Physik	# 1	Mechanik	Physik	# 2	Mechanik
	Beschleunigung – Kra	ıft		Beschleunigung – Weg	
Physik	# 3	Mechanik	Physik	# 4	Mechanik
	Haftreibung			Gleitreibung	
Physik	# 5	Mechanik	Physik	# 6	Mechanik
	Haftreibung – Schiefe E	bene		Leistung	
Physik	# 7	Mechanik	Physik	# 8	Mechanik
	Wirkungsgrad			Radialbeschleunigung	

# 2	Antwort	# 1 Antwort
i ! !		11 11
 	$x = \frac{1}{2} \cdot a \cdot t^2$	$F=m\cdot a$
! ! !	$[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$	$[N = kg \cdot \frac{m}{s^2}]$
 	5	
! ! !		
1 1		
-	Antwort	
, <u>// 1</u>	11110/1020	
 	$F_{ m Gl} = \mu_{ m Gl} \cdot F_{ m N}$	$F_{ m H} = \mu_{ m H} \cdot F_{ m N}$
 		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 I I	F_{Gl} : Gleitreibung μ_{Gl} : Gleitreibungskonstante	$F_{H}: \ \ Haftreibung \\ \mu_{H}: \ \ Haftreibungskonstante$
 	μ_{Gl} : Gleitreibungskonstante F_{N} : Normalkraft	$F_{ m N}: { m Normalkraft}$
1 1 1		
≒ = <u>=</u> = = = =	: = = = = = = = = = = = = = = = = = = =	
# 6	Antwort	# 5 Antwort
I I	$P = F \cdot v$	
 		$\mu_{\rm H}=\tan\alpha$ $=\tan\alpha$ $= 1$ Winkel α für gegebenes $\mu_{\rm H},$ ab dem die Haftreibung nicht mehr
! !	$\left[\begin{array}{ccc} W = N \cdot \frac{m}{s} \\ & \end{array}\right]$	zum Halten ausreicht, also das Objekt anfängt zu "rutschen"
 	$= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$	
l I	$= kg \frac{m}{s^3}$	
1 		
ı ' '- = = = = = =	:======================================	
# 8	Antwort	# 7 Antwort
1 1 1	o.	
1 1	$a = \frac{v^2}{r}$	$\eta = rac{r_{ m out}}{P_{ m in}}$
 	$\left[\frac{\mathrm{m}}{\mathrm{s}^2} = \frac{\frac{\mathrm{m}^2}{\mathrm{s}^2}}{\mathrm{m}}\right]$	
1 1		
1 1		
1 1		11 11 11
		<u>n </u>

Physik	# 9	Mechanik	Physik	# 10	Mechanik
	Arbeit			potentielle Energie	
Physik	# 11	Mechanik	Physik	# 12	Mechanik
	kinteische Energie			Kreisfrequenz	
Physik	# 13	Mechanik	Physik	# 14	Mechanik
	Kreisfrequenz Hook'sche	Feder		harmonische Schwingung: Beschleunigung	
Physik	# 15	Mechanik	Physik	# 16	Mechanik
	harmonische Schwingu Geschwindigkeit	ng:		harmonische Schwingung: Auslenkung	

$E_{\text{pot}} = m \cdot g \cdot h$ $\left[J = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m} \right]$ $= \text{kg} \frac{\text{m}^2}{\text{s}^2}$ $= \text{kg} \frac{\text{m}^2}{\text{s}^2}$ $= \text{kg} \frac{\text{m}^2}{\text{s}^2}$
$\frac{\#\ 12}{}$ $\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\mathrm{rad}}{s}\right]$ $E_{\mathrm{kin}} = \frac{1}{2} \cdot m \cdot v^{2}$ $\left[J = \mathrm{kg} \cdot \frac{\mathrm{m}^{2}}{s^{2}}\right]$ $T: \ \mathrm{Kreisfrequenz}\ (\mathrm{Umlaufzeit})$
$\frac{\# 14}{Antwort} = \frac{\# 13}{Antwort}$ $a(t) = -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $\left[\frac{m}{s^2} = s^{-2} \cdot m\right]$ $\left[s^{-1} = \sqrt{\frac{m}{kg}}\right]$ Dr. Federkonstante
$y(t) = y_0 \cdot \sin \omega t$ $D: \text{ Federkonstante}$ $\frac{\# \ 16}{Antwort}$ $\frac{\# \ 15}{Antwort}$ $v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{m}{s} = s^{-1} \cdot m\right]$

Physik	# 17	Mechanik	Physik	# 18	Mechanik
	potentielle Energie Hook'sche Feder			Kraft Hook'sche Feder	
Physik	# 19	Mechanik	Physik	# 20	Mechanik
	Inelastischer Stoß			Elastischer Stoß	
Physik	# 21	Mechanik	Physik	# 22	Mechanik
	Drehimpuls			Kinetische Energie Drehbew	egung
Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Impuls			Kreisfrequenz Fadenpen	del

18 AntwortAntwort $W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$ $F = D \cdot x$ $\left\lceil N = \frac{N}{m} \cdot m \right\rceil$ $\int\! J = \frac{N}{m} m^2$ $= \frac{kg\frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$ $v'_1 = 2 \cdot \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} - v_1$ $v'_2 = 2 \cdot \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} - v_2$ # 22 $E_{\rm kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$ $\left[J = \text{kg m}^2 \cdot \text{s}^{-2} \right]$ $L = \vartheta \cdot \omega$ $\label{eq:normalization} \begin{bmatrix} N \ m \ s = kg \ m^2 \cdot s^{-1} \end{bmatrix}$ $kg\frac{m}{s^2}m \ s = kg\frac{m^2}{s}$ $= kg \frac{m^2}{s^2}$ $kg\frac{m^2}{s} = kg\frac{m^2}{s}$ $\omega = \sqrt{\frac{g}{l}}$ $\left\lceil \frac{kg\ m}{s} = kg \cdot \frac{m}{s} \right\rceil$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $=\sqrt{s^{-2}}=s^{-1}$ Nur bei $\alpha < 5^{\circ}$

Physik	# 25	Mechanik	Physik	# 26	Mechanik
Trägheitsmoment Stab um Stabende			Trägheitsmoment Stab um Schwerpunkt		
Physik	# 27	Mechanik	Physik	# 28	Mechanik
	Trägheitsmoment Vollzyli	nder		Trägheitsmoment Hohlzy	linder
Physik	# 29	Mechanik	Physik	# 30	Mechanik
Transformation Geschwindigkeit – Winkelgeschwindigkeit			Trägheitsmoment Kuş	gel	
Physik	# 31	Mechanik	Physik	# 32	Mechanik
	leeres Duplikat			Leistung Translation	1

# 26 Antwort	# 25 Antwort
$\vartheta = rac{1}{12} \cdot m \cdot l^2$	$artheta=rac{1}{3}\cdot m\cdot l^2$
$\begin{bmatrix} kg \ m^2 = kg \cdot m^2 \end{bmatrix}$	$\begin{bmatrix} \mathrm{kg} \ \mathrm{m}^2 = \mathrm{kg} \cdot \mathrm{m}^2 \end{bmatrix}$
l: Länge des homogenen Stabes	l: Länge des homogenen Stabes
	11 11 11
1 1 1	11 11 11
 	# 27 Antwort
1 1 1	
$artheta = m \cdot r^2$ $\left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{kg} \cdot \mathrm{m}^2 \right]$	$artheta = rac{1}{2} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$
	$\left[\begin{array}{ccc} \operatorname{kg\ m^{2}} & = \operatorname{kg} \cdot \operatorname{m^{2}} \end{array} \right]$ r: Durchmesser des Zylinders
1 1	I. Durchinesser des Zymiders
1 1 1	II
# 30 Antwort	# 29 Antwort
$\vartheta = rac{2}{5} \cdot m \cdot r^2$	$v=r\cdot \omega$
$\begin{bmatrix} kg \ m^2 = kg \cdot m^2 \end{bmatrix}$	$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$
I L J I	11 11 11
1 	11 11 11
1 1 1	11 11 11
, , , , , , , , , , , , , , , , , , , ,	
# 32 Antwort	# 31 Antwort
$P = F \cdot v = M \cdot \omega$	II II II
$ \begin{bmatrix} W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \\ m^2 = m m \end{bmatrix} $	11 11 11
$kg\frac{m^2}{s^3} = kg\frac{m}{s^2} \cdot \frac{m}{s} \bigg]$	II
	11 11 11
, , 	

Physik	# 33	Mechanik	Physik	# 34	Mechanik
	Drehmoment			Kreisfrequenz Drehschwing	ıng
Physik	# 35	Mechanik	Physik	# 36	Mechanik
	Rückstellmoment Drehschwi	ingung		Präzessionsfrequenz	
Physik	# 37	Mechanik	Physik	# 38	Mechanik
	Satz von Steiner			Gravitationkonstante	
Physik	# 39	Mechanik	Physik	# 40	Mechanik
	Gravitationspotential			pot. Energie Gravitation	

$$\frac{g}{g} \stackrel{\text{def}}{=} Antwort$$

$$\omega = \sqrt{\frac{D}{\theta}}$$

$$\left[s^{1} = \sqrt{\frac{N}{m}} \cdot \frac{1}{\log m^{2}} \right]$$

$$\frac{g}{g} \stackrel{\text{def}}{=} \frac{1}{\sqrt{\frac{N}{m}}} \cdot \frac{1}{\log m^{2}}$$

$$\omega_{p} = \frac{M}{I_{1}} = \frac{F \cdot r \cdot \sin \varphi}{\theta \cdot \omega_{1}}$$

$$\left[s^{-1} - \frac{Nm}{Nm} \cdot s - \frac{N \cdot m}{\log m^{2} \cdot s^{-1}} \right]$$

$$\varphi = \frac{M}{Nm} \cdot s - \frac{N \cdot m}{\log m^{2} \cdot s^{-1}}$$

$$\varphi = \frac{M}{Nm} \cdot s - \frac{N \cdot m}{\log m^{2} \cdot s^{-1}}$$

$$\varphi = \frac{M}{Nm} \cdot s - \frac{Nm}{\log m^{2} \cdot s^{-1}}$$

$$\varphi = \frac{M}{Nm} \cdot s - \frac{Nm}{\log m^{2}}$$

$$\varphi = \frac{M}{Nm} \cdot s - \frac{Nm}{\log m^{2}}$$

$$\varphi = \frac{Nm}{Nm} \cdot s - \frac{Nm} \cdot s - \frac{Nm}{Nm} \cdot s - \frac{Nm}{Nm} \cdot s - \frac{Nm}{Nm} \cdot s - \frac{Nm}{N$$

Physik	# 41	Mechanik	Physik	# 42	Mechanik
	Gravitationfeldstärke	,		Gravitationskraft	
Physik	# 43	Mechanik	Physik	# 44	Mechanik
Erhalt	ungssätze der klassische	en Physik		Corioliskraft	
Physik	# 45	Mechanik	Physik	# 46	Mechanik
	Keplersche Gesetze			Planet auf Kreisbahn	
Physik	# 47	Mechanik	Physik	# 48	Deformation
Gebund	dener und ungebundene	r Zustand		Elastizitätsmodul	

$$E = \frac{\sigma}{\varepsilon}$$
$$\left[\frac{N}{m^2} = \frac{\frac{N}{m^2}}{1}\right]$$

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}m_2v^2 - \gamma \frac{m_1m_2}{r}$$

 $E \geq 0$: ungebunder Zustand, m_2 kann sich beliebig weit von m_1 entfernen E < 0: gebunder Zustand

Physik	# 49	Deformation	Physik	# 50	Deformation
	Zugfestigkeit			Hooksches Gesetz	
Physik	# 51	Deformation	Physik	# 52	Deformation
	relative Längenänder	rung		Poisson-Zahl	
Physik	# 53	Deformation	Physik	# 54	Deformation
	Druck			Kompressibilität	
Physik	# 55	Deformation	Physik	# 56	Deformation
	Kompressionsmod	ul		Scherspannung	

# 50	Antwort	# 49	Antwort	
	$\sigma = E \cdot \varepsilon$ $\left[\frac{N}{m^2} = \frac{N}{m^2} \cdot 1 \right]$		$\sigma = \frac{F}{A}$ $\left[\frac{N}{m^2} = \frac{N}{m^2}\right]$	
		II II II		
# 52	Antwort	# 51 	Antwort	
Querkontraktio	$\mu = \left \frac{\frac{\Delta d}{d}}{\frac{\Delta l}{l}}\right $ on, Dicke nimm t \perp zur Dehnung ab.		$arepsilon = rac{\Delta l}{l_0} \ \left[1 = rac{\mathrm{m}}{\mathrm{m}} ight]$	
= = = = = = = = # 54	Antwort		$egin{array}{cccccccccccccccccccccccccccccccccccc$	=====
	$\frac{\Delta V}{V} = -\kappa p$ $\Rightarrow \kappa = \frac{3}{E} (1 - 2\mu)$ $\left[\frac{1}{\text{Pa}} = \frac{1}{\frac{\text{N}}{\text{m}^2}} \right]$		$p = \frac{F}{A}$ $\left[Pa = \frac{N}{m^2} \right]$	
= = = = = = = = = = = = = = = = = = =	$egin{array}{cccccccccccccccccccccccccccccccccccc$	" " " " " " " " " " " " " " " " " " "	= = = = = = = = = = = = = = = = = = =	=====
$F_{ m s}$: Scherkr	$ au=rac{F_{ m s}}{A}=Glpha$ raft, tangential zu A ss- oder Schubmodul [Pa]	11 11 11 11 11 11 11 11	$K = \frac{1}{\kappa}$ $\left[Pa = \frac{1}{\frac{1}{Pa}} \right]$	
		II II II II II II		

Physik	# 57	Deformation	Physik	# 58	Deformation
	Torsionskonstante dünnwandiges Rohr			Torsionskonstante Vollstab	
Physik	# 59	Deformation	Physik	# 60	Deformation
	Drehmoment Torsion			Dehnung eines Stabes Federkonstante	S
Physik	# 61	Deformation	Physik	# 62	Deformation
	potentielle Energie Dehnarbeit			Energiedichte Dehnun	g
Physik	# 63	Deformation	Physik	# 64	Fluide
	Energiedichte Torsion			Viskosität "Zähigkeit"	

Physik	# 65	Fluide	Physik	# 66	Fluide
	Dichte			Oberflächenspannung	
Physik	# 67	Fluide	Physik	# 68	Fluide
	hydrostatischer Druck Schweredruck			Auftrieb	
Physik	# 69	Fluide	Physik	# 70	Fluide
	Barometrische Höhenformel			Rückstellkraft Oberflächenspa	nnung
Physik	# 71	Fluide	Physik	# 72	Fluide
	Oberflächenenergie			Druck in Flüssigkeitskuge	el

$$\frac{d}{dt} = 0$$

$$g \begin{bmatrix} J \\ m^2 \end{bmatrix}$$

Physik	# 73	Geometrie	Physik	# 74	Fluide
	Kugeloberfläche- und Vol	umen		Kontinuitätsgleichung für inkompressible Medien	
Physik	# 75	Fluide	Physik	# 76	Fluide
	Bernoulli-Gleichung			Newtonsches Reibungsgesetz Viskosität zwischen Platten	
Physik	# 77	Fluide	Physik	# 78	Fluide
Geschwindigkeit im Stromröhrchen			Antriebskraft Rohrströmung		
Physik	# 79	Fluide	Physik	# 80	Fluide
	Gesetz von Hagen-Poise	uille		Stokesches Gesetz für Kugel	

 $F = \eta \cdot A \cdot \frac{\mathrm{d}v}{\mathrm{d}x}$ $\left[N = \frac{\mathrm{Ns}}{\mathrm{m}^2} \cdot \mathrm{m}^2 \cdot \frac{\frac{\mathrm{m}}{\mathrm{s}}}{\mathrm{m}} \right]$ $\mathbb{E}\left[\frac{2}{2}v_1^2 + \underbrace{p_1}_{\text{stat. Druck}} = \underbrace{p_0}_{\text{Gesamtdruck}} \right]$ $\mathbb{E}\left[\frac{v_1^2}{v_1^2} + \underbrace{v_2^2}_{\text{Staudruck}} + \underbrace{v_3^2}_{\text{Staudruck}} + \underbrace{v_4^2}_{\text{Staudruck}} + \underbrace{v_5^2}_{\text{Gesamtdruck}} \right]$

 $F = \pi \cdot r^2 \cdot \Delta p$ $\begin{bmatrix} \mathbf{N} = \mathbf{m}^2 \cdot \mathbf{Pa} = \mathbf{m}^2 \cdot \frac{\mathbf{N}}{\mathbf{m}^2} \end{bmatrix}$ $\begin{bmatrix} \mathbf{m} = \frac{\mathbf{Pa}}{\mathbf{N}} \mathbf{m}^2 \\ \mathbf{m} = \frac{\mathbf{N}}{\mathbf{N}} \mathbf{m}^2$

 $p_{1,2}$: Druck vor und hinter dem Röhrchen R: Radius des umschließenden Rohres

r: Radius des Röhrchens

 $F_{\mathbf{R}} = 6 \cdot \pi \cdot \eta \cdot r \cdot v$ $\begin{bmatrix} \mathbf{N} = \frac{\mathbf{N} \cdot \mathbf{S}}{\mathbf{m}^{2}} \cdot \mathbf{m} \cdot \frac{\mathbf{M}}{\mathbf{S}} \end{bmatrix}$ $\begin{bmatrix} \mathbf{k} = \frac{\mathbf{k} \cdot \mathbf{S}}{\mathbf{S}} \cdot \frac{\mathbf{N}}{\mathbf{S}} \cdot$

Physik	# 81	Fluide	Physik	# 82	Fluide
Reynolds-Zahl			Luftwiderstand		
Physik	# 83	Schwingungen	Physik	# 84	Schwingungen
	Bewegungsgleichung harmonischer Oszillator			Bewegungsgleichun freier, gedämpfter Oszi	
Physik	# 85	Schwingungen	Physik	# 86	Schwingungen
	harmonischer Oszillator			gedämpfter Oszillat	or
Physik	# 87	Schwingungen	Physik	# 88	Schwingungen
	gedämpfte Schwing Reibung Stokesche F			Kreisfrequenz physikalisch	es Pendel

	# 81 Antwort
$F=c_{\rm w}\cdot\frac{\varrho}{2}\cdot v^2\cdot A$ $\left[{\rm N}=1\cdot\frac{{\rm kg}}{{\rm m}^3}\cdot\frac{{\rm m}^2}{{\rm s}^2}\cdot{\rm m}^2\right]$ $c_{\rm w}\text{: Strömungswiderstandskoeffizient}$ $A\text{: Stirnfläche}$	$Re = \frac{\varrho \cdot L \cdot v}{\eta}$ $\left[1 = \frac{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}}}{\frac{\text{Ns}}{\text{m}^2}} = \frac{\frac{\text{kg}}{\text{sm}}}{\frac{\text{kg}}{\text{sm}}}\right]$ Sobald Re einen bestimmten Grenzwert überschreitet (z.B. 2300 bei Rohrströmung), schlägt die Strömung von laminar in turbulent um.
1	
$m\ddot{x} + \beta \dot{x} + Dx = 0$	$m\ddot{x} + Dx = 0$
$y(t) = y_0 e^{-\delta t} \sin\left(\sqrt{\omega_0^2 - \delta^2} \cdot t + \varphi_0\right)$	$\# 85$ $x(t) = x_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$ $x(t) = x_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$
, 	
$\omega_0 = \sqrt{rac{mgS}{artheta}}$	$eta=-6\pi\eta r$

Physik	# 89	Schwingungen	Physik	# 90	Schwingungen
Bewegungsgleichung erzwungene Schwingung		erzwungene, gedämpfte Schwingung			
Physik	# 91	Schwingungen	Physik	# 92	Schwingungen
	Schwebungsfreqze schwache Kopplu			gleichpasige, gekoppelte So	chwingung
Physik	# 93	Schwingungen	Physik	# 94	Wellen
gegenphasige, gekoppelte Schwingung			Wellengleichung		
Physik	# 95	Wellen	Physik	# 96	Wellen
	Schallgeschwindigkeit	in Stab		Dopplereffekt bewegte Quelle	

E:

Elastizitätsmodul

Dichte

empfangen Frequenz

Geschwindigkeit Quelle Schallgeschwindigkeit

gesendete Frequenz

c:

Physik	# 97	Wellen	Physik	# 98	Wellen
	Dopplereffekt bewegter Beobach	ter		Wellenzahl	
Physik	# 99	Wellen	Physik	# 100	Thermodynamik
	Phasengeschwindig			0. Hauptsatz der Therm	
Physik	# 101	Thermodynamik	Physik	# 102	Thermodynamik
	1. Hauptsatz der Thermo	odynamik		2. Hauptsatz der Therm	odynamik
Physik	# 103	Thermodynamik	Physik	# 104	Thermodynamik
	3. Hauptsatz der Thermo	odynamik		Längenausdehnu	ıng

Antwort

 $k = \frac{2\pi}{\lambda}$

Wellenlänge

 $f' = f_0(1 + \frac{v}{c})$

Antwort

empfangen Frequenz

f: gesendete Frequenz

Geschwindigkeit Beobachter

Schallgeschwindigkeit

Zwei Körper im thermischen Gleichgewicht haben die selbe

Temperatur

 $c = \frac{\lambda}{T} = \frac{\omega}{k}$

"Ort" um λ gewandert

k: Wellenzahl

Wellenlänge λ :

Antwort

Wärmeenergie fließt von selbst immer nur zum kälteren Körper, aber nie umgekehrt.

Ein perpetuum mobule erster Art ist unmöglich.

Es ist unmöglich, Energie aus dem nichts zu gewinnen.

Ein perpetuum mobule erster Art ist unmöglich.

 $\frac{\Delta l}{l} = \alpha \cdot \Delta T$

l: Länge Δl : Längenänderung

 ΔT : Temperaturänderung

 α : Wärmeausdehnungskoeffizient

Am absoluten Nullpunkt ist die Entropie 0.

Es ist unmöglich, diesen zu erreichen.

Physik	# 105	Thermodynamik	Physik	# 106	Thermodynamik
Volumenausdehnung			Volumenausdehnungsk Festkörper	oeffizient	
Physik	# 107	Thermodynamik	Physik	# 108	Thermodynamik
	spezifische Wärn Wärmekapazitä			ideale Gasgleicht	${ m ing}$
Physik	# 109	Thermodynamik	Physik	# 110	Thermodynamik
	Teilchenzahl			Wärmebillanz Zustands	sänderung
Physik	# 111	Thermodynamik	Physik	# 112	Thermodynamik
	innere Energie			Freiheitsgrade	·

# 106 Antwort	# 105 Antwort
$\gamma = 3 \cdot \alpha$ $\gamma \colon \text{ Volumenausdehnungskoeffizient}$ $\alpha \colon \text{ Wärmeausdehnungskoeffizient}$	$\frac{\Delta V}{V} = \gamma \cdot \Delta T$ $V: \text{Volumen}$ $\Delta V: \text{Volumen} \\ \Delta T: \text{Temperatur} \\ \text{and} \\ \gamma: \text{Volumen} \\ \text{ausdehnungskoeffizient}$
1	# 107 Antwort
$p \cdot V = n \cdot R \cdot T = N \cdot k \cdot T$ $p: \text{Druck}$ $V: \text{Volumen}$ $n: \text{Stoffmenge}$ $R: \text{universelle Gaskonstante } \left[\frac{J}{\text{mol K}}\right]$ $T: \text{Temperatur in Kelvin}$ $N: \text{Teilchenzahl}$ $k = \frac{R}{N_A}: \text{Boltzmann-Konstante}$	$\Delta Q = c \cdot m \cdot \Delta T = C \cdot \Delta T$ $C = c \cdot m$ $\Delta Q: \text{Wärmeenergie}$ $\Delta T: \text{Temperaturänderung}$ $c: \text{spezifische Wärme} \left[\frac{J}{\text{kg K}}\right]$ $C: \text{Wärmekapazität} \left[\frac{J}{K}\right]$
$\frac{\# \ 110}{}$ Antwort	$\frac{\# 109}{Antwort}$
$\Delta U = \Delta Q \cdot \Delta W$ $\Delta U : \text{ innere Energie}$ $\Delta Q : \text{ Wärmeenergie}$ $\Delta W : \text{ mechanische Arbeit}$	II II
# = = = = = = = = = = = = = = = = = = =	# = = = = = = = = = = = = = = = = = = =
einatomiges Gas $f=3$ zweiatomiges Gas $f=5$ Atom in Festkörper $f=6$	$\Delta U = \frac{f}{2} \cdot n \cdot R \cdot T \Delta T$ $f: \text{Freiheitsgrade Teilchen}$ $n: \text{Stoffmenge}$ $R: \text{universelle Gaskonstante } [\frac{J}{\text{mol K}}]$ $T: \text{Temperatur in Kelvin}$

Physik	# 113	Thermodynamik	Physik	# 114	Thermodynamik
Boltzmann-Konstante				Zugeführte Wärmee isochor, isobar	
Physik	# 115	Thermodynamik	Physik	# 116	Thermodynamik
	Adiabatenkoeffiz	ient		Isotherme Energieänd	derung
Physik	# 200	Elektrizität	Physik	# 201	Elektrizität
	elektrische Ladung			Coulomb-Kraft elektrostatische K	
Physik	# 202	Elektrizität	Physik	# 203	Elektrizität
	elektrische Feldkon	stante		potentielle Energ elektrisches Feld	

Physik	# 204	Elektrizität	Physik	# 205	Elektrizität
	elektrisches Feld Punktladung			elektrisches Potential	
Physik	# 206	Elektrizität	Physik	# 207	Elektrizität
	elektrische Spannung			elektrische Arbeit	
Physik	# 208	Elektrizität	Physik	# 209	Elektrizität
	Raumladungsdichte			Flächenladungsdichte	
Physik	# 210	Elektrizität	Physik	# 211	Elektrizität
	Längenladungsdichte			E-Feld Kugelkondensato	or

Physik	# 212	Elektrizität	Physik	# 213	Elektrizität
	Flächenladungsdichte			elektrische Verschiebungs	sdichte
Physik	# 214	Elektrizität	Physik	# 215	Elektrizität
	Kapazität Plattenkonde	nsator		Kapazität Kugelkonden	sator
Physik	# 216	Elektrizität	Physik	# 217	Elektrizität
	Kapazität Zylinderkondensator			gespeicherte Energie Kond	lensator
Physik	# 218	Elektrizität	Physik	# 219	Elektrizität
	energiedichte Elektrische	es Feld		elektrischer Strom	

# 213	Antwort	# 212 Antwort
	$ec{D} = arepsilon_0 arepsilon_r \cdot ec{E}$	$ ho=arepsilon_0\cdot E_\perp$
= = = = = = = = = = = = = = = = = = =	$C = \frac{Q}{U} = \frac{4\pi\varepsilon_0\varepsilon_r}{\frac{1}{r_i} - \frac{1}{r_a}}$	$C = \frac{Q}{U} = \varepsilon_0 \varepsilon_r \cdot \frac{A}{d}$
= = = = = = = = = = <u>#</u> 217	$W = \frac{1}{2}CU^2 = \frac{1}{2}\frac{Q^2}{C}$	$C = \frac{Q}{U} = \frac{2\pi\varepsilon_0\varepsilon_r l}{\ln(\frac{r_a}{r_i})}$
= = = = = = = = = <u>#</u> 219	$I = \frac{Q}{t}$ $A = \frac{C}{s}$	$w = \frac{W}{V} = \frac{1}{2}\varepsilon_0\varepsilon_r E^2$

Physik	# 220	Elektrizität	Physik	# 221	Elektrizität
elektrische Stromdichte		Physik # 221 Elektrizität Leitfähigkeit			
Physik	# 250	E-Magnetismus	Physik	# 251	E-Magnetismus
	Erregung ∞-Dra	ht	Er	regung lange, dünne Zy	linderspule
Physik	# 252	E-Magnetismus	Physik	# 253	E-Magnetismus
Erregung Kreisstrom		magnetische Feldkonstante			
Physik	# 254	E-Magnetismus	Physik	# 255	E-Magnetismus
	magnetische Flussd	ichte		Lorentz-Kraft	

# 221	Antwort	# 220 Antwort
ho: spezifisch	$R = \rho \cdot \frac{l}{A}$ er Widerstand [Ω m]	$j = \frac{I}{A} = \frac{E}{\sigma}$
# 251 N: Windung l: Länge	$H = I \frac{N}{l}$ gszahl	$H=rac{I}{2\pi r}$
= = = = = = = = = = = = = = = = = = =	$\mu_0 = 4\pi \cdot 10^{-17} \frac{\text{V s}}{\text{A m}}$	$H = \frac{I}{2r}$
= = = = = = = = = = = = = = = = = = =	$egin{array}{cccccccccccccccccccccccccccccccccccc$	# 254 Antwort
	$ec{F}_L = q \cdot ec{v} imes ec{B}$	$\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H}$ $\left[1\mathrm{T} = 1\frac{\mathrm{V}\mathrm{s}}{\mathrm{A}\mathrm{m}}\frac{\mathrm{A}}{\mathrm{m}} = 1\frac{\mathrm{V}\mathrm{s}}{\mathrm{m}^2} = 10^4\mathrm{G}\right]$ $\vec{H} \colon \text{ magnetische Erregung}$ $\mu_0 \colon \text{ magnetische Feldkonstante}$ $\mu_r \colon \text{ magnetische Permeabilität}$

Physik	# 256	E-Magnetismus	Physik	# 257	E-Magnetismus	
	Lorentz-Kraft Draht \(\preceq \text{Magnetismus} \)			Bahnen freier Ladungsträger im Magnetfeld		
Physik	# 258	E-Magnetismus	Physik	# 259	E-Magnetismus	
	Drehmoment auf Leite			Hallspannung		
Physik	# 260	E-Magnetismus	Physik	# 261	E-Magnetismus	
	Induzierte Spannung			induktivität lange Zylinderspule		
Physik	# 262	E-Magnetismus	Physik	# 263	E-Magnetismus	
	Selbstinduktion Spule			Energie in Spule		

(a) $\vec{v} \parallel \vec{B} \Rightarrow \vec{v} = \text{const}$ $F_L = 0$ (b) $\vec{v} \perp \vec{B} \Rightarrow \vec{v} \neq \text{const}, \vec{v} = \text{const}$ $r = \frac{m \cdot V}{qB}$ (c) \vec{v} beliebig $\Rightarrow \vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel}$ Überlagerung (a) und (b)	$F_L = IlB$ I : Stromstärke l : Leiterlänge im Magnetfeld B : magnetische Flußdichte
# 259 $Antwort$ $U_H = A_H \frac{I \cdot B}{d}$ $A_H \colon \text{ Hall-Koeffizient}$ $d \colon \text{ dicke des Plättchens}$	$\vec{M} = \vec{I} \cdot \vec{r} \times \vec{l} \times \vec{B}$ $= \vec{A}$ $= \vec{I} \cdot \vec{A} \times \vec{B} = \vec{m} \times \vec{B}$ mit $\vec{m} = \vec{I} \times \vec{A}$ (magnetischer Moment)
# 261 Antwort $L = \mu_r \cdot \mu_0 \cdot A \cdot \frac{N^2}{l}$ $[L] = 1 \frac{\mathrm{V} \mathrm{s}}{\mathrm{A}}$	$ \ddot{H} = \frac{260}{Antwort} $ $ \ddot{H} = \frac{3A}{Antwort} $ $ \ddot{H} = -NB \cdot \frac{\delta A}{\delta t} $ $ \ddot{H} = -NA \cdot \frac{\delta B}{\delta t} $
$\frac{\#\ 263}{Antwort}$ $W = \frac{1}{2}LI^2$	H====================================

256

Antwort

257

Antwort

Ene	rgiedichte im Magnetfeld				
Physik	# 301	Optik	Physik	# 302	Optik
Nutzungshinweis	# 303	Lizenz			
	eise zur Nutzung dies				

 $\hbox{E-Magnetismus}$

Physik

300

Optik

Karteilernkarten:

#~264

Physik

Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden.

# 300	Antwort			Antwort
		1	I	
	=	1	l I	$w = \frac{1}{2}\mu_r \mu_0 H^2 = \frac{1}{2}HB$
		 	I	2 2
		1 1	l I	
		 	İ	
			I	
		 	I	
		1	I I	
: = = = = = = : : : : : : : : : : : : :	=======================================	، ! = = = = = = = = =	<u> </u>	=======================================
# 302	Antwort	 	1	Antwort
		1	l I	
	=	 	I	=
		1 1	I I	
		 	I	
		1	I I	
		 	I	
		1	l I	
			# 303	Antwort
			"THE BEE	CR-WARE LICENSE":
			https://githul	gsburger (and others, see b.com/maugsburger/exph) wrote
			you can do w	ong as you retain this notice hatever you want with this stuff.
			If we meet can buy me a	some day and you think this stuff is worth it, you beer or a coffee in return.
			I I	
			I I	
			L	