Total	No.	of	Questions	:	8]	
-------	-----	----	-----------	---	----	--

SEAT No.:	
-----------	--

P6489

[Total No. of Pages: 4

[5868]-105 F.E. (All Branches)

103004 : BASIC ELECTRICAL ENGINEERING (2019 Pattern) (Semester - I/II)

Time: 21/2 Hours]

[Max. Marks: 70

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- 5) Use of non-programmable calculator is allowed.
- Q1) a) Define and state the unit of admittance, conductance & susceptance.Also draw the admittance triangle for inductive circuit. [4]
 - b) Obtain the expression for current and power, when voltage $v = V_m \sin \omega t$ is applied across purely resistive circuit. Also draw the waveform for voltage, current & power on common X-axis. [6]
 - The series circuit having resistance 5 Ω, inductance 0.1 H and capacitance 150 μF is connected to 1-phase, 200 V, 50 Hz AC supply.
 Calculate
 - i) Inductive reactance XL
- ii) Capacitive reactance Xc
- iii) Net reactance X
- iv) Impedance Z
- v) Current drawn by the circuit vi) Power factor
- vii) Active power P
- viii) Reactive power Q

OR

- Q2) a) Define and state the unit of active, reactive and apparent power in case of single phase circuit. Draw the power triangle. [4]
 - b) Derive the expression for resonant frequency and comment on impedance, current and power factor in case of series resonance circuit. [6]
 - c) Derive the expression for power, when voltage v = V_m sin ωt is applied across R-L series circuit. Also draw the waveform for voltage, current & power on common X-axis.

P. T. O.

Q3)	a)	Wha	at is phase sequence? State it's any two applications.	[6]			
	b)) State the relation between:					
		i)	Phase voltage and line voltage				
		ii)	Phase current and line current in case of balanced delta connect 3-ph load. Using above relations, obtain the expressions for 3 active power and 3-ph reactive power.	ted -ph			
	c)	1000 to 1000 V 1 ab 50 Hz transformer has from loss of 1000					
		i)	Efficiency at full load and power factor = 0.8 lag.				
		ii)	Efficiency at half load and power factor = 1 lag.				
			OR				
Q4)	a)	What are the losses in the transformer? State the parts in which they take place. [3]					
	b)	Derive the EMF equation of single phase transformer. [6]					
	c)	Three identical impedances each of $6+j8\ \Omega$ are connected in star across 3-ph, 415 V, 50 Hz ac supply. Determine [8]					
		i)	Line voltage				
		ii)	Phase voltage				
		iii)	Phase current and line current				
		iv)	3-ph active, reactive and apparent power				
Q5)	a)	Def	ine the practical voltage source & explain it by means of	[4]			
		i)	Symbol of representation				
		ii)	Value of internal resistance				
		iii)	Graphs between V and I				
	b)		ive the equations to convert Delta connected resistive circuitivalent Star circuit.	t into [6]			
[586	8]-10	05	2				

[3]

c) For the circuit given in fig 5c, write down the steps to find current through PQ using Superposition Theorem. [8]

Figure 5c

OR

Q6) a) State and explain KCL & KVL

[4]

b) Calculate the current flowing through 6 Ω (AB) for the circuit shown in fig 6b, using Kirchhoff's Laws. [6]

Figure 6b

- c) Calculate the current flowing through 6 Ω (AB) for the circuit shown in question 6b, using Thevenin's Theorem. [8]
- **Q7**) a) Define resistivity of the material & state the factors on which it depends. [3]
 - b) Explain construction and working principle of Lithium Ion battery and state it's any two applications. [6]
 - c) Derive an expression for insulation resistance of a single core cable.

 Draw the necessary diagram. Also comment on insulation resistance when [8]

- i) Two cables are connected in series and
- ii) In parallel

OR

- Q8) a) Write the name of materials used for anode, cathode and electrolyte in case of Lead Acid Battery. State it's any three applications. [3]
 - b) If α_1 and α_2 are the RTC of a conducting material at $t_1^0 \text{C}$ and $t_2^0 \text{C}$ respectively prove that $\alpha_2 = \frac{\alpha_1}{1 + \alpha_1(t_2 t_1)}$ [6]
 - c) A water pump lifts 12000 litre of water to a height of 15 m per minute. The efficiency of motor and pump is 75% & 80% respectively. Calculate [8]
 - i) Input power to motor in kW
 - ii) Daily energy consumption if pump is used 04 hrs a day
 - iii) Monthly electricity bill as per above daily uses for the month of 30 days at the rate of 10 Rs/unit.

