第二次习题课 群文件《期中 & 期末试题》

期中试题

设 $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$,若矩阵 X 满足方程 $AX + I = A^2 + X$,求 X。

考研例题

1. 设
$$\alpha, \beta$$
 是 3 维列向量, β^T 是 β 的转置,如果 $\alpha\beta^T = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \\ 3 & -3 & 6 \end{bmatrix}$,则 $\alpha^T\beta = \underline{\qquad}$ 。

2. 若
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$
,则 $A^2 = \underline{\hspace{1cm}}, A^3 = \underline{\hspace{1cm}}.$

3. 若
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
,则 $A^n = \underline{\qquad}$

2. 若
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$
, 则 $A^2 =$ ______, $A^3 =$ _____.

3. 若 $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$, 则 $A^n =$ ______.

4. 设 $A = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 9 \\ 0 & 0 & 1 & 3 \end{bmatrix}$, 则 $A^n =$ ______.

$$\begin{bmatrix} 2 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

4. 已知
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 若 X 满足 $AX + 2B = BA + 2X$,则 $X^4 = \underline{\qquad}$.