1 Semidefinite Matrices

All matrices here are assumed to be real. Elements of \mathbb{R}^n are column vectors, and we assume by default that square matrices are $n \times n$. We require the following two properties of a symmetric matrix A which we shall not prove.

- All eigenvalues of A are real.
- There is an orthonormal basis consisting of eigenvectors of A.

A matrix is *orthogonal* if its columns form an orthonormal basis. It follows from the second condition above that there is an orthogonal matrix U and a diagonal matrix D so that AU = UD. Since $U^{T}U = 1$, this may be rewritten as $A = UDU^{T}$. This last equation is the basic decomposition of symmetric matrices we will use.

Semidefinite & Definite: Let A be a symmetric matrix. We say that A is *(positive)* semidefinite, and write $A \succeq 0$, if all eigenvalues of A are nonnegative. We say that A is *(positive)* definite, and write $A \succ 0$, if all eigenvalues of A are positive.

Principal Minor: For a symmetric matrix A, a principal minor is the determinant of a submatrix of A which is formed by removing some rows and the corresponding columns.

Proposition 1.1 For a symmetric matrix A, the following conditions are equivalent.

- (1) $A \succeq 0$.
- (2) $A = U^{\top}U$ for some matrix U.
- (3) $x^{\top}Ax \ge 0 \text{ for every } x \in \mathbb{R}^n.$
- (4) All principal minors of A are nonnegative.

Proof: We prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$, and then $(2) \Rightarrow (4) \Rightarrow (1)$.

- $(1) \Rightarrow (2)$: Write $A = UDU^{\top}$ where U is orthogonal and D diagonal. Now, the entries on the diagonal of D are the eigenvalues of A (which are nonnegative), so we may write $D = C^2$ where C is a diagonal matrix. Then we have $A = UCCU^{\top} = UC(UC)^{\top}$ as desired.
 - (2) \Rightarrow (3): For every $x \in \mathbb{R}^n$ we have $x^{\top}Ax = x^{\top}U^{\top}Ux = (Ux)^{\top}(Ux) \geq 0$.

- (3) \Rightarrow (1): If v is an eigenvector of A with eigenvalue λ then $0 \leq v^{\top} A v = \lambda v^{\top} v$ which implies that $\lambda \geq 0$.
- $(2) \Rightarrow (4)$: Let B be a submatrix of A formed by deleting the rows and columns with index in the set S. Then modify U to form V by deleting the columns in S. Now, $\det(B) = \det(V^{\top}V) = (\det(V))^2 \geq 0$.
- (4) \Rightarrow (1): We prove the contrapositive by induction. We may assume that A has a unit eigenvector v with eigenvalue $\lambda < 0$. If A has only one eigenvalue ≤ 0 , then $\det(A) < 0$ and we are finished. Otherwise, choose a unit eigenvector u orthogonal to v with eigenvalue $\mu \leq 0$. Now, choose $s \in \mathbb{R}$ so that the vector w = v + su has at least one zero coordinate, say the i^{th} . If A' is the matrix obtained from A by removing the i^{th} column and row and w' is obtained by removing the i^{th} coordinate of w, then we have $(w')^{\top}A'w' = w^{\top}Aw = \lambda + s^2\mu < 0$. So, A' is not semidefinite (since we have already demonstrated $(1) \Leftrightarrow (3)$), and the result follows by applying induction to it.

Ellipsoid: If A is definite, then $\{x \in \mathbb{R}^n : x^\top Ax \leq 1\}$ is an *ellipsoid*.

Proposition 1.2 If $A, B \succeq 0$ and $s, t \in \mathbb{R}$ satisfy $s, t \geq 0$ then $sA + tB \succeq 0$.

Proof: Using (3) of the previous proposition, we have that for every $x \in \mathbb{R}^n$

$$x^{\top}(sA + tB)x = s(x^{\top}Ax) + t(x^{\top}Bx) \ge 0$$

Corollary 1.3 Another property equivalent to $A \succeq 0$ is

(5) There exist
$$x_1 \dots x_k \in \mathbb{R}^n$$
 so that $A = \sum_{i=1}^k x_i x_i^{\top}$.

Proof: It follows from (2) of Proposition 1.1 that $x_i x_i^{\top}$ is always positive semidefinite, and then from the previous proposition that any matrix satisfying (5) is semidefinite. For the other direction, suppose A is semidefinite, choose U so that $A = U^{\top}U$ and let x_i be the i^{th} row of U. Then $A = \sum_{i=1}^k x_i x_i^{\top}$ as desired. \square

Order: We extend \succeq to a relation by defining $A \succeq B$ if $A - B \succeq 0$. Then if $A \succeq B$ and $B \succeq C$ we have $A - C = (A - B) + (B - A) \succeq 0$ so $A \succeq C$. Also $A \succeq B$ and $B \succeq A$ imply that A = B, so \succeq defines a partial order.

Dot product: If A, B are $n \times n$ matrices we define

$$A \cdot B = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} B_{ij} = \text{tr}(A^{\top} B).$$

(recall that $tr(A) = \sum_{i=1}^{n} A_{ii}$).

Proposition 1.4

- (i) If $A, B \succeq 0$ then $A \cdot B \geq 0$, and further $A \cdot B = 0$ implies AB = 0.
- (ii) A symmetric matrix A is semidefinite if $A \cdot B \geq 0$ for every $B \succeq 0$.

Proof: (i): Using (2) of Proposition 1.1 to write $A = U^{T}U$ and $B = V^{T}V$ we have

$$\operatorname{tr}(A^{\top}B) = \operatorname{tr}(U^{\top}UV^{\top}V) = \operatorname{tr}(UV^{\top}VU^{\top}) = \operatorname{tr}(UV^{\top}(UV^{\top})^{\top}) \geq 0.$$

If we have equality in the above expression, then $UV^{\top} = 0$ so $AB = U^{\top}UV^{\top}V = 0$.

(ii): Let v be an eigenvector of A with eigenvalue λ . Then we have

$$0 \le A \cdot (vv^{\top}) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} v_i v_j = v^{\top} A v = \lambda v^{\top} v$$

and it follows that $\lambda \geq 0$. Thus $A \succeq 0$ as required. \square

Cones and Polars: A set $C \subseteq \mathbb{R}^m$ is a *cone* if for all $x, y \in C$ and all $s, t \in \mathbb{R}$ with $s, t \geq 0$ we have $sx + ty \in C$. The *polar* of C is

$$C^{\circ} = \{x \in \mathbb{R}^m: \ x^{\top}y \geq 0 \text{ for every } y \in C\}$$

Note that C° is a cone. In general every closed cone C satisfies $(C^{\circ})^{\circ} = C$.

Proposition 1.5 Consider the vector space consisting of all symmetric $n \times n$ matrices and let C be the set of all semidefinite matrices. Then

- (i) C is a cone.
- (ii) $\mathcal{C}^{\circ} = \mathcal{C}$.
- (iii) The interior of C is the set of definite matrices.

Proof: Proposition 1.2 is equivalent to (i), while the previous proposition is equivalent to (ii). The proof of (iii) follows from the fact that the spectrum is a continuous function of a matrix. \Box