Quantum Computing 101

An Easy Introduction to a Hard Topic

Quantum Computers

- Use the principles of quantum mechanics to process information
- Use qubits instead of bits
- They have to be kept at extremely low temperatures close to absolute zero (O Kelvin or -273.15°C) to enable superconductivity
- This is colder than outer space (average of 2.7 Kelvin)!

Superposition

Bits vs qubits

Classical bit

Qubit

Entanglement

"Spooky action at a distance"

- When two particles become linked in such a way that the state of one immediately influences the state of the other, no matter how far apart they are.
- Einstein called it "spooky action at a distance" as it seems to defy the rule that nothing can travel faster than the speed of light.

Quantum Circuits and Coding

- Quantum computers use quantum gates to manipulate qubits, similar to how classical computers use logical gates for bits
- A quantum circuit is a collection of interconnected quantum gates
- The Hadamard (H) gate turns a state of |0> or |1> into an equal superposition of |0> and |1>
- It can be represented in matrix form as:

$$H \equiv rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

Key Milestones in Quantum Computing

Why Quantum Computing Matters

100+ High Value Industry Use Cases

Simulation

- Pharma
- Aerospace
- Chemistry
- Energy
- Finance

~\$330 billion

Optimisation

- Finance
- Insurance
- Logistics
- Aerospace

~\$220 billion

Machine Learning

- Automotive
- Finance
- Tech

~\$250 billion

Cryptography

- Government
- Corporate

~\$80 billion

Quantum Computing Resources

- Learning:
 - IBM Quantum Learning: https://learning.quantum.ibm.com/
 - Learn quantum programming with PennyLane: https://pennylane.ai/qml/
- Programming:
 - IBM Qiskit: https://www.ibm.com/quantum/qiskit
 - Google Cirq: https://quantumai.google/cirq
 - Microsoft Q#: https://learn.microsoft.com/en-us/azure/quantum/
- YouTube:
 - Quantum Computing for Computer Scientists: https://youtu.be/F_Rigidh2oM?si=XJWZtpvujF5qlWmD
 - Understanding Quantum Information & Computation: https://youtube.com/playlist?list=PLOFEBzvs-VvqKKMXX4vbi4EB1uaErFMSO&si=uiMvezeeswCaSerF

Contact Details

Website: https://annievella.com

LinkedIn: https://www.linkedin.com/in/annievella/

Twitter/X: https://x.com/codefrenzy