MATH 255 Cheat Sheet

Lecture Notes 1

Definitions

- 1. Cluster/limit point : Every ε -neighbourhood of x contains a point of S, i.e. every neighbourhood contains infinitely many points, i.e. there exists a sequence in S which converges to x.
- 2. Closed set \iff contains all its cluster points
- 3. Interior point, i.e. $x \in S^o$ if $\exists \varepsilon$ such that $B(x, \varepsilon) \subseteq S$
- 4. Isolated point if $\exists \varepsilon$ s.t. $B(x, \varepsilon) \cap S = \{x\}$
- 5. Boundary point if $\forall \varepsilon, B(x, \varepsilon) \cap S \neq \emptyset$ and $B(x, \varepsilon) \cap S^c \neq \emptyset$
- 6. Closure of a set $\overline{S} = S \cup \partial S = S \cup S'$
- 7. Compact if $\{G_{\alpha}\}_{\alpha\in I}$ is an open cover of S, \exists a finite subcover s.t. $S\subseteq G_{\alpha_1}\cup\ldots\cup G_{\alpha_n}$
- 8. Continuity:

Results

- 1. K_n a sequence of compact sets s.t. $K_{n-1} \subseteq K_n$, then the intersection of all K_n is compact and non-empty.
- 2. Perfect \implies uncountable.

Lecture Notes 2 - Metric Spaces Definitions

- 1. Metric space X:
 - (a) $d(x,y) \ge 0 \forall x, y \in X$

- (b) $d(x,y) = 0 \iff x = y$
- (c) d(x, y) = d(y, x)
- (d) $d(x,y) \le d(x,z) + d(z,y) \forall x, y, z \in X$
- 2. Open ball in X: $B(x,\varepsilon) := \{ y \in X : d(x,y) < \varepsilon \}$
- 3. S open in X if $\forall x \in S, \exists \varepsilon > 0$ s.t. $\{y \in X \mid d(x,y) < \varepsilon\} \subseteq S$
- 4. Perfect in X if closed and every point is a cp.
- 5. $E \subseteq X$ is bounded if $\exists x \in X$ and R > 0 s.t. $\forall y \in E, \ d(x, y) < R$.
- S is dense in X if S
 = X, i.e. every x ∈ S is a cp of X, i.e. ∀x ∈ X, ∀ε > 0, ∃ a point of S in B(x, ε).
- 7. X is separable if it has a countable dense subset.
- 8. $x \in X$ is a condensation point if $\forall \varepsilon > 0$, \exists uncountably many points of X in $B(x, \varepsilon)$.
- K ⊆ X is sequentially compact if every infinite subset E of K has a cluster point in K. That is, every sequence in K has a subsequence converging in K.
- 10. A set $S \subseteq X$ is **totally bounded** if $\forall \varepsilon > 0$, \exists finitely many $x_n \in S$ s.t. $S \subseteq B(x_1, \varepsilon) \cup ... \cup B(x_N, \varepsilon)$.
- 11. A collections of subsets of E labeled as \mathcal{F} has the **FIP** if whenever $F_1, ..., F_n \in \mathcal{F}$, we have

$$\bigcap_{i=1}^n F_i \neq \emptyset$$

Results

- 1. The union of arbitrary open sets is open.
- 2. The union of finitely many closed sets is closed.

- 3. The intersection of arbitrary closed sets is closed.
- 4. The intersection of finitely many open sets is open.
- 5. $E \subseteq Y \subseteq X$. Then E is open relative to $Y \iff \exists G$ open in X s.t. $E = G \cap Y$.
- f: E → ℝ is continuous on E if the inverse image of any open set in ℝ is open relative to E.
- 7. $K \subseteq Y \subseteq X$ Then K is compact relative to X \iff it is compact relative to Y.
- 8. Compact \implies closed & bounded (in any metric space).
- 9. Closed subsets of compact sets are compact.
- 10. F closed, K compact $\implies F \cap K$ compact.
- 11. Sequentially Compact \iff Compact.
- 12. $K \subseteq X$, K is compact \iff K is closed and every collection \mathcal{F} of closed subsets of K which has the FIP satisfies $\cap_{F \in \mathcal{F}} F_i \neq \emptyset$
- 13. Totally bounded \implies separable.
- 14. Sequentially compact \implies separable.

Lecture Notes 3 - Sequences & Continuous Functions in Metric Spaces Lecture Notes 4 - Normed Vector Spaces

Lecture Notes 5 - Infinite Series Lecture Notes 6 - Integration