Sección 4

4.2 Cómo mostrar los datos

Comparando datos entre grupos

- El promedio de cada grupo está representado con los extremos superiores
- La antena se extiende desde el promedio a el promedio + dos errores estándares

Mostrar los datos

heights %>% ggplot(aes(sex, height)) + geom_point()

jitter - alpha blending

- jitter: Esta función traslada cada punto una pequeña distancia randomica
- alpha blending: Da transparencia a los puntos.
 Observando que cuanto más puntos caigan sobre el mismo valor mas oscuro se vuelve este punto.

heights %>% ggplot(aes(sex, height)) + geom_jitter(width = 0.1, alpha = 0.2)

Para comparar gráficos - Utilizar ejes comunes

Si comparamos distribuciones en lugar de puntos particulares

Para comparar gráficos - Utilizar ejes comunes

Para comparar gráficos - Utilizar la alineación

- Si queremos comparar cambios horizontales, entonces alinear los gráficos verticalmente
- Si queremos comparar cambios verticales alinear gráficos horizontalmente
- Siempre recordando mantener los mismos ejes entre ambos gráficos

heights %>% ggplot(aes(height, ..density..)) + geom_histogram(binwidth = 1, color="black") + facet_grid(sex~.)

heights %>% ggplot(aes(sex, height)) geom_boxplot(coef=3) + geom_jitter(width = 0.1, alpha = 0.2) + ylab("Height in inches")

Comparación final

Recuerda las transformaciones cuando quieres simplificar la interpretación visual

Viendo los datos...

Comparamos utilizando transformación logarítmica

Transformaciones

- Considera o elige la transformación a utilizar de acuerdo a los datos
 - logit(): Para ver cambios en la probabilidad de un evento

$$logit = log[p/(1 - p)]$$

p: proporción de datos

sqrt(): Útil para contar datos

Comparar dos grupos de información -Chequea que estén adyacentes

Comparar dos grupos de información -Chequea que estén adyacentes

Colores para simplificar las comparaciones -

Daltónicos


```
colores <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
```

p + scale_color_manual(values = colores)

