单周期 CPU (Verilog 实现) 实验报告

一、CPU 设计方案综述

(一) 总体设计概述

本 CPU 为 Verilog 实现的单周期MIPS-CPU,支持的指令集包括 {addu,subu,ori,beq,lw,sw,lui,jal,jr,nop} ,为了实现这些功能,CPU 主要包括了 IM,GRF,ALU,EXT,DM,Controller,DM,PC,Decode,MUX。

(二) 关键模块定义

1. GRF

寄存器堆内部核心是 32 个寄存器,本模块包含一个数据写入端口和两个数据输出端口以满足运算。0 号寄存器始终为 0。

表格 1 GRF 模块端口定义

信号名	方向	描述
Clk	I	时钟信号
		复位信号,将 32 个寄存器的值全部清零
Reset	I	1: 复位
		0: 无效
		写使能信号
RegWrite	I	1: 可向 GRF 中写入数据
		0: 不能向 GRF 中写入数据
A1[5:0]	I	5 位地址输入信号,指定 32 个寄存器中的一个,将其中储存的
711[3.0]	1	数据读到 RD1
A2[5:0]	I	5 位地址输入信号,指定 32 个寄存器中的一个,将其中储存的
112[010]		数据读到 RD2
A3[5:0]	I	写寄存器地址
WD[31:0]	I	32 位写入数据
RD1[31:0]	О	输出 A2 指定的寄存器中的 32 位数据 A
RD2[31:0]	О	输出 A3 指定的寄存器中的 32 位数据 B
PC[31:0]	I	PC 值

2. IM

模块的具体定义与功能见下表。

表格 2 IFU 模块端口定义

信号名	方向	描述
toNPC[31:0]	I	当前 PC 地址加 4
Instr[31:0]	О	输出当前要执行的 32 位指令

3. ALU

提供32位加、减、或运算以及比较等功能。

表格 3 ALU 模块端口定义

信号名	方向	描述
Src1[31:0]	I	32 位输入 A
Src2[31:0]	I	32 位输入 B
		控制信号
		000:加
Aluop[2:0]	I	001:减
		010:或运算
		011:(lui)加载到高位
Zero	О	当 Src1 与 Src2 传入数据相等时输出 1,否则为 0
Result[31:0]	0	32 位输出数据

4. EXT

将 16 位立即数扩展为 32 位。

表格 4 EXT 模块端口定义

信号名	方向	描述
Imm[15:0]	I	待扩展 16 位输入
Extop	I	控制信号 0:无符号扩展 1:有符号扩展
Result[31:0]	О	32 位数据输出

5. DM

表格 5 DM 模块端口定义

信号名	方向	描述
MemAddr[5:0]	I	5 位写入地址
Data[31:0]	I	32 位输入数据
Clk	I	时钟信号
Reset	I	(异步) 复位信号
MemWrite	I	写使能信号 1: 可以向 DM 写入数据 0: 无效
RD[31:0]	О	32 位输出数据
PC[31:0]	I	PC 值

6. PC

表格 6 PC 模块端口定义

信号名	方向	描述
NPC[31:0]	I	32 位输入数据
Clk	I	时钟信号
Reset	I	(异步) 复位信号
ToNPC[31:0]	О	32 位输出数据

7. NPC

表格 7 NPC 模块端口定义

信号名	方向	描述
Imm26[25:0]	I	Instr[25:0]
ra[31:0]	I	32 位输入数据
zero	I	beq 判断信号
Npcop	I	NPC 选择信号
Pc_plus_4	О	PC+4
NPC[31:0]	О	32 位输出数据
PC[31:0]	I	PC 值

8. Controller

表格 8 Controller 模块端口定义

信号名	方向	描述
Op[5:0]	I	Instr[31:26]
Func[5:0]	I	Instr[5:0]
RegWrite	O	写使能信号 1:可向 GRF 中写入数据 0:不能向 GRF 中写入数据
ALUop[2:0]	O	控制信号 000:加 001:减 010:或运算 011:比较运算 100:取决于 func
RegDst	O	RW 选择信号 0: GRF 写入的寄存器地址为(Instr[16:20]) 1: GRF 写入的寄存器地址为(Instr[25:21])
ALUsrc	О	ALUsrcB 输入选择信号 0: SrcB 输入来自 GRF 的 RD2 输出 1: SrcB 输入来自 16 位 imm 扩展后的 32 位数
Extop	О	EXT 扩展类型选择信号 0: 无符号扩展 1: 有符号扩展
MemWrite	О	写使能信号 1: 可以向 DM 写入数据 0: 无效
MemtoReg	О	DM 读出控制信号、GRF 写入选择信号 0: GRF 的 WD 写入数据为 ALU_result, DM 输出使能无效 1: GRF 的 WD 写入数据为从 DM 输出 RD
NPCop[1:0]	О	IM 地址更新选择信号 0: PC <= PC + 4 1: beq 指令, PC <= PC + 4 + sign_extend(offset 00)
Lui_if	О	判断是否为 lui

9. Decode

表格 9 Decode 模块端口定义

		THE STATE OF THE S
信号名	方向	描述
Instr[31:0]	I	32 位输入数据
Op[5:0]	О	Instr[31:26]
Func[5:0]	О	Instr[5:0]

Rs[4:0]	О	Instr[25:21]
Rt[4:0]	О	Instr[20:16]
Rd[4:0]	О	Instr[15:11]
Imm16[15:0]	О	Instr[15:0]
Imm26[26:0]	О	Instr[26:0]

10. MUX_A3

表格 10 MUX_A3 模块端口定义

信号名	方向	描述
rt[4:0]	I	Insts[20:16]
rd[4:0]	I	Instr[15:11]
RegDst	I	选择信号
A3[4:0]	О	5 位地址

11. MUX_lui

表格 11 MUX lui 模块端口定义

信号名	方向	描述
ALU_result[31:0]	I	32 位 ALU 结果输入
Sel_lui[31:0]	I	32 位 lui 输入
Lui_if	I	选择信号
Out[31:0]	О	32 位输出信号

12. MUX_WD

表格 12 MUX_WD 模块端口定义

信号名	方向	描述
ALU_out[31:0]	I	32 位 ALU 结果输入
Mem_out[31:0]	I	32 位 lui 输入
MemtpReg[1:0]	I	选择信号
Pc_plus_4	I	Pc+4
WD_in[31:0]	О	32 位输出信号

13. MUX ALU

表格 13 MUX ALU 模块端口定义

信号名	方向	描述
RD2[31:0]	I	32 位 RD2 输入
EXT_out[31:0]	I	32 位 EXT 输入
ALUSrc	I	选择信号
srcB[31:0]	О	32 位输出信号

二、CPU 测试

1. ori 测试

MIPS:

.text

ori \$t0, \$zero, 123

ori \$t1, \$t0, 246

机器码:

3408007b

350900f6

实际输出:

@00003000: \$ 8 <= 0000007b @00003004: \$ 9 <= 000000ff

2. 综合测试

MIPS:

.text

ori \$t0, \$t0, 123

addu \$t1, \$t1, \$t0

subu \$t2, \$t1, \$t0

beq \$t2, \$zero, if

addu \$t3, \$t1, \$t1

if:

addu \$t3, \$t2, \$t2

机器码:

3508007b

01284821

01285023

11400001

01295821

014a5821

实际输出:

@00003000: \$ 8 <= 0000007b @00003004: \$ 9 <= 0000007b @00003008: \$10 <= 00000000 @00003014: \$11 <= 00000000

3. 综合测试

MIPS:
.text
ori \$t0, \$t0, 123
addu \$t1, \$t1, \$t0
subu \$t2, \$t1, \$t0
jal if
beq \$t2, \$zero, end
addu \$t3, \$t1, \$t1
if:
addu \$t3, \$t1, \$t2
jr \$31
end:
机器码:
3508007b
01284821

0c000c06 11400003 01295821 012a5821

01285023

03e00008

→ n- +v .ı.

实际输出:

@00003000: \$ 8 <= 0000007b @00003004: \$ 9 <= 0000007b @00003008: \$10 <= 00000000 @0000300c: \$31 <= 00003010 @00003018: \$11 <= 0000007b

4. Lw+sw 测试

MIPS:

.text

ori \$t0, \$t0, 123

sw \$t0, 0(\$zero)

lw \$t1, 0(\$zero)

机器码:

3508007b

ac080000 8c090000 实际输出:

@00003000: \$ 8 <= 0000007b

@00003004: *00000000 <= 0000007b

@00003008: \$ 9 <= 0000007b

三、思考题

1、根据你的理解,在下面给出的 DM 的输入示例中,地址信号 addr 位数为什么

是[11:2]而不是[9:0]? 这个 addr 信号又是从哪里来的?

DM 的寻址方式是字节寻址, PC 的变化以 4 为颗粒度,输入的地址应当是 4 的整数倍(,因而在二进制表示中低两位为零)。在本设计中 DM 中的储存单

元定义为 reg [31:0] DataMemory [1023:0];这表明本设计实现时最终对储存单元的寻址以 1 为颗粒度,因此传入的地址需要逻辑右移两位,也即可以只取[11:2]位。在现有指令集中,只有 sw 和 lw 需要 DM 参与,其指令分别为://sw

DM[MemWriteAddr] GRF Reg[rt],

MemWriteAddr GRF Reg[rs]+sign ext(Imm16)

(DM[GRF_Reg[rs] + sign_ext(Imm16)] GRF_Reg[rt])

//lw

GRF Reg[rt] DM[MemReadAddr],

MemReadAddr GRF Reg[rs]+sign ext(Imm16)

(GRF Reg[rt] DM[GRF Reg[rs] + sign ext(Imm16)])

故地址均从 ALU 的 result 来。

2、在相应的部件中, reset 的优先级比其他控制信号(不包括 clk 信号)都要高, 且相应的设计都是同步复位。清零信号 reset 是针对哪些部件进行清零复位操 作?

这些部件为什么需要清零?

Reset 信号是针对寄存器堆、指令储存器、数据储存器这三个部件的。原因是这三个部件存放的数据有储存性,声明周期甚至可以比当前运行程序还要长。想要达到清零效果,就必须对三个部件同时在某个上升沿清零。3、列举出用 Verilog 语言设计控制器的几种编码方式(至少三种),并给出代码示例。

1) 利用 case 或 if-else 语句,如:

if(Op==6'b0) begin

case(Funct)

6'b100001:addu

.

endcase

end

```
else begin
case(Op)
6'b001101:.....
endcase
end
```

2) 利用宏定义,如:

'define state1 4'b0001

'define state2 4'b0010

'define state3 4'b0100

'define state4 4'b1000

3) assign 语句,如:

assign addu = !op[5] & !op[4] & !op[3] & !op[2] & !op[1]

& !op[0] & func[5] & !func[4] & !func[3] & !func[2]

& !func[1] & func[0];

.

assign RegDst=addu | subu;

······2、根据你所列举的编码方式,说明他们的优缺点。

1) case 语句:

优点:逻辑清晰容易理解,

缺点:容易出现错误,语法的精确掌握并不容易。

2) 宏定义:

优点:易于修改和增加指令,

缺点:代码冗长,而且容易混淆。

3) assign 语句:

优点:代码不容易出现语法和逻辑上的错误,

缺点:有些语句过长,不很清晰。

4、C 语言是一种弱类型程序设计语言。C 语言中不对计算结果溢出进行处理,这意味着 C 语言要求程序员必须很清楚计算结果是否会导致溢出。因此,如果 仅

仅支持 C 语言, MIPS 指令的所有计算指令均可以忽略溢出。请说明为什么在忽

略溢出的前提下, addi 与 addiu 是等价的, add 与 addu 是等价的。提示: 阅 读

《MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set》

中相关指令的 Operation 部分。

addi 与 addiu 是涉及 16 位立即数的假发, add 和 addu 是寄存器之间的加法。这两组中的前者和后者之间差别即为是否考虑溢出。考虑溢出的指令在发生溢出时会报告 Overflow exception(通过是否改变标志位来判断)。

5、根据自己的设计说明单周期处理器的优缺点。

我在设计时使用了分布式译码与独热信号总线传输,使得每个模块可以在内 部产生控制信号,避免了控制信号与实际需求脱节的情况,但是更改控制信号时 要更改所有模块,因此修改起来略显繁琐。