

# Enabling On-Device Confidential Computing Accelerating the adoption of CC on end user devices

Safety by Construction Rust-based Formally Verifiable

### Why On-device CC?

#### Main Goal : On-device CC

• Protect user privacy on end user devices by applying CC technology like ARM CCA.

#### Motivation

- Growing demands of TEE for privacy apps. For any 3<sup>rd</sup> party apps. Even private from OS or device vendors.
- Trends in mobile: More isolation against host OS (e.g., Android Virtualization Framework)
- User device is the first place where user information is collected.



The private and secure mobile Operating Systems with Android app compatibility.



Android Virtualization Framework: VM's memory is protected from the host.

# Why On-device CC?

Opportunities with on-device CC







[ End-to-End CC ]

[More end device computing]
Computation offloading related to user privacy specific computing which used to be in server side

[Enabler of future computing model: M2M]

#### Islet Architecture

- A project to enable confidential computing on Arm devices
- Focus on developing Rust-based CC platform SW on Arm CCA
  - CC platform SW:
    - RMM: runs confidential VMs, aka realms, in a separate world on Arm CCA
    - HES: provides platform attestation and TCB integrity measurement



#### **Islet Architecture**



High-level architectural diagram

### Islet: Safety by Construction

- Design the system with current known security challenges from the beginning
- Exploit the safeness of Rust language
  - Memory, and concurrency control safety
  - Safe Isolation of modules



### Customizable and extensible CC platform w/ minimal change

- Customizable for each HW
- Isolation of the 3<sup>rd</sup> party modules
- Islet core protected from the 3<sup>rd</sup> party modules

Formal verification

### Islet: History, Status, and Plan

#### History and current status



#### Long term plan

- Use case PoCs
- Formal verification
- Extensible CC platform
- More open collaboration

### Alignment with CCC's Mission

#### Why valuable to CCC community?

- 1. Diversifying the CC landscape
  - by providing an additional open-source project for ARM-based CC platforms
- 2. Accelerating the CC adoption
  - With Use case-focused approach by demonstrating how CC can be used in a visible manner on these devices.
- 3. Providing CC platform as a building block for CC with minimal change
  - Customizable and extensible CC platform

## Alignment with CCC's Mission

Open collaboration

**Securing data** in use and accelerating the adoption of confidential computing **through open collaboration.** 



### Alignment with CCC's Mission

#### Overlapping existing projects

- tf-rmm and tf-a Runtime Security Service (RSS) projects by Arm
- C vs. Rust
- General features and for server vs. for end user devices
- Diversity providing a broader selection of CC platforms
- Will make effort to coordinate with the trusted firmware projects and Islet.



