

Prof. Mojtaba Soltanalian

Topics of last and today's lectures

- Last class:
 - CT and DT signals, DT signal representation
- Today's class:
 - DT signal representation
 - Basic DT signals
 - Complex numbers

Discrete-Time (DT) Signals and Digital Signals

Discrete-time signal is a sequence that assumes real (or complex) values:

Discrete-time, Continuous-amplitude signal

Digital signal is a sequence that assumes discrete values

Discrete-time, Discrete-amplitude signal

Example of discrete-time signal

Example of digital signal

In practice the terms "discrete-time" and "digital" are loosely used, without making a distinction

CT, Continuous-Amplitude Signals and CT, Discrete-Amplitude Signals

Continuous-time,
Continuous-amplitude signal

Continuous-time,
Discrete-amplitude signal

Depicting a Discrete-Time (DT) Signal:

$$x[n] = 2\cos\frac{\pi}{4}n$$

DT Signal $x: \mathbb{Z} \to \mathbb{R}$ (or \mathbb{C} , set of complex numbers)

Plot (pictorial representation)

Another convenient representation (index 0 entry is underlined)

$$x = [... -1.414]$$

Real-valued basic DT sequences – Unit Sample or Impulse sequence

Unit sample (or unit impulse) sequence - $\delta[n]$

$$\delta[n] = \begin{cases} 1, n = 0, \\ 0, n \neq 0. \end{cases} \quad \delta[n] = [\dots 0 \ 0 \ 0 \ 0 \ \underline{1} \ 0 \ 0 \ 0 \ \dots]$$

$\delta[n]$ is useful in representing a general signal x[n]:

□ Let
$$x[n] = [...0 \ 0 \ -1 \ \underline{2} \ 3 \ 0 \ 0 \ ...]$$

⇒ $x[n] = -\delta[n+1] + 2 \ \delta[n] + 3\delta[n-1].$

(This expression illustrates the notion of shift and scaling of sequences).

Basic real-valued basic DT sequences – Unit Step sequence

□ Unit step sequence – u[n] or sometimes $\mu[n]$

$$u[n] = \begin{cases} 1, n \ge 0, \\ 0, n < 0. \end{cases}$$

u[n] has infinite duration – right-sided

$$\square \quad u[n] = \sum_{k=0}^{\infty} \delta[n-k].$$

- □ What does u[-n] look like?
- \square u[n] is useful in restricting signal support:

$$x[n] = \cos(\omega_0 n)u[n] = \begin{cases} \cos(\omega_0 n), n \ge 0, \\ 0, n < 0. \end{cases}$$

Basic real-valued basic DT sequences – Unit-amplitude pulse sequence

- (Unit-amplitude) Pulse sequence (causal rectangular window):
- \square Denoted as $p_N[n]$, sometimes as $r_N[n]$ or $R_N[n]$
- $p_N[n] = \begin{cases} 1, & 0 \le n \le N-1, \\ 0, & \text{otherwise.} \end{cases}$
- □ Consider N = 5. Sketch $p_5[n]$.
- □ How would you represent $p_5[n]$ using unit step signals?
- $p_N[n] = u[n] u[n-5].$

Basic real-valued basic DT sequences – Sinusoidal signals

- □ Sinusoidal signals
- $\square \quad x[n] = A\cos(\omega_0 n + \phi). \qquad A > 0$
- What is the duration of this signal?
- Infinite duration two-sided infinite duration
- Note that ω_0 is expressed in radians and not in radians/sec as in the case of frequencies of CT signals. Also note n is dimensionless.
- \square Note that if $\omega_1 = \omega_0 + 2k\pi$, for k any integer, then

$$y[n] = A\cos(\omega_1 n + \phi) = A\cos(\omega_0 n + 2kn\pi + \phi) = x[n]$$

So sinusoidal signals with frequencies $\omega_1 = \omega_0 + 2k\pi$ are indistinguishable for integer values of k. We will re-visit this when we look at sampling and aliasing.

Summary - Basic real-valued sequences

- □ Unit sample (impulse) sequence: $\delta[n] = \begin{cases} 1, n = 0, \\ 0, n \neq 0. \end{cases}$
- □ Unit step sequence: $u[n] = \begin{cases} 1, n \ge 0, \\ 0, n < 0 \end{cases} = \sum_{k=0}^{\infty} \delta[n-k].$
- □ Unit pulse sequence: $p_N[n] = \begin{cases} 1, & 0 \le n \le N-1, \\ 0, & \text{otherwise.} \end{cases}$
 - $p_N[n] = u[n] u[n-N]$. Sometimes denoted as $r_N[n]$ or $R_N[n]$
- Sinusoidal signals: $x[n] = A\cos(\omega_0 n + \phi)$. $(\omega_0 \text{ in radians})$ If $\omega_1 = \omega_0 + 2k\pi$, $k \in \mathbb{Z}$, then $A\cos(\omega_1 n + \phi) = A\cos(\omega_0 n + \phi)$ Sinusoidal signals with frequencies $\omega_1 = \omega_0 + 2k\pi$ are indistinguishable

Represent x[n] = 1 using basic real-valued sequences

 \square Unit sample (impulse) sequence: $\delta[n]$

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-k]$$

 \Box Unit step sequence: u[n]

$$x[n] = u[n] + u[-n-1]$$

□ Unit pulse sequence: $p_3[n] = \begin{cases} 1, & 0 \le n \le 2, \\ 0, & \text{otherwise.} \end{cases}$

$$x[n] = \sum_{k=-\infty}^{\infty} p_3[n-3k]$$

 \square Sinusoidal signals: $x[n] = A \cos(\omega_0 n + \phi)$.

$$x[n] = \cos(\omega_0 n), \ \omega_0 = 0 \rightarrow DC \text{ signal}$$

$$x[n] = \cos(\omega_0 n), \ \omega_0 = 0.125\pi$$

 \square Sinusoidal signals: $x[n] = \cos(\omega_0 n)$. (ω_0 in radians)

Sinusoidal signals with frequencies $\omega_1 = \omega_0 + 2k\pi$ are indistinguishable

$$x[n] = \cos(\omega_0 n), \ \omega_0 = 0.125\pi$$

 \square Sinusoidal signals: $x[n] = \cos(\omega_0 n)$. (ω_0 in radians)

Sinusoidal signals with frequencies $\omega_1 = \omega_0 + 2k\pi$ are indistinguishable

$$x[n] = \cos(\omega_0 n), \ \omega_0 = 0.25\pi$$

$$x[n] = \cos(\omega_0 n), \ \omega_0 = \pi$$

$$x[n] = \cos(\omega_0 n), \ \omega_0 = 1.875\pi$$

$$x[n] = \cos(\omega_0 n), \ \omega_0 = 2\pi$$

Sinusoidal signals with frequencies $\omega_1 = \omega_0 + 2k\pi$ are indistinguishable: $\omega_0 = 0$ and $\omega_0 = 2\pi$

Basic complex-valued DT sequences – complex-valued exponential signal

□ A discrete-time complex exponential signal is defined as

$$x[n] = Az^n$$

z is complex and expressed as $z = re^{j\omega_0}$. Therefore

$$x[n] = Ar^n e^{j\omega_0 n}$$

With
$$r = 1$$
, $A = 1$, $z = e^{j\omega_0}$, $x[n] = e^{j\omega_0 n}$.

We will refer to this as a unit-amplitude <u>pure tone</u> of frequency ω_0 .

□ Real exponential signal: Consider the special case of the signal $x[n] = Az^n$,

where z = r is real, A real.

Then
$$x[n] = Ar^n$$
.

DT real exponential signal is

shown for $z = \frac{3}{4}$ and A = 1

DT signal duration – Finite duration (assume non-zero x[n])

- Finite-duration signal: Let x[n] have at least one non-zero sample. Let the location of the 'left-most' non-zero sample be $n = N_1$ and the 'right-most' non-zero sample be $n = N_2$. N_1 , N_2 are finite. What are N_1 , N_2 in x[n] below.
- $\square \qquad N_1 = -3 \text{ and } N_2 = 7$
- Duration is the total # of samples between the left-most and the right-most non-zero samples including those end samples.
- What is the duration in example?
- -7 (-3) + 1 = 11
- □ Duration in general: $N_2 N_1 + 1$ where $x[n] = \begin{cases} 0, & x < N_1 \\ 0, & x > N_2 \end{cases}$ $N_2 \ge N_1$
- □ Exception: Sometimes you may pad zeros and define a longer "duration".

DT signal duration – Infinite duration (assume non-zero x[n])

- Infinite-duration signal is one that is not of finite duration.
- $\rightarrow x[n]$ is of infinite duration if no pair of two finite integers N_1 , N_2 exist such that

$$\square \quad x[n] = \begin{cases} 0, & x < N_1 \\ 0, & x > N_2 \end{cases} \quad N_2 \ge N_1$$

- Right-sided infinite-duration: x[n] = 0, for n < N, for some finite integer N
 - $\square \quad \text{Example: } x[n] = \cos 0.125\pi n \text{ u[n + 5]}$
- Left-sided infinite-duration: x[n] = 0, for n > N, for some finite integer N
 - \square Example: $x[n] = 0.5^n u[-n]$
- Two-sided infinite sequences can be expressed as the sum of a left-sided infinite-duration and right-sided infinite-duration

$$\square \quad x[n] = 0.5^{|n|}$$

$$x[n] = 0.5^n u[n] + 0.5^{-n} u[-n-1]$$

"Switched" sinusoidal and exponential sequences

- Useful to define new useful sequences using sequences we have defined so far.
- "Switched" sinusoidal and exponential sequences are important in practice. The sequences are "switched on" by multiplying with a unit step function or sometimes its shifted version.
- A discrete-time switched complex exponential signal is defined as $x[n] = Az^n u[n]$, z is a complex number.
- A discrete-time switched sinusoidal signal is defined as

$$x[n] = A\cos(\omega_0 n + \phi)u[n]$$

Complex Numbers and Euler's formula

Euler's formula is often useful when dealing with complex numbers:

$$e^{j\omega} = \cos\omega + j\sin\omega$$
 $j = \sqrt{-1}$

One proof is by using McLaurin series expansion

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \frac{x^{7}}{7!} + \frac{x^{8}}{8!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!}x + \dots$$

$$e^{j\omega}$$

Complex Numbers and Euler's formula

• Apply McLaurin series expansion to $e^{j\omega}$

$$e^{j\omega} = 1 + j\omega + \frac{(j\omega)^2}{2!} + \frac{(j\omega)^3}{3!} + \frac{(j\omega)^4}{4!} + \frac{(j\omega)^5}{5!} + \frac{(j\omega)^6}{6!} + \frac{(j\omega)^7}{7!} + \frac{(j\omega)^8}{8!} + \dots$$

$$j^0 = 1; \ j^1 = j; \ j^2 = -1; \ j^3 = -j; \ j^4 = 1; \ j^5 = j; \ j^6 = -1; \ j^7 = -j; \ j^8 = 1;$$

$$e^{j\omega} = 1 + j\omega - \frac{\omega^2}{2!} - j\frac{\omega^3}{3!} + \frac{\omega^4}{4!} + j\frac{\omega^5}{5!} - \frac{\omega^6}{6!} - j\frac{\omega^7}{7!} + \frac{\omega^8}{8!} + \dots$$

Collect real and imaginary terms

$$e^{j\omega} = \left(1 - \frac{\omega^{2}}{2!} + \frac{\omega^{4}}{4!} - \frac{\omega^{6}}{6!} + \frac{\omega^{8}}{8!} - \dots\right) + j\left(\omega - \frac{\omega^{3}}{3!} + \frac{\omega^{5}}{5!} - \frac{\omega^{7}}{7!} + \frac{\omega^{9}}{9!} - \dots\right)$$

$$\therefore \cos \omega = 1 - \frac{\omega^{2}}{2!} + \frac{\omega^{4}}{4!} - \frac{\omega^{6}}{6!} + \frac{\omega^{8}}{8!} - \dots, \sin \omega = \omega - \frac{\omega^{3}}{3!} + \frac{\omega^{5}}{5!} - \frac{\omega^{7}}{7!} + \frac{\omega^{9}}{9!} - \dots$$

$$e^{j\omega} = \cos \omega + j \sin \omega \quad \text{(Euler's formula)}$$

Complex Numbers

- $z = z_r + jz_i \rightarrow \text{Complex number}$
- □ Euler's formula is useful in dealing with complex numbers.
- $\Box \quad \text{Euler's formula: } e^{j\omega} = \cos \omega + j \sin \omega$
- □ What is the magnitude of $e^{j\omega}$? That is, what is $|e^{j\omega}|$? =1
- $\Box z = re^{j\omega} = r\cos\omega + jr\sin\omega \quad (z = z_r + jz_i)$
- \Box $z_r = r \cos \omega$, $z_i = r \sin \omega$
- |z| = r is the magnitude of the complex number

Euler's formula

$$\Box e^{j\omega} = \cos\omega + j \sin\omega$$

$$e^{j\omega} + e^{-j\omega} = 2\cos\omega$$

$$\Box \cos \omega = \frac{1}{2} (e^{j\omega} + e^{-j\omega})$$

$$\Box \sin \omega = \frac{1}{2j} (e^{j\omega} - e^{-j\omega})$$

Complex numbers and unit circle

- $\Box \quad z = re^{j\omega} = r \cos \omega + j r \sin \omega$
- \square As angle ω is increased from 0 to 2π , z sweeps a circle of radius r
- \square When r = 1, we get the unit circle

Circle of radius r

Unit circle: $z = e^{j\omega}$, r = 1