CS4246 AI Planning and Decision Making - Project 1 Depression Prediction

Team 01

Antoine Charles Vincent Garcia - A0159072A Chan Jun Wei - A0112084U Chen Tze Cheng - A0112092W Eric Ewe Yow Choong - A0112204E Han Liang Wee, Eric - A0065517A Ho Wei Li - A0094679H

Abstract

Depression is a debiliatating mental illness that has good prognosis given early detection and treatment. However, detection is difficult with the various factors that raise the entry barriers and decrease the accuracy of a diagnostic test. Research have shown that accurate predictions of emotions can be made with Gaussian Process models. This study explores the novel use Gaussian Process in predicting depression severity using acoustic measures of voice. Our work has succesfully shown that Gaussian Process Dot Product trained using MFCC feature set is a good model for depression prediction and can predict PHQ-8 better than other state-of-the-art models at RMSE of 6.34.

Introduction

Depression has a severe, and at times long-term, negative impact on an individual's quality of life. Major depression is 3rd leading cause of disability worldwide with 65 million life years spent living with the disability or lost due to early death [World Health Organization, 2004]. Depression's annual toll on U.S businesses amounts to about \$80 billion in medical expenditures, lost productivity and suicide. Among the costs, close to \$10 billion accrued in lost workdays each year and more than \$33 billion in other costs accrue from decreased productivity due to symptoms that sap energy, affect work habits, cause problems with concentration, memory, and decision-making [Greenberg et al., 2015].

Left unchecked, depression increases risk for morbidity, suicide, decreased cognitive and social functioning, self-neglect, and early death [Fiske, Wetherell, and Gatz, 2009]. Death from suicide is one of the top 10 causes of death, above the death rate for chronic liver disease, Alzheimer's, homicide, arteriosclerosis or hypertension [Jiaquan Xu et al., 2016].

Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Despite the severe consequences, depression is one of the most treatable mental illnesses but it is also one of the most under-diagnosed globally. In general health-care, 48.4% of patients suffering from depression go unrecognized [RC et al., 2003].

Motivation and Objective

The Personal Health Questionaire depression scale (PHQ-8) is a self-administered, 8-question diagnostic test for depressive disorders that has proven to be an effective severity measure for depression in large clinical studies [Kroenke et al., 2008]. Nevertheless, one of the biggest obstacles to successful diagnosis of depression is the unwillingness of patients to admit their predisposition to depression by seeking help.

People often subscribe to the social stigma that being depressed reflects a weakness in their character, a permanent defect in their personality. This stigma manifests itself particularly in a phenomenon known as social distancing whereby people with mental issues are more isolated from others [Smith and Cashwell, 2011]. People suffering from depression hence tend to be ashamed of their condition and are generally convinced that denying and hiding it from others gives them a better shot at integrating with society and living a normal life [Wolpert, 2001]. Even if they do seek help, the accuracy of the PHQ-8 or just questionaires and surveys in general are often adversely affected by the Hawthorne Effect, a type of reactivity in which individuals modify or improve an aspect of their behavior in response to their awareness of being observed. [McCambridge, Witton, and Elbourne, 2014].

In the past decade, there have been research successfully correlating emotion with voice production and speech acoustics [Johnstone, 2001]. Corollary to that, active research of late into the use of voice acoustics as predictors of clinical depression scores has seen success, proving that it is an effective indicator of depression severity [Hashim et al., 2016].

In this paper, we investigate the applicability and feasibility of Gaussian Process (GP) models in predicting clinical ratings of depression severity on the PHQ-8 scale with acoustic measures of voice from a sample of patients and compare their performance with current state-of-the-art machine learning models. Some of our preliminary studies have shown that despite consensus among the scientific community that Support Vector Machine (SVM) models have a very high predictive accuracy specifically in speech emotion recognition [Chavhan, Dhore, and Yesaware, 2010], GP models have been proven to consistently outperform SVM models on the task of music emotion recognition [Markov and Matsui, 2013]. Nevertheless, there are no studies on the use of GP in predicting depression severity. The findings of this paper will hopefully open up new frontiers and fuel further research interest on this topic.

Future Applications

Results from this experiment will reinforce results from similar experiments and make a stronger case for the possibility of lowering the entry barriers of depression diagnostic tests and at the same time, increasing the accuracy of depression diagnosis by abstracting the Hawthorne Effect. Diagnostic tests can be designed in a friendly way that does not require the patient to consciously answer questionaires such as the PHQ-8 or even to have complete awareness of the diagnostic process. By taking into account the Hawthorne Effect and the status quo of the social stigma and working around them, diagnoses can be made easier, faster and more accurately and with that, education and treatment can begin early before the mental condition of the patient deteriorates.

Modelling and Approach

Studies have proven that Gaussian Process is a applicable model for emotion prediction in voice acoustics. As an extrapolation of emotion prediction, we posit that GP is also applicable for prediction of depression.

The following premises have to hold true so that the GP model is suitable for depression prediction:

- 1. Depression prediction is an event-based recognition which provides a single depression estimate over a certain amount of time. [Valstar et al., 2016a]
- 2. The speech signals extracted from different people suffering from depression should share some similarities and thus admissible for prediction with the Gaussian Process models. For example, diminished, prosodic and monotonous speech is often strongly correlated with depression. [Cummins et al., 2015]

Qualitative Advantages

GP is exceptionally useful in this application as it's noise tolerance takes into account outliers in our dataset such as recordings with irregular sampling rates.

GP also provides predictions with a clear probabilistic interpretation by also providing an estimate of prediction uncertainty. From the prediction uncertainty, we are able to intelligently supplement more data in aspects with higher uncertainty to improve the GP model. Moreover, we are able to get a sense of the quality of each prediction from

the prediction uncertainty. These properties are unique to a GP models and are missing in many other machine learning models. In our context, an individual would be able to obtain both the predicted PHQ-8 score and also prediction confidence when using a GP model. Hence, he would be able to get a sense of whether or not to trust the predicted PHQ-8 score and make informed decisions from there.

Gaussian Process Model

In our model, we first analyse the following aspects:

1. Audio Feature Sets

An audio signature can be uniquely defined by the following feature sets:

(a) Energy

The Energy feature of a sound refers to the loudness of the sound at various timeframes, hence the energy of a sound is directly proportional to the amplitude of the soundwave. The louder the sound, the higher the energy.

(b) Mel Frequency Cepstral Coefficients (MFCC)
Mel Frequency Cepstral (MFC) is a representation
of short-term power spectrum of a sound, based on
a linear cosine transform of a log power spectrum
on a nonlinear Mel scale of frequency. The greatest benefit of using MFCC is that the scale approximates the human's auditory system response
more closely, hence it allows for a better representation of sound. In order to obtain MFCC, Fourier
transform is performed on the sound signals.

(c) Magnitude Spectrum

Magnitude spectrum can be produced by converting the input signal of an audio into frames. Fast Fourier Transform is performed on each frames and this will form the Magnitude Spectrum.

(d) Zero-Crossing Rate

Zero crossing rate is the rate of sign-changes along a signal.

Depression is characterized by a pervasive and persistent low mood and the difficulty in diagnosis lies in detecting the subtle but clear-cut changes in the baseline of a patient's voice [Stratou et al., 2015]. Given the task and the fact that the baseline accuracy of using MFCC to predict emotions in audio is relatively high, we postulate that MFCC is the most important feature in depression prediction [El Ayadi, Kamel, and Karray, 2011]. Consequently, since we have limited data and large feature dimension, using only the MFCC feature set as the input vector of the model is expected improve the result.

2. Kernels

The similarity measure of all features is known as the kernel and are used to predict the value of an unobserved point from the training data.

The kernels tested are shown below:

The kernels are assumed to be defined on two samples

 $x=(x_1x_2x_3...x_n)$ and $x'=(x_1'x_2'x_3'...x_n')$, represented as feature vectors in some input space

(a) Radial Basis Function (RBF)

The RBF kernel is defined as

$$K(x, x') = \exp^{-\frac{||x - x'||^2}{2\sigma^2}}$$
 (1)

 $||x - x'||^2$ represents the squared Euclidean distance And $\sigma > 0$ can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic variant of the kernel).

It is also known as the squared exponential kernel. This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean square derivatives of all orders, and are thus very smooth.

(b) Matern

The class of Matern kernels is a generalization of the RBF and the absolute exponential kernel, parameterized by an additional parameter ν (nu). The smaller the value of ν , the less smooth the approximated function becomes. When $\nu=\infty$, the kernel becomes equivalent to the RBF kernel and when $\nu=0.5$, to the absolute exponential kernel. Important intermediate values are $\nu=1.5$ (once differentiable functions) and $\nu=2.5$ (twice differentiable functions).

(c) Automatic Relevance Detection (ARD)

If we chose the anisotropic variant of the RBF and Matern kernel, then these kernels are also known as ARD kernels. For the model, the difference is that each σ_i , where i=1,2,3,...,n might be different, depending the importance of the corresponding input features.

ARD is advantageous for the experiment as:

- Generalisation performance is potentially improved.
- ii. The data would be better explained.
- iii. Increase the efficiency of feature extraction for audio.

[Cawley and Talbot, 2014]

(d) Dot Product

The Dot Product kernel is non-stationary and can be obtained from linear regression by putting N(0,1) priors on the coefficients of $x_d(d=1,...,D)$ and a prior of $N(0,\sigma_0^2)$ on the bias. The Dot Product kernel is invariant to a rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter σ_0^2 . For $\sigma_0^2=0$, the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by

$$K(x, x') = \sigma_0^2 + x \cdot x' \tag{2}$$

While Matern is a very generalized kernel, both isotropic and ARD variant of the Matern kernel are se-

lected for our model. On the other hand, as dot product kernel is a very efficient and simple kernel, it is tested as well. As we favor simplicity, we assume that dot product kernel would give us the best result.

Without doing feature selections, the feature dimensions would be huge. As a result, it is likely to lead to overfitting and poor generalisation of the model. [Cawley and Talbot, 2014] Thus, to increase the effectiveness of the GP model, we would apply feature selection to the data first.

State-of-art Machine Learning Models

The following machine learning models are used:

1. K-Nearest Neighbors

The K-Nearest Neighbors is a non-parametric method for classification and regression. The training examples are vectors in a multidimensional feature space, each with a class label. The data will be classified into the class with most number of occurrence within the defined k radius.

2. Support Vector Machines (SVM)

SVM, with the help of the libsvm, is a type of linear classifiers that aims at finding a unique solution in the form of an optimal hyperplane which is defined as the one that maximizes the margins between the two classes.

3. Random Forest Regressor

Random Forest is an ensemble of decision trees, whereas a decision tree tries to separate the data into different leaf nodes where the data points in each node have certain similarity. Each decision tree will predict a value and the values will be averaged to be the result.

4. AdaBoost

AdaBoost is the short form of Adaptive Boost which is sensitive to noisy data and outliers. AdaBoost first find out the classifier with the least errors, adding the weight to the outliers, then find out another classifier with least errors again. A final classifier will be combined and indicate the class of data.

5. Naive Bayes

Naive Bayes is a prediction algorithm that uses Bayes rule. All naive Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable. The possibilities is represented by the number of times the particular event occurs in the dataset over the total number of events.

Evaluation

In order to test our proposed GP models, we conducted tests on data obtained from Audio/Visual Emotion Challenge and Workshop(AVEC 2016) [Valstar et al., 2016b]. The goal of AVEC is to weigh-in on the various approaches used to recognize emotions under unambiguous conditions. AVEC 2016 provided 2 pieces of data as input: visual and auditory data from each of the participants. However, we would be reducing the scope of the experiment, limiting the experiment

to only the auditory data. Two Sub-Challenges were lised in AVEC 2016. We are only interested in the Depression Classification Sub-Challenge, which requires participants to classify inputs by the PHQ-8 score. In this experiment, we would be using the audio data along with their corresponding PHQ-8 scores to test our assumptions and confirm our hypothesis.

Data

Figure 1: Histogram of the PHQ-8 scores

The depression data used in AVEC 2016 was obtained from the benchmarking database, Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ). Data collected from DAIC-WOZ include raw audio and video recordings and the corresponsing PHQ-8 score (from 0 to 24) [Kroenke et al., 2008]. Hence, we would need to pre-process the auditory data before we use it in our experiment. The pre-processing is briefly discussed in the section below. The distribution of the depression severity scores in the dataset is given in Figure 1. The data provided are split into 2 sets: training and development. An overview of the data is given in Table 1.

	Training	Development	All
n	95	31	126
μ	6.326	7.548	6.626
σ	5.597	6.690	5.909

Table 1: Summary of Datasets provided

Pre-processed data

Since the focus of this paper is the prediction of the PHQ-8 score, we will not describe the pre-processing step in detail. We used standard signal processing techniques to extract the 4 audio feature sets (Energy, MFCC, Magnitude Spectrum, Zero-crossing) as presented in the Modelling and Approach section. Each audio feature set comprises of several individual features and the breakdown of the actual number of feature columns is summarized in Table 2.

Audio Feature Sets	Number of features
Magnitude Spectrum	512
MFCC	12
Energy	1
Zero-Crossing Rate	1
Total	526

Table 2: Number of features extracted

Measure of Accuracy

AVEC 2016 provided a baseline classifier that consistently predicts the PHQ-8 score with RMSE = 6.7418 [Valstar et al., 2016b]. In order to provide a meaningful and consistent comparison to the baseline provided, we used the same Root Mean Square Deviation Error (RMSE) to measure the error rate on both Training and Development datasets. RMSE (Equation 3) is a commonly used in the machine learning community to measure the differences between the values predicted by a model and the ground truth [Dhanani et al., 2014].

$$RMSE = \sqrt{\frac{\sum_{t=1}^{n} (\hat{y}_t - y_t)^2}{n}}$$
 (3)

Feature Selection

Feature selection is the process of selecting a subset of relevant features including variables or predictors to be used in a model construction for machine learning. The usage of feature selection is to reduce the complexity of a model in machine learning to be interpreted easier. The objective of variable selection is three-fold: improving the prediction performance of the predictors, providing faster and most cost-effective predictors, and providing a better understanding of the underlying process that generated the data [Guyon and Elisseeff, 2003]. Since we have more features than data points, it leads to overfitting [Smith and Somorjai, 2011]. We would need to perform feature selection on the data before using the machine learning algorithm. The litany of feature selection algorithms used are popular and are taken from scikit-feature, a feature selection library [Li et al., 2016]: CIFE [Lin and Tang, 2006], Relief [Robnik-Sikonja and Kononenko, 2003], CFS [Hall and Smith, 1999]. We will not go into detail as feature selection is not the main focus of the report.

Experimental Setup

We compared the proposed Gaussian Models against commonly used machine learning algorithms as mentioned in the previous section. For the ease of testing, all implementations of the algorithms except for GP ARD come from the popular machine learning library, Scikit Learn [Pedregosa et al., 2011]. We used the implementation of GP ARD from GPy, a Gaussian Processes framework in Python [GPy, since 2012]. The hyper-parameters are either determined by the defaults used in either libraries or some reasonable defaults were used. Each machine learning algorithm is trained against the training set and thereafter tested against the development set using RMSE as the error metric. The

entire experimental process is shown in Figure 2.

Figure 2: Experimental process

Results

We first ran the experiment across the dataset across all 526 features, without feature selection. As we would expect [Cawley and Talbot, 2014], the results are terrible as the number of features is more than the number of data points, potentially causing overfitting. The results of the experiment is illustrated in figure 3. We would expect the GP ARD would be able to theoritcally extract relevant features and improve prediction. However, we have seen experimentally that GP ARD performs poorly, along with other GPs. The results for all the features are shown in figure 4.

Figure 3: Results across all features

We re-ran the experiment across the data with feature selection and ran each of the feature subset gathered from the feature selection algorithms against each of the machine learning algorithm. We observed that Relief, CIFE and CFS selected a large number of MFCC features. This confirms our suspicion that MFCC gives the best predictive power to predict PHQ-8. Hence, in addition we also ran the experiment on MFCC features, and are represented as MFCC alongside the feature subsets obtained from feature selection. The best results across all feature subsets are shown in figure 4 and in table 4. The number of features in each feature subset is given in the table 3.

As expected, the models perform better with the MFCC feature subset. To our suprise, GP dot product is better compared with all other machine learning algorithms. The GP

Feature Selection	Number of features
MFCC	12
CIFE	3
Relief	23
CFS	6
All	526

Table 3: Feature subsets

Figure 4: Best Results across all feature subsets

Algorithm	Subset	RMSE	
Algoriumi		Train	Dev
GP Dot Product	MFCC	5.03	6.34
AdaBoost	Relief	3.55	6.52
K-Nearest Neighbors	CFS	3.75	6.53
SVM - Linear	MFCC	5.29	6.63
Random Forest	CFS	5.61	6.75
Decision Tree	MFCC	5.60	6.80
SVM - RBF	CIFE	4.91	6.91
GP Isotropic Matern	CFS	0.00	7.18
Naive Bayes	Relief	6.87	7.59
GP ARD	All	3.72	10.09

Table 4: RMSE Results

dot product model was trained with 12 features and 95 data points, outperforms all other machine learning models in our tests. Hence, our results also support our hypothesis that MFCC is a appropriate feature subset to be used in prediction and that GP can be used to predict PHQ-8 scores.

Conclusion

Our work has succesfully shown that GP is a good model for this problem and can predict PHQ-8 better than the algorithms presented. In addition to being on par or better at prediction, GP can inherently provide an estimate of prediction uncertainty. This allows the user to gauge the model's confidence of the prediction, and to take appropriate action based on both the prediction and its uncertainty. We can also intelligently add data to our training set based on the prediction uncertaintly. Therefore, after considering both results and

GP's advantages, we conclude the GP Dot Product trained using MFCC feature set is a good model for depression prediction.

Further Work

For this experiment, we only used machine learning algorithms with their default parameters. We hope to expand our experiment to perform automatic hyper-parameter optimization across all the machine learning algorithms to finetune each model's performance. In particular, we can try Hyperopt-sklearn [Komer, Bergstra, and Eliasmith, 2014] or GP based hyper-parameter tuner. We opine that with hyper-parameter tuning, we can predict PHQ-8 scores better and can have a better comparison of the different learning algorithms.

Contributions

- Antoine Charles Vincent Garcia: Scripting the program, setting up machine learning libraries and running tests.
- Chan Jun Wei: Project technicalities such as problem formulation and modelling, mathematics and experiment planning.
- Chen Tze Cheng: Project technicalities such as problem formulation and modelling, mathematics and experiment planning.
- Eric Ewe Yow Choong: Formatting of the report, resolution of LaTeX issues and keeping track of requirements
- Han Liang Wee, Eric: Scripting the program, setting up machine learning libraries and running tests.
- Ho Wei Li: Background research and writing up of the abstract and introduction section with its subsections.

References

Cawley, G. C., and Talbot, N. L. C. 2014. Kernel learning at the first level of inference. Neural Networks 53:69–80.

Chavhan, Y.; Dhore, M. L.; and Yesaware, P. 2010. Speech Emotion Recognition using Support Vector Machine. *International Journal of Computer Applications* 1(20):8–11.

Cummins, N.; Scherer, S.; Krajewski, J.; Schnieder, S.; Epps, J.; and Quatieri, T. F. 2015. A review of depression and suicide risk assessment using speech analysis. *Speech Communication* 71:10–49.

Dhanani, A.; Lee, S. Y.; Phothilimthana, P.; and Pardos, Z. 2014. A comparison of error metrics for learning model parameters in bayesian knowledge tracing. Technical Report UCB/EECS-2014-131, EECS Department, University of California, Berkeley.

El Ayadi, M.; Kamel, M. S.; and Karray, F. 2011. Survey on speech emotion recognition: Features, classification schemes, and databases. *Pattern Recognition* 44(3):572–587

Fiske, A.; Wetherell, J. L.; and Gatz, M. 2009. Depression in older adults. *Annual Review of Clinical Psychology* 5:363–389.

GPy. since 2012. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy.

Greenberg, P. E.; Fournier, A.-A.; Sisitsky, T.; Pike, C. T.; and Kessler, R. C. 2015. The economic burden of adults with major depressive disorder in the united states. *The Journal of Clinical Psychiatry* 76(2):155–162.

Guyon, I., and Elisseeff, A. 2003. An Introduction to Variable and Feature Selection. *Journal of Machine Learning Research (JMLR)* 3(3):1157–1182.

Hall, M. A., and Smith, L. A. 1999. Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In *Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference*, 235–239. AAAI Press.

Hashim, N. W.; Wilkes, M.; Salomon, R.; Meggs, J.; and France, D. J. 2016. Evaluation of voice acoustics as predictors of clinical depression scores. *Journal of Voice* 0(0).

Jiaquan Xu, M.; Sheery L. Murphy, B.; Kenneth D. Kochanek, M.; and Brigham A. Bastian, B. 2016. Deaths: Final data for 2013. *National Vital Statistics Reports* Vol 64 No 2

Johnstone, T. 2001. The effect of emotion on voice production and speech acoustics. Ph.D. Dissertation, University of Western Australia.

Komer, B.; Bergstra, J.; and Eliasmith, C. 2014. Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn.

Kroenke, K.; Strine, T.; Spitzer, R. L.; Williams, J. B.; Berry, J. T.; and Mokdad, A. 2008. The phq-8 as a measure of current depression in the general population. *Journal of Affective Disorders* 114(1-3):163–73.

Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Robert, T.; Tang, J.; and Liu, H. 2016. Feature selection: A data perspective. *arXiv:1601.07996*.

Lin, D., and Tang, X. 2006. Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion. Berlin, Heidelberg: Springer Berlin Heidelberg. 68–82.

Markov, K., and Matsui, T. 2013. Music Genre and Emotion Recognition Using Gaussian Processes. 2:2–3.

McCambridge, J.; Witton, J.; and Elbourne, D. R. 2014. Systematic review of the hawthorne effect: New concepts are needed to study research participation effects. *Journal of Clinical Epidemiology* 67(3):267–277.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research* 12:2825–2830.

RC, K.; P, B.; O, D.; and et al. 2003. The epidemiology of major depressive disorder: Results from the national comorbidity survey replication (ncs-r). *JAMA* 289(23):3095–3105.

Robnik-Šikonja, M., and Kononenko, I. 2003. Theoretical and empirical analysis of relieff and rrelieff. *Machine Learning* 53(1):23–69.

Smith, A. L., and Cashwell, C. S. 2011. Social distance and mental illness: Attitudes among mental health and non-mental health professionals and trainees. *The Professional Counselor: Research and Practice* 1(1):13–20.

Smith, I. C. P., and Somorjai, R. L. 2011. Deriving biomedical diagnostics from nmr spectroscopic data. *Biophysical Reviews* 3(1):47–52.

Stratou, G.; Scherer, S.; Gratch, J.; and Morency, L. P. 2015. Automatic nonverbal behavior indicators of depression and PTSD: the effect of gender. *Journal on Multimodal User Interfaces* 9(1):17–29.

Valstar, M.; Gratch, J.; Ringeval, F.; Torres, M. T.; Scherer, S.; and Cowie, R. 2016a. AVEC 2016 – Depression , Mood , and Emotion Recognition Workshop and Challenge

Valstar, M. F.; Gratch, J.; Schuller, B. W.; Ringeval, F.; Lalanne, D.; Torres, M.; Scherer, S.; Stratou, G.; Cowie, R.; and Pantic, M. 2016b. AVEC 2016 - depression, mood, and emotion recognition workshop and challenge. *CoRR* abs/1605.01600.

Wolpert, L. 2001. Stigma of depression - a personal view. *British Medical Bulletin* 57(1):221–224.

World Health Organization. 2004. The global burden of disease: 2004 update. Technical report, World Health Organization.