GEL19962: Analyse des signaux **Examen final**

Mardi le 10 décembre 1995; Durée: 13h30 à 15h20 Aucune documentation permise. Aucune calculatrice permise.

Problème 1 (9 points sur 45)

- 1- Calculer la fonction de transfert $H(\omega)$ de ce filtre.
- 2- Calculer la réponse impulsionnelle h(t) de ce filtre.

GEL19962: Analyse des signaux **Examen final**

Problème 2 (9 points sur 45)

<u>Note importante</u>: Lorsqu'on demande de tracer des spectres d'amplitude il est indispensable d'indiquer les fréquences importantes ainsi que les amplitudes remarquables.

- **1-** A quelle fréquence faudrait-il échantillonner le signal x(t) pour qu'on puisse retrouver le signal original à partir de ses échantillons?
- 2- Faites les graphiques des spectres d'amplitude des transformées $B(\omega)$ et $C(\omega)$, en indiquant les amplitudes et les fréquences importantes sachant que $2\omega_1 \ge \omega_2$ et que $B = 1.1(\omega_2 \omega_1)$.
- 3- Le signal d(t) correspond à l'échantillonnage du signal c(t) avec une fréquence $\omega_e = 2B$. Pourra-t-on reconstruire le signal c(t) exactement? Justifiez votre réponse.
- 4- Pourra-t-on reconstruire le signal b(t) exactement à partir de d(t)? Justifiez votre réponse.
- 5- Quel peut être l'intérêt d'un tel système pour le signal x(t)?

GEL19962: Analyse des signaux

Examen final

Problème 3 (12 points sur 45): Filtre

La fonction de transfert $H(\omega)$ de ce filtre est: $H(\omega) = \frac{jRC_0\omega}{1 + jR(C + C_0)\omega}$

- 1- On suppose que $R(C+C_0) \ll 1$.
- 1.1 Quelle est l'approximation de $H(\omega)$ pour des valeurs de ω suffisamment petites?
- 1.2 Donner y(t) en fonction de x(t) si on suppose que x(t) ne contient pas de hautes fréquences (c'est à dire si on peut utiliser l'approximation précédente pour le filtre).
- 1.3 On suppose que x(t) est de la forme suivante et qu'on peut utiliser l'approximation du filtre:

Tracer approximativement la sortie y(t) (en indiquant les valeurs importantes).

- 2- On suppose que $R(C+C_0) >> 1$.
- 2.1 Quelle est l'expression de $H(\omega)$ pour $\omega = 0$?
- 2.2 Quelle est l'approximation de $H(\omega)$ pour $\omega \neq 0$?
- 2.3 On suppose que x(t) est de la même forme que pour la question 2.3. Tracer approximativement la sortie y(t) (en indiquant les valeurs importantes).

GEL19962: Analyse des signaux

Examen final

Problème 4 (15 points sur 45): Le limiteur d'amplitude

Considérez le système suivant:

Avec:

$$x(t) = a(t)\cos(\Omega_0 t + \varphi(t))$$
 où $a(t) > 0 \quad \forall t$

et

$$s(t) = \operatorname{sgn}[x(t)]$$

Le but de cet exercice est de calculer la sortie de ce système.

<u>Informations préliminaires.</u>

Soit g(u) la fonction périodique suivante: $g(u) = \text{sgn}[\cos(u)] = \begin{cases} +1 & \text{si } \cos(u) \ge 0 \\ -1 & \text{si } \cos(u) < 0 \end{cases}$

La période et la pulsation propre de g(u) sont: $T_0 = 2\pi$ et $\omega_0 = 1$. Si on calcule les coefficients de la série de Fourier on obtient:

$$g(u) = \sum_{n=-\infty}^{+\infty} \frac{2(-1)^n}{(2n+1)\pi} e^{(2n+1)ju}$$
 EQ.1

1- Calcul de la transformée de Fourier de la fonction s(t) (5 points)

On note $\Phi_k(\omega)$ la transformée de Fourier de la fonction $\exp(jk\varphi(t))$.

$$e^{jk\varphi(t)} \Leftrightarrow \Phi_k(\omega)$$

Trouver la transformée de Fourier $S(\omega)$ de la fonction s(t).

Indication: utilisez le fait que $a(t) > 0 \ \forall t$ et servez vous de l'équation EQ.1 avec $u = \Omega_0 t + \varphi(t)$

GEL19962: Analyse des signaux

Examen final

2- Spectre d'amplitude de s(t) (5 points)

On suppose que le spectre d'amplitude des fonctions $\Phi_k(\omega)$ est à <u>support limité</u> [-B, B] et qu'il est de la forme suivante pour toute les valeurs de k entières:

On suppose de plus que $\Omega_0 > B$.

Tracer le spectre d'amplitude de $S(\omega)$ dans l'intervalle $\left[-3\Omega_0 - B, 3\Omega_0 + B\right]$ en indiquant les valeurs importantes.

3- Calcul de la sortie y(t) (5 points)

La fonction de transfert du filtre est la suivante:

$$H(\omega) = \begin{cases} 1 \text{ pour } |\omega - \Omega_0| < B \text{ ou } |\omega + \Omega_0| < B \\ 0 \text{ autrement} \end{cases}$$

- 4.1 Tracer la fonction de transfert du filtre en indiquant clairement les fréquences importantes. De quel type est ce filtre?
- 4.2 Calculer $Y(\omega)$.
- 4.3 Calculer y(t).

4- Application d'un tel système (question bonus 1 point)

Quel peut être l'utilité d'un tel système en télécommunication?

Université Laval Professeur: Christophe Deutsch

GEL19962: Analyse des signaux **Examen final**

JE VOUS SOUHAITE UN JOYEUX NOËL À TOUS AINSI QU'UNE BONNE ET HEUREUSE ANNÉE 1997!

