Homework Assignment 1

EE260, Computational Imaging, Fall 2025

1 Developing RAW images

In this problem, we will use the provided RAW image Thayer. CR2 in order to implement a basic image processing pipeline.

1.1 Implementing a basic image processing pipeline

RAW image conversion. Calling dcraw -4 -d -v -w -T Thayer.CR2 converts the RAW image to a TIFF file without any color interpolation. We observe the CLI output:

```
Loading Canon EOS 2000D image from Thayer.CR2 ... Scaling with darkness 2044, saturation 16383, and multipliers 2.165039 1.000000 1.643555 1.000000 Building histograms...
Writing data to Thayer.tiff ...
```

where our multipliers represent <r_scale> <g_scale> <b_scale> <g_scale>, and darkness and saturation represent the black and white levels, respectively.

We then call dcraw -4 -D -T Thayer.CR2 to convert the RAW image to a TIFF file without any color interpolation or white balancing, obtaining a grayscale image that we will use for the remainder of the problem.

Python initials. Using skimage's imread, we are able to read the image and obtain its values. We can then apply a linear transformation to the image so that the value

's mapped to 0, and the value <white> is mapped to 1. We then clip the negative values to 0, and values greater than 1 to 1.

We can achieve this by recalling our values from the reconnaissance run of dcraw and writing the transformation as:

$$linearized image = \frac{image - \langle black \rangle}{\langle white \rangle - \langle black \rangle}$$
 (1)

2 Camera Obscura

2.1 Building the pinhole camera