

Rozpoznávání

Adam Novozámský Jitka Kostková {novozamsky, kostkova} @utia.cas.cz

Motivace

- rozpoznávání je rozhodování, jestli objekt patří do dané třídy
- o objekt je popsán množinou **příznaků** (n-D vektor v metrickém prostoru)
- Jaké známe typy klasifikace/rozpoznávání?
 - rozpoznávání řízené (s učením) pro V třídy máme typickou množinu reprezentantů (trénovací množina)
 - rozpoznávání neřízené (bez učení) nemáme ani trénovací množinu, ani nevíme kolik je tříd

Trénovací množina

- reprezentativní typické vzorky dané třídy, všechny hlavní typy, neměly by tam být jiné vzorky
- o dostatečně velká k podchycení vnitřní variability
- o měl by ji sestavovat odborník v dané oblasti

o Formální definice klasifikátorů:

- Každá třída je charakterizována diskriminační fcí g(x)
- Klasifikace = maximalizace g(x)

Jaké máme klasifikátory?

NN-klasifikátor (NN = nearest neighbor)

$$g(x) = \frac{1}{dist(x, w)}$$

Nevýhoda ?:

extrémně citlivá na chyby v trénovací množině a na extrémy

Jak modifikovat ?:

- nejbližší vzdálenost k těžištím množin nerespektuje tvar ani počet prvků množin
- k-NN: k-nejbližších bodů jedné třídy
 - Jak správně volit k?
 - řádově menší než počet prvků v trénovací množině $(\mathbf{k} = \langle 2, 5 \rangle)$
- Co se stane, pokud máme třídy, ve kterých je vždy jen jeden bod?
 - vznikne taková mozaika ~ Voronojovy polygony

o lineární klasifikátor:

- mezi 2 třídami vede vždy jen jedna nadrovina přímka
- jednodušší hledání hranic, ale klasifikace nemusí být správná

Jak byste hranice hledali ?:

- začnu osou mezi dvěma body z různých tříd, postupně přidávám další body:
 - když padají na správnou stranu, nic s přímkou nedělám, začnu ji posouvat a naklánět teprve, až se trefím na špatnou stranu
 - lepší je ale upravovat přímku vždy, i když padají nové body na správnou stranu (např. minimalizace rozdílu středních vzdáleností od přímky)

o SVM (support vector machine)

 snaží se konstruovat 2 rovnoběžné nadroviny tak, aby separovaly třídy a byly co nejdále od sebe

body, které tyto nadroviny protínají, se nazývají support

vectors

 vlastní rozhodovací nadrovina je s nimi rovnoběžná a vede mezi nimi

Nevýhody:

- support v. jsou většinou extremální body
- nezohledňuje počty bodů v množinách
 rozhodovací přímku posunu v poměru k té množině, kde je více prvků
- často nemusí existovat dvě rozdělující přímky, pokud nejsou třídy lineárně separovatelné
- programování je náročné, protože se musejí prozkoušet všechny možnosti

X

X

X

o rozhodovací stromy:

- tam, kde je těžké určit metriku
- kořen stromu je neznámý vstupní prvek, listy jsou jednotlivé třídy
- každý rozhodovací strom se dá přepsat do binárního
- trénování spočívá v sestavování stromu a nastavování podmínek
- při reálných příznacích se rozhoduje na základě nerovností
- rozhodovací hranice = hyperkvádry v prostoru

Bayesův klasifikátor

$$P(\omega_j|X) = \frac{p(X|\omega_j)P(\omega_j)}{p(X)}$$

- $p(\omega_j|X)$... podmíněná pravděpodobnost, že se ve třídě ω_j může vyskytnout prvek X
- $P(\omega_i)$... pravděpodobnost i-té třídy v Ω (v reálu)
- $p(X|\omega_j)$... pravděpodobnost, že na prvku ze třídy i můžeme naměřit vektor X
- $p(X) = \sum_{i=1}^{C} p(X|\omega_i) P(\omega_i)$... celková pravděpodobnost

Klasifikace bez učení

- Shluková analýza (clustering)
 - Jednoduché **Wardovo kritérium**: $J = \sum_{i=1}^{N} \sum_{x \in C_i} ||x \mu_i||^2$
 - iterační metody:
 - N-Means Clustering
 - Iterativní minimalizace J
 - hierarchické metody:
 - Aglomerativní
 - Divizivní

Příznaky

o obecné požadavky?:

- Diskriminabilita objekty patřící do různých tříd, by měly mít různé hodnoty příznaků (invariance jde většinou proti diskriminalitě)
- Robustnost měli bychom zajistit jen malé nepřesnosti; měly by být dosti robustní na šum
- Efektivnost
- Nezávislost žádná složka vektoru příznaků není funkce jiných
- Úplné daný objekt lze přesně zrekonstruovat pomocí těchto příznaků

Jaké známe příznaky ? :

- vizuální
- transformační koeficienty
- diferenciální
- momentové

Vizuální příznaky

Kompaktnost

- $\frac{4\pi P}{o^2}$... P je plocha a 0 je obvod
- jde o míru podobnosti ke kruhu, kde kruh má hodnotu "1"

Konvexita

• $\frac{P(A)}{P(C_A)}$... jde o míru podobnosti ke konvexnímu obalu

Elongation (podlouhlost)

poměr krátké a dlouhé strany >> míra podobnosti ke čtverci

Podobnost obdélníku (rectangularity)

- poměr plochy objektu a opsaného obdélníku >> míra podobnosti k obdélníku
- o Eulerovo číslo počet komponent mínus počet děr

Vizuální příznaky se někdy používají jako předklasifikace.

Úplné vizuální příznaky

Řetězový kód (Chain code)

o Polygonální aproximace

nahrazuje hranici polygonem

Tvarový vektor (Shape vector)

- převzorkování v polárních souřadnicích
- najdu těžiště
- najdu nejvzdálenější bod od těžiště
- vzdálenost těžiště a tohoto bodu bude poloměr kružnice
- udělám kružnici se středem v těžišti
- rozdělím ji na stejné výseče

Úplné vizuální příznaky

Tvarový vektor (shape vector)

- Je invariantní:
 - na posun ?
 - vztaženo k těžišti
 - na otáčení?
 - vztaženo k maximu
 - na změnu měřítka ?
 - ano, pokud vektor normalizuji první složkou

Fourierovy deskriptory

- o patří do skupiny transformačních koeficientů
 - (stejně jako wavelet transform)
- o založeny na Fourier shift teorému (FST):

$$\mathcal{F}_{x}[f(x-x_{0})](k) = e^{-2\pi i k x_{0}} F(k)$$

- fourierka posunuté fce je jen násobkem fourierky té původní
- Amplituda FT se při posunu nemění, fáze se definovaně posouvá

Fourierovy deskriptory

$$\mathcal{F}_{x}[f(x-x_{0})](k) = e^{-2\pi i k x_{0}} F(k)$$

- Jak se FST využije ? :
 - Zkonstruujeme radiální fci:

- radiální fce je invariantní k:
 - posunutí protože to vztahuji k těžišti, nemusím uvažovat o posunutí
 - rotaci radiální fce se bude pouze posouvat tedy nezávisí na startovním bodu
- udělám FT radiální fce a vezmu její amplitudu prvních pár koeficientů FT prohlásím za naše hledané FOURIEROVY DESKRIPTORY

Fourierovy deskriptory

 Abychom zajistili invarianci ke změně měřítka, dělí se tato sada prvním koeficientem, což je koeficient konstantní fce – neboli střední hodnota fce:

$$F(n) = \int f(t)e^{-2\pi int}dt \qquad F(0) = \int f(t)dt$$

Funguje jen pro hvězdicovité objekty a ve spojitém případě.

o Použití v praxi (diskrétní případ):

vezmeme hranici a představíme si ji jako komplexní funkci:

$$f(t) = x(t) + iy(t)$$

- z ní se spočítá FT a vezmou se absolutní hodnoty
- nultý koeficient má nyní jiný význam říká nám vzdálenost od počátku, proto jej zahodíme a používáme až ty další

Pozn.: Ve F. deskriptorech moc informace není – u FT je podstatná část informace ve fázi, kterou vůbec neuvažujeme.

Stáhněte si balíček se zadáním:

http://zoi.utia.cas.cz/ROZ2/studijni-materialy

- huc.m počítá Huovy momentové inv. z <u>centrálních m.</u>
- hun.m počítá Huovy m. i. z <u>normalizovaných m.</u>
- iboundary.m vnitřní hranice objektu S ~= 0
- label.m "olabeluje" (označkuje) segmenty obrazu [CS, Counter] = label(lmg, Pic) přiřadí cifry oblastem binárního snímku >> zobr (CS==i)
- zobr.m

Programovaní (zahřívací kolo):

- doporučuji si vytvořit skript doAll.m, kam budete psát jednotlivé mezikroky, protože je budete opakovaně volat...
- o vyzkoušejte si přiloženou funkci label (I)
 - zobrazte např. jen tento červený objekt:


```
[CS, N] = label(Img, 1);
zobr(CS==5);
```

 Napište funkci na spočtení prvních N Fourierových deskriptorů binárního objektu:

```
function R = fourDesc(I, N)
% vraci N fourierovych dekriptoru snimku I
B = iboundary(I);
X = B(:,2);
Y = B(:,1);
F = X + 1i*Y;
FT = abs (fft(F));
R = FT(2:N+1);
R = R / length(X)^2;
```

```
>> FD = fourDesc(padarray(ones(10),[4 4]), 10);
>> plot(FD);
>> ylim([-0.001, max(FD)+0.001]);
>>
>> FD = fourDesc(CS == 5, 10);
>> plot(FD);
```


- o zapište příznaky všech objektů do matice příznaků
 - řádky = záznamy

```
[CS, N] = label(Img, 1);
for i = 1:N
  PriFD(i,:) = fourDesc(CS == i, 5);
end
```

- Zobrazte příznakový prostor:
 - napište funkci zobrPriz (P)
 - bude zobrazovat první dvě složky příznaků

```
function zobrPriz(P)
% zobrPriz(P) - zobrazi prvni dve slozky priznakovych
vektoru
figure;
plot(P(:,1), P(:,2), 'w');
for i = 1 : size (P,1)
  text(P(i,1), P(i,2), ['\times' num2str(i)]);
end
```

 Vytvořte funkci pro získání distanční matice příznakových vektorů distMat (Vects)

```
function R = distMat(Vects)
% R = distMat(Vects) - vraci distancni matici
radkovych priznakovych vektoru
N = size(Vects, 1);
for i = 1 : N
  for j = 1 : N
    R(i,j) = norm (Vects(i,:)-Vects(j,:));
  end
end
```

o zobrazte distanční matici a poté nalezněte práh


```
[CS, N] = label(Img, 1);

for i = 1:N
   PriFD(i,:) = fourDesc(CS == i, 5);
end

ClaFD = distMat(PriFD);
zobr(ClaFD < 0.007);</pre>
```

- o vykreslení tříd dle oprahované distanční matice
 - zobrTridy(CS,D)
 - použijte funkci colormap([0,0,0; hsv(N)]);
 - N ~ počet objektů, resp. tříd


```
function zobrTridy (CS, D)
% zobrTridy(CS,D) - zobrazi segmentovany obrazek CS
klasifikovany dle distancni matice D
N = size(D, 1);
for i = 1:N
  for j = i+1:N
    if D(i, j)
      CS(CS==j) = i;
    end
  end
end
figure;
image(CS+1);
colormap([0,0,0; hsv(N)]);
```

- momenty jsou projekcí funkce obrázku do polynomiální báze
- o Napište obecný moment $M_{pq}^{(f)}$ obrázku f(x,y) ?:

$$M_{pq}^{(f)} = \iint\limits_{D} p_{pq}(x, y) f(x, y) dx dy$$

- $p, q \in \mathbb{N}^+$
- r = p + q je stupeň momentu
 - $p_{00}(x,y), p_{10}(x,y), \cdots, p_{kj}(x,y)$ je polynomiální báze funkcí definovaných na D

o Napište **geometrický moment** $m_{pq}^{(f)}$ obrázku f(x,y)

$$m_{pq}^{(f)} = \iint_{-\infty}^{\infty} x^p y^q f(x, y) dx dy$$

- $m_{00}^{(f)}$?:
 - "hmotnost" obrázku pro binární obrázky je to plocha
- souřadnice těžiště ?:

•
$$x_t = \frac{m_{10}}{m_{00}}, y_t = \frac{m_{01}}{m_{00}}$$

- Pokud považujeme obrázek za hustotu pravděpodobnosti a normalizujeme $m_{00}=1$, pak jsou:
 - m_{10} a m_{01} střední hodnoty
 - m_{20} a m_{02} jsou vertikální a horizontální rozptyly

vzhledem ke geometrickým transformacím obrazu

o invariant k T - centrální geometrický moment

$$\mu_{pq} = \iint_{-\infty}^{\infty} (x - x_t)^p (y - y_t)^q f(x, y) dx dy$$

- kde $x_t = \frac{m_{10}}{m_{00}}$, $y_t = \frac{m_{01}}{m_{00}}$
- pozn.:

•
$$\mu_{01} = \mu_{10} = 0$$

•
$$\mu_{00} = m_{00}$$

$$\mu_{pq} = \sum_{k=0}^{p} \sum_{j=0}^{q} {p \choose k} {q \choose j} (-1)^{k+j} x_t^{\ k} y_t^{\ j} m_{p-k,q-j}$$

vzhledem ke geometrickým transformacím obrazu

o invariant k T a rovnoměrnému S - normalizovaný centrální moment

$$v_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\omega}}$$

- kde $\omega = \frac{p+q}{2} + 1$
- Důkaz.:

$$\mu'_{pq} = \iint_{-\infty}^{\infty} (x' - x'_t)^p (y' - y'_t)^q f'(x', y') dx' dy' =$$

$$= \iint_{-\infty}^{\infty} s^p (x - x_t)^p s^q (y - y_t)^q f(x, y) s^2 dx dy = s^{p+q+2} \mu_{pq}$$

- dále: $\mu'_{00} = s^2 \mu_{00}$
- potom tedy:
- $v'_{pq} = \frac{\mu'_{pq}}{\mu'_{00}^{\omega}} = \frac{s^{p+q+2}\mu_{pq}}{(s^2\mu_{00})^{\omega}} = v_{pq}$
- z toho tedy vyplývá:

$$\frac{s^{p+q+2}}{s^{2\omega}} = 1 \to 2\omega = p+q+2 \to \omega = \frac{p+q}{2} + 1$$

vzhledem ke geometrickým transformacím obrazu

o invariant k R

M.K. Hu, 1962 – 7 invariantů třetího řádu:

$$\phi_{1} = \mu_{20} + \mu_{02}$$

$$\phi_{5} = (\mu_{30} - 3\mu_{12})(\mu_{30} + \mu_{12})((\mu_{30} + \mu_{12})^{2} - 3(\mu_{21} + \mu_{03})^{2})$$

$$+ (3\mu_{21} - \mu_{03})(\mu_{21} + \mu_{03})(3(\mu_{30} + \mu_{12})^{2} - (\mu_{21} + \mu_{03})^{2})$$

$$\phi_{2} = (\mu_{20} - \mu_{02})^{2} + 4\mu_{11}^{2}$$

$$\phi_{3} = (\mu_{30} - 3\mu_{12})^{2} + (3\mu_{21} - \mu_{03})^{2}$$

$$\phi_{4} = (\mu_{30} + \mu_{12})^{2} + (\mu_{21} + \mu_{03})^{2}$$

$$\phi_{7} = (3\mu_{21} - \mu_{03})(\mu_{30} + \mu_{12})((\mu_{30} + \mu_{12})^{2} - 3(\mu_{21} + \mu_{03})^{2})$$

$$- (\mu_{30} - 3\mu_{12})(\mu_{21} + \mu_{03})(3(\mu_{30} + \mu_{12})^{2} - (\mu_{21} + \mu_{03})^{2})$$

 Těžko se hledají, ale dají se lehce prokázat. Pokud do nich dosadíme transformační vztahy pro rotaci:

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

vzhledem ke geometrickým transformacím obrazu

invariant k R

- M.K. Hu, 1962 7 invariantů třetího řádu:
 - Problémy:
 - závislost: $\phi_3 = \frac{\phi_5^2 + \phi_7^2}{\phi_4^3}$
 - neúplnost
- proto konstruujeme rotační invarianty z komplexních momentů:

$$c_{pq}^{(f)} = \iint_{-\infty}^{\infty} (x + iy)^p (x - iy)^q f(x, y) dx dy$$

- Nechť $n \geq 1$ a $k_i, p_i, q_i \in \mathbb{N}^+$, $\mathbf{i} \in \hat{n}$ a nechť $\sum_{i=0}^n k_i (p_i q_i) = 0$
 - pak:

$$I = \prod_{i=1}^{n} c_{p_i q_i}^{k_i}$$

• je invariant k rotaci

- klasifikujte objekty na obrázku segm.pgm pomocí Huových centrálních a normalizovaných invariantů
 - použijte huc.m a hun.m

```
Img = double(~imread('segm.pgm'));
[CS, N] = label(Imq, 1);
for i = 1:N
  PriFD(i,:) = fourDesc(CS == i, 5)';
  PriHun(i,:) = hun(CS == i);
  PriHuc(i,:) = huc(CS == i);
end
ClaFD = distMat(PriFD);
ClaHun = distMat(PriHun);
ClaHuc = distMat(PriHuc);
zobrTridy (CS, ClaFD < 0.007);</pre>
zobrTridy (CS, ClaHun<0.01);</pre>
zobrTridy (CS, ClaHuc<0.1e20);</pre>
```

o zkuste různé hodnoty pro prahování Huových centrálních

a normalizovaných invariantů

zobrTridy (CS, ClaFD < 0.007);</pre>

zobrTridy (CS, ClaHun<0.01);</pre>

