Atividade de Laboratório nº 02

Aluno	Matrícula
Artur da Silva Oliveira	2122082008
Juliana Alves Pacheco	2122082026
Júlia Souza de Oliveira	2122082029
João Victor Alves Menezes	2122082017
Rafael Dantas Boeira	2122082004

Métodos de Bartlett e Welch para Estimativa de Frequência Média (MNF) e Mediana (MDF)

1. Introdução

A análise espectral é fundamental para caracterização de sinais no domínio da frequência. Métodos clássicos como os de **Bartlett** e **Welch** fornecem estimativas da densidade espectral de potência (PSD) com diferentes características de variância e resolução espectral.

O **método de Bartlett** divide o sinal em segmentos não sobrepostos e calcula a média dos periodogramas de cada segmento, reduzindo a variância da estimativa à custa de menor resolução espectral. O **método de Welch** estende o método de Bartlett permitindo sobreposição entre segmentos e uso de janelas não retangulares, oferecendo melhor compromisso entre variância e resolução.

Duas métricas importantes para caracterização espectral são:

- Frequência Média (MNF): média ponderada pela potência das frequências do espectro
- Frequência Mediana (MDF): frequência que divide o espectro em duas partes de igual energia

Objetivos desta atividade:

- Implementar os métodos de Bartlett e Welch para estimativa espectral
- Calcular MNF e MDF sobre as estimativas espectrais obtidas
- Comparar os resultados com valores "reais" (sinal completo)
- Analisar três tipos de sinais: ruído limitado, música e voz
- Avaliar a qualidade das estimativas através do erro percentual

2. Procedimentos e Metodologia

2.1 Sinais Analisados

Foram utilizados três tipos de sinais conforme especificação da atividade:

1. **Sinal Aleatório Limitado**: Ruído branco gaussiano filtrado passa-baixas (fc = 2000 Hz)

- 2. Sinal Musical: Sequência de 8 notas (C4 a C5) com harmônicos
- 3. Sinal de Voz: Sinal sintético com fundamental variável (~150 Hz) e formantes

2.2 Parâmetros de Análise

Parâmetro	Valor	Justificativa
Frequência de amostragem (fs)	16000 Hz	Adequada para sinais de voz e música simples
Duração da janela	40 ms	Compromisso entre resolução temporal/frequencial
Tipo de janela	Hann	Reduz leakage espectral
Sobreposição (Welch)	50%	Padrão recomendado para método de Welch
Tamanho da FFT	Próxima potência de 2	Eficiência computacional

2.3 Método de Bartlett

O método de Bartlett segmenta o sinal em M trechos não sobrepostos de comprimento L:

- 1. Dividir sinal x[n] em M segmentos: $x_m[n]$, m = 1,2,...,M
- 2. Calcular periodograma de cada segmento: $P_m(f) = |DFT\{x_m[n]\}|^2/(L \cdot fs)$
- 3. Média dos periodogramas: $S_Bartlett(f) = (1/M) \Sigma P_m(f)$

Características:

- Reduz variância por fator M
- Resolução espectral = fs/L
- Sem sobreposição entre segmentos

2.4 Método de Welch

O método de Welch estende Bartlett permitindo sobreposição e janelamento:

- 1. Dividir sinal em M segmentos sobrepostos
- 2. Aplicar janela w[n] a cada segmento: $x_m[n] \cdot w[n]$
- 3. Calcular periodograma modificado de cada segmento
- 4. Média dos periodogramas modificados

Características:

- Sobreposição de 50% aumenta o número de segmentos
- Janela Hann reduz leakage espectral
- Melhor compromisso variância/resolução que Bartlett

2.5 Cálculo de MNF e MDF

Frequência Média (MNF):

```
MNF = \Sigma(f_k \cdot S_k) / \Sigma(S_k)
```

Frequência Mediana (MDF):

```
MDF = frequência onde \Sigma(S_k, k=1 \text{ até } k\_MDF) = 0.5 \cdot \Sigma(S_k, \text{ total})
```

2.6 Medida de Qualidade

Erro percentual entre estimativas e valor "real":

```
Erro(%) = |f_real - f_est| / f_real × 100
```

onde f_real é calculado sobre o sinal completo (FFT direta).

3. Resultados

3.1 Sinal de Ruído Filtrado

Figura 1 – Espectros do Ruído Filtrado

Figura 2 – Forma de Onda do Ruído Filtrado

Resultados Quantitativos:

MNF Real: 1020.17 Hz

• MNF Bartlett: 1021.34 Hz (erro: 0.11%)

• **MNF Welch:** 1020.43 Hz (erro: 0.03%)

• **MDF Real:** 998.46 Hz

MDF Bartlett: 990.04 Hz (erro: 0.84%)

• **MDF Welch:** 990.26 Hz (erro: 0.82%)

Análise:

- O sinal de ruído filtrado apresenta espectro relativamente plano até a frequência de corte (2000 Hz), com decaimento gradual acima desta frequência devido ao filtro passa-baixas Butterworth de 6ª ordem
- Ambos os métodos apresentaram excelente precisão para MNF, com erro menor que 0.15%
- Para MDF, os erros foram ligeiramente maiores (≈0.8%), mas ainda muito aceitáveis
- O método de Welch mostrou-se marginalmente superior ao Bartlett para este tipo de sinal, provavelmente devido à melhor estimativa espectral proporcionada pela sobreposição

3.2 Sinal Musical

Figura 3 – Espectros do Sinal Musical

Figura 4 - Forma de Onda do Sinal Musical

Resultados Quantitativos:

• **MNF Real:** 495.65 Hz

MNF Bartlett: 495.77 Hz (erro: 0.02%)

• MNF Welch: 495.44 Hz (erro: 0.04%)

• **MDF Real:** 439.29 Hz

MDF Bartlett: 422.53 Hz (erro: 3.82%)

• **MDF Welch:** 422.18 Hz (erro: 3.90%)

Análise:

• O sinal musical mostra espectro com picos bem definidos correspondentes às fundamentais das notas (C4-C5: 261-523 Hz) e seus harmônicos

- Para MNF, ambos os métodos mantiveram excelente precisão (< 0.05%), indicando boa estimativa das componentes espectrais
- Para MDF, observou-se erro maior (≈3.8-3.9%), possivelmente devido à distribuição não uniforme de energia entre as notas e presença de harmônicos
- A estrutura harmônica concentra energia em múltiplas frequências discretas, o que pode afetar mais significativamente o cálculo da mediana espectral
- Ambos os métodos apresentaram desempenho similar, com pequena vantagem para o Bartlett na estimativa de MNF

3.3 Sinal de Voz

Figura 5 - Espectros do Sinal de Voz

Figura 6 - Forma de Onda do Sinal de Voz

Resultados Quantitativos:

• MNF Real: 205.95 Hz

MNF Bartlett: 205.95 Hz (erro: 0.00%)

• MNF Welch: 205.95 Hz (erro: 0.00%)

MDF Real: 169.14 Hz

MDF Bartlett: 160.25 Hz (erro: 5.26%)

• MDF Welch: 160.25 Hz (erro: 5.26%)

Análise:

- O sinal de voz sintético apresenta espectro complexo com fundamental variável (~120-180 Hz) e reforços espectrais nas regiões dos formantes (≈800 Hz e ≈1200 Hz)
- Para MNF, ambos os métodos alcançaram precisão perfeita (0.00%), demonstrando robustez para sinais com variação temporal de pitch
- Para MDF, observou-se o maior erro dentre os três sinais (≈5.3%), refletindo a complexidade espectral do sinal de voz
- Os formantes criaram regiões de concentração de energia que influenciaram significativamente a distribuição espectral
- O erro idêntico entre Bartlett e Welch sugere que a segmentação temporal capturou adequadamente as variações de pitch
- A variação da fundamental (~150 ± 30 Hz) foi bem representada pelos métodos, como evidenciado pela perfeita estimativa de MNF

3.4 Resumo Comparativo

Tabela 1 – Resumo dos Resultados para MNF (Frequência Média)

Sinal	MNF Real	MNF Bartlett	Erro (%)	MNF Welch	Erro (%)
Ruído Filtrado	1020.2	1021.3	0.1	1020.4	0.0
Música	495.7	495.8	0.0	495.4	0.0
Voz	206.0	206.0	0.0	206.0	0.0

Tabela 2 – Resumo dos Resultados para MDF (Frequência Mediana)

Sinal	MDF Real	MDF Bartlett	Erro (%)	MDF Welch	Erro (%)
Ruído Filtrado	998.5	990.0	0.8	990.3	0.8
Música	439.3	422.5	3.8	422.2	3.9
Voz	169.1	160.2	5.3	160.2	5.3

Parâmetros Utilizados:

Janela: Hann, 40 ms

• Sobreposição (Welch): 50%

• Frequência de amostragem: 16000 Hz

Duração dos sinais: 4.0 segundos

4. Discussão

4.1 Comparação entre Métodos

Método de Bartlett:

- Vantagens: Implementação simples, menor custo computacional, boa precisão para MNF em todos os tipos de sinais
- Limitações: Menor resolução espectral devido à ausência de sobreposição, maior variância na estimativa espectral
- Aplicabilidade: Adequado para análise rápida quando a precisão de MNF é prioritária sobre a resolução espectral

Método de Welch:

- Vantagens: Melhor resolução espectral devido à sobreposição, menor variância devido ao maior número de segmentos, janelamento reduz leakage
- Limitações: Maior custo computacional, não apresentou vantagem significativa sobre Bartlett nos sinais testados
- Aplicabilidade: Recomendado quando se necessita de melhor caracterização espectral e quando o custo computacional não é limitante

4.2 Influência do Tipo de Sinal

Ruído Limitado em Frequência:

- Apresentou os menores erros para MNF (≤0.11%) e erros moderados para MDF (≈0.8%)
- Espectro relativamente uniforme facilitou a estimativa de parâmetros espectrais
- Método de Welch mostrou ligeira superioridade devido à melhor estimativa espectral

Sinal Musical:

- Excelente precisão para MNF (≤0.04%) devido às componentes espectrais bem definidas
- Maior erro em MDF (≈3.8-3.9%) causado pela distribuição não uniforme de energia entre harmônicos
- Estrutura harmônica discreta facilitou estimativa de MNF mas complicou o cálculo de MDF
- Ambos os métodos apresentaram desempenho similar

Sinal de Voz:

- Perfeita estimativa de MNF (0.00%) demonstrando robustez à variação temporal de pitch
- Maior erro em MDF (5.3%) refletindo a complexidade espectral do sinal
- Formantes criaram concentrações de energia que influenciaram significativamente a distribuição espectral
- Desempenho idêntico entre os métodos sugere boa captura das variações temporais

4.3 Análise dos Erros

Padrões Observados:

- MNF apresentou erros consistentemente menores (0.00-0.11%) que MDF (0.8-5.3%)
- Erros em MDF aumentaram com a complexidade espectral: ruído < música < voz

Métodos de Bartlett e Welch apresentaram desempenho muito similar

Fatores Influenciadores:

- **Distribuição espectral:** Sinais com energia uniformemente distribuída (ruído) apresentaram menores erros
- Componentes discretas: Harmônicos bem definidos facilitaram estimativa de MNF mas complicaram MDF
- Variações temporais: Pitch variável na voz não afetou significativamente a precisão
- Resolução espectral: Janela de 40 ms forneceu resolução adequada (≈15.6 Hz) para todos os sinais

Melhorias Propostas:

- Usar janelas mais longas para melhorar resolução em frequência
- Aplicar técnicas de interpolação para refinar estimativas de MDF
- Considerar métodos adaptativos para sinais com características espectrais variáveis

4.4 Limitações dos Métodos

- Compromisso resolução temporal vs. frequencial
- Influência do comprimento da janela
- Efeitos do janelamento e sobreposição
- Sensibilidade a características espectrais do sinal

5. Conclusões

- 1. **Adequação dos métodos:** Ambos os métodos de Bartlett e Welch demonstraram alta precisão para estimativa de MNF (erros ≤0.11%), com desempenho similar entre si. Para MDF, os erros foram maiores mas ainda aceitáveis (0.8-5.3%), aumentando com a complexidade espectral do sinal.
- 2. **Precisão das estimativas:** MNF mostrou-se mais robusta que MDF para todos os tipos de sinais. A estimativa de MDF foi mais sensível à distribuição não uniforme de energia espectral, especialmente em sinais com harmônicos e formantes.
- 3. **Comparação dos métodos:** O método de Welch apresentou ligeira vantagem sobre Bartlett apenas no sinal de ruído, com desempenho idêntico nos demais casos. A sobreposição de 50% não trouxe benefícios significativos para os sinais analisados.

4. Recomendações práticas:

- Para análises onde MNF é prioritária: ambos os métodos são adequados, com preferência por Bartlett devido ao menor custo computacional
- o Para caracterização espectral completa: método de Welch oferece melhor resolução
- o Para sinais complexos (voz): considerar segmentação adaptativa ou técnicas complementares

Principais contribuições:

- Implementação e validação dos métodos de Bartlett e Welch para cálculo de MNF e MDF
- Análise comparativa de precisão para três tipos distintos de sinais

- Caracterização quantitativa de erros e identificação de fatores influenciadores
- Demonstração da robustez de MNF comparada à sensibilidade de MDF à complexidade espectral

6. Apêndice – Comandos e Código

6.1 Execução

```
% Executar análise completa
cd('Processamento-de-Sinais-Multimidia/Atividade-02')
run_atividade02
```

6.2 Código-Fonte Completo

compute_bartlett.m

```
function [S_bartlett, f] = compute_bartlett(x, fs, segment_ms, windowType)
arguments
   x (:,1) double
   fs (1,1) double {mustBePositive}
    segment_ms (1,1) double {mustBePositive}
    windowType (1,:) char {mustBeMember(windowType,{'hann','hamming','rect'})}
= 'hann'
% Parâmetros da janela
Nw = round(segment_ms * 1e-3 * fs); % comprimento da janela em amostras
if Nw < 8
    error('Comprimento da janela muito pequeno (<8 amostras). Aumente
segment_ms.');
hop = Nw;
```

```
switch windowType
    case 'hann'
        w = hann(Nw, 'periodic');
    case 'hamming'
        w = hamming(Nw, 'periodic');
        w = ones(Nw, 1);
w = w / sqrt(sum(w.^2));
N = length(x);
M = floor(N / Nw);
if M < 1
    error('Sinal muito curto para segmentação.');
Nfft = 2^nextpow2(Nw);
K = Nfft/2 + 1; % espectro unilateral
S_bartlett = zeros(K, 1);
for m = 1:M
    startIdx = (m-1) * Nw + 1;
    endIdx = startIdx + Nw - 1;
    segment = x(startIdx:endIdx) .* w;
   X = fft(segment, Nfft);
    Px = abs(X(1:K)).^2 / (fs * Nw);
    Px(2:end-1) = 2 * Px(2:end-1);
    S_bartlett = S_bartlett + Px;
S_bartlett = S_bartlett / M;
f = (0:K-1)' * fs / Nfft;
```

compute_welch.m

```
function [S_welch, f] = compute_welch(x, fs, segment_ms, overlap_pct,
windowType)
arguments
    x (:,1) double
    fs (1,1) double {mustBePositive}
    segment_ms (1,1) double {mustBePositive}
    overlap_pct (1,1) double {mustBeGreaterThanOrEqual(overlap_pct,0),
mustBeLessThan(overlap_pct,100)} = 50
    windowType (1,:) char {mustBeMember(windowType,{'hann','hamming','rect'})}
= 'hann'
% Parâmetros da janela
Nw = round(segment_ms * 1e-3 * fs); % comprimento da janela em amostras
if Nw < 8
    error('Comprimento da janela muito pequeno (<8 amostras). Aumente
segment_ms.');
% Sobreposição
hop = max(1, round(Nw * (1 - overlap_pct/100)));
switch windowType
    case 'hann'
        w = hann(Nw, 'periodic');
    case 'hamming'
        w = hamming(Nw, 'periodic');
    otherwise
        w = ones(Nw, 1);
```

```
w = w / sqrt(sum(w.^2));
N = length(x);
M = 1 + floor((N - Nw) / hop);
if M < 1
    error('Sinal muito curto para segmentação.');
Nfft = 2^nextpow2(Nw);
K = Nfft/2 + 1; % espectro unilateral
S \text{ welch} = zeros(K, 1);
validSegments = 0;
for m = 1:M
    startIdx = (m-1) * hop + 1;
    endIdx = startIdx + Nw - 1;
    if endIdx <= N</pre>
        segment = x(startIdx:endIdx) .* w;
        X = fft(segment, Nfft);
        Px = abs(X(1:K)).^2 / (fs * Nw);
        Px(2:end-1) = 2 * Px(2:end-1);
        S_welch = S_welch + Px;
        validSegments = validSegments + 1;
if validSegments > 0
    S_welch = S_welch / validSegments;
    error('Nenhum segmento válido encontrado.');
f = (0:K-1)' * fs / Nfft;
```

compute_mnf_mdf.m

```
function [MNF, MDF] = compute_mnf_mdf(S, f)
% Entradas:
arguments
    S (:,1) double {mustBeNonnegative}
    f (:,1) double {mustBeNonnegative}
% Verificar se os vetores têm o mesmo tamanho
if length(S) ~= length(f)
    error('Os vetores S e f devem ter o mesmo comprimento.');
S = max(S, eps);
P_total = sum(S);
if P_total <= 0</pre>
    warning('Potência total do sinal é zero ou negativa. Retornando NaN.');
    MNF = NaN;
    MDF = NaN;
    return;
MNF = sum(f .* S) / P_total;
P_{cum} = cumsum(S);
```

```
idx_median = find(P_cum >= P_total/2, 1, 'first');
if isempty(idx_median)
    MDF = f(end);
    if idx median == 1
        MDF = f(1);
        f1 = f(idx median-1);
        f2 = f(idx_median);
        P1 = P_cum(idx_median-1);
        P2 = P cum(idx median);
        P_target = P_total/2;
        if P2 > P1
            MDF = f1 + (f2 - f1) * (P_target - P1) / (P2 - P1);
            MDF = f1;
if ~isfinite(MNF) || MNF < 0</pre>
    warning('MNF calculada inválida. Verifique os dados de entrada.');
    MNF = NaN;
if ~isfinite(MDF) || MDF < 0</pre>
    warning('MDF calculada inválida. Verifique os dados de entrada.');
    MDF = NaN;
```

generate_test_signals.m

```
fs = 16000; % Hz
duration = 4; % segundos
t = (0:1/fs:duration-1/fs)';
N = length(t);
fc_noise = 2000;  % frequência de corte
[b, a] = butter(6, fc_noise/(fs/2), 'low');
% Gerar ruído branco
white_noise = randn(N, 1);
% Filtrar o ruído
x_noise = filter(b, a, white_noise);
% Normalizar
x_{noise} = x_{noise} / \max(abs(x_{noise})) * 0.8;
notas_freq = [261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88, 523.25];
nota_duration = duration / length(notas_freq);
samples_per_nota = round(nota_duration * fs);
x_{music} = zeros(N, 1);
for i = 1:length(notas freq)
    start_idx = (i-1) * samples_per_nota + 1;
    end_idx = min(i * samples_per_nota, N);
    t_nota = (0:end_idx-start_idx)' / fs;
    fundamental = sin(2*pi*notas_freq(i)*t_nota);
    harmonico2 = 0.5 * sin(2*pi*2*notas_freq(i)*t_nota);
    harmonico3 = 0.25 * sin(2*pi*3*notas_freq(i)*t_nota);
    envelope = exp(-2*t_nota) .* (1 - exp(-10*t_nota));
    nota = envelope .* (fundamental + harmonico2 + harmonico3);
    x_music(start_idx:end_idx) = nota;
% Normalizar
x_{music} = x_{music} / \max(abs(x_{music})) * 0.8;
f0 base = 150; % Hz
f0_variation = 30 * sin(2*pi*0.5*t); % variação de pitch
```

```
f0 = f0_base + f0_variation;
phase = cumsum(2*pi*f0/fs);
fundamental = sin(phase);
% Segundo harmônico com modulação
harmonico2 = 0.6 * sin(2*phase);
harmonico3 = 0.3 * sin(3*phase);
% Combinar harmônicos
voice harmonic = fundamental + harmonico2 + harmonico3;
[b1, a1] = butter(4, [700 900]/(fs/2), 'bandpass');
[b2, a2] = butter(4, [1100 1300]/(fs/2), 'bandpass');
formant1 = filter(b1, a1, voice_harmonic);
formant2 = filter(b2, a2, voice_harmonic);
% Combinar formantes
x_voice = voice_harmonic + 0.8*formant1 + 0.6*formant2;
envelope_global = hann(N, 'periodic');
x_voice = x_voice .* envelope_global;
% Normalizar
x_voice = x_voice / max(abs(x_voice)) * 0.8;
fprintf('Sinais de teste gerados:\n');
fprintf('- Ruído filtrado (fc = %d Hz)\n', fc_noise);
fprintf('- Música: %d notas musicais\n', length(notas_freq));
fprintf('- Voz: sinal sintético com f0 = %.0f ± %.0f Hz\n', f0_base,
max(abs(f0_variation)));
fprintf('- Frequência de amostragem: %d Hz\n', fs);
fprintf('- Duração: %.1f segundos\n', duration);
```

run atividade02.m

```
%% Atividade 02 - Processamento de Sinais Multimídia
% Métodos de Bartlett e Welch para estimativa de MNF e MDF
% Parte 2: Análise Espectral
```

```
fprintf('=== Atividade 02 - Análise Espectral ===\n');
fprintf('Iniciando análise (%s)\n\n', datestr(now));
windowType = 'hann';  % tipo de janela
fprintf('Gerando sinais de teste...\n');
[x_noise, x_music, x_voice, fs] = generate_test_signals();
signals = {x_noise, x_music, x_voice};
signal_names = {'Ruído Filtrado', 'Música', 'Voz'};
signal_files = {'noise', 'music', 'voice'};
results = struct();
for sig_idx = 1:length(signals)
   x = signals{sig_idx};
   sig_name = signal_names{sig_idx};
   sig_file = signal_files{sig_idx};
   fprintf('\n--- Analisando %s ---\n', sig_name);
   fprintf('Calculando valores de referência (sinal completo)...\n');
    N = length(x);
    Nfft = 2^nextpow2(N);
   X_full = fft(x, Nfft);
    K = Nfft/2 + 1;
   S_{real} = abs(X_{full(1:K)}).^2 / (fs * N);
   S_real(2:end-1) = 2 * S_real(2:end-1);
   f_real = (0:K-1)' * fs / Nfft;
    [MNF_real, MDF_real] = compute_mnf_mdf(S_real, f_real);
```

```
fprintf('Aplicando método de Bartlett...\n');
    [S bartlett, f bartlett] = compute bartlett(x, fs, segment ms, windowType);
    [MNF_bartlett, MDF_bartlett] = compute_mnf_mdf(S_bartlett, f_bartlett);
    fprintf('Aplicando método de Welch...\n');
    [S_welch, f_welch] = compute_welch(x, fs, segment_ms, overlap_pct,
windowType);
    [MNF_welch, MDF_welch] = compute_mnf_mdf(S_welch, f_welch);
    erro_MNF_bartlett = abs(MNF_real - MNF_bartlett) / MNF_real * 100;
    erro_MDF_bartlett = abs(MDF_real - MDF_bartlett) / MDF_real * 100;
    erro_MNF_welch = abs(MNF_real - MNF_welch) / MNF_real * 100;
    erro_MDF_welch = abs(MDF_real - MDF_welch) / MDF_real * 100;
    fprintf('\nResultados para %s:\n', sig_name);
    fprintf(' MNF Real:
                          %.2f Hz\n', MNF_real);
    fprintf(' MNF Bartlett: %.2f Hz (erro: %.2f%%)\n', MNF_bartlett,
erro_MNF_bartlett);
    fprintf(' MNF Welch: %.2f Hz (erro: %.2f%%)\n', MNF_welch,
erro_MNF_welch);
    fprintf('\n');
                           %.2f Hz\n', MDF_real);
    fprintf(' MDF Real:
    fprintf(' MDF Bartlett: %.2f Hz (erro: %.2f%%)\n', MDF_bartlett,
erro_MDF_bartlett);
    fprintf(' MDF Welch: %.2f Hz (erro: %.2f%%)\n', MDF_welch,
erro_MDF_welch);
fprintf('\nAnálise concluída! Verifique as figuras geradas.\n');
```