CSE6242 / CX4242: Data & Visual Analytics

Visualization for Classification

ROC, AUC, Confusion Matrix

Duen Horng (Polo) Chau

Assistant Professor
Associate Director, MS Analytics
Georgia Tech

Parishit Ram
GT PhD alum; SkyTree

Partly based on materials by Professors Guy Lebanon, Jeffrey Heer, John Stasko, Christos Faloutsos, Parishit Ram (GT PhD alum; SkyTree), Alex Gray

Visualizing Classification Performance

Confusion matrix

		Predicted class		
		Cat	Dog	Rabbit
Actual class	Cat	5	3	0
	Dog	2	3	1
	Rabbit	0	2	11

Figure 2. Representations of confusion matrix for a handwritten digit classification task. (top) standard confusion matrix; (bottom) heat-map confusion matrix. It is much easier to identify underlying patterns in the visual representation; 3 and 8 are often misclassified as each other and 5 is misclassified as many different numbers.

Very important: Find out what "positive" means

Predicted class

Cat Dog Rabbit

		Jui		
Actual class	Cat	5	3	0
	Dog	2	3	1
	Rabbit	0	2	11

5 true positives	3 false negatives		
(actual cats that were	(cats that were		
correctly classified as cats)	incorrectly marked as dogs)		
2 false positives	17 true negatives		
(dogs that were	(all the remaining animals,		
incorrectly labeled as cats)	correctly classified as non-cats)		

Very important: Find out what "positive" means

Terminology and derivations from a confusion matrix

true positive (TP)

eqv. with hit

true negative (TN)

eqv. with correct rejection

false positive (FP)

eqv. with false alarm, Type I error

false negative (FN)

eqv. with miss, Type II error

sensitivity or true positive rate (TPR)

eqv. with hit rate, recall

$$TPR = rac{TP}{P} = rac{TP}{TP + FN}$$

specificity (SPC) or true negative rate (TNR)

$$SPC = rac{TN}{N} = rac{TN}{FP + TN}$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP}$$

recall (recall)

$$\mathit{recall} = rac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

negative predictive value (NPV)

Visualizing Classification Performance using

ROC curve

(Receiver Operating Characteristic)

Polonium's ROC Curve

Positive class: malware

Negative class: benign

True Positive Rate % of bad correctly labeled

False Positive Rate (False Alarms)

% of good labeled as bad

Measuring Classification Performance

using AUC (Area under the curve)

If a machine learning algorithm achieves 0.9 AUC (out of 1.0).

That's a great algorithm, right?

Be Careful with AUC!

Weights in combined models

Bagging / Random forests

Majority voting

Let people play with the weights?

EnsembleMatrix

Figure 1. Primary view in EnsembleMatrix. Confusion matrices of component classifiers are shown in thumbnails on the right. The matrix on the left shows the confusion matrix of the current ensemble classifier built by the user.

http://research.microsoft.com/en-us/um/redmond/groups/cue/publications/CHI2009-EnsembleMatrix.pdf

Improving performance

Figure 3. After partitioning the matrix, selecting a partition, outlined in orange, causes the thumbnails to display only the data instances in that partition. The component classifiers demonstrate very different behavior in this partition, including clustering and large differences in accuracy.

- Adjust the weights of the individual classifiers
- Data partition to separate problem areas
 - Adjust weights just for these individual parts
- State-of-the-art performance, on one dataset

http://research.microsoft.com/en-us/um/redmond/groups/cue/publications/CHI2009-EnsembleMatrix.pdf