# Homework #4

MEMS 0031 - Electrical Circuits

Assigned: May  $28^{\rm th}$ , 2020 Due: June  $3^{\rm rd}$ , 2020 at 11:59 pm

#### Problem #1

Using Node Voltage Analysis (NVA), determine the currents  $i_1$  and  $i_2$ , and the voltages at nodes a, b and c, given A = 4. Note: if you use any other method than NVA to determine branch currents, i.e. currents through the resistors, your answer will be marked incorrect.



#### Problem #2

Using Node Voltage Analysis (NVA), determine the currents  $i_b$  and  $i_c$ , and the voltages potential  $V_a$ . Note: if you use any other method than NVA to determine branch currents, i.e. currents through the resistors, your answer will be marked incorrect.



## Problem #3

Using Node Voltage Analysis (NVA), determine the currents  $i_a$  through  $i_g$ . Note: if you use any other method than NVA to determine branch currents, i.e. currents through the resistors, your answer will be marked incorrect.



#### Problem #4

Using Node Voltage Analysis (NVA), determine the currents  $i_a$  through  $i_j$ . Note: if you use any other method than NVA to determine branch currents, i.e. currents through the resistors, your answer will be marked incorrect.



## Problem #5

Using Node Voltage Analysis (NVA), determine the voltage potentials  $V_1$  through  $V_3$ . Note: if you use any other method than NVA to determine branch currents, i.e. currents through the resistors, your answer will be marked incorrect.



## Problem #6

Using Node Voltage Analysis (NVA), determine the voltage potential  $V_{\theta}$  given R=6 [ $\Omega$ ]. Note: if you use any other method than NVA to determine branch currents, i.e. currents through the resistors, your answer will be marked incorrect.

