Search

AIMA Chapter 3

Outline

- Agents that Plan Ahead
 - i.e., why search
- Search Problems
- Uninformed Search
- Informed Search
- Graph Search

Agents that Plan

Reflex Agents

Reflex agents:

- Choose action based on current percept (and maybe memory)
 - Require a mapping from percepts to actions
- Do not consider the future consequences of their actions
- Consider how the world IS

Reflex Agents

Roomba from iRobot

Planning Agents

Planning agents:

- Ask "what if"
- Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Must formulate a goal
- Consider how the world WOULD BE

Search Problems

Search Problems

- A search problem consists of:
 - A state space

A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space Sizes?

World state:

Agent positions: 120

Food count: 30

Ghost positions: 12

Agent facing: NSEW

How many

- World states?
 120x(2³⁰)x(12²)x4
- States for pathing?120
- States for eat-all-dots?
 120x(2³⁰)

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Search Trees

A search tree:

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph, corresponding to a PLAN that achieves the state.

Tree Search

General Tree Search

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

- Important concepts:
 - Fringe (frontier)
 - Expansion
 - Exploration strategy ← determines the search algorithm

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths

- Number of nodes in entire tree?
 - $1 + b + b^2 + b^m = O(b^m)$

Example: Tree Search

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Depth-First Search (DFS) Properties

- What nodes DFS expand?
 - Left to right
 - Could process the whole tree!
 - If m is finite, takes time O(b^m)
- How much space does the fringe take?
 - Only has siblings on path to root, so O(bm)
- Is it complete?
 - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the fringe take?
 - Has roughly the last tier, so O(b^s)
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

Video of Demo Maze Water BFS

Video of Demo Maze Water DFS

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of *number of actions*. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε , then the "effective depth" is roughly C^*/ε
 - Takes time $O(b^{C*/\varepsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C*/\varepsilon})$
- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes!

Uniform Cost Issues

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

We'll fix that soon!

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Search and Models

- Search operates over models of the world
 - The agent doesn't actually try all the plans out in the real world!
 - Planning is all "in simulation"
 - Your search is only as good as your models...

Informed Search

Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search

Graph Search

Uniform Cost Search

Strategy: expand lowest path cost

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

[Demo: contours UCS empty (L3D1)]

[Demo: contours UCS pacman small maze (L3D3)]

Search Heuristics

A heuristic h is:

- A function that estimates how close a state is to a goal
 - h(goal)=0
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Greedy Search

Greedy Search

 Strategy: expand a node that you think is closest to a goal state

- The ideal scenario:
 - Best-first takes you straight to the goal

Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal?

- What went wrong?
- Over-estimated goal cost

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

• Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
$$f(n) \le g(A)$$
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

1. f(n) is less than or equal to f(A)

Definition of f-cost says:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)$

- The admissible heuristic must underestimate the true cost h(A) = (est. cost of A to A) = 0
- So now, we have to compare:

$$f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)$$

 $f(A) = g(A) = (path cost to A)$

h(n) must be an underestimate of the true cost from n to A (path cost to n) + (est. cost of n to A) ≤ (path cost to A) g(n) + h(n) ≤ g(A) f(n) ≤ f(A)

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

$$h = 0$$
 at a goal

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B —
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Video of Demo Maze with Deep/Shallow Water --- UCS, Greedy, A*

Video of Demo Maze with Deep/Shallow Water --- UCS, Greedy, A*

Video of Demo Maze with Deep/Shallow Water --- UCS, Greedy, A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
 - Inadmissible heuristics are often useful too
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- h(start) = 8
- Is it admissible?
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6×10^6	
TILES	13	39	227	

8 Puzzle II

- Heuristic: total Manhattan distance
- h(start) = 3 + 1 + 2 + ... = 18
- Is it admissible?
- Relaxed-problem: any tile could slide in any direction at any time, ignoring other tiles

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Graph Search

Tree Search: Extra Work!

• Failure to detect repeated states can cause *exponentially* more work.

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

$$F(A) = g(A) + h(A)$$

$$F(C) = g(C) + h(C) = g(A) + actual_cost(A-C) + h(C)$$

Consistency of Heuristics

Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G

 Consistency: heuristic "arc" cost ≤ actual cost for each arc

```
h(A) - h(C) \le cost(A to C)
```

- Consistency implies admissibility
 h(C) h(n_goal) ≤ cost(C to n_goal) + h(n_goal) = cost(C to n_goal)
- A* graph search is optimal if heuristic is consistent
 - See textbook for a proof

Consistency of Heuristics

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
- Example: Manhattan distance or Euclidean distance for pathing

Summary

- Why search
 - Agents that Plan Ahead
- Search Problems
 - state space, successor function
 - start state and goal test
- Uninformed Search Methods
 - DFS, BFS, UCS
- Informed Search
 - Greedy, A*
- Graph Search

