Modeling PalEON biomass

Wesley Brooks

UW-Madison

May 28, 2013

Outline

- Data
- 2 Modeling
- Model structure
 - Two-stage
 - One-stage
- Spatial fitting
 - Independent grid cells
 - Spline models
 - Bayesian hierarchical model
- 6 Recap

Goal

- Produce a model of per-species biomass at time of settlement
- Complicated by the presence of zeros

- Data
- 2 Modeling
- Model structure
 - Two-stage
 - One-stage
- Spatial fitting
 - Independent grid cells
 - Spline models
 - Bayesian hierarchical model
- 5 Recap

Most common taxa

Taxon	Biomass		
Oaks	7900000		
Pine	6900000		
Hemlock	6500000		
Birches	6400000		
Maple	4900000		
Basswood	1700000		
Elms	1600000		
Tamarack	1600000		
Cedar	1500000		

Oaks

Pine

- Data
- 2 Modeling
- Model structure
 - Two-stage
 - One-stage
- Spatial fitting
 - Independent grid cells
 - Spline models
 - Bayesian hierarchical model
- 6 Recap

9 / 30

Modeling grid

Spatial fit

Mode

One-stage (Tweedie)		
Two-stage (Bernoulli-Gamma)		

- Model types:
 - ► Tweedie: single stage model that accounts for exact zeros
 - ▶ Binomial-Gamma: binomial stage for presence/absence and gamma stage for biomass, conditional on presence
- Spatial fitting methods:
 - Independent: ignore spatial structure, treat observations as conditionally independent
 - Splines: smoothing spline for the spatial effect
 - ► GMRF: spatial random effect (fit with the INLA algorithm)

Defining terms

Let:

- s index location, k index taxon
- $Y_{k,s}$ denote the biomass of taxon k in cell s
- $p_{k,s}$ denote the composition fraction of taxon k in cell s
- ullet γ_s denote the overall stem density in grid cell s

- Data
- 2 Modeling
- Model structure
 - Two-stage
 - One-stage
- Spatial fitting
 - Independent grid cells
 - Spline models
 - Bayesian hierarchical model
- 5 Recap

Two-stage models

- First stage: zero/non-zero
 - ► Logistic regression
 - $Z_s \sim \text{Bernoulli}(\zeta_s)$
 - ▶ $logit(\zeta_s) = f(\cdots)$
- Second stage: distribution of positive biomass
 - $Y_s|Z_s=1\sim \mathsf{Gamma}(\alpha_s,\beta_s)$
 - $E(Y_s|Z_s = 1) = \mu_s = g(\eta_s)$

One-stage models: the Tweedie family

- Tweedie-family distributions have a point mass at zero as well as a continuous positive distribution.
- Parameter θ controls the mixture, from $\theta=1$ (Poisson) to $\theta=2$ (Gamma)

Conceptualizing the Tweedie distribution as a Gamma-Poisson mixture with parameters α , β , and λ :

- Draw $N \sim \text{Poisson}(\lambda)$
- Now make N iid draws: $V_{\ell} \sim \mathsf{Gamma}(\alpha, \beta)$

•
$$Y = \sum_{\ell=1}^{N} V_{\ell}$$

Tweedie model

With θ given, the Tweedie distribution is in the exponential family.

- $EY = \mu$
- $\operatorname{var}(Y) = \phi \mu^{\theta}$
- ullet ϕ is a scale parameter
- $P(Y=0) = \exp\left(-\phi^{-1}\frac{\mu^{2-\theta}}{2-\theta}\right)$
 - ▶ $P(Y = 0) \uparrow$ as $\mu \to 0$ (as latent predictor $\eta \to -\infty$)
 - ▶ $P(Y = 0) \uparrow as \phi \uparrow$
 - ▶ $P(Y = 0) \uparrow as \theta \rightarrow 1$
- But we first need θ
 - Find $\hat{\theta}$ so that the model's deviance residuals match the assumed variance function.

- Data
- 2 Modeling
- Model structure
 - Two-stage
 - One-stage
- Spatial fitting
 - Independent grid cells
 - Spline models
 - Bayesian hierarchical model
- 6 Recap

Independent grid cells

Ignoring the spatial structure, model the biomass as a function of composition and stem density

$$\eta_s = f(p_{k,s}, \gamma_s)$$

$$\mu_s = EY_s = \exp(\eta_s)$$

$$Y_s \sim \text{Tweedie}(\mu_s, \theta)$$

• $s(\cdot)$ is a smoothing spline.

The pictures are from a one-stage model for Maple:

Independent grid cells

Pictures here are from a one-stage model for Oak.

Spline models

One way to account for spatial patterns is by using splines to model a spatial effect. Essentially the splines are a smooth function of latitude and longitude, and are fit using the same software as was used for the smooth functions of composition and stem density in the independent grid cell models.

$$\eta_s = f(p_{k,s}, \gamma_s) + g(s_x, s_y)$$

$$\mu_s = EY_s = \exp(\eta_s)$$
 $Y_s \sim \text{Tweedie}(\mu_s, \theta)$