Take-home final exam for Math 771: Set Theory; Spring 2016 Due: May 16 at noon

1) Show that ZF proves the following fact: if (M, R) is a model such that

$$(M, R) \models ZF + V = L,$$

and also such that R is well-founded on M, then there is an ordinal α such that (M, R) is isomorphic to $(L(\alpha), \in)$.

2) In this problem, we assume that Martin's Axiom is true, and that $2^{\aleph_0} \geq \aleph_{38}$. Let $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(\omega)$ both have size \aleph_{37} . Furthermore, let us assume that whenever $\mathcal{A}' \subseteq \mathcal{A}$ and $\mathcal{B}' \subseteq \mathcal{B}$ are such that \mathcal{A}' and \mathcal{B}' both have size \aleph_1 , then there is a set $x \subseteq \omega$ satisfying that $\forall a \in \mathcal{A}'(a \subseteq^* x)$ and $\forall b \in \mathcal{B}'(b \perp x)$ (see Definition III.1.15). Show that there is an $x \subseteq \omega$ such that in fact $\forall a \in \mathcal{A}(a \subseteq^* x)$ and $\forall b \in \mathcal{B}(b \perp x)$.

Hint: consider

 $\mathbb{P} = \Big\{ (X,Y) \mid X,Y \subseteq \omega, X \cap Y = \emptyset, \text{ and there exist finite subsets } U \subseteq \mathcal{A}, V \subseteq \mathcal{B} \Big\}$

such that
$$X = U$$
 and $Y = V$.

3) Let M be a ctm for ZF. Let $N = (L)^M$. Let $\mathbb{P} = \operatorname{Fn}((\omega_2)^N \times \omega, \omega)$. Let G be \mathbb{P} -generic over N. We consider the model N[G].

We will be showing, in steps, that N[G] is a model of the statement that there is a sequence of ω_2 many functions $f_{\gamma}:\omega\to\omega$ such that for every $g\in\omega^{\omega}$, $\{\gamma\mid f_{\gamma}\leq^*g\}$ is countable.

In fact, we get these functions as follows: given $\gamma < (\omega^2)^N$, let $f_{\gamma} = \{(n, m) \mid \{((\gamma, n), m)\} \in G\}$.

- a) Show that N[G] satisfies the statement "every f_{γ} is a total function, and the set $\{f_{\gamma} \mid \gamma < (\omega_2)^N\}$ has size ω_2 ".
- b) Let $f \in N[G]$ be such that $N[G] \models f : \omega \to \omega$. Show: there is set $\Gamma \subseteq (\omega_2)^N$ such that (Γ) is countable)^N, and there is an $\mathring{f} \in N^{\mathbb{P}}$ satisfying $\mathring{f}_G = f$ such that \mathring{f} is actually a $\operatorname{Fn}(\Gamma \times \omega, \omega)$ -name.
- c) Let $f \in N[G]$ be such that $N[G] \models f : \omega \to \omega$, and let Γ and \mathring{f} be for f as in the previous subproblem. Show: if $\gamma \notin \Gamma$, then

$$N[G] \vDash f_{\gamma} \not\leq f.$$

Hint: let $(p_i)_{i<\omega} \in N$ be an enumeration of $\operatorname{Fn}(\Gamma \times \omega, \omega)$. Working in N, for every $i \in \omega$, if there is a $q_i \leq p_i$ with $q_i \in \operatorname{Fn}(\Gamma \times \omega, \omega)$ and an $n_i \in \omega$ such that

$$q_i \Vdash \mathring{f}(i) = \check{n_i},$$

choose such a q_i and n_i . Now let D_{γ} be the set of those $r \in \mathbb{P}$ such that for some $i \in \omega$, both $r \leq q_i$ and $r \leq \{((\gamma, i), n_i + 1)\}$. Argue that $G \cap D_{\gamma} \neq \emptyset$.

d) Show that N[G] is indeed a model of the statement that there is a sequence of ω_2 many functions $f_\gamma:\omega\to\omega$ such that for every $g\in\omega^\omega$, $\{\gamma\mid f_\gamma\leq^*g\}$ is countable.