Multi-Modal Few-Shot Temporal Action Detection via Vision-Language Meta-Adaptation

- Under Review

PROBLEM DEFINITION

Few-Shot Learning

Detect a unseen novel class given few annotated support examples

Zero-Shot Learning

Detect a unseen novel class without any annotation

PROBLEM DEFINITION:MULTI-MODAL FEW-SHOT LEARNING

Few-Shot Learning + Zero-Shot Learning = Multi-Modal Few-Shot Learning

PROBLEM DEFINITION:MULTI-MODAL FEW-SHOT LEARNING

Few-Shot Learning + Zero-Shot Learning = Multi-Modal Few-Shot Learning

PROBLEM DEFINITION:MULTI-MODAL FEW-SHOT LEARNING

- → We are the first to propose this multi-modal few-shot setting for dense downstreams
- → This is a **natural extension** of Few-Shot Learning using Vision-Language
- → **Stronger** Few-Shot performance because of large CLIP pre-training

VISION-LANGUAGE MODELS: HOW TO MODEL MULTI-MODAL FEW-SHOT?

CoCOOP, CVPR21

Baseline Multi-Modal Few Shot

- Aligns Vision and Textual Modality
- Use Support Videos to learn meta-network
- ► Still needs CLIP¹ Tokenizer for visual samples

UNSOLVED QUESTION: HOW TO MODEL MULTI-MODAL FEW-SHOT?

- Q1) Can we learn task-specific parameters instead of full fine-tuning
- Q2) Can we better use the visual samples without using the CLIP tokenizer
- Q3) Can we reduce the intra-class variance problem
- Q4) Which modality to meta-learn?

LITERATURE:MULTI-MODAL FEW-SHOT

- Q1) "Multimodal Few-Shot Learning with Frozen Language Models", DeepMind 21
 - Uses vision as prefix to frozen auto-regressive language models
- Q2) "Conditional Prompt Learning for Vision-Language Models", CVPR 22
 - Uses meta-network to project vision embedding to language space
- Q3) "Meta Learning to Bridge Vision and Language Models for Multimodal Few-Shot Learning", ICLR 23
 - Uses meta-mapper to project vision embedding to language space as prefix

TASK DEFINATION:TEMPORAL ACTION DETECTION (TAD)

Untrimmed Video

What is the Activity?

("Playing Ice Hockey")

When is the Activity Occurring? (13 s - 28 s)

Sub-Task 1 : Action Classification

Sub-Task 2 : Temporal Regression

Playing Ice Hockey

13
28
36(in s)

PROBLEM DEFINITION:MULTI-MODAL FEW-SHOT TAD (MMFS-TAD)

Unseen Video, Few Annotation

Semantic Context e.g, Text
+
Visual Context e.g, Support Video

Localize Unseen Action in Unseen Video

MUPPET:MULTI-MODAL FEW SHOT ACTION DETECTION

MUPPET:

CVSSP Centre for Vision, Speech and Signal Processing

MULTI-MODAL FEW SHOT ACTION DETECTION

MUPPET:VISUAL SEMANTICS TOKENIZER

(a) Multi-Modal Prompting

(b) Existing Prompt Design

(c) Our Prompt Design

MUPPET:

MULTI-MODAL FEW SHOT ACTION DETECTION

MUPPET:

CVSSF Centre for Vision, Speech and Signal Processing

MULTI-MODAL FEW SHOT ACTION DETECTION

MUPPET:MULTI-MODAL FEW SHOT ACTION DETECTION

MUPPET: FEATURE EXTRACTION

MUPPET: FEATURE EXTRACTION

MUPPET: FEATURE EXTRACTION

MUPPET: VISUAL SEMANTICS TOKENIZER

Untrimmed Query Video

EXPERIMENTAL RESULTS:

FEW-SHOT, MULTI-MODAL FEW-SHOT, ZERO-SHOT

Few-Shot

Multimodal Few-Shot

Zero-Shot

	Mothod		Modality		ActivityNetv1.3				THUMOS14			
Method		N-way	Visual	Text	0.5	0.75	0.95	Avg	0.3	0.5	0.7	Avg
FS	FS-Trans [51]	1	x	×	42.2	24.8	5.2	25.6	42.6	25.7	8.2	25.5
	QAT [31]				44.6	26.4	4.9	26.9	38.7	24.4	7.5	24.3
	MUPPET				45.4	28.1	5.6	27.8	44.1	26.2	8.5	26.1
	Feat-RW [20]				30.7	16.6	2.9	17.1	35.3	19.6	6.8	20.1
	Meta-DETR [54]	5			32.9	20.3	4.6	19.4	37.5	20.7	7.5	21.9
	FSVOD [9]	3			34.5	18.9	5.1	21.6	37.9	23.8	7.3	22.8
	MUPPET				36.9	22.2	5.9	23.0	41.2	25.7	8.5	24.9
1	OV-DETR [52]		×		44.2	27.9	6.3	28.7	46.1	29.7	9.0	30.4
	Owl-Vit [27]				43.7	27.0	6.0	27.2	45.2	29.0	9.0	30.2
	EffPrompt [19]	1			45.9	27.9	5.2	29.4	47.2	30.4	9.8	31.1
	STALE [30]	1			47.7	29.3	7.6	30.3	48.9	32.1	10.3	32.0
	Baseline-I		x	1	46.9	28.6	6.9	29.7	47.3	30.5	9.2	31.8
MMFS	MUPPET	1		•	49.7	32.9	9.2	32.7	50.6	33.5	11.2	33.8
MIMICS	OV-DETR [52]				39.8	22.3	5.4	23.1	40.4	23.9	7.5	24.0
	Owl-Vit [27]				37.9	20.3	5.6	21.9	38.3	21.9	7.7	22.6
	EffPrompt [19]	5			41.1	21.6	5.4	23.8	39.5	23.5	7.6	24.8
	STALE [30])			42.3	22.9	6.8	24.5	40.7	24.9	7.1	25.4
	Baseline-I			1	42.1	22.7	6.0	24.0	40.2	24.7	7.0	25.0
	MUPPET		V		45.3	25.6	6.3	26.2	42.3	27.2	7.8	27.5
ZS	EffPrompt [19]		Х		32.0	19.3	2.9	19.6	37.2	21.6	7.2	21.9
	STALE [30]	All	Х		32.1	20.7	5.9	20.5	38.3	21.2	7.0	22.2
	Baseline-I	AII	√	/	30.6	18.0	4.1	18.7	35.8	20.5	7.1	20.8
	MUPPET		Х		33.5	21.9	6.7	22.0	40.1	22.8	8.1	24.8

EXPERIMENTAL RESULTS: ABLATION STUDIES

Table 2. Prompt learning design on ActivityNet. Setting: 5-way.

Design	Shots	Prompt	mAP		
	Direts	Learnable	Context	0.5	Avg
LPS	-	×	-	18.4	13.6
LVP	5	✓	Visual	43.2	25.0
LTP	5	✓	Text	42.7	24.7
Ours	1	1	Visual	43.7	25.1
Ours	5	✓	Visual	45.3	26.2

Table 3. Design of visual semantics tokenizer on ActivityNet. Setting: 5-way 5-shot. #T/C: Tokens per Class.

Network	Meta-Learn	#T/C	mAP		
Network	Wieta-Learn	#1/C	0.5	Avg	
	Х	20	37.4	21.3	
1D-CNN	1	20	40.8	23.0	
	1	1	39.7	22.5	
	Х	1	43.8	24.7	
Set Transformer [22]	1	1	45.3	26.2	
	✓	20	44.7	25.6	

Visual Projection is better

Only **single** <Context> Token is enough to optimize

EXTENSION OF MUPPET:OBJECT DETECTION

Table 10. Comparing our adapted MUPPET with existing Few-Shot Object Detection methods on COCO dataset.

Method		5-Sho	t	10-Shot				
Method	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}		
FRCN [34]	4.6	8.7	4.4	5.5	10.0	5.5		
TFA w/ cos [44]	7.0	13.3	6.5	9.1	17.1	8.8		
Deform-DETR [59]	7.4	12.3	7.7	11.7	19.6	12.1		
FSOD [10]	-	-	-	12.0	22.4	11.8		
QA-FewDet [15]	9.7	20.3	8.6	11.6	23.9	9.8		
META-DETR [54]	15.4	25.0	15.8	19.0	30.5	19.7		
MUPPET	15.9	26.4	14.8	20.1	32.3	19.9		

Can also be plugged into any existing Object Detection module

SUMMARY:MULTI-MODAL FEW-SHOT

- 1st work on Multi-Modal Few Shot Learning for Video Domain
- One Design Three Setting can be solved : Few-Shot, Multi-modal Few Shot, Zero-Shot
- Meta-Learning Visual Projection is key to multi-modal few-shot
- Can be extended to Object Detection as well

THANKS!

Any questions?