1. Animal learning and memory

Classical conditioning

Operant conditioning

Memory

2. Emotional and cognitive stimulus processing

Processing of rewarding stimuli

Aversive stimuli, fear and the amygdala

Stress, learning and memory

3. Animal models of human affective disorders

Translational experimental psychiatry

Manipulations and readouts

Animal models relevant to anxiety and depression

Immune system and depression

4. Pre-clinical psychopharmacology

SSRIs and affective disorders

Anti-depressants: the next generation?

Animal models of affective disorders: Translational experimental psychiatry

- Homology across species in the emotional processing of rewards and punishers
- Psychiatric disorders
- Psychiatric classification of the emotional (affective) disorders
- Depression
- Psychology of depression
- Neurobiology of depression
- Genes and depression endophenotypes
- Genes X Environment and depression aetiology

Universal neurobiology for processing emotional (important) stimuli across mammals

Burden of psychiatric disorders and other disorders of the brain:

Report of the European College of Neuropsychopharmacology/European Brain Council 2011

Some of the Diagnostic Categories of Affective Disorders

• Depressive Disorders: Major Depressive Disorder

Persistent Depressive Disorder (Dysthymia)

• Anxiety Disorders: Separation Anxiety Disorder

Specific Phobia

Social Anxiety Disorder

Panic Disorder

Agoraphobia afraid of open space (large car par, also small spaces like elevator)

Generalized Anxiety disorder excessive worrying that something bad might happen without any logical reason for it to occur

• Trauma-, Stressor-Related Disorders:

Posttraumatic Stress Disorder

Acute Stress Disorder

Obsessive-Compulsive Disorders:

Obsessive-Compulsive Disorder

Body Dysmorphic Disorder

Major depressive episode

Features: At least 2 weeks of depressed mood, loss of interest or pleasure in nearly all activities, fatigue, plus at least 4 additional symptoms. Leading to clinically significant distress or impairment in social, occupational, or other important area of functioning, or functioning requires more effort.

Depressed mood: "sad", "hopeless", "no feelings", "frustration", "anger"

Loss of interest/pleasure: "don't care anymore", "not interested"

Associated descriptive features: Tearfulness, irritability, brooding, rumination, anxiety, phobias, worry over physical health, pain, panic attacks. Difficulty in intimate relationships, less satisfying social interactions, difficulties in sexual functioning. Marital problems (e.g. divorce), occupational problems (e.g. loss of job), academic problems (e.g. truancy, school failure). Alcohol or other Substance abuse. Attempted or completed suicide.

Associated laboratory findings: No laboratory findings that are diagnostic of major depressive episode have been identified. State-dependent abnormalities include: Sleep-EEG (40-60% outpatients, 90% inpatients; dysregulation in neurotansmitters e.g. serotonin, noradrenaline, dopamine, acetylcholine, GABA; dysregulation in neuropeptides e.g. corticotropin releasing hormone (CRH), neuropeptide Y; increased cortisol; fMRI findings; structural MRI findings.

Gender, Age, Culture: Female (4-10%) > Male (3-5%); Children – Elderly; Cross-cultural

Course: Symptoms develop over days-weeks; typical episode 4 months; 20-30% 12 mth; 5-10% > 2 years

Diagnostic symptoms for major depressive disorder

Symptom type

ICD-10 classification

Typical/Core Typical/Core Typical/Core	At least two of: Depressed mood: pre-occupation with negative events and feelings of sadness, helplessness Loss of interest/motivation or enjoyment/pleasure Fatigue: Loss of energy, reduced activity, apathy					
Common Common Common Common Common Common Common Common Common	Ideas of guilt and unworthiness	neurobiologically speaking, one can combine it in many ways to get a depression, but those depressions need not to be neurobiologically the same. So there might be Cethe same phenotype (depression) but with a different biological substrate. Therefore, one would like need to re develop different drugs for the same disorder. Also, different neurocircuits are disturbed, so it really is very heterogenous				

ICD-10: International Classification of Diseases: Mental and Behavioural Disorders, WHO (1992)

RDoC: forget about explaining depression, AD, anxiety etc. Think about sepcific domains and valence systems etc (0th column). Then understand how these domains are control with regard to genes, molecules, cells, circutis etc (0th row). this can be studied in humans but also in animals. This approach backtranslates human studies to animals **The**idesearcholdomain criteria (RDoC) matrix

RDoC removes barrier between psychiatry and neuroscience

Domains/constructs	Units of a	nalysis Molecules	Cells	Circuits	Physiology	Behavior	Self-reports	Paradigms
Negative valence systems								
Positive valence systems								
Cognitive systems								
Systems for social processes								
Arousal/regulatory systems								

Research domain criteria (RDoC): Constructs within Domains

Table 2 Research domain criteria, October 2012 (constructs are listed within each domain)

Negative valence domain Positive valence systems Acute threat ('fear') Approach motivation		Cognitive systems	Systems for social processes	Arousal/modulatory systems Arousal	
		Attention	Affiliation and attachment		
Potential threat ('anxiety')	Initial responsiveness to reward	Perception	Social communication	Biological rhythms	
Sustained threat	Sustained responsiveness to reward	Working memory	Perception and understanding of self	Sleep-wake	
Loss	Reward learning	Declarative memory	Perception and understanding of others		
Frustrative nonreward	Habit	Language behavior			
		Cognitive (effortful) control			

Depression is altered emotional processing of aversive and rewarding stimuli

Aversive life events/stimuli	Rewarding life events/stimuli	
Reactivity to UCS (个)	Motivation/Interest (↓)	
Learning about CS (个)	Learning about CS (↓)	
Uncontrollability of stimuli (个)	Uncontrollability of stimuli (个)	
Expectancy of stimuli (个)	Expectancy of stimuli (↓)	
Fatigue due to aversive stimuli (个)	Pleasure from (=↓)	

 (\uparrow) (\downarrow) Direction of change, Depression vs Healthy control

 $(=\downarrow)$ Evidence is not convincing

Not all patients will exhibit all symptoms/states

Models for the conceptualising of psychiatric disorders in populations

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

Neural pathways underlying fear conditioning – measured as freezing

Example of a State Marker in Depression:

Increased conditioned fear responses in depressed patients relative to healthy controls

Depressed patients exhibit increased CS-UCS fear conditioning, measured using skin conductance Depressed patients and healthy controls show similar and accurate expectancy of UCS depending on CS

Example of a State Marker in Depression: Increased reactivity of the amygdala to fearful and sad stimuli using BOLD fMRI

Emotional faces as stimuli

BOLD, Blood oxygen-level dependent contrast:

Fearful – Neutral Sad - Neutral

Left Amygdala

Right Amygdala

Neurocircuitry model of processing aversive stimuli in Depression based on fMRI findings

the region for it to be hyperactive is because other regions inhibit their acitvity (regulation), like the PFC, but they seem to be hypoactive

Increased neural response to sad stimuli in dorsal anterior cingulate cortex in depression

Increased neural response to painful stimuli in amygdala and dACC in depression

Anticipation period [painful heat - nonpainful warmth]

effects of different stim on speci brain regions (see upper circuit) seem to show that in depression it is disturbed and such is the response of depressed people

Strigo et al. (2008) Arch Gen Psych 65: 1275

Incentive motivation for Reward (Wanting) is increased by Dopamine: Using Pavlovian-to-Instrumental transfer to measure motivation

Amphetamine into Nucleus accumbens: Dopamine releaser at D1 and D2 receptors

Dose of Accumbens Amphetamine (µg)

- O Period before CS switched ON
- Tone CS associated with sucrose
- Random CS NOT associated with sucrose

Example of a State marker in depression

Decreased nucleus accumbens response to reward in depression

Arrondo et al. (2015) Front Psychol 6: 1280

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

The Causation of Psychiatric disorders

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

endophenotye: a brain/psyhcological processes controlled genetically which is relevant to a disorder that it either behavioural or brain related here.

Heritability of Depression and Specific risk alleles for Depression

FIGURE 1. Estimates of the Heritability in Liability to Major Depression in Studies of Male and Female Twins^a

^a Vertical bars indicate point estimates; horizontal bars indicate 95% confidence intervals.

a couple of possible endophenotypes

Gene	Protein	Polymorphism	Odds Ratio
SLC6A4	Serotonin transporter	44 bp Ins/Del	1.11
SLC6A3	Dopamine transporter	40 bp VNTR 9/10	2.06
DRD4	Dopamine receptor 4	48 bp VNTR 3	1.74
MTHFR	Methylenetetrahydrofolate reducta	se C677T	1.20
GNB3	Guanine nucleotide binding-protein	C825T	1.38
APOE	Apolipoprotein E	ε2 / ε3	0.51

APOE: also risk factor in AD

^b Aggregate values across studies of heritability in liability to major depression.

^c Most parsimonious submodel, consisting of aggregate value across studies of a².

Serotonin transporter promoter (5-HTTP) gene-linked polymorphic region (5-HTTLPR):

(s)hort and (l)ong genotypes, and their impact on 5-HTT (SERT) expression and function

5-HTTLPR genotype and Brain Endophenotype for depression in healthy subjects

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

Environment: From Uncontrollability to Helplessness to Depression

Increased neural response to uncontrollability of painful stimuli in dACC in healthy humans

Example of a State Marker in Depression: Increased feelings of Helplessness, especially after loss of control, in Depressed subjects

- Healthy Subjects
- Depressed Subjects

5-HTTLPR Genotype interacts with Stressful life events to increase prevalence of depression

Caspi et al. (2003) Science 301: 386

Kendler et al. (2005) Arch Gen Psych 62: 529

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

Translational experimental psychiatry

- Some homologous neurobiology for processing emotional stimuli across mammals
- Disorders of emotional processing (e.g. Depression, Post-traumatic stress disorder) are prevalent
- Psychiatry uses a diagnosis system based on groups of behavioural symptoms, not on underlying biology
- The relationship between symptom and neurobiology is not taken into consideration in the diagnostic system
- Models for the conceptualising of psychiatric disorders in populations
- Psychiatric disorders need to be understood in terms of their neuro-behavioural components
- Depression can be viewed as altered emotional processing of aversive and rewarding stimuli
- Increased conditioned fear responses in depressed patients relative to healthy controls
- Increased reactivity of the amygdala to fearful and sad stimuli using BOLD fMRI in depression
- Neurocircuitry model of processing aversive stimuli in depression based on BOLD fMRI findings
- Increased reactivity of the dorsal anterior cingulate cortex to fearful and sad stimuli in depression
- The risk allele endophenotype concept
- Molecular genetics of depression
- •Serotonin transporter gene polymorphism and emotional endophenotypes in neurobiology and behaviour
- Environmental factors and depression
- Uncontrollable environments and helplessness
- •Gene X Environment interaction in the aetiology of depression