UESTC 1007: Analogue Electronics (50 marks)

Attempt ALL questions

- Q1: (a) Explain in your own words which element, a short circuit or an open circuit, should replace a current source when the amplitude of the current source is set to 0 A and why this element is used. [2]
- (b) The analysis technique is superposition. Draw the circuits that will be used to calculate the current I_V and the voltage V_I given the original circuit shown in Figure Q1. [6]
 - (c) Calculate the values of I_{V} and V_{I} in the original circuit when you apply superposition. [12]

Figure Q1.

Q2: For the circuit shown in Figure Q2:

- (a) Calculate the impedances for R, L, and C when ω = 500 rad/s. Write the impedances in two ways. One way is using rectangular coordinates. The second way is to write them using phasor notation.
- (b) Draw the Norton equivalent circuit where the load impedance Z_L is the series combination of R_L and Z_X (shown in the dotted circuit in Figure Q2). Calculate the values for all components in the Norton equivalent circuit. Write the impedances in rectangular coordinates. [8]
- (c) Draw the Thévenin equivalent circuit where the load impedance is the series combination of R_L and L_L . Calculate the values for all components in the Thévenin equivalent circuit. Write the impedances in rectangular coordinates. [4]
- (d) Calculate for R_L and Z_X such that the current flowing through ZL is in phase with the Thévenin voltage V_{th} and the maximum power is transferred to the load. Determine whether Z_X should be an inductor, capacitor, or resistor and its value in Ω , H, or F. [3]

- (a) Calculate the voltage gain, V_o/V_{in}. [3]
- (b) Calculate the current I_L , which flows through R_L , and the current I. [4]
- (c) Determine the minimum and maximum values for V_{in} such that the operational amplifier circuit is operating in the linear region when $V^+ = 30 \text{ V}$ and $V^- = -18 \text{ V}$. [2]

Figure Q3.