

IEE352 - Procesamiento Digital de Señales

Clase 04 - Transformada de Fourier Discreta

Dr. Marco A. Milla Sección Electricidad y Electrónica (SEE) Pontificia Universidad Católica del Perú (PUCP)

email: milla.ma@pucp.edu.pe

Contenido

- Resumen de Transformadas de Fourier
- Transformada Discreta de Fourier (DFT)
- Transformada Rápida de Fourier (FFT)

Transformada de Fourier en el tiempo continuo

Para la representación en frecuencia de las señales continuas en el tiempo se utiliza la transformada de Fourier continua.

Definición:
$$x(t) \stackrel{\mathscr{F}}{\longleftrightarrow} X(\Omega)$$

FT Directa:
$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
, $\Omega \in \mathbb{R}$,

FT Inversa:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega, \qquad t \in \mathbb{R},$$

donde t es el tiempo, Ω es la frecuencia, y $e^{j\Omega t}$ es la función exponencial compleja definida como

$$e^{j\Omega t} = \cos(\Omega t) + j\sin(\Omega t).$$

Transformada de Fourier en el tiempo discreto

Para el análisis en frecuencia de las señales discretas en el tiempo se utiliza la transformada de Fourier en tiempo discreto (DTFT - Discrete Time Fourier Transform).

Definición:
$$x[n] \stackrel{\text{DTFT}}{\longleftrightarrow} X(\omega)$$

DTFT Directa:
$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}, \quad \omega \in \mathbb{R},$$

DTFT Inversa:
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega, \qquad n \in \mathbb{Z},$$

donde n es una variable entera (tiempo discreto) y ω es la frecuencia normalizada. Notar que $X(\omega)$ es una función compleja periódica con periodo 2π .

Series de Fourier para señales periódicas en el tiempo continuo

Para el análisis en frecuencia de señales periódicas continuas en el tiempo se utilizan las llamadas series de Fourier.

Definición:
$$x(t) \stackrel{\mathscr{F}_s}{\longleftrightarrow} X_p[k]$$

FS Directa:
$$X_p[k] = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)e^{-j2\pi\frac{kt}{T}}dt, \qquad k \in \mathbb{Z},$$

FS Inversa:
$$x(t) = \sum_{k=-\infty}^{\infty} X_p[k] e^{j2\pi \frac{kt}{T}}, \qquad t \in \mathbb{R},$$

donde t es el tiempo y k representa los índices de los coeficientes de Fourier $X_p[k]$. Notar que en este caso x(t) es una señal periódica en el tiempo con periodo T.

Transformada Discreta de Fourier (DFT - Discrete Fourier Transform)

Definición

Dado $x[n] = \{x_0, x_1, x_2, ..., x_{N-1}\}$, la transformada discreta de Fourier y su inversa están definidas de la siguiente forma.

Definición: $x[n] \stackrel{\text{DFT}}{\longleftrightarrow} X[k]$

DFT directa:
$$X[k] = DFT\{x[n]\} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{nk}{N}}, \quad k \in [0, N-1],$$

DFT inversa:
$$x[n] = \text{IDFT}\{X[k]\} = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{nk}{N}}, \quad n \in [0, N-1],$$

donde n y k son enteros que representan los índices del tiempo discreto y de la frecuencia discreta, respectivamente. Notar que en general x[n] y X[k] pueden ser entendidas como señales periódicas con periodo N.

Definición

- La DFT es usada para obtener el espectro o contenido frecuencial de una señal (secuencia) discreta.
- La DFT es utilizada en diferentes aplicaciones de ingeniería, física y matemáticas.
- Algunas aplicaciones son las siguientes:
 - Análisis espectral de señales,
 - Análisis de sistemas en el dominio de la frecuencia,
 - Solución de ecuaciones diferenciales parciales, etc.

Ejemplo

Dada la función rectangular de longitud M, definida como $x[n] = \begin{cases} 1, & 0 \le n \le M-1, \\ 0, & M \le n \le N-1, \end{cases}$

podemos calcular la $DFT\{x[n]\}$ de la siguiente forma

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{nk}{N}} = \sum_{n=0}^{M-1} e^{-j2\pi \frac{nk}{N}},$$

$$= \frac{1 - e^{-j2\pi\frac{kM}{N}}}{1 - e^{-j2\pi\frac{k}{N}}} = \left(\frac{e^{j\pi\frac{kM}{N}} - e^{-j\pi\frac{kM}{N}}}{e^{j\pi\frac{k}{N}} - e^{-j\pi\frac{k}{N}}}\right) e^{-j\pi\frac{k(M-1)}{N}} = \frac{\sin\left(\pi\frac{kM}{N}\right)}{\sin\left(\pi\frac{k}{N}\right)} e^{-j\pi\frac{k(M-1)}{N}}, \quad k \in [0, N-1].$$

Notar que la función $\sin(\pi \frac{kM}{N})/\sin(\pi \frac{k}{N})$ es también conocida con la función $\sin(\pi \sin(\pi \frac{kM}{N}))$

Interpretación de la DFT

La DFT $\{x[n]\}$ puede interpretarse como la correlación de la señal x[n] con señales coseno y seno para diferentes frecuencias.

$$\begin{split} X[k] &= \sum_{n=0}^{N-1} x[n] \, e^{-j2\pi \frac{nk}{N}} \\ &= \sum_{n=0}^{N-1} x[n] \, \cos(2\pi \frac{nk}{N}) - j \cdot \sum_{n=0}^{N-1} x[n] \, \sin(2\pi \frac{nk}{N}) \\ &= \langle x[n], \cos(2\pi \frac{nk}{N}) \rangle - j \cdot \langle x[n], \sin(2\pi \frac{nk}{N}) \rangle, \qquad k \in [0, N-1] \, . \end{split}$$

Interpretación de la DFT

$$x[n] = \cos(2\pi \cdot 0.125 \cdot n), \quad n \in [0, N-1], \quad N = 16$$

Interpretación de la DFT

$$x[n] = \cos(2\pi \cdot 0.125 \cdot n), \quad n \in [0, N-1], \quad N = 16$$

Interpretación de la DFT

$$x[n] = \cos(2\pi \cdot 0.125 \cdot n), \quad n \in [0, N-1], \quad N = 16$$

Relación entre la DTFT y la DFT

Dado $x[n] = \{x_0, x_1, x_2, \dots, x_{N-1}\}$, una secuencia finita de longitud N, tenemos que

DTFT:
$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=0}^{N-1} x[n]e^{-j\omega n}, \qquad \omega \in \mathbb{R},$$

DFT: $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{nk}{N}} = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi k}{N}n}, \qquad k \in [0, N-1].$

Definiendo $\omega_k = 2\pi \frac{k}{N}$, podemos demostrar que

$$X(\omega_k) = X[k]$$
.

DTFT DFT

Propiedades de la DFT

Dado $x[n] = \{x_0, x_1, ..., x_{N-1}\}$ y su transformada $X[k] = DFT\{x[n]\}$ para $k \in [0, N-1]$, se cumplen las siguientes propiedades.

Dualidad

La transformada discreta inversa de Fourier puede ser calculada a partir de la DFT directa,

$$x[n] = IDFT\{X[k]\} = \frac{1}{N}DFT\{X^*[k]\}^*.$$

Propiedades de la DFT

Linealidad

Sea $x[n] = \alpha \cdot x_1[n] + \beta \cdot x_2[n]$, y las transformadas $X_1[k] = DFT\{x_1[n]\}$ y $X_2[k] = DFT\{x_2[n]\}$, se cumple que

$$X[k] = \alpha \cdot X_1[k] + \beta \cdot X_2[k].$$

Traslación

Dado $x_m[n] = x[(n-m)_N]$ (retardo circular) se cumple que

$$X_m[k] = DFT\{x_m[n]\} = e^{-j2\pi \frac{mk}{N}}X[k],$$

donde $(\cdot)_N$ es la función residuo (MOD). Por ejemplo, para $x[n] = \{x_0, x_1, ..., x_{N-1}\}$, si consideramos un retardo m=1 tenemos $x_m[n] = \{x_{N-1}, x_0, x_1, ..., x_{N-2}\}$.

Convolución circular

Dadas dos secuencias finitas $x_1[n]$ y $x_2[n]$ de longitud N, se cumple la siguiente propiedad para la convolución circular de ambas secuencias,

$$x_1[n] \circledast x_2[n] = \sum_{m=0}^{N-1} x_1[m] x_2[(n-m)_N] \stackrel{\text{DFT}}{\longleftrightarrow} X_1[k] X_2[k] .$$

De forma similar, si consideramos la multiplicación de $x_1[n]$ y $x_2[n]$, podemos verificar,

$$x_1[n] x_2[n] \stackrel{\text{DFT}}{\longleftrightarrow} \frac{1}{N} X_1[k] \circledast X_2[k] = \frac{1}{N} \sum_{l=0}^{N-1} X_1[l] X_2[(k-l)_N].$$

Convolución circular - Ejemplo

Resolución en frecuencia de la DFT

Sea $x[n] = \{x_0, x_1, ..., x_{N-1}\}$ el resultado de muestrear una señal continua en el tiempo $x_c(t)$ con una frecuencia de muestreo f_s ,

$$X[k] = DFT\{x[n]\}$$
 representa el espectro de $x[n]$.

Dado que X[k] es una función periódica podemos relacionar k con las frecuencias f_k , considerando que dichas frecuencias están dadas por la siguiente expresión

$$f_k = k \cdot \Delta f$$
 para $k \in [0, N-1]$ siendo $\Delta f = \frac{f_s}{N}$ la resolución en frecuencia.

Como X[k] es una función periódica también podemos considera que el espectro está definido para frecuencias que se extienden desde $-\frac{f_s}{2}$ hasta $+\frac{f_s}{2}$ considerando la siguiente definición de frecuencias.

$$f_k = \begin{cases} k \cdot \Delta f, & 0 \le k < \frac{N}{2}, \\ (k - N) \cdot \Delta f, & \frac{N}{2} \le k < N. \end{cases}$$

Resolución en frecuencia de la DFT

Ejemplo: Señal chirp con ancho de banda $B=400\,\mathrm{Hz}$ muestreada con frecuencia de muestreo $f_s=1024\,\mathrm{Hz}$.

Dispersión en frecuencia de la DFT

La DFT sólo puede representar de forma exacta señales senoidales que tengan un número de ciclos exacto para el número de muestras considerado.

Dispersión en frecuencia de la DFT

Este efecto está relacionado con el efecto de enventanado de señales discretas en el tiempo.

Dadas las secuencias discretas x[n] and w[n], tenemos que

$$x[n] \cdot w[n] \overset{\text{DTFT}}{\longleftrightarrow} X(\omega) * W(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega - \theta) W(\theta) d\theta.$$

Considerando w[n] = rect(n/N) una ventana rectangular de longitud N tenemos que

$$W(\omega) = e^{-j\frac{N-1}{2}\omega} \left(\frac{\sin(N\omega/2)}{\sin(\omega/2)} \right).$$

Dada la secuencia finita $\tilde{x}[n] = \{x_0, x_1, x_2, ..., x_{N-1}\}$ podemos expresar su DFT tiene la siguiente forma

$$\begin{split} \tilde{X}[k] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(\frac{2\pi k}{N} - \theta\right) W(\theta) \, d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(\frac{2\pi k}{N} - \theta\right) \, e^{-j\frac{N-1}{2}\theta} \left(\frac{\sin(\theta N/2)}{\sin(\theta/2)}\right) \, d\theta \, . \end{split}$$

Perdida de información temporal

Consideremos las siguiente señales

$$y_1[n] = \sin\left(2\pi \frac{6.5 \cdot n}{N}\right), n \in [0, ..., N-1], N = 2048$$

•
$$y_2[n] = \sin\left(2\pi \frac{24.5 \cdot n}{N}\right), n \in [0, ..., N-1], N = 2048$$

•
$$x_1[n] = \{y_1[0:N/2-1], y_2[N/2:N-1]\}$$

•
$$x_2[n] = 0.65 \cdot (y_1[n] + y_2[n])$$

Perdida de información temporal

Si analizamos las magnitudes de las DFTs de $x_1[n]$ y $x_2[n]$, podemos apreciar que no hay diferencia significativa entre $|X_1[k]|$ y $|X_2[k]|$. ¿Cómo podemos diferenciar estas señales?

Perdida de información temporal

Si analizamos las fases de las DFTs de $x_1[n]$ y $x_2[n]$, podemos apreciar que existen diferencias significativas entre $\angle X_1[k]$ y $\angle X_2[k]$. La información de ubicación temporal se encuentra principalmente en la fase de la DFT.

Transformada Rápida de Fourier (FFT - Fast Fourier Transform)

Número de operaciones de la DFT

Sea $x[n] = \{x_0, x_1, ..., x_{N-1}\}$, podemos encontrar que

$$\mathcal{O}\left(\mathrm{DFT}_N\{x[n]\}\right)=N^2$$
 operaciones complejas,

donde $\mathcal{O}(\,\cdot\,)$ describe el número de operaciones matemáticas necesarias para realizar el cálculo.

Sin embargo, podemos notar que para $x'[n] = \{x_o, x_1, ..., x_{N/2-1}\}$ tenemos que

$$\mathcal{O}\left(\mathrm{DFT}_{\frac{N}{2}}\{x'[n]\}\right) = \frac{N^2}{4}$$
 operaciones complejas.

Si pudiéramos calcular la DFT $\{x[n]\}$ de longitud N mediante dos DFTs de longitud $\frac{N}{2}$, entonces el número de operaciones a realizar se podría reducir a la mitad, es decir

$$\mathscr{O}\left(\mathrm{DFT}_{\frac{N}{2}}\{\,\cdot\,\}\right) + \mathscr{O}\left(\mathrm{DFT}_{\frac{N}{2}}\{\,\cdot\,\}\right) = \frac{N^2}{2}.$$

Algoritmo FFT - Decimación en el tiempo

Dado x[n] donde $n \in [0,N-1]$, y definiendo $W_N = e^{-j\frac{2\pi}{N}}$ tenemos que

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk} = DFT_N\{x[n]\} \text{ para } k \in [0,...,N-1].$$

X[k] puede ser calculado vía dos DFTs de $\frac{N}{2}$ muestras. Para ello vamos a separar la suma en muestras pares e impares,

$$X[k] = \sum_{n=0}^{N/2-1} x[2n]W_N^{2nk} + \sum_{n=0}^{N/2-1} x[2n+1]W_N^{(2n+1)k}.$$

Algoritmo FFT - Decimación en el tiempo

Dado que
$$W_N^{2nk} = W_{\frac{N}{2}}^{nk}$$
, tenemos que

$$X[k] = \sum_{n=0}^{N/2-1} x[2n] W_{\frac{N}{2}}^{nk} + W_N^k \sum_{n=0}^{N/2-1} x[2n+1] W_{\frac{N}{2}}^{nk} \text{ para } k \in [0,N-1].$$

Lo que buscamos es expresar X[k] tal que su cálculo requiera menos operaciones, para ello vamos a dividir X[k] en dos partes,

$$G[k] = X[k]$$
 y $H[k] = X[k + \frac{N}{2}]$ para $k \in [0, \frac{N}{2} - 1]$.

Algoritmo FFT - Decimación en el tiempo

Dado
$$G[k] = X[k]$$
 para $k \in [0, \frac{N}{2} - 1]$, tenemos que

$$G[k] = \sum_{n=0}^{N/2-1} x[2n] W_{\frac{N}{2}}^{nk} + W_N^k \sum_{n=0}^{N/2-1} x[2n+1] W_{\frac{N}{2}}^{nk}$$
$$= DFT_{\frac{N}{2}} \{x[2n]\} + W_N^k DFT_{\frac{N}{2}} \{x[2n+1]\}.$$

Algoritmo FFT - Decimación en el tiempo

De forma similar, dado
$$H[k] = X[k + \frac{N}{2}]$$
 para $k \in [0, \frac{N}{2} - 1]$, tenemos que

$$H[k] = \sum_{n=0}^{N/2-1} x[2n] W_{\frac{N}{2}}^{n(k+\frac{N}{2})} + W_N^{k+\frac{N}{2}} \sum_{n=0}^{N/2-1} x[2n+1] W_{\frac{N}{2}}^{n(k+\frac{N}{2})}.$$

Dado que
$$W_{\frac{N}{2}}^{n(k+\frac{N}{2})}=W_{\frac{N}{2}}^{nk}$$
 y $W_N^{k+\frac{N}{2}}=-W_N^k$, podemos encontrar que

$$H[k] = \sum_{n=0}^{N/2-1} x[2n] W_{\frac{N}{2}}^{nk} - W_N^k \sum_{n=0}^{N/2-1} x[2n+1] W_{\frac{N}{2}}^{nk}$$
$$= DFT_{\frac{N}{2}} \{x[2n]\} - W_N^k DFT_{\frac{N}{2}} \{x[2n+1]\}.$$

Algoritmo FFT - Decimación en el tiempo

En conclusión, la transformada discreta de Fourier de x[n] de longitud N puede ser calculada via dos transformadas de Fourier de $\frac{N}{2}$ muestras, utilizando la siguiente expresión

$$X[k] = \{G[0], ..., G[\frac{N}{2}-1], H[0], ..., H[\frac{N}{2}-1]\},$$

donde

$$G[k] = DFT_{\frac{N}{2}} \{x[2n]\} + W_N^k DFT_{\frac{N}{2}} \{x[2n+1]\},$$

$$H[k] = DFT_{\frac{N}{2}} \{x[2n]\} - W_N^k DFT_{\frac{N}{2}} \{x[2n+1]\}.$$

La transformada rápida de Fourier (FFT) aplica este procedimiento de forma recursiva logrando que

$$\mathcal{O}\left(\operatorname{FFT}_N\{x[n]\}\right) = N \cdot \log_2(N)$$
 operaciones complejas.

Representación gráfica de la FFT

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk} = DFT_N\{x[n]\}, \quad k \in [0,...,N-1]$$

Representación gráfica de la FFT

$$G[k] = DFT_{\frac{N}{2}} \left\{ x_{par} \right\} + W_N^k DFT_{\frac{N}{2}} \left\{ x_{impar} \right\}$$

$$H[k] = DFT_{\frac{N}{2}} \left\{ x_{par} \right\} - W_N^k DFT_{\frac{N}{2}} \left\{ x_{impar} \right\}$$

Representación gráfica de la FFT

$$G[k] = DFT_{\frac{N}{2}} \left\{ x_{par} \right\} + W_N^k DFT_{\frac{N}{2}} \left\{ x_{impar} \right\}$$

$$H[k] = DFT_{\frac{N}{2}} \left\{ x_{par} \right\} - W_N^k DFT_{\frac{N}{2}} \left\{ x_{impar} \right\}$$

Operación "Butterfly"

Representación gráfica de la FFT

Representación gráfica de la FFT

Representación gráfica de la FFT (N=8)

En cada nivel se tienen $\frac{N}{2}$ multiplicaciones complejas y N sumas complejas.

Muchas gracias!