ANALYSE STATISTIQUE & LANGAGE R

Tests d'hypothèses

Déroulement

- Principes des tests de dépendances / indépendances de variables
 - Test du khi2 / chi-square / X²
 - Test d'Anova (analyse de variance)
 - Exercice pratique
- Modèle de régression linéaire
 - Méthode des moindres carrés, coefficient de détermination
 - Splitter le jeu de données en train / test
 - Entrainement du modèle (2 variables, tracer la régression)
 - Tester la précision
- Evaluation Notebook R
 - Tracer des graphiques d'analyses descriptives
 - Tests de dépendances / indépendances
 - Créer un modèle de régression linéaire
 - Savoir interpréter les résultats

Pourquoi tester l'indépendance des variables?

- Eviter la multicolinéarité
- Ne pas avoir des variables qui mesurent la même chose
- Instabilité des coefficients
- Difficulté d'interprétation / explicabilité du modèle

Les tests d'indépendances

- Variables quantitative quantitative : Matrice de corrélation
- Variables qualitative qualitative : Khi2
- Variables quantitative qualitative : Anova

Loi du Khi2

- Tests d'adéquations / ajustements
 - Comparer deux distributions / deux séries
 - Tests d'indépendances
- Deux risques d'erreur
 - Risque de 1^{er} espèce / de type I : rejet de HO l'hypothèse nulle
 - Risque de 2^e espèce / de type II : non rejet de HO l'hypothèse alternative

HO: le médicament n'a pas d'effet / H1: le médicament a un effet

Exemple de test Khi2

Réaliser un tableau de contingence

	Page Assurance	Accueil	Espace Particulier	Total
Desktop	34 (35)	2 (22)	154 (133)	190 (83%)
Mobile	8 (7)	25 <mark>(5)</mark>	6 (27)	39 (17%)
Total	42	27	160	229

Calcul du Khi2

$$X^{2} = \frac{(34-35)^{2}}{35} + \frac{(2-22)^{2}}{22} + \frac{(154-133)^{2}}{133} + \frac{(8-7)^{2}}{7} + \frac{(25-5)^{2}}{5} + \frac{(6-27)^{2}}{27} = 118$$

Exemple du khi2

■ Nombre de degrés de libertés (ddl)

Nombre de v.a (non déterminé par une équation)

Nombre de colonnes – 1 * nombre de lignes – 1

(2-1) * (3-1)

■ Table de la loi du khi2 Seuil de signification $\alpha = 5\%$

Degrés de liberté	Valeurs du χ ²										
α / Pvaleur (probabilité)	0,95	0,9	0,8	0,7	0,5	0,3	0,2	0,1	0,05	0,01	0,001
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.63	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.61	5.99	9.21	13.82

Mesurer l'intensité de la relation

- Quantifier le lien qui existe entre ces deux variables qualitatives
- V Cramer
 - Permet de mettre le résultat sur une échelle [0 ; 1]

X²: la valeur du khi²

X² max : effectif * [min (nb de lignes ou nb colonnes) - 1]

$$V = \sqrt{\frac{X^2}{X^2 max}}$$

$$\sqrt{\frac{118}{229*1}} = 0.72$$

Exercice Khi2

- Jeu de données : https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
- Tableau de contingence : table(x, y)
- Valeur du khi2 : chisq.test(table)
- Retranscrire la formule de V de Cramer
- Réaliser le Khi2 pour :
 - education + job
 - housing + loan

Anova: Analysis of variance

- On cherche à expliquer la variance inter classes sur la variance intra classes
- Déterminer si les valeurs de la variable quantitative s'organisent selon les modalités de la variable qualitative
- On va donc comparer la moyenne au sein des groupes et entre les groupes

Exemple :

loyers	650	700	620	
voiture	85	98		
alimentation	160	180	140	120

Anova: formules

- Même cadre contextuel que la régression linéaire
- Somme des écarts intra classe

$$\sum_{i=1}^k \sum_{j=1}^n (yij - \overline{yi})^2$$

■ Somme des écarts inter classe

$$\sum_{i=1}^{k} (\overline{yi} - \overline{y})^2$$

■ Somme des carrés totale

$$\sum_{i=1}^k \sum_{j=1}^n (yij - \overline{y})^2$$

Anova: résultat

$$F Value = \frac{\frac{Inter}{K-1}}{\frac{Intra}{N-K}}$$

N : les effectifs K : les classes

La F Value donne une statistique pour la loi de Fisher, à reporter dans une table de loi de Fisher (α =5%, α =10%...), avec autant de table que de seuil de signification. La statistique est obtenue en reportant le nombre de ddl Intra et Inter classes.

ddl intra: nb classes * (nb de valeurs - 1)

ddl inter: nb classes - 1

La variation inter classes doit être supérieure à la variation intra classes

Anova avec R

```
Df Sum Sq Mean Sq F value Pr(>F)
group 2 558266 279133 313 8.56e-07 ***
Residuals 6 5351 892
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

La F-Value est ici de 313, avec un indice de confiance élevé : P-Value faible

Ce qui signifie qu'au sein de chaque classe les moyennes sont homogènes, mais très hétérogènes entre les groupes

Une F-Value approchant 0 indique que les moyennes entre les groupes sont proches de la moyenne générale, donc pas de distinction

Anova facteurs

- Analyse à un facteur : 1 variable qualitative
- Analyse à deux facteurs : 2 variables qualitatives
- Analyse multifactorielles : X variables qualitatives
- Toujours 1 variable quantitative et 1 à X variables qualitatives

Si on possède une autre variable quantitative, possibilité de la transformer :

Exercice Anova

- Fonction aov($y \sim x + z$)
- Réaliser plusieurs Anova
 - Anova à 1 facteur : age ~ marital
 - Anova à 2 facteurs : age ~ marital + Ioan

La régression linéaire

- Fonction affine de type ax+b
- Chercher à détecter une relation linéaire entre une variable à expliquer (revenus), et une à N variables explicatives (dettes)
- L'ajustement de la droite se fait via la méthode des moindres carrés
- Problème de régression / classification (régression logistique)

Méthodes des moindres carrés

■ MSE (Mean Squared Error):

$$\frac{\sum (yi - \hat{y}i)^2}{N}$$

- Moyenne des écarts entre chaque point et l'équation de la droite, au carré
- Ajuster la droite pour approximer au mieux le nuage de points
- RMSE (Root Mean Squared Error): valeur absolue

$$\sqrt{\frac{\sum (yi - \hat{y}i)^2}{N}}$$

Coefficient de détermination

- Evaluer la qualité d'une régression linéaire
- R2:

$$1 - \frac{\sum (yi - \widehat{y}i)^2}{\sum (yi - \overline{y})^2}$$

Varie entre [0; 1]

R2 exprime le rapport entre la variance expliquée par le modèle sur la variance totale

 $R^2 = 0 \Rightarrow$ Le modèle utilisé n'explique pas du tout l'influence de X sur les variations de Y

 $R^2 = 1 \Rightarrow$ Le modèle utilisé explique parfaitement l'influence de X sur les variations de Y

 $R^2 = 0.45 \Rightarrow 45\%$ des variations de Y sont expliqués par le modèle utilisé (et donc 65% des variations de Y ont une autre cause

Création d'un modèle

- Fixation de la « graine », pour fixer le processus de randomisation
 - Reproductibilité
- Séparation du jeu de données en 2 :
 - 70, 80% pour l'entrainement du modèle
 - 30, 20% pour le test du modèle
- Entrainement du modèle
- Evaluation du modèle

Exercice régression linéaire

- Jeu de données : https://raw.githubusercontent.com/john-boyer-phd/TensorFlow-Samples/master/Neural%20Net/bankloanData.csv
- Réaliser une régression avec la somme des dettes : othdebt + creddebt
- Ploter la régression
- Afficher le coefficient R2
- Réaliser une régression linéaire multiple
 - Split train / test : sample()
 - Entrainer le modèle : Im()
 - Tester le modèle : predict()
 - Calculer la moyenne des écarts : RMSE, MAE (formule à rechercher)
 - Création de fonctions