## ALGORITHMS FOR IMAGING SPECTROSCOPY MATH BACKGROUND ASSESSMENT SPRING 2017

| The students enrolled in this course are from a variety of backgrounds. Therefore, please work out the                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| problems and answer the questions on this math background assessment to the best of your ability so that I                                                                                                      |
| can understand your levels of mathematical knowledge pertinent to the class. Your results will not be used                                                                                                      |
| to calculate any grade in this class. If it turns out that some students have less background than required,                                                                                                    |
| then I will offer extra study sessions.                                                                                                                                                                         |
| Note: All vectors in the questions below are column vectors unless otherwise indicated.                                                                                                                         |
| (1) Eigenvalues and Eigenvectors                                                                                                                                                                                |
| (a) Use matrix-vector multiplication to choose with of the two vectors $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , $\mathbf{y} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ are eigenvectors of the matrix |
| . (3 1)                                                                                                                                                                                                         |
| $\mathbf{A} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$                                                                                                                                                     |

(b) What is the eigenvalue associated with the eigenvector?

Name: \_\_\_\_\_

Happy New Year!

(2) **Least Squares**. Suppose **A** is an  $m \times n$  matrix and that m > n. How do you find the vector  $\mathbf{x}_s$  that gives the least squares solution to the linear system of equations  $\mathbf{A}\mathbf{x} = \mathbf{b}$  , that is, that minimizes the squared error  $(\mathbf{A}\mathbf{x} - \mathbf{b})^t (\mathbf{A}\mathbf{x} - \mathbf{b}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ .

(3) Angles between vectors. Suppose x and y are two vectors. Show how to use the inner product  $\mathbf{x}^t \mathbf{y}$  to compute the cosine of the angle between  $\mathbf{x}$  and  $\mathbf{y}$ 

(4) Gaussian Distributions. A multi-variate Gaussian distribution is defined using the formula

$$f\left(x|\boldsymbol{\mu},\mathbf{C}\right) = \frac{1}{2\pi|\mathbf{C}|^{\frac{B}{2}}}e^{\left(-\frac{(\mathbf{x}-\boldsymbol{\mu})\mathbf{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})}{2}\right)}$$

For a given sample  $X = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$  from a Gaussian distribution, one can estimate the covariance matrix using the formula

$$\bar{\mathbf{C}} = \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\boldsymbol{\mu}}) (\mathbf{x}_n - \bar{\boldsymbol{\mu}})^t$$

where  $\bar{\mu}$  is the sample mean. Compute the estimate of the covariance using the sample

$$X = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$$

- 4
- (5) **Maximum Likelihood**. Assume you want to estimate the probability of Heads,  $p_h$ , by flipping a particular coin so you flip the coin 5 times. You observe that it lands Heads every time. What is the Maximum Likelihood estimate of  $p_h^{ML}$  of  $p_h$  based on this experiment? (Hint: Count).
- (6) Bayes Rule.
  - (a) State Bayes Rule

(b) You still want to estimate  $p_h$  but you don't like the Maximum Likelihood answer so you are going to use the same 5 coin flips from before and try to use Bayes rule. You need a prior so you assume the prior probability density of heads is given by the following *Beta distribution*:

$$\beta\left(p_{h}\right) = K p_{h} \left(1 - p_{h}\right)$$

where K is a constant. This Beta distribution is shown in Figure 1.



FIGURE 1. A Beta distribution.

The Maximum A-Posteriori (MAP) estimate of  $p_h$ ,  $p_h^{MAP}$ , is calculated by finding the value of  $p_h$  that maximizes the value of the posterior over all possible values. The MAP is proportional to the product of the Bernoulli and Beta distributions  $B(N, p_h) \beta(p_h)$  (referred to as the MAP function). In the definition of the Bernoulli, N is the number of trials,  $p_h$  is the unknown probability of heads, and k is the number of coin flips resulting in Heads. The definition, and particular form for these coin flips, is:

$$B(N, p_h) = \binom{N}{k} p_h^k (1 - p_h)^{N-k} = p_h^5$$

Plot your best estimate of the shape of the MAP function in this case and use it to roughly estimate the MAP estimate of  $p_h$ .



FIGURE 2. Plot the MAP Function here.

- (a) InformationTheory.
  - (i) Compute the entropy (using  $log_2$ ) of the distribution:

$$p_1 = \frac{1}{4}, p_2 = \frac{1}{2}, p_3 = \frac{1}{4}$$

(ii) Suppose  $\{p_1,p_2,...,p_M\}$  is a finite probability distribution, which means that

$$0 \le p_m \le 1$$
 and  $\sum_{m=1}^{M} p_m = 1$ .

What values of  $\{p_1, p_2, ..., p_M\}$  maximize the entropy?