DDSP logbook

Initial 'toy' system

I have implemented a modular system in pytorch, with the following:

1. FIRFilter1D:

- Implements an arbitrary phase FIR filter using a 1D convolutional layer.
- The filter taps are learnable parameters.

2. FIRFilter1DLinearPhasel:

- Implements a linear phase FIR type I filter using 1D convolution.
- Only allows an odd number of taps and enforces type I symmetry in the filter taps.
- Taps are learnable parameters (only from the mid-index and up).

3. GammaToneFilter:

- Impulse response of the filter is computed based on specified parameters like center frequency, sampling frequency, and impairment factor
 - !Impairing like this makes no sense just something I did for the toy example.
- The filter is applied to the input signal using a 1D convolutional layer.

4. GammaToneFilterbank:

• Uses the GammaToneFilter module to create individual filters and applies them to the input signal as a filterbank.

5. NormalModel:

• Uses a GammaToneFilterBank to process the input with no pre-gain (FIR filter).

6. ImpairedModel:

- Uses a FIRFilter1D to apply a learnable gain filter to process which then gets processed by GammaToneFilterBank.
- The gain filter is implemented using FIRFilter1D, I have not tried using FIRFilter1DLinearPhaseI, although it should work with no issues.

7. MyModel_v1:

- A trainable model composed of a normal hearing model and an impaired hearing model.
- Uses the NormalModel and ImpairedModel to process the input and produce outputs for normal and impaired hearing, respectively.

I have tried training a NormalModel using SGD with the SI-SDR loss between normal and impaired outputs as the loss function, which was successful. The results are presented under RESULTS below.

Next steps

- Try to mimic how the DHASP paper implemented the diffrentiable perceptual model.
- Try to mimic how the DHASP paper implemented the diffrentiable hearing-aid processing model.
- Introduce a perceptual loss to optimize the NN.

RESULTS

Normal Hearing filterbank used:

Impaired filterbank used:

Input-output of untrained model

normal out (target)

untrained impaired out

trained impaired out

Input-output of trained model

Learned filter

unnormalized frequency

