**CEE 361** 

Theo Dimitrasopoulos | Tehila Stone

You are required to implement the plate quad element into your MATLAB program and analyze one quadrant of the plate shown below. L = 10 m, t = 100 mm,  $E = 30 \times 10^6 \text{ MPa}$ , and v = 0.3.



Your analysis should include permutations of all of the following conditions:

- i) **Supports** (in both cases, all perimeter displacements are restrained)
  - a. Edges are fully clamped (all perimeter rotations are restrained)
  - b. Edges are simply supported (all perimeter rotations are released)

#### ii) Loading

- a. Distributed load of q = 10 Pa downward applied to the entire plate
- b. Concentrated load of P = 1 kN downward applied to the plate center
- iii) Mesh Refinement: quadrant is modelled with 1, 4, 16, and 64 elements
- iv) Gaussian Quadrature: shear stiffness found using 1x1 and 2x2 integration

As part of your analysis, you need to include graphs and tabulations of the normalized center deflection of the plate against the logarithm of the number of elements (nel) used. The exact solutions for the center deflection are provided below:



| Exact deflection at plate center, $w_{exact}$ , for $v = 0.3$ |                            |                            |                            |
|---------------------------------------------------------------|----------------------------|----------------------------|----------------------------|
| Simply Supported                                              |                            | Clamped                    |                            |
| $0.0444 \frac{qL^4}{Et^3}$                                    | $0.1267 \frac{PL^2}{Et^3}$ | $0.0138 \frac{qL^4}{Et^3}$ | $0.0611 \frac{PL^2}{Et^3}$ |
| Distributed                                                   | Concentrated               | Distributed                | Concentrated               |

Your deliverable is a report which should include, but does not need to be limited to: the above convergence studies, code changes, code description, deformed geometries, displacement tabulations, stress or stress resultant analyses (in plot and/or tabulated form), and discussions. While an exhaustive set of results is not expected (irrelevant/redundant content will likely cost you points), you should include a sufficient cross-section of results to demonstrate the element performance.

One report and one set of code are expected per group. Discussion or sharing of work between groups is not permitted. Groups are to contain no more than two students unless permission is received from the instructors. A hard copy of the report is to be submitted in E218 and a single .zip file containing all MATLAB scripts is to be sent to fabieng@princeton.edu by the deadline.

#### 0. Explanations on notation

Chapter 0 is to serve as an acquaintance with the notation and methods used to present and visualize the data acquired from our permutations:

- Regarding number notation, all powers of ten were presented as e##, which is equivalent to 10<sup>##</sup>
- All permutations used 2x2 quadrature and 1x1 quadrature is explained in chapter V, describing some of the strange behaviors seen in the graphics in chapters I-IV and what caused them.
- All quantities presented in the report use m, kN, rads and any combination of the three as their units, including graphics.
- The element is modeled as a two-dimensional plate element, lacking a third dimension in the analysis.
- Moments and Shears are always taken at the plate center, or point 9 in this case (a diagram of our numbering is provided in the appendix)

I. Clamped Condition for distributed load of 10 Pa downward applied to the entire plate.

The method followed implemented a set of loops that applied a load that was derived by multiplying the entire distributed load with the area under analysis (25 m²) and divided by the number of total points on the mesh. The points along the bottom and right side of the element were clamped, meaning all displacements and rotations were constrained.

For a one-element division the following were obtained:





#### **Nodal Displacements:**

node Displacement( $x,y,\theta$ ; m,m,rad respectively)

3 -2.3188e-05 -1.473434e-05 -1.46669e-05

#### **Moment:**

# Shear:

For a four-element division the following were obtained:





#### **Nodal Displacements:**

node Displacement(x,y,θ; m,m,rad respectively)

- 3 -4.39344e-5
- -1.365293e-05
- -6.74751e-06

- 6 -1.66587e-05
- -5.978767e-06
- -1.05225e-05

- 7 -1.12138e-05
- -7.095827e-06
- -2.53943e-06

- 9 -3.60221e-06
- -2.303440e-06
- -2.29872e-06

**Moment:** 

- 0
- 0
- 0

Shear:

0

For a sixteen-element division the following were obtained:





# **Nodal Displacements:**

| node | Displacement( $x,y,\theta$ ; | m,m,rad respectively) |              |
|------|------------------------------|-----------------------|--------------|
| 3    | -8.58949e-05                 | -1.253481e-05         | -6.36802e-06 |
| 6    | -4.01585e-05                 | -7.245269e-06         | -8.5763e-06  |
| 7    | -2.58045e-05                 | -7.679855e-06         | -2.74592e-06 |
| 9    | -9.15406e-06                 | -3.284892e-06         | -2.93058e-06 |
| 12   | -1.33077e-05                 | -2.225503e-06         | -7.52575e-06 |
| 13   | -6.47667e-05                 | -8.905038e-06         | -7.00889e-06 |
| 14   | -5.20325e-05                 | -8.936392e-06         | -3.69497e-06 |
| 15   | -6.84932e-06                 | -4.341658e-06         | 4.23232e-08  |
| 17   | 0                            | 0                     | 9.0071e-07   |
| 18   | -5.54785e-07                 | -3.564168e-07         | -1.24976e-06 |
| 19   | -2.25484e-06                 | -7.227601e-07         | -5.33293e-07 |

| 20 | -6.59012e-06 | -2.035748e-06 | -5.07637e-06 |
|----|--------------|---------------|--------------|
| 21 | -2.15400e-05 | -4.558579e-06 | -5.31466e-06 |
| 22 | -3.80671e-05 | -8.021299e-06 | -5.17376e-06 |
| 23 | -1.76219e-05 | -4.953394e-06 | -2.43078e-06 |
| 24 | -4.90075e-06 | -3.109405e-06 | -1.28336e-06 |
| 25 | -1.9897e-06  | -1.260726e-06 | -5.66066e-07 |

### **Moment:**

## Shear:

For a sixty-four-element division the following were obtained:





# **Nodal Displacements:**

| node | Displacement( $x,y,\theta$ ; | m,m,rad respectively) |              |
|------|------------------------------|-----------------------|--------------|
| 3    | -0.000192445                 | -1.255895e-05         | -4.89994e-06 |
| 6    | -0.000103917                 | -8.418367e-06         | -7.38556e-06 |
| 7    | -6.02998e-05                 | -8.691931e-06         | -1.84522e-06 |
| 9    | -2.63095e-05                 | -4.150039e-06         | -2.72188e-06 |
| 12   | -4.77662e-05                 | -5.281564e-06         | -6.31832e-06 |
| 13   | -0.000153426                 | -1.088017e-05         | -6.1216e-06  |
| 14   | -0.000120902                 | -1.102095e-05         | -3.5689e-06  |
| 15   | -1.68541e-05                 | -5.333781e-06         | -3.07688e-07 |
| 17   | 0                            | 0                     | 2.2673e-07   |
| 18   | -1.60505e-06                 | -6.408612e-07         | -3.71936e-07 |

| 19 | -8.16852e-06 | -1.582929e-06 | -2.18082e-06 |
|----|--------------|---------------|--------------|
| 20 | -2.3964e-05  | -3.014220e-06 | -3.63187e-06 |
| 21 | -5.93335e-05 | -6.334050e-06 | -4.73863e-06 |
| 22 | -9.28505e-05 | -8.966046e-06 | -4.18263e-06 |
| 23 | -4.48419e-05 | -6.577044e-06 | -2.44037e-06 |
| 24 | -1.2458e-05  | -3.811614e-06 | -9.06989e-07 |
| 25 | -6.51235e-06 | -2.087984e-06 | -9.30809e-07 |
| 29 | 0            | 0             | -7.59255e-06 |
| 30 | -1.87526e-05 | 7.185802e-08  | -1.16347e-05 |
| 31 | -7.51774e-05 | -5.275905e-06 | -1.08157e-05 |
| 32 | -0.000129672 | -8.696994e-06 | -8.92263e-06 |
| 33 | -0.000173897 | -1.083061e-05 | -6.8466e-06  |
| 34 | -0.000155438 | -1.087999e-05 | -5.53702e-06 |
| 35 | -8.87833e-05 | -9.342287e-06 | -3.50046e-06 |
| 36 | -3.59565e-05 | -6.753899e-06 | -1.28112e-06 |
| 37 | -4.24025e-06 | -2.679955e-06 | 2.67956e-07  |
| 41 | 0            | 0             | 2.08081e-07  |
| 42 | -7.16936e-08 | -5.100677e-08 | -2.50587e-07 |
| 43 | -3.21771e-07 | -1.027878e-07 | -5.79002e-10 |
| 44 | -1.05206e-06 | -3.683305e-07 | -8.71439e-07 |
| 45 | -2.17765e-06 | -3.405416e-07 | -1.1734e-06  |
| 46 | -3.99570e-06 | -8.230162e-07 | -2.74715e-06 |
| 47 | -8.95192e-06 | -2.316764e-06 | -5.44506e-06 |

| 48 | -1.57499e-05 | -1.987779e-06 | -2.63712e-06 |
|----|--------------|---------------|--------------|
| 49 | -3.40569e-05 | -3.392093e-06 | -9.40743e-06 |
| 50 | -5.76436e-05 | -5.861142e-06 | -5.78544e-06 |
| 51 | -7.99573e-05 | -6.749327e-06 | -8.37746e-06 |
| 52 | -0.000102059 | -8.831908e-06 | -5.65107e-06 |
| 53 | -0.000121604 | -9.270622e-06 | -6.75376e-06 |
| 54 | -0.000139483 | -1.100999e-05 | -4.58948e-06 |
| 55 | -0.000107358 | -9.350733e-06 | -5.00768e-06 |
| 56 | -7.85306e-05 | -8.923985e-06 | -3.00837e-06 |
| 57 | -5.30375e-05 | -7.261370e-06 | -2.75162e-06 |
| 58 | -3.17303e-05 | -6.234059e-06 | -1.40357e-06 |
| 59 | -1.51271e-05 | -4.314689e-06 | -7.83552e-07 |
| 60 | -4.14034e-06 | -2.634008e-06 | -3.328e-07   |
| 61 | -3.24440e-06 | -2.046433e-06 | -2.36185e-07 |
| 62 | -2.42950e-06 | -1.551962e-06 | -2.8413e-07  |
| 63 | -1.63045e-06 | -1.022661e-06 | -2.23544e-07 |
| 64 | -8.90139e-07 | -5.754886e-07 | -2.51174e-07 |
| 65 | -3.11436e-07 | -1.897077e-07 | -3.39932e-07 |
| 66 | -4.16160e-06 | -9.677626e-07 | -1.54312e-06 |
| 67 | -1.49513e-05 | -2.702964e-06 | -4.64031e-06 |
| 68 | -4.09488e-05 | -4.715068e-06 | -6.90108e-06 |
| 69 | -7.65316e-05 | -7.344239e-06 | -6.1509e-06  |
| 70 | -6.69808e-05 | -7.436614e-06 | -4.31919e-06 |

| 71 | -2.64968e-05 | -5.067118e-06 | -1.91695e-06 |
|----|--------------|---------------|--------------|
| 72 | -9.50094e-06 | -2.915193e-06 | -9.61813e-07 |
| 73 | -3.78658e-06 | -1.248085e-06 | -7.88366e-07 |
| 74 | -8.95764e-06 | -2.047395e-06 | -1.72079e-06 |
| 75 | -1.69796e-05 | -3.026537e-06 | -3.17936e-06 |
| 76 | -2.76163e-05 | -3.734853e-06 | -3.61843e-06 |
| 77 | -4.11163e-05 | -5.217995e-06 | -4.95485e-06 |
| 78 | -5.45505e-05 | -6.589389e-06 | -3.5722e-06  |
| 79 | -3.57957e-05 | -5.321953e-06 | -3.2851e-06  |
| 80 | -2.07230e-05 | -4.220387e-06 | -1.75149e-06 |
| 81 | -1.48102e-05 | -3.153916e-06 | -2.00138e-06 |

### **Moment:**

## Shear:

II. Clamped Condition for a concentrated load of 1kN downward applied to plate center

The method followed implemented a single applied load of 1kN downward at point 9 of our mesh (plate center or top left corner of the bottom right plate element under consideration). The points along the bottom and right side of the element were clamped, meaning all displacements and rotations were constrained.

For a one-element division the following were obtained:





#### **Nodal Displacements:**

node Displacement( $x,y,\theta$ ; m,m,rad respectively)

3 -0.000371008

-2.357494e-04

-0.00023467

### **Moment:**

## Shear:

For a four-element division the following were obtained:





# **Nodal Displacements:**

node Displacement( $x,y,\theta$ ; m,m,rad respectively)

| 3 | -0.000658963  | -4.419187e-04 | -0.000190744 |
|---|---------------|---------------|--------------|
| 6 | -0.000177958  | -1.021598e-05 | -0.00011305  |
| 7 | 1.754950e-05  | 1.213625e-05  | 0.000111129  |
| 9 | -7.979330e-05 | -5.146773e-05 | -5.02272e-05 |

### **Moment:**

0

0

**Shear:** 

0

For a sixteen-element division the following were obtained:





# **Nodal Displacements:**

| Node | Displacement( $x,y,\theta$ ; | m,m,rad respectively) |              |
|------|------------------------------|-----------------------|--------------|
| 3    | -0.00131106                  | -6.509762e-04         | -0.000189404 |
| 6    | -0.000437553                 | -1.308059e-04         | -0.000111916 |
| 7    | -0.000184001                 | -1.239123e-04         | -0.00010965  |
| 9    | -8.59442e-05                 | -6.466750e-05         | -3.57364e-05 |
| 12   | -0.000128992                 | 3.011384e-07          | -6.66093e-05 |
| 13   | -0.000810387                 | -2.120479e-05         | -0.000125014 |
| 14   | -0.000334631                 | 3.010319e-05          | 0.000121662  |
| 15   | 3.06182e-06                  | 3.767991e-06          | 7.71686e-05  |
| 17   | 0                            | 0                     | 1.60298e-05  |
| 18   | -4.41712e-06                 | -3.647318e-06         | -1.83213e-05 |
| 19   | -1.35155e-05                 | -1.455952e-06         | 6.65457e-06  |

| 20 | -7.16677e-05 | -3.609281e-05 | -6.05475e-05 |
|----|--------------|---------------|--------------|
| 21 | -0.000211361 | -1.364606e-05 | -4.50032e-05 |
| 22 | -0.000407089 | -2.329287e-04 | -7.84217e-05 |
| 23 | -7.45689e-05 | 2.053435e-05  | 4.22734e-05  |
| 24 | -5.0957e-05  | -3.406569e-05 | -4.40124e-05 |
| 25 | 5.98668e-06  | 5.215490e-06  | 8.37281e-06  |

## **Moment:**

### **Shear:**

For a sixty-four-element division the following were obtained:





# **Nodal Displacements:**

| Node | Displacement( $x,y,\theta$ ; | m,m,rad respectively) |              |
|------|------------------------------|-----------------------|--------------|
| 3    | -0.00276497                  | -8.650769e-04         | -0.000182314 |
| 6    | -0.00104307                  | -1.607475e-04         | -8.95294e-05 |
| 7    | -0.000337436                 | -1.475383e-04         | -8.54121e-05 |
| 9    | -0.000186893                 | -7.342358e-05         | -2.6759e-05  |
| 12   | -0.00042475                  | -6.751816e-05         | -5.63305e-05 |
| 13   | -0.00181054                  | -3.338587e-04         | -0.000117108 |
| 14   | -0.00100053                  | -3.272049e-04         | -0.000111012 |
| 15   | -7.58242e-05                 | -4.674519e-05         | -5.88898e-05 |
| 17   | 0                            | 0                     | -7.51542e-07 |
| 18   | -8.19455e-06                 | -8.260578e-06         | -3.89717e-06 |
| 19   | -5.86501e-05                 | -2.646540e-05         | -1.84524e-05 |

| -0.000530773<br>-0.000838832<br>-0.000297119<br>-6.85862e-05<br>-3.74844e-05<br>0<br>-0.00016671 | -1.297137e-04<br>-2.491159e-04<br>-1.244960e-04<br>-4.389853e-05<br>-2.527359e-05<br>0                                                                                 | -4.82452e-05<br>-5.40661e-05<br>-4.81338e-05<br>-3.27628e-05<br>-1.26457e-05<br>-6.91872e-05 |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| -0.000297119<br>-6.85862e-05<br>-3.74844e-05<br>0<br>-0.00016671                                 | -1.244960e-04<br>-4.389853e-05<br>-2.527359e-05                                                                                                                        | -4.81338e-05<br>-3.27628e-05<br>-1.26457e-05                                                 |
| -6.85862e-05<br>-3.74844e-05<br>0<br>-0.00016671                                                 | -4.389853e-05<br>-2.527359e-05                                                                                                                                         | -3.27628e-05<br>-1.26457e-05                                                                 |
| -3.74844e-05<br>0<br>-0.00016671                                                                 | -2.527359e-05<br>0                                                                                                                                                     | -1.26457e-05                                                                                 |
| 0<br>-0.00016671                                                                                 | 0                                                                                                                                                                      |                                                                                              |
| -0.00016671                                                                                      |                                                                                                                                                                        | -6.91872e-05                                                                                 |
|                                                                                                  | 1 004045 - 05                                                                                                                                                          |                                                                                              |
|                                                                                                  | 1.084845e-05                                                                                                                                                           | -0.000102434                                                                                 |
| -0.000704782                                                                                     | -7.273834e-06                                                                                                                                                          | -0.000123009                                                                                 |
| -0.00140171                                                                                      | -1.506159e-05                                                                                                                                                          | -0.000139197                                                                                 |
| -0.00222862                                                                                      | -1.527169e-05                                                                                                                                                          | -0.00015002                                                                                  |
| -0.00146408                                                                                      | 3.682958e-05                                                                                                                                                           | 0.000100081                                                                                  |
| -0.000532216                                                                                     | 2.716388e-05                                                                                                                                                           | 9.51032e-05                                                                                  |
| -0.000131857                                                                                     | 1.423069e-05                                                                                                                                                           | 7.94355e-05                                                                                  |
| -6.44507e-06                                                                                     | -4.544981e-07                                                                                                                                                          | 3.9855e-05                                                                                   |
| 0                                                                                                | 0                                                                                                                                                                      | 4.22669e-06                                                                                  |
| 3.48281e-08                                                                                      | -8.311697e-07                                                                                                                                                          | -3.78822e-06                                                                                 |
| -4.36499e-07                                                                                     | 1.289837e-06                                                                                                                                                           | 3.20833e-06                                                                                  |
| -6.52429e-06                                                                                     | -5.854039e-06                                                                                                                                                          | -7.39492e-06                                                                                 |
| -1.35565e-05                                                                                     | 2.061153e-06                                                                                                                                                           | -5.48703e-06                                                                                 |
| -3.24692e-05                                                                                     | -1.473423e-05                                                                                                                                                          | -2.36354e-05                                                                                 |
| -7.70847e-05                                                                                     | -1.293594e-05                                                                                                                                                          | -4.57545e-05                                                                                 |
| -0.000139892                                                                                     | -2.742497e-05                                                                                                                                                          | -2.27022e-05                                                                                 |
|                                                                                                  | -0.000704782 -0.00140171 -0.00222862 -0.00146408 -0.000532216 -0.000131857 -6.44507e-06 0 3.48281e-08 -4.36499e-07 -6.52429e-06 -1.35565e-05 -3.24692e-05 -7.70847e-05 | -0.000704782                                                                                 |

| 49 | -0.000304234 | -9.765990e-06  | -8.62873e-05 |
|----|--------------|----------------|--------------|
| 50 | -0.000532642 | -1.005050e-04  | -5.66686e-05 |
| 51 | -0.000765577 | -1.699729e-05  | -9.28856e-05 |
| 52 | -0.001032    | -2.170224e-04  | -7.46095e-05 |
| 53 | -0.00126244  | -1.637591e-05  | -7.42834e-05 |
| 54 | -0.00150834  | -4.381429e-04  | -7.94287e-05 |
| 55 | -0.00086769  | 2.8584130e-05  | 3.35263e-05  |
| 56 | -0.000575811 | -2.1056530e-04 | -7.33342e-05 |
| 57 | -0.000282518 | 2.1567450e-05  | 5.54695e-05  |
| 58 | -0.000171292 | -8.915773e-05  | -5.82095e-05 |
| 59 | -4.86375e-05 | 8.4243990e-06  | 4.42432e-05  |
| 60 | -2.56131e-05 | -1.984812e-05  | -2.90291e-05 |
| 61 | -4.82888e-06 | 4.247927e-07   | 1.64944e-05  |
| 62 | -1.5715e-05  | -1.318669e-05  | -1.03249e-05 |
| 63 | -2.97446e-06 | 9.257488e-07   | 2.76152e-06  |
| 64 | -5.10905e-06 | -5.512063e-06  | -1.96592e-06 |
| 65 | 2.16325e-08  | 1.623245e-06   | -1.18652e-07 |
| 66 | -2.11005e-05 | 1.395844e-06   | -6.32699e-06 |
| 67 | -0.000116948 | -9.232186e-06  | -3.46629e-05 |
| 68 | -0.000354401 | -1.412736e-05  | -6.17502e-05 |
| 69 | -0.000676957 | -1.069605e-05  | -4.58857e-05 |
| 70 | -0.000474216 | 1.509533e-05   | 1.10642e-05  |
| 71 | -0.000123725 | 1.178252e-05   | 2.96457e-05  |
|    |              |                |              |

| 72 | -3.54115e-05 | 3.517255e-06  | 1.30582e-05  |
|----|--------------|---------------|--------------|
| 73 | -1.39872e-05 | 1.882098e-06  | -1.25858e-06 |
| 74 | -5.62831e-05 | -3.054741e-05 | -1.42798e-05 |
| 75 | -0.000113547 | -3.983233e-06 | -1.81787e-05 |
| 76 | -0.000223249 | -6.734510e-05 | -3.08464e-05 |
| 77 | -0.000317877 | -7.391090e-06 | -3.08681e-05 |
| 78 | -0.000432213 | -1.419281e-04 | -4.01819e-05 |
| 79 | -0.000222349 | 6.280832e-06  | 2.92894e-06  |
| 80 | -0.000126993 | -6.419420e-05 | -2.93881e-05 |
| 81 | -7.77515e-05 | 2.026184e-06  | -6.55825e-07 |

### **Moment:**

## Shear:

III. Simply supported Condition for distributed load of 10 Pa downward applied to the entire plate.

The method followed implemented a set of loops that applied a load that was derived by multiplying the entire distributed load with the area under analysis (25 m²) and divided by the number of total points on the mesh. The points along the bottom and right side of the element were simply supported, meaning all displacements were constrained and the rotation was free.

For a one-element division the following were obtained:





### **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

1 0 0 -8.72642e-05 2 0 0 4.52624e-05 3 -0.000101925 -6.461804e-05 -4.52624e-05 4 0 0 2.26461e-05

### **Moment:**

- -0.0373
- -0.1243
- 0.0839

Shear:

-100.6897

-52.2261

For a four-element division the following were obtained:





# **Nodal Displacements:**

Node Displacement(x,y, $\theta$ ; m,m,rad respectively)

| _ |              | _             |              |
|---|--------------|---------------|--------------|
| 1 | 0            | 0             | 5.06891e-06  |
| 2 | 0            | 0             | -9.56736e-06 |
| 3 | -7.27591e-05 | -2.396893e-05 | -2.34009e-06 |
| 4 | 0            | 0             | 5.79805e-06  |
| 5 | 0            | 0             | -9.00469e-06 |
| 6 | -4.1516e-05  | -1.126177e-05 | -1.11086e-05 |
| 7 | -1.74768e-05 | -1.108189e-05 | -5.74917e-06 |
| 8 | 0            | 0             | 5.49338e-07  |
| 9 | -1.18754e-05 | -7.531819e-06 | -4.15507e-06 |

## **Moment:**

0.0079

0.0263

-0.0049

# Shear:

-5.8488

-11.0393

For a sixteen-element division the following were obtained:





# **Nodal Displacements:**

| Node | Displacement | $t(x,y,\theta;$ | m,m,rad | respect | tivel | y) |  |
|------|--------------|-----------------|---------|---------|-------|----|--|
|------|--------------|-----------------|---------|---------|-------|----|--|

| 1  | 0            | 0             | -4.30764e-06 |
|----|--------------|---------------|--------------|
| 2  | 0            | 0             | -1.88855e-05 |
| 3  | -0.000132698 | -1.905879e-05 | -9.98893e-06 |
| 4  | 0            | 0             | -3.22374e-06 |
| 5  | 0            | 0             | -8.07762e-06 |
| 6  | -8.18004e-05 | -1.227328e-05 | -1.45545e-05 |
| 7  | -4.10923e-05 | -1.255902e-05 | -5.8147e-06  |
| 8  | 0            | 0             | -4.52541e-06 |
| 9  | -2.38904e-05 | -7.304303e-06 | -7.92412e-06 |
| 10 | 0            | 0             | 3.04887e-06  |

| 11 | 0            | 0             | -4.37239e-06 |
|----|--------------|---------------|--------------|
| 12 | -4.44931e-05 | -6.575943e-06 | -7.66315e-06 |
| 13 | -0.000109827 | -1.307292e-05 | -3.00829e-06 |
| 14 | -8.17742e-05 | -1.322841e-05 | -1.54002e-07 |
| 15 | -1.06303e-05 | -6.748303e-06 | 3.92985e-06  |
| 16 | 0            | 0             | 4.7197e-06   |
| 17 | 0            | 0             | 5.94297e-06  |
| 18 | -3.3697e-06  | -2.137047e-06 | -6.82384e-06 |
| 19 | -1.22384e-05 | -3.488251e-06 | 1.96005e-06  |
| 20 | -2.59289e-05 | -5.194713e-06 | -1.37149e-05 |
| 21 | -4.89292e-05 | -8.567005e-06 | -2.29478e-06 |
| 22 | -6.80645e-05 | -1.340266e-05 | -1.00379e-05 |
| 23 | -3.31299e-05 | -8.749873e-06 | 2.26408e-06  |
| 24 | -9.67329e-06 | -6.125585e-06 | -6.03209e-06 |
| 25 | -6.17971e-06 | -3.921259e-06 | 3.62072e-06  |

### **Moment:**

0.0156

0.0519

0.0041

Shear:

-4.9704

-21.7911

For a sixty-four-element division the following were obtained:





# **Nodal Displacements:**

| Node | Displacement( $x,y,\theta$ ; $m,m,rad$ respectively) |               |             |
|------|------------------------------------------------------|---------------|-------------|
| 1    | 0                                                    | 0             | 0.000120007 |
| 2    | 0                                                    | 0             | 0.000104782 |
| 3    | -0.000264692                                         | -1.650893e-05 | 0.000114389 |
| 4    | 0                                                    | 0             | 0.000120407 |
| 5    | 0                                                    | 0             | 0.000115759 |
| 6    | -0.000166962                                         | -1.136843e-05 | 0.000109713 |
| 7    | -8.56586e-05                                         | -1.217737e-05 | 0.000118265 |
| 8    | 0                                                    | 0             | 0.000119985 |
| 9    | -5.08126e-05                                         | -7.264126e-06 | 0.000116519 |
| 10   | 0                                                    | 0             | 0.000118873 |

| 11 | 0            | 0             | 0.000111143  |
|----|--------------|---------------|--------------|
| 12 | -9.17966e-05 | -6.692921e-06 | 0.000106698  |
| 13 | -0.000223274 | -1.452708e-05 | 0.000112614  |
| 14 | -0.000169326 | -1.483794e-05 | 0.000115998  |
| 15 | -2.37836e-05 | -7.597014e-06 | 0.000120239  |
| 16 | 0            | 0             | 0.000120133  |
| 17 | 0            | 0             | 0.000119937  |
| 18 | -7.46793e-06 | -2.267536e-06 | 0.000118849  |
| 19 | -2.68252e-05 | -3.872134e-06 | 0.000115927  |
| 20 | -5.50245e-05 | -5.193389e-06 | 0.000111744  |
| 21 | -0.000102703 | -9.468658e-06 | 0.000113295  |
| 22 | -0.000140167 | -1.256906e-05 | 0.000114938  |
| 23 | -7.06161e-05 | -9.946197e-06 | 0.000117266  |
| 24 | -2.03644e-05 | -6.139002e-06 | 0.000119122  |
| 25 | -1.43062e-05 | -4.337102e-06 | 0.000118974  |
| 26 | 0            | 0             | -0.000120366 |
| 27 | 0            | 0             | -0.000122667 |
| 28 | 0            | 0             | -0.000126602 |
| 29 | 0            | 0             | -0.000131977 |
| 30 | -4.7468e-05  | -3.628425e-06 | -0.000134406 |
| 31 | -0.00013172  | -8.836299e-06 | -0.00013173  |
| 32 | -0.000197289 | -1.235408e-05 | -0.00012881  |
| 33 | -0.000245169 | -1.443728e-05 | -0.000126503 |

| 34 | -0.000215698 | -1.455392e-05 | -0.000125308 |
|----|--------------|---------------|--------------|
| 35 | -0.000125394 | -1.300647e-05 | -0.00012328  |
| 36 | -5.11053e-05 | -9.720711e-06 | -0.000121109 |
| 37 | -5.88914e-06 | -3.746066e-06 | -0.00011977  |
| 38 | 0            | 0             | -0.000120147 |
| 39 | 0            | 0             | -0.000119864 |
| 40 | 0            | 0             | -0.000119674 |
| 41 | 0            | 0             | -0.000119561 |
| 42 | -9.90363e-07 | -6.277133e-07 | 0.000119292  |
| 43 | -3.76995e-06 | -1.134959e-06 | -0.000120816 |
| 44 | -8.06409e-06 | -1.588859e-06 | 0.000117105  |
| 45 | -1.36005e-05 | -1.922588e-06 | -0.00012393  |
| 46 | -2.02917e-05 | -2.321315e-06 | 0.000113283  |
| 47 | -2.80427e-05 | -2.594094e-06 | -0.000128462 |
| 48 | -3.69387e-05 | -3.047419e-06 | 0.000108095  |
| 49 | -7.22295e-05 | -5.712262e-06 | -0.000130859 |
| 50 | -0.00010459  | -8.363700e-06 | 0.000110069  |
| 51 | -0.000133338 | -9.949264e-06 | -0.000128617 |
| 52 | -0.000158564 | -1.219629e-05 | 0.000112497  |
| 53 | -0.000180181 | -1.279356e-05 | -0.000126478 |
| 54 | -0.000199076 | -1.478307e-05 | 0.000114508  |
| 55 | -0.000155368 | -1.293369e-05 | -0.000124586 |
| 56 | -0.000115158 | -1.256528e-05 | 0.00011653   |

| 57 | -7.87106e-05 | -1.054824e-05 | -0.00012241  |
|----|--------------|---------------|--------------|
| 58 | -4.75357e-05 | -9.223032e-06 | 0.000118588  |
| 59 | -2.27402e-05 | -6.500029e-06 | -0.000120642 |
| 60 | -6.25354e-06 | -3.953482e-06 | 0.000119742  |
| 61 | -5.33341e-06 | -3.389310e-06 | -0.000120312 |
| 62 | -4.60949e-06 | -2.916370e-06 | 0.000119583  |
| 63 | -3.72917e-06 | -2.368555e-06 | -0.000120262 |
| 64 | -2.88436e-06 | -1.826058e-06 | 0.000119414  |
| 65 | -1.9444e-06  | -1.234527e-06 | -0.000120274 |
| 66 | -1.58808e-05 | -3.064646e-06 | -0.00012244  |
| 67 | -3.98832e-05 | -4.404158e-06 | -0.000126087 |
| 68 | -8.00484e-05 | -7.198068e-06 | -0.000127337 |
| 69 | -0.000122613 | -1.060064e-05 | -0.000125792 |
| 70 | -0.000103323 | -1.078366e-05 | -0.000124021 |
| 71 | -4.24853e-05 | -7.882169e-06 | -0.000121776 |
| 72 | -1.73339e-05 | -5.151057e-06 | -0.000120774 |
| 73 | -1.09473e-05 | -3.285775e-06 | -0.000120791 |
| 74 | -2.33654e-05 | -4.589397e-06 | 0.00011743   |
| 75 | -3.92472e-05 | -5.482343e-06 | -0.000123536 |
| 76 | -5.82941e-05 | -6.596570e-06 | 0.000114146  |
| 77 | -7.50195e-05 | -8.078441e-06 | -0.000125067 |
| 78 | -9.01147e-05 | -1.000731e-05 | 0.000115374  |
| 79 | -6.11856e-05 | -8.338320e-06 | -0.000122974 |

80 -3.67477e-05 -7.159712e-06 0.000117868

81 -3.02499e-05 -5.768413e-06 -0.000122109

## **Moment:**

-0.0864

-0.2879

-0.1154

## **Shear:**

-138.4698

-120.9024

IV. Simply supported condition a concentrated load of 1kN downward applied to plate center.

The method followed implemented a single applied load of 1kN downward at point 9 of our mesh (plate center or top left corner of the bottom right plate element under consideration). The points along the bottom and right side of the element were simply supported, meaning all displacements were constrained and the rotation was free.

For a one-element division the following were obtained:





# **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

| 1 | 0          | 0             | -0.00139623    |
|---|------------|---------------|----------------|
| 2 | 0          | 0             | 0.000724199    |
| 3 | -0.0016308 | -1.033889e-03 | 3 -0.000724199 |
| 4 | 0          | 0             | 0.000362338    |

## **Moment:**

- -0.5969
- -1.9896
- 1.3425

## Shear:

-1.6110 e+03

-0.8356 e+03

For a four-element division the following were obtained:





| Node | Displacement( $x,y,\theta$ ; | m,m,rad respec | etively)     |
|------|------------------------------|----------------|--------------|
| 1    | 0                            | 0              | -0.00046992  |
| 2    | 0                            | 0              | -0.000398618 |
| 3    | -0.00121781                  | -9.429267e-04  | -9.49259e-05 |
| 4    | 0                            | 0              | 0.00019502   |
| 5    | 0                            | 0              | 0.000243056  |
| 6    | -0.000323461                 | 1.945726e-04   | 9.65035e-05  |
| 7    | 0.000133964                  | 8.545261e-05   | 6.1336e-05   |
| 8    | 0                            | 0              | 0.0003729    |
| 9    | -0.000314589                 | -1.999109e-04  | -0.000345337 |

## **Moment:**

0.3285

1.0951

0.4518

# Shear:

-542.2171

-459.9459

For a sixteen-element division the following were obtained:





| Node | Displacement( $x,y,\theta$ ; m,m,rad respectively) |               |              |  |
|------|----------------------------------------------------|---------------|--------------|--|
| 1    | 0                                                  | 0             | -0.000247708 |  |
| 2    | 0                                                  | 0             | -0.00019151  |  |
| 3    | -0.0018917                                         | -1.068114e-03 | 4.19715e-05  |  |
| 4    | 0                                                  | 0             | 0.000352112  |  |
| 5    | 0                                                  | 0             | -0.000160094 |  |
| 6    | -0.000846185                                       | -3.665292e-04 | -0.000139246 |  |
| 7    | -0.000397432                                       | -2.816625e-04 | 0.00014891   |  |
| 8    | 0                                                  | 0             | -0.000121632 |  |
| 9    | -0.000272936                                       | -1.748150e-04 | -0.000103246 |  |
| 10   | 0                                                  | 0             | 0.000152091  |  |

| 11 | 0            | 0             | 2.283e-05    |
|----|--------------|---------------|--------------|
| 12 | -0.000363992 | 7.245898e-05  | -5.70864e-05 |
| 13 | -0.00113639  | 2.373692e-04  | -0.000194801 |
| 14 | -0.000526151 | 2.008660e-04  | -0.000124493 |
| 15 | 2.16846e-05  | 1.537492e-05  | -0.000185345 |
| 16 | 0            | 0             | -2.7722e-05  |
| 17 | 0            | 0             | 0.000230009  |
| 18 | -4.97717e-05 | -3.241541e-05 | -0.000165785 |
| 19 | -8.10873e-05 | 1.292812e-05  | 9.0758e-05   |
| 20 | -0.000268867 | -1.323237e-04 | -0.00017539  |
| 21 | -0.000409543 | 8.885171e-05  | -2.30738e-05 |
| 22 | -0.000763206 | -4.726887e-04 | -5.09908e-05 |
| 23 | -0.000159096 | 8.889146e-05  | 2.52595e-05  |
| 24 | -0.000147862 | -9.540429e-05 | -3.19625e-05 |
| 25 | -2.25807e-07 | 1.333607e-06  | 8.82899e-05  |

## **Moment:**

0.1578

0.5261

0.2382

Shear:

-285.8181

-220.9740

For a sixty-four-element division the following were obtained:





| Node | Displacement( $x,y,\theta$ ; $m,m,rad$ respectively) |               |             |
|------|------------------------------------------------------|---------------|-------------|
| 1    | 0                                                    | 0             | 0.000632112 |
| 2    | 0                                                    | 0             | 0.000683829 |
| 3    | -0.003394                                            | -1.247495e-03 | 0.00089351  |
| 4    | 0                                                    | 0             | 0.00121379  |
| 5    | 0                                                    | 0             | 0.000710572 |
| 6    | -0.00151778                                          | -3.670280e-04 | 0.000733672 |
| 7    | -0.000569514                                         | -2.828272e-04 | 0.00102244  |
| 8    | 0                                                    | 0             | 0.000749363 |
| 9    | -0.000389263                                         | -1.658089e-04 | 0.000767044 |
| 10   | 0                                                    | 0             | 0.00069743  |
| 11   | 0                                                    | 0             | 0.000699795 |

| 12 | -0.000743042 | -1.696420e-04 | 0.000695703  |
|----|--------------|---------------|--------------|
| 13 | -0.00236132  | -6.360677e-04 | 0.000802678  |
| 14 | -0.00141127  | -5.603033e-04 | 0.000980918  |
| 15 | -0.000164607 | -1.010785e-04 | 0.00107295   |
| 16 | 0            | 0             | 0.000915952  |
| 17 | 0            | 0             | 0.000660146  |
| 18 | -5.817e-05   | -3.165947e-05 | 0.000714538  |
| 19 | -0.000205961 | -7.957696e-05 | 0.000723959  |
| 20 | -0.000443727 | -1.301774e-04 | 0.00071282   |
| 21 | -0.000869907 | -2.783295e-04 | 0.000756986  |
| 22 | -0.00122732  | -4.570948e-04 | 0.000847571  |
| 23 | -0.000522116 | -2.479739e-04 | 0.000846829  |
| 24 | -0.000153603 | -9.520956e-05 | 0.000863162  |
| 25 | -0.000110835 | -6.402917e-05 | 0.000767003  |
| 26 | 0            | 0             | -0.000677743 |
| 27 | 0            | 0             | -0.000743632 |
| 28 | 0            | 0             | -0.000803392 |
| 29 | 0            | 0             | -0.000873786 |
| 30 | -0.000357886 | 3.473135e-05  | -0.000914774 |
| 31 | -0.00108759  | 1.088176e-04  | -0.000947953 |
| 32 | -0.00185937  | 1.925403e-04  | -0.00101862  |
| 33 | -0.00270999  | 2.799261e-04  | -0.0011364   |
| 34 | -0.00186553  | 2.750237e-04  | -0.000988274 |

| 35 | -0.000774011 | 1.545560e-04  | -0.00100632  |
|----|--------------|---------------|--------------|
| 36 | -0.000225734 | 6.372370e-05  | -0.00103671  |
| 37 | -7.35406e-06 | -7.988801e-07 | -0.00111555  |
| 38 | 0            | 0             | -0.001027    |
| 39 | 0            | 0             | -0.000816062 |
| 40 | 0            | 0             | -0.000692816 |
| 41 | 0            | 0             | -0.000636037 |
| 42 | -8.89067e-06 | -6.640961e-06 | 0.000676125  |
| 43 | -1.9931e-05  | 2.802085e-07  | -0.000714153 |
| 44 | -6.12175e-05 | -2.689563e-05 | 0.000708943  |
| 45 | -9.06402e-05 | 8.591781e-06  | -0.000772176 |
| 46 | -0.000158425 | -5.190604e-05 | 0.000707089  |
| 47 | -0.00020915  | 2.010814e-05  | -0.00083651  |
| 48 | -0.000294322 | -7.455785e-05 | 0.000691283  |
| 49 | -0.000563709 | 5.501010e-05  | -0.000887138 |
| 50 | -0.000885673 | -2.354224e-04 | 0.000716872  |
| 51 | -0.00112672  | 1.172450e-04  | -0.000928091 |
| 52 | -0.00147481  | -4.340248e-04 | 0.000775856  |
| 53 | -0.00165725  | 1.869577e-04  | -0.000993715 |
| 54 | -0.00200486  | -7.237678e-04 | 0.000886111  |
| 55 | -0.00118571  | 2.017905e-04  | -0.000934013 |
| 56 | -0.000889758 | -3.876921e-04 | 0.000890458  |
| 57 | -0.000446827 | 1.054913e-04  | -0.000911622 |

| 58 | -0.000324961 -1.81 | 5619e-04     | 0.000911613  |      |
|----|--------------------|--------------|--------------|------|
| 59 | -8.83961e-05 3.013 | 3718e-05     | -0.000933773 |      |
| 60 | -6.31011e-05 -4.39 | 4037e-05     | 0.000963816  |      |
| 61 | -6.66442e-06 -2.48 | 6442e-07     | -0.000888026 |      |
| 62 | -4.39684e-05 -3.16 | 7677e-05     | 0.000811121  |      |
| 63 | -9.22789e-06 -2.45 | 7277e-06     | -0.000765782 |      |
| 64 | -2.65365e-05 -1.95 | 8207e-05     | 0.000719601  |      |
| 65 | -6.61723e-06 -2.24 | 9586e-06     | -0.000699097 |      |
| 66 | -9.54667e-05 8.85° | 7599e-06     | -0.000755443 |      |
| 67 | -0.000286013 2.948 | 8621e-05     | -0.000812951 |      |
| 68 | -0.000618927 6.498 | 8836e-05     | -0.000857767 |      |
| 69 | -0.00098555 1.21   | 7534e-04     | -0.000898772 |      |
| 70 | -0.000712199 1.28  | 8470e-04     | -0.000890315 |      |
| 71 | -0.000219547 5.49  | 1500e-05     | -0.000866178 |      |
| 72 | -7.48843e-05 1.43  | 4162e-05     | -0.000812036 |      |
| 73 | -5.40789e-05 3.83  | 7351e-06     | -0.000745403 |      |
| 74 | -0.000176637 -8.27 | 0674e-05     | 0.00073765   |      |
| 75 | -0.000259116       | 3.135037e-05 | -0.00079     | 1457 |
| 76 | -0.000464006       | -1.621825e-0 | 4 0.00073    | 3966 |
| 77 | -0.000542777       | 6.964302e-05 | -0.00084     | 215  |
| 78 | -0.000723859       | -2.861421e-0 | 4 0.00079    | 5781 |
| 79 | -0.000384521       | 6.970271e-05 | -0.00083     | 2368 |
| 80 | -0.000271214       | -1.403176e-0 | 4 0.00079    | 7531 |

81 -0.000171763 2.679939e-05 -0.00079245

#### **Moment:**

-0.5636

-1.8786

-0.6078

## Shear:

-729.3627

-789.0358

V. Shear-locking: what exactly is it and how we prevent it from happening.

Looking at some of the graphs above, such as the 4, 16 and 64-element division for the simply supported condition with a 1kN concentrated load applied at the center of the plate, we notice that some of the subdivisions look distorted and the element as a whole discontinuous and "wrinkled". When 2x2 shear quadrature is being implemented for the shear, the shear stiffness of the structure is predicted to be more than tensile stress and the bending stress much lower than the tensile stress. Our selection of a quad element as the base for the analysis was not a good one in this case, as the quad is not a very "smart" shape, and is therefore unable to acquire the correct shape for the shear stress within the plate. A simple solution to this would be to add a point in the middle of each subdivision and connect it to the four nodes of the quad subdivision, thus turning each quad to 4 triangular elements, which will not be susceptible to shear locking.

To prevent shear locking from happening, we can under-integrate for the shear stiffness matrix and move from a 2x2 Gaussian integration to a 1x1 Gaussian integration, in which case the shear stiffness contribution is not over-exaggerated and the end-result looks "smoother" across the plate element. We are switching from an nglx=ngly=2 to a nglx=ngly=1 and remove the extraneous r and s values to acquire the new values for 1x1 quadrature. The following graphics include only the deformed shapes of all the scenarios above and the accompanying values underneath them.

The adjusted one-element cases are as follows:



Clamped condition | Concentrated Load

#### **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

3 -0.00058521 -5.885470e-04 -0.000581872

#### **Moment:**

- 0
- 0
- 0

#### **Shear:**

- 0
- 0



Clamped Condition | Distributed Load

## **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

3 -3.65756e-05 -3.678418e-05 -3.6367e-05

## **Moment:**

0

0

0

#### Shear:

0



Simply Supported Condition | Concentrated Load

#### **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

- 1 0 0 -0.00340205
- 2 0 0 0.00173002
- 3 -0.00257235 -2.572350e-03 -0.00173002
- 4 0 0 0.000829697

#### **Moment:**

- -1.4258
- -4.7528
- 3.2712

#### **Shear:**

- -3.9255e+03
- -1.9962e+03



Simply Supported Condition | Distributed Load

## **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

| 1 | 0            | 0             | -0.000212628 |
|---|--------------|---------------|--------------|
| 2 | 0            | 0             | 0.000108126  |
| 3 | -0.000160772 | -1.607719e-04 | -0.000108126 |
| 4 | 0            | 0             | 5.1856e-05   |

#### **Moment:**

- -0.0891
- -0.2970
- 0.2044

#### **Shear:**

- -245.3407
- -124.7614

The adjusted 4-element cases are as follows:



Clamped Condition | Concentrated Load

## **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

| 3 | -0.0010411   | -1.106763e-03 | -0.000468712 |
|---|--------------|---------------|--------------|
| 6 | -0.000281955 | -2.140917e-05 | -0.000283327 |
| 7 | 2.69896e-05  | 3.317781e-05  | 0.000271559  |
| 9 | -0.000125877 | -1.312747e-04 | -0.000123691 |

#### **Moment:**

- 0
- 0
- 0

## **Shear:**

0



Clamped Condition | Distributed Load

#### **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

| 3 | -6.9412e-05 | -3.406575e-05 | -1.67839e-05 |
|---|-------------|---------------|--------------|
|   |             |               |              |

#### **Moment:**

0

0

0

#### **Shear:**

0



Simply Supported Condition | Concentrated Load

-0.000298417

## **Nodal Displacements:**

| Node | Displacement( $x,y,\theta$ ; $m,m,rad$ respectively) |               |              |
|------|------------------------------------------------------|---------------|--------------|
| 1    | 0                                                    | 0             | -0.000607703 |
| 2    | 0                                                    | 0             | -0.000430834 |
| 3    | -0.00192065                                          | -2.348151e-03 | 0.000326136  |
| 4    | 0                                                    | 0             | 0.00104503   |
| 5    | 0                                                    | 0             | 4.47977e-05  |
| 6    | -0.000510346                                         | 4.854131e-04  | -0.000320753 |
| 7    | 0.000210646                                          | 2.138559e-04  | -0.000409839 |
| 8    | 0                                                    | 0             | 0.000366638  |
|      |                                                      |               |              |

-4.984365e-04

#### **Moment:**

-0.00049555

- 0.3551
- 1.1836
- 0.5843

## Shear:

-701.1986

-497.1181



Simply Supported Condition | Distributed Load

# **Nodal Displacements:**

| Node | Displacement( $x,y,\theta$ ; $m,m,rad$ respectively) |               |              |
|------|------------------------------------------------------|---------------|--------------|
| 1    | 0                                                    | 0             | -3.52473e-07 |
| 2    | 0                                                    | 0             | -3.67229e-05 |
| 3    | -0.00011479                                          | -5.965250e-05 | -1.8758e-05  |
| 4    | 0                                                    | 0             | 1.4792e-06   |
| 5    | 0                                                    | 0             | -9.46947e-06 |
| 6    | -6.55068e-05                                         | -2.803448e-05 | -1.46847e-05 |
| 7    | -2.75722e-05                                         | -2.758493e-05 | -1.36296e-06 |
| 8    | 0                                                    | 0             | 1.42915e-05  |
| 9    | -1.87334e-05                                         | -1.875252e-05 | -2.32821e-05 |

## **Moment:**

- 0.0303
- 0.1009
- 0.0003

## Shear:

-0.4067

-42.3727

The adjusted 16-element cases are as follows:



Clamped Condition | Concentrated Load

| Node | Displacement( $x,y,\theta$ ; | m,m,rad respectively) |              |
|------|------------------------------|-----------------------|--------------|
| 3    | -0.00207161                  | -1.644155e-03         | -0.000451146 |
| 6    | -0.000691663                 | -3.411961e-04         | -0.000270172 |
| 7    | -0.000288963                 | -3.184538e-04         | -0.000255702 |
| 9    | -0.000135346                 | -1.694364e-04         | -8.31627e-05 |
| 12   | -0.00020509                  | 9.160840e-06          | -0.000169407 |
| 13   | -0.0012803                   | -3.329063e-05         | -0.000321799 |
| 14   | -0.000528215                 | 8.941540e-05          | 0.000283485  |
| 15   | 4.69829e-06                  | 1.552484e-05          | 0.00018084   |
| 17   | 0                            | 0                     | 4.07175e-05  |
| 18   | -7.02719e-06                 | -1.201621e-05         | -4.4783e-05  |
| 19   | -2.13718e-05                 | 1.609097e-06          | 1.46305e-05  |
| 20   | -0.000113263                 | -9.760886e-05         | -0.0001486   |
| 21   | -0.000334472                 | -2.245596e-05         | -0.000118962 |

| 22 | -0.000642809 | -5.946837e-04 | -0.000185425 |
|----|--------------|---------------|--------------|
| 23 | -0.000117739 | 6.001575e-05  | 9.67311e-05  |
| 24 | -7.93745e-05 | -8.980158e-05 | -0.000103438 |
| 25 | 9.36929e-06  | 1.775525e-05  | 1.7453e-05   |

## **Moment:**

## **Shear:**



Clamped Condition | Distributed Load

| Node | Displacement( $x,y,\theta$ ; m,m,rad respectively) |                  |              |
|------|----------------------------------------------------|------------------|--------------|
| 3    | -0.000135588                                       | -3.129617e-05    | -1.57801e-05 |
| 6    | -6.33895e-05                                       | -1.808028e-05    | -2.12821e-05 |
| 7    | -4.07095e-05                                       | -1.913461e-05    | -6.76561e-06 |
| 9    | -1.44455e-05                                       | -8.199204e-06    | -7.24977e-06 |
| 12   | -2.10255e-05                                       | -5.520433e-06    | -1.87306e-05 |
| 13   | -0.000102234                                       | -2.212045e-05    | -1.74649e-05 |
| 14   | -8.21135e                                          | -05-2.219885e-05 | -9.26914e-06 |
| 15   | -1.08019e-05                                       | -1.079921e-05    | 7.39687e-08  |
| 17   | 0                                                  | 0                | 2.22965e-06  |
| 18   | -8.7039e-07                                        | -8.985988e-07    | -3.08457e-06 |
| 19   | -3.55655e-06                                       | -1.796834e-06    | -1.35319e-06 |
| 20   | -1.04061e-05                                       | -5.114118e-06    | -1.2623e-05  |
| 21   | -3.40047e-05                                       | -1.130598e-05    | -1.32807e-05 |
| 22   | -6.00782e-05                                       | -2.003149e-05    | -1.28583e-05 |
| 23   | -2.78079e-05                                       | -1.231755e-05    | -6.0695e-06  |

24 -7.7323e-06 -7.746233e-06 -3.17835e-06

25 -3.13532e-06 -3.132229e-06 -1.4426e-06

## **Moment:**

0

0

0

## Shear:

0



Simply Supported Condition | Concentrated Load

| Node | Displacement( $x,y,\theta$ ; m,m,rad respectively) |               |              |
|------|----------------------------------------------------|---------------|--------------|
| 1    | 0                                                  | 0             | 0.000482544  |
| 2    | 0                                                  | 0             | 0.00061921   |
| 3    | -0.00298277                                        | -2.669817e-03 | 0.00121009   |
| 4    | 0                                                  | 0             | 0.00197027   |
| 5    | 0                                                  | 0             | 0.000695364  |
| 6    | -0.00133384                                        | -9.198901e-04 | 0.000751637  |
| 7    | -0.000625578                                       | -7.062831e-04 | 0.00147354   |
| 8    | 0                                                  | 0             | 0.000794054  |
| 9    | -0.00042936                                        | -4.395688e-04 | 0.000840043  |
| 10   | 0                                                  | 0             | -0.000715782 |
| 11   | 0                                                  | 0             | -0.00103737  |
| 12   | -0.000573975                                       | 1.846782e-04  | -0.00123765  |
| 13   | -0.00179228                                        | 6.013077e-04  | -0.00158484  |
| 14   | -0.000829554                                       | 5.072290e-04  | -0.00141433  |

| 15 | 3.37759e-05  | 4.348479e-05    | -0.00156213  |
|----|--------------|-----------------|--------------|
| 13 | 3.377376 03  | 1.5 10 17 50 05 | 0.00130213   |
| 16 | 0            | 0               | -0.00116454  |
| 17 | 0            | 0               | -0.000526207 |
| 18 | -7.79596e-05 | -8.312354e-05   | 0.000682453  |
| 19 | -0.000128265 | 3.502035e-05    | -0.000868675 |
| 20 | -0.000423531 | -3.324049e-04   | 0.000658677  |
| 21 | -0.000646032 | 2.268096e-04    | -0.0011545   |
| 22 | -0.00120262  | -1.183129e-03   | 0.000973203  |
| 23 | -0.000250983 | 2.265697e-04    | -0.00103703  |
| 24 | -0.000231985 | -2.419288e-04   | 0.00101969   |
| 25 | -1.09154e-06 | 7.755279e-06    | -0.000876633 |

#### **Moment:**

- -0.5103
- -1.7011
- -0.4640

## Shear:

- -556.7838
- -714.4755



Simply Supported Condition | Distributed Load

| Node | Displacement( $x,y,\theta$ ; m,m,rad respectively) |               |              |
|------|----------------------------------------------------|---------------|--------------|
| 1    | 0                                                  | 0             | 0.000309161  |
| 2    | 0                                                  | 0             | 0.000272919  |
| 3    | -0.00020937                                        | -4.743291e-05 | 0.000295041  |
| 4    | 0                                                  | 0             | 0.000311872  |
| 5    | 0                                                  | 0             | 0.000299789  |
| 6    | -0.000129064                                       | -3.054071e-05 | 0.000283681  |
| 7    | -6.4832e-05                                        | -3.122721e-05 | 0.000305419  |
| 8    | 0                                                  | 0             | 0.000308619  |
| 9    | -3.76933e-05                                       | -1.815865e-05 | 0.000300168  |
| 10   | 0                                                  | 0             | -0.000312299 |
| 11   | 0                                                  | 0             | -0.000330784 |
| 12   | -7.02046e-05                                       | -1.637568e-05 | -0.000338938 |
| 13   | -0.000173286                                       | -3.254416e-05 | -0.000327367 |
| 14   | -0.000129019                                       | -3.293572e-05 | -0.000320281 |

| 15 | -1.67604e-05 | -1.681508e-05 | -0.000310093 |
|----|--------------|---------------|--------------|
| 16 | 0            | 0             | -0.000308153 |
| 17 | 0            | 0             | -0.00030512  |
| 18 | -5.31397e-06 | -5.318858e-06 | 0.000302924  |
| 19 | -1.93085e-05 | -8.692654e-06 | -0.00031502  |
| 20 | -4.09084e-05 | -1.292912e-05 | 0.000285751  |
| 21 | -7.71983e-05 | -2.133015e-05 | -0.000325604 |
| 22 | -0.000107388 | -3.334850e-05 | 0.000294904  |
| 23 | -5.22675e-05 | -2.180193e-05 | -0.000314256 |
| 24 | -1.52681e-05 | -1.522535e-05 | 0.000304884  |
| 25 | -9.74909e-06 | -9.770041e-06 | -0.000310883 |

## **Moment:**

- -0.2249
- -0.7498
- -0.2973

## Shear:

- -356.7252
- -314.9079

The adjusted 64-element cases are as follows:



Clamped Condition | Concentrated load

| Node  | Displacement | $(x v \theta \cdot m m)$                                       | rad respectively) |
|-------|--------------|----------------------------------------------------------------|-------------------|
| Tiouc | Displacement | $(\Lambda_{\bullet} V_{\bullet} V_{\bullet} III_{\bullet}III)$ | aa respectivelvi  |

| 3 -0.00437853   | -2.235432e-03 | -0.000388991 |
|-----------------|---------------|--------------|
| 6 -0.00165451   | -4.496880e-04 | -0.000201388 |
| 7 -0.000531158  | -3.980657e-04 | -0.000157669 |
| 9 -0.000296235  | -2.081630e-04 | -5.25982e-05 |
| 12 -0.000678465 | -1.968670e-04 | -0.000129623 |
| 13 -0.00286592  | -8.966442e-04 | -0.000255474 |
| 14 -0.00158274  | -8.640379e-04 | -0.000212531 |
| 15 -0.000115641 | -1.337759e-04 | -0.000109584 |
| 17 0            | 0             | -3.61589e-06 |
| 18 -1.31069e-05 | -2.923090e-05 | -8.30855e-06 |
| 19 -9.32589e-05 | -8.204353e-05 | -4.24036e-05 |
| 20 -0.000331896 | -1.473841e-04 | -7.62938e-05 |
| 21 -0.000842125 | -3.604627e-04 | -0.000102926 |

| 22 -0.00132854  | -6.665812e-04 | -0.000102401 |
|-----------------|---------------|--------------|
| 23 -0.00046956  | -3.391517e-04 | -9.18731e-05 |
| 24 -0.000106898 | -1.246622e-04 | -6.26952e-05 |
| 25 -5.90326e-05 | -7.678110e-05 | -2.30672e-05 |
| 29 0            | 0             | -0.000176768 |
| 30 -0.000270647 | 3.857172e-05  | -0.000263059 |
| 31 -0.00112118  | 1.996279e-05  | -0.000321571 |
| 32 -0.00222124  | 1.887711e-05  | -0.000372592 |
| 33 -0.0035262   | 3.401468e-05  | -0.000417139 |
| 34 -0.00231615  | 1.515159e-04  | 0.000184357  |
| 35 -0.000841925 | 1.049508e-04  | 0.00017739   |
| 36 -0.000207679 | 5.809869e-05  | 0.000151615  |
| 37 -9.17156e-06 | 1.006122e-05  | 7.81864e-05  |
| 41 0            | 0             | 1.20727e-05  |
| 42 -9.285e-08   | -4.483664e-06 | -1.01657e-05 |
| 43 -5.81467e-07 | 7.931281e-06  | 7.90327e-06  |
| 44 -1.04474e-05 | -2.151993e-05 | -1.78179e-05 |
| 45 -2.16213e-05 | 1.393222e-05  | -1.50191e-05 |
| 46 -5.17607e-05 | -4.787809e-05 | -5.80863e-05 |
| 47 -0.000123719 | -2.056732e-05 | -0.000116977 |
| 48 -0.000223866 | -8.275590e-05 | -5.43602e-05 |
| 49 -0.000486347 | -6.202206e-07 | -0.000223106 |
| 50 -0.000846774 | -2.861088e-04 | -0.000128571 |

| 51 -0.00121563  | -3.196472e-07 | -0.000250372 |
|-----------------|---------------|--------------|
| 52 -0.00163525  | -5.908222e-04 | -0.000161645 |
| 53 -0.00199974  | 1.363158e-05  | -0.000218957 |
| 54 -0.00238829  | -1.152172e-03 | -0.000156634 |
| 55 -0.00137376  | 1.173481e-04  | 4.38261e-05  |
| 56 -0.000910619 | -5.626918e-04 | -0.00014376  |
| 57 -0.000447238 | 8.196130e-05  | 0.000102815  |
| 58 -0.000268687 | -2.443170e-04 | -0.000113082 |
| 59 -7.67001e-05 | 3.616443e-05  | 8.60398e-05  |
| 60 -3.83758e-05 | -5.748452e-05 | -5.68629e-05 |
| 61 -8.48616e-06 | 9.924445e-06  | 3.07231e-05  |
| 62 -2.42649e-05 | -4.123489e-05 | -1.9072e-05  |
| 63 -5.03822e-06 | 9.694022e-06  | 2.61161e-06  |
| 64 -8.08145e-06 | -1.993077e-05 | -2.51253e-06 |
| 65 1.55685e-07  | 8.489393e-06  | -8.91258e-08 |
| 66 -3.37085e-05 | 1.562911e-05  | -1.88149e-05 |
| 67 -0.000186767 | -4.420144e-06 | -9.15935e-05 |
| 68 -0.000564338 | -5.952923e-06 | -0.000165115 |
| 69 -0.001074    | 1.398035e-05  | -0.000136808 |
| 70 -0.000751792 | 7.320676e-05  | -2.36089e-06 |
| 71 -0.000196396 | 5.057424e-05  | 5.01876e-05  |
| 72 -5.69548e-05 | 2.355290e-05  | 2.02714e-05  |
| 73 -2.24798e-05 | 1.606288e-05  | -8.23066e-06 |

| 74 -8.92479e-05 | -9.273427e-05 | -2.85267e-05 |
|-----------------|---------------|--------------|
| 75 -0.000181086 | 1.057865e-05  | -5.42279e-05 |
| 76 -0.000354646 | -1.941163e-04 | -6.72532e-05 |
| 77 -0.000505454 | 1.147633e-05  | -9.27618e-05 |
| 78 -0.000684845 | -3.884402e-04 | -7.88444e-05 |
| 79 -0.000353318 | 4.222687e-05  | -1.18208e-05 |
| 80 -0.0002004   | -1.811441e-04 | -5.65075e-05 |
| 81 -0.000124131 | 2.395508e-05  | -1.33989e-05 |

## **Moment:**

m =

0

0

0

# Shear:

s =

0

0



Clamped Condition | Distributed Load

#### **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

- 3 -0.000304063-3.145348e-05 -1.21833e-05
- 6 -0.000164276-2.105199e-05 -1.83106e-05
- 7 -9.52212e-05-2.179206e-05 -4.43907e-06
- 9 -4.15838e-05-1.050119e-05 -6.7021e-06
- 12 -7.56048e-05-1.316666e-05 -1.56969e-05
- 13 -0.000242441-2.722969e-05 -1.51759e-05
- 14 -0.000190984-2.764691e-05 -8.80161e-06
- 15 -2.65916e-05-1.335445e-05 -6.38431e-07
- 17 0 0 5.57456e-07
- 18 -2.53674e-06-1.651597e-06 -9.08644e-07
- 19 -1.29199e-05-4.075237e-06 -5.42694e-06
- 20 -3.79201e-05-7.672556e-06 -9.04933e-06
- 21 -9.37946e-05-1.599092e-05 -1.17287e-05
- 22 -0.000146708-2.255331e-05 -1.03361e-05

- 23 -7.08407e-05-1.653904e-05 -5.97062e-06
- 24 -1.96772e-05-9.560967e-06 -2.16886e-06
- 25 -1.02898e-05-5.275507e-06 -2.25384e-06
- 29 0 0 -1.90769e-05
- 30 -2.98011e-058.631662e-08 -2.90245e-05
- 31 -0.000118914-1.312675e-05 -2.6944e-05
- 32 -0.000204942-2.159665e-05 -2.22361e-05
- 33 -0.000274742-2.687021e-05 -1.70645e-05
- 34 -0.000245536-2.694118e-05 -1.38236e-05
- 35 -0.000140244-2.309583e-05 -8.84075e-06
- 36 -5.67853e-05-1.671307e-05 -3.32688e-06
- 37 -6.68259e-06-6.644788e-06 6.13797e-07
- 41 0 0 4.93019e-07
- 42 -1.12386e-07-1.418424e-07 -5.90308e-07
- 43 -5.06622e-07-2.278814e-07 -3.76747e-08
- 44 -1.66509e-06-9.762657e-07 -2.14082e-06
- 45 -3.44246e-06-7.752476e-07 -2.95081e-06
- 46 -6.32647e-06-2.173594e-06 -6.85851e-06
- 47 -1.42115e-05-5.697324e-06 -1.35804e-05
- 48 -2.49506e-05-5.010528e-06 -6.593e-06
- 49 -5.39393e-05-8.393111e-06 -2.34626e-05
- 50 -9.11664e-05-1.474602e-05 -1.44052e-05
- 51 -0.000126413-1.667883e-05 -2.09336e-05

- 52 -0.000161294-2.218759e-05 -1.4049e-05
- 53 -0.000192147-2.292935e-05 -1.68804e-05
- 54 -0.000220379-2.762838e-05 -1.14029e-05
- 55 -0.000169604-2.311021e-05 -1.25183e-05
- 56 -0.000124051-2.243933e-05 -7.40404e-06
- 57 -8.37873e-05-1.795850e-05 -6.95245e-06
- 58 -5.01084e-05-1.565087e-05 -3.38172e-06
- 59 -2.38941e-05-1.068959e-05 -2.0379e-06
- 60 -6.5364e-06-6.579595e-06 -7.68701e-07
- 61 -5.12877e-06-5.077647e-06 -6.45152e-07
- 62 -3.83668e-06-3.895964e-06 -6.67511e-07
- 63 -2.57694e-06-2.521371e-06 -6.00164e-07
- 64 -1.40482e-06-1.462891e-06 -6.0146e-07
- 65 -4.90323e-07-4.509853e-07 -8.57924e-07
- 66 -6.57932e-06-2.323927e-06 -3.86932e-06
- 67 -2.36725e-05-6.594790e-06 -1.15753e-05
- 68 -6.4781e-05-1.159200e-05 -1.71983e-05
- 69 -0.000120955-1.810568e-05 -1.53482e-05
- 70 -0.000105834-1.833035e-05 -1.0845e-05
- 71 -4.18672e-05-1.251022e-05 -4.87568e-06
- 72 -1.50171e-05-7.199496e-06 -2.45893e-06
- 73 -5.98529e-06-3.050139e-06 -2.00237e-06
- 74 -1.416e-05-5.219870e-06 -4.25359e-06

75 -2.6856e-05-7.410861e-06 -7.95131e-06

76 -4.3669e-05-9.505942e-06 -9.00129e-06

77 -6.50065e-05-1.281233e-05 -1.24158e-05

78 -8.62046e-05-1.663628e-05 -8.84544e-06

79 -5.65738e-05-1.311566e-05 -8.24315e-06

80 -3.27426e-05-1.064260e-05 -4.29309e-06

81 -2.34136e-05-7.745032e-06 -5.0642e-06

### **Moment:**

0

0

0

#### **Shear:**

0

0



Simply Supported Condition | Concentrated Load

# **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

- 1 0 0 0.000341245
- 2 0 0 0.000457983
- 3 -0.00535221-3.150193e-03 0.00101889
- 4 0 0 0.00177395
- 5 0 0 0.00051937
- 6 -0.00239248-9.432349e-04 0.000591188
- 7 -0.000894773-7.226541e-04 0.00132854
- 8 0 0 0.000626819
- 9 -0.000612206-4.283374e-04 0.000670879
- 10 0 0 0.000489295
- 11 0 0 0.000493819
- 12 -0.00117125-4.384683e-04 0.00048988
- 13 -0.00372233-1.622210e-03 0.00077407

- 14 -0.00222278-1.420613e-03 0.00123245
- 15 -0.000256214-2.665854e-04 0.00144557
- 16 0 0 0.0010365
- 17 0 0 0.000409269
- 18 -9.09489e-05-8.648309e-05 0.000533782
- 19 -0.000323915-2.072937e-04 0.000555614
- 20 -0.000699035-3.352841e-04 0.000529037
- 21 -0.00137045-7.125673e-04 0.000646795
- 22 -0.00193351-1.162140e-03 0.000883936
- 23 -0.000821061-6.352202e-04 0.00088036
- 24 -0.000240108-2.514297e-04 0.000917206
- 25 -0.000173329-1.724282e-04 0.000669804
- 26 0 0 -0.000445128
- 27 0 0 -0.000602125
- 28 0 0 -0.000750492
- 29 0 0 -0.000928085
- 30 -0.0005643759.484317e-05 -0.00103254
- 31 -0.00171512.945603e-04 -0.00111965
- 32 -0.002932255.145786e-04 -0.00130429
- 33 -0.004274177.396768e-04 -0.00161079
- 34 -0.002941447.182805e-04 -0.0012533
- 35 -0.001218854.064053e-04 -0.00129143
- 36 -0.0003543161.759155e-04 -0.00135934

- 37 -1.11269e-059.811772e-06 -0.00154355
- 38 0 0 -0.00131192
- 39 0 0 -0.00079056
- 40 0 0 -0.000488802
- 41 0 0 -0.000350766
- 42 -1.37567e-05-1.926240e-05 0.000441419
- 43 -3.17891e-054.734772e-06 -0.000531521
- 44 -9.60873e-05-7.146367e-05 0.000516658
- 45 -0.0001432452.626163e-05 -0.000673335
- 46 -0.00024942-1.343915e-04 0.000511748
- 47 -0.0003299755.595595e-05 -0.000834376
- 48 -0.000463837-1.925217e-04 0.000474641
- 49 -0.0008890861.506024e-04 -0.000963877
- 50 -0.00139579-6.053320e-04 0.000543337
- 51 -0.001776973.164092e-04 -0.00107314
- 52 -0.00232428-1.108428e-03 0.000699485
- 53 -0.002613554.966788e-04 -0.00124813
- 54 -0.00315988-1.834486e-03 0.000987267
- 55 -0.001869085.276632e-04 -0.00110531
- 56 -0.00140058-9.859701e-04 0.000996324
- 57 -0.0007035572.809893e-04 -0.00104688
- 58 -0.000509717-4.683334e-04 0.00104548
- 59 -0.000138948.980927e-05 -0.00109667

- 60 -9.76793e-05-1.190680e-04 0.00116638
- 61 -1.14201e-051.027677e-05 -0.000974234
- 62 -6.81911e-05-8.898646e-05 0.000781252
- 63 -1.53997e-053.184790e-06 -0.000666521
- 64 -4.10986e-05-5.621603e-05 0.000550762
- 65 -1.09271e-05-2.627330e-07 -0.000498799
- 66 -0.000151223.085754e-05 -0.000634127
- 67 -0.0004514498.355123e-05 -0.000777194
- 68 -0.0009763481.779752e-04 -0.000892663
- 69 -0.001554293.258747e-04 -0.00100449
- 70 -0.001122713.414715e-04 -0.000989041
- 71 -0.0003461841.535214e-04 -0.000926527
- 72 -0.0001190825.042689e-05 -0.000785716
- 73 -8.62096e-052.050824e-05 -0.000613029
- 74 -0.000277266-2.179994e-04 0.000593247
- 75 -0.0004093089.116753e-05 -0.000726917
- 76 -0.000730534-4.177711e-04 0.000584339
- 77 -0.0008563491.908375e-04 -0.00085787
- 78 -0.00113965-7.315710e-04 0.000748206
- 79 -0.0006066491.910741e-04 -0.000838385
- 80 -0.000425705-3.652619e-04 0.000751368
- 81 -0.0002717598.165231e-05 -0.000733403

## **Moment:**

- -0.3775
- -1.2582
- -0.3281

# Shear:

- -393.7457
- -528.4432



Simply Supported Condition | Distributed Load

#### **Nodal Displacements:**

Node Displacement( $x,y,\theta$ ; m,m,rad respectively)

- 1 0 0 9.18412e-05
- 2 0 0 5.39798e-05
- 3 -0.000417651-4.109599e-05 7.78724e-05
- 4 0 0 9.28462e-05
- 5 0 0 8.12704e-05
- 6 -0.00026343-2.829449e-05 6.62372e-05
- 7 -0.000135147-3.027574e-05 8.75105e-05
- 8 0 0 9.17833e-05
- 9 -8.01676e-05-1.805977e-05 8.31638e-05
- 10 0 0 8.90139e-05
- 11 0 0 6.97949e-05
- 12 -0.000144837-1.665828e-05 5.87398e-05
- 13 -0.000352282-3.615717e-05 7.34542e-05
- 14 -0.000267167-3.690597e-05 8.18729e-05

- 15 -3.75179e-05-1.887852e-05 9.2422e-05
- 16 0 0 9.2149e-05
- 17 0 0 9.16698e-05
- 18 -1.17807e-05-5.637470e-06 8.89589e-05
- 19 -4.23209e-05-9.628170e-06 8.16897e-05
- 20 -8.68122e-05-1.291755e-05 7.12855e-05
- 21 -0.000162037-2.355000e-05 7.51425e-05
- 22 -0.00022115-3.126018e-05 7.92316e-05
- 23 -0.000111415-2.472547e-05 8.50233e-05
- 24 -3.21342e-05-1.525293e-05 8.96396e-05
- 25 -2.25709e-05-1.077934e-05 8.92727e-05
- 26 0 0 -9.2732e-05
- 27 0 0 -9.84577e-05
- 28 0 0 -0.000108259
- 29 0 0 -0.00012165
- 30 -7.4897e-05-9.035337e-06 -0.00012765
- 31 -0.000207827-2.199562e-05 -0.000120999
- 32 -0.000311282-3.074914e-05 -0.000113741
- 33 -0.000386836-3.593227e-05 -0.000108016
- 34 -0.000340339-3.622532e-05 -0.000105059
- 35 -0.000197843-3.237619e-05 -9.99956e-05
- 36 -8.06212e-05-2.420390e-05 -9.45798e-05
- 37 -9.27818e-06-9.351959e-06 -9.12348e-05

- 38 0 0 -9.21967e-05
- 39 0 0 -9.14946e-05
- 40 0 0 -9.10312e-05
- 41 0 0 -9.07607e-05
- 42 -1.56149e-06-1.561067e-06 9.0084e-05
- 43 -5.94754e-06-2.827943e-06 -9.38722e-05
- 44 -1.27218e-05-3.954999e-06 8.46332e-05
- 45 -2.1457e-05-4.789194e-06 -0.000101611
- 46 -3.20136e-05-5.778219e-06 7.51081e-05
- 47 -4.42432e-05-6.460208e-06 -0.000112876
- 48 -5.82792e-05-7.585771e-06 6.21803e-05
- 49 -0.00011396-1.421915e-05 -0.000118862
- 50 -0.000165016-2.081529e-05 6.70985e-05
- 51 -0.000210374-2.476499e-05 -0.00011328
- 52 -0.000250176-3.035272e-05 7.31448e-05
- 53 -0.000284287-3.184419e-05 -0.000107957
- 54 -0.000314104-3.679311e-05 7.81566e-05
- 55 -0.000245137-3.221415e-05 -0.000103243
- 56 -0.000181693-3.126830e-05 8.31917e-05
- 57 -0.000124183-2.628273e-05 -9.78268e-05
- 58 -7.50005e-05-2.294229e-05 8.83158e-05
- 59 -3.58753e-05-1.620277e-05 -9.34227e-05
- 60 -9.87285e-06-9.807652e-06 9.11887e-05

- 61 -8.41449e-06-8.461167e-06 -9.26027e-05
- 62 -7.27294e-06-7.238992e-06 9.07992e-05
- 63 -5.8837e-06-5.908434e-06 -9.24782e-05
- 64 -4.54965e-06-4.535475e-06 9.03833e-05
- 65 -3.06739e-06-3.077633e-06 -9.25068e-05
- 66 -2.50545e-05-7.628443e-06 -9.78977e-05
- 67 -6.29233e-05-1.096193e-05 -0.000106977
- 68 -0.000126294-1.792585e-05 -0.000110079
- 69 -0.000193452-2.640115e-05 -0.000106239
- 70 -0.000163017-2.684267e-05 -0.000101836
- 71 -6.70301e-05-1.962584e-05 -9.62472e-05
- 72 -2.73482e-05-1.283891e-05 -9.37623e-05
- 73 -1.72712e-05-8.186911e-06 -9.38088e-05
- 74 -3.68626e-05-1.141856e-05 8.544e-05
- 75 -6.19198e-05-1.365675e-05 -0.000100631
- 76 -9.19704e-05-1.641508e-05 7.72578e-05
- 77 -0.000118359-2.010839e-05 -0.00010444
- 78 -0.000142177-2.490095e-05 8.03137e-05
- 79 -9.65336e-05-2.077376e-05 -9.92311e-05
- 80 -5.79796e-05-1.780963e-05 8.65278e-05
- 81 -4.77253e-05-1.436133e-05 -9.70759e-05

## **Moment:**

-0.0445

-0.1483

-0.0883

## Shear:

-105.9709

-62.2846

**Comments:** As it can be seen in most of the graphs above the plates have become smoother since the integration was changed to a 1x1 basis. The values, if analyzed also decrease in size (pay close attention to the values of inner elements, that created "kinks" in the plates), which is the reason why the plates look smoother in the first place.

## VI. Convergence studies on plate

For the analysis as a whole, it seems that when the number of elements increases, the difference between exact and MATLAB-simulated values also increases. Concentrated load tended to produce more accurate values in MATLAB than distributed, which makes sense considering that we approximated the distributed load with point loads as opposed to in the case of the concentrated loading, where the exact value and point of application was put into the code.

|    |           |      | Exact        | MATLAB       | Ratio    | Log NEL     | Average<br>Ratio |
|----|-----------|------|--------------|--------------|----------|-------------|------------------|
| 1  | Clamped   | Dist | -0.000000046 | -2.32E-05    | 5.04E+02 | 0           | 3.00E+02         |
|    |           | Con  | -0.000203667 | -0.000371008 | 1.82E+00 | 0           |                  |
|    | Simple    | Dist | -0.00000148  | -0.000101925 | 6.89E+02 | 0           |                  |
|    |           | Con  | -0.000422333 | -0.00163     | 3.86E+00 | 0           |                  |
| 4  | 4 Clamped | Dist | -0.00000046  | -4.39E-05    | 9.55E+02 | 0.602059991 | 3.63E+02         |
|    |           | Con  | -0.000203667 | -0.000658963 | 3.24E+00 | 0.602059991 |                  |
|    | Simple    | Dist | -0.00000148  | -7.28E-05    | 4.92E+02 | 0.602059991 |                  |
|    |           | Con  | -0.000422333 | -0.00121781  | 2.88E+00 | 0.602059991 |                  |
| 16 | Clamped   | Dist | -0.000000046 | -8.59E-05    | 1.87E+03 | 1.204119983 | 6.93E+02         |
|    |           | Con  | -0.000203667 | -0.00131106  | 6.44E+00 | 1.204119983 |                  |
|    | Simple    | Dist | -0.000000148 | -0.000132698 | 8.97E+02 | 1.204119983 |                  |
|    |           | Con  | -0.000422333 | -0.000132698 | 3.14E-01 | 1.204119983 |                  |
| 64 | Clamped   | Dist | -0.00000046  | -0.000168829 | 3.67E+03 | 1.806179974 | 1.37E+03         |
|    |           | Con  | -0.000203667 | -0.00255106  | 1.25E+01 |             |                  |
|    | Simple    | Dist | -0.00000148  | -0.000264692 | 1.79E+03 |             |                  |
|    |           | Con  | -0.000422333 | -0.003394    | 8.04E+00 |             |                  |

The following graphs show the various permutations and each ratio vs. log(nel) in the permutation represented as a point.









#### VII. Code changes

Across the analysis, we created some separate files that where a single one before, such as shape\_quad.m, which was replaced by shape\_quad\_bending.m and shape\_quad\_shear.m to calculate the bending and shear stiffness element contributions separately and then add them together in Ke Plate.m.

The following are the snippets of code that were altered to fit the context and requirements of the current analysis (for the case of new functions, the entire code is included, and for the case of preexisting programs, only the snippets that were modified are highlighted in yellow)

```
Shape2_quad.m: for shape and derivative calculations (please refer to
attached file in accompanying .zip folder)
function [N, Nr, Ns] = shape2\_quad(r,s)
    \%0 = [1; 1; 1; 1];2
    N = zeros(1,4);
    Nr = zeros(1,4);
    Ns = zeros(1,4);
    N1 = 1/4*(1-r(1))*(1-s(1));
    N2 = 1/4*(1+r(2))*(1-s(2));
    N3 = 1/4*(1+r(3))*(1+s(3));
    N4 = 1/4*(1-r(4))*(1+s(4));
    N(1,1) = N1;
    N(1,2) = N2;
    N(1,3) = N3;
    N(1,4) = N4;
    Nr(1,1) = 1/4*(-1+s(1));
    Nr(1,2) = 1/4*(1-s(2));
    Nr(1,3) = 1/4*(1+s(3));
    Nr(1,4) = 1/4*(-1-s(4));
```

```
Ns(1,1) = 1/4*(-1+r(1));
    Ns(1,2) = 1/4*(-1-r(2));
    Ns(1,3) = 1/4*(1+r(3));
    Ns(1,4) = 1/4*(1-r(4));
Shape_quad_bending.m: to assemble the B matrix for Bending contributions.
function [Bblarge] = shape_quad_bending(r, s, xn, ien, nen)
    [N, Nr, Ns] = shape2\_quad(r,s);
    Bb = zeros(3,3,nen);
    for i=1:nen
    Bb(1,2,i) = Nr(1,i);
    Bb(2,3,i) = Ns(1,i);
    Bb(3,2,i) = Ns(1,i);
    Bb(3,3,i) = Nr(1,i);
    %disp(Bb);
    end
    Bblarge=horzcat(Bb(:,:,1), Bb(:,:,2), Bb(:,:,3), Bb(:,:,4));
    disp(Bblarge);
end
Shape_quad_shear.m: to assemble the B matrix for Shear contributions.
function [Bslarge] = shape_quad_shear(r, s, xn, ien, nen)
x = zeros(1, nen);
y = zeros(1,nen);
    for i= 1:nen
        x(1,i) = xn(1, ien(i));
        y(1,i) = xn(2, ien(i));
    end
    [N, Nr, Ns] = shape2\_quad(r,s);
    Bs = zeros(2,2,nen);
```

```
for i=1:nen
        Bs(1,1,i)=Nr(1,i);
        Bs(1,2,i)=-N(1,i);
        Bs(2,1,i)=Ns(1,i);
        Bs(2,3,i)=-N(1,i);
    end
    Bslarge=horzcat(Bs(:,:,1), Bs(:,:,2), Bs(:,:,3), Bs(:,:,4));
    disp(Bslarge);
end
Jacobian_2d.m: to assemble the Jacobian matrix containing individual Jacobian
values for the corner points of each quad.
function [J] = jacobian_2d(r, s, x, y, nen)
    J = zeros(2);
    J(1,1) = 1/4*((1-s(1))*(x(2)-x(1)) + (1+s(1))*(x(3)-x(4)));
    J(1,2) = 1/4*((1-s(2))*(y(2)-y(1)) + (1+s(2))*(y(3)-y(4)));
    J(2,1) = \frac{1}{4}((1-r(3))*(x(4)-x(1)) + (1+r(3))*(x(3)-x(2)));
    J(2,2) = \frac{1}{4}((1-r(4))*(y(4)-y(1)) + (1+r(4))*(y(3)-y(2)));
end
Ke_plate.m: to compute the final element stiffness matrix using the
contributions and calculated values generated by the functions above.
function [ke]=Ke_plate(r,s,t,v,E,l,xn,ien,nen,ndf,nsd,point,weight,nglx,ngly)
k=5/6;
x = zeros(1, nen);
y = zeros(1, nen);
    for i= 1:nen
        x(1,i) = xn(1, ien(i));
        y(1,i) = xn(2, ien(i));
    end
        Db=zeros(3,3);
        Db=(3.2967e7)*[1 \lor 0; \lor 1 0; 0 0 0.5*(1-\lor)];
        Ds=zeros(2,2);
        Ds=(1.15385e7)*[1 0; 0 1];
        [J] = jacobian_2d(r,s, x, y, nen);
```

```
detJ = det(J);
        ke = zeros(12,12);
        keb = zeros(12,12);
        kes = zeros(12,12);
                for j=1:1
                    [Bblarge] = shape_quad_bending(r, s, xn, ien, nen);
                    [Bslarge] = shape_quad_shear(r, s, xn, ien, nen);
                    disp(Bblarge);
                    disp(Bslarge);
                    kjb=0.6220*Bblarge.'*Db*Bblarge;
                    kjs=0.6220*Bslarge.'*Ds*Bslarge;
                    keb = keb+t^3/12*kjb;
                    kes = kes+t*k*kjs;
                end
       ke = keb+kes;
       disp(keb);
       disp(kes);
       disp(ke);
end
```

```
% final_project.m - 1/12/16
                                     %
% author: Tehila Stone | Theo Dimitrasopoulos
                                     %
clear; % removes all variables from the workspace.
DATA
% Material %
L = 10; % meters
t = 0.1; % meters
E = 30.0e6; \% MPa
v = 0.3;
Other %
icase = 0;
%%%%%%%%
% Mesh %
%%%%%%%%
nsd=2;
        % number of space dimensions
ndf=3;
        % number of freedom per node
       % number of element nodes
nen=4;
nel=64;
        % number of elements. Changes between 1,4,16 and 64
nnp=81;
       % number of nodal points. Changes between 4,9,25 and 81
nglx = 2;
ngly = 2;
nglz = 0;
```

```
% Nodal coordinates %
% xn(i,N):= coordinate i for node N
% N=1,...,nnp
\% i=1,...,nsd
xn=zeros(nsd,nnp);
% 1 or more elements
xn(1,2) = 5;
xn(1,3) = 5;
xn(2,3) = 5;
xn(2,4) = 5;
% 4 or more elements
xn(1,5) = 2.5;
xn(1,6) = 5;
xn(2,6) = 2.5;
xn(1,7) = 2.5;
xn(2,7) = 5;
xn(2,8) = 2.5;
xn(1,9) = 2.5;
xn(2,9) = 2.5;
% 16 or more elements
xn(1,10)=1.25;
xn(1,11)=3.75;
xn(1,12)=5;
xn(2,12)=1.25;
xn(1,13)=5;
xn(2,13)=3.75;
xn(1,14)=3.75;
xn(2,14)=5;
xn(1,15)=1.25;
xn(2,15)=5;
xn(2,16)=3.75;
xn(2,17)=1.25;
xn(1,18)=1.25;
xn(2,18)=1.25;
xn(1,19)=2.5;
xn(2,19)=1.25;
xn(1,20)=3.75;
xn(2,20)=1.25;
xn(1,21)=3.75;
xn(2,21)=2.5;
xn(1,22)=3.75;
```

```
xn(2,22)=3.75;
xn(1,23)=2.5;
xn(2,23)=3.75;
xn(1,24)=1.25;
xn(2,24)=3.75;
xn(1,25)=1.25;
xn(2,25)=2.5;
%64 or more elements
xn(1,26)=0.625;
xn(1,27)=1.875;
xn(1,28)=3.125;
xn(1,29)=4.375;
xn(1,30)=5;
xn(2,30)=0.625;
xn(1,31)=5;
xn(2,31)=1.875;
xn(1,32)=5;
xn(2,32)=3.125;
xn(1,33)=5;
xn(2,33)=4.375;
xn(1,34)=4.375;
xn(2,34)=5;
xn(1,35)=3.125;
xn(2,35)=5;
xn(1,36)=1.875;
xn(2,36)=5;
xn(1,37)=0.625;
xn(2,37)=5;
xn(2,38)=4.375;
xn(2,39)=3.125;
xn(2,40)=1.875;
xn(2,41)=0.625;
xn(1,42)=0.625;
xn(2,42)=0.625;
xn(1,43)=1.25;
xn(2,43)=0.625;
xn(1,44)=1.875;
xn(2,44)=0.625;
xn(1,45)=2.5;
xn(2,45)=0.625;
xn(1,46)=3.125;
xn(2,46)=0.625;
xn(1,47)=3.75;
xn(2,47)=0.625;
xn(1,48)=4.375;
xn(2,48)=0.625;
xn(1,49)=4.375;
```

```
xn(2,49)=1.25;
xn(1,50)=4.375;
xn(2,50)=1.875;
xn(1,51)=4.375;
xn(2,51)=2.5;
xn(1,52)=4.375;
xn(2,52)=3.125;
xn(1,53)=4.375;
xn(2,53)=3.75;
xn(1,54)=4.375;
xn(2,54)=4.375;
xn(1,55)=3.75;
xn(2,55)=4.375;
xn(1,56)=3.125;
xn(2,56)=4.375;
xn(1,57)=2.5;
xn(2,57)=4.375;
xn(1,58)=1.875;
xn(2,58)=4.375;
xn(1,59)=1.25;
xn(2,59)=4.375;
xn(1,60)=0.625;
xn(2,60)=4.375;
xn(1,61)=0.625;
xn(2,61)=3.75;
xn(1,62)=0.625;
xn(2,62)=3.125;
xn(1,63)=0.625;
xn(2,63)=2.5;
xn(1,64)=0.625;
xn(2,64)=1.875;
xn(1,65)=0.625;
xn(2,65)=1.25;
xn(1,66)=1.875;
xn(2,66)=1.25;
xn(1,67)=3.125;
xn(2,67)=1.25;
xn(1,68)=3.75;
xn(2,68)=1.875;
xn(1,69)=3.75;
xn(2,69)=3.125;
xn(1,70)=3.125;
xn(2,70)=3.75;
xn(1,71)=1.875;
xn(2,71)=3.75;
xn(1,72)=1.25;
xn(2,72)=3.125;
xn(1,73)=1.25;
```

```
xn(2,73)=1.875;
xn(1,74)=1.875;
xn(2,74)=1.875;
xn(1,75)=2.5;
xn(2,75)=1.875:
xn(1,76)=3.125;
xn(2,76)=1.875;
xn(1,77)=3.125;
xn(2,77)=2.5;
xn(1,78)=3.125;
xn(2,78)=3.125;
xn(1,79)=2.5;
xn(2,79)=3.125;
xn(1,80)=1.875;
xn(2,80)=3.125;
xn(1,81)=1.875;
xn(2,81)=2.5;
<mark>%%%%%%%%%%%%%</mark>
% Connectivity %
<mark>%%%%%%%%%%%%%</mark>
\% ien(a,e)=N
% N: global node number - N=1,...,nnp
% e: element number - e=1,...,nel
% a: local node number - a=1,...,nen
% each set will be activated separately
ien=zeros(nen,nel);
% 1 element
\% ien(1,1) = 1;
\% ien(2,1) = 2;
\% ien(3,1) = 3;
\% ien(4,1) = 4;
% 4 elements
\% ien(1,1)=1;
                   ien(1,2)=5;
                                    ien(1,3)=9;
                                                     ien(1,4)=8;
\% ien(2,1)=5;
                   ien(2,2)=2;
                                    ien(2,3)=6;
                                                     ien(2,4)=9;
                                    ien(3,3)=3;
\% ien(3,1)=9;
                   ien(3,2)=6;
                                                     ien(3,4)=7;
                                    ien(4,3)=7;
% ien(4,1)=8;
                   ien(4,2)=9;
                                                     ien(4,4)=4;
% 16 elements
\% ien(1,1)=1;
                   ien(1,2)=10;
                                    ien(1,3)=5;
                                                     ien(1,4)=11;
\% ien(2,1)=10;
                   ien(2,2)=5;
                                    ien(2,3)=11;
                                                     ien(2,4)=2;
\% ien(3,1)=18;
                   ien(3,2)=19;
                                    ien(3,3)=20;
                                                     ien(3,4)=12;
\% ien(4,1)=17;
                   ien(4,2)=18;
                                    ien(4,3)=19;
                                                     ien(4,4)=20;
```

```
\% ien(1,5)=20;
                  ien(1,6)=21;
                                   ien(1,7)=22;
                                                    ien(1,8)=23;
\% ien(2,5)=12;
                  ien(2,6)=6;
                                   ien(2,7)=13;
                                                    ien(2,8)=22;
\% ien(3,5)=6;
                  ien(3,6)=13;
                                   ien(3,7)=3;
                                                    ien(3,8)=14;
\% ien(4,5)=21;
                  ien(4,6)=22;
                                   ien(4,7)=14;
                                                    ien(4,8)=7;
\% ien(1,9)=24;
                  ien(1,10)=16;
                                   ien(1,11)=8;
                                                    ien(1,12)=17;
\% ien(2,9)=23;
                  ien(2,10)=24;
                                   ien(2,11)=25;
                                                    ien(2,12)=18;
\% ien(3,9)=7;
                  ien(3,10)=15;
                                   ien(3,11)=24;
                                                    ien(3,12)=25;
\% ien(4,9)=15;
                  ien(4,10)=4;
                                   ien(4,11)=16;
                                                    ien(4,12)=8;
\% ien(1,13)=18;
                  ien(1,14)=19;
                                                    ien(1,16)=25;
                                   ien(1,15)=9;
% ien(2,13)=19;
                  ien(2,14)=20;
                                   ien(2,15)=21;
                                                    ien(2,16)=9;
\% ien(3,13)=9;
                  ien(3,14)=21;
                                   ien(3,15)=22;
                                                    ien(3,16)=23;
\% ien(4,13)=25;
                  ien(4,14)=9;
                                   ien(4,15)=23;
                                                    ien(4,16)=24;
% 64 elements
ien(1,1)=1;
                ien(1,2)=26;
                                 ien(1,3)=10;
                                                  ien(1,4)=27;
                ien(2,2)=10;
ien(2,1)=26;
                                 ien(2,3)=27;
                                                  ien(2,4)=5;
ien(3,1)=42;
                ien(3,2)=43;
                                 ien(3,3)=44;
                                                  ien(3,4)=45;
ien(4,1)=41;
                ien(4,2)=42;
                                 ien(4,3)=43;
                                                  ien(4,4)=44;
ien(1,5)=5;
               ien(1.6)=28:
                                ien(1,7)=11;
                                                  ien(1,8)=29;
                                 ien(2,7)=29;
ien(2,5)=28;
                ien(2,6)=11;
                                                  ien(2,8)=2;
ien(3,5)=46;
                ien(3,6)=47;
                                 ien(3,7)=48;
                                                  ien(3,8)=30;
ien(4,5)=45;
                ien(4,6)=46;
                                 ien(4,7)=47;
                                                  ien(4,8)=48;
                ien(1,10)=49;
                                                    ien(1,12)=51;
ien(1,9)=48;
                                  ien(1,11)=50;
ien(2,9)=30;
                ien(2,10)=12;
                                  ien(2,11)=31;
                                                    ien(2,12)=6;
ien(3,9)=12;
                ien(3,10)=31;
                                  ien(3,11)=6;
                                                    ien(3,12)=32;
ien(4,9)=49;
                ien(4.10)=50:
                                  ien(4,11)=51;
                                                    ien(4,12)=52;
ien(1,13)=52;
                 ien(1,14)=53;
                                   ien(1,15)=54;
                                                     ien(1,16)=55;
ien(2,13)=32;
                 ien(2,14)=13;
                                   ien(2,15)=33;
                                                     ien(2,16)=54;
                 ien(3,14)=33;
                                                     ien(3,16)=34;
ien(3,13)=13;
                                   ien(3,15)=3;
ien(4,13)=53;
                 ien(4,14)=54;
                                   ien(4,15)=34;
                                                     ien(4,16)=14;
                                                     ien(1,20)=59;
ien(1,17)=56;
                 ien(1,18)=57;
                                   ien(1,19)=58;
ien(2,17)=55;
                 ien(2,18)=56;
                                   ien(2,19)=57;
                                                     ien(2,20)=58;
                                                     ien(3,20)=36;
ien(3,17)=14;
                 ien(3,18)=35;
                                   ien(3,19)=7;
ien(4,17)=35;
                 ien(4,18)=7;
                                   ien(4,19)=36;
                                                      ien(4,20)=15;
ien(1,21)=60;
                 ien(1,22)=38;
                                   ien(1,23)=16;
                                                     ien(1,24)=39;
ien(2,21)=59;
                 ien(2,22)=60;
                                   ien(2,23)=61;
                                                     ien(2,24)=62;
ien(3,21)=15;
                 ien(3,22)=37;
                                   ien(3,23)=60;
                                                     ien(3,24)=61;
ien(4,21)=37;
                 ien(4,22)=4;
                                   ien(4,23)=38;
                                                     ien(4,24)=16;
ien(1,25)=8;
                 ien(1,26)=40;
                                ien(1,27)=17; ien(1,28)=41;
```

| ien(2,25)=63; | ien(2,26)=64; | ien(2,27)=65; | ien(2,28)=42; |
|---------------|---------------|---------------|---------------|
| ien(3,25)=62; | ien(3,26)=63; | ien(3,27)=64; | ien(3,28)=65; |
| ien(4,25)=39; | ien(4,26)=8;  | ien(4,27)=40; | ien(4,28)=17; |
|               |               |               |               |
| ien(1,29)=42; | ien(1,30)=43; | ien(1,31)=44; | ien(1,32)=45; |
| ien(2,29)=43; | ien(2,30)=44; | ien(2,31)=45; | ien(2,32)=46; |
| ien(3,29)=18; | ien(3,30)=66; | ien(3,31)=19; | ien(3,32)=67; |
| ien(4,29)=65; | ien(4,30)=18; | ien(4,31)=66; | ien(4,32)=19; |
|               |               |               |               |
| ien(1,33)=46; | ien(1,34)=47; | ien(1,35)=20; | ien(1,36)=68; |
| ien(2,33)=47; | ien(2,34)=48; | ien(2,35)=49; | ien(2,36)=50; |
| ien(3,33)=20; | ien(3,34)=49; | ien(3,35)=50; | ien(3,36)=51; |
| ien(4,33)=67; | ien(4,34)=20; | ien(4,35)=68; | ien(4,36)=21; |
|               |               |               |               |
| ien(1,37)=21; | ien(1,38)=69; | ien(1,39)=22; | ien(1,40)=70; |
| ien(2,37)=51; | ien(2,38)=52; | ien(2,39)=53; | ien(2,40)=22; |
| ien(3,37)=52; | ien(3,38)=53; | ien(3,39)=54; | ien(3,40)=55; |
| ien(4,37)=69; | ien(4,38)=22; | ien(4,39)=55; | ien(4,40)=56; |
|               |               |               |               |
| ien(1,41)=23; | ien(1,42)=71; | ien(1,43)=24; | ien(1,44)=61; |
| ien(2,41)=70; | ien(2,42)=23; | ien(2,43)=71; | ien(2,44)=24; |
| ien(3,41)=56; | ien(3,42)=57; | ien(3,43)=58; | ien(3,44)=59; |
| ien(4,41)=57; | ien(4,42)=58; | ien(4,43)=59; | ien(4,44)=60; |
| , , , , ,     | , , , ,       | , , , ,       | , , , ,       |
| ien(1,45)=62; | ien(1,46)=63; | ien(1,47)=64; | ien(1,48)=65; |
| ien(2,45)=72; | ien(2,46)=25; | ien(2,47)=73; | ien(2,48)=18; |
| ien(3,45)=24; | ien(3,46)=72; | ien(3,47)=25; | ien(3,48)=73; |
| ien(4,45)=61; | ien(4,46)=62; | ien(4,47)=63; | ien(4,48)=64; |
|               |               |               |               |
| ien(1,49)=18; | ien(1,50)=66; | ien(1,51)=19; | ien(1,52)=67; |
| ien(2,49)=66; | ien(2,50)=19; | ien(2,51)=67; | ien(2,52)=20; |
| ien(3,49)=74; | ien(3,50)=75; | ien(3,51)=76; | ien(3,52)=68; |
| ien(4,49)=73; | ien(4,50)=74; | ien(4,51)=75; | ien(4,52)=76; |
|               |               |               |               |
| ien(1,53)=76; | ien(1,54)=77; | ien(1,55)=78; | ien(1,56)=79; |
| ien(2,53)=68; | ien(2,54)=21; | ien(2,55)=69; | ien(2,56)=78; |
| ien(3,53)=21; | ien(3,54)=69; | ien(3,55)=22; | ien(3,56)=70; |
| ien(4,53)=77; | ien(4,54)=78; | ien(4,55)=70; | ien(4,56)=23; |
|               |               | , ,           |               |
| ien(1,57)=80; | ien(1,58)=72; | ien(1,59)=25; | ien(1,60)=73; |
| ien(2,57)=79; | ien(2,58)=80; | ien(2,59)=81; | ien(2,60)=74; |
| ien(3,57)=23; | ien(3,58)=71; | ien(3,59)=80; | ien(3,60)=81; |
| ien(4,57)=71; | ien(4,58)=24; | ien(4,59)=72; | ien(4,60)=25; |
| ,             | , , , , ,     |               |               |
| ien(1,61)=74; | ien(1,62)=75; | ien(1,63)=9;  | ien(1,64)=81; |
| ien(2,61)=75; | ien(2,62)=76; | ien(2,63)=77; | ien(2,64)=9;  |
| - 3(-, 3-) ,  | (-,0-) . 0,   | (-,00),       | (-,0.)        |

```
ien(3,61)=9;
              ien(3,62)=77;
                               ien(3,63)=78;
                                               ien(3,64)=79;
ien(4,61)=81; ien(4,62)=9; ien(4,63)=79; ien(4,64)=80;
<mark>%%%%%%%%%%%%%%%%%%%%%%%%</mark>
% Boundary conditions %
<mark>%%%%%%%%%%%%%%%%%</mark>
% prescribed displacement (essential boundary condition)
% idb(i,N)=1 if the degree of freedom i of the node N is prescribed
         =0 otherwise
% 1) initialize idb to 0
idb=zeros(ndf,nnp);
% 2) enter the flag for prescribed displacement boundary conditions
% 1 or more elements
idb(1,1) = 1; idb(2,1) = 1; idb(3,1) = 1;
idb(1,2) = 1; idb(2,2) = 1; idb(3,2) = 1;
idb(1,4) = 1; idb(2,4) = 1; idb(3,4) = 1;
% 4 or more elements
idb(1,5) = 1; idb(2,5) = 1; idb(3,5) = 1;
idb(1,8) = 1; idb(2,8) = 1; idb(3,8) = 1;
% 16 or more elements
idb(1,10) = 1; idb(2,10) = 1; idb(3,10) = 1;
idb(1,11) = 1; idb(2,11) = 1; idb(3,11) = 1;
idb(1,16) = 1; idb(2,16) = 1; idb(3,16) = 1;
idb(1,17) = 1; idb(2,17) = 1; idb(4,17) = 1;
% 64 or more elements
idb(1,38) = 1; idb(2,38) = 1; idb(3,38) = 1;
idb(1.39) = 1: idb(2.39) = 1: idb(3.39) = 1:
idb(1,40) = 1; idb(2,40) = 1; idb(3,40) = 1;
idb(1,41) = 1; idb(2,41) = 1; idb(4,41) = 1;
idb(1,26) = 1; idb(2,26) = 1; idb(3,26) = 1;
idb(1,27) = 1; idb(2,27) = 1; idb(3,27) = 1;
idb(1,28) = 1; idb(2,28) = 1; idb(3,28) = 1;
idb(1,29) = 1; idb(2,29) = 1; idb(4,29) = 1;
```

```
% prescribed nodal displacement boundary conditions %
% q(i,N): prescribed displacement for the dof i of node N
% initialize q
g=zeros(ndf,nnp);
% enter the values
% prescribed nodal forces %
% f(i,N): prescribed force for the dof i of node N
% initialize f
f=zeros(ndf,nnp);
% enter the values
%only one condition should be active at a time.
% concentrated load - for all meshes
%f(2,3)=-1; %kN
% distributed load - 1 element
% for i = 1:4
% f(2,i)=-0.0625;
% end
% distributed load - 4 elements
% for i = 1:9
% f(2,i)=-0.02778;
<mark>% end</mark>
% distributed load - 16 elements
% for i = 1:25
% f(2,i) = -0.01;
<mark>% end</mark>
<mark>% distributed load - 64 elements</mark>
for i = 1:81
 f(2,i) = -0.003086;
```

```
%-----
% number the equations; build the id table %
[id,neq]=number_eq(idb,nnp,ndf)
Gaussian Integration Parameters
[point,weight]=gauss(nglx,ngly,nglz,nsd)
      r = zeros(4,1);
      s = zeros(4,1);
      r(1) = point(1,1);
      r(2) = point(2,1);
      r(3) = point(2,2);
      r(4) = point(1,2);
      s(1) = point(1,1);
      s(2) = point(1,2);
      s(3) = point(2,1);
      s(4) = point(2,2);
%the following content was only altered in terms of the names of the
stiffness element matrix (ke instead of Ke for example)
for e=1:nel
 [ke(:,:,e)] =
Ke_plate(r,s,t,v,E,l,xn,ien(:,e),nen,ndf,nsd,point,weight,nglx,ngly);
end:
disp(ke);
% Contribution of the prescribed displacements to the elemental force vector
%f=f-Ke*Ue;
     (this section was omitted as no changes were made in the code.)
```

```
Assembly operation
                                                     %
(this section was omitted as no changes were made in the code.)
% Post-processing %
(this section was omitted as no changes were made in the code.)
% Moment and Shear %
[m] = zeros(3,1);
[s] = zeros(2,1);
kappa = zeros(3,1);
qamma = zeros(2,1);
Db=zeros(3,3);
Db=(3.2967e7)*[1 \lor 0; \lor 1 0; 0 0 0.5*(1-\lor)];
Ds=zeros(2,2);
Ds=(1.15385e7)*[1 0; 0 1];
% Calculate curvature kappa. Extracting directly from the displacement matrix
[kappa] = [Ucomp(2);
        Ucomp(6);
        Ucomp(3) + Ucomp(5);
% Calculate shear gamma. Extracting directly from the displacement matrix
[gamma] = [-sqrt(Ucomp(2)^2 + Ucomp(3)^2) + Ucomp(1);
 -sqrt(Ucomp(5)^2+Ucomp(6)^2) + Ucomp(4);
% Calculate moment vector
[m] = (-t^3/12)*Db*kappa;
disp('Moment');
\lceil m \rceil
```

```
% Calculate shear vector
[s] = t*Ds*gamma;
disp('Shear');
[s]
```

plot\_results\_shell(icase,xn,Ucomp,ien,nel,nen,nsd,ndf,nnp);

# A. Appendix

This is the system that we used to number our plate section:

