Operating System CPU Scheduling Part - 3

DPP-03

1. Consider 4 processes P₁, P₂, P₃ and P₄ with respective times in below table.

Process	AT	CPU/Burst	I/O	CUP
		time	time	time
P ₁	0	6	5	3
P_2	4	3	22	3
P ₃	7	7	0	0
P ₄	20	8	3	2

Using SRTF algorithm find the completion time of P_1 , P_2 , P_3 & P_4 and also note that processes performs CPU operation followed by I/O operation and followed by CPU operation again. Multiple process can perform I/O operation at a same time.

- (a) 15, 37, 20, 29
- (b) 14, 36, 19, 28
- (c) 16, 37, 20, 29
- (d) none
- 2. Choose the correct statements about MFQS.
 - (i) MFQS tries to run a process having shorter Burst time which in turn leads to optimize the turn around time.
 - (ii) A process which is waiting for longer period of time in lower priority queue may be moved to a higher priority queue which prevents starvation.
 - (iii) This algorithm is less flexible than multilevel queue scheduling.
 - (iv) none
 - (a) (i) (ii)
- (b) (ii) (iii)
- (c) (i) (iii)
- (d) (iv)
- **3.** Consider four processes P_1 , P_2 , P_3 and P_4 with execution times and arrival times below.

Process	Execution time/	Arrival time
	Burst time	
p_1	29	0
p_2	25	10
p ₃	15	25
p ₄	20	40

What is the completion time for process P_3 ?

- (a) 44
- (b) 45
- (c) 46
- (d) 47
- **4.** Consider 4 Jobs P₁, P₂, P₃ and P₄ with the arrival, Burst times below in the table.

Process	Burst Time
P_1	5
P_2	2
P ₃	9
P ₄	3

What is the completion time of P₄ under round robin scheduling policy with time quantum of two units?

- (a) 12
- (b) 13
- (c) 14
- (d) 15
- **5.** Consider 4 processes P₁, P₂, P₃ and P₄ with arrival and Burst times given below in the table.

PID	AT	BT
P_1	0	7
P_2	1	4
P ₃	2	2
P_4	3	3

Using round robin scheduling policy with time quantum 1, find completion order and number of context switches, note that ignore context switches at time zero and at the end.

- (a) Total context switches = 14 and completion order is P_3 , P_2 P_4 P_1
- (b) Total context switches = 15 and completion order is P_3 , P_2 P_4 P_1
- (c) Total context switches = 15 and completion order is P_3 , P_4 P_2 P_1
- (d) Total context switches = 15 and completion order is P_3 , P_1 P_2 P_4

Answer Key

1. **(b)**

2.

4. (b) 5. (b)

(a) 3. (a)

Hints and solutions

1. (b)

GANTT Chart

2. (a)

This algorithm is more flexible than multilevel queue scheduling.

3. (a)

GANTT Chart

Completion time of P₃

$$P_3 = 44$$

4. (b)

GANTT Chart]

Ready Queue

CPU

5. (b)

Ready Queue

$$oxed{P_1} oxed{P_2} oxed{P_1} oxed{P_2} oxed{P_1} oxed{P_2} oxed{P_1} oxed{P_4} oxed{P_2} oxed{P_1} oxed{P_2} oxed{P_1} oxed{P_4} oxed{P_2} oxed{P_1} oxed{P_4} oxed{P_1}$$

CPU

$$P_1 | P_2 | P_1 | P_3 | P_2 | P_1 | P_4 | P_3 | P_2 | P_1 | P_4 | P_2 | P_1 | P_4 | P_1 | P_1$$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Total context switches = 15.

Completion order = P_3 , P_2 , P_4 , $P_{1.}$

For more questions, kindly visit the library section: Link for app: https://physicswallah.live/tabs/tabs/library-tab
For more questions, kindly visit the library section: Link for web: https://links.physicswallah.live/vyJw
Any issue with DPP, please report by clicking here-https://forms.gle/t2SzQVvQcs638c4r5

CUSTOMER SERVICE

PW Mobile APP: https://physicswala.page.link/?type=contact-us&data=open

For PW Website: https://www.physicswallah.live/contact-us