

Leibniz Universität Hannover

IRS- Institut für Radioökologie und Strahlenschutz

https://web-docs.gsi.de

Clemens Walther

https://upload.wikimedia.org

Wo kommt γ Strahlung her?

Kernmodelle

Kernmodelle

Magische Zahlen

Z 114, 126, 164, 228, ... 2, 8, 20, 28, 50, 82, N 126, 164, 178, 184, 228

Fig. 1.8 Arrangement of nucleons in the ²⁶₁₂Mg nucleus

Experimentelle Indikatoren für die Existenz magischer Zahlen

- 1. Anzahl stabiler Isotope und Isotone
- 2. Maxima der Elementhäufigkeit im Sonnensystem
- 3. Lokale Maxima der Bindungsenergie pro Nukleon
- 4. Strukturen in der Systematik der Zerfallsenergien
- 5. Strukturen in der Systematic der Wirkungsquerschnitte
- 6. Energien der 1^{en} angeregten Zustände von gg-Kernen
- 7. Insel der Isomere
- 8. Bei magischen Zahlen sind Kerne sphärisch

Indikatoren für magische Zahlen I:

Häufigkeiten stabiler Isotope and Isotone

Fig. 15-15. Variation of the number of (a) stable isotones, (b) stable isotopes with the respective nucleon number N or Z, showing the peaking at the magic numbers $\mathcal{N}=20$, 28, 50, and 82. (From [Fl 52a].)

Experimentelle Indikatoren für die Existenz magischer Zahlen

- 1. Anzahl stabiler Isotope und Isotone
- 2. Maxima der Elementhäufigkeit im Sonnensystem
- 3. Lokale Maxima der Bindungsenergie pro Nukleon
- 4. Strukturen in der Systematik der Zerfallsenergien
- 5. Strukturen in der Systematic der Wirkungsquerschnitte
- 6. Energien der 1^{en} angeregten Zustände von gg-Kernen
- 7. Insel der Isomere
- 8. Bei magischen Zahlen sind Kerne sphärisch

Indikatoren für magische Zahlen II:

Maxima der Elementhäufigkeit im Sonnensystem

Experimentelle Indikatoren für die Existenz magischer Zahlen

- 1. Anzahl stabiler Isotope und Isotone
- 2. Maxima der Elementhäufigkeit im Sonnensystem
- 3. Lokale Maxima der Bindungsenergie pro Nukleon
- 4. Strukturen in der Systematik der Zerfallsenergien
- 5. Strukturen in der Systematic der Wirkungsquerschnitte
- 6. Energien der 1^{en} angeregten Zustände von gg-Kernen
- 7. Insel der Isomere
- 8. Bei magischen Zahlen sind Kerne sphärisch

Indikatoren für magische Zahlen III:

Fig. 15-17. Plot of the β -transition energy for nuclei in the region $28 \le Z \le 64$ which have the same neutron excess and which undergo the decay process

$${}_{Z}^{A}X_{N+1} \stackrel{\beta^{-}}{\underset{\beta^{+}, \text{ E.C.}}{\rightleftharpoons}} {}_{Z+1}^{A}X_{N}$$

with Z and N even. (From [May 55].) (Used by permission of Wiley and Sons, New York.)

Experimentelle Indikatoren für die Existenz magischer Zahlen

- 1. Anzahl stabiler Isotope und Isotone
- 2. Maxima der Elementhäufigkeit im Sonnensystem
- 3. Lokale Maxima der Bindungsenergie pro Nukleon
- 4. Strukturen in der Systematik der Zerfallsenergien
- 5. Strukturen in der Systematic der Wirkungsquerschnitte
- 6. Energien der 1^{en} angeregten Zustände von gg-Kernen
- Insel der Isomere
- 8. Bei magischen Zahlen sind Kerne sphärisch

Indikatoren für magische Zahlen IV: $\sigma(n,\gamma)$

Indikatoren für magische Zahlen IV: $\sigma(n,\gamma)$

Experimentelle Indikatoren für die Existenz magischer Zahlen

- 1. Anzahl stabiler Isotope und Isotone
- 2. Maxima der Elementhäufigkeit im Sonnensystem
- 3. Lokale Maxima der Bindungsenergie pro Nukleon
- 4. Strukturen in der Systematik der Zerfallsenergien
- 5. Strukturen in der Systematic der Wirkungsquerschnitte
- 6. Energien der 1^{en} angeregten Zustände von gg-Kernen
- 7. Insel der Isomere
- 8. Bei magischen Zahlen sind Kerne sphärisch

Indikatoren für magische Zahlen V:

Die Insel der Isomere

Punkte: g-u-nuclei

Quadrate: u-g-nuclei

Experimentelle Indikatoren für die Existenz magischer Zahlen

- 1. Anzahl stabiler Isotope und Isotone
- 2. Maxima der Elementhäufigkeit im Sonnensystem
- 3. Lokale Maxima der Bindungsenergie pro Nukleon
- 4. Strukturen in der Systematik der Zerfallsenergien
- 5. Strukturen in der Systematic der Wirkungsquerschnitte
- 6. Energien der 1^{en} angeregten Zustände von gg-Kernen
- 7. Insel der Isomere
- 8. Bei magischen Zahlen sind Kerne sphärisch

Indikatoren für magische Zahlen VI:

Das reduzierte Quadrupolmoment als Funktion der Anzahl ungerader Nukleonen. Die Größe Q/(ZR²) ist ein Maß für die Deformation des Kerns unabhängig von dessen Größe

Das Schalenmodell des Atoms

$$H = \sum_{i=1}^{Z} T_i + \sum_{i=1}^{Z} V_C(r_i) + \sum_{\substack{i,j=1\\i\neq j}}^{Z} V_{ij}(|\vec{r}_i - \vec{r}_j|)$$

$$T_i = -\frac{h^2}{2m_i}\Delta_i$$
 kinetische Energie

 $V_{\rm C}$ Zentralpotential, Coulombpotential

 $V_{i,j}$ Wechselwirkungspotential

Das Schalenmodell des Kerns

ist ein Modell unabhängiger Teilchen analog dem Modell des Atoms

$$H = \sum_{i=1}^{A} T_i + \sum_{i,j=1}^{A} V_{ij}$$

mit
$$T_i = -\frac{h^2}{2m_i} \Delta_i$$
 kinetische Energie

 $V_{i,j}$ Wechselwirkungspotential

Das Schalenmodell des Kerns

ist ein Modell unabhängiger Teilchen analog dem Modell des Atoms

$$H = \sum_{i=1}^{A} T_i + \sum_{i,j=1}^{A} V_{ij}$$

mit
$$T_i = -\frac{h^2}{2m_i} \Delta_i$$
 kinetische Energie

 $V_{i,i}$ Wechselwirkungspotential

Ansatz: $H = H_0 + V_R$ mit Restwechselwirkung V_R

$$H_0 = \sum_{i=1}^{A} (T_i + V_i) = \sum_{i=1}^{A} h_i$$
 and $V_R = \sum_{i,j=1}^{A} V_{i,j} - \sum_{i=1}^{A} V_i$

Test einfacher Potentiale

Kastenpotential

$$V(r) = \begin{cases} -V_0 & r < R_0 \\ 0 & r \ge R_0 \end{cases}$$

Oszillatorpotential

$$V(r) = \begin{cases} -V_0 \cdot (1 - (r/R_0)^2) & r < R_0 \\ 0 & r \ge R_0 \end{cases}$$

Quantenzahlen im Schalenmodell

mit
$$\lambda = 2(n-1) + \ell = 0,1,2,...$$

$$(n = 1, 2, 3, ...; \ell = 0, 1, 2, ...)$$

$$\ell = 0$$
:

$$\ell = 1$$
:

$$\ell = 2$$
:

Schalenmodell mit einfachen Potentialen

$$E_{n,l} = E_{\lambda} = \left(\lambda + \frac{3}{2}\right)\hbar\omega$$
mit $\lambda = 2(n-1) + \ell = 0, 1, 2, \dots$

$$(n = 1, 2, 3, \dots; \ell = 0, 1, 2, \dots)$$

Fig. 72 Energieniveaus im Oszillator- und im Rechteckpotential, in der Mitte interpolierte Werte; nach [May 55]

Woods-Saxon Potential

Physik IV Clemens Walther Page 26

Woods-Saxon Potential

$$V(r) = -V_0 \cdot \left[1 + e^{\frac{r - R_0}{a}} \right]^{-1}$$

Fig.71 Drei häufig gebrauchte Potentialformen. Die Größen R und a beziehen sich auf das Woods-Saxon-Potential Gl. (6.8)

Schalenmodell Energieniveaus

Schalenmodell mit Woods-Saxon Potential und Spin Bahn Kopplung

$$V_{i} = V(r) + V_{ls}(r) \cdot (\vec{\ell} \cdot \vec{s})$$

$$V(r) = -V_{0} \cdot \left[1 + e^{\frac{r - R_{0}}{a}}\right]^{-1}$$

$$E_{n,l} = E_{\lambda} = \left(\lambda + \frac{3}{2}\right)\hbar\omega$$
mit $\lambda = 2(n-1) + \ell = 0, 1, 2,$
 $(n = 1, 2, 3, ...; \ell = 0, 1, 2,)$

Spin Bahn Kopplung im Kern

$$V_i = V(r) + V_{ls}(r) \cdot (\vec{\ell} \cdot \vec{s})$$
 mit $V(r) = -V_0 \cdot \left[1 + e^{\frac{r - R_0}{a}}\right]^{-1}$

ergibt die potentielle Energie

$$V(r) + \frac{1}{2}V_{ls} \cdot \ell$$
 und $V(r) - \frac{1}{2}V_{ls} \cdot (\ell+1)$

- $V_{ls}(r)$ und V(r), sind beide negativ.
- Daher ist $j = \ell 1/2$ energetisch höher als $j = \ell + 1/2$.
- Aufspaltung ∆E ~ 2ℓ + 1.

$$V_{ls} \propto \frac{1}{r} \frac{\partial V}{\partial r}$$

Deformation

$$\delta = \frac{b-a}{(a+b)/2}$$

Oftmals auch R = (a + b)/2 und Δ R = b - a; δ = (Δ R/R)

Zustände der Neutronen im Kern mit N = 82 im Woods-Saxon Potential mit Parametern R und a

Schalenmodell Potentiale für deformierte Kerne

Vergleich der mit dem Nilsson Modell berechneten Deformation des Grundzustandes mit experimentellen Werten

Deformierte Kerne in der Nuklidkarte

Anregungsschema deformierter Kerne nach dem Nilsson Modell

Physik IV Clemens Walther Page 37

Anregungsschema deformierter Kerne nach dem Nilsson Modell

Physik IV Clemens Walther Page 38

Schalenabschlüsse für unterschiedliche Deformationen

Potentialflächen eines Dreidimensional verfomten Kerns

A = konstant Z = konstant

Abregung durch

- Emission elektron Lebensdauer?
- Innere Konversion
- Innere Paar Produktion

Rückstoß Energie (später)

γ-Strahlung

$$E_1, j_1, \pi_1$$

ana ana atia ah a Multin al

Elektromagnetische Multipol
Strahlung:
$$L = 1, 2, 3, ..., L \neq 0$$

$$E_2, j_2, \pi_2$$

elektrisch	magnetisch	Paritätswechsel	
L gerade	L ungerade	nein	
L ungerade	L gerade	ja	

Parität
$$\pi_{E} = (-1)^{L}$$

 $\pi_{M} = (-1)^{L+1}$

$$\left|j_1 - j_2\right| \le L \le j_1 + j_2$$

Anwendung der Auswahlregeln beim γ-Zerfall

$$\hbar\omega$$

$$\Delta j = 1$$
, $\Delta \pi = \text{nein}$

reiner M1 Übergang

1-

0+

$$\Delta j = 1$$
, $\Delta \pi = ja$

, ... j

reiner E1 Übergang

Anwendung der Auswahlregeln beim γ-Zerfall

$$\hbar\omega$$

$$1/2 + |\Delta j| \le L \le \sum j$$
 $0 \le L \le 1$
 $\Delta \pi = \text{nein}$

$$\hbar\omega$$

$$\begin{vmatrix} \Delta j \end{vmatrix} \le L \le \sum j$$

 $1 \le L \le 2$
 $\Delta \pi = \text{nein}$

gemischer M1, E2 Übergang

1/2 +

Anwendung der Auswahlregeln beim γ-Zerfall

Wahrscheinlichkeit von γ-Übergängen

$$\lambda_{\rm E} = 2.4 \cdot \rm S \cdot (r_0 \cdot A^{1/3})^{2L} \cdot \left(\frac{E}{197 \, \rm MeV}\right)^{2L+1} \cdot 10^{21} \, \rm s^{-1}$$

$$\lambda_{M} = 0.55 \cdot S \cdot A^{-2/3} \cdot (r_{0} \cdot A^{1/3})^{2L} \cdot \left(\frac{E}{197 \text{ MeV}}\right)^{2L+1} \cdot 10^{21} \text{ s}^{-1}$$

mit $r_0 = 1,28 \text{ fm}$ und

$$S = \frac{2(L+1)}{L \cdot [1 \cdot 3 \cdot 5 \cdot ... (2L+1)]^2} \left(\frac{3}{L+3}\right)^2 \text{ spektroskopischer Faktor}$$

$$L=1 \rightarrow S=0.25$$
 $L=2 \rightarrow S=4.8 \cdot 10^{-3}$

$$L = 3 \rightarrow S = 6,25 \cdot 10^{-5}$$
 $L = 4 \rightarrow S = 5,3 \cdot 10^{-7}$

Wahrscheinlichkeit von γ-Übergängen

IRS Lebensdauer elektrischer Multipol Strahlung

Halbwertszeiten von γ-Übergängen die mittels des Modells der Mulipolstrahlung berechnet wurden

Тур	$L\Delta\pi$		Halbwertszeiten in s bei Energie		
			1 MeV	0,2 MeV	0,05 MeV
E1	1	ja	2 · 10 ⁻¹⁶	3 · 10 ⁻¹⁴	2 · 10 ⁻¹²
M1	1	nein	2 - 10 ⁻¹⁴	2 · 10 ⁻¹²	2 · 10 ⁻¹⁰
E2	2	nein	1 - 10 ⁻¹¹	3 · 10 ⁻⁸	3 · 10 ⁻⁵
M2	2	ja	9 - 10 ⁻¹⁰	3 · 10 ⁻⁶	3 · 10 ⁻³
E3	3	ja	7 · 10 ⁻⁷	6 · 10 ⁻²	9 · 10 ²
M3	3	nein	7 · 10 ⁻⁵	5	8 · 10 ⁴
E4	4	nein	8 · 10 ⁻²	$2 \cdot 10^{5}$	4 · 10 ¹⁰
M4	4	ja	7	1 · 10 ⁷	4 · 10 ¹²

Spin Isomere

$$\left|j_1-j_2\right|\leq L\leq j_1+j_2$$

große ∆*j*verursachen
lange
Habwertszeiten

¹⁸⁰Ta,
Das langlebigste Isomer

Rückstoß beim γ-Zerfall (wichtig für Mössbauer!)

$$E_{\gamma} = hv$$
 $p_{\gamma} = \frac{hv}{c}$ $E_{\text{recoil nucleus}} = \frac{p_{\gamma}^2}{2m_{\Lambda}}$

$$E_{\text{recoil nucleus}} = \frac{(h\nu)^2}{2m_A c^2} = \frac{1}{2m_A c^2} E_{\gamma}^2 \approx \frac{E_{\gamma}^2}{2000 \text{ MeV} \cdot A}$$

Bei A = 20 und $E_{\gamma} = 1$ MeV ergibt sich

$$E_{\text{recoil nucleus}} = 25 \text{ eV}.$$

Physik IV Clemens Walther Page 61