

EXPLORING THE IMPACT OF TIERED PRICING UNDER COMPETITIVE ISP MARKETS

ABDUR ROUF

NOWFEL MASHNOOR

OUTLINE

1. Introduction

- ✓ What is Transit ISP?
- ✓ Motivation & Research Questions

2. Model Overview

- ✓ Cost Model: Flat Pricing
- ✓ Demand Model: Flat Pricing
- ✓ Price Function & CED Profit

3. Tier Definition and Derivation

- ✓ Valuation and Bundle Pricing
- ✓ Profit Calculation & Pricing Strategy

4. Tiered Pricing Analysis

- ✓ Valuation and Bundle Pricing
- ✓ Profit Calculation & Pricing Strategy

5. Dataset Overview

- ✓ Dataset Description & Preprocessing
- ✓ Demand and Flow Insights

6. Game Theory Setup

- Competitive Pricing in a Duopoly
 - ✓ Payoff Matrix Analysis

7. Key Insights

- ✓ How Tiered Pricing DominatesOver Flat Pricing
- ✓ Elasticity & Market Response

8. Conclusion & Limitations

- ✓ Limitations & Future Work
 - √ Key Takeaways

WHAT IS TRANSIT ISP

Transit ISP offers connectivity and bandwidth to smaller ISPs or businesses, allowing them to connect to the broader Internet.

- Transit ISPs act as intermediaries, routing traffic between local ISPs and major global networks.
- They offer access to large-scale backbone network

MOTIVATION

Set optimal pricing to attract the local ISPs to use the transit ISP

When C(ISP) > C(direct), then CDN will prefer to deploy their own connection to the IXP

RESEARCH QUESTION

What we are trying to find

How many tiers suffice for near-optimal profit in a single-ISP?

Can tiered pricing soften competition in a duopoly?

What are the welfare and economic implications?

COST MODEL: FLAT PRICING

Set the cost modeling with flat pricing

- ✓ Linear backbone cost approximation
- ✓ Captures long-haul price escalation

DEMAND MODEL: FLAT PRICING

Traffic Demand and choice model

Constant-Elasticity Demand (CED)

$$Q(p) = \left(\frac{v}{p}\right)^{\alpha}$$

Valuation back-calculation

$$v = P_0 Q^{\frac{1}{\alpha}}$$

Per-flow willingness-to-pay

Elasticity used: $\alpha = 2.0$

CED is widely used for bandwidth pricing—keeps elasticity constant over price range.

With $\alpha = 2$, demand is very price-sensitive: small price hikes cause large traffic loss.

PRICE FUNCTION: FLAT PRICING

Traffic Demand and choice model

Constant-Elasticity Demand (CED)

$$\pi(P) = (P - C)Q(P)$$
$$p^* = \frac{\alpha}{\alpha - 1} * c$$

CED Optimal Profit (Per Flow)

$$\pi^* = \frac{v^{\alpha}}{\alpha} \cdot \left(\frac{\alpha c}{\alpha - 1} - c\right) \cdot \left(\frac{1}{\frac{\alpha c}{\alpha - 1}}\right)^{\alpha}$$

Expression	Economic intuition	
$\frac{v^{\alpha}}{\alpha}$	Market scale: Bigger valuation v ⇒ larger potential surplus	
$\left(\frac{\alpha c}{\alpha - 1} - c\right)$	Unit margin: Optimal markup above cost	
$\left(\frac{1}{\frac{\alpha c}{\alpha - 1}}\right)^{\alpha}$	Elasticity shrink: Demand contraction when price rises; steeper when α is high	

TIER DEFINITION AND DERIVATION

Tier modeling and definition

TIER NO	TIER DEFINITION
Tier 0	Metro (< 500 mi)
Tier 1	Regional (500 - 2000 mi)
Tier 2	Intercontinental (> 2000 mi)

Baseline demand scale / markup knob

Constant elasticity parameter

Symbol	Role in the formula	
c_b	"Floor" of the price	
$\alpha (= 2.0)$	Inversely scales the markup	
$s_0 (= 0.2)$	Controls the <i>fixed</i> markup that is added on top of cost	

TIERED PRICING

Valuation and Cost for the tiered pricing scheme

Bundle Valuation

$$v_b = \max(v) + \frac{1}{\alpha} \cdot \log(\sum_i e^{\alpha(v_i - \max(v))})$$

Approximates the aggregate valuation of the bundle.

Bundle Cost

$$c_b = \frac{\sum_i c_i \cdot w_i}{\sum_i w_i}$$

Weighted average of flow-level costs using demand-weighted exponential weights based on valuation.

DATASET: Description

Dataset used to verify the pricing and valuation models

Appraise H2020 - Real labelled Net Flow dataset (For EU ISP)

Column Name	Description	
IPV4_SRC_ADDR	IPv4 source address	
IPV4_DST_ADDR	IPv4 destination address	
IN_PKTS	Number of incoming packets	
IN_BYTES	Number of incoming bytes	
OUT_PKTS	Number of outgoing packets	
OUT_BYTES	Number of outgoing bytes	

DATASET: Preprocessing

Preprocessing dataset to fit to the models

- ✓ Simulate or ingest NetFlow: (srcIP, dstIP, vol)
- ✓ GeoIP -> distances d_i

DATASET: Demand and Flow count

Plot of Price vs Demand

DATASET: Demand and Flow count

Demand and flow count insights from the dataset

Result: Pricing and Valuation Matrix

Tiered pricing and Flat pricing valuation matrix

Tier No	Price	Avg. Cost
Tier 0	6.81	4.31
<u>Tier 1</u>	<u>7.23</u>	<u>4.73</u>
Tier 2	_45.95	43.45

Game Theory Setup

Competing pricing strategies: Flat vs. Tiered

Duopoly Payoff Matrix

	Flat	Tiered
Flat	-28.36, -28.36	-60.78, +1.67
Tiered	+1.67, -60.78	+16.93, +16.93

Players:

2 transit ISPs (A & B), identical cost structure **Strategy set:**

Single - flat \$5/Mbps for every flow

Tiered - Metro \$7.8 | Regional \$12.1 | Inter \$90.4

Customer choice (logit share)

$$P_A = \frac{1}{1 + e^{\alpha(pA - pB)}}$$
, $\alpha = 2$

Profit per ISP:

$$\pi = \sum_{flows} Q_i P_{ISP}(p - c_i)$$

Outcome:

 2×2 payoff matrix \rightarrow find Nash equilibrium

More Results

Results obtaining by varying the parameters value

Flat Tiered

Flat -78.7, -28.36 -15.73, +0.003
1 +29.64, +29.6
4

<u>Tiers:</u> (< 100, < 500, < 1000),

Flat Price: \$5, γ , β = 0.01, 2

 α , $s_0 = 2.0, 0.2$

Key Insights

Insights gained from the results and the game

- ✓ <u>Distance-based tiers beat flat pricing:</u>
 - Tiered-Tiered equilibrium increased each ISP's profit by +16.9 M \$ compared with losses under Flat-Flat.
- ✓ Flat price cross-subsidises long-haul traffic:
 - Intercontinental flows cost ≈ \$88 but paid only \$5; negative margins drove −28 M \$ profit each when both ISPs stayed flat.
- ✓ Elasticity amplifies the benefit of tiering: With α = 2, a 1% price rise → 2% demand drop; tiering lets ISPs raise price only where elasticity is low.
- ✓ **Small markup is enough:**
 - A uniform +\$2.50 ($1/\alpha s_0$) on top of average cost yields positive margin in every tier while keeping metro price < \$8.
- ✓ <u>Tier structure is stable under competition:</u>
 In the 2×2 payoff matrix, Tiered is a dominant strategy; Flat is never a best response.
- **Robustness checked:** Sweep of 36 parameter combinations (α , γ , β , P_0) always preserved Tiered-Tiered as Nash.

Conclusion

Limitations and Conclusions

Limitations

- ✓ Assumed identical QoS & peering terms real-world asymmetries can shift customer share.
- ✓ Geographic bins are coarse (0-100 mi, 100-1000 mi, 1000 mi); finer granularity or latency-based binning may improve pricing precision.
- ✓ Single-period, complete-information game ignores dynamic reactions, capacity constraints, and multihoming.
- ✓ Demand model omits latency/packet-loss utility modifiers; only price drives choice.
- γ and β are stylised; true backbone costs vary by route congestion & vendor contracts.

Conclusion

Distance-based tiering aligns price with cost, removes cross-subsidy, and is the unique stable strategy for competing transit ISPs.

Thank You

Questions!