

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 196 29 053 A 1

(51) Int. Cl. 6:
C07F 7/18
C 09 D 183/07
// D21H 19/24, D06M
15/37

DE 196 29 053 A 1

(21) Aktenzeichen: 196 29 053.8
(22) Anmeldetag: 17. 7. 96
(23) Offenlegungstag: 22. 1. 98

(71) Anmelder:
Wacker-Chemie GmbH, 81737 München, DE

(72) Erfinder:
Herzig, Christian, Dipl.-Chem. Dr., 83329 Waging,
DE; Banfic, Robert, 84508 Burgkirchen, DE

DE 196 29 053 A 1

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen

(55) Beschrieben werden neue aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen, enthaltend

verbunden sind und daß durchschnittlich je Molekül mehr als zwei ...

(a) Endgruppen der allgemeinen Formel A-Y (I), wobei A einen Rest der allgemeinen Formel

$R_1^1 R_{3-s}^s SiO(R_{2-b}^b SiO)_m R_2^2 Si-$,
und Y einen drei- bis achtwertigen Kohlenwasserstoffrest, bevorzugt einen Rest der allgemeinen Formel

$R_2^2 (CR^3 H - CH_2 -)_n$,

bedeutet, wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest,

R¹ gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,

R² einen dreiwertigen bis achtwertigen Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen je Rest,

R³ ein Wasserstoffatom oder einen Alkyrest mit 1 bis 6 Kohlenstoffatomen je Rest und

a 0, 1, 2 oder 3, b 0, 1 oder 2, m 0 oder eine ganze Zahl im Wert von 1 bis 500 und n 3, 4, 5, 6, 7 oder 8 bedeutet, und gegebenenfalls

(b) Brückengruppen der allgemeinen Formel Y-B-Y (II), wobei Y die oben dafür angegebene Bedeutung hat und B einen Rest der Formel -SiR₁OR₂Si- bedeutet,

mit der Maßgabe, daß die freien Valenzen von Y in (I) und (II) abgesättigt sind durch Reste A und/oder Reste B, wobei die Reste B wiederum mit Kohlenwasserstoffgruppen Y

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 11.97 702 064/323

20/23

BEST AVAILABLE COPY

Beschreibung

Die Erfindung betrifft aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen sowie ein Verfahren zu deren Herstellung. Weiterhin betrifft die Erfindung vernetzbare Zusammensetzungen, die aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen, Si-gebundene Wasserstoffatome aufweisende Organosiliciumverbindungen, die Anlagerung von Si-gebundenen Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren und gegebenenfalls die Anlagerung von Si-gebundenen Wasserstoff an aliphatische Mehrfachbindung bei Raumtemperatur verzögernde Mittel enthalten, sowie die Verwendung der Zusammensetzungen zur Herstellung von klebrige Stoffe abweisenden Überzügen.

Aus US-A 5,241,034 sind Alkenylgruppen aufweisende Siloxancopolymere bekannt, die durch Umsetzung von einer organischen Verbindung mit zwei, drei oder vier endständigen aliphatischen Doppelbindungen mit Organopolysiloxan mit Si-gebundenen Wasserstoffatomen in Gegenwart eines Hydrosilylierungskatalysators hergestellt werden. Es werden dabei Polyadditionsprodukte erhalten, worin Organopolysiloxanblöcke über Kohlenwasserstoffbrücken verbunden sind. Polyadditionsreaktionen in der Nähe der Stöchiometrie der eingesetzten Edukte sind nur schwer beherrschbar und führen meist zu Produkten stark schwankender Qualität. Organosiliciumverbindungen mit Si-gebundenen Vinylgruppen sind auf diese Weise nicht zugänglich.

In der deutschen Anmeldung der Anmelderin mit dem Aktenzeichen 195 22 144.3 sind Alkenylgruppen aufweisende Siloxancopolymere beschrieben, die hergestellt werden, indem in einem ersten Schritt eine mindestens drei endständige aliphatische Doppelbindungen aufweisende organische Verbindung im Überschuß mit endständige Si-gebundene Wasserstoffatome aufweisendem, niedermolekularem linearen Organopolysiloxan in Gegenwart eines Hydrosilylierungskatalysators umgesetzt wird und in einem zweiten Schritt das so erhaltene, Si-gebundene Wasserstoffatome aufweisende Kohlenwasserstoff-Siloxancopolymer im Überschuß mit α,ω -Dien in Gegenwart eines Hydrosilylierungskatalysators umgesetzt wird. Die Umsetzung mit α,ω -Dien zur Funktionalisierung der im ersten Schritt hergestellten Produkte mit Si-gebundenen Wasserstoffatomen führt immer zu einer weiteren Verbrückung und damit zu einem zusätzlichen Viskositätsanstieg. Organosiliciumverbindungen mit Si-gebundenen Vinylgruppen lassen sich nach diesem Verfahren nicht herstellen.

Aus EP-B 403 890 und EP-A 640 662 ist eine additionsvernetzbare Organopolysiloxanmischung zur Herstellung von klebrige Stoffe abweisenden Überzügen bekannt, die als ungesättigte Kohlenwasserstoffgruppen aufweisendes Organopolysiloxan ein verzweigtes Organopolysiloxan mit T-Einheiten ($RSiO_{3/2}$) und/oder Q-Einheiten (SiO_2) enthält. Da diese Siloxaneinheiten nicht der gleichen Kinetik wie die Diorganosiloxan- oder Triorganosiloxaneinheiten gehorchen, ist es schwierig, eine gezielte Verteilung der Verzweigungsstellen im Polymer zu erreichen und damit einen definierten mittleren Abstand zwischen diesen einzustellen.

In US-A 5,082,915 sind Papierbeschichtungsmassen beschrieben, die ein Organopolysiloxan mit mindestens zwei Si-gebundenen Alkenylgruppen und mindestens einem Si-gebundenem Radikal der Formel $-(CH_2)_m-(R^1SiO)_n-SiR^{1,3}$ (R^1 ist ein einwertiger Kohlenwasserstoffrest, bevorzugt ein Methylrest; $m = 2-8$, bevorzugt $m = 2$ oder 3 ; $n = 5-100$) enthalten. Die SiC-gebundene Siloxanseitenkette in dem verzweigten Organopolysiloxan wird durch Umsetzung einer Si-gebundenen Alkenylgruppe, bevorzugt einer Si-gebundenen Vinylgruppe, mit einem linearen Organopolysiloxan mit einem endständigen Si-gebundenen Wasserstoffatom in Gegenwart eines Hydrosilylierungskatalysators erhalten. Die hierfür benötigten mono-H-Si-funktionellen Organopolysiloxane können nur aufwendig und damit unwirtschaftlich hergestellt werden.

Es bestand daher die Aufgabe, Organosiliciumverbindungen mit reaktiven aliphatisch ungesättigten Kohlenwasserstoffgruppen bereitzustellen, die in einem einfachen Verfahren hergestellt werden können, die keine größeren Mengen an Ausgangsmaterialen enthalten sollen, die auch mit niedrigen Viskositäten erhältlich sind, die verzweigt sein sollen, um mehr als zwei Kettenenden mit reaktiven ungesättigten Kohlenwasserstoffgruppen zu erhalten und die mit Si-gebundenen Wasserstoffatome aufweisenden Organosiliciumverbindungen in Gegenwart von die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernden Katalysatoren rasch vernetzen. Weiterhin bestand die Aufgabe, vernetzbare Zusammensetzungen bereitzustellen, die zur Herstellung von klebrige Stoffe abweisenden Überzügen geeignet sind. Die Aufgabe wird durch die Erfindung gelöst.

Gegenstand der Erfindung sind aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen enthaltend

(a) Endgruppen der allgemeinen Formel

$A-Y$ (I),

wobei A einen Rest der allgemeinen Formel

$R^1_a R_3-a SiO(R^1_b R_2-b SiO)_m R^2 Si-$,

der gegebenenfalls Siloxaneinheiten der allgemeinen Formel

$RSiO_{3/2}$

enthält,

und Y einen drei- bis achtwertigen Kohlenwasserstoffrest mit 7 bis 30 Kohlenstoff-Atomen, bevorzugt einen Rest der allgemeinen Formel

$R^2(CR^3H-CH_2)_n$

bedeutet, wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest,
 R^1 gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,

5

R^2 einen dreiwertigen bis achtwertigen Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen je Rest

R^3 ein Wasserstoffatom oder einen Alkylrest mit 1 bis 6 Kohlenstoffatomen je Rest und

a 0, 1, 2 oder 3,

10

b 0, 1 oder 2

m 0 oder eine ganze Zahl im Wert von 1 bis 500 und

n 3, 4, 5, 6, 7 oder 8 bedeutet,

und gegebenenfalls

(b) Brückengruppen der allgemeinen Formel

15

$Y-B-Y$ (II)

wobei Y die oben dafür angegebene Bedeutung hat und B einen Rest der Formel $-SiR_2OR_2Si-$ bedeutet,
 der gegebenenfalls Siloxaneinheiten der allgemeinen Formel

20

$R^1_aR_3-aSiO_{1/2}$ und/oder

$R^1_bR_2-bSiO$ und/oder

$RSiO_{3/2}$

wobei R, R^1 , a und b die oben dafür angegebene Bedeutung haben, enthält,

25

mit der Maßgabe, daß die freien Valenzen von Y in (I) und (II) abgesättigt sind durch Reste A und/oder Reste B,
 wobei die Reste B wiederum mit Kohlenwasserstoffgruppen Y verbunden sind,
 und daß durchschnittlich je Molekül mehr als zwei Reste R^1 enthalten sind.

Gegenstand der Erfindung sind weiterhin aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen herstellbar, indem in einem ersten Schritt drei bis acht aliphatische Doppelbindungen aufweisende organische Verbindungen (1) mit 7 bis 30 Kohlenstoff-Atomen, bevorzugt solche der allgemeinen Formel

30

$R^2(CR^3-CH_2)_n$

35

wobei R^2 einen dreiwertigen bis achtwertigen Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen je Rest,
 R^3 ein Wasserstoffatom oder einen Alkylrest mit 1 bis 6 Kohlenstoffatomen je Rest und

n 3, 4, 5, 6, 7 oder 8 bedeutet,

mit Silanen (2) der allgemeinen Formel

40

R_2SiX ,

wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest und

45

X ein Halogenatom oder ein Rest der Formel $-OC(O)CH_3$ oder $-OC(CH_3)=CH_2$ bedeutet,

in Gegenwart von die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördern den Katalysatoren (3) umgesetzt werden.

und überschüssige Silane (2) destillativ entfernt werden,

wobei das eingesetzte Verhältnis von Si-gebundenem Wasserstoff in Silan (2) zu aliphatischer Doppelbindung in 50
 organischer Verbindung (1) 0,9 bis 2,0 beträgt, in einem zweiten Schritt die so erhaltenen hydrolysefähigen Gruppen aufweisenden Verbindungen mit Silanen (4) der allgemeinen Formel

$R^1_aR_3-aSiX$,

55

oder Siloxanen (5) der allgemeinen Formel

$R^1_aR_3-aSiO(R^1_bR_2-bSiO)_mSiR^1_aR_3-a$

60

wobei R die oben dafür angegebene Bedeutung hat,

R^1 gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,

a 0, 1, 2 oder 3,

b 0, 1 oder 2 und

m 0 oder eine ganze Zahl von 1 bis 500 bedeutet,

65

und Wasser in Gegenwart von Säuren (6) umgesetzt werden,

wobei das eingesetzte Verhältnis von $R^1_aR_3-aSi$ -Gruppen in Silanen (4) oder Siloxanen (5) zu hydrolysefähigen Gruppen X in den aus dem ersten Schritt erhaltenen Verbindungen 1,0 bis 10,0 beträgt.

und gegebenenfalls in einem dritten Schritt die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen mit Organopolysiloxanen (7) ausgewählt aus der Gruppe bestehend aus linearen, endständige Triorganosiloxygruppen aufweisenden Organopolysiloxanen, linearen, endständige Hydroxylgruppen aufweisenden Organopolysiloxanen, verzweigten, gegebenenfalls Hydroxylgruppen aufweisenden Organopolysiloxanen, cyclischen Organopolysiloxanen und Mischpolymerisaten aus Diorganosiloxan- und Monoorganosiloxaneinheiten, equilibriert werden,
5 und mit der Maßgabe, daß die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen durchschnittlich je Molekül mehr als zwei Reste R¹ aufweisen.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen, dadurch gekennzeichnet, daß in einem ersten Schritt drei bis acht aliphatische Doppelbindungen aufweisende organische Verbindungen (1) mit 7 bis 30 Kohlenstoff-Atomen, bevorzugt der allgemeinen Formel

15 wobei R² einen dreiwertigen bis achtwertigen Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen je Rest, R³ ein Wasserstoffatom oder einen Alkylrest mit 1 bis 6 Kohlenstoffatomen je Rest und 0 n 3, 4, 5, 6, 7 oder 8 bedeutet,
mit Silanen (2) der allgemeinen Formel

wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest und
25 X ein Halogenatom oder ein Rest der Formel $-OC(O)CH_3$ oder $-OC(CH_3)=CH_2$ bedeutet,
in Gegenwart von die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördern-den Katalysatoren (3) umgesetzt werden und überschüssige Silane (2) destillativ entfernt werden,
wobei das eingesetzte Verhältnis von Si-gebundenem Wasserstoff in Silan (2) zu aliphatischer Doppelbindung in
30 organischer Verbindung (1) 0,9 bis 2,0 beträgt,
in einem zweiten Schritt die so erhaltenen hydrolysefähige Gruppen aufweisenden Verbindungen mit Silanen (4) der allgemeinen Formel

35 oder Siloxanen (5) der allgemeinen Formel

40 wobei R die oben dafür angegebene Bedeutung hat,
R¹ gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,
a 0, 1, 2 oder 3,
b 0, 1 oder 2 und

45 m 0 oder eine ganze Zahl von 1 bis 500 bedeutet,

und Wasser in Gegenwart von Säuren (6) umgesetzt werden,

wobei das eingesetzte Verhältnis von R¹aR_{3-a}Si-Gruppen in Silanen (4) oder Siloxanen (5) zu hydrolysefähigen Gruppen X in den aus dem ersten Schritt erhaltenen Verbindungen 1,0 bis 10,0 beträgt,
50 und gegebenenfalls in einem dritten Schritt die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen mit Organopolysiloxanen (7) ausgewählt aus der Gruppe bestehend aus linearen, endständige Triorganosiloxygruppen aufweisenden Organopolysiloxanen, linearen, endständige Hydroxylgruppen aufweisenden Organopolysiloxanen, verzweigten, gegebenenfalls Hydroxylgruppen aufweisenden Organopolysiloxanen, cyclischen Organopolysiloxanen und Mischpolymerisaten aus Diorganosiloxan- und Monoorganosiloxaneinheiten, equilibriert werden,
55 und mit der Maßgabe, daß die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen durchschnittlich je Molekül mehr als zwei Reste R¹ aufweisen.

Unter den erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen sind oligomere und polymere Organosiliciumverbindungen zu verstehen.

Die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosilicium-verbindungen enthalten durchschnittlich je Molekül mindestens eine Endgruppe der Formel (1).

Die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosilicium-verbindungen besitzen vorzugsweise eine Viskosität von 50 bis 50 000 mPa · s bei 25°C, bevorzugt 100 bis 5000 mPa · s bei 25°C.

Die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosilicium-verbindungen enthalten durchschnittlich je Molekül vorzugsweise 2,2 bis 5,0, bevorzugt 2,2 bis 4,0, besonders bevorzugt 2,3 bis 3,5 Reste R¹.

Bei den erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosilici-umverbindungen beträgt die Masse pro Mol C=C-Doppelbindung vorzugsweise 200 bis 25 000 g, bevorzugt

500 bis 10 000 g.

Beispiele für Reste R sind Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, 1-n-Butyl-, 2-n-Butyl-, iso-Butyl-, tert-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl, tert-Pentylrest; Hexylreste, wie der n-Hexylrest; Heptylreste, wie der n-Heptylrest; Octylreste, wie der n-Octylrest und iso-Octylreste, wie der 2,2,4-Trimethylpentylrest; Cycloalkylreste, wie Cyclopentyl-, Cyclohexyl-, Cycloheptylreste und Methylocyclohexylreste; Arylreste, wie der Phenylrest; Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste und-Aralkylreste, wie der Benzylrest, der α - und der β -Phenylethylrest. Bevorzugt ist der Methylrest.

5

Beispiele für substituierte Reste R sind halogenierte Reste.

Beispiele für halogenierte Reste R sind Halogenalkylreste, wie der 3,3,3-Trifluor-n-propylrest, der 2,2,2',2',2'-Hexafluorisopropylrest, der Heptafluorisopropylrest und Halogenarylreste, wie der o-, m-, und p-Chlorphenylrest.

10

Beispiele für Reste R¹ sind Alkenylreste, wie der Vinyl-, Allyl-, 5-Hexenyl-, 7-Octenylrest. Bevorzugt ist der Vinylrest.

Beispiele für substituierte Reste R¹ sind der 2-Methyl-3-butetyl und der 4-Methyl-5-hexenylrest.

15

Bevorzugt ist a 0 oder 1.

Bevorzugt ist b 0.

Bevorzugt ist m 0 oder eine ganze Zahl im Wert von 1 bis 100, besonders bevorzugt ist m 0.

Bevorzugt ist n 3, 4, 5 oder 6, besonders bevorzugt 3 oder 4.

20

Bevorzugt ist R² ein dreiwertiger bis sechswertiger Kohlenwasserstoffrest, besonders bevorzugt ein dreiwertiger oder vierwertiger Kohlenwasserstoffrest.

Beispiele für Alkylreste R³ sind der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, 1-n-Butyl-, 2-n-Butyl-, iso-Butyl-, tert-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl, tert-Pentylrest und Hexylreste, wie der n-Hexylrest. Bevorzugt ist R³ ein Wasserstoffatom.

25

Beispiele für Reste Y sind solche der Formel

30

35

40

45

50

55

55

Beispiele für organische Verbindungen (1), die im ersten Schritt des erfindungsgemäßen Verfahrens eingesetzt werden, sind daher die folgenden, den oben genannten Resten Y in der Reihenfolge entsprechenden Verbindungen:

60

Trivinylmethan,
1,1,1-Trivinyloethan,
1,2,3-Trivinylcyclohexan,
1,3,5-Trivinylcyclohexan,
3,5-Dimethyl-4-vinyl-1,6-heptadien,

65

1,2,3-Triallylcyclopentadien,
 1,2,3,4-Tetraallylcyclopentadien,
 Tetravinylcyclobutan,
 1,5,9-Cyclododecatrien,
 5 1,3,5,7-Cyclooctatetraen,
 Pentaallylcyclopentadien und
 Hexavinylbenzol.

Organische Verbindung (1) besitzt vorzugsweise ein Molekulargewicht von 100 bis 1000 g/mol.
 10 Beispiele für Halogenatome X sind —Br und —Cl, wobei —Cl bevorzugt ist.
 Beispiele für Silane (2), die im ersten Schritt des erfindungsgemäßen Verfahrens eingesetzt werden, sind
 Dimethylchlorsilan,
 Diethylchlorsilan,
 Dimethylacetoxysilan,
 15 Dimethylbromsilan und
 Dimethylisopropenoxyssilan.

Bei dem erfindungsgemäßen Verfahren kann im ersten Verfahrensschritt eine Art von organische Verbindung (1) oder verschiedene Arten von organische Verbindungen (1) eingesetzt werden.

Bei dem erfindungsgemäßen Verfahren kann im ersten Verfahrensschritt eine Art von Silan (2) oder verschiedene Arten von Silan (2) eingesetzt werden.

Im ersten Schritt des erfindungsgemäßen Verfahrens beträgt das Verhältnis von Si-gebundenem Wasserstoff in Silan (2) zu aliphatischer Doppelbindung in der organischen Verbindung (1) vorzugsweise 1,0 bis 2,0, bevorzugt 1,0 bis 1,5, besonders bevorzugt 1,1 bis 1,3.

Als die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren (3) können auch bei dem erfindungsgemäßen Verfahren die gleichen Katalysatoren eingesetzt werden, die auch bisher zur Förderung der Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung eingesetzt werden konnten. Bei den Katalysatoren (3) handelt es sich vorzugsweise um ein Metall aus der Gruppe der Platinmetalle oder um eine Verbindung oder einen Komplex aus der Gruppe der Platinmetalle. Beispiele für solche Katalysatoren sind metallisches und feinverteiltes Platin, das sich auf Trägern, wie Silicium-dioxyd, Aluminiumoxyd oder Aktivkohle befinden kann, Verbindungen oder Komplexe von Platin, wie Platinhalogenide, z. B. PtCl_4 , $\text{H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O}$, $\text{Na}_2\text{PtCl}_4 \cdot 4\text{H}_2\text{O}$, Platin-Olefin-Komplexe, Platin-Alkohol-Komplexe, Platin-Alkoholat-Komplexe, Platin-Ether-Komplexe, Platin-Aldehyd-Komplexe, Platin-Keton-Komplexe, einschließlich Umsetzungsprodukten aus $\text{H}_2\text{PtCl}_6 \cdot 6\text{H}_2\text{O}$ und Cyclohexanon, Platin-Vinylsiloxankomplexe, wie Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxankomplexe mit oder ohne Gehalt an nachweisbarem anorganisch gebundenem Halogen, Bis-(gamma-picolin)-platindichlorid, Trimethylendipyrid-Inplatindichlorid, Dicyclopentadienplatindichlorid, Dimethylsulfoxidylethenplatin-(II)-dichlorid, Cyclooctadien-Platin-dichlorid, Norbornadien-Platin-dichlorid, Gamma-picolin-Platin-dichlorid, Cyclopentadien-Platin-dichlorid, sowie Umsetzungsprodukte von Platintetrachlorid mit Olefin und primärem Amin oder sekundärem Amin oder primärem und sekundärem Amin gemäß US-A 4,292,434, wie das Umsetzungsprodukt aus in 1-Octen gelöstem Platintetrachlorid mit sec.-Butylamin, oder Ammonium-Platinkomplexe gemäß EP-B 110 370.

Der Katalysator (3) wird im ersten Verfahrensschritt vorzugsweise in Mengen von 1 bis 50 Gew.-ppm (Gewichtsteilen je Million Gewichtsteilen), bevorzugt in Mengen von 1 bis 10 Gew.-ppm, jeweils berechnet als elementares Platin und bezogen auf das Gesamtgewicht von organische Verbindung (1) und Silan (2) verwendet.

Der erste Verfahrensschritt wird vorzugsweise beim Druck der umgebenden Atmosphäre, also etwa bei 1020 hPa (abs.), durchgeführt, er kann aber auch bei höheren oder niedrigeren Drücken durchgeführt werden. Ferner wird der erste Verfahrensschritt vorzugsweise bei einer Temperatur von 50°C bis 150°C, bevorzugt 80°C bis 130°C, durchgeführt.

In dem ersten Verfahrensschritt können inerte, organische Lösungsmittel mitverwendet werden, obwohl die Mitverwendung von inerten, organischen Lösungsmitteln nicht bevorzugt ist. Beispiele für inerte, organische Lösungsmittel sind Toluol, Xylool, Octanisomere, Butylacetat, 1,2-Dimethoxyethan, Tetrahydrofuran und Cyclohexan.

Die gegebenenfalls mitverwendeten inerten organischen Lösungsmittel werden nach dem ersten Verfahrensschritt destillativ entfernt.

Im ersten Verfahrensschritt wird vorzugsweise zu einer Mischung aus organischer Verbindung (1) und Katalysator (3) das Silan (2) zudosiert. Die nach dem ersten Verfahrensschritt erhaltenen Produkte sind meist nicht mehr destillierbar und können auf einfache Weise destillativ von leicht flüchtigen Nebenbestandteilen befreit werden. Die so gereinigten aus dem ersten Verfahrensschritt erhaltenen Produkte sind meist Flüssigkeiten mit einer Viskosität von vorzugsweise 10 bis 10 000 mm²/s bei 25°C, wobei die Viskosität von der Molekülgroße und der Polarität abhängt.

60 Es liegt im Umfang der vorliegenden Erfindung, daß im ersten Verfahrensschritt anstelle der organischen Verbindung (1) in Kombination mit dem Silan (2) unvollständig umgesetzte Zwischenprodukte aus der Reaktion von (1) mit (2), d. h. Zwischenprodukte, die noch aliphatisch ungesättigte Doppelbindungen aufweisen, eingesetzt werden und mit Silan (2) weiter zum Endprodukt des ersten Verfahrensschrittes umgesetzt werden.

Als Beispiel sei hierfür genannt die Umsetzung von 1,2,4-Trivinylcyclohexan mit HMe₂SiCl zu

(Me = Methylrest)
im ersten Verfahrensschritt.
Als Zwischenprodukt entsteht

welches als Ausgangsmaterial anstelle von 1,2,4-Trivinylcyclohexan verwendet werden kann und umgesetzt mit HSiCl₃ zum selben oben genannten Endprodukt des ersten Verfahrensschrittes führt.

Beispiele für Silane (4), die bei dem erfindungsgemäßen Verfahren im zweiten Verfahrensschritt eingesetzt werden, sind

Vinyldimethylchlorsilan,
Vinyldimethylacetoxysilan,
5-Hexenyldimethylchlorsilan,
Divinylmethylichlorsilan und
Trivinylchlorsilan.

Beispiele für Siloxane (5), die bei dem erfindungsgemäßen Verfahren im zweiten Verfahrensschritt eingesetzt werden, sind

1,3-Divinyltetramethylidisiloxan
1,5-Divinylhexamethyltrisiloxan und
1,3-Di(5-hexenyl)tetradsiloxan.

Bei dem erfindungsgemäßen Verfahren kann im zweiten Verfahrensschritt eine Art von Silan (4) oder verschiedene Arten von Silan (4) sowie eine Art von Siloxan (5) oder verschiedene Arten von Siloxan (5) eingesetzt werden.

Die bei dem erfindungsgemäßen Verfahren im zweiten Verfahrensschritt eingesetzten Säuren (6) können dieselben sein mit denen auch bisher die Hydrolyse von hydrolysefähigen Gruppen aufweisenden Organosiliciumverbindungen gefördert werden konnte. Beispiele für Säuren sind Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Perchlorsäure, wobei Salzsäure bevorzugt ist. Besonders bevorzugt ist Salzsäure in einer Konzentration von 1 bis 20%.

Wasser wird im zweiten Verfahrensschritt vorzugsweise in Mengen von 20 bis 100 g, bezogen auf Mol Si-gebundener hydrolysefähiger Gruppe X eingesetzt.

Im zweiten Schritt des erfindungsgemäßen Verfahrens beträgt das Verhältnis von R¹_nR_{3-n}Si-Gruppen in Silanen (4) oder Siloxanen (5) zu hydrolysefähigen Gruppen X in den aus dem ersten Verfahrensschritt erhaltenen hydrolysefähigen Gruppen aufweisenden Verbindungen bevorzugt 1,5 bis 5,0.

Bevorzugte Vorgehensweisen im zweiten Verfahrensschritt sind entweder ein Vormischen von aus dem ersten Verfahrensschritt erhaltenen Verbindungen mit Silanen (4) und die gemeinsame Cohydrolyse durch Zugabe von wässriger Säure (6) zu diesem Gemisch oder durch Zudosieren dieses Gemisches zu vorgelegter wässriger Säure (6) oder die Vermischung von Siloxanen (5) mit wässriger Säure (6) und Zudosieren der aus dem ersten Verfahrensschritt erhaltenen Verbindungen.

Der zweite Verfahrensschritt wird vorzugsweise beim Druck der umgebenden Atmosphäre, also etwa bei 1020 hPa (abs.), durchgeführt, er kann aber auch bei höheren oder niedrigeren Drücken durchgeführt werden. Ferner wird der zweite Verfahrensschritt vorzugsweise bei einer Temperatur von 0°C bis 80°C, bevorzugt 0°C bis 30°C durchgeführt.

Das aus dem zweiten Verfahrensschritt erhaltene Produktgemisch wird vorzugsweise durch Waschen mit Wasser oder Bicarbonatlösung gereinigt. Das so erhaltene Produkt enthält gewöhnlich wechselnde Mengen an niedermolekularen Nebenprodukten, wie Disiloxanen, die im Produkt belassen werden können, vorzugsweise aber abgetrennt werden, bevorzugt destillativ entfernt werden.

Überschüssiges Silan (4) und Siloxan (5) werden nach dem zweiten Verfahrensschritt vorzugsweise abgetrennt, bevorzugt destillativ entfernt.

In dem zweiten Verfahrensschritt können inerte, organische Lösungsmittel mitverwendet werden. Beispiele für inerte, organische Lösungsmittel sind Cyclohexan, Toluol, Xylole.

DE 196 29 053 A1

Die gegebenenfalls mitverwendeten inerten organischen Lösungsmittel werden nach dem zweiten Verfahrensschritt abgetrennt, vorzugsweise destillativ entfernt.

Die aus dem zweiten Verfahrensschritt erhaltenen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen enthalten wechselnde Mengen an Brückengruppen der Formel 5 $Y-SiR_2OR_2Si-Y$ (II), deren Verhältnis zu Endgruppen der Formel A- Y (I) hauptsächlich vom Einsatzverhältnis von Silanen (4) bzw. Siloxanen (5) zu aus dem ersten Verfahrensschritt erhaltenen hydrolysefähige Gruppen aufweisenden Verbindungen im zweiten Verfahrensschritt abhängt.

Bevorzugt werden die im zweiten Verfahrensschritt erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen in dem dritten Verfahrensschritt mit Organopolysiloxan (7) 10 equilibriert.

Bei der Equilibrierung ist die Bildung von Cyclen ohne funktionelle Gruppen, die dem Fachmann bekannt ist und die in Mengen von 8 bis 15 Gew.-% vorliegen, unvermeidbar, aber nicht störend. Falls gewünscht, können deren flüchtige Anteile (Cyclen mit 3-9 Si-Atomen) durch Vakuum und höhere Temperaturen aus dem Produktgemisch destillativ entfernt werden. Ebenso wie die Cyclen können bei der Equilibrierung andere nicht erwünschte aber nicht störende Nebenprodukte in kleinen Mengen erhalten werden.

Als Organopolysiloxane (7) werden vorzugsweise solche ausgewählt aus der Gruppe bestehend aus linearen, 15 endständige Triorganosiloxygruppen aufweisenden Organopolysiloxanen der Formel

20 wobei R und R^1 die oben dafür angegebene Bedeutung hat und
r 0 oder eine ganze Zahl im Wert von 1 bis 1500, bevorzugt 10 bis 300, ist,
linearen, endständige Hydroxylgruppen aufweisenden Organopolysiloxanen der Formel

25 wobei R die oben dafür angegebene Bedeutung hat und
s eine ganze Zahl im Wert von 1 bis 1500, bevorzugt 10 bis 300, ist,
verzweigten, gegebenenfalls Hydroxylgruppen aufweisenden Organopolysiloxanen aus Einheiten der Formel

30 wobei R die oben dafür angegebene Bedeutung hat,
cyclischen Organopolysiloxanen der Formel

35 wobei R die oben dafür angegebene Bedeutung hat und
t eine ganze Zahl von 3 bis 12 ist,
und Mischpolymerisaten aus Einheiten der Formel

40 wobei R die oben dafür angegebene Bedeutung hat,
eingesetzt

45 Bevorzugte Organopolysiloxane (5) sind die der Formeln $R^1_aR_{3-a}SiO(R^1_bR_{2-b}SiO)_xSiR^1_aR_{3-a}$, $HO(SiR_2O)_xH$ und $(R_2SiO)_t$, wobei diejenigen der Formel $R^1_aR_{3-a}SiO(R^1_bR_{2-b}SiO)_xSiR^1_aR_{3-a}$, besonders bevorzugt sind.

Das Mengenverhältnis der bei der gegebenenfalls durchgeführter Equilibrierung eingesetzten Organopolysiloxane (7) und aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen 50 wird lediglich durch den gewünschten Anteil der ungesättigten Kohlenwasserstoffgruppen in den bei der gegebenenfalls durchgeführten Equilibrierung erzeugten Organosiliciumverbindungen und durch die gewünschte mittlere Kettenlänge bestimmt.

Bei dem gegebenenfalls durchgeführten Equilibrieren werden vorzugsweise basische oder saure Katalysatoren, welche die Equilibrierung fördern, eingesetzt. Beispiele für basische Katalysatoren sind Alkalihydroxide, wie 55 Natriumhydroxid und Kaliumhydroxid, Trimethylbenzylammoniumhydroxid und Teramethylammoniumhydroxid. Bevorzugt sind Alkalihydroxide. Alkalihydroxide werden vorzugsweise in Mengen von 50 bis 10 000 Gew.-ppm (= Teile je Million), insbesondere 500 bis 2000 Gew.-ppm, jeweils bezogen auf das Gesamtgewicht der eingesetzten ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen und eingesetzten Organopolysiloxane (7), verwendet.

60 Beispiele für saure Katalysatoren sind Schwefelsäure, Phosphorsäure, Trifluormethansäure, Phosphornitridchloride und unter den Reaktionsbedingungen feste, saure Katalysatoren, wie säureaktivierte Bleicherde, saure Zeolithe, sulfonierte Kohle und sulfonierte Styrol-Divinylbenzol-Mischpolymerisat. Bevorzugt sind Phosphornitridchloride. Phosphornitridchloride werden vorzugsweise in Mengen von 5 bis 1000 Gew.-ppm (= Teile je Million), insbesondere 50 bis 200 Gew.-ppm, jeweils bezogen auf das Gesamtgewicht der eingesetzten Organosiliciumverbindungen, verwendet.

65 Die gegebenenfalls durchgeführte Equilibrierung wird vorzugsweise bei 100°C bis 150°C und beim Druck der umgebenden Atmosphäre, also etwa bei 1020 hPa (abs) durchgeführt. Falls erwünscht, können aber auch höhere oder niedrigere Drücke angewendet werden. Das Equilibrieren wird vorzugsweise in 5 bis 20 Gew.-%, bezogen

auf das Gesamtgewicht der jeweils eingesetzten ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen und eingesetzten Organopolysiloxane (7), in mit Wasser nichtmischbarem Lösungsmittel, wie Toluol, durchgeführt. Vor dem Aufarbeiten des bei dem Equilibrieren erhaltenen Gemisches kann der Katalysator unwirksam gemacht werden.

Das erfindungsgemäße Verfahren kann absatzweise, halbkontinuierlich oder vollkontinuierlich durchgeführt werden. 5

Die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen können mit Si gebundenen Wasserstoff aufweisenden Organopolysiloxanen in Gegenwart von Hydrosilylierungskatalysatoren vernetzt werden. Weiterhin können die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen auch mit Mercaptogruppen aufweisenden organischen Polymeren vernetzt werden. 10

Die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen werden vorzugsweise in vernetzbaren Zusammensetzungen, die

- (A) aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen, 15
- (B) Si gebundene Wasserstoffatome aufweisende Organosiliciumverbindungen,
- (C) die Anlagerung von Si gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren und gegebenenfalls
- (D) Die Anlagerung von Si gebundenem Wasserstoff an aliphatische Mehrfachbindung bei Raumtemperatur verzögernde Mittel enthalten, verwendet. 20

Die die erfindungsgemäßen, aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen enthaltenden vernetzbaren Zusammensetzungen werden vorzugsweise zur Herstellung von klebrigen Stoffen abweisenden Überzügen, z. B. zur Herstellung von Trennpapieren, verwendet.

Die Herstellung der mit dem Trennpapier verbundenen Selbstklebematerialien erfolgt nach dem off-line Verfahren oder dem inline Verfahren. Beim off-line Verfahren wird die Siliconzusammensetzung auf das Papier aufgetragen und vernetzt, dann, in einer darauffolgenden Stufe, gewöhnlich nach dem Aufwickeln des Trennpapiers auf eine Rolle und nach dem Lagern der Rolle, wird ein Klebstofffilm, der beispielsweise auf einem Etikettenfacepapier aufliegt, auf das beschichtete Papier aufgetragen und der Verbund wird dann zusammengepreßt. Beim in-line Verfahren wird die Siliconzusammensetzung auf das Papier aufgetragen und vernetzt, der Siliconüberzug wird mit dem Klebstoff beschichtet, das Etikettenfacepapier wird dann auf den Klebstoff aufgetragen und der Verbund schließlich zusammengepreßt. 25 30

Bei den erfindungsgemäßen Zusammensetzungen kann eine Art von Organosiliciumverbindung (A) oder verschiedene Arten von Organosiliciumverbindung (A) eingesetzt werden.

Als Bestandteil (B) können auch bei den erfindungsgemäßen Zusammensetzungen die gleichen Si gebundene Wasserstoffatome aufweisenden Organosiliciumverbindungen verwendet werden, die bei allen bisher bekannten Zusammensetzungen aus ungesättigte Kohlenwasserstoffgruppen, wie Vinylgruppen, aufweisenden Organosiliciumverbindungen, Si gebundene Wasserstoffatome aufweisende Organosiliciumverbindungen und die Anlagerung von Si gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren eingesetzt werden könnten. 35 40

Vorzugsweise enthalten die Organosiliciumverbindungen (B) mindestens 3 Si gebundene Wasserstoffatome.

Als Bestandteil (B) werden vorzugsweise Organopolysiloxane aus Einheiten der Formel

2

wobei R die oben dafür angegebene Bedeutung hat.

e 0 oder 1,

f 0, 1, 2 oder 3 und

die Summe e + f nicht größer als 3 ist,

bevorzugt solche der Formel

45

50

55

wobei R die oben dafür angegebene Bedeutung hat,

g 0 oder 1

k 0 oder eine ganze Zahl von 1 bis 100 und

l 0 oder eine ganze Zahl von 1 bis 100 ist,

verwendet.

60

Beispiele für Organopolysiloxane (B) sind insbesondere Mischpolymerisate aus Dimethylhydrogensiloxan-, Methylhydrogensiloxan-, Dimethylsiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Trimethylsiloxan-, Dimethylhydrogensiloxan- und Methylhydrogensiloxaneinheiten, Mischpolymerisate aus Trimethylsiloxan-, Dimethylsiloxan- und Methylhydrogensiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Diphenylsiloxan- und Trimethylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Dimethylhydrogensiloxan- und Diphenylsiloxaneinheiten, Mischpolymerisate aus Methylhydrogen-siloxan-, Phenylmethylsiloxan-, Trimethylsiloxan-

und/oder Dimethylhydrogensiloxaneinheiten, Mischpolymerisate aus Methylhydrogensiloxan-, Dimethylsiloxan-, Diphenylsiloxan-, Trimethylsiloxan- und/oder Dimethylhydrogensiloxaneinheiten sowie Mischpolymerisate aus Dimethylhydrogensiloxan-, Trimethylsiloxan-, Phenylhydrogensiloxan-, Dimethylsiloxan- und/oder Phenylmethylsiloxaneinheiten.

5 Verfahren zum Herstellen von Organopolysiloxanen (B), auch von solchen Organopolysiloxanen (B) der bevorzugten Art, sind allgemein bekannt.

Organosiliciumverbindungen (B) werden vorzugsweise in Mengen von 0,5 bis 6, bevorzugt 1 bis 3, besonders bevorzugt 1,5 bis 2,5 Grammatom Si-gebundenen Wasserstoffs je Mol Rest R¹ in den ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen (A) eingesetzt.

10 Als die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren (C) können auch bei den erfundungsgemäßen Zusammensetzungen die gleichen Katalysatoren verwendet werden, die auch bei den bisher bekannten Zusammensetzungen zum Vernetzen von aliphatische Mehrfachbindungen enthaltenden Organosiliciumverbindungen mit Verbindungen, die Si-gebundenen Wasserstoff enthalten, zur Förderung der Vernetzung eingesetzt werden konnten. Als Bestandteil (C) werden vorzugsweise die oben genannten Katalysatoren (3) verwendet.

15 Katalysator (C) wird vorzugsweise in Mengen von 5 bis 500 Gewichts-ppm (Gewichtsteilen je Million Gewichtsteilen), insbesondere 10 bis 200 Gewichts-ppm, jeweils berechnet als elementares Platinmetall und bezogen auf das Gesamtgewicht der Organosiliciumverbindungen (A) und (B) eingesetzt.

20 Als die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung bei Raumtemperatur verzögernde Mittel, sogenannte Inhibitoren (D), können auch bei den erfundungsgemäßen Zusammensetzungen alle Inhibitoren gegebenenfalls verwendet werden, die auch bisher für den gleichen Zweck verwendet werden konnten. Beispiele für Inhibitoren sind 1,3-Divinyl-1,1,3,3-tetramethyldisiloxan, Benzotriazol, Dialkylformamide, Alkyliothioharnstoffe, Methylethylketoxim, organische oder siliciumorganische Verbindungen mit einem Siedepunkt von mindestens 25°C bei 1012 mbar (abs.) und mindestens einer aliphatischen Dreifachbindung gemäß US-A 3,445,420, wie 1-Ethinylcyclohexan-1-ol, 2-Methyl-3-buten-2-ol, 3-Methyl-1-pentin-3-ol, 2,5-Dimethyl-3-hexin-2-diol und 3,5-Dimethyl-1-hexin-3-ol, 3,7-Dimethyl-oct-1-in-6-en-3-ol Inhibitoren gemäß US-A 2,476,166, wie eine Mischung aus Diallylmaleinat und Vinylacetat, und Inhibitoren gemäß US 4,504,645, wie Maleinsäuremonoester.

25 Vorzugsweise wird der Inhibitor (D) in Mengen von 0,001 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Organosiliciumverbindungen (A) und (B), eingesetzt.

30 Beispiele für weitere Bestandteile, die bei den erfundungsgemäßen Zusammensetzungen mitverwendet werden können, sind Mittel zur Einstellung der Trennkraft, Lösungsmittel, Haftvermittler und Pigmente.

Beispiele für Mittel zur Einstellung der Trennkraft der mit den erfundungsgemäßen Zusammensetzungen hergestellten klebrige Stoffe abweisenden Überzüge sind Siliconharze aus Einheiten der Formel

35 R⁴(CH₃)₂SiO_{1/2} und SiO₂,

sogenannte MQ-Harze, wobei R⁴ ein Wasserstoffatom, ein Methylest, ein Vinylrest oder ein Rest A, der in der eingangs zitierten US-A 5,241,034 beschrieben ist und daher zum Inhalt der Offenbarung der Anmeldung gehört, ist, und die Einheiten der Formel R⁴(CH₃)₂SiO_{1/2}/gleich oder verschieden sein können.

40 Das Verhältnis von Einheiten der Formel R⁴(CH₃)₂SiO_{1/2} zu Einheiten der Formel SiO₂ beträgt vorzugsweise 0,6 bis 2. Die Siliconharze werden vorzugsweise in Mengen von 5 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der Organosiliciumverbindungen (A) und (B), eingesetzt.

45 Die bei den erfundungsgemäßen Zusammensetzungen gegebenenfalls in mitverwendeten Lösungsmittel können die gleichen Lösungsmittel sein, die bei den bisher bekannten Zusammensetzungen aus ungesättigte Kohlenwasserstoffgruppen ausweisenden Organosiliciumverbindungen, Si-gebundenen Wasserstoff aufweisenden Organosiliciumverbindungen und die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Doppelbindung förderndem Katalysator verwendet werden konnten. Beispiele für solche Lösungsmittel sind Benzine, z. B. Alkangemische mit einem Siedebereich von 80°C bis 110°C bei 1012 mbar (abs.), n-Heptan, Benzol, Toluol und Xylole, halogenierte Alkane mit 1 bis 6 Kohlenstoffatomen, wie Methylchlorid, Trichlorethylen und Perchloroethylen, Ether, wie Di-n-butylether, Ester, wie Ethylacetat, und Ketone, wie Methylalketon und Cyclohexanon.

50 Werden organische Lösungsmittel mitverwendet, so werden sie zweckmäßig in Mengen von 10 bis 95 Gew.-%, bezogen auf das Gewicht der ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen (A), eingesetzt.

55 Die Reihenfolge beim Vermischen der Bestandteile (A), (B), (C) und gegebenenfalls (D) ist zwar nicht entscheidend, für die Praxis hat es sich jedoch bewährt, den Bestandteil (C), also den Katalysator, dem Gemisch der anderen Bestandteile zuletzt zuzusetzen.

60 Die Vernetzung der erfundungsgemäßen Zusammensetzungen erfolgt vorzugsweise bei 50°C bis 150°C. Ein Vorteil bei den erfundungsgemäßen Zusammensetzungen ist, daß eine rasche Vernetzung schon bei niedrigen Temperaturen erzielt wird. Als Energiequellen für die Vernetzung durch Erwärmen werden vorzugsweise Öfen, z. B. Umlufttrockenschränke, Heizkanäle, beheizte Walzen, beheizte Platten oder Wärmestrahlen des Infrarotbereiches verwendet.

65 Die erfundungsgemäßen Zusammensetzungen können außer durch Erwärmen auch durch Bestrahlen mit Ultravioletlicht oder durch Bestrahlen mit UV- und IR-Licht vernetzt werden. Als Ultravioletlicht wird üblicherweise solches mit einer Wellenlänge von in 253,7 nm verwendet. Im Handel gibt es eine Vielzahl von Lampen, die Ultravioletlicht mit einer Wellenlänge von 200 bis 400 nm aussenden, und die Ultravioletlicht mit einer Wellenlänge von 253,7 nm bevorzugt emittieren.

DE 196 29 053 A1

Das Auftragen von den erfindungsgemäßen Zusammensetzungen auf die klebrige Stoffe abweisend zu machenden Oberflächen kann in beliebiger, für die Herstellung von Überzügen aus flüssigen Stoffen geeigneter und vielfach bekannter Weise erfolgen, beispielsweise durch Tauchen, Streichen, Gießen, Sprühen, Aufwalzen, Drucken, z. B. mittels einer Offsetgravur-Überzugsvorrichtung, Messer- oder Rakel-Beschichtung oder mittels einer Luftbürste.

Bei den klebrigen Stoffen abweisend zu machenden Oberflächen, die im Rahmen der Erfindung behandelt werden können, kann es sich um Oberflächen beliebiger bei Raumtemperatur und 1012 mbar (abs.) fester Stoffe handeln. Beispiele für derartige Oberflächen sind diejenigen von Papier, Holz, Kork und Kunststofffolien, z. B. Polyethylenfolien oder Polypropylenfolien, gewebtem und ungewebtem Tuch aus natürlichen oder synthetischen Fasern oder Glasfasern, keramischen Gegenständen, Glas, Metallen, mit Polyethylen beschichtetem Papier und von Pappeln, einschließlich solcher aus Asbest. Bei dem vorstehend erwähnten Polyethylen kann es sich jeweils um Hoch-, Mittel- oder Niederdruck-Polyethylen handeln. Bei Papier kann es sich um minderwertige Papiersorten, wie saugfähige Papiere, einschließlich rohem, d. h. nicht mit Chemikalien und/oder polymeren Naturstoffen vorbehandeltes Kraftpapier mit einem Gewicht von 60 bis 150 g/m², ungeleimte Papiere, Papiere mit niedrigem Mahlgrad, holzhaltige Papiere, nicht satinierte oder nicht kalandrierte Papiere, Papiere, die durch die Verwendung eines Trockenglättzylinders bei ihrer Herstellung ohne weitere aufwendigen Maßnahmen auf einer Seite glatt sind und deshalb als "einseitig maschinenglätte Papiere" bezeichnet werden, unbeschichtete Papiere oder aus Papierabfällen hergestellte Papiere, also um sogenannte Abfallpapiere, handeln. Bei dem erfindungsgemäß zu behandelnden Papier kann es sich aber auch selbstverständlich um hochwertige Papiersorten, wie saugarme Papiere, geleimte Papiere, Papiere mit hohem Mahlgrad, holzfreie Papiere, kalandrierte oder satinierte Papiere, Pergaminpapiere, pergamentisierte Papiere oder vorbeschichtete Papiere, handeln. Auch die Pappeln können hoch- oder minderwertig sein.

Die erfindungsgemäßen Zusammensetzungen eignen sich beispielsweise zum Herstellen von Trenn-, Abdeck- und Mitläuferpapieren, einschließlich Mitläuferpapieren, die bei der Herstellung von z. B. Gieß- oder Dekorfolien oder von Schaumstoffen, einschließlich solcher aus Polyurethan, eingesetzt werden. Die erfindungsgemäßen Zusammensetzungen eignen sich weiterhin beispielsweise zur Herstellung von Trenn-, Abdeck-, und Mitläuferpappeln, -folien, und -tichern, für die Ausrüstung der Rückseiten von selbstklebenden Bändern oder selbstklebenden Folien oder der beschrifteten Seiten von selbstklebenden Etiketten. Die erfindungsgemäßen Zusammensetzungen eignen sich auch für die Ausrüstung von Verpackungsmaterial, wie solchem aus Papier, Pappschachteln, Metallfolien und Fässern, z. B. Pappe, Kunststoff, Holz oder Eisen, das bzw. die für Lagerung und/oder Transport von klebrigen Gütern, wie Klebstoffen, klebrigen Lebensmitteln, z. B. Kuchen, Honig, Bonbons und Fleisch, Bitumen, Asphalt, gefetteten Materialien und Rohgummi, bestimmt ist bzw. sind. Ein weiteres Beispiel für die Anwendung der erfindungsgemäßen Zusammensetzungen ist die Ausrüstung von Trägern zum Übertragen von Haftklebeschichten beim sogenannten "Transfer-Verfahren".

Die erfindungsgemäßen Zusammensetzungen eignen sich zur Herstellung der mit dem Trennpapier verbundenen Selbstklebematerialien sowohl nach dem off-line Verfahren als auch nach dem in-line Verfahren.

Beispiel 1

a) 500 g 1,2,4-Trivinylcyclohexan werden mit 6 ppm Pt in Form eines Platin-1,3-Divinyl-1,1,3,3-tetramethyl-disiloxan-Komplexes, des in sogenannten Karstedt-Katalysators, der im folgenden dem Katalysator entspricht, wie er nach US-A 3.775.452 (ausgegeben am 27.11.1973, Bruce D. Karstedt, General Electric Company) hergestellt wird, versetzt und auf ca. 110°C erwärmt. Im Lauf von ca. 3 Stunden werden insgesamt 950 g Dimethylchlor silan so dosiert, daß die Sumpftemperatur bei 110–120°C bleibt. Anschließend kocht man ca. 2 Stunden auf Rückfluß und destilliert den Silanüberschub im Vakuum bei 70°C aus. Man erhält 1322 g des Additionsproduktes 1,2,4-Tris[2-(chlordimethylsilyl)ethyl]cyclohexan in rund 96% Ausbeute. Der Umsatz der C=C-Doppelbindungen beträgt 99%. Das ²⁹Si-NMR-Spektrum zeigt Signale bei +31,8 und +32,2 ppm für die ClSiMe₂–CH₂CH₂-Gruppe.

b) 143,2 g der Chlorsilylverbindung, deren Herstellung oben unter a) beschrieben ist, werden mit 346,1 g Vinyldimethylchlor silan vermischt. Bei ca. 23°C werden während ca. 1 Stunde insgesamt 500 g 5%ige wäßrige HCl so zudosiert, daß die Innentemperatur zwischen 20 und 30°C gehalten werden kann. Man röhrt ca. 1 Stunde nach und trennt die wäßrige Säure ab. Das Siloxanprodukt wird nacheinander mit je 2 × 400 ml Wasser, 2 × 400 ml NaHCO₃-Lösung und 2 × 400 ml Wasser gewaschen. Nach azeotropem Trocknen mit Cyclohexan erhält man 281 g eines Siloxangemisches, das zu 74 Mol-% Vinyldimethylsiloxyeinheiten (M^V) und 26 Mol-% 2-Cyclohexylethyldimethylsiloxyeinheiten (M^R) besteht. Durch Ausdestillieren des im Produkt vorhandenen 1,3-Divinytetramethylsiloxans erhält man ein oligomeres Cohydrolyseprodukt mit M^V : M^R = 29 : 71 und einer Viskosität von ca. 420 mm²/s bei 25°C.

c) 11,0 g des nicht ausdestillierten Produkts aus Beispiel 1b) (M^V : M^R = 74 : 26) werden mit 240 g einer α,ω-Dihydroxydimethylpolysiloxans mit einer Viskosität von 20 000 mPa·s bei 25°C durch Zusatz von 60 mg einer 40%igen Lösung von Phosphornitridchlorid in 1,1,1-Trichlorethan bei 160°C equilibriert. Das Gemisch erreicht innerhalb einer Stunde eine Viskosität von 170 mm²/s bei 25°C. Nach Abkühlung auf 70°C werden 2,5 g MgO eingerührt; der Ansatz nach 16 Stunden klar filtriert und bei 130°C im Vakuum von flüchtigen Bestandteilen befreit. Das verzweigte Vinylsiloxan hat eine Viskosität von 216 mm²/s bei 25°C und enthält pro kg 0,29 Mol C=C Doppelbindungen.

Beispiel 2

a) Die Arbeitsweise von Beispiel 1b) wird wiederholt mit dem Unterschied, daß anstatt 346,1 g Vinyldime-

DE 196 29 053 A1

thylchlorsilan jetzt 403,8 g (10,5 Mol Silan pro Mol subst. Cyclohexan aus Beispiel 1a) eingesetzt werden. Nach gleicher Hydrolyse mit Aufarbeitung wird noch vorhandenes 1,3-Divinyltetramethylidisiloxan bei 120°C und 3 h Pa ausdestilliert. Man erhält 136 g eines Siloxanprodukts mit $M^V : M^R = 38 : 62$ und einer Viskosität von 250 mm²/s bei 25°C. Das Produkt enthält daher 3,45 Mol Vinylgruppen pro kg.

5 b) Wie in Beispiel 1c) beschrieben, werden nun 15,7 g des gestrippten Endprodukts mit einer Viskosität von 250 mm²/s bei 25°C, dessen Herstellung oben unter a) beschrieben ist, mit 2,0 g 1,3 Divinyl-1,1,3,3-tetramethylidisiloxan, 240 g eines α,ω-Dihydroxydimethylpolysiloxans mit einer Viskosität von 20 000 mPa·s bei 25°C und 60 mg einer 40%igen Lösung von Phosphornitridchlorid in 1,1,1-Trichlorethan bei 160°C equilibriert. Das Gemisch erreicht nach einer Stunde eine Viskosität von ca. 440 mm²/s bei 25°C. Identische 10 Aufarbeitung, wie in Beispiel 1c) beschrieben, liefert ein klares Produkt mit einer Viskosität von 540 mm²/s bei 26°C und mit 0,30 Mol Vinylgruppen pro kg. Das ²⁹Si-NMR-Spektrum zeigt ein Verhältnis von $M^V : M^R = 45 : 55$. Das Polymer enthält daher durchschnittlich 1,34 verzweigende organische Cyclohexantriyleinheiten pro Molekül.

Beispiel 3

300 g eines α,ω-Divinyldimethylpolysiloxans mit einer Viskosität von 500 mm²/s bei 25°C werden bei 160°C mit 20 g des Cohydrolyseprodukts aus Beispiel 2a) in Gegenwart von 80 mg einer 40%igen Lösung von Phosphornitridchlorid in 1,1,1-Trichlorethan equilibriert. Eine Viskosität von 310 mm²/s bei 25°C wird nach 20 Minuten erreicht. Die Aufarbeitung mit MgO, Filtration und Vakuumdestillation ergibt ein klares Öl mit einer Viskosität von 390 mm²/s bei 25°C, welches pro kg 0,36 Mol Vinylgruppen enthält. Mit einem Verhältnis von $M^V : M^R = 1 : 1$ enthält jedes Molekül durchschnittlich eine Verzweigungseinheit.

Beispiel 4

25 20 g des Cohydrolyseprodukts aus Beispiel 2a) werden mit 160 g eines Trimethylsilylgruppen terminierten Dimethylpolysiloxans mit einer Viskosität von 1000 mPa·s bei 25°C in Gegenwart von 50 mg einer 40%igen Lösung von Phosphornitridchlorid in 1,1,1-Trichlorethan equilibriert. Nach entsprechender Aufarbeitung mit 2 g MgO, Filtration und Vakuumbehandlung erhält man ein klares Polymer mit einer Viskosität von 490 mm²/s bei 25°C und mit 0,33 Mol C=C-Doppelbindungen pro kg. Das sternverzweigte Produkt enthält Trimethylsiloxy-(M) und Vinyldimethylsiloxyeinheiten (M^V) als Endgruppen (23 : 77). Das ²⁹Si-NMR-Spektrum ergibt ein Verhältnis von $(M^V + M) : M^R = 0,67$. Das Polymerprodukt hat demnach durchschnittlich rund 2,0 Verzweigungseinheiten pro Molekül.

Beispiel 5

Aus 100 g des Polymers aus Beispiel 3 wird eine anwendungsfertige Mischung hergestellt, indem am 250 mg 1-Ethinylcyclohexanol, 3,6 g eines trimethylsilyl-gestoppten Polyhydrogenmethylsiloxans mit einer Viskosität von 25 mm²/s bei 25°C und 1,0 g einer 1%igen (bezogen auf Pt) Karstedt-Katalysatorlösung homogen zumischt. Eine ca. 4 µm dicke Beschichtung auf Pergaminpapier (65 g/m²) wird bei 90°C im Umluftofen ausgehärtet. Nach 9 Sekunden Aushärtung erhält man eine klebfreie und abriebfeste Siliconbeschichtung.

Patentansprüche

45 1. Aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen enthaltend
(a) Endgruppen der allgemeinen Formel

50 wobei A einen Rest der allgemeinen Formel

55 der gegebenenfalls Siloxaneinheiten der allgemeinen Formel

enthält,
60 und Y einen drei- bis achtwertigen Kohlenwasserstoffrest mit 7 bis 30 Kohlenstoffatomen, wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest,

R¹ gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,

a 0, 1, 2 oder 3,

b 0, 1 oder 2 und

m 0 oder eine ganze Zahl im Wert von 1 bis 500 bedeutet,

und gegebenenfalls

(b) Brückengruppen der allgemeinen Formel

Y-B-Y (II)

wobei Y die oben dafür angegebene Bedeutung hat und
B einen Rest der Formel $\text{SiR}_2\text{OR}_2\text{Si}$ bedeutet,
der gegebenenfalls Siloxaneinheiten der allgemeinen Formel

$\text{R}^1_a\text{R}_{3-a}\text{SiO}_{1/2}$ und/oder
 $\text{R}^1_b\text{R}_{2-b}\text{SiO}$ und/oder
 $\text{RSiO}_{3/2}$

wobei R, R^1 , a und b die oben dafür angegebene Bedeutung haben, enthält,
mit der Maßgabe, daß die freien Valenzen von Y in (I) und (II) abgesättigt sind durch Reste A und/oder
Reste B, wobei die Reste B wiederum mit Kohlenwasserstoffgruppen Y verbunden sind,
und daß durchschnittlich je Molekül mehr als zwei Reste R^1 enthalten sind.

2. Aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen nach An-

spruch 1, dadurch gekennzeichnet, daß R^1 ein Vinylrest ist.

3. Aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen nach An-
spruch 1 oder 2, dadurch gekennzeichnet, daß Y einen Rest der allgemeinen Formel

$\text{R}^2(\text{CR}^3\text{H}=\text{CH}_2)_n$

bedeutet, wobei R^2 einen dreiwertigen bis achtwertigen Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffato-
men je Rest,

R^3 ein Wasserstoffatom oder einen Alkyrest mit 1 bis 6 Kohlenstoffatomen je Rest und n 3, 4, 5, 6, 7 oder 8
bedeutet.

4. Aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen herstell-
bar, indem in einem ersten Schritt drei bis acht aliphatische Doppelbindungen aufweisende organische
Verbindungen (1) mit 7 bis 30 Kohlenstoffatomen, in mit Silanen (2) der allgemeinen Formel

HR_2SiX ,

wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter
oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest und
X ein Halogenatom oder ein Rest der Formel $-\text{OC(O)CH}_3$ oder $-\text{OC(CH}_3)=\text{CH}_2$ bedeutet,
in Gegenwart von die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung
fördernden Katalysatoren (3) umgesetzt werden und überschüssige Silane (2) destillativ entfernt werden,
wobei das eingesetzte Verhältnis von Si-gebundenem Wasserstoff in Silan (2) zu aliphatischer Doppelbin-
dung in organischer Verbindung (1) 0,9 bis 2,0 beträgt,
in einem zweiten Schritt die so erhaltenen hydrolysefähige Gruppen aufweisenden Verbindungen mit
Silanen (4) der allgemeinen Formel

$\text{R}^1_a\text{R}_{3-a}\text{SiX}$,

oder Siloxanen (5) der allgemeinen Formel

$\text{R}^1_a\text{R}_{3-a}\text{SiO}(\text{R}^1_b\text{R}_{2-b}\text{SiO})_m\text{SiR}^1_a\text{R}_{3-a}$

wobei R die oben dafür angegebene Bedeutung hat,
 R^1 gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter
Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,

a 0, 1, 2 oder 3,

b 0, 1 oder 2 und

m 0 oder eine ganze Zahl von 1 bis 500 bedeutet,

und Wasser in Gegenwart von Säuren (6) umgesetzt werden,

wobei das eingesetzte Verhältnis von $\text{R}^1_a\text{R}_{3-a}\text{Si}$ -Gruppen in Silanen (4) oder Siloxanen (5) zu hydrolysef-
ähigen Gruppen

X in den aus dem ersten Schritt erhaltenen Verbindungen in 1,0 bis 10,0 beträgt,
und gegebenenfalls in einem dritten Schritt die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoff-
gruppen aufweisenden Organosiliciumverbindungen mit Organopolysiloxanen (7) ausgewählt aus der
Gruppe bestehend aus linearen, endständige Triorganosiloxygruppen aufweisenden Organopolysiloxanen,
linearen, endständige Hydroxylgruppen aufweisenden Organopolysiloxanen, verzweigten, gegebenenfalls
Hydroxylgruppen aufweisenden Organopolysiloxanen, cyclischen Organopolysiloxanen und Mischpolyme-
risaten aus Diorganosiloxan- und Monoorganosiloxaneinheiten, equilibriert werden,
und mit der Maßgabe, daß die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisen-
den Organosiliciumverbindungen durchschnittlich je Molekül mehr als zwei Reste R^1 aufweisen.

5. Verfahren zur Herstellung von aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Orga-

DE 196 29 053 A1

nosiliciumverbindungen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in einem ersten Schritt drei bis acht aliphatische Doppelbindungen aufweisende organische Verbindungen (1) mit 7 bis 30 Kohlenstoffatomen mit Silanen (2) der allgemeinen Formel

5 HR_2SiX_n ,

wobei R gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch gesättigter oder aromatischer Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen je Rest und X ein Halogenatom oder ein Rest der Formel $-\text{OC(O)CH}_3$ oder $-\text{OC(CH}_3)_2=\text{CH}_2$ bedeutet,
 10 in Gegenwart von die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernden Katalysatoren (3) umgesetzt werden
 und überschüssige Silane (2) destillativ entfernt werden, in wobei das eingesetzte Verhältnis von Si-gebundenem Wasserstoff in Silan (2) zu aliphatischer Doppelbindung in organischer Verbindung (1) 0,9 bis 2,0, in einem zweiten Schritt
 15 die so erhaltenen hydrolysefähige Gruppen aufweisenden Verbindungen mit Silanen (4) der allgemeinen Formel

$\text{R}^1_a\text{R}_{3-a}\text{SiX}_n$,

20 oder Siloxanen (5) der allgemeinen Formel

$\text{R}^1_a\text{R}_{3-a}\text{SiO}(\text{R}^1_b\text{R}_{2-b}\text{SiO})_m\text{SiR}^1_a\text{R}_{3-a}$,

wobei R die oben dafür angegebene Bedeutung hat, R^1 gleich oder verschieden ist, ein einwertiger, gegebenenfalls substituierter, aliphatisch ungesättigter Kohlenwasserstoffrest mit 2 bis 18 Kohlenstoffatomen je Rest,
 25 0 a 0, 1, 2 oder 3,
 b 0, 1 oder 2 und
 m 0 oder eine ganze Zahl von 1 bis 500 bedeutet,

30 und Wasser in Gegenwart von Säuren (6) umgesetzt werden, wobei das eingesetzte Verhältnis von $\text{R}^1_a\text{R}_{3-a}\text{Si}$ -Gruppen in Silanen (4) oder Siloxanen (5) zu hydrolysefähigen Gruppen, X in den aus dem ersten Schritt erhaltenen Verbindungen 1,0 bis 10,0 beträgt,
 und gegebenenfalls in einem dritten Schritt die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen mit Organopolysiloxanen (7) ausgewählt aus der Gruppe bestehend aus linearen, endständige Triorganosiloxygruppen aufweisenden Organopolysiloxanen, linearen, endständige Hydroxylgruppen aufweisenden Organopolysiloxanen, verzweigten, gegebenenfalls Hydroxylgruppen aufweisenden Organopolysiloxanen, cyclischen Organopolysiloxanen und Mischpolymersaten aus Diorganosiloxan- und Monoorganosiloxaneinheiten, equilibriert werden,
 35 und mit der Maßgabe, daß die so erhaltenen aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisenden Organosiliciumverbindungen durchschnittlich je Molekül mehr als zwei Reste R^1 aufweisen.
 40 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß R^1 ein Vinylrest ist.
 7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als Verbindungen (1) solche der allgemeinen Formel

45 $\text{R}^2(\text{CR}^3=\text{CH}_2)_n$,

wobei R^2 einen dreiwertigen bis achtwertigen Kohlenwasserstoffrest mit 1 bis 24 Kohlenstoffatomen je Rest,
 50 R^3 ein Wasserstoffatom oder einen Alkylrest mit 1 bis 6 Kohlenstoffatomen je Rest und n 3, 4, 5, 6, 7 oder 8 bedeutet, eingesetzt werden.

8. Vernetzbare Zusammensetzungen enthaltend

(A) aliphatisch ungesättigte Kohlenwasserstoffgruppen aufweisende Organosiliciumverbindungen nach einem der Ansprüche 1 bis 4
 (B) Si-gebundene Wasserstoffatome aufweisende Organosiliciumverbindungen
 55 (C) die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung fördernde Katalysatoren

und gegebenenfalls

(D) die Anlagerung von Si-gebundenem Wasserstoff an aliphatische Mehrfachbindung bei Raumtemperatur verzögernde Mittel

60 9. Verwendung der vernetzbaren Zusammensetzungen nach Anspruch 8 zur Herstellung von klebrigen Stoffen abweisenden in Überzügen.

STN Karlsruhe

L2 ANSWER 1 OF 1 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN

ACCESSION NUMBER: 1998-087924 [09] WPIDS

DOC. NO. CPI: C1998-029838

TITLE: Easily prepared curable organo-silicon compounds with aliphatic unsaturated hydrocarbyl groups bound to silicon - prepared by hydrosilylation of poly-unsaturated organic compound, reaction with silane or siloxane containing unsaturated group and water and optional equilibration, useful for non-stick coating.

DERWENT CLASS: A26 A41 A82 E11 F06 G02

INVENTOR(S): BANFIC, R; HERZIG, C

PATENT ASSIGNEE(S): (WACK) WACKER CHEM GMBH

COUNTRY COUNT: 1

PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
DE 19629053	A1	19980122	(199809)*		14	C07F007-18<--

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
DE 19629053	A1	DE 1996-1029053	19960717

PRIORITY APPLN. INFO: DE 1996-19629053 19960717

INT. PATENT CLASSIF.:

MAIN: C07F007-18

SECONDARY: C09D183-07

THIS PAGE BLANK (USPTO)

STN Karlsruhe

BASIC ABSTRACT:

DE 19629053 A UPAB: 19980302

Organosilicon compounds (I) containing aliphatic unsaturated hydrocarbyl groups, terminal groups of formula A-Y (II) and optionally bridging groups of formula Y-B-Y (III) are new; in which A = a group of formula R_{1a}R₃-aSiO(R_{1b}R₂-bSiO)_mR₂Si (IV), optionally containing siloxane units of formula RSiO_{3/2} (V); Y = a tri- to octa-valent hydrocarbon group with 7-30 carbon (C) atoms; R = monovalent, optionally substituted, aliphatic saturated or aromatic 1-18 C hydrocarbyl; R₁ = monovalent, optionally substituted, aliphatic unsaturated 2-18 C hydrocarbyl; a = 0, 1, 2 or 3; b = 0, 1 or 2; m = 0-500; B = a group of formula -SiR₂OR₂Si (VI), optionally containing siloxane units of formulae R_{1a}R₃-aSiO_{1/2} (VII), R₁₂-bSiO (VIII) and/or (V); such that the free valencies of Y in (II) and (III) are saturated by A and/or B groups, the B groups are linked to other Y groups and each molecule contains an average of > 2 R₁ groups.

Also claimed are (a) organosilicon compounds (IA), which contain aliphatic unsaturated hydrocarbyl groups and have an average of > 2 R₁ groups/m Molecule, prepared by a specified method; and (b) curable compositions containing (I) or (IA).

USE - The curable compositions are used for producing non-stick coatings (claimed). They are useful for coating paper, wood, cork, polymer films, e.g. polyethylene or polypropylene film, woven and nonwoven natural or synthetic or glass fibre fabrics, ceramics, glass, metals, polyethylene-coated paper and cardboard, e.g. release papers, the back of self-adhesive tapes, films and labels, packaging materials and carriers for transferring pressure-sensitive adhesives.

ADVANTAGE - Known organopolysiloxanes with not less than 2 Si-bound alkenyl groups and SiC-bound siloxane side chains are prepared from mono-Si-functional organopolysiloxanes, which are difficult and hence uneconomical to prepare. (I) and (IA), which contain reactive aliphatic unsaturated hydrocarbyl groups, can be prepared by a simple method. They do not contain large amounts of starting materials and can have low viscosity.

Dwg.0/0

FILE SEGMENT: CPI

FIELD AVAILABILITY: AB; DCN

MANUAL CODES: CPI: A01-A03; A01-D; A06-A00E1; A12-B01C; E05-E; F03-E01;
F05-A06B; F05-B; G02-A05C; G02-A05D; G03-B04

=>

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)