AN INTRODUCTION TO GOOGLE'S S2 GEOMETRY LIBRARY

HAVING FUN WITH GEOGRAPHIC DATA IN YOUR SOFTWARE

Tomasz Gramza

mail: to@g.pl

twitter: @tomaszgramza linkedin: @tomaszgramza

github: @to-masz

DANE GEOPRZESTRZENNE

DANE GEOPRZESTRZENNE

ODWZOROWANIE KARTOGRAFICZNE

ODWZOROWANIE KARTOGRAFICZNE

Playing with web app

https://github.com/to-masz/s2examples

PODEJŚCIE KLASYCZNE

```
CREATE TABLE `geospatial`.`example` (
  `id` INT NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(45) NOT NULL,
  `lat` DECIMAL(10,8) NOT NULL,
  `lng` DECIMAL(11,8) NOT NULL,
  PRIMARY KEY (`id`));
```

"good old days"

Geo-point datatype

```
CREATE TABLE `geospatial`.`example` (
  `id` INT NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(45) NOT NULL,
  `point` POINT() NOT NULL,
  PRIMARY KEY (`id`),
  SPATIAL INDEX `geoindex` (`point` ASC));
```

OpenGIS

ALGORITHMS

- ▶ R-trees
- ► K-trees
- ▶ K-D-B trees

DAMN COOL ALGORITHMS

QuadtreesGeohashesS2

GEOHASHES BASE-32

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111
0	1	2	3	4	5	6	7	8	9	b	С	d	е	f	g

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
10000	10001	10010	10011	10100	10101	10110	10111	11000	11001	11010	11011	11100	11101	11110	11111
h	j	k	m	n	р	q	r	S	t	u	V	W	X	у	Z

01101 1????

--

23, -23

ST_GeoHash(180,0,10)

S2 GOALS

- Hierarchical decomposition of the sphere into "cells"
- Ability to approximate regions using cells
- Compact representation of each cell
- Fast methods for querying with arbitrary regions
- All cells at a given level should have similar area

S2

1.
$$p=(lat, lng) \Rightarrow (x, y, z)$$

2.
$$(x,y,z) \Rightarrow (face,u,v)$$

S2

1.
$$p=(lat, lng) \Rightarrow (x, y, z)$$

2.
$$(x,y,z) => (face,u,v)$$

3. $(face,u,v) \Rightarrow (face,s,t)$

The Hilbert Curve

The Z-Order Curve

bit-player.org/extras/hilbert/hilbert-mapping.html

S2 CELL HIERARCHY

S2 CELL HIERARCHY

Level	Min Area	Max Area					
0	85,011,012 km ²	85,011,012 km ²					
1	21,252,753 km ²	21,252,753 km ²					
12	3.31 km ²	6.38 km ²					
30	0.48 cm ²	0.93 cm ²					

S2 LIBRARY

composer require NicklasWallgren/s2-geometry-library-php

port oryginalnej biblioteki c++ nadal wymaga drobnych poprawek ;)

HAVING FUN WITH

https://github.com/to-masz/s2examples

S2 IN MYSQL

where[] = '((s2 & -:parentmask) | :parentmask = :id)';

\$mask = S2CellId::lowestOnBitForLevel(\$level);

DZIEKI

REFERENCES

Hilbert Curve

- http://bit-player.org/extras/hilbert/hilbert-mapping.html
- https://xkcd.com/195/
- http://datagenetics.com/blog/march22013/index.html

S2

- ► http://blog.christianperone.com/2015/08/googles-s2-geometry-on-the-sphere-cells-and-hilbert-curve/
- ► https://docs.google.com/presentation/d/1HI4KapfAENAOf4gv-pSngKwvSjwNVHRPZTTDzXXn6Q/view
- https://medium.com/sidewalk-talk/s2-cells-and-space-filling-curves-keys-to-building-better-digital-map-tools-for-cities-a312aa5e2f59
- https://github.com/sidewalklabs/s2sphere/blob/6ca8754d2473081e869935f4596aeb8bc3958ba6/ s2sphere/sphere.py

Others

- http://opensourceconnections.com/blog/2014/04/11/indexing-polygons-in-lucene-with-accuracy/
- https://en.wikipedia.org/wiki/Geohash
- https://en.wikipedia.org/wiki/Z-order curve
- http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
- https://en.wikipedia.org/wiki/K-D-B-tree
- https://en.wikipedia.org/wiki/Trie
- https://dev.mysql.com/doc/refman/5.7/en/spatial-extensions.html