Computer-Aided VLSI System Design

Final Project: 5G MIMO Demodulation

lecturer: Yu-Hsuan Tsai

Graduate Institute of Electronics Engineering, National Taiwan University

MediaTek

Overview

 MIMO (multiple input, multiple output) is an antenna technology for wireless communications, the encode flow is as follows:

- At the receiver, we need to decode the data by reverting the encode flow
- In this project, we'll try to implement a part of simple MIMO receiver to demodulate the RX data
 - AWGN (additive white Gaussian noise) channel

System Model

The received signal y per data RE can be expressed as [2] RE: resource element

$$- \underline{y} = H\underline{\tilde{s}} + \underline{n}$$

- H: channel, \tilde{s} : transmitted symbol, n: noise
- At the 4TX * 4RX transmission, the formula can be re-written as

$$-\begin{bmatrix} \frac{y_1}{y_2} \\ \frac{y_2}{y_3} \\ \frac{y_4}{y_4} \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} & H_{14} \\ H_{21} & H_{22} & H_{23} & H_{24} \\ H_{31} & H_{32} & H_{33} & H_{34} \\ H_{41} & H_{42} & H_{43} & H_{44} \end{bmatrix} \begin{bmatrix} \frac{\tilde{s}_1}{\tilde{s}_2} \\ \frac{\tilde{s}_3}{\tilde{s}_4} \end{bmatrix} + \begin{bmatrix} \frac{n_1}{n_2} \\ \frac{n_3}{n_4} \end{bmatrix}$$

- The MIMO receiver is to demodulate the $\underline{\tilde{s}}$ by y, H, \underline{n} .
- $-\ \underline{\tilde{s}}_1, \underline{\tilde{s}}_2, \underline{\tilde{s}}_3$ and $\underline{\tilde{s}}_4$ are the symbol with modulation (QPSK 2-bit data)
- The output of MIMO receiver is the LLR per bit
 - LLR: log likelihood ratio, if the value is positive, it means the possibility of this bit is 0 is much higher than 1, and vice versa
 - Total 8 LLRs per data RE (4-signal * 2-bit (QPSK))

System Model

 From [2], MIMO receiver is composed of QR decomposition (QRD) and Maximum Likelihood (ML) demodulation

- At this project, we will provide the detailed formula of ML demod. with full search for implementation
- To reduce the complexity of MIMO receiver, many proposals can be found on papers, you can try different proposals to observe the performance and the area/power/latency if you have interest

Tx2Rx Model

Tx2Rx Model

$$- \underline{y} = H\underline{\tilde{s}} + \underline{n}$$

- Modulator: transmitted signal $\underline{\tilde{s}}$
 - QPSK (TS 38.211 Section 5.1 [1]): pairs of bits are mapped to complex-valued modulation symbols

 Q
- MIMO
 - Channel: multiply by channel matrix: H
 - 4X4 matrix, complex number
 - use Normal distribution to generate a random matrix
 - *H* ∼N(0,1/4)
 - AWGN: add noise \underline{n}
 - adds white Gaussian noise from MATLAB function: awgn()
 - <u>n</u> ~N(0,1)

QR Decomposition (QRD)

- Motivation
 - Reduce the complexity of Maximum Likelihood (ML) demodulation

•
$$\underline{\hat{s}} = argmin_{\underline{s} \in A} (\|\underline{y} - H\underline{s}\|^2)$$
 A: a set of all combinations of 4 transmitted symbol vectors (s₁~s₄)

With QR decomposition, a signal model can be re-written as

$$\frac{\underline{y} = H\underline{s} + \underline{n}}{\underline{y} = (QR)\underline{s} + \underline{n}} \begin{cases}
Q: an orthogonal matrix, where $Q^HQ = I \\
Q^H\underline{y} = Q^HQR\underline{s} + Q^H\underline{n}
\end{cases}$

$$\frac{\underline{y} = H\underline{s} + \underline{n}}{\widehat{y} = R\underline{s} + \underline{v}}$$

$$\frac{Q^H\underline{y} = Q^HQR\underline{s} + Q^H\underline{n}}{\widehat{y} = R\underline{s} + \underline{v}}$$$$

– ML demodulation question becomes $\hat{\underline{s}} = argmin_{\underline{s} \in A}(\|\hat{\underline{y}} - R\underline{s}\|^2)$

Soft-bit calculation [2]

$$LLR: L\left(x_{k,b}|\underline{y}\right) \approx \min_{\underline{x} \in X_{k,b,1}} \left\|\underline{y} - H\underline{s}\right\|^2 - \min_{\underline{x} \in X_{k,b,0}} \left\|\underline{y} - H\underline{s}\right\|^2 \quad \underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} (x_{1,1}, x_{1,2}) \\ (x_{2,1}, x_{2,2}) \\ (x_{3,1}, x_{3,2}) \\ (x_{4,1}, x_{4,2}) \end{bmatrix} \Leftrightarrow \underline{s}$$

 b^{th} bit in the x_k

 \mathbf{k}^{th} entry of \mathbf{x} , $X_{k,b,1}$: subsets of $\{x\}$ with the bth bit in the \mathbf{k}^{th} entry = 1

 $X_{k,b,0}$: subsets of $\{\underline{x}\}$ with the bth bit in the kth entry = 0

$$\left\| \underline{y} - H\underline{s} \right\|^{2} \Rightarrow \left\| \underline{\hat{y}} - R\underline{s} \right\|^{2} = \left(\begin{bmatrix} \widehat{y_{1}} \\ \widehat{y_{2}} \\ \widehat{y_{3}} \\ \widehat{y_{4}} \end{bmatrix} - \begin{bmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ 0 & R_{22} & R_{23} & R_{24} \\ 0 & 0 & R_{33} & R_{34} \\ 0 & 0 & 0 & R_{44} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \end{bmatrix} \right)^{2}$$

$$= \sum_{i=1}^{4} | [\widehat{y}_i - \sum_{j=i}^{4} R_{ij} s_j] |^2$$

- Hard-bit calculation
 - $L(x_{k,b}|y)$'s sign-bit = 0, hard-bit out = 0
 - $L(x_{k,b}|y)$'s sign-bit = 1, hard-bit out = 1

Formula

$$- \text{ LLR for } x_{1,1} : L\left(x_{1,1}|\underline{y}\right) = \min_{\underline{x} \in X_{1,1,1}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{1,1,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{1,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{1,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,1,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,1,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 - \min_{\underline{x} \in X_{2,2,0}} \sum_{i=1}^{4} \left| \left[\widehat{y_i} - \sum_{j=i$$

Formula

$$- s_1 \sim s_4$$
: one of $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\mathbf{j}\right)$, $\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\mathbf{j}\right)$, $\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\mathbf{j}\right)$, and $\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\mathbf{j}\right)$

- At
$$\sum_{i=1}^{4} |[\widehat{y}_i - \sum_{j=i}^{4} R_{ij} s_j]|^2$$
 part:

- 4th entry: $\widehat{y_4} R_{44}s_4 = a + bj \rightarrow a^2 + b^2$
- 3rd entry: $\widehat{y_3} R_{33}s_3 R_{34}s_4 = c + dj \rightarrow c^2 + d^2$
- 2nd entry: $\widehat{y}_2 R_{22}s_2 R_{23}s_3 R_{24}s_4 = e + fj \rightarrow e^2 + f^2$
- 1st entry: $\widehat{y_1} R_{11}s_1 R_{12}s_2 R_{13}s_3 R_{14}s_4 = g + hj \rightarrow g^2 + h^2$

$$-\sum_{i=1}^{4} \left| \left[\hat{y}_i - \sum_{j=i}^{4} R_{ij} s_j \right] \right|^2 = a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2$$

- QPSK constellation [1]
 - $-x_1 \sim x_4$: one of (0,0), (1,0), (0,1), and (1,1)

$$- \ s_1 \sim s_4 : \ \text{one of} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} j \right), \left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} j \right), \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} j \right) \ \text{, and} \ \left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} j \right)$$

- Total 256 (=4⁴) possibilities for 4-layer QPSK
- Full search with 256 possibilities

- Compute $\sum_{i=1}^4 \left| \left[\widehat{y}_i \sum_{j=i}^4 R_{ij} s_j \right] \right|^2$ for each A(path M), M=1~256
 - Bring in total 256 results to compute each bit LLR, exactly 128 results for $X_{k,b,0}$ and $X_{k,b,1}$ without overlapping

- A: a set of all combinations of s₁-s₄
 with total 4⁴ = 256 combinations
- A(M): one of the combination

Block Diagram

Input/Output

Signal Name	I/O	Width	Simple Description			
i_clk	I	1	本系統為同步於時脈正緣之同步設計。 (註: Host端採clk正緣時送資料。)			
i_reset	ı	1	高位準"非"同步(active high asynchronous)之系統重置信號。			
i_trig	I	1	輸入資料有效控制訊號。當為high時i_y_hat與i_r有效。			
i_y_hat	I	160	\hat{y} 資料傳輸,包含 4 筆,每筆各 40 bits,i_y_hat [159:120] 為 y ₄ ,i_y_hat [119:80] 為 y ₃ ,依此類推,每筆資料包含虛部與實部 ({imaginary, real}),各20位元,為{S3.16}之fixed point。			
i_r	I	320	R資料傳輸,依序為 {r ₄₄ , r ₃₄ , r ₂₄ , r ₁₄ , r ₃₃ , r ₂₃ , r ₁₃ , r ₂₂ , r ₁₂ , r ₁₁ },r _{ii} 僅包含實部,為20位元,{S3.16}之fixed point,r _{ij} 則包含虛部與實部({imaginary, real}),各20位元,同樣為{S3.16}之fixed point。			
i_rd_rdy	ı	1	準備讀取資料控制訊號。當為High時,表示準備好接收資料。			
o_rd_vld	0	1	輸出資料有效之控制訊號。當為High時,表示目前輸出的 o_llr 與 o_hard_bit 為有效的。			
o_llr	0	8	輸出IIr。一次輸 1bit 的 IIr,為 {S3.4} 之fixed point,詳細參考 ML demodulation。			
o_hard_bit	0	1	輸出hard bit。一次輸出 1bit 的 hard bit,詳細參考 ML demodulation。			

{SA.B}: fixed point with sign bit, A-bit integer, and B-bit fraction

Data format

- i_y_hat and i_r
 - Real and imaginary are both S3.16

re: real

im: imaginary

	MSB	3									_					LSB
i r	r ₄₄	r	34	r ₂	24	r.	14	r ₃₃	r;	23	r.	13	r ₂₂	r.	12	r ₁₁
_	re	im	re	im	re	im	re	re	im	re	im	re	re	im	re	re

re: real

im: imaginary

Waveform

Waveform

- Output buffer depth evaluation
 - i_rd_rdy is high randomly, be high 128T every 640T
 - The worst case:

– Buffer should store at least 1024T/64T = 16 REs output

Specification

- Only worst-case library is used for synthesis and APR.
- The slack for setup-time should be non-negative.
- No any timing violation and glitches for the gate level simulation and post-layout simulation.

Specifications for APR (1)

- 只需做 Marco layout 即不用包含 IO Pad 、 Bonding Pad)
- VDD 與 VSS Power Ring 寬度請各設定為 2um 只須做一組
- 不需加 Dummy Metal
- Power Stripe 務必至少加一組 , 其 VDD 、 VSS 寬度各設定為 2um
 - Power Stripe 垂直方向至少一組,水平方向可不加

Specifications for APR (2)

- 務必要加 Power Rail (follow pin)
- Core Filler 務必要加
- APR 後之 GDSII 檔案務必產生
- 完成 APR DRC/LVS 完全無誤
- 記得先產生ml_demodulator.ioc,再重新讀取該檔來設定 pin position

Grading Policy

Baseline 50% + Performance 40% + Report 10%

Item	%	Description		
RTL Simulation	20	Pass full pattern simulation with specs		
Synthesis	10	Pass gate-level sim		
APR	20	Finish APR with no DRC/LVS errors Pass post-layout simulation		
Performance	40	Area x Time x Power		
Report	10	 Algorithm Performance Hardware implementation 		

Violation	Penalty
Gate-level sim pass but post-sim fail	Performance*0.5
Only RTL pass	Performance不評分
違反繳交格式與規則	總分-3

Grading Policy - Test Pattern

- AWGN channel
- Total 6 packets,
 - 3 Packets: SNR = 10dB, Data Error Rate < 0.12</p>
 - 3 Packets: SNR = 15dB, Data Error Rate < 0.01
 - If any LLR == 0, it will be identified as fail data
- Total 1000 data RE at each packet

Data Error Rate

 Any of the 8 hard bits is wrong or any LLR = 0, this data is identified as fail data

Golden hard bit: 1 0 0 0 1 0 1 1

- Total 1000 data in one packet
- Data error rate = # of fail data / 1000

Grading Policy - Report

- Algorithm
 - ML demod. algorithm introduction
 - FXP setting
- Performance
 - The plot with Data Error Rate vs. SNR
- HW implementation
 - HW scheduling
 - HW block diagram
 - Area / Power / Latency report
 - Technique sharing for HW improvement

Submission (1)

- Due Tuesday, June 6, 23:59
 - No late submission
- Require data (with the required directory hierarchy):

Violation	Penalty
01_RTL	1. All design Verilog files 2. rtl.f
02_SYN	1. Area/timing reports
03_GATE	1. ml_demodulator_syn.v/sdf 2. rtl.f
04_APR	1. All design database 2. ml_demodulator.gds
05_POST	1. ml_demodulator_pr.v/sdf 2. rtl.f
reports	1. design.spec. 2. teamXX_report.pdf

- Final project presentation (MTK experience sharing)
 - Date: June 13, 2023

Submission (2)

Create a folder named teamID_final_project and follow the

hierarchy below

```
team03 final project
          - 01 RTL
                    ml demodulator.v (and other verilog files)
           02_SYN
                    - ml demodulator.area
                     ml demodulator.max.timing
                     ml_demodulator.min.timing
           03 GATE
                    ·ml demodulator syn.sdf
                   ml_demodulator_syn.v
                    rtl.f
            04 APR
                     route
                    - route.dat
                     ml demodulator.gds
                    ml_demodulator_pr.sdf
                     ml demodulator pr.v
                     rtl.f
                   design.spec
                     team03_report.pdf
```

- Compress the folder teamID_final_project in a tar file named teamID_final_project_vk.tar (k is the number of version, k =1,2,...), e.g. team03_final_project_v1.tar
- Submit to NTU Cool

Reference

- [1] 5G 3GPP spec 38.211 : <u>Link</u>
- [2] Parallel High Throughput Soft-output Sphere Decoder: Link
- [3] Gram-Schmidt process: Link