# **PROJECT REPORT**

# NATURAL DISASTERS INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

# Submitted by

K. DURGA VIJAYA LAKSHMI - 950819106015

T. SOWNDARYA - 950819106090

P.SRI DEVI - 950819106091

T. SUDARMATHI - 950819106093

In partial fulfillment for the award of the degree of

**BACHELOR OF ENGINEERING** In

**ELECTRONICS AND COMMUNICATION ENGINEERING,** 

GOVERNMENT COLLEGE OF ENGINEERING,

TIRUNELVELI - 627 007.

**ANNA UNIVERSITY: CHENNAI-600 025.** 

NOVEMBER 2022.

# **TABLE OF CONTENTS**

| 1  | INTRODUCTION                            | 3     |                |
|----|-----------------------------------------|-------|----------------|
|    | 1.1 Project overview                    |       |                |
|    | 1.2 Purpose                             |       |                |
| 2  | LITERATURE SURVEY                       | 3     |                |
|    | 2.1 Exisiting problem                   |       |                |
|    | 2.2 References                          |       |                |
|    | 2.3 Problem statement definition        |       |                |
| 3  | IDEATION AND PROPOSED SOLUTION          | 4     |                |
|    | 3.1 Empathy Map Canvas                  |       |                |
|    | 3.2 Ideation and Brainstorming          |       |                |
|    | 3.3 Proposed solution                   |       |                |
|    | 3.4 Problem Solution Fit                |       |                |
| 4  | REQUIREMENT ANALYSIS                    | 8     |                |
|    | 4.1 Functional requirements             |       |                |
|    | 4.2 Non-Functional requirements         |       |                |
| 5  | PROJECT DESIGN                          | 9     |                |
|    | 5.1 Data Flow Diagrams                  |       |                |
|    | 5.2 User Stories                        |       |                |
|    | 5.3 Solution and technical architecture |       |                |
| 6  | PROJECT PLANNING AND SCHEDULING         | 13    |                |
|    | 6.1 Sprint Planning and Estimation      |       |                |
|    | 6.2 Sprint Deliver Schedule             |       |                |
| 7  | CODING AND SOLUTIONING(Explain the fe   | - · · | long with code |
|    | 7.1 Feature 1                           | 16    |                |
|    | 7.2 Feature 2                           |       |                |
| 8  | TESTING                                 | 19    |                |
|    | 8.1 Test cases                          |       |                |
|    | 8.2 User Acceptance Testing             |       |                |
| •  | RESULTS                                 | 20    |                |
|    | 9.1 Performance Metrices                |       |                |
| _  | ADVANTAGES AND DISADVANTAGES            | 21    |                |
|    | CONCLUSION                              | 22    |                |
|    | FUTURE SCOPE                            | 22    |                |
| AF | PPENDIX                                 |       |                |
|    | SOURCE CODE                             | 23    |                |
|    | GITHUB                                  | 27    |                |
|    | PRO JECTDEMO                            | 27    |                |

#### 1.INTRODUCTION

## 1.1 Project overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems.

## 1.2 Purpose

The main of the aim of the project to develop a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is compared with the Pre-trained model and the type of disaster is identified and showcased on the OpenCV window.

#### 2.LITERATURE SURVEY

## 2.1 Existing problem

Natural disasters are uncontrollable phenomena occurring yearly which cause extensive damage to lives, property and cause permanent damage to the environment. However by, using Deep Learning, real-time recognition of these disasters can help the victims and emergency response agencies during the onset of these destructive events. At present, there are still gaps in the literature regarding real-time natural disaster recognition. Flood management, which involves flood prediction, detection, mapping, evacuation, and relief activities, can be improved via the adoption of state-ofthe-art tools and technology. Thus, future efforts need to focus on combining disaster management knowledge, image processing techniques and machine learning tools to ensure effective and holistic disaster management across all phases.

#### 2.2 References

Deep Learning Based Forest Fire Classification And Detection In Satellite Images.
Author: R.Shanmuga priya, K.Kani

#### 2.3 Problem statement definition

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images.

#### 3.IDEATION AND PROPOSED SOLUTION

#### 3.1 Empathy map canvas



## 3.2 Ideation and Brainstorming





# 3.3 Proposed Solution

| S.NO       | Parameter            | Description                                         |
|------------|----------------------|-----------------------------------------------------|
|            |                      |                                                     |
| 1.         | Problem              | To tackle the problem of detecting natural          |
|            | statement(problem to | disasters ,we developed a multilayered deep         |
|            | be solved)           | convolutional neural network model that             |
|            |                      | classifies the natural disaster and tells the       |
|            |                      | intensity of natural disaster.                      |
|            |                      |                                                     |
|            |                      |                                                     |
| 2.         | Ideas/solution       | By predicting to occurrence of natural disaster,    |
|            | description          | we can save thousands of lives and take             |
|            |                      | appropriate measures to reduce property             |
|            |                      | damage.                                             |
|            |                      |                                                     |
| 3.         | Novelty/Uniqueness   | It finds the magnitude of impact , length of fore   |
| <b>J</b> . |                      | warming and duration of impact.                     |
|            |                      |                                                     |
|            |                      |                                                     |
| 4.         | Social               | The most vulnerable are citizens and children .it   |
|            | impact/customer      | can save lives of people can minimize the loss of   |
|            | satisfaction         | infrastructure, finance.                            |
|            |                      |                                                     |
|            |                      |                                                     |
| 5.         | Business Model       | The government and private companies make           |
|            | (Revenue model)      | use of this to get revenue in future.               |
|            |                      |                                                     |
|            |                      |                                                     |
| 6.         | Scalability of the   | Discrete demands one management discrete            |
|            | solution             | Disaster damages are measured involves              |
|            |                      | examining the number of fatalities, of injuries, of |
|            |                      | people affected.                                    |
|            |                      |                                                     |

# 3.4 Problem Solution Fit

#### Problem-Solution fit canvas 2.0

Purpose / Vision

1. CUSTOMER SEGMENT(S)

The global GIS in disaster management market size stood at \$2.3 billion in 2019, and it is expected to reach \$9.4 billion by 2030, exhibiting a CAGR of 13.7% during the forecast period (2020 – 2030). The major factors supporting the growth of the industry include the surging number of natural disasters, strong focus of government and emergency management organizations on adopting advanced GIS solutions, high need for analyzing geospatial data, and increasing public awareness about reducing the socioeconomic impact of

#### 6. CUSTOMER CONSTRAINTS

Awareness, education, preparedness, and prediction and warning systems can reduce the disruptive impacts of a natural disaster on communities. Mitigation measures such as adoption of Zoning, land-use practices, and building codes are needed, however, to prevent or reduce actual damage from hazards.

#### 5. AVAILABLE SOLUTIONS

Planning to warn the people which will minimize the effects of disasters Recovery and reconstruction.

AS

2. JOBS-TO-BE-DONE / PROBLEMS

natural disasters.

Natural disasters can cause great damage on the environment, property, wildlife and human health. These events may include earthquakes, floods, hurricanes, tornadoes, tsunamis, landslides, wildfires, volcanic eruptions.extreme temperatures.

Property damage. Structural damage to buildings. Loss of utilities like electricity and water.

#### 9. PROBLEM ROOT CAUSE

J&P

The lack of resources and capacties (e.g., financial, human and technical) and a low level of knowledge an education emerged in all case studies as major root causes for several drivers of disaster

#### 7. BEHAVIOUR

Analysis of public behavior plays an important role in crisis management, disaster response, and evacuation planning. Unfortunately, collecting relevant data can be costly and finding meaningful information for analysis is challenging. A growing number of Location-based Social Network services provides time-stamped, geo-located data that opens new opportunities and solutions to a wide range of challenges.

#### 3. TRIGGERS

Large economic losts, reduced accumulation of capital and infrastructure, long recovery period after disasters.

#### 10. YOUR SOLUTION

TR

Natural disasters cannot be prevented but they can be detected. We can measure disaster risk by analysind

trends of, for instance, previous disaster losses. These trends can help us to gauge whether disaster risk reduction is being effective. We can also estimate future losses by conducting a risk assessment.

#### 8. CHANNELS of BEHAVIOUR

SL

We demonstrate how to improve investigation by analyzing the extracted public behavior responses from social media before, during and after natural disasters, such as hurricanes and tornadoes.

Dissemination of information from nearby Government agencies and NGO'S.

#### 4. EMOTIONS: BEFORE / AFTER

Before the disaster, a positive association was found between place-identity and wellbeing, indicating that the stronger emotions participants evolved to the place, as well as remembered more and thought about the place, the stronger wellbeing they experienced at the site. After the disaster, the strength of this relationship decreased more than twice, accounted for by the weakening of the emotion-wellbeing link

(c) (3 a) Problem Solution it census is licensed under a Creative Commons Attribution/IconCommercial/IioDerivativas 4.0 license Commons Attribution/IconCommercial/IioDerivativas 4.0 license Commons Attribution/IconCommercial/IioDerivativas 4.0 license



CH of BE

СН

# **4.REQUIREMENT ANALYSIS**

# 4.1 Functional requirement

| FR No. | Functional Requirement | Sub Requirement (Story / Sub-Task)                 |
|--------|------------------------|----------------------------------------------------|
|        | (Epic)                 |                                                    |
| FR-1   | User Registration      | Register through mobile application Call the given |
|        |                        | emergency number                                   |
| FR-2   | User Confirmation      | Confirmation via Call back Confirmation via Text   |
| FR-3   | User Preparation       | Ensure safety of all people Supply of canned food  |
| FR-4   | User evacuation        | Waiting for evacuation team                        |
|        |                        | Take refugee in nearest safe location              |

# 4.2 Non-Functional requirements

| FR No. | Non-Functional Requirement | Description                                                                                                                  |
|--------|----------------------------|------------------------------------------------------------------------------------------------------------------------------|
|        |                            |                                                                                                                              |
| NFR-1  | Usability                  | It is easy and quick method to predict the disasters.                                                                        |
| NFR-2  | Security                   | The secure pattern shares components with monitor and control for logging and control access and for providing audit trails. |
| NFR-3  | Reliability                | It should be highly reliable.                                                                                                |
| NFR-4  | Performance                | It deals with the measure of the system's response time.                                                                     |
| NFR-5  | Availability               | It can be available at the any time and we can access during any disasters.                                                  |
| NFR-6  | Scalability                | Disaster damages are measured involves examining the number of fatalities, of injuries, of people affected.                  |

## **5.PROJECT DESIGN**

# 5.1 Data flow diagram





# **5.2 User Stories**

| User Type                    | Function         | 11     | lser Story/                                                                                               |                                                                  | Priority | Release  |
|------------------------------|------------------|--------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------|----------|
|                              | al               | User   | User Story /                                                                                              | ce criteria                                                      |          |          |
|                              | Requirem         | Story  | Task                                                                                                      |                                                                  |          |          |
|                              | ent (Epic)       |        |                                                                                                           |                                                                  |          |          |
|                              |                  | Number |                                                                                                           |                                                                  |          |          |
| Customer<br>(Mobile<br>user) | Registrati<br>on | USN-1  | As a user, I can register for the application by entering my email, password, and confirming my password. | I can<br>access my<br>account /<br>dashboard                     | High     | Sprint-1 |
|                              |                  | USN-2  | As a user, I will receive confirmation email once I have registered for the application                   | I can<br>receive<br>confirmati<br>on email &<br>click<br>confirm | High     | Sprint-1 |
|                              |                  | USN-3  | As a user, I can register for the application through                                                     | I can register & access the dashboa rd with Facebook Login       | Low      | Sprint-2 |
|                              |                  | USN-4  | As a user, I can register for the application through Gmail                                               | I can login<br>with my<br>password                               | Medium   | Sprint-1 |
|                              | Login            |        |                                                                                                           | I can see                                                        | High     | Sprint-1 |

|                               |                                          | USN-5                   | As a user, I can log into the application by entering email & password  | the<br>dashboard<br>now             |          |          |
|-------------------------------|------------------------------------------|-------------------------|-------------------------------------------------------------------------|-------------------------------------|----------|----------|
|                               | Dashboard                                | USN-6                   | As a user, I can update Disaster incidents.                             | I can<br>update<br>now.             | Medium   | Sprint-1 |
| Customer<br>(Web user)        |                                          | USN-7                   | As a user, I can view Map Data.                                         | I can see<br>Map Data.              | Medium   | Sprint-1 |
| Customer<br>Care<br>Executive | Authentica<br>tion                       | USN-8                   | As a Community Leader, I can log into the application using my password | I can<br>access my<br>account.      | High     | Sprint-1 |
|                               |                                          | USN-9                   | As a Community<br>Leader, I can<br>apply for<br>membership.             | I can<br>apply<br>membersh<br>ip.   | High     | Sprint-1 |
| User Type                     | Function<br>al<br>Requirem<br>ent (Epic) | User<br>Story<br>Number | User Story /<br>Task                                                    | Acceptan<br>ce criteria             | Priority | Release  |
|                               |                                          | USN-10                  | As a Community<br>Leader, I can<br>verify Disaster.                     | Disaster<br>verificati<br>on        | High     | Sprint-1 |
| System<br>Administrat<br>or   | Membersh<br>ip<br>Approval               | USN-11                  | As a administrator, I can approve the Membership                        | I can<br>approve<br>membersh<br>ip. | High     | Sprint-1 |

|                                                        |                                   |        | application.                                                 |                                                 |      |          |
|--------------------------------------------------------|-----------------------------------|--------|--------------------------------------------------------------|-------------------------------------------------|------|----------|
|                                                        | Update<br>Disaster<br>information | USN-12 | As a administrator, I can update information about Disaster. | I can<br>update<br>disaster<br>informatio<br>n. | High | Sprint-1 |
|                                                        | Disaster<br>verification          | USN-13 | As a administrator, I can verify disaster.                   | I can<br>verify<br>Disaster                     | High | Sprint-1 |
| Community<br>Leader and<br>System<br>Administrat<br>or | Disaster<br>Queries               | USN-14 | Both are can<br>able to ask<br>disaster queries.             | We can ask Queries about disaster.              | Low  | Sprint-2 |

#### **5.3 Solution And Technical Architecture**

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- 1. Find the best tech solution to solve existing business problems.
- 2. Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- 3. Define features, development phases, and solution requirements.

Provide specifications according to which the solution is defined, managed, and delivered.



# **6 PROJECT PLANNING AND SCHEDULING**

# **6.1 Sprint Planning and Estimation**

| Sprint   | Functional Requireme nt (Epic) | User<br>Story<br>Number | User Story / Task                                                                                  | Story<br>Points | Priority | Team<br>Members |
|----------|--------------------------------|-------------------------|----------------------------------------------------------------------------------------------------|-----------------|----------|-----------------|
| Sprint-1 | Registration                   | USN-1                   | As a user, I can register for the application by entering my email, password, and confirming that. | 2               | Low      | Haja<br>Mydeen  |
| Sprint-1 | Registration                   | USN-2                   | As a user, I will receive confirmation email once I have registered for the application.           | 3               | High     | Harini          |
| Sprint-1 | Login                          | USN-3                   | As a user, I adapt to logging into the system with                                                 | 2               | Low      | Vanish          |

|          |                                       |        | credentials.                                                                                         |   |        |                 |
|----------|---------------------------------------|--------|------------------------------------------------------------------------------------------------------|---|--------|-----------------|
| Sprint-1 | Designation of Region                 | USN-4  | As a user, I can collect the dataset and select the region of interest to be monitored and analysed. | 5 | Medium | Veeramakali     |
| Sprint-2 | Analysis of required phenomenon       | USN-5  | As a user, I can regulate certain factors influencing the action and report on past event analysis.  | 4 | High   | Vanish          |
| Sprint-2 | Algorithm selection                   | USN-6  | As a user, I can choose the required algorithm for specific analysis.                                | 4 | Medium | Harini          |
| Sprint-2 | Training and Testing                  | USN-7  | As a user, I can train and test the model using the algorithm.                                       | 4 | High   | Veeramakali     |
| Sprint-3 | Prediction<br>and analysis<br>of data | USN-8  | As a user, I can predict and visualise the data effectively.                                         | 4 | High   | Haja<br>Mydeen  |
| Sprint-3 | Model<br>building                     | USN-9  | As a user, I can build with the web application.                                                     | 8 | High   | Vanish          |
| Sprint-4 | Report<br>generation                  | USN-10 | As a user, I can generate detailed report on product data analysis.                                  | 4 | High   | Harini          |
| Sprint-4 | Model<br>deployment                   | USN-11 | As an administrator, I can maintain thirdparty services.                                             | 8 | High   | Veeramaka<br>Ii |

# **6.2 Sprint Delivery Schedule**

| Sprint   | Total Story<br>Points | Duration | Sprint Start<br>Date | Sprint End<br>Date<br>(Planned) | Story Points Completed (as on Planned End Date) | Sprint<br>Release<br>Date<br>(Actual) |
|----------|-----------------------|----------|----------------------|---------------------------------|-------------------------------------------------|---------------------------------------|
| Sprint-1 | 12                    | 6 Days   | 24 Oct 2022          | 29 Oct 2022                     | 12                                              | 29 Oct 2022                           |
| Sprint-2 | 12                    | 6 Days   | 31 Oct 2022          | 05 Nov 2022                     | 12                                              | 05 Nov 2022                           |
| Sprint-3 | 12                    | 6 Days   | 07 Nov 2022          | 12 Nov 2022                     | 12                                              | 12 Nov 2022                           |
| Sprint-4 | 12                    | 6 Days   | 14 Nov 2022          | 19 Nov 2022                     | 12                                              | 19 Nov 2022                           |

# 6.3 Reports from JIRA



## 7 CODING AND SOLUTIONING

## 7.1 Feature 1

```
import numpy as np
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten

model=Sequential()
model.add(Conv2D(32,(3,3),activation="relu",input_shape=(64,64,3)))
model.add(MaxPooling2D(poo activation: Any
model.add(Conv2D(32,(3,3),activation= relu ))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=4,activation='softmax'))
model.compile(loss="categorical_crossentropy",metrics=["accuracy"],optimizer='adam')
```

```
model.summary()
Model: "sequential"
 Layer (type)
                            Output Shape
                                                      Param #
                            (None, 62, 62, 32)
 conv2d (Conv2D)
                                                      896
 max_pooling2d (MaxPooling2D (None, 31, 31, 32)
 conv2d_1 (Conv2D)
                            (None, 29, 29, 32)
                                                      9248
 max_pooling2d_1 (MaxPooling (None, 14, 14, 32)
 2D)
 flatten (Flatten)
                            (None, 6272)
 dense (Dense)
                            (None, 128)
                                                      802944
 dense_1 (Dense)
                             (None, 4)
                                                      516
Total params: 813,604
Trainable params: 813,604
```

```
Iranable params: $13,004
Non-trainable params: 0

model.fit_generator(generator-x_train,epochs=20,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))

model.save('disaster.h5')
model_json-model.to_json()
vwith open('model-bw.json','w') as json_file:
    json_file.write(model_json)

from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
model=load_model('disaster.h5')

x_train.class_indices

{'Cyclone': 0, 'Earthquake': 1, 'Flood': 2, 'Wildfire': 3}
```

## 7.2 Feature 2

```
application.py* ×

from flask import Flask, render_template
app = flask(_name__)

@app.route('/')
def home():
    return render_template('homepage.html', title='Disaster Classifier | Home',
    active_page='home')

@app.route('/intro')
def intro():
    return render_template('intro.html', title='Disaster Classifier | About', active_page='intro')

@app.route('/launch')
def launch():
    return render_template('launch.html', title='Disaster Classifier | Launch',
    active_page='launch')

if __name__ == '__main__':
    app.run(debug=True)
```

## 8 TESTING

## 8.1 Test Case

| Test case ID         | Feature Type | Compone            | Test Scenario                                                                     | Pre-Requisite | Steps To Execute                                                                                                                                                                                                                      | Test Data              | Expected Result                                                                                                                                                        | Actual Recult          | Statu | Commets                | TC for<br>Automation(YIN) | BUG<br>ID | Executed By |
|----------------------|--------------|--------------------|-----------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|------------------------|---------------------------|-----------|-------------|
| HomePage_TC_<br>OO1  | Functional   | Home<br>Page       | Verify user is able to see<br>the home page when click<br>on the Local host ID    |               | Click on the local host ID.     Verify Home page displayed or not                                                                                                                                                                     | t0ps.0127.0.0.15000    | Home page should display                                                                                                                                               | Working as<br>expected | Pann  |                        |                           |           |             |
| HomePage_TC_<br>CXX2 | u            | Home<br>Page       | Verify the UI elements in<br>Home page                                            |               | Click on the Local host ID.     Nertly Home page with<br>below UI elements: a Home<br>b Infro page<br>c Open Web Carn                                                                                                                 | teps.0127.0.0.1:5000   | Application should show<br>below UI elements: a Home<br>b intro page<br>c.Open web cam                                                                                 | Working as<br>expected | poess |                        |                           |           |             |
| HomePage_FC_<br>GOS  | u            | Home               | Verify user is able to see<br>the some definition of<br>natural disealer in Home. |               | 1.Click on the local hast ID<br>2.Click on Home<br>3.Verify Home with below UI<br>exements:<br>a Cyclone with definition<br>b.Earth quake with definition<br>c.Wide Fire with definition<br>of Fiscel with definition                 | Міря. (127. О. 1.5000  | Application should show below<br>UI element:<br>a Cyclone with definition<br>b Earth quate: with definition<br>c Wilde Fire with definition<br>d Flood with definition | Working as<br>expected | Pass  |                        |                           |           |             |
| HomePage_TC_<br>OO4  | u            | intro<br>Page      | Verify user is able to see introduction in intro page                             |               | Click on the local host ID     Click on intro page     Verify intro page with some introduction                                                                                                                                       | Mips://127.0 0.1:5000  | Application should show Some<br>introduction about natural<br>disaster                                                                                                 | Working as<br>expected | poss  |                        |                           |           |             |
| HomePage_FC_<br>OO4  | u            | Open<br>web<br>cam | Verify user is able to see<br>Ut elements in open web<br>cain                     |               | Click on the local host ID     Click on the Open web     cam 3 Verify open web     cam with below elements:     a Upload     b-Predict                                                                                                | https://127.0.0.1:5000 | Application should show<br>Upload button and predict<br>button                                                                                                         | Working as<br>expected | Pass  |                        |                           |           |             |
| HomePage_FC_<br>OOS  | u            | Upload             | Verity user is able to upload an image                                            |               | Click on the local host ID     Click on the Open web came     click on the Upload burlen     twenty user to see images to     uproad in upload buflon     Scick, on any image shows in     upload buflon                              | Mips./127.0.0.1:5000   | Application should upload an image                                                                                                                                     | Working as<br>expected | pass  |                        |                           |           |             |
| ame<br>age_TC_666    | u            | Predict            |                                                                                   |               | Click on the local host ID     Click on the Open web cam     Stick on the Upland button     Click on the Image to upland     Click on the Image to upland     Click on the prodict button     Westly user able to so     output image | Мірь.//127.0.0.1:5000  | Application should show output<br>tind                                                                                                                                 | working at<br>expected | Fall  | Output image not shows |                           |           |             |

# 8.2 User Acceptance Testing

| Resolution     | Severity1 | Severity2 | Severity3 | Severity4 | Subtotal |
|----------------|-----------|-----------|-----------|-----------|----------|
| By Design      | 6         | 3         | 2         | 1         | 12       |
| Duplicate      | 1         | 0         | 3         | 0         | 4        |
| External       | 2         | 3         | 0         | 1         | 6        |
| Fixed          | 12        | 2         | 4         | 5         | 23       |
| Not Reproduced | 0         | 0         | 1         | 0         | 1        |
| Skipped        | 0         | 0         | 1         | 1         | 2        |
| Won'tFix       | 0         | 3         | 2         | 1         | 6        |
| Totals         | 21        | 11        | 13        | 9         | 54       |

# 9 RESULTS

# **9.1 Performance Metrics**

| S.No. | Parameter     | Values | Screenshot                                              |
|-------|---------------|--------|---------------------------------------------------------|
| 1.    | Model Summary | -      | model.summary() Model: "sequential"                     |
|       |               |        | Layer (type) Output Shape Param #                       |
|       |               |        | conv2d (Conv2D) (None, 62, 62, 32) 896                  |
|       |               |        | max_pooling2d (MaxPooling2D (Mone, 31, 31, 32) 0        |
|       |               |        | conv2d_1 (Conv2D) (None, 29, 29, 32) 9248               |
|       |               |        | max_pooling2d_1 (MaxPooling (None, 14, 14, 32) 0<br>20) |
|       |               |        | flatten (Flatten) (None, 6272) 0                        |
|       |               |        | dense (Dense) (None, 128) 802944                        |
|       |               |        | dense_1 (Dense) (None, 4) 516                           |
|       |               |        |                                                         |

|    | I        |                       |                                                                             |
|----|----------|-----------------------|-----------------------------------------------------------------------------|
| 2. | Accuracy | Training Accuracy -   | loss: 0.5239 - accuracy: 0.7857 - val_loss: 0.7225 - val_accuracy: 0.7576   |
|    |          | Validation Accuracy - | - loss: 0.4353 - accurecy: 0.0363 - vel_loss: 0.7538 - val_accuracy: 0.7323 |
|    |          |                       | · loss: 0.3964 - accuracy: 0.8544 - val_loss: 1.8303 - val_accuracy: 0.6364 |
|    |          |                       | - loss: 0.3662 - accuracy: 0.8767 - val_loss: 0.5900 - val_accuracy: 0.7273 |
|    |          |                       | - loss: 0.4363 - accuracy: 0.8342 - val_loss: 0.5633 - val_accuracy: 0.7475 |
|    |          |                       | loss: 0.3292 - accuracy: 0.8814 - val_loss: 0.5497 - val_accuracy: 0.7577   |

#### 10. ADVANTAGES AND DISADVANTAGES

# **ADVANTAGES**:-

- 1.Humans also need breaks and time offs to balance their work life and personal life.But AI can work endlessly without breaks.
- 2. With the use of various AI-based techniques, we can also anticipate today's weatherand the days ahead.
- 3. Helpful in getting life back on track..
- 4. Their Alert nature able to respond effectively and efficiently which defend the societyfrom large scale damages.

# **DISADVANTAGES:-**

- 1. It involves huge money to be equipped.
- 2. Problems faced in life basic needs.
- 3. One application of artificial intelligence is a robot, which is displacing occupations and increasing unemployment .
- 4. Machines can perform only those tasks which they are designed or programmed to do, anything out of that they tend to crash or give irrelevant outputs which could be a major backdrop.

#### 11 CONCLUSION

Many researchers have attempted to use different deep learning methods for detection of natural disasters. However, the detection of natural disasters by using deep learning techniques still faces various issues due to noise and serious class imbalance problems. To address these problems, we proposed a multilayered deep convolutional neural network for detection and intensity classification of natural disasters. The proposed method works in two blocks—one for detection of natural disaster occurrence and the second block is used to remove imbalanced class issues. The results were calculated as average statistical values: sensitivity, 97.54%; specificity, 98.22%; accuracy rate, 99.92%; precision, 97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the highest accuracy as compared to other state-of-the-art methods due to its multilayered structure. The proposed model performs significantly better for natural disaster detection and classification, but in the future the model can be used for various natural disaster detection processes.

## 12 FUTURE SCOPE

AI -smart technology, which has enabled accurate and speedy solutions. If harnessed properly, the technology has the potential of predicting, preventing and providing response faster than ever. AI data setups are trained to predict seismic data to analyze the patterns of earthquake occurrences, rainfall records and monitor flooding, measure the intensity hurricanes and read the geological data to understand volcanic eruptions, such systems can reduce the catastrophic impact of natural disasters. Last year, Google's Pilot project to monitor flood in India with the help of AI, was a successful one – it was a Patna project. They were able to predict floods and the regions that it would be affected due to the natural disaster with an accuracy of over 90%. It was possible owing to the combination of data from government agencies that

provide on-ground information – from measuring devices placed on the spot and satellite captured images of flood-prone areas. They ran hundreds of thousands of simulations on its machine learning (ML) models to predict the flow of water. In thefuture, leveraging AI can help disaster management bodies install drones, sensors and robots to provide accurate information about damaged buildings and landscapes, potential floods, making rescue missions safer and less time-consuming. There is a need for smart technology to be integrated within our local communities. Immediate response and tech-based solutions can help reduce the extent of damage. However, since AI is based on machine codes, there is a scope of limitations and errors. However, the amalgamation of human, empathy and alertness, could do wonders in the field of crisis management.

#### **APPENDIX**

## Source code

## **Model creation**

```
import numpy as np
import tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,Flatten

model=Sequential()
model.add(Conv2D(32,(3,3),activation="relu",input_shape=(64,64,3)))
model.add(MaxPooling2D(poo activation: Any model.add(Conv2D(32,(3,3),activation= relu ))
model.add(Conv2D(32,(3,3),activation= relu ))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(units=128,activation='relu'))
model.add(Dense(units=4,activation='softmax'))
model.compile(loss="categorical_crossentropy",metrics=["accuracy"],optimizer='adam')
```

| model.summary()                          |                    |         |  |  |  |  |
|------------------------------------------|--------------------|---------|--|--|--|--|
| Model: "sequential"                      |                    |         |  |  |  |  |
| Layer (type)                             | Output Shape       | Param # |  |  |  |  |
| conv2d (Conv2D)                          |                    |         |  |  |  |  |
| <pre>max_pooling2d (MaxPooling2D )</pre> | (None, 31, 31, 32) | 0       |  |  |  |  |
| conv2d_1 (Conv2D)                        | (None, 29, 29, 32) | 9248    |  |  |  |  |
| max_pooling2d_1 (MaxPooling<br>2D)       | (None, 14, 14, 32) | 0       |  |  |  |  |
| flatten (Flatten)                        | (None, 6272)       | 0       |  |  |  |  |
| dense (Dense)                            | (None, 128)        | 802944  |  |  |  |  |
| dense_1 (Dense)                          | (None, 4)          | 516     |  |  |  |  |
| Total params: 813,604                    |                    |         |  |  |  |  |
| Trainable params: 813,604                |                    |         |  |  |  |  |

```
irainabie params: 813,004
Non-trainable params: 0
   model.fit_generator(generator=x_train,epochs=20,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))
   model.save('disaster.h5')
   model json=model.to json()
 vwith open("model-bw.json","w") as json_file:
     json file.write(model json)
   from tensorflow.keras.models import load_model
   from tensorflow.keras.preprocessing import image
   model=load model('disaster.h5')
   x_train.class_indices
{'Cyclone': 0, 'Earthquake': 1, 'Flood': 2, 'Wildfire': 3}
    img-image.load\_img(r"/content/drive/MyDrive/Disaster/dataset/test\_set/Earthquake/1329.jpg", target\_size=(64,64))
    x=image.img_to_array(img)
    x=np.expand_dims(x,axis=0)
    index=['Cyclone', 'Earthquake', 'Flood', 'Wildfire']
y=np.argmax(model.predict(x),axis=1)
    print(index[int(y)])
 1/1 [======] - 0s 121ms/step
 Earthquake
    img=image.load_img(r"/content/drive/MyDrive/Disaster/dataset/test_set/Cyclone/900.jpg",target_size=(64,64))
    x=image.img_to_array(img)
    x=np.expand_dims(x,axis=0)
    index=['Cyclone', 'Earthquake', 'Flood', 'Wildfire']
y=np.argmax(model.predict(x),axis=1)
    print(index[int(y)])
1/1 [=====] - 0s 20ms/step
Cyclone
```

# Flask app.py

```
application.py* X

from flask import Flask, render_template

app = Flask(_name__)

@app.route('/')

def home():
    return render_template('homepage.html', title='Disaster Classifier | Home', active_page='home')

@app.route('/intro')
def intro():
    return render_template('intro.html', title='Disaster Classifier | About', active_page='intro')

@app.route('/launch')
def launch():
    return render_template('launch.html', title='Disaster Classifier | Launch', active_page='launch')

if __name__ == '__main__':
    app.run(debug=True)
```

## **HTML Code**

# **GITHUB:**

https://github.com/IBM-EPBL/IBM-Project-34152-1660232021

# **PROJECT DEMO:**

https://drive.google.com/file/d/1hTAEWRoRxu8eeLW8kzOyoS EE604HWa6B/view?usp=share\_link