### Тема урока:

Решение задач по теме: «Фотоэлектрический эффект. Уравнение Эйнштейна».

**Тип урока:** урок совершенствования знаний, формирование практических умений и навыков.

Форма проведения урока: урок решения задач.

### Цели:

**образовательные:** обеспечить закрепление и углубление понятий световые кванты, фотоэффект; обеспечить формирование умений применять понятия и формулы, описывающие квантовые свойства света на практике;

**развивающие:** создание условий для развития аналитического мышления, самоанализа, развитие памяти, внимания, речи;

### воспитательные:

Воспитывать внимание, чувство ответственности, дисциплинированность, прививать интерес к предмету;

### Методы обучения:

Репродуктивные методы.

Практические методы.

ТСО: доска, мел.

### Ведущие идеи урока:

**Фотоэффектом** (фотоэлектрическим эффектом) называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества.

### Законы внешнего фотоэффекта:

Фототок насыщения ( $I_H$ ) — максимальное число фотоэлектронов, вырываемых из катода за единицу времени,— прямо пропорционален интенсивности падающего излучения (первый закон фотоэффекта).

Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения I и линейно возрастает с увеличением частоты падающего излучения (второй закон фотоэффекта).

Для каждого вещества существует граничная частота  $V_{min}$  такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения (третий закон фотоэффекта).

Порция светового излучения – квант света – обладает корпускулярными свойствами и может рассматривается как элементарная частица, называемая фотоном.

### Свойства фотона:

1. Не имеет состояния покоя.

2. Безмассовая частица (m = 0).

3. Электрически нейтрален (q = 0).

4. Скорость его движения равна скорости света (V = c) во всех ИСО.

5. Энергия фотона пропорциональна частоте соответствующего

$$E=h
u$$

электромагнитного излучения (

6. Модуль импульса фотона равен отношению его энергии к скорости (

$$p = \frac{E}{c} = \frac{h\nu}{c} = \frac{h}{\lambda}$$

**Уравнение Эйнштейна** для внешнего фотоэффекта является следствием закона изменения энергии в этом процессе:

$$h \nu = A_{_{\!\scriptscriptstyle \mathcal{B} \mathsf{L} \mathsf{X}}} + \frac{m \vartheta^2}{2}$$

Условие для красной границы фотоэффекта:

$$u_{\min} = \frac{A_{\text{Bblx}}}{h}$$

### Структура урока:

1. Организационный этап. (2 мин)
2. Актуализация опорных знаний.(10 мин)
3. Усвоение материала. (20 мин)
4. Закрепление материала.(10 мин)
5.

Домашнее задание учеников. (3 мин)

### 1. Организационный этап

Здравствуйте, садитесь. Открываем тетради, записываем число и тему урока.

2. **Актуализация опорных знаний** 

Для актуализации знаний провожу самостоятельную работу по ранее изученному материалу. Цель которой - проверка качества усвоения учащимися ранее пройденного материала. Вариант 1

1. Дать определение фотоэффекта.

2. Сформулировать первый закон фотоэффекта.



излучения. Указать наибольшую интенсивность падающего излучения, если  $I_{\scriptscriptstyle H}{}'\!\!>\!I_{\scriptscriptstyle H}{}''\!\!>\!I_{\scriptscriptstyle H}{}'''.$ 

5. Энергия фотона 2 эВ. Определите длину волны фотона.

6. Имеются два фотона с различными импульсами. Известно, что импульс первого фотона больше импульса второго в 1,5 раза. Определите длину волны первого фотона, если длина волны второго  $\lambda = 300$  нм.

7.

Если h — постоянная Планка,  $\ell$  — скорость света в вакууме и источник света испускает за 1 с N фотонов с частотой  $\ell$  . Определить энергию, излучаемую источником света за 1 с.

### Вариант 2

Дать определение внешнего фотоэффекта.

- 2. Сформулировать второй закон фотоэффекта.
- 3. Записать уравнение Эйнштейна.



4. На рисунке представлены вольтамперные

характеристики внешнего фотоэффекта при различных частотах

падающего излучения (  $\nu$  '>  $\nu$  "). Указать частоту падающего излучения, при которой кинетическая энергия электронов максимальная.

- 6. Имеются два фотона с различными энергиями. Известно, что энергия первого фотона меньше энергии второго фотона в 2 раза. Определите длину волны первого фотона, если длина волны второго фотона 300 нм.
- 7. Чему равна длина волны красной границы фотоэффекта для железа, если работа выхода железа равна 4,4 эВ?
- 7. Длительность лазерного импульса t . В импульсе испускаются N фотонов с длиной волны  $\lambda$  . Постоянная Планка h . Определить среднюю мощность излучения лазера.

### Вариант 3

- 1. Дать определение внутреннего фотоэффекта.
- 2. Сформулировать третий закон фотоэффекта.
- 3. Записать формулу, определяющую импульс фотона.

4.



На рисунке представлены зависимости задерживающей разности потенциалов от частоты падающего света для трех различных фотокатодов. Наименьшая работа выхода у металла:

5. Определить красную границу фотоэффекта для цинка, если работа выхода 3,7 эВ.

- 6. Длина волны фотона  $\lambda$  .Определить энергию и массу фотона, если h — постоянная Планка,  $\ell$  — скорость света в вакууме.
- 7. Максимальная кинетическая энергия фотоэлектронов в 2 раза меньше работы выхода электронов из материала катода А. Определить импульс фотонов, вызывающих фотоэффект в этом случае.

Решение задач самостоятельной работы.

### Вариант 1

- 1. Фотоэффектом (фотоэлектрическим эффектом) называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества.
- 2. Фототок насыщения (I<sub>н</sub>)—максимальное число фотоэлектронов, вырываемых из катода за единицу времени,— прямо пропорционален интенсивности падающего излучения.

3.

$$E = h\nu$$

ľ

5.

### Дано

Для решения задачи используем формулу Планка:

$$E = 2 \ni B =$$
 $= 3,2 \cdot 10^{-19} \, \mathcal{Д}$  ж
 $E = h \, \nu$ 

Используем известное соотношение, связывающие длину волны и частоту падающего излучения:

$$\lambda$$

$$\nu = \frac{c}{\lambda}$$

Для решения задачи все необходимые величины известны. Конечная формула имеет вид:

$$\lambda = \frac{hc}{E}$$

$$\lambda = \frac{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8}{3,2 \cdot 10^{-19}} = 621 \mu M$$

$$_{ ext{Otbet:}}$$
  $\lambda =_{ ext{621 hm}}$ 

6.

### Дано

Для решения задачи используем формулу связывающую энергию и импульс фотона:

$$p_1$$

$$p = \frac{E}{c} = \frac{hv}{c} = \frac{hc}{\lambda c} = \frac{h}{\lambda}$$

 $p_{\rm 2}$  Тогда импульс первого и второго фотонов соответственно:

$$p_1 = \frac{h}{\lambda_1}$$

$$p_1 = 1.5 p_2$$

$$p_2 = \frac{h}{\lambda_2}$$

### 300.1

**P**<sub>2</sub>



?



 $\lambda_1 = \frac{300}{300}$ 

Ответ:





200 нм

7.

Дано



Общая энергия излучения равна работе электрического





которого





Работа



тока связана с



мощностью известным



соотношением

, поэтому

, где



одного фотона, которую определим согласно формуле Планка:



Конечная формула имеет вид:





Ответ:



### Вариант 2

1. Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом.

2. Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения I и линейно возрастает с увеличением частоты падающего излучения.

4.



5.

Дано



Для решения задачи

используем формулу Планка:



Используем известное соотношение, связывающие длину волны и частоту

= **1** 



Тогда имеем:

Используя соотношение данное в условии задачи, получим:

Для решения задачи все необходимые величины известны. Конечная формула имеет вид:



## $\lambda_1 = 2 \cdot 3$

Ответ:



600 нм

| Л | ан | 0 |
|---|----|---|
| _ |    |   |

**Дано**Для решения задачи используем формулу третьего закона фотоэффекта:

**— 7**,**0**<sup>2</sup>

ABIX



?

$$\lambda = \frac{6,62\cdot 1}{7,0}$$

Ответ:



282 нм

7.

Дано



Общая энергия излучения равна работе электрического





которого





Работа



тока связана с



мощностью известным



соотношением

, поэтому





Любое излучение всегда содержит целое

число фотонов, поэтому общая



энергия





время

равна произведению энергии одного

и их



количества в этом излучении

?



одного фотона, которую определим согласно формуле Планка:

Конечная формула имеет вид:

Ответ:

## Вариант 3

1. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним фотоэффектом.

2. Для каждого вещества существует граничная частота



такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения

P = C

4. 1

5

Дано

Для решения задачи используем формулу третьего закона фотоэффекта:

4 = 3

ABIX



?

$$\lambda = \frac{6,62 \cdot 1}{5,5}$$

Ответ:



335 нм

6.

Дано



Для решения задачи используем формулу Планка, которая определяет энергию фотона:



Для нахождения импульса фотона воспользуемся следующим



преобразованием:

 $p = \frac{E}{C}$ 

Ответ:

| ; |  |  |  |
|---|--|--|--|
| , |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

.

7.

Дано

Для решения задачи используем уравнение Эйнштейна для фотоэффекта:





Перепишем его в виде:



где энергия фотона;



кинетическая энергия выбитого фотоном электрона.

Используя соотношение данное по условию задачи получим:

## $2E_{\phi}$

Edd

Используем формулу определяющую импульс фотона, окончательно имеем:

Ответ:

### 3. **Усвоение материала**

Для усвоения теоретических знаний и формирования умений применять полученные знания на практике решаем задачи.

Задача №1

Два источника с одинаковой мощностью испускают за одно и то же время разное

количество фотонов N1 и N2. Во сколько раз различаются их длины световых волн?

Задача №2

Источник света мощностью P=100 Вт испускает  $N=5\cdot 10^{20}$  фотонов





волны излучения Задача №3

Красная граница фотоэффекта для металла



. Найти величину запирающего

IJ 3an

для фотоэлектронов при освещении металла с длиной волны



Å. Задача №4



металла, полностью задерживаются запирающим напряжением



=0,5 В. если частота колебаний в световой волне

, а когда частота колебаний

1/2 = (

, то запирающее напряжение становится равным

### J 3an

=2B.

### Решения задач

Задача №1

### Решение

Дано Общая энергия



излучения равна работе





которого



Работа



тока связана с



мощностью известным соотношением

, поэтому



Любое излучение всегда содержит целое число фотонов, поэтому общая



энергия излучения

3a



время

равна произведению энергии одного



кванта и их



количества в этом излучении



одного фотона, которую определим согласно формуле Планка:

Конечная формула имеет вид:

Тогда для первого и второго источника соответственно имеем:

Используя условие задачи, в которой говорится об одинаковой мощности источников, имеем:

 $\Longrightarrow$ 

## 

Ответ:

Решение

Дано Общая энергия



излучения равна работе





которого



Работа тока связана с



мощностью известным

соотношением

, поэтому



-? Любое излучение всегда содержит целое число фотонов, поэтому общая



энергия излучения

3a



время

равна произведению энергии одного



кванта и их



количества в этом излучении



одного фотона, которую определим согласно формуле Планка:

Тогда формула для мощности источника имеет вид:

 $\Longrightarrow$ 

Тогда длина волны излучения определяется формулой:

$$\lambda = \frac{6.62 \cdot 10^{-1}}{100}$$

Ответ:



990нм

Задача №3

| ] | Решение                                                                                |  |  |  |  |  |
|---|----------------------------------------------------------------------------------------|--|--|--|--|--|
|   |                                                                                        |  |  |  |  |  |
|   | <b>Дано</b> Для решения задачи будем использовать уравнение Эйнштейна для фотоэффекта: |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |
|   |                                                                                        |  |  |  |  |  |

3,3

Работа электрического поля по перемещению электрона между точками поля с



разностью потенциалов определяется разностью кинетических энергий

электрона в конечной  $E_{\kappa}$  и начальной  $E_{\kappa o}$  точках перемещения:

## IJ 3an





, то

 $\mathbf{E}_{K}$  =

Тогда уравнение Эйнштейна можно записать так:



можно определить, если известна красная граница



фотоэффекта , т. е. длина световой волны, при которой у данного

металла наступает фотоэффект. При этой длине волны энергия

фотона равна работе выхода электрона из металла:

ABIX

Подставляя полученные выражения в уравнение Эйнштейна получим:

#### e U 3an

Тогда конечная формула имеет вид:

J = 3an

$$U_{3an} = \frac{6,62 \cdot 10^{-34}}{1,6 \cdot 10^{-34}}$$

Ответ:

# IJ 3an

# 1,76

Задача №4

#### Решение

**Дано** Для решения задачи будем использовать уравнение Эйнштейна для фотоэффекта:

# 

1/2 = (

#### IJ 3an



Работа электрического поля по перемещению электрона между точками поля с

#### IJ 3an



разностью потенциалов определяется разностью кинетических энергий

электрона в конечной  $E_{\kappa}$  и начальной  $E_{\kappa o}$  точках перемещения:





, то

 $E_{K}$ 

Тогда уравнение Эйнштейна можно записать так:



Запишем это уравнение для первого и второго случаев:



Отнимем от второго уравнения первое, неизвестная нам величина – работа выхода электронов из металла, сократится:

$$h(v_2 - v_1) = A_{_{\!\mathit{BLIX}}} + eU_{_{\!\mathit{3an2}}} - A_{_{\!\mathit{BLIX}}} - eU_{_{\!\mathit{3an1}}}$$

$$h(\nu_2 - \nu_1) = e(U_{3an2} - U_{3an1})$$

Конечная формула имеет вид:

$$h = \frac{1,6 \cdot 10^{-19}}{0,75 \cdot 10^{15}}$$

Ответ:

$$h = 6,6$$