	1,007.8	88W	8W, 7	8W	W8W, 8	SW-WSW.
Do	38 06N.	59 30W.	12 13 16	1p, 12	13 14 17	1,007.5	NW	WNW, 7	WNW	NW. 8	WNW-NW.
Do	1 27 48N.	87 26W.	13	12p, 13	14	1,016.3	ENE	ENE, 7	ENE	E, 9	N-E.
Do	33 36N.	74 12W.	16	48, 16	17	1,003.1	NNW	WNW, 8	NNE	N, 9 SE, 8	NNW-WNW-N
Do	32 54N. 39 36N.	64 00W. 66 18W.	16 17	8a, 16	16 17	1,008.5	SE	88W,7 NW,3	WNW	WNW. 8	SE-SSW. W-NW.
Do	37 48N.	60 12W.	16	8p. 16	16	1,000.7	8	8, 9	ssw	8, 9	SSE-SSW.
Do	38 06N.	56 12W.	16	8p, 16 2a, 17	17	1,001,4	8	8.8	8	8.8	S-NW
Do	38 24N.	48 24W.	16 17	2p. 17	17	1,008.5	8	88W, 10	W	S, 8. SSW, 10	S-NW. S-W.
Do	43 20N.	39 29W.	17	2p, 17 12p, 17	18	1,002.7	8	SW. 8	W	SW, 8	S-W.
Do	40 50N.	16 55W.	21	5p, 21	22	1,005.8	SW	SW, 6	W	SW. 8	None.
Do	34 18N.	75 30W.	24	1p, 24	22 24 26	1, 019. 6	************	N, 8	N	N. 8 ENE, 8	
Do	31 24N. 38 54N.	67 42W. 59 54W.	17 21 24 25 30	4p, 25 4p, 30	30	1, 014. 9 1, 010. 8	NEsw	ENE, 7 W. 7.	NW WSW	SW, 8	None. WSW-WNW.
ORTH PACIFIC OCEAN	00 OHA.			ъ, ж	30	1,010.0	O 11	**, *	# D W	D 11 , O	WSW-WAW.
									_		
vessel	53 30N.	161 30W.	1	60, 2	3	974. 9	E	ENE, 10	E	ENE, 10	E-ENE.
Do	15 30N.	108 48W.	2 2	12m, 2	3 2	1,000.7	NNE	SE, 9	S	SE, 9	NNE-SSE.
Do	56 30N. 46 54N.	167 18W. 128 24W.	2	2p, 2 10p, 2	4	9982.1 998.3	0	E, 9 SSE, 9	ow	E, 9 SSE, 9	SSE-SW.
Do	49 00N.	126 45W.	2	12p, 2	3	993.6	SE	SE, 5	SE	SE, 8	BOL-BH.
Do	45 12N.	124 48W.	2	40, 3	- 3	1,002.4	8	88W. 7	88W	8, 9	The second second
Do	53 00N.	134 54W.	3	20, 3	3	986.8 1,004.4	SW	ESE, 6		SW, 8	ESE-S.
Do	07 37N.	89 07W.	3	6p, 3	3	1,004.4	NNE	E, 9	88E	E, 9	ENE-SSE.
Do	16 50N.	113 30W.	4	40, 4		1,002.7	NNE	ENE, 7	E8E	ESE, 8	NE-E.
Do Do	90 08N.	139 11W. 141 00W.	6	3p, 4	6	977. 7 1, 010. 8	NE	NE, 11	NEsw	NE, 11 S, 8	None. S-8W.
Do	1 58 51 N	141 50W.	6	9p, 6	7	1,002.0	SSE	S, 8	SE	SE, 8	SE-S.
Do	33 54N.	147 30W.	8	2p. 8	9	1,007.1	8	SW, 9	W	8W. 10	8W-W8W.
Do Do	1 35 03N.	145 33W.	8	4p, 8.	9	1,007.1	8W	SW. 9	W	WSW, 11 NNW, 9	SW-WSW.
Do	15 45N.	93 43W.	9	40, 9	9	1,011.5	N	N, 6	NNW	NNW, 9	N-W.
Do	38 36N.	140 42W.	9	90, 9	9	1,000.0	8W	SW, 8	W8W	SW. 8	SW-WSW.
Do	1 46 39N.	148 32W.	8	4p, 9	9	1,003.4	NNE	NNW, 8	NNW	NNW, 9	
Do	55 20N. 50 36N.	131 38W. 141 30W.	9	8a, 10	10 10	1 997. 0	SE	SE, 7	88E	8E, 8 NW, 8	
Do	12 36N.	149 36W.		4p, 10	11	1, 003. 7	NE	NW, 8 NE, 8	NE	NE, 8	
Do.	49 15N.	131 12W.	12	11p. 12	13	1 969, 2	SE	SE. 8	SE	ESE, 10	SE-SW.
Do	14 12N.	93 42W.	13	3a, 13	13	1,010.8	WNW	WNW. 4	NNE	N. 8	WNW-N.
Do	53 36N.	144 30W.	13	3a, 13	13	982.4	NE	NE, 8		NE. 8	NE-N.
Do	43 06N.	124 48W.	12	10a, 13	13	1,002.7	8E	88E, 9	8W	8, 10. NW, 8	88E-8.
D ₀	54 06N. 54 00N.	152 06W. 162 06W.	10 12 13 13 12 13 12	8a, 14	15	992. 9 979. 7	Wsw.	W, 5	NW	WSW, 11	W-WNW.
Jacobs and the Control of the							544	11 0 11 1 20 21 1			SW.
Do	56 36N.	147 36W.	25	8a, 24	25 24 26	994. 2	W	W, 3 NNE, 7	WNW	WNW, 0	NW-W.
Do	14 47N. 15 24N.	95 16W.	24	4p, 24	24	1,009.8	NAME	NNE, 7	NE	NNE, 10 NW. 9	(3 (2) (2) (1) (1)
Do	55 49N	93 42W. 134 54W.	25 24 25 25 26 27 28 27 28 28 28 30	6a, 28	25	1, 010. 5 908. 6	NNE	N. 8 WNW. 5	WNW	W, 8	WNW-W.
D0	55 42N. 14 24N.	93 18W.	26	6p, 26	27	1,005.4	NNW	NW. 2	NE	N. 0	NW-NNW.
Do	26 42N. 36 16N. 43 12N. 59 24N.	143 00W.	27	2a, 28	27 28 28	1, 006. 4	8W	W. 8	WNW	N, 0 WNW, 8	W-WNW.
Do.	36 16N.	127 57W.	28	4p, 28	28	995. 6	88E	88E, 8	88E	SSE, 8	None.
Do	43 12N.	126 06W.	27	18, 29	29	997.0	8E	88E, 8 88E, 10	8	SSE, 8 SSE, 10	
Do	59 24N.	149 54W.	28	2a, 29	28	988.8	NNW	NNE, 3	NNW	NNW, 8	NNW-NNE.
Do	43 30N. 1 23 12N.	127 00W.	28	48, 29	29	992.2	SSE	88E, 9	88W	SSE, 9	WOW NAME
Do	23 12N.	149 52W.	30	46, 30	30	1,009.5	W8W	W8W, 7 NNW, 8		NW, 8 NNW, 9	WSW-NNW.
Do	32 10N.	149 30W.	30	2p, 30	. 1	1,003.4	N	TATA M. 9	NNW	TATE AL . D	7474 34 -74 74 E'

¹ Position approximate.

Barometer uncorrected.

¹ December

WEATHER ON THE NORTH PACIFIC OCEAN

By WILLIS E. HURD

Atmospheric pressure.—For the eastern part of the North Pacific, two interesting pressure anomalies are noticeable for November. At Honolulu and Midway Island, near and in the stronghold of the usual high-pressure area, the average barometer was below the normal by 0.7 to 2.7 millibars (0.02 to 0.08 inch). At Dutch Harbor, near the heart of the usual low-pressure belt, the average barometer was above the normal by 9.6 millibars (0.28 inch). The Aleutian Low center this month lay in the Gulf of Alaska region, the mean pressure at Juneau being 1,006.5 millibars (29.73 inches). From this point along the cost to Mazatlan, the November barometer was close to normal. The lowest determinable pressure of the month was 966 millibars (28.53 inches), read at St. Paul Island on the 16th.

Table 1.—Averages, departures, and extremes of atmospheric pressure (sea level) at selected stations for the North Pacific Ocean and its shores, November 1941

Station	Average pressure	Departure from normal	Highest	Date	Lowest	Date
	Millibars	Millibars	Millibars		Millibars	
Barrow	1, 016. 1	+0.5	1,032	6, 27	987	30
Dutch Harbor	1,011.6	+9.6	1,032	27	972	16
St. Paul	1,009.5	+7.5	1,033	26	966	16
Juneau	1,006.8	-1.0	1,030	20	978	13
Tatoosh Island	1, 015. 9	+1.0	1,034	20	992	13
San Francisco	1, 018. 3	7	1,027	24	1,012	17
Mazatlan	1,011.9	3	1,014	8, 14, 29	1,009	5, 20, 21
Honolulu	1, 013. 9	-2.7	1,019	11	1,010	17
Midway Island	1, 017, 9	7	1,026	30	1,010	25
Guam	1, 010, 9	3	1,020	16	1,007	19

NOTE.—Data based on 1 daily observation only, except those for Juneau, Tatoosh Island, San Francisco, and Honolulu, which are based on 2 observations. Departures are computed from best available normals related to time of observations.

Extratropical cyclones and gales.—On the 2d and again on the 16th-17th deep cyclones appeared over the Aleutian Islands. Central pressures were well below 982 millibars (29 inches), and heavy storminess prevailed over a considerable area. Gales of force 9–10 were reported both north and south of the Alaska Peninsula on the 2d, and of force 11 south of the peninsula on the 17th.

For all western waters of the Pacific, reports are negligible to wanting, but for eastern waters, numerous cyclones of varying degrees intensity occurred in the Gulf of Alaska and on parts of the ocean between the Hawaiian Islands and the American mainland north of southern California. In middle latitudes, between about 135° and 150° W., depressions were rather frequent. They were of no great barometric depth, but caused gales of force 8 on several days between the 6th and the 30th. On the 8th and 9th, near 34°-36° N., 145°-148° W., winds of force 9 to 11 were encountered, with barometers no lower than 1,007 millibars (29.74 inches). Farther north, force 8-9 gales occurred on several days, with the highest wind, of force 11, and a low barometer of 977.7 millibars (28.87 inches), observed near 57° N., 139° W. A still lower barometer, 28.62 inches (uncorrected), was read on a ship in the midst of a force-10 gale, near 49° N., 131° W.

In near coastal waters of the United States there were several days with south to southeasterly gales ranging in force from 8 to 10. On the 2d, of force 8-9, they were mostly experienced off Washington and Oregon. Close in on the southern Oregon coast a force-10 gale was reported on the 13th, and again on the 29th, on which

date the barometer dropped to 992.2 millibars (29.30 inches). Off the central California coast a gale on the 28th attained a force of 8.

Tropical disturbances.—At least one tropical cyclone, of moderate intensity, formed in extreme southeastern waters. A ship on November 2 had a southeast wind of force 9, barometer 1,000.7 millibars (29.55 inches), near 15% N., 108° W. On the 4th a vessel near 17° N., 113° W., had a southeasterly gale of force 8, with nearly as low barometer.

It appears that another small cyclone in low latitudes occurred also on the 3d, since a ship near 7½° N., 89° W., had an east gale of force 9, preceded by north-northeasterly and succeeded in the afternoon by south-southeasterly winds. The barometer fell to 1,004.4 millibars (29.66 inches).

Intensified trade wind.—During much of the 10th a northeast trade wind of force 8 was experienced in the vicinity of 12° N., 149° W.

Tehuantepecers.—Northerly gales in and near the Gulf of Tehuantepec were reported as follows: Of force 8 on the 13th; of force 9 on the 25th, 26th, and 27th; and of force 10 on the 24th.

Fog.—Fog was particularly frequent in near coastal waters of California, where it was reported on 15 days. The greatest concentration was along the middle coast. It was reported on 2 days off Oregon and on 3 days off Lower California. A few scattered fogs occurred well at sea during the first 6 days of the month.

RIVER STAGES AND FLOODS

By BENNETT SWENSON

The interior of the country, following a period of excessive rainfall, was relatively dry during November. However, flooding continued from the previous month in portions of the lower Mississippi and Arkansas River Basins and in the upper Red River Basin. The flooding in the Arkansas River in November reached the highest stage since June 1833 in the reach from Webbers Falls, Okla., to slightly below Van Buren, Ark.

Light to moderate floods occurred in other sections as eastern Texas, Pecos River in Texas, Willamette River in Oregon and in portions of the upper Mississippi Valley.

In the more eastern States, where both September and October were extremely dry, the rainfall in November was much below normal. The river stages in this area, showed little change, remaining well below normal.

Atlantic Slope, East Gulf of Mexico and Ohio River Drainage.—Precipitation during the month was below normal except in Florida and Mississippi. The lack of moisture, which has been prevalent during most of the year, resulted in little changes in the river stages. Some increases in stages occurred from lowered temperatures, particularly in extreme northern sections, but generally the stages were well below normal.

Upper Mississippi Basin.—Heavy rains on October 31 and November 1, resulted in light to moderate flooding at a few points. The Wisconsin River overflowed its banks slightly at Knowlton, Wis., on the 2d and 3d, with a peak stage of 12.9 feet on the 2d. Light flooding occurred also in the lower portions of the Des Moines, Rock and Meramec Rivers during the first week of the month with stages from 1 to 2 feet above flood stage. Flood damage was slight.

A slight overflow occurred in the lower Illinois River at Havana and Beardstown, Ill., from the 4th to the 22d. A rise began in the Mississippi River proper early in the

month from the heavy rains on October 31. Further rains during the first week of November resulted in light overflows from Keokuk, Iowa, to Cape Girardeau, Mo. The gage at Cairo, Ill., showed a mean stage of 24.8 feet during the month, compared with a 60-year normal of 13.4 feet for November.

Missouri River Basin.—The Grand River in Missouri and the Osage River in Missouri and Kansas were in moderate flood during the first few days of November. These floods resulted largely from heavy rains on the last day of October. As greater floods had occurred in these rivers during October, little or no additional damage

resulted.

A slight overflow of .9 foot in the Solomon River at Beloit, Kans., on November 20, resulted in no appreciable

The extreme lower Missouri River continued in flood from the previous month. The crest reached 24.6 feet at Hermann, Mo., flood stage 21 feet, on November 4, and the river crested at 30.6 feet at St. Charles, Mo., flood stage 25 feet, on November 6. Stages about as high or higher had occurred at these points during October.

White River Basin.—Excessive rains during the latter part of October, resulted in moderately high floods, beginning on October 31 in the upper part of the basin at Black Rock and Calico Rock, Ark., and continuing until November 27 at the lowest gaging station, St. Charles, Ark. The total loss has been estimated at \$145,000, of which

\$100,000 was to matured crops.

Arkansas River Basin.-Overflows continued in the tributaries of the Arkansas River in Oklahoma and Kansas from the previous month. The flood in the Arkansas River from the vicinity of Webbers Falls, Okla., to a short distance below Van Buren, Ark., was approaching major proportions at the end of October. The river crested at Webbers Falls on November 1, with a stage of 35.8 feet, and at Fort Smith and Van Buren, Ark., on November 2-3, with stages of 37.3 and 35.8 feet, respectively. stages are the highest since the flood of June 1833, and exceed the stages in the April 1927 flood. As the flood progressed downstream, it decreased in intensity; at Little Rock, Ark., a crest of 26.3 feet occurred on November 7.

Considerable damage was caused by the high water, the heaviest damage occurring in the Fort Smith area. complete reports are not available at this time, a further report will be made on damages and other aspects of the

Red River Basin.-Heavy rains late in October, over the extreme upper Red River Basin, resulted in damaging floods in the smaller tributaries in Oklahoma and Texas as reported last month. The discharge from these streams caused the Red River to overflow its banks by 1 to 3 feet at Arthur City, Tex., and Index and Fulton, Ark., during the first week in November.

Lower Mississippi Basin.—Heavy rainfall over the upper St. Francis Basin on October 31, caused rising stages in the St. Francis River. The river reached a stage of 1.9 feet above flood stage at Fisk, Mo., on November 6.

West Gulf of Mexico drainage.—Local overflows occurred in the Trinity, Neches, and Sabine Rivers early in November. Damages estimated at \$5,000 were reported in the vicinity of Liberty, Tex., on the Trinity River. No

damage was reported along the Neches and Sabine Rivers. The flood in the Pecos River that began in the irrigation district south of Red Bluff Dam on October 25 continued above flood stage at Pecos, Tex., until November 6. Very little, if any, precipitation occurred during the entire period. The continued heavy flow was produced almost

entirely by the steady spilling of water over Red Bluff

Columbia River Basin.-Moderate flooding occurred in the Willamette River Basin from November 15-18 from heavy precipitation during the period 11-17th. On the night of the 14-15th, an area of approximately 6,640 square miles, received unusually heavy precipitation. The average 24-hour precipitation over this area was well

over 3 inches.

The following flood résumé is quoted from a report, Daily and Hourly Precipitation Supplement, Storm of November 11–17, 1941, Weather Bureau, in cooperation with Departments of War and Agriculture, by the Hydrologic Supervisor, Portland, Oreg.:

The area covered by the flood extended from the east side of the Willamette River in the vicinity of Corvallis to slightly above the junction of the Row River with the Coast Fork. This confluence occurs about 2½ miles north of Cottage Grove. Flood control dams under construction on the Coast Fork and Long Tom Rivers were completed to such a stage that they proved their effectiveness as flood barriers. The control of water at these two dams averted serious industrial and agricultural losses in the vicinity of Cottage Grove and Monroe. Extensive riprapping along the Willamette River, constructed by the United States Engineers, materially reduced bank erosion below Eugene. Channel development from the mouth of the Willamette River south to Albany aided considerably in speeding up run-off, thereby reducing flood crests in these reaches of the river. The streams which contributed the greatest volume of flood water were the Middle Fork of the Willamette and the Row River, although the McKenzie, Calapooya and Santiam were very important factors in producing the flood conditions. Maries, Luckiamute, Yamhill, Molalla, Tualatin, and Clackamas Rivers, while contributing some water, could be considered as rather minor factors in this flood.

Although wide distribution was given to accurate and timely warnings there was considerable degrees.

Although wide distribution was given to accurate and timely warnings, there was considerable damage. Had the flood occurred during the middle of October instead of the middle of November, agricultural losses would have been much more severe. Cover crops played a very important part in limiting soil erosion. Many of the wells in the flooded area were contaminated, which constitutes a potential danger, and it would be almost impossible to estimate the damage. An attempt has been made to classify losses as agricultural (erosion, crops, stock, fences, roads, etc.), industrial (including small businesses) and domestic (damaged household goods, heating plants, loss of foodstuff, etc., including reconditioning). Statistics of cost of rescue work are not available at this time. The estimated flood damages included in this résumé may show some

slight alterations when complete data are received.

Agriculture:			
Crops	87.	900.	00
Livestock and poultry	4.	200.	00
Damage to roads and highways	2	500.	00
Fences	1.	500.	00
Erosion.		000.	
Industrial loss:	,		
Manufacturing plants and equipment	10.	000.	00
Loss of business	3.	000.	00
Auto camps, garages, filling stations	8.	000.	00
Stores	,	500.	00
Logs		500.	00
Domestic:			
Damage and loss of furniture	5.	000.	00
Food supplies		400.	00
Total	143,	500.	00

ESTIMATED FLOOD LOSSES AND SAVINGS FOR NOVEMBER 1941 1

River and drainage	Tangi- ble prop- erty	Ma- tured crops	Pro- spec- tive erops	Live- stock and other mova- ble farm prop- erty	Sus- pen- sion of busi- ness	Total losses	Total sav- ings
Upper Mississippi Busin Des Moines River Mississippi River White Ricer Busin		\$2,000 6,000				\$2,000 6,000	\$2,000
White River (Arkansas). West Gulf of Mezico	\$35,000	100, 000	\$5,000	\$5,000		145, 000	75, 000
Trinity River	4,000				\$1,000	5,000	10,000
Willamette River 2	******					2 143, 500	

Complete figures for Arkansas River not available.
 See text for break-down of losses.

ESTIMATED FLOOD LOSSES AND SAVINGS FOR OCTOBER 1941

	1	ī					_
River and drainage	Tangi- ble prop- erty	Ma- tured erops	Pro- spective erops	Live- stock and other mova- ble farm prop- erty	Suspen- sion of busi- ness	Total losses	Total savings
Missouri River Basin							
Solomon River Smoky Hill River Blue River Kansas River Big Stranger Creek (Kans.) Osage River	234, 000 71, 000 165, 600 100, 000	\$20,000 350,000 140,000 1,319,900 400,000 302,500	141, 000 50, 000 656, 150 100, 000	\$72, 500 10, 000 286, 000	190, 000	277, 000 2, 617, 650 600, 000	\$10,000 35,000 502,000
White River Basin							
White River	500	60, 000	*******		5, 000	65, 500	
Cow Creek 2 Cottonwood River. Neosho River (Kans.) North Canadian River 3 Canadian River 3 West Gulf of Mexico	285, 000 183, 500 308, 000 28, 000	152,000	272, 150 2, 900	26, 500 1, 200	26, 250	1, 326, 900 466, 850	320,000
drainage Pecos River 3 Rio Grande 3						42, 273, 380 71, 170	200, 000
Rio Grande	25, 000	1,000	15, 000	•••••	10, 000		
Gila River (New Mex.)						245, 200	

lila River (New Mex.) 4 245, 200 245, 200 245, 200 245, 200 25 2 At and in vicinity of Hutchinson, Kans. 4 For month of September. 4 Supersedes figure published in September Review 3 \$500,000 loss in Arizona included in September Review.

FLOOD-STAGE REPORT, NOVEMBER 1941

[All dates in November unless otherwise specified]

River and station	Flood	Above stages-		C	rest
	stage	From-	то-	Stage	Date
MISSISSIPPI SYSTEM					
Upper Mississippi Basin					
	Feet			Feet	
Wisconsin: Knowlton, Wis	12	2	3	12.9	2
Rock: Moline, Ill Des Moines:	10	1	9	10.3	3-5
Tracy, Iowa	14	1	3	15.6	1-2
Eddyville, Iowa	15	1	4	17.4	2
Ottumwa, Iowa	9	2	4	10. 2	2
Illinois:					
Havana, Ill	14	6	18	14.6	11
Beardstown, Ill	14	4	22	15.5	13-18
Meramec: Pacific, Mo	11	2	3	12.6	2
Mississippi:					
Keokuk, Iowa	12	5	6	12.5	5
Quincy, Ill	14	4	9	14.9	0
Hannibal, Mo	13	1	16	15.1	7
Louisiana, Mo	12	1	14	13.6	7

FLOOD-STAGE REPORT, NOVEMBER 1941-Continued

[All dates in November unless otherwise specified]

River and station	Flood	Above stages		C	rest
ELIVA SEJUMEN	stage	From-	То-	Stage	Date
MISSISSIPPI SYSTEM—Continued		ET 79			117 - 111
Upper Mississippi Basin-Con.			111111111111111111111111111111111111111		
dississippi—Continued.	Feet			Feet	
Grafton, III	18	4	11	19.3	
Chester, Ill. Cape Girardeau, Mo	27 32	3 8	11	29.1 32.1	9-1
Missouri Basin	-				
olomon: Beloit, Kans	18	20	20	18.9	2
Frand: Gallatin, Mo	20	1	3		
Chillicothe, Mo	18 12	Oct. 31	5 6	22. 7 27. 2 13. 3	
Brunswick, Mo					
Quenemo, Kans	30 24	1 1	2 2	32.0 25.1	
Trading Post Kans	25 24	1	5	28.3 25.75	
LaCygne, Kans. Trading Post, Kans. Osceola, Mo.	20	(1)	10	32. 5	
Lakeside, Mo	60	(1)	11	61.7	Oct. 31 Nov.
St. Thomas, Mo	23	(1)	9	31.7	_107.
fissouri: Hermann, Mo	21	(1)	8	24.6	
St. Charles, Mo	25	Oct. 31	10	30. 6	
lack: White Basin				100	
Poplar Bluff, Mo. Black Rock, Ark	16 14	Oct. 31	3 9	17. 3 18. 5	
hite:					
Calico Rock, Ark Batesville, Ark	18 23	Oct. 31 Oct. 31	5	27. 4 30. 9	
Newport, Ark	26 21	3 4	17	28.1	9-1
Newport, Ark. Georgetown, Ark. Des Arc, Ark. Clarendon, Ark.	24	8	17	26.3	1
Clarendon, Ark	26 25	10	23 27	27. 7 26. 1	15-1
Arkansas Basin	-		LINY I		
erdigris: Sageeyah, Okla	35	(1)	5	42.6	1
Okay, Okla	27	(1)		30.8	,
LeRoy, Kans	23 15	1 1	1 2	23.75 16.6	
Chanute, Kans	20	i i	3	22.2	
Parsons, Kans	22 17	8	6	27. 4 25. 0	Oct. 3
Ft. Gibson, Okla	22	(4)	7	35.4	
orth Canadian: Yukon, Okla	8	(1)	(3)		(3)
East Oklahoma City, Okla	14 21		Oct. 31		
oteau: Poteau, Oklaetit Jean: Danville, Ark	20	(1)	1	28. 0 24. 0	
rkansas: Webbers Falls, Okla	23	(1)		35.8	
Fort Smith, Ark	22	8	10	37.3	
Van Buren, Ark	22 22 22	Oet. 31	10	35. 8 33. 0	2-1
Dardanelle, Ark	22	6)	11	32.0	
Morrilton, Ark Little Rock, Ark	20 23	(') 2	11	29. 1 26. 3	
Pine Bluff, Ark	25	2	12	30.6	8-1
Red Basin	20	((i)	4	4 25. 5	
alphur: Ringo Crossing, Texed:	20	23	23	4 20. 0	2
Arthur City, Tex	27	2	4	28.3	
Index, ArkFulton, Ark	25 25	4	7 9	26.3 28.0	
Lower Mississippi Basin				200	
Francis: Fisk, Mo	20	2	9	21.85	
oldwater: Coldwater, Miss	13	1 23	26	13.7 13.7	2
WEST GULF OF MEXICO DRAINAGE		` -			
abine: Logansport, La. eches: Rockland, Tex. ast Fork of Trinity: Rockwall, Tex.	25 22	1 1	5	25. 8 24. 9	
ast Fork of Trinity: Rockwall, Tex.	10	Oct. 31	8	11.3	
rinity: Liberty, Tex	24	1	9	26.7 14.1	Oct. 2
ecos: Pecos, Tex	13	Oct. 25	6	14.0	1-
PACIFIC SLOPE DRAINAGE Columbia Basin					
liddle Fork of Willamette: Eula,					
Oreg	13	15	15	13.3	1
Oreg	9	15	16	10.4	1/
cKenzie: Leaburg, Oreg ong Tom: Monroe, Oreg untiam: Jefferson, Oreg	12 10	15 17	16 18	15. 4 10. 7	10
intiam: Jefferson, Oreg.	13	15	17	16. 55	16
Illamette: Eugene, Oreg	12	15	16	15.0	18
Harrisburg, Oreg	10	15	18	15.6	16

Continued from preceding month.
 Continued into following month.
 Crest occurred in October; high water returned slowly to main channel of stream.
 Gage out; stages estimated.

CLIMATOLOGICAL DATA

CONDENSED CLIMATOLOGICAL SUMMARY OF TEMPERATURE AND PRECIPITATION BY SECTIONS

[For description of tables, see REVIEW, January 1940, p. 32]

In the following table are given for the various sections of the climatological service of the Weather Bureau the monthly average temperature and total rainfall; the stations reporting the highest and lowest temperatures, with dates of occurrence; the stations reporting the greatest and least total precipitation; and other data as indicated by the

several headings.

The mean temperature for each section, the highest and lowest temperatures, the average precipitation, and the

greatest and least monthly amounts are found by using all trustworthy records available.

The mean departures from normal temperatures and precipitation are based only on records from stations that have 10 or more years of observations. Of course, the number of such records is smaller than the total number of

			T	empe	rature						Precipita	ation		
	938	Ho.		Me	onthly	extremes			986	mon T	Greatest monthly		Least monthly	
Section	Section average	Departure from	Station	Highest	Date	Station	Lowest	Date	Section average	Departure from	Station	Amount	Station	Amount
Alabama Arizona Arkansas California Colorado	°F. 54.3 50.9 49.9 53.3 36.9	°F. 0.0 +.3 -1.3 +1.0 +1.8	Geneva 2 stations Camden 2 stations Fort Morgan	93 87 98	20 16 16 15 15	Valley Head	-8 18	1 12 20 1 24 18 23	In. 2.51 1.00 2.31 1.95 .42	In. -0.90 .00 -1.45 33 35	Wadley	3. 23 5. 98 14. 50	Clayton	
Florida	37.1	+.8 +.4 +1.7 +2.1 +1.7	Raiford. Brunswick. Midway Fairfield. Tell City.	89 74 79	3 1 11 17 18	Mason Blairsville Driggs 4 stations Wheatfield	20 14 -17 7 7	9 12 20 24 24	3. 40 1. 68 1. 93 2. 63 2. 84	+1.20 93 10 +.04 20	Fort Landerdale Taylorsville Roland Paris Valparaiso	8. 23 4. 96 6. 30 4. 64 4. 67	Mount Pleasant Hawkinsville	1.00
Iowa Kansas Kentucky Louisiana Maryland-Delaware	45.1	+3.7 +1.9 4 -2.6 +2.8	2 stations Scott City Quicksand Schriever 2 stations	78 87 85 86 78	17 15 17 20 118	Sibley 2 stations Lynch (near) 2 stations do	2 -4 9 23 11	23 23 11 25 25	1.71 .88 2.80 2.83 1.84	+.10 41 59 -1.06 70	Alta	3. 96 3. 21 4. 00 5. 46 3. 17	Melrose. Bird City (near) Pikeville. Angola. Pocomoke City, Md.	1.5
Michigan	38. 8 32. 9 53. 0 45. 5 35. 3	+2.7 +3.3 -2.0 +1.2 +3.2	Holland Farmington Magnolia 3 stations Winifred	85	19 18 3 116 11	Watersmeet Hallock Rochdale Unionville Frazer	-3	24	2.84 .57 3.62 2.29 1.33	+. 33 59 +. 01 39 +. 31	Detour	5.02 2.55 7.66 4.57	Stephenson 4 stations Bay St. Louis Grant City Whitehall (near)	1.10
Nebraska Nevada New England New Jersey New Mexico	40. 5 40. 5 40. 7 46. 8 43. 5	+3.2 +.6 +2.7 +3.1 +1.1	Beaver City	85 89 78 78 84	12 5 21 20 1 3	Nenzel (near) 3 stations. 2 stations. Layton. 2 stations.	-20 -11 -2 13 -12	23 1 20 30 25 1 20	.59 .74 2.96 2.90 .39	16 +.11 49 30 26	Tekamah	2. 76 2. 56 5. 57 4. 03 2. 27	2 stationsdo. Provincetown, Mass. Atlantic City	.0
New York		+4.3	Voorheesville Kinston	82	19	Banners Elk		1 13 25	2.37 1.36	62 -1. 29	New York University. Highlands	4.32	Andover	
North Carolina North Dakota Ohio Oklahoma	30.5 43.8 49.9	+1.2 +3.8 +2.3 +.2	Ellendale	69 77 86	12 18 16	Banners Elk Portal McArthur 2 stations	12 9	25 22 25 23	1. 89 1. 36	18 80 86	Athens	1. 21 3. 33 3. 10	New Bern Fort Yates 2 stations Kenton	1. 1:
Oregon	42.7 44.2 54.8 36.8	+2.3 +2.8 +1.0 +3.6	PowersShawmont2 stationsFairfax	83 86	7 20 1 1 12	Wiekiup Dam Coudersport 6 stations Ardmore	-7 9 21 -18	22 25 1 9 23	3.71 2.46 1.08 .23	+.06 39 -1.25 38		17.06 4.77 4.53 .80	Andrews Kylertown Winnsboro 4 stations	.8
Tennessee		8	Celina	100	17	Erwin		13	2.79	74	Diekson	4.35	Erwin	
Texas Utah Virginia Washington West Virginia	55.8 37.7 48.5 42.6 44.3	-1.3 +.3 +1.9 +2.9 +1.1	Alice St. George Columbia 2 stations do	77	3 6 2 17	Stratford	-10 9 9 6	23 1 21 25 22 25 22	1. 20 1. 17 1. 27 4. 21 2. 31	98 +. 23 -1. 16 76 42	Big Four	5. 64 5. 20 3. 79 18. 62 3. 88	2 stationsdo	1
Wisconsin Wyoming	37. 1 33. 9	+3.7 +2.4	Richland Center Hawk Springs	73	17 16	Minoequa Yoder		22 23	1.36	49 +. 03	Racine	2.58 2.95	SuperiorShawnee	.4
Alaska (October) Hawaii Puerto Rico	29. 4 72. 2 77. 3	7 +.8 +1.0	ParkMcKinley Waianae 6 stations	91	1 20 6	2 Stations Haleakala Guineo Reservoir	-15	15 30 12	3.78 3.90 6.01	+. 22 -3. 79 99	Hakalau	46. 64 15. 24 12. 43	Wiseman 3 stations Santa Isabel	.00

¹ Other dates also.

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS

			on of nents		Pressu	ire	1 6	Те	mpe	erat	ure	of th	e air				the		Pre	cipita	tion	000	OT	Wind			100	124	-	tenths		ground
District and station	Barometer above sea	Thermometer above	Anemometer above	Station, reduced to mean of 24 hours	Sea level, reduced to mean of 24 hours	Departure from nor- mal	Mean max.+ mean min.+2	Departure from nor-	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet thermometer	Mean temperature of dewpoint	Mean relative humidity	Total	Departure from nor-	Days with 0.01 inch,	Average hourly ve-	Prevailing direction		Direction	y	Clear days	Partly cloudy days	Cloudy days	Average cloudiness, ten	Total snowfall	Snow, sleet, and ice on gr
New England	Ft.	-	-	In.	In.	In.	° F.		°F	-	-	°F	-		° F	-	° F.	-		In. -0.7	-	Miles					_		-	0-10 5, 3		In
Eastport Greenville, Maine Portland, Maine 1 Concord 2 Burlington 3 Northfield Boston 1 Nantucket Block Island Providence 1 Hartford 1 New Haven 2 Middle Atlantic States	120 150 150 150 100	0 3 3 9 5 3 1 1 6 1 1 4 4 3 2 1 1 6 1 1 6 1 7 7 7 7 7 7 7 7 7 7 7 7 7	6 41 5 36 4 72 1 48 2 60 63 62 63 64 74 65 74 153	28. 77 5 29. 86 2 29. 67 3 29. 52 2 29. 87 3 30. 01 3 30. 00 2 29. 83 2 29. 84 2 29. 84 2 29. 84	29. 96 29. 98 29. 98 29. 97 29. 99 30. 00 30. 03 30. 04 30. 04 30. 02 30. 04	03 07 08 06 05 02 02 04 06 03	31. 8 39. 9 39. 8 39. 3 37. 8 48. 0 48. 6 48. 8 46. 5 45. 2 47. 8	+2.5 +.5 +2.1 +3.0 +5.0 +4.2 +4.2	56 71 72 66 69 75 62 63 72 71	5 20 19 19 20 19 20 7 19	41 50 52 47 47 57 55 54 56 56	-2 11 9 12 12 26 33 30 21 21 28	30 25 25 30 13 13 25 25 25 25 25 25	23 29 28 32 28 40 42 43 36 34 39	25 31 37 45 26 38 29 21 19 32 34 24	37 30 34 34 35 41 45 45 41 39 40	26 30 29 30 35 41 40 36 35	75 76 74 66 79 74 75 78 76 69	1. 79 2. 69 2. 89 3. 34 1. 35 2. 35 2. 40 2. 02 2. 38 2. 79 3. 05	-1.8 +.3 -1.3 6 -1.1 -1.2 -1.2 3	8 13 8 8 9 9 8 6 8 7 7	8. 3 6. 8 10. 7 8. 1 11. 1 11. 4 16. 7 8. 3	nw. w. nw. s. sw. sw. sw. sw. sw.	34 36 28 34 24 28 32 42 30 28 23	W. nw. s. sw. w. sw. nw. sw.	7 24 16 25 20 21 23 16 20 16 7	7 16 8 3 4 9 13 18 13 9 11	15 5 14 13 11 6 11 13 14	13 16 6 7 22 12 8 6 6 6 8 5	6. 3 4. 6 5. 3	T 3.9 T 1.3 .5 1.1 T .0 .0 T T .0	1.
Albany 1 Binghamton New York Harrisburg 1 Philadelphia 2 Reading Scranton Atlantic City Trenton Baltimore 3 Washington 3 Cape Henry Lynchburg Norfolk 3 Richmond 1	97 871 314 374 114 323 805 52 190 123 112 18 686 91	1 57 4 418 4 36 4 174 4 174 3 42 5 72 32 33 89 106 8 8 8 144 86	7 79 5 454 49 367 7 306 2 104 172 107 2 15 8 5 5 54 184 125	29. 08 29. 70 29. 66 29. 94 29. 71 29. 16 30. 01 29. 86 29. 94 29. 96 30. 07 29. 36 30. 01	30. 03 30. 04 30. 07 30. 07 30. 04 30. 07 30. 06 30. 08 30. 08 30. 09 30. 12 30. 11	06 05 04 03 05 03 04 01	44. 2 49. 6 46. 5 50. 4 47. 8 51. 0 48. 3 52. 0 50. 4 54. 6 50. 3 55. 9 51. 4	+4.7 +4.0 +4.3 +5.4 +3.9 +5.7 +5.2 +2.5 +3.1 +4.5 +3.1	70 73 73 69 66 73 77 75 77 77	5 20 20 19 30 20 20 20 1 14	52 53 57 57 58 57 53 58 58 61 61 62 64 65 65	23 31 23 32 26 23 29 27 32 28 35	25 25 25 25 25 25 25 25 13 25 12	33 36 42 36 42 38 36 44 39 43 39 47 37 47 38	38 32 26 38 25 30 29 32 29 39 20 46 30 42	37 39 42 39 41 40 45 41 42 41 48 40 46 39	34 35 33 37 33 40 35 37 36 43 33 43	72 62 69 76 63 70 67 68 66 71 62 82 73	1. 44 2. 43 2. 78 1. 92 2. 36 1. 74 1. 92 1. 31 2. 66 1. 32 . 81 . 59 1. 28 1. 57 . 46	-1.3 -0 -2 -3 -1.0 -1.5 -1.1 -1.2 -1.6 -1.8 -1.8	9 6 4 5 5 6 4 5 5 5 6 3	9. 2 6. 2 15. 9 6. 7 11. 9 10. 7 6. 5 14. 7 8. 1 9. 3 5. 8 10. 1 6. 3 8. 3 7. 1	W. SW. W. SW. W. S. SW. NW. SW. W. SW. W. SW. SW. SW. SW. SW. SW.	31 22 46 28 33 34 31 38 26 29 20 34 23 23 21	se. nw. nw. s. e. nw. s. s. nw. n.	24 1 21 16 1 16 23 20 26 24 1 24 6	4 3 13 11 10 11 8 12 9 13 15 15 14 16 17	14	13 18 4 13 6 9 13 8 9 5 5 8 9 5	6.5 7.5 4.3 5.5 4.6 4.9 5.7 4.6 5.3 4.5 4.1 4.0 4.2 3.3	T .0 T .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	
Charlotte ² Greensboro ¹ Hatteras Raleigh ¹ Wilmington Charleston ² Columbia, S. C. ²	2, 253 779 886 11 376 72 48 347 1, 040 182 65 43	68 6 5 27 73 11 70 70 62 73	86 56 50 69 107 92 91 78 77 152	29. 27 29. 17 30. 08 29. 71 30. 05 29. 74 29. 00 29. 91	30. 11 30. 13 30. 09 30. 12 30. 11 30. 10 30. 11 30. 12 30. 11 30. 10	02 01 01 02 01 02 02 02	57. 7 60. 2 55. 9 52. 6	+2.1 +1.8 +2.2 +2.3 +1.7 +2.1 +1.9 +3.0 +1.6 +3.3 +1.4 +2.4	79 76 80 81 80 78	16 16 1		22 29 20 38 27 32 36 29 29 30 36 40	12 26 12 12 26 26 26 9 26 26	34 41 33 52 40 47 52 44 42 44 51 55	49 37 49 20 43 33 25 37 37 39 30 28	39 42 39 54 44 50 47 47 52 56	34 37 34 51 39 48 44 41 48 54	86	1. 47 1. 28 . 79 . 64 3. 24 . 51 2. 36 . 46 1. 31 . 57 1. 82 3. 57	-0.9 -1.0 -1.5 -1.2 -1.8 -1.6 +.2 -1.5 -1.9 -1.8 -3 +1.6 +3.4	. 7 6 9 4 2 5 3 7 2 6	7. 5 5. 9 6. 9 11. 4 7. 5 8. 0 9. 8 7. 5 6. 4 5. 1 9. 2 7. 2	sw. sw. n. sw. n. ne. sw. nw. ne.	25 22 24 31 29 27 25 27 26 19 25 24		24 6 1 24 6 1 17 6 8 6 15 14	15 17 15 16 15 19 12 18 18 16 14 8	7 8 5 4 7 3 11 7 8 7 7	5 10 10 8 8 7 5 4 7 9 11	4.0 3.7 3.4 4.1 4.2 3.9 4.7 3.5 3.1 3.7 4.3 5.5	T .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	
Key West ³	21 25 35	124	168	29, 99 29, 98 30, 01	30. 01 30. 01 30. 05	01 05 03	76. 3 74. 6 69. 2	+2.0 +2.8	88 85 85	1 1 23	81 80 77	58	10	71 69 61	15 18 26	71 67 63	66	83 87 83	5, 67 7, 59 4, 66 4, 75	+5.4 +1.8 +3.0	10 15 9	9. 3 10. 5 10. 3		27 27 30	S. SW.	6 5 6	6	10 11 10	10 13	5, 8 5, 3 6, 5 5, 5	.0	
East Gulf States Atlanta 1 Macon 2 Thomasville Apalachicola Pensacola Anniston Birmingham 2 Mobile 2 Moridan 2 Vicksburg 2 New Orleans 2 West Gulf States	1, 173 370 273 35 56 741 700 57 218 375 247 53	79 49 11 54 9 11 86 92	87 58 79 48 161 105 92 102	29, 71 29, 82 30, 04	30. 08 30. 10 30. 14 30. 11 30. 12 30. 14 30. 13	02 +. 01 01 +. 02 .00 .00 +. 02 +. 01	59. 2 52. 0 53. 6 58. 0 56. 6 52. 8 54. 4 60. 2	+.8 +.5 +.5 -1.0 +.1 3 6 +.8 -1.4 -2.2	78 85 84 78 76 77 78 78 78 78	1 17 1 20 17 18 19 19 18 18	69	29 33 41 32 24 28 33 33 28	12 26 26 9 12 25 9 26 26 25	42 47 54 50 40 43 47	36 37 38 24 29 42 34 30 31 38 29 22	44 47 56 52 43 51 48 45 43 54	53 48 41 47 44 43 41 50	70 70 80 73 81 78 76 86 88 75	2. 61 1. 79 1. 47 . 45 4. 31 2. 29 2. 57 1. 67 3. 72 1. 34 1. 79 5. 13 1. 73 1. 69	-0.7 -1.0 +1.2 -1.4 -1.6 +.1 -1.9 -1.5 +1.4 -1.4	5 9		s. n. ne. nw. n. n. n.	20 27 26 18 17	se. n. nw. s. nw.	24 4 22 24 23 22 8	17 11 13 12 10 13 11 18 14 12 14	8 8 11 13 7 10 6	8 6 11 9 7 7 10 9 6 10 11 9	4.5 4.0 4.5 4.8 4.6 4.7 5.0 3.7 4.6 4.8 4.5	T .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0
Shreveport 3 Bentonville 1 Fort Smith Little Rock 3 Austin 3 Brownsville 2 Corpus Christi 2 Dallas 1 Fort Worth 1 Jalveston 3 Houston 3 Palestine Port Arthur Jan Antonio 1 Ohio Valley and	249 303 463 357 605 57 20 512 679 54 138 510 34 693	92 12 57 94 68 88 11 6 35 106 159 64 59 28	227 51 82 102 90 96 78 46 56 114 190 72 134 59	28. 70 29. 74 30. 00 30. 07 29. 39 30. 05 29. 97 20. 60 30. 08 29. 37	30, 11 30, 06 30, 09 30, 12 30, 12 30, 11 30, 13	02 01 +. 01 +. 02 +. 02 +. 02 +. 03 +. 03	53. 6 47. 4 50. 8 51. 2 58. 1 67. 4 64. 2 55. 2 55. 2 60. 6 59. 8 55. 8 65. 8	-2.4 +.7 2 4 +.2 1 2.7 -1.2 -1.8	78 83 80 84 86 82 82 82 84 77 83 80 76	16 16 3 3 3 16 16 16 3 3	65 58 61 61 70 75 71 68 67 66 66 67 72	20 26 28 29 46 42 24	10 24 25 25 24 24 24 24 24 24 24 24 24 24 24 24 24	41	36 30 29 25 39 37 17 27 31 26 39	44 61 57 47 48 55 51 48 52 52	59 55 43 44 52 48 43 48 49	80 83 85 73 75 79 81 70 75 77	4. 10 2. 80 2. 35 1. 29 1. 24 1. 38 .79 .67 1. 06 1. 52 1. 71 4. 03 2. 65 .47	+.4 2 5 -2.9 -1.1 6 -1.2 -1.9 -1.4 -1.8 -2.1 +.6 4 -1.4	5 8 6 6 4 6 6 9 4 10 6	9.6 8.8 9.2	n. n. se. s. n. se. s. n.	21 23 24 21 25 27 31 31 36 31 21 34	nw. s. nw. n. n. n. n. n. n. n. n. n. n.	18 7 5 5 23 5 17 5 5 5 5 5 5	13 16 12 9 4 12 13 12 14 15 13	13	6 - 6 - 7 - 8 - 10 - 13 11 8 8 8 9 7 6 13	5. 1 4. 6 6. 2 5. 0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	.00
Tennessee Chattanooga 1 Knoxville 5 Memphis 3 Nashville 1 Exington Ouisville 4 Counsville 1 Indianapolis 3 Cerre Haute 2 Columbus 5 Columbus 5	762 995 399 546 989 525 431 823 575 627 822	21 66 78 5 6 106 5 98 68 11	84 86 72 120 38 129 149 51	29. 06 29. 69 29. 54 29. 04 29. 53 29. 62 29. 16 29. 45	30. 13 30. 13 30. 13 30. 10 30. 10 30. 06 30. 08 30. 10	0.00 +.01 +.01 +.01 +.01 02 02 04	47. 8 - 48. 0 49. 0 47. 9 - 46. 2 47. 6 45. 1 - 45. 6 45. 9 - 45. 9 - 45. 9	+.1 -2.7 +1.4 +.9 +3.3	74 1 78 1 77 1 77 1 75 1 75 1 73 1 73 1 72 1	17 8 16 6 17 6 17 8 17 8 18 5 18 5	61 59 60 60 57 56 55 53 54 55 53	24 26 25 23 20 26 24 22 20 23 24	25 3 12 3 25 3 12 3 25 3 25 3 25 3 24 3 24 3 24 3 24 3	36 35 39 35 38 38	42 35 38 41 36 31 38 32 32 32 33	40 40 42 41 40 39 38 38 38 39 38	37 37 39 37 35 36 35 36 36 36	81 77 81 76 76 79 83 83 81	2. 80 2. 55 1. 69 2. 81 3. 17 1. 84 2. 22 2. 22 3. 19 1. 53	-1.0 -2.6 -7.7 -2.2 -1.8 -1.5 -1.1 -1.3 -1.5	6 6 7 7 7 11 8 7 9 10 9	4.8 6.7 6.9 8.4 7.0 8.1 9.6 7.9	sw.	19 21 30 30 26 25 30 26	w. w. n. w. sw. sw. sw. sw. sw.	7 20 1	13 15 15 11 12 12 12 11 12 13 10	3 4	12 12 11	5. 1 4. 6 4. 9	T T .0 T .3 T T 1.5 7.7 T .3	.0

See footnotes at end of table.

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

		vat			1	Press	ire			Теп	per	atu	re o	f the	air				dew-	1	Pre	eipitati	on		V	Vind						2		ground
	ses	above		above	18 to	5	orma	nean		ormal							office	ometer	re of the	midity		ormal	more	veloc-	no		aximu			days		ss, tenths		ice on
District and station	Barometer above				Station, reduced mean of 24 bours	Sea level, reduced	Departure from normal	Mean max.+mean		Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet thermometer	Mean temperature	Mean relative humidity	Total	Departure from norma	Days with 0.01, or more	Average hourly ity	Prevailing direction	Miles per hour	Direction	Date	Clear days	-	Cloudy days	Average cloudiness,	Total snowfall	Snow, sleet, and
Ohio Valley and Tennessee—Con. ayton 2	Ft. 90 1, 94 63 84	F 1	7. 86 61 77 39	Ft. 213 78 84 54	In. 29, 10 28, 04 29, 40 29, 11	In. 30. 6	In 18 +. 10 17	12 4 12 4 13 4	5.0 2.2 5.6 1.7	° F. +3.0 +1.9 +1.8	°F. 70 74 74 71	17 17 18 19	°F. 52 55 56 53	° F. 22 14 20 22	24 25 25 25 25		° F. 32 48 37 32	o F. 38 33 30 38	o F 34 22 34 35	% 80 74 72 68	13.34	In1.2 -1.0 -1.0 -0.8	7	5.8 5.4	W. 50.	34 21 18 36	W.	1 7 20 1	11 10 12 10	5 5 9 7		0-10 5.5 5.7 4.9 5.8	T T	1
Lower Lake Region uffalo 1 nation hacea swego cochester 1 region 1 region 2 nation 1 nation 1 nation 1 nation 2 nation 2 nation 3	1 71	8 6 5 3 6 4 2 9	643 10 77 71 5 57 27 5 79 69 5	180 61 100 85 69 51 81 54 67 87 87	29. 14 29. 67 29. 47 29. 32 29. 22 29. 14 29. 32 29. 16 29. 16	29. 1 29. 1 29. 1 3 29. 1 3 30. 1 2 30. 1	05 06 09 01 01 01	307 44 007 44 006 44 005 4 004 4 006 4 006 4	3. 8 3. 2 3. 6 3. 2 3. 3 5. 4 3. 2 4. 0 2. 8 1. 4	+3.9 +4.4 +4.3 +5.0 +4.3 +4.0 +2.9 +2.4	73 71 70 71 70 70 70	19	49 46 52 50 51 51 51 51 50 50	28 14 22 28 22 20 27 22 21 21 21 21 21 22 21 22 21 22 21 22 22	17 30 17 17 17 17 17 25 25 25 25 25 25 25	39 30 36 37 36 35 40 36 37 36 33 36	26 36 28 31 32 41 24 31 31 28 34 24	38 31 36 36 36 38 38 38 38 38	3 3 3 3	75 79 6 71 6 78 6 78 6 78 6 77 6 80 6 86 77	3. 06 2. 51 1. 78 2. 61 1. 05 1. 93 2. 10 1. 11 1. 34 1. 63 2. 25 1. 78	.0 6 8 -1.5 8 -1.2 -1.5 -1.0 8 7	11 16 9 9 9 9 9		SW. SW. SW. SW. SW. SW. W.	52 29 30 30 38 36 25 34 27 30 31	sw.	7 21 1 26 21 7 7 7 7 7 2 1 1	2	8 5 8 8 6 4 5 10 10 8	19 23 19 19 19 21 24 18 18 18 13 12 15	7.6	8.0 .9 .6 .2 .5 2.3 .5 .1 1.1	
Upper Lake Region seanaba	61 67 67 61 61	2 7 8 4 4 3 7	5 1 70 5 44 11 7 109 33 5	89 72 244 90 73 52 131 141 66 47	29. 0 29. 2 29. 2 29. 2 29. 2 29. 2	29.	01 03 05 07 01 89 04 98	10 3 10 3 10 4 11 3 12 3 06 4 10 3 07 4	8.1 9.0 6.4 2.7 1.2 5.6 4.4 3.2 8.4 0.0	+3.3 +4.6 +3.3 +4.3 +3.7 +2.3 +2.4 +3.1 +4.4	66 60 71 69 65 64 70 66 67	15 19 19 19 19	45 42 48 48 41 39 49 45 47 38	2 11 26 22 13 14 15 16 11 16	24 24 24 24 36 24 24 24 24 24 24 24 24 24 24 24 24 24	33 30 37 34 31 29 37 32 33 25	28 28 28 27 21 27 21 22 26 26		1			+1.1 9 +.4 +.5 -0 -1.0 3 -1.1	13 13 14 18 10 6	11.6 13.5 10.3 9.1	DW. SW. SW. DW. W. SW.	32 40 36 26 31 38 28 31 34 34	BO. SW. SW.	1 1 1 25 26 1 1 20 20	1 1 6 4 2 2 7 6 6 8	8 4 8	19 16 15 20 24	7.8 6.9 6.7 7.9 8.7	8. 7 1. 1 5. 4 1. 7 15. 3 13. 7 5. 2 4. 8	1 4 7 3 7 2 8 1
rand Forks	94 1, 67 1, 47 2, 60 83 1, 87	10 17 18 12 12 12	50 4 11 4 11 42	38 71	28. 9 28. 1 28. 3 27. 2 29. 0	4 29. 8 30. 6 29. 3 36.	99 02 99 02	08 3 05 3 07 2	0.5 1.4 2.5 7.9 4.2 8.9 2.1	+4.2 +4.3 +3.4 +4.9	60 62 55 65 50	12 14 14 11 3 14	40	1111	2 2 2 2 2 2 2 2 2	24 24 21 24 21 24 21 21 24 21 24	31 36 27 42 26 30	2 2 2 2 2 2 2 2 2	8 2 9 2 6 2 6 2 9 2	81 5 81 5 76 4 85 6	.00 .31 .41	8 2 3	10		nw.	27 36 28	nw.	20 14 3	8			6. 9	1.6 3.2 3.6	8 6 5
Upper Mississippi Valley Minneapolis-St. Paul, Minn.¹ pringfield, Minn. a. Crosse ² Madison ² Charles City. Davenport ³ Des Moines ³ Dubuque Keokuk Cairo. Peoria ² springfield, Ill.² st. Louis ³ L. Louis ³ L. Louis ³	61 61 63 64 66	25 14 74 15 06 30 99	32 4 11 70 10 66 5 60 64 87 11 5	61 42 48 78 51 161 99 79 78 93 45 191 303	29. 3 29. 2 29. 3 29. 7 29. 3	8 30. 4 30. 8 30.	99 98 98 02 03 00 05	00 3 00 3 00 3 06 3 06 3 05 4 06 4 07 4	2.8 6.5 6.0 9.6 9.2 7.6 2.6 2.0 11.8 4.6 8.0 3.3 4.8	+4.4 +4.0 +3.6 +3.6 +4.8 +3.6	68 68 68 68 72 73 76 71 75	17	45 47 46 47 50 51 51 53 7 50		3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 28 3 27 3 32 4 32 4 34 3 34 4 37 4 46	N 94	N		16 8 15 8 16 0	1.00 1.00 1.20 1.20 1.30 1.30 1.30 1.30 1.31 1.41 2.00 3.33 3.00	2 -1.3 -1.3 3 3 3 3 3 3 3 3 3 -		10. 7. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	NW. 8. 8W. W. W. SW. NW.	117 22 22 22 22 118 22 21 118 22 21 118	W. 108. 8W. W. 8W. 11W.	21	. 8	5 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 18 7 18 4 17 6 16 5 16 4 17 8 13 2 16 5 14 6 12 8 13	5 6. 6 6. 6 6. 6 6. 6 6. 6 6. 6 6. 6 6.	3 3.8 2.3 8 7 4 1.4 7 7 7 1.7 7 1.7 9 3.4	3 7 5 8 6 7 7
Missouri Valley Columbia, Mo.2 Kansas City 1 St. Joseph 2 Springfield, Mo.1 Popeka Limooln 2 Dmaha 1 Valentine Sloux City 1 Huron 1	. 7	34	6 38 11 5 65 11 31 46 5 26	66 76 49	29. 2 29. 0 29. 0	2 30. 2 30.	08 - 07 -	01 4 02 4 00 4 03 6 04 6 03 05 06	3. 2 5. 7 6. 2 4. 7 5. 0 15. 7 11. 8 10. 3 18. 2 18. 6 15. 6	+3.5 +2.5 +2.5 +2.5 +3.6	78 77 77 77 77 77 77 77 77 77 77 77 77 7	1 10	5 54 5 51	1 2 5 2 5 2 5 1 6 2 1 1 1 -	7 2	4 33 4 33 4 34 4 34 3 33 3 33 3 23 3 23	7 3 3 7 3 8 5 3 6 3 3 1 3 4 5 7 3 6 3	1 4 5 4 3 3 4 3 2 4 7 3 6 3 6 3 9 3 7	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 36 76 36 36 76 36 76 36 77 33 83 83 80 60 77 77	8 2.4 3 .9 7 .9 2.5 6 .6 3 .9 1.0 9 .4 1.7 7 .0	+	2 9 7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 10. 8 10. 9 9. 4 9. 5 11. 7 8. 9 9.	4 sw.	3 2 2 3 2 3 3 2 3	nw.	1	6 1: 7 1: 0 1: 9 1: 8 1: 5 1: 6 1: 8	2 2 1 2 2 3 1 1 2 9 9	7 1: 4 1: 5 1: 5 1: 7 1: 9 1: 9 1:	5. 4 5. 4 5. 3 5. 4 5. 3 5. 2 5. 9 5. 6.	1 3. 4 2. 8 3. 2 2. 3 1. 4 3. 7 2. 2 2. 3 .	5 0 1 3 9 5 5 9 8 4
Northern Slope Billings 1 Havre Helena 1 Missoula 3 Kalispell Miles City 2 Rapid City 2 Cheyenna 1 Lander Sheridan 6 North Platte 3			18 11 5 80 48 48 50 60 6	35 91 56 58 58 39 68	26. 3 27. 3 25. 8 26. 3 26. 6 27. 5 26. 6 24. 6 24. 6	12 30. 13 30. 14 30. 11 30. 18 30. 10 30. 12 30.		02 04 03 03 03 01 02	17. 5 19. 8 16. 6 15. 6 16. 2 16. 7 10. 1 188. 2 15. 0 11. 0	+4. +5. +4. +5. +4. +5. +4. +5. +4.	61 61 61 61 61 61 61 61 61 61 61 61 61 6	5 1: 5 1: 1 1: 8 1: 6 1: 9 1: 8 1: 8 1: 0 1:	1 41 1 41 9 41 5 44 1 5 6 5 4 5 6 5	9 - 8 - 7 - 5 4 - 2 - 1 - 0 6	4 2 2 2 4 8 6 9 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 2 4 7 7 7 5 3 3 2 4 7 7 7 5 3 3 2 4 7 7 7 5 3 3 2 4 7 7 7 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 5 4 4 3 8 3 8 8 2 8 6 3 8 4 6 4 3 3 5 4 6 4	3 2 3 3 3 5 5 5 5 6 5 5 5 6 5 5 5 5 5 5 5 5	13 12 11 12 14 11 11 11 11 11 11 11 11 11	26 6 26 7 29 8 31 8 27 7 24 6 20 5 23 6 25 6 7	1 1.28 8 .93 3 .45 5 1.53 3 1.66 5 .43 3 .07 5 .88 9 .44 22 .2	77 +	4 3 3 3 1 1 4 2 3 2 2	8 13. 5 10. 6 8. 1 4. 4 4. 5 6. 4 7. 4 12. 7 4. 8 9. 7.	0 w. 5 se. 9 w. 5 s. 6 w. 6 nw	34 32 33 22 44 24 44	5 nw. 5 sw. 0 s. 1 nw. 4 sw. 6 nw. 7 nw. 3 nw. 4 w. 0 nw.	1	4 3 3 4 9 1 1 1 1 1 1 7	7 1 6 4 4 4 4 9 10 1 7 1 10 1 7 1 13 1	0 1 5 1 8 1 8 1 6 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 6. 9 7. 18 7. 18 7. 13 6. 8 5. 8 5. 9 5. 12 5. 4	3 7. 0 5. 1 1. 3 7 4. 1 3. 7 7 6. 8 5.	9 7 8 8
Middle Slope Denver 1 Pueblo 1 Concordia Dodge City Wichita 1 Oklahoma City 2			106 5 50 10 6 10	113 36 58 64 47	24. 7 25. 28. 8 27. 4 28. 8	76 30. 32 30. 56 30. 13 30. 32 30. 31 30.	06 08 07 07 07	00 03 01 00 00	6, 5 44, 3 42, 1 43, 8 45, 5 45, 4 50, 2	+2. +2. +2.	4 77	7 1 8 1 2 1 8 1 2 1 1 2 1 1 1 1 1 1 1 1 1	6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 1	0 3 5 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 3 3 3 3 3 3 4 4	2 3 4 4 3 4 5 5 5 5 5	5 4 10 12 14	33 32 39 38 40 44		0 0.8 2 .7 8 .2 9 .8 3 .8 4 .7	9 + + 8		6 9. 5 13.			12 ne. 4 w. 16 s. 11 s. 17 s. 14 nw	1	4 1 25 1 18 1 18 1 7	17 1 15 1 14 15 13 12 1	10 12 7 8 5	3 3. 3 3. 9 4. 7 4. 12 4. 5 4.	8 4. 7 2. 6 4. 4 5. 8	.2 .8 .0 .3 .2 T

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

		vatio			Pressu	re		Те	mpe	ratu	re o	f the	air				dew-		Pre	cipitat	ion		V	Wind						hs		
District and station	above sea	above	above	oed to	reduced to	normal	max.+mean min.+2	normal			m			п	range	wet thermometer	ture of the	humidity		normal	or more	y veloc-	ction		aximi			days		ness, tenths		
District and station	Barometer abo	Thermometer	Anemometer	Station, reduced mean of 24 hours	Sea level, redi	Departure from normal	Mean max.	Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet ther	Mean temperature of the	Mean relative humidity	Total	Departurefrom normal	Days with 0.01, or more	Average hourly ity	Prevailing direction	Miles per hour	Direction	Date	Clear days	cloudy	Cloudy days	Average cloudiness,	Total snowfall	
Southern Slope	Ft.	Ft.	Ft.	In.	In.	In.	° F.		°F.		°F.	• F.		°F.	° F.	° F.	° F.	% 71	In. 0, 29	In0, 8		Miles								0-10 4. 0	In.	
Abilene ³ Amarillo ² Del Río Roswell	1, 738 3, 676 960 3, 566	10 10 63 75	56 49 71 85	28. 2 26. 3 29. 0 26. 4	7 30. 09 2 30. 08 7 30. 06 4 30. 08	+. 02 +. 03 +. 01 +. 05	55. 3 47. 6 59. 4 49. 8	+2.1	1 76	16 16 3 2	62	27 14 36 19	24 23 25 23	44 34 50 35	36 38 33 42	46 39 53 42	43 35 47 35	76 73 70 65	.50 .33 .22 .11	-1.0		8, 4 12, 4 7, 0 6, 0	sw. se.	26 44 22 32	ne. nw.	18 4 5 4	12 19 9 20	9 8 10 6	9 3 11 4	4.7 2.7 5.7 2.9	3. 1	1
Southern Plateau Il Paso 2 Ilbuquerque 1 hoenix 2 ucson 1	3, 778 5, 314 1, 107	82 5 39	101 45 87 23 54 26	26. 24 24. 80 28. 83	30.07 2 29.98		57.6 53.3 45.5 62.1	+.6	75	4 15 5 12 7 5	65 59 77 76 79 65	30 20 32 30 36 20	26 23 20 20 22 23	42 32 47 46 52 35	33 34 38 39 35 38	44 37 49 47 51 38	36 28 40 34 38 23	52 61 57 55 44 43	48	.0 1 +.6	3 3 3 2 1	6.6 7.1 4.6	n. e.	22 37 22	8.	18 17 12	17	5 9 10 8 6 5	7 3 3 4 1	3.6 3.2 2.9 3.2 1.6	.0	0
ucson 'uma	2, 555 142 3, 957	5 9 5	23 54 26	27. 36 29. 88 26. 06	30.00	+. 02 +. 08	60. 6 65. 2 49. 8	+2.8		12 7 5	76 79 65	36 20	20 22 23	46 52 35	35 38	47 51 38	34 38 23	44 43 	.65 .37 .03	3	1 1		n. nw.	26	n.	21	18 23 19	6 5	1 6	1.6	.0	0
conopah Vinnemucca 10dena alt Lake City 2	4, 527 6, 090 4, 339 5, 473 4, 357	61 12 5 10 86	20 56 46	24. 13 25. 74	30. 16 30. 13 30. 18 30. 20 30. 14	+.04	43. 6 41. 8 38. 8	+3.4 +2.4 +.8	65 70 71	10 14 15 15 15	52 55 54 51	17 16 12 5 16 16	21 20 23 23 23 23 23	31 35 28 24 33 29	37 23 41 41 29 32	35 36 35 35 34		67	1. 24	+.6 4 +.8	4 2 8 3 4 6	3. 7 7. 1 8. 4 6. 8	se. ne. w. se.	24 25 35 27	SW. SW.	16 14 17 16	14 14 11 17 15 14	10	6	5.3 4.0 4.4 4.1	2.0	n
Northern Plateau	6	36	54	26 54	20 17	+ 01	42.7	+3.4	AI	0					99			78 81	1. 31	-0.2					sw.	13	6			6. 9		1
aker ³ pise ¹ poatello ¹ pokane ¹ alla Walla	2,739 4,478 1,929 991 1,076	5 5 27 57 58	49 31 42 65 67	27, 29 25, 58 28, 04 29, 02 28, 94	30. 17 30. 20 30. 11 30. 10 30. 10	+.06 +.01 03	42. 0 34. 1 40. 2 46. 0 43. 0	*****	68 68 58 67 62	9 15 15 5 13 5	52 46 49 54 52	15 16 -1 20 27 23	22 23 23 23 23 22 22	29 32 23 32 38 34	35 42 25 34 37	34 38 30 38 39				.0	6 8 9 9 8 11	8. 5 6. 9 5. 4 4. 6 3. 7	sw. ne.	36 29 26 23 26	SW.	15 15 13 13 3	3 5	10 7 6 6 7	12 13 21 19 17	7.0 5.9 6.2 7.8 7.5 6.9	7.5 1.8 T	5
North Pacific Coast Region							49. 5	+3.4										83	5. 52	-0.9										8. 0		
orth Head sattle 2 acoma atoosh Island ledford 1 ortland, Oreg. 2 oseburg	211 125 194 86 1, 329 154 510	90 172	321 201 61 58	29, 92 29, 84 29, 90 28, 68 29, 90	30.05 30.05 30.00	+.01 +.01 +.03	50. 7 49. 1 48. 0 49. 8 47. 8 49. 4 50. 2	+2.5 +3.5 +3.4 +3.9 +2.6 +4.3	69 63 65 65 74 68 71	7 8 5 29 7 8 5	55 54 54 54 58 55 57	38 34 30 42 21 30 28	27 22 22 16 26 22 25	46 44 42 46 38 44 43	20 18 19 16 34 22 28	48 46 47 44 46 48	All and		6. 75 5. 56 4. 51 8. 45 2. 65 4. 62 6. 09	+.5 -1.8 -3.5 +.2 -1.5	19	6.8	se. s. e. s. se.	40 38 59	S. S.	13 24 24 29 13 13	2 0 5 5 1	4 9 6 5 10 6 8	19 24 20 15	8.3 7.8 8.7 7.7 7.0 8.4 8.4	. 0	
Middle Pacific Coast Region							56, 2	+2.5										72	2.54	-0.9										6. 0		
rekadding icramento in Francisco	60 722 66 155	72 20 92 112	88 34 115 132	30. 02 29. 31 30. 01 29. 90	30.09	01	56. 6 55. 6		84	5	61 65 65 64	35 36 32 46	20 18 21 21	48 48 46 53	24 28 29 21	51 49 50 53	48 41 46 49	74	3. 10	-1.3 -1.3 7 4	9 10 6 8	5. 5 6. 9 5. 6 5. 3	nw. n.	25 20 18 24	nw.	13 15 20 29	9	9 6 9	17 15 10 12	7. 0 6. 3 5. 1 5. 8	.0)
South Pacific Coast Region	327	5	35	29. 73	30. 08	+.02	61. 3 55. 0		82	7	67	28	20	43	36	49	43	67	0. 95	0.0	2	3.6	nw.	18	w.	16	10	10	10	3.8	.0	
S Angeles Diego ¹ West Indies	338 87	223 20	250 55	29. 65 29. 91	30. 01 30. 01	01 01	65. 4 63. 4	+4.5	90	5 5	76 75	28 44 40	19 21	43 55 52	36 31 32	53 56	40 50	48 70	. 05 2. 23	-1.2 +1.5	3	6. 7 5. 3	ne. n.	21 24	n. ne.	20 12	20 18	8 5	7	2.5	.0	
Panama Canal	82	10	54							-				-																		
boa Heightsstobal	118 36	6	92 97		29. 81 29. 82	01 01	80. 2 80. 8	+1.1 +1.5	90 90	19 3	87 85	71 74	11	73 76	18 14	76	75	88	7. 53 24. 07	-2.8 +1.7	17 23	5. 5 7. 5	nw. w.	23 26	n. nw.	25 8	0	17 7	13 22	7. 2 8. 3	.0	
rbanks	484 132 43	11 96 25	87 116 51		29. 94 29. 73 29. 84		-1.6 35.0 18.8	-4.7 4 +3.1	35 51 34	22 10 21	8 40 25	-38 11 -3	26 - 27 25	-1 1 3 0 1 2				90 75	. 54 11. 47 . 96	2 +2.3 .0	14 26 14	3. 4 8. 6 12. 5	n. s. ne.	23 30 35	sw. e. s.	22 28 29	8 5 10	6 0 2	16 25 18		8.3 8.9 8.8	ı
Hawaiian Islands	-				~ ~ ~								_					_														
Alaska	38	56	100		29. 94			+1.2			80 PC			71 . FC	R	OC.	TO	71 BE		-3.6 941	4	8. 2	e,	24	ne.	8	9	17	4 -		.0	
chorage rrow .hel .rbanks .eau .cchikan	135 25 22 484 132 75 43	36 4 5 11 96 69 25	27 4 32 4 87 4 116 4 85 4	29. 80	29. 63 29. 87 29. 65 29. 76 29. 74 29. 82		32.6		53 33 52 56 53		40 18 -				22 29 21 32 16 17	32 13 32 23 42 47 33	27	76	1. 43 . 32 1. 67	8 2 +.1 .0 +4.8 +2.6 +1.0	9 10 14 14 25 29 19	14. 1 4. 5 8. 0	n. se. ne. n. se. se.		W. 6. 80.	16 5 16 17 3	7 4 5 6 1 1 6		17 21 17 19 28 29 21	6. 5 7. 8 7. 1 6. 9 9. 3 9. 4 7. 1	3.5 2.2 .5 8.3 T	The second of th

Data are airport records.
 Barometric data (adjusted to old city elevation) and hygrometric data from airport; otherwise city office records.
 Observations taken bihourly.

Pressure not reduced to a mean of 24 hours.
 Barometric data from airport records, other data from city office records.
 Wind, clear, partly cloudy and cloudy data from city office records, other data from airport.

Note.—Except as indicated by notes 1, 2, 5, and 6, data in table are city office records

SEVERE LOCAL STORMS, NOVEMBER 1941

[Compiled by Mary O. Souder]

[The table herewith contains such data as has been received concerning severe local storms that occurred during the month. A revised list of tornadoes will appear in the United States Meteorological Yearbook]

Place	Date	Time	Width of path, yards	Loss of life	Value of property destroyed	Character of storm	Remarks
Iowa	Oct. 31- Nov. 1 and Nov. 4-5				\$250,000	Sleet and snow	Both of these storms covered about the same area. The heavy, wet anormized with rain, clung to electric and telephone lines until the accumulated weight caused the wires to break carrying the poles. The area of damage began in Mills and Montgomery Counties and extended north ward to the Minnesota border. The eastern boundary of the damage extended northward through Audubon, Greens, Webster, and Kossuti Counties. The western boundary extended northward along the Missouri River into Woodbury County, and thence northeastward acrost Cherokee, Clay, and Dickinson Counties. At the southern end storm extended westward into Nebraska. Centers of greatest damage were located at Council Bluffs, Carroll, and Storm Lake. In addition the damage to wires, there was some interruption of highway and raitraffic and many trees and limbs broken. Many communities were isolated for short periods. The interruption of electric service handicapped farmers using electric power, operators of oold storage lockers and local newspapers. Total cost to permanent repairs to power antelephone equipment will amount to in excess of \$250,000, but, outsid of delay, discomfort, and inconvenience, loss to other interests was rathe
Buffalo, N. Y	7-8				14,000	Wind	small. Navigation at standstill. A cargo of wheat was swept into the water when a barge with a broken steering cable was grounded in the harbor.
Highland City to Lakeland, Fla., and vicinities.	14		100		15, 500	do	Property damage, \$11,000; loss in crops, \$4,500; path 10 miles long.
Stevensville, Mont	24	8:30-9:30 D. m.			5, 000	do	Several barns and small buildings damaged; buildings demolished; many trees uprooted and windows broken.
Washington, western portion	24	p. m.		1		do	Several boats and a sea-plane hangar blown from their moorings. Mar
of State. Stanford, Mont., and vicinity.	24-25	*********			3, 000	do	drowned; minor damage to power and communication lines. Several buildings blown over and hay lost from stacks.
				LAT	E REPOR	TS FOR OCTOBE	:R, 1941
Mansfield, La., vicinity of	26	10 p. m	100	1		Tornado	12 houses damaged with loss of household goods. An automobile demol-
Lake Charles, La., vicinity of.	30	9:30 a. m	20	0	20,000	do	ished and 10 persons injured. 2 persons injured: property damaged.

SOLAR RADIATION AND SUNSPOT DATA FOR NOVEMBER 1941

[Solar Radiation Investigations Section, I. F. HAND in charge]

SOLAR RADIATION OBSERVATIONS

By Helen Cullinane and Iola Paine

Measurements of solar radiant energy received at the surface of the earth are made at 9 stations maintained by the Weather Bureau and at 12 cooperating stations maintained by other institutions. The intensity of the total radiation from sun and sky on a horizontal surface is continuously recorded (from sunrise to sunset) at all these stations by self-registering instruments; pyrheliometric measurements of the intensity of direct solar radiation at normal incidence are made at frequent intervals on clear days at three Weather Bureau stations (Madison, Wis.; Lincoln, Nebr.; and Albuquerque, N. Mex.), and at the Blue Hill Observatory at Harvard University. Occasional observations of sky polarization are taken at the Weather Bureau station at Madison and at Blue Hill Observatory.

The geographic coordinates of the stations, descriptions of the instrumental equipment, station exposures, and methods of observation, together with summaries of the data obtained, up to the end of 1939, are given in the Monthly Weather Review for December 1937, April 1941, and September 1941.

Table 1 contains the measurements of the intensity of direct solar radiation at normal incidence, with means and their departures from normal (means based on less than 3 values are in parentheses). At Lincoln, Madison, Albuquerque, and Blue Hill the observations are obtained with a recording thermopile, checked by observations with a Smithsonian silver-disk pyrheliometer at Blue Hill. The table also gives vapor pressures at 7:30 a. m. and at 1:30 p. m. (75th meridian time).

Table 2 contains the daily total amounts of radiation received on a horizontal surface from both sun and sky

for all stations except Fairbanks, Alaska; and also the weekly means, their departures from normal, and the accumulated departures since the beginning of the year. The values at most of the stations are obtained from the Eppley pyrheliometer recording either on a microammeter or a potentiometer. If the daily figures for total solar and sky radiation at Fairbanks should be desired, they may be obtained approximately 2 months after the date of the observation by writing to the Solar Radiation Investigations Supervisory Station, Blue Hill Observatory, Milton, Mass. Table 2 also includes values of ultraviolet radiation below 3132 Angströms at San Juan (see Mo. Wea. Rev., Sept. 1941, p. 286).

Radiation at normal incidence was below normal at Madison and Lincoln and close to normal at Blue Hill during November.

Total solar and sky radiation received on a horizontal surface during November was below normal for all stations for which normals have been computed with the exception of Washington, New York, New Orleans, and Riverside.

The single polarization observation made on the 26th is lower than both the November mean and mean maximum.

The single polarization observation made on the 26th at Madison serves as both the mean and the maximum for the month.

The pyrheliometric equipment at Cornell University was recalibrated by Helen Cullinane during the latter part of November and found to be about 9 percent low. Corrected data for this station are given in table 2-A.

In table 2, "Pyrheliometric Instrumental Data," page 264 of the September 1941 Monthly Weather Review, it was erroneously stated that the station at Twin Falls is under the direction of the Bureau of Plant Industry. This station is under the direct supervision of J. R. Douglass, of the Bureau of Entomology and Plant Quarantine.

[Gram-calories per minute per square centimeter of normal surface]

MADISON, WIS.

				8	Sun's ze	nith d	listance				
	7:30 a. m.	78.7°	75.7°	70.7°	60.0°	0.0°	60.0°	70.7°	75.7°	78.7°	1:30 p. m.
Date	75th	4			A	ir ma	58				Local
	mer. time		A. :	м.				P	. м.		solar time
	e.	5.0	4.0	3.0	2.0	1 1.0	2.0	3.0	4.0	5.0	0.
Nov. 14	mm. 5. 79	cal.	cal. 0.53	cal. 0.74	cal.	cal. 1.46	cal.	cal.	cel.	cal.	mm. 6.50
Nov. 18	8. 18	0. 55	.71	. 86		1. 41		0.74			9.83
Nov. 24	1.88	. 81	.98	1.14		1.50		1. 10			2.49
Nov. 26	2.36	. 90	1.02	1.13		1.48		1.06			2.74
Nov. 27	4.37	. 98	1.07	1.11		1.51					5. 36
Nov. 28	4. 37	.41	. 57	. 80		1.36		. 87			6.76
Means	******	.73	.81	. 96		1, 45		.94			
Departures		14	18	19		09		03			

ALBUQUERQUE, N. MEX.

Nov. 1	3.46									
Nov. 2	8, 15	. 95		1. 26	1.41		1.39	1. 20	1.09	1.00
Nov. 3	4.75				1.34			1. 23	1. 10	. 97
Nov. 4	4.95				1.40					.96
NOV. 5	4.36				1.34	1.48	1.38	1. 25	1.11	1.02
Nov. 6	3.96				1.43					
Nov. 7	4. 58	1.06	1. 15		1.42				1. 18	
Nov. 8									1. 20	1. 12
Nov. 10	2.86	1.07	1. 16	1. 29	1.42	1.55	1.40			
Nov. 11	3, 96	. 98	1. 10	1. 24	1.39	1.44	1.39	1. 26	1. 16	1.05
Nov. 12				1, 22	1. 37					
Nov. 13	5. 36						1.40	1.14	1.00	. 88
Nov. 14	5. 36	. 91	1.02	1.16	1.35		1.38	1. 21	1.11	1.02
Nov. 15	5. 56	. 97	1.07	1. 19	1. 35		1.36	1. 25	1. 14	1.06
Nov. 16	5. 15			1. 25	1.39	1.60	1.38	1, 23	1.05	1.00
Nov. 17	5, 15	. 95	1.05	1.12	1.31		1.34	1.07	. 94	. 82
Nov. 19	3.00			1.32	1.48	1.78	1.45	1. 26		
Nov. 20	2.62	1. 11	1. 20	1.31	1.45	1.59	1.43	1. 26	1.14	1.03
Nov. 21	3.00			1. 26	1.40					
Nov. 22	4.58			1.28			1.42	1, 24	1.13	1.06
Nov. 23	1.88	1.10	1. 20	1. 32	1.46	1.78	1.40	1. 27	1. 16	1.07
Nov. 24	1.88		1. 24	1.32			1.47	1.35	1. 24	1.15
Nov. 25		1.14	1. 23	1.34	1.45		4 48	1. 31	1. 22	1.11
Nov. 26		1.11	1. 21	1.32	1, 45			1.31	1. 18	1.07
Nov. 27	3.00	1.11	1. 20	1.32	1.45				1.17	1.11
Nov. 29	5, 15		2.20	2.02	1.40			1. 24	1. 15	
Nov. 30	3. 46						1.42	1. 28	1. 19	1.08
Means			1 15	1 97	1.40		-	-	-	

Table 1.—Solar radiation intensities during November 1941—Con. [Gram-calories per minute per square centimeter of normal surface]

LINCOLN, NEBR.

1966				8	un's ze	nith d	istance				
	7:30 a. m.	78.7°	75.7°	70.7°	60.0°	0.0°	60.0°	70.7°	75.7°	78.7°	1:30 p. m
Date	75th				A	ir mas	55				Loca
	mer. time		A. 1	w.				P	м.		solar
	е.	5.0	4.0	3.0	2.0	1 1.0	2.0	3.0	4.0	5.0	e.
	mm.	cal.	cal.	cal.	cal.	cal.	cal.	cal.	cal.	cal.	mm.
Nov. 1 Nov. 6	3.00	0.92	1.07	1. 20	1. 36		1.34	1.14	1.03	0.90	4.1
Nov. 11 Nov. 12	4.17						1. 34	1. 24 1. 16	1.11	1.01	4.5
Nov. 16 Nov. 17 Nov. 21	4. 57 7. 87 3. 15	. 88	1.01 1.07	.88 1.14 1.22	1. 18 1. 25		1. 18 1. 25	1.03	.92	.82	5.5 7.5 3.4
Nov. 24 Nov. 25	2, 26 3, 30	. 83	. 101	1. 20 1. 20				1.20	1.05	.96	2.1
Nov. 26 Nov. 27 Nov. 28	3.99 3.99 5.16	.75	.92	1.07				1.16	1.03	.92	4.3 4.3 5.5
Means Departures		.86	.96	1, 13	1, 26		1, 28	1. 15	1. 02	.91	

BLUE HILL, MASS.

Nov. 4	5.0	0.92	1.00	1. 13		 			
Nov. 5	7.1					 		0. 55	0.45
Nov. 7	9.9					 		. 76	. 55
Nov. 8	4.2	. 81	. 88	. 98	1. 15	 			
Nov. 12	3.5					 1.30	1. 19	1.09	. 99
Nov. 13	1.9	. 83	. 93			 			
Nov. 15	6.3					 		. 61	. 49
Nov. 17	2.2	1.07					1, 10	. 95	. 85
Nov. 18	5.0	. 68	. 80	. 93		 	. 82		
Vov. 19	5. 6	. 54	. 64			 			
Nov. 20	9. 2	.69	. 81			 			
Nov. 21	4.4					 	1.11	.98	. 89
Nov. 22	3.3	.96	1.05				1. 15	.99	
Nov. 24	4.6		200			 	2. 20	1.06	.97
Nov. 25	2.0	1.03	1. 12	1. 19		 		2,00	
Nov. 28	4.2	. 74	. 85	.98	******	 			
101. 20	1.0		. 60	. 00		 			******
Means		.83	. 90	1.04	1, 15	 1, 30	1,07	.86	.74
Departures		06	07	05	08	 +. 10	+.04	06	06

¹ Extrapolated.

Table 2.—Daily totals and weekly means of solar radiation (direct + diffuse) received on a horizontal surface [Gram-calories per square centimeter]

Date	Wash- ington	Madi- son	Lin- coln	New York	Chicago	Fresno	Albu- querque	Fair- banks	New- port	Cam- bridge	Friday Harbor	River- side	New Or- leans	La Jolla	State College	Ithaca	San Juan	Twin Falls	San
																			ultriviole below
Oct. 29	cal. 335 192 82 66 325 258 268	cal. 154 40 31 32 303 295 170	cal. 39 58 28 374 241 264 90	cal. 326 85 58 14 216 222 222	cal. 122 8 10 12 301 250 151	cal. 319 356 323 157 248 303 67	cal. 70 191 408 393 328 360 360	cal.	eal. 341 111 69 30 250 288 290	cal. 300 79 109 27 130 242 280	216 156 59 226 146 214 29	eal. 379 380 382 277 341 329 325	cal. 325 252 311 539 536 460 215	eal, 318 395 396 331 355 348 302	eal, 339 161 43 25 27 196 171	eal. 321 41 48 95 31 158 171	cal, 354 361 384 370 259 412 82	eal. 95 267 233 149 69 169 234	gran eal. 2 3 2 2 1
Mean Departure	218 -23	146 -39	156 -78	163 -15	122 -39	253 -78	302 -70	53 +11	197 -33	167 -11	149 +15	345 +40	377 +71	348 +8	138	124 -28	382	174 -42	2
Nov. 5	243 73 179 199 195 130 267	75 71 74 121 92 39 105	41 232 147 65 148 98 234	157 16 224 110 99 168 176	30 3 29 26 80 146 23	233 316 301 267 238 298 251	371 356 379 382 338 361 347		144 52 176 254 103 213 247	181 50 90 251 141 215 195	231 171 155 190 63 186	347 345 342 344 329 334 177	340 434 432 453 359 304 384	364 360 278 342 322 341 169	185 21 65 94 128 101 97	210 26 65 81 209 76 17	277 314 303 393 341 214 384	170 234 283 251 282 283 274	21133333332
Mean Departure	184 -40	82 -83	138 -96	136 -20	48 -92	272 -26	362 +9	28 -8	170 -51	160 —13	142 +28	317 +21	387 +91	311 +1	99	98 -53	385	254 +45	2
Nov. 12	257 263 358 243 224 285 232	246 181 138 117 200 213 207	277 210 207 217 224 249 228	152 112 178 210 222 261 190	194 207 181 225 213 219 200	280 287 291 244 104 255 305	267 300 335 334 334 321 51		248 126 210 224 214 273 234	224 156 192 195 197 249 214	175 20 42 55 38 62 96	228 309 307 307 289 286 326	419 363 391 406 389 332 325	279 291 217 332 105 268 326	33 230 214 220 181 276 186	52 117 78 118 46 263 191	331 313 270 252 300 249 206	115 206 119 133 62 102 119	2 2 2 1 1
Mean Departure	266 +67	186 +35	230 +21	189 +55	207 +72	252 0	277 -55	28 0	218 +30	204 +14	70 -21	293 +12	375 +129	260 -38	192	124 +22	286	122 -45	2
Nov. 19	194 225 186 246 68 211 243	32 54 221 157 241 225 134	97 256 277 65 262 266 254	164 179 218 190 34 244 168	119 167 79 74 155 230 186	297 299 295 266 284 283 223	342 343 177 326 337 334 323		209 223 231 253 15 221 249	168 208 243 236 29 226 225	183 112 118 162 108 11 46	333 339 352 314 329 320 294	144 260 57 195 194 377 327	338 334 337 304 340 311 316	140 80 92 199 30 178 236	134 79 33 176 18 111 216	204 322 163 352 252 261 241	172 221 248 226 253 246 234	2 1 2 1 1 1
Mean Departure	196 +11	152 +21	211 +11	171 +43	144 +20	278 - -40	312 +23	14 -3	200 +36	191 +10	106 +1	326 +52	222 -24	326 +25	136	110 -17	269	229 +68	1
Nov. 26	266 267 214 246 197 89 87	218 205 189 83 28 61 172	253 248 241 62 40 186 225	160 195 212 167 107 149 29	217 132 191 185 18 51 27	187 159 208 46 132 107 74	322 315 221 306 288 295 310		182 189 221 201 99 223 50	153 176 199 183 60 137 52	59 63 34 31 96 23 62	214 186 273 92 282 279 255	357 320 312 244 133 198 167	280 227 285 161 301 276 239	206 184 197 207 36 22 30	144 70 193 143 27 127 26	252 377 336 403 346 244 369	245 226 214 186 197 213 27	11 22 32 22 22 23 31
Mean Departure	195 +29	137 +12	179 -3	145 +28	117 +19	130 -84	299 +21	12 -2	166 -10	137 -18	37 -47	226 -25	247 +19	253 -29	126	104 +15	327	187 +34	3
					ACCU	MULA	TED DI	CPART	URES	ON DE	C. 2, 194	1							
	+5, 894	+3, 122	-8, 414												1				

TABLE 2A .- Corrections to Ithaca data

TABLE	1.—Solar	radiation	intensities	during	October	1941-	-Con.
			TABLE 2-A				
			. 11				

		1		1		1	
	Cul.		Cal.		Cal.		Cal.
Tanker O		Aug. 6	690	Sept. 10	444	Oct. 15	374
July 2				Sept. 10			
July 3		Aug. 7		Sept. 11	358	Oct. 16	345
July 4	552	Aug. 8		Sept. 12	570	Oct. 17	417
July 5	770	Aug. 9	414	Sept. 13	566	Oct. 18	57
July 6	489	Aug. 10	747	Sept. 14	570	Oct. 19	248
July 7		Aug. 11		Sept. 15	542	Oct. 20	365
July 8		Aug. 12	382	Sept. 16	490	Oct. 21	156
, mi j d	410	***************************************	000		100		
Average	530	Average	590	A verage	506	Average	280
Departure	-37	Departure		Departure		Departure	+4
Dobutture	-01	Dopartato	1 220	Doparturo	1 200	- openionio	
July 9	762	Aug. 13	638	Sept. 17	452	Oct. 22	284
July 10	764	Aug. 14	544	Sept. 18	485	Oct. 23	44
July 11		Aug. 15	138	Sept. 19	565	Oct. 24	155
Train 10	447				543	Oct. 25	86
July 12	447	Aug. 16	354	Sept. 20			
July 13	723	Aug. 17	672	Sept. 21	544	Oct. 26	286
July 14	734	Aug. 18	586	Sept. 22	532	Oct. 27	48
July 15	642	Aug. 19	394	Sept. 23	394	Oct. 28	56
	1						
A verage	638	Average	475	Average	502	Average	136
Departure	+116	Departure	+5	Departure	+130	Departure	-31
July 16	651	Aug. 20	702	Sept. 24	487		
July 17	587	Aug. 21	612	Sept. 25	355		
July 18	740	Aug. 22	468	Sept. 26	285		
July 19	707	Aug. 23	607	Sept. 27	502		
July 20	754	Aug. 24	594	Sept. 28	401		
July 21	713	Aug. 25	243	Sept. 29	316		
July 22	587	Aug. 26	371	Sept. 30	200		
July 48	991	AMB: MI	017	Depe. 00	200		
Average	678	Average	513	Average	364		
Departure		Departure	+30	Departure	+38		
Departmo	1	as of sur conto-	, 00	- opinionio			
July 23	553	Aug. 27	594	Oct. 1	284		
July 24	691	Aug. 28	670	Oct. 2	398		
July 25	686	Aug. 29	565	Oct. 3	94		
	720		533	Oct. 4	293		
July 26		Aug. 30		Oct. 4	290		
July 27	705	Aug. 31	311	Oct. 5			
July 28	342	Sept. 1	570	Oct. 6	368		
July 29	627	Sept. 2	619	Oct. 7	284		
A	017	A	***	Amana	007		
A verage	617	A verage	551	Average	287		
Departure	+137	Departure	+28	Departure	-5		
Y-1 00	040	04 9	700	040	101		
July 30	269	Sept. 3	566	Oct. 8	101		
July 31	240	Sept. 4	312	Oct. 9	326		
Aug. 1	528	Sept. 5	448	Oct. 10	224		
Aug. 2	748	Sept. 6	594	Oct. 11	320		
Aug. 3	743	Sept. 7	612	Oct. 12	207		
Aug. 4	585	Sept. 8	595	Oct. 13	430		
Aug. 5	686	Sept. 9	489	Oct. 14	56		
anne Vanances	000	woher arresse	-00		00		
A verage	543	Average	517	Average	237		
	+29	Departure	+83	Departure	-33		
Departure	1.40	reputtute	1.00	Departure	- 30		

Departure +18	Beparture	+4	
Sept. 17 45 Sept. 18 48 Sept. 19 56	5 Oct. 23	284 44 155	
		86	
Sept. 20 54 Sept. 21 54		286	
Sept. 22 53		48	
Sept. 23 39		56	
sept. 20 00	000. 20	00	
Average 50		136	
Departure +13	0 Departure	-31	
Sept. 24 48	7		
Sept. 25 35			
Sept. 26 28.			
Sept. 27 50:			
Sept. 28 40			
Sept. 29 310			
Sept. 30 20	0		
verage 36	4		
Departure +3	8		
Oct. 1 28	4		
oct. 2 396			1
oct. 3 94			1
oct. 4 290			
et. 5 290			
Oct. 6 360			
et. 7 28	•		
verage 287	7		
Departure	5		=
et. 8 101			
ct. 9 326	5		
et. 10 224			
et. 11 320)		
et, 12 207			

Table 1.—Solar radiation intensities during October 1941 [Gram-calories per minute per square centimeter of normal surface] LATE DATA-TABLE 1-A, BLUE HILL, MASS.

		Sun's zenith distance													
	8 a. m.	78.7°	75.7°	70.7°	60.0°	0.00	60.0°	70.7°	75.7°	78.7°	1:30 p. m				
Date	75th				1	Lir ma	ss			-	Loca				
	mer. time		A.	м.				P.	M.		solar				
	е.	5.0	4.0	3.0	2.0	•1.0	2.0	3.0	4.0	5.0	0.				
	mm.	cal.	cal.	cal.	cal.	cal.	cal.	cal.	cal.	cal.	mm.				
Oct. 8	8.8	0.81	0.97	1.08							7.				
Oct. 9	4.8	. 90	1.01								5.				
ct. 11	5.4	. 91	.98				*****	1 00	0.00	0.00	4.				
oct. 13	6.3	. 89	1.00	1 00			1. 27	1.08	0.97	0.86	5.				
ct. 16	5.6	. 88 1. 03	. 97	1.07			1. 30	1. 17	1. 05	.95	6.				
oct. 18 oct. 19	6. 5 8. 8	1. 03	1.12	. 88		*****	1. 30	1.17	. 90	.79	5.				
et. 20	4.4	. 93		1, 18			1. 25	1. 07	. 96	. 10	4.				
et. 22	6.5	. 84	. 96	1. 07			1. 20	1.11	. 99	. 89	6.				
ct. 24	2.9	. 97	1.06	1. 17	1. 31			1. 07	. 00	. 83	2.				
ct. 26	2.1	1.04	1.11	1. 22	1. 33						1.				
et. 29	2.6	. 97	1.06	1. 17		*****	1. 25				2.				
Iean		. 92	1. 02	1. 12	1. 32		1. 27	1. 10	. 97	. 87					
Departure		+. 03	+. 03	0	+. 05		+. 02	0	+.01	+.03					

	Twin Falls	Fair- banks		Twin Falls	Fair- banks
	cal.	cal.		eal.	cal.
Oct. 1	336		Oct. 15	363	
Oct. 2	491		Oct. 16	339	
Oct. 3	455		Oct. 17	396	
Oct. 4	120		Oct. 18.	372	
Oct. 5	252		Oct. 19	189	
Oct. 6	428		Oct. 20	130	
Oct. 7	426		Oct. 21	114	
Mean	358	112	Mean	272	46
Departure	-5	-6	Departure	-50	-24
Oct. 8	455		Oct, 22	363	
Oct. 9	517		Oct. 23	207	
Oct. 10	433		Oct. 24	250	
Oct. 11	421		Oct. 25.	328	
Oct. 12	420		Oct. 26.	318	
Oct. 13	421		Oct. 27	112	
Oct. 14	424		Oct. 28	157	*******
Mean	442	118	Mean	248	82
Departure	+87	+24	Departure	-31	+21

Accumulated departures on Oct. 28, 1941, Fairbanks, -1491.

POSITIONS, AREAS, AND COUNTS OF SUN SPOTS FOR NOVEMBER 1941

Communicated by Capt. J. F. Hellweg, U. S. Navy (Ret.), Superintendent, U. S. Naval Observatory.] All measurements and spot counts were made at the Naval Observatory from plates taken at the observatories indicated. Difference in longitude is measured from the central meridian, positive toward the west. Latitude is positive toward the north. Areas are corrected for foreshortening and expressed in millionths of sun's hemisphere. For each day, under longitude, latitude, area of spot or group, and spot count, are included assumed longitude of center of the disk, assumed latitude of center of the disk, total area of spots and groups, and total spot count

			1		Heliog	raphic					
Date	sta a:	nst- rn ind- rd me	Mount Wilson group No.	Dif- fer- ence in longi- tude	Lon- gi- tude	Lati- tude	Dis- tance from cen- ter of disk	Area of spot or group	Spot count	Plate qual- ity	Observatory
1941	h	m		0	0	0	0				
Nov. 1	11	6	7318 7316 7317 7315 7315 7314	-47 -6 +20 +37 +47 +48	279 320 346 3 13 14	+12 +12 +4 +14 +12 0	48 10 20 38 48 48	24 24 48 630 533 24	3 10 8 29 12 1	VG	Mt Wilson.
					(326)	(+4)		1, 283	63		
Nov. 2	13	13	7318 7319 7317 7315 7315	-33 +21 +34 +50 +60	279 333 346 2 12	+11 +7 +3 +14 +11	34 22 34 51 60	12 12 291 630 533	1 3 18 14 17	F	U. S. Naval
					(312)	(+4)		1, 478	53		
Nov. 3	11	7	7318 7320 7317 7315 7315	-18 +6 +48 +63 +74	282 306 348 3 14	+11 +3 +3 +14 +11	20 7 48 63 74	48 12 388 582 533	2 1 21 16 6	F	Do.
					(300)	(+4)		1, 563	46		
Nov. 4	11	1	7318 7319 7317 7315 7315	-3 +47 +62 +76 +88	284 334 349 3 15	+11 +8 +3 +14 +11	8 47 62 76 88	24 48 485 582 388	2 8 25 14 3	G	Do.
					(287)	(+4)		1, 527	52		
Nov. 5	11	4	(*) 7318 7318 7319 7317 7315	-61 +6 +11 +62 +75 +88	212 279 284 335 348 1	+5 +11 +11 +8 +4 +15	61 9 13 62 75 88	24 12 24 48 582 242	1 2 1 4 8 2	F	Do.
Nov. 6	11	ō	7321 7317	-70 +88	(273) 190 348	(+4) -2 +4	,70 88	932 12 242	18 1 1	F	Mt. Wilson.
			1		(260)	(+4)		254	2		

POSITIONS, AREAS, AND COUNTS OF SUN SPOTS FOR POSITIONS, AREAS, AND COUNTS OF SUN SPOTS FOR NOVEMBER 1941—Continued

					Helio	graphic	,				
Date	st	ern and- ard ime	Mount Wilson group No.		Lon- gi- tude	Lati- tude	Dis- tance from cen- ter of disk	group	Spot	Plate qual- ity	Observatory
1914 Nov. 7	. 14	16	7322 7321 (*)	-09 -54 +35	176 191 280	-3 -3 +8	69 55 36	6 24 6	1 3 2	F	U. S. Naval.
Nov. 8	11	1	7321 7323	-44 -35	190 199	(+4) -2 +18	45 37	36 12 12	6 2 2	G	Mt. Wilson.
Nov. 9	10	46	7323 (*)	-17 +10	204 231	(+4) +18 +15	22 16	24 24 12	6 2	VG	Do.
Nov. 10	11	5	7323	-3	(221) 205 (208)	(+3) +16 (+3)	13	36 16 16	5 5	G	Do.
Nov. 11	12	36	(1)	(1)	(1)	(1)	(1)	(1)	(1)	F	U. S. Naval.
Nov. 12	10	50	7324	-25	156	+8	26	73	4	F	Do.
Nov. 13	10	42	(*) 7325 7324	-51 -37 -11	(181) 117 131 157	(+3) +22 -8 +8	53 38 12	73 12 133 97	4 2 8 6	G	Do.
Nov. 14	10	49	7325 7324 7326	-23 +2 +50	(168) 132 157 205	(+3) -8 +8 +15	25 7 51	242 170 158 12	16 10 14 2	VG	Do.
Nov. 15	10	34	7325 7324	-9 +17	(155) 133 159	(+3) -7 +8	13 19	340 170 145	26 9 10	vg	Do.
Nov. 16	10	32	7325 7324	+6 +32	135 161	(+3) -6 +9	10 33	315 145 97	19 10 10	G	Mt. Wilson,
Nov. 17	10	26	7325 7324	+19 +44	(129) 135 160	(+3) -6 +8	21 44	121 73	9 4	G	U. S. Naval.
Nov. 18	11	32	7325 7324	+33 +57	(116) 135 159	(+3) -7 +8	34 57	194 170 73	17 4	G	Do.
Nov. 19	11	4	7325 7324	+47 +70	(102) 136 159 (89)	(+2) -8 +8 (+2)	49 70	243 218 24 242	19 2	G	Do.
Nov. 20	12	33	7328 7327 7325 7325 7324	-80 -62 +59 +62 +85	355 13 134 137 160	+4 +12 -9 -8 +8	80 63 60 63 85	291 97 194 97 24	7 12 1 12 1 12	G	Do.
Nov. 21	11	35	7329 7328 (*) 7325	-88 -67 -65 +71	(75) 334 355 357 133	(+2) -19 +4 +17 -9	88 67 66 72	703 727 194 24 170	33 1 2 2 4	F	Do.
Nov. 22	10	30	7328	-75 -54 +88	(62) 335 356 138	(+2) -19 +4 -9	76 54 88	679 194 145	9 10 4 1	F	Do.
lov. 23	11	11	7329 7328 7330	-79 -61 -38 -22 -19	335 358	+10 -18 +5 +10 +12	79 63 39 24 22	242 727 194 121 24	15 15 4 15 10	vg	Mt. Wilson.
lov. 24	12	5	7331 7329 7329	-79 -65 -50 -42 -26 -9	(36) 303 317 332	(+2) +9 +10 -20 -20 +4 +9	79 65 53 46 27 12	, 308 12 388 436 194 194 339	45 1 6 15 3 4 20	vg	U. S. Naval.

					Helio	graphic					
Date	sta 8	nst- rn ind- rd me	Mount Wilson group No.	Dif- fer- ence in longi- tude	Lon- gi- tude	Lati- tude	Dis- tance from cen- ter of disk	Area of spot or group	Spot	Plate qual- ity	Observator
1941 Nov. 25	10	2	7332 7331 7331 7329 7329 7328 7330	-67 -59 -51 -39 -31 -12 +4	303 311 319 331 339 358 14	+12 +9 +10 -20 -20 +4 +9	67 59 52 43 37 12 8	48 12 388 436 218 145 291	7 1 5 15 3 2 16	vo	Do.
Nov. 26	11	23	7332 7331 7329 7329 7328 7330 7330	-54 -39 -25 -18 +1 +12 +21	(10) 303 318 332 339 358 9 18	(+2) +12 +10 -20 -20 +4 +8 +10	55 40 32 27 5 14 23	1, 538 48 291 364 218 145 73 145	3 7 9 6 1 7 6	G	Do.
Nov. 27	11	22	7332 7331 7329 7329 7328 7330 7330	-40 -25 -11 -5 +14 +15 +26 +38	(357) 303 318 332 338 357 358 9 18	(+1) +12 +9 -21 -20 +8 +4 +8 +10	41 26 25 21 16 16 27 36	24 291 436 242 12 182 24 48	2 9 20 13 4 2 3 4	VG	Do.
Nov. 28	10	46	7333 7332 7331 7329 7329 7328 7330	-80 -27 -11 +3 +8 +29 +49	(343) 250 303 319 333 338 359 19 (330)	(+1) -5 +12 +9 -21 -20 +4 +9 (+1)	80 30 13 22 22 29 50	1, 259 145 24 242 339 242 145 48 1, 185	57 1 6 14 30 12 5 5	vo	Do.
Nov. 29	10	24	7833 7332 7331 7329 7321 7328 7330	-67 -12 +2 +16 +21 +42 +62	251 306 320 334 339 0 20 (318)	-5 +9 +9 -21 -20 +4 +9 (+1)	67 13 9 27 29 43 62	145 121 194 291 218 97 48 1, 114	1 15 7 24 10 3 3	G	Do.
Nov. 30	12	32	7833 7333 7332 7331 7329 7334 7329 7328 7330	-89 -52 +3 +17 +30 +31 +37 +58 +74	244 251 306 320 333 334 340 1 17 (303)	-6 +9 +9 -20 -14 -19 +3 +9 (+1)	59 53 9 19 36 33 41 58 74	12 133 97 145 291 24 218 73 24	3 1 14 3 31 5 1 8 1	G	Do.

Mean daily area for 30 days.... = 738

*=not numbered. VG=very good; G=good; F=fair; P=poor.

PROVISIONAL RELATIVE SUNSPOT NUMBERS FOR NOVEMBER 1941

[Based on observations at Zurich or Locarno as indicated. Data furnished through the courtesy of Prof. W. Brunner, Eidgenössiches Sternwarte, Zurich, Switzerland]

November 1941	Relative numbers	November 1941	Relative numbers	November 1941	Relative numbers
1	51 53	11	Ec 13	21	
3	57 *49	13	Ec 24	23	*Mcd 33
5	-49	15	*26	25	*72
6	8	16	23	26	*a82
8	*?7	18	26	28	ad
9	14	19	*23 d 37	30	71

Mean, 22 days=33.3

U. S. GOVERNMENT PRINTING OFFICE: 1942

Chart II. Tracks of Centers of Anticyclones, November 1941. (Inset) Departure of Monthly Mean Pressure from Normal

Olrele indicates position of anticyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of anticyclone at 7:30 p. m. (75th meridian time).

Chart III. Tracks of Centers of Cyclones, November 1941. (Inset) Change in Mean Pressure from Preceding Month

Circle indicates position of anticyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of anticyclone at 7:30 p. m. (75th meridian time).

(Inset) Change in Mean Pressure from Preceding Month Tracks of Centers of Cyclones, November 1941. Z XIII Chart III. L

Circle indicates position of cyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of cyclone at 7:30 p. m. (75th meridian time).

Chart IV. Percentage of Clear Sky Between Sunrise and Sunset, November 1941

Chart V. Total Precipitation, Inches, November 1941

Chart VI. Isobars at Sea Level and Isotherms at Surface; Prevailing Winds, November 1941

Chart VII. Total Snowfall, Inches, November 1941

Chart VIII.

Chart IX. Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T) and Resultant Winds 5:00 a.m. (ES.T.) for 3,000 Meters (m.s.l.) November 1941

Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 5,000 Meters (m.s.l.) November 1941 Chart X.

Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 5,000 Meters (m.s.l.) November 1941 Chart X.

Chart XI. Isobars (mb) Isotherms (°C.) 1:00 a.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 10,000 Meters (m.s.l.) November 1941 1 THE STATE OF 280 -