STATS 206 Applied Multivariate Analysis Lecture 3: Inferences About a Mean Vector

Prathapasinghe Dharmawansa

Department of Statistics Stanford University Autumn 2013

Agenda

- $\bullet \ \ {\rm Hotelling's} \ T^2 \ {\rm test} \\$
- ullet Likelihood ratio test and Hotelling's T^2
- Confidence regions
- Large sample inferences
- Dealing with missing values
- Effect of correlation among observations

Plausibility (Hypothesis Test) of a Mean Vector Problem Formulation

 $\mathbf{X}_1,\ldots,\mathbf{X}_n$: random sample from a normal population $\sim N_p(\boldsymbol{\mu},\boldsymbol{\Sigma})$

- ullet Our focus: the population mean μ
 - Is μ_0 (a known vector) plausible for μ ?
- Formulation as a test of the two competing hypotheses:

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0 \quad \text{ and } \quad H_1: \boldsymbol{\mu}
eq \boldsymbol{\mu}_0$$

 H_0 : the null hypothesis; H_1 : the alternative hypothesis

How to proceed? Start with the univariate case first (next page)

Plausibility (Hypothesis Test) of a Mean The Univariate Case (p = 1)

 X_1, \ldots, X_n : normal sample with mean μ

- Test of the two hypotheses: $H_0: \mu = \mu_0$ and $H_1: \mu \neq \mu_0$
- Let $\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$, $s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j \overline{X})^2$

Test statistic : $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}} \sim \text{Student's } t \text{ with } (n-1) \text{ deg. of freedom}$

Squared distance : $t^2 = n(\overline{X} - \mu_0)(s^2)^{-1}(\overline{X} - \mu_0)$

- Reject H_0 at significance level α if and only if the observed

$$n(\overline{x} - \mu_0)(s^2)^{-1}(\overline{x} - \mu_0) > t_{n-1}^2(\alpha/2)$$

 $t_{n-1}(\alpha/2)$: the upper $100(\alpha/2)$ th percentile of the t dist. (above)

Plausibility (Hypothesis Test) of a Mean Vector The multivariate Case $(p \ge 2)$ (i)

$$\mathbf{X}_1, \dots, \mathbf{X}_n$$
: normal sample $\sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- ullet Testing $H_0: oldsymbol{\mu} = oldsymbol{\mu}_0$ against $H_1: oldsymbol{\mu}
 eq oldsymbol{\mu}_0$
- Generalization

$$p = 1 : t^2 = n(\overline{X} - \mu_0)(s^2)^{-1}(\overline{X} - \mu_0)$$

 $p \geq 2$: Test statistic: Hotelling's T^2

$$T^{2} = n(\overline{\mathbf{X}} - \boldsymbol{\mu}_{0})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}_{0}) \sim \frac{(n-1)p}{(n-p)}F_{p,n-p}$$

$$- \overline{\mathbf{X}}_{p \times 1} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{X}_{j}, \quad \mathbf{S}_{p \times p} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{X}_{j} - \overline{\mathbf{X}}) (\mathbf{X}_{j} - \overline{\mathbf{X}})'$$

- $\boldsymbol{\mu}_0 = [\mu_{10}, \dots, \mu_{p0}]'$
- F_{c_1,c_2} : F-dist. with c_1 and c_2 deg. of freedom

Plausibility (Hypothesis Test) of a Mean Vector The multivariate Case $(p \ge 2)$ (ii)

 $\mathbf{X}_1, \dots, \mathbf{X}_n$: normal sample $\sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

• $F_{c_1,c_2}(\alpha)$: the upper (100α) th percentile of F_{c_1,c_2} For all values of μ, Σ

$$T^{2} = n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) \sim \frac{(n-1)p}{(n-p)}F_{p,n-p}$$

$$\implies P\left[T^{2} > \frac{(n-1)p}{(n-p)}F_{p,n-p}(\alpha)\right]$$

$$= P\left[n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) > \frac{(n-1)p}{(n-p)}F_{p,n-p}(\alpha)\right] = \alpha$$

$$\overline{\mathbf{X}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{X}_{j} \quad \mathbf{S} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{X}_{j} - \overline{\mathbf{X}}) (\mathbf{X}_{j} - \overline{\mathbf{X}})'$$

Plausibility (Hypothesis Test) of a Mean Vector The multivariate Case $(p \ge 2)$ (iii)

$$\mathbf{X}_1,\dots,\mathbf{X}_n$$
: normal sample $\sim N_p(oldsymbol{\mu},oldsymbol{\Sigma})$ $H_0:oldsymbol{\mu}=oldsymbol{\mu}_0$ and $H_1:oldsymbol{\mu}
eq oldsymbol{\mu}_0$

• $F_{c_1,c_2}(\alpha)$: the upper (100α) th percentile of F_{c_1,c_2} Reject H_0 at significance level α if and only if the observed

$$n(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)' \mathbf{S}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}_0) > \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$$

Plausibility (Hypothesis Test) of a Mean Vector The multivariate Case $(p \ge 2)$ (iv)

Remark: recall
$$(n-1)\mathbf{S} = \sum_{j=1}^{n} (\mathbf{X}_j - \overline{\mathbf{X}})(\mathbf{X}_j - \overline{\mathbf{X}})' \sim \mathbf{W}_{p,n-1}(\mathbf{\Sigma})$$

$$p=1:t^2=\underbrace{\sqrt{n}(\overline{X}-\mu_0)}_{\text{univariate normal}}\left(\underbrace{s^2}_{\text{scaled }\chi^2\text{ random variable}}\right)^{-1}\underbrace{\sqrt{n}(\overline{X}-\mu_0)}_{\text{univariate normal}}$$

$$p \geq 2: T^2 = \underbrace{\left[\underbrace{\sqrt{n}(\overline{\mathbf{X}} - \boldsymbol{\mu}_0)}_{N_p(\mathbf{0}, \boldsymbol{\Sigma})} \right]'}_{\text{Wishart random matrix}} \underbrace{\left[\underbrace{\sqrt{n}(\overline{\mathbf{X}} - \boldsymbol{\mu}_0)}_{N_p(\mathbf{0}, \boldsymbol{\Sigma})} \right]}_{\text{deg. of freedom}}^{-1}$$

Example 1: Testing a Multivariate Mean VectorSweat Data

X_1 : Sweat rate; X_2 : Sodium; X_3 : Potassium (from $n=20$ individuals)							
No	X_1	X_2	X_3	No	X_1	X_2	<i>X</i> ₃
1	3.7	48.5	9.3	11	3.9	36.9	12.7
2	5.7	65.1	8	12	4.5	58.8	12.3
3	3.8	47.2	10.9	13	3.5	27.8	9.8
4	3.2	53.2	12	14	4.5	40.2	8.4
5	3.1	55.5	9.7	15	1.5	13.5	10.1
6	4.6	36.1	7.9	16	8.5	56.4	7.1
7	2.4	24.8	14	17	4.5	71.6	8.2
8	7.2	33.1	7.6	18	6.5	52.8	10.9
9	6.7	47.4	8.5	19	4.1	44.1	11.2
10	5.4	54.1	11.3	20	5.5	40.9	9.4

Table 5.1 in the textbook

Example 1: Testing a Multivariate Mean Vector Calculating T^2 of the Sweat Data

- Assuming the data are multivariate normal (need to be checked first!)
- $\mu_0 = [4, 50, 10]'$
- ullet Test hypothesis $H_0: oldsymbol{\mu} = oldsymbol{\mu}_0$ against $H_1: oldsymbol{\mu}
 eq oldsymbol{\mu}_0$
- $\alpha = 0.10$
- It can be shown that (n = 20, p = 3)

$$T^{2} = 9.7388 > \underbrace{\frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha) \Big|_{\substack{\alpha = 0.1 \\ n = 20 \\ p = 3}}}_{\text{critical value here}} = 8.1726$$

 \implies Reject H_0 at $\alpha = 0.1$ (level of significance)

Example 1: Testing a Multivariate Mean Vector Calculating T^2 of the Sweat Data (MATLAB)

```
%%%%%% Calculating Hotelling's T^2 (T2)%%%%%%%%load T5_1.dat mu_0 = [4; 50; 10]; X = T5_1; [n, p] = size(X); X_Mean = (1/n) * X' * ones(n,1); S = (1/(n-1)) * X' * (eye(n) - (1/n) * ones(n,1) * ones(1,n)) * X; T2 = n * (X_Mean - mu_0)' * inv(S) * (X_Mean - mu_0); %%%%%% Evaluating the critical value (CV)%%%%%% alpha = 0.10; CV = (n-1) * p * finv(1-alpha, p, n-p)/(n-p);
```

Invariance Property of Hotelling's T^2

Transformation: $\mathbf{Y}_{p\times 1} = \mathbf{C}_{p\times p}\mathbf{X}_{p\times 1} + \mathbf{d}_{p\times 1}$ (C: non-singular)

Previous techniques

$$\overline{\mathbf{y}} = \mathbf{C}\overline{\mathbf{x}} + \mathbf{d}, \ \boldsymbol{\mu}_{\mathbf{Y}} = \mathbf{C}\boldsymbol{\mu} + \mathbf{d}$$

$$\mathbf{S}_{\mathbf{y}} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{y}_{j} - \overline{\mathbf{y}})(\mathbf{y}_{j} - \overline{\mathbf{y}})' = \mathbf{C}\mathbf{S}\mathbf{C}'$$

• Let $\mu_{\mathbf{Y},0} = \mathbf{C}\mu_0 + \mathbf{d}$

$$T^{2} = n(\overline{\mathbf{y}} - \boldsymbol{\mu}_{\mathbf{y},0})' \mathbf{S}_{\mathbf{y}}^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}_{\mathbf{y},0}) \quad (\text{for } \mathbf{y}_{1}, \dots, \mathbf{y}_{n})$$

$$= n[\mathbf{C}(\overline{\mathbf{x}} - \boldsymbol{\mu}_{0})]' (\mathbf{C}\mathbf{S}\mathbf{C}')^{-1}[\mathbf{C}(\overline{\mathbf{x}} - \boldsymbol{\mu}_{0})]$$

$$= n(\overline{\mathbf{x}} - \boldsymbol{\mu}_{0})' \mathbf{C}' (\mathbf{C}')^{-1} \mathbf{S}^{-1} \mathbf{C}^{-1} \mathbf{C} (\overline{\mathbf{x}} - \boldsymbol{\mu}_{0})$$

$$= n(\overline{\mathbf{x}} - \boldsymbol{\mu}_{0})' \mathbf{S}^{-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}_{0}) \quad (\text{for } \mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$

• Testing $H_0: \mu = \mu_0$ of $\mathbf{x} \Longleftrightarrow$ testing $H_0: \mu_{\mathbf{Y}} = \mu_{\mathbf{Y},0}$ of \mathbf{y}

Likelihood Ratio Tests of $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ (i)

- ullet Likelihood ratio test of $H_0: oldsymbol{\mu} = oldsymbol{\mu}_0$ against $H_1: oldsymbol{\mu}
 eq oldsymbol{\mu}_0$
- Recall: Maximum of the multivariate normal likelihood [unknown (μ, Σ)]

$$\max_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{np/2} |\widehat{\boldsymbol{\Sigma}}|^{n/2}} e^{-np/2}$$

where the maximum is achieved using the following estimates

$$\widehat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (\mathbf{x}_j - \overline{\mathbf{x}}) (\mathbf{x}_j - \overline{\mathbf{x}})'$$

$$\widehat{\boldsymbol{\mu}} = \overline{\mathbf{x}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j}$$

Likelihood Ratio Tests of $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ (ii)

• Under the hypothesis $H_0: \mu = \mu_0$ (unknown Σ only) (multivariate normal distribution)

$$L(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{np/2} |\boldsymbol{\Sigma}|^{n/2}} \exp\left(-\frac{1}{2} \sum_{j=1}^{n} (\mathbf{x}_{j} - \boldsymbol{\mu}_{0})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_{j} - \boldsymbol{\mu}_{0})\right)$$

$$\max_{\boldsymbol{\Sigma}} L(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{np/2} |\widehat{\boldsymbol{\Sigma}}_{0}|^{n/2}} e^{-np/2}$$

where the maximum here is achieved using the following estimate

$$\widehat{\Sigma}_0 = \frac{1}{n} \sum_{j=1}^n (\mathbf{x}_j - \boldsymbol{\mu}_0) (\mathbf{x}_j - \boldsymbol{\mu}_0)'$$

Likelihood Ratio Tests of $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ (iii)

• (Normal population) Is μ_0 plausible for μ ? Check

Likelihood Ratio =
$$\Lambda = \frac{\max_{\Sigma} L(\mu_0, \Sigma)}{\max_{\mu, \Sigma} L(\mu, \Sigma)} = \left(\frac{|\widehat{\Sigma}|}{|\widehat{\Sigma}_0|}\right)^{n/2}$$
Likelihood ratio statistic

- ullet Equivalently, check Wilks' lambda $=\Lambda^{2/n}=|\widehat{oldsymbol{\Sigma}}|/|\widehat{oldsymbol{\Sigma}}_0|$
- c_{α} : the lower (100α) th percentile of the dist. of Λ Likelihood ratio test rejects H_0 if

$$\Lambda = \left(\frac{|\widehat{\mathbf{\Sigma}}|}{|\widehat{\mathbf{\Sigma}}_0|}\right)^{n/2} = \left(\frac{\sum_{j=1}^n (\mathbf{x}_j - \overline{\mathbf{x}})(\mathbf{x}_j - \overline{\mathbf{x}})'}{\sum_{j=1}^n (\mathbf{x}_j - \boldsymbol{\mu}_0)(\mathbf{x}_j - \boldsymbol{\mu}_0)'}\right)^{n/2} < c_{\alpha}$$

Likelihood Ratio Tests of $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ (iv)

Hotelling's T^2 and Wilks' lambda $\Lambda^{2/n}$

$$\left(\Lambda^{2/n} = |\widehat{\Sigma}|/|\widehat{\Sigma}_0| = \left(1 + \frac{T^2}{n-1}\right)^{-1}\right)$$

Proof:

$$\begin{split} \widehat{\boldsymbol{\Sigma}}_0 = & \widehat{\boldsymbol{\Sigma}} + \ (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)' \quad (\text{Need some algebra here!}) \\ |\widehat{\boldsymbol{\Sigma}}_0| = & |\widehat{\boldsymbol{\Sigma}} + \ (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)'| \stackrel{(*)}{=} |\widehat{\boldsymbol{\Sigma}}| |1 + (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)'\widehat{\boldsymbol{\Sigma}}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)| \\ = & |\widehat{\boldsymbol{\Sigma}}| \left| 1 + \frac{n}{n-1} (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)' \mathbf{S}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}_0) \right| = |\widehat{\boldsymbol{\Sigma}}| \left(1 + \frac{T^2}{n-1} \right) \\ (*) : |\mathbf{A}_{m \times m} + \mathbf{a}_{m \times 1} (\mathbf{b}_{m \times 1})'| = |\mathbf{A}| (1 + \mathbf{b}' \mathbf{A}^{-1} \mathbf{a}) \quad (\mathbf{A} \text{ non-singular}) \end{split}$$

- For normal samples, test based on $T^2 \iff$ test based on Λ $(\Lambda^{2/n})$
- $T^2 = (n-1)(|\widehat{\Sigma}_0|/|\widehat{\Sigma}|-1)$: no need to calculate S^{-1}

General Likelihood Ratio Method

- General observations: $\mathbf{X}_1 = \mathbf{x}_1, \dots, \mathbf{X}_n = \mathbf{x}_n$
- ullet heta: vector of unknown population parameters $(oldsymbol{ heta} \in oldsymbol{\Theta})$
- $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \notin \Theta_0$ ($\Theta_0 \subset \Theta$; Θ : whole parameter space)
- ullet General likelihood ratio test statistic: Λ Reject H_0 if

$$\Lambda = \frac{\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta})}{\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta})} < c \text{ (a suitably chosen constant)}$$

• Remark:

$$-2\ln\Lambda \stackrel{\text{approximately}}{\longrightarrow} \chi^2_{\nu-\nu_0} \quad (n\to\infty)$$

 ν : dimension of Θ ; ν_0 : dimension of Θ_0

Confidence Regions (i)

ullet For a general random sample $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_n]'$ Unknown parameter vector $oldsymbol{ heta} \in oldsymbol{\Theta}$ (parameter space)

$$R(\mathbf{X}): 100(1-\alpha)\%$$
 confidence region $\iff \underbrace{P[\boldsymbol{\theta} \in R(\mathbf{X})]}_{\text{calculated under the true but unkown } \boldsymbol{\theta}} = 1-\alpha$

ullet Recall: for a p-dimensional normal population, $\forall oldsymbol{\mu}, oldsymbol{\Sigma}$

$$P\left[T^{2} = n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) \le \frac{(n-1)p}{(n-p)}F_{p,n-p}(\alpha)\right] = 1 - \alpha$$

$$\mathbf{S} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{X}_{j} - \overline{\mathbf{X}}) (\mathbf{X}_{j} - \overline{\mathbf{X}})'$$

 $F_{c_1,c_2}(\alpha)$: the upper (100α) th percentile of F_{c_1,c_2}

Confidence Regions (ii)

• Given $\mathbf{x}_1, \dots, \mathbf{x}_n$: observations from a p-dim normal population $100(1-\alpha)\%$ confidence region for the mean $\boldsymbol{\mu}$ of a p-dim. normal dist.

$$\left\{ \boldsymbol{\mu} : n(\overline{\mathbf{x}} - \boldsymbol{\mu})' \mathbf{S}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}) \le \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha) \right\}$$

$$\left[\overline{\mathbf{x}} = \frac{1}{n} \sum_{j=1}^{n} \mathbf{x}_{j}, \quad \mathbf{S} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{x}_{j} - \overline{\mathbf{x}})(\mathbf{x}_{j} - \overline{\mathbf{x}})' \right]$$

• Relation to testing $H_0: \mu = \mu_0$ vs. $H_1: \mu \neq \mu_0$ The above confidence region consists of all μ_0 with which H_0 would not be rejected by the T^2 test at significance level α .

Confidence Regions (iii)

• $100(1-\alpha)\%$ confidence region for the mean μ of a p-dim. normal dist.

$$\underbrace{\left\{\boldsymbol{\mu}: n(\overline{\mathbf{x}}-\boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{x}}-\boldsymbol{\mu}) \leq \frac{(n-1)p}{(n-p)}F_{p,n-p}(\alpha) = c^2\right\}}_{100(1-\alpha)\% \text{ confidence ellipsoid}}$$

• Given that: $\mathbf{Se}_i = \lambda_i \mathbf{e}_i, i = 1, \dots, p$

Center of the confidence ellipsoid $= \overline{\mathbf{x}}$

Axes of the confidence ellipsoid $=\pm \, c \sqrt{\lambda_i} \; {\bf e}_i$

$$= \pm \sqrt{\lambda_i} \sqrt{\frac{(n-1)p}{n(n-p)}} F_{p,n-p}(\alpha) \mathbf{e}_i$$

(similar to constant prob. density contour analysis of $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$)

Simultaneous Confidence Intervals (i)

$$\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Longrightarrow Z = \mathbf{a}' \mathbf{X} \sim N(\mathbf{a}' \boldsymbol{\mu}, \mathbf{a}' \boldsymbol{\Sigma} \mathbf{a}); \quad \mathbf{a} \neq \mathbf{0}$$
 $\mathbf{X}_1, \dots, \mathbf{X}_n$: random sample $\sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}); \quad Z_j = \mathbf{a}' \mathbf{X}_j, \forall j$
 $\overline{\mathbf{x}}$ (S): sample mean (cov. matrix) from $\mathbf{x}_1, \dots, \mathbf{x}_n$

- Sample mean and var. of z_1, \ldots, z_n : $\overline{z} = \mathbf{a}' \overline{\mathbf{x}}, \ s_z^2 = \mathbf{a}' \mathbf{S} \mathbf{a}$
- $100(1-\alpha)\%$ confidence interval for $\mu_Z = \mathbf{a}'\boldsymbol{\mu}$ (given \mathbf{a} , unknown σ_Z^2)

$$\mathbf{a}'\overline{\mathbf{x}} - t_{n-1}(\alpha/2) \frac{\sqrt{\mathbf{a}'\mathbf{S}\mathbf{a}}}{\sqrt{n}} \le \mathbf{a}'\boldsymbol{\mu} \le \mathbf{a}'\overline{\mathbf{x}} + t_{n-1}(\alpha/2) \frac{\sqrt{\mathbf{a}'\mathbf{S}\mathbf{a}}}{\sqrt{n}}$$
 using Student's $t: |t| = \left|\frac{\overline{z} - \mu_Z}{s_z/\sqrt{n}}\right| = \left|\frac{\sqrt{n}(\mathbf{a}'\overline{\mathbf{x}} - \mathbf{a}'\boldsymbol{\mu})}{\sqrt{\mathbf{a}'\mathbf{S}\mathbf{a}}}\right| \le t_{n-1}(\alpha/2)$

Simultaneous Confidence Intervals (ii)

- A simultaneous region satisfies: $\forall \mathbf{a} : t^2 = \left(\frac{\sqrt{n}(\mathbf{a}'\overline{\mathbf{x}} \mathbf{a}'\boldsymbol{\mu})}{\sqrt{\mathbf{a}'\mathbf{S}\mathbf{a}}}\right)^2 \leq c^2$
- If $\max_{\mathbf{a}} t^2 \le c^2$, then the above holds.

$$\max_{\mathbf{a}} t^{2} = \max_{\mathbf{a}} \frac{n \left(\mathbf{a}'(\overline{\mathbf{x}} - \boldsymbol{\mu})\right)^{2}}{\mathbf{a}'\mathbf{S}\mathbf{a}} = n \left[\max_{\mathbf{a}} \frac{\left(\mathbf{a}'(\overline{\mathbf{x}} - \boldsymbol{\mu})\right)^{2}}{\mathbf{a}'\mathbf{S}\mathbf{a}}\right]$$
$$= n(\overline{\mathbf{x}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu})$$
$$= T^{2}$$

Maximum achieved with $\mathbf{a} = b \cdot \mathbf{S}^{-1}(\overline{\mathbf{x}} - \boldsymbol{\mu}) \ (b \neq 0: \text{ constant})$

• Recall: $T^2 \sim \frac{(n-1)p}{n-p} F_{p,n-p}$

Simultaneous Confidence Intervals (iii)

If: $\mathbf{X}_1, \dots, \mathbf{X}_n$: random sample $\sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ ($\boldsymbol{\Sigma}$ positive definite)

Then: simultaneously for all a,

$$\left(\mathbf{a}'\overline{\mathbf{X}} - \sqrt{\frac{p(n-1)}{n(n-p)}}F_{p,n-p}(\alpha)\mathbf{a}'\mathbf{S}\mathbf{a}, \quad \mathbf{a}'\overline{\mathbf{X}} + \sqrt{\frac{p(n-1)}{n(n-p)}}F_{p,n-p}(\alpha)\mathbf{a}'\mathbf{S}\mathbf{a}\right)$$

will contain $\mathbf{a}'\boldsymbol{\mu}$ with prob. $(1-\alpha)$.

• The simultaneous intervals are referred to as T^2 -intervals.

Simultaneous Confidence Intervals (iv)

• Choices of $\mathbf{a} = [1, 0, \dots, 0]', [0, 1, \dots, 0]', \dots, [0, \dots, 0, 1]'$

$$\Rightarrow \overline{x}_{j} - \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{jj}}{n}}$$

$$\leq \mu_{j} \leq \overline{x}_{j} + \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{jj}}{n}}, \quad j = 1, \dots, p$$

all hold simultaneously with confidence coefficient $1-\alpha$

Simultaneous Confidence Intervals (v)

• Let
$$\mathbf{a} = [0, \dots, 0, a_i, 0, \dots, 0, a_k, 0, \dots, 0]', \ a_i = 1, a_k = -1$$

$$\Rightarrow \overline{x}_i - \overline{x}_k - \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{ii} - 2s_{ik} + s_{kk}}{n}}$$

$$\leq \mu_i - \mu_k$$

$$\leq \overline{x}_i - \overline{x}_k + \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{ii} - 2s_{ik} + s_{kk}}{n}}$$

One-at-a-Time Intervals

• Consider each component μ_j one at a time, for $j=1,\ldots,p$:

$$\overline{x}_j - t_{n-1}(\alpha/2)\sqrt{\frac{s_{jj}}{n}} \le \mu_j \le \overline{x}_j + t_{n-1}(\alpha/2)\sqrt{\frac{s_{jj}}{n}}$$

- No clue of $P[\mathsf{all}\ t\text{-intervals}\ \mathsf{above}\ \mathsf{contain}\ \mathsf{the}\ \mu_j$'s] in general
- When X_i 's are independent

$$P[\text{all }t\text{-intervals above contain the }\mu_j\text{'s}]=(1-\alpha)^p$$

- The T^2 -interval is wider than the individual interval for each μ_j . (Comparison next page)

Comparison of T^2 and One-at-a-Time Intervals

Critical distance multipliers for both intervals $(1 - \alpha = 0.95)$

sample size		$\sqrt{\frac{p(n-1)}{(n-p)}}F_{p,n-p}(0.05)$	
n	$t_{n-1}(0.025)$	p=4	p = 10
15	2.1448	4.1338	11.5144
25	2.0639	3.6032	6.3796
50	2.0096	3.3117	5.0444
100	1.9842	3.1897	4.6166
∞	1.9600	3.0750	4.2769

Bonferroni Method for Multiple Comparisons (i)

- Motivation: in practice
 - $-T^2$ intervals can be too wide to use
 - Only m (finite) linear combinations needed: $\mathbf{a}_1,\dots,\mathbf{a}_m$ \Longrightarrow Constructing shorter intervals than T^2
- C_i : confidence statement about $\mathbf{a}_i'\boldsymbol{\mu}$, $P(C_i \text{ true}) = 1 \alpha_i$, $i = 1, \ldots, m$

$$P[\text{all } C_i\text{'s true}] = 1 - P[\text{at least one } C_i \text{ false}]$$

$$\overset{\text{Bonferroni}}{\geq} 1 - \sum_{i=1}^m P[C_i \text{ false}] = 1 - \sum_{i=1}^m (1 - P[C_i \text{ true}])$$

$$= 1 - (\alpha_1 + \ldots + \alpha_m)$$

control of overall type-I error rate $\sum_i \alpha_i$; flexibility in choosing each α_i

Bonferroni Method for Multiple Comparisons (ii)

• Let $z_i = \mathbf{a}_i' \mathbf{x}_i$; $s_{z,ii} = \mathbf{a}_i' \mathbf{S} \mathbf{a}_i$; without prior info., $\alpha_i = \frac{\alpha}{m}, \forall i$

$$P\left[\overline{z}_i \pm t_{n-1}(\alpha/(2m))\sqrt{s_{z,ii}/n} \text{ contains } \mathbf{a}_i'\boldsymbol{\mu}\right] = 1 - \alpha/m, \forall i$$

$$P\left[\overline{z}_i \pm t_{n-1}(\alpha/(2m))\sqrt{\frac{s_{z,ii}}{n}} \text{ contains } \mathbf{a}_i'\boldsymbol{\mu}, \underline{\forall i}\right] \ge 1 - \sum_{i=1}^m \frac{\alpha}{m} = 1 - \alpha$$

• Set m = p, $\mathbf{a}_i = [0, \dots, 0, 1, 0, \dots, 0]'$ (1 at the *i*-th entry only), $\forall i$: Then the following intervals (the Bonferroni intervals)

$$\overline{x}_i - t_{n-1}(\alpha/(2p))\sqrt{\frac{s_{ii}}{n}} \le \mu_i \le \overline{x}_i + t_{n-1}(\alpha/(2p))\sqrt{\frac{s_{ii}}{n}}, \quad i = 1, \dots, p$$

hold (simultaneously) with probability $\geq 1-\alpha$

Comparison of T^2 and Bonferroni Intervals

• Comparing Bonferroni and T^2 intervals (same \mathbf{a}_i 's, $\alpha_i = \alpha/p$):

$$t_{n-1}(\alpha/(2p)) \leftarrow \sqrt{\frac{p(n-1)}{n-p}F_{p,n-p}}(\alpha)$$
 (difference in intervals)

$$\frac{\text{Length of Bonferroni interval}}{\text{Length of } T^2 \text{ interval}} = \frac{t_{n-1}(\alpha/(2p))}{\sqrt{\frac{p(n-1)}{n-p}F_{p,n-p}(\alpha)}}$$

• Table of the above ratio ($\alpha_i = \alpha/p, 1 - \alpha = 0.95$)

	p					
n	2	4	10			
15	0.8766	0.6928	0.2888			
25	0.8947	0.7494	0.4844			
50	0.9060	0.7831	0.5828			
100	0.9110	0.7976	0.6219			
∞	0.9199	0.8122	0.6563			

Large Sample Inferences about a Mean Vector (i)

• Recall: for large n-p,

$$n(\overline{\mathbf{X}} - \boldsymbol{\mu})' \mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) \longrightarrow \chi_p^2$$
 distributed

$$\implies P[n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) \le \chi_p^2(\alpha)] \approx 1 - \alpha$$

 $\chi_p^2(\alpha)$: the upper (100α) th percentile of χ_p^2

• Consequences: next page

Large Sample Inferences about a Mean Vector (ii)

 $\mathbf{X}_1,\dots,\mathbf{X}_n$: random sample (mean: $oldsymbol{\mu}$, finite positive def. cov.: $oldsymbol{\Sigma}$) (no normality assumption)

- (Asymptotic testing)
 For large n-p: at significance level approximately α :
 reject the hypothesis $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$ in favor of $H_1: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$ if $n(\overline{\mathbf{X}} \boldsymbol{\mu}_0)'\mathbf{S}^{-1}(\overline{\mathbf{X}} \boldsymbol{\mu}_0) > \chi^2_n(\alpha)$.
- (Asymptotic <u>simultaneous</u> confidence intervals) For large n-p and for every **a**

$$\mathbf{a}'\overline{\mathbf{X}} \pm \sqrt{\chi_p^2(\alpha)}\sqrt{\frac{\mathbf{a}'\mathbf{S}\mathbf{a}}{n}}$$

will contain $\mathbf{a}'\boldsymbol{\mu}$ with probability approximately $1-\alpha$.

Note: For large n and large n-p, $[p(n-1)/(n-p)]F_{p,n-p}\approx \chi_p^2(\alpha)$

Dealing with Missing Observations in Normal Samples

- Important assumption: data are missing at random!
- One of the methods: the EM algorithm (see footnote for a ref.)
- Recall: (multivariate normal distribution)
 - 1. (Cond. dist. of a subset) $\mathbf{Y} = [\mathbf{Y}_1' \ \mathbf{Y}_2']' \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \ |\boldsymbol{\Sigma}_{22}| > 0$ $\mathbf{Y}_1 \sim N_q(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11}), \ \mathbf{Y}_2 \sim N_{p-q}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22}), \ \mathsf{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = \boldsymbol{\Sigma}_{12}, \ q \leq p$

$$= > \mathbf{Y}_1|_{\mathbf{Y}_2 = \mathbf{y}_2} \sim N_q \left(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{y}_2 - \boldsymbol{\mu}_2), \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \right)$$

2. $\mathbf{X}_1, \dots, \mathbf{X}_n$: sample $\sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ ($\boldsymbol{\mu}, \boldsymbol{\Sigma}$ unknown, to be estimated)

$$\overline{\mathbf{X}}$$
 and \mathbf{S} : sufficient statistics \implies so are: $\mathbf{T}_1 = \sum_j \mathbf{X}_j = n\overline{\mathbf{X}}$ and $\mathbf{T}_2 = \sum_j \mathbf{X}_j \mathbf{X}_j' = (n-1)\mathbf{S} + n\overline{\mathbf{X}}\overline{\mathbf{X}}_j'$

Dempster, Laird and Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, Series B (Methodological), Vol. 39, No. 1, (1977), pp. 1-38.

Dealing with Missing Observations in Normal Samples The EM Algorithm (Assuming Data Missing at Random) (i)

 $\mathbf{X}_1,\ldots,\mathbf{X}_n$: p-dim. normal sample with unknown $\boldsymbol{\mu},\boldsymbol{\Sigma}$

- ullet Initializing $\widehat{oldsymbol{\mu}},\widehat{oldsymbol{\Sigma}},\widehat{oldsymbol{T}}_1,\widehat{oldsymbol{T}}_2$ (for $oldsymbol{T}_1,oldsymbol{T}_2$, see prev. page)
- E-step: for each vector with missing values: $\mathbf{x}_j = [\mathbf{x}_j^{(1)'}, \mathbf{x}_j^{(2)'}]'$: $(\mathbf{x}_j^{(1)})$: missing, $\mathbf{x}_j^{(2)}$: available)

$$(\star) \; \widehat{\mathbf{x}}_{j}^{(1)} = \; \mathsf{E}(\mathbf{X}_{j}^{(1)} | \mathbf{x}_{j}^{(2)}; \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) = \widehat{\boldsymbol{\mu}}_{1} + \widehat{\boldsymbol{\Sigma}}_{12} \widehat{\boldsymbol{\Sigma}}_{22}^{-1} (\mathbf{x}_{j}^{(2)} - \widehat{\boldsymbol{\mu}}_{2})$$

$$(\diamond) \ \widehat{\mathbf{x}_{j}^{(1)}} \widehat{\mathbf{x}_{j}^{(1)'}} = \ \mathsf{E}(\mathbf{X}_{j}^{(1)} \mathbf{X}_{j}^{(1)'} | \mathbf{x}_{j}^{(2)}; \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}})$$
$$= \widehat{\boldsymbol{\Sigma}}_{11} - \widehat{\boldsymbol{\Sigma}}_{12} \widehat{\boldsymbol{\Sigma}}_{22}^{-1} \widehat{\boldsymbol{\Sigma}}_{21} + \widehat{\mathbf{x}}_{j}^{(1)} \widehat{\mathbf{x}}_{j}^{(1)'}$$

$$(\circ) \ \widehat{\mathbf{x}_{j}^{(1)}} \widehat{\mathbf{x}_{j}^{(2)'}} = \ \mathsf{E}(\mathbf{X}_{j}^{(1)} \mathbf{X}_{j}^{(2)'} | \mathbf{x}_{j}^{(2)}; \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}}) = \widehat{\mathbf{x}}_{j}^{(1)} \widehat{\mathbf{x}}_{j}^{(2)'}$$

 (\star) : estimate of missing data; use $(\star), (\diamond), (\circ)$ to update $\widehat{\mathbf{T}}_1$, $\widehat{\mathbf{T}}_2$

Dealing with Missing Observations in Normal Samples The EM Algorithm (Assuming Data Missing at Random) (ii)

 $\mathbf{X}_1,\ldots,\mathbf{X}_n$: p-dim. normal sample with unknown $oldsymbol{\mu},oldsymbol{\Sigma}$

• M-step: compute the updates of ML estimates

$$\widehat{\boldsymbol{\mu}} = \frac{\widehat{\mathbf{T}}_1}{n}, \ \ \widehat{\boldsymbol{\Sigma}} = \frac{\widehat{\mathbf{T}}_2}{n} - \widehat{\boldsymbol{\mu}}\widehat{\boldsymbol{\mu}}'$$

• Recursively continue the above E-step and M-step until the difference between updates and previous values are smaller than a given small value.

Effect of Correlation among Observations (i)

- Suppose observations are collected over time
- ullet Time correlation: using the first-order autoregressive (AR (1)) model

$$\mathbf{X}_t - \boldsymbol{\mu} = \boldsymbol{\Phi}(\mathbf{X}_{t-1} - \boldsymbol{\mu}) + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim N_p(\mathbf{0}, \boldsymbol{\Sigma}_{\boldsymbol{\varepsilon}})(\boldsymbol{\varepsilon}_t : \text{ i.i.d. over } t)$$

Also assuming $|\lambda_i(\mathbf{\Phi})| < 1, \forall i$

Clearly,

$$egin{aligned} \mathbf{X}_t - oldsymbol{\mu} &= oldsymbol{arepsilon}_t + oldsymbol{\Phi}(\mathbf{X}_{t-1} - oldsymbol{\mu}) \ &= oldsymbol{arepsilon}_t + oldsymbol{\Phi}[oldsymbol{arepsilon}_{t-1} + oldsymbol{\Phi}(\mathbf{X}_{t-2} - oldsymbol{\mu})] \ &= oldsymbol{arepsilon}_t + oldsymbol{\Phi}oldsymbol{arepsilon}_{t-1} + oldsymbol{\Phi}^2oldsymbol{arepsilon}_{t-2} + \dots \ & oldsymbol{\Sigma}_{\mathbf{x}} = \mathsf{E}(\mathbf{X}_t - oldsymbol{\mu})(\mathbf{X}_t - oldsymbol{\mu})' = \sum_{j=0}^\infty oldsymbol{\Phi}^j oldsymbol{\Sigma}_{oldsymbol{arepsilon}} oldsymbol{\Phi}^{'j} \ & \mathsf{Cov}(\mathbf{X}_t, \mathbf{X}_{t-r}) = oldsymbol{\Phi}^r oldsymbol{\Sigma}_{\mathbf{x}} \end{aligned}$$

Effect of Correlation among Observations (ii)

• Collect X_t for n consecutive times to get X_1, \ldots, X_n ; It can be shown that

$$\mathbf{S} = \frac{1}{n-1} \sum_{t=1}^{n} (\mathbf{X}_t - \overline{\mathbf{X}}) (\mathbf{X}_t - \overline{\mathbf{X}})' \to \mathbf{\Sigma}_{\mathbf{x}} \text{ (in prob.)} \quad (n \to \infty)$$

$$\overline{\mathbf{X}} \to \boldsymbol{\mu}, \quad \mathsf{Cov}\left(n^{-1/2}\sum_{t=1}^n \mathbf{X}_t\right) \to \boldsymbol{\Psi} \; (\mathsf{in \; prob.}) \quad (n \to \infty)$$

where
$$\Psi = (\mathbf{I} - \mathbf{\Phi})^{-1} \mathbf{\Sigma}_{\mathbf{x}} + \mathbf{\Sigma}_{\mathbf{x}} (\mathbf{I} - \mathbf{\Phi}')^{-1} - \mathbf{\Sigma}_{\mathbf{x}}$$

Furthermore, for large n

$$\sqrt{n}(\overline{\mathbf{X}} - \boldsymbol{\mu}) \approx \text{ distributed as } N_p(\mathbf{0}, \boldsymbol{\Psi})$$

$$\Longrightarrow n(\overline{\mathbf{X}} - \boldsymbol{\mu})' \boldsymbol{\Psi}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu}) \approx \text{ distributed as } \chi_p^2$$

Effect of Correlation among Observations (iii)

ullet Large n, $\mathbf{X}_1,\ldots,\mathbf{X}_n$: i.i.d. $(\mathbf{S} o oldsymbol{\Sigma}_{\mathbf{x}}$ in prob.)

$$\Longrightarrow \left\{ \boldsymbol{\mu} : \underbrace{n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu})}_{\text{asymptotically } n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\boldsymbol{\Sigma}_{\mathbf{x}}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu})} \leq \chi_p^2(0.05) \right\}$$

covers μ with prob. 0.95 (asymptotically).

• Large n, $\mathbf{X}_1,\ldots,\mathbf{X}_n$: AR(1) $[\mathbf{\Phi}=\phi\mathbf{I},(|\phi|<1),\ \mathbf{\Psi}=\frac{1+\phi}{1-\phi}\mathbf{\Sigma}_{\mathbf{x}}]$,

$$\Longrightarrow \left\{ \boldsymbol{\mu} : \underbrace{n(\overline{\mathbf{X}} - \boldsymbol{\mu})'\mathbf{S}^{-1}(\overline{\mathbf{X}} - \boldsymbol{\mu})}_{\text{asymptotically } \boldsymbol{n}(\overline{\mathbf{X}} - \boldsymbol{\mu})'[\frac{1+\phi}{1-\phi}\boldsymbol{\Psi}^{-1}](\overline{\mathbf{X}} - \boldsymbol{\mu})} \sim \frac{1+\phi}{1-\phi}\chi_p^2 \right\}$$

covers μ with $\underbrace{P[\chi_p^2 \leq (1-\phi)(1+\phi)^{-1}\chi_p^2(0.05)]}_{\text{tabulated on next page}}$ (asymptotically).

Effect of Correlation among Observations (iv)

Table:

$P\left[\chi_p^2 \le (1 - \phi)(1 + \phi)^{-1}\chi_p^2(0.05)\right]$							
	ϕ						
p	-0.25	0	0.25	0.5			
1	0.9886	0.95	0.8710	0.7422			
2	0.9932	0.95	0.8343	0.6316			
5	0.9976	0.95	0.7514	0.4052			
10	0.9993	0.95	0.6413	0.1934			
15	0.9997	0.95	0.5484	0.0902			

Conclusion: correlation among observations can cause the coverage prob. to drop significantly (e.g., comparing some of the above with 0.95 in the case with i.i.d. observations).