Clase 16 - Análisis Matemático 1 - LC: Análisis de funciones I

Eugenia Díaz-Giménez

eugenia.diaz@unc.edu.ar

13 de Mayo de 2020

Índice

1 Análisis de gráficos de funciones y sus derivadas

- 2 Máximos y mínimos
 - Absolutos
 - Locales
 - Extremos y puntos críticos
 - Máximos y mínimos en intervalos cerrados

Recta tangente a la función en cada punto: https://www.geogebra.org/m/vapgwryu

$$\begin{aligned} & f'(-1) > 0, \ f'\left(-\frac{\sqrt{3}}{3}\right) = 0, \ f'(0) < 0, \\ & f'\left(\frac{\sqrt{3}}{3}\right) = 0, \ f'(0) < 0 \ f'(1) > 0 \end{aligned}$$

$$f'(x) = 3x^2 - 1$$

$$f(x) = x^3 - x$$

$$\begin{aligned} & f'(-1) > 0, \, f'\left(-\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0, \\ & f'\left(\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0 \, f'(1) > 0 \end{aligned}$$

$$f'(x) = 3x^2 - 1$$

$$\begin{aligned} & f'(-1) > 0, \, f'\left(-\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0, \\ & f'\left(\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0 \, f'(1) > 0 \end{aligned}$$

$$f'(x)=3x^2-1$$

$$\begin{aligned} & f'(-1) > 0, \, f'\left(-\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0, \\ & f'\left(\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0 \, f'(1) > 0 \end{aligned}$$

$$f'(x) = 3x^2 - 1$$

$$\begin{aligned} & f'(-1) > 0, \, f'\left(-\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0, \\ & f'\left(\frac{\sqrt{3}}{3}\right) = 0, \, f'(0) < 0 \, f'(1) > 0 \end{aligned}$$

$$f'(x)=3x^2-1$$

Máximos y mínimos Absolutos

Extremos Absolutos

- Una función f tiene un máximo absoluto en un punto c de su dominio si $f(c) \ge f(x)$ para todo x en el dominio de f. El punto c se llama punto de máximo de f, f f f f se llama valor máximo de f
- Una función f tiene un mínimo absoluto en un punto c de su dominio si f(c) ≤ f(x) para todo x en el dominio de f. El punto c se llama punto de mínimo de f, y f(c) se llama valor mínimo de f

 $I(C) \ge I(X) \ \forall X \in DOM I$ Máximo absoluto en X = c, valor máximo f(c)

Máximos y mínimos Locales

Extremos Locales

- Una función f tiene un máximo local en un punto c de su dominio si hay un intervalo Abierto \mathbb{I} que continenc a c tal que $f(c) \geq f(x)$ para todo $x \in \mathbb{I}$. El punto c se llama punto de máximo local de f.
- Una función f tiene un mínimo local en un punto d de su dominio si hay un intervalo abierto \mathbb{J} que contiene a d tal que $f(d) \leq f(x)$ para todo $x \in \mathbb{J}$. El punto d se llama punto de mínimo local de f

Extremos y puntos críticos

Teorema de Fermat

Si f tiene un extremo (máximo o mínimo) local en x=c y si f es derivable en x=c, entonces f'(c)=0

$$si \ x = c \ es \ extremo \ y \ \exists f'(c) \ \Rightarrow f'(c) = 0$$

Laderivada e FCO = 0

x = c es extremo (máximo local) y $\exists f'(c) \Rightarrow f'(c) = 0$

x = c es extremo (máximo local) y $\nexists f'(c) \Rightarrow NO$ aplica el T. de F

f'(c) = 0 pero x = c NO es extremo! NO es válido el recíproco

Extremos y puntos críticos

Sies Máximo/minimo — Ofto Crítico vextremo

Teorema de Fermat

Si f tiene un extremo (máximo o mínimo) local en x = c y si f es derivable en x = cNoes cierto 9

$$si \ x = c$$
 es extremo $y \ \exists f'(c) \Rightarrow f'(c) = 0$ todo Pto Critico es extremo y $\exists f'(c) \Rightarrow f'(c) = 0$

Demostración por definición

Hipótesis: x = c es extremo y f'(c) existe:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

si c es extremo (supongamos máximo local) $\Rightarrow f(c) > f(x) \ \forall x \in \mathbb{I}$

$$h \to 0 \Rightarrow (c+h) \in \mathbb{I} \Rightarrow f(c) \ge f(c+h) \to f(c+h) - f(c) \le 0$$

Si
$$h > 0$$
: $\frac{f(c+h) - f(c)}{h} \le 0 \Rightarrow \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$

Si
$$h > 0$$
: $\frac{f(c+h) - f(c)}{h} \le 0 \Rightarrow \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0$
Si $h < 0$: $\frac{f(c+h) - f(c)}{h} \ge 0 \Rightarrow \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \ge 0$

Ya que sabemos por hipótesis que f'(c) existe, ambos laterales deben ser iguales!

$$\Rightarrow \lim_{h\to 0}\frac{f(c+h)-f(c)}{h}=0=f'(c)$$

Extremos y puntos críticos

Teorema de Fermat

Si f tiene un extremo (máximo o mínimo) local en x=c y si f es derivable en x=c, entonces f'(c)=0

$$si \ x = c$$
 es extremo y $\exists f'(c) \Rightarrow f'(c) = 0$

Importante: NO es válido el recíproco. Ejemplo: $f(x) = x^3$, en x = 0 vale f'(0) = 0 pero x = 0 NO es es extremo!

Puntos críticos

Un punto crítico de una función es un número c del dominio de f tal que f'(c)=0 o f'(c) no existe

$$P.C. = \{x \in Dom f \ / \ f'(x) = 0 \lor \ \nexists f'(x)\}$$

Ejemplos:

- $f(x) = x^3 \ Dom f = \mathbb{R}$ $f'(x) = 3x^2$ $f'(x_c) = 0 \Leftrightarrow x_c = 0$ es punto crítico
- $f(x) = |x| \ Dom f = \mathbb{R}$ f'(0) no existe $\Rightarrow x_c = 0$ es punto crítico
- $f(x) = (x-1)^2 \ Dom f = \mathbb{R} \quad f'(x) = 2 \cdot (x-1) \quad f'(x_c) = 0 \Leftrightarrow x_c = 1 \text{ es P.C.}$
- $f(x) = \sqrt{x} \ Dom f = [0, +\infty)$ $f'(x) = \frac{1}{2\sqrt{x}}$ f'(0) no existe $\Rightarrow x_c = 0$ es P.C.

Máximos y mínimos en intervalos cerrados

Recordemos de la clase 12 (Continuidad II):

Teo de Weierstrass

Si f es continua en el intervalo cerrado [a,b], entonces hay al menos dos puntos x_1 y x_2 en el [a,b], tales que $f(x_1) \le f(x) \le f(x_2)$ para todos los $x \in [a,b]$

En otras palabras, f alcanza su valor máximo y su valor mínimo (absolutos) en el [a, b]

- ¿Podemos encontrar dónde están el máximo y el mínimo en un intervalo cerrado? (el Teo de W. asegura que existen!)
 - Verificar continuidad en el intervalo cerrado
 - Buscar puntos críticos
 - Evaluar la función en los extremos del intervalo y en los puntos críticos que caen en el intervalo
 - Comparar los valores encontrados y elegir cuál es el máximo y cuál es el mínimo

- Verificar continuidad en el intervalo cerrado
- 3 Evaluar la función en los extremos del intervalo y en los puntos críticos que caen en el intervalo Weittras 9
- Comparar los valores encontrados y elegir cuál es el máximo y cuál es el mínimo
- $f(x) = x^2 + 2 \text{ en } [-1, 3]$
 - **11** Es un polinomio que es continua en \mathbb{R} entonces es continua en [-1,3]
 - 2 f'(x) = 2x Existe para todos los \mathbb{R} $f'(x) = 0 = 2x \Rightarrow x = 0$ es f'(x) = 0

$$f'(x) = 0 = 2x \Rightarrow x = 0 \text{ es } P.C.$$

- f(-1) = 3, f(3) = 11 y f(0) = 2
- Tiene máximo absoluto en x=3 y tiene mínimo absoluto en x=0

- Verificar continuidad en el intervalo cerrado
- Buscar puntos críticos
- Evaluar la función en los extremos del intervalo y en los puntos críticos que caen en el intervalo
- 4 Comparar los valores encontrados y elegir cuál es el máximo y cuál es el mínimo
- $f(x) = x^2 + 2 \text{ en } [1,3]$
 - es continua en [1, 3]
 - f'(x) = 2x Existe para todos los \mathbb{R}

$$f'(x) = 0 = 2x \Rightarrow x = 0 \text{ es } P.C.$$

- f(1) = 3, f(3) = 11 (el P.C. no pertenece al intervalo)
- Tiene máximo absoluto en x=3 y tiene mínimo absoluto en x=1

- Verificar continuidad en el intervalo cerrado
- 2 Buscar puntos críticos
- Evaluar la función en los extremos del intervalo y en los puntos críticos que caen en el intervalo
- Comparar los valores encontrados y elegir cuál es el máximo y cuál es el mínimo

$$f(x) = \frac{x^2}{x+2}$$
 en [-1,2]

f es continua $(-\infty, -2) \cup (-2, +\infty)$ por ser cociente de continuas cuyo denominador no se anula en este intervalo \Rightarrow es continua en [-1, 2]

$$f'(x) = \frac{2x \cdot (x+2) - x^2 \cdot 1}{(x+2)^2}$$

$$f'(x) = \frac{x^2 + 4x}{(x+2)^2} \text{ existe para todos los } x \in Dom f$$

$$f'(x) = 0 = x^2 + 4x \to 0 = x(x+4) \Rightarrow \boxed{x_c = 0 \text{ y } x_c = -4 \text{ son } P.C.}$$

- 3 f(-1) = 1, f(2) = 1 y f(0) = 0 $(-4 \notin [-1, 2])$
- Tiene máximos absolutos en x = -1 y en x = 2, y tiene mínimo absoluto en x = 0

- Verificar continuidad en el intervalo cerrado
- 2 Buscar puntos críticos
- Evaluar la función en los extremos del intervalo y en los puntos críticos que caen en el intervalo
- Comparar los valores encontrados y elegir cuál es el máximo y cuál es el mínimo
- $f(x) = x x^{\frac{2}{3}} \text{ en } [-1, 1]$
 - f es continua en \mathbb{R} , en particular en un intervalo más chico también: \Rightarrow es continua en [-1,1]

2
$$f'(x) = 1 - \frac{2}{3} \cdot x^{-\frac{1}{3}}$$

 $f'(x) = 1 - \frac{2}{3\sqrt[3]{x}}$ existe si $x \neq 0 \Rightarrow \boxed{x = 0 \text{ es P.C.}}$
 $f'(x) = 0 = 1 - \frac{2}{3\sqrt[3]{x}} = \frac{3\sqrt[3]{x} - 2}{3\sqrt[3]{x}} \to 0 = 3\sqrt[3]{x} - 2$
 $\Rightarrow \sqrt[3]{x} = \frac{2}{3} \Rightarrow \boxed{x_c = \frac{8}{27} \text{ es P.C.}}$

- 3 f(-1) = -2, f(1) = 0, f(0) = 0 y $f(\frac{8}{27}) = -\frac{4}{27}$
- Tiene máximos absolutos en x = 0 y en x = 1, y tiene mínimo absoluto en x = -1

Extremos absolutos y locales en ${\mathbb R}$

No podemos aplicar el teorema de Weierstrass!

- Si $\lim_{x \to +\infty} f(x) = +\infty$ o $\lim_{x \to -\infty} f(x) = +\infty$, entonces f(x) NO tiene máximo absoluto (puede tener máximos locales!)
- Si $\lim_{x \to +\infty} f(x) = -\infty$ o $\lim_{x \to -\infty} f(x) = -\infty$, entonces f(x) NO tiene mínimo absoluto (puede tener mínimos locales!)
- Si la función tiene asíntotas verticales tampoco tendrá máximo o mínimo absolutos (dependiendo del valor de los límites alrededor de las asíntotas V).

¿Y cómo encontramos los extremos locales?

- Buscar puntos críticos
- 2 Analizar crecimiento y decrecimiento de la función

CONTINUARÁ...