

Neural Networks -Deep Learning and Transfer Learning

Topics

- Deep learning
- Convolutional neural networks
- Transfer learning
- Augmentation

Deep Learning

- Biggest thing in "AI" for awhile
- Inspired in part by "deep neural architectures" (human brain)
- Citation crazy

Deep Neural Networks

- Not all deep learning is NN
- DNN are many layers
- Deep Convolutional NN (DCNN) most common
 - AlexNet (1970s resurrected)

Deep Neural Networks

- Not all deep learning is NN
- DNN are many layers
- Deep Convolutional NN (DCNN) most common
 - AlexNet (1970s resurrected)
 - Inception Networks

Deep Neural Networks

- Not all deep learning is NN
- DNN are many layers
- Deep Convolutional NN (DCNN) most common
 - AlexNet
 - Inception Networks
 - Residual Networks

Different Parts

- Dropout
- Nonlinearity
- Pooling
- Batch normalization

Dropout

- Drop neurons at random during training
- Try to avoid overfitting

Nonlinearity

Rectified Linear Units

Leaky RELU

https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html

Pooling

Helps address scale, noise, overfitting, etc.

http://cs231n.github.io/convolutional-networks/ https://medium.com/data-science-group-iitr/building-a-convolutional-neural-network-in-python-with-tensorflow-d251c3ca8117

Batch Normalization

- Internal covariate shift
 - Distribution of activations is constantly changing during training
 - Slows down learning
- Do in training
- Remove for testing
- Run before nonlinearity

https://towardsdatascience.com/batchnormalization-theory-and-how-to-use-it-withtensorflow-1892ca0173ad Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Deep Convolutional NN

 Create layers of feature maps from kernels

Deep Learning

- Typically many many layers/steps of processing
- Learning multiple levels of feature extraction
 - Shallow levels, simple features
 - Working up to more abstract features (concepts)
- https://en.wikipedia.org/wiki/Deep_learning

Transfer Learning

https://medium.com/@subodh.malgonde/transfer-learning-using-tensorflow-52a4f6bcde3e

Data Augmentation

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183838

PATA SCIENCE Localization: YOLO and RCNNs and ...

Divide into regions Detection Final decisions

Generative Adversarial Networks

GAN on MINST

Generative Adversarial Networks

Generative Adversarial **Networks**

after 5 epochs

after 100 epochs

Generative Adversarial Networks

Deep Reinforcement Learning

Questions?

