Suggested Solutions to A.1

1. Proof. Notice that we are already familiar with how to justify Part I of this theorem, that is to say, we have a procedure which can update some feasible solution x to another feasible solution $x - \epsilon y$. The only issue is how to show $x - \epsilon y$ is optimal if x is optimal feasible.

Just show $c^T(x - \epsilon y) \le c^T z$ does hold for any feasible solution z. Notice that $c^T x \le c^T z$ holds for any feasible solution z, so just show $c^T(x - \epsilon y) \le c^T x$ or equivalently, $c^T y \ge 0$.

Consider the following two cases.

Case I: y > 0.

Then x + y is still feasible, so $c^T(x + y) \ge c^T x$, ie. $c^T y \ge 0$.

Case II: $\exists y_1, \dots, y_p$ such that some $y_i < 0$.

Then let $\delta = min\{-\frac{x_i}{y_i}|i=1,\cdots,p,y_i<0\}$. Obviously, $x+\delta y$ is feasible, so $c^T(x+\delta y) \geq c^T x$, ie. $c^T y \geq 0$. Everything is done now.

2. Proof. Suppose the LP under consideration has the form

minimize $c^T x$ subject to $Ax = b, x \ge 0$.

Then we derive that $\bar{x} + \operatorname{span}\left(\left\{\delta^{(j)}\right\}_{j\in\mathbb{J}}\right)$ is the solution set of the linear system Ax = b by classical linear algebra. Hence for any $y \in F$, there exists $\{\alpha_j\}_{j\in\mathbb{J}}$ such that

$$y = \bar{x} + \sum_{i \in \mathbb{J}} \alpha_i \delta^{(j)}.$$

noticing Ay = b and meanwhile, $y \ge 0$ implies that $\alpha_j \ge 0$ for $j \in \mathbb{J}$.

Hence
$$F \subseteq \bar{x} + \text{cone}\left(\left\{\delta^{(j)}\right\}_{j \in \mathbb{J}}\right)$$
.

3. Proof. (i). Notice the fact that for any $x \in \mathbb{R}^n$, we have $x = \sum_{i=1}^n (e_i^T x) e_i$ and

$$e^{T}x = e^{T} \sum_{i=1}^{n} (e_{i}^{T}x) e_{i} = \sum_{i=1}^{n} (e_{i}^{T}x) (e^{T}e_{i}) = \sum_{i=1}^{n} (e_{i}^{T}x).$$

Hence,

$$x \in \Delta_n \iff \begin{cases} e_i^T x \ge 0 \text{ for } i = 1, \cdots, n \\ \sum_{i=1}^n e_i^T x = 1 \end{cases} \iff x = \sum_{i=1}^n \left(e_i^T x \right) e_i \in \text{convex} \left(\left\{ e_1, e_2, \cdots, e_n \right\} \right).$$

(ii). WLOG, assume that $\alpha^2 = \max \{ \alpha^1, \alpha^2, \dots, \alpha^n \}$.

On one hand, $(\alpha^1, \alpha^2, \cdots, \alpha^n) e_2 = \alpha^2$ implies that LHS \leq RHS.

On the other hand, for any $x \in \Delta_n$ and so $\sum_{i=1}^n (e_i^T x) = 1$, we have

$$(\alpha^1, \alpha^2, \dots, \alpha^n) x = \sum_{i=1}^n \alpha^i (e_i^T x)$$

$$= \sum_{i=1}^n (\alpha^i - \alpha^2) (e_i^T x) + \alpha^2 \sum_{i=1}^n (e_i^T x)$$

$$\leq \alpha^2,$$

where the last inequality holds since $x \in \Delta_n$, or equivalently, $e_i^T x \geq 0$ for $i = 1, \dots, n$ and $\sum_{i=1}^{n} e_i^T x = 1$. Hence, RHS \leq LHS.

4. Proof. x^* globally minimizes f over $\Omega \Leftrightarrow f(x^*) \leq f(x), \ \forall x \in \Omega \Rightarrow f(x^*) \leq f(x), \ \forall x \in \Omega \Leftrightarrow x^*$ globally

- 5. Proof. It's sufficient to show $\exists \varepsilon > 0$ such that $f(x^*) < f(x)$ for all $x \in \mathbb{B}(x^*, \varepsilon) \subset \Omega'$.
- 6. Proof. Let $\bar{d} \in \mathbb{R}^n$ be a feasible direction of Ω at x^* . Set $x = (x_1, \dots, x_n)^T$ and $d = (d_1, \dots, d_n)$. Recall the 3rd-order Taylor expansion,

$$f(x^* + \alpha \bar{d}) = f(x^*) + \alpha D_f(x^*) (\bar{d}) + \frac{\alpha^2}{2} D_f^2(x^*) (\bar{d}, \bar{d}) + \frac{\alpha^3}{6} D_f^3(x^*) (\bar{d}, \bar{d}, \bar{d}) + o(\alpha^3),$$

where $D_f(x^*): \mathbb{R}^n \to \mathbb{R}$ has the form:

$$D_f(x^*)(d) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x^*)d_i = d^T \nabla f(x^*), \quad \forall d \in \mathbb{R}^n.$$

 $D_f^2(x^*): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ has the form:

$$D_f^2(x^*)(d^1, d^2) = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i x_j}(x^*) d_i^1 d_j^2 = \left(d^1\right)^T \nabla^2 f(x^*) d^2, \quad \forall d^1, d^2 \in \mathbb{R}^n.$$

 $D_f^3(x^*): \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ has the form:

$$D_f^3(x^*)(d^1, d^2, d^3) = \sum_{i,j,k=1}^n \frac{\partial^3 f}{\partial x_i x_j x_k}(x^*) d_i^1 d_j^2 d_k^3, \quad \forall d^1, d^2, d^3 \in \mathbb{R}^n.$$

Then we state the third-order necessary condition: Let x^* be a local minimizer of f over Ω and d is a feasible direction at x^* . If $d^T \nabla f(x^*) = 0$ and $d^T \nabla^2 f(x^*) d = 0$, then

$$D_f^3(x^*)(d,d,d) \ge 0,$$

where $D_f^3(x^*): \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is the third-order derivative of f at x^* .

7. Proof. If $x^* \in \operatorname{int}(\Omega)$ is a local minimizer, then

$$0 = \nabla f(x^*) = -\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)^T.$$

8. Proof. Let D(x) be the feasible directions of Ω at x. Then

$$D(x)\bigcup\left\{(0,0)^T\right\} = \begin{cases} \mathbb{R}^2 & \text{if } x_1+x_2<1, x_1>0, x_2>0\\ \mathbb{R}\times\mathbb{R}^+ & \text{if } x_1+x_2<1, x_1>0, x_2=0\\ \mathbb{R}_+\times\mathbb{R} & \text{if } x_1+x_2<1, x_1=0, x_2>0\\ \mathbb{R}_+^2 & \text{if } x_1+x_2<1, x_1=0, x_2=0\\ \left\{(d_1,d_2)^T\middle|d_1+d_2\leq 0\right\} & \text{if } x_1+x_2=1, x_1>0, x_2>0\\ \left\{(d_1,d_2)^T\middle|d_1+d_2\leq 0, d_1\leq 0, d_2\geq 0\right\} & \text{if } x_1+x_2=1, x_1>0, x_2=0\\ \left\{(d_1,d_2)^T\middle|d_1+d_2\leq 0, d_1\geq 0, d_2\leq 0\right\} & \text{if } x_1+x_2=1, x_1=0, x_2>0\\ \left\{(0,0)^T\right\} & \text{if } x_1+x_2=1, x_1=0, x_2=0\\ \end{cases}$$
 int to find a feasible point x such that $d^T\nabla f(x)=-3d_1-2d_2\geq 0$ for all $d\in D(x)$.

We want to find a feasible point x such that $d^T \nabla f(x) = -3d_1 - 2d_2 \ge 0$ for all $d \in D(x)$.

- (a) If $x_1 + x_2 < 1, x_1 > 0, x_2 > 0$, negative. (pick $d_1 = 1, d_2 = 0$).
- (b) If $x_1 + x_2 < 1, x_1 > 0, x_2 = 0$, negative. (pick $d_1 = 1, d_2 = 0$).
- (c) If $x_1 + x_2 < 1$, $x_1 = 0$, $x_2 > 0$, negative. (pick $d_1 = 1$, $d_2 = 0$).
- (d) If $x_1 + x_2 < 1$, $x_1 = 0$, $x_2 = 0$, negative. (pick $d_1 = 1$, $d_2 = 0$).
- (e) If $x_1 + x_2 = 1, x_1 > 0, x_2 > 0$, negative. (pick $d_1 = -1, d_2 = 2$).
- (f) If $x_1 + x_2 = 1, x_1 > 0, x_2 = 0$, bingo. Notice that $0 \le d_2 \le -d_1$ and so $0 \ge -2d_2 \ge 2d_1$. Then $-3d_1 2d_2 \ge -d_1 \ge 0$.
- (g) If $x_1 + x_2 = 1, x_1 > 0, x_2 = 0$, negative. (pick $d_1 = 1, d_2 = -1$).
- (h) If $x_1 + x_2 = 1$, $x_1 = 0$, $x_2 = 0$, negative.

In conclusion, $(1,0)^T$ is the unique optimal solution.

9. Proof. (d). For any $\{d^k\}_{k\geq 0}\subseteq T(x)$ with $d^k\to d$ as $k\to\infty$, just show that $d\in T(x)$.

Notice that for any $k \geq 0$,

there exist $\{d^{k,n}\}_{n\geq 0} \to d^k$ and a positive sequence $\{t_{k,n}\}_{n\geq 0} \downarrow 0$ satisfying $x+t_{k,n}d^{k,n} \in \Omega$ for any $n\geq 0$. Setting $\epsilon_0=1$, there exists k_0 such that

$$||d - d^{k_0}|| < 1.$$

moreover, there exists n_0 such that

$$||d^{k_0} - d^{k_0, n_0}|| < 1, \quad |t_{k_0, n_0}| < 1 \text{ and } x + t_{k_0, n_0} d^{k_0, n_0} \in \Omega.$$

Setting $\epsilon_1 = \frac{1}{2}$, there exists $k_1 > k_0$ such that

$$\left\|d - d^{k_1}\right\| < \frac{1}{2}.$$

moreover, there exists n_1 such that

$$\|d^{k_1} - d^{k_1,n_1}\| < \frac{1}{2} \quad |t_{k_1,n_1}| < \frac{1}{2} \text{ and } x + t_{k_1,n_1} d^{k_1,n_1} \in \Omega.$$

. .

Setting $\epsilon_i = \frac{1}{i}$, there exists $k_i > k_{i-1}$ such that

$$\left\|d - d^{k_i}\right\| < \frac{1}{i}.$$

moreover, there exists n_i such that

$$\|d^{k_i} - d^{k_i, n_i}\| < \frac{1}{i} \quad |t_{k_i, n_i}| < \frac{1}{i} \text{ and } x + t_{k_i, n_i} d^{k_i, n_i} \in \Omega.$$

That is to say, there exist $\{d^{k_i,n_i}\}_{i\geq 0} \to d$ and $\{t_{k_i,n_i}\}_{i\geq 0} \to 0^+$ with $x+t_{k_i,n_i}d^{k_i,n_i}\in\Omega$ for any $i\geq 0$. WLOG, we assume that $\{t_{k_i,n_i}\}_{i\geq 0}\downarrow 0$ and let $\bar{d}^i=\bar{d}^{k_i,n_i},\ t_{k_i,n_i}=\bar{t}_i$ for any $i\geq 0$. Then we have $\{\bar{d}^i\}_{i\geq 0}\to d,\ 0<\{\bar{t}_i\}_{i\geq 0}\downarrow 0$ with $x+\bar{t}_i\bar{d}^i\in\Omega$ for any $i\geq 0$.

10. Proof. (a). Let $d \in G_0(\bar{x})$, then

on one hand, for each $i \in I(\bar{x})$, $d^T \nabla g_i(\bar{x}) < 0$, then there exists $\varepsilon_i > 0$ such that $g_i(\bar{x} + \alpha d) < g(\bar{x})$ for any $0 < \alpha < \varepsilon_i$.

on the other hand, for each $i \notin I(\bar{x})$, $g_i(\bar{x}) < 0$, then there exists $\varepsilon_i > 0$ such that $g_i(\bar{x} + \alpha d) < g(\bar{x})$ for any $0 < \alpha < \varepsilon_i$.

Then let $\varepsilon = \min \{ \varepsilon_i : i = 1, 2, \dots, m \}$, we have $g_i(\bar{x} + \alpha d) < g_i(\bar{x})$ for any $0 < \alpha < \varepsilon$ and $i = 1, 2, \dots, m$. That is to say, $d \in D(x)$.