PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-299836

(43) Date of publication of application: 24.10.2000

(51)Int.Cl.

HO4N 5/85 G11B 19/02 G11B 20/10 G11B 27/00 G11B 27/10 HO4N 5/92

(21)Application number: 11-107263

(71)Applicant : ALPINE ELECTRONICS INC

(22)Date of filing:

14.04.1999

(72)Inventor: KIMURA MASARU

(54) DISK REPRODUCING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a disk reproducing device where an angle is switched in a multi-angle reproduction.

SOLUTION: A system controller 60 of this disk reproducing device sequentially reads interleaved units (ILVU) corresponding to all angles and stores them to a RAM 26 as a track buffer. In the case an angle switching is instructed, the system controller 60 reads and reproduces an ILVU corresponding to an angle after switching among angle blocks next to an angle block to which the ILVU that is read from the RAM 26 and an object to decode processing belongs as its control.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-299836 (P2000-299836A)

(43)公開日 平成12年10月24日(2000.10.24)

(51) Int.Cl.7		識別記号		FΙ			Ť	-7]-ド(参考)
H04N	5/85			H04N	5/85		Α	5 C 0 5 2
G11B	19/02	501		G11E	19/02		501C	5 C 0 5 3
	20/10	3 2 1			20/10		3 2 1 Z	5 D 0 4 4
	27/00				27/00			5 D 0 7 7
	27/10				27/10			5 D 1 1 0
		•	審査請求	未請求 請	求項の数3	OL	(全 13 頁)	最終頁に続く

(21)出願番号

特願平11-107263

(22)出顧日

平成11年4月14日(1999.4.14)

(71)出顧人 000101732

アルパイン株式会社

東京都品川区西五反田1丁目1番8号

(72) 発明者 木村 勝

東京都品川区西五反田1丁目1番8号 ア

ルパイン株式会社内

(74)代理人 100103171

弁理士 雨貝 正彦

最終頁に続く

(54) 【発明の名称】 ディスク再生装置

(57)【要約】

【課題】 マルチアングル再生動作におけるアングル切替を迅速に行うことができるディスク再生装置を提供すること。

【解決手段】 システムコントローラ60は、全てのアングルに対応するインターリーブドユニット(ILVU)を順に読み出してトラックバッファとしてのRAM26に格納する。そして、アングル切替が指示された場合には、システムコントローラ60は、その時にRAM26から読み出されてデコード処理の対象となっているILVUが属するアングルブロックの次のアングルブロックの中から、切替後のアングルに対応するILVUを読み出して再生する制御を行う。

【特許請求の範囲】

【請求項1】 ディスク型記録媒体に記録された信号を 読み出して、画像に対応する圧縮データを出力する信号 処理手段と、

前記画像の再生タイミングが同じであって、異なる複数 のアングルのそれぞれに対応する前記圧縮データを格納 するデータ格納手段と、

再生対象となる前記アングルが切り替えられたときに、 前記データ格納手段に格納されている切替先アングルに 対応する前記圧縮データを読み出して前記画像の再生動 10 作を行うデータ再生手段と、

を備えることを特徴とするディスク再生装置。

【請求項2】 請求項1において、

前記データ格納手段は、異なる前記複数のアングルのそ れぞれに対応する前記圧縮データの格納をインターリー ブドユニットを単位として行っており、

前記データ再生手段は、読み出し対象となる前記圧縮デ ータの切り替えを前記インターリーブドユニットを単位 として行うことを特徴とするディスク再生装置。

【請求項3】 請求項1または2において、

前記ディスク型記録媒体から読み出した前記圧縮データ を前記データ格納手段に格納するデータ転送レートより も、前記データ格納手段からデータを読み出す読み出し レートと前記複数のアングルの数を乗算した値の方が小 さい場合に限って、前記データ格納手段に前記複数のア ングルのそれぞれに対応する前記圧縮データの格納を行 うことを特徴とするディスク再生装置。

【発明の詳細な説明】

[0001]

イルディスク(DVD)等の再生動作を行うディスク再 生装置に関する。

[0002]

【従来の技術】近年、ディスク型記録媒体としてDVD が注目されている。このDVDは、直径が12cmで厚 さが1.2mmであり、CD(コンパクトディスク)と 同じ形状ながら、記録密度を上げることにより単層で 4. 7GB、2層で8. 5GBの記憶容量を実現してい る。

術やオーディオデータ圧縮技術の採用により、DVDに は様々な種類のデータが混在して格納される。DVDに 映画を記録する場合を考えると、通常はビデオデータや オーディオデータが格納されるが、例えば、これら以外 に複数の言語の字幕データを格納しておくことにより、 利用者が選択した言語の字幕を表示することが可能とな る。また、映画監督や出演者のプロフィール等の静止画 データを格納しておくことにより、利用者の操作によっ てとれらの内容を表示することが可能になる。さらに、 単一の被写体を複数の方向から撮影したり複数の被写体 50 4を備えることは、画像が途切れることを防止するため

を個別に撮影することにより複数の撮影方向(最大9ア ングル)のビデオデータを格納しておいて、再生時に利 用者の選択したアングルのビデオデータを再生すること ができる機能(マルチアングル機能)や、複数のストー リに対応するビデオデータやオーディオデータを格納し ておくことによって利用者の選択に応じてストーリの展 開を変えることができる機能(マルチストーリ機能)を 実現することもできる。DVD再生装置は、このような 様々なデータが格納されたDVDの再生動作を行う。

【0004】図12は、従来のDVD再生装置の構成を 示す図であり、DVDから読み取られたデータがデコー ド部に入力されるまでの部分的な構成が示されている。 同図に示すように、従来のDVD再生装置500は、D VDに記録されたデータを読み出すためのデータリード 部502と、データリード部502から出力されるデー タを一時的に格納するトラックバッファ504と、トラ ックバッファ504から出力されるデータのデコード処 理を行って画像の再生処理を行うデコード部506とを 含んで構成されている。

20 【0005】図13は、図12に示したディスク再生装 置500において実現されるマルチアングル機能の説明 図である。例えば、ブロック2~4において、複数のア ングルの画像が収録されており、利用者は、任意のアン グルを選択することができる。このようなマルチアング ル機能を実現するために、DVDにはブロック単位のデ ータが記録されており、DVDからデータを読み取る際 に、利用者によって指定されたアングルのデータを選択 的に読み取って、任意のアングルに対応した再生動作が 行われる。例えば、図13に示したブロック2~4に対 【発明の属する技術分野】本発明は、デジタルバーサタ 30 応した再生動作時に利用者によってアングル3が選択さ れた場合には、データリード部502は、図14に示す ように、ブロック2~4においてアングル3のデータの みを選択的に読み出してトラックバッファ504に格納 する。その後、トラックバッファ504に格納されたア ングル3のデータが格納順に読み出され、デコード部5 06においてアングル3に対応した画像等の再生が行わ れる。

【0006】DVD-Video規格においては、アン グル切り替え等を行った場合であっても再生画像が途切 【0003】また、MPEG2による画像データ圧縮技 40 れないように、例えばトラックバッファ504の格納容 量を4Mビット、データリード部502とトラックバッ ファ504の間の転送レートを11.08Mビット/秒 (1倍速の転送レート)、トラックバッファ504とデ コード部506の間の転送レートを最大10.08Mビ ット/秒(ILVUを転送する場合には最大8Mピット /秒) としている。

[0007]

【発明が解決しようとする課題】しかしながら、上述し たようにDVD再生装置500にトラックバッファ50

には有用であるが、アングル切替の際に利用者によるア ングル切替指示と実際のアングル切替の間に、利用者に 違和感を生じさせるような時間差が発生するという問題 があった。

【0008】例えば、図15に示すように、ブロック2 のデータがトラックバッファ504から読み出されてデ コード部506においてアングル3に対応する再生動作 が行われているときに、トラックバッファ504には既 にブロック3のアングル3に対応するデータが先読みさ 用者によってアングル1が選択されてアングル切り替え が指示されると、データリード部502におけるデータ の読み取り位置が変更されて、ブロック4のアングル1 に対応するデータの読み出しが開始される。したがっ て、次のブロック3についてはアングル3のデータが用 いられ、実際にアングルが切り替わるのは、その先のア ングル4に対応した再生動作からになる。このため、利 用者がアングル切替指示を行ってから実際にアングル切 替が行われるまでに、既にトラックバッファ504に格 納された数ブロック分のデータの再生がアングル切替前 20 の状態で継続されるため、アングル切替後の再生動作が 開始されるまでに時間がかかっていた。

【0009】本発明は、このような点に鑑みて創作され たものであり、その目的は、マルチアングル再生動作に おけるアングル切替を迅速に行うことができるディスク 再生装置を提供することにある。

[0010]

【課題を解決するための手段】上述した課題を解決する ために、本発明のディスク再生装置は、画像の再生タイ ミングが同じであって異なる複数のアングルのそれぞれ 30 に対応する圧縮データをデータ格納手段に格納しておい て、再生対象となるアングルが切り替えられたときに、 データ再生手段によって、このデータ格納手段に格納さ れている切替先アングルに対応する圧縮データを読み出 して画像の再生動作を行っている。したがって、アング ル切り替えが指示されたときに、その後新たにデータ格 納手段に格納された切替先アングルの圧縮データを読み 出すのではなく、既にデータ格納手段に格納されている 切替先アングルの圧縮データを用いて切替先アングルに 対応した再生動作を行うことができ、マルチアングル再 40 生動作におけるアングル切替を迅速に行うことができ る。

【0011】また、上述したデータ格納手段は、異なる 複数のアングルのそれぞれに対応する圧縮データの格納 をインターリーブドユニットを単位として行うととも に、読み出し対象となる圧縮データの切り替えをインタ ーリーブドユニットを単位として行うことが望ましい。 インターリーブドユニットを単位として、読み出し対象 となる圧縮データの切り替えを行うことにより、画像が 途切れないように再生を行うシームレス再生が可能にな 50 ト情報 (VTSI)、VTSメニュー用ビデオオブジェ

り、アングル切り替えを迅速、かつ自然に行うことがで きる。

[0012]また、ディスク型記録媒体から読み出した 圧縮データをデータ格納手段に格納するデータ転送レー トよりも、データ格納手段からデータを読み出す読み出 しレートと複数のアングルの数を乗算した値の方が小さ い場合に限って、データ格納手段に複数のアングルのそ れぞれに対応する圧縮データの格納を行うことが好まし い。ディスク型記録媒体から圧縮データを読み取る速度 れて格納されているものとする。この時点において、利 10 が遅い場合や、反対にデータ格納手段から圧縮データを 読み出す速度が速い場合あるいはアングル数が多い場合 に、データ格納手段に対する圧縮データの書き込みが間 に合わずにアンダーフローになることを防止することが できるため、途切れることがない自然な再生画像を得る ことができる。

[0013]

【発明の実施の形態】以下、本発明を適用した一実施形 態のDVD再生装置について図面を参照しながら説明す る。

【0014】(1) DVDに記録されたデータの内容 まず、ディスク型記録媒体としてのDVDに記録された データの詳細について説明する。図1は、DVDのボリ ューム空間の構造を示す図である。同図に示すように、 DVDのボリューム空間は、DVDの内周から外周に向 かって、ボリューム・ファイル構造、DVD-Vide oゾーン、DVD otherゾーンによって構成され ている。これらのうち、DVD-Videoゾーンに は、再生動作に必要な各種のデータが含まれている。D VD-Videoゾーンは、ビデオマネージャ(VM G) と各タイトルに対応する1つ以上のビデオタイトル セット(VTS)によって構成されている。

【0015】図2は、VMGのデータ構造を示す図であ る。同図に示すように、VMGは、ビデオマネージャ情 報(VMGI)、VMGメニュー用ビデオオブジェクト セット (VMGM_VOBS)、VMGIのバックアッ プ用ファイル (VMG I_BUP) によって構成されて いる。

【0016】VMGIは、VTSに関する情報(例えば VTSの数、各VTSの識別情報、DVD内の各VTS の格納位置等)、タイトルメニューに表示されるタイト ルの表示順、1つ以上のプログラムチェーン情報(PG CI)、DVDを識別するためのディスクID(DVD _ ID) 等が含まれている。VMGM_VOBSは、1 つ以上のビデオオブジェクト(VOB)によって構成さ れている。このVOBは、タイトルを選択するためのメ ニュー画面(タイトルメニュー画面)を再生する際の再 生データであるビデオデータを含んでいる。

【0017】図3は、VTSのデータ構造を示す図であ る。同図に示すように、VTSは、ビデオタイトルセッ

クトセット(VTSM_VOBS)、VTSタイトル用 ビデオオブジェクトセット(VTSTT_VOBS)、 VTSIのバックアップ用ファイル(VTSI_BU P) によって構成されている。

【0018】VTSIは、タイトルを識別するためのV TS_ID等のタイトルに関する情報、1つ以上のPG C I 等が含まれている。VTSM_VOBSおよびVT STT_VOBSは、1つ以上のVOBによって構成さ れている。このVOBは、ビデオデータやオーディオデ ータ等の再生データを含んでいる。

【0019】再生動作における論理的な処理単位である プログラムチェーン(PGC)は、プログラムチェーン 情報(PGCI)と、1あるいは複数のVOBによって 構成される。例えば、VMGI内の1個のPGCIとV MGM_VOBS内の1あるいは複数のVOBによって PGCが構成される。また、VTSI内の1個のPGC IとVTSM_VOBS内の1あるいは複数のVOBに よってPGCが構成される。あるいは、VTSI内の1 個のPGCIとVTSTT_VOBS内の1あるいは複 数のVOBによってPGCが構成される。

【0020】VMGI内のPGCIとVMGM_VOB S内の1あるいは複数のVOBによって構成されるPG Cは、タイトルメニューを表示するとともに、このタイ トルメニュー内のいずれかの項目が選択されたときに、 対応するデータの再生箇所を特定するためのものであ る。また、VTSI内のPGCIとVTSTT_VOB S内の1あるいは複数のVOBによって構成されるPG Cは、タイトルメニュー内のいずれかの項目が選択され たときに、対応する内容の再生を行うために必要な各種 のデータが含まれる。

【0021】図4は、PGCの構造の一例を示す図であ り、VMG I内のPGC I とVMGM_VOBS内の1 あるいは複数のVOBによって構成されるPGCの構造 が示されている。同図に示すように、例えば、PGC# 1は、VMGI内のPGCI#1とVMGM_VOBS 内のVOB#1~#3によって構成されている。また、 PGC#2は、VMGI内のPGCI#2とVMGM_ VOBS内のVOB#4、#5によって構成されてい る。とれらのPGCは、PGC番号によって特定され 格納順によって決定される。例えば、図4に示すPGC においては、VMG I内にPGC I#1、PGC I#2 の順でPGCが格納されているため、PGCI#1を含 んで構成されるPGC#1のPGC番号は「1」、PG CI#2を含んで構成されるPGC#2のPGC番号は 「2」となる。

【0022】なお、VTS I内のPGC IとVTSM_ VOBS内の1あるいは複数のVOBによって構成され るPGCや、VTS I内のPGC IとVTSTT_VO BS内の1あるいは複数のVOBによって構成されるP 50 LVU#2、C#3 ILVU#2は、同一の再生時間帯

GCも、図4に示したPGCと同様の構造を有してい る。また、PGCIには、対応する複数のVOBの再生 順序や、次に再生動作を行うPGCに関する情報等が含 まれている。

【0023】図5は、上述したVMGM_VOBS、V TSM_VOBS、VTSTT_VOBSに含まれるV OBのデータ構造を示す図である。同図に示すように、 VOBは、複数のセルによって構成されている。

【0024】マルチアングル機能において、例えば複数 10 の被写体を個別に撮影した場合には、1つのセルは、所 定の再生時間帯における1つのアングルのビデオデータ を含んでいる。そして、各セルは、DVD-Video 規格により所定のサイズのインターリーブドユニット (ILVU) に分割される。なお、各ILVUの開始ア ドレスは後述するDSIによって判定することができ る。また、各アングルは、アングル番号によって特定さ

【0025】図6は、セルとILVUおよびILVBの 対応関係を示す図であり、各セルに3つのアングル(ア 20 ングル1~アングル3)のビデオデータが格納されてい る場合の例を示す図である。上述したように、1つのセ ルは、所定の再生時間帯における1つのアングルのビデ オデータを含んでいるため、所定の再生時間帯における 3つのアングルのビデオデータは、3つのセルに含まれ ることになる。すなわち、所定の再生時間帯におけるア ングル1のビデオデータはセル#1に含まれ、アングル 2のビデオデータはセル#2に含まれ、アングル3のビ デオデータはセル#3に含まれる。

【0026】そして、各セルは、それぞれインターリー 30 ブドユニット(ILVU)に分割される。例えば、1つ のセルが4つの ILV Uに分割される場合には、図6に 示すように、アングル1のビデオデータを含むセル#1 は、再生時間帯順にC#1ILVU#1、C#1ILV U#2、C#1 I L V U#3、C#1 I L V U#4 & 4 分割され、これらのC#1 ILVU#1等によってアン グルセル(AGL_C#1)が構成される。同様に、ア ングル2のビデオデータを含むセル#2は、再生時間帯 順にC#2ILVU#1、C#2ILVU#2、C#2 ILVU#3、C#2 ILVU#4に4分割され、これ る。このPGC番号は、VMGI内におけるPGCIの 40 ちのC#2ILVU#1等によってアングルセル(AG L_C#2)を構成する。また、アングル3のビデオデ ータを含むセル#3は、再生時間帯順にC#3ILVU #1, C#31LVU#2, C#31LVU#3, C# 3 I L V U # 4 に 4 分割され、これらのC # 3 I L V U #1等によってアングルセル (AGL_C#3) が構成 される。この場合には、C#1 I L V U # 1、C # 2 I LVU#1、C#3 I LVU#1は、同一の再生時間帯 に属しており、アングルブロック(AGL_BLK# を構成する。同様にC#1 I L V U # 2、C # 2 I

に属してアングルブロック(AGL_BLK#2)を構 成している。また、C#1ILVU#3、C#2ILV U#3、C#3 ILVU#3は、同一の再生時間帯に属 してアングルブロック(AGL_BLK#3)を構成 し、C#1 I L V U # 4、C # 2 I L V U # 4、C # 3 ILVU#4は、同一の再生時間帯に属してアングルブ ロック (AGL_BLK#4) を構成する。各ILVU は、後述するビデオオブジェクトユニット(VOBU) を1つ以上含んで構成されている。

【0027】 [LVBは、複数の [LVUによって構成 10 されている。例えば、図6に示すように、ILVBは、 AGL_BLK#1に属するC#1ILVU#1、C# 2 I L V U # 1 、 C # 3 I L V U # 1 と 、 A G L _ B L K#2に属するC#1ILVU#2、C#2ILVU# 2、C#3ILVU#2と、AGL_BLK#3に属す 3C#1 | LVU#3 \ C#2 | LVU#3 \ C#3 | LVU#3と、AGL_BLK#4に属するC#1IL VU#4、C#21LVU#4、C#31LVU#4C よって構成される。

VBを構成する各アングルブロックの中から、選択され ているアングルに対応する【LVUが1つずつデコード 処理される。例えば、アングル1のビデオデータを再生 する場合には、C#1 I L V U # 1、C # 1 I L V U # 2、C#1ILVU#3、C#1ILVU#4の順番で デコード処理される。また、アングル1のビデオデータ を再生中にアングル2に切り替わる場合には、例えば、 C#1ILVU#1をデコード処理した後に、C#2I LVU#2がデコード処理される。

に示すように、各セルは、1つ以上のビデオオブジェク トユニット (VOBU) によって構成されている。各V OBUは、ナビゲーションパック(NV_PCK)1つ と、ビデオパック(V_PCK)、サブピクチャパック (SP_PCK) およびオーディオバック(A_PC K) の少なくとも1つを含んで構成されている。

【0030】NV_PCKは、再生制御情報(PC I)、データサーチ情報(DSI)を含んで構成されて いる。PCIとDSIには、VOBUのデータ量、再生 る。また、DSIには、シームレス再生用アングル情報 (SML_AGLI) が含まれている。このSML_A GLIには、各アングルセルに含まれるILVUのアド レスおよびデータ量(SML_AGL_Cn_DST A) が設定されている。

[0031] V_PCK, SP_PCK, A_PCK は、それぞれ再生データの種別(動画、サブピクチャ、 オーディオ) 等の情報が含まれているパックヘッダ、バ ケットヘッダや、データ圧縮されたビデオデータ、サブ ピクチャデータ、オーディオデータ(圧縮再生データ) 50 VOBUを抽出してデコード部28に出力する。

を含んで構成されている。

【0032】(2) DVD再生装置の全体構成

図8は、本発明を適用した一実施形態のDVD再生装置 の全体構成を示す図である。同図に示すDVD再生装置 100は、DVD10に記録されたデータ(信号)を読 み取るためのデータリード部11と、読み取った信号の 増幅等を行って画像表示や音声出力を行うためのRFア ンプ22、デジタル信号処理部24、RAM26、デコ ード部28、ビデオプロセッサ44、ビデオエンコーダ 46、ディスプレイ装置47、デジタル-アナログ(D /A)変換器48およびスピーカ49と、利用者が各種 の操作指示を入力するための操作部58と、DVD再生 装置100の全体を制御するためのシステムコントロー ラ60とを含んで構成されている。

【0033】データリード部11は、スピンドルモータ 12、光ピックアップ14、送りモータ16およびサー **ボ制御部18を含んで構成されている。スピンドルモー** タ12は、DVD10を一定の線速度で回転させる。光 ピックアップ14は、DVD10に記録されたデータを 【0028】マルチアングル再生動作においては、IL 20 検出するものであり、例えば半導体レーザとホトダイオ ードとが内蔵されている。送りモータ16は、光ピック アップ14をDVD10の径方向に移動させるものであ

【0034】サーボ制御部18は、上述したスピンドル モータ12および送りモータ16を駆動するとともに、 光ピックアップ14に内蔵された対物レンズ (図示せ ず)を動かすことにより半導体レーザの焦点位置をDV D10の記録面と垂直方向および水平方向に移動させ る。また、サーボ制御部18は、DVD10からのデー 【0029】図7は、セルの構造を示す図である。同図 30 タの読み取りに必要な各種のサーボ(フォーカスサー ボ、トラッキングサーボ、回転サーボ)制御を行う。 【0035】また、マルチアングル再生動作において は、サーボ制御部18は、システムコントローラ60の 指示に応じて、処理対象のILVBに含まれる全てのI LVUを再生時間帯順にDVD10から読み出すよう に、各種のサーボ制御を行う。

【0036】RFアンプ22は、光ピックアップ14に 内蔵されたホトダイオードから出力される電気信号を増 幅するものであり、DVD再生装置100に大きな振動 時間や次に再生すべきVOBUの位置等が設定されてい 40 や衝撃等が加わってトラックジャンプが発生すると、ト ラックジャンプ検出信号を出力する機能も有している。 【0037】デジタル信号処理部24は、RFアンプ2 2から出力される信号に対して、デジタルデータに変換 した後にDVD10のデータフォーマットに応じた信号 復調処理(8-16復調処理)と誤り訂正処理を行い、 VMGIやVTSIをシステムコントローラ60に出力 するとともにセルをRAM26に格納する。そして、デ ジタル信号処理部24は、システムコントローラ60の 指示に応じて、RAM26に格納されたセルを構成する

【0038】また、マルチアングル再生動作において は、デジタル信号処理部24は、処理対象のILVBに 含まれる全てのILVUを順次RAM26に格納する。 RAM26は、トラックバッファであり、図9に示すよ うにアングルごとに格納領域を備えて、ILVBに含ま れる各ILVUを対応するアングルの格納領域に格納す る。そして、デジタル信号処理部24は、システムコン トローラ60の指示に応じて、処理対象のILVBを構 成する各アングルブロックの中から、選択されているア ングルに対応する | L V Uを 1 つずつ再生時間帯順に R 10 画像が表示される。 AM26から読み出して、このILVUを構成するVO BUをデコード部28に出力するとともに、このRAM 26から読み出された I L V U と同一の再生時間帯に属 する他のILVU、すなわち、同一のアングルブロック に属する他のILVUをRAM26から削除する。

【0039】また、利用者によってアングル切替が指示 された場合には、デジタル信号処理部24は、システム コントローラ60の指示に応じて、その時にRAM26 から読み出されてデコード処理の対象となっている【し の次のアングルブロックの中から、切替後のアングルに 対応するILVUを抽出し、これをRAM26から読み 出して、このILVUを構成するVOBUをデコード部 28に出力するとともに、RAM26から読み出された 1LVUと同一のアングルブロックに属する他の ILV UをRAM26から削除する。

【0040】デコード部28は、バッファ用RAM3 4、38、42、ストリーム分離部30、オーディオデ コーダ32、ビデオデコーダ36、サブピクチャデコー ダ40を含んで構成されている。

【0041】ストリーム分離部30は、システムコント ローラ60の指示に応じて、デジタル信号処理部24か ら出力されるVOBUを構成するパックヘッダを解析す ることにより、オーディオパック(A_PCK)、ビデ オパック(V_PCK)、サブピクチャパック(SP_ PCK)、ナビゲーションパック(NV_PCK)を分 離する。ストリーム分離部30によって分離されたオー ディオバックはオーディオデコーダ32に出力され、ビ デオバックはビデオデコーダ36に出力され、サブピク ビゲーションパックはシステムコントローラ60に転送 される。

【0042】オーディオデコーダ32は、ストリーム分 離部30から出力されるオーディオパックに対して所定 のデコード処理を行ってオーディオデータを出力する。 ビデオデコーダ36は、ストリーム分離部30から出力 されるビデオパックに対して所定のデコード処理を行っ てビデオデータを出力する。サブピクチャデコーダ40 は、ストリーム分離部30から出力されるサブピクチャ パックに対して所定のデコード処理を行ってサブビクチ 50 22、デジタル信号処理部24、システムコントローラ

ャデータを出力する。

【0043】ビデオプロセッサ44は、システムコント ローラ60の指示に応じて、ビデオデコーダ36から出 力されるビデオデータとサブピクチャデコーダ40から 出力されるサブピクチャデータとを合成した画像データ を生成し、ビデオエンコーダ46に出力する。ビデオエ ンコーダ46は、ビデオプロセッサ44から出力される 画像データを表示用の画像信号に変換する。この画像信 号がディスプレイ装置47に出力されることによって、

10

【0044】D/A変換器48は、オーディオデコーダ 32から出力されるオーディオデータをアナログのオー ディオ信号に変換する。とのオーディオ信号がスピーカ 49に出力されることによって、オーディオ音声の再生 が行われる。

【0045】操作部58は、タイトル再生の指示を与え るための再生キーやマルチアングル再生動作においてア ングル切替の指示を与えるためのアングル切替キー、左 右上下のカーソルキー、表示画面上のカーソル位置にあ VUに続いて、とのILVUの属するアングルブロック 20 る項目の確定を行う設定キー等の各種操作キーを備えて おり、キーの操作状態に応じた信号がシステムコントロ ーラ60に向けて出力される。

> 【0046】システムコントローラ60は、各種のサー ボ指令をサーボ制御部18に出力したり、利用者の操作 指示に応じた画像生成指示をビデオプロセッサ44に出 力する等、全機能ブロックの制御を行う。また、システ ムコントローラ60は、デジタル信号処理部24から出 力されるデータに含まれるVMGI、VTSI、ストリ ーム分離部30から出力されるNV_PCKを受け取っ 30 て、これらに含まれるナビゲーションコマンドを実行す ることにより、ストリーム分離部30等に対して再生動 作に必要な各種の制御を行う。

【0047】また、マルチアングル再生動作において は、システムコントローラ60は、処理対象のILVB に含まれる全てのILVUを再生時間帯順にDVD10 から読み出すように、各種のサーボ指令をサーボ制御部 18に出力する。そして、システムコントローラ60 は、処理対象のILVBを構成する各アングルブロック の中から、選択されているアングルに対応するILVU チャパックはサブピクチャデコーダ40に出力され、ナ 40 を1つずつ再生時間帯順にRAM26から読み出すよう にデジタル信号処理部24に指示する。また、利用者に よって操作部58に備わったアングル切替キーが押下さ れて、アングル切替が指示された場合には、システムコ ントローラ60は、その時にRAM26から読み出され てデコード処理の対象となっているILVUの属するア ングルブロックの次のアングルブロックの中から、切替 後のアングルに対応するILVUを読み出すようにデジ タル信号処理部24に指示する。

【0048】上述したデータリード部11、RFアンプ

60が信号処理手段に、RAM26がデータ格納手段 に、デコード部28、ビデオプロセッサ44、ビデオエ ンコーダ46、システムコントローラ60がデータ再生 手段に、それぞれ対応する。

【0049】(3) DVD再生装置の動作

次に、上述したDVD再生装置100の動作を説明す る。図10は、DVD再生装置100におけるマルチア ングル再生動作の動作手順を示す流れ図である。システ ムコントローラ60は、利用者によってDVD10が装 10が装填されると、次にシステムコントローラ60 は、オープニング画面を一定時間表示させた後に(ステ ップ101)、タイトルメニュー画面の表示を行う(ス テップ102)。例えば、VMG(ビデオマネージャ) に含まれるPGCI(プログラムチェーン情報)に基づ いて、オープニング画面に対応するVOB(ビデオオブ ジェクト) が読み出され、所定のオープニング画面の表 示が行われる。また、VMG I内のPGC I_UT(プ ログラムチェーン情報ユニットテーブル)に基づいて、 オープニング画面の次に表示されるタイトルメニューの 20 継続される。 再生箇所が特定できるため、続けてタイトルメニューの 表示動作が開始される。

【0050】次に、システムコントローラ60は、タイ トルが選択されたか否かを判定する(ステップ10 3)。利用者によって操作部58のカーソルキーが操作 されてタイトルメニューに表示されたタイトルにカーソ ルが合わせられ、さらに設定キーが押下されてタイトル 選択が確定されると、システムコントローラ60は、選 択されたタイトルの再生を開始する(ステップ10

【0051】次に、システムコントローラ60は、IL VBが処理対象となってマルチアングル機能が有効にな ったか否かを判定する(ステップ105)。マルチアン グル機能が有効になった場合には、システムコントロー ラ60は、処理対象のILVBに含まれる全てのILV Uを再生時間帯順にDVD10から順次読み出してRA M26に格納する制御を行う(ステップ106)。例え ば、図6に示した I L V B が処理対象になった場合に は、RAM26には、図11に示すように、アングル1 VU#2, C#11LVU#3, C#11LVU#4*i* 格納される。同様に、アングル2に対応する格納領域に C#2 | LVU#1, C#2 | LVU#2, C#2 | L VU#3、C#2 I L V U # 4 が格納され、アングル3 に対応する格納領域にC#3ILVU#1、C#3IL VU#2、C#3 I L V U # 3、C # 3 I L V U # 4 が 格納される。なお、実際には各ILVUは可変レートで あるためそれぞれ異なったデータ容量を有しており、し かもRAM26に対してはデータ(ILVU)の書き込 みと読み出しが並行して行われるため、図11に示した 50 とともに、RAM26から読み出されたILVUと同一

ようにILVB単位で各ILVUが格納されるわけでは ない。

【0052】次に、システムコントローラ60は、処理 対象のILVBを構成する各アングルブロックの中か ち、その時に選択されているアングルに対応する ILV Uを1つずつ再生時間帯順にRAM26から読み出して デコード部28に送り、マルチアングル再生動作を行う (ステップ107)。具体的には、システムコントロー ラ60は、デジタル信号処理部24に対して、処理対象 填されたか否かを判定する(ステップ100)。 DVD 10 のILVBを構成する各アングルブロックの中から、例 えば初期設定されているアングルに対応するILVUを 1つずつ再生時間帯順にRAM26から読み出すように 指示を出す。デジタル信号処理部24は、この指示に応 じて対応するILVUをRAM26から読み出して、と の I L V Uを構成する V O B U をデコード部 2 8 に出力 するとともに、このILVUと同一の再生時間帯に属す る他のILVUをRAM26から削除する。そして、デ コード部28は入力されたVOBUのデコード処理を行 う。アングル切替が指示されるまでの間は、この動作が

> 【0053】マルチアングル再生動作が開始されると、 システムコントローラ60は、ステップ107において デコード処理の対象となったILVUの先頭に配置され るNV_PCKのDSIを解析することにより、マルチ アングル機能の有効状態が継続しているか否かを判定す る(ステップ108)。

【0054】マルチアングル機能の有効状態が継続して いる場合には、システムコントローラ60は、利用者に よって操作部58に備わったアングル切替キーが押下さ 30 れてアングル切替が指示されたか否かを判定する(ステ ップ109)。アングル切替が指示された場合には、シ ステムコントローラ60は、アングルを切り替える(ス テップ110)。

【0055】具体的には、システムコントローラ60 は、利用者によって操作部58に備わったアングル切替 キーが押下されてアングル切替が指示された場合には、 その時にRAM26から読み出されてデコード処理の対 象となっているILVUが属するアングルブロックの次 のアングルブロックの中から、切替後のアングルに対応 に対応する格納領域にC#1ILVU#1、C#1IL 40 するILVUを読み出すようにデジタル信号処理部24 に指示する。本実施形態のDVD再生装置100では、 各アングルブロックに含まれる全てのILVUがトラッ クバッファとしてのRAM26に格納されているため、 次のアングルブロックに含まれるいずれのILVUも選 択可能になっている。 デジタル信号処理部24は、この 指示に応じて、その時にRAM26から読み出されてデ コード処理の対象となっているILVUに続いて、切替 後のアングルに対応するILVUを読み出して、このI LVUを構成するVOBUをデコード部28に出力する のアングルブロックに属する他の I L V U を R A M 2 6 から削除する。そして、デコード部28は入力されたV OBUのデコード処理を行う。

13

【0056】例えば、図11に示すようにRAM26に ILVUが格納されている場合を考える。まずマルチア ングル再生動作において例えばアングル1に対応する画 像を再生する場合には、デジタル信号処理部24は、シ ステムコントローラ60の指示に応じて、処理対象の1 LVBを構成するアングルブロック(AGL_BLK# 1) の中から、アングル1 に対応するC#1 I L V U# 10 1をRAM26から読み出して、このC#1ILVU# 1を構成するVOBUをデコード部28に出力するとと もに、C#1ILVU#1と同一のアングルブロックに 属する他のILVU(C#2ILVU#1およびC#3 ILVU#1)を削除する。デコード部28は、入力さ れたVOBUのデコード処理を行う。

[0057] そして、C#1 I L V U # 1 が R A M 2 6 から読み出されてデコード処理が行われている時にアン グル1からアングル2への切替が指示された場合には、 の指示に応じて、C#11LVU#1の属するアングル ブロック(AGL_BLK#1)の次のアングルブロッ ク(AGL_BLK#2) に属するILVU(C#1I LVU#1, C#2 I LVU#2, C#3 I LVU# 3)のうち、アングル2に対応するC#2ILVU#2 を、C#11LVU#1に続いて読み出して、このC# 2 I L V U # 2 を構成する V O B U を デコード 部 2 8 に 出力するとともに、C#2ILVU#2と同一のアング ルブロックに属する他のILVU(C#1ILVU#2 8は、入力されたVOBUのデコード処理を行う。この ような動作によってアングル1からアングル2への切替 が行われる。

【0058】その後、システムコントローラ60は、処 理対象のILVBに含まれる全てのILVUを再生時間 帯順にDVD10から順次読み出してRAM26に格納 する制御(ステップ106)以降の動作を繰り返す。

【0059】また、アングル切替が指示されていない場 合には (ステップ109で否定判断した場合) には、ア ングル切替は行われずに、処理対象の I L V B に含まれ 40 が望ましい。 る全てのILVUを再生時間帯順にDVD10から順次 読み出してRAM26に格納する制御(ステップ10 6)以降の動作を繰り返す。

【0060】また、マルチアングル再生機能が有効でな い場合 (ステップ105で否定判断した場合) やマルチ アングル再生機能の有効状態が継続されていない場合 (ステップ108で否定判断した場合)には、システム コントローラ60は、タイトルの再生が終了したか否か を判定する(ステップ111)。タイトルの再生が終了 した場合には、一連の再生動作が終了する。また、タイ 50 い。例えば、2倍速のデータリード部11を用いた場合

トルの再生が終了していない場合には、再びマルチアン グル機能が有効になったか否かの判定(ステップ10 5)が行われる。

14

【0061】このように、本実施形態のDVD再生装置 100は、全てのアングルに対応するILVUを順次D VD10から読み出してRAM26に格納している。換 言すれば、本実施形態のDVD再生装置100は、図1 2に示した従来のDVD再生装置500のように再生対 象のアングルに対応するILVUだけを読み出して格納 しておき、アングル切替の指示があった場合に初めてア ングル切替後のILVUを読み出して格納するのではな く、アングル切替後のILVUをあらかじめ格納してお くととができる。

【0062】このため、従来のDVD再生装置では、ア ングル切替の指示があった場合に、その時すでにトラッ クバッファに格納されているアングル切替前の全ての 1 LVUのデコード処理を行った後に、アングル切替後の ILVUのデコード処理を行っていたのに対し、本実施 形態のDVD再生装置100では、アングル切替指示が デジタル信号処理部24は、システムコントローラ60 20 された時にデコード処理の対象となっているアングル切 替前のILVUの次に直ちにアングル切替後のILVU のデコード処理を行うことができるため、利用者によっ てアングル切替の指示がなされたときに、迅速にアング ルを切り替えることが可能となる。

【0063】本実施形態のDVD再生装置100を実現 するためには、例えば、データリード部11とRAM2 6の間の転送レートを図12に示した従来のDVD再生 装置500内のデータリード部502とトラックバッフ ァ504の間の転送レート (11.08Mビット/秒) およびC#3 ILVU#2)を削除する。デコード部2 30 の7倍(77.56Mビット/秒)以上に設定すること が望ましい。一般に、1アングル当たりの最大読み出し ビットレートは8Mビット/秒であるため、7倍速以上 のデータリード部11を用いることにより、各アングル の再生画像が途切れない状態で、全てのアングルのIL VUをRAM26に格納することができる。また、RA M26の容量としては、9つのアングルのそれぞれのデ ータが最大レートでデータリード部11から読み出され る場合を考慮して、各アングル毎に4Mビット、全体と して36Mビット(=4Mビット×9)を確保すること

> 【0064】なお、本発明は上記実施形態に限定される ものではなく、本発明の要旨の範囲内で種々の変形実施 が可能である。上述した実施形態では、各アングルの画 像が途切れないようにするには、少なくとも7倍速のデ ータリード部11を備えるとともに、RAM26の容量 として36Mビットを確保することが望ましいとした が、常に最大レートでRAM26からデータを読み出し ているわけではないため、これら以下の仕様を備えたデ ータリード部11やRAM26を用いるようにしてもよ

に、切替対象となるアングル数が「5」で、それぞれの アングルの実際の読み出しビットレートが4Mビット/ 秒以下であれば、各アングルの再生画像が途切れない状 態で、全てのアングルのILVUをRAM26に格納す ることができる。また、マルチアングル機能を使用して いない再生箇所においては、あるいはマルチアングル機 能を使用している場合であってもアングル数等によって はRAM26に余剰な格納領域が存在する場合があるた め、システムコントローラ60によってこの余剰な格納 領域の有無を判定し、余剰な格納領域を振動吸収用の大 10 容量のトラックバッファとして使用することが望まし い。特に、車載用のディスク再生装置には大きな振動が 加わることが多いため、マルチアングル機能を使用して いないときに大容量のRAM26を振動吸収用のトラッ クバッファとして使用することができれば、悪路等を走 行中に生じる画像や音声の途切れを確実に防止すること ができる。

15

【0065】実際の再生画像におけるアングル数と読み出しビットレートは、各ILVUに含まれるPCIやDSIを解析することにより、ILVUのデータ量等に基20づいて算出することができるため、データリード部11からRAM26へのデータ転送レートが、実際の再生画像におけるアングル数と読み出しビットレートを掛けた値よりも大きい場合に限って、全てのアングルのデータをRAM26に格納する本実施形態の動作を行うようにしてもよい。

【0066】また、RAM26の格納容量が小さい場合 には、全てのアングルに対応するILVUを格納するの ではなく、一部のアングルに対応するILVUのみを格 納するようにしてもよい。例えば、ILVBに含まれる 30 ILVUの中からアングル1からアングル4に対応する ILVUのみを格納しておき、アングル1からアングル 4のいずれかのアングルへの切替が指示された場合に は、その時にデコード処理の対象となっているアングル 切替前のILVUの次にアングル切替後のILVUのデ コード処理を行って迅速にアングルを切り替えることが できるようにしておき、アングル5からアングル9のい ずれかのアングルへの切替が指示された場合には、図1 2に示した従来のDVD再生装置500と同様に、アン グル切替の指示があった後に新たにRAM26に格納さ 40 れた切替先アングルのILVUから読み出しを行うよう にする。

[0067]

【発明の効果】上述したように、本発明によれば、画像の再生タイミングが同じであって異なる複数のアングルのそれぞれに対応する圧縮データを格納しておいて、再生対象となるアングルが切り替えられたときに、既に格納されている切替先アングルに対応する圧縮データを読

み出して画像の再生動作を行っており、アングル切り替えが指示されたときに、その後新たに格納される切替先アングルの圧縮データを読み出すのではなく、既に格納されている切替先アングルの圧縮データを用いて切替先アングルに対応した再生動作を行うことができ、マルチアングル再生動作におけるアングル切替を迅速に行うことができる。

【図面の簡単な説明】

【図1】DVDのボリューム空間の構造を示す図であ

- 【図2】VMGのデータ構造を示す図である。
- 【図3】VTSのデータ構造を示す図である。
- 【図4】PGCの構造の一例を示す図である。
- 【図5】 VOBのデータ構造を示す図である。
- 【図6】セルとILVUおよびILVBの対応関係を示す図である。
- 【図7】セルのデータ構造を示す図である。

【図8】一実施形態のDVD再生装置の全体構成を示す図である。

- 【図9】RAMの格納領域の一例を示す図である。
 - 【図10】一実施形態のDVD再生装置におけるマルチアングル再生動作の動作手順を示す流れ図である。

【図11】 ILVUが格納されたRAMの格納領域の一例を示す図である。

【図12】従来のDVD再生装置において、DVDから 読み取られたデータがデコード部に入力されるまでの転 送ルートの概要を示す図である。

【図13】図12に示したディスク再生装置において実現されるマルチアングル機能の説明図である。

【図 14】マルチアングル機能に対応するデータの読み 取り状態を示す図である。

【図15】トラックバッファにおける各ブロックのデータの格納状態を示す図である。

【符号の説明】

- 10 DVD
- 11 データリード部
- 18 サーボ制御部
- 24 デジタル信号処理部
- 26 RAM
- 28 デコード部
 - 30 ストリーム分離部
 - 32 オーディオデコーダ
 - 36 ビデオデコーダ
 - 40 サブピクチャデコーダ
 - 44 ビデオプロセッサ
 - 58 操作部
 - 60 システムコントローラ

#1

【図6】

【図8】

【図11】

【図13】

【図14】

フロントページの続き

(51)Int.Cl.' 識別記号 F I デーマコート' (参考) H O 4 N 5/92 H O 4 N 5/92 H G I I B 27/00 D 27/10 A Fターム(参考) 5C052 AA01 AA17 AC10 CC11 DD04 EE03

. . . .

5C053 FA24 FA27 GB02 GB21 HA33

KA04 KA08 KA24 LA06

5D044 AB01 BC02 CC04 DE02 DE03

DE81 GK02

5D077 AA27 BA30 CA02 DC01 DC12

GA01

5D110 AA15 BB06 DA14 DB05