

CAR ACCIDENT SEVERITY PREDICTION

-GANAPATHI BALAJI

CONTENT

- Problem Definition
- Exploratory Data Analysis
- Feature Engineering
- Model Process
- Model Report
- Summary Conclusion

MODEL PROCESS

Label Encoding for Categorical features

Creating Training, Test set by balancing severity ratio

Training by applying different Classification Techniques

Model Evaluation and Hyper parameters tuning

Model Score Report

MODEL SCORES REPORT

- I have used trained the data on 3 different algorithms
- I did Hyper parameter tuning by changing the weights and getting almost same model scores
- I was Training on SVM also it is taking lot of time so not putting that here

CLASSIFICATION EVALUATION

At k value 7 is where we are getting better accuracy of 0.73

		precision	recall	f1-score	support
	1	0.72 0.90	0.99 0.11	0.84 0.20	27297 11638
micro macro weighted	avg	0.73 0.81 0.78	0.73 0.55 0.73	0.73 0.52 0.65	38935 38935 38935

DECISION TREE EVALUATION

At k value 4 is where we are getting better F1-score of 0.73

Decision Trees is giving best results at Dept = 4 using entropy

```
[49]: yhat=drugTree.predict(X_test)
      yhat_prob=drugTree.predict_proba(X_test)
      report=report.append({"Algorithm": "Decision Tree", "Jaccard": jacc
      print (classification_report(y_test, yhat))
                                 recall f1-score
                    precision
                                                    support
                                             0.84
                                                      27297
                         0.72
                                   0.99
                         0.90
                                   0.11
                                             0.20
                                                      11638
         micro avg
                         0.73
                                   0.73
                                             0.73
                                                      38935
```

0.55

0.73

0.52

0.65

38935

38935

0.81

0.78

macro avg weighted avg

DECISION TREE EVALUATION

At k value 4 is where we are getting better F1-score of 0.84

Logistic Regression is performing best with regularization val = 0.03

```
[54]: yhat=LR.predict(X_test)
yhat_prob=LR.predict_proba(X_test)

report=report.append({"Algorithm": "LogisticRegression" , "Jaccard": jaccar
print (classification_report(y_test, yhat))

precision recall f1-score support

1 0.72 0.99 0.84 27297
2 0.88 0.11 0.20 11638
```

0.73

0.52

0.65

38935

38935

38935

0.73

0.55

0.73

micro avg

macro avg

weighted avg

0.73

0.80

0.77

SUMMARY CONCLUSION

- Useful and informative models built to predict accident severity
- Value in guiding public traffic polices to focus on important factors to prevent accident injuries
- Accuracy of model has room for improvement, more insights could be gained
 - Collision type be further processed and used in model
 - Accident address be grouped based on injury occurrence ratio and used in model
 - Accident trend by dates

Thank You