CLAIMS:

3

5

20

- 1. A data processing device, in particular an electronic memory component, comprising a plurality of access-secured sub-areas, in particular a plurality of access-secured memory areas, each having at least one assigned parameter $(a_n, a_{n-1}, ..., a_1, a_0)$, in particular address, characterized in that the parameter $(a_n, a_{n-1}, ..., a_1, a_0)$ of at least one sub-area may be encrypted only in certain areas, i.e. in dependence on at least one further sub-area $(a'_n, a'_{n-1}, ..., a'_1, a'_0)$.
- A data processing device as claimed in claim 1, characterized in that the parameter to be encrypted $(a_n, a_{n-1}, ..., a_1, a_0)$ may be encrypted in dependence, in particular as function $(f_1(a_n), f_2(f_1(a_n), a_{n-1}), ..., f_n(f_{n-1}(...)), f_{n+1}(f_n(f_{n-1}(...))))$, on at least one parameter of the further sub-area $(a'_n, a'_{n-1}, ..., a'_1, a'_0)$.
 - 3. A data processing device as claimed in claim 2, characterized in that
 - the input value $(a_n, a_{n-1}, ..., a_1, a_0)$ to the function (f_i) and/or
- the return value (a'_n, a'_{n-1},..., a'₁, a'₀) from the function (f_i) is more than one bit wide.
 - 4. A data processing device as claimed in at least one of claims 1 to 3, characterized in that the memory component takes the form of
 - an E[rasable]P[rogrammable]R[ead] O[nly]M[emory],
 - an E[lectrically]E[rasable]P[rogrammable]R[ead]O[nly]M[emory] or
 - a Flash memory.
- 5. A microcontroller, in particular a smart card controller, comprising at least one data processing device as claimed in at least one of claims 1 to 4.
 - 6. A method of encrypting at least one parameter $(a_n, a_{n-1}, ..., a_1, a_0)$, in particular the address, of at least one access-secured sub-area, in particular at least one access-secured memory area, of at least one data processing device, in particular at least one electronic

15

memory component characterized in that the parameter to be encrypted $(a_n, a_{n-1}, ..., a_1, a_0)$ of the sub-area is encrypted only in certain areas, i.e. in dependence on at least one further sub-area $(a'_n, a'_{n-1}, ..., a'_1, a'_0)$.

- A method as claimed in claim 6, characterized in that the parameter to be encrypted $(a_n, a_{n-1}, ..., a_1, a_0)$ of the sub-area is encrypted in dependence, in particular as function $(f_1(a_n), f_2(f_1(a_n), a_{n-1}), ..., f_n(f_{n-1}(...)), f_{n+1}(f_n(f_{n-1}(...)))$, on at least one parameter of the further sub-area $(a'_n, a'_{n-1}, ..., a'_1, a'_0)$.
- 10 8. A method as claimed in claim 7, characterized in that the function $f_i(a)$ is one-to-one.
 - 9. A method as claimed in at least one of claims 6 to 8, characterized in that the access-secured sub-areas, in particular the access-secured memory areas, are secured separately.
 - 10. Use of at least one data processing device, in particular at least one electronic memory component, as claimed in at least one of claims 1 to 4 in at least one chip unit, in particular
 - in at least one smart card controller,
 - in at least one reader I[ntegrated] C[ircuit] or
 - in at least one crypto chipset,

for example in the field of audio and/or video encryption.