

ДЕТЕРМИНИРОВАННЫЕ СИГНАЛЫ

ст. пр. каф. РПТ Исаков В.Н. circuits-signals@yandex.ru

Классификация радиотехнических систем и решаемые ими задачи

1. Основные задачи, решаемые РТС

Радиотехника

К основным задачам, решаемым радиотехническими системами (РТС), относится передача информации из одной точки пространства в другую и получение информации о местоположении и параметрах движения какого-либо объекта.

Информация

Информация – то, что может быть отражено целесообразным структурированием материи

Сигнал

Сигнал — это физический процесс, несущий информацию или предназначенный для её передачи

2. Классификация сигналов

Детерминированный

Это сигнал, характеристику которого можно определить в любой момент времени с вероятностью 1

Непериодический

Однократно появляющийся на всём временном интервале импульс

Периодический

Периодическое повторение непериодического

3. Примеры сигналов: прямоугольный импульс

4. Примеры сигналов: экспоненциальный импульс

5. Примеры сигналов: импульс «Меандр»

6. Примеры сигналов: симметричный треугольный импульс

7. Примеры сигналов: пилообразный импульс

8. Математическое описание сигнала

В большинстве случаев сигнал оказывается представлен временной диаграммой (графиком характеристики, осциллограммой) и возникает задача построения математического выражения, соответствующего функции s(t)

Напряжение

$$s(t) = u(t)$$

Математическим описанием сигнала является функция времени s(t), которая отражает характер временного поведения какой-либо его характеристики, например, закон изменения во времени напряжения между какими-либо двумя узлами цепи или тока в какой-либо ветви цепи, с которой связан электромагнитный процесс.

Функцию s(t) также называют сигналом

9. Запаздывание / опережение сигналов

10. Изменение масштаба времени

11. Дельта-функция (функция Дирака)

$$\int_{-\infty}^{+\infty} \delta(t - t_0) dt = 1$$

$$\int_{-\infty}^{+\infty} s(t)\delta(t-t_0)dt = s(t_0)$$

$$s(t)\delta(t-t_0) = s(t_0)\delta(t-t_0)$$

12. Единичный скачок (функция Хевисайда)

$$\sigma(t - t_0) = \begin{cases} 1, t > t_0 \\ 0, t < t_0 \end{cases}$$

$$\sigma(t - t_0) = \int_0^t \delta(t' - t_0) dt'$$

$$\delta(t - t_0) = \frac{d}{dt}\sigma(t - t_0)$$

13. Знаковая функция (сигнум-функция)

$$\operatorname{sign}(t) = \begin{cases} -1, t < 0 \\ 0, t = 0 \\ 1, t > 0 \end{cases}$$

14. Прямоугольная функция (прямоугольный импульс)

$$rect(t) = \begin{cases} 1, |t| \le \frac{1}{2} \\ 0, |t| > \frac{1}{2} \end{cases}$$

$$rect(t) = \sigma\left(t + \frac{1}{2}\right) - \sigma\left(t - \frac{1}{2}\right)$$

$$\begin{array}{c|c}
 & \text{rect'}(t) \\
\hline
 & 0,5 \\
\hline
 & -0,5 \\
\hline
 & 0
\end{array}$$

$$(-1)$$

$$\operatorname{rect'}(t) = \delta\left(t + \frac{1}{2}\right) - \delta\left(t - \frac{1}{2}\right)$$

15. Дифференцирование сигналов

$$s(t) = \begin{cases} y_1(t), t < t_0 \\ y_2(t), t > t_0 \end{cases} \qquad s_{1,2}(t) = \begin{cases} y_1(t), t < t_0 \\ y_2(t) \pm \Delta, t > t_0 \end{cases} = s(t) \pm \Delta \sigma(t - t_0)$$

$$s_{1,2}(t) = s'(t) \pm \Delta \delta(t - t_0)$$

Дифференцирование сигналов

При дифференцировании сигнала сначала следует выделить его непрерывные фрагменты и выполнить дифференцирование. Для учёта точек разрыва к полученному результату добавляются дельта-функции, соответствующие абсциссам разрыва, с коэффициентами по абсолютной величине равными величине скачков. Если при рассмотрении графика сигнала слева направо скачок происходит вверх, то коэффициент при дельтафункции положительный. Если скачок происходит вниз отрицательный.

16. Энергетические характеристики непериодических сигналов

Энергетические характеристики непериодических сигналов

Мгновенная мощность

Величина $p(t) = |s(t)|^2$ называется мгновенной мощностью сигнала и имеет смысл мгновенной мощности, характеризующей выделение энергии на единичном активном сопротивлении, [Вт]

Пиковая **мощность**

Величина

 $p_{\text{пик}} = \max p(t)$ называется пиковой мощностью сигнала, [Вт]

Энергия сигнала на интервале времени

Величина

$$E_S(t_1, t_2) = \int_{t_1}^{t_2} |s(t)|^2 dt$$

называется энергией сигнала на интервале времени $t \in [t_1, t_2]$ и имеет смысл энергии, выделяемой на единичном активном сопротивлении на рассматриваемом интервале времени, [Дж]

Полная энергия

Величина

$$E_s = \int_{-\infty}^{+\infty} |s(t)|^2 dt$$

называется полной энергией сигнала и имеет смысл энергии, выделяемой на единичном активном сопротивлении при воздействии сигнала, [Дж]

17. Длительность и интервал локализации непериодического сигнала

Длительность

Величина интервала времени, на котором локализована основная часть сигнала, называется длительностью сигнала (импульса)

18. Амплитудный метод

Рассматривается |s(t)|

Определяется $s_{max} = \max |s(t)|$

Задаётся уровень, ниже которого располагается несущественная часть сигнала μs_{max} ,

где $\mu = 0.01 \div 0.1$ в зависимости от специфики основной задачи

Находятся границы интервала локализации сигнала

$$|s(t < t_1)| < \mu s_{max}$$
$$|s(t > t_2)| > \mu s_{max}$$

Рассчитывается эффективная длительность

$$\tau_{\ni \varphi} = t_2 - t_1$$

19. Энергетический метод

Отыскивается выражение для энергии сигнала на интервале времени

$$E_s(t_1, t_2) = \int_{t_1}^{t_2} |s(t)|^2 dt$$

Границы интервала локализации находятся из уравнения

$$E_{\scriptscriptstyle S}(t_1,t_2) = k E_{\scriptscriptstyle S},$$
где $k=0,9\div 0,99$

Рассчитывается эффективная длительность

$$\tau_{\ni \varphi} = t_2 - t_1$$

$$\overline{t} = \frac{\int_{-\infty}^{+\infty} t |s(t)| dt}{\int_{-\infty}^{+\infty} |s(t)| dt} \qquad t_1 = \overline{t} - \frac{\tau_{3\phi}}{2} \qquad t_2 = \overline{t} + \frac{\tau_{3\phi}}{2}$$

20. Метод прямоугольника

Отыскивается максимальное значение $s_{max} = \max |s(t)|$, центр симметрии \bar{t} и площадь под графиком сигнала

$$\int_{-\infty}^{+\infty} |s(t)| dt$$

Симметрично относительно \bar{t} строится прямоугольник, высота которого s_{max} , площадь совпадает с площадью под графиком сигнала.

Эффективная длительность рассчитывается как ширина прямоугольника

$$\tau_{\vartheta \Phi} = t_2 - t_1 = \frac{1}{s_{max}} \int_{-\infty}^{+\infty} |s(t)| dt$$

21. Метод малых площадей в хвостах

$$\overline{t} = \frac{\int_{-\infty}^{+\infty} t |s(t)| dt}{\int_{-\infty}^{+\infty} |s(t)| dt} \Rightarrow \tau_{\Rightarrow \varphi}^{0} = 2 \sqrt{\int_{-\infty}^{+\infty} (t - \overline{t})^{2} |s(t)| dt}$$

$$\int_{-\infty}^{+\infty} |s(t)| dt \Rightarrow \int_{-\infty}^{+\infty} |s(t)| dt$$

$$\int_{-\infty}^{+\infty} (t - \overline{t})^{2} |s(t)| dt \ge \int_{-\infty}^{\overline{t} - a} (t - \overline{t})^{2} |s(t)| dt + \int_{\overline{t} + a}^{+\infty} (t - \overline{t})^{2} |s(t)| dt$$

$$t \in (-\infty, \overline{t} - a] \cup [\overline{t} + a, +\infty) \Rightarrow (t - \overline{t})^{2} \ge a^{2}$$

$$\int_{-\infty}^{\overline{t} - a} (t - \overline{t})^{2} |s(t)| dt + \int_{\overline{t} + a}^{+\infty} (t - \overline{t})^{2} |s(t)| dt + a^{2} \int_{\overline{t} + a}^{+\infty} |s(t)| dt$$

$$\int_{-\infty}^{+\infty} (t - \overline{t})^{2} |s(t)| dt \ge a^{2} \int_{-\infty}^{\overline{t} - a} |s(t)| dt + a^{2} \int_{\overline{t} + a}^{+\infty} |s(t)| dt$$

22. Метод малых площадей в хвостах (продолжение)

$$a^{2} \left(\int_{-\infty}^{\overline{t} - a} |s(t)| dt + \int_{\overline{t} + a}^{+\infty} |s(t)| dt \right) \leq \left(\frac{\tau_{9\varphi}^{0}}{2} \right)^{2} \int_{-\infty}^{+\infty} |s(t)| dt$$

$$a = \frac{k\tau_{9\phi}^0}{2}$$

$$\left(\int_{-\infty}^{\overline{t}-k\tau_{\vartheta\varphi}^{0}/2} |s(t)| dt + \int_{\overline{t}+k\tau_{\vartheta\varphi}^{0}/2}^{+\infty} |s(t)| dt\right) \leq \frac{1}{k^{2}} \int_{-\infty}^{+\infty} |s(t)| dt$$

$$\tau_{\ni \dot{\Phi}} = k \tau_{\ni \dot{\Phi}}^0$$

$$\int_{-\infty}^{\overline{t}-\tau_{\vartheta\varphi}/2} |s(t)| dt + \int_{\overline{t}+\tau_{\vartheta\varphi}/2}^{+\infty} |s(t)| dt \le \frac{1}{k^2} \int_{-\infty}^{+\infty} |s(t)| dt$$

Малые площади в хвостах

В зависимости от выбора значения k, "площадь в хвостах" графика, то есть при

$$t \notin [\bar{t} - \frac{\tau_{\vartheta \varphi}}{2}; \ \bar{t} + \frac{\tau_{\vartheta \varphi}}{2}],$$

для любого абсолютноинтегрируемого сигнала будет хотя бы в k^2 раз меньше полной площади под графиком |s(t)|.

23. Метод малых площадей в хвостах (продолжение)

Рассчитывается

$$\bar{t} = \frac{\int_{-\infty}^{+\infty} t|s(t)|dt}{\int_{-\infty}^{+\infty} |s(t)|dt}$$

Рассчитывается

$$\tau_{\vartheta \varphi}^{0} = 2 \sqrt{\frac{\int_{-\infty}^{+\infty} (t - \bar{t})^{2} |s(t)| dt}{\int_{-\infty}^{+\infty} |s(t)| dt}}$$

Эффективная длительность и интервал локализации

$$\begin{aligned} \tau_{\ni\varphi} &= k\tau_{\ni\varphi}^0 \\ t_1 &= \bar{t} - \frac{\tau_{\ni\varphi}}{2}; t_2 &= \bar{t} + \frac{\tau_{\ni\varphi}}{2} \end{aligned}$$

24. Метод малых энергий в хвостах

$$\overline{t} = \frac{\int\limits_{-\infty}^{+\infty} t \, |s(t)|^2 \, dt}{\int\limits_{-\infty}^{+\infty} |s(t)|^2 \, dt} \Rightarrow \tau_{9\phi}^0 = 2 \sqrt{\int\limits_{-\infty}^{+\infty} (t - \overline{t})^2 \, |s(t)|^2 \, dt} \Rightarrow \left(\frac{\tau_{9\phi}^0}{2}\right)^2 = \frac{\int\limits_{-\infty}^{+\infty} (t - \overline{t})^2 \, |s(t)|^2 \, dt}{\int\limits_{-\infty}^{+\infty} |s(t)|^2 \, dt}$$

$$\tau_{\mathbf{3}\mathbf{\phi}} = k \tau_{\mathbf{3}\mathbf{\phi}}^{0}$$

$$\tau_{3\phi} = k\tau_{3\phi}^{0} \qquad \Longrightarrow \qquad \int_{-\infty}^{\overline{t} - \tau_{3\phi}/2} |s(t)|^{2} dt + \int_{\overline{t} + \tau_{3\phi}/2}^{+\infty} |s(t)|^{2} dt \le \frac{1}{k^{2}} \int_{-\infty}^{+\infty} |s(t)|^{2} dt$$

$$E_s(-\infty, \overline{t} - \tau_{\vartheta \phi}/2) + E_s(\overline{t} + \tau_{\vartheta \phi}/2, +\infty) \le \frac{E_s}{k^2}$$

Малые энергии в хвостах

В зависимости от выбора значения k, "энергия в хвостах" графика, то есть при

$$t \notin [\bar{t} - \frac{\tau_{\vartheta \varphi}}{2}; \ \bar{t} + \frac{\tau_{\vartheta \varphi}}{2}],$$

для любого квадратично-интегрируемого сигнала будет хотя бы в k^2 раз меньше полной энергии сигнала.

25. Метод малых энергий в хвостах (продолжение)

Рассчитывается

$$\bar{t} = \frac{\int_{-\infty}^{+\infty} t |s(t)|^2 dt}{\int_{-\infty}^{+\infty} |s(t)|^2 dt}$$

Рассчитывается

$$\tau_{9\phi}^{0} = 2 \sqrt{\frac{\int_{-\infty}^{+\infty} (t - \bar{t})^{2} |s(t)|^{2} dt}{\int_{-\infty}^{+\infty} |s(t)|^{2} dt}}$$

Эффективная длительность и интервал локализации

$$\tau_{\vartheta\varphi} = k\tau_{\vartheta\varphi}^{0}$$

$$t_{1} = \bar{t} - \frac{\tau_{\vartheta\varphi}}{2}; t_{2} = \bar{t} + \frac{\tau_{\vartheta\varphi}}{2}$$

Список литературы

Основная литература

- 1. Радиотехнические цепи и сигналы: Учеб. для вузов / О. А. Стеценко. М.: Высш. шк., 2007.
- 2. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Дрофа, 2006.
- 3. Радиотехнические цепи и сигналы: Учебник для студентов радиотехн. спец. вузов / И. С. Гоноровский. М.: Радио и связь, 1986.
 - 4. Радиотехнические цепи и сигналы: учеб. для вузов / С. И. Баскаков. М.: Высш. шк., 2000.

Дополнительная литература

- 5. Теория радиотехнических цепей / Н. В. Зернов, В. Г. Карпов. Л.: Энергия, 1972. 816 с.: ил. Библиогр.: с. 804 (15 назв.)
- 6. Сигналы. Теоретическая радиотехника: Справ. пособие / А. Н. Денисенко. М.: Горячая линия Телеком, 2005. 704 с.
- 7. Справочник по математике для инженеров и учащихся вузов / И. Н. Бронштейн, К. А. Семендяев. М.: Наука, 1998. 608 с.