1

I. CONCLUSION

APPENDIX A PROOF OF EQ.XXX

If there is a mismatch between the two reference MOST-FETs, the ΔG_m would be derived in this section. Based on the error models shown in Section ??. As shown in Fig.??, the operating points will be locked by the feedback loop, while the difference of output currents is **XXXX** and the difference of input voltages is **xxxx**.

The current equations of different operating points are **don't** assume square-law!!!

$$I_2 = k^x / 2(W/L)(V_2^x - V_t)^2$$
 (A.1)

As a result,

Define the transconductance which is referred to M_2 as

$$XXXXXXXXXXX$$
 (A.3)

Eq.XXX can be expressed as Assuming XXXXX, we have

$$yyyy$$
. (A.4)

Since

(A.5)

 G_{m2}^{x} is obtained as

$$zzzzzzz$$
. (A.6)

APPENDIX B

Relationships between small-signal g_m and 1/R

Taylor's expansion of I_{out} at V_0 is:

$$I_{out}(V_0 + v) = I_0 + \sum_{i=1}^{\infty} a_i \cdot v^i$$
 (B.1)

, with a_i being the i-th coefficient of the expansion. Subtracting $I_{out}(V_0)$ from $I_{out}(V_0+\Delta V)$, and dividing it by ΔV will result in:

$$\frac{\Delta I}{\Delta V} = \sum_{i=1}^{\infty} a_i \cdot \Delta V^{i-1} \equiv \frac{1}{R}$$
 (B.2)