CWRU DSCI351-451: Homework 4

Prof.:Roger French, TA: JiQi Liu October 11, 2018

Contents

1.2	1.2.3 Pro 1.2.4 Pro	oblem 1 . oblem 2 . oblem 3 . oblem 4 .			 	 	 	 	 	· · ·	 1 1 2
library	(tidyvers	e)									
## v gg ## v ti	splot2 3.0 bble 1.4	.0 v	purrr dplyr	0.2.5 0.7.6	 	 	 	 	 		 tidyvers
	eadr 1.1		•								
## 0		er() mas	ks stats:	 ::filte		 	 	 	 		 tidyverse_conf
library	(tidytext (dplyr) (ggplot2))									

1.2 Text Mining of Song Lyrics

- Complete the given problems
- dplyr, ggplot, and pipelines are highly recommended
- We will be using the Tidytext package to aid with our text mining
- The dataset for this assignment is a collection of the information and lyrics from every top 100 billboard song since 1965

1.2.1 Problem 1

- Load in the data set
- Print the lyrics of the #4 song from 1988
- Show the top 20 artists with the most hits, which artist has the most total top 100 hits?

1.2.2 Problem 2

• Build a histogram of the amount of times artists appear on the top hits billboard, what does the trend look like, what does it suggest about 1 hit wonders?

1.2.3 Problem 3

- Lets do a lyrical comparison between 2 top artists, Elton John and Eminem
- First, filter the main data set to only the 2 given artists (you can make them separate data frames or keep them together, your call)
- Use the unnest tokens() function from tidytext to split the lyrics up so that each word has its own row
- Show the top 10 most commonly used words for each artist
- It should be clear that most of these are not significantly meaningful words and should be removed, we can remove them using the stop_words dataframe provided with the tidytext package (hint: look at dplyr anti_join())
- Remove them and show the top ten remaining words for each artist

data("stop_words")

1.2.4 Problem 4

- Build a word cloud of the lyrics for each atrist, find an R package that will help you with this
- Compare and contrast the word clouds
- Did the stop_words dataframe work well to remove non-meaningful words?

library(wordcloud)

Loading required package: RColorBrewer

1.2.5 Problem 5

- The tidytext package gives us the ability to run sentiment analysis as well
- There are multiple sentiment methods available but let's just use positive and negative sentiment

bing <- get sentiments("bing")</pre>

- What is the bing dataframe?
- Pull out the "positive" and "negative" words for each artist (hint: dplyr inner join())
- For each song per artist, determine the next positive or negative sentiment, there are several ways to do this the most straightforward being assign a 1 to a positive lyric and -1 to a negtive lyric then sum them together for each song
- Make a bar plot of the net sentiment of each song for each artist, make these plots high quality as well
 - Properly name the axes and title each plot
 - Color by whether the song is overall positive or negative
 - rotate the x-axis names so long song titles are legible
 - Arrange the bars in accending or descending order
- What differences do you notice between the 2?
- Based on what you might know about some of these songs, do you think the sentiment analysis gives a good indication of the positive of negative tone for each song or not?
- If you're interested, play around with this data set, see if your favorite artist is in here and see if you can find anything else