Permutations: Given an array of n elements the first position can be filled with ndifferent elements, the second with n-1, and so on. $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 = n!$ $P_{n,k} = \frac{n!}{(n-k)!}$ $P_{n,n} = n!$

Combinations: In general we can "combine" n elements taking k at a time in $C_{n,k}$ = $\frac{P_{n,k}}{k!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}$

Multinomial Coefficients: Consider splitting n elements into k(k > 2) groups in a way such that group j gets n_j elements and $\sum_{j=1}^{k} n_j = n$. The n_1 elements in the first group can be selected in $\binom{n}{n_1}$, the second in $\binom{n-n_1}{n_2}$, the third in $\binom{n-n_1-n_2}{n_3}$ and so on until we complete the k groups. Then: $\binom{n}{n_1} \cdot \binom{n-n_1}{n_2}$. $\binom{n-n_1-n_2}{n_3} \cdot \ldots \cdot \binom{n_k}{n_k} = \binom{n}{n_1, n_2, \ldots, n_k}$

\mathbf{of} **Probability** union: If

 A_1, A_2, \ldots, A_n are disjoint events then

$$\Pr(A_1 \cup A_2 \cup \dots \cup A_n) = \Pr(\bigcup_{i=1}^n A_i)$$

$$= \Pr(A_1) + \Pr(A_2) + \dots + \Pr(A_n)$$

$$= \sum_{i=1}^n \Pr(A_i)$$

If the events are not disjoint:

Two events $A_1, A_2 : \Pr(A_1 \cup A_2) = \Pr(A_1) +$ $Pr(A_2) - Pr(A_1 \cap A_2)$

Three events: $A_1, A_2, A_3 : \Pr(A_1 \cup A_2 \cup A_3)$ $= \Pr(A_1) + \Pr(A_2) + \Pr(A_3) - \Pr(A_1 \cap A_2) \Pr(A_1 \cap A_3) - \Pr(A_2 \cap A_3) + \Pr(A_1 \cap A_2 \cap A_3)$

Conditional Probability: If A, B are events such that Pr(A) > 0 and Pr(B) > 0then

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$
 and $\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$

Furthermore:

$$\Pr(A \cap B) = \Pr(B|A) \cdot \Pr(A)$$
 and

$$Pr(A \cap B) = Pr(A|B) \cdot Pr(B)$$

In general: $Pr(A_1 \cap A_2 \cap ... \cap A_n)$

$$= \Pr(A_1) \cdot \Pr(A_2 | A_1) \cdot \dots \cdot \Pr(A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1})$$

Independence: A, Bare independent events if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B). Then, if A, B are independent:

 $Pr(A \cap B) = Pr(A|B) \cdot Pr(B) = Pr(A) \cdot Pr(B)$ and

 $Pr(A \cap B) = Pr(B|A) \cdot Pr(A) = Pr(B) \cdot Pr(A).$ In general if A_1, A_2, \ldots, A_n are independent: $Pr(A_1 \cap A_2 \cap ... \cap A_n) = Pr(A_1) \cdot Pr(A_2) \cdot ... \cdot$ $\Pr(A_n)$.

Note that if $A \cap B = \emptyset$ then the two events are not independent.

Note that if A, B are independent then A, B^c are also independent.

Conditionally Independent:

 A_1, A_2, \ldots, A_k are conditionally independent given B if, for every subset $A_{i_1}, \ldots, A_{i_m} : \Pr(A_{i_1} \cap \ldots \cap A_{i_m} | B) =$ $\Pr(A_{i_1}|B) \cdot \ldots \cdot \Pr(A_{i_m}|B).$

Bayes' Theorem: Let $B_1, \ldots, B_k := a$ partition of S such that $Pr(B_i) > 0, j \in$ $1, \ldots, k$. Assume you have A such that Pr(A) >0. Then: $\Pr(B_i|A) = \frac{\Pr(A|B_i) \cdot \Pr(B_i)}{\Pr(A)} =$ $\Pr(A|B_i) \cdot \Pr(B_i)$ $\sum_{i=1}^{k} \Pr(A|B_j) \cdot \Pr(B_j)$

Uniform Distribution: $X = x, x \in$ $\{1, 2, \dots, k\}$ with all values x equally likely. The p.f. is $f_X(x) =$ $\Pr(X = x) = \begin{cases} \frac{1}{k} & x = 1, 2, \dots, k \\ 0 & o.w. \end{cases}$

Bernoulli Distribution: An event A happens with probability p:

Binomial: *n* Bernoulli trials repeated independently with probability of success p.

X := number of success in n trials.

$$x \in \{0, 1, \dots, n\}.$$

$$f_X(x) = \Pr(X = x)$$

$$= \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, \dots, r \\ 0 & \text{o.w.} \end{cases}$$

 $\rightarrow X \sim Bin(n, p)$

Quantile Function: X continuous r.v. $F^{-1}(p)$ is the quantile function of X for $0 \le F(x) = \Pr(X \le x)$. Properties: $p < 1.F^{-1}(p) = x \Rightarrow p = F(x).$

Joint Continuous Distributions: Joint p.d.f. given by $f_{X,Y}(x,y) = \Pr((X,Y) \in$ $A) = \iint f(x,y) dx dy$. To find the joint c.d.f. just integrate.

Negative-Binomial:

We repeat Bernoulli trials until r successes are observed.

 $X := \text{number of failures} = \{0, 1, \ldots\}.$

p := probability of success.

Pr(X = x) = Pr(x failures before r successes)= Pr(x failures and r-1 successes in x+r-1

$$= \left\lfloor {x+r-1 \choose x} (1-p)^x p^{r-1} \right\rfloor \cdot p = {x+r-1 \choose x} (1-p)^x p^r.$$

$$f_X(x) = \begin{cases} \binom{x+r-1}{x}(1-p)^x p^r & x = 0, 1, 2, \dots \\ 0 & \text{o.w.} \end{cases}$$
 Marginal Distributions: In general for discrete r.v. $f_X(x) = \sum_y f(x,y)$ and

Hypergeometric:

A box with A red balls and B blue balls. n balls are drawn without replacement.

X := number of red balls.

 $X \leq \min(n, A)$.

$$X \leq \min(n, A).$$

$$\max(n - B, 0) \leq X \leq \min(n, A) \to f_X(x) =$$

$$\begin{cases} \frac{\binom{A}{x} \cdot \binom{B}{n-x}}{\binom{A+B}{n}} & \max(n - B, 0) \leq x \leq \min(n, A) \\ 0 & \text{o.w.} \end{cases}$$

Geometric: Negative binomial with r = 1 $f_X(x) = \begin{cases} (1-p)^x p & x = 0, 1, \dots \\ 0 & \text{o.w.} \end{cases}$

 $\begin{array}{ll} \textbf{Poisson:} & \text{Counts occurences of an event. } X \\ \text{is a Poisson r.v. with parameter } \lambda \text{ (intensity)} \\ \text{if the p.f. is } f_X(x) = \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!} & x = 0, 1, 2, \dots \\ 0 & \text{o.w.} \end{cases} \\ \text{with } \lambda > 0. \\ \end{array}$

Continuous Random Variables: A r.v. X has a cont. distribution if there is a nonnegative f s.t. $\Pr(a \leq X \leq b) = \int_a^b f(x) dx$. f

is the probability density function p.d.f. To find the normalizing constant integrate the p.d.f. over the domain, it must equal 1.

Cumulative Distribution Function:

(c.d.f.) For any r.v. X the c.d.f. is given by

 $\forall x : 0 < F(x) < 1$

F(x) is non-decreasing, i.e. if $x_1 < x_2 \Rightarrow$ $\{X < x_1\} \subset \{X < x_2\} \text{ and so } \Pr(X < x_1) <$ $\Pr(X \le x_2) \Rightarrow F(x_1) \le F(x_2)$

 $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$ For a continuous r.v.:

$$F(x) = \Pr(X \le x) = \int_{-\infty}^{\infty} f(t)dt$$

$$F'(x) = f(x)$$

$$\begin{array}{l} \Pr(a < X \leq b) = \Pr(a \leq X \leq b) = \Pr(a \leq X < b) \\ X < b) = \Pr(a < X < b) \end{array}$$

In general,
$$X \sim Unif[a, b] \Rightarrow f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & a \le x \end{cases}$$

$$\begin{aligned} & \text{trials}) \cdot \text{Pr(one success in last trial)} \\ &= \left[\binom{x+r-1}{x} (1-p)^x p^{r-1} \right] \cdot p = \binom{x+r-1}{x} (1-p)^x p^r. \end{aligned}$$
 The c.d.f.:
$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1x > b \end{cases}$$

 $f_Y(y) = \sum_x f(x, y)$. In the case of 2 cont. r.v. $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$ and $f_Y(y) =$ $\int_{-\infty}^{\infty} f(x,y)dx$. $f_X(x)$ is the marginal p.d.f. of $X. f_Y(y)$ is the marginal p.d.f. of Y.

Independence: Two r.v. are independent if they produce independent events: $\Pr(X \in A, Y \in B) = \Pr(X \in A) \cdot \Pr(Y \in B).$ This implies: $Pr(X \leq x, Y \leq y) = Pr(X \leq y)$ $\max(n-B,0) \le x \le \min(n,A) \ x) \cdot \Pr(Y \le y) \Rightarrow F(x,y) = F_X(x) \cdot F_Y(y).$

> Conditional Distributions: X, Y discrete r.v. with p.f. $f_X(x), f_Y(y)$ and joint p.f. f(x,y). Then:

> $\Pr(X=x|Y=y) = \frac{\Pr(X=x,Y=y)}{\Pr(Y=y)} = \frac{f(x,y)}{f_Y(y)}.$ This is a new distribution and the p.f. is (p.f. of (X|Y):

$$g_X(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & \forall x,y : f_Y(y) > 0\\ 0 & \text{o.w.} \end{cases}$$

Note that
$$\sum_{x} y_X(x|y) = \sum_{x} \frac{f(x,y)}{f_Y(y)} = \frac{1}{f_Y(y)}$$
$$\sum_{x} f(x,y) = \frac{f_Y(y)}{f_Y(y)} = 1.$$

We can also define the conditional distribution of Y given X = x by:

$$g_Y(y|x) = \begin{cases} \frac{f(x,y)}{f_X(x)} & \forall x, y : f_X(x) > 0\\ 0 & \text{o.w.} \end{cases}$$

In the continuous case X, Y with joint p.d.f. f(x,y) and marginal p.d.f.'s $f_X(x)$ and $f_Y(y)$:

$$f(x,y) \text{ and marginal p.d.f.'s } f_X(x)$$

$$g_X(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & f_Y(y) > 0\\ 0 & \text{o.w.} \end{cases}$$

$$g_Y(y|x) = \begin{cases} \frac{f(x,y)}{f_X(x)} & f_X(x) > 0\\ 0 & \text{o.w.} \end{cases}$$

$$g_Y(y|x) = \begin{cases} \frac{f(x,y)}{f_X(x)} & f_X(x) > 0\\ 0 & \text{o.w.} \end{cases}.$$
 Again note that

$$\int_{-\infty}^{\infty} g_X(x|y)dx = \int_{-\infty}^{\infty} \frac{f(x,y)}{f_Y(y)}dx = \frac{1}{f_Y(y)} \int_{-\infty}^{\infty} f(x,y)dx$$

$$= \frac{1}{f_Y(y)} \cdot f_Y(y) = 1.$$

Multivariate Distributions: X_1, X_2, \ldots, X_n have a joint discrete distri- Let $Y = r(X_1, \ldots, X_n) \rightarrow A_y = r(X_1, \ldots, X_n)$ bution if (X, \ldots, X_n) can have only a countable sequence of values in \mathbb{R}^n . The joint p.f. is $f(x_1,...,x_n) = \Pr(X_1 = x_1, X_2 =$ $x_2, \ldots, X_n = x_n$). X_1, X_2, \ldots, X_n have a joint continuous distribution if there exists f such that $f((X_1,\ldots,X_n)\in\mathcal{C})=$ $\int \cdots \int f(x_1,\ldots,x_n)dx_1\ldots dx_n$. $f(x_1,\ldots,x_n)$ is the joint p.d.f. $\frac{d^n F(x_1,\ldots,x_n)}{dx_1\ldots dx_2}.$ and $f(x_1,\ldots,x_n)$ $F(x_1,\ldots,x_n) = \Pr(X_1 \leq x_1,X_2 \leq$ $x_2,\ldots,X_n\leq x_n$).

Marginal Distributions: X_1, \ldots, X_n are cont. r.v. with joint p.d.f. Then the marginal $f(x_1,\ldots,x_n).$ distribution of $X_1 = f_{X_1}(x_1) =$ $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n) dx_2 dx_3 \dots dx_n.$ $F(x_1)$ is the marginal c.d.f. of X_1 and $F(x_1) = \Pr(X_1 < x_1) = \Pr(X_1 < x_1, X_2 < x_1)$ $\infty,\ldots,X_n<\infty$).

Conditional Distribution: $f(x_1,\ldots,x_n)$: joint p.d.f. of x_1,\ldots,x_n ; $f_0(x_1,\ldots,x_k)$: joint p.d.f. of x_1,\ldots,x_k with k < n. Then $\forall x_1, \ldots, x_k$ such that $f_0(x_1,\ldots,x_k) > 0$ the conditional p.d.f. of $X_{k+1}, ..., X_n$ given $X_1 = x_1, ..., X_k = x_k$ is $g(x_{k+1},\ldots,x_n|x_1,\ldots,x_k) = \frac{f(x_1,\ldots,x_n)}{f_0(x_1,\ldots,x_k)}$

Functions of one R.V: Consider a r.v. X cont. with p.d.f. $f_X(x)$. Assume we are interested in Y = r(X) with r a function. What is the dist. of Y? Let $G_Y(y) = \Pr(Y < y)$ be the c.d.f. of Y: $G_Y(y) = \Pr(Y \leq y) =$ $\Pr(r(X) \le y) = \int f(x)dx\{x : r(x) \le y\}.$ To get the p.d.f. of Y take derivatives: $q_Y(y) =$ $\frac{dG_Y(y)}{du} = \frac{1}{2}y^{-\frac{1}{2}}$. For continuous r.v. such that Y = r(X) with r differentiable and oneto-one: $g_Y(y) = f_X(r^{-1}(y)) \left| \frac{d}{dy} r^{-1}(y) \right|$.

R.V.s: Discrete case: X_1, X_2, \ldots, X_n r.v. with joint p.f. $f(x_1, \dots, x_n)$: Y_1 = stationary transition distribution. In this case

= $r_1(X_1,\ldots,X_n)$... $Y_m=r_m(X_1,\ldots,X_n)$. there is a matrix s.t. $\sum_{j=1}^k p_{ij}=1, \forall i$: Let $A:=\{(x_1,\ldots,x_n):=\text{ such that }y_1=$ $r(x_1, ..., x_n) ... y_m = r(x_1, ..., x_n)$. Then: $g(y_1, \ldots, y_m) = \Pr(Y_1 = y_1, \ldots, Y_m = y_m) =$ $\sum f(x_1,\ldots,x_n)$

Continuous case: X_1, X_2, \ldots, X_n cont. r.v. with joint p.d.f. $f(x_1, \ldots, x_n)$. $r(x_1,\ldots,x_n) \leq y$ $\{(x_1,\ldots,x_n) \text{ s.t. }$ Then the c.d.f. of Y is G(y) $\Pr(Y \leq y) = \Pr(r(X_1, \dots, X_n) \leq y) =$ $\int \cdots \int f(x_1,\ldots,x_n)dx_1dx_2\ldots dx_n$.

density/p.d.f. of Y is $q(y) = \frac{dG(y)}{dx}$.

Transformations: X_1, \ldots, X_n r.v.'s with joint pdf $f(x_1,\ldots,x_n)$. Let $Y_1=$ $r_1(X_1,\ldots,X_n),\ldots,Y_n = r_n(X_1,\ldots,X_n).$ To find the joint pdf of Y_1, \ldots, Y_2 for a one-to-one differentiable transformation $x_1 = s_1(y_1, ..., y_n), ..., x_n =$ $s_n(y_1,\ldots,y_n) \to \text{The joint pdf of } Y_1,\ldots,Y_n$ is $g(y_1, \dots, y_n) = f(s_1, \dots, s_n) |J|$ where $J = \det \begin{bmatrix} \frac{ds_1}{dy_1} & \dots & \frac{ds_1}{dy_n} \\ \vdots & \ddots & \vdots \\ \frac{ds_n}{dy_1} & \dots & \frac{ds_n}{dy_n} \end{bmatrix}$

Linear Transformations: Suppose that $\vec{X} = \begin{pmatrix} A_1 \\ \vdots \\ Y \end{pmatrix}$ and $\vec{Y} = \begin{pmatrix} I_1 \\ \vdots \\ Y \end{pmatrix} = A\vec{X}$ (with

A a non-singular matrix). Then $\vec{X} = A^{-1}\vec{Y}$ and $g_Y(y) = f_X(A^{-1}) \cdot \frac{1}{|dot|^{A|}}$

Markov Chains: A sequence of r.v.'s X_1, X_2, \ldots is a stochastic process with discrete time parameter. X_1 is the initial state and X_n is the state at time n. A stochastic process with discrete time parameter is a Markov chain if for each n, $Pr(X_{n+1} \leq b | X_1 = x_1, X_2 =$ $x_2, \dots, X_n = x_n$ = $\Pr(X_{n+1} = \le b | X_n = x_n)$. A Markov Chain is finite if there are finite possible states. Then: $Pr(X_1 = x_1, ..., X_n =$ $(x_n) = \Pr(X_1 = x_1) \Pr(X_2 = x_2 | X_1 = x_2)$ x_1) · · · Pr($X_n = x_n | X_{n-1} = x_{n-1}$). Transition distributions: When a MC has k possible states then it has a transition distribution where there exist probabilities p_{ij} for i, j = 1, ..., k such Functions of two or more that $\forall n : \Pr(X_{n+1} = j | X_n = i) = p_{ij}$ and if $Pr(X_{n+1} = j | X_n = i) = p_{ij} \forall n$ then it is a

$$P = \begin{bmatrix} p_{11} & \dots & p_{1k} \\ \vdots & \ddots & \vdots \\ p_{k1} & \dots & p_{kk} \end{bmatrix}$$

Transition of several steps: $P^m = P \cdot ... \cdot P$ Just exponentiate P and then find the resulting p_{ij} .

Expectation:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$E(X) = \sum_{x} x f(x) = \sum_{x} \Pr(X = x)$$
If $Y = x(X)$ and $f(x)$ is the p.d.

If Y = r(X) and f(x) is the p.d.f. of X: $E(Y) = \int_{-\infty}^{\infty} r(x)f(x)dx$

$$Y = aX + b \to E(Y) = aE(X) + b$$

a constant s.t. $Pr(X \ge a) = 1$ then $E(X) \ge a$ b constant s.t. Pr(X < b) = 1 then E(X) < b. If X_1, \ldots, X_n are r.v. then $E(X_1 + \ldots +$ $X_n) = E(X_1) + \ldots + E(X_n)$

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} (E(X_i))$$

 X_1, \ldots, X_n independent r.v.'s with finite expectation: $E\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} \left(E(X_i)\right)$

Bernoulli(p): E(X) = p

Binomial(n, p): E(X) = np

Poisson: $E(X) = \lambda$

Geometric: $E(X) = \frac{1-p}{p}$

Negative Binomial: $E(X) = \frac{r(1-p)}{r}$

Variance:

$$V(X) = E[(X - \mu)^x]$$
 with $\mu = E(X)$

S.D.: $\sigma = \sqrt{V(X)}$

 $V(X) \ge 0!!!$

X discrete: $V(X) = \sum_{x} (x - \mu)^2 f(x)$

 $X \text{ cont.: } V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

 $V(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$ $V(X) = 0 \iff \Pr(X = c) = 1 \text{ with } c \text{ con-}$

a, b constant: $V(aX + b) = a^2V(X)$

 X_1, \ldots, X_n independent: $V(X_1 + \ldots + X_n) =$ $V(X_1) + \ldots + V(X_n)$

Bernoulli: V(X) = p(1-p)

Binomial: V(X) = np(1-p)

Poisson: $V(X) = \lambda$

Geometric: $V(X) = \frac{1-p}{r^2}$

Negative Binomial: $V(X) = \frac{r(1-p)}{r^2}$

Covariance:

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$

Discrete: $E(XY) = \sum_{x} \sum_{y} xy f(x, y)$

Discrete: $\mu_X = E(X) = \sum_{x} \sum_{y} x f(x, y)$

Discrete: $\mu_Y = E(Y) = \sum_{x} \sum_{y} y f(x, y)$

Cont: $E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y)dxdy$

If X and Y are independent: Cov(X,Y)=0

Correlation:

$$Corr(X, Y) = \rho(X, Y)$$

$$= \frac{Cov(X, Y)}{\sqrt{V(X)}\sqrt{V(Y)}} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Schwarz Ineq: $[E(UV)]^2 < E(U^2)E(V^2)$

 $[Cov(X,Y)]^2 \le V(X) \cdot V(Y)$

 $-1 < \rho(X, Y) < 1$

Indep: Cov(X, Y) = 0 and $\rho(X, Y) = 0$

X r.v. w/ finite variance and Y = aX + b s.t. $a \neq 0, a, b$, constant, then

 $a > 0 \rightarrow \rho(X, Y) = 1$ and

 $a < 0 \rightarrow \rho(X, Y) = -1$

X, Y w/ finite var. then V(X+Y) = V(X) + $V(Y) + 2 \cdot Cov(X, Y)$

 $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot$ Cov(X,Y)

Other Stuff:
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum\limits_{i=0}^{n}c^{i}=\frac{c^{n+1}-1}{c-1},c\neq 1;\sum\limits_{i=0}^{\infty}c^{i}=\frac{1}{1-c}$$

 $\frac{d}{dx}(a^x) = \ln a$

(fg)' = f'g + fg'

 $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

 $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$

 $\frac{d}{dx}(e^{g(x)}) = g'(x)e^{g(x)}$

 $\frac{d}{dx}(\ln g(x)) = \frac{g'(x)}{g(x)}$

 $\int \frac{1}{x} dx = \ln|x| + c$, $\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c$

 $\int e^u du = e^u + c$, $\int a^u du = \frac{a^u}{\ln a} + c$

 $\int_{a}^{b} f(g(x))g'(x)dx \quad \Rightarrow \quad u \quad = \quad g(x) \quad \Rightarrow$ $\int_{a(a)}^{g(b)} f(u)du$

 $\int u dv = uv - \int v du$