3 A ball is thrown vertically upwards towards a ceiling and then rebounds, as illustrated in Fig. 3.1.

Fig. 3.1

The ball is thrown with speed $9.6\,\mathrm{m\,s^{-1}}$ and takes a time of $0.37\,\mathrm{s}$ to reach the ceiling. The ball is then in contact with the ceiling for a further time of $0.085\,\mathrm{s}$ until leaving it with a speed of $3.8\,\mathrm{m\,s^{-1}}$. The mass of the ball is $0.056\,\mathrm{kg}$. Assume that air resistance is negligible.

(a) Show that the ball reaches the ceiling with a speed of $6.0 \,\mathrm{m \, s^{-1}}$.

(b) Calculate the height of the ceiling above the point from which the ball was thrown.

height = m [2]

[1]

- (c) Calculate
 - (i) the increase in gravitational potential energy of the ball for its movement from its initial position to the ceiling,

(d)	decrease in kinetic energy =
(e)	Calculate the change in momentum of the ball during the collision.
(f)	change in momentum =
(1)	collision.
	average force = N [2]

(ii) the decrease in kinetic energy of the ball while it is in contact with the ceiling.