Name:	•••••	Index	No	Signature:

P530/1 Biology (Theory) Paper 1 July/August 2023 2 ½Hours

ACEITEKA MOCK EXAMINATIONS 2023

Uganda Advanced Certificate of Education BIOLOGY (THEORY)

Paper 1

2 hours 30 minutes

Instructions to Candidates:

Answer all questions in both sections A and B.

Answers to Section A should be written in the boxes provided

Answers to Section **B** should be written in spaces provided.

No additional answer sheets should be attached to this booklet.

For Examiner's use only			
Section	Mark	Examiner's signature and No.	
A: 1-40			
B: 41			
42			
43			
44			
45			
46			
Total			

SECTION: A (40 MARKS)

Write the letter to the correct answer in the corresponding box. Each question in this section carries **one** mark

1.	Which of the following protein structure is not established using disulphide bridges?					
	A.	Primary	B. Secondary	C. Tertiary	D. Quaternary	
2.		is an excellent Polar	solvent for solutes B. Ionized	that are C. Acidic	D. All the three	
3.	A. B. C.	Seasonal clima Heavier insect Water molecu	ng would happen If atic changes would as would walk on w les would be more nove from roots to	l be greater vater polar	specific heat capacity?	
4.	strong A. B. C.		between R groups? structure lary structure heath		peptide results primarily from	
5.	A. B. C.	Covalent bond Linear polyme Condensation	•	atoms		
6.	resultii oxyger	ng in poisoning	, however this can This suggests that	be revered by sup- carbon monoxide	by displacing its oxygen plying patients with more is B. An irreversible inhibitor	
	C.	An Allosteric e	effector		D. A Co enzyme	
7.	substra A. B. C.	nte and a compe All enzyme m All enzyme m Half the enzyr	em that includes an etitive inhibitor wil olecules bound to to olecules bound to the bound to substrate bound to neither a	I have the substrate the inhibitor ate and half to the		

8. Table **1** shows the effect of environmental temperature on bacterial growth and their enzymes.

Species	Maximum growth temperature(° C)	Enzyme denaturation temperature(° C)			
		Indophenol	catalase	Succinic	
		oxidase		dehydrogenase	
Bacillus	40	41	41	41	
mycoides					
Bacillus	48	48	50	47	
megatherium					
Bacillus alvei	46	51	50	53	
Bacillus	55	56	56	50	
vulgatus					

A valid conclusion from the data is that

C. A single haploid set of chromosomesD. Two sets of homologous chromosomes

	A vand conclusion from the data	i is ma	ı	
	A. Different species of bacteria	can su	rvive in different temperature	
	B. The same enzymes in differe temperatures	nt spec	cies of bacteria have similar denaturation	
	C. The temperatures at which si the temperature at which their		species of bacteria live are closely related with mes are denatured	_
	D. The temperatures at which di with the temperature at which		t species of bacteria live are closely related enzymes are denatured	
	In compounds such as ATP that have chemical bond holding the terminal	_	phosphoryl group transfer potentials the noryl group is best described as	
	A. Stable and strong		B. Unstable and easily broken	
	C. Resistant to hydrolysis		D. A reducing agent	
]	permeable membrane? A. Temperature of the system	В.	Size of the solvent molecule	_
	C. PH of the solvent	D.	Steepness of the concentration gradient	
11.	The difference between cofactors an			
	A. are proteins while cofactors			
	B. are not proteins while cofactC. are organic molecules cofact			
	D. activate enzymes while cofa			
	D. detivate onzymes winte con	ctors a	envale coenzymes	
12. 7	The term aneuploi d refers to a cell v			
	A. One or a few extra or missing	_		_
	B. More than two sets of homol	ogous	chromosomes	

13. Meiotic and mitotic cell cycl	es differ in			
A. The stage when DNA	is synthesized			
B. The number of chrom	-	nosome		
C. Whether or not synap	-	_		
D. The number of times	DNA replicates	per cycle		
14. Which of the following phen	otypic ratios wo	ould you expect i	n a mating of a female	
carrier of haemophilia and a	normal male?			
A. All normal daughters				
B. All normal daughters		•		
C. All daughters with ha				
D. All normal daughters	naii normai soi	18		
15. Which of the following does	not occur durir	ng cyclic photoph	osphorylation?	
A. Oxidation of chloropl			ction of NADH	
C. Production of ATP		D. Electr	ron transport	
16. The survival rate of babies of heavier or lighter newborns. an example of	_	_	•	S
A. Disruptive selection		B. Direction	al selection	
C. Stabilizing selection		D. Destabili	zing selection	
17. Starting from a parental stock which type of selection	k ,adaptive radia	ation to a variety	of habitats results from	
A. Stabilizing		B. Direction	nal	
C. Disruptive		D. Both st	abilizing and directional	
10 In the long town all anguing a	ma maat lilvalvy te	, undama		
18. In the long term all species a A. Extinction	ie most nkery to	•	ive selection	
C. Stabilizing selection		•	speciation	
C			1	
19. If two genes are on the same a cross of two individuals he phenotypes?	-	-		
A. One	B. Two	C. Three	D. Four	
20. Structures in organisms of di	fferent species	are homologous	f they	
A. Have a similar appear		are nomologous	n mey	
B. Are found in many sp		e same communi	ty	

	C.	Perform the similar functions	
	D.	Develop from the same embryonic structure and occupy comparable positions	
21. V	estigi	ial organs are considered evidence for evolution because of the following except	
	_	Their structure may show similarities to functional organs in other species	
		They arise from the same embryological source as functional organs in other	
		species	
	C.	They arise from different embryological source as functional organs in other	
		species	
	D.	Their presence fits into the history of the organ as seen in the fossil record	
22. In	the 1	process of natural selection the role of the environment is to	
	A.	Enable the population to evolve towards a predetermined goal	
	B.	Crease particular adaptations needed at the time	
	C.	Increase the reproductive rate of some members of a population	
	D.	Increase the rate of reproduction of all members of a population	
23. V	iruse	s are not considered real organisms because they	
	A.	Lack usable genetic information	
		Are not capable of sexual reproduction	
	C.	Do not have their own mechanisms for exchanging matter and	
		energy with the environment	
	D.	Are not capable of evolution	
24. In	the 1	natural environment gene flow occurs freely between members of	
		Different genera	
		Different species	
		Same species	
		Members of isolated population	
25. W	hich	of the following constitutes a post mating reproductive isolating mechanism?	
	A.	Males are isolated from females by geography	
	B.	Courtship behavior of males does not attract proper response from females	
		External genitals of females and males prevents mating	
	D.	An interspecific embryo is unable to develop to term	
26. W	hich	of the following would increase the rate of photosynthesis of a plant in where light	
W	as the	e limiting factors	
	A.	Increase the carbon dioxide concentration	
	B.	Increase the temperature	
	C.	Reducing the distance between the plant and light source	
	D.	Increasing the distance between the plant and light source	
27. W	hich	of the following classes of muscles is /are voluntary?	
	A.	Skeletal	
	B.	Cardiac	

	C. Smooth		
	D. Visceral		
20 I aa	uning in which on quincal accordation two whom	one and that it arreading and at	
	rning in which an animal association two pheno	omena that it experiences at	
	roximately the same time is called		
	A. Imprinting		
	B. Operant conditioningC. Classical conditioning		
	D. Insight learning		
	D. Hisight learning		
29. Wh	ich signal type would provide the fastest comm	unication between bats flying in a da	rk
fore	st?		
	A. Chemical		
	B. Sound		
	C. Visual		
	D. Electrical		
30 Wh	ich of the following is not an advantage of brea	thing air over breathing water?	
	A. Air is less dense than water so it takes less e	-	
	B. Oxygen diffuses faster through air than it do		
	C. The oxygen content of air is greater than that	2	
	D. Air breathing leads to high evaporation rate	-	
	2. The orealising reads to mgn exaporation rate	s from the respiratory surface	
31. Tab	le 2 shows the osmolality of the haemoglobin o	f a water mussel and that of its	
	ounding		
	Water osmolality	Haemolymph osmolality	
	250	261	
	500	503	
	750	746	
	1000	992	
	The results show that mussels are		
	A. Osmoregulators		
	B. Osmoconformers		
	C. Isotonic to their environment		
	D. Hypotonic to their environment		
32. Chi	ldren suffering from severe oral dehydration are	e given oral rehydration salts in order	r
to		8	
	A. Decrease urine output		
	B. Increase water absorption		
	C. Kill intestinal bacteria		
	D. Induce thirst		
22 1			
	nuscles cells myosin molecules continue movin		
	 A. ATP is present and troponin is not bound to B. ADP is present and tropomyosin is released 		
	B ALIP 10 procent and transmuscin 10 released	trom introcallular ctorac	1

	D. ATP is present and intracellular Ca ²⁺ is high.							
for	e molecular for nula for a poly	ymer made						
	densation read			7				
	A. $C_{60}H_{120}O_{60}$) В.	$C_6H_{12}O_6C_6$	ز.	C. $C_{60}H_{102}O$	D.	$C_{60}H_{100}O_{50}$	
35. The	results shows t	that both co	ortisol and A	CTH brit	ng about			
	A. A cascade e				8			
	B. Negative fe	edback						
	C. Positive fee	edback						
	D. Antagonisn	1						
is u Kca	ne gross primary sed up by cellul l/m²/yr.? A. 2250 B. 2750 C. 5000 D. 7500	_	=	_				
	ich of the follov A. Atmospheri B. Marine plan C. Petroleum D. Wood	ic carbon di	•	ngest live	d reservoir fo	or carbon?		
38. Wh	ich of the follow	wing would	cause a cel	l to switc	h from cellula	ar respiration	to	
fern	nentation?							
	A. The final el		-		ansport chair	ı is not availa	ble	
	B. The proton							
	C. NADH andD. Pyruvate is			OW				
39. All	the following c A. Complete n B. Incomplete C. Multiple all D. Pleiotropy	an result in netamorpho metamorph	polymorph	ism excep	ot			
40. Table 3 shows how many individuals were recorded for each of five species in five								
sepa	arate communit		lad ala a et es	aiaa 1!				
	Which community	nity nas tne	mgnest spe		-			
	Community	1	2	<u>S</u>	pecies 3	4	5	

C. ADP is present and intracellular acetylcholine is high

A	90	10	0	0	0
В	80	10	10	0	0
С	25	25	25	25	25
D	20	20	20	20	20

SECTION: B (60 MARKS)

41. Figure 1 below is a graph showing the effect of temperature on the rate of photosynthesis in two grasses: Agropyron and Bouteloa

a)	State	now different the effect of leaf temperature	is on the rate of photosynthesis
	in both	h grasses	(03 marks)
••••			
••••			
••••			
••••			
••••			
••••	••••••		
b)	Giving	g a reason in each case, suggest which of the	ne two grasses is likely to grow
	faster	in a	
	i)	Temperate climate	(02 marks)
••••			
••••			
••••			
••••			
	ii)	Tropical climate	(02 marks)

		•••••
		••••••
		•••••
	c) Explain the effect of temperature on the rate of photosynthesis in <i>Agra</i>	opyron
		(03 marks)
		•••••••
12. a)	What is meant by the term pest resurgence ?	(02 marks)
		••••••
	b) Explain the effect of using a broad spectrum pesticide in controlling po	pulations of
	pests	(03 marks)
	Pests	(03 marks)
		•••••••
	d) State two ways pesticides can affect non pest organisms in the environment	nment
		(02 marks)
		,
		••••••

	Under what circumstances can pest resurgence arise	
		(03 marks)
•••••		•••••
•••••		•••••
۵)	What is moont by the term variation?	(02 monte
a)	What is meant by the term variation ?	(02 marks
•••••		•••••
1 \		1
b)	Explain why certain traits among individuals in a	a population are
i)	continuously distributed	(02 mark
ŕ	·	,
•••••		•••••
•••••		
•••••		
•••••		••••••
ii)	discontinuously distributed	(02 marks
,	, a	(-
•••••		
•••••		
		•••••
	scribe ane way in which the environment can offer	et phenotypic variation
c) De	escribe one way in which the environment can affect	
c) De	escribe one way in which the environment can affec	et phenotypic variation (04 marks
c) De	escribe one way in which the environment can affec	

 •••••	•••••	

44. Table **4** shows the results of an experiment that measured the number of mistakes made by maze bright and maze dull rats raised in different environments

Number of mistakes			de in	
Phenotype	Normal	Restricted	Enriched	
	environment	environment	environment	
Maze bright	115	170	112	
Maze dull	165	170	122	

	Compare the behavior of the rats in the three environments.	(04 marks)
••••		
b)	State what is being investigated in this experiment.	(01 mark)
	What general conclusions can you make from the results of this	
		.(02 marks)
 d)	Suggest two characteristic of the type of learning investigated	(03 marks)

	• • • • • • • • • • • • • • • • • • • •
a) State the parameters listed in Fick's law of diffusion	(03 mar
b) Explain how each parameter in Fick's law of diffusion is re	eflected in the structure
of the mammalian lung	(03 mar
c) Explain the changes in oxygen delivery to the tissues that o	ccur as a person procee
c) Explain the changes in oxygen delivery to the tissues that o	
	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma
from a resting state to intense exercise	(04 ma

46. Table 5 shows the results of an investigation in which two plant seedlings **X** and **Y** of different species had their **respiratory quotients** (**RQs**) measured during their early development.

Number of days from start of germination	X	Y
1	0.61	0.65
5	0.41	0.91
9	0.71	0.99
13	0.70	1.02

	State what is meant by the term respiratory quotient	(02 marks)
	State with a reason in each case the possible nature of the respiratory	
	used by seedlings \boldsymbol{X} and \boldsymbol{Y} on \boldsymbol{days} 1 and 13 of the experiment	(08 marks)
Se	edling X	
	y1	
da	y13	
Se	edling Y	
da	y1	
	y	
	ıy13	
	y13	