

Détection des états du sommeil

Présenté par Meryam BOULAYAT, Shahina MOHAMED, Mélanie GOU, Chlomite COHEN et Lounes MECHOUEK

Contexte du projet

Sommeil : rôle central dans la régulation de l'humeur + comportements

Prédire états de sommeil : explorer schémas de sommeil + perturbation chez les enfants

Présentation des données

500 enregistrements de données d'accéléromètre sur plusieurs jours

Prétraitements Random Forest Long Short Term Memory Gated Recurrent Unit Convolutional Neural Network

Nombre d'individus = 277

Suppression des individus qui comportent des NA

Prétraitements

Random Forest

Long Short Term Memory

Gated Recurrent Unit

Convolutional Neural Network

Séparation en ensembles : Train, Test, Validation

Prétraitements

Random Forest

Long Short Term Memory

Gated Recurrent Unit

Convolutional Neural Network

Data Train:

25 individus (75% des données)

Data Test:

10 individus (25% des données)

Validation:

20% du data train

Préprocessing

Random Forest

Long Short Term Memory

Gated Recurrent Unit

Convolutional Neural Network

Les prédictions de chaque arbre sont combinées afin d'obtenir une prédiction finale plus robuste et précise

Préprocessing

Random Forest

Long Short Term Memory

Gated Recurrent Unit

Convolutional Neural Network

Prédictions de séries temporelles

Cas particuliers : Bi - LSTM

Préprocessing Random Forest Long Short Term Memory Gated Reccurrent Unit Convolutional Neural Network

Prédictions de séries temporelles

Préprocessing

Random Forest

Long Short Term Memory

Gated Reccurent Unit

Convolutional neural network

Clustering K-means

Random Forest

Sliding Window Approach

LSTM

		Accuracy	F1-Score	Loss
Sliding Window	LSTM_2	0.90	0.9207	0.25
Padding and Masking	LSTM	0.37	0.29	0.30
	BiLSTM	0.42	0.26	0.45
	CNN-LSTM	0.68	0.60	0.53
	CNN-BiLSTM	0.44	0.30	0.42

GRU

Sliding Window Approach

Dropout = 0.2 Nombre de neurones / couche = 64 Nombre de paramètres = 38 081

Dropout = 0.2 Nombre de neurones / couche = 64 Nombre de paramètres = 13 121

Dropout = 0.25 Nombre de neurones / couche = 64 Nombre de paramètres = 38 081

GRU

Sliding Window Approach avec optimiseur Adam

GRU

Sliding Window Approach avec optimiseur Adam

 $F1_score = 0.9469958975$

GRU 2

 $F1_score = 0.9426827999$

GRU 3

F1 score = 0.94847

Meilleur modèle : GRU 2

Jours mal prédits pour l'individu c68260cc9e8f

Conclusion & Perspectives

- Réseau de neurones bien plus performant qu'une classification Random
 Forest
- Modèle GRU avec 91,3%
 d'accuracy
- Modèles simples et performants

- Utilisation d'un modèle CNN
- Données peuvent permettre la prise en charge d'enfants atteints de troubles du sommeil
- Prédire les données correspondant au retrait de l'accéleromètre