PPOL 5204: Data Science II Group Assignment 1

Ibadat Jarg, Emily Zhao, Xiao Xu

Question 1 Communities and Crime

Data Description

- Data is a compilation of:
 - 1. LEMAS stats (1990)
 - 2. US Census (1990)
 - 3. FBI Crime stats (1995)
- The data has over 122
 features that can be used to predict Violent Crime per capita (Target Variable) for 1995 counties

- Contains variables that describe demographic & policing practices for each county
- Numerics have been normalized to [0,1]
 - Any values more than 3 standard deviations away from mean have been assigned as 0 or 1

name	state	county	community	communityname	fold	population	householdsize	racepctblack	racePctWhite	racePctAsian	 LandArea	PopDens
0	8	NaN	NaN	Lakewoodcity	1	0.19	0.33	0.02	0.90	0.12	 0.12	0.26
1	53	NaN	NaN	Tukwilacity	1	0.00	0.16	0.12	0.74	0.45	 0.02	0.12
2	24	NaN	NaN	Aberdeentown	1	0.00	0.42	0.49	0.56	0.17	 0.01	0.21
3	34	5	81440	Willingborotownship	1	0.04	0.77	1.00	0.08	0.12	 0.02	0.39
4	42	95	6096	Bethlehemtownship	1	0.01	0.55	0.02	0.95	0.09	 0.04	0.09
1989	12	NaN	NaN	TempleTerracecity	10	0.01	0.40	0.10	0.87	0.12	 0.01	0.28
1990	6	NaN	NaN	Seasidecity	10	0.05	0.96	0.46	0.28	0.83	 0.02	0.37
1991	9	9	80070	Waterburytown	10	0.16	0.37	0.25	0.69	0.04	 0.08	0.32
1992	25	17	72600	Walthamcity	10	0.08	0.51	0.06	0.87	0.22	 0.03	0.38
1993	6	NaN	NaN	Ontariocity	10	0.20	0.78	0.14	0.46	0.24	 0.11	0.30

Preprocessing steps

1. We dropped several variables that were not relevant to our prediction model:

State, fold, county, community, communityname

2. The following features: had missing values

- We chose to use an **Interative imputer** to deal with our missing values
 - Why? Missing values are likely highly interrelated
- 3. Feature engineering was accomplished by:
 - (i) Correlation heatmap
 - (ii) Plots for each feature against target

We created 3 new features: numbUrbansq,
Pov_Unemp_Interaction and pctUnderPovsq

Curated Data

Model Implementation

- We opted for a regularized regression model, specifically Elastic Net
- We implemented a 70-30 training test split
- For our discretization strategy we chose to categorize violent crime in Low,
 Medium and High based on 0.33 and 0.66 quantiles
- The 2 classifiers we used were a Random Forest Classifier and Logistic regression

Model Evaluation

To evaluate our regression model we used the **RMSE** and **R^2** see which of our 3 models were the most suitable.

Ultimately after testing a wide range or alphas and L1 ratios **Elastic net** bore the best results with RMSE = 0.1179 and $R^2 = 0.7093$

```
LASSO best alpha: {'alpha': 0.0001}
LASSO RMSE: 0.11810897044084243
LASSO R^2: 0.7086508323598422
```

Ridge best alpha: {'alpha': 1} Ridge RMSE: 0.11891637544746604 Ridge R^2: 0.7046538315040347

Elastic Net best params: {'alpha': 0.0001, 'l1_ratio': 0.9} Elastic Net RMSE: 0.11796529361838103 Elastic Net R^2: 0.709359240223244 To evaluate our Classification model we used **precision, recall** and **F1-scores**

Overall we preferred the Multinomial Logistic regression higher metrics across the board compared to random forests

=== Random Forest ===									
-	48]	1							
[5 38	3 153]] precision	recall	f1-score	support				
	0	0.73	0.81	0.77	204				
	2	0.56 0.76	0.48 0.78	0.51 0.77	199 196				
accur	racy			0.69	599				
macro	avg	0.68	0.69	0.68	599				
weighted	avg	0.68	0.69	0.68	599				

```
=== Multinomial Logistic Regression ===
 [ 58 97 441
[ 5 35 156]]
                           recall f1-score
                                       0.78
                                       0.53
                   0.58
                                       0.79
                                       0.70
                                                  599
                                       0.70
                                                  599
                   0.70
weighted avg
                                       9.79
                                                  599
```

Bias, Ethical Considerations and further research

Methodological Evaluation: Many demographic variables overlap making model latch onto redundant noise, Missing data and mismatches in years, Overall after tunning model was satisfactory

Future Research: More features related to mental health, drug abuse and gun ownership

Ethics & Model Deployment: Our model should NOT be used for invasive and harmful policy measures such as increased policing. Recommend information not invasive interventions eg. rehab services

Bias: Reporting Bias can be problematic, factors such as reduced police trust or systematic over or under policing leads to measurement error

Question 2 Malware Detection

Data Description

The dataset is a collection of API calls, permissions or behaviours of **241 features** for **4465 samples**.

The goal is to **classify** these applications are malware or goodware (Labels). Classified as Label = 1 as Malware and Label = 0 as goodware.

The data is already binarized, hence we do not need to engage in that step of preprocessing

We do see that the labels are heavily imbalanced approximately in 8:2 ratio

Preprocessing and Curation steps

We will split our data in **70-15-15** training, validation & testing set

To deal with our imbalanced dataset we will implement **SMOTE** to increase the number of sample for the underrepresented class

• Note: Only applied to training set

Use two-step split:

- 1. Split original data into 70% training, 30% temp set
- 2. Split temp set equally into validation and test sets

- Stratified sampling used to maintain class balance across all subsets
- **Verification:** Checked class distributions and subset sizes for balance

Classification Strategy

We used **Random Forest** and **XGBoost** classifiers to detect malware.

Both models performed exceptionally well with:

- Accuracy: ~99.1%
- F1-scores > 0.97 across both classes
- AUC-ROC > 0.998, indicating excellent class separation

Confusion matrices show very few misclassifications:

- Random Forest:
 - a. False Positives (Benign -> Malware): 2
 - b. False Negatives (Malware -> Benign): 4
- XGBoost:
 - a. Same number of misclassifications as RF
- Confusion matrices indicate minimal misclassification and robust model reliability.

Overall, **Random Forest** offers similar predictive power with better interpretability and lower computational cost.

Model Evaluation

AUC-ROC Score: 0.9987

Model Optimization & Evaluation

Applied **Grid Search CV** to tune hyperparameters for both models

- Random Forest: n_estimators, max_depth, min samples split
- **XGBoost:** n_estimators, max_depth, learning_rate
- Best Random Forest: n_estimators = 50, min_samples_split = 5
- Best XGBoost: n_estimators = 200, max depth = 6, learning rate = 0.1

Evaluation focused on **F1-score** to balance **precision** and **recall**

Results:

- Recall $\approx 0.99 \rightarrow$ excellent malware detection
- Precision $\approx 0.96\text{--}1.00 \rightarrow \text{very few}$ benign misclassified
- AUC-ROC $> 0.998 \rightarrow \text{strong class}$ separation

Model Interpretability & Real-World Insights

We Extracted feature importance from Random Forest model

- Top predictors driving malware classification:
- RECEIVE BOOT COMPLETED → Importance: 0.16
 - → Common in persistent malware that runs at startup
- openConnection \rightarrow Importance: 0.12
 - → Malware connecting to remote servers for payloads
- GET_TASKS → Importance: 0.10
 - → Access to running tasks for system monitoring
- KILL_BACKGROUND_PROCESSES \rightarrow Importance: 0.08
 - → Terminate security processes to evade detection
- WAKE_LOCK → Importance: 0.07
 - → Prevent device sleep to sustain malicious activity

These system and permission-related features align with typical malware behavior patterns

Real-World Impact:

- Enables **explainable AI**: Transparent model decisions
- Guides **cybersecurity policy**: Monitor high-risk permissions
- Ensures **compliance** with regulatory standards (e.g., GDPR, AI Act)

Project Insights & Deployment Readiness

• Challenges Overcome:

Faced difficulty with dataset understanding and preprocessing; solved via tools like info(), head(), shape, and corr() along with ChatGPT guidance.

• Key Findings:

- Addressed imbalance with **SMOTE** (applied only to training set).
- Developed malware classifiers using Random Forest and XGBoost.
- Achieved:
 - Accuracy ~99.1%
 - F1-score > 0.97
 - AUC-ROC > 0.998
- Confusion matrices show very few misclassifications → strong generalization.

• Model Interpretability:

- Feature importance (e.g.,
 RECEIVE_BOOT_COMPLETED,
 GET_TASKS,
 KILL_BACKGROUND_PROCESSES)
 highlighted key malware indicators.
- Insights enhance model transparency, aiding security experts.
- Deployment Considerations:
 - Scalability XGBoost may need tuning for real-time use.
 - Threshold tuning further reduce false negatives.
 - Model updating retrain regularly to adapt to evolving malware threats.
- ✓ Models are highly effective and ready for deployment, with minor optimizations.