Математический анализ—2

Винер Даниил, Хоранян Нарек

Версия от 19 декабря 2024 г.

Содержание

1	Кратные интегралы. Брусы. Интегрируемые функции по Риману				
	1.1	Брус. Мера бруса			
	1.2	Свойства меры бруса в \mathbb{R}^n	;		
	1.3	Разбиение бруса. Диаметр множества. Масштаб разбиения			
	1.4	Интегральная сумма Римана. Интегрируемость по Риману			
	1.5	Пример константной функции			
	1.6	Неинтегрируемая функция			
	1.7	Вычисление многомерного интеграла			
	1.1	Вычисление многомерного интеграла	-		
2	Свойства кратных интегралов. Условия интегрирования. Лебегова мера				
	2.1	Свойства кратных интегралов	6		
	2.2	Необходимое условие интегрирования	7		
	2.3	Множество меры нуль по Лебегу			
	2.4	Свойства множества меры нуль по Лебегу			
3		ология в \mathbb{R}^n	9		
	3.1	Критерий замкнутости	10		
4	Kor	мпакты в \mathbb{R}^n	11		
-	4.1	Замкнутый брус — компакт			
	4.2	Критерий компактности			
5	Теорема Вейерштрасса о непрерывной функции на компакте. Колебания функции 1				
	5.1	Теорема Вейерштрасса о непрерывной функции на компакте			
	5.2	Расстояние между двумя множествами	13		
	5.3	Расстояние между непересекающимися компактами	13		
	5.4	Колебание функции на множестве	14		
	5.5	Колебание функции в точке	14		
	5.6	Колебание функции, непрерывной в точке	14		
	5.7	Пересечение разбиений бруса	14		
	5.8	Критерий Лебега об интегрируемости функции по Риману	15		
	5.9	Измельчение разбиения	16		
6			-1.5		
	•	ммы Дарбу	17		
	6.1	Нижняя и верхняя суммы Дарбу			
	6.2	Нижняя сумма Дарбу не больше верхней			
	6.3	Монотонность сумм относительно измельчений разбиения			
	6.4	Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе			
	6.5	Верхние и нижние интегралы Дарбу			
	6.6	Интеграл Дарбу как предел сумм Дарбу	18		
7	Kni	итерий Дарбу. Теорема Фубини	19		
•	7.1	Критерий Дарбу интегрируемости функции по Риману	19		
	7.2	Интегрирование по допустимым множествам			
	7.3	Теорема Фубини			
		r	(

8	Замена переменных в кратном интеграле. Функциональные последовательности—1		
	8.1	Теорема о замене переменных в кратном интеграле	21
	8.2	Функциональные последовательности	21
	8.3	Примеры функциональных последовательностей	21
	8.4	Супремальный критерий	22
9	Фун	нкциональные последовательности—2	23
	9.1	Критерий Коши равномерной сходимости функциональной последовательности	23
	9.2	Теорема о почленном переходе к пределу	23
	9.3	Теорема о непрерывности предельной функции	24
	9.4	Условие №1 о неравномерной сходимости — разрыв точки	25
10	Hep	равномерная сходимость, интегрирование, дифференцирование функциональных	
		ледовательностей	2 6
		Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке	26
		Теорема о почленном интегрировании функциональной последовательности	26
	10.3	Теорема о почленном дифференцировании функциональной последовательности	27
11	Фун	нкциональные ряды—1	30
	11.1	Критерий Коши равномерной сходимости функционального ряда	30
	11.2	Необходимое условие равномерной сходимости функционального ряда	30
	11.3	Признак сравнения	30
	11.4	Мажорантный признак Вейерштрасса о равномерной сходимости функционального ряда	31
	11.5	Преобразование Абеля	31
	11.6	Признак Дирихле	32
12		нкциональные ряды—2. Степенные ряды—1	33
	12.1	Признак Абеля	33
	12.2	Теорема о почленном переходе к пределу	33
		Теорема о непрерывности равномерно сходящегося ряда	34
	12.4	Теорема о почленном интегрировании	34
	12.5	Теорема о почленном дифференцировании	35
		Степенные ряды	35
	12.7	Радикальный признак Коши	35
	12.8	Теорема Коши-Адамара	35
13	Сте	епенные ряды—2	37
	13.1	Теорема о равномерной сходимости степенного ряда	37
	13.2	Теорема о непрерывности суммы степенного ряда	37
	13.3	Теорема о почленном интегрировании степенного ряда	37
		Теорема о почленном дифференцировании степенного ряда	38
		Разпожение функции в степенной рал	38

1 Кратные интегралы. Брусы. Интегрируемые функции по Риману

1.1 Брус. Мера бруса

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \leqslant x_i \leqslant q_i, \ i \in \{1, n\}\}\$$

= $[a_1, b_1] \times \ldots \times [a_n, b_n]$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{a_i, b_i\}$ может быть отрезком, интервалом и т.д. Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.2 Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\ I_i,I_j$ не имеют общих внтренних точек, и $\bigcup_{i=1}^k I_i=I$, то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset \bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

1.3 Разбиение бруса. Диаметр множества. Масштаб разбиения

Определение. I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек. Тогда набор $\mathbb{T} = \{\mathbb{T}\}_{i=1}^k$ называется разбиением бруса I

Определение. Диаметр произвольного ограниченного множества $M\subset\mathbb{R}^n$ будем называть

$$d(M) = \sup_{1 \leqslant i \leqslant k} \|x - y\|,$$
 где
$$\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}d(I_i)$

Определение. Пусть $\forall \ I_i$ выбрана точка $\xi_i \in I_i$. Тогда, набор $\xi = \{\xi_i\}_{i=1}^k$ будем называть **отмеченными точками**

3

Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

1.4 Интегральная сумма Римана. Интегрируемость по Риману

Пусть I — невырожденный, замкнутый брус, функция $f: I \to \mathbb{R}$ определена на I Определение. Интегральная сумма Римана функции f на (\mathbb{T}, ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Определение. Функция f интегрируема (по Риману) на замкнутом брусе I ($f: I \to \mathbb{R}$), если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \,\exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta : \\ |\sigma(f, \mathbb{T}, \xi)| - A| < \varepsilon$$

Тогда

$$A = \int_{I} f(x) dx = \int \dots \int_{I} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Обозначение: $f \in \mathcal{R}(I)$

1.5 Пример константной функции

Пуусть у нас есть функция f = const

$$\forall (\mathbb{T}, \xi) : \ \sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{k} \operatorname{const} \cdot |I_{i}|$$
$$= \operatorname{const} \cdot |I| \Longrightarrow \int_{I} f(x) dx = \operatorname{const} \cdot |I|$$

1.6 Неинтегрируемая функция

Имеется брус $I = [0,1]^n$, а также определена функция, такая что

$$f = \begin{cases} 1, & \forall i = \overline{1, \dots, n} \ x_i \in \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$$

Доказательство. $\forall \mathbb{T}$ можно выбрать $\xi_i \in \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \overline{\xi})$:

$$\sigma(f, \mathbb{T}, \overline{\xi}) = \sum_{i=1}^{k} 1 \cdot |I_i| = |I| = 1$$

В то же время, $\forall \mathbb{T}$ можно выбрать $\xi_i \notin \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \hat{\xi})$:

$$\sigma(f, \mathbb{T}, \hat{\xi}) = \sum_{i=1}^{k} 0 \cdot |I_i| = 0 \Longrightarrow f \notin \mathcal{R}(I)$$

1.7 Вычисление многомерного интеграла

Вычислите интеграл

$$\iint_{\substack{0 \leqslant x \leqslant 1 \\ 0 \leqslant y \leqslant 1}} xy \mathrm{d}x \mathrm{d}y$$

рассматривая его как представление интегральной суммы при сеточном разбиении квадрата

$$I = [0, 1] \times [0, 1]$$

на ячейки — квадраты со сторонами, длины которых равны $\frac{1}{n}$, выбирая в качестве точек ξ_i верхние правые вершины ячеек

Имеется функция
$$f=xy, \ |I|=rac{1}{n^2}$$

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n^2}$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} \sum_{j=1}^{n} i \cdot j$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} i \sum_{j=1}^{n} j$$

$$= \frac{n(n+1)}{n^4} \sum_{i=1}^{n} i$$

$$= \frac{n^2(n+1)^2}{4n^4}$$

Заметим, что
$$\lim_{n\to\infty}\frac{n^2(n+1)^2}{4n^4}=\frac{1}{4}$$

2 Свойства кратных интегралов. Условия интегрирования. Лебегова мера

2.1 Свойства кратных интегралов

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

(a)

$$f \in \mathcal{R}(I): \quad \forall \varepsilon > 0 \,\exists \delta_1 > 0 \,\, \forall (\mathbb{T}, \Xi) \colon \Delta_{\mathbb{T}} < \delta_1$$

$$|\sigma(f, \mathbb{T}, \Xi) - \int_I f \, \mathrm{d}x| =: |\sigma_f - A_f| < \varepsilon$$

(b) По определению:

$$\begin{split} g \in \mathcal{R}(I): \quad \forall \varepsilon > 0 \, \exists \delta_2 > 0 \, \, \forall (\mathbb{T},\Xi) \colon \Delta_{\mathbb{T}} < \delta_2 \\ |\sigma(g,\mathbb{T},\Xi) - \int_I g \mathrm{d}x| =: |\sigma_g - A_g| < \varepsilon \end{split}$$

(c) Пусть $\delta = \min\{\delta_1, \delta_2\}$. Тогда (a) и (b) верно для $\delta \Longrightarrow$

$$|\sigma_{\alpha f + \beta g} - A_{\alpha f + \beta g}| = |\alpha \sigma_f + \beta \sigma_g - \alpha A_f - \beta A_g| \leq |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \varepsilon$$

2. Монотонность

$$f, g \in \mathcal{R}(I); \ f|_{I} \leqslant g|_{I} \implies \int_{I} f dx \leqslant \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} : |\sigma_f - A_f| < \varepsilon \, (\forall \, \varepsilon > 0 \, \, \exists \delta : \forall (\mathbb{T}, \Xi) : \Delta_{\mathbb{T}} < \delta)$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_q < A_q + \varepsilon \implies A_f < A_q + 2\varepsilon \ \forall \varepsilon > 0 \implies A_f \leqslant A_q$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f$$
 Ограничена на I
$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$\begin{split} -\int_{I} \sup |f| \mathrm{d}x &\leqslant \int_{I} f \mathrm{d}x &\leqslant \int_{I} \sup |f| dx \\ -\sup_{I} |f| |I| &\leqslant \int_{I} f \mathrm{d}x &\leqslant \sup_{I} |f| |I| \end{split}$$

2.2 Необходимое условие интегрирования.

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. Пусть $f \in \mathcal{R}(I)$, тогда

$$\exists \underbrace{A_f}_{\text{конечное}} \in \mathbb{R} : \forall \, \varepsilon > 0 \, \exists \delta > 0 : \forall (\mathbb{T},\Xi) : \Delta_{\mathbb{T}} < \delta \colon |\sigma_f - A_f| < \varepsilon$$

Значит, для $\varepsilon = 1$ это тоже верно, поэтому:

$$A_f - 1 < \sigma_f < A_f + 1 \implies \sigma_f$$
 — ограничена

2. Пусть f — неограничена на I, но $f \in \mathcal{R}(I) \implies \forall \mathbb{T} = \{I_i\}_{i=1}^K \ \exists i_0 : f$ неограничена на I_{i_0} . Тогда можно представить так:

$$\sigma_f = \sum_{i \neq i_0} f(\xi_i) |I_i| + f(\xi_{i_0}) |I_{i_0}|$$

Тогда, σ_f может принимать любые сколь угодно большие (малые) значения, в зависимости от $I_{i_o} \Longrightarrow$ противоречие

Из пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.3 Множество меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть множеством меры 0 по Лебегу, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

1.
$$M \subset \bigcup_i I_i$$

$$2. \sum_{i} |I_i| < \varepsilon \ \forall \varepsilon < 0$$

Пример: $x_0 \in \mathbb{R}^n$ — множество меры нуль по Лебегу в \mathbb{R}^n

Доказательство. Пусть $x_0 = (x_{01}, \dots, x_{0n})$. Покроем точку замкнутым брусом, причем

$$I = [x_{01} - d, x_{01} + d] \times \ldots \times [x_{0n} - d, x_{0n} + d]$$

$$\forall \varepsilon > 0 \ \exists I : |I| = (2d)^n < \varepsilon \implies d < \frac{\sqrt[n]{\varepsilon}}{2}$$

Значит, точка является множеством меры нуль по Лебегу

2.4 Свойства множества меры нуль по Лебегу

1. В определении множества меры 0 можно использовать открытые брусы

Доказательство. Пусть $\{I_i\}$ — открытые брусы $M\subset\bigcup_i I_i$, то есть $M\subset\mathbb{R}^n$ — множество меры 0 по Лебегу

Пусть $\{\bar{I}_i\}$ — замкнутые брусы I_i .

$$M \subset \bigcup_{i} I_{i} \subset \bigcup_{i} \bar{I}_{i}, |I_{i}| = |\bar{I}_{i}|$$

Если

$$\forall \varepsilon \; \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

то

$$\forall \, \varepsilon \,\, \exists \{\bar{I}_i\} : M \subset \bigcup_i \bar{I}_i : \sum_i |\bar{I}_i| < \varepsilon$$

Докажем в обратную сторону. Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_1^i, b_1^i] \times \ldots \times [a_n^i, b_n^i], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Пусть

$$D_{i} = \left(\frac{a_{1}^{i} + b_{1}^{i}}{2} - (b_{1}^{i} - a_{1}^{i}); \frac{a_{1}^{i} + b_{1}^{i}}{2} + (b_{1}^{i} - a_{1}^{i})\right) \times \dots \times \left(\frac{a_{n}^{i} + b_{n}^{i}}{2} - (b_{n}^{i} - a_{n}^{i}); \frac{a_{n}^{i} + b_{n}^{i}}{2} + (b_{n}^{i} - a_{n}^{i})\right)$$

$$\implies V_{2} = \sum_{i} |D_{i}| = 2^{n} V_{1} < \varepsilon$$

2. M — множество меры нуль, $L \subset M \Longrightarrow L$ — множество меры нуль Доказательство. $L \subset M$ и $\forall \varepsilon > 0 \exists$ не более чем счетное $\{I_i\}$:

$$L\subset M\subset \bigcup_i I_i$$
 и $\sum |I+i|$

по транзитивности это верно и для L

3. Не более чем счетное объединение множеств меры нуль — множество меры нуль Доказательство. Пусть $\{M_k\}_{k=1}^{\infty}$ — счетное, ¹ так как $\forall i \ M_k$ — множество меры нуль, то $\forall i, \forall \varepsilon_i \exists$ не более чем счетное $\{I_i^k\}$:

$$M_k\subset I_i^k$$
 и $\sum |I_i^k|0$

Рассмотрим $M = \bigcup_{k=1}^{\infty} M_k$, тогда $M \subset \bigcup_{i,k} I_i^k$ и

$$\sum_{i,k} \underbrace{|I_i^k|}_{>0} < \sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} = \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{\frac{1}{2}} = \varepsilon$$

• Пример. Пусть $\{M_i\}_{i=1}^N$ — конечный набор

$$\varepsilon_1 + \dots + \varepsilon_N = \frac{N}{N+1} \varepsilon < \varepsilon$$

$$\varepsilon_i = \frac{\varepsilon}{N+1}$$

 $^{^{1}}$ Для конечного доказательство трививально

3 Топология в \mathbb{R}^n

Определение. Пусть имеется $M \subset \mathbb{R}^n$. Точку $x_0 \in M$ будем называть *внутренней* точкой M, если

$$\exists \, \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$$

Определение. Точку $x_0 \in M$ будем называть *внешней* точкой M, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset (\mathbb{R}^n \setminus M)$$

Пример. M = [0; 1). тогда

$$\begin{cases} x = 0.5 & -\text{ внутренняя} \\ x = 0 & -\text{ не внутренняя} \\ x = 2 & -\text{ внешняя} \end{cases}$$

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *граничной* точкой M, если

$$\forall \varepsilon > 0 : (B_{\varepsilon}(x_0) \cap M) \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$$

Обозначение. ∂M — множетсво всех граничных точек M

Пример. $M = [0;1) \Longrightarrow x = 0;1$ — граничные

Определение. Точку $x_0 \in M$ будем называть *изолированной* точкой M, если

$$\exists \varepsilon > 0 : \mathring{B_{\varepsilon}}(x_0) \cap M = \emptyset$$

Пример. $M = [0;1] \cup \{3\} \Longrightarrow x = 3$ — изолированная

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть npedenьной точкой M, если

$$\forall \, \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$$

Примечание. Из определения следует, что изолированные точки не являются предельными

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть точкой прикосновения M, если

$$\forall \varepsilon > 0: B_{\varepsilon}(x_0) \cap M \neq \emptyset$$

Примечание. Точки прикосновения = изолированные точки ⊕ предельные точки

Определение. Множество всех точек прикосновения M называется $\mathit{замыканием}\ M$ и обозначается как \overline{M}

Пример. $M = (0;1) \cup (1;2] \Longrightarrow \overline{M} = [0;2]$

Пример.
$$M = \{x \in [0;1] : x \in \mathbb{Q}\} \Longrightarrow \overline{M} = [0;1]$$

Определение. Множество $M \subset \mathbb{R}^n$ называется *открытым*, если все его точки внутренние

Определение. Множество $M \subset R^n$ называется замкнутым, если $\mathbb{R}^n \setminus M$ — открыто

Пример.
$$\begin{cases} (0;1) & -\text{ открыто в } \mathbb{R} \\ [0;1] & -\text{ замкнуто, т.к. } (-\infty;0) \cup (1;+\infty) \text{ открыто в } \mathbb{R} \\ [0;1) & -\text{ ни открыто, ни замкнуто в } \mathbb{R} \end{cases}$$

Определение. Множество $K \subset \mathbb{R}^n$ называется *компактом*, если из \forall его покрытия открытыми множествами можно выделить конечное подпокрытие

Примечание. Если хотя бы для какого-то покрытия это не выполняется, то K — не компакт

Пример. Пусть
$$M=(0,1)$$
 покроем $\left\{A_n=\left(0;1-\frac{1}{n}\right)\right\}_{n=1}^{\infty}$

При
$$n \to \infty$$
 $M \subset \bigcup_{n=1}^\infty A_n$, но \forall фиксированного N : $M \not\subset \bigcup_{n=1}^\infty \Longrightarrow$ не компакт

Определение. Множество $M \subset \mathbb{R}^n$ — называется *ограниченным*, если

$$\exists x_0 \in \mathbb{R}^n$$
 и $\exists r > 0$, такой что $M \subset B_r(x_0)$

3.1 Критерий замкнутости

Теорема. M — замкнуто $\Longleftrightarrow M$ содержит все свои предельные точки

Доказательство. Докажем необходимость и достаточность

- 1. (Необходимость) Докажем \Longrightarrow от противного
 - Пусть x_0 предельная для M и $x_0 \notin M$. Тогда, $\forall \varepsilon > 0$ $\stackrel{\circ}{B_{\varepsilon}}(x_0) \cap M \neq \varnothing$ и $x_0 \in \mathbb{R}^n$
 - По условию M замкнуто, то есть $\mathbb{R}^n \setminus M$ открыто \Longrightarrow все его точки внутренние и $\exists r>0$:

$$B_r(x_0)\subset \mathbb{R}^n\setminus M\Longrightarrow B_r(x_0)\subset \mathbb{R}^n\setminus M$$
 и $\stackrel{\circ}{B_r}(x_0)\cap M=\varnothing$

Пришли к противоречию $\Longrightarrow M$ содержит все свои предельные точки

2. (Достаточность) Докажем \Leftarrow

Пусть y_0 — не является предельной для M, то есть $y_0 \in \mathbb{R}^n \setminus M \Longrightarrow \exists r > 0$:

$$\begin{cases} \overset{\circ}{B_r}(y_0) \cap M = \varnothing \\ y_0 \in \mathbb{R}^n \setminus M \end{cases} \Longrightarrow B_r(y_0) \subset \mathbb{R}^n \setminus M$$

 $\Longrightarrow \mathbb{R}^n \,\backslash M$ — открытое и состоит из всех точек, не являющихся предельными $\Longrightarrow M$ — замкнуто по определению

Kомпакты в \mathbb{R}^n 4

Замкнутый брус — компакт 4.1

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

Доказательство. Пойдем от противного

Пусть
$$I = [a_1; b_1] \times \ldots \times [a_n; b_n]$$

- 1. Положим, что I не компакт. Значит, существует его покрытие $\{A_{\alpha}\}$ открытые множества, такие что $I \subset \{A_{\alpha}\}$, не допускающее выделения конечного подклорытия
- 2. Поделим каждую сторону пополам. Тогда, $\exists I_1$, такой что не допускает конечного подпокрытия. Иначе, I — компакт
- 3. Аналогично, повторим процесс и получим систему вложенных брусов:

$$I\supset I_1\supset I_2\supset\ldots$$

То есть на каждой стороне возникает последовательность вложенных отрезков, которые стягиваются в точку $a = (a_1, ..., a_n)$

При этом,
$$a \in I_i \ \forall i$$
 или $a \in \bigcap_{i=1}^{\infty} I_i$

При этом,
$$a \in I_i \ \forall i$$
 или $a \in \bigcap_{i=1}^{\infty} I_i$

4. $a \in I \Longrightarrow a \in \bigcup A_{\alpha} \Longrightarrow \exists \alpha_0 : a \in \underbrace{A_{\alpha_0}}_{\text{открытое}} \Longrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(a) \subset A_{\alpha_0}$

5. Мы знаем, что $d(I_i) \mapsto 0$ при $i \mapsto \infty$. Тогда,

$$\exists N : \forall i > N \ I_i \subset B_{\varepsilon}(a) \subset A_{\alpha_0}$$

Получается, что $\forall i > N$ I_i покрывается одним лишь A_{α_0} из системы $\{A_{\alpha}\}$

Получаем противоречие тому, что любое I_i не допускает конечного подпокрытия, а у нас получилось, что $I_i \in A_{\alpha_0} \forall i > N$

Примечание. Любое ограниченное множество можно вписать в замкнутый брус. Потому что можно вокруг него описать шарик, который точно можно вписать в брус

4.2 Критерий компактности

Теорема. $K \subset \mathbb{R}^n$. K — компакт $\iff K$ замкнуто и ограниченно

Доказательство. Докажем необходимость (\Longrightarrow)

- *Ограниченность*. K компакт, значит монжо выбрать покрытие $\{B_m(0)\}_{m=1}^{\infty}$ открытые шары Тогда, $\exists m_0: K\subset \bigcup_{m=1}^{m_0}B_m(0)\Longrightarrow K\subset B_{m_0}(0)\Longrightarrow$ по определению K — ограничено
- Замкнутость. Пойдем от противного. K компакт, тогда возьмем $\{B_{\frac{\delta(x)}{2}}(0)\}_{x\in K}$ покрытие открытыми шарами, где $\delta(x) = \rho(x, x_0)$. x_0 — предельная точка, которая $\notin K$ (или же $\in \mathbb{R}^n \setminus K$)

Так как
$$K$$
 — компакт, $\exists x_1,\ldots,x_s:K\subset\bigcup_{i=1}^s B_{\frac{\delta(x_i)}{2}}(x_i)$

Пусть $\delta = \min_{1 \le i \le s} \delta(x_i)$, тогда

$$B_{\frac{\delta}{2}}(x_0) \cap \bigcup_{i=1}^{s} B_{\frac{\delta(x_i)}{2}}(x_i) = \varnothing \Longrightarrow B_{\frac{\delta}{2}}(x_0) \subset \mathbb{R}^n \setminus K$$
$$\Longrightarrow \mathring{B}_{\frac{\delta}{2}}(x_0) \cap K = \varnothing$$

Значит, x_0 не является предельной точкой K, что противоречит нашему предположению

Доказательство. Докажем достаточность

K- замкнуто и ограничено $\Longrightarrow r>0: B_r(0)\supset K\Longrightarrow \exists I-$ замкнутый брус, такой что

$$K\subset I$$
 и $I=[-r;r]^n\supset K$

Пусть A_{α} — произвольное покрытие открытыми множествами для K. Тогда, $I \subset \{A_{\alpha}\} \cup \underbrace{\{\mathbb{R}^n \setminus K\}}_{\text{открыто}}$. Так как I — компакт, то \exists конечное подпокрытие

$$\{A_{lpha_i}\}_{i=1}^m \cup \{\mathbb{R}^n \setminus K\} \supset I \supset K$$
 — покрытие для I

Значит, $K\subset \{A_{\alpha_i}\}_{i=1}^m$ — конечное и $\{A_{\alpha}\}$ — произвольное, тогда K — компакт по определению — \square

5 Теорема Вейерштрасса о непрерывной функции на компакте. Колебания функции

5.1 Теорема Вейерштрасса о непрерывной функции на компакте

Теорема. Пусть $K \in \mathbb{R}^n$ — компакт и функция $f: K \mapsto \mathbb{R}$ - непрерывная. Тогда f на K достигает наибольшее и наименьшее значения.

Доказательство.

• Ограниченность. От противного: пусть существует последовательность $\{x^k\} \subset K: |f(x^k)| > k$. Из ограниченности K следует ограниченность последовательности $\{x^k\}$, и как следствие ограничены последовательности отдельных коордиант:

$$|x_i^k| = \sqrt{\sum_{i=1}^n |x_i^k|} = ||x^k|| \leq C$$
 для некоторого C

По теореме Больцано-Вейерштрасса у $\{x_1^k\}$ существует сходящаяся подпоследовательность $x_1^{k_{j_1}} \to a_1, j_1 \to \infty$. Для последовательности $\{x_2^{k_{j_1}}\}$ существует сходящаяся последовательность $x_2^{k_{j_2}} \to a_2, j_2 \to \infty$. И т.д. Получаем сходящуюся подпоследовательность:

$$x^{k_j} = (x_1^{k_j}, x_2^{k_j}, \dots, x_n^{k_j}) \to (a_1, a_2, \dots, a_n) = a$$

Точка a — предельная для K. В силу замкнутости K т. $a \in K$. А из непрерывности функции f получаем $f(x^{k_j}) \to f(a)$. А с другой стороны, $f(x^{k_j}) \to \infty$ из выбора исходной последовательности. **противоречие**

• Достижение наибольшего (наименьшего) значения. Итак, мы доказали, что f — ограничена на K. Выберем последовательность $\{x^k\}$:

$$\sup_{K} f - \frac{1}{k_j} \le f(x^{k_j}) \le \sup_{K} f$$

в силу непрерывности f:

$$\sup_{K} f \le f(a) \le \sup_{K} f$$

Получаем $f(a) = \sup_K f$, т.е. максимальное значение достиигается в точке x = a. Для $\inf_K f$ доказательство аналогично

5.2 Расстояние между двумя множествами

Определение. Расстоянием между двумя множествами X и Y, где $X,Y \subset \mathbb{R}^n$ будем называть число $\rho(X,Y)$:

$$\rho(X,Y) = \inf_{\substack{x \in X \\ y \in Y}} ||x - y||$$

Примеры:

1. $X \cap Y \neq \emptyset \implies \rho(X,Y) = 0$

2.
$$\rho(X,Y)=0 \implies X\cap Y\neq\varnothing$$
? — нет, пример: $X=(0,1); (Y=(1;2)$ - не компакты

5.3 Расстояние между непересекающимися компактами

Теорема. Если $K_1,K_2\subset\mathbb{R}^n$ — компакты и $K_1\cap K_2=\varnothing$, то $\rho(K_1,K_2)>0$

Доказательство. Функция f(x,y) = ||x-y|| определена на $K_1 \times K_2 \subset \mathbb{R}^n \times \mathbb{R}^n = \mathbb{R}^{2n}$, причем f-непрерывная функция.

По теореме Вейерштрасса эта функция достигает своего максимального и минимального значений. Т.е. существуют $x_0 \in K_1, y_0 \in K_1 : f(x_0, y_0) = \rho(K_1, K_2)$. А $f(x_0, y_0) = 0$ тогда и только тогда, когда $x_0 = y_0$.

Колебание функции на множестве

Определение. Колебанием функции f на множестве $M \subset \mathbb{R}^n$ будем называть число $\omega(f, M)$:

$$\omega(f,M) = \sup_{x,y \in M} |f(x) - f(y)| = \sup_{x \in M} - \inf_{y \in M} f(y)$$

Колебание функции в точке

Определение. Колебанием функции f в точке $x_0 \in M \subset \mathbb{R}^n$ будем называть число

$$\omega(f,x_0) := \lim_{r \to 0+} \omega(f,B^M_r(x_0)), \quad$$
где $B^M_r = B_r(x_0) \cap M$

Напоминание: По определению, функция $f: M \to \mathbb{R}$ непрерывна в точке $x_o \in M$, если $\forall \varepsilon > 0 \ \exists \delta >$ $0: \forall x \in M \quad |x-x_0| < \delta \iff x \in B_\delta(x_0) \cap M$ верно $|f(x)-f(x_0)| < \varepsilon$

Колебание функции, непрерывной в точке

Теорема. Пусть $x_0 \in M \subset \mathbb{R}^n$; $f: M \mapsto \mathbb{R}$. f — непрерывна в точке $x_0 \iff \omega(f, x_0) = 0$ Доказательство.

• Необходимость

$$f$$
 — непрерывна в т. $x_0 \in M \implies \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in B_\delta(x_0) \cap M = B_\delta^M(x_0) \implies |f(x) - f(x_0)| < \frac{\varepsilon}{3}$

Рассмотрим $\omega(f, x_0) := \lim_{\delta \to 0+} \omega(f, B_\delta^M(x_0))$:

$$\omega(f, B_{\delta}^{M}(x_{0})) = \sup_{x, y \in B_{\delta}(x_{0})} |f(x) - f(y)| \le \sup_{x \in B_{\delta}(x_{0})} |f(x) - f(x_{0})| + \sup_{y \in B_{\delta}(x_{0})} |f(y) - f(x_{0})| \le \frac{2\varepsilon}{3} < \varepsilon$$

При
$$\varepsilon \to 0 \implies \delta \to 0$$
 и $\omega(f, B^M_{\delta}(x_0)) \to 0$, т.е. $\omega(f, x_0) = 0$

• Достаточность

Пусть
$$0 = \omega(f, x_0) := \lim_{\delta \to 0+} \omega(f, B_{\delta}^M(x_0))$$
, т.е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad \forall x, y \in B_{\delta}^{M}(x_{0}) \quad \sup_{x, y \in B_{\delta}^{M}(x_{0})} |f(x) - f(y)| < \varepsilon$$

Получаем, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_{\delta}^{M}(x_{0}) \implies |f(x) - f(x_{0})| < \varepsilon \implies$$

Определение. Если какое-то свойство не выполняется лишь на множестве меры нуль, то говорят, что это свойство выполняется почти всюду.

Пример:
$$f(x) = \begin{cases} 1, x \in \mathbb{R} \setminus \mathbb{Z} \\ 0, x \in \mathbb{Z} \end{cases}$$
 — непрерывна почти всюду на \mathbb{R}

Пересечение разбиений бруса

Определение. Пусть $\mathbb{T}_1=\{I_k^1\}$ и $\mathbb{T}_2=\{I_m^2\}$ — два разбиения бруса $I\subset\mathbb{R}^n.$

Определение. Пусть
$$\mathbb{T}_1 = \{I_k^*\}$$
 и $\mathbb{T}_2 = \{I_m^*\}$ — два разбиения бруса $I \subset \mathbb{R}^n$. Пересечением разбиений $(\mathbb{T}_1 \cap \mathbb{T}_2)$ будем называть мн-во всех брусов $\{I_{ij}\}: \forall I_{ij} \begin{cases} 1) \exists k: I_{ij} \in \{I_k^1\} \\ 2) \exists m: I_{ij} \in \{I_m^2\} \\ 3) \{I_{ij}\}$ — разбиение бруса I

5.8 Критерий Лебега об интегрируемости функции по Риману

Теорема. Если $I\subset\mathbb{R}^n$ — замкнутый невырожденный брус, $f:I\to\mathbb{R}$, то $f\in R(I)\iff f$ ограничена и непрерывна почти всюду на I

Доказательство.

• Необходимость

Если f интегрируема, то она ограничена по необходимому условию интегрируемости. Осталось показать, что множества разрыва меры нуль. От противного: пусть это не так.

Обозначим множество всех точек разрыва ф-ии f на I за T и заметим, что $T = \bigcup_{k \in \mathbb{N}} T_k$, где

 $T_k = \{x \in I | \omega(f, x) \ge \frac{1}{k}\}$. Если T не меры нуль, то существует T_{k_0} не меры нуль (если они все меры нуль, то по свойству множеств меры нуль счетное объединение таких множеств тоже было бы меры нуль).

Для произвольного разбиения $\mathbb{T}=\{I_i\}_{i=1}^m$ бруска I разобъем эти бруски на две кучи: первая $A=\{I_i|I_i\cap T_{k_0}\neq\varnothing,\omega(f,I_i)\geq\frac{1}{2k_0}\}$ и вторая $B=\mathbb{T}\backslash A$. Покажем что A является покрытием множества T_{k_0} , т.е. $T_{k_0}\subset\bigcup_{i:I_i\in A}I_i$ любая точка $x\in T_{k_0}$ является либо

- а) внутренней для некоторого бруска I_i . В этом случае $\omega(f,I_i) \geq \omega(f,x) \geq \frac{1}{k_0} > \frac{1}{2k_0}$, т.е. $I_i \in A$, либо
- b) точка x лежит на границе некоторого количества брусков (не более чем 2^n штук). Тогда хотя бы на одном из них колебание $\omega(f,I_i)\geq \frac{1}{2k_0}$ (т.е. $I_i\in A$): если бы такого не нашлось, то в любой малой окрестности $B_{\varepsilon}(x)$ выполняется следующее:

$$\omega(f,x) \le \sup_{x',x'' \in B_{\varepsilon}(x)} |f(x') - f(x'')| \le \sup_{x' \in B_{\varepsilon}(x)} |f(x') - f(x)| + \sup_{x'' \in B_{\varepsilon}(x)} |f(x) - f(x'')| < \frac{1}{2k_0} + \frac{1}{2k_0} = \frac{1}{k_0}$$

т.е. $x \notin T_{k_0}$ — противоречие.

Таким образом, каждая точка $x \in T_{k_0}$ покрывается некоторым бруском $I_i \in A$, т.е. A - покрытие T_{k_0} . Тогда существует $c: \sum_{i:I_i \in A} |I_i| \ge c > 0$ для всех разбиений $\mathbb T$ (если бы меняя разбиения мы

могли получить сумму объемов этих брусков сколь угодно маленькую, то получилось бы, что T_{k_0} меры нуль)

Возьмем два набора отмеченных точек ξ^1 и ξ^2 . На брусках из кучки B будем их брать одинаковыми, т.е. для $I_i \in B$ $\xi^1_i = \xi^2_i$. А на брусках из кучки A будем брать такие, чтобы

$$f(\xi_i^1) - f(\xi_i)^2 \ge \frac{1}{3k_0}$$
 (у нас там колебания $\ge 1/2k_0$, так что такие найдутся)

Получаем:

$$|\sigma(f, \mathbb{T}, \xi^{1}) - \sigma(f, \mathbb{T}, \xi^{2}) = \left| \sum_{i} (f(\xi_{i}^{1}) - f(\xi_{i}^{2})) |I_{i}| \right|$$

$$= \left| \sum_{i:I_{i} \in A} (f(\xi_{i}^{1}) - f(\xi_{i}^{2})) |I_{i}| + \sum_{i:I_{i} \in B} (f(\xi_{i}^{1}) - f(\xi_{i}^{2})) |I_{i}| \right|$$

$$= \left| \sum_{i:I_{i} \in A} (f(\xi_{i}^{1}) - f(\xi_{i}^{2})) |I_{i}| \right| \ge \frac{1}{3k_{0}} \sum_{i:I_{i} \in A} |I_{i}| \ge \frac{c}{3k_{0}} > 0$$

т.е. интегральные суммы не могут стремиться к одному и тому же числу, значит f не интегрируема — противоречие.

• Достаточность

Для любого $\varepsilon > 0$ рассмотрим $T_{\varepsilon} = \{x \in I | \omega(f, x) \geq \varepsilon\}$. Покажем, что это множество - компакт. Ограниченность очевидна (подмножества бруска), а замкнутость проверим от противного. Пусть a - предельная точка $T_{\varepsilon} : a \notin T_{\varepsilon}$. Т.к. она предельная, то существует $\{x^k\} : x^k \in B_{\frac{1}{k}}(a)$. Т.к. $B_{\frac{1}{k}}$ - открытые шары, то наши точки лежат в них с окрестностями, т.е. сущесвтуют $\delta_k : B_{\delta_k}(x_K) \subset B_{\frac{1}{k}}(a)$. Тогда

$$\omega(f, B_{\frac{1}{k}}(a)) \ge \omega(f, B_{\delta_k}(x_K)) \ge \omega(f, x_k) \ge \varepsilon$$

Переходя к пределу $k \to \infty$: $\omega(f,a) \ge \varepsilon$, т.е. $a \in T_\varepsilon$ - противоречие. Значит T_ε - замкнуто, и, следовательно, компактно.

Множество T_{ε} - множество меры нуль (как подмножество множества меры нуль). Значит, его можно покрыть не более чем счетным объединением открытых брусков $I_i:\sum_i |I_i|<\varepsilon$. Т.к. это

открытое покрытие, а T_{ε} - компакт, то существует конечное подпокрытие: $T_{\varepsilon} \subset \bigcup_{i=1}^{m} I_{i}$, при этом

$$\sum_{i=1}^{m} |I_i| < \varepsilon.$$

Обозначим три множества: $C_1 = \bigcup_{i=1}^m I_i$, $C_2 = \bigcup_{i=1}^m I_i'$, $C_3 = \bigcup_{i=1}^m I_i''$, где I_i' , где I_i' , I_i'' - бруски, полученные гомотетией с центром в центре I_i с коэффициентом 2 и 3 соответственно.

Заметим, что

a)
$$|C_3| \le \sum_{i=1}^m |I_i''| = 3^n \sum_{i=1}^m |I_i| < 3^n \varepsilon$$

- b) расстояние $\rho(\partial C_2, \partial C_3) = \delta_1 > 0$ (теорема про расстояние между компактами)
- с) Множество $K = I \setminus (C_2 \setminus \partial C_2)$ компакт. Кстати, любое множество с диаметром меньше δ_1 либо польностью лежит в C_3 , либо полностью в K.
- d) $T_{\varepsilon} \cap K = \emptyset$, т.к. $T_{\varepsilon} \subset C_1 \subset C_2$. Следовательно, $\forall x \in K \ \omega(f,x) < \varepsilon$. Тогда по теореме Кантора-Гейне $\exists \delta_2 > 0: \ \forall x \in K \ \omega(f,B_{\delta_2}(x)) < \varepsilon + \varepsilon = 2 \ \varepsilon$

Выберем $\delta = \min\{\delta_1, \delta_2\}$. Тогда для любых разбиений $\mathbb{T}_1 = \{I_k^1\}, \mathbb{T}_2 = \{I_i^2\} : \lambda \mathbb{T}_1 < \delta, \lambda(\mathbb{T}_2) < \delta$ Рассмотрим пересечение этих разбиений $\mathbb{T} = \mathbb{T}_1 \cap \mathbb{T}_2$, т.е. такое разбиение $\mathbb{T} = \{I_{ik}\}$, что $I_k^1 = I_{i_1k} \bigsqcup \ldots \bigsqcup I_{i_{mk}}$ и $I_i^2 = I_{ik_1} \bigsqcup \ldots \bigsqcup I_{ik_l}$. Очевидно $\lambda(\mathbb{T}) < \delta$.

Для произвольных наборов отмеченных точек:

$$|\sigma(f,\mathbb{T}_1,\xi^1) - \sigma(f,\mathbb{T}_2,\xi^2)| \leq |\sigma(f,\mathbb{T}_1,\xi^1) - \sigma(f,\mathbb{T},\xi)| + |\sigma(f,\mathbb{T}_2,\xi^2) - \sigma(f,\mathbb{T},\xi)|$$

Рассмотрим отдельное слагаемое:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| = \left| \sum_{i,j} (f(\xi_i^1) - f(\xi_{ij})) |I_{ij}| \right| \leq \sum_{I_{ij} \in C_3} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| + \sum_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_{ij})| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1) - f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int_{I_{ij} \in K} |f(\xi_i^1)| \int_{I_{ij} \in K} |f(\xi_i^1)| |I_{ij}| \right| \leq 2M \cdot \frac{1}{2} \left| \int$$

т.к. f ограничена некоторой константой M и см пункты a), d), то

Т.к. для (\mathbb{T}_2, ξ^2) все выкладки аналогичные, то получаем:

$$|\sigma(f, \mathbb{T}_1, \xi^1) - \sigma(f, \mathbb{T}, \xi)| < \epsilon(2M \cdot 3^n + 2|I|)$$

Следовательно, существует предел $\lim_{\lambda(\mathbb{T})\to 0}\sigma(f,\mathbb{T},\xi)$ (Критерий коши для функций)

5.9 Измельчение разбиения

Определение. Разбиение $\mathbb{T}_1=\{I_k^1\}$ будем называть измельчением разбиения $\mathbb{T}_2=\{I_m^2\}$, если $\forall k \ \exists m: I_k^1 \in I_m^2 \implies \mathbb{T}=\mathbb{T}_1 \cap \mathbb{T}_2$ является измельчением \mathbb{T}_1 и \mathbb{T}_2

6 Суммы Дарбу

6.1 Нижняя и верхняя суммы Дарбу

Определение. Пусть I - замкнутый брус, $f:I\mapsto\mathbb{R},\,\mathbb{T}=\{I_i\}_{i=1}^K$ -разбиение бруса $I,\,m_i=\inf_{I_i}(f),$ и $M_i=\sup_{I_i}(f)$. Тогда числа $\underline{S}(f,\mathbb{T})=\sum_{i=1}^K m_i|I_i|$ и $\overline{S}(f,\mathbb{T})=\sum_{i=1}^K M_i|I_i|$ будем называть нижней и верхней суммой Дарбу соответственно

6.2 Нижняя сумма Дарбу не больше верхней

Теорема.

$$\underline{\mathbf{S}}(f, \mathbb{T}) = \int_{\xi} \sigma(f, \mathbb{T}, \xi) \le \sup_{\xi} \sigma(f, \mathbb{T}, \xi) = \overline{\mathbf{S}}(f, \mathbb{T})$$

Доказательство.

$$\underline{S}(f, \mathbb{T}) = \sum_{i=1}^{K} m_i |I_i| = \sum_{i} \inf_{\xi_i} (f(\xi_i)) |I_i| = \inf_{\xi} \sum_{i} f(\xi_i) |I_i| = \inf_{\xi} \sigma(f, \mathbb{T}, \xi) \le \sup_{\xi} \sigma(f, \mathbb{T}, \xi) = \sum_{i} (f(\xi_i)) |I_i| = \sum_{i} M_i |I_i| = \overline{S}(f, \mathbb{T})$$

6.3 Монотонность сумм относительно измельчений разбиения

Теорема. Пусть $\tilde{\mathbb{T}}$ — измельчение разбиения \mathbb{T} , тогда

$$\underline{\mathbf{S}}(f,\mathbb{T}) \leq \underline{\mathbf{S}}(f,\tilde{\mathbb{T}}) \leq \overline{\mathbf{S}}(f,\tilde{\mathbb{T}}) \leq \overline{\mathbf{S}}(f,\mathbb{T})$$

Доказательство. Если $L \subset M$, то $\inf L \ge \inf M$ и $\sup L \le \sup M$, тогда:

$$\underline{\mathbf{S}}(f, \mathbb{T}) \leq \underline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \underset{\text{no } 6.2}{\leq} \overline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \leq \overline{\mathbf{S}}(f, \mathbb{T})$$

6.4 Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе

Теорема. $\forall \mathbb{T}_1, \mathbb{T}_2 : \underline{S}(f, \mathbb{T}_1) \leq \overline{S}(f, \mathbb{T}_2)$

Доказательство. $\forall \mathbb{T}_1, \mathbb{T}_2$ рассмотрим $\tilde{\mathbb{T}} = \mathbb{T}_1 \cap \mathbb{T}_2$, тогда по 6.3:

$$\underline{S}(f, \mathbb{T}_1) \leq \underline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T}_2)$$

6.5 Верхние и нижние интегралы Дарбу

Определение. Верхним и нижним интегралом Дарбу будем называть числа

$$\overline{\mathcal{I}} := \inf_{\mathbb{T}} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \underline{\mathcal{I}} := \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T})$$

соответственно

6.6 Интеграл Дарбу как предел сумм Дарбу

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус, а $f: I \mapsto \mathbb{R}$ — ограничена. Тогда:

$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \text{ } \mathbf{M} \qquad \underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$$

Доказательство. Докажем, что $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{S}(f, \mathbb{T}) \quad (= \sup_{\mathbb{T}} \underline{S}(f, \mathbb{T}))$

- 1. f-ограничена на I, то $\exists C > 0 : \forall x \in I \quad |f(x)| < C$
- $2. \ \text{т.к. по определению} \ \underline{I} = \sup_{\mathbb{T}} \underline{\mathbf{S}}(f,\mathbb{T}), \ \text{то} \ \forall \, \varepsilon > 0 \ \exists \, \mathbb{T}_1 = \{I_i^1\}_{i=1}^{m_1}: \ \underline{\mathcal{I}} \varepsilon < \underline{\mathbf{S}}(f,\mathbb{T}_1) \leq \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon < \underline{$
- 3. Пусть $G = \bigcup_{i=1}^{m_1} \partial I_i^1$ объединение границ брусов (без повторов). Тогда G множество меры нуль по Лебегу (т.к. границы мн-ва меры нуль по Лебегу)
- 4. Пусть \mathbb{T}_2 произвольное разбиение $I: \mathbb{T}_2 = \{I_i^2\}_{i=1}^{m_2}$ Рассмотрим две кучки брусов:

$$A=\{I_i^2\in\mathbb{T}_2:I_i^2\cap G\neq\varnothing\} \qquad \text{и}\qquad B=\mathbb{T}_2\setminus A \Longrightarrow$$
 $\forall\, \varepsilon>0 \;\exists \delta>0: \forall\, \mathbb{T}_2:\Delta_{\mathbb{T}_2}<\delta \; \text{верно, что}\; \sum_{I_i^2\in A}|I_i^2|<\epsilon$

по определению множества меры нуль, а также т.к. A - покрытие замкнутыми брусами, а G - мн-во меры нуль.

5. С другой стороны $\forall I_i^2 \in B$ верно, что $I_i^2 \in \mathbb{T}_1 \cap \mathbb{T}_2$

Хотим рассмотреть

$$|\underline{\mathcal{I}} - \underline{\mathbf{S}}(f, \mathbb{T}_2)| = |I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) + \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)| \leq \underbrace{|I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)|}_{*} + \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)|}_{**}$$

$$< \varepsilon + 2M \varepsilon = \varepsilon (1 + 2M)$$

* из п.2:
$$\underline{\mathcal{I}} - \varepsilon < \underline{\mathrm{S}}(f, \mathbb{T}_1) \leq \underline{\mathrm{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) \leq \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon \implies |\underline{\mathcal{I}} - \underline{\mathrm{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)| < \varepsilon$$

**

$$|\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)| = \left| \sum_{I_i^2 \in B} m_i |I_i^2| + \sum_{I_i^2 \in \mathbb{T}_2 \cap A} m_i |I_i^2| - \sum_{I_i^2 \in B} m_i |I_i^2| \right|$$

$$\leq \left| \sum_{I_i^2 \in \mathbb{T}_2 \cap A} m_i |I_i^2| \right| + \left| \sum_{I_i^2 \in A} m_i |I_i^2| \right|$$

$$\leq 2 \left| \sum_{I_i^2 \in A} m_i |I_i^2| \right|$$

$$< 2M \left| \sum_{I_i^2 \in A} |I_i^2| \right|$$

$$\leq 2M \varepsilon$$

Критерий Дарбу. Теорема Фубини 7

Критерий Дарбу интегрируемости функции по Риману

 $I \in \mathbb{R}^n$ — замкнутый брус, $f: I \mapsto \mathbb{R}, f \in \mathcal{R}(I) \iff f$ — ограничена на I и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

Доказательство. Необходимость

- \bullet $f \in \mathcal{R}(I) \Longrightarrow$ по необходимому условию интегрируемости функции по Риману на замкнутом брусе, f — ограничена на I
- Покажем, что $\mathcal{I} = \mathcal{I}, \overline{\mathcal{I}} = \mathcal{I} \Longrightarrow \mathcal{I} = \overline{\mathcal{I}}$

1.
$$f \in \mathcal{R}(I) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta \hookrightarrow |\sigma(f, \mathbb{T}, \xi) - \mathcal{I}| < \varepsilon$$

$$2. \ \ \underline{\mathcal{I}} = \sup_{\mathbb{T}} = \lim_{\Delta \to 0} = \underline{\mathbf{S}}(f,\mathbb{T}) \Longrightarrow |\, \underline{\mathcal{I}} - \underline{\mathbf{S}}\,| < \varepsilon$$

$$\forall \, \varepsilon > 0 \,\, \exists \delta \,\, \exists \mathbb{T} : \Delta_{\mathbb{T}} < \delta : |\underline{\mathcal{I}} - \underline{S}| < \varepsilon$$

3.
$$\underline{\mathbf{S}}(\mathbb{T}, \xi) = \inf_{\xi} \sigma(f, \mathbb{T}, \xi)$$

 $\forall \mathbb{T}, \ \forall \varepsilon > 0 \ \exists \xi : |\underline{\mathbf{S}} - \sigma| < \varepsilon$

$$\forall \mathbb{T}, \ \forall \, \varepsilon > 0 \ \exists \xi : |\underline{\mathbf{S}} - \sigma| < \varepsilon$$

$$|\mathcal{I} - \underline{\mathcal{I}}| \leqslant |\mathcal{I} - \underline{\mathcal{I}} - \sigma + \sigma + \underline{S} - \underline{S}| \leqslant |\mathcal{I} - \sigma| + |\underline{\mathcal{I}} - \underline{S}| + |\sigma - \underline{S}| < 3\varepsilon$$

Доказательство. Достаточность

f — ограничена и $\mathcal{I} = \overline{\mathcal{I}}$. Имеем

$$\underline{\mathbf{S}}(f,\mathcal{T}) = \inf_{\xi} \leqslant \sigma(f,\mathbb{T},\xi) \leqslant \sup_{\xi} (f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

Тогда, при
$$\lim_{\Delta \to 0} \underline{S} = \underline{\mathcal{I}}, \ \lim_{\Delta \to 0} \overline{S} = \overline{\mathcal{I}}$$
 получаем $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

Интегрирование по допустимым множествам

Определение. Множество $D \subset \mathbb{R}^n$ называется допустимым, если

- D ограниченно
- ullet ∂D множество меры нуль по Лебегу

Определение. Пусть $D \subset \mathbb{R}^n, f: D \to \mathbb{R}$. Тогда, интегралом Римана f по D называется число \mathcal{I} :

$$\mathcal{I} = \int\limits_{D} f(\overline{x}) \mathrm{d}\overline{x} = \int\limits_{I \supset D} f \cdot \chi_{D}(\overline{x}) \mathrm{d}\overline{x}, \ \mathrm{rge} \ \chi_{D} = \begin{cases} 1, \overline{x} \in D \\ 0, \overline{x} \in D \end{cases}$$

Корректность определения. Пусть $I_1 \supset D, I_2 \supset D$, тогда

$$\int_{I_1} f \cdot \chi_D \mathrm{d}x \, \mathbf{u} \, \int_{I_2} f \cdot \chi_D \mathrm{d}x$$

либо существуют и равны, либо оба не существуют вообще

Покажем существование

- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ ограничена на $I_1 \Longrightarrow f \cdot \chi_D$ ограничена на $D \Longrightarrow f$ ограничена на $D \Longrightarrow f \cdot \chi_D$ ограничена на I_2
- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ непрерывна почти всюду на $I_1 \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на $D\Longrightarrow$ в худшем случае для $f\cdot\chi_D$ на I_2 добавятся разрывы на $\partial D\Longrightarrow f\cdot\chi_D$ непрерынва почти всюду на I_2

• Тогда, $f \cdot \chi_D \in \mathcal{R}(I_1) \Longleftrightarrow f \cdot \chi_D \in \mathcal{R}(I_2)$

Покажем равенство

- ullet Пусть \mathbb{T}_i разбиение на $I_i:\mathbb{T}_1$ и \mathbb{T}_2 совпадают на общей части $I_1\cap I_2$
- ullet Пусть ξ^i отмеченные точки I_i : совпадают на общей части

$$\bullet \ \ \sigma(f\chi_D, \mathbb{T}_1, \xi^1) = \sum_j f\chi_D(\xi^1_j) |I^1_j| = \sum_j f(\xi^1_j) |I^1_j| = \sum_j f(\xi^2_j) |I^2_j| = \sum_j f\chi_D(\xi^2_j) |I^2_j| = \sigma(f\chi_D, \mathbb{T}_2, \xi^2)$$

Примечание. Все свойства интеграла Римана и критерия Лебега для бруса справедливы и для других допустимых множеств

7.3 Теорема Фубини

Пусть имеются $I_x \subset \mathbb{R}^n, I_y \subset \mathbb{R}^n, I_x \times I_y \subset \mathbb{R}^{m+n}$ — замкнутые брусы, $f: I_x \times I_y \to \mathbb{R}, f \in \mathcal{R}(I_x \times I_y)$ и \forall фиксированной $x \in I_x: f(x,y) \in \mathcal{R}(I_y) \Longrightarrow$

$$\int_{I_x \times I_y} f(\overline{x}, \overline{y}) d\overline{x} d\overline{y} = \int_{I_x} \left(\int_{I_y} f(\overline{x}, \overline{y}) d\overline{y} \right) d\overline{x} = \int_{I_x} d\overline{x} \int_{I_y} f(\overline{x}, \overline{y}) d\overline{y}$$

Доказательство. Воспользуемся тем, что $f \in \mathcal{R}(I_x \times I_y), f \in \mathcal{R}(I_y),$ а также Критерием Дарбу

• $\mathbb{T}_x = \{I_i^x\}$ — разбиение на I_x , $\mathbb{T}_y = \{I_j^y\}$ — разбиение на I_y , $\mathbb{T}_{x,y} = \{I_i^x \times I_j^y\} = \{I_{ij}\}$ — разбиение на $I_x \times I_y$

.

$$\underline{\underline{S}}(f, \mathbb{T}_{x,y}) = \sum_{i,j} \inf_{(x,y) \in I_{ij}} f(x,y) |I_{ij}| \leqslant \sum_{i,j} \inf_{x \in I_i^x} \left(\inf_{y \in I_j^y} f(x,y) \right) |I_i^x| |I_j^y| = \sum_{i} \inf_{I_i^x} \underbrace{\left(\sum_{j} \inf_{I_j^y} f(x,y) |I_j^y| \right)}_{\underline{\underline{S}}(f(y), \mathbb{T}_y)} |I_i^x|$$

$$\leqslant \sum_{i} \inf_{I_i^x} \underbrace{\left(\int_{I_y} f(x,y) dy \right)}_{g(x)} |I_i^x| = \underline{\underline{S}}(g(x), \mathbb{T}_x)$$

$$\leqslant \overline{\underline{S}}(g(x), \mathbb{T}_x)$$

 $\underline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \leqslant \underline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \Longrightarrow \exists \, \overline{\mathcal{I}} = \lim_{\delta \to 0} \underline{\mathbf{S}}(g(x), \mathbb{T}_x) = I$

8 Замена переменных в кратном интеграле. Функциональные последовательности—1

8.1 Теорема о замене переменных в кратном интеграле

Теорема. Пусть имеется $M_1, M_2 \in \mathbb{R}^n$ — открытые множества. $\varphi: M_1 \longrightarrow M_2$ — биективно, φ, φ^{-1} — непрерывно дифференцируемые отображения

$$D: \overline{D} \subset M_1$$
 — допустимое множество

$$f:\varphi(D)\longrightarrow \mathbb{R}$$

$$f \in \mathcal{R}(\varphi(D)) \Longleftrightarrow f(\varphi(t)) \cdot |\det J_{\varphi}(t)| \in \mathcal{R}(D)$$
 и

$$\int\limits_{\varphi(D)} f(x)\mathrm{d}x = \int\limits_{D} f(\varphi(t)) \cdot |\det J_{\varphi}(t)| \mathrm{d}t, \text{ где } J = \begin{pmatrix} \frac{\partial \varphi_{1}}{\partial t_{1}} & \cdots & \frac{\partial \varphi_{1}}{\partial t_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_{n}}{\partial t_{1}} & \cdots & \frac{\partial \varphi_{n}}{\partial t_{n}} \end{pmatrix}$$

Примечание.
$$(x_1,\ldots,x_n)\stackrel{\varphi}{\longrightarrow} (t_1,\ldots,t_n)$$
, где $x_i=\varphi_i(t_1,\ldots,t_n)$

Пример. Ранее мы переходили к полярным координатам так: $(x,y) \to (r,\varphi)$, при этом $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$

$$J = \begin{pmatrix} \cos \varphi & -\sin \varphi \cdot r \\ \sin \varphi & \cos \varphi \cdot r \end{pmatrix}$$

$$|J_{\varphi^{-1}}| = |J_{\varphi}|^{-1}$$

8.2 Функциональные последовательности

Пусть
$$X \subset \mathbb{R}$$
 и $f_n : X \to \mathbb{R} \ \forall n \in \mathbb{N}$.

Определение. Последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится в точке $x_0 \in X$, если сходится соответствующая числовая последовательность $\{f_n(x_0)\}_{n=1}^{\infty}$:

$$x_0 \in X, \ \forall \varepsilon > 0 \ \exists N : \forall n > N \hookrightarrow |f_n(x_0) - a_{x_0}| < \varepsilon \Longrightarrow a_{x_0} = \lim_{n \to \infty} f_n x_0$$

Определение. Множество $D \subset X$ точек, в которых последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится называется *множеством сходимости*

Определение. Пусть $D \subset X$ — множество сходимости $\{f_n(x)\}_{n=1}^{\infty}$ и $\forall x \in D$ $f_n(x) \to f(x)$. Тогда, $f(x) = \lim_{n \to \infty} f_n(x)$ будем называть $npe deльной функцией <math>\{f_n(x)\}$

Определение. $D \subset \mathbb{R}, f, f_n : D \to \mathbb{R}$. Будем говорить, что $\{f_n(x)\}$ *сходится поточечно* к f(x) на D, если

$$\forall x \in D, \ \forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n(x) \xrightarrow{D} f(x)$

8.3 Примеры функциональных последовательностей

1. Пусть есть $f_n(x) = \frac{x}{n}, x \in \mathbb{R}$

Рассмотрим
$$x_0 \in \mathbb{R}$$
, $f_n(x_0) = \frac{x_0}{n} \longrightarrow 0$ при $n \to \infty$. То есть $f(x) = 0 \Longrightarrow \frac{x}{n} \stackrel{\mathbb{R}}{\longrightarrow} 0$

2. $f_n(x)=x^n, \ x\in [0;+\infty].$ Тогда, область сходимости — [0;1]

To есть, предельная функция
$$f(x) = \begin{cases} 0, & x \in [0;1) \\ 1, & x=1 \end{cases}$$
 — не непрерывная

Таким образом, $f_n(x) \stackrel{[0;1]}{\longrightarrow} f(x)$

3.
$$f_n(x) = \frac{\sin(n^2 x)}{n}$$
 на \mathbb{R}

$$\forall x_0 \in \mathbb{R} \lim_{n \to \infty} f_n(x_0) = 0$$

$$f(x) = 0; \ f_n(x) \xrightarrow{\mathbb{R}} f(x)$$

Рассмотрим $f_n'(x) = n\cos\left(n^2x\right)$ — эта штука ни к чему не сходится

4.
$$f_n(x) = 2(n+1)x(1-x^2)^n$$
 на $[0;1]$

$$f_n(0) = 0, \ f_n(1) = 1$$

Теперь рассмотрим $x\in (0;1).$ $f_n(x)=2(n+1)xq^n,$ где $q\in (0;1).$ Тогда, при $n\to\infty$ $q^n\longrightarrow 0$

$$f_n(x) \stackrel{[0;1]}{\longrightarrow} 0$$

$$\int_0^1 f(x) dx = 0$$

$$\int_0^1 2(n+1)x(1-x^2)^n dx = \underbrace{-2(n+1)}_2 \int_0^1 (1-x^2)^n d(-x^2+1)$$

$$= -(1-x^2)\Big|_0^1$$

Определение. Пусть $D \subset \mathbb{R}; f_n, f: D \longrightarrow \mathbb{R}$. Будем говорить, что $\{f_n(x)\}$ сходится равномерно к f(x) на D, Если

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N, \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n \stackrel{D}{\rightrightarrows} f$

8.4 Супремальный критерий

Теорема.
$$f_n \stackrel{D}{\rightrightarrows} f \Longleftrightarrow \lim_{n \to \infty} \left(\sup_{D} |f_n(x) - f(x)| \right) = 0$$

Доказательство. Докажем необходимость (=>)

Заметим, что $\sup_{D} |f_n(x) - f(x)| \geqslant 0$. Тогда,

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N, \forall x \in D \hookrightarrow \sup_{D} |f_n(x) - f(x)| < \varepsilon$$

$$f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow \forall \, \varepsilon > 0 \, \, \exists N : \forall n > N, \, \, \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

В худшем случае, $\sup_{D} |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$

Доказательство. Докажем достаточность (⇐)

$$\forall \, \varepsilon > 0 \,\, \exists N : \forall n > N \hookrightarrow \sup_{D} |f_n(x) - f(x)| < \varepsilon, \,\,$$
 тем более $\forall x \in D \,\,\sup \geqslant |f_n(x) - f(x)|$

Тогда,
$$f_n \stackrel{D}{\Rightarrow} f$$

Примечание. $f \rightrightarrows f \Longrightarrow f_n \longrightarrow f$, но в обратную сторону это не работает

9 Функциональные последовательности—2

9.1 Критерий Коши равномерной сходимости функциональной последовательности

Теорема. $f_n(x) \stackrel{D}{\rightrightarrows} f(x) \Longleftrightarrow \forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n,m>N, \,\, \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \varepsilon$

Доказательство. \Longrightarrow Докажем необходимость

Так как $f_n(x) \stackrel{D}{\rightrightarrows} f(x)$, то

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Рассмотрим $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Таким образом, мы показали, что $\forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n,m>N, \,\, \forall x \in D \hookrightarrow |f_n(x)-f_m(x)| < \varepsilon$

Доказательство. ⇐ Докажем достаточность

Распишем определение равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n, m > N, \ \exists x \in D : \ |f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$$

Зафиксируем $x_0 \in D \Longrightarrow \exists \lim_{n \to \infty} f_n(x_0) = f(x_0)^1$

$$x_0 \in D : \forall \varepsilon > 0 \exists N : \forall n, m > N : |f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}$$

В худшем случае, $\forall x \in D$: при $m \to \infty |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$

Тогда,

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

Примечание. Отрицание Критерия Коши:

$$f_n(x) \stackrel{D}{\not\rightrightarrows} f(x) \iff \exists \varepsilon_0 > 0 \ \forall N: \ \exists n, m > N, \ \exists x_0 \in D \ |f_n(x) - f_m(x)| \geqslant \varepsilon_0$$

Пример. Рассмотрим функциональную последовательность $f_n(x) = \frac{x}{n}$ на \mathbb{R} . Покажем, что она *не сходится равномерно*:

$$\exists \, \varepsilon_0 = \frac{1}{6} \, \forall N \, \exists n = 2N, m = 3N, \, \exists x_0 = N \hookrightarrow \left| \frac{N}{2N} - \frac{N}{3N} \right| = \frac{1}{6} = \varepsilon_0$$

9.2 Теорема о почленном переходе к пределу

Теорема. Пусть $f_n, f: D \longrightarrow \mathbb{R}, \ x_0$ — предельная точка $D, \ f_n \stackrel{D}{\rightrightarrows} f, \ \forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$

Тогда,

$$\exists \lim_{n \to \infty} c_n = \lim_{x \to x_0} f(x)$$

$$\left(\text{или } \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) \right)$$

Доказательство. Сначала покажем, что $\exists \lim_{n \to \infty} c_n = c$, а потом что $\exists c = \lim_{n \to \infty} c_n$

1. Рассмотрим
$$|c_n - c| \le \underbrace{|c_n - f_n|}_{(a)} + \underbrace{|f_n - f_m|}_{(b)} + |\underbrace{f_m - c_m|}_{(c)} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

 $^{^{1}}$ по критерию Коши для числовой последовательности $f_{n}(x_{0})$

(a), (c) По условию, $\forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$ получим

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{\circ}{B_{\delta}}(x_0) \cap D \hookrightarrow |f_n(x) - c_n| < \frac{\varepsilon}{3}$$

(b) $f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow$ по Критерию Коши

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \ \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$$

Получаем, что $\forall x \in \overset{\circ}{B_{\delta}}(x_0)$

Собираем:
$$\forall \, \varepsilon > 0 \,\, \exists N : \forall n,m > N : \forall x \in \overset{\circ}{B_{\delta}}(x_0) : |c_n - c_m| < \varepsilon \Longrightarrow \exists c = \lim_{n \to \infty} c_n$$

2. Теперь покажем, что $\exists \lim_{x \to x_0} f(x) = c$, то есть $\forall \varepsilon > 0 \exists \delta : \forall x \in \overset{\circ}{B_{\delta}}(x_0) : |f(x) - c| < \varepsilon$

Рассмотрим
$$|f(x) - c| \le \underbrace{|f(x) - f_n(x)|}_{(a)} + \underbrace{|f_n(x) - c_n|}_{(b)} + \underbrace{|c_n - c|}_{(c)}$$

(a)
$$f_n \stackrel{D}{\rightrightarrows} f(x) \Longrightarrow \forall \varepsilon > 0 \exists N_1 : \forall n > N_1 \forall x \in D : |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

(b)
$$\forall n \in \mathbb{N} \exists \lim_{x \to x_0} f_n(x) = c_n \Longrightarrow \forall \varepsilon > 0 \ \exists \delta : \forall x \in \overset{\circ}{B_{\delta}}(x_0) \hookrightarrow |f_n(x) - c_n| < \frac{\varepsilon}{3}$$

(с) По доказанному в п. 1 следует, что

$$\exists \lim_{n \to \infty} c_n = c \Longrightarrow \forall \, \varepsilon > 0 \, \exists N_2 \, \forall n > N_2 \hookrightarrow |c_n - c| < \frac{\varepsilon}{3}$$

Собираем:
$$\forall \, \varepsilon > 0 \, (\exists N = \max(N_1, N_2)) \, \exists \delta > 0: \, \forall x \in \overset{\circ}{B_{\delta}}(x_0): |f(x) - c| < \varepsilon$$

9.3 Теорема о непрерывности предельной функции

 $\left.\begin{array}{c} f_n,f:D\longrightarrow\mathbb{R},\\ \text{Теорема.}\ \Pi\text{усть имеется}\ f_n\stackrel{D}{\rightrightarrows}f,\\ \forall n\in\mathbb{N}\ f_n\in C(D) \end{array}\right\}\Longrightarrow f\in C(D)$

Доказательство. Нужно доказать, что $f \in C(D)$. Значит, надо показать, что

$$\forall x_0 \in D : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f(x) - f(x_0)|$$

Рассмотрим
$$|f(x)-f(x_0)| \leq \underbrace{|f(x)-f_n(x)|}_{(1)} + \underbrace{|f_n(x)-f_n(x_0)|}_{(2)} + \underbrace{|f_n(x_0)-f(x_0)|}_{(3)} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

- 1. $f_n \stackrel{D}{\Longrightarrow} f : \forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall x \in D \hookrightarrow |f_n(x) f(x)| < \frac{\varepsilon}{3}$
- 2. Так как $\forall n \in \mathbb{N}$ $f_n \in C(D) \Longrightarrow \forall x_0 \in D, \ \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_\delta(x_0) \cap D \hookrightarrow |f_n(x) f_n(x_0)| < \frac{\varepsilon}{3}$
- 3. $f_n \stackrel{D}{\Longrightarrow} f : \forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall x_0 \in D \hookrightarrow |f_n(x_0) f(x_0)| < \frac{\varepsilon}{3}$

Тогда, собрав три части, получим, что $\forall x_0 \in D$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (\exists N : \forall n > N) \ \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f(x) - f(x_0)| < \varepsilon \Longrightarrow f(x) \in C(x_0) \ \forall x_0 \in D \Longrightarrow f(x) \in C(D)$$

9.4 Условие №1 о неравномерной сходимости — разрыв точки

$$\begin{array}{c} f_n \in C\left([a;b)\right), \\ \text{Теорема.} \ \Pi \text{усть имеется} \ f \in C((a;b)) + \text{разрыв в т.} a, \\ f_n \stackrel{[a;b)}{\longrightarrow} f \end{array} \\ \end{array} \} \Longrightarrow f_n \stackrel{(a;b)}{\longrightarrow} f$$

То есть будет поточечная сходимость, но не будет равномерной:

$$f_n \stackrel{(a;b)}{\longrightarrow} f$$
, no $f_n \stackrel{(a;b)}{\Longrightarrow} f$

Доказательство. От противного

1. Пусть
$$f_n \stackrel{(a;b)}{\rightrightarrows} f \Longrightarrow \forall \, \varepsilon > 0 \, \, \exists N : \forall n > N \, \, \forall x \in [a;b) \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

2.
$$f_n \xrightarrow{[a;b)} f \Longrightarrow f_n(a) \longrightarrow f(a) \Longrightarrow \forall \varepsilon > 0 \ \exists N_2 : \forall n > N_2 \hookrightarrow |f_n(a) - f(a)| < \varepsilon$$

3.
$$f_n \stackrel{[a;b)}{\Longrightarrow} f$$
, так как $\forall \, \varepsilon > 0 \,\, \exists N = \max(N_1,N_2) \,\, \forall n > N, \,\, \forall x \in [a;b) \hookrightarrow |f_n(x) - f(x)| < \varepsilon$

4. Получаем, что

$$\begin{cases} f_n \stackrel{[a;b)}{\Rightarrow} f \\ f_n \in C([a;b)) \end{cases}$$

Тогда, по теореме о непрерывности предельной функции следует, что $f \in C([a;b))$, но f имеет разрыв в точке a. Противоречие

10 Неравномерная сходимость, интегрирование, дифференцирование функциональных последовательностей

10.1 Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке

$$\begin{array}{c} f_n \in C\left([a;b)\right) \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f_n \overset{(a;b)}{\longrightarrow} f \\ \not \exists \lim_{n \to \infty} f_n(a) \end{array} \right\} \Longrightarrow f_n \overset{(a;b)}{\not \rightrightarrows} f$$

Доказательство. От противного

1. Пусть
$$f_n \stackrel{(a;b)}{\rightrightarrows} f \Longrightarrow \forall \, \varepsilon > 0 \,\, \exists N : \forall n,m > N \,\, \forall x \in (a;b) \hookrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$$

2. $f_n \in C([a;b))$, тогда

$$\forall x_0 \in [a;b): \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in B_\delta(x_0) \cap [a;b) \hookrightarrow |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$$

В частности, это верно для $x_0 = a$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{\circ}{B_{\delta}}(a) \cap (a;b)^2 \hookrightarrow |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}$$

3. Рассмотрим

$$|f_n(a) - f_m(a)| \leqslant \underbrace{|f_n(a) - f_n(x)|}_{\text{no II.2}} + \underbrace{|f_n(x) - f_m(x)|}_{\text{no II.1}} + \underbrace{|f_m(x) - f_m(a)|}_{\text{no II.2}} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

получаем, что

$$\forall \, \varepsilon > 0 \,\, \exists N (\exists \delta > 0): \,\, \forall n,m > N (\forall x \in \overset{\circ}{B_{\delta}}(a) \cap (a;b)) \hookrightarrow |f_n(a) - f_m(a)| < \varepsilon$$

то есть, по Критерию Коши для числовой последовательности $\exists \lim_{n \to \infty} f_n(a)$, что противоречит условию, а значит $f_n \not\rightrightarrows f$

10.2 Теорема о почленном интегрировании функциональной последовательности

Теорема. Пусть имеется
$$f_n, f: [a;b] \to \mathbb{R}$$

$$f_n \overset{[a;b]}{\Rightarrow} f$$

$$f_n \in \mathcal{R}([a;b]) \forall n \in \mathbb{N}$$
 $f \in \mathcal{R}([a;b]) \Rightarrow f \in \mathcal{R}([a;b])$ и $\lim_{n \to \infty} \int\limits_a^b f_n(x) \mathrm{d}x = \int\limits_a^b f(x) \mathrm{d}x$

Доказательство. По Критерию Дарбу $f \in \mathcal{R}([a;b]) \Longleftrightarrow f$ — ограничена на [a;b] и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

• Покажем ограниченность

1.
$$\forall n \in \mathbb{N}: \ f_n \in \mathcal{R}([a;b]) \Longrightarrow f_n$$
 ограничена на $[a;b]$ и
$$\forall n \in \mathbb{N} \ \exists M_n \geqslant 0 \ \forall x \in [a;b] \hookrightarrow |f_n(x)| \leqslant M_n$$

2.
$$f_n \stackrel{[a;b]}{\Longrightarrow} f$$
, тогда $\forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n > N \,\, \forall x \in [a;b] \hookrightarrow |f_n(x) - f(x)| < \varepsilon$ Рассмотрим $\varepsilon = 1$, тогда $\exists N_1 = N: \,\, \forall x \in [a;b] \hookrightarrow |f_{N_1+1}(x) - f(x)| < 1$ Тогда, для $f(x)$ верно $\forall x \in [a;b]$

$$|f(x)| \le |f(x) - f_{N_1+1}(x)| + |f_{N_1+1}(x)| < 1 + M_{N_1+1},$$

то есть
$$f(x)$$
 — ограничена

²верно $\forall x \in B_{\delta}(a) \cap [a;b)$, а потому a выколота

• Покажем интегрируемость

Напомним, что
$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T})$$
 и $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$

Рассмотрим \mathbb{T} — разбиение [a;b]

$$|\underline{\mathbf{S}}(f, \mathbb{T}) - \overline{\mathbf{S}}(f, \mathbb{T})| \leqslant \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}) - \underline{\mathbf{S}}(f_n, \mathbb{T})|}_{(1)} + \underbrace{|\underline{\mathbf{S}}(f_n, \mathbb{T}) - \overline{\mathbf{S}}(f_n, \mathbb{T})|}_{(2)} + \underbrace{|\overline{\mathbf{S}}(f_n, \mathbb{T}) - \overline{\mathbf{S}}(f, \mathbb{T})|}_{(3)}$$

(1) Распишем в виде неравенств

$$|\underline{\mathbf{S}}(f, \mathbb{T}) - \underline{\mathbf{S}}(f_n, \mathbb{T})| \leqslant \sum_i |\inf_{I_i}(f) - \inf_{I_i}(f_n)| |I_i| \leqslant \sum_i \sup_{I_i} |f - f_n| \cdot |I_i| \leqslant \sup_{[a;b]} |f - f_n| \cdot |b - a| < \frac{\varepsilon}{3}$$

Так как $f_n \stackrel{[a;b]}{\rightrightarrows} f$, то по супремальному критерию:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \sup_{[a;b]} |f - f_n| < \frac{\varepsilon}{3|b - a|}$$

 $(2) f_n \in \mathcal{R}([a;b]) \Longrightarrow$

$$\forall \, \varepsilon > 0 \,\, \exists \delta > 0: \,\, \forall \, \mathbb{T}: \,\, \Delta_{\mathbb{T}} < \delta \,\, |\, \underline{\mathrm{S}}(f_n,\mathbb{T}) - \overline{\mathrm{S}}(f_n,\mathbb{T})| < \frac{\varepsilon}{3}$$

(3) Аналогично (1):
$$|\overline{S}(f_n, \mathbb{T}) - \overline{S}(f, \mathbb{T})| \leq \sup_{[a:b]} |f - f_n| < \frac{\varepsilon}{3}$$

Получаем, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ (\exists N) \ \forall \mathbb{T} : \ \Delta_{\mathbb{T}} < \delta \ (\forall n > N) \hookrightarrow |\underline{S}(f, \mathbb{T}) - \overline{S}(f, \mathbb{T})| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
$$\Longrightarrow f(x) \in \mathcal{R}([a; b])$$

• Покажем, что $\lim_{n\to\infty}\int\limits_a^b f_n(x)\mathrm{d}x=\int\limits_a^b f(x)\mathrm{d}x$

Рассмотрим

$$\left| \int_{a}^{b} f_n(x) dx - \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f_n(x) - f(x)| dx \leqslant \sup_{[a;b]} |f_n(x) - f(x)| \cdot |b - a| < \varepsilon$$

Так как $f_n \stackrel{[a;b]}{\rightrightarrows} f$, то $\forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n > N \,\, \sup_{[a;b]} |f_n(x) - f(x)| < rac{arepsilon}{|b-a|}$ и получаем, что

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| < \varepsilon$$

10.3 Теорема о почленном дифференцировании функциональной последовательности

Теорема. Пусть имеется
$$\exists c \in [a;b] \to \mathbb{R}$$
 $f_n \in D([a;b])$ $\exists c \in [a;b] : \lim_{n \to \infty} f_n(c)$ $\exists f : f_n \overset{[a;b]}{\Rightarrow} f$ $\oplus f'(x) = g(x)$

Доказательство. Покажем существование

Теорема. (Лагранжа)
$$f \in C([a,b]), \ f \in D((a,b)) \Longrightarrow \exists c \in (a,b): \ f(b)-f(a)=f'(c)(b-a)$$

- 1. Рассмотрим $\varphi(x) = f_n(x) f_m(x)$
- 2. $\forall n \in \mathbb{N} \ f_n \in D([a;b]) \Longrightarrow f_n \in C([a;b]) \Longrightarrow \varphi(x) \in D([a;b]) \ \text{if} \ \varphi(x) \in C([a;b])$
- 3. Рассмотрим: для c из условия теоремы Лагранжа

$$\varphi(x) - \varphi(c) = \varphi'(\xi) \cdot (x - c)$$
, где $\xi \in [c; x]$ ([x; c])

Тогда, $\varphi(x) = \varphi'(\xi)(c-x) + \varphi(x)$

4. Оценим
$$|\varphi(x)| \leq |\varphi'(\xi)| \cdot |c-x| + |\varphi(c)| = \underbrace{|f_n'(\xi) - f_m'(\xi)|}_{\star} \cdot |c-x| + \underbrace{|f_n(c) - f_m(c)|}_{\star\star}$$

$$\star f_n' \overset{[a;b]}{\rightrightarrows} g(x) \Longrightarrow \forall \varepsilon > 0 \ \exists N_1: \ \forall n,m > N_1 \ \forall x \in [a;b] \hookrightarrow |f_n'(\xi) - f_m'(\xi)| < \frac{\varepsilon}{2|b-a|}$$

$$\star \star \ \exists \lim_{n \to \infty} f_n(c) \Longrightarrow \forall \varepsilon > 0 \ \exists N_2: \ \forall n,m > N_2 \hookrightarrow |f_n(c) - f_m(c)| < \frac{\varepsilon}{2}$$

Тогда,

$$|\varphi(x)| \leqslant |\varphi'(\xi)| \cdot |c-x| + |\varphi(c)| = \underbrace{|f_n'(\xi) - f_m'(\xi)|}_{\star} \cdot |c-x| + \underbrace{|f_n(c) - f_m(c)|}_{\star\star} < \frac{\varepsilon}{2|b-a|} \cdot |c-x| + \frac{\varepsilon}{2} < \varepsilon$$

то есть

$$\forall \varepsilon > 0 \ \exists N = \max\{N_1, N_2\}: \ \forall n, m > N \ \forall x \in [a; b] \hookrightarrow |\varphi(x)| = |f_n(x) - f_m(x)| < \varepsilon \Longrightarrow \exists f: f_n \overset{[a; b]}{\Longrightarrow} f$$

Доказательство. Покажем, что f'(x) = g(x)

Пусть имеется $x_0 \in [a;b]$, но он произвольный

1. Рассмотрим
$$\psi_n(x) = \frac{f_n(x) - f_n(x_0)}{x - x_0}$$

Покажем по Критерию Коши, что $\psi_n(x) \stackrel{[a;b]}{\rightrightarrows}$

$$|\psi_n(x) - \psi_m(x)| = \left| \frac{f_n(x) - f_n(x_0) - f_m(x) + f_m(x_0)}{x - x_0} \right|$$

$$= \left| \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0} \right|$$

$$= \left| \frac{\varphi(x) - \varphi(x_0)}{x - x_0} \right|$$

$$\exists \xi \in [x_0, x]$$

$$= \frac{|\varphi'(\xi)||x - x_0|}{|x - x_0|}$$

$$= |\varphi'(\xi)|$$

$$= |f'_n(\xi) - f'_m(\xi)| < \varepsilon$$

так как $f_n \stackrel{[a;b]}{\rightrightarrows}$, то есть

$$\forall \varepsilon > 0, \exists N, \forall n, m > N, \forall x \in [a, b] \hookrightarrow |f'_n(x) - f'_m(x)| < \varepsilon$$

то $\psi \stackrel{[a;b]}{\rightrightarrows}$

2.
$$\forall n \in \mathbb{N}, \exists \lim_{x \to x_0} \psi_n(x) = \lim_{x \to x_0} \frac{f_n(x) - f_n(x_0)}{x - x_0} = f'_n(x_0),$$
 так как $f_n \in D([a,b])$

Получаем, что $\psi_n(x) \stackrel{[a,b]}{\rightrightarrows}$ и $\forall n \in \mathbb{N}, \exists \lim_{x \to x_0} \psi_n(x) = f_n'(x_0),$ тогда по теореме о почленном переходе

к пределу

$$g(x_0) = \lim_{n \to \infty} f'_n(x_0)$$

$$= \lim_{n \to \infty} \lim_{x \to x_0} \psi_n(x)$$

$$= \lim_{n \to \infty} \lim_{x \to x_0} \left(\frac{f_n(x) - f_n(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \lim_{n \to \infty} \left(\frac{f_n(x) - f_n(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= f'(x_0)$$

11 Функциональные ряды—1

Пусть $D \subset \mathbb{R}$, $f_n, S: D \to \mathbb{R}$ ($\forall n \in \mathbb{N}$), а также $S_k(x) = \sum_{n=1}^k f_n(x)$ — частичные суммы функционального ряда

Определение. Если $\exists S(x): S_k \xrightarrow{D} S$, то будем говорить, что функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится поточечно к S(x) на D

Определение. Если $\exists S(x): S_k \stackrel{D}{\Rightarrow} S$, то будем говорить, что функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно к S(x)

11.1 Критерий Коши равномерной сходимости функционального ряда

Теорема. Пусть $f_n:D\to\mathbb{R}\ \forall n\in\mathbb{N},\ \sum_{n=1}^\infty f_n(x)\stackrel{D}{\rightrightarrows}$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N : \ \forall m > k > N \ \forall x \in D \hookrightarrow |S_m(x) - S_k(x)| = \left| \sum_{n=k+1}^m f_n(x) \right| < \varepsilon$$

Доказательство. Следует из критерия Коши для функциональных последовательностей

$$S_i(x) = \sum_{n=1}^{i} f_n(x)$$

11.2 Необходимое условие равномерной сходимости функционального ряда

Следствие. Пусть $\sum_{n=1}^{\infty} f_n(x) \stackrel{D}{\rightrightarrows}$ $\Longrightarrow f_n(x) \stackrel{D}{\rightrightarrows} 0$

Доказательство. $\sum_{n=1}^{\infty} f_n(x) \stackrel{D}{\rightrightarrows}$, значит выполняется критерий Коши:

$$\forall \varepsilon > 0 \ \exists N : \ \forall k, k-1 > N \ \forall x \in D \hookrightarrow |S_k(x) - S_{k-1}(x)| = |f_k(x)| < \varepsilon$$

Получаем, что $\forall \, \varepsilon > 0 \,\, \exists N : \,\, \forall k > N+1 \,\, \forall x \in D \hookrightarrow |f_k(x)| < \varepsilon, \,\, \text{то есть} \,\, f_k(x) \stackrel{D}{\rightrightarrows} 0$

Определение. Ряд $\sum_{i=1}^{\infty} a_n(x)$ сходится абсолютно, если

$$\forall x_0 \in \sum_{n=1}^{\infty} a_n(x_0)$$
 — сходится абсолютно

11.3 Признак сравнения

Доказательство. Докажем по критерию Коши

$$(\star) \quad |a_{m+1}(x) + \ldots + a_k(x)| \leqslant |a_{m+1}(x)| + \ldots + |a_k(x)| \leqslant \sum_{\forall m, k > N \forall x \in D} b_{m+1}(x) + \ldots + b_k(x) \leqslant \sum_{\forall m, k > N \forall x \in D} \varepsilon$$

Получаем, что

$$\forall \varepsilon > 0 \ \exists \tilde{N} = \max\{N, N_1\} : \forall k > m > \tilde{N} \ \forall x \in D \hookrightarrow |a_{m+1}(x) + \ldots + a_k(x)| < \varepsilon \Longrightarrow \sum_{n=1}^{\infty} a_n(x) \overset{D}{\rightrightarrows}$$

Так как (\star) выполняется для любого $x \in D$, то $\forall x_0 \in D$ выполняется

$$\forall \varepsilon > 0 \ \exists \tilde{N} = \max\{N, N_1\} : \forall k > m > \tilde{N} \hookrightarrow |a_{m+1}(x)| + \ldots + |a_k(x)| < \varepsilon,$$

то есть
$$\sum_{n=1}^{\infty} |a_n(x_0)|$$
 — сходится, а значит сходится абсолютно $\forall x_0 \in D$

11.4 Мажорантный признак Вейерштрасса о равномерной сходимости функционального ряда

$$\begin{array}{l} \displaystyle \sum_{n=1}^{\infty} a_n(x): \\ \displaystyle \exists N \ \forall n > N \ \sup_{D} |a_n(x)| \leqslant M_n \\ \displaystyle \sum_{n=1}^{\infty} M_n - \text{сходится} \end{array} \right\} \Longrightarrow \sum_{n=1}^{\infty} a_n \overset{D}{\rightrightarrows} \\ \displaystyle \sum_{n=1}^{\infty} a_n \ \text{сходится абсолютно на } D \end{array}$$

Доказательство. Если в признаке сравнения принять, что $\forall n \in \mathbb{N} \ b_n(x) = M_n = \mathrm{const}(n)$, то условие теоремы выполняется

Определение. Частичные суммы ряда $\sum_{n=1}^{\infty} f_n(x) : S_k(x) = \sum_{n=1}^k f_n(x)$ равномерно ограничены на D, если

$$\exists c > 0: \ \forall k \in \mathbb{N}, \forall x \in D \hookrightarrow |S_k(x)| \leqslant c$$

Определение. Последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ монотонна на D (по n), если $\forall x_0 \in D$ соответствующая числовая последовательность $\{f_n(x_0)\}_{n=1}^{\infty}$ имеет ту же монотонность. То есть

$$\forall x_0 \in D \ b_n(x_0) \geqslant b_{n+1}(x_0)$$
 или $b_n(x_0) \leqslant b_{n+1}(x_0)$

11.5 Преобразование Абеля

Здесь обозначения a_n и $a_n(x)$ эквивалентны

Лемма. Пусть $\{a_n(x)\}_{n=1}^{\infty}$ и $\{b_n(x)\}_{n=1}^{\infty}$, тогда $\forall k > m \in \mathbb{N}$ верно

$$\sum_{n=m+1}^{k} (a_n - a_{n-1}) b_n = a_k b_k - a_m b_{m+1} + \sum_{n=m+1}^{k-1} a_n (b_n - b_{n+1})$$

Доказательство.

$$\sum_{n=m+1}^{k} (a_n - a_{n-1})b_n = \sum_{n=m+1}^{k} a_n b_n - \sum_{n=m+1}^{k} a_{n-1} b_n$$

сдвинем индексы на 1 во второй сумме

$$\sum_{n=m+1}^{k} a_n b_n - \sum_{n=m}^{k-1} a_n b_{n+1}$$

отщипнем лишнее, то есть вытащим из суммы $a_k b_k$

$$= a_k b_k + \sum_{n=m+1}^{k-1} a_n b_n - a_m b_{m+1} - \sum_{n=m+1}^{k-1} a_m b_{n+1}$$
$$= a_k b_k - a_m b_{m+1} + \sum_{n=m+1} a_n (b_n - b_{n+1})$$

11.6 Признак Дирихле

$$\left. \begin{array}{l} a_n,b_n:D\to\mathbb{R} \\ \exists c>0:\forall k\in\mathbb{N},\forall x\in D\;|A_k(x)|\leqslant c \\ \{b_n(x)\}_{n=1}^\infty-\text{ монотонна на }D \end{array} \right\}\Longrightarrow \sum_{n=1}^\infty a_n(x)b_n(x)\stackrel{D}{\rightrightarrows} \\ b_n\stackrel{D}{\rightrightarrows}0 \end{array}$$

Доказательство. Докажем по критерию Коши. Пусть $A_k(x) = \sum_{n=1}^k a_n(x)$ и $a_n(x) = A_n(x) - A_{n-1}(x)$

Рассмотрим

$$\left|\sum_{n=m+1}^{k} a_n(x)b_n(x)\right| = \left|\sum_{n=m+1}^{k} \left(A_n(x) - A_{n-1}(x)\right)b_n(x)\right|$$
 выполним преобразование Абеля
$$= \left|A_k(x)b_k(x) - A_m(x)b_{m+1}(x) + \sum_{n=m+1}^{k-1} A_n(x)\left(b_n(x) - b_{n+1}(x)\right)\right|$$

$$\leqslant \underbrace{|A_k(x)| \cdot |b_k(x)| + |A_m(x)| \cdot |b_{m+1}(x)| + \max_{m+1 \leqslant n \leqslant k-1} |A_n(x)| \cdot \left|\sum_{n=m+1}^{k-1} (b_n(x) - b_{n+1}(x))\right|}_{\leqslant c \cdot (|b_k(x)| + |b_{m+1}(x)| + |b_{m+1}(x) - b_k(x)|)}$$

$$\leqslant \underbrace{c \cdot 4 \cdot \max\{|b_k(x)|, |b_{m+1}(x)|\}}_{(x)}$$

Знаем, что $b_n \stackrel{D}{\rightrightarrows} 0$, то есть $\forall \, \varepsilon > 0 \,\, \exists N : \forall n > N \,\, \forall x \in D \hookrightarrow |b_n(x)| < \frac{\varepsilon}{4c}$, тогда $(\star) < 4c \cdot \frac{\varepsilon}{4c} = \varepsilon$

Значит, выполняется критерий Коши равномерной сходимости функциональных рядов, то есть

$$\left| \sum_{n=m+1}^k a_n(x) b_n(x) \right| < \varepsilon \Longrightarrow \text{ ряд } \sum_{n=m+1}^\infty a_n(x) b_n(x) \stackrel{D}{\rightrightarrows}$$

12 Функциональные ряды—2. Степенные ряды—1

12.1 Признак Абеля

$$\left. \begin{array}{l} a_n,b_n:D\to\mathbb{R} \\ \\ \mathbf{Teopema.} \ \Pi \mathrm{yctb} \ \ \sum_{n=1}^{\infty} a_n(x) \overset{D}{\rightrightarrows} \\ \{b_n(x)\}_{n=1}^{\infty} - \text{ монотонна на } D \\ \\ \exists c>0: \ \forall n>\mathbb{N}, \forall x\in D \ |b_n(x)|\leqslant c \end{array} \right\} \Longrightarrow \sum_{n=1}^{\infty} a_n(x)b_n(x) \overset{D}{\rightrightarrows}$$

Доказательство. Обозначим
$$\alpha_k^m(x) = A_k(x) - A_m(x) = \sum_{n=m+1}^k a_n(x) \Longrightarrow \alpha_m^m = 0$$

Получаем, что $a_n(x) = \alpha_n^m(x) - \alpha_{n-1}^m(x)$

Рассмотрим
$$\left| \sum_{n=m+1}^{k} a_n(x) b_n(x) \right|$$
:

$$\left| \sum_{n=m+1}^{k} a_n(x)b_n(x) \right| = \left| \sum_{n=m+1}^{k} (\alpha_n^m(x) - \alpha_{n-1}^m(x))b_n(x) \right|$$

$$\leq |\alpha_k^m(x)b_k(x)| + |\alpha_m^m(x)b_{m+1}(x)| + \left| \sum_{n=m+1}^{k-1} \alpha_n^m(x)(b_n(x) - b_{n+1}(x)) \right|$$

$$\leq |\alpha_k^m(x)| \cdot |b_k(x)| + \left| \sum_{n=m+1}^{k-1} \alpha_n^m(x)(b_n(x) - b_{n+1}(x)) \right|$$

$$< \frac{\varepsilon}{3c} \cdot c + \frac{\varepsilon}{3c} \cdot |b_{m+1}(x) - b_k(x)|$$

$$< 3c \cdot \frac{\varepsilon}{3c}$$

- $\{b_n(x)\}_{n=1}^{\infty}$ монотонна на $D\Longrightarrow b_n(x)-b_{n+1}(x)$ одного знака $\forall n$
- $|b_n(x)| \le c \ \forall x \in D \ \forall n \in \mathbb{N}$

$$\bullet \ \sum_{n=1}^{\infty} a_n(x) \overset{D}{\rightrightarrows} \quad \forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall k > m > N: \,\, |\alpha_k^m(x)| < \frac{\varepsilon}{3}$$

Значит, $\forall \varepsilon > 0 \; \exists N: \; \forall k > m > N \; \forall x \in D \hookrightarrow \left| \sum_{n=m+1}^k a_m(x)b_n(x) \right| < \varepsilon$, следовательно ряд сходится равномерно на D по критерию Коши

12.2 Теорема о почленном переходе к пределу

$$\begin{array}{c} a_n(x):D\to\mathbb{R}\\ x_0-\text{предельная точка }D\\ \sum_{n=1}^\infty a_n(x)\stackrel{D}{\rightrightarrows}\\ \forall n\in\mathbb{N}\;\exists\lim_{x\to x_0}a_n(x)=b_n \end{array} \right\} \Longrightarrow \begin{array}{c} \sum_{n=1}^\infty b_n(x)-\text{сходится}\\ \sum_{n=1}^\infty b_n(x)=\lim_{x\to x_0}\sum_{n=1}^\infty a_n(x) \end{array}$$

Доказательство. Для теоремы о переходе к пределу в последовательностях у нас было три условия

$$\begin{cases} x_0 - \text{предельная т.} D \\ f_n(x) \stackrel{D}{\Rightarrow} f(x) \\ \forall n \in \mathbb{N} \exists \lim_{x \to x_0} f_n(x) = c_n \end{cases}$$

Так как
$$\sum_{n=1}^{\infty}a_n(x)\stackrel{D}{\Rightarrow}$$
, то $S_k(x)=\sum_{n=1}^{\infty}a_n(x)$ и $S_k(x)\stackrel{D}{\Rightarrow}$

Покажем, что $\forall k \in \mathbb{N} \ \exists \lim_{x \to x_0} S_k(x)$:

$$\lim_{x \to x_0} S_k(x) = \lim_{x \to x_0} \left(\sum_{n=1}^k a_n(x) \right)$$

$$= \sum_{n=1}^k \left(\lim_{x \to x_1} a_n(x) \right)$$

$$= \sum_{n=1}^k b_n$$

$$= B_k$$

Значит, выполняется третье условие для последовательностей

Таким образом, по теореме о почленном переходе к пределу в функциональных последовательностях:

$$\sum_{k=1}^{\infty} B_k = \lim_{k \to \infty} \left(\lim_{x \to x_0} S_k(x) \right) = \lim_{x \to x_0} \left(\lim_{k \to \infty} S_k(x) \right) = \lim_{x \to x_0} \left(\sum_{n=1}^{\infty} a_n(x) \right)$$

12.3 Теорема о непрерывности равномерно сходящегося ряда

Теорема.
$$\left. egin{aligned} a_n(x) : D &\to \mathbb{R} \\ \sum_{n=1}^\infty a_n(x) &\stackrel{D}{\Rightarrow} \\ a_n(x) \in C(D) \end{aligned} \right\} \Longrightarrow S(x) = \sum_{n=1}^\infty$$

Доказательство.

•
$$S_k(x) \stackrel{D}{\rightrightarrows}$$
, где $S_k(x) = \sum_{n=1}^k a_n(x)$

• $S_k(x) \in C(D)$ как конечная сумма непрерывных функций на D

Тогда, $S(x) \in C(D)$ по теореме о непрерывности предельной функции

12.4 Теорема о почленном интегрировании

$$\begin{array}{l} \left. a_n(x) : D \to \mathbb{R} \\ \text{Теорема.} \ \sum_{n=1}^{\infty} a_n(x) \stackrel{[a;b]}{\Rightarrow} \\ \forall n \in \mathbb{N} a_n(x) \in \mathcal{R}([a;b]) \end{array} \right\} \Longrightarrow \int\limits_{a}^{b} S(x) \sum_{n=1}^{\infty} a_n(x) \in \mathcal{R}([a;b]) \\ \left. \Rightarrow \int\limits_{a}^{b} S(x) \mathrm{d}x = \sum_{n=1}^{\infty} \int\limits_{a}^{b} a_n(x) \mathrm{d}x \right. \end{array}$$

Доказательство. $S_k(x)=\sum_{n=1}^\infty a_n(x),\ \forall a_n(x)\in\mathcal{R}([a;b])\Longrightarrow S_k(x)\in\mathcal{R}([a;b])$ как сумма конечного числа интегральных функций

Тогда, выполняется теорема о почленном интегрировании функциональных последовательностей:

$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \lim_{k \to \infty} S_{k}(x) dx$$

$$= \lim_{k \to \infty} \int_{a}^{b} \sum_{n=1}^{k} a_{n}(x)$$

$$= \lim_{k \to \infty} \sum_{n=1}^{b} \sum_{n=1}^{k} a_{n}(x)$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \int_{a}^{b} a_{n}(x) dx$$

$$= \sum_{n=1}^{\infty} \int_{a}^{b} a_{n}(x) dx$$

12.5 Теорема о почленном дифференцировании

$$\left.\begin{array}{l} a_n(x):[a;b]\to\mathbb{R}\\ a_n(x)\in D[a;b]\\ \mathbf{Teopema.}\ \exists c\in[a;b]:\sum_{n=1}^\infty a_n(x)-\text{сходится}\\ \sum_{n=1}^\infty a_n'(x)\stackrel{[a;b]}{\rightrightarrows}\\ \sum_{n=1}^\infty a_n'(x)\stackrel{[a;b]}{\rightrightarrows}\\ \end{array}\right\}\Longrightarrow \begin{array}{l} \exists S(x):\sum_{n=1}^\infty a_n(x)\stackrel{[a;b]}{\rightrightarrows}S(x)\\ S'(x)=\sum_{n=1}^\infty a_n'(x) \end{array}$$

Доказательство.
$$S_k(x)=\sum_{n=1}^k a_n(x),$$
 тогда $\exists\lim_{k\to\infty}S_k(c);$ $S_k(x)\in D[a;b];$ $S_k'\overset{[a;b]}{\rightrightarrows}$

Значит, условие теоремы о почленном дифференцировании функциональных последовательностей выполнено $\hfill\Box$

12.6 Степенные ряды

Определение. Функциональный ряд вида $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ будем называть степенным рядом

- x_0 центр степенного ряда
- a_n коэффициенты степенного ряда

Примечание. При $x = x_0$ степенной ряд сходится

12.7 Радикальный признак Коши

Теорема. Пусть $a_n\geqslant 0,$ $\varlimsup_{n\to\infty}\sqrt[n]{a}=q,$ тогда степенной ряд $\sum_{n=1}^\infty a_n$ сходится при q<1, и расходится при q>1

12.8 Теорема Коши-Адамара

Теорема.
$$\sum_{n=1}^{\infty} a_n (x-x_0)^n, R=[0;+\infty).$$
 Пусть $\frac{1}{R}=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}$

Тогда,
$$\sum_{n=1}^{\infty} a_n (x-x_0)^n$$
 сходится $\forall x: |x-x_0| < R$ и расходится $\forall x: |x-x_0| > R$

Доказательство. Зафиксируем $x \in \mathbb{R}$

Рассмотрим

$$\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n(x - x_0)^n|} = \left(\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}\right) \cdot |x - x_0| = \frac{|x - x_0|}{R}$$

Получаем, что для любого фиксированного $x \in (x_0 - R; x_0 + R) : \frac{|x - x_0|}{R} < 1 \Longrightarrow$ числовой ряд

$$\sum_{n=1}^{\infty} |a_n(x-x_0)^n|$$

сходится по радикальному признаку Коши, а значит $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ — сходится абсолютно

Далее, для любого фиксированного $(-\infty; x_0-R) \cup (x_0+R; +\infty): \frac{|x-x_0|}{R} > 1 \Longrightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n(x-x_0)^n|} > 1$ и не выполняется необходимое условие сходимости числового ряда, так как

$$\exists N \forall n > N : \sqrt[n]{|a_n(x-x_0)^n|} > 1 \Longrightarrow |a_n(x-x_0)| > 1 \not\longrightarrow 0$$

Значит, оба ряда
$$\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$$
 и $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ — расходятся

Определение. R будем называть радиусом сходимости степенного ряда

Примечание. $(x_0 - R; x_0 + R)$ — интервал сходимости степенного ряда

13 Степенные ряды—2

13.1 Теорема о равномерной сходимости степенного ряда

Теорема. Пусть $\sum_{n=1}^{\infty} a_n (x-x_0)^n$, R — радиус сходимости степенного ряда, тогда

$$\forall r > 0: \ 0 < r < R$$
 степенной ряд $\sum_{n=1}^{\infty} a_n (x-x_0)^n \stackrel{|x-x_0| \leqslant r}{\Rightarrow}$

Доказательство. Используем признак Вейерштрасса: $|a_n(x-x_0)^n| = |a_n| \cdot |x-x_0|^n \leqslant |a_n| \cdot r^n$

По радикальному признаку Коши ряд $\sum_{n=1}^{\infty}|a_n|r^n$ — сходится, а $\lim_{n\to\infty}\sqrt[n]{|a_n|r^n}=\frac{r}{R}<1$. Значит, по мажорантному признаку Вейерштрасса $\sum_{n=1}^{\infty}a_n(x-x_0)^n\stackrel{|x-x_0|\leqslant r}{\rightrightarrows}$

13.2 Теорема о непрерывности суммы степенного ряда

Теорема.
$$S(x) = \sum_{n=1}^{\infty} a_n (x - x_0)^n \in C(|x - x_0| < R)$$

Доказательство. $\forall n \in \mathbb{N} \ a_n(x-x_0)^n \in C(|x-x_0| < R)$

Зафиксируем $\tilde{x}: |\tilde{x} - x_0| < R$. Пусть $r: |\tilde{x} - x_0| \leqslant r < R$, тогда $\forall x: |x - x_0| \leqslant r$ $S(x) \overset{|x - x_0| \leqslant r}{\Rightarrow}$ То есть $S(x) \in C(x)$, так как \tilde{x} — произвольная и r — любой $< R \Longrightarrow S(x) \in C(|x - x_0| < R)$

13.3 Теорема о почленном интегрировании степенного ряда

Теорема. Пусть R — радиус сходимости ряда $\sum_{n=0}^{\infty} a_n x^n = S(x)$, тогда

$$\int_{0}^{x} S(t)dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} \ \forall x \in (-R; R)$$

Доказательство. $\forall x \in (-R;R) \ a_n x^n \in \mathcal{R}([0;x])$ и $S(x) \stackrel{[0;x]}{\Rightarrow}$, тогда применима теорема о почленном интегрировании:

$$\int_{0}^{x} S(t) dt = \int_{0}^{x} \sum_{n=0}^{\infty} a_n t^n dt = \sum_{n=0}^{\infty} a_n \int_{0}^{x} t^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

Найдем его радиус сходимости с помощью формулы Коши-Адамара

$$\varlimsup_{n\to\infty} \sqrt[n+1]{\left|\frac{a_n}{n+1}x^{n+1}\right|} = \varlimsup_{n\to\infty} \frac{\sqrt[n+1]{|a_n|}}{\sqrt[n+1]{n+1}}|x| = \frac{|x|}{R} < 1 \Longleftrightarrow x \in (-R;R)$$

Примечание. Любой степенной ряд вида $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ можно путём сдвига $y=x-x_0$ свести к ряду $\sum_{n=0}^{\infty}a_ny^n$

13.4 Теорема о почленном дифференцировании степенного ряда

Теорема. Пусть R — радиус сходимости ряда $S(x) = \sum_{n=0}^{\infty} a_n x^n,$ тогда

$$S'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} \ \forall x \in (-R; R)$$

Доказательство. Для любого $x \in (-R; R)$:

1.
$$a_n(x)^n \in D[0; x]$$

2.
$$\exists 0 : S(0) = 0 - \text{сходится}$$

3.

$$\overline{\lim}_{n \to \infty} \sqrt[n-1]{n \cdot |a_n| \cdot |x^{n-1}|} = \overline{\lim}_{n \to \infty} \sqrt[n-1]{n} \cdot |x| \cdot \sqrt[n-1]{|a_n|} = \frac{|x|}{R} < 1 \iff |x| < R$$

$$ma_n x^{n-1} \stackrel{[0;x]}{\Longrightarrow}$$

TO ECTS
$$\sum_{n=0}^{\infty} n a_n x^{n-1} \stackrel{[0;x]}{\Rightarrow}$$

Получаем,
$$S'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} \ \forall x \in (-R; R)$$

Примечание. $\forall n \in \mathbb{N} \ \exists S^{(\star)}(x) = \sum_{n=k+1}^{\infty} n(n-1) \cdot \ldots \cdot (n-k+1) x^{n-k}$ с радиусом сходимости R и $\forall r : \ 0 < r < R \ S_N^{(\star)}(x) \overset{[-r;r]}{\Rightarrow}$

13.5 Разложение функции в степенной ряд

Утверждение. Если f(x) раскладывается в степенной ряд на (-R;R), R>0, то $f(x)\in D(-R;R)$

Доказательство.
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
, $x \in (-R; R)$, а далее по замечанию из предыдущей теоремы \square

Утверждение. Если f(x) раскладывается в степенной ряд на $(-R;R),\ R>0,$ то это разложение единственно