Równoważność cykliczna ciągów

Definicja problemu i przedstawienie rozwiązań

Mikołaj Juda

2023

W referacie przedstawiono problem równoważności cyklicznej ciągów oraz różne algorytmy do jego rozwiązania razem z implementacją w języku Python. Pokrótce omówiono algorytm naiwny oraz algorytm korzystający z wyszukiwania wzorca. Przedstawiono również szybki algorytmie sprawdzania równoważności list cyklicznych Shiloacha(1979)[1] oraz szczegółowo opisano dowód jego poprawności i analizę złożoności obliczeniowej.

Spis treści

1	Defin	nicja problemu	2
2	Algorytm naiwny		3
	2.1	Opis	3
	2.2 I	Implementacja	3
3	Algorytm wykorzystujący wyszukiwanie wzorca		4
	3.1	Opis	4
	3.2 I	Implementacja	5
\mathbf{B}^{i}	ibliogr	rafia	6

1 Definicja problemu

Dane są dwa ciągi $A = (a_0, \ldots, a_{n-1})$ oraz $B = (b_0, \ldots, b_{n-1})$ długości n. A i B są $r\'ownoważne cyklicznie <math>(A \equiv B)$, gdy są równe w sensie list cyklicznych tzn.

Definicja 1.1.

$$A \equiv B \iff \exists_{k_0 \in \mathbb{Z}} \forall_{k \in \{0,\dots,n-1\}} \ a_{(k_0+k) \pmod{n}} = b_k$$

Dla wygody dalszego zapisu oznaczmy:

$$a_k \coloneqq a_k \pmod{n}, \ b_k \coloneqq b_k \pmod{n}$$
dla wszystkich $k \ge n$

Zdefiniujmy A_k jako listę powstałą z przesunięcia cyklicznego ciągu A takiego, że a_k jest pierwszym elementem ciągu A_k . Analogicznie dla B_k .

$$A_k = [a_k, \dots, a_n, a_0, \dots, a_{k-1}]$$

 $B_k = [b_k, \dots, b_n, b_0, \dots, b_{k-1}]$

Definicję Definicja 1.1 można przedstawić równoważnie jako:

Definicja 1.2.

$$A \equiv B \iff \exists_{k_0 \in \mathbb{Z}} A_{k_0} = B$$

Podsumowując, problem brzmi: "Czy istnieje takie przesunięcie cykliczne jednego ciągu, że jest po nim równy drugiemu ciagowi?"

 $A_0 = [a_0, \dots, a_{n-1}], \text{ oraz } B_0 = [b_0, \dots, b_{n-1}]$

2 Algorytm naiwny

2.1 Opis

Z Definicji 1.1 można łatwo zauważyć, że

Lemat 2.1. Jeżeli nie istnieje $k_0 \in \{0, \dots, n-1\}$ spełniające warunek:

$$\forall_{k \in \{0,\dots,n-1\}} \ a_{k_0+k} = b_k$$

to nie istnieje $k_0 \in \mathbb{Z}$ spełniające ten warunek.

Dowód. Oczywiste.

Wniosek 2.1. Żeby ustalić istnienie k_0 z Definicji 1.1 wystarczy sprawdzić czy

$$\exists_{k_0 \in \{0,\dots,n-1\}} \forall_{k \in \{0,\dots,n-1\}} \ a_{k_0+k} = b_k$$

Algorytm naiwny sprawdza dla każdego $l \in \{0, \dots, n-1\}$ czy

$$\forall_{k \in \{0,\dots,n-1\}} \ a_{l+k} = b_k$$

Jeśli trafi na l spełniające warunek to mamy $k_0 = l$ i algorytm zwraca True, w przeciwnym wypadku zwraca False. Algorytm ma złożoność kwadratową.[3]

2.2 Implementacja

3 Algorytm wykorzystujący wyszukiwanie wzorca

3.1 Opis

Utwórzmy listę

$$AA = [a_0, \dots, a_{n-1}, a_0, \dots, a_{n-1}]$$

i zauważmy, że każdy spójny podciąg AA o długości n rozpoczynający się od indeksu k ma postać A_k , czyli jest przesunięciem cyklicznym ciągu A. Zatem jeśli sprawdzimy czy B jest spójnym podciągiem AA to otrzymamy rozwiązanie problemu równoważnosci cyklicznej.

Można więc wykorzystać tytaj dowolny algorytm wyszukiwania wzorca, jednakże naiwny algorytm wyszukiwania wzorca sprowadza się do wcześniej przedstawionego algorytmu naiwnego i ma złożoność kwadratową. Wykorzystanie algorytmu wyszukiwania wzorca o liniowej złożoności obliczeniowej umożliwia sprawdzenie równoważności cyklicznej w czasie liniowym.[2] Wersja wykorzystujaca algorytm Knutha-Morrisa-Pratta wykonuje około 5n porównań.[1]

3.2 Implementacja²

```
def rownowaznosc_cykliczna(A: list, B: list) -> bool:
    if len(A) != len(B):
        return False
    AA = A + A
    return KMPSearchExists(B, AA)
def KMPSearchExists(pattern, word) -> bool:
    M = len(pattern)
    N = len(word)
    lps = [0] * M
    j = 0
    computeLPSArray(pattern, M, lps)
    i = 0
    while i < N:
        if pattern[j] == word[i]:
            i += 1
            j += 1
        if j == M:
            return True
        elif i < N and pattern[j] != word[i]:</pre>
            if j != 0:
                j = lps[j - 1]
            else:
                i += 1
    return False
def computeLPSArray(pat, M, lps):
    len = 0
    lps[0] = 0
    i = 1
    while i < M:
        if pat[i] == pat[len]:
            len += 1
            lps[i] = len
            i += 1
        else:
            if len != 0:
                len = lps[len - 1]
            else:
                lps[i] = 0
                i += 1
```

²Użyta implementacja algorytmu KMP (z modyfikacjami) pochodzi ze strony: https://www.geeksforgeeks.org/python-program-for-kmp-algorithm-for-pattern-searching-2/

Bibliografia

- [1] Yossi Shiloach. "A fast equivalence-checking algorithm for circular lists". W: Information Processing Letters 8.5 (1979), s. 236–238. ISSN: 0020-0190. DOI: https://doi.org/10.1016/0020-0190(79)90114-5. URL: https://www.sciencedirect.com/science/article/pii/0020019079901145.
- [2] Lech Banachowski, Krzysztof Diks i Wojciech Rytter. *Algorytmy i struktury danych.* pol. Wyd. 5. Warszawa: Wydawnictwa Naukowo-Techniczne, 2006. ISBN: 8320432243.
- [3] Algorytmy i struktury danych/Wstęp: poprawność i złożoność algorytmu. 2020. URL: https://wazniak.mimuw.edu.pl/index.php?title=Algorytmy_i_struktury_danych/Wst%C4% 99p:_poprawno%C5%9B%C4%87_i_z%C5%82o%C5%BCono%C5%9B%C4%87_algorytmu.