Bloc 8: Equilibris en solució

Bloc 8.1 Introducció. Dissolucions.

Unitats de concentració

- **8.1.1** Si barregem 10.0 ml de HCl 0.10 M, 23.5 ml de HCl 0.25 M i 8.6 ml de HCl 0.32 M, quina serà la molaritat de la solució resultant? (suposar volums additius).
- **8.1.2** L'àcid sulfúric concentrat es ven com a dissolució del 95% en pes de H₂SO₄. Si la seva densitat és 1.834 g/ml, quina és la molaritat?
- **8.1.3** 70.00 ml de CH₃OH (d = 0.7958 g/ml) s'enrasen a 100 ml amb H₂O. La solució resultant té una densitat de 0.8866 g/ml. Calculeu la concentració de la solució en molaritat i % en pes.
- **8.1.4** Expresseu en ppm (parts per milió) la concentració de vanadi en un petroli si l'anàlisi va donar un 0.0003% (pes/volum) de V. Feu el mateix en el cas que el resultat de l'anàlisi hagués donat un 0.0003% (pes/pes). La densitat del petroli és de 0.85 g/mL.
- **8.1.5** Calculeu la molaritat d'una dissolució aquosa que conté 27 g de sacarosa (C₁₂H₂₂O₁₁) en cada 200 ml de dissolució. Densitat de la dissolució 1.050 g/ml.
- **8.1.6** Quins volums de les dissolucions 6M i 1.5 M de H₂SO₄ s'han de barrejar per preparar 1 litre de dissolució 3 M en H₂SO₄.
- **8.1.7** Es dissolen 198 g de Al₂(SO₄)₃, 208 g de K₂SO₄ i 318 g de KAl(SO₄)₂ en aigua suficient per fer 12.6 l de solució. Suposant que la dissociació sigui completa i que no es donin d'altres reaccions, quines seran les concentracions finals de K⁺, Al³⁺ i SO₄²⁻?
- **8.1.8** Si afegim 0.269 g de HNO₃ a 36.3 ml de HNO₃ 1.18 M, quina serà la concentració final de H⁺ i NO₃⁻ suposant que no varia el volum de la solució?
- **8.1.9** Una dissolució aquosa d'àcid sulfúric te una densitat d'1.86 g/ml i una riquesa del 96%. Calcular la fracció molar de sulfúric i d'aigua a la dissolució.

Electròlits

8.1.10 Tenim dues dissolucions, una de CaCl₂ 0.15 M i l'altra de HgCl₂ 0.15 M. Considerant que CaCl₂ és un electròlit fort i que HgCl₂ és feble, amb K_{dis} = 3.3·10⁻⁷ (HgCl₂ ↔ HgCl⁺ + Cl⁻), calcular la relació entre les concentracions de Cl⁻ en les dues dissolucions.

8.1.11 Suposem que barregem 0.1 mols de Hg(ClO₄)₂ i 0.08 mols de NaCl en aigua per fer 1.25 l de dissolució. Sabent que tots dos són electròlits forts, però que per a la reacció

 $K_{dis} = 1.8 \times 10^{-7}$, calculeu la concentració final d'ió clorur.

8.1.12 Determina el grau de dissociació d'una dissolució 0.15 M d'hidrogen fosfat de magnesi:

$$MgHPO_4 \leftrightarrows Mg^{2+} + HPO_4^{-2} \quad K_{dis}=3,16.10^{-3}$$

8.1.13 Sabent que el grau de dissociació d'una dissolució 0.01 M de CdSO₄ en Cd⁺² i SO₄⁻² és del 53,9 %. Determina la constant d'aquesta reacció de dissociació.

BLOC 8.2 Equilibris de transferència de protons. Concepte d'àcid i de base. Constant d'acidesa. Concepte de pH.

- **8.2.1.** A partir de les definicions de Lewis d'àcid i de base, explicar les reaccions següents:
 - a) $BF_3 + NH_3 \Leftrightarrow BF_3 \cdot NH_3$
 - b) $Ca^{2+}O^{2-} + SO_3 \Leftrightarrow Ca^{2+}SO_4^{2-}$
 - c) $Ag^+ + 2 CN^- \Leftrightarrow [Ag(CN)_2]^-$
- **8.2.2.** En dissolució 0,01 M l'àcid acètic està ionitzat en un 4,11%. Calcular la constant d'ionització de l'àcid acètic.
- **8.2.3** La constant d'ionització de l'àcid acètic és 1,77.10⁻⁵. Determinar el grau d'ionització i el pH d'una dissolució: a) 1 M i b) 0,0001 M.
- **8.2.4** Calcular la constant d'ionització per a les substàncies que segueixen:
 - a) Una dissolució 0,10 M de NH3 que està ionitzada al 1,3 %
 - b) Una dissolució 0,0010 M de NH₃ que està ionitzada al 12,6%
 - c) Una dissolució 0,01 M de HCN ionitzada al 0,02 %.
- **8.2.5.** La constant d'ionització de l'àcid salicílic (o-hidroxibenzoic) és 1,06.10⁻³. Calcular:
 - a) el grau de dissociació i el pH d'una dissolució que conté 1 g de l'àcid per litre
 - b) el grau de dissociació de l'àcid quan es dissol 1 g d'aquest en 1 litre de HCl 0,1N.

Bloc 8.3 Equilibris de transferència de protons. Càlcul del pH.

- 8.3.1 Calcular el pH d'una solució
 - a) 10⁻²M HCl
 - b) 10⁻⁴ M NaOH
 - c) 1.10⁻⁸ M de HClO₄
 - d) 1.10⁻⁷ M de Ba(OH)₂
 - e) 1.10⁻⁴ M de HNO₂
- **8.3.2** Calculeu el pH de les dissolucions següents:
 - a) NH₄NO₃ 0.1 M
 - b) NaAcO 0.1 M
 - c) $NH_3 0.1 M + NH_4CI 0.1 M$
 - d) Cl₂CHCOOH 10⁻² M
 - e) CH₃COOH 0.025 M
- 8.3.3 Una dissolució conté 0.1 mmols de HClO₄ en 100 ml. Calculeu:
 - a) pH de la dissolució.
 - b) pH de la dissolució resultant en prendre 10 µl de la inicial i diluir a 1 litre.
 - c) Quin volum s'ha de prendre de la dissolució inicial per a preparar 250 ml de solució de HClO₄ de pH=4.00?
- **8.3.4** Disposem d'una dissolució equimolar de Na₂CO₃ i NaHCO₃. Quines característiques té aquesta dissolució? a) Quin és el seu pH? b) Com variarà el pH si diluïm la dissolució a la meitat? *Dades*: pKa(H₂CO₃) = 6.36, pKa(HCO₂-) = 10.33.
- **8.3.5** El pH d'una dissolució 1.0 M de ftalat àcid de potassi (KHA) és 4.01 i el d'una dissolució 0.05 M de ftalat potàssic és 9.1. Quin serà el pH d'una dissolució d'àcid ftàlic (H₂A) 0.1 M?
- **8.3.6** L'àcid fosfòric és un àcid tripròtic que s'ionitza en tres etapes. Les seves constants d'ionització respectives són 7,52.10⁻³, 6,22.10⁻⁸ i 4,8.10⁻¹³. Calcular les concentracions dels ions H₃O⁺, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻ en una dissolució 1 M d'àcid fosfòric.
- **8.3.7** Calcular el pH de les dissolucions següents:
 - a) NaCN 0,100 M
 - b) NaClO₄ 0,020 M

Dades: pKa(HCN) = 9.21

- **8.3.8** Un àcid acètic 0,01 M es va neutralitzant amb NaOH. Trobar el pH de la dissolució:
 - a) quan s'ha neutralitzat el 90% de l'àcid
 - b) quan s'ha afegit un excés de NaOH d'un 10%

(Suposar que el volum de líquid no varia a l'afegir la dissolució de NaOH).

Dades: $pKa(CH_3OOH) = 4.75$

- a) Calcular el pH d'una solució amb una concentració analítica d'àcid acètic 0,03
 M i una concentració analítica d'acetat sòdic 0,02 M (pKa(CH₃COOH)=4.74.
 - b) Si agafem 200 mL de la solució i es dilueixen fins a 500 mL, quant val el pH?
 - c) Calcular el pH de 200 mL de la solució després d'haver afegit 1.10⁻⁴ mols de NaOH sòlid (considerar que no hi ha canvi de volum).
 - d) Calcular el pH de 200 mL de la solució a després d'haver afegit 1.10⁻⁴ mols de HCl sense canvi de volum.
 - e) Si es barregen 100 mL d'acètic 0,01 M i 100 mL de NaOH 0,005 M, quant val el pH? (considerar volums additius)
- **8.3.10** Es vol preparar una dissolució reguladora de pH = 8,50.
 - a) Amb 0,0100 mols de KCN i els reactius que podem trobar al laboratori, com prepararies 1 litre de dissolució tampó?
 - b) Calcular la variació del pH a l'addicionar 5.10⁻⁵ mols de HClO₄ a 100 cc de dissolució tampó
 - c) Quina és la variació si addicionem la mateixa quantitat de NaOH a 100 mL de dissolució tampó?
- 8.3.11 Una mostra de 40,0 mL d'àcid acètic 0,0100 M es valoren amb NaOH 0,0200 M. Calcular el pH després de l'addició de a) 3,0 mL, b) 10,0 mL, c) 20,0 mL i d) 30,0 mL de la dissolució de NaOH. Dibuixar la corba de valoració.
- **8.3.12** En la valoració de 50,0 mL d'àcid β -hidroxibutíric (HC₄H₇O₃ , pKa=4,39) 0,1 M amb NaOH 0.100 M.
 - a) calcular el pH després de l'addició de 20,0; 30,0; i 70,0 mL de base.
 - b) dibuixar la corba de valoració, indicant el punt d'equivalència i el punt inicial de la valoració.
 - c) escolliu de la taula de l'Annex 1 els indicadors més adients per aquesta valoració.
- **8.3.13** En una valoració de 50 mL de hidrazina (N_2H_4) 0,2 M amb HNO₃ 0,5 M, calcula: el pH inicial, el pH en el punt d'equivalència i el pH quant hi ha un excés de 10 mL de HNO₃.

Dels indicadors de la taula, quin utilitzaries per marcar el punt final de la valoració? Quin canvi de color observaries? Utilitza la taula de l'Annex 1. Dades: $pKa(N_2H_5^+)=8,11$

- **8.3.14** En la valoració de 100,0 mL d'una dissolució de cocaïna 0,100 M (p K_b =5,58) amb HNO $_3$ 0,200 M.
 - a) calcular el pH després de l'addició de 5,0; 10,0; 35,0; i 70,0 mL de l'àcid.
 - b) dibuixar la corba de valoració , indicant el punt d'equivalència i el punt inicial de la valoració.
 - c) escolliu de la taula de l'Annex 1, els indicadors més adients per aquesta valoració.

Bloc 8.4 Complexació i Solubilitat.

Equilibris de complexació. Definicions.

8.4.1 Calculeu la concentració de Ag^+ en una dissolució que s'obté en mesclar 0.01 mols de $AgNO_3$ i 0.1 mols de NH_3 i diluir a 1 litre. $K_1 = 10^{3.32}$; $K_2 = 10^{3.39}$.

- **8.4.2** Quines són les concentracions de les diferents espècies químiques quan es prepara 1 L de dissolució barrejant 0.001 mols de ferro(III) i 0.1 mols de SCN⁻? Dades: FeSCN²⁺/Fe³⁺ : $\log \beta = 2.1$.
- **8.4.3** El complex format per Ba⁺² i EDTA ([Ba(EDTA]²⁻) té una constant de dissociació de 10^{-7.8}. Calculeu les concentracions de les diferents espècies químiques quan es prepara 1 litre de dissolució mesclant:
 - a) 0.01 mols de Ba+2 i 0.01 mols d'EDTA
 - b) 0.01 mols de Ba+2 i 0.1 mols d'EDTA
 - c) 10⁻³ mols de Ba⁺² i 0.1 mols d'EDTA
- **8.4.4** Quina és la concentració de metall lliure si barregen Cu(II) 0.01 M i NH₃, si la concentració de lligand en excés (lliure) és 2M.

Dades: $\log \beta([Cu(NH_3)_4]^{2+}) = 11.8$

Solubilitat i producte de solubilitat

- **8.4.5** Tenim un sistema en equilibri format per Mg(OH)₂ i MgF₂ sòlids, en contacte amb una dissolució saturada que conté Mg⁺², OH⁻ i F⁻. Una anàlisi de la solució mostra que: [Mg²⁺] = 0.0027 mol/l, [OH⁻] = 5.75x10⁻⁵ mol/l i [F⁻] = 0.0054 mol/l. Calculeu Kps per Mg(OH)₂ i MgF₂.
- 8.4.6 Coneixent els Kps dels següents sulfurs:

Sulfur de plata (I) 10⁻⁵⁰ Sulfur de mercuri (II) 10⁻⁵²

Sulfur de antimoni (III) 10⁻⁹³

L'ordenació de més a menys soluble és:

- a. Mercuri > antimoni > plata
- b. Antimoni > plata > mercuri
- c. Antimoni > mercuri > plata
- d. Plata > mercuri > antimoni
- e. Plata > antimoni > mercuri.
- **8.4.7** Molt sovint apareixen en els vins precipitats formats per hidrogentartrat de potassi (KHC₄H₄O₆). La solubilitat d'aquesta sal a 15°C és de 0.42 g/100g de vi. Suposant que la densitat del vi és 1 g/ml, calculeu la constant del produte de solubilitat.

 $(PM (KHC_4H_4O_6) = 188 g/mol).$

8.4.8 La solubilitat del Ca(OH)₂ (PM 74.1) en aigua es de 0.371 g/l. Quin és el pH d'una solució saturada d'aquest hidròxid?

Factors que afecten la solubilitat

- **8.4.9** Quants grams de AgCl es dissoldran en 1 litre de MgCl₂ 0.200 M a 298 K? Kps = 1.78x10⁻¹⁰, PM(AgCl) = 143 g/mol.
- **8.4.10** Quina serà la concentració de Ag⁺, NO₃⁻, H⁺, Cl⁻ i OH⁻ en una dissolució que es prepara afegint 0.5 g de AgNO₃ a 25 ml de HCl 0.1 M. Kps = 1.7x10⁻¹⁰. Pesos atòmics: Ag=107.9 g/mol; N=14 g/mol; O=16 g/mol.

- **8.4.11** Quants grams d'hidròxid de ferro (III) trobarem dissolts, com a màxim, en dos litres de dissolució de pH = 2?. Kps = 1.1x10⁻³⁶; Pesos atòmics: Fe= 55.8g/mol, O=16 g/mol, H= 1 g/mol.
- **8.4.12** Hom ha d'escollir les condicions experimentals necessàries per precipitar Zn⁺²(aq) quantitativament amb Na₂S(aq) com a ZnS(s). Digues si són certes o falses les següents afirmacions:
 - a) La precipitació serà més quantitativa en condicions àcides ja que els ions S²són bases fortes.
 - b) Un pH alt és l'adequat ja que el producte iónic [Zn+2] [S2-] serà més gran que a pH baixos.
 - c) Un pH alt és l'adequat ja que [S²-] disminueix a mesura que el pH augmenta.
 - d) Un pH àcid és l'adequat ja que s'evita la dissociació del ZnS.

Reaccions de precipitació. Aplicacions i càlculs.

- **8.4.13** Es va voler preparar una solució fertilitzant per a un cultiu de flor en hivernacle dissolent 3 g de K₂HPO₄ per litre d'aigua de pou, però en fer-la s'observà que apareixia un precipitat blanc. Se suposà que la causa de la formació d'aquest precipitat era l'aigua del pou. Se'n va realitzar una anàlisi, i es determinà que contenia entre altres, els següents ions: 2.5x10⁻³ M de Mg⁺²; 5x10⁻³ M de Ca⁺²; 2x10⁻⁷ M de Fe⁺².
 - a) Indicar quin compost va precipitar. Justificar-ho numèricament.
 - b) Quina quantitat de substància va precipitar?

Dades: $Kps(MgHPO_4) = 1.5x10^{-4}$; $Kps(CaHPO_4) = 2.2x10^{-7}$; $Kps(FeHPO_4) = 1.7x10^{-8}$

Estabilitat dels complexos. Aplicacions.

- **8.4.14** S'ha produït un abocament d'un metall tòxic, Hg²⁺ en un llac, a una concentració de metall inicial 10⁻³ M. Es proposen dues estratègies per a la seva eliminació:
 - a) Portar l'aigua fins a pH = 9 afegint una base
 - b) Afegir EDTA a una concentració total de 1 M

Quina de les dues estratègies aconsegueix disminuir en major extensió la quantitat de metall en solució? Raoneu la resposta.

Dades: pK_{ps}(Hg(OH)₂)=25.6; logβ(HgEDTA²⁻)=20.4

Bloc 8.5 Equilibris de transferència d'electrons

- **8.5.1** Igualar les equacions redox següents:
 - a) $HNO_3 + C \rightarrow CO_2 + NO_2 + H_2O$
 - b) $Bi(OH)_3 + Na_2SnO_2 \rightarrow Bi + Na_2SnO_3 + H_2O$
 - c) $MnO_2 + KCIO_3 + NaOH \rightarrow NaMnO_4 + KCI + H_2O$
 - d) As + HNO₃ + H₂O \rightarrow H₃AsO₄ + NO
 - e) $Co(OH)_3 + HCI \rightarrow CoCl_2 + Cl_2 + H_2O$
 - f) $HCI + K_2Cr_2O_7 \rightarrow CrCI_3 + CI_2 + KCI + H_2O$
 - g) $KMnO_4 + H_2SO_4 + H_2O_2 \rightarrow MnSO_4 + O_2 + K_2SO_4 + H_2O$

- **8.5.2** Escriure una equació química ajustada per a la reacció total de la cel·la representada per:
 - a) $Pt | H_2 | H^+ | Fe^{+3} | Fe^{+2} | Pt$
 - b) $Cd | Cd^{2+} | Ni^{+2} | Ni$
 - c) $Pt | Cl^{-} | Cl_{2} | | MnO_{4}^{-} | Mn^{+2} | Pt$
- **8.5.3** Partint de:

$$2H^{+} + X + 2e^{-} \leftrightarrow H_{2}X$$
 $E^{0} = -0.72 \text{ V}$
 $2H^{+} + Y + 2e^{-} \leftrightarrow H_{2}Y$ $E^{0} = -0.40 \text{ V}$
 $2H^{+} + Z + 2e^{-} \leftrightarrow H_{2}Z$ $E^{0} = 0.14 \text{ V}$
 $2H^{+} + Q + 2e^{-} \leftrightarrow H_{2}Q$ $E^{0} = 1.23 \text{ V}$

Quina reacció tindrà lloc si totes les espècies estan en estat estàndard?

- a) X oxidarà a H₂Y per formar Y
- b) Y oxidarà a H₂Z per formar Z
- c) Z oxidarà a H₂Q per formar Q
- d) Q oxidarà a H₂Y per formar Y
- **8.5.4** Partint dels valors de potencials normals de reducció, quina de les següents espècies reduirà el Cu²⁺ a Cu però no reduirà el Fe²⁺ a Fe?
 - a) Ag⁺ b) H⁺
- c) Cd
- d) Zn
- e) Fe²⁺
- **8.5.5** Emprant la Taula de potencials estàndard en dissolució aquosa a 25°C, i sabent que el corresponent a la parella Fe³+/Fe²+ és de 0.77 V, calcular E⁰ per a una cel·la voltaica la reacció de la qual és

$$2Fe^{+3}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{+2}(aq) + I_{2}(s)$$

- **8.5.6** Emprant la Taula de potencials estàndard en dissolució aquosa a 25°C, determinar si, a concentracions estàndard,
 - a) el Fe(s) s'oxidarà a Fe²⁺ per tractament amb àcid clorhídric.
 - b) el Cu(s) s'oxidarà a Cu²⁺ per tractament amb àcid clorhídric.
 - c) el Cu(s) s'oxidarà a Cu²⁺ per tractament amb àcid nítric.
- **8.5.7** La fem de la pila Zn $|Zn^{+2}(0.001 \text{ M})| Cu^{+2}(2 \text{ M})| Cu$ a 25°C (E°(Zn⁺²/Zn) = -0.76 V; E°(Cu²⁺/Cu) = 0.34 V) és: a) entre 0.76 i 1.10 V; b) > 1.10 V; c) entre 0.34 i 0.76 V;
 - d) < 0.42 V; e) entre 0.00 i 0.76 V.
- **8.5.8** La pila Fe \mid Fe⁺³(0.010 M) \mid Cl₂ (0.1 atm) \mid Cl⁻ (0.020 M) \mid Pt dóna un fem de 1.51 V a 25°C. Partint d'aquestes dades, la E° de la pila, en V, és:
 - a) 1.37;
- b) 1.40;
- c) 1.16;
- d) 1.31;
- e) 1.28

Electròlisi. Lleis de Faraday

8.5.9 Quina quantitat de metall es dipositarà en una cel·la electrolítica que conté Al⁺³, en forma de sal fosa, després de haver-hi passat una càrrega elèctrica de 5·10⁻² F?. Suposar que el rendiment és del 100%.

PROBLEMES DE QUÍMICA I FONAMENTS DE QUÍMICA FACULTAT DE CIÈNCIES. UNIVERSITAT DE GIRONA

BLOC 8

- **8.5.10** Es fa passar un corrent elèctric de 2.68 A durant 1h per una cel·la electrolítica que conté ions ferro i es dipositen 2.792 g de Fe metàl·lic. Quina és la càrrega dels ions ferro de la dissolució?
- **8.5.11** Quants Coulombs calen per transformar 0.4 mols de Cl₂ en ió Cl⁻? Quants grams de Fe³⁺ es poden transformar en Fe amb aquesta quantitat de corrent elèctric?
- **8.5.12** Quant temps caldrà per dipositar 5 g de Cd a partir d'una dissolució de CdSO₄ si s'utilitza un corrent elèctric constant de 2.5 A?

Annex 1.

Indicadors àcid-base amb els seus intervals de viratge i color de les formes àcides i bàsiques.

Indicador	Interval de viretae	Color forms	Color forms
Indicador	Interval de viratge	Color forma	Color forma
N/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(pH)	àcida	bàsica
Violeta de metil	0.0 - 1.6	Groc	Blau
Vermell de cresol	0.2 - 1.8	Vermell	Groc
Blau de timol	1.2 1.8	Vermell	Groc
Porpra de cresol	1.2 - 2.8	Vermell	Groc
Eritrosina disòdica	2.2 - 3.6	Taronja	Vermell
Taronja de metil	3.1 - 4.4	Vermell	Taronja
Vermell Congo	3.0 - 5.0	Violeta	Vermell
Taronja d'etil	3.4 - 4.8	Vermell	Groc
Verd de bromocresol	3.8 - 5.4	Groc	Blau
Vermell de metil	4.8 - 6.0	Vermell	Groc
Vermell de clorofenol	4.8 - 6.4	Groc	Vermell
Porpra de bromocresol	5.2 - 6.8	Groc	Porpra
<i>p</i> -Nitrofenol	5.6 - 7.6	Incolor	Groc
Blau de bromotimol	6.0 - 7.6	Groc	Blau
Vermell de fenol	6.4 - 8.0	Groc	Vermell
Vermell neutre	6.8 -8.0	Vermell	Taronja
Vermell de cresol	7.2 - 8.8	Groc	Vermell
α -Naftolftaleïna	7.3 - 8.7	Groc	Blau
Porpra de cresol	7.6 -9.2	Groc	Porpra
Blau de timol	8.0 - 9.6	Groc	Blau
Fenolftaleïna	8.0 - 9.6	Incolor	Vermell
Timolftaleïna	8.3 - 10.5	Incolor	Blau
Groc d'alizarina	10.1 - 12.0	Groc	Taronja-vermell
Nitramina	10.8 - 13.0	Incolor	Taronja-cafè
Tropeolina O	11.1 - 12.7	Groc	Taronja