24. Zwierciadła

Jako lusterka zewnętrze w samochodzie najczęściej stosowane są zwierciadła sferyczne wypukłe. Kształt zwierciadła sprawia, że widoczny w nim obraz jadącego z tyłu samochodu jest mniejszy niż obraz, jaki pojawiłby się w zwierciadle płaskim. Widzimy więc nie tylko samochód, ale i przestrzeń wokół pojazdu. Nie można jednak tak ustawić lusterek, aby całkowicie zlikwidować martwe pole (obszar wokół samochodu, który jest niewidoczny, kiedy patrzymy w lusterka boczne i wsteczne).

W nowoczesnych samochodach jako lusterka boczne montuje się zwierciadła asferyczne, zwane zwierciadłami łamanymi. Dzięki odpowiedniej konstrukcji (mają dwie sfery) znacznie poszerzają one pole widzenia i praktycznie likwidują martwe pole.

Uczniowie dowiedzą się, w jaki sposób w zwierciadle płaskim jest wytwarzany obraz. Będą też doświadczalnie demonstrowali powstawanie obrazów za pomocą zwierciadeł płaskich i poznają właściwości zwierciadeł sferycznych.

Środki dydaktyczne:

- lustro, zwierciadło sferyczne wklęsłe, wata, patyk do szaszłyków, miska z wodą, źródło równoległej wiązki światła, biała kartka, taśma klejaca, folia aluminiowa, szklanka¹,
- ilustracje (zamieszczone w podręczniku lub inne, np. z internetu).

Metody pracy uczniów:

- analiza ilustracji i tekstów (opisów doświadczeń),
- doświadczenia (samodzielnie lub w grupach),
- dyskusja,

Wiedza uprzednia:

- z lekcji przyrody realizowanych w klasach 4–6 według poprzedniej podstawy programowej² dla szkoły podstawowej (liczba w nawiasie oznacza numer wymagania): uczeń:
 - bada zjawisko odbicia światła: od zwierciadeł, powierzchni rozpraszających, elementów odblaskowych (...) (11.5);
- z poprzednich lekcji fizyki (w nawiasie podano numer wymagania i numer tematu w podręczniku): uczeń:
 - opisuje zjawisko odbicia od powierzchni płaskiej (...) (wymaganie IX.2; temat 23).

Co najmniej po jednym komplecie dla grupy uczniów.

Realizacja wymagań

Na tej lekcji będą nabywane lub rozwijane następujące umiejętności określone w podstawie programowej kształcenia ogólnego dla szkoły podstawowej:

"kluczowe" (liczba w nawiasie oznacza numer zapisu we wstępie do podstawy programowej):

- sprawne komunikowanie się (...) (1),
- sprawne wykorzystywanie narzędzi matematyki (...) (2),
- poszukiwanie, porządkowanie, krytyczna analiza oraz wykorzystanie informacji z różnych źródeł (3),
- praca w zespole (...) (6);

dla przedmiotu fizyka (liczba w nawiasie oznacza numer wymagania):

• ogólne:

- wykorzystywanie pojęć i wielkości fizycznych do opisu zjawisk oraz wskazywanie ich przykładów w otaczającej rzeczywistości (I),
- rozwiązywanie problemów z wykorzystaniem praw i zależności fizycznych (II),
- (...) przeprowadzanie (...) doświadczeń oraz wnioskowanie na podstawie ich wyników (III),
- posługiwanie się informacjami pochodzącymi z analizy materiałów źródłowych, w tym tekstów popularnonaukowych (IV);

szczegółowe:

uczeń:

- wyodrębnia z tekstów (...), rysunków schematycznych lub blokowych informacje kluczowe dla opisywanego zjawiska; ilustruje je w różnych postaciach (I.1),
- wyodrębnia zjawisko z kontekstu, nazywa je oraz wskazuje czynniki istotne i nieistotne dla jego przebiegu (I.2),
- (...) przeprowadza wybrane (...) doświadczenia, korzystając z ich opisów (I.3),
- opisuje przebieg doświadczenia lub pokazu; wyróżnia kluczowe kroki i sposób postępowania oraz wskazuje rolę użytych przyrządów (I.4),
- przestrzega zasad bezpieczeństwa podczas wykonywania (...) doświadczeń (I.9),
- opisuje zjawisko odbicia od powierzchni płaskiej i powierzchni sferycznej (IX.2),
- analizuje bieg promieni wychodzących z punktu w różnych kierunkach, a następnie odbitych od zwierciadła płaskiego i zwierciadeł sferycznych; opisuje skupianie promieni w zwierciadle wklęsłym oraz bieg promieni odbitych od zwierciadła wypukłego; posługuje się pojęciami ogniska i ogniskowej (IX.4),
- konstruuje bieg promieni ilustrujący powstawanie obrazów pozornych wytwarzanych przez zwierciadło płaskie (...) (IX.5),
- doświadczalnie demonstruje (...) powstawanie obrazów za pomocą zwierciadeł płaskich (...) (IX.14a).

Realizacja zagadnienia

Część wstępna

Przypominamy wiadomości dotyczące zjawiska odbicia światła. Uczniowie powinni pamiętać pojęcia kąta padania i kąta odbicia oraz treść prawa odbicia.

² Dotyczy uczniów, którzy rozpoczeli lub rozpoczną naukę w klasie 7 we wrześniu w latach 2017–2019.

Część główna

Omawiamy rodzaje zwierciadeł i wskazujemy ich przykłady. Wyjaśniamy, w jaki sposób w zwierciadle płaskim powstaje obraz; odsyłamy uczniów do ilustracji na str. 230 podręcznika. Podkreślamy, że z danego świecącego punktu promienie biegną w różnych kierunkach, a następnie niektóre z nich odbijają się od zwierciadła i trafiają do oka obserwatora. Mózg (narząd wzroku) tak odbiera tę informację, że obserwator widzi obraz punktu w miejscu przecięcia przedłużeń tych promieni).

Po omówieniu konstrukcji obrazu pojedynczego punktu uczniowie konstruują obraz figury (trójkąta). Pytamy: Jakie cechy ma ten obraz? Uczniowie zapewne stwierdzą, że jest tej samej wielkości co przedmiot, symetryczny do przedmiotu i położony w takiej samej odległości od zwierciadła, w jakiej znajduje się przedmiot. Uzupełniamy (lub doprecyzowujemy) odpowiedzi uczniów, wyjaśniając, kiedy obraz jest rzeczywisty, a kiedy – pozorny. Uczniowie podają trzy cechy obrazu: pozorny, prosty i tej samej wielkości co przedmiot.

Polecamy uczniom wykonanie doświadczenia 50 opisanego na str. 231 podręcznika. Uczniowie powinni stwierdzić, że za każdym razem obraz jest nieodwrócony i takiej samej wielkości jak przedmiot. Ponadto powinni zauważyć, że jeśli oddalają przedmiot od zwierciadła (lustra), to oddala się również jego obraz, a wielkość obrazu nie zależy od odległości przedmiotu od lustra.

Wyjaśniamy pojęcia **zwierciadła sferycznego** (wklęsłego i wypukłego), głównej **osi optycznej** i **promienia krzywizny** zwierciadła.

W celu uzmysłowienia uczniom, czym jest ognisko zwierciadła, polecamy im wykonanie doświadczeń 51–52 opisanych na str. 233 podręcznika. Uczniowie obserwują skupianie się równoległej wiązki światła w jednym punkcie. Wyjaśniamy pojęcia **ogniska** i **ogniskowej** zwierciadła wklęsłego (odwołujemy się do rysunku³ przedstawionego na str. 234 podręcznika). Podajemy związek ogniskowej z promieniem krzywizny: (w przybliżeniu). Następnie uczniowie analizują bieg promieni odbitych od zwierciadła wypukłego (rysunek na str. 235 podręcznika).

Podsumowanie

Zwracamy uwagę na umiejętność stosowania zasady konstrukcji biegu promieni ilustrujących powstawanie obrazów za pomocą zwierciadeł płaskich. Upewniamy się, czy uczniowie potrafią opisać skupianie promieni w zwierciadle wklęsłym oraz bieg promieni odbitych od zwierciadła wypukłego. Uczniowie podają przykłady wykorzystania zwierciadeł. Następnie wykonują wybrane zadania zamieszczone w podreczniku na str. 236–237.

Zadanie domowe

Polecamy wykonanie pozostałych zadań ze str. 236–237. Zainteresowani uczniowie mogą poszukać dodatkowych informacji dotyczących zastosowania zwierciadeł.

³ Zwracamy uwagę na odwracalność biegu promieni świetlnych: promienie wychodzące z ogniska po odbiciu od zwierciadła tworzą wiązkę promieni równoległych do osi optycznej.