

Algorithms for Matrix Approximation:

Sketching, Sampling, and Sparse Optimization

Taisuke (Tai) Yasuda

Thesis Committee:

- David P. Woodruff (Chair)
- · Anupam Gupta
- Richard Peng
- Cameron Musco (University of Massachusetts Amherst)

"Turning big data to tiny data"

- Matrix approximation algorithms
 - Input: a large matrix
 - Output: a small/structured matrix which "resembles" the input matrix
- Why is matrix approximation interesting?
 - Widespread use in real world engineering applications
 - Efficient algorithms for processing large datasets
 - Numerous connections to other fields of theoretical computer science
 - Optimization, computational geometry, sublinear algorithms, etc
 - Information and communication theoretic lower bounds
 - Understand how good our algorithms are

Randomized Numerical Linear Algebra

- Numerical linear algebra: deterministic algorithms for solving linear algebra to machine precision
- Randomized numerical linear algebra: randomized approximation algorithms for numerical linear algebra
 - Randomized: succeed every time → succeed with 99% probability
 - Approximation: solve exactly → solve up to (small) error
 - This flexibility leads to extraordinary improvements in efficiency!
 - Key techniques: sketching (dimensionality reduction) and sampling

Sparse Optimization

- Approximation: (often convex) optimization
- Small/structured matrix: **sparsity** in an appropriate sense
- Matrix approximation problems are often captured by sparse optimization

Minimize $f(\mathbf{x})$ over $\mathbf{x} \in \mathbb{R}^d$

s.t. x has at most k nonzero entries

· Key techniques: greedy algorithms, convex relaxations

Overview of the Talk

Part I. Sketching

- 。 Oblivious ℓ_p subspace embeddings
- Part II. Sampling
 - . Active ℓ_p linear regression
 - . Coresets for ℓ_p subspace approximation
 - Streaming computational geometry
- Part III. Sparse Optimization
 - Column subset selection

Linear Regression

• Linear regression: given a matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ and a vector $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

- Widely used model for supervised learning
- Building block for complex models and algorithms
- Can we design efficient approximation algorithms for linear regression?

Linear Regression

 $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

• One approach: approximate the original instance by a smaller instance

Goal. Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$ for every $\mathbf{x} \in \mathbb{R}^d$

. There are many possible ways to choose $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$!

Idea. Choose $\tilde{\mathbf{A}} = \mathbf{S}\mathbf{A}$ and $\tilde{\mathbf{b}} = \mathbf{S}\mathbf{b}$ for some $\mathbf{S} \in \mathbb{R}^{r \times n}$, $r \ll n$

"Sketch"

Linear Regression

Goal. Replace \mathbf{A} and \mathbf{b} by a smaller $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{b}}$ s.t. $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2 \approx \|\tilde{\mathbf{A}}\mathbf{x} - \tilde{\mathbf{b}}\|_2$ for every $\mathbf{x} \in \mathbb{R}^d$

Idea. Choose $\tilde{\mathbf{A}} = \mathbf{S}\mathbf{A}$ and $\tilde{\mathbf{b}} = \mathbf{S}\mathbf{b}$ for some $\mathbf{S} \in \mathbb{R}^{r \times n}$, $r \ll n$

Linear Regression

Definition (Sarlos 2006). $S \in \mathbb{R}^{r \times n}$ is a subspace embedding of $A \in \mathbb{R}^{n \times d}$ if

 $\|\mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 \le \kappa \|\mathbf{A}\mathbf{x}\|_2$

for every $\mathbf{x} \in \mathbb{R}^d$.

Distortion/error

- Why is this useful?
 - Let $\mathbf{A}' = [\mathbf{A} \ \mathbf{b}] \in \mathbb{R}^{n \times (d+1)}$ and let $\mathbf{S} \in \mathbb{R}^{r \times n}$ be a subspace embedding of \mathbf{A}'
 - $\bullet \mathbf{A}\mathbf{x} \mathbf{b} = \mathbf{A}'\mathbf{x}' \text{ for } \mathbf{x}' = [\mathbf{x}; -1] \in \mathbb{R}^{d+1}$
 - $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2 \le \|\mathbf{S}\mathbf{A}\mathbf{x} \mathbf{S}\mathbf{b}\|_2 \le \kappa \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2$ Cost of **SA** and **Sb** approximates the cost of **A** and **b**
 - Solve linear regression on SA and Sb instead of A and b

Linear Regression

Theorem (Sarlos 2006). Let $\kappa = (1 + \varepsilon)$. Let $r = \tilde{O}(\varepsilon^{-2}d)$. If **S** is an $r \times n$

Gaussian matrix, then for every **A**, **S** is a subspace embedding for **A** with distortion κ , with probability 99%.

Why oblivious embeddings?

- ·Useful when A is unknown
 - Turnstile streaming
 - Distributed computation

So ℓ_2 linear regression is resolved. What's next?

ℓ_p Linear Regression

 ℓ_1 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1$$

- Minimize the average error
- Robust loss function

 ℓ_2 linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Minimize the sum of squares
of errors

 ℓ_p linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p$$

 ℓ_{∞} linear regression

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}$$

- · Minimize the worst-case error
- Sensitive loss function

Question. What trade-offs are possible for oblivious ℓ_p subspace embeddings?

Oblivious ℓ_p Subspace Embeddings

Some bad news...

Theorem (Wang—Woodruff 2019). If **S** is an oblivious \mathcal{C}_p subspace embedding for $p \in [1,2)$, then...

 $r \leq \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Could be refined to $(1 + \varepsilon)$ via

iterative optimization, sampling

 $\kappa \leq O(1) \Rightarrow r \gtrsim \exp(\sqrt{d})$

Theorem (Li—Lin—Woodruff—Zhang 2022). If S

is an oblivious ℓ_p subspace embedding for $p \in (2, \infty)$,

then $r \cdot \kappa^2 \gtrsim n^{1-2/p}$

s.t.
$$\|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{A}\mathbf{x}\|_p$$
 for every $\mathbf{x} \in \mathbb{R}^d$

Oblivious = does not depend on A

Oblivious ℓ_p Subspace Embeddings

Some bad news...

Theorem (Wang—Woodruff 2019). If **S** is an oblivious \mathcal{C}_p subspace embedding for $p \in [1,2)$, then...

 $r \leq \text{poly}(d) \Rightarrow \kappa \gtrsim d^{1/p}$

Could be refined to $(1 + \varepsilon)$ via

iterative optimization, sampling

 $\kappa \leq O(1) \Rightarrow r \gtrsim \exp(\sqrt{d})$

How close are these bounds from the truth? Pretty close!

Theorem. There exist oblivious ℓ_p subspace

embeddings for $p \in [1,2)$, s.t...

$$r = \tilde{O}(d)$$
, $\kappa \lesssim d^{1/p}$ [Woodruff—Y 2023]

. $\kappa = (1 + \varepsilon)$, $r \lesssim \exp(\varepsilon^{-1}d)$ [Li—Woodruff—Y 2021]

Oblivious = does not depend on A

s.t.
$$\|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{A}\mathbf{x}\|_p$$
 for every $\mathbf{x} \in \mathbb{R}^d$

Oblivious ℓ_p Subspace Embeddings: Proof Ideas

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

 \approx orthonormal bases for ℓ_p norms

- Let U be an erthenermal basis for A well-conditioned basis
 - $\|\mathbf{U}\|_F \le a^{1/2}$ (with equality) $\|\mathbf{U}\|_{p,p} \le \alpha \quad \text{entrywise } \ell_p \text{ norm}$
 - $\|\mathbf{U}\mathbf{x}\|_{2} \ge \|\mathbf{x}\|_{2}$ for every $\mathbf{x} \in \mathbb{R}^{d}$ (with equality) $\|\mathbf{U}\mathbf{x}\|_{p} \ge \|\mathbf{x}\|_{q}$ for every $\mathbf{x} \in \mathbb{R}^{d}$

Hölder conjugate,
$$\frac{1}{p} + \frac{1}{q} = 1$$

Oblivious = does not depend on A

s.t.
$$\|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{A}\mathbf{x}\|_p$$
 for every $\mathbf{x} \in \mathbb{R}^d$

$$r = \tilde{O}(d), \, \kappa \lesssim d^{1/p}$$
 [WY 2023]

 $\bf S$ is a random p-stable matrix

Oblivious ℓ_p Subspace Embeddings: Proof Ideas

Fact. Oblivious ℓ_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

. $\|\mathbf{U}\|_{p,p} \le \alpha$, $\|\mathbf{U}\mathbf{x}\|_p \ge \|\mathbf{x}\|_q$ for every $\mathbf{x} \in \mathbb{R}^d$

Theorem (Auerbach 1930).

For any **A**, there is **U** with $\alpha = d$.

Conjecture. ???

For any **A**, there is **U** with $\alpha = d^{1/p}$.

Oblivious = does not depend on A

s.t. $\|\mathbf{A}\mathbf{x}\|_p \le \|\mathbf{S}\mathbf{A}\mathbf{x}\|_p \le \kappa \|\mathbf{A}\mathbf{x}\|_p$ for every $\mathbf{x} \in \mathbb{R}^d$

$$r = \tilde{O}(d), \, \kappa \lesssim d^{1/p}$$
 [WY 2023]

 $\bf S$ is a random p-stable matrix

Oblivious ℓ_p Subspace Embeddings: Proof Ideas

Fact. Oblivious \mathcal{C}_p subspace embeddings reduce to constructing well-conditioned bases for subspaces

. $\|\mathbf{U}\|_{p,p} \le \alpha$, $\|\mathbf{U}\mathbf{x}\|_p \ge \|\mathbf{x}\|_q$ for every $\mathbf{x} \in \mathbb{R}^d$

Idea. Relax well-conditioned bases to well-conditioned spanning sets

Theorem (Auerbach 1930).

For any **A**, there is **U** with $\alpha = d$.

Conjecture. ???

For any **A**, there is **U** with $\alpha = d^{1/p}$.

Theorem (Woodruff—Y 2023). For any A, there is $\mathbf{U} \in \mathbb{R}^{n \times s}$ for s = O(d) such that

- $\|\mathbf{U}\|_{p,p} \le \alpha \text{ for } \alpha = s^{1/p}$
- For every $\mathbf{z} \in \mathbb{R}^s$, there is $\mathbf{x} \in \mathbb{R}^s$ s.t. $\mathbf{A}\mathbf{z} = \mathbf{U}\mathbf{x}$ and $\|\mathbf{U}\mathbf{x}\|_p \ge \|\mathbf{x}\|_2 \ge \|\mathbf{x}\|_q$

$$\Rightarrow$$
 $r = \tilde{O}(d), \kappa \lesssim d^{1/p}$ [WY 2023]

Overview of the Talk

Sketching

。 Oblivious ℓ_p subspace embeddings

Sampling

- . Active ℓ_p linear regression
- . Coresets for ℓ_p subspace approximation
- Streaming computational geometry

Sparse Optimization

Column subset selection

Non-oblivious/ Sampling

Oblivious

Non-oblivious ℓ_p Subspace Embeddings

- · Why sampling?
 - Better trade-offs between compression size r and the distortion κ for ℓ_p subspace embeddings
 - Applications to query-efficient algorithms
 - Applications to coresets
 - Applications to streaming algorithms

Theorem (Lewis weight sampling). For any $\mathbf{A} \in \mathbb{R}^{n \times d}$, there are probabilities $q_1, q_2, ..., q_n$ that sample r weighted rows of \mathbf{A} that form an ℓ_p subspace embedding with distortion $\kappa = (1 + \varepsilon)$ with probability 99%, for

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p \in (0,2] \\ \tilde{O}(\varepsilon^{-2}d^{p/2}) & p \in [2,\infty) \end{cases}$$
 [Cohen—Peng 2015] [Woodruff—Y 2023]

Leverage scores: how to choose sampling probabilities?

Definition (Leverage scores). For $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, the *i*-th

leverage score is

$$\tau_i(\mathbf{A}) = \sup_{\|\mathbf{A}\mathbf{x}\|_2 = 1} \langle \mathbf{a}_i, \mathbf{x} \rangle^2$$

How "big" the *i*-th row can be, after normalization

- Many generalizations
 - $\cdot \ell_p$ sensitivity scores [Langberg—Schulman 2010]
 - $\cdot \ell_p$ Lewis weights [Lewis 1978]
 - Ridge leverage scores [El Alaoui—Mahoney 2015, Cohen—Musco—Musco 2017]
 - Online leverage scores [Cohen—Musco—Pachocki 2016]

Active ℓ_p Linear Regression

- Active learning: machine learning when label acquisition is the most expensive resource
 - Labeling could require…
 - Manual labor
 - Purchasing information
 - Running expensive experiments
 - Goal: minimize the # of labels read

Active ℓ_p Linear Regression

Active ℓ_p Linear Regression

Theorem. There is an active ℓ_p regression algorithm that outputs a $(1 + \varepsilon)$ -approximate solution with probability 99% and reads at most r entries of \mathbf{b} , for

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}d) & p = 1 \\ \tilde{O}(\varepsilon^{-1}d) & p \in (1,2) \end{cases} \quad \begin{array}{l} \text{[MMWY 2023]} \\ O(\varepsilon^{-1}d) & p = 2 \\ \tilde{O}(\varepsilon^{1-p}d^{p/2}) & p \in (2,\infty) \end{array} \quad \begin{array}{l} \text{[WY 2023]} \\ \end{array}$$

Furthermore, these bounds are nearly optimal.

Active ℓ_p Linear Regression: Proof Ideas

- . Problem: S samples row i when $|[\mathbf{A}\mathbf{x}](i)|^p$ is big, but not necessarily when $|[\mathbf{A}\mathbf{x} \mathbf{b}](i)|^p$ is big
- · Idea:
 - . WLOG restrict to $\|\mathbf{A}\mathbf{x}\|_p^p = O(1)$ and $\|\mathbf{b}\|_p^p = O(1)$
 - If $|\mathbf{b}(i)|^p \lesssim |[\mathbf{A}\mathbf{x}](i)|^p$, then analysis is ok
 - If $|\mathbf{b}(i)|^p \gg |[\mathbf{A}\mathbf{x}](i)|^p$, then $|[\mathbf{A}\mathbf{x} \mathbf{b}](i)|^p \approx |\mathbf{b}(i)|^p$
 - These coordinates are just adding constants to the objective

Active ℓ_p Linear Regression: Applications to Power Means

Theorem (Woodruff—Y 2024). In a set of n vectors, a uniform sample of r points is sufficient for a $(1+\varepsilon)$ -approximate of the Euclidean p-power mean, for

$$r = \begin{cases} \tilde{O}(\varepsilon^{-2}) & p = 1\\ \tilde{O}(\varepsilon^{-1}) & p \in (1,2)\\ \tilde{O}(\varepsilon^{1-p}) & p \in (2,\infty) \end{cases}$$

Furthermore, these bounds are nearly optimal.

• Idea: think of \mathbf{b} as the n vectors, \mathbf{A} as all ones

Power mean cost: ℓ_p norm of the distances

How many uniform samples do we need?

Coresets for \mathcal{E}_p Subspace Approximation

Projection cost: ℓ_p norm of the distances

Theorem (Woodruff—Y 2024). There is always a weighted subset of r points that approximates the cost of every k-dimensional subspace F, where

$$r = \begin{cases} \tilde{O}(k)\operatorname{poly}(\varepsilon^{-1}) & p \in [1,2) \\ \tilde{O}(k^{p/2})\operatorname{poly}(\varepsilon^{-1}) & p \in (2,\infty) \end{cases}$$

Furthermore, the dependence on k is nearly optimal.

• Idea: ridge leverage scores [CMM 2017]

Is there a weighted subset of points that approximates the cost of every subspace F?

Streaming Computational Geometry: Löwner—John Ellipsoids

Can Löwner—John ellipsoids be maintained in poly(d, log n) bits of space?

Theorem (Woodruff—Y 2022). There is an algorithm that maintains Löwner—John ellipsoids in $O(d^2 \log^2 n)$ bits of space.

· Ideas:

- Deterministically select a subset of constraints
- Use **online** leverage scores to…
 - $oldsymbol{-}$ Test if an ellipsoid respects a new constraint $oldsymbol{a}_i$
 - Bound # of times we keep a new constraint \mathbf{a}_i Ellipsoid respects \mathbf{a}_i iff $\sup_{\|\mathbf{Q}\mathbf{x}\|_2=1} \langle \mathbf{a}_i, \mathbf{x} \rangle^2 \leq 1$

Streaming Computational Geometry: Löwner—John Ellipsoids

Can Löwner—John ellipsoids be maintained in poly(d, log n) bits of space?

Theorem (Woodruff—Y 2022). There is an algorithm that maintains Löwner—John ellipsoids in $O(d^2 \log^2 n)$ bits of space.

- Corollary: first polynomial space algorithms for ...
 - Robust directional width
 - Convex hull approximation
 - Volume maximization
 - Min-width spherical shells
 - Linear programming
 - 0 •••

Overview of the Talk

Sketching

. Oblivious ℓ_p subspace embeddings

Sampling

- . Active ℓ_p linear regression
- . Coresets for ℓ_p subspace approximation
- Streaming computational geometry

Sparse Optimization

Column subset selection

Part III. Sparse Optimization

Column Subset Selection

• Column subset selection: select a subset of the columns of a matrix which minimizes the reconstruction error

Minimize $f(\mathbf{A} - \mathbf{A}\mathbf{X})$ over $\mathbf{X} \in \mathbb{R}^{d \times d}$ s.t. \mathbf{X} has at most k nonzero rows A

- . Entrywise losses $f: \mathcal{C}_p$, non-norm losses
 - New guarantees for greedily fitting columns [Woodruff—Y 2023]
 - Improved analysis via well-conditioned spanning sets
- . General convex functions f with restricted smoothness and strong convexity
 - New guarantees for group LASSO [Axiotis—Y 2023]

Conclusion

- In this thesis, we studied matrix approximation problems from a variety of perspectives, in particular sketching, sampling, and sparse optimization techniques
- We develop and improve foundational tools in matrix approximation, including…
 - Subspace embeddings and linear regression
 - Low rank approximation
- Our results also resolve important questions in related areas, including...
 - Sublinear algorithms
 - Computational geometry
 - Streaming and online algorithms

Featured Works

Sketching

- New Subset Selection Algorithms for Low Rank Approximation: Offline and Online [STOC'23]
- $_{\circ}$ Exponentially Improved Dimensionality Reduction for ℓ_{1} : Subspace Embeddings and Independence Testing [COLT'21]

Sampling

- 。 Coresets for Multiple ℓ_p Regression [ICML'24]
- . Nearly Linear Sparsification of ℓ_p Subspace Approximation [preprint]
- Online Lewis Weight Sampling [SODA'23]
- High-Dimensional Geometric Streaming in Polynomial Space [FOCS'22]
- . Active Linear Regression for ℓ_p Norms and Beyond [FOCS'22]

Sparse optimization

 \circ Performance of ℓ_1 Regularization for Sparse Convex Optimization [preprint]

Other Works

- Sketching
 - Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming [NeurlPS'23]
- Sampling
 - . Sharper Bounds for ℓ_p Sensitivity Sampling [ICML'23]
- Sparse optimization
 - SequentialAttention++ for Block Sparsification: Differential Pruning Meets Combinatorial Optimization [preprint]
 - Sequential Attention for Feature Selection [ICLR'23]
 - Improved Algorithms for Low Rank Approximation from Sparsity [SODA'22]
- Other
 - Reweighted Solutions for Weighted Low Rank Approximation [ICML'24]