Interval Estimation

Saturday, 2 December 2023

2:09 PM

- Given a population parameter θ , we will find an interval $\left(\hat{Q}_{L} \hat{\theta}\right)$ such that $\theta \in \left[\hat{Q}_{L} \hat{Q}_{U}\right]$ with some level of confidence.
- For example:
 of we are 95%. confident that $\mu \in [2, 7]$ for some given population, then (2,7) is our 95%. confidence interval.
- We are given $\alpha \rightarrow \alpha$ level confidence then our confidence interval will be constructed by remaring α once from pdf graph as follows:-

Mese we are (1-a) 100%, confident.

· If d= 0.05, our confidence internal would be 95%.

· If a = 0.01, our confidence internal would be 99%.

- Note of the interval $[\hat{\theta}_{L}, \hat{\theta}_{L}]$ is large, our accuracy of estimation is less. When the interval is smaller, the estimation is better.
 - Of course, it is better to be 95%. confident that the average life of a certain television transmitter is between 6 and 7 years than to be 99%. confident that it is between 3 to 10 years.
 - Ideally we prefer a short interval with a high degree of confidence.