性別も	/ンポジウ /、/	Special Symposium		
国公私大	このがと プロースの地域を超えた役	Special Symposium 割と連携:未来社会と応用物理 / Roles and Collaboration	between National-Public-Private Universities acros	ss Nations
3/9(S	at.) 9:50 - 12:20	口頭講演 (Oral Presentation) W922会場 (Room W922)		
9:50	9a-W922-1	開会の辞	○財満 鎭明 ^{1,2}	1. 名大, 2. 応用物理学会 会長
9:55 10:00	9a-W922-2 招 9a-W922-3	企画の意図 国大・私大連携の道:私立の立場から、国公立の立場か	○松尾 由賀利¹	1. 法政大 1. 豊田工大
10.00	1D 3G-M3ZZ-3	ら		1. 壹山工人
10:35	招 9a-W922-4	地方国立大学のこれからの役割	○渡辺 敦司¹	1. 教育ジャーナリスト
11:10		休憩/Break		
11:20	9a-W922-5	総合討論	〇松尾 由質利',榊 裕之', 渡辺 敦司', 奧村 次德', 為近 恵美 ⁵ , 喜多 降 ⁶	1.法政大, 2.豊田工業大, 3.教育ジャーナリスト, 4.東京都立産業技術研究センター, 5. 横浜国立大, 6.神戸大
12:15	9a-W922-6	閉会の辞	○中野 義昭¹	和立座未仅例研究センター, 5. 傾供国立人, 6. 仲戸人 1. 東大
		は一日本の研究力を最大化するために一 / System and En		
		口頭講演 (Oral Presentation) W922会場 (Room W922)		
13:20 13:25	9p-W922-1 9p-W922-2		○馬場 俊彦 ^{1,2} ○堂免 恵 ¹	1. 応用物理学会副会長, 2. 横国大 1. 湧志創造
13:35	招 9p-W922-3		○天野 浩¹	1.名大
14:05	招 9p-W922-4		〇村山 斉 ^{1,2}	1.UCバークレー校, 2.東大カブリ数物
14:35	招 9p-W922-5		〇大野 英男 ¹	1.東北大
15:05 15:20	招 9p-W922-6	休憩/Break 日本の研究力向上について	〇磯谷 桂介1	1.文科省
15:50	1Д 3P-W3ZZ-0	休憩/Break	○ 吸音 住力	1.久竹日
15:55	9p-W922-7	パネルディスカッション	〇末光 眞希 1 , 天野 浩 2 , 村山 斉 3,4 , 大野 英男 1 , 磯谷	1. 東北大, 2. 名大, 3.UCバークレー校, 4. 東大カブリ数
			桂介 ⁵	物,5.文科省
17:10 17:15	9p-W922-8 9p-W922-9	パネルディスカッションまとめ	○末光 眞希¹ ○堂免 恵¹	1. 東北大 1. 湧志創造
		闭云の疾後 ヨンを探る、国際システムデバイス技術ロードマップ(201		
		口頭講演 (Oral Presentation) W521会場 (Room W521)	, , , , , , , , , , , , , , , , , , ,	
9:00	招 9a-W521-1	国際システムデバイス技術ロードマップ活動の概要	〇林 喜宏 1	1.ルネサス
9:10	招 9a-W521-2	最新・次世代計算機を活用する高性能計算アルゴリズム -計算電磁気学を例に一	〇岩下 武史 1	1.北大情基センター
9:30	招 9a-W521-3	- 計算電磁気字を例に一 コネクティビティ技術	○石黒 仁揮 ¹	1. 慶應義塾大学
9:50		「特別招待講演」	○折井 靖光¹	1.長瀬産業 N V C 室
		脳型デバイスにおける次世代パッケージング技術		
10:10	招 9a-W521-5	リソグラフィー技術	〇石内 秀美 ¹	1.EIDEC
10:30 10:50	招 9a-W521-6	デバイスの微細高性能化 休憩/Break	○福崎 勇三1	1.ソニーセミコンダクタソリューションズ
	招 E 9a-W521-7	[Keynote Talk] 2D Materials and Devices for Smart Life	○ Kaustav Banerjee¹	1.Univ. of California, Santa Barbara
11:20		新デバイス・新材料	○秋永 広幸¹	1.産総研ナノエレ部門
11:30	招 9a-W521-9		○瀬島 幸一 ¹	1.ソニーセミコンダクタソリューションズ
11:40 11:50	招 9a-W521-10 招 9a-W521-11	高歩留り化技術 ファクトリーインテグレーション	○嵯峨 幸一郎 ¹ ○真白 すぴか ¹	1.ソニーセミコンダクタソリューションズ 1.東京エレクトロン
		化" ~電池・パワー半導体・モータとシステムの協調開発		
	nductor, Motor and			
		口頭講演 (Oral Presentation) 70A 会場 (Room 70A)	○財満 鎭明¹	1 th III Maria 24 A A F
13:00 13:10	9p-70A-1 9p-70A-2	趣旨説明 エレクトロニクス実装学会の紹介	○ 益 一哉¹	1. 応用物理学会会長 1. エレクトロニクス実装学会会長
13:20	招 9p-70A-3	車の電動化・知能化に向けた実装技術動向と品質課題	〇堀井 良和¹	1.日産自動車
14:10	招 9p-70A-4	デンソーにおける車両の電動化技術	〇田中 政一1	1. デンソー
14:40 15:10	招 9p-70A-5 招 9p-70A-6	電動車に向けた全固体電池の開発動向 クルマの電動化で求められるパワーデバイス性能とSiC	〇高田 和典1	1. 物材機構 1. 三菱電機
15:10	15 ab-104-0	デバイスによる性能向上への期待	〇寸局 和%	1.二変电傚
15:40		休憩/Break		
16:00	招 9p-70A-7	電動車向けパワーモジュールの実装技術	〇門口 卓矢1	1.トヨタ自動車
16:30 17:00	招 9p-70A-8 招 9p-70A-9	SiC インバータを用いた機電一体インホイールモータ シミュレーションドリブンによる EV の電源系、駆動系に	○赤津 観¹ ○白五 洋一¹ 芹★ 和マノ¹	1. 芝浦工大 1. 群馬大学
17:00	л эр-70А-э	シミュレーショントリノンによるEVの电源ボ、駆動ボに おける制御システムの設計	〇日石 洋一,及不 相弘	1. 舒馬人子
インフォ	マティクス活用の	時代 / Present and future on imfomatics technologies		
	•	口頭講演 (Oral Presentation) 70A会場 (Room 70A)		
13:00	10p-70A-1	趣旨説明	○西川 恒一1	1.豊田中央研究所
13:05	招 10p-70A-2	富士フイルムにおけるインフォマティクスを用いた材料 開発	○ / 『玉』 御柱 / 1	1.富士フイルム
13:35	招 10p-70A-3	材料開発におけるAI戦略とスピントロニクスへの応用	○澤田 亮人¹, 岩崎 悠真¹, 石田 真彦¹	1.NEC 中央研
14:05	招 10p-70A-4	ハイスループット実験と機械学習を活用した蓄光材の長	〇間 広文¹, 祖父江 進², 田島 伸¹, 旭 良司¹	1. 豊田中研, 2. デンソー
14.05		寿命化検討		
14:35 14:50	招 10p-70A-5	休憩/Break マテリアルズ・インフォマティクスを適用した低熱伝導	○高橋 憲彦 ¹ 劉 宇 ¹ 会田 千穂子 ¹	1.富士通研
14.00	1d 10b 1011 0	率Si/Ge積層構造の探索	(No. 1) (No. 1) (No. 1)	I. H. I. A. W.
15:20	招 10p-70A-6	統計的機械学習を活用した酸化物薄膜の材料探索〜実験		1.NTT物性研, 2.NTTCS研
		家によるインフォマティクスの活用体験~	田宏2	. (14.)
15:50 16:20	招 10p-70A-7 10p-70A-8	統計的機械学習による製造プロセスの高度化 パネルディスカッション	○高田 正彬 ¹ ○児玉 聡 ¹ 井野 雄介 ² 澤田 京人 ³ 間 広文 ⁴ 高橋 憲	 1.(株)東芝 1.NTT 先端集積デバイス研, 2. 富士フイルム, 3.NEC 中
10.20	10h 1011-0	11-11 / 11 / 11/4 / V II V	○元玉 版,开封 雄川,译山 元八,间 丛又,同侗 思 彦 ⁵ ,若林 勇希 ⁶ ,髙田 正彬 ⁷	央研, 4. 豊田中研, 5. 富士通研, 6.NTT 物性研, 7. 東芝
		環境 / How can we improve our research environment?		
		口頭講演 (Oral Presentation) W242会場 (Room W242)	O.L. III #1/6.1	1 8 4 4 5 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6
13:00 13:05	10p-W242-1 10p-W242-2		○小川 賀代¹ ○財満 鎭明¹	1. 男女共同参画委員会委員長 1. 応用物理学会会長
13:10	招 10p-W242-2		○ 高橋 雅英 ¹	1.名大医
		名古屋大学における女性研究者活躍推進に向けた取り組		
40 -	Im 46 ·····	みと課題	0.1-#* - #-1	4 7000
13:55	招 10p-W242-4	「基調講演」 私の歩んだ道、溶液化学を基軸にしたナノ強誘電体の開	○加藤 一実1	1. 産総研
		松の歩んた追、浴液化学を基軸にしたアノ強誘電体の開発		
14:40	招 10p-W242-5	日本とフィンランドにおける『働き方』の違い ~ 社会	○坂根 シルック ¹	1.東京農工大学
45.11	ITI 46	の背景や価値観から考える		4.50
15:10	招 10p-W242-6	海外へ行くと研究が捗る ? ~研究の効率を上げる環境とは~	○根本 杳絵 '	1. 国情研
		td		

15.40 休憩/Break 10p-W242-7 パネルディスカッション 〇小川 賀代 1 ,財満 鎭明 2 ,高橋 雅英 3 ,加藤 一実 4 ,坂 1. 男女共同参画委員会委員長,2. 応用物理学会会長, 16:10 根 シルック⁵. 根本 香絵⁶ 3. 名大医, 4. 産総研, 5. 東京農工大, 6. 国情研 3/11(Mon.) 10:00 - 12:00 口頭講演 (Oral Presentation) W241会場 (Room W241) 11a-W241-1 開催の挨拶 ○財満 鎭明¹.: 1.応用物理学会会長, 2.名大 10:00 招 11a-W241-2 「基調講演」 〇西山 彰1 1.東芝メモリ 10:05 社会を支える半導体、これからの進化 招 11a-W241-3 「基調講演」 〇関口 章久1 1.東京エレクトロン 10:30 最先端技術 AI を可能にした半導体装置 1.ソニーセミコンダクタソリューションズ株式会社 10.55 〇平田 瑛子 1. 目立ハイテクノロジーズ 11:05 招 11a-W241-5 学生時代の研究活動から現在までの経験談 ○福田 真大1 招 11a-W241-6 半導体市場における計測・制御機器メーカの役割と私の 〇中井 淳也1 11:15 1 堀場エステック 仕事 招 11a-W241-7 "まず3年働け"?半導体の業界で働いた3年間を振り返 〇秋元 一志1 1.テラダイン株式会社 11:25 〇上野 智大1 11.35 招 11a-W241-8 大学・企業での面白さ 1.アドバンテスト 招 11a-W241-9 半導体業界で働くということ - 入社5年目の女性研究員 11:45 〇山口 まりな¹ 1.東芝メモリ が感じるやりがい、そして夢 11a-W241-10 閉会の挨拶 1.SEAJ 専務理事 シンポジウム / Symposium 1 応用物理学一般 / Interdisciplinary Physics and Related Areas of Science and Technology 3/10(Sun.) 9:30 - 12:15 口頭講演 (Oral Presentation) W935会場 (Room W935) 招 10a-W935-1 Society5.0 を意識したエネルギー・環境学習の多相・多 9:30 ○高木 浩一¹ 1. 岩手大理工 域展開 招 10a-W935-2 工業高校の課題研究における水素エネルギーを利用した 〇雨貝 健 $-^1$ 1.川越工高 物理教育の実践 10:30 休憩/Break 招 10a-W935-3 宮古島における環境・エネルギー教育 ○儀間 朝宜1 10.45 1 宮古高校 招 10a-W935-4 沖縄島嶼地域におけるエネルギー理科教育の在り方 〇中川 鉄水1, 福本 晃造2, 小池 佳代3, 藤井 克司3 1. 琉球大理, 2. 琉球大教, 3. 理研光量子 11:15 ~高等教育機関の立場から~ 招 10a-W935-5 物理に苦手意識を持つ人達への物理現象の説明 ○葛生 伸1 1.福井大院工 ~ エネルギー環境教育・啓発活動を通じた物理現象理解 促進の試み~ 2 放射線 / Ionizing Radiation 3/10(Sun.) 13:45 - 16:55 口頭講演 (Oral Presentation) S011会場 (Room S011) 招 10p-S011-1 温度の標準と精密計測への応用 〇中野 享 1. 産業技術総合研究所 招 10p-S011-2 産総研における線量標準の現状 ○黒澤 忠弘 1. 産総研 招 10p-S011-3 プランク定数にもとづくキログラムの新しい定義 ○藤井 賢一1 1.産業技術総合研究所 計量標準総合センター 工学計測 14:55 標準研究部門 15:30 休憩/Break 15:45 招 10p-S011-4 測光・放射標準(光の標準)―精密計測と関連技術 ○雨宮 邦招1 1.産総研 16:20 招 10p-S011-5 光周波数コムの国際単位系 (SI) への応用 ○稲場 肇 1. 産総研 3 光・フォトニクス / Optics and Photonics 3/10(Sun.) 13:30 - 17:15 口頭講演 (Oral Presentation) M135 会場 (Room M135) 招 10p-M135-1 光周波数領域反射計を用いた分布型光ファイバセンサと 〇村山 英晶1,井川 寛隆? 和田 大地2 13:30 1. 東大新領域. 2.JAXA その応用 招 10p-M135-2 建設分野における分布型光ファイバセンサの活用 〇今井 道男¹, 曽我部 直樹¹, 早坂 洋太² 1. 鹿鳥技術研究所, 2. リテック 14:00 14:30 招 10p-M135-3 光ファイバセンサの社会実装とヘテロコア技術の展開 ○渡辺 一弘¹, 関 篤志¹, 山崎 大志¹, 小山 勇也¹, 西山 1.創価大理工, 2.コアシステムジャパン 道子1,佐々木博幸2 15:00 招 10p-M135-4 JAXA研究開発部門の光ファイバジャイロに関わる研究開 ○水谷 忠均¹. 巳谷 真司¹. 児子 健一郎¹ 1.JAXA 発活動 15:30 休憩/Break 15:45 招 10p-M135-5 誘導ブリルアン散乱を用いた数モードファイバ評価技術 \bigcirc 小田 友 $\mathbf{1}^1$,中村 篤志 1 ,飯田 大輔 1 ,押田 博之 1 1.NTT 招 10p-M135-6 膨潤性ポリマーを用いたリーキー・導波変換型 POF セン 〇鈴木 裕 1 , 森澤 正之 1 16:15 サの開発 16:45 招 10p-M135-7 Frequency measurement using optical frequency comb O Tomovuki Uehara^{1, 2}. Kenichiro Tsuii¹ 1.Nat. Def. Acad., 2.Univ. Florida and HCN stabilized laser 3/10(Sun.) 13:30 - 18:15 口頭講演 (Oral Presentation) M114会場 (Room M114) 招 10p-M114-1 355 nm レーザーと高速 FT-IR を組み合わせたステレオリ ○瀧 健太郎 ¹ 13:30 1. 金沢大学機械 ソグラフィー用UV硬化樹脂の硬化挙動の解析 招 10p-M114-2 レーザープロセスの基礎過程解明にむけた大規模データ \bigcirc 谷 峻太郎 1 , 小林 洋平 1 14:00 1. 東大物性研 解析 14:30 招 10p-M114-3 高輝度 X線を用いたレーザー照射時の粉末粒子の溶融学 ○佐藤 雄二¹,塚本 雅裕²,菖蒲 敬久¹,村松 壽晴¹ 1. 日本原子力機構, 2. 阪大接合研 動観察とスパッタレスSLM法の開発 15:00 休憩/Break 招 10p-M114-4 フェムト秒レーザー生成現象の時間分解ディジタルホロ ○早崎 芳夫¹ 15:15 1.宇大オプティクス グラフィ 招 10p-M114-5 レーザーアブレーション現象の短パルスレーザー照明を 〇山岸 里枝1 15:45 1.福岡工大 用いた可視化観察 16:15 10p-M114-6 時間分解解析を用いたレーザー照射によるレジスト剥離 ○(B)西岡 直樹^{1.3},梅田 悠史¹,船本 祐介 ¹,島 大地 ¹,1.大阪工業大学,2.大阪市立大学,3.大阪大学 現象の解明Ⅱ 神村 共住1, 堀邊 英夫2, 吉村 政志3, 中村 亮介3 10p-M114-7 波長掃引光源を用いた光干渉断層法によるフェムト秒 ○長谷川 智士1,藤本 正俊2,早崎 芳夫1 16:30 1. 宇都宮大, 2. 浜松ホトニクス レーザー加工の穴深度のインプロセス計測 16:45 休憩/Break 17:00 奨 10p-M114-8 高電子密度領域への選択的光吸収によるガラスの超高速 ○伊藤 佑介¹, 吉崎 れいな¹, 宮本 直之¹, 柴田 章広², 1.東大院工, 2.AGC株式会社 微細精密レーザ加工 長澤 郁夫2, 長藤 圭介1, 杉田 直彦1 10p-M114-9 任意波形ナノ秒パルスレーザー加工系の開発 \bigcirc (M1) 遠藤 翼 1 , 谷 峻太郎 1 , 小林 洋平 1 17:15 1. 東大物性研 17:30 10p-M114-10 レーザー照射によるガラス破壊現象の多変量パルス毎イ ○ (M1) 島原 光平¹, 谷 峻太郎¹, 小林 洋平¹ 1. 東大物性研 メージング 10p-M114-11 金属におけるフェムト秒レーザーアブレーションの二温 〇田中 悠太 1 , 常行 真司 $^{1.2}$ 17:45 1. 東大院理, 2. 東大物性研 度モデル分子動力学計算

18:00 10p-M114-12 光渦パルスによる Si ドロップレット飛翔の挙動観察 (M1) 大鳥 広暉¹, 脇山 祐一朗¹, 川本 実季¹, 東畠 1. 九大シス情 三洋¹, 池上 浩¹, 中村 大輔¹

			三洋¹,池上浩¹,中村大輔¹	
		-ションが拓く新奇現象・機能・技術 / Nano-Material opt	ical-manipulations open up novel phenomena, func	ions and technologies
		口頭講演 (Oral Presentation) M135 会場 (Room M135)	01	
13:30		共鳴非線形光学応答によるナノ微粒子の光圧スイッチ	〇石原 — ¹	1. 阪大基工/阪府大工
14:00 14:30		テーパーファイバーを用いたナノ粒子操作 光波の強度・偏光・位相の空間分布制御と光マニピュレー	○藤原 英樹¹, 笹木 敬司¹	1.北大電子研 1.東北大多元研, 2.JST さきがけ
14:50	担 11h-M122-2	元派の強度・偏元・位伯の空间が布制御と元マーとュレーション応用	〇小澤 帕巾 ,佐藤 後一	1. 泉北人多ル研, 2.351 ささかり
15:00	招 11p-M135-4	近接場光と単一分子の相互作用の原子スケール解析: 単一分子の光マニピュレーションに向けて	○今田 裕 1,2	1. 理研, 2.JST さきがけ
15:30	奨 11p-M135-5	金属ナノ構造による第二高調波の一方向放射制御と非線 形光圧への展開	○木村 友哉¹, 田中 嘉人¹.², 志村 努¹	1.東大生研, 2.JST さきがけ
15:45	11p-M135-6	広域な光捕捉ナノ粒子集団における円偏光に起因した粒 子の回転運動	○垰 幸宏¹, 松浦 朋輝², 横山 知大¹, 石原 一¹.2	1. 阪大院基礎工, 2. 大阪府大院工
16:00 16:15	11p-M135-7	光の Liouville-Neumann 方程式 休憩/Break	○(D)大上 能悟 ¹	1.インペリアル・カレッジ・ロンドン
16:30	招 11p-M135-8	角運動量を持つ光波による物質操作	○尾松 孝茂¹	1.千葉大院工
17:00	招 11p-M135-9	プラズモントラッピングによるキラル結晶化とキラリ ティーの制御	○杉山 輝樹 ^{1,2}	1.国立交通大理, 2.奈良先端大物質
17:30	招 11p-M135-10	ナノ物質操作を実現するノンプラズモニック NASSCA光 ピンセット	○坪井 泰之¹	1.大阪市大院理
18:00		光熱変換によって局所加熱された気液界面の力学		1.京大院・工
18:30		レーザー誘起マイクロバブル近傍における反応場の評価		1.北大院理, 2.北大総化
18:45		界面での光捕捉によるハロゲン化鉛ペロブスカイトの合 成と改変	○柚山 健一 ^{1,2} , イスラム ジャヒダル ² , ビジュ バス デバンピライ ^{1,2}	1.北大電子研, 2.北大環境科学
	フォトニクス / Optio			
	長導/Superconducti ヹ゚゚゚゚゚゚゚゚゚゚゚゙゚゚゚゚゚゚゚゚゚゚゙゙゙゙゙゙゚゚゚゚゚゚゙゚゙゙゙゙	vity R極の感度を求めて ~ / Quantum sensing toward ultima	ate sensitivity	
		口頭講演 (Oral Presentation) M111会場 (Room M111)		
13:30		超伝導量子回路を用いた表面弾性波の超高感度検出	○野口 篤史 1,2	1.東大, 2.JST さきがけ
14:00	招 9p-M111-2	超伝導量子テクノロジーを用いた超高感度スピン共鳴		1.沖縄科技大, 2.JST さきがけ, 3.サクレー研, 4.ロンド
			リード ⁴, モルトン ジョン ⁴, ベルテ パトリス ³	ン大
14:30	招 9p-M111-3	超伝導量子回路によるスピンセンシング	○樋田 啓¹, P. Budoyo Rangga¹, 松崎 雄一郎¹, 角柳孝輔¹, J. Munro William¹, 山口 浩司¹, 齊藤 志郎¹	1.NTT物性基礎研
15:00		ワイドギャップ半導体を用いた固体量子センサの可能性		1.東工大
15:30	奨 E 9p-M111-5	Best magnetic-field sensitivities with single NV centres at room temperature	○ Ernst David Herbschleb ¹ , Hiromitsu Kato ² , Yuichi Maruyama ¹ , Takuya Danjo ¹ , Toshiharu Makino ² , Satoshi Yamasaki ² , Izuru Ohki ¹ , Kan Hayashi ¹ , Hiroki	1.Kyoto Univ., 2.AIST
15:45	奨 9p-M111-6	ダイヤモンド NV 中心による量子情報デバイスの実現に 向けたハミルトニアンラーニング	Morishita¹, Masanori Fujiwara¹, Norikazu Mizuochi¹ ○田宮 志郎¹, 倉見谷 航洋¹, 古賀 悠太¹, 石坂 泰一¹, 松田 一泰¹, 小坂 英男¹	1. 横浜国大院理工
16:00		休憩/Break		
16:20	招 9p-M111-7	半導体量子状態を用いた核スピン計測	○平山 祥郎 1,2,3	1.東北大理, 2.東北大 CSIS (Core Research Cluster),
16:50	招 9p-M111-8	歪を介したメカニカル素子と核スピンの動的結合と計測	○岡崎 雄馬 ¹	3.東北大CSRN 1.産総研
17:20	招 9p-M111-9	応用 スピン集団におけるマクロな量子もつれ状態の生成と精	○湯川 英美¹	1. 理研
17:50	招 9p-M111-10	密測定への応用 ナノギャップ電極を用いた単一分子・単一原子のテラへ		1.東大生研・ナノ量子機構, 2.東京農工大
18:20	9p-M111-11	ルツ極限センシング 超伝導 NbTiN ナノワイヤを用いた単一光子検出技術の開発	君¹,鶴谷 拓磨¹ ○三木 茂人¹²,宮嶋 茂之¹, 藪野 正裕¹,知名 史博¹, 山下 太郎³,⁴,寺井 弘高¹	1.情通機構, 2.神戸大, 3.名大, 4.JST さきがけ
6 薄膜	・表面 / Thin Films		ELI MAP , 171 MIEI	
		4学の新展開と高速化データ駆動科学 / Surface Science Ir	nnovation by Positron Diffraction and High Performa	nce Data Driven Science
3/9(s 13:30	Sat.) 13:30 - 17:55 招 9p-W833-1	口頭講演 (Oral Presentation) W833会場 (Room W833) KEK物構研低速陽電子実験施設の陽電子回折ステーショ	○ 兵頭 俊夫¹	1.KEK物構研
	IT o		08 m+1	a transfer to Make an
14:00 14:30	招 9p-W833-2 招 9p-W833-3	陽電子回折における高速化データ駆動科学 全反射高速陽電子回折(TRHEPD)方位角プロット法に	○星 健夫 ¹ ○望月 出海 ¹ , 深谷 有喜 ² , 一宮 彪彦 ¹ , 兵頭 俊夫 ¹	1.鳥取大学院工 1.KEK物構研, 2.原子力機構先端基礎
15:00	9p-W833-4	よるチタニア表面構造解析 InP(111)A-(1×1)の圧縮表面二重層に対する RHEED 波	○堀尾吉巳¹, 柚原 淳司², 高桑 雄二³	1.大同大工, 2.名大院工, 3.東北大多元研
15:15	招 9p-W833-5	動場 低速陽電子回折法の特徴と新規開発装置によるイニシャ ルデータの解析	○和田 健 ¹	1.量研高崎
15:45		ルテータの解析 休憩/Break		
15:55	招 9p-W833-6	ベイズ推論が繋ぐ陽電子回折と表面構造解析	○中西 (大野) 義典 ^{1,2}	1.東大総文, 2.JST さきがけ
16:25		全反射高速陽電子回折による2次元物質の構造決定	○深谷 有喜¹	1.原子力機構先端基礎研
16:55	招 9p-W833-8	全反射高速陽電子回折による2層グラフェン層間化合物		1.早大先進理工,2.東大理,3.原子力機構先端基礎研,
		の構造解析	兵頭 俊夫 ⁴ , 長谷川 修司 ²	4.KEK物構研
17:25	招 9p-W833-9		○松田 巌¹	1.東大物性研
		Oためのナノスケール 2次元/3次元分析 (II) / Nanoscale 2 口語禁家 (Oral Proportation) W022 会場 (Poom W022)	D/3D analyses for new device and materials develor	oment II
3/10(3 13:30		口頭講演 (Oral Presentation) W933 会場 (Room W933) デバイスから見た 2D/3Dナノ計測の必要性	〇臼田 宏治 ¹	1.東芝メモリ
13:30			○横町 伝¹, 院南 晧一¹, 小林 圭¹, 山田 啓文¹	1.京大工
14:15	招 10p-W933-3	る有機薄膜ドランシスタのキャリアタイテミクス評価 原子間力顕微鏡によるナノスケール表面下構造イメージ ング	戸野 博史 ¹, 木村 邦子¹, 小林 圭¹, ○山田 啓文¹	1.京大院工
14:45	招 10n-W/933-/	ンク 超音波原子間力顕微鏡によるナノ領域弾性特性評価法	○辻 俊宏¹	1.東北大
15:15		イオン散乱分光法 (CAICISS) を用いた LaAlO ₃ (001) 基板 の終端面解析		1.東大物性研, 2.CCES, IBS, 3.ソウル大物理天文学部, 4.ソウル大新素材研, 5.蔚山大
15:30 15:45	招 10p-W933-6	休憩/Break ミラー電子顕微鏡によるSiCウェハ表面微小欠陥検出	○長谷川 正樹 ¹ , 小林 健二 ¹ , 兼岡 則幸 ¹ , 尾方 智彦 ¹ , 大平 健太郎 ¹ , 川上 和弘 ¹ , 郡司 毅志 ¹ , 小貫 勝則 ¹	1.日立ハイテク
			八、 底 八水 ,八工 1月34 ,印 月 3X心 , 小貝 1875月	

	招 10p-W933-7	光電子ホログラフィーによる半導体中の不純物の3D原 子イメージング	〇筒井一生 ¹ , 松下智裕 ² , 名取鼓太郎 ¹ , 小川達博 ¹ , 室隆桂之 ² , 森川良忠 ³ , 星井拓也 ¹ , 角嶋邦之 ¹ , 若林整 ¹ , 林好一 ⁴ , 松井文彦 ⁵ , 木下豊彦 ²	
16:45		硬 X 線 XPS によるオペランド分析		1.物材件
17:15	·	X線によるデバイス構造および格子欠陥の三次元観察		1. リガク X 線研究所
		上酸化物機能の開拓 / Frontier in oxide materials with pred 口頭講演 (Oral Presentation) W241会場 (Room W241)	lictive materials design	
13:30		第一原理計算と機械学習	〇小口 多美夫1	1. 阪大産研
14:00		第一原理計算によるトポロジカル物性予測		1.東北大理
14:30	招 11p-W241-3	酸化物物性の系統的計算	○熊谷 悠 ^{1,2}	1. 京大工, 2.JST さきがけ
15:00 15:15	招 11p-W241-4	休憩/Break 新半導体物質の探索研究における実験現場での計算科学 の活用	〇平松 秀典 ^{1,2} , 飯村 壮史 ¹ , 神谷 利夫 ^{1,2} , 細野 秀 雄 ^{1,2}	1.東工大フロンティア研, 2.東工大元素戦略セ
15:45 16:15		ナノ界面構造のフォノン輸送物性の予測、評価、制御 産業分野における計算科学技術を駆使した酸化物材料の		1.東大工 1.村田製作所, 2.CAMMフォーラム, 3.AIMaP, 4.
10.15	10 11b-M241-0	機能物性の理解、予測、設計	○信兵 店─	1. 竹田袋FF///,2. CAIVINI フォーフム,3. ATIVIAF,4. ADMAT
16:45	招 11p-W241-7	マテリアルズインフォマティクスに基づく物質合成	○後藤 真宏¹	1.物材機構
		ス / Plasma Electronics		
	・表面 / Thin Films – ボン系材料プラズ	and Surfaces マプロセスの現状と課題/Carbon related materials and	plasma processing state of the art and subjects	
		口頭講演 (Oral Presentation) M103会場 (Room M103)	rasma processing, state or the art and subjects	
13:30	10p-M103-1	はじめに		1.産総研
13:35		DLC成膜技術の最新事情と今後の展望		1.ナノテック株式会社
14:05 14:35		高 AR 孔 / 溝絶縁膜加工を実現するカーボン材料への期待 炭素材料のプラズマ反応素過程の分子シミュレーション		1. 東芝メモリ 1. 核融合研, 2. 名大院工
15:05	/ii 10p-101103-4	休憩/Break	○伊藤 馬丈,向山 有追,中刊 冶草	1. 核限百ញ, 2. 石入阮工
15:10	招 10p-M103-5	グラフェンナノリボンの集積化合成と不揮発性メモリ応 用に向けたプラズマプロセス		1.東北大院工, 2.JST さきがけ
15:40	奨 10p-M103-6	リモート酸素プラズマ照射によるグラフェンの layer-by-layerエッチング過程のその場透過電子顕微鏡観察		1.名大院工, 2.名大未来材料・システム研究所, 3.名大 未来社会創造機構
15:55	招 10p-M103-7	ップ ダイヤモンドエレクトロニクスにおけるプラズマプロセ	○波多野 睦子¹, 岩崎 孝之¹	1.東工大
		スの重要性		
		『ネティクス / Spintronics and Magnetics スピンデバイス / Spin Devices for the IoT/IoH Era		
		口頭講演 (Oral Presentation) M101会場 (Room M101)		
13:30		TMR効果を応用した生体用高感度磁気センサ技術	○熊谷 静似1	1.スピンセンシングファクトリー株式会社
14:00	招 10p-M101-2	スピントロニクス技術を用いた高感度ひずみ検知素子の		1.東芝
		開発とIoTセンサデバイスへの展開	桂 ¹ , 永田 友彦 ¹ , 加治 志織 ¹ , 湯澤 亜希子 ¹ , 小野 富 男 ¹ , 原 通子 ¹	
14:30	招 10p-M101-3	フレキシブルスピントロニクスを基軸としたIoT/IoH展		1.東大物工
	,	開に向けた取り組み		
15:00		休憩/Break		
15:15		超低エネルギー駆動光ルータ Device Oscillation and Media AC-field Response of		1.東工大 1.Western Digital Corp
13.43	лд С 10р-IW101-3	MAMR	Terence Lam ¹ , Daniel Bai ¹ , Masato Shiimoto ¹ , Mrugesh Desai ¹ , Terry Olson ¹ , Prakash Manu ¹ , Paul Dorsey ¹	1.western Digital Corp
16:15	招 10p-M101-6	超省電力スピントロニクスデバイスの開発:安全・安心・		1.科学技術振興機構, 2.東北大, 3.産総研, 4.東芝
40		持続可能な高度知的エコ社会の実現に向けて	藤田 忍4,深見 俊輔²,大野 英男²	R&DC, 5.S.O.T., Inc.
		7 トロニクス / Organic Molecules and Bioelectronics 究の現状と展望 / Colloidal Quantum Dots: Fundamentals	and Applications	
		口頭講演 (Oral Presentation) M111会場 (Room M111)	Tana Applications	
13:30	招 10p-M111-1	量子ドットの低欠陥化と光励起キャリアダイナミクスお	○沈青 ¹	1. 電通大情報理工
		よび光電変換デバイスへの応用		
14:00	招 10p-M111-2	コロイド量子ドットを用いた赤外光電変換と超高効率太	〇久保 貴哉 ', 王 海濱 ', 瀬川 浩司 ' '	1. 東大先端研, 2. 東大院総合文化
14:30	级 E 10n-M111-3	陽電池への可能性 Lead Selenide Colloidal Quantum Dot Solar Cells	○ (P)Yaohong Zhang¹, Guohua Wu², Chao Ding¹,	1.Univ. of Electro-Commun., 2.Shaanxi Normal Univ.,
11100	X 2 10p	Achieving High Open-Circuit Voltage with One-Step Deposition Strategy	Feng Liu ¹ , Zhigang Zou ³ , Shuzi Hayase ⁴ , Qing Shen ¹	
14:45	招 E 10p-M111-4	Carrier Doping and Assembly Control of Colloidal Quantum Dot Solids for Energy Harvesting Devices	○ Satria Zulkarnaen Bisri ^{1, 2}	1.RIKEN - CEMS, 2.Tokyo Inst. of Tech.
15:15	奨 E 10p-M111-5	Optical and Electronic Transport Properties of Solvent	\bigcirc (DC)Liming Liu $^{1.2}$, Satria Bisri 1 , Yasuhiro Ishida 1 ,	1.RIKEN, 2.The Univ. of Tokyo
		Mediated Self-Assembly of Lead Sulfide Nanocrystals	Yoshihiro Iwasa ^{1, 2} , Takuzo Aida ^{1, 2}	
15:30 15:40	招 10p-M111-6	休憩/Break 異なる TiO_2 結晶面に吸着した半導体量子ドットの光吸収		1.電通大基盤理工, 2.分光計器(株), 3.九工大
		休憩/Break		1. 電通大基盤理工, 2. 分光計器(株), 3. 九工大
15:40 16:10 16:40	招 10p-M111-7 招 10p-M111-8	休憩/Break 異なるTiO。結晶面に吸着した半導体量子ドットの光吸収 とUrbach則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾	○豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ ○金 大貴 ¹ ○上松 太郎 ¹	1.大阪市大院工
15:40 16:10	招 10p-M111-7 招 10p-M111-8	休憩/Break 異なる TiO。結晶面に吸着した半導体量子ドットの光吸収 と Urbach 則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット	○豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ ○金 大貴 ¹ ○上松 太郎 ¹	1.大阪市大院工
15:40 16:10 16:40 17:10	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9	休憩/Break 異なる TiO ₂ 結晶面に吸着した半導体量子ドットの光吸収 と Urbach 則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット LED の高性能化	○豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ ○金 大貴 ¹ ○上松 太郎 ¹ ○千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹	1. 大阪市大院工 1. 阪大院工 1. 山形大院有機シス
15:40 16:10 16:40 17:10	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・	休憩/Break 異なる TiO。結晶面に吸着した半導体量子ドットの光吸収 と Urbach 則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット	○豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ ○金 大貴 ¹ ○上松 太郎 ¹ ○千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹	1. 大阪市大院工 1. 阪大院工 1. 山形大院有機シス
15:40 16:10 16:40 17:10	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00	休憩/Break 異なるTiO2結晶面に吸着した半導体量子ドットの光吸収 とUrbach則一光熱変換法と吸光度法による評価ー コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット LEDの高性能化 最適化能力を活用するマテリアル知能科学 / Science of th 口頭講演 (Oral Presentation) W810 会場 (Room W810) マテリアル知能科学:物質に内在する学習・最適化機能	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le	1. 大阪市大院工 1. 阪大院工 1. 山形大院有機シス
15:40 16:10 16:40 17:10 S13 物質 3/10(S	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 頁に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1	休憩/Break 異なるTiO2結晶面に吸着した半導体量子ドットの光吸収 とUrbach則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット LEDの高性能化 最適化能力を活用するマテリアル知能科学 / Science of th 口頭講演 (Oral Presentation) W810 会場 (Room W810)	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le	1.大阪市大院工 1. 阪大院工 1. 山形大院有機シス arning and Optimization Capabilities of Materials
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2	休憩/Break 異なる TiO₂結晶面に吸着した半導体量子ドットの光吸収 と Urbach 則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット LED の高性能化 最適化能力を活用するマテリアル知能科学 / Science of th 口頭講演 (Oral Presentation) W810 会場 (Room W810) マテリアル知能科学:物質に内在する学習・最適化機能 の発現を目指して ニューロモルフィック工学とマテリアル シナプス・ニューロン模倣素子用新材料技術の開発	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le	1. 大阪市大院工 1. 阪大院工 1. 山形大院有機シス arning and Optimization Capabilities of Materials 1. 阪大
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15 14:45	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3	休憩/Break 異なる TiO2結晶面に吸着した半導体量子ドットの光吸収 とUrbach則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット LED の高性能化 最適化能力を活用するマテリアル知能科学 / Science of th 口頭講演 (Oral Presentation) W810 会場 (Room W810) マテリアル知能科学:物質に内在する学習・最適化機能 の発現を目指して ニューロモルフィック工学とマテリアル シナプス・ニューロン模倣素子用新材料技術の開発 休憩/Break	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹ 〇浅井 哲也 ¹ 〇長谷川 剛 ¹	1.大阪市大院工 1.阪大院工 1.山形大院有機シス arning and Optimization Capabilities of Materials 1.阪大 1.北大情科研 1.早大先進理工
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3	休憩/Break 異なる TiO₂結晶面に吸着した半導体量子ドットの光吸収 と Urbach 則一光熱変換法と吸光度法による評価一 コロイダル量子ドットの光物性と今後の展開 発光特性改善のための量子ドット表面修飾 アニオン・配位子置換によるペロプスカイト量子ドット LED の高性能化 最適化能力を活用するマテリアル知能科学 / Science of th 口頭講演 (Oral Presentation) W810 会場 (Room W810) マテリアル知能科学:物質に内在する学習・最適化機能 の発現を目指して ニューロモルフィック工学とマテリアル シナプス・ニューロン模倣素子用新材料技術の開発	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹	1.大阪市大院工 1.阪大院工 1.山形大院有機シス arning and Optimization Capabilities of Materials 1.阪大 1.北大情科研
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15 14:45	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3	休憩/Break 異なるTiO2結晶面に吸着した半導体量子ドットの光吸収とUrbach則一光熱変換法と吸光度法による評価一コロイダル量子ドットの光物性と今後の展開発光特性改善のための量子ドット表面修飾アニオン・配位子置換によるペロプスカイト量子ドットLEDの高性能化最適化能力を活用するマテリアル知能科学 / Science of th 口頭講演 (Oral Presentation) W810 会場 (Room W810)マテリアル知能科学:物質に内在する学習・最適化機能の発現を目指してニューロモルフィック工学とマテリアルシナプス・ニューロン模倣素子用新材料技術の開発体憩/Break	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹ 〇浅井 哲也 ¹ 〇長谷川 剛 ¹	1.大阪市大院工 1.阪大院工 1.山形大院有機シス arning and Optimization Capabilities of Materials 1.阪大 1.北大情科研 1.早大先進理工
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15 14:45 15:00	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 但に内在する学習・Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3	休憩/Break 異なるTiO2結晶面に吸着した半導体量子ドットの光吸収とUrbach則一光熱変換法と吸光度法による評価ーコロイダル量子ドットの光物性と今後の展開発光特性改善のための量子ドット表面修飾アニオン・配位子置換によるペロブスカイト量子ドットLEDの高性能化 最適化能力を活用するマテリアル知能科学/Science of the Line (Oral Presentation) W810 会場(Room W810)マテリアル知能科学:物質に内在する学習・最適化機能の発現を目指してニューロモルフィック工学とマテリアルシナプス・ニューロン模倣素子用新材料技術の開発体憩/Break SWNT/ボリ酸ランダムネットワークによる脳型バルス発生学習するマテリアル~ニューラルネットワーク構築~粘菌アメーバに学ぶヤワラカいコンピューティングとロ	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹ 〇浅井 哲也 ¹ 〇長谷川 剛 ¹ 〇田中 啓文 ¹	1.大阪市大院工 1.阪大院工 1.山形大院有機シス arning and Optimization Capabilities of Materials 1.阪大 1.北大情科研 1.早大先進理工 1.九州工業大学
15:40 16:10 16:40 17:10 S13 1/10(S 13:30 13:45 14:15 14:45 15:00 15:15 15:45	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 但に内在する学習・Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3	休憩/Break 異なる TiO2結晶面に吸着した半導体量子ドットの光吸収と Urbach 則一光熱変換法と吸光度法による評価ーコロイダル量子ドットの光物性と今後の展開発光特性改善のための量子ドット表面修飾アニオン・配位子置換によるペロブスカイト量子ドット LED の高性能化最適化能力を活用するマテリアル知能科学/Science of tl 口頭講演 (Oral Presentation) W810 会場 (Room W810)マテリアル知能科学:物質に内在する学習・最適化機能の発現を目指してニューロモルフィック工学とマテリアルシナブス・ニューロン模倣素子用新材料技術の開発休憩/Break SWNT/ポリ酸ランダムネットワークによる脳型バルス発生学習するマテリアル~ニューラルネットワーク構築~粘菌アメーバに学ぶヤワラカいコンピューティングとロボット	〇豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹ 〇浅井 哲也 ¹ 〇長谷川 剛 ¹ 〇田中 啓文 ¹	1.大阪市大院工 1. 阪大院工 1. 山形大院有機シス anning and Optimization Capabilities of Materials 1. 阪大 1. 北大情科研 1. 早大先進理工 1. 九州工業大学 1. 阪大院工, 2.JST さきがけ
15:40 16:10 16:40 17:10 S13 13:45 14:15 14:45 15:00 15:15 15:45	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3 10p-W810-4 招 10p-W810-5 招 10p-W810-6	休憩/Break 異なる TiO2 結晶面に吸着した半導体量子ドットの光吸収と Urbach 則一光熱変換法と吸光度法による評価ーコロイダル量子ドットの光物性と今後の展開発光特性改善のための量子ドット表面修飾アニオン・配位子置換によるペロブスカイト量子ドットLED の高性能化最適化能力を活用するマテリアル知能科学 / Science of tf 口頭講演 (Oral Presentation) W810 会場 (Room W810)マテリアル知能科学:物質に内在する学習・最適化機能の発現を目指してニューロモルフィック工学とマテリアルシナブス・ニューロン模倣素子用新材料技術の開発休憩/Break SWNT/ポリ酸ランダムネットワークによる脳型バルス発生 学習するマテリアル ~ニューラルネットワーク構築~粘菌アメーバに学ぶヤワラカいコンピューティングとロボット 休憩/Break	〇豊田 太郎 ¹ , 沈青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹ 〇浅井 哲也 ¹ 〇長谷川 剛 ¹ 〇田中 啓文 ¹ 〇赤井 恵 ^{1,2} 〇青野 真士 ^{1,2}	1.大阪市大院工 1.阪大院工 1.山形大院有機シス arning and Optimization Capabilities of Materials 1.阪大 1.北大情科研 1.早大先進理工 1.九州工業大学 1.阪大院工, 2.JST さきがけ 1.慶大環境情報, 2.Amoeba Energy (株)
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15 14:45 15:00 15:15 16:15 16:30	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3 相 10p-W810-5 招 10p-W810-6	休憩/Break 異なるTiO。結晶面に吸着した半導体量子ドットの光吸収とUrbach則一光熱変換法と吸光度法による評価ーコロイダル量子ドットの光物性と今後の展開発光特性改善のための量子ドット表面修飾アニオン・配位子置換によるペロブスカイト量子ドットLEDの高性能化最適化能力を活用するマテリアル知能科学/Science of th 口頭講演(Oral Presentation) W810会場(Room W810)マテリアル知能科学:物質に内在する学習・最適化機能の発現を目指してニューロモルフィック工学とマテリアルシナブス・ニューロン模倣素子用新材料技術の開発休憩/Break SWNT/ボリ酸ランダムネットワークによる脳型バルス発生 特別では、おいて、サービー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	○豊田 太郎 ¹ , 沈 青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ ○金 大貴 ¹ ○上松 太郎 ¹ ○千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le ○松本 卓也 ¹ ○浅井 哲也 ¹ ○長谷川 剛 ¹ ○田中 啓文 ¹ ○赤井 恵 ^{1,2} ○青野 真士 ^{1,2}	1.大阪市大院工 1. 阪大院工 1. 山形大院有機シス anning and Optimization Capabilities of Materials 1. 阪大 1. 北大情科研 1. 早大先進理工 1. 九州工業大学 1. 阪大院工, 2.JST さきがけ
15:40 16:10 16:40 17:10 S13 物質 3/10(S 13:30 13:45 14:15 15:00 15:15 15:45	招 10p-M111-7 招 10p-M111-8 招 10p-M111-9 質に内在する学習・ Sun.) 13:30 - 18:00 10p-W810-1 招 10p-W810-2 招 10p-W810-3 招 10p-W810-5 招 10p-W810-6	休憩/Break 異なる TiO2 結晶面に吸着した半導体量子ドットの光吸収と Urbach 則一光熱変換法と吸光度法による評価ーコロイダル量子ドットの光物性と今後の展開発光特性改善のための量子ドット表面修飾アニオン・配位子置換によるペロブスカイト量子ドットLED の高性能化最適化能力を活用するマテリアル知能科学 / Science of tf 口頭講演 (Oral Presentation) W810 会場 (Room W810)マテリアル知能科学:物質に内在する学習・最適化機能の発現を目指してニューロモルフィック工学とマテリアルシナブス・ニューロン模倣素子用新材料技術の開発休憩/Break SWNT/ポリ酸ランダムネットワークによる脳型バルス発生 学習するマテリアル ~ニューラルネットワーク構築~粘菌アメーバに学ぶヤワラカいコンピューティングとロボット 休憩/Break	〇豊田 太郎 ¹ , 沈青 ¹ , 神山 慶太 ² , 早瀬 修二 ³ 〇金 大貴 ¹ 〇上松 太郎 ¹ 〇千葉 貴之 ¹ , 林 幸宏 ¹ , 保志 圭吾 ¹ , 城戸 淳二 ¹ e Material Intelligence: Bringing out the Intrinsic Le 〇松本 卓也 ¹ 〇浅井 哲也 ¹ 〇長谷川 剛 ¹ 〇田中 啓文 ¹ 〇赤井 恵 ^{1,2} 〇青野 真士 ^{1,2}	1.大阪市大院工 1.阪大院工 1.山形大院有機シス arning and Optimization Capabilities of Materials 1. 阪大 1. 北大情科研 1. 早大先進理工 1. 九州工業大学 1. 阪大院工, 2.JST さきがけ 1. 慶大環境情報, 2.Amoeba Energy (株)

		験と計算の連携・融合:脂質膜と膜タンパク質 / Interplay	and integration of experiments and calculations in	nanobiotechnology: lipid membrane and membrane
protein: 3/11(N	Mon.) 13:30 - 17:45	口頭講演 (Oral Presentation) M121会場 (Room M121)		
13:30	•	FMO-DPD手法の開発と脂質・タンパク質への応用	澤 薫 ^{2,5} , 泰岡 顕治 ⁶	1. 立教大, 2. 東大生研, 3. 産総研, 4.(株) JSOL, 5. 星薬科大, 6. 慶応大
14:00		脂質二重膜と膜タンパク質の分子動力学シミュレーショ ン		1.慶應大理工
14:30		3次元フォースマッピング法による生体分子間相互作用 力の可視化		1.京大院工
15:00 15:15 15:30		膜融合の直接可視化 表面修飾基板上での脂質二分子膜形成と膜タンパク質再 構成系への応用 休憩/Break		1. 東大 工, 2. 理研 CPR 1. 群馬大院理工, 2. 群馬大食健康科学セ, 3. 群馬大機器 分析セ
15:45	招 11p-M121-6	脂質二重膜での分子間相互作用とドメイン形成	〇村田 道雄 ¹ , 矢野 陽 ¹ , 安田 智一 ¹ , 土川 博史 ¹ , 花島 慎弥 ¹ , London Erwin ² , Slotte J. Peter ³	1.阪大院理, 2.Stony Brook大学, 3.Åbo Akademi大学
16:15	招 11p-M121-7	定量的粗視化分子シミュレーション:脂質膜の相分離/ 形態変化の分子論	○篠田 渉¹	1.名大院工
16:45	招 11p-M121-8	マイクロウエル架橋膜における脂質分子の側方拡散と相分離	○住友 弘二1, 大嶋 梓2, 中島 寬2, 乾 徳夫1	1. 兵庫県大工, 2.NTT 物性基礎研
17:15	11p-M121-9	高速イオン伝導顕微鏡による脂質膜のナノ計測	○渡辺 信嗣 ² , 開発 秀星 ¹ , 北澤 怜子 ¹ , 田嶋 将 ¹ , Sun Linhao ² , 芳坂 綾子 ² , 執行 航希 ² , 安藤 敏夫 ²	1. 金沢大理工, 2. 金沢大 WPI-NanoLSI
17:30	11p-M121-10	完全混合する脂質二重膜中でコレステロールが誘起する マイクロドメイン形成	○ (M2) ゴー ウェイ シェン メルヴィン¹, 平野 愛 弓², 庭野 道夫³, 手老 龍吾¹	1. 豊橋技科大, 2. 東北大, 3. 東北福祉大
	体 / Semiconducto	rs 動向・趨勢〜物性制御と応用展開〜 / New trend of multir	nary compound receased a control of physical proper	rtice new application
3/9(S	iat.) 13:15 - 17:35	口頭講演 (Oral Presentation) W933会場 (Room W933)		
13:15 13:20 13:50	9p-W933-1 招 9p-W933-2 招 9p-W933-3	多元系物質のバルク・薄膜合成と光電子物性 新規な磁性半導体熱電材料を用いた熱電発電デバイスの	○平松 秀典 ^{1,2} , 神谷 利夫 ^{1,2} , 細野 秀雄 ^{1,2}	1. 筑波大数理, 2. 京大院工, 3. 甲南大理工, 4. 長岡高専 1. 東エ大フロンティア研, 2. 東エ大元素戦略セ 1. 物材機構, 2. 筑波大
14:20	奨 9p-W933-4	研究開発 ZnSnP ₂ 吸収層/Cu電極界面へのCu ₃ P層の導入による直	○桑野 太郎¹, 勝部 涼司¹, 野瀬 嘉太郎¹	1.京大院工
14:35	E 9p-W933-5	列抵抗の低減 Relationship between synthesis temperature and the photocatalytic activity of BiVO ₄	○ (D)ABDELLAOUI imane IMANE¹, Kazuya Tajima¹, Mikas Remeika¹, Shigeru Ikeda², Takato Kawaguchi², Muhamed Islam Monirul¹, Takeaki Sakurai¹	1.Univ.Tsukuba, 2.Konan Univ.
14:50 15:20	招 9p-W933-6	水分解光電極へのカルコパイライト半導体の適用 休憩/Break		1.東大院工, 2.JST さきがけ
15:35	招 9p-W933-7	車載用フレキシブルCIGS太陽電池	○増田 泰造¹, 井上 幹也², 西村 昂人², ジャカパン チャンタナ², 工藤 由貴¹, 峯元 高志²	1.トヨタ自動車, 2.立命館大
16:05	招 9p-W933-8	化合物半導体 Cu(In,Ga)Se ₂ を用いた新規磁気トンネル接		1.物材機構
16:35	奨 9p-W933-9	合の創製 太陽電池を応用した廃炉用高レベル放射線線量計の開発	○(PC) 奥野 泰希¹, 岡本 保², 後藤 康仁³, 秋吉 優史⁴, 今泉 充⁵. 小林 智洋 ⁶	1.原子力機構, 2.木更津高専, 3.京都大, 4.大阪府大, 5.宇宙機構, 6.理研
16:50	奨 9p-W933-10	分光感度計算による Cu ₂ Zn(Sn,Ge)Se ₄ 系半導体の再結合 損失解析: Ge導入によるキャリア収集長の低下	○西垣 之徳¹, 反保 衆志², 藤本 祥平¹, 金 信浩², 柴田 肇². 藤原 裕之¹	
17:05		カルコパイライト太陽電池のアルカリ金属効果	〇石塚 尚吾 ¹ , 田口 昇 ² , 金 信浩 ¹ , 西永 慈郎 ¹ , 上川 由紀子 ¹ , 永井 武彦 ¹ , 反保 衆志 ¹ , 柴田 肇 ¹	1. 産総研太陽光, 2. 産総研電池技術
		責化システム / Integrated Systems for Developing IoT 口頭講演 (Oral Presentation) M121会場 (Room M121)		
13:30	招 10p-M121-1	先端 CMOS デバイスの技術動向と IoT		1. 東大生研
14:00		EnOcean エネルギーハーベスタ無線スイッチ・センサと 今後の IoT の展望について		1.EnOcean GmbH
14:30 15:00		コネクテッド バッテリーで広がる IoT の社会 休憩/Break	○岡部 顕宏 ¹	1. ノバルス株式会社
15:15	招 10p-M121-4	小電力デバイスへの給電を目指したシート状熱電モ ジュールの開発	○武田 雅敏¹	1.長岡技科大工
15:45	招 10p-M121-5	電池交換不要のLPWA対応小型センサデバイスの開発と 応用	○中本 裕之¹, 高 虹¹, 佐藤 弘幸¹	1.富士通研
16:15	招 10p-M121-6	微小エネルギーマネジメント技術で実現した電池不要な 環境発電型センシングシステムの開発と実証	○藤森 司¹	1.日立
		のナノスケール材料・デバイスへの展開 / Advanced ion r	nicroscopy for future nano scale materials and devic	es
		口頭講演 (Oral Presentation) W934会場 (Room W934) New routes and paradigms in Device Engineering for	○ Simon Deleonibus¹	1.Past Chief Scientist, CEA, LETI
		Nanoelectronics and Nanosystems NanoFabrication of Thin Films with Light Ions Beams	O John Notte ¹ , Brett Lewis ¹ , Deying Xia ¹	1.Carl Zeiss SMT, Inc
		Realization of nanophotonic quantum devices using a He ion microscope	O Hideaki Takashima ¹ , Atsushi Fukuda ¹ , Toshiyuki Tashima ¹ , Kazuki Fukushige ¹ , Shigeki Takeuchi ¹	
	招 E 11p-W934-4	Design and fabrication of single-nanometer-scale graphene phononic crystals for thermal engineering by using focused helium ion beam	O Hiroshi Mizuta ^{1,3} , Mayeesha Haque ¹ , Seiya Kubo ¹ , Yoshifumi Oshima ¹ , Shinichi Ogawa ² , Manoharan Muruganathan ¹	1.JAIST, 2.AIST, 3.Hitachi Cam Lab
15:30 15:45	招 E 11p-W934-5	休憩/Break Study on magnetoresistance and carrier localization in graphene with defects induced by helium ion microscopy	O Takuya Iwasaki¹, Shu Nakamura², Muruganathan Manoharan², Masashi Akabori², Yoshifumi Morita³, Satoshi Moriyama¹, Shinichi Ogawa⁴, Yutaka Wakayama¹, Hiroshi Mizuta².⁵, Shu Nakaharai¹	1.NIMS, 2.JAIST, 3.Gunma Univ., 4.AIST, 5.Hitachi Camb. Lab
16:15	招 E 11p-W934-6	YBa ₂ Cu ₃ O ₇ nano SQUIDs fabricated with a focused helium ion beam	○ Shane Andrew Cybart¹, Hao Li¹, Ethan Cho¹	1.UC Riverside
16:45	招 E 11p-W934-7	Current Status of High Resolution In Situ and Environmental TEM Studies of Material Reactions	O Robert Sinclair ¹ , Yunzhi Liu ¹ , Ai Leen Koh ¹	1.Stanford Univ.
17:15	招 E 11p-W934-8	Electron microscopy of samples in liquid and ice, and correlated Helium ion microscopy	O Chikara Sato ¹ , Mari Sato ¹ , Shinichi Ogawa ²	1.AIST bmd, 2.AIST neri

15 結晶:	工学 / Crystal Engi	neering		
S18 窒化	ン物半導体特異構造	の科学 ナノ物性評価技術の進展と物性制御/Science cr	eated by singularity in nitride-semiconductors; Deve	lopment of nano-characterization and control of
	properties	DESTRICTION OF THE PROPERTY OF		
3/9(Sa 13:30	at.) 13:30 - 18:00 招 9p-W541-1	口頭講演 (Oral Presentation) W541会場 (Room W541) 多光子励起 PLマッピングによる GaN 結晶中の特異構造	○谷川 智之¹, 松岡 隆志¹	1.東北大金研
14:00	招 9p-W541-2	の三次元観察 顕微ラマン分光法による GaN 中の転位欠陥解析と機械学 習の活用	〇宇治原 徽 1,2,3 , 小久保 信 2,3 , 角岡 洋 2,3 , 藤榮 文博 2 , 井爪 将 2,3 , 恩田 正 $^{-1}$, 山田 永 3 , 清水 三聡 3 , 原田 俊太 1,2 , 田川 美穂 1,2	1.名大未来研, 2.名大院工, 3.産総研
14:30	招 9p-W541-3	窒化物半導体特異構造の時間空間分解カソードルミネッセンス評価		1. 東北大多元研, 2. 名大未来研, 3. 北大量エレ研
15:00	招 9p-W541-4	近接場光学顕微分光法によるInGaN量子井戸構造における V ピット近傍の特異構造 PL マッピング	倉井 聡 1 ,岡田 成仁 1 ,只友 一行 1 ,〇山田 陽一 1	1.山口大院・創成科学
15:30 16:00	招 9p-W541-5	休憩/Break 深紫外近接場光学顕微鏡の開発と AI リッチ AIGaN 系特異 構造の PL マッピング評価	〇石井 良太¹, 船戸 充¹, 川上 養一¹	1.京大院工
16:30	招 9p-W541-6	レーザーTHz放射顕微鏡による窒化物半導体特異構造の 分極マッピング	〇川山 巌1	1.阪大レーザー研
17:00	招 9p-W541-7	AlGaN ドーピング技術と紫外光デバイスへの応用	〇岩谷 素顕 1 , 川瀬 雄太 1 , 佐藤 恒輔 1,2 , 安江 信次 1 , 荻野 雄矢 1 , 岩山 章 1 , 竹内 哲也 1 , 上山 智 1 , 赤崎 1	1.名城大理工, 2.旭化成(株), 3.名大・赤崎記念研究 センター
17:30	招 9p-W541-8	組成傾斜 AIGaN 超格子を用いたドービング技術と紫外 LEDへの応用	○江端 一晃¹, 谷保 芳孝¹, 熊倉 一英¹	1.NTT物性基礎研
S19 イオ	⊤ン注入技術の進展	~Si、GaAs から最先端 WBG 半導体まで~ / Progress i	n ion implantation for semiconductor devices -Si, Ga	As and WBG materials-
		口頭講演 (Oral Presentation) W922会場 (Room W922)	0 11 12	
13:30 14:00		イオン注入技術 - 温故知新 - 新規縦構造を用いた高いダイナミックな耐久性を持つ先		1.名工大 1.三菱電機(株)パワーデバイス製作所
14:30	招 10p-W922-3	進Siパワー半導体 SiCへのイオン注入技術とデバイス応用	○木本 恒暢 ¹	1.京大工
15:00		3次元 SiC - MOSFET における不純物層設計技術	〇久本 大¹, 手賀 直樹¹, 谷 和樹¹, 須藤 建瑠¹, 毛利 友紀¹	
15:30	IT 40 14000 5	休憩/Break	0#5 781	4 - 11 1 mb -
15:50 16:20		GaAsへのイオン注入技術 - LSI実現をめざして - GaNへのイオン注入技術	○葛原 正明¹ ○加地 徹¹	1. 福井大院工 1. 名大未来研
16:50		Ga ₂ O ₃ イオン注入技術の進展とデバイスプロセスへの適用		1.情通機構, 2.ノベルクリスタルテクノロジー, 3.東京
17:20	招 10p-W922-8	イオン注入による単一不純物欠陥の規則的配列形成とその応用	島 武 ⁴ , McGuinness Liam ⁵ , Jelezko Fedor ⁵ , Liu	1.早大理工, 2.東北大, 3.物材機構, 4.量研, 5. ウルム大, 6. 華東師範大, 7.群大, 8. 筑波大
		- ダイヤモンド中浅い単一 NV センターの配列形成 -	Yan ⁶ , Wu E ⁶ , 加田 渉 ⁷ , 花泉 修 ⁷ , 川原田 洋 ¹ , 磯谷 順	
S20 結晶	温工学×放射光シン	ポジウム / Symposium on Crystal Science with Synchrot	ron Radiation	
3/11(M		口頭講演 (Oral Presentation) W933会場 (Room W933)		
13:30		エネルギーデバイスの放射光解析		1.東大物性研, 2.東京都市大総合研
14:00	招 11p-W933-2	RF-MBE法 GaInN ヘテロエピタキシャル成長における放射光その場 X線回折測定	〇山口 智広', 佐々木 拓生', 高橋 正光', 尾沼 猛儀', 本田 徹¹, 荒木 努³, 名西 やすし³	1. 上字院大, 2. 重研, 3. 立命館大
14:30	招 11p-W933-3	放射光光電子分光によるIII-V族窒化物半導体の価電子帯構造と表面酸化プロセスの評価		1. 物材機構, 2. 原子力機構, 3. 理研
15:00 15:15		N極性 GaN上の液体 Ga層のその場 X線構造解析 透過 X線回折によるシリコン上のビスマス薄膜成長と界	○佐々木 拓生¹, 高橋 正光¹ ○田尻 寛男¹	1.量研 1.高輝度セ
15.00	E 11 W000 (面構造のリアルタイム観察		1 NING
15:30	E 11p-W933-6	Characterization of a 4-inch GaN wafer by X-ray diffraction topography	○ (PC) Jaemyung Kim¹, Okkyun Seo¹, Chulho Song¹, Yanna Chen¹, Satoshi Hiroi¹, Yoshihiro Irokawa¹, Toshihide Nabatame¹, Yasuo Koide¹, Osami Sakata¹	I.NIMS
15:45		休憩/Break		
16:15	招 11p-W933-7	放射光を使った GaN 系混晶半導体と GaN 系量子殻の局所構造評価	〇宮嶋 孝夫 ¹ , 清木 良麻 ¹ , 近藤 剣 ¹ , 市川 貴登 ¹ , 伊奈 稔哲 ² , 新田 清文 ² , 宇留賀 朋哉 ² , 鶴田 一樹 ² , 隅谷 和 嗣 ² , 今井 康彦 ² , 木村 滋 ² , 安田 伸広 ² , 三好 実人 ³ , 今 井 大地 ¹ , 竹内 哲也 ¹ , 上山 智 ¹	1.名城大理工, 2.JASRI, 3.名工大
16:45	招 11p-W933-8	放射光ナノビームX線回折を用いた半導体材料・デバイスの構造解析		1. 阪大院基礎工, 2.JASRI
17:15	招 11p-W933-9	車載 GaN パワーデバイスに向けた硬 X線光電子分光法によるエネルギーバンドダイアグラム測定		1. 豊田中研
17:45	招 11p-W933-10	その場放射光X線回折による結晶成長研究の進展	○高橋 正光1	1.量研
18:15	11p-W933-11		○高橋 正光 ¹ , 尾嶋 正治 ^{2,3} , 山口 智広 ⁴ , 角谷 正友 ⁵ , 宮嶋 孝夫 ⁶ , 酒井 朗 ⁷ , 片岡 恵太 ⁸	1.量研, $2.$ 東大物性研, $3.$ 東京都市大総合研, $4.$ 工学院大, $5.$ 物材機構, $6.$ 名城大理工, $7.$ 阪大院基礎工, $8.$ 豊田中研
		phous and Microcrystalline Materials		
	lon.) 9:00 - 12:15	ィングの新展開 / Recent Progress of Energy Harvesting 口頭講演 (Oral Presentation) W242 会場 (Room W242) シンポジウム開催趣旨	○鈴木 雄二¹,野村 政宏¹,秋永 広幸²	1. 東大, 2. 産総研
9:05		メカノ・サーマル機能化による熱電変換材料の開発	○野小 艇—,野村 政宏,秋水 丛辛 ○塩見 淳一郎 ¹	1.東大工
9:35	招 11a-W242-3	圧電薄膜を用いた振動発電技術	○神野 伊策¹	1.神戸大工
10:05	招 11a-W242-4	フォノンエンジニアリングによるシリコン薄膜熱電発電 デバイス開発	○野村 政宏¹, 柳澤 亮人¹, Paul Oliver²	1. 東大生研, 2. フライブルク大
10:35 10:45	招 11a-W242-5	休憩/Break 低周波数・広帯域対応を指向したポリマーMEMS振動発 電デバイス	○鈴木 孝明 1.2	1. 群馬大 , 2.JST さきがけ
11:15 11:45		熱電発電材料開発と高性能デバイスへの展望 MEMSエレクトレット振動発電デバイスの産業化	○菅野 勉¹, 玉置 洋正¹, 佐藤 弘樹¹ ○三屋 裕幸³, 芦澤 久幸¹, 本間 浩章², 藤田 博之², 橋 □ 原³, 年吉 洋²	1.パナソニック 1.鷺宮製作所, 2.東大生研, 3.静大工
3/11(M 13:45		口頭講演 (Oral Presentation) W242 会場 (Room W242) エネルギーハーベスティングデバイスに用いるカリウム イオンエレクトレットにおける電荷蓄積機構の理論的研		1.名大院工, 2.名大未来・シス研
14:00	11p-W242-2	究 量子化学計算を用いた高電子親和力官能基を持つアモル ファスフッ素ポリマーエレクトレットの開発	○金 善右¹,鈴木 邦子¹,鈴木 雄二¹	1. 東京大学
		. , , , ホ・ノ・ ー・ノー・ノージ囲光		

14:15	11p-W242-3	接地電極の不要なカーボンナノチューブ摩擦帯電型発電	○松永 正広¹,廣谷 潤²,岸本 茂²,大野 雄高².3	1. 名大VBL, 2. 名大工, 3. 名大未来研
14:30	11p-W242-4	シート ナノインプリントによるシリコン薄膜熱電ハーベスタの		1.東大生研, 2.フライブルク大, 3.JST さきがけ
14:45	11p-W242-5	作製と性能評価 ウエアラブル応用のための回転型エレクトレットエネル	$ x^{1,3} $ 〇三好 智也 1 , 田中 佑樹 1 , 柳 依然 1 , 鈴木 雄二 1	1.東大
15:00	<u> </u>	ギーハーベスタの開発 2自由度構造を有する圧電MEMS振動発電素子の電気機 械特性	神田 健介³, 藤村 紀文¹	
S22 金	:属酸化物による新技:	ギャップ酸化物半導体材料・デバイス」/ Joint Session K ' 術の開拓 I ~薄膜形成からデバイス創出に至るまで~ / Pic		
3/10(13:30	,	口頭講演 (Oral Presentation) W241会場 (Room W241) 金属酸化物薄膜トランジスタの信頼性劣化現象	○浦岡 行治¹, パオロ ベルムンド¹, 藤井 茉美¹, 上沼	1.奈良先端大
14:15	招 10p-W241-2	ヘテロ接合チャネルによるIn-Ga-Zn-O薄膜トランジスタの高移動度・高信頼性化	睦典 ¹ , 石河 泰明 ¹ ○古田 守 ^{1,2} , 是友 大地 ¹ , アマン メハディ ¹ , 曲 勇作 ¹	1. 高知工大, 2. 高知工大 総研
14:45 15:00		結晶性酸化物半導体の組成評価とFET特性 反応性ブラズマ蒸着法による Ga 添加 ZnO 薄膜における 成長速度とキャリア密度の支配因子	○岡崎 健一¹, 生内 俊光¹, 保坂 泰靖¹, 山崎 舜平¹ ○山本 哲也¹, 古林 寬¹, 牧野 久雄¹	1. 半工ネ研 1. 高知工科大総研
15:15 15:30	招 10p-W241-5	休憩/Break 酸化物半導体・デバイスの電子構造、材料設計と成膜条 件	○神谷 利夫 12, 細野 秀雄 12	1.東工大フロンティア研, 2.東工大元素セ
16:00 16:45		有機EL応用を目指したアモルファス酸化物半導体 ミストCVD における薄膜成長メカニズム	○細野 秀雄 ¹ ○川原村 敏幸 ^{1,2} , 西 美咲 ¹ , 刘 丽 ¹ , 坂本 雅仁 ¹ , ルトンジャン ピモンパン ¹ , 佐藤 翔太 ¹ , 上田 真理子 ¹ , 安 岡 達也 ¹ , 長谷川 諒 ¹ , 田頭 侑貴 ¹ , 尾崎 珠子 ¹ , 鄧 太 江 ¹	1.東工大元素センター 1.高知工大 シスエ, 2.高知工大 総研
17:00		PdCoO₂/β-Ga₂O₃エピタキシャルショットキー接合 ソション「AIエレクトロニクス」/ Focused S	○原田尚之¹,伊藤俊¹,塚崎敦¹ Session "Al Flectronics"	1. 東北大金研
シンポ	ジウムのプログラム	はプログラム冒頭にございます。		
3/110	(Mon.) 9:00 - 11:45	ン「AIエレクトロニクス」/ Focused Session "AI Electorn 口頭講演 (Oral Presentation) W810会場 (Room W810)		
9:00		フォーカストセッション「AIエレクトロニクス」始動 にあたり		1.東芝メモリ
9:15	招 11a-W810-2	「フォーカストセッション「AIエレクトロニクス」 分科 内招待講演」 AIエレクトロニクスの基盤としての数理脳科学	○合原 一幸 1	1. 東大生研
9:45	11a-W810-3	マイクロパターン培養細胞を用いた神経回路応答の構成 論的解析	○早川 岳志¹, 山本 英明², 平野 愛弓¹.²	1.東北大通研, 2.東北大 AIMR
10:00	奨 11a-W810-4	放射光ナノトモグラフィ法によるヒト脳神経ネットワークの三次元解析		5.JASRI/SPring-8, 6.東大院新領域, 7.Argonne Nat'l
10:15 10:30		線形および非線形システムを用いた時系列データの予測 生体データ推定に適用した Recurrent Neural Networks に おける学習バラメータの検討		1. 東京農工大院工 1. 東京農工大院工
10:45 11:00		二状態雄率遷移モデルによる人工ニューロンの基礎理論 隣接レブリカ間の協調的スピン操作による量子アニーリ ング的群知能		1. 広大総科, 2. 旭川医大物理 1. 産総研
11:15	奨 E 11a-W810-9	Generative adversarial network for robust Raman spectra identification	○ (M2)HSUNWEN FANG¹, CHUNHWAY HSUEH¹	1.National Taiwan Univ.
11:30		カオス時系列を用いた敵対的生成ネットワーク (CHAOS GAN)	○成瀬 誠¹, 巳鼻 孝朋², 菅野 円隆², 内田 淳史²	1.情通機構, 2.埼玉大
3/11(口頭講演 (Oral Presentation) W810 会場 (Room W810) 「フォーカストセッション「AIエレクトロニクス」 分科 内招待講演」 次世代AIのための脳型記憶処理モデルと新デバイス技術 への期待	〇森江 隆 1 , 立野 勝巳 1 , 高田 健介 1 , 川内 聖士 1 ,下留	1.九工大生命体工
13:45	奨 E 11p-W810-2	Characterization and Modeling of FTJ Memristive Devices for in-Memory Computing	○ (P)Radu M Berdan¹, Takao Marukame¹, Yoshifumi Nishi¹, Kensuke Ota², Masumi Saito², Shosuke Fujii²	1.TOSHIBA, 2.TOSHIBA MEMORY CORPORATION
14:00	奨 11p-W810-3	高抵抗動作を目指した Cu 上部電極型 $Ta_2O_{5-\delta}$ 抵抗変化多値メモリ	○李 遠霖¹, 福地 厚¹, 有田 正志¹, 高橋 庸夫¹, 森江 隆²	1.北大・院情報, 2.九工大・生命体工
14:15	奨 11p-W810-4	電圧記録型メモリで観測されるシナプス的挙動	○(M1) 渡邊 佑紀¹, 小林 成¹, 清水 亮太¹.², 西尾 和 記¹, リウ ウェイ³, 渡邉 聡³, 一杉 太郎¹	1.東工大物質理工, 2.JST さきがけ, 3.東大工
14:30	奨 11p-W810-5	ドナー密度分布制御型メモリスタ素子における抵抗変化 機構の有限要素法シミュレーション	○永田 善也¹, 藤平 哲也¹, 酒井 朗¹	1. 阪大院基礎工
14:45	奨 11p-W810-6	ナノギャップアレイにおけるシナプス動作を利用したパ ターン記憶の検討	〇佐藤 友美 1 , 坂井 奎太 1 , 南 浩二 1 , 谷 創貴 1 , 伊藤 光 樹 1 , 八木 麻実子 2 , 白樫 淳 $^{-1}$	1.東京農工大院工, 2.一関高専
15:00	11p-W810-7	集積化Auナノギャップにおける脳型演算特性	〇坂井 奎太¹, 佐藤 友美¹, 南 浩二¹, 谷 創貴¹, 伊藤 光 樹¹, 八木 麻実子², 白樫 淳一¹	1.東京農工大院工, 2.一関高専
15:15 15:30	奨 E 11p-W810-8	Spin wave detection by CPW with additional electrodes for external field modulation for neuromorphic application 体題/Break	○ (M1)shamim sarker¹, Hiroyasu Yamahara¹, Munetoshi Seki¹, Hitoshi Tabata¹	1.University of Tokyo
15:45	11p-W810-9	神思/Dreak 導電性高分子ワイヤーを用いた機械学習システムの作製	〇岡田 将 1 , 杉戸 泰雅 1 , 萩原 成基 1 , 浅井 哲也 2 , 桑原 裕司 1 , 赤井 恵 $^{1.3}$	1. 阪大院工, 2. 北大院情報, 3.JST さきがけ
16:00	11p-W810-10	フォトクロミック結晶ナノ光異性化と上下プローブSPM 計測にもとづくシューベルト多項式系列の生成		1.山梨大工, 2.名大情報, 3.龍谷大理工, 4.情通機構
16:15	11p-W810-11	【注目講演】金属酸化物系シナプス素子のSTDP評価と学習器への応用検討		1.東芝研開セ
16:30	11p-W810-12	FeFET を用いた時間領域アナログ積和演算回路の特性評価		1. 九工大・生命体工, 2. 産総研
16:45	11p-W810-13	局所学習則と薄膜デバイスを用いるリアルニューロモーフィックシステム	○木村 睦 ^{1,2} , 生島 恵典¹, 杉崎 澄生¹, 田中 遼¹, 山川 大樹¹, 山根 弘樹², 池田 裕哉², 中島 康彦²	1. 龍谷大理工, 2. 奈良先端大
17:00	11p-W810-14	非同期CMOS論理回路に問題をマッピングしたアメーバ 型解探索電子システムの動的挙動		1.北大量集センター, 2.慶大環情

17:15				
	11p-W810-15	革新的コンピューティング(計算ドメイン指向による基 盤技術の創出)	○馬場 寿夫¹,河村 誠一郎¹,嶋田 義皓¹,永野 智己¹,福島 俊一¹,藤井 新一郎¹,的場 正憲¹,勝又 康弘¹,高 地 伸夫¹,木村 康則¹	1.JST
17:30	11p-W810-16	結晶性酸化物半導体FET/シリコンFETハイブリッド構造の人工ニューラルネットワーク向けアナログ乗算素子の実測結果	○黒川 義元¹, 青木 健¹, 上妻 宗広¹, 木村 肇¹, 山崎 舜	1. 半エネ研
7:45	11p-W810-17	の天品相称 結晶性酸化物半導体FET/シリコンFETハイブリッド構 造の人工ニューラルネットワーク向け積和演算回路のシ ミュレーション		1. 半エネ研
3/12(Ti	Tue.) 9:30 - 11:30 12a-PA4-1	ポスター講演 (Poster Presentation) PA会場 (Room PA)酸化マンガンナノ粒子を用いた修復能を持つ抵抗変化素	○番 貴彦¹, 浦岡 行治², 山本 伸一¹	1. 龍谷大理工, 2. 奈良先端大
	12a-PA4-2	子の作製と評価 非結晶酸化物半導体を記憶素子として用いたニューロモ ロフィックデバイス	〇杉崎 澄生 1 , 倉崎 彩太 1 , 田中 遼 1 , 滝下 雄太 1 , 松田 時官 3 , 中島 康彦 2 , 木村 睦 1,2,3	1. 龍谷大学, 2. 奈良先端大, 3. 龍谷大革新プロセス研究 センター
	12a-PA4-3	フェロセン修飾高分子電解質超薄膜を用いた抵抗変化ス イッチの電流-電圧特性		1. 東北大多元研
		Analog-cores appropriate to the spiking neural-networks 磁壁移動型メモリスタを応用したニューロモーフィック 素子の開発		1.Toshiba R&D Center 1.TDK 技術・知財本部
	12a-PA4-6	インビボでの周波数依存性シナプス可塑性の数理的解析	国 徹郎4	4. 東理大物理, 5. 東理大応物
	12a-PA4-7	リカレントニューラルネットワークによる Sigmoid 関数 を用いた関数近似能力の拡張	○小柴 昌隆¹, 榎本 洸一郎¹, 宮城 茂幸¹, 酒井 道¹	1. 滋賀県立大工
	12a-PA4-8	TMSによる生体刺激のメカニズム	坂達也 $^{2.3,6.10}$, 横井 $6^{2.3.5}$, 伊藤 拳 $^{1.7}$, 窪山 泉 $^{1.7}$, ○ 羽田 克彦 $^{1.2.3,4.8.9}$	1.国土舘大スポ医,2.国土舘大防災研,3.数理医科研, 4.東理大物理,5.東理大数学,6.コムズ研,7.国土舘大ノ イテクリサーチセンター,8.共済会櫻井病院,9.クリ ニック・ハイジーア,10.放送大学
	12a-PA4-9	粘菌に着想を得たTSP解探索アルゴリズムの電子回路実 装	○斉藤 健太¹, 末藤 直樹¹, 葛西 誠也¹, 青野 真士²	1.北大量集センター, 2.慶大環情
/12(Tu 8:15		表 口頭講演 (Oral Presentation) W933 会場 (Room W933) 空間光変調器を用いた波長多重光リザーバーコンピュー	○小仁所 志栞¹, 中島 光雅¹, 田仲 顕示¹, 橋本 俊和¹	1.NTT
:30	奨 12p-W933-2	ティングの提案 レーザの遅延カオス同期を用いた強化学習と意思決定の		1. 埼玉大, 2. 情報通信研究機構
:45	奨 12p-W933-3	性能評価 短い遅延ループを有する半導体レーザを用いたリザーバ		1. 埼玉大学
:00	奨 12p-W933-4	コンピューティングの並列化 光リザーバコンピューティングにおける戻り光強度変調 と位相変調の比較実験	内田淳史¹ ○ハヤアマリナアフィカ¹, 菅野 千紘¹, 菅野 円隆¹, 内田淳史¹	1. 埼玉大学
:15		とというない。 光多層リザーバコンピューティング 光微小共振器によるリザバー計算:大規模光ネットワー クとセンシング応用	○中島 光雅¹, 小仁所 志織¹, 田仲 顕至¹, 橋本 俊和¹	1.NTT先デ研 1.金沢大理工, 2.埼玉大, 3.NTT CS 研
l:45	12p-W933-7	分子ネットワークによる神経型情報デバイスの構築	宇佐美 雄生 1 , 斉藤 明弘 1 , 阪本 怜央 1 , 福丸 知世 1 , 村 松 巧実 1 , オーデ・グルート・ビーバーボルグ ハンス 1 , 内藤 泰久 2 , 〇松本 卓也 1	1. 阪大理, 2. 産総研
5:00	奨 12p-W933-8	カーボンナノチューブ/ポリ酸分子ネットワークを用いたリザーバコンピューティング		1. 阪大院工 , 2. 北大院情 , 3.JST さきがけ
5:15	E 12p-W933-9	Two-bit input binary task with reservoir computing using nanomagnet array	Furuta ¹ , Yuki Kuwabiraki ¹ , Ryoichi Nakatani ¹ , Yoshishige Suzuki ¹	1.Osaka Univ.
:30		スピン波リザバーコンピューティングチップデバイス スピントルク発振素子の短時間記憶容量		1.東大工学系国推教, 2.東大工学系電気系 1.産総研, 2.東大物性研, 3.東京大学, 4.JST さきがけ
5:45				
応用:		nterdisciplinary Physics and Related Areas	s of Science and Technology	
応用 : ンポジ	*ウムのプログラム	nterdisciplinary Physics and Related Areas まプログラム冒頭にございます。 t / Interdisciplinary and General Physics	s of Science and Technology	
応用: ンポジ l 応用	ウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30	はプログラム冒頭にございます。 ₹ / Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA会場 (Room PA)		1. 東理大
応用 : ンポジ 1 応用4	ウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2	はプログラム冒頭にございます。 ₹/Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術	 ○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ 	1.東理大 1.東理大
応用 : ンポジ 1 応用4	öウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3	まプログラム冒頭にございます。 《 / Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのバルス大強度相対論的 電子ビーム照射と色中心検出装置の開発	 ○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ ○(M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠親¹, 新原 晧一¹, Gordon Thorogood⁴, 今田 剛³ 	1. 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科 学大学, 3. 新潟工科大学, 4.Australian Nuclear Science and Technology Organization
応用: ンポジ l 応用	ウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-4	まプログラム冒頭にございます。 札/Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA 会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのバルス大強度相対論的 電子ビーム照射と色中心検出装置の開発 静電界を用いた複合材料内部の評価に関する研究	○ (B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○ (B) 城市 啓太¹, 生野 孝¹ ○ (M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 皓一¹, Gordon Thorogood⁴, 今田 剛³ ○ 菊永 和也¹, 寺崎 正¹	1. 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4.Australian Nuclear Science and Technology Organization 1. 産総研
応用: ンポジ l 応用	öウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3	まプログラム冒頭にございます。 《 / Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのバルス大強度相対論的 電子ビーム照射と色中心検出装置の開発	○ (B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○ (B) 城市 啓太¹, 生野 孝¹ ○ (M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 皓一¹, Gordon Thorogood⁴, 今田 剛³ ○ 菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹	1. 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科 学大学, 3. 新潟工科大学, 4.Australian Nuclear Science and Technology Organization
応用 : ンポジ 1 応用4	 ウムのプログラム 物理一般・学際領域のn.) 13:30 - 15:30 11p-PAI-1 11p-PAI-2 11p-PAI-3 11p-PAI-4 11p-PAI-5 11p-PAI-6 奨 11p-PAI-7 	はプログラム冒頭にございます。 ② / Interdisciplinary and General Physics ボスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのパルス大強度相対論的 電子ビーム照射と色中心検出装置の開発 静電界を用いた複合材料内部の評価に関する研究 発電検出のためのIoTデバイスの研究 ベルセロ法により生成された負圧の汚染布に対する洗浄 効果 ベルセロ法を用いた負圧の殺菌作用 ダイヤモンドアンビルセルを用いた超高圧力下における	○ (B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○ (B) 城市 啓太¹, 生野 孝¹ ○ (M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 晧一¹, Gordon Thorogood⁴, 今田 剛³ ○ 菊永 和也¹, 寺崎 正¹ ○ 田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○ 廣 和樹¹, 勝間 大知², 福岡 寛¹, 中村 篤人¹ ○ 松内 秀直¹, 福岡 寛¹, 中村 篤人¹ ○ 奥田 善之¹, 山田 明², 太田 健二¹, 前田 毅³, 和田 隆	 東理大 種限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東コ
応用 : ンポジ 1 応用4	 ウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-4 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 	はプログラム冒頭にございます。 《 / Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ペーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのパルス大強度相対論的電子ビーム照射と色中心検出装置の開発 静電界を用いた複合材料内部の評価に関する研究 発電検出のためのIoT デバイスの研究 ペルセロ法により生成された負圧の汚染布に対する洗浄 効果 ベルセロ法を用いた負圧の殺菌作用	○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ ○(M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 皓一¹, Gordon Thorogood⁴, 今田 剛³ ○菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寛¹, 中村 篤人¹ ○松内 秀直¹, 福岡 寛¹, 中村 篤人¹, 廣 和樹¹ ○奥田 善之¹, 山田 明², 太田 健二¹, 前田 穀³, 和田 隆 博³, 廣瀬 敬⁴.⁵ ○(M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大	 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東コ大ELSI, 5. 東大理地惑
応用: ンポジ l 応用	ウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-4 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8	まプログラム冒頭にございます。 《/Interdisciplinary and General Physics ポスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのバルス大強度相対論的 電子ビーム照射と色中心検出装置の開発 静電界を用いた複合材料内部の評価に関する研究 発電検出のためのIoTデバイスの研究 ベルセロ法により生成された負圧の汚染布に対する洗浄 効果 ベルセロ法を用いた負圧の殺菌作用 ダイヤモンドアンビルセルを用いた超高圧力下における p型伝導性 SrCuSeF、BaCuSeFの電気伝導度測定	○ (B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○ (B) 城市 啓太¹, 生野 孝¹ ○ (M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 皓一¹, Gordon Thorogood⁴, 今田 剛³ ○ 菊永 和也¹, 寺崎 正¹ ○ 田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○ 廣 和樹¹, 勝間 大知², 福岡 寬¹, 中村 篤人¹ ○ 松內 秀直¹, 福岡 寬¹, 中村 篤人¹, 廣 和樹¹ ○ 奥田 善之¹, 山田 明², 太田 健二¹, 前田 穀³, 和田 隆 博³, 廣瀬 敬⁴.⁵ ○ (M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大 軌¹, 吉本 則之¹ ○ 三上 舞子¹, 長谷川 剛¹	 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東コ大ELSI, 5. 東大理地惑
応用 : ンポジ 1 応用4	が理一般・学際領域のn.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-4 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 奨 11p-PA1-9 11p-PA1-10	まプログラム冒頭にございます。 *************** *********** *******	○ (B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○ (B) 城市 啓太¹, 生野 孝¹ ○ (M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 皓一¹, Gordon Thorogood⁴, 今田 剛³ ○ 菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寬¹, 中村 篤人¹ ○ 松內 秀直¹, 福岡 寬¹, 中村 篤人¹, 廣 和樹¹ ○ 奥田 善之¹, 山田 明², 太田 健二¹, 前田 穀³, 和田 隆 博³, 廣瀬 敬⁴.⁵ ○ (M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大 軌¹, 吉本 則之¹ ○三上 舞子¹, 長谷川 剛¹	1. 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東工大ELSI, 5. 東大理地惑 1. 岩手大理工, 2. 日清オイリオグループ(株) 1. 早稲田大応物 1. 伊藤忠テクノソリューションズ
応用: ンポジ l 応用	ボリーのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-4 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 奨 11p-PA1-10 11p-PA1-10	まプログラム冒頭にございます。 *************** ************ ******	○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ ○(M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 晧一¹, Gordon Thorogood⁴, 今田 剛³ ○菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寛¹, 中村 篤人¹ ○松内 秀直¹, 福岡 寛¹, 中村 篤人¹, 廣 和樹¹ ○奥田 善之¹, 山田 明², 太田 健二¹, 前田 穀³, 和田 隆 博³, 廣瀬 敬⁴.⁵ ○(M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大 軌¹, 吉本 則之¹ ○三上 舞子¹, 長谷川 剛¹ ○瀬川 正仁¹, 森一樹¹ ○併越 葵¹, 関山 早紀¹, 伊東 千尋¹ ○(B) 竹下 雅人¹, 村田 駿介¹, 寺嶋 寛成², 岩崎 祥	1. 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東工大ELSI, 5. 東大理地惑 1. 岩手大理工, 2. 日清オイリオグループ(株) 1. 早稲田大応物
応用 : ンポジ 1 応用4	ボウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 奨 11p-PA1-10 11p-PA1-10 11p-PA1-11 11p-PA1-13 奨 11p-PA1-13	まプログラム冒頭にございます。 *************** ********** ******* ****	○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ ○(M1) 黑崎 大聖¹, 未松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 晧一¹, Gordon Thorogood⁴, 今田 剛³ ○菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寛¹, 中村 篤人¹ ○松內 秀直¹, 福岡 寛¹, 中村 篤人¹, 廣 和樹¹ ○奥田 善之¹, 山田 明², 太田 健二¹, 前田 毅³, 和田 隆 博³, 廣瀬 敬⁴5 ○(M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大 軌¹, 吉本 則之¹ ○三上 舞子¹, 長谷川 剛¹ ○瀬川 正仁¹, 森一樹¹ ○餅越 葵¹, 関山 早紀¹, 伊東 千尋¹ ○(B) 竹下 雅人¹, 村田 駿介¹, 寺嶋 寛成², 岩崎 祥 大³, 羽生 宏人³, 山口 聡一朗¹ ○稲 義実¹, 面谷 信¹, 藤川 知栄美¹	1. 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地感, 2. 東工大工学院, 3. 龍谷大理工, 4. 東工大ELSI, 5. 東大理地惑 1. 岩手大理工, 2. 日清オイリオグループ(株) 1. 早稲田大応物 1. 伊藤忠テクノソリューションズ 1. 和歌山大システム工
応用 ウンボジ 1 応用 1 応用 1 (Ma	ボウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 奨 11p-PA1-9 11p-PA1-10 11p-PA1-11 11p-PA1-13 奨 11p-PA1-14	まプログラム冒頭にございます。 *************** ********** ********	○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ ○(M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 晧一¹, Gordon Thorogood⁴, 今田 剛³ ○菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寛¹, 中村 篤人¹ ○松內 秀直¹, 福岡 寛¹, 中村 篤人¹, 廣 和樹¹ ○與田 善之¹, 山田 明², 太田 健二¹, 前田 穀³, 和田 隆 博³, 廣瀬 敬⁴.⁵ ○(M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大 軌¹, 吉本 則之¹ ○三上 舞子¹, 長谷川 剛¹ ○瀬川 正仁¹, 森一樹¹ ○餅越 葵¹, 関山 早紀¹, 伊東 千尋¹ ○(B) 竹下 雅人, 村田 駿介¹, 寺嶋 寛成², 岩崎 祥 大³, 羽生 宏人³, 山口 聡一朗¹	 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 京良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東工大ELSI, 5. 東大理地惑 1. 岩手大理工, 2. 日清オイリオグルーブ(株) 1. 早稲田大応物 1. 伊藤忠テクノソリューションズ 1. 和歌山大システム工 1. 関西大シス理, 2. 関西院シス理, 3. 宇宙研
. 応用 シンポジ 1. 応用 3/11(Me	ボウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-2 11p-PA1-3 11p-PA1-4 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 奨 11p-PA1-10 11p-PA1-11 11p-PA1-12 11p-PA1-13 奨 11p-PA1-14 奨 11p-PA1-14	まプログラム冒頭にございます。 *************** ********** ******* ****	○ (B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○ (B) 城市 啓太¹, 生野 孝¹ ○ (M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠 親¹, 新原 皓一¹, Gordon Thorogood⁴, 今田 剛³ ○ 菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寛¹, 中村 篤人¹ ○ 松内 秀直¹, 福岡 寛¹, 中村 篤人¹, 廣 和樹¹ ○ 奥田 善之¹, 山田 明², 太田 健二¹, 前田 毅³, 和田 隆 博³, 廣瀬 敏⁴。 ○ (M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大 軌¹, 吉本 則之¹ ○三上 舞子¹, 長谷川 剛¹ ○瀬川 正仁¹, 森 一樹¹ ○ (B) 竹下 雅人¹, 村田 駿介¹, 寺嶋 寛成², 岩崎 祥 大³, 羽生 宏人³, 山口 聡一朗¹ ○ 稲 義実¹, 面谷 信¹, 藤川 知栄美¹ ○ 倉田 一輝¹, 面谷 信¹	 東理大 1. 棟限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東工大ELSI, 5. 東大理地惑 1. 岩手大理工, 2. 日清オイリオグループ(株) 1. 早稲田大応物 1. 伊藤忠テクノソリューションズ 1. 和歌山大システム工 1. 関西大シス理, 2. 関西院シス理, 3. 宇宙研 1. 東海大工
ッンポジ 1.1 応用4 1.1 (Ma	ボウムのプログラム 物理一般・学際領域 on.) 13:30 - 15:30 11p-PA1-1 11p-PA1-3 11p-PA1-3 11p-PA1-4 11p-PA1-5 11p-PA1-6 奨 11p-PA1-7 11p-PA1-8 奨 11p-PA1-10 11p-PA1-10 11p-PA1-11 11p-PA1-12 11p-PA1-13 奨 11p-PA1-14 奨 11p-PA1-14 奨 11p-PA1-14	まプログラム冒頭にございます。 (*/Interdisciplinary and General Physics ボスター講演 (Poster Presentation) PA会場 (Room PA) 液体金属の形態制御および電気伝導特性評価 ベーパーエレクトロニクスに向けた液体金属配線技術 低温における塩化ナトリウムへのバルス大強度相対論的 電子ビーム照射と色中心検出装置の開発 静電界を用いた複合材料内部の評価に関する研究 発電検出のためのIoTデバイスの研究 ベルセロ法により生成された負圧の汚染布に対する洗浄 効果 ベルセロ法により生成された負圧の形染布に対する洗浄 効果 ベルセロ法を用いた負圧の殺菌作用 ダイヤモンドアンビルセルを用いた超高圧力下における p型伝導性SrCuSeF、BaCuSeFの電気伝導度測定 チョコレート用油脂の材料組織の研究 Ag/TiO2/Pt接合型原子スイッチ動作のSET電圧,TiO2 膜厚、温度依存性測定 機械学習によるが、ンドギャップの予測 陽極酸化法による酸化タンタルナノ構造の作製 高濃度スラリーにおける粒子間隙バラメータを用いた粘 弾性の測定 放物面鏡対を使用した像浮上型の体積型立体表示・像照 射術の配置最適化 地平の月が巨大に見える錯視のメカニズムの検証 口頭講演 (Oral Presentation) W833 会場 (Room W833) 粉体用絶縁性フレキシブルコンテナの静電気帯電特性	○(B) 山田 祐¹, 本庄 一希¹, 谷口 淳¹, 生野 孝¹ ○(B) 城市 啓太¹, 生野 孝¹ ○(M1) 黑崎 大聖¹, 末松 久幸¹, 菊池 崇志², 中山 忠親¹, 新原 晧一¹, Gordon Thorogood⁴, 今田 剛³ ○菊永 和也¹, 寺崎 正¹ ○田川 夏希¹, 佐々木 祥¹, 番 貴彦¹, 山本 伸一¹ ○廣 和樹¹, 勝間 大知², 福岡 寬¹, 中村 篤人¹ ○松内 秀直¹, 福岡 寬¹, 中村 篤人¹, 廣 和樹¹ ○奥田 善之¹, 山田 明², 太田 健二¹, 前田 毅³, 和田 隆 博³, 廣瀬 敬⁴。 ○(M1) 藤田 尚也¹, 大西 清美², 上原 秀隆², 葛原 大軌¹, 吉本 則之¹ ○三上 舞子¹, 長谷川 剛¹ ○瀬川 正仁¹, 森一樹¹ ○餅越 葵¹, 関山 早紀¹, 伊東 千尋¹ ○(B) 竹下 雅人¹, 村田 駿介¹, 寺嶋 寬成², 岩崎 祥大³, 羽生 宏人³, 山口 聡一朗¹ ○稲 養実¹, 面谷 信¹, 藤川 知栄美¹ ○倉田 一輝¹, 面谷 信¹	 東理大 1. 極限エネルギー密度工学研究センター, 2. 長岡技術科学大学, 3. 新潟工科大学, 4. Australian Nuclear Science and Technology Organization 1. 産総研 1. 龍谷大理工 1. 奈良高専, 2. 豊橋技科大 1. 奈良高専 1. 東工大理地惑, 2. 東工大工学院, 3. 龍谷大理工, 4. 東工大ELSI, 5. 東大理地惑 1. 岩手大理工, 2. 日清オイリオグループ(株) 1. 早稲田大応物 1. 伊藤忠テクノソリューションズ 1. 和歌山大システムエ 1. 関西大シス理, 2. 関西院シス理, 3. 宇宙研 1. 東海大工 1. 東海大工

11:00	12a-W833-5	量子コンピュータによる量子化学計算 - 教育ツールとし ての可能性 -	渕 蒼起 1 , 加藤 拓己 2 , 奥脇 弘次 1 , 山崎 清仁 3 , ○望月 祐志 $^{1.4}$, 湊 雄一郎 2	1. 立教大, 2.(株)MDR, 3.OpenQLプロジェクト, 4.東 大生研
11:15	12a-W833-6	音響ゴーストイメージング	○大岡 佳生¹,深津 晋¹	1. 東大院総合
11:30		ファゴットのリード材質に対する音色の変化	○井手 利英¹	1. 産総研 電子光
11:45	12a-W833-8	ヴァイオリン演奏における擦弦位置及び弓の傾斜と音色 の関係について	○松谷 晃宏¹	1.東工大
3/12(口頭講演 (Oral Presentation) W833会場 (Room W833)		
3:15		ラチェット電極を用いたAC電気浸透ポンプ	○瀬川 慧¹, 杉岡 秀行¹	1.信州大工
13:30		ゲル表面に着弾した微小液滴の濡れダイナミクス解析	○横田 涼輔¹, 平野 太一¹, 美谷 周二朗¹, 酒井 啓司¹	
3:45	·	²³ Na-MRIによる生体内 Sodium の腎臨床適用に向けた可 視化検討	進3,4	1.(株) エム・アール・テクノロジー, 2. 新潟大院医歯 内科, 3. 新潟大工, 4.AMED 先端 H30 佐々木 T
4:00		リアル分子と情報世界を繋ぐバーチャル電極ディスプレ イの提案		1. 弘前大院理工
	*	Connectivity memory in Ag@TiO₂ nanowire network	O (DC)QIAO L1 ^{1, 2} , Yoshitaka Shingaya ² , Tomonobu Nakayama ^{1, 2}	
4:30		放電衝撃破砕における埋込式カートリッジを用いた亀裂 制御工法の開発	○村山浩一¹,平岡謙人¹,田川恭平¹,竹井祐樹¹,西雅俊¹	
4:45	<u> </u>	スポーツビジョンにおけるソフトテニス選手とスポーツ 未経験者との比較	○浅間 浩太朗', 至谷 裕志'	1.東海大院工
	子 / Education	ピフカ 戦冷 (Destay Duss outstan) DA 人担 (Design DA)		
5/ 11(N	11p-PA7-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 教員免許状更新講習「目で見てわかる物理学」の10年を	○亜佰 一意1	1.福井大教育
		振り返って		
	11p-PA7-2	系統的なキャリア教育システムのPROGテストによる検 証		1.岐阜高専
	11p-PA7-3	CDIO アプローチを用いた英語による工学教育	〇秋山 正弘 ¹, 淀 優介 ¹, 苅米 志帆乃 ¹, 百瀬 成空 ¹, 春日 貴志 ¹, 渡辺 誠一 ¹, 柄澤 孝一 ¹, 古川 万寿夫 1 , 鈴木 宏 1 , 大澤 幸造 1 , 宮嵜 敬 1	
	11p-PA7-4	Audience Response System を導入した講義の試み	○寺田貢1	1. 福岡大理
	11p-PA7-5	エレクトロニクス系科目へのアクティブラーニング導入のますか	○平谷 雄二・	1. 帝京大 理工
	11 DA7 (の試み	○ 点面 独立]	1 AMTNAT
	11p-PA7-6 11p-PA7-7	電子回路演習の取り組み ~グループワークの実践~ Moodle を用いた実験レポートの Online 相互査読	〇名和 靖彦¹ 〇山本 和貫¹, 藤本 茂雄¹	1. 受知工科大工 1. 千葉大 ALC
	11p-PA7-7 11p-PA7-8	非理工系学部における物理実験授業の試み		1. 千栗人ALC 1. 埼玉医大, 2. 千葉大教育
	11p-PA7-9	プラズマに関する学生実験が受講者の動機付けに与える 影響		
	11p-PA7-10	服色教育のためのカラーミキサの教育効果の検証	②,口仔 正伯 〇中楯 末三¹,徳山 喜政¹,久米 祐一郎¹,渋谷 眞人¹, 陳 軍¹,東 吉彦¹,森山 剛¹	1.工芸大
	11p-PA7-11	ぶどう色素増感型太陽電池の教材開発		1.山梨大工
		雷の原理に関する理科教材の開発		1.東海大教養
		渦電流による磁気浮上のデモンストレーション実験なら びに FEM シミュレーション		1. 千葉大教育
		マイコンを使用した低学年学生の情報基礎総合演習大学1・2年次文理混合クラスにおけるプログラミング学	○清水 幹郎¹ ○熊野 英和¹, 鳴海 敬倫¹	1. 福井工業高等専門学校 1. 新潟大創生
	11p-PA7-16	修 工学系の全学科を対象としたIoT導入教育用システムの 開発	○今村 成明¹, 須田 隆夫¹, 前薗 正宜¹	1. 鹿児島高専
	11p-PA7-17	機械学習ワークショップ設計に向けた高専生の意識調査	〇高木 聡太 1 , 北原 廉 1 , 松浦 賢太朗 2 , 鷲尾 拓哉 2 , 西 條 美紀 2 , 大橋 匠 2	1. 長野高専, 2. 東工大
	11p-PA7-18	次世代AI人材育成に向けた機械学習ワークショップデザ イン		1. 長野高専, 2. 東工大
	·	中部大学工学部創造理工学実験における「デジタル」概 念理解のためのA/D · D/A変換回路を用いた実験装置の 開発		1. 中部大工
		専門課程につなぐ基礎物理実験 - 弦の振動-	○渡部 智希¹, 小城 勇人¹, 村田 龍太郎¹, 内田 尚志¹	
		Bi 人工結晶作製をテーマにした4年間の研究アウトリー チ活動報告	太一1, 長谷川 靖洋1	
		Siバンドギャップを推定する STEM 教育教材と国際交流		1.石川高専, 2.嘉義大学
		学生実験用シリコン太陽電池のフィンガー電極の検討	笠岡 奎冶¹, ○内海 淳志¹	1.舞鶴高専
	11p-PA7-24	アクリル板を用いた可視光領域での光学実験教材の製作	〇跃迟誠", 鈴木 建印', 伊藤 督靬", 宋田 件一", 大嶋 晃敏 ¹² , 伊藤 響 ¹² , 井筒 潤 ¹² , 山本 則正 ^{1,2} , 高 橘 博之 ¹ , 中山 和也 ¹ , 橋本 真一 ¹ , 廣岡 慶彦 ¹ , 岡島 茂 樹 ¹	
	11p-PA7-25	小型フーリエ変換赤外分光装置の製作と測定法の確立	〇中山 政裕 ¹,菅野 裕吾 ¹,石谷 善博 ¹,北田 貴弘 ²,森 田 健 ¹	1. 千葉大工, 2. 徳島大院
	11p-PA7-26	カメラ付きIT端末を活用したミリカンの実験Ⅱ	○鈴木 三男¹, 和賀 宗仙¹, 増田 健二²	1.福島高専, 2.静岡大工
	11p-PA7-27	解析技能向上のための簡易センシング教材の試作	○角田 直輝1	1. 米子高専
		小型光ファイバ分光器を用いた食品の品質検査	○松元 健¹, 勝亦 徹²	1.マツモト精密工業, 2.東洋大理工
		顕微分光法を用いた変形菌子実体の構造色解析 三角プリズムと透過型回折格子を使った直視型分光器の	 ○田所 利康¹, 高野 丈² ○高和 宏行¹, 阿部 昌浩¹, 田所 利康² 	 テクノシナジー, 2.変形菌研究会 麻布実験教室, 2. テクノシナジー, 3.ユニオプト
	44 8:= -	試作		4 户自同晚 1. 坐
		ジュール熱による迷路の経路探索の低電圧化 半導体製造装置やフッ酸を使用しないシリコン太陽電池	○上月 具挙¹, 小林 寛¹, 寺重 隆視¹	1.広島国際大学
		の製作		1. 東海大教開研セ, 2. 東海大現代教養セ, 3. 東海大高県教養教育セ
		圧電素子を用いた振動による発電の教材への応用Ⅱ 超小型RIFセンサを用いた気温・気圧測定	○山口 静夫¹ ○板車 餘生¹	1. 九共大
		超小型BLEセンサを用いた気温・気圧測定	○板東 能生1	1. 呉高専
2 立 <u></u>		ISSを利用した光の波動・粒子の判定	○土田 成能¹	1. ダビンチ研
		Novel technologies and interdisciplinary engineering 口頭講演 (Oral Presentation) S321 会場 (Room S321)		
		山頭講演 (Oral Presentation) S321会場 (Room S321) マテリアルキュレーション [®] 用関係性データベース作成:	○ 士忠 漢字1	1.物材機構
9:00	10a-5321-1	マアリアルキュレーション [®] 用関係性アータベース作成: 後処理	○□瓜 甩丁	1. 7077 1戏門
9:15	10a-S321-2	依処理 マテリアルキュレーション [®] 支援システムの開発	○吉武 道子¹, 佐藤 文孝², 矢野 貴之², 河野 洋行², 萩 原 稔³	1.物材機構, 2. 富士通総研, 3. 富士通
	10a-S321-3	炭素熱還元を用いたMOD法によるTi-doped VO₂薄膜の		1. 防大, 2. 高純度化学研究所
9:30	10a-5521-5	作則	内田 告司1	
9:30 9:45	10a-S321-3	作製 急速乾燥技術によるウェット洗浄後パターン閉塞抑制プ	内田 貴司 ¹ ○松下 淳 ¹ , 長嶋 裕次 ¹ , 林 航之介 ¹ , 永原 聖万 ¹ , 宮崎	1.芝浦メカトロニクス

10:00	奨 10a-S321-5	広域プラズモン増強電場形成能を有する MIM ドットア	○山田大空¹,川崎大輝¹,井上千種¹,前野権一¹,久	1.大阪府立大学大学院, 2.JST さきがけ
10:15	奨 10a-S321-6	レイの設計と作製 超高感度 DNA 検出を指向した先端開口型プラズモニッ	本 秀明¹, 末吉 健志¹, 遠藤 達郎¹.² ○井上 千種¹, 川崎 大輝¹, 山田 大空¹, 前野 権一¹, 志	1.阪府大院工, 2.JST さきがけ
10.00		ク結晶の作製	水 友哉¹, 末吉 健志¹, 久本 秀明¹, 遠藤 達郎¹.²	
10:30 10:45	10a-S321-7	休憩/Break 背面影響を低減したレーダー反射型水分検知センサ	○道坂 岳央¹,出口 裕¹, 菰田 夏樹¹, 近藤 正俊¹	1.トッパン・フォームズ
11:00	授 10a-S321-8	全属マトリクスバターンを用いたレーダー反射型水分検 知センサ		1.トッパン・フォームズ
11:15	10a-S321-9	膜型表面応力センサを用いた水素検出法の開発	○矢ケ部 太郎 ¹ , 今村 岳 ² , 吉川 元起 ³ , 板倉 明子 ¹	1. 物材機構 RCAMC, 2. 物材機構 MANA, 3. 物材機構 RCSF
11:30	10a-S321-10	Pt-MOS キャパシタを用いたアセトンセンサ	○萩原 一樹¹, 祖父江 琢哉¹, 田中 貴久¹, 内田 建¹	1. 慶應大理工
11:45	10a-S321-11	シアノバクテリアの高密度集積と電気化学的応用	○吉川 諒¹, 山本 靖之², Karthaus Olaf³, 飯田 琢也².⁴, 床波 志保¹.⁴	1. 阪府大院工, 2. 阪府大院理, 3. 千歳科技大, 4. 阪府大 LAC-SYS 研究所
12:00	10a-S321-12	近赤外応力発光体を利用した生体内力学情報のセンシン グ	○Zhang Lu ^{1,2} ,川崎 悦子¹,兵藤 行志¹,上野 直広³, 徐 超男 ^{1,2}	1. 産総研, 2. 九州大学, 3. 佐賀大学
12:15	10a-S321-13	PLS 回帰分析によるトナー粒子間の顔料含有量分布の評価	○亀井 未亜¹, 松田 将稀²	1.株式会社リコー 研究開発本部, 2.株式会社リコー CT&P本部
3/11(M	on.) 13:30 - 15:30	ポスター講演 (Poster Presentation) PA 会場 (Room PA)		O Y COL . [] Sale
	11p-PA2-1	切り紙と弾性体を使った液滴アレイとその応用	○武居 淳¹,塚本 志帆¹,駒崎 友亮¹,吉田 学¹	1.産総研
	11p-PA2-2	導電性酸化物 CaCu ₃ Ru ₄ O ₁₂ が示す小さな熱膨張係数	○鶴田 彰宏¹, 野村 勝裕¹, 三上 祐史¹, 杵鞭 義明¹, 寺崎 一郎¹², 村山 宣光¹, 申 ウソク¹	1. 産総研, 2. 名大理
	E 11p-PA2-3	Design and fabrication of mechanical metamaterials for flexible electronic devices	O Bongkyun Jang ¹ , Kwang-Seop Kim ¹ , Byung-Ik Choi ¹ , Jae-Hyun Kim ¹ , Hak-Joo Lee ¹	1.KIMM
	11p-PA2-4	PDMS-QCMチップとの集積を想定した磁性流体シール 型電磁駆動ポンプの開発	○押田 直也¹, 增本 憲泰¹, 加藤 史仁¹, 張 暁友¹	1.日工大
	11p-PA2-5		○齊藤 滉佑¹, 石原 昇¹, 柳田 保子¹	1. 東工大未来研
	奨 11p-PA2-6	フォトニック/プラズモニックナノデバイスのための モールド形状制御技術の開発	○前野 権一¹,山田 大空¹,志水 友哉¹,川崎 大輝¹,末 吉 健志¹,久本 秀明¹,遠藤 達郎¹.²	1.阪府大院工, 2.JST さきがけ
	11p-PA2-7	TiN-金属/コア-シェルナノコーンアレイ:LSPR特性制	○川崎 大輝¹, 前野 権一¹, 山田 大空¹, 末吉 健志¹, 久	1.大阪府立大学大学院, 2.JST さきがけ
	11p-PA2-8	御によるセンサ性能向上 高周波誘導熱プラズマ法を用いたTiの球状化粉末生成	本 秀明¹, 遠藤 達郎¹.² ○小牧 久	
	11p-PA2-9	カソード加熱型 RIE 装置により窒素プラズマ処理した Ti 薄膜およびバルク TiO2 の透過率測定	○長谷部 浩一 1 ,佐藤 美 \mathbb{R}^{1} ,松谷 晃 \mathbb{R}^{1} ,竹島 利 \mathbb{R}^{2} , 磯部 敏 \mathbb{R}^{2} ,中島 章 2 ,松下 祥子 2	1.東工大マイクロプロセス, 2.東工大物質理工学院
	11p-PA2-10	Siマイクロ凹面鏡とケーラー照明光による酵母細胞の捕 獲	○松谷 晃宏¹, 佐藤 美那¹, 長谷部 浩一¹, 髙田 綾子²	1.東工大マイクロプロセス, 2.東工大バイオ
1.4 エネ	ルギー変換・貯蔵	・資源・環境 / Energy conversion, storage, resources and	d environment	
3/9(Sa	at.) 13:45 - 18:00	口頭講演 (Oral Presentation) S321会場 (Room S321)		
13:45	9p-S321-1	炭酸塩水素吸蔵材料の開発	○ (M2) 李 恒 ¹ , 小松 啓志 ¹ , 中村 淳 ^{2,1} , 伊藤 治 ² , 南部 景樹 ³ , 齋藤 秀俊 ¹	1.長岡技術科学大学, 2.中部キレスト, 3.アッチェ
14:00	9p-S321-2	水素吸着を用いた真珠層粉末の比表面積測定	○高徳 祐之輔 ¹ , 李 恒 ¹ , 小松 啓志 ¹ , 中村 淳 ^{2,1} , 伊藤 治 ² , 南部 景樹 ³ , 齋藤 秀俊 ¹	1.長岡技科大工,2.中部キレスト,3.アッチェ
14:15	9p-S321-3	水素吸蔵高機能化に向けた重イオン照射と表面化学処理 の相乗効果	○阿部 浩之¹, 青根 茂雄², 森本 亮², 内田 裕久²	1.量研高崎, 2.東海大学院応理
14:30	9p-S321-4	H Adsorption on Cs/W(110): H-induced Cs Desorption	Allan Abraham Bustria Padama¹, ○ Wilson Agerico Tan Dino²-³, Motoi Wada², Katsuyoshi Tsumori⁵, Masashi Kisaki³, Hideaki Kasai⁴, Hiroshi Nakanishi⁴, Mamiko Sasao³, Nozomi Tanaka ⁸	1.IMSP-UPLB, 2.AP Osaka Univ., 3.CAMT Osaka Univ., 4.GSE Doshisha Univ., 5.NIFS, 6.NITAC, 7.R&D Doshisha Univ., 8.ILE Osaka Univ.
14:45	E 9p-S321-5	Radiation graft copolymerization of phosphorous containing monomer on CMC-based hydrogel for metal adsorption 休憩/Break	○ (D)Tran Thu Hong ¹ , Okabe Hirotaka ¹ , Hidaka Yoshiki ¹ , Hara Kazuhiro ¹	1.Kyushu University
15:00 15:15	9p-S321-6		○黒津 拓馬¹, 山作 直貴¹, 岡崎 慎司¹, 荒川 太郎¹, 西 自 喜朋¹ Amondo Balani² Saulina Ivathani²	1.横国大院工, 2. スインバーン工大
15:30	E 9p-S321-7	Hydrogen generation by water splitting using TiO ₂ and	島 喜明 ¹ , Armandas Balcytis ² , Saulius Juodkazis ² ○ (M1)Zhenhang Liu ¹ , Masashi Kato ¹	1.NITech
15:45	E 9p-S321-8	3C-SiC in tandem structure Electrodeposition of nanostructured Si-layer on graphite substrate for application as anode-materials in lithium-	○ Muhammad Monirul Islam¹, Hajer Said¹², Katsuhiro Akimoto¹, Hichem Hamzaoui Ahmed²,	1.Tsukuba Univ., 2.Univ. Tunis-El-Mann., 3.NIMS
16:00	奨 9p-S321-9	ion-battery 近接場光援用光学禁制遷移励起による二酸化炭素還元の	Naoki Fukata ^{1, 3} , Takeaki Sakurai ¹	1. 東大院工, 2. 東京工科大, 3. 大阪市立大, 4. 東京理科
		高効率化	暢之 4 ,藏重 Ξ^4 ,根岸 雄 $-^4$,飯田 健 $-^5$,八井 崇 1	大, 5.分子研
16:15	9p-S321-10	光触媒効果による水分解に向けた $SiC \ \ \beta$ - $FeSi_2$ 半導体 との複合粒子合成	○秋山 賢輔 ^{1,2} , 野島 咲子 ¹ , 高橋 亮 ¹ , 舟窪 浩 ² , 入江 寛 ³	1.神奈川産技総研, 2.東工大院・物質理工, 3.山梨大ク リーンエネ研
16:30 16:45	9p-S321-11	休憩/Break グルコース駆動 O_2 加給装置を実装した空気バイオ電池に	○ハオ ザイチェン ¹ 瀬島 中也 ¹ 杉山 計 ¹ 賞庇 注	1. 医科歯科大
17:00	9p-S321-11 9p-S321-12	グルコース駆動 O₂加桁装直を美装した空気バイオ 電池に 関する研究 全固体電気化学エネルギー変換デバイスにおける電極過	司1, 荒川 貴博1, 三林 浩二1	1. 物材機構
	•	電圧理論		
17:15	9p-S321-13	フッ化物シャトル二次電池で用いるフッ化ビスマス電極の反応解析	○湊 丈俊¹, 小西 宏明¹, 大西 洋², 安部 武志³, 小久見 善八¹	
17:30	9p-S321-14	量子井戸構造を有する半導体固体電池の作製と充放電特性の評価	洋 ² , 平林 英明 ¹	1.東芝マテ, 2.ジオマテック
17:45	9p-S321-15	リチウムイオン電池用 SiO_x 負極の酸素量に依存した形態変化	○春田 正和', 土井 貴之 ', 稲葉 稔 ¹	1.同志社大
3/11(M	on.) 13:30 - 15:30 11p-PA3-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) WO ₃ /FTO コアシース型ナノファイバの光充放電特性	○(M1)限元 大登¹,松田 拓也¹,小牧 平知¹,庄崎 まこと¹,野見山 輝明¹,堀江 雄二¹	1. 鹿児島大院 理工
	11p-PA3-2	Ce ドープ BiFeO₃薄膜の光蓄電池の光電変換層への応用		1. 鹿児島大院 理工
	11p-PA3-3	光誘起対流を用いた細菌の集積と微生物燃料電池への応 用		1. 阪府大院工, 2. 阪府大院理, 3. 阪府大LAC-SYS研究所 4. 千歳科技大
	E 11p-PA3-4	Lithium, Sodium and Magnesium Insertion in Brookite TiO ₂ : a Comparative Computational Study	Daniel Koch ¹ , O Sergei Manzhos ¹	1.Ntl Uni of Singapore
	11p-PA3-5	110 ₂ : a Comparative Computational Study 金属/絶縁体複合熱伝導層を載せたナノワイヤ型シリコ	○平尾 修平¹, 大和 亮¹, 詹 天卓¹, 徐 茂¹, 武澤 宏樹¹,	1.早大理工, 2.物材研
	11p-PA3-6	ン熱電デバイスの評価 自立型Si被覆高配向CNTシートを用いたリチウムイオ	目崎 航平 ¹ , 富田 基裕 ¹ , 徐 一斌 ² , 渡邉 孝信 ¹ 〇後藤 良輔 ¹ , 浅生 智也 ¹ , 苅田 基志 ¹ , 中野 貴之 ¹ , 田	
	11p 1110-0	ロエ至3T放復同配門CNTシードを用いたリナリムイスン電池負極	中康隆1,井上翼1	A HI / NZ Under

	11p-PA3-7	高活性Ptナノポーラス触媒の開発 Ⅱ	○墻内 孝祐¹, 関 翔太¹, 野稲 啓二¹, 朝倉 典昭¹, 定塚	1.株式会社 KRI
	11p-PA3-8	マグネシウム空気電池を電源とする電気自動車の運用試	哲也 ¹ , 松田 敏彦 ¹ ○斉藤 純 ¹ 小原 宏之 ²	1. 玉川大工, 2. 玉川大TSCP
	P *** 0	験	57111k #C) 4 /31 /24 C	11-1/1/(-1-1/1/1/(-1-1/1/(-1-1/1/(-1-1/1/(-1-1/1/1/(-1-1/1/(-1-1/1/(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/(-1-1/1/1/)(-1-1/1/)(-1-1/1/(-1-1/1/1/)(-1-1/1/)(-1-1/1/(-1-1/1/)(-1-1/1/)(-1-1/1/
	E 11p-PA3-9	Electric-Field Assisted Perovskite Crystallization for High- Performance Solar Cells	○ (D)CONGCONG ZHANG¹, Hiroyuki Okada¹	1.Univ. of Toyama
	11p-PA3-10	メカニカルアロイングを用いた β -FeSi $_2$ の合成と評価に 関する研究	○長田 興¹, 佐藤 祐喜¹, 吉門 進三¹	1. 同志社大院理工
1.5 計測技	支術・計測標準 /	nstrumentation, measurement and Metrology		
	on.) 13:15 - 17:00	口頭講演 (Oral Presentation) M116会場 (Room M116)		
13:15	11p-M116-1	【注目講演】ナノ材料の熱物性の計測に向けたマイクロス ケール熱電対の開発	○花村 友喜¹, 山田 亮¹, 夛田 博一¹	1. 阪大院基礎工
13:30		波長可変半導体レーザー分光法を用いた露点計の開発	本田 真一¹, 板橋 健一¹, 橋口 幸治², ○阿部 恒²	1.神栄テクノロジー(株), 2.産総研
13:45 14:00		酸素・ヘリウム中微量水分の一次標準の確立 バイオ医薬品向けタンパク質凝集体の光計測方法	○天野 みなみ¹, 阿部 恒¹○安齋 由美子¹, 大澤 賢太郎¹, 峯邑 浩行¹, 梅田 麻理	1. 星立 延問
14.00	11p-W1110-4	ハイオ 囚衆印刊リグラハク 貝機未体の元計 側刀伍	○女易 田夫 1 ,八净 貞太郎,奉已 石11 ,梅山 林生子¹,塩澤 学¹	1. 日本加州
14:15		バイオ医薬品開発向け蛋白質凝集体の電子顕微鏡計測	○甕 久実¹, 大嶋 卓¹	1.日立研開
14:30	11p-M116-6	質量測定式液中粒子計数装置を用いた液中粒子数濃度一 次標準の開発	○坂口 孝幸 ', 車 裕輝 ', 桜井 博 '	1. 産総研計量標準
14:45	11p-M116-7	液中AFMを用いた半導体ウェーハ洗浄用PVAブラシ表面の吸着力計測	○五十嵐 陽彦¹, 吉野 巧¹, 宮田 一輝¹², 宮澤 佳甫², 宇野 恵³, 高東 智佳子³, 福間 剛士¹²	1. 金大理工, 2. 金大 NanoLSI, 3. 荏原製作所
15:00	11p-M116-8	AFMによるBi ₄ NbO ₈ Br光触媒結晶表面のナノレベル分極		1. 金大理工, 2. 金大院, 3. 京大院, 4. 金大 NanoLSI
		ドメイン分布解析	澤 佳甫 4, 陰山 洋 3, 福間 剛士 2.4	
15:15		有機チオール分子の真空紫外一光子イオン化計測	○鈴木 淳¹, 永井 秀和¹, 中村 健¹, 藤原 幸雄¹	1. 産総研分析計測 R I
15:30		超解像光熱顕微イメージングの画像解析法の開発	〇小林 孝嘉 ^{1,2} , 中田 和明 ^{1,2} , 鶴井 博理 ³	1. 電通大脳科学, 2. 東京理科大理, 3. 順天堂大医
15:45	11p-M116-11	原子間力顕微鏡法における薄膜破壊プロセスの解析(Ⅱ)	石原 浩行 ^{1,2} , ○若家 富士男 ¹ , 村上 勝久 ² , 長尾 昌善 ² , 宮戸 祐治 ¹ , 山下 隼人 ^{1,3} , 阿保 智 ¹ , 阿部 真之 ¹	1. 阪大院基礎工, 2. 産総研, 3.JST さきがけ
16:00	E 11n-M116-12	Determination of thermodynamic properties using ab	一	1.Grad. Sch. Adv. Sci. Tech., JAIST, 2.Dept. Metal.
10.00	2 1.p mi10 12	initio methods for the intermetallic compounds in Nd-Fe-B system	Hari Kumar ² , Kenta Hongo ^{3,4,5} , Ryo Maezono ³	Mater. Eng., IITM, 3.Sch. Info. Sci., JAIST, 4.NIMS, 5.PRESTO, JST
16:15	奨 11p-M116-13		○(D)鈴木 章吾¹, 松田 聖樹¹, 木村 建次郎¹.³, 美馬	5.PRESTO,JS1 1.神大数理データサイエンスセンター, 2.Integral
	. 1 10	み型防犯ゲートシステムの開発	勇輝 ² , 木村 憲明 ²	Geometry Science, 3.JST-MIRAI
16:30	11p-M116-14	応力発光による「構造最適化の見える化」	○寺崎 正¹, 藤尾 侑輝¹, 加藤 正樹², 近藤 光一郎³	1. 産総研, 2. あいち産業科学技術総合センター, 3. 名古 屋市工研究所
16:45	11p-M116-15	テラヘルツ波3次元イメージング技術を用いた壁面内部		1.トプコン, 2.理研 光量子工学研究センター, 3.山形
2/12/Ti	uo) 0.20 11.20	欠陥診断に関する研究 ポスター講演 (Poster Presentation) PA 会場 (Room PA)	浅哲也3,大谷知行2	大
3/12(10	12a-PA1-1	CaMnO ₃ のRu部分置換と熱電特性	○(BC)上田 智¹, 板東 能生¹	1. 呉高専
	12a-PA1-2	高湿度標準発生装置の圧力制御に関する研究	○石渡 尚也¹, 丹羽 民夫¹, 阿部 恒¹	1. 産総研 計量標準総合センター
	12a 1741 2 12a-PA1-3	確率共鳴現象を活用した微小信号の新たな検出方法の考		
		案	大介1	
	12a-PA1-4	光散乱測定によるオレンジジュース、トマトジュースお よびトマトの品質検査	○勝亦 徹 1 ,相沢 宏明 1 ,小室 修二 1 ,伊藤 繁夫 1 ,松元 健 2	1.東洋大学理工, 2.㈱マツモト精密工業
	12a-PA1-5	光散乱を用いた牛乳の品質検査	○勝亦 徹¹, 相沢 宏明¹, 小室 修二¹, 伊藤 繁夫¹, 松元 健²	1.東洋大学理工, 2.(㈱マツモト精密工業
	12a-PA1-6	蛍光を利用した牛乳の品質検査	○	1.東洋大理工, 2.㈱マツモト精密工業
	奨 12a-PA1-7	薄膜厚さ計測に向けた光ファイバプローブの最適設計		1.静岡大工
	12a-PA1-8	多点計測マイクロ波CTシステムにおける高精度位相較 正	○ (BC) 上野 あきほ¹, 山口 聡一朗¹, 中山 遥香¹	1. 関西大学
	12a-PA1-9	食品検査マイクロ波CTシステムによる3次元撮像	○(B) 長谷川 実里 ¹	1. 関大
	12a-PA1-10	48~54GHz帯256chミリ波ホログラフィーシステム	○(BC)山本 修史¹,山下 大輝¹, 土屋 隼人², 長山 好 夫³,山口 聡一朗¹	1.関西大シス理, 2.核融合研, 3.日大理工
	12a-PA1-11	円偏光変調法を用いた磁気光学スペクトロメーターの開 **		1. 長岡技科大
	12a-PA1-12	発 MOイメージングによる3次元磁場分布の測定	○高橋 知之¹, 佐々木 教真², 西川 雅美¹, 石橋 隆幸¹	1.長岡技科大工, 2.オフダイアゴナル
1.6 超音》	皮 / Ultrasonics			
3/9(Sat	t.) 13:15 - 16:30	口頭講演 (Oral Presentation) W834会場 (Room W834)		
13:15	招 9p-W834-1	「講演奨励賞受賞記念講演」 縦型リーキーSAWを用いたチャネル光導波路型音響光学	○波切 堅太郎¹, 鈴木 雅視¹, 垣尾 省司¹	1.山梨大学
		変調素子		
13:30	9p-W834-2	水負荷 LiTaO $_3$ / 水晶接合構造上の漏洩弾性表面波の伝搬特性	塚 彩水 2 , 桑江 博之 2 , 横田 裕章 3 , 米内 敏文 3 , 岸田 和	1. 山梨大, 2. 早稲田大, 3. 日本製鋼所
19.45	On 117004 0	ギールCAW キン井にトラ衛日セハの方法 ウロハビ	人 ³ , 水野 潤 ²	1 ボールウェーブ 9 市ル十兴
13:45	9p-W834-3	ボール SAW センサによる微量水分の高速・定量分析	〇赤尾 慎吾 1 ,岡野 達広 1 ,竹田 宣生 1 ,辻 俊宏 $^{2.1}$,大 泉 透 1 ,福士 秀幸 1 ,菅原 真希 1 ,塚原 祐輔 1 ,山中 一	1. ホールリェーノ, 4. 果北天子
14:00			⇒1.2	
14:00	将 Qn-W/201 1	CHa表面弾性波を用いた超音波もエグラフューにヒュー	司 ^{1,2} ○武田 嫗 ¹ Otsuka Paul ¹ 友田 其信 ¹ Wright Oliver	1
	奨 9p-W834-4	GHz 表面弾性波を用いた超音波トモグラフィーによる画 像再構成	-	1.北大工
14:15	奨 9p-W834-4 9p-W834-5		〇武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹	1. 北大工
14:15 14:30		像再構成	○武田 飆¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹	
	9p-W834-5	像再構成 積層型 PVDF/TrFE振動子を用いた高周波超音波の発生	○武田 飆¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B,¹ ○松田 洋一¹ ○(M1) 正宗 千明¹.², 唐澤 嶺¹², 柳谷 隆彦¹.².³	1. 産総研
14:30 14:45	9p-W834-5 奨 9p-W834-6	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結 ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製	○武田 飆¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B,¹ ○松田 洋一¹ ○(M1) 正宗 千明¹.², 唐澤 嶺¹², 柳谷 隆彦¹.².³	1. 産総研 1. 早大院・先進理工, 2. 材研, 3.JST さきがけ
14:30	9p-W834-5 奨 9p-W834-6 奨 9p-W834-7	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な	○武田 飆¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B,¹ ○松田 洋一¹ ○(M1) 正宗 千明¹¹², 唐澤 嶺¹², 柳谷 隆彦¹²²。 ○白 寧茲¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹.²。3	1.産総研 1.早大院・先進理工, 2.材研, 3.JST さきがけ 1.早稲田大学, 2.材研, 3.JST さきがけ, 4.名古屋工業大学, 5.株式会社フルヤ金属
14:30 14:45 15:00 15:15	9p-W834-5 奨 9p-W834-6 奨 9p-W834-7 9p-W834-8	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茲¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ②李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト²	1. 産総研 1. 早大院・先進理工, 2. 材研, 3. JST さきがけ 1. 早稲田大学, 2. 材研, 3. JST さきがけ, 4. 名古屋工業大 学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大
14:30 14:45 15:00 15:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布 の評価	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茲¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ○李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ 	1. 産総研 1. 早大院・先進理工, 2. 材研, 3.JST さきがけ 1. 早稲田大学, 2. 材研, 3.JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. IHI 検査計測
14:30 14:45 15:00 15:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茲¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ○李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ 	1. 産総研 1. 早大院・先進理工, 2. 材研, 3.JST さきがけ 1. 早稲田大学, 2. 材研, 3.JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. IHI 検査計測
14:30 14:45 15:00 15:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9 獎 9p-W834-10 獎 9p-W834-11	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布 の評価 完全バンドギャップを有する音響メタマテリアル梁の設 計 ソノルミネセンス気泡の帯電	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧蕊¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ○李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹²², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ ○藤田 健太郎¹, 友田 基信¹, 松田 理¹, Wright Oliver B.¹ ○李 香福¹, 崔 博坤¹ 	1. 産総研 1. 早大院・先進理工, 2. 材研, 3.JST さきがけ 1. 早稲田大学, 2. 材研, 3.JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. IHI検査計測 1. 北大工 1. 明大理工
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9 獎 9p-W834-10 獎 9p-W834-11 獎 9p-W834-11	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布 の評価 完全バンドギャップを有する音響メタマテリアル梁の設計 ソノルミネセンス気泡の帯電 超音波によって誘起される生体組織の電気分極	○武田 獺¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茲¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²²³ ○李 英根¹, 北澤 聡³, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹²², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ ○藤田 健太郎¹, 友田 基信¹, 松田 理¹, Wright Oliver B.¹	1. 産総研 1. 早大院・先進理工, 2. 材研, 3.JST さきがけ 1. 早稲田大学, 2. 材研, 3.JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. IHI検査計測 1. 北大工
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9 獎 9p-W834-10 獎 9p-W834-11 獎 9p-W834-12 (n.) 13:30 - 15:30	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布 の評価 完全バンドギャップを有する音響メタマテリアル梁の設計 ソノルミネセンス気泡の帯電 超音波によって誘起される生体組織の電気分極 ポスター講演 (Poster Presentation) PB 会場 (Room PB)	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茏¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ○李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ ○藤田 健太郎¹, 友田 基信¹, 松田 理¹, Wright Oliver B.¹ ○李香福¹, 崔 博坤¹ ○(B) 熊本 貴司¹, 伊藤 賢四郎¹, 生嶋 健司¹ 	1. 産総研 1. 早大院・先進理工, 2. 材研, 3. JST さきがけ 1. 早稲田大学, 2. 材研, 3. JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. I H I 検査計測 1. 北大工 1. 明大理工 1. 農工大院工
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9 獎 9p-W834-10 獎 9p-W834-11 獎 9p-W834-12 m.) 13:30 - 15:30 獎 10p-PB1-1	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布 の評価 完全バンドギャップを有する音響メタマテリアル梁の設計 ソノルミネセンス気泡の帯電 超音波によって誘起される生体組織の電気分極 ボスター講演 (Poster Presentation) PB 会場 (Room PB) 128Y-X LiNbO ₃ 上の金ナノ粒子による局在表面プラズモ ン共鳴と弾性表面波の間における影響	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茲¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ○李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ ○藤田 健太郎¹, 友田 基信¹, 松田 理¹, Wright Oliver B.¹ ○李 香福¹, 崔 博坤¹ ○(B) 熊本 貴司¹, 伊藤 賢四郎¹, 生嶋 健司¹ ○佐野 弘典¹, 近藤 淳¹ 	1. 産総研 1. 早大院・先進理工, 2. 材研, 3.JST さきがけ 1. 早稲田大学, 2. 材研, 3.JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. 1 H I 検査計測 1. 北大工 1. 明大理工 1. 農工大院工 1. 静岡大学
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	9p-W834-5 獎 9p-W834-6 獎 9p-W834-7 9p-W834-8 9p-W834-9 獎 9p-W834-10 獎 9p-W834-11 獎 9p-W834-12 m.) 13:30 - 15:30 獎 10p-PB1-1	像再構成 積層型PVDF/TrFE振動子を用いた高周波超音波の発生 ScAIN自立薄板を用いた30-40MHz帯振動子 溶融および焼結ScAI合金ターゲットを用いた高品質な ScAIN薄膜の作製 休憩/Break スペックルナイフエッジ光検出器を用いたレーザ超音波 技術による内部欠陥検出 音響誘起電磁法を用いた溶接鋼材における残留応力分布 の評価 完全バンドギャップを有する音響メタマテリアル梁の設計 ソノルミネセンス気泡の帯電 超音波によって誘起される生体組織の電気分極 ボスター講演 (Poster Presentation) PB 会場 (Room PB) 128Y-X LiNbO3上の金ナノ粒子による局在表面プラズモ	 ○武田 颯¹, Otsuka Paul¹, 友田 基信¹, Wright Oliver B.¹ ○松田 洋一¹ ○(M1) 正宗 千明¹¹², 唐澤 嶺¹², 柳谷 隆彦¹²²³ ○白 寧茏¹², 唐澤 嶺¹², 高柳 真司⁴, 今川 誠⁵, 森坂 啓介⁵, 鈴木 雄⁵, 柳谷 隆彦¹²² ○李 英根¹, 北澤 聡¹, リケッシュ バテル², ロジャーライト² ○鈴木 優平¹², 市川 裕一¹, 山田 尚人¹, 生嶋 健司¹ ○藤田 健太郎¹, 友田 基信¹, 松田 理¹, Wright Oliver B.¹ ○李香福¹, 崔 博坤¹ ○(B) 熊本 貴司¹, 伊藤 賢四郎¹, 生嶋 健司¹ 	1. 産総研 1. 早大院・先進理工, 2. 材研, 3. JST さきがけ 1. 早稲田大学, 2. 材研, 3. JST さきがけ, 4. 名古屋工業大学, 5. 株式会社フルヤ金属 1. 日立研開, 2. ノッティンガム大 1. 農工大院工, 2. I H I 検査計測 1. 北大工 1. 明大理工 1. 農工大院工

10p-PB1-4	ScAIN 薄膜/水晶基板上縦型リーキーSAWの伝搬減衰に速い横波,遅い横波成分が及ぼす影響の理論的検討	○鈴木 雅視¹, 垣尾 省司¹	1.山梨大
10p-PB1-5	LiNbO ₃ /アモルファス層/水晶構造における縦型リー キーSAWの解析	\bigcirc (B) 浅川 詩織 1 ,林 純貴 1 ,鈴木 雅視 1 ,垣尾 省司 1 ,手塚 彩水 2 ,桑江 博之 2 ,横田 裕章 3 ,米内 敏文 3 ,岸田 和人 3 ,水野 潤 2	1.山梨大, 2.早稲田大, 3.日本製鋼所
10p-PB1-6	Laser Speckle 干渉計によるレーザ光に対する絶対応答に ついて	王景¹,○渡部泰明¹,馬昀灏¹,辛宇風¹,佐藤隆幸¹	1.首都大
10p-PB1-7	バトラ水晶発振器の位相雑音におけるコレクターフィル タの影響	○辛 宇風¹, 渡部 泰明¹, 馬 昀灏¹, 王 景¹, 佐藤 隆幸¹	1.首都大
10p-PB1-8	同軸型熱音響システムにおける局所的な断面積変化が共 鳴モード制御に与える影響	〇武山 幸浩 1 , 坂本 眞 2 , 白木 一希 1 , 黒木 大地 1 , 渡 辺 好章 1	1. 同志社大, 2. 滋賀県立大
10p-PB1-9	熱音響システムの低温駆動に向けた検討-水分添加とス タック内部温度推移の関係-	○黒木 大地¹, 武山 幸浩¹, 大西 陸¹, 渡辺 好章¹	1. 同志社大
10p-PB1-10	UVC法を用いた拍動下における頸動脈ファントム中の脂肪領域の検出	〇犬塚 裕哉 1 , 亀田 雅伸 1 , 坪井 新 1 , 松山 哲也 1 , 和田 健司 1 , 岡本 晃 $^{-1}$, 松中 敏行 2 , 堀中 博道 1	1. 阪府大院工, 2.TU技術研究所
10p-PB1-11	左室補助人工心臓で発生する血栓と気泡の超音波による 識別:Sonazoid"と Dextran を用いた模擬実験	○(M1)北村 公汰¹, 秋山 いわき¹, 斎藤 こずえ²	1. 同志社大, 2. 奈良県立医大

10p-PB1-7	バトラ水晶発振器の位相雑音におけるコレクターフィル タの影響	○辛 宇風 1 , 渡部 泰明 1 , 馬 昀灏 1 , 王 1 , 佐藤 隆幸 1	1.首都大
10p-PB1-8	同軸型熱音響システムにおける局所的な断面積変化が共		1.同志社大, 2.滋賀県立大
10p-PB1-9		辺 好章¹ ○黒木 大地¹, 武山 幸浩¹, 大西 陸¹, 渡辺 好章¹	1.同志社大
10p-PB1-10	タック内部温度推移の関係 - UVC 法を用いた拍動下における頸動脈ファントム中の脂	○犬塚 裕哉¹, 亀田 雅伸¹, 坪井 新¹, 松山 哲也¹, 和田	1. 阪府大院工, 2.TU技術研究所
10p-PB1-11	肪領域の検出 左室補助人工心臓で発生する血栓と気泡の超音波による	健司 ¹ , 岡本 晃一 ¹ , 松中 敏行 ² , 堀中 博道 ¹ ○ (M1) 北村 公汰 ¹ , 秋山 いわき ¹ , 斎藤 こずえ ²	1. 同志社大, 2. 奈良県立医大
2 放射線 / Ionizing	識別: Sonazoid [®] と Dextran を用いた模擬実験		
シンポジウムのプログラム	はプログラム冒頭にございます。		
	ポスター講演 (Poster Presentation) PB 会場 (Room PB) TlBr結晶の低温での発光特性	○越水 正典¹, 人見 啓太朗¹, 野上 光博¹, 柳田 健之²,	1. 東北大院工, 2. 奈良先端大
11p-PB4-2	プラスチックシンチレータの過渡吸収分光	藤本 裕¹, 浅井 圭介¹ ○越水 正典¹, 室屋 裕佐², 加賀美 佳¹, 間木 ありさ¹,	1. 東北大院工. 2. 阪大産研
	YAlO ₃ :Prの高エネルギーX線検出特性	藤本 裕¹, 浅井 圭介¹ ○越水 正典¹, 岸本 俊二², 春木 理恵², 錦戸 文彦³, 柳	
		田 健之4, 藤本 裕1, 浅井 圭介1	
11p-PB4-4	NaCl:Yb結晶におけるX線照射誘起発光	〇藤本 裕 1 ,岡田 豪 2 ,関根 大 1 ,柳田 健之 3 ,越水 正 典 1 ,川本 弘樹 1 ,浅井 圭介 1	1. 東北大院工, 2. 金沢工業大, 3. 奈良先端大
11p-PB4-5	希土類シリケートシンチレータの光音響分光	〇藤本 裕 1 , 柳田 健之 2 , 越水 正典 1 , 深田 晴己 3 , 長田 隼 4 , 長尾 勝彦 4 , 浅井 圭 1	1.東北大院工, 2.奈良先端大, 3.金沢工業大, 4.オキサイド
11p-PB4-6	Cs ₃ PrCl ₆ 結晶の蛍光及びシンチレーション特性	〇藤本 裕 1 ,中内 大 Λ 2 ,柳田 健之 2 ,越水 正典 1 ,浅井 $\pm \Lambda$ 1	1. 東北大院工, 2. 奈良先端大
11p-PB4-7	CeドープTlCl-SrCl2系結晶のシンチレーション特性	○荒井 美紀¹, 高橋 佳亮¹, 藤本 裕¹, 越水 正典¹, 柳田	1. 東北大, 2. 奈良先端大
11p-PB4-8	CsI(Na) 結晶シンチレータの NaI 濃度特性	健之 2 , 浅井 圭介 1 〇荒井 美紀 1 , 藤本 裕 1 , 越水 正典 1 , 柳田 健之 2 , 浅井	1. 東北大, 2. 奈良先端大
11p-PB4-9	Yb添加 $KSr_2X_5(X = Cl, Br)$ 結晶の発光およびシンチレーション特性	圭介¹ ○(M2)関根 大¹, 藤本 裕¹, 越水 正典¹, 中内 大介², 柳田 健之², 浅井 圭介¹	1.東北大院工, 2. 奈良先端大
11p-PB4-10	Y b $^{2+}$ 添加 Ba $X_2(X=Cl,Br)$ 結晶の発光特性の温度依存性	○(M2)関根 大¹, 藤本 裕¹, 越水 正典¹, 中内 大介²,	1. 東北大院工, 2. 奈良先端大
11p-PB4-11	$C_{S}(Ca_{1\cdot x}Mg_{x})Cl_{3}$ のオージェフリー発光	柳田 健之 2 ,浅井 圭介 1 〇高橋 佳亮 1 ,越水 正典 1 ,柳田 健之 2 ,藤本 裕 1 ,浅井	1. 東北大, 2. 奈良先端大
11p-PB4-12	Cs ₂ BaCl ₄ の発光特性	圭介¹ ○高橋 佳亮¹,越水 正典¹,柳田 健之²,藤本 裕¹,浅井	1. 東北大, 2. 奈良先端大
11n-PB4-13	真空蒸発法を用いて創成したBi添加プラスチックシンチ	圭介¹ ○加智美 佳¹ 越水 正典¹ 藤本 裕¹ 岸本 俊二² 春木	1 東北大学院工 2 高エネルギー加速器研究機構 3 量
	レータおX線検出特性 溶媒蒸発法を用いたHf添加プラスチックシンチレータの	理恵 ² , 錦戸 文彦 ³ , 浅井 圭介 ¹	子科学技術研究開発機構
	合成とそのX線検出特性評価	理恵2,錦戸文彦3,浅井圭介1	子科学技術研究開発機構
		本 俊二², 春木 理恵², 錦戸 文彦³, 浅井 圭介¹	
	Bi(Ph) ₃ を含有した液体シンチレータの蛍光体種類の探索	井 圭介¹	
•	中性子検出を企図した6-リチウム含有液体シンチレータ に用いる混合溶媒の検討	圭介¹	
11p-PB4-18	ニュートリノレス二重 β 崩壊検出用液体シンチレータに 装荷する有機修飾 $SrMoO_4$ ナノ粒子合成に及ぼす pH の影響		1. 東北大院工, 2. 東北大WPI-AIMR, 3. 東北大IMRAM
11p-PB4-19	X線照射によるジアリールエテンの異性化挙動	○(B)河村 一朗¹, 越水 正典¹, 藤本 裕¹, 川本 弘樹¹, 浅井 圭介¹	1.東北大院工
11p-PB4-20	ラジオクロミック材料の3D造形	\bigcirc (B) 河村 一朗 1 , 藤原 健 2 , 藤本 裕 1 , 越水 正典 1 , 浅 井 圭介 1	1. 東北大院工, 2. 産総研
11p-PB4-21	中性子線照射による Tb $^{3+}$ ドープ CaO–Al $_2$ O $_3$ ーB $_2$ O $_3$ ガラスの熱蛍光特性		
11p-PB4-22	2, 3-ジヒドロ-2-スピロ-4'-[8'-アミノナフタレン -1'(4'h)-オン]ペリミジンのX線に対する応答への蛍 ************************************		1. 東北大院工
11p-PB4-23	光体添加の影響 1,3,3-トリメチルインドリノ-6'-ニトロベンゾピリロス		1. 東北大院工, 2. 量研機構
11p-PB4-24	ビランのHeイオン線によるフォトクロミズム 銀添加リン酸塩ガラスにおける銀の価数変化の組成依存 性	浅井 圭介¹ ○(M1)川本 弘樹¹, 越水 正典¹, 正井 博和², 藤本 裕¹, 浅井 圭介¹	1. 東北大院工, 2. 産総研
	- 石炭灰を原料に用いたガラスのX線照射量と着色の関係	○二見 能資¹,河口 範明²,柳田 健之²	1.熊本高專, 2.奈良先端大
	$Z_nO-P_2O_5$ ガラスにおける X 線照射による欠陥生成と熱刺激蛍光との相関		1. 産総研, 2. 金沢工大, 3. 奈良先端大
11p-PB4-27	Eu添加 LiF-CaF ₂ -AlF ₃ -P ₂ O ₅ ガラスのシンチレーション特 性	○()篠崎 健二,,岡田豪,河口範明,柳田健之。	1. 産総研, 2. 金沢工大, 3. 奈良先端大
	RPL特性を有する Sm 添加 LiCaAIF。 BeO セラミックスの放射線誘起発光特性		1. 金沢工業大学, 2. 奈良先端大 1. 金沢工大, 2. 千代田テクノル, 3. 東北大, 4. 量研機構, 5. 奈良先端大
11p-PB4-30	Tb ³⁺ ドープBABFガラスおよび結晶化ガラスにおける発 光特性の比較		
11p-PB4-31	Trifteの比較 SPS法により作製したEu添加Al ₂ O ₃ 透明セラミックスの 熱蛍光特性		1.秋田大, 2.奈良先端大, 3.金沢工業大
11p-PB4-32	熟虫光特性 ${ m Tb}$ 添加 ${ m B_2O_3\text{-}Al_2O_3\text{-}SrO}$ ガラスの放射線検出特性	○河野 直樹¹, 河口 範明², 岡田 豪³, 藤本 裕⁴, 柳田 健	1.秋田大, 2.奈良先端大, 3.金沢工業大, 4.東北大
		之 ²	

11p-PB4-33	Mn添加有機無機ベロブスカイト型化合物のシンチレーション特性	○河野 直樹¹, 高橋 光輔¹, 木村 大海², 河口 範明², 柳田 健之²	1.秋田大, 2.奈良先端大
11p-PB4-34	フルオロフェネチルアミン含有有機無機ペロブスカイト 型化合物の放射線検出特性	= -	1. 秋田大, 2. 奈良先端大
11p-PB4-35	至に自初の成別縁候出行任 二次元量子閉じ込め型シンチレータ (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ Pb ₁ . _x Mg _x Br ₄ の開発		1. 奈良先端大, 2. 秋田大理工
11p-PB4-36	Ce添加 Gd(Ga,Al)O3単結晶のシンチレーション特性	○赤塚 雅紀¹,河口 範明¹,柳田 健之¹	1. 奈良先端大
11p-PB4-37	Nd添加 RESiO $_3$ (RE = Ca, Sr, Ba) 単結晶の近赤外シンチレーション特性	○赤塚 雅紀¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹	1. 奈良先端大
	$Sm添加SrCl_2$ 単結晶シンチレータの開発		1. 奈良先端大, 2. 東北大
	Eu添加BaSi ₂ O ₅ 結晶化ガラスの放射線発光特性	明¹	1. 奈良先端大, 2. 産総研
*	酸化ハフニウム結晶のシンチレーション特性	〇(D)中内大介¹,河口範明¹,柳田健之¹	1.奈良先端大
	Ce添加 SrHfO ₃ 結晶のシンチレーション特性評価		1.奈良先端大
	Ti添加 CaHfO₃結晶シンチレータの開発 Ce添加 CaZrO₃結晶のシンチレーション特性		1. 奈良先端大
	FZ法で作製したEu添加Sr ₂ MgSi ₂ O ₇ 単結晶のフォトルミ		1.奈良先端大
	ネッセンスおよびシンチレーション特性評価 FZ法により作製したCe添加AESiO ₃ (AE = Ca, Sr, Ba)		1.奈良先端大
	単結晶の放射線誘起蛍光特性		
	Ce添加CaO-Al ₂ O ₃ -SiO ₂ ガラスの放射線励起蛍光特性評価		1. 奈良先端大
	Ce添加BaO- P_2O_5 -Si O_2 ガラスの光学及びシンチレーション特性		1. 奈良先端大
	La含有ケイ酸塩ガラスの放射線誘起発光特性		1.奈良先端大
•	誘起蛍光特性	〇磯川 裕哉¹,木村 大海¹,加藤 匠¹,河口 範明¹,柳田 健之¹	
	$Ag 添加 Li_2O\text{-}B_2O_3$ 系ガラスのラジオフォトルミネッセンス特性		1.奈良先端大
11p-PB4-51	Pr添加 GdTaO ₄ 単結晶のシンチレーション特性	〇磯川 裕哉 1 ,中内 大介 1 ,赤塚 雅紀 1 ,河口 範明 1 ,柳 田 健之 1	1. 奈良先端大
	$Pr添加:Gd_4Al_2O_9$ 単結晶のシンチレーション特性	○吉田 容輝¹,河口 範明¹,柳田 健之¹	1. 奈良先端大
11p-PB4-53	0.1-2.0% Pr添加: $\mathrm{Lu_4Al_2O_9}$ 単結晶のシンチレーション特性	○吉田 容輝¹,河口 範明¹,柳田 健之¹	1. 奈良先端大
	希土類全添加: $Yb_3Al_5O_{12}$ 単結晶のシンチレーション特性		1. 奈良先端大
	ラジオフォトルミネッセンス特性を示すEu添加KCaPO ₄		1. 奈良先端大, 2. 金沢工大
11p-PB4-56	Ag添加 CsCl透明セラミックスの RPL 特性	〇木村 大海 1 , 加藤 \mathbb{C}^1 , 岡田 \mathbb{R}^2 , 河口 範明 1 , 柳田 健 \mathcal{D}^1	1.奈良先端大, 2.金沢工大
11p-PB4-57	Cs(Cl,Br) 透光性セラミックの放射線誘起蛍光特性	○木村 大海¹, 加藤 匠¹, 越水 正典², 河口 範明¹, 柳田 健之¹	1. 奈良先端大, 2. 東北大院工
11p-PB4-58	Ce添加La ₂ O ₃ -Al(PO ₃) ₃ ガラスのシンチレーション特性		1. 奈良先端大
	Eu添加Li ₃ PO ₄ -B ₂ O ₃ ガラスにおける放射線蛍光特性	○(M1)白鳥 大毅¹, 磯川 裕哉¹, 河口 範明¹, 柳田 健 之¹	
11p-PB4-60	${\rm Rb_2O\text{-}BaO\text{-}P_2O_5}$ ガラスの作製と放射線誘起蛍光特性及び光学特性	\bigcirc (M1) 白鳥 大毅 1 , 佐溝 隼大 1 , 河口 範明 1 , 柳田 健 之 1	1. 奈良先端大
11p-PB4-61	放電プラズマ焼結法により作製したSn添加シリカガラス の放射線応答特性	\bigcirc (M1) 白鳥 大毅 1 , 木村 大海 1 , 河口 範明 1 , 柳田 健 之 1	1.奈良先端大
•	Sb添加 $Ca_3(PO_4)_2$ 透明セラミックスの放射線誘起発光特性		1.奈良先端大
11p-PB4-63	無添加及びTb添加MgAl ₂ O ₄ 透明セラミックスのドシ メータ特性	○加藤 匠¹, 河口 範明¹, 柳田 健之¹	1.奈良先端大
	Al ₂ O ₃ のドシメータ特性における比較研究	○加藤 匠¹,河口 範明¹,柳田 健之¹	1. 奈良先端大
	Nd添加YAlO ₃ 単結晶のシンチレーション特性	○柳田 健之¹,赤塚 雅紀¹,河口 範明¹	1.奈良先端大
	討	○柳田 健之¹, 渡辺 賢一², 河口 範明¹	1. 奈良先端大, 2. 名大工
	30BaO-(70-x)TiO ₂ -xGeO ₂ (x = 50, 55, 60) 結晶化ガラスのシンチレーション特性		1. 奈良先端大, 2. 産総研
	Ce添加YBO3のシンチレーション特性	○河口範明¹,柳田健之¹	1.奈良先端大
11p-PB4-69	Nd, Tm共添加フッ化バリウムの VUV シンチレーション 特性	○四口 靶明 ,柳田 煡之 。	1. 奈良先端大
11p-PB4-70	$Z_{n_4}B_6O_{13}$ のシンチレーション及びドシメーター特性	○河口 範明¹,柳田 健之¹	1. 奈良先端大
	Czochralski 法による Ce:GPS 単結晶の育成と評価		1.(株)オキサイド
11p-PB4-72	p-terphenyl結晶の作製とシンチレーション特性評価	〇山路 晃広 1 , 大和 慎之 Ω^1 , 黒澤 俊 Ω^1 , 吉野 将 生 1 , 大橋 雄 Ω^2 , 横田 有為 Ω^2 , 鎌田 圭 Ω^2 , 吉川 彰 Ω^1 .	1. 東北大金研, 2. 東北大 NICHe, 3. 山形大
奨 11p-PB4-73	バルス変調レーザーを用いた CdTe検出器におけるキャ リア移動特性の時間経過依存性の評価	〇坂井田 晃平 $^{\rm l}$,中川 央也 $^{\rm l}$,增澤 智昭 $^{\rm l.2}$,伊藤 哲 $^{\rm l.2}$,青木 徹 $^{\rm l.2}$	1. 静岡大院, 2. 静大電研
11p-PB4-74	1 cm厚ピクセル型 TlBr 放射線検出器の製作と評価	○野上 光博¹, 人見 啓太朗¹, 小野寺 敏幸², 渡辺 賢一³, 松本 伎朗³, 伊藤 辰也¹, 金 聖潤¹, 石井 慶造¹	1. 東北大学, 2. 東北工業大学, 3. 名古屋大学
11p-PB4-75	電荷注入型読み出し回路によるX線透過像撮影	〇都木 克之 $^{1.2}$,都木 利之 1 ,寺尾 剛 $^{1.2}$,森井 久史 2 ,小 池 昭史 $^{1.2}$,青木 徹 $^{1.2}$	1. 静岡大電子研, 2. 株式会社 ANSeeN
11p-PB4-76	粒子線治療への応用にむけた電子飛跡型コンプトンカメラの開発 I V	〇沼倉 隼人 ¹ , 黑澤 俊介 ^{1,2} , 門叶 冬樹 ¹ , 園田 真也 ³ , 水本 哲矢 ³ , 谷森 達 ^{3,4} , 高田 淳史 ^{3,4} , 吉野 将生 ² , 山路 晃広 ² , 岩井 岳夫 ¹ , 根本 建二 ¹	
11p-PB4-77	放射線治療中の患部周辺線量を評価するための放射線誘 起蛍光体と光ファイバーを用いた小型線量計の開発		1.名大工, 2.量研機構放医研, 3.奈良先端大
11p-PB4-78	中性子ブラッグエッジ解析コード RITS におけるシング ルエッジフィッティングの改良	大前 良磨 1 , ○渡辺 賢 $-^1$, 瓜谷 \hat{p}^1 , 山崎 \hat{p}^1 , 吉橋 幸	1.名古屋大学, 2.北海道大学
11p-PB4-79	ルエッシフィッティンクの改良 山形大学に導入した高感度加速器質量分析報告 II		1.山形大AMSセンター, 2.山形大理, 3.武蔵美, 4.東北
	A hardware the second s	山 幹成4, 斉藤 久子5, 岡田 靖6, 門叶 冬樹1.2	大植物園, 5.千葉大法医, 6.木文研
11p-PB4-80	マイクロカロリーメーターEDS搭載走査型電子顕微鏡によるホウ素元素マッピング(1)	〇中村 吏一朗', 平野 健太郎', 前畑 京介', 安田 和弘', 福永 裕美 ² , 工藤 昌輝 ² , 田中 浩基 ³	1.九州大学院工, 2.九州大学超顕センター, 3.京大原子力研

		器基礎 / Radiation physics and Detector fundamentals 口頭講演 (Oral Presentation) S622 会場 (Room S622)		
10:45	11a-S622-5	ESR 法を用いたガンマ線照射による PADC 検出器中の損傷評価(2)	〇大谷 拓也 1 ,楠本 多聞 2 ,千葉 昌寬 1 ,濱野 拳 1 ,金崎 真聡 1 ,小林 一雄 3 ,譽田 義英 3 ,藤乗 幸子 3	1. 神大院海事, 2. 量研機構, 3. 阪大産研
11:00	11a-S622-6	検出閾値周辺におけるポリエチレンテレフタレート中イ オントラック構造の研究		1. 神大院海事, 2. 量研機構
11:15	11a-S622-7		〇浜野拳 ¹ , 楠本 多聞 ² , 東 和樹 ¹ , 大谷 拓也 ¹ , 酒井 盛 和 ¹ , 金崎 真聡 ¹ , 小田 啓二 ¹ , 小平 聡 ² , 山内 知也 ¹	1. 神大院海事, 2. 放医研
1:30	11a-S622-8		○(M2)酒井 盛寿¹, 千葉 昌寬¹, 濵野 拳¹, 楠本 多聞²,	1. 神大院海事, 2. 量研機構
		口頭講演 (Oral Presentation) S622 会場 (Room S622)		
3:00	E 11p-S622-1	The Lu for La substitution effects on the single crystal growth and luminescence properties in Lu ₃ . "La,Ga ₃ Al ₂ O ₁₂ :Ce ³⁺ scintillators	○ (P)Karol Bartosiewicz¹, Akira Yoshikawa¹.², Shunsuke Kurosawa².³, Akihiro Yamaji¹, Martin Nikl⁴, Yuriy Zorenko⁵	1.IMR, Tohoku University, 2.NICHe, Tohoku University, 3.FS, Yamagata University, 4.IP, AS CR, 5.IP, UKW
3:15	E 11p-S622-2	Growth and scintillation properties of Ce and Mo co-doped RE ₃ Al ₅ O ₁₂ (RE = Y, Lu) single crystal scintillators	OKYOUNGJIN KIM¹, Kei Kamada².³, Masao Yoshino¹, Yasuhiro Shoji³.¹, Vladimir V. Kochurikhin³, Akihiro Yamaji¹, Shunsuke Kurosawa².⁴, Yuui Yokota², Yuji Ohashi², Akira Yoshikawa¹.².³	1.IMR, Tohoku Univ., 2.NICHe, Tohoku Univ., 3.C&A Corp., 4.Yamagata Univ.
3:30	11p-S622-3	$W^{\text{6+}}$ イオン共添加 $Ce:Gd_3Ga_3Al_2O_{12}$ についてシンチレータ特性の添加濃度依存性および 1 インチサイズ単結晶作		1. 東北大金研, 2. 東北大 NICHe, 3. ㈱ C&A, 4. 山形大理
13:45	11p-S622-4	新型プラスチックシンチレータの実用化を目指した長期 安定性の改善		
14:00	11p-S622-5	プロトンビームで銀活性ガラスとLiF結晶中に書き込ん だマイクロパターンの多光子顕微鏡による特性比較(Ⅲ)	〇黒堀 利夫 1 , 加田 涉 2 , 柳田 由香 3 , 小口 靖弘 3 , Ivan	1. 金沢大学院, 2. 群馬大理工, 3. 千代田テクノル, 4. ジェルボスコビッチ
4:15 4:30	11p-S622-6 奨 11p-S622-7	ミストデポジション法による CsPbBr ₃ 厚膜の作製 SOI技術を用いた SiPM の開発	 ○春田優貴¹,池之上卓己¹,三宅正男¹,平藤哲司¹ ○(M1)金正勲¹,小山晃広¹,島添健次¹,高橋浩之¹, 	
4:45	11p-S622-8	中性子イメージングセンサーに向けたBGaN半導体検出 器の開発	田 悠人 1 , 中川 央也 1 , 宇佐美 茂佳 2 , 本田 善央 3 , 天野 浩 3 , 小島 一信 5 , 秩父 重英 3 , 5 , 6 , 井上 翼 1 , 青木 徽 7 ,	1.静大院, 2.名大院, 3.名大IMaSS, 4.赤崎リサーチセンター, 5.東北大多元研, 6.北大量積セ, 7.静大電研
5:00	11p-S622-9	ヘリウムの電離収量に対する純化と不純物の効果	中野 貴之 1	1.総合研究大学院大学, 2.高エネルギー加速器研究機構
5:15	11p-S622-10	PHITSにおけるイオンの飛跡構造計算機能の開発	○甲斐 健師¹, 佐藤 達彦¹, Liamsuwan Thiansin², Nikjoo Hooshang³	1.原子力機構, 2.Princess Chulabhorn College, 3. Karolinska Institutet
	開発 / Detection			
3/11(Mo 9:45	11a-S622-1	口頭講演 (Oral Presentation) S622会場 (Room S622) PADC固体飛跡検出器の製造工程変更による形質改良の 試み	○石川 一平¹, 清原 修二¹	1.舞鶴高専
10:00	11a-S622-2	原子核乾板を用いた100 MeV 級レーザー加速陽子線計測 手法の開発	○ (M1) 浅井 孝文¹, 金崎 真聡¹, 森島 邦博², 神野 智 史³, 小平 聡⁴, 首藤 信通¹, 小田 啓二¹, 山內 知也¹, 桐 山 博光⁵, 福田 祐仁⁵	
10:15	11a-S622-3	固体飛跡検出器 CR-39 を用いたレーザー加速陽子線エネルギースペクトル計測の高精度化		1. 神大院海事, 2. 東大院工, 3. 放医研, 4. 量研機構関西
0:30	11a-S622-4	レーザー加速イオン計測用リアルタイムトムソンバラボ ラスペクトロメータの特性評価	〇清水 和輝 1 , 金崎 真聡 1 , 神野 智史 2 , 浅井 孝文 1 , 坂 本 溪太 1 , 小田 啓二 1 , 山内 知也 1 , 古山 雄一 1 , 谷池 晃 1 , 福田 祐仁 3	1. 神大院海事, 2. 東大院工, 3. 量研関西研
		口頭講演 (Oral Presentation) M103会場 (Room M103)		1 WORLD 2 1 11 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1
9:00		導電性高分子を用いた新型半導体放射線検出器の開発 重粒子線がん治療場での線量評価を目的としたSiC半導	○(D)宮田恵理¹,宮田等¹,柿崎和貴¹,深沢永里香¹,梅山晃典²,佐藤誠²,鈴木崇民²,田村正明² ○加田渉¹,大木佑哉¹²,大崎晃平³,山崎雄一²,牧	
9:15	12a-M1103-2	単型丁級かん石球場での緑重評価を目的としたSIC 手導体検出器の開発	野 高紘 2 , 大島 武 2 , 松村 彰彦 3 , 酒井 真理 3 , 花泉 修 1	
9:30	12a-M103-3	多波長弁別型 CdTe ピクセル検出器開発と放射光応用	〇豊川 秀訓 1 , 田尻 寛男 1 , 佐治 超爾 1 , 川瀬 守弘 1 , 尾原 幸治 1 , 城 鮎美 2 , 菖蒲 敬久 3 , 鈴木 賢治 4 , 岡田 純 平 5 , 渡辺 康裕 6 , 米村 光治 7	1.JASRI/SPring-8, 2.量研機構, 3.原子力機構, 4.新潟大 5.東北大, 6.東京大, 7.新日鐵住金
9:45	12a-M103-4	高分解能ガンマ線3次元イメージングを目指したCdTe SPECT装置の検出器応答の研究		1.東大理, 2.宇宙科学研究所, 3.国立がん研究センター
0:00	12a-M103-5	CeBr ₃ シンチレータ単結晶の大型化とアッセンブリ技術の開発	〇鎌田 圭 1,2 , 吉野 将生 3 , 庄子 育宏 2 , 山路 晃弘 3 , 黑澤 俊介 1 , 横田 有為 1 , 大橋 雄二 1 , 鳥添 健次 4 , 高橋 美和子 5 , 羽場 宏光 6 , 百瀬 敏光 7 , 高橋 浩之 4 , 吉川 彰 1,2,3	1. 東北大NICHe, 2.C&A, 3. 東北大金研, 4. 東大工, 5. 量研, 6. 理研, 7. 国際医療福祉大
0:15	12a-M103-6	多光子イメージング用カリウム43の製造技術開発	1-	1. 理研, 2. 東大, 3. 東北大, 4. 国際医療福祉大, 5. 量研機構
0:30	12a-M103-7	多光子多分子核医学イメージング技術の研究開発	•	1. 東京大, 2. 東北大, 3. 量研機構, 4. 理研, 5. 国際医療福祉大
0:45	12a-M103-8	多核種同時核医学イメージング技術の開発と検証		1.量研機構放医研, 2.東京大学, 3.東北大学, 4.理研, 5.国際医療福祉大学
1:00	12a-M103-9	MeV ガンマ線コンプトンカメラの最適化および性能評価		
	12- M102 10	回転機能付き全方向γ線コンプトンカメラの開発	〇近藤 亮太郎 1 ,村石 浩 1 ,榎本 良治 2 ,片桐 秀明 3 ,加	1.北里大医衛, 2.東大宇宙線研, 3. 茨城大理, 4.仙台高 専, 5.国立がん研究センター東病院, 6.高エネルギー加
11:15	12a-W103-10		賀谷 美佳 ⁴ , 成田 尚史 ³ , 渡辺 宝 ⁵ , 加納 大輔 ⁵ , 武田 徹 ¹ , 内田 智久 ⁶ , 田中 真伸 ⁶	連器研究機構(KEK)

3/12(⁻ 13:15		口頭講演 (Oral Presentation) M103会場 (Room M103) CeBr ₃ アレーを用いたコンプトンPETハイブリッドカメ ラの開発	子², 大鐘 健一郎¹, 織田 忠¹, 吉野 将生³, 鎌田 圭³, 吉	1. 東大, 2. 量研機構放医研, 3. 東北大
13:30	奨 E 12p-M103-2	Four-layer DOI PET detector with 1 mm crystal pitch	川 彰 ³ , 高橋 浩之 ¹ ○ (P)HanGyu Kang ¹ , Sodai Takyu ¹ , Fujino Obata ¹ , Fumihiko Nishikido ¹ , Eiji Yoshida ¹ , Taiga Yamaya ¹	1.NIRS-QST
13:45	奨 12p-M103-3	地表における宇宙線ミュオン二重微分エネルギースペクトルの系統的な測定		1. 九大総理工
14:00	奨 12p-M103-4	光ファイバーと赤色発光シンチレータを用いたガンマ線 検出器の開発	○ (D) 小玉 翔平¹, 黒澤 俊介¹², 森下 祐樹³, 字佐美博士³, 林 真照⁴, 田中 浩基⁵, 山路 晃広¹, 吉野 将生¹, 大橋 雄二¹, 鎌田 圭¹², 横田 有為¹, 吉川 彰¹, 鳥居 建 男³	
14:15	奨 12p-M103-5	光ファイバ型中性子検出器を用いた BNCT 中性子場の計 測		1. 名古屋大学大学院工学研究科
14:30 14:45	12p-M103-6	休憩/Break TRUST Eu:LiCAF を用いた小型中性子回折装置の応答評 価試験	○(M1)今井 頌¹,渡辺 賢一¹,山崎 淳¹,吉橋 幸子¹, 瓜谷 章¹,田崎 誠司²,佐藤 節夫³	1.名古屋大, 2.京都大, 3.高エネ研
15:00	12p-M103-7	原子力プラント運転中の通常時から DBA 時適用に向けた 高感度光ファイバ型放射線モニタ		1.日立研開, 2.東北大未来科学技術共同研究センター, 3.東北大金研
15:15	12p-M103-8	ガンマ線検出用位置検出型TES型マイクロカロリーメータの開発(4)		
15:30 15:45		人工知能によるガンマ線分析のためのスペクトル認識 チェレンコフ光検出型 MeV ガンマ線偏光計の提案と実証	○金 政治¹,後藤 淳²,大島 真澄³ ○(M2)米山 昌樹¹,片岡 淳¹,望月 早駆¹,伊藤 颯一郎¹,木地 浩章¹,西 郁也¹,細越 裕希¹,宮本 修治²	1. 九大総理工, 2. 新潟大, 3. 日本分析センター 1. 早大応物, 2. 兵庫県立大学
16:00	12p-M103-11	波形解析による放射線種類弁別可能な高分解能放射線位 置検出器の開発		1. 名古屋大学, 2. 東北大学
		·新技術 / Application, radiation generators, new technol	ogy	
3/9(S 10:00		口頭講演 (Oral Presentation) M103 会場 (Room M103) X線CTと3D プリンティング技術によるテーラーメイド 線量計	○藤原 健¹, 河村 一朗², 藤本 裕², 越水 正典², 浅井 圭 介²	1. 産総研, 2. 東北大院工
10:15	9a-M103-2	次世代カラーX線CTに向けた複数造影剤イメージングの 実証		1.早大理工, 2.金沢大, 3.日立金属, 4.JAXA
10:30	9a-M103-3	transXend検出器を用いたエネルギー分解CTの撮影数に 関する研究		1. 府大高専, 2. 京大院工
10:45	9a-M103-4	平面型 transXend 検出器を用いた低被ばく物質分解撮影 法の研究		1.京大院工
11:00 11:15	9a-M103-5 9a-M103-6	エネルギー分解CTを用いた糖度計測法の研究 エネルギー分解X線CT測定を用いた金属容器中の物質 識別法の研究	○ (M1) 黒山 貴裕¹, 神野 郁夫¹ ○ (M2) 石川 翔太¹, 濵口 拓¹, 神野 郁夫¹	1. 京大院工 1. 京大院工
3/9(5	Sat.) 13:15 - 17:30	口頭講演 (Oral Presentation) M103会場 (Room M103)		
13:15	9p-M103-1	側面励起によるレーザーコンプトンガンマ線高出力化の 検討	吉川 大久¹, ○天野 壯¹	1. 兵庫県大高度研
13:30 13:45	9p-M103-2 9p-M103-3	焦電結晶によるX線発生強度のガス種依存性 LiTaO ₃ 単結晶による発生X線の結晶表面-ターゲット間 距離依存性 II	○内藤 雅之¹, 氣賀 信太郎¹, 長谷部 信行¹, 長岡 央² ○花元 克巳¹, 片岡 隆浩¹, 山岡 聖典¹	1. 早大先進理工, 2.ISAS/JAXA 1. 岡山大院保
14:00 14:15	9p-M103-4 奨 9p-M103-5	パワー半導体デバイスの放射線応答 ヒト脳PET画像におけるDOI検出器効果の客観的評価 の試み	〇笹野 理 1 ,林 真照 1 ,東 哲史 1 ,澤 良次 1 〇大東 尚真 1 ,岩男 悠真 2 ,高橋 美和子 2 ,山谷 泰賀 1,2	1. 三菱電機株式会社 1. 千葉大工, 2. 量研機構放医研
14:30	9p-M103-6	長体軸視野超高感度 DOI-PET のシミュレーション検討	○田島 英朗¹, カン ハンギュ¹, 吉田 英治¹, 樋口 隆 弘², 高橋 美和子¹, 山谷 泰賀¹	1. 量研放医研, 2. 岡山大
14:45	9p-M103-7	全方向コンプトンカメラによる放射性物質探知手法の開 発		1.名古屋大学
15:00	9p-M103-8	(3) 修正一般化螺旋集合を用いた投影球面のビクセル化全方向コンプトンカメラによる放射性物質探知手法の開発 (4) リアルタイムイメージングのための画像再構成の高速化	〇向 篤志¹, 金森 滉太朗¹, 上間 康平¹, 富田 英生¹, 井口 哲夫¹	1.名古屋大学
15:15 15:30	9p-M103-9	休憩/Break RI内用療法に向けたコンプトンカメラによる ²²³ Ra イメー	○藤枝 和也¹ 片岡 淳¹ 望日 早販¹ 田川 恰中¹ 佐藤	1 早大理丁 2 阪大医 3 近松ホトニクス
_0.00	. p	ジングの実証	将吾 ¹ , 田中 稜 ¹ , 松永 恵子 ² , 神谷 貴史 ² , 渡部 直史 ² , 下瀬川 恵久 ² , 畑澤 順 ² , 大須賀 慎二 ³	
15:45	9p-M103-10	RI内用療法に向けた大面積コンプトンカメラの最適化検 証	〇田中 稜 1 , 片岡 $\overset{1}{p}$, 望月 早 1 , 田川 怜央 1 , 藤枝 和 也 1 , 佐藤 将吾 1 , 吉野 将生 2 , 鎌田 圭 3,4 , 吉川 彰 2,3,4	C&A
16:00	9p-M103-11	$CeBr_3$ を用いた高エネルギー分解能 $1mm$ ピクセルアレイ の開発	○吉野 将生 ¹ , 金 敬鎮 ¹ , 鎌田 圭 ^{2,3} , 横田 有為 ² , 黒澤 俊介 ^{2,4} , 山路 晃広 ¹ , 大橋 雄二 ² , 佐藤 浩樹 ² , 藤枝 和 也 ⁵ , 田中 稜 ⁵ , 片岡 淳 ⁵ , 吉川 彰 ^{1,2,3}	
16:15	E 9p-M103-12	A direct diode pumped continuous wave Ti:Sapphire laser seeding a pulsed amplifier for high resolution Resonance Ionization Spectroscopy	○ (PC)Volker Thomas Sonnenschein ^{1, 2} , Masaya	1.Nagoya Univ., 2.RIKEN
16:30	奨 9p-M103-13	生体・環境トレーサー応用のための中赤外キャビティリ	○(DC) 寺林 稜平 ^{1,2} , ゾンネンシャインフォルカ ¹ , 富田 英生 ¹ , 仲田(狩野)麻奈 ¹ , 加藤 修介 ¹ , 武田 晨 ¹ , 齊藤 圭亮 ¹ , 山中 真仁 ¹ , 西澤 典彦 ¹ , 吉田 賢二 ³ , 神谷 直浩 ⁴ , 井口 哲夫 ¹	
16:45	E 9p-M103-14	A $^{14}\mathrm{CO}_2$ cavity ring-down analyzer using a frequency comb referenced and stabilized quantum cascade laser system	○ (PC)Volker Thomas Sonnenschein¹, Ryohei Terabayashi¹, Hideki Tomita¹, Shusuke Kato¹, Shin Takeda¹, Keisuke Saito¹, Masahito Yamanaka¹, Norihiko Nishizawa¹, Kenji Yoshida², Naohiro Kamiya³, Tetsuo Iguchi¹	1.Nagoya Univ., 2.Sekisui Medical Co. Ltd., 3.Shimadzu Corp.
17:00	9p-M103-15	大強度中性子用BSSの開発と加速器BNCT施設での測定		1. 産総研分析計測標準, 2. 筑波大医, 3. 群馬健科大, 4. 京 大複合研
17:15	奨 9p-M103-16	加速器中性子源による 64 Cuのキレート滴定法及び薄層クロマトグラフィー法による同位体純度導出		1. 九大総理工, 2. 東北大 CYRIC

3/10(Sun.)	10:00 - 11:30	口頭講演 (Oral Presentation) M112会場 (Room M112)				
10:00	10a-M112-1	福島県浪江におけるガンマ線スペクトルの高度変化測定	○栗原 拓也 ¹, 片岡 淳 ¹, 棚田 和玖 ¹, 望月 早駆 ¹, 田川 怜央 ¹, 丸橋 拓也 ¹, 細越 裕希 ¹, 大河内 博 ¹, 後藤 友里 絵 ¹	1. 早大理工		
10:15	10a-M112-2	月面における放射線量と防護	○内藤 雅之¹, 敷島 真奈¹, 石 智成¹, 長谷部 信行¹	1.早大先進理工		
10:30	10a-M112-3	化学機械研磨を用いた MEMS X線光学系の鏡形状改善	○福島 碧都¹,藤谷 麻衣子¹,石川 久美²,沼澤 正樹¹,伊師 大貴¹,大坪 亮太¹,鈴木 光¹,永利 光¹,湯浅 辰哉¹,大橋 隆哉¹,満田 和久²,江副 祐一郎¹	1. 首都大, 2. 宇宙研		
10:45	10a-M112-4	超長時間アニール後の Si 微細穴 X 線光学系の鏡形状評価	〇伊師 大貴¹,江副 祐一郎¹,石川 久美²,沼澤 正樹¹,藤谷 麻衣子¹,大坪 亮太¹,福島 碧都¹,鈴木 光¹,永利 光¹,湯浅 辰哉¹,金森 義明³,大橋 隆哉¹,満田 和久²	1. 首都大, 2.JAXA 宇宙研, 3. 東北大		
11:00	10a-M112-5	KUR低速陽電子ビームラインの開発:高輝度化及びパルス化の状況	葛谷 佳広 1 ,大島 永康 2 ,中島 諒 1 ,田口 遼 1 ,薮内 敦 1 , \bigcirc 木野村 淳 1	1. 京大複合研, 2. 産総研		
11:15	10a-M112-6	二次電子制動輻射計測により得られる陽子線画像を用い た機械学習によるブラッグピークのずれの推定	○山口 充孝¹, 長尾 悠人¹, 河地 有木¹	1.量研高崎研		
3 光・フ	3 光・フォトニクス / Optics and Photonics					
シンポジウ	ムのプログラム	はプログラム冒頭にございます。				

10:45	10a-M112-4		哉¹,大橋隆哉¹,満田和久²,江副祐一郎¹ ○伊師大貴¹,江副祐一郎¹, 石川久美²,沿澤正樹¹,	1. 首都大, 2.JAXA 宇宙研, 3. 東北大
11.00	10 3440 -	価 Millo Millor Millor	藤谷麻衣子¹,大坪亮太¹,福島碧都¹,鈴木光¹,永利光¹,湯浅辰哉¹,金森義明³,大橋隆哉¹,満田和久²	1 - 1 - 5 - 5 - 7 - 7 - 5 - 5 - 7 - 7 - 5 - 5
11:00		KUR低速陽電子ビームラインの開発:高輝度化及びパル ス化の状況	○木野村 淳¹	
11:15		二次電子制動輻射計測により得られる陽子線画像を用い た機械学習によるブラッグピークのずれの推定	○山口 充孝 ', 長尾 悠人 ', 河地 有木 '	1.量研高崎研
		/ Optics and Photonics		
		はプログラム冒頭にございます。 / Basic optics and frontier of optics		
		口頭講演 (Oral Presentation) M116会場 (Room M116)		
9:00	9a-M116-1	光学的非線形性を有する1軸配向液晶中を伝搬する光渦 の自己位相変調効果	〇松尾 直人 1 , 坂本 盛嗣 1 , 野田 浩平 1 , 佐々木 友之 1 , 川月 喜弘 2 , 小野 浩司 1	1.長岡技科大, 2.兵庫県立大
9:15	奨 9a-M116-2	バクテリオロドブシン溶液中を伝播する光渦の空間対称 性の破れ	〇增田 圭吾¹, 吉澤 太貴¹, 秋山 友希¹, 岡田(首藤) 佳 子², 村田 武士¹, 豊田 耕平¹.³, 宮本 克彦¹³, 尾松 孝 茂¹.³	
9:30	奨 9a-M116-3	二光子吸収誘起表面レリーフ形成過程におけるスピン軌 道相互作用	〇篠崎	1.千葉大院融合理工, 2.千葉大分子キラリティ研究センター, 3.北大工研究院
9:45	9a-M116-4	高次ベッセルビームが創る長尺ポリマーファイバー		1.千葉大学院融合理工, 2.千葉大学分子キラリティー 研, 3.セントアンドリュース大学
10:00		休憩/Break		
10:15	9a-M116-5	ラゲールガウシアンビームを用いたレーザートラップ支 援電気泳動堆積によるチューブ形状微細立体構造物の作 製	○大澤 俊哉',中澤 謙太',岩田 太''	1. 静岡大院工, 2. 静大電研
10:30	9a-M116-6	広帯域ベクトルビームの幾何学的位相の制御	〇若山 俊隆 ¹ , 篠崎 夏美 ² , 庄司 美咲 ² , 石山 貴之 ¹ , 坂	1.埼玉医大, 2.宇都宮大院工, 3.東大光量子科学研, 4.東
			上和之 ³ ,江島丈雄 ⁴ ,東口武史 ²	北大多元研
10:45	9a-M116-7	光複素振幅の幾何学変換による光の軌道角運動量の逓倍 操作		1.高知工大
11:00	9a-M116-8	径偏光ビームの集光特性を利用したプラズモニックレー ザの検討II	○尾淵 浩也¹, 北村 恭子¹	1.京都工繊大
		口頭講演 (Oral Presentation) M116 会場 (Room M116)	CASE AND THE LOCAL PROPERTY AND THE PROP	A THE LATHY HOLD OF THE LATHY
13:15	9p-M116-1	光圧と熱泳動によるプラズモニックナノ粒子のマニピュ レーション	宮坂 博 1	
13:30	9p-M116-2	光化学反応による光圧の可逆的スイッチング	○伊都 将司¹,瀬戸浦 健仁¹,光石 杜朗¹,メモン アッサン¹,田中 景士¹,森本 正和²,入江 正浩²,稲垣 佑樹³,武藤 克也³,阿部 二朗³,宮坂 博¹	1. 阪大院基礎工, 2. 立教大埋, 3. 青字大埋工
13:45	9p-M116-3	ポインティングベクトル制御による光ナノ粒子操作		1.北大電子研
14:00	9p-M116-4	光渦の下での複数ナノ粒子の軌道運動の偏光依存性	○田村 守 ^{1,2} , 尾松 孝茂 ^{3,4} , 飯田 琢也 ^{1,2}	1. 阪府大院理, 2. 阪府大 LAC-SYS 研, 3. 千葉大院融合科学, 4. 千葉大分子キラリティー研
14:15	E 9p-M116-5	Fluorescence Characterization of Strongly Packed Assembly of Silica Nanoparticles Formed under Femtosecond Laser Trapping	○ (P)Wei-Yi Chiang ^{1,2} , Jim Jui-Kai Chen ¹ , Anwar Usman ³ , Tetsuhiro Kudo ¹ , Teruki Sugiyama ^{1,4} , Johan Hofkens ² , Hiroshi Masuhara ¹	1.NCTU, 2.KU Leuven, 3.UBD, 4.NAIST
14:30	Е 9р-М116-6	Correlated Dynamic Arrangement of Gold Nanoparticles in Laser Trapping at Glass/Solution Interface		1.Department of Applied Chemistry, College of Science, National Chiao Tung Univ. Taiwan, 2.Department of Chemistry, KU Leuven, Belgium, 3.Center for Emergent Functional Matter Science, National Chiao Tung Univ. Taiwan
14:45		休憩/Break		
15:00	奨 9p-M116-7	ナノ粒子に働く光圧の精密測定に向けた光駆動マイクロ マシンの開発	努1	•
15:15	奨 9p-M116-8	ナノ粒子に働く光圧の精密測定に向けた捕捉ポテンシャル制御法の開発	努1	
15:30	9p-M116-9	原子間力顕微鏡を用いたナノ粒子に働く光圧測定の理論 解析		1. 阪府大院工, 2. 阪大基礎工
15:45	9p-M116-10	溶液中ナノ粒子の光捕捉過程における共鳴レーザー照射 効果	((DC) 岸本 龍典 1°, 工藤 卓°, 田口 隆久°, 細川 千 絵 ^{1,2,4,5}	1.産総研バイオメディカル, 2. 関西学院大理工, 3. 情通機構, 4. 産総研・阪大先端フォトバイオ, 5. 大阪市大院理
16:00	0. 34112 11	休憩/Break	○福自 法4-1 [長 牡 申]	1 支北上久二四 0 久上土土四
16:15	*	レーザー干渉加工による位相ホログラフィック回折格子 の作製と電子渦ビームの生成 野がよるスータ付き転送行列はお思いた同野と学表子の		1.東北大多元研, 2.名大未来研
16:30	·	形状パラメータ付き転送行列法を用いた回折光学素子の設計		1. 字大院工, 2. 字大 CORE, 3. 産総研電子光技術
	Sun.) 9:00 - 11:15	有限フレネル変換による固有ベクトル展開 口頭講演 (Oral Presentation) M116 会場 (Room M116)	○青柳 智裕¹, 大坪 紘一¹, 青柳 宣生¹	1.東洋大総合情報
9:00 9:15		モンテカルロ顕微鏡:提案と実証 高次ベクトルビームを用いた差引イメージングの生体試	○河田 聡¹ 吉田 宝生¹ ○小澤 祐市¹ 佐藤 俊一¹	1.ナノフォトン (株) 1.東北大多元研
9:15		高次へクトルビームを用いた左切イメージングの主体試料への適用 マイクロガラスファイバー探針を用いる珪藻被殻の顕微		1. 宋北入夕儿町 1. 信大繊維
7.30	10a-141110-9	分光	\cup , \Box 大 八四, \cap 四 日土, \bigcap 縣 外 ∂ , \Box 日 \bigcap	A. ILI / NPRATE
9:45	10a-M116-4	外部磁場に依存したランダムレーザー発振特性の解析	○藤原 英樹 1 ,海住 英生 1 ,西井 準治 1 ,笹木 敬司 1	1. 北大電子研
10:00		休憩/Break		. III of I Dismon
10:15		ランダムゼロ屈折率媒体による入射側での再集光	○田渕智也¹,大坊真洋¹	1. 岩手大院理工
10:30 10:45		酸化亜鉛ナノ発光体のプラズモンアシスト水熱合成 酸素濃度を制御した水中で局所加熱によって生成された	○鈴木 達朗¹,藤原 英樹¹,笹木 敬司¹岡井 俊介¹ ○名村 今日子¹ 鈴木 其中¹	1.北大電子研 1.京大院・工
		マイクロバブルの自励振動		
11:00	10a-M1116-8	異なる相転移温度をもつサーモクロミック薄膜を用いた 水蒸気バブル周辺の温度分布の可視化	同局 但心,○右們 写目丁,鄭不 基果。	1. 京大院・工

3/11(Mo	on.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
0, 11(111	11a-PA1-1	多光子還元を起点とした光誘起バブル生成と階層的ナノ 粒子集積体の形成		1. 山形大院工
	11a-PA1-2 11a-PA1-3	サブミリバブル模倣型基板を用いた低ダメージ光誘起集 合法の開拓 環境温度制御下における光誘起集合の解析	田村 守 ^{2,4} , 床波 志保 ^{3,4} , 飯田 琢也 ^{1,2,4}	1.大阪府大生命環境,2.大阪府大院理,3.大阪府大院工, 4.大阪府大LAC-SYS研 1.阪府大生命環境,2.阪府大院理,3.阪府大院工,4.阪府
	E 11a-PA1-4	Laser Trapping Dynamics of Polystyrene Assembly at Glass/Solution Interface Observed by a Dual-Objective	保 ^{3,4} , 飯田 琢也 ^{1,2,4}	大LAC-SYS研究所 1.Dept. of Appl. Chem., National Chiao Tung Univ., Taiwan, 2.Center for Emergent Functional Matter
	E 11a-PA1-5	Lens Microscope Laser trapping of 20 μ m polystyrene particles at solution	○ (M2)Jia-Syun Lu¹, Tetsuhiro Kudo¹, Hiroshi	Science, National Chiao Tung Univ. Taiwan 1.Dept. of Appl. Chem., National Chiao Tung Univ.
	11a-PA1-6	surface leading to necklace-like pattern of 1 μ m particles プラズモニックビーズをプローブとする原子間力顕微鏡		Taiwan, 2.Center for Emergent Functional Matter Science, National Chiao Tung Univ. Taiwan 1. 徳島大学
		用カンチレバーの作製		
3.2 材料・	11a-PA1-7 機器光学 / Equip	微小構造間に働く極微弱力計測システムの開発 oment optics and materials	○ (D) 紫垣 政信¹, 田中 嘉人¹², 志村 努¹	1.東大生研, 2.JST さきがけ
		口頭講演 (Oral Presentation) S321 会場 (Room S321)		1 4 A M 1 7 11 7
13:45	10p-S321-1	発電機能を有するカラープロジェクタのクロストークの 評価	○藤枝 一郎¹, 柚木 康平¹, 高本 享昌¹, 繁田 光浩¹, 堤 康宏¹	1.立命館大理工
14:00	10p-S321-2	蛍光色素を用いた液晶ディスプレイの外光の下でのコン トラスト比	○福本 禄寿¹, 太田 正倫¹, 繁田 光浩¹, 堤 康宏¹, 藤枝 一郎¹	
14:15	10p-S321-3	ナノダイヤモンド分散コンポジットホログラフィック格 子	○ (M1) 影山 明久¹, 富田 康生¹, 梅本 浩一², Klepp Jürgen³, Pruner Chrinstian⁴, Fally Martin³	1. 電通大, 2. ダイセル, 3. ウィーン大, 4. ザルツブルグ大
14:30	10p-S321-4	粒度分布が狭小な中空シリカナノ粒子を1段配列させた 反射防止膜の特性について	○二神 渉¹, 熊澤 光章¹, 眞田 夕子¹, 村口 良¹	1.日揮触媒化成(株)
14:45 15:00	10p-S321-5	休憩/Break ビート構造を有する液晶回折光学素子の回折特性	○(M1)百崎 龍成 ¹ ,河合 孝太郎 ² ,坂本 盛嗣 ¹ ,野田 浩平 ¹ ,佐々木 友之 ¹ ,川月 喜弘 ³ ,小野 浩司 ¹	1. 長岡技科大, 2. 神戸高専, 3. 兵庫県立大
15:15	10p-S321-6	テラヘルツ波光源用OH1単結晶薄膜の気相成長条件最適 化		1.名古屋大学, 2.アークレイ(株)
15:30 3/11(Ma	10p-S321-7	Cs _{0.33} WO ₃ の近赤外線吸収特性の第一原理計算 ポスター講演 (Poster Presentation) PA 会場 (Room PA)	○吉尾 里司¹, 足立 健治¹	1.住友金属鉱山
5) 11(1010	11a-PA2-1	一様な蛍光体層を含む導光体の端面での光パワーの回収	〇山田 啓貴 1 , 平井 雄貴 1 , 太田 正倫 1 , 堤 康宏 1 , 藤枝 一郎 1	1. 立命館大理工
	11a-PA2-2	拡大	○松村 燎¹, 堤 康宏¹, 藤枝 一郎¹	1.立命館大理工
	11a-PA2-3	固体光源プロジェクターの高輝度化に向けた光強度分布 制御素子の設計		1.福岡工大工
	11a-PA2-4 11a-PA2-5	バルス幅可変・KrFランプの開発 レーザアブレーションによる透明導電膜の配線描画	○ (M2) 吉田 大海¹, 宇野 和行¹, 實野 孝久² 五十嵐 亮太¹, ○斉藤 光徳¹	1. 山梨大工, 2. 阪大レーザー研 1. 龍谷大理工
	11a-PA2-6	深層強化学習を利用したマルチレベル異方性回折格子構造設計		1.阿南高専, 2.長岡技大
	11a-PA2-7	段差付テーパー形状を有する反射防止表面:最適化計算 と大面積加工		1.王子ホールディングス
	11a-PA2-8	磁性積層膜における磁気光学キャビティ効果と化学セン サへの応用	古 暢哉², 住吉 研², 重村 幸治², 三浦 聡²	1.秋田産技センター, 2. T i a n m a
	11a-PA2-9	ナノ周期溝構造上の溶液掃引で形成された二色性染料結 晶の塗布型偏光子		1.東北大院工
	11a-PA2-10	アゾボリマー上の表面レリーフホログラムへの直流電圧 バターン印加	○酒井 大輔 1 , 山本 拓実 1 , 垣見 美里 1 , 原田 建治 1 , 柴田 浩行 1	1. 北見工大
	11a-PA2-11	熱応答型PDLC作製におけるレーザ散乱光の照射条件の 効果	○荻原 昭文¹, 植田 航輔¹, 垣内田 洋²	1. 神戸高専, 2. 産総研
		ガラス基板での焦点制御型レンズの作製とその光学特性 湾曲した高精細ディスプレイ上に配置したシリンドリカ ルレンズの光学設計		1. 三重大院工, 2. 三重大伊賀サテライト 1. 長岡技科大工
		液晶レンズを用いる中心窩結像システム	王思聰¹,陳曉西¹,楊芸佳¹,○葉茂¹	1. 電科大
		コレステリック液晶ポリマー微粒子における分子配向制 御と光学特性評価 四维サルンプ特性を方式を集し、プロ発売収差		1.立命館大生命
		円錐状レンズ特性を有する液晶レンズの球面収差 液晶光拡散デバイスにおける偏光依存性	○河村 希典¹, 菅原 朋樹¹ ○梁瀬 智¹, 内田 勝¹	1. 秋田大院理工 1. 秋田産技センター
		、12.3 機能材料・萌芽的デバイスのコードシェアセッショ	\sim / Code-sharing Session of 3.2 & 12.3	
3/10(Su 9:30		口頭講演 (Oral Presentation) M136 会場 (Room M136) 液晶リニアフレネルレンズを用いた配光可変デバイス	○樋口 隆信¹, 岩脇 圭介¹, 橋川 広和¹, 吉澤 達矢¹, 吉	1. パイオニア, 2. パイオニア OLED ライティングデバイ
		円錐状レンズ特性を有する液晶レンズの光学位相差分布	川 高正 1 , 三森 歩美 1 , 奥山 賢 $-^2$, 梁瀬 智 3 , 内田 勝 3	
10:00	奨 10a-M136-3	(I) 宙吊り構造を導入した高分子ベース空間光変調器の大変	○英 祐輝¹, 生田 昂¹, 前橋 兼三¹	1.農工大院工
10:15	奨 10a-M136-4	位・高速動作制御 キラルπ共役ポリマーマイクロ球体共振器からの円偏光 発光	○大木 理¹, Kulkarni Chidambar², Meskers Stefan C. J², Meijer E. W², 佐々木 史雄³, Lin Zhan-Hong⁴,	1. 筑波大数理物質, 2. アンイントホーフェン工科大, 3. 産総研, 4. ライブニッツ光技術研究所
10.20	10. 34104 5		Huang Jer-Shing ⁴ , 山本 洋平 ¹	
10:30 10:45		発光性液晶の相転移挙動と光学特性 休憩/Break	○江良正直¹	1. 佐大理工
11:00	10a-M136-6	各種液晶におけるフレクソエレクトリック分極の第2高 調波イメージング	○城田 幸一郎¹, 荒岡 史人², 山形 豊¹, Chen Hui-Yu³	1. 埋研光量子, 2. 理研創発物性, 3. 国立中興大
11:15		液晶/配向ナノファイバー複合素子を用いた NRD ガイ ド型テラヘルツ波移相器	○森武 洋¹, ブイ バン バオ¹, 井上 曜¹	1.防衛大
11:30		高分子分散型液晶を用いた高速スイッチング可能なテラヘルツ移相器		1.防衛大学校, 2.阪大院工
11:45	10a-M136-9	コレステリック Bragg-Berry 偏向素子のストップバンド の解析	〇尾崎 良太郎',橋村 俊祐',弓達 新治',門脇 一則', 吉田 浩之 ² ,尾崎 雅則 ²	1. 変碳大院埋工, 2. 阪大院工

33情超	フェ	トニクス・画作	象工学 / Information photonics and image engineering		
			ポスター講演 (Poster Presentation) PA会場 (Room PA)		
		10a-PA1-1	ディジタルホログラフィック顕微鏡を用いた血液凝固構 造のトモグラフィック位相イメージングにおける角度補 正	渡辺 俊樹¹, ○船水 英希¹, 相津 佳永¹	1. 室工大院
		10a-PA1-2	正 伝搬距離を用いたディジタルホログラフィのノイズ低減 法におけるオフアクシス角の影響	菅田 滉太 ¹, 坂爪 良樹 ¹, \bigcirc 船水 英希 ¹, 魚住 純 ², 相津 隹永 ¹	1. 室工大院, 2. 北海学園大学
		10a-PA1-3	位相多値ホログラフィーメモリにおける3ビットデジタ	○歸山 敏之	
		10a-PA1-4	ルデータ記録・再生への位相光波の1設計 パターン加工を行った再帰反射シートを用いたシース ルー型空中表示	○柿沼 遼太¹, 山本 裕紹¹.²	1. 宇都宮大, 2.JST ACCEL
3/10(S	un.)	13:45 - 18:00	口頭講演 (Oral Presentation) W331会場 (Room W331)		
13:45		•	サブ回折限界スポット照明によるバイオイメージング	〇新川 大生 1 , 西村 隆宏 2 , 小倉 裕介 1 , 玉田 洋介 3 , 谷 田 純 1	
14:00 14:15			スペックル照明内視鏡用ファイバ光学プローブの検討 波長依存ファイバスペックル照明を用いた反射イメージ 再構成	 ○ (M1) 大久保 享一¹, 片桐 崇史¹, 松浦 祐司² ○ 久保田 達也¹, 片桐 崇史¹, 松浦 祐司² 	1. 東北大工, 2. 東北大医工 1. 東北大学大学院工, 2. 東北大学大学院医工
14:30	奨	10p-W331-4	スーパーコンピュータを用いた光線 - 波面変換に基づく 大規模ホログラフィック・ディスプレイの並列計算	○(B) 柿沼 建太郎¹, 五十嵐 俊亮¹, 中村 友哉¹², 松島 恭治³, 山口 雅浩¹	1.東工大工, 2.JST さきがけ, 3.関西大
14:45	奨	10p-W331-5	ホログラム光学素子と分散補償投影系を用いたフルカ ラー虚像表示	\bigcirc (M1) 渡辺 史顕 1 , 中村 友哉 1,2 , 虎島 史歩 1 , 五十嵐 俊亮 1 , 木村 真治 1,3 , 油川 雄司 3 , 山口 雅浩 1	1.東工大工, 2.JST さきがけ, 3.NTT ドコモ
15:00	奨	10p-W331-6	位相変調時系列信号方式角度多重ホログラフィックメモ リーの記録密度の見積		1. 東大生研, 2. 宇都宮大
15:15 15:30	招	10p-W331-7	休憩/Break 「第2回光工学功績賞(高野榮一賞)受賞記念講演」 画像情報システムの先駆的開発研究	〇一岡 芳樹 1	1.大阪大学名誉教授
16:00		10p-W331-8	複眼同軸落射偏光イメージングによるプリンタ画線の観 察	○赤尾 佳則¹	1.科警研
16:15		10p-W331-9	空中像を映像刺激として提示する動物実験用装置	○(PC)八杉 公基 ^{1,2} , 山本 裕紹 ^{1,2}	1. 宇大, 2.JST, ACCEL
16:30 16:45		10p-W331-10	休憩/Break 表面型ホログラフィックメモリー	○平山 颯紀¹, 藤村 隆史², 遠藤 政男¹, 田中 嘉人¹, 志	1. 東大生研, 2. 宇都宮大
17:00		10p-W331-11	空間周波数分割多重によるコアキシャルホログラフィッ	村 努¹ 吉満 優貴¹, ○最田 裕介¹, 野村 孝徳¹	1.和歌山大システム工
15.15		10 W001 10	クメモリの複数ページデータ同時記録・再生法における 入力データ変調による再生像品質向上	O(D) (c c c c c c c c c c c c c c c c c c	4 (5411 (5) 25) 25 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17:15			バースト撮影法を用いた位相シフトディジタルホログラ フィ		1.宇都宮大学 オプティクス教育研究センター
17:30 17:45			チャープバルスディジタルホログラフィーの原理検証 モード操作光コムを用いたカスケードリンク型マルチ合	○唐澤 直樹 ¹ , 平山 愛梨 ¹ ○(PC) 山際 将貝 ^{1,2} 南川 ナ夫 ^{1,2} 諸橋 功 ³ 山木 裕	1.千歳科技大 1 徳島大 2 IST FRATO 美濃島知的光シンセサイザ
17.10		100 11001 11	成波長デジタル・ホログラフィの高速化 (4) ~高精度形状計測~	紹 ⁴ , 安井 武史 ^{1,2}	3.情報通信研究機構, 4. 宇都宮大
3/11(M 10:30	lon.)		口頭講演 (Oral Presentation) M114 会場 (Room M114) 凸型放物面鏡を用いた広視域ホログラフィック 3D ディ	○山市 攸入 ¹ 茎田 土輔 ^{2,3} 公田目 曲立 ²	1 十四十条页 2 字十CODE 2 字十陸工
			スプレイにおける再生可能像空間		1. 大阪技術研, 2. 宇大 CORE, 3. 宇大院工
10:45		11a-M114-2	空中プラズマの投影を用いたボリュメトリックディスプ レイ	○熊谷 幸汰 ', 三浦 駿 ', 早崎 芳夫 '	1.宇大工
11:00			透明球を組み合わせた AIRR における再帰反射素子の面 積の削減		1. 宇都宮大, 2.JST ACCEL
11:15		11a-M114-4	高速 LED パネルを用いた主観的な超解像表示のメカニズムの検討 一疑似固視微動関数による知覚画像の再構成一	○時本 豊太郎 ^{1,2} , 藤井 賢吾 ¹ , 森田 涉吾 ¹ , 山本 裕 紹 ^{1,3}	1. 宇都宮大院工, 2.DaoApp Technology, 3.JST ACCEL
11:30		11a-M114-5	自己符号化器を利用したデータ変換法による汎用的光検索システム	○鈴木 秀典¹, 池田 佳奈美², 渡邉 恵理子¹	1. 電気通信大学, 2. 大阪府立大学
		用光学 / Biom			
3/9(S 9:00	iat.) !		口頭講演 (Oral Presentation) W641会場 (Room W641) 狭帯域・低波数分解能ラマン顕微鏡法による細胞分析の 高効率化	○熊本 康昭 ^{1,2} ,望月 健太郎 ¹ ,橋本 剛佑 ² ,原田 義 規 ² ,田中 秀央 ² ,藤田 克昌 ^{1,2}	1. 阪大院工, 2. 京府医大病理
9:15		9a-W641-2	多焦点ラマン分光装置による高速ラマンスクリーニング		1. 阪大院工, 2. 分子研, 3. 理研, 4. 産総研 PhotoBIO-OIL, 5. 阪大 OTRI
9:30	奨	9a-W641-3	楕円スポットを用いたスリット走査型マルチブレックス コヒーレントアンチストークスラマン散乱分光顕微鏡の		1.北大院情科研
9:45	奨	9a-W641-4	開発 中赤外フォトサーマル位相差顕微鏡	〇戸田 圭一郎 1 , 玉光 未侑 1 , 堀崎 遼一 2,3 , 井手口 拓郎 1,3	1.東大理, 2.阪大院情, 3.JST さきがけ
10:00 10:15	奨	9a-W641-5 9a-W641-6		 ○(M1)菅野 寛志¹,三上 秀治¹,合田 圭介¹ ○(M2)浅井 卓也¹,劉 寒沁¹,小関 秦之¹,林 智広², 	1. 東大理 1. 東大院工, 2. 東工大
10:30			マンイメージング 休憩/Break	佐藤 伸一 ² , 中村 浩之 ²	
10:45		9a-W641-7	低損失顕微光学系のためのアキシコンを用いたビーム整 形法	○落合 夏葉¹,寿 景文¹,小関 泰之¹	1.東大工
11:00		9a-W641-8	マルチチャネル誘導ラマン顕微法のためのロックインア ンプアレイ	○ (M2) 田中 駿士¹, 鈴木 祐太¹, 小関 泰之¹	1.東大院工
11:15		9a-W641-9	インテリジェント画像活性化細胞選抜法:基本原理と応 用展開	〇小関 秦之 1 , 三上 秀治 1 , 新田尚 1,2 , 杉村 武昭 1,2 , 磯 崎 瑛宏 1 , Di Carlo Dino 3 , 細川陽一郎 4 , 上村 想太郎 1 . 合田 圭介 1,2,3	1. 東京大学, 2. 科学技術振興機構, 3.UCLA, 4. 奈良先端 科技大
11:30 11:45			疑似停止蛍光撮像法による高感度フローサイトメトリー 金ナノ粒子を用いた生体分子モーターの高速・高精度 1	○三上 秀治¹, 川口 誠¹, 小関 泰之², 合田 圭介¹.³ ○安藤 潤¹.², 中村 彰彦¹.², Visootsat Akasit¹.², 山本	1. 東大理, 2. 東大工, 3.JST 1.分子研, 2.総研大, 3.生理研
12:00		9a-W641-12	分子イメージング 光熱変換顕微鏡によるミトコンドリアダイナミクスの無 標識イメージング	真由子¹, Song Chihong³, 村田 和義³, 飯野 亮太¹.² ○宮崎 淳¹, 東門 泰仲¹	1.和大シスエ
3/9(Sa 13:45		3:45 - 16:15 9p-W641-1	口頭講演 (Oral Presentation) W641 会場 (Room W641) 高速連続偏光分解 SHG 顕微鏡を用いた in situ 真皮コラー		1.JASRI/SPring-8, 2. 徳島大理工
14:00		9p-W641-2	ゲン配向解析 空間/波長変換を用いたワンショット共焦点顕微鏡によ		1. 徳島大, 2.JST-ERATO, 3.JST さきがけ, 4.宇都宮大,
			る生体組織観察への応用	介 ¹ , 長谷 栄治 ^{1.2.5} , 山本 裕紹 ^{2.4} , 安井 武史 ^{1.2}	5. 高輝度光科学研究センター

14:15	E 9p-W641-3	$3\mathrm{D}$ Fluorescence Imaging of Plant Cells by using Off-axis Incoherent Digital Holographic Microscope	○ (P)Manoj Kumar ¹ , Xiangyu Quan ¹ , Yasuhiro Awatsuji ² , Yosuke Tamada ³ , Osamu Matoba ¹	1.Kobe University, Kobe 657-8501, Japan, 2.Kyoto Institute of Technology, Kyoto 606-8585, Japan, 3. National Institute for Basic Biology, Okazaki, Japan
14:30	9p-W641-4	Comparison of imaging properties in spectral domain optical coherence microscopy at 1300 and 1700 nm spectral region	Naoki Hayakawa $^{\rm l}$, \bigcirc Masahito Yamanaka $^{\rm l}$, Norihiko Nishizawa $^{\rm l}$	0.5
14:45 15:00	9p-W641-5	がイオスペックルOCT法によるアブシジン酸影響下での 種子の発芽活性の計測 休憩/Break	○船田 昂佑 ¹ , Yiheng Lim ¹ , 門野 博史 ¹	1.埼玉大
15:15 15:30	9p-W641-6 9p-W641-7	マイクロ波加熱による極微弱生化学発光 A Study from Optical Aspect on the Relation Between the M-charts and deviation of Refraction Light by Wrinkle Wall on Internal Limiting Membrane around macular	Ishida², Hideo Yokota ⁶ , Masahiro Akiba ^{1,5} , Midori Yamamoto³, Yasuhiko Hirami³, Michiko Mandai³, ⁴ ,	1. 九大院工 1. Cloud-Based Eye Disease for Cloud-Based Eye Disease Diagnosis Joint Research Team, RIKEN Center for Advanced Photonics, 2. Teikyo for Department of Ophthalmology, Teikyo University, University Hospital Mizonokuchi, 3. Kobe for Department of Ophthalmology, Kobe City Eye Hospital, 4. Kobe RIKEN for Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 5. TOPCON for R&D Division, Topcon Corporation, 6.IP RIKEN for Image Processing Research Team, RIKEN Center for Advanced Photonics
15:45	奨 9p-W641-8	量子カスケードレーザを用いた非侵襲血糖値測定システムープリズムへの光入射法改善による測定精度の向上-	○(D)小山 卓耶¹, 木野 彩子¹, 松浦 祐司¹	1. 東北大医工
16:00	E 9p-W641-9	Investigation of ambiguity in measuring of skin parameters from spectral reflectance curves	Kaustav Das¹, Yuta Kobori¹, Tomoki Hashisaka¹, Takehiro Ohya¹, Tomonori Yuasa¹, Hideki Funamizu¹, ○ Yoshihisa Aizu¹	1.Muroran Inst. Tech.
3/11(N	Mon.) 9:30 - 11:30 11a-PA3-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) ロボットアーム型皮膚血流計測のための画像解析高速化	中山 颯太 1 , \bigcirc 湯浅 友典 1 , 船水 英希 1 , 横井 直倫 2 , 相	1.室工大院, 2.旭川高専
	11a-PA3-2	の試み バイオフィルムの画像計測における形成手法の検討	津佳永¹ 落合貴士¹,○湯浅 友典¹, 横井 直倫², 船水 英希¹, 相	1. 室工大院, 2. 旭川高專
	11a-PA3-3	真皮の変性を考慮したヒト皮膚分光反射率データベース の検討	津 佳永¹ 大箭 武寬¹,○湯浅 友典¹,船水 英希¹,相津 佳永¹	1.室工大院
	11a-PA3-4	近赤外領域におけるヒト皮膚の反射吸光度シミュレーション	岡田和朗¹, 小堀優太¹, 桑原 照¹, 湯浅 友典¹, 大谷 和也², 岩下 明暁², 山田 幸生³, ○相津 佳永¹	1. 室工大, 2. 東海理化, 3. 電通大
	11a-PA3-5	生体組織中における円偏光の散乱経路及び偏光状態のシ ミュレーション	○濱田 敦志¹, 高橋 一真¹, 口丸 高弘², 宗片 比呂夫¹, 西沢 望¹	1. 東工大未来研, 2. 自治医大
	11a-PA3-6 11a-PA3-7	近赤外レーザ光を用いた心筋焼灼の基礎的検討 SS-OCTによるE4~E10の鶏心臓のイメージング	○水崎	1. 東北大工, 2. 東北大医研 1. 青学大理工, 2. 北里大
	11a-PA3-8	増殖細胞核抗原の観察によるレーザー光の光毒性評価	〇金丸 直弘 1 , 高橋 圭介 1 , 松山 哲也 1 , 和田 健司 1 , 岡本 晃 $^{-1}$, 川喜多 愛 2 , 村田 香織 2 , 杉本 憲治 2	1. 阪府大工, 2. 阪府大生環
	11a-PA3-9	円偏波送受信アンテナを用いた脳マイクロ波CT画像診	○(BC)福島 一輝¹, 湯村 七海¹, 聡一朗 山口¹	1. 関大
		断装置の開発		
	ザー装置・材料 / し	aser system and materials		
	ザー装置・材料 / L Gun.) 9:00 - 12:15	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー	○鄭 宇進 ¹	1.浜松ホトニクス
3/10(5	ザー装置・材料 / L Gun.) 9:00 - 12:15	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究	○ (M2)Hejie Yan ^{1, 2} , Gao Yuan ^{1, 2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2, 1} , Hiroyuki	
3/10(S 9:00	ザー装置・材料 / l Sun.) 9:00 - 12:15 招 10a-W834-1	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from	○ (M2)Hejie Yan ^{1,2} , Gao Yuan ^{1,2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2,1} , Hiroyuki Yokoyama ^{1,2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo	1.Tohoku univ., 2.NICHe, Tohoku univ.
3/10(\$ 9:00	ザー装置・材料 / l Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of	○ (M2)Hejie Yan ^{1,2} , Gao Yuan ^{1,2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2,1} , Hiroyuki Yokoyama ^{1,2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ.
9:30 9:30 9:45 10:00	ザー装置・材料 / L Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber	○ (M2)Hejie Yan ^{1, 2} , Gao Yuan ^{1, 2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2, 1} , Hiroyuki Yokoyama ^{1, 2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1, 2} , Hiroyuki Yokoyama ^{1, 2}	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ.
9:00 9:30 9:45	ザー装置・材料 / L Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散 Tm:ZBLAN ファイバーレー	○ (M2)Hejie Yan ^{1,2} , Gao Yuan ^{1,2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2,1} , Hiroyuki Yokoyama ^{1,2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1,2} , Hiroyuki Yokoyama ^{1,2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 論 ¹ ○ (D)Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ.
9:30 9:30 9:45 10:00 10:15	ザー装置・材料 / L Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG発生用FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのパルス圧縮特性 SWNTを用いたTm 添加超短パルスファイバレーザの分	○ (M2) Hejie Yan ^{1, 2} , Gao Yuan ^{1, 2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2, 1} , Hiroyuki Yokoyama ^{1, 2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1, 2} , Hiroyuki Yokoyama ^{1, 2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 論 ¹ ○ (D) Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹ ○ 戸倉川 正樹 ¹ , 相楽 啓 ¹	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ.
9:30 9:30 9:45 10:00 10:15	ザー装置・材料 / L Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのパルス圧縮特性	○ (M2) Hejie Yan ^{1,2} , Gao Yuan ^{1,2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2,1} , Hiroyuki Yokoyama ^{1,2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1,2} , Hiroyuki Yokoyama ^{1,2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 諭 ¹ ○ (D) Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹ ○ 戸倉川 正樹 ¹ , 相楽 啓 ¹ ○ 渡邉 建太 ¹ , 周 英 ² , 斎藤 毅 ² , 榊原 陽一 ² , 西澤 典彦 ¹ ○ 梶川 詠司 ¹ , 石井 知広 ¹ , 久保 貴志 ¹ , 武者 満 ¹ , 小川	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ. 1.電通大、レーザー研 1.名大院工, 2.産総研
9:30 9:30 9:45 10:00 10:15 10:30 10:45 11:00	ザー装置・材料 / I Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 類 10a-W834-6 奨 10a-W834-7	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞) 受賞記念講演 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLAN ファイバレーザーのパルス圧縮特性 SWNT を用いた Tm 添加超短パルスファイバレーザの分散制御による高出力化	○ (M2)Hejie Yan ^{1,2} , Gao Yuan ^{1,2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2,1} , Hiroyuki Yokoyama ^{1,2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1,2} , Hiroyuki Yokoyama ^{1,2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 諭 ¹ ○ (D)Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹ ○ 戸倉川 正樹 ¹ , 相楽 啓 ¹ ○ 渡邉 建太 ¹ , 周 英 ² , 斎藤 毅 ² , 榊原 陽一 ² , 西澤 典彦 ¹ ○ 梶川 詠司 ¹ , 石井 知広 ¹ , 久保 貴志 ¹ , 武者 満 ¹ , 小川和彦 ²	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ. 1.電通大、レーザー研 1.名大院工, 2.産総研
9:30 9:45 10:00 10:15 10:30 10:45 11:15	ザー装置・材料 / I Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 10a-W834-6 奨 10a-W834-7 10a-W834-8 奨 10a-W834-9	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのパルス圧縮特性 SWNTを用いたTm 添加超短バルスファイバレーザの分散制御による高出力化 高出力欠定動作可能なTm ^{3*} :ZBLANファイバーMOPA 全編波保持Figure 9型 Er添加受動モード同期超短バルス	○ (M2)Hejie Yan ^{1,2} , Gao Yuan ^{1,2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2,1} , Hiroyuki Yokoyama ^{1,2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1,2} , Hiroyuki Yokoyama ^{1,2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 諭 ¹ ○ (D)Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹ ○ 戸倉川 正樹 ¹ , 相楽 啓 ¹ ○ 渡邉 建太 ¹ , 周 英 ² , 斎藤 毅 ² , 榊原 陽一 ² , 西澤 典彦 ¹ ○ 梶川 詠司 ¹ , 石井 知広 ¹ , 久保 貴志 ¹ , 武者 満 ¹ , 小川和彦 ²	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ. 1.電通大、レーザー研 1.名大院工, 2.産総研 1.電通大レーザー研, 2.ファイバーラボ 1.名大院工
9:30 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15	ザー装置・材料 / l Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 10a-W834-6 奨 10a-W834-7 10a-W834-8 奨 10a-W834-9 奨 10a-W834-10	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞)受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザーに関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのバルス圧縮特性 SWNT を用いた Tm 添加超短バルスファイバレーザの分散制御による高出力化 高出力安定動作可能な Tm³*:ZBLANファイバーMOPA 全幅波保持 Figure 9型 Er 添加受動モード同期超短バルスファイバーレーザーの共振器分散制御と特性解析高出力・高安定な連続波 2.8μm Er:ZBLANファイバー	○ (M2)Hejie Yan ^{1, 2} , Gao Yuan ^{1, 2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2, 1} , Hiroyuki Yokoyama ^{1, 2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1, 2} , Hiroyuki Yokoyama ^{1, 2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 論 ¹ ○ (D) Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹ ○ 戸倉川 正樹 ¹ , 相楽 啓 ¹ ○ 渡邉 建太 ¹ , 周 英 ² , 斎藤 毅 ² , 榊原 陽一 ² , 西澤 典彦 ¹ ○ 梶川 詠司 ¹ , 石井 知広 ¹ , 久保 貴志 ¹ , 武者 満 ¹ , 小川和彦 ² ○ 菅 颯人 ¹ , 山中 真仁 ¹ , 西澤 典彦 ¹	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ. 1.電通大、レーザー研 1.名大院工, 2.産総研 1.電通大レーザー研, 2.ファイバーラボ 1.名大院工
9:30 9:45 10:00 10:15 10:30 10:45 11:30 11:45 11:200	ザー装置・材料 / I Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 10a-W834-6 奨 10a-W834-7 10a-W834-9 奨 10a-W834-11 un.) 13:15 - 17:00	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q・switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 体憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのバルス圧縮特性 SWNTを用いたTm 添加超短バルスファイバレーザの分散制御による高出力化 高出力安定動作可能なTm³*:ZBLANファイバーMOPA 全偏波保持 Figure 9型 Er添加受動モード同期超短バルスファイバーレーザーの共振器分散制御と特性解析 高出力・高安定な連続波 2.8μm Er:ZBLANファイバーレーザーファイバーレーザーの開発 口頭講演 (Oral Presentation) W834会場 (Room W834) 「講演奨励賞受賞記念講演」 誘導ラマン散乱を用いた広帯域モード同期レーザーの開	○ (M2) Hejie Yan¹·², Gao Yuan¹·², Jui-Hung Hung², Kazuo Sato², Hirohito Yamada²·¹, Hiroyuki Yokoyama¹·² ○ Yuan Gao¹, Jui-Hung Hung², He-Jie Yan¹, Kazuo Sato², Hirohito Yamada¹·², Hiroyuki Yokoyama¹·² ○ 土橋 一磨¹, 星 正幸¹, 今井 浩一¹, 廣橋 淳二¹, 牧尾論¹ ○ (D) Zheyuan Zhang¹, Yuanjun Zhu¹, Pengtao Yuan¹, Hongbo Jiang¹, Zihao Zhao¹, Fulin Xiang¹, Lei Jin¹, Sze Yun Set¹, Shinji Yamashita¹ ○ 戸倉川 正樹¹, 相楽 啓¹ ○ 渡邊 建太¹, 周 英², 斎藤 毅², 榊原 陽一², 西澤 典 彦¹ ○ 根川 詠司¹, 石井 知広¹, 久保 貴志¹, 武者 満¹, 小川和彦² ○ 菅 颯人¹, 山中 真仁¹, 西澤 典彦¹ ○ 合谷 賢治¹, 上原 日和¹, 小西 大介², 村上 政直², 時田 茂樹¹	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ. 1.電通大、レーザー研 1.名大院工, 2.産総研 1.電通大レーザー研, 2.ファイバーラボ 1.名大院工 1.阪大レーザー研, 2.三星ダイヤモンド工業(株)
9:30 9:45 10:00 10:15 10:30 10:45 11:30 11:45 12:00 3/10(S	ザー装置・材料 / L Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 類 10a-W834-7 10a-W834-7 10a-W834-9 類 10a-W834-10 10a-W834-11 un.) 13:15 - 17:00 招 10p-W834-1	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞)受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザーに関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG発生用FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのバルス圧縮特性 SWNTを用いたTm 添加超短バルスファイバレーザの分散制御による高出力化 高出力安定動作可能なTm³*:ZBLANファイバーMOPA 全編波保持 Figure 9型 Er 添加受動モード同期超短バルスファイバーレーザーの共振器分散制御と特性解析高出力・高安定な連続波2.8μm Er:ZBLANファイバーレーザーファイバーレーザーの開発 1頭講演 (Oral Presentation) W834会場 (Room W834) 「講演奨励賞受賞記念講演」 誘導ラマン散乱を用いた広帯域モード同期レーザーの開発	○ (M2)Hejie Yan ^{1, 2} , Gao Yuan ^{1, 2} , Jui-Hung Hung ² , Kazuo Sato ² , Hirohito Yamada ^{2, 1} , Hiroyuki Yokoyama ^{1, 2} ○ Yuan Gao ¹ , Jui-Hung Hung ² , He-Jie Yan ¹ , Kazuo Sato ² , Hirohito Yamada ^{1, 2} , Hiroyuki Yokoyama ^{1, 2} ○ 土橋 一磨 ¹ , 星 正幸 ¹ , 今井 浩一 ¹ , 廣橋 淳二 ¹ , 牧尾 論 ¹ ○ (D) Zheyuan Zhang ¹ , Yuanjun Zhu ¹ , Pengtao Yuan ¹ , Hongbo Jiang ¹ , Zihao Zhao ¹ , Fulin Xiang ¹ , Lei Jin ¹ , Sze Yun Set ¹ , Shinji Yamashita ¹ ○ 戸倉川 正樹 ¹ , 相楽 啓 ¹ ○ 渡邉 建太 ¹ , 周 英 ² , 斎藤 毅 ² , 榊原 陽一 ² , 西澤 典 彦 ¹ ○ 権別 詠司 ¹ , 石井 知広 ¹ , 久保 貴志 ¹ , 武者 満 ¹ , 小川 和彦 ² ○ 首 颯人 ¹ , 山中 真仁 ¹ , 西澤 典彦 ¹ ○ 合谷 賢治 ¹ , 上原 日和 ¹ , 小西 大介 ² , 村上 政直 ² , 時田 茂樹 ¹ , 韓 冰羽 ¹ , Andrey Pushkin ² , Migal Ekaterina ² , Fedor Potemkin ² ○ 木村 祥太 ¹ , 谷 峻太郎 ¹ , 小林 洋平 ¹	 Tohoku univ., 2.NICHe, Tohoku univ. Tohoku Univ., 2.NICHe, Tohoku Univ. オキサイド Tokyo Univ. 電通大、レーザー研 名大院工, 2.産総研 電通大レーザー研, 2. ファイバーラボ 名大院工 阪大レーザー研, 2. 三星ダイヤモンド工業(株) 阪大レーザー研, 2. モスクワ大 東大物性研
3/10(S 9:30 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 3/10(S 13:15	ザー装置・材料 / I Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 10a-W834-6 奨 10a-W834-7 10a-W834-7 10a-W834-11 10a-W834-11 un.) 13:15 - 17:00 招 10p-W834-1	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞) 受賞記念講演」 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG発生用FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのバルス圧縮特性 SWNTを用いたTm 添加超短バルスファイバレーザの分散制御による高出力化 高出力安定動作可能なTm³*:ZBLANファイバーレーザの分散制御による高出力化 高出力安定動作可能なTm³*:ZBLANファイバーレーザーファイバーレーザーの共振器分散制御と特性解析 高出力・高安定な連続波2.8μm Er:ZBLANファイバーレーザーファイバーレーザートリーの開発 口頭講演 (Oral Presentation) W834会場 (Room W834) 「講演奨励賞受賞記念講演」 誘導ラマン散乱を用いた広帯域モード同期レーザーの開発 分散補償鏡を用いたカーレンズモード同期Tm:Sc ₂ O ₃ レーザーの開発	○ (M2) Hejie Yan¹-², Gao Yuan¹-², Jui-Hung Hung², Kazuo Sato², Hirohito Yamada²-¹, Hiroyuki Yokoyama¹-² ○ Yuan Gao¹, Jui-Hung Hung², He-Jie Yan¹, Kazuo Sato², Hirohito Yamada¹-², Hiroyuki Yokoyama¹-² ○ 土橋一磨¹, 星 正幸¹, 今井 浩一¹, 廣橋 淳二¹, 牧尾論¹ ○ (D) Zheyuan Zhang¹, Yuanjun Zhu¹, Pengtao Yuan¹, Hongbo Jiang¹, Zihao Zhao¹, Fulin Xiang¹, Lei Jin¹, Sze Yun Set¹, Shinji Yamashita¹ ○ 戸倉川 正樹¹, 相楽 啓¹ ○ 渡邉 建太¹, 周 英², 斎藤 毅², 榊原 陽一², 西澤 典 彦¹ ○ 梶川 詠司¹, 石井 知広¹, 久保 貴志¹, 武者 満¹, 小川和彦² ○ 菅 颯人¹, 山中 真仁¹, 西澤 典彦¹ ○ 白谷 賢治¹, 上原 日和¹, 小西 大介², 村上 政直², 時田 茂樹¹ ○ 上原 日和¹, 合谷 賢治¹, 時田 茂樹¹, 韓 冰羽¹, Andrey Pushkin², Migal Ekaterina², Fedor Potemkin² ○ 木村 祥太¹, 谷 峻太郎¹, 小林 洋平¹ ○ (M1) 鈴木 杏奈¹-², クランケル クリスティアン³, 戸倉川 正樹¹-²	 Tohoku univ., 2.NICHe, Tohoku univ. Tohoku Univ., 2.NICHe, Tohoku Univ. オキサイド Tokyo Univ. 電通大、レーザー研 名大院工, 2.産総研 電通大レーザー研, 2. ファイバーラボ 名大院工 阪大レーザー研, 2. 三星ダイヤモンド工業(株) 阪大レーザー研, 2. モスクワ大 東大物性研
3/10(S 9:00 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 12:00 3/10(S 13:15	ザー装置・材料 / I Sun.) 9:00 - 12:15 招 10a-W834-1 E 10a-W834-2 E 10a-W834-3 10a-W834-4 E 10a-W834-5 10a-W834-6 奨 10a-W834-7 10a-W834-7 10a-W834-11 10a-W834-11 10a-W834-11 10a-W834-1 10a-W834-1 10a-W834-1	aser system and materials 口頭講演 (Oral Presentation) W834会場 (Room W834) 「第9回女性研究者研究業績・人材育成賞(小館香椎子賞) 受賞記念講演) 外部共振器を用いた安定な狭帯域高出力半導体レーザー に関する研究 Generation of pulse duration-tunable optical pulses from an injection-locked gain-switched laser diode High-peak-power narrow-bandwidth optical pulse generation by controlling the gain-switching operation of a semiconductor laser SHG 発生用 FBG型 1064 nm CW ファイバレーザの高出力化 Q-switched Fiber Laser Using Synthetic Single-crystal Diamond Saturable Absorber 休憩/Break 回折格子対による全正常分散Tm:ZBLANファイバーレーザーのバルス圧縮特性 SWNTを用いたTm 添加超短バルスファイバレーザの分散制御による高出力化 高出力安定動作可能なTm³*:ZBLANファイバーレーザの分散制御による高出力化 高出力安定動作可能なTm³*にZBLANファイバーレーザーファイバーレーザーの共振器分散制御と特性解析高出力・高安定な連続波2.8µm Er:ZBLANファイバーレーザーファイバーレーザートラル起4μm帯Fe:ZnSeレーザーの開発 コ頭講演 (Oral Presentation) W834会場 (Room W834) 「講演奨励賞受賞記念講演」 誘導ラマン散乱を用いた力ーレンズモード同期レーザーの開発 分散補償鏡を用いたカーレンズモード同期Tm:Sc ₂ O ₃ レーザーの開発	○ (M2)Hejie Yan¹¹², Gao Yuan¹², Jui·Hung Hung², Kazuo Sato², Hirohito Yamada²¹, Hiroyuki Yokoyama¹² ○ Yuan Gao¹, Jui·Hung Hung², He-Jie Yan¹, Kazuo Sato², Hirohito Yamada¹², Hiroyuki Yokoyama¹² ○ 土橋 一磨¹, 星 正幸¹, 今井 浩一¹, 廣橋 淳二¹, 牧尾論¹ ○ (D)Zheyuan Zhang¹, Yuanjun Zhu¹, Pengtao Yuan¹, Hongbo Jiang¹, Zihao Zhao¹, Fulin Xiang¹, Lei Jin¹, Sze Yun Set¹, Shinji Yamashita¹ ○ 戸倉川 正樹¹, 相楽 啓¹ ○ 渡邉 建太¹, 周 英², 斎藤 毅², 榊原 陽一², 西澤 典彦¹ ○ 梶川 詠司¹, 石井 知広¹, 久保 貴志¹, 武者 満¹, 小川和彦² ○ 菅 颯人¹, 山中 真仁¹, 西澤 典彦¹ ○ 合谷 賢治¹, 上原 日和¹, 小西 大介², 村上 政直², 時田 茂樹¹, 合谷 賢治¹, 時田 茂樹¹, 韓 冰羽¹, Andrey Pushkin², Migal Ekaterina², Fedor Potemkin² ○ 木村 祥太¹, 谷 峻太郎¹, 小林 洋平¹ ○ (M1) 鈴木 杏奈¹², クランケル クリスティアン³, 戸倉川 正樹¹² ○ 鈴木 将之¹, 黒田 寛人¹	1.Tohoku univ., 2.NICHe, Tohoku univ. 1.Tohoku Univ., 2.NICHe, Tohoku Univ. 1.オキサイド 1.Tokyo Univ. 1.電通大、レーザー研 1.名大院工, 2.産総研 1.電通大レーザー研, 2.ファイバーラボ 1.名大院工 1.阪大レーザー研, 2.三星ダイヤモンド工業(株) 1.阪大レーザー研, 2.モスクワ大 1.東大物性研 1.電通大, 2.レーザー研, 3.ZLM

4:30	E 10p-W834-6	Passively Q-switched 25 MW peak power doughnut mode	○ Hwan Hong Lim¹, Takunori Taira¹.²	1.IMS, 2.RIKEN SPring-8
4:45	10p-W834-7	laser using Nd:YAG ceramic microchip Er,Yb リン酸ガラスを用いた平面導波路による 15.8 mJ バ	○廣澤 賢一¹, 鮫島 成人¹, 崎村 武司¹, 柳澤 隆行¹. 宇	1.三菱電機
	,	ルス増幅	藤健一1	
5:00 5:15	将 10n-W834-8	休憩/Break InGaN-LD励起640-nm ピコ秒パルスPr:YLF再生増幅器	○(M1)藤田 恆五 ¹ 杉山 直仁 ¹ 油成 立夜 ¹	1.慶大理工
5:30	* * *	Direct generation of visible vortex beams from a	○ (D) Yuanyuan Ma¹, Jung-Chen Tung², Yung-Fu	1.废入理工 1.Chiba Univ., 2.National Chiao Tung Univ.,
	det	diode-pumped Pr³+:YLF laser		3.Molecular Chirality Research Center
5:45	奨 E 10p-W834-10	Multiple OAM states generation from a tunable optical vortex parametric laser	○ (DC)Roukuya Mamuti¹, Shigeki Nishida¹, Shunsuke Goto¹, Katsuhiko Miamoto¹.², Takashige Omatsu¹.²	1.Chiba University, 2.Molecular Chirality Research Center
6:00	10p-W834-11	誘導ブリルアン散乱位相共役波発生における軌道角運動 量保存則	〇佐々木俊 1 ,白石朋 1 ,豊田耕平 1,2 ,宮本克彦 1,2 ,尾松孝茂 1,2	1. 千葉大工, 2. 千葉大分子キラリティ研
6:15	10p-W834-12	高平均出力レーザー用大口径TGGファラデー回転子の 開発	○吉田 英次¹, 時田 茂樹¹, 椿本 孝治¹, 河仲 準二¹	1.阪大レーザー研
16:30	10p-W834-13	水衝突噴流冷却を用いた Yb:YAG TRAM レーザーの出力 特性	〇谷口 誠治 1 , コスロービアン ハイク 1 , 李 大治 1 , 本 越 伸二 1 , 藤田 雅之 1 , 井澤 靖和 1 , 西方 伸吾 2 , 森岡 朋 也 2 , 濱本 浩一 2 , 池淵 博 2 , 大谷 雄一 2 , 金子 毅 2 , 醍醐 浩之 2	1. レーザー総研, 2. 三菱重工業
6:45	10p-W834-14	コヒーレントビーム結合を利用した高平均出力レーザー のパルス列整形	○椿本 孝治¹, 福石 航¹, 吉田 英次¹, 宮永 憲明¹.²	1. 阪大レーザー研, 2. レーザー総研
3/11(N	Mon.) 9:30 - 11:30 11a-PA4-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 太陽光励起によるエルビウム添加光ファイバーの蛍光特		1. 北見工大, 2. 茨城大工
	11a-PA4-2	性 Prドープ耐候性フッ化物ファイバーにおけるの小信号利	裕章¹, 中村 真毅² ○(B)池田 匠¹, 伊東 速斗¹, 福田 優希¹, 梶川 翔太²,	1. 千葉工大, 2. 近大
		得の計測	吉田 実², 藤本 靖¹	
	11a-PA4-3 11a-PA4-4	伸縮自在のリングレーザによる誘導放出発光の特性 コーナーキューブおよびアキシコンレトロリフレクタ共 振器のレーザー発展性性トネの温度効果	久保田 淳史¹, ○斉藤 光徳¹ ○コスロービアン ハイク¹, 誠治 谷口¹, 憲明 宮永²	1. 龍谷大理工 1. レーザー総研, 2. レーザー研
	11a-PA4-5	振器のレーザー発振特性とその温度効果 フォトニック結晶素子によるマイクロチップレーザーの	○荒木 隼悟¹, 鈴木 淳¹, 足立 宗之¹, 吉田 直樹¹, 小嶋	1.ニデック
`00 -1		短パルス化および直線偏光制御	和伸 ¹ , 羽根渕 昌明 ¹	
		材料と3.14 光制御デバイス・光ファイバーのコードシェフ 口頭講演 (Oral Presentation) W834 会場 (Room W834)	イセッション / Code-sharing Session of 3.5 & 3.14	
7:15		引き上げ法育成 β -BaB $_2$ O $_4$ 単結晶の 266nm 光レーザ照射 後の透過率評価	〇松倉 誠 ¹, 田子 毅 ¹, 笹浦 正弘 ¹, 廣橋 淳二 ¹, 古川 保 典 ¹	1.オキサイド
7:30		AgGaS2の高精度セルマイヤー方程式及び熱光学分散式		1.千歲科技大理工,2.岡本光学加工所
7:45		周期分極反転LaBGeO。の擬似位相整合特性	中原康裕¹,廣橋淳二²,古川保典²,小田久哉¹,○梅村信弘¹	
8:00		フェムト秒レーザー直描導波路型 PPMgSLT 波長変換素 子開発	○渡邉 俊介¹, 廣橋 淳二¹, 今井 浩一¹, 星 正幸¹, 牧尾 論¹	
8:15	<u> </u>	段差低減 GaAs/AlGaAs 周期空間反転導波路における差周 波発生	○ (M2)WANG SHUMIN*, 松下 省紀 **, 近膝 尚 志 ^{1,2}	1. 東大工, 2. 東大先端研
		- / Ultrashort-pulse and high-intensity lasers 口頭講演 (Oral Presentation) M135 会場 (Room M135)		
9:00		「講演奨励賞受賞記念講演」 位相制御THz-STMによるトンネル電子のナノ空間超高	〇吉岡 克将 1 ,片山 郁文 1 ,嵐田 雄介 1 ,伴 篤彦 1 ,河田陽 2 ,小西 邦昭 3 ,高橋 宏典 2 ,武田 2	1.横浜国大院工, 2.浜松ホトニクス, 3.東大院理
9:15	9a-M135-2	速サブサイクル制御 高密度励起されたダイヤモンド超格子の時間分解PL測定	○小野 百合子¹, 嵐田 雄介¹, 南 不二雄¹¹², 中村 一 隆², 渡邊 幸志³, 片山 郁文¹, 武田 淳¹	1.横国大院理工, 2.東工大院理工, 3.産総研
9:30	9a-M135-3	超格子 GaAs/AlAs における電子フォノン結合系の量子コ ヒーレンス計測		1. 東工大, 2. 大府大
9:45	9a-M135-4	コヒーレントフォノンとブローブ光シグナルの位相差の	· / · · · · · · · · · · · · · · · · · ·	1.筑波大・計科セ
0:00		理論解析およびシミュレーションによる検証 休憩/Break		
0:15	奨 9a-M135-5	表面フォノンポラリトンの超高速非線形応答の観測	○北出修大¹,森近一貴¹,芦原聡¹	1. 東大生研
0:30	9a-M135-6	赤外フェムト秒プラズモニック増強場による化学反応制御 (II)	○(D)森近一貴¹, 櫻井 敦教¹, 芦原 聡¹	1.東大生研
10:45	奨 9a-M135-7	波長掃引超高速レーザバルス列を用いた透明固体材料中 のレーザ誘起応力波ダイナミクスのシングルショット2	\bigcirc (B) 松下 $-$ 輝 1 , 鈴木 敬和 1 , 山口 勇輝 1 , 根本 寛 史 1 , 神成 文彦 1	1.慶應大
11:00	9a-M135-8	次元バーストイメージング 貴金属のフェムト秒赤外発光に対する表面形状の効果	○末元 徹¹	1. 豊田理研
1:15	9a-M135-9	高強度レーザー場中にある ZnS におけるアト秒光学電気	○乙部 智仁1	1. 量研
3/9(Sa	at.) 13:15 - 18:00	応答 口頭講演 (Oral Presentation) M135 会場 (Room M135)		
.3:15	招 9p-M135-1	「講演奨励賞受賞記念講演」 軌道角運動量分解デュアル光渦コム分光法の開発	○浅原 彰文 ^{1,2} , 足立 拓斗 ¹ , 王月 ^{1,2} , 美濃島 薫 ^{1,2}	1. 電通大, 2.JST, ERATO 美濃島知的光シンセサイサ
3:30	9p-M135-2	OAM モード分解精度向上のための低損失ビーム整形素 子の開発	渡辺 悠歩¹, ○山根 啓作¹, 岡 和彦², 戸田 泰則¹, 森田 隆二¹	
3:45	9p-M135-3	高効率な時空間制御光波発生装置の開発	岩佐 康平 ¹, 佐々木 凜 ¹, 〇山根 啓作 ¹, 岡 和彦 ², 戸田 泰則 ¹, 森田 隆二 ¹	
4:00	9p-M135-4	天体の視線速度観測用高分散分光器の波長校正用光周波数コムの開発IV -1号機の結果概要と2号機の開発状況-	○ 稲場 肇¹, 中村 圭佑¹, 大久保 章¹, 柏木 謙¹, シュラム マルテ¹.², 洪 鋒雷³, 美濃島 薫⁴, 筒井 寛典², 神戸栄治², 泉浦 秀行²	1. 産総研, 2. 国立天文台, 3. 横国大, 4. 電通大
4:15	9p-M135-5	-15歳の耐米帆安と25歳の開光小ル・ 複数のファブリベロー共振器を用いた光コムモード間隔 の拡大		1. 産総研
4:30	0.3410= -	休憩/Break	(n) +++++12 1.5 m ==12 to 1 ==12 equa	1 立級TE 9 ICT PD 4TO */ 地点 1-44-44
4:45	9p-M135-6	繰り返し24 GHz近赤外広帯域光コムの発生	○ (P) 中村 圭佑 ^{1,2} , 大久保 章 ^{1,2} , 柏木 謙 ^{1,2} , 稲場 肇 ^{1,2}	1.産総研, 2.JST, ERATO美濃島知的光シンセサイ
5:00	9p-M135-7	20 GHz繰り返しカーレンズモード同期レーザー	○(D)木村 祥太¹,谷 峻太郎¹,小林 洋平¹	1. 東大物性研
15:15 15:30	9p-M135-8 9p-M135-9	通信波長帯変調器に基づく高繰り返し可視光コム発生 電気光学変調コムの CEO 信号の高 SNR 検出	○柏木 謙 ^{1,2} , 大久保 章 ^{1,2} , 稲場 肇 ^{1,2} ○人見 賢称 ^{1,2} , 石澤 淳 ¹ , 日達 研一 ¹ , 西川 正 ² , 後藤	1.産総研, 2.JST, ERATO 美濃島知的光シンセサイ 1.NTT物性研, 2.東京電機大
			秀樹1	
15:45		中赤外光コムと高分解能分散素子を用いた高分解能分光システムの構築	\pm_1	
	2b-101132-11	偏波保持ファイバを用いたデュアルコム分光器の開発	○入松川 知也¹,清水 祐公子¹,大久保 章¹,柏木 謙¹, 中村 圭佑¹,稲場 肇¹	1.7生重6刊
16:15		休憩/Break		

16:30	9p-M135-12	f_{ceo} の制御が可能なデュアルコムファイバレーザー	○中嶋 善晶 ¹.², 秦 祐也 ¹.², 楠美 友悟 ¹, 美濃島 薫 ¹.²	1.電通大, 2.JST ERATO美濃島知的光シンセサイザプロジェクト
16:45	奨 9p-M135-13	単層カーボンナノチューブフィルムを用いた全偏波保持 双方向デュアルコムファイバレーザー	○齋藤 秀人¹, 山中 真仁¹, 榊原 陽一², 面田 恵美子², 片浦 弘道², 西澤 典彦¹	
17:00	奨 9p-M135-14	単層カーボンナノチューブフィルムを用いた Cr ²⁺ :ZnS中 赤外モード同期レーザー		1. 東大生研, 2. 東大工, 3.Aalto Univ., 4. 産総研
17:15	9p-M135-15	誘導ラマン顕微鏡のための9の 字型ピコ秒 Er ファイバレーザの長波長発振		1. 東大工, 2. 光響
17:30	9p-M135-16	固体のサブサイクル分光に向けての3.5 μm帯CEP安定 中赤外バルスの電気光学サンプリング	〇夏 沛宇 1 , Lu Faming 1 , 金島 圭佑 1 , 石井 順久 1 , 金 井 輝人 1 , 板谷 治郎 1	1. 東大物性研
17:45	奨 9p-M135-17	液膜プラズマミラーを用いた周波数分解光ゲート計測法 の開発	○(P)遠藤 友随¹,坪内 雅明¹,板倉 隆二¹	1.量研関西研
3/10(9 9:00		口頭講演 (Oral Presentation) M135 会場 (Room M135) アト秒位相干渉分光に向けた極端紫外干渉光学系の構築	○	1 NTT 物性其礎研 2 構近国立士 3 東京電機士
9:15		直線偏光及び楕円偏光した2波長レーザー電場を用いた	山郁文²,武田淳²,小栗克弥¹,後藤秀樹¹	1.東大院理
		気体分子の全光学的 3 次元配向制御		
9:30		高次高調波を用いた400 eV における窒素分子の時間分解 軟 X線吸収分光	谷 治郎 ¹	
9:45		高次高調波発生における原子間距離の効果についての理 論的研究		1.東大工, 2.東大院工
10:00	奨 10a-M135-5	核の運動を考慮した多原子分子のための第一原理シミュ レータの開発 休憩/Break	○(DC)織茂 悠貴¹, 佐藤 健¹, 石川 顕一¹	1.東大院工
10:13	10a-M135-6	時間分解高次高調波分光による1,3,5-シクロヘプタトリエンの内部転換過程の観測	○金島 圭佑¹, 二ノ田 有輝¹, 関川 太郎¹	1.北大工
10:45 11:00				1. 京大理 1. 理研, 2.JST さきがけ
		開発		•
11:15		アブレーションによる反射率変化を用いた真空紫外バルス波形計測		1.量研関西研
11:30	E 10a-M135-10	BISER control at 150 TW: keV photons and microjoule pulses in the 60-100 eV range		1.QST, 2.Osaka Univ., 3.Strathclyde Univ., 4.IPM RAS, 5.CLF RAL, 6.LPI RAS, 7.JIHT RAS, 8.Hiroshima Univ.
11:45		高ビーム品質高効率光バラメトリック増幅器の開発	○(M1)田原 牡馬¹, 大饗 千彰¹, Liu Weiyong¹, 桂川 眞幸¹	1. 電通大基盤理工
3/12(Tue.) 9:30 - 11:30 12a-PA2-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 8の字型レーザにおける非線形増幅ループミラーの変調	○溝口 慧¹, 白畑 卓磨¹, 金 磊¹, セット ジイヨン¹, 山	1.東大先端研
	E 12a-PA2-2	強度依存性 All-fiber dual-wavelength mode-locked laser by using low-birefringence Lyot-filter	下 真司¹ ○ (M1)YUANJUN ZHU¹, FULIN XIANG¹, PENGTAO YUAN¹, CHAO ZHANG¹, NEISEI HAYASHI¹, LEI JIN¹, SZEYUN SET¹, SHINJI YAMASHITA¹	1.Tokyo Univ.
	12a-PA2-3	超高Q値フッ化マグネシウム微小光共振器の精密分散測 定	〇田中 脩矢¹, 藤井 瞬¹, 渕田 美夏¹, 天野 光¹, 久保田 啓寛¹, 鈴木 良¹, 柿沼 康弘¹, 田邉 孝純¹	1. 慶大理工
	12a-PA2-4	InP/InGaAsP量子井戸における音響フォノン周波数シフトの観測		1.NTT物性研, 2. 東京電機大
	E 12a-PA2-5	Dynamical multielectron correlation in high harmonic generation	○ (P)Yang Li¹, Takeshi Sato ^{1, 2, 3} , Kenichi Ishikawa ^{1, 2, 3}	1.Dept. of Nuclear Engineering and Management, Graduate School of Engineering, The Univ. of Tokyo, 2.Photon Science Center, Graduate School of Engineering, The Univ. of Tokyo, 3.Research Inst. for Photon Science and Laser Technology, The Univ. of Tokyo
	奨 E 12a-PA2-6	Time-Dependent First-Principle Simulations on the Resonant High-Harmonic Generation from Transition Metal Plasma	○ (D)Imam Setiawan Wahyutama ¹ , Takeshi Sato ^{1,2,3} , Kenichi Ishikawa ^{1,2,3}	1.Dept. of Nuclear Eng. and Management, School of Eng. The Univ. of Tokyo, 2.Photon Science Center, School of Eng., The Univ. of Tokyo, 3.Research Inst. for Photon Science and Laser Technology, The Univ. of Tokyo
	·ザープロセシング , Sat.) 9:00 - 12:15	口頭講演 (Oral Presentation) W631会場 (Room W631)		
9:00 9:15	9a-W631-1 9a-W631-2	フェムト秒レーザーによる SiO_x 上へのナノ構造生成過程 超短パルスレーザー照射による $LIPSS$ 形成のパルス幅依	○(M1C)吉川 秀亮¹, 宮川 鈴衣奈¹, Lim Hwan	1.東京農工大, 2.Laser-Lab. Göttingen 1.名工大.院, 2.分子研, 3.理研RSC
9:30	9a-W631-3	存性 GaAs基板に形成するLIPSS周期のレーザースキャン速度	Hong ² , 平等 拓範 ^{2,3} , 江龍 修 ¹ ○(B) 松浦 英徳 ¹ , 宮川 鈴衣奈 ¹ , 江龍 修 ¹	1.名工大
9:45	9a-W631-4	依存性 薄膜堆積によるサファイア基板のLIPSS周期制御	○後藤 兼三¹, 宮川 鈴衣奈¹, 江龍 修¹	1.名古屋工業大学
10:00	E 9a-W631-5	Hierarchical microstructures with high spatial frequency laser induced periodic surface structures (HSFLs) possessing different orientations created by high-fluence femtosecond laser ablation of silicon in liquids	○ (P)Dongshi Zhang¹, Koji Sugioka¹	1.RIKEN, RIKEN Center for Advanced Photonics (RAP
10:15	E 9a-W631-6	Broadband Ultraviolet-to-Mid-Infrared Anti-Reflective Substrates Developed by Femtosecond Laser Ablation in Organic Solvents 休憩/Break	○ (P)Dongshi Zhang¹, Bikas Ranjan¹², Takuo Tanaka¹², Koji Sugioka¹	1.RIKEN, RIKEN Center for Advanced Photonics (RAP), 2.Metamaterials Laboratory, RIKEN Cluster for Pioneering Research
10:30 10:45	9a-W631-7	体恕/Break 短波長フェムト秒レーザーによる合成石英のアブレー ション閾値のパルス幅依存性	\bigcirc (M1) 寺澤 英知 ^{1,2} , 佐藤 大輔 ² , 澁谷 達則 ² , 盛合 靖 章 ² , 黒田 隆之助 ² , 田中 真人 ² , 坂上 和之 ³ , 鷲尾 方 $-^1$	1.早大理工総研, 2.産総研, 3.東大光量子セ
11:00	9a-W631-8	【注目講演】フェムト秒レーザー微細穴あけ加工における ビームモードの最適化	○場本 圭一¹, 谷 峻太郎¹, 小林 洋平¹	1.東大物性研

11:15				
0	9a-W631-9	ダブルバルスレーザーアプレーションに対するレーザー 照射遅延効果	○肥後 輝 ¹ , 片山 慶太 ¹ , 中村 亘 ¹ , 福岡 寬 ² , 吉田 岳 人 ³ , 青木 珠緒 ¹ , 梅津 郁朗 ¹	1.甲南大理工, 2.奈良高専, 3.阿南高専
11:30	9a-W631-10	レーザー加工した CFRP のラマン分光による化学分析		1.東大院理, $2.$ 東大院工, $3.$ 東大物性研, $4.$ 東大光量子機構, $5.$ 東レ
11:45	9a-W631-11	多光子重合による複合ハイドロゲル微細構造の作製	○佐野 諒 ¹ , 片山 暁人 ² , 町田 茉南 ² , 尾上 弘晃 ^{1,2} , 寺 川 光洋 ^{1,2}	1. 慶大理工, 2. 慶大院理工
12:00			7.1.7611	1. 奈良高專, 2. 奈良先端大物質
	Sat.) 13:45 - 16:45 奨E 9p-W631-1	口頭講演 (Oral Presentation) W631 会場 (Room W631) Feature Size Analysis of Pure Proteinaceous Microstructures Fabricated by Femtosecond Laser Direct Write	○ (P)Daniela Serien¹, Koji Sugioka¹	1.RIKEN RAP
14:00	奨 9p-W631-2	フェムト秒レーザ照射誘起改質を応用した $\mathrm{Ni/SiC}$ 界面における電極形成	○(B) 水尾 優作 ¹ , 渕上 裕暉 ² , 富田 卓朗 ³ , 久澤 大 夢 ³ , 岡田 達也 ³	1.徳島大・工・学部生, 2.徳島大・院生, 3.徳島大・理工
14:15	奨 9p-W631-3	極端紫外線フェムト秒バルスによる誘電体のレーザー加 工	○ (PC) 遊谷 達則¹, 坂上 和之², ヂン タンフン³, 高 橋 孝¹², 石野 雅彦³, 東口 武史⁴, 鷲尾 方一⁵, 田中 真 人¹, 小川 博嗣¹, 錦野 将元³, 小林 洋平², 黒田 隆之 助¹	1. 産総研, 2. 東大, 3. 量研, 4. 宇大, 5. 早大
14:30	奨 9p-W631-4	局所的電子励起領域へのレーザ光吸収によるガラスの超 高速内部加工		1. 東大院工, 2.AGC株式会社
14:45	奨 9p-W631-5	フェムト秒レーザーダブルバルス照射による金属表面へ の酸化膜形成によるドット着色	○西野将伍1.2,橋田昌樹1.2,清水雅弘3,古川雄	1.京大院理, $2.$ 京大化研, $3.$ 京大院工, $4.$ 阪大院工, $5.$ 阪大接合研
15:00	奨 9p-W631-6	エキシマレーザーを用いた $\mathrm{Al_2O_3}$ 膜アブレーションによる $\mathrm{4H\text{-}SiC}$ への Al ドーピング		1.九大, 2.九大ギガフォトン共同部門
15:15 15:30	奨 9p-W631-7	休憩/Break 液中レーザー溶融法を利用した球状窒化ガリウム粒子の 作製と特性評価	○(M1)児玉 裕美¹,和田 裕之¹	1.東工大
15:45		ナフタロシアニン誘導体ナノ粒子の作製と特性評価	○(M1)大村 景太¹,和田 裕之¹	1.東工大
16:00	奨 9p-W631-9 奨 9p-W631-10	ダブルバルスレーザーアプレーションにおけるブルーム ダイナミクスと堆積構造の相関 液中レーザー溶融法によるAg サブミクロン球状粒子作製	緒1,梅津郁朗1	1.甲南大学, 2.奈良工業高等専門学校, 3.阿南工業高等 専門学校 1.北大院工, 2.産総研
16:30	奨 9p-W631-11	におけるグリセリンの効果 液中レーザー溶融法におけるサブミクロン球状粒子生成	○榊 祥太¹, 石川 善恵², 越崎 直人¹	1. 北大工, 2. 産総研
0/0/5	0-+) 10-00 -10-05	プロセスに及ぼすパルス幅の効果		
3/9(8	E 9p-PB2-1	ボスター講演 (Poster Presentation) PB会場 (Room PB) Ultrasonic Assisted Fabrication of Metal Nanoparticles by Laser Ablation in Liquid	○ (M1)XIN HU¹, Mardiansyan Mardis¹, Wahyu Diono¹, Noriharu Takada¹, Hideki Kanda¹, Motonobu Goto¹	1.Nagoya Univ.
	9p-PB2-2	プラズモニックめっき法による酸化物半導体薄膜表面へ の銀ナノ構造作製		1.阪大院工
	9p-PB2-3	球面収差を利用したレーザ加工による半導体ナノ構造形	一 鈴木 智貴¹, ○斉藤 光徳¹	1. 龍谷大理工
	9p-PB2-4	成 木材(杉)のCO2レーザー加工におけるレーザーバルス 波形の影響	○(M2)後藤 勇人¹, 宇野 和行¹, 實野 孝久²	1.山梨大工, 2.阪大レーザー研
	9p-PB2-5	高繰り返しフェムト秒レーザーを用いた紫外透過性ポリ マーの回折格子作製	○尾崎 諒¹, 花田 修賢¹	1. 弘前大理工
	9p-PB2-6	セラミックスの超短パルスレーザー加工における非熱的 /熱的加工境界	〇奈良崎 愛子 1 , 高田 英行 1 , 吉富 大 1 , 鳥塚 健二 1 , 小 林 洋平 2	1. 産総研, 2. 東大物性研
			○ b 型 唯士1 日本 共立1 上左相 妹マ2 国本 前 + 3	1. 産総研 電子光技術 2. 産総研 ナノ材料 3. 産総研
	9p-PB2-7	フェムト秒レーザー誘起表面周期構造が形成されたジル コニアセラミックスの透過電子顕微鏡観察	○大編 推之,產代 央彦,人大恨 核士,伊藤 敦大, 鳥塚 健二 ¹	健康工学
	9p-PB2-7 9p-PB2-8	フェムト秒レーザー誘起表面周期構造が形成されたジル	鳥塚 健二1	
		フェムト秒レーザー誘起表面周期構造が形成されたジル コニアセラミックスの透過電子顕微鏡観察 高強度レーザー光照射によるアルカンの分子変換におけ る構造異性体の生成	鳥塚 健二1	健康工学 1. 東北大多元研
	9p-PB2-8	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察 高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成 フェムト秒バルスレーザの3次元強度分布とフェムト秒バルスレーザ照射により形成された気泡の形状との関係 X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in	鳥塚 健二 ¹ 石川 和香子 ¹ , ○佐藤 俊一 ¹	健康工学 1. 東北大多元研
	9p-PB2-8 9p-PB2-9	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察 高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成 フェムト秒バルスレーザの3次元強度分布とフェムト秒バルスレーザ照射により形成された気泡の形状との関係 X-ray, Terahertz Wave, and Sound Emission from Water	鳥塚健二 ¹ 石川 和香子 ¹ , ○佐藤 俊一 ¹ ○ (B) 西村 拓己 ¹ , 下林 紀幸 ¹ , 水谷 浩也 ¹ , 齋藤 隆之 ¹ ○ Hsin-hui Huang ¹ , Takeshi Nagashima ² , Saulius	健康工学 1. 東北大多元研 1. 静大工 1.Academia Sinica, 2.Setsunan Univ, 3.Swinburne Univ. of Tech.
	9p-PB2-8 9p-PB2-9 E 9p-PB2-10	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察 高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成 フェムト秒パルスレーザの3次元強度分布とフェムト秒パルスレーザ照射により形成された気泡の形状との関係 X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー	鳥塚健二 ¹ 石川 和香子 ¹ , ○佐藤 俊一 ¹ ○ (B) 西村 拓己 ¹ , 下林 紀幸 ¹ , 水谷 浩也 ¹ , 齋藤 隆之 ¹ ○ Hsin-hui Huang ¹ , Takeshi Nagashima ² , Saulius Juodkazis ³ , Koji Hatanaka ¹ ○ (M1) 三浦 誠 ¹ , 長谷川 智士 ¹ , 岩永 将司 ² , 早崎 芳	健康工学 1. 東北大多元研 1. 静大工 1. Academia Sinica, 2. Setsunan Univ, 3. Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農
3/100 9:00	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察 高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成 フェムト秒パルスレーザの3次元強度分布とフェムト秒 パルスレーザ照射により形成された気泡の形状との関係 X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP付着シリコーンオイルのLIBS法による検出 口頭講演 (Oral Presentation) W631 会場 (Room W631) Cu含有クラスターを前駆体とした水の酸化触媒	島塚健二 ¹ 石川和香子 ¹ , ○佐藤俊一 ¹ ○(B)西村拓己 ¹ , 下林紀幸 ¹ , 水谷浩也 ¹ , 齋藤隆之 ¹ ○Hsin-hui Huang ¹ , Takeshi Nagashima ² , Saulius Juodkazis ³ , Koji Hatanaka ¹ ○(M1)三浦誠 ¹ , 長谷川智士 ¹ , 岩永将司 ² , 早崎芳夫 ¹ ○佐藤正健 ¹ , 田代賢一 ¹ , 川口喜三 ¹ , 大村英樹 ¹ , 秋	健康工学 1. 東北大多元研 1. 静大工 1. Academia Sinica, 2. Setsunan Univ, 3. Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農
	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察 高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成 フェムト秒バルスレーザの 3 次元強度分布とフェムト秒バルスレーザ照射により形成された気泡の形状との関係 X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP付着シリコーンオイルのLIBS法による検出 口頭講演 (Oral Presentation) W631 会場 (Room W631)	鳥塚健二¹ 石川和香子¹, ○佐藤俊一¹ ○(B) 西村拓己¹, 下林紀幸¹, 水谷浩也¹, 齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1) 三浦 誠¹, 長谷川智士¹, 岩永 将司², 早崎芳夫¹ ○佐藤正健¹, 田代賢一¹, 川口喜三¹, 大村英樹¹, 秋山陽久¹ ○西哲平¹, 佐藤俊介¹, 荒井健男¹, 森川健志¹	健康工学 1. 東北大多元研 1. 静大工 1. Academia Sinica, 2. Setsunan Univ, 3. Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研
9:00	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒パルスレーザ照射により形成された気泡の形状との関係X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP 付着シリコーンオイルのLIBS 法による検出 口頭講演 (Oral Presentation) W631 会場 (Room W631) Cu含有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果気相パルスレーザーアブレーション法によるAgナノ粒子内包担持型TiO2複合ナノ構造の創製と可視光励起触媒活	島塚健二¹ 石川和香子¹, ○佐藤俊一¹ ○(B) 西村拓己¹, 下林紀幸¹, 水谷浩也¹, 齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1) 三浦 誠¹, 長谷川 智士¹, 岩永 将司², 早崎 芳夫¹ ○佐藤 正健¹, 田代 賢一¹, 川口 喜三¹, 大村 英樹¹, 秋山陽久¹ ○西 哲平¹, 佐藤 俊介¹, 荒井 健男¹, 森川 健志¹ ○石川 善恵¹, 越崎 直人² ○(B) 荒木 崇志¹, 今井 武史¹, 吉田 岳人¹, 梅津 郁	健康工学 1. 東北大多元研 1. 静大工 1. Academia Sinica, 2. Setsunan Univ, 3. Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研
9:00 9:15 9:30 9:45	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2 10a-W631-3	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒がルスレーザの3次元強度分布とフェムト秒がルスレーザ照射により形成された気泡の形状との関係X-ray、Terahertz Wave、and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工CFRP付着シリコーンオイルのLIBS法による検出口頭講演(Oral Presentation) W631会場(Room W631) Cu含有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果気相パルスレーザーアブレーション法によるAgナノ粒子内包担持型TiO₂複合ナノ構造の創製と可視光励起触媒活性	島塚健二¹ 石川和香子¹, ○佐藤俊一¹ ○(B) 西村拓己¹, 下林紀幸¹, 水谷浩也¹, 齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1) 三浦 誠¹, 長谷川智士¹, 岩永 将司², 早崎芳夫¹ ○佐藤正健¹, 田代賢一¹, 川口喜三¹, 大村英樹¹, 秋山陽久¹ ○西哲平¹, 佐藤俊介¹, 荒井健男¹, 森川健志¹ ○石川善恵¹, 越崎直人² ○(B) 荒木 崇志¹, 今井 武史¹, 吉田岳人¹, 梅津郁朗², 原口雅宣³ ○加藤 誠也¹, 鈴木健太郎¹, 大谷潤¹, 加瀬 征彦², 小野晋吾¹	健康工学 1. 東北大多元研 1. 静大工 1. Academia Sinica, 2. Setsunan Univ, 3. Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研 1. 産総研, 2. 北大工 1. 阿南高専, 2. 甲南大理工, 3. 徳島大理工
9:00 9:15 9:30 9:45 10:00	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2 10a-W631-3 10a-W631-4 10a-W631-5	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒パルスレーザの3次元強度分布とフェムト秒パルスレーザ照射により形成された気泡の形状との関係X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP付着シリコーンオイルのLIBS法による検出 口頭講演 (Oral Presentation) W631会場 (Room W631) Cu合有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果 気相バルスレーザーアブレーション法によるAgナノ粒子内包担持型TiO2複合ナノ構造の創製と可視光励起触媒活性 CeF3 薄膜を用いた紫外光センサの真空中アニール処理による欠陥制御 CO2レーザー照射と高分子膜被覆で作成したAg/PMMAナノ構造のプラズモン共鳴波長チューニング	島塚健二¹ 石川和香子¹, ○佐藤俊一¹ ○(B) 西村拓己¹, 下林紀幸¹, 水谷浩也¹, 齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1) 三浦 誠¹, 長谷川智士¹, 岩永 将司², 早崎 芳夫¹ ○佐藤 正健¹, 田代賢一¹, 川口喜三¹, 大村 英樹¹, 秋山陽久¹ ○西哲平¹, 佐藤俊介¹, 荒井健男¹, 森川健志¹ ○石川善恵¹, 越崎直人² ○(B) 荒木 崇志¹, 今井 武史¹, 吉田岳人¹, 梅津 郁朗², 原口 雅宣³ ○加藤 誠也¹, 鈴木 健太郎¹, 大谷潤¹, 加瀬 征彦², 小野晋吾¹ ○石松 勇樹¹, 西川 隼人¹, 中嶋隆¹	健康工学 1.東北大多元研 1.静大工 1.Academia Sinica, 2.Setsunan Univ, 3.Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研 1. 産総研, 2. 北大工 1. 阿南高専, 2. 甲南大理工, 3. 徳島大理工 1. 名工大, 2. ウシオ電機 1. 京大エネ研
9:00 9:15 9:30 9:45 10:00 10:15	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2 10a-W631-3 10a-W631-4 10a-W631-5	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒パルスレーザの3次元強度分布とフェムト秒パルスレーザ照射により形成された気泡の形状との関係X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP 付着シリコーンオイルのLIBS法による検出 口頭講演 (Oral Presentation) W631 会場 (Room W631) Cu合有クラスターを前駆体とした水の酸化触媒・中性付近の電解資水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果気相パルスレーザーアブレーション法による Agナノ粒子内包担持型TiO2複合ナノ構造の創製と可視光励起触媒活性 CeF3 薄膜を用いた紫外光センサの真空中アニール処理による欠陥制御 CO2 レーザー照射と高分子膜被覆で作成した Ag/PMMAナノ構造のブラズモン共鳴波長チューニング近接して生成したレーザーアブレーションパブルの融合過程	島塚健二¹ 石川和香子¹, ○佐藤俊一¹ ○(B) 西村拓己¹, 下林紀幸¹, 水谷浩也¹, 齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1) 三浦 誠¹, 長谷川智士¹, 岩永 将司², 早崎 芳夫¹ ○佐藤 正健¹, 田代賢一¹, 川口喜三¹, 大村 英樹¹, 秋山陽久¹ ○西哲平¹, 佐藤俊介¹, 荒井健男¹, 森川健志¹ ○石川善恵¹, 越崎直人² ○(B) 荒木 崇志¹, 今井 武史¹, 吉田岳人¹, 梅津 郁朗², 原口 雅宣³ ○加藤 誠也¹, 鈴木 健太郎¹, 大谷潤¹, 加瀬 征彦², 小野晋吾¹ ○石松 勇樹¹, 西川 隼人¹, 中嶋隆¹	健康工学 1. 東北大多元研 1. 静大工 1. Academia Sinica, 2. Setsunan Univ, 3. Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研 1. 産総研, 2. 北大工 1. 阿南高専, 2. 甲南大理工, 3. 徳島大理工
9:00 9:15 9:30 9:45 10:00	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-3 10a-W631-3 10a-W631-4 10a-W631-5 10a-W631-6	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒がルスレーザの3次元強度分布とフェムト秒がルスレーザ明射により形成された気泡の形状との関係X-ray、Terahertz Wave、and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工CFRP付着シリコーンオイルのLIBS法による検出口頭講演(Oral Presentation) W631 会場(Room W631) Cu含有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果気相がルスレーザーアブレーション法によるAgナノ粒子内包担持型TiO2複合ナノ構造の創製と可視光励起触媒活性とCeF3薄膜を用いた紫外光センサの真空中アニール処理による欠陥制御CO2レーザー照射と高分子膜被覆で作成したAg/PMMAナノ構造のプラズモン共鳴波長チューニング近接して生成したレーザーアブレーションバブルの融合過程体憩/Breakレーザー直接描画による酸化グラフェン一酸化チタンナ	島塚健二¹ 石川和香子¹,○佐藤俊一¹ ○(B)西村拓己¹,下林紀幸¹,水谷浩也¹,齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1)三浦 誠¹,長谷川智士¹,岩永 捋司²,早崎芳夫¹ ○佐藤正健¹,田代賢一¹,川口喜三¹,大村英樹¹,秋山陽久¹ ○西哲平¹,佐藤俊介¹,荒井健男¹,森川健志¹ ○石川善恵¹,越崎直人² ○(B)荒木崇志¹,今井武史¹,吉田岳人¹,梅津郁朗²,原口雅宣³ ○加藤 誠也¹,鈴木健太郎¹,大谷潤¹,加瀬征彦²,小野晋吾¹ ○石松勇樹¹,西川隼人¹,中嶋隆¹ ○安東 航太¹,石松勇樹¹,中嶋隆¹	健康工学 1.東北大多元研 1.静大工 1.Academia Sinica, 2.Setsunan Univ, 3.Swinburne Univ. of Tech. 1.宇都宮大オプティクス, 2.宇都宮大農 1.産総研 1.豊田中研 1.産総研, 2.北大工 1.阿南高専, 2.甲南大理工, 3.徳島大理工 1.名工大, 2.ウシオ電機 1.京大エネ研 1.京大エネ研 1.東北大多元研, 2.Inst. Mat., China Acad. Eng. Phys.,
9:00 9:15 9:30 9:45 10:00 10:15	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2 10a-W631-3 10a-W631-4 10a-W631-5 10a-W631-6	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒がルスレーザの3次元強度分布とフェムト秒がルスレーザ照射により形成された気泡の形状との関係X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工CFRP付着シリコーンオイルのLIBS法による検出口頭講演(Oral Presentation) W631会場(Room W631) Cu含有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果気相パルスレーザーアブレーション法によるAgナノ粒子内包担持型TiO2複合ナノ構造の創製と可視光励起触媒活性とCeF、薄膜を用いた紫外光センサの真空中アニール処理による欠陥制御CO2レーザー照射と高分子膜被覆で作成したAg/PMMAナノ構造のブラズモン共鳴波長チューニング近接して生成したレーザーアブレーションパブルの融合過程ルで増加を表別では、1000円が、1000円では、1000円では、1000円では、1000円では、1000円では、1000円では、1000円では、1000円では、1000円では、1000円では、1000円が、1000円では、	島塚健二¹ 石川和香子¹,○佐藤俊一¹ ○(B)西村拓己¹,下林紀幸¹,水谷浩也¹,齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1)三浦誠¹,長谷川智士¹,岩永将司²,早崎芳夫¹ ○佐藤正健¹,田代賢一¹,川口喜三¹,大村英樹¹,秋山陽久¹ ○西哲平¹,佐藤俊介¹,荒井健男¹,森川健志¹ ○石川善恵¹,越崎直人² ○(B)荒木崇志¹,今井武史¹,吉田岳人¹,梅津郁朗²,原口雅宣³ ○加藤誠也¹,鈴木健太郎¹,大谷潤¹,加瀬征彦²,小野晋吾¹ ○石松勇樹¹,西川隼人¹,中嶋隆¹ ○安東航太¹,石松勇樹¹,中嶋隆¹ ○该辺明¹,蔡金光²,小川沙也加¹,青柳英二³,伊藤俊³ ○(M1)膝附拓也¹,坂本盛嗣¹,野田浩平¹,佐々木	健康工学 1.東北大多元研 1.静大工 1.Academia Sinica, 2.Setsunan Univ, 3.Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研 1. 豊田中研 1. 産総研, 2.北大工 1. 阿南高専, 2. 甲南大理工, 3. 徳島大理工 1. 名工大, 2. ウシオ電機 1. 京大エネ研 1. 京大エネ研 1. 東北大多元研, 2.Inst. Mat., China Acad. Eng. Phys., 3. 東北大金研
9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2 10a-W631-3 10a-W631-4 10a-W631-5 10a-W631-6 10a-W631-7 10a-W631-7	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒パルスレーザの3次元強度分布とフェムト秒パルスレーザ照射により形成された気泡の形状との関係X-ray, Terahertz Wave, and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP付着シリコーンオイルのLIBS法による検出 口頭講演 (Oral Presentation) W631会場 (Room W631) Cu合有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果 気相パルスレーザーアブレーション法によるAgナノ粒子内包担持型TiO2複合ナノ構造の創製と可視光励起触媒活性 CeF3 薄膜を用いた紫外光センサの真空中アニール処理による欠陥制御 CO2レーザー照射と高分子膜被覆で作成したAg/PMMAナノ構造のプラズモン共鳴波長チューニング近接して生成したレーザーアブレーションパブルの融合過程 休憩/Break レーザー直接描画による酸化グラフェン一酸化チタンナノ粒子ハイブリッド膜への微細構造形成 光渦同軸干渉光を利用したレーザー描画露光法によるフォトレジストへの回折限界を超えた曲線パターンの形成 Cuメッシュ電極のフレキシブル基板上へのレーザ直接描	島塚健二¹ 石川和香子¹,○佐藤俊一¹ ○(B)西村拓己¹,下林紀幸¹,水谷浩也¹,齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1)三浦誠¹,長谷川智士¹,岩永将司²,早崎芳夫¹ ○佐藤正健¹,田代賢一¹,川口喜三¹,大村英樹¹,秋山陽久¹ ○西哲平¹,佐藤俊介¹,荒井健男¹,森川健志¹ ○石川善恵¹,越崎直人² ○(B)荒木崇志¹,今井武史¹,吉田岳人¹,梅津郁朗²,原口雅宣³ ○加藤誠也¹,鈴木健太郎¹,大谷潤¹,加瀬征彦²,小野晋吾¹ ○石松勇樹¹,西川隼人¹,中嶋隆¹ ○安東航太¹,石松勇樹¹,中嶋隆¹ ○渡辺明¹,蔡金光²,小川沙也加¹,青柳英二³,伊藤俊³ ○(M1)膝附拓也¹,坂本盛嗣¹,野田浩平¹,佐々木友之¹,川月喜弘²,後藤耕平³,小野浩司¹	健康工学 1.東北大多元研 1.静大工 1.Academia Sinica, 2.Setsunan Univ, 3.Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研 1. 豊田中研 1. 産総研, 2.北大工 1. 阿南高専, 2. 甲南大理工, 3. 徳島大理工 1. 名工大, 2. ウシオ電機 1. 京大エネ研 1. 京大エネ研 1. 東北大多元研, 2.Inst. Mat., China Acad. Eng. Phys., 3. 東北大金研
9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	9p-PB2-8 9p-PB2-9 E 9p-PB2-10 9p-PB2-11 9p-PB2-12 (Sun.) 9:00 - 12:15 10a-W631-1 10a-W631-2 10a-W631-3 10a-W631-4 10a-W631-5 10a-W631-6 10a-W631-7 10a-W631-7	フェムト秒レーザー誘起表面周期構造が形成されたジルコニアセラミックスの透過電子顕微鏡観察高強度レーザー光照射によるアルカンの分子変換における構造異性体の生成フェムト秒がルスレーザの3次元強度分布とフェムト秒がルスレーザの3次元強度分布とフェムト秒がルスレーザ駅射により形成された気泡の形状との関係X-ray、Terahertz Wave、and Sound Emission from Water Flow Irradiated by Intense Femtosecond Laser Pulses in Air 共焦点表面位置検出を用いた細胞のフェムト秒レーザー加工 CFRP 付着シリコーンオイルのLIBS 法による検出 口頭講演 (Oral Presentation) W631 会場 (Room W631) Cu含有クラスターを前駆体とした水の酸化触媒・中性付近の電解質水溶液中における電気化学触媒活性・液中レーザー溶融法による球状粒子連続合成における分散液粘性が及ぼす効果 気相がルスレーザーアブレーション法による Agナノ粒子内包担持型TiO2 複合ナノ構造の創製と可視光励起触媒活性 と6万3 薄膜を用いた紫外光センサの真空中アニール処理による欠陥制御 CO2 レーザー照射と高分子膜被覆で作成した Ag/PMMAナノ構造のブラズモン共鳴波長チューニング近接して生成したレーザーアブレーションバブルの融合適程 体憩/Break レーザー直接描画による酸化グラフェンー酸化チタンナノ粒子ハイブリッド膜への微細構造形成 光渦同軸干渉光を利用したレーザー描画露光法によるフォトレジストへの回折限界を超えた曲線パターンの形成 Cuメッシュ電極のフレキンブル基板上へのレーザ直接描画と温度センサ作製	島塚健二¹ 石川和香子¹,○佐藤俊一¹ ○(B)西村拓己¹,下林紀幸¹,水谷浩也¹,齋藤隆之¹ ○Hsin-hui Huang¹, Takeshi Nagashima², Saulius Juodkazis³, Koji Hatanaka¹ ○(M1)三浦誠¹,長谷川智士¹,岩永将司²,早崎芳夫¹ ○佐藤正健¹,田代賢一¹,川口喜三¹,大村英樹¹,秋山陽久¹ ○西哲平¹,佐藤俊介¹,荒井健男¹,森川健志¹ ○石川善恵¹,越崎直人² ○(B)荒木崇志¹,今井武史¹,吉田岳人¹,梅津郁朗²,原口雅宣³ ○加藤誠也¹,鈴木健太郎¹,大谷潤¹,加瀬征彦²,小野晋吾¹ ○石松勇樹¹,西川隼人¹,中嶋隆¹ ○安東航太¹,石松勇樹¹,中嶋隆¹ ○変東航太¹,石松勇樹¹,中嶋隆¹ ○渡辺明¹,蔡金光²,小川沙也加¹,青柳英二³,伊藤俊³ ○(M1)除附拓也¹,坂本盛嗣¹,野田浩平¹,佐々木友之¹,川月喜弘²,後藤耕平³,小野浩司¹	健康工学 1.東北大多元研 1.静大工 1.Academia Sinica, 2.Setsunan Univ, 3.Swinburne Univ. of Tech. 1. 宇都宮大オプティクス, 2. 宇都宮大農 1. 産総研 1. 豊田中研 1. 産総研, 2. 北大工 1. 阿南高専, 2. 甲南大理工, 3. 徳島大理工 1. 名工大, 2. ウシオ電機 1. 京大エネ研 1. 京大エネ研 1. 東北大多元研, 2.Inst. Mat., China Acad. Eng. Phys., 3. 東北大金研 1. 長岡技科大, 2. 兵庫県立大, 3. 日産化学(株)

11:45	10a-W631-11	バルスレーザーメルティング法(PLM)によって硫黄を過	○川本 兼司¹, 早瀬 弘基¹, 青木 珠緒¹, 梅津 郁朗¹	1.甲南大
10.00	10 W(01 10	飽和ドープしたSi単結晶のpn接合特性		1 (the L. r. o. 4) L. r.
12:00		フェムト秒レーザー照射による結晶改質がp-GaNへの オーミックコンタクトに与える影響	\bigcirc (M1) 片山 裕之 1 , 直井 美貴 1 , 岡田 達也 1 , 田中 康 弘 2 , 富田 卓朗 1	1. 徳島大工, 2. 香川大工
		tical measurement, instrumentation, and sensor 口頭講演 (Oral Presentation) W935 会場 (Room W935)		
13:15		「講演奨励賞受賞記念講演」 合成波長光コム2色干渉計によるリアルタイム空気ゆら ぎ補正形状計測法の開発	〇生澤 佳久 1.2, 中嶋 善晶 1.2, 吴 冠豪 3, 美濃島 薫 1.2	1. 電通大, 2.JST,ERATO美濃島知的光シンセサイザ, 3. 清華大
13:30	奨 9p-W935-2	光ファイバ遅延線干渉計を用いたモード同期レーザの周 波数雑音測定	〇和田 雅人 1,2,3 ,大久保 章 1,3 ,柏木 謙 1,3 ,穀山 涉 1 ,中村 圭佑 1,3 ,洪 鋒雷 2,3 ,稲場 肇 1,3	1.産総研, 2.横国大院理工, 3.JST, ERATO美濃島知的光シンセサイザ
13:45	9p-W935-3	レーザー走査型光コム分光顕微鏡による偏光計測		1.徳島大, 2.JST-ERATO, 3.JST さきがけ, 4.JASRI, 5.電
14:00	奨 9p-W935-4	デュアルコム分光法によるファラデー回転測定		1. 電通大, 2.JST, ERATO 美濃島知的光シンセサイザ, 3. ネオアーク株式会社, 4.東京理科大学
14:15	9p-W935-5	光コムによる全光ヒルベルト変換を用いた3次元形状の 高解像連続計測	\bigcirc (P) 加藤 峰士 ^{1,2} , 内田 めぐみ ^{1,2} , 田中 優理奈 ^{1,2} , 美濃島 薫 ^{1,2}	1.電通大, 2.JST, ERATO美濃島知的光シンセサイザ
14:30 14:45	9p-W935-6	休憩/Break 外部変調方式に基づくブリルアン光相関領域反射計の動 作検証	○野田 康平¹, 李 熙永¹, 水野 洋輔¹, 中村 健太郎¹	1.東京工業大学
15:00	9p-W935-7	時間伸張フーリエ変換を用いた高繰返し低コヒーレンス 干渉計	星川 雅春 1 , 〇石井 勝弘 1 , 牧野 健 2 , 橋本 崇弘 2 , 古川 英昭 2 , 和田 尚也 2	1. 光産創大, 2. 情報通信研究機構
15:15	9p-W935-8	偏光 OCT による植物塩害の定量的測定	○ (M1) 安田 博哉¹, 椎名 達雄¹	1. 千葉大理工
15:30	9p-W935-9	長深度OCTによる溶液光学特性変化の為の基礎測定	○(M2) 三輪 瞭佑¹, 椎名 達雄¹	1. 千葉大理工
15:45	9p-W935-10	Pair of Quarter Wave-plates	○ (PC)Kotaro Okamura¹, Izumi Iwakura¹	1.Kanagawa University
16:00 16:15	9p-W935-11	休憩/Break リモートセンシングによる広域の植物蛍光強度分布画像	○栗山 健二¹, 眞子 直弘², 久世 宏明³	1. 静大工, 2.JAXA, 3. 千葉大 CEReS
16:30	9p-W935-12	取得の提案 LIDAR計測用二波長注入同期パルスレーザー	○渡邊 哲人¹, 長谷川 健司¹, 隈元 清哉¹, 大饗 千彰¹,	1.電通大 基盤理工
16:45		ライダーによるCO ₂ と水蒸気の鉛直分布同時観測	桂川 眞幸¹ ○柴田 泰邦¹,阿保 真¹,長澤 親生¹	1.首都大シスデザ
17:00	•	共鳴ラマンライダーに向けた深紫外波長可変光源の評価	李大治1	1.レーザー総研
3/10	(Sun.) 9:30 - 11:30 10a-PA2-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 液晶位相子を用いたミューラー偏光顕微鏡の開発	○大久保 進也¹	1. 沼津高専
	10a-PA2-1 10a-PA2-2	被領位相子を用いたミューノー編元頻成親の開発 一光東干渉計による三次元屈折率分布計測のための位相 変化計測		1.北大工
	10a-PA2-3	可視光OCTによる半導体薄膜構造の非破壊内部観察	〇石田 一将¹, 尾崎 信彦¹, 池田 直樹², 杉本 喜正²	1.和歌山大シスエ, 2.物材機構
	10a-PA2-4	位相子回転型イメージングエリプソメータのデータ処理		
	10a-PA2-5	低コヒーレンス干渉計によるトモグラフィック屈折率計 測		1.埼大理工
	10a-PA2-6 奨 10a-PA2-7	D_1 及び D_2 遷移を併用したセシウム原子の CPT 共鳴観測 熱的異方性検出光熱顕微鏡の開発	○福田 京也', 佐藤 達輝', 松木 亮磨', 曾我部一貫' ○櫻内 衛 ¹ , 瀬戸 啓介 ¹ , 中田 和明 ² , 小林 孝嘉 ³ , 徳永 英司 ¹	
	奨 10a-PA2-8	電極界面の水により誘起されたバルク水におけるポッケ ルス効果	〇千万 大道 1 , 羽山 大介 1 , 山下 恭平 1 , 瀬戸 啓介 1 , 小 林 孝嘉 2 , 徳永 英司 1	1. 東理大理, 2. 電通大
	10a-PA2-9	単一光ファイバー式分光器を用いた凹面楕円リフレク ターの反射率計測	○室 幸市¹, 坂井 正幸¹, 永渕 雄希¹	1.朝日分光(株)
	E 10a-PA2-10	Twist dependence of strain sensitivity of perfluorinated graded-index plastic FBGs	○ (M2)Tianyi Ma ¹ , Ryo Ishikawa ¹ , Heeyoung Lee ¹ , Antreas Theodosiou ² , Kyriacos Kalli ² , Yosuke Mizuno ¹ , Kentaro Nakamura ¹	1. Tokyo Institute of Technology, 2. Cyprus University of Technology
	奨 10a-PA2-11	コヒーレントライダを用いた波長 $1.5~\mu$ m での水面反射 信号の分析	○伊藤 優佑¹, 今城 勝治¹, 吉岐 航¹, 柳澤 隆行¹, 勝又 徳也¹	1. 三菱電機(株)
3/11 9:00	(Mon.) 9:00 - 11:45 奨 11a-W935-1	口頭講演 (Oral Presentation) W935会場 (Room W935) 機械学習を用いた光共振器のアライメント自動化システ	○(M2)田原 寛之¹, 三尾 典克¹.²	1.東大工, 2.東大理
9:15	E 11a-W935-2	ムの開発 Optical Wireless Power Transmission to Multiple Moving		1.Kanazawa Univ.
9:30	11a-W935-3	Objects Using Computer Vision 高分解能量子OCTの横方向分解能の向上	Setiawan Putra ¹ , Hirotaka Kato ¹ , Takeo Maruyama ¹ ○川口 蓉子 ¹ , 曹 博 ¹ , 羽山 恭平 ¹ , 岡本 亮 ¹ , 竹内 繁 樹 ¹	1. 京大院工
9:45	奨 E 11a-W935-4	Proposal of Two Tangent Hole Structure for Higher Sensitivity Gas Sensor	例: O(D)ZANHUI CHEN ¹ , Wenying Li ¹ , Yu Han ¹ , Haisong Jiang ¹ , Kiichi Hamamoto ¹	1.Kyushu Univ.
10:00	奨 E 11a-W935-5	Amplifier Assisted CRDS (Cavity Ring-down Spectroscopy) toward Compact Breath Sensing	○ (D)Wenying Li ¹ , Yu Han ¹ , Zanhui Chen ¹ , Haisong Jiang ¹ , Kiichi Hamamoto ¹	1.Kyushu Univ.
10:15		休憩/Break	·	
10:30	11a-W935-6	レーザーバイオスペックルによる連続および周期的照明 時の植物活動への影響モニター	エナリシンタロ ¹ , ヒライミノル ¹ , ○ラジャゴパラン ウママへスワリ ¹ , ヤマダ ジュン ¹ , カドノ ヒロフミ ²	1. 芝浦工業大, 2. 埼玉大
10:45	11a-W935-7	超高分解能を有する光増幅帰還型光検出器	へ ○増田 浩次¹, 北村 心¹, イスラム シフル¹, ビスワス ビスワジット¹, 加納 拓人¹	1. 島根大総理
11:00	11a-W935-8	包絡線再建のための周波数選択に周波数ペアモデルの適 用	○章冬¹,明田川正人¹	1. 長岡技大機
11:15	11a-W935-9	屈折率センシング光コムを用いた液体サンプルの温度・ 濃度同時計測(2)~スペクトル計測による温度・濃度の算		1. 徳島大, 2.JST, ERATO 美濃島知的光シンセサイザ, 3. 高知工科大, 4. 岡山大, 5. 電通大
11:30	11a-W935-10	出~ 可飽和吸収ミラー型モード同期ファイバー光コム共振器 による 屈折率センシング	○(M2)麻植 凌 ^{1.2} ,南川 丈夫 ^{1.2} ,田上 周路 ³ ,深野 秀 樹 ⁴ ,中嶋 善晶 ^{2.5} ,美濃島 薫 ^{2.5} ,安井 武史 ^{1.2}	1. 徳島大, 2.JST, ERATO 美濃島知的光シンセサイザ, 3. 高知工科大, 4. 岡山大, 5. 電通大
3/11(13:15		口頭講演 (Oral Presentation) W935 会場 (Room W935) 「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞)		1.電通大
40 :	det a · · ·	受賞記念講演」 光周波数コムを用いた高分解能・高感度分子分光の研究		A Mich Little o rom processor Victoria
13:45	奨 11p-W935-2	デュアルコム分光を用いた高速偏光計測	○是澤 秀紀 ^{1,2} , グライェブ マーク ^{1,3} , 澁谷 九輝 ^{1,2} , 南川 丈夫 ^{1,2} , 安井 武史 ^{1,2}	 徳島大院, 2.JST ERATO 美濃島知的光シンセサイザ, ボルドー大学

14:00	11p-W935-3	次元変換光コムを用いたスキャンレス・フルフィールド 共焦点顕微鏡の開発(6) ~ポスト光増幅によるイメーシ		1. 徳島大学, 2.JST ERATO 美濃島 ISO, 3.Spring-8, 4.5 都宮大学
14:15	11p-W935-4	SN比の向上~ デュアル光コム顕微鏡によるスキャンレス蛍光イメージ		1. 徳島大, 2.JST ERATO 美濃島 IOS, 3. 宇都宮大
14:30	奨 11p-W935-5	ング(3) ~ 蛍光イメージング SNR の改善 ~ ナイキスト限界の高速広帯域フーリエ分光法	裕紹 ^{2,3} , 安井 武史 ^{1,2} ○橋本 和樹 ^{1,2} , 井手口 拓郎 ^{1,3}	1.東大理, 2.JAXA, 3.JST さきがけ
14:45 15:00	11p-W935-6	休憩/Break ポンプ・プローブ分光計測のための雑音打消し位相検波 法におけるプートストラップ法によるフォトダイオード	○瀬戸 啓介¹, 小林 孝嘉², 徳永 英司¹	1. 東理大, 2. 電通大
15:15	11p-W935-7	の接合容量打消しの効果 光定常状態間遷移を用いた過渡吸収分光法の開発および	荒井仁美¹,○和田昭英¹	1.神戸大院理
15:30	奨 11p-W935-8	アゾ系色素の異性化反応への応用 多色レーザー励起下における過渡吸収の励起波長選択的	○岸 佑弥¹, 和田 昭英¹	1.神戸大院理
15:45	E 11p-W935-9	観測および交差項の観測 Time-Domain Raman Spectroscopy using a Sagnac	○ (M2)Jorgen Walker Peterson¹, Kotaro Hiramatsu¹,	1.The Univ. of Tokyo, 2.JST
16:00	11p-W935-10	Interferometer 波長計制御型 CRDS を用いた高感度・高分解能スペクト	Keisuke Goda ^{1,2} 〇橋口 幸治 ¹ , Cygan Agata ² , Lisak Daniel ² , 阿部 恒 ¹	1.産総研, 2.ニコラス・コペルニクス大学
16:15	11p-W935-11	ル測定 ジルコニウム原子の同位体スペクトルの測定	○榎本 瑛夫¹, 西宮 信夫¹	1.東京工芸工
3.9 テラ	へルツ全般 / Teral	nertz technologies		
3/10(St		ポスター講演 (Poster Presentation) PB 会場 (Room PB) 室温動作差周波発生テラヘルツ量子カスケードレーザー によるイメージング		1. 浜松ホトニクス中研
	10p-PB2-2	直列接続共鳴トンネルダイオードにおける発振とドメイン形成	○安田 浩朗¹, 関根 徳彦¹, 寶迫 巌¹, 平岡 友基², 猪瀬 裕太², 有川 敬², 田中 耕一郎².3	1.情報通信研究機構, 2.京大院理, 3.京大iCeMS
	10p-PB2-3	共鳴トンネルダイオードによるピコ秒テラヘルツパルス		1.京大院理, 2.京大iCeMS
	10p-PB2-4	検出 テラヘルツ波電気光学サンプリングの偏光フィルタリン グによるダイナミックレンジの改善	○北原 英明¹, 加藤 博之¹, 椎原 正基¹, 江崎 晃弘¹, 山 本晃司¹, 古屋 岳¹, エスタシオ エルマー², バクノフ マイケル³, 谷 正彦¹	
	10p-PB2-5	OH1を用いたテラヘルツ波発生直後の波形計測	○横山 啓一¹, 松田 晶平¹	1.原子力機構
	10p-PB2-6	フェムト秒パルス励起による傾斜構造 PPLN からの側面 THz 波発生	巌1	1. 宵通機構
	10p-PB2-7	モアレ型メタ表面における異常屈折現象観測のための THz時間領域分光イメージング系の構築	○大野 誠吾¹, 石原 照也¹	1.東北大院理
	10p-PB2-8	実効屈折率可変メタマテリアルによるテラヘルツビーム ステアリング	渡邉 裕貴¹, ○松井 龍之介¹	1.三重大院工
	10p-PB2-9	2段メタルスリットアレイ構造における誘電体の挿入効 果	〇坂口 浩一郎 1 , 加藤 康作 2 , 高野 恵介 3 , 渡辺 将伍 1 , 中嶋 誠 2 , 徳田 安紀 1	1.岡山県立大, 2.阪大レーザ研, 3.信大環エネ研
	10p-PB2-10	光伝導アンテナ-自由空間結合器としてのSiレンズと テーバ付き伝送線路の比較一照射光源とアラインメント の改善-	○森川 治¹, 川野 克利¹, 山本 晃司², 栗原 一嘉², 桒島	1.海保大, 2.福井大, 3.福井工大
	奨 10p-PB2-11	短焦点 0.3THz 帯両面構造ペアカットワイヤーアレーア テナによる共鳴トンネルダイオードからの放射位相の 制御	○遠藤 孝太¹, 金 在瑛², 鈴木 健仁¹.3	1. 農工大, 2. ローム, 3.JST さきがけ
	•	1.5μ m励起テラヘルツ波発生における DAST 結晶の熱レンズ効果	裕久², 宮本 克彦¹.³, 尾松 孝茂¹.³	リティー研
		反射型テラヘルツ偏光分光装置を用いた黒色ゴム複合材 料の内部フィラー配向状態の観測	○ 向野 具人 ', 波邊 紳一 '	1.慶大理工
3/11(N 9:00		口頭講演 (Oral Presentation) S421 会場 (Room S421) 光伝導アンテナにおける雑音の定量評価	○(B)中村 亮太¹, 新田 真大¹, 角屋 豊¹	1. 広大院先端
9:15	11a-S421-2	共鳴トンネルダイオード検出器のテラヘルツ波パルスに		1.理研, 2.東工大
9:30	11a-S421-3	対する感度評価 共鳴トンネルダイオードにおける狭帯域テラヘルツ光を	○(D) 平岡 友基¹, 有川 敬¹, 伊藤 弘², 田中 耕一郎¹	1. 京大理, 2. 北里大
9:45	11a-S421-4	用いた注入同期 注入同期した共鳴トンネルダイオードテラヘルツ発振器	○有川 敬 1 , 金 在英 2 , 向井 俊和 2 , 西上 直毅 3 , 富士田	1. 京大院理, 2. ローム, 3. 阪大基礎工, 4. 京大iCeMS
0:00	11a-S421-5	の電場波形測定 矩形空洞共振器とボウタイアンテナを集積した高出力共	誠之 ³ , 永妻 忠夫 ³ , 田中 耕一郎 ^{1,4}	1 市工士
		鳴トンネルダイオードテラヘルツ発振器の作製	田 雅洋1	
10:15	E 11a-S421-6	Effect of Joule Heating on Titanium Wires for Terahertz Antenna-Coupled Bolometer	○ (D)DURGADEVI ELAMARAN¹, KO AKIBA², HIROAKI SATOH², NORIHISA HIROMOTO², HIROSHI INOKAWA³	1.GSST, 2.GSIST, 3.RIE
10:30	11a-S421-7	休憩/Break 二次元プラズモンを用いたテラヘルツ帯光-無線周波数 下方変換の理論解析	○(M1) 眞鍋 颯也¹, 尾辻 泰一¹, 佐藤 昭¹	1.東北大通研
11:00	11a-S421-8	二次元ナノアンテナ導入による格子ゲート構造	○齋藤 琢¹, 鈴木 雅也¹, 細谷 友崇¹, 末光 哲也², 瀧田 佐馬³ 伊藤 孔目³ 京山 寿邢³ 尽込 寿、1 佐藤 四¹	1. 東北大通研, 2. 東北大 CIES, 3. 理研光量子
1:15	11a-S421-9	ブラズモニックTHzディテクタの偏光特性制御 有機電気光学ポリマー光導波路を用いたテラヘルツ波検 出デバイスの試作	佑馬³, 伊藤 弘昌³, 南出 泰亜³, 尾辻 泰一¹, 佐藤 昭¹ ○梶 貴博¹, 諸橋 功¹, 富成 征弘¹, 小川 洋¹, 山田 俊 樹¹, 大友 明¹	1. 情通機構
11:30	E 11a-S421-10	ELTアイスの調料F Spintronic CW THz Generation Using an Optimized Fe/ Pt Metallic Bilayer		1.Univ. of Fukui, 2.Fukui Univ. of Tech., 3.Photonic Center Kaiserslautern, 4.Univ. of Kaiserslautern
11:45	11a-S421-11	フェムト秒パルスレーザー励起テラヘルツパルス照射に	○上田 誠一郎¹,加藤 康作¹, Phan Khoa¹,清水 智貴¹,	1. 阪大レーザー研, 2. 福井大遠赤センター
2:00	11a-S421-12	よる高調波の観測 ARコートDAST結晶のTHz時間領域分光法を用いた評		1.大阪大学, 2.名古屋大学, 3.アークレイ (株)
3/11(M 13:45	on.) 13:45 - 18:45 奨 11p-S421-1	価 口頭講演 (Oral Presentation) S421会場 (Room S421) 多段テラヘルツバラメトリック検出器による極微弱テラ	高木 毅 ³ , 斗内 政吉 ¹ ○村手 宏輔 ¹ , 阪井 ひかる ¹ , 郭 昀倬 ¹ , 川瀬 晃道 ¹	1.名大院工
14:00	11p-S421-2	ヘルツ波検出 チャープパルスを用いたテラヘルツ波の非共軸シングル	○泉 健一¹, 嵐田 雄介¹, 武田 淳¹, 片山 郁文¹	1. 横浜国大院理工
14:15	11p-S421-3	ショット検出 変調器型光コム発生器を用いた電気光学サンプリング法	○諸橋 功¹, 関根 徳彦¹, 笠松 章史¹, 寶迫 巌¹	1.情通機構
14:30	奨 11p-S421-4	によるテラヘルツ周波数計測における測定帯域の評価 SF-STAMPを用いた超高速シングルショットテラヘルツ		1. 慶大理工, 2. 福井大遠赤センター, 3. 東北大学大学院
		イメージング	史¹, 北原 英明², 谷 正彦², 松浦 裕司³, 神成 文彦¹	工学研究科

14:45	11p-S421-5	GPUを用いたホログラフィック網膜投影型ディスプレイ のリアルタイム表示	○長浜 佑樹¹, 藤本 直大¹, 高木 康博¹	1.東京農工大
15:00	E 11p-S421-6	An algorithm for CGH using gradient descent method	○ (M2)Shujian Liu¹, Yuki Nagahama¹, Yasuhiro Takaki¹	1. Tokyo Univ. of Agri. and Tech.
15:15	11p-S421-7	Terahertz-Wave Amplitude-Modulated Radar Based on a Resonant-Tunneling-Diode Oscillator		1.Tokyo Tech
15:30	11p-S421-8	大鳴トンネルダイオードを用いたテラヘルツファイバ伝送(1) ーテラヘルツファイバの検討-		1. バイオニア, 2. 阪大基礎工, 3. ローム
15:45	奨 11p-S421-9	共鳴トンネルダイオードを用いたテラヘルツファイバ伝送(2) -フォトニック結晶インターフェースの導入-	\bigcirc (DC) 兪 熊斌 1 , 小幡 $-$ 智 2 , 宮本 知幸 2 , 細田 康 $\#^2$, 金 在 $\#^3$, 冨士田 誠之 1 , 永妻 忠夫 1	1. 阪大, 2. バイオニア (株), 3. ローム (株)
	奨 E 11p-S421-10	Sensing ultrafast motion of a single atom encapsulated in a cage molecule by terahertz spectroscopy	○ Shaoqing Du¹, Ya Zhang¹, Kenji Yoshida¹, Kazuhiko Hirakawa¹.²	1.IIS,Univ. of Tokyo, 2.INQIE,Univ. of Tokyo
16:15 16:30	奨 E 11p-S421-11	休憩/Break Control of absorption properties of MEMS terahertz bolometers using metamaterials	○ Tianye Niu¹, Boqi Qiu¹, Ya Zhang², Kazuhiko Hirakawa¹	1.IIS/INQIE Univ. of Tokyo, 2.TUAT
16:45	奨 11p-S421-12	両面構造ペアカットワイヤーアレーアンテナによる 0.3THz帯共鳴トンネルダイオードの指向性の向上と制御	○関谷 允志¹, 金 在瑛², 鈴木 健仁¹.³	1.農工大, 2. ローム, 3.JST さきがけ
17:00	11p-S421-13	テラヘルツ波帯における Metal hole array によるアンテナ 利得向上	○(B)田中 雄介¹, 久武 信太郎¹	1.岐阜大工
17:15	11p-S421-14	テラヘルツ領域におけるシリコンナノ粒子を用いた屈折 率制御と広帯域反射防止膜への応用	〇添田 淳史 1 ,河田 陽 $-^{2}$,里園 浩 2 ,高橋 宏典 2 ,池田 吉紀 1	1.帝人, 2.浜松ホトニクス
17:30	11p-S421-15	フォトニック結晶 - 金属ワイヤー融合型テラヘルツ導波路の作製と評価	○宮浦 潤¹, 田邉 匡生¹, 小山 裕¹	1. 東北大院工
17:45	E 11p-S421-16	Miniature terahertz waveguides and the molecular sensing	g ○Borwen You¹, Ja-Yu Lu², Chin-Ping Yu³, Toshiaki	1.Univ. of Tsukuba, 2.Cheng Kung Univ., 3.Sun Yat-Sen
18:00	奨 11p-S421-17	application in a microfluidic channel スーパーインクジェットプリンタで試作した 3.0THz帯	Hattori¹ ○朝田 晴美¹, 鈴木 健仁¹.²	Univ. 1.農工大, 2.JST さきがけ
18:15	11n=\$421-19	高屈折率低反射メタサーフェスの実験評価 ウッズアノマリーとは異なる新しいアノマリー	○北中 宏明¹, 湯本 潤司¹	1. 東大理物
18:30	11p-S421-19	液晶を内包するサブ波長メタルメッシュ構造によるテラ ヘルツ帯での偏波変換素子に関する研究 口頭講演 (Oral Presentation) S421 会場 (Room S421)	○ (M2) 西江 裕基 ¹ , 神林 正篤 ¹ , 坂本 盛嗣 ¹ , 野田 浩 平 ¹ , 岡本 浩行 ² , 小野 浩司 ¹ , 佐々木 友之 ¹	
9:00	奨 12a-S421-1	2波長モード同期ファイバーレーザーとアダプティブ・ サンプリング式デュアルTHzコム分光法を用いた低圧ガ ス計測		1.徳島大, 2.JST,ERATO美濃島知的光シンセサイザ, 3.北京航空航天大
9:15	12a-S421-2	非対称メタアトムアレイ型テラヘルツチップによる微量 溶液測定	○芹田和則¹,村上博成¹,川山巌¹,斗內政吉¹	1.阪大レーザー研
9:30	12a-S421-3	反射型レーザー走査近接場テラヘルツイメージングシス テムの開発	岡田 航介¹, ○芹田 和則¹, Zang Zirui¹.², 村上 博成¹, 川山 巌¹, Cassar Quentin⁴, MacGrogan Gaëtan⁴, Zimmer Thomas³, Guillet Jean-Paul³, Mounaix Patrick², 斗内 政吉¹	1. 阪大レーザー研, 2.Univ. of Rochester, 3.Univ. of Bordeaux, 4.Bergonié Inst.
9:45	奨 12a-S421-4	広帯域振動分光によるイオン性分子・水溶性高分子化合 物の水和状態の直接測定		1. 東大院工, 2. 情報通信研究機構
10:00	E 12a-S421-5	Functional assessment of water sorption–desorption for frequency-dependent skin penetration depth of terahertz radiation		1.Univ. of Tsukuba, 2.Cheng Kung Univ., 3.Sun Yat-Sen Univ., 4.Taiwan Univ.
10:15 10:30	12a-S421-6	休憩/Break 円偏光テラヘルツ光を用いた磁場変調時間領域分光法	中根 淳志¹, 鈴川 浩康¹, 森本 智英¹, ○永井 正也¹, 芦	1.阪大院基礎工
10:45	12a-S421-7	プロトン伝導型固体電解質のテラヘルツ分光	田昌明 ¹ ○竹原 $ ilde{\mu}^1$, 森本 智英 ¹ , 永井 正也 ¹ , 可児 幸宗 ² , 奥山 勇治 ³	1.大阪大基礎工, 2.パナソニック, 3.宮崎大工
11:00 11:15	12a-S421-8 12a-S421-9	鉄系腐食生成物 $FeOOH$ のテラヘルツ分光分析 Bi_2Te_3/Te ストライプ構造を有する試料からのテラヘルツ 放射特性	〇田邉 匡生 1 , 長谷川 涼 1 , 塩田 晃央 1 , 小山 裕 1	1. 東北大院工 1. 阪大レーザー研, 2.AFRL, USA, 3.IEMT, Poland
11:30	奨 12a-S421-10	$Sm_{0.7}Er_{0.3}FeO_3$ における室温近傍に制御されたスピン再配列転移の観測		1.阪大レーザー研
11:45	12a-S421-11	ナノ磁性体(ϵ - Fe_2O_3)におけるテラヘルツ波バルスによる超高速スピン応答		1. 阪大レーザー研, 2. 東大院理
		ptical quantum physics and technologies ポスター講演 (Poster Presentation) PB 会場 (Room PB)		
3/9(9a-PB1-1	ボスター講演 (Poster Presentation) PB 会場 (Room PB) バクテリオロドブシン中のレチナール分子の光異性化に 対するインコヒーレント制御の検討		1.東京女子医大
	9a-PB1-2	動的磁化を有する量子ドットを介したスピン流制御の理論	古屋 雄涼¹, ○橋本 一成¹, 内山 智香子¹.²	1.山梨大院, 2.国立情報学研究所
		口頭講演 (Oral Presentation) S422 会場 (Room S422)		
13:45	招 10p-S422-1	「講演奨励賞受賞記念講演」 光リザーバコンピューティングにおける意思決定手法を 用いたモデル選択	○菅野 円隆¹, 成瀬 誠², 内田 淳史¹	1.埼玉大, 2.情報通信研究機構
14:00	10p-S422-2	用いたモアル選択 戻り光のある半導体レーザーにおけるスケール不変性を 持つ発振挙動	○新山 友暁¹, 砂田 哲¹	1. 金沢大理工
14:15	招 10p-S422-3	「講演奨励賞受賞記念講演」 波形整形した局部発振光を用いた パルス光連続変数エン	〇新城 亜美 1 ,片山 拓哉 1 ,衞藤 雄二郎 2 ,平野 琢也 1	1.学習院大理, 2.産総研
14:30 14:45		タングルメントの時間領域測定 LED励起によるバラメトリック下方変換光子対発生 単共鳴共振器型PPLN導波路による光子対生成	○西井 大生¹, 大岡 佳生¹, 深津 晋¹ ○生田 カ三¹, 谷 亮矢¹, 石崎 理裕¹, 三木 茂人², 藪野 正裕², 寺井 弘高², 山本 俊¹, 井元 信之¹	1. 東大院総合 1. 阪大, 2. 情通機構
15:00	10p-S422-6	Type-II 光導波路を用いた量子揺らぎの制御	正俗',寻开 弘尚',山本 俊',开儿 信之' ○波多腰 紗英¹,遠山 俊介¹,平野 琢也¹	1.学習院大
15:15	奨 10p-S422-7	波形成形された超短単一光子バルスを用いた周波数域線 形光量子回路の実現		
15:30 15:45	招 10n_S/199_0	休憩/Break 「第3回フォトニクス奨励賞受賞記念講演」	○清原 孝行 ¹ , 岡本 亮 ^{1,2} , 竹内 繁樹 ¹	1.京大院工, 2.JST さきがけ
13.43	лд тир-о422-8	53 回フォトークス奨励員受員記念語演 伝令信号を用いた単一光子列のシリアルパラレル変換	○/月/赤 子口, 平 元 , 1 円 系倒	1. 水八尺的上, 4.301 C C J V V

19.0 19.0	16:00	10p-S422-9	量子ウォークシミュレーターのための長距離伝搬型表面		1. 日大量科研, 2. 産総研
1985 1985	16:15 将	F 10p-\$422-10		大治 ^{1,2} , 井上修一郎 ¹	1 Osaka University 2 NTTBRI
1950 1954년 1 AST XX PRINT X PR	10.13 英	E 10p-3422-10	measurement setup with a countermeasure against		1.Osaka Oliveisity, 2.W1 1 DKL
Pop Page	16:30 16:45	10p-S422-12	ASE光源を利用した連続値乱数発生器 時空間相関を有する環境揺動によるエネルギー流制御		
特別の日の					
中の	o, 10 (5 a.i.		ジグザグ鎖構造における光トポロジカルエッジ状態に関	○森竹 勇斗¹, 納富 雅也¹.2.3	1. 東工大理, 2.NTTナノフォトニクスセンタ, 3.NTT物 性研
1997年31 2007年31 2007年31日からか下降の一次に配作する		•	モードのX型空間分布		1.阪大院工, 2.阪大フォトニクスセ
1		10p-PB3-3	1.7		1.京大院工
中の一型			ニック結晶のバンド構造		院基工
1		10p-PB3-5	光器	Edward², 野崎 謙悟 $^{1.2}$, Sergent Sylvain $^{1.2}$, 倉持 栄 $-^{1.2}$, Zhang Guoqiang $^{1.2}$, 新家 昭彦 $^{1.2}$, 納富 雅也 $^{1.2}$	1.NTT NPC, 2.NTT 物性研
1			共振器の作製		
19-853 19-878		,	ビーム形状制御	福原 真¹, 野田 進¹	
19-17-18-17 1-2 2 2 2 2 2 2 2 2 2		*	ク結晶レーザにおけるpH感度増大		
特別・		•	変調度向上	卓¹, 野田 進¹	
1-		*		隆章1,野田進1	
14 14 15 15 15 15 15 15		<u> </u>	ける磁場反転による散乱光の変化		
11a-W631-4 11a-W631-5 1		10p-PB3-12	散2次元AlGaAsフォトニック結晶導波路の作製および光		1. 和歌山大シスエ, 2. 千歳科技大, 3. 物材機構
1. Web31-2				○ ト村 宮庁 l.2 千笹 シ l.2 釜田 +略 l.2 赤佐 呂 リ l	1 亩工卡冊 2 NTT 物料部 2 NTT NDC
18-We31-3 表に対称を必要れたアナミック最高におけるトボロックの関係をは、				田中 祐輔 ² , 納富 雅也 ^{1,2,3}	
18-W631-5			共振器の実現	林 克法 ^{2,4} , 荒川 泰彦 ¹ , 岩本 敏 ^{1,3}	
* 西山 神宗 別 昭 2 元 一 元 元 元 元 元 元 元 元			ジーに保護された円偏光放射		
	10:15			さ ¹ , 西山 伸彦 ¹ , 胡 暁 ² , 荒井 滋久 ¹	
11-8/631-6 Si系トキロジカルフォトニクス伝送路における得数を	10:30	11a-W631-5	散制御の検討		1.東大生研, 2.東大ナノ量子機構
「解析 特別	10:45	11a-W631-6		○(M1) 各務 響 ¹ 雨宮 智宏 ^{1,2} 齊藤 孝一 ¹ 田中 直	1 東丁大丁 2 東丁大未来研 3 物材機構
11:30 表 11a-W631-8 フォトニックトボロジカル総縁体を用いたテラへルツ 公的神 様一郎、大和 Yang Yihao*、	11:15		ド解析	琴 ¹ , 增田 佳祐 ¹ , 西山 伸彦 ^{1, 2} , 胡 暁 ³ , 荒井 滋久 ^{1, 2}	
11-W631-9 異なるカイラリティを有する半導体三次元フォトニック ○高橋駿 ¹ 、大野修平 ² 、初貝 安弘 ² 、荒川 泰彦 ³ 、	11:30			佳祐 ¹ , 西山 伸彦 ¹ , 胡 暁 ² , 荒井 滋久 ¹	
結晶の界面におけるトポロングルエッラン結晶に対するマイ (日) 玉蔵 支兵'、高籍駿'、山下 兼一、山口 拓也 九京大院工 九京大院工	11:45	11a-W631-9			1.京工繊大, 2.筑波大院数理, 3.東大ナノ量子機構, 4.東
11 12 12 13 13 13 13 13	12:00	11a-W631-10	結晶の界面におけるトポロジカルエッジ状態の検討	敏 3, 4	大生研
13-45 招 11p-W631-1 「藤葉庭駒萱受賞記念講演」	2/11/88	10.45 10.00		上田 哲也1, 初貝 安弘2, 荒川 泰彦3, 岩本 敏3.4	大生研
14:00 11p-W631-2 【注目講演】熱輻射光源・中間基板・太陽電池一体型近接 5世上 卓也', 古山 隆章', Kang Dongyeon', 浅野 1.京大院工 1.宗大院工 1.宗大院工 1.宗大院工			「講演奨励賞受賞記念講演」	〇末光 真大 ^{1,2} , 浅野 卓 ¹ , 井上 卓也 ¹ , 野田 進 ¹	1. 京大院工, 2. 大阪ガス
14:15	14:00	11p-W631-2	【注目講演】熱輻射光源・中間基板・太陽電池一体型近接		1.京大院工
11p-W631-4 電圧変調型バンドバスフィルタの作製・評価 ○栗根 悠介¹, 井上 卓也², 野田 遊² 1. 堀場製作所, 2.京大院工 1.東工大工, 2.東工大未来研 1.東工大工, 2.東工大工, 2.東工大未来研 1.東工大工, 2.東工大未来研 1.東工大工, 2.東工大未来研 1.東工大工, 2.東工大工, 2.東工大未来研 1.東工大工, 2.東工大工, 2.東工大未来研 1.東工工, 2.東工大工, 2.東工大来, 4.東工工, 2.東工大来, 4.東工工, 2.東工大工, 2.東工大主, 4.東工工, 2.東工大工, 2.東工大工, 2.東工大工, 2.東工大工, 2.東工大工, 2.東工大工, 2.東工大未来研, 4.東工工, 2.東工大工, 2.東工大工, 2.東工大工, 2.東工大工, 2.東工大未来研入, 2.東工工工, 2.東工大工, 2.東工工工, 2.東工工工, 2.東工工工, 2.東工工工, 2.東工工工工, 2.東工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工	14:15	11p-W631-3	一体型近接場熱光発電デバイスを用いた近接場熱輻射伝	○(M1) 古山 隆章¹, 井上 卓也¹, Kang Dongyeon¹, 浅	1.京大院工
指	14:30		電圧変調型バンドパスフィルタの作製・評価	○粟根 悠介¹, 井上 卓也², 野田 進²	
15:15 休憩/Break 15:30 11p-W631-7 H1フォトニック結晶共振器における六重極モードの高Q ○高田健太 ^{1,2} 、倉持 栄 ^{-1,2} 、新家 昭彦 ^{1,2} 、谷山 秀 設計 昭 ^{1,2} 、北 翔太 ^{1,2} 、納富 雅也 ^{1,2} 15:45 11p-W631-8 大規模な多数穴変調によるH1スロットナノ共振器の水 中での高 Q/V化 昭 ^{1,2} 、北 翔太 ^{1,2} 、納富 雅也 ^{1,2} 16:00 11p-W631-9 二重格子フォトニック結晶レーザーの発振特性に与える 今吉田 昌宏 ^{1,2} 、和田蘭子 ^{1,4} 、和良 孝紀 ^{1,4} 、優 健太郎 ^{1,4} 、野田 連 ^{1,4} 16:15 契 11p-W631-10 二重格子フォトニック結晶レーザーの大面積・高輝度化 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子点構造の設計 のための格子は構造を導入したフォトニック結晶レーザーのイオントロニク では終義人 ^{1,4} 、渡邉 敬介 ^{1,4} 、西島 喜明 ^{1,4} 、馬 ^{1,4} 、			制御法	祐 ¹ , 西山 伸彦 ^{1,2} , 荒井 滋久 ^{1,2}	
11p-W631-7 H1フォトニック結晶共振器における六重極モードの高Q ○高田健太 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	15:00 15:15	11p-W631-6	•	○田中 建悟¹, 浅野 卓¹, 高橋 和², 野田 進¹	1. 京大院工, 2. 大阪府大院工
15:45 11p-W631-8 大規模な多数穴変調によるH1スロットナノ共振器の水中での高Q/V化	15:30	11p-W631-7	H1フォトニック結晶共振器における六重極モードの高Q		1.NTTナノフォトニクスセンタ, 2.NTT物性基礎研
16:00 11p-W631-9 二重格子フォトニック結晶レーザーの発振特性に与える ○吉田 昌宏¹, De Zoysa Menaka¹, 石崎 賢司¹, 田中 良典¹, 初田 蘭子¹, 和泉 孝紀¹, 榎健太郎¹, 野田進¹ 1.京大院工 野司¹, 田中 良典¹, 初田 蘭子¹, 和泉 孝紀¹, 榎健太郎¹, 野田進¹ 1.京大院工 野司¹, 田中 良典¹, 初田 蘭子¹, 和泉 孝紀¹, De Zoysa Menaka¹, 石崎 野司¹, 田中 良典¹, 初田 蘭子¹, 野田進¹ 1.京大院工 野司¹, 田中 良典¹, 初田 蘭子¹, 野田進¹ 1.京大院工 「大阪工 「大阪工 「大田」」 「大阪工 「大阪工 「大阪工 「大阪工 「大阪工 「大阪工 「大阪工 「大阪工	15:45	11p-W631-8	大規模な多数穴変調によるH1スロットナノ共振器の水	○倉持 栄一 ^{1,2} , Martel Theo ² , 北 翔太 ^{1,2} , 谷山 秀	1. NTT NPC, 2. NTT物性基礎研
16:15	16:00	11p-W631-9	二重格子フォトニック結晶レーザーの発振特性に与える	○吉田 昌宏¹, De Zoysa Menaka¹, 石崎 賢司¹, 田中	1. 京大院工
16:30 髮 11p-W631-11 GaInAsPフォトニック結晶ナノレーザのイオントロニク	16:15	奨 11p-W631-10	二重格子フォトニック結晶レーザーの大面積・高輝度化	○吉田 昌宏¹, 和泉 孝紀¹, De Zoysa Menaka¹, 石﨑	1. 京大院工
16:45 11p-W631-12 面内へテロ構造を導入したフォトニック結晶レーザー ○井上 卓也¹,吉田 昌宏¹,田中 良典¹, De Zoysa 1.京大院工 Menaka¹,石崎 賢司¹,野田 進¹ 17:00 休憩/Break ○田中 良典¹,吉田 昌宏¹, De Zoysa Menaka¹,石崎 1.京大院工 新m Φサイズのフォトニック結晶レーザーの動作特性解 ○田中 良典¹,吉田 昌宏¹, De Zoysa Menaka¹,石崎 1.京大院工 賢司¹,野田 進¹ 17:30 奨 11p-W631-14 フォトニック結晶レーザーの自励バルス発振の高出力化 ○森田 遼平¹,井上 卓也¹, De Zoysa Menaka¹,石崎 1.京大院工	16:30	奨 11p-W631-11	GaInAsPフォトニック結晶ナノレーザのイオントロニク	〇西條 義人 1 , 渡邉 敬介 1 , 渡部 T^1 , 西島 喜明 1 , 馬場	1. 横国大院工
17:00 休憩/Break 17:15 11p-W631-13 5mm Φサイズのフォトニック結晶レーザーの動作特性解 ○田中 良典¹,吉田 昌宏¹, De Zoysa Menaka¹, 石崎 1. 京大院工 賢司¹, 野田 進¹ 17:30 奨 11p-W631-14 フォトニック結晶レーザーの自励バルス発振の高出力化 ○森田 遼平¹, 井上 卓也¹, De Zoysa Menaka¹, 石崎 1. 京大院工	16:45	11p-W631-12	面内へテロ構造を導入したフォトニック結晶レーザー	○井上 卓也¹, 吉田 昌宏¹, 田中 良典¹, De Zoysa	1. 京大院工
析 野司¹,野田進¹ 17:30 奨 11p-W631-14 フォトニック結晶レーザーの自励バルス発振の高出力化 ○森田 遼平¹,井上 卓也¹, De Zoysa Menaka¹, 石崎 1. 京大院工	17:00 17:15	11p-W631-13	休憩/Break		1. 京大院工
			析	賢司1,野田進1	
	17:30	∞ 11p-W631-14			1. 尔八町上

17:45	11p-W631-15	ニューラルネットワークを用いたフォトニック結晶ナノ		1. 横国大院工, 2. 横国大院環情
18:00	11p-W631-16	レーザの構造最適化 GaN系フォトニック結晶レーザーの低閾値電流密度動作		1.スタンレー電気, 2.京大院工
18:15	11p-W631-17	の実現 GaN 系フォトニック結晶レーザーの高出力動作	De Zoysa Menaka ² , 田中 良典 ² , 野田 進 ² ○江本 渓 ^{1,2} , 小泉 朋朗 ^{1,2} , 日比野 拳三 ² , 石崎 賢司 ² ,	1. スタンレー電気, 2. 京大院工
			De Zoysa Menaka², 田中 良典², 野田 進²	
3/12(T 13:45		口頭講演 (Oral Presentation) W631 会場 (Room W631) 変調フォトニック結晶レーザーの発振安定化のための格	○田中 良曲¹ 坂田 諒一¹ 石崎 賢司¹ De Zovsa	1. 京大院工
13.43	·	子点および電極形状	Menaka ¹ , 岩田 錦太郎 ¹ , 井上 卓也 ¹ , 野田 進 ¹	
14:00	12p-W631-2	埋め込み再成長法による変調フォトニック結晶レーザー の発振特性評価	○石崎 賢司¹, 坂田 諒一¹, 岩田 錦太郎¹, 田中 良典¹, De Zoysa Menaka¹, 初田 蘭子¹, 吉田 昌宏¹, 野田 進¹	1.京大院工
14:15	12p-W631-3	Siフォトニック結晶光偏向器のビームコリメート用プリ		1.横国大院工
		ズムレンズ (I)		
14:30	12p-W631-4	- 原理と基本設計 - Siフォトニック結晶光偏向器のビームコリメート用ブリズムレンズ(II)	○前田 惇¹, 秋山 大地¹, 阿部 紘士¹, 馬場 俊彦¹	1. 横国大院工
14:45	将 12n-W631-5	詳細な光線追跡 変調フォトニック結晶レーザーにおける変調方式の検討	○(D) 板田 詰ー¹ 田由 自曲¹ 石崎 竪司¹ 岩田 領土	1 古十陰工 2 古郷工維十
14.45	× 12p W031 3	(II)	郎 ¹ , 深谷 昌弘 ¹ , 井上 卓也 ¹ , De Zoysa Menaka ¹ , 北村	
45.00		# 40 /p . 1	恭子 ^{1,2} , 野田 進 ¹	
15:00 15:15	12p-W631-6	休憩/Break 縦列アレイ型Siフォトニック結晶光偏向器の送受信効率	○鉄矢 諒¹, 阿部 紘十¹. 伊藤 寶之¹. 馬場 俊彦¹	1.横国大院工
15:30		Siフォトニック結晶 I-Q光変調器を用いた搬送波抑制片		1. 横国大
15:45	12n W621 9	側波信号による FMCW LiDARのビートスペクトル生成 変調フォトニック結晶レーザーの 2 次元マトリックスア	○短回 古¹ Do Zoves Manaka¹ 石崎 竪司¹ 板田 沽	1 古十陸工
13.43	12p-w031-0	支調フォドーック福館レーッーの2次元マドッツッペア レイ化	○ 抽	1. 东入院上
16:00	12p-W631-9	Siフォトニック結晶スローライト光偏向器の一方向性光	○伊藤 寛之¹, 楠 侑真¹, 馬場 俊彦¹	1.横国大院工
[CS 3] :	311 フォトニック権	放射の観測 (II) 精造・現象、13.6 ナノ構造・量子現象・ナノ量子デバイス	のコードシェアセッション / Code-sharing Session o	of 3.11 & 13.6
		口頭講演 (Oral Presentation) W631会場 (Room W631)	ST TENENT TO STATE OF	7 0.11 Q 10.0
9:00	招 12a-W631-1	「講演奨励賞受賞記念講演」	〇太田 竜一 ¹ , 岡本 創 ¹ , 俵 毅彦 ^{1,2} , 後藤 秀樹 ¹ , 山口	1.NTT物性基礎研, 2.NTTナノフォトニクスセンタ
9:15	E 12a-W631-2	GaAs機械振動子における束縛励起子の寿命変調 Kilohertz coupling rate between mechanical oscillators via	浩司 ¹ (PC)Feng Tian ^{1,3} , Masato Takiguchi ^{1,2} , Eiichi	1.NTT BRL, 2.NTT NPC, 3.Tokyo Tech
		optical cavity resonance	Kuramochi ^{1, 2} , Hisashi Sumikura ^{1, 2} , Akihiko	,,,
9:30	12- W/21 2	ナノワイヤ誘起シリコンフォトニック結晶ナノ共振器を	Shinya ^{1, 2} , Masaya Notomi ^{1, 2, 3} ○滝口 雅人 ^{1, 2} , 横尾 篤 ^{1, 2} , 舘野 功太 ^{1, 2} , 野崎 謙悟 ^{1, 2} ,	1 NITT NDC 2 NITT Madd-III
9:30	12a-w651-5	サブリカイであたシリコンフォドーック指面リブ共振器を 使った全光スイッチ	佐々木智 ² , Sergent Sylvain ^{1,2} , 倉持 栄一 ^{1,2} , Zhang	1.N11 NFC, 2.N11 初任研
			Guoqiang ^{1, 2} , 新家 昭彦 ^{1, 2} , 納富 雅也 ^{1, 2}	
9:45	E 12a-W631-4	Dependence of second-harmonic generation efficiency on the Q factor of SiC photonic crystal nanocavities	(D)Heungjoon Kim ^{1,2} , Takahashi Asano ¹ , Bong-Shik Song ^{1,2} , Susumu Noda ¹	1.Kyoto Univ., 2.Sungkyunkwan Univ.
10:00	12a-W631-5	ゲート制御量子ドット形成用電極を有するフォトニック 結晶ナノ共振器の作製		1.東大生研, 2.阪大産研, 3.ルール大ボーフム, 4.ナノ量 ヱ雌糖
		和田ノノ六狐命の下炎	D.3,太田泰友 ⁴ ,荒川泰彦 ⁴ ,岩本敏 ^{1,4}	J / 位文中5
10:15	奨 12a-W631-6	シリコン光回路上に集積された複数量子ドット光源の局	○(D)勝見亮太 ^{1,3} ,太田泰友 ² ,長田有登 ² ,山口拓	1. 生産研, 2. ナノ量子, 3. 物性研
		所発光波長制御	人 ¹ , 田尻 武義 ¹ , 車 一宏 ¹ , 角田 雅弘 ² , 岩本 敏 ^{1,2} , 秋 山 英文 ³ , 荒川 泰彦 ²	
10:30	12a-W631-7	メタマテリアルとシリカコート PbS 量子ドットを組み合	○(M1)杉本 卓也¹, 杉崎 俊太², 渡辺 彗³, 向井 剛	1.横浜国大院理工, 2.横浜国大理工, 3.横浜国大院工
10:45		わせた光子発生素子 休憩/Break	輝1.2.3	
11:00	E 12a-W631-8	Spectroscopy of Andreev bound states using microwave	ORussell Stewart Deacon ^{1, 2} , Patrick Zellekens ³ , Hui	1.Advanced Device Laboratory, RIKEN, 2.CEMS,
		resonators	Wang ¹ , Thomas Schapers ³ , Koji Ishibashi ^{1, 2}	RIKEN, 3.Julich, Germany
11:15	12a-W631-9	GaAs/AlAs多重量子井戸の励起子ダイナミクスと二次の 非線形光学効果との関係	○小島 磨,县多 隆,Hogg Richard	1. 神戸大院工, 2. グラスゴー大
11:30	12a-W631-10	GaAsナノ構造膜における内蔵電場に起因した二種テラへ	· ○長谷川 尊之¹, 奥島 雄大¹, 田中 義人¹	1. 兵庫県立大院物質理
11:45	将 12a-W631-11	ルツ波放射の共存ダイナミクス リング光共振器を用いた高次ポアンカレビーム生成手法	○林 文博 ¹ 大田 泰五 ² 芒川 泰茂 ² 巴木 齒 ^{1,2}	1.東大生研, 2.東大ナノ量子機構
11.45	类 12a-W051-11	の提案	○州 大府,从山 家及,川川 家乡,石平 駅	1. 宋八工明, 5. 宋八// 里丁城冊
12:00		フルポアンカレ共振器モードとその光力場の解析	○林 文博 ¹ , 太田 泰友 ² , 荒川 泰彦 ² , 岩本 敏 ^{1,2}	1.東大生研, 2.東大ナノ量子機構
12:15 3.12 ナノ		Maxwell-Chern-Simons ゲージ理論における Casimir 効果 場光学 / Nanoscale optical science and near-field optics		1.無所属
3/9(S	Sat.) 9:00 - 12:15	口頭講演 (Oral Presentation) W621会場 (Room W621)		
9:00	奨 E 9a-W621-1	Plasmon-induced Photocurrent Generation on Ga ₂ O ₃ Loaded with Gold Nanoparticles	○ (D)Yaguang Wang¹, Xu Shi¹, Tomoya Oshikiri¹, Kosei Ueno¹, Hiroaki Misawa¹.²	1.RIES-Hokkaido Univ., 2.National Chiao Tung Univ.
9:15	奨 9a-W621-2	完全吸収メタマテリアル太陽電池の光吸収特性と発電特	○ (M1) 伊勢川 知久¹, 勝俣 翔平¹, 岡本 隆之², 久保	1. 農工大工, 2. 理研
0.00	hat a Tiron a	性の相関	若奈¹	a II I Bloom
9:30	奨 9a-W621-3	プラズモニック光電変換を利用した可視光誘起水素発生 系の構築	○ ○	1.北大院理
9:45	9a-W621-4	非対称カップリングによるプラズモン誘起電荷分離の効	○石田 拓也¹, 立間 徹¹	1. 東大生研
10:00	9a-W621-5	率改善 表面格子共鳴を用いた高効率光エネルギー集約系構築の	○及川 隻平¹ 南太 大穂¹ 村越 勸¹	1.北大院理
		試み		
10:15	9a-W621-6	近接場光援用光吸収によるシリコン受光感度の高効率化	○竹森達也¹, 齋地康太¹, 佐藤匠¹, 大鋸本達郎¹, 千足昇平¹, 丸山茂夫¹², 野田真史³, 矢花一浩³, 飯田健二⁴, 信定克幸⁴, 八井崇¹	1. 東大院工, 2. 産総研, 3. 筑波大学, 4. 分子研
10:30		休憩/Break		
10:45	9a-W621-7 将 9a-W621-8	プラズモニックアレイによる蛍光増強と指向性白色生成 プラズモニックおよび非プラズモニックナノシリンダー		1.京大院 エ, 2.JST さきがけ 1.京大院エ, 2.JST さきがけ
11:00	奨 9a-W621-8	フラスモニックおよい非フラスモニックナノシリンター アレイの発光増強効果の比較	○ (№1/對口 和布,鬥升 後介 一, 田甲 勝久 一	1.京大院工, 2.JST さきがけ
11:15	9a-W621-9	局在プラズモン-ナノ共振器強結合場における蛍光分子	○(B)大西梓¹, Zu Shuai¹, 石旭¹, 孫泉¹, 押切 友也¹, 上野 貢生¹, 三澤 弘明¹.²	1.北大電子研, 2.台湾国立交通大学
11:30	奨 9a-W621-10	の発光特性 熱プラズモニックマランゴニ効果を用いたマイクロ混合		1.東工大材料, 2.東工大技術部マイクロプロセス部門
		流の形成	敏宏1,中島章1,松下祥子1	
11:45	9a-W621-11	局所光熱変換部の in-situ 温度測定の試み	○ (B) 竹島 利彦¹, 松谷 晃宏², 佐藤 美那², 長谷部 浩 -², 磯部 敏宏¹, 中島 章¹, 松下 祥子¹	1.東工大材料, 2.東工大技術部マイクロプロセス部門
12:00	9a-W621-12	窒化チタンナノ構造の光熱変換による水の温度一定過熱		

3/9(Sa	at.) 13:30 - 18:15	口頭講演 (Oral Presentation) W621 会場 (Room W621)		
13:30	招 9p-W621-1	「第2回光工学業績賞(高野榮一賞)受賞記念講演」 光を用いた革新的非接触サブナノ平滑化技術の開発	〇八井 崇 1	1.東大
4:00		機能性光メタ表面の機械探索	○岩長 祐伸¹	1.物材機構
4:15 4:30	9p-W621-3 9p-W621-4	誘電体メタサーフェスによる高感度分光イメージング PVA犠牲層を利用した転写プロセスによる伸縮性プラズ		1.NTT 先端集積デバイス研 1.豊橋技科大, 2.早大, 3.東工大, 4.JST さきがけ
4:45	E 9p-W621-5	モニックカラーフィルタの作製 Phase jumping in multilayer metamaterials	枝 俊宣 ^{2,3,4} , 髙橋 一浩 ^{1,4} ○ (PC)Zhengli Han¹, Seigo Ohno², Hiroaki Minamide¹	1.Riken, 2.Tohoku university
5:00	E 9p-W621-6	Enhancement of optical scattering by using metamaterial structures		1.Tokyo Tech
5:15		休憩/Break		
5:30	奨 9p-W621-7	光学領域における不可視な誘電体円柱	○小林 佑輔¹, 梶川 浩太郎¹	1.東工大
5:45 5:00		2次元金属ロッドアレイの赤外異常透過のメカニズム 金銀銅合金ナノ粒子の光学特性	○清田 謙吾 1 ,梶川 浩太郎 1 ○ (M1) 久保 匡平 1 ,WADELL Carl 1 ,安原 聡 2 ,三宮	1.東工大工 1.東工大物質理工学院, 2.日本電子, 3.JST さきがけ
5:15	9p-W621-10	アルミニウムナノヴォイド構造による深紫外表面プラズモン共鳴	工 ^{1,3} ○(B)島ノ江 考平 ¹ ,村尾 文弥 ¹ ,中村 俊樹 ¹ ,松山 哲也 ¹ ,和田 健司 ¹ ,岡本 晃一 ¹	1. 阪府大院工
5:30	9p-W621-11		○今泉 瞭佑¹,雛本 樹生¹,杉本 泰¹,藤井 稔¹	1.神戸大工
6:45 7:00	奨 9p-W621-12	体悪/Joreak 金属グレーティング上グラフェン堆積による表面プラズ モン励起電界増強の検討	○若月 楓舞¹, ノートチャナット スペーラ¹, 石川 亮 佑¹, ラートバチラバイボーン チュティバーン¹, 馬 場 暁¹, 新保 一成¹, 加藤 景三¹	1. 新潟大院
7:15	奨 9p-W621-13	超高速SPPナノ集光を用いたナノグラフェン細線作製	○松田 拓己¹, 富田 恵多¹, 神成 文彦¹	1. 慶大 理工
7:30	9p-W621-14	暗黒物質検出用原子核乾板と銀ナノ粒子のプラズモン共 鳴		1.日本写真学会, 2.東京工芸大, 3.名大
7:45 8:00		プラズモン超集束の広帯域性の検証 導電性ナノ粒子分散体による光吸収の Mie-integration 解 析		1. 阪大院工 1. 住友金属鉱山
3/10(9	Sun.) 9:00 - 12·30	口頭講演 (Oral Presentation) W621会場 (Room W621)		
		Optical coupling of short-range ordered nanopores through surface plasmons	○ (M2)Dung Thi VU¹, Naoki Yamamoto¹, Takumi Sannomiya¹	1.Tokyo Inst. Tech
:15	10a-W621-2	Cathodoluminescence observation of single Ag nanoparticles coupled to silver substrates	○Takumi Sannomiya ^{1, 2} , Taeko Matsukata ¹ , Takayuki Okamoto ³ , Naoki Yamamoto ¹	1.Tokyo Tech., 2.JST PRESTO, 3.Riken
:30	10a-W621-3	プラズモニック結晶における局在モードと格子モードの 結合		1. 九大総理工, 2. 東工大物質理工
:45			〇浜田 勝平 1 ,松井 大海 2 ,小野 篤史 1 ,居波 涉 1 ,川田 善正 1 ,吉澤 雅幸 2 ,杉田 篤史 1	
00:00		時間依存密度汎関数法による微小金属周期配列の光物性 解析		1. 筑波大計科セ
):15		銀表面上アミノ基終端膜の膜質改善による銀ナノ粒子固 定数密度向上		1.広島大先端研
0:30	10a-W621-7	単一銀ナノ粒子2量体間隙に生じたブラズモン・分子エキシトンの強結合系の吸収断面積分光 休憩/Break	○伊藤 民武', 山本 裕子', 岡本 隆之。	1. 産総研健工, 2. 北陸先端大, 3. 理研
1:00	10a-W621-8	ナノギャップ金ナノ粒子二量体を用いたDNA塩基表面 増強ラマン散乱	○ (M2) 石井 稜¹, 江刺家 恵子¹, 斎木 敏治¹	1. 慶大理工
1:15 1:30		表面プラズモン励起の歪み場制御による応力検出の実証 メタマテリアルを用いた液体材料用の広帯域複素屈折率 計		1.東京大工 1.東工大工, 2.東工大未来研
1:45		グ SPR と分子捕集機能マテリアルの融合	〇池田 麻友子 ¹, 松井 裕章 ¹, 倉永 康博 ¹, 朴 鐘潤 ¹, 田 畑 仁 ¹	
2:00	E 10a-W621-12	Optical sensing platform for colorimetric determination of silver nanoprisms and its application in hydrogen peroxide and glucose detections using a mobile device camera		1.Niigata Univ., 2.Chulalongkorn Univ.
2:15 3/10(Si		アニール処理による Ni ナノ粒子を用いた微小磁場検出 口頭講演 (Oral Presentation) W621 会場 (Room W621)	○高島 祐介¹,原口 雅宣¹,直井 美貴¹	1.徳島大
:45		平面多層膜構造における Fano 共鳴の光制御	○本倉 健吾¹, Kang Byungjun¹, 藤井 稔¹, 林 真至¹	1.神戸大院工
:00	10p-W621-2	Demonstration of Fano resonance in Fluorescence Spectrum	○ (D)BYUNGJUN KANG¹, Minoru Fujii¹, Shinji Hayashi¹,²	1.Kobe Univ., 2.MAScIR
:15	•	金属/誘電体/金属ナノ構造の近接場分光特性	○上野 貢生 ¹ , Yang Jinghuan ^{1,2} , 巽 亮太 ¹ , 孫 泉 ¹ , 押 切 友也 ¹ , 三澤 弘明 ^{1,3}	
1:30	奨 10p-W621-4	金属グレーティングによって反交差した誘電体導波路 モードにおける連続準位中束縛状態: 偏光による出現枝 選択	○(DC)吉川 遼¹,西田 宗弘¹,角屋 豊¹	1. 広大先端研
i:45 i:00		超高真空光誘起力顕微鏡法による高分解能観測高速走査型近接場光学顕微鏡の開発	 ○山西 絢介¹, 内藤 賀公¹, 李 艶君¹, 菅原 康弘¹ ○馬越 貴之¹, 福田 真悟², 内橋 貴之³, バルマ ブラブ ハット¹, 安藤 敏夫² 	1. 阪大院工 1. 阪大院工, 2. 金沢大 WPI-NanoLSI, 3. 名大院理
5:15	10p-W621-7	高感度検出器を利用した低温 THz近接場顕微鏡の開発	〇林 冠廷 1 , 翁 銭春 1 , 金 鮮美 2 , 小宮山 進 $^{2.3}$, 梶原 優介 1	1. 東大生研, 2. 情通研, 3. 東大総文
5:30 5:45	10p-W621-8	休憩/Break 光近接場の量子化:再訪	〇小林	1.山梨大院, 2.徳島大院
5:00	10p-W621-9	ドレスト光子による作用積分の増強とフォトンブリー	川 陽 1 ○坂野 斎 1 , 川添 忠 2 , 大津 元 3	1.山梨大院, 2.東京電機大, 3.ドレスト光子研究起点
5:15	10p-W621-10	ディング クレブシュ双対場の量子化によるドレスト光子モデルの	○佐久間 弘文¹, 小嶋 泉¹, 大津 元一¹	1. ドレスト光子
6:30 6:45		導出 ドレスト光子と量子場 Algebraic aspects of free eletromagnetic fields in the	○ (PC) 岡村 和弥¹ ○安藤 浩志¹	1.名大情報 1.Chiba Univ
7:00	10p-w 021-12	Algebraic aspects of free eletromagnetic fields in the Coulomb gauge 休憩/Break	○女際 旧心	1. Onide Oniv
7:15	10p-W621-13	ドレスト光子と量子ウォーク	○西郷 甲矢人¹	1. 長浜バイオ大学
		ドレスト光子シミュレーションにおけるナノ物質系のモ		1. リコー, 2. 長浜バイオ大, 3. ドレスト光子研究起点
7:30		デル化手法の検討		

18:00	10p-W621-16	バルス電流を用いたドレスト光子・フォノンアニールに	○川添 忠¹, 門脇 拓也², 大津 元一³	1. 電機大, 2. 日亜化学工業(株), 3. ドレスト光子研究
18:15	10p-W621-17	よる Si-LED の作製 SiC 発光ダイオードの表面電流を使った巨大偏光回転	○門脇 拓也¹, 川添 忠², 大津 元一³	起点 1.日亜化学, 2.電機大, 3.ドレスト光子
		ポスター講演 (Poster Presentation) PB会場 (Room PB)		
		プラズモニック光熱電変換現象		1.農工大工
		金属セミシェル構造における熱構造変形特性の評価 完全吸収メタマテリアル構造が有機薄膜太陽電池の発電		1. 宇大院工, 2. 宇大 CORE
		特性に及ぼす効果	○(D)	1. 辰上八上,2. 生明
		表面プラズモンフィルタを付加したショットキーフォト		1.舞鶴工業高等専門学校
	11p-PB1-5	ダイオードにおける光電流の電極膜厚依存性 プラズモン誘起電荷分離の効率に対する高次モードの影	○西 弘泰¹, 立間 徹¹	1. 東大生研
	11p-PB1-6	響 表面プラズモン共鳴による CdSe/ZnS 量子ドット薄膜の	○中村 俊樹¹, 村尾 文弥¹, 松山 哲也¹, 和田 健司¹, 岡	1. 阪府大工
		発光増強 コアの組成制御による量子ドットの発光特性評価	本 晃一¹ ○大菅 健人¹, 伊藤 里早¹, 長久保 準基², 番 貴彦¹, 山	1 龍谷大理 2 株式会社 アルバック
	•	InGaN/GaN ナノコラムプラズモニック結晶における発	本 伸一1	
		光増強率の分散関係	野克巳1,2	府大院工
	11p-PB1-9	Cu-In-S ₂ /ZnS量子ドットの発光特性評価	〇仲田 泰斗 1 , 伊藤 里沙 1 , 大菅 健人 1 , 長久保 準基 2 , 番 貴 \overline{g} 1 , 山本 伸 $ ^1$	
	11p-PB1-10	液滴を利用した量子ドットの緩衝気体中への分散	○馬場 宥太¹,下村 昂之¹,浅野 理貴²,松永 康平²,守 安 毅¹,瀧山 貴之³,亀山 達矢³,鳥本 司³,熊倉 光孝¹	1. 福井大院工, 2. 福井大工, 3. 名大院工
	11p-PB1-11	新規量子ドットのプロセス変更による特性評価	○伊藤 里早¹, 長久保 準基², 番 貴彦¹, 山本 伸一¹	1.龍大理工, 2.(株) アルバック
		共振器 QED 系における超蛍光 - レーザークロスオーバー	○瀬崎 陸¹, 石川 陽¹, 宮島 顕祐², 小林 潔¹	1.山梨大院, 2.東理大院
		の理論IV-同期現象としての超蛍光-		
		離散時間量子ウォークに基づく量子ダイナミクス 階層的環境と結合した非平衡開放系の量子散逸ダイナミ		1.山梨大院工
	11p-PB1-14	階層的環境と結合した非平衡開放系の量子散逸タイナミ クス	○ (W11) (X)田 竹倒,仁川 陽,小件 深 ¯	1.山梨大院工
	11p-PB1-15	量子熱力学に基づく量子ナノ系の散逸緩和理論 II	○森下 天平¹, 石川 陽¹, 小林 潔¹	1.山梨大院工
	11p-PB1-16	メモリー項の Markov・non-Markov 性に着目した自然放	○矢崎 智昌¹, 石川 陽¹, 小林 潔¹	1.山梨大院工
		出ダイナミクスの解析		
	11p-PB1-17	銀のランダムナノ微粒子構造を用いたブラズモニックカ ラー	○(B) 長谷川 遼', 中村 俊樹', 村尾 文弥', 松山 哲也', 和田 健司 ¹ , 岡本 晃一 ¹	1. 阪府大院工
	11p-PB1-18	Alプラズモニックカラーを示す粉体の作製と評価	 ○ (M1C) 三田 真衣¹, 岡本 隆之², 磯部 敏宏¹, 中島 章¹, 松下 祥子¹ 	1. 東工大材料, 2. 理研
	11p-PB1-19	低アスペクト比Geサブ波長格子中を用いた可視域偏光 フィルター		1.徳島大
	11p-PB1-20	プラズモニックカラーを示すアルミニウム MIM 構造のボ		1.東工大工, 2.理研
		トムアップ手法による作製 フォトクロミック単結晶薄膜における異性体境界の動的		1.山梨大工, 2.龍谷大理工, 3.情通機構
		形成 無機-有機色素ハイブリッドナノ構造体の作製と光学特	理 ² , 内田 欣吾 ² , 成瀬 誠 ³ , 堀 裕和 ¹ ○柳田 拓也 ¹ , 小野寺 恒信 ¹ , サトウ ロドリーゴ ² , 武	1. 東北大多元研, 2. 物材機構
E		性 Fabrication and Optical Measurement of Hexagonal	田 良彦 ² , 及川 英俊 ¹ ○ Tianshuo Lu ¹ , Takumi Sannomiya ¹	1.Tokyo Tech
		Nanodisk Arrays 光異性化ナノ構造により捕捉したグリセリン・ナノ液滴	,	1. 新潟大
		の温度依存性		
		ジアリールエテン結晶の局所光異性化による経路形成	〇中込 亮 ¹ , 内山 和治 ¹ , 鈴井 洸胤 ¹ , 波多野 絵理 ² , 内田 欣吾 ² , 成瀬 誠 ³ , 堀 裕和 ¹	
		マルチリング・メタレンズによる焦点位置3次元制御	○中村 俊介¹, 馬越 貴之¹, バルマ プラブハット¹	
		リソグラフィフリー赤外完全吸収体の設計と評価 ワイヤーグリッド構造を用いた可視光吸収体の作製と光	○熊谷 拓洋¹,藤 直毅¹,西島 喜明²	1. 横国大理工, 2. 横国大工 1. 三重大院工, 2. 伊賀サテライト
	•	学特性評価		
		完全吸収に向けたプラズモンメタ表面の設計 磁気カイラルメタ表面による光領域での非相反性	○藤 直毅¹,熊谷 拓洋¹,西島 喜明² ○大西 庸嵩¹,冨田 知志¹,黒澤 裕之²,柳 久雄¹	1. 横国大理工, 2. 横国大工 1. 奈良先端大先端, 2. 情報通信研究機構
	11p-PB1-31	長距離伝搬型表面プラズモンポラリトン導波路の液体窒	○中 拓也 1 , 小林 稜 $^{1.2}$, 行方 直人 1 , 福田 大治 2 , 井上	
		素温度における伝搬損失評価 ${ m Al_2O_3/SiO_2/Fe/Au}$ 構造における表面プラズモン共鳴の磁		1.農工大, 2.IMN-CNM-CSIC
	11p-PB1-33	気変調特性の評価 1次元金属回折格子を用いた表面プラズモンセンサの屈	Alfonso ² , Armelles Gaspar ² , 清水 大雅 ¹ 〇鈴木 翔大 ¹ , 元垣内 敦司 ^{1,2}	1. 三重大院工, 2. 伊賀サテライト
		折計応用に向けた分解能評価		
	11p-PB1-34	表面プラズモンセンサの塩分濃度測定と応用例の検討	〇小沼 将大 1 ,岡村 和哉 1 ,松島 裕一 2 ,石川 浩 1 ,宇髙 勝之 1	1.早大理工, 2.早大GCS機構
	11p-PB1-35	光水素センサにむけた Y および WO_3 プラズモン材料の開発	〇紅 貴朗 1 , 山作 直貴 1 , 荒川 太郎 2 , 岡崎 慎司 2 , 西島 喜明 2	1.横国大理工, 2.横国大工
	11p-PB1-36	Au海とAu島間に自動形成する高感度 SERS 活性ナノ ギャップ		1.王子HD
	11p-PB1-37	走査型近接場光学顕微鏡による単一セレン化ビスマスナ		1. 徳島大学
	11p-PB1-38	ノ結晶の吸光度測定 走査近接場光学顕微鏡を用いたナノダイヤモンド中のダ	コインカー パンカジ¹, 古部 昭広¹ ○池田 悠介¹, 成島 哲也², 岡本 裕巳², 安 東秀¹	1.北陸先端大, 2.分子研
	11p-PB1-39	イヤモンドNV中心の観測 光近接場顕微鏡用金属プローブの伝搬モードについて:金	○栗原 一嘉¹	1.福井大教育
		属円錐モードからの類推		
		プラズモニックチップにおけるプラズモンモードの顕微 分光解析	○ 〒山 雛士,虽厥 具余,田和 主于	1. 関西学院大学
		emiconductor optical devices		
		ポスター講演 (Poster Presentation) PB会場 (Room PB) InAs/GaAs 量子ドット構造における組成混晶化	○(M2)白井 智大¹, 平石 優¹, 權 晋寬², 松島 裕一¹,	1.早大理工, 2.東大ナノ量子機構
	10p-PB4-2	1550nm帯量子ドットのウエハ面内におけるイオン注入	石川 浩¹, 荒川 泰彦², 宇髙 勝之¹ ○(M1)伊澤 昌平¹, 赤石 陽太¹, 松本 敦², 赤羽 浩一²,	1.早大理工, 2.情通機構, 3.早大GCS機構
		深さ調整による組成混晶化領域分け SOA キャリア回復時間の活性層構造依存性に関する解析	松島 裕一3, 石川 浩1, 宇高 勝之1	
		Study on 2R all-optical regeneration technology based on	宇高 勝之1	
		Study on 2R all-optical regeneration technology based on nonlinear polarization rotation using MQW-SOA	Matsushima ² , Hiroshi Ishikawa ¹ , Katsuyuki Utaka ¹	1.Waseda Univ., 2.GCS, Waseda Univ.

10p-PB	レーザ構造のX線回折評価直接貼付InP/Si基板上 GaInAsP/GaInAsP SCH-MQWレーザ構造のX線回折評	輝1, 早坂 夏樹1, 松浦 正樹1, 石崎 隆浩1, 白井 琢人1,	1.上智大理工
10p-PB	価 4-6 直接貼付InP/Si基板上GaInAsP/GaInAsP SCH-MQW レーザの発振特性	〇石崎隆浩¹,杉山滉一¹,內田和希¹,韓旭¹,相川政輝¹,早坂夏樹¹,松浦正樹¹,対馬幸樹¹,白井琢人¹,下村和彦¹	1.上智大理工
10p-PB		\bigcirc \triangleq 翔孟 1 , 小楠 洸太郎 1 , 高橋 美沙 1 , 合田 剛史 1 , 熊	1. 徳島大院, 2. 産総研, 3. 千葉大院
E 10p-PB		谷 直人 ² , 森田 健 ³ , 南 康夫 ¹ , 北田 貴弘 ¹ ○ (M2)JIALUN XU ¹	1.Tokyo Institute of Technology
10p-PB	Imaging 4-9 量子カスケード検出器の高速動作(> 10GHz)	○道垣内龍男¹,伊藤昭生¹,日髙正洋¹,藤田和上¹,	1.浜ホト
10p-PB	4-10 Hybrid Integration of CMOS Operational Amplifier,	枝村 忠孝¹ ○ Taichi Uruma¹, Tetsuo Tabei¹, Yoshiteru	1.Res. Int. for Nanodevice and Bio Systems, Hiroshima
	Waveguide and Photodetector	Amemiya ¹ , Tadashi Sato ¹ , Shinji Yamada ¹ , Kazushi Okada ¹ , Shin Yokoyama ¹	Univ
10p-PB	4-11 酸化ガリウム/結晶セレンフォトダイオードの電気特性	○峰尾 圭忠¹, 為村 成亨¹, 宮川 和典¹, 難波 正和¹, 大 竹 浩¹, 久保田 節¹	1.NHK 技研
	4-12 低電圧化を目的とした NiO:Li LED の作製に関する研究 4-13 イメージングエリプソメトリーによるポーラスシリコン	○白石 圭汰¹,依田 健作¹,小室 修二²,趙 新為¹	1.東理大,2.東洋大
	の光学定数測定	ローズ ベルナール 2	
	4-14 ジアリールエテン光応答のシミュレーションと実験の比 較		1.広島大ナノデバイス・バイオ融合科学研究所
10p-PB	4-15 蛍光層の構造変化による分散型無機ELの特性評価	〇福成 由基 1 , 藤井 滉貴 1 , 中内 宏輔 1 , 和迩 浩一 1 , 番 貴 1 , 山本 伸一 1	1. 龍谷大理工
10p-PB	4-16 分散型無機 EL の蛍光体層の構造変化による輝度特性評価	i ○藤井 滉貴¹, 福成 由基¹, 中内 宏輔¹, 和迩 浩一¹, 番 貴彦¹, 山本 伸一¹	1. 龍谷大理工
10p-PB	4-17 BaTiO3:Yb/Er蛍光体を複合した分散型無機ELの発光特性評価		1. 龍谷大理工
10p-PB	4-18 グラファイト状窒化炭素の発光特性評価	○阪口 康介¹, 今井 和樹¹, 島田 康平¹, 番 貴彦¹, 山本 伸一¹	1. 龍谷大理工
10p-PB	4-19 RF電力変化によるCN薄膜の発光特性評価に関する研究	••	1. 龍谷大理工
10p-PB	4-20 ZnOを下地層に用いたCN薄膜の特性評価	伸一 ¹ ○島田 康平 ¹ , 今井 和樹 ¹ , 伊藤 國雄 ¹ , 番 貴彦 ¹ , 山本 伸一 ¹	1. 龍谷大理工
10p-PB	4-21 Ce ³⁺ を用いたアップコンバージョン蛍光体の発光特性評	•••	1. 龍谷大理工
10p-PB	価 4-22 TiO₂の組成変化によるアップコンバージョン蛍光体の発	○池田 樹弥¹, 番 貴彦¹, 山本 伸一¹	1. 龍谷大理工
10p-PB	光特性評価 4-23 焼成雰囲気の変化における蓄光体 SrAl ₂ O ₄ :Eu ²⁺ ,Dy ³⁺ の特	○大音 諒弥¹, 番 貴彦¹, 山本 伸一¹	1. 龍谷大理工
3/11(Mon.) 13:45 - 1	性評価 17:00 口頭講演 (Oral Presentation) W611会場 (Room W611)		
13:45 奨 11p-W6	11-1 光無線給電高効率化に向けたフライアイレンズ照射面特 性の設計と評価	○勝田 優輝 ¹, 宮本 智之 ¹	1. 東工大未来研
14:00 奨 11p-W6	:11-2 光無線給電の光ビーム方向制御における光照射特性解析 (3)	○(M2)松永 一仁¹, 宮本 智之¹	1.東工大未来研
14:15 奨 11p-W6	i11-3 光無線給電に向けた Depth カメラによる太陽電池位置認 議手法の検討	○高橋 健太¹, 宮本 智之¹	1. 東工大未来研
14:30 奨 11p-W6	11-4 低温下光無線給電に向けた半導体レーザの抵抗値・効率	○(B) 小原 日向 ¹ , 宮本 智之 ¹	1. 東工大未来研
14:45 奨E 11p-W6	の温度特性解析 11-5 LED-based above 200mW Optical Wireless Power	$\bigcirc(D) YuhuanZhou^1,MiyamotoTomoyuki^1$	1.FIRST, IIR, Tokyo Institute of Technology
15:00 奨 11p-W6	Transmission for Compact IoT 11-6 Light Receiving Efficiency of Solar Cell considering	○ (M1) Jiaying Li¹, Tomoyuki Miyamoto¹	1.FIRST, IIR, Tokyo Institute of Technology
	influence of waves from Air to Underwater Optical Wireless Power Transmission		
15:15 15:30	休憩/Break :11-7 Investigation of cover configuration of solar cells that	○ Liu Yu¹, Miyamoto Tomoyuki¹	1.Tokyo Tech
15:45 11p-W6	enhances appearance of OWPT :11-8 光無線給電高効率化のためのIII-V族化合物太陽電池の応	○ (B)伊藤 真樹¹,小室 有輝¹,高橋 直大¹,田中 文	1.千葉工大, 2.情報通信研究機構, 3.蘇州ナノテク研
	用 (6) 11-9 Carrier Transport Modeling in Multiple Quantum Well	明 ¹ , 赤羽 浩一 ² , 松本 敦 ² , 陆 书龙 ³ , 内田 史朗 ¹ (D) Hsiang Huang ¹ , Kasidit Toprasertpong ¹ ,	1.Univ. Tokyo. 2.RCAST
>== xxp //0	Based InGaP Solar Cells	Kentaroh Watanabe ² , Delamarre Amaury ¹ , Masakazu Sugiyama ^{1, 2} , Yoshiaki Nakano ¹	
16:15 11p-W6	11-10 フォトニック結晶構造を用いた半導体薄膜光検出器にお	○齋藤 孝一¹, 雨宮 智宏¹²², 鄭 叙¹, 中村 なぎさ¹, 西山 伸彦¹², 荒井 滋久¹.²	1. 東工大, 2. 科学技術創成研究院
16:30 11p-W6	けるテーバ構造の検討 11-11 ナノ受光器の高インピーダンス終端と熱雑音抑制	○野崎 謙悟 1.2, 松尾 慎治 1.3, 藤井 拓郎 1.3, 武田 浩	1.NTTナノフォトニクスセンタ,2.NTT物性基礎研,
16:45 E 11p-W6	11-12 Mid-infrared GeSn Resonant-cavity-enhanced GeSn	司 ^{1.3} , 新家 昭彦 ^{1.2} , 納富 雅也 ^{1.2} ○ (M1)CHENG-HSUN TSAI ¹ , Bo-Jun Huang ¹ ,	3.NTT 先端集積デバイス研 1.Nat. Chung Cheng Univ.
	Photodetectors 2:00 口頭講演 (Oral Presentation) W611会場 (Room W611)	Guo-En Chang ¹	
9:00 12a-W6	11-1 複合デューティ比をもつ横方向回折格子を有するリッジ型半導体レーザー	○(M1)篁 哲太', 沼居 貴陽'	1.立命館大院理工
9:15 12a-W6	11-2 サンプルドグレーティングを有する共振点シフト DFB-LD における前方/後方端面光出力比の向上	○(M1)尾方 大高¹, 沼居 貴陽¹	1. 立命館大院理工
9:30 12a-W6		○(M1)長澤 大地¹, 沼居 貴陽¹	1. 立命館大理工
9:45 12a-W6	11-4 横方向回折格子を設けたリッジ型半導体レーザーにおけ	○谷口巧樹¹, 沼居 貴陽¹	1.立命館大理工
10:00 12a-W6		○二河 一太郎¹, 沼居 貴陽¹	1.立命大理工
10:15	形状依存性 休憩/Break		
	11-6 スタジアム形微小共振器のモード損失 11-7 スリット構造導入によるアクティブMMIレーザ型モード		1. 岡山県立大情報工 1. 九大総理工
11:00 12a-W6	選択光源のモード間クロストーク抑制 11-8 半導体マイクロリングレーザを用いた切り替え可能な全	本 貴一¹ ○青木 椋祐¹, 荒川 太郎¹, 國分 泰雄²	1.横国大院工, 2.中部大
	光インバータおよびフリップフロップ動作の理論解析		

11:15	12a-W611-9	GaInAsP/InPリッジ埋め込み構造による半導体薄膜分布 反射型レーザの微分抵抗	○高橋 直樹 ^{1,2} , 中村 なぎさ ^{1,2} , 吉田 崇将 ^{1,2} , 方 偉成 ^{1,2} , 雨宮 智宏 ^{1,2} , 西山 伸彦 ^{1,2} , 荒井 滋久 ^{1,2}	1. 東工大, 2. 科学技術創成研究院
11:30	奨 12a-W611-10	SiC基板上1.3 μm帯横注入メンブレンレーザの作製と発振特性		1.NTT 先端集積デバイス研
11:45	12a-W611-11	発光波長制御InAs量子ドットを用いた1.1um帯外部共振 器型波長可変レーザー		1. 和歌山大シスエ, 2. グラスゴー大, 3. 物材機構
3/12(T 13:45		口頭講演 (Oral Presentation) W611 会場 (Room W611) 塩化ナトリウム (NaCl) 結晶を用いた I-VII 族ダイオード の実現	○(M1)姚 昌平¹, 寺田 利樹¹, 川添 忠¹, 田所 貴志¹	1. 電機大
14:00	12p-W611-2	カットオフ構造を用いた VCSEL と VCSEL 増幅器の横方 向集積	○鷹箸 雅司 1 , 志村 京亮 1 , 顧 暁冬 1 , 中濱 正統 1 , 松谷 晃宏 2 , 坂口 孝浩 1 , 小山 二三夫 1	1. 東工大未来研, 2. 東工大技術部
14:15	12p-W611-3	高出力面発光レーザ増幅器のビーム品質改善の検討	〇許 在 \mathbb{H}^1 , 志村 京亮 1 , 顧 暁冬 1 , 松谷 晃宏 2 , 小山 二三夫 1	1. 東工大未来研, 2. 東工大技術部
14:30	12p-W611-4	【注目講演】3DセンシングのためのVCSEL増幅器による ドットパターン生成		1. 東工大未来研, 2. 東工大技術部
14:45	12p-W611-5	カットオフ波長離調構造によるビームスキャナ集積単一 モード面発光レーザ	〇志村 京亮¹, 許 在旭¹, 顧 暁冬¹, 中濵 正統¹, 坂口 孝 浩¹, 松谷 晃宏², 小山 二三夫¹	1.東工大未来研, 2.東工大技術部マイクロプロセス部門
15:00 15:15	12p-W611-6	休憩/Break VCSELビーム掃引デバイスを用いた LiDAR システムの 検討	○藤岡 威吹¹, 森長 瑞¹, Li Ruixiao¹, 顧 暁冬¹, 小山 二三夫¹	1.東工大工
15:30	12p-W611-7	MEMS VCSEL集積DBR導波路偏向素子のビーム偏向特性		1.東工大未来研
15:45	12p-W611-8	Cバンドにおける損失補償特性を持つInP系VCSEL分波 器	○(M2)富樫 良介¹, 顧 暁冬¹, 松谷 晃宏², 坂口 孝浩¹, 小山 二三夫¹	1. 東工大未来研, 2. 東工大技術部
16:00	12p-W611-9	1550nm 帯光集積回路に向けたイオン注入による量子 ドット組成混晶化の実験的・数値解析的検討	小山 ——大 ○松本 敦¹, 赤石 陽太², 伊澤 昌平², 松島 裕一², 宇高 勝之²	1.情通機構, 2.早大理工
16:15	12p-W611-10	Siスロット Er _x Y _{2-x} SiO ₅ 導波路に形成したグレーティング カプラの検討		1.電通大, 2.シンクロン
16:30	12p-W611-11	カノラの検討 強結合光導波路構造による高次モード励起抑制効果に関 する基礎検討		1.九州大学総合理工学府量子プロセス理工学専攻
3.14 光訊	制御デバイス・光フ	アイバー / Optical control devices and optical fibers		
	lon.) 13:30 - 15:30	ポスター講演 (Poster Presentation) PB会場 (Room PB)		1 J. 681 J. O. E. J. 681 NR 57
	11p-PB2-1	同種材料接合を用いた LiNbO ₃ 光導波路の作製	〇垣尾 省司 1 ,望月 翔太 1 ,波切 堅太郎 1 ,藤巻 貴海 1 , 鈴木 雅視 1 ,横田 裕章 2 ,米内 敏文 2 ,岸田 和人 2	1. 山采大, 2. 日本製鋼所
	11p-PB2-2	窓関数を用いたアレイ光導波路型光スイッチのクロス トーク低減		1. 鹿児島大工
	11p-PB2-3	空間光変調器を用いた広帯域近赤外光制御に関する研究		1. 北見工大
		Ge ₂ Sb ₂ Te ₅ の屈折率に対するSe添加の影響 ポリマーMZI型4×4光スイッチの作製	〇櫻井 \mathbb{C}^1 , 石井 隆之 1 , 引間 大輔 1 , 松島 祐 $-^2$, 石川	1. 慶大, 2. 産総研, 3. 東工大 1. 早大理工, 2. 早大 GCS 機構
	11p-PB2-6	二重テーバー化コアとテーパー化クラッドを有するファ	浩¹,宇髙勝之¹ ○物部秀二¹,狩野知哉¹,小平典¹	1.東洋大理工
	11p-PB2-7	イバープローブの作製 プラスチック光ファイバを用いたブリルアン光相関領域 反射計のフィブ低速法の場客	○ (D) 李 熙永 ¹, 野田 康平 ¹, 水野 洋輔 ¹, 中村 健太 郎 ¹	1.東工大
	11p-PB2-8	反射計のノイズ低減法の提案 低反射率偏波保持型ファイバブラッググレーティングで 構成したファブリ・ベロー干渉計の温度依存性測定	•	1.防衛大学校
	11p-PB2-9	解成したファブリ・ペロー十渉計の温度依存性測定 線形相互相関を用いた光ファイバー温度センシングシス テムの特性	○徳永和成¹,大前 貴寬¹,松山 哲也¹,和田 健司¹,岡本晃一¹	1. 阪府大工
3/12(7 9:15		口頭講演 (Oral Presentation) M116 会場 (Room M116) BDG-BOCDA歪/温度分離・分布測定系における光源強		1. 豊田工大, 2. 古河電工, 3. 工学院大学
9:30		度変調効果の解析 光源周波数変調波形の工夫によるBOCDA 歪分布測定技	保立 和夫 1	1. 豊田工大, 2. 工学院大
9:45		術における背景光雑音の低減 BOCDR法の背景光雑音低減に用いるフィルタ形状の最		1. 豊田工大, 2. 東大工, 3. 工学院大
10:00		適化 多モード誘導ブリルアン散乱による高感度ファイバ歪み		
10:15	TALLY T	測定 休憩/Break		
10:30	12a-M116-5	短いプラスチック光ファイバ中のモード間干渉の観測と		1.東京工業大学
10:45	12a-M116-6	温度依存性の解明 カスケード型光ファイバグレーティングを用いた光ファ		1. 防衛大, 2. 島根大
11:00	12a-M116-7	イバリングレーザの発振動作(1) チューナブルMMIフィルタによるTm/Hoファイバレー	山田 平八郎¹, 和田 篤¹, 田中 哲¹, 伊藤 文彦² ○窪田 将成¹, 向坂 風馬¹, 坂田 肇¹	1. 静岡大工
11:15	12a-M116-8	ザの発振波長制御 中空フォトニック結晶ファイバーを用いた超短バルス	\bigcirc (M2) 田辺 拓巳 1 , 財津 慎 $-^{1.2}$, 加地 範匡 1	1. 九大院工, 2. 九大未来化セ
3/10/T	ine) 13:15 16:45	レーザー分子光変調器の開発 口頭議演 (Oral Proportation) M116 合提 (Poom M116)		
3/12(T 13:15		口頭講演 (Oral Presentation) M116 会場 (Room M116) 液晶波長可変フィルタの全透過機能実現と最適化方法の確立	○菊地 哲¹, 寺島 康平¹, 若生 一広¹	1.仙台高專
13:30	12p-M116-2	2つのベクトル渦ビームによる光機能性液晶へのベクト ルホログラム記録	\bigcirc (M2) 中元 勇貴 1 , 坂本 盛嗣 1 , 野田 浩平 1 , 佐々木 友之 1 , 川月 喜弘 2 , 小野 浩司 1	1. 長岡技大, 2. 兵庫県立大
13:45 14:00		LCoS-SLM を用いた広角光線走査 $\mathrm{Nb_2O_5}$ を用いたFLC装荷導波路形DBR共振器のスイッ		1. 慶應理工 1. 神奈川工科大
14:15		チング動作 FLC装荷Nb ₂ O ₅ -フェーズドアレイ型導波路の製作	武志 ¹, 中津原 克己 ¹	
14:30 14:45	12p-M116-6	休憩/Break スラブ導波路を用いた位相制御型単一次元空間モード合	○姜 海松¹,マハムドナセフ¹,藤本 勘太郎¹,浜本 貴	1.九大総理工
15:00		分波器 ディジタルフィルタ設計手法を用いたマイクロリング共	→ ¹	1.横浜国立大学院理工, 2. 中部大学
15:15	<u> </u>	振器チェビシェフ波長フィルタの設計 超伝導集積回路光インターコネクションのための量子井		
15:30		戸光変調器の超低電圧化の検討 マイクロローディング効果を用いたInP系リング共振器	川太郎1	
		の作製 休憩/Break	論 ²	
15:45		pp:xx:/ DIESK		

16:00	12p-M116-10	超精密切削加工によるLNOI光導波路の作製	○(M2)上村 啓悟¹, 多喜川 良², 中本 圭一¹	1.東京農工大工, 2.九大
16:15		コングルエントLiNbO3の高周波電気学係数の波長分散		1.浜松ホトニクス中研
16:30		コングルエントLiNbO₃の高周波カー係数の波長分散 材料と 3.14 光制御デバイス・光ファイバーのコードシェア		1.浜松ホトニクス中研
		M科と3.14 元制御アハイス・元ノアイハーのコートシェブ 口頭講演 (Oral Presentation) W834会場 (Room W834)	セッション / Code-snaring Session of 3.5 & 3.14	
7:15		引き上げ法育成 β -BaB $_2$ O $_4$ 単結晶の 266 nm 光レーザ照射後の透過率評価	〇松倉 誠 1 , 田子 毅 1 , 笹浦 正弘 1 , 廣橋 淳二 1 , 古川 保 1	1.オキサイド
7:30 7:45		AgGaS ₂ の高精度セルマイヤー方程式及び熱光学分散式 周期分極反転LaBGeO ₅ の擬似位相整合特性	~	1.千歳科技大理工, 2. 岡本光学加工所 1.千歳科技大理工, 2. 株式会社オキサイド
8:00	奨 10p-W834-18	フェムト秒レーザー直描導波路型PPMgSLT波長変換素	村信弘¹ ○渡邉 俊介¹, 廣橋 淳二¹, 今井 浩一¹, 星 正幸¹, 牧尾	1.株式会社オキサイド
8:15	10p-W834-19	子開発 段差低減 GaAs/AlGaAs 周期空間反転導波路における差周	論¹ ○(M2)WANG SHUMIN¹. 松下 智紀¹¹². 沂藤 高	1. 東大工, 2. 東大先端研
	•	波発生 / Silicon photonics	志 ^{1,2}	
		ポスター講演 (Poster Presentation) PB 会場 (Room PB)		
0,0(00	9a-PB2-1	非対称方向性結合器型偏波変換 Bragg グレーティング	〇岡山 秀彰 $^{1.2}$, 太縄 陽介 $^{1.2}$, 志村 大輔 $^{1.2}$, 八重樫 浩樹 $^{1.2}$, 佐々木 浩紀 $^{1.2}$	1. 沖電気, 2.PETRA
	9a-PB2-2	多モード光導波路における光散乱の数値解析		1.PETRA
	9a-PB2-3	OバンドSi フォトニック結晶変調器の初期的動作	○板垣 健佑¹, 伊藤 寛之¹, 雛倉 陽介¹, 馬場 俊彦¹	1.横国大院工
	9a-PB2-4	ポリマー層介在チップ接合グレーティングカプラによる		1.早大理工, 2.早大GCS機構
	9a-PB2-5	Si導波路間光結合の検討 局所配向誘引構造を組み込んだ面内電界駆動液晶装荷シ	勝之 ¹ ○字田 成表 ^{1,2} 混美 松樹 ² 三油 巻 ¹ 榊頂 限— ^{1,2}	1. 明治大理工, 2. 産総研
	9a-r b2-5	リコン細線MZ型光スイッチの作製		
	9a-PB2-6	直接貼付InP/Si基板上MQWレーザにおける電流電圧特性のInP膜厚依存性について	○白井 琢人¹,早坂 夏樹¹,相川 政輝¹,韓 旭¹,杉山 滉一¹,内田 和希¹,松浦 正樹¹,石崎 隆浩¹,対馬 幸樹¹,下村 和彦¹	1. 上智大理工
	9a-PB2-7	直接貼付 InP/Si 基板上 MQW レーザにおける発振特性の InP テンプレート膜厚依存性	○韓旭¹,內田和希¹,相川政輝¹,杉山滉一¹,早坂夏樹¹,松浦正樹¹,対馬幸樹¹,石崎隆浩¹,白井琢人¹,	1. 上智大理工
	Oo DDO O	Siプラットフォームへのポリマー介在層を用いたInP	所、仏冊 正例、八場 字例、 1 呵 座石 、口	1日十冊で 2日十〇〇5機様
	9a-PB2-8	レーザの接合	浩¹,宇髙 勝之¹	
	9a-PB2-9	直接貼付InP/Si基板における発振特性のアニール時間依存性	○松浦正樹', 早坂 夏樹', 韓 旭', 相川 政輝', 内田 和 希¹, 杉山 滉一¹, 下村 和彦¹, 石崎 隆浩¹, 対馬 幸樹¹, 白井 琢人¹	1.上智大理工
3/11(M	lon.) 9:45 - 12:15	口頭講演 (Oral Presentation) W331会場 (Room W331)	山开场人	
:45	11a-W331-1	サブ波長構造を用いたシリコン偏光回折格子の作製		1.慶應大工
0:00	11a-W331-2	ガスセンサへの応用に向けたSiスロットリング共振器の 感度向上に関する研究	○星 隼人¹, 友野 裕貴¹, 清水 大雅¹	1.農工大
0:15	11a-W331-3	Rt-WO3/Siマイクロリング共振器水素ガスセンサの応答 速度および感度改善の検討	〇松浦 壮佑 1 , 山作 直貴 1 , 國分 泰雄 2 , 西島 喜明 1 , 岡崎 慎司 1 , 荒川 太郎 1	1. 横浜国立大学大学院, 2. 中部大学
0:30	奨 11a-W331-4	Siリング共振器上の金属発熱層による光熱変換の評価		1.東工大
0:45	奨 11a-W331-5	Si曲げ導波路方向性結合器を用いたループミラーの作製 と評価	○御手洗 拓矢¹, エイッサ モータズ¹, 立花 文人¹, 宮 嵜 隆之¹, 雨宮 智宏¹², 西山 伸彦¹², 荒井 滋久¹²²	1. 東工大工, 2. 東工大未来研
1:00		休憩/Break	可性之,附占自从 ,四山 叶多 ,加开 做八	
1:15	11a-W331-6	チップ上光源に向けた Si 上 inverted-rib Ge 層の発光特性	○八子 基樹¹, Chan-Hyuck Park², Donghwan Ahn²,	1.東大院工, 2.国民大学校, 3.マサチューセッツ工大
1:30	11a-W331-7	評価 SOQ及びSOS基板上に形成したGe層の光吸収特性	和田一実 3 ,石川 靖彦 4 〇 (M1) 野口 恭甫 1 ,西村 道治 2 ,松井 純爾 3 ,津坂 佳	4. 豊橋技科大 1. 豊橋技科大, 2. 東大工, 3. 兵庫県立大
1:45	奨 11a-W331-8	固相エピタキシー法による SOI 基板上 GeSn MSM ダイ	$=$ \pm 3 ,石川 靖彦 1 $=$ \bigcirc 岡 博史 1 ,水林 $=$ 1 ,石川 由紀 1 ,細井 卓治 2 ,志村 考	1, 産総研, 2. 阪大院工
		オードの作製	功 2 , 渡部 平司 2 , 前田 辰郎 1 , 内田 紀行 1 , 遠藤 和彦 1	
2:00	11a-W331-9	横型PIN接合構造を用いた導波路型Ge受光器の高速動作特性の検討	○藤方 潤一¹, 小野 英輝¹, 下山 峰史¹, 八重樫 浩樹¹, 鄭 錫煥¹, 中村 隆宏¹	1. 光電
		口頭講演 (Oral Presentation) W331会場 (Room W331)		
3:45	招 11p-W331-1	「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 CMOS バックエンド互換プロセスを適用したシリコン	〇前神 有里子·	1. 産総研
		フォトニクスの高度化の研究		
4:15	11p-W331-2	超低遅延多ビット演算に向けた多入力Si細線Ψゲートの 検討	〇北 翔太 $^{1.2}$, 新家 昭彦 $^{1.2}$, 野崎 謙悟 $^{1.2}$, 納富 雅也 $^{1.2}$	1.NTTナノフォトニクスセンタ, 2.NTT物性研
4:30	11p-W331-3		○(B)大野 修平¹,トープラサートポン カシディッ	1.東大工
		リング共振器アレイ型シリコン光回路を用いた深層学習の検証 Si ブラットフォーム上低消費電力半導体光増幅器	ト ¹, 高木 信一 ¹, 竹中 充 ¹ 〇開 達郎 ¹, 相原 卓磨 ¹, 武田 浩司 ¹, 藤井 拓郎 ¹, 土澤	
4:30 4:45 5:00	11p-W331-4	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₂結晶を用いた導波路型増幅器の	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤 泰¹, 硴塚 孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中	1.NTT 先端集積デバイス研
4:45 5:00	11p-W331-4 11p-W331-5	の検証 Si プラットフォーム上低消費電力半導体光増幅器 RAS法による (Er,Y) ₂ SiO ₅ 結晶を用いた導波路型増幅器の 作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤 泰¹, 硴塚 孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中 康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北	1.NTT 先端集積デバイス研 1.電通大, 2.シンクロン
4:45 5:00 5:15	11p-W331-4 11p-W331-5	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS法による (Er,Y) ₂ SiO ₅ 結晶を用いた導波路型増幅器の 作製 Siフォトニクス外部共振器波長可変レーザの線幅の狭窄 化	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤 泰¹, 硴塚 孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中 康仁², 中村 弦人¹	1.NTT 先端集積デバイス研 1.電通大, 2.シンクロン
4:45 5:00 5:15 5:30	11p-W331-4 11p-W331-5 11p-W331-6	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₂ 結晶を用いた導波路型増幅器の 作製 Siフォトニクス外部共振器波長可変レーザの線幅の狭窄 化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤 泰¹, 硴塚 孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中 康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北 智洋³, 外林 秀之¹ ○鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕	1.NTT 先端集積デバイス研 1.電通大, 2.シンクロン
4:45 5:00 5:15 5:30 5:45	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₂ 結晶を用いた導波路型増幅器の作製 Siフォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤泰¹, 硴塚孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北智洋³, 外林 秀之¹ ○鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕之¹, 並木 周¹, 河島 整¹, 池田 和浩¹	1.NTT 先端集積デバイス研 1.電通大, 2.シンクロン 1.青山学院大学理工, 2. 情報機構, 3.早稲田大学
4:45 5:00 5:15 5:30 5:45 6:15	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-8 11p-W331-9	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₃結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 シリコン波長選択移相型光スイッチの2チャネル動作	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田浩司¹, 藤井拓郎¹, 土澤秦¹, 硴塚孝明¹, 松尾慎治¹ ○霞朋樹¹, 一色秀夫¹, ガブリエルデルガド¹, 田中康仁², 中村弦人¹ ○(B) 岡田祥¹, 深澤優希¹, 松本敦², 山本直克², 北智洋³, 外林秀之¹ ○鈴木恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕之¹, 並木周¹, 河島整¹, 池田和浩¹ ○離倉陽介¹, 新井宏之¹, 馬場俊彦¹ ○(M2) 當間 拓矢¹, 庄司 雄哉¹, 水本 哲弥¹	1.NTT 先端集積デバイス研 1.電通大, 2. シンクロン 1. 青山学院大学理工, 2. 情報機構, 3. 早稲田大学 1. 産総研 1. 横国大院工 1. 東工大
4:45 5:00 5:15 5:30 5:45 6:15	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-8 11p-W331-9 11p-W331-10	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS法による(Er,Y)₂SiO₃結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 InP スロット導波路を用いた有機EO ボリマー光変調器 の検討	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田浩司¹, 藤井拓郎¹, 土澤泰, 硴塚孝明¹, 松尾慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北智洋³, 外林 秀之¹ 〇鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕之¹, 並木 周¹, 河島 整¹, 池田 和浩¹ ○離倉 陽介¹, 新井 宏之¹, 馬場 俊彦¹ ○(M2) 當間 拓矢¹, 庄司 雄哉¹, 水本 哲弥¹ ○(D) 関根 尚希¹, 高木信一¹, 竹中 充¹	1.NTT 先端集積デバイス研 1.電通大, 2.シンクロン 1.青山学院大学理工, 2.情報機構, 3.早稲田大学 1.産総研 1.横国大院工
4:45 5:00 5:15 5:30 5:45 6:15 6:30 6:45	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-8 11p-W331-9 11p-W331-10	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₂ 結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 シリコン波長選択移相型光スイッチの2チャネル動作 InP スロット導波路を用いた有機EO ボリマー光変調器	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田浩司¹, 藤井拓郎¹, 土澤泰, 硴塚孝明¹, 松尾慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北智洋³, 外林 秀之¹ 〇鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕之¹, 並木 周¹, 河島 整¹, 池田 和浩¹ ○離倉 陽介¹, 新井 宏之¹, 馬場 俊彦¹ ○(M2) 當間 拓矢¹, 庄司 雄哉¹, 水本 哲弥¹ ○(D) 関根 尚希¹, 高木信一¹, 竹中 充¹	1.NTT 先端集積デバイス研 1.電通大, 2. シンクロン 1. 青山学院大学理工, 2. 情報機構, 3. 早稲田大学 1. 産総研 1. 横国大院工 1. 東工大
4:45	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-8 11p-W331-10 11p-W331-11	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₃ 結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 シリコン波長選択移相型光スイッチの2チャネル動作 InP スロット導波路を用いた有機EO ボリマー光変調器の検討 進化計算を用いた高効率グレーティングカブラの設計自動化 送信と受信の両方にSiフォトニック結晶光アンテナを用	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤 泰¹, 硴塚 孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中 康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北 智洋³, 外林 秀之¹ ○鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕 之¹, 並木 周¹, 河島 整¹, 池田 和浩¹ ○鎌倉 陽介¹, 新井 宏之¹, 馬場 俊彦¹ ○(M2) 當間 拓矢¹, 庄司 雄哉¹, 水本 哲弥¹ ○(D) 関根 尚希¹, 高木 信一¹, 竹中 充¹ ○(B) 宮武 悠人¹, 関根 尚希², トープラサートポン カシディット¹², 高木 信一¹², 竹中 充¹²	1.NTT先端集積デバイス研 1.電通大, 2.シンクロン 1.青山学院大学理工, 2.情報機構, 3.早稲田大学 1.産総研 1.横国大院工 1.東工大 1.東大工
4:45 5:00 5:15 5:30 5:45 6:15 6:45 7:00	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-8 11p-W331-10 11p-W331-11	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS法による(Er,Y)₂SiO₃結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3. 光・フォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 シリコン波長選択移相型光スイッチの2チャネル動作 InP スロット導波路を用いた有機EO ポリマー光変調器の検討 進化計算を用いた高効率グレーティングカプラの設計自動化	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤秦¹, 硴塚孝明¹, 松尾 慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北智洋³, 外林 秀之¹ ○鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕之¹, 並木 周¹, 河島 整¹, 池田 和浩¹ ○雛倉 陽介¹, 新井 宏之¹, 馬場 俊彦¹ ○(M2) 當間 拓矢¹, 庄司 雄哉¹, 水本 哲弥¹ ○(D) 関根 尚希¹, 高木 信一¹, 竹中 充¹ ○(B) 宮武 悠人¹, 関根 尚希², トーブラサートボンカシディット ¹², 高木 信一¹², 竹中 充¹² ○阿部 紘士¹, 古門 優弥¹, 馬場 俊彦¹	1.NTT先端集積デバイス研 1.電通大, 2.シンクロン 1.青山学院大学理工, 2.情報機構, 3.早稲田大学 1.産総研 1.横国大院工 1.東工大 1.東大工 1.東大工, 2.東大院工 1.横国大・院工
4:45 5:10 5:15 5:30 6:45 5:15 6:45 7:00 8:43 7:10 8:43 7:10	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-9 11p-W331-10 11p-W331-11 11p-W331-12 11p-W331-12	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₂ 結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3.光・フォトニクス 分科内招待講演」 シリコンフォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 シリコン波長選択移相型光スイッチの2チャネル動作 InP スロット導波路を用いた有機EO ボリマー光変調器の検討 進化計算を用いた高効率グレーティングカブラの設計自動化 送信と受信の両方にSiフォトニック結晶光アンテナを用いた疑似FMCW LiDAR系のビート信号観測 ニクス、3.16 Optics and Photonics English Sessionのコロ頭講演 (Oral Presentation) W331会場 (Room W331)	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田 浩司¹, 藤井 拓郎¹, 土澤秦¹, 硴塚孝明¹, 松尾 慎治¹ ○震 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中康仁², 中村 弦人¹ ○(B) 岡田 祥¹, 深澤 優希¹, 松本 敦², 山本 直克², 北智洋³, 外林 秀之¹ ○鈴木 恵治郎¹, 鴻池 遼太郎¹, 須田 悟史¹, 松浦 裕之¹, 並木 周¹, 河島 整¹, 池田 和浩¹ ○雛倉 陽介¹, 新井 宏之¹, 馬場 俊彦¹ ○(M2) 當間 拓矢¹, 庄司 雄哉¹, 水本 哲弥¹ ○(D) 関根 尚希², 高木 信一¹, 竹中 充¹ ○(B) 宮武 悠人¹, 関根 尚希², トープラサートポンカシディット¹², 高木 信一¹², 竹中 充¹² ○阿部 紘士¹, 古門 優弥¹, 馬場 俊彦¹ ードシェアセッション / Code-sharing Session of 3.	1.NTT先端集積デバイス研 1.電通大, 2.シンクロン 1.青山学院大学理工, 2.情報機構, 3.早稲田大学 1.産総研 1.横国大院工 1.東工大 1.東大工 1.東大工 1.東大工, 2.東大院工 1.横国大・院工 15 & 3.16
4:45 5:00 5:15 5:30 5:45 6:15 6:30 6:45 7:00 7:15	11p-W331-4 11p-W331-5 11p-W331-6 招 11p-W331-7 奨 11p-W331-8 11p-W331-10 11p-W331-11 11p-W331-12 11p-W331-12 11p-W331-12 11p-W331-12 11p-W331-12	の検証 Si ブラットフォーム上低消費電力半導体光増幅器 RAS 法による (Er,Y)₂SiO₂ 結晶を用いた導波路型増幅器の作製 Si フォトニクス外部共振器波長可変レーザの線幅の狭窄化 休憩/Break 「3.光・フォトニクス 分科内招待講演」 シリコンフォトニクス 分科内招待講演」 シリコンフォトニクスによる低損失・大規模光スイッチ 【注目講演】メアンダライン電極フォトニック結晶光変調器の64 Gbps動作 シリコン波長選択移相型光スイッチの2チャネル動作 InP スロット導波路を用いた有機EO ボリマー光変調器の検討 進化計算を用いた高効率グレーティングカブラの設計自動化 送信と受信の両方にSiフォトニック結晶光アンテナを用いた疑似FMCW LiDAR系のビート信号観測 ニクス、3.16 Optics and Photonics English Sessionのコロ頭講演 (Oral Presentation) W331会場 (Room W331)	ト¹, 高木信一¹, 竹中充¹ ○開達郎¹, 相原 卓磨¹, 武田浩司¹, 藤井拓郎¹, 土澤泰¹, 硴塚孝明¹, 松尾慎治¹ ○霞 朋樹¹, 一色 秀夫¹, ガブリエル デルガド¹, 田中康仁², 中村 弦人 () () () () () () () () () () () () ()	1.NTT先端集積デバイス研 1.電通大, 2.シンクロン 1.青山学院大学理工, 2.情報機構, 3.早稲田大学 1.産総研 1.横国大院工 1.東工大 1.東大工 1.東大工, 2.東大院工 1.横国大・院工

9:45	E 10a-W331-3	Quantum-Confined Direct-Gap Optical Absorption in	○ (M1)Kuan-Chih Lin¹, Yen-Hsin Lo¹, Chi-Wang Im¹, Guo-En Chang¹	1.Nat. Chung Cheng Univ.
10:00	E 10a-W331-4	Strained GeSn/Ge Multiple-Quantum-Well on Silicon Investigation of Si Sidewall Bragg Grating for Hybrid III-V/SOI DFB Lasers	(M2)Moataz Eissa ¹ , Takuya Mitarai ¹ , Fumihitio Tachibana ¹ , Nobuhiko Nishiyama ^{1,2} , Shigehisa Arai ^{1,2}	1.Titech EEE Dept., 2.Titech FIRST
10:15	奨 E 10a-W331-5	All-optical serial-to-parallel conversion by nonlinear carrier-dispersion effects in silicon	○ (M2)Neranjith RanepuraHewage ¹ , Yuya Shoji ¹ , Tetsuya Mizumoto ¹	1.Tokyo Tech.
10:30 10:45	招 E 10a-W331-6	休憩/Break 【Highlight】 [INVITED] A Versatile Silicon Photonics	○ Frederic Boeuf¹	1.STMicroelectronics, Crolles, France
11:15	E 10a-W331-7	Platform for Integrated Optics Applications Investigation of Franz-Keldysh effect and carrier depletion		1.Univ. of Tokyo
11:30	E 10a-W331-8	effect in III-V/Si hybrid MOS optical modulator Investigation of impact of InGaAsP quantum well on the modulation efficiency of III-V/Si hybrid MOS optical modulator	Mitsuru Takenaka ¹ (M2)Dongsheng Lyu ¹ , Qiang Li ¹ , Shinichi Takagi ¹ , Mitsuru Takenaka ¹	1.Univ. Tokyo
11:45	奨 E 10a-W331-9	Investigation of stress dependence on bonding strength for III-V/Si chip-on-wafer by plasma activated bonding	○ Liu Bai¹, Takehiko Kikuchi¹.³, Takuya Mitarai¹, Nobuhiko Nishiyama¹.², Hideki Yagi³, Tomohiro Amemiya¹.², Shigehisa Arai¹.²	1.Tokyo Tech, 2.IIR, 3.SEI
12:00	E 10a-W331-10	Investigation of InP/Si bonding condition for suppressing degradation of Photoluminescence property using Surface Activated Bonding	○ (M2)Yuning Wang¹, Takuya Mitarai¹, Tomohiro	1.Tokyo Tech, 2.FIRST
	otics and Photonics	English Session		
	Sat.) 13:45 - 16:45	口頭講演 (Oral Presentation) W331 会場 (Room W331) High peak power pulsed operations of VCSEL amplifier	○ (D)Ahmed MohamedAhmed Hassan ¹ , M.	1.Tokyo Tech.
13:45	E 9p-W331-1		Nakahama Nakahama¹, F. Koyama Kouyama¹	·
14:00	E 9p-W331-2	Accuracy Analysis of Structured-Light Sensor Based on Non-mechanical VCSEL Beam Scanner	○ Ruixiao Li¹, Zeuku Ho¹, Xiaodong Gu¹, Fumio Koyama¹	1.TokyoTech
14:15	奨 E 9p-W331-3	Analysis of High-speed Double Transverse Coupled Cavity VCSELs	\bigcirc (D) Hameeda Ibrahim $^{\! 1}$, Moustafa Ahmed $^{\! 2}$, Fumio Koyama $^{\! 1}$	1.Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology,Japan, 2.2 Faculty of Science, Minia University, Egypt
14:30	奨 E 9p-W331-4	Mode Crosstalk Evaluation in Mode Selective Active Multimode Interferometer Laser Diode Based on Wavelength Spectrum Analysis Method Mode	○ (D)Bingzhou Hong¹, Tomotaka Mori¹, Shingo Murakam¹, Haisong Jiang¹, Kiichi Hamamoto	1.Kyushu University
14:45	E 9p-W331-5	Fabrication and Demonstration of a Surface-Normal Metasurface Modulator with Electro-Optic Polymer	○ (D)Jiaqi Zhang¹, Yuji Kosugi¹, Akira Otomo², Ya-Lun Ho¹, Jean-Jacques Delaunay¹, Yoshiaki Nakano¹, Takuo Tanemura¹.³	1.Univ of Tokyo, 2.NICT, 3.JST PRESTO
15:00	E 9p-W331-6	Hydrogel based surface enhanced Raman scattering sensor	○ (P)Samir Kumar ¹ , Kyoko Namura ¹ , Motofumi Suzuki ¹	1.Kyoto University
15:15 15:30	E 9p-W331-7	休憩/Break Plasmon-enhanced hot electron emission at thin-TiO ₂ /Au	○ Terunori Kaihara¹. Alfonso Cebollada². Gaspar	1.Tokyo Univ. of Agri. & Tech., 2.IMN-CNM-CSIC
		junction	Armelles ² , Hiromasa Shimizu ¹	
15:45	E 9p-W331-8	Strong Coupling between Localized and Propagating Surface Plasmon Modes Revealed in the Near Field from Spectral and Temporal Domains	○ QUAN SUN¹, JINGHUAN YANG¹.², KOSEI UENO¹, XU SHI¹, TOMOYA OSHIKIRI¹, HIROAKI MISAWA¹.³	1.RIES, Hokkaido Univ., 2.Peking Univ., 3.National Chiao Tung Univ.
16:00	E 9p-W331-9	Measurement of the single-photon and two-photon fluorescence chirality of chiral dye molecules and nanoparticles	○ Pin Christophe¹, Genta Takahashi¹, Tuyoshi Fukaminato², Keiji Sasaki¹	1.RIES, Hokkaido Univ., 2.Kumamoto Univ.
16:15 16:30		Interferometric measurement of a biphoton state with continuous-variables by homodyne detection Enhanced Spectroscopic Detection of Molecules	○ (P)Yashuai Han¹, Daohua Wu¹, Katsuyuki Kasai², Masayoshi Watanabe¹, Yun Zhang¹ Yong Boon Tan², Rongde Ian Tay², Liang Yi Loy³, Ke	Inst. of Information and Communications Technology
10.50	E >p-w351-11	Combining IR Spectroscopy with Signal Processing	Fun Aw ³ , Zhi Li Ong ³ , O Sergei Manzhos ¹	High School
		Films and Surfaces		
	ジウムのプログラム 秀電体薄膜 / Ferroel	はプログラム冒頭にございます。 ectric thin films		
		ポスター講演 (Poster Presentation) PA 会場 (Room PA) スパッタ法を用いた Si 基板上への PZT エピタキシャル薄	○村瀬 幹生¹, 和泉 享兵¹, 吉村 武¹, 藤村 紀文¹	1.大阪府大工
	10a-PA3-2 10a-PA3-3	膜の作製 正圧電応答顕微鏡によるP(VDF-TrFE)膜の圧電評価 ショットキー障壁の高さ変化を利用したガスセンシング	 ○金川 いづる¹, 松下 裕司¹, 吉村 武¹, 藤村 紀文¹ ○(B) 柏原 浩大¹, Julien Schneider², 押目 典宏⁴, 狩 	1. 阪府大工 1. 岡山大工 , 2.Institut National Polytechnique,
	奨 E 10a-PA3-4	Improvement of BaTa ₂ O ₆ Thin Films for TFT Gate Insulator Applications	野旬 ³ ○ Son Tien Bui ¹ , Kenshin Narisawa ² , Cuong Duc Pham ¹ , Kiyoshi Uchiyama ²	Toulouse, 3. 岡山大自然, 4. 産総研 1.Hanoi University of Industry, 2.National Institute of Technology, Tsuruoka College
	10a-PA3-5	反応性スパッタリング法を用いたBaTiO3膜の作製	○ 牧野 碧¹, 西出 正道², 西田 謙¹ ○ 永辺 # ⁵ In Too Pool.¹² 先 # # + # # * # * 中	1. 防衛大, 2. 先導技術研究所
	10a-PA3-6 10a-PA3-7	Lattice mismatch effect on biaxial strain exerted on epitaxially-grown BiFeO ₃ 圧電高分子膜(P(VDF-TrFE)) 一体型ZnO-FETの熱処理	石 貴久 4, 木口 賢紀 4, 一ノ瀬 智浩 5	1.ニューヨーク州立大学S3IP, 2.ニューヨーク州立大学, 3.東工大フロンティア, 4.東北大金研, 5.東北大工1.東理大理工
	10a-PA3-8	前後の評価 Strain Engineeringのツールとしてのナノ細孔誘起歪み	○鈴木 孝宗¹	1. 東理大 総研機構
	10a-PA3-9	蛍光 X 線ホログラフィを用いた Mn ドープ $BiFeO_3$ 薄膜の局所構造解析		1. 兵庫県立大工, 2. 広島市立大情報, 3. 名工大構造物性
<i>5</i> /:	10a-PA3-10	強誘電体膜作成基板における残留プロトンの検討	○山口 正樹 ^{1,2} , 增田 陽一郎 ³ , 山﨑 美沙 ¹ , 平出 惇 ¹	1. 芝浦工大工, 2. 芝浦工大 RCGI, 3. 八戸工大工
3/11(l 9:00		□頭講演 (Oral Presentation) W351会場 (Room W351) スパッタリング法により配向制御した HfO₂基強誘電体	○(P) 志村 礼司郎¹, 三村 和仙¹, 清水 荘雄¹, 舟窪 浩¹	1.東工大物院
9:15	11a-W351-2	厚膜の作製およびその電気特性評価 ミストCVD法によるn ⁺ -Si(100)基板上への強誘電体	○(D)田原 大袖¹, 西中 浩之¹, 野田 実¹, 佐藤 翔太²,	1.京工繊大, 2.高知工科大
9:30	奨 11a-W351-3	HfO ₂ 薄膜の作製とその電気特性評価 強誘電体(Hf,Ce)O ₂ 薄膜の作製とその結晶構造評価	川原村 敏幸 2 , 吉本 昌広 1 〇白石 貴久 1 , Choi Sujin 1 , 清水 荘雄 2 , 木口 賢紀 1 , 舟	1. 東北大, 2. 東工大
9:45	奨 11a-W351-4	PLD法を用いたY, ZrドープHfO ₂ 薄膜の作製と評価		1.東工大
10:00	11a-W351-5	(K, Na)NbO₃薄膜へのドーピング効果	浩¹ ○譚 ゴオン¹,藤田 卓也¹,西岡 慎太郎¹,神野 伊策¹	1. 神戸大工
		(代、Na)Noto (神野) マーとフラ 別来 【Highlight】 Theoretical analysis of the influence of aspect ratio and density of nanorod arrays for piezoelectric energy harvesting		

10:30		休憩/Break		
10:45	奨 11a-W351-7	極性磁性体h-ScFeO ₃ 薄膜の強誘電性と界面構造	〇浜嵜 容丞 1 , 安井 伸太郎 2 , 白石 貴久 3 , 赤間 章裕 3 , 木口 腎紀 3 , 谷山 智康 2 , 伊藤 満 2	1.防衛大, 2.東工大, 3.東北大
11:00	奨 11a-W351-8	電気二重層構造で測定したPbTiO ₃ 極薄膜の強誘電特性		1. 東大院工, 2. 理研 CEMS
11:15	11a-W351-9	二重バイアス変調静電引力顕微鏡を用いたポリフッ化ビ ニリデンの誘電緩和測定	•	1. 東北大通研
11:30 11:45		極細導電性探針を用いた高分解能強誘電ドメイン観察 「講演奨励賞受賞記念講演」 スパッタBiFeO ₃ 薄膜を用いた圧電MEMS振動発電素子 の高効率・高出力化	○石田 知嵩 1 ,平永 良臣 1 ,長 康雄 1 ○荒牧 正明 1 ,吉村 武 1 ,村上 修 $ ^2$,佐藤 和郎 2 ,藤村 紀文 1	1.東北大通研 1.大阪府大工, 2.大阪技術研
3/11(l 13:00		口頭講演 (Oral Presentation) W351 会場 (Room W351) 【注目講演】組成相境界近傍のPZTエピタキシャル薄膜	○木口 賢紀¹, 清水 匠¹, 白石 貴久¹, 今野 豊彦¹	1. 東北大金研
13:15	奨 11p-W351-2	における微細構造 組成相境界近傍組成を有するPZT膜の電界下X線回折測 空	○(M1) 井上 英久¹, 一ノ瀬 大地¹, 清水 荘雄¹, 舟窪 浩¹	1.東工大
13:30	奨 11p-W351-3	定 RFスパッタ法により作製したPZT系エピタキシャル薄 膜のMPB特性		1.早稲田大学, 2.材研, 3.JST さきがけ, 4.横浜市立大
13:45	奨 11p-W351-4	原のMIP 6 行任 水熱合成法で作製した (K,Na)NbO 3 配向膜の圧電定 数,e _{31,f} の評価		1.東工大, 2.上智大, 3.東北大, 4.山梨大, 5.大阪府立大
14:00 14:15	11p-W351-5	強誘電体キャバシタにおける酸素空孔分布の制御 休憩/Break	〇野口 祐二 ¹ , 松尾 拓紀 ² , 宮山 勝 ¹	1. 東大院工, 2. 東大新領域
14:30	奨 E 11p-W351-6	Large Electrocaloric Effect in Al _x Fe _{2-x} O ₃ Epitaxial Thin Films	○ (P)BadariNarayana Aroor Rao¹, Shintaro Yasui¹, Tsukasa Katayama², Mitsuru Itoh¹	1. Tokyo Inst. of Tech., 2. Univ. of Tokyo
14:45	11p-W351-7	Nd添加BFO強誘電体膜の抵抗スイッチングにおける上 部電極の影響		1. 金沢大院自然, 2. 金沢大理工
15:00	11p-W351-8	部电極の影響 プラズマプロセスを用いたBiFeO ₃ 薄膜の酸素欠損と電気 的特性	○今泉 文伸¹, 仲田 陸人¹	1.小山高専
15:15	11p-W351-9	わ行性 スパッタ法によるSi基板上へのBiFeO3薄膜のエピタキ シャル成長	○岡本 直樹¹, 和泉 享兵¹, 吉村 武¹, 藤村 紀文¹	1. 阪府院工
15:30	11p-W351-10	ドットパターンを形成した SrTiO ₃ (001) 基板上への BiFeO ₃ 薄膜の製作	○木村 伶志¹, 黒川 悠太¹, 中嶋 誠二¹, 藤沢 浩訓¹	1.兵庫県立大学工学部
15:45 16:00	奨 11p-W351-11	休憩/Break SrTiO ₃ /TiO ₂ エピタキシャルバッファー層の導入がMgO		1.名大工
16:15	奨 11p-W351-12	基板上(Ba, Sr)TiO ₃ 薄膜の電気・光学特性に与える影響 LiNbO ₃ の極性と焦電効果がグラフェンの電気特性に及 ぼす影響		1.明大理工, 2.物材機構
16:30 16:45		P(VDF-TrFE) 薄膜の固体ヒートポンプ応用の検討 強誘電体/半導体ヘテロ接合における負性容量の発現機	○松下 裕司¹, 吉村 武¹, 藤村 紀文¹ ○高田 賢志¹, 吉村 武¹, 藤村 紀文¹	1.大阪府大工
		構とその時間発展シミュレーション 13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコー	- ドシェアセッション / Code-sharing Session of 6.1	& 13.3 & 13.5
3/10(13:45		口頭講演 (Oral Presentation) W631 会場 (Room W631) HfO ₂ 基強誘電体スパッタ薄膜の成長時の酸素分圧が結晶		1. 阪府大工
14:00	10p-W631-2	成長・結晶構造に与える影響 HfO_2 系強誘電体スパッタ薄膜の成長時の酸素分圧が結晶		1. 阪府大工
14:15	E 10p-W631-3	構造・電気特性におよぼす影響 The influence of sputtering condition for ferroelectric HfO ₂ directly deposited on Si(100) by RF magnetron	淳¹, 藤村 紀文¹ ○ MinGee Kim¹, Masakazu Kataoka¹, Rengie Mark D. Mailig¹, Shun-ichiro Ohmi¹	1.Tokyo Tech.
14:30	10p-W631-4	sputtering HfO ₂ 薄膜の強誘電相形成におけるドーパントの役割	○森 優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海 明¹	1.東大院工, 2.産総研
14:45		酸化熱処理によるHfO₂強誘電相消失のメカニズム	○矢嶋 赳彬¹, 森 優樹¹, 西村 知紀¹, 鳥海 明¹	1.東大マテ
15:00	10p-W631-6	による検討	〇白石 悠人 1 , 長澤 立樹 1 , 洗平 昌晃 2 , 白石 賢二 2 , 中山 隆史 1	1. 十葉大埋, 2. 名大未来研
15:15 15:30	招 10p-W631-7	体想/Break 「講演奨励賞受賞記念講演」 HfO ₂ 強誘電体トンネル接合メモリのサイクル不良メカニ		1.東芝メモリ
15:45	10p-W631-8	ズムの解明 300° C低温形成した Hf _x Zr _{1-x} O ₂ 薄膜の強誘電性	齋藤 真澄 1 〇女屋 崇 1,2,3 ,生田目 俊秀 2 ,澤本 直美 1 ,大井 暁彦 2 , 池田 直樹 2 ,長田 貴弘 2 ,小椋 厚志 1	1. 明大, 2. 物材機構, 3. 学振特別研究員 DC
16:00	奨 10p-W631-9	反強誘電体ZrO ₂ を有するMIS構造のユニポーラスイッチング特性	○ (M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正 治¹	1. 東大生研
16:15	10p-W631-10	強誘電体トランジスタにおいて観察される急峻スロープ の起源		1. 産総研, 2. 東大院工
16:30	奨 E 10p-W631-11	Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs	○ (D)Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayashi¹	1.IIS, Univ. of Tokyo
16:45	<u> </u>	TCADによる強誘電体負性容量分極のコヒーレンシーと その時間的発展のシミュレーション		1. 産総研, 2. 東大
		on-based thin films 口頭講演 (Oral Presentation) M113会場 (Room M113)		
13:30		中性子反射率法による窒素含有DLC薄膜の構造評価	〇多積 直之 1 , 大越 康晴 1 , 宮田 登 2 , 宮崎 司 2 , 矢口 俊 之 1 , 本間 彰彦 1	1. 東京電機大学, 2.CROSS 中性子科学センター
13:45	9p-M113-2	軟X線発光分光および高輝度赤外分光を用いたアモル ファス窒化炭素薄膜の化学結合状態評価	〇青野 祐美 1 , 岸村 浩明 2 , 石井 信伍 3 , 佐藤 庸平 3 , 寺内正己 3	1. 鹿児島大工, 2. 防衛大材料, 3. 東北大多元研
14:00 14:15	9p-M113-3 9p-M113-4	結晶性の異なる窒化炭素薄膜の合成とその電子物性 窒化炭素合成(大気圧窒素プラズマ法)中のプラズマ発		 岐阜高専 岡山理科大
14:30	9p-M113-5		○伊藤 治彦¹,津留 紘樹¹	1. 長岡技科大工
14:45	9p-M113-6	- 超励起状態を経由した解離機構 プラズマ利用イオン注入法により作製したa-C:H膜の微	○中尾 節男 ¹ , 崔 埈豪 ² , 園田 勉 ¹	1. 産総研, 2. 東大工
15:00	9p-M113-7	細構造への負パルス電圧の影響 プラズマCVDで合成される a-C:H膜の構造に及ぼす高密	○(M1) 古橋 未悠¹, 上坂 裕之²	1. 岐阜大院自然, 2. 岐阜大工
15:15	9p-M113-8	度プラズマ化の影響 CFRP加工用切削工具へのDLCコーティング		1.豊橋技科大,2.オーエスジーコーティングサービス,
			史¹, 権田 英修², 神谷 雅男³, 瀧 真⁴	3. 伊藤光学, 4. オンワード技研

, ,	9p-PA3-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) Si 含有 DLC 膜の局所構造解析 (II)	○神田 一浩¹, 長谷川 孝行¹.², 赤坂 大樹³	1.兵庫県立大高度研, 2.シンクロトロンアナリシス
	9p-PA3-2	アモルファス炭素膜の熱分解挙動と構造変化の均一性	○赤坂 大樹¹, Sarayut Tunmee², Chanan	LLC, 3.東京工業大工 1.東工大, 2.SLRI
	9p-FA3-2	アモルファス灰条膜の熱ガ胖芋到と構返変化の均一性	Euaruksakun², Ukit Rittihong², Ratchadaporn Supruangnet², 平田 祐樹¹, 大竹 尚登¹	1. 宋上人, 2.3L和
	9p-PA3-3	生体分子由来の炭素質スパッタ膜の有機ガス吸着特性	○大森 達生¹, 杉本 岩雄¹, 須田 順子¹, 高橋 和彦²	1.東京工科大, 2.同志社大
	9p-PA3-4	水素化アモルファスカーボンと Ag による透明遮熱コー ティング	○近藤 裕佑¹, 筧 芳治¹, 佐藤 和郎¹, 松村 直巳¹, 沈 用 球²	1.大阪産業技術研究所, 2.大阪府大院工
	9p-PA3-5	PBF溶液による DLC への簡易的なドープ方法の検討	•	1.東京電機大学
	9p-PA3-6	グラファイト状窒化炭素薄膜の合成方法の検討とその性 質	○小林 涼介¹, 青山 宏明¹, 安田 和史¹, 羽渕 仁恵¹	1. 岐阜高専
	9p-PA3-7	静電塗布法によるナノアモルファス層状窒化炭素薄膜の 作製	渡辺 貴大 1 , 平井 正明 2 , 財部 健一 2 , \bigcirc 大谷 直毅 1	1.同志社大理工, 2. 岡山理大理
	9p-PA3-8	アーク蒸着による荷電変換フォイル用ボロンドープカー ボンフォイルの作製	〇伊藤 伸一郎 1 , 仁科 暢文 1 , 金正 倫計 2 , 吉本 政弘 2 , 和田 元 1	1.同志社理工, 2.原子力機構
	9p-PA3-9	ダイヤモンド中単一NVセンターのバルス光磁気共鳴測 定のためのローエンドFPGAへのフォトンカウンタの実 装	〇永岡 希朗 1 ,畑 雄貴 1 ,川勝 一斗 1 ,石井 邑 1 ,福田 諒	1. 早大理工, 2. 物材機構, 3. 量研, 4. 東北大, 5. 筑波大
	9p-PA3-10 9p-PA3-11	XRTを用いた転位解析と各転位がデバイスに与える影響 角度分解硬X線光電子分光法によるダイヤモンド半導体 表面のsoft-ICPエッチングダメージ評価		1. 関学大理工 1. 東京都市大学, 2. 産総研
	9p-PA3-12	二光子吸収フォトルミネッセンスによるダイヤモンド結 晶欠陥の可視化		1.産総研先進パワエレ
	9p-PA3-13	MBEによるダイヤモンド (111) 基板上の電気伝導性 AlGaN 薄膜の成長	○河野 省三 1 , 蔭浦 泰資 2 , 河合 空 2 , Buendia Jorge J. 2 , 矢部 太 2 , 川原田 洋 $^{1.2}$	1.早大ナノ・ライフ, 2.早大理工
	9p-PA3-14	がイヤモンド半導体素子に対する水素含有絶縁膜の効果		1. 奈良先端大, 2. 日本アルキルアルミ
	9p-PA3-15	熱処理を施したダイヤモンドウエハの結合状態分析	○(M1)松本 啓佑¹,飯塚 完司¹	1. 日工大
	9p-PA3-16	ScAIN/多結晶ダイヤモンド SAW 共振子の作製・評価	○小林 勇介¹, 麻尾 裕己², 橋本 研也², 鹿田 真一¹	1. 関学大理工, 2. 千葉大工
	奨 E 9p-PA3-17	Spectroscopic study on boron-doped ultrananocrystalline diamond thin films synthesized by coaxial arc plasma:	Katamune ³ , Koichiro Hoshino ¹ , Keisuke Ohdaira ² ,	1.Kyushu Univ., 2.JAIST, 3.Kyutech
	奨 9p-PA3-18	Toward the application to UV photodetector 直接照射型慣性核融合用ダイヤモンドカプセルの高品質 化	Tsuyoshi Yoshitake¹ ○(M1) 岩崎 稔広¹, 加藤 弘樹¹, 山田 英明², 大曲 新 矢², 竹內 大輔², 茶谷原 昭義², 杢野 由明², 福山 祐	1. 阪大レーザー研, 2. 産総研先進パワエレ
			司¹, 藤原 宇央¹, 宮西 宏併¹, 弘中 陽一郎¹, 重森 啓介¹	
		口頭講演 (Oral Presentation) M113会場 (Room M113)		
):00):15		常温接合によるSiC-BOX層SOIウェーハの検討 銅合金材料へのDLCコーティング	○古賀 祥泰¹, 栗田 一成¹ ○(B) 金子 眞生¹, 櫻井 賢吾¹, 並木 和茂², 藤井 慎	1.株式会社 SUMCO 1.無機士エ 2.せきも、メディカルインフトカルイン
J:15	10a-W1115-2	判古並付付へのDLCコーティック		 1. 电
):30	10a-M113-3	生体内における Zn-DLCの Zn 溶出評価	\bigcirc (B) 齋藤 一拓 1 , 木寺 俊太 1 , 藤岡 宏樹 2 , 馬目 佳信 2 , 平塚 傑工 3 , 本田 宏志 4 , 大越 康晴 1 , 佐藤 慶介 1 ,	1.東京電機大, 2.東京慈恵会医科大学, 3.ナノテック
0:45	奨 10a-M113-4	周期的N-DLC/WC 積層構造を持つ導電性耐摩耗膜の作 製	平栗健二¹ ○爲國公貴¹,針谷達¹,出貝敏¹,谷本壮¹,須田善 行¹,滝川浩史¹,鷹合滋樹²,安井治之²,金子智³,國 次真輔⁴,神谷雅男⁵,瀧真°	
1:00	奨 10a-M113-5	フィルタードバルスアーク蒸着法を用いたシリコン含有 DLC膜の形成		
1:15	10a-M113-6	ホウ素添加によるグラファイト状窒化炭素のワイド ギャップ半導体化	小坂 舞人¹, ○浦上 法之¹.², 橋本 佳男¹.²	1.信州大学, 2.信州大学カーボン研
3/11(N :00		口頭講演 (Oral Presentation) M113 会場 (Room M113) 「講演奨励賞受賞記念講演」 金属原子添加を伴う熱フィラメント CVD 成長によるダイヤモンド転位密度の低減と SBD 特性改善	〇大曲 新矢 1 ,山田 英明 1 ,坪内 信輝 1 ,田中 真悟 2 ,茶 谷原 昭義 1 ,梅沢 仁 1 , 杢野 由明 1 ,竹内 大輔 1	1. 産総研先進パワエレ, 2. 産総研電池技術 RI
:15	奨 11a-M113-2	EBICを用いたダイヤモンド pn ⁺ 接合におけるリーク電流		1.東工大, 2.産総研, 3.Inst. NEEL/CNRS
:30	11a-M113-3		崎 聡², 岩崎 孝之¹, Julien Pernot³, 波多野 睦子¹ ○ (PC) 市川 公善¹, 寺地 徳之¹, 嶋岡 毅紘¹, 加藤 有	1.物材機構, 2. 産総研
:45	E 11a-M113-4	ルダイヤモンド中の転位の評価 Electrical readout of diamond MEMS resonators	香子 ² , 小泉 聡 ¹ ○ Meiyong Liao ¹ , Haihua Wu ¹ , Liwen Sang ¹ , Masataka Imura ¹ , Satoshi Koizumi ¹	1.NIMS
00:00	11a-M113-5	炭素同位体(¹² C)を用いたダイヤモンド SAW デバイス		1.沖縄高専, 2.東工大, 3.物質材料
0:15	11a-M113-6	イオン注入したダイヤモンドの高温高圧処理		1.愛媛大工, 2.愛媛大 GRC
0:30	11a-M113-7	イオン注入後に高温高圧処理を施したダイヤモンドの面 内元素分布		1.愛媛大工, 2.愛媛大 GRC
0:45	11a-M113-8	ハルボガヤ イオン注入単結晶ダイヤモンドの高温アニールによる結 晶性向上		1.トヨタ自動車株式会社, 2.早大理工, 3.名大未来研4.早大材研
1:00	11a-M113-9	館性回上 ビコ秒レーザー超音波スペクトロスコピーによる高濃度 Bドープダイヤモンドの弾性定数測定	〇鹿田 真 -1 , 長久保 白 2 , 荻 博次 2	1. 関学大 理工, 2. 大阪大 工
1:15	奨 11a-M113-10	Bトープタイヤモントの弾性正数測定 液体へリウム温度以上で動作可能なボロンドープダイヤ	○森下 葵¹, 露崎 活人¹. 蔭浦 泰資¹. 天野 勝太郎¹ 鳥	1.早大理工, 2.物材機構, 3.早大材研
		モンド超伝導量子干渉計	野 義彦 2 , 立木 実 2 , 大井 修 $-^2$, 有沢 俊 $-^2$, 川原田	
:30	奨 11a-M113-11	ダイヤモンド電解質溶液ゲートFETを受信器とした海水 内での信号伝送	\bigcirc (B) 蓼沼 佳斗 ¹, 井山 裕太郎 ¹, 梶家 美貴 ¹, 河下 敦 紀 ¹, ファリナ シャイリ ¹, 張 育豪 ¹, 新谷 幸弘 ¹, 川原 田 洋 ¹. ²	1.早稲田大学, 2.早大材研
/11(N 3:15		口頭講演 (Oral Presentation) M113 会場 (Room M113) 「第3回薄膜・表面物理分科会論文賞受賞記念講演」 反転層チャネルダイヤモンド MOSFET の実証	〇松本 翼 1 , 加藤 宙光 2 , 小山 和博 3 , 牧野 俊晴 2 , 小倉 政彦 2 , 竹內 大輔 2 , 猪熊 孝夫 1 , 山崎 聡 $^{1.2}$, 德田 規 夫 $^{1.2}$	1.金沢大, 2.産総研, 3.デンソー
3:45	E 11p-M113-2	Energy band alignment of Al ₂ O ₃ /Air/H-diamond heterointerface determined by synchrotron x-ray photoelectron spectroscopy	O Niloy Chandra Saha ¹ , Kazutoshi Takahashi ² , Masaki Imamura ² , Makoto Kasu ¹	1.Saga univ., 2.SL Center, Saga Univ.

		With a second and a		
14:00	奨 11p-M113-3	縦型2DHGダイヤモンド MOSFET ; ゲート幅 10 mm での大電流動作 (~1 A) の達成	○ (B) 西村 隼¹, 大井 信敬¹, 岩瀧 雅幸¹, 露崎 活人¹, 大久保 智¹, 蔭浦 泰資¹, 平岩 篤¹², 川原田 洋¹³	1. 早大埋工, 2. 名大未来研, 3. 早大材研
14:15	奨 11p-M113-4	相補型高周波増幅器応用に向けた (111) ダイヤモンド MOSFETs の高周波特性評価	○(B)久樂 顕¹, 今西 祥一朗¹, 大井 信敬¹, 大久保智¹, 堀川 清貴¹, 蔭浦 泰資¹, 平岩 篤¹, 川原田 洋¹.²	1.早稲田大学, 2.早大材研
14:30	11p-M113-5	ゲート・オーバーラップ構造の水素終端ダイヤモンド	○王 聞欣¹, 畢 特¹, 川原田 洋¹	1.早稲田大学
14:45	11p-M113-6	MOSFET のシミュレーション メタルマスクを用いた (111) ダイヤモンド選択成長と水 素終端ダイヤモンド FET への応用	○井村 将隆¹, 大里 啓孝¹, 廖 梅勇¹, 小出 康夫¹	1.物材機構
15:00	E 11p-M113-7	Development of hydrogenated diamond triple-gate fin-type MOSFETs	\bigcirc Jiangwei LIU $^{\! 1},$ Hirotaka Ohsato $^{\! 1},$ Bo Da $^{\! 1},$ Yasuo Koide $^{\! 1}$	1.NIMS
15:15 15:30	11 ₀ M112 9	休憩/Break ナノダイヤモンド NV中心のスピン特性と表面酸化	○藤原 正澄 ^{1,2} , 塚原 隆太 ¹ , 世良 佳彦 ¹ , 西村 勇姿 ² ,	1 問学十冊工 ?际古十陸珊 ?Migradiament 社
15.50	11p-W113-6	プラグイドモンド NV 中心の人とン行任と衣曲政化	須貝 祐子 ¹ , Jentgens Christian ³ , 手木 芳男 ² , 鹿田 真 ー ¹ , 橋本 秀樹 ¹	1. 因于八生工,2. 欧印入历生,3. WICTOUTAINTAIL 社
15:45	11p-M113-9	アンテナ集積化細胞培養ディッシュの開発と幹細胞ナノ ダイヤモンド量子温度センシング	○藤原正澄¹,湯川博²,小林香央里²,梅原有美¹,公 文優花²,宮地冬²,岩崎孝之³,波多野睦子³,橋本秀樹⁴,馬場嘉信²	1. 阪市大院理, 2. 名大院工, 3. 東工大院工, 4. 関学大理工
16:00	11p-M113-10	細胞内温度イメージングに向けたワイドフィールド光検 出電子スピン共鳴測定法の構築	○西村 勇姿¹, 公文 優花², 宮地 冬², 松原 勤³, 湯川 博², 馬場 嘉信², 藤原 正澄¹, 手木 芳男¹	1. 阪市大院理, 2. 名大院工, 3. 阪市大院医
16:15	奨 E 11p-M113-11	Microwave field enhancement at micro-scale and imaging by NV centers in diamond	○ (D)Giacomo Mariani¹, Shuhei Nomoto¹, Satoshi Kashiwaya².³, Shintaro Nomura¹	1.Univ. of Tsukuba, 2.Nagoya Univ., 3.AIST
16:30	11p-M113-12	単一NV中心の観測が可能な小型測定装置の開発	○御園生 大器 ¹ , 佐々木 健人 ¹ , 石津 俊太郎 ¹ , 伊藤 公 平 ^{1,2} , 門内 靖明 ¹ , 阿部 英介 ²	1. 慶大理工, 2. 慶大先導研
16:45	奨 11p-M113-13	高被覆率窒素終端(111)ダイヤモンドの作製	○(B) 立石 哲也¹, 薗田 隆弘¹, 河合 空¹, 山野 颯¹, Jorge J. Buendia¹, 陵浦 泰資¹, 石井 邑¹, 永岡 希朗¹, 福田 諒介¹, 谷井 孝至¹, 春山 盛善²³, 山田 圭介², 小野田 忍², 加田 涉³, 花泉 修³, Alastair Stacey¹, 神田 一浩⁵, 上村 雅治⁵⁵, 寺地 徳之², 磯谷 順一², 河野省三°, 川原田 洋¹.9	1.早大理工, 2.量研, 3.群馬大, 4.メルボルン大, 5.兵庫県立大, 6.SALLC, 7.NIMS, 8.筑波大, 9.早大材研
17:00		休憩/Break		a trace I to the state of the late of the state of the st
17:15	· ·	重いIV族元素を用いたダイヤモンド中のカラーセンター	Mathias Metsch ⁴ , Fedor Jelezko ⁴ , 波多野 睦子 ¹	
17:30	11p-M113-15	ナノダイヤモンド中のNVセンター形成のための欠陥エ ンジニアリング	○阿部浩之¹,長田健介²,武山昭憲¹,寺田大紀³,長 谷川伸¹,吉村公男¹,小野田忍¹,樋口康成¹⁴,加田 涉⁴,花泉修⁴,白川昌宏³,青木伊地男²,大島武¹	1.量研高崎, 2.量研放医研, 3.京都大学, 4.群馬大学
17:45	奨 11p-M113-16	$C_5N_4H_n$ イオン注入による双極子結合した NV センターの 形成		
18:00	奨 11p-M113-17	ロックイン検出によるダイヤモンド量子センサのDC磁		1.東工大
18:15	奨 11p-M113-18	気感度向上 ボータブルな量子磁気センサに向けたロックイン検出法		1.東工大
18:30	11p-M113-19		险士 ○石川 豊史¹, 吉澤 明男¹, 柏谷 聡¹², 馬渡 康徳¹, 渡 邊 幸志¹	1. 産総研, 2. 名古屋大工
18:45	11p-M113-20	定 NV中心の電気的磁気共鳴検出における電極構造の最適 化		1. 京大化研, 2. 産総研
6.3 酸1	化物エレクトロニク:	ス / Oxide electronics		
3/90 9:00	(Sat.) 9:00 - 11:30 9a-W933-1	口頭講演 (Oral Presentation) W933会場 (Room W933) モリブデン系酸化物人工超格子による超伝導の理論的検	○(M1)山科 直也¹, 高津 浩¹, 黒木 和彦², 越智 正之²,	1. 京大工, 2. 阪大理
9:15	9a-W933-2	討 YbFe ₂ O ₄ 薄膜の化学組成が電気・磁気的特性におよぼす	陰山 洋 ¹	1 阪府大工
	9a-W933-3	影響II	淳 ¹ , 藤村 紀文 ¹	1.東北大WPI-AIMR, 2.東北大院理, 3.東北大CSIS,
9:30		岩塩型超伝導/強磁性へテロエピタキシャル薄膜:LaO/ EuO		4. 東北大 CSRN
9:45	9a-W933-4	Co,Si 置換 $Lu_sFe_5O_{12}$ スピンクラスターグラス薄膜における低温スローダイナミクスとスピン波励起寿命体憩/ $Break$	©山原 弘堉", Sarkar Md Shamim", 鈴木 雄大", 関 宗 俊 ¹ , 田畑 仁 ¹	1.果天阮上
10:00	招 9a-W933-5	「講演奨励賞受賞記念講演」 ダブルペロブスカイト型 $GdBaCo_2O_x$ 薄膜 $(x=5.5-6)$ の	〇片山 司 1 , 真柄 健斗 1 , 毛 司辰 1 , 倉内 裕史 1 , 近松 彰 1 , 長谷川 哲也 1	1.東大
10:30	9a-W933-6	磁気・輸送特性 PLD手法を用いた SrTiO₃薄膜の成長における He ガスの	○高橋 竜太 ^{1,2} , 李 智蓮 ¹ , リップマー ミック ¹	1. 東大物性研, 2.JST さきがけ
10:45	9a-W933-7	効果 VLS 結晶成長界面に基づいた Sb-SnO ₂ ナノワイヤの電気 に適度判例		1. 九大先導研
11:00	9a-W933-8	伝導度制御 層状LiNbO ₂ におけるp型透明超伝導: NbO ₆ 三角柱が創		1. 東工大物質理工学院, 2.KEK-PF, 3. 元素戦略
11:15	9a-W933-9	る新規電子状態 NdNiO ₃ ナノ細線の作製と電子相閉じ込め効果の観測	広志 ^{2,3} , 大友 明 ^{1,3} ○山中 天志 ¹ , 服部 梓 ^{1,2} , 服部 賢 ³ , 大門 寬 ³ , 田中 秀	1.阪大産研, 2.JST さきがけ, 3.奈良先端大
3/9(Sat.) 16:00 - 18:00	ポスター講演 (Poster Presentation) PA 会場 (Room PA)	和 ¹	
	9p-PA4-1	単一VO ₂ 積層デバイスによる協調発振現象	○戸部 龍太 1 , 沖村 邦雄 1 , ミヤ モハメッド シュル ズ 1	1. 東海大院工
	9p-PA4-2	ペロブスカイト型BaNbO3エピタキシャル薄膜の合成と 電気伝導性	〇徳永 凌祐 1 , 岡 大地 $^{1.2}$, 福田 慎太郎 2 , 福村 知 昭 $^{1.2.3.4}$	1.東北大理, 2.東北大院理, 3.東北大 WPI-AIMR, 4.東 北大 Core Research Cluster
	9p-PA4-3	ZnOナノロッド / glass 上への VO_2 薄膜成長及び光学特性 (II)	○福住 達郎¹, 伊藤 大樹², 児島 永悟², 陳 飛², 沖村 邦 雄¹, 山口 巌³, 土屋 哲男³	1. 果海大院工, 2. 東海大工, 3. 産総研
	奨 9p-PA4-4	MoO_3 で保護した ReO_3 薄膜における超伝導的な振る舞い		1.東工大物質理工, 2.JST さきがけ
	9p-PA4-5	λ 相 Ti_3O_5 エピタキシャル薄膜におけるシード層からの Mg 拡散の効果	○陳 昊¹, 廣瀬 靖¹, 長谷川 哲也¹	1. 東大院理
	9p-PA4-6	フレキシブル薄膜における VO_2 を用いた歪みの光学的測	○ (M2) 小川 幸大¹, 高橋 竜太¹², リップマー ミック¹	1.東大物性研, 2.JST さきがけ
	9p-PA4-7	定 マルチフェロイック酸窒化物MnTaO ₂ Nの磁性の理論計	 ○毛司辰¹, 片山司¹, 倉內 裕史¹, 廣瀬 靖¹, 長谷川 哲也¹ 	1.東大院理
	9p-PA4-8	算 SH型SAWパイプセンサの作製に向けた石英ガラス管へ	_	1. 同志社大, 2. 名工大, 3. 早大
	9p-PA4-9	の c軸平行配向 ZnO膜の形成 層状 p型半導体 LiRhO₂ の薄膜成長と電気伝導性制御	○(DC)相馬 拓人¹, 吉松 公平¹, 大友 明¹.²	1.東工大物質理工学院, 2.元素戦略

		9p-PA4-10	トポタクティックフッ素ドープによる $La_{0,l}Sr_{1,0}IrO_{4:x}F_y$	〇丸山 敬裕¹, 近松 彰¹, 片山 司¹, 倉持 建汰²³, 荻野 拓², 北村 未歩⁴, 堀場 弘司⁴, 組頭 広志⁴⁵, 長谷川 哲 \uppi^1	
		9p-PA4-11	Cuと NiSiを用いた抵抗変化型不揮発性メモリ	 ○仲山 広記¹,塚本 貴広²,雑賀 章浩³,加藤 格³,鮫島 俊之¹,須田 良幸¹ 	1. 東京農工大院工, 2. 電気通信大, 3. 東京高専
		9p-PA4-12	Gaベース液体金属合金の表面酸化膜制御による抵抗変化素子への応用		1. 龍谷大理工
		9p-PA4-13	パルス印加による分子膜ギャップ型原子スイッチの動作 確率分布計測		1.早大理工, 2.物材機構, 3.産総研
		9p-PA4-14	ウェットプロセスによる ${\rm Ta_2O_5}, {\rm HfO_2}$ を用いた抵抗変化型素子の比較		1. 龍谷大理工
		9p-PA4-15	$Ag/HfO_2/Pt$ 接合型原子スイッチ動作の電圧, HfO_2 膜厚, 温度依存性測定	○(B)和田 直也¹, 長谷川 剛¹	1.早大応物
		9p-PA4-16	Ag/WO _x /Pt接合型原子スイッチ動作の電圧/膜厚/温度 依存性	○(B) 寺村 まどか¹, 長谷川 剛¹	1.早大応物
		9p-PA4-17	傾斜ミリングによる三端子綱引き素子の作製	\bigcirc (M1) 平谷 航 ^{1,2} , 内藤 泰久 ² , 島 久 ² , 角谷 透 ² , 高橋 慎 ² , 秋永 広幸 ² , 長谷川 剛 ¹	1.早大先進理工, 2. 産総研
		9p-PA4-18	溶媒供給が導電性ブリッジメモリのフィラメント成長に 及ぼす影響	○(B)佐藤 洋士¹,清水 敦史¹,木下 健太郎¹	1. 東理大理
			Ni原子移動制御型分子膜ギャップ型原子スイッチの開発		1. 早大応物
	奨	9p-PA4-20	マイクロ波加熱を用いた Nb ドープ TiO_2 薄膜の固相結晶 化	○(B)保崎 正道¹,松久 将之¹,遊馬 博明¹,中尾 祥一郎²,長谷川 哲也²,清水 亮太¹³,西尾 和記¹,和田 雄二¹,一杉 太郎¹	1.Tokyo Tech, 2.Univ. of Tokyo, 3.JST-PRESTO
		9p-PA4-21	縮退した多結晶透明導電性半導体薄膜のキャリア輸送に		1.金沢工大 OEDS R&D センター
		9p-PA4-22	対する粒界の影響 AIドープZnO薄膜の電気的特性の径方向分布に及ぼすス		1.東海大院工
	奨	9p-PA4-23	パッタRF電力及びHe 希釈の効果 RHEED用電子線照射による単結晶 β - $Ga_2O_3(010)$ の青		1. 奈良先端大, 2. 産総研
		0 D445:	色カソードルミネッセンス	大門寬	1 # \(\Omega \) \(\Delta \)
			可視光線下で光触媒反応するBiVO4の作製及び特性評価 化学的剥離によるTiO2ナノチューブアレイとPd膜の二 層メンブレンの作製		1. 龍谷大理工 1. 慶應大理工
		9p-PA4-26	ペロブスカイト酸窒化物 $CaTaO_2N$ のエピタキシャル成長の基板依存性	〇若杉 択人 1 , 廣瀬 靖 1 , 中尾 祥一朗 1 , 原山 勲 2 , 杉澤 悠紀 2 , 菊田 純市 2 , 関場 大一郎 2 , 長谷川 哲也 1	1. 東大院理, 2. 筑波大
	奨 E	9p-PA4-27	Microwave-Assisted H ₂ O Oxidation-Derived Nanostructured Zinc Oxide Films as Electron-	○ (D)Christian Ocson Pelicano¹, Hisao Yanagi¹	1.NAIST
			Transporting Layer for Solar Cells モル比変化による BiVO4粉末の作製と特性評価	○大畑 裕介¹, 山本 伸一¹	1. 龍谷大理工 1. 東工大, 2. 岡山大, 3.NIMS/SPring-8, 4. 名古屋大
			充放電サイクル後の「LiCoO ₂ -BaTiO ₃ -電解液」三相界 面の観察	身3, 安井伸太郎1, 谷山智康4, 伊藤満1	
			MOCVD法で作製した Garnet 型リチウムイオン導電体 LLZ膜	○ 子島 惧之 ,	1.アルバック未来研
3/10(:00			口頭講演 (Oral Presentation) W641 会場 (Room W641) 高圧相 α -PbO₂型TiO₂エピタキシャル薄膜の平坦化	○(110) 效匠 攸惺] 人公 贮灰] 扒五 瓜五] 按甲 歸	1.東工大物質理工, 2.JST さきがけ, 3.東工大フロンテ
:15			同広柏 α - FbO_2 空 FiO_2 ユミタギシギル海峡の十型に NiO/ZnO へテロ界面におけるポストプロセスの影響と	明 1 , 西尾 和記 1 , 清水 亮太 1,2 , 西山 宣正 3 , 一杉 太郎 1	7
:30			劣化メカニズムの検討 HfO。を用いたチャージトラップメモリのアナログ特性に	睦 1.2	1.兵庫県立大工
:45			対するPDA条件依存性 フレキシブルVO₂薄膜を用いた超高感度歪みセンサーの		
.13		100 11041 4	創製	Manca ³ , Daniele Marre ^{2, 3} , 田中 秀和 ¹	1. BANNEWI, 2. CIVIK OF IIV, S. Gellova Olliv.
0:00		10a-W641-5	六方晶窒化ホウ素上 VO_2 の金属絶縁体相転移に伴う抵抗変化の素子サイズ依存性		1. 阪大産研, 2. 物材機構
):15):30		10a-W641-6	休憩/Break 強誘電性HfO₂ゲート3端子素子によるVO₂電気伝導度 の変調	○矢嶋 赳彬¹, 西村 知紀¹, 鳥海 明¹	1.東大マテ
0:45	奨	10a-W641-7	K蒸着したVO ₂ 薄膜における単斜晶系金属相の出現	〇志賀 大亮 $^{1.2}$, 簑原 誠人 2 , 北村 未歩 2 , 湯川 龍 2 , 堀 場 弘司 2 , 組頭 広志 $^{1.2}$	1. 東北大多元研, 2.KEK 物構研
1:00	奨	10a-W641-8	$CeCu_3Mn_4O_{12}$ 薄膜への面内圧縮歪みの付与と垂直磁気異方性		1.東工大フロンティア材料研
	奨E	10a-W641-9	Nanoscale dynamics of oxygen ions in SrFeO _{2.5+d} epitaxial thin films	○ (P)Yooun Heo¹, Daisuke Kan¹, Yuichi Shimakawa¹	1.Kyoto Univ.
	奨	10a-W641-10	$SrRuO_3$ 薄膜のトポロジカルホール効果的振舞いの電界変調とその解釈	○(M2)小林顕斗¹,菅大介¹,島川祐一¹	1. 京大化研
1:15	Sun.) 1	13:45 - 18:15	口頭講演 (Oral Presentation) W641会場 (Room W641)		
1:15			電子デバイスへの応用に向けたNiO薄膜およびNiO/絶縁膜に与えるポストプロセスの影響	○岡田 浩明¹, 王 澤樺¹, 田沼 涼¹, 杉山 睦¹.²	1. 東理大 理工, 2. 東理大 総研
l:15 l:30 8/10(5					
1:15 1:30 3/10(\$		10p-W641-2	RFスパッタ法で作製した AZO 透明導電膜特性における 基板表面ラフネスの影響	○奧村 英之¹, 濱田 海里¹, 小川 敬也¹, 石原 慶一¹	1.京大エネ科
::15 ::30 /10(\$::45 ::00		10p-W641-3	基板表面ラフネスの影響 Ta ₂ O ₅ 原子スイッチにおける水導入効果	○(D)相場 諒¹, 木口 学¹, 鶴岡 徹², 寺部 一弥²	 京大エネ科 東工大院理, 2. 物材機構
1:15 1:30 2/10(\$3 3:45 1:00 1:15 1:30		10p-W641-3 10p-W641-4	基板表面ラフネスの影響 $Ta_2O_5原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明$	○ (D) 相場 諒¹, 木口 学¹, 鶴岡 徹², 寺部 一弥² ○ (B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹	1.東工大院理, 2.物材機構 1.東工大理
1:15 1:30 1:30 8/10(\$\$3:45 14:00 14:15 14:30		10p-W641-3 10p-W641-4 10p-W641-5	基板表面ラフネスの影響 Ta_2O_s 原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO_x 薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化	 ○(D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○(B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○島 久¹, 高橋 慎¹, 内藤 泰久¹, 秋永 広幸¹ 	1. 東工大院理, 2. 物材機構 1. 東工大理 1. 産総研ナノエレクトロニクス研究部門
1:15 1:30 3:45 4:00 4:15 4:30 4:45		10p-W641-3 10p-W641-4 10p-W641-5 10p-W641-6	基板表面ラフネスの影響 $Ta_2O_5 原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO_z 薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化 シリコンナノ結晶塗布薄膜における酸素空孔フィラメントの形成過程$	 ○(D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○(B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○島 久¹, 高橋 慎¹, 内藤 泰久¹, 秋永 広幸¹ ○河内 剛史¹, 加納 伸也¹, 藤井 稔¹ 	1. 東工大院理, 2. 物材機構 1. 東工大理 1. 産総研ナノエレクトロニクス研究部門 1. 神戸大院工
1::15 1::30 3:/10(\$ 3::45 4::00 4::45 4::45 5::00		10p-W641-3 10p-W641-4 10p-W641-5 10p-W641-6 10p-W641-7	基板表面ラフネスの影響 $Ta_2O_5原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO_x薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化 y = y + y + y + y + z + y + z + z + z + z +$	○ (D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○ (B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○鳥 久¹, 高橋 慎¹, 内藤 泰久¹, 秋永 広幸¹ ○河内 剛史¹, 加納 伸也¹, 藤井 稔¹ ○ (M2) 肥田 聡太¹²², 森田 巧¹, 山崎 隆浩³, 奈良純³, 大野 隆央³, 木下 健太郎¹	 1.東工大院理, 2. 物材機構 1.東工大理 1.産総研ナノエレクトロニクス研究部門 1.神戸大院工 1.東理大理, 2. 鳥取大工, 3. 物材機構
1:15 1:30 3/10(\$ 3:45 4:00 4:15 4:30 4:45 5:00 5:15		10p-W641-3 10p-W641-4 10p-W641-5 10p-W641-6 10p-W641-7	基板表面ラフネスの影響 Ta ₂ O ₅ 原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO ₄ 薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化 シリコンナノ結晶途布薄膜における酸素空孔フィラメントの形成過程 多結晶 HíO ₂ における酸素欠陥の拡散・凝集箇所に関する理論的検討 多結晶 NiO 薄膜における溶媒供給効果の理論的検討	 ○(D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○(B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○島 久¹, 高橋 慎¹, 內藤 泰久¹, 秋永 広幸¹ ○河内 剛史¹, 加納 伸也¹, 藤井 稔¹ ○(M2) 肥田 聡太¹.².², 森田 巧¹, 山崎 隆浩³, 奈良 	 1.東工大院理, 2.物材機構 1.東工大理 1.産総研ナノエレクトロニクス研究部門 1.神戸大院工 1.東理大理, 2.鳥取大工, 3.物材機構
1:15 1:30 3/10(s 4:00 4:15 4:30 4:45 5:00 5:15 5:30		10p-W641-3 10p-W641-4 10p-W641-5 10p-W641-6 10p-W641-7 10p-W641-8	基板表面ラフネスの影響 Ta ₂ O ₅ 原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO, 薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化 シリコンナノ結晶塗布薄膜における酸素空孔フィラメントの形成過程 多結晶 HfO ₂ における酸素欠陥の拡散・凝集箇所に関する理論的検討 多結晶 NiO 薄膜における溶媒供給効果の理論的検討 休憩/Break	○ (D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○ (B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○鳥 久¹, 高橋 慎¹, 内藤 泰久¹, 秋永 広幸¹ ○河内 剛史¹, 加納 伸也¹, 藤井 稔¹ ○ (M2) 肥田 聡太¹.².³, 森田 巧¹, 山崎 隆浩³, 奈良純³, 大野 隆央³, 木下 健太郎¹ ○ (M2) 肥田 聡太¹.².³, 酒井 貴弘¹, 森田 巧¹, 山崎 隆浩³, 奈良純³, 大野 隆央³, 木下 健太郎¹	 東工大院理, 2. 物材機構 東工大理 産総研ナノエレクトロニクス研究部門 神戸大院工 東理大理, 2. 鳥取大工, 3. 物材機構 東理大理, 2. 鳥取大工, 3. 物材機構
1:15 3/10(\$\$ 3/10(\$\$ 3/10(\$\$ 3/10(\$\$ 4:15 4:4:00 4:4:15 5:00 5:15 5:30		10p-W641-3 10p-W641-4 10p-W641-5 10p-W641-6 10p-W641-7 10p-W641-8	基板表面ラフネスの影響 Ta ₂ O ₅ 原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO ₄ 薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化 シリコンナノ結晶途布薄膜における酸素空孔フィラメントの形成過程 多結晶 HíO ₂ における酸素欠陥の拡散・凝集箇所に関する理論的検討 多結晶 NiO 薄膜における溶媒供給効果の理論的検討	 ○(D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○(B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○島 久¹, 高橋 慎¹, 内藤 泰久¹, 秋永 広幸¹ ○河内 剛史¹, 加納 伸也¹, 藤井 稔¹ ○(M2) 肥田 聡太¹.².³, 森田 巧¹, 山崎 隆浩³, 奈良 純³, 大野 隆央³, 木下 健太郎¹ ○(M2) 肥田 聡太¹.².³, 酒井 貴弘¹, 森田 巧¹, 山崎 隆浩³, 奈良 純³, 大野 隆央³, 木下 健太郎¹ ○ Ha Hoang¹, Kazutaka Sasaki¹, Tatsuki Hori¹, Kazuhito Tsukagoshi², Toshihide Nabatame², Bui 	 1.東工大院理, 2.物材機構 1.東工大理 1.産総研ナノエレクトロニクス研究部門 1.神戸大院工 1.東理大理, 2.鳥取大工, 3.物材機構
1:15 1:30 1:30 1:10(\$3:45 1:00 1:15 1:30 1:4:45 1:5:30 1:5:30	奨E	10p-W641-3 10p-W641-4 10p-W641-5 10p-W641-6 10p-W641-7 10p-W641-8 10p-W641-9	基板表面ラフネスの影響 Ta ₂ O ₅ 原子スイッチにおける水導入効果 電気計測に基づく原子スイッチ中における金属フィラメント形成過程の解明 TaO, 薄膜を用いたアナログ抵抗変化素子中の酸素分布に依存して観測される競合的な抵抗変化 シリコンナノ結晶塗布薄膜における酸素空孔フィラメントの形成過程 多結晶 HfO ₂ における酸素欠陥の拡散・凝集箇所に関する理論的検討 多結晶 NiO 薄膜における溶媒供給効果の理論的検討 休憩/Break Silicon-doped indium oxide thin-film transistor fabricated	 ○(D) 相場 諒¹, 木口 学¹, 鶴岡 徽², 寺部 一弥² ○(B) 小泉 凌太¹, 相場 諒¹, 金子 哲¹, 木口 学¹ ○鳥 久¹, 高橋 慎¹, 内藤 泰久¹, 秋永 広幸¹ ○河内 剛史¹, 加納 伸也¹, 藤井 稔¹ ○(M2) 肥田 聡太¹.².³, 森田 巧¹, 山崎 隆浩³, 奈良 純³, 大野 隆央³, 木下 健太郎¹ ○(M2) 肥田 聡太¹.².³ 酒井 貴弘¹, 森田 巧¹, 山崎 隆浩³, 奈良 純³, 六野 隆央³, 木下 健太郎¹ ○(M2) 肥田 聡太¹.².³ 酒井 貴弘¹, 森田 巧¹, 山崎 隆浩³, 奈良 純³, 大野 隆央³, 木下 健太郎¹ ○ Ha Hoang¹, Kazutaka Sasaki¹, Tatsuki Hori¹, 	 1.東工大院理, 2.物材機構 1.東工大理 1.産総研ナノエレクトロニクス研究部門 1.神戸大院工 1.東理大理, 2.鳥取大工, 3.物材機構 1.東理大理, 2.鳥取大工, 3.物材機構

16:45	奨 10p-W641-12	${ m TiO}_{2x}$ エピタキシャル薄膜を用いた 4 端子メモリスタ素子の抵抗変化特性	〇三宅 亮太郎 1 , 藤平 哲也 1 , 酒井 朗 1	1. 阪大基礎工
17:00 17:15		${ m Ti/Pr_{07}Ca_{03}MnO_x/Pt}$ 素子における2種類の抵抗変化現象素子領域へのプローブ接触が抵抗スイッチング特性に与える影響		1.京大院工 1.東理大理, 2.鳥取大工, 3.奈良先端大
17:30	奨 10p-W641-15	MOF単結晶の選択成長による微細CBRAM素子への導入		1. 東理大理, 2. 産総研
17:45	奨 10p-W641-16	CBRAMのフォーミング過程におけるTEMその場観察	〇武藤 恵 1 , 酒井 慎弥 1 , 福地 厚 1 , 有田 正志 1 , 高橋 庸 夫 1	1.北大院情報
18:00	奨 10p-W641-17	低電流動作時の Cu/MoO _x /Al ₂ O ₃ CBRAM における Cu-CF の観察	石川 竜介 1 , 〇有馬 克紀 1 , 福地 \mathbb{P}^1 , 有田 正志 1 , 高橋 庸夫 1 , 工藤 昌輝 2 , 松村 晶 2	1.北大院情報, 2.九大超顕微セ
		口頭講演 (Oral Presentation) W641会場 (Room W641)	(() () () () () () () () () (
9:00 9:15		Cu添加量によるNCO薄膜の物性変化 電気化学測定によるCu ₂ O薄膜のパルス電着過程の追跡	 ○ (M1) 平野 雅也¹, 石丸 大智¹, 伊藤 賢哉¹, 森田 廣¹ ○柵木 光¹, 宮内 勇人¹, Shivaji B. Sadale², 野田 啓¹ 	
9:30		Fabrication of p-type CoGa ₂ O ₄ thin film and its	○ (M1)Jiaxin Chen¹, Hang Zhou¹, Munetoshi Seki¹,	
9:45	将 11。W641 4	photoelectrochemical properties アナターゼ型NbドープTiO ₂ エピタキシャル薄膜を用い	Hitoshi Tabata ¹	1 市市工業十学 2 ICT さきがけ
7.43	关 11a-W041-4	た全固体Li電池における固体電解質/電極界面研究	一杉太郎1	1. 宋水上未八丁, 2.J31 e e l l l l
10:00	11a-W641-5	Li 蒸気結晶成長法による高配向性多孔質コバルト酸リチウム結晶膜の作製	○橘田 晃宜¹, 倉谷 健太郎¹	1. 産総研
10:15 10:30	奨 11a-W641-6	休憩/Break 5 V級正極材料LiConsMnsOaエピタキシャル薄膜を用い	○中山 亮¹, 西尾 和記¹, 中村 直人¹, 清水 亮太¹.², 一	1.東工大物質理工, 2.JST-さきがけ
		た全固体Li電池の作製と評価	杉太郎1	
10:45 11:00	奨 11a-W641-7 短 11a-W641-8	V_2O_5 正極を用いた全固体リチウムイオン薄膜電池の作製 $\text{Li}_3\text{PO}_4/\text{LiCoO}_2$ 界面における大きな界面抵抗をアニール	○金澤 翔吾',馬場 友章',神野 伊策' ○小林 成¹ 清水 亮大¹.² 渡邊 佑紀¹ 西尾 和記¹ 一	1. 神戸大工 1 車工大物管理工 2 IST さきがけ
. 1.00	△ 11a WU11-0	により低減する	杉太郎1	AND AND THE CONTRACTOR
11:15	11a-W641-9	全固体Li電池の界面抵抗低減: LaAlO ₃ 挿入によるLiCoO ₂ 薄膜正極/Nb:SrTiO ₃ 集電体の	〇西尾 和記 1 ,白澤 徹郎 2 ,清水 康司 3 ,中村 直人 1 ,渡 邊 聡 3 ,清水 亮太 $^{1.4}$,一杉 太郎 1	1.東工大物質理工, 2.産総研, 3.東大工, 4.さきがけ
11:30	奨 11a-W641-10	バンドオフセット制御 全固体電気二重層をゲートとしたInGaZnOトランジスタ	○渡邉 佳孝¹, 浅野 哲也¹, 藤井 茉美¹, Juan Paolo	1. 奈良先端大
C A The Barry		の作製と動作検証	Bermundo ¹ , 石河 泰明 ¹ , 浦岡 行治 ¹ , 足立 秀明 ¹	
		s and New materials 口頭講演 (Oral Presentation) W323会場 (Room W323)		
9:00		ディスコティック液晶の相転移温度と分子配向に及ぼす	衣笠 健太郎¹, ○小菅 洋輔¹, 水谷 義¹	1. 同志社大理工
9:15	9a-W323-2	置換基効果 マイクロ波による急速加熱を利用した色素増感太陽電池	○鈴木 康介¹,池谷 綾斗¹,奥谷 昌之¹	1.静岡大院工
9:30	9a-W323-3	の作製 SnO_2 微粒子光散乱層導入による FTO 膜のヘイズ率制御	山下 佑海¹, 佐藤 純¹, ○奥谷 昌之¹	1.静岡大院工
9:45	9a-W323-4	と色素増感太陽電池の高効率化 非平衡液中プラズマを利用した新規製膜装置の開発と	○眞弓 慎司¹, 驚坂 潤平¹, 奥村 亮祐¹, 奥谷 昌之¹	1.静岡大院工
10:00	9a-W323-5	TiO ₂ 膜の作製 キレートフレーム法によりアルミニウム合金A5052上に	○(D)淡 エンキン¹, 中村 淳²¹, 小松 啓志¹, 齋藤 秀	1.長岡技科大学, 2.中部キレスト
10:15	9a-W323-6	作製した酸化物膜の断熱特性 アセチルアセトナート錯体を原料とした酸化物フレーム	俊¹ ○(B)郭振宇¹, 土生陽一郎², 竹内純一², 小松 啓	1. 長岡技科大, 2. トーカロ株式会社
10:30	9a-W323-7	コーティング法による Y_2O_3 膜の合成 形状の異なる 2 種類の EDTA 錯体を原料とした金属酸化	志¹, 齋藤 秀俊¹	1. 長岡技科大, 2. 中部キレスト
		物膜の合成		
10:45	9a-W323-8	EDTA金属錯体溶液から合成した酸化物を被覆したモルタルの遮水性 休憩/Break	○工藤 折也', 中村 淳 '-', 下村 匠', 平池 智弘', 小松 啓志', 齋藤 秀俊 '	1.長岡技術科学大学, 2.中部キレスト, 3.株式会社本「組
11:15	9a-W323-9	ウルツ鉱型 (Al,M)N (M=遷移金属元素)の NTC サーミスタ特性	○藤田 利晃¹, 田中 寬¹, 長友 憲昭¹	1.三菱マテリアル
11:30	9a-W323-10	Cr基ひずみセンサ薄膜における横感度とネール温度の関係	○丹羽 英二¹	1. 電磁研
11:45	9a-W323-11	$\mathrm{Ti}_{0.4}\mathrm{V}_{0.6}\mathrm{O}_{2}/\mathrm{TiO}_{2}(100)$ 膜界面近傍のスピノーダル分解	○村岡 祐治 1 , 吉井 文哉 2 , 福田 貴優 3 , 真部 侑司 2 , 安野 実希子 2 , 竹元 嘉利 2 , 寺嶋 健成 1 , 脇田 高徳 1 , 横谷 尚睦 1	1. 岡山大基礎研, 2. 岡山大院自然科学, 3. 岡山大理
12:00	9a-W323-12	過酸化相を核とする再結晶を利用した Si 基板上 VO_2 薄膜	1 4.00	1. 東海大院工
3/0/0-	t) 13·20 _ 15·20	の配向成長 — 基板バイアス印加スバッタ法による再結 晶化 — ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
0/0(00	9p-PA1-1	油滑落性コーティング	○久保田 夏実¹, 吉田 育弘¹, 寺井 護¹	1.三菱電機(株)
	9p-PA1-2	ガラスおよび Si 基板上に作製した (001) 配向 $Co_xFe_{3-x}O_4$	○安田 敬太¹, 西川 雅美¹, 石橋 隆幸¹	1. 長岡技大工
	9p-PA1-3	薄膜のEBSDによる評価 多層固相エピタキシー法によるLa ₂ O ₂ Sbエピタキシャル 薄膜の合成	○山本 裕貴¹, 河底 秀幸¹, 福村 知昭¹.².³.⁴	1. 東北大理, 2. 東北大 WPI-AIMR, 3. 東北大 CSIS, 4. 北大 CSRN
	9p-PA1-4 9p-PA1-5	ステップ状分光透過率をもつ光学フィルターの作製 スパッタリング法を用いて作製したマグネタイト薄膜の	○佐藤 一輝 ¹ , 樋口 博明 ¹ ○伊藤 拓直 ¹ 柳原 華人 ¹	1.朝日分光 1.筑波大物工
	9p-PA1-6	プロセスガス種依存性 表面プラズモン共鳴による遷移金属ダイカルコゲナイド	○鎌田 隼¹, 森下 敦¹, 中河 義典², 岡本 敏弘¹, 原口 雅	
	9p-PA1-7	の光学特性評価 トライオード電極構造による帯電ミスト輸送過程の診断	宣¹ ○黒木 宇紀¹, 今井 滉貴¹, 原田 大輔¹, 黒須 俊治², 中 自 善堅² 蘇田 正香² 林田 正香² 木田 海蝦² 五田	1. 埼玉大理工研, 2. 東洋大 BNERC 研
	9p-PA1-8	静電加速器での $^{16}O(\alpha,\alpha)^{16}O$ による薄膜試料酸素の高	島 義賢², 藤井 康彦², 徳田 正秀², 花尻 達郎², 石川 良¹, 白井 肇¹ ○(M1) 限元 大輝¹, 水野 遊星¹, 志田 暁雄¹, 鈴木 常	1. 長岡技術科学大学
		精度絶対定量	<u>4</u> 1	a strong to the sec
	9p-PA1-9 9p-PA1-10	有機酸を用いた脱合金法によるナノ多孔質 Pd 膜形成 コールドスプレー法によるチタン - アバタイト複合材料 膜の作製	○(M1)西智也¹,河本明純¹,宇部卓司¹,石黒孝¹ ○沖村奈南¹,阿多誠久¹,崔鐘範¹,鬼頭大海²,大越康晴²,平田祐樹¹,大竹尚登¹,赤坂大樹¹	1. 東理大基工 1. 東工大, 2. 東京電機大
	9p-PA1-11	複合成膜による低屈折率光学薄膜の作製の検討	○速水舞¹,都野義樹¹,室谷裕志¹,松本繁治²	1. 東海大院工 , 2. ㈱シンクロン
	9p-PA1-12	Ti, Mg 酸窒化物のエピタキシャル薄膜の成長と電気的特性	○小倉 彩¹, 末益 崇¹, 柳原 英人¹, 斎藤 秀和²	1. 筑波大物工, 2. 産総研
	奨 9p-PA1-13	酸化バナジウム系非晶質薄膜の一軸加圧下熱処理と電気	○中西 昴¹, 岩佐 健¹, 金子 智²¹, 木村 好里¹, 松田 晃 史¹, 吉本 護¹	1.東工大物質理工, 2.神奈川県産技総研
	天 p 1/11 15	特性評価	丈,百平 謏	
	9p-PA1-14 E 9p-PA1-15	特性評価 プロトン伝導性酸化物薄膜の伝導性評価 Epitaxial growth of CaN, H, thin films using reactive	で、言本 酸 ○佐藤 和史¹, 成澤 謙真¹, 内山 潔¹ ○ Seoungmin Chon¹, Shigeru Kobayashi¹, Kazunori	1. 鶴岡高専

	9p-PA1-16	光MOD法によるBi置換磁性ガーネット膜の低温作製	〇西川 雅美 1 ,河原 正美 2 ,中島 智彦 3 ,土屋 哲男 3 ,石	1.長岡技大, 2.高純度化学, 3.産総研
	9p-PA1-17	パルスレーザー堆積法による BaF_2 薄膜を用いた真空紫外		1.名工大, 2. ウシオ電機
	9p-PA1-18	光センサの開発 極薄銀薄膜の光学特性に及ぼすアルミニウム界面層の影		1.北見工大
	E 9p-PA1-19	響 Electrical and optical properties of Zn ₃ N ₂ thin films	金 敬鎬¹, 濱野 剛志¹ ○Yong WANG¹, Takeo OHSAWA¹, Naoki OHASHI¹	1 NIMS
	奨 9p-PA1-20	金属酸化物のナノ構造に対するグリシンの吸着挙動		1.近大院生物理工, 2.近大生物理工
	9p-PA1-21	反応性CAPD法により成膜した AIBN 硬質被膜の構造解析	○吉田 智博 1 , 田中 佑樹 2 , 村澤 功基 3 , 工藤 昌輝 4 , 鳥山 誉亮 4 , 內田 聖也 2 , 福井 康雄 3 , 櫻井 正俊 3 , 吉武 剛 2	1.福岡県工技セ, 2.九大院総理工, 3.オーエスジー株式会社, 4.九大超顕微セ
	9p-PA1-22 9p-PA1-23	複合成膜による超低屈折率SiO ₂ 光学薄膜の応力特性 一酸化スズとリン酸を用いた導電性材料の膜厚による特 性の変化	○吉澤 慶¹, 都野 義樹², 呂 翔宇², 室谷 裕志¹ ○松崎 礼依未¹, 後藤 英雄¹, 田橋 正浩¹, 高橋 誠¹	1. 東海大工, 2. 東海大院工 1. 中部大工
	9p-PA1-24	複合成膜SiO ₂ 光学薄膜の基板表面粗さの影響		1. 東海大工, 2. 東海大院工
	9p-PA1-25	赤外吸収分光を用いた樹脂膜上への室温原子層堆積過程 のその場観察	有馬 ボシールアハンマド 1 , 久保田 繁 1 , 平原 和弘 1 , 廣瀬 文彦 1	1. 山形大院, 2. 山形大有機材料システム
	奨 9p-PA1-26 奨 9p-PA1-27	ミスト CVD 法を用いた VO2 薄膜のエピタキシャル成長 $MoO3$ 粉末の真空物理蒸着による $Si(001)$ 上の $MoO3$ 薄膜作製		1.京大院エネ科 1.奈良先端大
0/40/0	9p-PA1-28	非平面型サブフタロシアニン単分子膜の作成	○小菅 洋輔¹, 水谷 義¹	1.同志社大理工
9:00		口頭講演 (Oral Presentation) W323会場 (Room W323) 極薄アルミ、チタン層を積層した銀薄膜の高湿度下での		1. 北見工大, 2. 東海大工
9:15	10a-W323-2	安定性 $Pt/SrTiO_3(111)$ エピタキシャル膜の成長温度と格子歪緩	金 敬鎬¹, 速水 舞², 室谷 裕志² ○葛西 昌弘¹, 土肥 英幸¹	1. 九州大
9:30	10a-W222 2	和 多結晶性イオン液体薄膜の作製とその固液相転移とイオ	○松末 祐司』 古丑 彰』 カロ 柚仁』 小〜翠 知っ』 自	1 亩北大院工 9 真細度平利学研み
		ン伝導	屋部 果穂1, 高澤 亮二1	
9:45	E 10a-W323-4	grown by non-equilibrium deposition		
10:00	E 10a-W323-5	Deposition temperature dependence on N-doped LaB_6 thin film utilizing RF sputtering	○ (D)KyungEun Park¹, Yuki Komatsu¹, Yasutaka Maeda¹, Shun-ichiro Ohmi¹	1.Tokyo Tech
10:15	10a-W323-6	高耐熱ふく射光源を目指した六ホウ化ランタン膜の合成		1. 物材機構 MANA, 2. 北大院理
10:30	10a-W323-7	STMを用いた窒素添加 LaB。薄膜の仕事関数・電子状態 測定		1. 物材機構, 2. 東工大工学院
10:45	40 777000 0	休憩/Break	O 10 de et 11 1 11 tr. de té 2 Amora et 11 1 2	
11:00	10a-W323-8	窒化銅薄膜をチャネルに用いたアンバイポーラ型トラン ジスタの作製	〇松岭 功佑 ', 片瀬 貫義', 細野 秀雄 ''	1.東工大元素セ, 2.東工大フロ研
11:15	招 10a-W323-9	「6. 薄膜・表面 分科内招待講演」 新しい透明半導体物質の設計	○細野 秀雄¹	1.東工大元素センター
3/10(St		口頭講演 (Oral Presentation) W323会場 (Room W323) 「6. 薄膜・表面 分科内招待講演」	○大家 渓 ¹	1.成蹊大理工
14:15	10- W222 2	スパッタによる医療用材料創製		
		光の干渉を利用した窒素ドープTiO ₂ 薄膜の可視光光触媒 特性の向上		1.京大院工
14:30 14:45		乱流を用いた CVD 法による MoS_2 ナノチューブの合成 水溶性 $Sr_3Al_2O_6$ 薄膜を用いたフリースタンディング PSCTO 単結晶薄膜の作製とその蛍光特性	○(B)後藤 真菜美¹,柳瀬 隆²,長浜 太郎²,島田 敏宏² ○太宰 卓朗¹,安井 伸太郎¹,片山 司²,谷山 智康³,伊	
15:00	奨 10p-W323-5		藤満¹ ○(M1)小松遊矢¹,清水亮太¹²,小林成¹,西尾和記¹,一杉太郎¹	1.東工大物質理工, 2.JST さきがけ
	>c	反応性マグネトロンスパッタ法を用いたEuH ₂ エピタキ		
15:15	•	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構	○(M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子	1.東工大物質理工,2.(株)豊島製作所,3.神奈川県産技
	奨 10p-W323-6	シャル薄膜の作製 不純物ドープ層状 La-Ni-O系薄膜のPLD 合成および構 造・特性評価	○(M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³,¹, 松田 晃史¹, 吉本 護¹	総研
15:15 15:30 15:45	奨 10p-W323-6 奨 10p-W323-7	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構	 ○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 	総研 1.東工大物質理工, 2.元素戦略
15:30	奨 10p-W323-6 奨 10p-W323-7 奨 10p-W323-8	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 パルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH ₂ 薄膜の作製:水素不定	 ○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ 	総研 1.東工大物質理工, 2.元素戦略
15:30 15:45	獎 10p-W323-6	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較	 ○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ 	総研 1.東工大物質理工,2.元素戦略 1.北見工大 1.東工大物質理工,2.元素戦略
15:30 15:45 16:00 16:15	獎 10p-W323-6 獎 10p-W323-7 奨 10p-W323-8 奨 10p-W323-9 奨 10p-W323-10	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 パルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH ₂ 薄膜の作製:水素不定 比の制御	 ○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向 	総研 1.東工大物質理工,2.元素戦略 1.北見工大 1.東工大物質理工,2.元素戦略
15:30 15:45 16:00 16:15	獎 10p-W323-6 獎 10p-W323-7 奨 10p-W323-8 奨 10p-W323-9 奨 10p-W323-10	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH ₂ 薄膜の作製:水素不定 比の制御 BaBiO ₂ 薄膜の作製と評価 体態/Break	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 晓登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹³, Toshio Kamiya¹³	総研 1. 東工大物質理工, 2. 元素戦略 1. 北見工大 1. 東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech
15:30 15:45 16:00 16:15 16:30 16:45	髮 10p-W323-6 髮 10p-W323-7 髮 10p-W323-8 髮 10p-W323-9 髮 10p-W323-10 髮 E 10p-W323-11	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH ₂ 薄膜の作製:水素不定 比の制御 BaBiO ₂ 薄膜の作製と評価 体態/Break Density functional study on intrinsic and impurity defect	 ○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 晓登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹²², 	総研 1. 東工大物質理工, 2. 元素戦略 1. 北見工大 1. 東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech
15:30 15:45 16:00 16:15 16:30 16:45	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-9 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH ₂ 薄膜の作製:水素不定 比の制御 BaBiO ₃ 薄膜の作製と評価 体憩/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN ₂ Synthesis of Single Crystalline Oxide Sheets	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹,³, Toshio Kamiya¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Ito¹², Tetsuya Hasegawa¹ ○ Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹,², Taro	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1. The Univ. of Tokyo, 2. Tokyo Tech.
15:30 15:45 16:00 16:15 16:30 16:45 ½ 17:00 ½	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 バルスレーザ堆積法を用いたZrH₂薄膜の作製:水素不定比の制御 BaBiO₂薄膜の作製と評価 体憩/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN₂ Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹³, Toshio Kamiya¹¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1. The Univ. of Tokyo, 2. Tokyo Tech.
15:30 15:45 16:00 16:15 16:30 16:45 ½ 17:00 ½	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12 獎 E 10p-W323-13	シャル薄膜の作製 不純物ドープ層状 La-Ni-O系薄膜の PLD 合成および構造・特性評価 バルスレーザ堆積法で成長した CrN 薄膜の電子物性 異なるガス種でスパッタした Ag 薄膜の特性比較 バルスレーザ堆積法を用いた ZrH₂薄膜の作製:水素不定比の制御 BaBiO₃薄膜の作製と評価 体態/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN₂ Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride Based Nanocomposites Preparation of TmFe₂O₄ Thin Films and Their Magnetic	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 晓登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹¹³, Toshio Kamiya¹¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹², Taro Hitosugi¹ ○ (D) Viswanath Pamarti¹, Yoshimura Masamichi¹ ○ (D) YouJin Kim¹, Shinya Konishi¹, Yuichiro	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1.The Univ. of Tokyo, 2.Tokyo Tech. 1.Tokyo Tech, 2.JST-PRESTO
15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12 獎 E 10p-W323-13	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrHz薄膜の作製:水素不定 比の制御 BaBiOz薄膜の作製と評価 体憩/Break Density functional study on intrinsic and impurity defect formation in layered SrTiNz Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride Based Nanocomposites	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 晓登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹³, Toshio Kamiya¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹², Taro Hitosugi¹ ○ (D) Viswanath Pamarti¹, Yoshimura Masamichi¹	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1.The Univ. of Tokyo, 2.Tokyo Tech. 1.Tokyo Tech, 2.JST-PRESTO 1.Toyota Technological Institute 1.Kyoto University, 2.Tohoku University 1.Grad. Sch. of Eng, Tohoku Univ., 2.IMR, Tohoku Univ., 3.CSRN, Tohoku Univ., 4.Samsung R&D Institute
15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12 獎 E 10p-W323-14 E 10p-W323-15 E 10p-W323-16	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH₂薄膜の作製:水素不定比の制御 BaBiO₃薄膜の作製と評価 体憩/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN₂ Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride Based Nanocomposites Preparation of TmFe₂O₄ Thin Films and Their Magnetic Properties Buffer layers dependence of magnetic properties for C38-type MnGaGe films	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹,³, Toshio Kamiya¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹,², Taro Hitosugi¹ ○ (D) YouJin Kim¹, Shinya Konishi¹, Yuichiro Hayasaka², Katsuhisa Tanaka¹ ○ (DC) Mingling Sun¹², Takahide Kubota²³, Yoshiaki Kawato⁴, Shigeki Takahashi⁴, Yoshiaki	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1.The Univ. of Tokyo, 2.Tokyo Tech. 1.Tokyo Tech, 2.JST-PRESTO 1.Toyota Technological Institute 1.Kyoto University, 2.Tohoku University 1.Grad. Sch. of Eng, Tohoku Univ., 2.IMR, Tohoku
15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-13 獎 E 10p-W323-14 E 10p-W323-16 *** *** *** *** ** ** ** ** *	マルマン 神臓の作製 不純物ドープ層状La-Ni-O系薄膜のPLD 合成および構造・特性評価 バルスレーザ堆積法で成長した CrN 薄膜の電子物性 異なるガス種でスパッタした Ag 薄膜の特性比較 バルスレーザ堆積法を用いた ZrH₂ 薄膜の作製:水素不定 比の制御 BaBiO₂ 薄膜の作製と評価 体態/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN₂ Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride Based Nanocomposites Preparation of TmFe₂O₄ Thin Films and Their Magnetic Properties Buffer layers dependence of magnetic properties for C38-type MnGaGe films **Ce Physics, Vacuum** ポスター講演 (Poster Presentation) PA会場 (Room PA)	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹³, Toshio Kamiya¹¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ (Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹², Taro Hitosugi¹ ○ (D) Viswanath Pamarti¹, Yoshimura Masamichi¹ ○ (D) YouJin Kim¹, Shinya Konishi¹, Yuichiro Hayasaka², Katsuhisa Tanaka¹ ○ (DC) Mingling Sun¹², Takahide Kubota²³, Yoshiaki Kawato⁴, Shigeki Takahashi⁴, Yoshiaki Sonobe⁴, Koki Takanashi²²³	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1. The Univ. of Tokyo, 2. Tokyo Tech. 1. Tokyo Tech, 2.JST-PRESTO 1. Toyota Technological Institute 1. Kyoto University, 2. Tohoku University 1. Grad. Sch. of Eng, Tohoku Univ., 2. IMR, Tohoku Univ., 3. CSRN, Tohoku Univ., 4. Samsung R&D Institute Japan
15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12 獎 E 10p-W323-14 E 10p-W323-15 E 10p-W323-16	シャル薄膜の作製 不純物ドープ層状La-Ni-O系薄膜のPLD合成および構造・特性評価 バルスレーザ堆積法で成長したCrN薄膜の電子物性 異なるガス種でスパッタしたAg薄膜の特性比較 パルスレーザ堆積法を用いたZrH₂薄膜の作製:水素不定比の制御 BaBiO₃薄膜の作製と評価 体憩/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN₂ Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride Based Nanocomposites Preparation of TmFe₂O₄ Thin Films and Their Magnetic Properties Buffer layers dependence of magnetic properties for C38-type MnGaGe films	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹,³, Toshio Kamiya¹₁³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹₁², Taro Hitosugi¹ ○ (D) YouJin Kim¹, Shinya Konishi¹, Yuichiro Hayasaka², Katsuhisa Tanaka¹ ○ (DC) Mingling Sun¹², Takahide Kubota²³, Yoshiaki Kawato⁴, Shigeki Takahashi⁴, Yoshiaki Sonobe⁴, Koki Takanashi²³ ○ 片岸 惠子¹ ○ 奥村 友喜¹, 渡邉 幸輝¹, 葛見 竜哉¹, 島袋 祐次¹, 和	総研 1.東工大物質理工, 2. 元素戦略 1. 北見工大 1.東工大物質理工, 2. 元素戦略 1. 九大院工, 2. 九大工, 3. 電中研 1. MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1. The Univ. of Tokyo, 2. Tokyo Tech. 1. Tokyo Tech, 2.JST-PRESTO 1. Toyota Technological Institute 1. Kyoto University, 2. Tohoku Univ., 2. IMR, Tohoku Univ., 3. CSRN, Tohoku Univ., 4. Samsung R&D Institute Japan 1. 三菱電機(株)
15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 獎 E 10p-W323-12 髮 E 10p-W323-14 E 10p-W323-15 E 10p-W323-16 ib理・真空/Surfaun.) 16:00 - 18:00 10p-PA5-1	マルマン 神野 では、	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ (M2) Kiswa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ (D) YouJin Kim¹, Shinya Konishi¹, Yuichiro Hayasaka², Katsuhisa Tanaka¹ ○ (DC) Mingling Sun¹², Takahide Kubota²³, Yoshiaki Kawato⁴, Shigeki Takahashi⁴, Yoshiaki Sonobe⁴, Koki Takanashi²³ ○ 片岸 恵子¹ ○ 興村 友喜¹, 渡邉 幸輝¹, 葛見 竜哉¹, 鳥袋 祐次¹, 和田元¹ ○ 藤森 敬典¹, 千田 陽介¹, 増田 悠右¹, 氏家 夏樹¹, 遠	総研 1.東工大物質理工, 2.元素戦略 1.北見工大 1.東工大物質理工, 2.元素戦略 1.九大院工, 2.九大工, 3.電中研 1.MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1.The Univ. of Tokyo, 2.Tokyo Tech. 1.Tokyo Tech, 2.JST-PRESTO 1.Toyota Technological Institute 1.Kyoto University, 2.Tohoku University 1.Grad. Sch. of Eng, Tohoku Univ., 2.IMR, Tohoku Univ., 3.CSRN, Tohoku Univ., 4.Samsung R&D Institute Japan 1.三菱電機 (株) 1.同大理工
15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00	獎 10p-W323-6 獎 10p-W323-7 獎 10p-W323-8 獎 10p-W323-10 獎 E 10p-W323-11 髮 E 10p-W323-12 髮 E 10p-W323-13 髮 E 10p-W323-14 E 10p-W323-16 物理・真空/Surfa un.) 16:00 - 18:00 10p-PA5-1 10p-PA5-2	マルマン 神経 (Page 1) マルマ 神経 (Page 1) マルマ 神経 (Page 1) マルマ 神経 (Page 1) では、 特性評価 バルスレーザ堆積法で成長した CrN 薄膜の電子物性 異なるガス種でスパッタした Ag 薄膜の特性比較 バルスレーザ堆積法を用いた ZrH2 薄膜の作製: 水素不定比の制御 BaBiO3 薄膜の作製と評価 (外憩/Break Density functional study on intrinsic and impurity defect formation in layered SrTiN2 Synthesis of Single Crystalline Oxide Sheets Fabrication of EuF2 and EuO epitaxial thin films using anion-conducting substrates Visible Light Induced Ferroelectric to Paraelectric Reversible Phase Transition in Polyvinylidene fluoride Based Nanocomposites Preparation of TmFe2O4 Thin Films and Their Magnetic Properties Buffer layers dependence of magnetic properties for C38-type MnGaGe films **Cee Physics, Vacuum** ポスター講演 (Poster Presentation) PA会場 (Room PA) アルミ部材表面に吸着した臭気成分の評価 酸化物金属薄膜を用いた水素原子検出器の開発	○ (M1) 堀松 芳樹¹, 伊藤 翔陽¹, 土嶺 信男², 金子智³¹, 松田 晃史¹, 吉本 護¹ ○横山 竜¹, 水城 淳¹, 大友 明¹² ○相良 僚佑¹, 川村 みどり¹, 木場 隆之¹, 阿部 良夫¹, 金 敬鎬¹ ○西 暁登¹, 吉松 公平¹, 大友 明¹² ○ (DC) 牟田 実広¹, 西川 俊², 有田 誠¹, 一瀬 中³, 向田 昌志¹ ○ (Xinyi He¹, Zewen Xiao¹, Takayoshi Katase¹², Keisuke Ide¹, Hideo Hosono¹¹, Toshio Kamiya¹¹³ ○ (M2) Ke Gu¹, Tsukasa Katayama¹, Shintaro Yasui², Akira Chikamatsu¹, Mitsuru Itoh², Tetsuya Hasegawa¹ ○ Xin DAI¹, Yuya Komatsu¹, Ryota Shimizu¹², Taro Hitosugi¹ ○ (D) YouJin Kim¹, Shinya Konishi¹, Yuichiro Hayasaka², Katsuhisa Tanaka¹ ○ (DC) Mingling Sun¹², Takahide Kubota²³, Yoshiaki Kawato⁴, Shigeki Takahashi⁴, Yoshiaki Sonobe⁴, Koki Takanashi².³ ○ 片岸 恵子¹ ○ 奥村 友喜¹, 渡邉 幸輝¹, 葛見 竜哉¹, 鳥袋 祐次¹, 和田元¹	総研 1.東工大物質理工, 2.元素戦略 1.北見工大 1.東工大物質理工, 2.元素戦略 1.九大院工, 2.九大工, 3.電中研 1.MSL, Tokyo Tech, 2.PRESTO, JST, 3.MCES, Tokyo Tech 1.The Univ. of Tokyo, 2.Tokyo Tech. 1.Tokyo Tech, 2.JST-PRESTO 1.Toyota Technological Institute 1.Kyoto University, 2.Tohoku University 1.Grad. Sch. of Eng, Tohoku Univ., 2.IMR, Tohoku Univ., 3.CSRN, Tohoku Univ., 4.Samsung R&D Institute Japan 1.三菱電機 (株) 1.同大理工 1.弘前大院理工

	奨 10p-PA5-5	ZnPc蒸着したSiC(0001)-(3×3)表面上の電子状態の観察	○(B)河村 和哉¹,山田 稜汰¹,志賀 大真¹,村岡 幸輔²,黒木 伸一郎²,内藤 正路³,碇 智徳¹	1.宇部高専, 2.広大ナノデバイス, 3.九工大院工
	10p-PA5-6	低ガラス転移点を有する高分子材料を用いた希少金属の 集積蒸着		1. 阪教大院
	10p-PA5-7	陽極酸化ポーラスアルミナの空孔率変調による多層膜作	〇小川 真 \mathfrak{h}^1 , 川本 \mathfrak{h}^1	1.八戸工大
	10p-PA5-8	製 〜移動電荷量による制御〜 多層カーボンナノチューブを用いた熱電素子材料の開発		1.東理大工
	10p-PA5-9	Al(111)3×3超周期ゲルマネンの角度分解光電子分光計	吉田泰久¹,大澤博紀¹ ○久保理¹,木下盛治朗¹,佐藤仁²,宮本幸治²,遠藤	1. 阪大院工. 2. 広大 HiSOR
		測	聡 1 , 菅原 隆志 1 , 田畑 博史 1 , 奥田 太 $-^2$, 片山 光浩 1	
	10p-PA5-10	界面の電子状態分析のための深さ分解吸収分光測定法の 開発	○鶴田 一樹 ', 為則 雄祐 '	1.JASRI
	E 10p-PA5-11	Operando SEM observation of corrosion process of Al foil	○ (M2)Xin Chen¹, Gada He¹, Masashi Akabori¹, Keisuke Ohdaira¹, Masahiko Tomitori¹, Yoshifumi Oshima¹	1.Japan Advanced Institute of Science and Technolog
	奨 10p-PA5-12	全反射高速陽電子回折 (TRHEPD) の大域探索型データ解析		1. 鳥取大, 2.KEK 物構研
	E 10p-PA5-13	Orbital angular momentum transfer in angle resolved resonant Auger electron emission	Godeung Park¹, ○ Peter Krueger¹	1.Chiba Univ.
		口頭講演 (Oral Presentation) W834会場 (Room W834)		
00		Si(001) 基板上のミクロンスケール段差の熱緩和過程	○須藤 孝一¹	1. 阪大産研
:15 :30		層間水素相互作用を考慮したPd表面での水素吸着形態 誘電体中の複数金属ナノ構造における局在プラズモンの	○加藤 弘一¹, 福谷 克之¹	1.東大生産研 1.東大院工
:30		理論		
:45	奨 12a-W834-4	表面化学反応のDFT計算におけるスピン混入誤差と静的 電子相関に関する考察	○多田 幸平 ¹ , 丸山 智大 ² , 古賀 裕明 ³ , 奧村 光隆 ^{2,3} , 田中 真悟 ¹	1. 産総研・電池技術, 2. 阪大院理, 3. 京大・ESICB
00:0	12a-W834-5	窒素暴露した半導体フォトカソードの加熱処理に伴う表 面機能変化	○佐藤 大樹¹, 西谷 智博², 本田 善央², 天野 浩²	1.名大院工, 2.名大IMaSS
0:15		ガラスナノピペットの評価法の検討	〇高見 知秀 1 , 太田 望月 1 , 小野 茉奈美 1 , 関口 敦 1 , 後藤 忠彦 2 , 真柄 英之 2 , 高桑 雄二 2	1.工学院大学, 2.東北大多元研
		、7.6 原子・分子線およびビーム関連新技術のコードシェ	アセッション / Code-sharing Session of 6.5 & 7.6	
):30		口頭講演 (Oral Presentation) S224 会場 (Room S224) スピン偏極イオン散乱分光法による Ge/Fe(100) 界面の	○鈴木 拓¹	1.物材機構
):45	11a-S224-2	解析 加熱処理による SrTiO ₃ (001) 表面の電子状態変化	○光原 圭¹, 八木 健¹, 柚山 大地¹, 滝沢 優¹	1.立命館大理工
1:00	11a-S224-3	リアルタイム光電子分光による水吸着二酸化チタン表面	高柳周平¹,○大野真也¹,勝部大樹³,尾島章輝³,前	
1:15	11a-S224-4	の評価 グラフェンを利用した絶縁体試料のX線吸収分光と光電	田 元康 3 , 吉田 \mathcal{H}^2 , 西 静佳 2 , 阿部 真之 3 \bigcirc 鈴木 哲 1 , 春山 雄 $-^1$	1. 兵庫県立大高度研
1:30	11a-S224-5	子分光 高エネルギー分解能 REELS 装置を用いた可視から超軟 X	○	1 物材機構 2 箱波士
1.50	114 3224 3	線帯の酸化鉄の誘電関数評価		1. 7377 0877 , 2. 3508.7
	44 0004 6		O the material later electric A let 1/2/23 (2017) 14/20 1/2/14	· PE I TO O EET I MANTE O MELLIMANTE I PE I MANAGE
1:45	11a-S224-6 ーブ顕微鏡 / Prob	酸素分子解離吸着の立体化学における合金効果: $Cu(110)$ vs $Cu_3Au(110)$	○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴	1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線根
.6 プロ 3/9(S	ーブ顕微鏡 / Prob at.) 9:00 - 12:00	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講演 (Oral Presentation) M112会場 (Room M112)		
.6 プロ 3/9(S :00	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像による Si/Ge の識別	○藏 大輝¹, 辻 繁樹¹, 富取 正彦², 新井 豊子¹	1. 金沢大, 2. 北陸先端大院
6 プロ 3/9(S :00 :15	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像による Si/Ge の識別プローブ顕微鏡で発生したフォノンのシミュレーション研究	○藏 大輝¹, 辻 繁樹¹, 富取 正彦², 新井 豊子¹ ○仙田 康浩¹	1. 金沢大, 2. 北陸先端大院 1. 山口大院創成科学
6 プロ 3/9(S :00 :15	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy ロ頭講漢 (Oral Presentation) M112会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Geの識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析	 ○藏 大輝¹, 辻 繁樹¹, 富取 正彦², 新井 豊子¹ ○仙田 康浩¹ 籔押 慶祐¹, ○杉本 宜昭¹ 	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域
6 プロ 3/9(S :000 :15 :30	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy ロ頭講漢 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Geの識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFM によるフラーレン分子の分子内構造観察	 ○藏大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ 	1. 金沢大, 2. 北陸先端大院 1. 山口大院創成科学 1. 東大新領域 1. 京大工
6 プロ 3/9(S:00 ::15 ::30 ::45	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy ロ頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFMで取得したエネルギー散逸像によるSi/Geの識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM像シミュレーション	 ○藏大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1)尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ 	1. 金沢大, 2. 北陸先端大院 1. 山口大院創成科学 1. 東大新領域 1. 京大工 1. 東大新領域
6 プロ 3/9(S :000 :15 :30 :45 :200 :15	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-6	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFMで取得したエネルギー散逸像によるSi/Geの識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM 像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化 制御	○藏大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域
6 プロ 3/9(S :000 :15 :30 :45 :200 :15	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy ロ頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFMで取得したエネルギー散逸像によるSi/Geの識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化	○藏大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域
6 プロ 3/9(S:00 :15 :30 :45 0:00 0:15	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-6	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy □頭講漢 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Geの識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製と STM 像シミュレーション ドカ誘起による銅表面上の一酸化窒素単分子の配向変化 制御 TEM-周波数変調法を用いた Auナノワイヤのヤング率方位依存性の測定	○藏大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1)尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 冨取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀³, 見寺悠伽², 富取正彦¹, 新	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然
6 プロ 3/9(S:00) :15 :30 :45 0:00 0:15	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-6	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Ge の識別プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製と STM 像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Au ナノワイヤのヤング率方位依存性の測定サブ10nm スケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光	○藏大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1) 尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀³, 石塚慧介¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀³, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀³, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然
6 プロ 3/9(S::00 ::15 ::30 ::45 ::0:00 ::15 ::30 ::45 ::30 ::45 ::30 ::45 ::45 ::30 ::45 ::45 ::45 ::45 ::45 ::45 ::45 ::4	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-6 9a-M112-7 9a-M112-8 9a-M112-9	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講漢 (Oral Presentation) M112会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Ge の識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM 像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Auナノワイヤのヤング率方位依存性の測定 サブ10nm スケールにおける金ナノ接点の定量的弾性評価	○藏大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹ ○小堀雄稀¹,石塚慧介¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○石塚慧介¹,小堀雄稀¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○谷口琴太朗¹,古岡克将¹,月山郁文¹,嵐田雄介¹,吉田昭二²,重川秀実²,桑原正史³,武田淳¹ 篠原和貴¹,腰地空¹,鈴木彩¹,○武内修¹,谷中淳¹,	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1. 批陸先端大, 2.金沢大院自然
6 7 0 3/9(S ::00 ::15 ::30 ::45 0::00 0::15 0::30 1::00	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-5 9a-M112-6 9a-M112-7 9a-M112-8 9a-M112-9	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy □頭講漢 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像による Si/Ge の識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製と STM 像シミュレーション ・大力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Auナノワイヤのヤング率方位依存性の測定 サブ10nm スケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光 誘起相変化 光 STM による太陽電池評価におけるトンネル接合特性 ボルフィリン単分子膜への磁性原子吸着の STM/STS 研	○藏大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹ ○小堀雄稀¹,石塚慧介¹,見寺悠伽²,富取正彦¹,新井豊子²,大島義文¹ ○石塚慧介³,小堀雄稀¹,見寺悠伽²,富取正彦¹,新井豊子²,大島義文² ○谷口将太朗¹,吉岡克将¹,片山郁文¹,嵐田雄介¹,吉田昭二²,重川秀実²,桑原正史³,武田淳¹ 篠原和貴¹,腰地空¹,鈴木彩¹,○武内修³,谷中淳¹,吉田昭二¹,重川秀実²	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1. 批陸先端大, 2.金沢大院自然
6 7 1 3/9(S ::00 ::15 ::30 ::45 ::30 ::45 ::0:30 ::15 ::30 ::15 ::30 ::15 ::30 ::30 ::15 ::30 ::30 ::30 ::30 ::30 ::30 ::30 ::3	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-7 9a-M112-7 9a-M112-7 9a-M112-9 9a-M112-10	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy □頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像による Si/Ge の識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製と STM 像シミュレーション 下力誘起による銅表面上の一酸化窒素単分子の配向変化 制御 TEM-周波数変調法を用いた Auナノワイヤのヤング率方位依存性の測定 サブ10nm スケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光 誘起相変化 光STM による太陽電池評価におけるトンネル接合特性	○藏大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1) 尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 冨取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○谷口将太朗¹, 吉岡克捋¹, 片山郁文¹, 嵐田雄介¹, 吉田昭二², 重川秀実², 桑原正史³, 武田淳¹ 篠原和貴¹, 腰地空¹, 鈴木彩¹, ○武内修¹, 谷中淳¹, 吉田昭二¹, 重川秀実¹ ○山田豊和¹, 山口昌孝¹, 根本諒平¹, 稲見栄一²	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1.横浜国大院工, 2. 筑波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ
6 7 1 3/9(S ::00 1:15 1:30 1:15 1:30 1:145 1:30 1:145	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-7 9a-M112-7 9a-M112-8 9a-M112-9 9a-M112-10 9a-M112-11	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy □頭講漢 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Ge の識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製と STM 像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Auナノワイヤのヤング率方位依存性の測定 サブ10nm スケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光 誘起相変化 光 STM による太陽電池評価におけるトンネル接合特性 ボルフィリン単分子膜への磁性原子吸着の STM/STS研究	○藏大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹ ○小堀雄稀¹,石塚慧介¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○石塚慧介¹,小堀雄稀¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○谷口将太朗¹,吉岡克将¹,片山郁文¹,嵐田雄介¹,吉田昭二²,重川秀実²,桑原正史³,武田淳¹篠原和貴¹,腰地空¹,鈴木彩¹,○武内修¹,谷中淳¹,吉田昭二¹,重川秀実¹ ○山田豊和¹,山口昌孝¹,根本諒平¹,稲見栄一² ○横田健太¹,根本諒平¹,荒本夏帆¹,中澤芳洋¹,クリューガービーター¹,唐津孝¹,山田豊和¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1.横浜国大院工, 2. 筑波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ
6 7 1 3/9(S ::00 1:15 1:15 1:30 1:15 1:30 1:45 1:30 1:45 1:45 1:30 1:45 1:45 1:45 1:45 1:45 1:45 1:45	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-5 9a-M112-6 9a-M112-7 9a-M112-8 9a-M112-10 9a-M112-10 9a-M112-11 9a-M112-11	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像による Si/Ge の識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製と STM 像シミュレーション ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	○蔵大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中 暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹ ○小堀雄稀¹,石塚慧介¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○石塚慧介¹,小堀雄稀¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○谷口将太朗¹,古岡克将¹,片山郁文¹,嵐田雄介¹,吉田昭二²,重川秀実²。桑原正史³,武田淳¹、篠原和貴¹,腰地空¹,鈴木彩¹,○武内修³,谷中淳¹,吉田昭二¹,重川秀実³ ○山田豊和¹,山口昌孝¹,根本諒平¹,稲見栄一² ○横田健太¹,根本諒平¹,荒本夏帆¹,中澤芳洋¹,クリューガービーター¹,唐津孝¹,山田豊和¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1. 横浜国大院工, 2. 筑波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工
6 7 1 3/9(S ::00 1:15 1:30 1:15 1:30 1:145 1:30 1:145	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-7 9a-M112-7 9a-M112-8 9a-M112-10 9a-M112-11 9a-M112-11	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy 口頭講漢 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Ge の識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製とSTM像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いたAuナノワイヤのヤング率方位依存性の測定 サブ10nmスケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光 誘起相変化 光STMによる太陽電池評価におけるトンネル接合特性 ポルフィリン単分子膜への磁性原子吸着のSTM/STS研究 Cu(111)上のラセミ体イリジウム(III)錯体のSTM研究 ボスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force	 ○蔵大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1)尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 冨取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○公口将太朗¹, 吉岡克将¹, 片山郁文¹, 嵐田雄介¹, 吉田昭二², 重川秀実², 桑原正史³, 武田淳¹篠原和貴¹, 腰世空, 鈴木彩¹, ○武内修¹, 谷中淳¹, 吉田昭二¹, 無川秀実¹ ○山田豊和¹, 山口昌孝¹, 根本諒平¹, 稲見栄一² ○横田健太¹, 根本諒平¹, 荒本夏帆¹, 中澤芳洋¹, クリューガービーター¹, 唐津孝¹, 山田豊和¹ ○片野論¹, 笹嶋匠¹, 上原洋一¹ ○(B) 竹林朋哉¹, 吉田健太郎¹, 古川一暁¹ ○(D) Jiaqi Zhang¹, Yuki Kobori¹, Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi 	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金大院自然 1.北陸先端大, 2.金大院自然 1.横浜国大院工, 2. 筑波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工 1. 東北大通研 1. 明星大理工
6 7 3 3/9(S ::00 3 3/9(S ::00 1:15 1:15 1:30 1:15 1:30 1:30 1:30 1:45 1:30 1:45 1:45	一プ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-5 9a-M112-6 9a-M112-7 9a-M112-7 9a-M112-10 9a-M112-10 9a-M112-11 9a-M112-11 9a-M112-12	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy 口頭講漢 (Oral Presentation) M112会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Ge の識別プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製と STM 像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Au ナノワイヤのヤング率方位依存性の測定 サブ10nm スケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光誘起相変化 光 STM による太陽電池評価におけるトンネル接合特性 ボルフィリン単分子膜への磁性原子吸着の STM/STS研究 Cu(111)上のラセミ体イリジウム(III)錯体の STM 研究 ボスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force sensing system 金属基板上に真空スプレーした蛋白質分子/GNRの STM	○蔵大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1) 尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 冨取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○谷口将太朗¹, 吉岡克将¹, 片山郁文¹, 嵐田雄介¹, 吉田昭二², 重川秀実², 桑原正史³, 武田淳¹ 篠原和貴¹, 腰世空¹, 鈴木彩¹, ○武内修¹, 谷中淳¹, 吉田昭二¹, 重川秀実¹ ○山田豊和¹, 山口昌孝¹, 根本諒平¹, 稲見栄一² ○横田健太¹, 根本諒平¹, 荒本夏帆¹, 中澤芳洋¹, クリューガービーター¹, 唐津孝¹, 山田豊和¹ ○片野論¹, 笹嶋匠¹, 上原洋一¹ ○(B) 竹林 朋哉¹, 吉田健太郎¹, 古川一暁¹ ○(D) Jiaqi Zhang², Yuki Kobori², Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi Oshima¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.北陸先端大た, 2.金沢大院自然 1.横浜国大院工, 2. 第波大数理物, 3. 産総研 1. 第波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工 1. 東北大通研 1. 明星大理工 1. JAIST, 2. Kanazawa Univ.
6 7 0 3/9(S 3000) :15 :30 :45 :00 :30 :30 :30 :30 :30 :30 :30 :30 :45 :30 :30 :45 :30 :45 :30 :45 :45 :45 :45 :45 :45 :45 :45 :45 :45	マ類微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-7 9a-M112-7 9a-M112-10 9a-M112-11 9a-M112-11 9a-M112-11 9a-M112-12 at.) 16:00 - 18:00 9p-PA5-1 9p-PA5-2 E 9p-PA5-3	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像による Si/Ge の識別プローブ顕微鏡で発生したフォノンのシミュレーション研究原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製と STM 像シミュレーション 下力 動起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Au ナノワイヤのヤング率方位依存性の測定サブ10nm スケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光 読起相変化 光 STM による太陽電池評価におけるトンネル接合特性 ボルフィリン単分子膜への磁性原子吸着の STM/STS 研究 Cu(111) 上のラセミ体イリジウム (III) 錯体の STM 研究 ポスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force sensing system 金属基板上に真空スプレーした蛋白質分子/GNRの STM 観察 局所光励起および検出のための極低温走査型プローブ顕	○蔵大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中 暉之¹, 小林圭¹, 山田啓文¹ ○(M1)尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文² ○谷口将太朗¹, 古岡克将¹, 片山郁文¹, 嵐田雄介¹, 吉田昭二², 重川秀実², 桑原正史³, 武田淳¹徐原和貴¹, 腰地空¹, 鈴木彩¹, ○武内修¹, 谷中淳¹, 吉田昭二¹, 重川秀実² ○山田豊和¹, 山口昌孝¹, 根本諒平¹, 稲見栄一² ○(横田健太¹, 根本諒平¹, 荒本夏帆¹, 中澤芳洋¹, クリューガービーター¹, 唐津孝¹, 山田豊和¹ ○片野論¹, 笹嶋匠¹, 上原洋一¹ ○(B)竹林朋哉¹, 吉田健太郎¹, 古川一暁¹ ○(D)Jiaqi Zhang¹, Yuki Koborì¹, Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi Oshima¹ ○玄藤紗絵子¹, 後藤悠斗¹, 根本諒平¹, 山田豊和¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.北陸先端大た, 2.金沢大院自然 1.横浜国大院工, 2. 第波大数理物, 3. 産総研 1. 第波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工 1. 東北大通研 1. 明星大理工 1. JAIST, 2. Kanazawa Univ.
6 7 1 3/9(S ::00 1:15 1:30 1:15 1:30 1:145 1:30 1:145	ープ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-5 9a-M112-6 9a-M112-7 9a-M112-8 9a-M112-10 9a-M112-11 9a-M12-11 9a-M12-12 at.) 16:00 - 18:00 9p-PA5-1 9p-PA5-2 E 9p-PA5-3	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Geの識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析 室温FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM像シミュレーション ・大力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いたAuナノワイヤのヤング率方位依存性の測定サブ10nmスケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光誘起相変化 光STMによる太陽電池評価におけるトンネル接合特性 ボルフィリン単分子膜への磁性原子吸着のSTM/STS研究 Cu(111)上のラセミ体イリジウム(III)錯体のSTM研究 ポスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force sensing system 金属基板上に真空スプレーした蛋白質分子/GNRのSTM 観察 局所光励起および検出のための極低温走査型プローブ顕微鏡の開発	○蔵大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1)尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○石塚慧介¹, 小堀雄稀¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大島義文¹ ○谷口将太朗¹, 古岡克将¹, 片山郁文¹, 嵐田雄介¹, 吉田昭二², 重川秀実², 桑原正史³, 武田淳¹篠原和貴¹, 腰地空¹, 鈴木彩¹, ○武内修¹, 谷中淳¹, 吉田昭二¹, 重川秀実¹ ○山田豊和¹, 山口昌孝¹, 根本諒平¹, 稲見栄一² ○(横田健太¹, 根本諒平¹, 荒本夏帆¹, 中澤芳洋¹, クリューガービーター¹, 唐津孝¹, 山田豊和¹ ○片野論¹, 笹嶋匠¹, 上原洋一¹ ○(B)竹林朋哉¹, 吉田健太郎¹, 古川一暁¹ ○(D)Jiaqi Zhang¹, Yuki Kobori¹, Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi Oshima¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金沢大院自然 1. 北陸先端大院工, 2. 充波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工 1. 東北大通研 1. 明星大理工 1.JAIST, 2. Kanazawa Univ.
6 7 1 3/9(S ::00 1:15 1:30 1:15 1:30 1:145 1:30 1:145	一プ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-5 9a-M112-6 9a-M112-7 9a-M112-7 9a-M112-10 9a-M112-10 9a-M112-11 9a-M112-11 9a-M112-12 at.) 16:00 - 18:00 9p-PA5-1 9p-PA5-2 E 9p-PA5-3	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy 口頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Geの識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111)表面上の多層シリセンの構造解析 室温FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM像シミュレーション ・大力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いたAuナノワイヤのヤング率方位依存性の測定サブ10nmスケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光誘起相変化 光STMによる太陽電池評価におけるトンネル接合特性 ボルフィリン単分子膜への磁性原子吸着のSTM/STS研究 Cu(111)上のラセミ体イリジウム(III)錯体のSTM研究 ポスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force sensing system 金属基板上に真空スプレーした蛋白質分子/GNRのSTM 観察 局所光励起および検出のための極低温走査型プローブ顕微鏡の開発	○蔵大輝¹, 辻繁樹¹, 富取正彦², 新井豊子¹ ○仙田康浩¹ 籔押慶祐¹, ○杉本宜昭¹ ○田中暉之¹, 小林圭¹, 山田啓文¹ ○(M1)尾谷卓史¹, 塩足亮隼¹, 杉本宜昭¹ ○塩足亮隼¹, 尾谷卓史¹, 杉本宜昭¹ ○小堀雄稀¹, 石塚慧介¹, 見寺悠伽², 冨取正彦¹, 新井豊子², 大鳥義文¹ ○石塚慧介¹, 小堀雄稀¹, 見寺悠伽², 富取正彦¹, 新井豊子², 大鳥義文¹ ○谷口将太朗¹, 吉岡克将¹, 片山郁文¹, 嵐田雄介¹, 吉田昭二², 重川秀実², 桑原正史³, 武田淳¹篠原和貴¹, 腰地空¹, 鈴木彩¹, ○武内修¹, 谷中淳¹, 吉田昭二¹, 重川秀実² ○仙田豊和¹, 山口昌孝¹, 根本諒平¹, 稲見栄一² ○(横田健太¹, 根本諒平¹, 荒本夏帆¹, 中澤芳洋¹, クリューガービーター¹, 唐津孝¹, 山田豊和¹ ○片野論¹, 笹嶋匠¹, 上原洋一¹ ○(B)竹林朋哉¹, 吉田健太郎¹, 吉川一暁¹ ○(D)Jiaqi Zhang¹, Yuki Kobori¹, Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi Oshima¹ ○安藤 紗絵子¹, 後藤 悠斗¹, 根本 諒平¹, 山田豊和¹ ○吉野 紘子¹², Liu Shuyi¹, Haak Henrik¹, Wolf Martin¹, 熊谷崇¹ ○梅村 拓実¹, 黒川修¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1.社隆先端大, 2.金沢大院自然 1.横浜国大院工, 2. 筑波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工 1. 東北大通研 1. 明星大理工 1. JAIST, 2. Kanazawa Univ. 1. 千葉大院工 1. フリッツ・ハーバー研, 2.東工大理 1. 京大工
6 7 1 3/9(S ::00 1:15 1:30 1:15 1:30 1:145 1:30 1:145	一プ顕微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-7 9a-M112-7 9a-M112-10 9a-M112-11 9a-M112-11 9a-M112-11 9a-M112-12 at.) 16:00 - 18:00 9p-PA5-1 9p-PA5-2 E 9p-PA5-3	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) a Microscopy □頭講演 (Oral Presentation) M112 会場 (Room M112) nc-AFMで取得したエネルギー散逸像によるSi/Geの識別 プローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いたAg(111) 表面上の多層シリセンの構造解析 室温FM-AFMによるフラーレン分子の分子内構造観察 NO修飾探針の作製とSTM像シミュレーション 斥力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いたAuナノワイヤのヤング率方位依存性の測定 サブ10nmスケールにおける金ナノ接点の定量的弾性評価 カルコゲナイド合金Ge ₂ Sb ₂ Te ₅ におけるナノスケール光誘起相変化 光STMによる太陽電池評価におけるトンネル接合特性 ポルフィリン単分子膜への磁性原子吸着のSTM/STS研究 Cu(111)上のラセミ体イリジウム(III)錯体のSTM研究 ポスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force sensing system 金属基板上に真空スプレーした蛋白質分子/GNRのSTM 観察 局所光励起および検出のための極低温走査型プローブ顕微鏡の開発 APTと STM の併用による複合測定手法の高空間分解能化 II TiO ₂ (110)表面上に吸着した OH ₄ の異なる吸着状態のイメージング	○蔵大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹ ○小堀雄稀¹,石塚慧介¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○石塚慧介¹,小堀雄稀¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○谷口将太朗¹,吉岡克捋¹,片山郁文¹,嵐田雄介¹,吉田昭二²,重川秀実²,桑原正史³,武田淳¹條原和貴¹,腰世空¹,鈴木彩¹,○武内修¹,谷中淳¹,吉田昭二¹,重川秀実² ○山田豊和¹,山口昌孝¹,根本諒平¹,稲見栄一² ○(横田健太¹,根本諒平¹,荒本夏帆¹,中澤芳洋¹,クリューガービーター¹,唐津孝¹,山田豊和¹ ○片野論¹,笹嶋匠¹,上原洋一¹ ○(B)竹林朋哉¹,吉田健太郎¹,古川一暁¹ ○(D)Jiaqi Zhang¹, Yuki Kobori¹, Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi Oshima¹ ○安藤紗絵子¹,後藤悠斗¹,根本諒平¹,山田豊和¹ ○吉野紘子¹², Liu Shuyi¹, Haak Henrik¹, Wolf Martin¹,熊谷崇¹ ○梅村拓実¹,黒川修¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.北陸先端大, 2.金沢大院自然 1.横浜国大院工, 2. 筑波大数理物, 3. 産総研 1. 筑波大学数理物質 1. 千葉大院工, 2. 高知工科大シスエ 1. 千葉大院工 1. 東北大通研 1. 明星大理工 1. JAIST, 2. Kanazawa Univ. 1. 千葉大院工 1. アリッツ・ハーバー研, 2.東工大理 1. 京大工 1. 阪大院工
6 7 1 3/9(S ::00 1:15 1:30 1:15 1:30 1:145 1:30 1:145	マ類微鏡 / Prob at.) 9:00 - 12:00 9a-M112-1 9a-M112-2 9a-M112-3 9a-M112-4 9a-M112-5 9a-M112-7 9a-M112-7 9a-M112-10 9a-M112-11 9a-M112-11 9a-M112-11 9a-M112-12 at.) 16:00 - 18:00 9p-PA5-1 9p-PA5-2 E 9p-PA5-3	酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) e Microscopy □頭講漢 (Oral Presentation) M112 会場 (Room M112) nc-AFM で取得したエネルギー散逸像によるSi/Ge の識別 ブローブ顕微鏡で発生したフォノンのシミュレーション研究 原子間力顕微鏡を用いた Ag(111) 表面上の多層シリセンの構造解析 室温 FM-AFMによるフラーレン分子の分子内構造観察 NO 修飾探針の作製と STM 像シミュレーション F力誘起による銅表面上の一酸化窒素単分子の配向変化制御 TEM-周波数変調法を用いた Au ナノワイヤのヤング率方位依存性の測定 サブ10nm スケールにおける金ナノ接点の定量的弾性評価カルコゲナイド合金 Ge ₂ Sb ₂ Te ₅ におけるナノスケール光誘起相変化 光STM による太陽電池評価におけるトンネル接合特性ポルフィリン単分子膜への磁性原子吸着の STM/STS研究 Cu(111) 上のラセミ体イリジウム(III) 錯体の STM 研究 ボスター講演 (Poster Presentation) PA 会場 (Room PA) 走査トンネル顕微鏡による酸化グラフェンのナノスケール発光計測 2次元有機溶媒中の高分子鎖の形状観察 Mechanical properties of Pt nano-contacts measured by TEM combined with a frequency-modulation force sensing system 金属基板上に真空スプレーした蛋白質分子/GNRの STM 観察 局所光励起および検出のための極低温走査型プローブ顕微鏡の開発 APTと STM の併用による複合測定手法の高空間分解能化 II TiO ₂ (110) 表面上に吸着した OH _t の異なる吸着状態のイ	○蔵大輝¹,辻繁樹¹,富取正彦²,新井豊子¹ ○仙田康浩¹ 籔押慶祐¹,○杉本宜昭¹ ○田中暉之¹,小林圭¹,山田啓文¹ ○(M1)尾谷卓史¹,塩足亮隼¹,杉本宜昭¹ ○塩足亮隼¹,尾谷卓史¹,杉本宜昭¹ ○小堀雄稀¹,石塚慧介¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○石塚慧介¹,小堀雄稀¹,見寺悠伽²,富取正彦¹,新井豊子²,大鳥義文¹ ○谷口将太朗¹,古岡克将¹,片山郁文¹,嵐田雄介¹,吉田昭二²,重川秀実²,桑原正史³,武田淳¹徐原和貴¹,腰地空¹,鈴木彩¹,○武内修¹,谷中淳¹,吉田昭二¹,重川秀実² ○山田豊和¹,山口昌孝¹,根本諒平¹,稲見栄一² ○(横田健太¹,根本諒平¹,荒本夏帆¹,中澤芳洋¹,クリューガービーター¹,唐津孝¹,山田豊和¹ ○片野論¹,笹嶋匠¹,上原洋一¹ ○(B)竹林朋哉¹,吉田健太郎¹,古川一暁¹ ○(D)Jiaqi Zhang¹, Yuki Kobori¹, Keisuke Ishizuka¹, Masahiko Tomitori¹, Toyoko Arai², Yoshifumi Oshima¹ ○玄藤紗絵子¹,後藤悠斗¹,根本諒平¹,山田豊和¹ ○吉野紘子¹², Liu Shuyi¹, Haak Henrik¹, Wolf Martin¹,熊谷崇¹ ○梅村拓実¹,黒川修¹ ○宮崎雅大¹,温煥飛²,张全震¹,安達有輝¹,内藤賀公¹,李艶君¹,菅原康弘¹ ○宮崎雅大²,温煥飛²,张全震¹,安達有輝¹,内藤賀公¹,李艶君¹,菅原康弘¹	1.金沢大, 2.北陸先端大院 1.山口大院創成科学 1.東大新領域 1.京大工 1.東大新領域 1.東大新領域 1.北陸先端大先端, 2.金大院自然 1.北陸先端大先端, 2.金大院自然 1.横浜国大院工, 2.筑波大数理物, 3.産総研 1.筑波大学数理物質 1.千葉大院工, 2.高知工科大シスエ 1.千葉大院工 1.東北大通研 1.明星大理工 1.JAIST, 2.Kanazawa Univ. 1.千葉大院工 1.アリッツ・ハーバー研, 2.東工大理 1.京大工 1.阪大院工 1.底大院工 1.底大院工 1.産総研分析計測標準

		9p-PA5-10	マイクロ波を用いた振幅変調静電気力顕微鏡による半導 体試料の測定	○和泉 遼¹, 内藤 賀公¹, 李 艶君¹, 菅原 康弘¹	1.大阪大学
		9p-PA5-11	ヘテロダインFM方式光誘起力顕微鏡	○山西 絢介¹, 内藤 賀公¹, 李 艶君¹, 菅原 康弘¹	1. 阪大院工
		9p-PA5-12	qPlus センサを用いたイオン液体中 Bimodal AFM	○山田 祐也¹, 一井 崇¹, 宇都宮 徹¹, 杉村 博之¹	1.京大院工
			口頭講演 (Oral Presentation) W933会場 (Room W933)	0 (- 0) 1 1 1 1	
9:00	奨 E	10a-W933-1	STM study of soliton waves in a CO monolayer film	○ (DC)Nazriq Nana¹, Peter Krueger¹, Toyo Kazu Yamada¹	1.Chiba Univ.
9:15	奨 E	10a-W933-2	Multi-channel Characterization and Electrically-driven Migration of the Subsurface Hydrogen on Rutile TiO ₂ (110)-1 × 1 by nc-AFM/STM/KPFM at 78 K	(D)Quanzhen Zhang ¹ , Huan Fei Wen ¹ , Yuuki Adachi ¹ , Yoshitaka Naitoh ¹ , Yan Jun Li ¹ , Yasuhiro Sugawara ¹	1.Osaka Univ.
9:30	奨	10a-W933-3	原子間力顕微鏡を用いたルチル型 ${ m TiO_2}(110)$ 表面上の吸着酸素単原子の電荷状態の解明	〇安達 有輝 1 , 温 煥飛 1 , 張 全震 1 , 宮崎 雅人 1 , 内藤 賀 公^1 , 李 艶君 1 , 菅原 康弘 1	1. 阪大院工
9:45	奨	10a-W933-4	水吸着したアナターゼ型 ${ m TiO_2(001)}(1\times 4)$ 再構成表面の非接触原子間力顕微鏡測定	〇勝部 大樹 1 , 大野 真也 2 , 高柳 周平 2 , 尾島 章輝 1 , 前 田 元康 1 , 吉田 光 3 , 西 静佳 3 , 吉越 章隆 3 , 阿部 真之 1	1. 阪大院基礎工, 2. 横国大院工, 3. 原子力機構
10:00	奨	10a-W933-5	水素プラズマにより欠陥導入したグラファイトのTERS による評価	○ (M2) 甲斐 鈴菜¹, 原 正則¹, 吉村 雅満¹	1.豊田工大
10:15	奨	10a-W933-6	二重バイアス変調方式静電引力顕微鏡による空乏層容量 の周波数応答測定	○福澤 亮太¹, 高橋 琢二¹.2	1. 東大生研, 2. 東大ナノ量子機構
10:30	奨	10a-W933-7	分子修飾AFM探針を用いたアミノ酸-鉱物表面間の吸着 相互作用解析	○水野 聡¹, 矢野 隆章¹, 原 正彦¹	1.東工大物質理工
10:45	奨	10a-W933-8	走査型非線形誘電率顕微鏡による半導体キャリア分布観察のための絶縁膜付きカンチレバーの開発(2)	○高野 幸喜¹, 山末 耕平¹, 長 康雄¹	1. 東北大通研
3/11(Mon.)	9:00 - 11:45	口頭講演 (Oral Presentation) W933会場 (Room W933)		
9:00			走査型熱振動顕微鏡法における測定時間短縮	○戸野 博史¹, 小林 圭¹, 木村 邦子¹, 山田 啓文¹	1.京大工
9:15		11a-W933-2	非接触走査型非線形誘電率ポテンショメトリによる金属 表面の双極子誘起電位の観察	○山末 耕平¹, 長 康雄¹	1. 東北大通研
9:30		11a-W933-3	光ポンププローブSTM:光強度を変化させない遅延時間 変調法	○武内 修 ¹ , Wang Zi-Han ¹ , 茂木 裕幸 ¹ , Yoon Cheul Hyun ¹ , 谷中 淳 ¹ , 吉田 昭二 ¹ , 重川 秀実 ¹	1. 筑波大学数理物質
9:45		11a-W933-4	超常磁性探針を用いた交番磁気力顕微鏡による磁気記録 ヘッドの高空間分解能・磁場エネルギーイメージング	•	1. 秋田大理工
10:00		11a-W933-5	SSRM 測定の空間分解能の測定荷重依存性	○吉際 潤¹, 嵯峨 幸一郎¹	1.ソニーセミコン
10:15			探針同期による時間分解静電気力顕微鏡の開発	荒木 健人¹, 梶本 健太郎¹, 大山 浩¹, ○松本 卓也¹	1.阪大理
10:30			静電気力顕微鏡を用いた時間分解鏡面電位測定による有 機薄膜トランジスタのキャリア挙動可視化		1. 京大院工
10:45		11a-W933-8	炎エッチングによるnc-AFM/STM用金属探針の作製と 評価	○(B) 笈田 浩平¹, 丸山 天悟¹, 富取 正彦², 新井 豊子¹	1. 金沢大, 2. 北陸先端大
11:00		11a-W933-9		〇丸山 天悟 1 ,笈田 浩平 1 ,藏 大輝 1 ,富取 正彦 2 ,新井 豊子 1	1. 金沢大, 2. 北陸先端大院
11:15		11a-W933-10	温度可変原子間力顕微鏡を用いた臨界カシミール効果の 計測	○影島 賢巳¹	1.大阪電通大工
11:30		11a-W933-11	瞬時周波数法 FM-AFM を用いた固液界面水和構造計測	〇深澤 直人 1 , 木南 裕陽 1 , 寺田 匠吾 1 , 小林 $\pm ^1$, 山田 啓文 1	1.京大工
3/12((Tue.)	9:00 - 12:00	口頭講演 (Oral Presentation) W933会場 (Room W933)		
9:00		12a-W933-1	エンドサイトーシスを直接可視化する走査型イオンコン	○高橋 康史 ^{1,2} , 宮本 貴史 ¹ , 井田 大貴 ^{2,3} , 東 宏樹 ¹ , 周	1. 金沢大 WPI NanoLSI, 2.JST さきがけ, 3. 東北大院環
9:15		12a-W933-2	ダクタンス顕微鏡の開発 遷移金属ダイカルコゲナイドナノシートの触媒活性イ		境 1. 金沢大WPI NanoLSI, 2.JST さきがけ, 3.首都大理,
9:30		12a-W933-3	メージング ナノ電気化学セルを用いたリチウムイオン電池負極の規	田 耕充 ³ , 福間 剛士¹ ○熊谷 明哉 ^{1,2} , 佐藤 悠人 ² , 高橋 康史 ^{3,4} , 珠玖 仁 ² , 末	4. 東北大WPI AIMR 1. 東北大学 AIMR, 2. 東北大学, 3. 金沢大学 NanoLSI,
9:45			定構造領域におけるSEI形成過程の検証 表面電位制御下での水和構造計測に向けた液中AFM用電	永 智一 ²	4.JST さきがけ 1.京大工
			気化学セルの開発		
10:00		12a-W933-5	走査型プローブエレクトロスプレーイオン化法のサンプ リングイオン化過程の可視化	〇大塚 洋一 1 , 上堀内 武尉 1 , 竹内 彩 1 , 岩田 太 2 , 松本 卓也 1	1. 阪大理, 2. 静大工
10:15		12a-W933-6	エネルギー散逸による脂質膜の物性評価	○荒木 優希¹, 小林 圭¹, 山田 啓文¹	1. 京大工
10:30		12a-W933-7	フォースカーブ解析によるタンパク質分子のゆらぎ評価 の検討	○山本 悠樹¹, 木南 裕陽¹, 小林 圭¹, 山田 啓文¹	1.京大工
10:45 11:00			加湿大気中でのKBr(001)上の水膜層の観察 氷点下近傍における気相成長氷のFM-AFMによる表面構	○大江 弘晃¹, 新井 豊子¹ ○大谷 勝樹¹, 宮戸 祐治¹, 長嶋 剣², 阿部 真之¹	1. 金沢大 1. 阪大院基礎工, 2. 北大低温研
			造観察		
11:15 11:30			液体Ga中Au-Ga合金のAFM構造分析 高速3D-SFMを用いたカルサイト溶解過程における単分	村田 真¹, ○一井 崇¹, 宇都宮 徹¹, 杉村 博之¹ ○宮田 一輝¹, 足立 康輔¹, 宮澤 佳甫¹, Foster	1.京大院工 1.金沢大, 2.Aalto大
			子ステップ近傍の水和構造のその場観察	Adam ^{1, 2} , 福間 剛士 ¹	
11:45		12a-W933-12	三次元走査型顕微鏡を用いた分子吸着抑制能を有するシ リカナノ粒子の水和構造計測		1.金大WPI-NanoLSI, 2.ARC, 3.Univ. of Wollongong, 4.RMIT Univ., 5.BlueScope Innovation Lab.
7ビ-	- / <u>.</u> [杰用 / Bear	m Technology and Nanofabrication	L , ratiovsky frenc , ringgins witchaet	
			はプログラム冒頭にございます。		
			ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
		10p-PA6-1	低エネルギー低衝突径数のクーロン散乱の電子の波跡と 古典軌道	○西山 善郎¹, 但馬 文昭¹	1. 横国大教
		10p-PA6-2	多孔質様銀パイプと平面形状膜の複素屈折率の測定と SEM及びTEM観察	○但馬 文昭¹, 西山 善郎¹	1. 横国大教
		10p-PA6-3 10p-PA6-4	PEEK表面における細胞付着性のGCIB照射角度依存性 アセチルアセトンとGCIB照射を用いた金属膜ALEの最	○豊田 紀章 ¹ , 平岡 光 ¹ ○豊田 紀章 ¹ , 植松 功多 ¹	1. 兵庫県立大工
			適化		
		10p-PA6-5 10p-PA6-6	レーザーデトネーション超熱分子線の解離抑制 表面活性化接合法によるAl箔/AlN接合の接合強度評価	○横田 久美子¹, 大倉 僚太¹, 田川 雅人¹○堀川 昇太朗¹	1. 神戸大工 1. 大阪市大工
7.1 X 經	技術	/ X-ray techn		<u> </u>	1. // II/ III // II
		13:15 - 15:00	口頭講演 (Oral Presentation) M112 会場 (Room M112) シンチレータに STED 効果を誘起するための超広帯域光	篠崎 頁並 ¹	1 字都宜大院工 2 亩大米县子 2 埼工匠士 4 亩业十条
10.10			源の開発	丈雄⁴, ○東口 武史¹	元研
13:30			シンチレーターCe:LSO における STED 現象の検証	山 元太 ¹ , 坂上 和之 ⁴ , 若山 敏隆 ³ , 東口 武史 ²	1.東北大多元研, 2.宇都宮大工, 3.埼玉医科大, 4.東大光量子センター
13:45		10p-M112-3	サブナノ秒第2高調波レーザーパルスによる水の窓軟 X 線光源の高効率化		1.宇都宮大院工
14:00		10p-M112-4	200~900 eV域対応高回折効率軟X線W/C多層膜ラミナー型回折格子の設計	○小池 雅人¹, 羽多野 忠², アレキサンダー ピロジコフ¹, 寺内 正己², 林 信和³, 笹井 浩行³, 長野 哲也³	1.量研量子ビーム, 2.東北大多元研, 3.島津デバイス

14:15 14:30		2面斜入射対物ミラー設計解の大域的探索(2) フーコーナイフエッジと拡散板を用いたX線微分位相結	○(B)山下正汰¹,陳軍¹,豊田光紀¹ ○渡辺紀生¹,青木貞雄²¹	1.東京工芸大工 1.筑波大数物, 2.総合科学研究機構
14:45	*	製	○佐本 哲雄¹, 高野 秀和¹, 百生 敦¹	1. 東北大多元研
		ications and technologies of electron beams		
9:30	(Sat.) 9:30 - 12:00 9a-S223-1	口頭講演 (Oral Presentation) S223 会場 (Room S223) Fe ₂ O ₃ とシリコンを使ってのシリサイド生成過程のその 場観察	○石川 信博¹, 三井 正¹, 竹口 雅樹¹, 三石 和貴¹	1. 物材機構
9:45	E 9a-S223-2	Electro-plating and stripping of lead dendrites observed by operando scanning electron microscopy with an	○ Gada He¹, Yoshifumi Oshima¹, Masahiko Tomitori¹	1.JAIST
10:00	9a-S223-3	electrochemical cell 静電同軸円筒型分析器の収差特性の計算	渡邉 誠司¹, ○村田 英一¹, 浅井 泰尊¹, 六田 英治¹, 下山 宏¹	1.名城大理工
10:15	奨 9a-S223-4	量子電子光学テストベッドの基本特性の計測	○ (M1C) 奥田 優樹 ¹ , 高山 幸宏 ¹ , 三浦 茂男 ¹ , 岡本 洋 ¹	1. 秋田県大シ
10:30	9a-S223-5	極低温量子電子光学テストベッドの冷却性能測定	○ (M1C) 高山 幸宏¹, 奥田 優樹¹, 三浦 茂男¹, 岡本 洋¹	1.秋田県大シ
10:45 11:00	奨 9a-S223-6	休憩/Break フェムト秒レーザーで駆動するチップ陰極型電子源の開発	○上杉 祐貴¹,渡辺 和樹¹,佐藤 俊一¹	1.東北大多元研
11:15	奨 9a-S223-7	小型イオンエンジン用平面型グラフェン電子源の電子電 流特性評価	\bigcirc (M1) 古家 遼 1,2 , 村上 勝久 2 , 長尾 昌善 2 , 鷹尾 祥 典 1	1. 横国大, 2. 産総研
11:30 11:45	9a-S223-8 9a-S223-9	液体 Ga 被覆 W(011) 電界放射陰極の表面清浄処理 リン添加ダイヤモンド酸素終端表面からの放出電子のエ ネルギー分析		1.静岡大院工, 2.静岡大電研 1.静岡大, 2.国際基督教大, 3.産総研
		告形成技術 / Micro/Nano patterning and fabrication		
3/9(13:45	9p-S223-1	口頭講演 (Oral Presentation) S223 会場 (Room S223) マスクレス内面リソグラフィ用大パターン露光光学系の 検討	○堀内 敏行 ¹ , 秋谷 甲輔 ¹ , 今橋 和巳 ¹ , 鈴木 佑汰 ¹ , 岩 崎 順哉 ¹ , 柳田 明 ¹ , 小林 宏史 ¹	1.東京電機大
14:00	9p-S223-2	DTCOとしての進化的OPC: Fin-Tr SRAMのSNM特性に及ぼすラインエッジラフネ スとスリミング効果の計算機予測	○門田和也1	1.ナノサイエンスラボ
14:15	9p-S223-3	EUVリソグラフィにおけるレジスト露光・現像過程のモデリング	○佐々木 明¹, 石野 雅彦¹, 錦野 将元¹, 前川 康成¹	1.量研
14:30	9p-S223-4	電子線誘起による高分子薄膜における金属ナノ粒子の合成とバターニングに関する研究	〇山本 洋 μ^1 , 古澤 孝弘 2 , 田川 精 $-^2$, マリグリナー ジャンルイ 3 , モスタファビ メラン 3 , ベローニ ジャックリン 3	1. 量研, 2. 阪大産研, 3. バリ南大学
14:45 15:00	奨 9p-S223-5 9p-S223-6	電子線照射による直接的金属ナノバターニング 化学増幅型電子線レジストのバターン形成の確率論的シ ミュレーション	○ (M2) 水野 敬太¹, 小南 裕子¹, 小野 篤史¹ ○ (D) 香山 真範¹, 白井 正充¹, 川田 博昭¹, 平井 義 彦¹, 安田 雅昭¹	1. 静大院工 1. 大阪府大院工
15:15		休憩/Break	0.1 - 46.1 - 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	A Department of the state of
15:30	9p-S223-7	粗視化分子動力学シミュレーションによるブロック共重 合体ラメラ相のグラフォエピタキシ	〇山口 徹 ', 田中 弘隆 ', 滕原 聡 '	1.NTT物性基礎研
15:45	9p-S223-8	カ学高強度な複製モールドを目指した有機 - 無機ハイブ リッド材料の開発	○伊東 駿也¹,中村 貴宏¹,中川 勝¹	1. 東北大多元研
16:00	9p-S223-9	ナノインプリントにおけるレジスト収縮の補正(3D形状 補正)	渡辺 謙太 1 , \bigcirc 砂川 弘樹 1 , 山下 龍之介 2 , 安田 雅昭 1 , 大西 有希 2 , 川田 博昭 1 , 平井 義彦 1	1. 阪府大院工, 2. 東工大院工
16:15	9p-S223-10	モールドと基板間から生じる蛍光角度モアレの観察	〇吉田 拓真 1 ,落合 研斗 1 ,大沼 晶子 1 ,須藤 和恵 1 ,伊 東 駿也 1 ,中村 貴宏 1 ,中川 勝 1	1. 東北大多元研
16:30	9p-S223-11	ポーラスアルミナを用いたナノインプリントプロセスに よる撥水・撥油表面の形成と評価	○柳下崇¹,白野 直斗¹,益田 秀樹¹	1.首都大都市環境
16:45	9p-S223-12	無電解Niメッキを用いた石英ガラス深掘りエッチング用 マスクの作製		1.大府大工
		i構造計測、9.5 新機能材料・新物性のコードシェアセッシ	$_{ m 3}$ $ imes$ / Code-sharing Session of 7.4 $\&$ 9.5	
9:00	10a-S423-1	口頭講演 (Oral Presentation) S423 会場 (Room S423) ラボラトリー軟X線XAFSによるMgB ₂ 薄膜中のMgの化 学状態分析	○柏倉 隆之¹	1.宇大院工
9:15	10a-S423-2	Auアレイ上増大場のRCWAによるシミュレーション	○鈴木 裕史¹, 工藤 蓮太郎²	1. 弘前大院, 2. 弘前大
9:30	奨 10a-S423-3	Ag形ゼオライトのPLにおけるクラスター崩壊時間	〇岡 良樹 1 , 山内 一真 2 , 鈴木 裕史 2 , 米谷 陸杜 2 , 宮永 崇史 2	
9:45	奨 10a-S423-4	Ag形ゼオライトのAgクラスター崩壊過程におけるその 場PL・XAFS測定	○ (M1) 山内 一真¹, 鈴木 裕史¹, 米谷 陸人¹, 宮永 崇史¹	
10:00	奨 10a-S423-5	X線自由電子レーザーによる時間分解共鳴磁気光学カー 効果測定でみる Co/Pt 薄膜の磁化ダイナミクス	〇山本 航平 $^{1.2}$, El Moussaoui Souliman 1 , 平田 靖 透 $^{1.2}$, 山本 達 $^{1.2}$, 久保田 雄也 $^{3.4}$, 大和田 成起 $^{3.4}$, 矢橋 牧名 $^{3.4}$, 松田 巌 $^{1.2}$, 関 剛斎 5 , 高梨 弘毅 5 , 和達 大 樹 $^{1.2}$	1. 東大物性研, 2. 東大理, 3. JASRI, 4. 理研, 5. 東北大金研
10:15	10a-S423-6	コバルトフタロシアニンシートの合成と構造	○大倉 秀亮 1 , 萩原 政幸 2 , 木田 孝則 2 , 澤田 祐也 2 , 鎌田 憲彦 1 , 本多 善太郎 1	1.埼玉大院理工, 2. 阪大先端強磁場
10:30 10:45	10a-S423-7	休憩/Break リチウムを挿入した多孔質鉄化合物の磁性	○藤田 恵理子¹, 萩原 政幸², 木田 孝則², 澤田 祐也²,	1. 埼玉大院理工, 2. 阪大先端強磁場
11:00 11:15	10a-S423-8 10a-S423-9	金属ナノ構造担持プロトン伝導体の光応答 酸化物粒子とEDTA錯体水溶液スラリー由来の酸化物納	鎌田 憲彦¹, 本多 善太郎¹ ○福島 知宏¹, 村越 敬¹ ○齊藤 笹弘¹ 中村 淳²¹ 小松 啓志¹ 齊藤 季俊¹	1.北大院理 1.長岡技科大, 2.中部キレスト
11:15		図に初他するEDIA 新体水俗似スプリー田来の酸に物剤 豆型構造体の形態 Characteristic Properties of Macrocyclic Functional	○ 戶際 馬弘 ,中刊 存 ,小松 谷志 , 肩膝 芳夜 ○ (DC)Brian Adala Omondi¹, Hirotaka Okabe¹,	1.
		Hydrogels for Selective Heavy Metal Adsorption X-ray Standing Wave Imaging and Its Application in	Yoshiki Hidaka ¹ , Kazuhiro Hara ¹ (D)Wenyang Zhao ^{1,2} , Kenji Sakurai ^{2,1}	1.Tsukuba Univ., 2.NIMS
	· ·	Langmuir-Blodgett Films		
3/100 13:30		口頭講演 (Oral Presentation) S423 会場 (Room S423) 「講演奨励賞受賞記念講演」 第一原理計算と遺伝的アルゴリズムによる有機 - 無機ハイブリッド材料の状態図予測	〇横山 智康 1, 大内 暁 1, 井垣 恵美子 1, 笹川 崇男 2	1.パナソニック(株), 2.東工大
13:45 14:00		イフリット材料の状態図 予測 第一原理計算による合金 Ge-Sb-Te 相変化メモリの解析 XANAMで観測した Ge 表面上 X線誘起力場変化の解析	○野原 弘晶 1 ,白川 裕規 1 ,洗平 昌晃 $^{1.2}$,白石 賢二 $^{1.2}$ ○鈴木 秀士 1 ,向井 慎吾 2 ,田 旺帝 3 ,野村 昌治 4 ,朝倉 清高 2	

	10p-S423-4	STEMモアレフリンジ法によるInP/InGaAs界面歪み分布計測	○陳 桐民¹, 大島 義文¹, 赤堀 誠志¹	1.北陸先端大
14:30	10p-S423-5	可搬型中性子反射率イメージャーの開発	○桜井 健次 ¹, 水沢 まり ². ¹, 岩元 めぐみ ¹	1. 物材機構, 2.CROSS
14:45 15:00	10p-S423-6	休憩/Break 逆光電子ホログラフィーを用いた強誘電体酸窒化物の局 所構造解析	○山本 裕太¹, 木村 耕治¹, Artoni Ang¹, 松下 智裕², 廣瀬 靖³, 林 好一¹	1.名古屋工業大学, 2.高輝度光科学研究センター, 3.東京大学
15:15	10p-S423-7		○豐田智史 ¹ , 框野 雄太 ² , 山本 知樹 ² , 首藤 大器 ³ , 野 瀬 惣市 ³ , 吉村 真史 ³ , 住田 弘祐 ⁴ , 三根生 晋 ⁴ , 町田 雅 武 ⁸ , 吉越 章隆 ⁶ , 横山 和司 ²	1.京都大学, 2.兵庫県大, 3.SP8 サービス, 4.マツダ,
15:30 15:45		室温ハーフメタルCo ₂ TiSnの単結晶育成と物性評価 強いスピン軌道相互作用を持つミスフィット層状Bi化合 物の単結晶育成と超伝導特性評価		1.東工大フロンティア研 1.東工大フロンティア研
16:00 16:15	10p-S423-10	休憩/Break 超伝導体Y ₂ O ₂ Biにおける元素置換効果	寺門 恭兵 1 , \bigcirc 河底 秀幸 1 , 松本 倖汰 1 , 福村 知昭 $^{1.2}$	1.東北大理, 2.東北大WPI-AIMR & Core Research Cluster
16:30	奨 10p-S423-11	過剰酸素導入による層状オキシニクタイド化合物 La ₂ O ₂ Biの高移動度p型伝導	○松本 倖汰¹,河底 秀幸¹,福村 知昭¹.²	1. 東北大理, 2. 東北大WPI-AIMR & Core Research Cluster
16:45	奨 10p-S423-12	2種類の原子を加えたHoneycombナノリボンにおける2 次元量子スピンホール相の研究	○伊藤 蓮¹, 近藤 憲治¹	1.北大電子研
17:00	<u> </u>	スピン液体候補物質 OsCl₃の合成と粉末 X線回折プロファイルのその場観察	〇高瀬 浩一 1 ,出村 郷志 1 ,中川 広野 2 ,山崎 篤志 2 ,森 吉 千佳子 3 ,黒岩 芳弘 3	1.日大理工, 2.甲南大理工, 3.広大院理
	ンビーム一般 / Ior Sun.) 9:30 - 11:30	beams 口頭講演 (Oral Presentation) S224会場 (Room S224)	_	_
9:30	10a-S224-1	伝統的イオン衝突シミュレーションプログラムの改善手 法の検討	○青木 学聡¹	1. 京都大
9:45	10a-S224-2	高エネルギーイオン入射によるSiでの生成電荷分布計測(II)	〇阿保智 1 , 谷健 $-^{1}$, 若家富士男 1 , 小野田 \mathbb{Z}^{2} , 山下 隼人 1,3 , 宮戸 祐治 1 , 阿部 真之 1	1.阪大院基礎工, 2.量研機構, 3.JST さきがけ
10:00	10a-S224-3	Au-Si共晶合金イオン源を用いたイオン注入によるシリコン酸化膜内での金ナノ粒子の形成と評価	○岡西 裕太¹, 一宮 正義¹, 柳沢 淳一¹	1. 滋賀県立大工
10:15	10a-S224-4	ビームプラズマが低エネルギーイオンビームの発散角へ 与える影響	〇早川 太朗 1 , 永尾 友 $-^1$, 井内 裕 1 , 三上 隆司 1	1.日新イオン
10:30	10a-S224-5	反応性ガスクラスターインジェクションを用いた斜め2 方向エッチングによる3D構造の作成(II)	○瀬木 利夫 1 , 山本 洋揮 2 , 古澤 孝弘 3 , 荘所 正 4 , 小池 国彦 4 , 青木 学聡 5 , 松尾 二郎 1	1. 京大院工, 2. 量研, 3. 阪大産研, 4. 岩谷産業, 5. 京大メ ディアセンター
10:45	10a-S224-6	Laser-SNMSを用いたバナジウムの共鳴イオン化に関する研究		
11:00	10a-S224-7	高分子のSIMS分析に向けたエレクトロスプレーイオン源の開発	○(M2) 山田 周平¹, 瀬木 利夫¹, 青木 学聡², 松尾 二郎¹	1.京大院工,2.京大メディアセンター
11:15	10a-S224-8	ミストの付加によるポリマーのイメージング分解能の向上	〇松田 大輝 ¹ , 瀬木 利夫 ² , 青木 学聡 ¹ , 松尾 二郎 ¹	1.京大院工, 2.京大メディア
		、7.6 原子・分子線およびビーム関連新技術のコードシェス	アセッション / Code-sharing Session of 6.5 & 7.6	
3/11(M 10:30		口頭講演 (Oral Presentation) S224会場 (Room S224) スピン偏極イオン散乱分光法による Ge/Fe(100) 界面の 解析	○鈴木 拓¹	1. 物材機構
10:45 11:00	11a-S224-2 11a-S224-3	加熱処理による SrTiO ₃ (001) 表面の電子状態変化 リアルタイム光電子分光による水吸着二酸化チタン表面	高柳周平¹,○大野真也¹,勝部大樹³,尾島章輝³,前	1.立命館大理工 1.横国大院工, 2.原子力機構, 3.阪大基礎工
11:15	11a-S224-4	の評価 グラフェンを利用した絶縁体試料のX線吸収分光と光電	田 元康 ³ , 吉田 光 ² , 西 静佳 ² , 阿部 真之 ³ 〇鈴木 哲 ¹ , 春山 雄一 ¹	1. 兵庫県立大高度研
11.13	110 0221 1			
11:30		子分光 高エネルギー分解能 REELS 装置を用いた可視から超軟 X		1. 物材機構, 2. 筑波大
11:30 11:45	11a-S224-5 11a-S224-6	高エネルギー分解能REELS装置を用いた可視から超軟X 線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110)	樹 ¹ , 柳原 英人 ²	
11:30 11:45 8 プラ	11a-S224-5 11a-S224-6 ズマエレクト	高エネルギー分解能REELS装置を用いた可視から超軟X 線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) ロニクス / Plasma Electronics	樹 ¹ , 柳原 英人 ²	
11:30 11:45 8 プラ シンポシ	11a-S224-5 11a-S224-6 ズマエレクト ^ジ ウムのプログラム	高エネルギー分解能REELS装置を用いた可視から超軟X 線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110)	樹 ¹ , 柳原 英人 ²	
11:30 11:45 8 プラ シンポシ 8.1 プラ	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / 「	高エネルギー分解能 REELS 装置を用いた可視から超軟 X 線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronics はプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323 会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイ	樹 1 ,柳原 英人 2 \bigcirc 津田 泰孝 1 ,植田 寛和 2 ,倉橋 光紀 3 ,岡田 美智雄 $^{1.4}$	
11:30 11:45 8 プラ シンポシ 8.1 プラ 3/9(Sa	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / F at.) 13:30 - 18:00	高エネルギー分解能 REELS 装置を用いた可視から超軟X 線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronics はプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Arブラズマの電子温度・密度診断 発光分光計測よる大気圧非平衡Arブラズマの電子温度・	樹 , 柳原 英人 2	1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構
11:30 11:45 8 プラ シンポシ 8.1 プラ 3/9(Sa 13:30	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / I at.) 13:30 - 18:00 9p-W323-1	高エネルギー分解能 REELS 装置を用いた可視から超軟 X 線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronics はプログラム冒頭にございます。 lasma production and diagnostics 口頭講演 (Oral Presentation) W323 会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電 Ar ブラズマの電子温度・密度診断 発光分光計測よる大気圧非平衡 Ar ブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film	樹¹, 柳原 英人² ○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴ ○山崎 文徳¹, 根津 篤¹, 赤塚 洋¹ ○大西 広¹, 根津 篤², 赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai²,	1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学
11:30 11:45 8 プラ シンポシ 8.1 プラ 3/9(S ₂ 13:30	11a-S224-5 11a-S224-6 ズマエレクト プウムのプログラム ズマ生成・診断 / J at.) 13:30 - 18:00 9p-W323-1 9p-W323-2	高エネルギー分解能REELS装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronics はプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323 会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Ar プラズマの電子温度・密度診断 発光分光計測よる大気圧非平衡Ar プラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラ	樹¹, 柳原 英人² ○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴ ○山崎 文徳¹, 根津 篤¹, 赤塚 洋¹ ○大西 広¹, 根津 篤², 赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B)DAISUKE OGAWA¹	1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院
11:30 11:45 8 プラ シンポシ 8.1 プラ 3/9(S _i 13:30 13:45	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / / at.) 13:30 - 18:00 9p-W323-1 9p-W323-2	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronicsはプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323 会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電 Ar プラズマの電子温度・密度診断発光分光計測よる大気圧非平衡 Ar プラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズマ活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放	樹¹, 柳原 英人² ○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴ ○山崎 文徳¹, 根津 篤¹, 赤塚 洋¹ ○大西 広¹, 根津 篤², 赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B) DAISUKE OGAWA¹ ○呉 準席¹, 白藤 立¹, 八田 章光², 伊藤 昌文³	1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2. Nagoya Industrial Sci. Res. Inst.
11:30 11:45 8 プラシンボジ 3/9(S ₂ 13:30 13:45 14:00	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / f at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronicsはプログラム冒頭にございます。 Plasma production and diagnostics ロ頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電 Ar ブラズマの電子温度・密度診断発光分光計測よる大気圧非平衡 Ar ブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズマ活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS生成制	樹¹, 柳原 英人² ○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴ ○山崎 文徳¹, 根津 篤¹, 赤塚 洋¹ ○大西 広¹, 根津 篤², 赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B) DAISUKE OGAWA¹ ○呉 準席¹, 白藤 立¹, 八田 章光², 伊藤 昌文³ 細田 崚平¹, 白井 直機¹, 杤久保 文嘉², ○佐々木 浩一¹ ○(M2) 小川 広太郎¹, 矢島 英樹², 古田 寛¹, 八田 章	1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2. Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工
11:30 11:45 8 プラシンボジ 8.1 ブラ 3/9(S: 13:30 13:45 14:00 14:15	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / I at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronicsはプログラム冒頭にございます。 Plasma production and diagnostics コ頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Ar ブラズマの電子温度・密度診断発光分光計測よる大気圧非平衡Ar ブラズマの電子温度・電子密度の導出と比較In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズマ活性水作製NaCI 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種	樹¹, 柳原 英人² ○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴ ○山崎 文徳¹, 根津 篤¹, 赤塚 洋¹ ○大西 広¹, 根津 篤², 赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B)DAISUKE OGAWA¹ ○呉 準席¹, 白藤 立¹, 八田 章光², 伊藤 昌文³ 細田 崚平¹, 白井 直機¹, 杤久保 文嘉², ○佐々木 浩一¹ ○(M2) 小川 広太郎¹, 矢島 英樹², 古田 寛¹, 八田 章光²	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2.Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン
11:30 11:45 8 プラシンボラ 8.1 ブラ 3/9(Si 13:30 13:45 14:00 14:15 14:30	11a-S224-5 11a-S224-6 ズマエレクト デウムのプログラム ズマ生成・診断 / 1 at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5 奨 9p-W323-6	高エネルギー分解能REELS装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronicsはプログラム冒頭にございます。 lasma production and diagnostics ロ頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Arブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズマ活性水作製NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS生成制御大気圧プラズマの空間アフターグローと相互作用する気	樹¹, 柳原 英人² ○津田 泰孝¹, 植田 寛和², 倉橋 光紀³, 岡田 美智雄¹.⁴ ○山崎 文徳¹, 根津 篤¹, 赤塚 洋¹ ○大西 広¹, 根津 篤², 赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B)DAISUKE OGAWA¹ ○呉 準席¹, 白藤 立¹, 八田 章光², 伊藤 昌文³ 細田 崚平¹, 白井 直機¹, 杤久保 文嘉², ○佐々木 浩一¹ ○(M2) 小川 広太郎¹, 矢島 英樹², 古田 寛¹, 八田 章光²	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2. Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工
11:30 11:45 8 プラシンボジ 3/9(S _t 13:30 13:45 14:00 14:15 14:30 14:45 15:00	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / I at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5 奨 9p-W323-6 奨 9p-W323-7 奨 9p-W323-8 奨 9p-W323-8	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronicsはプログラム冒頭にございます。 プロ類講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Ar ブラズマの電子温度・密度診断発光分光計測よる大気圧非平衡Ar ブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズマ活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS生成制御大気圧プラズマの空間アフターグローと相互作用する気液界面における表面張力の計測 二周波重畳容量結合プラズマ基本特性の実験的評価体態/Break スロット型大気圧マイクロ波プラズマの時空間分解計測シミュレーションによる二周波重畳容量結合プラズマの	樹¹,柳原 英人² ○津田 泰孝¹,植田 寛和²,倉橋 光紀³,岡田 美智雄¹.⁴ ○山崎 文徳¹,根津 篤¹,赤塚 洋¹ ○大西 広¹,根津 篤²,赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B)DAISUKE OGAWA¹ ○呉 準席¹,白藤 立¹,八田 章光²,伊藤 昌文³ 細田 崚平¹,白井 直機¹,杤久保 文嘉²,○佐々木 浩一¹ ○(M2)小川 広太郎¹,矢島 英樹²,古田 寛¹,八田 章 光¹ ○(M1) 金子 拓真¹,白井 直機¹,佐々木 浩一¹ ○(M1) 三矢 晶洋¹,森山 誠¹,鈴木 陽香¹,豊田 浩孝¹ ○(M1) 馬場 賀己¹,鈴木 陽香¹,豊田 浩孝¹ ○(D) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2.Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工 1. 名大工 1. 名大工
11:30 11:45 8 プラシンボジ 8.1 ブラ 3/9(S: 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	11a-S224-5 11a-S224-6 ズマエレクト デウムのプログラム ズマ生成・診断 / 「at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5 奨 9p-W323-7 奨 9p-W323-7 奨 9p-W323-9 奨 9p-W323-10	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronicsはプログラム冒頭にございます。 Plasma production and diagnostics コ頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電 Ar ブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズで活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS生成制御大気圧プラズマの空間アフターグローと相互作用する気液界面における表面張力の計測 二周波重畳容量結合プラズマ基本特性の実験的評価体態/Break スロット型大気圧マイクロ波プラズマの時空間分解計測シミュレーションによる二周波重畳容量結合プラズマの基本特性解析 反応性プラズマにおける相互作用揺らぎの時空間構造の	樹¹,柳原 英人² ○津田 泰孝¹,植田 寛和²,倉橋 光紀³,岡田 美智雄¹.⁴ ○山崎 文徳¹,根津 篤¹,赤塚 洋¹ ○大西 広¹,根津 篤²,赤塚 洋³ Mizuki Hanajima¹, Kejji Nakamura¹, Hideo Sugai²,○(B)DAISUKE OGAWA¹ ○吳 準席¹,白藤 立¹,八田 章光²,伊藤 昌文³ 細田 崚平¹,白井 直機¹,杤久保 文嘉²,○佐々木浩一¹ ○(M2)小川 広太郎¹,矢島 英樹²,古田 寬¹,八田 章光¹ ○(M1) 至子 拓真¹,白井 直機¹,佐々木 浩一¹ ○(M1) 三矢 晶洋¹,森山 誠¹,鈴木 陽香¹,豊田 浩孝¹ ○(M1) 馬場 賀己¹,鈴木 陽香¹,豊田 浩孝¹ ○(D) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(財 清孝・一)・一、田下 大輔²,板垣 奈	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2.Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工 1. 名大工 1. 名大工 1. 名大工
11:30 11:45 8 プラ シンボラ 3/9(S: 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断/f at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5 奨 9p-W323-7 奨 9p-W323-7 奨 9p-W323-8 奨 9p-W323-9 奨 9p-W323-10 9p-W323-11	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コークス / Plasma Electronics はプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323 会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Ar ブラズマの電子温度・密度診断発光分光計測よる大気圧非平衡Ar ブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧ブラズマジェットを用いたブラズマ活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS生成制御 大気圧ブラズマの空間アフターグローと相互作用する気液界面における表面張力の計測 二周波重量容量結合プラズマ基本特性の実験的評価体憩/Break スロット型大気圧マイクロ波プラズマの時空間分解計測シミュレーションによる二周波重畳容量結合プラズマの基本特性解析 反応性プラズマにおける相互作用揺らぎの時空間構造の周波数依存性 【注目講演】Ar ブラズマ中の光捕捉微粒子を用いたシー	樹¹,柳原 英人² ○津田 泰孝¹,植田 寛和²,倉橋 光紀³,岡田 美智雄¹.⁴ ○山崎 文徳¹,根津 篤¹,赤塚 洋¹ ○大西 広¹,根津 篤²,赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai²,○(B)DAISUKE OGAWA¹ ○呉 準席¹,白藤 立¹,八田 章光²,伊藤 昌文³ 細田 崚平¹,白井 直機¹,杤久保 文嘉²,○佐々木 浩一¹ ○(M2)小川 広太郎¹,矢鳥 英樹²,古田 寬¹,八田 章光¹ ○(M1) 金子 拓真¹,白井 直機¹,佐々木 浩一¹ ○(M1) 三矢 晶洋¹,森山 誠¹,鈴木 陽香¹,豊田 浩孝¹ ○(M1) 馬場 賀己¹,鈴木 陽香¹,豊田 浩孝¹ ○(D) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(政 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(丁) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(田 護大郎¹,周 靭¹,大友 洋²,址下 大輔¹,板垣 奈穂,古関一憲¹,白谷 正治¹	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2. Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工 1. 名大工 1. 名大工 1. 九大シス情
11:30 11:45 8 プラシンボジ 3/9(S ₂ 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00	11a-S224-5 11a-S224-6 ズマエレクト デウムのプログラム ズマ生成・診断 / f at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5 奨 9p-W323-6 奨 9p-W323-7 奨 9p-W323-7 奨 9p-W323-1 9p-W323-1 9p-W323-11	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コークス / Plasma Electronics はプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Ar プラズマの電子温度・密度診断発光分光計測よる大気圧非平衡Ar プラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラズマ活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS生成制御大気圧プラズマの空間アフターグローと相互作用する気液界面における表面張力の計測 二周波重畳容量結合プラズマ基本特性の実験的評価体憩/Break スロット型大気圧マイクロ波プラズマの時空間分解計測シミュレーションによる二周波重畳容量結合プラズマの基本特性解析 反応性プラズマにおける相互作用揺らぎの時空間構造の周波数依存性 【注目講演】Ar プラズマ中の光捕捉微粒子を用いたシース近傍電界計測法の開発窒素雰囲気下の直流アークにおけるタングステン陰極の	樹¹,柳原 英人² ○津田 泰孝¹,植田 寛和²,倉橋 光紀³,岡田 美智雄¹⁴ ○ 大西 広¹,根津 篤²,赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○ (B) DAISUKE OGAWA¹ ○ 呉 準席¹,白藤 立¹,八田 章光²,伊藤 昌文³ 細田 峻平¹,白井 直機¹,析久保 文嘉²,○佐々木浩一¹ ○ (M2) 小川 広太郎¹,矢鳥 英樹²,古田 寛¹,八田 章光¹ ○ (M1) 金子 拓真¹,白井 直機¹,佐々木 浩一¹ ○ (M1) 三矢 晶洋¹,森山 誠¹,鈴木 陽香¹,豊田 浩孝¹ ○ (M1) 馬場 賀己¹,鈴木 陽香¹,豊田 浩孝¹ ○ (1) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○ (1) 森山 誠¹,三矢 晶洋²,山下 大輔¹,板垣 奈穂¹,古関一憲²,白谷 正治¹ ○ 宮田 健太郎¹,大友 洋²,鎌滝 晋礼²,板垣 奈穂²,古 関一憲²,白谷 正治²	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2. Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工 1. 名大工 1. 名大工 1. 九大シス情 1. 九大シス情
11:30 11:45 8 プラシンボジ 3/9(S: 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / f at.) 13:30 - 18:00 9p-W323-1 9p-W323-2 9p-W323-3 9p-W323-4 9p-W323-5 奨 9p-W323-7 奨 9p-W323-7 奨 9p-W323-7 奨 9p-W323-1 9p-W323-11 9p-W323-12 9p-W323-13	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronics はプログラム冒頭にございます。 Plasma production and diagnostics 口頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Arブラズマの電子温度・密度診断発光分光計測よる大気圧非平衡Arブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたプラスで打性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS 生成制御大気圧ブラズマの空間アフターグローと相互作用する気液界面における委員結合プラズマ基本特性の実験的評価体想/Breakスロット型大気圧マイクロ波プラズマの時空間分解計測シミュレーションによる二周波重畳容量結合プラズマの基本特性解析反応性プラズマにおける相互作用揺らぎの時空間構造の周波数依存性 【注目講演】Arブラズマ中の光捕捉微粒子を用いたシース技術電界計測法の開発窒素雰囲気下の直流アークにおけるタングステン陰極の消耗加速機構 鉄とフラーレンのイオンが共存する ECR プラズマの生成	樹¹,柳原 英人² ○津田 泰孝¹,植田 寛和²,倉橋 光紀³,岡田 美智雄¹⁴ ○大西 広¹,根津 篤²,赤塚 洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B)DAISUKE OGAWA¹ ○吳 準席¹,白藤 立¹,八田 章光²,伊藤 昌文³ 細田 崚平¹,白井 直機¹,杤久保 文嘉²,○佐々木 浩一¹ ○(M2) 小川 広太郎¹,矢島 英樹²,古田 寛¹,八田 章光¹ ○(M1) 金子 拓真¹,白井 直機¹,佐々木 浩一¹ ○(M1) 三矢 晶洋¹,森山 誠¹,鈴木 陽香¹,豊田 浩孝¹ ○(M1) 馬揚 賀己¹,鈴木 陽香¹,豊田 浩孝¹ ○(1) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(1) 森山 誠¹,三矢 晶洋¹,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(1) 森山 誠¹,三矢 晶洋²,中原 尚哉¹,鈴木 陽香¹,豊田 浩孝¹ ○(1) 森山 誠¹,大友 洋²,址下 大輔¹,板垣 奈穂',古 関一憲²,白谷 正治² ○富田 健太郎¹,大友 洋²,鎌滝 晋礼²,板垣 奈穂²,古 関一憲²,白谷 正治² ○田中学¹,吉田 匡希¹,渡辺 隆行¹,清水 誠一郎²,藤井浩二² ○加藤 裕史¹,大西 広司¹,濱田 滉太¹,竹田 樹人¹,奥	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2.Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工 1. 名大工 1. 名大工 1. 九大シス情 1. 九大於工, 2. 日本タングステン
11:30 11:45 8 プラシンボジ 3/9(S: 13:30 13:45 14:00 14:15 14:30 15:15 15:30 15:45 16:00 16:15	11a-S224-5 11a-S224-6 ズマエレクト ジウムのプログラム ズマ生成・診断 / j at.) 13:30 - 18:00 9p-W323-1 9p-W323-3 9p-W323-3 9p-W323-5 奨 9p-W323-6 奨 9p-W323-7 奨 9p-W323-7 奨 9p-W323-1 9p-W323-12 9p-W323-11 9p-W323-12	高エネルギー分解能 REELS 装置を用いた可視から超軟X線帯の酸化鉄の誘電関数評価酸素分子解離吸着の立体化学における合金効果: Cu(110) vs Cu ₃ Au(110) コニクス / Plasma Electronics はプログラム冒頭にございます。 Masma production and diagnostics 口頭講演 (Oral Presentation) W323会場 (Room W323) 衝突輻射モデルに基づく発光分光計測による低気圧マイクロ波放電Ar ブラズマの電子温度・密度診断発光分光計測よる大気圧非平衡Ar ブラズマの電子温度・電子密度の導出と比較 In-situ Measurements of Electron Density and Film Thickness by Curling Probe高電圧直流パルス大気圧プラズマジェットを用いたブラズマ活性水作製 NaCl 水溶液を電極とした大気中へリウム直流グロー放電における負イオン種窒素シースガス流への微量酸素添加による RONS 生成制御大気圧ブラズマの空間アフターグローと相互作用する気液界面における表面張力の計測 二周波重畳容量結合プラズマ基本特性の実験的評価体態/Break スロット型大気圧マイクロ波プラズマの時空間分解計測シミュレーションによる二周波重畳容量結合プラズマの基本特性解析反応性ブラズマにおける相互作用揺らぎの時空間構造の周波数依存性 【注目講演】Ar ブラズマ中の光捕捉微粒子を用いたシース労電電界計測法の開発 窒素雰囲気下の直流アークにおけるタングステン陰極の消耗加速機構	樹¹,柳原英人² ○津田泰孝¹,植田寛和²,倉橋光紀³,岡田美智雄¹⁴ ○九西広¹,根津篤²,赤塚洋³ ○大西広¹,根津篤²,赤塚洋³ Mizuki Hanajima¹, Keiji Nakamura¹, Hideo Sugai², ○(B)DAISUKE OGAWA¹ ○吳準席¹,白藤立¹,八田章光²,伊藤昌文³ 細田崚平¹,白井直機¹,杤久保文嘉²,○佐々木浩一¹ ○(M2)小川広太郎¹,矢鳥英樹²,古田寛¹,八田章光² ○(M1) 至子拓真¹,白井直機¹,佐々木浩一¹ ○(M1) 三矢晶洋¹,森山誠¹,鈴木陽香¹,豊田浩孝¹ ○(M1) 馬場賀己¹,鈴木陽香¹,豊田浩孝¹ ○(D)森山誠¹,三矢晶洋¹,中原尚哉¹,鈴木陽香¹,豊田浩孝¹ ○(節)森山誠¹,三矢晶洋¹,中原尚哉¹,鈴木陽香¹,豊田浩孝² ○(節)森山誠¹,三矢晶洋¹,中原尚哉¹,鈴木陽香¹,豊田浩孝² ○(田世太郎²,大友洋²,鎌滝晋礼²,板垣奈穂²,古閑一憲²,白谷正治² ○宮田健太郎²,大友洋²,鎌滝晋礼²,板垣奈穂²,古閑一憲²,白谷正治² ○田中学¹,吉田匡希¹,渡辺隆行¹,清水誠一郎²,藤井浩二² ○加藤裕史¹,大西広司¹,濱田滉太¹,竹田樹人¹,奥村一起¹,大森貴之¹	 1. 阪大理, 2. 原子力機構, 3. 物材機構, 4. 阪大放射線機構 1. 東京工業大学 1. 東工大工, 2. 東工大技術部, 3. 東工大研究院 1. Chubu University, 2. Nagoya Industrial Sci. Res. Inst. 1. 大阪市大工, 2. 高知工大工, 3. 名城大理工 1. 北大工, 2. 首都大システムデザイン 1. 高知工科大学, 2. オーク製作所 1. 北大工 1. 名大工 1. 名大工 1. 名大工 1. 九大シス情 1. 九大院工, 2. 日本タングステン 1. 阪大院工

17:30	9p-W323-16	2.45GHz ECR プラズマへの 4-6GHz Xモード導入実験の 最適化	○濱田 滉太¹, 大西 広司¹, 竹田 樹人¹, 大森 貴之¹, 奥村 一起¹, 加藤 裕史¹	1. 阪大院工
17:45	9p-W323-17	低エネルギーXeイオンビーム照射による衛星材料の損傷	○竹田 樹人¹, 大西 広司¹, 濱田 滉太¹, 奥村 一起¹, 大	1. 阪大院工
		評価のための引き出し電極・ビームラインの改良	森貴之¹,加藤裕史¹	
	9:30 - 11:30 12a-PB1-1	ポスター講演 (Poster Presentation) PB 会場 (Room PB) マイクロ波アンテナへの DC パルス電圧印加による絶縁	○	1 夕十工 9 神戸制細形
		表面へのイオン衝撃	浩孝1	
	12a-PB1-2	鉄内包フラーレン気層合成のための誘導加熱鉄蒸発源に おける鉄蒸発量制御の改良	○大森 貴之¹, 大西 広司¹, 竹田 樹人¹, 濱田 滉太¹, 奥村 一起¹, 加藤 裕史¹	1. 阪大院工
	12a-PB1-3	ECRIS プラズマの多極磁場と引き出し電極の位置の最適	〇奥村 一起 1 , 竹田 樹人 1 , 大西 広司 1 , 濱田 滉太 1 , 大	1. 阪大院工
	12a-PB1-4	化に向けた予備実験 細径ノズルから噴射される大気圧μプラズマの流体解析	森 貴之¹, 加藤 裕史¹ ○吉木 宏之¹, 乙坂 謙次¹, 佐藤 岳彦², 中嶋 智樹², 上	1. 鶴岡高専, 2. 東北大
	12a-PB1-5	Ar流量制御による高出力パルスマグネトロンスパッタの	原 聡司 ² ○(M1)西田 實 ¹ 平井 芳柘 ¹ 中込 雄基 ¹ 西宮 信夫 ¹	1 東京工芸大工 2 (株) アヤボ 3 東北大院理
		遅延放電およびブラズマ発光特性	實方 真臣 ¹ , 山本 宏晃 ² , 戸名 正英 ² , 塚本 恵三 ² , 大下 慶次郎 ³ , 美齊津 文典 ³	
	12a-PB1-6	高出力バルスマグネトロンスバッタのマイクロ/マクロ バルス設計とプラズマ発光分光計測	〇中込 雄基 ¹ , 平井 芳拓 ¹ , 西田 寬 ¹ , 西宮 信夫 ¹ , 實方 真臣 ¹ , 山本 宏晃 ² , 戸名 正英 ² , 塚本 恵三 ² , 大下 慶次 郎 ³ , 美齊津 文典 ³	1.東京工芸大工, 2. (株) アヤボ, 3.東北大院理
	12a-PB1-7	低温大気圧プラズマジェットの発光伝播現象計測	〇山田 大将 1 , 荻原 康太 1 , 篠原 誠 1 , 宮下 涼 1 , 村石 圭	1.長野高専
	12a-PB1-8	ポリビニルアルコール - ヨウ化カリウムを用いた活性酸	哉¹,田中 秀登¹ ○松浦 寛人¹,松井 良樹¹,オウアンサビンサ ブニャ	1.大阪府大
	12a-PB1-9	素ラジカルの計測 Si含有 DLC 成膜用テトラメチルシランプラズマ特性の計	ン ¹ ,トラントラングエン ¹ ,坂元 仁 ¹ ○大野 祐也 ¹ 永井 雅之 ¹ 鈴木 駿 ¹ 小田 昭紀 ¹ 大田	1 千葉丁太 2 夕城太 3 岐阜太
		測 - プラズマ基礎特性のガス流量依存性 -	貴之 ² , 上坂 裕之 ³	1. 1来上八,4. 但放八,5. 或十八
		ング・表面処理 / Plasma deposition of thin film, plasma e	etching and surface treatment	
		ポスター講演 (Poster Presentation) PA 会場 (Room PA) 粉体ターゲットによる 2 次元薄膜の作製 I	○川崎 仁晴¹, 大島 多美子¹, 柳生 義人¹, 猪原 武士¹,	1. 佐世保高専
			篠原 正典 1	
	11a-PA5-2	低ガス圧力運転を可能にする磁気ミラー型マグネトロン スパッタリングカソード	上原 雅人 ² , 奥山 哲也 ¹	
Е	11a-PA5-3	Morphological Characterization of RF Magnetron Sputtered Zinc Oxide Thin Films-Laser Assisted.	○ (M2)Edrick Abu Saidu¹, AKIO SANPEI¹, WATARU WAKAKI¹, YASUAKI HAYASHI¹	1.KYOTO INST. OF TECH.
	11a-PA5-4	- C-C ₄ F ₈ /SiF ₄ 混合凝縮層の電子励起によるa-C:Fの低温合成と物性評価c-C ₄ F ₈ /SiF ₄ 混合凝縮層の電子励起によるa-C:Fの低温合成と物性評価		1.山梨大・院, 2.山梨県産技セ
	11a-PA5-5	アクティブスクリーンプラズマによる窒化とその評価Ⅲ	\bigcirc (PC) 市村 進 1 , 水流 $-\Psi^2$, 大久保 大地 2 , 松尾 英明 2 , 後藤 峰男 2	1.名古屋産業振興公社, 2.中日本炉工業 株式会社
	11a-PA5-6 11a-PA5-7	室温原子層堆積法の開発とガスバリア応用 窒化物半導体の熱電子放出特性におけるアルカリ金属吸	○廣瀬 文彦 ¹ ○内田 翔 t ¹ 安原 弘一郎 ¹ 木材 重哉 ² 吉田 学中 ²	1.山形大院理工 1. 静大院工 2 (株) 東芝
	11a-PA5-8	着の影響 プラズマ支援ミストCVDにおけるプラズマ中の液滴蒸発	荻野 明久 ¹	1. 阪大接合研
	11a-PA5-9	挙動 大気開放型ブラズマジェットを利用したAu-ZnOナノコ		1. 産総研ナノ材料 RI. 2. 産総研東大 OIL
		ンポジット薄膜の作製とその光触媒特性	也2,1	
	11a-PA5-10	NF_3 凝縮 SiO_2 基板への DC 放電生起電子照射によるシリコン酸化膜のクライオエッチング	○熊谷仁志 '	1.山梨大工
Е	11a-PA5-11	BCl ₃ -based plasma etching of (010) β -Ga ₂ O ₃ substrates	○ (M1C)Yohan DOUEST ^{1, 3} , Cedric MANNEQUIN ¹ , Toshimitsu ITO ² , Christophe VALLEE ^{1, 3} , Etienne GHEERAERT ^{1, 3} , Masahiro SASAKI ¹	1.Tsukuba Univ., 2.AIST, 3.Grenoble-Alpes Univ.
	11a-PA5-12	モデルの構築	○(M1) 小川 慎¹, 小田 昭紀¹, 太田 貴之², 上坂 裕之³	1.千葉工大, 2. 名城大, 3. 岐阜大
		口頭講演 (Oral Presentation) W641 会場 (Room W641) Si基板内部に形成されるプラズマ誘起ダメージの電気的	○濱野 誉¹,占部 継一郎¹,江利口 浩二¹	1.京大院工
		欠陥プロファイル解析手法の最適化		
		コンダクタンス法を用いたシリコン窒化膜表面近傍のプ ラズマ誘起ダメージ構造の解析		1.京大院工
14:15	11p-W641-3	【注目講演】プラズマ誘起欠陥の発生と修復 〜結晶シリコン内の水素と欠陥〜	○布村 正太¹, 坂田 功¹, 松原 浩司¹	1. 産総研太陽光発電研究センター
14:30 奨	11p-W641-4	軽元素のⅢ-V族半導体中への侵入メカニズム	〇小玉 欣典 1 ,財前 義史 1 ,深沢 正永 1 ,釘宮 克尚 1 ,長 岡 弘二郎 1	1.ソニーセミコンダクタソリューションズ
14:45 奨E	11p-W641-5	Molecular Dynamics Simulation of SiO_2 Etching by Energetic Fluorocarbon Ions	○ (M2)Charisse Cagomoc¹, Michiro Isobe¹, Satoshi Hamaguchi¹	1.Osaka University
		機械学習を用いたスパッタ率予測	○幾世 和将¹, 木野 日織², 浜口 智志¹	1. 阪大工, 2. 物材機構
	11p-W641-7	BF ₃ 及びBCl ₃ 化合物の電子物性と解離	○林 俊雄¹, 関根 誠¹, 石川 健治¹, 堀 勝¹	1.名大工
15:30 15:45	11p-W641-8	休憩/Break ヘキサフルオロアセチルアセトンによる遷移金属(Ni,	○伊藤 智子¹, 唐橋 一浩¹, 浜口 智志¹	1.阪大院工
16:00	11p-W641-9	Co) におけるサーマルエッチング反応解析 フッ素原子を含むイオンによるエッチング反応	○唐橋 一浩¹, 伊藤 智子¹, 橋本 惇一², 大村 光広², 林	1. 阪大院工, 2. 東芝メモリ (株)
		水蒸気添加水素プラズマによる金属銅のドライエッチン	$Λ$ $ੂ$ 2	
		グ	宏昌1	
16:30 奨E	11p-W641-11	Etching reactions of Si, SiO ₂ , and SiN films using with hydrofluorocarbon compounds	○ (M1)Jiawei Ni¹, Toshio Hayashi¹, Kenji Ishikawa¹, Takayoshi Tsutsumi¹, Hiroki Kondo¹, Makoto Sekine¹, Masaru Hori¹	1.Nagoya University
16:45 奨	11p-W641-12	Y-O-F系セラミックスの CHF_3 および O_2 プラズマによる腐食挙動	○宮下 健司¹, 津之浦 徹¹, 吉田 克己¹, 矢野 豊彦¹	1.東工大工
17:00	11p-W641-13	中性粒子ビームによる Ge Fin 構造の側壁エッチング特性 の検討	\bigcirc (PC) 大堀 大介 1 , 野田 周一 2 , 藤井 卓也 1 , 水林 亘 2 , 遠藤 和彦 $^{1.2}$, Lee En-Tzu 1 , Li Yiming 3 , Lee Yao-Jen 4 , 尾崎 卓哉 1 , 寒川 誠二 $^{1.2.5}$	
17:15	11p-W641-14	エッチングレート面内分布に対する誘導結合型小径アン テナ形状の影響		1.東芝, 2.芝浦メカトロニクス

3/12(T	۱۵۰/۱۶ میر	口頭講演 (Oral Presentation) W641会場 (Room W641)		
9:00		プラズマ励起ラジカルの強制対流による高品質グラフェンの低温合成	○金 載浩¹, 榊田 創¹, 板垣 宏知¹	1. 産総研
9:15	12a-W641-2	高ガス流速下におけるシランプラズマ中で発生した粒子		1. 九大シス情, 2. 自然科学研究機構
9:30	奨 12a-W641-3	の堆積とその膜質への影響 プラズマ球状化処理による水アトマイズステンレス粉末	鎌滝 晋礼¹, 板垣 奈穂¹, ○古閑 一憲¹.², 白谷 正治¹ ○板垣 宏知¹, 花田 幸太郎¹, 廣瀬 伸吾¹	1. 産総研
9:45	12a-W641-4	の流動特性改善 光学応答デバイスに向けたプラズマによる銀ナノ粒子改		1.京都工繊大, 2.広島大
0:00	奨 12a-W641-5	質 Ar/水エタノール混合蒸気大気圧プラズマによる	横山 新 ² ○(B) 谷 雅彦 ¹ , 矢島 英樹 ² , 古田 寛 ¹ , 八田 章光 ¹	1.高知工科大学, 2.オーク製作所
0:15	奨 12a-W641-6	ポリテトラフルオロエチレンの表面改質 大気圧長尺マイクロ波プラズマによる大面積高速表面処		1.名大工, 2.ニッシン
0:30	奨 12a-W641-7	理 電磁界シミュレーョンを用いたスロットアンテナ励起に		1. 金沢大自然
0:45	12a-W641-8	よるマイクロ波プラズマの均一生成法の検討 熱電対を用いた裏面温度測定によるシリコンウェハ非接 触温度測定の絶対温度の検証	喜彦¹ ○(M1)亀田 朝輝¹, 花房 宏明¹, 東 清一郎¹	1.広大院先端研
1:00		休憩/Break		
1:15	招 12a-W641-9	「請演奨励賞受賞記念講演」 スパッタエピタキシーによるサファイア基板上(ZnO) 、(InN)、,薄膜の2段階成長	〇宮原 奈乃華 1 , 浦川 聖市 1 , 山下 大輔 1 , 鎌滝 晋礼 1 , 古閑 一憲 1 , 白谷 正治 1 , 板垣 奈穂 1	1.九大シス情
1:30	12a-W641-10	RF-DC結合電源を用いたハイブリッド対向スパッタによる ITO 薄膜作製 II	○諸橋 信—1	1.山口大学
1:45	12a-W641-11	- スパッタ電圧の可動棒磁石移動距離依存性 - MgF,-Ar-CF ₄ およびMg-Ar-CF ₄ スパッタリングにおける	○草野 英二1	1. 金沢工大バイオ・化学
2:00		阻止電極をもちいた薄膜再スパッタリングの抑制 ハイパワーインパルスマグネトロンスパッタリングを用		1. 名城大理工
		いた TiN 成膜プロセスにおける基底状態の窒素原子密度 計測		
2:15	12a-W641-13	プラズマ支援反応性プロセスを用いた大面積基板への	節原 裕一¹, ○竹中 弘祐¹, 吉谷 友希¹, 平山 裕之¹, 遠	1.阪大接合研, 2.イー・エム・ディー
2:30	12a-W641-14	IGZO 薄膜トランジスタの形成 プログラマブル RAS の開発	藤 雅¹, 内田 儀一郎¹, 江部 明憲² ○田中 康仁¹², 一色 秀夫², 税所 慎一郎¹	1.シンクロン, 2.電通大
				1.000, 1.000
		口頭講演 (Oral Presentation) W241会場 (Room W241)		a Blacke I
9:00 9:15		金ナノ粒子触媒被覆シリコンの低ダメージラジカル窒化 金ナノ粒子触媒被覆グラフェン/グラファイトの低ダ	〇三毛 万智子', 本田 昂平', 北鳴 武', 中野 俊樹' 〇北嶋 武¹, 加藤 涼¹, 三宅 万智子¹, 中野 俊樹¹	1.防衛大 1.防衛大
.13	10a W241 2	メージラジカル窒化	〇和時以,加藤小,一七万日1,中野民國	1. 10 円八
:30	E 10a-W241-3	In-liquid plasma formation at low temperature for $\it in\mbox{-}situ$ binding of SnO2/Graphene	Ishikawa ¹ , Takayoshi Tsutsumi ¹ , Hiroki Kondo ¹ ,	1.Nagoya Univ.
:45	奨 10a-W241-4	カーボンナノウォール足場上での電気刺激印加細胞培養 における負荷率の効果	Nobuyuki Ikarashi¹, Masaru Hori¹ ○市川 知範¹, 近藤 博基¹, 橋爪 博司¹, 田中 宏昌¹, 堤 隆嘉¹. 石川 健治¹, 堀 勝¹	1.名大院工
0:00 0:15		sPFEによるシリコンナノロッド連続生成とLIB負極特性 斜め堆積法を適用した反応性スパッタリング法による	○田中 章裕 1 , 太田 遼至 1 , 道垣内 将司 2 , 神原 淳 1 ○中山 佳之 1 , 細谷 昌史 1 , 井上 泰志 1 , 高井 治 2	1. 東大院工, 2. 島根産技センター 1. 千葉工大, 2. 関東学院
0:30	10a-W241-7	InAlN膜の作製 マグネトロンスバッタリングダストプラズマを用いたス	小山 寬¹, ○佐々木 浩一¹	1.北大工
2/11/Ni	100 0.20 11.20	ズ液滴をコアとするコアシェル微粒子の作成プロセスポスター講演 (Poster Presentation) PA 会場 (Room PA)		
3/11(IVI	11a-PA6-1	吸着誘起型エレクトロクロミック現象に対する溶液温度 の影響	〇本間 雅大 1 , 泉澤 宏樹 1 , 川堀 悠樹 1 , 井上 泰志 1 , 高井 治 2	1. 千葉工業大学, 2. 関東学院大学
	11a-PA6-2	液体流形マイクロ波プラズマによるナノ粒子の高速合成	〇楊 少菲	
		ンス / Plasma life sciences 口頭講演 (Oral Presentation) W241 会場 (Room W241)		
3:45	9p-W241-1	プラズマ照射溶液で培養したHeLa細胞の観察	前田 昌吾¹, 細井 祐吾¹, ○石川 健治¹, 橋爪 博司¹, 田 中 宏昌¹, 楓 勝¹	1.名大工
4:00	9p-W241-2	ブラズマ照射培養液を用いた皮膚がん細胞と皮膚正常細 胞の不活化効果の比較	○室 鴻之介¹, 本橋 健次¹.², 加藤 和則¹.², 薄井 雄大², 小野 達也²	1. 東洋大院理工, 2. 東洋大理工
4:15	9p-W241-3	プラズマ活性乳酸のがん細胞の選択的殺傷効果を有する 分子	細井 祐吾¹, 前田 昌吾¹, ○石川 健治¹, 吉武 淳², 柴田 貴広², 田中 宏昌¹, 橋爪 博司¹, 吉川 史隆³, 水野 正	1. 名大工, 2. 名大農, 3. 名大医
4:30	奨 9p-W241-4	酸素・窒素ラジカル活性培養液の抗腫瘍効果	明 ³ , 堀 勝 ¹ ○ (M1) 小川 和馬 ¹ , 水野 貴仁 ¹ , 村田 富保 ¹ , 堀 勝 ² , 伊藤 昌文 ¹	1. 名城大, 2. 名古屋大
4:45	奨 9p-W241-5	電気的要因の数値解析を用いた沿面放電による遺伝子導 入機序の探索	戸 膝 自又 ○(M1) 平重 寛子¹, 平松 達弥¹, 木戸 祐吾¹², 佐藤 晋¹³, 神野 雅文¹	1.愛媛大院理工, 2. バール工業, 3. ワイ'ズ
5:00	奨 9p-W241-6	細胞 - 導入分子間の衝突周波数から見た沿面放電法における遺伝子導入効率の分子量依存性	日 , 神野 雅文 ○(M1) 平松 達弥¹, 平重 寛子¹, 木戸 祐吾¹.², 佐藤 晋¹.³, 神野 雅文¹	1.愛媛大工, 2.パール工業, 3.ワイ'ズ
5:15 5:30	奨 9p-W241-7	休憩/Break 大気圧加湿〜リウムプラズマ照射によって液底へ供給されるOHラジカルの径方向分布測定	○赤澤 拓斗¹, 佐々木 渉太¹, 本田 竜介¹, 金子 俊郎¹	1.東北大工
5:45 4	奨 E 9p-W241-8	Development of rotating ambient-air arc jet for low-temperature treatment	\bigcirc (PC)Vladislav Anatolyevich Gamaleev 1 , Naoyuki Iwata 1 , Jun-Seok Oh 2 , Mineo Hiramatsu 1 , Masafumi Ito 1	1.Meijo Univ., 2.Osaka City Univ.
6:00 ⅓	奨 E 9p-W241-9	The Amino Group Effect of Plasma Irradiation for Surface Treatment on Hydroxyapatite (HA) Artificial Bone		1.Osaka Univ., 2.Aimedic MMT, 3.Masaryk Univ., 4. CEITEC
6:15	9p-W241-10	プラズマ活性溶液がコレステロール含有脂質二重膜の形 状に及ぼす効果	〇山岡 壮太郎 1 , 近藤 博基 1 , 橋爪 博司 2 , 石川 健治 1 , 田中 宏昌 2 , 堀 勝 2	1. 名大院工, 2. 名大未来社会創造機構
6:30	9p-W241-11	プラズマ殺菌のメカニズム解析を目的とした過硝酸とア ミノ酸の反応性の評価	○横山 高史¹, 宮崎 慎也¹, 井川 聡², 北野 勝久¹	1. 阪大工, 2. 大阪技術研
		大気圧低温プラズマが誘発する核酸塩基修飾の解析	○栗田 弘史¹,春田 夏輝¹,内橋 義人¹,高島 和則¹	1. 豊橋技科大
6:45 3/11(M		口頭講演 (Oral Presentation) W611会場 (Room W611)		
	11a-W611-1	口頭講演 (Oral Presentation) W611会場 (Room W611) 分裂酵母へのガス温度制御ヘリウムブラズマジェット照 射 酸素ラジカル処理芳香族化合物による中性pH領域にお	○吉村 信次 ^{1,2} , 大坪 瑶子 ^{1,2,3} , 山下 朗 ^{2,3} , 中出 敦子 ³ , 荒巻 光利 ⁴ , 古閑 一憲 ⁵ ○ (M1) 岩田 直幸 ¹ , ガマリェエフ ウラディスラフ ¹ ,	産工, 5. 九大シス情

0.20				
9:30	奨 11a-W611-3	酸素ラジカルまたは酸化窒素ラジカルで処理した滅菌水 を用いた緑膿菌の不活性化	\bigcirc (M1) 長瀬 智之 1 , 小森 由美子 1 , 堀 勝 2 , 伊藤 昌文 1	1. 名城大学, 2. 名古屋大学
9:45	奨 11a-W611-4	空気プラズマ活性ガスを用いた精製水直接噴霧装置によるイチゴ炭疽病菌分生子発芽抑制効果	○ (M1)HU YUE¹, 二瓶 健司¹, 髙島 圭介¹, 金子 俊 郎¹	1. 東北大工
10:00	奨 11a-W611-5	気液界面プラズマ生成 OH ラジカルによるプラズマ照射 溶液のイチゴ炭疽病菌分生子発芽抑制効果の向上	○(M2)二瓶 健司¹, 髙島 圭介¹, 金子 俊郎¹	1.東北大院工
10:15 10:30	招 11a-W611-6	休憩/Break 「講演奨励賞受賞記念講演」	○福島 諒¹, Nasuha Izyan¹, 池田 善久¹, 神野 雅文¹	1.愛媛大理工
10:45	11a-W611-7	アーク放電生成気体の供給による養殖魚の成長促進効果 イネ圃場における定期的な低温プラズマ処理による生育 や収穫に対する検討	野 寛子 1 , 田中 宏昌 1 , 石川 健治 1 , 松本 省吾 1 , 榊原	1.名古屋大学, 2.富士通クライアントコンピューティン グ株式会社
11:00	11a-W611-8	イネ種子への低温プラズマ照射による成長促進効果		1.名古屋大学, 2.富士通クライアントコンピューティン グ株式会社
11:15	11a-W611-9	種子へ低温プラズマ照射したイネ苗の環境制御下におけ る栽培	100	
11:30	11a-W611-10	青果物栽培における低温ブラズマ処理の品質への効果	○堀 勝 1 , 橋爪 博司 1 , 松本 省吾 1 , 坪田 憲紀 1 , 伊藤 昌	1.名古屋大学, 2.名城大学, 3.富士通クライアントコン ビューティング株式会社, 4.幸田町企画部企業立地課
11:45	11a-W611-11	プラズマを用いた植物細胞への分子導入のエンドサイ トーシス依存性の役割	○池田 善久¹, 西 雅明¹, 宮本 聡一朗¹, 木戸 祐吾²¹, 佐藤 晋³¹, 小林 括平⁴, 神野 雅文¹	1. 愛大院理工, 2. パール工業, 3. ワイ'ズ, 4. 愛大院農
3/12(7	12a-PB2-1	ポスター講演 (Poster Presentation) PB 会場 (Room PB) 低温大気圧プラズマ照射溶液中の活性種分布 大気圧アルゴンプラズマで生成する気相活性種と液中活 性種の相関	○清水 鉄司1	1. 産総研 1. 高知高専, 2. 豊橋技科大
	12a-PB2-3	量子化学計算を用いた放電活性種と膜構成分子の反応解 析	○戸田 和希¹, 内田 論¹, 栃久保 文嘉¹	1.首都大シスデザ
	12a-PB2-4	細胞膜内における活性酸素種輸送の分子動力学解析 - アンブレラサンプリングにおけるウィンドウ幅の影響 -	○(M2)太田 隼人¹,內田 諭¹, 杤久保 文嘉¹	1. 首都大理工
	12a-PB2-5	プラズマ誘起液中化学反応場の反応速度論的な理解	〇北野 勝久 1 , 井川 聡 2 , 中島 陽 $-^{2}$, 横山 高史 1 , 谷 篤 史 3	1. 阪大工, 2. 大阪技術研, 3. 神戸大
	12a-PB2-6	酸素ラジカル照射リン酸緩衝生理食塩中に生成した過酸 化水素と次亜塩素酸による支持脂質二重膜の側方拡散性 への影響	○久米 \hat{g}^1 , 手老 龍吾 2 , 橋爪 博司 3 , 近藤 博基 3 , 堀 勝 3 , 伊藤 昌文 1	1. 名城大, 2. 豊橋技科大, 3. 名大
	12a-PB2-7	紅色光合成細菌増殖における酸化窒素ラジカル照射量依 存性	○嶽野 正和¹, 橋爪 博司², 堀 勝², 伊藤 昌文¹	1. 名城大学, 2. 名古屋大学
	12a-PB2-8	酸素ラジカル照射されたコウジカビ胞子のα-アミラー ゼ活性化	○後藤 拓也 ¹ , 志水 元亨 ¹ , 加藤 雅士 ¹ , 橋爪 博司 ² , 堀 勝 ² , 伊藤 昌文 ¹	1. 名城大学, 2. 名古屋大学
	12a-PB2-9	シロイヌナズナの葉への大気圧プラズマ照射の影響	山本 恭太郎¹, ○林 信哉²	1. 九大工, 2. 九大総理工
		·融合分野 / Plasma phenomena, emerging area of plasm	nas and their new applications	
3/11(N				
_, (ポスター講演 (Poster Presentation) PA 会場 (Room PA) 大気圧プラズマジェット照射された蒸留水中でのアンモ	○辻 拓¹, 松木 優哉¹, 桑畑 周司¹, 三上 一行²	1. 東海大工, 2. 東海大理
, , , ,		大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面		1. 東海大工, 2. 東海大理 1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木
	11a-PA7-1	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面 改質 (2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹	
	11a-PA7-1 11a-PA7-2	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面 改質 (2)	○羽田清貴 1 , 冨田恒之 2 , 笠井哲郎 3 , 桑畑周司 1 ○佐藤大輔 1 , 毛塚祐輔 1 , 小田慶喜 2 , 桑畑周司 1 ○大川博司 1 , 黒田弘輝 1 , 秋津哲也 2 ○菊池亮太 1 , 向笠 \mathbb{Z}^1 , 禅田 拓矢 1 , 山田陸 1 , 野村信	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学
	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面 改質 (2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色 (2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成	 ○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² 	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学
	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面改質 (2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色 (2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナト	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍³, 增田拓矢¹, 山田陸¹, 野村信福¹	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大
	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面改質 (2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色 (2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生プラズマ・メタマテリアル構造でのマイクロ波迂回によ	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤 大輔¹, 毛塚 祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋 卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大
	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面改質 (2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色 (2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍³, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本洗一郎¹, 宫城茂幸², 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹,	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社
	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナト リウムの水素化ホウ素ナトリウムへの再生 プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本洸一郎¹, 宫城茂幸¹, 酒井道¹	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社 1. 滋賀県立大工, 2. 京都大院工
3/11(M 13:45	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 ion.) 13:45 - 17:45 11p-W323-1	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生 プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 バルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323会場(Room W323) Cl ₂ ガスの電子衝突断面積	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本光一郎¹, 宫城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³	 東海大工電電,2.東海大理化学,3.東海大工土木 東海大工,2.東海大研推 1.HSU,2.山梨大学 1.愛媛大 1.北大工 1.静大工,2.新東工業株式会社 1.滋賀県立大工,2.京都大院工 1.室蘭工大,2.学振特別研究員,3.ストラスクライド大 1.室蘭工大,2.学振特別研究員
3/11(M	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 on,) 13:45 - 17:45 11p-W323-1 獎 11p-W323-2	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成 (2) 大気圧プラズマジェット照射によるコンクリートの表面改質 (2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色 (2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生 プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 バルス放電照射による液中生成種のレート方程式解析(3) 口頭講演 (Oral Presentation) W323 会場 (Room W323) Cl ₂ ガスの電子衝突断面積 低電子温度再結合 H ₂ プラズマによる CO ₂ 分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセト	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚 祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 获野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本沈一郎¹, 宫城茂幸², 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³	 東海大工電電,2.東海大理化学,3.東海大工土木 東海大工,2.東海大研推 1.HSU,2.山梨大学 1.愛媛大 1.北大工 1.静大工,2.新東工業株式会社 1.滋賀県立大工,2.京都大院工 1.空蘭工大,2.学振特別研究員,3.ストラスクライド大
3/11(M 13:45 14:00	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 10n.) 13:45 - 17:45 11p-W323-1 獎 11p-W323-3	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生 ブラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 パルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323会場(Room W323) Cl ₂ ガスの電子衝突断面積 低電子温度再結合 H ₂ プラズマによる CO ₂ 分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセト アルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプ	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本洗一郎¹, 宮城茂幸², 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉 茂樹²	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社 1. 滋賀県立大工, 2. 京都大院工 1. 室蘭工大, 2. 学振特別研究員, 3. ストラスクライド大 1. 室蘭工大, 2. 学振特別研究員 1. 北大工
3/11(M 13:45 14:00 14:15	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 on.) 13:45 - 17:45 11p-W323-1 獎 11p-W323-2 11p-W323-3	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合日。/CO2プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムへの再生 ブラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 バルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323会場(Room W323) Cl2ガスの電子衝突断面積 低電子温度再結合日。プラズマによるCO2分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本光一郎¹, 宫城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀², 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉茂樹²	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社 1. 滋賀県立大工, 2. 京都大院工 1. 室蘭工大, 2. 学振特別研究員, 3. ストラスクライド大 1. 室蘭工大, 2. 学振特別研究員 1. 北大工 1. 名城大理工, 2. トヨタ紡織 1. 京都大院工, 2. 滋賀県立大工
3/11(M 13:45 14:00 14:15	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 10n.) 13:45 - 17:45 11p-W323-1 獎 11p-W323-3 11p-W323-3	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのブラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素- 炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生 プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 バルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323 会場(Room W323) Cl ₂ ガスの電子衝突断面積 低電子温度再結合 H ₂ プラズマによる CO ₂ 分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプラズマへの効率的なマイクロ波注入 RFプラズマ中の微生物浮遊実験	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本光一郎¹, 宫城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉茂樹² ○岩井亮憲¹, 中村嘉浩¹, 酒井道²	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社 1. 滋賀県立大工, 2. 京都大院工 1. 室蘭工大, 2. 学振特別研究員, 3. ストラスクライド大 1. 室蘭工大, 2. 学振特別研究員 1. 北大工 1. 名城大理工, 2. トヨタ紡織 1. 京都大院工, 2. 滋賀県立大工
3/11(M 13:45 14:00 14:15 14:30 14:45 15:00	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-7 11a-PA7-9 10n.) 13:45 - 17:45 11p-W323-1 獎 11p-W323-3 11p-W323-4 11p-W323-5 獎 11p-W323-6	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラブスマによるメタほう酸ナトリウムへの再生 ブラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 パルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323 会場(Room W323) Cl ₂ ガスの電子衝突断面積 低電子温度再結合 H ₂ プラズマによる CO ₂ 分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプラズマへの効率的なマイクロ波注入 RFプラズマ中の微生物浮遊実験 プラズマー氷界面を用いたプラズマ支援凍結テンプレート法の開発 活性化水相を形成した相界面反応によるアンモニア生成速度の増加	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本光一郎¹, 宫城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉茂樹² ○岩井亮憲¹, 中村嘉浩¹, 酒井道² ○三瓶明希夫¹, 木上智仁¹, 米田至¹, 川出恭隆¹, 林康明¹, 比村治彦¹, 政宗貞男¹, 三瓶舞²	 東海大工電電,2.東海大理化学,3.東海大工土木 東海大工,2.東海大研推 1.HSU,2.山梨大学 1.愛媛大 1.北大工 1.静大工,2.新東工業株式会社 1.滋賀県立大工,2.京都大院工 1.室蘭工大,2.学振特別研究員,3.ストラスクライド大 1.室蘭工大,2.学振特別研究員 1.北大工 1.名城大理工,2.トヨタ紡織 1.京都大院工,2.滋賀県立大工 1.京都工繊大,2.個人
3/11(M 13:45 14:00 14:15 14:30 14:45	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 on.) 13:45 - 17:45 11p-W323-1 獎 11p-W323-2 11p-W323-3 11p-W323-5 獎 11p-W323-6 獎 11p-W323-7	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのブラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H₂/CO₂プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損棚償の一様化 バルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323 会場(Room W323) Cl₂ガスの電子衝突断面積 低電子温度再結合 H₂プラズマによる CO₂分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプラズマへの効率的なマイクロ波注入 RFプラズマール界面を用いたプラズマ支援凍結テンプレート法の開発 活性化水相を形成した相界面反応によるアンモニア生成速度の増加 休憩/Break アルゴンおよび窒素プラズマが照射されたイオン液体における溶媒和電子の反応周波数および可視・紫外吸収ス	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本洸一郎¹, 宫城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉茂樹² ○岩井亮憲¹, 中村嘉浩¹, 酒井道² ○三瓶明希夫¹, 木上智仁¹, 米田至¹, 川出恭隆¹, 林康明¹, 比村治彦¹, 政宗貞男¹, 三瓶舞² ○(D) 榊原教貴¹, 伊藤剛仁¹, 寺嶋和夫¹	 東海大工電電,2.東海大理化学,3.東海大工土木 東海大工,2.東海大研推 1.HSU,2.山梨大学 1.愛媛大 1.北大工 1.静大工,2.新東工業株式会社 1.滋賀県立大工,2.京都大院工 1.室蘭工大,2.学振特別研究員,3.ストラスクライド大 1.空蘭工大,2.学振特別研究員 1.北大工 1.名城大理工,2.トヨタ紡織 1.京都大院工,2.滋賀県立大工 1.京都工機大,2.個人 1.東大新領域
3/11(M 13:45 14:00 14:15 14:30 14:45 15:00 15:15	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-7 11a-PA7-9 10n.) 13:45 - 17:45 11p-W323-1 坦 11p-W323-3 11p-W323-4 11p-W323-5 獎 11p-W323-7 獎 11p-W323-7	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのブラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合 H ₂ /CO ₂ プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムの水素化ホウ素ナトリウムへの再生プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 パルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323 会場(Room W323) Cl ₂ ガスの電子衝突断面積 低電子温度再結合 H ₂ プラズマによる CO ₂ 分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプラズマへの効率的なマイクロ波注入 RFプラズマーの微生物浮遊実験 プラズマー水界面を用いたプラズマ支援凍結テンプレート法の開発 活性化水相を形成した相界面反応によるアンモニア生成速度の増加 休憩/Breakアルゴンおよび窒素プラズマが照射されたイオン液体に	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚 祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本光一郎¹, 宫城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉茂樹² ○岩井亮憲¹, 中村嘉浩¹, 酒井道² ○三瓶明希夫¹, 木上智仁¹, 米田至¹, 川出恭隆¹, 林康明¹, 比村治彦¹, 政宗貞男¹, 三瓶舞² ○(D) 榊原 教貴¹, 伊藤剛仁¹, 寺嶋和夫¹ ○酒倉辰弥¹, 村上直也¹, 高辻義行¹, 春山哲也¹	 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社 1. 滋賀県立大工, 2. 京都大院工 1. 室蘭工大, 2. 学振特別研究員, 3. ストラスクライド大 1. 室蘭工大, 2. 学振特別研究員 1. 北大工 1. 名城大理工, 2. トヨタ紡織 1. 京都大院工, 2. 滋賀県立大工 1. 京都工繊大, 2. 個人 1. 東大新領域 1. 北大工 1. 北大工
3/11(M 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-7 11a-PA7-8 11a-PA7-9 11a-PA7-9 11a-PA7-9 11p-W323-1 11p-W323-3 11p-W323-3 11p-W323-4 11p-W323-6 11p-W323-7 11p-W323-7 11p-W323-7	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のバルス放電による銅ナノ粒子の合成 超低電子温度再結合 H₂/CO₂プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムへの再生 プラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 バルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323 会場(Room W323) Cl₂ガスの電子衝突断面積 低電子温度再結合 H₂プラズマによる CO₂分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプラズマへの効率的なマイクロ波注入 RFプラズマ中の微生物浮遊実験 プラズマー水界面を用いたプラズマ支援凍結テンプレート法の開発 活性化水相を形成した相界面反応によるアンモニア生成速度の増加 休憩/Break アルゴンおよび窒素プラズマが照射されたイオン液体における溶媒和電子の反応周波数および可視・紫外吸収スベクトル変化 ルミノール化学発光とプラズマによって誘起される OH	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍³, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本洗一郎¹, 宫城茂幸², 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ i ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 波邉茂樹² ○岩井亮憲¹, 中村嘉浩¹, 酒井道² ○三瓶明希夫¹, 木上智仁¹, 米田至¹, 川出恭隆¹, 林康明¹, 比村治彦¹, 政宗貞男¹, 三瓶舞² ○(D) 榊原 教貴¹, 伊藤剛仁¹, 寺嶋和夫¹ ○酒倉辰弥¹, 村上直也¹, 高辻養行¹, 春山哲也¹	 東海大工電電,2.東海大理化学,3.東海大工土木 東海大工,2.東海大研推 1.HSU,2.山梨大学 1.愛媛大 1.北大工 1.静大工,2.新東工業株式会社 1.滋賀県立大工,2.京都大院工 1.室蘭工大,2.学振特別研究員,3.ストラスクライド大 1.空蘭工大,2.学振特別研究員 1.北大工 1.名城大理工,2.トヨタ紡織 1.京都大院工,2.滋賀県立大工 1.京都工繊大,2.個人 1.東大新領域 1.北大工 1.北大工
3/11(M 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	11a-PA7-1 11a-PA7-2 11a-PA7-3 11a-PA7-4 11a-PA7-5 11a-PA7-6 11a-PA7-7 11a-PA7-8 11a-PA7-9 on.) 13:45 - 17:45 11p-W323-1 獎 11p-W323-3 11p-W323-4 11p-W323-5 獎 11p-W323-7 獎 11p-W323-7 獎 11p-W323-7 獎 11p-W323-7	大気圧プラズマジェット照射された蒸留水中でのアンモニアの生成(2) 大気圧プラズマジェット照射によるコンクリートの表面改質(2) 大気圧プラズマジェットを用いた混合有色水溶液の脱色(2) 気液界面におけるジニトロフェノールのプラズマ分解 メタノール中のパルス放電による銅ナノ粒子の合成 超低電子温度再結合日。/CO2プラズマにおける反応生成物の分析 水素・炭化水素混合ガスプラズマによるメタほう酸ナトリウムへの再生 ブラズマ・メタマテリアル構造でのマイクロ波迂回による回折損補償の一様化 パルス放電照射による液中生成種のレート方程式解析(3) 口頭講演(Oral Presentation) W323会場(Room W323) Cl2ガスの電子衝突断面積 低電子温度再結合日。プラズマによるCO2分解効率の評価 光触媒および大気圧プラズマの組み合わせによるアセトアルデヒド分解 負透磁率共振型メタマテリアルによるオーバーデンスプラズマへの効率的なマイクロ波注入 RFプラズマ中の微生物浮遊実験 プラズマー水界面を用いたプラズマ支援凍結テンプレート法の開発 活性化水相を形成した相界面反応によるアンモニア生成速度の増加 体憩/Break アルゴンおよび窒素プラズマが照射されたイオン液体における溶媒和電子の反応周波数および可視・紫外吸収スペクトル変化 ルミノール化学発光とプラズマによって誘起されるOHラジカルの相関 Ar雰囲気における水上パルス放電により水中に生成され	○羽田清貴¹, 冨田恒之², 笠井哲郎³, 桑畑周司¹ ○佐藤大輔¹, 毛塚祐輔¹, 小田慶喜², 桑畑周司¹ ○大川博司¹, 黒田弘輝¹, 秋津哲也² ○菊池亮太¹, 向笠忍¹, 增田拓矢¹, 山田陸¹, 野村信福¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○高橋卓也¹, 前田尚希¹, 長坂政彦², 荻野明久¹ ○井波柱偉¹, 嘉部裕樹¹, 岩井亮憲², Alexandre Bambina¹, 榎本洸一郎¹, 宮城茂幸¹, 酒井道¹ ○高橋一弘¹, 川口悟¹², 佐藤孝紀¹, 川口秀樹¹, Timoshkin Igor³, Given Martin³, MacGregor Scott³ ○川口悟¹², 高橋一弘¹, 佐藤孝紀¹ ○山崎方弘¹, 西山修輔¹, 佐々木浩一¹ ○大脇健史¹, 瀧下智美¹, 飯干智哉¹, 渡邉茂樹² ○岩井亮憲¹, 中村嘉浩¹, 酒井道² ○三瓶明希夫¹, 木上智仁¹, 米田至¹, 川出恭隆¹, 林康明¹, 比村治彦¹, 政宗貞男¹, 三瓶舞² ○(D) 榊原教貴¹, 伊藤剛仁¹, 寺嶋和夫¹ ○酒倉辰弥¹, 村上直也¹, 高辻義行¹, 春山哲也¹ ○稲垣慶修¹, 佐々木浩一¹	1. 東海大工電電, 2. 東海大理化学, 3. 東海大工土木 1. 東海大工, 2. 東海大研推 1. HSU, 2. 山梨大学 1. 愛媛大 1. 北大工 1. 静大工, 2. 新東工業株式会社 1. 滋賀県立大工, 2. 京都大院工 1. 室蘭工大, 2. 学振特別研究員, 3. ストラスクライド大 1. 室蘭工大, 2. 学振特別研究員 1. 北大工 1. 名城大理工, 2. トヨタ紡織 1. 京都大院工, 2. 滋賀県立大工 1. 京都工機大, 2. 個人 1. 東大新領域 1. 九工大 1. 北大工 1. 北大工

16:45	11p-W323-12	テイラーコーン先端の先鋭化に伴う液滴放出とコロナ放	○長尾 圭祐¹, 中川 雄介¹, 内田 論¹, 杤久保 文嘉¹	1. 首都大院 SD
17:00	•	電電流の関係 誘導結合アルゴンプラズマと相互作用する液体金属から		1.北大工
17:15	•	の液滴放出: ガリウムとスズの比較 プラズマ支援エレクトロスプレー堆積法によるシリコン		
	·	ポリマー薄膜の作製	範 1.2	
17:30	·	価	\bigcirc (B) 桑畑 湧太 1 , 橋本 光平 1 , 竹原 宏明 $^{1.2}$, 一木 隆 範 $^{1.2}$	1. 果大工, 2. ナノ医療イノベーションセンター
	isma Electronics Eng (Sun.) 9:00 - 10:45	glish Session 口頭講演 (Oral Presentation) M103会場 (Room M103)		
9:00	E 10a-M103-1	Visualization of complex chemical reaction networks in weakly ionized plasmas (II)	○ Osamu Sakai¹, Yasutaka Mizui¹, Masataka Koshiba¹, Koichiro Enomoto¹, Shigeyuki Miyagi¹	1.Univ. Shiga Pref.
9:15	奨 E 10a-M103-2	Oxygen Radical Measurement of Atmospheric Pressure Microwave Line Plasma by Vacuum Ultraviolet Absorption Spectroscopy		1.Nagoya Univ., 2.PLANT, Nagoya Univ., 3.Industries Promotion Corporation, Nagoya
9:30	奨 E 10a-M103-3	Determination of the EEDF by Continuum Emission Spectrum Analysis: Preliminary Results		1.Tokyo Tech
9:45	奨 E 10a-M103-4	Deposition Control of Carbon Nanoparticles Synthesized Using Ar + CH ₄ Multi-Hollow Discharges		1.Kyushu Univ. for Kyushu University
10:00	奨 E 10a-M103-5	RF Sputtering Pressure Controlled Switching Characteristics of ZnO-based Flexible-Transparent	○ (PC)FIRMAN MANGASA SIMANJUNTAK¹, TAKEO OHNO², SEIJI SAMUKAWA¹.³	1.AIMR, Tohoku Univ., 2.IE, Oita Univ., 3.IFS, Tohoku Univ.
10:15	E 10a-M103-6	Resistive Memory Devices Size Selectivity of Plasma Functionalization to Multi-	○ DAISUKE OGAWA¹, Kazuki Michiya¹, Hideo	1.Chubu University
10:30	E 10a-M103-7	walled Carbon Nanotubes Effect of electrolyte volume on the synthesis of copper	Uchida¹, Keiji Nakamura¹ ○ (D)Jiandi Liu¹, Naoki Shirai¹, Koichi Sasaki¹	1.Hokkaido Univ.
		oxide nanoparticles by atmospheric-pressure plasma electrolysis		
		プス分科内招待講演 / Plasma Electronics Invited Talk 口頭講演 (Oral Presentation) W241 会場 (Room W241)		
11:00		「8.プラズマエレクトロニクス 分科内招待講演」	〇本田 昌伸 1, 勝沼 隆幸 1, 久松 亨 1, 木原 嘉英 1	1.東京エレクトロン宮城
		最先端エッチング技術の動向と将来の展望 ス賞表彰式 / Plasma Electronics Award Ceremony		
3/10(S		口頭講演 (Oral Presentation) W241会場 (Room W241) プラズマエレクトロニクス賞表彰式	○平松 美根男¹	1. プラズマエレクトロニクス分科会
	用物性 / Applied	Materials Science		
		はプログラム冒頭にございます。 elctrics, ferroelectrics		
3/10((Sun.) 9:30 - 11:30 10a-PA4-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) プロトン伝導体 CsHSO4 のラマン分光から見た転移機構	○松本 芳幸¹ 寺西 夏太朗¹	1.近畿大院総理研
	奨 10a-PA4-2	(K, Na)NbO ₃ -BiAlO ₃ 系強誘電体の強誘電特性、結晶・電子構造の組成依存		1. 東理大理工
	奨 E 10a-PA4-3	Fabrication of textured BNT-based green body with high magnetic field electrophoretic deposition (HM-EPD)	○ (P)MinSu Kim¹, Ichiro Fujii¹, Shintaro Ueno¹, Tohru S. Suzuki², Tetsuo Uchikoshi², Satoshi Wada¹	1.Univ. of Yamanashi, 2.NIMS
	奨 E 10a-PA4-4	Fabrication of textured (Bi _{0.5} K _{0.5})TiO ₃ piezoelectric ceramics via conventional sintering method	○ (D)Gopal Prasad Khanal¹, Ichiro Fujii¹, Sangwook Kim¹, Shintaro Ueno¹, Tohru S. Suzuki², Satoshi	1.Univ. of Yamanashi, 2.NIMS
	E 10a-PA4-5	Material design direction using materials softening for high performance piezoelectric ceramics	Hyunwook Nam¹, Ichiro Fujii¹, Shintaro Ueno¹, Chikako Moriyoshi², Yoshihiro Kuroiwa², Satoshi	1.University of Yamanashi, 2.Hiroshima University
	10a-PA4-6	第一原理計算による窒化物圧電体Mg,Nb共添加AlNの物		1. 九大総理工, 2. 産総研
	10a-PA4-7	性評価 第一原理計算による Zr添加 AIN の圧電性に関する研究	人 ² , 上原 雅人 ^{2, 1} , 山田 浩志 ^{2, 1} ○江藤 和也 ^{1, 2} , 平田 研二 ² , Anggraini Sri Ayu ² , 秋山	1. 九大総理工, 2. 産総研
	10a-PA4-8	Yb添加による AlN 薄膜の圧電性の向上	守人 ² , 上原 雅人 ^{1,2} , 山田 浩志 ^{1,2}	1. 九大総理工, 2. 産総研
			Ayu ² , 平田 研二 ² , 山田 浩志 ^{1, 2} , 秋山 守人 ²	
	10a-PA4-9	COHP解析によるMg+X(X=Ti,Zr,Hf,Nb) 添加 AlN の原 子間結合性の評価	雅人1, 秋山 守人1	1. 産総研
	E 10a-PA4-10	Effect of different divalent cations on the piezoelectric and mechanical properties of M TiAlN-based thin films ($M = M$ g or Z n)	○ Sri Ayu Anggraini¹, Masato Uehara¹, Kenji Hirata¹, Hiroshi Yamada¹, Morito Akiyama¹	1.AIST
3/10(5 13:00		口頭講演 (Oral Presentation) M116 会場 (Room M116) 溶液法 IGZO 中の酸素空孔密度の組成比依存性および深	○森本 貴明 ^{1,3} , 楊 宜橙 ^{1,3} , 福田 伸子 ³ , 大木 義路 ^{1,2}	1.早大 先進理工, 2.早大 材研, 3.産総研 FLEC
13:15	•	さ分布 角度分解偏光ラマン分光法で観た Pb(In _{1/2} Nb _{1/2})O ₃ の In/		
13:30	•	Nb配列と不均一性 プローブ後方の共振現象を利用した300 GHz帯での材料	和 英弘5, 秋重 幸邦1	5.岐阜大工 1. 産業技術総合研究所, 2. 東工大
13:45		計測技術		1. 東工大物質理工
14:00	10p-M116-5	の解釈 高温用マイクロバランス応用に向けたゲーレナイト結晶		1.東工大物質理工
11.00	10p M1110-3	の厚みすべり振動評価	○八咖啡八,四円 用色,兩九 似年,與田 时内	At / Journe / X / J J M. Fallandes
14:15	奨 10p-M116-6	ランガサイト型結晶Ba ₃ TaGa ₃ Si ₂ O ₁₄ の圧電特性評価	○ (M1C) 臼井 晴紀¹, 保科 拓也¹, 鶴見 敬章¹, 武田博明¹	1.東工大物質理工
14:30	奨 10p-M116-7	K(Ta, Nb)Si ₂ O ₇ 単結晶の作製と誘電特性の評価		1.東工大物質理工
14:45	10p-M116-8	圧電特性向上のための欠陥制御 $BiFeO_3$ 系セラミックスの 開発		1.山梨大院, 2.物材機構
15:00		休憩/Break		
15:15	•	Preparation of para electric Barium Titanate ceramics by Mn-Nb co-doping for DC-bias free dielectrics	○ (M2)Piyush Sapkota¹, Ichiro Fujii¹, Shintaro Ueno¹, Satoshi Wada¹	1.Univ. of Yamanashi
15:30	奨E 10p-M116-10	Development of BaTiO $_3$ -Bi(Mg $_{1/2}$ Ti $_{1/2}$)O $_3$ -BiFeO $_3$ ceramics by various ceramic processing for enhanced piezoelectric properties	○ (M2)HyunWook Nam¹, Ichiro Fujii¹, Sangwook Kim¹, Tomoya Aizawa¹, Shintaro Ueno¹, Satoshi Wada¹	1.University of Yamanashi

15:45	10p-M116-11	100℃以下でのBaTiO₃セラミックスの作製と誘電特性評		1.山梨大院
16:00	10p-M116-12	価 高圧反応焼結を用いた Rb 含有ペロブスカイト型酸化物の 作製	智志 ¹ 〇安江 祐亮 ¹ , 上野 慎太郎 ¹ , 藤井 一郎 ¹ , 村場 善行 ² , 細野 秀雄 ^{2.3} , 和田 智志 ¹	1.山梨大院, 2.東工大元素, 3.東工大フロ研
16:15	10p-M116-13	作製 高性能キャパシタのためのエピタキシャル界面を有する 絶縁性/導電性酸化物複合セラミックスの作製		1.山梨大院
16:30	10p-M116-14	紀縁性/ 导電性酸化物複合セクミックスの作製 二液相分離を利用した KNbO₃ナノキューブ集積体の作製	○ (M2) 國定 諒一¹, 近田 司¹, 上野 慎太郎¹, 藤井 一郎¹, 和田 智志¹	1.山梨大院
16:45	10p-M116-15	$(B_{i_05}Na_{05})TiO_{3^-}(B_{i_05}Li_{05})TiO_{3^-}(B_{i_05}K_{05})TiO_3$ 系セラミックスにおける脱分極温度と急冷による格子歪みの関係	○高木優香¹, 三浦 樹生¹, 永田肇¹, 竹中正¹	1. 東理大理工
17:00	±71 10 N#11C 1C	休憩/Break		1 = 1 Ph = 0 TWNT 0 = - 2 TT
17:15		「講演奨励賞受賞記念講演」 有機強誘電薄膜の3次元ドメイン壁可視化技術 0.4Bi _{0.5} K _{0.5} TiO ₃ -0.6BiFeO ₃ 系強誘電体の強誘電特性、結	〇上村 洋平 1 ,荒井 俊人 1 ,堤 潤也 2 ,松岡 悟志 1 ,熊井 玲児 3 ,堀内 佐智雄 2 ,長谷川 達生 $^{1.2}$ 〇真家 純一郎 1 ,石田 直哉 1 ,北村 尚斗 1 ,井手本 康 1	
17:45		晶・電子構造に及ぼす他元素置換の効果 電子構造を制御したチタン酸バリウム強誘電体単結晶の	○(M1)谷口勇樹 ^{1,2} ,野口祐二 ^{1,2} ,宮山勝 ^{1,2} ,井上	
18:00		光起電力効果 アクセプタドープBaTiO ₃ セラミックスの電気熱量効果	亮太郎 ³ ○(M1)塩野 翼¹,野口 祐二¹,宮山 勝¹	1.東京大工
18:15	·	直接測定 (Bi, Na)TiO ₃ 系ペロブスカイトの不定比性と電場誘起相		1.東大院工
	•	転移		
18:30		強誘電体における酸素空孔分布制御一遷移金属イオンと の相互作用を利用した欠陥設計		1.東大院工, 2.東大新領域
18:45		反強誘電体 $(Pb,La)(Zr,Ti)O_3$ セラミックスの電気機械特性と電気熱量効果		1.湘南工大工
		ナノシート / Nanoparticles, Nanowires and Nanosheets ポスター講演 (Poster Presentation) PA 会場 (Room PA)	3	
	10p-PA1-1	自己触媒VLS法による再成長InP/GaInAsコアマルチシェルナノワイヤの作製	○石原 理暉¹, 善村 聡志¹, 石田 勝晃¹, 下村 和彦¹	1.上智大理工
	E 10p-PA1-2	Growth direction, Sn content and crystallinity of Au-Sn catalyzed Ge _{1-x} Sn _x nanowires	○ Yonglie Sun ^{1, 2} , Ryo Matsumura ¹ , Wipakorn Jevasuwan ¹ , Naoki Fukata ^{1, 2}	1.NIMS, 2.Univ. of Tsukuba
	E 10p-PA1-3	The Effects of B Doping on Al-Catalyzed Si Nanowire Formation and Their p-Si/i-Ge Core-Shell Nanowire	○ Wipakorn Jevasuwan¹, Xiaolong Zhang¹, Thiyagu Subramani¹, Ken C. Pradel¹, Ryo Matsumura¹, Naoki	1.NIMS
	E 10 DA1 4	Structures	Fukata¹ Thiyagu Subramani¹, Junyi Chen¹.², ○ Wipakorn	1 NIMC 2 H : CT 1 1
	E 10p-PA1-4	Towards highly stable and low-temperature hybrid nanostructure Si solar cells	Jevasuwan¹, Yuka Kobayashi¹, Naoki Fukata¹.²	1.NIMS, 2.Univ. of Tsukuba
	10p-PA1-5	VLS法により成長した Si ナノワイヤの構造評価	バスワン ウイパコーン 2 , 深田 直樹 2 , 原 真二郎 1	1.北大量集センター, 2.NIMS
	10p-PA1-6	VLS法ナノワイヤ結晶成長界面設計による単結晶金属酸 化物ナノ構造体の表面特性制御	○安西 宇宙¹, 高橋 綱己², 細見 拓郎², 金井 真樹², Zhang Guozhu², 長島 一樹¹², 柳田 剛¹.²	1. 九大総理工, 2. 九大先導研
	E 10p-PA1-7	Solution grown ZnO Nanowire Films for Bipolar Transistors	○ (PC)Ken Charles Pradel ¹ , Yunfang Wang ^{1, 2} , Naoki Fukata ¹	1.NIMS, 2.Univ. of Tsukuba
	E 10p-PA1-8	Si nanotubes fabricated by wet etching of ZnO/Silicon Core-Shell nanowires	OXiangdong Zheng ^{1, 2} , Yonglie Sun ^{1, 2} , Wipakorn Jevasuwan ¹ , Ken C. Pradel ¹ , Naoki Fukata ^{1, 2}	1.NIMS, 2.Univ. of Tsukuba
	10p-PA1-9	水熱合成酸化タングステンナノワイヤの形態制御	○根北翔 ¹ , 長島一樹 ² , Zhang Guozhu ² , 柳田剛 ² , 奥山哲也 ¹	1. 久留米高専, 2. 九大先導研
	E 10p-PA1-10	Gas Sensors Based on Laser-Ablated Nanomaterials	Prabakaran Shankar ¹ , O Sergei Kulinich ¹ , Satoru Iwamori ¹	1.Tokai University
	E 10p-PA1-11	On-Demand Electrical Properties of Building-Block Quantum Dots Solid by Assembly Control	○ (D)Ricky Dwi Septianto ^{1,2} , Liming Liu³, Satria Zulkarnaen Bisri¹,², Yasuhiro Ishida¹, Ferry Iskandar⁴, Nobuhiro Matsushita², Yoshihiro Iwasa¹,⁵	
		水熱合成法によって作製した CdSeナノ粒子の光学特性 Cu,Sナノ粒子の近赤外局在プラズモン共鳴励起下の光触		1. 大阪市立大院工 1. 名工大, 2. 室工大
- / /		媒活性	CEMTER , XM XIII , TR I A , TR I EN	1.111/1, 5. 11/1
3/11(9:00		口頭講演 (Oral Presentation) W833会場 (Room W833) 規則ナノ細孔を有する多孔質アルミナ薄膜を用いたナノ パブル発生	○庭野 道夫¹, 馬 騰², 但木 大介³, 平野 愛弓².3	1. 東北福祉大 感研, 2. 東北大AIMR, 3. 東北大通研
9:15	11a-W833-2	水熱合成ZnOナノワイヤ結晶成長における油水混合溶媒 の役割	秋廣 侑哉 1 ,長島 一樹 1 ,高橋 綱 2 ,細見 拓郎 1 ,金井 真樹 1 、 2 柳田 剛 1	1. 九大先導研
9:30	奨 11a-W833-3	大気中分子 – ZnOナノワイヤ/Pt界面間相互作用の解明 に基づくデバイス特性の高信頼化		1. 九大総理工, 2. 九大先導研
9:45	奨 11a-W833-4	セルロースナノペーパーを誘電層として用いたコンデン サの特性評価及び無線発信デバイスへの応用		1. 阪大院工, 2. 阪大産研
10:00	奨 E 11a-W833-5	Formation of Graphitic Carbon Layers on SiO ₂ Surfaces of Silicon Nanowires		1.Tsukuba Univ., 2.NIMS
10:15 10:30	奨 E 11a-W833-6	休憩/Break Catalyst-free formation of Si/Ge core-shell nanowire	○(D)Xiaolong Zhang ^{1,2} , Wipakorn Jevasuwan ¹ ,	1.NIMS., 2.Tsukuba Univ.
10:45	奨 11a-W833-7	arrays GaAs/GaNAs/GaAs コアーマルチシェルナノワイヤの結	Naoki Fukata 1,2 〇行宗 詳規 1 , 藤原 亮 1 , 石川 史太郎 1	1. 愛媛大工
11:00	11a-W833-8	晶構造解析 Ge(111) 上 GaAs/AlGaAs/GaAs コアシェルナノワイヤの	○南 祐輔¹, 本久 順一¹, 冨岡 克広¹	1.北大院情報科学および量子集積センター
11:15	11a-W833-9	電気特性 InPナノワイヤ縦型サラウンディングゲートトランジス		1.北大工, 2.量子集積センター
11:30	11a-W833-10	タの作製 InAs/InPコアシェルナノワイヤ/Si接合界面による縦型	一 ² , 冨岡 克広 ² ○蒲生 浩憲 ¹ , 本久 順一 ¹ , 冨岡 克広 ¹	1.北大量子集積センター
3/11(トンネルFETの作製 口頭講演 (Oral Presentation) W833会場 (Room W833)		
13:15	11p-W833-1	【注目講演】不純物をドープした単分散シリコン量子ドットの発光特性(II)	○杉本 泰¹, 藤井 陸¹, 藤井 稔¹	1.神戸大院工
13:30 13:45		シリコン量子ドット supraparticle の開発 酸素雰囲気中におけるシリコン量子ドット塗布膜の電気	○藤井 陸¹, 高田 三穂¹, 杉本 泰¹, 藤井 稔¹ ○外繭 星也¹. 加納 伸也¹, 藤井 稔¹	1. 神戸大院工 1. 神戸大院工
14:00		伝導特性 1-ヘキセン分子を用いたポーラスシリコンの圧力制御ヒ		
	<u> </u>	1・ヘキセンガナを用いたボーブスンリコンの圧力制御ヒ ドロシリル化と発光安定性 レーザーアブレーション法にて作製したSiCナノ微粒子	ナール2	
14:15	11p-w833-5	の構造解析	○□呵 螟阳,爪小 鄁台,洛口 具众即; 石原 荐。	1. 東理大院理

14:30	E 11p-W833-6	Hydrogen Generation from Si-based Agent by Reaction with Buffer Solutions	○ (M2C)Chao Sun¹, Yuki Kobayashi¹, Hikaru Kobayashi¹	1.ISIR, Osaka Univ.
14:45 15:00	奨E 11p-W833-7	休憩/Break Enhanced Electron Transport in Core@Shell Colloidal Quantum Dot Assemblies	○ (D)Retno Miranti ¹ , Satria Zulkarnaen Bisri ^{2,1} , Maria Ibanez ³ , Maksym V. Kovalenko ³ , Yoshihiro Iwasa ^{2,4}	1.Tokyo Inst. Tech, 2.RIKEN CEMS, 3.ETH Zurich, 4.Univ. of Tokyo
15:15	E 11p-W833-8	The Roles of Crosslinking Ligands on Charge Carrier Transport in PbS Colloidal Quantum Dot Assemblies	Bisri ² , Ian Johnson ³ , Yasuhiro Ishida ² , Jeremy Burroughes ³ , Yoshihiro Iwasa ^{1, 2}	1.University of Tokyo, 2.RIKEN - CEMS, 3.CDT
15:30 15:45		水溶性 CdS ナノ粒子の表面改質効果と光学特性 リモート O_2 プラズマ支援 $MOCVD$ による Hf 酸化物ナノドットの高密度・一括形成	○李 太起 ¹ , 志村 邦夫 ¹ , 金 大貴 ¹ ○長谷川 遼介 ¹ , 牧原 克典 ¹ , 大田 晃生 ¹ , 池田 弥央 ¹ , 宮崎 誠一 ¹	1. 大阪市大院工 1. 名大院工
16:00		$ZnO/Zn_{1-x}Mg_xO$ ナノ粒子の作製	○後藤 直輝¹, 神谷 格¹	1. 豊田工大
16:15	11p-W833-12 / エレクトロニクス	X線全散乱による Rh ナノ粒子の局所構造解析	○ (PC) 廣井 慧¹, 坂田 修身¹	1.物材機構
		ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
0, 22(11p-PA8-1	共通ゲート型と非共通ゲート型の単電子ターンスタイル の消費エネルギーの比較		1.立命理工
	11p-PA8-2	ゲート容量が不均一な共通ゲート三重ドット単電子デバイスの安定領域の解析	○渡辺 雄介¹, 今井 茂¹	1.立命大理工研
	11p-PA8-3	シャボン膜の挙動を模倣した単電子デバイスの設計	○倉田 信彦¹, 大矢 剛嗣¹	1.横国大院理工
	11p-PA8-4	単一電子素子応用を目指した誘電泳動による金ナノ粒子	○森林 誠¹, 谷貝 知起¹, 守屋 雅隆¹, 島田 宏¹, 平野 愛	1. 電通大, 2. 東北大, 3. 山形大
	44	整列の統計調査	弓², 廣瀬 文彦³, 水柿 義直¹	
	奨 E 11p-PA8-5	Modulation of the resistance switching behavior of Ag ₂ S-based switches using graphene oxide layer	○ (B)Bruno Kenichi Saika¹, Ryota Negishi¹, Yoshihiro Kobayashi¹	1.Osaka University
3/12	(Tue.) 9:15 - 11:45	口頭講演 (Oral Presentation) W934会場 (Room W934)	Toshim V XOO ayasiii	
9:15	12a-W934-1	単電子トランジスタの超短パルス応答に関する検討	○(M1)西村 智紀¹, Alka Singh¹, 木村 安希¹, 佐藤 弘	1.静岡大, 2.静岡大電研
0.00	10 177007.5	# \$\$\$ \$Line 12 12 12 12 12 12 12 12 12 12 12 12 12	明²,猪川洋²	1 + A & L 24
9:30	12a-W934-2	非対称性が大きい共通ゲート三重ドット単電子デバイス がポンプ動作する条件の周期性	○ 収升 俊太 , 今开 茂 '	1.立命館大学
9:45	12a-W934-3	魚群に学ぶ単電子情報処理	○山下 秀人¹, 大矢 剛嗣¹	1.横国大理工
10:00		学習機能を実装した単電子ニューラルネットワーク	○上野 正暉¹, 大矢 剛嗣¹	1.横国大理工
10:15	12a-W934-5		○開出 理砂¹, 大矢 剛嗣¹	1.横国大理工
10:30		理ゲート応用 休憩/Break		
10:30	12a-W934-6	ADイジングマシンの演算特性にかかる Simulated	○島田 萌絵¹, 伊藤 光樹¹, 平田 鷹介¹, 三木 司¹, 白樫	1.東京農工大院工
10110	124 11701 0	Quantum Annealing の効果	淳一1	10/0///
11:00	12a-W934-7	ビット間結合が高階調化された論理ゲートイジング計算 機による組合せ最適化問題の検討	〇三木 司 1 , 伊藤 光樹 1 , 平田 鷹 1 , 島田 萌絵 1 , 白樫 淳 $^{-1}$	1.東京農工大院工
11:15	12a-W934-8	FPGAに実装されたイジングマシンでの実験パラメータ 決定システムの構築と Au原子接合の自動作製	〇平田 鷹介 1 , 櫻井 拓哉 1 , 竹林 敬太 1 , 酒井 正太郎 1 , 白樫 淳 $-^1$	1. 東京農工大院工
11:30	12a-W934-9	FPGA上の遺伝的アルゴリズムを用いた実験パラメータ 進化手法による Au 原子接合の作製	〇竹林 敬太 1 , 櫻井 拓哉 1 , 平田 鷹介 1 , 岩田 侑馬 1 , 白樫 淳一 1	1. 東京農工大院工
3/12(Tue.) 13:15 - 16:00	口頭講演 (Oral Presentation) W934会場 (Room W934)		
13:15	12p-W934-1	化学的手法により組み立てた金ナノ粒子単電子トランジ スタにおける配位子構造依存性	○西崎 雄太¹, Younsu Jung¹, Seoungjoo Lee¹, Pipit Uky Vivitasari¹, Yoon Young Choi¹, 坂本 雅典², 寺西 利治², 真島 豊¹	1.東工大フロンティア研, 2.京大化研
13:30	12p-W934-2	炭素架橋オリゴフェニレンビニレン 6(COPV6) 単分子共鳴トンネルトランジスタ	○入江 力也¹, Chun Ouyang¹, 居藤 悠馬¹, 橋本 康平², 辻 勇人³, 中村 栄一², 真島 豊¹	1.東工大フロンティア研, 2.東大理, 3.神奈川大理
13:45	奨 E 12p-W934-3	Single Molecular Resonant-Tunneling Transistor (SMRT ²) based on Quinoidal Fused Oligosilole Derivative (Si-2*2) bridged between H-ELGP Pt-based Nanogap Electrodes	Tsuda², Ryo Shintani², Kyoko Nozaki³, Yutaka	1.Tokyo Institute of Technology, 2.Osaka University, 3.University of Tokyo
14:00	, .	一般的なπ共役分子を用いた分子トランジスタ	○(B)大勝 賢樹 ¹ , 辻 勇人 ² , 真島 豊 ¹	1.東京工業大学, 2.神奈川大学
14:15	12p-W934-5	電極金属原子の電界移動を用いた能動的な分子架橋法の		1. 産総研, 2. 阪大
14:30	12n-W034-6	検証 Auナノギャップ狭窄化における通電手法の検討と単一電	透 ¹ ,小川 琢治 ²	1 東方典工士陰工 2 一間宣車
	12p-w 934-0	子带電特性	総¹,伊藤光樹¹,八木麻実子²,白樫淳一¹	1. 宋尔辰上八杌上, 2. 因问号
14:45 15:00	奨 12p-W934-7	休憩/Break 単層Fe-MgF ₂ グラニュラー薄膜単電子トランジスタにお	○瘧師 貴幸¹, 浅井 佑基¹, 福地 厚¹. 有田 正志¹. 高橋	1.北大院情報
	· · · · · · · ·	to the state of th	庙夫1	
		等周期クーロン振動特性の解析		
15:15	奨 12p-W934-8	HPPMSを用いたSpindt型エミッタ作製におけるキャビ		1.成蹊大理工, 2.産総研
15:30	12p-W934-9	ティ構造の影響 ナノ人工物メトリクスのためレジスト倒壊ランダムバ	壽²,村上勝久² ○呂任鵬¹,清水 克真¹,殷 翔¹,上羽 陽介²,石川 幹 #², #比 #² 萬 冊 ## #1	1.北大 量子集積センター, 2.大日本印刷
15:45	E 12n-W934-10	ターン形成と評価 Short-term and long-term memory of random aggregation	雄 ² , 北村 満 ² , 葛西 誠也 ¹ (D) Hadiyawarman Hadiyawarman ¹ , Masanori	1.Kyushu Inst. of Tech., 2.Kure Nat. Col. of Tech.
10.40	5 12p 11704-10	device using Ag-Ag ₂ S nanoparticles	Eguchi ² , Hirofumi Tanaka ¹	and another rectify a Ruite Ivat. Col. Of Itell.
	電変換 / Thermoelec	tric conversion		
3/9(ポスター講演 (Poster Presentation) PA 会場 (Room PA)	○本 先士郎』田田 ゼロ』田市 二切? 亭跡 南上? 亨	1 市海上陸エ 2日十エ 2 4 川エ上エ
	奨 9a-PA1-1	3ω法 (熱伝導率測定) における polyimide 絶縁膜の有効性と界面熱抵抗の評価	〇森 凌太郎', 黒川 拓也', 田中 三郎', 宮崎 康次', 高 尻 雅之 ¹	1. 果满天阮工, 2. 日天工, 3. 九州工大工
	9a-PA1-2	表面電位顕微鏡によるSiワイヤのゼーベック係数評価	の $\frac{3}{2}$ (2) 一	1.静大, 2.早大, 3.産総研, 4.マラヤ大
	9a-PA1-3	COMSOLを用いた表面電位顕微鏡による電位測定のモデリング	へ ル田 治也 ○鈴木 悠平¹,川合 健斗¹,岡 晃人¹,熊田 剛大²,島 圭 佑²,富田 基裕²,立岡 浩一¹,松川 貴³,松木 武雄³,渡 邉 孝信²,猪川 洋¹,下村 勝¹,村上 健司¹,サレファイ ズ*,池田 浩也¹	1.静大, 2.早大, 3.産総研, 4.マラヤ大
	9a-PA1-4	極薄ペルチェモジュール及び精密温度制御システムの提 案と実証		1. 埼玉大, 2. 学振 DC1
	9a-PA1-5	めっき法と転写法を組み合わせた傾斜型薄膜熱電ジェネ	山室 大樹¹, ○山口 将輝¹, 高尻 雅之¹	1. 東海大院工
	0- DA1 (レータの作製と性能評価	○	1 太白生誕十
	9a-PA1-6	pn接合を有する熱電薄膜の熱起電力評価	○村川 星斗¹, 上沼 睦典¹, 梅田 鉄馬¹, Jenichi Felizco¹, 石河 泰明¹, 浦岡 行治¹	1.奈良先端大
	奨 9a-PA1-7	ソルボサーマル法による $(Bi_2Se_3)_x(Bi_2Te_3)_{1-x}$ ナノプレート 薄膜の作製及び第一原理計算による物性評価		1. 東海大院工, 2. 東海大院理, 3. 都産技研
		13/1/1 水八マル 水工川井による物圧計画	。 , 田田 巨心 , 同 <i>川</i> / 脈心	

	9a-PA1-8	非平衡グリーン関数法によるSiクラスレートの輸送特性 の計算	○阿武 宏明¹, 岡本 和也¹	1.市立山口東理大工
	9a-PA1-9	化学量論組成フルホイスラー合金Fe ₂ TiSn焼結体のp型 熱電特性	○(M1)尾崎 寿樹¹,中津川 博¹,岡本 庸一².3	1. 横国大理工, 2. 防衛大材料, 3.NIMS
	9a-PA1-10	単結晶作製時の圧力変化による Mg ₂ Sn の格子欠陥制御	○齋籐 亘¹, 林 慶¹, 宮崎 讓¹	1.東北大院工
	9a-PA1-11	Ag クラスター構造を有する $Ag_6Ge_{10-x}Sn_xP_{12}$ の熱電特性	○並木 宏允 ¹ , 太田 優一 ¹	1. 都産技研
	E 9a-PA1-12	Electronic structure modification of $BaSb_xSn_{1\text{-}x}O_3$ materials thermoelectric application	Arivanandhan Mukannan², Jayavel Ramasamy²,	1.Shizuoka University, 2.Anna University
2/0/0-4	9a-PA1-13	CePd ₃ の熱電特性における元素置換効果	Masaru Shimomura¹ ○(B)尾川 史武¹, 松波 雅治¹, 竹内 恒博¹	1.豊田工大
3/9(Sat .3:45	t.) 13:45 - 17:00 9p-W351-1	口頭講演 (Oral Presentation) W351 会場 (Room W351) 高分子材料の電気化学特性	○守友 浩 ¹.².⁴, 菅野 友嗣², 福住 勇矢¹, 安田 剛³	1. 筑波大数理, 2. 筑波大理工学群, 3. 物材機構, 4. 筑波大数理物質系
14:00	9p-W351-2	高分子の酸化還元ポテンシャルの温度係数	○岩泉 滉樹¹, 菅野 友嗣², 安田 剛⁴, 下位 幸弘⁵, 小林 航¹.2.³, 守友 浩¹.2.³	1. 筑波大数物科, 2. 筑波大理工学群, 3. 筑波大数物系, 4. 物材機構, 5. 産総研
4:15	9p-W351-3	$P2$ -Na $_x$ CoO $_2$ における酸化還元電の温度係数の x 依存性	○福住 勇矢¹, 日沼 洋陽², 守友 浩¹.3.4	1. 筑波大数物科, 2. 千葉大先進科学セ, 3. 筑波大数物系 4. 筑波大TREMS
14:30		Na _x Ni[Fe(CN) ₆] _y /Na _x Co[Fe(CN) ₆] _y 三次電池	○柴田 恭幸¹, 高原 泉¹, 福住 勇矢², 守友 浩².3	1. 群馬高專, 2. 筑波大数理, 3. 筑波大 TREMS
4:45	9p-W351-5	薄膜π型マイクロTEGモジュールの最適設計における熱電材料膜厚の影響		1.東工大未来研
5:00	9p-W351-6	表面電位顕微鏡によるシリコン系クラスレートの仕事関数測定		1.山陽小野田市立山口東理大
5:15 5:30	9p-W351-7	高温高圧下における熱電性能測定装置の開発 休憩/Break	○森 嘉久¹, 芳野 極², 財部 健一¹	1. 岡理大理, 2. 岡大惑星研
5:45	9p-W351-8	高輝度放射光を用いた Mg ₂ Si の電子状態及び局所構造解析	橋 良暢 1 ,滝川 夏海 1 ,保井 晃 2 ,新田 清文 2 ,関澤 央 輝 2 ,徳村 真子 1 ,竹本 将司 1 ,飯田 努 1 ,小嗣 真人 1	1. 東理大基礎工, 2.SPring-8/JASRI
6:00	9p-W351-9	放電プラズマ焼結法で合成した Y および Te ドープ Mg_3Sb_2 の熱電特性		1.大阪技術研
6:15		安四面銅鉱型リン化物 $Ag_3P_6Si_3Sn_2$ の熱電物性と第一原理電子状態計算		1.北陸先端大
16:30	9p-W351-11	Large evolution of ${\it ZT}$ in p-type nanocrystalline bulk Si-Ge	オムブラカシ ムスサミー ¹ , ゴドケ スワブニル ¹ , デリムコドリー ケビン ¹ , 足立 真寛 ² , 山本 喜之 ² , 〇竹 内 恒博 ¹	1. 豊田工業大学, 2. 住友電機工業
		$ZT>1$ を示す環境調和型熱電変換材料 Cu_2ZnSnS_4 バルク単結晶の開発	○永岡章¹, 吉野 賢二¹, 増田 泰造², Scarpulla Michael³, 西岡 賢祐¹	1. 宮崎大工, 2.トヨタ自動車, 3.ユタ大材料工
3/10(Su 0:30		口頭講演 (Oral Presentation) W351 会場 (Room W351) Bi ナノワイヤーにおける格子圧縮が量子効果に及ぼす影	〇小峰 啓史 1 , 青野 友祐 1 , 村田 正行 2 , 長谷川 靖洋 3	1. 茨城大学, 2. 産総研, 3. 埼玉大学
0:45	10a-W351-2	響 AuとBを共添加したSi-Ge系薄膜の熱電特性	○廣瀬 光太郎¹,足立 真寬¹,西野 俊佑¹,山本 喜之¹,	1.住友電工, 2.豊田工大
1:00	10a-W351-3		竹内 恒博 ² ○寺田 吏¹, 上松 悠人¹, 石部 貴史¹, 中村 芳明¹	1. 阪大院基礎工
1:15	10a-W351-4	膜の熱電特性 高出力因子Si-rich SiGe/Si超格子における更なる低熱伝		1. 阪大院基礎工, 2. 東京都市大
1:30	10a-W351-5	導率化 複雑結晶構造を有するSi基板上BaSi₂薄膜の熱電性能評		1. 阪大院基礎工, 2. 筑波大院
1:45	10a-W351-6	価 共スバッタ法で作製したBa,Sr ₁₋₃ Si ₂ 膜の熱電特性	益 崇 2 , 中村 芳明 1 〇 (M1C) 青山 航大 1 , 清水 荘雄 1 , 倉持 豪人 2 , 召田 雅実 2 , 秋池 良 2 , 井出 啓介 1 , 片瀬 貴義 1 , 神谷 利夫 1 ,	1.東工大, 2.東ソー株式会社
		機能材料・萌芽的デバイス、合同セッションM「フォノン	木村 好里 ', 舟窪 浩 'エンジニアリング」のコードシェアセッション / Co	de-sharing Session of 9.4 & 12.3 & Joint Session M
		口頭講演 (Oral Presentation) W351 会場 (Room W351) 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M 「フォノンエンジニアリング」のコードシェアセッション 招待講演」 ナノ構造体におけるフォノン緩和過程と微小熱電発電デ		1. 北陸先端大
4:30	10p-W351-2	バイスへの応用 Si 置換した Fe ₂ VAI エピタキシャル薄膜の熱伝導率	〇(D)工藤康平 1 ,山田晋也 $^{1.2}$,近田尋一朗 1 ,嶋貫雄太 1 ,石部貴史 1 ,阿保智 1 ,宮崎秀俊 3 ,西野洋 $^{-3}$,中村芳明 1 ,浜屋宏平 $^{1.2}$	1. 阪大基礎工, 2. 阪大基礎工 CSRN, 3. 名工大
4:45	10p-W351-3	BドープAl誘起層交換による p 型 $Si_{1,x}Ge_x$ 熱電薄膜の性能向上		1. 筑波大, 2.JST さきがけ
5:00 5:15	招 10p-W351-4	休憩/Break 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M 「フォノンエンジニアリング」のコードシェアセッション 招待講演」		1.名大未来研, 2.U-MAP
6:00	10n-W351-5	高熱伝導樹脂を実現するAINウィスカーフィラーの開発 とベンチャー ナノ構造化によるシリコン薄膜のZT増強と平面型熱電	○柳澤 亭 人 ¹ Ruther Patrick ² Paul Oliver ² 野村 政	1 東大牛研 2 フライブルクナ 3 IST さきがけ
		デバイス開発 横型Siナノワイヤ熱電変換デバイスにおけるSiO ₂ 絶縁膜	宏 ^{1.3}	1.早大理工, 2. 産総研
6:30	~ zob 11001 0	/Si基板の最適厚さ設計 体憩/Break	CHARLETTE (MAIN PART) EXASTIC	, , some and a second of the second of th
6:45	招 10p-W351-7	「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M 「フォノンエンジニアリング」のコードシェアセッション 招待講演」		1.名大工
7:30	10p-W351-8	Van der Waals 材料における熱電特性 有機フォトクロミック分子を用いた高機能太陽光熱貯蓄 燃料の検討	○朝戸 良輔 ^{1,2} , Jan Patrick D C Calupitan ³ , 中嶋 琢 也 ¹ , Jyh-Chiang Jiang ⁴ , 河合 壯 ¹	1. 奈良先端大, 2.Toulouse Univ., 3.Paris-Saclay Univ., 4.台湾科技大
7:45	10p-W351-9	燃料の検討 セルロースナノペーパーにおける熱拡散性の応力応答	① ', Jyh-Chiang Jiang', 河台 莊 ' ○上谷 幸治郎 ', 井櫻 勝悟 ', 古賀 大尚 ¹ , 能木 雅也 ¹	
		New functional materials and new phenomena		
3/10(Su	n.) 16:00 - 18:00 10p-PA7-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 層状 TlGaSe ₂ における光誘起変形のミリ秒過渡応答特性		1.阪府大院工, 2.千葉工大工, 3.アゼルバイジャン科学
	10 DATE 0	評価Ⅱ 第一回引発を用いるでは、これをはまず、 ディトステス	Mamedov ³	アカデミー
	10p-PA7-2	第一原理計算を用いた $TlinS_2$ におけるドープによる電子 状態解析	〇石川 真人', 中山 隆史', 脇田 和樹', 沈 用球', Nazim Mamedov ⁴	1.千葉大理,2.千葉工大工,3.大阪府大工,4.アゼルバンジャン科学アカデミー

	10p-PA7-3	マルチフェロイック 0.7BaTiO ₃ -0.3Pr _{0.65} Ca _{0.35} MnO ₃ コア シェルの外場に対する応答	○柳沢 修実¹, 藤本 隆士², 北村 一浩³	1.弓削商船高専商船, 2.弓削商船高専電子機械, 3.愛教大技術教育
	10p-PA7-4	自己組織化テンプレートを用いた MoS_2 ナノ構造の形成	〇岡本 幸樹 1 ,清水 智弘 1 ,阿久津 里奈 2 ,高瀬 浩 $-^{2}$, 伊藤 健 1 ,新宮原 正三 1	
	10p-PA7-5	シュウ酸溶液中のアルミニウムの磁場印加陽極酸化II	一	1.東京農工大
	10p-PA7-6	ポーラスアルミナ上への低抵抗ZnO膜の作製	(M1)山下 翔暉¹, 奥木 丈生¹, 常盤 貴允¹, 森下 義 降¹	1.農工大工
	10p-PA7-7	ペロブスカイト化合物 CaRuO3の Mn 部分置換による強	○ (BC) 荒本 真也¹, 板東 能生¹	1. 呉高専専攻科
	奨 10p-PA7-8	磁性誘起 スパッタリングで形成したTa薄膜における電気抵抗率の 歪み誘起1/f雑音	○(B)上杉 良太¹, 小峰 啓史¹, 水野 将臣¹, 安藤 亮², 赤羽 秀郎¹	1. 茨城大学, 2.ITIC 茨城
		正みあた 1/7 稚日 i構造計測、9.5 新機能材料・新物性のコードシェアセッシ 口頭講演 (Oral Presentation) S423 会場 (Room S423)		
9:00	10a-S423-1	ラボラトリー軟X線XAFSによるMgB ₂ 薄膜中のMgの化	○柏倉 隆之 ¹	1.宇大院工
9:15	10a-S423-2	学状態分析 Auアレイ上増大場のRCWAによるシミュレーション	○鈴木 裕史¹, 工藤 蓮太郎²	1. 弘前大院, 2. 弘前大
9:30	奨 10a-S423-3	Ag形ゼオライトのPLにおけるクラスター崩壊時間	〇岡良樹 ¹ ,山内一真 ² ,鈴木裕史 ² ,米谷陸杜 ² ,宮永崇史 ²	
9:45	奨 10a-S423-4	Ag形ゼオライトのAgクラスター崩壊過程におけるその 場PL・XAFS測定	〇(M1)山内 一真¹, 鈴木 裕史¹, 米谷 陸人¹, 宮永 崇史¹	
10:00	奨 10a-S423-5	X線自由電子レーザーによる時間分解共鳴磁気光学カー 効果測定でみる Co/Pt 薄膜の磁化ダイナミクス	〇山本 航平 $^{1.2}$, El Moussaoui Souliman 1 , 平田 靖 透 $^{1.2}$, 山本 達 $^{1.2}$, 久保田 雄也 $^{3.4}$, 大和田 成起 $^{3.4}$, 矢橋 牧名 $^{3.4}$, 松田 巌 $^{1.2}$, 関 剛斎 5 , 高梨 弘毅 5 , 和達 大 樹 $^{1.2}$	1. 東大物性研, 2. 東大理, 3. JASRI, 4. 理研, 5. 東北大金研
10:15	10a-S423-6	コバルトフタロシアニンシートの合成と構造	〇大倉 秀亮 1 , 萩原 政幸 2 , 木田 孝則 2 , 澤田 祐也 2 , 鎌田 憲彦 1 , 本多 善太郎 1	1.埼玉大院理工, 2. 阪大先端強磁場
10:30 10:45	10a-S423-7	休憩/Break リチウムを挿入した多孔質鉄化合物の磁性	○藤田 恵理子¹, 萩原 政幸², 木田 孝則², 澤田 祐也²,	1. 埼玉大院理工, 2. 阪大先端強磁場
11:00	10a-S423-8	金属ナノ構造担持プロトン伝導体の光応答	鎌田 憲彦¹, 本多 善太郎¹ ○福島 知宏¹, 村越 敬¹	1.北大院理
11:15	10a-S423-9	酸化物粒子とEDTA錯体水溶液スラリー由来の酸化物納豆型構造体の形態		1. 長岡技科大, 2. 中部キレスト
11:30	E 10a-S423-10	Characteristic Properties of Macrocyclic Functional Hydrogels for Selective Heavy Metal Adsorption	○ (DC)Brian Adala Omondi¹, Hirotaka Okabe¹, Yoshiki Hidaka¹, Kazuhiro Hara¹	1.Kyushu Univ.
11:45	奨 E 10a-S423-11	X-ray Standing Wave Imaging and Its Application in Langmuir-Blodgett Films	○ (D)Wenyang Zhao ^{1, 2} , Kenji Sakurai ^{2, 1}	1.Tsukuba Univ., 2.NIMS
		口頭講演 (Oral Presentation) S423会場 (Room S423)		
13:30	招 10p-S423-1	「講演奨励賞受賞記念講演」 第一原理計算と遺伝的アルゴリズムによる有機 - 無機ハイブリッド材料の状態図予測	〇横山 智康 1, 大内 暁 1, 井垣 恵美子 1, 笹川 崇男 2	1.パナソニック(株), 2.東工大
13:45	10p-S423-2	第一原理計算による合金Ge-Sb-Te相変化メモリの解析	○野原 弘晶¹, 白川 裕規¹, 洗平 昌晃¹², 白石 賢二¹²	
14:00	10p-S423-3	XANAM で観測した Ge 表面上 X 線誘起力場変化の解析	〇鈴木 秀士 1 ,向井 慎吾 2 ,田 旺帝 3 ,野村 昌治 4 ,朝倉 清高 2	1.名大院工, 2.北大触媒研, 3.ICU, 4.KEK-PF
14:15	10p-S423-4	STEMモアレフリンジ法によるInP/InGaAs界面歪み分布計測	○陳 桐民¹, 大島 義文¹, 赤堀 誠志¹	1.北陸先端大
14:30 14:45	10p-S423-5	可搬型中性子反射率イメージャーの開発 休憩/Break	○桜井 健次 ¹, 水沢 まり ² ¹, 岩元 めぐみ ¹	1. 物材機構, 2.CROSS
15:00	10p-S423-6	逆光電子ホログラフィーを用いた強誘電体酸窒化物の局 所構造解析	○山本 裕太¹, 木村 耕治¹, Artoni Ang¹, 松下 智裕², 廣瀬 靖³, 林 好一¹	1.名古屋工業大学, 2.高輝度光科学研究センター, 3.東京大学
15:15	10p-S423-7	X線光電子分光における時空間計測・解析手法の開発	〇豊田智史¹, 梶野 雄太², 山本 知樹², 首藤 大器³, 野 瀬 惣市³, 吉村 真史³, 住田 弘祐⁴, 三根生 晋⁴, 町田 雅 武⁵, 吉越 章隆⁶, 横山 和司²	1.京都大学, 2.兵庫県大, 3.SP8 サービス, 4.マツダ,
15:30	奨 10p-S423-8	室温ハーフメタル Co ₂ TiSn の単結晶育成と物性評価	○小柳 海人¹, 村瀬 正恭¹, 笹川 崇男¹	1.東工大フロンティア研
15:45	10p-S423-9	強いスピン軌道相互作用を持つミスフィット層状Bi化合 物の単結晶育成と超伝導特性評価	○(M2)竹田 駿¹, 笹川 崇男¹	1.東工大フロンティア研
16:00 16:15	10n-S423-10	休憩/Break 超伝導体Y ₂ O ₂ Biにおける元素置換効果	寺門 恭兵¹,○河底 秀幸¹,松本 倖汰¹,福村 知昭¹.²	1.東北大理, 2.東北大WPI-AIMR & Core Research
16:30		過剰酸素導入による層状オキシニクタイド化合物	○松本 倖汰¹, 河底 秀幸¹, 福村 知昭¹²	Cluster 1. 東北大理, 2. 東北大WPI-AIMR & Core Research
		La ₂ O ₂ Bi の高移動度 p型伝導 2種類の原子を加えた Honeycomb ナノリボンにおける 2		Cluster 1.北大電子研
16:45		2個類の原すを加えたHoneycomb デノリホンにおりる 2 次元量子スピンホール相の研究 スピン液体候補物質 OsCl。の合成と粉末 X 線回折プロ	○ 中 廖 連 ,	
	*	ファイルのその場観察	吉 千佳子³, 黒岩 芳弘³	1. 日入建工, 2. 甲閈入建工, 3. 四入阮建
		ス・マグネティクス / Spintronics and Magn はプログラム冒頭にございます。	etics	
3/9(Sa	9p-PB1-1	ポスター講演 (Poster Presentation) PB 会場 (Room PB) Co ₂ MnGa エピタキシャル薄膜の異方性磁気抵抗効果	○佐藤 岳¹, 古門 聡士², 小坂 悟¹, 石川 剛¹, 小川 智	1. 豊田中研, 2. 静岡大, 3. 東北大
	奨 E 9p-PB1-2	Magneto-transport Properties of (Mn _{1-x} Co _x) ₂ VAl Heusler	之 ³ , 角田 匡清 ³ ○ (DC)Kenji Fukuda ¹ , Mikihiko Oogane ^{1,2,3} ,	1.Tohoku Univ., 2.CSRN, Tohoku Univ., 3.CSIS, Tohoku
	9p-PB1-3	Alloy Films Co ₂ TiSi ワイルセミメタルホイスラー合金のエピタキ	Masakiyo Tsunoda ^{1,2} , Yasuo Ando ^{1,2,3} ○(M1)劉 みん ¹ , 大兼 幹彦 ¹ , 角田 匡清 ¹ , 安藤 康夫 ¹	Univ. 1.東北大
	9p-PB1-4	シャル薄膜作製 スパッタによる a- 面配向の Mn ₃ Sn 薄膜	〇呉 承俊 1 ,森田 正 1 ,池田 智紀 2 ,大兼 幹彦 2 ,角田 匡	1.アルバック未来研, 2.東北大
	E 9p-PB1-5	$Growth \ of \ Fe_4N/Cu/Fe_4N \ tri-layer \ structure \ for \\ current-perpendicular-to-plane \ giant \ magnetoresistance$	清 ² , 安藤 康夫 ² ○ Keita Ito ^{1, 2} , Takahide Kubota ^{1, 2} , Koki Takanashi ^{1, 2}	1.IMR, Tohoku Univ., 2.CSRN, Tohoku Univ.
:	奨 E 9p-PB1-6	devices Investigation of composition dependence on the exchange anisotropy in PtxMn1-x/Co70Fe30 Films	○ SINA RANJBAR¹, Masakiyo Tsunoda², Mikihiko Oogane¹, Yasuo Ando¹.³	1.Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan, 2.Department of Electronic Engineering, Tohoku University, Sendai 980-8579,
				Japan, 3.Center for Science and Innovation in Spintronics (Core Research Cluster) Organization for Advanced Studies

9p-PB1-7	Co/Pd 多層積層膜の光パルス励起を経由するパーマロイ	○小野寺 蓮太¹, 西沢 望¹, 宗片 比呂夫¹	1. 東工大・未来研
9p-PB1-8	のスピン波生成 磁化の光励起才差運動が極めて大きな多層積層 Co/Pd 構 造の作製	○小川 竣太 ¹, 西沢 望 ¹, 宗片 比呂夫 ¹	1. 東工大・未来研
9p-PB1-9	室素吸着Cu(001)表面上でのFeNi原子層成長における作製条件の最適化	\bigcirc (M1C) 高橋 優樹 ^{1,2} , 川口 海周 ² , 服部 卓磨 ² , 飯盛 拓嗣 ² , 宮町 俊生 ² , 小嗣 真人 ¹ , 小森 文夫 ²	1. 東理大基礎工, 2. 東大物性研
E 9p-PB1-10	Magnetic damping in Pt/Co/Cr ₂ O ₃ /Pt stack films with	○ Anh ThiVan Nguyen ^{1, 2, 3, 4} , Yu Shiratsuchi ⁵ , Hideo	1.CSRN, Tohoku Univ., 2.CSIS, Tohoku Univ., 3.CIES,
	perpendicular magnetic anisotropy	$Sato^{1,2,3},Shoji$ Ikeda $^{1,2,3},Tetsuo\;Endoh^{1,2,3,4},Yasushi\;Endo^{1,2,4}$	Tohoku Univ., 4.ECEI, Tohoku Univ., 5.G.S.Eng. Osaka Univ.
9p-PB1-11	磁性層/重金属層へテロ構造の磁気光学効果		1. 豊田工大
9p-PB1-12	X線磁気円二色性によるfcc-CoNi多層膜の結晶磁気 異方性の研究	〇(DC)池田 啓析, 伊滕 啓太, 闽 剛倉, 之田 怡 朗³, 坂本 祥哉³, 野中 洋亮³, 池 震棟³, 万 宇軒³, 鈴木 雅弘³, 酒巻 真粧子⁴, 雨宮 健太⁴, 高梨 弘毅², 和達 大	1. 東大物性研, 2. 東北大金研, 3. 東大理, 4.KEK-PF
9p-PB1-13	パルスレーザー蒸着法を用いた FeCo 多層膜の作製およ	樹¹, 藤森 淳³ ○伊藤 久晃¹, 宮下 拓也¹, 熊谷 卓也¹, 宮町 俊夫², 小	1 市台田利士 2 市土柳州江 2 IACDI
9p-PB1-14	び解析 L1 ₁ -FeNiの創製に向けた基板の検討	森 文夫 ² , 大河内 拓雄 ³ , 小嗣 真人 ¹ ○宮下 拓也 ¹ , 伊藤 久晃 ¹ , 熊谷 卓也 ¹ , 宮町 俊夫 ² , 小	
		森文夫², 小嗣 真人¹	
E 9p-PB1-15	Structural and magnetic properties of β -Mn-type CoZnMn alloy thin films fabricated by DC-sputtering	O Ryo Ishikawa ¹ , Seungjun Oh ¹ , Tadashi Morita ¹ , Shinya Kasai ² , Yukiko Takahashi ²	1.ULVAC, 2.NIMS
9p-PB1-16	DO ₁₉ 型X ₃ Sn(X=Fe,Mn) 薄膜の作製とその磁気伝導特性	·	1.北大工, 2.東北大通研, 3.東北大CSRN
E 9p-PB1-17	Annealing effects of exchange bias properties for Co-Mn/Ir-Mn bilayers		1.CSIS(CRC), Tohoku Univ., 2.CSRN, Tohoku Univ., 3.Tohoku Univ., 4.WPI-AIMR, Tohoku Univ.
9p-PB1-18	ワイル磁性体Mn ₃ Snのエピタキシャル薄膜作製と評価	○安藤 優介¹, 羽尻 哲也¹, 植田 研二¹, 浅野 秀文¹	1.名大工
E 9p-PB1-19	Atomic-layer alignment dependence of spin-orbit included magnetism in thin films	○ Kohji Nakamura¹, Yuna Kato¹, AM. Pradipto¹, Toru Akiyama¹, Tomonori Ito¹, Tamio Oguchi²	1.Mie Univ., 2.Osaka Univ.
9p-PB1-20	軌道フェリ磁性体 $CoMnO_3$ における磁気異方性定数の温度変化		1. 筑波大学
9p-PB1-21	有機金属分解法による Nd ₂ BiFe ₄ GaO ₁₂ 薄膜作製における 仮焼成条件の検討	\bigcirc (M2) 趙 嘉欣 1 , 西川 雅美 1 , 石橋 隆幸 1 , 河原 正美 2	1. 長岡技術科学大学, 2. 高純度化学研究所
9p-PB1-22	電子線照射MOD法を用いたSiO ₂ 上へのGa:YIGサブミクロンパターンの作製	○坂木 翔太¹, 笠原 健司¹, 眞砂 卓史¹	1.福岡大理
E 9p-PB1-23	Sign reversal of current-induced effective magnetic field	○ Michihiko Yamanouchi ^{1, 2} , Tatsuro Oyamada ² ,	1.RIES Hokkaido Univ., 2.IST Hokkaido Univ.
0- DD1 24	in La _{0.67} Sr _{0.33} MnO ₃ heterostructures	Hiromichi Ohta ^{1,2}	1 公计上标了
9p-PB1-24 9p-PB1-25	スパッタリング法による窒化 Fe,Co 薄膜の作製 First-principles study on magnetism and magneto-optical		1. 筑波大物工 1. 三重大院工
	properties of yttrium iron garnet	秋山 亨 ¹, 伊藤 智徳 ¹, 中村 浩次 ¹	
9p-PB1-26	反強磁性スピントロニクスに向けたノンコリニア反強磁 性絶縁体SmFeO ₃ トンネル接合の作製と評価	○ 尹 智誠 ', 棚橋 直也 ', 羽尻 哲也 ', 浅野 秀文 '	1. 名大院工
9p-PB1-27	Strain mediated magnetic properties in thin Fe ₄ N pseudo single-crystal films	鈴木一平¹,○磯上慎二¹	1.物材機構
奨 9p-PB1-28	ノンコリニア型反強磁性体SmFeO₃のスピンホール磁気		1.名大工
9p-PB1-29	抵抗効果 [GeTe/Sb ₂ Te ₃] 超格子/Py積層膜のスピンホール効果	浅野 秀文¹ ○鷲見 聡¹,平野 友市郎¹,粟野 博之¹,富永 淳二²	1. 豊田工業大学, 2. 産業技術総合研究所
9p-PB1-30	90度磁気結合膜のX線反射率による構造解析	○(M1)鍾永師¹,永鳥玄¹,堀池周¹,花島隆泰²,黒川雄一郎¹,湯浅裕美¹	
9p-PB1-31	Zn ドープマグネタイトナノ微粒子の温熱効果と T_2 緩和効果		1. 横国大院工, 2. 大阪大院理, 3. 横国大院環情, 4. 東北大院医, 5. 国際医療福祉大院保
奨 9p-PB1-32	アクティブターゲティングを目指した磁気ナノ微粒子の ハイパーサーミア効果と血液脳関門通過	○井手 太星 ¹, 藤原 康暉 ¹, 大嶋 晃人 ², 神田 康平 ³, 阿 部 真之 ⁴, 田中 秀吉 ⁵, 一柳 優子 ¹.2.6	1. 横国大院工, 2. 横国大院理工, 3. 横国大環情, 4. 大阪大院基礎工, 5. 情報通信研究機構, 6. 構造熱科学研究センター
9p-PB1-33	電流磁壁駆動磁性細線の温度分布測定	○澤 拓哉¹, 鷲見 聡¹, 田辺 賢士¹, 粟野 博之¹	1. 豊工大
E 9p-PB1-34	Excitation Wavelength and Pump Power Dependence of Terahertz Emission of Fe/Pt Spintronic Bilayer Structure	(D)Miezel Legurpa Talara ¹ , Valynn Katrine	1.Research Center for Development of Far-Infrared Region, Univ. of Fukui, Japan, 2.Photonic Center
	retailertz Emission of 1e/11 Spintrome Bhayer Structure	Jessica Afalla ¹ , Garik Torosyan ^{2, 3} , Sascha Keller ^{3, 4} ,	Kaiserslautern, 3.Univ. of Kaiserslautern, Research
		Laura Scheuer ^{3,4} , Johannes Lhuillier ^{2,3} , Rene	Center OPTIMAS, 4.Univ. of Kaiserslautern,
		Beigang ^{3, 4} , Evangelos Th Papaioannou ^{3, 4} , Masahiko Tani ¹	Department of Physics
9p-PB1-35	GaN/TbN短周期超格子形成とその磁気光学特性評価 (その2)		1. 阪大産研
9p-PB1-36	- TbN井戸層幅依存性 - CdTe 自己形成ドットにおける Crの電荷揺らぎによる発	○牧田 憲治¹, 有野 雅史¹, 須永 雅弘¹, 黒田 眞司¹, ラ	1 역法十粉冊物質 2 CNDC > n 和
эр-г b1-30	光スペクトルの分裂	○ (秋山 恩石, 有町 雅文, 須水 雅弘, 黒山 眞司, ノ ファンテ-サンピエトロ アルバン ² , ボウカリ エル べ ² , ビソンブ ルシアン ²	1. 州政人奴哇勿員, 2.CING イール明
E 9p-PB1-37	Superlattice-periods dependence on spin relaxation time	○ Yuichi Nakamura¹, Xiuguang Jin², Shunsuke	1.Waseda Univ., 2.KEK
9p-PB1-38	in GaAs/GaAsP strained-compensated superlattice Co/BiFeO ₃ /LaSrMnO ₃ トンネル接合構造における	Ohki ¹ , Daisuke Tanaka ¹ , Atsushi Tackeuchi ¹ ○永沼 博 ¹ , 一ノ瀬 智浩 ¹	1.東北大
9p-PB1-39	BiFe O_3 の Fe モーメントの増大 $Tb_{26}Fe_{66}Co_8$ を電極に用いた両極性伝導体 YH $_2$ における	○伊勢 健冬¹,藤井 大樹¹,酒井 政道¹,樋口 宏二²,北	1. 埼大院理工, 2. 阪大産研, 3. 豊田工大
9p-PB1-40	ホール抵抗及び横磁気抵抗の印加磁場角度依存性 Tb ₃₃ Fe ₆₇ 電極からYH ₂ へのスピン注入及び電極ーチャネ	島 彰², 長谷川 繁彦², 黒川 雄一郎³, 粟野 博之³ ○高橋 侑太郎¹, 秋里 宗次郎¹, 菅沼 奈央¹, 三上 亮	1. 埼大院理工, 2. 東洋大学, 3. 豊田工大
3h-t D1-40	10gtter電極から111g、の人とクは八及び電極ニテャネル間Ti膜の影響	し 同	1. 河入虎柱工, 2. 宋什八十, 3. 豆田工八
9p-PB1-41	$\mathrm{Tb_{33}Fe_{67}}$ を電極に用いた Yo ホール効果における電極 ーチャネル間 Ti 膜厚依存性		1. 埼大理工, 2. 東洋大, 3. 豊田工大
9p-PB1-42	スピンゼーベック素子にタングステンと白金を金属膜と	中局 義貞, 徳田 止労, 藤井 泰彦, 来野 傳之 ○(B) 松崎 貴広¹, 山本 篤¹, 伊藤 勝利¹, 柯 夢南¹, 河 原 尊之¹	1. 東京理科大工
9p-PB1-43	して使用した場合の起電力の比較・検討 STM/STSによるα-Sn/InSb(001) 電子状態の膜厚特性	原 粤之。 ○樋渡 功太¹,加来 滋¹,吉野 淳二¹	1.東工大理
9p-PB1-44	の測定 マイクロマグネティックシミュレーションを用いたスピ	○赤松 竜成¹, 柴田 晃治¹, 笠原 健司¹, 真砂 卓史¹	1.福岡大理
9p-PB1-45	ン波の伝搬特性における強磁性導波路幅依存性の検証 フェリ磁性体 GdFeCoの磁性共鳴によるスピン起電力	○(B) 福田 舜¹, 高橋 晨¹, 鷲見 聡¹, 田辺 賢士¹, 粟野	1. 豊田工大
		博之1	
9p-PB1-46	厚膜 GdFeCo 磁性細線における電流誘起磁壁移動	○高橋 晨¹, 黒川 雄一郎², 鷲見 聡¹, 田辺 賢士¹, 粟野博之¹	1. 豊田工大, 2. 九大シス情

)】10.1 新物質・新機	能創成(作製・評価技術), 10.2 スピン基盤技術・萌芽的ラ		トレージ技術 ,10.4 半導体スピントロニクス・超伝導
9p-PB1-80	Mn ₃ Sn 多結晶薄膜における異常 Hall 効果の組成依存性	\bigcirc (M1) 池田 智紀 1 , 角田 匡清 1 , 大兼 幹彦 1 , 呉 承俊 2 , 森田 正 2 , 安藤 康夫 1	1. 東北大工, 2.ULVAC 未来研
E 9p-PB1-79	Nearly pure circular polarization electroluminescence from spin-LED with significantly reduced current densities	○ Nozomi Nishizawa¹, Hiro Munekata¹	1.FIRST, TITECH
9p-PB1-78	IZO/Bi置換磁性ガーネット膜における磁気光学効果シ ミュレーション	○田中 和総¹, イェセンスカー エヴァ², ヴェイス マーティン², 西川 雅美¹, 石橋 孝幸¹	1.長岡技科大工, 2.チャールズ大
9p-PB1-77	Initial magnetic domain nucleation of a MO light modulator driven by domain wall	O Kenichi Aoshima ¹ , Nobuhiko Funabashi ¹ , Ryo Higashida ¹ , Kenji Machida ¹	1.NHK STRL
E 9p-PB1-76	Investigation of Y-shaped magnetic wire logic device by current-induced domain wall motion		1.Kyushu Univ., 2.Toyota Tech. Inst, 3.Kyushu Univ. 4.Res. Ctr. for Quant. Nano-Spin Sci
奨 E 9p-PB1-75	Demonstration of spin xor operation with Si spin channel	○ (M1)Ryoma Ishihara¹, Soobeom Lee¹, Yuichiro Ando¹, Ryo Ohshima¹, Yoshishige Suzuki², Hayato Koike³, Masashi Shiraishi¹	1.Kyoto Univ., 2.Osaka Univ., 3.Corp.
40.0		Sumito Tsunegi¹, Tomohiro Taniguchi¹, Atsushi Sugihara¹, Minori Goto²-³, Kazuki Takahashi², Hikaru Nomura²-³, Yoshishige Suzuki¹-²-3	
9p-PB1-73 E 9p-PB1-74	軟磁性三層薄膜の磁気シミュレーション Magnetic tunnel junction array for physical reservoir	○坂 尚樹¹, 土田 洋介¹, 鶴岡 誠¹ ○ Hitoshi Kubota¹, Kay Yakushiji¹, Akio Fukushima¹,	1.東京工科大院 1.AIST, 2.Osaka Univ., 3.CSRN-Osaka
9p-PB1-72	積層軟磁性薄膜の高周波磁化応答に関する印加磁界角度 依存性	○高村 綾平¹, 土田 洋介¹, 鶴岡 誠¹	1.東京工科大工
E 9p-PB1-71	Fabrication of $L1_0$ (MnCo)Al thin film with high perpendicular magnetic anisotropy on Pt seed layer	○ (M1)LONGJIE YU¹, Mikihiko Oogane¹, Masakiyo Tsunoda¹, Yasuo Ando¹	
E 9p-PB1-70	Observation of spin-orbit torque magnetization switching in Gd-Fe perpendicular magnetized wire with IrMn cap layer	○ (M1) Masakazu Wakae¹, Masahiro Itoh¹, Yuichiro Kurokawa¹, Kohei Ohnishi².³, Hiromi Yuasa¹	1.Grad. Sch. & Fac. of Info. Sci. & Elec. Eng., Kyus Univ., 2.Dept. of Phys., Kyushu Univ., 3.Res. Ctr. f Quant. Nano-Spin Sci., Kyushu Univ
E 9p-PB1-69	Voltage control of magnetic anisotropy in Mn inserted Magnetic tunnel junction	○ (M1)Tsubasa Watakabe¹, Goto MInori¹, Miwa Shinji², Suzuki Yoshishige¹.³	1.Osaka Univ., 2.Univ. of Tokyo, 3.CSRN-Osaka
9p-PB1-68	2回酸化法による高品位MgAl₂O₄バリア強磁性トンネル接合	○市川 心人 ¹ , Chang PH. ^{2.3} , 介川 裕章 ² , 三谷 誠 司 ^{2.3} , 大久保 忠勝 ² , 宝野 和博 ^{2.3} , 中田 勝之 ¹	1.TDK, 2.物材機構, 3.筑波大
奨 E 9p-PB1-67	Radio-frequency magnetic field sensitivity of magnetic vortex in magnetic tunnel junctions	○ Ryota Okuno ¹ , Minori Goto ^{1, 2} , Sumito Tsunegi ³ , Kei Yakushiji ³ , Hitoshi Kubota ³ , Akio Fukushima ³ , Shinji Yuasa ³ , Hikaru Nomura ^{1, 2} , Yoshishige Suzuki ^{1, 2, 3}	1.Osaka Univ., 2.CSRN-Osaka, 3.AIST
奨 E 9p-PB1-66	Detection of the weak magnetic field by serial MTJs with various aspect ratio free layers	Mikihiko Oogane ¹ , Yasuo Ando ¹	1.Tohoku Univ
E 9p-PB1-65	Effect of second order magnetic anisotropy on linear response of magnetic sensors with CoFeB/MgO/CoFeB based magnetic tunnel junctions	○ Takahiro Ogasawara¹, Mikihiko Oogane¹.².³, Masakiyo Tsunoda¹.³, Yasuo Ando¹.².³	1.Tohoku Univ., 2.CSIS, 3.CSRN
E 9p-PB1-64	High TMR Ratio and High Signal Output of Array TMR Sensor Deposited on Chemical-Mechanical Polishing Cu Buffer Layer	○ Kousuke Fujiwara ¹ , Mahiro Sato ¹ , Sabri Cakir ¹ , Seiji Kumagai ¹ , Mikihiko Oogane ² , Yasuo Ando ²	1.Spin Sensing Factory Corp., 2.Tohoku Univ.
E 9p-PB1-63	Higher Magnetoresistance Sensitivity Of Magnetic Sensors With Closer Junctions	○ Sabri Cakir¹, Kosuke Fujiwara¹, Mahiro Sato¹, Seiji Kumagai¹, Mikihiko Oogane², Yasuo Ando²	
9p-PB1-62	磁気アルキメデス浮上状態で光操作された物体の運動の 解析	○種部 千遥¹, 岡野 佑亮¹, 大澤 正久¹, 廣田 憲之², 池 添 泰弘¹	1.日工大, 2.物質・材料研究機構
9p-PB1-61	GdCl ₃ 水溶液中で磁気浮上した球状蓄光材料の非接触光 回転操作	〇岡野 佑亮 1 ,種部 千遥 1 ,大澤 正久 1 ,廣田 憲之 2 ,池 添 泰弘 1	1.日本工大, 2.物質・材料研究機構
9p-PB1-60			1.日大生産工, 2.物材機構, 3.京大院エネ科
9p-PB1-59	膜の作製 脳底部を標的にした磁気刺激用口腔内コイルの開発	安藤 康夫 ¹ ○(M2) 野崎 利博 ¹ , 備前 岳 ¹ , 安藤 努 ¹	1.日大生産工
9p-PB1-58	magnetoresistance in bilayers of neavy metal and non-collinear antiferromagnet スピン注入に向けた GaAs 基板上への Co ₂ Fe _{0.4} Mn _{0.6} Si 薄	○ (M1) 王 君成 ¹ , 小池 剛央 ¹ , 大兼 幹彦 ¹ , 角田 匡清 ¹ ,	
更 E 9p-PB1-57	controlling W resistivity Magnetoresistance in bilayers of heavy metal and	Chaoliang Zhang ^{1,2,3,4} , Buturin Jinnai ³ , Syunsuke Fukami ^{1,3,4,5,6,7} , Hideo Ohno ^{1,3,4,5,6,7} (Nento Oda ¹ , Takahiro Moriyama ^{1,2} , Teruo Ono ^{1,2}	6.CSIS (CRN), 7.WPI-AIMR
奨 9p-PB1-55 奨 E 9p-PB1-56	compositions 磁区構造形成のフェーズフィールドモデリング Enhancement of spin-orbit torque in W/CoFeB/MgO by	○ (M1) 阿波 龍一郎 ¹, 山中 晃徳 ¹, 末廣 龍一 ² ○ Kaito Furuya ¹, Yutaro Takeuchi ¹, Yu Takahashi ¹,	1.東京農工大, 2.JFE スチール研 1.RIEC, Tohoku Univ., 2.FRIS, 3.CSIS, 4.CIES, 5.C
E 9p-PB1-54	Systematic investigation of anomalous Hall effect in $\text{Co}_2(\text{Fe},\text{Mn})\text{Si}$ Heusler alloy films with various	○ (M1)Qiang Wang ¹ , Zhen Chao Wen ^{1, 2} , Takeshi Seki ^{1, 2} , Koki Takanashi ^{1, 2}	1.IMR, Tohoku Univ., 2.CSRN, Tohoku Univ.
E 9p-PB1-53	Antiferromagnetic coupling and spin Hall effect in Co / Ir-doped Cu / Co layers		1.IMR, Tohoku Univ., 2.CSRN, Tohoku Univ.
9p-PB1-51 E 9p-PB1-52	TbFeCo磁性薄膜における輸送特性の組成依存性 Spin Hall magnetoresistance of YIG / Pt with magnetic layer inserted into the interface	○安藤 亮¹, 小峰 啓史² ○ (M1)Takumi Niimura¹, Fumiya Nakata¹, Houlin Li¹, Yuichiro Kurokawa¹, Hiromi Yuasa¹.²	1.ITIC 茨城 , 2. 茨城大学 1.Kyushu Univ., 2.JST,PRESTO
E 9p-PB1-50	Ru insertion effect on spin Seebeck effect of YIG/Ta or Pt	Nakata ¹ , Yuichiro Kurokawa ¹ , Hiromi Yuasa ^{1, 2}	1.Kyushu Univ., 2.JST PRESTO
9p-PB1-48 9p-PB1-49	Fe _{1-x} Rh _x 規則合金薄膜におけるダンビング定数評価 コプレーナ線路を用いたPy/Ag/Bi 三層膜の強磁性共鳴	○宇佐見 喬政 ^{1,2} , 伊藤 満 ² , 谷山 智康 ¹ ○川崎 連 ¹ , 妹尾 駿一 ¹ , 岡本 聡 ² , 菊池 伸明 ² , 北上 修 ² , 冨田 知志 ¹ , 細糸 信好 ¹ , 柳 久雄 ¹	1.名大理物, 2.東工大フロンティア研 1.奈良先端大物質, 2.東北大多元研
	of a spin torque oscillator	Miwa ² , Kohei Nakajima ^{3, 4} , Kay Yakushiji ¹ , Akio Fukushima ¹ , Shinji Yuasa ¹ , Hitoshi Kubota ¹	Tokyo, 4.JST PRESTO

[CS.9] 1	U.1 新物質・新機用	B	⁻ ハイス技術, 10.3 スピンアハイス・燃丸メモリ・スト	・レーン技術,10.4 丰等体スピントロークス・超伝導・独
相関のコ		$_{\rm 3}$ \times / Code-sharing Session of 10.1, 10.2, 10.3 & 10.4		
3/11(M	lon.) 9:00 - 12:00	口頭講演 (Oral Presentation) M101 会場 (Room M101)		
9:00	E 11a-M101-1	Resistive detection of the Néel temperature of Cr ₂ O ₃ thin	○ (M2)Tatsuya Iino¹, Takahiro Moriyama¹, Hiroyuki	1.ICR, Kyoto Univ., 2.Osaka Univ.
		films	Iwaki ¹ , Hikaru Aono ² , Yu Shiratsuchi ² , Teruo Ono ¹	
9:15	E 11a-M101-2	Spin Hall magnetoresistance in amorphous tungsten/iron-	Lukasz Pawliszak¹, ○ Seiji Mitani², ³, Shinji	1. Warsaw Univ. Tech., 2.NIMS, 3.Univ. Tsukuba, 4.Univ.
		silicon alloy bilayers	Isogami ² , Masamitsu Hayashi ^{2, 4} , Tadeusz Kulik ¹	Tokyo
9:30	E 11a-M101-3	Spin torque induced by orbital conversion at Cu/Al ₂ O ₃	○ Junyeon Kim¹, Dongwook Go², Hanshen Tsai³,	1.RIKEN-CEMS, 2.Postech, 3.ISSP, Univ. Tokyo
		interface	Kouta Kondou ¹ , Hyun-Woo Lee ² , YoshiChika	
			Otani ^{1, 3}	

9:45	奨 E 11a-M101-4	Spin-charge conversion in highly oriented bismuth using spin-torque ferromagnetic resonance	○ Masayuki Matsushima¹, Yuichiro Ando¹, Ryo Ohshima¹, Sergey Dushenko¹, Ei Shigematsu¹, Takeshi Kawabe².², Teruya Shinjo¹, Shinji Miwa².³, Masashi Shiraishi¹	1.Kyoto Univ., 2.The Univ. of Tokyo, 3.Osaka Univ.
10:00	11a-M101-5	高周波誘導起電力測定による半導体/磁性体界面におけるスピン流電流変換物性測定	・ 重松 英 ¹ , Lukas Liensberger ² , Mathias Weiler ² , 大 島 該 ¹ , 安藤 裕一郎 ¹ , 新庄 輝也 ¹ , Hans Huebl ² , 白石 誠司 ¹	1. 京大院工 , 2.Walther Meissner Institute
10:15	奨 E 11a-M101-6	An investigation of gate-induced modulation of the inverse spin Hall effect in ultrathin Cu.	O Shinichiro Yoshitake ¹ , Masaya Hokazono ¹ , Teruya Shinjo ¹ , Ryo Oshima ¹ , Yuichiro Ando ¹ , Masashi Shiraishi ¹	1.Kyoto Univ.
10:30	奨 E 11a-M101-7	$Efficient\ spin-to-charge\ current\ conversion\ in\ a$ $La_{0,67}Sr_{0.33}MnO_3/LaAlO_3/SrTiO_3\ epitaxial\ single-crystal$ heterostructure	⊙ Daissi Araki¹, Anh Le Duc ^{1,2} , Shingo Kaneta¹, Masaaki Tanaka¹.³, Ohya Shinobu¹.².³	1.Univ. Tokyo EEIS, 2.Univ. Tokyo IEI, 3.CSRN
10:45 11:00	E 11a-M101-8	休憩/Break Determination of spin-orbit torque by spin-torque ferromagnetic resonance free from spin-pumping	Atsushi Okada¹, ○ (D) Yutaro Takeuchi¹, Kaito Furuya¹, Chaoliang Zhang¹. 2.3.4°, Hideo Sato¹.3.4.5.6°, Shunsuke Fukami¹.3.4.5.6.7°, Hideo Ohno¹.3.4.5.6.7°	1.Laboratory for Nanoelectronics and Spintronics, RIEC Tohoku Univ., 2.FRIS, Tohoku Univ., 3.CSIS, Tohoku Univ., 4.CIES, Tohoku Univ., 5.CSRN, Tohoku Univ., 6.CSIS (CRC), Tohoku Univ., 7.WPI-AIMR, Tohoku Univ.
11:15	奨 E 11a-M101-9	Observation of memristive domain patterns during spin-orbit torque switching in antiferromagnet/ ferromagnet heterostructures	○ (P)Aleksandr Kurenkov ^{1, 4, 5} , Manuel Baumgartner ² , Giacomo Sala ² , Gunasheel Krishnaswamy ² , Francesco Maccherozzi ³ , Shunsuke Fukami ^{1, 4, 5, 6, 7} , Pietro Gambardella ² , Hideo Ohno ^{1, 4, 5, 6, 7}	Cim. L.RIEC, Tohoku Univ., 2.ETH Zurich, 3.Diamond Light Source, 4.CSIS, Tohoku Univ., 5.CSRN, Tohoku Univ., 6.CIES, Tohoku Univ., 7.WPI-AIMR, TU
11:30	奨 E 11a-M101-10	Temperature dependence of spin-orbit torques in an antiferromagnet/ferromagnet heterostructure	○ (M2) Ryuichi Itoh¹, Yutaro Takeuchi¹, Samik DuttaGupta¹.².².³.⁴, Shunsuke Fukami¹.².³.³.⁴.5, Hideo Ohno¹.².³.4.5,6	1.RIEC, Tohoku Univ., 2.CSIS(Core Research Cluster), Tohoku Univ., 3.CSRN, Tohoku Univ., 4.CSIS, Tohoku Univ., 5.CIES, Tohoku Univ., 6.WPI-AIMR, Tohoku Univ.
11:45 3/11(N		Giant spin-orbit torque and magnetothermal effects in sputtered BiSb/CoFeB bilayers 口頭講演 (Oral Presentation) M101会場 (Room M101)	\bigcirc Zhendong Chi ¹-², Yong Chang Lau¹-², Masamitsu Hayashi¹-²	1.The Univ. of Tokyo, 2.NIMS
13:15	招 E 11p-M101-1	[Young Scientist Presentation Award Speech] Observation of unconventional spin-orbit torque in Py/ Pt/Co tri-layer structure	O Yuki Hibino ¹ , Tomohiro Koyama ¹ , Daichi Chiba ¹	1.Univ. of Tokyo
13:30	E 11p-M101-2	Spin-orbit torque strength and efficiency in a perpendicularly-magnetized ferromagnetic semiconductor GaMnAs single thin film	○ (D)Miao JIANG¹, Hirokatsu Asahara¹, Shoichi Sato¹, Toshiki Kanaki¹, Hiroki Yamasaki¹, Shinobu Ohya¹.².³, Masaaki Tanaka¹.²	1.Univ. of Tokyo, 2.CSRN, 3.Inst. of Engineering Innovation
13:45	E 11p-M101-3	Spin-orbit torque in ionic crystal ReO _X	○ Shutaro Karube ^{1, 2} , Daichi Sugawara ¹ , Makoto Kohda ^{1, 2, 3} , Junsaku Nitta ^{1, 2, 3}	1.Tohoku Univ. Eng., 2.Tohoku Univ. CSRN, 3.Tohoku Univ. CSIS
14:00	11p-M101-4	64素子スピン流型磁気メモリアレイにおけるWrite Endurance試験	〇石谷 優剛 1 , 塩川 陽平 1 , 小村 英嗣 1 , 積田 淳史 1 , 須 田 慶太 1 , 柿沼 裕二 1 , 佐々木 智生 1	1.TDK(株)
14:15	E 11p-M101-5	Material dependence of the effect of SOT-MRAM read disturb reduction method	○(M1)Keisuke Tabata¹, Takayuki Kawahara¹	1.Tokyo University of science
14:30	奨 E 11p-M101-6	Study on current-induced domain-wall motions of antiferromagnetically coupled layered magnetic wires with various interlayer thickness	○ Musashi Shimazaki¹, Tatsuro Ohmasa¹, Tomoya Sakata¹, Masaaki Tanaka¹, Syuta Honda², Hiroyuki Awano³, Ko Mibu¹	1.Nagoya Inst. Tech., 2.Kansai Univ., 3.Toyota Tech. Inst.
14:45	奨 E 11p-M101-7	Static interaction of Skyrmions in magnetic thin-film circuits patterned by anisotropy undulations	○ Chaozhe Liu¹, Yuma Jibiki¹, Soma Miki¹, Jaehun Cho³, Eiichi Tamura¹, Minori Goto¹-², Hikaru Nomura¹-², Yoshishige Suzuki¹-², Ryoichi Nakatani¹	1.Osaka Univ., 2.CSRN-Osaka, 3.KRISS
10.1 新	物質・新機能創成(at.) 16:00 - 18:00	作製・評価技術)/ Emerging materials in spintronics and 口頭講演 (Oral Presentation) M101 会場 (Room M101)		n methodologies)
16:00 16:15	E 9p-M101-1 E 9p-M101-2	Ab-initio search for half-metal Co-based full Heusler alloy Optimization of substrate temperature of Mn4N thin films	○(B)Taku Hirose¹, Taro Komori¹, Akihito Anzai¹,	1.NIMS 1.Tsukuba Univ.
16:30	奨 E 9p-M101-3	on STO(001) by molecular beam epitaxy $ \text{Perpendicular magnetic anisotropy in } Mn_{2-\delta} CoGa_{1+\delta} \text{ films} $	Gushi Toshiki ¹ , Takashi Suemasu ¹ ○ Daichi Takano ¹ , Takahide Kubota ^{1, 2} , Koki Takanashi ^{1, 2}	1.IMR, Tohoku Univ., 2.CSRN, Tohoku Univ
16:45 17:00	E 9p-M101-4	休憩/Break Quadrupole moment in Mn _{3-x} Ga detected by x-ray magnetic linear dichroism	○ Jun Okabayashi¹, Kazuya Suzuki², Shigemi Mizukami²	1.The Univ. of Tokyo, 2.Tohoku Univ.
17:15	奨 E 9p-M101-5	Electrical spin injection in Co ₂ MnGa based all-metallic lateral spin valves	(O(D)LIVIO LEIVA ¹ , Simon Granville ² , Teruya Shinjo ¹ , Ryo Ohshima ¹ , Yuichiro Ando ¹ , Masashi Shiraishi ¹	1.Kyoto Univ., 2.VUW
17:30	E 9p-M101-6	Electronic and magnetic properties of graphene/ $Co_2Fe(Ge_{0.5}Ga_{0.5}) \ Heusler \ alloy \ heterostructure$	○ (P)Songtian Li¹, Konstantin V. Larionov², Zakhar I. Popv², Yoichi Yamada³, Kenta Amemiya⁴, Shiro Entani¹, Yuya Sakuraba⁵, Hiroshi Naramto¹, Pavel B. Sorokin², Seiji Sakai¹	1.QST, 2.NUST MISiS, 3.Univ. of Tsukuba, 4.KEK, 5.NIMS
17:45	E 9p-M101-7	Temperature dependence of magneto-transport properties of $Mn_{4\text{-}x}Ni_{z}N$ thin films	○ Taro Komori¹, Toshiki Gushi¹.², Akihito Anzai¹, Taku Hirose¹, Kaoru Toko¹, Shinji Isogami³, Takashi Suemasu¹	1.Univ. of Tsukuba, 2.SPINTEC, 3.NIMS
3/10(9:00	Sun.) 9:00 - 11:15 奨 10a-M101-1	口頭講演 (Oral Presentation) M101 会場 (Room M101) Ferromagnetic layer thickness dependent domain wall chirality and sign of effective Dzyaloshinskii-Moriya field in W/(Co)FeB/MgO systems	○(DC) 土肥 昂尭 ¹ , DuttaGupta Samik ^{1,2,3,4} , 深見 俊輔 ^{1,2,3,4,5,6} , 大野 英男 ^{1,2,3,4,5,6}	1.東北大,電気通信研究所,2.東北大,省エネルギー・スピントロニクス集積化システムセンター,3.東北大,スピントロニクス学術連携研究教育センター,4.東北大,先端スピントロニクス研究開発センター,5.東北大,国際集積エレクトロニクス研究開発センター,6.東北大,原子分子材料科学高等研究機構
9:15	E 10a-M101-2	Anatomy of Large Perpendicular Magnetic Anisotropy Energy in Co/Ni (111) Multilayer	○ (D)Indra Pardede¹, Tomosato Kanagawa¹, Nurul Ikhsan¹, Itsuki Murata¹, Daiki Yoshikawa¹, Masao Obata¹, Tatsuki Oda¹	1.Kanazawa Univ.
9:30	E 10a-M101-3	Magnetic and structural analysis of Pt/Co thin films deposited on $\mathrm{Si/SiO_2}$ substrates annealed by RTA	ORyo Toyama¹, Shiro Kawachi¹¹², Soshi Iimura¹, Jun-ichi Yamaura¹¹², Youichi Murakami¹¹², Hideo Hosono¹, Yutaka Majima¹	1.Tokyo Institute of Technology, 2.KEK
9:45	奨 E 10a-M101-4	$J_{\rm eff}$ = 3/2 ferromagnetic insulating state above 1000 K in a double perovskite osmate synthesized by molecular beam epitaxy	O Yuuki Wakabayashi', Yoshiharu Krockenberger ¹ , Naoto Tsujimoto ² , Tommy Boykin ¹ , Shinji Tsuneyuki ² , Yoshitaka Taniyasu ¹ , Hideki Yamamoto ¹	1.NTT BRL, 2.The Univ. of Tokyo
10:00		休憩/Break	·	

9:45 10:00		investigated by spin-wave resonance Effect of Magnetic Domain Structure on Noise Property	Fukami ^{1, 2, 3, 4, 5, 6} , Hideo Sato ^{1, 2, 3, 4, 5} , Hideo Ohno ^{1, 2, 3, 4, 5, 6} (M1C) Shunsuke Komori ¹ , Kosuke Fujiwara ² ,	CIES, Tohoku Univ., 6.WPI-AIMR, Tohoku Univ. 1.Tohoku Univ., 2.SSF
9:45		Edge state of nanoscale magnetic tunnel junctions	○ Motoya Shinozaki¹, Takaaki Dohi¹, Junta Igarashi¹, Justin Llandro¹.².³, Shun Kanai¹.².⁴, Shunsuke	1.RIEC, Tohoku Univ., 2.CSRN, Tohoku Univ., 3. CSIS(CRC), Tohoku Univ., 4.CSIS, Tohoku Univ., 5.
	12a-M101-4	MRAM array における単bit ⊿E測定と retention 特性の相 関解析		1.東芝メモリ
9:30	12a-M101-3	CoFe insertion 高磁気異方性材料の異方性磁界の分散	○五十嵐 太 $-$ 1, 大坊 忠臣 1 , 中山 昌彦 1 , 甲斐 正 1 , 伊藤 順 $-$ 1	1.東芝メモリ
9:15	奨 E 12a-M101-2	Mn nano-layer electrode $Spin \ dependent \ transport \ in \ Co_2FeAl/MgAl_2O_4/CoFe$ epitaxial magnetic tunnel junctions with and without	○ Thomas Scheike¹, Hiroaki Sukegawa¹, Tadakatsu Ohkubo¹, Kazuhiro Hono¹², Seiji Mitani¹¹²	1.NIMS, 2.Univ. of Tsukuba
9:00	E 12a-M101-1	Perpendicular magnetic anisotropy and tunnel magnetoresistance in magnetic tunnel junctions with a	○ Kazuya Suzuki ^{1, 2} , Shojiro Kimura³, Hitoshi Kubota⁴, Shigemi Mizukami ^{1, 2, 5}	1.Tohoku Univ, AIMR, 2.Tohoku Univ. CSRN, 3.Tohoku Univ. IMR, 4.AIST, 5.Tohoku Univ. CSIS
18:45 3/120	E 11p-M101-21 (Tue.) 9:00 - 10:30	Influence of Stacking Arrangement of the 2D Materials- Based Spin Valve on Magnetoresistance Performance: A First Principles Study of Ni/hBN/Ni Spin Valve 口頭講演 (Oral Presentation) M101 会場 (Room M101)	○ (M2)Halimah Harfah ^{2.1} , Yusuf Wicaksono ¹ , Muhammad Aziz Majidi ² , Koichi Kusakabe ¹	1.Osaka Univ., 2.Univ. of Indonesia
18:30	E 11p-M101-20	In-plane Magnetoresistance of Graphene in Ni/ Graphene/Ni Spin-valve-like Structure: A New Prospective of Spin-logic Device	$\bigcirc(M2)$ Yusuf Wicaksono $^{l},$ Halimah Harfah $^{l,2},$ Koichi Kusakabe l	1.Osaka Univ., 2.Univ. of Indonesia
18:15	E 11p-M101-19	Enhancement of CPP-GMR ratio by Ag-In-Zn-O precursor for spacer layer	○ Tomoya Nakatani¹, Taisuke Sasaki¹, Yuya Sakuraba¹, Kazuhiro Hono¹	1.NIMS
		Giant MR Ratio by Using Metastable bcc-Cu Spacer Layer in Epitaxial Current In-Plane Giant Magnetoresistance Devices	○ (M2)Kresna Bondan Fathoni ^{1, 2} , Yuya Sakuraba ¹ , Taisuke Sasaki ¹ , Yoshio Miura ¹ , Jinwon Jung ¹ , Tomoya Nakatani ¹ , Kazuhiro Hono ¹	1.NIMS, 2.Univ. of Tsukuba
17:45	E 11p-M101-17	Spin-dependent diode performance in fully epitaxial magnetic tunnel junctions with bilayer tunnel barrier	OHidekazu Saito ¹ , Shintaro Kon ^{1, 2} , Sai Krishna Narayananellore ³ , Norihiro Matsuo ^{1, 2} , Naoki Doko ^{1, 2} , Yukiko Yasukawa ² , Hiroshi Imamura ¹ , Shinji Yuasa ¹	1.AIST, 2.Chiba Inst. Tech., 3.NIMS
17:30	奨 E 11p-M101-16	Microwave emission from magnoise in heat-driven magnetic tunnel junction with feedback loop circuit	○ (M1)Yuma Yamada¹, Minori Goto¹.⁴, Takekazu Yamane², Naomichi Degawa², Tsuyoshi Suzuki², Atsushi Shimura², Susumu Aoki², Junichiro Urabe², Shinji Hara², Shinji Miwa¹.³.⁴, Yoshishige Suzuki¹.⁴	1.Osaka Univ., 2.TDK, 3.Univ. of Tokyo., 4.CSRN-Osaka
		Giant spin-torque diode effect induced by heat induced magnetic anisotropy change	○ Minori Goto ^{1,2} , Yuma Yamada ¹ , Atsushi Shimura ³ , Tsuyoshi Suzuki ³ , Naomichi Degawa ³ , Takekazu Yamana ³ , Susumu Aoki ³ , Junichiro Urabe ³ , Shinji Hara ³ , Yoshishige Suzuki ^{1,2}	
3/11(Mon.) 17:15 - 19:00	メモリ・ストレージ技術 / Spin devices, magnetic memor 口頭講演 (Oral Presentation) M101会場 (Room M101)		1 O-ala Hain 2 CCDN O 1 2 TDV C
	·	motion in two-dimensional magnetic kagome lattice	Nomura ¹	
16:45	E 11p-M101-14	Longitudinal Magnetic Field in Anomalous Hanle Curves Theoretical study of spin accumulation and domain wall	Matsusaki¹, Reina Kaji¹, Satoru Adachi¹ ○ (M1)Sehoon Kim¹, Daichi Kurebayashi², Kentaro	1.IMR, Tohoku Univ., 2.RIKEN CEMS
16:30		effect for $\mathrm{L1_0}\text{-FePt}$ thin films Modulation of Nuclear Quadrupole Effect by a	Himanshu Sharma ^{1, 5} , Shigemi Mizukami ^{3, 4, 6} , Masato Kotsugi ² , Masaki Mizuguchi ^{1, 5, 6} ○ Souta Yamamoto ¹ , Takuya Arakawa ¹ , Ryousuke	
16:00 16:15	Î	Magnetization compensation temperature and field-driven domain wall creep motion in ferrimagnetic Tb/CoFeB/ MgO layer Thickness dependence of time-resolved anomalous Nernst	Duck-Ho Kim ¹ , Takahiro Moriyama ¹ , Teruo Ono ¹	1.ICR Kyoto Univ. 1.IMR Tohoku Univ., 2.Tokyo Univ. of Sci., 3.WPI-
15:45	·	るマグノニックバンドギャップの電気的観測	○ (M2) 柴田 晃治¹, 笠原 健司¹, 眞砂 卓史¹	1.福岡大理
15:30	E 11p-M101-9	Choking nonlocal magnetic damping in exchange-biased ferromagnets	○ Takahiro Moriyama¹, Kent Oda¹, Teruo Ono¹	1.ICR, Kyoto Univ.
15:15		Influence of conductivity on magnetostatic surface spin waves	○ Takashi Manago¹, Kenji Kasahara¹, Aziz Mustafa², Ogrin Feodor², Volodymyr Kruglyak²	1.Fukuoka Univ., 2.Univ. Exeter
12:15		Anomalous Ettingshausen Effect in Ferrimagnetic Co-Gd 口頭講演 (Oral Presentation) M101 会場 (Room M101)	○ Takeshi Seki ^{1,2,3} , Asuka Miura², Ken-ichi Uchida ^{2,3,4} , Takahide Kubota ^{1,3} , Koki Takanashi ^{1,3}	1.IMR, Tohoku Univ., 2.NIMS, 3.CSRN, Tohoku Univ., 4.Univ. Tokyo
12:00	E 10a-M101-11	junctions Spin thermoelectric microscopy of magnetic skyrmions	○ Ryo Iguchi ¹ , Shinya Kasai ^{1, 2} , Kazunari Koshikawa ³ , Naomichi Chinone ³ , Shinsuke Suzuki ³ , Ken-ichi Uchida ^{1,4,5}	1.NIMS, 2.JST-PRESTO, 3.Hamamatsu Photonics, 4.Tokyo Univ., 5.CSRN, Tohoku Univ.
11:45	奨 E 10a-M101-10	caloritronics First-principles calculation of Seebeck coefficients for Fe/ MgO/Fe and Fe/MgAl ₂ O ₄ /Fe magnetic tunneling	Nagano ¹ , Ken-ichi Uchida ^{2,3,4} O Kaoru Yamamoto ¹ , Keisuke Masuda ¹ , Ken-ichi Uchida ^{1,2,3} , Yoshio Miura ¹	Tohoku Univ. 1.NIMS, 2.The Univ. of Tokyo, 3.CSRN Tohoku Univ.
	Sun.) 11:30 - 12:30	口頭講演 (Oral Presentation) M101会場 (Room M101) Lock-in thermoreflectance as a tool for investigating spin	○ (D)Takumi Yamazaki¹, Ryo Iguchi², Hosei	1.Nagoya Univ., 2.NIMS, 3.The Univ. of Tokyo, 4.CSRN
11:00 10.2 ス	10a-M101-8 ピン基盤技術・萌芽	原子層レベルで平滑な界面を有するEuO(111)/Si(111) スピンフィルター構造のスピン分裂 的デバイス技術 / Fundamental and exploratory device te	○大杉 廉人¹, 尾身 博雄¹², クロッケンバーガー ヨシハル¹, 藤原 聡¹ chnologies for spin	1.NTT物性研, 2.NTTナノフォトニクスセンタ
10:45		Enhanced effective damping constant in Mn based nitride compounds	Taro Komori $^{\!2}$, Yukiko Takahashi $^{\!1}$, Takashi Suemasu $^{\!2}$	1.NIMS, 2.Tsukuba Univ.
10:30	E 10a-M101-6	Ultra-low power bias-driven magnetization switching by quasi-Fermi level control at an interface of a $La_{0.67}Sr_{0.33}MnO_3$ -based magnetic tunnel junction	○ Anh Duc Le¹, Takashi Yamashita¹, Hiroki Yamasaki¹, Daisei Araki¹, Munetoshi Seki¹.², Hitoshi Tabata¹.², Masaaki Tanaka¹.², Shinobu Ohya¹.²	1.Tokyo Univ., 2.CSRN, Tokyo Univ.
		Entropy production by thermodynamic currents in ambipolar conductors; the case of antiparallel spin polarization for hole and electron	○ (D)Mst Sanjida Aktar¹, Masamichi Sakai¹, Osamu Nakamura², Shigehiko Hasegawa³, Hiroyuki Awano⁴	Osaka Univ., 4.Toyota Tech. Inst.
10:15		P. 1 2 1 3 1 1 1 1	O(D)M . C 1 M . 1 M	16.5 11.1 2.01 11.1 10.1 0.1

		ス・超伝導・強相関 / Semiconductor spintronics, superc	conductor, multiferroics	
3/12(⁻ 10:45		口頭講演 (Oral Presentation) M101会場 (Room M101) Spin manipulation by spin-momentum locking in an	○ Makoto Kohda ^{1, 2, 3} , Takanori Okayasu ¹ , Junsaku	1.Tohoku Univ., 2.Tohoku Univ. CSRN, 3.Tohoku Univ.
11.00	10 15101 0	InGaAs-based two-dimensional electron gas	Nitta ^{1,2,3}	CSIS
11:00	12a-M101-8 級 F. 12a-M101-9	空間スキャン法によるInGaAs量子井戸スピン軌道相互 作用係数の導出 Large Unidirectional Magnetoresistance in GaMnAs/BiSb	○ (B) 志田 博貴¹, 川口 晃平¹, 高澤 一朗太¹, 齋藤 康人¹, 北田 貴弘³, 好田 誠², 石谷 善博¹, 森田 健¹	1. 十業大工, 2. 東北大, 3. 德島大 1. Tokyo Tech., 2. Univ. Tokyo, 3. CREST
11:30		bilayers GaAs/AlGaAs量子井戸における高移動度二次元電子スピ	Hai ^{1, 2, 3}	<u> </u>
11:45	E 12a-M101-11	ンのゼロ磁場歳差運動の励起密度依存性 Phase velocity of drifting spin wave packets in GaAs	英男³, 石原 淳¹ ○ Yusuke Tanaka¹, Yoji Kunihashi¹, Haruki Sanada¹,	1.NTT BRL, 2.Tohoku Univ.
3/12(Tue) 13·00 - 17·00	quantum well 口頭講演 (Oral Presentation) M101会場 (Room M101)	Hideki Gotoh ¹ , Koji Onomitsu ¹ , Makoto Kohda ² , Junsaku Nitta ² , Tetsuomi Sogawa ¹	
		[Young Scientist Presentation Award Speech] Optically induced spin transport in semi-metal heterostructures	○ Hana Hirose ¹ , Naoto Ito ¹ , Masashi Kawaguchi ¹ , Masamitsu Hayashi ^{1, 2}	1.The Univ. of Tokyo, 2.National Inst. for Materials Science
13:15	E 12p-M101-2	Experimental evidence for non-thermal aspect of photo-excited precession of magnetization in (Ga,Mn)As	○Hiro Munekata¹, Takashi Matsuda¹	1.FIRST, Tokyo Tech
13:30		Imaging in-plane 90° magnetization switching in (Ga,Mn)As	○ Bassam MN Qadi¹, Yuya Sakatoku², Nozomi Nishizawa², Hiro Munekata²	1.Palestine Tech. Univ, 2.Tokyo Inst. of Tech
13:45		GaSb中のMnにおいての正孔状態の三角形のSTM/STS 測定及びTB計算を用いた考察	○辰巳 尭¹, 安藤 美幸¹, 加来 滋¹, 吉野 淳二¹	1.東工大理
14:00	E 12p-M101-5	Inter-valence Charge Transfer in a Ru-doped Cobalt Ferrite $\mathrm{CoFe_2O_4}$ Thin Film	○ MASAKI KOBAYASHI ^{1,2} , MUNETOSHI SEKI ^{1,2} , MASAHIRO SUZUKI ³ , MIHO KITAMURA ⁴ , ATSUSHI FUJIMORI ³ , KOJI HORIBA ⁴ , HIROSHI KUMIGASHIRA ⁴ , MASAAKI TANAKA ^{1,2} , HITOSHI TABATA ^{1,2}	1.Univ. of Tokyo, 2.CSRN, Univ. of Tokyo, 3.Dep. Phys., Univ. of Tokyo, 4.KEK-IMSS
14:15 14:30	12p-M101-6	希薄磁性半導体超格子 GaGdAs:Si/GaAs の PL 測定によるフェルミ面位置の推定と磁気特性 体憩/Break	○高藤 誠¹, 加藤 昇¹, 船曳 晃弘¹, 吉田 萌¹, 宮川 勇 人¹, 狭間 優治², 秋山 英文²	1.香川大工, 2.東京大物性研
14:45	E 12p-M101-7		0,7	1.Tokyo Univ., 2.HCMC Pedagogy Univ., 3.Tokyo Tech. Inst., 4.CSRN Tokyo Univ.
15:00	E 12p-M101-8	Magnetic anisotropy switching in heavily-Fe-doped high-Curie-temperature ferromagnetic semiconductor $(Ga_{0.7},Fe_{0.3})Sb$ with a critical thickness	○ (DC)Shobhit Goel ¹ , Le Duc Anh ¹ , Shinobu Ohya ^{1, 2} , Masaaki Tanaka ^{1, 2}	1.The Univ. of Tokyo, 2.CSRN
15:15	E 12p-M101-9	Electronic structure of p -type ferromagnetic semiconductor (Ga,Fe)Sb: Valence band and impurity band	○ Takahito Takeda ¹ , Masahiro Suzuki ² , Le Duc Anh ^{1,3} , Yosuke Nonaka ² , Thorsten Schmitt ⁴ , Satoshi Yoshida ⁵ , Masato Sakano ⁵ , Kyoko Ishizaka ⁵ , Yukiharu Takeda ⁶ , Shin-ichi Fujimori ⁶ , Munetoshi Seki ^{1,3} , Hitoshi Tabata ^{1,3} , Atsushi Fujimori ² , Masaaki Tanaka ^{1,3} , Vladimir N. Strocov ⁴ , Masaki Kobayashi ^{1,3}	1.Grad. Sch. Eng., Univ. of Tokyo, 2.Dep. Phys., Univ. of Tokyo, 3.CSRN, Univ. of Tokyo, 4.Swiss Light Source, 5.QPEC, Grad. Sch. Eng., Univ. of Tokyo, 6.JAEA/SPring-8
15:30 15:45	奨 E 12p-M101-10	Giant magnetoresistance in ferromagnetic semiconductor (Ga,Fe)Sb heterostructures with high Curie temperature 休憩/Break	○ Kengo Takase¹, Le Duc Anh¹.², Kosuke Takiguchi¹, Nguyen Thanh Tu¹, Masaaki Tanaka¹.³	1.Tokyo Univ. Eng., 2.Tokyo Univ. Inst. of Eng. Innov., 3.CSRN
	奨 E 12p-M101-11	Large spin-dependent magnetoresistance and output voltage in the nanoscale Si spin-valve devices	○ (D)Dinhhiep Duong¹, Masaaki Tanaka², Namhai Pham¹.²	1. Tokyo Inst. Tech., 2. Univ. of Tokyo
16:15	E 12p-M101-12	Fabrication and evaluation of lateral spin-valve devices using MnAs spin injector	○ Keita Yamane¹, Kenichiro Yao¹, Masaaki Tanaka², Pham Nam Hai¹.²	1.Tokyo Inst., 2.Tokyo Univ.
16:30	E 12p-M101-13	Large spin-valve effect in a lateral spin-valve device with MnGa electrodes	○ Koki Chonan¹, Nguyen Huynh Duy Khang¹, Masaaki Tanaka², Pham Nam Hai¹.²	1.Tokyo Tech., 2.Univ. Tokyo
16:45	-	As ₂ を用いた (110)GaAs/AlGaAs 量子井戸のMBE 成長及 び再結合寿命・スピン緩和時間の測定	〇岡本 亮吾¹, 揖場 聡², 齋藤 秀和², 湯浅 新治², 大野裕三¹	1. 筑波大, 2. 産総研
	場応用 / Applicatior Sun.) 13:15 - 18:00	n of magnetic field 口頭講演 (Oral Presentation) M113会場 (Room M113)		
13:15	-	金属中の拡散現象に対する強磁場効果	〇小野寺 礼尚 1 ,戸崎 烈 1 ,飯村 奨太 1 ,長谷川 勇治 1 , 高橋 弘紀 2	
		Magnetic Condensation of Rare Earth Ion Detection of magnetic nanoparticles in deep position by	○ Kyohei Hagita¹, Isao Yamamoto¹ ○ Mikihide Hirota¹, Ryota Motoki¹, Isao Yamamoto¹	1.Yokohama Nat'l Univ. 1.Yokohama Nat'l Univ.
		using pulsed magnetic field III	· ·	
14:00 14:15		NIPAm修飾クレイ分散液における <i>in-situ</i> 磁気複屈折 Decrease of Concentration Boundary Layer Thickness by Imposing Magnetic Field	○宮崎 貴大¹, 山登 正文¹, 川上 浩良¹, 廣田 憲之² ○Guangye Xu¹, Kazuhiko Iwai¹	1.首都大院都市環境 , 2.NIMS 1.Hokudai Univ.
14:30	E 10p-M113-6	X-ray Structural Analysis of Crystallized Lysozyme under Magnetic Field by LLIP Method	○ Isao Yamamoto¹, Okabe Toshiya¹	1.Yokohama Nat'l Univ.
14:45 15:00	E 10p-M113-7	休憩/Break Magnetic Alignment of Hexagonal Boron Nitride and Its	The state of the s	1.Yokohama Nat'l Univ.
15:15	10p-M113-8	Magnetic Susceptibility II ヘリカル構造に基づく Magnetoelectricity によるキラル認	Katsumata¹ ○木村 恒久¹, 木村 史子¹, 岩坂 正和²	1. 京大, 2. 広大
15:30 15:45		識 磁気電析におけるキラリティの磁場依存性の破れ 高温超伝導粒子の磁化率異方性に関する研究	○茂木 巖¹, 青柿 良一², 高橋 弘紀¹ ○木村 史子¹, 堀井 滋¹, 野津 乃祐¹, 柏木 勇人¹, 土井	1.東北大金研, 2.職業大1 京大院エネ科 2 京大院農
16:00	•	京価型広等担丁の戦化学共力性に関する研究 永久磁石の不均一磁場を利用したグアニン結晶の配向制	俊哉 1 ,和田 昌久 2 ,木村 恒久 2 ○長井 涼輔 1 ,出口 昂樹 1 ,十亀 友仁 1 ,宗山 悦博 1 ,倉	
16:15		御 尿素の磁場中溶融凝固過程その場観察	橋 優¹, 浅田 裕法¹, 岩坂 正和² ○高橋 弘紀¹, 茂木 巖¹, 淡路 智¹	1.東北大金研
16:30 16:45	10p-M113-13	休憩/Break τ相の相安定に対する磁場効果	○(DC)小林 領太¹, 三井 好古¹, 及川 勝成², 小野寺	1. 鹿児島大院理工, 2. 東北大院工, 3. 茨城高専, 4. 東北大
17:00	10p-M113-14	hcp-MnAlの相安定性に対するC添加効果	礼尚 3 , 高橋 弘紀 4 , 小山 佳 $-^1$ 〇三井 好古 1 , 高永 悠大 1 , 小林 領太 1 , 小山 佳 $-^1$	金研 1. 鹿児島大院理工
17:15	10p-M113-15	超伝導磁気分離による火力発電所給水中からのスケール 除去に関する検討	〇廣田 憲之 1 , 岡田 秀彦 1 , 三島 史人 2 , 西嶋 茂宏 2 , 山 本 隼也 3 , 平松 まみ 3 , 秋山 庸子 3 , 松浦 英樹 4 , 難波 正 徳 4 , 関根 智一 5	1.物材機構, 2.福井工大, 3.阪大, 4.四国総研, 5.荏原工業洗浄
17:30 17:45		海水電気分解反応電位に及ぼす磁場の影響 磁場アセンブリ法で形成した2次元および3次元マイク	 ○青木 誠¹, 武田 実¹ ○青木 画奈¹, 瀧谷 昇哉², 山本 琢磨², 藤井 稔² 	1. 神戸大 1.NICT, 2. 神戸大院工
11:40	10b-141119-11	磁場/マンプリ法で形成した2次元および3次元マイクロ構造体の微細構造制御	○日小 四示 ,能订 升収 ,山平 母宿 ,際井 忆	1.111×1, 2.77/ ·/\\\L

	云導 / Superco			
		はプログラム冒頭にございます。 ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
3/10(3	10a-PA5-1	Nb / Al / AlO _x -Al / Nb 接合におけるリーク電流抑制への		1. 電通大, 2. 国立天文台
	10a-PA5-2	取り組み 超伝導ペルチェ冷却素子に向けた新しい二次元超伝導 MoS,接合の評価	酒井剛 1 ○相川 夕美花 1 ,横山 恵 1 ,萩元 恵理 1 ,高柳 英明 2 ,石 黒 亮輔 1	1.日女大理, 2.東理大総研院
	E 10a-PA5-3	Improvement of epitaxial NbN tunnel junction quality	○ Wei Qiu¹, Hirotaka Terai¹	1.NICT
	E 10a-PA5-4	developed on Si-substrate Niobium Based SIS Junctions with Aluminum Nitride Barrier	○ Matthias Kroug¹, Shohei Ezaki¹, Akihira Miyachi¹, Wenlei Shan¹	1.National Astronomical Observatory of Japan
	奨 10a-PA5-5	BiS_2 系超伝導体 (Ce,Nd)OBiS $_2$ 単結晶の育成と Nd 置換効果の調査		1.山梨大, 2.物材機構
	E 10a-PA5-6	$Pressure\text{-}induced \ superconductivity in \ SnSb_2Te_4$	○ (M1)Peng Song ^{1,2} , Ryo Matsumoto ^{1,2} , Zhufeng Hou ¹ , Shintaro Adachi ¹ , Hiroshi Hara ^{1,2} , Yoshito Saito ^{1,2} , P.B Castro ^{1,2} , Takeya Hiroyuki ¹ , Yoshihiko Takano ^{1,2}	1.NIMS, 2.Univ. of Tsukuba
	10a-PA5-7	Nb をドープした ${ m Bi}_2 { m Se}_3$ の結晶育成	〇大槻 祥馬 1 , 柏木 隆成 1 , 村山 一哉 1 , 志津 友幸 1 , 中川 駿吾 1 , 辻本 学 1 , 南 英俊 1 , 門脇 和男 1	1. 筑波大数理物質
	10a-PA5-8	電界効果機能を付加したダイヤモンドアンビルセルの開 発	○足立 伸太郎¹, 松本 凌¹.², 齋藤 嘉人¹.², 原 裕¹.², 竹屋 浩幸¹, 高野 義彦¹.²	1. 物材機構 MANA, 2. 筑波大
	10a-PA5-9	$Mg_xV_{x-1}O_y$ $(x=3,4)$ 酸化物の合成と導電特性および結晶構造解析		1. 東理大理工
	10a-PA5-10	永久磁石による銅酸化物超伝導体のc軸配向挙動	〇武田 泰明 1 , 齋藤 雄仁 2 , 岩見 壮徒 2 , 近藤 真吏 2 , 田中智之 2 , 元木 貴則 2 , 下山 淳一 2	1. 東大院工, 2. 青学大理工
	10a-PA5-11	MOPACによるSr ₂ CaCu ₂ O _y 派生相の水分子侵入シミュ レーション	○河合健勝¹,末松久幸¹,藤本晶²,中山忠親¹,新原 晧一¹	1. 長岡技科大, 2. 沼津高専
	10a-PA5-12	多点抵抗測定による超伝導バルク内部不均一性の非破壊 検出手法の検討		1.農工大工
	10a-PA5-13	フラックス法により育成されたBi2212単結晶の融剤添加 効果	〇及川 大 1 , 田中 博美 2 , 三井 俊樹 1 , 水谷 有希 1 , 都築 啓太 1 , 安藤 浩哉 1 , 杉浦 藤虎 1 , 塚本 武彦 1	1. 豊田高専, 2. 米子高専
	10a-PA5-14	磁性超伝導体RuGd-1212単結晶の超伝導性に関する検討		1. 宇都宮大工, 2.NIMS
		RuEu-1212の単結晶育成とその特性評価 NbN/Mn ₃ GaN ヘテロ積層構造の作製と評価	○北川尚樹¹, 船橋周悟¹, 八巻和宏¹, 入江晃亘¹ ○中村俊平¹, 強博文¹, 石野直¹, 羽尻哲也¹, 浅野秀	1.字都宮大工
		電気二重層トランジスタ構造における金属電極と酸化亜	文¹	
		鉛の接合における超伝導状態についての研究	英明 ² , 石黒 亮輔 ¹	
	10a-PA5-18	高温超伝導体を用いた円盤型テラヘルツ波発振素子の ウェットエッチング法による作製手法の改善と特性評価		1.筑波大数理物質, 2. デルフト工科大, 3.筑波大ABES センター
	10a-PA5-19	ab面に複数の角度で傾斜した柱状欠陥を含むYBCO薄膜のピン止め特性		1.熊大工, 2.原子力機構
	奨 10a-PA5-20	磁気顕微法によるホットプレス (Ba, K)Fe ₂ As ₂ 銀シース線 材の磁束クリープ特性評価		1. 九大, 2. 福工大, 3. 中国科学院
	10a-PA5-21		○呂琳¹, 熊谷 征久¹, 鈴木 匠¹, 東川 甲平¹, 木須 隆 輯¹	1. 九州大学
	10a-PA5-22	超伝導線材中の3次元量子磁束構造のシミュレーション	**塚 里奈 1 , \bigcirc 小田部 荘司 1 ,濱田 雄成 1 ,上地 和典 1 ,馬渡 康徳 2 ,松野 哲也 3	1.九工大情報工, 2.産総研, 3.有明高専
	10a-PA5-23	集中定数型力学インダクタンス検出器のクロストーク低 減	棄田 正博¹, ○成瀬 雅人¹, 田井野 徹¹, 明連 広昭¹	1.埼玉大院
	10a-PA5-24	超伝導パラメトリック増幅器応用に向けた Fishbone 型伝 送線路の解析	○中川 洸希¹, 武田 正典¹	1.静大工
	10a-PA5-25	MgO基板上の窒化ニオブチタン薄膜カイネティックイン ダクタンスの電流非線形性	〇小松 源 1 , 竹下 啓太 1 , 齊藤 敦 2 , 島影 尚 3 , 寺井 弘 高 4 , 武田 正典 1	1.静大工, 2.山大理工, 3. 茨城大工, 4. 情報機構
		高温超伝導磁東トランスの作製と静磁場伝達特性の評価 REBCO薄膜線材の導電性中間層に適するLa214材料の		1.物材機構, 2.金沢工大 1. 毒学+押工 2.TFP 3. 宣士院工文科
		開発 REBCO線材の低コスト化に向けた導電性Nb-TiO2中間	俊哉3,下山淳一1	1. 島根大総理工, 2. 京大院エネ科
		層の酸素耐性		
12 1 +		Bi2223線材と NbTi線材の Bi-Pb-Sn はんだによる超伝導接合	〇开上 和朗 , 渋谷 直哉 , 松本 凌 $^{-1}$, 小林 賢介 , 内田 公 , 西島 元 1 , 竹屋 浩幸 1 , 北口 仁 1 , 高野 義彦 $^{1.2}$	1.70′10′00′00′00′00′00′00′00′00′00′00′00′00
	楚物性 / Fundamen Mon.) 9:00 - 11:45	tal properties 口頭講演 (Oral Presentation) S423 会場 (Room S423)		
9:00 9:15	11a-S423-1	第19回業績賞(研究業績)授賞式(中村泰信様) 「第19回業績賞(研究業績)受賞記念講演」	○財満 鎖明 ¹ ○中村 泰信 ¹	1.応用物理学会会長 1.東大
10:00 10:15	奨 11a-S423-3	超伝導量子ピットー20年とこれから 休憩/Break 磁気光学法による駆動力下の磁束量子イメージング	○黒川 穂高¹, 木下 雄斗², 鍋島 冬樹¹, 徳永 将史², 前	1. 東大院総合, 2. 東大物性研
10:30		Growth and Properties of NbN/Cu ₃ PdN Epitaxial	田 京剛 ¹	
10:45	11a-S423-5	Heterostructures 化学量論比調整による MgB, SIN 接合の最適化	Hajiri¹, Shumpei Nakamura¹ ○中島 捷¹, 内藤 方夫¹	1.農工大工
11:00	11a-S423-6	固有ジョセフソン接合を用いたテラヘルツ波発振素子のアレー化に向けたBi-2212メサのキャビティモードの検		1. 防衛大
11:15	11a-S423-7	討 【注目講演】小さな接合面積のBi2212固有ジョセフソン 接合系からのテラヘルツ波放射	○大野雪乃¹, 南 英俊¹, 桑野 玄氖¹, 田邊 祐希¹, 村山一哉¹, 楠瀬 慎二¹, 中村 健人¹, 太田 隆晟¹, 今井 貴之¹, 金子陽太¹, 中川 駿吾¹, 柏木 隆成¹, 辻本 学¹, 門脇 和男¹	1. 筑波大数理物質
11:30	奨 11a-S423-8	高温超伝導体メサ構造アレイからのテラヘルツ放射の偏 光特性	脇 刊男。 ○藤田 秀眞¹, 前田 慶一郎¹, アセム エララビ¹, 掛谷 一弘¹	1. 京大院工

		口頭講演 (Oral Presentation) S423会場 (Room S423)	○松木 亜 1 福山 田井 1	1 + T +
:45		高T。物質予測のための機械学習モデリング c軸配向銅酸化物超伝導材料の新規作製方法	○松本 要¹, 堀出 朋哉¹ ○下山 淳一¹, 齋藤 雄仁¹, 近藤 真吏¹, 岩見 壮徒¹, 田	1.九工大 1.青学大理工、2.東大院工
:00	•		中智之¹,武田泰明²,元木貴則¹ ○堀井滋¹,柏木勇人¹,野津乃祐¹,木村史子¹,土井	
15	11p-S423-3	リニア駆動型回転変調磁場を用いた RE123 粒子の2 軸磁 場配向	○堀开 滋 ,相不 男人 ,野津 乃布 ,不村 史子 ,土开 俊哉 ¹	1. 尔人阮
30	E 11p-S423-4	Formation Morphology of YBa ₂ Cu ₃ O _{7-δ}	○ (D)William Dee Rieken ¹ , Atit Bhargarva ^{1, 2} , Rie Horie ³ , Jun Akimitsu ³ , Hiroshi Daimon ¹	1.NAIST Univ., 2.Scotch College, 3.Okayama Uni.
45	11p-S423-5	Bi-2223単結晶と intergrowth Bi-2212 の T_c における圧力 効果		1. 物材機構, 2. 筑波大, 3. 弘前大
00	11p-S423-6	過剰ドーブ銅酸化物高温超伝導体の高圧合成と高圧下輸送特性		1. 芝浦工大, 2. 産総研
15		休憩/Break		
30	11p-S423-7	Nd ₂ CuO ₄ における3d/4f局在電子軌道の第一原理有効ハミルトニアンの理論的評価	○玉垣 侑也¹, 草部 浩一¹, 寺西 慎吾¹, 西口 和孝²	1.阪大基礎工, 2.神大イノ研
:45	奨 11p-S423-8	(RE,Ca)(Ba,Sr)₂Cu₃O₀₀における超伝導転移温度の向上	〇仲川 晃平 1 , 住野 義樹 1 , 野地 尚 1 , 川股 隆行 1 , 小池 洋二 1 , 加藤 雅恒 1	1.東北大工
:00		MBE法によるT'-Pr ₂ CuO ₄ へのCa、Sr ドーピング	○稲葉 颯人¹, 七尾 美子¹, 内藤 方夫¹	1.農工大工
:15		FeSe _{1-x} S _x 薄膜の作製および輸送特性の評価	○色摩 直樹¹, 石川 智也¹, 鍋島 冬樹¹, 前田 京剛¹	1. 東大総合文化
:30	11p-S423-11	鉄カルコゲナイド超伝導体 FeSeの磁気輸送特性ーTe置 換と S置換の比較ー		1.東大総合文化
:45	11p-S423-12	超伝導体共振器による FeSe ₁ · Te¸ 超伝導体薄膜の磁場侵入長測定	\bigcirc (M1) 中村 奏太¹, 黒川 穂高¹, 中島 直哉¹, 石川 智 也¹, 色摩 直樹¹, 小川 亮¹, 荒木 友輔¹, 鍋島 冬樹¹, 上野 和紀¹, 前田 京剛¹	1. 東大院総合
:00		休憩/Break		
:15	•	鉄ニクタイド系多結晶体における輸送機構のパーコレー ションモデリング		1. 農工大工, 2.JST-CREST
30	•	${\rm FeTe_{x}Se_{1:x}}$ 単結晶への微細加工素子を用いた対破壊電流密度測定	井 強³, 鮎川 晋也⁴, ○北野 晴久¹	
:45	•	Nb-Bi-Se系化合物の単結晶育成とその超伝導特性の評価	祐樹 1 ,綿打 敏司 1 ,高野 義彦 4 ,田中 功 1	
:00	11p-S423-16	硫化スズSnSの圧力誘起超伝導	○ (DC) 松本 凌 ^{1,2} , Song Peng ^{1,2} , 斎藤 嘉人 ^{1,2} , 原 裕 ^{1,2} , 足立 伸太郎 ¹ , 山本 紗矢香 ³ , 田中 博美 ³ , 入舩 徹男 ⁴ , 竹屋 浩幸 ¹ , 高野 義彦 ^{1,2}	1.物材機構, 2.筑波大, 3.米子高専, 4.愛媛大
:15		TG-DSCによるCoドープBaFe ₂ As ₂ の熱分析	○(M2) 徳田 進之介 ^{1,2} , 山本 明保 ^{1,2}	1. 農工大工, 2.JST-CREST
:30		固相焼結における粒界形成機構のフェーズフィールドモ デリング		1.農工大工, 2.JST-CREST
		製プロセスおよび結晶成長 / Thin and thick superconduct	ting films, coated conductors and film crystal growt	h
/11(N 00		口頭講演 (Oral Presentation) S321 会場 (Room S321) MOD法による導電性中間層に適する LaMO ₃ 酸化物薄膜		1. 青学大理工, 2.TEP, 3.住友電工, 4.京大院エネ科
15	11a-S321-2		田元気 ³ ,永石 竜起 ³ ,土井 俊哉 ⁴ ,下山 淳一 ¹ 〇一野 祐亮 ¹ ,伊東 佑馬 ¹ ,三浦 正志 ² ,土屋 雄司 ¹ ,吉	1. 名大工, 2. 成蹊大
30	奨 11a-S321-3	膜作製の検討 Vapor-Liquid-Solid成長法を用いて作製したBaHfO ₃ 添加 YBa ₂ Cu ₂ O ₂ 線材の成膜速度と磁場中超伝導特性	田隆 ¹ ○伊東智寛 ¹ , 土屋雄司 ¹ , 一野祐亮 ¹ , 吉田隆 ¹	1.名大院工
:45		高 I _c 化に向けた Coated Conductors の微細組織		1.電中研, 2.高エネ研, 3.物材研, 4.東海大工
:00		超伝導接合機構解明にむけたBi2223多結晶バルク間の接合	林 慎一4, 加藤 武志4, 下山 淳一2	1. 東大院工, 2. 青学大理工, 3.TEP, 4. 住友電工
.3 臨界	R電流,超伝導パワ	一応用 / Critical Current, Superconducting Power Applica	ations	
/10(St :45		口頭講演 (Oral Presentation) S224会場 (Room S224) ナノロッド導入 (RE)BCO 薄膜の低温 $J_c(\theta)$ 特性につい	○山崎 裕文¹	1. 産総研
:00	奨 10p-S224-2	ての新解釈 BaHfO ₃ 添加SmBa ₂ Cu ₃ O _y 多層薄膜における縦磁場中磁束		1. 名大工, 2. 電中研
:15	10p-S224-3	ピンニング機構 BaHfO ₃ 添加SmBa ₂ Cu ₃ O _y 薄膜における非対称臨界電流特	隆¹ ○土屋 雄司¹, 鈴木 啓介¹, 一野 祐介¹, 吉田 隆¹	1. 名大工
:30	奨 10p-S224-4	性 Ba/Y組成比がTFA-MOD法 (Y.Gd)Ba ₂ Cu ₃ O _y +BaHfO ₃ 線		1. 成蹊大, 2.AIST
:45	奨 10p-S224-5	材の超伝導特性に及ぼす影響 BaHfO ₃ ナノロッドがPLD法EuBa ₂ Cu ₃ O _y 線材の磁場中J _c		1. 成蹊大学, 2. 産総研
:00	奨 10p-S224-6		輝郎 ² 〇西村隼 ¹ , 宮田 健司 ¹ , 佐藤 慶一 ¹ , 平井 康太 ¹ , 三浦	1. 成蹊大, 2. 産総研, 3. 九工大
:15	10p-S224-7	中超伝導特性に及ぼす影響 BHO添加 EuBCOテープの低温強磁場 J。特性	正志 ¹ , 衣斐 顕 ^{1,2} , 和泉 輝郎 ² , 木内 勝 ³ , 松下 照男 ³ ○淡路 智 ¹ , 岡田 達典 ¹ , 藤田 真司 ^{1,2} , 平田 渉 ² , 飯島	1. 東北大金研, 2. フジクラ
:30	10p-S224-8	高温曲げアニールによりドメイン制御した $REBa_2Cu_3O_{7-\delta}$ コート線材の臨界電流特性	康裕 ² ,大保 雅載 ² ○岡田 達典 ¹ ,美齊津 英典 ¹ ,淡路 智 ¹	1. 東北大金研
:45		休憩/Break		
:00		超伝導体の対破壊電流密度に関する理論的考察	○木内 勝¹, 松下 照男¹	1.九工大情工
:15	10p-S224-10	複素時定数 TDGL 方程式に基づく第 2 種超伝導体におけるホール効果のシミュレーション	○松野 哲也¹, 馬渡 康徳²	1.有明高専, 2.産総研
:30	•	掃引磁場中の細線化螺旋巻き超伝導テープの電磁結合: 円芯半径依存性		1.産総研
:45		有限要素法を用いた超伝導線材接合の電気的・機械的特性の評価	原 篤², 富田 優²	1. 九工大情, 2. 鉄道総研
::00 ::15		QMG [®] リングマグネットの15T着磁とクエンチ Mg気相輸送(MVT)法により作製した大型MgB ₂ バルク	○森田 充¹,淡路 智² ○(B)斎藤 三樹彦¹,佐野川 悠¹,山本 明保¹	1.新日鐵住金, 2.東北大金研 1.東京農工大学
	奨 10p-S224-15	の微細組織・組成の評価 Mg 気相輸送 (MVT) 法による高密度 MgB₂バルク磁石の	○(M2)佐野川 悠 ¹ , 山本 明保 ^{1,2}	1. 東京農工大学, 2.JST-CREST
7:30		捕捉磁場特性		1 / L= 0 10T OPPOT
':30 ':45	10p-S224-16	傾斜基板上に成長した NdFeAs(O,F) 薄膜の臨界電流特性		1. 名大工, 2.JS1 CRES1
		傾斜基板上に成長したNdFeAs(O,F)薄膜の臨界電流特性 高温超伝導線材技術の船舶脱磁への応用(5)-価格低減	史¹, 生田 博志¹	1.名大工, 2.JS1 CRES1 1.NPO 艦磁研

		建技術 / Analog applications and their related technolog 口頭講演 (Oral Presentation) S321 会場 (Room S321)		
3:45		磁性薄膜を用いたホットエレクトロンボロメータミキサ の評価	○川上 彰¹, 入交 芳久¹, 鵜澤 佳徳²	1. 情通機構, 2. 国立天文台
4:00	11p-S321-2	Nb ₃ Ge超伝導薄膜の作製	○川上 彰¹, 寺井 弘高¹, 鵜澤 佳徳²	1. 情通機構, 2. 国立天文台
4:15		SFQ信号処理回路を搭載したRow-column読出し型16ピクセルSSPDアレイシステムの動作実証		1.情通機構, 2.神戸大
4:30	11p-S321-4	64 chイベント駆動型 SFQ エンコーダを用いた 64 pixel SSPDアレイによる光子イメージング原理実証	○宮嶋 茂之¹, 藪野 正裕¹, 三木 茂人¹², 寺井 弘高¹	1.情通機構, 2.神戸大
4:45	11p-S321-5	Ti抵抗でシャントしたNbNナノワイヤ直列アレイを用いた光子数検出器	傳田 哲史 1 ,成瀬 雅人 1 ,田井野 徹 1 ,〇明連 広昭 1	1. 埼玉大院理工
5:00	11p-S321-6	冷却AWG付Si導波路結合型SSPDの開発	新居 広道 1 ,境 健斗 1 ,開 達郎 2,3 ,土澤 泰 2,3 ,山田 浩 治 2,3 ,松尾 慎治 2,3 ,酒井 大輔 1 ,〇柴田 浩行 1	1. 北見工大, 2.NTT 先端集積デバイス研, 3.NTT ナノフォトニクスセンタ
5:15		休憩/Break	, , , , , , , , , , , , , , , , , , ,	
5:30	11p-S321-7	機械学習に適した量子ビット構成の基礎検討	○才田 大輔¹, 有吉 勇人², 山梨 裕希²	1.MDR株式会社, 2.横浜国立大学
5:45	•	可視光用超伝導転移端センサの評価	○服部 香里 1 , 小林 稜 $^{1.2}$, 鷹巣 幸子 1 , 井上 修一郎 2 , 福田 大治 $^{1.2}$	1. 産総研, 2. 日大
6:00	11p-S321-9	多素子化超伝導転移端センサによる光子撮像デバイスの 開発	\bigcirc (PC) 今野 俊生 1 , 鷹巣 幸子 1 , 小林 稜 1,2 , 服部 香 里 1 , 井上 修一郎 2 , 福田 大治 1,2	1. 産総研, 2. 日大院理工
6:15	•	マイクロ波SQUIDマルチプレクサを用いた可視光用超 伝導転移端センサの読出し評価(2)	〇中田 直樹 $^{1.2}$, 服部 香里 1 , 中島 裕貴 $^{1.2}$, 山本 亮 1 , 平山 文紀 1 , 山森 弘毅 1 , 神代 暁 1 , 高橋 浩之 2 , 福田 大 治 1	
5:30	11p-S321-11	検出器との結合強化によるマイクロ波多重読出回路の低 雑音化	中島 裕貴 1,2 , \bigcirc 神代 暁 1 , 平山 文紀 1 , 山森 弘毅 1 , 永 沢 秀一 1 , 山崎 典子 2 , 満田 和久 2	1. 産総研, 2. 宇宙航空研
6:45		休憩/Break		
7:00		超伝導トンネル接合重イオン検出器のイオン検出特性評 価	瑠里 ² , 冨田 成夫 ²	, , , , , , , , , , , , , , , , , , , ,
7:15		ニオブ超伝導共振器による放射線検出実験	○安藤 友彦¹, 明連 広昭¹, 成瀬 雅人¹, 田井野 徹¹	
:30	11p-S321-14	準粒子散乱機構の超伝導共振器の特性への影響について	○野口卓¹.², Kroug Matthias², 美馬 覚¹, 大谷 知行¹	1.理研, 2.国立天文台
:45		超音波ガイド波とHTS-SQUIDを組み合わせたリモート 非破壊試験技術の開発 - その4 -	出好1	
3:00	·	完全非接触でのSQUID式超音波ガイド波検査技術の開発・その1・	史², 金 錫範², ○廿日出 好¹	
8:15		3ch SQUIDアレイを用いた磁性ナノ粒子検出手法の検討		1. 豊橋技科大
		: スおよびデジタル応用 / Junction and circuit fabrication p 口頭講演 (Oral Presentation) S223会場 (Room S223)	process, digital applications	
3:45		「講演奨励賞受賞記念講演」 可逆量子磁束パラメトロン回路を用いたDラッチの動作		1. 横国大院理工, 2. 横国大IAS, 3.JST さきがけ
4:00	10p-S223-2	実証 SFQパルス駆動マトリクスメモリの実現に向けた動作解 析	○竹下 雄登¹,神谷 智大¹,佐野 京佑¹,田中 雅光¹,山下 太郎¹.²,藤巻 朗¹	1.名大院工, 2.JST さきがけ
1:15	奨 10p-S223-3	断熱型量子磁束パラメトロン回路を用いた32-word by 1-bit レジスタファイルの設計と評価	○(M1)田村 智大 ¹ , 竹內 尚輝 ^{2,3} , Christopher Ayala ² , 山梨 裕希 ^{1,2} , 吉川 信行 ^{1,2}	1. 横国大院理工, 2. 横国大 IAS, 3.JST さきがけ
:30				
	奨 10p-S223-4	断熱型量子磁束パラメトロン回路を用いた5入力	○(B)山崎 祐一¹, 山栄 大樹¹, 竹内 尚輝².³, 山梨 裕 希¹², 吉川 信行¹.²	1. 横国大理工 , 2. 横国大 IAS, 3.JST さきがけ
1:45	·	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット		•
	10p-S223-5	断熱型量子磁束バラメトロン回路を用いた5入力 Majorityゲートの設計と評価		•
5:00 5:15	10p-S223-5 10p-S223-6	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 休憩/Break	希 $^{1.2}$, 吉川 信行 $^{1.2}$ \bigcirc (B) 山口 大貴 1 , 山梨 裕希 $^{1.2}$, 竹内 尚輝 2 , 吉川 信行 $^{1.2}$ \bigcirc 伊東 大樹 1 , 竹内 尚輝 $^{2.3}$, 山梨 裕希 $^{1.2}$, 吉川 信行 $^{1.2}$	1. 横国大理工, 2. 横国大IAS 1. 横国大理工, 2. 横国大IAS, 3.JST さきがけ
5:00 5:15	10p-S223-5 10p-S223-6 10p-S223-7	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体想/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超 伝導ナノ構造ラインドライバの検討	希 1,2 , 吉川 信行 1,2 ○ (B) 山口 大貴 1 , 山梨 裕希 1,2 , 竹内 尚輝 2 , 吉川 信行 1,2 ○ 伊東 大樹 1 , 竹内 尚輝 2,3 , 山梨 裕希 1,2 , 吉川 信行 1,2 ○ 佐野 京佑 1 , 丸山 晃平 1 , 田中 雅光 1 , 山下 太郎 1,2 , 井上 真澄 3 , 藤巻 朗 1	1. 横国大理工, 2. 横国大IAS 1. 横国大理工, 2. 横国大IAS, 3.JST さきがけ
5:00 5:15 5:30	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体想/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超 伝導ナノ構造ラインドライバの検討 局地磁束パイアスを用いた超伝導単一磁束量子回路の設計と評価	希 ^{1.2} , 吉川 信行 ^{1.2} ○ (B) 山口 大貴 ¹ , 山梨 裕希 ^{1.2} , 竹内 尚輝 ² , 吉川 信行 ^{1.2} ○ 伊東 大樹 ¹ , 竹内 尚輝 ^{2.3} , 山梨 裕希 ^{1.2} , 吉川 信行 ^{1.2} ○ 佐野 京佑 ¹ , 丸山 晃平 ¹ , 田中 雅光 ¹ , 山下 太郎 ^{1.2} , 井上 真澄 ³ , 藤巻 朗 ¹ ○ 浅田 峻汰 ¹ , 山梨 裕希 ¹ , 吉川 信行 ¹	 1. 横国大理工, 2. 横国大IAS 1. 横国大理工, 2. 横国大IAS, 3. JST さきがけ 1. 名大工, 2. JST さきがけ, 3. 名城大理工 1. 横国大理工
5:00 5:15 5:30 5:45	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 休憩/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超 伝導ナノ構造ラインドライバの検討 局地磁束パイアスを用いた超伝導単一磁束量子回路の設	希 1,2 , 吉川 信行 1,2 ○ (B) 山口 大貴 1 , 山梨 裕希 1,2 , 竹内 尚輝 2 , 吉川 信行 1,2 ○ 伊東 大樹 1 , 竹内 尚輝 2,3 , 山梨 裕希 1,2 , 吉川 信行 1,2 ○ 佐野 京佑 1 , 丸山 晃平 1 , 田中 雅光 1 , 山下 太郎 1,2 , 井上 真澄 3 , 藤巻 朗 1	 1. 横国大理工, 2. 横国大IAS 1. 横国大理工, 2. 横国大IAS, 3. JST さきがけ 1. 名大工, 2. JST さきがけ, 3. 名城大理工 1. 横国大理工
5:00 5:15 5:30 5:45 5:00	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8 10p-S223-9	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体想/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超 伝導ナノ構造ラインドライバの検討 局地磁束パイアスを用いた超伝導単一磁束量子回路の設計と評価	希 $^{1.2}$, 吉川 信行 $^{1.2}$ ○ (B) 山口 大貴 1 , 山梨 裕希 $^{1.2}$, 竹内 尚輝 2 , 吉川 信行 $^{1.2}$ ○ 伊東 大樹 1 , 竹内 尚輝 $^{2.3}$, 山梨 裕希 $^{1.2}$, 吉川 信行 $^{1.2}$ ○ 佐野 京佑 1 , 丸山 晃平 1 , 田中 雅光 1 , 山下 太郎 $^{1.2}$, 井上 真澄 3 , 藤巻 朗 1 ○ 浅田 峻汰 1 , 山梨 裕希 1 , 吉川 信行 1 ○ 山森 弘毅 1 , 田中 康資 1 , 有沢 俊 $^{-2}$, 西尾 太一郎 3 , 柳澤 孝 1	 横国大理工, 2. 横国大IAS 横国大理工, 2. 横国大IAS, 3.JST さきがけ 名大工, 2.JST さきがけ, 3. 名城大理工 横国大理工 直総研, 2. 物材研, 3. 東京理科大
i:00 i:15 i:30 i:45 i:00 i:15	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8 10p-S223-9 10p-S223-10	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 休憩/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超伝導ナノ構造ラインドライバの検討 局地磁東パイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多パンド超伝導体における分数磁束量子の観測 超伝導量子ピットに向けた強磁性ジョセフソン接合における臨界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プロセスの検討	希 1.², 吉川 信行 1.² ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹,², 竹內 尚輝², 吉川 信行 1.² ○ 伊東 大樹 ¹, 竹內 尚輝 ², ³, 山梨 裕希 ¹,², 吉川 信行 ¹ ○ 佐野 京佑 ¹, 丸山 晃平 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 井上 真澄 ³, 藤巻 朗 ¹ ○ 浅田 峻汰 ¹, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅 ¹, 田中 康資 ¹, 有沢 俊一 ², 西尾 太一郎 ³, 柳澤 孝 ¹ ○ 加藤 悠輝 ¹, 神谷 智大 ¹, 金 鲜美 ², 丘 偉 ², 寺井 弘 高 ², 仙場 浩一 ², 山下 太郎 ¹,³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 藤巻 朗 ¹	1. 横国大理工, 2. 横国大IAS 1. 横国大理工, 2. 横国大IAS, 3.JST さきがけ 1. 名大工, 2.JST さきがけ, 3. 名城大理工 1. 横国大理工 1. 産総研, 2. 物材研, 3. 東京理科大 1. 名大院工, 2. 情通機構, 3.JST さきがけ
5:00 5:15 5:30 5:45 5:00 5:15	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8 10p-S223-9 10p-S223-10	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体憩/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超伝導ナノ構造ラインドライバの検討 局地磁束パイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多バンド超伝導体における分数磁束量子の観測 超伝導量子ビットに向けた強磁性ジョセフソン接合における臨界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プ	希 1.², 吉川 信行 1.² ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹,², 竹內 尚輝², 吉川 信行 1.² ○ 伊東 大樹 ¹, 竹內 尚輝 ², ³, 山梨 裕希 ¹,², 吉川 信行 ¹ ○ 佐野 京佑 ¹, 丸山 晃平 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 井上 真澄 ³, 藤巻 朗 ¹ ○ 浅田 峻汰 ¹, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅 ¹, 田中 康資 ¹, 有沢 俊一 ², 西尾 太一郎 ³, 柳澤 孝 ¹ ○ 加藤 悠輝 ¹, 神谷 智大 ¹, 金 鲜美 ², 丘 偉 ², 寺井 弘 高 ², 仙場 浩一 ², 山下 太郎 ¹,³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 藤巻 朗 ¹	1. 横国大理工, 2. 横国大IAS 1. 横国大理工, 2. 横国大IAS, 3.JST さきがけ 1. 名大工, 2.JST さきがけ, 3. 名城大理工 1. 横国大理工 1. 産総研, 2. 物材研, 3. 東京理科大 1. 名大院工, 2. 情通機構, 3.JST さきがけ
5::00 5::15 5::30 5::45 6::00 2 有	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-7 10p-S223-9 10p-S223-10 10p-S223-11 機分子・バイス ジウムのプログラム	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 休憩/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超伝導ナノ構造ラインドライバの検討 局地磁東パイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多パンド超伝導体における分数磁束量子の観測 超伝導量子ピットに向けた強磁性ジョセフソン接合における臨界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プロセスの検討	希 1.², 吉川 信行 1.² ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹,², 竹內 尚輝², 吉川 信行 1.² ○ 伊東 大樹 ¹, 竹內 尚輝 ², ³, 山梨 裕希 ¹,², 吉川 信行 ¹ ○ 佐野 京佑 ¹, 丸山 晃平 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 井上 真澄 ³, 藤巻 朗 ¹ ○ 浅田 峻汰 ¹, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅 ¹, 田中 康資 ¹, 有沢 俊一 ², 西尾 太一郎 ³, 柳澤 孝 ¹ ○ 加藤 悠輝 ¹, 神谷 智大 ¹, 金 鲜美 ², 丘 偉 ², 寺井 弘 高 ², 仙場 浩一 ², 山下 太郎 ¹,³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 藤巻 朗 ¹	 横国大理工, 2. 横国大IAS 横国大理工, 2. 横国大IAS, 3.JST さきがけ 名大工, 2.JST さきがけ, 3. 名城大理工 横国大理工 産総研, 2. 物材研, 3. 東京理科大 名大院工, 2. 情通機構, 3.JST さきがけ
55:00 55:15 55:30 55:45 66:00 2 有 2 1年 2.1作	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8 10p-S223-9 10p-S223-10 10p-S223-11 機分子・バイフ ジウムのプログラム 製・構造制御/Fab	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体想/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超伝導ナノ構造ラインドライバの検討 局地磁東バイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多パンド超伝導体における分数磁束量子の観測 超伝導量子ピットに向けた強磁性ジョセフソン接合における臨界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プロセスの検討 エレクトロニクス/Organic Molecules anはプログラム冒頭にございます。	希 1-2, 吉川 信行 1-2 ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹ ², 竹内 尚輝², 吉川 信行 ¹ ² ○ 伊東 大樹 ¹, 竹内 尚輝² ³, 山梨 裕希 ¹ ², 吉川 信行 ¹ ² ○ 佐野 京佑 ¹, 丸山 晃平 ¹, 田中 雅光 ¹, 山下 太郎 ¹ ² ², 井上 真澄 ³, 藤巻 朗 ¹ ○ 浅田 峻汰 ³, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅 ¹, 田中 康資 ¹, 有沢 俊一 ², 西尾 太一郎 ³, 柳澤 孝 ¹ ○ 加藤 悠輝 ¹, 神谷 智大 ¹, 金鲜美 ², 丘 偉 ², 寺井 弘高 ², 仙場 浩一 ², 山下 太郎 ¹ ³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光 ¹, 山下 太郎 ¹ ², 藤巻 朗 ¹ d Bioelectronics	 横国大理工、2. 横国大IAS 横国大理工、2. 横国大IAS, 3.JST さきがけ 名大工、2.JST さきがけ、3. 名城大理工 横国大理工 1. 産総研、2. 物材研、3. 東京理科大 1. 名大院工、2.情通機構、3.JST さきがけ 1. 名大工、2.JST さきがけ
55:55:00 55:15 55:30 55:45 66:00 2 有 2 2.1 作	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-8 10p-S223-9 10p-S223-10 10p-S223-11 機分子・バイフ ジウムのプログラム 製・構造制御/Fab	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 休憩/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超 伝導ナノ構造ラインドライバの検討 局地磁束バイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多パンド超伝導体における分数磁束量子の観測 超伝導量子ビットに向けた強磁性ジョセフソン接合における臨界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プロセスの検討 エレクトロニクス / Organic Molecules anはプログラム冒頭にございます。 rications and Structure Controls	希 1.², 吉川 信行 1.² ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹,², 竹內 尚輝², 吉川 信行 1.² ○ 伊東 大樹 ¹, 竹內 尚輝 ², ³, 山梨 裕希 ¹,², 吉川 信行 ¹ ○ 佐野 京佑 ¹, 丸山 晃平 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 井上 真澄 ³, 藤巻 朗 ¹ ○ 浅田 峻汰 ¹, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅 ¹, 田中 康資 ¹, 有沢 俊一 ², 西尾 太一郎 ³, 柳澤 孝 ¹ ○ 加藤 悠輝 ¹, 神谷 智大 ¹, 金 鲜美 ², 丘 偉 ², 寺井 弘 高 ², 仙場 浩一 ², 山下 太郎 ¹,³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光 ¹, 山下 太郎 ¹,², 藤巻 朗 ¹	 横国大理工, 2. 横国大IAS 横国大理工, 2. 横国大IAS, 3.JST さきがけ 名大工, 2.JST さきがけ, 3. 名城大理工 横国大理工 1. 横国大理工 1. 産総研, 2. 物材研, 3. 東京理科大 1. 名大院工, 2.情通機構, 3.JST さきがけ 1. 名大工, 2.JST さきがけ
55:00 55:15 55:30 55:45 66:00 66:15 2 有行 2.1 作	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-7 10p-S223-9 10p-S223-10 10p-S223-11 機分子・バイフ ジウムのプログラム 製・構造制御/Fab at.) 16:00 - 18:00	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体想/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超 伝導ナノ構造ラインドライバの検討 局地磁束バイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多バンド超伝導体における分数磁束量子の観測 超伝導量子ビットに向けた強磁性ジョセフソン接合における路界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プロセスの検討 エレクトロニクス / Organic Molecules anはプログラム冒頭にございます。 rications and Structure Controls ポスター講演 (Poster Presentation) PB 会場 (Room PB)	希 1.², 吉川 信行 1.² ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹.², 竹内 尚輝², 吉川 信行 1.² ○ 伊東 大樹 ¹, 竹内 尚輝² ³, 山梨 裕希 ¹.², 吉川 信行 1.² ○ 佐野 京佑 ¹, 丸山 晃平¹, 田中 雅光 ¹, 山下 太郎 ¹.², 井上 真澄 ³, 藤巻 朗 ¹ ○ 浅田 峻汰 ¹, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅 ¹, 田中 康資 ¹, 有沢 俊一 ², 西尾 太一郎 ³, 柳澤 孝 ¹ ○ 加藤 悠輝 ¹, 神谷 智大 ¹, 金 鲜美 ², 丘 偉 ², 寺井 弘 高 ², 仙場 浩一 ², 山下 太郎 ¹.³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光 ¹, 山下 太郎 ¹.², 藤巻 朗 ¹ d Bioelectronics	 横国大理工, 2. 横国大IAS 横国大理工, 2. 横国大IAS, 3.JST さきがけ 名大工, 2.JST さきがけ, 3. 名城大理工 横国大理工 ・ 横国大理工 1. 産総研, 2. 物材研, 3. 東京理科大 1. 名大院工, 2.情通機構, 3.JST さきがけ 1. 名大工, 2.JST さきがけ 1. 岩手大院総合, 2. 高輝度光科学研究セ
シンポミ l2.1 作	10p-S223-5 10p-S223-6 10p-S223-7 10p-S223-7 10p-S223-9 10p-S223-10 10p-S223-11 総分子・バイス ジウムのプログラム 製・構造制御/Fab att)16:00 - 18:00 奨 9p-PB3-1	断熱型量子磁束パラメトロン回路を用いた5入力 Majorityゲートの設計と評価 量子磁束パラメトロンを用いた超伝導ニューラルネット ワークによる任意出力可能な論理ゲートの設計と評価 熱雑音を考慮したAQFP回路のBER評価 体想/Break 1-Gb Josephson-CMOSハイブリッドメモリに向けた超伝導ナノ構造ラインドライバの検討 局地磁束パイアスを用いた超伝導単一磁束量子回路の設計と評価 人工多バンド超伝導体における分数磁束量子の観測 超伝導量子ビットに向けた強磁性ジョセフソン接合における臨界電流密度の障壁層膜厚依存性の評価 Nb4層超伝導集積回路上の磁性ジョセフソン接合作製プロセスの検討 エレクトロニクス / Organic Molecules anはプログラム冒頭にございます。 rications and Structure Controls ポスター講演 (Poster Presentation) PB会場 (Room PB) 2D-GIXDによるエビタキシャル薄膜の構造評価 バーコート法による tert-butyl置換フタロシアニン配向薄	希 1.², 吉川 信行 1.² ○ (B) 山口 大貴 ¹, 山梨 裕希 ¹,², 竹內 尚輝², 吉川 信行 1.² ○ 伊東 大樹¹, 竹內 尚輝²,³, 山梨 裕希 ¹,², 吉川 信行 1.² ○ 佐野 京佑 ¹, 丸山 晃平¹, 田中 雅光¹, 山下 太郎 ¹,², 井上 真澄³, 藤巻 朗 ¹ ○ 浅田 峻汰 ¹, 山梨 裕希 ¹, 吉川 信行 ¹ ○ 山森 弘毅¹, 田中 康資¹, 有沢 俊一², 西尾 太一郎³, 柳澤 孝 ² ○ 加藤 悠輝¹, 神谷 智大 ¹, 金 鮮美², 丘 偉², 寺井 弘高², 仙場 浩一³, 山下 太郎 ¹,³, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光¹, 山下 太郎 ¹, 藤巻 朗 ¹ ○ 長谷川 大輝 ¹, 竹下 雄登 ¹, 神谷 智大 ¹, 佐野 京佑 ¹, 田中 雅光¹, 山下 太郎 ¹, 藤巻 朗 ¹ d Bioelectronics ○ 照井 大貴 ¹, 小金澤 智之 ², 廣沢 一郎 ², 葛原 大軌 ¹, 古本 則之 ¹ ○ 鶏野 弦也 ¹, 籔內 湧太 ¹, 米谷 慎 ², 藤井 彰彦 ¹, 尾崎 雅則 ¹	 横国大理工, 2. 横国大IAS 横国大理工, 2. 横国大IAS, 3.JST さきがけ 名大工, 2.JST さきがけ, 3. 名城大理工 横国大理工 ・ 横国大理工 1. 産総研, 2. 物材研, 3. 東京理科大 1. 名大院工, 2.情通機構, 3.JST さきがけ 1. 名大工, 2.JST さきがけ 1. 岩手大院総合, 2. 高輝度光科学研究セ

奨 9p-PB3-4 Two-step reprecipitation methodによる電荷移動結晶の \bigcirc (D) 武田 将貴 1 , 兎澤 啓太郎 2 , 松井 淳 3 , 増原 陽 1.山形大院理工, 2.山形大工, 3.山形大理, 4.山形大有機 人1,4 形状変化と生成プロセス エレ研 ○部家 彰¹, 新部 正人², 松尾 直人¹ 1. 兵庫県立大工, 2. 兵庫県立大高度研 9p-PB3-5 気相中での原子状水素とペンタセン分子との反応 9p-PB3-6 〇泉 拓矢 1 , 齋藤 隆喜 2 , 臼井 博明 2 , 臼井 聡 3 ナフタレンジイミド誘導体蒸着膜のI-V特性評価 1.農工大工,2.農工大院工,3.新潟大理 9p-PB3-7 アクリル高分子薄膜によるドライ接着表面の形成 ○小室 雄司¹, 田中 邦明¹, 臼井 博明¹ 1.農工大院工 9p-PB3-8 蒸着重合法を用いたポリウレタン薄膜の作製 ○(M1) 橋詰 朋季¹, 松原 亮介¹, 久保野 敦史¹ 1. 静大院総合 9p-PB3-9 チエノキノイド半導体薄膜におけるラビング温度制御に ○青山 哲也¹, 田中 利彦¹.², Heinrich Benoît³, 1. 理研 CPR, 2. 福島高専, 3. Univ. Strasbourg, 4. Mathevet Fabrice⁴, 松島 敏則⁵, 高石 和人¹, 松本 真 哉^{1.6}, 內山 真伸^{1.7}, 安達 千波矢⁵, Ribierre Jean-よる分子配向度の増大 Sorbonne Univ., 5. 九大 OPERA, 6. 横国大院環情, 7. 東 大院薬, 8.Zhejiang Univ. ○馬場 稔也¹, 大畑 裕介¹, 番 貴彦¹, 山本 伸一¹ ○馬場 稔也¹, 宮嶋 航平¹, 登内 萌香¹, 大竹 忠¹, Nie 1.龍谷大理工 1.龍谷大理工, 2.Univ. of Western Ontario 9p-PB3-10 バナジン酸ビスマス光触媒の作製と評価 9p-PB3-11 ホスホン酸系自己組織化単分子膜の作製と特性評価 Heng-Yong², 番 貴彦¹, 山本 伸一¹ オクタデシルホスホン酸自己組織化単分子膜の特性評価 〇登内 萌日 1 , 馬場 稔也 1 , 大竹 忠 1 , 番 貴彦 1 , 山本 伸 1. 龍谷大理工 9p-PB3-12 9p-PB3-13 ポリマーブレンド溶液を用いた静電スプレー堆積法によ \bigcirc (B) 森 悠記 1 , 小幡 俊輔 1 , 小澤 巧実 1 , 須貝 拓弥 1 , 1.山梨大工 るフレキシブルOFETの作製 小野島 紀夫1 \bigcirc (M1) 日和佐 登 1 , 宇都宮 徹 1 , 一井 崇 1 , 杉村 博之 1 1. 京大院工 9p-PB3-14 ホスホン酸SAMの溶液耐性評価

	9p-PB3-15	吸着法で形成したダイヤモンドナノ粒子による電子注入 図	○杉本 有莉子¹, 大石 不二夫², 田中 邦明¹, 臼井 博 明¹	1.農工大院工, 2.神奈川大理
	9p-PB3-16	フォトレジストを用いた電着カラーマイクロレンズアレ イの作製	74	1.大阪技術研
	9p-PB3-17	低分子有機薄膜太陽電池の素子構造最適化の検討	○ (B) 甚上 知美¹, 水野 斎¹, 廣光 一郎¹	1. 島根大総合理工
	9p-PB3-18	ホスホン酸系自己組織化単分子膜の特性評価	○宮嶋 航平¹, 馬場 稔也¹, Nie Heng Yong², 大竹 忠¹, 番貴彦¹, 山本 伸一¹	
	9p-PB3-19	マイクロコンタクトプリント法による導電性高分子微細 パターンの作製と制御	○(B)大澤 徽¹, 友山 幸洋¹, 野田 啓¹	1. 慶應大理工
	9p-PB3-20	シュウ酸架橋銀アミン錯体のナノ粒子化における粒子形成過程の解析	○ (B) 谷口 大雅 ¹ , 関根 智仁 ^{2,3} , 竹田 泰典 ^{2,3} , 泉 小 波 ^{2,3} , 熊木 大介 ^{2,3} , 時任 静士 ^{2,3}	1.山形工, 2.山形大院有機材料シ, 3.山形大 ROEL
	9p-PB3-21	酸化亜鉛ナノ粒子の作成溶媒による光学特性変化	飯塚 真理¹,○藤井 政俊¹	1. 島根大医
	9p-PB3-22	ポリジアセチレンナノファイバーと金ナノ粒子とのハイブリッド化とその構造制御	○(M1)國久夏夕 ¹ , 小野寺 恒信 ¹ , Sato Rodrigo ² , 武田良彦 ² , 及川 英俊 ¹	
	9p-PB3-23	ドープされた Cu-TCNQ ナノ結晶の作製と光・電子物性		1. 東北大学多元研
	9p-PB3-24	半導体量子ドットを含む有機膜を用いた双安定素子の動 作特性		1.龍大理工
	9p-PB3-25	真空蒸着法による pn 接合フタロシアニンナノロッドの作製と評価 Π	「杉本 伊央理¹, ○小柴 康子¹, 堀家 匠平¹, 福島 達也¹, 石田 謙司¹	1. 神戸大院工
	9p-PB3-26	BP2Tナノ粒子薄膜を含有するマイクロキャビティの作製とその評価	○水野 斎¹, 渡邊 瑞生¹, 廣光 一郎¹, 柳 久雄²	1. 島根大総合理工, 2. 奈良先端大物質
	9p-PB3-27	シルセスキオキサン含有高分子ナノシートを利用した多 孔性SiO ₂ 超薄膜の細孔径制御	○石崎 裕也¹, 山本 俊介¹, 宮下 徳治¹, 三ツ石 方也¹	1. 東北大多元研
	9p-PB3-28	熱圧着を用いたPEDOT:PSS薄膜の接合	○前田 和紀¹, 二谷 真司¹, 宇野 真由美¹	1.大阪技術研
		口頭講演 (Oral Presentation) M111 会場 (Room M111)		A THE Blance of the Control of the C
9:00		銀ナノコロイドの特異な分散安定性における脱離性アル キルアミン基の役割	長谷川 達生 1.2	
):15		金箔製の導電性インク用金消粉の分散性と表面エネルギーの関係性	○並川 直樹¹, 酒井 平祐¹, 村田 英幸¹	1.北陸先端科学技術大学院大学
9:30		反転オフセット印刷における歪近接効果 延伸 DVA フィルノによる空気中でのアップコンバージュ	〇日下 靖之¹, 牛島 洋史¹	1. 在総研
9:45		延伸PVAフィルムによる空気中でのアップコンバージョン発光の増強		
0:00	10a-M111-5	アシストドーパントを用いた分子ドーピング有機単結晶 の光学特性評価	○渡辺 航介¹, 竹内 啓太¹, 安部 僚吾¹, 鈴木 明日香¹, 菊池 昭彦¹.²	1.上習大埋工, 2.上智ナノテクセンター
0:15 0:30	10a-M111 ∠	休憩/Break 静電塗布と低蒸気圧液体薄膜を用いた共ドープ有機単結	○鈴木 田日香 1 竹内 政士 1 字郊 塔五 1 海川 転入 1	1ト知士冊工 9ト知十リテカおいカー
		晶の成長とアシストドーパントによる増感蛍光	菊池 昭彦1.2	
0:45		静電スプレー堆積法による親撥処理した基板上への低分子/ポリマーブレンドの成膜	悠記1,小野島紀夫1	
1:00	10a-M111-8	低環境負荷溶媒を用いた静電スプレー堆積法によるポリ マーブレンド OFET の作製	〇小幡 俊輔', 須貝 拓弥', 秋山 直輝', 森 悠記', 小野 島 紀夫 ¹	1.山梨大工
1:15	招 10a-M111-9	「第9回女性研究者研究業績・人材育成賞(小舘香椎子賞) 受賞記念講演」 強誘電性高分子の超薄膜化と電子デバイス応用に関する 研究	○朱 慧娥 1	1.東北大
3/11(Mon.) 9:00 - 11:45	研究 口頭講演 (Oral Presentation) M111 会場 (Room M111)		
9:00	11a-M111-1	Mixed 3D–2D Passivation Treatment for Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells for Higher Efficiency and Better Stability	○ (D)YONGYOON CHO¹, Arman Mahboubi Soufiani¹, Jae Sung Yun¹, Jincheol Kim¹, Da Seul Lee¹, Jan Seidel², Xiaofan Deng¹, Martin A. Green¹,	1.UNSW SPREE, 2.UNSW school of mat. sci. and eng.
9:15	11° W111 0	イオン液体ゲルを用いた強誘電性液晶垂直配向表示デバ	Shujuan Huang¹, Anita W.Y. Ho-Baillie¹	1. 京大院理, 2.DIC, 3.JST-CREST
9:13	11a-1/1111-2	イスの低電圧駆動	○同四 陽一 ,四田 伊佐 ,田平 個	1. 永入阮垤, 2.DIC, 3.JS1-CRES1
9:30	11a-M111-3	高分子安定化SSFLCの電気光学特性	○宮崎 徹¹,八木 靖貴¹,古江 広和¹	1. 東理大院基工
:45	11a-M111-4	電場印加した固化ブルー相の硬さ評価	○荒内 美沙子¹, 蛭町 颯太¹, 古江 広和¹	1. 東理大院基工
0:00	11a-M111-5	蒸着法により作製した液晶 - 配向膜界面における液晶薄膜作成過程の粘弾性変化	○高橋 亮太¹, 松原 亮介¹, 久保野 敦史¹	1.静大院総合
0:15 0:30	11° W111 C	休憩/Break 有機半導体薄膜成長の分子動力学シミュレーション	○池田 進 ¹	1 市小士WDI-AIMP
0:30	11a-M1111-6	有機半導体薄膜成長の分子動刀字シミュレーション - 立った分子からなる核の安定性と成長 -	○他田 進	1.東北大WPI-AIMR
0:45	11a-M111-7	真空蒸着法におけるDNTTとその誘導体の核形成機構	○服部 吉晃¹, 木村 由斉¹, 吉岡 巧¹, 北村 雅季¹	1.神戸大工
1:00	11a-M111-8	ペリレン誘導体薄膜におけるグレインサイズのアルキル 鎖長依存性	○丸山 伸伍¹, 高川 佑輔¹, 小金澤 智之², 松本 祐司¹	1.東北大院工, 2.高輝度光科学研セ
1:15	11a-M111-9	水晶振動子マイクロバランスを用いた有機半導体サブモ ノレイヤー薄膜の昇温脱離スペクトルの測定	〇松原 亮介 $^{1.2}$, 関戸 和也 2 , 羽生 大亮 1 , 久保野 敦 史 $^{1.2}$	1. 静大院総合, 2. 静大工
1:30	11a-M111-10	大面積高速成膜に向けた線形高速分子線セルの開発	○荻野 孝太 ¹, 松原 亮介 ², 鄭 敏喆 ¹, 小島 広孝 ¹, 辨天 宏明 ¹, 中村 雅一 ¹	1. 奈良先端大物質, 2. 静岡大院工
		口頭講演 (Oral Presentation) M111会場 (Room M111)		
3:15	招 11p-M111-1	「講演奨励賞受賞記念講演」 テトラフェニルポルフィリンが塗布膜中で示すポリモル	○冨田 和孝¹, 塩谷 暢貴¹, 下赤 卓史¹, 長谷川 健¹	1.京大化研
3:30	11n-M111-2	フィズムの解明 ペンタセンが薄膜中で示す段階的な結晶成長	○塩谷 暢貴¹,藤原 龍以¹,冨田 和孝¹,下赤 卓史¹,長	1.京大化研
	11P 11111 =			
3:45		pMAIRS-CLS法を用いたペンタセン前駆体薄膜の熱転化	谷川 健1	
	奨 11p-M111-3	pMAIRS-CLS法を用いたペンタセン前駆体薄膜の熱転化 反応の定量的解析 バーコート法により作製したπ共役系高分子一軸配向薄	谷川 健 1 ○藤原 龍以 1 ,塩谷 暢貴 1 ,冨田 和孝 1 ,下赤 卓史 1 ,長 谷川 健 1	1. 京大化研
4:00	奨 11p-M111-3 奨 11p-M111-4	反応の定量的解析 バーコート法により作製したπ共役系高分子—軸配向薄 膜における光学的・電気的異方性の評価	谷川健¹ ○藤原龍以¹,塩谷暢貴¹,冨田和孝¹,下赤卓史¹,長谷川健¹ ○籔内湧太¹,鶉野弦也¹,中谷光宏¹,藤井彰彦¹,尾崎雅則¹	1. 京大化研
4:00 4:15	奨 11p-M111-3 奨 11p-M111-4 奨 11p-M111-5	反応の定量的解析 バーコート法により作製した π 共役系高分子一軸配向薄膜における光学的・電気的異方性の評価 塗布グラフェン膜を用いた有機半導体膜の分子配向制御 と縦方向移動度評価	谷川健¹ ○藤原龍以¹,塩谷暢貴¹,冨田和孝¹,下赤卓史¹,長谷川健¹ ○籔内湧太¹,鶉野弦也¹,中谷光宏¹,藤井彰彦¹,尾崎雅則¹ ○山田啓太郎¹,小金澤智之²,鈴木充朗¹,末延知義¹,中山健一¹	1. 京大化研 1. 阪大工 1. 阪大院工, 2. 高輝度光科学研究セ
4:00 4:15 4:30	奨 11p-M111-3 奨 11p-M111-4 奨 11p-M111-5	反応の定量的解析 バーコート法により作製したπ共役系高分子一軸配向薄膜における光学的・電気的異方性の評価 塗布グラフェン膜を用いた有機半導体膜の分子配向制御 と縦方向移動度評価 分子歪みに支配されるカロテノイド色素ナノ粒子の光学 特性	谷川健¹ ○藤原龍以¹,塩谷暢貴¹,冨田和孝¹,下赤卓史¹,長谷川健¹ ○籔内湧太¹,鶉野弦也¹,中谷光宏¹,藤井彰彦¹,尾崎雅則¹ ○山田啓太郎¹,小金澤智之²,鈴木充朗¹,末延知義¹,中山健一¹	1. 京大化研
4:00 4:15 4:30 4:45	獎 11p-M111-3 獎 11p-M111-4 獎 11p-M111-5 奨 11p-M111-6	反応の定量的解析 バーコート法により作製したπ共役系高分子一軸配向薄膜における光学的・電気的異方性の評価 塗布グラフェン膜を用いた有機半導体膜の分子配向制御 と縦方向移動度評価 分子歪みに支配されるカロテノイド色素ナノ粒子の光学	谷川健¹ ○藤原龍以¹,塩谷暢貴¹,冨田和孝¹,下赤卓史¹,長谷川健¹ ○籔内湧太¹,鶉野弦也¹,中谷光宏¹,藤井彰彦¹,尾崎雅則¹ ○山田啓太郎¹,小金澤智之²,鈴木充朗¹,末延知義¹,中山健一¹ ○鈴木龍樹¹,安原主馬²,岡田賢¹,出口茂¹ ○(D)大原浩明¹,山本俊介¹,及川英俊¹,三ツ石方	 1. 京大化研 1. 阪大工 1. 阪大院工, 2. 高輝度光科学研究セ 1. 海洋機構, 2. 奈良先端大
4:00 4:15 4:30 4:45 5:00	獎 11p-M111-3 獎 11p-M111-4 髮 11p-M111-5 髮 11p-M111-6 髮 11p-M111-7	反応の定量的解析 バーコート法により作製したπ共役系高分子一軸配向薄膜における光学的・電気的異方性の評価 塗布グラフェン膜を用いた有機半導体膜の分子配向制御と縦方向移動度評価 分子歪みに支配されるカロテノイド色素ナノ粒子の光学特性 休憩/Break 高分子薄膜上での金属有機構造体薄膜の結晶成長解析 セルロースナノ結晶充填プロトン伝導性固体高分子電解	谷川健¹ ○藤原龍以¹,塩谷暢貴¹,冨田和孝¹,下赤卓史¹,長谷川健¹ ○籔内湧太¹,鶉野弦也¹,中谷光宏¹,藤井彰彦³,尾崎雅則¹ ○山田啓太郎¹,小金澤智之²,鈴木充朗¹,未延知養¹,中山健一¹ ○鈴木龍樹¹,安原主馬²,岡田賢¹,出口茂¹ ○(D)大原浩明¹,山本俊介¹,及川英俊¹,三ツ石方也¹ ○(M1)野原智裕¹,小関和喜²,田端恵介²,有田稔	1. 京大化研 1. 阪大工 1. 阪大院工, 2. 高輝度光科学研究セ 1. 海洋機構, 2. 奈良先端大 1. 東北大多元研 1. 山形大院理工, 2. 山形大工, 3. 東北大多元研, 4. 有機
3:45 4:00 4:15 4:30 4:45 5:00 5:15	奨 11p-M111-3 奨 11p-M111-4 奨 11p-M111-5 奨 11p-M111-6 奨 11p-M111-7 奨 11p-M111-8	反応の定量的解析 バーコート法により作製したπ共役系高分子一軸配向薄膜における光学的・電気的異方性の評価 塗布グラフェン膜を用いた有機半導体膜の分子配向制御 と縦方向移動度評価 分子歪みに支配されるカロテノイド色素ナノ粒子の光学 特性 休憩/Break 高分子薄膜上での金属有機構造体薄膜の結晶成長解析	谷川健¹ ○藤原龍以¹,塩谷暢貴¹,冨田和孝¹,下赤卓史¹,長谷川健¹ ○籔内湧太¹,鶉野弦也¹,中谷光宏¹,藤井彰彦¹,尾崎雅則¹ ○山田啓太郎¹,小金澤智之²,鈴木充朗¹,未延知養¹,中山健一¹ ○鈴木龍樹¹,安原主馬²,岡田賢¹,出口茂¹ ○(D)大原浩明¹,山本俊介¹,及川英俊¹,三ツ石方也¹ ○(M1)野原智裕¹,小関和喜²,田端恵介²,有田稔彦³,增原陽人¹.⁴	1. 京大化研 1. 阪大工 1. 阪大院工, 2. 高輝度光科学研究セ 1. 海洋機構, 2. 奈良先端大 1. 東北大多元研 1. 山形大院理工, 2. 山形大工, 3. 東北大多元研, 4. 有機レクトロニクス研究センター

15:45	奨 11p-M111-10	ハイドロゲルを用いたフレキシブル・ハイブリッド・エ レクトロニクス作製	〇高橋 則之 1 , 煤孫 祐樹 2 , 木野 久志 3 , 福島 誉史 2 , 田 中 徹 2,4	1. 東北大工, 2. 東北大学院工, 3. 東北大学際研, 4. 東北大院医工
16:00	奨 11p-M111-11	マイクロ波TM110モードを用いた磁場加熱によるチップの実装技術の開発	○金澤 賢司 ¹ , 渡邉 雄一 ¹ , 中村 考志 ² , 西岡 将輝 ² , 植 村 聖 ¹	
16:15		休憩/Break	11 主	
16:30	11p-M111-12	ナフタレンジイミド含有デンドリマーナノシートの精密 集積	〇山本 俊介 1 , 平嶋 奎一郎 1 , 塩谷 暢貴 2 , 下赤 卓史 2 , 長谷川 健 2 , 松井 \hat{p}^{3} , 宮下 徳治 1 , 三ツ石 方也 1	1. 東北大多元研, 2. 京大化研, 3. 山形大理
6:45	11p-M111-13	pMAIRS法によるジテトラデシルジデシルアンモニウム -Au(dmit)。塩に基づく高導電性LB膜の評価		1. 浜松医大医, 2. 京大化研
17:00	E 11p-M111-14	Preparation of Relaxor Ferroelectric Polymer Langmuir- Blodgett Films Assisted by Polymer Nanosheets	O Chang Fu ¹ , Huie Zhu ¹ , Tokuji Miyashita ¹ , Masaya Mitsuishi ¹	1.IMRAM, Tohoku Univ.
17:15	11p-M111-15	有機焦電型赤外線センサの光学設計に向けた中赤外線領域におけるP(VDF-TrFE)薄膜の光学定数算出		1.神戸大院工
17:30	11p-M111-16	基板温度による尿素オリゴマー蒸着膜の凝集構造変化と 分子間水素結合		1. 神戸大院工, 2. 富山大院理工
17:45	11p-M111-17	接種凍結法によるテトラベンゾトリアザポルフィリン誘導体の配向薄膜作製における種結晶添加効果		1. 阪大院工, 2. 名大院工
18:00	11p-M111-18	電荷移動錯体からなる分子集合体ナノコイルの創成と電気特性		1.農工大院工, 2.広島大院理
18:15	11p-M111-19	Brush-printing法を用いたF8BT配向膜の作製:偏光度と 膜厚の相関	1.00 4	1.広島大院理, 2.広島大自然セ
22評	価・基礎物性 / Cha	racterization and Materials Physics		
		ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
-/-(-	9p-PA6-1	Measurement of the Mechanical Strength of Single- and	○王 胖胖¹, 玉田 薫², 山田 淳¹	1. 九州先端研, 2. 九州大
	>p 1110 1	Multi-layered Metal Nanoparticle Sheets on Soft Polymer Substrates by Nano-indentation	() IIII) III	X17 (7/17 (2 mm/s)) = 17 (7/17)
	9p-PA6-2	電界誘起光第2次高調波発生法によるトライボ発電層(カプトン型ポリイミド)の摩擦電気発生の時間分解測定	○田口 大¹, 間中 孝彰¹, 岩本 光正¹	1.東工大
	9p-PA6-3	過剰量 Srが SrTiO ₃ の過渡複素光伝導度と光触媒活性に 及ぼす影響	○山田 研人¹, 鈴木 肇¹, 佐伯 昭紀¹.²	1.阪大院工, 2.JST さきがけ
	9p-PA6-4	有機無機複合系Cdカルコゲナイド半導体ナノシート超格 子の光物性における温度・圧力依存性	· (M2) 高橋 史裕¹, 湯浅 晃正¹, 松石 清人¹	1. 筑波大数物
	9p-PA6-5	表面プラズモンポラリトンと有機結晶薄膜導波路モード の相互作用	〇井箟 郁美¹, 藤本 誠都¹, 近藤 秋洋¹, 寺平 成希¹, 阪東 一毅¹	1.静岡大理
	9p-PA6-6	PTAA オリゴマーボリマーブレンドの光導電性に及ぼす オリゴマー長の効果	○光富 菜那 ^{1.2} , 王 国隆 ³ , 堀江 正樹 ^{1.3} , 藤原 隆 ⁴ , 佐々木 健夫 ^{1.2} , 和田 智之 ¹ , 佐々 高史 ¹	1. 理研・光量子, 2. 東京理科大, 3. 台湾国立精華大, 4. 九州先端研
	9p-PA6-7	光導電性オリゴマー/絶縁性ポリマーブレンドのキャリ ア輸送に及ぼすフラーレン誘導体の影響		1.理研・光量子, 2.東京理科大, 3.台湾国立精華大, 4.九 州先端研
	E 9p-PA6-8	Single Molecule Conductance Measurements under High Temperature in Vacuum	○ (D)Bo Liu¹, Makusu Tsutsui¹, Masateru Taniguchi¹	1.Osaka Univ. ISIR
	9p-PA6-9	α -NPD非晶質薄膜の結晶化機構	○(M1)金原 東徽¹, 勝野 弘康¹, 中田 俊隆¹	1. 立命館大学理工研
3/10(9:15	Sun.) 9:15 - 12:00 10a-W810-1	口頭講演 (Oral Presentation) W810会場 (Room W810) GISAXSによるペンタセン製膜中の表面形態評価(III)	○広沢 一郎¹,渡辺 剛¹,小金澤 智之¹,菊池 護²,吉本	1.高輝度光科学研究セ, 2.岩手大理工
0.00	NG 10 THO10 0	北北45 mm/w 2 十 上 2 1 11 2 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2	則之2	1 H 7 L B460 A
9:30 9:45	奨 10a-W810-2 将 10a-W810-3	非対称側鎖を有するオリゴチオフェンの結晶構造 低ガラス転移点を有するアモルファス・ジアリールエテ	○大場 涼矢¹, 葛原 大軌¹, 吉本 則之¹ ○佐木 喜キ¹ 辻岡 砕¹	1. 岩手大院総合 1. 大阪教育大
	× 100 11010 0	ン表面における金属蒸気原子の核形成メカニズム		I. Albara A.
10:00	奨 E 10a-W810-4	In-situ Investigation of Surface Plasmon Resonance Enhanced Fluorescence Property during Deposition of	○ (D)Patrawadee Yaiwong ^{1,2} , Chutiparn Lertvachirapaiboon ¹ , Kazunari Shinbo ¹ , Keizo Kato ¹ ,	1.Niigata University, 2.Chiang Mai University
		Gold Quantum Dots on Polyelectrolyte Multilayers	Kontad Ounnunkad², Akira Baba¹	
0:15		休憩/Break		
0:30	10a-W810-5	機械学習支援による有機半導体結晶構造解析	○新津直幸¹, 沢辺 千鶴¹, 三谷 真人¹, 石井 宏幸², 小林 伸彦², 後藤 仁志³, 広瀬 賢二⁴, 小畑 繁昭⁵, 中山 尚 史⁵, 渡邉 峻一郎¹, 岡本 敏宏¹, 竹谷 純一¹	1. 東大新領域, 2. 筑波大数物, 3. 豊橋技科大, 4.NEC, 5.CONFLEX
10:45	10a-W810-6	フタロシアニンとそのフッ素置換体混合膜における分子 配向と結晶構造		1. 千葉大学院工, 2. 千葉大分子キ
1:00	10a-W810-7	MIS-CELIV法によるアルキルフタロシアニン塗布薄膜の 両極性キャリア移動度評価		1.阪大院工
1:15	10a-W810-8		○宇佐美 雄生¹, Bram van de Ven², Dilu Mathew²,	1. 阪大院理 2.トゥウェンテ大ナノテク研
11.15	10a W010 0	ン伝導特性	Tao Chen ² , 大塚 洋一 ¹ , Wilfred van der Wiel ² , 松本卓也 ¹	I. DANNOLES, S. 1 9 7 S. 7 7 N. 7 7 7 NI
1:30	10a-W810-9	核トンネリングを考慮した有機半導体における移動度の 負の温度依存性の起源	• =	1.東工大
11:45	10a-W810-10		○田中 裕也¹,加藤 佑弥¹,多田 朋史²,藤井 慎太郎³, 木口 学³,穐田 宗隆¹	1.東工大化生研, 2.東工大元素セ, 3.東工大理
3/11(Mon.) 9:00 - 12:00	口頭講演 (Oral Presentation) M112会場 (Room M112)		
9:00		「講演奨励賞受賞記念講演」 アニオン交換を用いた新規ドーピング手法による高分子	翔平1, 黒澤 忠法1, 岡本 敏宏1,3, 渡邉 峻一郎1,3, 竹谷	1.東大院新領域, 2.物材機構, 3.JST さきがけ
9:15	11a-M112-2	半導体の伝導特性と熱耐久性の向上 走査型アトムプローブによるポリエチレングリコールの	純一 ^{1,2} 荒井 大翔¹, 谷口 昌宏¹, ○西川 治¹	1. 金沢工大
0.00	11 3440 -	原子レベルでの解析(2)	am A 47 + 1 1 へ - A か - + + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 九上贮工
9:30 9:45		金属酸化物を化学ドープした C_{50} 薄膜の STM/STS 評価 途布型および蒸着型 $C8$ -BTBT有機薄膜トランジスタ評		1. 名大院工 1. 京大工
0:00	11a-M112-5	伽 ケルビンプローブ原子間力顕微鏡による高分子有機薄膜 トランジスタの局所電気特性評価	7.7	1.京大工
0:15	奨 11a-M112-6	休憩/Break AFMを用いた導電性高分子ワイヤー電解重合の液中観察		1. 阪大院工, 2. 物材機構, 3.JST さきがけ
10:45		有機へテロ界面における局所的無秩序化に関する STM 解	井 恵 1,3	1. 東理大, 2. 産総研, 3. 物材機構 MANA
		析 Au(111) 基板上 C _{so} ・PCBM 共存系の安定構造	○軸屋 天彬¹, 坂上 弘之¹, 鈴木 仁¹	1. 広島大先端研
11:00 11:15		Au(111) 基板上C ₆₀ ・PCBM 共存糸の安定構造 Cu(111) 基板上のヘキサブロモトリフェニレン分子が形		
11:30		成する構造 CuPc, F ₁₆ CuPc吸着した Si(111)-(√7×√3)-In 表面の構	吉²,鈴木仁¹	
		造、電子状態、超電導状態計測	船 竜一 ² , 内橋 隆 ²	

11:45	E 11a-M112-11	Core levels and frontier orbitals of K-doped sumanene monolayer	○ (D)Chunyang Zhang¹, Naoya Sumi¹, Masahiro Sasaki¹, Yoichi Yamada¹	1.Tsukuba Univ.
3/11(N 13:15		口頭講演 (Oral Presentation) M112 会場 (Room M112) 「12. 有機分子・バイオエレクトロニクス 分科内招待講		1.台湾清華大化工
		演」 結晶中で動くロタキサン分子機械		
13:45	E 11p-M112-2	福田中で凱入口ダイリンガナ破域 Study of local structure in rubrene thin films by Scanning Transmission X-ray Microscopy	○ (D)Alexandre Foggiatto¹, Yasuo Takeichi², Kanta Ono², Hiroki Suga³, Yoshio Takahashi³, Michael A. Fusella⁴, Jordan T. Dull⁴, Barry P. Rand⁴, Kentaro Kutsukake⁵, Takeaki Sakurai¹	1.Univ. Tsukuba, 2.KEK IMSS, 3.Univ.Tokyo, 4.Princeton Univ., 5.RIKEN
14:00	11p-M112-3	表面ドーブルブレン単結晶のキャリア生成における低活 性化エネルギー	○菊地 満 ¹ , 伊澤 誠一郎 ^{1,2} , 平本 昌宏 ^{1,2}	1.分子研, 2. 総研大
14:15	11p-M112-4	第一原理計算による有機半導体の電子励起状態の解析:分 子間相互作用の影響	○藤田貴敏□	1.分子研
14:30 14:45	11p-M112-5	休憩/Break 波長掃引型低エネルギー高感度光電子スペクトルの解釈 (1)	○石井 久夫 ^{1,3,4} , 木全 俊輔 ² , 濱田 北斗 ² , 菊池 武文 ² , 井手 一郎 ³ , 佐野 大輔 ³ , 丸山 泰一 ³ , 山口 雄生 ³ , 松崎 厚志 ³ , 清水 康平 ³ , 田中 有弥 ^{1,3}	
15:00	11p-M112-6	低エネルギー逆光電子分光による強いアクセプター性有 機半導体の電子親和力の決定		1.千葉大工, 2.千葉大院工, 3.千葉大分子キ
15:15	11p-M112-7	ベンタセン単結晶上にエピタキシャル成長したバーフル オロベンタセンの価電子バンド構造	〇中山 泰生 1 , 守屋 直紀 1 , 日笠 正隆 1 , マイスナー マティアス 2 , 山口 拓真 2 , 鈴木 敏泰 2 , 上羽 貴大 2 , 解良 聡 2	1. 東理大理工, 2. 分子研
15:30	11p-M112-8	有機単結晶P-N接合界面における超高速キャリアダイナミクス計測	·-	1. 筑波大数理, 2. 高エネ研, 3. 東理大院理工
15:45	E 11p-M112-9	Raman spectroscopic investigation of Dinaphthothienothiophene in a transistor device	○ (DC)Bishwajeet Singh Bhardwaj ¹ , Takeshi Sugiyama ¹ , Naoko Namba ² , Takayuki Umakoshi ¹ , Takafumi Uemura ² , Tsuyoshi Sekitani ² , Prabhat Verma ¹	1.Graduate School of Engineering, Osaka Univ., 2.The Institute of Scientific and Industrial Research, Osaka Univ.
16:00 16:15	11p-M112-10	休憩/Break Comparison of excited state dynamics of reduced graphene oxide decorated with Au, Pd, and Pt for photocatalytic degradation	バマレヤーティン 1 , コインカー バンカジ 1 , \bigcirc 古部 昭広 1	1. 徳島大
16:30	11p-M112-11	加熱処理された硫化亜鉛/酸化チタンのキャリア寿命と 光触媒活性の評価	〇小原 知也 1 , 古部 昭広 1 , コインカー バンカジ 1 , ディーパク パティ 2	1. 徳島大学, 2.C-MET
16:45	E 11p-M112-12	Time-Resolved Photoluminescence Measurement of One- Dimensional Lead Bromide Organic-Inorganic Hybrid Perovskites	○ (D)Huong Mai Duongthi, Eiichi Matsubara ^{1, 2} , Masaaki Ashida ¹ , Hirokazu Tada ¹	1.Osaka Univ., 2.Osaka Dental Univ.
17:00	11p-M112-13	逐次蒸着法により製膜したFAPbI ₃ 薄膜による強いTHz 波吸収	○(M1)松山 明日¹, 小堀 天¹, 鄭 敏喆¹, 小島 広孝¹, 辨天 宏明¹, 中村 雅一¹	1. 奈良先端大
17:15 17:30		ハロゲン化鉛ペロブスカイト単結晶へのBiドーピング 電気化学環境下におけるイオン液体の電子励起スペクト	○佐伯 凌¹, Thi-Mai Huong Duong¹, 夛田 博一¹ ○田邉 一郎¹, 寿山 安紀¹, 佐藤 大輝¹, 今井 雅也¹, 福	1.大阪大学大学院基礎工 1.阪大院基礎工
10 2 粉	*************************************	ル イス / Functional Materials and Novel Devices	井賢一1	
		ポスター講演 (Poster Presentation) PA会場 (Room PA)		
	9a-PA2-1	液晶セルにおける横ずれ特性と微分干渉観察応用の検討	〇能勢 敏明 1 , 石坂 尚聖 1 , 本間 道則 1 , 伊東 良太 1 , 岡野 桂樹 2 , 藤田 直子 2 , 村田 純 2 , 村口 元 2 , 尾崎 紀昭 2	
	9a-PA2-2 9a-PA2-3	スプレー法による多孔質 PMMA 材料の超厚膜化の検討 アニソメトリック型メソゲンを用いた側鎖型液晶エラス トマーのフレクソエレクトリック効果	○渡邉 義晃¹, 伊東 良太¹, 本間 道則¹, 能勢 敏明¹ ○平岡 一幸¹, 平 汐莉¹, 星野 優香¹, 大嶋 正人¹	1. 秋田県大システム 1. 東京工芸大工
	9a-PA2-4	平板回路を用いた液晶ミリ波位相変調器における磁界印加の効果	謙二², 能勢 敏明¹	
	9a-PA2-5	DMOAPとPI系配向膜によるHANセルの残留DC的効果を応用した長期メモリ性を有する液晶素子の検討	○(B)相馬 悠人¹,齊藤 雄介¹,工藤 幸寬¹,高橋 泰樹¹	1.工学院大工
	E 9a-PA2-6	Development and characterization of biocompatible microbatteries for powering ingestible sensors	○ Sven Stauss¹, Ryuichi Miyazaki¹, Yoshiyuki Gambe¹, Itaru Honma¹	1.Tohoku Univ.
	9a-PA2-7	評価	○(M1)川並 将太朗¹, 木下 健太郎¹	1.東理大理
	9a-PA2-8	デバイス応用のための金属有機構造体の電子物性評価 微細構造白金マイクロ電極を用いた溶存酸素の検出	○ (M1) 中畝 悠介¹, 清水 敦史¹, 木下 健太郎¹ ○池上 真志樹¹, 平野 悠¹, 三重 安弘¹	1.東理大理
	9a-PA2-9 9a-PA2-10	高分子トランジスタの伝達特性と確率共鳴現象	○紀工 兵心倒,十到 悠,二里 安仏 ○鈴木 喜晴¹,浅川 直紀¹	1. 産総研 1. 群大院理工
	9a-PA2-11	高分子ドープ型pn接合ダイオードの熱特性の解明と安定性の向上		1. 九大総理工, 2. 九大先導研
	9a-PA2-12	キャリアドーピング層を持った OLED の作製	○(M2)江良 洋¹, 藤田 克彦¹.²	1. 九州大総理工, 2. 九州大先導研
	9a-PA2-13	スピンコートにより堆積したポリマー多層膜の熱伝導率 測定		1. 慶応大理工
	9a-PA2-14	液晶エラストマーを用いた力学センシング	治1,赤松範久2,宍戸厚2	1. 立命館大生命, 2. 東工大化生研
	9a-PA2-15	自己推進型イオンゲルの直線流路中の往復運動と壁の濡れ性との相関		1.明星大理工
	9a-PA2-16	自己推進型イオンゲル回転運動の外力に対する履歴応答		1.明星大理工
	9a-PA2-17	トリフルオロメチル基を有するビススチリルベンゼン誘 導体からの低閾値自然放射増幅光	○ 至月	1. 産総研太陽光
	9a-PA2-18	アルキル鎖を持たない液晶性ビススチリルベンゼン誘導 体	○望月 博孝¹, 宮寺 哲彦¹	1. 産総研太陽光
	9a-PA2-19	ジチオフェン-フェニレン共重合体(DTB)の光電物性	〇橘 浩昭 1 ,戸田 直也 1 ,高田 徳幸 1 ,近松 真之 1 ,阿澄 玲子 1	1. 産総研
	9a-PA2-20	アモルファス・アゾベンゼン膜表面における高い異性化 反応感度	〇竹本 育未 1 , 石井 貴大 1 , 中野 英之 2 , 辻岡 強 1	1.大阪教育大, 2. 室蘭工大
	9a-PA2-21	薄膜プロセスに利用可能な超平坦・極薄・大面積セルロー スナノファイバーフィルムの創製		1. 東理大
	9a-PA2-22	圧力マッピングへの応用を指向した金属細線包埋型 PVDF薄膜センサの作製	弓 ^{1.2} , 庭野 道夫 ⁴	1.東北大通研, $2.$ 東北大WPI-AIMR, $3.$ 仙台高專, $4.$ 東北福祉大
	9a-PA2-23 9a-PA2-24	無線汗センシングのための皮膚上共振回路 フレキシブルエレクトロニクスを志向した低接圧電気接	○松川 遼太郎¹, 宮本 明人¹, 横田 知之¹, 染谷 隆夫¹ ○松尾 幸祐¹ ★西 腎¹ 絕幸 直一¹ 吉良 勢中¹ 由良	
	Ja-1 M2-24	プレキシブルエレクトロニクスを芯向した拡接圧電気接続機構の開発	○松尾辛柏,入四 實,相古 其一, 古民 敦史,甲島 伸一郎 ¹	1. 口华刚工电] 土木

	9a-PA2-25	強誘電体高分子を用いた全印刷型すべり覚センサの作製	○ (B) 宮澤 航平¹, 関根 智仁¹, 佐藤 純¹, 竹田 泰典¹, 熊木 大輔¹, Fabrice Domingues Dos Santos², 宮保 淳³, 時任 静士¹	1.山形大学工, 2.ピエゾテック, 3.アルケマ
	9a-PA2-26	応力印加下におけるストレッチャブル配線の抵抗経時変 化の抑制		1.山形大工
	9a-PA2-27	印刷型マルチセンサを実装したソフトロボットハンドに よる触覚信号の検出		1.山形大 ROEL, 2.Piezotech, 3.アルケマ株式会社
	9a-PA2-28	新規有機半導体薄膜を用いた近赤外センサの開発	○藤岡 僚太¹, 福島 達也¹, 小柴 康子¹, 堀家 匠平¹, 石田 謙司¹	1. 神戸大院工
	9a-PA2-29	有機圧電エナジーハーベスターにおける振動発電特性の 膜厚依存性		1.神戸大院工
	9a-PA2-30	ゴム包埋した有機強誘電体薄膜の圧電特性とセンサ応用		1.神戸大院工
	9a-PA2-31	ウェアラブル湿度センサに向けた $CaCl_2$ -PDMS 複合材料 の創製	○駒崎 友亮¹, 植村 聖¹	1. 産総研
	9a-PA2-32	レーザー走査と金属蒸着選択性で作成したジアリールエテン・Cu 複合膜を有する微細有機メモリ特性の素子面積 依存性	○星本 寛栄¹, 辻岡 強¹	1. 阪教大教育
	9a-PA2-33	赤外プラズモン共鳴からみた CNT 薄膜におけるトンネリング伝導の検証	大井 かなえ ¹, 河合 壯 ¹, ○野々口 斐之 ¹.2	1. 奈良先端大物質, 2.JST さきがけ
	奨 9a-PA2-34	マイクロキャビラリ内に成長した有機金属ハライドペロ ブスカイト/PEO複合体における共振器量子電磁気学効 果	○惊橋 奈穂¹, 佐々木 史雄², 柳 久雄¹	1. 奈良先端大物質, 2. 産総研電子光技術
	9a-PA2-35	フジツボ状多孔質膜の作製とセンシング応用の検討	○安藤 潤¹,福田 隆史²,江本 顕雄¹	1. 同志社大理工, 2. 産総研
	9a-PA2-36	銀コートされたポリスチレン微粒子の反射および散乱特 性		1.同志社大理工, 2.産総研電子光
	9a-PA2-37	フォトポリマーの重合時交差拡散を利用したマイクロ流 路作製技術(3)	○木本 匠¹, 福田 隆史², 江本 顕雄¹	1.同志社大理工, 2.産総研電子光
	9a-PA2-38	アニール処理による臭化銅 (I) 錯体の可逆的メカノクロミズム	○(M1)南山 知花¹, 髙澤 頼昌¹, 阪田 知巳¹	1. 城西大理
	9a-PA2-39	金属薄膜を用いた発光性イリジウム錯体LB膜の発光増 強と発光色の制御	〇尾崎 良太郎 1 , 山田 達也 1 , 弓達 新治 1 , 門脇 一則 1 , 佐藤 久子 1	1.愛媛大院理工
	9a-PA2-40	ジケトビロロビロール骨格含有オリゴチオフェンの液晶 中における光配向挙動	○木下 基 ^{1,2} , 小野 峻弥 ¹ , 古川 元行 ² , 佐藤 悠貴 ¹	1.埼工大工, 2.埼工大院工
3/9(S		口頭講演 (Oral Presentation) M136会場 (Room M136)		
13:30	E 9p-M136-1	Computational Molecular Design of NIR Dyes with Varying Anchoring Groups for Dye-Sensitized Solar Cells	SHYAM SUDHIR PANDEY ¹ , Ajendra Kumar	1.Graduate School of LSSE, Kyutech
13:45	9p-M136-2	varying Anchoring Groups for Dye-Sensitized Solar Cells Srカチオン置換によるPbBr系ペロブスカイト薄膜での発光増強効果	○江良 正直 ¹	1. 佐賀大学
14:00	9p-M136-3	元元有版が未 組織接着性発光デバイスを用いた体内埋め込み型光がん 治療システム	\bigcirc (PC) 山岸 健人 1 , 桐野 泉 2 , 高橋 功 3 , 天野 日出 4 , 武岡 真司 3 , 守本 祐司 5 , 藤枝 俊宣 $^{6.7.8}$	1.早大ナノライフ機構,2.京大院医,3.早大院先進理工, 4.東大院医,5.防医大生理学,6.早大高等研,7.JSTさき がけ,8.東工大生命理工
14:15	9p-M136-4	有機半導体結晶を用いた分布帰還型構造の実効屈折率	○山雄 健史 ¹, 東原 翔平 ¹, 稲田 雄飛 ¹, 山下 兼一 ¹, 裏 升吾 ¹, 堀田 収 ¹	
14:30 14:45	9p-M136-5	休憩/Break 鉛ハライドペロブスカイト CH ₃ NH ₃ PbCl ₃ の熱光学応答	○半田 岳人¹, 田原 弘量¹, 阿波連 知子¹, 金光 義彦¹	1. 京大化研
15:00	9p-M136-6	溶液法で成長した分子ドープ有機単結晶からのナノ秒 レーザ励起による青色域誘導放出の観測	○安部 僚吾¹, 竹内 啓太¹, 鈴木 明日香¹, 渡辺 航介¹, 菊池 昭彦¹.²	
15:15	9p-M136-7	集光型 SERS 基板の作製と評価	○松田 倫太郎¹, 有馬 祐介¹, 玉田 薫¹, 筒井 真楠², 谷 口 正輝², 龍崎 奏¹	1. 九大先導研, 2. 阪大産研
3/11(Mon.) 9:00 - 11:45	口頭講演 (Oral Presentation) M136会場 (Room M136)	. ,	
9:00	11a-M136-1	注射針から射出後に自己展開可能なポリウレタン系形状 記憶ポリマーからなるナノ薄膜	\bigcirc (PC) 山岸 健人 1 , 野尻 晃宏 2 , 岩瀬 英治 2 , 橋本 道 尚 1,3	1.DManD, SUTD, 2.早大院基幹理工, 3.EPD, SUTD
9:15	11a-M136-2	ナノ粒子多孔質エレクトロクロミック電極内部の電気化 学反応解析	○渡邉 雄一¹, 植村 聖¹	1. 産総研
9:30	11a-M136-3	有機無機ペロブスカイトと金属錯体を用いた高感度光検 出素子の開発	○石井 あゆみ ^{1,2} , 宮坂 力 ¹	1.桐蔭横浜大院工, 2.JST さきがけ
9:45		Dual-gate OFET型フレキシブルひずみセンサ	○竹内 滉生¹, 酒井 平祐¹, 村田 英幸¹	1. 北陸先端大
10:00	11a-M136-5	セルロースナノファイバを感応膜に用いた温湿度センサ	〇渡部 善幸¹, 矢作 徹¹, 村山 裕紀¹, 加藤 雅哉², 日比 野 秀昭², 川口 真平²	1.山形工技セ, 2.太陽機械
10:15	将 11。M1267	休憩/Break エレクトロスピニング法を用いた高分子アクチュエータ	○太田 →路1 加藤 承引 1 丹藤 婦人1 由田 エ 1 1	1 千黄十陰勘
10:30		の作製と評価		1. 東大工
10:45		熱圧着処理による皮膚貼り付けナノメッシュ電極配線の 導電性向上 Fast and Sensitive Near Infra-Red Photodetector Based	○ (DC) 奧各 智格,顏田 知之,泉谷 隆天。 ○ (M1)Shahriar Kabir¹, Yukiko Takayashiki¹,	
		on a Liquid Crystalline Phthalocyanine Derivative	Jun-ichi Hanna ¹ , Hiroaki Iino ¹	1.Tokyo Tech
11:15		低電圧駆動かつ伸縮可能なカーボンナノチューブ集積回 路 冬屋グラフェンフレークの剥離を利用した左巻章公子甘	○西尾 祐哉¹, 鹿嶋 大雅¹, 廣谷 潤¹, 岸本 茂¹, 大野 雄 高¹.² ○(D) 鉄 祐磨¹, 武岡 真司¹, 藤枝 俊宣².3.4	
11:30		多層グラフェンフレークの剥離を利用した有機高分子基 材からなる薄膜状アンテナコイルの開発 口頭講演 (Oral Presentation) S224 会場 (Room S224)	○ (□) 欸 阳宕,瓜岡 县刊,滕仪 後旦	1.早大院先進理工, 2.東工大生命理工, 3.早大ナノ・ライフ, 4.JST さきがけ
		日與調演 (Oral Presentation) 5224 宏場 (Room 5224) Self-assembled Lipid Membranes Doped by Organic Molecules	○ (DC)Xingyao Feng¹, Teng Ma², Takafumi Deguchi¹, Ayumi Hirano-Iwata¹.²	1.RIEC, Tohoku Univ., 2.WPI-AIMR, Tohoku Univ
14:00	奨 11p-S224-2	PEDOT:PSSの合成と酸処理による高導電化	○勝山 直哉¹, 小澤 巧実¹, 奥崎 秀典¹	1.山梨大院
14:15	奨 11p-S224-3	導電性高分子PEDOT:PSSにおけるメゾスコピック構造	○伊藤 桂介 1 , 本間 優太 1 , 加藤 悦久 1 , 増永 啓康 2 , 井	
14.00	11 0004 4	と電子状態	口敏 ¹ , 佐々木孝彦 ¹	1 山利十陸 9 亩 0
14:30 14:45	11p-S224-4 11p-S224-5	新規自己ドープ型PEDOTの合成と高導電化 金箔と金蒸着膜を原料とした金微粒子の結晶構造が導電 性インクの性能に及ばす緊縛	○工藤 一希¹, 丸茂 和捋¹, 箭野 裕一¹², 奧崎 秀典¹ ○山下 紗也加¹, 仲林 裕司², 酒井 平祐¹, 村田 英幸¹	 1.山梨大院,2.東ソー 1.北陸先端大 先端科学技術,2.北陸先端大 ナノセンター
15:00	11p-S224-6	性インクの性能に及ぼす影響 カルシウム蛍光プローブによるアルギン酸カルシウムゲ ル様性の細密	○青柳 稔¹	1.日工大
	-	ル構造の観察		

[CS.1]	3.2 材料・機器光学	、12.3 機能材料・萌芽的デバイスのコードシェアセッショ	> / Code-sharing Session of 3.2 & 12.3	
		口頭講演 (Oral Presentation) M136 会場 (Room M136)	○福口 阪后 1 出助 土人 1 孫田 虎和 1 七週 妄左 1 七	1 プレーマ 2 プレーマ OLED ラレニテンゲゴ ジレ
9:30	10a-M136-1	液晶リニアフレネルレンズを用いた配光可変デバイス	〇個口 座信,右脇 主介,倘川 丛相,音淬 连天,音 川 高正 1 , 三森 歩美 1 , 奥山 賢 2 , 梁瀬 智 3 , 内田 勝 3	
9:45	奨 10a-M136-2	円錐状レンズ特性を有する液晶レンズの光学位相差分布 (I)	○菅原 朋樹¹, 河村 希典¹	1. 秋田大学院理工
10:00	奨 10a-M136-3	宙吊り構造を導入した高分子ベース空間光変調器の大変 位・高速動作制御	○英 祐輝¹, 生田 昂¹, 前橋 兼三¹	1.農工大院工
10:15	奨 10a-M136-4	キラル π 共役ポリマーマイクロ球体共振器からの円偏光 発光	○大木 理 ¹ , Kulkarni Chidambar ² , Meskers Stefan C. J ² , Meijer E. W ² , 佐々木 史雄 ³ , Lin Zhan-Hong ⁴ , Huang Jer-Shing ⁴ , 山本 洋平 ¹	1. 筑波大数理物質, 2. アンイントホーフェン工科大, 3. 産総研, 4. ライブニッツ光技術研究所
10:30 10:45	10a-M136-5	発光性液晶の相転移挙動と光学特性 休憩/Break	○江良正直¹	1. 佐大理工
11:00	10a-M136-6	各種液晶におけるフレクソエレクトリック分極の第2高 調波イメージング	○城田 幸一郎¹, 荒岡 史人², 山形 豊¹, Chen Hui-Yu³	1. 理研光量子, 2. 理研創発物性, 3. 国立中興大
11:15	10a-M136-7	液晶/配向ナノファイバー複合素子を用いた NRD ガイ ド型テラヘルツ波移相器	○森武 洋¹, ブイ バン バオ¹, 井上 曜¹	1.防衛大
11:30	10a-M136-8	高分子分散型液晶を用いた高速スイッチング可能なテラ ヘルツ移相器	○井上 曜¹, 久保 等², 鹿田 建普¹, 森武 洋¹	1.防衛大学校, 2.阪大院工
11:45	10a-M136-9	コレステリック Bragg-Berry 偏向素子のストップバンドの解析	○尾崎 良太郎¹, 橋村 俊祐¹, 弓達 新治¹, 門脇 一則¹, 吉田 浩之², 尾崎 雅則²	1. 愛媛大院理工, 2. 阪大院工
		機能材料・萌芽的デバイス、合同セッションM「フォノン		de-sharing Session of 9.4 & 12.3 & Joint Session M
3/10(S 13:45	,	口頭請演 (Oral Presentation) W351会場 (Room W351) 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M「フォノンエンジニアリング」のコードシェアセッション招待講演」 ナノ構造体におけるフォノン緩和過程と微小熱電発電デバイスへの応用		1. 北陸先端大
14:30	10p-W351-2	Si置換した Fe ₂ VAI エピタキシャル薄膜の熱伝導率	\bigcirc (D) 工藤 康平 ¹ , 山田 晋也 ^{1,2} , 近田 尋一朗 ¹ , 嶋貫 雄太 ¹ , 石部 貴史 ¹ , 阿保 智 ¹ , 宮崎 秀俊 ³ , 西野 洋一 ³ , 中村 芳明 ¹ , 浜屋 宏平 ^{1,2}	1. 阪大基礎工, 2. 阪大基礎工 CSRN, 3. 名工大
14:45 15:00	10p-W351-3	BドープAl誘起層交換によるp型Si _{1x} Ge _x 熱電薄膜の性能向上 体憩/Break		1. 筑波大, 2.JST さきがけ
15:15	招 10p-W351-4	「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M 「フォノンエンジニアリング」のコードシェアセッション 招待講演」 高熱伝導樹脂を実現する AIN ウィスカーフィラーの開発		1. 名大未来研 , 2.U-MAP
16:00	10p-W351-5		○柳澤 亮人¹, Ruther Patrick², Paul Oliver², 野村 政 宏¹.3	1. 東大生研, 2. フライブルク大, 3.JST さきがけ
16:15	奨 10p-W351-6	デバイス開発 横型 Si ナノワイヤ熱電変換デバイスにおける SiO_2 絶縁膜 / Si 基板の最適厚さ設計	74-4	1.早大理工, 2. 産総研
16:30 16:45	招 10p-W351-7	休憩/Break 「9.4 熱電変換 , 12.3 機能材料・萌芽的デバイス , 合同M 「フォノンエンジニアリング」のコードシェアセッション 招待講演」		1.名大工
17:30			也¹, Jyh-Chiang Jiang⁴, 河合 壯¹	4.台湾科技大
17:45 12.4 有ホ		セルロースナノペーパーにおける熱拡散性の応力応答 ダ / Organic light-emitting devices and organic transistor	○上谷 幸治郎¹, 井櫻 勝悟², 古賀 大尚¹, 能木 雅也¹ s	1. 阪大産研, 2. 阪大院工
	at.) 13:30 - 15:30	ポスター講演 (Poster Presentation) PA会場 (Room PA)		
	9p-PA2-1 9p-PA2-2	p/n積層構造を持つ縦型有機トランジスタの動作機構 反転オフセット印刷電極を用いた高分子有機半導体トラ	○森下 諒子¹, 中山 健一¹, 末延 知義¹, 鈴木 充朗¹ ○(B) 山崎 錬¹, 竹田 泰典¹, 圓岡 岳¹, 村瀬 友英², 熊	
	9p-PA2-3	ンジスタの四端子コンタクト抵抗測定 短チャネルトップゲート有機トランジスタの電界効果移	木 大介¹, 松井 弘之¹, 時任 静士¹	
	9p-PA2-4	動度に対する接触抵抗の影響 酸素プラズマ処理によるボトムコンタクト型有機トラン	貞光 雄一 ³ , 内藤 裕義 ^{1,2}	研,3.日本化薬(株)
	>p 1112 4	ジスタの閾値電圧制御	雅季1	I. IT/ Apl.
	E 9p-PA2-5	Effects of Silver Source-Derain Electrodes on Liquid Crystalline Organic Semiconductor and its OFET performance	○ (M2)Sabina Kang¹, Jun-ichi Hanna¹, Hiroaki Iino¹	1.Tokyo Tech.
	9p-PA2-6	長鎖アルキル基を有する層状結晶性BBBT系有機半導体 の開発	○東野 寿樹¹, 荒井 俊人², 長谷川 達生²	1. 産総研, 2. 東大院工
	9p-PA2-7 9p-PA2-8	Pyromellitic Dianhydride 錯体を用いた有機トランジスタ 液晶性ナフタレンジイミド誘導体を用いた有機 n チャネ ルトランジスタ		1.東工大物質理工学院 1.東工大未来研
	9p-PA2-9	PEDOT:PSSを活性層とする全印刷型電気化学トランジスタの回路応用		1.山形大ROEL
	9p-PA2-10	トナー型ブリンテッドエレクトロニクスに向けたカーボン系導電性材料の静電転写		
	9p-PA2-11	有機薄膜トランジスタのゲート絶縁膜に対するプラズマ 窒化処理の影響の調査		1.東京農工大学
	9p-PA2-12	有機薄膜トランジスタ用ポリシルセスキオキサンゲート 絶縁膜の光重合開始剤検討	○(M1)秦野 航輔¹, 中原 佳夫¹, 宇野 和行¹, 田中 一郎¹	1.和歌大シスエ
	9p-PA2-13	$2C_4$ -BDT-dimer を用いた有機薄膜トランジスタにおける 基板加熱フローコート法の改善	\bigcirc (M2) 森 慎吾 ¹ , 大須賀 秀次 ¹ , 宇野 和行 ¹ , 田中 一 郎 ¹	1.和歌山大システム工
	9p-PA2-14	オールトナーブリントテッドエレクトロニクスに向けた 金属粒子バターニングと超音波焼結プロセス		1.千葉大院工, 2.千葉大先進科学センター, 3.日本化薬
	9p-PA2-15	ドナーアクセプタ型高分子半導体を用いた塗布型有機ト ランジスタメモリのデバイス特性	○東中屋 美帆¹, 阿部 駿人¹, 永瀬 隆¹², 小林 隆史¹², 内藤 裕義¹²	1.大阪府大, 2.大阪府大RIMED
	9p-PA2-16	塗布型有機フローティングゲートメモリの光メモリ特性 の波長依存性		1.大阪府大, 2.大阪府大分子エレクトロニックデバイン研, 3.JST さきがけ

	9p-PA2-17	メチル基置換イミダゾール誘導体を用いたフラーレン誘 導体薄膜への電子ドーピング	○(B) 晝間 悠生¹, 吉橋 裕二¹, 上辺 将士², 松原 雅幸², 伊藤 彰浩², 野田 啓¹	1. 慶應大理工, 2. 京大工
	奨 9p-PA2-18	場体海膜への電子トーピンク 効率的な電荷キャリア輸送に向けた テトラベンゾボルフィリンの分子エンジニアリング		1. 奈良先端大物質, 2. 阪大院工
	奨 9p-PA2-19	発光デバイスを指向した添加アミン種による CH ₃ NH ₃ PbBr ₃ ペロブスカイトナノ結晶のサイズ制御と 光学特性評価	-	1.山形大院理工, 2.山形大院有機シス, 3.伊勢化工, 4.有機エレ研
	9p-PA2-20		○森本 勝大¹, 中 茂樹¹	1. 富山大院理工
	9p-PA2-21	価 プラズマ重合法による有機EL素子用アントラセン高分子 薄膜の作製と評価	○(M1)竹內 雅人¹, 佐藤 祐喜¹, 吉門 進三¹	1.同志社大院理工
	9p-PA2-22 9p-PA2-23	海原のIF製と計画 アダマンチル基が有機EL素子寿命に与える影響 酸素濃度を変えた4CzIPN 溶液試料における発光減衰曲 線	〇伊藤 寛知¹, 清水 貴央², 深川 弘彦¹² 川手 大輔¹, 〇萱苗 淳美¹, 石井 智也¹, 丹羽 顕嗣¹, 小林 隆史¹², 永瀬 隆¹², 合志 憲一³⁴⁵, 安達 千波 矢³⁴⁵, 内藤 裕義¹²	1. 東理大理, 2.NHK 技研 1. 大阪府大工, 2. 大阪府大 RIMED, 3. 九大 OPERA, 4. 九大 JST-ERATO, 5. 九大 WPI-I2CNER
	9p-PA2-24	臭素置換された熱活性化遅延蛍光材料の光物性評価	〇石井智也¹,川手大輔¹,小林隆史¹²,永瀬隆¹²,合志憲一³.⁴⁵,中野谷一³.⁴⁵,安達千波矢³.⁴⁵,内藤裕義¹²	1.大阪府大工, 2.大阪府大RIMED, 3.九大OPERA, 4.九 大JST-ERATO安達分子エキシトン工学プロジェクト, 5.九大WPI-12CNER
	9p-PA2-25	異なる発光層を有する有機発光ダイオードの電荷輸送特性、デバイス特性に関する研究	藤 裕義1.2	1.阪府大工, 2.阪府大分子エレクトロニックデバイス研
	9p-PA2-26	陰極に異なる透明導電膜を用いた逆構造有機発光ダイ オードの特性評価	〇上山 颯斗 1 , 高田 誠 1 , 永瀬 隆 $^{1.2}$, 小林 隆史 $^{1.2}$, 内藤 裕義 $^{1.2}$	1. 大阪府立大工, 2. 大阪府立大 - 分子エレクトロニック デバイス研
	9p-PA2-27	HAT-CN/ Ag/ HAT-CN を透明陽極に用いた有機 EL素子 の作製と評価	○(B) 稲留 亮祐¹, 谷 忠昭², 内田 孝幸¹	1.東京工芸大, 2.日本写真学会
	9p-PA2-28	光電流分布測定による二層有機 EL素子の界面電荷トラップ解析	塚本一樹¹,山副 正顕¹,○貞方 敦雄¹	1.九州産業大学
	9p-PA2-29	正孔注入層の違いにおけるAlq3ベース逆構造有機EL素子の特性と評価	○(M1)青山 悟¹,清家 善之¹,森 竜雄¹	1. 愛知工大
3/10 9:00	(Sun.) 9:00 - 12:15 10a-S222-1	口頭講演 (Oral Presentation) S222 会場 (Room S222) 電荷移動錯体を用いた有機トランジスタ	○ 仕∝ 話 う へ ¹ 刻 市 早 ¹ 市 駅 表 樹 ² 名 辰 知 由 ³ III	1. 東工大物質理工学院, 2. 産総研 FLEC, 3. 兵庫県立大物
			本 正 ¹ , 森 健彦 ¹	質理
9:15	10a-S222-2	キノイド構造を有するビスチエノイサチン誘導体の合成 と物性		1.東工大物質理工
9:30	10a-S222-3	液晶性有機半導体Ph-BTBT-10の多結晶薄膜におけるコンタクト特性	○油田 海維¹, 半那 純一¹, 飯野 裕明¹	1. 東工大未来研
9:45	奨 10a-S222-4	ビチオフェンジオンを基調とした π 共役系ポリマーにお ける構造異性体が電荷輸送特性に及ぼす影響	○(P)三木江 翼¹,深澤 愛子²,山口 茂弘³,尾坂 格¹	1. 広大院工, 2. 京大 iCeMS, 3. 名大院理
10:00	奨 10a-S222-5	ビロダニン誘導体をアクセプターに用いた電荷移動錯体 のトランジスタ特性	○樊 書翔¹,清田 泰裕¹,飯嶋 広大¹,梁 秀鎬¹,川本 正¹, Gal Yann Le², Lorcy Dominique²,森 健彦¹	1.東工大物質理工, 2.レンヌ第一大学
10:15	奨 E 10a-S222-6	Improvement in the Performance of Organic Schottky Diodes through Combined Effect of Charge Double Layer and Oxide Interlayer	○ (D)Nikita Kumari¹, Manish Pandey¹, Suichi Nagamatsu¹, Shuzi Hayase¹, Shyam S Pandey¹	1.Kyushu Inst. of Tech
10:30 10:45	10a-S222-7	休憩/Break 有機半導体の結晶構造とキャリア移動度の予測:結晶構 造予測シミュレーション	○小畑 繁昭 ^{1,2} , 石井 宏幸 ³ , 新津 直幸 ⁴ , 渡邉 峻一郎 ⁴ , 後藤 仁志 ² , 広瀬 賢二 ⁵ , 小林 伸彦 ³ , 岡本 敏宏 ⁴ , 竹谷 純一 ⁴	1.コンフレックス, 2. 豊橋技科大, 3. 筑波大数物, 4. 東大 新領域, 5. N E C
11:00	10a-S222-8	有機半導体の結晶構造とキャリア移動度の予測:移動度 予測シミュレーション	○石井 宏幸 ¹ , 小畑 繁昭 ^{2,3} , 新津 直幸 ⁴ , 渡邉 峻一郎 ⁴ , 後藤 仁志 ³ , 広瀬 賢二 ⁵ , 小林 伸彦 ¹ , 岡本 敏宏 ⁴ , 竹谷 純一 ⁴	1. 筑波大数物 , 2. コンフレックス , 3. 豊橋技科大 , 4. 東大 新領域 , 5.NEC
11:15	10a-S222-9	p型有機半導体TMTES-pentacene 薄膜相の単結晶 X線 構造解析とバンド計算およびトランジスタ特性		1.山形大院
11:30	10a-S222-10	半導体型カーボンナノチューブ高純度化によるTFT特性 向上		1.東レ, 2.産総研
11:45	10a-S222-11	均一なチャネル長を有する印刷電極を用いた塗布型有機 トランジスタの特性ばらつき評価		1. 山形大ROEL, 2. 三菱ケミカル株式会社
12:00	E 10a-S222-12	Investigation of the Sensing Mechanism of Dual-gate Low-voltage Organic transistor for Pressure Sensing by	○ (D)Olamikunle Osinimu Ogunleye¹, Heisuke Sakai¹, Yuya Ishii², Hideyuki Murata¹	1. Japan Advanced Institute of Science and Technology, 2. Kyoto Institute of Technology
		Quantitative Analysis 口頭講演 (Oral Presentation) S222会場 (Room S222)		
13:45	10p-S222-1	2分子膜構造を持つ有機トランジスタにおけるバンド伝導	\bigcirc (D) 浜井 貴将 1 , 荒井 俊人 1 , 井上 悟 2,3 , 長谷川 達 生 1,2	1. 東京大学, 2. 産総研 FLEC, 3. 日本化薬
14:00	E 10p-S222-2	Melt-processing of highly crystalline organic semiconducting layers for organic optoelectronics	○ JeanCharles Maurice Ribierre ^{1, 2} , Zhao Li ^{1, 2} , Masanobu Uchiyama ^{3, 4} , Tetsuya Aoyama ⁴ , Anthony D'Aleo ⁵ , Fabrice Mathevet ⁶ , Chihaya Adachi ^{1, 2}	1.OPERA, Kyushu Univ., 2.JST-ERATO, 3.University of Tokyo, 4.RIKEN, 5.CNRS-UMI, 6.Sorbonne University
14:15	奨 10p-S222-3	塗布型有機半導体単結晶薄膜の高撥水性基板への転写と 電界効果トランジスタへの応用		1.東大院新領域, 2.OPERANDO-OIL, 3.JST さきがけ, 4.物材機構
14:30	奨 10p-S222-4	高撥水性キャリア輸送界面を用いた塗布型有機トランジ	\bigcirc (D) 北原 暁 1 , 浜井 貴将 1 , 松岡 悟志 1 , 荒井 俊人 1 ,	
14:45	奨 10p-S222-5	スタの低電圧・安定駆動 窒素添加LaB。界面制御層によるしきい値電圧制御型ペン タセンPseudo-CMOSの低電圧動作	長谷川 達生 ^{1,2} ○ (D) 前田 康貴 ¹ , 朴 鏡恩 ¹ , 小松 勇貴 ¹ , 大見 俊一 郎 ¹	1. 東工大工学院
15:00	奨 10p-S222-6	ダモン rseudo-CMOSの低電圧動作 ダメージフリーリソグラフィを用いた高速有機単結晶ト ランジスタ	\bigcirc (DC) 山村 祥史 ^{1,2} , 左近 崇晃 ¹ , 佐々木 真理 ¹ , 渡邉 峻一郎 ^{1,2,3} , 岡本 敏宏 ^{1,2,3} , 竹谷 純一 ^{1,2,4,5}	1.東大新領域, 2.OPERANDO-OIL, 3.JST さきがけ, 4.物材機構, 5.パイクリスタル
15:15 15:30	10p-S222-7	休憩/Break フレキシブル基板上の有機物理複製困難関数の安定性評	○栗原 一徳¹, 延島 大樹¹, 武居 淳¹, 植村 聖¹, 吉田	1. 産総研
15:45	10p-S222-8	価 ESR分光を用いた有機トランジスタの両極性電荷状態と	学1	1. 筑波大数物, 2. 筑波大工 补質科学 セ
16:00	10p-S222-9	分子配向の研究 層状結晶性有機半導体の固相 - 固相転移とアルキル鎖秩		1. 東大院工, 2. 産総研, 3. 日本化薬, 4. 埼工大生命
16:15		序化の役割 トランスダイオードモードにおける有機トランジスタの	谷川 達生 ^{1,2} ○末永 悠 ¹ , 永瀬 隆 ^{1,2} , 小林 隆史 ^{1,2} , 内藤 裕義 ^{1,2}	1.大阪府大工, 2.大阪府大分子エレクトロニックデバイ
		周波数特性		ス研
16:30 16:45		有機MOSキャバシタの電圧・周波数特性解析 低電圧駆動有機電界効果トランジスタメモリにおける ホールトラップ容量の解析	○木村 由斉¹, 服部 吉晃¹, 北村 雅季¹ ○阿部 泰之¹, 酒井 平祐¹, 村田 英幸¹	1.
17:00		休憩/Break		

17:15	E 10p-S222-13	Magnetophotocurrent of Field Effect Transistors Based on Ternary Device of Tetracene/Pentacene/Fullerene	\bigcirc Nguyen Quang Loc¹, Toan Pham-song¹, Hirokazu Tada¹	1.Osaka Univ.
17:30	10p-S222-14	製造工程簡略化を指向して電子吸引性 SAM 材料を混合した有機半導体インク		1.JNC石油化学(株)
17:45		SAM膜中での金属原子のクラスタリングと拡散:第一原理計算による検討	○渡邊 駿汰¹,中山 隆史¹	1. 千葉大学
3/11(9:00	Mon.) 9:00 - 12:15 11a-S222-1	口頭講演 (Oral Presentation) S222 会場 (Room S222) 有機半導体レーザ発振における電流励起と光励起の相関	○谷垣 勝己 ^{1,2} , カナガセカラン サンガベル ¹ , 下谷	1. 東北大 AIMR, 2. 東北大院理
9:15	11a-S222-2	FET構造による電流注入型有機半導体 DFB レーザー	秀和 ² , 小貫 駿 ² , 三浦 大輝 ² ○下谷 秀和 ¹ , カナガセカラン サンガベル ² , 小貫	1. 東北大理, 2. 東北大 AIMR
			駿¹, 三浦 大輝¹, 谷垣 勝己¹.²	
9:30	E 11a-S222-3	Organic semiconductor distributed feedback (DFB) laser	SANDANAYAKA ^{1,2} , Toshinori Matsushima ^{1,2,3} , Fatima Bencheikh ^{1,2} , Shinobu Terakawa ^{1,2} , William Potscavage ^{1,2} , Chuanjiang Qin ^{1,2} , Takashi Fujihara ⁴ , Kenichi Goushi ^{1,2,3} , Jean-Charles Ribierrea ^{1,2} , Chihaya Adachi ^{1,2,3,4}	1.OPERA, Kyushu Univ, 2.JST/ERATO, 3.12CNER, Kyushu Univ., 4.ISIT4
9:45	11a-S222-4	三重項失活剤の導入による有機薄膜の励起状態安定性の 向上	〇松島 敏則 $^{1.2.3}$, 吉田 誠矢 $^{2.3}$, 稲田 $^{2.3}$, 江崎 $^{2.3}$, 福永 利哉 $^{2.3}$, 三重野 寬之 $^{2.3}$, 中村 望 $^{2.3}$, Bencheikh Fatima $^{2.3}$, Leyden Matthew R $^{2.3}$, 小松 龍太郎 $^{2.3}$, Qin Chuanjiang $^{2.3}$, Sandanayaka Atula S. D. $^{2.3}$, 安達 千波 矢 $^{1.2.3}$	1. 九大I2CNER, 2. 九大OPERA, 3.JST·ERATO
10:00	11a-S222-5	機械学習を用いた量子ドット発光ダイオードの効率支配 因子の解明とデバイス作製	〇佐野 翔一 1 , 高田 誠 1 , 永瀬 隆 $^{1.2}$, 小林 隆史 $^{1.2}$, 内藤 裕義 $^{1.2}$	1.阪府大工, 2.阪府大分子エレクトロニックデバイス研
10:15	11a-S222-6	長鎖アルキルカチオン-ケイ素含有アニオンイオン液体 を用いた高効率電気化学発光セル	○平松 考樹¹, 鈴木 貴斗¹, 酒井 平祐¹, 村田 英幸¹	1. 北陸先端大 先端科学技術
10:30 10:45	11a-S222-7	休憩/Break 塗布法により作製した誘電体ミラーを内包した絶縁型交 流駆動有機EL素子の発光スペクトル狭帯域化	〇梶井 博武 1 , 唐木 達矢 1 , 森藤 正人 1 , 近藤 正彦 1	1. 阪大院工
11:00	11a-S222-8	塗布形成したナノハイブリッド電子バッファー層による 逆構造青色/白色OLEDの高効率化に向けた検討	○伊東 栄次¹, 田口 玲央¹, 福田 勝利²	1.信大工, 2.京大
11:15	11a-S222-9	ヘキサフェニルベンゼン誘導体ホール輸送材料を用いた 緑・水色熱活性化遅延蛍光有機 EL 素子の長寿命化	○鎌田 嵩弘¹, 伊藤 望¹, 笹部 久宏¹.².³, 五十嵐 正 拓².³, 城戸 淳二¹.².3	1.山形大院有機シス, 2.山形大有機エレ研セ, 3.山形大有機シスフロセ
11:30	11a-S222-10	クリセン誘導体電子輸送材料群の開発と有機EL素子への 応用		1.山形大学大学院, 2.山形大有機エレ研セ, 3.山形大有機材料セ
11:45	11a-S222-11	フーリエ変換イオンサイクロトロン共鳴イメージング質 量分析法を用いたりん光有機EL素子の劣化解析	〇武井 美久¹, 宮里 朗夫², 酒井 平祐¹, 村田 英幸¹	1.北陸先端大 先端科学技術,2.北陸先端大 ナノセンター
12:00	E 11a-S222-12	Twofold enhancement in reliability of organic light emitting diodes with thermally-induced morphological change of organic layer	○ (D)Duy Cong Le¹, Li Yining¹, Heisuke Sakai¹, Hideyuki Murata¹	1.Japan Advanced Inst. of Science and Technology
		口頭講演 (Oral Presentation) S222会場 (Room S222)		
13:45	11p-S222-1	ペロブスカイト系半導体と(チオフェン/フェニレン)コ オリゴマーとのダブルヘテロ構造	〇佐々木 史雄 ', 椋橋 奈穂 ², 柳 久雄 ²	1. 産総研電子光技術, 2. 奈良先端大物質
14:00	奨 11p-S222-2	超音波ビーズミルによる CH ₃ NH ₃ PbBr ₃ ペロブスカイトナノ結晶の作製	增原 陽人 1.4	1. 山形大院理工, 2. 山形大工, 3. 山形大院有機シス, 4. 有機エレ研, 5. 伊勢化工
14:15	奨 11p-S222-3	多階層計算によるホスト-ゲスト系有機EL発光層の電荷 輸送解析		1.京大化研
14:30	奨 11p-S222-4	多階層計算によるシクロバラフェニレン非晶薄膜の凝集 構造および電荷輸送解析	○澤田 彩日¹, 久保 勝誠¹, 茅原 栄一¹, 山子 茂¹, 梶 弘 典¹	1.京大化研
14:45	奨 E 11p-S222-5	Design of OLED glass patterns for enhanced outcoupling efficiency and good colour stability	○ (M2)Savanna Rae Lloyd¹, Tatsuya Tanigawa², Hideyuki Murata¹	1.JAIST, 2.IMRA America Inc.
15:00	奨 11p-S222-6	PHPSを用いた有機ELの塗布型TFE封止構造の開発	〇上村 佳歩 1 , 吉田 麗娜 2 , 飯田 真 $ ^3$, 高橋 辰宏 1 , 硯 里 善幸 2	1.山形大院有機シス, 2.山形大有機イノベ, 3.アルバック・ファイ
15:15 15:30	11p-S222-7	休憩/Break 高純度オゾン由来の活性種を用いた Al_2O_3 バリア膜の室 温 ALD 成膜	○亀田 直人 ¹ , 三浦 敏徳 ¹ , 森川 良樹 ¹ , 花倉 満 ¹ , 中村 健 ² , 野中 秀彦 ²	1. 明電舎, 2. 産総研
15:45	11p-S222-8	アルミキノリノール錯体の電子電流成分の評価とデバイ	〇森 竜雄 1 , 神谷 涼平 1 , 前原 良亮 1 , 青山 悟 1 , 清家 善之 1	1.愛知工大工
16:00	11p-S222-9			1. 産総研, 2. 次世代化学材料評価技術組合
16:15	11p-S222-10	素子に対する電界誘起2重共鳴SFG分光の適用 オペランド時間分解電界誘起2重共鳴SFGによる青色発	○宮前 孝行¹, 佐藤 友哉¹, 大畑 浩², 筒井 哲夫²	1. 産総研, 2. 次世代化学材料評価技術組合
16:30	11p-S222-11	光有機EL素子駆動時の電荷挙動 熱活性化遅延蛍光発光ダイオードの電荷状態のオペラン ドESR分光研究	〇祐本 晋太郎 1 , 勝俣 潤哉 1 , 大澤 文也 1 , 和田 啓幹 2 , 鈴木 克明 2 , 梶 弘典 2 , 丸本 一弘 $^{1.3}$	1. 筑波大数物, 2. 京大化研, 3. 筑波大エネ物質化学セ
16:45	11p-S222-12	有機LED中の電子正孔対に対する電流検出及びEL検出 磁気共鳴		1. 阪市大院理, 2. 南部研, 3.(株) JEOL RESONANCE
17:00	11p-S222-13 機太陽電池 / Organ	有機共蒸着膜における巨大表面電位	長田 航平¹, 石井 久夫², ○野口 裕¹	1.明治大, 2.千葉大
		口頭講演 (Oral Presentation) S222 会場 (Room S222) フッ化アミン処理によるペロブスカイト太陽電池の高性	○石川 良¹, 上野 啓司¹, 白井 肇¹	1. 埼玉大院理工
9:15	9a-S222-2	能化 フッ素系ポリマー混成ペロブスカイト太陽電池の作成と	○(M1)守屋 佑馬¹, 石川 良¹, 上野 啓司¹, 白井 肇¹	1. 埼玉大院理工
9:30	9a-S222-3	評価 過酸化物沈殿法により作製したBa _{1-x} La _x SnO ₃ の作製及び	○(M1) 石川 弘記¹, 石川 良¹, 白井 肇¹	1. 埼大院理工
9:45	9a-S222-4	評価 X線回折法を用いた FA _{0.85} Cs _{0.15} PbI ₃ 分解過程の評価		1.早大理工, 2.宇宙研, 3.桐蔭横浜大学
10:00	9a-S222-5	ルビジウムドーブ高耐熱型ペロブスカイト太陽電池	山本 知之¹, 廣瀬 和之¹² ○沼田 陽平¹, 實平 義隆², 石川 良³, 白井 肇³, 宮坂 カ²	1. 東大先端研, 2. 桐蔭大院工, 3. 埼玉大院理工
10:15	9a-S222-6	バンドギャップのチューニングによるNbドーブ酸化チ タン/ベロブスカイト太陽電池の高効率化	の實平 義隆 1 柴山 直之 2 , 沼田 陽平 2 , 池上 和志 1 , 宮 坂 力 1	1. 桐蔭横浜大学, 2. 東大先端研
10:30 10:45	招 9a-S222-7	休憩/Break 「第19回業績賞(研究業績)受賞記念講演」 有機無機ペロプスカイト太陽電池の創製と高効率化	○宮坂 力¹	1.桐蔭横浜大
11:30	9a-S222-8	有機無機ペロノスカイト人物電池の創製と高効率化 APbX ₃ ハロゲン化鉛ペロブスカイト単結晶における不純 物ドーピング効果	○山田 泰裕¹,保屋野 瑞希¹,音 賢一¹,金光 義彦²	1. 千葉大院理, 2. 京大化研
		100 ドーピング 200米		

11.45		0- 6333 0	1 単 ニニュリルエミッシュン時物等も用いたプロブ	○伊莱 田1 賀日 敏火3 宣告 秀火3 中西 芝炒1 田山	1 CCDEEN 2 原土1
11:45		9a-S222-9	レーザーテラヘルツエミッション顕微鏡を用いたペロブ スカイト太陽電池の劣化評価		
12:00		9a-S222-10	逆構造ペロブスカイト太陽電池材料の積層膜界面における電荷移動のESR分光研究		1. 筑波大数物, 2. 京大化研, 3. 筑波大エネ物質科学セ
3/9(9	Sat.) 1	13:45 - 17:00	口頭講演 (Oral Presentation) S222 会場 (Room S222)	友,有百 仔心,凡平 加	
13:45		9p-S222-1	「講演奨励賞受賞記念講演」	〇田原 弘量 1 , 半田 岳人 1 , 阿波連 知子 1 , 若宮 淳志 1 ,	1.京大化研
			ハロゲン化金属ペロブスカイトにおける光位相シフトと	金光 義彦1	
14:00	松	9p-S222-2	可変波長板への応用 有機鉛ペロブスカイト製膜過程リアルタイム観察	○阿内 悠人 ^{1,2} , 宮寺 哲彦 ² , 山本 晃平 ² , 小金澤 智	1.埼玉大, 2.AIST, 3.JASRI
14:00	哭	9p-3222-2	付成和ペロノスガイド製展地性リアルタイム観景	\bigcirc 两内总人, 古中 哲序, 山本光十, 小並澤 哲 \bigcirc 之 3 , 近松 真之 2 , 吉田 郵司 2 , 矢口 裕之 1	1. 项玉人, 2.Al51, 3.JA3A1
14:15	奨	9p-S222-3	放射光を用いた CsPbI ₃ 蒸着過程の2次元X線回折による その場観察		1. 産総研, 2. 埼玉大, 3.JASRI
14:30	奨	9p-S222-4	CH ₃ NH ₃ PbBr ₃ 単結晶基板上CH ₃ NH ₃ Pb(BrCl) ₃ 混晶ヘテ		1. 東大工, 2. 東大先端研
14:45	奨	9p-S222-5		○山田 琢允¹, 阿波連 知子¹, 金光 義彦¹	1. 京大化研
15:00	松上	9p-S222-6	レーザー冷却 Trap Landscape and Carrier Dynamics of SnGe Perovskite	(P)Chi Huey Ng ¹ Kenga Hamada ¹ Dajayka	1.Kyushu Inst. of Tech, 2.Univ. of Electro-Com, 3.Univ.
13.00	7.1	ур 0222 0	Solar Cell	Hirotani ¹ , Satoshi Iikubo ¹ , Qing Shen ² , Kenji Yoshino ³ , Takashi Minemoto ⁴ , Shuzi Hayase ¹	of Miyazaki, 4.Ritsumeikan Univ.
15:15	No. D	0 0000 5	休憩/Break	O(D0)0 N. E. T. T. N. 11	1.00. 11. 12.1.1
15:30	樊上	9p-S222-7	Toward High performance and stable perovskite solar cells by the process from regulation of solvent evaporation to the Ge-doping in B site	(PC)GyuMin Kim [*] , Isutomu Miyasaka [*]	1.Toin Univ. Yokohama
15:45	奨 E	9p-S222-8	Application of nanoporous Au film as electrodes for high	○ (D)Yang Fengjiu¹, Keisuke Shinokita¹, Yuhei	1.Inst. Adv. Energy Kyoto Univ., 2.Inst. Chem. Res.
		•	efficient perovskite solar cells	Miyauchi ¹ , Atsushi Wakamiya ² , Luyang Chen ³ , Kazunari Matsuda ¹	Kyoto Univ., 3.East China Univ. Sci. and Tec.
16:00		9p-S222-9	鉛系ペロブスカイト太陽電池における曲線因子の支配要 因	○Kim HyungDo¹, 大北 英生¹	1. 京大院工
16:15		9p-S222-10	ヨウ化メチルアンモニウム処理によるペロブスカイト結 晶の組成制御と高効率太陽電池の開発	○古郷 敦史¹, 村上 拓郎¹, 近松 真之¹	1. 産総研
16:30	Е	9p-S222-11	Blade coating 2D/3D Perovskites films for high efficiency and stable Perovskites solar cells	○ (M2)MinYao Hou¹, KunMu Lee¹	1.Chang Gung Univ.
16:45	Е	9p-S222-12	Low defect density of Perovskites films for high efficiency Perovskites solar cells	○ (M2)ChangChieh Ting¹, KunMu Lee²	1.National Central Univ., 2.Chang Gung Univ.
3/10((Sun.)	9:30 - 11:30	ポスター講演 (Poster Presentation) PB会場 (Room PB)		
		10a-PB1-1	ナノ高分散 C60 を用いたバルクヘテロ薄膜太陽電池の高	○加藤 岳仁¹, 黒川 侑暉¹, 東 昇馬¹, Ruheine Naidu	1.小山高専, 2.アシザワ・ファインテック(株)
	_	40 004 0	効率化	Chandren ¹ , 舩山 智信 ² , 石井 利博 ² , 石川 剛 ²	4 10 0 0 0 0 0 10 10 10
	Е	10a-PB1-2	Material investigation for efficient organic <i>pn</i> homojunction solar cell	○ (D)JiHyun Lee ^{1, 2} , Seiichiro Izawa ^{1, 2} , Masahiro Hiramoto ^{1, 2}	1.IMS, 2.SOKENDAI
		10a-PB1-3	分子配向が制御された有機半導体分子の結晶相転移	○堀川 孝史¹, 山本 晃平², Md Shahiduzzaman³, 辛川	1. 金大電化研, 2. 産総研, 3.NanoMari, 4.InFiniti, 5.
			30 V AG. 30 AG. C 112 J. J. C 112 J. C	誠 ^{1,3,4,5} , 高橋 光信 ^{1,5} , 當摩 哲也 ^{1,3,5}	RSET
	Е	10a-PB1-4	Air-processed ternary active layers for neutral color	Takashi Sano¹, Shusei Inaba¹, ○ Varun Vohra¹	1.Univ. Electro-Comm.
		10a-PB1-5	transparent polymer solar cells 機械学習による逆構造有機薄膜太陽電池の効率予測	○中嶋 悠翔¹, 永瀬 隆¹.², 小林 隆史¹.², 内藤 裕義¹.²	1.大阪府大工,2.大阪府大分子エレクトロニックデバイ
		10a-PB1-6	屋内LED光照射下における有機薄膜太陽電池の特性評価	○近松 真之¹, 堤 若菜¹, 望月 博孝¹, 吉田 郵司¹	ス研 1. 産総研
	Е	10a - PB1 - 7	Surface plasmonic effect of hybrid Au nanoparticles		1.Niigata Univ., 2.Chiang Mai Univ., 3.Prince of Songkla
			incorporating with metallic grating enhanced organic thin-film solar cells	Pangdam ³ , Pitchaya Mungkornasawakul ² , Chutiparn Lertvachirapaiboon ¹ , Ryousuke Ishikawa ¹ , Kazunari	
				Shinbo ¹ , Keizo Kato ¹ , Futao Kaneko ¹ , Kontad	
		10a-PB1-8	コンタクトレンズ上への有機薄膜太陽電池の製膜技術	Ounnunkad², Akira Baba¹ 〇丹菊 大輝¹, 小林 大輝¹, 羽谷 大輔¹, 三宅 脩馬¹, 稲	1 磁加工士
		10a-1 D1-0	コンググドレンヘエトの行成符牍人物电池の表牍12門	垣奈々¹,森竜雄¹,清家善之¹	1. 及州工八
		10a-PB1-9	4つのDPPテトラエチニル基で架橋されたマグネシウム ポルフィリンの合成とその太陽電池特性	○中川 貴文¹, 王 歓², 岳 启慧³, Zieleniewska Anna⁴, 岡田 洋史¹, 小汲 佳祐⁵, 上野 裕⁶, Guldi Dirk⁴, 朱 晓	1.東大院工, 2.中国科技大, 3.中国科学院, 4.FAU, 5.都 産技研, 6.東北師大
		10a-PB1-10	白色 LED 光源対応型高電圧タンデム DSC の提案	张³, 松尾 豊¹² ○小久保 裕貴¹, 藤本 康平¹, 金子 恵太¹, 生野 孝¹	1.東理大
			Polypyrrole複合電極のI ₃ に対する還元作用の評価		1.山口東京理科大工
		10a-PB1-12	ダウン/アップコンバージョンナノ粒子を用いた色素増	Chawarambwa Fadzai¹, 張 博辰¹, 鎌滝 晋礼¹, 板垣 奈	1.九大シス情, 2.Inje Univ., Korea
	Е	10a-PB1-13	感太陽電池の特性改善 Control Properties of TiO ₂ Electron Transport Layer for	穂¹, ○古閑 一憲¹, 白谷 正治¹, 徐 鉉雄² ○Lee KunMu¹, Lin WeiJhih¹	1.Chang-Gung Univ.
			High Efficiency Perovskite Solar Cells		
		10a-PB1-14	p-i-n 逆構造 MAPbI ₃ ペロブスカイト太陽電池における PEDOT:PSS のエネルギーシフト抑制による開放端電圧	\mathbb{H}^1 , 小林 慎一郎 2 , シン センコウ 4 , 松島 敏則 4 , 伊左	1. 九州先端研, 2. 有機光エレ実用化開発セ, 3. 株式会社 日産化学, 4. 九大 OPERA
		10a-PB1-15	の向上 有機無機ハイブリッドペロブスカイト太陽電池における 地球型エスを発展し、エの P2 ピリー・の 変化	治 忠之³,河西 容督³,八尋 正幸¹²,安達 千波矢¹².4 ○(M1)松山 明日¹,小堀 天¹,鄭 敏喆¹,小島 広孝¹,	1.奈良先端大
		10a-PB1-16		辨天 宏明¹, 中村 雅一¹ ○(M2) 高橋 浩太郎¹, 石川 良¹, 白井 肇¹	1. 埼玉大院理工
	E	10a-PB1-17	太陽電池 Effect of TiCl4 Treatment on Low-Temperature Processed	○(M2)Visal Sem¹ Shahiduzzaman Md².¹ Kuniyaabi	1. Tokai Univ. 2. Kanazawa Univ
	L	108 1 11 11	Brookite TiO2 Nanoparticle Layers for Electron Transport Layer of Efficient Planar Perovskite Solar Cells	· · · · · · · · · · · · · · · · · · ·	1. Tokai Oliv., 2. Kanazawa Oliv.
		10a-PB1-18	ペロブスカイト構造結晶に対する光伝導性測定	○河根 拓哉¹, Matt Gebhard², Osvet Andres²,	1.名工大, 2.FAU, 3.Yuriy Fedkovych Chernivtsi National
				Shrestha Shreetu ² , Jevgen Levchuk ² , Brabec Christoph ² , Kanak Andrii ³ , Fochuk Petro ³ , 加藤 正	University
		10a-PB1-19	PbI ₂ 下層と1ステップ法を組み合わせた有機ペロプスカ	史 ¹ ○近藤 良紀 ¹ , 岡田 紘幸 ¹ , エゼ ビンセント オビオ	1.愛知工大
	Е	10a-PB1-20	イト太陽電池の作製と評価 One-pot synthesis of D-p-D-p-D type holetransporting	ゾ¹, 清家 善之¹, 森 竜雄¹ ○ (M2)ChangChieh Ting¹, KunMu Lee², KuanMing	1.National Central Univ., 2.Chang Gung Univ.
		. =-	materials for perovskite solar cells by sequential C–H (hetero)arylations	Lu ¹ , Ching-Yuan Liu ¹	, 00
		10a-PB1-21	ペロブスカイト太陽電池における酸化チタン(IV)薄膜の 作製法が太陽電池特性に及ぼす効果	〇竹內 大将 1 , 木內 宏弥 1 , 伊東 和範 1 , 牛膓 雅人 1 , 小林 敏弥 1 , 深澤 祐輝 1 , 梅田 龍介 2 , 緒方 啓典 $^{1.2.3}$	1. 法政大院, 2. 法政大生命科学, 3. 法政大マイクロ・ナ ノ研
		10a-PB1-22	ペロブスカイト太陽電池を構成する電子輸送層の表面処	〇伊東 和範 1 , 木内 宏弥 1 , 竹内 大将 1 , 牛膓 雅人 1 , 小	1.法大院理工, 2.法大生命, 3.法大ナノ研
		10° DD1 00	理が電子輸送特性に及ぼす影響 ハロゲン化鉛ペロブスカイトナノ結晶の作成および物性	林 敏弥¹,深澤 祐輝¹,梅田 龍介²,緒方 啓典¹.².3	1 注土陸細工 9 注土ルム 9 汁土ユ 7 四
		10a-PB1-23	ハロケン化鉛ペロフスカイトナノ結晶の作成および物性 評価	〇牛腸 雅人, 不內 宏哉, 竹內 大将, 伊東 和靶, 小林 敏弥¹, 深澤 祐輝¹, 梅田 龍介², 緒方 啓典 ^{1,2,3}	1. 伍八阮任上, 4. 伍八生町, 5. 伍八丁/ 饼
			D.T. Dest	n 2007,PMF FB/F,得四 86月,相刀 宜兴	

	10a-PB1-24	有機・無機ベロブスカイト化合物薄膜の耐久性評価Ⅲ	○ (M1) 深澤 祐輝¹, 木内 宏弥¹, 竹内 大捋¹, 伊東 和 範¹, 牛膓 雅人¹, 小林 敏弥¹, 梅田 龍介², 緒方 啓 患¹, ², 3	1.法大院理工, 2.法大生命, 3.法大ナノ研
	10a-PB1-25	表面処理を行った酸化ニッケル膜を用いた逆構造型ベロ ブスカイト太陽電池の作製及び特性評価		1. 法大院理工, 2. 法大生命, 3. 法大ナノ研
	10a-PB1-26	ハロゲン化セシウム鉛ペロブスカイト薄膜の作製と特性	○梅田龍介¹, 木内 宏弥², 竹内 大将², 伊東 和範², 小	1. 法大生命, 2. 法大院理工, 3. 法大ナノ研
	10a-PB1-27	評価 逆構造型ペロブスカイト太陽電池におけるヨウ化鉛の純	林 敏弥², 牛膓 雅人², 深澤 祐輝², 緒方 啓典¹.2.3 ○林 亮磨¹, 酒井 涼伍¹, 森 竜雄¹, 清家 善之¹	1.愛知工大
	10a-PB1-28	度における影響評価 PEDOT:PSS/Si 太陽電池の添加剤による性能向上	○坂田 俊樹 ¹ , 池田 なつみ ¹ , 加治屋 大介 ^{1,2} , 齋藤 健	1.広島大院理, 2.広島大自然セ
	10a-PB1-29	界面パッシベーションによるPbS量子ドット/ZnOナノ	—¹.² ○(B)中村 眞子¹,丁 超¹,大図 修平¹,吉田 康二¹,吉	1. 電通大基盤理工, 2. 九工大生命体工
		ワイヤヘテロ接合太陽電池の開放電圧の向上 逆オパール構造TiO ₂ 光電極を用いたSb ₂ S ₃ 固体型増感太	原泰葉1,早瀬修二2,豊田太郎1,沈青1	1. 電通大先進理工, 2. 九工大生命体工
		陽電池		
		$CsSn_xPb_{1\cdot x}Br_3$ ペロブスカイト量子ドットの合成と光学的特性	太郎1,早瀬修二2,沈青1	
	10a-PB1-32	変調光電流法による順構造・逆構造P3HT: PCBM 有機薄膜太陽電池の電荷輸送特性	· ○森 聖仁¹, 野島 大希¹, 小林 隆史¹², 永瀬 隆¹², 内藤 裕義¹.²	1.大阪府大工, 2.大阪府大分子エレクトロニックデバース研
	10a-PB1-33	熱前駆体法で作製した有機半導体薄膜における分子の構造-配向相関	○岡本 直也¹, 鈴木 充朗², 山田 容子¹	1. 奈良先端大物質, 2. 阪大院工
	10a-PB1-34	ビニレンで架橋されたアルコキシフルオロベンゾチアジ アゾールを主骨格とする半導体ポリマーの開発	○浅沼 佑哉¹, 森 裕樹², 西原 康師²	1. 岡山大院自然, 2. 岡山大基礎研
3/11(Mor	n.) 9:00 - 12:15	口頭講演 (Oral Presentation) S221 会場 (Room S221)		
9:00		ハロゲン化鉛ペロブスカイト化合物薄膜におけるイオン 照射効果(II)		1.法政大生命科学, 2.法政大マイクロ・ナノ研, 3.法政 大イオン研, 4.法政大院理工研
9:15	11a-S221-2	酸化グラフェンを正孔バッファー層として用いた逆構造 ペロブスカイト太陽電池	○尾川 卓¹, 伊東 栄次¹, 小野 博信², 郷田 隼²	1.信州大工, 2.日本触媒
9:30	11a-S221-3	グラフェン/ペロブスカイト太陽電池のグラフェン層数 変化による特性評価	○石川 亮佑¹, 山崎 荘平¹, 渡部 翔¹, 坪井 望¹	1. 新潟大工
9:45	11a-S221-4	気相法をベースとしたペロブスカイト太陽電池の作製プロセス	○瀬戸 悟¹, 有馬 佳宏¹, 山田 悟¹, 鈴木 和彦²	1.石川高専, 2.北海道科学大学
0:00	11a-S221-5	ロセス 電荷輸送層に非晶質 Si 膜を用いた MAPbI₃ 太陽電池		1.北陸先端大, 2.金沢大, 3.産総研
0:15	11a-S221-6	同時蒸着法による CsPbBr3 受光器の作製	晃平³, 宮寺 哲彦³, 大平 圭介¹ ○村田 歩紀¹, 西村 達矢¹, 宮島 晋介¹	1.東工大工学院
0:15	11a · J221 = 0	内時無有法による CSF DDF3 文元益の下製 休憩/Break	○11四夕心,□11 左八,白甸 日开	**************************************
	E 11a-S221-7	[Highlight] Reduced strain by cesium addition leading to the improvement in the efficiency of tin-lead mixed perovskite solar cells	○ (PC)Gaurav Kapil ^{1,2} , Takeru Bessho ¹ , Chi Huey Ng ² , Kengo Hamada ² , Takumi Kinoshita ¹ , Qing Shen ³ , Taro Toyoda ² , Takurou N. Murakami ⁴ , Hiroshi Segawa ¹ , Shuzi Hayase ²	1.The Univ. of Tokyo, 2.Kyu. Inst. of Tech., 3.Uni. of Elec. Comm., 4.AIST
1:00	E 11a-S221-8	Surface passivation of tin perovskite solar cells using organic molecule	○ (P)Akmal Kamarudin¹, Daisuke Hirotani¹, Kohei Nishimura¹, Kengo Hamada¹, Qing Shen², Taro Toyoda², Satoshi Iikubo¹, Takashi Minemoto³, Kenji Yoshino⁴, Shuzi Hayase¹	1.Kyushu Inst. of Tech, 2.Univ. of Electro-Com, 3.Ritsumeikan Univ., 4.Univ. of Miyazaki
1:15	11a-S221-9	Aサイト置換によるSn-Perovskite 太陽電池特性と結晶歪みの相関	○西村 滉平¹, 廣谷 太佑¹, Kamarudin Muhammad	1.九工大生命工, 2.電気通信大学, 3.立命館大学, 4.宮 大学
1:30		鉛フリーペロプスカイト表面における2D前駆体のパッ シベーション効果	○廣谷 太佑¹, 西村 滉平¹, Muhammad Akmal Kamarudin¹, 沈 青², 峯元 高志³, 早瀬 修二¹	1. 九州工大生命体工, 2. 電通大情報理工, 3. 立命館大
1:45 I	E 11a-S221-11	$Low-Temperature-Processed\ Brookite-Based\ TiO_2$ Heterophase Junction Electron Transport Layer Boosts Performance of Planar Perovskite Solar Cells	○ Md Shahiduzzaman ^{1, 2} , Sem Visal ² , Mizuki Kuniyoshi ² , Tetsuya Kaneko ² , Shinjiro Umezu ³ , Tetsuhiro Katsumata ² , Satoru Iwamori ² , Masato Kakihana ⁴ , Tetsuya Taima ¹ , Masao Isomura ² , Koji Tomita ²	1.Kanazawa Univ., 2.Tokai Univ., 3.Waseda Univ., 4.Tohoku Univ.
2:00	11a-S221-12	イオンブロック層を有する逆型ペロブスカイト太陽電池 の開発		1. 東芝研究開発センター, 2. 東芝エネルギーシステムス
		口頭講演 (Oral Presentation) S221会場 (Room S221)		
3:45		PEDOT:PSS 対極下の仕事関数が色素増感太陽電池の特性に与える影響	〇安藤 昌 b^1 ,村田 侑里 b^1 ,加藤 慎 b^1 ,岸 直 b^1 ,曾 我 哲夫 b^1	1.名工大院工
4:00 I	E 11p-S221-2	Hybrid silicon quantum dots perovskites blended solar cells.	○ (B)Svrcek Vladimir¹, Calum McDonald¹, Conor Rocks², Mickael Lozac'h¹, Davide Mariotti², Takuya Matsui¹	1.AIST Tsukuba, 2.University of Ulster
4:15	11p-S221-3	${ m TiO_2}$ 単結晶基板上にPbS量子ドット間距離を制御吸着した系の光音響法と光電子収量法による評価:量子ドット増感系	〇豊田 太郎¹, 沈青¹, 中澤 直樹¹, 吉原 泰葉¹, 神山 慶 太², 早瀬 修二 3	1. 電通大基盤理工, 2. 分光計器 (株), 3. 九工大
4:30	-	PbS量子ドット/ZnOナノワイヤ太陽電池のヘテロ接合 界面修飾による開放電圧の向上	○久保 貴哉¹, 王 海濱¹, Gagliardi Cesar¹, 岡田 至崇¹, 瀬川 浩司¹.²	
4:45	11p-S221-5	PbS量子ドット薄膜における光励起キャリアダイナミクス -量子ドットサイズの依存性 -	\bigcirc (M2) 北畠 有紀子 ^{1,2} , 大図 修平 ² , 丁 超 ² , 張 耀紅 ² , 早瀬 修二 ³ , 豊田 太郎 ² , 片山 建二 ¹ , 沈 青 ²	1.中大理工, 2.電気通信大学, 3.九州工業大学
5:00	11p-S221-6	環状P3HTの合成と有機薄膜太陽電池への応用	○福島 達也 ¹ , 石橋 寛隆 ¹ , 末政 大地 ² , 中村 亮介 ² , 蓬 田 昌伸 ² , 磯野 拓也 ² , 佐藤 敏文 ² , 梶 弘典 ¹	1. 京大化研, 2. 北大院工
5:15		休憩/Break		
	廷 11p-S221-7	天然色素βカロテンを電子ドナー材料として用いた透明 有機太陽電池	\bigcirc (M1) 内山 貴行 1 , 佐野 孝 1 , Vohra Varun 1 , 岡田 佳 子 1	1. 電通大基盤理工
5:45	廷 11p-S221-8		○中野 恭兵 ¹ , Chen Yujiao ¹ , Han Weining ² , Huang Jianming ¹ , 吉田 弘幸 ² , 但馬 敬介 ¹	1. 理研 CEMS, 2. 千葉大院工
6:00	廷 11p-S221-9	時間分解光第二次高調波発生法を用いた C ₆₀ /CuPc 界面における励起子およびキャリアダイナミクス評価		1. 東工大工
6:15 奨	廷 11p-S221-10	フッ素を導入したナフトビスチアジアゾール系ポリマー		1.京大院工, 2.広大院工, 3.JST さきがけ
6:30	廷 11p-S221-11	を用いた太陽電池における曲線因子の膜厚依存性 フェナントロジチオフェン系ポリマーを用いた非フラー	ヒョンド ¹ , 尾坂 格 ² , 大北 英生 ¹ ○森 裕樹 ¹ , 渡部 将也 ² , 西原 康師 ¹	1. 岡山大基礎研, 2. 岡山大院自然
6:45	11p-S221-12	レン型太陽電池の特性 光誘起劣化させたPTB7:PC71BM逆構造有機薄膜太陽電	○ 久茂田 耀 ¹ , 小林 隆史 ^{1,2} , 永瀬 隆 ^{1,2} , 内藤 裕義 ^{1,2}	1.大阪府大, 2.大阪府大分子エレクトロニックデバイン
7.00	11 0001 15	池の電荷輸送特性	<u> </u>	研 1.0.7 = 2.99 = 2.01 :
17:00	11p-S221-13	pnホモ接合有機太陽電池	○伊澤 誠一郎 ^{1,2} , Perrot Armand ^{1,3} , Lee Ji-Hyun ^{1,2} , 平本 昌宏 ^{1,2}	1. 万寸研, 2. 総研入, 3. Chimie Paris Tech

3/12(⁻ 9:00	Tue.) 9:00 - 12:15 12a-S221-1	口頭講演 (Oral Presentation) S221 会場 (Room S221) 非対称ジケトビロロビロールを有する新規共重合体の光 電気物性	○青島 健太¹, 井出 茉里奈¹, 佐伯 昭紀¹.²	1. 阪大院工 , 2.JST ききがけ
9:15	12a-S221-2	トリフェニルアミンとベンゾチアジアゾール部位を含む ドナー・アクセプター連結分子の単一成分薄膜太陽電池 への応用	○奥田 侑希¹, 末延 知義¹, 鈴木 充朗¹, 中山 健一¹	1. 阪大院工
9:30	12a-S221-3	PTzNTz高分子太陽電池の長寿命電荷状態のオペランド 光誘起ESR分光観測と性能劣化機構の解明	〇薛 冬 ¹, 神谷 晨平 ¹, 斎藤 慎彦 ², 尾坂 格 ², 丸本 一 弘 ¹. ³	1. 筑波大数物, 2. 広島大院工, 3. 筑波大エネ物質科学セ
9:45	12a-S221-4	新規イミド系電子欠損性骨格を有するn型半導体ポリ マーの開発	\bigcirc (M1) 手島 慶和 1 , 米山 公啓 1 , 吉田 拡人 1 , 三木江 \mathbf{Z}_1 , 斎藤 慎彦 1 , 尾坂 格 1	1. 広大院工
10:00	12a-S221-5 12a-S221-6	非フラーレン系太陽電池の三元化による電荷解離の促進 有機薄膜太陽電池の準安定性に影響を与える温度の検討	○尾坂格¹, 斎藤 慎彦¹, 玉井 康成², 大北 英生² ○佐藤 梨都子¹.², 千葉 恭男², 近松 真之², 吉田 郵 司², 嘉数 誠¹.², 當摩 哲也²³, 増田 淳².³	1. 広大院工, 2. 京大院工 1. 佐賀大院工, 2. 産総研, 3. 金沢大
10:30 10:45	12a-S221-7	休憩/Break スクアリリウム誘導体を用いた多色半透明有機薄膜太陽	○佐野 健志¹,楊 道賓¹,林 祐弥¹,笹部 久宏¹,城戸 淳	1.山形大
11:00	E 12a-S221-8	電池 Combined Density Functional Tight Binding – Density Functional Theory Investigation of Effects of Nuclear Motion on Charge Transport in C60 and C70	Saeid Arabnejad², Amrita Pal¹, Koichi Yamashita², ○ Sergei Manzhos¹	1.Ntl Univ Singapore, 2.Univ of Tokyo
11:15	E 12a-S221-9	Preparation of Zinc Doped Tin Oxide as an Electron Transport Interlayer for Organic Solar Cells	○ (M2)Mutlu Ege ALTUN¹, Kan HACHIYA¹, Takashi SAGAWA¹	1.Kyoto Univ.
11:30	12a-S221-10	ホットエレクトロンの理論とTiO2ナノ粒子の単一クラスターの伝導帯の励起状態の観測		1. 長春理工大, 2. 産総研ナノエレ
11:45	12a-S221-11	金ナノ粒子の伝導帯中の励起状態	李 博超¹, 李 浩¹, 楊 暢¹, 季 博宇¹, 林 景全¹, ○富江 敏尚¹.²	1. 長春理工大, 2. 産総研ナノエレ
12:00		過渡的電子親和力とホットエレクトロン	〇富江 敏尚 $^{1.2}$, 石塚 知明 1 , 松林 信行 1 , 李 博超 2 , 林 景全 2	1.産総研ナノエレ, 2. 長春理工大
		デー / Nanobiotechnology ロ頭講演 (Oral Presentation) W242会場 (Room W242)		
9:00 9:15	奨 9a-W242-1 奨 9a-W242-2	Al_2O_3 成膜によるマイクロボア壁面の表面電荷の調整 MCBJ法を用いた DNA シーケンシングによる連続塩基数	○林田 朋樹¹, 筒井 真楠¹, 谷口 正輝¹○小本 祐貴¹, 大城 敬人¹, 谷口 正輝¹	1. 阪大産研 1. 阪大産研
9:30	9a-W242-3	識別法の開発 機械学習と分子認識ナノボアを用いた1ウイルス識別	○筒井 真楠¹, 有馬 彰秀¹, ハルリサ イルファ², 吉田剛¹, 田中 祐圭², 横田 一道¹, 殿村 渉¹, 鷲尾 隆¹, 大河内 美奈², 川合 知二¹	1. 阪大産研, 2. 東工大
9:45 10:00	9a-W242-4 9a-W242-5	ナノボアトラップ法による単一粒子の捕捉と識別 トンネル電流計測 1 分子検出法を用いた化学修飾を含む	○有馬 彰秀¹, 筒井 真楠¹, 谷口 正輝¹ ○大城 敬人¹, 小本 祐貴¹, 浅井 歩², 今野 雅允², 石井	1. 阪大産研 1. 阪大産研, 2. 阪大医
10:15	E 9a-W242-6	核酸塩基鎖識別法の開発 Characterization of single nanoparticle shape using solid state nanopore	秀始 ² , 谷口 正輝 ¹ ○(M1)Iatwai Leong ¹ , Makusu TSUTSUI ¹ , Masateru TANIGUCHI ¹	1.ISIR, Osaka Univ.
10:30		休憩/Break		
10:45 11:00	9a-W242-7 9a-W242-8	ナノボアによるメソボーラス・ナノ粒子の計測 ナノボア計測による多項目ウイルス識別	○(DC)岸本 匠平¹,筒井 真楠¹,谷口 正輝¹ ○有馬 彰秀¹,筒井 真楠¹,殿村 涉¹,横田 一道¹,立松 健司¹,山崎智子¹,黒田 俊一¹,谷口 正輝¹,鷲尾隆¹, 川合 知二¹	1. 阪大産研 1. 阪大産研
11:15	9a-W242-9	マクロファージとがん細胞間相互作用によるがん細胞の 機械的特性変化の計測	○ (M1) 石橋 健太¹, 岡田 知子², 中村 史¹², 金 賢 徹¹²	1. 東農工大院工, 2. 産総研
11:30	奨 9a-W242-10	Annexin A5 2次元結晶をテンプレートとした streptavidin ナノアレイの作製とタンパク質の特異的検出	○木南 裕陽¹, 小林 圭¹, 平田 芳樹², 山田 啓文¹	1. 京大工, 2. 産総研
11:45	9a-W242-11	streptavidin 2次元結晶へのbiotin修飾分子結合と結晶無 秩序化との相関に関する研究	〇前田 祥吾 1 ,木南 裕陽 1 ,金澤 昌平 1 ,小林 \pm 1 ,山田 啓文 1	1.京大院工
12:00		修飾探針 FM-AFM を用いた streptavidin—biotin間特異的 結合測定	○杉本 千奈¹, 木南 裕陽¹, 小林 圭¹, 山田 啓文¹	1.京大工
3/9(Sa 13:45	at.) 13:45 - 17:45 招 9p-W242-1	口頭講演 (Oral Presentation) W242 会場 (Room W242) 「講演奨励賞受賞記念講演」	○ 麻胶 引为 1 新庄 茶沙 2 十足 茶甲 3 切日 壮士 1.4	1. 立教大理, 2. 星薬大薬, 3. 産総研 CD-FMat, 4. 東大生
13.43	19 3β-W242-1	FMO計算に基づく脂質二重膜、タンパク質の非経験的租 視化シミュレーションの展開		研
14:00	9p-W242-2	天然ゴム中タンパク質とイソプレン鎖ω末端部との FMO 相互作用解析	○阿部 鷹也 ¹, 奥脇 弘次 ¹, 望月 祐志 ¹.², 福澤 薫 ².³, 佐藤 弘一 ⁴	1. 立教大理, 2. 東大生研, 3. 星薬科大, 4.(株) ブリヂス ν
14:15	奨 E 9p-W242-3	Complementary Skin Gas Sensor Based on Hybrid Structure using WO ₃ nanoparticles and Zeolites	○ (D)Jongyoon Park¹, Hitoshi Tabata¹	1.The University of Tokyo
14:30	9p-W242-4	プラズモニックセンサーチップによるカンジダマンナン の迅速・高感度検出	○志水 星歌 ¹ , 栗田 浩 ² , 當麻 真奈 ¹ , 田和 圭子 ¹	1. 関西学院大理工, 2. 信州大医
14:45	9p-W242-5	金ナノギャップ構造を用いた単一生体分子のプラズモ ニック分光分析	○森崎 冴香¹, 矢野 隆章¹, 原 正彦¹	1.東工大物質理工
15:00	9p-W242-6	Sortase を用いたロバストなタンパク質マイクロアレイの 作製	○白形 優依¹, 若井 涼¹, 上野 真吾¹², 一木 隆範¹²	1.東大院工, 2.ナノ医療イノベーションセンター
15:15 15:30	9p-W242-7	休憩/Break 光受容タンパク質の薄膜パターン形成によるガボール	○笠井 克幸¹, 佐野 由佳², 長谷川 裕之², 岡田 佳子³,	1 情诵機構 2 鳥根大教育 3 電涌大棲却押工
15:45	9p-W242-8	フィルター型光センサーの構築 微生物外膜タンパク質内の多核へム電子移動鎖配向の差	田中 秀吉1, 大友 明1	1. 東大工, 2. 物材研
16:00	9p-W242-9	分円偏光二色性測定を用いた直接追跡 DNAオリガミナノアレイを用いた癌マーカー検出		1. 関西大院, 2. Jagiellonian Univ., 3. 阪大院工
			山下一郎3,清水智弘1,新宮原正三1,伊藤健1	
16:15 16:30		ナノハニカム構造を用いたLSPRセンサの開発 ナノハニカム構造を利用したLSPRとQCM-Dのハイブ リッドセンサの開発	○西村 翼¹,清水 智弘¹,新宮原 正三¹,伊藤 健¹ ○松本 直大¹,寺沢 秀章¹,清水 智弘¹,新宮原 正三¹, 伊藤 健¹	1. 関西大学院理工 1. 関西大理工
16:45 17:00	9p-W242-12	休憩/Break 脂質膜を用いた味覚センサによる塩味エンハンス効果の 数値化		1. 九州大学大学院, 2. 九大五感応用デバイス研究開発- ンター, 3. インテリジェントセンサーテクノロジー, 4. 富士食品工業, 5. 九州大学高等研究院
17:15	9p-W242-13	脂質膜を用いた味覚センサによるコーヒーの苦味の数値 化		
17:30	9p-W242-14	リン脂質リポソーム固定化カンチレバーセンサによる バーキンソン病原因物質 αシヌクレインの検出	〇小林 亮子 1 , 澤村 正典 2 , 山門 穂高 2 , 寒川 雅之 3 , 山 下 馨 1 , 野田 実 1	

		口頭講演 (Oral Presentation) W242会場 (Room W242)		
9:00 9:15		電気浸透流が引き起こす DNA の挙動の直接観測 Nicked DNA が引き起こすナノポアとの相互作用	○久保田 智也¹,港 聖也¹,ロイド 賢人¹,三井 敏之¹ ○ロイド 賢人¹,久保田 智也¹,港 聖也¹,三井 敏之¹	1. 青学大理工 1. 青学大院
9:30		フェリチン分子で作製した磁性体ナノ粒子周期結晶の強		1. FIT AND
,,,,,	104 //212 0	磁性共鳴測定	OSCH SUSA , Wallion Commission	Bristol
9:45	10a-W242-4	親水化PDMS表面上での基板支持型脂質二重膜のパター ニング	〇彭 祖癸 1 ,榛葉 健太 2 ,宮本 義孝 1 ,八木 透 1	1. 東工大工, 2. 東大工
10:00	10a-W242-5	電圧印加が誘起する固体表面支持膜中のドメイン形成	○傳刀 賢二¹, 古川 一暁¹	1. 明星大理工
10:15	10a-W242-6	シリコン量子ドット - タンパク質間相互作用によるプロ テインコロナ形成		1.神戸大院工
3/10(Sun.) 13:30 - 15:30	ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
	10p-PA2-1 10p-PA2-2	ナノポアと DNA の相互作用の観測 ウシ血清アルブミン中における金ナノ粒子を用いた標的		1. 青学大理工 1. 慶大理工
	10p-PA2-3	DNAの高感度検出 金キャップナノビラーLSPR基板と低分子抗体を利用し	○明山 剛大 ¹ , 斎藤 真人 ^{1,2} , 羅 希 ^{1,2} , 民谷 栄一 ¹	1.阪大院工, 2.産総研・先端フォトバイオ
	10p-PA2-4	たイムノアッセイと液中経時計測検討 蛍光高分子ゲルを用いた細胞牽引力の測定	○(M1)松本 悠暉¹, 田中 あや², 廣野 航平¹, 藤井 裕紀¹, 中島 寛², 岡嶋 孝治¹	1.北大情報科学, 2.NTT 物性基礎研
	奨 10p-PA2-5	バーチャル電極ディスプレイによる微小管滑走制御の局 所性評価		1. 弘前大理工, 2. 東京大院情理, 3. 京都大理学, 4. 弘前院理工
	E 10p-PA2-6	Modulated 1/f° Noise Behavior by Bias Voltage and Concentration Gradient in Conically Shaped Quartz	\bigcirc (P) Linhao Sun 1 , Kazuki shigyo u 1 , Toshio Ando 1 , Shinji Watanabe 1	1.Nano LSI, Kanazawa Univ
	10p-PA2-7	Nanopipettes 環状ホスト単分子膜が有するゲスト包接能の液中サブナ ノスケール AFM 計測	○波多野 尋花¹, 生越 友樹¹, 淺川 雅¹	1.金沢大学
	10p-PA2-8	クスケールAFM 計測 原子間力顕微鏡による単一がん細胞力学診断:細胞形状	○(M1) 小倉 花歩¹, 田中 良昌¹, 繁富 (栗林) 香繼².	1. 北大情報科学, 2. 北大高等教育
	10p-PA2-9	依存性 グラフェン酸化物上の繋ぎ留め型脂質二重膜内での分子	スバギョ アグス¹, 末岡 和久¹, 岡嶋 孝治¹	1. 豊橋技科大
	•	拡散挙動 新規マグネチックマイクロスターラーバーを用いた鞭毛		1.東理大
		で駆動するクラミドモナスの公転運動の誘発 シナプス接着因子を発現した BV システムによる神経細	○河西 奈保子¹, Brockman Elizabeth¹, 大嶋 梓¹, 手島	
	*	胞の制御の試み	哲彦¹, 湊元 幹太², 住友 弘二³, 中島 寬¹	
	奨 10p-PA2-12	流通システム中における酵素カスケード反応のためのガ ラス繊維フィルターへの酵素固定化	○佐々木開 ^{1,2} , 吉本 誠 ^{1,3} , Ghéczy Nicolas ¹ , Walde Peter ¹	1.Dept. of Materials, ETH Zurich, 2. 山形大院有機材料システム, 3. 山口大応用化学
	10p-PA2-13	ハイドロゲル表面のシワ構造の形状制御	○田中 あや¹, 高橋 陸¹, 上野 祐子¹	1.NTT物性基礎研
	10p-PA2-14	硬さバターンゲル上の細胞集団運動	○廣野 航平 ¹ , 田中 あや ² , 藤井 裕紀 ¹ , 松本 悠暉 ¹ , 中 島 寛 ² , 岡嶋 孝治 ¹	1.北大情報科学, 2.NTT 物性研基礎
	10p-PA2-15	等価回路解析による脂質二分子膜の薄膜化の評価	○(M1C) 冨岡 康貴¹, 高島 匠吾¹, 守屋 雅隆¹, 島田 宏¹, 廣瀬 文彦², 平野 愛弓³, 水柿 義直¹	1. 電通大, 2. 山形大, 3. 東北大
	10p-PA2-16	テレフタル酸を含有するゲルを用いた気液界面近傍におけるOHラジカル輸送範囲の測定	松井 優作¹,○熊谷 慎也¹	1. 名城大学
12.7 医	用工学・バイオチッ	プ / Biomedical Engineering and Biochips		
		口頭講演 (Oral Presentation) S421会場 (Room S421)		
9:00	E 9a-S421-1	DNA 3D structure detection by Electrochemical Impedance Spectroscopy (EIS)	○ Huanwen Han¹, Kazuyuki Nobusawa¹, Fumie Takei², Ichiro Yamashita¹	1.Grad. Sch. of Eng., Osaka Univ., 2.NDMC
9:15	9a-S421-2	簡易な電気化学計測法でのDNA配列内一塩基差異の検 出	○古澤 宏幸¹, 吉嶺 浩司², 時任 静士²	1.山形大院理工, 2.山形大ROEL
9:30	9a-S421-3	唾液糖の連続計測を目的とした夾雑物質の影響抑制に関する研究	〇大石 琢史 ¹, 戸本 佳祐 ¹, 横田 くみ ¹, 當麻 浩司 ¹, 荒 川 貴博 ¹, 三林 浩二 ¹	1. 医科歯科大
9:45	E 9a-S421-4	Precipitates-assisted SAW immunosensor for sensitive monitoring of mite allergen	○ Sittinadh Wanotayan¹, Koki Oishi¹, Misato Kato², Kanako Kurata², Koji Toma¹, Naoyuki Yoshimura³, Takahiro Arakawa¹, Hiromi Yatsuda³, Kiyoko Kanamori², Kohii Mitsubayashi¹	1.Tokyo Medical and Dental Univ., 2.Bunkyo Gakuin Univ., 3.Japan Radio Co. Ltd.
10:00	9a-S421-5	飲酒後呼気2成分ガス(EtOH, AcH)のバイオ蛍光法による並列可視化計測	○水越 直樹¹, 早川 悠暉¹, 飯谷 健太¹, 當麻 浩司¹, 荒 川 貴博¹, 三林 浩二¹	1. 医科歯科大
10:15	9a-S421-6	呼気アセトン・イソプロパノールの間欠繰り返し計測用 バイオスニファ		1. 医科歯科大
10:30 10:45	奨 9a-S421-7	休憩/Break DNA修飾グラフェンにおける塩基配列がガス応答性へ与		1.東京農工大
11:00	奨 9a-S421-8	える影響評価 呼気中アンモニア検知のためのコバルトポルフィリン修	池袋 一典 1 , 前橋 兼三 1 〇澤田 圭 1 , 横山 誉宗 1 , 斎藤 雄太 1 , 山知 亮介 1 , 田中	1. 慶應大理工, 2. 東大院総合文化
11:15	9a-S421-9	飾グラフェンデバイスの開発 超薄膜還元型酸化グラフェンを用いた抵抗式高感度アセ	貴久 1 ,岡 勇気 2 ,千葉 湧介 2 ,寺尾 潤 2 ,内田 建 1 ○杉浦 弘晃 1 ,高野 晃佑 1 ,伊東 栄次 1 ,小野 博信 2 ,郷	
11:30	9a-S421-10	トンセンサ PEDOT:PSS を用いた薄型・軽量な有機 CO_2 センサの開	田	1.山形大ROEL、2.山形大院有機材料シ 3.山形大院理
		発	長峯 邦明 ^{1,2} , 古澤 宏幸 ³ , 時任 静士 ^{1,2}	I. 出版人代码EE, 2. 出版人就有规约有 2 , 3. 出版人就在
	奨 9a-S421-11	溶液プロセスによるバイオセンサ用 Active Matrix 酸化物		1.北陸先端大
11:45	奨 9a-S421-11 9a-S421-12	溶液プロセスによるバイオセンサ用 Active Matrix 酸化物 TFTアレイの作製 電子線描画法による高感度シリコンナノワイヤバイオセ	○ 栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ $ \bigcirc $	1. 北陸先端大 1. 群馬大院理工, 2.JSPS外国人特別研究員, 3. 群馬大院
11:45		溶液プロセスによるバイオセンサ用 Active Matrix 酸化物 TFTアレイの作製	○ 栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ $ \bigcirc $	1.北陸先端大
11:45 12:00 3/9(5	9a-S421-12	溶液プロセスによるバイオセンサ用 Active Matrix 酸化物 TFTアレイの作製 電子線描画法による高感度シリコンナノワイヤバイオセ ンサの作製およびアトモル濃度の抗原抗体特異結合の検	○ 栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ ○張 慧¹², 大嶋 紀安³, 大嶋 駆¹, 菊池 直樹¹, 加治佐 平⁴, 坂田 利弥⁵, 和泉 孝志³, 曾根 逸人¹ ○浦山 翔太¹, 島 智大², 張 博文², 木野 久志³, 福島 誉	1. 北陸先端大 1. 群馬大院理工, 2.JSPS外国人特別研究員, 3. 群馬大院
11:45 12:00 3/9(\$ 13:45	9a-S421-12 Sat.) 13:45 - 18:00	溶液プロセスによるバイオセンサ用 Active Matrix 酸化物TFT アレイの作製電子線描画法による高感度シリコンナノワイヤバイオセンサの作製およびアトモル濃度の抗原抗体特異結合の検出 口頭講演 (Oral Presentation) S421 会場 (Room S421)	○栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ ○張 慧¹², 大嶋 紀安³, 大嶋 駆¹, 菊池 直樹¹, 加治佐 平⁴, 坂田 利弥⁵, 和泉 孝志³, 曾根 逸人¹ ○浦山 翔太¹, 鳥 智大², 張 博文², 木野 久志³, 福島 誉 史², 田中 徹²⁴ ○川崎 祐久¹, 長沼 京介¹, 太田 安美¹, 春田 牧人¹, 笹	1. 北陸先端大 1. 群馬大院理工, 2.JSPS外国人特別研究員, 3. 群馬大院医, 4.PROVIGATE Inc., 5. 東京大院工 1. 東北大工, 2. 東北大院工, 3. 東北大学際研, 4. 東北大医工
11:45 12:00	9a-S421-12 Sat.) 13:45 - 18:00 奨 9p-S421-1	溶液プロセスによるパイオセンサ用 Active Matrix酸化物 TFT アレイの作製電子線描画法による高感度シリコンナノワイヤバイオセンサの作製およびアトモル濃度の抗原抗体特異結合の検出口頭講演 (Oral Presentation) S421 会場 (Room S421) 多段階励起による発光現象を用いた光遺伝学用神経プローブの作製サル脳深部用刺入型光利刺激デバイスの作製と評価 μ LED 埋め込み型フレキシブルオプト神経プローブの開	○栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ ○張 慧¹², 大嶋 紀安³, 大嶋 駆¹, 菊池 直樹¹, 加治佐 平⁴, 坂田 利弥⁵, 和泉 孝志³, 曾根 逸人¹ ○浦山 翔太¹, 鳥 智大², 張 博文², 木野 久志³, 福島 誉 史², 田中 微²⁴ ○川崎 祐久¹, 長沼 京介¹, 太田 安美¹, 春田 牧人¹, 笹川 清隆¹, 徳田 崇¹, 太田 淳¹ ○島 智大¹, 媒孫 裕樹¹, 張 博文¹, 浦山 翔太², 木野 久	1. 北陸先端大 1. 群馬大院理工, 2.JSPS外国人特別研究員, 3. 群馬大院医, 4.PROVIGATE Inc., 5. 東京大院工 1. 東北大工, 2. 東北大院工, 3. 東北大学際研, 4. 東北大医工 1. 奈良先端大 1. 東北大院工, 2. 東北大工, 3. 東北大学際研, 4. 東北大
11:45 12:00 3/9(\$ 13:45 14:00	9a-S421-12 Sat.) 13:45 - 18:00 髮 9p-S421-1 髮 9p-S421-2	溶液プロセスによるバイオセンサ用 Active Matrix 酸化物 TFT アレイの作製 電子線描画法による高感度シリコンナノワイヤバイオセンサの作製およびアトモル濃度の抗原抗体特異結合の検出 口頭講演 (Oral Presentation) S421 会場 (Room S421) 多段階励起による発光現象を用いた光遺伝学用神経プローブの作製 サル脳深部用刺入型光利刺激デバイスの作製と評価	○栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ ○張 慧¹², 大嶋 紀安³, 大嶋 駆¹, 菊池 直樹¹, 加治佐 平⁴, 坂田 利弥⁵, 和泉 孝志³, 曾根 逸人¹ ○浦山 翔太¹, 鳥 智大², 張 博文², 木野 久志³, 福島 誉史², 田中 徽²⁴ ○川崎 褚久¹, 長沼 京介¹, 太田 安美¹, 春田 牧人¹, 笹 川 清隆¹, 德田 崇¹, 太田 淳¹ ○鳥 智大¹, 媒孫 裕樹¹, 張 博文¹, 浦山 翔太², 木野 久志³, 福島 誉史¹, 田中 徽¹⁴	1. 北陸先端大 1. 群馬大院理工, 2.JSPS外国人特別研究員, 3.群馬大陸医, 4.PROVIGATE Inc., 5.東京大院工 1. 東北大工, 2.東北大院工, 3.東北大学際研, 4.東北大医工 1. 奈良先端大
11:45 12:00 3/9(\$ 13:45 14:00	9a-S421-12 Sat.) 13:45 - 18:00 奨 9p-S421-1 奨 9p-S421-2 奨 9p-S421-3	溶液プロセスによるバイオセンサ用 Active Matrix 酸化物 TFT アレイの作製 電子線描画法による高感度シリコンナノワイヤバイオセンサの作製およびアトモル濃度の抗原抗体特異結合の検出 口頭講演 (Oral Presentation) S421 会場 (Room S421) 多段階励起による発光現象を用いた光遺伝学用神経プローブの作製 サル脳深部用刺入型光利刺激デバイスの作製と評価 μLED 埋め込み型フレキシブルオブト神経ブローブの開発 Implantable micro-imaging device for visualizing neural	 ○栗谷川 翔¹, Phan Tue¹, 下田 達也¹, 高村 禅¹ ○張 慧¹², 大嶋 紀安³, 大嶋 駆¹, 菊池 直樹¹, 加治佐 平⁴, 坂田 利弥⁵, 和泉 孝志³, 曾根 逸人¹ ○浦山 翔太¹, 鳥 智大², 張 博文², 木野 久志³, 福島 誉 史², 田中 徽²⁴ ○川崎 祐久¹, 長沼 京介¹, 太田 安美¹, 春田 牧人¹, 笹 川 清隆¹, 德田 崇¹, 太田 淳¹ ○鳥 智大¹, 媒孫 裕樹¹, 張 博文¹, 浦山 翔太², 木野 久志³, 福島 誉史¹, 田中 徽¹⁴ ○(M2)Mark Guinto¹, Yasumi Ohta¹, Mamiko 	1. 北陸先端大 1. 群馬大院理工, 2.JSPS外国人特別研究員, 3.群馬大院医, 4.PROVIGATE Inc., 5.東京大院工 1.東北大工, 2.東北大院工, 3.東北大学際研, 4.東北大医工 1. 奈良先端大 1. 東北大院工, 2.東北大工, 3.東北大学際研, 4.東北大医工

15:15	奨 9p-S421-7	網膜刺激型人工視覚デバイスのAC駆動化のための	○(M1)秦 真誉¹, 森 康登¹, Chang Chia-Chi¹, 遠藤	1. 奈良先端大, 2. 豊橋技科大, 3. ニデック
		CMOSチップ設計	広基 ¹ , 野田 俊彦 ² , 鐘堂 健三 ³ , 寺澤 靖雄 ¹ , 春田 牧 人 ¹ , 笹川 清隆 ¹ , 徳田 崇 ¹ , 太田 淳 ¹	
15:30	9p-S421-8	心筋細胞への機械的刺激とその制御システム	○宮沢 高司 1 , 万本 和輝 1 , 新井 晋 1 , 上原 貴宏 1 , 三井 敏之 1	1. 青学大院理工
15:45 16:00	9p-S421-9	休憩/Break 生体刺入型K ⁺ イメージセンサの製作	○中村 友亮¹, 岩田 達也¹², 高橋 一浩¹², 野田 俊 彦¹², 澤田 和明¹²	1. 豊橋技科大, 2.EIIRIS
16:15	奨 9p-S421-10	入射角度分解画素CMOSイメージセンサの試作		1. 奈良先端大
16:30	奨 9p-S421-11	H_2O_2 検出系によるアセチルコリンイメージングの高精細化に向けたイオンイメージセンサの開発		1. 豊技大院, 2. エレクトロニクス先端研究所
16:45	奨 E 9p-S421-12	Application of High Performance Hybrid Filter on CMOS Image Sensor for FRET Imaging	○ (DC)Wan Shen Hee¹, Aiki Kameyama¹, Ayaka Kimura¹, Kiyotaka Sasagawa¹, Makito Haruta¹,	1.NAIST
17:00	奨 9p-S421-13	レドックス型非標識乳酸イメージセンサの製作と薬理刺激による海馬からの乳酸放出の評価	Takashi Tokuda¹, Jun Ohta¹ \bigcirc (D) 土井 英生¹, 堀尾 智子¹, 繁富 英治³, 篠崎 陽 $_$ ³, Lee You-Na¹, 吉見 立也¹, 岩田 達哉¹², 野田 俊 彦¹², 高橋 $_$ 浩¹², 服部 敏明¹, 小泉 修 $_$ ³, 澤田 和 明¹.²	1. 豊橋技科大, 2.EIIRIS, 3. 山梨大学
17:15	9p-S421-14	高空間分解能イオンイメージングシステムのセンサー基 板の評価	○柴野 暁¹,川田 善正¹,居波 渉¹	1. 静岡大学工
17:30	奨 9p-S421-15	拡散防止構造を一体化した水素イオンイメージセンサに よる海馬スライスのイメージング	〇魚返 勇太 1 ,川上 千夏 1 ,飛沢 健 1 ,繁富 英治 3 ,篠崎 陽 $^-$ 3,岩田 達哉 $^{1.2}$,野田 俊彦 $^{1.2}$,高橋 一浩 $^{1.2}$,小泉 修 $^-$ 3,署田 和明 $^{1.2}$	
17:45	9p-S421-16	マイクロ波マンモグラフィの開発と超早期乳癌検出		1. 神戸大学数理データ, 2. 医療法人社団伍仁会, 3. 神鋼病院, 4.IGS, 5.AMED
		口頭講演 (Oral Presentation) S421会場 (Room S421)		
9:00	10a-S421-1	外力支援近接場照明バイオセンサによるインフルエンザウイルスの検出	○柳川博人¹,河村達朗¹,佐々木良樹¹,管野天¹,安浦雅人²,藤巻真²	
9:15		大気捕集デバイスの開発と遠心熱対流チップPCRを用いた迅速遺伝子検知	スプルガ 1 , 民谷 栄 $-^{1}$	
9:30		遠心熱対流PCRの流路集積設計に向けたシミュレーション解析検討	○後 早希子¹, 齋藤 真人¹.², Wilfred Villariza Espulgar¹, 民谷 栄一¹	1. 阪大院工, 2. 産総研・先端フォトバイオ
9:45	10a-S421-4	非対称電極を用いた誘電泳動力によるマイクロ流路中で の白血球の分離	○須田 座大,果 貝俗	1. 鹿児島高専
10:00	E 10a-S421-5	Single Cell Preparation in a Centrifugal Microfluidic Chip System with Reflow Capability	○ (P)Wilfred Espulgar ¹ , Masato Saito ¹ , Shohei Koyama ¹ , Hyota Takamatsu ¹ , Eiichi Tamiya ¹	1.Osaka Univ.
10:15	10a-S421-6	高性能マイクロ流路バルブシステムの開発		1. 名大未来社会機構, 2.JST-CREST, 3. 分子研, 4. 山梨 大, 5. 北陸先端大
10:30 10:45	10a-S421-7	休憩/Break 生体吸収性ポリマー材料の精密成形・加工プロセスの検		1.東大工, 2.ナノ医療イノベーションセンター
11:00	奨 10a-S421-8	討 ボリシラザンを用いたUV処理によるガラス同士の接合	隆範 ^{1,2} 〇山上 浩平¹, Phan Tue¹, 高村 禅¹	1. 北陸先端大
11:15	奨 10a-S421-9	に関する研究 相変化材料を用いた温度制御による RPA 核酸検出	○ WU WEIDONG¹, Rathore Himankshi¹, Phan Tue¹, Biyani Manish¹, Takamura Yuzuru¹	1.北陸先端大
11:30	奨 E 10a-S421-10	Development of automated competitive ELISA paper-based analytical device using dissolvable sucrose valves for	○ (M2)Sumamal Charernchai¹, Miyuki Chikae¹, Wanida Wonsawat², Tue Phan Trong¹, Yuzuru	1.Japan Advanced Institue of Science and Technology, 2.Suan Sunadha Rajabhat Univ.
11:45	奨 E 10a-S421-11	Aflatoxin B ₁ detection Adsorption phenomena of nanoliposomes on PDMS microchannel' s surface	Takamura¹ ○(D)Virendra Majarikar¹, Hiroaki Takehara¹.², Takanori Ichiki¹.²	Department of Materials Engineering, School of Engineering, The University of Tokyo, 2.Innovation Center of NanoMedicine, Institute of Industry Promotion-Kawasaki
12:00	奨 10a-S421-12	液体電極プラズマ発光分析法における流路形状に関する 研究	○渡辺 洋平¹, 山本 保², 高村 禅¹	1.北陸先端大, 2. (株) マイクロエミッション
3/10(ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
	10p-PA3-1	インタクトエクソソームの蛍光センシングによるがん診 断を志向した抗体融合分子インプリントポリマーの創製	北山 雄己哉¹, 竹内 俊文¹	
	10p-PA3-2	エクソソーム高感度検出のための表面修飾の検討	○岩谷 晶子 ¹ , 倉持 宏実 ¹ , 木下 ひろみ ¹ , 滝口 裕実 ¹ , 一木 隆範 ^{1,2}	1.東大工, 2.ナノ医療イノベーションセンター
	E 10p-PA3-3	Gold nanoparticle incorporated polymer nanogels for radiation therapy	○ Aoi Yoshida¹, Takuya Yamada¹, Kentaro Kiguchi¹, Hiroaki Akasaka², Ryohei Sasaki², Yukiya Kitayama¹, Toshifumi Takeuchi¹	1.Grad. Sch. Eng., Kobe Univ., 2.Grad. Sch. Med., Kobe Univ.
	10p-PA3-4 10p-PA3-5	ナノ粒子湿度センサのインピーダンス分光解析 プラズモニックバイオセンサにおける金属ナノドームア	 ○土橋 侑弥¹, 加納 伸也¹, 藤井 稔¹ ○當麻 真奈¹, 田中 諒¹, 田和 圭子¹ 	1. 神戸大院工 1. 関学大理工
		レイ構造のサイズ効果		
	10p-PA3-6	小型蛍光偏光測定装置の性能評価	〇小森翼¹,高麗拓海¹,佐竹賢太¹,市川泰弘¹,杉谷 貴子¹,鶴岡誠¹	
	10p-PA3-7	ハイブリッドフィルタを用いた広視野レンズレス蛍光イメージングデバイス	徳田 崇 ¹, 太田 淳 ¹	
	10p-PA3-8	指尖動脈血圧波形における精神負荷により誘発される拡 張期の反射波の到達時間の変化		1. 弘前大理工, 2. 弘前大院理工
	10p-PA3-9 10p-PA3-10	空間的バターン光刺激のためのGaN-µLEDアレイの作製 反射防止膜を付与したSiリング共振器バイオセンサー		1. 豊橋技科大, 2. 沖縄科技大, 3.JST さきがけ 1. 広島大ナノデバイス研, 2. 広島大先端研半導体集積, 3. 広島大先端研分子生命機能
	10p-PA3-11	導波モードセンサを用いたC反応性タンパク質の洗浄レス免疫測定		
		生体センサ応用のための光リング共振器の集積化フラビンアデニンジョクレナチド体をグルフースドル表	○雨宮 嘉照¹, 横山 新¹	1.広島大 1. 芳油工士工 2 産総秤 3 東洋紅
	10p-PA3-13	フラビンアデニンジヌクレオチド依存グルコース脱水素 酵素と単層カーボンナノチューブ溶液からなる直接電子 に実質の超		1. 疋佣丄八丄, 4. 胜聪明, 3. 果注約
	10p-PA3-14	伝達第四報 櫛型電極ミオグロビンバイオセンサの再生技術の探索	○藤城 志遥¹, 大貫 等¹, 津谷 大樹², 呉 海云¹, 遠藤 英明¹	1.東京海洋大, 2.物質・材料機構
	10p-PA3-15	カーボンナノチューブ電極を用いる紅茶中のボリフェ ノールの定量	(M1) 高橋 翔太¹, 村上 知史¹, 六車 仁志¹, 越阪部 奈緒美¹, 井上 均², 大澤 達也²	1. 芝浦工大, 2. 日本資材
		, , , , , , , , , , , , , , , , , , ,	小和大,月上の,八僕 杜巴	

	10p-PA3-16	蛋白質の選択吸着を目指した配向性メゾ多孔質シリカ膜 の創製	長谷川 滉太¹,○円子 友理¹,小橋 孝葵¹,多賀谷 基博¹	1. 長岡技科大工
	10p-PA3-17	分子間相互作用並列測定のための抗体修飾基板における 架橋剤の検討		1.山梨大
	10p-PA3-18	電気化学インピーダンスバイオセンサにおける非特異吸 着の除去	○本田陽翔¹,大貫等¹,津谷大樹²,呉海云¹,遠藤英明¹	1. 東京海洋大, 2. 物質・材料研究機構
	10p-PA3-19		7*	1. 阪大院工, 2. 阪大院医, 3. 産総研
		両面成形遠心マイクロ分注機構の開発 白血球遊走評価のためのマイクロ流体デバイスの開発		1.山梨大院医工農 1.阪大工, 2.阪大医, 3. 産総研
3/10(·	口頭講演 (Oral Presentation) S421会場 (Room S421)	正平², 高松 漂太², 熊ノ郷 淳², 民谷 栄一¹	
15:45		Fluorescent Proteinaceous Microstructures Made by Femtosecond Laser Direct Writing	○ (P)Daniela Serien¹, Hiroyuki Kawano², Atsushi Miyawaki¹.², Koji Sugioka¹	1.RIKEN RAP, 2.RIKEN CBS
16:00 16:15		手書き作製したナノ粒子湿度センサによる呼吸数計測 鉛筆描画炭素電極を使用した電位測定型pHセンサーに	○加納 伸也¹, 藤井 稔¹ ○川原 綾太朗¹, 村瀬 直弥¹, 宇野 重康¹	1. 神戸大院工 1. 立命館大
16:30	奨 10p-S421-4	よる実サンプル測定 薄膜転写手法を用いた封止キャビティ構造のMEMS光干		1. 豊橋技科大, 2.JST さきがけ
16:45	10p-S421-5	渉型表面応力センサの作製 フォトニック結晶ナノレーザバイオセンサのための抗体 (数数の電気的類数)	明 ¹ , 髙橋 一浩 ^{1,2} 〇羽中田 祥司 ¹ , 西條 義人 ¹ , 馬場 俊彦 ¹	1. 横国大・院工
17:00		修飾の電気的制御 休憩/Break		
17:15	10p-S421-6	多点認識分子インプリント空間による標的糖タンパク質 の特異的検出	〇高野 恵里 1 , 砂山 博文 1,2 , 北山 雄己哉 1 , 竹内 俊文 1	1. 神戸大工, 2. 安田女子大薬
17:30	10p-S421-7	VHH抗体と表面プラズモンを用いたウイルス核タンパク の高感度検出	〇柳川 博人 1 , 西尾 和晃 1 , 榛葉 教子 1 , 池内 江美奈 1 , 河村 達朗 1 , 塩井 正彦 1 , 津本 浩平 2	1.バナソニック株式会社, 2.東京大工
17:45	10p-S421-8	流路構造を有する格子結合型プラズモン共鳴バイオセン サでのウイルス核タンパク検出		1.パナソニック(株), 2.東大院工
18:00	10p-S421-9	超解像顕微鏡による格子結合型プラズモン共鳴バイオセ ンサのナノ発光分布解析	脇田 尚英 1 ,榛葉 教子 1 ,〇管野 天 1 ,柳川 博人 1 ,池内 江美奈 1 ,河村 達朗 1 ,塩井 正彦 1 ,津本 浩平 2	1. パナソニック (株), 2. 東大院工
13 半	導体 / Semicor	nductors		
		はプログラム冒頭にございます。	and interfece and simulations of Civaletal	ale .
		面・シミュレーション / Fundamental properties, surface 口頭講演 (Oral Presentation) W934会場 (Room W934)	e and interrace, and simulations of Si related materia	315
9:00		Si(110) 上の還元反応領域	〇矢野 雅大 1 , 寺澤 知潮 1 , 町田 真 $-^1$, 保田 論 1 , 朝岡 秀人 1	1.原子力機構先端研
9:15		Oxidation-induced shrink of Si-Si bond	○ ShuJun YE¹, Kikuo YAMABE¹, Tetsuo ENDOH¹	
9:30	10a-W934-3	HfO ₂ 薄膜を用いたMISダイオードのSi基板面方位依存性	○(M1) 堀内 勇介¹, 工藤 聡也¹, 大見 俊一郎¹	1.東工大 工学院
9:45	奨 10a-W934-4	Hf系 MONOS型不揮発性メモリの作製条件依存性	○(P) 工藤 聡也¹, 石松 慎¹, 堀内 勇介¹, 大見 俊一郎¹	1.東工大
10:00	奨 E 10a-W934-5	Molecular Dynamics Simulation of SiO_2 Substrate Etching by NF_2^+ and $C_2F_5^+$ ions	○(D)ErinJoy Capdos Tinacba¹, Michiro Isobe¹, Kazuhiro Karahashi¹, Satoshi Hamaguchi¹	1.Osaka Univ.
10:15 10:30	奨 10a-W934-6	休憩/Break Ge コア Si 量子ドット/Si 量子ドット多重連結構造から の電界電子放出特性および電子放出エネルギー評価	○(M2)二村 湧斗¹, 牧原 克典¹, 大田 晃生¹, 池田 弥 央¹. 宮崎 誠一¹	1.名大院工
10:45	10a-W934-7	B添加がGeコアSi量子ドットのPL特性に及ぼす影響	○永井 僚¹, 藤森 俊太郎¹, 前原 拓哉¹, 池田 弥央¹, 大 田 晃生¹. 牧原 克典¹. 宮崎 誠一¹	1.名大院工
11:00	奨 10a-W934-8	Barker-Ferry 方程式を用いた高電界輸送特性解析		1. 阪大院工
11:15	招 10a-W934-9	「講演奨励賞受賞記念講演」 半導体表面におけるグラフェン・アシストエッチングの 基礎特性の解明	〇平野 智暉 1 , 中田 裕己 1 , 山下 裕登 1 , 李 韶賢 1 , 川合 健太郎 1 , 山村 和也 1 , 有馬 健太 1	1. 阪大院工
11:30	奨 10a-W934-10	バイオテンプレート極限加工により作製した無欠陥配置 制御Siナノビラー構造による表面撥水性の制御	\bigcirc (B) 竹内 聡 1 , 大堀 大介 1 , 石田 昌久 2 , 田中 麻美 2 , 曽田 匡洋 2 , 寒川 誠二 $^{1.3}$	1. 東北大流体研, 2. 長瀬産業, 3. 東北大 AIMR
11:45	10a-W934-11	化学的転写法による固定砥粒多結晶シリコンの低反射化 と界面準位密度の低減		1. 阪大産研, 2.CREST-JST
		口頭講演 (Oral Presentation) W934会場 (Room W934)		
13:30	10p-W934-1	バルス光伝導法による超低密度の金属汚染評価	○熊谷 祐希¹,葛川 翔太郎¹,松山 浩輝¹,阿部 成海¹, 島津 裕一郎¹,永友 航太郎²,中山 雄介²,中村 駿佑², 小林一博¹,久保田 弘¹,橋新 剛¹,吉岡 昌雄²	1.熊本大院自, 2.熊本大工
13:45	10p-W934-2	バルス光伝導法を用いた非接触マルチ測定手法の開発	〇葛川 翔太郎', 松山 浩輝', 阿部 成海', 熊谷 祐希', 島津 裕一郎', 永友 航太郎', 中村 駿佑', 中山 雄介', 小林一博', 久保田 弘', 橋新 剛', 吉岡 昌雄'	1.熊大院自, 2.熊大工
14:00	10p-W934-3	パルス光伝導法による非破壊界面準位密度測定の開発	〇松山 浩輝', 葛川 翔太郎', 阿部 成海', 熊谷 祐希', 中山 雄介', 中村 駿佑', 永友 航太郎', 小林 一博', 久 保田 弘', 橋新 剛', 吉岡 昌雄'	1. 熊大院自, 2. 熊大工
14:15	10p-W934-4	非破壞界面準位密度測定の開発	(阿部成海',葛川翔太郎',松山浩輝',熊谷祐希',中山雄介',中村駿佑',永友航太郎',小林一博',久保田弘',橋新剛',吉岡昌雄'	1.熊大院自, 2.熊大工
14:30		休憩/Break	Proper 1994) Heaville Ed.) Li led Ed. (SE	
14:45	10p-W934-5	Scalability Study on Ferroelectric-HfO ₂ Tunnel Junction Memory	○莫 非 ¹, 多川 友作 ¹, 更屋 拓哉 ¹, 平本 俊郎 ¹, 小林 正 治 ¹	1. 東大 生研
15:00	10p-W934-6	有限バイアス下における層間トンネル過程の非平衡グ リーン関数解析	\bigcirc (M1) 三島 嵩也 1 , 田中 $-^1$, 橋本 風渡 1 , 森 伸也 1	1. 阪大工
15:15	·	境界条件変調による領域分割デバイス・シミュレーショ ン	〇松澤 一也 1 , 阿部 真利 1 , 小田 嘉則 1 , 田中 貴久 $^{1.2}$, 内田 建 $^{1.2}$	
15:30 15:45		PN-Body Tied SOIFET の重イオン照射誘起電流 TID影響下における MOSFET の動的特性劣化モデルの	○古川 遼太¹, 呉 研¹, 高橋 芳浩¹ ○大島 佑太¹, 安藤 幹¹, 平川 顕二¹, 岩瀬 正幸¹, 小笠	1. 日大理工 1. 東工大
16:00	10p-W934-10	開発 1次元ナノ構造における熱輸送に電子ドラッグ効果が及	原 宗博¹, 依田 孝¹, 石原 昇¹, 伊藤 浩之¹ ○(M2C) 梶原 祐磨¹, 森 伸也¹	1. 阪大院工
16:15	10p-W934-11	ぼす影響の解析 有限長シリコン量子細線における弾道的フォノン熱輸送	○服部 淳一¹	1. 産総研
16:30	*	に与えるひずみの影響 クリーンルームの動的シミュレーションとバーチャルメ		
10:30	10p-w 934-12	クリーンルームの動的ンミュレーションとハーチャルメトロロジーによる温度制御	○中委 春頁,熊谷 柏布,阿部 成海,岩村 机,久保 田 弘¹,橋新 剛¹,吉岡 昌雄²	1. 照八灰日,4. 照八上

3/11(ポスター講演 (Poster Presentation) PB会場 (Room PB)		
	11a-PB1-1	Si量子ドット多重連結構造からの電界電子放出特性 - 積 層数依存性	○ 竹本 竜也¹, 二村 湧斗¹, 牧原 克典¹, 大田 晃生¹, 池 田 弥央¹, 宮崎 誠一¹	1.名大院工
	11a-PB1-2	分光エリプソメトリーによる結晶Si/ペロブスカイト系タンデム素子の評価		1.埼玉大理工研
	11a-PB1-3	酸化グラフェンアシストエッチングの反応メカニズム解明	○窪田 航¹, 石塚 隆高¹, 宇都宮 徹¹, 一井 崇¹, 杉村 博 之¹	1. 京大院工
13.2 探	R索的材料物性・基礎	を物性 / Exploratory Materials, Physical Properties, Device		
		ポスター講演 (Poster Presentation) PB 会場 (Room PB) C-V法による n型 Mg2Si 結晶のキャリア濃度測定	○(B)宮内 壮流¹,新岡 大介¹,高橋 史也¹,鵜殿 治	1. 茨城大学 , 2.NIMS
	10a-PB2-2	その場熱処理によるMg ₂ Si結晶のキャリア濃度の低減	彦¹,渡辺 英一郎²,津谷 大樹² ○郷州 桂伍¹,石川 巧真¹,布施 雄太郎¹,鱒渕 稜平¹, 矢口 楓子¹,鵜殿 治彦¹	1. 茨城大
	10a-PB2-3	ウエットエッチングによるMg ₂ Si結晶欠陥の観察	○鱒渕 稜平¹, 布施 雄太郎¹, 鵜殿 治彦¹	1. 茨城大工
	10a-PB2-4 10a-PB2-5	Si基板上CaSi ₂ 薄膜のフッ化処理 カルシウムシリサイドのHF処理によるCaF ₂ ナノ粒子の		
	10a-PB2-6	作製 CaSi ₂ のMgCl ₂ /Mg処理によるMg ₂ Si/Siナノコンポジットの作製	亜磊³, 立岡浩一², 高橋尚久⁴ ○(M1C)沼澤 有信¹, 翁明煒², 伊藤 聖悟², 渥美 七虹¹, 小野 祥希², 黄 亜磊³, 立岡浩一¹, 高橋尚久⁴	機先進材料研 1.静岡大院工, 2.静岡工, 3.静岡大院創造, 4.ヤマハ発 機先進材料研
	10a-PB2-7	CaSi ₂ のMnCl ₂ /NH ₄ Cl処理によるSiナノワイヤ/ナノ シート複合体の作製		1.静岡工, 2.静岡大院工, 3.静岡大院創造, 4.ヤマハ発機先進材料研
	10a-PB2-8	BaSi ₂ テンプレート作製法がp-BaSi ₂ /n-Siヘテロ接合太陽 電池特性に与える影響		1.筑波大
	10a-PB2-9		○木村 裕希¹, 藤原 道信¹, 中川 慶彦¹, 後藤 和泰¹, 黒 川 康良¹, 宇佐美 徳隆¹	1. 名大院工
	E 10a-PB2-10	Study of the origin of defect levels in undoped-BaSi2 epitaxial films by PL measurement	OLouise Benincasa ^{1, 2} , Hirofumi Hoshida ³ , Tianguo Deng ¹ , Takuma Sato ^{1, 2} , Kaoru Toko ¹ , Yoshikazu Terai ³ , Takashi Suemasu ¹	1.Univ. Tsukuba, 2.Univ. Grenoble Aples, 3.Kyushu In: Tech.
	10a-PB2-11	Sb添加 β -FeSi $_2$ エピタキシャル膜におけるドナー活性化条件の最適化 (II)	\bigcirc (M2) 江口 元 ¹ , 阿部 光希 ¹ , 木下 涼太 ¹ , 村上 智樹 ¹ , 寺井 慶和 ¹	1. 九工大情報工
		Si/B添加 β -FeSi₂/Si 積層構造における 1.5 μ m 発光の活性層厚依存性		1.九工大情報工
		SiCにおける時間分解PTD信号測定の励起光強度依存性	貴典1,藤原健志1,鄭涛1,小西智也1,釜野勝1	
		II型SiGeクラスレートの合成と構造評価	隆 1.2, ○久米 徹二 1.2	1. 岐阜大工, 2. 岐阜大院自然研
			○平石 雅俊¹,小嶋 健児²,岡部 博孝¹,幸田 章宏¹.³, 門野 良典¹.³,小林 裕樹⁴,宮川 宣明⁴	1.KEK 物構研, 2.TRIUMF, 3. 総研大, 4. 東理大理
		金属溶媒を利用した第二族元素含有三元リン化物半導体の開拓	島 [™]	
		PA-MBE法によるGaN/GdN超格子構造形成とその磁気 光学的特性評価 (その1) - GdN井戸層成長方式の検討 -		1. 阪大産研
- / /-		バッファー層を用いたSi基板上への高品位鉄酸化物薄膜の作製	○山中 健太 ^{1,2} , 高野 健吾 ^{1,2} , 山口 憲司 ²	1. 茨城大, 2. 量研機構
3/11(F 13:15		口頭講演 (Oral Presentation) W834 会場 (Room W834) Mg ₂ Siフォトダイオードの分光感度の接合深さ依存性	○鵜殿 治彦¹, 鬼沢 雄馬¹, 中野 達也¹	1. 茨城大
13:30		非金属元素の侵入型ドーピングによる Mg ₂ Si のバンド構造変化		1. 産総研, 2. 岡山理科大
13:45	11p-W834-3	Mg ₂ Si(111)//Si(111) 高配向膜における光変調反射率スペクトルの評価	○星田 裕文¹, S. Alexander², I. Chernev², N.G. Galkin², 寺井 慶和¹	1. 九工大情報工, 2. FEBRAS
14:00	11p-W834-4	非破壊電気コンタクトプローブの内部光電効果測定への 適用	○吉武 道子¹, シュリダール ディーパック¹, 柳生 進 二郎¹	1.物材機構
14:15 14:30	11p-W834-5	休憩/Break 近接蒸着によるBaSi₂薄膜作製	○原 康祐¹, 瀧澤 周平¹, 有元 圭介¹, 山中 淳二¹, 中川	1.山梨大
14:45	11p-W834-6	スパッタリング法によるBaSi ₂ の二段階成長と特性評価	清和 ¹ ○根本 泰良 ¹ , 松野 賢司 ¹ , 召田 雅実 ² , 倉持 豪人 ² , 都	1. 筑波大, 2. 東ソー
15:00	奨 11p-W834-7	三段階成長法によるBaSi₂光吸収層の高品位エピタキ	甲薫¹,末益崇¹ ○山下雄大¹,佐藤拓磨¹,都甲薫¹,末益崇¹	1. 筑波大
15:15	11p-W834-8	シャル成長 Ba/Si 堆積レート比が B-doped BaSi₂ 膜の少数キャリア寿 命に与える影響	○杉山周¹, 木村 裕希², 山下 雄大¹, 都甲 薫¹, 宇佐美 徳隆², 末益崇¹	1. 筑波大, 2. 名古屋大
15:30	11p-W834-9	MBE法によるAs-doped BaSi₂膜の作製と評価	○青貫翔¹,山下雄大¹,都甲薫¹,末益崇¹	1.筑波大
15:45 16:00	奨 11p-W834-10	休憩/Break 新規p型無機半導体の開発およびフレキシブル素子への	○青山 皓太¹, 全 泰桓¹, 金 正煥¹, 細野 秀雄¹	1. 東工大元素戦略研
16:15	奨 E 11p-W834-11	応用 Synthesis & Characterization of Ge-based Low Dimensional Material from Zintl Phase Compound,	○ (M2)Vimal Saxena¹, Hirokazu Tatsuoka¹, Yasuhiro Hayakawa², Naohisa Takahashi³	1.GSIST Shizuoka Univ., 2.RIE Shizuoka Univ., 3. Yamaha Ad. Ma. Re. G
16:30 16:45		CaGe ₂ Zintl相太陽電池材料BaSi ₂ の電子構造 Si基板上に形成した擬ギャップ ε -CoSi薄膜の熱電性能	 ○今井 基晴¹ ○雑川 貴弘¹, 坂根 駿也¹, 石部 貴史¹, 藤田 武志².³, 	1. 物材機構 1. 阪大院基礎工, 2. CREST-JST, 3. 高知工科大
16:45 17:00		S1基板上に形成した擬キャッフε -CoS1薄膜の熱電性能 評価 Synthesis of Si-based Nanosheet Bundles using Metal	○離川 賃弘', 坂根 駭也', 石部 賁史', 滕田 武志", 中村 芳明 ^{1,2} ○(D)Yalei Huang ¹ , Vimal Saxena ² , Kaito Tanaka ³ ,	1. 阪大阮基皧工, 2. CRES1-JS1, 3. 局知工科大 1.GSST Shizuoka Univ., 2.GSIST Shizuoka Univ., 3.D ₁
17:15	2 11p 11001114	Chlorides in Solutions 休憩/Break	Yasuhiro Hayakawa ⁴ , Hirokazu Tatsuoka ² , Naohisa Takahashi ⁵	Eng. Shiz. Uni., 4.RIE Shizuoka Univ., 5.Yamaha Ad. Ma. Re. G
17:15	11p-W834-15	外思/ β reSi $_2$ 膜中の空孔型欠陥評価	○薮内 敦¹, 唐津 拓弥¹, 木野村 淳¹, 前川 雅樹², 河裾 厚男²	1. 京大複合研, 2. 量研機構
17:45 18:00		アモルファス Si/β -FeSi₂複合薄膜の電気伝導機構 Significant photoresponsivity enhancement of BaSi2	○ (M1) 齊藤 佑太¹, 勝俣 裕¹ ○ (D)Zhihao Xu¹, Tianguo Deng¹, Kaoru Toko¹,	1.明大理工 1.Univ. Tsukuba, 2.Belarusian State Univ.
18:15	11p-W834-18	epitaxial films by atomic hydrogen passivation 電子スピン常磁性共鳴によるバルクおよび薄膜BaSi ₂ 内	Dmitri Migas², Takashi Suemasu¹ ○佐藤 拓磨¹.², Gambarelli Serge², Barra Anne-	1. 筑波大, 2.UGA, CEA, CNRS, INAC-SyMMES,
	A線膜技術 / Insulato		Laure ³ , 末益 崇 ¹	3.LNCMI-CNRS
2/11/		ポスター講演 (Poster Presentation) PB 会場 (Room PB) SiO ₂ , Si ₄ N ₄ 膜へのH ₂ O分子の透過障壁の生成要因	○奥 友希¹, 戸塚 正裕¹, 佐々木 肇¹	1.三菱電機
5/11(11a-PB2-1			1. 二変电機

	11a-PB2-3	酸素欠損のある SiO_2 の動特性に関する圧力効果と温度効		1. 鳥根大院, 2. 名古屋大, 3. 東北大, 4.JST-ACCEL
	11a-PB2-4	果の検討 NH ₃ ガスを用いた酸化Si膜残留OH成分除去量の低温ア	之 ^{1,4} ○堀田 將 ¹	1.北陸先端大
	11a-PB2-5	ニール条件依存性 ハフニウムを添加したシリコン窒化膜の窒素原子空孔の	○(M2)新里 健也¹, 小林 清輝¹	1.東海大院工
	11a-PB2-6	欠陥準位 トンネル電流解析によるMONOS型不揮発性メモリの捕	○美濃 暢¹, 小林 清輝¹	1. 東海大院工
	11a-PB2-7	獲正孔密度の決定 準安定原子誘起電子分光法による O/Cs/SiC(3 × 3) 表面	○(B)田中 晶貴¹,飯田 涼¹,柏谷 拓実¹,渡邉 拓斗¹,	1. 宇部高専, 2. 九大院工, 3. 九工大院工
	奨 11a-PB2-8	の電子状態測定 Si基板上SiO ₂ 絶縁膜の角度分解XPSを用いた深さ分解膜	平山 楓 ² , 田中 悟 ² , 内藤 正路 ³ , 碇 智徳 ¹ ○ (M1) 長谷川 菜 ¹ , 武田 さくら ¹ , 吉栄 佑哉 ¹ , 上沼	1. 奈良先端大
	11a-PB2-9	質評価 HfO ₂ -ZrO ₂ 系薄膜における反強誘電性の発現過程につい	睦典¹, 石河 泰明¹, 浦岡 行治¹, 大門 寬¹	1. 名大院工, 2. 名大未来研, 3. 名大未来社会創造機構
		て AlONゲート絶縁膜へのHf添加によるホールリーク抑制		
2/11/1		の物理的起源 口頭講演 (Oral Presentation) M136会場 (Room M136)	治3, 渡部平司3, 押山淳2, 白石賢二1,2	T. I. A. C. L. A. C.
13:15		同在キャリアのデトラップの温度依存性に関する考察	〇宝玉 $\hat{\mathbf{n}}^1$, 泉田 貴士 1 , 谷本 弘吉 1 , 青木 伸俊 1 , 尾上 誠司 1	1.東芝メモリ
13:30		High quality silicon dioxide by low temperature neutral beam enhanced atomic layer deposition	○ HuaHsuan Chen¹, Daisuke Ohori¹, Takuya Ozaki¹, Mitsuya Utsuno², Tomohiro Kubota², Toshihisa Nozawa², Seiji Samukawa¹.³	1.IFS, Tohoku Univ., 2.ASM Japan K.K., 3.AIMR, Tohoku Univ.
13:45	11p-M136-3	Charge trapping characteristics in ${\rm SiO_2}$ during application of electric stress at high temperature	○ (M2)Takeshi Nanke¹, Ryu Hasunuma¹	1.Univ. of Tuskuba
14:00 14:15		Siビラー酸化におけるSiミッシングに関する理論検討II シリコン同位体ナノビラー構造中における酸化増速自己		1. 島根大, 2. 名古屋大, 3. 東北大, 4.JST ACCEL
	11p-W130-5	拡散のアトムプローブ観測	井康介²,遠藤哲郎³.⁴,伊藤公平¹	1.废入生工, 2. 宋礼入玉妍, 3. 宋礼入CIE3, 4.JS1-ACCEL
14:30 14:45	11p-M136-6	休憩/Break Si/SiO_2 界面解析に向けたニューラルネットワークポテン	○又賀 誠¹, 名倉 拓哉¹, 洗平 昌晃¹.², 白石 賢二¹.²	1.名大院工, 2.名大未来研
15:00	奨 11p-M136-7	シャルの応用 High-kゲートスタック界面準位密度のフラッシュランプ		
15:15	奨 E 11p-M136-8	アニール温度依存評価 Impact of metal gate electrodes on electrical properties of	-	リューションズ 1.Univ. of Tokyo
15:30	奨 11p-M136-9	$Y_2O_3/Si_{0.78}Ge_{0.22}$ gate stacks 温度変動に伴う酸化膜キャパシタの蓄積電荷量の変動に対する界面ダイポール層の温度依存性の寄与の検証	Takagi¹ ○濱口 高志¹, 喜多 浩之¹	1. 東大院工
15:45 16:00	11p-M136-10	休憩/Break GeO ₂ /Ge 界面における GeO 脱離の調査	○渡邉 龍一郎¹, 豊田 健一郎¹, 和知 祥太郎¹, 岩崎 好	1.東京農工大学院
16:15	E 11p-M136-11	Crystallization of GeO ₂ on Ge is really triggered by GeO	孝¹, 上野 智雄¹ ○ Min Xie¹, Tomonori Nishimura¹, Takeaki Yajima¹,	1.Univ. Tokyo
16:30	11p-M136-12	desorption? Germanium の高圧酸素熱酸化機構と形成された ${\rm GeO_2}$ 膜	Akira Toriumi¹ 王 旭¹, 西村 知紀¹, ○鳥海 明¹	1.東大院工
16:45 17:00		の性質 CVD 法を用いた GeO_2/Ge 構造の作製と評価 Kr/O_2 プラズマ酸化法を用いた HfO_2/Ge 直接接合構造の		1. 農工大学院工 1. 東京農工大工
		作製 13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコ-	-ドシェアセッション / Code-sharing Session of 6.1 a	& 13.3 & 13.5
3/10(S 13:45		口頭講演 (Oral Presentation) W631 会場 (Room W631) HfO_2 基強誘電体スパッタ薄膜の成長時の酸素分圧が結晶	○高田 賢志¹, 佐保 勇樹¹, 桐谷 乃輔¹, 吉村 武¹, 芦田	1. 阪府大工
14:00	10p-W631-2	成長・結晶構造に与える影響 HfO ₂ 系強誘電体スパッタ薄膜の成長時の酸素分圧が結晶 構造・電気特性におよぼす影響	淳¹,藤村紀文¹ ○佐保勇樹¹,高田賢志¹,桐谷乃輔¹,吉村武¹,芦田 淳¹,藤村紀文¹	1. 阪府大工
14:15		悟旭 · 电X内 圧におよは y 形音	○ MinGee Kim¹, Masakazu Kataoka¹, Rengie Mark	1 T 1 T 1
	E 10p-W631-3	The influence of sputtering condition for ferroelectric HfO ₂ directly deposited on Si(100) by RF magnetron	D. Mailig ¹ , Shun-ichiro Ohmi ¹	1.10kyo 1ecn.
14:30	·		D. Mailig¹, Shun-ichiro Ohmi¹ ○森 優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海	,
14:45	10p-W631-4 10p-W631-5	HfO ₂ directly deposited on Si(100) by RF magnetron sputtering HfO ₂ 薄膜の強誘電相形成におけるドーバントの役割 酸化熱処理によるHfO ₂ 強誘電相消失のメカニズム	D. Mailig¹, Shun-ichiro Ohmi¹ ○森 優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森 優樹¹, 西村 知紀¹, 鳥海 明¹	1. 東大院工, 2. 産総研
14:45 15:00	10p-W631-4 10p-W631-5	${ m HfO_2}$ directly deposited on ${ m Si}(100)$ by RF magnetron sputtering ${ m HfO_2}$ 薄膜の強誘電相形成におけるドーバントの役割	D. Mailig¹, Shun-ichiro Ohmi¹ $\bigcirc 森 \ $	1. 東大院工, 2. 産総研
14:45 15:00 15:15	10p-W631-4 10p-W631-5 10p-W631-6	HfO_2 directly deposited on $Si(100)$ by RF magnetron sputtering HfO_2 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理による HfO_2 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO_2 の安定性:第一原理計算による検討	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森 優樹¹, 西村 知紀¹, 鳥海 明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口 まりな¹, 藤井 章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹	 東大院工, 2. 産総研 東大マテ 千葉大理, 2. 名大未来研 1. 東芝メモリ
14:45 15:00 15:15	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7	HfO_2 directly deposited on $Si(100)$ by RF magnetron sputtering HfO_2 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理による HfO_2 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO_2 の安定性:第一原理計算による検討 休憩 $Break$ 「講演奨励賞受賞記念講演」 HfO_2 強誘電体トンネル接合メモリのサイクル不良メカニ	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森 優樹¹, 西村 知紀¹, 鳥海 明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口 まりな¹, 藤井 章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹,	 東大院工, 2. 産総研 東大マテ 千葉大理, 2. 名大未来研 1. 東芝メモリ
14:45 15:00 15:15 15:30	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7	HfO_2 directly deposited on $Si(100)$ by RF magnetron sputtering HfO_2 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理による HfO_2 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO_2 の安定性:第一原理計算による検討 休憩/Break 「請演奨励賞受賞記念講演」 HfO_2 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C低温形成した $Hf_*Zr_{1-x}O_2$ 薄膜の強誘電性 反強誘電体 ZrO_2 を有する MIS 構造のユニボーラスイッ	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山隆史¹ ○山口まりな¹, 藤井章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋崇¹,²≥³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正	 東大院工, 2. 産総研 東大マテ 千葉大理, 2. 名大未来研 東芝メモリ 明大, 2. 物材機構, 3. 学振特別研究員 DC
14:45 15:00 15:15 15:30 15:45	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9	HfO_2 directly deposited on $Si(100)$ by RF magnetron sputtering HfO_2 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理による HfO_2 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO_2 の安定性:第一原理計算による検討 体憩/Break 「講演奨励賞受賞記念講演」 HfO_2 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C 低温形成した $Hf_2Zr_{1-x}O_2$ 薄膜の強誘電性 反強誘電体 ZrO_2 を有する MIS 構造のユニボーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スロープ	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口 まりな¹, 藤井章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋崇¹,²,², 生田目 俊秀², 澤本 直美¹, 大井 暁彦²,池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹	 東大院工, 2. 産総研 東大マテ 千葉大理, 2. 名大未来研 東芝メモリ 明大, 2. 物材機構, 3. 学振特別研究員 DC
14:45 15:00 15:15 15:30 15:45 16:00	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9	HfO_2 directly deposited on $Si(100)$ by RF magnetron sputtering HfO_2 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理による HfO_2 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO_2 の安定性:第一原理計算による検討 休憩/Break 「講演奨励賞受賞記念講演」 HfO_2 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C 低温形成した $Hf_*Zr_{1-x}O_2$ 薄膜の強誘電性 反強誘電体 ZrO_2 を有する MIS 構造のユニボーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スロープの起源 Polarization Switching as the Cause of Steep Subthreshold	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口まりな¹, 藤井章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋崇¹.²³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2)多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海 明²	 1.東大院工, 2.産総研 1.東大マテ 1.千葉大理, 2.名大未来研 1.東芝メモリ 1.明大, 2.物材機構, 3.学振特別研究員 DC 1.東大生研
15:15 15:30 15:45 16:00	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9 10p-W631-10 奨 E 10p-W631-11	HfO_2 directly deposited on $Si(100)$ by RF magnetron sputtering HfO_2 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理による HfO_2 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO_2 の安定性:第一原理計算による検討 休憩/Break 「講演奨励賞受賞記念講演」 HfO_2 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C低温形成した $Hf_*Zr_{1-*}O_2$ 薄膜の強誘電性 反強誘電体 ZrO_2 を有する MIS 構造のユニボーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スローブの起源	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口まりな¹, 藤井 章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋 崇¹²²³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海 明² ○(D) Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayashi¹	1. 東大院工, 2. 産総研 1. 東大マテ 1. 千葉大理, 2. 名大未来研 1. 東芝メモリ 1. 明大, 2. 物材機構, 3. 学振特別研究員 DC 1. 東大生研 1. 産総研, 2. 東大院工 1.IIS, Univ. of Tokyo
14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 13.4 Si	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9 10p-W631-10 奨 E 10p-W631-11 10p-W631-12	HfO ₂ directly deposited on Si(100) by RF magnetron sputtering HfO ₂ 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理によるHfO ₂ 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO ₂ の安定性:第一原理計算による検討 体憩/Break 「講演奨励賞受賞記念講演」HfO ₂ 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C 低温形成した Hf ₆ Zr _{1-x} O ₂ 薄膜の強誘電性 反強誘電体 ZrO ₂ を有する MIS 構造のユニポーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スロープの起源 Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs TCADによる強誘電体負性容量分極のコヒーレンシーとその時間的発展のシミュレーション 膜・MEMS・装置技術 / Si processing / Si based thin film	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森 優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口まりな¹, 藤井章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋崇¹²²³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海 明² ○(D) Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayashi¹ ○太田 裕之¹, 池上 努¹, 福田 浩一¹, 服部 淳一¹, 浅井 栄大¹, 遠藤 和彦¹, 右田 真司¹, 鳥海 明²	1. 東大院工, 2. 産総研 1. 東大マテ 1. 千葉大理, 2. 名大未来研 1. 東芝メモリ 1. 明大, 2. 物材機構, 3. 学振特別研究員 DC 1. 東大生研 1. 産総研, 2. 東大院工 1.IIS, Univ. of Tokyo
14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 13.4 Si	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9 10p-W631-10 奨 E 10p-W631-11 10p-W631-12	HfO₂ directly deposited on Si(100) by RF magnetron sputtering HfO₂ 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理によるHfO₂ 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO₂ の安定性:第一原理計算による検討 体想/Break 「講演奨励賞受賞記念講演」 HfO₂強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C低温形成したHf₂Zr1-xO₂ 薄膜の強誘電性 反強誘電体 ZrO₂を有する MIS 構造のユニポーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スロープの起源 Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs TCAD による強誘電体負性容量分極のコヒーレンシーとその時間的発展のシミュレーション	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口まりな¹, 藤井 章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋 崇¹, 2-3, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海 明² ○(D) Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayash¹ ○太田 裕之¹, 池上 努¹, 福田 浩一¹, 服部 淳一¹, 浅井栄大¹, 遠藤 和彦¹, 右田 真司¹, 鳥海 明² / MEMS / Equipment technology ○田中 宏幸¹², 水木曽 久人¹², 中野 禅¹², 野沢 善幸²³, 速水 利泰²³, クンプアン ソマワン¹², 原史	1. 東大院工, 2. 産総研 1. 東大マテ 1. 千葉大理, 2. 名大未来研 1. 東芝メモリ 1. 明大, 2. 物材機構, 3. 学振特別研究員 DC 1. 東大生研 1. 産総研, 2. 東大院工 1.IIS, Univ. of Tokyo
14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 13.4 Si 3/9(:	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9 10p-W631-10 奨E 10p-W631-11 10p-W631-12	HfO₂ directly deposited on Si(100) by RF magnetron sputtering HfO₂ 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理によるHfO₂ 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO₂ の安定性:第一原理計算による検討 休憩/Break 「講演奨励賞受賞記念講演」 HfO₂ 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C 低温形成した Hf,Zr₁-₄O₂ 薄膜の強誘電性 反強誘電体 ZrO₂を有する MIS 構造のユニボーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スロープの起源 Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs TCADによる強誘電体負性容量分極のコヒーレンシーとその時間的発展のシミュレーション 膜・MEMS・装置技術 / Si processing / Si based thin film 口頭講演 (Oral Presentation) M114 会場 (Room M114) 深掘りエッチング時のサイドエッチメカニズムの解析	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山 隆史¹ ○山口まりな¹, 藤井 章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄¹ ○女屋 崇¹²²³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2) 多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海 明² ○(D) Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayash¹ ○太田 裕之¹, 池上 勞¹, 福田 浩一¹, 服部 淳一¹, 浅井 栄大¹, 遠藤 和彦¹, 右田 真司¹, 鳥海 明² ハ MEMS / Equipment technology ○田中 宏幸¹², 小木曽 久人¹², 中野 禪¹², 野沢 善幸²³, 速水 利秦²³, クンプアン ソマワン¹², 原 史朗¹² ○佐藤 和重¹³, 千葉 貴史¹³, 寺田 昌男¹³, 池田 伸	1.東大院工, 2.産総研 1.東大マテ 1.千葉大理, 2.名大未来研 1.東芝メモリ 1.明大, 2.物材機構, 3.学振特別研究員 DC 1.東大生研 1.産総研, 2.東大院工 1.IIS, Univ. of Tokyo 1.産総研, 2.東大
14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 16:45 13.4 Si 3/9(; 9:00	10p-W631-4 10p-W631-5 10p-W631-5 10p-W631-7 10p-W631-7 10p-W631-9 10p-W631-10 奨E 10p-W631-11 10p-W631-12 系プロセス・Si系薄 Sat.) 9:00 - 12:00 9a-M114-1	HfO₂ directly deposited on Si(100) by RF magnetron sputtering HfO₂ 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理によるHfO₂ 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO₂ の安定性:第一原理計算による検討 休憩/Break 「講演奨励賞受賞記念講演」 HfO₂ 強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C 低温形成した Hf₂Zr₁-₂O₂ 薄膜の強誘電性 反強誘電体 ZrO₂を有する MIS 構造のユニポーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スローブの起源 Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs TCAD による強誘電体負性容量分極のコヒーレンシーとその時間的発展のシミュレーション 膜・MEMS・装置技術 / Si processing / Si based thin filn 口頭講演 (Oral Presentation) M114 会場 (Room M114) 深楣りエッチング時のサイドエッチメカニズムの解析	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○矢嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山隆史¹ ○山口まりな¹, 藤井章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 夏澄¹ ○女屋崇¹,²³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2)多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海明² ○(D) Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayashi¹ ○太田 裕之¹, 池上 努¹, 福田 浩一¹, 服部 淳一¹, 浅井 朱大¹, 遠藤 和彦¹, 右田 真司¹, 鳥海 明² 1/ MEMS / Equipment technology ○田 宏幸¹², 小木曽 久人¹², 中野 禪¹², 野沢 善幸²³, 速水 利泰²³, クンプアン ソマワン¹², 原 史朗¹² ○佐藤 和重¹³, 千葉 貴史¹³, 寺田 昌男¹³, 池田 伸一¹², クンプアン ソマワン¹², 原 史朗¹² ○野田 周一¹, 古賀 和博², 根本一正¹, 数田 勇気³, 山本 直子³, 亀井 龍一郎³, クンプアン ソマワン¹², 原	 東大院工, 2.産総研 東大マテ 千葉大理, 2.名大未来研 東芝メモリ 明大, 2.物材機構, 3.学振特別研究員 DC 東大生研 産総研, 2.東大院工 I.IIS, Univ. of Tokyo 1.産総研, 2.東大 1.産総研, 2.東大
14:45 15:00 115:15 15:30 115:45 16:00 16:15 16:30 16:45 3/9(: 9:00	10p-W631-4 10p-W631-5 10p-W631-6 招 10p-W631-7 10p-W631-8 奨 10p-W631-9 10p-W631-10 奨E 10p-W631-11 10p-W631-12 系プロセス・Si系薄 Sat.) 9:00 - 12:00 9a-M114-1	HfO₂ directly deposited on Si(100) by RF magnetron sputtering HfO₂ 薄膜の強誘電相形成におけるドーパントの役割 酸化熱処理によるHfO₂強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶 HfO₂の安定性:第一原理計算による検討 体想/Break 「講演奨励賞受賞記念講演」 HfO₂強誘電体トンネル接合メモリのサイクル不良メカニズムの解明 300° C 低温形成した Hf,Zr₁-,O₂薄膜の強誘電性 反強誘電体 ZrO₂を有する MIS 構造のユニポーラスイッチング特性 強誘電体トランジスタにおいて観察される急峻スロープの起源 Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs TCADによる強誘電体負性容量分極のコヒーレンシーとその時間的発展のシミュレーション 酸・MEMS・装置技術 / Si processing / Si based thin film 口頭講演 (Oral Presentation) M114 会場 (Room M114) 深掘りエッチング時のサイドエッチメカニズムの解析	D. Mailig¹, Shun-ichiro Ohmi¹ ○森優樹¹, 西村 知紀¹, 矢嶋 赳彬¹, 右田 真司², 鳥海明¹ ○午嶋 赳彬¹, 森優樹¹, 西村 知紀¹, 鳥海明¹ ○白石 悠人¹, 長澤 立樹¹, 洗平 昌晃², 白石 賢二², 中山隆史¹ ○山口まりな¹, 藤井 章輔¹, 株柳 翔一¹, 上牟田 雄一¹, 井野 恒洋¹, 中崎 靖¹, 高石 理一郎¹, 市原 玲華¹, 齋藤 真澄² ○女屋崇¹, ²³, 生田目 俊秀², 澤本 直美¹, 大井 暁彦², 池田 直樹², 長田 貴弘², 小椋 厚志¹ ○(M2)多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正治¹ ○右田 真司¹, 太田 裕之¹, 鳥海 明² ○(D) Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayashi¹ ○太田 裕之¹, 池上 努¹, 福田 浩一¹, 服部 淳一¹, 浅井栄大¹, 遠藤 和彦¹, 右田 真司¹, 鳥海 明² 1/ MEMS / Equipment technology ○田中 宏幸¹², 小木曽 久人¹², 中野 禅¹², 野沢 善幸²³, 速水 利泰²³, クンプアン ソマワン¹², 原 史朗¹² ○佐藤 和重¹³, 千葉 貴史¹³, 寺田 昌男¹³, 池田 伸一¹², クンプアン ソマワン¹², 原 史朗¹² ○野田 周一¹, 古賀 和博², 根本 一正¹, 薮田 勇気³, 山本 直子³, 亀井 龍一郎³, クンプアン ソマワン¹², 原 史朗¹²	 東大マテ 千葉大理, 2.名大未来研 東芝メモリ 明大, 2.物材機構, 3.学振特別研究員 DC 東大生研 企総研, 2.東大院工 I.IIS, Univ. of Tokyo 企総研, 2.東大 主産総研, 2. 東大 主産総研, 2. 東大 正産総研, 2. 東大 正産総研, 2. ミニマルファブ推進機構, 3.SPPテクノロジーズ 1. ミニマルファブ推進機構, 2.産総研, 3. 坂口電熱 1. 産総研, 2. ミニマルファブ推進機構, 3. 誠南工業(株)

10:00	9a-M114-5	ミニマルファブで作成したコンタクト抵抗のばらつき評価	○加瀬 雅¹, 佐藤 和重²³, クンプアン ソマワン¹², 原 史朗¹²	1. 産業技術総合研究所, 2. ミニマルファブ推進機構, 3. 坂口電熱株式会社
10:15	9a-M114-6	ハーフインチサイズパッケージでの電気的に安定したビ アコンタクト抵抗の形成	24.74	
10:30	9a-M114-7	ミニマルファブのゲートファーストブロセスで作製した PVD-TiNメタルゲート SOI-MOSFET 電気特性のRTA 依存性		1. 産総研, 2. ミニマルファブ
10:45	9a-M114-8	ドロ ミニマルファブを用いた TiN ゲート SOI CMOS の電気的 特性のばらつき評価		1. ミニマルファブ推進機構, 2. 産総研
11:00	9a-M114-9	ダイヤモンドウェハのミニマルファブへの応用	○根本 一正 ¹ , 田中 宏幸 ¹ , 野田 周一 ¹ , 三浦 典子 ² , クンプアン ソマワン ^{1,2} , 原 史朗 ^{1,2}	1.産総研, 2. ミニマルファブ
11:15	9a-M114-10	水晶振動子によるシリコンミニマルCVD装置内化学種 輸送状態観察	高橋 俊範 1 , 室井 光子 1 , ○羽深 等 1 , 池田 伸一 2,3 , 石 田 夕起 2,3 , 原 史朗 2,3	1. 横国大院工, 2. ミニマルファブ推機, 3. 産総研
11:30	9a-M114-11	ウエハ洗浄における超純水使用量最適化に関する検討	○影山 智明 ^{1,3} , 根本 一正 ² , クンプワン ソマワン ^{2,3} , 原 史朗 ^{2,3} , 李 相錫 ¹	1.鳥取大学, 2. ミニマルファブ推進機構, 3.産総研
11:45	9a-M114-12	局所クリーン化ミニマル環境コントロールシステム -PLAD (Ⅲ)	〇谷島 孝 $^{1.2}$, 三浦 典子 1 , 安井 政治 $^{1.2}$, クンプアン ソマワン $^{1.2}$, 前川 仁 $^{1.2}$, 原 史朗 $^{1.2}$	1. ミニマルファブ技術研究組合, 2. 産総研
3/9(13:15		口頭講演 (Oral Presentation) M114会場 (Room M114) バルク Si 基板へのホット C ⁺ イオン注入法による SiCナノ	〇山本 将輝 1 , 青木 孝 1 , 鮫島 俊之 2 , 水野 智久 1	1.神奈川大理, 2.東京農工大工
13:30	9p-M114-2	ドット形成 (IV): 面方位依存性 多結晶 Si とアモルファス Si 基板へのホット C ⁺ イオン注 入法による SiCナノドットの形成 (II)	○金澤 力斗 ¹, 青木 孝 ¹, 鮫島 俊之 ², 水野 智久 ¹	1. 神奈川大学理, 2. 東京農工大工
13:45	9p-M114-3	:C+ドーズ依存性 高出力サブミリ秒加熱のFLA装置による浅く高活性な接 合の形成	上田 晃頌 1 , 〇谷村 英昭 1 , 河原崎 \mathcal{H}^1 , 山田 隆泰 1 , 布施 和彦 1 , 青山 敬幸 1 , 加藤 慎一 1 . 野崎 仁秀 1	1.SCREENセミコンダクターソリューションズ
14:00	9p-M114-4	FLAと Sol-Gel膜を用いた高濃度不純物導入技術	○谷村 英昭¹, 布施 和彦¹, 青山 敬幸¹, 加藤 慎一¹, 野崎 仁秀¹	1.SCREENセミコンダクターソリューションズ
14:15	9p-M114-5	高調波 ∂ C/ ∂ z-SNDM信号を用いた半導体キャリア分布観察		1. 東北大通研
14:30		高誘電率絶縁膜を用いた $Cu ext{-MIC}$ 4端子 $poly ext{-}Ge_xSn_1$. $_xTFT$ の開発	○宮崎 僚¹, 内海 大樹¹, 原 明人¹	1. 東北学院大工
14:45	Ŷ.	中空構造SOI層を用いた高効率低温転写技術における転 写時間の短縮化		1. 広大院先端研
15:00	Î	プラスチック上のフローティングゲートメモリ作製のた めの低温プロセス技術に関する研究		1. 広大院先端研
15:15 15:30		PDの過渡応答を利用したフィルタレス分光方法 ラマン分光法を用いたプラズマCVD堆積SiNおよびa-C	○渡邉 信太¹, 野田 俊彦², 澤田 和明², 秋山 正弘¹ ○小原田 賢聖¹, 横川 凌¹.², 小椋 厚志¹	1. 長野工業高等専門学校, 2. 豊橋技術科学大学 1. 明治大理工, 2. 学振特別研究員 DC
3/10 9:00		膜の応力評価 口頭講演 (Oral Presentation) M114会場 (Room M114) 固相成長した高移動度 Ge薄膜の TFT 動作実証	〇今城 利文 1 , 茂藤 健太 1 , 山本 圭介 2 , 末益 崇 1 , 中島	1. 筑波大院 数理物質, 2. 九大院 総合理工, 3. 九大 GIC
9:15	10a-M114-2	高品質 n 型多結晶 Ge 膜の合成に向けた Sb 添加固相成長		1. 筑波大院 数理物質
9:30	奨 10a-M114-3	スピンコートによって形成したPI上のダブルゲート	益 崇¹, 都甲 薫¹ ○(M2) 內海 大樹¹, 原 明人¹	1.東北学院大工
9:45	10a-M114-4	Cu-MIC poly-Ge TFT 短時間照射 FLA による Poly-Si の高活性化技術	○繁桝 翔伍¹, 谷村 英昭¹, 布施 和彦¹, 青山 敬幸¹, 加	1.SCREENセミコンダクターソリューションズ
10:00	奨 10a-M114-5	レーザーアニール法を用いた低温多結晶Si薄膜の突起制	藤 慎一¹, 野崎 仁秀¹ ○(B) 濱野 史暢¹, 妹川 要¹.², 中村 大輔¹, 池上 浩¹²	1. 九大, 2. 九大ギガフォトン共同研究部門
10:15	10a-M114-6	御 一括 ELA によるパネル上 a-Si 薄膜の結晶化	○野口隆 ¹ , 中面 僚介 ¹ , 伊敷 優哉 ¹ , 岡田 竜弥 ¹ , ヒュ エット カリム ²	1.琉球大学工学部, 2.スクリーンセミコンダクタソリューション
10:30		休憩/Break		
10:45		局所レーザーアニールによる低温多結晶 Si 薄膜の結晶形状制御	池上 浩 1,2	
11:00		CWレーザー結晶化 Si 薄膜における変形双晶の Schmid 因子計算		1.Sasaki Consulting, 2. 奈良先端大
11:15		大気圧熱ブラズマジェット照射中の溶融シリコン内温度 分布解析		1.広大院先端研
11:30 11:45		スパッタ Si薄膜の μCLBS 法による単結晶帯形成 μCLBA 誘起 Si ストライプを用いた n型 TFT の作製	○小柳 樹¹, 白川 俊樹¹, 平末 充紀¹, 葉 文昌¹○平末 充紀¹, 葉 文昌¹	1. 島根大総合理工 1. 島根大
		口頭講演 (Oral Presentation) W934会場 (Room W934)	○(M1) 紀辛 阪l → 如 知 Ll 土地 + Ll エロ … Ll	1 True o Mirror in the court of the court
9:00	奨 11a-W934-1	積層メタル技術によるビラー型容量検出電極の検討	○(M1)渥美 賢¹, 乙部 翔太¹, 古賀 達也¹, 市川 崇志¹, 山根 大輔¹, 飯田 慎一², 伊藤 浩之¹, 石原 昇¹, 曽根 正 人¹, 町田 克之¹, 益一哉¹	1. 東工大, 2.NTTアドバンステクノロジ株式会社
9:15	奨 11a-W934-2	3軸Au錘MEMS加速度センサにおける平行平板型電極の 検討		1. 東工大, 2.NTT-AT
9:30	奨 11a-W934-3	Ti/Au 微小カンチレバーの温度依存性への積層構造の影響	○渡邊 瞳¹, 鈴木 拓真¹, Chen Chun-Yi¹, Chang Tso-Fu Mark¹, 山根 大輔¹, 小西 敏文², 町田 克之¹, 伊藤 浩之¹, 益 一哉¹, 曽根 正人¹	1. 東工大, 2.NTT AT
9:45 10:00		単結晶シリコン薄膜のフレキシブル基板上への繰り返し	○浜中恵一¹, 垣内弘章¹, 安武潔¹, 大参宏昌¹	1. 阪大院工 1. 広大院先端研
10:15	11a-W934-6	転写プロセスの構築 波長選択赤外光源のための表面プラズモン励起用格子	矢作 秀賀¹,熊谷 慎也²,桝野 雄矢³,石居 真³,○佐々木実¹	1. 豊田工大, 2. 名城大, 3. 矢崎総業
10:30 10:45		Silicide/Si界面における弱いFermi-level Pinningの起源 Snイオン注入によるGe基板中のPプロファイル制御	不 天: ○西村 知紀¹, 羅 璇¹, 矢嶋 赳彬¹, 鳥海 明¹ 和田 涼太¹, ○鈴木 良守¹, 永山 勉¹, 黒井 隆¹, 池尻 忠 司¹, 谷村 英昭², 吉山 敬幸², 加藤 慎一²	1. 東大院工 1. 日新イオン機器 , 2. SCREEN セミコンダクターソ リューションズ
11:00	11a-W934-9	金属/Ge界面のショットキーバリアに対する偏析層の効果:第一原理計算による検討		リューションス 1.千葉大理
11:15	奨 11a-W934-10	米・牙一が埋出昇による快刊 Si-IGBT プロセスによる FZ-Si の少数キャリアライフタ イムへの影響評価 -III-	○小林 弘人¹, 横川 凌¹², 木下 晃輔¹, 沼沢 陽一郎¹, 小椋 厚志¹, 西澤 伸一³, 更屋 拓哉⁴, 伊藤 一夫⁴, 高倉 俊彦⁴, 鈴木 慎一⁴, 福井 宗利⁴, 竹內 潔⁴, 平本 俊郎⁴	1. 明治大理工, $2.$ 学振特別研究員, $3.$ 九州大工, $4.$ 東京大工
11:30	E 11a-W934-11	The Schottky barrier height modulation of Pd_2Si/p -Si(100) diodes by dopant segregation process	ि RengieMark Domincel Mailig ¹ , Min Gee Kim ¹ , Shun-ichiro Ohmi ¹	1.Tokyo Institute of Technology

		ポスター講演 (Poster Presentation) PB会場 (Room PB)		. #
	12a-PB3-1	レジオネラ属菌の蛍光強度の励起光強度依存性	〇田中 佐和子¹, 崔 容俊¹, 石田 誠¹, 澤田 和明¹, 石井 仁¹, 町田 克之², 二階堂 靖彦³, 齋藤 光正³, 吉田 眞 一⁴	1. 豊橋技科大, 2. 東工大, 3. 産業医科大学, 4. 福岡聖恵院
	12a-PB3-2	低水素 a-Si 膜の低温成膜	○東 大介¹, 瀬戸口 佳孝¹, 安東 靖典¹	1. 日新電機
	12a-PB3-3	水素ラジカル加熱を用いたガラス基板上 Poly-Si形成技術 開発	〇中家 大希¹, 斎藤 慎吾¹, 荒井 哲司¹, 上村 和貴¹, 有 元 圭介¹, 原 康祐¹, 山中 淳二¹, 中川 清和¹, 高松 利 行², 澤野 憲太郎³	1.山梨大, 2.エス・エス・ティー, 3.東京都市大学
	12a-PB3-4	ナノデバイスの微細化に伴うカシミール効果の影響	○(B)香川 建¹,河原 尊之¹	1.東京理科大工
	12a-PB3-5	ダブルレプリカ法を用いたマイクロ予備濃縮器の作製	○平川 裕基¹, Jeong-O Lee², 李 相錫¹	1. 鳥取工, 2. 韓国化学研究院
	12a-PB3-6	Schottky界面における Two-band MIGS モデル	○西村 知紀¹, 矢嶋 赳彬¹, 鳥海 明¹	1.東大院工
	12a-PB3-7	結晶Siナノ領域におけるボロン不純物分布の1at.%分解 能STEM-EELS分析	齋藤 真澄 1	
	12a-PB3-8 奨 12a-PB3-9	TEM-STM ホルダーを用いたシリコンナノワイヤの作製 Au錘3軸MEMS加速度センサのためのSCD電極の検討		1. 北陸先端大 1. 東工士 2 NTT AT
	夹 12a-r D3-9	Au 乗3 間 MLM3 加速反センリのための3CD 电陸の快計	恒 $^{-2}$, 伊藤 浩之 1 , 石原 1 , 町田 克之 1 , 曽根 正人 1 , 益 一哉 1	1.来上人, 2.1/11-41
	12a-PB3-10	微小曲げ試験による金材料の機械的強度のサンプル形状 効果	〇鈴木 康介 ¹, Ken Hashigata ¹, 浅野 啓介 ¹, Chun-Yi Chen ¹, 名越 貴志 ², Tso-Fu Mark Chang ¹, 山根 大輔 ¹, 小西 敏文 $^{1.3}$, 町田 克之 1 , 伊藤 浩之 1 , 益 一哉 1 , 曾根 正人 1	
	奨 12a-PB3-11	電気めっき法によるAu-Cu合金微小カンチレバーの作製	○新田 京太朗¹, Tang Haochun¹, Chen Chun-Yi¹, Chang Tso-Fu Mark¹, 山根 大輔¹, 小西 敏文¹.², 町田 克之¹, 伊藤 浩之¹, 益 一哉¹, 曽根 正人¹	1. 東工大, 2.NTT-AT
	奨 12a-PB3-12	超臨界 CO_2 を用いた無電解めっきによる $\mathrm{Ni/PET}$ ハイブリッド繊維の創製		1. 東工大, 2. 奈良女
		光干渉型表面応力センサの変位検出下限評価と非標識分 子検出		1. 豊技大, 2.JST さきがけ
		高pH分解能を実現する累積機能を持つ拡張ゲート型pH イメージセンサ ドライエッチング法を用いたBN膜のパターニング	田達哉1.2, 高橋一浩1.2, 水野誠一郎3, 澤田和明1.2	1.豊橋技術科学大,2.エレクトロニクス先端融合研究 所,3.浜松ホトニクス株式会社 1.鳥大院工,2.神港精機,3.兵庫県立工業技術センタ・
	E 12a-PB3-16	Fabrication of crystalline silicon solar cells by rapid	部継一郎5,江利口浩二5,李相錫1	4. 阪大産研, 5. 京大工 1. Tokyo University of Agriculture and Technology,
		heating with carbon heating tube	Uehara ¹ , Tomoyoshi Miyazaki ^{2, 1} , Go Kobayashi ³ , Masahiko Hasumi ¹ , Takuji Arima ¹ , Toshiyuki Sameshima ¹	2.Techno Research., Ltd., 3.ORC MANUFACTURIN CO.,LTD
		化技術 / Semiconductor devices/ Interconnect/ Integrati 口頭講演 (Oral Presentation) S221 会場 (Room S221)	on technologies	
3/9(Sa 3:45	部。)13:45 - 17:45 招 9p-S221-1	「頭演獎 (Oral Presentation) S221 会場 (Room S221) 「講演奨励賞受賞記念講演」 ZrO2 による EOT スケーリングを用いた Planar-type 量 子井戸 InGaAs TFET の性能向上	〇安 大煥 1 ,尹 尚希 1 ,加藤 公彦 1 ,福井 太一郎 1 ,竹中 充 1 ,高木 信 $ ^1$	1. 東大院工
4:00	9p-S221-2	超平坦 ZnSnO チャネルによる積層型 TFET サブスレショルド特性の改善	〇加藤 公彦 1 ,松井 裕章 1 ,田畑 仁 1 ,竹中 充 1 ,高木 信 $-^1$	1. 東大院工
4:15	9p-S221-3	Zn(Sn)O/Si積層型TFET特性の温度依存性と動作機構の 理解	_1	
4:30 4:45	9p-S221-4 9p-S221-5	量子効果の影響を考慮した GaAsSb/InGaAs Double-Gate Tunnel FET の検討 Trap-Assisted Tunneling を活用した Tunnel-FET:	○野上 直哉',福田 浩一", 宮本 恭幸' ○宝玉 充¹, 久木田 健太郎¹, 上地 忠良¹, 泉田 貴士¹,	1.東工大工, 2.産総研 1 東芝メモリ
	奨 E 9p-S221-6	"TAT-FET"のデバイス物理 Steep Slope (<60mV/dec) and Hysteresis Characteristics	谷本 弘吉1,青木 伸俊1,尾上 誠司1	1.Institute of Industrial Science, University of Tokyo
		in Junctionless SOI Transistors at Low Drain Voltage of 50mV	Saraya ¹ , Masaharu Kobayashi ¹ , Toshiro Hiramoto ¹	
5:15 5:30	9p-S221-7 奨 9p-S221-8	Si-p/n接合におけるトンネル電流の理論シミュレーション; 界面ボテンシャル変調の効果 VMCO メモリの動作原理の理論的検討	○(M1) 趙 祥勲', 中山 隆史'○中西 徹¹, 長川 健太², 洗平 昌晃³, 中山 隆史⁴, 白石	1. 千葉大理 1. 名大工. 2. 名大院工. 3. 名大未来研. 4. 千葉大院理
5:45	9p-S221-9	格子ランダムウォークに基づく ReRAM 信頼性の数値モ	賢二3	1. 中央大理工
		デル Material Day 1		
6:00 6:15	E 9p-S221-10	休憩/Break Saturated concentration of activated Sb in Sb-doped Ge	(D) Jihee Jeon ¹ , Shigehisa Shibayama ¹ , Osamu	1.Nagoya Univ., 2.IMaSS, Nagoya Univ., 3.IIFS, Nago
5:15	9p-S221-10	saturated concentration of activated 36 in 35-doped Ge epitaxial thin films Spin on Glassからの固相拡散によるGe中のn型不純物拡	Nakatsuka ^{1, 2} , Shigeaki Zaima ³	T.Nagoya Univ., 2.Iiviass, Nagoya Univ., 3.IIrs, Nago Univ. 1.東京大学
6:45	奨 9p-S221-12	散挙動 Ge基板の平坦化RTAを用いたin-situ Ge MOS構造の作		1. 東理大, 2. 産総研
7:00	9p-S221-13	製 UTB-GeOI チャネル構造における裏面 Si バッシベー ションの効果	遠藤 聡 1 , 藤代 博記 1 , 前田 辰郎 1,2 ○張 文馨 1 , 入沢 寿史 1 , 石井 裕之 1 , 内田 紀行 1 , 前田 辰郎 1	1. 産総研
7:15	9p-S221-14	******	○(DC)松浦 賢太朗¹,濱田昌也¹,坂本 拓朗¹,谷川 晴紀¹,宗田 伊理也¹,石原 聖也²,角嶋 邦之¹,筒井一 生¹,小椋 厚志²,若林 整¹	1. 東京工業大学, 2. 明治大学
7:30	9p-S221-15	影響	〇藏本 駿介 1 ,伊部 德朗 1 ,祖父江 琢哉 1 ,萩原 一樹 1 ,田中 貴久 1 ,高橋 綱己 2 ,柳田 剛 2 ,内田 建 1	1. 慶大理工, 2. 九大先導研
		口頭講演 (Oral Presentation) S221 会場 (Room S221)	O#E ## 1 . H Waml + +< -1	1 ***
:00 :15	奨 10a-S221-1 10a-S221-2	物理的に形成されたシリコン3重量子ドットの特性評価 シリコン3重量子ドットにおける長距離相互作用	○溝口来成¹,小田俊理¹,小寺哲夫¹ ○(B)太田俊輔¹,平岡宗一郎¹,溝口来成¹,小寺哲夫¹	1.東工大 1.東工大
:30	10a-S221-3	三角形状に並べた三重量子ドットの電流特性の磁場依存 性	○田所 雅大¹,溝口 来成¹,小寺 哲夫¹	1.東工大工
	10a-S221-4	シリコン量子ドットの高帯域測定に向けた極低温アンプの評価		1.東京工業大学
9:45		止れ動作シリコン量子ドットデバイス集積化に向けたオ	○天野 亘¹, 小林 瑞樹¹, 西山 伸平¹, 溝口 聖也¹, 山岡	1. 東工大工
0:00	10a-S221-5 奨 10a-S221-6	フセットバイアスによるポテンシャル変調技術 p型シリコン量子ドット中での正孔スピンg因子の見積も	裕¹,溝口来成¹,小寺哲夫¹ ○魏 赫男¹ 溝口 聖也¹ 溝口 来成¹ 小寺 哲夫¹	1.東工大工

10:45	奨 10a-S221-7	CMOS 互換プロセスによるスケーラブルな積層構造型シ	○(M2)伊藤 優希¹,小林 正治¹,平本 俊郎¹	1. 東大生研
11:00	10a-S221-8	リコン量子ビットの提案 2トラップ間のチャージポンピング相互作用	○土屋 敏章¹, 堀 匡寬¹, 小野 行徳¹	1.静大電研
11:15		シリコンMOS界面におけるチャージポンピングEDMR		1.静大電研
11:30		ドリフト拡散シミュレーションにおける基盤不純物の離 散性に伴った分極効果		1. 筑波大応理, 2. 筑波大数理
11:45	10a-S221-11	酸化膜界面近傍に局在する不純物による散乱ポテンシャルの乱雑位相近似	○(B) 菅 吉朗¹, 吉田 勝尚², 佐野 伸行²	1. 筑波大応理, 2. 筑波大数理
3/10(Su		口頭講演 (Oral Presentation) S221会場 (Room S221)		
13:45	10p-S221-1	【授賞式】第10回シリコンテクノロジー分科会論文賞・研究奨励賞	○遠藤 哲郎 1	1.シリコンテクノロジー分科会
14:00	招 10p-S221-2	「第10回シリコンテクノロジー分科会論文賞受賞記念講演」 基板パイアスを印加した薄膜BOX-SOI SRAM における重イオンソフトエラー:線状複数反転により100倍になっ	治², 牧野高紘³, 大島武³, 松浦大介⁴, 成田貴則⁴, 加	1.JAXA宇宙研, 2.JAXA研開, 3.量研, 4.三菱重工業(株)
14:30	招 10p-S221-3	た感受性 「第10回シリコンテクノロジー分科会論文賞受賞記念講演」 	森川 良忠3, 星井 拓也1, 角嶋 邦之1, 若林 整1, 林 好	1.東工大, 2.高輝度光科学研究センター, 3.阪大, 4.名工 大, 5.分子研
15:00	招 10p-S221-4	「第10回シリコンテクノロジー分科会研究奨励賞受賞記念講演」 IV族半導体薄膜の固相成長:多結晶でも高移動度	〇都甲 薫 1,2 , 茂藤 健太 1 , 今城 利文 1 , 髙原 大地 1 , 斎藤 聖也 1 , 吉峯 遼太 1 , 末益 崇 1	1. 筑波大院 数理物質 , 2.JST さきがけ
15:15		休憩/Break		
15:30 15:45	10p-S221-5 10p-S221-6	擬似不揮発性FFの速度性能優先設計とその回路性能 デュアルバワースイッチを用いた擬似不揮発性SRAMの	○北形 大樹¹, 松崎 翼¹, 山本 修一郎¹, 菅原 聡¹ ○吉田 隼¹, 北形 大樹¹, 山本 修一郎¹, 菅原 聡¹	1.東工大未来研 1.東工大未来研
16:00	10p-S221-7	設計と解析 新構造ピエゾエレクトロニックトランジスタの低リーク 設計とそのSRAMへの応用	〇塩津 勇作 1 , 山本 修一郎 1 , 舟窪 浩 2 , 黒澤 実 3 , 菅原	1. 東工大未来研, 2. 東工大材料系, 3. 東工大電気電子系
16:15	奨 10p-S221-8		70	1. 東北大院工, 2. 東北大院医工, 3. 東北大工学部, 4. 東北大学際研
16:30 奨	₹E 10p-S221-9	Technology Platform Development of Multichip-to-	(M1)Rui Liang ¹ , Sungho Lee ² , Yuki Miwa ³ ,	1.Grad. Sch. of Biomedical Engineering, Tohoku Univ.,
	·	$Wafer 3D\ Integration\ (2) \\ -SiO_2Liner Technology\ for\ Low\ Temperature TSV\ Process \\ -$	Hisashi Kino ⁴ , Hisashi Fukushima ² , Tetsu Tanaka ^{1, 2}	2.Grad. Sch. of Engineering, Tohoku Univ., 3.Sch. of Engineering Tohoku Univ., 4.FRIS, Tohoku Univ.
16:45	奨 10p-S221-10	Multichip-to-Wafer 三次元集積化基盤技術の開発 (3) 一異種機能集積化に向けたマイクロバンブ接合技術一	〇三輪 侑紀 1 , 李 晟豪 2 , 梁 芮 3 , 木野 久志 4 , 福島 誉 史 2 , 田中 徽 $^{2.3}$	1. 東北大工 , $2.$ 東北大院工 , $3.$ 東北大院医工 , $4.$ 東北大学際研
3/11(Mo	on.) 9:30 - 11:30 11a-PB3-1	ポスター講演 (Poster Presentation) PB会場 (Room PB) 非対称な書き込み・読み出しレイテンシを持つReRAM	○安達 優 ¹ , 松井 千尋 ² , 竹内 健 ^{1,2}	1.中央大学理工, 2.中央大学研究開発機構
	11a-PB3-2	を用いた半導体ストレージシステム 急峻なSSを持つ "PN-Body-Tied SOI-FET" の TCAD を	○森 貴之¹,井田 次郎¹,遠藤 大貴¹	1.金沢工大
	11a-PB3-3	用いた過渡解析 スパッタエピタキシー法を用いた SiGe HEMT の製造技 術と特性制御	瀬信光², 笠松章史², 松井敏明², 須田良幸¹, 塚本貴	1. 東京農工大院工, 2. 情報通信研究機構, 3. 電気通信大
	11a-PB3-4	P型表水平配向Siナノワイヤのゼーベック係数評価:不		1.早大理工, 2.産総研
	11a-PB3-5	純物濃度依存性と水素アニールの効果 Bi-Te 系熱電変換デバイスの半導体接合における Ni 拡散 バリアの信頼性	姫田悠矢¹, 武澤 宏樹¹, 目崎 航平¹, 平尾 修平¹ ○恵久春 佑寿夫¹, 菅原 徹¹, 菅沼 克昭¹, 岡嶋 道生², 南部 修太郎²	1.大阪大学産研, 2.E サーモジェンテック
	E 11a-PB3-6	Sensing Behavior of Polyaniline Supported Gold Atomic Clusters Propanol Sensor	○ (M1) Yuan Chien¹, Parthojit Chakraborty¹, Wan-Ting Chiu², Tso-Fu Mark Chang¹, Takamichi	1.Tokyo Tech, 2.U Tokyo
	11a-PB3-7	AlGaNを用いたソーラーブラインド光検出器の作製と評価	Nakamoto ¹ , Masato Sone ¹ 〇奥村 貴大 ¹ , 小室 慎也 ¹ , 鳥羽 隆一 ² , 田邉 匡生 ¹ , 大 橋隆宏 ² , 小山 裕 ¹	1. 東北大院工, 2. 東北大院環
	E 11a-PB3-8	A Graphene Hall Element and CMOS monolithic Integrated Circuit	Chengying Chen ¹ , Yijun Cai ¹ , O YI CHEN ¹	1.Xiamen Univ of technology
	11a-PB3-9	ペロブスカイト太陽電池と単結晶シリコン CMOS 論理回 路のガラス基板上における集積化	\bigcirc (M2) 長澤 聡 1 , 花房 宏明 1 , 東 清一郎 1	1. 広大院先端研
	11a-PB3-10	磁場による中性無電解銅めっき促進効果に対する理論的 検討	○田邊 怜志¹, 杉浦 修¹	1. 千葉工大工
		アモルファスWSi"膜の実効仕事関数		1. 産総研
	n.) 13:45 - 17:00	13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコーロ頭講演 (Oral Presentation) W631会場 (Room W631) HfO ₂ 基強誘電体スパッタ薄膜の成長時の酸素分圧が結晶	-	
14:00		NIO₂ 套塊跡电体へバッタ 海膜の成長時の酸素が圧が結晶 成長・結晶構造に与える影響 HfO₂系強誘電体スバッタ薄膜の成長時の酸素分圧が結晶	淳¹,藤村 紀文¹	
14:15		構造・電気特性におよぼす影響 The influence of sputtering condition for ferroelectric	淳¹, 藤村紀文¹ ○MinGee Kim¹, Masakazu Kataoka¹, Rengie Mark	
		$\mathrm{HfO_2}$ directly deposited on $\mathrm{Si}(100)$ by RF magnetron sputtering	D. Mailig ¹ , Shun-ichiro Ohmi ¹	, and the second
14:30		HfO₂薄膜の強誘電相形成におけるドーパントの役割	〇森 優樹 ¹ , 西村 知紀 ¹ , 矢嶋 赳彬 ¹ , 右田 真司 ² , 鳥海明 ¹	
14:45 15:00		酸化熱処理によるHfO ₂ 強誘電相消失のメカニズム 帯電時の斜方晶・単斜晶HfO ₂ の安定性:第一原理計算 による検討	○矢嶋 赳彬¹,森 優樹¹,西村 知紀¹,鳥海 明¹ ○白石 悠人¹,長澤 立樹¹,洗平 昌晃²,白石 賢二²,中 山 隆史¹	1. 東大マテ 1. 千葉大理, 2. 名大未来研
15:15 15:30	招 10p-W631-7	休憩/Break 「講演奨励賞受賞記念講演」 HfO ₂ 強誘電体トンネル接合メモリのサイクル不良メカニ ズムの解明		1.東芝メモリ
15:45	10p-W631-8	スムの解明 300° C低温形成した Hf _x Zr _{1-x} O ₂ 薄膜の強誘電性		1. 明大, 2. 物材機構, 3. 学振特別研究員 DC
16:00	奨 10p-W631-9	反強誘電体ZrO₂を有するMIS構造のユニポーラスイッチング特性	○(M2)多川 友作 ¹ , 更屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林 正 治 ¹	1. 東大生研
16:15	10p-W631-10	強誘電体トランジスタにおいて観察される急峻スロープ の起源	○右田 真司¹, 太田 裕之¹, 鳥海 明²	1. 産総研, 2. 東大院工
16:30 奨	₹E 10p-W631-11	Polarization Switching as the Cause of Steep Subthreshold Slope in Ferroelectric FETs	○(D)Chengji Jin¹, Takuya Saraya¹, Toshiro Hiramoto¹, Masaharu Kobayashi¹	1.IIS, Univ. of Tokyo

10p-W631-12 TCADによる強誘電体負性容量分極のコヒーレンシーと 〇太田 裕之 1 , 池上 努 1 , 福田 浩一 1 , 服部 淳一 1 , 浅井 1. 産総研,2. 東大 16:45 その時間的発展のシミュレーション 栄大¹, 遠藤 和彦¹, 右田 真司¹, 鳥海 明² ナノ量子デバイス / Nanostructures, q 3/10(Sun.) 13:30 - 15:30 ポスター講演 (Poster Presentation) PA会場 (Room PA) 紙基板への多孔質TiO。膜の室温転写技術の開発 ○大久保 匠¹, 矢野 稔貴¹, 生野 孝 1.東理大基工 10p-PA4-1 10p-PA4-2 局在表面プラズモンによる半導体ナノ粒子の発光増強効 ○楢崎 友城 1, 金 大貴 1 1.大阪市大院工 ¹⁶⁷Er³+添加Y₂SiO₃のフォトンエコーによるコヒーレンス ○(M1) 平石 真也^{1.2}, IJspeert Mark¹, 俵 毅彦¹.^{2.3}, 足 1.NTT 物性研, 2. 東京理科大, 3.NTT ナノフォトニクス 10p-PA4-3 立智4,尾身博雄1.3,後藤秀樹1 センタ.4.北海道大学 ○(B)大宮 寛太¹, 松崎 亮典², 藤澤 秀樹¹, 鍜治 怜 10p-PA4-4 半導体単一量子ドットの核スピン分極双安定状態下にお 1.北大工, 2.北大院工 ける光子統計性 奈2, 足立智2, 笹倉弘理2 E 10p-PA4-5 Dislocation-Driven Growth of CuO Nanowires ○ (D)Lilin Xie¹, Xiaona Zhang², Yoshifumi Oshima¹ 1.Japan Advanced Institute of Science and Technology, 2.Beijing University of Technology 金属をエミッタとするシリコン/フッ化物多重障壁共鳴 〇市川 研佑 1 , 利根川 啓希 1 , 廣瀬 皓大 1 , 三上 萌 1 , 福 1. 東工大工学院 10p-PA4-6 山 聡史1,熊谷 佳郎1,渡辺 正裕1 トンネルダイオードの理論解析 原子層薄膜 CaF_2/Si ヘテロ構造を用いた p 型共鳴トンネル \bigcirc (M1) 三上 萌 1 , 福山 聡史 1 , 渡辺 正裕 1 10p-PA4-7 1. 東工大工学院 ダイオードの室温微分負性抵抗特性 3/11(Mon.) 13:15 - 16:00 口頭講演 (Oral Presentation) M103会場 (Room M103) E 11p-M103-1 Multiple exciton generation rate in CsPbI₃ quantum dots ODolf Timmerman¹, Eichi Matsubara², Leyre 1.Osaka Univ., 2.Osaka Dental Univ., 3.Univ. of 13:15 Gomez3, Masaaki Ahida1, Tom Gregorkiewicz3,1 Yasufumi Fujiwara¹ 11p-M103-2 PbS量子ドットの多層シェル化と発光強度の改善 ○(B)池田 航介¹,渡辺 彗²,藤島 将伸³,向井 剛 1. 横浜国大理工, 2. 横浜国大院工, 3. 横浜国大院理工 13:30 輝1,2, 13:45 11p-M103-3 沈降法によって作製したファセット付きPbS量ドット超 〇木村 亮太 1 , 杉崎 俊太 1 , 杉本 卓也 2 , 藤島 将伸 2 , 渡 1. 横浜国大理工, 2. 横浜国大院理工, 3. 横浜国大院工 辺彗3,向井剛輝1,2,3 格子の光学特性 11p-M103-4 GaAs/Al_{0.3}Ga_{0.7}As 量子井戸における低温でのスピン緩和 〇松田 侑己 1 , 中村 雄一 1 , 孫 啓明 1 , 田代 大吾 1 , 山内 1. 早大先進理工, 2. 愛媛大理工 14:00 敬仁¹,下村哲²,竹内淳¹ 時間の井戸幅依存性 単一量子ドットでの正孔 g 因子の歪みチューニングに向 14:15 11p-M103-5 〇石田 太郎 ¹, 松崎 亮典 ¹, 鍜治 怜奈 ¹, 小田島 聡 ², 海 1.北大院工, 2.北大創成研究機構, 3.北大電子研 けたデバイスの作製と評価 住英生3, 西井準治3, 足立智1 14:30 休憩/Break 14:45 11p-M103-6 ノンドープ GaSb 量子井戸における 2 次元ホール系の輸送 ○伊藤 熙¹, 柴田 憲治¹.², Karalic Matija², Mittag 1. 東北工大, 2.ETH Zurich Christopher², Tschirky Thomas², Reichl Christian², Wegscheider Werner², Ihn Thomas², Ensslin Klaus² ○(D)Norizzawati Mohd Ghazali¹,², Noriyuki 1.RIKEN, 2.MJIIT, Univ. Teknologi Malaysia, 3.Chiba 15:00 E 11p-M103-7 Tunnel barriers and single electron transistors in suspended multi-wall carbon nanotubes fabricated by Ga Hagiwara^{1, 3}, Katsuya Suzuki¹, Hiroshi Tomizawa¹, Univ., 4.Osaka Pref. Univ., 5.RIKEN CEMS focused ion beam irradiation Abdul Manaf Hashim2, Tomohiro Yamaguchi1, Seiji Akita⁴, Koji Ishibashi^{1, 2, 3, 5} O Adnan Afiff^{1, 2, 3}, Arief Udhiarto³, Harry Sudibyo³, 1.RIE, Shizuoka Univ., 2.GSST, Shizuoka Univ., 3.Univ. 15:15 E 11p-M103-8 Effect of tunnel resistance modulation on single-electron tunneling in selectively-doped Si nano-transistors Djoko Hartanto³, Michiharu Tabe¹, Daniel Moraru¹ of Indonesia 15:30 E 11p-M103-9 Effect of dimensionality on the formation of dopant-OGaurang Prabhudesai1,2, Muruganathan 1.RIE, Shizuoka Univ., 2.GSST, Shizuoka Univ., 3.JAIST induced quantum-dots in heavily doped Si Esaki diodes Manoharan3, Masahiro Hori1, Yukinori Ono1, Hiroshi Mizuta3, Michiharu Tabe1, Daniel Moraru1 11p-M103-10 第一原理計算を用いた外部電場によるSiナノ構造上の不 〇山口 謙祐 1 , ムルガナタン マノハラン 2 , 水田 博 2 , 1. 静大電研, 2. 北陸先端大 15:45 純物への影響 田部 道晴 1, モラル ダニエル 1 【CS.3】3.11 フォ 3/12(Tue.) 9:00 - 12:30 口頭講演 (Oral Presentation) W631会場 (Room W631) 招 12a-W631-1 「講演奨励賞受賞記念講演」 〇太田 竜-1, 岡本 創 1 , 俵 毅彦 1,2 , 後藤 秀樹 1 , 山口 1.NTT物性基礎研, 2.NTTナノフォトニクスセンタ 9:00 GaAs機械振動子における束縛励起子の寿命変調 E 12a-W631-2 Kilohertz coupling rate between mechanical oscillators via ○ (PC)Feng Tian^{1, 3}, Masato Takiguchi^{1, 2}, Eiichi 9:15 1.NTT BRL, 2.NTT NPC, 3.Tokyo Tech Kuramochi1,2, Hisashi Sumikura1,2, Akihiko optical cavity resonance Shinya^{1, 2}, Masaya Notomi^{1, 2, 3} ○滝口 雅人^{1,2}, 横尾 篤^{1,2}, 舘野 功太^{1,2}, 野崎 謙悟^{1,2}, 1.NTT NPC, 2.NTT 物性研 9:30 12a-W631-3 ナノワイヤ誘起シリコンフォトニック結晶ナノ共振器を 佐々木智2, Sergent Sylvain1,2, 倉持 栄一1,2, Zhang 使った全光スイッチ Guoqiang 1,2 , 新家 昭彦 1,2 , 納富 雅也 1,2 ○ (D)Heungjoon Kim¹,², Takahashi Asano¹, 9:45 E 12a-W631-4 Dependence of second-harmonic generation efficiency on 1.Kvoto Univ., 2.Sungkvunkwan Univ. Bong-Shik Song^{1, 2}, Susumu Noda¹ the Q factor of SiC photonic crystal nanocavities 10:00 12a-W631-5 ゲート制御量子ドット形成用電極を有するフォトニック 〇田尻 武義 1 , 車 一宏 1 , 酒井 裕司 2 , 木山 治樹 2 , 大岩 1. 東大生研 , 2. 阪大産研 , 3. ルール大ボーフム , 4. ナノ量 結晶ナノ共振器の作製 顕², Ritzmann Julian³, Ludwig Arne³, Wieck Andreas 子機構 D.3, 太田 泰友 4, 荒川 泰彦 4, 岩本 敏 1.4 10:15 奨 12a-W631-6 シリコン光回路上に集積された複数量子ドット光源の局 ○(D) 勝見 亮太^{1,3}, 太田 泰友², 長田 有登², 山口 拓 1.生産研, 2.ナノ量子, 3.物性研 人 ¹, 田尻 武義 ¹, 車 一宏 ¹, 角田 雅弘 ², 岩本 敏 ¹.², 秋 所発光波長制御 山 英文³, 荒川 泰彦² 10:30 12a-W631-7 メタマテリアルとシリカコートPbS量子ドットを組み合 ○(M1)杉本 卓也¹, 杉崎 俊太², 渡辺 彗³, 向井 剛 1.横浜国大院理工, 2.横浜国大理工, 3.横浜国大院工 輝1,2,3 わせた光子発生素子 10:45 休憩/Break E 12a-W631-8 Spectroscopy of Andreev bound states using microwave ORussell Stewart Deacon^{1,2}, Patrick Zellekens³, Hui 1.Advanced Device Laboratory, RIKEN, 2.CEMS, 11:00 Wang¹, Thomas Schapers³, Koji Ishibashi^{1, 2} RIKEN, 3.Julich, Germany resonators 11:15 12a-W631-9 GaAs/AlAs 多重量子井戸の励起子ダイナミクスと二次の ○小島 磨¹, 喜多 隆¹, Hogg Richard² 1.神戸大院工, 2. グラスゴー大 非線形光学効果との関係 12a-W631-10 GaAsナノ構造膜における内蔵電場に起因した二種テラへ 〇長谷川 尊之 1 , 奥島 雄大 1 , 田中 義人 1 1. 兵庫県立大院物質理 ルツ波放射の共存ダイナミクス 奨 12a-W631-11 リング光共振器を用いた高次ポアンカレビーム牛成手法 ○林 文博¹、太田 泰友²、荒川 泰彦²、岩本 敏^{1,2} 11:45 1. 東大牛研, 2. 東大ナノ量子機構 の提案 〇林 文博 1 , 太田 泰友 2 , 荒川 泰彦 2 , 岩本 敏 1,2 12:00 12a-W631-12 フルポアンカレ共振器モードとその光力場の解析 1.東大生研, 2.東大ナノ量子機構 12a-W631-13 Maxwell-Chern-Simons ゲージ理論における Casimir 効果 〇北川 均 1.無所属 12:15 3/9(Sat.) 9:30 - 12:30 口頭講演 (Oral Presentation) M121会場 (Room M121) ○平岩 篤^{1,2}, 大久保 智³, 堀川 清貴³, 川原田 洋^{1,2,3,4} 1.早大ナノ・ライフ, 2.名大未来研, 3.早大理工, 4.早大 9a-M121-1 過渡光支援容量法による絶縁膜/ワイドバンドギャップ 9:30 材研 Hf/(Si+Hf)組成の異なる $HfSiO_x/GaN(0001)$ の光電子分 \bigcirc 大田 晃生 1 , 牧原 克典 1 , 生田目 俊秀 2 , 塩崎 宏司 1 , 1.名大,2.物材機構 9:45 9a-M121-2 宮崎 誠一1 ○上沼 睦典¹, 安藤 領汰¹, 古川 暢昭¹, 石河 泰明¹, 浦 1. 奈良先端大 10:00 9a-M121-3 SiO₂/GaN界面の固定電荷に対するGaN表面状態の影響 岡 行治 9a-M121-4 SiO₁/GaN MOS デバイスに対するフォーミングガス熱処 ○山田 高寛¹, 和田 悠平¹, 寺島 大貴¹, 野崎 幹人¹, 上 1.大阪大学, 2.富士電機, 3.産総研 10:15 野勝典², 高島信也², 山田永³, 高橋言緒³, 清水三 理の効果 聡 3 , 細井 卓治 1 , 志村 考功 1 , 渡部 平司 1

10:30	9a-M121-5	Al ₂ O ₃ /GaN 界面に形成されたチャネル中の電子移動度	○田岡 紀之¹, グェン フウ チュン¹, 山田 永¹, 高橋 言緒¹, 清水 三聡¹.²	1. 産総研 - 名大 GaN-OIL, 2. 名大 IMaSS
10:45	奨 9a-M121-6	n-GaN/Al ₂ O ₃ 界面におけるGa ₂ O ₃ 層消失の理論予測	○ (D) 長川 健太¹, 白石 賢二²,1	1.名大院工, 2.名大未来研
11:00 11:15	奨 9a-M121-7	休憩/Break ガンマ線照射による Al ₂ O ₃ /GaN MOS ダイオードの容量		1.名大院工, 2.北大量エレ研, 3.名大未来研
11:30	奨 9a-M121-8	- 電圧特性の変化 再成長 AlGaN による Al ₂ O ₃ /AlGaN/GaN 構造の絶縁膜/	淳 ^{1,3} , 橋詰 保 ² ○ (M1C) 河端 晋作 ¹ , アスバル ジョエル ¹ , 徳田 博	1.福井大院工
11:45	9a-M121-9	半導体界面特性の向上 ホモエピタキシャル成長n型GaNショットキー障壁高さ	邦¹, 山本 暠勇¹, 葛原 正明¹ ○村瀬 亭介¹ 前田 拓也² 鑵ヶ江 一孝² 堀田 昌	1.名大院工, 2.京大院工, 3.名大未来材料・システム研
		の温度係数の電極金属依存性	宏 ^{1,2,3} , 須田 淳 ^{1,2,3}	究所
12:00	奨 9a-M121-10	Quartz-free-HVPE成長n型GaN層における補償アクセプタの起源解明	○ 2	1.京大院工, 2.SCIOCS, 3.名大未来材料・システム研究 所, 4.名大院工
12:15	9a-M121-11	横型ショットキーダイオード構造のC-V測定による低 ドープn型GaNの実効ドナー密度の評価の精度に関する 検討	\bigcirc (B) 六野 祥平 ¹ , 坂尾 住祐 ² , 堀田 昌宏 ^{2.3} , 須田 $^{2.3}$	1. 名大工, 2. 名大院工, 3. 名大未来研
3/9(S	at.) 14:00 - 17:45	口頭講演 (Oral Presentation) M121会場 (Room M121)		
14:00	9p-M121-1	両側空乏ベベルメサ構造を有するGaN p-n接合ダイオードにおける均一なアバランシェ破壊の実現および平行平板破壊電界の評価		1.京大院工, 2.豊田中研, 3.名大 未来材料・システム研究所, 4.名大院工
14:15	9p-M121-2	Franz-Keldysh効果を利用した光電流増倍測定による GaNにおけるキャリアの衝突イオン化係数の推定	〇前田 拓也 1 ,成田 哲生 2 ,上田 博之 2 ,兼近 捋一 2 ,上 杉 勉 2 ,加地 徽 3 ,木本 恒暢 1 ,堀田 昌宏 $^{1.3.4}$,須田 2 $^{1.3.4}$	1.京大院工, 2.豊田中研, 3.名大 未来材料・システム研 究所, 4.名大院工
14:30	9p-M121-3	自立GaN基板上p-n接合ダイオードの2段メサ構造によ	○太田博¹,浅井直美¹,堀切文正²,成田好伸²,吉田	1. 法政大, 2. サイオクス
14:45	9p-M121-4	る高破壊耐量化 ストライプELO 自立 GaN 基板上 p-n 接合ダイオード	文 2 , 三島 友義 1 〇太田 博 1 , 浅井 直美 1 , 堀切 文正 2 , 成田 好伸 2 , 吉田	1.法政大, 2.サイオクス
15:00	9p-M121-5	再成長法を用いた Si 基板上縦型 GaN MOSFET の試作	丈洋², 三島 友義¹ ○鳥居 直生¹, Debaleen Biswas¹, 山本 圭司¹, 江川 孝	1.名古屋工業大学
	*	GaN -MOSFET の Hall測定	志 ¹	
15:15	9p-M121-6		〇上野 勝典 1 , 松山 秀昭 1 , 田中 \overline{E}^{1} , 高島 信也 1 , 江戸 雅晴 1 , 堀田 昌宏 2 , 須田 \overline{p}^{2} , 中川 清和 3	
15:30	9p-M121-7	Mgイオン注入ドーズ量による GaN-DIMOSFETの MOS チャネル特性制御 休憩/Break	〇田中亮',高島信也',上野勝典',松山秀昭',江戸雅晴',中川清和 ²	1. 富士電機, 2. 山梨大
15:45 16:00	9p-M121-8	外悪/break イオン注入ノーマリーオフGaN DMOSFET	○吉野理貴¹,安藤悠人²,出来真斗³,鳥谷部達⁴,栗山一男¹,本田善失³,西村智朗¹,天野浩²³,加地徽³,中村徽¹.3	1. 法政大, 2. 名大院工, 3. 名大 IMaSS, 4. 東洋大
16:15	奨 9p-M121-9	GaN 横型 MISFET チャネル移動度に対する界面準位の影響		
16:30	奨 9p-M121-10	Al ₂ O ₃ MOS ゲート FP-HEMT のオン耐圧評価	○ (M1C) 西谷 高至¹, 山口 良太¹, アスバル ジョエル¹, 徳田 博邦¹, 葛原 正明¹	1.福井大院工
16:45	奨 9p-M121-11	AlGaN/GaN HEMT の高周波パワー特性と電流コラプスとの関係		1. 福井大院工, 2. 富士通研
17:00	奨 9p-M121-12	GaN 自立基板上に作製した Al ₂ O ₃ /AlGaN/GaN HEMT の 評価		1.北大量集セ
17:15	9p-M121-13	त्राण Al ₂ O ₃ ゲート絶縁膜を持つN極性 GaN HEMT	〇早坂 明泰 1 ,青沼 遼介 1 ,堀田 航史 1 ,眞壁 勇夫 2 ,吉 田 成輝 2 ,宮本 恭幸 1	1. 東工大工, 2. 住友電気工業
17:30	9p-M121-14	デバイスシミュレーションによる GaN HEMT のバッファトラップが過渡応答とドレインリークに与える影響	○大石 敏之1	1. 佐賀大理工学部
3/10(9	Sun.) 9:00 - 11:45	の検討 口頭講演 (Oral Presentation) M121会場 (Room M121)		
9:00	10a-M121-1	KPFM による窒化ガリウム pn 接合の観察	○(PC)中村 友謙¹,石田 暢之¹,鷺坂 恵介¹	1.物材研
9:15	10a-M121-2	深堀メサ型GaN縦型pnダイオード絶縁破壊電界の貫通	○宇佐美 茂佳 ¹ , 田中 敦之 ^{2,3} , 福島 颯太 ¹ , 安藤 悠 人 ¹ , 出来 真斗 ² , 新田 州吾 ² , 本田 善央 ² , 天野 浩 ^{2,3,4,5}	1.名大院工, 2.未来材料・システム研究所, 3.物材研,
9:30	奨 10a-M121-3	転位密度依存性 サブバンドギャップ光を用いたGaN中二次元電界マッピ ング手法の提案	○川崎 晟也 ¹ ,福島 颯太 ² ,宇佐美 茂佳 ² ,安藤 悠人 ² ,田中 敦之 ^{3,4} ,出来 真斗 ³ ,久志本 真希 ² ,新田 州吾 ³ ,	1.名大工, 2.名大院工, 3.名大未来研, 4.物質・材料研究
9:45	奨 10a-M121-4	ラマン分光法を用いた GaN HEMT の応力温度依存性評	本田 善央³, 天野 浩³.4.5.6 ○内田 智之¹, 杉江 隆一¹	1.東レリサーチセンター
10:00	10a-M121-5	価 FinFET応用に向けた選択成長 GaN チャネルの電気特性	○濱田 拓也¹, 向井 勇人¹, 高橋 言緒². 井手 利英². 清	1. 東京工業大学, 2. 産業技術総合研究所
-	0		水 三聡 2 , 星井 拓也 1 , 角嶋 邦之 1 , 若林 整 1 , 岩井 洋 1 , 筒井 一生 1	
10:15		休憩/Break		
10:30	10a-M121-6	GaNの光電気化学(PEC)エッチングが有する可能性 ②コンタクトレスでのエッチング	〇堀切 文正¹,福原 昇¹,太田 博²,浅井 直美²,成田 好 伸¹,吉田 丈洋¹,三島 友義²,渡久地 政周³,三輪 和 希³,佐藤 威友³	1.サイオクス, 2.法政大, 3.北大
10:45	10a-M121-7	ペルオキソ二硫酸イオン(S2O82)含有電解液における	〇渡久地 政周 1 , 三輪 和希 1 , 堀切 文正 2 , 福原 昇 2 , 成	1.北大量集センター, 2. サイオクス
11:00	10a-M121-8	GaNの電気化学特性 AlGaInN/AlGaNへテロ構造の光電気化学エッチング	田 好伸 ² ,吉田 丈洋 ² ,佐藤 威友 ¹ ○小松 祐斗 ¹ ,植村 圭佑 ¹ ,細見 大樹 ² ,三好 実人 ² ,佐	1.北大量集セ,2.名工大
11:15	10a-M121-9	塩素中性粒子ビームによる窒化ガリウム原子層エッチン グ	藤 威友 1 ○ 菅原 健太 1 ,大堀 大介 2 ,井上 和孝 1 ,寒川 誠二 $^{2.3}$	1.住友電工, 2. 東北大流体研, 3. 東北大AIMR
11:30	奨 10a-M121-10	$\mathrm{NH_3/H_2}$ 雰囲気下での選択熱分解法の GaN HEMT電気特	○吉屋 佑樹¹, 星 拓也¹, 杉山 弘樹¹, 松崎 秀昭¹	1.NTT 先端集積デバイス研
		性への影響 口頭講演 (Oral Presentation) M121 会場 (Room M121)		
9:00		GaN中への窒素による Mg のリコイルインプランテー ションの試み (3)	〇山田 寿 $^{-1}$, 山田 1 , 長南 紘 1 , 田岡 紀 1 , 高橋 言緒 1 , 清水 三聡 1,2	
9:15	11a-M121-2	バルスレーザによる GaN にイオン注入した Mg アクセプ ターの活性化	〇宮嶋 孝夫¹, 山田 祐輔¹, 市川 貴登¹, 今井 大地¹, 鮫 島 俊之 2	1. 名城大理工, 2. 農工大工
9:30	11a-M121-3	大気圧熱プラズマジェット照射後のポストアニールによる Ga 極性面 GaN にイオン注入した Mg の活性化促進		1.広島大 先端研, 2.名大 未来システム研
9:45	11a-M121-4	注入深さ・極性面の異なる Mg イオン注入 GaN のフォトルミネッセンス	〇秩父 重英 1,2,3 , 嶋 紘平 1 , 井口 紘子 4 , 成田 哲生 4 , 片岡 恵太 4 , 小島 一信 1 , 上殿 明良 5	1. 東北大多元研, 2. 名大未来研, 3. 北大量エレ研, 4. 豊田中央研究所, 5. 筑波大数物
10:00	11a-M121-5	ホモエピタキシャル成長n型GaN中に2MeV電子線照射		
		により形成される深い準位	子	

10:15	11a-M121-6	電子線照射によりホモエピタキシャル成長n型GaN中に	○遠藤 彗¹, 堀田 昌宏²³, 須田 淳²³	1. 名大工, 2. 名大院工, 3. 名大未来研
10:30		形成される深い準位の低温における挙動 休憩/Break		
10:45	11a-M121-7	米思/Break 光DLTS 法による MOVPE n-GaN 正孔トラップH1 の分 離評価	○(M1)伊藤俊¹,徳田豊¹	1.愛知工大
1:00	11a-M121-8	水素イオン注入n-GaNに導入される正孔トラップの評価	\bigcirc (M1) 田村 和也 1 , 伊豫田 健 1 , 徳田 豊 1 , 塩島 謙次 2 , 伊藤 成志 3 , 八木 孝秀 3	1.愛知工大, 2.福井大院, 3.住重アテックス
1:15	11a-M121-9	SiN キャップ層高温熱処理により GaN 中に導入される深 い準位	〇古田 悟夢 1 ,堀田 昌宏 2 3 ,田中 成明 4 ,岡 徹 4 ,須田 2 2 3	1.名大工, 2.名大院工, 3.名大未来研, 4.豊田合成
1:30		原子拡散接合で作製したInGaAs/a-Ge/InGaAs接合部の バンド構造評価	史人¹, 松崎 秀昭¹	バイスイノベーションセンタ
1:45 2:00		HSQを用いたInGaAsナノシート構造作製法評価 表面活性化接合によるGaAs/GaAs界面における元素分布 評価	 ○ (M1) 北村 稔¹, 金澤 徹¹, 宮本 恭幸¹ ○清水 康雄¹,海老澤 直樹¹, 大野 裕¹, 梁 剣波², 重川直輝², 井上 耕治¹, 永井 康介¹ 	1. 東工大工 1. 東北大金研, 2. 大阪市大院工
	lon.) 13:30 - 15:30 奨 E 11p-PB3-1	ポスター講演 (Poster Presentation) PB 会場 (Room PB) Trapping reduction of SiO ₂ /GaN MOS structure by high	○ (DC)LIN TENGDA ¹ , Mutsunori Uenuma ¹ ,	1.Nara Institute of Science and Technology
	11p-PB3-2	pressure water vapor annealing 低バイアスエッチング後の GaN on GaN表面形態	Yasuaki Ishikawa ¹ , Yukiharu Uraoka ¹ ○宇崎 滉太 ¹ , 新海 聡子 ¹	1.九工大情
	E 11p-PB3-3	Study on HCl-based Wet Chemical Cleaning of Epitaxial GaN(0001) Surfaces	○ (M2)Yue Xu¹, Akio Ohta¹, Noriyuki Taoka², Mitsuhisa Ikeda¹, Katsunori Makihara¹, Tetsuo Narita³, Daigo Kikuta³, Koji Shiozaki¹, Tetsu Kachi¹,	1.Nagoya Univ, 2.AIST GaN-OIL, 3.Toyota Central R&D Labs
	11p-PB3-4	光電気化学エッチングによる窒化ガリウムの微細加工の 検討	Seiichi Miyazaki ¹ ○島内 道人 ^{1,2} , 三輪 和希 ¹ , 渡久地 政周 ¹ , 佐藤 威 友 ¹ , 本久 順一 ^{1,2}	1.北大 量集センター, 2.北大 情報科学研究科
	11p-PB3-5	界面顕微光応答法による電気化学エッチングした Ni/ n-GaN ショットキーの 2 次元評価	〇松田 陵 ¹ , 堀切 文正 ² , 成田 好伸 ² , 吉田 丈洋 ² , 三島 友義 ³ , 塩島 謙次 ¹	1. 福井大院工, 2. サイオクス, 3. 法政大
	11p-PB3-6	スロープダウンバイアス ICP-RIEによる n型 GaN のエッチングダメージの制御		1.名大未来研, 2.名大院工, 3.アルバック半電研
	11p-PB3-7	GaN on GaN ショットキー障壁ダイオードに対する表面 処理の効果		1.北大量集センター
	11p-PB3-8	p-GaN/AlGaN/GaN HEMT のガンマ線照射による特性 変化の回復過程		1.名大院工,2.名大未来研
		Al _{0.05} Ga _{0.95} N バックバリアを有する高抵抗 Si 基板上 GaN チャネル HEMT 様々な p型 GaN ゲート構造をドライエッチングで形成し		1. 日本電信電話株式会社 NTT 先端集積デバイス研究 1. 豊田工大
	<u> </u>	たAlGaN/GaN高電子移動度トランジスタの特性 Pt/ALD-Al ₂ O ₃ /AlGaN/GaN MIS-HEMT の電気特性に及		1.名工大
	<u> </u>	ぼすフォーミングガスアニールの効果 ALD-Al ₂ O ₃ 膜を堆積した AlGaInN/AlGaN ヘテロ構造に		1.名工大
	奨 11p-PB3-13	おける MIS 界面準位の評価 縦型 AIGaN/GaNトレンチ MOS-HEMTの DC 特性:	晴 1 , 江川 孝志 1 , 三好 実人 1 〇 (M2) 金谷 彗杜 1 , 米田 直史 1 , 山本 暠勇 1 , 葛原 正	1.福井大院工
	11p-PB3-14	p-GaN層Mg添加量の効果 ショットキーバリア特性を用いたp-GaN エピ層のキャリ		1.富士電機
	11p-PB3-15	ア濃度評価 Mgイオン注入後高温熱処理前のGaNの電気的特性に対するドーズ量の影響(2)	悠太 1 , 江戸 雅晴 1 \bigcirc (M1) 鴨志田 亮 1 , 植竹 啓 1 , 村井 駿太 1 , 赤澤 正道 1	1.北大量集センター
	11p-PB3-16	容量測定を用いたp-GaNエピへの低濃度Mg注入と共注 入影響の評価	○高島信也 ¹ , 上野 勝典 ¹ , 田中 亮 ¹ , 松山 秀昭 ¹ , 江戸 雅晴 ¹ , 嶋 紘平 ² , 小島 一信 ² , 秩父 重英 ^{2,3} , 上殿 明良 ⁴	1. 富士電機, 2. 東北大, 3. 名大 IMass, 4. 筑波大
	11p-PB3-17	GaN基板上 MOVPE p-GaN の浅い準位の評価	\bigcirc (B) 吉田 光 1 , 小木曽 達也 1 , 徳田 豊 1 , 成田 哲生 2 , 冨田 一義 2 , 加地 徹 3	1.愛知工大, 2.豊田中央研究所, 3.名古屋大学
	11p-PB3-18	ベベルメサ構造 GaN p-n接合ダイオードの電界分布シ ミュレーション	〇前田 拓也 1 , 成田 哲生 2 , 上田 博之 2 , 兼近 将一 2 , 上 杉 勉 2 , 加地 徹 3 , 木本 恒暢 1 , 堀田 昌宏 $^{1.3.4}$, 須田 2	1. 京大院工 , 2. 豊田中研 , 3. 名大 未来材料・システム 究所 , 4. 名大院工
	11p-PB3-19	基底状態酸素原子を用いた化学気相堆積法によるシリコン酸化膜の窒化物半導体応用		1. 豊技大, 2. アリエースリサーチ
	11p-PB3-20	基底状態酸素原子励起化学気相堆積法を用いた絶縁ゲート型 GaN系トランジスタの検討		1.豊技大, 2. アリエースリサーチ
	11p-PB3-21	GaN スイッチング回路の放射電磁界計測による寄生素子 抽出	○井手 利英 ^{1,2} , 大森 幹夫 ² , 清水 三聡 ¹ , 高田 徳幸 ²	1. 産総研 GaN-OIL, 2. 産総研 電子光
	11p-PB3-22	3C-SiC/Si基板上に作製したAlGaN/GaN/GaN:Cヘテロ 構造のターンオン容量回復特性	村 啓介2	
	11p-PB3-24	XPS による SiC/Si 接合界面の熱処理効果の評価 ドライエッチングによる単結晶 β -Ga ₂ O ₃ の表面粗さ評価 高出力デバイス応用に向けた GaAs/Diamond直接接合の		1.大阪市大工 1.九工大, 2.九工大マイクロ化 1. 大阪市大院T 2 佐賀大院T
	· ·	作製 局所光照射による n-AlGaAs/GaAs ヘテロ接合電界効果ト	波1	1.物材機構
		ランジスタのショットキー光電流増強効果 1対の電子チャネルと正孔チャネルを有する	○尾川 弘明¹, 大保 嵩博¹, 田浦 成幸¹, 櫛田 知義¹.²,	
		AlGaAs/GaAs/AlGaAs ヘテロ構造ダイオードの耐圧特性 口頭講演 (Oral Presentation) M121会場 (Room M121)		1 建湿烧排 0 一苯异烷 /战\ c 十七帅 = 1 80 =
:00	12a-M121-1	窒素イオン注入を用いて作製したガードリング付き縦型 Ga_2O_3 ショットキーバリアダイオード (II)	○林家弘',湯田洋平',ワンマンホイ',佐藤 万由子',竹川直',小西敬太',綿引達郎',山向幹雄',村上尚',熊谷義直',東脇正高¹	1.情通機構, 2.三菱電機(株), 3.東京農工大院工
:15		Vertical Triple-Ion-Implanted β -Ga $_2{\rm O}_3$ MOSFETs with Nitrogen-Doped Current Blocker	Yoshinao Kumagai², Masataka Higashiwaki¹	Corp.
:30		β-Ga ₂ O ₃ MOSFETs with Nitrogen-Ion-Implanted Back-Barrier	O ManHoi Wong ¹ , Ken Goto ^{2,3} , Hisashi Murakami ² , Yoshinao Kumagai ² , Masataka Higashiwaki ¹	Corp.
0:00		窒素ドープチャネルを有するノーマリーオフ β - Ga_2O_3 MOSFET Reduction of the density of defects at the SiO_3/Ga_2O_3	○上村 崇史¹, 中田 義昭¹, ワン マンホイ¹, タン ホン グフック¹, 東脇 正高¹ ○ QIN MAO¹, Eiki Suzuki¹, Atsushi Tamura¹, Koji	1. 情迪機構 1. The Univ. of Tokyo
	E 124-M121-9	MOS interface by the combination of high-temperature $\rm O_2$ annealing and low-temperature $\rm H_2$ annealing	OQIN MAO', Eiki Suzuki', Atsushi Tamura', Koji Kita ¹	1.1 ne Oniv. 01 10ky0
0:15	12a-M121-6	休憩/Break β型酸化ガリウムショットキーバリアダイオードを用い	○有馬潤¹,平林潤¹,藤田実¹,井ノロ大輔¹,佐々木公平²,倉又朗人²,山腰茂伸³,福光由章¹	
0:30		たPFC回路のスイッチング特性	公平,甚又明人,川勝戊坤 福光田目	作所

11:00	12a-M121-8	パワーデバイス応用に向けたダイヤモンド/Cu直接接合 の形成	〇梁 剣波 1 , 神田 進司 1 , 桝谷 聡士 2 , 嘉数 誠 2 , 重川 直 21	1.大阪市大院工, 2.佐賀大院工
11:15	12a-M121-9	50kW級高出力ダイスタートランジスタの開発とEV制御への応用	// +	1.香川大, 2.光半導体デバイス技研, 3.岡山大
13.8 光物	7性・発光デバイス	/ Optical properties and light-emitting devices		
		口頭講演 (Oral Presentation) S223会場 (Room S223)		
9:30		熱および光刺激ルミネッセンスによる残光性ZrO2の準安	○岩崎 謙一郎¹, 澤村 健司¹, 中西 貴之¹, 安盛 敦雄¹,	1. 東理大基工, 2.DKKK
9:45	10a-S223-2	定エネルギー準位評価 酸水素炎による強熱プロセスで合成されるモルタル上の	岩倉 章貴², 中島 靖² 木村 徹郎¹, 中村 淳²¹, ○小松 啓志¹, 齋藤 秀俊¹	1. 長岡技科大, 2. 中部キレスト
10:00		Ca-Al-O: (Eu, Nd) 系蛍光体の蛍光特性 XPS測定による CaMO ₃ (M=Ti, Zr, Sn) 中の Pr ³⁺ および		1.九工大院工
10:15		${ m Tb}^{3+}4f$ エネルギーの解析 ペロブスカイト型 ${ m LaLuO_3}$ 中にサイト選択添加された	○吉野 卓馬¹, 植田 和茂¹	1.九工大院工
		Eu³+イオンからの発光		
10:30	10a-S223-5	KSr _{1-x} Ba _x PO ₄ 混晶系に添加したEuの熱および光還元のメ カニズム	○局 付成,中村 哭,加滕 有打	1. 長岡技大, 2. 長岡高専
10:45 11:00	10a-S223-6	休憩/Break アニールによる相転移で作製した正方晶Mg ₂ TiO ₄ :Mn ⁴⁺ 深赤色蛍光体	〇洲濱 基志 1 , 葛川 和樹 1 , 上野 雄祐 1 , 井上 広夢 1 , 石 垣 π^{1} , 西原 英治 1 , 大倉 央 2 , 大観 光徳 1	1.鳥取大学, 2.メルク
11:15	10a-S223-7	生体イメージング用 Mn ⁵⁺ 付活 (Ca、Ba) リン酸塩近赤外 蛍光体		1. 鳥取大学
11:30	10a-S223-8	生体イメージング用 $Ca_{10-x}Ba_x(PO_4)_6(OH)_2$: Mn^{5+} 近赤外ナノ蛍光体		1. 鳥取大学
11:45	10a-S223-9	アップコンバージョン発光		1. 豊田中研
12:00		Tm^{3+} , Pr^{3+} 共添加近赤外超広帯域ガラス蛍光体の開発	(D) 西村 政哉¹, 高松 直輝¹, 七井 靖¹, 渕 真悟¹	1.青学大
3/11(M 9:30	on.) 9:30 - 12:15 奨 11a-S223-1	口頭講演 (Oral Presentation) S223 会場 (Room S223) Sr(Al _{0.05} Si _{0.95}) ₆ N ₈ :Eu ²⁺ の合成、結晶構造と発光特性	○吉村 文孝 ¹ , 山根 久典 ²	1.三菱ケミカル(株), 2.東北大多元研
9:45		新代Al _{0.05} 5Al _{0.95} / ₆ Avg. Eu ² から成、粘晶神道と光光行性 緑色蛍光体 b-SiAlON:Eu ²⁺ の欠陥発光とEu ²⁺ 発光特性へ の影響		
10:00	11a-S223-3	緑色蛍光体 Ba ₂ LiSi ₇ AlN ₁₂ :Eu ²⁺ の発光特性改善	○加藤 康介¹,清野 肇¹,武田 隆史²,広崎 尚登²	
10:15	11a-S223-4	ABC_3X_4 型狭帯域黄色発光酸窒化物蛍光体の結晶構造と発光特性	豊島 広朗¹, 廣津留 秀樹¹, ○舟橋 司朗², 広崎 尚登², 武田 隆史²	1.デンカ株式会社, 2.物材機構
10:30	11a-S223-5	NH ₃ 雰囲気中で合成したY ₄ Si ₂ O ₇ N ₂ :Eu ³⁺ 赤色蛍光体の EXAFS解析	〇川島 美沙¹, 中本 広大¹, 木下 顕¹, 幡中 悠一郎¹, 石 垣 雅¹, 國本 崇², 本間 徹生³, 大観 光徳¹	1.鳥取大, 2.徳島文理大, 3.高輝度光科学研究センター
10:45 11:00	11a-S223-6	休憩/Break 電子スピン共鳴法とリートベルト法による青色発光蛍光 供な、M.S.O. F. さの F. 思りの気は場合。	○宮川 勇人¹, 小野 綾音¹, 佐藤 まみ¹, 上原 一希¹, 神 垣 良昭², 岡本 慎二³	1.香川大学創造工, 2.EBL, 3.東京化学研究所
11:15	11a-S223-7	体 $Sr_3MgSi_2O_8$: Eu^{2+} の Eu 周りの配位状況 液中レーザアブレーション法により生成した $Y_3Al_5O_{12}$:	\bigcirc 小泉 洋 $^{1.5}$, 渡部 純也 2 , 杉山 伸 2 , 平林 英明 3 , 徳野	1.東芝生産技術センター, 2.根本特殊化学, 3.東芝マテ
11:30	11a-S223-8	Ce³+ 蛍光体における白色 LED の発光特性 (Y:Yb)AG における高温での anti-Stokes 発光増強	陽子¹,和田 裕之⁴,本間 哲哉⁵ ○(M2)中山 雄太¹,安藤 達人²,寺田 康太¹,原田 幸 弘¹,喜多隆¹	リアル, 4.東工大, 5.芝工大 1.神戸大学, 2.パナソニック
11:45	奨 11a-S223-9	1電子励起によるナノ秒オーダーでのシンチレータ発光 の応答時間評価法		1.日立研開
12:00		WASSR法による蛍光体の合成 口頭講演 (Oral Presentation) S223 会場 (Room S223)	○戸田 健司¹	1. 新潟大院
13:45		国頭調選(Oral Presentation) S223 云場(Room S223) 高熱伝導サブマウントを用いた量子カスケードレーザの 特性評価	○角野 努¹, 橋本 玲¹, 金子 桂¹, 斎藤 真司¹, 高木 茂 行²	1. 東芝生産技術センター, 2. 東京工科大
14:00	11p-S223-2	ZnInP量子ドットを用いた狭発光スペクトル緑色EL素子	1.4	1.NHK技研, 2.アルバック
14:15	11p-S223-3	Tm添加 AlGaN における青色発光遷移過程の光学特性評価		1. 阪大院工
14:30	11p-S223-4	ナノ粒子を出発材料とした ZnS:Cu EL 用蛍光体 - Cu 溶液中への含浸による PL, EL 特性の改善 -	○猿田 航己¹,田中 聡士¹,石垣 雅¹,大観 光徳¹	1.鳥取大
14:45	11p-S223-5	分散型ELペーパーデバイスにおける誘電損失の周波数特性	○竹田 直樹¹, 常安 翔太¹, 佐藤 利文¹	1.東京工芸大工
15:00	11p-S223-6	直流電圧下における Ca _{0.6} Sr _{0.4} Ti _{0.9} Al _{0.1} O _{3-d} :Pr薄膜の電流 密度・輝度・発光効率の時間依存性	○京免 徹¹, 高島 浩²	1.群馬大院理工, 2. 産総研
15:15	11p-S223-7	Er^{3+} 発光デバイスに向けての $\mathrm{Bi}_2\mathrm{O}_3$ ホスト薄膜の可能性	○赤沢 方省1	1.NTT デバイスイノベーションセンタ
15:30 15:45	11p-S223-8	休憩/Break 多孔質ガラス中での有機無機ペロブスカイトナノ粒子の	○篠崎 健二 1, 河野 直樹 2	1. 産総研, 2. 秋田大
16:00	奨 11p-S223-9	合成と発光特性 有機 - 無機ハイブリッドペロブスカイト多結晶薄膜形成	○古橋 知樹¹, 椿 俊太郎¹, 和田 雄二¹	1.東工大院物質理工
		におけるマイクロ波パルス照射による低温結晶化		
16:15	•	$MAPbCl_3$ ペロブスカイト単結晶における非線形光学応答の波長依存性	知子¹, 廣理 英基¹, 金光 義彦¹	
16:30	11p-S223-11	ダブルポンプ過渡吸収分光による $CsPbBr_3$ ナノ粒子のイオン化機構の解明	\bigcirc (M1) 小原 慧一¹, 中原 聡志¹, 田原 弘量¹, 湯本 郷¹, 川脇 徳久¹, 猿山 雅亮¹, 佐藤 良太¹, 寺西 利治¹, 金光 義彦¹	1. 京大化研
16:45	奨 11p-S223-12	光電子移動を利用したコア/シェル型量子ドット蛍光体 の励起子閉じ込めに関する評価	* * -	1. 阪大院工, 2. 名大院工
17:00	11p-S223-13	の励起士闭じ込めに関する評価 イオンビーム堆積法によるInP/ZnS CQD薄膜作製と キャラクタリゼーション	〇池田 侑矢 1 , 山口 浩一 1 , 坂本 克好 1 , 小林 哲 1	1. 電通大
17:15	11p-S223-14	界面活性剤を用いて分散させたSiCナノチューブからの 発光の励起密度依存性	鈴木 樹哉¹, ○石原 淳¹, 田口 富嗣², 宮島 顕祐¹	1. 東理大院理, 2. 量研
17:30	11p-S223-15	発光の励起密度依存性 シリコン酸化膜中の非晶質・ナノ結晶SiCの形成と光物 性評価	○(M1)成松伶¹,川村寿栄¹,森本一総¹,勝俣裕¹	1. 明大理工
17:45	11p-S223-16	性評価 水系および非水系反応場で合成されたL-システイン誘導 カーボンドットの蛍光特性の比較	○(D)慶長 泰周¹, 秋生 萌絵香¹, 磯 由樹¹, 磯部 徹 彦¹	1. 慶大理工
3/12(Ti	ue.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PB会場 (Room PB)	<i> </i>	
.,(10	12a-PB4-1	亜鉛を含むシリコン硫化物蛍光体膜の作製と評価	○(M1)中村 裕貴¹, 奥野 剛史¹	1.電通情基
	12a-PB4-2 12a-PB4-3	II -Y ₂ S ₄ 蛍光体の発光波長制御 温度消光を除去した BGE 光による SiAION 蛍光体の非発	○黒川 郁弥¹, 奥野 剛史¹	1. 電通大情報理工 1. 埼玉大院理工
		光再結合準位測定		7737 1 44 49 29
	12a-PB4-4 12a-PB4-5	青色励起可能な赤色発光リン酸塩蛍光体の発光特性 希土類賦活銅酸化物蛍光体の作製と発光特性	○ (M1) 久島 大輝¹, 奥野 剛史¹ ○山本 篤¹, 有江 奈緒子¹, 遠藤 奈津実¹, 般若 大地¹, 深田 晴己¹, 敦史 山口¹	1. 電通大基盤理工 1. 金沢工大

	12a-PB4-6	ZnMoO ₄ : Eu ³⁺ と ZnWO ₄ の蛍光特性に対するインターカ レーションの影響	○伊井 大介¹, 佐俣 博章¹	1. 神戸大海事
	12a-PB4-7	ボールミルを用いたBaMoO ₄ :Eu ³⁺ の作製	○(M1) 柿野 良太郎¹, 奥野 剛史¹	1. 電通大基盤理工
	12a-PB4-8	MOD法で作製された $BaTiO_3$: Yb^{3+} , Er^{3+} のアップコンバージョン発光	○野中 俊宏¹, 番 貴彦², 山本 伸一²	1.豊田高専, 2.龍谷大理工
	12a-PB4-9	$Y_{0.90-x}$ Yb _x Er _{0.10} BaZn ₃ AlO ₇ の波長変換コンポジット膜の作製と評価	○埴岡 正史¹, 佐俣 博章¹	1. 神戸大海事
	12a-PB4-10	YVO ₄ :Yb,Erナノ蛍光体のアップコンバージョン発光の粒 径依存性	廣澤 克儀¹, ○蔦 将哉¹, 加藤 有行¹	1. 長岡技大
	12a-PB4-11	ディップコート法により作製した Y_2WO_6 ナノロッド配向	金井 亮太 1 , 五十嵐 健太 1 , \bigcirc 加藤 有行 1	1. 長岡技科大工
	12a-PB4-12	膜の偏光特性 (Ca _x Sr _{1-x})Ga ₂ S ₄ :Eu, Er 蛍光体に対する残光特性の母体組	根本 泰宏¹,河上 璃久¹,○加藤 有行¹	1. 長岡技科大工
	12a-PB4-13	成依存性 Pr , Al 共添加 $CaTiO_3$ 単結晶の残光特性における添加濃度	○(M2)五十嵐 綾香¹,七井 靖²,上岡 隼人¹	1. 日大文理, 2. 青学大理工
	12a-PB4-14	依存性 CaAl ₂ O ₄ :M, Ga ³⁺ (M=Ce ³⁺ , Eu ²⁺) 蛍光体の発光特性	○(M1)渡部 勇太¹, 奥野 剛史¹	1. 電通大基盤理工
		X線照射したサマリウム添加ストロンチウムホウリン酸 蛍光体の発光特性		1.宮崎大工, 2.宮崎大産地連セ
	12a-PB4-16	ZrO ₂ の残光特性に及ぼす結晶構造と欠陥の影響	○(M1)澤村 健司¹, 岩崎 謙一郎¹, 岩倉 章貴², 中島 靖², 中西 貴之¹, 安盛 敦雄¹	1. 東理大基工, 2. 第一稀元素化学工業
	12a-PB4-17	単斜晶 ${ m ZrO_2}$ の励起温度とキャリア蓄積過程の調査	\bigcirc (M2) 吉川 晃平 1 , 岩崎 謙一郎 1 , 岩倉 章貴 2 , 中島	1. 東理大基工, 2. 第一稀元素化学
	12a-PB4-18	Zn3(PO4)2:Mn2+,Ga3+ の熱蛍光特性と燐光減衰曲線の	靖², 中西 貴之¹, 安盛 敦雄¹ ○富田 一光¹, 奥野 剛史¹	1. 電気通信大学
	12a-PB4-19	評価 無機ペロブスカイトナノ粒子の過渡吸収測定によるアセ	○(M1)森 滉騎¹, 古部 昭広¹, Chen Shih-Hsuan²,	1. 徳島大学院工, 2. 台湾科技大
	122-PR4-20	トン処理の効果と劣化機構の検討 DNA機能化量子ドットの電気泳動分離と一次元配列構造	Chen Liang-Yih ² ○林田 站樹 ¹ 佐々野 晃輔 ¹ 小田 騰 ¹ 麻古 保 ²	1. 九工大工, 2. 愛媛大院理工
		の作製		
		チューナブルなファブリー・ペロー型光共振器中の二次 元半導体の光スペクトル	池沢 道男 ¹	
		CaF ₂ /Siヘテロ構造を用いた近赤外波長量子カスケード レーザの理論解析	○(M1)鄭 源宰¹, 大野 綜一郎¹, 劉 龍¹, 渡辺 正裕¹	1.東工大工学院
		InAs QD/wetting layer/GaAs構造における SAW 誘起 PL 特性 -wettinglayer の特性を中心として	○山沢 弘人¹, 松末 俊夫¹, 坂東 弘之¹	1.千葉大学融合理工
		npound solar cells ポスター講演 (Poster Presentation) PB会場 (Room PB)		
3/10(3)	10a-PB3-1	III-V/Si 多接合太陽電池の界面特性改善に向けたパター	○(M1)菱田 貴史¹, 梁 剣波¹, 重川 直輝¹	1.大阪市大院工
	10a-PB3-2	ニング金属中間層 面内超高密度InAs量子ドット層を導入した量子ドット太		1.電通大
	奨 10a-PB3-3	陽電池の集光特性(2) Optical Properties of Cr doped CuGaS ₂ Thin Films	曽我部 東馬¹, 山口 浩一¹ ○(M1)Myeongok Kim¹, Nazmul Ahsan², Hiroya	1.Grad. Arts and Sci. UTokyo, 2.RCAST. UTokyo, 3.
			Matsubayashi³, Zacharie Li Kao Jehl², Kalainathan Sivaperuman⁴, Yoshitaka Okada².³	Elec. Eng. UTokyo, 4.VIT Univ.
	10a-PB3-4	光電気化学エネルギー変換への応用を目的とする CuGaSe ² バルク結晶の合成	○(B)藤田 わかば ¹ ,川口 誉人 ¹ ,竹内 麻奈人 ² ,吉野 賢二 ² ,野瀬 嘉太郎 ³ ,原田 隆史 ⁴ ,池田 茂 ¹	1.甲南大理工, 2. 宮崎大工, 3. 京都大院工, 4. 大阪大太陽エネ研
	E 10a-PB3-5	Investigation of performance limiting key parameters in CuIn _{1-x} Ga _x Se ₂ photocathodes	Vikas Nandal¹, ○ Kazuhiko Seki¹, Hiroyuki Kobayashi², Kazunari Domen²	1.AIST, 2.Tokyo Univ.
	10a-PB3-6	CIGS 薄膜太陽電池セルの KF-PDT が PID に与える影響	○ (DC) 山口 世力¹, 西永 慈郎², 柴田 肇², 大平 圭 介¹. 増田 淳²	1.北陸先端大, 2.産総研
	10a-PB3-7	溶液塗布法による Cu ₂ Sn _{1-x} Ge _x S ₃ 薄膜の作製	○山本 恭平¹, 田中 久仁彦¹	1. 長岡技大
	10a-PB3-8	微粒子塗布法によるAg ₈ SnS ₆ 光電極の作製と評価Ⅱ 硫化水素雰囲気下でのアニール効果	○(M1)LENGUYEN GIAPHUC¹, 田中 久仁彦¹	1.長岡技大
	10a-PB3-9	硫化法による (Cu,Ag) ₂ SnS ₃ 薄膜太陽電池の作製条件の検討	〇中嶋 崇喜 1 , 田中 大地 1 , 山口 利幸 1 , 荒木 秀明 2 , 片桐 裕則 2 , 笹野 順司 3 , 伊崎 昌伸 3	1.和歌山高専, 2.長岡高専, 3.豊橋技科大
	10a-PB3-10	熱処理プロセスによる $Cu_2ZnSnSe_4$ 薄膜作製におけるプリカーサ構造の影響	○中嶋 崇喜 ¹ , 浦山 凌芽 ¹ , 山口 利幸 ¹ , 笹野 順司 ² , 伊 崎 昌伸 ²	1. 和歌山高専, 2. 豊橋技科大
	10a-PB3-11	CZTS薄膜の鉄イオン添加硫酸水溶液での表面処理	○宮崎 尚¹, 青野 祐美², 岸村 浩明¹, 遠藤 祐貴³, 神保 和夫³, 片桐 裕則³	1.防大材料, 2.鹿児島大電気電子, 3.長岡高専
	10a-PB3-12	スピンコート Cu-Zn-Sn プリカーサ膜と硫化水素で作製 した Cu ₂ ZnSnS ₄ 太陽電池の変換効率		1.中部大,2.津山高専,3.長岡高専,4.大阪大,5.甲南大, 6.宮崎大
	10a-PB3-13	テラヘルツ分光法による Cu-Zn-Sn-S(CZTS) および Cu-Sn-S(CTS) の特性調査	○友野 \mathcal{F} 也 ¹ ,阿部 \mathcal{F} 音 ¹ ,藤田 俊樹 ² ,佐々木 哲郎 ³ ,森谷 克彦 ¹ ,田中 久仁彦 ² ,安田 新 ¹	
	10a-PB3-14	CuBr _{1-x} I _x /ZnOナノロッド透明pn接合に微細構造が与え		1.長岡技大
3/10(\$11	n.) 13:15 - 17·30	る効果 口頭講演 (Oral Presentation) W321 会場 (Room W321)		
13:15		Effect of annealing on CsF-treated CIGS thin film and	○Ishwor Khatri¹, Tzu-Ying Lin¹, Mutsumi Sugiyma¹, Tokio Nakada¹	1.TUS
13:30	10p-W321-2	solar cell Epitaxial Cu(In, Ga)Se ₂ 結晶成長におけるCu/III族比依	O西永 慈郎¹, 菅谷 武芳¹, 柴田 肇¹, 仁木 栄¹	1.産総研
13:45	10p-W321-3	存性 CdS/エピタキシャル Cu(In,Ga)Se2界面の電子構造評価	○(M1)谷川 昂平¹,岩本 悠矢¹,髙木 佑誠¹,西園 由	1. 鹿児島大, 2. 産総研
14:00	10p-W321-4	Se 照射プロセスによる Cu(In,Ga)Se ₂ 表面 Cu-Se 相の変化	*	1.Tokyo tech.
14:15	10p-W321-5	Ga/(Ga+In)比が三段階法のCu過剰段階に与える影響	Yamada Akira 1 〇小林 拓己 1 ,下山 達大 2 ,松尾 拳 2 ,中田 和吉 1 ,山田	1.東工大工学院, 2.東工大工
14:30	E 10p-W321-6	Effect of Annealing Temperature in H ₂ S-free Sulfurization	明 ¹ ○ (M1)Dwinanri Egyna ¹ , Kazuyoshi Nakada ¹ , Akira	1.Tokyo Tech
14:45	10p-W321-7	Method for CIS Fabrication 2端子薄膜タンデム太陽電池応用に向けたp型CuIによ	Yamada¹ 千脇 那菜¹, ○雷 宇晨¹, 中田 和吉¹, 山田 明¹	1.東工大
15:00		る貼り合わせ手法の開発 CIGS薄膜太陽電池における暗状態でのPIDおよび光照	〇櫻井 啓一郎 1 , 冨田 仁 2 , シュミッツ ダーシャン 2 ,	
15:15	10p 11021 0	射による回復現象 休憩/Break	徳田 修二 ² ,小川 錦一 ¹ ,柴田 肇 ¹ ,増田 淳 ¹	
15:15	10p-W321-9	サブストレート型 CdTe 太陽電池における CdS 成膜後の	○岡本 保¹, 林 優輔¹, 渡辺 大智¹	1.木更津高專
15:45	10p-W321-10	熱処理の効果 CZTSe太陽電池への各種アルカリ添加効果		1.産総研
			栄1	

16:00	10p-W321-11	Cu ₂ Zn(Sn,Ge)Se ₄ 表面およびCdS/Cu ₂ Zn(Sn,Ge)Se ₄ ヘテロ界面の電子状態評価	〇永井 武彦¹, 岩本 悠矢², 谷川 昂平², 濱田 博也², 太田 信義², 反保 衆志¹, Kim Shinho¹, 柴田 肇¹, 松原 浩司¹, 仁木 栄¹, 寺田 教男²	1. 産総研, 2. 鹿児島大
16:15	10p-W321-12	SnS薄膜の組成比がSnS太陽電池の変換効率に与える影		1. 東理大 理工, 2. 東理大 総研
16:30	10p-W321-13	管 SnS薄膜のSnS雰囲気熱処理が太陽電池特性に与える影 響	〇船津 岳伸 1 , 高江洲 貴斗 1 , 任介 太一 1 , 杉山 睦 $^{1.2}$	1. 東理大 理工, 2. 東理大 総研
16:45 17:00		ョ ミストCVD法によるCu ₂ SnS ₃ 薄膜の作製 フォトルミネッセンス法を用いた(Na _x Cu _{1-x}) _y SnS ₃ の特性	 ○木幡 真緒¹, 吉久 史貴¹, 田中 久仁彦¹ ○前田 隆宏¹, 荒木 秀明², 田中 久仁彦¹ 	1.長岡技大 1.長岡技大, 2.長岡高専
17:15	10p-W321-16	評価 II SPS法で作製したFeS2の電気伝導特性	○(B) 金子 駿也¹, 山口 博之¹, 長南 安紀¹, 小谷 光 司¹, 小宮山 崇夫¹, 杉山 重彰², 菅原 靖², 関根 崇²	1.秋田県立大学システム, 2.秋田県産業技術センター
3/11(N 9:30		口頭講演 (Oral Presentation) W321会場 (Room W321) 量子ドット導入による赤外太陽電池の吸収波長領域拡大		1. 千葉工大, 2. 情報通信研究機構
9:45	11a-W321-2	2段階フォトンアップコンバージョン太陽電池における	○絹川 典志¹,朝日 重雄¹,喜多 隆¹	1.神戸大院工
10:00	11a-W321-3	輻射再結合と光電流の相反性 正孔のアップコンバージョンを利用したフォトンアップ	○朝日 重雄¹, 柴村 和樹¹, 草木 和輝¹, 喜多 隆¹	1.神戸大院工
10:15	11a-W321-4	コンバージョン太陽電池の基礎検討 高倍集光下における GaSb/GaAs 量子ナノ構造太陽電池の 特性	○樗木 悠亮 ^{1,2} , 庄司 靖 ³ , 宮下 直也 ² , 何 軼倫 ^{1,2} , 岡田 至崇 ^{1,2}	1. 東大院工, 2. 東大先端研, 3. 産総研
10:30	11a-W321-5	熱電変換素子を用いた熱回収型太陽電池の設計と検証実 験		1. 産総研, 2. 東大物性研, 3. OPERANDO-OIL
10:45 11:00	112-W321-6	休憩/Break InAs/GaAs量子ドット超格子を用いたホットキャリア型	○	1. 神戸大院工
11:15		太陽電池における開放電圧の向上 ホットキャリア太陽電池における中間バンド効果	○竹田 康彦 ¹	1. 豊田中研
11:30		ボタトママック人勝电池におりる中间パントが未 液相法で作製したPbS量子ドット/ペロブスカイト中間 バンド型太陽電池 − (1)設計と作製		
11:45	11a-W321-9	液相法で作製した PbS量子ドット/ベロブスカイト中間 バンド型太陽電池 - (2) 特性評価	〇玉置 亮 ¹, 細川 浩司 ², 澤田 拓也 ², 小此木 明徳 ², 佐 藤 治之 ², 尾込 裕平 ² ³, 早瀬 修二 ³, 岡田 至崇 ¹, 矢野 聡宏 ²	1. 東大先端研, 2. 花王, 3. 九工大生命体工
3/11(M 13:45		口頭講演 (Oral Presentation) W321 会場 (Room W321) 「講演奨励賞受賞記念講演」	〇庄司 靖 ¹ , 大島 隆治 ¹ , 牧田 紀久夫 ¹ , 生方 映徳 ² , 菅	1. 産総研, 2. 大陽日酸
14:00	11p-W321-2	HVPE法におけるInGaP結晶の成長速度の高速化 HVPE法によるトンネル接合に向けた高濃度ドーピング の検討	谷 武芳¹ ○大島 隆治¹, 庄司 靖¹, 牧田 紀久夫¹, 生方 映德², 菅 谷 武芳¹	1. 産総研, 2. 大陽日酸
14:15	E 11p-W321-3	High growth rate MOVPE: InGaP growth for low-cost PV application	** * **	
14:30	11p-W321-4	多光子励起フォトルミネッセンスによる格子不整合系逆 成長 InGaAs 単一接合太陽電池のバッファ層内における 転位の観察		1.宇宙機構, 2.東北大金研, 3.シャーブ(株), 4.産総研
14:45	11p-W321-5	Templated-Liquid-Phase (TLP) 法によるInP成膜におけるキャップ・下地各層の潜在的機能の解明	○(PC) 勝部 涼司¹, Yang Yuming¹, 野瀬 嘉太郎¹	1.京大院工
15:00	11p-W321-6	フォトン・フォトキャリア直交型マルチストライプ半導 体太陽電池に向けた離散的併進対称性を有する新しい非 対称導波路構造	○石橋 晃¹, 黄倉 侑人¹, 澤村 信雄¹	1. 北海道大学 電子科学研究所
15:15 15:30	挼 11n-W321-7	休憩/Break 界面に波長変換材料を担持した半導体接合技術の開発	○岸部 航大¹,平田 桑一郎¹,田辺 克明¹	1.京大工
15:45 16:00	11p-W321-8	ハイドロジェルを介した半導体接合技術の開発	○岸部 航大¹, 田辺 克明¹	1.京大工 1.京大工
		直接半導体ウェハ接合法によるオーミック特性をもつ InP/Si界面の形成	○井上 諒一¹, 田辺 克明¹	
16:15	11p-W321-10	非クリーンルーム環境における直接半導体ウェハ接合法 の検討	○井上 諒一¹, 竹原 凪人¹, 田辺 克明¹	1.京大工
16:30	11p-W321-11	液相合成 ZnO 透明導電膜を介した半導体接合技術の開発	〇山下 達之 1 , 平田 桑一朗 1 , 岸部 航大 1 , 井上 諒一 1 , 田辺 克明 1	1.京大工
16:45	11p-W321-12	表面活性化接合による GaAs//InGaAs 2接合太陽電池の 開発	○渡辺 健太郎¹, 福谷 貴史², ソダーバンル ハッサネット¹, 中野 義昭¹², 杉山 正和¹²²	1. 東大先端研, 2. 東大工
17:00	11p-W321-13	GaAs//Si系三端子型スマートスタック多接合太陽電池の 検討		1. 産総研, 2. 長岡技科大
17:15	奨 11p-W321-14	三端子スマートスタック多接合太陽電池におけるサブセ ル面積比の影響		1. 長岡技科大, 2. 産総研
	晶工学 / Crysta	al Engineering	八,日节风刀,山山开	
	ジウムのプログラム(レク結晶成長 / Bulk	はプログラム冒頭にございます。 crystal growth		
3/9(S 9:00	9a-S422-1	口頭講演 (Oral Presentation) S422 会場 (Room S422) 三次元マイクロ引き下げ法によるスプリング形状サファイア単結晶の育成技術開発		1. 東北大NICHe, 2. 東北大金研, 3.Piezo Studio, 4. 山形大理, 5.C&A
9:15	9a-S422-2	一方向凝固で作製した Co-Cr-Mo 合金線材の組成分布と 機械特性	『 (M1) 阿部 翔希¹, 横田 有為², 二瓶 貴之³, 黒澤 俊 介²⁴, 山路 晃広¹, 吉野 将生¹, 大橋 雄二², 鎌田 圭²³, 吉川 彰¹²²³	1. 東北大金研, 2. 東北大 NICHe, 3.C&A, 4. 山形大理
9:30	9a-S422-3	Cz法による1インチ径 Li(Ca _{0.73} Sr _{0.25} Eu _{0.02})AlF ₆ 中性子シ ンチレータ	○折口和也 1 ,横田有為 2 ,吉野将生 1 ,山路晃広 1 ,大橋雄 $^{-2}$,黒澤俊介 23 ,鎌田圭 2,4 ,吉川彰 1,2,4	1. 東北大金研, 2. 東北大NICHe, 3. 山形大理, 4.C&A
9:45	9a-S422-4	単結晶の育成とシンチレーション特性 方向感度シンチレータ開発に向けた Mg 置換 $ZnWO_4$ 結晶 の育成	○山路晃広¹,黒澤俊介²³,堀合毅彦¹,関谷洋之⁴, ピーダーセン珠杏⁴,吉野将生¹,大橋雄二²,横田有 為²,鎌田圭²,吉川彰¹¹²	1. 東北大金研, 2. 東北大NICHe, 3. 山形大, 4. 東大
10:00	E 9a-S422-5	2-inch size Czochralski growth and scintillation properties of Mo co-doped Ce: $Gd_{3}Ga_{3}Al_{2}O_{12}\left(GAGG\right)$	○ KYOUNGJIN KIM¹, Kei Kamada².³, Yasuhiro Shoji³.¹, Masao Yoshino¹, Vladimir V. Kochurikhin³, Akihiro Yamaji¹, Shunsuke Kurosawa².⁴, Yuui	1.IMR, Tohoku Univ., 2.NICHe, Tohoku Univ., 3.C&A Corp., 4.Yamagata Univ.
10:15	9a-S422-6	非線形光学結晶 CsLiB ₆ O ₁₀ の高品質・大型化の検討	Yokota ² , Yuji Ohashi ² , Akira Yoshikawa ^{1, 2, 3} ○安藤 豪 ¹ , 高橋 義典 ¹ , 村井 良太 ¹ , 加藤 康作 ¹ , 中嶋 誠 ¹ , 今西 正幸 ² , 森 勇介 ² , 吉村 政志 ¹	1. 阪大レーザー研, 2. 阪大院工

10:30	奨 9a-S422-7	Ga/Al比がCa ₃ Ta(Ga,Al) ₃ Si ₂ O ₁₄ の融液構造と結晶成長に 与える影響	○(M2)本田 雄生¹,新家 寛正¹,野澤 純¹,岡田 純平¹, 宇田 聡¹	1. 東北大金研
10:45	9a-S422-8	サスる影音 LiTaO₃結晶中の小傾角粒界に並ぶ転位の解析(Ⅱ)		1.住金鉱, 2.東北大 金研
11:00	E 9a-S422-9	Study on the electrical relationship at the interface		1.IMR, Tohoku Univ., 2.JAXA
		between LN melt and LN crystal	Satoshi Uda ¹	
11:15	9a-S422-10	垂直ブリッジマン (VB) 法による Fe-Ga 単結晶の育成	〇川村 祥太郎 1 ,泉 聖志 1 ,岡野 勝彦 1 ,西村 英一郎 1 ,太子 敏則 2 ,干川 圭吾 2	1.住友金属鉱山, 2.信州大学
11:30	9a-S422-11	直径 4 インチの Fe-Ga 合金単結晶開発と Fe-Ga 磁歪発電 の結晶方位依存性		1.東北大多元研, 2.(株)福田結晶研, 3.東北大金研, 4.阪大工
11:45	9a-S422-12			1. 東北大 NICHe, 2.C&A, 3. 東北大金研, 4. 東北大医工,
11110	74 0122 12	評価	野 敏幸 ⁵ , 庄子 育宏 ² , 山路 晃弘 ³ , 吉野 将生 ³ , 黒澤 俊	
12:00	9a-S422-13	CZ法による直径100mm径金属Ni単結晶の育成・加工と評価		1. (㈱) 福田結晶研, 2. 桂オプティクス, 3. 東北大金研
3/9(9	Sat) 13:30 - 18:00	口頭講演 (Oral Presentation) S422 会場 (Room S422)	田 承主,松岡 陸心,川久 边,杉田 和正	
13:30	招 9p-S422-1	「15. 結晶工学 分科內招待講演」	〇柿本 浩一 ¹	1. 九大応力研
	,	結晶成長における実験とシミュレーションのシナジー効果:		
14:15	招 9p-S422-2	欠陥をどこまで予測可能か 「15. 結晶工学 分科内招待講演」	○島村 清史¹, ガルシア ビジョラ¹	1.物材機構
14.13	1D 3P-3422-2	機能性単結晶材料の開発を目指して	○面付 消火 、 ガルン) こ フョ)	1.1201/12020円
15:00	9p-S422-3	1 Si融液から切り離した結晶中の点欠陥分布の観察(1)	○阿部 孝夫¹, 高橋 徽¹, 白井 光雲²	1.信越半導体, 2. 阪大産研
15:15	9p-S422-4	- DLTSによる各優位領域の空孔濃度 - Si融液からの切り離しによる点欠陥分布の観察(2) - 冷	○阿部 孝夫¹, 高橋 徽¹, 白井 光雲²	1. 信越半導体, 2. 阪大産研
		却過程で発生する格子間原子の分布 -		
15:30	9p-S422-5	TLZ法によるシリコンゲルマニウム結晶育成におけるB 濃度制御方法の検討	川上 こゆき ', 小川 晃司 ', 菊地 理佳 ', 荒井 康智 ', ○ 太子 敏則 ¹	1.信大工, 2.JAXA
15:45		休憩/Break		
16:00	9p-S422-6	Flux-Film-Coated Na フラックス LPE(FFC-LPE)法による GaN結晶成長	○川村 史朗¹, 谷口 尚¹	1.物材機構
16:15	9p-S422-7	In フラックスを用いた温度差法による GaSe 結晶の低温	○(D)佐藤陽平¹,唐超¹,渡辺克也¹,大崎淳也¹,山	1. 東北大工, 2. 東北大環
16:30	E 9p-S422-8	溶液成長 Low temperature liquid phase growth and terahertz	本卓也², 田邉 匡生¹, 小山 裕¹ ○ Chao Tang¹, Yohei Sato¹, Katsuya Watanabe¹,	1.Tohoku Univ.
		optical properties of 2D chalcogenide InSe crystal	Junya Osaki ¹ , Tadao Tanabe ¹ , Yutaka Oyama ¹	
16:45	9p-S422-9	数値解析を用いた国際宇宙ステーション内InGaSb結晶	○岡野 泰則¹, JIN Xin¹, 山本 卓也², 関本 敦¹, 早川 泰	1. 阪大基礎工, 2. 東北大環境, 3. 静大電研, 4. JAXA
17:00	9p-S422-10	成長条件の設定と拡散係数の算出 逆解析による RF-TSSG 法による SiC 結晶成長時のるつ	弘 ³ , 稲富 裕光 ⁴ ○岡野 泰則 ¹ , 堀内 鷹之 ¹ , 関本 敦 ¹ , 宇治原 徹 ²	1. 阪大基礎工, 2. 名大院工
17.00	7p-3422-10	返済所による KI-1330 仏による SIC 相間成長時のるり ぼ温度最適化	○问封 來於,加口 鳥之,因本 扒, 丁伯亦 llk	1. 放入圣妮工, 2. 石入凡工
17:15	9p-S422-11	高温ガス成長法による高速レートでの ϕ 4 "長尺 4H-SiC 結晶の成長	○徳田 雄一郎¹, 久野 裕也¹, 上東 秀幸¹, 岡本 武志¹, 神田 貴裕¹, 大矢 信之¹, 星乃 紀博², 鎌田 功穂², 土田	1. デンソー, 2. 電力中央研究所
			秀一2	
17:30	9p-S422-12	2 元系コロイド結晶の成長メカニズム	○野澤 純¹,郭 素霞¹,新家 寛正¹,岡田 純平¹,宇田 聡¹	1.東北大金研
17:45	E 9p-S422-13	The effect of substrate on nucleation rate of two-	○ (D)Suxia Guo¹, Jun Nozawa¹, Hiromasa Niinomi¹,	1.IMR, Tohoku Univ.
15 2 II	VI 族純貝 tr トバター	dimensional colloidal crystals :系結晶 / II-VI and related compounds	Junpei Okada ¹ , Satoshi Uda ¹	
		口頭講演 (Oral Presentation) W922会場 (Room W922)		
9:00			○ c→ snmv sv 1 + 1 + 1 + 1 = 1.2	1. 早大先進, 2. 早大材研
	奨 10a-W922-1	スパッタ法で作製した Ag_2 Te 中間層を用いた $AgGaTe_2$ 薄	〇手留野 彩 ", 小林 正和 "	1. 千八九连, 2. 千八州明
9:15		膜の作製 スピンコート Cu-Zn-Sn プリカーサ膜とジメチルセレン	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田	
	10a-W922-2	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレン を用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と	○田橋 正浩 1 , 高橋 誠 1 , 後藤 英雄 1 , 原田 隆史 2 , 池田 茂 3 , 吉野 賢二 4 ○鳥居 稜 1 , 森 拓郎 1 , 田村 怜也 1 , 東良 悠喜 1 , 安形 保	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大
9:15 9:30	10a-W922-2 10a-W922-3	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレン を用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [1]	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大
9:15 9:30 9:45	10a-W922-2 10a-W922-3 10a-W922-4	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II]	○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学
9:15 9:30 9:45	10a-W922-2 10a-W922-3 10a-W922-4	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレン を用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [1] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と	○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学
9:15 9:30 9:45	10a-W922-2 10a-W922-3 10a-W922-4 獎E 10a-W922-5	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE 法による (211) Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [I] MOVPE 法による (211) Si 基板上の n-CdTe 層の厚膜化と の高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存	 ○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) HyoChang Jang⁴, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其 	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ.
9:15 9:30 9:45 10:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE 法による (211) Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [I] MOVPE 法による (211) Si 基板上の n-CdTe 層の厚膜化と の高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存 性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE	 ○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺徐介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,田中徹¹ ○三島聖也¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根 	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工
9:15 9:30 9:45 10:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と の高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存 性	 ○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎³,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺拾介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,田中徹¹ ○三島聖也¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根啓輔²,若原昭浩²,田中徹¹ 	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工
9:15 9:30 9:45 10:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE 法による (211) Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [1] MOVPE 法による (211) Si 基板上の n-CdTe 層の厚膜化と の高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存 性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長	 ○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎³,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺拾介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,田中徹¹ ○三島聖也¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根啓輔²,若原昭浩²,田中徹¹ 	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大
9:15 9:30 9:45 10:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7	膜の作製 スピンコートCu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化と 高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化と の高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存 性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダ	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) Hyo Chang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 田中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中 川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アバランシェ・フォトダイオードの開発	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 由中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中 川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東 孝止¹, 市野 邦男¹, 赤岩 和明¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドーブ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe系有機一無機ハイブリッド紫外アバランシェ・フォトダイオードの開発	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 由中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中 川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東 孝止¹, 市野 邦男¹, 赤岩 和明¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アバランシェ・フォトダイオードの開発	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 由中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中 川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東 孝止¹, 市野 邦男¹, 赤岩 和明¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [I] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBB による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた P ドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe系有機一無機ハイブリッド紫外アバランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎 / Ill-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) Nおよび Biを導入した GaAsナノワイヤの XRD 測定 Si及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワ	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎², 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 徐介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其 新¹, 田中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○市川 悠喜¹, 田中 畫汰¹, 藤井 裕太², 河原 拓朗¹, 中 川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東 孝止¹, 市野 邦男¹, 赤岩 和明¹ ₅, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹	1.中部大, 2.大阪大, 3.甲南大, 4.宮崎大 1.名古屋工業大学 1.名古屋工業大学 1.Saga Univ. 1.佐賀大院工 1.佐賀大, 2.豊橋技科大 1.上智大理工 1.鳥取大院工, 2.鳥取大工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 III 9:30	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9 -V族エピタキシャル Mon.) 9:30 - 12:15 11a-S422-1 11a-S422-2	膜の作製 スピンコートCu-Zn-Snプリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe層の厚膜化と高電子密度化に関する検討 [1] MOVPE法による (211)Si 基板上の n-CdTe層の厚膜化との高電子密度化に関する検討 [I] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) NおよびBiを導入した GaAsナノワイヤの XRD 測定 Si及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) Hyo Chang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○百島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東 孝止¹, 市野 邦男¹, 赤岩 和明¹ 5, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹ ○藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 9:30 9:45	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-9 10a-W922-9 10a-W922-9 11a-S422-1 11a-S422-1 11a-S422-2	膜の作製 スピンコートCu-Zn-Snプリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe層の厚膜化との高電子密度化に関する検討 [I] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎 / Ill-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) NおよびBiを導入した GaAsナノワイヤの XRD 測定 Si及び SOI上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜¹, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) Hyo Chang Jang², Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 田中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東孝止¹, 市野 邦男¹, 赤岩 和明¹ □, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹ ○藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 愛媛大工 1. 早大理工, 2. 一関高専
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 III 3/11(9:30 9:45	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-9 10a-W922-9 10a-W922-9 11a-S422-1 11a-S422-1 11a-S422-2	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [II] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アバランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎 / III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) N および Bi を導入した GaAsナノワイヤの XRD 測定 Si 及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAsNにおける電子活性化エネルギーの Si 不純物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証	 ○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺裕介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根 啓輔²,若原昭浩²,田中徹¹ ○市川悠喜¹,田中 徹¹ ○市川悠喜¹,田中 盘太¹,藤井裕太²,河原拓朗¹,中川和樹¹,吉田健太郎²,陈非常太紀,笠田洋文¹,安東孝止¹,市野邦男¹,赤岩和明¹ 5. Fundamentals of epitaxy ○美田貴也¹,藤原亮¹,行宗詳規¹,石川史太郎¹ ○塚崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○塚崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○源常栄人¹,山根啓輔¹,二村綾¹,今泉充²,若原昭浩¹ 	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 愛媛大工 1. 早大理工, 2. 一関高専 1. 豊橋技科大, 2. 宇宙機構
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 III 3/11(9:30 9:45	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-9 10a-W922-9 10a-W922-9 11a-S422-1 11a-S422-1 11a-S422-2	膜の作製 スピンコートCu-Zn-Snブリカーサ膜とジメチルセレンを用いたCu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による(211)Si基板上のn-CdTe層の厚膜化と高電子密度化に関する検討[I] MOVPE法による(211)Si基板上のn-CdTe層の厚膜化と高電子密度化に関する検討[II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBEによるClドープZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いたPドープZnTe薄膜のMBE成長 InP基板上ZnCdSe/MgZnCdSe/MgZnSeTe黄色レーザダイオード構造の検討 高利得ZnSe系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals・口頭講演(Oral Presentation) S422 会場(Room S422) NおよびBiを導入したGaAsナノワイヤのXRD調定 Si及びSOI上のGaAs/GaNAsコア・マルチシェルナノワイヤの成長 SiドープGaAsNにおける電子活性化エネルギーのSi不純物濃度依存性	 ○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺裕介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根 啓輔²,若原昭浩²,田中徹¹ ○市川悠喜¹,田中 徹¹ ○市川悠喜¹,田中 盘太¹,藤井裕太²,河原拓朗¹,中川和樹¹,吉田健太郎²,陈非常太紀,笠田洋文¹,安東孝止¹,市野邦男¹,赤岩和明¹ 5. Fundamentals of epitaxy ○美田貴也¹,藤原亮¹,行宗詳規¹,石川史太郎¹ ○塚崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○塚崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○源常栄人¹,山根啓輔¹,二村綾¹,今泉充²,若原昭浩¹ 	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 愛媛大工 1. 早大理工, 2. 一関高専 1. 豊橋技科大, 2. 宇宙機構
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 9:30 9:45 10:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9 -V族エピタキシャル Mon.) 9:30 - 12:15 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5	膜の作製 スピンコートCu-Zn-Snプリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe層の厚膜化との高電子密度化に関する検討 [I] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) NおよびBiを導入した GaAsナノワイヤの XRD 測定 Si及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAsNにおける電子活性化エネルギーの Si 不純物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証 モノリシック III-V/Si 多接合太陽電池に向けた GaAsPNセルの作製 休憩/Break	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田隆史², 池田茂³, 吉野賢二⁴ ○鳥居 稜, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保則¹, ニラウラマダン¹, 安田 和人¹ ○(M2) Hyo Chang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○百島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○前田 慶治¹, 石井 健太¹, 小林 穂貴¹, 野村 一郎¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東孝止¹, 市野邦男¹, 赤岩 和明¹ 3, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹ ○塚崎 貴司¹, 日吉 連¹, 藤田 実樹², 牧本 俊樹¹ ○源常 栄人¹, 山根 啓輔¹, 二村 綾¹, 今泉 充², 若原 昭浩¹ ○(M1C)高地 俊貴¹, 山根 啓輔¹, 彦坂 宗¹, 藤本 純弥¹, 関口 寛人¹, 岡田 浩¹, 若原 昭浩¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 愛媛大工 1. 受媛大工 1. 見相大理工, 2. 一関高専 1. 豊橋技科大, 2. 宇宙機構 1. 豊橋技科大
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 III 9:30 9:45 10:00 10:15 10:30 10:45 11:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9 -V族エピタキシャル Mon.) 9:30 - 12:15 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5 11a-S422-6	膜の作製 スピンコートCu-Zn-Snプリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) Nおよび Biを導入した GaAsナノワイヤの XRD 測定 Si及び SOI上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAsNにおける電子活性化エネルギーの Si 不納 物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証 モノリシック III-V/Si 多接合太陽電池に向けた GaAsPNセルの作製 休憩/Break ALE 法で意図的に N分布を変化させた GaAs N薄膜の電気特性の測定温度依存性	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田 隆史², 池田 茂³, 吉野 賢二⁴ ○鳥居 稜, 森 拓郎¹, 田村 怜也¹, 東良 悠喜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村 怜也¹, 鳥居 稜¹, 安形 保 則¹, ニラウラ マダン¹, 安田 和人¹ ○(M2) Hyo Chang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 田中 徹¹ ○三島 聖也¹, 松尾 健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中 徹¹ ○市川 悠喜¹, 田中 徹¹ ○市川 悠喜¹, 田中 圭汰¹, 藤井 裕太², 河原 拓朗¹, 中川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東 孝止¹, 市野 邦男¹, 赤岩 和明¹ ⑤, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹ ○塚崎 貴司¹, 日吉 連¹, 藤田 実樹², 牧本 俊樹¹ ○源常 栄人¹, 山根 啓輔¹, 二村 綾¹, 今泉 充², 若原 昭浩¹ ○(M1C)高地 俊貴¹, 山根 啓輔¹, 彦坂 宗¹, 藤本 純弥¹, 関口 寛人¹, 岡田 浩¹, 若原 昭浩¹ ○(D)河野 将大¹, 上田 大貴¹, 峰松 遼¹, 原口 智宏¹, 鈴木 秀俊¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 更橋技科大, 2. 宇宙機構 1. 豊橋技科大 1. 豊橋技科大
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 III 3/11(9:30 10:15 10:00 10:15 10:30 10:45 11:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-7 10a-W922-9 10a-W922-9 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5 11a-S422-6 11a-S422-7	膜の作製 スピンコート Cu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎 / III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) Nおよび Biを導入した GaAs ナノワイヤの XRD 測定 Si 及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAsNにおける電子活性化エネルギーの Si 不純物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証 モノリシック III-V/Si 多接合太陽電池に向けた GaAsPNセルの作製 体想/Break ALE法で意図的に N分布を変化させた GaAsN 薄膜の電気特性の測定温度依存性 Bi の単独照射 GaAsBi/GaAs 多重量子井戸の PL 偏光度	○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang², Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺裕介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根啓輔²,若原昭浩²,田中徹¹ ○市川悠喜¹,田中徹² ○市川悠喜¹,田中能¹ ○市川悠喜¹,田中佳太¹,小林穂貴¹,野村一郎¹ ○市川悠喜¹,田中佳太¹,亦排井裕太²,河原拓朗¹,中川和樹¹,吉田健太郎²,阿部友紀¹,笠田洋文¹,安東孝止¹,市野邦男¹,赤岩和明¹ 3. Fundamentals of epitaxy ○美田貴也¹,藤原亮¹,行宗詳規¹,石川史太郎¹ ○塚崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○源常栄人¹,山根啓輔¹,二村綾¹,今泉充²,若原昭浩¹ ○(M1C)高地俊貴¹,山根啓輔¹,彦坂宗¹,藤本純弥¹,関口寛人¹,岡田浩¹,若原昭浩¹ ○(D)河野将大¹,上田大貴¹,峰松遼¹,原口智宏¹,鈴木秀俊¹ ○山本巧¹,樋口憧生¹,神原誉¹,下村哲¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 早大理工, 2. 一関高専 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 III 3/11(9:30 9:45 10:00 10:15 10:30 10:45 11:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9 -V族エピタキシャル Mon.) 9:30 - 12:15 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5 11a-S422-6	膜の作製 スピンコートCu-Zn-Snプリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211) Si 基板上の n-CdTe層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211) Si 基板上の n-CdTe層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーバント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) Nおよび Biを導入した GaAsナノワイヤの XRD 測定 Si及び SOI上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAsNにおける電子活性化エネルギーの Si 不納 物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証 モノリシック III-V/Si 多接合太陽電池に向けた GaAsPNセルの作製 休憩/Break ALE 法で意図的に N分布を変化させた GaAs N薄膜の電気特性の測定温度依存性	○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang², Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺裕介¹,峯拓郎¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根啓輔²,若原昭浩²,田中徹¹ ○市川悠喜¹,田中徹² ○市川悠喜¹,田中能¹ ○市川悠喜¹,田中佳太¹,小林穂貴¹,野村一郎¹ ○市川悠喜¹,田中佳太¹,亦排井裕太²,河原拓朗¹,中川和樹¹,吉田健太郎²,阿部友紀¹,笠田洋文¹,安東孝止¹,市野邦男¹,赤岩和明¹ 3. Fundamentals of epitaxy ○美田貴也¹,藤原亮¹,行宗詳規¹,石川史太郎¹ ○塚崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○源常栄人¹,山根啓輔¹,二村綾¹,今泉充²,若原昭浩¹ ○(M1C)高地俊貴¹,山根啓輔¹,彦坂宗¹,藤本純弥¹,関口寛人¹,岡田浩¹,若原昭浩¹ ○(D)河野将大¹,上田大貴¹,峰松遼¹,原口智宏¹,鈴木秀俊¹ ○山本巧¹,樋口憧生¹,神原誉¹,下村哲¹	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. Saga Univ. 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 愛媛大工 1. 更橋技科大, 2. 宇宙機構 1. 豊橋技科大 1. 豊橋技科大
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 3/11(9:30 9:45 10:00 10:15 10:30 10:45 11:00	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-7 10a-W922-9 10a-W922-9 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5 11a-S422-6 11a-S422-7	膜の作製 スピンコートCu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals これまび Biを 導入した GaAs ナノワイヤの XRD 測定 Si 及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAs Nにおける電子活性化エネルギーの Si 不純物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証モノリシック III-V/Si 多接合太陽電池に向けた GaAs PNセルの作製 体憩/Break ALE 法で意図的に N分布を変化させた GaAs N 薄膜の電気特性の測定温度依存性 Biの単独照射 GaAs Bi/GaAs 多重量子井戸のPL 偏光度 GaAs Bi/GaAs 多重量子井戸のPL に光度 GaAs Bi/GaAs 多重量子井戸のPL に Nove Edu Edu Pu を Move E は Nove Edu Edu Pu を Move E は Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の May Edu Pu を Move E は Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の PL に Nove E を GaAs Di Move E は Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の PL に Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の PL に Nove E を Biの単独原射 GaAs Bi/GaAs Bill Ale Fu Cay E	○田橋正浩¹,高橋誠¹,後藤英雄¹,原田隆史²,池田茂³,吉野賢二⁴ ○鳥居稜¹,森拓郎¹,田村怜也¹,東良悠喜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○東良悠喜¹,森拓郎¹,田村怜也¹,鳥居稜¹,安形保則¹,ニラウラマダン¹,安田和人¹ ○(M2)HyoChang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺裕介¹,峯拓郎¹, 松尾健斗¹,齊藤勝彦¹,郭其新¹,山根磨輔²,若原昭浩²,田中徹¹ ○三鳥聖也¹,松尾健斗¹,齊藤勝彦¹,郭其新¹,山根磨輔²,若原昭浩²,田中徹¹ ○市川悠喜¹,田中畫汰¹,藤井裕太²,河原拓朗¹,中川和桐村,古田健太郎²,阿部友紀¹,笠田洋文¹,安東孝止¹,市野邦男¹,赤岩和明¹ ,Fundamentals of epitaxy ○美田貴也¹,藤原亮¹,行宗詳規¹,石川史太郎¹ ○嫁崎貴司¹,日吉連¹,藤田実樹²,牧本俊樹¹ ○源常栄人¹,山根啓輔¹,二村綾¹,今泉充²,若原昭浩¹ ○(M1C)高地俊貴¹,山根啓輔¹,彦坂宗¹,藤本純弥¹,関口寛人¹,岡田浩¹,若原昭浩¹ ○(D)河野将大¹,上田大貴¹,峰松遼¹,原口智宏¹,鈴木秀俊¹ ○山本巧¹,樋口懽生¹,坪原誉¹,下村哲¹ ○仲原營¹,樋口懽生¹,坪原營¹,下村哲¹ ○中村優希¹,山形勇也¹,中山優希¹,若城玲亮¹,前	1. 中部大, 2. 大阪大, 3. 甲南大, 4. 宮崎大 1. 名古屋工業大学 1. 名古屋工業大学 1. 名古屋工業大学 1. 名古屋工業大学 1. 名古屋工業大学 1. 佐賀大院工 1. 佐賀大院工 1. 佐賀大, 2. 豊橋技科大 1. 上智大理工 1. 鳥取大院工, 2. 鳥取大工 1. 愛媛大工 1. 學大理工, 2. 一関高専 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 宮崎大工 1. 愛媛大正 1. 愛媛大正 1. 愛媛大正 1. 愛媛大院理工 1. 愛媛大院理工 1. 愛媛大正
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 3/11(9:30 9:45 10:00 10:15 10:30 10:45 11:00 10:15	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9 -V族エピタキシャル Mon.) 9:30 - 12:15 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5 11a-S422-6 11a-S422-7 11a-S422-8 11a-S422-9	膜の作製 スピンコートCu-Zn-Snプリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe 系有機一無機ハイブリッド紫外アバランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎 / III-V-group epitaxial crystals 口頭講演 (Oral Presentation) S422 会場 (Room S422) N およびBi を導入した GaAs ナノワイヤの XRD 測定 Si 及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAsNにおける電子活性化エネルギーの Si 不純物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証モノリシック III-V/Si 多接合太陽電池に向けた GaAsPNセルの作製 体憩/Break ALE 法で意図的に N 分布を変化させた GaAs N 薄膜の電気特性の測定温度依存性 Bi の単独照射 GaAs Bi/GaAs 多重量子井戸の PL 偏光度 GaAs Bi/GaAs 多重量子井戸の R世 PL スペクトルの基板 面指数依存性 MOVPE 法による InAs/GaSb 超格子成長時の異種 V 族混入量の推定	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田隆史², 池田茂³, 吉野賢二⁴ ○鳥居 稜, 森 拓郎¹, 田村怜也¹, 東良 悠喜¹, 安形保則¹, ニラウラマダン¹, 安田和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村怜也¹, 鳥居 稜¹, 安形保則¹, ニラウラマダン¹, 安田和人¹ ○(M2) Hyo Chang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 岩原 昭浩², 田中徹¹ ○三島聖也¹, 松尾健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中徹¹ ○前田 慶治¹, 石井健太¹, 小林 穂貴¹, 野村一郎¹ ○市川 悠喜¹, 田中圭汰¹, 藤井 裕太², 河原 拓朗¹, 中川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東孝止¹, 市野邦男¹, 赤岩 和明¹ 3, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹ ○塚崎 貴司¹, 日吉 連¹, 藤田 実樹², 牧本 俊樹¹ ○源常 栄人¹, 山根 啓輔¹, 二村 綾¹, 今泉 充², 若原 昭浩¹ ○(M1C)高地 俊貴¹, 山根 啓輔¹, 彦坂 宗¹, 藤本 純弥¹, 関口 寛人¹, 岡田浩¹, 若原 昭浩¹ ○(D) 河野 将大¹, 上田 大貴¹, 峰松 遼¹, 原口 智宏¹, 鈴木 秀俊¹ ○山本 巧¹, 樋口 憧生¹, 塚本 晟¹, 山本 巧¹, Patìl Pallavi¹, 下村 哲¹ ○今村 優希¹, 山形 勇也¹, 中山 優希¹, 若城 玲亮¹, 前 田 幸治¹, 荒井 昌和¹	1.中部大, 2.大阪大, 3.甲南大, 4. 宮崎大 1.名古屋工業大学 1.名古屋工業大学 1.Saga Univ. 1.佐賀大院工 1.佐賀大院工 1.佐賀大, 2. 豊橋技科大 1. 上智大理工 1.鳥取大院工, 2. 鳥取大工 1.愛媛大工 1.愛媛大工 1. 受媛大工 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 宮崎大工 1.愛媛大院理工 1.愛媛大 1. 宮崎大工 1. 愛媛大 1. 宮崎大工 1. 愛媛大 1. 宮崎大工 1. 宮崎大工
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 15.3 11 3/11(9:30 10:45 10:00 10:45 11:00 11:15 11:30 11:45	10a-W922-2 10a-W922-3 10a-W922-4 奨E 10a-W922-5 10a-W922-6 10a-W922-7 10a-W922-8 10a-W922-9 -V族エピタキシャル Mon.) 9:30 - 12:15 11a-S422-1 11a-S422-2 11a-S422-3 奨 11a-S422-4 11a-S422-5 11a-S422-6 11a-S422-7 11a-S422-8 11a-S422-9	膜の作製 スピンコートCu-Zn-Sn ブリカーサ膜とジメチルセレンを用いた Cu ₂ ZnSnSe ₂ 膜の作製 MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化と高電子密度化に関する検討 [I] MOVPE法による (211)Si 基板上の n-CdTe 層の厚膜化との高電子密度化に関する検討 [II] Growth of Al-doped ZnCdO thin films on MgO substrates by molecular beam epitaxy MBE による Cl ドープ ZnCdTeO 層の膜特性の組成依存性 InPをドーパント源に用いた Pドープ ZnTe 薄膜の MBE 成長 InP 基板上 ZnCdSe/MgZnCdSe/MgZnSeTe 黄色レーザダイオード構造の検討 高利得 ZnSe系有機一無機ハイブリッド紫外アパランシェ・フォトダイオードの開発 結晶・エピタキシーの基礎/III-V-group epitaxial crystals これまび Biを 導入した GaAs ナノワイヤの XRD 測定 Si 及び SOI 上の GaAs/GaNAs コア・マルチシェルナノワイヤの成長 Si ドープ GaAs Nにおける電子活性化エネルギーの Si 不純物濃度依存性 陽子線照射による III-V-N 混晶中の点欠陥低減効果の検証モノリシック III-V/Si 多接合太陽電池に向けた GaAs PNセルの作製 体憩/Break ALE 法で意図的に N分布を変化させた GaAs N 薄膜の電気特性の測定温度依存性 Biの単独照射 GaAs Bi/GaAs 多重量子井戸のPL 偏光度 GaAs Bi/GaAs 多重量子井戸のPL に光度 GaAs Bi/GaAs 多重量子井戸のPL に Nove Edu Edu Pu を Move E は Nove Edu Edu Pu を Move E は Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の May Edu Pu を Move E は Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の PL に Nove E を GaAs Di Move E は Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の PL に Nove E を Biの単独照射 GaAs Bi/GaAs 多重量子井戸の PL に Nove E を Biの単独原射 GaAs Bi/GaAs Bill Ale Fu Cay E	○田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹, 原田隆史², 池田茂³, 吉野賢二⁴ ○鳥居 稜, 森 拓郎¹, 田村怜也¹, 東良 悠喜¹, 安形保則¹, ニラウラマダン¹, 安田和人¹ ○東良 悠喜¹, 森 拓郎¹, 田村怜也¹, 鳥居 稜¹, 安形保則¹, ニラウラマダン¹, 安田和人¹ ○(M2) Hyo Chang Jang¹, Kento Matsuo¹, Katsuhiko Saito¹, Qixin Guo¹, Tooru Tanaka¹ ○渡辺 裕介¹, 峯 拓郎¹, 松尾健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 岩原 昭浩², 田中徹¹ ○三島聖也¹, 松尾健斗¹, 齊藤 勝彦¹, 郭 其新¹, 山根 啓輔², 若原 昭浩², 田中徹¹ ○前田 慶治¹, 石井健太¹, 小林 穂貴¹, 野村一郎¹ ○市川 悠喜¹, 田中圭汰¹, 藤井 裕太², 河原 拓朗¹, 中川 和樹¹, 吉田 健太郎², 阿部 友紀¹, 笠田 洋文¹, 安東孝止¹, 市野邦男¹, 赤岩 和明¹ 3, Fundamentals of epitaxy ○美田 貴也¹, 藤原 亮¹, 行宗 詳規¹, 石川 史太郎¹ ○塚崎 貴司¹, 日吉 連¹, 藤田 実樹², 牧本 俊樹¹ ○源常 栄人¹, 山根 啓輔¹, 二村 綾¹, 今泉 充², 若原 昭浩¹ ○(M1C)高地 俊貴¹, 山根 啓輔¹, 彦坂 宗¹, 藤本 純弥¹, 関口 寛人¹, 岡田浩¹, 若原 昭浩¹ ○(D) 河野 将大¹, 上田 大貴¹, 峰松 遼¹, 原口 智宏¹, 鈴木 秀俊¹ ○山本 巧¹, 樋口 憧生¹, 塚本 晟¹, 山本 巧¹, Patìl Pallavi¹, 下村 哲¹ ○今村 優希¹, 山形 勇也¹, 中山 優希¹, 若城 玲亮¹, 前 田 幸治¹, 荒井 昌和¹	1.中部大, 2.大阪大, 3.甲南大, 4.宫崎大 1.名古屋工業大学 1.名古屋工業大学 1.Saga Univ. 1.佐賀大院工 1.佐賀大院工 1.佐賀大尺工 1.上智大理工 1.鳥取大院工, 2.鳥取大工 1.愛媛大工 1.愛媛大工 1.受媛大工 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 豊橋技科大 1. 宮崎大工 1.愛媛大 1. 愛媛大 1. 宮崎大工 1.愛媛大 1. 愛媛大 1. 宮崎大工 1. 愛媛大 1. 宮崎大工 1. 愛媛大 1. 宮崎大工 1. 愛媛大 1. 宮崎大工

3/11(M	nn.) 13:30 - 15:30 11p-PA4-1 11p-PA4-2 11p-PA4-3 11p-PA4-4 11p-PA4-5 11p-PA4-6 11p-PA4-7 11p-PA4-7	ボスター講演 (Poster Presentation) PA会場 (Room PA) 第一原理計算を用いた GaPN 混晶中の窒素起因点欠陥の消滅過程に関する考察 GaInSbチャネルHEMT構造のゲート・チャネル問距離 がラメータが電気的特性に与える影響 面内超高密度 InAs 量子ドット層を導入した量子ドット レーザの作製 窒素をデルタドーブした GaAs の 3 バルスフォトンエコー測定 高速キャリア緩和 InAs 量子ドット積層構造の面内光電流スペクトルの温度依存性 InAs サブモノレイヤー構造における光アップコンバージョン過程 Si(111) 基板上 GaAs/GaAsBiへテロ構造ナノワイヤにおける Bi 偏析構造 Si(111) 基板上 GaAs/GaAsBi、テロ構造	浩¹ ○岸本 尚之¹, 遠藤 勇輝¹, 林 拓也¹, 平岡 瑞穂¹, 町田龍人¹, 遠藤 聡¹, 藤代 博記¹ ○(M1) 田中 元幸¹, 馬場 慶一郎¹, 山口 浩一¹ ○田久保 悠一¹, 石澤 輝¹, 佐久間 芳樹², 池沢 道男¹ ○熊谷 直人¹, 盧 翔孟², 南 康夫², 北田 貴弘²	1. 電通大基盤理工
	11p-PA4-3 11p-PA4-4 11p-PA4-5 11p-PA4-6 11p-PA4-7	GaInSbチャネルHEMT構造のゲート・チャネル間距離 パラメータが電気的特性に与える影響 面内超高密度 InAs量子ドット層を導入した量子ドット レーザの作製 窒素をデルタドープした GaAs の 3 パルスフォトンエ コー測定 高速キャリア緩和InAs量子ドット積層構造の面内光電流 スペクトルの温度依存性 InAsサプモノレイヤー構造における光アップコンバー ジョン過程 Si(111) 基板上 GaAs/GaAsBiヘテロ構造ナノワイヤにお ける Bi偏析構造 Si(111) 基板上 GaAs/GaAsBiヘテロ構造	○岸本尚之¹,遠藤勇輝¹,林拓也¹,平岡瑞穂¹,町田龍人¹,遠藤聡¹,藤代博記¹ ○(M1)田中元幸¹,馬場慶一郎¹,山口浩一¹ ○田久保悠一¹,石澤輝¹,佐久間芳樹²,池沢道男¹ ○熊谷直人¹,廬翔孟²,南康夫²,北田貴弘²	1. 電通大基盤理工 1. 筑波大物理, 2. 物材機構
	11p-PA4-4 11p-PA4-5 11p-PA4-6 11p-PA4-7	面内超高密度 InAs 量子ドット層を導入した量子ドット レーザの作製 窒素をデルタドープした GaAs の 3 バルスフォトンエ コー測定 高速キャリア緩和InAs 量子ドット積層構造の面内光電流 スペクトルの温度依存性 InAs サプモノレイヤー構造における光アップコンバー ジョン過程 Si(111) 基板上 GaAs/GaAsBiへテロ構造ナノワイヤにお ける Bi 偏析構造 Si(111) 基板上 GaAs/GaAsBi ヘテロ構造	○(M1)田中元幸 ¹ ,馬場慶一郎 ¹ ,山口浩一 ¹ ○田久保悠一 ¹ ,石澤輝 ¹ ,佐久間芳樹 ² ,池沢道男 ¹ ○熊谷直人 ¹ ,廬翔孟 ² ,南康夫 ² ,北田貴弘 ²	1. 筑波大物理, 2. 物材機構
	11p-PA4-5 11p-PA4-6 11p-PA4-7	窒素をデルタドープした GaAs の 3 バルスフォトンエコー測定 高速キャリア緩和InAs 量子ドット積層構造の面内光電流スペクトルの温度依存性 InAs サブモノレイヤー構造における光アップコンバージョン過程 Si(111) 基板上 GaAs/GaAsBiへテロ構造ナノワイヤにおける Bi 偏析構造 Si(111) 基板上 GaAs/GaAsBi ヘテロ構造	○熊谷 直人¹, 盧 翔孟², 南 康夫², 北田 貴弘²	
	11p-PA4-6 11p-PA4-7 11p-PA4-8	高速キャリア緩和InAs 量子ドット積層構造の面内光電流 スペクトルの温度依存性 InAs サブモノレイヤー構造における光アップコンバー ジョン過程 Si(111) 基板上 GaAs/GaAsBi ヘテロ構造ナノワイヤにお けるBi 偏析構造 Si(111) 基板上 GaAs/GaAsBi ヘテロ構造		1. 産総研, 2. 徳島大院
	11p-PA4-7 11p-PA4-8	InAs サブモノレイヤー構造における光アップコンバー ジョン過程 Si(111) 基板上 GaAs/GaAsBi〜テロ構造ナノワイヤにお ける Bi偏析構造 Si(111) 基板上 GaAs/GaAsBi〜テロ構造	○水野 皓登¹, Yuwei Zhang¹, 神谷 格¹	
	11p-PA4-8	Si(111) 基板上 GaAs/GaAsBi ヘテロ構造ナノワイヤにお ける Bi 偏析構造 Si(111) 基板上 GaAs/GaAsBi ヘテロ構造		1. 豊田工業大学
		ナノワイヤにおけるBi偏析構造		1.愛媛大工, 2.東レリサーチ
		ダイヤモンド基板上に成長した低温 GaAs 層の固相成長 Correlation between the surface morphology and diffusion lengths of Ga adatom in GaP growth by MBE	○ (DC)Jose Alberto Piedra¹, Keisuke Yamane¹, Koki Shota¹, Hiroto Sekiguchi¹, Hiroshi Okada¹, Akihiro	1. 日工大 1. Toyohashi Univ. of Tech.
	11p-PA4-10	分子線堆積法によるSiOx膜上へのInAs 量子ドットの自		1. 電通大基盤理工
	11p-PA4-11	己形成 (3) DWELL構造における InAs 量子ドット成長に対する In 偏 析の影響	浩一¹ ○岡田直樹¹, 生野 大吾¹, 王 涛¹, 大河内 俊介², 尾崎 信彦¹	1.和歌山大シスエ, 2.NEC
	11p-PA4-12	tBGeを用いたSi(001)基板上へのGe薄膜成長における	信戶 ○岩本 晃一郎¹, 秋田 裕紀¹, 白倉 翔太郎¹, 河野 将 大¹, 鈴木 秀俊¹	1. 宮崎大工
	11p-PA4-13	成長温度の影響 ラマン測定を用いた有機金属気相成長法で作製した GaSb 厚の異なる InAs/GaSb 超格子結晶の評価		1. 宮大工
3/11(M	on.) 13:45 - 17:00	「		
13:45	招 11p-S422-1	「第19回業績賞(教育業績)受賞記念講演」 混晶半導体とは - 何が分かっていて、何が分かっていな いか-	○佐々木 昭夫 1	1.京都大学名誉教授
14:30	11p-S422-2	InAs/GaAs量子ドット赤外線検出器における片側AlGaAs層の効果	〇吉川 弘文 $^{1.3}$, 權 晋寬 1 , 土江 貴洋 $^{1.3}$, 和泉 真 3 , 岩本 敏 $^{1.2}$, 荒川 泰彦 1	1. 東大ナノ量子機構, 2. 東大生研, 3. シャープ
14:45	11p-S422-3	近接積層 InAs/GaAs 量子ドット超格子の1次元電子状態 の測定温度依存性	○海津 利行 ^{1,2} , 喜多 隆 ¹	1.神戸大工, 2.神戸大研究基盤セ
15:00	奨 11p-S422-4	二重層構造を有する InAs/GaAs 長波長量子ドットの成長	○ZHAN WENBO¹, 權 晋寬¹, 渡邉 克之¹, 岩本 敏¹.², 荒川 泰彦¹	1.東大ナノ量子機構, 2.東大生研
15:15 15:30	11p-S422-5	休憩/Break 1.5μm帯メタモルフィック InAs/GaInAs/GaAs 量子ドットのMBE 成長	○渡邉 克之¹, 詹 文博¹, 角田 雅弘¹, 權 晋寬¹, 荒川 泰 彦¹	1.東大ナノ量子機構
15:45	11p-S422-6	変調中間層による歪制御積層 InAs 量子ドットの光学特性 制御		1. 豊田工大
16:00	11p-S422-7	In フラッシュ法を用いた InAs/GaAs 量子ドットの高体積 密度化	○角田 雅弘¹, 權 晋寛¹, 渡邉 克之¹, 荒川 泰彦¹	1. 東大ナノ量子機構
16:15 16:30	11p-S422-8 奨 11p-S422-9	面内超高密度InAs量子ドット層のPLマッピング解析 (2) 大粒径Geシード層を利用したガラス上GaAs膜の合成と 分光感度実証		1. 電通大 基盤理工 1. 筑波大院
16:45	E 11p-S422-10	Below-Bandgap Photoluminescence Emission from SI GaAs substrates subjected to pre-MBE-growth annealing		1.Toyota Technological Inst.
		-V-group nitride crystals		
3/9(Sa 9:00	at.) 9:00 - 12:15 奨 9a-W541-1	口頭講演 (Oral Presentation) W541会場 (Room W541) 極性面フリーな三次元InGaN-LED構造の結晶成長と評	\bigcirc (DC) 松田 祥伸 1 , 船戸 充 1 , 川上 養 $-^1$	1.京大院工
9:15	奨 9a-W541-2	価 MOCVD法によるナノワイヤLED上n-GaNキャップ層 成長	○後藤 七美¹, 曽根 直樹¹³, 飯田 一喜¹.⁴, Lu Weifang¹, 鈴木 敦志¹, 軒村 恭平¹, 竹林 穣¹, 村上 ヒデキ¹, 寺澤 美月¹, 大矢 昌輝¹⁴, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹, 赤崎 勇 ¹²	
9:30	奨 9a-W541-3	トンネル接合を用いた量子殻LEDのデバイス特性		1. 2 城大, $2. 2$ 大・赤崎記念研究センター, $3.$ 小糸製作所, $4.$ 豊田合成
9:45	9a-W541-4	量子殻構造LEDのp型殻用電極に関する検討		1.名城大 理工,2.名古屋大・赤崎記念研究センター, 3. (株) 小糸製作所,4.豊田合成 (株)
10:00	E 9a-W541-5	Low-damage Fabrication of InGaN/GaN Nanopillars by Neutral Beam Etching: Towards Directional Micro-LED in Top-down Structure		1.AIST, 2.Tohoku Univ., 3.Nagoya Univ.
10:15	奨 9a-W541-6	高効率緑色LEDのための二重金属Ag/Auナノ粒子による表面プラズモン共鳴波長の制御	○真野 稜也¹,ハンドンピョ¹,山本 賢吾¹,石本 聖 治¹,上山 智¹,竹内 哲也¹,岩谷 素顕¹,赤崎 勇¹.²	1.名城大理工, 2.名古屋大・赤崎記念研究センター
10:30 10:45	9a-W541-7	休憩/Break p-GaN ピラミッド型反転領域へのMg 偏析の原子分解能 電子顕微鏡観察	〇岩田 研治 1 ,成田 哲生 2 ,長尾 全寬 $^{1.3}$,冨田 一義 2 , 片岡 恵太 2 ,加地 徹 2 ,五十嵐 信行 $^{1.3}$	1.名大院工, 2.豊田中研, 3.名大未来研
11:00	9a-W541-8		○ 植田 瑛¹, 藤平 哲也¹, 安藤 祐次², 橋詰 保², 今井 康 彦³, 隅谷 和嗣³, 木村 滋³, 酒井 朗¹	1.阪大院基礎工, 2.北大量エレ研, 3.JASRI
11:15	奨 9a-W541-9	放射光ナノビーム X 線回折による窒化物半導体 HEMT デバイスにおける 圧電応答局所格子変形ダイナミクスの	〇植田 英 1 , 藤平 哲也 1 , 安藤 祐次 2 , 橋詰 保 2 , 今井 康	1. 阪大院基礎工 , 2. 北大量エレ研 , 3.JASRI
11:30	奨 9a-W541-10	観測 【注目講演】GaN 自立基板上 pn ダイオードの逆方向リー ク電流と 貫通螺旋転位周りに存在する Mg との関係		1.名大院工, 2.未来材料・システム研究所, 3.物材研, 4.東芝ナノアナリシス, 5.JFCC, 6.赤崎記念研究セン ター, 7.VBL
11:45	9a-W541-11	GaN 自立基板上pn ダイオードの逆方向リーク電流とナ ノバイプ壁面に存在する不純物との関係	□来 具斗 , 新田 州音 , 本田 普央 , 天野 活 ○宇佐美 茂佳 1 , 田中 敦之 2,3 , 福島 颯太 1 , 安藤 悠 人 1 , 出来 真斗 2 , 新田 州吾 2 , 本田 善央 2 , 天野 2,3,4,5	1.名大院工, 2.未来材料・システム研究所, 3.物材研,
12:00	奨 9a-W541-12	ノバイフ壁面に存在する个純物との関係 GaN薄膜における貫通転位およびナノバイブm壁面の第 一原理計算に基づく電子状態解析		

		口頭講演 (Oral Presentation) W541会場 (Room W541)	0.000 174 7.11 7.11 7.11 7.11	A DI Photo of Division of Living and Living
9:00	10a-W541-1	気相反応から考える GaN MOVPEにおける炭素混入機構	\bigcirc (M1) 大河内 勇斗 1 , 長川 健太 1 , 洗平 昌晃 2 , 草場 彰 3 , 寒川 義裕 3,2 , 柿本 浩 $^{-3}$, 白石 賢二 2,1	1.名大院工, 2.名大未来研, 3.九大応力研
9:15	10a-W541-2	飛行時間型質量分析法を用いたトリメチルアルミニウム とアンモニアの気相反応分析	○(M2)大山 武浩¹, 叶 正¹, 久志本 真希¹, 新田 州吾², 本田 善央²,³, 天野 浩²	1.名大院工, 2.名大 未来材料・システム研, 3.名大 高等研究院
9:30	10a-W541-3	MOVPEリアクタ内における Cp ₂ Mg の温度依存性		1. 堀場エステック, 2. 名城大学
0:45 0:00		カーボン添加によるAIN表面におけるp型伝導制御 Si表面炭化により形成したSiC薄膜上への窒化物半導体	○岸元 克浩¹, 船戸 充¹, 川上 養一¹ ○出浦 桃子¹, 朱 逸夫¹, 百瀬 健¹, 霜垣 幸浩¹	1.京大院工 1.東大院工
0:15	E 10a-W541-6	成長 Dependence of TMAl preflow condition on GaN growth	○Yifu Zhu¹, Takeshi Momose¹, Yukihiro Shimogaki¹,	1.Univ. of Tokyo
0:30		on surface carbonized Si substrates 休憩/Break	Momoko Deura ¹	
0:45 1:00		B ₂ H ₆ 原料を用いた BN 薄膜の CVD 成長 InGaN量子井戸の組成揺らぎ評価に関する実験的・理論		1.産総研, 2.名大 1.金沢工大, 2.ソニー
1:15	10a-W541-9	的検討 中温 GaN層上 InGaN 多重量子井戸構造における V ピッ	史¹,蟹谷裕也²,富谷茂隆² ○倉井聡¹,大川康平¹,槇尾凌我¹,高俊吉¹,林直	1.山口大院創成科学
1:30	E 10a-W541-10	ト近傍のポテンシャル障壁の顕微分光評価 (2) Reduction of the linewidth of the emission lines from a	矢¹, 岡田 成仁¹, 只友 一行¹, 山田 陽一¹ ○ (P)Kang Gao¹, Munetaka Arita¹, Mark Holmes¹.²,	1.NanoQuine, 2.IIS, Univ. of Tokyo
1:45	E 10a-W541-11	GaN interface fluctuation quantum dot Measurement of the power dependence of spectral	Yasuhiko Arakawa¹ (P)Kang Gao¹, Helen Springbett³, Tongtong Zhu³,	
2:00	10a-W541-12	diffusion from a single InGaN quantum dot Eu添加GaNの強励起条件下における赤色発光強度の増	Rachel Oliver ³ , Yasuhiko Arakawa ¹ , Mark Holmes ^{1,2} ○市川 修平 ¹ , 舘林 潤 ¹ , 藤原 康文 ¹	1. 阪大院工
3/10(Su	ın) 13·30 - 19·00	大 口頭講演 (Oral Presentation) W541 会場 (Room W541)		
.3:30		「講演奨励賞受賞記念講演」 高反射率・導電性AllnN/GaN DBRを用いたEu添加GaN	〇塩見 圭史 1 ,稲葉 智宏 1 ,市川 修平 1 ,舘林 潤 1 ,藤原 康文 1	1. 阪大院工
2.45	蛭 10- WE41 2	発光ダイオードの発光強度の増大 ミラー形成にTMAHウェットエッチングを用いたUVデ	○空江 長坂 ¹ 比茲 長輔 ^{1,2} 田海 撰土 ¹ 油田 食山 ¹	1 夕桃十烂 2 如小虎 2 夕十,土岭汩入而空 1 以 2
3:45	英 10p-w541-2	ミラー形成に TMAH ウェットエッチング を用いた UV テ バイスの特性評価	世子, 无膝 巨輔 , 川瀬 雄太, 池田 毕也, 櫻木 勇介 , 岩山 章 , 岩谷 素顕 , 上山 智 , 竹内 哲也 , 赤崎 勇 ^{1,3}	1. 名城人子, 2. 旭化成, 3. 名人・亦順記ぶ研究センター
4:00	10p-W541-3	組成傾斜p-AlGaNを用いた紫外発光素子への高電流注入		1. 旭化成, 2. 名城大, 3. 名古屋大
4:15	奨 10p-W541-4	紫外発光デバイスにおける p型 AlGaN 依存性	○荻野 雄矢¹, 佐藤 恒輔¹², 川瀬 雄太¹, 池田 隼也¹, 安江 信次¹, 櫻木 勇介¹, 田中 隼也¹, 手良村 昌平¹, 岩 山 章¹, 岩谷 素顕¹, 上山 智¹, 竹內 哲也¹, 赤崎 勇¹.³	1. 名城大学, 2. 旭化成, 3. 名古屋大学・赤崎記念研究センター
4:30	10p-W541-5	Pendeo 成長 GaN を下地とした 3 次表面グレーティングを 有する横結合分布帰還型 GaN 系半導体レーザの設計と作 製	○高木 健太¹, 安藤 壮¹, 森岡 佳紀², 上向井 正裕², 片	1. 名城大理工, 2. 阪大院工
4:45	10p-W541-6	周期的スロット構造を用いたInGaN単一モードレーザの 作製プロセスの検討	\bigcirc (M1) 田附 大貴 1 , 楠本 壮 1 , 樋口 晃大 1 , 田島 純平 2 , 彦坂 年輝 2 , 布上 真也 2 , 上向井 正裕 1 , 片山 竜二 1	1.阪大院工, 2.東芝開発研究センター
5:00	10p-W541-7	両極性同時成長法を用いた GaN-QPM 結晶の作製および 光学特性評価		1.静大院工
5:15	10p-W541-8	AIN光導波路型波長変換デバイスのための入力グレーティング結合器	\bigcirc (M1) 森岡 佳紀 1 , 山口 修平 1 , 正直 花奈子 2 , 林 侑 \uphi^3 , 三宅 秀人 2 3, 塩見 圭史 1 , 藤原 康文 1 , 上向井 正 裕 1 , 片山 竜二 1	1. 阪大院工, 2. 三重大院工, 3. 三重大院地域イノベ
5:30 5:45	10p-W541-9	休憩/Break 量子光学応用のための光導波路型マッハツェンダ干渉計 の開発:GaNストリップ導波路型方向性結合器の作製		1.阪大院工, 2. (株) 東芝 研究開発センター
6:00	10p-W541-10	量子光学応用のための光導波路型マッハツェンダ干渉計の開発: GaN / n-AlGaN方向性結合器の設計		1. 阪大院工
6:15	10p-W541-11	量子光学応用のための光導波路型マッハツェンダ干渉計 の開発: 電界制御型位相変調器の設計	○小松 天太¹, 紀平 将史¹, 上向井 正裕¹, 片山 竜二¹	1. 阪大院工
6:30	E 10p-W541-12	Effect of 4 μ m-thick Buffer as well as 50% relaxed n-AlGaN Electron Injection Layer on the Performance of 308nm UV-B LED	○ Muhammad Ajmal Khan¹, Noritoshi Maeda¹, Masafumi Jo¹, Yoichi Yamada², Hideki Hirayama¹	1.RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako, Saitama 351-0198, Japan, 2.Yamaguci University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
6:45	•	多点光刺激を可能にする針型 Si 基板上青色 μ LED プローブの作製		1.豊橋技科大・工, 2.名市大・院・薬, 3.JST さきがけ
7:00	奨 10p-W541-14	Si台座構造上GaNモノリシック微小二重共振器型第二高 調波発生デバイスの作製	○(M2)南部 誠明 ¹ , 永田 拓実 ¹ , 塩見 圭史 ¹ , 藤原 康 文 ¹ , 大西 一生 ² , 谷川 智之 ² , 上向井 正裕 ¹ , 片山 竜 一 ¹	1. 阪大院工, 2. 東北大金研
7:15	10p-W541-15	GaNの酸化膜形成2段階ウェットエッチング法における 酸化膜の電気的評価	-	1. 東京工科大学, 2. 東京大学生産技術研究所
7:30	10 ***-:-	休憩/Break		1 Treate of the catherine
7:45	•	第一原理分子動力学法による2次元GaNの新規構造探索 CaN(0001)表面におけるステルプ語での販差・暗離の巻	西毅1.2	
8:00	•	GaN(0001)表面におけるステップ端での吸着・脱離の挙動に関する理論的検討 縦型結晶成長装置における GaN MOVPE シミュレーショ		1.三重大院工 1.2十二 2.2十院工 2.4十庆九四 4.2十七中四
8:15		У	${f u}^2$, 芳松 克則 4 , 醍醐 佳明 5 , 水島 一郎 $^{5.6}$, 依田 孝 $^{5.6}$, 寒川 義裕 3 , 柿本 浩一 3 , 白石 賢二 4	5.ニューフレアテクノロジー, 6.東工大未来研
8:30	Î	化学反応を含む GaN 結晶成長流体シミュレーション手法 の開発	彰 ³, 岡本 直也 ², 芳松 克則 ⁴, 寒川 義裕 ³, 柿本 浩一 ³, 白石 賢二 ⁴	
8:45		MOVPE法のGaN結晶成長3次元マルチフィジックスシ ミュレーション	〇川上 賢人 1 , 高村 昴 1 , 草場 彰 3 , 芳松 克則 2,1 , 岡本 直也 1 , 寒川 義裕 3,2 , 柿本 浩 3 , 白石 賢 $^{-2,1}$	1. 名大院工, 2. 名大未来研, 3. 九大応力研
3/11(M 9:00		口頭講演 (Oral Presentation) W541会場 (Room W541) 深紫外AlGaN 発光ダイオードの時間分解エレクトロルミ ネセンス分光	〇小島 一信 1 , 吉田 悠来 2 , 白岩 雅輝 2 , 淡路 祥成 2 , 菅 野 敦史 2 , 山本 直克 2 , 平野 光 3 , 長澤 陽祐 3 , 一本松 正 \dot{a}^3 , 秋父 重英 1	
9:15	11a-W541-2	マクロステップを持つc面AIN/サファイアテンプレート 上に成長させたAIGaN量子井戸の構造解析(1)		1.東北大 多元研, 2.創光科学(株), 3.名大 未来材料シテム研, 4.名大 赤崎記念研, 5.名大 VBL, 6.名城大 理コ
	11a-W541-3	マクロステップを持つc面 AIN/ サファイアテンプレート 上に成長させた AIGaN 量子井戸の構造解析 (2)		
9:30		上に及及るでたMdaiv 里 1 开戸の構造所が1 (2)		

10:00	11a-W541-5	Al _{1-x} In _x N混晶におけるバンド端近傍のポテンシャル揺ら ぎと光学定数の解析	〇今井 大地 1 , 山路 知明 1 , 三好 実人 2 , 竹内 哲也 1 , 宮 嶋 孝夫 1	1.名城大理工, 2.名古屋工大
10:15	11a-W541-6	励起子分子のポピュレーション密度及び発光減衰時間の 理論計算	○大木健輔¹,野町健太郎¹,林伯金¹,志村桐門¹,馬蓓¹,森田健¹,石谷善博¹	1.千葉大工
10:30	11a-W541-7	休憩/Break 自立窒化ガリウム結晶の角度分解フォトルミネセンス分 光	○小島 一信¹, 池村 賢一郎², 秩父 重英¹	1.東北大 多元研, 2.浜松ホトニクス
11:00 11:15		自己吸収過程を考慮した発光量子効率の解析式 圧電素子を用いた光音響分光測定系の構築による	〇浅井 栄大 1 , 小島 一信 2 , 秩父 重英 2 , 福田 浩— 1 〇山崎 一人 1 , 石井 良太 1 , 船戸 充 1 , 川上 養— 1	1. 産総研, 2. 東北大多元研 1. 京大院工
11:30	11a-W541-10	GaN の支配的な非輻射再結合過程の評価 GaN の深い準位の直接光励起による発光特性の考察	○(B) 菊地 萌¹, 上原 大輔¹, 馬 ベイ¹, 森田 健¹, 三宅	1.千葉大工, 2.三重大院地域イノベ
11:45	11a-W541-11	高濃度 Si ドープ GaN の深さ方向結晶性の赤外およびラマ		1. 千葉大院工, 2. 東大生研
12:00	11a-W541-12	ン分光評価 ラマン散乱による表面活性化接合前後のGaN薄膜中の歪 変化の評価	輝 2 , 布上 真也 2 , 正直 花奈子 3 , 三宅 秀人 $^{3.4}$, 久志本	
3/11(Mo	n.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PB 会場 (Room PB)	真希 ⁵ , 鄭 惠貞 ⁶ , 本田 善央 ⁶ , 天野 浩 ⁶ , 片山 竜二 ¹	
	11a-PB4-1	AIN構造体を形成した基板への GaN 結晶成長	〇中村 昌幸 1 , 小林 貴之 1 , 幸 康一郎 2 , 井本 良 2 , 岡田 成仁 2 , 立田 利明 1 , 只友 一行 2 , 本山 愼一 1	1.サムコ株式会社, 2.山口大学
	11a-PB4-2	グラファイト基板上に作製した単純P-N接合 GaN の I-V 特性	○井上 崇¹, 桟敷 剛², 細川 敏弘¹, 武田 章義¹, 岡野 寛²	1.東洋炭素(株), 2.香川高専
	11a-PB4-3	GaN層の表面汚染に関する検討(II)	〇水野 愛 1 , 岩元 正紀 1 , 長田 拓也 1 , 鈴木 礼央 1 , 篠田 宏之 1 , 六倉 信喜 1	1.東京電機大工
	11a-PB4-4	RFマグネトロンスバッタ法を用いた GaN 薄膜の作製と 評価に関する研究	〇仲嶋 徽¹, 齋藤 佑樹¹, 宮本 卓哉¹, 黒田 寬¹, 佐藤 祐喜¹, 大鉢 忠¹, 吉門 進三¹, 竹本 菊郎², 宇野 裕行², 木村 直人², 高崎 正規²	1.同志社大院理工, 2.山中ヒューテック株
	11a-PB4-5	熱劣化したエピタキシャルグラフェン上極薄 AIN 中間層 の修復	○佐藤 祐大¹, 寺井 汰至¹, 鎌田 裕太¹, 竹内 智哉¹, 橋 本 明弘¹	1. 福井大院工
	11a-PB4-6	AlN(0001) 基板上における AlGaN 薄膜の成長様式に関する理論的検討	* ***	1. 三重大院工
	11a-PB4-7	RF-MBEより成長した高In組成 GaInNの成長温度特性		1.工学院大
	11a-PB4-8	CVD成長六方晶窒化ホウ素薄膜の高品質化に向けた基板 加熱方法の検討		1. 静岡大総合研, 2. 静岡大創科院, 3. 静岡大電子研
	11a-PB4-9	Na フラックスサファイア溶解法における溶液 Li 濃度と GaN 結晶中 Li 濃度の関係	〇山田 拓海 1 ,今西 正幸 1 ,村上 航 1 ,中村 幸 1 ,吉村 政志 1 ,森 勇 1	1. 阪大院工
	11a-PB4-10	InGaN/GaN多重量子井戸の表面プラズモン侵入長を越		1.阪府大院工, 2.京大院工
	11a-PB4-11	えた発光増強 半極性InGaN/GaN量子井戸の表面プラズモン共鳴によ	$○$ 亀谷 純 1 , 中村 俊樹 1 , 村尾 文弥 1 , 松山 哲也 1 , 和田	1. 阪府大院工, 2. 山口大院創成
	11a-PB4-12	る発光増強 AlGaN系量子井戸構造における励起子発光線幅に対する	健司 1 , 岡田 成仁 2 , 只友 一行 2 , 岡本 晃 $^{-1}$ 野坂 峻大 1 , 〇室谷 英彰 1 , 山田 陽 $^{-2}$	1.徳山高専, 2.山口大院・創成科学
	11a-PB4-13	混晶組成揺らぎおよび界面揺らぎの影響 $\mathrm{NH_3}$ プラズマ照射 GaN 表面の分光エリプソメトリによる		
	11a-PB4-14	評価 4H-SiC, GaN の基底面転位のm面電子線照射による挙動		4.名大IMaSS 1.JFCC, 2.名工大
	11a-PB4-15	第一原理計算による GaN 表面の電子状態と電界効果	加藤 正史 2 , 三好 実人 2 , 江川 孝志 2 〇 (B) 齋藤 雅樹 1 , 関川 卓也 2 , 佐々木 進 $^{3.4}$, 大野 義	1. 新潟大理, 2. 新潟大自然, 3. 新潟大工, 4.AMED 先端
	E 11a-PB4-16	Characterization of a GaN wafer and a homo-epitaxial	明 ¹ ○ (PC)Okkyun Seo ¹ , Jaemyung Kim ¹ , Satoshi Hiroi ¹ ,	計測 1.NIMS
		layer by synchrotron X-ray topography techniques	Yoshihiro Irokawa ¹ , Toshihide Nabatame ¹ , Yasuo Koide ¹ , Osami Sakata ¹	
	11a-PB4-17	GaN自発分極の第一原理計算による検討	○関川 卓也¹, 白石 賢二², 佐々木 進³.⁴, 大野 義章⁵	1.新潟大自然研, $2.$ 名古屋大未来, $3.$ 新潟大工, $4.$ AMED 先端計測, $5.$ 新潟大理
3/11(Mor		NiO/InGaN/n-GaN光陽極を用いた光水分解の検討 口頭講演 (Oral Presentation) W541会場 (Room W541)	○熊倉 一英¹, 渦巻 裕也², 小野 陽子², 小松 武志²	1.NTT 物性研, 2.NTT 先デ研
13:30	招 11p-W541-1	「講演奨励賞受賞記念講演」 深紫外発光素子応用に向けたスパッタ成膜AINテンプ レートの転位密度低減	〇上杉 謙次郎 1 ,林 侑介 2 ,正直 花奈子 3 ,永松 謙太郎 1 ,三宅 秀人 2,3	1.三重大地域創生戦略企画室, 2.三重大院地域イノベ, 3.三重大院工
13:45	11p-W541-2	ダイヤモンド基板上へのスパッタ AIN 成膜と高温アニール	〇白土 達也 1 , 林 侑介 2 , 上杉 謙次郎 3 , 正直 花奈子 4 , 三宅 秀人 2,4	1.三重大工, 2.三重大院地域イノベ, 3.三重大地域創生 戦力企画室, 4.三重大院工
14:00	11p-W541-3	スパッタ法により形成したサファイア上Si ドープAINの 電気特性		
14:15	奨 11p-W541-4	反応性スパッタ法を用いた MnS/Si (100) 上への無極性 AlN 薄膜作製条件の検討		1.明治大, 2.物質材料研究機構, 3.株式会社コメット
14:30	11p-W541-5	AIN 薄駅作製条件の検討 DCスパッタ AIN テンプレートを用いた AIGaN 深紫外 LED の作製		1. 理研, 2.埼玉大, 3.SCREEN ファインテックソリュー ションズ
14:45	招 11p-W541-6	「講演奨励賞受賞記念講演」 本見亦挽デバイスに向けたスパックは贈AINの極性制御	〇林 侑介 1 , 上杉 謙次郎 2 , 正直 花奈子 3 , 片山 竜二 4 ,	1. 三重大院地域イノベ, 2. 三重大地域創生戦略企画室,
15:00	11p-W541-7	波長変換デバイスに向けたスパッタ成膜 AIN の極性制御 スパッタ法と高温アニールによる α 面サファイア上 ϵ 面 AIN の作製	三宅秀人 1,3 〇林 侑介 1 ,藤川 海人 2 ,上杉 謙次郎 3 ,正直 花奈子 2 ,三宅秀人 1,2	3.三重大院工, 4. 阪大院工 1.三重大院地域イノベ, 2.三重大院工, 3.三重大地域創 生戦略企画室
15:15 15:30	11p-W541-8	休憩/Break スパッタリング法により形成した GaN トンネル接合コ	○筆谷 大河¹, 上野 耕平¹, 小林 篤¹, 藤岡 洋¹.²	1.東大生研, 2.JST-ACCEL
15:45		ンタクトの評価 スパッタリング法により形成したp型GaN薄膜の深い準		1.東大生研, 2.JST-ACCEL
		位の評価 RF-MBE法を用いた GaN のリモートホモエピタキシャル		·
16:00		成長		1.立命館大理工
16:15	•	ブランキングを有したピコ秒レーザPLD成長 GaN成膜の均一性改善		1.京都工芸繊維大
16:30 16:45		AlN 系バッファー層上に成長した多結晶 InN の特性 Characteristics of ultra-thin InN films grown on AlN	○坂本 真澄¹, 小林 篇¹, 上野 耕平¹, 藤岡 洋¹² ○ (M1)Dayeon Jeong¹, Atsushi Kobayashi¹, Kohei	1.東大生研, 2.JST-ACCEL 1.Institute of Industrial Science, The University of
17:00	E 11p-W541-14	RF-sputter deposition of h-BN films on Al _{0.7} Ga _{0.3} N	Ueno¹, Hiroshi Fujioka¹.² ○ GUODONG HAO¹, Shin-Ichiro Inoue¹	Tokyo, 2.JST-ACCEL 1.NICT
		template		

17:15				
	11p-W541-15	MBEによるガラス基板上BN薄膜成長	○小林 康之 1 ,中田 啓一 1 ,中澤 日出樹 1 ,岡本 浩 1 ,廣 木 正伸 2 ,熊倉 一英 2	1. 弘前大学, 2.NTT 物性基礎研
17:30 17:45	11p-W541-16	休憩/Break MOCVDによる高密度 (> 1 × 10 ¹¹ cm ⁻²)GaN/AlGaN量子	○有田 宗貴¹,梅 洋¹²,荒川 泰彦¹	1.東大ナノ量子機構, 2.厦門大
18:00	11p-W541-17	ドットの形成 HEATE法で作製したInGaN/GaN極微細ナノビラーに対		1.上智大・理工, 2.上智大ナノテクセンター
18:15	11p-W541-18	する飽和オゾン水処理による表面パッシベーション効果 GaNナノコラム光共振器構造の設計と作製	崎 裕生¹, 森谷 裕太¹, 富樫 理恵¹, 菊池 昭彦¹¹² ○(M1C)高木 俊裕¹, 関口 寛人¹, 玉井 良和¹, 山根	1. 豊橋技科大, 2. 上智大
18:30	11p-W541-19	RF-MBE法を用いたAlN/Si基板上への規則配列Eu添加		1. 豊橋技科大, 2. 上智大
18:45	11p-W541-20	GaNナノコラムの成長 規則配列 InGaNナノコラムを用いた赤色発光LED結晶	良和¹, 山根 暋輔¹, 岡田 浩¹, 岸野 克巳², 若原 昭浩¹ ○滝本 啓司¹, 成田 一貴¹, 吉田 圭吾³, 大音 隆男⁴, 山口 智広³, 本田 徹³, 富樫 理恵¹, 野村 一郎¹¹², 岸野 克巳¹¹²	
		口頭講演 (Oral Presentation) W541 会場 (Room W541)		
9:00 9:15	奨 12a-W541-2	HVPE法による加工サファイア基板上のAlN成長 トリハライド気相成長法による格子緩和したInGaN厚膜		
9:30		成長 ハイドライド気相成長法による積層欠陥の少ない高品質 ***55***(20.21) 元(20.21) 元		
9:45	12a-W541-4	半極性 {20-21} 面 GaN テンプレート上 GaN の成長 HVPE 法におけるマルチストライプマスクを用いた GaN		学 1.山口大院・創成科学, 2.山口大・エ
10:00	奨 12a-W541-5	の高品質化 光熱偏向分光法によるGaN自立基板上ホモエビタキシャル層の評価	一行¹ ○福田清貴¹²,矢代秀平¹²,藤倉序章³,今野泰一郎³,鈴木貴征³,藤本哲爾³,吉田丈洋³,尾沼猛儀²,山口智広²,本田徹²,角谷正友¹	1. 物材機構, 2. 工学院大, 3. サイオクス
10:15	12a-W541-6	キンクおよびステップ構造を持つGaN極性表面における 〇不純物の脱離エネルギーの解析		1.三重大院工, 2. 阪大院工, 3. 九大応力研
10:30 10:45	奨 12a-W541-7	休憩/Break OVPE法によるCH ₄ を用いた高速成長条件での厚膜・自 立 GaN 結晶の作製	○(B) 神山 将大¹, 郡司 祥和¹, 小林 大也¹, 大芝 啓嘉¹, 北本 啓¹, 今西 正幸¹, 吉村 政志¹, 伊勢村 雅士²,	 1. 阪大工, 2. 伊藤忠ブラスチック(株), 3. バナソニック (株)
			隅 智亮 ³, 滝野 淳一 ¹.³, 岡山 芳央 ³, 信岡 政樹 ³, 森 勇 介 ¹	
11:00		OVPE法によるホモエピタキシャル GaN 厚膜の欠陥構造 評価	西 正幸3, 森 勇介3, 酒井 朗1	
11:15		Naフラックス法におけるLi添加を用いた微小径ポイントシードGaN結合成長	○濱田和真¹,澤田友貴¹,山田拓海¹,村上航介¹,今 西正幸¹,吉村政志¹,森勇介¹	
11:30		Naフラックス GaN バルク単結晶の単独転位における漏れ電流特性とバーガースベクトルの解析	〇濱地 威明 1 , 藤平 哲也 1 , 今西 正幸 2 , 森 勇介 2 , 酒井 朗 1	1. 阪大院基礎工, 2. 阪大院工
11:45	奨 12a-W541-11	Naフラックス法における4端子法抵抗測定を用いた窒素 溶解量のモニタリング	○タンドリーヨ リクセン¹, Murakami Kosuke¹, Yamada Takumi¹, Kitamura Tomoko¹, Masayuki Imanishi¹, Yoshimura Masashi¹, Mori Yusuke¹	1.Osaka Univ.
12:00	12a-W541-12	酸性アモノサーマル法による GaN 結晶育成に金属添加が 与える影響	〇冨田 大輔 1 , 包 全喜 1,3 , 斉藤 真 1,2 , 栗本 浩平 3 , 佐藤 福馬 1 , 石黒 徹 1 , 秩父 重英 1	1.東北大多元研, 2. 三菱ケミカル, 3. 日本製鋼所
3/12(Tu 13:30		口頭講演 (Oral Presentation) W541 会場 (Room W541) 「第9回化合物半導体エレクトロニクス業績賞 (赤崎勇賞) 受賞記念講演」	○平山 秀樹 ¹	1. 理研
		AI系窒化物結晶へテロ成長技術とそれを用いた深紫外線		
		IFDの開発		
14:00		LEDの開発 ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長		
14:00 14:15	12p-W541-2	ナノ PSS 上スパッタ堆積アニール AIN 膜を基板に用いた ホモエビ成長 N極性 AIN における表面平坦性のサファイア基板オフ角	玉 4 , 三宅 秀人 2 . 4 \bigcirc 磯野 竜 1 , 江﨑 建 1 , 伊藤 忠寿 2 , 坂本 凌 2 , 姚	4. 三重大院地域イノベ
14:15	12p-W541-2 12p-W541-3	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の	玉 4 , 三宅 秀人 2 4 ○磯野 竜弥 1 , 江崎 建彌 1 , 伊藤 忠寿 2 , 坂本 凌太 2 , 姚 永昭 3 , 石川 由加里 3 , 岡田 成仁 1 , 只友 一行 1	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大
14:15 14:30	12p-W541-2 12p-W541-3 12p-W541-4	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性	玉 4 ,三宅 秀人 $^{2.4}$ ○磯野 竜弥 1 ,江崎 建彌 1 ,伊藤 忠寿 2 ,坂本 凌太 2 ,姚 永昭 3 ,石川 由加里 3 ,岡田 成仁 1 ,只友 一行 1 ○上杉 謙次郎 1 ,正直 花奈子 2 ,林 侑介 3 ,三宅 秀人 $^{2.3}$	4.三重大院地域イノベ 1.山口大院・創成科学, 2.山口大工, 3.ファインセラミックス 1.三重大地域創生戦略企画室, 2.三重大院工, 3.三重大院地域イノベ
	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AIGaN成長 高温アニールAIN/サファイア上へのAIGaN成長での歪		4.三重大院地域イノベ 1.山口大院・創成科学、2.山口大工、3.ファインセラミックス 1.三重大地域創生戦略企画室、2.三重大院工、3.三重大院地域イノベ 1.三重大工、2.三重大院工、3.三重大院地域イノベ、4.三
14:15 14:30 14:45 15:00	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AIGAN成長 高温アニールAIN/サファイア上へのAIGAN成長での歪 み制御 無極性加面AINバルク基板上に成長した加面AIGANの組		4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研
14:15 14:30 14:45 15:00 15:15 15:30	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AlGaN成長 高温アニールAIN/サファイア上へのAIGaN成長での歪 み制御 無極性加面AINバルク基板上に成長した加面AIGaNの組 成変調 休憩/Break		4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研
14:15 14:30 14:45	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-8	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角依存性 高温アニールしたスパッタ成膜AINテンプレート上のAIGaN成長 高温アニールAIN/サファイア上へのAIGaN成長での歪み制御 無極性加面AINバルク基板上に成長した加面AIGaNの組成変調 体憩/Break AIInNエビタキシャル膜のSiドービングによる導電性制御		4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大
14:15 14:30 14:45 15:00 15:15 15:30	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-8 獎 12p-W541-9	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AIGAN成長 高温アニールAIN/サファイア上へのAIGAN成長での歪 み制御 無極性 m面 AIN バルク基板上に成長した m面 AIGANの組 成変調 休憩/Break AIInNエビタキシャル膜のSiドーピングによる導電性制御 GaNに格子整合する組成近傍の四元混晶 AIGaInNエビタキシャル膜の成長とその結晶評価	玉⁴,三宅秀人²⁴ ○磯野竜弥¹,江崎建彌¹,伊藤忠寿²,坂本凌太²,姚永昭³,石川由加里³,岡田成仁¹,只友一行¹ ○上杉謙次郎¹,正直花奈子²,林侑介³,三宅秀人²³ ○稲森崇文¹,鈴木涼矢²,劉小桐³,上杉謙次郎⁴,正直花奈子²,三宅秀人²³ ○西中淳一¹,谷保芳孝¹,熊倉一英¹ ○(M1)山中瑞樹¹,三好実人¹,江川孝志¹,竹内哲也² ○原田紘希¹,三好実人¹,江川孝志¹,竹内哲也² ○(B)田中隼也¹,川瀬雄太¹,佐藤恒輔¹³,岩谷素顕¹,竹内哲也¹,上山智¹,赤崎勇¹²	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成
14:15 14:30 14:45 15:00 15:15 15:30 15:45	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-8 獎 12p-W541-9 獎 12p-W541-10	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いた ホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AIGAN成長 高温アニールAIN/サファイア上へのAIGAN成長での歪 み制御 無極性 m面 AINバルク基板上に成長した m面 AIGaNの組 成変調 体憩/Break AIInNエビタキシャル膜のSiドービングによる導電性制 御 GaNに格子整合する組成近傍の四元混晶 AIGaInNエビタ キシャル膜の成長とその結晶評価 深紫外レーザのAlos Gao.5N ガイド層における不純物濃度 と光損失の関係	玉⁴,三宅秀人²⁴ ○磯野竜弥¹,江崎建彌¹,伊藤忠寿²,坂本凌太²,姚永昭³,石川由加里³,岡田成仁¹,只友一行¹ ○上杉謙次郎¹,正直花奈子²,林侑介³,三宅秀人²³ ○稲森崇文¹,鈴木涼矢²,劉小桐³,上杉謙次郎⁴,正直花奈子²,三宅秀人²³ ○西中淳一¹,谷保芳孝¹,熊倉一英¹ ○(M1)山中瑞樹¹,三好実人¹,江川孝志¹,竹内哲也² ○原田紘希¹,三好実人¹,江川孝志¹,竹内哲也² ○(B)田中隼也¹,川瀬雄太¹,佐藤恒輔¹³,岩谷素顕¹,竹内哲也¹,上山智¹,赤崎勇¹² ○(M1)平岩恵¹,村永亘¹,岩山章¹,竹内哲也¹,上山智¹,岩谷素顕¹,竹内哲也¹,上山智¹,岩谷素野请赤崎勇¹²	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター
14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-8 獎 12p-W541-9 獎 12p-W541-10	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角依存性 高温アニールしたスパッタ成膜AINテンプレート上のAIGaN成長 高温アニールAIN/サファイア上へのAIGaN成長での歪み制御無極性加面AINバルク基板上に成長した加面AIGaNの組成変調体憩/Break AIInNエピタキシャル膜のSiドーピングによる導電性制御 GaNに格子整合する組成近傍の四元混晶AIGaInNエピタキシャル膜の成長とその結晶評価 深紫外レーザのAl ₀₅ Ga _{0.5} Nガイド層における不純物濃度と光損失の関係 高品質AIInN/GaN多層膜反射鏡のためのその場観察反り測定 成長モード制御によるAIGaN下地層の高品質化とUV-B	玉⁴,三宅秀人²⁴ ○磯野竜弥¹,江崎建彌¹,伊藤忠寿²,坂本凌太²,姚永昭³,石川由加里³,岡田成仁¹,只友一行¹ ○上杉謙次郎¹,正直花奈子²,林侑介³,三宅秀人²³ ○稲森崇文¹,鈴木涼矢²,劉小桐³,上杉謙次郎⁴,正直花奈子²,三宅秀人²³ ○西中淳一¹,谷保芳孝¹,熊倉一英¹ ○(M1)山中瑞樹¹,三好実人¹,江川孝志¹,竹内哲也² ○原田紘希¹,三好実人¹,江川孝志¹,竹内哲也² ○(B)田中隼也¹,川瀬雄太¹,佐藤恒輔¹³,岩谷素顕¹,竹内哲也¹,上山智¹,赤崎勇¹² ○(M1)平岩恵¹,村永亘,岩山章¹,竹内哲也¹,上山智¹,岩谷素顕¹,赤崎勇¹² ○(M2)川瀬雄太¹,沈田隼也¹,櫻木勇介¹,安江信	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター
14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-8 獎 12p-W541-9 獎 12p-W541-10	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角依存性 高温アニールしたスパッタ成膜AINテンプレート上のAIGaN成長 高温アニールAIN/サファイア上へのAIGaN成長での歪み制御無極性加面AINバルク基板上に成長した加面AIGaNの組成変調体憩/Break AIInNエピタキシャル膜のSiドーピングによる導電性制御 GaNに格子整合する組成近傍の四元混晶AIGaInNエピタキシャル膜の成長とその結晶評価 深紫外レーザのAl ₀₅ Ga _{0.5} Nガイド層における不純物濃度と光損失の関係 高品質AIInN/GaN多層膜反射鏡のためのその場観察反り測定 成長モード制御によるAIGaN下地層の高品質化とUV-B	玉⁴,三宅秀人²⁴ ○磯野 竜弥¹,江崎 建彌¹,伊藤 忠寿²,坂本 凌太²,姚 永昭³,石川 由加里³,岡田 成仁¹,只友一行¹ ○上杉 謙次郎¹,正直 花奈子²,林 侑介³,三宅 秀人²³ ○稲森 崇文¹,鈴木 涼矢²,劉 小桐³,上杉 謙次郎⁴,正直 花奈子², 桂 侑介³,三宅 秀人²³ ○西中 淳一¹,谷保 芳孝¹,熊倉一英¹ ○(M1)山中 瑞樹¹,三好 実人¹,江川 孝志¹,竹内 哲也² ○原田 紘希¹,三好 実人¹,江川 孝志¹,竹内 哲也² ○(B)田中 隼也¹,川瀬 雄太¹,佐藤 恒輔¹³,岩谷 素顕¹,竹内 哲也¹,上山智¹,赤崎 勇¹² ○(M1)平岩 恵',村永 亘',岩山 章¹,竹内 哲也¹,上山智¹,岩谷 素顕¹,赤崎 勇¹² ○(M2)川瀬 雄太¹,池田 隼也¹,楔木 勇介¹,安江 信次¹,手良村 昌平¹,田中 隼也¹,获野 雄矢¹,岩谷 素顕¹,竹内 哲也¹,上山智¹,表岭 勇²²,三宅 秀人³	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.三重大・地域イノベ 1.名城大学理工,2.名古屋大赤崎記念研究センター,3.三重大・地域イノベ
14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-7 12p-W541-9 獎 12p-W541-10 髮 12p-W541-11 髮 12p-W541-11	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AIGAN成長 高温アニールAIN/サファイア上へのAIGAN成長での歪 み制御 無極性 m面 AIN バルク基板上に成長した m面 AIGANの組成変調 休憩/Break AIInNエピタキシャル膜のSi ドーピングによる導電性制御 GaNに格子整合する組成近傍の四元混晶 AIGaInNエピタキシャル膜の成長とその結晶評価 深紫外レーザのAlos Gao.5N ガイド層における不純物濃度と光損失の関係 高品質 AIInN/GaN 多層膜反射鏡のためのその場観察反り測定 した UV・Bレーザーの応用 様々な AINテンプレート上に形成した緩和 AIGaN層に作製した UV・Bレーザー	玉⁴,三宅秀人²⁴ ○磯野竜弥¹,江崎建彌¹,伊藤忠寿²,坂本凌太²,姚永昭³,石川由加里³,岡田成仁¹,只友一行¹ ○上杉謙次郎¹,正直花奈子²,林侑介³,三宅秀人²³ ○稲森崇文¹,鈴木凉矢²,劉小桐³,上杉謙次郎⁴,正直花奈子²,三宅秀人²³ ○西中淳一¹,谷保芳孝¹,熊倉一英¹ ○(M1)山中瑞樹¹,三好実人¹,江川孝志¹,竹内哲也² ○原田紘希¹,三好実人¹,江川孝志¹,竹内哲也² ○原田紘希¹,三好実人¹,江川孝志¹,竹内哲也² ○(B)田中隼也¹,川瀬雄太¹,佐藤恒輔¹³,岩谷素顕¹,竹内哲也¹,上山智¹,赤崎勇¹² ○(M1)平岩恵¹,村永亘¹,岩山章¹,竹内哲也¹,上山智¹,岩谷素顕¹,竹内哲也¹,上山智¹,岩尚素野²,竹内哲也¹,上山智¹,岩高赤崎勇²² ○(M2)川瀬雄太¹,池田隼也¹,楔木勇介¹,安江信次¹,号良村昌平¹,田中隼也¹,荻野雄矢³,岩谷素顕¹,竹内哲也¹,上山智¹,岩山章¹³,赤崎勇²¹,三宅秀人³	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名域大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.三重大・地域イノベ 1.名城大学理工,2.名古屋大赤崎記念研究センター,3.三重大・地域イノベ
14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-7 12p-W541-9 獎 12p-W541-10 獎 12p-W541-11 髮 12p-W541-11	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角依存性 高温アニールしたスパッタ成膜AINテンプレート上のAIGaN成長 高温アニールAIN/サファイア上へのAIGaN成長での歪み制御 無極性加面AINバルク基板上に成長した加面AIGaNの組成変調 体憩/Break AIInNエピタキシャル膜のSiドーピングによる導電性制御 GaNに格子整合する組成近傍の四元混晶AIGaInNエピタキシャル膜の成長とその結晶評価 深紫外レーザのAl ₀ 5Ga _{0.5} Nガイド層における不純物濃度と光損失の関係 高品質AIInN/GaN多層膜反射鏡のためのその場観察反り測定 成長モード制御によるAIGaN下地層の高品質化とUV-Bレーザへの応用 様々なAINテンプレート上に形成した緩和AIGaN層に作製したUV-Bレーザー	玉⁴,三宅秀人²⁴ ○磯野竜弥¹,江崎建彌¹,伊藤忠寿²,坂本凌太²,姚永昭³,石川由加里³,岡田成仁¹,只友一行¹ ○上杉謙次郎¹,正直花奈子²,林侑介³,三宅秀人²³ ○稲森崇文¹,鈴木凉矢²,劉小桐³,上杉謙次郎⁴,正直花奈子²,三宅秀人²³ ○西中淳一¹,谷保芳孝¹,熊倉一英¹ ○(M1)山中瑞樹¹,三好実人¹,江川孝志¹,竹內哲也² ○原田紘希¹,三好実人¹,江川孝志¹,竹內哲也² ○(B)田中隼也¹,川瀬雄太¹,佐藤恒輔¹³,岩谷素顕¹,竹內哲也¹,上山智¹,赤崎勇¹² ○(M1)平岩恵¹,村永亘',岩山章¹,竹內哲也¹,上山智¹,岩谷素顕¹,竹內哲也¹,上山智¹,岩岭素顕²,竹內哲也¹,上山智¹,岩岭素頭²,竹內哲也¹,上山智¹,岩岭素頭²,竹內哲也¹,上山智¹,岩岭素頭²,竹內哲也¹,上山智¹,岩岭素頭²,竹內哲也¹,上山智¹,岩岭素頭²,竹內哲也¹,上山智¹,岩山章¹³,赤崎勇²¹,三宅秀人³ ○(B)手良村昌平¹,川瀬雄太¹,池田隼也¹,稷木勇介²,安江信次¹,二年世也¹,获野雄矢¹,岩谷素顕²,竹内哲也¹,上山智¹,岩山章¹³,赤崎勇¹²,三宅秀人³	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.三重大・地域イノベ 1.名城大学理工,2.名古屋大赤崎記念研究センター,3.三重大・地域イノベ
14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30	12p-W541-2 12p-W541-3 12p-W541-4 12p-W541-5 12p-W541-6 12p-W541-7 12p-W541-8 獎 12p-W541-10 獎 12p-W541-11 獎 12p-W541-11	ナノPSS上スパッタ堆積アニールAIN膜を基板に用いたホモエビ成長 N極性AINにおける表面平坦性のサファイア基板オフ角 依存性 高温アニールしたスパッタ成膜AINテンプレート上の AIGAN成長 高温アニールAIN/サファイア上へのAIGAN成長での歪 み制御 無極性 m面 AIN バルク基板上に成長した m面 AIGANの組 成変調 休憩/Break AIInNエビタキシャル膜のSi ドーピングによる導電性制御 GaNに格子整合する組成近傍の四元混晶 AIGaInNエビタキシャル膜の成長とその結晶評価 深紫外レーザのAla。Gaa.5N ガイド層における不純物濃度と光損失の関係 高品質 AIInN/GaN 多層膜反射鏡のためのその場観察反り 測成長モード制御による AIGaN下地層の高品質化とUV-Bレーザへの応用 様々な AINテンプレート上に形成した緩和 AIGaN層に作製した UV-Bレーザー	玉⁴,三宅秀人²⁴ ○磯野 竜弥¹,江崎 建彌¹,伊藤 忠寿²,坂本 凌太²,姚 永昭³,石川 由加里³,岡田 成仁¹,只友一行¹ ○上杉 謙次郎¹,正直 花奈子²,林 侑介³,三宅 秀人²³ ○稲森 崇文¹,鈴木 涼矢²,劉 小桐³,上杉 謙次郎⁴,正直 花奈子²,桂 侑介³,三宅 秀人²³ ○西中淳一¹,谷保 芳孝¹,熊倉一英¹ ○(M1)山中 瑞樹¹,三好 実人¹,江川 孝志¹,竹内 哲也² ○(B)田中 華也¹,川瀬 雄太¹,佐藤 恒輔¹³,岩谷 素顕¹,竹内 哲也¹,上山智¹,赤崎 勇¹² ○(M2)川瀬 雄太¹, 北田 隼也¹, 楔下 勇介¹,安江 信次 1, 長日村 昌平¹, 田中 隼也¹, 荻野 雄矢¹,岩谷 素顕¹,竹内 哲也¹,上山智¹,岩山 章¹,,赤崎 勇²¹,三宅 秀人³ ○(B)手良村 昌平¹,川瀬 雄太¹,池田 隼也¹,稷木 勇介¹,安江 信次 1, 岩谷 素顕¹,竹内 哲也¹,上山智¹,岩山 章¹,赤崎勇²¹,三宅 秀人³	4.三重大院地域イノベ 1.山口大院・創成科学,2.山口大工,3.ファインセラミックス 1.三重大地域創生戦略企画室,2.三重大院工,3.三重大院地域イノベ 1.三重大工,2.三重大院工,3.三重大院地域イノベ,4.三重大地域創生戦略企画室 1.NTT物性研 1.名工大,2.名城大 1.名古屋工業大学,2.名城大学 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.旭化成 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター 1.名城大理工,2.名古屋大・赤崎記念研究センター,3.三重大・地域イノベ 1.名城大学理工,2.名古屋大赤崎記念研究センター,3.三重大・地域イノベ

3/12(⁻ 9:30	12a-M113-1	口頭講演 (Oral Presentation) M113 会場 (Room M113) Raman分光法を用いたイオン注入 Ge 基板表面の結晶損 傷評価	財満 鎭明3	1.名大院工, 2.名古屋大学 未来研, 3.名古屋大学 未来社 会創造機構
9:45	奨 12a-M113-2	逆格子空間マッピングを用いた $\operatorname{Ge}_{1x}\operatorname{Sn}_x$ メサ構造における歪緩和評価	○ (M1) 高橋 祐樹¹, 横川 凌¹¹², 廣沢 一郎³, 須田 耕 平¹, 小椋 厚志¹	1.明治大理工, 2.学振特別研究員 DC, 3.高輝度光科学研究センター
10:00	12a-M113-3	液浸ラマン分光法による組成傾斜SiGe ワイヤの異方性二 軸応力分布評価	○横川 凌 ^{1,2} , 高橋 恒太 ^{2,4} , 富田 基裕 ^{1,3} , 黒澤 昌 志 ^{4,5,6} , 渡邉 孝信 ³ , 小椋 厚志 ¹	1.明治大理工, 2.学振特別研究員 DC, 3.早大理工, 4.名 大院工, 5.JST さきがけ, 6.名大高等研究院
10:15	12a-M113-4	SiO ₂ 上Ge成長膜の擬誘電応答関数に関するモデルと フィッテイング	○赤沢 方省1	1.NTTデバイスイノベーションセンタ
10:30	奨 12a-M113-5	水浸ラマン分光法によるパターン加工したカーボンドー プシリコンにおける歪緩和の評価	○吉岡 和俊¹, 横川 凌¹², 澤本 直美¹, 小椋 厚志¹	1. 明治大学, 2. 学振特別研究員 DC
10:45	12a-M113-6	ヘテロエピタキシャルAl/Ge(111)上に偏析した極薄 Ge の化学分析	○小林 征登¹,大田 晃生¹,黒澤 昌志¹,洗平 昌晃¹,田 岡 紀之²,池田 弥央¹,牧原 克典¹,宮崎 誠一¹	1. 名大, 2. 産総研 GaN-OIL
11:00	奨 12a-M113-7	多層グラフェンの合成に向けた炭素/金属固相反応の包 括的研究	○中島 義基¹, 村田 博雅¹, 末益 崇¹, 都甲 薫¹	1. 筑波大院
11:15	12a-M113-8	エピタキシャル成長におけるリコン多形の結晶成長の可 能性	○北 玲男¹, 豊田 雅之¹, 斎藤 晋¹	1.東工大
3/12(T 13:15		口頭講演 (Oral Presentation) M113 会場 (Room M113) Ge-Au 同時蒸着膜を用いた金誘起層交換成長法による	○栫 昂輝¹, 笠原 健司¹, 清水 昇², 角田 功², 眞砂 卓	1.福岡大理, 2.熊本高専
	•	Ge 結晶の低温形成	史 ¹	
13:30	•	金誘起層交換成長法で作製したGe薄膜における電気伝導 特性の理解	岳¹, 角田 功³, 中島 寛⁴, ○浜屋 宏平¹	1. 阪大基礎工, 2. 福大理, 3. 熊本高専, 4. 九大 GIC
13:45	•	金誘起層交換成長法で作製したGe薄膜を用いた薄膜トランジスタ特性	也¹, 金島 岳¹, 中島 寛⁴, ○浜屋 宏平¹	
14:00	•	Aluminum-induced crystallization of Si (111) on highly mismatched crystalline substrates	○ (PC)Mel Hainey¹, Eddie (Chenhui) Zhou², Noritaka Usami¹	1.Nagoya Univ., 2.UCLA
14:15	12p-M113-5	印刷と焼成によるSi基板上へのSiGe層のエピタキシャル 成長におけるSi基板方位の影響	○ (D) 中原 正博 ^{1,4} , 深見 昌吾 ¹ , Mel F. Hainey, Jr. ¹ , 中川 慶彦 ¹ , 有元 圭介 ² , 後藤 和泰 ¹ , 黒川 康良 ¹ , 前田 健作 ³ , 藤原 航三 ³ , Marwan Dhamrin ⁴ , 宇佐美 徳隆 ¹	
14:30	奨 12p-M113-6	石英基板上 GeSn液相成長における GeSn堆積温度と細線	〇井上 慶太郎 1 ,和田 裕希 1 ,細井 卓治 1 ,志村 考功 1 ,	1. 阪大院工
14:45	12p-M113-7	形状の効果 CWレーザーアニール法によるガラス上でのGe および	渡部 平司¹ ○松村 亮¹, ジェバスワン ウィバコーン¹, 深田 直樹¹	1. 物材機構・MANA
15:00	12p-M113-8	GeSn薄膜結晶成長 c面サファイア基板上Ge(111)薄膜成長における双晶形 成の抑制	○(B)宮崎 滉 ¹ ,大武 史康 ² ,岡田 健 ² ,川島 知之 ² , 鷲 尾勝由 ²	1. 東北大工, 2. 東北大院工
15:15	12p-M113-9	成の抑制 ガラス上へのGe貼り合わせにおける界面アモルファス層 挿入の効果		1.東京都市大
15.6 IV	族系化合物(SiC)/	作人の効果 Group IV Compound Semiconductors (SiC)		
3/9(S		ポスター講演 (Poster Presentation) PB 会場 (Room PB)	○ ○ △ → → → ↑ 1 L → ← → → → ↑	1 BULT
	9a-PB3-1 9a-PB3-2	Cr-Al溶媒からのSiC溶液成長 4H-SiC C面 on-axis 基板上の厚膜エピタキシャル成長	○鈴木 皓己¹,太子 敏則¹ ○升本 恵子¹,児島 一聡¹,奥村 元¹	1.信州大工 1.産総研
	9a-PB3-3	THz-TDSEによる3層構造SiCウエハのバッファ層の電気特性評価		1.立命館大理工, 2.九州シンクロトロン光研究センター, 3.日邦プレシジョン, 4.東レリサーチセンター
	9a-PB3-4 9a-PB3-5	4H-SiC基板の表面有機物の挙動 同位体酸素を用いたSiC表面に形成される単一光子源の	○郡山 春人¹, 遠田 義晴¹	1. 弘大院理工 1. 埼玉大院理工研, 2. 東工大, 3. 量研
	9a-PB3-6	構造推定 イオン注入角制御による4H-SiC基板へのイオン注入高	○(B)岡田智徳¹,井上純¹,西山文隆¹,瀬崎洋²,黒	
	9a-PB3-7	精度化 4H-SiC CMOS 論理回路作製に向けたBOSCHプロセス		1.広大ナノデバイス, 2.産総研
	9a-PB3-8	によるSiCディープエッチング X線吸収分光によるSiO₂/SiC界面に導入された窒素の局		1. 豊田中研
	9a-PB3-9	所構造解析 4H-SiC(1-100)/SiO ₂ 界面とNOのシミュレーションによ	本康司 ¹ ○小笠原 美紀 ¹ , 広瀬 隆之 ¹	1.富士電機
	9a-PB3-10	る反応解析 4H-SiC(1-100)表面での O。酸化反応シミュレーション	○広瀬 隆之¹, 小笠原 美紀¹	1. 富士電機
	E 9a-PB3-11	Influence of biaxial stress on the electron transport properties at SiO2/4H-SiC interfaces	○ (D)WEI FU¹, Akiko Ueda², Hiroshi Yano¹, Shinsuke Harada², Takeaki Sakurai¹	1.Tsukuba Univ., 2.AIST
	9a-PB3-12	機械的な一軸応力印加による 4H-SiC(0001) MOSFET に 対する移動度への影響		1.愛知工大, 2.名古屋大学, 3.(株)豊田中研, 4.トヨタ自動車(株)
	9a-PB3-13	MGy領域における 4H-SiC JFET のガンマ線照射効果	〇武山 昭憲 1 , 清水 奎吾 2 , 牧野 高紘 1 , 山崎 雄 1 , 大島 武 1 , 黒木 伸一郎 3 , 田中 保宣 2	
	9a-PB3-14 9a-PB3-15	高耐圧 4H-SiC ショットキーpn ダイオードの開発 SiC-MOSFET のアニール処理によるパワーサイクル試験	○児島 一聡 1 , 奥村 元 1 ○鈴木 達広 1 , 山下 真理 1 , 児嶋 伸夫 1 , 谷本 智 1,2 , 赤	1. (国) 産総研 1.日産アーク・パワエレ解析室, 2.芝浦工大・SIT 総研
	9a-PB3-16	耐性の向上 トランスファーモールド SiC-MOSFET パワーモジュール	津 観 ² ○谷本 智 ^{1,3} , 山下 真理 ¹ , 児嶋 伸夫 ¹ , 鈴木 広達 ¹ , 荒	1.日産アーク・パワエレ解析室, 2.産総研・ADPERC,
	9a-PB3-17	の高温スイッチング試験 Cr-Cu/Cuクラッド材を用いたパワーモジュール絶縁基		 3. 芝浦工大・SIT 総研 1. 日産アーク, 2. 芝浦工大・SIT 総研
	9a-PB3-18	板/ベースプレート構造 機電一体インホールモータ搭載 SiC パワーモジュールの	本 智 ^{1, 2} , 赤津 観 ²	
3/10(5	Sun.) 9:00 - 12:00	加振試験 口頭講演 (Oral Presentation) 70A 会場 (Room 70A)	本智 ¹ , 赤津 観 ²	
9:00	10a-70A-1	傾斜SiC表面の1次元周期構造	○香田 稜太¹, 福間 洸平¹, ビシコフスキー アント ン¹, 田中 悟¹	1.九州大学
9:15	10a-70A-2	SiC(0001) 傾斜基板に現れるナノファセット傾斜角度の マジックアングル	〇平山 楓 1 , 梶原 隆司 1 , ビシコフスキー アントン 1 , 田中 悟 1	1. 九大院工
9:30	10a-70A-3	4H-SiC(0001)上のエピタキシャル原子層アルミニウム酸 化膜	○尾家 翔太郎¹, 梶原 隆司¹, ビシコフスキー アントン¹, 白澤 徹郎², 飯盛 拓嗣³, 小森 文夫³, 田中 悟¹	1. 九大院工, 2. 産総研, 3. 東大物性研
9:45	10a-70A-4	レーザーテラヘルツエミッション顕微鏡を用いた SiO ₂ / SiC 界面の表面ポテンシャル評価		1.SCREEN, 2. 阪大レーザー研, 3. 阪大院工
10:00 10:15	10a-70A-5	SiC酸化膜中の窒素関連欠陥の構造とその電子状態 休憩/Break	○松下 雄一郎¹,小林 拓真¹	1.東工大フロンティア
10:30 10:45	10a-70A-6 10a-70A-7	CO ₂ 雰囲気下での4H-SiC熱酸化の検討 CO ₂ アニールによる4H-SiC(0001) MOSデバイスの特性	 ○細井 卓治¹, 大迫 桃恵¹, 志村 考功¹, 渡部 平司¹ ○細井 卓治¹, 大迫 桃恵¹, 志村 考功¹, 渡部 平司¹ 	1. 阪大工 1. 阪大工
11:00	10a-70A-8	改善 深い準位を有するドナー添加が SiC MOSFET チャネル特	○野口 宗隆¹, 岩松 俊明¹, 網城 啓之¹, 渡邊 寬¹, 喜多	1. 三菱電機, 2. 東大工
		性へ及ぼす効果	浩之², 三浦 成久¹	

11:15	10a-70A-9	SiC-MOSFET ゲートスイッチング動作時の信頼性向上効		1.九産大工
11:30	10a-70A-10	果 SiC-MOSFETの温度依存(-60-200°C)ドレイン電流モ	直輝¹, ○村上 英一¹ 鈴木 光明¹, 高橋 陽平¹, ○村上 英一¹	1.九産大工
11:45	10a-70A-11	デル 1.7 kV 100 A 4H-SiC V 溝型トレンチ MOSFET	○中村 龍之介¹, 金田 達志¹, 内田 光亮¹, 日吉 透¹, 酒 井 光彦¹, 大森 弘貴¹, 築野 孝¹	1.住友電工
3/11(M 9:00	on.) 9:00 - 11:45 奨 11a-70A-1	口頭講演 (Oral Presentation) 70A会場 (Room 70A) 高濃度ドープ4H-SiCショットキー障壁ダイオードにお	○原 征大¹,浅田 聡志²,前田 拓也²,木本 恒暢²	1. 京大工, 2. 京大院工
9:15	奨 11a-70A-2	ける順方向熱電界放出電流の解析と障壁高さの評価 第一原理計算によるSiC/SiO ₂ 界面近傍の炭素関連欠陥の 構造同定	○(P)小林 拓真¹,松下 雄一郎¹	1.東工大フロンティア
9:30	11a-70A-3	リン処理によるSiC/SiO ₂ 界面の炭素関連欠陥の低減機構	○(P)小林 拓真 ^{1,2} ,松下 雄一郎¹,奥田 貴史²,木本 恒暢²,押山 淳³	1.東工大フロンティア, 2.京大院工, 3.名大未来研
9:45	爰 E 11a-70A-4	Similarity and Difference of the Impact of Ion Implantation and Thermal Oxidation on the Lattice	○ Adhi Dwi Hatmanto¹, Koji Kita¹	1.The Univ. of Tokyo
10:00	奨 11a-70A-5	Structure of 4H-SiC Surfaces $Al_2O_3/SiO_2/n$ 型 4H-SiC MOS キャパシタの高温領域におけるリーク電流の伝導機構の検討	○田村 敦史¹, 增永 昌弘², 佐藤 慎太郎², 喜多 浩之¹	1. 東大院工, 2. 日立研開
10:15	NG 11 704 C	休憩/Break	Om to 1 * Muli	1 FC L P
10:30 10:45	奨 11a-70A-6 奨 11a-70A-7	4H-SiC MOS 反転層における Hall 移動度の理論的検討 SiC MOSFET における界面準位密度分布のボディ層濃度 依存性	○田中一¹,森伸也¹ ○伊藤 滉二¹,小林 拓真¹,堀田 昌宏¹²,須田 淳¹²,木 本 恒暢¹	1. 阪大院工 1. 京大院工, 2. 名大院工
11:00 多	爰 E 11a-70A-8	An anomalous negative shift of flat-band voltage of NO annealed SiO ₂ /4H-SiC MOS capacitors	○ (D)Taehyeon Kil ¹ , Atsushi Tamura ¹ , Koji Kita ¹	1.Dept. of Materials Engineering, The Univ. of Tokyo
11:15	11a-70A-9	${ m SiO_2/4H\text{-}SiC}$ 界面窒化後の ${ m H_2O}$ アニールが MOSFET 特性に与える効果		1.東大院工
11:30	奨 11a-70A-10	低温H ₂ O-POAとH ₂ -POAの組合わせによる4H-SiC p チャネル MOSFET の特性向上	○小柳 潤¹, 喜多 浩之¹	1.東京大工
13:00	on.) 13:00 - 17:30 11p-70A-1	口頭講演 (Oral Presentation) 70A会場 (Room 70A) SiAl溶媒を用いたp型4H-SiCの高温溶液成長における成 長不安定化要因の改善	○三谷 武志¹, 小松 直佳¹, 林 雄一郎¹, 加藤 智久¹, 奥村 元¹	1. 産総研
13:15	11p-70A-2	3インチ4度オフ種結晶上へのSiC溶液成長における貫通 転位変換とインクルージョン抑制の両立	**	1. 名大, 2. 産総研
13:30	奨 11p-70A-3	溶媒インクルージョンフリー溶液法4H-SiCを用いた超 高品質結晶成長		1. 東北大院環境, 2. 新日鉄住金
13:45	11p-70A-4	大口径化にむけた機械学習による SiC 溶液成長の最適成 長条件の決定	〇宇治原 徽 $^{1.2.4}$,角岡 洋 $^{2.3}$,遠藤 友樹 2 ,朱 燦 1 ,沓 掛 健太朗 4 ,鳴海 大翔 5 ,三谷 武志 3 ,加藤 智久 3 ,田川 美穂 $^{1.2}$,原田 俊太 $^{1.2}$	
14:00	奨 11p-70A-5	機械学習を用いた昇華法SiC結晶成長シミュレーション の高速予測	/	1. 名大院工, 2. 名大未来研, 3. 産総研 GaN-OIL, 4. 名大 VBL, 5. 理研 API
14:15	11p-70A-6	高温ガス成長法によるΦ6inch 4H-SiC結晶の開発	〇神田 貴裕¹, 岡本 武志¹, 徳田 雄一郎¹, 鈴木 玄¹, 大 矢 信之¹, 牧野 英美¹, 上東 秀幸¹, 星乃 紀博², 鎌田 功 穂², 土田 秀一²	
14:30	11p-70A-7	の転位密度変化	○星乃紀博¹,鎌田功穂¹,徳田雄一郎³,神田貴裕³, 杉山尚宏².³,土田秀一¹	
14:45	11p-70A-8	4H-SiCトレンチのCVD埋戻し成長の高速化 休憩/Break	〇紀世陽 ¹ , 小杉 亮治 ¹ , 児島 一聡 ¹ , 足立 亘平 ¹ , 河田 泰之 ¹ , 望月 和浩 ¹ , 米澤 喜幸 ¹ , 吉田 貞史 ¹ , 奥村 元 ¹	1. 産総研
15:15	11p-70A-9	4H-SiC ウェハの表面ラフネス周辺におけるライフタイムマッピング	○長屋 圭祐¹, 平山 貴史¹, 加藤 正史¹	1. 名工大
15:30	11p-70A-10	4H-SiC埋め込み N/V コドープによる短ライフタイム層 の観測	田秀一 ⁴ ,加藤正史 ¹	
15:45 16:00		4H-SiCエピ層中に存在する部分転位の詳細PL解析 4H-SiC PiN ダイオードの順方向通電劣化における基底面		1. (株) 東芝 1.産総研, 2.東レリサーチセンター, 3.昭和電工
		転位深さと積層欠陥拡大電流密度の関係	真由美 ¹ , 米澤 喜幸 ¹ , 加藤 智久 ¹ , 児島 一聡 ¹ , 奥村 元 ¹	
16:15		通電によって拡張した積層欠陥の構造評価	○寺西秀明¹,斎藤明¹,林真吾¹,宮里真樹¹,宮島将昭¹	
16:30 16:45		4H-SiC中の窒素・空孔複合欠陥の形成におけるイオン ビーム照射の影響 γ線照射が炭化ケイ素表面発光中心の生成・発光特性に	武 ²	1. 埼玉大工, 2. 量研 1. 量研, 2. 埼玉大院理工
17:00	•	γ 練思射が灰化クイ系衣囲光光甲心の生成・発光特性に与える影響 4H-SiC MOSFETチャネルの単一光子源のゲート電圧制	斗 ² , 大島 武 ¹	
17:15	·	御 (II) 電場下での金属/(SiC, GaN) 界面における欠陥の形成;	介³, 佐藤 真一郎², 山﨑 雄一², 大島 武²	1.千葉大理
	- 昌評価,不純物・編	その理論的検討 結晶欠陥 / Crystal characterization, impurities and crystal		
3/11(Mo		ポスター講演 (Poster Presentation) PA 会場 (Room PA) Si ウェーハ表面近傍における金属原子の安定性と拡散障 壁に関する第一原理解析	○(M1)野々田 典敬¹,末岡 浩治²	1.岡山県大院情報系工, 2. 岡山県大情報工
	奨 11p-PA6-2	室に関する第一原理解制 バワーデバイス用 Si 結晶中のライフタイム制御欠陥に与 える炭素・酸素不純物の影響	○(M1)土屋 大輝¹, 末岡 浩治¹, 山本 秀和²	1. 岡県大, 2. 千葉工大
	11p-PA6-3	菊池線バターン解析によるSi結晶内の欠陥量評価法の開発		1. 広大先端研
	11p-PA6-4	マスクを用いたイオン照射によって形成される格子欠陥 の制御方法		1.住重アテックス (株)
	11p-PA6-5	PVT法AIN単結晶バルク基板の転位観察	○姚 永昭¹, 菅原 義弘¹, 石川 由加里¹, 岡田 成仁², 只友 一行²	
	奨 11p-PA6-6 11p-PA6-7	Cz法育成 Tb ₃ Ga ₅ O ₁₂ の転位 人工骨表面コーティングを目指した Hydroxyapatite 結晶	○渡邉 美紀¹, 牛沢 次三郎¹, 林 武志¹, 安斎 裕¹	1.株式会社オキサイド 1.同志社大
	11h-140-1	人工有表面コーティングを目指した Hydroxyapatite 結晶 の配向制御	○八体四 性人,小山 百 巴,似川 县天	T. P.

3/12(7	Tue.) 9:30 - 12:00	口頭講演 (Oral Presentation) M111会場 (Room M111)		
9:30	12a-M111-1	ヴォロンコフモデルへのコメント (5) 点欠陥のフラックス	○末澤 正志¹, 米永 一郎²	1.無所属, 2.東北大学
9:45	E 12a-M111-2	Numerical analysis of asymmetric three-phase line in the floating zone silicon	○ Xuefeng Han¹, Satoshi Nakano¹, Xin Liu¹, Hirofumi Harada¹, Yoshiji Miyamura¹, Koichi Kakimoto¹	1.RIAM, Kyushu Univ.
10:00	E 12a-M111-3	Dynamic global modeling of the oxygen segregation during the pulling process of Czochralski silicon crystal growth	○ Xin Liu¹, Xue-Feng Han¹, Satoshi Nakano¹, Hirofumi Harada¹, Yoshiji Miyamura¹, Koichi Kakimoto¹	1.RIAM, Kyushu Univ.
10:15	12a-M111-4	不均一横磁場下の Si-CZ 結晶成長における酸素移動現象 の理解	〇柿本 浩一¹, Liu Xin¹, 中野 智¹, 宮村 佳児¹, 原田 博 文¹, 西澤 伸一¹	
10:30	12a-M111-5	CZ炉内のCO濃度(III)	〇宮村 佳児 1 , 原田 博文 1 , 中野 智 1 , 西澤 伸一 1 , 柿本 浩一 1	1. 九大 応力研
10:45		休憩/Break		
11:00	12a-M111-6	スーパーボルマン効果を利用した CZ-シリコンネッキング部の転位観察	○(M1)藤田 優¹,鎌本 春花¹,水落 博之¹,堀川 智之², 津坂 佳幸¹.³,松井 純爾³	1.兵県大院物質理, 2.グローバルウェーハズ・ジャパン 3.兵県大・放射光ナノテクセンター
11:15	奨 12a-M111-7	ハイパフォーマンス多結晶Siインゴットにおける析出物	○ (M1C) 上別府 颯一郎¹, Krenckel Patricia²,	1. 名大院工, 2.Fraunhofer ISE
		分布の3次元可視化	Troetschler Theresa ² , Hess Adam ² , Riepe Stephan ² , 宇佐美 徳隆 ¹	
11:30	E 12a-M111-8	Cathodoluminescence study on InGaN/GaN multiple quantum shell	○ Wei Yi¹, Jun Chen¹, Jun Uzuhashi¹, Tetsuya Takeuchi², Satoshi Kamiyama², Tadakatsu Ohkubo¹, Takashi Sekiguchi¹, ³	1.NIMS, 2.Meijo Univ., 3.Tsukuba Univ.
11:45	E 12a-M111-9	Cathodoluminescence and 3D atom probe study of Mg implanted homoepitaxial GaN	○ JUN CHEN¹, Wei Yi¹, Jun Uzuhashi¹, Takashi Kimura¹, Shinya Takashima², Masahara Edo², Tadakatsu Ohkubo¹, Takashi Sekiguchi ^{1,3}	1.NIMS, 2.Fuji Electric, 3.Tsukuba Univ.
3/12(T	ue.) 13:30 - 17:00	口頭講演 (Oral Presentation) M111会場 (Room M111)		
13:30	12p-M111-1	Si結晶中のドーパント複合体と重金属の相互作用に関する第一原理解析	○永倉 大樹 ^{1,2} , 末岡 浩治 ²	1.ソニーセミコンダクタマニュファクチャリング, 2. \mathbb{R} 山県立大学
13:45	12p-M111-2	CMOSイメージセンサ向け分子イオン注入エビタキシャルウェーハの製品特性(I) - 水素脱離挙動の反応速度論解析-	〇奥山 亮輔¹, 柾田 亜由美¹, 鈴木 陽洋¹, 小林 弘治¹, 重松 理史¹, 廣瀬 諒¹, 門野 武¹, 古賀 祥泰¹, 栗田 一 成¹	1.SUMCO
14:00	奨 12p-M111-3	CMOSイメージセンサ向け分子イオン注入エビタキシャルウェーハの製品特性(II) -CH,Nイオン注入エピタキシャルウェーハの基礎特性-	由美1,重松理史1,小林弘治1,古賀祥泰1,栗田一	1.株式会社SUMCO
14:15	12p-M111-4	バワーデバイス用 Si 結晶中の欠陥形成に関する第一原理 解析	○(M1)土屋 大輝¹,末岡 浩治¹,山本 秀和²	1. 岡県大, 2. 千葉工大
14:30	12p-M111-5	超高温 RTP ウェーハにおける酸素析出モデルの検討 (3)	○前田進 ¹ , 中村 浩三 ² , 須藤 治生 ¹ , 末岡 浩治 ³	1. グローバルウェーハズ・ジャバン(株)技術部, 2. 岡山県立大 地域共同研究機構, 3. 岡山県立大 情報工会部
14:45	12p-M111-6	超高温 RTP による Si ウェーハの酸素析出制御	○須藤 治生 1.2, 前田 進 1, 中村 浩三 3, 末岡 浩治 4	1.グローバルウェーハズ・ジャパン, 2. 岡山県大院情報 系工, 3. 岡山県大地域共同研究機構, 4. 岡山県大情報工
15:00		高平行度 X 線散漫散乱法による酸素析出物解析 (2)	○堀川 智之¹, 藤森 洋行¹, 津坂 佳幸², 松井 純爾³	1. グローバルウェーハズ・ジャパン(株), 2. 兵県大院特 質理学, 3. 兵県大・放射光ナノテクセンター
15:15	奨 12p-M111-8	電子線照射発光活性化室温PL法によるシリコン結晶中の 炭素定量の誤差要因の検討	〇石川 陽一郎 ¹ , 田島 道夫 ¹ , 松岡 竜太郎 ¹ , 小椋 厚志 ¹	1.明治大理工
15:30		休憩/Break	0.01.1.2	
15:45		シリコン結晶基板の品質と点欠陥(1)4.5時代の70年	○井上 直久 ^{1,2}	1. 東京農工大工学院, 2. 大阪府大放射線センター
16:00	*	シリコン結晶の高感度赤外吸収と赤外欠陥動力学 (14) NO 対系の赤外吸収と熱処理挙動	○井上直久1.2,川又修一2,奥田修一2	1.東京農工大工学院, 2.大阪府立大放射線センター
16:15		シリコン結晶中の低濃度炭素の測定 (XV Ⅲ) 赤外吸収と SIMSの相互較正		1.東京農工大工学院, 2.大阪府立大放射線センター
16:30		【注目講演】タンパク質結晶におけるX線の動力学的回折 の初観測	謙一 ⁵ , 橘 勝 ¹	JASRI/SPring-8, 5. 横浜創英大
16:45		第一原理電子構造研究による立方晶窒化ホウ素とダイヤ モンドの不純物状態の予測		1.東工大理, 2.元素戦略センター, 3.量子物理学・ナノ サイエンス先端研究センター
		Amorphous and Microcrystalline Material	S	
		はプログラム冒頭にございます。		
		セス・デバイス / Fundamental properties, evaluation, pr ポスター講演 (Poster Presentation) PB 会場 (Room PB)	ocess and devices in disordered materials	
3/9(58	9p-PB4-1	不スター講演 (Poster Presentation) PB 会場 (Room PB) 石英ガラスの X線誘起光吸収帯強度の時間依存	○春木 晶尋¹, 田中 裕規¹, 南保 健斗¹, 葛生 伸¹, 堀越	1.福井大工, 2.東ソー・エスジーエム

16.1 基礎物性	生・評価・プロ	セス・デバイス / Fundamental properties, evaluation, pro	ocess and devices in disordered materials	
3/9(Sat.) 1	6:00 - 18:00	ポスター講演 (Poster Presentation) PB 会場 (Room PB)		
	9p-PB4-1	石英ガラスのX線誘起光吸収帯強度の時間依存	〇春木 晶尋 1 , 田中 裕規 1 , 南保 健斗 1 , 葛生 伸 1 , 堀越 秀春 2	1.福井大工, 2.東ソー・エスジーエム
	9p-PB4-2	シリカガラスのX線誘起光吸収帯強度のX線透過深さ依存性	〇田中 裕規 1 , 春木 晶尋 1 , 南保 健斗 1 , 葛生 伸 1 , 堀越 秀春 2	1.福井大工, 2.東ソー・エスジーエム
	9p-PB4-3	溶融石英ガラス吸収強度測定値の不規則変動の原因	〇南保 健斗 ¹ , 春木 晶尋 ¹ , 田中 裕規 ¹ , 葛生 伸 ¹ , 堀越 秀春 ²	1.福井大工, 2.東ソー・エスジーエム
	9p-PB4-4	Cu含有シリカガラスにおけるラジオフォトルミネセンス	○高田 雄矢¹, 橋川 凌¹, 木野村 淳², 齋藤 毅², 若杉 隆¹, 角野 広平¹	1.京工繊大, 2.京都大複合研
	9p-PB4-5	${\rm BaO\text{-}TiO_2\text{-}GeO_2}$ 系完全表面結晶化ガラスの作製と電気光学効果	○(B)岡本 晴樹¹, 大槻 智貴¹, 林原 佑太¹, 寺門 信 明¹.², 高橋 儀宏¹, 藤原 巧¹	1. 東北大, 2.JST- さきがけ
	9p-PB4-6	フツホウ酸ガラスの中距離構造が誘起する高速核形成	○篠崎 健二¹, 石井 良樹², 尾原 幸治³	1. 産総研, 2. 阪大院基礎工, 3. JASRI
	9p-PB4-7	アモルファス酸化物薄膜半導体In-Si-O薄膜の相安定性	〇堀 龍輝 1 , ホアン ハ 1 , 生田目 俊秀 2 , 塚越 一仁 2 , 藤 原 明比古 1	1. 関学大, 2. 物質材料研
	9p-PB4-8	フラッシュランプアニールを用いた微結晶Si 薄膜の結晶 化	○家後 和美¹, 大平 圭介¹	1. 北陸先端大
	9p-PB4-9	DCスパッタリング法による赤外フィルター用 a-Si:H の作成と評価	○川又由雄¹,伊藤浩¹	1. 東京高専
	9p-PB4-10	印刷技術による Ni-Cr 系抵抗体の作製とヒータ特性の測定	〇的場 彰成 1 , 奥谷 潤 1 , 筒口 善央 1 , 上田 芳弘 1 , 米澤 保人 1	1.石川県工試
	9p-PB4-11	熱酸化Siへの金属ナノ粒子分散に伴うナノポア形成	○(M1)立溝 優羽¹, 内藤 宗幸¹	1. 甲南大理工
3/10(Sun.)	9:00 - 11:30	口頭講演 (Oral Presentation) W833会場 (Room W833)		
9:00	10a-W833-1	$ZnO-P_2O_5$ ガラスにおける作製条件と構造の相関	〇正井 博和 1 , 小野寺 陽平 2 , 尾原 幸治 3 , 大渕 博宣 3 , 大窪 貴洋 4	1. 産総研, 2. 京大, 3.SPring-8/JASRI, 4. 千葉大
9:15	10a-W833-2	多元系リン酸塩ガラスの光弾性特性	○冨原 佑介¹, 岸本 薫¹, 武部 博倫¹, 斎藤 全¹	1.愛媛大学 理工
9:30	10a-W833-3	亜鉛スズリン酸塩ガラスの機械的特性と構造	○斎藤 全¹, 岡本 孟也¹, 武部 博倫¹	1.愛媛大学 理工
9:45	10a-W833-4	TeO ₂ -Ag ₂ O系ガラスの構造と3次非線形光学特性	〇早川 知克¹, 加藤 健太¹, 村松 廣亮¹, 山本 勝宏¹, 林 好一¹, Duclere JR.², Thomas Philippe²	1.名古屋工業大学, 2.仏リモージュ大学

10:00				
10.15	10a-W833-5	個人線量計用 RPL ガラスバッジにおける銀の XANES 解析	○正井 博和¹, 川本 弘樹², 越水 正典²	1. 産総研, 2. 東北大
10:15		休憩/Break		
10:30	10a-W833-6	Mg添加ZnOマイクロ薄膜の励起子結合エネルギーの算	○藤井 柊介¹, 安達 裕², 内野 隆司¹	1. 神戸大理, 2. 物材機構
10:45	10- 11/022 7	出と誘導放出利得スペクトルの測定 Ge含有シリカガラスの三重項励起による誘導放出	辻村 拓哉¹, ○内野 隆司¹	1.神戸大理
11:00		光ファイバー作製のための低光弾性ビスマスケイ酸塩ガ		1.愛媛大理工
11.00	104-11033-0	ラスの組成最適化	○ 作 元例 ,风即 府圃 ,刷 旅 主	1. 友奴八 杜上
11:15	10a-W833-9	$2.5 \mathrm{MeV}$ 電子線または高速中性子線線照射した α -石英に		1.Latvia大, 2.Paris-Saclay大, 3.首都大
2/10/0	\ 12.15 17.45	おける非晶質性点欠陥の形成 口頭講演 (Oral Presentation) W833 会場 (Room W833)	Krisjanis ¹	
13:15		口頭講演 (Oral Presentation) W833 会場 (Room W833) 接合したシリカガラス間のOH基拡散解析方法の改良	○杉山 雄哉¹,青木 裕亮¹,葛生 伸¹,堀越 秀春²,堀井	1 垣井士 2 南ソー 3 垣井真南
15.15	10p-w033-1	接合したフリカカノハ同の011至拡散所引力伝の以及	直宏 ³	1. 佃开八, 5. 来 / ,5. 佃开问号
13:30	10p-W833-2	接合したシリカガラス間のOH基拡散に対する理論解の	○(M1)青木 裕亮¹, 荒川 優¹, 葛生 伸¹, 堀越 秀春²,	1.福井大工, 2.東ソー・エスジーエム, 3.福井高専
	•	実験データへのフィッティングによる拡散係数の決定	杉山 雄哉¹, 堀井 直宏³	
13:45	10p-W833-3	食塩微粒によるシリカガラスの失透 I ~ 失透過程の解析	○堀井 直宏¹, 葛生 伸², 堀越 秀春³	1. 福井高専, 2. 福井大学, 3. 東ソー・エスジーエム
		~		
14:00	10p-W833-4	食塩微粒によるシリカガラスの失透Ⅱ ~ 失透のモデル ~	〇葛生 伸 ¹ , 堀井 直宏 ² , 堀越 秀春 ³	1.福井大院工, 2.福井高専, 3.東ソー・エスジーエム
14:15	10p-W833-5	$Na_2Fe_xMn_{1-x}P_2O_7$ ガラスのレーザー誘起結晶化	○本間 剛¹, 熊谷 友¹, 小松 高行¹	1. 長岡技科大
14:30		ガラス転移とエイジングにおける中距離秩序	○小林 比呂志¹, 高橋 東之²	1. 元産総研, 2. 茨城大理工
14:45	10p-W833-7	表面粗さを変化させたテクスチャガラス基板が電子線蒸	○倉田 啓佑¹, 大平 圭介¹	1. 北陸先端科学技術大学院大学
		着非晶質Si膜のFLAでの結晶化機構に与える影響		
15:00	奨 10p-W833-8	低温イットリア原子層堆積法の開発	○齋藤 健太郎¹, 鹿又 健作², 三浦 正範², 有馬 ボシー	1. 山形大院理工, 2. 山形大院有機
	4d 40 111000 0		ルアハンマド1,久保田繁1,廣瀬文彦1	A LTY Libertines of LTY Lebelth
15:15	奨 10p-W833-9	室温原子層堆積法を用いた $\mathrm{Nb_2O_5}$ 積層コーティングの耐腐食特性	〇(DC)吉田一樹', 二浦 止範", 英傑', 鹿又 健作", 廣瀬 文彦 ¹	1. 山形大院埋工, 2. 山形大有機
15:30	_	休憩/Break		
15:45	招 10p-W833-10	「講演奨励賞受賞記念講演」		1.産総研ナノエレ, 2.東北大工, 3.原子力機構, 4.高知工
		【注目講演】不揮発性相変化メモリ用遷移金属カルコゲナ		大, 5.名大
16.00	NG 10 THOSE :-	イド相変化材料の開発	介 ^{3,4,5} , 須藤 祐司 ²	1 1 위ᄪ로 이 方로로 이 스러워 파포스 마 쓰 쓰셔. 그
16:00	樊 10p-W833-11	Ag/Pt電極を用いたGe-(Sb)-Te 薄膜におけるガンマ線照 サに対する可能を振序変化		
16:15	10n-W999 19	射に対する可逆な抵抗変化 樹枝状硫化銅の光吸収スペクトル	崎 繁男³, 中岡 俊裕¹ ○後藤 民浩¹, 西川 遼太郎¹	科学研究所 1.群馬大理工
16:30		アモルファス Ge_4oS_{60} 薄膜の光酸化現象 -X線・中性子反		
10.50	10p W033 13	射率法による光酸化膜の観測 -	イモン3,マリアミトコバ3	1.01(000, 2.次1) // // // // // // // // // // // // //
16:45	10p-W833-14	100 nm以下 二端子メモリ評価用素子の作製	○福岡 諒 1 ,徳平 弘毅 1 ,小松 克伊 1 ,松尾 浩司 1 ,田中	1.東芝メモリ
17:00	10 10022 15	Ge ₂₈ Sb ₁₂ Se ₆₀ ガラスの高温クリープ挙動	秀¹, 須藤 岳¹, 大内 和也¹ ○北村 直之¹	1. 産業技術総合研究所
17:15		Contact resistance change memory with N-doped	○YI SHUANG¹, Yuji Sutou¹, Shogo Hatayama¹,	1. 在未12 附続日間 九州 1. Tohoku Univ., 2. Hanyang Univ.
11.10	D 10p 11000 10	Cr ₂ Ge ₂ Te ₆ phase change material	Satoshi Shindo ¹ , Song Yunheub ² , Daisuke Ando ¹ ,	1. Tonoka Cint., 2. Taniyang Cint.
17:30	10p-W833-17	低抵抗アモルファス $\operatorname{Cr_2Ge_2Te_6}$ の電気伝導機構	Junichi Koike¹ ○(D)畑山 祥吾¹, 須藤 祐司¹, 安藤 大輔¹, 小池 淳	1. 東北大工, 2.JASRI, 3. 高知工科大学
			一 ¹ , 小林 啓介 ^{2,3}	
		ング / Energy Harvesting		
9:00	Sat.) 9:00 - 10:00	口頭講演 (Oral Presentation) W371会場 (Room W371)		
9:00			○土田 長田1.2 mm #左1 吉括 崖左1 藤匠 在1	1 市ル十陸エ 9 ICT ナルバル
		スピン熱伝導性La-Ca-Cu-O薄膜における電界誘起構造	○寺門 信明 1.2, 町田 雄気 1, 高橋 儀宏 1, 藤原 巧 1	1. 東北大院工, 2.JST- さきがけ
9:15	9a-W371-1	スピン熱伝導性La-Ca-Cu-O 薄膜における電界誘起構造 変化		<u>, </u>
9:15 9:30	9a-W371-1 奨 9a-W371-2	スピン熱伝導性La-Ca-Cu-O 薄膜における電界誘起構造 変化 有機物添加による微生物燃料電池の効率向上	○(M1)古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹	1.山口東京理科大工
	9a-W371-1 奨 9a-W371-2	スピン熱伝導性La-Ca-Cu-O 薄膜における電界誘起構造 変化	○(M1)古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹	1.山口東京理科大工
	9a-W371-1 奨 9a-W371-2	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造 変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI ₃ Perovskite based Thermoelectric	\bigcirc (M1) 古屋 直史 1 , 長嶋 哲也 1 , 松尾 匠剛 1 , 森田 廣 1 \bigcirc (P)Ajay Kumar Baranwal 1 , Daisuke Hirotani 1 ,	1.山口東京理科大工
	9a-W371-1 奨 9a-W371-2	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造 変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI ₃ Perovskite based Thermoelectric	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹	1.山口東京理科大工
9:30 9:45	9a-W371-1 奨 9a-W371-2 E 9a-W371-3	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造 変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB)	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹	1. 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研
9:30 9:45	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic Cs5nl ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齊藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹	1.山口東京理科大工 1.Kyushu Inst. of Tech. 1.豊田中研 1.山口東京理科大学工
9:30 9:45	9a-W371-1 奨 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic Cs5nl ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齊藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹	1. 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研
9:30 9:45	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹	 山口東京理科大工 1. Kyushu Inst. of Tech. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ
9:30 9:45	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic Cs5nl ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹	 山口東京理科大工 1. Kyushu Inst. of Tech. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ
9:30 9:45 3/9(Sa	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹	 山口東京理科大工 1. Kyushu Inst. of Tech. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ
9:30 9:45 3/9(Sa)	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹	 山口東京理科大工 1. Kyushu Inst. of Tech. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ
9:30 9:45 3/9(Sa	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic Cs5nl ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3 次元PL イメージング法で同定したハイバフォーマンス	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海	1.山口東京理科大工 1.Kyushu Inst. of Tech. 1.豊田中研 1.山口東京理科大学工 1.東北大院工, 2.JST- さきがけ 1.東北大, 2.JST- さきがけ
9:30 9:45 3/9(Sa) 16.3 > 1 3/9(Sa)	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性 ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海	1.山口東京理科大工 1.Kyushu Inst. of Tech. 1.豊田中研 1.山口東京理科大学工 1.東北大院工, 2.JST- さきがけ 1.東北大, 2.JST- さきがけ
9:30 9:45 3/9(Sa 16.3 > 1 3/9(Sa 9:30	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl。, Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 杏掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 徳隆²	 山口東京理科大工 1. Kyushu Inst. of Tech. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大全研, 2.名大工, 3.理研
9:30 9:45 3/9(Sa) 16.3 > 1 3/9(Sa)	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl。, Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3次元PL イメージング法で同定したハイバフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤 	 山口東京理科大工 1. Kyushu Inst. of Tech. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大全研, 2.名大工, 3.理研
9:30 9:45 3/9(Si 16.3 > 1 3/9(Si 9:30	9a-W371-1 奨 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45 9a-W611-1	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導神膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆¹ 	 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大金研, 2. 名大工, 3. 理研 1. 名大院工, 2. 名大院情報, 3. 理研AIP
9:45 3/9(\$a 16.3 > 1 3/9(\$ 9:30	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導準膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラ	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○(B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○(M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆¹ ○小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 字	 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大金研, 2. 名大工, 3. 理研 1. 名大院工, 2. 名大院情報, 3. 理研AIP
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3次元PL イメージング法で同定したハイバフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラスターの生成の関係	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○(B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○(M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆² ○小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 字 佐美 徳隆²	 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大金研, 2.名大工, 3.理研 1. 名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00	9a-W371-1 奨 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45 9a-W611-1	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導準膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラ	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○(B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○(M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆¹ ○小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 字	 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大金研, 2.名大工, 3.理研 1. 名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工
9:45 3/9(Si 3/9(Si 3/9(Si 3/9(Si 9:30	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnla Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性 ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 ブ顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラ スターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリング	○(M1)古屋 直史¹,長嶋 哲也¹,松尾 匠剛¹,森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹,浅井 満¹,和田 賢介¹ ○森田廣¹,古屋 直史¹,長嶋 哲也¹,松尾 匠剛¹ ○奈良 由紀¹,寺門 信明¹²,高橋 儀宏¹,藤原 巧¹ ○(B) 渡辺 祥太¹,寺門 信明¹²,高橋 儀宏¹,藤原 巧¹ ○大野 裕¹,田島 和哉²,杏掛 健太朗³,清水 康雄¹,海老澤 直樹¹,永井 康介¹,字佐美 徳隆² ○(M1)田島 和哉¹,松本 哲也²,沓掛 健太朗³,工藤博章²,字佐美徳隆¹ ○小島 拓人¹,田島 和哉²,松本 哲也¹,工藤 博章¹,字佐美徳隆² ○(M1)大西康平¹,木下 晃輔¹,大下 祥雄²,小椋厚	 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大金研, 2.名大工, 3.理研 1. 名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工
9:30 9:45 3/9(Si 3/9(Si 3/9(Si 10:30	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池 / Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnla Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおける Σ 3 結晶粒の発達と転位クラスターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響(3)	○(M1)古屋 直史¹,長嶋 哲也¹,松尾 匠剛¹,森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹,浅井 満¹,和田 賢介¹ ○森田廣¹,古屋 直史¹,長嶋 哲也¹,松尾 匠剛¹ ○奈良 由紀¹,寺門 信明¹²,高橋 儀宏¹,藤原 巧¹ ○(B) 渡辺 祥太¹,寺門 信明¹²,高橋 儀宏¹,藤原 巧¹ ○大野 裕¹,田島 和哉²,杏掛 健太朗³,清水 康雄¹,海老澤 直樹¹,永井 康介¹,字佐美 徳隆² ○(M1)田島 和哉¹,松本 哲也²,沓掛 健太朗³,工藤博章²,字佐美徳隆¹ ○小島 拓人¹,田島 和哉²,松本 哲也¹,工藤 博章¹,字佐美徳隆² ○(M1)大西康平¹,木下 晃輔¹,大下 祥雄²,小椋厚	 山口東京理科大工 1. Kyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大金研, 2.名大工, 3.理研 1. 名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工
9:30 9:45 3/9(Sa 16.3 > 1 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-3	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic Cs5nl。 Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk、thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3次元PL イメージング法で同定したハイバフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおける Σ 3 結晶粒の発達と転位クラスターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 杏掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也², 杏掛 健太朗³, 工藤 博章², 宇佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也¹, 工藤 博章¹, 宇佐美 徳隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹	 山口東京理科大工 1. Wyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2. JST- さきがけ 1. 東北大, 2. JST- さきがけ 1. 東北大金研, 2. 名大工, 3. 理研 1. 名大院工, 2. 名大院情報, 3. 理研 AIP 1. 名大院情報, 2. 名大院工 1. 明大理工, 2. 豊田工大
9:30 9:45 3/9(Sa 16.3 > 1 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic Cs5nl。Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラスターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響(3) 休憩/Break 顕微 PL法とEL法によるPERC断面の発光観察	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤 博章², 字佐美 德隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime 	 山口東京理科大工 1. Wyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2. JST- さきがけ 1. 東北大, 2. JST- さきがけ 1. 東北大全研, 2. 名大工, 3. 理研 1. 名大院工, 2. 名大院情報, 3. 理研 AIP 1. 名大院情報, 2. 名大院工 1. 明大理工, 2. 豊田工大 1. アイテス, 2. 産業技術総合研究所
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:30 10:15 10:30 10:45 11:00	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイバフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラ スターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリング に与える影響 (3) 休憩/Break 顕微 PL法と EL 法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤 博章², 字佐美 徳隆¹ ○ 小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 字佐美 徳隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam², Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ 	 山口東京理科大工 1. といいでは、
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:30 10:15 10:30 10:45 11:00	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元 PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの手成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells with	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齊藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Kejji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke 	 山口東京理科大工 1. Wyushu Inst. of Tech. 1. 豊田中研 1. 山口東京理科大学工 1. 東北大院工, 2. JST- さきがけ 1. 東北大, 2. JST- さきがけ 1. 東北大全研, 2. 名大工, 3. 理研 1. 名大院工, 2. 名大院情報, 3. 理研 AIP 1. 名大院情報, 2. 名大院工 1. 明大理工, 2. 豊田工大 1. アイテス, 2. 産業技術総合研究所
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイバフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラ スターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリング に与える影響 (3) 休憩/Break 顕微 PL法と EL 法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasun¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², 	 山口東京理科大工 1. といいのでは、
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元 PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの手成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells with	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 徳隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 宇佐美 徳隆³ ○ 小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 宇佐美 徳隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide	 山口東京理科大工 1. といいでは、
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元 PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの手成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells with	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○(B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 各掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 德隆² ○(M1) 田島 和哉¹, 松本 哲也², 各掛 健太朗³, 工藤博章², 字佐美 德隆³ ○小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 字佐美 德隆² ○(M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○(COC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajiri², Ryo Ishikawa¹, Keiji	 山口東京理科大工 1. といいでは、
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00 11:15	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 獎 9a-W611-4 9a-W611-5 獎 E 9a-W611-6 E 9a-W611-7	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI ₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおけるΣ3結晶粒の発達と転位クラスターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響(3) 休憩/Break 顕微 PL法と EL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells PEDOT:PSS/n-Si heterojunction solar cells with ALD-Al ₂ O ₃ /n-Si field effect inversion layer	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 杏掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也², 杏掛 健太朗³, 工藤 博章², 宇佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也¹, 工藤 博章¹, 宇佐美 德隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajiri², Ryo Ishikawa¹, Keiji Ueno¹, Hajime Shirai¹	 山口東京理科大工 1. 提田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大全研, 2. 名大工, 3.理研 1. 名大院工, 2. 名大院末 1. 明大理工, 2. 豊田工大 1. アイテス, 2. 産業技術総合研究所 1. Saitama University 1. Saitama University
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00 11:15	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnI₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性 ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値 の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向 制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電 子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの サイズと伝搬方向の相関 擬単結晶シリコンにおける酸素析出が金属ゲッタリング に与える影響(3) 休憩/Break 顕微PL法とEL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells PEDOT:PSS/n-Si heterojunction solar cells with ALD-Al₂O₃/n-Si field effect inversion layer	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤 博章², 宇佐美 德隆¹ ○ 小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 宇佐美 德隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajiri², Ryo Ishikawa¹, Keiji Ueno¹, Hajime Shirai¹ ○ 望月 敏光¹, 伊藤 明², 棚橋 克人¹, 中西 英俊², 川山 	 山口東京理科大工 1. 提田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大全研, 2. 名大工, 3.理研 1. 名大院工, 2. 名大院末 1. 明大理工, 2. 豊田工大 1. アイテス, 2. 産業技術総合研究所 1. Saitama University 1. Saitama University
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00 11:15	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 獎 9a-W611-4 9a-W611-5 獎 E 9a-W611-6 E 9a-W611-7	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元 PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおける Σ 3 結晶粒の発達と転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおける酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL 法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells PEDOT:PSS/n-Si heterojunction solar cells with ALD-Al₂O₃/n-Si field effect inversion layer	○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 杏掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也², 杏掛 健太朗³, 工藤 博章², 宇佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也¹, 工藤 博章¹, 宇佐美 德隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajiri², Ryo Ishikawa¹, Keiji Ueno¹, Hajime Shirai¹	 山口東京理科大工 1. 嬰田中研 1. 山口東京理科大学工 1. 東北大院工, 2.JST- さきがけ 1. 東北大, 2.JST- さきがけ 1. 東北大全研, 2. 名大工, 3. 理研 1. 名大院工, 2. 名大院末, 3. 理研 1. 名大院工, 2. 名大院工 1. 明大理工, 2. 豊田工大 1. アイテス, 2. 産業技術総合研究所 1. Saitama University 1. Saitama University
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00 11:15 11:30 3/9(Sa	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系大陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4 9a-W611-5 奨E 9a-W611-6 E 9a-W611-7	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの手が変鏡解析 数結晶シリコンにおける Σ 3 結晶粒の発達と転位クラスターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells PEDOT:PSS/n-Si heterojunction solar cells with ALD-Al ₂ O ₃ /n-Si field effect inversion layer	○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P)Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○(B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○(M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美徳隆² ○(M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○(DC)ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Kejji UENO¹, Hajime Shirai¹ ○Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajir², Ryo Ishikawa¹, Kejji Ueno¹, Hajime Shirai¹ ○望月 報光¹, 伊藤 明², 刪橋 克人¹, 中西 英俊², 川山 巌³, 斗內 政吉³, 白澤 勝彦¹, 高遠 秀尚¹	 1.山口東京理科大工 1. 豊田中研 1. 山口東京理科大学工 1.東北大院工, 2.JST- さきがけ 1.東北大, 2.JST- さきがけ 1.東北大金研, 2.名大工, 3.理研 1.名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工 1.明大理工, 2.豊田工大 1.アイテス, 2.産業技術総合研究所 1.Saitama University 1.Saitama University 1.産総研, 2.SCREEN, 3.阪大レーザー研
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 16.3 > 1 16.3 > 1 10:00 10:15 10:30 10:45 11:00 11:15 11:30 3/9(Sa	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系太陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 獎 9a-W611-4 9a-W611-5 獎 E 9a-W611-6 E 9a-W611-7	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロプスカイト圧電材料の振動発電特性ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元 PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおける Σ 3 結晶粒の発達と転位クラスターのサイズと伝搬方向の相関 擬単結晶シリコンにおける酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL 法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells PEDOT:PSS/n-Si heterojunction solar cells with ALD-Al₂O₃/n-Si field effect inversion layer	 ○ (M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○ (P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○ 齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○ 森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○ 奈良 由紀¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ (B) 渡辺 祥太¹, 寺門 信明¹², 高橋 儀宏¹, 藤原 巧¹ ○ 大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 宇佐美 德隆² ○ (M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤 博章², 宇佐美 德隆¹ ○ 小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 宇佐美 德隆² ○ (M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○ 高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○ (DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajiri², Ryo Ishikawa¹, Keiji Ueno¹, Hajime Shirai¹ ○ 望月 敏光¹, 伊藤 明², 棚橋 克人¹, 中西 英俊², 川山 	 1.山口東京理科大工 1. 豊田中研 1. 山口東京理科大学工 1.東北大院工, 2.JST- さきがけ 1.東北大, 2.JST- さきがけ 1.東北大金研, 2.名大工, 3.理研 1.名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工 1.明大理工, 2.豊田工大 1.アイテス, 2.産業技術総合研究所 1.Saitama University 1. Saitama University 1. 産総研, 2.SCREEN, 3. 阪大レーザー研
9:30 9:45 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 3/9(Sa 10:00 10:15 10:30 10:45 11:00 11:15	9a-W371-1 獎 9a-W371-2 E 9a-W371-3 9a-W371-4 at.) 16:00 - 18:00 9p-PB5-1 9p-PB5-2 9p-PB5-3 リコン系大陽電池/ Sat.) 9:30 - 11:45 9a-W611-1 9a-W611-2 9a-W611-3 奨 9a-W611-4 9a-W611-5 奨E 9a-W611-6 E 9a-W611-7	スピン熱伝導性 La-Ca-Cu-O 薄膜における電界誘起構造変化 有機物添加による微生物燃料電池の効率向上 All Inorganic CsSnl₃ Perovskite based Thermoelectric devices for Waste Heat Management Nb非鉛系と鉛系ペロブスカイト圧電材料の振動発電特性ボスター講演 (Poster Presentation) PB 会場 (Room PB) 微生物燃料電池の等価回路解析によるモデル化 La-Ca-Cu-O系スピン熱伝導薄膜における粒径と物性値の関係 熱のアクティブ制御に向けたスピン熱伝導性薄膜の配向制御 Bulk, thin-film and other silicon-based solar cells 口頭講演 (Oral Presentation) W611 会場 (Room W611) 3 次元PL イメージング法で同定したハイパフォーマンス 多結晶シリコンインゴット中の転位発生点近傍の透過電子顕微鏡解析 多結晶シリコンインゴット内における転位クラスターの手が変鏡解析 数結晶シリコンにおける Σ 3 結晶粒の発達と転位クラスターの生成の関係 太陽電池用 Cz-Si における酸素析出が金属ゲッタリングに与える影響 (3) 休憩/Break 顕微 PL法と EL法による PERC 断面の発光観察 Study on interface recombination characteristics of crystalline-silicon/organic heterojunction solar cells PEDOT:PSS/n-Si heterojunction solar cells with ALD-Al ₂ O ₃ /n-Si field effect inversion layer	 ○(M1) 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹, 森田 廣¹ ○(P) Ajay Kumar Baranwal¹, Daisuke Hirotani¹, Shrikant Saini¹, Tomohide Yabuki¹, Koji Miyazaki¹, Shuzi Hayase¹ ○齋藤 康善¹, 浅井 満¹, 和田 賢介¹ ○森田 廣¹, 古屋 直史¹, 長嶋 哲也¹, 松尾 匠剛¹ ○奈良 由紀¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○(B) 渡辺 祥太¹, 寺門 信明¹.², 高橋 儀宏¹, 藤原 巧¹ ○大野 裕¹, 田島 和哉², 沓掛 健太朗³, 清水 康雄¹, 海老澤 直樹¹, 永井 康介¹, 字佐美 徳隆² ○(M1) 田島 和哉¹, 松本 哲也², 沓掛 健太朗³, 工藤博章², 字佐美 徳隆¹ ○小島 拓人¹, 田島 和哉², 松本 哲也¹, 工藤 博章¹, 字佐美 德隆² ○(M1) 大西 康平¹, 木下 晃輔¹, 大下 祥雄², 小椋 厚志¹ ○高野 和美¹, 山下 勝¹, 白澤 勝彦², 高遠 秀尚² ○(DC) ATM Saiful Islam¹, Yuki Nasuno¹, Daisuke Harada¹, Ryo Ishikawa¹, Keiji UENO¹, Hajime Shirai¹ ○ Md Enamul Karim¹, Tomofumi Ukai², Daisuke Harada¹, A.T.M. Saiful Islam¹, Shunji Kurosu², Yoshikata Nakajima², Yasuhiko Fujii², Masahide Tokuda², Tatsuro Hanajiri², Ryo Ishikawa¹, Keiji Ueno¹, Hajime Shirai¹ ○ 望月 敏光¹, 伊藤 明², 棚橋 克人¹, 中西 英俊², 川山 巌³, 斗内 政吉³, 白澤 勝彦¹, 高遠 秀尚¹ ○ 齋 均¹, 佐藤 芳樹¹, 奥 登志喜¹, 田辺 まゆみ¹, 松井 卓矢¹, 松原 浩司¹ 	 1.山口東京理科大工 1. 豊田中研 1. 山口東京理科大学工 1.東北大院工, 2.JST- さきがけ 1.東北大, 2.JST- さきがけ 1.東北大金研, 2.名大工, 3.理研 1.名大院工, 2.名大院情報, 3.理研AIP 1.名大院情報, 2.名大院工 1.明大理工, 2.豊田工大 1.アイテス, 2.産業技術総合研究所 1.Saitama University 1. Saitama University 1. 産総研, 2.SCREEN, 3. 阪大レーザー研

14:00	9p-W611-3	a-SiO _x :H薄膜をパッシベーション層に用いたSiへテロ接	○斉藤 公彦¹, 高村 司², 市川 幸美², 小長井 誠²	1.福島大共生システム, 2.東京都市大総研
	0. 777/44 4	合太陽電池		a the later to the state of the
14:15	9p-W611-4	テクスチャー構造を有する Rib型 Si 太陽電池	〇高村 司 ¹ , 大谷 俊貴 ¹ , 岩田 龍門 ¹ , 市川 幸美 ¹ , 齊藤 公彦 ² , 小長井 誠 ¹	1.東京都市大総研, 2.福島大共生システム理工学類
14:30 14:45	奨 9p-W611-5	休憩/Break 透明導電膜のスパッタリング堆積による下地へのダメージ評価	〇西原達平 1 ,神岡 武文 1 ,金井 皓輝 1 ,大下 祥雄 2 ,大 川 登志郎 3 ,小椋 厚志 1	1.明治大, 2.豊田工大, 3.シエンタオミクロン
15:00	奨 9p-W611-6	超薄型a-Si:H/c-Si ヘテロ接合太陽電池の光学損失解析	○今井 友貴¹, 齋 均², 小沢 将征¹, 田辺 まゆみ², 松井卓矢², 藤原 裕之¹	1.岐大工, 2.産総研
15:15	9p-W611-7	Counter doping of boron doped a-Si by plasma ion implantation—the dependence of passivation quality of counter-doped n-a-Si films on boron concentration—	(P)Tu ThiCam Huynh ¹ , Koichi Higashimine ¹ , Noboru Yamaguchi ² , Hideo Suzuki ² , Keisuke Ohdaira ¹ , Hideki Matsumura ¹	1.JAIST, 2.ULVAC
15:30	9p-W611-8	VHF-PECVDを用いて成膜したヘテロ接合太陽電池用p型ナノ結晶シリコンの評価	○(P)海汐 寛史¹, Chen Pei-Ling¹, 松井 卓矢¹, 齋 均¹, 松原 浩司¹	1. 産総研
3/9(Sa		ポスター講演 (Poster Presentation) PB 会場 (Room PB)		
	E 9p-PB6-1	Phosphorus Gettering of Impurities for p-type PERC solar cells	○ Supawan Joonwichien¹, Yasuhiro Kida¹, Masaaki Moriya¹, Satoshi Utsunomiya¹, Katsuhiko Shirasawa¹, Hidetaka Takato¹	1.AIST
	E 9p-PB6-2	The impact of silicon brick surface finish on the mechanical strength of diamond-wire-sawn thin wafers (120 µm)	\bigcirc (P)Halubai Sekhar $^{\rm l}$, Tetsuo Fukuda $^{\rm l}$, Katsuto Tanahashi $^{\rm l}$, Hidetaka Takato $^{\rm l}$	1.National Institute of Advanced Industrial Science and Technology (AIST)
	E 9p-PB6-3	Influence of MoO _x hole selective contact thickness on the performance of c-Si heterojunction solar cells	○ Kazuyoshi Nakada¹	1.Tokyo Tech.
	9p-PB6-4	シリコンヘテロ接合太陽電池の正孔選択層応用へ向けた 酸化モリブデンのFTS法による形成	○白取優大¹,中光豊²,門倉貞夫³,宮島晋介¹	1.東工大工, 2.株式会社 アルバック, 3.株式会社 エフ・ ティ・エス コーポレション
	9p-PB6-5	シリコン系太陽電池向け酸化タングステン膜の表面処理 による仕事関数制御	島 晋介², 白取 優大², 星 陽一¹	1.東京工芸大工, 2.東工大工
	9p-PB6-6		○WEN YULI¹, 大平 圭介¹	1. 北陸先端科学技術大学院大学
	9p-PB6-7	触媒分解で生成した NH ₃ 系ラジカル処理が SiN _x 膜のパッシベーション性能に与える影響		1.北陸先端大
	9p-PB6-8 9p-PB6-9	BのCatドーピングによるn型a-Siの導電率の変化 ミストCVD法により成膜したGaO。膜のアニール効果	○鶴飼太陽 ¹ , 大平 圭介 ¹ ○松田 紘明 ¹ , 森 英喜 ¹ , 新船 幸二 ¹ , 佐藤 真一 ¹ , 吉田 晴彦 ¹	1. 北陸先端大 1. 兵庫県立大工
	9p-PB6-10	SiNx/Si構造の電気特性におけるファイヤースルー処理 の影響(III)	○高見 建也¹, 堀川 裕貴¹, 森 英喜¹, 吉田 晴彦¹	1.兵庫県立大工
	9p-PB6-11	非質量分離型イオン注入法を用いたTOPCon構造のp,n 層形成	○山口 昇¹, 鈴木 英夫¹, 谷 典明¹	1.アルバック半電研
	9p-PB6-12	Si基板中に導入される RPD プロセスダメージ層のキャリ ア再結合特性	 ○神岡 武文^{1,2}, 磯貝 勇樹², Lee Hyunju², 脇田 陸², 原 知彦², 林 豊², 中村 京太郎², 大下 祥雄², 小椋 厚 志¹ 	1.明治大, 2.豊田工大
	9p-PB6-13	太陽電池内酢酸検出のための錫薄膜センサの検量線作成	_	1.東京農工大, 2.産総研
	9p-PB6-14	n型リアエミッター型結晶 Si 太陽電池モジュールの長時間電圧誘起劣化試験	○徐 原松¹, 山口 世力¹, 增田 淳², 大平 圭介¹	1.北陸先端, 2.産総研
	9p-PB6-15	セル・EVA界面剥離試験によるUV+DH複合試験後モジュールの密着性評価	〇濱岡 遼¹, 浅野 正太¹, 岩見 健太郎¹, 梅田 倫弘¹, 秋 冨 稔², 城内 紗千子², 山本 千津子², 千葉 恭男², 增田 淳²	1.東京農工大院工, 2.産総研
3/10(S 9:30		口頭講演 (Oral Presentation) W611会場 (Room W611) ALD法で作製したTiO _x 電子選択層の積層化による電気	望月 健矢¹,○後藤 和泰¹,黒川 康良¹,宇佐美 徳隆¹	1.名大院工
9:45	10a-W611-2	的特性の制御 ALD法で作製したTiO _x /SiO _x /結晶Siヘテロ界面のパッ		1.名大院工, 2. 東北大金研
10.00	10 W/11 0	シベーション効果発現メカニズム ~水素原子脱離の影響 ~		a she ALL state
10:00		裏面電極型結晶シリコン太陽電池における電気的遮蔽損 失の低減		1. 産総研
10:15		薄型基板上へのGeドットマスクを用いた光閉じ込め構造の作製と太陽電池への応用	Dmitrij Yurasov², Alexey Novikov², Mikhail Shaleev²	
10:30	E 10a-W611-5	Formation of fine-textured surface on as-cut crystalline silicon wafers by microparticle-assisted texturing (MPAT) process	○ (PC)Cong Thanh Nguyen ¹ , Keisuke Ohdaira ¹ , Hideki Matsumura ¹	1.Japan Advanced Institute of Science and Technology (JAIST)
10:45	10 ****	休憩/Break		4 40-1-1,6677
11:00		両面受光5接合アモルファスSi太陽電池のLED照明下での特性 多数キャリア移動度の理論モデルを用いた液相結晶化シ		1.都市大総研 1 産給研 2 第34 +
11:15		多数キャリア移動度の理論モアルを用いた液相結晶化シ リコン薄膜の電気特性評価 SiOxを障壁層としたSi量子ドット太陽電池の作製	(P) 海汐 夏史 , 松开 阜矢 , 齋 均 , 樱开 岳晚 , 松原 浩司¹ ○赤石 龍士郎¹, 北沢 宏平¹, 加藤 慎也², 後藤 和泰¹,	
11:45		おいなを陣空間としたSI里丁トット A 勝电心の下裂接合媒体に銅ナノ粒子配列を用いたスマートスタックセ	宇佐美 徳隆 ¹, 黒川 康良 ¹	
LT.IJ	10a-W011-7	安古妹件に刺り / 包丁記列を用いた A マート A タックセル	○小河 入靶,队山 札八八,目廿 风力,同迷 芳川	A. (工业分析)
3/10(St 13:30		口頭講演 (Oral Presentation) W611会場 (Room W611) n型結晶 Si 太陽電池モジュールの長時間電圧誘起劣化に かは A No の姿勢	○大平 圭介¹, 小松 豊¹, 鈴木 友康¹, 山口 世力¹, 増田 淳²	1.北陸先端大, 2.産総研
13:45	10p-W611-2	おけるNaの挙動 n型フロントエミッター型結晶シリコン太陽電池モ ジュールの長時間電圧誘起劣化におけるSiO,膜の影響	厚 ² ○鈴木 友康 ¹ , 山口 世力 ¹ , 中村 京太郎 ^{2,3} , 増田 淳 ⁴ , 大平 圭介 ¹	1.北陸先端大, 2.豊田工大, 3.明治大, 4.産総研
14:00	10p-W611-3	シュールの反映向向电圧的起去化におけるSIO2版の影音 結晶Si太陽電池モジュールの湿熱ストレス寿命に及ぼす UV光の影響と添加剤の影響	〇坂元 智成 1 , 新楽 浩一郎 1 , 黒瀬 卓也 1 , 内田 眞輔 1 , 矢田 伸二 1 , 井上 志朗 1 , 伊野 裕司 2 , 浅尾 秀一 2 , 白澤	1. 京セラ (株), 2. 産総研
14:15	10p-W611-4	シリコンヘテロ接合太陽電池のPIDに及ぼす湿熱負荷の 影響	勝彦²,高遠秀尚² 山本 千津子¹,山口 世力²,大平 圭介²,○増田 淳¹	1. 産総研, 2. 北陸先端大
14:30		休憩/Break		
14:45		p型結晶シリコン太陽電池セルのSiN _x 反射防止膜がPID に及ぼす影響	郎3,大下祥雄3,增田淳1	
15:00		c-Si PV セル裏面の腐食劣化態様	○棚橋 紀悟¹, 坂本 憲彦¹, 柴田 肇¹, 増田 淳¹	1. 産総研
15:15	•	ガラス膜を形成したカバーガラスを用いた太陽電池モ ジュールの電圧誘起劣化抑止効果の評価	〇伏屋 $ \bar{R}^1 $, 大橋 史隆 1 , 吉田 弘樹 1 , 傍島 靖 1 , 亀山 展 $ \bar{R}^1 $, 橋泰至 2 , 增田 $ \bar{P}^3 $, 野々村 修 $ \bar{P}^1 $	
15:30	10- 11/211 0	太陽電池モジュール内部の電界および電流分布解析によ	○怪 表云¹ 曲田 十此¹ 十烯 由ゆ² 十田 31 世² から	1 石川工建 9 岐阜土 9 卒処皿

	グン / Ivanocai			
15:45	10p-W611-9	太陽電地モジュールにおける電圧誘起劣化箇所の一検討 ー フィンガー電極近傍での局所的劣化の可能性 —	〇吉田 弘樹 ¹, 大橋 史隆 ¹, 亀山 展和 ¹, 傍島 靖 ¹, 原 由紀子 ², 增田 淳 ², 野々村 修一 ¹	1. 岐大工, 2. 産総研
16:00 16:15	10p-W611-10	休憩/Break c-Si 系太陽電池モジュールの劣化モードに及ぼす表電極	○仙波 妙子¹, 嶋田 武夫¹, 白澤 勝彦², 高遠 秀尚²	1.ナミックス, 2.産総研
16:30	10p-W611-11	ペーストの影響 II 導電性フィルムタブ付による結晶シリコン PV モジュー	○伊野 裕司¹,浅尾 秀一¹,白澤 勝彦¹,高遠 秀尚¹	1. 産総研
16:45	10p-W611-12	ルのPCTインターコネクタ沿い劣化の抑制 佐賀県鳥栖市における太陽電池モジュールの実発電量と 推定発電量の比較(III)	○千葉 恭男¹,崔 誠佑¹,佐藤 梨都子¹,石井 徹之²,增 田淳¹	1. 産総研, 2. 電中研
17:00	10p-W611-13	円筒型および直方体型太陽電池モジュールの屋外発電特 性の比較		1. 都市大総研, 2. トヨタ自動車
17:15	10p-W611-14	高効率結晶シリコン太陽電池の発電性能の経時変化	〇石井 徹之 ¹ , 崔 誠佑 ² , 佐藤 梨都子 ² , 千葉 恭男 ² , 增 田 淳 ²	1. 電中研, 2. 産総研
17 ナノナ	カーボン / N	anocarbon Technology		
		はプログラム冒頭にございます。		
3/10(Sun.)		ポスター講演 (Poster Presentation) PA 会場 (Room PA) アモルファスカーボン薄膜を固体材料として用いたグラフェン/グラファイトの成長	○(M1) ランウィット スピサラ, 前田 文彦	
	10p-PA8-2	銅の再結晶過程における水素の影響とグラフェンのCVD 成長	○小川 友以1,日比野 浩樹1.2,谷保 芳孝1	1.NTT物性科学基礎研, 2. 関西学院大理工
	10p-PA8-3	プラズマCVDアニール法による還元型酸化グラフェンの 高品質化	○今井 祐太¹, 植田 研二¹, 浅野 秀文¹	1.名大院工
	10p-PA8-4	グラフェン・ナノリボンのボトムアップ成長過程におけるエッジ修飾基の影響	〇大伴 真名步 1 , 林 宏暢 2 , 林 賢二郎 1 , 實宝 秀幸 1 , 山口 淳一 1 , 大淵 真理 1 , 山田 容子 2 , 佐藤 信太郎 1	1.富士通研・富士通, 2.奈良先端大
	10p-PA8-5	グラフェン CVD における Ir(111)/ α -Al2O3(0001) 基板 の再利用		1. 青学大理工
奨 E	E 10p-PA8-6	Effect of CO ₂ and O ₃ treatment on directly Synthesized	$\bigcirc (P) Riteshkumar Ratneshkumar Vishwakarma^1,$	1.C`s Techno Inc., 2.Nagoya Industries Promotion Corp
		Graphene on Insulating Substrates at low temperature using Microwave Plasma Enhanced Chemical Vapor	Zhu Rucheng ¹ , Amr Abuelwafa ¹ , Susumu Ichimura ² , Sudip Adhikari ¹ , Masayashi Umeno ¹	
	10p-PA8-7	Deposition Cu蒸気触媒を用いた減圧 CVD による r 面サファイア上 のグラフェン直接成長 成長温度依存性	〇上田 悠貴 1 , 山田 純平 1 , 小野 大志 1 , 丸山 隆浩 1 , 成塚 重弥 1	1. 名城大理工
	10p-PA8-8 10p-PA8-9	Cu表面とh-BN/Cu界面でのグラフェン成長速度の違い エタノール水溶液を用いた大気圧 CVD グラフェンにおけ	○牧野 竜市¹, 高田 匡平¹, 日比野 浩樹¹.²	1.関西学院大理工, 2.NTT 物性基礎研 1.和歌山大 システムエ
		る水の影響		
		プラズマCVD におけるグラフェン成長初期過程の偏光 解析モニタリング	〇林康明¹,野々村秋人¹,川上菜生¹,三瓶明希夫¹,中野美尚²,塚原尚希²,村上裕彦²	
_		N_2 雰囲気中エピタキシャルグラフェン形成	○竹内智哉¹,寺井 汰至¹,鎌田 裕太¹,佐藤 祐大¹,橋 本明弘¹	
E	E 10p-PA8-12	Effect of the laser irradiation on the doped graphene grown by microwave surface wave plasma CVD	○ (P)Amr Attia Abuelwafa¹, Riteshkumar Vishwakarma¹, Zhu Rucheng¹, Yota Mabuchi¹, Sudip Adhikari¹, Masayoshi Umeno¹	1.C`s Techno, Inc
	10p-PA8-13	c面サファイア基板上Ni 薄膜の熱処理結晶化の X 線回折 測定による評価	○成塚 重弥¹, 中島 諒人¹, 山田 純平¹, 上田 悠貴¹, 丸 山 隆浩¹	1. 名城大理工
	10p-PA8-14	HF-CVD 法によるシリコン系材料へのグラファイト形成	〇橋爪 瑞葵 1 , 高綱 藻 1 , 清水 麻希 1 , 加藤 大樹 2 , 橋本 巖 1 , 本間 芳和 1	1. 東理大理, 2.JEOL
		Ni-グラフェン接合の界面構造と接触抵抗の相関	○殷翔¹,葛西誠也¹	1.北大量子集積センター
	10p-PA8-16	探針増強ラマン分光法によるグラフェンナノリボンの構 造評価	\bigcirc (M1) 原 慎之助 ', 雲林院 宏 \sim ', 豊内 秀一 ', 猪瀬 朋子 2 , 田中 啓文 1	1.九工大院生命体, 2.北海道大, 3.KU Leuven
	10p-PA8-17	大面積化を指向したグラフェンナノリボンのネットワー ク化	〇青木 佑樹 ¹, 一宮 永 ¹, 山田 悠貴 ¹, 福井 暁人 ¹, 吉村 武 ¹, 芦田 淳 ¹, 藤村 紀文 ¹, 桐谷 乃輔 $^{1.2}$	1.阪府大工, 2.JST さきがけ
	10p-PA8-18	$Ir(111)/\alpha$ -Al ₂ O ₃ (0001) 基板上で作製した CVD グラフェンの電気的特性		1. 青学大理工
	10p-PA8-19	セルロースナノファイバー添加によるグラフェン積層構造への影響と熱伝導解析		1. 阪大院工, 2. 岡山大
		電気化学用グラフェン電極のエッジ効果の簡便な評価	\bigcirc (B)本間 幸英 1 ,傳刀 賢 \bigcirc 1 ,古川 一暁 1 ,上野 祐子 2	
		酸化グラフェンの電気輸送特性 サファイア上グラフェンの抵抗率の非接触・非破壊計測	○服部 速水¹,依里 忠樹¹,北村 勇人²,孫 勇¹ ○藤井 真吏¹.³ 毛利 貞一郎¹ 養木 怒¹ 上田 攸貴²	1. 九工大先端, 2. 九工大総シス 1. 立命館士 2. 名城士 3. 日邦プレンジョン
	•	二層グラフェンにおける電界閉じ込めによる電子波ダイ	成塚 重弥², 岩本 敏志³	
	•	ナミクスの観測 酸化グラフェンに吸着したアルカリ金属の XAFSによる	ギルホ³, 渡邉 賢司⁴, 谷口 尚⁴, 青木 伸之¹	材機構
***	•	研究 SiC上グラフェンの電子物性に対する界面の影響	田¹,馬場 祐治², 檜本洋¹,境 誠司¹ ○(B) 佐藤 京樹¹, 榊原 涼太郎¹, 河原 憲治², 吾郷 浩	
*	·	歪み印加による機械剥離グラフェンの熱輸送制御	樹², 林直輝³, 伊藤 孝寛⁴, 乗松 航³ 〇中川 魁斗¹, 佐藤 和郎², 村上 修一², 竹井 邦晴¹, 秋	
		デラズマCVDグラフェン/h-BN積層構造の移動度及び	□ 成司¹,有江隆之¹ □沖川 侑揮¹,山田 貴壽¹,長谷川 雅考¹,渡邊 賢司²,	
		ラマン分光評価	○(ff)	
	10p 1110 20	トコンタクトの形成と磁場印加効果	○ (MI) 71 (MI) (MI) (MI) (MI) (MI) (MI) (MI) (MI)	202 X) = 1020 ANHAY I DA) OF BATTINGHT
		有害物質の高感度検出に向けた超分子修飾グラフェン FETの開発	○生田 昂¹, 玉木 孝², 正井 宏², 前橋 兼三¹	1. 農工大, 2. 東大
		エネルギーギャップの導入にむけた銀ナノワイヤーによるグラフェンナノリボンの作製		1.千葉大物質
奨		高感度測定へ向けたグラフェン機械共振器の高周波化 ヘリウムイオン照射グラフェンにおける磁気抵抗のドー ズ量依存性		
E	E 10p-PA8-33	Study on Trapping Condition by Dielectrophoresis to Fabricate GNR Devices	台,从田 序 1,中42 周 ○(D)Wahyu Waskito Aji ¹ , Hirofumi Tanaka ¹	1.Kyushu Inst. of Tech.
	10p-PA8-34	Fabricate GNR Devices 新規電極材応用に向けたボーラスエピタキシャルグラフェン上微細孔の制御	○竹田 直喜¹, 石丸 大樹, 橋本 明弘¹	1.福井大院工

奨 10p-PA8-36	機能性剝離テープを用いたCVDグラフェンのドライ転写 法の開発	〇小山 p^1 , 河原 憲治 2 , 本田 哲士 3 , 小坂 尚史 3 , 岡田 研一 3 , 增田 将太郎 3 , 保井 p^3 , 吾郷 浩樹 1,2,4	1. 九大院総理工, 2. 九大 GIC, 3. 日東電工, 4. JST-CRES
10p-PA8-37	電気化学発光応用に向けた多層グラフェン透明電極の作 製と評価		1. 青学大理工
E 10p-PA8-38	The Fabrication of Suspended Graphene Nanoribbon for In-situ Transmission Electron Microscopy Observation		1.JAIST, 2.Hitachi Cambridge Lab.
E 10p-PA8-39	Understanding the exfoliated MoS ₂ /GO membrane stability during water filtration ポスター講演 (Poster Presentation) PB 会場 (Room PB)		1.Chem, Hokkaido Univ, 2.UNESCO Centre, UNSW, 3.Eng, Hokkaido Univ
10p-PB5-1	孤立単層カーボンナノチューブ上への窒化ホウ素層及び 二硫化モリブデン層の合成と分析	○村上 大巧¹, 荒井 隼人¹, 鄭 永嘉¹, 銭 洋¹, 井ノ上 泰 輝¹, 項 栄¹, 千足 昇平¹, 丸山 茂夫¹.²	1. 東大工, 2. 産総研
10p-PB5-2	Co触媒を用いたカーボンナノ四面体/リボン構造の高効率生成		1. 高知工科大
10p-PB5-3	カーボンナノコイルにおける磁石による捕集と疎水性溶 媒への分散性の評価	〇松尾 竜世 1 ,針谷 達 1 ,谷本 壮 1 ,滝川 浩史 1 ,水津 光 司 2 ,松田 健 $-^{3}$,須田 善行 1	1. 豊技大, 2. 千葉工大, 3. 日本大
10p-PB5-4	同時2色光熱変換顕微イメージングによる単一単層カー ボンナノチューブの解析		1.和大院シスエ
10p-PB5-5	ホットメッシュ堆積法で作製したナノカーボン膜の分子 配向評価	○部家 彰¹, 新部 正人², 山崎 良³, 松尾 直人¹	1. 兵庫県立大工, 2. 兵庫県立大高度研, 3. トーカロ
10p-PB5-6	欠陥導入カーボンナノチューブ高温処理における炭素同 位体導入	〇由良 真悟 1 , 中村 圭介 1 , 有福 達治 2 , 清柳 典子 2 , 小 林 慶裕 1	1.大阪大学, 2.日本化薬
10p-PB5-7	低速電子線誘起堆積法により低温合成したグラッシー カーボンのナノ構造制御とTEM観察	○ (M1) 赤池 祐輝 ¹ , 佐藤 哲也 ¹ , 山本 千綾 ^{1,2} , 山中 淳 二 ²	1.山梨大・院, 2.機器分析センター
奨 10p-PB5-8	$AIFe_2O_4$ ナノ粒子 LB 膜を用いた垂直配向 CNT の合成と構造評価	\bigcirc (M1) 佐藤 健介 1 , 多見谷 修平 1 , 木田 一肇 1 , 中村 健太郎 1 , 串田 正人 1	1. 千葉大院融
10p-PB5-9 10p-PB5-10	CVD法による硫黄ドーブカーボンナノチューブの作製 垂直配向単層カーボンナノチューブの摩擦特性	○浅田 祥太¹, 伊東 千尋¹ 福田 美実¹, 井上 枝実², 四本松 康太², 清水 麻希², ○ 本間 芳和²	1. 和歌山大 1. 洗足学園高校, 2. 東理大理
10p-PB5-11	周期加熱法を用いた単層カーボンナノチューブ薄膜の熱 伝導率の温度依存性測定		1. 首都大理, 2. 産総研
10p-PB5-12	単層カーボンナノチューブにおける THz 高次高調波発生 のフェルミレベル依存性	○西留 比呂幸¹, 永井 恒平², 一ノ瀬 遥太¹, 福原 健吾¹, 野崎 純司¹, 枝 淳子¹, 蓬田 陽平¹, 田中 耕一郎²³, 柳 和宏¹	1. 首都大理, 2. 京大理, 3.iCeMS
10p-PB5-13	Mode-locking Fiber Laser Using A High Power Tolerant Saturable Absorber Incorporating CNT-BNNT	○ (M2C)Pengtao Yuan¹, Zheyuan Zhang¹, Shoko Yokokawa¹, Yongjia Zheng¹, Lei Jin¹, Sze Yun Set¹, Shigeo Maruyama¹, Shinji Yamashita¹	1.University of Tokyo
10p-PB5-14	カーボンナノチューブにおけるラマン散乱強度の環境効 果		1.東理大理
10p-PB5-15	酸素プラズマ処理したカーボンナノウォールの撥水性Ⅱ	○田邉 耕生¹, 家田 祐輔¹, 山田 繁¹, 伊藤 貴司¹, 野々村 修一¹	1.岐阜大工
10p-PB5-16	電子供与性分子溶液滴下による単層カーボンナノチュー ブの光学スペクトル変化	○石原 匡明¹, 伊東 千尋¹	1.和歌山大シスエ
10p-PB5-17	コバルトセン内包カーボンナノチューブにおける内包量 の制御	○小林 昇弥¹, 本田 惇, 伊東 千尋¹	1. 和歌山大システム工
10p-PB5-18	液体金属ドロップレットを用いたフレキシブル MEMS センサーの提案	○(B)大塚 誠也¹, 生野 孝¹	1.東理大基礎工
10p-PB5-19	トリオン発光によるカーボンナノチューブ薄膜高速EL素 子	馬 ^{1,2} , 牧 英之 ^{1,3}	<u> </u>
	フラーレン複合紙の作製におけるドービングの検討 DNN微結晶/CNT薄膜の作製と硬X線電流応答	 ○大西 拓¹, 大矢 剛嗣¹ ○ (BC) 鈴木 慧¹, 濱野 毅², 石川 剛弘², 小西 輝昭², 廣谷 潤³, 大野 雄高³⁴, 平尾 敏夫², 石井 聡¹ 	1. 横国大院理工 1. 東京電機大理工, 2. 放医研, 3. 名大工, 4. 名大未来研
10p-PB5-22	フタロシアニン誘導体を用いたカーボンナノチューブ複		1.横国大院理工
10p-PB5-23	合糸の導電率向上と熱電応用 Pt担持マリモナノカーボンを用いたグルコース燃料電池 用電極触媒の開発	○(B)秋山 慎伍¹, 中川 清晴¹.²	1. 関西大環境都市工, 2.HRC
10p-PB5-24	州电樫熙殊の開発 マリモナノカーボンへの含酸素官能基導入による Ca ²⁺ インターカレーションの促進効果	○(B)西村佑一郎¹,中川清晴¹.²	1. 関西大環境都市工, 2.HRC
10p-PB5-25	カーボンナノチューブ複合紙を用いたペーパートランジ スタのn型ドーピング検討	○飯島 竜児¹, 大矢 剛嗣¹	1. 横国大院工
10p-PB5-26	電気二重層キャパシタ用カーボンナノチューブ/Cu電極の作製と評価	○原 正則¹, 池田 義仁¹, 吉村 雅満¹	1. 豊田工業大学
10p-PB5-27	一方向配向 CNT/エポキシ樹脂複合材料の力学・電気特性における CNT構造の影響	○露口 陽平¹, 苅田 基志¹, 中野 貴之¹, 井上 翼¹	1. 静大院工
10p-PB5-28	超臨界流体エタノールを用いたLSI配線のためのCNM作製	○萩原 啓斗¹, 佐藤 光¹, 伊藤 勝利¹, 宇原 祥夫¹, 齊藤 茂¹	1.東理大工
10p-PB5-29	CNT内包水・外側吸着水の ¹ H-NMR測定	○新道 裕介¹, 林 拓斗¹, 橋本 賢太¹, 古川 哲也¹, 本間 芳和¹, 伊藤 哲明¹	1.東理大理
10p-PB5-30	気体放電によるカーボンナノチューブフィラメント形成 における電極形状の影響		1.三重大院工
10p-PB5-31	LSI配線のための超臨界二酸化炭素を用いたCNMの 作製 一基板温度と圧力依存性一	〇寺地 優海 1 , 山崎 達也 1 , 伊藤 勝利 1 , 宇原 祥夫 1 , 齊藤 茂 1	1. 東理大
10p-PB5-32	一基板温度と圧力依存性― カーボンナノチューブをウレタン樹脂に混合したマイク ロ波帯向け電磁波吸収体の作成と評価	○金 勇一¹, 西川 英一¹, 山田 耕平¹, 吉田 泰久¹, 大澤 博紀¹	1.東理大工
10p-PB5-33	ガスソース CVD 成長における WS ₂ 原子層の結晶粒径均 一化現象		1.産総研
10p-PB5-34	一に現象 液体前駆体を用いたALD法による二硫化タングステン薄 膜成長(4)		1.埼玉大院理工
10p-PB5-35	屒双長(4) 微傾斜 ϵ 面サファイア上に成長させた MoS_2 の形状異方性	○(M2) 高田 匡平¹, 牧野 竜市¹, 小松 直人¹, 水野 将 吾¹, 日比野 浩樹¹²	1. 関西学院大理工, 2.NTT 物性基礎研
奨 10p-PB5-37	Bilayer WS ₂ の CVD 成長の高効率合成とその光学特性 サファイア上 GaN 成長に対する単層二硫化モリブデン バッファ層の影響	○稲波 伸之介¹, 堀田 貴都¹, 北浦 良¹, 篠原 久典¹ ○(B) 小松 直人¹, 高橋 正光², 佐々木 拓生², 高田 匡 平¹, 牧野 竜市¹, 日比野 浩樹¹.³	
•	水素発生電極に資するエッジリッチ構造を有した $Mo(S,Se)_2$ と $(Mo,W)S_2$ ナノシートの超臨界水熱合成	○中安 祐太¹, 小林 弘明¹, 本間 格¹	1. 東北大学多元物質科学研究所
10p-PB5-39	1T-MoSe2挿入による 2H-MoSe2 FET のピニング緩和	○堀井 嵩斗¹, 上野 啓司¹	1.埼玉大院理工

		$MoSe_2$ 中の空孔の安定性に対する帯電効果 MoS_2 スパッタ膜の硫化処理とラマン評価	○ (M1) 森山 聖矢¹, 影鳥 博之¹ ○山内 翔¹, 関健太¹, 蓮池 紀幸¹, 西尾 弘司¹, 木曽田 賢治². 鴨井 督³	1.島根大院自然科学 1.京工繊大, 2.和歌山大, 3.京都府中小企業技術セン ター
	10p-PB5-42	光電流スペクトルを用いたMoS₂単層膜における誘電遮 蔽効果の解明	○荒居 誠也¹, 梶野 祐人¹, 音 賢一¹, 山田 泰裕¹	1.千葉大院理
į	疑 E 10p-PB5-43	Optical Spectroscopy of Artificial Hetero-structure of Monolayer MoSe ₂ and Manganese Oxide	○ (D)Yan Zhang¹, Keisuke Shinokita¹, Yuhei Miyauchi¹, Yutaka Moritomo², Kazunari Matsuda¹	1.Inst. of Advanced Energy , Kyoto Univ., 2.Tsukuba Research Center for Energy Materials Science, Univ. of Tsukuba
		エピタキシャル成長した1T-TiSe ₂ 結晶の評価 hBN サンドしたTMD 原子層における励起子拡散	 ○蜂屋 康¹,浦上 法之¹²,橋本 佳男¹² ○堀田 貴都¹,樋口 翔平¹,内山 揚介¹,上野 啓司²,渡 	1.信州大工, 2.信大カーボン研 1.名大理, 2.埼玉大理, 3.NIMS
	10p-PB5-46	TaS ₂ のNCCDW-ICCDW相転移における層数依存性		1. 法政大生命科学, 2. 法政大院理工, 3.ITMO University
	10p-PB5-47	層状ゲルマナンの電界発光素子	Alexander³, 高井 和之¹.² ○橘 浩昭¹, 戸田 直也¹, 高田 徳幸¹, 安藤 淳¹, 阿澄 玲	1.産総研
	10p-PB5-48	アルカリ塩をアシスト剤に用いた気相成長単層MoS ₂ 及びWS ₂ のFET応用	子¹ ○五十嵐 玲太¹, 白井 肇¹, 上野 啓司¹	1.埼玉大院理工
	10p-PB5-49	ナノギャップ電極を用いた MoS ₂ FET の作製	○小倉 匡樹¹, 土田 将平¹, 番 貴彦¹, 山本 伸一¹	1. 龍谷大理工
		片持ち梁 MoS_2 と h -BNの光照射による共振特性比較	○吉川 大貴¹, 竹井 邦晴¹, 有江 隆之¹, 秋田 成司¹	1.大阪府大工
		高精度光圧測定のための透明ナノ機械共振器の作製	○(B)森本 悠介¹, 竹井 邦晴¹, 有江 隆之¹, 秋田 成司¹	
	10p-PB5-52	小直径二硫化タングステンナノチューブの合成とトラン ジスタ特性	○蓬田 陽平¹, 柳 和宏¹	1.首都大物理
	奨 10p-PB5-53	ガスセンサ応用に向けたMoS2トランジスタの作製と電 気特性	〇前田 翔児 ¹, Perini Christopher², 金子 豊和¹, 寺澤 大樹³, 福田 昭³, 小山 政俊 ¹, 藤元 章 ¹, 原田 義之 ¹, 小 池 一步 ¹, 矢野 満明 ¹, Vogel Eric²	1.大工大ナノ材研 , $2. ジョージア工科大学 , 3. 兵庫医大 物理$
	10p-PB5-54	Al ₂ O ₃ ゲート絶縁膜転写法を用いたトップゲートMoS ₂ FETの作製	○川那子 高暢¹, 大場 智明¹, 小田 俊理¹	1.東工大量子ナノ研
	10p-PB5-55	FET の作製 TMD材料を用いたトンネル電界効果トランジスタの作 製	○大内 秀益¹, 神谷 航太¹, 坂梨 昂平¹, グエヌエ トマス¹, クリューガー ピーター¹, バード ジョナサン²,	1. 千葉大物質, 2. バッファロー大学, 3. 物材機構
171 -	- ギン ト / エー・-		渡邊 賢司³, 谷口尚³, 青木伸之¹	
		,他のナノカーボン材料 / Carbon nanotubes & other nar 口頭講演 (Oral Presentation) W621会場 (Room W621)	iocarbon materiais	
9:30		複線燃りカーボンナノチューブ紡績糸中に残留する アモルファスカーボンの通電加熱処理による構造変化	〇家元 章伍 1 , 中川 智広 1 , 井上 寛隆 1 , 羽田 真毅 $^{1.2}$, 西川 亘 1 , 山下 善文 1 , 林 靖彦 1	1. 岡大院自然, 2. 筑波大
9:45	11a-W621-2	細径で紡績可能なカーボンナノチューブー本の機械強度 特性		1. 岡大院自然, 2. 東北大村強研, 3. 筑波大
10:00	11a-W621-3	カーボンナノチューブ複合紙によるアクチュエータの開 発		1.横国大理工
10:15 10:30	11a-W621-4	カーボンナノチューブ複合紙による"熱電発電紙"の性能向上の検討 休憩/Break	○深山 歩夢¹, 大矢 剛嗣¹	1. 横国大理工
10:45	奨 11a-W621-5	真空中通電加熱処理による乾式CNT紡績糸熱電変換素子 の物性向上	○大元 一輝 ¹ , 井上 寛隆 ¹ , 羽田 真毅 ^{1,2} , 西川 亘 ¹ , 山 下 善文 ¹ , 林 靖彦 ¹	1. 岡大院自然, 2. 筑波大
11:00	11a-W621-6	マ初に同工 ポリプロビレン (PP) にカーボンナノチューブ (CNT) 複合した耐汚染性水用スペーサー	○北野 宏樹 ^{1,2,3} , 藤井 萌香 ³ , 小畑 美智子 ^{3,4} , Josue	1.北川工業株式会社, 2.信州大大学院工, 3.信州大 COI 拠点, 4.信州大カーボン科研, 5. バン・アメリカ大工
11:15	奨 11a-W621-7	配向 CNT を用いた導電性と耐摩耗性を有する新奇被膜の 開発	○池田 義仁¹, 原 正則¹, 吉村 雅満¹	1. 豊田工大院工
11:30		車載チップ向けナノチューブ/ナノ粒子ペースト複合材 料の開発	〇廣瀬 真一 1 , 近藤 大雄 1 , 小山 $ @^2$, 乘松 正明 1 , 鈴木 幸一 1 , 岩井 大介 1 , 佐藤 信太郎 1	1. 富士通研, 2. 協立化学
		口頭講演 (Oral Presentation) W621 会場 (Room W621)		
13:45 14:00		2次元トリプチセン重合体の構造と電子物性 カーボンナノホーンの整流性および光応答性	○ (M1) 藤井 康丸¹, 丸山 実那¹, 岡田 晋¹ ○ (B) 小原 龍¹, 奥瀬 恭仁¹, 長南 安紀¹, 小宮山 崇 夫¹, 小谷 光司¹, 山口 博之¹, 桃井 優一²	1. 筑波大数理 1. 秋田県立大学システム, 2. 桃陽
14:15 14:30		二種混合分子内包によるSWCNTの精密キャリア制御 窒化ホウ素ナノチューブに内包された単層カーボンナノ	○王 国偉¹, 田中 丈士¹, 平野 篤¹, 片浦 弘道¹	1. 産総研 1. 東大工, 2. 筑波大数理, 3. 産総研
14:45	•	チューブのエネルギー論と電子状態 XANES測定によるIr触媒からの単層カーボンナノチュー		
15:00	*	が成長機構の解明 同位体ラベルによる単層カーボンナノチューブの再成長	塚 重弥 1, 丸山 隆広 1	
	•	の分析	項 栄1, 千足 昇平1, 丸山 茂夫1.3	
15:15	-	二段階温度成長法によるカーボンナノオニオンからの極低欠陥カーボンナノチューブ成長量増大効果	典子², 小林 慶裕¹	
15:30	*	CVDによる CNT 成長過程の反応生成物観察	威 2 ,大久保総一郎 2 ,伊藤良 $^{-1}$,藤田淳 $^{-1}$	1. 筑波大数理, 2. 住友電工
15:45	•	電子線蒸着法によって成膜したNi触媒層の膜厚がCNT 成長へ及ぼす影響		1.鳥取大工, 2.東芝テック株式会社
16:00	11p-W621-10	$\operatorname{Li}_2 \mathbb{C}_2$ を原料とする新規ナノカーボンの合成	小谷 直人 1 , 田村 貴大 1 , 柳瀬 隆 1 , 長浜 太郎 1 , 〇島田 敏宏 1	1. 化天阮上
16:15 16:30	将 11、W/21 11	休憩/Break 様々なC _m ナノウィスカーの育成と力学的性質	○舟守 勇斗¹, 橘 勝¹	1.横浜市大生命ナノ
16:30		様々なCsg アノワイスカーの育成とガ子的性質 Floating-Bridge法で合成したカーボンナノチューブ・ ファイバーの配向性評価	〇府 有 月 十 ,	
17:00	11p-W621-13	紡績可能な細径CNT合成に向けた初期成長時の触媒粒子 径制御	\bigcirc (D) 井上 寛隆 1 ,中川 智広 1 ,羽田 真毅 1,2 ,西川 亘 1 ,山下 善文 1 ,林 靖彦 1	1. 岡大院自然, 2. 筑波大
17:15	奨 11p-W621-14	译遊触媒CVD法による調理用アルミホイル上への紡績性 CNTフォレスト合成		1. 静大創造院, 2. 静大工
17:30	奨 11p-W621-15	CNTフォレストロ版 シリカナノ粒子を混合したCoFe2O4ナノ粒子Langmuir- Blodgett 膜を用いた垂直配向カーボンナノチューブの構 造制御	\bigcirc 多見谷 修平 1 , 佐藤 太河 1 , 金杉 治 1 , 串田 正人 1 , 佐	1. 千葉大院工
		カーボンナノブラシの作製条件の検討:触媒依存性	○弓削 亮太¹, 二瓶 史行¹, 當山 清彦¹, 湯田坂 雅子²	1.NEC, 2.AIST
17:45 18:00		プラズマ気相状態制御による(6,4)単層カーボンナノチューブの高純度化	○志摩 拓哉¹, 許 斌¹, 金子 俊郎¹, 加藤 俊顕¹.²	1.東北大院工, 2.JST さきがけ

17.2 グ	ラフェン / Grapher	ne		
3/9(5	Sat.) 13:45 - 18:00	口頭講演 (Oral Presentation) W521会場 (Room W521)		
13:45	9p-W521-1	単層および数層グラフェンの軟X線吸収/発光スペクトル	○新部 正人¹, 鈴木 哲¹, 本多 信一²	1. 兵庫県大高度研, 2. 兵庫県大院工
14:00	9p-W521-2	Hex-Au(100) 再構成表面上でのグラフェンの電子バンド 構造の変調	〇寺澤 知潮 1,2 , 保田 諭 1 , 林 直輝 3 , 乘松 航 3 , 伊藤 孝 寛 4 , 町田 真 $^{-1}$, 矢野 雅大 1 , 斉木 幸一朗 2 , 朝岡 秀 人 1	
14:15	9p-W521-3	回転角度制御したモアレ系二層グラフェンの電子状態	**	1. 九大院工, 2. 東大物性研, 3. 東工大総理工, 4. 高エネ研
14:30 14:45	奨 9p-W521-4 9p-W521-5	ランダム積層グラフェンの量子ホール効果とバンド分散 グラフェンの光熱電効果を用いたサイクロトロン共鳴の 検出		1. 農工大院工 1. 東大生研, 2. 物材機構, 3. CREST-JST
15:00	9p-W521-6	ファンデルワールスへテロ構造内で空間的に隔てられた グラフェン間の熱輸送		1. 東大生研, 2. 物材機構, 3.CREST-JST
15:15	奨 9p-W521-7	Polypropylene carbonate(PPC) を用いた原子層 Dry release 転写法による高品質グラフェン/h-BN ファンデル ワールスヘテロ構造の作製	〇木下 \pm^1 ,守谷 頼 1 ,增渕 覚 1 ,渡邊 賢司 2 ,谷口 尚 2 ,町田 友樹 1,3	1. 東大生研, 2. 物材機構, 3.CREST-JST
15:30	9p-W521-8	六方晶窒硼素のグラフェンへのキャリア蓄積に対する電 界遮蔽効果	○岡田 晋1	1. 筑波大数理
15:45 16:00	E 9p-W521-9	休憩/Break Berry Curvature Study of hBN-Bilayer Graphene	○ (D)Afsal Kareekunnan¹, Manoharan	1.JAIST, 2.Hitachi Camb. Lab.
16:15	·	Heterostructure グラフェンテンプレート上に合成した多層グラフェンの	Muruganathan ¹ , Hiroshi Mizuta ^{1, 2}	•
		キャリア伝導特性	芳孝 ² , 小林 慶裕 ¹	
16:30		ロックイン発熱解析法による CVD グラフェン膜の移動度 低減メカニズムに関する考察	田 貴壽 ¹ , 岡崎 俊也 ¹	
16:45	•	単層グラフェンのプロトン透過能と電気化学的手法を利 用したグラフェン - 金属界面への水素ナノバブル形成	優3,八木一三3,朝岡秀人1	境
17:00		ナノオーダーの周期性を有する 4H-SiC-m面へのグラ フェンの直接転写	○魚谷 亮介¹, 今村 均¹, 梶原 隆司¹, ビシコフスキー アントン¹, 飯森 拓嗣², 小森 文夫², 田中 悟¹	
17:15		Electrostatic properties of bilayer graphene nanoribbons under an external electric field		1.Univ. of Tsukuba
17:30 17:45		窒素ドープグラフェンナノリボンにおける酸素還元反応 グラフェンナノリボンよりカーボンアトミックチェンへ の形成メカニズム		1. 電通大院情報理工 1. 北陸先端大, 2. 日立ケンブリッジ研
		口頭講演 (Oral Presentation) W521会場 (Room W521)		
9:00	10a-W521-1	化学的ドーピングによるグラフェンガスセンサの高感度 化	○田中 貴久¹,澤田 圭¹,内田 建¹	1. 慶大理工
9:15	奨 10a-W521-2	グラフェンFETにおけるヒト血清中でのオーブンサンド イッチ免疫測定法による低分子ペプチドの検出	〇金井 康 1,2 , 大室 有紀 2 , 谷奥 正巳 1 , 牛場 翔太 3 , 小野 尭生 1 , 井上 恒 $^{-1}$, 木村 雅彦 3 , 上田 \mathcal{E}^2 , 松本 和 \mathcal{E}^1	1. 阪大産研, 2. 東工大化生研, 3. 村田製作所
9:30		グラフェンバイオセンサ実用化にむけた FET 特性ドリフ トの抑制	尭生², 金井康², 井上恒一², 松本和彦²	1.村田製作所, 2.阪大産研
9:45	奨 10a-W521-4	グラフェン FET を用いた ppb 領域メタンチオールガスの 検出	○坂本 優莉¹, 生田 昂¹, 前橋 兼三¹	1.東京農工大学
10:00		チアカリックスアレーン機能化グラフェンFETによる重 金属センサの開発		1.東京農工大
10:15	10a-W521-6		〇志賀 佳菜子 1 , 菅原 健太 2 , 佐藤 昭 2 , 吹留 博一 2 , 尾 辻 泰一 2 , 内野 俊 1	1. 東北工大, 2. 東北大通研
10:30 10:45	10a-W521-7	休憩/Break デバイス構造制御によるランダム積層グラフェンデバイ	○山田 直輝¹, 生田 昂¹, 前橋 兼三¹	1.東京農工大学
11:00	10a-W521-8	スの輸送特性の評価 コンダクティブAFMを用いたグラフェン/SiC界面特性	○藤井 健志¹,瀧川 亜樹¹	1.富士電機
11:15	奨 10a-W521-9		○(M1C)小倉 士忠¹,鈴木 弘朗¹,金子 俊郎¹,加藤	1.東北大院工, 2. さきがけ
11:30	E 10a-W521-10	化合成 Quantum Dot Formation in Locally Doped Graphene	俊顕 ^{1,2} ○ WANG Zhongwang ¹ , Jian Sun ² , Manoharan	1.JAIST, 2.Central South Univ., 3.Hitachi Cambridge
11:45	奨 E 10a-W521-11	Nano Ribbons Evaluation of IrO ₂ Activity as an Electrocatalyst for Oxygen Evolution Reaction by Heteroatom doped	Muruganathan¹, Hiroshi Mizuta¹.³ ○ (P)Prerna Joshi¹, Hsin-Hui Huang¹, Masanori Hara¹, Masamichi Yoshimura¹	Laboratory 1.Toyota Techno. Inst.
10.0-	10 ******	Reduced Graphene Oxide		1 + 1/1117
12:00		ナノ粒子の配列を用いたグラフェンのポーラス化 口頭講演 (Oral Presentation) W521 会場 (Room W521)	〇米津 明生 ¹ , 古谷 拓己 ¹	1.中大理工
13:45		「講演奨励賞受賞記念講演」 Siチップ上での高速・高集積グラフェン黒体放射発光素		1. 慶大理工, 2.KISTEC, 3. アーヘン工科大, 4. 九大, 5.JST さきがけ
14:00	奨 10p-W521-2	子 電荷注入構造を用いたグラフェン中波長赤外光検出器	浩樹⁴, 牧 英之 ^{1.5} ○福島 昌一郎¹, 嶋谷 政彰¹, 奥田 聡志¹, 小川 新平¹,	1. 三菱電機, 2. 阪大産研
14:15	奨 10p-W521-3	【注目講演】 乱層積層グラフェンによる光ゲート型高感度		1. 三菱電機株式会社, 2. 東京農工大
14:30	E 10p-W521-4	光検出器 Ultraviolet Light Induced Electrical Hysteresis Effect in	志¹, 小川新平¹, 生田昂², 前橋 兼三² ○(D) Ajinkya Ranade¹, Rakesh Mahyavanshi¹,	1.Nagoya Inst. of Tech
14:45	10p-W521-5	Graphene-GaN Heterojunction 液中分散グラフェンを可視化するトワイライト蛍光顕微 鏡のコントラスト機構	Pradeep Desai¹, Masaki Tanemura¹, Golap Kalita¹ 石川 裕貴¹, 渡辺 優人¹, ○佐野 正人¹	1.山形大院有機材料
15:00	10p-W521-6		金澤 克樹¹, 佐藤 光¹, ○佐野 正人¹	1.山形大院有機材料
15:15	10p-W521-7	h-BN/グラフェン界面電子状態のオペランド・ナノ光電子分光解析	○鴨川 貴優 ¹ , 水崎 裕太郎 ¹ , Wang Shengnan ² , 高村 真琴 ² , 谷保 芳孝 ² , 永村 直佳 ^{3,4} , 尾嶋 正治 ⁵ , 吹留 博 — ¹	
15:30	奨 10p-W521-8	還元型酸化グラフェン/シリコン複合体を負極材料に用 いたリチウムイオン二次電池の充放電特性	○行永滉平¹,今榮一郎¹	1. 広島大院工
		口頭講演 (Oral Presentation) W521会場 (Room W521)	O(D) \tall 1. [6] 11. \tag{2.75} mate \tag{2.75} \tag{1.5}	1 / Lar 0 / Libber 0 / Lar
9:00 9:15		4H-SiC(000-1)上TaC薄膜のグラフェン化 ガリウムを触媒とするエタノール雰囲気中でのグラフェ ン膜CVD	○(B)清水 一矢¹, 林 直輝², 伊藤 孝寬³, 乘松 航² ○辻 友希¹, 有馬 健太¹, 山村 和也¹, 川合 健太郎¹	1.名大工, 2.名大院工, 3.名大SRセ 1.大阪大

9:30	11a-W521-3	銅上CVDグラフェンにおけるTa誘起局所核生成のメカ ニズム	○鈴木 誠也¹,原 正則²,吉村 雅満²	1.物材機構, 2.豊田工大
9:45		酸化グラフェン修復過程における六方晶窒化ホウ素の触 媒作用	〇小幡 誠司 1 ,渡邊 賢司 2 ,谷口 尚 2 ,塚越 一仁 2 ,斉木 幸一朗 1	1. 東大新領域, 2. 物材機構
	伏物質 / Layered m lon.) 10:00 - 11:30	aterials 口頭講演 (Oral Presentation) W521 会場 (Room W521)		
10:00 10:15	奨 11a-W521-5	集積化二次元WS ₂ の層数制御合成 出発材料比較による高品質 SnS 薄膜の作製	 ○亀山智矢¹,李超¹,金子俊郎¹,加藤俊顕¹.² ○川元颯巳¹,東垂水直樹¹,中村優²,若林克法³,長汐晃輔¹ 	1. 東北大院工, 2.JST さきがけ 1. 東大マテリアル, 2.NIMS, 3. 関学
0:30		金属原料を用いた二硫化ハフニウム薄膜の作製 (2) DC バイアス印加した共スパッタ法による $Mo_{1x}W_xS_2$ のコンピナトリアル成膜	○小澤 拓真¹, 浦上 法之¹.², 橋本 佳男¹.²	1.信州大工, 2.信大カーボン研 1.明治大学, 2.東京工業大学, 3.学振特別研究員
1:00	奨 11a-W521-9	共スパッタおよびTe化による $\mathrm{MoS}_{2(1-s)}\mathrm{Te}_{2s}$ 混晶作製条件の最適化		1. 明治大, 2. 東工大, 3. 気相成長, 4. 学振特別研究員
1:15	11a-W521-10	Mo 原料に i - $Pr_2DADMo(CO)_3$ を用いた $MOCVD\ MoS_2$ 膜の異なる成膜条件における膜質の評価		1. 明治大, 2. 東工大, 3. 気相成長, 4. 学振特別研究員
3/11(N	Ion.) 13:45 - 18:30	口頭講演 (Oral Presentation) W521会場 (Room W521)	八,从床 四,石平 正,小小 子心	
3:45	招 11p-W521-1	「講演奨励賞受賞記念講演」 原子膜の積層によるナノ機械共振器の振動制御	〇井上 太一 1 , 望月 裕太 1 , 竹井 邦晴 1 , 有江 隆之 1 , 秋 田 成司 1	1.大阪府大工
4:00	E 11p-W521-2	Quantum-mechanical effects in atomically thin MoS ₂ FET		1.Tokyo Univ.
4:15		p^+ -WSe $_2$ /MoS $_2$ TFET における MoS $_2$ 厚さによるバンドアライメント制御		1. 東大, 2. 物材機構, 3. 埼玉大
4:30 4:45		UV-O $_3$ 表面酸化による HfS_2 MOSFET の性能改善 MoS_2 単原子層膜における Fröhlich フォノン相互作用での	○張 文倫¹, 金澤 徹¹, 北村 稔¹, 宮本 恭幸¹	1.東工大 1.筑波大応理, 2.筑波大数理
5:00	E 11p-W521-6	前方散乱に関する考察 Large voltage generator from water movement by	○ (P)Adha Sukma Aji¹, Ryohei Nishi¹, Hiroki Ago²,	1.Nagoya University, 2.Kyushu University
5:15	11p-W521-7	single-layer MoS ₂ 2次元半導体/アミド系分子間における特異的相互作用		1.大阪府大工, 2.名大WPI-ITbM, 3.科学技術振興機構
5:30	11p-W521-8	イオン液体ゲートを用いた遷移金属ダイカルコゲナイド		さきがけ 1. 産総研, 2. 大阪大工, 3. マックスプランク研, 4. 筑波ナ
5:45	E 11p-W521-9	トランジスタにおけるデバイスシミュレータの開発 Influence of MoS ₂ /Silicon Interface States on Bias	佐義宏⁵ ○(D)Pradeep Niwas Desai¹, Ajinkya K. Ranade¹,	電物, 5.東大工 1.Nagoya Institute of Technology
		Dependent Photoresponse	Rakesh Mahyavanshi ¹ , Masaki Tanemura ¹ , Golap Kalita ¹	
6:00	11p-W521-10	MoS ₂ /Si ヘテロ接合の光起電力ガス応答のメカニズム	鵜篭 直也 1 ,〇田畑 博史 1 ,松山 弘明 1 ,久保 理 1 ,片山 光浩 1	1.阪大院工
6:15 6:30	E 11n W521 11	休憩/Break Electric barrier performance of monolayer hexagonal	CHENCNAN WANG! Histori Hibing!,2 Vochitalra	1.NTT Basic Research Labs., 2.Kwansei Gakuin Univ.
6:45		boron nitride 単層 MoS ₂ /h-BN/Graphite への絶縁膜堆積による界面準	Taniyasu¹ ○豊田 哲史¹, 方 楠¹, 谷口 尚², 渡邊 健司², 長汐 晃	
7:00		位の増加 Sulfur vacancies degrade interface at valence band side in	輔 ¹	1. Tokyo Univ.
7:15		MoS ₂ FET FET構造下における MoS ₂ /MoSe ₂ へテロ構造体へのキャ		1. 筑波大数理
		リア蓄積		
7:30		数層WS₂原子層シートを用いた透明太陽電池の大面積化	加藤 俊顕 1.2	ŕ
7:45	•	ミストCVDにより作製した硫化スズ薄膜の特性評価	○(D)佐藤 翔太¹, 坂本 雅仁², 西 美咲², 刘 丽¹, ルトンジャン ピモンバン¹, 鄧 太 江³, 川原村 敏幸¹.².³	
8:00		遷移金属ダイカルコゲナイドナノチューブの構造と電子 状態		1.東工大理
8:15	·	Determination of intercalated Fe atomic arrangement in TiS ₂ layers using transmission electron diffraction 口頭講演 (Oral Presentation) W521会場 (Room W521)	○ (D)Yi Ling Chiew ¹ , Satoshi Abe ¹ , Masanobu Miyata ¹ , Mikio Koyano ¹ , Yoshifumi Oshima ¹	1.JAIST
9:00			〇中野 匡規 1 , 吉田 訓 1 , Bahramy Mohammad Saeed 1,2 , 王越 1 , 松岡 秀樹 1 , 真島 裕貴 1 , 小濱 芳允 3 , 大東 祐汰 1 , 柏原 悠太 1 , 坂野 昌人 1 , 石坂 香子 1,2 , 岩 佐 義宏 1,2	1. 東大院工, 2. 理研 CEMS, 3. 東大物性研
9:15	奨 12a-W521-2	ファンデルワールス界面を利用した2次元強磁性体の磁 気異方性制御	○松岡 秀樹¹,中野 匡規¹,岩佐 義宏¹.²	1. 東大院工, 2. 理研 CEMS
9:30 9:45	12a-W521-3 12a-W521-4	TaSe ₂ エピタキシャル薄膜のMBE成長と輸送特性 誘電体基板を用いたWS ₂ 単層膜のクーロンエンジニアリ ング	 ○田中 勇貴¹, 松岡 秀樹¹, 中野 匡規¹, 岩佐 義宏¹.² ○梶野 祐人¹, 音 賢一¹, 山田 泰裕¹ 	1. 東大院工, 2. 理研 CEMS 1. 千葉大院理
0:00	奨 12a-W521-5		〇小川 寛人 1 , 熊谷 明哉 $^{2\cdot 1}$, 遠藤 尚彦 3 , 小林 佑 3 , 井 田 大貴 1 , 高橋 康史 $^{4\cdot 5}$, 末永 智 $^{-1}$, 宮田 耕充 3 , 珠玖 仁 1	1. 東北大環境, 2. 東北大AIMR, 3. 首都大東京, 4. 金沢大学, 5.JST さきがけ
0:15	12a-W521-6	UV 光照射に伴う超酸分子処理 MoS_2 のフォトルミネッセンスの連続的上昇	ОШШ $\&$ $\&$ $\&$ 1 , $=$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
0:30	12a-W521-7	単層 WS2–WSe2 面内ヘテロ構造の発光特性	\bigcirc (DC) 島崎 雅史 1 , 和田 尚樹 2 , 宮田 耕充 2 , 松田 一 成 1 , 宮内 雄平 1	1. 京大エネ理, 2. 首都大院理
0:45	12a-W521-8	層状反強磁性体を用いた磁性へテロ界面における光物性		1. 東大院工, 2. 理研 CEMS
1:00	E 12a-W521-9	$Stability\ of\ monolayer\ WSe_2\ and\ MoS_2\ in\ an\ aqueous$ solution under light irradiation	○ (D)Wenjin Zhang¹, Kazunari Matsuda¹, Yuhei Miyauchi¹	1.Inst. of Advanced Energy, Kyoto Univ.
1:15	奨 12a-W521-10	単層カーボンナノチューブの表面吸着による二硫化モリ	○小山 真莉子¹, 矢野 隆章¹, 原 正彦¹	1. 東工大物質理工

		「ワイドギャップ酸化物半導体材料・デバイス 、はプログラム冒頭にございます。	.] / Joint Session K "Wide bandgap oxid	le semiconductor materials and devices"
1.1 合同	司セッションK「ワ	イドギャップ酸化物半導体材料・デバイス」/ Joint Sessio	n K "Wide bandgap oxide semiconductor materials ឧ	and devices"
3/9(Sa 3:45	at.) 13:45 - 17:15 招 9p-S011-1	口頭講演 (Oral Presentation) S011 会場 (Room S011) 「講演奨励賞受賞記念講演」 Ar+O ₂ +H ₂ スパッタ In-Ga-Zn-O による Schottky ダイ	〇曲 勇作 1 ,濵田 賢一朗 1 ,增田 健太郎 1 ,古田 守 $^{1.2}$	1. 高知工大, 2. 高知工大総研
4:00	9p-S011-2	オード特性向上 第一原理計算を用いたIGZO結晶領域の安定性に関する 解析	〇中山 智則 1 , 高橋 正弘 1 , 金川 朋賢 1 , 生内 俊光 1 , 岡崎 健一 1 , 山崎 舜平 1	1.半エネ研
4:15 4:30	9p-S011-3 9p-S011-4	結晶性IGZO膜の構造解析と電気特性 n-Sn-Zn-Oの水素化とポストアニールによるTFT信頼性	○生内 俊光¹, 保坂 泰靖¹, 岡崎 健一¹, 山﨑 舜平¹	1. 半エネ研 1. 日本大学 生産工
4:45 5:00	9p-S011-5 9p-S011-6	の向上 (001) β -Ga $_2$ O $_3$ 基板上に形成したNiO 薄膜の結晶配向性 反応性へリコン波励起プラズマスバッタ法による p型	○中込 真二¹, 安田 隆¹, 國分 義弘¹○嶋 紘平¹, 小島 一信¹, 秩父 重英¹	1.石巻専修大理工 1.東北大多元研
5:15	E 9p-S011-7	NiO 薄膜の堆積 Growth of Tin Oxide Film with Buffer Layer on Sapphire Substrate by Mist Chemical Vapor Deposition	○ Thant Zin Win ¹ , Takumi Furukawa ¹ , Yudai Tanaka ¹ , Koshi Okita ¹ , Koji Sue ² , Zenji Yatabe ^{1, 3} , Yusui Nakamura ^{1, 4, 5}	1.GSST, Kumamoto Univ., 2.Fac. of Eng., Kumamoto Univ., 3.POIE, Kumamoto Univ., 4.FAST, Kumamoto Univ., 5.Kumamoto Phoenics
5:30 5:45	9p-S011-8	休憩/Break 結晶性IGZOを用いたFETの極小オフリーク電流の起源	○馬場 晴之¹, 水上 翔太¹, 津田 一樹¹, 越田 樹¹, 山﨑	
6:00	E 9p-S011-9	Thermopower modulation clarification of the operating mechanism in wide bandgap BaSnO ₃ – SrSnO ₃ solid-solution based thin film transistors	舜平 ¹ ○(P)ANUPKUMAR VINODRAY SANCHELA ¹ , Mian Wei ² , Hai Jun Cho ^{1, 2} , Hiromichi Ohta ^{1, 2}	1.RIES-Hokkaido Univ., 2.IST-Hokkaido Univ.
6:15	9p-S011-10	X 線トポグラフによる β - Ga_2O_3 基板の転位評価	〇中居 克彦 1 , 野網 健悟 1 , 二木 登史郎 1 , 大葉 悦子 2 , 于川 圭吾 3	1.日鉄住金テクノロジー, 2.不二越機械工業, 3.信州大 学
16:30	9p-S011-11	シンクロトロン X 線トポグラフィーによる垂直プリッジマン成長 β - Ga_2O_3 単結晶の欠陥の観察	実 ⁴ , 干川 圭吾 ⁵ , 上田 修 ⁶ , 嘉数 誠 ¹	1.佐賀大院工, 2.ノベルクリスタルテクノロジー, 3.タムラ製作所, 4.不二越機械工業, 5.信州大, 6.金沢工大
16:45	9p-S011-12 9p-S011-13	HVPE (001) β -Ga ₂ O ₃ ショットキーバリアダイオードのエミッションスポットと逆方向リーク電流の関係 酸素負イオン照射による錫添加 \ln_2 O ₃ 薄膜における広範	林 潤³, 山腰 茂伸⁴, 倉又 朗人²	1.佐賞大院工, 2.ノベルクリスタルテクノロジー, 3.TDK, 4. タムラ製作所1. 高知工科大総研
	•	囲キャリア密度制御 口頭講演 (Oral Presentation) S011会場 (Room S011)	OHT R , MT 110	Y I Ind And and L I Notice All
9:00	10a-S011-1	ZnO中のHot excitonによる誘導放出	松崎 涼介¹, 藤井 柊介¹, 辻村 拓哉¹, 安達 裕², ○内野隆司¹	
9:15	10a-S011-2 10a-S011-3	ZnO/VZO/ZnO積層膜の固相成長におけるV濃度の配向性への影響 ZnO薄膜へのV, N共添加による可視光吸収制御	鷲尾 勝由 2	1. 東北大工, 2. 東北大院工 1. 東北大工, 2. 東北大院工
9:45	10a-S011-4	$Pt/Mg_xZn_{1-x}O/n$ - ZnO $>$ $=$ y $+$ $+$ $ 7$ $+$ 5 4 7 $ 1$ 6	之², 鷲尾 勝由²	1. 岩手県工技センタ, 2. 岩手大
0:00		おける直列抵抗の評価 休憩/Break		
10:15	10a-S011-5	ミストCVD法によるn型およびp型ZnO成膜への挑戦	○西美咲¹, 刘丽¹, ルトンジャン ビモンバン¹, 佐藤 翔太¹, 上田 真理子¹, 安岡龍也¹, 長谷川 諒¹, 田頭 侑 貴¹, 尾崎珠子¹, 鄧太 江¹, 川原村 敏幸¹	1. 高知上科大
10:30	10a-S011-6	ミストCVD法によるサファイア基板上a面及びm面ZnO 薄膜結晶の品質向上	田部 然治 1.3, 中村 有水 1.5	先導機構,4.熊大工学部,5.くまもと有機薄膜センター
1:00	10a-S011-7 10a-S011-8	RFスバッタ法を用いたMgZnOの熱処理効果 量子相関光子対発生に向けたZnO/ZnMgO多重量子井戸	○久志本 真希¹, 酒井 忠慶¹, 出来 真斗², 本田 善 央²³, 天野 浩²⁴ ○矢野 岳人¹ 松井 裕輝¹ 上向井 正裕¹ 片山 竜二¹	1.名大院工, 2.名大未来研, 3.名大高等研究院, 4.赤崎; 念研究センター 1. 阪大院工
		微小共振器の設計		A11/4/ A1/4
3/11(N 9:00	Mon.) 9:00 - 11:30 11a-S011-1	口頭講演 (Oral Presentation) S011会場 (Room S011) コランダム構造を有する酸化物半導体の第一原理計算による評価	○宇野 和行¹, 中村 太紀¹, 田中 一郎¹	1.和歌山大システムエ
9:15	11a-S011-2	PAMBEによるm面サファイア基板上α-Ga ₂ O ₃ の成長	○ (DC) 神野 莉衣奈¹, Cho Yongjin¹, Lee Kevin¹, Protasenko Vladimir¹, Xing Huili¹, Jena Debdeep¹	1. コーネル大工
9:30	11a-S011-3	ゾーンリファイニング法によるβ-Ga ₂ O ₃ 結晶の高純度化		1. 産総研
9:45		化学合成による Ga ₂ O ₃ :Cdナノ結晶の作製とバンド ギャップ制御	〇船越 拓哉 ¹, 築野 晃 ², 大谷 裕之 ³, 首藤 健一 ¹.², 向 井 剛輝 ¹.²	1. 横浜国大院理工, 2. 横浜国大院工, 3. 横浜国大院環情
0:00		FZ 法で作製した beta-Ga ₂ O ₃ 単結晶の輸送特性 休憩/Break	○富岡 泰秀¹, 尾崎 康子¹, 稲葉 英樹¹, 伊藤 利充¹	1. 産総研
10:30	11a-S011-6	Sn: β型酸化ガリウムのドーバント局所構造	○三木一司¹,八方直久²,木村耕治³,佐々木公平⁴, 唐佳藝¹,縄田皓太郎¹,北藤滉¹,北村真也¹,尾崎ひかる³,久常健太郎²,山口亮太²,田尻寛男⁵,山腰茂伸⁶,林好一³,倉又朗人⁴	1. 兵庫県立大学工, 2. 広島市立大学, 3. 名工大, 4. ノベルクリスタルテクノロジー, 5. JASRI, 6. タムラ製作所
0:45	11a-S011-7	(Ga _s In _{1-x}) ₂ O ₃ 固溶体薄膜における結晶・電子構造の組成・ 基板依存性		1. 鶴岡高専, 2. 物質・材料研究機構
1:00	11a-S011-8 11a-S011-9	GaON薄膜の結晶化 【注目講演】水素雰囲気異方性熱エッチング (HEATE)法 による (010) 面 b- Ga_2O_3 の高アスペクト異方性エッチング		1.NTTデバイスイノベーションセンタ 1.上智大・理工, 2.上智大ナノテクセンター
3/11(M .3:45		□頭講演 (Oral Presentation) S011会場 (Room S011) GaCl-O ₂ -N ₂ 系およびGaCl ₃ -O ₂ -N ₂ 系による ε -Ga ₂ O ₃ 気	○佐藤万由子¹, 竹川 直¹, 村上 尚¹, 熊谷 義直¹	1. 東京農工大院工
4:00	11p-S011-2	相成長の比較 THVPE法を用いたc面サファイア基板上酸化ガリウム成 長における準安定相の相制御	○竹川 直¹, 佐藤 万由子¹, 村上 尚¹, 熊谷 義直¹	1. 東京農工大院工
4:15	•	ミスト CVD 法を用いた van der Waals epitaxy によるフレキシブルな ϵ -Ga $_2$ O $_3$ 薄膜のエピタキシャル成長	広1	
4:30		半絶縁性中間層による β - Ga ₂ O ₃ ホモエピタキシャル層の 界面伝導の抑制	平 ¹ , 加渡 幹尚 ² , 大友 明 ^{1.3}	
14:45	•	バルスエキシマレーザー照射による β - Ga_2O_3 薄膜の室温 固相エピタキシーにおける結晶化過程の評価 PLD法による窒素ドープ酸化ガリウム薄膜の成長と電気	智 ^{3, 1} , 松田 晃史 ¹ , 吉本 護 ¹	1.東工大物質理工, 2. 豊島製作所, 3. 神奈川県産技総研 1.東工大物質理工学院, 2. トヨタ自動車, 3. 元素戦略
15:15	× 110 0011 0	特性評価 休憩/Break	尚2,大友明1.3	一一八八八八八八十八八八八八八八八八八八八八八八八八八八八八八八八八八八八八

15:30				
	奨 11p-S011-7	酸化ガリウム結晶における電界変調反射スペクトルの観測	〇田中 広也 1 , 佐々木 公平 2 , 山口 智広 1 , 本田 徹 1 , 倉 又 朗人 2 , 山腰 茂伸 3 , 東脇 正高 4 , 尾沼 猛儀 $^{1.4}$	1.工学院大, 2.ノベルクリスタルテクノロジー, 3.タムラ製作所, 4.情通機構
5:45	奨 11p-S011-8	アモルファス酸化ガリウムへの水素ドープ効果とキャリ ア輸送特性		1.東工大フロ研, 2.東工大元素
6:00	奨 11p-S011-9			1. 東工大 フロンティア研 , 2.JST さきがけ , 3. 東工大 元 素セ , 4. 物質・材料研究機構 , 5.SPring-8 , 6.KEK
6:15	奨 11p-S011-10	ミストCVD法による α - $(In_xAl_{1-x})_2O_3$ の混晶薄膜の結晶成長		1.京工繊大
6:30	奨 11p-S011-11	岩塩構造MgZnO/MgO量子井戸における量子閉じ込め 効果	〇工藤 幹太¹, 石井 恭平², 小野 瑞生¹, 藤原 有基¹, 金 子 健太郎², 山口 智広¹, 本田 徹¹, 藤田 静雄², 尾沼 猛 儀¹	1.工学院大, 2. 京大
	奨 11p-S011-12	深紫外透明電極応用に向けたMgZnO薄膜の吸収端制御	(函 $+$ 忠 $+$	1. 名大院工 , $2.$ 名大未来研 , $3.$ 名大高等研究院 , $4.$ 赤崎記 念研究センター , $5.$ 名大 VBL
7:00 7:15	奨 11p-S011-13	休憩/Break 水熱合成単結晶ZnO基板の薄膜化プロセスと微小共振器 構造への応用	○嶋 紘平¹, 小島 一信¹, 秩父 重英¹	1. 東北大多元研
7:30	奨 11p-S011-14	酸化物半導体薄膜の成長および特性に及ぼすポリマー基 板表面における原子レベルパターンの影響	\bigcirc (M1) 大賀 友瑛 1 , 岩佐 健 1 , 山田 志織 1 , 金子 智 2,1 , 松田 晃史 1 , 吉本 護 1	1. 東工大物質理工, 2. 神奈川県産技総研
7:45	奨 11p-S011-15	WZO/VZO 積層蛍光薄膜の発光特性	〇岡本 諒 1 ,木村 惇志 1 ,岡田 健 1 ,川島 知之 1 ,鷲尾 勝由 1	1. 東北大院工
8:00	奨 11p-S011-16	WO_3 固体エレクトロクロミックトランジスタの高速動作		1. 北大院情報科学, 2. 北大電子研
8:15	奨 11p-S011-17	$CuCrO_2$ 薄膜の抗菌効果の検討	\bigcirc (M1) 大野 航太朗 ¹ , 岡田 健 ¹ , 川島 知之 ¹ , 神崎 展 ¹ , 鷲尾 勝由 ¹	1. 東北大院工
8:30	奨 11p-S011-18	C-V法によるInGaZnO-TFTの可動電荷評価	\bigcirc (M1) 高橋 崇典 1 , 宮永 良子 1 , 藤井 茉美 1 , 田中 淳 2 , 竹知 和重 2 , 田邉 浩 2 , Bermundo Juan Paolo 1 , 石河 泰	1.奈良先端大, 2.Tianma Japan
3/12(Tu	e.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PA 会場 (Room PA)	明 ¹ , 浦岡 行治 ¹	
	12a-PA3-1	金属薄膜を堆積したサファイア基板上へのミストCVD法 によるZnO結晶の成長	木村 泰己 1 , 大橋 紘誠 1 , 藤原 健八 1 , 山本 幹大 1 , 原 和 彦 1 . 〇光野 徹也 1	1. 静岡大工
3	奨 12a-PA3-2	ミストCVD における酸化亜鉛薄膜形成時の水の効果	ルトンジャンピモンパン', ○西美咲', 川原村 敏幸', 坂本雅仁', 刘丽', 佐藤 翔太', 上田真理子', 安岡龍哉', 長谷川諒', 尾崎珠子', 鄧太江'	1.高知工科大
	E 12a-PA3-3	Epitaxial growth of eta -Bi $_2{\rm O}_3$ thin films with mist CVD	○ (D)Zaichun Sun¹, Daichi Oka¹, Tomoteru Fukumura¹.².²³	1.Dept. Chem., Tohoku Univ., 2.WPI-AIMR, Tohoku Univ., 3.Core Research Cluster, Tohoku Univ.
	12a-PA3-4	ミストCVD法によるアモルファスAl ₂ O ₃ 薄膜の作製と評価	○(M1) 西村 和樹¹, 西山 光士¹, 藤元 佑紀², 谷田部 然治³, 中村 有水⁴⁵	1.熊大院自, 2.熊大工, 3.熊大院先導, 4.熊大院先端, 5.くまもと有機薄膜セ
	12a-PA3-5	ミスト化学気相成長法によるYSZ基板上での β -Ga ₂ (O_1 , S_2) $_3$ 混晶の作製	〇廣江	1.鳥取大学, 2.トヨタ自動車
	奨 12a-PA3-6	ミストCVD法によるc面Al ₂ O ₃ 基板への Ni _{1.x} Mg _x O薄膜のエビタキシャル成長とバンドギャップ 制御	○米谷怜¹,池之上卓己²,三宅正男²,平藤哲司²	1.京大工, 2.京大院エネ科
	12a-PA3-7	ミストCVD法における原料溶媒が薄膜成長に及ぼす影響	○坂本 雅仁¹, 安岡 龍哉¹, 西美咲¹, 刘 丽¹, ルトン ジャン ビモンバン¹, 佐藤 翔太¹, 上田 真理子¹, 田頭 侑貴¹, 長谷川 諒¹, 尾崎 珠子¹, 鄧 太 江¹, 川原村 敏 去 ^{1,2}	1. 高知工大, 2. 総研
	12a-PA3-8	触媒反応支援 CVD 法における ZnO 膜への NO ドーピング特性	伊庭 竜太¹, 安達 雄大¹, Abdul Manaf², ○安井 寛治¹	1. 長岡技科大, 2.MJIIT
	12a-PA3-9	Ag/ZnO接合の加熱処理における界面電子状態の評価	○山形 栄人 ^{1,2} , 大澤 健男 ¹ , 保坂 拓己 ^{1,2} , Herve Montigaud ³ , 石垣 隆正 ² , 大橋 直樹 ¹	1. 物材機構, 2. 法政大, 3. Saint-Gobain Recherche
		ゾル・ゲルディップ法によるNiCdO薄膜の作成	○安田隆¹,山田恭明¹,梅津瑠偉¹	1.石専大理工
		水熱合成ZnOナノロッドにおける発光特性の評価 第一原理計算によるGa ₂ O ₃ 中の複合欠陥の原子構造と電	○ 增澤 聡介¹, 鎌田 憲彦¹, 本多 善太郎¹○ (D) 長川 健太¹, 白石 賢二²¹	1. 埼玉大院理工 1. 名大院工, 2. 名大未来研
	12a-PA3-13	子状態の解明 HVPE法で結晶成長した Si ドープ β - Ga_2O_3 ホモエピ膜の	○中野 由崇¹, 豊留 彬¹	1.中部大工
	10 DAO 14	欠陥準位評価β -Ga₂O₃ 粉末の振動メカニカルミリング処理		1 Ph 45: 1, 24 H- 1-141
	12a-PA3-14 12a-PA3-15	p -Ga ₂ O ₃ 材木の振動メガーガルミリンク処理 α -Ir ₂ O ₃ のバンド構造	○岸村 浩明 ¹ , 出口 龍 ¹ , 松本 仁 ¹ ○太田 優一 ¹	1. 都產技研
		Electrical Properties of In ₂ O ₃ and ITO Thin Films	○ (DC)Puneet Jain¹, Ken-ichi Haga¹, Eisuke	1.JAIST
	E 12a-PA3-16	Prepared by Solution Process	Tokumitsu ¹	
			Tokumitsu ¹	1. 高知工大, 2. 高知工大総研
	12a-PA3-17	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag _x O接合	Tokumitsu 1 \bigcirc (M2) 濱田 賢一朗 1 , 曲 勇作 1 , 是友 大地 1 , 增田 健 太郎 1 , 古田 守 1,2	
***	12a-PA3-17 奨 12a-PA3-18	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag _x O接合型ショットキーダイオードの特性解析 自己組織化単分子膜によるInGaZnO/イオン液体界面反	Tokumitsu 1 \bigcirc (M2) 濱田 賢一朗 1 , 曲 勇作 1 , 是友 大地 1 , 增田 健 太郎 1 , 古田 守 1,2 \bigcirc 石田 翔麻 1 , 藤井 茉美 2 , 劉 洋 2 , 山田 裕久 1 , 石河 泰	1.奈良高専, 2.奈良先端
;	12a-PA3-17 奨 12a-PA3-18 12a-PA3-19	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag _x O接合型ショットキーダイオードの特性解析 自己組織化単分子膜によるInGaZnO/イオン液体界面反応の保護作用	Tokumitsu¹ $\bigcirc \ (M2) \ \mbox{濱田 賢一朗$}^1, \mbox{曲 勇作$}^1, \mbox{是友 大地$}^1, \mbox{增田 健 太郎$}^1, \mbox{古田 守1,2 $\bigcirc \mbox{石田 翔麻$}^1, \mbox{藤井 茉美$}^2, \mbox{劉 \mbox{\mu}}^2, \mbox{山田 裕久$}^1, \mbox{石河 泰 明$}^2, \mbox{藤田 直幸$}^1, \mbox{浦岡 行治2 $\bigcirc \mbox{山田 祐美加$}^1, \mbox{杉浦 \mathcal{h}}^2, \mbox{松原 國喜$}^2, \mbox{伴 勇翔$}^2, \mbox{舩木 修平$}^1, \mbox{山田 容士1	1.奈良高専, 2.奈良先端
:	12a-PA3-17 奨 12a-PA3-18 12a-PA3-19 12a-PA3-20	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag _* O接合型ショットキーダイオードの特性解析 自己組織化単分子膜によるInGaZnO/イオン液体界面反応の保護作用 ZnO 系膜における電気特性の添加 Ga 量依存性 ZnO ナノ粒子層の低抵抗化のための熱拡散型 Ga ドープにおける熱処理雰囲気の影響	Tokumitsu¹ $\bigcirc \ (M2) \ \mbox{濱田 賢一朗$}^1, \mbox{曲 勇作$}^1, \mbox{是友 大地$}^1, \mbox{增田 健 太郎$}^1, \mbox{古田 守1,2 $\bigcirc \mbox{石田 翔麻$}^1, \mbox{藤井 茉美$}^2, \mbox{劉 \mbox{\mu}}^2, \mbox{山田 裕久$}^1, \mbox{石河 泰 明$}^2, \mbox{藤田 直幸$}^1, \mbox{浦岡 行治2 $\bigcirc \mbox{山田 祐美加$}^1, \mbox{杉浦 \mathcal{h}}^2, \mbox{松原 國喜$}^2, \mbox{伴 勇翔$}^2, \mbox{舩木 修平$}^1, \mbox{山田 容士1	1. 奈良高専, 2. 奈良先端 1. 島根大自然, 2. 島根大総理工
:	12a-PA3-17 奨 12a-PA3-18 12a-PA3-19 12a-PA3-20	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag _x O接合型ショットキーダイオードの特性解析 自己組織化単分子膜によるInGaZnO/イオン液体界面反応の保護作用 ZnO 系膜における電気特性の添加 Ga 量依存性 ZnOナノ粒子層の低抵抗化のための熱拡散型 Ga ドープにおける熱処理雰囲気の影響 PLD 法により成膜したITO薄膜の熱処理による電気特性の評価プラズマ支援分子線堆積法によるフレキシブル基板上へ	Tokumitsu¹ ○ (M2) 濱田 賢一朗¹, 曲 勇作¹, 是友 大地¹, 增田 健太郎¹, 古田 守¹² ○石田 翔麻¹, 藤井 茉美², 劉 洋², 山田 裕久¹, 石河 泰明², 藤田 直幸¹, 浦岡 行治² ○山田 祐美加¹, 杉浦 怜², 松原 國喜², 伴 勇翔², 舩木修平¹, 山田 容士¹ ○吉田 俊幸¹, Islam Md Maruful², 藤田 恭久¹ ○岩名 祥吾¹, 関 蘇軍¹, 小室 修二², 趙 新為¹ ○村中 司¹, 小野 裕俊¹, 寺田 佳史¹, 渡辺 三志郎¹, 鍋	1. 奈良高専, 2. 奈良先端 1. 島根大自然, 2. 島根大総理工 1. 島根大院自然科学, 2. 島根大院総理工 1. 東理大理, 2. 東洋大理
	12a-PA3-17 奨 12a-PA3-18 12a-PA3-19 12a-PA3-20 12a-PA3-21	Prepared by Solution Process using $\ln(acac)_3$ Precursor デバイスシミュレーションによる $\ln\text{-Ga-Zn-O/Ag}_*$ O接合型ショットキーダイオードの特性解析 自己組織化単分子膜による $\ln\text{GaZnO}/4$ オン液体界面反応の保護作用 ZnO 系膜における電気特性の添加 Ga 量依存性 ZnO ナク粒子層の低抵抗化のための熱拡散型 Ga ドープにおける熱処理雰囲気の影響 PLD 法により成膜した ITO 薄膜の熱処理による電気特性の評価 ブラズマ支援分子線堆積法によるフレキシブル基板上への GZO 透明導電膜の形成と評価 (3) α - Fe_2O_3 バッファー層を用いた r m α - Al_2O_3 基板上の準	Tokumitsu¹ ○ (M2) 濱田 賢一朗¹, 曲 勇作¹, 是友 大地¹, 增田 健太郎¹, 古田 守¹² ○石田 翔麻¹, 藤井 茉美², 劉 洋², 山田 裕久¹, 石河 泰明², 藤田 直幸¹, 浦岡 行治² ○山田 祐美加¹, 杉浦 怜², 松原 國喜², 伴 勇翔², 舩木修平¹, 山田 容士¹ ○吉田 俊幸¹, Islam Md Maruful², 藤田 恭久¹ ○岩名 祥吾¹, 関 蘇軍¹, 小室 修二², 趙 新為¹ ○村中 司¹, 小野 裕俊¹, 寺田 佳史¹, 渡辺 三志郎¹, 鍋 谷 暢一¹, 松本 俊¹	1. 奈良高専, 2. 奈良先端 1. 島根大自然, 2. 島根大総理工 1. 島根大院自然科学, 2. 島根大院総理工 1. 東理大理, 2. 東洋大理
	12a-PA3-17 奨 12a-PA3-18 12a-PA3-19 12a-PA3-20 12a-PA3-21 12a-PA3-22 奨 12a-PA3-23	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag ₄ O接合型ショットキーダイオードの特性解析 自己組織化単分子膜によるInGaZnO/イオン液体界面反応の保護作用 ZnO 系膜における電気特性の添加 Ga 量依存性 ZnOナノ粒子層の低抵抗化のための熱拡散型 Ga ドーブにおける熱処理雰囲気の影響 PLD 法により成膜したITO薄膜の熱処理による電気特性の評価 プラズマ支援分子線堆積法によるフレキシブル基板上へのGZO透明導電膜の形成と評価(3) α-Fe ₂ O ₃ バッファー層を用いたr面α-Al ₂ O ₃ 基板上の準安定相付-ITOエピタキシャル薄膜の成長と評価 化学溶液析出法によるZnOナノロッドの成長及び	Tokumitsu¹ ○ (M2) 濱田 賢一朗¹, 曲 勇作¹, 是友 大地¹, 增田 健 太郎¹, 古田 守¹² ○石田 翔麻¹, 藤井 茉美², 劉 洋², 山田 裕久¹, 石河 泰明², 藤田 直幸¹, 湘岡 行治² ○山田 祐美加¹, 杉浦 怜², 松原 國喜², 伴 勇翔², 舩木修平¹, 山田 容士¹ ○吉田 俊幸¹, Islam Md Maruful², 藤田 恭久¹ ○岩名 祥吾¹, 関 蘇軍¹, 小室 修二², 趙 新為¹ ○村中 司¹, 小野 裕俊¹, 寺田 佳史¹, 渡辺 三志郎¹, 鍋谷 暢一¹, 松本 俊¹ ○島添 和樹¹, 西中 浩之¹, 吉本 昌広¹ 小原 翔平¹, 雞波 優², 橋国 直人², ○寺迫 智昭¹, 宮田	1.奈良高専, 2.奈良先端 1.島根大自然, 2.島根大総理工 1.島根大院自然科学, 2.島根大院総理工 1.東理大理, 2.東洋大理 1.山梨大工 1.京都工繊大 1.愛媛大院理工, 2.愛媛大工, 3.香川高専, 4.高知工科大
,	12a-PA3-17 奨 12a-PA3-18 12a-PA3-19 12a-PA3-20 12a-PA3-21 12a-PA3-22 奨 12a-PA3-23	Prepared by Solution Process using In(acac) ₃ Precursor デバイスシミュレーションによるIn-Ga-Zn-O/Ag _x O接合型ショットキーダイオードの特性解析 自己組織化単分子膜によるInGaZnO/イオン液体界面反応の保護作用 ZnO 系膜における電気特性の添加 Ga 量依存性 ZnOナリ粒子層の低抵抗化のための熱拡散型Gaドープにおける熱処理雰囲気の影響 PLD 法により成膜したITO薄膜の熱処理による電気特性の評価プラズマ支援分子線堆積法によるフレキシブル基板上へのGZO透明導電膜の形成と評価(3) α -Fe ₂ O ₃ バッファー層を用いた r 面 α -Al ₂ O ₃ 基板上の準安定相 rh-ITO エピタキシャル薄膜の成長と評価	Tokumitsu¹ ○ (M2) 濱田 賢一朗¹, 曲 勇作¹, 是友 大地¹, 增田 健 太郎¹, 古田 守¹² ○石田 翔麻¹, 藤井 茉美², 劉 洋², 山田 裕久¹, 石河 泰明², 藤田 直幸¹, 浦岡 行治² ○山田 祐美加¹, 杉浦 怜², 松原 國喜², 伴 勇翔², 舩木修平³, 山田 容士¹ ○吉田 俊幸¹, Islam Md Maruful², 藤田 恭久¹ ○岩名 祥吾¹, 関 蘇軍¹, 小室 修二², 趙 新為¹ ○村中 司¹, 小野 裕俊¹, 寺田 佳史¹, 渡辺 三志郎¹, 鍋谷暢一¹, 松本 俊¹ ○島添 和樹¹, 西中 浩之¹, 吉本 昌広¹ 小原 翔平¹, 難波 優², 橋国 直人², ○寺迫 智昭¹, 宮田 晃², 矢木 正和³, 野本 淳一⁴, 山本 哲也⁴	1. 奈良高専, 2. 奈良先端 1. 島根大自然, 2. 島根大総理工 1. 島根大院自然科学, 2. 島根大院総理工 1. 東理大理, 2. 東洋大理 1. 山梨大工 1. 京都工繊大 1. 愛媛大院理工, 2. 愛媛大工, 3. 香川高専, 4. 高知工科大総研

		フォノンエンジニアリング」/ Joint Session はプログラム冒頭にございます。	M "Phonon Engineering"	
22.1 合	·同セッションM「フ	ォノンエンジニアリング」/ Joint Session M "Phonon Eng	ineering"	
3/9(Sat.) 9:30 - 11:30 9a-PA3-1	ポスター講演 (Poster Presentation) PA会場 (Room PA) 非晶質酸窒化亜鉛 (a-ZnON) 薄膜の熱電特性	〇廣瀬 靖 1,2 , 土井 雅人 1 , 重松 圭 2,3 , 掛札 洋平 4 , 森孝雄 4 , 長谷川 哲也 1,2	1. 東大院理, 2.KAST, 3. 東工大フロンティア, 4. 物材機 構
	9a-PA3-2	SEM/熱画像カメラを用いた熱伝導率測定のための電子線照射加熱	○池田 浩也¹, P. バスカラン¹², 太田 裕也¹, 七尾 克¹, 秋葉 孔¹, 五井 悠仁¹, 富田 基裕³, 松川 貴⁴, 松木 武雄³⁴, 渡邉 孝信³, 鈴木 悠平¹, K. D. ニーシャ², 猪	1. 静岡大, 2.SRM 科技大, 3. 早稲田大, 4. 産総研
	9a-PA3-3	Siナノワイヤを用いたプレーナ型ユニレグ多段熱電発電 デバイス構造の検討	川洋¹,下村 勝¹,村上 健司¹ ○織田 海斗¹,島 圭佑¹,富田 基裕¹,松木 武雄¹.²,渡 邉 孝信¹	1.早大理工, 2. 産総研
	E 9a-PA3-4	Detecting sub-terahertz mechanical oscillations by a GaAs MEMS thermal sensor		Tokyo University of Agriculture and Technology, University of Tokyo
	9a-PA3-5	急速溶融成長法で作製された SiGe ワイヤの熱電特性		1.早大理工, 2.名大院工, 3.学振特別研究員, 4.JST さきがけ
	9a-PA3-6	直径分布に依存した半導体性カーボンナノチューブ薄膜 の熱電特性		1. 奈良先端大物質 , 2.JST さきがけ
	9a-PA3-7	プレーナ型シリコン熱電発電デバイスの出力の熱伝導層 膜厚依存性	○野口 生那 1 , 目崎 航平 1 , 島 圭佑 1 , 姫田 悠矢 1 , 武澤 宏樹 1 , 平尾 修平 1 , 富田 基裕 1 , 渡邉 孝信 1	1.早大理工
	9a-PA3-8	Ag_2S 増感型熱利用発電の電池特性に及ぼす支持電解質の 影響	○ (M1C) 稲川 ゆり¹, 磯部 敏宏¹, 中島 章¹, 松下 祥 子¹	1.東工大材料
	9a-PA3-9 9a-PA3-10	CuFeS ₂ を用いた増感型熱利用発電電池の検討 増感型熱利用発電の熱力学的描像	○(B)関谷 颯人¹, 磯部 敏宏¹, 中島 章¹, 松下 祥子¹ ○管原 星弥¹, 荒木 拓真¹, 磯部 敏宏¹, 中島 章¹, 松下 祥子¹	
3/9(5		口頭講演 (Oral Presentation) W371会場 (Room W371)		
13:45	奨 9p-W371-1	ラマン分光法による多結晶シリコン粒内のナノ構造が及 ぼす熱伝導特性評価	森本保³,澤本直美¹,小椋厚志¹	ン テクノロジーソリューションズ (株)
14:00	奨 9p-W371-2	ラマン分光法による酸化膜を被覆したSiナノワイヤ界面 近傍の熱伝導特性評価		
14:15	9p-W371-3	温度と組成に依存するSi _{1-x} Ge _x ナノワイヤ中の準弾道的熱 輸送	太郎2, 黒澤 昌志3.4, 野村 政宏1	
14:30	9p-W371-4	重元素置換 Fe ₂ VAI系超格子薄膜でのフォノン散乱	○ (PC)Choi Seongho¹, 廣井 慧², 犬飼 学³, Byeon Dogyun¹, 松波 雅治¹, 竹内 恒博¹.⁴	1.豊工大, 2.物質機構, 3.名工大, 4.JST さきかけ
14:45	奨 9p-W371-5	ダイヤモンド/銅の界面熱輸送解析と高熱伝導複合材料 の製作	○(PC)許 斌¹, 黃 仕偉¹, 塩見 淳一郎¹	1.東京大学
15:00 15:15	奨 9p-W371-6	休憩/Break カルコバイライト CuFeS ₂ のフォノン輸送解析と微細構造 制御	· ○(P)佐藤 直大¹, Se Gan Pei¹.², Vijayaraghavan S. N¹, 掛札 洋平¹, 川本 直幸¹, 辻井 直人¹, 森 孝雄¹.²	1.物材機構, 2.筑波大
15:30	奨 9p-W371-7	Nim Si ナノビラー構造の間隔制御することによる フォノン場 制御とキャリア輸送特性性に与える影響		1. 東北大流体研, 2. 東北大 AIMR, 3. 産総研, 4. 東理大, 5. 東大生研
15:45	奨 9p-W371-8	SiGeナノ構造バルクにおける熱分布を利用した熱電出力 因子の増大		
16:00	9p-W371-9	局所ゼーベック係数分布計測に向けた温度勾配下における熱電材料の表面電位分布測定		1.阪大院基礎工
16:15	9p-W371-10	単結晶Biワイヤーの作製と4端子物性測定	○長谷川 靖洋 ¹ , 大塚 美緒子 ^{1,2} , 有坂 太一 ¹ , 篠崎 諒 ¹ , 森田 寛之 ^{1,3}	1. 埼大院, 2. 学振 DC1, 3. 埼玉県産業技セ
16:30	9p-W371-11	単結晶Biワイヤーの移動度温度依存性	○(DC)大塚美緒子 ^{1,2} ,有坂太一 ¹ ,篠崎 諒 ¹ ,森田 寛之 ^{1,3} ,長谷川 靖洋 ¹	1.埼玉大, 2.学振DC1, 3.埼玉県産技総
16:45 17:00	9p-W371-12	休憩/Break 酸化物半導体のプラズモンエンジニアリング:透明反射	○松井 裕章¹, 田畑 仁¹	1.東京大工
17:15	9p-W371-13	遮熱断熱に向けた熱評価 ナノ細線の熱起電力、熱抵抗、電気抵抗を評価するテス	○(M1)五井 悠仁¹, 秋葉 孔¹, 寄神 寿明¹, 佐藤 弘明¹,	1.静岡大, 2.早稲田大, 3.産総研
		トデバイスの検討	富田 基裕 2 , 松川 貴 3 , 松木 武雄 2,3 , 池田 浩也 1 , 渡邉 孝信 2 , 猪川 洋 1	
17:30	9p-W371-14	熱伝導率異方性制御CNTシートを用いたプレナー型熱電 発電デバイスの設計	: ○(M2)島 圭佑¹, 富田 基裕¹, 松本 昌修², 藤ヶ谷 剛 彦 ^{2,3} , 渡邉 孝信¹	1.早稲田大学, 2.九大院工, 3.JST- さきがけ
17:45	奨 9p-W371-15	外部電場で制御する熱流スイッチング素子の作製	\bigcirc (M1) 松永 卓也 1 , 平田 圭佑 1 , 松波 雅治 1 , 竹内 恒 博 1	1. 豊田工大
18:00	9p-W371-16	Li挿入によるWO₃薄膜の構造及び熱伝導率の変化	\bigcirc (M2) 小林 竜大 ¹ , 沈 統 ¹ , 中村 彩乃 ¹ , 原田 俊太 ¹ , 田川 美穂 ¹ , 宇治原 徽 ^{1,2}	1.名大院工, 2. 産総研
3/10(9:00		口頭講演 (Oral Presentation) W371会場 (Room W371) 導波路を介したフォノニック結晶キャビティの励振とそ の振動特性評価	○畑中 大樹¹,山口 浩司¹	1.NTT物性研
9:15	10a-W371-2	ウェーブマシンにおける1次元格子振動の制御	○友田 基信¹, 猪野 真大¹, 藤田 健太郎¹, 松田 理¹, Wright Oliver B.¹	1.北大工
9:30	10a-W371-3	中赤外自由電子レーザーによるダイヤモンドにおける選 択的格子振動励起	○佐藤 央至¹, 吉田 恭平², 全 炳俊¹, 蜂谷 寬¹, 後藤 琢也³, 佐川 尚¹, 大垣 英明¹	1. 京都大エ, 2.熊本産セ, 3.同志大理
9:45	10a-W371-4	熱励起電荷を利用した増感型熱利用発電の提唱	○松下 祥子¹, 荒木 拓真¹, 管原 聖弥¹, 稲川 ゆり¹, 関 谷 颯人¹, 磯部 敏宏¹, 中島 章¹	1.東工大物質理工学院
10:00	10a-W371-5	Ge半導体を用いた増感型熱利用発電システムの開発	○ (M2) 荒木 拓真¹, 管原 星弥¹, 関谷 颯人¹, 磯部 敏 宏¹, 中島 章¹, 松下 祥子¹	1.東工大材料
10:15 10:30	奨 E 10a-W371-6	休憩/Break Anomalous Change of Heat Transfer in $Sr(Ti,\!Nb)O_3$ solid solution		1.IST-Hokkaido Unv., 2.RIES-Hokkaido Unv., 3.AIST, 4.Sungkyunkwan Univ., 5.KAIST
10:45	E 10a-W371-7	Heat conduction in silicon thin film with black silicon nanostructures	O (M2)Xin Huang ¹ , Sergei Gluchko ¹ , Roman Anufriev ¹ , Masahiro Nomura ^{1, 2}	1.IIS, Univ. of Tokyo, 2.JST PRESTO
11:00	E 10a-W371-8	Thermal conductivity measurement of suspended graphene by heat spreader method.	(O) (D) Mayeesha Masrura Haque ¹ , Seiya Kubo ¹ , Manoharan Muruganathan ¹ , Shinichi Ogawa ² , Hiroshi Mizuta ^{1,3}	1.JAIST, 2.AIST, 3.Hitachi Cam. Lab
11:15		単層カーボンナノチューブ水平配向膜の熱伝導異方性評 価	 ○山口信義¹, 小宅教文¹, 児玉高志¹, 小松夏実², Weilu Gao², 河野淳一郎², 塩見淳一郎¹ 	1.東大院工, 2. ライス大
11:30	10a-W371-10	フォノンのアンダーソン局在にモード変換が及ぼす効果		1.北大工, 2.富士フイルム

11:45	将 10。W271 11	第一原理計算による高熱伝導率高分子の探索	○(M2)内村 慶舟¹,市場 友宏²,前園 涼²,本郷 研	1. 北陸先端大マテ, 2. 北陸先端大情報, 3. 北陸先端大
			太 ^{3,4,5}	報基盤, 4.物材機構, 5.JST さきがけ
12:00	奨 10a-W371-12	クラスレート化合物の熱伝導特性に及ぼす非調和フォノンの影響	○大西正人¹,只野央将²,常行真司¹,塩見淳一郎¹	1.東大, 2.物材機構
		機能材料・萌芽的デバイス、合同セッションM「フォノン	・エンジニアリング」のコードシェアセッション / Coo	de-sharing Session of 9.4 & 12.3 & Joint Session M
3/10(S) 3:45		口頭講演 (Oral Presentation) W351 会場 (Room W351) 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M	○小矢野 幹夫¹, 浅井 涉¹, 宮田 全展¹, Pham Xuan	1. 北陸先端大
		「フォノンエンジニアリング」のコードシェアセッション 招待講演	Thi ¹	
		招付請凍」 ナノ構造体におけるフォノン緩和過程と微小熱電発電デ		
4:30	10 W251-2	バイスへの応用 Si置換したFe,VAlエピタキシャル薄膜の熱伝導率	○(D)工藤 康平¹, 山田 晋也¹.², 近田 尋一朗¹, 嶋貫	1 匠上甘琳工 2 匠上甘琳工 CCDN 2 夕工上
4:50	10p-w 551-2	31直接したFe ₂ VAIエピタインマル海族の熱広等学	雄太1,石部貴史1,阿保智1,宮崎秀俊3,西野洋一3,	1. 放入基炭上, 2. 放入基炭上 C3RN, 3. 石上入
4.45	10 11051 0	D.10 是有效和的工作。1.2 图0.0 种类基础。例如	中村 芳明 1, 浜屋 宏平 1.2	4 MONTH L. O. TOTTE N. J. 1811
4:45	10p-W351-3	BドープAI誘起層交換による p 型 $Si_{1x}Ge_x$ 熱電薄膜の性能向上	○过 美紀江,早野 欽太,木益 宗,都中 惠 ***	1.筑波大, 2.JST さきがけ
5:00 5:15	+77 10° M/3E1 4	休憩/Break 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M	〇字公百 做 1.2	1. 名大未来研, 2.U-MAP
5.15	10p-W331-4	「フォノンエンジニアリング」のコードシェアセッション		1. 石入木未训,2. U-IMAF
		招待講演」 高熱伝導樹脂を実現する AIN ウィスカーフィラーの開発		
		向款広等側加を実現するAIN ウィスカーフィブーの開発 とベンチャー		
6:00	10p-W351-5	ナノ構造化によるシリコン薄膜のZT増強と平面型熱電	○柳澤 亮人¹, Ruther Patrick², Paul Oliver², 野村 政宏¹.3	1.東大生研, 2.フライブルク大, 3.JST さきがけ
6:15	奨 10p-W351-6	デバイス開発 横型Siナノワイヤ熱電変換デバイスにおけるSiO₂絶縁膜	74	1.早大理工, 2.産総研
6.20		/Si 基板の最適厚さ設計 休憩/Break		
6:30 6:45	招 10p-W351-7	「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M		1.名大工
		「フォノンエンジニアリング」のコードシェアセッション 招待講演」		
		Van der Waals材料における熱電特性		
7:30	10p-W351-8	有機フォトクロミック分子を用いた高機能太陽光熱貯蓄 燃料の検討	○朝戸 良輔 ^{1,2} , Jan Patrick D C Calupitan ³ , 中嶋 琢 也 ¹ , Jyh-Chiang Jiang ⁴ , 河合 壯 ¹	1. 奈良先端大, 2. Toulouse Univ., 3. Paris-Saclay Univ 4. 台湾科技大
7:45	10p-W351-9	セルロースナノペーパーにおける熱拡散性の応力応答		1. 阪大産研, 2. 阪大院工
		インフォマティクス応用」/ Joint Session N	"Informatics"	
		<mark>はプログラム冒頭にございます。</mark> ンフォマティクス応用」/ Joint Session N "Informatics"		
		口頭講演 (Oral Presentation) W321会場 (Room W321)	○水州 (株工部1 1 加幸 明初2 土畝 〒3 江原 原2小4 吉	1 四班 2 極計機株 2 玄処理 4 古岩表フ屋上 5 ま
00:	9a-W321-1	合同セッションN「インフォマティクス応用」の開設に あたって	〇首掛 健太明,却尽 壹怡,守呵止,迁野 貞治,尚 橋 竜太 ⁵ ,小菅 厚子 ⁶ ,宮寺 哲彦 ³	1.
9:15	9a-W321-2	フォノン物性や電場中の原子ダイナミクスの解析に向けたニューラルネットワークポテンシャルの構築	小倉 正義 1 , 守屋 孝紀 1 , 李 文文 2 , 清水 康司 1 , 南谷 英 美 1 , ○渡邉 聡 1,3	1. 東大工, 2. 産総研 CD-FMat, 3. 物材機構 MaDIS
9:30	奨 9a-W321-3	Au(111)/Li_{3}PO_{4}の界面構造探索に向けたニュー		1. 東大工, 2. 産総研, 3. 物材機構
9:45	9a-W321-4	ラルネットワークポテンシャルの構築 Si粒界構造の解析に向けた機械学習型原子間ポテンシャ	谷英美¹,渡邉 聡¹.3 ○⊭北 湊午¹ 竪田 站輔¹ 由村 第知¹ 松永 古丰¹	1.名大工
,,10		ル		
0:00 0:15	9a-W321-5 9a-W321-6	ナイーブベイズを用いた結晶構造中の原子配列最適化 マテリアルズインフォマティクスを活用した長寿命電池	○野田 祐輔¹, 横井 達矢¹, 松永 克志¹ ○吉田 恕大¹ 木郷 研大²,3 前園 涼⁴,5	1.名大工 1.住友金属鉱山, 2.北陸先端大情報基盤, 3.JST さき:
	74 WOZI 0	材料の探索		け,4.北陸先端大情報,5.理研
0:30 0:45	9a-W321-7	休憩/Break マテリアルズイオンフォマティクスから見出された	○田島 伸¹, 大庭 伸子¹, 鈴村 彰敏¹, 增岡 優美¹, 旭 良	1. ㈱豊田中研
.0.10	yu 11021 1	$AE(TM)_2Bi_2O_9$ (AE: Ca, Sr, Ba, TM: Nb, Ta) 系酸化物イ	司1	A. 1979 SEE 1 1971
1:00	奨 E 9a-W321-8	オン伝導体の合成と評価 Designing Thermal Functional Materials via Materials	○ (PC)Shenghong Ju ^{1, 2} , Junichiro Shiomi ^{1, 2, 3}	1.Univ. of Tokyo, 2.NIMS, 3.CREST
		Informatics		·
1:15	9a-W321-9	【注目講演】第一原理計算と機械学習によるペロブスカイト型酸化物の強誘電性の予測システムの構築と重要な特		1.東工大物質理工
		徴量の探索		
1:30	9a-W321-10	力場の原子・結合タイプをラベルに用いた化学物質グラフの機械学習力場の原子・結合タイプをラベルに用いた		1. 富士通研
		化学物質グラフの機械学習		
1:45	奨 9a-W321-11	機械学習を用いた内殻電子励起スペクトルからの物性予 測	○清原 慎¹, 椿 真史², 溝口 照康¹	1. 東大生研, 2. 産総研
		口頭講演 (Oral Presentation) W321 会場 (Room W321)		
3:45	9p-W321-1	データ相互利用を可能とするデータプラットフォーム技 術	○谷藤 幹子 ', 吉川 英樹 '	1.物材機構
4:00	9p-W321-2	分析データ収集における構造化ファイルと変換ツールの		1.物材機構,2.アルバック・ファイ,3.リガク
4:15	9p-W321-3	公開 マテリアルズ・インフォマティクスのための材料辞書群	松波 成行 ¹ ,吉川 英樹 ¹ 〇鈴木 晃 ¹ ,高山 英紀 ¹ .石井 真史 ¹	1.物質材料研究機構
		の構築		
4:30	9p-W321-4	学術論文からのポリマーの溶解性に関わる溶媒名の自動 抽出	○岡 博之 ¹ , 吉澤 篤志 ¹ , 進藤 裕之 ^{2,3} , 松本 裕治 ^{2,3} , 石 井 真史 ¹	1.物材機構, 2. 奈良先端大, 3. 理研 AIP
		Doc2Vec を用いた学会発表概要集の検索手法の検討	○(DC)石川 晃平 ¹ , 沓掛 健太朗 ² , 原田 俊太 ^{1,3} , 田川	
4:45	奨 9p-W321-5			
	奨 9p-W321-5		美穂 ^{1.3} , 宇治原 徹 ^{1.3.4}	GaN-OIL
5:00	奨 9p-W321-5 9p-W321-6	休憩/Break 機械学習による結晶成長シミュレーション回帰モデルの	○宇治原 徹 ^{1,2,3} , 角岡 洋介 ^{2,3} , 朱 燦 ¹ , 沓掛 健太朗 ⁴ ,	1. 名大未来研, 2. 名大院工, 3. 産総研, 4. 理研 AIP, 5.
5:00 5:15	9p-W321-6	休憩/Break 機械学習による結晶成長シミュレーション回帰モデルの 構築とその応用	○宇治原 徹 ^{1,2,3} , 角岡 洋介 ^{2,3} , 朱 燦 ¹ , 沓掛 健太朗 ⁴ , 鳴海 大翔 ⁵ , 田川 美穂 ^{1,2} , 原田 俊太 ^{1,2}	1.名大未来研, 2.名大院工, 3.産総研, 4.理研AIP, 5. 大VBL
5:00 5:15 5:30	<u> </u>	休憩/Break 機械学習による結晶成長シミュレーション回帰モデルの 構築とその応用 SiC結晶成長シミュレーションの機械学習 機械学習によって構築した温度分布予測モデルによる熱	○宇治原 徹 ^{1,2,3} , 角岡 洋介 ^{2,3} , 朱 燦 ¹ , 沓掛 健太朗 ⁴ , 鳴海 大翔 ⁵ , 田川 美穂 ^{1,2} , 原田 俊太 ^{1,2} ○小山 幸典 ¹ , 角岡 洋介 ² , 沓掛 健太朗 ³ , 宇治原 徹 ⁴ ○樋口 雄介 ¹ , 角岡 洋介 ^{1,2} , 沓掛 健太朗 ³ , 鳴海 大	1.名大未来研, 2.名大院工, 3.産総研, 4.理研AIP, 5. 大VBL 1.物材機構, 2.名大院工, 3.理研, 4.名大IMaSS 1.名大院工, 2.産総研GaN-OIL, 3.理研AIP, 4.名大
5:00 5:15 5:30 5:45	9p-W321-6 9p-W321-7 奨 9p-W321-8	休憩/Break 機械学習による結晶成長シミュレーション回帰モデルの 構築とその応用 SiC結晶成長シミュレーションの機械学習 機械学習によって構築した温度分布予測モデルによる熱 伝導率推定	〇宇治原 徽 1,2,3 ,角岡 洋介 2,3 ,朱 燦 1 ,沓掛 健太朗 4 ,鳴海 大翔 5 ,田川 美穂 1,2 ,原田 俊太 1,2 〇小山 幸典 1 ,角岡 洋介 2 ,沓掛 健太朗 3 ,宇治原 徽 4 〇樋口 雄介 1 ,角岡 洋介 1,2 ,沓掛 健太朗 3 ,鳴海 大 翔 4 ,原田 俊太 1,5 ,田川 美穂 1,2 ; 宇泊原 徽 1,2,5	1.名大未来研, 2.名大院工, 3.産総研, 4.理研AIP, 5. 大VBL 1.物材機構, 2.名大院工, 3.理研, 4.名大IMaSS 1.名大院工, 2.産総研GaN-OIL, 3.理研AIP, 4.名大 VBL, 5.名大未来研
5:00 5:15 5:30 5:45	9p-W321-6 9p-W321-7	休憩/Break 機械学習による結晶成長シミュレーション回帰モデルの 構築とその応用 SiC 結晶成長シミュレーションの機械学習 機械学習によって構築した温度分布予測モデルによる熱 伝導率推定 Combination of Simulations and Data Science to Determine Appropriate Thermocouple Positions in a	○宇治原 徹 ^{1,2,3} , 角岡 洋介 ^{2,3} , 朱 燦 ¹ , 沓掛 健太朗 ⁴ , 鳴海 大翔 ⁵ , 田川 美穂 ^{1,2} , 原田 俊太 ^{1,2} ○小山 幸典 ¹ , 角岡 洋介 ² , 沓掛 健太朗 ³ , 宇治原 徹 ⁴ ○樋口 雄介 ¹ , 角岡 洋介 ^{1,2} , 沓掛 健太朗 ³ , 鳴海 大 翔 ⁴ , 原田 俊太 ^{1,5} , 田川 美穂 ^{1,2} , 宇治原 徹 ^{1,2,5} ○ (P) Abderahmane BOUCETTA ¹ , Kentaro KUTSUKAKE ² , Hiroaki KUDO ³ , Tetsuya	1.名大未来研, 2.名大院工, 3.産総研, 4.理研AIP, 5.4 大VBL 1.物材機構, 2.名大院工, 3.理研, 4.名大IMaSS 1.名大院工, 2.産総研GaN-OIL, 3.理研AIP, 4.名大 VBL, 5.名大未来研 1.Graduate School of Engineering, Nagoya Univ., 2. Center for Advanced Intelligence Project, RIKEN, 3.
4:45 5:00 5:15 5:30 5:45 6:00	9p-W321-6 9p-W321-7 奨 9p-W321-8	休憩/Break 機械学習による結晶成長シミュレーション回帰モデルの 構築とその応用 SiC結晶成長シミュレーションの機械学習 機械学習によって構築した温度分布予測モデルによる熱 伝導率推定 Combination of Simulations and Data Science	 ○宇治原 徹 ^{1,2,3}, 角岡 洋介 ^{2,3}, 朱 燦 ¹, 沓掛 健太朗 ⁴, 鳴海 大翔 ⁵, 田川 美穂 ^{1,2}, 原田 俊太 ^{1,2} ○小山 幸典 ¹, 角岡 洋介 ², 沓掛 健太朗 ³, 宇治原 徹 ⁴ ○樋口 雄介 ¹, 角岡 洋介 ^{1,2}, 沓掛 健太朗 ³, 鳴海 大 翔 ⁴, 原田 俊太 ^{1,5}, 田川 美穂 ^{1,2,5} ○(P)Abderahmane BOUCETTA ¹, Kentaro 	1.名大未来研, 2.名大院工, 3.産総研, 4.理研AIP, 5.大VBL 1.物材機構, 2.名大院工, 3.理研, 4.名大IMaSS 1.名大院工, 2.産総研GaN-OIL, 3.理研AIP, 4.名大 VBL, 5.名大未来研 1.Graduate School of Engineering, Nagoya Univ., 2.

16:45 17:00		X線回折バターンからの結晶構造予測 放射光 X線回折バターンの特徴抽出と空間マッピング		1.理研AIP, 2.明治大, 3.名大未来機構, 4.名大院工, 5.東
			宇佐美 徳隆 ⁴ , 中原 正博 ⁵ , ダムリン マルワン ⁵ , 佐々木 拓生 ⁶ , 藤川 誠司 ⁶ , 高橋 正光 ⁶	
7:15	9p-W321-13	ベイズ最適化を用いた有機薄膜のマイクロビーム GI-WAXSマッピング	〇丸山 伸 \mathbb{G}^1 , 大内 華奈 1 , 小金澤 智之 2 , 松本 祐司 1	1. 東北大院工, 2. 高輝度光科学研セ
17:30	奨 9p-W321-14	機械学習を用いた太陽電池用シリコンのレッドゾーンの 効率的推定	\bigcirc (M1) 穂積 祥太 1 , 沓掛 健太朗 2 , 松井 孝太 2 , 竹内 $-$ 郎 1,2,3	1. 名工大院情報, 2. 理研 AIP, 3. 物材研
		口頭講演 (Oral Presentation) W321会場 (Room W321)		
9:00	奨 10a-W321-1	ベイズ統計を用いた客観的な電気化学インピーダンスス ベクトル解析	○(B)宮崎優¹,安尾信明²,渡邊 佑紀¹,中山亮¹,清水亮太¹³,西尾和記¹,安藤康伸⁴,関嶋政和²⁻⁵,一杉太郎¹	
9:15	10a-W321-2	多孔性ゲート電極と固定相材料膜からなる電界効果トランジスタ型センサアレイおよび機械学習による揮発性バイオマーカーのインテリジェントセンシング	〇吉住 年弘 1 ,合田 達郎 1 ,松元 亮 1 ,鷲尾 隆 2 ,宮原 裕 -1	1. 東京医科歯科大学生材研, 2. 大阪大学産研
9:30	奨 10a-W321-3		○(M1)吉武 卓哉¹,宮本 展寬¹,木戸 祐吾¹.²,佐藤 晋¹.³,神野 雅文¹	1.愛媛大院理工, 2.パール工業, 3.ワイ'ズ
9:45	10a-W321-4	機械学習を活用したフォトニック結晶共振器の2つの モードの同時最適化	○浅野 卓¹, 高橋 和², 野田 進¹	1. 京大院工, 2. 大阪府立大院工
10:00	10a-W321-5	粒子群最適化を用いたSiフォトニック結晶光偏向器の最適化	〇白鳥 遼 ¹ , 阿部 遼太郎 ¹ , 武田 太一 ¹ , 中田 雅也 ¹ , 白 川 真一 ¹ , 斉藤 翔汰 ¹ , 馬場 俊彦 ¹	1.横国大院工
10:15		休憩/Break		
10:30	10a-W321-6	機械学習を用いたフォトニック結晶ナノレーザのQ値向上	〇武田 太一 1 ,阿部 遼太郎 1 ,白鳥 遼 1 ,白川 真一 1 ,斎 藤 翔太 1 ,馬場 俊彦 1	1.横浜国立大学
10:45	奨 10a-W321-7	制約付きバッチベイズ最適化を用いたSiC研削条件の探索		
			治原 徽1,2,3	
11:00 11:15		大気腐食と気象因子との機械学習による解析 ニューラルネットワークを用いた色彩情報センサーの補	〇柳生 進二郎 1 , 松波 成行 1 , 片山 英樹 1 , 篠原 正 1 〇植野 伸哉 1,2 , 酒井 道 2	1. 物材機構 1. (㈱チェッカーズ, 2. 滋賀県立大工
11:30	奨 10a-W321-10	正 当たり確率が変化する多本腕バンディット問題における レーザカオスを用いた強化学習と意思決定	〇小田 章裕 1 ,巳鼻 孝朋 1 ,菅野 円隆 1 ,成瀬 誠 2 ,内田 淳史 1	1.埼玉大, 2.情報通信研究機構
3/11(N		ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
	11a-PA8-1	コンビナトリアル手法によるFe-Co-Cr三元系合金薄膜の 作製と解析	\bigcirc (M1) 西尾 直 ¹ , 山本 雅大 ¹ , 山口 聖矢 ¹ , 角野 知之 ¹ , 大河内 拓雄 ² , 小嗣 真人 ¹	1.東京理大基礎工, 2.JASRI
	11a-PA8-2	磁気ドットのコンビナトリアル合成と解析	〇木村 恵太 1 , 西尾 直 1 , 沖 直人 1 , 山本 雅大 1 , 角野 知 之 1 , 大河内 拓雄 2 , 小嗣 真人 1	1.東理大基礎工, 2.JASRI
	11a-PA8-3	バーシステントホモロジーを用いたネオジム磁石におけ る熱減磁過程の逆解析	○ (B) 寺嶋 悠貴 1 , 山田 拓洋 1 , 大林 $^-$ 平 2 4 , 赤木 和 人 2 3 , 平岡 裕章 2 3 4 5 , 小嗣 真人 1,3	2.AIMR Tohoku Univ. for AIMR Tohoku University, 3.MI2I-NIMS, 4.AIP center RIKEN, 5.Kyoto Univ. for
	11a-PA8-4	パーシステントホモロジーを用いた磁区構造における保		
	11a-PA8-5	磁力支配因子の逆解析 パーシステントホモロジーを用いたスピノーダル分解の		
	44 - 100 6	特徴量抽出	木和人 ^{2,3} ,平岡裕章 ^{3,4,5} ,小嗣真人 ^{1,3}	AIP, 5. 京都大高等研
	11a-PA8-6	Multi Phase Field 法とパーシステントホモロジー解析に よる鉄鋼材料組織の特徴抽出	○冲 直入',山田 拓洋',山中 尧德",大林 一平",平间 裕章 ^{4,3,5} ,赤木 和人 ⁶ ,小嗣 真人 ^{1,5}	1. 東理大基皖工, 2. 農工大機シス, 3. 理研 AIP, 4. 京大高等研, 5. 物材研 Mi2i, 6. 東北大 AIMR
		y ション / Code-sharing Session はプログラム冒頭にございます。		
		はプログラム自興にこさいます。 、12.3 機能材料・萌芽的デバイスのコードシェアセッショ	× / Code-sharing Session of 3.2 & 12.3	
		口頭講演 (Oral Presentation) M136会場 (Room M136)	7 7 3000 31101111g 30331011 31 3.2 Q 12.3	
9:30		液晶リニアフレネルレンズを用いた配光可変デバイス	○樋口隆信 ¹ , 岩脇 圭介 ¹ , 橋川 広和 ¹ , 吉澤 達矢 ¹ , 吉川 高正 ¹ , 三森 歩美 ¹ , 奥山 賢一 ² , 梁瀬 智 ³ , 内田 勝 ³	1. バイオニア, 2. パイオニア OLED ライティングデバイス, 3. 秋田産技センター
9:45	奨 10a-M136-2	円錐状レンズ特性を有する液晶レンズの光学位相差分布 (I)	○菅原 朋樹¹, 河村 希典¹	1. 秋田大学院理工
0:00	奨 10a-M136-3	宙吊り構造を導入した高分子ベース空間光変調器の大変 位・高速動作制御	○英 祐輝¹, 生田 昂¹, 前橋 兼三¹	1.農工大院工
10:15	奨 10a-M136-4	キラル π 共役ポリマーマイクロ球体共振器からの円偏光 発光	○大木 理 ¹ , Kulkarni Chidambar ² , Meskers Stefan C. J ² , Meijer E. W ² , 佐々木 史雄 ³ , Lin Zhan-Hong ⁴ , Huang Jer-Shing ⁴ , 山本 洋平 ¹	1. 筑波大数理物質, 2. アンイントホーフェン工科大, 3. 産総研, 4. ライブニッツ光技術研究所
10:30	10a-M136-5	発光性液晶の相転移挙動と光学特性	○江良 正直¹	1. 佐大理工
10:45 11:00	10a-M136-6	休憩/Break 各種液晶におけるフレクソエレクトリック分極の第2高	〇城田 幸一郎 1 ,荒岡 史人 2 ,山形 豊 1 ,Chen Hui-Yu 3	1.理研光量子, 2.理研創発物性, 3.国立中興大
11:15	10a-M136-7	調波イメージング 液晶/配向ナノファイバー複合素子を用いた NRD ガイ	○森武 洋¹, ブイ バン バオ¹, 井上 曜¹	1.防衛大
11:30	10a-M136-8	ド型テラヘルツ波移相器 高分子分散型液晶を用いた高速スイッチング可能なテラ	○井上 曜¹, 久保 等², 鹿田 建普¹, 森武 洋¹	1. 防衛大学校, 2. 阪大院工
11:45	10a-M136-9	ヘルツ移相器 コレステリック Bragg-Berry 偏向素子のストップバンド	○尾崎 良太郎¹, 橋村 俊祐¹, 弓達 新治¹, 門脇 一則¹,	1.愛媛大院理工, 2. 阪大院工
		の解析 材料と3.14 光制御デバイス・光ファイバーのコードシェフ	吉田 浩之²,尾崎 雅則² ²セッション / Code-sharing Session of 3.5 & 3.14	
3/10(S 17:15		口頭講演 (Oral Presentation) W834 会場 (Room W834) 引き上げ法育成 β -BaB $_2$ O $_4$ 単結晶の 266nm 光レーザ照射		1.オキサイド
17:30 17:45		後の透過率評価 AgGaS₂の高精度セルマイヤー方程式及び熱光学分散式 周期分極反転LaBGeO₅の擬似位相整合特性	典 1 ○梅村 信弘 1 , 岡本 隆幸 2 , 三上 拓哉 2 , 加藤 冽 1,2 中原 康裕 1 , 廣橋 淳二 2 , 古川 保典 2 , 小田 久哉 1 , ○梅	1.千歳科技大理工, 2. 岡本光学加工所 1.千歳科技大理工, 2. 株式会社オキサイド
18:00	奨 10p-W834-18	フェムト秒レーザー直描導波路型PPMgSLT波長変換素	村信弘¹ ○渡邉 俊介¹,廣橋 淳二¹,今井 浩一¹,星 正幸¹,牧尾	1.株式会社オキサイド
18:15	10p-W834-19	子開発 段差低減 GaAs/AlGaAs 周期空間反転導波路における差周		1. 東大工, 2. 東大先端研
		波発生	志1,2	

	[CS.3]	3.11 フォトニック権	構造・現象、13.6 ナノ構造・量子現象・ナノ量子デバイスの	カコードシェアセッション / Code-sharing Session o	f 3.11 & 13.6
1988 1988 Subbarter compaignement for recommendation sections of the Community of Manuma Palament (Manuma Palament) (Manuma Palame				〇太田 竜一 ¹ , 岡本 創 ¹ , 俵 毅彦 ^{1,2} , 後藤 秀樹 ¹ , 山口	1.NTT 物性基礎研, 2.NTT ナノフォトニクスセンタ
	9:15	E 12a-W631-2			1.NTT BRL. 2.NTT NPC. 3.Tokyo Tech
Part	7110	2 124 11001 2	optical cavity resonance	Kuramochi ^{1, 2} , Hisashi Sumikura ^{1, 2} , Akihiko Shinya ^{1, 2} , Masaya Notomi ^{1, 2, 3}	,
May 1	9:30		使った全光スイッチ	佐々木 智², Sergent Sylvain ^{1,2} , 倉持 栄一 ^{1,2} , Zhang Guoqiang ^{1,2} , 新家 昭彦 ^{1,2} , 納富 雅也 ^{1,2}	1.NTT NPC, 2.NTT 物性研
12-0-931 21-0-93	9:45	E 12a-W631-4			1.Kyoto Univ., 2.Sungkyunkwan Univ.
	10:00	12a-W631-5		〇田尻 武義 1 , 車 一宏 1 , 酒井 裕司 2 , 木山 治樹 2 , 大岩 \mathfrak{F}^2 , Ritzmann Julian 3 , Ludwig Arne 3 , Wieck Andreas	
13-19 12-89-18 13-99-18	10:15	奨 12a-W631-6		○ (D) 勝見 亮太 1,3 , 太田 泰友 2 , 長田 有登 2 , 山口 拓人 1 , 田尻 武義 1 , 車 一宏 1 , 角田 雅弘 2 , 岩本 敏 1,2 , 秋	1. 生産研, 2. ナノ量子, 3. 物性研
18.2 W 23.1 28.2 W 23.1 12.2 W 23.1	10:30	12a-W631-7	わせた光子発生素子		1. 横浜国大院理工, 2. 横浜国大理工, 3. 横浜国大院工
#### 2 - 1985	11:00		Spectroscopy of Andreev bound states using microwave resonators	Wang ¹ , Thomas Schapers ³ , Koji Ishibashi ^{1, 2}	RIKEN, 3.Julich, Germany
1.			非線形光学効果との関係		
12-8 WOLT-12	11:30		ルツ波放射の共存ダイナミクス		1. 兵庫県立大院物質理
12-3 12-3	11:45	奨 12a-W631-11		○林 文博 ¹ , 太田 泰友 ² , 荒川 泰彦 ² , 岩本 敏 ^{1.2}	1. 東大生研, 2. 東大ナノ量子機構
19.15 19	12:00 12:15	12a-W631-13	Maxwell-Chern-Simonsゲージ理論におけるCasimir効果	○北川均1	1.無所属
19-19 19				ードシェアセッション / Code-sharing Session of 3.	15 & 3.16
1 1 1 1 1 1 1 1 1 1	9:15	E 10a-W331-1		Yijun Cai¹, Chengying Chen¹, ○YI CHEN¹	1.Xiamen Univ. of technology
19	9:30	E 10a-W331-2			1.Univ. Tokyo
18.0 18.0 19.0	9:45	E 10a-W331-3		-	1.Nat. Chung Cheng Univ.
Tessya Mizamoto	10:00	E 10a-W331-4	Investigation of Si Sidewall Bragg Grating for Hybrid	○ (M2)Moataz Eissa¹, Takuya Mitarai¹, Fumihitio Tachibana¹, Nobuhiko Nishiyama¹.², Shigehisa	1.Titech EEE Dept., 2.Titech FIRST
19.45		奨 E 10a-W331-5	carrier-dispersion effects in silicon		1.Tokyo Tech.
11:15 11 11 12 12 13 12 12 13 13		招 E 10a-W331-6	【Highlight】 [INVITED] A Versatile Silicon Photonics	○ Frederic Boeuf ¹	1.STMicroelectronics, Crolles, France
11-30 11	11:15	E 10a-W331-7	Investigation of Franz-Keldysh effect and carrier depletion		1.Univ. of Tokyo
Page	11:30	E 10a-W331-8	Investigation of impact of InGaAsP quantum well on the modulation efficiency of III-V/Si hybrid MOS optical	○(M2)Dongsheng Lyu¹, Qiang Li¹, Shinichi	1.Univ. Tokyo
degradation of Photoluminescence property using Surface Activated Bonding Session of 61 & 13.3 & 13.5 3/10(Sun.) 13.45 - 17.00 Usijkäg (Oral Presentation) W631 会場 (Room W631) 13:45 10p-W631-1 H(O, 素強誘電体エバッタ海験の成長時の酸素分圧が結晶 次長・結晶構造に与える影響 成長時の酸素分圧が結晶 次長・結晶構造に与える影響 (本気持性におよぼす影響 おいまして) (本質 特別 高田 賢志', 相反 男神', 青田 武・ 「大阪 大田	11:45		for III-V/Si chip-on-wafer by plasma activated bonding	Nobuhiko Nishiyama ^{1, 2} , Hideki Yagi ³ , Tomohiro Amemiya ^{1, 2} , Shigehisa Arai ^{1, 2}	1.Tokyo Tech, 2.IIR, 3.SEI
[CS.5] 6.1 漢語零件薄談、13.3 美譜潔技術、13.5 デバイス/配製・技術技術のコードシェアセッション / Code-sharing Session of 6.1 & 13.3 & 13.5 3/10(Sum.) 13x45 - 17.00 □ □頭霧流 (Oral Presentation) W631会場(Room W631) 10p-W631-1	12:00	E 10a-W331-10	degradation of Photoluminescence property using Surface	Amemiya ^{1, 2} , Nobuhiko Nishiyama ^{1, 2} , Shigehisa	1.Tokyo Tech, 2.FIRST
19p-W631-2 HfO_基強誘電体スパッタ海膜の成長時の酸素分圧が結晶 ○高田 賢志', 佐保 勇樹', 桐谷 万輔', 吉村 武', 芦田 1、阪府大工			13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコー		& 13.3 & 13.5
14:00 10p-W631-2 HfO,系強誘電体スパッタ薄膜の成長時の酸素分圧が結晶 一体展 列樹 「高田 賢志 「桐谷 万輔 「吉村 武 「芦田 」、阪府大工	13:45		$\mathrm{HfO_2}$ 基強誘電体スパッタ薄膜の成長時の酸素分圧が結晶		1. 阪府大工
14:15	14:00	10p-W631-2	$\mathrm{HfO_2}$ 系強誘電体スパッタ薄膜の成長時の酸素分圧が結晶	〇佐保 勇樹 1 , 高田 賢志 1 , 桐谷 乃輔 1 , 吉村 武 1 , 芦田	1.阪府大工
10p-W631-4 HfO ₂ 薄膜の強誘電相形成におけるドーバントの役割 ○森優樹 ¹ 、西村 知紀 ¹ 、矢嶋 赳彬 ¹ 、右田 真司 ² 、鳥海 1.東大院工、2.産総研 明 ¹ 1.1年大平 1.東大マデ 10p-W631-6 常電時の斜方晶・単斜晶 HfO ₂ の安定性:第一原理計算による検討 0白 悠久 ¹ 、長澤 立樹 ¹ 、洗平 昌晃 ² 、白石 賢二 ² 、中 1.千葉大里、2.名大未来研 1.年美大里、2.名大未来研 1.年美大工作、2.全体制 1.年美大工作、2.全体制 1.年美大工作、2.全体制 1.年美大工作、2.全体制 1.東美大工 1.東美大工 1.東美大工 1.東美大工 1.東美工 1.東美工 1.東美工 1.東美工 1.東美工 1.東美工 1.東美工 1.東美工 1.東美工 1.東大生研 1.東大能加 1.東大生研 1.東本・2.東大院工 1.年総研、2.東大院工 1.年総研、2.東大院工 1.年総研、2.東大院工 1.年後研、2.東大院工 1.年後研、2.東大院工 1.年後研、2.東大	14:15	E 10p-W631-3	The influence of sputtering condition for ferroelectric HfO_2 directly deposited on $Si(100)$ by RF magnetron	○MinGee Kim¹, Masakazu Kataoka¹, Rengie Mark	1.Tokyo Tech.
14:45 10p-W631-5 酸化熱処理によるHfO₂強誘電相消失のメカニズム ○矢嶋 赳彬¹,森 優樹¹,西村 知紀¹,鳥海 明¹ 1.東大マテ 15:00 10p-W631-6 帯電時の斜方晶・単斜晶 HfO₂の安定性:第一原理計算 (自石 悠人¹,長澤 立樹¹,洗平 昌晃²,白石 賢二²,中 による検討 (加隆史¹ 15:15 休憩/Break 15:30 招 10p-W631-7 「請演奨励賞受賞記念講演」 ○山口まりな¹,藤井 章輔¹,株柳 翔一¹,上牟田 雄 HfO₂強誘電体トンネル接合メモリのサイクル不良メカニ ズムの解明 「カp-W631-8 300° C低温形成した Hf₂Zr₁ xO₂薄膜の強誘電性 ○女屋 崇 1.2.3、生田目 俊秀²,澤本 直美¹,大井 暁彦², 1.明大,2.物材機構,3.学振特別研究員 DC 池田 直樹²,長田 貴弘²,小椋 厚志¹ (加身・W631-9 反強誘電体トランジスタにおいて観察される急峻スロープ の起源 「カp-W631-11 Polarization Switching as the Cause of Steep Subthreshold ○(D)Chengji Jin¹, Takuya Saraya¹, Toshiro Slope in Ferroelectric FETs (太田 裕之¹, 漁主 別p-W631-12 TCAD による強誘電体負性容量分極のコヒーレンシーと ○太田 裕之¹, 池上 努¹, 福田 浩一¹, 服部 淳一¹, 浅井 1.産総研,2.東大	14:30	10p-W631-4			1.東大院工, 2.産総研
15:15 休憩/Break 19-W631-7	14:45 15:00		帯電時の斜方晶・単斜晶 $\mathrm{HfO_2}$ の安定性:第一原理計算	〇矢嶋 赳彬 1 , 森 優樹 1 , 西村 知紀 1 , 鳥海 明 1 〇白石 悠人 1 , 長澤 立樹 1 , 洗平 昌晃 2 , 白石 賢二 2 , 中	
15:45 10p-W631-8 300° C低温形成した Hf,Zr _{1-x} O ₂ 薄膜の強誘電性 ○女屋 崇 ^{1,2,3} , 生田目 後秀 ² , 澤本 直美 ¹ , 大井 暁彦 ² , 1.明大, 2.物材機構, 3.学振特別研究員 DC 池田 直樹 ² , 長田 貴弘 ² , 小椋 厚志 ¹ ○(M2)多川 友作 ¹ , 更屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1.東大生研 治 ¹ 1.東大生研 治 ¹ 1.東大・野大学 性 1.東大・野大学 性 1.東大・野大学 性 1.東大・野大学 性 1.産総研, 2.東大院工 の起源 2.東大院工 ○ (M2)多川 友作 ¹ , 更屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1. 東大・野大学 は 1. 東大・野大学 に 一 (M2)多川 友作 ¹ , 東屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1. 東大・野大学 に 一 (M2)多川 友作 ¹ , 東屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1.東大・野大学 に 一 (M2)多川 友作 ¹ , 東屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1.東大・野大学 に 一 (M2)多川 友作 ¹ , 東屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1.東大・野大学 に 一 (M2)多川 友作 ¹ , 東屋 拓哉 ¹ , 平本 俊郎 ¹ , 小林正 力・ 1.東大・野大学 に 一 (M2)多川 友作 ¹ , 東京 大学 に 一 (M2)多川 友作 ¹ , 東京 大学 に 一 (M2)多川 友作 ¹ , 東京 大学 に 一 (M2)多川 大学 (M2) 本の表が に 一 (M2)多川 大学 (M2) 本の表が に 一 (M2) 本の表が に (M2) 本の表が に 一 (M2) 本の表が に 一 (M2) 本の表が に 一 (M2) 本の表が に 一 (M2) 本の表が	15:15 15:30	招 10p-W631-7	休憩/Break 「講演奨励賞受賞記念講演」 HfO ₂ 強誘電体トンネル接合メモリのサイクル不良メカニ	〇山口 まりな ¹ , 藤井 章輔 ¹ , 株柳 翔一 ¹ , 上牟田 雄 一 ¹ , 井野 恒洋 ¹ , 中崎 靖 ¹ , 高石 理一郎 ¹ , 市原 玲華 ¹ ,	1.東芝メモリ
16:00 契 10p-W631-9 反強誘電体ZrO₂を有するMIS構造のユニポーラスイッ ○(M2)多川 友作¹, 更屋 拓哉¹, 平本 俊郎¹, 小林 正 キング特性 治¹ 16:15 10p-W631-10 強誘電体トランジスタにおいて観察される急峻スロープ ○右田 真司¹, 太田 裕之¹, 鳥海 明² 1.産総研, 2.東大院工の起源 16:30 契 E 10p-W631-11 Polarization Switching as the Cause of Steep Subthreshold ○(D)Chengji Jin¹, Takuya Saraya¹, Toshiro Slope in Ferroelectric FETs Hiramoto¹, Masaharu Kobayashi¹ 16:45 10p-W631-12 TCADによる強誘電体負性容量分極のコヒーレンシーと ○太田 裕之¹, 池上 努¹, 福田 浩一¹, 服部 淳一¹, 浅井 1.産総研, 2.東大	15:45	10p-W631-8		〇女屋 崇 1,2,3 , 生田目 俊秀 2 , 澤本 直美 1 , 大井 暁彦 2 ,	1. 明大, 2. 物材機構, 3. 学振特別研究員 DC
16:15	16:00	奨 10p-W631-9		\bigcirc (M2) 多川 友作 1 , 更屋 拓哉 1 , 平本 俊郎 1 , 小林 正	1. 東大生研
### 16:30 類E 10p-W631-11 Polarization Switching as the Cause of Steep Subthreshold ○(D)Chengji Jin¹, Takuya Saraya¹, Toshiro 1.IIS, Univ. of Tokyo Hiramoto¹, Masaharu Kobayashi¹ 16:45 10p-W631-12 TCADによる強誘電体負性容量分極のコヒーレンシーと ○太田裕之¹,池上 努¹,福田 浩一¹,服部 淳一¹,浅井 1.産総研, 2.東大	16:15	10p-W631-10	強誘電体トランジスタにおいて観察される急峻スロープ		1. 産総研, 2. 東大院工
$16:45$ 10 p-W631-12 TCADによる強誘電体負性容量分極のコヒーレンシーと \bigcirc 太田 裕之 1 , 池上 努 1 , 福田 浩一 1 , 服部 淳一 1 , 浅井 1 . 産総研, 2 . 東大	16:30	奨 E 10p-W631-11	Polarization Switching as the Cause of Steep Subthreshold		1.IIS, Univ. of Tokyo
	16:45	10p-W631-12	TCAD による強誘電体負性容量分極のコヒーレンシーと	〇太田 裕之 1 , 池上 努 1 , 福田 浩一 1 , 服部 淳一 1 , 浅井	1. 産総研, 2. 東大

[CS.6]	6.5 表面物理・真空	、7.6 原子・分子線およびビーム関連新技術のコードシェ	アセッション / Code-sharing Session of 6.5 & 7.6	
		口頭講演 (Oral Presentation) S224会場 (Room S224)		
10:30	11a-S224-1	スピン偏極イオン散乱分光法による Ge/Fe(100) 界面の 解析	○鈴木 拓¹	1.物材機構
10:45	11a-S224-2	加熱処理による SrTiO ₃ (001) 表面の電子状態変化	○光原 圭¹, 八木 健¹, 柚山 大地¹, 滝沢 優¹	1.立命館大理工
11:00	11a-S224-3	リアルタイム光電子分光による水吸着二酸化チタン表面	高柳 周平 1 , ○大野 真也 1 , 勝部 大樹 3 , 尾島 章輝 3 , 前田 元康 3 , 吉田 光 2 , 西 静佳 2 . 阿部 真之 3	1.横国大院工, 2.原子力機構, 3.阪大基礎工
11:15	11a-S224-4	の評価 グラフェンを利用した絶縁体試料のX線吸収分光と光電		1. 兵庫県立大高度研
11.15	114 3224 4	子分光	OPPIN CI , TILLI ALL	1. 六件小工八间区则
11:30	11a-S224-5	高エネルギー分解能REELS装置を用いた可視から超軟X		1.物材機構, 2.筑波大
11:45	11a-S224-6	線帯の酸化鉄の誘電関数評価 酸素分子解離吸着の立体化学における合金効果: Cu(110)	樹 ¹ ,柳原英人 ²	1 阪土田 9 瓦乙九缕楼 9 柳村缕楼 4 阪土坊卧鎮缕楼
11:45	11a-3224-6	販系ガナ肿離吸有の立体化子におりる音並効未: Cu(110) vs Cu₂Au(110)	○ ○	1. 放入垤, 2. 原丁刀骸件, 3. 初竹骸件, 4. 放入放射棘骸件
		構造計測、9.5 新機能材料・新物性のコードシェアセッシ	$_{ m 3}$ $ imes$ / Code-sharing Session of 7.4 & 9.5	
		口頭講演 (Oral Presentation) S423 会場 (Room S423)	O LA A ROLL I	e oh I Bleve
9:00	10a-S423-1	ラボラトリー軟 X 線 $XAFS$ による MgB_2 薄膜中の Mg の化学状態分析	〇相倉 隆之	1.宇大院工
9:15	10a-S423-2	Auアレイ上増大場のRCWAによるシミュレーション	○鈴木 裕史¹, 工藤 蓮太郎²	1. 弘前大院, 2. 弘前大
9:30	奨 10a-S423-3	Ag形ゼオライトのPLにおけるクラスター崩壊時間	○岡良樹¹,山内一真²,鈴木裕史²,米谷陸杜²,宮永	1. 弘前大, 2. 弘前大院
0.45	奨 10a-S423-4	A_IN によるとしの A_ クラック - 原稿 APに れけてるの	崇史 2 ○ (M1) 山内 一真 1 , 鈴木 裕史 1 , 米谷 陸人 1 , 宮永 崇	1 对益于险期下
9:45	夹 10a-3423-4	Ag形ゼオライトのAgクラスター崩壊過程におけるその 場PL・XAFS測定	○ (MI) 田內 一具,虾木 铅定,木谷 陸八,呂水 宗 史 ¹	1. 为用人阮庄工
10:00	奨 10a-S423-5	X線自由電子レーザーによる時間分解共鳴磁気光学カー	〇山本 航平 ^{1,2} , El Moussaoui Souliman ¹ , 平田 靖	1. 東大物性研, 2. 東大理, 3. JASRI, 4. 理研, 5. 東北大金研
		効果測定でみる Co/Pt 薄膜の磁化ダイナミクス	透 $^{1.2}$, 山本 $^{2.2}$, 久保田 雄也 $^{3.4}$, 大和田 成起 $^{3.4}$, 矢橋 牧名 $^{3.4}$, 松田 嚴 $^{1.2}$, 関 剛斎 5 , 高梨 弘毅 5 , 和達 大 $^{41.2}$	
10:15	10a-S423-6	コバルトフタロシアニンシートの合成と構造	〇大倉 秀亮 1 , 萩原 政幸 2 , 木田 孝則 2 , 澤田 祐也 2 , 鎌田 憲彦 1 , 本多 善太郎 1	1.埼玉大院理工, 2.阪大先端強磁場
10:30 10:45	10a-S423-7	休憩/Break リチウムを挿入した多孔質鉄化合物の磁性	○藤田 恵理子¹, 萩原 政幸², 木田 孝則², 澤田 祐也²,	1. 埼玉大院理工. 2. 阪大先端強磁場
		TO THE PARTY OF TH	鎌田 憲彦 1, 本多 善太郎 1	
11:00 11:15	10a-S423-8 10a-S423-9	金属ナノ構造担持プロトン伝導体の光応答 酸化物粒子とEDTA錯体水溶液スラリー由来の酸化物納 豆型構造体の形態	○福島 知宏¹, 村越 敬¹ ○齊藤 篤弘¹, 中村 淳²¹, 小松 啓志¹, 齋藤 秀俊¹	1. 北大院理 1. 長岡技科大, 2. 中部キレスト
11:30	E 10a-S423-10	立型構造体の形態 Characteristic Properties of Macrocyclic Functional	○ (DC)Brian Adala Omondi¹, Hirotaka Okabe¹,	1.Kyushu Univ.
		Hydrogels for Selective Heavy Metal Adsorption	Yoshiki Hidaka ¹ , Kazuhiro Hara ¹	
11:45	奨 E 10a-S423-11	X-ray Standing Wave Imaging and Its Application in Langmuir-Blodgett Films	○ (D)Wenyang Zhao ^{1, 2} , Kenji Sakurai ^{2, 1}	1.Tsukuba Univ., 2.NIMS
3/10(Sun.) 13:30 - 17:15	口頭講演 (Oral Presentation) S423 会場 (Room S423)		
13:30		「講演奨励賞受賞記念講演」 第一原理計算と遺伝的アルゴリズムによる有機 - 無機ハ イブリッド材料の状態図予測	〇横山 智康 ¹ , 大内 暁 ¹ , 井垣 恵美子 ¹ , 笹川 崇男 ²	1.パナソニック(株), 2.東工大
13:45	10p-S423-2	第一原理計算による合金 Ge-Sb-Te 相変化メモリの解析	○野原 弘晶¹, 白川 裕規¹, 洗平 昌晃¹.², 白石 賢二¹.²	1. 名大院工, 2. 名大未来研
14:00		XANAM で観測した Ge表面上 X線誘起力場変化の解析	〇鈴木 秀士 1 ,向井 慎吾 2 ,田 旺帝 3 ,野村 昌治 4 ,朝倉 清高 2	
14:15	10p-S423-4	STEMモアレフリンジ法によるInP/InGaAs界面歪み分布計測	○陳 桐民¹, 大島 義文¹, 赤堀 誠志¹	1.北陸先端大
14:30	10p-S423-5	可搬型中性子反射率イメージャーの開発	○桜井 健次¹, 水沢 まり ².¹, 岩元 めぐみ ¹	1.物材機構, 2.CROSS
14:45 15:00	10n \$422 6	休憩/Break 逆光電子ホログラフィーを用いた強誘電体酸窒化物の局	Out 大 松 士 1 大 村 耕 坳 1 Artoni Ang 1 松 下 知 炊 2	1 夕十尺工要十分 9 直細度业科学研究センター 9 亩
13.00	10p-3423-0	所構造解析	廣瀬 $\dot{\mathbf{f}}^3$, 林 好 \mathbf{f}^{-1}	京大学
15:15	10p-S423-7	X線光電子分光における時空間計測・解析手法の開発	〇豊田 智史 1 ,梶野 雄太 2 ,山本 知樹 2 ,首藤 大器 3 ,野 瀬 惣市 3 ,吉村 真史 3 ,住田 弘祐 4 ,三根生 晋 4 ,町田 雅	
15:30	缀 10n-S422-8	室温ハーフメタル Co ₂ TiSn の単結晶育成と物性評価	武 ⁵ , 吉越 章隆 ⁶ , 横山 和司 ² ○小柳 海人 ¹ , 村瀬 正恭 ¹ , 笹川 崇男 ¹	1.東工大フロンティア研
15:45		強いスピン軌道相互作用を持つミスフィット層状Bi化合		1.東工大フロンティア研
		物の単結晶育成と超伝導特性評価		
16:00	10. 8422 10	休憩/Break 超伝道体V O Biにおける元素器換効用	去明 共丘¹ ○河底 禾去¹ 払未 炔斗¹ 岩井 ㎞ਆ1.2	1 市业士珊 2 市业士WDI AIMD & C D
16:15	10p-5423-10	超伝導体Y ₂ O ₂ Biにおける元素置換効果	寺門 恭兵¹, ○河底 秀幸¹, 松本 倖汰¹, 福村 知昭¹.²	1. 東北大理, 2. 東北大WPI-AIMR & Core Research Cluster
16:30	奨 10p-S423-11	過剰酸素導入による層状オキシニクタイド化合物	○松本 倖汰¹, 河底 秀幸¹, 福村 知昭¹.²	1.東北大理, 2.東北大WPI-AIMR & Core Research
16:45	奨 10p-S423-12	La ₂ O ₂ Biの高移動度 p型伝導 2種類の原子を加えた Honeycomb ナノリボンにおける 2	○伊藤 蓮¹, 近藤 憲治¹	Cluster 1.北大電子研
	2 X	次元量子スピンホール相の研究		
17:00	10p-S423-13	スピン液体候補物質 OsCl ₃ の合成と粉末X線回折プロ	○高瀬浩一¹, 出村郷志¹, 中川広野², 山崎 篤志², 森	1.日大理工, 2.甲南大理工, 3.広大院理
[CS.8]	9.4 熱雷変換 12.3	ファイルのその場観察 機能材料・萌芽的デバイス、合同セッションM「フォノン	吉 千佳子³, 黒岩 芳弘³ / エンジニアリング のコードシェアセッション / Coo	de-sharing Session of 9.4 & 12.3 & Joint Session M
		口頭講演 (Oral Presentation) W351会場 (Room W351)		20 31141111g 30331011 01 3.4 & 12.3 & 30111 30331011 W
13:45		- 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M 「フォノンエンジニアリング」のコードシェアセッション		1.北陸先端大
		招待講演」 ナノ構造体におけるフォノン緩和過程と微小熱電発電デ		
14:30	10n-W251-2	バイスへの応用 Si置換した Fe ₂ VAlエピタキシャル薄膜の熱伝導率	○ (D) 工藤 康平¹, 山田 晋也¹², 近田 尋一朗¹, 嶋貫	1 阪大其磯丁 2 阪大其磯丁 CSRN 2 タエナ
14.50	•	•	雄太 1 , 石部 貴史 1 , 阿保 智 1 , 宮崎 秀俊 3 , 西野 洋 $^{-3}$, 中村 芳明 1 , 浜屋 宏平 $^{1.2}$	4.64八分灰土, 4.64八分灰土 VJNN, J. 有上八
14:45	10p-W351-3	BドープAl誘起層交換によるp型Si _{1-x} Ge _x 熱電薄膜の性能		1. 筑波大, 2.JST さきがけ
15:00		向上 休憩/Break		
15:15	招 10p-W351-4	「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M		1.名大未来研, 2.U-MAP
		「フォノンエンジニアリング」のコードシェアセッション 招待講演」		
		高熱伝導樹脂を実現する AIN ウィスカーフィラーの開発 とベンチャー		
16:00	10p-W351-5	ナノ構造化によるシリコン薄膜のZT増強と平面型熱電	○柳澤 亮人¹, Ruther Patrick², Paul Oliver², 野村 政	1. 東大生研, 2. フライブルク大, 3.JST さきがけ
		デバイス開発	宏1.3	

【CS.9】10.1 新物質・新機能創成(作製・評価技術), 10.2 スピン基盤技術・萌芽的デバイス技術, 10.3 スピンデバイス・磁気メモリ・ストレージ技術, 10.4 半導体スピントロニクス・超伝導・強相関のコードシェアセッション / Code-sharing Session of 10.1, 10.2, 10.3 & 10.4 奨 10p-W351-6 横型 Siナノワイヤ熱電変換デバイスにおける SiO_2 絶縁膜 \bigcirc 富田 基裕 1 、松川 貴 2 、松木 武雄 $^{1.2}$ 、渡邉 孝信 1 1.早大理工, 2.産総研 /Si基板の最適厚さ設計 16:30 休憩/Break 招 10p-W351-7 「9.4 熱電変換, 12.3 機能材料・萌芽的デバイス, 合同M ○竹延 大志¹ 16:45 1. 名大工 「フォノンエンジニアリング」のコードシェアセッション 招待講演| Van der Waals材料における熱電特性 有機フォトクロミック分子を用いた高機能太陽光熱貯蓄 ○朝戸 良輔^{1,2}, Jan Patrick D C Calupitan³, 中嶋 琢 17:30 10p-W351-8 1. 奈良先端大, 2. Toulouse Univ., 3. Paris-Saclay Univ., 也1, Jyh-Chiang Jiang4, 河合壯 燃料の検討 4.台湾科技大 10p-W351-9 セルロースナノペーパーにおける熱拡散性の応力応答 ○上谷 幸治郎1, 井櫻 勝悟2, 古賀 大尚1, 能木 雅也1 1. 阪大産研, 2. 阪大院工 17:45 3/11(Mon.) 9:00 - 12:00 口頭講演 (Oral Presentation) M101会場 (Room M101) E 11a-M101-1 Resistive detection of the Néel temperature of Cr₂O₃ thin ○ (M2)Tatsuya Iino¹, Takahiro Moriyama¹, Hiroyuki 1.ICR, Kyoto Univ., 2.Osaka Univ. films Iwaki1, Hikaru Aono2, Yu Shiratsuchi2, Teruo Ono1 Lukasz Pawliszak^{1, 2}, O Seiji Mitani^{2, 3}, Shinji 9:15 E 11a-M101-2 Spin Hall magnetoresistance in amorphous tungsten/iron-1. Warsaw Univ. Tech., 2. NIMS, 3. Univ. Tsukuba, 4. Univ. Isogami², Masamitsu Hayashi², 4, Tadeusz Kulik silicon alloy bilayers E 11a-M101-3 Spin torque induced by orbital conversion at Cu/Al₂O₃ ○ Junyeon Kim¹, Dongwook Go², Hanshen Tsai³, 1.RIKEN-CEMS, 2.Postech, 3.ISSP, Univ. Tokyo 9:30 Kouta Kondou1, Hvun-Woo Lee2, YoshiChika Otani^{1, 3} O Masayuki Matsushima¹, Yuichiro Ando¹, Ryo 奨 E 11a-M101-4 Spin-charge conversion in highly oriented bismuth using 1. Kyoto Univ., 2. The Univ. of Tokyo, 3. Osaka Univ. 9:45 Ohshima¹, Sergey Dushenko¹, Ei Shigematsu¹, spin-torque ferromagnetic resonance Takeshi Kawabe^{2, 3}, Teruya Shinjo¹, Shinji Miwa^{2, 3}, Masashi Shiraishi1 11a-M101-5 高周波誘導起電力測定による半導体/磁性体界面におけ 10:00 ○重松 英¹, Lukas Liensberger², Mathias Weiler², 大 1. 京大院工, 2. Walther Meissner Institute るスピン流電流変換物性測定 島 諒¹, 安藤 裕一郎¹, 新庄 輝也¹, Hans Huebl², 白石 誠司 10:15 奨E 11a-M101-6 An investigation of gate-induced modulation of the O Shinichiro Yoshitake1, Masaya Hokazono1, Teruya 1.Kyoto Univ. inverse spin Hall effect in ultrathin Cu. Shinjo¹, Ryo Oshima¹, Yuichiro Ando¹, Masashi O Daisei Araki1, Anh Le Duc1,2, Shingo Kaneta1, 1.Univ. Tokyo EEIS, 2.Univ. Tokyo IEI, 3.CSRN 10:30 奨 E 11a-M101-7 Efficient spin-to-charge current conversion in a Masaaki Tanaka^{1, 3}, Ohya Shinobu^{1, 2, 3} La_{0.67}Sr_{0.33}MnO₃/LaAlO₃/SrTiO₃ epitaxial single-crystal heterostructure 10:45 休憩/Break E 11a-M101-8 Determination of spin-orbit torque by spin-torque Atsushi Okada¹, O (D) Yutaro Takeuchi¹, Kaito 1.Laboratory for Nanoelectronics and Spintronics, RIEC, 11:00 ferromagnetic resonance free from spin-pumping Furuya1, Chaoliang Zhang1, 2, 3, 4, Hideo Sato1, 3, 4, 5, 6 Tohoku Univ., 2.FRIS, Tohoku Univ., 3.CSIS, Tohoku Shunsuke Fukami^{1, 3, 4, 5, 6, 7}, Hideo Ohno^{1, 3, 4, 5, 6, 7} Univ., 4.CIES, Tohoku Univ., 5.CSRN, Tohoku Univ., 6.CSIS (CRC), Tohoku Univ., 7.WPI-AIMR, Tohoku 11:15 獎E 11a-M101-9 Observation of memristive domain patterns during ○ (P)Aleksandr Kurenkov^{1, 4, 5}, Manuel 1.RIEC, Tohoku Univ., 2.ETH Zurich, 3.Diamond Light spin-orbit torque switching in antiferromagnet/ Baumgartner², Giacomo Sala², Gunasheel Source, 4.CSIS, Tohoku Univ., 5.CSRN, Tohoku Univ., Krishnaswamy², Francesco Maccherozzi³, Shunsuke 6.CIES, Tohoku Univ., 7.WPI-AIMR, TU ferromagnet heterostructures Fukami^{1, 4, 5, 6, 7}, Pietro Gambardella², Hideo Ohno^{1, 4, 5, 6, 7} 11:30 獎E 11a-M101-10 Temperature dependence of spin-orbit torques in an ○ (M2)Ryuichi Itoh¹, Yutaro Takeuchi¹, Samik 1.RIEC, Tohoku Univ., 2.CSIS(Core Research Cluster), DuttaGupta^{1, 2, 3, 4}, Shunsuke Fukami^{1, 2, 3, 4, 5, 6}, Hideo Ohno^{1, 2, 3, 4, 5, 6} antiferromagnet/ferromagnet heterostructure Tohoku Univ., 3.CSRN, Tohoku Univ., 4.CSIS, Tohoku Univ., 5.CIES, Tohoku Univ., 6.WPI-AIMR, Tohoku Univ. ○Zhendong Chi^{1, 2}, YongChang Lau^{1, 2}, Masamitsu 11:45 E 11a-M101-11 Giant spin-orbit torque and magnetothermal effects in 1. The Univ. of Tokyo, 2. NIMS sputtered BiSb/CoFeB bilayers 3/11(Mon.) 13:15 - 15:00 口頭講演 (Oral Presentation) M101会場 (Room M101) 13:15 招 E 11p-M101-1 [Young Scientist Presentation Award Speech] O Yuki Hibino1, Tomohiro Koyama1, Daichi Chiba1 1.Univ. of Tokyo Observation of unconventional spin-orbit torque in Pv/ Pt/Co tri-layer structure 13:30 E 11p-M101-2 Spin-orbit torque strength and efficiency in a ○ (D)Miao JIANG¹, Hirokatsu Asahara¹, Shoichi 1.Univ. of Tokyo, 2.CSRN, 3.Inst. of Engineering perpendicularly-magnetized ferromagnetic semiconductor Sato¹, Toshiki Kanaki¹, Hiroki Yamasaki¹, Shinobu GaMnAs single thin film Ohya^{1, 2, 3}, Masaaki Tanaka^{1, 2} O Shutaro Karube^{1, 2}, Daichi Sugawara¹, Makoto 13:45 E 11p-M101-3 Spin-orbit torque in ionic crystal ReO 1. Tohoku Univ. Eng., 2. Tohoku Univ. CSRN, 3. Tohoku Kohda^{1, 2, 3}, Junsaku Nitta^{1, 2, 3} Univ. CSIS 11p-M101-4 64素子スピン流型磁気メモリアレイにおけるWrite 〇石谷 優剛 1 , 塩川 陽平 1 , 小村 英嗣 1 , 積田 淳史 1 , 須 1.TDK(株)14:00 Endurance 試験 田慶太1,柿沼裕二1,佐々木智生 Material dependence of the effect of SOT-MRAM read ○ (M1)Keisuke Tabata1, Takayuki Kawahara1 14:15 E 11p-M101-5 1. Tokyo University of science disturb reduction method O Musashi Shimazaki1, Tatsuro Ohmasa1, Tomoya 14:30 奨E 11p-M101-6 Study on current-induced domain-wall motions of 1. Nagoya Inst. Tech., 2. Kansai Univ., 3. Toyota Tech.

Sakata¹, Masaaki Tanaka¹, Syuta Honda², Hiroyuki

○ Chaozhe Liu¹, Yuma Jibiki¹, Soma Miki¹, Jaehun

Cho³, Eiichi Tamura¹, Minori Goto^{1, 2}, Hikaru Nomura^{1, 2}, Yoshishige Suzuki^{1, 2}, Ryoichi Nakatani¹

Awano3, Ko Mibu1

Inst.

1.Osaka Univ., 2.CSRN-Osaka, 3.KRISS

antiferromagnetically coupled layered magnetic wires with

Static interaction of Skyrmions in magnetic thin-film circuits patterned by anisotropy undulations

various interlayer thickness

14:45 奨E 11p-M101-7