

Interativa

Unidade II

BANCO DE DADOS

Prof. Luiz Fernando

Sistemas de informação

Sistemas de informação

Etapas de um projeto de Banco de Dados

- Levantamento de necessidades.
- Desenho da solução (MER).
- Modelagem lógica.
- Modelagem física.

Levantamento

 Ouvir e principalmente <u>entender</u> as necessidades dos usuários.

Evolução – MER

Evolução lógica

Tabela Lógica

PESSOA		
PK	<u>CPF</u>	
	NOME TEL	

Fonte: autoria própria.

Evolução física

Tabela Física

PESSOA			
PK	<u>CPF</u>	char(11)	
	NOME TEL	varchar(100) char(11)	

Fonte: autoria própria.

Evolução SQL

```
CREATE TABLE PESSOA(
CPF CHAR(11) NOT NULL,
NOME VARCHAR(100),
TEL CHAR(11)
CONSTRAINT PK_PESSOA PRIMARY KEY(CPF)
)
```


Interatividade

Como nascem os bancos de dados?

- a) Nascem prontos.
- b) Nascem a partir de um software.
- c) Nascem a partir de uma necessidade.
- d) Nascem a partir de uma empresa como Oracle ou Microsoft.
- e) Todas as alternativas estão erradas.

Resposta

Como nascem os bancos de dados?

- a) Nascem prontos.
- b) Nascem a partir de um software.
- c) Nascem a partir de uma necessidade.
- d) Nascem a partir de uma empresa como Oracle ou Microsoft.
- e) Todas as alternativas estão erradas.

Desenho da solução

MER – Modelo Entidade Relacionamento

- É um modelo abstrato, desenvolvido pelo Prof. Peter Chen para representar as estruturas de dados de uma forma mais natural e mais próxima do mundo real dos negócios.
- É composto por entidades que são caracterizadas por atributos e que se relacionam entre si.

Diferença entre MER e DER

MER – Modelo Entidade Relacionamento

 Modelo teórico, inventado para transportar estruturas existentes no mundo real para dentro do Banco de Dados.

DER – Diagrama Entidade Relacionamento

Representação gráfica do MER.

Entidade

- Entidades, do original entity type, servem para representar objetos ou pessoas que existem na realidade.
- Exemplo: pessoa, carro, aluno, livros etc.

Atributos

- Os tipos, informações ou características que se deseja conhecer sobre cada objeto que compõe a realidade (entidade).
- Exemplo: um carro possui cor (vermelha, preta), motor (1.0, 1.6, 2.0), número de portas (duas, quatro).

Relacionamentos

Os relacionamentos podem ser:

- 1-1: um para um;
- 1-N: um para muitos;
- N-N: muitos para muitos.
- A isso damos o nome de cardinalidade.
- No MER, os relacionamentos são identificados com um verbo.

Modelagem lógica

• É a fase da modelagem em que a entidade está mais parecida com o seu desenho final, com todos os seus atributos visíveis, entre eles, o seu atributo-chave.

Modelagem física

 É a parte final do projeto de Banco de Dados. Nele já estão definidos os atributos das tabelas e os respectivos data types.

Exemplo de 1:1

Uma pessoa possui um automóvel.

Fonte: autoria própria.

Um automóvel pertence a uma pessoa.

Exemplo de 1:1 - modelo lógico

Fonte: autoria própria.

Exemplo de 1:N

Uma pessoa possui vários automóveis.

Fonte: autoria própria.

Vários automóveis pertencem a uma pessoa.

Exemplo de 1:N - modelo lógico

Fonte: autoria própria.

Exemplo de N:N

Um aluno possui vários professores.

Fonte: autoria própria.

Um professor possui vários alunos.

Obtendo a cardinalidade

Um aluno possui vários professores.

Fonte: autoria própria.

Um professor possui vários alunos.

Exemplo de N:N – modelo lógico

ALUNO	
PK	<u>RA</u>
	NOME

Fonte: autoria própria.

PROFESSOR		
PK	<u>FUNCIONAL</u>	
	NOME	

Exemplo de N:N – modelo lógico

Interatividade

Quando dizemos que um determinado alimento está dentro de um grupo e um grupo pode conter vários alimentos, estamos falando de qual tipo de cardinalidade?

- a) 1-N.
- b) N-N.
- c) 1-1.
- d) M-N.
- e) M-M.

Resposta

Quando dizemos que um determinado alimento está dentro de um grupo e um grupo pode conter vários alimentos, estamos falando de qual tipo de cardinalidade?

- a) 1-N.
- b) N-N.
- c) 1-1.
- d) M-N.
- e) M-M.

Chaves

- Chave candidata.
- Chave primária.
- Chave estrangeira.
- Chave surrogada.

Chave candidata

- Existe apenas no MER.
- É utilizada para indicar atributos que podem vir a ser uma chave primária, por isso candidata, "candidata a chave primária".

Chave primária

- Atributo único de uma tabela.
- Serve para que não haja repetição de dados.
- Pode ser simples (quando composta de um atributo) ou composta (quando composta de dois ou mais atributos).

Chave estrangeira

- Essencial para o relacionamento entre duas ou mais tabelas.
- Garante a integridade dos dados.
- Pode ser simples ou composta.

Chave surrogada

- Também conhecida como chave artificial.
- Serve para substituir a chave original da tabela.
- É muito utilizada em modelos de datawarehouse.
- Normalmente composta de números sequenciais.

Chave primária simples

Fonte: autoria própria.

Chave primária composta

Fonte: autoria própria.

Tipos de relacionamento

Quando fazemos o relacionamento entre duas ou mais tabelas, esse relacionamento pode ser classificado de duas formas:

- Identificado também conhecido como relacionamento forte. Identifica que a chave estrangeira da tabela "pai" faz parte da chave da tabela "filha".
- Não identificado também conhecido como relacionamento fraco. Identifica que a chave estrangeira da tabela "pai" não faz parte da chave primária da tabela "filha", sendo esse apenas mais um atributo.

Relacionamento forte

 Como existe mais de uma cidade com o mesmo nome, a UF serve para deixá-las únicas.

Relacionamento fraco

 Um carro é único, de acordo com o seu chassi, por isso, a cor e o motor são apenas atributos que caracterizam o carro.

Normalização

 Normalização de dados é o processo formal, passo a passo, que examina os atributos de uma entidade, com o objetivo de evitar anomalias observadas na inclusão, exclusão e alteração de registros.

1a Forma Normal – 1NF

 Uma relação estará na Primeira Forma Normal, 1FN, se e somente se todos os domínios básicos contiverem somente valores atômicos (não contiver grupos repetitivos).

Procedimentos

- Identificar a chave primária da entidade.
- Identificar o grupo repetitivo e removê-lo da entidade.
- Criar uma nova entidade com a chave primária da entidade anterior e o grupo repetitivo.

1a Forma Normal – 1NF

 A chave primária da nova entidade será obtida pela concatenação da chave primária da entidade inicial e a do grupo repetitivo.

Cd_Cliente	Nome	Telefone	Endereço
1	João	(11)1234-5678 (11)2345-6789	Rua Seis, 85 Morumbi 12536-965
2	Maria	(11)3456-7890 (11)4567-8901	Rua Onze, 64 Moema 65985-963
3	José	(11)5678-9012 (11)6789-0123	Praça Ramos Liberdade 68858-456

 Aqui temos o mesmo grupo de dados para todos os registros.

CdCli	Nome	Telefone	Rua	Bairro	CEP
1	João	(11)1234-5678 (11)2345-6789	Rua Sels, 85	- Morumbi	12536-965
2	Ma <mark>r</mark> ia	(11)3456-7890 (11)4567-8901	Rua Onze, 64	Moema	65985-963
3	José	(11)5678-9012 (11)6789-0123 (11)7890-1234	Praça Ramos	Liberdade	68858-456

 Quebramos o atributo endereço em outros três atributos (rua, bairro e CEP).

No caso dos telefones, ainda temos repetições.

Cd_Cli	Nome	Rua	Bairro	CEP
1	João	Rua Seis, 85	Morumbi	12536-965
2	Maria	Rua Onze, 64	Moema	65985-963
3	José	Praça Ramos	Liberdade	68858-456

1FN - Tabela de telefones

Telefone	Cd_Cli
(11)1234-5678	1
(11)2345-6789	1
(11)3456-7890	2
(11)4567-8901	2
(11)5678-9012	3
(11)6789-0123	3
(11)7890-1234	3

Interatividade

Assinale a alternativa correta.

- a) Relacionamento fraco é aquele em que a chave primária da tabela "pai" faz parte da chave primária da tabela "filha".
- b) A normalização tem como objetivo evitar redundâncias desnecessárias dentro de um banco de dados.
- c) Cardinalidade é um passo para a normalização.
- d) Formas normais é como definimos o relacionamento entre tabelas.
- e) Todas as alternativas estão corretas.

Resposta

Assinale a alternativa correta.

- a) Relacionamento fraco é aquele em que a chave primária da tabela "pai" faz parte da chave primária da tabela "filha".
- b) A normalização tem como objetivo evitar redundâncias desnecessárias dentro de um banco de dados.
- c) Cardinalidade é um passo para a normalização.
- d) Formas normais é como definimos o relacionamento entre tabelas.
- e) Todas as alternativas estão corretas.

2ª Forma Normal – 2FN

 Uma relação estará na Segunda Forma Normal, 2FN, se já estiver na 1FN e não existir nenhum atributo que não seja dependente de toda a chave da tabela.

Procedimentos

- Identificar os atributos que não são funcionalmente dependentes de toda a chave primária.
- Remover da entidade todos esses atributos identificados e criar uma nova entidade com eles.

N_Pedido		C_Produto	N_Produto	Qt	td	VI_Unitário	Subtotal
1		1234	Impressora matricial	4		100,00	400,00
2		2345	Impressora jato de tinta	3		200,00	600,00
3		3456	Impressora laser	2		1000,00	2000,00
4	\	5678	Impressora multifuncional	/1		350,00	350,00

 Não está na Segunda Forma Normal porque temos atributos que não dependem da chave primária.

N_Pedido	C_Produto	Qtd	VI_Unitário	Subtotal
1	1234	4	100,00	400,00
2	2345	3	200,00	600,00
3	3456	2	1000,00	2000,00
4	5678	1	350,00	350,00

C_Produto	N_Produto
1234	Impressora matricial
2345	Impressora jato de tinta
3456	Impressora laser
5678	Impressora multifuncional

2FN

- Da tabela de pedidos foi retirada a descrição do produto, porque o atributo é dependente apenas do código do produto.
- Foi criada uma nova tabela, chamada de Produto, composta por Código do Produto e Nome do Produto.
- Foi mantido o Código do Produto, na tabela de Pedido, para o relacionamento.

3a Forma Normal – 3FN

 Uma tabela está na Terceira Forma Normal, 3FN, se ela estiver na 2FN e se nenhuma coluna não chave depender de outra coluna não chave.

Procedimentos

- Identificar todos os atributos que são funcionalmente dependentes de outros atributos não chave.
- Removê-los.

3a Forma Normal – 3FN

 A chave primária da nova entidade será o atributo do qual os atributos removidos são funcionalmente dependentes.

N_Pedido	C_Produto	Qtd	VI_Unitário	Subtotal
1	1234	4	100,00	400,00
2	2345	3	200,00	600,00
3	3456	2	1000,00	2000,00
4	5678	1	350,00	350,00

- Ainda existe um atributo que está relacionado com outro atributo não chave.
- O atributo SUBTOTAL é derivado do cálculo da quantidade que multiplica o valor unitário.

N_Pedido	C_Produto	Qtd	VI_Unitário
1	1234	4	100,00
2	2345	3	200,00
3	3456	2	1000,00
4	5678	1	350,00

 Nesse caso, removemos a coluna, pois, entre outras coisas, ela era derivada de um cálculo.

Propagação de chave primária

Propagação de chave primária

- Na primeira tabela, UF, temos uma chave simples, o campo UF.
- Na segunda tabela, CIDADE, temos uma chave composta, os campos CIDADE e UF, que vieram da tabela UF.
- Na terceira tabela, BAIRRO, temos outra chave composta, os campos BAIRRO, UF e CIDADE, que vieram da tabela CIDADE.

Propagação de chave primária

 Na quarta tabela, LOGRADOURO, temos outra chave composta, os campos LOGRADOURO,UF, CIDADE e BAIRRO, que vieram da tabela BAIRRO.

Interatividade

Assinale a alternativa correta.

- a) Campos calculados não devem ser gravados na tabela, e sim criados em consultas.
- b) A normalização deve ser feita durante a fase do MER.
- c) A normalização possui apenas duas formas normais.
- d) Chaves compostas são mais eficazes do que chaves simples.
- e) Nenhuma alternativa está correta.

Resposta

Assinale a alternativa correta.

- a) Campos calculados não devem ser gravados na tabela, e sim criados em consultas.
- b) A normalização deve ser feita durante a fase do MER.
- c) A normalização possui apenas duas formas normais.
- d) Chaves compostas são mais eficazes do que chaves simples.
- e) Nenhuma alternativa está correta.

