# 범죄 예상 지역 특성 분석

:강남구를 중심으로

2023.12.19



# INDEX

- 1. Introduction
  - research background
  - literature review
- 2. Methodology
  - data
  - model
- 3. Result

- 4. Conclusion
  - limitation
  - future research plan



### 1. Research Background

#### Numerous and increasing recent crimes in Korea

- 2023.07.21 Stabbing rampage at Sillim station
 - 2023.08.03 Unprovoked aggression at Seohyeon station AK plaza
 - series of copycat crimes

Moreover, the main crimes show rapidly increasing trend from 2022





## 1. Research Background

However, arrest count has been decreasing compared to crime ratio

Preventive measures are needed rather than after crime response





### 2. Literature Review

#### **CPTED**

- based on the theory that socio-physical environment effects to human behavior
- the most popular method to prevent crimes in urban environment







### Crime has close relationship with urban environment and spatial characteristics







### 3. Data

### Available data



Safemap API WMS/WFS map by Ministry of the Interior and Safety



Administrative district



### 3. Data



installed in a place where a crime occurs frequently or is expected to occur



Already estimated crime vulnerable site





CCTV for crime prevention





Kakao Roadview



## 4. Analyzing Flow

Image Processing
Random

sampling (500)

Crawling the nearest roadview

Crop and paste the images

Preparing for Analyze

Vectorization

PCA Dimenstion reduction Clustering and Analyzing

DBSCAN Clustering

Calculate similarity



### 5. Model

### VGG16





- very deep CNN model
- 16 layers
- using 3X3 filter

### DBSCAN



- density based
- No need to set the number of clusters
- good for distributions with geometric shapes



# 5. Result

















## 5. Result



### Similarity within each clusters

| Cluster  | Similarity | Cluster  | Similarity |
|----------|------------|----------|------------|
| Cluster0 | 0.7402     | Cluster4 | 0.7654     |
| Cluster1 | 0.8165     | Cluster5 | 0.8394     |
| Cluster2 | 0.8154     | Cluster6 | 0.8330     |
| Cluster3 | 0.7354     | Cluster7 | 0.8380     |





### 6. Conclusion

#### Limitation

- Logical error → Is the place where the CCTV is really vulnerable to crime?, the number of CCTV
- Parameter optimization of DBSCAN
- Hard to explain the clustering result

#### Future Research Plan

- Parameter adjustment
- Explainable clustering → using HDBSCAN
- Combining with social and spatial variables (ex. Land use, building use, age groups etc.)

#### Implication

- Urban landscape using unstructured big data
- Training clustering result



# **THANK YOU**

