GRUPA PODSTAWOWA

topologia algebraiczna

Pozwala rozróżnić przestrzenie badając ile rożnych, czyli niedających się przekształcić w siebie bez rozcinania, pętli można w niej znaleźć. Na przykład

$$\pi_1(S^1) = \mathbb{Z}$$
,

bo mamy tylko jedną pętlę, którą możemy wielokrotnie nawijać na siebie.

Grupę podstawową okręgu S^1 często ilustruje się helisą zawieszoną nad okręgiem. To, ile razy obejdziemy S^1 po sprężynce oznacza, który element grupy podstawowej reprezentujemy.

Niech (X, x) będzie przestrzenią topologiczną z wyróżnionym punktem $x \in X$. Przez **pętlę** na (X, x) rozumiemy ciągłe odwzorowanie

$$\gamma:[0,1]\to (X,x)$$

takie, że $\gamma(0) = \gamma(1) = x$.

Mając dwie pętle γ_1 i γ_2 możemy wyprodukować nową pętle, $\gamma_1 \cdot \gamma_2$, która najpierw podróżuje trasą wyznaczoną przez γ_1 , a potem przez γ_2 . Czy umiesz wyrazić to wzorem?

Dwie pętle γ_1 , γ_2 są **homotopijne**, jeśli istnieje ciągłe odwzorowanie

$$h: [0,1] \times [0,1] \to X$$

takie, że

- h(0, t) = h(1, t) = x dla wszystkich t
- oraz $h(y, i) = \gamma_i(y)$ dla i = 0, 1.

Pierwsza współrzędna homotopii opisuje położenie y na pętli, a druga przekształcanie tej pętli w czasie t.

Relacja homotopijności jest relacją równoważności pętli. Dwie pętle są w tej samej klasie abstrakcji, jeśli jedną jesteśmy w stanie w ciągły sposób przekształcić w drugą.

Możemy więc zdefiniować grupę podstawową $\pi_1(X, x)$ zbazowanej przestrzeni (X, x) w formalny sposób jako grupę klas abstrakcji relacji homotopijnej równoważności pętli na przestrzeni (X, x) z działaniem składania petli.

$$\pi_1(\mathbb{T}^2) = \langle \gamma_1, \gamma_2 \rangle \cong \mathbb{Z}^2$$

$$\pi_1(\mathbb{T}^2) = \langle \gamma_1, \gamma_2 \rangle \cong \mathbb{Z}^2$$
 $\pi_1(\mathsf{K}) = \langle \mathsf{a}, \mathsf{b} \mid \mathsf{abab}^{-1} \rangle \cong \mathbb{Z} \rtimes \mathbb{Z}$