NOTES ON GROTHENDIECK DUALITY

CHARLIE GODFREY

1. LOCAL COHOMOLOGY

1.1. **Sheaves of families of supports.** Collected here are some useful basic facts about cohomology with supports - I won't be offended if you skip right over this section. First, let *X* be a topological space.

Definition 1.1. A **sheaf of families of supports** $\underline{\Phi}$ **on** X is a sheaf of sets on X with the following properties:

- for each open set $U \subset X$, $\underline{\Phi}(U)$ is a collection of closed subsets of U. In other words, $\underline{\Phi}$ is a subsheaf of the sheaf of sets $U \mapsto \{ \text{ closed subsets of } U \}$.
- For each open set $U \subset X$, $\underline{\Phi}(U)$ is a family of supports on U. That is, if $Z, W \subset U$ are closed, $Z \subset W$ and $W \in \underline{\Phi}(U)$ then $Z \in \underline{\Phi}(U)$ and if $Z_1, Z_2 \in \Phi(U)$ then $Z_1 \cup Z_2 \in \Phi(U)$.

Remark 1.2. If Φ is a family of supports on X as above, then we obtain a pre-sheaf of families of supports by assigning $U \mapsto \{Z \cap U \mid Z \in \Phi\}$, which sheafifies to a sheaf of families of supports $\underline{\Phi}$. On the other hand if $\underline{\Phi}$ is a sheaf of families of supports on X then $\Gamma(X,\underline{\Phi}) = \underline{\Phi}(X)$ is a family of supports on X.

The functors $\Phi \mapsto \underline{\Phi}$ and $\underline{\Phi} \mapsto \Gamma(X,\underline{\Phi})$ need not be mutual inverses. For example if X is a locally compact Hausdorff space and $\Phi = \{Z \subset X \mid Z \text{ is compact }\}$ then $X \in \Gamma(X,\underline{\Phi})$ - if X isn't compact we see that $\Phi \neq \Gamma(X,\underline{\Phi})$ (however we do have an inclusion $\Phi \subset \Gamma(X,\underline{\Phi})$. For an example where $\underline{\Phi} \neq \underline{\Gamma(X,\underline{\Phi})}$ let $f: X \to Y$ be a morphism of finite type where Y is a noetherian scheme, and let p be a natural number. We can define a sheaf of families of supports $\underline{\Phi}$ on X by

$$\underline{\Phi}(U) := \{ Z \subset U \text{ closed } | \operatorname{codim}(Z \cap X_y, X_y) \ge p \text{ for all } y \in f(U) \}$$

In general $\underline{\Gamma(X,\underline{\Phi})}$ will be *smaller* than Φ (this should happen essentially whenever f has varying fiber dimension - for a specific case take f to be the map $f: \mathbb{A}^2_k \times \mathbb{P}^1_k \to \mathbb{A}^2_k$ (here k is any field), and set p=1. Then we have $\mathrm{Blp}_0\mathbb{A}^2_k \subset \mathbb{A}^2_k \times \mathbb{P}^1_k$ - set $U:=(\mathbb{A}^2_k \setminus \{0\}) \times \mathbb{P}^1_k \subset \mathbb{A}^2_k \times \mathbb{P}^1_k$ and set $Z=\mathrm{Blp}_0\mathbb{A}^2_k \cap U$. Super-explicitly,

$$Z := \{ ((x_0, x_1), [x_0, x_1]) \in \mathbb{A}^2_k \times \mathbb{P}^1_k \mid (x_0, x_1) \neq 0 \}$$

Evidently $Z \in \underline{\Phi}(U)$, but since the closure of Z in $\mathbb{A}^2_k \times \mathbb{P}^1_k$ is $\mathrm{Blp}_0 \mathbb{A}^2_k$, there's no $W \in \Gamma(X,\underline{\Phi})$ so that $W \cap U = Z$.

From here on out we'll assume X is a **Zariski space**, that is, a noetherian topological space in which every (non- \emptyset) irreducible closed subset has a unique generic point. A Hartshorne exercise shows that the underlying space of a noetherian scheme is a Zariski space.

Definition 1.3. A subset $Z \subset X$ is **specialization-closed** if and only if whenever $x \in Z$ and $y \in X$ is a specialization of x (meaning $y \in \{\bar{x}\}$), $y \in Z$ too.

Definition 1.4. For a specialization-closed subset $Z \subset X$, the associated family of supports Φ_Z is

$$\Phi_Z := \{ \bigcup_{i=0}^n \{\bar{x_i}\} \subset X \,|\, x_0, \dots, x_n \in Z \text{ and } n \in \mathbb{N} \}$$

Date: 2018/05/07.

Example 1.5. Recall that the *codimension* codim(x, X of a point $x \in X$ is

$$\sup\{n \in \mathbb{N} \mid \text{ there's a sequence of proper specializations } x_0 \mapsto x_1 \mapsto \cdots \mapsto x_n = x\}$$

(if X is a noetherian scheme, one can show $\operatorname{codim}(x,X) = \dim \mathcal{O}_{X,x}$). If y is a specialization of x then $\operatorname{codim}(y,X) \geq \operatorname{codim}(x,X)$ with strict inequality if $y \neq x$, and so we see that for every $p \in \mathbb{N}$,

$$Z_p := \{ x \in X \mid \operatorname{codim}(x, X) \ge p \}$$

is specialization-closed.

Here's a philosophically interesting point:

Proposition 1.6. Let X be a Zariski space. Then there's a natural one-to-one correspondence between families of supports Φ on X such that $\Gamma(X,\underline{\Phi}) = \Phi$ and specialization-closed subsets $Z \subset X$.

Proof. On the one hand, given a specialization-closed set $Z \subset X$ we obtain a family of supports Φ_Z on X. Note that if $W \in \Gamma(X, \underline{\Phi}_Z)$ we can find an open cover $X = \bigcup_i U$ of X (and we can assume it's finite, since X is assumed to be Zariski, hence noetherian) so that for each i

$$W \cap U_i = V \cap U_i$$
 for some $V \in \Phi_Z$

By the definition of Φ_Z , $V = \bigcup_j \{\bar{x_{ij}}\}$ and removing those x_{ij} with $x_{ij} \notin U_i$ if necessary, we have $W \cap U_i = (\bigcup_j \{\bar{x_{ij}}\}) \cap U_i$. The claim to make is that

$$W = \bigcup_{i,j} \{\bar{x_{ij}}\}$$

This boils down to the following foundational fact about Zariski spaces: if W is a closed subset of a Zariski space X and x_0, \ldots, x_N are the generic points of its irreducible components W_0, \ldots, W_N , then $W = \bigcup_i \{\bar{x_i}\}$.

The upshot: $\Phi_Z = \Gamma(X, \underline{\Phi}_Z)$. On the other hand suppose Φ is a family of supports with $\Phi = \Gamma(X, \underline{\Phi})$, and set $Z_{\Phi} = \{x \in X \mid \{\bar{x}\} \in \Phi\}$. Since Φ is a family of supports, Z_{Φ} is specialization-closed. One must now check that our functions $Z \mapsto \Phi_Z$ and $\Phi \mapsto Z_{\Phi}$ are mutual inverses, but I'm going to omit the details.

1.2. **Local cohomology.** Let X be a topological space and let $\underline{\Phi}$ be a sheaf of families of supports on X. Given a sheaf \mathscr{F} of abelian groups on X, we get a *subsheaf* $\underline{\Gamma}_{\Phi}(\mathscr{F})$ of \mathscr{F} , defined by

$$\underline{\Gamma}_{\underline{\Phi}}(\mathscr{F})(U) := \{ \sigma \in \mathscr{F}(U) \, | \, \mathrm{supp} \sigma \in \underline{\Phi}(U) \}$$

Fact: $\underline{\Gamma}_{\underline{\Phi}}$ is left exact. Its right derived functor will be denoted by $R\underline{\Gamma}_{\underline{\Phi}}$. The cohomologies of $R\underline{\Gamma}_{\underline{\Phi}}$ will be denoted by

$$\mathscr{H}^{i}_{\Phi}(\mathscr{F}) = R^{i}\underline{\Gamma}_{\Phi}(\mathscr{F})$$

Remark 1.7. If $Z \subset X$ is a closed set and Φ is the collection of all closed subsets of Z, we'll abbreviate like $\underline{\Gamma}_Z := \underline{\Gamma}_{\Phi}$.

Let $Z \subset X$ be a closed subset and let $U := X \setminus Z$. Let

res :
$$\mathscr{F} \to \iota_*(\mathscr{F}|_U)$$

be the natural morphism, where $\iota: U \to X$ is the inclusion. Unraveling definitions we see that its kernel is $\underline{\Gamma}_Z(\mathscr{F})$, and in this way we obtain a left exact sequence

$$0 \to \underline{\Gamma}_Z(\mathscr{F}) \to \mathscr{F} \to \iota_*(\mathscr{F}|_U)$$

If \mathscr{F} is flasque then this sequence is exact on the right as well.

So, if \mathscr{I}^* is an injective (or even just flasque) resolution of \mathscr{F} , we obtain a short exact sequence of complexes

$$0 \to \underline{\Gamma}_Z(\mathscr{I}^*) \to \mathscr{I}^* \to \iota_*(\mathscr{I}|_U^*) \to 0$$

The resulting long exact sequence on cohomology looks like

$$\cdots \to \mathscr{H}^{i-1}(U,\mathscr{F}|_{U}) \xrightarrow{\delta} \mathscr{H}^{i}_{Z}(X,\mathscr{F}) \to \mathscr{H}^{i}(X,\mathscr{F}) \xrightarrow{\mathrm{res}} \mathscr{H}^{i}(U,\mathscr{F}|_{U}) \xrightarrow{\delta} \mathscr{H}^{i+1}_{Z}(X,\mathscr{F}) \to \cdots$$

The thing that makes local cohomology *local* is the following "excision" property. Let $V \subset X$ be an open set containing Z. Then the natural restriction homomorphism $\underline{\Gamma}_Z(\mathscr{F})|_V \to \underline{\Gamma}_Z(j_*\mathscr{F}|_V)$ is an isomorphism, which induces a natural isomorphism $R\underline{\Gamma}_Z(\mathscr{F})|_V \to R\underline{\Gamma}_Z(j_*\mathscr{F}|_V)$ (here $j:V\to$ *X* is the inclusion). Taking cohomology yields isomorphisms

$$H_Z^i(X,\mathscr{F}) \simeq H_Z^i(V,\mathscr{F}|_V)$$

Note that if $\Psi \subset \Phi$ are families of supports, then there is a natural sub-sheaf inclusion

$$\underline{\Gamma}_{\Psi}(\mathscr{F}) \subset \underline{\Gamma}_{\Phi}(\mathscr{F})$$

so in particular if $Z \in \Phi$, then we have an inclusion $\underline{\Gamma}_Z(\mathscr{F}) \subset \underline{\Gamma}_\Phi(\mathscr{F})$, and taking the colimit over all $Z \in \Phi$ gives a natural morphism

$$\operatorname{co}\lim_{Z\in\Phi}\underline{\Gamma}_{Z}(\mathscr{F})\to\underline{\Gamma}_{\Phi}(\mathscr{F})$$
; one can check it's an *isomorphism*

and this leads to the following

Proposition 1.8. Let $\underline{\Phi}$ be a sheaf of families of supports such that $\underline{\Phi} = \Gamma(X,\underline{\Phi})$. Then for any sheaf of abelian groups F

$$\mathscr{H}^i_{\Phi}(\mathscr{F}) = \operatorname{colim}_{Z \in \underline{\Phi}(X)} \mathscr{H}^i_Z(\mathscr{F})$$

For this reason one can often reduce to the case where Φ consists of the closed subsets of a given subset $Z \subset X$.

If \mathscr{F} is a sheaf of abelian groups on X, then $\Gamma(X,\underline{\Gamma}_{\Phi}(\mathscr{F})) = \Gamma_{\Phi(X)}(X,\mathscr{F})$. This extends to derived functors to yield

$$R\Gamma_{\underline{\Phi}(X)} = R\Gamma \circ R\underline{\Gamma}_{\underline{\Phi}}$$

Proposition 1.9. There is a natural (composition of functors) spectral sequence

$$E_2^{pq} = H^p(X, \mathcal{H}_{\underline{\Phi}}^q(\mathcal{F})) \implies H_{\underline{\Phi}(X)}^{p+q}(X, \mathcal{F})$$

Example 1.10. Suppose A is a noetherian commutative ring and let $I \subset A$ be an ideal, corresponding to a closed subscheme $Z \subset X := \operatorname{Spec} A$. Let M be an A-module and let \tilde{M} be the corresponding quasi-coherent sheaf on X. Observe that $\sigma \in \Gamma_Z(X, \tilde{M})$ if and only if $V(\operatorname{ann}\sigma) = \operatorname{supp}\sigma \in Z$, or equivalently $rad I \subset rad ann \sigma$. As A is noetherian (really, we just need I to be finitely generated), this occurs if and only if $I^r \subset \operatorname{ann}\sigma$ for $r \gg 0$, which is to say $I^r \sigma = 0$ for $r \gg 0$. Conclusion: $\Gamma_Z(X,\tilde{M}) = \Gamma_I(A,M)$, where by definition $\Gamma_I(A,M) := \{m \in M \mid I^r m = 0 \text{ for } r \gg 0\}$ is the *I*-torsion submodule of *M*.

There's a similar (but slightly more complicated) commutative algebraic description of $\Gamma_{\Phi}(X, \tilde{M})$ for a family of supports Φ on X. Here note that $\Phi^{\vee} := \{I \subset A \text{ an ideal } | V(I) \in \Phi\}$ is a family of ideals in A with the properties that

- if $I, J \in \Phi^{\vee}$ then $I \cap J \in \Phi^{\vee}$. if $I \in \Phi^{\vee}$ and $I \subset J$ then $J \in \Phi^{\vee}$.

If M is an A-module then we should have $\Gamma_{\Phi}(X, \tilde{M}) = \Gamma_{\Phi^{\vee}}(A, M)$ where

$$\Gamma_{\Phi^{\vee}}(A, M) := \{ m \in M \mid I^r m = 0 \text{ for } r \gg 0 \text{ for some } I \in \Phi^{\vee} \}$$

Example 1.11. Let $X \subset \mathbb{P}^n_k$ be a projective variety of positive dimension over a field k, and let $C(X) \subset \mathbb{A}^{n+1}_k$ be the affine cone over X and let $p \in C(X)$ be the vertex of the cone. Let's describe the local cohomology of $\mathscr{O}_{C(X)}$ at p. Let $U := C(X) \setminus \{p\}$ and consider the long exact sequence

$$\cdots \to H^{i-1}(U, \mathcal{O}_U) \xrightarrow{\delta} H^i_{\nu}(C(X), \mathcal{O}_{C(X)}) \to H^i(C(X), \mathcal{O}_{C(X)}) \xrightarrow{res} H^i(U, \mathcal{O}_U) \xrightarrow{\delta} \cdots$$

Since C(X) is affine, $H^i(C(X), \mathcal{O}_{C(X)}) = 0$ for i > 0, and so really we're looking at an exact sequence

$$0 \to H^0_p(C(X), \mathscr{O}_{C(X)}) \to H^0(C(X), \mathscr{O}_{C(X)}) \xrightarrow{res} H^0(U, \mathscr{O}_U) \xrightarrow{\delta} H^1_p(C(X), \mathscr{O}_{C(X)}) \to 0$$

and isomorphisms
$$H^i(U, \mathcal{O}_U) \xrightarrow{\simeq} H^{i+1}_n(C(X), \mathcal{O}_{C(X)})$$
 for $i > 0$

Note also that $H_p^0(C(X), \mathcal{O}_{C(X)}) = 0$ (since we're assuming dim X > 0 and hence dim C(X) > 1. So in fact the exact sequence in low degrees simplifies further to

$$0 \to H^0(C(X), \mathscr{O}_{C(X)}) \xrightarrow{res} H^0(U, \mathscr{O}_U) \xrightarrow{\delta} H^1_p(C(X), \mathscr{O}_{C(X)}) \to 0$$

Note that U is a principal \mathbb{G}_m -bundle over X. In fact it's the principal \mathbb{G}_m -bundle associated to the invertible sheaf $\mathcal{O}_X(-1)$, and from this we see that it's *affine* over X, with

$$\pi_*\mathscr{O}_U = \bigoplus_{k \in \mathbb{Z}} \mathscr{O}_X(k)$$

Letting $\pi: U \to X$ be the projection, we can calculate $H^i(U, \mathcal{O}_U)$ using the Leray spectral sequence for π , which collapses (since π is an affine map) to give

$$H^{i}(U, \mathscr{O}_{U}) = \bigoplus_{k \in \mathbb{Z}} H^{i}(X, \mathscr{O}_{X}(k))$$

To obtain some interesting conclusions, allow me to use the results of a few Hartshorne exercises [Har77, §III]: first, if X is a noetherian scheme and $p \in X$ is a point, and if \mathscr{F} is a quasi-coherent sheaf on X, then the natural maps $H^i_p(X,\mathscr{F}) \to H^i_p(\operatorname{Spec}\mathscr{O}_{X,p},\mathscr{F}_p)$ are all isomorphisms, and if A is a noetherian local ring with maximal ideal m, then $H^i_m(\operatorname{Spec} A,A)$ vanishes unless depth $A \le i \le \dim A$ (and it's guaranteed to be non-0 for $i = \operatorname{depth} A$ and $i = \dim A$). Also recall that A is **Cohen-Macaulay** if and only if depth $A = \dim A$.

Recall also that a noetherian scheme X is normal if and only if it satisfies Serre's criteria R_1 and S_2 - that is, it's regular in codimension 1 and for every point $p \in X$,

$$\operatorname{depth} \mathscr{O}_{X,p} \geq \min 2, \operatorname{codim}(p, X)$$

Suppose first that X is *normal*. Then certainly U is normal (it's smooth over X. As X is assumed to be positive-dimensional, $\operatorname{codim}(p, C(X)) = \dim X + 1 > 1$, so C(X) will be normal if and only if it's S_2 at p, i.e.

$$\operatorname{depth}\mathscr{O}_{C(X),p} \geq 2$$

Applying the above Hartshorne facts, we see that C(X) will be normal if and only if $H^1_p(C(X), \mathcal{O}_{C(X)}) = 0$, which occurs if and only if the natural map

$$H^0(C(X), \mathscr{O}_{C(X)}) \xrightarrow{\simeq} \bigoplus_{k \in \mathbb{Z}} H^0(X, \mathscr{O}_X(k))$$
 is an isomorphism.

Unraveling some definitions, one sees that the composition

$$\bigoplus_k H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) = H^0(\mathbb{A}^{n+1}, \mathcal{O}_{\mathbb{A}^{n+1}}) \to H^0(C(X), \mathcal{O}_{C(X)}) \to \bigoplus_{k \in \mathbb{Z}} H^0(X, \mathcal{O}_X(k))$$

factors the restriction $\bigoplus_k H^0(\mathbb{P}^n, \mathscr{O}_{\mathbb{P}^n}(k)) \to \bigoplus_{k \in \mathbb{Z}} H^0(X, \mathscr{O}_X(k))$ as a surjection followed by an injection, and so we recover the basic

Proposition 1.12. X is projectively normal if and only if the restriction map on global sections

$$H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(k)) \to H^0(X, \mathcal{O}_X(k))$$

is an isomorphism for all k.

Now assume *X* is projectively normal - then

$$\begin{split} H^0_p(C(X),\mathscr{O}_{C(X)}) &= H^1_p(C(X),\mathscr{O}_{C(X)}) = 0 \\ \text{and } H^{i+1}_p(C(X),\mathscr{O}_{C(X)}) &\simeq \bigoplus_k H^i(X,\mathscr{O}_X(k)) \text{ for } i > 0 \end{split}$$

From here it's not hard to show that C(X) is Cohen-Macaulay if and only if X is Cohen-Macaulay and $H^i(X, \mathcal{O}_X(k)) = 0$ for all k when $0 < i < \dim X$.

For example let X be a general (hence smooth) complete intersection of type d_1, \ldots, d_r . Then both C(X) is also a complete intersection, and so both X and C(X) are Cohen-Macaulay. In this case

$$H^i_p(C(X),\mathscr{O}_{C(X)}) = 0 \text{ for } i < \dim X + 1 \text{ and}$$

$$H^{\dim X + 1}_p(C(X),\mathscr{O}_{C(X)}) = \bigoplus_k H^{\dim X}(X,\mathscr{O}_X(k)) = \bigoplus_k H^0(X,\mathscr{O}_X(\sum_i d_i - n - 1 - k))$$

where the last step uses Serre duality and the adjunction formual $\omega_X = \mathscr{O}_X(\sum_i d_i - n - 1)$. While this is abstractly isomorphic to $H^0(C(X), \mathscr{O}_{C(X)})$ the grading has been reversed and shifted by $\sum_i d_i - n - 1$.

On the other hand if X is an abelian variety of dimension g then C(X) will never be Cohen-Macaulay, since $H^i(X, \mathcal{O}_X) \neq 0$ for $0 \leq i \leq g$.

1.3. **Cousin complexes.** Let $\underline{\Phi}$ and $\underline{\Psi}$ be 2 sheaves of families of supports on X and suppose $\underline{\Phi} \subset \underline{\Psi}$. Then for any sheaf of abelian groups \mathscr{F} there's a natural inclusion $\underline{\Gamma}_{\underline{\Phi}}(\mathscr{F}) \subset \underline{\Gamma}_{\underline{\Psi}}(\mathscr{F})$ and this extends to a morphism of derived functors

 $R\underline{\Gamma}_{\Phi} \to R\underline{\Gamma}_{\Psi}$ which we can fit into an *exact triangle*

$$R\underline{\Gamma}_{\Phi} \to R\underline{\Gamma}_{\Psi} \to R\underline{\Gamma}_{\Psi \setminus \Phi} \xrightarrow{[+1]} R\underline{\Gamma}_{\Phi} \to \dots$$

We can take this as the definition of the derived functor $R\underline{\Gamma}_{\Psi\setminus\Phi}$.

The following is an analogue of the "spectral sequence of a filtered space" from algebraic topology.

Proposition 1.13. *Let X be a topological space and let*

$$\underline{\Phi}_{X} = \underline{\Phi}_{0} \supset \underline{\Phi}_{1} \supset \underline{\Phi}_{2} \supset \cdots$$

be a filtration of X by sheaves of families of supports, where $\underline{\Phi}_X$ is the maximal sheaf of families of supports (including all closed subsets). Let \mathscr{F}^* be a bounded-below complex of abelian groups on X, i.e. an object of $D^+(A|(X))$.. Then there's a spectral sequence

$$E_1^{pq} = \mathscr{H}^{p+q}_{\Phi_n \setminus \Phi_{n+1}}(\mathscr{F}) \implies \mathscr{H}^{p+q}(\mathscr{F})$$

which converges provided $\underline{\Phi}_n = \emptyset$ for $n \gg 0$.

Assume *X* is a locally Zariski space and let $X = Z_0 \supset Z_1 \supset Z_2 \supset ...$ be a filtration of *X* by specialization-closed sets with the following properties:

- for each p, every point of $Z_p \setminus Z_{p+1}$ is maximal with respect to specialization in other words, if $x \in Z_p$ and $y \in X$ is a proper specialization of x, then $y \in Z_{p+1}$.
- $Z_n = \emptyset$ for $n \gg 0$.

In this situation we obtain associated sheaves of families of supports $\underline{\Phi}_p := \underline{\Phi}_{Z_p}$ fitting into a filtration

$$\underline{\Phi}_X = \underline{\Phi}_0 \supset \underline{\Phi}_1 \supset \dots$$

with $\underline{\Phi}_n = \emptyset$ for $n \gg 0$. Since the notation is already fierce, let's write $\underline{\Gamma}_{Z_p \setminus Z_{p+1}}$ for $\underline{\Gamma}_{\underline{\Phi}_p \setminus \underline{\Phi}_{p+1}}$ and similarly for its derived functors.

Example 1.14. The most important case to keep in mind is where $Z_p = \{x \in X \mid \operatorname{codim}(x, X) \geq p\}$.

Proposition 1.15. For any bounded-below complex of sheaves of abelian groups \mathscr{F}^* on X and for any $p \in \mathbb{N}$, there are natural isomorphisms

$$\mathscr{H}^{i}_{Z_{p}\setminus Z_{p+1}}(\mathscr{F}^{*})\simeq\bigoplus_{x\in Z_{p}\setminus Z_{p+1}}\mathscr{H}^{i}_{x}(\mathscr{F}^{*}) \text{ for all } i$$

where on the right hand side $\mathscr{H}_{x}^{i}(\mathscr{F}^{*}):=\mathscr{H}_{\{\bar{x}\}}^{i}(\mathscr{F}^{*})_{x}$, viewed as the pushforward of the constant sheaf $\mathscr{H}_{\{\bar{x}\}}^{i}(\mathscr{F}^{*})_{x}$ on $\{\bar{x}\}$ to X. So in particular it's flasque.

Combining this with the spectral sequence of a filtered space, we obtain:

Proposition 1.16. With notation as above, there is a convergent spectral sequence

$$E_1^{pq} = \bigoplus_{x \in Z_p \setminus Z_{p+1}} \mathscr{H}_x^{p+q}(\mathscr{F}^*) \implies \mathscr{H}^{p+q}(\mathscr{F}^*)$$

Let's assume for a moment that \mathscr{F}^* is just a sheaf supported in degree 0. Then in fact

$$\mathscr{H}^{i}_{Z_{v}\setminus Z_{v+1}}(\mathscr{F})=0 \text{ for } i>p$$

(this boils down to Grothendieck vanishing applied on the local space of a point $x \in Z_p \setminus Z_{p+1}$). Looking at the q = 0 axis of the spectral sequence, we obtain a complex

$$C^*(\mathscr{F}): \dots \xrightarrow{d_1} \bigoplus_{x \in Z_{p-1} \setminus Z_p} \mathscr{H}_x^{p-1}(\mathscr{F}) \xrightarrow{d_1} \bigoplus_{x \in Z_p \setminus Z_{p+1}} \mathscr{H}_x^p(\mathscr{F}) \xrightarrow{d_1} \bigoplus_{x \in Z_{p+1} \setminus Z_{p+2}} \mathscr{H}_x^{p+1}(\mathscr{F}) \xrightarrow{d_1} \dots$$

together with an augmentation $\mathscr{F} \xrightarrow{\epsilon} \bigoplus_{x \in Z_0 \setminus Z_0} \mathscr{H}^0_x(\mathscr{F})$ (ϵ can be thought of as taking the germs of a section of \mathscr{F} at the generic points of X)

Definition 1.17. $C^*(\mathscr{F})$ is the **Cousin complex of** \mathscr{F} .

Based on the above discussion, we see that

Proposition 1.18. $C^*(\mathscr{F})$ is a flasque resolution of \mathscr{F} if and only if

$$\mathscr{H}_{x}^{i}(\mathscr{F})=0 \text{ for } i\neq p \text{ for } x\in Z_{p}\setminus Z_{p+1}$$

If either of these equivalent conditions are satisfied one says \mathscr{F} is **Cohen-Macaulay with respect to the** *filtration* Z_* .

Similarly $C^*(\mathscr{F})$ is an injective resolution of \mathscr{F} if and only if

$$\mathscr{H}_{x}^{i}(\mathscr{F})=0$$
 for $i\neq p$ for $x\in Z_{p}\setminus Z_{p+1}$ and

$$\mathscr{H}_{x}^{p}(\mathscr{F})$$
 is injective for all $x \in Z_{p} \setminus Z_{p+1}$

If either of these equivalent conditions are satisfied one says \mathscr{F} is **Gorenstein with respect to the filtration** Z_* .

Remark 1.19. By the aforementioned Hartshorne exercises, this reduces to the usual notions of Cohen-Macaulay-ness and Gorenstein-ness when X is a noetherian scheme, Z_* is the codimension filtration and \mathscr{F} is a quasi-coherent sheaf on X.

Example 1.20. Let X be a noetherian scheme of finite-dimension and let Z_* be the codimension filtration of X. Let \mathscr{F} be a Cohen-Macaulay quasi-coherent sheaf on X (for instance if X itself is Cohen-Macaulay then \mathscr{F} can be any locally free sheaf on X). Then the Cousin complex gives a canonical flasque resolution

$$0 \to \mathscr{F} \to \bigoplus_{\operatorname{codim}(x,X)=0} \mathscr{H}_{x}^{0}(\mathscr{F}) \xrightarrow{d} \bigoplus_{\operatorname{codim}(x,X)=1} \mathscr{H}_{x}^{1}(\mathscr{F}) \xrightarrow{d} \bigoplus_{\operatorname{codim}(x,X)=2} \mathscr{H}_{x}^{2}(\mathscr{F}) \xrightarrow{d} \dots$$

To be even more explicit, let *X* be a smooth projective curve over a field *k* (algebraically closed if you want). Then we get a complex of the form

$$0 \to k(X) \xrightarrow{d} \bigoplus_{x \in X \text{ closed}} \mathscr{H}_x^1(\mathscr{O}_X) \to 0$$

computing the cohomology of \mathscr{O}_X - here k(X) is the function field of X. The differential can be interpreted as computing the "principal part" of a rational function $f \in k(X)$ at a point $x \in X$. To see this note that for a closed point $x \in X$ with an affine neighborhood $U \subset X$ excision gives isomorphisms $H^*_x(X,\mathscr{O}_X) \simeq H^*_x(U,\mathscr{O}_U)$. Now set $V := U \setminus \{x\}$ and consider the exact sequence

$$0 \to H^0_x(U, \mathcal{O}_U) \to H^0(U, \mathcal{O}_U) \to H^0(V, \mathcal{O}_V)$$

$$\stackrel{\delta}{\to} H^1_r(U, \mathcal{O}_U) \to H^1(U, \mathcal{O}_U) \to H^1(V, \mathcal{O}_V) \to 0$$

Note that $H_x^0(U, \mathcal{O}_U) = 0$ (since U is smooth, so in particular S_1) and also $H^1(U, \mathcal{O}_U) = H^1(V, \mathcal{O}_V) = 0$ - this is because U and V are affine (any finite set of points on a curve can be viewed as an ample divisor, so its complement is affine). So we have an exact sequence

$$0 \to H^0(U, \mathcal{O}_U) \to H^0(V, \mathcal{O}_V) \to H^1_{\mathfrak{r}}(U, \mathcal{O}_U) \to 0$$

This can be made even more explicit if $X=\mathbb{P}^1_k$ and x=0. In that case $U=\mathbb{A}^1_k$ and $V=\mathbb{A}^1_k\setminus\{0\}$, so $H^0(U,\mathscr{O}_U)=k[x]$ and $H^0(V,\mathscr{O}_V)=k[x,x^{-1}]$; the map $H^0(U,\mathscr{O}_U)\to H^0(V,\mathscr{O}_V)$ is the usual inclusion $k[x]\subset k[x,x^{-1}]$. So, we see that

$$H^1_{\{0\}}(\mathbb{A}^1_k, \mathscr{O}) \simeq k[x, x^{-1}]/k[x]$$

and the map $H^0(V, \mathcal{O}_V) \to H^1_{\{0\}}(\mathbb{A}^1_k, \mathcal{O})$ corresponds to taking the "principal part" of a Laurent polynomial at the origin.

2. LOCAL GROTHENDIECK DUALITY

- 2.1. **Dualizing complexes.** Let X be a locally noetherian scheme and let ω^* be a complex of quasi-coherent sheaves on X such that
 - the cohomology of ω^* is bounded and coherent and
 - ω^* has finite injective dimension.

In this situation ω^* is quasi-isomorphic to a bounded complex of injective quasi-coherent sheaves (it's an object of $D_c^b(X)$) and so $R\underline{Hom}_X(-,\omega^*)$ gives a contravariant derived functor

$$D_c^+(X) \to D_c^-(X)$$
 preserving $D_c^b(X)$

Definition 2.1. An object \mathscr{F}^* of $D_c^+(X)$ is ω^* -reflexive if and only if the natural map

$$\mathscr{F}^* \to R\underline{Hom}_X(R\underline{Hom}_X(\mathscr{F}^*,\omega^*),\omega^*)$$

is a quasi-isomorphism.

Proposition 2.2. If \mathcal{O}_X (viewed as a complex concentrated in degree 0) is ω^* -reflexive then every \mathscr{F}^* as above is ω^* -reflexive.

Definition 2.3. If either of the equivalent conditions in the above proposition are satisfied, ω^* is called a **dualizing complex on** X.

Example 2.4. Let $X = \text{Spec}\mathbb{Z}$. We will show that the complex \mathbb{Z} (concentrated in degree 0) is dualizing. Note that

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

is an injective resolution of \mathbb{Z} and so \mathbb{Z} has finite injective dimension. By the above proposition we only need to check that the natural map

$$\mathbb{Z} \to RHom_{\mathbb{Z}}(RHom_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}),\mathbb{Z})$$

is an isomorphism, which follows from the calculation $\mathbb{Z} \simeq RHom_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z})$ (since $Ext_{\mathbb{Z}}^{i}(\mathbb{Z},\mathbb{Z}) = 0$, \mathbb{Z} being free).

Example 2.5. More generally if X is a regular noetherian scheme then \mathcal{O}_X (viewed as a complex concentrated in degree 0) is dualizing. Once we know \mathcal{O}_X has finite injective dimension, the calculation $R\underline{Hom}_X(\mathcal{O}_X,\mathcal{O}_X)\simeq \mathcal{O}_X$ will show \mathcal{O}_X is indeed dualizing. The fact that it has finite injective dimension is essentially Serre's theorem that a noetherian local ring is regular if and only if it has finite homological dimension!

Here are some local criteria for a complex to be dualizing:

Proposition 2.6. Let ω^* be an object of $D_c^b(X)$ with finite injective dimension. Then the following are equivalent:

- ω^* is a dualizing complex.
- ω_x^* is a dualizing complex on Spec $\mathcal{O}_{X,x}$ for all $x \in X$.
- $\hat{\omega}_x^*$ is a dualizing complex on $\operatorname{Spec}\widehat{\mathcal{O}_{X,x}}$ for all $x \in X$.
- $\iota_{x*}k(x)$ is ω^* -reflexive for all $x \in X$ here k(x) is the residue field of x and $\iota_x : \{x\} \to X$ is the inclusion.

We also have a global uniqueness statement:

Proposition 2.7. Let X be a connected locally noetherian scheme and let ω^* be a dualizing complex on X. If ν^* is another complex on X then ν^* is dualizing if and only if there is an invertible sheaf $\mathscr L$ on X and an integer $k \in \mathbb Z$ so that

$$\nu^* \simeq \omega^* \otimes \mathscr{L}[k]$$

Remark 2.8. Most of the content of this proof is wrapped up in the following fact: if \mathcal{M}_1^* is an object of $D_c^b(X)$ such that there's another object \mathcal{M}_2^* and an isomorphism

$$\mathscr{M}_1^* \otimes^L \mathscr{M}_2^* \simeq \mathscr{O}_X$$
,

then there's an invertible sheaf $\mathscr L$ on X, an integer k and a quasi-isomorphism $\mathscr M_1^* \simeq \mathscr L[k]$ and it follows necessarily that $\mathscr M_2^* \simeq \mathscr L^\vee[-k]$.

Before returning to local cohomological considerations, we need one more lemma:

Proposition 2.9. Let A be a noetherian local ring with maximal ideal \mathfrak{m} and residue field k. Let ω^* be an object of $D_c^b(A)$. Then ω^* is dualizing if and only if there's a $d \in \mathbb{Z}$ so that

$$\operatorname{Ext}_{A}^{i}(k,\omega^{*}) = \begin{cases} k & \text{if } i = d \\ 0 & \text{otherwise} \end{cases}$$

In this situation ω^* is said to be **normalized** if d = 0.

2.2. **Local duality.** Let X be a locally noetherian scheme and let $Z \subset X$ be a closed subscheme, corresponding to a coherent sheaf of ideals $\mathscr{I}_Z \subset \mathscr{O}_X$. Let Z_n be the n-th thickening of Z, corresponding to the ideal sheaf \mathscr{I}_Z^n (so that $Z = Z_1$). Observe that the section 1 of \mathscr{O}_{Z_n} is supported on Z, and so we have natural homomorphisms

$$\underline{Hom}_{X}(\mathscr{O}_{Z_{n}},\mathscr{F}) \to \underline{\Gamma}_{Z}(\mathscr{F})$$
 for all n

compatible with the natural maps $\underline{Hom}_X(\mathscr{O}_{Z_n},\mathscr{F}) \to \underline{Hom}_X(\mathscr{O}_{Z_{n+1}},\mathscr{F})$. In this way we obtain a natural *isomorphism*

$$\operatorname{co}\lim_{n\to\infty} \underline{Hom}_X(\mathscr{O}_{Z_n},\mathscr{F}) \to \underline{\Gamma}_Z(\mathscr{F})$$

That this natural map is indeed an isomorphism can be checked affine locally on X - the affine local verification is a Hartshorne exercise.

The upshot is that there's a natural isomorphism of derived functors

$$Rco \lim_{n\to\infty} \underline{Hom}_X(\mathscr{O}_{Z_n}, -) \to R\underline{\Gamma}_Z$$

Remark 2.10. While it's tempting to pull the colimit to the left of the *R*, that only makes sense after taking cohomology. So, it is the case that there are natural isomorphisms

$$\operatorname{co} \lim_{n \to \infty} \underline{\operatorname{Ext}}_{X}^{i}(\mathscr{O}_{Z_{n}}, \mathscr{F}) \simeq \mathscr{H}_{Z}^{i}(\mathscr{F})$$

Remark 2.11. A related fact is that the natural map

$$j_*(\mathscr{F}|_U) \xrightarrow{\simeq} \operatorname{co} \lim_{n \to \infty} \underline{Hom}_X(\mathscr{I}_Z^n, \mathscr{F})$$

(where $U := X \setminus Z$ and $j : U \to X$ is the inclusion) is also an isomorphism. We obtain a quasi-isomorphism

$$j_*(\mathscr{F}|_U) \xrightarrow{\simeq} R \operatorname{co} \lim_{n \to \infty} \underline{Hom}_X(\mathscr{I}_Z^n, \mathscr{F})$$

Note that from this perspective the long exact sequence

$$\cdots \to H^i_Z(\mathscr{F}) \to H^i(X,\mathscr{F}) \to H^i(U,\mathscr{F}|_U) \to \cdots$$

can be obtained from the short exact sequences

$$0 \to \mathscr{I}_Z^n \to \mathscr{O}_X \to \mathscr{O}_{Z_n} \to 0$$

applying $\operatorname{Hom}_X(-,\mathscr{F})$ to get an Ext long exact sequence, and then taking the colimit over n.

Injective hulls. Let \mathcal{A} be an abelian category. An **essential injection** $\iota: M \to N$ in \mathcal{A} is an injection with the property that for all non-zero subobjects $N' \subset N$, $M \cap N' \neq 0$.

Lemma 2.12. Let A be a commutative ring and let $M \subset N$ be A-modules. Then $\iota : M \to N$ is an essential injection if and only if for each non-zero $n \in N$ there's a $f \in A$ so that $fn \in M$ and $fn \neq 0$.

Definition 2.13. Let A be an abelian category and let M be an object of A. An injective hull of M is an essential injection $\iota: M \to I$ where I is an injective object of A.

Let A be a commutative ring.

Lemma 2.14. Every A-module has an injective hull.

The proof above lemma makes use of the following souped-up version of Baer's criterion (well, along with Zorn's lemma and the fact that A-mod has enough injectives): an A-module I is injective if and only if every essential injection $I \to J$ is an isomorphism.

Taking injective hulls is *almost* functorial, in the following sense:

Proposition 2.15. Let M, N be A-modules with injective hulls E_M, E_N respectively, and let $\varphi : M \to N$ be a homomorphism. Then there's a homomorphism $\psi : E_M \to E_N$ making the diagram

$$(2.1) M \xrightarrow{\varphi} N \\ \downarrow \qquad \downarrow \\ E_M \xrightarrow{\psi} E_N$$

commute and with the properties that

- *if* φ *is injective so is* ψ .
- if φ is an essential injection then ψ is an isomorphism.

In particular we see that E_M is unique up to (not necessarily unique) isomorphism.

Proposition 2.16. Let $\mathfrak{p} \subset A$ be a prime ideal and let $E_{\mathfrak{p}}$ be an injective hull for A/\mathfrak{p} . Then

- $E_{\mathfrak{p}}$ is indecomposable.
- It is also the injective hull of k(p) (over both A and A_p). Here k(p) is the residue field of \mathfrak{p} .

Moreover if A is noetherian then every indecomposable injective A-module arises in this way, so that every injective A-module I decomposes like $I \simeq \bigoplus_i E_{\mathfrak{p}_i}$ where the \mathfrak{p}_i are an indexed set of primes in A (possibly with repetitions).

In the last statement we're using the (trivial) fact that every short exact sequence of injectives splits.

Here's the fun fact:

Proposition 2.17. Let A be a noetherian local ring with maximal ideal m and residue field k, and let ω^* be a normalized dualizing complex on A. Recall this means

$$\operatorname{Ext}_{A}^{i}(k,\omega^{*}) = \begin{cases} k & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}$$

Then $R\underline{\Gamma}_{r}(\omega^{*})$ is quasi-isomorphic to an injective hull of k over A.

I'll just sketch the argument: let $k \to R\underline{\Gamma}_x(\omega^*)$ be the natural map, and recall that

$$R\underline{\Gamma}_{x}(\omega^{*}) \simeq R \operatorname{co} \lim_{n \to \infty} Hom_{A}(A/\mathfrak{m}^{n}, \omega^{*})$$

so that $\mathscr{H}^i_x(\omega^*) \simeq \operatorname{co\,lim}_{n\to\infty}\operatorname{Ext}^i_A(A/\mathfrak{m}^n,\omega^*)$ for all i. Now using the fact that $\operatorname{Ext}^i_A(k,\omega^*)=0$ for $i\neq 0$ as a base case one shows that

$$\operatorname{Ext}_A^i(A/\mathfrak{m}^n,\omega^*)=0$$
 for all n when $i\neq 0$

The hard part is showing that $\operatorname{colim}_{n\to\infty}\operatorname{Hom}_A(A/\mathfrak{m}^n,\omega^*)$ is an injective hull for k over A. This is a theorem from Grothendieck's local cohomology paper.

Now let *M* be an *A*-module. Observe that there's a natural map

$$\Gamma_m M \to \operatorname{Hom}_A(\operatorname{Hom}_A(M, \omega^*), \Gamma_m \omega^*)$$

(if $\sigma \in M$ is m-torsion then evaluating at σ sends a homomorphism $\varphi \in \operatorname{Hom}_A(M, \omega^*)$ to an "m-torsion element" $\varphi(\sigma)$ in $\Gamma_m \omega^*$. This extends to a natural transformation of derived functors

$$R\Gamma_m M \to \operatorname{Hom}_A(R\operatorname{Hom}_A(M,\omega^*), R\Gamma_m \omega^*)$$

Note that I've omitted an R on the Hom on the right hand side. This is because we know $\Gamma_m \omega^*$ is an injective hull for k- so in particular it's injective. The content of the local duality theorem is that this is an isomorphism:

Theorem 2.18. The natural map $R\Gamma_m M \to \operatorname{Hom}_A(R\operatorname{Hom}_A(M,\omega^*), R\Gamma_m\omega^*)$ is a quasi-isomorphism.

The local duality isomorphism above can be written in a more compact form if we write $D(M) := R\text{Hom}_A(M, \omega^*)$ (so D is the dualizing functor associated to ω^*) and $I := R\Gamma_m \omega^*$ (so I is an injective hull of k). Then we have

$$R\Gamma_m M \simeq \operatorname{Hom}_A(D(M), I)$$

Taking cohomology we obtain isomorphisms

$$H_{\mathfrak{m}}^{i}(M) \simeq \operatorname{Hom}_{A}(\operatorname{Ext}_{A}^{-i}(M, \omega^{*}), I)$$
 for all i

Applying $Hom_A(-, I)$ one more time yields isomorphisms

$$\operatorname{Hom}_{A}(H_{\mathfrak{m}}^{-i}(M), I) \simeq \operatorname{Hom}_{A}(\operatorname{Hom}_{A}(\operatorname{Ext}_{A}^{i}(M, \omega^{*}), I), I)$$

$$\simeq \operatorname{Ext}_{A}^{i}(M, \omega^{*})^{\wedge}$$

where the \land denotes m-adic completion. To see where the completion comes from, recall that

$$I \simeq R\Gamma_m \omega^* \simeq R \operatorname{colim} \operatorname{Hom}_A(A/\mathfrak{m}^n, \omega^*)$$

so that

$$\operatorname{Hom}_A(\operatorname{Hom}_A(\operatorname{Ext}_A^{-i}(M,\omega^*),I),I)$$

$$\simeq \operatorname{Hom}_A(\operatorname{Hom}_A(\operatorname{Ext}_A^{-i}(M,\omega^*),\operatorname{Rco}\lim\operatorname{Hom}_A(A/\mathfrak{m}^n,\omega^*)),\operatorname{Rco}\lim\operatorname{Hom}_A(A/\mathfrak{m}^n,\omega^*))$$

Supposing for a moment that we could just drop the R on Rco $\lim \operatorname{Hom}_A(A/\mathfrak{m}^n, \omega^*)$ (which isn't unreasonable, as this complex has cohomology only in degree 0) (one has to be more cautious than I'm being right now) we'd be left with

$$\operatorname{co} \lim_{n'} \lim_{n} \operatorname{Hom}_{A}(\operatorname{Hom}_{A}(\operatorname{Ext}_{A}^{i}(M,\omega^{*}),\operatorname{Hom}_{A}(A/\mathfrak{m}^{n},\omega^{*})),\operatorname{Hom}_{A}(A/\mathfrak{m}^{n'},\omega^{*})))$$

 $\simeq \operatorname{co} \lim_{n'} \lim_{n} \operatorname{Hom}_{A}(\operatorname{Ext}_{A}^{i}(M,\omega^{*}) \otimes A/\mathfrak{m}^{n},\omega^{*}) \otimes A/\mathfrak{m}^{n'},\omega^{*})$ by tensor-hom adjunction

$$\simeq \operatorname{co} \lim_{n'} \lim_{n} \operatorname{Ext}_{A}^{i}(M, \omega^{*}) \otimes A/\mathfrak{m}^{n+n'} \simeq \operatorname{Ext}_{A}^{i}(M, \omega^{*})^{\wedge} \text{ since } \omega^{*} \text{ is dualizing}$$

Example 2.19. Suppose A is Gorenstein of dimension d (e.g. it might be regular). Then A[d] is a dualizing complex for A. Applying the above machinery we see that

$$R\Gamma_{\mathfrak{m}}A[d] \simeq \operatorname{co}\lim_{n}\operatorname{Ext}_{A}^{d}(A/\mathfrak{m}^{n},A)$$

is an injective hull for k - call it I for short. Now for any A-module M with there are natural isomorphisms

$$H^i_{\mathfrak{m}}(M) \simeq \operatorname{Hom}_A(\operatorname{Ext}_A^{d-i}(M,A),I)$$
 and $\operatorname{Ext}_A^i(M,A)^{\wedge} \simeq \operatorname{Hom}_A(H^{d-i}_{\mathfrak{m}}(M),I)$

Example 2.20. Let's get even more explicit - let X be a smooth curve over a field k and let $x \in X$ be a closed point. Let $\mathfrak{m}_x \subset \mathscr{O}_{X,x}$ be the maximal ideal and let k(x) be the residue field. Then we see that

$$\mathscr{H}_{x}^{1}(\mathscr{O}_{X}) \simeq \operatorname{co} \lim_{n} \operatorname{Ext}_{X}^{1}(\mathscr{O}_{X,x}/\mathfrak{m}_{x}^{n},\mathscr{O}_{X,x})$$

To calculate the right hand side let $t \in \mathfrak{m}$ be a local parameter, and observe that

$$0 \to \mathscr{O}_{X,x} \xrightarrow{t^n} \mathscr{O}_{X,x} \to \mathscr{O}_{X,x}/\mathfrak{m}^n \to 0$$

is a free resolution of $\mathscr{O}_{X,x}/\mathfrak{m}^n$, and so $Ext^1_X(\mathscr{O}_{X,x}/\mathfrak{m}^n_x,\mathscr{O}_{X,x})$ is the cokernel of $\mathscr{O}_{X,x} \stackrel{t^n}{\longrightarrow} \mathscr{O}_{X,x}$, namely $\mathscr{O}_{X,x}/\mathfrak{m}^n$. Hence we see that

$$Ext_X^1(\mathscr{O}_{X,x}/\mathfrak{m}_x^n,\mathscr{O}_{X,x}) \simeq \operatorname{co}\lim_{n} \mathscr{O}_{X,x}/\mathfrak{m}^n$$

the colimit being taken over the maps $\mathscr{O}_{X,x}/\mathfrak{m}^n \xrightarrow{t} \mathscr{O}_{X,x}/\mathfrak{m}^{n+1}$.

Remark 2.21. The above discussion is even interesting on Spec \mathbb{Z} - if p is a prime, we see that

$$H_p^1(\mathbb{Z}) \simeq \operatorname{co} \lim_n \mathbb{Z}/p^n$$
, a.k.a. the Prufer group.

The right hand side can be viewed as the elements of \mathbb{Q}/\mathbb{Z} which are annihilated by some power of p (or alternatively as the union of the p^n -th roots of unity over all n).

Now let *X* be a locally noetherian scheme with a dualizing complex ω^* . For each point $x \in X$, ω^* is a dualizing complex on Spec $\mathcal{O}_{X,x}$, and so there's a $d(x) \in \mathbb{Z}$ so

$$\operatorname{Ext}_{\mathscr{O}_{X,x}}^{i}(k(x),\omega^{*}) = \begin{cases} k(x) & \text{if } i = d(x) \\ 0 & \text{otherwise} \end{cases}$$

In this way we obtain a function $d: X \to \mathbb{Z}$. One can show that if $x \rightsquigarrow y$ is an immediate specialization, then d(y) = d(x) + 1, which means d is an example of

Definition 2.22. A **codimension function** on a scheme X is a function $d: X \to \mathbb{Z}$ with the property that whenever $x, y \in X$ and $x \leadsto y$ is an immediate specialization,

$$d(y) = d(x) + 1$$

It's not hard to show that if X admits a codimension function then it is *catenary*, which is to say that whenever $x, y \in X$ and $x \rightsquigarrow y$ is a specialization, *every* sequence if immediate specializations

$$x = x_0 \rightsquigarrow x_1 \rightsquigarrow \cdots x_r = y$$

has the same length. The interesting upshot here is

Proposition 2.23. *If X is a locally noetherian scheme that admits a dualizing complex, then X is catenary.*

Using the codimension function d associated to a dualizing complex ω^* on X we can define a descending filtration

$$X = Z_{\omega}^0 \supset Z_{\omega}^1 \supset Z_{\omega}^2 \supset \dots$$

of X by specialization closed sets with the property that for every i, each point of $Z_{\omega}^i \setminus Z_{\omega}^{i+1}$ is maximal (with respect to specialization) - just set

$$Z_{\omega}^{i} := \{ x \in X \mid d(x) \ge i \}$$

Essentially by the definition of *d* we obtain

Proposition 2.24. The complex ω^* is Gorenstein for the filtration Z_{ω}^* .

Definition 2.25. Let X be a locally noetherian scheme. A dualizing complex ω^* on X is **normalized** if and only if the associated codimension function d on X satisfies

$$d(x) = \operatorname{codim}(x, X)$$

which is to say, *d* is the codimension function on *X*. Hopefully you know what I am trying to say here. .

To see that this notion of Gorenstein-ness coincides with more traditional definitions, we can appeal to the following pleasant "TFAE":

Proposition 2.26. Let A be a noetherian local ring with maximal ideal m and residue field k. Then the following are equivalent:

- (1) A is a dualizing complex on A.
- (2) A has finite injective dimension.
- (3) There's $a d \in \mathbb{Z}$ so that

$$\operatorname{Ext}_A^i(k,A) = \begin{cases} k & \text{if } i = d \\ 0 & \text{otherwise} \end{cases}$$

(4) There's a $d \in \mathbb{Z}$ so that

$$H_m^i(A) = \begin{cases} an \text{ injective } A - module & \text{if } i = d \\ 0 & \text{otherwise} \end{cases}$$

Definition 2.27. A locally noetherian scheme is **Gorenstein** if and only if all of its local rings are.

Putting things together we obtain:

Proposition 2.28. Let X be a locally noetherian scheme with a dualizing complex ω^* . Then X is Gorenstein if and only if ω^* is an invertible sheaf (possibly shifted).

Remark 2.29. Recall that when X is connected, the condition that ω^* is a shifted invertible sheaf is equivalent to the condition that ω^* is a tensor-invertible object of $D_c^b(X)$.

Proposition 2.30. Let Y be a locally noetherian scheme and let $f: X \to Y$ be a flat morphisms of finite type. Recall that the functor $f^!: D^b_c(Y) \to D^b_c(X)$ is given by

$$f^!\mathscr{F}^* := D_X(Lf^*D_Y\mathscr{F}^*)$$
 where D_X , D_Y are the dualizing functors of X , Y respectively.

The complex $f^!$ is supported in one degree if and only if all fibers X_y of f are Cohen-Macaulay. It's and invertible sheaf up to a shift if and only if all fibers are Gorenstein.

Remark 2.31. Using the above proposition, together with functoriality/base change properties of the shriek functor , I think we can prove an "inversion-of-adjunction" statement for both Cohen-Macaulay and Gorenstein singularities. Which is to say, if $f: X \to Y$ is a proper, flat morphism of finite type and Y is locally noetherian, then if X_y is a Cohen-Macaulay fiber of f there's a neighborhood $U \subset Y$ of f so that for all f is Cohen-Macaulay. Similarly for the Gorenstein condition.

Residual complexes.

Definition 2.32. Let X be a locally noetherian scheme and let $x \in X$ be a point. Let I_x be the injective hull of k(x) as a module over $\mathcal{O}_{X,x}$. Then set

$$I(x) := \iota_{x*}I_x$$
 where $\iota_x : \{x\} \to X$ is the inclusion

Remark 2.33. J(x) is an injective quasi-coherent sheaf supported on $\{\bar{x}\}$.

Applying local Grothendieck duality, we see that

Proposition 2.34. *If* X *is a locally noetherian scheme with a* normalized *dualizing complex* ω^* *, then for each* $x \in X$ *,*

$$H_x^0(\omega^*) \simeq I_x$$
, and hence $R\underline{\Gamma}_x \omega^* \simeq J(x)$

Generalizing this a bit,

Definition 2.35. A **residual complex** on X is a bounded-below complex K^* of injective quasi-coherent sheaves, with coherent cohomology, such that

$$\bigoplus_{p\in\mathbb{Z}}K^p\simeq\bigoplus_{x\in X}J(x)$$

Remark 2.36. Note that we are just comparing the K^p and the J(x) at the level of quasi-coherent sheaves on X- we are not worrying about grading of complexes on either side of the above equation.

Example 2.37. A mild generalization of the above proposition shows that if ω^* is a dualizing complex on X and Z_{ω}^* is the induced codimension filtration of X, then the Cousin complex of ω^* with respect to Z_{ω}^* is a residual complex.

Residual complexes are an important technical tool in the "standard" developments of Grothendieck duality theory, and their usefulness stems from the following result.

Proposition 2.38. Assume X is a locally noetherian scheme with a dualizing complex. Then the functor

$$E: \{dualizing\ complexes\ \omega^*\ in\ D^b_c(X)\} \to \{residual\ complexes\ K^*\ in\ \mathcal{K}(I)\}$$

(where K(I) denotes the homotopy category of bounded below complexes of injectives) defined by

$$E(\omega^*) =$$
 the Cousin complex of ω^* with respect to the filtration Z_{ω}^*

is an equivalence of full subcategories. The inverse equivalence is obtained by restricting the usual functor $\mathcal{K}(I) \to D^+(X)$ to the full subcategory of residual complexes.

Moreover if K^* , \tilde{K}^* are two residual complexes on X then there is a one-to-one correspondence

 $\operatorname{Hom}(K^*, \tilde{K}^*) \simeq \{ specialization-compatible collections of homomorphisms \psi_x : K_x^* \to \tilde{K}_x^* \ in \ D_c^+(\operatorname{Spec}\mathscr{O}_{X,x}) \}$

Here "specialization-compatible" means that whenever $x \rightsquigarrow y$ is a specialization, the map ψ_y is obtained from ψ_x by localization.

Remark 2.39. It's not totally clear to me what the induced map of cousin complexes $E(\omega^*) \to E(\tilde{\omega}^*)$ is supposed to be, as we can expect the filtrations Z_{ω}^* and $Z_{\tilde{\omega}}^*$ to differ by a shift... one would have to think about how the two filtrations relate and what exactly is the correct functoriality statement for the spectral sequence of a filtered space.

Finally, I will conclude this section with a fun example.

Example 2.40. The normalized dualizing complex of Spec \mathbb{Z} is $\mathbb{Z}[1]$. Indeed, Spec \mathbb{Z} is regular, so we know that its structure sheaf is a pointwise dualizing complex. Since Spec \mathbb{Z} is 1-dimensional, to normalize we must shift by 1; the end result is $\omega^* = \mathbb{Z}[1]$.

Note that for a point $p \in \operatorname{Spec}\mathbb{Z}$ we have

$$\operatorname{Ext}_{\mathbb{Z}_p}^i(k(p),\mathbb{Z}[1]) = \operatorname{Ext}_{\mathbb{Z}_p}^{i+1}(k(p),\mathbb{Z})$$

and so the codimension function d associated to $\mathbb{Z}[1]$ is

$$d(p) := \operatorname{codim}(p, \operatorname{Spec}\mathbb{Z}) - 1$$

It follows that the Cousin complex of ω^* looks like

$$0 \to H^0_\eta(\mathbb{Z}) \to \bigoplus_p H^1_p(\mathbb{Z}) \to 0$$

where $\eta \in \operatorname{Spec}\mathbb{Z}$ is the generic point and p runs over the closed points, aka the prime numbers, and the term $H^0_{\eta}(\mathbb{Z})$ sits in degree -1. Now, clearly $H^0_{\eta}(\mathbb{Z}) = \mathbb{Q}$ and as discussed above we have

$$H_p^1(\mathbb{Z}) = \operatorname{co} \lim_{n \to \infty} \mathbb{Z}/p^n$$

and so we can write the Cousin complex as

$$0 \to \mathbb{Q} \to \bigoplus_{p} \operatorname{co} \lim_{n \to \infty} \mathbb{Z}/p^n \to 0$$

Under the isomorphism

$$\mathbb{Q}/\mathbb{Z} \simeq \bigoplus_{p} \operatorname{co} \lim_{n \to \infty} \mathbb{Z}/p^{n}$$

(obtained by decomposing \mathbb{Q}/\mathbb{Z} into the direct sum of its *p*-torsion components), this is just the usual injective resolution $0 \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ of \mathbb{Z} , shifted by 1.

REFERENCES 15

3. GROTHENDIECK DUALITY

The first global question to address is when a (locally noetherian) scheme *X* admits a dualizing complex. We have seen that when *X* is Gorenstein it has a dualizing complex (e.g. the structure sheaf).

Let $f: X \to Y$ be a finite morphism, with Y a locally noetherian scheme. Recall that since f is a finite morphism, f_* has a *right* adjoint f^{\flat} , defined as

$$f^{\flat}\mathscr{G} := \underline{Hom}_{\Upsilon}(f_*\mathscr{O}_X,\mathscr{G})$$

More precisely, $f^{\flat}\mathscr{G}$ is the quasi-coherent sheaf on X associated to the quasi-coherent sheaf of $f_*\mathscr{O}_X$ modules $\underline{Hom}_Y(f_*\mathscr{O}_X,\mathscr{G})$. The derived adjunction statement is that for coherent sheaves \mathscr{F} on X and \mathscr{G} on Y,

$$R\underline{Hom}_{Y}(f_{*}\mathscr{F},\mathscr{G}) \simeq f_{*}R\underline{Hom}_{Y}(\mathscr{F},Rf^{\flat}\mathscr{G})$$

Proposition 3.1. If ω_Y^* is a dualizing complex on Y then $f^{\flat}\omega_Y^*$ is a dualizing complex on X.

Proof. We must show that the natural map

$$\mathscr{O}_X \to R\underline{Hom}_X(R\underline{Hom}_X(\mathscr{O}_X, f^{\flat}\omega_Y^*), \omega_Y^*)$$

is an isomorphism. Applying the exact functor f_* we can view these as complexes on Y, and then adjunction gives

$$f_*R\underline{Hom}_X(R\underline{Hom}_X(\mathscr{O}_X, f^{\flat}\omega_Y^*), \omega_Y^*) \simeq$$

Theorem 3.2 (Grothendieck duality). Let $f: X \to Y$ be a proper morphism of finite-dimensional noetherian schemes admitting dualizing complexes ω_X^* and ω_Y^* respectively (for example X and Y could be schemes of finite type over k). Then for any object \mathscr{F}^* in the bounded derived category $D_c^b(X)$ of X there is a natural isomorphism

$$Rf_*R\underline{Hom}_X(\mathscr{F}^*,\omega_X^*)\simeq R\underline{Hom}_Y(Rf_*\mathscr{F}^*,\omega_Y^*) \ in \ D^b_c(Y)$$

Remark 3.3. It is a theorem of Kawasaki [Kaw00] that a scheme X admits a dualizing complex if and only if it is locally embeddable in a Gorenstein scheme. From this perspective it's clear that any scheme of finite type over k has a dualizing complex (since locally it can be embedded in affine space).

REFERENCES

[Har77] Robin Hartshorne. *Algebraic Geometry*. Graduate Texts in Mathematics. Springer, 1977. ISBN: 978-0-387-90244-9 0-387-90244-9.

[Kaw00] Takesi Kawasaki. "On Macaulayfication of Noetherian Schemes". In: Transactions of the American Mathematical Society 352.6 (2000), pp. 2517–2552. ISSN: 0002-9947. DOI: 10. 1090/S0002-9947-00-02603-9. URL: https://doi.org/10.1090/S0002-9947-00-02603-9.