Dernière mise à jour	MECA 2	Denis DEFAUCHY
29/08/2022	Révisions	TD1 - Sujet

Mécanique MECA2 - Révisions

TD1

Vitesses Accélérations Projections

Dernière mise à jour	MECA 2	Denis DEFAUCHY
29/08/2022	Révisions	TD1 - Sujet

Exercice 1: Projections

La convention très généralement utilisée consiste à définir θ_{ji} pour θ de j par rapport à i :

$$\theta_{ji} = \left(\widehat{\overrightarrow{x_{\iota}}, \overrightarrow{x_{j}}}\right) = \left(\overrightarrow{y_{\iota}}, \overrightarrow{y_{j}}\right)$$

La flèche sur le dessin n'a pour unique but que de dire que l'angle est l'angle de $\overrightarrow{x_i}$ vers $\overrightarrow{y_i}$ et $\overrightarrow{y_i}$ vers $\overrightarrow{y_j}$.

Question 1: Proposer le paramétrage angulaire des 4 situations proposées

Question 2: Compléter les différentes projections proposées ci-dessous

$$\overrightarrow{x_1} = \underline{\qquad} \overrightarrow{x_0} \qquad \underline{\qquad} \overrightarrow{y_0}$$

$$\overrightarrow{y_1} = \underline{\qquad} \overrightarrow{x_0} \qquad \underline{\qquad} \overrightarrow{y_0}$$

$$\overrightarrow{x_1} = \underline{\qquad} \overrightarrow{x_0} \qquad \underline{\qquad} \overrightarrow{y_0}$$

$$\overrightarrow{y_1} = \underline{\qquad} \overrightarrow{x_0} \qquad \underline{\qquad} \overrightarrow{y_0}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
29/08/2022	Révisions	TD1 - Sujet

$\overrightarrow{z_2} = \underline{\hspace{1cm}}$	$\overrightarrow{z_1}$	$\overline{x_1}$
$\overrightarrow{x_2} = \underline{\hspace{1cm}}$	$\overrightarrow{z_1}$	$\overline{x_1}$

$$\vec{u} = \underline{\qquad} \vec{x_0} \qquad \underline{\qquad} \vec{y_0}$$

$$\vec{v} = \underline{\qquad} \vec{x_0} \qquad \underline{\qquad} \vec{y_0}$$

$$\vec{u} = \underline{\qquad} \vec{x_0} \quad \underline{\qquad} \vec{y_0}$$

$$\vec{u} = \underline{\qquad} \vec{x_0} \qquad \underline{\qquad} \vec{y_0}$$

$$\vec{t} = \underline{\qquad} \vec{x_0} + \underline{\qquad} \vec{y_0}$$

$$\overrightarrow{x_2} = \underline{\qquad} \overrightarrow{x_0} + \underline{\qquad} \overrightarrow{y_0} \\
\overrightarrow{y_2} = \underline{\qquad} \overrightarrow{x_0} + \underline{\qquad} \overrightarrow{y_0}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
29/08/2022	Révisions	TD1 - Sujet

Exercice 1: Vitesses - Accélérations - Projections

Soit le mécanisme suivant :

Question 1: Calculer la vitesse $\vec{V}(D,3/0)$

Question 2: Exprimer la vitesse $\vec{V}(D,3/0)$ dans la base 0

Question 3: Calculer l'accélération $\vec{\Gamma}(D,3/0)$

Exercice 2: Cas du contact

Question 1: Calculer la vitesse $\overrightarrow{V}(C,2/0)$ par dérivation du vecteur position \overrightarrow{AC}

Question 2: Calculer la vitesse $\vec{V}(C,2/0)$ par composition du mouvement 2/1 et 1/0

Dernière mise à jour	MECA 2	Denis DEFAUCHY
29/08/2022	Révisions	TD1 - Sujet

Exercice 3: Extrait CCP PSI 2018

L'étude porte sur une canne robotisée pour assister la marche des humains.

Question 1: Déterminer la liaison équivalente entre les pièces 2 et 3

Remarques:

- Dans le sujet initial, il fallait supposer que $(\vec{\iota_0}, \vec{\jmath_0}, \vec{k_0}) = (\vec{x_0}, \vec{y_0}, \vec{z_0})$ et $\vec{\jmath_3} = \vec{y_3}$
- L'angle $\beta = (\overrightarrow{j_0}, \overrightarrow{v})$ orientant \overrightarrow{IH} ne nous sera pas utile ici

On note $\overrightarrow{\Omega_{21}} = \omega \overrightarrow{z}$ la vitesse de la roue par rapport au système. On considère qu'il y a roulement sans glissement en I. L'angle θ et la vitesse horizontale V du patient sont mesurés en temps réel. Un moteur asservi en position pilote la longueur l en temps réel afin de maintenir la hauteur h constante. Un moteur asservi en vitesse pilote la vitesse de la roue ω afin que le point H se déplace horizontalement à la vitesse $\overrightarrow{V} = V\overrightarrow{x_0}$.

Question 2: Déterminer l en fonction de R, h et θ

Question 3: Déterminer la vitesse $\vec{V}(H,3/0)$ en fonction de R, l, \dot{l} , $\dot{\theta}$ et ω

Question 4: Déterminer l'expression de la vitesse ω en fonction de R, l, θ , $\dot{\theta}$ et V