

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

January 2020

Version: 1.0 Final

MARK SCHEME -INTERNATIONAL A-LEVEL FURTHER MATHEMATICS - FM04 - JANUARY 2020

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

−x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer		Marks	Comments
1	TT median 0 TH or HT median 5 TT median 10 $ \frac{m}{P(M=m)} \frac{1}{4} \frac{1}{2} \frac{1}{4} $		M1 m1 A1	Identify at least one possible combination and median Identify all possible combinations and medians Accept in function form
		Total	3	

Q	Answer	Marks	Comments
2(a)	Relative Efficiency = $\frac{\frac{100}{\sigma^2}}{\frac{10}{\sigma^2}}$	М1	Uses relative efficiency formula oe
	= 10	A 1	
	Linda's estimator is more efficient than Andrew's estimator	E1	oe
2(b)(i)	$E(P) = \frac{E(\overline{X_1}) + E(\overline{X_2})}{2} = \frac{\mu + \mu}{2}$	M1	
	= μ therefore unbiased	A 1	
2(b)(ii)	$Var(P) = \frac{Var(\overline{X_1}) + Var(\overline{X_2})}{2^2} = \frac{\sigma^2}{10} + \frac{\sigma^2}{100}$	M1	
	$=\frac{11\sigma^2}{400}$	A 1	oe
	Total	7	

Q	Answer	Marks	Comments
	$\bar{x} = 66.404$	B1	
3(a)	$s^2 = \frac{1}{500 - 1} \left(2210000 - \frac{33202^2}{500} \right)$	M1	Attempt at variance formula Allow one slip Implied by correct answer
	= 10.5(2984369)	A 1	AWRT 10.5
	z = 2.0537	B1	AWRT 2.054
	$66.404 \pm 2.0537 \sqrt{\frac{10.52}{500}}$	M1	Applies confidence interval formula with their values
	(66.106, 66.702)	A 1	AWRT
3(b)	Rejects as 67 is outside the confidence interval	E1ft	Follow through their confidence interval
3(c)	Still valid as sample size is large enough	E1	oe
	for central limit theorem to apply	E1	oe
	Total	9	

Q	Answer	Marks	Comments
4(a)(i)	$P(X \le 25) = 0.9427$ $P(X \le 26) = 0.9686$	М1	Both seen
	Accept if $X \le 26$	M1	oe
	B(50, 0.5)	M1	Use of PI
	Type II probability = 0.664	A 1	AWRT
4(a)(ii)	Power = 1 – 0.664	M1	Applies power formula with their Type II probability
	= 0.336	A1F	AWRT
4(b)	The power of the test would increase	E1	
	Total	7	

MARK SCHEME -INTERNATIONAL A-LEVEL FURTHER MATHEMATICS - FM04 - JANUARY 2020

Q	Answer	Marks	Comments
5	H_0 : $\sigma_A = \sigma_B$ H_1 : $\sigma_A \neq \sigma_B$	В1	Both hypotheses
	dof 20, 25	B1	
	$F = \frac{s_A^2}{s_B^2} = \frac{0.3^2}{0.2^2}$	M1	
	= 2.25	A 1	
	$F_{20,25} = 2.70$	B1	AWRT
	Accept H ₀	A1ft	Follow through their F and F _{20,25} Implied by correct conclusion in context
	Evidence to suggest/support that the population variances of machines A and B are equal	E1	Must be consistent with their conclusion on whether to accept H_0 or not or their F and $F_{20,25}$ if not explicitly stated
	Total	7	

Q	Answer	Marks	Comments
6	H ₀ : There is no association between the office an employee works in and the transport they use to get to work H ₁ : There is an association between the office an employee works in and the transport they use to get to work	B1	Both hypotheses, variables must be referenced in at least the null hypothesis oe
	W C B T	M1	At least three values AWRT
	N 13.6 24.6 26.2 3.66 S 12.4 22.4 23.8 3.34	A 1	All values PI
	B+T B+T	M1	
	Expected Actual N 29.8 32 S 27.2 25		
	or		Combine two columns for expected and actual values
	dof v = 2	B1	
	$\sum \frac{(O-E)^2}{E} = \frac{(4-13.6)^2}{13.6} + \frac{(22-12.4)^2}{12.4} + \frac{(32-24.5)^2}{24.5} + \frac{(15-22.4)^2}{22.4} + \frac{(32-29.8)^2}{29.8} + \frac{(25-27.1)^2}{27.1}$	M1	Attempts $\sum \frac{(O-E)^2}{E}$ using their table even if columns not combined
	= 19.2 (B+T combined) or	A 1	Accept 19.1
	= 17.9 (C+T combined) or		
	= 21.3 (W+T combined)		AWRT

MARK SCHEME -INTERNATIONAL A-LEVEL FURTHER MATHEMATICS - FM04 - JANUARY 2020

Test statistic = 9.2	B1	AWRT
Reject H ₀	A1ft	Follow through their $\sum \frac{(O-E)^2}{E}$ and test statistic Implied by correct conclusion in context
Evidence to suggest/support that there is an association between the office an employee works in and the transport they use to get to work	E1	Must be consistent with their conclusion on whether to accept H_0 or not or their $\sum \frac{(O-E)^2}{E}$ and test statistic if not explicitly stated
Total	10	

Q	Answer	Marks	Comments
7(a)	H_0 : $\mu_A = \mu_B$ H_1 : $\mu_A \neq \mu_B$	B1	Both hypotheses
	$z = \frac{\left 504 - 502\right }{\sqrt{\frac{2^2}{10} + \frac{3^2}{12}}}$	M1	Numerator
	$\sqrt{\frac{2^2}{10} + \frac{3^2}{12}}$	M1	Denominator
	= 1.87	A1	AWRT
	z_{crit} = 1.96 or -1.96	B1	Seen anywhere
	Accept H₀	A1ft	Follow through their z and $z_{\rm crit}$ Implied by correct conclusion in context
	Evidence to suggest/support that the mean mass of jars of honey is the same for both suppliers	E1	Must be consistent with their conclusion on whether to accept H_0 or not or their z and z_{crit} if not explicitly stated
7/b)	t test/values instead of z test/values	E1	oe
7(b)	with dof $v = 20$	E1	oe
	Calculate pooled estimate of variance S _P ²	E1	oe
	Replace $\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}$ with $s_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B} \right)$	E1	oe
	Total	11	

Q	Answer	Marks	Comments
8(a)	H_0 : $\mu_B = \mu_A$ H_1 : $\mu_B < \mu_A$ Student Difference	B1 B1	Both hypotheses All differences found
	1 4 1 3 0 4 1 5 2 6 3		
	$\overline{x} = 1.5$	B1	
	$s^2 = \frac{1}{6 - 1} \left(31 - \frac{9^2}{6} \right)$	M1	Attempt at variance formula Allow one slip Implied by correct answer
	= 3.5	A 1	Accept AWRT s = 1.87
	dof v = 5	B1	
	$t = \frac{1.5}{\sqrt{\frac{3.5}{6}}}$	M1	Using their s ²
	= 1.96	A 1	AWRT
	$t_5 \text{ cv} = 2.02$	B1	AWRT
	Accept H ₀	A1ft	Follow through their <i>t</i> and <i>t</i> ₅ Implied by correct conclusion in context
	No evidence to suggest/support that the tutorial company's claim is true	E1	Must be consistent with their conclusion on whether to accept H_0 or not or their t and t_5 if not explicitly stated
8(b)	The difference between test scores before and after the revision course	E1	oe
	are normally distributed	E1	oe
	Total	13	

Q	Answer	Marks	Comments
9(a)	$M'_{X}(t) = \dots e^{t}(1 - 0.8e^{t})^{-3}$	M1	$M'_{X}(t) = Ae^{t} (1 - 0.8e^{t})^{-3}$ where A is a constant
	$M'_{x}(t) = 0.064e^{t}(1 - 0.8e^{t})^{-3}$	A 1	oe May be unsimplified
	Mean = $M'_{\chi}(0) = 0.064e^{0}(1 - 0.8e^{0})^{-3}$	M1	Attempts $M'_X(0)$
	= 8	A 1	
9(b)	$M''_{X}(t) = \dots e^{t} (1 - 0.8e^{t})^{-3} + \dots e^{2t} (1 - 0.8e^{t})^{-4}$	M1	$M''_{X}(t) = Ae^{t}(1 - 0.8e^{t})^{-3} + Be^{2t}(1 - 0.8e^{t})^{-4}$ where A and B are constants oe
	$M''_{x}(t) = 0.064e^{t}(1 - 0.8e^{t})^{-3} + 0.1536e^{2t}(1 - 0.8e^{t})^{-4}$	A 1	oe May be unsimplified
	Variance = $M''_{x}(0) - (M'_{x}(0))^{2}$ = $0.064e^{0}(1 - 0.8e^{0})^{-3} + 0.1536e^{2\times 0}(1 - 0.8e^{0})^{-4} - 8^{2}$	M1	Applies variance formula with their M " $_{\it X}(t)$ and mean
	= 40	A1	
9(a)	$M_{2+3X}(t) = e^{2t} M_X(3t)$	M1	
9(c)	$= e^{2t} \times 0.04(1 - 0.8e^{3t})^{-2}$	M1	
	$= \left(\frac{0.2e^t}{1 - 0.8e^{3t}}\right)^2$	A 1	
9(d)	$M_{X+Y}(t) = M_X(t) M_Y(t)$ = 0.04(1 - 0.8e ^t) ⁻² (0.8 + 0.2 e ^t) ²	M1	
	$= \left(\frac{0.16 + 0.04e^t}{1 - 0.8e^t}\right)^2$	A1	
	Total	13	