A Structural Study of Fumarase C from *E. coli*

Adam Oken¹, Dr. Douglas Juers¹, and Dr. Paul Sims²

- 1. Program of Biochemistry, Biophysics, and Molecular Biology, Whitman College.
- 2. Department of Chemistry and Biochemistry, University of Oklahoma

The Citric Acid Cycle

- Releases stored energy from acetyl-Coa into NADH, FADH, and GTP
- Eight different enzymes that catalyze the cycle
- Important for the breakdown of glucose and other small molecules into ATP

Fumarases in General

Class I fumarase's

- ➤ Heat liable, iron dependent, 4 Fe- 4 S clusters
- Dimers of 120 kDa
- Fumarase A and B

Class II fumarase's

- > Thermostable, iron-independent proteins
- Tetramic proteins around 200 kDa
- Class II fumarase's can be identified via a GSSxMxKxnxxPxE specific sequence located between Gly317 and Glu331
- FumC and fumarases found in S.cerevisiae and mammals

Reaction of Fumarase

- Fumarase catalyzes reversible hydration/dehydration of fumarate to L-malate.
- mechanism is an acid-base catalyzed elimination with an aci-carboxylate intermediate
- ☐ Two important catalytics bases A and B
- ☐ A is thought to be aspartate or glutamate
- ☐ B is thought to be a histidine

An Interesting Case Regarding Fumarase

- Fumarase has been linked to a progressive metabolic encephalopathy.
- An inborn error of the gene, a missense mutation at position 955 causing a G
 to C transversion (glutamate to glutamine at protein level), results in an
 inactivation of the protein
- The inactive protein causes psychomotor retardation, microcephaly, and abnormal posture with hypotonia contrasting with hypertonia of limbs in humans.

Fumarase C from *E. coli*

Four Studies of fumarase have elucidated some of the key features of the enzyme

The First Important Study - the structure of citrate, a competitive inhibitor, bound in the active site of fumarase

- Fumarase is a tetramer in its active form
- > The monomer is inactive
- More information from the monomer

The First Important Study - the structure of citrate, a competitive inhibitor, bound in the active site of fumarase

- Three different domains: D1, D2,
 D3. D2 comprises a 5 helix bundle
- Three highly conserved regions across the superfamily of fumarases
- Two active sites: A-site and B-site
- A-site is formed by residues from regions 1-3 all coming from different subunits
- B-site is formed from one subunit

The First Important Study - the structure of citrate, a competitive inhibitor, bound in the active site of fumarase

- Key A-site residues
 - Thr187, H188, Lys324, and Asn326
 - ➤ Water 26
- Key B-site residues
 - Arg126, His129, Asn131, and Asp132

The Second Important Study - the active sites

- What active site is the catalytic site?
- Two mutagenesis experiments were performed
 - ☐ A-site mutation H188N
 - B-site mutation H129N
- ☐ H129N mutant had little or no effect on the catalytic activity of the enzyme
- H188N mutation showed a large decrease in catalytic activity
- With increased concentrations of malate present, increased in the rates of reaction.

The Third Important Study - the apo or free structure of

fumarase

- A site is conserved with minimal structural changes
- B site has two main differences
 - Imidazole ring of His 129 rotated into the active site
 - Asn131 also had a notable rotation towards the active site

The Fourth Important Study - another mutagenesis experiment

- Mutated glutamate 315 to a glutamine (E315Q)
- Equivalent to a the same missense mutation in humans
- W 26 was coordinated to 4 residues
 - Ser98, Thr100, Asn141, and His188
- k_{cat} decreased 10 fold in both directions of
 - catalysis
- K_m did not change

Enzyme	Native	E315Q
S-malate → fumarate		
V _{max} (μmol substrate/min/mg enzyme)	178.6	16.11
K _m (mM)	0.857	0.885
$k_{cat}(s^{-1})$	595.2	55.32
$k_{cat}/K_m (M^{-1} s^{-1})$	6.95E5	6.25E4
Fumarate \rightarrow S-malate		
V _{max} (μmol substrate/min/mg enzyme)	344.8	32.2
K _m (mM)	0.207	0.248
$k_{cat} (s^{-1})$	1149	107.1
$k_{ant}/K_{ms} (M^{-1} s^{-1})$	5.56F6	4 32F5

Hypothesis

Co-crystallize fumarase C from *E. coli* with its substrate, L-malate, in order to elucidate the two catalytic bases in the mechanism, the catalytic importance of the A-site water, how the B-site plays a role in catalytic efficiency, and investigate the A-site's interactions with a substrate further

Results:

Gene to Protein - a couple gels

- Bottom left: colony PCR
- Bottom middle: restriction digests
- Right top-bottom: Purification of fumC C-ter

Protein

purific. 12%

SDSphage gel's

Crystallization - the tough part

- Two Sets of conditions
 - □ Previously published (MOPS, LiSO₄, PEG 4000) and new conditions (KCl, PEG 3350, BTP)
- Varied almost everything we could
 - ☐ Salts and their concentrations
 - PEG's and their concentrations
 - pH and concentrations of other buffers
 - ☐ Temperature of trays
 - Micro-seeding and filtering protein
 - Protein concentration
 - Droplet volume/mixtures
 - ☐ Concentrations of malate in drop solution and post crystallization

Data set	fumC pre-refinement	fumC post-refinement
Space group, A (Å), B (Å), C (Å)	I222, 62.04, 121.14, 128.24	
Resolution (lower to higher limit) (Å)	13.9-2.2	
% Completeness	98.1 (95.8)	
Ι/σ(Ι)	5.7 (0.7)	
CC(1/2)	0.982 (0.197)	
R _{meas}	0.277 (2.11)	
R _{free}	0.2456	0.2450
R _{work}	0.2466	0.1847
R. m. s bond length (Å)	0.011	0.014
R. m. s bond angles (°)	1.454	1.325
Average mosaicity	0.67	
Mean B-factor (Å ²)		49.64
Ramachandran favored (%)		94.5

Omit Map of The A-site

- Shows electron density of active site
- Active site residues: Thr187, His188, Lys324, and Asn326
- No electron density in the active site cavity

The Omit Map of The B-site

- Active site residues: Arg126, His129, Asn131, and Asp132
- Top map shows the difference map with no electron density in the active site cavity
- Bottom shows our structure superimposed onto the deposited apo fumarase structure
- Note the position of His129

Discussion

- No electron density in the active cavity of the A-site
- No electron density in the active cavity of the B-site
- Nearly identical unit cell dimensions to apo fumC
- Previously published and PDB deposited apo fumarase C structure was 2.19 angstroms with similar R-factors

Conclusions

 Obtained an approximate 2.2 angstrom resolution structure of apo fumarase C in new crystallization conditions that contain malate

Acknowledgements

Paul Sims - REU mentor

Doug Juers - Continued Research / Thesis advisor

Len Thomas - Macromolecular Crystallography Lab at OU

NSF Research Experience for Undergraduates (Award #: 1359457)

Sources:

- 1. Weaver, Todd. "Structure Of Free Fumarase C From Escherichia Coil." *Acta Crystallographica: Section D (Wiley-Blackwell)* 61.10 (2005): 1395-1401. *Academic Search Premier*. Web. 5 Jan. 2017.
- 2. "fumC Fumarate Hydratase Class II Escherichia Coli (Strain K12) fumC Gene & Protein." Accessed January 5, 2017. http://www.uniprot.org/uniprot/P05042.
- 3. Weaver, T., M. Lees, and L. Banaszak. "Mutations of Fumarase That Distinguish between the Active Site and a Nearby Dicarboxylic Acid Binding Site." *Protein Science: A Publication of the Protein Society* 6, no. 4 (April 1997): 834–42.
- 4. "Purification and characterization of two types of fumarase from Escherichia coli." <u>Ueda Y.</u>, <u>Yumoto N.</u>, <u>Tokushige M.</u>, <u>Fukui K.</u>, <u>Ohya-Nishiguchi H.</u> J. Biochem. 109:728-733(1991) [<u>PubMed</u>] [<u>Europe PMC</u>] [<u>Abstract</u>]
- 5. "Purification and characterization of two types of fumarase from Escherichia coli." <u>Ueda Y.</u>, <u>Yumoto N.</u>, <u>Tokushige M.</u>, <u>Fukui K.</u>, <u>Ohya-Nishiguchi H.</u>
- J. Biochem. 109:728-733(1991) [PubMed] [Europe PMC] [Abstract]
- 6. Hill, R. L., & Teipel, J. W. (1971) Enzymes 5, 539 571.
- 7. Guest, J. R., Miles, J. S., Roberts, R. E., & Woods, S. A. (1985) J. Gen. Microbiol. 131, 2971 2984.
- 8. Estévez, Marcel, Jeremy Skarda, Josh Spencer, Leonard Banaszak, and Todd M. Weaver. "X-Ray Crystallographic and Kinetic Correlation of a Clinically Observed Human Fumarase Mutation." *Protein Science* 11, no. 6 (June 1, 2002): 1552–57. doi:10.1110/ps.0201502.
- 9. Accessed February 11, 2017. https://upload.wikimedia.org/wikipedia/commons/0/0b/Citric_acid_cycle_with_aconitate_2.svg.
- 10. Weaver, Todd, and Leonard Banaszak. "Crystallographic Studies of the Catalytic and a Second Site in Fumarase C from Escherichia Coli,." *Biochemistry* 35, no. 44 (January 1, 1996): 13955–65. doi:10.1021/bi9614702.
- 11. Puthan Veetil, Vinod, Guntur Fibriansah, Hans Raj, Andy-Mark W. H. Thunnissen, and Gerrit J. Poelarends. "Aspartase/Fumarase Superfamily: A Common Catalytic Strategy Involving General Base-Catalyzed Formation of a Highly Stabilized Aci-Carboxylate Intermediate." *Biochemistry* 51, no. 21 (May 29, 2012): 4237–43. doi:10.1021/bi300430j.
- 12. "Fumarase." Wikipedia, July 23, 2016. https://en.wikipedia.org/w/index.php?title=Fumarase&oldid=731146896.

Questions?