Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и вычислительной техники

Отчет

По лабораторной работе №1

по дисциплине «Математическая статистика»

Вариант 2

Выполнила: Старостина Е. П., группа Р3219

Преподаватель: Лимар И. А.

Цель работы:

На практике познакомиться с анализом данных, их статистического распределения. Вычислить теоретические характеристики распределения данных.

Результаты задания 1:

Задание 2:

Форма гистограммы и эмпирической функции распределения соответствуют нормальному распределению.

Тогда (метод моментов):

$$X \sim N(\mu, \sigma^2)$$

$$E(X) = \mu$$

$$Var(X) = \sigma^2 = E((X - \mu)^2)$$

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\mu = \bar{X}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Свойства:

1. Согласованность: при $n \to \infty$, выборочное среднее сходится к μ (закон больших чисел), а $\hat{\sigma}^2$ к σ^2 ($E(\hat{\sigma}^2) = \frac{n-1}{n}\sigma^2, \frac{n-1}{n} \to 1$)

2. Несмещённость:
$$E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{n\mu}{n} = \mu$$

Теоретическое смещение:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$E\left(\sum_{i=1}^n (X_i - \bar{X})^2\right) = (n-1)\sigma^2$$

$$E(\hat{\sigma}^2) = \frac{1}{n} E\left(\sum_{i=1}^n (X_i - \bar{X})^2\right) = \frac{n-1}{n}\sigma^2$$

$$Bias(\hat{\sigma}^2) = E(\hat{\sigma}^2) - \sigma^2 = \frac{n-1}{n}\sigma^2 - \sigma^2 = -\frac{\sigma^2}{n}$$

Дисперсия:

Если X₁, ..., X_n – выборка из $N(\mu, \sigma^2)$, то $\frac{n\widehat{\sigma}^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2$ имеет распределение с n-1 степенями свободы

$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n-1)$$

$$Var\left(\frac{n\hat{\sigma}^2}{\sigma^2}\right) = 2(n-1)$$

$$Var(\hat{\sigma}^2) = \left(\frac{\sigma^2}{n}\right)^2 Var(\chi^2(n-1)) = \left(\frac{\sigma^2}{n}\right)^2 * 2(n-1) = \frac{2\sigma^4(n-1)}{n^2}$$

MSE:

$$MSE(\hat{\sigma}^2) = Var(\hat{\sigma}^2) + Bias(\hat{\sigma}^2)^2 = \frac{2\sigma^4(n-1)}{n^2} + \left(-\frac{\sigma^2}{n}\right)^2 = \frac{2\sigma^4(n-1) + \sigma^4}{n^2}$$
$$= \frac{\sigma^4(2n-1)}{n^2}$$

Информация Фишера:

Функция плотности одного наблюдения:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Функция правдоподобия:

$$L(\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(X_i - \mu)^2}{2\sigma^2})$$

$$\log(L(\sigma^{2})) = -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(X_{i} - \mu)^{2}$$

Первая производная:

$$-\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (X_i - \mu)^2$$

Вторая производная:

$$\frac{n}{2\sigma^4} + \frac{1}{2\sigma^6} \sum_{i=1}^n (X_i - \mu)^2$$

Мат ожидание:

$$E\left(\sum (X_i - \mu)^2\right) = n\sigma^2$$

$$E\left(\frac{\partial^2}{\partial (\sigma^2)^2} \log(L(\sigma^2))\right) = \frac{n}{2\sigma^4} - \frac{n\sigma^2}{2\sigma^6} = -\frac{n}{2\sigma^4}$$

Итого:

$$I(\sigma^2) = \frac{n}{2\sigma^4}$$

Результаты задания 3:

Как видно из диаграмм, при увеличении n уменьшается разброс оценок, они стремятся к θ_0

	count	mean	std		50%	75%	
max							
Sample Size							
5 39.219314	1000.0	30.139345	2.782059		30.130734	32.070027	
10 35.574506	1000.0	30.086006	1.842079		30.118120	31.303004	
50 32.632799	1000.0	30.000409	0.883340		29.969414	30.611450	
100 32.215260	1000.0	29.988667	0.613475	• • •	29.987080	30.399062	

500 30.902715	1000.0	29.990444	0.274281		29.993003	30.171015
1000 30.545369	1000.0	30.009056	0.191183	•••	30.007904	30.139862

Выводы по работе:

В ходе лабораторной работы я на практике познакомилась с анализом данных, их статистического распределения. Вычислила теоретические характеристики нормального распределения данных. Вывела зависимость σ^2 от объема выборки.

Приложение:

Ссылка на код:

https://github.com/Starostina-elena/math stat lab1