ACH2011 - Cálculo I

Sistema de Informação - EACH

Lista 6: Aplicações da Derivação¹

- 1. Explique a diferença entre mínimo local e mínimo absoluto.
- 2. Suponha que f seja uma função contínua definida no intervalo fechado [a, b].
 - (a) Que teorema garante a existência de valores máximos e mínimos absolutos para f?
 - (b) Quais as etapas que você deve seguir para encontrar esses valores máximos e mínimos?
- 3. Esboce o gráfico de uma função f que seja continua em [1,5] e tenha as propriedades dados.
 - (a) Máximo absoluto em 3, mínimo absoluto em 2, mínimos local em 4.
 - (b) Máximo absoluto em 5, mínimo absoluto em 2, máximo local em 3 e mínimos local em 2 e 4.

f não tem máximo ou mínimos locais, mas 2 e 4 são números críticos.

- 4. (a) Esboce o gráfico de uma função que tenha um máximo local em 2 e seja derivável em 2.
 - (b) Esboce o gráfico de uma função que tenha um máximo local em 2 e seja continua, mas não derivável em 2.
 - (c) Esboce o gráfico de uma função que tenha um máximo local em 2 e não seja continua em 2.
- 5. (a) Esboce o gráfico de uma função em [-1,2] que tenha um máximo absoluto, mas não tenha mínimo absoluto.
 - (b) Esboce o gráfico de uma função em [-1,2] que seja descontinua, mas tenha tanto máximo absoluto como mínimo absoluto.
- 6. Encontre os números críticos da função.

(a)
$$f(x) = 5x^2 + 4x$$

(b)
$$f(x) = |3x - 4|$$

(c)
$$f(x) = \frac{x-1}{x^2-x+1}$$

(d)
$$f(\theta) = 2\cos\theta + sen^2\theta$$

(e)
$$f(x) = x^2 e^{-3x}$$

 $^{^1\}mathrm{Exercícios}$ do livro Cálculo de James Stewart

(f)
$$f(x) = x^{-2} \ln x$$

7. Encontre os valores máximos e mínimos absolutos de f no intervalo dado.

(a)
$$f(x) = 3x^2 - 12x + 5$$
, [0, 3]

(b)
$$f(x) = \frac{x}{x^2 + 1}$$
, $[0, 2]$

(c)
$$f(x) = x\sqrt{4-x^2}$$
, $[-1,2]$

(d)
$$f(\theta) = 2\cos\theta + \sin 2\theta$$
, $[0, \pi/2]$

(e)
$$f(x) = \ln x^2 + x + 1$$
, $[-1, 1]$

(f)
$$f(x) = e^{-x} - e^{-2x}$$
, [0, 1]

- 8. Demonstre que a função $f(x) = x^{101} + x^{51} + x + 1$ não tem nem máximos nem mínimos locais.
- 9. Se f tiver um valor mínimo em c, mostre que a função g(x) = -f(x) tem um valor máximo em c.
- 10. Verifique que a função satisfaz as três hipóteses do Teorema de Rolle no intervalo dado. Então, encontre todos os números c que satisfazem à conclusão do Teorema de Rolle.

(a)
$$f(x) = x^2 - 4x + 1$$
, [0, 4]

(b)
$$f(x) = x^3 - 3x^2 + 2x + 5$$
, [0, 2]

(c)
$$f(x) = \sqrt{x} - \frac{1}{3}x$$
, [0, 9]

- 11. Seja $f(x) = 1 x^{2/3}$. Mostre que f(-1) = f(1), mas não existe número c em (-1, 1) tal que f'(c) = 0. Por que isso não contradiz o Teorema de Rolle?
- 12. Verifique que a função satisfaz as três hipóteses do Teorema do Valor Médio no intervalo dado. Então, encontre todos os números c que satisfazem à conclusão do Teorema do Valor Médio.

(a)
$$f(x) = 3x^2 + 2x + 5$$
, $[-1, 1]$

(b)
$$f(x) = e^{-2x}$$
, $[0,3]$

- 13. Seja $f(x) = (x-3)^{-2}$. Mostre que não existe um valor c em (1,4) tal que f(4) f(1) = f'(c)(4-1). Por que isso não contradiz o Teorema do Valor Médio?
- 14. Mostre que a equação $1+2x+x^3+4x^5=0$ tem exatamente uma raiz real.
- 15. Mostre que a equação $x^4 + 4x + c = 0$ tem no máximo duas raízes reais.
- 16. (a) Suponha que f seja derivável em R e tenha duas raízes. Mostre que f' tem pelo menos uma raiz.
 - (b) Suponha que f seja duas vezes derivável em R e tenha três raízes. Mostre que f'' tem pelo menos uma raiz real.

- (c) Você pode generalizar os ítens (a) e (b)?
- 17. Se f(1) = 10 e $f'(x) \ge 2$ para $1 \le x \le 4$, quão pequeno pode ser f(4)?
- 18. Suponha que $3 \le f'(x) \le 5$ para todo x. Mostre que $18 \le f(8) f(2) \le 30$.
- 19. Se f'(x) = c (c uma constante) para todo x, use o Corolário da aula para mostrar que f(x) = cx + d para alguma constante d.
- 20. Um número a é chamado ponto fixo de uma função f se f(a) = a. Demonstre que se $f'(x) \neq 1$ para todo número real x, então f tem no máximo um ponto fixo.
- 21. Encontre o limite. Use a Regra de L'Hôspital quando for apropriado. Se existir um método mais elementar, use-o. Se a Regra de L'Hôspital não for aplicável, explique por quê.

(a)
$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1}$$

(b)
$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1}$$

(c)
$$\lim_{x \to (\pi/2)^+} \frac{\cos x}{1 - \sec x}$$

(d)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

(e)
$$\lim_{x \to 0^+} \frac{\ln x}{x}$$

(f)
$$\lim_{x \to \infty} \frac{e^x}{x^3}$$

(g)
$$\lim_{x \to 0} \frac{5^x - 3^x}{x}$$

$$(h) \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(i)
$$\lim_{x \to \infty} x^3 e^{-x^2}$$

$$(j) \lim_{x \to \infty} (x - \sqrt{x^2 - 1})$$

(k)
$$\lim_{x \to \infty} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

22. Demonstre que

$$\lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$

para todo n inteiro positivo. Isso mostra que a função exponencial tende mais rapidamente ao infinito que qualquer potência de x.

3

23. Demonstre que

$$\lim_{x \to \infty} \frac{\ln x}{x^p} = \infty$$

para todo p positivo. Isso mostra que a função logaritmo tende a infinito mais vagarosamente que qualquer potência de x.

24. Se f' for contínua, use a Regra de L'Hôspital para mostrar que

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x)$$

Explique o significado dessa equação utilizando um diagrama.

25. Se f'' for contínua, mostre que

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = f''(x)$$

- 26. Suponha que lhe foi dada uma fórmula para uma função f.
 - (a) Como você determina onde f é crescente ou decrescente?
 - (b) Como você determina onde o gráfico de f é côncavo para cima ou pra baixo?
 - (c) Como você localiza os pontos de inflexão?
- 27. (a) Enuncie o Teste da Primeira Derivada.
 - (b) Enuncie o Teste da Segunda Derivada. Em que circunstância ele é inconclusivo? O que você faz se ele falha?
- (a) Encontre os intervalos nos quais f é crescente ou decrescente. 28.
 - (b) Encontre os valores máximo e mínimo local de f.
 - (c) Encontre os intervalos de concavidade e os pontos de inflexão.

i.
$$f(x) = x^4 - 2x^2 + 3$$

ii.
$$f(x) = \frac{x^2}{x^2 + 3}$$

ii.
$$f(x) = \frac{x^2}{x^2 + 3}$$

iii. $f(x) = \cos^2 x - 2 \ sen \ x, \ 0 \le x \le 2\pi$

iv.
$$f(x) = e^{2x} + e^{-x}$$

v.
$$f(x) = x^2 \ln x$$

29. Encontre os valores máximo e mínimo locais de f usando ambos os Testes das Primeira e Segunda Derivadas. Qual método você prefere?

4

(a)
$$f(x) = x^5 - 5x + 3$$

(b)
$$f(x) = \frac{x}{x^2+4}$$

(c)
$$f(x) = x + \sqrt{1 - x}$$

- 30. (a) Encontre os números críticos de $f(x) = x^4(x-1)^3$
 - (b) O que o Teste da Segunda Derivada mostra para você sobre o comportamento de f nesses números críticos?
 - (c) O que mostra o Teste da Primeira Derivada?
- 31. Suponha que f'' seja contínua em $(-\infty, \infty)$.
 - (a) Se f'(2) = 0 e f''(2) = -5, o que se pode afirmar sobre f'?
 - (b) Se f'(6) = 0 e f''(6) = 0, o que se pode afirmar sobre f?
- 32. Esboce o gráfico de uma função que satisfaça todas as condições dadas.
 - (a) Se f'(x) > 0 para todo $x \neq 1$, assíntota vertical x = 1, f''(x) > 0 se x < 1 ou x > 3, f''(x) < 0 se 1 < x < 3.
 - (b) Se f'(0) = f'(2) = f'(4) = 0, f'(x) > 0 se x < 0 ou 2 < x < 4, f'(x) < 0 se 0 < x < 2 ou x > 4, f''(x) > 0 se 1 < x < 3, f''(x) < 0 se x < 1 ou x > 3.
 - (c) Se f'(6) = 0 e f''(6) = 0, o que se pode afirmar sobre f?
- 33. (a) Encontre as assíntotas vertical e horizontal.
 - (b) Encontre os intervalos nos quais a função é crescente ou decrescente.
 - (c) Encontre os valores máximos e mínimos locais.
 - (d) Encontre os intervalos de concavidade e os pontos de inflexão.
 - (e) Use a informação das partes (a) (d) para esboçar o gráfico de f.

i.
$$f(x) = \frac{1+x^2}{1-x^2}$$

ii.
$$f(x) = \frac{x}{(1-x)^2}$$

iii.
$$f(x) = \ln(1 - \ln x)$$

iv.
$$f(x) = e^{-1/(x+1)}$$

34. Use o roteiro da aula para esboçar a curva.

(a)
$$f(x) = x^3 + x$$

(b)
$$f(x) = x^4 + 4x^3$$

(c)
$$f(x) = \frac{x}{x-1}$$

(d)
$$f(x) = \frac{x}{x^2 - 9}$$

(e)
$$f(x) = \frac{x}{x^2+9}$$

(f)
$$f(x) = x\sqrt{5-x}$$

(g)
$$f(x) = \frac{x}{\sqrt{x^2-1}}$$

(h)
$$f(x) = \frac{\ln x}{x^2}$$

35. Encontre dois números positivos cujo produto seja 100 e cuja soma seja mínima.

5

- 36. A soma de dois números positivos é 16. Qual é o menor valor possível para a soma de seus quadrados?
- 37. Qual é a distância mínima entre a parábola $y = x^2 + 1$ e $y = x x^2$?
- 38. Encontre as dimensões de um retângulo com perímetro de 100m cuja área seja a maior possível.
- 39. Considere o seguinte problema: um fazendeiro com 300m de cerca quer cercar uma área retangular e então dividi-la em quatro partes cpm cercas paralelas a um lado do retângulo. Qual é a maior área total possível das quatro partes?
- 40. Um fazendeiro quer cercar uma área de $15000m^2$ em um campo retangular e então dividilo ao meio com uma cerca paralela a uns dos lados do retângulo. Como fazer isso de forma que minimize o custo da cerca?
- 41. Uma caixa com uma base quadrada e sem tampa tem volume de $32000cm^3$. Encontre as dimensões da caixa que minimizam a quantidade de material usado.
- 42. Um copo de papel em forma de cone é feito de maneira a conter $27cm^3$ de água Ache a altura e o raio do copo que usa a menor quantidade de papel.
- 43. Um pedaço de fio com 10m de comprimento é cortado em duas partes. Uma parte é dobrada no formato de um quadrado, ao passo que a outra é dobrada na forma de um triângulo equilátero. Como deve ser cortado o fio de forma que a área total englobada seja máxima? E mínima?
- 44. Encontre a linearização L(x) da função em a.
 - (a) $f(x) = x^3$, a = 1
 - (b) $f(x) = \cos x, \ a = \pi/2$
 - (c) $f(x) = \ln x, a = 1$
- 45. Calcule Δy s dy para os valores dados de x e $dx = \Delta x$.
 - (a) $y = 2x x^2$, x = 2, $\Delta x = -0.4$.
 - (b) $y = \sqrt{x}, x = 1, \Delta x = 1.$
 - (c) y = 2/x, x = 4, $\Delta x = 1$.
 - (d) $y = e^x$, x = 0, $\Delta x = 0, 5$.
- 46. Use uma aproximação linear para estimar o número dado.
 - (a) $(2,001)^5$
 - (b) $e^{-0.015}$
 - (c) $\sqrt{99.8}$