Kurs:	Grupp	e:	Utført dato:				
Fys3220 Lineær kretselektronikk		12	28.09.19				
Oppgave:							
Laboratorieøvelse A							
Omhandler:							
Fourieranalyse							
Utført av:			Jtført av:				
Navn: Klaudia M. Pawlak		Navn: Martyna K. Powojowska					
Email: klaudiap@student.matnat.uio.no		Email: martynkp@student.matnat.uio.no					
Godkjent dato:		Godkjent av:					
Kommentar fra veileder:							

Oppgave 1: Summering av signaler

Figur1: Summasjonskrets

Vi har en krets som summerer flere elektriske signaler, se figur 1. Vi har at $V_1=5V$, $V_2=4V$ og $V_3=3V$. Derfor er spenningen $V_{ut}=12V$ som forventet.

Oppgave 2: Simulering av egen blanding av frekvens komponenter

a) Vi har at

$$v(t) = dc + \sum_{n=1}^{k} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$

Vi bruker formelen for v(t) til å summere tre sinussignaler, altså k=3. Og vi velger $b_n=[1,0.5,0.4]$.

Vi får videre at

$$v(t) = 0 + \sin(2\pi \cdot 500Hz) + 0.5\sin(2\pi \cdot 1000Hz) + 0.4\sin(2\pi \cdot 1900Hz)$$

b)

Figur2: Spenning/tids plot av signalet Sum_ut

c)

Figur3: FFT plott

Figur3 viser frekvensspekteret til signalet vi genererte. Vi kan se at hver av toppene stemmer med faktorene vi har valgt i Oppgave 2 a).

Oppgave 3: dc og b_n for v(t)/ Oppgave 4: Studie av Fourierspekteret til en firkant serie

a) Utregning av dc-verdier:

$$dc = \frac{1}{T} \int_0^{\frac{T}{2}} 1 \, dt = \frac{1}{T} [t]_0^{\frac{T}{2}} = \frac{1}{T} \cdot \frac{T}{2} = \frac{1}{2}$$

Utregning av b_n -verdier:

$$b_n = \frac{2}{T} \int_0^{\frac{T}{2}} \sin(n\omega_0 t) dt = -\frac{2}{T} \left[\frac{1}{n\omega_0} \cos(n\omega_0 t) \right]_0^{\frac{T}{2}} = \frac{1}{n\pi} (1 - \cos(n\pi))$$

$$= \begin{cases} \frac{2}{n\pi}, & \text{dersom } n \text{ er et oddetall} \\ 0, & \text{ellers} \end{cases}$$

b) Vi bruker utregningene til å fylle ut Tabell 1, og får:

	n	a_n	b_n beregnet [mV]	b_n målt [mV]	Frekvens [kHz]	Vinkel frekvens [Hz]
<i>DC</i> -verdi	0	0	500	500	0	0
Grunntone	1	0	636.6 636.6 0.5		0.5	πk
2-Harmoniske	2	0	0	0	1	$2\pi k$
3-Harmoniske	3	0	211.2	212.2	1.5	$3\pi k$
4-Harmoniske	4	0	0	0	2	$4\pi k$
5-Harmoniske	5	0	127.3	127.3	2.5	$5\pi k$
6-Harmoniske	6	0	0	0	3	$6\pi k$
7-Harmoniske	7	0	90.94	90.90	3.5	$7\pi k$
8-Harmoniske	8	0	0	0	4	$8\pi k$
9-Harmoniske	9	0	70.73	70.70	4.5	$9\pi k$
10-Harmoniske	10	0	0	0	5	$10\pi k$

Tabell1: Teoretiske, beregnede og målte komponenter for oddesymmetrisk firkant signal

Figur4: Aksesystem for magnitude/frekvens

Vi ser at det er liten forskjell på b_n målt og b_n beregnet. Grunnet til små avvik i resultatene er at punktene vært lagt til manuelt, og ikke av selve programmet.

Oppgave 5: Rekonstruksjon av et firkantsignal

Figur5: Plot av det tilnærmede og det ekte firkantsignalet over 2 perioder

Vi ser at den tilnærmet firekantsignalet følger den ekte firekantsignalet, men oscillerer rundt den.

Oppgave 6: Studie av spekteret til et firkantsignal når periodetiden øker

Vi endrer PER til 5ms, og får:

Figur6: Frekvensspektre for periodetid 5ms

Vi endrer PER til 20ms, og får:

Figur7: Frekvensspektre for periodetid 20ms

Vi endrer PER til 1000ms, og får:

Figur8: Frekvensspektre for periodetid 1000ms

Vi ser på figurene overfør at dersom vi øker periodetid, vil vi få flere b_n verdier som vil ligge tettere sammen, som vil da danne mer tydelig «form» på funksjonen. Dersom vi øker periodetid til 1000ms kan vi se at funksjonen blir mer kontinuerlig.

Oppgave 7: Studer spekteret til en firkantpuls med avtagende pulsbredde

Periode [ms]	Pulsbredde [μs]	Båndbredde [kHz]
1000	1000	1
1000	100	9.91
1000	30	32.37
1000	10	91.35
1000	3	247.84
1000	1	483.07

Tabell2: Forholdet mellom pulsbredde og båndbredde med en periode på 1000ms.

Og vi får:

Figur9: Plot av forholdet mellom båndbredde og pulsbredde

Figur 10: Frekvensspektre for periodetid 1000ms og pulsbredde 3 μs

Figur11: Frekvensspektre for periodetid 1000ms og pulsbredde $10\mu s$ Vi ser at når pulsbredden avta, blir det mindre oscillasjon. Vi antar at dersom pulsbredden går mot 0 vil funksjonen flate seg ut.

Oppgave 8: Studie av frekvensspekteret til en ekte sagtann

	n	b_n firkant [mV]	b_n Ekte_Sagtann1 [mV]	b_n Ekte_Sagtann2 [mV]	Frekvens [kHz]
DC-verdi	0	500	500	499.9	0
Grunntone	1	636.6	318.3	318.3	0.5
2-harmoniske	2	0	159.2	159.2	1
3-harmoniske	3	211.2	105.1	106.1	1.5
4-harmoniske	4	0	79.6	79.6	2
5-harmoniske	5	127.3	63.7	63.7	2.5
6-harmoniske	6	0	53.1	53.1	3
7-harmoniske	7	90.9	45.5	45.5	3.5
8-harmoniske	8	0	39.8	39.8	4

Tabell3: Frekvenskomponenter for oddesymmetrisk firkant og trekant signal

Vi ser at der er en stor forskjell i de fleste målingene. Vi ser at det er nesten ingen forskjell i målingene for de to sagtann signalene, men ikke b_n firkant. Grunnen til forskjellen i målingene der n er en partall, er at signalene har en ulikt oppbygning. Derfor i målingene for b_n firkant er de alltid lik 0. Vi kan også se at der n er en oddetall, så er målingene dobbelt så store som i b_n firkant.

Oppgave 9: Studie av tilnærmingsfunksjon for en ekte sagtann

Figur12: Ekte_sagtann1 og tilnærmet sagtann som funksjon av tid

Oppgave 10: Studie av fase for sagtannsignal

Figur13: Ekte_sagtann2 og tilnærmet sagtann som funksjon av tid Som vi ser på figuren, så er den ekte og tilnærmet sagtann veldig like.

Oppgave 11: Tidskonstant

Vi har at:

$$i(t) = \frac{V_b}{R} \left(1 - e^{-\frac{R}{L}\tau} \right) \cong \frac{V_B}{R} * 63.2121\%$$

Vi løser ligningen for τ :

$$\frac{V_{\overline{B}}}{R} \left(1 - e^{-\frac{R}{L}\tau} \right) \cong \frac{V_{\overline{B}}}{R} * 63.2121\%$$

$$-e^{-\frac{R}{L}\tau} = 63.2121\% - 1$$

$$-e^{-\frac{R}{L}\tau} = 0.632121 - 1 = -0.367879$$

$$\ln \left(e^{-\frac{R}{L}\tau} \right) = \ln(0.36787)$$

$$-\frac{R}{L}\tau = -1$$

$$\tau = \frac{L}{R}$$

Vi har nå vist at au kan utrykkes som $\frac{L}{R}$. Vi setter nå L=100mH, og au=1ms, vi får:

$$\tau = \frac{L}{R} \to R = \frac{L}{\tau}$$

$$R = \frac{L}{\tau} = \frac{100mH}{1ms} = \frac{100\Omega}{1000}$$

R blir 100Ω .

Oppgave 12: Simulering av LR krets

Vi tegner kretsen i PSpice:

Figur14: LR krets

Figur15: Plot av simuleringsresultater

Vi ser at dersom bryteren lukkes, vil strømmen endre seg ca. 63% i løpet av tidskonstanten.