CLAIMS

T T T T .	•	4		1	•
What	18	CI	aım	ied	18

1 2	1. A method for improving signal quality within a radio frequency (RF) receiver, said method comprising:
3	down-converting an image of a desired signal to a baseband signal;
4	determining an energy of said baseband signal;
5	in response to a determination that said energy of said baseband signal being
7	equal to or greater than a predetermined threshold, swapping IF for an incoming signal; and
8	in response to a determination that said energy of said baseband signal being
9	less than said predetermined threshold, maintaining IF for an incoming signal.

- 1 2. The method of Claim 1, wherein said method further includes continuing normal signal processing.
- 1 3. The method of Claim 1, wherein said down-converting is performed by

$$f_{RFLO} = f_{CH} - f_{IF}$$

- $where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver$
- f_{CH} = a channel frequency within said RF receiver
 - f_{IF} = an IF signal frequency within said RF receiver
- and adjusting a digital complex sinusoid signal within an intermediate frequency local
- oscillator (IFLO) by

$$IFLO(t) = e^{+j\omega_{IF}t}$$
where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

The method of Claim 3, wherein said swapping IF is performed by

$$f_{RFLO} = f_{CH} + f_{IF}$$

- $where f_{RFLO} = said local oscillation frequency$
- f_{CH} = said channel frequency
- f_{IF} = said IF signal frequency
- 6 and

$$IFLO(t) = e^{+j\omega_{IF}t}$$
where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

5. The method of Claim 4, wherein said maintaining IF is performed by

$$\mathbf{f}_{RFLO} = \mathbf{f}_{CH} - \mathbf{f}_{IF}$$

 $where f_{RFLO} = said local oscillation frequency$

 f_{CH} = said channel frequency

 f_{IF} = said IF signal frequency

6 and

1

5

1

2

5

6

7

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

6. The method of Claim 1, wherein said down-converting is performed by

$$f_{RFLO} = f_{CH} + f_{IF}$$

where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver

 f_{CH} = a channel frequency within said RF receiver

 f_{IF} = an IF signal frequency within said RF receiver

and adjusting a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

7. The method of Claim 6, wherein said swapping IF is performed by

$$f_{RFLO} = f_{CH} - f_{IF}$$

$$where f_{RFLO} = said local oscillation frequency$$

$$f_{CH}'$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

6 and

1

$$IFLO(t) = e^{-j\omega_{IF}t}$$
 $where \ e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$
 $\omega_{IF} = 2\pi f_{IF}$

8. The method of Claim 7, wherein said maintaining IF is performed by

$$f_{RFLO} = f_{CH} + f_{IF}$$

$$where f_{RFLO} = said local oscillation frequency$$

$$f_{CH}$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

6 and

1

2

4

5

$$IFLO(t) = e^{+j\omega_{IF}t}$$

where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$
 $\omega_{IF} = 2\pi f_{IF}$

SILA0005 - 16 -

9. The method of Claim 1, wherein said down-converting is performed by

$$f_{RFLO} = f_{CH} - f_{IF}$$

where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver

 f_{CH} = a channel frequency within said RF receiver

 f_{IF} = an IF signal frequency within said RF receiver

adjusting a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}^{'}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

8 and

1

2

5

6

7

9

1

2

4

6

swapping signals paths of an in-phase IF signal and a quadrature IF signal.

10. The method of Claim 9, wherein said swapping IF is performed by

$$f_{RFLO} = f_{CH} + f_{IF}$$

 $where f_{RFLO} = said local oscillation frequency$

 f_{CH} = said channel frequency

 f_{if} = said IF signal frequency

and

maintaining signals paths of said in-phase IF signal and said quadrature IF signal.

SILA0005 - 17 -

11. The method of Claim 10, wherein said maintaining IF is performed by

$$f_{RFLO} = f_{CH} - f_{IF}$$

$$where f_{RFLO} = said local oscillation frequency$$

$$f_{CH}$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

and

1

2

5

6

1

2

5

6

7

8

9

swapping signals paths of said in-phase IF signal and said quadrature IF signal.

12. The method of Claim 1, wherein said down-converting is performed by

$$f_{RFLO} = f_{CH} + f_{IF}$$

where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver

 f_{CH} = a channel frequency within said RF receiver

f_{ir} = an IF signal frequency within said RF receiver

adjusting a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{+j\omega_{IF}t}$$
where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

and

swapping signals paths of an in-phase IF signal and a quadrature IF signal.

13. The method of Claim 12, wherein said swapping IF is performed by

$$f_{RFLO} = f_{CH} - f_{IF}$$

$$where f_{RFLO} = said local oscillation frequency$$

$$f_{CH}$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

and

1

1

2

6

maintaining signals paths of said in-phase IF signal and said quadrature IF signal.

14. The method of Claim 13, wherein said maintaining IF is performed by

$$f_{RFLO} = f_{CH} + f_{IF}$$

$$where f_{RFLO} = said local oscillation frequency$$

$$f_{CH}$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

and

swapping signals paths of said in-phase IF signal and said quadrature IF signal.

SILA0005 - 19 -

4 -		•	(T) T)		
15.	A radio	trequency	ABB	receiver	comprising:
IJ.	A laulu	II cqueile y	(101)	1 CCCI V CI	comprising.

1

5

8

9

10

2	means	for	down-converting	an	image	of a	desired	signal	to	a	baseband
3	signal;										

means for determining an energy of said baseband signal;

means for swapping IF for an incoming signal, in response to a determination that said energy of said baseband signal being equal to or greater than a predetermined threshold; and

means for maintaining IF for an incoming signal, in response to a determination that said energy of said baseband signal being less than said predetermined threshold.

SILA0005 - 20 -

16. The RF receiver of Claim 15, wherein said means for down-converting performs a down-conversion by

$$f_{RFLO} = f_{CH} - f_{IF}$$

- $where f_{RFLO}$ = an oscillation frequency of a local oscillator within said RF receiver
- f_{CH} = a channel frequency within said RF receiver
 - f_{IF} = an IF signal frequency within said RF receiver
- and adjusting a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{+j\omega_{IF}t}$$
 $where \ e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$
 $\omega_{IF} = 2\pi f_{IF}$

17. The RF receiver of Claim 16, wherein said means for swapping IF swaps IF by

$$f_{RFLO} = f_{CH} + f_{IF}$$

- $where f_{RFLO} = said local oscillation frequency$
- f_{CH} = said channel frequency
- f_{IF} = said IF signal frequency
- 6 and

1

1

5

$$IFLO(t) = e^{+j\omega_{IF}t}$$
where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

18. The RF receiver of Claim 17, wherein said means for maintaining IF maintains IF by

by
$$f_{RFLO} = f_{CH} - f_{IF}$$

$$where f_{RFLO} = \text{said local oscillation frequency}$$

$$f_{CH} = \text{said channel frequency}$$

= said IF signal frequency

and

1

6

1

2

7

8

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

19. The RF receiver of Claim 15, wherein said means for down-converting performs a down-conversion by

$$f_{RFLO} = f_{CH} + f_{IF}$$

where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver

 f_{CH} = a channel frequency within said RF receiver

 f_{IF} = an IF signal frequency within said RF receiver

and adjusting a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

SILA0005

20. The RF receiver of Claim 19, wherein said means for swapping IF swaps IF by

$$f_{RFLO} = f_{CH} - f_{IF}$$

$$where f_{RFLO} = said local oscillation frequency$$

$$f_{CH}$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

6 and

1

5

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

1 21. The RF receiver of Claim 20, wherein said means for maintaining IF maintains IF

2 **by**

5

$$f_{RFLO} = f_{CH} + f_{IF}$$

where
$$f_{RFLO}$$
 = said local oscillation frequency

$$f_{CH}$$
 = said channel frequency

$$f_{IF}$$
 = said IF signal frequency

and

$$IFLO(t) = e^{+j\omega_{IF}t}$$
where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

22. The RF receiver of Claim 15, wherein said means for down-converting performs a down-conversion by

$$f_{RFLO} = f_{CH} - f_{IF}$$

1

7

8

9

- where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver
- f_{CH} = a channel frequency within said RF receiver
 - f_{iF} = an IF signal frequency within said RF receiver
 - adjusts a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{-j\omega_{IF}t}$$
where $e^{-j\omega_{IF}t} = Cos\omega_{IF}t - jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

- and swaps signals paths of an in-phase IF signal and a quadrature IF signal.
- 1 23. The RF receiver of Claim 22, wherein said means for swapping IF swaps IF by

$$f_{RFLO} = f_{CH} + f_{IF}$$

- $where f_{RFIO} = said local oscillation frequency$
 - f_{CH} = said channel frequency
- f_{IF} = said IF signal frequency
- and maintains signals paths of said in-phase IF signal and said quadrature IF signal.

24. The RF receiver of Claim 23, wherein said means for maintaining IF maintains IF by

$$f_{RFLO} = f_{CH} - f_{IF}$$

1

2

7

7

8

- where f_{RFLO} = said local oscillation frequency
- f_{CH} = said channel frequency
- f_{IF} = said IF signal frequency
 - and swaps signals paths of said in-phase IF signal and said quadrature IF signal.
- The RF receiver of Claim 15, wherein said means for down-converting performs a down-conversion by

$$f_{RFLO} = f_{CH} + f_{IF}$$

- where f_{RFLO} = an oscillation frequency of a local oscillator within said RF receiver
- f_{CH} = a channel frequency within said RF receiver
- f_{IF} = an IF signal frequency within said RF receiver
 - adjusts a digital complex sinusoid signal within an intermediate frequency local oscillator (IFLO) by

$$IFLO(t) = e^{+j\omega_{IF}t}$$
where $e^{+j\omega_{IF}t} = Cos\omega_{IF}t + jSin\omega_{IF}t$

$$\omega_{IF} = 2\pi f_{IF}$$

and swaps signals paths of an in-phase IF signal and a quadrature IF signal.

SILA0005 - 25 -

- 26. The RF receiver of Claim 25, wherein said means for swapping IF swaps IF by
- $f_{RFLO} = f_{CH} f_{IF}$

1

5

5

- $where f_{RFLO} = said local oscillation frequency$
 - f_{CH} = said channel frequency
 - f_{iF} = said IF signal frequency
- and maintains signals paths of said in-phase IF signal and said quadrature IF signal.
- The RF receiver of Claim 26, wherein said means for maintaining IF maintains IF by

$$f_{RFLO} = f_{CH} + f_{IF}$$

- where f_{RFLO} = said local oscillation frequency
- f_{CH} = said channel frequency
- f_{IF} = said IF signal frequency
- and swaps signals paths of said in-phase IF signal and said quadrature IF signal.