

1- Lenguajes:

L1= {ab, bc, cd, de} L2= {AB, BC, CD, DE} L3= {123, 321}

REVISADO

QUIL Jon III

- a) $L1 \cup L3 = \{ab, bc, cd, de, 123, 321\}$
- b) $L2 \cap L3 = \{\}$
- c) $\sim L1 = \{ A_{L1} L1 \}$ Falta * en A

Los elementos de L2 deben ir como la primer subcadena

- d) $L2 \cdot L1 \cdot L3 = \{abAB123, abBC123, abCD123, abDE123, bcAB123, bcBC123, bcCD123, bcDE123, cdAB321, cdCD321, cdBC321,....\}$
- 2- a) $L1^* = \{\varepsilon, a, b, c, abc, acb, bca, bac, cba, cab, bc, ca, ac, ba, ...\}$ b) $L1^+ = \{a, b, c, abc, acb, bca, bac, ab, bc, ca, aaa, bb, cba, ac, ...\}$ c) $L1^+ \cdot L2^* = \{a, b, c, bc, ba, ac, ca, abc, acb, bca, bac, cba, cab, ...\}$ d) $\emptyset^+ = \{\}$ e) $\emptyset^* = \{\varepsilon\}$ f) $L1^* \cdot \emptyset = \{\}$
- 3- a) a^*b^* Pertenece: aaaaab, ab, abbb No pertenece: ba, baba, bbbbbba
 - b) $a(ba)^*b$ Pertenece: abab, ababab, ababababab, No pertenece: aaaaaaaba, ba, ababbbbbb
 - c) $a^* \cup b^*$ Pertenece: aaaaaaaa, a , bbbbb No pertenece: ab, abbbbb, bbbbbaaaa
 - d) $(aaa)^*$ Pertenece: aaa, aaaaaa, aaaaaaaaa No pertenece: a, aa, aaaa
 - e) $\sum^* a \sum^* b \sum^* a \sum^*$ Pertenece: aba, ababababba, abbbbaaabbbaa No pertenece: a, b, ab
 - f) $aba \cup bab$ Pertenece: aba, bab

No pertenece: a, b, ababab

g)($\varepsilon \cup a$)b Pertenece: ε , ab

No pertenece: a , b, Eb Al ser epsilon nulo quedaría b, que sí pertenece

h) $(a \cup ba \cup bb)\sum^*$ Pertenece: a, ba, bb

No pertenece: aba, babb, abab Todos pertenecen al lenguaje

- 4- a) $1\sum^* 0$
 - b) $\sum^* 1 \sum^* 1 \sum^* 1 \sum^*$
 - c) $\sum^* 0101 \sum^*$
 - d) $\sum^5 \cup \sum^4 \cup \sum^3 \cup \sum^2 \cup \sum^1$ Falta la cadena vacía
 - e) $(1\sum^{1})^{*}$ Solo genera cadenas de longitud par, falta considerar las impares.
 - f) 1*1*0 U 1*01* U 01*1* Falta considerar el caso en que no hay ceros
 - g) $01\sum^* \cup 1\sum^*$ Falta generar la cadena vacía
 - h) $1\sum^*1\sum^*1\sum^*110$
 - i) $\sum^* (00 \sum^* \cup \sum^* 1)$

- Esta expresión no chequea que sólo haya dos b's 5- a) $\sum^* bb \sum^*$ consecutivas de entre todas las posibles b's
 - b) $(\sum^2)^* \cup (\sum^3)^*$ Falta generar la cadena vacía
 - c) $(a^*ba^*)^*$ no chequea la condición principal, puede generar bbbb. b. bbbbbbb, etc.
- 6- Los lenguajes infinitos son: a, b, d, e y f
 - a) L={w/w comienza con "x" seguido de "y" y termina con 0 o una cantidad infinitas
 - b) L={w/w comienza con 0 o infinita cantidad de "x", debe ser precedida por "yz"}
 - c) $((z \cup y) \cdot x) = \{zx, zy\}$
 - d) L={w/w contiene 0 o infinitas "z" o "y"}
 - e) L={w/w contiene0 o infinitas repeticiones de "yy"}
 - f) L={w/w contiene 0 o infinitas repeticiones de "x" o "y"}
 - g) $((x \cdot x) \cup z) = \{xx, z\}$
 - h) $((z \cup y) \cup x) = \{z, y, x\}$

puede no tener

- 7- a) L={w/w contiene al menos una "z" o "y" seguidas de una "x"}
 - b) L={w/w comienza con "x" y está seguida por 0 o una infinita cantidad de "x" y termina por lo menos con una "y"}
 - c) L={ w/w comienza con "x" y tiene a su derecha 0 o una infinita cantidad de "x" o comienza con "y" y tiene a su derecha al menos una "y"}
 - d) L={ w/w contiene 0 o una cantidad infinita de "x", "y" y "z"}

no pertenece

- 8- a) Palabras que pertenecen a L: abb, baaa, bababa Palabras que no pertenecen a L: ab,baa,ababa
 - b) Er= $(\sum^* a) \cup (\sum^3 b)^*$ Esto representa múltiplos de 4 terminados en b, no es lo que pide
- 9- a) Es ambigua porque ambas expresiones regulares pueden formar el string "a".
 - b) Es ambigua porque tanto en la primera como en la tercera expresión regular puede formarse el string "aabb".
 - c) No es ambigua, todos los string resultantes son distintos.