

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14110097301

FCC REPORT (WIFI)

Applicant: Service & Quality (Shenzhen) Technology CO., LTD.

Address of Applicant: Rm.511 Huafeng Jin yuan Business Building No.300 xixiang

Road, Baoan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: IP Camera

Model No.: SQ6610A-01

FCC ID: 2ADPJSQ6610A-IPC

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 Nov., 2014

Date of Test: 21 Nov., to 15 Dec., 2014

Date of report issued: 16 Dec., 2014

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Dec., 2014	Original

Prepared by: Date: 16 Dec., 2014

Report Clerk

Reviewed by: Date: 16 Dec., 2014

Project Engineer

Project No.: CCIS141000900RF

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
•			
	5.1 5.2	CLIENT INFORMATIONGENERAL DESCRIPTION OF E.U.T	
	5.2 5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	19
	6.5	POWER SPECTRAL DENSITY	28
	6.6	BAND EDGE	33
	6.6.1	00.00000 =00.00	
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	62
7	TES	T SETUP PHOTO	70
8	EUT	CONSTRUCTIONAL DETAILS	72

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Service & Quality (Shenzhen) Technology CO., LTD.
Address of Applicant:	Rm.511 Huafeng Jin yuan Business Building No.300 xixiang Road, Baoan District, Shenzhen, China
Manufacturer:	Service & Quality (Shenzhen) Technology CO., LTD.
Address of Manufacturer:	Rm.511 Huafeng Jin yuan Business Building No.300 xixiang Road, Baoan District, Shenzhen, China
Factory:	Shenzhen Haoyuanxinhui Technology CO., LTD.
Address of Factory:	2/F A building, zonghengda Ind Zone, Xinyu Road, Shajing, Baoan District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	IP Camera
Model No.:	SQ6610A-01
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-1 dBi
AC adapter:	Model:BX-0502000 Input:100-240V AC,50/60Hz Output:5.0V DC MAX 2000mA

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS14110097301

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14110097301

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015		

Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -1 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Method:	ANSI C63.4: 2003				
	150 kHz to 30 MHz				
Test Frequency Range:					
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	dBuV) Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:	LISN 40cm		er — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Neutral:

Trace: 3

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : IP Camera Condition

EUT Model : SQ6610A-01
Test Mode : WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	<u>dB</u>	dB	dBu₹	dBu√	<u>dB</u>	
1	0.150	27.80	0.25	10.78	38.83	66.00	-27.17	QP
2	0.154	15.47	0.25	10.78	26.50	55.78	-29.28	Average
3	0.435	12.18	0.26	10.73	23.17	47.15	-23.98	Average
4	0.529	22.71	0.27	10.76	33.74	56.00	-22.26	QP
1 2 3 4 5 6 7 8 9	0.529	17.24	0.27	10.76	28.27	46.00	-17.73	Average
6	0.968	15.29	0.22	10.86	26.37	56.00	-29.63	QP
7	0.968	9.68	0.22	10.86	20.76	46.00	-25.24	Average
8	1.511	15.98	0.26	10.92	27.16	56.00	-28.84	QP
9	15.885	7.26	0.25	10.91	18.42	50.00	-31.58	Average
10	16.140	24.12	0.25	10.91	35.28	60.00	-24.72	QP
11	19.845	9.62	0.26	10.93	20.81	50.00	-29.19	Average
12	20.270	17.71	0.22	10.93	28.86	60.00	-31.14	QP

Line:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT : IP Camera Model : SQ6610A-01 Test Mode : WIFI Mode Power Rating : AC 120V/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>		dBu₹	dBu√	<u>ab</u>	
1	0.162	28.70	0.27	10.77	39.74	65.34	-25.60	QP
2	0.318	11.96	0.26	10.74	22.96	49.75	-26.79	Average
3	0.431	12.72	0.28	10.73	23.73	47.24	-23.51	Average
4	0.527	19.03	0.28	10.76	30.07	46.00	-15.93	Average
5	0.535	25.88	0.28	10.76	36.92	56.00	-19.08	QP
6	0.909	9.81	0.24	10.84	20.89	46.00	-25.11	Average
1 2 3 4 5 6 7 8 9	0.974	9.59	0.25	10.86	20.70	46.00	-25.30	Average
8	8.148	15.19	0.32	10.86	26.37	60.00	-33.63	QP
9	16.312	24.44	0.33	10.91	35.68	60.00	-24.32	QP
10	18.426	10.44	0.33	10.91	21.68	50.00	-28.32	Average
11	18.622	20.50	0.33	10.91	31.74	60.00	-28.26	QP
12	20.924	16.86	0.38	10.92	28.16		-31.84	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

	Ma	aximum Conduct				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	18.78	15.64	15.83	17.05		
Middle	18.94	17.07	16.99	14.99	30.00	Pass
Highest	18.91	16.15	16.07	15.48		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.24	16.16	17.04	35.68		
Middle	10.16	15.84	17.20	35.68	>500	Pass
Highest	10.24	15.68	17.28	35.52		

-		99% Occupy		5		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.99	16.51	17.64	35.91		
Middle	12.91	16.51	17.64	35.91	N/A	N/A
Highest	12.91	16.43	17.64	35.91		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Date: 15.DEC.2014 14:47:12

Lowest channel

Date: 15.DEC.2014 14:48:17

Middle channel

Date: 15.DEC.2014 14:49:41

Highest channel

Test mode: 802.11g

Date: 15.DEC.2014 14:54:17

Lowest channel

Date: 15.DEC.2014 14:53:06

Middle channel

Date: 15.DEC.2014 14:51:36

Highest channel

Date: 15.DEC.2014 14:59:38

Lowest channel

Date: 15.DEC.2014 15:02:40

Middle channel

Date: 15.DEC.2014 15:04:00

Highest channel

Date: 15.DEC.2014 15:05:25

Lowest channel

Date: 15.DEC.2014 15:06:49

Middle channel

Date: 15.DEC.2014 15:08:57

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

		Power Spe				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	5.19	-1.17	-0.86	-6.94		
Middle	5.17	0.37	-0.09	-5.21	8.00	Pass
Highest	5.30	-0.66	-1.02	-7.16		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.4:2003 and KDB558074			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer			
	E.U.T			
	Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

Lowest channel Highest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

	0.0.2 Radiated Emission Method						
	est Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Т	est Method:	ANSI C63.4: 2003					
Т	est Frequency Range:	2.3GHz to 2.5GHz					
Т	est site:	Measurement Distance: 3m					
F	Receiver setup:	Fraguenay	Dotootor	RBW	VBW	Remark	
		Frequency Detector Peak		1MHz	3MHz	Peak Value	
		Above 1GHz	Peak	1MHz	10Hz	Average Value	
L	imit:						
		Frequency		Limit (dBuV/m @3m)		Remark	
		Above 1GHz 1. The EUT was placed or		54.00		Average Value	
	est Procedure:			74.00 the top of a rotating table		Peak Value	
		 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					
7	est setup:	Antenna Tower Horn Antenna Turn Table Amplifier					
Т	est Instruments:	Refer to section 5.6 for details					
	est mode:	Refer to section 5.3 for details					
Т	est results:	Passed					
					_		

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT Model : SQ6610A-01 Test mode : WIFI-B-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen

EMAN	CK :	Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∇	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000	THE PROPERTY OF THE PARTY OF TH	553,417 t 7 (447),1475;17	5.67 5.67		55.91 44.10			Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : IP Camera Condition

EUT Model : SQ6610A-01
Test mode : WIFI-B-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

مساد			Antenna Factor						
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBu√/m	dBuV/m	<u>d</u> B	
	2390,000 2390,000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT Model : SQ6610A-01 : WIFI -B-H Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen

REMARK

			ReadAntenna Cabl Level Factor Los						Remark
12	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : IP Camera Condition

EUT Model : SQ6610A-01
Test mode : WIFI-B-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
RFMARK

REMARK

71	.ur	•	Read	Antenna	Cable	Preamn		Limit	Over		
	Fre	q		Factor						Remark	
	МН	_ ·	dBu∀	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B		
	2483.50 2483.50									Peak Average	

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT : SQ6610A-01 Model : WIFI -G-L Mode Test mode Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK:

Ellerio			Antenna Factor						
	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: IP Camera EUT : SQ6610A-01 Model : WIFI-G-L Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

THEFT										
	Freq		Antenna Factor							
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB		
1	2390.000	24.18	27.58	5.67	0.00	57.43	74.00	-16.57	Peak	
2	2390.000	11.17	27.58	5.67	0.00	44.42	54.00	-9.58	Average	

Test channel: Highest

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT Model : SQ6610A-01
Test mode : WIFI-G-H Mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Garen REMARK :

	Freq		Antenna Factor						Remark	
2	MHz	dBu₹	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B		
	2483.500 2483.500									

היוניונים	2751		Antenna						5. <u>10</u> 9 29	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark	
-	MHz	dBu∜	dB/m	₫B	<u>dB</u>	dBu√/m	dBu√/m	dB		
1 2	2483.500 2483.500				0.00 0.00				Peak Average	

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT : SQ6610A-01 Model Test mode : WIFI -N20-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

	995		Antenna Factor						
-	MHz	dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000						74.00 54.00		

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : IP Camera Condition EUT

Model : SQ6610A-01

Test mode : WIFI-N20-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

	Freq		Antenna Factor			Limit Line		Remark
	MHz	—dBu∇	dB/m	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000			0.00 0.00				Peak Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Site Condition EUT

Model : SQ6610A-01 Test mode : WIFI-N20-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

	Freq		Antenna Factor						
-	MHz	dBu∀	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	ā <u>ā</u>	
1 2	2483.500 2483.500								

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : IP Camera

EUT Model : SQ6610A-01 Test mode : WIFI-N20-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

1 2

ши		Antenna Factor			
-	MHz	 <u>dB</u> /m	 <u>d</u> B	 	
1	2483, 500 2483, 500				

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT Model : SQ6610A-01 Test mode : WIFI-N40-L Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Garen

REMARK

	Freq		Antenna Factor						
-	MHz	dBuV	<u>dB</u> /m	₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000				0.00 0.00				

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : IP Camera Condition

EUT : SQ6610A-01 : WIFI-N40-L Mode Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Garen

REMARK

	Freq		Antenna Factor						
-	MHz	dBu∜		d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000					58.69 45.50			

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : IP Camera Condition

EUT SQ6610A-01 Model Test mode : WIFI-N40-H Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Garen REMARK:

Huni:55%

			Antenna Factor						Remark	
-	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		-
	2483,500 2483,500					61.61 48.22				

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Huni:55%

EUT : IP Camera : SQ6610A-01 Model Test mode : WIFI -N40-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huns

Test Engineer: Garen REMARK :

Elitary	w :	ъ 1	A TORING TORING	211	_			~	
	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	dB		dBuV/m	dBuV/m	āĒ	
1 2	2483,500 2483,500								

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 6.DEC.2014 09:28:00

30MHz~25GHz

Middle channel

Date: 15.DEC.2014 15:21:00

30MHz~25GHz

Highest channel

Date: 6.DEC.2014 09:33:36

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 6.DEC.2014 09:37:25

30MHz~25GHz

Middle channel

Date: 15.DEC.2014 15:26:20

30MHz~25GHz

Date: 6.DEC.2014 09:34:07

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 6.DEC.2014 09:38:59

30MHz~25GHz

Middle channel

Date: 15.DEC.2014 15:27:25

30MHz~25GHz

Date: 6.DEC.2014 09:40:00

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 6.DEC.2014 09:41:01

30MHz~25GHz

Middle channel

Date: 15.DEC.2014 15:27:54

30MHz~25GHz

Date: 6.DEC.2014 09:42:02

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:200)3							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency Detector RBW VBW Remark								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	7.0000 10112	Peak	1MHz	10Hz	Average Value				
Limit:				/ 00)					
	Freque		Limit (dBuV	•	Remark				
	30MHz-8 88MHz-21		40.0 43.5		Quasi-peak Value Quasi-peak Value				
	216MHz-9		45.0 46.0		Quasi-peak Value Quasi-peak Value				
	960MHz-		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHz	74.0)	Peak Value				
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the normal and to find the normal and to determine the normal and to determine the normal and the	at a 3 meter come the position was set 3 meter which was mour that he ight is varied to determine the contal and vertice the assurement. If the rota table maximum read ceiver system and width with sion level of the would be reported to the position of the would be reported to the terminal than the rota table maximum read ceiver system and width with sion level of the would be reported to the rep	amber. The softhe highests away from the on the tried from one he maximum al polarizations ion, the EU a was turned was turned ing. was set to P Maximum He EUT in peasing could butted. Otherwise re-tested	table was rost radiation. the interfer op of a variate meter to for a value of the analysis of the analysis of the analysis of the analysis of the each of the cold Mode. The was arranged to the each of the each	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the ees to 360 degrees. Function and s 10dB lower than and the peak values ssions that did not the using peak, quasi-ported in a data				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : IP Camera Model : SQ6610A-01
Test mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
RFMMPV

REMARK

CHICATOR									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	−−dBuV	dB/π		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	79.243	49.61	8.43	0.85	29.65	29.24	40.00	-10.76	QP
2	159.225	49.37	8.64	1.33	29.14	30.20	43.50	-13.30	QP
2 3 4 5 6	210.048	49.66	10.87	1.43	28.77	33.19	43.50	-10.31	QP
4	294.114	48.17	12.95	1.75	28.46	34.41	46.00	-11.59	QP
5	378.584	46.31	14.57	2.04	28.69	34.23	46.00	-11.77	QP
6	893.857	39.26	21.05	3.34	27.89	35.76	46.00	-10.24	QP

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL

: IP Camera : SQ6610A-01 EUT Model : WIFI mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen REMARK :

EMAKK										
	Freq		Antenna Factor					Over Limit	Remark	
-	MHz	dBu₹			<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>		-
1	38.481	47.06	13.20	0.51	29.91	30.86	40.00	-9.14	QP	
2	82.071	48.88	9.28	0.86	29.62	29.40	40.00	-10.60	QP	
3	210.048	51.47	10.87	1.43	28.77	35.00	43.50	-8.50	QP	
4	294.114	47.91	12.95	1.75	28.46	34.15	46.00	-11.85	QP	
5	360.448	45.75	14.43	1.98	28.61	33.55	46.00	-12.45	QP	
6	420.580	45.37	15.47	2.18	28.82	34.20	46.00	-11.80	QP	

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.78	31.55	8.90	40.24	48.99	74.00	-25.01	Vertical
4824.00	49.68	31.55	8.90	40.24	49.89	74.00	-24.11	Horizontal
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	42.22	31.55	8.90	40.24	42.43	54.00	-11.57	Vertical
7027.00	72.22	01.00	0.00					

Test mode: 8	02.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.11	31.58	8.98	40.15	50.52	74.00	-23.48	Vertical
4874.00	48.86	31.58	8.98	40.15	49.27	74.00	-24.73	Horizontal
Test mode: 8	02.11b		Test char	Test channel: Middle			rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	42.85	31.58	8.98	40.15	43.26	54.00	-10.74	Vertical
4874.00	43.05	31.58	8.98	40.15	43.46	54.00	-10.54	Horizontal

Test mode: 80	02.11b		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	52.49	31.69	9.08	40.03	53.23	74.00	-20.77	Vertical
4924.00	51.20	31.69	9.08	40.03	51.94	74.00	-22.06	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.49	31.69	9.08	40.03	49.23	54.00	-4.77	Vertical
4924.00	47.52	31.69	9.08	40.03	48.26	54.00	-5.74	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11g		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.84	31.53	8.90	40.24	48.03	74.00	-25.97	Vertical
4824.00	48.12	31.53	8.90	40.24	48.31	74.00	-25.69	Horizontal
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.45	31.53	8.90	40.24	37.64	54.00	-16.36	Vertical
4824.00	39.44	31.53	8.90	40.24	39.63	54.00	-14.37	Horizontal

Test mode: 80	02.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.05	31.58	8.98	40.15	50.46	74.00	-23.54	Vertical
4874.00	47.58	31.58	8.98	40.15	47.99	74.00	-26.01	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	42.15	31.58	8.98	40.15	42.56	54.00	-11.44	Vertical
4874.00	41.85	31.58	8.98	40.15	42.26	54.00	-11.74	Horizontal

Test mode: 802.11g		Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.45	31.69	9.08	40.03	49.19	74.00	-24.81	Vertical
4924.00	48.06	31.69	9.08	40.03	48.80	74.00	-25.20	Horizontal
Test mode: 80	02.11g		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	38.41	31.69	9.08	40.03	39.15	54.00	-14.85	Vertical
4924.00	48.02	31.69	9.08	40.03	48.76	54.00	-5.24	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	47.67	31.53	8.90	40.24	47.86	74.00	-26.14	Vertical
4824.00	48.09	31.53	8.90	40.24	48.28	74.00	-25.72	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.42	31.53	8.90	40.24	37.61	54.00	-16.39	Vertical
4824.00	38.21	31.53	8.90	40.24	38.40	54.00	-15.60	Horizontal

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	49.67	31.58	8.98	40.15	50.08	74.00	-23.92	Vertical	
4874.00	46.66	31.58	8.98	40.15	47.07	74.00	-26.93	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	42.18	31.58	8.98	40.15	42.59	54.00	-11.41	Vertical	
4874.00	41.67	31.58	8.98	40.15	42.08	54.00	-11.92	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.34	31.69	9.08	40.03	49.08	74.00	-24.92	Vertical	
4924.00	47.90	31.69	9.08	40.03	48.64	74.00	-25.36	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	39.74	31.69	9.08	40.03	40.48	54.00	-13.52	Vertical	
4924.00	37.46	31.69	9.08	40.03	38.20	54.00	-15.80	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	47.34	31.53	8.90	40.24	47.53	74.00	-26.47	Vertical
4844.00	47.58	31.53	8.90	40.24	47.77	74.00	-26.23	Horizontal
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	38.65	31.53	8.90	40.24	38.84	54.00	-15.16	Vertical
4844.00	38.68	31.53	8.90	40.24	38.87	54.00	-15.13	Horizontal

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	48.67	31.58	8.98	40.15	49.08	74.00	-24.92	Vertical	
4874.00	45.37	31.58	8.98	40.15	45.78	74.00	-28.22	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	43.64	31.58	8.98	40.15	44.05	54.00	-9.95	Vertical	
4874.00	40.46	31.58	8.98	40.15	40.87	54.00	-13.13	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	48.65	31.69	9.08	40.03	49.39	74.00	-24.61	Vertical	
4904.00	48.54	31.69	9.08	40.03	49.28	74.00	-24.72	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	38.45	31.69	9.08	40.03	39.19	54.00	-14.81	Vertical	
4904.00	38.72	31.69	9.08	40.03	39.46	54.00	-14.54	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.