

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

іьный исследовательский университет)> (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 5

Название: Разработка ускорителей вычислений средствами САПР высокоуровневого синтеза XILINX VITIS HLS

Дисциплина: Архитектура ЭВМ

Студент	ИУ7И-56Б		Андрич К
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы

Изучение методики и технологии синтеза аппаратных устройств ускорения вычислений по описаниям на языках высокого уровня. В ходе лабораторной работы рассматривается маршрут проектирования устройств, представленных в виде синтаксических конструкций ЯВУ С/С++, изучаются принципы работы IDE Xilinx Vitis HLS и методика анализа и отладки устройств. В ходе работы необходимо разработать ускоритель вычислений по индивидуальному заданию, разработать код для тестирования ускорителя, реализовать ускоритель с помощью средств высоко-уровненного синтеза, выполнить его отладку.

Ход работы

Неоптимизированный цикл:

```
extern "C" {
    void var010_no_pragmas(int* c, const int* a, const int* b, const int len)
{
        int maxA = a[len-1];
        for (int i = len-1; i >=0 ; i--) {
            if (maxA < a[i]) {
                maxA = a[i];
                c[i] = maxA;
            } else {
                c[i] = b[i];
            }
      }
}</pre>
```

Конвейерная организация цикла:

```
extern "C" {
void var010_pipelined(int* c, const int* a, const int* b, const int len)
{
    int maxA = a[len-1];
    for (int i = len-1; i >=0; i--) {
        #pragma HLS PIPELINE
        if (maxA < a[i]) {
            maxA = a[i];
            c[i] = maxA;
        } else {
            c[i] = b[i];
        }
}
</pre>
```

Частично развёрнутый цикл:

```
extern "C" {
void var010_unrolled(int* c, const int* a, const int* b, const
int len) {
    int maxA = a[len-1];
    for (int i = len-1; i >=0; i--) {
        #pragma HLS UNROLL factor=2
        if (maxA < a[i]) {
            maxA = a[i];
            c[i] = maxA;
        } else {
            c[i] = b[i];
        }
    }
}</pre>
```

Конвейерный и частично развёрнутый цикл:

```
extern "C" {
void var010_pipe_unroll(int* c, const int* a, const int* b,
const int len) {
    int maxA = a[len-1];
    #pragma HLS DATAFLOW
    for (int i = len-1; i >=0; i--) {
        if (maxA < a[i]) {
            maxA = a[i];
            c[i] = maxA;
        } else {
            c[i] = b[i];
        }
    }
}</pre>
```

Emulation SW

Результаты работы:

Emulation HW