

Theoretical Computer Science

Unit 5: Turing Machine

Faculty Name: Ms. Namita Pulgam

Index

Lecture 45 – Turing Machine Examples Part-2	3
Lecture 46 – Turing Machine Examples Part-3	18
Lecture 47 – Variants of Turing Machine and Universal TM	32

Lecture No 45:

Turing Machine Examples (Part-2)

Example 3:

Q. Design Turing Machine for odd length palindrome over $\Sigma = \{0,1\}$.

Language $L = \{010, 101, 01010,...\}$

Logic:

-Take the first character (either 0 or 1), mark it as '*' and move right till the blank symbol

-After blank move left. If the last character matches with the first character then mark it as blank symbol

-In the same way, repeat above cycle to match second symbol with second last symbol and so on.

$$\sum = \{ 0, 1 \}$$
 $\Gamma = \{ 0, 1, *, B \}$

Initial state : q_0 Final state : q_f

Logic in Detail

- q0- Take the first character (either 0 or 1) mark it as '*' and move right
- q1- Search for blank symbol, keep as it is and then move left. While doing this skip all 0's and 1's
- q2- Check whether the symbol from left is similar to symbol from right. If yes then mark it as 'B' (If read 0 in state q0)
- q3- Move left to search for '*'. While doing this skip all 0's and 1's.
- q4- Search for blank symbol, keep as it is and then move left. While doing this skip all 0's and 1's
- q5- Check whether the symbol from left is similar to symbol from right. If yes then mark it as 'B'. (If read 1 in state q0)
- q6-Move left to search for '*'. While doing this skip all 0's and 1's.
- qf- On q2 and q5 states after moving left if we get '*' that means all symbols are over. then reach to final state i.e. qf.

Consider input string – 01110

 $\delta(q3, 1) -> (q3, 1, L)$

 $\delta(q2, 0) -> (q3, B, L)$

Q\r	0	1	*	В
q0	(q1, *, R)	(q4, *, R)	-	<u>-</u>
q1	(q1, 0, R)	(q1, 1, R)	-	(q2, B, L)
q2	(q3, B, L)	-	(qf, *, S)	-
q3	(q3, 0, L)	(q3, 1, L)	(q0, *, R)	-
q4	(q4, 0, R)	(q4, 1, R)	-	(q5, B, L)
q5	-	(q6, B, L)	(qf, *, S)	-
q6	(q6, 0, L)	(q6, 1, L)	(q0, *, R)	-
qf*	Final State			UNI

Transition Diagram

Example 4:

Q. Design Turing Machine for even length palindrome over $\Sigma = \{a,b\}$.

Language L= {abba, baab,...}

Logic:

-Take the first character (either a or b), mark it as '*' and move right till the blank symbol

-After blank move left. If the last character matches with the first character then mark it as blank symbol

-In the same way, repeat above cycle to match second symbol with second last symbol and so on.

$$\sum = \{ a, b \}$$

$$\Gamma = \{ a, b, *, B \}$$

Initial state: q_0

Final state: q_f

Logic in Detail

- q0- Take the first character (either a or b) mark it as '*' and move right
- q1- Search for blank symbol, keep as it is and then move left. While doing this skip all a's and b's
- q2- Check whether the symbol from left is similar to symbol from right. If yes then mark it as 'B' (If read a in state q0)
- q3- Move left to search for '*'. While doing this skip all a's and b's.
- q4- Search for blank symbol, keep as it is and then move left. While doing this skip all a's and b's
- q5- Check whether the symbol from left is similar to symbol from right. If yes then mark it as 'B'. (If read b in state q0)
- q6-Move left to search for '*'. While doing this skip all a's and b's.
- qf- On q0 state after moving right if we get 'B' that means all symbols are over. then reach to final state i.e. qf.

Q\r	а	b	*	В
q0	(q1, *, R)	(q4, *, R)	-	(qf, B, S)
q1	(q1, a, R)	(q1, b, R)	-	(q2, B, L)
q2	(q3, B, L)	_	-	_
q3	(q3, a, L)	(q3, b, L)	(q0, *, R)	-
q4	(q4, a, R)	(q4, b, R)	-	(q5, B, L)
q5	-	(q6, B, L)	-	-
q6	(q6, a, L)	(q6, b, L)	(q0, *, R)	-
qf*	Final State			UNI

Transition Diagram

Thank You

Lecture No 46:

Turing Machine Examples (Part-3)

Turing Machine as Function Generator

- Turing machine can compute some functions.
- Its plays a role of function generator.
- TM can perform various arithmetic operations such as addition, subtraction, multiplication and so on.

Example 5:

Q. Design Turing Machine to perform addition of two unary numbers.

• In unary number system,

Value of any number(unary) = Number of 0's

where, 0 is used to represent the unary number.

- The required number will be represented in following format:
 - $-(2)_{10} = 00$
 - $-(3)_{10} = 000$
- Let us assume we want to add two numbers 2 and 3 i.e. (2+3)
- In order to separate the numbers on the tape we will use symbol "1" as a separator.
- Hence, the contents of input tape for numbers 2 and 3 will be :

- After addition of 2 and 3, the number of 0's on tape must be 5.
- Thus the output on tape will be as shown below:

B 0 0 0 0 B

Example 5: (cont..)

$$\sum = \{ 0, 1 \}$$

Logic:

q0- Bypass all 0's of first number and move right to search '1'

q1- When we get '1' make it '0' and move right till blank symbol.

q2-After second step there will be one extra '0' on tape. Therefore, when we get blank

symbol move left and make the last '0' as blank symbol.

qf- Final state

$$\Gamma = \{0, 1, B\}$$

Initial state: q_0

Final state: q_f

Example Processing: Addition of 2 and 3

Transition Table

Q\r	0	1	В
→ q0	(q0, 0, R)	(q1, 0, R)	
q1	(q1, 0, R)		(q2, B, L)
q2	(qf, B, S)		
qf*	Final State		

Transition Diagram

Thank You

Lecture No 47:

Turing Machine Variants, Universal TM

Variants of Turing Machine

- The Turing machine we have discussed so far is called as standard Turing machine
- In order to enhance the power of standard Turing machine many variations of it are suggested.
- Some of the variations are listed below:
 - Multi-Head Turing machine
 - Multi-Tape Turing machine
 - Non-deterministic Turing machine

Variants of Turing Machine (continue...)

Multi-head Turing Machine:

- A multi-head Turing machine contain two or more heads to read the symbols on the same tape.
- In one step all the heads sense the scanned symbols and move or write independently.

 δ (the state, symbol under head H_1 , symbol under head H_2) = (New State, $(S_1, M_1), (S_2, M_2)$)

Variants of Turing Machine (continue...)

Multi-tape Turing Machine:

• This type of Turing machine consists of multiple tapes each having an independent head. Each head is capable to perform read/ write operations and the movement includes left or right or no movement.

δ(the state, symbol under head of Tape 1, symbol under head of Tape 2) $= (\text{New State}, (S_1, M_1), (S_2, M_2))$

Variants of Turing Machine (continue...)

Non-deterministic Turing Machine:

- In case of standard Turing machine there exists only one possible transition from the current state for the current input. The standard Turing machine is also referred as Deterministic Turing machine.
- But, for non-deterministic Turing machine, it is possible that there are multiple transitions from the current state for the current input
- Formal definition: $M = \{Q, \sum, \rceil, \delta, q_0, F, B\}$ where,

Q : Finite set of states

 \sum : Finite set of input symbols

: Finite set of tape symbols which include the blank symbol

δ: The transition function, QX $\sum \rightarrow 2^Q$ (Power set of Q)

q₀. Initial state

F: Finite set of final states

B: Blank symbol

Universal Turing Machine

- A limitation of standard Turing Machines is that they are "hardwired" they execute only one program
- Real Computers are re-programmable

Solution: Universal Turing Machine

- We can construct a single Turing machine which can solve all sorts of problems.
- This type of Turing machine is called as Universal Turing Machine (UTM). Thus, Universal Turing Machine is a Turing Machine which simulates any other Turing Machine for a given input.
- The input of this Universal Turing Machine consists of:
 - → Description of transitions of other Turing machine M
 - → Input string of other Turing machine M

Three tapes

Alphabet Encoding

Symbols:

 $a \downarrow$

 \downarrow

 $C \downarrow$

d ·

Encoding:

1

11

111

1111

Transition Encoding

State Encoding

States:

 q_1

 q_2

 q_3

111

13

 \downarrow

 q_4

Encoding:

Transition:

 $\delta(q_1, a) = (q_2, b, L)$

10101101101

separator

Head Move Encoding

Move:

 \boldsymbol{L}

1

Encoding:

Encoding:

1

11

Alphabet Encoding (continue...)

Turing Machine Encoding

Tape 1 contents of Universal Turing Machine:

binary encoding of the simulated machine

Tape 1

1 0 1 0 11 0 11 0 10011 0 1 10 111 0 111 0 1100...

Working

It reads current input and current state from the tape 2 and 3.

Then checks description stored on tape1 and do the transitions according to it.

Thank You