Solution

Cryptography – Homework 2

Discussed on Tuesday, 20th November, 2018.

Exercise 2.1 Negligible Functions

- (a) Show that the following two definitions are equivalent:
 - i) $\varepsilon(n)$ is negligible if and only if $\forall a \in \mathbb{N} \exists N \in \mathbb{N} \forall n > N : \varepsilon(n) < n^{-a}$.
 - ii) $\varepsilon(n)$ is negligible if and only if $\forall \text{polynomials } q \ \exists N \in \mathbb{N} \forall n > N : \varepsilon(n) < \frac{1}{|q(n)|}$
- (b) Let $\varepsilon_1: \mathbb{N} \to \mathbb{R}^+, \varepsilon_2: \mathbb{N} \to \mathbb{R}^+$ be negligible functions and let $p: \mathbb{N} \to \mathbb{R}^+$ be a polynomial in \mathbb{R} . Show that $f: \mathbb{N} \to \mathbb{R}^+$ with $f(n) = \varepsilon_1(n) + \varepsilon_2(n)$ and $g: \mathbb{N} \to \mathbb{R}^+$ with $g(n) = p(n) \cdot \varepsilon_1(n)$ are also negligible functions.
- (c) Prove: If $\varepsilon_0, \varepsilon_1, \ldots$ is a family of negligible functions $\varepsilon_i \colon \mathbb{N} \to \mathbb{R}^+$ and $p \colon \mathbb{N} \to \mathbb{N}$ is a polynomial, then f with $f(n) := \sum_{i=0}^n \varepsilon_i(n)$ need not be negligible anymore.

Solution: A function $\varepsilon : \mathbb{N} \to \mathbb{R}^+$ is negligible iff for every polynomial $q(\cdot)$ there is an N s.t. $\forall n \geq N : \varepsilon(n) < 1/|q(n)|$. Let $q(\cdot)$ be an arbitrary polynomial.

- (a) The second definition clearly implies the first one $(n^a$ are just a special polynomials). Thus let us assume $\varepsilon(n)$ satisfies the first definition and show that it also satisfies the second one. To this end, fix some polynomial q. We can write q as $q(n) = a_K n^K + a_{K-1} n^{K-1} + \dots a_1 n + a_0$. Since ε is negligible (according to the first def.) we know that $\varepsilon(n) < n^{-(K+1)}$ for n larger than some $N \in \mathbb{N}$. Since $n^{-(K+1)} < 1/|q(n)|$ for n larger than some other $N' \in \mathbb{N}$ we obtain that $\varepsilon(n) < 1/|q(n)|$ for $n > \max(N, N')$.
- (b) Let $N_1, N_2 \in \mathbb{N}$ be such that for $i \in \{1, 2\}$, $\forall n \geq N_i : \varepsilon_i(n) < 1/|2q(n)|$. Now choose $N = \max(N_1, N_2)$ and let n > N. Then

$$f(n) = \varepsilon_1(n) + \varepsilon_2(n) < \frac{1}{|2q(n)|} + \frac{1}{|2q(n)|} = \frac{1}{|q(n)|}$$

• Let N_1 be such that $\forall n \geq N_1 : \varepsilon_1(n) < 1/|p(n) \cdot q(n)|$. Now choose $N = N_1$ and let $n \geq N$. Then

$$g(n) = p(n) \cdot \varepsilon_1(n) < p(n) \cdot \frac{1}{|p(n) \cdot q(n)|} = \frac{1}{|q(n)|}$$

(note that p(n) > 0).

(c) Choose $\varepsilon_i(n) = \frac{2^i}{2^n}$ as family of negligible functions and let p(n) = n. Then

$$f(n) = \sum_{i=0}^{p(n)} \varepsilon_i(n) = \sum_{i=0}^{n} \frac{2^i}{2^n} = \frac{2^{n+1} - 1}{2^n} = 2 - \frac{1}{2^n}$$

Thus $\lim_{n\to\infty} f(n) = 2$ which implies that f is not negligible.

Exercise 2.2 Pseudorandom Generators

- Let $f: \{0,1\}^* \to \{0,1\}$ be any DPT-computable function. Show that $G_f(x) = x||f(x)$ is no PRG.
- Use a similar argument to show that also the following is not a PRG:

Let $m \in \mathbb{N}$ and $a, c \in \mathbb{Z}_m$.

- For simplicity, let $m = 2^n$ so that we may identify \mathbb{Z}_m with $\{0,1\}^n$.

For $x \in \{0,1\}^n$, let $f(x) = (a \cdot x + c) \mod m$, and $G(x,1^{n \cdot s}) = f(x)||f(f(x))|| \dots ||f^s(x)||$

Solution: A possible \mathcal{D} works as follows:

On input $y = y_1 \dots y_n y_{n+1} \in \{0, 1\}^{n+1}$, output 1 iff $y_{n+1} = f(y_1 \dots y_n)$. Now:

(a)
$$\Pr_{b=1}\left[\operatorname{Win}_{n,G}^{\operatorname{IndPRG}}(\mathcal{D})\right] = \Pr_{x \in \{0,1\}^n}\left[\mathcal{D}(G(x)) = 1\right] = 1$$
 by definition of G .

(b)
$$\mathrm{Pr}_{b=0}\Big[\mathsf{Win}_{n,G}^{\mathrm{INDPRG}}(\mathcal{D})\Big] = \mathrm{Pr}_{\substack{u \in \{0,1\}^{n+1}}}[\mathcal{D}(y)=0] = 1/2:$$

Given $y_1
ldots y_n$ the value $f(y_1
ldots y_n)$ is already fixed. As the last bit y_{n+1} is chosen uniformly and independent of the other bits, with prob. 1/2 we have $y_{n+1} = f(y_1
ldots y_n)$.

(c) Together we obtain: $\Pr\left[\mathsf{Win}_{n,G}^{\mathsf{INDPRG}}(\mathcal{D})\right] = 1/2(1+1/2) = 3/4$ which is non-negligibly better than 1/2.

The second question works identically (it can even be seen as a special case of the first one).

Exercise 2.3 Pseudorandom Generators II

Let G be a PRG of stretch l(n) = 2n.

(a) Show that there exists an exponential time distinguisher \mathcal{D} with:

$$\left| \Pr_{x \in \{0,1\}^n} [\mathcal{D}(1^n, G(x)) = 1] - \Pr_{y \in \{0,1\}^{2n}} [\mathcal{D}(1^n, y) = 1] \right| \ge 1 - 2^{-n}$$

- (b) Determine the success probability of the following \mathcal{D} :
 - Input: $y \in \{0,1\}^{l(n)}$ and 1^n .
 - Generate $x' \stackrel{u}{\in} \{0,1\}^n$.
 - Compute y' = G(x').
 - Return 1 if y = y'; else return 0.

Solution:

(a) The exponential time distinguisher works as follows: on input x check if $x \in G(\{0,1\}^n)$ (e.g. by enumerating all images of G). If so answer r = 1 else answer r = 0. If b = 0 then \mathcal{D} will lose with probability at most $\frac{2^n}{2^{2n}} = 2^{-n}$ (i.e. the probability that a truly random string from $\{0,1\}^{l(n)}$ appears in the image of G).

If b = 1 it will win with probability 1.

(b) If b = 1, then \mathcal{D} outputs 1 at least in those cases where it guesses to correct seed:

$$\Pr_{b=1} \left[\mathsf{Win}_{n,G}^{\mathsf{INDPRG}}(\mathcal{D}) \right] = \Pr_{x \in \{0,1\}^n} [\mathcal{D}(G(x)) = 1] \ge \Pr_{x \in \{0,1\}^n} [x' = x] = 2^{-n}$$

If b=0, then – as the computation of $x' \in \{0,1\}^n$; y'=G(x') is independent of $y \in \{0,1\}^{l(n)}$ – we can reorder the experiment so that first y' is generated, and only then y. As always the probability that $y \in \{0,1\}^{l(n)}$ "hits" any specific y' is $2^{-l(n)}$ because of the uniform distribution of y. More formally:

$$\mathrm{Pr}_{b=0}\Big[\mathsf{Win}_{n,G}^{\mathrm{INDPRG}}(\mathcal{D})\Big] = 1 - \mathrm{Pr}_{y \in \{0,1\}^{l(n)}}[\mathcal{D}(y) = 1] = 1 - \sum_{y' \in G(\{0,1\}^n)} \mathrm{Pr}_{y \in \{0,1\}^{l(n)}, x' \in \{0,1\}^n}[y = y', G(x') = y']$$

$$= 1 - \sum_{y' \in G(\{0,1\}^n)} \underbrace{\Pr_{y \in \{0,1\}^{l(n)}}^u[y = y']}_{=2^{-2n}} \Pr_{x' \in \{0,1\}^n}[G(x') = y'] = 1 - 2^{-2n} \underbrace{\sum_{y' \in G(\{0,1\}^n)} \Pr[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G(x') = y']}_{=2^{-2n}} = 1 - 2^{-2n} \underbrace{\Pr_{y \in \{0,1\}^n}[G($$

Together we obtain:
$$\Pr\left[\mathsf{Win}_{n,G}^{\mathsf{INDPRG}}(\mathcal{D})\right] \ge \frac{1}{2}2^{-n} + \frac{1}{2}(1 - 2^{-2n}) = 1/2 + \underbrace{\frac{1}{2}(2^{-n} - 2^{-2n})}_{>0}$$

Conclusion: This \mathcal{D} has always a negligible, but non-zero advantage in distinguishing the PRG from a truly random source. Hence, if we had required that every \mathcal{D} has zero advantage, then no PRG could exist w.r.t. this definition. (The proof given here of course only applies to PRGs of stretch $l(n) \geq 2n$, but the argument works similarly for l(n) > n – at least it shows that "useful" PRGs cannot exist when requiring zero advantage.)

Exercise 2.4

- (a) Show that PRFs with $l_{\text{out}}(n) \cdot 2^{l_{\text{in}}(n)} \leq n$ exist (unconditionally!).
- (b) Let G be a PRG of stretch $l_G(n) = 2n$.

Split
$$G(k) =: G_0(k)||G_1(k)|$$
 into two n bit strings.

Set
$$F_k^{(1)}(0) := G_0(k)$$
 and $F_k^{(1)}(1) := G_1(k)$. Show: $F^{(1)}$ is a PRF with $l_{\text{in}}(n) = 1$ and $l_{\text{out}}(n) = n$.

Solution:

(a) Since $l_{\text{out}}(n) \cdot 2^{l_{\text{in}}(n)} \leq n$ we can decompose any $k \in \{0,1\}^n$ into (at least) $N = 2^{l_{\text{in}}}$ parts k_i with $|k_i| = l_{\text{out}}$:

$$k = k_0 || \cdots || k_{N-1} ||$$
 rest

Set $F_k(\lfloor x \rceil) = k_x$. Then F_k is a truly random function as $k \stackrel{u}{\in} \{0,1\}^n$ and thus a PRF.

(b) i) Let \mathcal{D}_F be a distinguisher for $F := F^{(1)}$.

We construct from it the distinguisher \mathcal{D}_G for the underlying PRG G:

- Distinguisher \mathcal{D}_G for G:
- \triangleright Input: $y \in \{0,1\}^{2n}$
- \triangleright Decompose y into $y_0||y_1=y$ with $|y_0|=|y_1|=n$.
- $\triangleright r := \mathcal{D}_F^{\mathcal{O}}(1^n)$ where \mathcal{D}_G simulates \mathcal{O} as follows:
- \triangleright If \mathcal{D}_F requires $\mathcal{O}(x)$ (for $x \in \{0,1\}$) give it y_x .
- ightharpoonupreturn r

If $y \stackrel{u}{\in} \{0,1\}^{2n}$, then \mathcal{D}_G simulates a RO; if $y \stackrel{r}{:=} G(x)$ for $x \stackrel{u}{\in} \{0,1\}^n$, then \mathcal{D}_G simulates $F_k^{(1)}$. So, the probability for \mathcal{D}_G to win in the PRG-Game is exactly the same as for D_F to win in the PRF-Game. As G is assumed to be a PRG, both probabilities are therefore negligible, so $F^{(1)}$ is indeed a PRF.