문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	1	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

2017년 1학기 데이터베이스 설계 최종 보고서

기상정보 제공 및 분석 시스템

제출일: 2017년 06월 16일

담당 교수	정병수 교수님
조원	임호준
연락처	EMAIL 임호준: bluemkl11@naver.com
	C.P
	임호준: 010-6689-1070

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	2	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017	.06.16

목차

1 서론

- 1.1 설계 배경
- 1.2 설계 목표
- 1.3 구현 툴

2 시스템 설계

- 2.1 시스템 개념도
- 2.2 시스템 구조도

3 데이터베이스 설계

- 3.1 ER 다이어그램
- 3.2 테이블 스키마

4 사용자 인터페이스 및 기능

- 4.1 서버 기능
- 4.2 클라이언트 인터페이스 및 기능
 - 4.2.1 기본 화면
 - 4.2.2 서버에 연결 시 화면
 - 4.2.3 전국의 오늘 기온 시각화 기능
 - 4.2.4 도시별 최근 날씨 분석 시각화 기능
 - 4.2.5 특정 도시의 최근 날씨 기능
 - 4.2.6 특정 장소의 현재 날씨 기능
 - 4.2.7 최근 검색 지역 확인

5 테스트 및 설계 결과

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	3	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017	.06.16

1. 서론

1.1 설계 배경

최근 다양한 기상정보를 제공해주는 어플리케이션이 많이 만들어 지고 있다. 그런데 제공되는 기상정보를 분석하여 서비스하거나, 최근 지역별 날씨를 시각화 하는 등의 기능을 가진 어플리케이션은 많이 없는 듯 하여 데이터베이스 프로젝트로 구현하게 되었다.

1.2 설계 목표

기상청, SK Weather Planet등에서 제공하는 기상 정보들을 Http Response로 받아와 데이터베이스로 관리하며, 서버에서는 데이터베이스를 연동하여 정보들을 다양한 방법으로 보여주거나, 분석한 결과를 보여주는 시스템을 구현한다. 데이터베이스에는 지역별 경보 정보, 지역 시 별 위치정보, 최근의 기상 정보등을 저장하고 그 데이터베이스와 서버를 연동하여 효율적으로 관리하는 것이 최종 목표이다.

1.3 구현 툴

개발 도구: Eclipse, Android Studio

사용언어: JAVA

DBMS: MYSQL

통신: TCP 기반의 소켓통신, HTTP

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	4	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

2. 시스템 설계

2.1 시스템 개념도

2.2 시스템 구조도

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	5	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

3. 데이터베이스 설계

3.1 ER Diagram

3.2 테이블 스키마

[1] Alert Table

한글 필드명	영문 필드명	데이터 타입	비고
지방	Province	Varchar(100)	Primary Key, Foreign key
폭염기준	mHeatWave	Int(50)	
한파기준	mColdWave	Int(50)	
강풍기준	mWindSpeed	Double	
건조기준	mHumidity	Double	

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	6	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

[2] Area Table

한글 필드명	영문 필드명	데이터 타입	비고
지방	Province	Varchar(100)	Foreign Key,
도시	City	Varchar(50)	Primary Key
			Foreign Key
위도	Latitude	Varchar(100)	
경도	longitude	Varchar(100)	

[3] WeatherData Table

한글 필드명	영문 필드명	데이터 타입	비고
도시	City	Varchar(50)	Primary Key
			Foreign Key
날짜	Date	Timestamp	Primary Key
기상정보	Wf	Varchar(100)	
최고 기온	Tmx	Int(10)	
최저 기온	Tmn	Int(10)	

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	7	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017	.06.16

4. 사용자 인터페이스 및 기능

4.1 서버 기능

- 1. 3000번 포트를 열어 서버 Open
- 2. 각각의 소켓 연결을 관리하는 Thread List를 두어 여러 사용자가 서 비스를 요청하더라도 동시에 서비스를 제공가능

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	8	총 페이	지수	14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

4.2 클라이언트 인터페이스 및 기능

4.2.1 기본 화면

1.구현된 어플리케이션의 기본 화면이다. 사용자의 현재 위치를 가져와해당 위도, 경도 지점의 맵을 화면에 띄운다.

2.메뉴 버튼을 누르면 다음과 같은 5개의 메뉴가 나타난다.

4.2.2 서버에 연결 시 화면

- 1. 메뉴의 Connect를 클릭하면 서 버와 소켓 연결을 한 뒤 자동적으로 기상청으로 부터 오늘의 날씨를 가져온다.
- 2. 가져온 날씨들로 도시 위,경도 값에 해당하는 지점에 마커를 생성한다.

1

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	9	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

4.2.3 전국의 오늘 기온 시각화 기능

1.서버로부터 각 도시별 오늘날씨를 불러와BarGraph 형태로 출력하여 보여준다.

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	10	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

4.2.4 도시별 최근 날씨 분석 시각화 기능

1.도시 별로 최근 날씨가 화창했는지에 대한 여부를 분석하여, 최근에 가장 날씨가 맑았던 도시가 PieGraph에서 큰 지분을 차지하도록 구현하였다.

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	11	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

4.2.5 특정 도시의 최근 날씨 기능

- 1. 사용자로부터 최근 날씨를 확인하고 싶은 지역을 입력받는다.
- 2. 선택된 지역의 최근 날씨를 데이터베이스로 부터 가져와, 그 지역이 포 함된 지방의 폭염기준(Heat Wave Limit)과 함께 그래프로 시각화한다.

범위에 해당하는 논문이 출력되고, 앞에서 설명한 것과 같이 해당 논문에 커서를 가져다 대면 해당 논문의 요약 내용이 출력되고, 웹 사이트로 가서자세한 논문 내용을 열람할 수도 있다.

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	12	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

4.2.6 특정 장소의 현재 날씨 기능

- 1. 사용자가 맵의 특정 지역을 Long Click
- 2. Client가 Long Click Event가 발생한 지점의 위도, 경도를 서버로 전송
- 3. 서버에서 SK WeatherPlanet에 현재 해당 지점의 날씨 정보를 요청(HTTP)
- 4. 응답으로 온 날씨 정보를 분석하여 경고 특보에 해당하는지에 대한 여부를 Altert Table과 Join 하여 확인 한 뒤 Client 에게 전송

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	13	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017.	.06.16

4.2.7 최근 검색 지역 확인

1. 위의 4.2.6 기능을 사용하여 검색했던 최근 리스트를 날씨 마커와 함께 출력

문서 제목	데이터베이스 설계	계 최종 보고서	페이지수	14	총 페이지수		14
작성자	임호준	작성일	2017.06.15		제출일	2017	.06.16

5. 테스트 및 설계 결과

실제 사용한 결과 서버와 클라이언트가 소켓통신에 의해 실시간으로 데이터 및 요청이 보내짐에 따라 그에 대한 응답이 잘 동작하는 것을 확인하였다. 또한 같은 기상 정보에 관해 여러 SQL Query문을 사용하여 다양한 관점에서의 분석 결과를 시각화하여 제공함으로 사용자에게 효율적으로 정보를 전달할 수 있 었다.