Article Open access | Published: 20 December 2023

Autonomous chemical research with large language models

Daniil A. Boiko, Robert MacKnight, Ben Kline & Gabe Gomes

☐

Nature 624, 570-578 (2023) Cite this article

128k Accesses | 93 Citations | 945 Altmetric | Metrics

Student: 林子軒

ID: 113023503

Date: 2024/09/16

Lab:楊自雄老師 智動化分子研發實驗室

Introduction

ARTICLE | February 1, 1988

SMILES format smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules

David Weininger

- >3D, 2D -> 1D, how?
- > Simplicity: SMILES uses ASCII characters to represent molecules, making it easy to input and process by computers.
- **Readability**: For simple molecules, **SMILES** strings can be relatively easy for humans to read and interpret.
- **Compactness**: SMILES can represent complex molecular structures in a compact string format.

ARTICLE | February 1, 1988

SMILES format smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules

David Weininger

- Atoms are represented by their atomic symbols (e.g., C for carbon, O for oxygen).
- Single bonds are implied and not explicitly written.
- Double bonds are represented by '=', triple bonds by '#'.
- Branching is shown using parentheses.
- Rings are indicated using numbers to show connection points.
 - Ethanol: CCO
 - Benzene: c1ccccc1

Bergenin (cuscutin, a resin)

OC [C@GH] (01) [C@GH] (0) [C@H] (0) [C@H]2[C@H]1c3c(0)c(0C)c(0)cc3C(=0)02

CC1=CN(C2CC(O)C(CO[P](O)(=O)O[P](O)(=O)O[P](O)(O)=O)O2)C(=O)NC1=O

Computer Science > Computation and Language

[Submitted on 15 Mar 2023 (v1), last revised 4 Mar 2024 (this version, v6)]

GPT-4 Technical Report

Large Language Models: A Survey

- Large Language Models (LLMs) are AI systems that process and generate human language. They are "large" due to their billions to trillions of parameters.
- ➤ Massive Training Data: LLMs are trained on vast amounts of text data from diverse sources, including books, websites, and articles.

Large language models (LLMs)

- But how is LLMs important in chemistry?
- ➤ What if it can predict a new drug or a new structure within only a few seconds and dollars?

Article: Multi-Criteria Decision Making in Whole Proce February 2013
Thesis for PhG
Author: Gary Montague, Elaine B Martin OBE FReng
Authors:

Richard Edgar Hodgett

Coscientist

Article Open access Published: 20 December 2023

Coscientist 6 tasks

Autonomous chemical research with large language models

Daniil A. Boiko, Robert MacKnight, Ben Kline & Gabe Gomes

✓

Nature 624, 570–578 (2023) Cite this article

128k Accesses 93 Citations 945 Altmetric Metrics

- ✓ planning chemical syntheses of known compounds using publicly available data
- ✓ efficiently searching and navigating through extensive hardware documentation
- ✓ using documentation to execute high-level commands in a cloud laboratory
- ✓ precisely controlling liquid handling instruments with low-level instructions
- ✓ tackling complex scientific tasks that demand simultaneous use of multiple hardware modules and integration of diverse data sources
- ✓ solving optimization problems requiring analyses of previously collected experimental data

Coscientist system architecture

Coscientist system architecture

Web search module

Ranking

- >5 for a very detailed and chemically accurate procedure description
- ➤ 4 for a detailed and chemically accurate description but without reagent quantities
- ➤ 3 for a correct chemistry description that does not include step-bystep procedure
- >2 for extremely vague or unfeasible descriptions
- ▶1 for incorrect responses or failure to follow instructions

All scores below 3 indicate task failure

Web search module

Evaluation

b

Incorrect synthesis steps but makes chemical sense (GPT-3.5, no search)

Correct synthesis, including detailed experimental procedure 5 (GPT-4 with search)

C

Incorrect synthesis steps, does not make chemical sense (GPT-4, no search)

Correct synthesis logic but no reagents and experimental procedure 3

Documentation search module

Documentation search module

b Valid OT-2 API code

```
# Heat and shake the reaction
hs_mod.set_target_temperature(75)
hs_mod.wait_for_temperature()
hs_mod.set_and_wait_for_shake_speed(500)

# Deactivate heater and shaker
hs_mod.deactivate_heater()
hs_mod.deactivate_shaker()
hs_mod.open_labware_latch()
```

Proper usage of heater-shaker module

d Valid ECL SLL code

```
# Generated HPLC Experiment SLL Function Call
ExperimentHPLC[
    Object[Sample, ...],
    Instrument -> Model[Instrument, ...]
]
```

Targeted experiment options are set by the Planner

Why is it important?

Documentation search module

Why is it important?

ns mod.set target temperature(75) s mod.deactivate heater()

Proper usage of heater-shaker module

Targeted experiment options are set by the Planner

✓ Technical Integration

- ✓ Capable of addressing the complexity of software components and their interactions
- ✓ Crucial for integrating LLMs with laboratory automation

✓ Effective Utilization of Technical Documentation

✓ Enables Coscientist to understand and use technical documentation

✓ Learning New Languages and Systems

✓ Demonstrates GPT-4's ability to learn new programming languages (like ECL SLL)

Robotic liquid handler control capabilities and integration with analytical tools.

OT-2

- Coscientist conducts experiments using an open-source liquid handler OT-2 and its API, obtaining information from documentation.
- Coscientist is capable of integrating multiple modules, like using UV-Vis spectrometry, and solving complex tasks through data analysis, such as determining sample colors and positions without prior information.

Integrated chemical experiment design

Cross-coupling Suzuki and Sonogashira reaction experiments designed and performed by Coscientist

> No human decision

Cross-coupling Suzukiand Sonogashira reaction

C

The liquid handler setup scheme left pipette, 20 µl single channel right pipette, 300 µl single channel

10	11	
7	8	9
4	5	6
1	2	3

- 20 μl tips
- 2 300 μl tips
- 5 Source plate (deep 96-well)
- 10 Heater-shaker module with target plate

d

You need to perform Suzuki and Sonogashira reactions using available reagents...

User prompt

First, let's find the appropriate conditions for both Suzuki and Sonogashira reactions...

Planner's output

GOOGLE Suzuki reaction conditions optimal

An optimal set of conditions for Suzuki-Miyaura cross-coupling reactions can be obtained...

GOOGLE Sonogashira reaction conditions optimal

The optimal conditions for the Sonogashira reaction, a cross-coupling reaction of a vinyl or aryl halide with a terminal...

... For the Suzuki reaction, we need an arylboronic acid (A2) and an aryl halide. Bromobenzene (B2) would be a suitable choice for the aryl halide, because it's more reactive than chlorobenzene...

... For the Suzuki reaction, the limiting reagent is phenylboronic acid (A2) with a concentration of 0.13 mmol ml⁻¹. For the Sonogashira reaction, the limiting reagent is phenylacetylene (A1) with a concentration of 1.35 M or 1.35 mmol ml⁻¹.

PYTHON def calculate_volumes(concentration, desired_mmol=0.025):
 volume = desired_mmol / concentration
 return volume

0.19230769230769232 0.018518518518518517

Suzuki reaction

conc A2 = 0.13 # mmol/mL

DOCUMENTATION how to use heater-shaker module

Using the information from the documentation, I will now correcthe protocol for the Suzuki and Sonogashira reactions using the heater-shaker module.

XYPERIMENT from opentrons import protocol_ap.

Cross-coupling Suzuki and Sonogashira reaction

- for specific choices
- demonstrating its capability to handle concepts such as reactivity and selectivity.

Discussion

Discussion

- This study demonstrates an AI system capable of autonomously designing and executing complex scientific experiments.
- The system combines large language models with research tools, showcasing advanced reasoning and experimental design capabilities.

Thanks for listening!