EJERCICIOS DE INTEGRACIÓN NUMÉRICA

Tabla de contenido

EJERCICIO 1- Derivación de la función seno en un punto	2
EJERCICIO 2- Derivación de la función cos(x) en todo el periodo	
EJERCICIO 3- Derivación de la función Exponencial	4
EJERCICIO 4- Obtención de la función Derivada de $yt = e^{-pt}sin(wt)$	4

EJERCICIO 1- Derivación de la función seno en un punto

Sea la función y = sen(x): $R \rightarrow R$, y se calcula la derivada primera en $x = \pi/10$.

El valor exacto de la derivada primera, es la función cos(x) evaluada en $x = \pi/10$, Esto es: 0,951= $cos(\pi/10)$

Se usan dos aproximaciones para calcular la derivada numérica: la regla adelante con dos puntos y la central por tres puntos.

a) La Derivada Primera con dos puntos, y su error asociado son

$$f_s' = \frac{y_{s+1} - y_s}{\Delta x}$$
 $Er = -\frac{\Delta x}{2} f_{\xi}'' = C \Delta x$

Para distintos incrementos Δx , se obtienen las siguientes Tablas al evaluar la derivada primera en $x=\pi/10$.

dx	deriv 1 Adelant	Error adelante	
0,00001	0,951054971	0,951056516	1,5451E-06
0,0001	0,951041064	0,951056516	1,54524E-05
0,001	0,950901849	0,951056516	0,000154667
0,01	0,949495593	0,951056516	0,001560923
0,1	0,934034236	0,951056516	0,01702228

log(dx)	log(ErrorAdelante)	pend
-5	-5,811	
-4	-4,811	1,0
-3	-3,811	1,0
-2	-2,807	1,0
-1	-1,769	1,0

En la Tabla de la izquierda se pueden ver los distintos valores aproximados y los errores respecto a la solución exacta. En la Tabla de la derecha, se presenta las relaciones entre $dx=\Delta x$ y el Error en escala logarítmica, donde se puede corroborar que la pendiente es 1.

Analizar la expresión del Error y responder

- ¿Hasta qué grado polinómico es exacta la Derivada Primera con dos puntos?
- Para la función y=sen(x), comparando los cálculos de la derivada primera en x=pi/10 y en x=pi/1,8; ¿Dónde es más precisa para igual = Δx ?
- b) La Derivada Primera Central con tres puntos, y su error asociado son

$$f_{s}' = \frac{-y_{s-1} + y_{s+1}}{2 \Delta x}$$
 $Er = \frac{\Delta x^{2}}{12} f_{\xi}''' = C \Delta x^{2}$

Para distintos incrementos Δx , se obtienen las siguientes Tablas al evaluar la derivada primera en $x=\pi/10$. En la Tabla de la izquierda se pueden ver los distintos valores aproximados y los errores respecto a la solución exacta. En la Tabla de la derecha, se presenta las relaciones entre $dx=\Delta x$ y el Error en escala logarítmica, donde se puede corroborar que la pendiente es 2

dx	deriv 1 Central	Deriv Exacta	Error Central	log(dx)	log(ErrorAdelante)	pend
0,00001	0,951056516	0,951056516	1,27978E-11	-5	-10,893	
0,0001	0,951056515	0,951056516	1,58515E-09	-4	-8,800	2,1
0,001	0,951056358	0,951056516	1,58509E-07	-3	-6,800	2,0
0,01	0,951040665	0,951056516	1,58509E-05	-2	-4,800	2,0
0,1	0,949472214	0,951056516	0,001584302	-1	-2,800	2,0

Corroborar los valores de las Tablas.

Analizar la expresión del Error y responder

- ¿Hasta qué grado polinómico es exacta la Derivada Primera Central con tres puntos?
- Para la función y=sen(x), comparando los cálculos de la derivada primera en x=pi/10 y en x=pi/1,8; ¿Dónde es más precisa para igual Δx ?
- c) La Derivada Segunda Central con tres puntos, y su error asociado son

$$f_s'' = \frac{y_{s-1} - 2 y_s + y_{s+1}}{\Delta x^2}$$
 $Er = \frac{\Delta x^2}{12} f_{\xi}'''' = C \Delta x^2$

Para distintos incrementos Δx , se obtienen las siguientes Tablas al evaluar la derivada primera en $x=\pi/10$. Elaborar las Tablas para los distintos Δx ; y evaluar la pendiente del Error en escala logarítmica

Δx	Derivada 2	Valor	Error	Log(dx)	Log Error	Pendiente
	Central	Exacto	absoluto			
0.1		-0,30901699		-1		
0.01		-0,30901699		-2		
0.001		-0,30901699		-3		

Analizar la expresión del Error y responder

- ¿Hasta qué grado polinómico es exacta la Derivada Segunda Central con tres puntos?
- ¿Qué error se comente si se aplica la Derivada Segunda Central con tres puntos para evaluar la derivada segunda de un polinomio de grado 3?

EJERCICIO 2- Derivación de la función cos(x) en todo el periodo

Sea la función $y = \cos(x)$: R \to R, en el periodo [0; 2π], discretizar con N intervalos y obtener a función derivada primera, y derivada segunda, usando reglas de derivación con orden de error igual a 2.

Usar N= 5; 10; 20 intervalos iguales y comparar con la solución exacta Graficar las funciones discretas y las exactas en las mismas graficas

EJERCICIO 3- Derivación de la función Exponencial

Sea la función $y = \frac{1}{2}(1 - e^{-2t})$: R \to R, en el rango [0; 2], discretizar con N intervalos y obtener la función derivada primera usando reglas de derivación con orden de error igual a 2, y de tipo central toda vez que sea posible

Usar N= 5; 10; 20 intervalos iguales y comparar con la solución exacta Graficar las funciones discretas y las exactas en las mismas graficas

EJERCICIO 4- Obtención de la función Derivada de $y(t) = e^{-pt} sin(w t)$

Conocida la función $y(t) = e^{-0.5 t} \sin(4 t)$, obtener la función derivada primera en el rango de $t \in [0; 8]$ con reglas de derivación con orden de error igual a 2, y de tipo central toda vez que sea posible.

Usar N= 10; 50 y 100 intervalos iguales y comparar con la solución exacta Graficar las funciones discretas y las exactas en las mismas graficas