Section 02 : Régression et Moindres Carrés Ordinaires (Application Stata)

GSF-6053: Économétrie Financière

Simon-Pierre Boucher¹

¹Département de finance, assurance et immobilier Faculté des sciences de l'administration Université Laval

1 Février 2022

- ▶ Dans cette application Stata, nous allons analyser le jeu de données portant le nom Wage1
- ▶ Il s'agit essentiellement de données collectées auprès de plusieurs travailleurs en 1976.
- Dans cette analyse nous chercherons à quantifier et expliquer l'impact de certains facteurs propre au salarié sur son salaire.
- Les variables que nous utiliserons dans cette analyse sont les suivantes:
 - Iwage: log du salaire horaire moyen
 - **educ:** années d'études
 - **exper:** années d'expérience potentielle
 - tenutre: années chez l'employeur actuel

Code 1: Pour obtenir jeu de données Wage1 sur Stata use http://fmwww.bc.edu/ec-p/data/wooldridge/wage1

Code 2: Vérifier le format des variables utilisées describe wage educ exper tenure

Output 2:

variable na	storage me type	display format
wage	float	%9.0g
educ	float	%9.0g
exper	float	%9.0g
tenure	float	%9.0g

- On peut voir que nos trois variables sont de type Float, ce qui indique qu'il s'agit d'une valeur numérique entière.
- On peut donc l'utiliser pour notre analyse.

Code 3: Calculer et afficher des statistiques descriptives summarize wage educ exper tenurex

Output 3:

Variable	0bs	Mean	Std. Dev.	Min	Max
wage	526	5.896103	3.693086	.53	24.98
educ	526	12.56274	2.769022	0	18
exper	526	17.01711	13.57216	1	51
tenure	526	5.104563	7.224462	0	44

- On peut voir que notre jeu de données contient 526 observations
- ▶ Que le salaire moyen horraire est de 5.89 et qu'en moyenne les salariés ont 12.56 années de scolarité.
- ► Pour ce qui est de l'expérience de travail, en moyenne les salariés ont 17.02 années d'expériences et ils sont dans le même emploie depuis 5.10 ans, en moyenne.

Code 4: Relation entre le salaire et l'éducation twoway (scatter wage educ) (Ifit wage educ)

Output 4:

Code 5: Relation entre le salaire et l'expérience de travail twoway (scatter wage exper) (Ifit wage exper)

Output 5:

Code 6: Relation entre le salaire et le nombre d'années chez l'employeur actuel

twoway (scatter wage tenure) (Ifit wage tenure)

Output 6:

Code 7: Distribution de la variable wage histogram wage, bin(50) normal normopts(lwidth(thick))

Output 7:

Code 8: Distribution de la variable educ histogram educ, bin(20) normal normopts(lwidth(thick))

Output 8:

Code 9: Distribution de la variable **exper**histogram exper, bin(50) normal normopts(lwidth(thick))

Output 9:

Code 10: Distribution de la variable tenure histogram tenure, bin(30) normal normopts(lwidth(thick))

Output 10:

Régression linéaire simple

$$wage = \beta_0 + \beta_1 educ + \epsilon \tag{1}$$

$$wage = \beta_0 + \beta_1 exper + \epsilon \tag{2}$$

$$wage = \beta_0 + \beta_1 tenure + \epsilon \tag{3}$$

Régression linéaire multiple

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$$
 (4)

Output 11:

Source	SS	df	MS	Number o	. 020	526 103.36
Model Residual	1179.73204 5980.68225	1 524	1179.73204 11.4135158		= d =	0.0000 0.1648
Total	7160.41429	525	13.6388844		=	
wage	Coef.	Std. Err.	t	P> t [9	95% Conf.	Interval]
educ _cons	.5413593 9048516	.053248 .6849678	10.17 -1.32		4367534 . 250472	.6459651 .4407687

Analyse: $wage = \beta_0 + \beta_1 educ + \epsilon$

- ► Avec un R² de 0.1648, le nombre d'années d'éducation d'un salarié semble expliquer environ 16% des variations dans le salaire de ce dernier, et ce en moyenne.
- ▶ La p-value du T-test pour le coefficient de la variable educ est de 0.000, ce qui implique que le coefficient est significativement différent de zéro. (À un seuil de 5%)
- Avec un coefficient estimé de 0.54 pour la variable educ, on peut comprendre qu'en moyenne, une année d'éducation additionnelle amène une augmentation du salaire horaire de 0.54.

Code 12: $wage = \beta_0 + \beta_1 exper + \epsilon$ reg wage exper

Output 12:

Source	ss	df	MS	Numbe - F(1.	r of obs	=	526 6.77
Model Residual	91.2751351 7069.13916	1 524	91.275135	L Prob 6 R-squ	> F	=	0.0096 0.0127 0.0109
Total	7160.41429	525	13.638884	-		=	3.673
wage	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
exper _cons	.0307219 5.373305	.0118111 .2569919	2.60 20.91	0.010 0.000	.0075 4.8684		.0539247 5.878166

Analyse: $wage = \beta_0 + \beta_1 exper + \epsilon$

- ▶ Avec un R² de 0.0127, le nombre d'années d'expérience d'un salarié semble expliquer environ 1% des variations dans le salaire de ce dernier, et ce en moyenne.
- ► La p-value du T-test pour le coefficient de la variable exper est de 0.01, ce qui implique que le coefficient est significativement différent de zéro. (À un seuil de 5%)
- Avec un coefficient estimé de 0.0307 pour la variable exper, on peut comprendre qu'en moyenne, une année d'expérience additionnelle amène une augmentation du salaire horaire de 0.0307.

Code 13: $wage = \beta_0 + \beta_1 tenure + \epsilon$ reg wage tenure

SS

Output 13:

Source

				- F(1,	524)	=	71.68
Model	861.62965	1	861.6296	5 Prob	> F	=	0.0000
Residual	6298.78464	524	12.0205814	4 R−sqı	ıared	=	0.1203
				– Adj F	R-squared	=	0.1187
Total	7160.41429	525	13.638884	4 Root	MSE	=	3.4671
wage	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
tenure	. 1773271	.0209449	8.47	0.000	.136180	-	.2184733
_cons	4.990925	.185158	26.95	0.000	4.62718	2	5.354669

MS

Number of obs

df

526

Analyse: $wage = \beta_0 + \beta_1 tenure + \epsilon$

- ► Avec un R² de 0.1203, le nombre d'années chez l'employeur actuel d'un salarié semble expliquer environ 12% des variations dans le salaire de ce dernier, et ce en moyenne.
- ► La p-value du T-test pour le coefficient de la variable tenure est de 0.000, ce qui implique que le coefficient est significativement différent de zéro. (À un seuil de 5%)
- Avec un coefficient estimé de 0.177 pour la variable tenure, on peut comprendre qu'en moyenne, une année de plus chez l'employeur actuel amène une augmentation du salaire horaire de 0.177.

Code 14: $wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$ reg wage educ exper tenure

Output 14:

Source	SS	df	MS	Number of obs	=	526 76.87
Model Residual	2194.1116 4966.30269	3 522	731.370532 9.51398984	Prob > F	=	0.0000 0.3064 0.3024
Total	7160.41429	525	13.6388844	, ,	=	3.0845
wage	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
educ exper tenure _cons	.5989651 .0223395 .1692687 -2.872735	.0512835 .0120568 .0216446 .7289643	1.85	0.000 .49821 0.06400134 0.000 .12674 0.000 -4.3047	64 74	.6997126 .0460254 .2117899 -1.440671

Analyse: $wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$

- ► Avec un R² de 0.3064, les trois variables combinées ensemble semblent expliquer environ 31% des variations dans le salaire de ce dernier, et ce en moyenne.
- ▶ De plus, avec un R² ajusté de 0.3024 (relativement proche du R² standard), l'ajout de variables explicatives semble justifier étant donné que la valeur du R² ajusté ne semble pas avoir diminuer grandement par rapport au R² standard, suite à la pénalité pour l'ajout de variables explicatives dans le R² ajusté.
- ▶ La p-value du F-test est de 0.000, ce qui implique que nous pouvons rejeter l'hypothèse nulle que tous les coefficients sont conjointement non significatifs.

- ▶ Dans le T-test que nous venons de faire, nous avons utilisé la P-value pour vérifier si le coefficient est significativement différent de 0.
- ► En effet si cette P-value est inférieur à 0.05, on rejette l'hypothèse nulle que le coefficient est pas significativement différent de 0.
- Afin de bien comprendre comment le T-test fonctionne, il est important de bien faire l'analyse sans utiliser la P-value.
- Nous allons reprendre la dernière régression que nous venons d'analyser, soit celle avec toutes les variables explicatives incluses.

Test de Student:

Two-tailed test

- Hypothèse nulle est la non-significativité du coefficient de régression
- Hypothèses:
 - ▶ $H_0: \beta_k = 0 \rightarrow \text{Hypothèse nule}$
 - ▶ $H_1: \beta_k \neq 0 \rightarrow$ Hypothèse alternative
- ► Règle de décision: Rejeter *H*₀ si:

$$t = \frac{|\hat{\beta}_k - \beta_0|}{SE_{\hat{\beta}_k}} > t_{n-k,\alpha/2}$$

- Ou β_0 est la valeur du coefficient sous l'hypothèse nulle, soit 0
- $ightharpoonup SE_{\hat{eta}_k}$ est l'écart-type associé à l'estimation de \hat{eta}_k

Le Modèle de régression:

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + \epsilon$$

Afin de pouvoir faire la comparaison de notre statistique T, nous devons obtenir une valeur critique à un seuil de 5%, soit

$$t_{n-k,\alpha/2}$$

Sachant que nous avons n = 526 observations et k = 3 variables explicatives, nous devrons trouve la valeur critique:

$$t_{526-3,0.05/2} = t_{523,0.025}$$

- Nous allons maintenant aller regarder dans une table statistique appelée **T-table** afin de trouver notre valeur critique.
- Au niveau de la significativité, on prendra la colonne avec une valeur:
 - ho α = 0.025 pour le **One-tail test**
 - ho $\alpha = 0.05$ pour le **Two-tail test**
- ▶ Pour ce qui est du nombre de degrés de liberté, nous avons df = 523, cependant la table ne fournit pas nécessairement une valeur pour tous les df possibles.
 - Dans la table qui va suivre, nous avons seulement df = 100 et df = 1000 de dispo, nous allons donc prendre df = 1000 par sécurité.

t Table											
cum, prob	t.so	t,75	t,so	t.as	t.90	t.95	t ,975	t.ss	t .995	t.999	t .ssas
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.00	0.002	0.000
df	1.00	0.50	0.40	0.30	0.20	0.10	0.03	0.02	0.01	0.002	0.001
1	0.000	1.000	1,376	1,963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
2 3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15 16	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733 3.686	4.073
17	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.898	3.646	4.015 3.965
18	0.000	0.688	0.862	1.069	1.330	1.734	2.101	2.552	2.878	3,610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.532	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3,467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3,450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3,435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3,421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
L	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confi	dence L	evel				

- Notre valeur critique est de $t_{526-3.0.05/2} = t_{523,0.025} = 1.962$
- Pour le coefficient β_1 attaché à la variable **educ**:

$$t = \frac{\mid 0.5989651 - 0\mid}{0.0512835} = 11.69 > 1.962$$

t=11.69 est plus grand que la valeur critique $t_{523,0.025}=1.962$, alors on peut rejetter l'hypothèse nulle et conclure que $\hat{\beta}_1$ est significativement différent de 0, à un seuil de 5%.

Pour le coefficient β_2 attaché à la variable **exper**:

$$t = \frac{\mid 0.0223395 - 0 \mid}{0.0120568} = 1.85 < 1.962$$

▶ t=1.85 est plus petit que la valeur critique $t_{523,0.025}=1.962$, alors on ne peut pas rejetter l'hypothèse nulle. $\hat{\beta}_2$ n'est pas significativement différent de 0, à un seuil de 5%.

Pour le coefficient β_3 attaché à la variable **tenure**:

$$t = \frac{\mid 0.1692687 - 0 \mid}{0.0216446} = 7.82 > 1.962$$

▶ t = 7.82 est plus grand que la valeur critique $t_{523,0.025} = 1.962$, alors on peut rejetter l'hypothèse nulle et conclure que $\hat{\beta}_3$ est significativement différent de 0, à un seuil de 5%.

 Comme pour le T-test, on veut également effectuer le F-test sans la P-value.

F-test (significativité conjointe)

Hypothèses:

- $H_0: \beta_2 = 0 \text{ et/ou } \beta_3 = 0 \text{ et/ou } ... \text{ et/ou } \beta_k = 0$
- \blacktriangleright $H_1: \beta_2 \neq 0$ et $\beta_3 \neq 0$ et ... et/ou $\beta_k \neq 0$

Statistique de test:

$$F = \frac{MS_{group}}{MS_{error}} > F(q, t - k; \alpha)$$

Sachant

►
$$MS_{group} = \frac{SS_{group}}{df_{group}}$$

► $MS_{error} = \frac{SS_{error}}{df_{error}}$

$$ightharpoonup MS_{error} = \frac{SS_{error}}{df_{error}}$$

- On rejette H_0 si la statistique F est supérieur à la valeur critique $F(q, t k; \alpha)$.
- ▶ Dans le cas qui nous concerne, nous avons 4 coefficients (k=4), soit β_0 , β_1 , β_2 et β_3
- $ightharpoonup q = k 1 = 4 1 = 3 = df_{group}$
- $t k = 526 4 = 522 = df_{error}$
- On pose un seuil de significativité de $\alpha = 0.05$
- La valeur critique sera représenté par F(3, 522; 0.05)
- Nous allons maintenant regarder dans la table suivante la valeur critique F(3, 522; 0.05)

Table A4: 5% Critical Values of the F Distribution

				Ni	merat	or Deg	rees of	Freed	om		
		1	2	3	1	5	6	7	8	9	10
Denominator	10	4.96	4.1	2.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
Degrees of	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
Freedom	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32
	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
_	90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94
	120	3.92	3.07	2.00	2.45	2.29	2.17	2.09	2.02	1.96	1.91
	00	3.84	3.0	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

La valeur de la statistique F est:

$$F(3,522;0.05) = 2.60$$

Voici maintenant le test:

$$F = \frac{\frac{SS_{group}}{df_{group}}}{\frac{SS_{error}}{df_{error}}} > F(q, t - k; \alpha)$$

$$F = \frac{\frac{2194.1116}{3}}{\frac{4966.30269}{522}} = 76.87 > 2.60$$

- On rejette l'hypothèse nulle étant donné que la statistique F = 76.87 est supérieur à la valeur critique F(3,522;0.05) = 2.60.
- On rejette donc l'hypothèse que tous les coefficients sont conjointement tous égaux à 0.
- ► En d'autres mots, au moins un coefficient dans cette régression est significativement différent de 0.

Code 15: Générer les résidus de la régression

reg wage educ exper tenure predict resid, residuals

- Sans faire une analyse détaillée des résidus, nous allons créer une variable représentant les résidus de notre régression.
- ▶ Afin de faire l'analyse, nous allons produire un histogramme de nos résidus et un nuage de points avec les résidus en axe des Y et la variable **wage** en axe des X.

Code 16: Histogramme des résidus histogram resid, bin(50) normal

Output 16:

Code 17: Nuage de points des résidus twoway (scatter red wage)

Output 17:

Analyse des résidus

- Comme caractéristiques souhaitez pour nos résidus, nous souhaitons qu'il ressemble à une loi normale et qu'il n'ait pas de patterns entre ce résidu et la variable wage
- Au niveau de l'histogramme des résidus, on peut voir que sans être parfaits les résidus prennent la forme d'une cloche.
- ► Il semble y avoir plus de résidus au niveau du centre (x=0), que ce qui est prévu par la loi normale.
- Au niveau du nuage de point, nous avons un problème majeur, il y a clairement une relation entre notre résidu et la variable wage.