Estratégias para análise de dados de poluição do ar

William Nilson de Amorim

TESE APRESENTADA
AO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DA
UNIVERSIDADE DE SÃO PAULO
PARA
OBTENÇÃO DO TÍTULO
DE
DOUTOR EM CIÊNCIAS

Programa: Doutorado em Estatística
Orientador: Prof. Dr. Antonio Carlos Pedroso de Lima

Coorientador: Prof. Dr. Julio da Motta Singer

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da CAPES e do ${
m CNPQ}.$

São Paulo, fevereiro de 2019

Estratégias para análise de dados de poluição do ar

Esta é a versão original da tese elaborada pelo candidato William Nilson de Amorim, tal como submetida à Comissão Julgadora.

Agradecimentos

Texto texto

Ao Starbucks por todas as vezes que eu trabalhei lá sem consumir nada.

Resumo

AMORIM, W. N. Estratégias para análise de dados de poluição do ar. 2019. ?? f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 201?.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Texto texto

Palavras-chave:

Abstract

Amorim, W. N. Survival analysis models with covariate subjected to non-random missingness. 201?. ?? f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Keywords:

Sumário

Li	sta d	le Figu	ras	<
Li	sta d	le Tabe	elas	i
1	Intr	oduçã	o 1	L
2	Aná	ilise ex	ploratória 5	5
	2.1	Gráfic	os	3
		2.1.1	O gráfico da série	3
		2.1.2	Gráficos de dispersão	3
		2.1.3	Gráficos de distribuição	1
	2.2	Comp	onentes temporais $\dots \dots \dots$	1
		2.2.1	Tendência	3
		2.2.2	Sazonalidade	1
		2.2.3	Autocorrelação	õ
		2.2.4	Função de correlação cruzada	3
3	Mo	delos p	para dados de poluição 21	L
	3.1	Regres	são linear	2
		3.1.1	Especificação do modelo	3
		3.1.2	Incorporando tendência e sazonalidade	1
		3.1.3	Tratando erros correlacionados	3
		3.1.4	Contornado a suposição de homoscedasticidade	7
		3.1.5	Contornado a suposição de linearidade	3
		3.1.6	Contornado a suposição de aditividade)
		3.1.7	Avaliando a qualidade do ajuste)
	3.2	Model	os lineares generalizados	1
		3.2.1	Especificação do modelo	1
		3.2.2	Modelos para dados positivos assimétricos	2
		3.2.3	Modelos para dados de contagem	1
	3.3	Model	os aditivos generalizados	1
		3.3.1	Especificação do modelo	5
		3.3.2	Splines e regressão local	5
	3.4	Model	os ARIMA e extensões	7
		3.4.1	Modelos autorregressivos (AR)	7

	4.5	Regui	arização	50
5	Pol	uição e	e uso de combustíveis	53
	5.1	Etano	l e ozônio	53
		5.1.1	Dimensionando o problema	54
		5.1.2	-	55
		5.1.3	-	61
		5.1.4	Estratégia I: regressão linear	62
		5.1.5	Estratégia II: modelo aditivo generalizado	62
		5.1.6	Estratégia III: LASSO	62
6	Pol	uição e	e saúde pública	65
7	Dno	visão		67
7	Pre	visao		07
8	Obt	tendo d	dados de poluição	69
	8.1	Dados	no Brasil	69
	8.2	Dados	nos EUA	69
	8.3	Dados	na Europa	69
9	Die	cussão		71
J	יפוע	cussau		11
\mathbf{R}	eferê	ncias I	Bibliográficas	73

Lista de Figuras

2.1	Série da concentração de ozônio para a estação Dom Pedro II, na cidade de São	
	Paulo, no período de 2008 a 2013. Em azul, a série suavizada usando splines cúbicos.	7
2.2	Série da concentração média de ozônio ao longo do dia para a estação Dom Pedro II,	
	na cidade de São Paulo, no período de 2008 a 2013. Não existe informação para as 6	
	da manhã pois é o horário em que o equipamento sofre manutenção.	7
2.3	Série diária da concentração média de ozônio medido no começo da tarde para a	
	estação Dom Pedro II, na cidade de São Paulo, no período de 2008 a 2013. Em azul,	
	a série suavizada usando <i>splines</i> cúbicos	8
2.4	Série diária da concentração média de ozônio medido no começo da tarde para todas	
	as estações, na cidade de São Paulo, no período de 2008 a 2013. Em azul, as séries	
	suavizadas usando splines cúbicos.	9
2.5	Série diária da concentração média de ozônio medido no começo da tarde para todas	
	as estações, na cidade de São Paulo, no período de 2008 a 2013. Em azul, as séries	
	suavizadas usando splines cúbicos	9
2.6	Gráfico de dispersão da concentração de ozônio contra a concentração de óxido de	
	nitrogênio medidas das 12 às 16 horas na estação de monitoramento Dom Pedro II,	
	em São Paulo, de 2008 a 2011	10
2.7	Gráfico de dispersão da concentração de ozônio contra a concentração de dióxido de	
	nitrogênio medidas das 12 às 16 horas na estação de monitoramento Dom Pedro II,	
	em São Paulo, de 2008 a 2011	11
2.8	Gráfico de dispersão da concentração de ozônio, medida das 12 às 16 horas, contra	
	a concentração de óxido de nitrogênio, medida das 7 às 11 horas, na estação de	
	monitoramento Dom Pedro II, em São Paulo, de 2008 a 2011	12
2.9	Histograma da concentração diária média de ozônio medida das 12 às 16 horas na	
	estação de monitoramento Dom Pedro II, na cidade de São Paulo, de 2008 a 2013.	13
2.10	Distribuição por mês da concentração diária média de ozônio medida das 12 às 16	
	horas na estação de monitoramento Dom Pedro II, na cidade de São Paulo, de 2008	
	a 2013	14
2.11	Série da concentração de ozônio diária média, medida na cidade de São Paulo (estação	
	de monitoramento Dom Pedro II), no período de outubro de 2008 a junho de 2011,	
	das 12h às 16h	15

х

4.1	Exemplo do trade-off entre viés e variância. (a) Conjunto de 10 pontos que gostaríamos de ajustar. (b) Modelos de regressão polinomial de graus 1 (vermelho), 2 (amarelo) e 9 (azul) ajustado aos 10 pontos. (c) Amostra de 100 novas observações plotadas juntas dos modelos polinomiais ajustados nas 10 observações iniciais. (d) Modelos de regressão polinomial de graus 1 (vermelho), 2 (amarelo) e 9 (azul) ajustados aos 100 novos pontos.	44
4.2	Esquematização da validação cruzada leave-one-out	47
5.1	Séries da concentração de ozônio diária média e da proporção estimada de carros a gasolina rodando na cidade. Dados da estação Dom Pedro II, de 2008 a 2013	56
5.2	Gráfico de dispersão da concentração de ozônio contra a proporção estimada de carros rodando a gasolina na cidade. Dados da estação Dom Pedro II, de 2008 a 2013	57
5.3	Gráficos <i>ridge</i> da temperatura diária média nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados da estação Dom Pedro II, de	
	2008 a 2013	57
5.4	Gráficos das séries da concentração de ozônio e da temperatura diária média nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados	
	da estação Dom Pedro II, de 2008 a 2013.	58
5.5	Gráficos de dispersão da concentração de ozônio pela temperatura diária média nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados	
5.6	da estação Dom Pedro II, de 2008 a 2013	58
	2013	59
5.7	Relação entre a concentração de ozônio e o congestionamento na região da estação	
	de monitoramento ao longo da semana. (a) Concentração de ozônio diária média ao	
	longo da semana. (b) Congestionamento diário médio, no período da manhã e da	
	tarde, na região da estação de monitoramento ao longo da semana. Dados da estação	60
5.8	Dom Pedro II, de 2008 a 2013	60
0.0	ção de estimadas de carros rodando a álcool e em dias com maior proporção estimada	
	de carros rodando a gasolina. Dados da estação Dom Pedro II, de 2008 a 2013	60

Lista de Tabelas

3.1	Critérios para a escolha da ordem de modelos ARIMA	39
4.1	Raiz do erro quadrático médio (RMSE) para os modelos polinomiais de grau 1 a 9	45
	ajustados com 10 e 110 observações no exemplo da Figura 4.1	40
4.2	Modelos de regressão linear que devem ser ajustados para selecionar o melhor sub-	
	conjunto de variáveis no caso com 3 preditores.	49
5.1	Preditores considerados pelo modelo para a concentração de ozônio ajustado em	
	Salvo et al. (2017)	61
5.2	Estimativas do parâmetro referente à proporção de carros rodando a gasolina do	
	modelo de regressão linear	62
5.3	Estimativas do parâmetro referente à proporção de carros rodando a gasolina do	
	modelo aditivo generalizado	63
5.4	Estimativas do parâmetro referente à proporção de carros rodando a gasolina do	
	modelo com LASSO	63

Capítulo 1

Introdução

A poluição do ar, considerada pela Organização Mundial da Saúde (OMS) como o maior risco ambiental à saúde humana, é responsável por aproximadamente 7 milhões de mortes por ano, um oitavo do total global (Jasarevic et al., 2014). Poluentes como óxidos de carbono, nitrogênio e enxofre, ozônio e material particulado trazem diversos prejuízos à nossa qualidade de vida e ao equilíbrio do planeta. Eles são agentes sistemáticos em afecções como irritação dos olhos, obstrução nasal, tosse, asma e redução da função pulmonar. À exposição contínua estão associadas diversas doenças respiratórias e cardiovasculares, problemas digestivos e no sistema nervoso, câncer e aumento da mortalidade infantil (European Commission, 1999). Além disso, vários poluentes estão diretamente ligados ao aquecimento global e ao efeito estufa.

As taxas elevadas de poluição do ar geralmente são produto de políticas não sustentáveis em setores como transporte, energia, saneamento e indústria. A escolha de estratégias favoráveis à saúde pública e ao meio ambiente costuma esbarrar em fatores econômicos, mesmo quando a redução a longo prazo nos gastos com tratamentos de saúde poderia gerar números positivos nesse balanço. Nas últimas décadas, diversos estudos vêm sendo realizados para nos alertar sobre os riscos da poluição atmosférica. Seus principais objetivos compreendem a descrição dos níveis locais de poluição, o acompanhamento das concentrações dos poluentes ao longo do tempo, a busca por associações entre a concentração de poluentes e mortalidade ou morbidade e o desenvolvimento de soluções mais limpas (ou menos poluentes) que ainda sejam economicamente viáveis.

Carslaw et al. (2007), por exemplo, modelaram concentrações diárias de óxidos e dióxidos de nitrogênio, monóxido de carbono, benzeno e 1,3-butadieno para avaliar a tendência das concentrações desses poluentes durante o período de 1998 a 2005 no movimentado centro de Londres. Beer et al. (2011) analisaram dados de morbidade e mortalidade para estudar os impactos à saúde ao se utilizar etanol como aditivo na gasolina em regiões urbanas da Austrália, medindo níveis de ozônio, dióxido de nitrogênio e material particulado em câmaras de poluição. Kloog et al. (2012) utilizaram medidas de profundidade óptica de aerossóis feitas por satélites para prever concentrações diárias de material particulado na costa leste dos Estados Unidos. Belusic et al. (2015) estudaram a relação das concentrações horárias de monóxido de carbono, dióxido de enxofre, dióxido de nitrogênio e material particulado com as condições climáticas da cidade de Zagrebe, na Croácia.

Os estudos citados — e muitos outros, como Chang et al. (2017), Conceição et al. (2001a,b), Lin et al. (1999), Schwartz et al. (1996), Katsouyanni et al. (1996), Saldiva et al. (1994, 1995), Schwartz (1994, 1996), Schwartz e Dockery (1992) e Schwartz e Marcus (1990) —, embora abordem diferentes temas, concluem sobre a importância da diminuição da emissão de poluentes.

2 Introdução 1.0

Embora a formação de poluentes envolva reações químicas complicadas, cuja análise demanda ambientes controlados, as grandes cidades podem ser pensadas como laboratórios naturais para os estudos de poluição do ar. Com a disponibilidade de dados meteorológicos e de tráfego, é possível avaliar grande parte dos fatores que influenciam na formação dos poluentes. Nesse sentido, podemos citar Jacobson (2007), Salvo e Geiger (2014) e Salvo et al. (2017).

Uma das maiores dificuldades associadas ao estudo de dados de poluição atmosférica está no grande número de efeitos confundidores. Em áreas urbanas, pode existir uma complexa mistura de fatores que contribuem para a formação e dispersão dos poluentes. Diversas variáveis podem ser consideradas: clima, tráfego, química atmosférica local, mudanças climáticas sazonais, feriados ou eventos esporádicos na cidade (que podem alterar o fluxo do trânsito), tamanho e idade da frota de veículos, emissões evaporativas, entre outras. Além do grande número de variáveis, a relação entre elas pode não ser muito simples, exigindo o uso de modelos mais flexíveis, que geralmente deixam a modelagem mais desafiadora. E por fim, também não é rara a presença de dados omissos ou grandes períodos sem observação, dificultando ainda mais a análise.

Embora diferentes técnicas estatísticas venham sendo empregadas na modelagem de dados de poluição atmosférica, nenhuma delas é robusta o suficiente para atacar sozinha todos esses problemas. Dependendo do problema, precisamos formular estratégias que envolvam a combinação de duas ou mais técnicas, e, às vezes, até metodologias que ainda não são usadas no contexto de poluição do ar.

Na literatura, os principais estudos de poluição do ar envolvem a utilização de modelos lineares, como em Salvo e Geiger (2014) e Salvo et al. (2017), modelos generalizados (Conceição et al., 2001b; Lin et al., 1999; Saldiva et al., 1994, 1995; Schwartz e Dockery, 1992), modelos aditivos generalizados (Carslaw et al., 2007; Conceição et al., 2001a,b; Schwartz et al., 1996; Schwartz, 1994, 1996) e modelos para séries temporais (Katsouyanni et al., 1996; Schwartz e Marcus, 1990; Shumway e Stoffer, 1982). A escolha de uma estratégia de análise adequada é muito importante, pois dados de poluição do ar¹ usualmente violam as suposições associadas a esses modelos. Salvo e Geiger (2014), por exemplo, utilizam um modelo linear, que supõe independência entre as observações, para ajustar uma série horária de concentração de ozônio, possivelmente autocorrelacionada. No trabalho, a variável explicativa de maior interesse, a proporção de carros a gasolina na cidade de São Paulo, é estimada, isto é, existe um erro associado a essas observações, tornando um modelo com erros nas variáveis (REF) mais adequado para essa análise. Além disso, a utilização de variáveis indicadoras para a hora, o dia da semana e a semana do ano pode não ter sido adequada para controlar a sazonalidade da série. De uma forma geral, autocorrelação, heteroscedasticidade, superdispersão, tendência, sazonalidade, componentes espaciais, variáveis com erro de medida e grandes períodos sem observação (ou muitas observações omissas) são características comuns em dados de poluição do ar e precisam ser identificadas e contempladas pelo modelo escolhido.

Modelos lineares (Hastie et al., 2008) são uma boa alternativa devido à facilidade de implementação e interpretação de seus coeficientes. Além disso, grandes intervalos sem observações não geram maiores problemas no processo de estimação, já que as observações não são interpretadas como uma série. Por outro lado, a concentração de poluentes costuma ser autocorrelacionada, tornando a suposição de observações independentes muito restritiva. Os modelos lineares generalizados

¹Consideraremos tanto séries de poluentes quanto dados epidemiológicos (número de mortes ou casos de doenças associadas à poluição do ar).

1.0

(Nelder e Wedderburn, 1972) flexibilizam a suposição de homoscedasticidade, permitindo modelar também a dispersão dos dados, mas ainda estão restritos a observações independentes. Em geral, os efeitos temporais são representados por variáveis indicadoras para a hora do dia, dia da semana, semana do ano etc. Nessa abordagem, muitas vezes é difícil especificar quais termos devem ser incluídos no modelo e determinar se eles realmente controlam esses componentes.

Os modelos aditivos generalizados (Hastie e Tibshirani, 1990) são uma boa alternativa nesse contexto. Eles permitem incluir termos não-paramétricos para ajustar uma curva suavizada da resposta em função do tempo, controlando os efeitos sazonais e de tendência, e um componente paramétrico para associar as variáveis explicativas à variável resposta. No entanto, a especificação do modelo pode ser complicada, pois a escolha das funções de suavização e hiperparâmetros não é trivial. Grandes períodos sem observação também atrapalham o ajuste, pois a curva suavizada ao longo do tempo é suposta contínua durante todo o intervalo.

Modelos para séries temporais acomodam bem os componente temporais, como sazonalidade e autocorrelação, mas diversos deles assumem que a série é estacionária, sendo preciso realizar alguma transformação nos dados antes do ajuste.

O objetivo desta tese é criar e discutir estratégias robustas para a análise de dados de poluição do ar que considerem as seguintes situações:

- 1. grande número de covariáveis e relações não-lineares entre as covariáveis e a resposta;
- 2. presença de dados omissos;
- 3. e presença de variáveis não-observáveis ou com erro de medida.

Com essa finalidade, utilizaremos bancos de dados reais para apontar as vantagens e desvantagens de cada metodologia, gerando estratégias de análise que contemplem as principais dificuldades encontradas na prática. Também aplicaremos técnicas de aprendizado estatístico pouco ou ainda não utilizadas no estudo de séries de poluição do ar, como validação cruzada e regularização.

No Capítulo 2, discutiremos a análise exploratória de dados de poluição, com o objetivo principal de diminuir a complexidade do problema para facilitar a busca de informações relevantes sobre o fenômeno estudado (Wickham e Grolemund, 2017). No Capítulo 3, apresentaremos resumidamente os principais modelos utilizados no ajuste de séries de poluição, assim como outras técnicas interessantes para a análise desses dados. Nos Capítulos 4, 5 e 6 desenvolveremos estratégias para a análise de dados de poluição do ar envolvendo a descrição do poluente ao longo do tempo, o uso de combustíveis e a associação com dados de saúde pública. No Capítulo 7, apresentaremos formas de se extrair da internet dados públicos de poluição do ar. Por fim, no Capítulo 8, concluiremos a tese discutindo os principais resultados.

O texto a seguir busca um equilíbrio entre formalismo matemático, interpretação e aplicabilidade. O propósito dessa tentativa é produzir um trabalho acessível a pesquisadores de todas as áreas, tendo em vista os objetivos propostos. Apesar disso, um certo grau de conhecimento estatístico será exigido em muitos pontos. Hastie e Tibshirani (1990); James et al. (2013) são ótimos livros para consulta. A parte computacional deste trabalho foi realizada integralmente no programa estatístico R (R Core Team, 2016), sendo Wickham e Grolemund (2017) uma excelente referência.

4 Introdução 1.0

Capítulo 2

Análise exploratória

The greatest value of a picture is when it forces us to notice what we nerver expected to see. — John Tukey

A análise exploratória é a primeira tentativa de se extrair informação dos dados. Seu objetivo é gerar conhecimento acerca do fenômeno sob estudo para guiar as próximas etapas da análise. Existem diversas maneiras de conduzir uma análise exploratória, e a estratégia aplicada a cada problema depende do tipo de variável com que estamos trabalhando.

Como estudos de poluição do ar geralmente envolvem séries temporais, apresentaremos diversas em técnicas para explorar variáveis dessa natureza. Uma visão mais geral sobre a análise exploratória de dados pode ser encontrada em Wickham e Grolemund (2017).

Séries temporais compreendem variáveis observadas repetidas vezes ao longo de grande períodos de tempo. As metodologias usuais para a análise de séries temporais supõem que as observações são realizadas em intervalos equidistantes, principalmente pela facilidade computacional que essa propriedade proporciona. Por pragmatismo, dado que esse é o cenário mais comum na prática, o enfoque deste trabalho será na análise de séries com essa característica. Para a análise de séries com observações não igualmente espaçadas, recomendamos a leitura de (REF).

O efeito do tempo nas observações é a grande peculiaridade das séries temporais, gerando características como tendência, sazonalidade e autocorrelação, que influenciam diretamente a escolha do melhor modelo para os dados. A identificação dessas características é fundamental para a análise, o que torna a análise exploratória uma etapa de extrema importância no estudo de séries temporais. Discutiremos esse tópico na Seção 2.2.

Neste texto, representaremos séries temporais pela notação $\{Y_t, t \geq 0\}$ ou, de forma simplificada, Y_t . O índice inteiro não-negativo t representa a ordem em que as observações foram realizadas. As variáveis serão denotadas por letras maiúsculas do nosso alfabeto e os índices por letras minúsculas: Y_t, X_s, Z_r etc.

Sob o contexto de estudos de poluição do ar, apresentaremos a seguir as principais técnicas para análise exploratória de séries temporais. Utilizaremos como exemplo as séries horárias de concentração de ozônio (O₃), óxido de nitrogênio (NO), dióxido de nitrogênio (NO₂) e temperatura, todas medidas na cidade de São Paulo de 2008 a 2013, disponibilizadas por Salvo e Geiger (2014) e Salvo et al. (2017) nos respectivos endereços: http://bit.do/salvo_geiger_data e https://goo.gl/9tNzvj.

6

The simple graph has brought more information to the data analyst's mind than any other device. – John Tukey

De um ponto de vista teórico, gráficos podem ser definidos como o mapeamento de variáveis em atributos estéticos de formas geométricas (Wilkinson, 2005). No gráfico de uma série temporal, por exemplo, as variáveis são o par (t, Y_t) , o atributos estético é a posição e a forma geométrica é uma linha. A partir dessa definição, podemos construir qualquer tipo de gráfico.

Nós construímos gráfico para resumir informações sobre as variáveis de forma visual, conseguindo observar características e padrões que estavam escondidas na base de dados.

Nós construímos gráficos para, de forma simples e direta, elucidar informações sobre as variáveis que estavam escondidas na base de dados. Para cumprir esse objetivo, um gráfico deve ser facilmente compreendido. Gráficos muito verbosos ou que carregam muita informação podem ser mal interpretados e gerar mais confusão do que esclarecimento. Além disso, dado o contexto da análise, um gráfico deve ser entendido apenas com as informações contidas nele.

A visualização mais comum na análise de séries temporais é o gráfico da série. No contexto de regressão, os gráficos de dispersão e de distribuição também são bastante utilizados. Apresentaremos a seguir alguns exemplos de como construir e interpretar esses gráficos.

2.1.1 O gráfico da série

O gráfico da série é um gráfico de linhas de Y_t contra o tempo. A partir dele, podemos observar a existência de diversos comportamentos, como tendência, sazonalidade e heteroscedasticidade¹, sendo a principal técnica de visualização de séries temporais.

Apesar de ser uma ferramenta de fácil construção e interpretação, quando o volume de dados é muito grande, a simples construção do gráfico da série pode não trazer toda a informação disponível nos dados. Uma boa estratégia nesse cenário é tentar diminuir a complexidade do problema, trabalhando inicialmente com casos particulares e, em seguida, buscar os padrões encontrados nos casos mais gerais.

Como exemplo de como explorar os dados utilizando o gráfico da série, vamos analisar a concentração horária de ozônio medida na Grande São Paulo, no período de 2008 a 2013.

A base de dados contém medições de ozônio de 12 estações de monitoramento espalhadas pela cidade. A princípio, vamos analisar o gráfico de apenas uma delas, por exemplo, a estação Dom Pedro II (Figura 2.1). Podemos observar alguns períodos sem observação e, com a ajuda da série suavizada (por *splines* cúbicos, ver Seção 3.3.2), uma sazonalidade anual, com picos no início de cada ano.

Como a série é horária, o grande volume de observações pode ocultar alguns padrões. Para avaliar o comportamento da concentração de ozônio ao longo do dia, vamos analisar a concentração média horária dentro do período analisado (Figura 2.2). Observamos que o pico de ozônio, em geral, acontece no começo da tarde, entre o meio-dia e as 16 horas.

Podemos então considerar a média diária dentro desse período para avaliar apenas o horário em que a concentração de ozônio geralmente está alta. Observe pela Figura ?? que fica mais fácil

¹Variância não-constante ao longo do tempo.

Figura 2.1: Série da concentração de ozônio para a estação Dom Pedro II, na cidade de São Paulo, no período de 2008 a 2013. Em azul, a série suavizada usando splines cúbicos.

Figura 2.2: Série da concentração média de ozônio ao longo do dia para a estação Dom Pedro II, na cidade de São Paulo, no período de 2008 a 2013. Não existe informação para as 6 da manhã pois é o horário em que o equipamento sofre manutenção.

8

observar o padrão sazonal. O padrão parece não ser o mesmo em 2009, mas essa diferença provavelmente se deve à falta de informação no período. Como indicado na Figura 2.4, esse padrão se repete para todas as 12 estações.

Figura 2.3: Série diária da concentração média de ozônio medido no começo da tarde para a estação Dom Pedro II, na cidade de São Paulo, no período de 2008 a 2013. Em azul, a série suavizada usando splines cúbicos.

Note que conduzir a análise exploratória na direção de casos particulares facilita a obtenção de informações importantes sobre o fenômeno. No exemplo, essa particularização poderia ainda ser feita em várias direções, como avaliar as diferenças entre os dias da semana ou as estações do ano.

Muitas vezes, também temos interesse em estudar a relação entre duas séries. Os gráficos dessas séries, avaliadas em um mesmo período, podem então ser construídos na mesma figura como uma tentativa de encontrar padrões no comportamento conjunto das duas curvas. Na Figura ??, construímos gráficos das séries horárias de ozônio e de óxido de nitrogênio (NO), ambos medidos na estação Dom Pedro II, em São Paulo, no período de 2008 a 2011. Podemos observar que períodos de menor concentração de ozônio parecem estar associados a períodos de maior concentração de NO.

Gráficos da série trazem bastante intuição sobre o comportamento do fenômeno sob estudo, mas seria interessante dispormos medidas mais objetivas. Nas próximas seções, discutiremos os conceitos de estacionariedade e autocorrelação e como identificar essas características. Além disso, apresentaremos estratégias para conduzir a análise na presença de tendência e sazonalidade.

2.1.2 Gráficos de dispersão

Os gráficos de dispersão são um dos gráficos mais utilizados na Estatística como um todo. Ele é utilizado para estudar a associação entre duas variáveis, sendo possível levantar indícios sobra

Figura 2.4: Série diária da concentração média de ozônio medido no começo da tarde para todas as estações, na cidade de São Paulo, no período de 2008 a 2013. Em azul, as séries suavizadas usando splines cúbicos.

Figura 2.5: Série diária da concentração média de ozônio medido no começo da tarde para todas as estações, na cidade de São Paulo, no período de 2008 a 2013. Em azul, as séries suavizadas usando splines cúbicos.

a forma, intensidade e direção dessa associação caso ela exista. A sua construção é dada pelo posicionamento de pontos em um eixo cartesiano, sendo a variável resposta mapeada no eixo y e a

variável explicativa mapeada no eixo x. Curvas suavizadas podem ser adicionadas para facilitar a identificação da associação.

Na Figura 2.6, apresentamos o gráfico de dispersão da concentração de ozônio contra a concentração de óxido de nitrogênio, ambas medidas das 12 às 16 horas, de 2008 a 2011. Observamos que a concentração de ozônio decresce exponencialmente conforme a concentração de NO aumenta. É conhecido que o ozônio ao longo da tarde reage com o NO, portanto espera-se que dias de alta concentração de ozônio tenham baixa concentração de NO e vice-versa.

Figura 2.6: Gráfico de dispersão da concentração de ozônio contra a concentração de óxido de nitrogênio medidas das 12 às 16 horas na estação de monitoramento Dom Pedro II, em São Paulo, de 2008 a 2011.

Apresentamos agora, na Figura 2.7, o gráfico de dispersão da concentração de ozônio contra a concentração de dióxido de nitrogênio, ambas também medidas das 12 às 16 horas, de 2008 a 2011. Observe que não há indícios de associação entre as duas variáveis. No entanto, sabe-se que a fotólise do NO₂ pela manhã faz parte do processo gerador do ozônio ao longo da tarde. Na Figura 2.8, apresentamos o gráfico de dispersão da concentração de ozônio, medida à tarde, contra a concentração e dióxido de nitrogênio, medida agora pela manhã, das 7 às 11 horas. Observe que, neste caso, encontramos indícios de uma relação positiva entre as duas variáveis.

Uma limitação dos gráficos de dispersão é não levar em conta o efeito de outras variáveis. Muitas vezes a associação dentre duas variáveis pode ser induzida ou mascarada pela ação de uma terceira. Portanto, é importante termos em mente que a interpretação desses gráficos levanta apenas indícios sobre a associação, que devem ser estudados com mais atenção, eliminando primeiro o possível efeito de outras variáveis.

Figura 2.7: Gráfico de dispersão da concentração de ozônio contra a concentração de dióxido de nitrogênio medidas das 12 às 16 horas na estação de monitoramento Dom Pedro II, em São Paulo, de 2008 a 2011.

2.1.3 Gráficos de distribuição

Muitas vezes queremos observar a distribuição amostral de uma variável. Um gráfico muito comum nesses casos é o histograma. Na Figura 2.9, apresentamos o histograma da concentração de ozônio diária média medida das 12 às 16 horas, em São Paulo, de 2008 a 2013. Podemos observar que a distribuição amostral é levemente assimétrica à direita, sendo que a maioria dos dias apresenta concentração de ozônio entre 25 e 75 $\mu \rm g/m^3$.

Quando estamos interessados em, além de observar a distribuição amostral de uma variável, compará-la entre os níveis de uma segunda variável, os chamados *ridges graphs* são uma boa alternativa. Podemos observar na Figura 2.10 que as máximas de ozônio ocorrem nos meses mais quentes, sendo esses os períodos também de maior variação, provavelmente devido ao efeito conjunto da temperatura e da chuva.

2.2 Componentes temporais

Algumas classes de modelos utilizados para o ajuste de séries temporais assumem que a série estudada é estacionária, isto é, mantem um mesmo comportamento ao longo do tempo². Além de simplificar o processo de estimação, a estacionariedade garante que algumas quantidades sejam interpretáveis. No entanto, a não-estacionariedade é muito comum no mundo real, o que gera a necessidade de identificá-la e, se necessário, removê-la antes do ajuste.

²Em termos probabilísticos, isso significa que a sua distribuição de probabilidades não muda ao decorrer do tempo.

12 ANÁLISE EXPLORATÓRIA 2.2

Figura 2.8: Gráfico de dispersão da concentração de ozônio, medida das 12 às 16 horas, contra a concentração de óxido de nitrogênio, medida das 7 às 11 horas, na estação de monitoramento Dom Pedro II, em São Paulo, de 2008 a 2011.

Dada uma série Y_t , a definição de estacionariedade³ depende da sua média, $\mu_t = E(Y_t)$, e da sua função de autocovariância, $\gamma(s,t) = E[(Y_s - \mu_s)(Y_t - \mu_t)]$, que mede a dependência linear entre duas observações da série (Shumway e Stoffer, 2006). Dizemos que Y_t é estacionária se

- i. a média μ_t é constante e não depende de t; e
- ii. a função de covariância $\gamma(s,t)$ depende de t e s apenas pela distância h=t-s.

Dessa forma, se a série Y_t for estacionária, seu valor médio pode ser representado por $\mu_t = \mu$, para todo $t \geq 0$, e a função de autocovariância $\gamma(s,t)$ pode ser simplificada para $\gamma(h)$. Neste caso, a autocovariância é interpretada como a dependência linear entre observações separadas por h unidades de tempo, independentemente do período em que foram observadas. Sem a estacionariedade, essa função não tem interpretação prática.

A tendência e a sazonalidade são componentes temporais que geram não estacionariedade. A tendência ocorre quando μ_t aumenta ou diminui ao longo do tempo. Se μ_t assume um padrão cíclico, em um intervalo fixo de tempo, dizemos que a série é sazonal. Se a classe de modelos utilizada supõe estacionariedade, a melhor estratégia para o ajuste de uma série não estacionária é aplicar alguma transformação na variável original. Se a classe de modelos não supõe estacionariedade, a tendência

³Formalmente, a definição de estacionariedade se divide em *fraca* e *forte*. A estacionariedade forte faz restrições sobre as distribuições multivariadas de todos os subconjuntos de observações da série, sendo uma suposição muito limitante para a maioria das aplicações Shumway e Stoffer (2006). A definição utilizada neste trabalho corresponde à estacionariedade fraca.

Figura 2.9: Histograma da concentração diária média de ozônio medida das 12 às 16 horas na estação de monitoramento Dom Pedro II, na cidade de São Paulo, de 2008 a 2013.

e a sazonalidade podem ser ajustadas pelo modelo. Discutiremos o primeiro caso nas seções a seguir e o segundo caso no Capítulo 3.

2.2.1 Tendência

A tendência de uma série pode ser eliminada pela utilização da série de diferenças. A diferença de primeira ordem é definida como

$$\Delta Y_t = Y_t - Y_{t-1}, \quad t = 1, 2, \dots$$

Ela é utilizada para eliminar uma tendência linear de uma série. A ordem da diferença está associada ao grau da tendência. No caso de uma tendência quadrática, por exemplo, podemos utilizar a diferenciação de segunda ordem

$$\Delta^2 Y_t = \Delta Y_t - \Delta Y_{t-1}, \quad t = 1, 2, \dots$$

No caso geral, definimos a diferenciação de ordem n como

$$\Delta^{n} Y_{t} = \Delta^{n-1} Y_{t} - \Delta^{n-1} Y_{t-1}, \quad t = 1, 2, \dots$$
(2.1)

Na prática, dificilmente encontramos séries com tendência quadrática ou de grau mais elevado, então a diferença de primeiro grau é geralmente suficiente para alcançar a estacionariedade.

Como exemplo, observe a Figura 2.11. No painel (a), temos a série da concentração de ozônio

14

Figura 2.10: Distribuição por mês da concentração diária média de ozônio medida das 12 às 16 horas na estação de monitoramento Dom Pedro II, na cidade de São Paulo, de 2008 a 2013.

diária média, em que podemos observar uma leve tendência linear positiva, isto é, a concentração média parece crescer com o tempo. No painel (b), apresentamos o gráfico da série de diferenças (primeira ordem). Podemos observar que a série já não apresenta qualquer tendência linear.

Quando o modelo ajustado não assume estacionariedade, podemos incorporar um termo de tendência diretamente no modelo. Discutiremos esse tópico no Capítulo 3.

2.2.2 Sazonalidade

Em geral, o gráfico da série é suficiente para a identificação de sazonalidade No entanto, em alguns casos, outras variáveis podem mascarar o efeito sazonal, sendo difícil identificar esse componente apenas observando o gráfico. Assim, é sempre recomendável a construção de um *periodograma* para auxiliar a identificação da sazonalidade.

Toda série temporal pode ser decomposta em uma soma de ondas senoidais, com frequências e amplitudes diferentes (Shumway e Stoffer, 2006). Para um conjunto de ondas de frequências diferentes e fixadas a priori, podemos calcular quais são as amplitudes de cada uma dessas ondas para que a soma delas gere a série original. Podemos então definir uma medida de associação linear entre a série original e cada uma das ondas senoidais. Essa medida, chamada de densidade espectral, é proporcional à amplitude calculada para cada onda. Assim, quanto maior a densidade espectral associada a uma determinada frequência, maior será a importância dessa frequência para explicar a periodicidade da série. O periodograma é justamente um gráfico da densidade espectral em função das frequências.

Na Figura 2.12, apresentamos o periodograma da série horária de ozônio da cidade de São Paulo

Figura 2.11: Série da concentração de ozônio diária média, medida na cidade de São Paulo (estação de monitoramento Dom Pedro II), no período de outubro de 2008 a junho de 2011, das 12h às 16h.

de 2008 a 2013. Podemos observar que o período⁴ mais importante para explicar a periodicidade da série corresponde a um dia, isto é, o periodograma aponta sazonalidade diária, o que é esperado se observarmos a Figura 2.2.

Existem na literatura técnicas para remover o componente sazonal de uma série (Morettin e Toloi, 2004), mas esse tópico não será abordado aqui. Nosso foco será ajustar modelos que contemplem o componente sazonal, como veremos nos próximo capítulos.

Para mais informações sobre estacionariedade, recomendamos a leitura do primeiro capítulo de Shumway e Stoffer (2006).

2.2.3 Autocorrelação

É natural supor a existência de algum grau de associação entre as observações de uma série temporal coletadas em instantes próximos. Por exemplo, considere a concentração de um poluente medida às nove da manhã em uma certa localidade. Se o valor observado foi alto, as concentrações às oito e às dez da manhã provavelmente também foram altas. Essa informação extraída de Y_t sobre o valor das observações anteriores, Y_{t-1}, Y_{t-2}, \ldots , ou das seguintes, Y_{t+1}, Y_{t+2}, \ldots , é chamada de autocorrelação ou, neste contexto, correlação temporal.

Dependendo da forma como as observações estão associadas, podemos definir diferentes tipos de correlação. Uma das medidas mais simples e mais utilizadas na prática se chama correlação linear. Ela supõe que a relação entre as observações pode ser descrita por uma função linear, ou seja, invariante ao valor das observações⁵. Quando outro tipo de relação não for especificada, essa será a definição utilizada neste trabalho para descrevermos a correlação temporal entre as observações.

⁴O período é o inverso da frequência.

⁵Para mais detalhes sobre a interpretação de linearidade, consulte a Seção 3.1.5.

16

Figura 2.12: Periodogramas para a concentração horária de ozônio medida na cidade de São Paulo (estação de monitoramento Dom Pedro II), no período de outubro de 2008 a junho de 2013. Dados disponibilizados por Salvo e Geiger (2014). No painel (a), apresentamos a densidade espectral contra a frequência. No painel (b), resumimos a densidade espectral por período, apresentado em dias.

Embora a função de autocovariância seja útil para medir a associação linear entre observações de uma série, ela não nos fornece a magnitude dessa relação, pois seus valores dependem da grandeza da variável sob estudo. Para contornar esse problema, podemos padronizar a função de autocovariância, restringindo-a a um intervalo fixo. Definimos então a função de autocorrelação dada por

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}. (2.2)$$

Não é difícil mostrar⁶ que essa medida varia no intervalo [-1,1], com os extremos representando uma correlação perfeita entre as observações Y_t e Y_s . A função de autocorrelação mede a previsibilidade da série no instante t, a partir apenas do valor da variável no instante s. Se Y_t pode ser perfeitamente predita por Y_s por meio de uma função linear, então a autocorrelação será 1, se a associação for positiva, ou -1, se a associação for negativa.

Repare que os termos $\gamma(t,t)$ e $\gamma(s,s)$ em (2.2) representam, respectivamente, a variância de Y_t e Y_s . Se a série é estacionária, sua variância é constante, isto é, $\gamma(t,t) = \gamma(s,s)$, e a função de autocorreção dependerá apenas da diferença h = s - t. Neste caso, o gráfico da função de autocorrelação em função de h se torna uma ferramenta descritiva importante para investigarmos se existem relações lineares substanciais entre a série e suas observações defasadas. Sem a suposição de estacionariedade, o gráfico de autocorrelação pode ser utilizado para detectar tendência e sazonalidade.

A função de autocorrelação pode ser estimada pela função de autocorrelação amostral

⁶Utilizando a desigualdade de Cauchy-Schwarz (Nicholson, 2001)

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)},$$

sendo

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (y_{t+h} - \bar{y})(y_t - \bar{y})$$
(2.3)

a função de autocovariância amostral, y_t o valor observado no instante t e $\bar{y} = \frac{1}{n} \sum_{t=1}^{n} y_t$ a média amostral.

Na Figura 2.13, apresentamos a função de autocorreção da concentração de ozônio medida na estação Dom Pedro II. Podemos observar que a autocorrelação é sempre positiva e não decai para o zero, indicando que a série apresenta tendência. Se a série fosse estacionárias, esperaríamos que apenas as observações próximas fossem correlacionadas, e então a função de autocorrelação convergiria rapidamente para zero conforme aumentássemos o valor de h.

Figura 2.13: Função de autocorreção da concentração de ozônio diária média, medida na cidade de São Paulo (estação de monitoramento Dom Pedro II), no período de outubro de 2008 a junho de 2011, das 12h às 16h. Dados disponibilizados por Salvo e Geiger (2014). As linhas pontilhadas representam os limites $\pm 2/\sqrt{n}$, sendo n o tamanho da amostra. Valores fora desse intervalo de confiança (95%) podem ser considerados significantemente diferentes de zero.

Note que se as observações Y_t e Y_{t-1} são correlacionadas, e da mesma forma as observações Y_{t-1} e Y_{t-2} , parte da correlação entre Y_t e Y_{t-2} pode ser explicada por Y_{t-1} . Como a função de autocorrelação nos dá a correlação total entre Y_t e Y_{t-2} , independentemente do fato de parte dela poder ser explicada por Y_{t-1} , se quisermos encontrar apenas a variabilidade explicada por Y_{t-2} precisamos utilizar a função de autocorrelação parcial. No caso geral, essa função mede a correlação entre as observações Y_t e Y_{t-m} , controlando pelas observações intermediárias $Y_{t-1}, Y_{t-2}, \ldots, Y_{t-m+1}$.

Na Figura 2.14, apresentamos a função de autocorreção parcial da concentração de ozônio, como no exemplo anterior. Podemos observar agora que a maioria das defasagens são não significativas. Mesmo assim, ainda encontramos algumas defasagens altas significativos, indicando que a série

realmente não é estacionária.

Figura 2.14: Função de autocorreção parcial da concentração de ozônio diária média, medida na cidade de São Paulo (estação de monitoramento Dom Pedro II), no período de outubro de 2008 a junho de 2011, das 12h às 16h. As linhas pontilhadas representam os limites $\pm 2/\sqrt{n}$, sendo n o tamanho da amostra. Valores fora desse intervalo de confiança (95%) podem ser considerados significantemente diferentes de zero.

Até agora discutimos como avaliar a correlação entre observações defasadas de uma mesma série. A seguir, vamos discutir como avaliar a associação entre observações de duas ou mais séries.

2.2.4 Função de correlação cruzada

Muitas vezes, queremos avaliar a previsibilidade de uma determinada série Y_t a partir de outra série, digamos X_s . Nesse caso, definimos a função de correlação cruzada

$$\rho_{XY}(s,t) = \frac{\gamma_{XY}(s,t)}{\sqrt{\gamma_X(s,s)\gamma_Y(t,t)}}$$
(2.4)

sendo,

$$\gamma_{XY} = E\left[(X_s - \mu_s)(Y_t - \mu_t) \right]$$

a função de covariância cruzada. Se as séries Y_t e X_s forem estacionárias, a expressão (2.4) se reduz a

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0,0)\gamma_Y(0,0)}}.$$
(2.5)

Essa expressão nos dá a relação entre Y_t e X_{t+h} , para todo $t \ge 0$. Assim, valores positivos de h revelam o quanto Y_t antecipa X_{t+h} e valores negativos de h o quanto X_{t+h} antecipa Y_t . Repare que $\rho_{XY}(h) = \rho_{YX}(-h)$.

A função de correlação cruzada pode ser estimada pela função de correlação cruzada amostral definida por

$$\hat{\rho}_{xy}(h) = \frac{\hat{\gamma}_{xy}(h)}{\sqrt{\hat{\gamma}_x(0)\hat{\gamma}_y(0)}},$$

sendo $\hat{\gamma}(h)$ como definido em (2.3) e

$$\hat{\gamma}_{xy}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(y_t - \bar{y})$$

a função de covariância cruzada amostral.

Em estudos de poluição do ar, é muito comum a inclusão de variáveis defasadas na análise. Essas variáveis representam fenômenos que antecipam a formação de um poluente ou a ocorrência de doenças. Uma chuva no período da manhã, por exemplo, além de alterar o trânsito, pode diminuir a concentração de poluentes no começo da tarde. Altos níveis de poluentes em um determinado dia, podem aumentar o número de internações por problemas respiratórios dias ou até semanas depois.

A identificação de quais variáveis defasadas devem entrar na análise pode ser uma tarefa difícil, principalmente quando existe muita incerteza sobre o processo de geração do fenômeno sob estudo. A função de correlação cruzada é uma boa alternativa neste caso. Com ela, podemos avaliar quais são os valores da defasagem h que geram maior correlação entre as séries e utilizá-los para definir as variáveis defasadas.

A Figura 2.15 apresenta a função de correlação cruzada do ozônio em função da temperatura na estação Dom Pedro II. Ambas as medidas são horárias. Observamos que a maior correlação (após a defasagem zero) é na defasagem -1, isto é, a concentração de ozônio parece ser altamente associada com a temperatura medida uma hora antes. Assim, a temperatura no instante t-1 é uma boa candidata para ser incluída no modelo.

Figura 2.15: Função de correlação cruzada do ozônio em função da temperatura na estação Dom Pedro II (São Paulo) no período de outubro de 2009 a junho de 2011. As linhas pontilhadas representam os limites $\pm 2/\sqrt{n}$, sendo n o tamanho da amostra. Valores fora desse intervalo de confiança (95%) podem ser considerados significantemente diferentes de zero.

Em alguns casos, quando o fenômeno associado não varia muito no tempo, podemos considerar a média de um certo intervalo como variável defasada. Pela Figura 2.15, observamos uma certa correlação entre o ozônio e a temperatura nas defasagens de -5 a -8. Assim, a média da temperatura medida entre t-8 e t-5 também poderia ser incluída no modelo.

As técnicas abordadas até aqui podem ser utilizadas para obter um conhecimento inicial sobre o fenômeno estudado, auxiliando-nos a escolher a melhor estratégia de modelagem. No próximo capítulo, apresentaremos os principais modelos utilizados para em análises envolvendo poluição do ar.

Capítulo 3

Modelos para dados de poluição

Data will often point with almost equal emphasis on several possible models, and it is important that the statistician recognize and accept this. — McCullah and Nelder (1989)

O grande objetivo de uma análise estatística é usar um conjunto de dados para gerar conhecimento sobre um fenômeno de interesse. Podemos pensar nesse fenômeno como um mecanismo da natureza, desconhecido e complexo, no qual um conjunto de variáveis explicativas \mathbf{X} são transformadas em uma variável resposta Y^1 (Figura 3.1). Os dados são o resultado desse processo (Breiman, 2001).

Figura 3.1: Esquematização do mecanismo gerador dos dados.

No contexto da modelagem estatística supervisionada² (Hastie *et al.*, 2008), dada a variável resposta Y e o vetor de variáveis explicativas $\mathbf{X} = (X_1, \dots, X_p)$, queremos encontrar funções f's tais que

$$Y \approx f(\mathbf{X}),\tag{3.1}$$

isto é, queremos uma função $f(\cdot)$ que descreva o mecanismo gerador dos dados da forma mais precisa possível. A partir dessa função, poderíamos tanto fazer predições — descobrir qual é o novo valor de Y para novas observações \mathbf{X} — quanto inferência — investigar como as variáveis \mathbf{X} e Y estão relacionadas.

A expressão (3.1) representa diversas classes de modelos, a depender da escolha de $f(\cdot)$. Podemos reescrevê-la, já no contexto de séries temporais, como

 $^{^{1}}$ Também podemos ter o caso multivariado, em que são geradas um conjunto de variáveis respostas ${f Y}$.

²No qual uma variável resposta *supervisiona* a estimação dos parâmetros do modelo. Na prática, são os casos em que temos acesso a uma amostra da variável resposta.

$$Y_t = f(\mathbf{X_t}) + \epsilon_t, \tag{3.2}$$

sendo ϵ um erro aleatório, isto é, um componente que representa toda a informação de Y que não pode ser explicada pelos preditores \mathbf{X} . Apesar de a expressão (3.1) ser mais intuitiva, (3.2) é mais conveniente para a formulação dos modelos estatísticos.

Na prática, há duas abordagens bastante utilizadas na especificação da função $f(\cdot)$. A primeira consiste em supor um modelo probabilístico para o fenômeno sob estudo, de tal forma que $f(\cdot)$ seja uma função dos parâmetros de alguma distribuição conhecida, que podem ser estimados a partir dos dados. Essa estratégia geralmente produz modelos interpretáveis, que trazem informação sobre a relação da variável resposta e os preditores, e por isso é preferível quando o interesse é fazer inferência.

A segunda abordagem é mais flexível e permite que os próprios dados definam uma estrutura para $f(\cdot)$. Essa estratégia dificilmente gera modelos interpretáveis, pois a complexidade do mecanismo gerador dos dados é refletida na função resultante. Por outro lado, a maior flexibilidade leva a uma maior precisão desses modelos, sendo muito utilizados para predição.

A abordagem escolhida deve atender os objetivos do estudo. Nesta tese, exploraremos exemplos de ambos os casos.

Independentemente da abordagem escolhida, modelos estatísticos são simplificações da realidade e, por isso, estão sujeitos a erros. Quando modelamos a série de um poluente, por exemplo, estamos supondo que a sua concentração ao longo do tempo pode ser aproximada por uma função matemática. Neste caso, o erro do modelo quantifica o quanto a nossa função se afasta do verdadeiro mecanismo gerador do poluente. Parte desse erro é irredutível e se deve a impedimentos práticos, como erros de medida, variáveis que não podem ser observadas e desconhecimento de outros fatores que influenciam o fenômeno. No entanto, o erro total pode ser minimizado pela escolha adequada do modelo utilizado, o que torna essencial o desenvolvimento de estratégias de modelagem que contemplem as particularidades de cada estudo.

Neste capítulo, introduziremos os principais modelos interpretáveis utilizados na literatura para análise de dados de poluição do ar, como o modelo de regressão linear e modelos para séries temporais. No Capítulo 4, discutiremos técnicas focadas em predição, como validação cruzada e regularização, mas que muitas vezes também podem ser utilizadas para inferência.

3.1 Regressão linear

O modelo de regressão linear corresponde à aproximação (3.1) mais simples e bem estabelecida dentro da modelagem estatística. Mesmo com a disponibilidade de modelos mais flexíveis, essa classe de modelos ainda é bastante utilizada hoje em dia, principalmente por se ajustar bem a diversos problemas reais, facilidade de interpretação dos resultados e estar disponível nos principais programas estatísticos.

Em estudos de poluição do ar, modelos de regressão linear podem ser ajustados para investigar a relação entre variáveis explicativas e uma variável resposta, seja a concentração de poluentes ou dados epidemiológicos. Saldiva et al. (1995), por exemplo, utilizou esses modelos para estudar o efeito de alguns poluentes nas taxas de mortalidade de idosos, controlando por condições climáticas e sazonais. Já Salvo et al. (2017) utilizou para associar os níveis de material particulado com a

Apesar da sua popularidade, a complexidade presente nos estudos de poluição atmosférica, como relações não-lineares e autocorrelação, pode desqualificar o modelo de regressão linear como a opção mais adequada para o ajuste dos dados. Pela sua facilidade de implementação e interpretação, ele é uma boa ferramenta para uma análise preliminar.

Nas próximas seções, especificaremos o modelo de regressão linear, discutiremos as suas restrições e apresentaremos as maneiras mais utilizadas para tratar séries com tendência, sazonalidade e autocorrelação.

3.1.1 Especificação do modelo

Seja Y_t a variável resposta, $\mathbf{X_t} = (X_{1t}, ..., X_{pt})$ um vetor de variáveis explicativas cuja associação com Y_t estamos interessados em avaliar e t = 1, ..., n a ordem na qual essas variáveis foram medidas. Aqui, não faremos suposições sobre a natureza dos preditores $\mathbf{X_t}$, isto é, essas variáveis podem ser fixas ou aleatórias, qualitativas ou quantitativas. Dado os vetores de parâmetros desconhecidos $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)$, o modelo de regressão linear pode ser definido por

$$Y_t = \alpha + \beta_1 X_{1t} + \dots + \beta_p X_{pt} + \epsilon_t, \quad t = 1, \dots, n.$$
(3.3)

Em geral, supomos que os erros $(\epsilon_1, ..., \epsilon_n)$ tenham média zero, variância constante (homoscedasticidade) e sejam não-correlacionados³. Além disso, a especificação (3.3) impõe que a relação entre a resposta Y_t e os preditores $\mathbf{X_t}$ seja linear e aditiva.

A suposição de linearidade estabelece que a variação esperada em Y_t causada pelo acréscimo de uma unidade em X_{it} , mantidos fixados os outros preditores, é constante e não depende do valor de X_{it} . A interpretação dos coeficientes será discutida com mais detalhes na Seção 3.1.5 e nas aplicações dos Capítulos 5 e ??. Conceitos mais gerais podem ser encontrados em Hastie $et\ al.$ (2008) e James $et\ al.$ (2013).

A suposição de aditividade estabelece que a variação esperada em Y_t causada por uma mudança no preditor X_{it} independe do valor (fixado) dos outros preditores. Essa suposição pode ser relaxada com a introdução de termos de interação (ver Seção 3.3 de James $et\ al.\ (2013)$), que abordaremos na Seção 3.1.6.

Na prática, os coeficientes $\beta_1, ..., \beta_p$ são desconhecidos e precisam ser estimados. O procedimento de estimação mais utilizado é o método de mínimos quadrados (Hastie et~al.,~2008). Outro método bastante utilizado é a estimação por máxima verossimilhança (Casella e Berger, 2001). Sob a suposição de normalidade, as duas abordagens são equivalentes.

Como o instante em que as observações omissas ocorrem não é relevante no processo de estimação, o modelo linear é uma alternativa para avaliar a associação de séries com "buracos" ou grandes períodos sem informação, apesar de a identificação da estrutura de tendência e sazonalidade ser mais difícil em dados com essa característica.

A adequação do modelo é avaliada a partir de medidas de qualidade de ajuste, como o R^2 e o erro quadrático médio, e da análise de resíduos. A partir da expressão (3.3), para t = 1, ..., n,

³ A suposição de distribuição Normal também é feita em alguns casos. Essa suposição é relevante na construção de intervalos de confiança e testes de hipóteses para os coeficientes do modelo. No entanto, para amostras grandes, característica comum em estudos de poluição do ar, existem resultados assintóticos (Casella e Berger, 2001) que garantem a validade do teste.

е

podemos definir os resíduos como

$$r_t = Y_t - \widehat{Y}_t, \tag{3.4}$$

em que \hat{Y}_t representa o valor predito de Y_t com base nas estimativas dos coeficientes do modelo. Os resíduos medem o quanto os valores preditos se afastam dos valores observados, sendo muito úteis para avaliar a qualidade do ajuste e a violação das suposições do modelo. Esse tópico será discutido com mais detalhes na Seção 3.1.7.

No R, os modelos de regressão linear podem ser ajustados via mínimos quadrados com a função lm() do pacote stats ou utilizando o pacote caret, que traz um framework padronizado para o ajuste de modelos estatísticos.

A seguir, abordaremos como modelar tendência e sazonalidade utilizando o modelo de regressão linear.

3.1.2 Incorporando tendência e sazonalidade

Séries de poluição do ar não costumam ser estacionárias. Como vimos nos exemplos do Capítulo ??, é comum encontrarmos tendências tanto crescentes quanto decrescentes e também diversos tipos de sazonalidade (diária, semanal, anual etc). Fatores como crescimento populacional, industrialização, aumento da frota de automóveis, leis de regulamentação de combustíveis, entre outros, podem gerar mudanças a longo prazo na concentração de poluentes, alterando o comportamento da série, e muitas vezes não temos informação disponível para incorporá-los no modelo.

Como o modelo de regressão linear não exige que a variável resposta seja estacionária, podemos incluir um termos de tendência e sazonalidade no modelo em vez de transformar a série em busca de estacionariedade. A inclusão desses termos é importante porque, em geral, não estamos interessados na avaliação da tendência e da sazonalidade, mas sim no efeito de preditores ao longo desses componentes.

Para acrescentar um termo de tendência linear ao modelo (3.3), podemos especificar $X_{1t} = t$, t = 1, ..., n. Assim, um coeficiente β_1 positivo em (3.3) indica que Y cresce linearmente com o tempo, enquanto um coeficiente negativo indica que Y decresce linearmente com o tempo. Podemos definir outras formas para a tendência, como quadrática, $X_{1t} = t^2$, ou logarítmica, $X_{1t} = \log(t)$. A Figura 3.2 mostra um exemplo de séries com tendências linear e quadrática.

Note que, se modelarmos a tendência dessa maneira, estamos impondo a mesma função ao longo de todo período observado. Em alguns casos, a tendência pode ser diferente em certos intervalos de tempo (Figura 3.3). Uma alternativa seria definir um termo de tendência para cada intervalo, por exemplo:

$$X_{1t} = \left\{ egin{array}{ll} t, & ext{se } t ext{ pertence ao conjunto } \{1,\,2,\,...,\,\mathrm{m}\}; \,\mathrm{e} \\ 0, & ext{em caso contrário.} \end{array}
ight.$$

$$X_{2t} = \left\{ egin{array}{ll} t-m, & ext{se } t ext{ pertence ao conjunto } \{ ext{m+1, m+2, ..., m+n}\}; \ ext{e} \ 0, & ext{em caso contrário.} \end{array}
ight.$$

As vantagens de se incluir um termo de tendência ao modelo, em vez de se transformar Y_t , são: 1. poder interpretar os coeficientes do modelo em função da variável original; e 2. estimar a

Figura 3.2: Exemplos de séries com tendência linear e quadrática, ambas positivas.

tendência da série.

A sazonalidade também pode ser controlada por meio de variáveis explicativas. A sua presença indica que a média da variável resposta está associada a efeitos periódicos, ligados a intervalos de tempo, como dias, semanas, meses, estações do ano, temporadas de chuva etc. Os níveis de ozônio, por exemplo, crescem no verão e diminuem no inverno; o número de problemas respiratórios tende a aumentar nos meses mais secos; e a concentração de diversos poluentes varia nos fins de semana, devido ao menor intensidade de tráfego.

De uma maneira geral, podemos classificar a sazonalidade como determinística — o padrão é constante ao longo do tempo — ou estocástica — o padrão muda ao longo do tempo. É possível controlar a sazonalidade determinística no modelo (3.3) a partir de variáveis indicadoras. Se, por exemplo, acreditamos que há um efeito sazonal de mês, podemos adicionar ao modelo 11 variáveis indicadoras X_{it} , i = 1, ..., 11 tais que

$$X_{it} = \begin{cases} 1, & \text{se a observação } t \text{ pertence ao } i\text{-ésimo mês do ano; e} \\ 0, & \text{caso contrário.} \end{cases}$$
 (3.5)

Com essa formulação, o mês de dezembro será tomado como referência, isto é, a interpretação dos coeficientes correspondentes aos meses será feita sempre em relação ao mês de dezembro. Para mais informações sobre a utilização de variáveis indicadoras em modelos de regressão, consultar a Seção 3.3.1 de James *et al.* (2013).

Se a sazonalidade for estocástica, procedimentos um pouco mais sofisticados serão necessários para controlá-la. Não trataremos desse tópico neste trabalho. Mais informações podem ser encontradas em Shumway e Stoffer (2006).

A seguir, discutiremos como contornar as suposições de erros não-correlacionados, homoscedasticidade, linearidade e aditividade utilizando o modelo de regressão linear.

Figura 3.3: Exemplos de uma série com tendência não-constante.

Figura 3.4: Comparação entre os gráficos dos resíduos de um modelo linear contra o tempo para dados auto-correlacionados e dados não correlacionados.

3.1.3 Tratando erros correlacionados

O modelo de regressão linear supõe que os erros $(\epsilon_1, \ldots, \epsilon_n)$ são não-correlacionados. Em estudos de poluição do ar, essa suposição é, em geral, inadequada. Como discutimos na Seção 2.2.3, é natural que observações de uma série temporal sejam autocorrelacionadas. A formação de gases na atmosfera, por exemplo, é um processo contínuo ao longo do tempo, sendo que as concentrações medidas no instante t podem estar fortemente associadas aos níveis observados nas últimas horas ou mesmo nos últimos dias.

Uma forma de avaliar a violação dessa suposição é construir o gráfico dos resíduos do modelo em função do tempo. A presença de padrões na sequência de pontos, isto é, resíduos adjacentes com valores próximos, é um indício de correlação. Na Figura 3.4, apresentamos os resíduos de um modelo de regressão linear ajustado em dados auto-correlacionados e em dados não-correlacionados. Para o primeiro caso, observe que os pontos adjacentes tendem a permanecer em um mesmo lado da reta y=0. Na ausência de correlação, temos uma sequência aleatória de valores positivos e negativos.

Se as observações são muito correlacionadas, os erros-padrão estimados pelo modelo de regressão linear tenderão a subestimar os verdadeiros erros, o que comprometeria a inferência, já que os valores p associados seriam menores do que deveriam ser. Nesses casos, outras estratégias de modelagem devem ser adotadas.

A depender dos objetivos do estudo, agregar os dados pode ser boa uma alternativa para reduzir o efeito da correlação. Se estamos trabalhando com uma série horária e não temos o objetivo de investir a relação entre as variáveis dentro de cada hora, podemos simplificar o problema utilizando a série de médias diárias. Assim, eliminamos a correlação gerada pelas medidas realizadas dentro do mesmo dia.

Quando não for possível agregar os dados, geralmente por perda de informação relevante para o estudo, a solução é considerar generalizações do modelo de regressão linear que contemplem a correlação dos dados, como os modelos mistos (REF) . Discutiremos essa classe de modelo na Seção (REF) .

3.1.4 Contornado a suposição de homoscedasticidade

Assim como a média, a variância de Y também pode diminuir ou amentar com o tempo. Essa característica viola a suposição de homoscedasticidade do modelo de regressão linear e exige a aplicação de transformações que estabilizem a variância de Y ou o uso de modelos mais flexíveis.

Não é raro encontrarmos séries temporais heteroscedásticas. Uma nova regulamentação, por exemplo, pode limitar a quantidade de certos componentes na composição dos combustíveis, padronizando as diferentes marcas e diminuindo a variação dos poluentes emitidos pelos veículos.

O gráfico dos resíduos em função dos valores preditos é uma boa ferramenta para identificar a violação da suposição de homoscedasticidade. Como podemos observar na Figura 3.5, nuvens de pontos em forma de funil são indícios observações heteroscedásticas.

Figura 3.5: Gráfico dos resíduos contra os valores preditos. Exemplo de nuvem de pontos em forma de funil, indicando heteroscedasticidade.

Uma maneira de estabilizar a variância das observações é transformar a variável Y usando funções côncavas, como log Y e \sqrt{Y} . Uma outra alternativa consiste em ponderar as observações

Figura 3.6: A estimativa $\hat{\beta}$ representa a variação em Y quando acrescemos X em uma unidade, não importando o valor de X.

com pesos proporcionais ao inverso de sua variância, mas essa técnica se limita aos casos em que a variabilidade pode ser estimada com precisão.

Os modelos lineares generalizados duplos (REF) e os modelos mistos (REF) são uma alternativa aos modelos de regressão linear para contemplar a heteroscedasticidade das observações.

3.1.5 Contornado a suposição de linearidade

Para entendermos melhor a suposição de linearidade, vamos considerar o modelo de regressão linear mais simples, com apenas um preditor:

$$Y_t = \beta_0 + \beta_1 X_t + \epsilon_t, \quad t = 1, \dots, n. \tag{3.6}$$

Ao estimarmos os parâmetros β_0 e β_1 (pelo método de mínimos quadrados, por exemplo), obtemos a seguinte reta de regressão

$$\hat{Y}_t = \hat{\beta}_0 + \hat{\beta}_1 X_t, \quad t = 1, \dots, n,$$
(3.7)

sendo \widehat{Y}_t o valor de Y_t predito pelo modelo e $\hat{\beta}_0$ e $\hat{\beta}_1$ as estimativas de β_0 e β_1 respectivamente. Note que (3.7) representa a equação de uma reta com intercepto $\hat{\beta}_0$ e coeficiente angular $\hat{\beta}_1$. Isso significa que essa reta cruza o eixo y no ponto $\hat{\beta}_0$ e, se variamos o valor de X_t em uma unidade, \hat{Y}_t vai variar $\hat{\beta}_1$ unidades, não importa qual seja o valor de X_t . Essa associação entre \hat{Y}_t e X_t (ou Y_t e X_t) é dita ser linear com respeito aos parâmetros e está ilustrada na Figura 3.6, para $\hat{\beta}_0$ igual a 0 e $\hat{\beta}_1$ igual a 10. Quando temos mais de um preditor, como no modelo (3.3), a interpretação é análoga para cada par (\hat{Y}_t, X_{it}) , mantendo-se as outras variáveis fixadas.

Os resíduos, definidos pela expressão (3.4), podem ser utilizados para avaliar a suposição de linearidade. A ideia consiste em construir o gráfico dos resíduos contra os valores preditos e verificar se a nuvem de pontos apresenta algum padrão. Nuvens em forma de "U", por exemplo, mostram que o modelo não está bem ajustado para valores extremos de Y, indicando não-linearidade (veja

Figura 3.7).

Figura 3.7: Gráfico dos resíduos contra os valores preditos, um exemplo de nuvem de pontos em forma de "U", indicando não-linearidade.

Uma maneira simples de contornar esse problema é ajustar modelos da forma

$$Y_t = \beta_0 + \beta_1 T(X_t) + \epsilon_t, \quad t = 1, \dots, n,$$
 (3.8)

em que $T(\cdot)$ representa uma função "linearizadora". As escolhas mais comuns para T(X) são $\log X$ e \sqrt{X} . Observe que, embora a relação entre Y e X em (3.8) não seja mais linear, o modelo continua sendo linear em relação à T(X). Um ponto negativo nessa abordagem é a perda de interpretabilidade do modelo, já que os parâmetros estarão associados à T(X) e não mais a X.

Modelos polinomiais (James et~al., 2013) também podem ser utilizados para contornar a nãolinearidade. Dado um único preditor X, um modelo polinomial pode ser especificado como

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \dots + \beta_p X_t^p + \epsilon_t, \quad t = 1, \dots, n.$$

Essa classe de modelos é bem flexível e permite ajustar associações complexas entre as variáveis X e Y, sendo uma boa alternativa para predição, mas pouco utilizados para inferência devido à falta de interpretação.

Outras formas de tratar problemas com a suposição de linearidade incluem funções escada (Hastie *et al.*, 2008) e regressão segmentada (REF).

3.1.6 Contornado a suposição de aditividade

Pela suposição de aditividade, os termos do modelo (3.3) são sempre somados, permitindo que cada coeficiente possa ser interpretado independentemente dos demais se mantivermos as outras variáveis fixadas.

Na prática, o efeito de uma variável explicativa X_1 em Y pode depender do nível de um outro preditor X_2 . O efeito da poluição do ar (X_1) em crises respiratórias (Y), por exemplo, é muito mais acentuado em certas condições climáticas, como dias de baixa umidade (X_2) . Essa relação entre X_1 e X_2 sobre Y é chamada de interação.

Se pelo menos uma das variáveis for qualitativa, os gráficos de perfis podem ser utilizados para investigar a existência de interação entre os preditores. Se ambas variáveis forem quantitativas, uma delas pode ser categorizada para a construção dos gráficos de perfis.

(EXEMPLO)

A interação de duas variáveis pode ser contemplada pelo modelo de regressão linear acrescentandose termos da forma $X_1 \times X_2$. Interações de três ou mais variáveis também podem ser incluídas, mas dificilmente tem interpretação prática.

Termos de interação bastante utilizados em estudos de poluição do ar são aqueles entre as variáveis meteorológicas. Em geral, além de controlarmos o efeito marginal da temperatura, umidade, precipitação, radiação, vento etc., precisamos também incluir o efeito conjunto dessas variáveis.

3.1.7Avaliando a qualidade do ajuste

Além de verificarmos se o modelo escolhido viola as suposições pré-estabelecidas, também precisamos avaliar o quão bem ele se ajusta aos dados. Para os modelos de regressão linear, isso pode ser feito a partir do erro-padrão residual (RSE) e do coeficiente de determinação (R^2) .

O erro-padrão residual é uma estimativa do desvio-padrão de ϵ , uma medida do quanto, em média, a resposta Y se desvia da verdadeira reta de regressão⁴. Valores baixos de RSE significam que $\hat{Y}_t \approx Y_t$, para $t = 1, \dots, n$, indicando que o modelo se ajusta bem aos dados. Como o RSEdepende da magnitude dos valores de Y, ele não é muito informativo se avaliado sozinho. No entanto, os erros-padrão residuais de dois modelos podem ser comparados com o objetivo de escolher qual se ajusta melhor aos dados.

O coeficiente de determinação é uma medida da proporção da variância de Y explicada pelos preditores. Esse coeficiente varia entre 0 e 1 e, ao contrário do RSE, não depende da escala de Y. Valores próximos de 1 apontam que uma porção considerável da variabilidade está sendo explicada, indicando que o modelo se ajusta bem aos dados.

Acrescentar novas variáveis ao modelo sempre diminui o valor do erro-padrão residual e aumenta o valor do coeficiente de determinação, o que torna a estratégia de escolher o modelo com menor RSE ou menor R^2 problemática. O excesso de parâmetros pode gerar sobreajuste (ou overfitting, em inglês), um ajuste tão bom que o modelo passa a explicar a variação gerada pelos erros aleatórios, que, por construção, não é explicada pelos preditores. Um modelo sobreajustado é ótimo para a amostra, mas, em geral, péssimo para ser generalizado para um contexto mais amplo. Para evitar esse problema, podemos utilizar versões do RSE e do R^2 penalizadas pelo número de parâmetros, conhecidas como RSE ajustado e R^2 ajustado. Os valores dessas medidas diminuem quando acrescentamos variáveis que não colaboram muito para explicar a variabilidade de Y, o que nos permite controlar o trade off existente entre um modelo mal ajustado e um modelo sobreajusto. Para mais informações sobre esse tema, ver a Seção 2.2.2 de Hastie et al. (2008).

Na prática, o R^2 é muito mais utilizado que o RSE para a avaliação do ajuste de modelos de regressão linear. Com objetivo de explicar a variabilidade da concentração de ozônio na cidade de São Paulo, Salvo e Geiger (2014), por exemplo, ajustaram sete modelos lineares com diferentes preditores para controlar os efeitos meteorológicos e de tráfego e escolheram aquele com maior R^2 como o modelo final.

Valores altos de RSE ou baixos de R^2 sugerem problemas com o modelo. Não-linearidade e omissão de preditores importantes são os mais comuns. No primeiro caso, a principal estratégia é

 $^{^4}$ No caso do modelo de regressão linear simples, por exemplo, a verdadeira reta de regressão é dada por Y= $ilde{eta}_0+ ilde{eta}_1X$, em que $ilde{eta}_0$ e $ilde{eta}_1$ representam os verdadeiros valores de eta_0 e eta_1 . Na prática, $ilde{eta}_0$ e $ilde{eta}_1$ são desconhecidos e substituídos por valores estimados, como apresentado em (3.7).

transformar os preditores cuja associação com Y suspeita-se não ser linear, assim como discutido na Seção 3.1.5. A solução para o segundo caso é obter mais informação sobre o fenômeno sob analise e incluir novos preditores ao modelo. Essa é uma tarefa complicada, pois dificilmente temos acesso a novas variáveis explicativas, e geralmente demonstra uma falha no delineamento do estudo.

Uma outra alternativa para explicar valores baixos de RSE ou R^2 é uma estratégia de análise equivocada. Muitas vezes, a classe de modelos que estamos utilizando simplesmente não se ajusta aos dados do estudo, demandando modelos mais flexíveis. A seguir, discutiremos os modelos lineares generalizados, uma ampla classe de modelos que permite a utilização de distribuições interessantes para o ajuste de diversos casos práticos.

3.2 Modelos lineares generalizados

É comum na modelagem estatística assumirmos uma distribuição para os nossos dados. Na prática, o que estamos fazendo é supor como os nossos dados devem estar distribuídos no mundo real. Quando dizemos que uma variável assume distribuição Normal com média 0 e variância 1, queremos dizer que as observações se distribuem na população como apresentado na Figura ??. Nós fazemos isso pois certas distribuições nos garantem resultados probabilísticos interessantes para o processo de estimação. Assim, para a validade dos resultados do modelo, é de total importância que a distribuição escolhida seja compatível com a natureza dos dados.

Em geral, a concentração de poluentes é uma medida positiva, assimétrica e heteroscedástica. Já o número de casos de doenças ou mortalidade é uma medida de contagem, isto é, assume apenas valores não-negativos inteiros. Nesse sentido, a usual suposição de normalidade de algumas classes de modelos pode não ser adequada para ajustar dados de poluição. Considerando as características citadas, as distribuições Gama e Poisson, por exemplo, são, respectivamente, boas alternativas para a modelagem de concentração de poluentes e dados epidemiológicos de contagem.

Os modelos lineares generalizados, introduzidos por Nelder e Wedderburn (1972), são uma generalização do modelo de regressão linear que permitem a utilização de distribuições para dados assimétricos (Gama, Normal inversa, Log-normal), dados de contagem (Poisson, Binomial negativa), dados binários (Binomial), entre outras. Neste capítulo, discutiremos como utilizar essa classe de modelos para o ajuste de dados de poluição do ar.

3.2.1 Especificação do modelo

Sejam Y_t e $\mathbf{X_t}$ definidos como na Seção 3.1.1. O modelo linear generalizado pode ser definido como

$$Y_t | \mathbf{X_t} \stackrel{ind}{\sim} \mathcal{D}(\mu_t, \phi)$$

$$g(\mu_t) = \alpha + \beta_1 X_{1t} + \dots + \beta_p X_{pt}, \quad t = 1, \dots, n,$$
(3.9)

sendo \mathcal{D} uma distribuição pertencente à família exponencial⁵, $g(\cdot)$ uma função de ligação, μ_t um parâmetro de posição e ϕ um parâmetro de precisão⁶. Se \mathcal{D} é a distribuição Normal e $g(\cdot)$ é a função

⁵A família exponencial corresponde a uma classe de distribuições de probabilidade que, sob certas condições de regularidade, apresentam algumas características em comum. Para mais informações, consulte Paula (2013).

⁶Algumas distribuições não têm um parâmetro de precisão. Nas distribuições Binomial e Poisson, por exemplo, esse parâmetro vale 1 e a dispersão é uma função da média.

identidade, (3.9) se reduz ao modelo de regressão linear (3.3).

Os parâmetros deste modelo podem ser estimados por máxima verossimilhança. Os cálculos envolvem o uso de procedimentos iterativos, como Newton-Raphson e escore de Fisher (Dobson, 1990). Distribuições que têm um parâmetro de precisão permitem a modelagem conjunta de μ e ϕ . Essa abordagem é conhecida como modelo linear generalizado duplo e flexibiliza a suposição de homoscedasticidade feita em (3.9). Mais informações sobre esses modelos podem ser encontradas em Paula (2013).

A especificação dos termos de tendência e sazonalidade para modelos lineares generalizados pode ser feita da mesma forma que no modelo linear (ver Seção 3.1.2). A utilização de resíduos para avaliar a qualidade do ajuste também pode ser conduzida de forma análoga à apresentada na Seção ??. Os resíduos mais utilizados em modelos lineares generalizados são definidos a partir da função desvio. Uma técnica muito utilizada é a construção de gráficos envelope para investigar a adequação da distribuição escolhida para os dados. Para mais informações sobre a análise de resíduos de modelos lineares generalizados, consulte Paula (2013).

Os modelos Gama, Normal inversa e Log normal são boas alternativas para ajustar dados positivos assimétricos, sendo, em geral, mais adequados para concentrações de poluentes do que a distribuição Normal. Discutiremos os dois primeiros na Seção 3.2.2.

Dados de contagem, como o número de casos de uma doença ou mortalidade, são usualmente ajustados pelo modelo Poisson. Conceição et al. (2001b), por exemplo, utilizaram esse modelo para avaliar a associação entre poluição atmosférica e marcadores de mortalidade em idosos na cidade de São Paulo. No entanto, a distribuição Poisson impõe que a média e a variância das observações são iguais e pode não se ajustar bem quando os dados apresentam sobredispersão (variância maior que a média). O modelo com resposta binomial negativa é uma alternativa nesses casos, já que permite a modelagem conjunta dos parâmetros de posição e dispersão. Discutiremos esses modelos com mais detalhes na Seção 3.2.3.

3.2.2 Modelos para dados positivos assimétricos

A distribuição Gama costuma ser a principal alternativa para o ajuste de dados positivos assimétricos. Dada a parametrização $Y \sim \operatorname{Gama}(\mu, \phi)$, sendo $\mu > 0$ a média de Y, $\phi > 0$ um parâmetro de precisão⁷ e

$$f(y;\mu,\phi) = \frac{1}{\Gamma(\phi)} \left(\frac{\phi y}{\mu}\right)^{\phi} \exp\left(-\frac{\phi y}{\mu}\right) \frac{1}{y}, \quad y > 0,$$

a função densidade de probabilidade de Y, podemos observar pela Figura 3.8 que, para um μ fixado, à medida que ϕ aumenta, a distribuição Gama se torna mais simétrica em torno da média. Conforme ϕ tende para infinito, Y se aproxima da distribuição Normal de média μ e variância $\mu^2\phi^{-1}$, o que torna a distribuição Gama atrativa para a modelagem tanto de observações assimétricas quanto de observações simétricas cuja dispersão varia em função da média ao quadrado.

Uma alternativa para a distribuição Gama é a Normal inversa. Considere agora $Y \sim \text{NI}(\mu, \phi)$ e a função densidade dada por

⁷Isso implica que ϕ^{-1} é um parâmetro de dispersão.

Figura 3.8: Função densidade da distribuição Gama com $\mu=1$ e diversos valores de ϕ . Conforme ϕ aumenta, a distribuição se torna menos assimétrica, centralizando-se ao redor da média.

$$f(y; \mu, \phi) = \frac{\phi^{1/2}}{\sqrt{2\pi y^3}} \exp\left\{-\frac{\phi(y-\mu)^2}{2\mu^2 y}\right\}, \quad y > 0.$$

Da mesma forma, $\mu > 0$ é a média de Y e $\phi > 0$ é um parâmetro de precisão. Podemos ver pela Figura 3.9 que, para μ fixado, a simetria da distribuição diminui conforme ϕ aumenta. Mais precisamente, Y se aproxima de uma distribuição Normal com média μ e variância $\mu^3\phi^{-1}$. Similarmente à Gama, a Normal inversa é apropriada para modelar tanto observações assimétricas quanto observações simétricas cuja dispersão varia em função da média ao cubo.

Figura 3.9: Função densidade da distribuição Normal inversa com $\mu=1$ e diversos valores de ϕ . Conforme ϕ aumenta, a distribuição se torna menos assimétrica, centralizando-se ao redor da média.

As funções de ligação mais utilizadas em ambos os modelos são a identidade $(g(\mu) = \mu)$, a logarítmica $(g(\mu) = \log(\mu))$ e a recíproca $(g(\mu) = 1/\mu)$. Gráficos de resíduos podem ser feitos para avaliar a adequabilidade da distribuição e da função de ligação escolhidas. Para mais informações sobre análise de diagnóstico para modelos lineares generalizados, consultar Williams (1987) e Paula (2013).

No R, os modelos Gama e Normal inversa podem ser ajustados com a função glm() do pacote

stats, utilizando os argumentos family = Gamma e family = inverse.gaussian, respectivamente.

Outras distribuições família exponencial também podem ser utilizadas para a análise de dados positivos assimétricos, como a Weibull, a Pareto e a Log-Normal (REF) .

Fora do contexto de modelos lineares generalizados, a distribuição de Birnbaum-Sanders generalizada (GBS) é outra alternativa para o ajuste de dados positivos assimétricos. Leiva et al. (2008), por exemplo, utilizaram o modelo GBS para ajustar concentrações horárias de dióxido de enxofre em Santiago, no Chile, mostrando que essa distribuição se ajustava melhor aos dados do que a Log-Normal. Para mais informações sobre a distribuição de Birnbaum-Saunders, consulte Barros et al. (2009) e Leiva (2015).

3.2.3 Modelos para dados de contagem

Em algumas situações, o objetivo do estudo de poluição do ar não está em descrever as séries de poluentes, mas sim utilizá-las para explicar eventos epidemiológicos, como, por exemplo, a morbidade ou mortalidade causada por doenças respiratórias. A variável resposta nesses estudos é, em geral, uma contagem, isto é, assume valores inteiros positivos que representam o número de casos da doença ou de mortes em cada instante observado.

Conceição et al. (2001b), por exemplo, utilizaram o modelo Poisson para avaliar a associação entre a concentração de alguns poluentes e marcadores de mortalidade em idosos na cidade de São Paulo, controlando por variáveis meteorológicas. Estes autores observaram uma associação positiva entre mortalidade e níveis de CO, SO₂ e, em menor escala, PM10.

Se a variável resposta Y, segue uma Poisson com parâmetro λ , simbolicamente $Y \sim \text{Poisson}(\lambda)$, o modelo assume que o evento sob estudo ocorre com taxa λ dentro de um intervalo de tempo fixado⁸. Essa taxa representa o valor médio⁹ de casos observados no intervalo e, na prática, queremos explicála a partir de séries de poluentes, controlando por variáveis climáticas. Dessa forma, para o modelo Poisson, temos $\mu_t = \lambda_t$ em (3.9). A função de ligação mais utilizada nesse contexto é a logarítmica.

Na distribuição Poisson, a média é igual a variância, isto é, $E(Y) = VAR(Y) = \lambda$. Isso gera uma restrição importante no modelo Poisson, deixando-o inadequado para o ajuste de dados com superdispersão, observações com a variância maior do que a média 10 . Uma alternativa nesse caso é a utilização de modelos com resposta Binomial Negativa.

Se $Y \sim \text{BN}(\mu, \phi)$, temos que $E(Y) = \mu$ e $VAR(Y) = \mu + \mu^2/\phi$, com $\mu \ge 0$ e $\phi > 0$, o que faz a distribuição Binomial Negativa adequada para dados com variância maior do que a média.

No R, o modelo Poisson pode ser ajustado com a função glm() do pacote stats, utilizando o argumento family = poisson. Já o modelo com resposta Binomial Negativa, com a função glm.nb() do pacote MASS.

3.3 Modelos aditivos generalizados

Os modelos lineares têm um papel muito importante na análise de dados, provendo técnicas de predição e inferência computacionalmente simples e fáceis de serem interpretadas. Contudo, em

⁸Esse intervalo de tempo se refere à frequência com que os dados são coletados, isto é, se as séries são diárias, semanais, mensais, anuais etc.

 $^{^9}$ A distribuição de Poisson atribui maiores probabilidades aos valores próximos à média λ .

¹⁰Para o modelo Poisson, $\phi = 1$.

problemas reais, o efeito dos preditores na variável resposta frequentemente é não-linear, tornando a suposição de linearidade desses modelos muito restritiva.

Em estudos de poluição do ar, o aspecto temporal dos dados gera efeitos sazonais, cuja relação com a variável reposta é muito melhor representada por curvas senoidais do que por retas.

Na Seção ??, introduzimos algumas técnicas que flexibilizam os modelos lineares na tentativa de ajustar relações não-lineares, como a transformação de variáveis e a regressão polinomial. Agora, apresentaremos os modelos aditivos generalizados (Hastie et al., 2008) como um método integrado, automático e flexível para identificar e caracterizar a não-linearidade de preditores em estudos de poluição atmosférica.

3.3.1 Especificação do modelo

O modelo aditivo generalizado é uma extensão do modelo linear generalizado que permite associar cada um dos preditores à variável resposta a partir de funções não-lineares, mantendo a suposição de aditividade. Como nas seções anteriores, sejam Y_t , \mathbf{X}_t e \mathbf{Z}_t , respectivamente, a variável resposta, as variáveis explicativas e as variáveis confundidoras, medidas nos instantes t = 1, ..., n. O modelo aditivo generalizado pode ser escrito como

$$Y_t | \mathbf{X_t} \stackrel{ind}{\sim} \mathcal{D}(\mu_t, \phi)$$

$$g(\mu_t) = \beta_0 + f_1(X_{1t}) + \dots + f_p(X_{pt}), \tag{3.10}$$

sendo \mathcal{D} uma distribuição pertencente à família exponencial e f_i , i=1,...,p, funções não-lineares. No caso mais simples, assim como nos modelos lineares generalizados, supõe-se que as variáveis Y_t são homoscedásticas, independentes e normalmente distribuídas.

Existem diversas propostas sobre como as funções $f_1, ..., f_p$ devem ser representadas, incluindo o uso de *splines* naturais, *splines* suavizados e regressão local (Hastie e Tibshirani, 1990). Outro ponto importante diz respeito a suavidade dessas funções, controlada por *parâmetros de alisamento*, geralmente escolhidos por validação cruzada (James *et al.*, 2013). Curvas muito suaves podem apresentar grande viés, enquanto curvas muito rugosas apresentam grande variância. Discutiremos esses tópicos com mais detalhes na Seção 3.3.2.

O procedimento de estimação no contexto de modelos aditivos generalizados depende da forma escolhida para as funções $f_1, ..., f_p$. A utilização de *splines* naturais, por exemplo, permite a aplicação direta de mínimos quadrados, graças à sua construção a partir de *funções base* (ver Seção 3.3.2). Já para *splines* penalizados, o processo de estimação envolve algoritmos um pouco mais complexos, como *backfitting* (REF). Para mais informações sobre esses procedimentos, consulte Hastie e Tibshirani (1990) e Hastie *et al.* (2008).

A seguir, introduziremos os conceitos de *splines* e regressão local, e apresentaremos os principais aspectos em torno do ajuste dessas técnicas.

3.3.2 Splines e regressão local

Para introduzir o conceito de *splines* e regressão local, vamos considerar novamente o modelo mais simples, com apenas uma variável explicativa

A principal ideia por trás dos modelos aditivos generalizados está na utilização de funções bases. Essa abordagem considera uma família de funções ou transformações $b_1(X), b_2(X), ..., b_k(X)$, fixadas e conhecidas, no lugar de X em (3.11). Assim, o modelo a justado passa a ser

$$Y_t = \beta_0 + \beta_1 b_1(X_t) + \beta_2 b_2(X_t) + \dots + \beta_k b_k(X_t) + \epsilon_t, \quad t = 1, \dots, t,$$
(3.12)

representando diversas classes de associações não-lineares entre X e Y. Note que o modelo polinomial apresentado na Seção 3.1.5 é um caso particular de (3.12), com $b_j(X_t) = X_t^j$.

Como uma tentativa para aumentar a flexibilidade da curva ajustada, podemos segmentar X e ajustar diferentes polinômios de grau d em cada um dos intervalos¹¹. Cada ponto de segmentação é chamado de $n\delta$, e uma segmentação com k nós gera k+1 polinômios.

Se considerarmos, por exemplo, d igual a 3 e apenas um nó em um valor arbitrário c, a expressão (3.12) ficaria na forma

$$Y_t = \begin{cases} \beta_{01} + \beta_{11}X_t + \beta_{21}X_t^2 + \beta_{31}X_t^3 + \epsilon_t, & \text{se } X_t < c; \\ \beta_{02} + \beta_{12}X_t + \beta_{22}X_t^2 + \beta_{32}X_t^3 + \epsilon_t, & \text{se } X_t \ge c. \end{cases}$$

Repare que as funções base $b_1(X), b_2(X), ..., b_k(X)$ nesse caso seriam construídas com a ajuda de funções indicadoras. Esse modelo é conhecido como modelo polinomial cúbico segmentado.

A partir dessa construção, definimos um spline de grau d como um polinômio segmentado de grau d com as d-1 primeiras derivadas contínuas em cada nó. Essa restrição acerca das derivadas é importante para garantir a continuidade (ausência de saltos) e suavidade (ausência de vértices) da curva.

Utilizando a representação por bases (3.12), um spline cúbico com k nós pode ser modelado por

$$Y_t = \beta_0 + \beta_1 b_1(X_t) + \beta_2 b_2(X_t) + ... + \beta_{k+3} b_{k+3}(X_t) + \epsilon_t, \quad t = 1, ..., t,$$

para uma escolha apropriada de funções $b_1(X), b_2(X), ..., b_{k+3}(X)$. Usualmente, essas funções envolvem três termos polinomiais — X, X^2 e X^3 , mais precisamente — e k termos $h(X, c_1), ..., h(X, c_k)$ da forma

$$h(X,c_j) = (x-c_j)_+^3 = \left\{ \begin{array}{ll} (x-c_j)^3, & \text{se } x < c_j, \\ 0, & \text{em caso contrário,} \end{array} \right.$$

sendo c_1, \ldots, c_k os k nós. Assim, incluindo o termo β_0 , o ajuste de um spline cúbico com k nós envolve a estimação de k+4 parâmetros e, portanto, utiliza k+4 graus de liberdade. Mais detalhes sobre a construção dessas restrições podem ser encontrados em Hastie et al. (2008) e James et al. (2013).

Além das restrições sobre as derivadas, podemos adicionar restrições de fronteira, exigindo que a função seja linear na região de X abaixo do menor nó e acima do maior nó. Essas restrições diminuem a variância nos extremos do proditor, produzindo estimativas mais estáveis. Um spline

 $[\]overline{}^{11}{
m Em}$ contrapartida ao modelo polinomial, que ajusta um único polinômio sobre todo o intervalo de variação de X.

cúbico com restrições de fronteira é chamado de spline natural.

No ajuste de splines cúbicos ou naturais, o número de nós determina o grau de suavidade da curva, e a sua escolha ser feita por validação cruzada (James et al., 2013). De uma forma geral, a maior parte dos nós é posicionada nas regiões do preditor com mais informação, isto é, mais observações. Por pragmatismo, para modelos com mais de um preditor, costuma-se adotar o mesmo número de nós para todos os preditores.

Os $splines\ suavizados\ constituem\ uma\ classe\ de funções\ suavizadoras\ que\ não\ utilizam\ a\ abordagem\ por funções\ bases.$ De maneira resumida, um $spline\ suavizado\ é\ a\ função\ f\ que\ minimiza\ a\ seguinte\ expressão$

$$\sum_{i=1}^{n} (Y_i - f(X_i))^2 + \lambda \int f''(u)^2 du.$$
 (3.13)

O primeiro termo dessa expressão garante que f se ajustará bem aos dados, enquanto o segundo penaliza a sua variabilidade, isto é, controla o quanto f será suave. A suavidade é regulada pelo parâmetro λ , sendo que f se torna mais suave conforme λ cresce. A escolha desse parâmetro é geralmente feita por validação cruzada (James $et\ al.,\ 2013$).

Uma outra forma para ajustar funções não-lineares entre X e Y é a regressão local. Essencialmente, essa técnica consiste em ajustar modelos de regressão simples em regiões de pontos ao redor de cada observação x_0 do preditor X. Essas regiões são formadas pelos k pontos mais próximos de x_0 , sendo que o parâmetro s = k/n, determina o quão suave ou rugosa será a curva ajustada. O ajuste é feito por mínimos quadrados ponderados, e os pesos são inversamente proporcionais à distância do ponto em relação a x_0 . Assim, os pontos na vizinhança de x_0 mais afastados recebem peso menor. Para mais informações, consultar James $et\ al.\ (2013)$.

3.4 Modelos ARIMA e extensões

Muitas vezes, a série Y pode ser explicada por valores defasados no tempo da própria variável (autocorrelação) ou dos preditores X_1, \ldots, X_p (correlação cruzada). Como os modelos de regressão apresentados até aqui permitem que Y seja influenciada apenas por valores contemporâneos das variáveis explicativas, eles não contemplam essa correlação temporal, podendo ser insuficientes para explicar toda a dinâmica presente em uma série.

Nesta Seção, vamos introduzir a classe de modelos ARIMA (Box e Jenkins, 1970), que contemplam a correlação gerada por relações lineares entre observações defasadas no tempo da própria variável. A associação entre a variável resposta e valores defasados no tempo de covariáveis não será tratada aqui, mas são contemplados por modelos de regressão defasada (lagged regression), discutidos nas Seções 4.10 e 5.6 de Shumway e Stoffer (2006).

3.4.1 Modelos autorregressivos (AR)

Modelos autorregressivos se baseiam na ideia de que Y_t pode ser explicada como uma função de p valores passados Y_{t-1}, \ldots, Y_{t-p} , sendo p o número de passos no passado necessários para prever o valor no instante t. Se Y_t é uma série estacionária, o modelo autorregressivo de ordem P, abreviado como AR(p), é definido como

$$Y_t = \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + w_t, \tag{3.14}$$

sendo ϕ_1,\ldots,ϕ_p constantes com $\phi_p\neq 0$ e $w_t\sim N(0,\sigma_w^2),\ t\geq 0$. Sem perda de generalidade, assume-se que a média de Y_t é zero¹².

Os modelos AR(p) são muito utilizados na Economia, onde é natural pensar o valor de alguma variável no instante t como função de seus valores defasados, e em algumas áreas da física e geofísica, onde os estimadores auto-regressivos são utilizados para estimar o espectro de certos processos.

3.4.2 Modelos autorregressivos e de médias móveis (ARMA)

Uma alternativa para o modelo AR(p), no qual supomos que a série Y_t em (3.14) é uma combinação linear de seus últimos p valores defasados, é o modelo de médias móveis de ordem q. Esse modelo assume que Y_t é gerado a partir de uma combinação linear dos erros $w_t, w_{t-1}, \ldots, w_{t-q}$. Formalmente, o modelo de médias móveis de ordem q, MA(q), é definido como

$$Y_t = w_t + \theta_1 w_{t-1} + \dots + \theta_a w_{t-a}, \tag{3.15}$$

sendo $\theta_1, \dots, \theta_q$ constantes com $\theta_q \neq 0$ e $w_t \sim N(0, \sigma_w^2), t \geq 0$.

Ao contrário dos modelos auto-regressivos, representar um processo por um modelo de médias móveis puro parece não ser intuitivo.

A utilização de modelos com termos auto-regressivos e de médias móveis pode ser uma boa alternativa para muitas séries encontradas na prática, pois eles normalmente requerem um menor número de parâmetros para explicar a autocorrelação da série (Morettin e Toloi, 2004). Nesse sentido, dizemos que uma série temporal Y_t é ARMA(p,q) se ela é estacionária e se

$$Y_t = \phi_1 Y_{t-1} + \dots + \phi_p Y_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q Y_{t-q}, \tag{3.16}$$

com $\phi_p \neq 0$, $\theta_q \neq 0$ e $\sigma_w^2 > 0$.

Repare que os modelos AR(p) e MA(q) são casos especiais do ARMA(p, q), com q = 0 e p = respectivamente.

A estimação dos parâmetros (ϕ_1, \ldots, ϕ_p) e $(\theta_1, \ldots, \theta_q)$ pode ser feita por máxima verossimilhança ou pelo método de mínimos quadrados. Para mais informações, consulte a seção 3.6 de Shumway e Stoffer (2006).

As três classes de modelos apresentadas até aqui consideram que a série Y_t é estacionária, o que normalmente não acontece na prática. Para flexibilizar essa restrição, apresentaremos a seguir os modelos ARIMA(p, d, q), uma extensão da classe ARMA que considera a diferenciação de grau d da série para eliminar a não-estacionariedade.

3.4.3 Modelos autorregressivos integrados e de médias móveis (ARIMA)

Vimos na Seção 3.1.2 que séries não-estacionárias podem ser diferenciadas para se alcançar a estacionariedade. De maneira geral, essa estratégia é válida para séries que não apresentam comportamento explosivo ou, em outros termos, que apresentam alguma homogeneidade em seu com-

¹²Se a média de Y_t é $\mu \neq 0$, então o modelo é definido para $Y_t - \mu$, o que equivale a acrescentar um intercepto $\alpha = \mu(1 - \phi_1 - \dots \phi_p)$ ao modelo (3.14).

Tabela 3.1: Critérios para a escolha da ordem de modelos ARIMA.

	AR(p)	$\mathrm{MA}(q)$	ARMA(p, q)
ACF	Calda longa	Desaparece após o $lag\ q$	Calda longa
PACF	Desaparece após o $lag p$	Calda longa	Calda longa

portamento não-estacionário. Morettin e Toloi (2004) enquadram séries dessa natureza, chamadas de séries não-estacionárias homogêneas, em dois grupos:

- séries que oscilam ao redor de um nível médio durante algum tempo e depois saltam para outro nível temporário; e
- séries que oscilam em uma direção por algum tempo e depois mudam para outra direção temporária.

O primeiro tipo requer apenas uma diferença para torná-las estacionária, enquanto o segundo requer duas. Dessa forma, a série não-estacionária homogênea Y_t é dita ser ARIMA(p, d, q) se $\Delta^d Y_t$, como definido em (2.1), é ARMA(p, q).

Como muito bem discutido na seção 3.8 de Shumway e Stoffer (2006) e no capítulo 6 de Morettin e Toloi (2004), precisamos seguir alguns passos essenciais no ajuste de modelos ARIMA:

- 1. Construir o gráfico da série.
- 2. Transformar a série, se preciso.
- 3. Identificar a ordem de dependência do modelo.
- 4. Estimar os parâmetros.
- 5. Diagnóstico.
- 6. Selecionar o melhor modelo.

No primeiro passo, podemos encontrar anomalias, como heteroscedasticidade, a partir da gráfico da série contra o tempo. No passo 2, corrigimos essas anomalias utilizando alguma transformação.

No passo 3, precisamos identificar as ordens p, d e q do modelo. O próprio gráfico da série irá sugerir se alguma diferenciação será necessária. Se alguma diferenciação for realizada, calculamos $\Delta Y_t, t=2,\ldots,n$, e checamos no gráfico da série ΔY_t contra o tempo t se outra diferenciação é necessária. Continuamos esse processo, sempre checando os gráficos da série diferenciada contra o tempo¹³.

Com o valor de d selecionado, observamos o gráfico da função de autocorrelação amostral e da função de autocorrelação parcial amostral de $\Delta^d Y_t$. Sugestões para os valores de p e q podem ser encontrados segundo os critérios apresentados na Tabela 3.1.

A ideia nesse passo é, a partir dos gráficos da função de autocorrelação e autocorrelação parcial, escolher alguns valores para p, d e q e, no passo 4, ajustar os respectivos modelos. Assim, a partir da análise de diagnóstico realizada no passo 5, selecionar o modelo que melhor se ajustou aos dados no passo 6.

 $^{^{13}}$ Cuidado para não introduzir dependência onde não existe. Por exemplo, $Y_t = w_t$ é serialmente não-correlacionada, mas $\Delta Y_t = w_t - w_{t-1}$ é MA(1).

A classe ARIMA pode ser generalizada para incluir o ajuste da sazonalidade. Essa nova classe, conhecida como SARIMA, inclui termos autoregressivos e de médias móveis para termos separados por *lags* de tamanho s. Para mais informações, recomendamos a leitura do Capítulo 10 de Morettin e Toloi (2004) e da Seção 3.9 de Shumway e Stoffer (2006).

3.4.4 Modelos GARCH

40

Os modelos para séries temporais apresentados até aqui são utilizados para modelar a média condicional de um processo quando a variância condicional (volatilidade) é constante. Em muitos problemas, contudo, a suposição de homoscedasticidade pode não ser verdadeira. (EXEMPLO)

Os modelos autoregressivos com heteroscedasticidade condicional (ARCH), propostos por Engle (1982), foram desenvolvidos para contemplar mudanças da volatilidade da série. Se $\epsilon_t \sim N(0,1)$, o modelo ARCH(q) é definido por

$$Y_t = f(\mathbf{X}, \mathbf{Y}) + \sigma_t \epsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots \epsilon_q \epsilon_{t-q}^2,$$
(3.17)

com $\alpha_0 > 0$ e $\alpha_i \geq 0$, i > 0, sendo $f(\mathbf{X}, \mathbf{Y})$ uma função dos preditores $\{(X_{1i}, \dots, X_{pi}), i \leq t\}$ e das variáveis defasadas (Y_1, \dots, Y_{t-1}) . Repare a primeira expressão de (3.17) permite o ajuste de diversas classes de modelo para a média condicional de Y_t , como modelos de regressão linear, modelos ARIMA e modelos de função de transferência, enquanto a segunda impõe um modelo autorregressivo de ordem p para a volatilidade do processo.

Bollerslev (1986) estendeu a classe ARCH, propondo os GARCH (generalized ARCH). Essa nova classe permite o ajuste de um modelo ARMA para a variância do erro (σ^2), modelando a volatilidade da série com menos parâmetros que um modelo ARCH (Morettin e Toloi, 2004).

$$Y_t = f(\mathbf{X}, \mathbf{Y}) + \sigma_t \epsilon_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \dots + \alpha_q \epsilon_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2,$$
(3.18)

sendo $f(\mathbf{X}, \mathbf{Y})$ definida como anteriormente.

Por ser um modelo com muitos parâmetros, a especificação do modelo GARCH(p, q), geralmente é dividida em três passos:

1. Estimar do melhor modelo AR(q):

$$Y_t = a_0 + a_1 Y_{t-1} + \cdots + a_q Y_{t-q} + \epsilon_t$$

2. Calcular e construir o gráfico das autocorrelações de ϵ^2 , dadas por

$$\rho_i = \frac{\sum_{t=i+1}^{T} (\hat{\epsilon}_t^2 - \hat{\sigma}_t^2)(\hat{\epsilon}_{t-1}^2 - \hat{\sigma}_{t-1}^2)}{\sum_{t=1}^{T} (\hat{\epsilon}_t^2 - \hat{\sigma}_t^2)^2},$$

sendo T o tamanho amostral.

3. Avaliar valores de ρ_i maiores que $1/\sqrt{T}$.

A estimação desses modelos pode ser conduzida da mesma forma que para os modelos ARMA, discutida na Seção 3.6 de Shumway e Stoffer (2006).

Capítulo 4

Técnicas de aprendizado estatístico

There are no routine statistical questions, only questionable statistical routines.

— Sir David Cox

No capítulo anterior, apresentamos diversas classes de modelos úteis para estudar a relação entre a variável resposta e um conjunto de preditores. A utilização desses modelos depende de suposições sobra a distribuição de Y, cuja parametrização dependerá de alguma função das variáveis \mathbf{X} . O modelo de regressão linear (3.3), por exemplo, assume as seguintes hipóteses:

- a média de Y depende das variáveis \mathbf{X} a partir da relação $\beta_0 + \beta_1 X_1 + \dots \beta_p X_p$ (linearidade e aditividade);
- a variância de Y, σ^2 , é constante para todas as observações na população.

Essas suposições, embora potencialmente restritivas, permitem que o modelo seja interpretável, isto é, ao estimarmos os coeficientes $\beta_0, \beta_1, \ldots, \beta_p$, podemos avaliar como a variável Y é influenciada por cada preditor X_1, \ldots, X_p .

Nos últimos anos, um novo framework de análise de dados se tornou muito popular, principalmente pela sua eficiência na resolução de problemas de predição, como detecção de imagens, transcrição de áudio e sistemas de recomendação. A chamada aprendizagem estatística¹ envolve um conjunto de técnicas que visam gerar a estimativa mais precisa possível para uma quantidade ou fenômeno. Apesar desse framework focar no ajuste de modelos preditivos, muitas das estratégias também podem ser aplicadas em problemas cujo interesse é entender a relação entre as variáveis.

Mais precisamente, discutiremos neste capítulo o conceito de *over-fitting*, métodos de reamostragem, seleção de variáveis e regularização. Em seguida, apresentaremos rapidamente alguns modelos muito utilizados no contexto de aprendizagem estatística.

4.1 Sobreajuste e o trade-off entre viés e variância

Ao utilizarmos um modelo estatístico para predição, estamos sujeitos a dois tipos de erro: um erro redutível e outro irredutível. No contexto apresentado na introdução do Capítulo 3, dificilmente

¹Também conhecida como modelagem preditiva, aprendizagem automática ou machine learning.

vamos conseguir uma estimativa ótima da função f, e essa imprecisão introduz erro nas predições do modelo. Esse erro é chamado de redutível, pois sempre podemos encontrar uma \hat{f} mais próxima da verdadeira f. No entanto, como Y depende também do termo ϵ (3.2), mesmo se pudêssemos estimar f com 100% de precisão, ainda teríamos um erro associado. O termo ϵ termo representa a variação em Y que não podemos explicar pelas variáveis \mathbf{X} , e como a imprecisão gerada por ele não pode ser reduzida, independentemente de como estimarmos a função f, esse erro é chamado de irredutível.

O nosso papel na hora de ajustar um modelo aos dados é encontrar uma candidata para f que minimize o erro redutível, isto é, utilizando os dados que temos disponíveis, queremos encontrar um modelo que gere as estimativas o mais precisas possível sobre o fenômeno ou quantidade sob estudo. Para cumprir esse objetivo, precisamos definir os conceitos de viés e variância de um modelo.

Imagine que precisamos ajustar um modelo para os dez pontos apresentados na Figura 4.1 (a). Podemos começar ajustando um modelo de regressão linear simples (3.6) e calcular a raiz do erro quadrático médio (Seção 3.1.7) para avaliar o quanto a reta ajustada se afasta dos pontos. Na Tabela 4.1, apresentamos o RMSE obtido para o modelo de regressão linear simples e para os modelos de regressão polinomial de até nono grau. Observe que, conforme aumentamos a complexidade do modelo (grau do polinômio), o RMSE diminui, até chegar em 0 para o polinômio de grau 9. Se tomarmos puramente o RMSE como medida da performance do modelo, escolheríamos justamente esse polinômio como modelo final. No entanto, pela Figura 4.1 (b), observamos que esse modelo está claramente mal ajustado aos dados.

Figura 4.1: Exemplo do trade-off entre viés e variância. (a) Conjunto de 10 pontos que gostaríamos de ajustar. (b) Modelos de regressão polinomial de graus 1 (vermelho), 2 (amarelo) e 9 (azul) ajustado aos 10 pontos. (c) Amostra de 100 novas observações plotadas juntas dos modelos polinomiais ajustados nas 10 observações iniciais. (d) Modelos de regressão polinomial de graus 1 (vermelho), 2 (amarelo) e 9 (azul) ajustados aos 100 novos pontos.

Considere agora, nesse mesmo exemplo, que conseguimos uma nova amostra com mais 100 observações geradas pelo mesmo fenômeno das 10 primeiras. A Figura 4.1 (c) ratifica o quanto o modelo polinomial de grau 9 se ajustou mal aos dados, enquanto os modelos de grau 1 e 2 parecem

Tabela 4.1: Raiz do erro quadrático	médio (RMSE) para	os modelos polinomiais	de grau 1 a 9 ajustados
com 10 e 110 observações no exemplo	da Figura 4.1.		

Grau do polinômio	RMSE (10 obs.)	RMSE (100 obs.)
1	0.204	0.206
2	0.149	0.089
3	0.140	0.089
4	0.140	0.089
5	0.102	0.089
6	0.086	0.089
7	0.063	0.087
8	0.031	0.087
9	0.000	0.087

escolhas mais razoáveis. Podemos observar ainda na Tabela 4.1 que o RMSE do modelo de grau 9 calculado nas 100 novas observações² é muito maior que o dos outros. Por fim, observe na Figura 4.1 (d) como a curva desse modelo muda quando o ajustamos agora usando as 100 novas observações.

Durante a modelagem, estamos sempre em busca de modelos que se ajustem bem aos dados, mas que possam ser generalizados para a população. Nesse sentido, chamaremos de viés o erro induzido por aproximar um fenômeno real, que pode pode ser extremamente complicado, por um modelo muito mais simples e de variância o quanto as estimativas dos parâmetros mudariam se nós os estimarmos usando uma base diferente. Assim, dizemos que modelos que não se ajustam bem à amostra apresentam alto viés e modelos que apresentam alto erro preditivo em novas observações apresentam alta variância.

É muito comum nos preocuparmos apenas em minimizar o viés dos nossos modelos, introduzindo complexidade para que eles se ajustem cada vez melhor aos dados. No exemplo apresentado, o polinômio de grau 9 ilustra, de forma bem simplificada, o conceito de sobreajuste (ou over-fitting, em inglês). O sobreajuste ocorre quando o modelo absorve de forma inadequada comportamentos da amostra que não são generalizáveis para a população em geral. Modelos sobreajustados apresentam baixo viés, mas alta variância, não sendo apropriados para representar o fenômeno de interesse. Como podemos verificar, conforme aumentamos a complexidade do modelo, estamos diminuindo o seu viés, já que ele se ajustará melhor aos dados, porém, a partir de um ponto, também estaremos aumentando a sua variância, pois ele se tornará cada vez menos generalizável. Controlar esse trade-off entre viés e variância é um dos maiores desafios da modelagem supervisionada.

Como na prática nem sempre é fácil identificar o sobreajuste, precisamos de medidas que quantifiquem o viés e a variância do modelo. Na próxima seção, apresentaremos estratégias para estimar essas quantidades.

²Aqui, os modelos não foram reajustados. Foram considerados os modelos ajustados apenas com as 10 primeiras observações

4.2 Estimando a performance do modelo

Na Seção 3.1.7, vimos que o R² e a raiz do erro quadrático médio (RMSE) podem ser utilizados para avaliar a qualidade do ajuste de um modelo de regressão linear. Em modelos para classificação, vimos na Seção ?? que a proporção de acerto é uma estimativa razoável da performance do modelo. Na prática, a métrica utilizada para estimar a performance do modelo vai depender do objetivo do estudo. Em estudos de previsão, por exemplo, podemos dar pesos maiores para erros acima de algum padrão de qualidade do ar, dando preferência a modelos que errem menos em valores extremos (grandes).

De uma maneira geral, utilizaremos a RMSE para avaliar a performance de modelos cuja resposta é quantitativa. Ao calcular essa medida nas variáveis que utilizamos para ajustar os dados, temos uma estimativa do viés do modelo, isto é, o quanto a curva ajustada está distante dos pontos. Vimos na seção anterior que, além do viés, precisamos levar em conta também a variância do modelo, já que um modelo que se ajusta perfeitamente à amostra dificilmente será generalizável para o resto da população.

No exemplo da seção anterior, estimamos a variância do modelo calculando o RMSE para conjunto de novas observações. Na prática, nem sempre teremos à disposição uma nova base de dados para proceder com essa estratégia. Uma alternativa é utilizar técnicas de reamostragem para separar a base em observações de *treino*, utilizadas para ajustar o modelo, e observações de *teste*, utilizadas para estimar a variância do modelo. Essas técnicas, mais especificamente a validação cruzada e bootstrap, serão o tópico da próxima seção.

4.3 Métodos de reamostragem

Os métodos de reamostragem são técnicas para gerar novas amostras a partir de uma base principal. Elas são utilizadas para estimar quantidades de interesse sobre o modelo ou seus coeficientes que necessitariam de uma nova base de observações não utilizadas no ajuste.

Nessa seção, falaremos sobre a validação cruzada e o bootstrap.

4.3.1 Validação cruzada

Uma forma de avaliar a qualidade do ajuste de um modelo é observar o seu *erro de teste*. O erro de teste é o erro médio resultante da utilização do modelo escolhido para prever a resposta em novas observações, que não foram utilizadas para estimar os parâmetros do modelo (James *et al.*, 2013).

Como na maioria dos estudos não é possível obter facilmente novas observações, podemos calcular o erro de teste dividindo a amostra principal em duas partes: uma utilizada para o ajuste do modelo e a outra para o cálculo do erro de teste, como se fosse um conjunto de novas observações. Essa técnica é conhecida como validação cruzada (James et al., 2013). Há diversos tipos de validação cruzada, que variam a depender da forma utilizada para dividir a amostra. Nesta seção, apresentaremos os principais tipos de validação cruzada e discutiremos as vantagens e desvantagens de cada uma.

Amostra de validação

A amostra de validação é a forma mais simples de validação cruzada. A estratégia aqui consiste em dividir aleatoriamente as observações em uma amostra de treino e uma amostra de validação. A proporção de observações em cada uma depende do tamanho amostral. Costuma-se utilizar 30% da amostra para validação, mas esse número pode ser menor em amostras muito grandes (mais de 100 mil observações, por exemplo).

Conforme discutido em James *et al.* (2013), a amostra de validação tem duas desvantagens em potencial:

- a estimativa do erro de teste pode ter alta variância, dependendo de quais observações ficaram na amostra de treino e quais fiaram na amostra de validação;
- como a acurácia de modelos estatísticos é menor quando ajustados com menos observações e apenas parte das observações são utilizadas no modelo final, a estimativa do erro de teste pode superestimada.

A seguir, apresentamos um tipo de validação cruzada que não possui essas limitações.

LOOCV

Considere uma amostra com n observações. A validação cruzada leave-one-out (LOOCV) consiste em rodar o modelo escolhido n vezes, sendo que em cada ajuste nós deixamos a i-ésima observação de fora, $i=1,\ldots,n$, e a utilizamos para calcular o erro de teste. A estimativa final do erro de teste será então a média das n estimativas parciais.

Figura 4.2: Esquematização da validação cruzada leave-one-out.

Repare que com essa estratégia, todas as observações são utilizadas no ajuste do modelo, o que elimina as limitações da amostra de validação. No entanto, uma desvantagem aqui é a necessidade de ajustar o modelo n vezes. Quando n é muito grande, a LOOCV pode exigir um alto tempo

grandes amostras.

K-fold

48

Podemos generalizar a LOOCV dividindo a amostra em k grupos com aproximadamente a mesma quantidade de observações e então ajustando o modelo k vezes, sendo que em cada ajuste selecionamos um grupo diferente como amostra de validação. Essa abordagem é chamada de validação cruzada k-fold. Note que a LOOCV é o caso especial em que k=n.

de computação. Apresentamos a seguir uma generalização do LOOCV que é mais adequada para

A maior vantagem da validação cruzada k-fold sobre a LOOCV é computacional. Em vez de ajustarmos o modelo n vezes, ajustamos apenas k, sendo que k << n. E como estamos utilizando todas as observações para treinar o modelo, não temos as limitações de se utilizar uma única amostra de validação.

Muitas vezes, quando a classe de modelos escolhida exige a escolha de hiperparâmetros, como o grau de suavização de um modelo aditivo generalizado (Seção 3.3) ou o λ do LASSO (Seção ??), é comum separarmos a amostra em três partes: uma amostra de treino, uma amostra de validação e uma amostra de teste. Nesse caso, os modelos são treinados com a amostra de treino e, para diversos valores do hiperparâmetro, calculamos o erro de teste na amostra de validação. Escolhemos então o hiperparâmetro que leva ao menor erro de teste e utilizamos a amostra de teste para calcular o erro de teste do modelo final. Geralmente utiliza-se LOOOCV ou k-fold para a validação e uma amostra separada para o teste. Essa estratégia é utilizada para garantir que o erro de teste não seja calculado em observações utilizadas no ajuste do modelo e reflita o erro que obteríamos ao aplicá-lo no mundo real.

Como discutimos até agora, a validação cruzada utiliza reamostragem para avaliar a qualidade do ajuste realizado. A seguir, apresentaremos uma técnica de reamostragem para obter informações sobre as estimativas do modelo.

4.3.2 Bootstrap

Bootstrap é uma poderosa ferramenta estatística utilizada para quantificar incertezas associadas a estimadores e modelos estatísticos. Salvo e Geiger (2014) e Salvo et al. (2017), por exemplo, utilizaram essa técnica para estimar o erro-padrão dos coeficientes do modelo de regressão linear ajustado para associar a concentração de ozônio na cidade de São Paulo com a proporção estimada de veículos bicombustíveis rodando a gasolina. Segundo os autores, o bootstrap foi utilizado para contemplar a variação causada pelo erro de medida presente na estimação da proporção de carros rodando a gasolina e na medição das condições climáticas.

O bootstrap consiste em gerar novas amostras sorteando repetidamente novas observações do conjunto de dados original. Para cada amostra, podemos ajustar o modelo escolhido, obtendo assim uma amostra dos coeficientes. A estimativa de bootstrap do erro-padrão de cada coeficiente, por exemplo, é dada pelo desvio-padrão das estimativas obtidas.

Mais informações sobre o bootstrap podem ser encontradas em James et al. (2013).

4.4 Seleção de variáveis

É muito comum na modelagem estatística incluirmos no modelo preditores que, na verdade, não estão associados com o fenômeno de interesse. Essas variáveis irrelevantes geram uma complexidade desnecessária no modelo resultante, sendo apropriado retirá-las da análise para obtermos um modelo mais fácil de interpretar.

Uma forma de selecionar variáveis é, a partir de algum critério, definir qual subconjunto dos preditores deve permanecer no modelo. Nesta seção, apresentaremos estratégias para decidir quais variáveis devem ficar ou ser retiradas do modelo.

4.4.1 Selecionando o melhor subconjunto de preditores

Para selecionar o melhor subconjunto entre p preditores, ajustamos o modelo para todos os subconjuntos possíveis de variáveis e escolhemos o melhor segundo alguma métrica, geralmente erro preditivo, R^2 ajustado, AIC ou BIC. Para mais informações sobre essas quantidades, consultar James et al. (2013). Observe que devemos usar uma métrica que penalize o modelo pelo número de parâmetros, pois, caso contrário, selecionaríamos sempre o modelo com mais preditores.

Na Tabela 4.2 apresentamos os 7 modelos que precisaríamos ajustar no caso de 3 preditores, X_1 , X_2 e X_3 , e um modelo de regressão linear (Seção 3.1). Para um número relativamente pequeno de variáveis, selecionar o melhor subconjunto de preditores é uma estratégia conceitualmente simples e de fácil execução. No entanto, conforme p cresce, essa técnica pode se tornar computacionalmente inviável. Para p=20, por exemplo, precisaríamos rodar mais de um milhão de modelos. A seguir, apresentamos algumas estratégias computacionalmente eficientes para aplicarmos em problemas com muitos preditores.

Tabela 4.2: Modelos de regressão linear que devem ser ajustados para selecionar o melhor subconjunto de variáveis no caso com 3 preditores.

Uma variável	Duas variáveis	Três variáveis
$Y = \beta_0 + \beta_1 X_1 + \epsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$	
$Y = \beta_0 + \beta_1 X_2 + \epsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_3 + \epsilon$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$
$Y = \beta_0 + \beta_1 X_3 + \epsilon$	$Y = \beta_0 + \beta_1 X_2 + \beta_2 X_3 + \epsilon$	

4.4.2 Stepwise

Os métodos stepwise são algoritmos de seleção de variáveis que visam encontrar o melhor subconjunto de preditores dentro de um conjunto restrito de combinações em vez de ajustar todos os 2^p modelos possíveis.

A diferença entre cada método *stepwise* está em como as variáveis são adicionas ou retiradas do modelo em cada passo. Os mais utilizados são o *foward stepwise* e o *backward stepwise*.

O foward stepwise consiste na execução dos seguintes passos:

- 1. Ajuste o modelo nulo (M_0) , sem preditores.
- 2. Ajuste todos os p modelos com 1 preditor e escolha o melhor³ (M_1) .

³Maior R^2 , por exemplo.

- 4. De forma análoga, ajuste os modelos com 3, 4, ..., p preditores, mantendo sempre como base o modelo obtido anteriormente, e em cada passo escolha o melhor (M_3, M_4, \ldots, M_p) .
- 5. Escolha o melhor modelo entre M_0, M_1, \ldots, M_p utilizando erro preditivo, AIC, BIC ou R^2 ajustado.

Repare que o foward stepwise diminui o número de modelos ajustados de 2^p para 1+p(p+1)/2. Para p=20, o número de modelos diminui de 1.048.576 para 211.

A ideia do método backward stepwise é parecida com a do foward. A diferença é que começamos no passo 1 com o modelo completo (M_p) , com todos os preditores, e nos passo seguintes retiramos cada um dos preditores e ajustamos os modelos correspondentes, selecionando sempre aquele com maior R^2 $(M_{p-1}, M_{p-2}, \ldots, M_0)$. Ao fim, escolhemos o melhor entre os modelos M_0, M_1, \ldots, M_p utilizando erro preditivo, AIC, BIC ou R^2 ajustado. O número de modelos ajustados nesse caso é igual ao do foward stepwise.

Ainda existem métodos stepwise híbridos, nos quais os preditores são adicionados sequencialmente, assim como no foward stepwise, mas em cada etapa é avaliado se um dos preditores já incluídos deve ou não sair do modelo. Essa estratégia tenta considerar mais modelos, chegando mais próximo da seleção do melhor sub-conjunto discutida na seção anterior. Para mais informações, consultar Nelder e Wedderburn (1972).

4.5 Regularização

Os métodos de seleção de sub-conjuntos de preditores apresentados nas seções anteriores envolvem o ajuste de diversos modelos e a escolha do melhor segundo alguma métrica. Uma alternativa, seria ajustar um único modelo contendo todos os preditores e utilizar técnicas que limita ou regulariza as estimativas dos coeficientes, encolhendo seus valores na direção do zero.

Essas técnicas, chamadas de de regularização, podem levar a uma redução substancial da variância das predições ao custo de um pequeno aumento de viés. Apresentaremos nesta seção as formas mais utilizadas de regularização: a regressão ridge e o LASSO.

A regressão ridge (James et~al., 2013) consiste em acrescentar a seguinte penalização à função de perda

$$\lambda \sum_{j=1}^{p} \beta_j^2,$$

em que λ é um hiperparâmetro que controla o impacto da penalização nas estimativas dos coeficientes. Quando $\lambda = 0$, o termo é anulado e as estimativas são calculadas sem penalização. Conforme $\lambda \longrightarrow \infty$, valores altos dos coeficientes β_j são penalizados, forçando que seus valores sejam encolhidos na direção do zero. A vantagem desse comportamento está enraizada no trade-off entre o viés e a variância do modelo. O encolhimento dos coeficientes força que o modelo seja menos flexível, aumentando um pouco o viés, e possivelmente gerando uma redução significativa na variância.

No caso da regressão ridge, é possível mostrar que $\beta_i = 0$ apenas se $\lambda = \infty$. Isso significa não estamos fazendo seleção de variáveis, isto é, sempre obteremos um modelo com todos os preditores.

Em alguns casos, isso pode não ser o ideal, pois, apesar de estarmos diminuindo a variância do modelo, podemos ter um modelo desnecessariamente mais complexo.

Uma alternativa é utilizar o LASSO (least absolute shrinkage and selection operator). Essa técnica é análoga à regressão ridge, mas a penalização imposta ao processo de estimação é dada por

$$\lambda \sum_{j=1}^{p} |\beta_j|.$$

Para λ grande o suficiente, essa penalização força que alguns dos coeficientes sejam estimados exatamente como zero. Assim, ao utilizarmos o LASSO, estamos ao mesmo tempo diminuindo a variância do modelo e executando seleção de variáveis.

Um ponto importante sobre a aplicação das técnicas de regularização é a escala dos preditores. A maioria dos processos de estimação usuais são invariantes à escala em que os preditores foram medidos, isto é, ajustar o modelo usando o preditor X_1 ou cX_1 , c uma constante qualquer, não mudará a interpretação dos resultados. No caso da regressão ridge e do LASSO, a escala dos preditores influenciam não só a estimativa dos próprios coeficientes, mas também a estimativa dos outros parâmetros do modelo. Dessa forma, um passo importante de se realizar antes de aplicar essas técnicas é a padronização dos preditores. A padronização pode ser feita a partir da fórmula

$$\tilde{X}_{ij} = \frac{X_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{ij} - \bar{X}_j)^2}},$$
(4.1)

sendo o denominador dessa expressão a estimativa do desvio-padrão do j-ésimo preditor. Consequentemente, todos os preditores terão desvio-padrão igual a 1.

Para uma discussão mais aprofundada sobre a interpretação da regressão ridge e do LASSO, consulte o Capítulo 6 de James *et al.* (2013). Para o desenvolvimento matemático dessas técnicas, o Capítulo 5 de Hastie *et al.* (2008) é uma ótima referência.

Capítulo 5

Poluição e uso de combustíveis

Neste Capítulo, vamos utilizar as técnicas apresentadas até aqui para analisar um problema comum em estudos de poluição do ar: a relação entre uso de combustíveis e a concentração de poluentes.

5.1 Etanol e ozônio

Devido à forte dependência de combustíveis fósseis, o setor de transportes é considerado pela União Europeia o mais resiliente aos esforços para a redução de emissões (European Commission, 2011). Como soluções que visam diminuir o tamanho da frota de veículos (ou ao menos restringir o seu uso) embarram em fatores políticos e econômicos, os estudos nessa área têm como objetivo encontrar combustíveis menos poluentes, alternativas ao diesel e à gasolina.

O bio-etanol é uma fonte quase-renovável de energia que pode ser produzida a partir de matéria prima agrícola. É amplamente utilizado no Brasil e nos Estados Unidos, seja puro (conhecido como E100) ou como aditivo da gasolina (gasohol; conhecido como E20 ou E25, de acordo com a porcentagem adicionada à gasolina, 20% ou 25%). Comparado com a gasolina convencional, o etanol é considerado um combustível cuja queima gera menores concentrações de material particulado (PM), óxidos de nitrogênio (NO_X), monóxido de carbono (CO) e dióxido de carbono (CO₂), sendo uma boa opção para reduzir a poluição do ar e o aquecimento global.

Em um experimento controlado na cidade de Fairbanks, no Alasca, por exemplo, Mulawa et al. (1997) coletaram amostras de material particulado de carros a gasolina e as compararam com dados de emissões de carros abastecidos com E10 (gasolina com 10% de álcool). Os autores constataram que os carros com E10 emitiam menos material particulado e que os níveis desse poluente aumentavam em dias mais frios. Yoon et al. (2009) conduziram uma investigação similar e concluíram que a combustão de etanol e da mistura E85 (85% etanol e 15% gasolina) emitia concentrações inferiores de hidrocarbonetos, monóxido de carbono e óxidos de nitrogênio quando comparados com a gasolina sem aditivos sob diversas condições experimentais.

Apesar de diversos trabalhos, além do senso comum, considerarem o etanol como uma alternativa menos poluente à gasolina, quando as emissões de veículos abastecidos com etanol são associadas à concentração ambiente de ozônio (O₃), os estudos têm apontado para uma direção diferente. Pereira et al. (2004), por exemplo, expuseram câmaras contendo etanol puro e gasool (mistura de 22-24% etanol em gasolina) ao sol para estudar a formação do ozônio e concluíram que as concentrações máximas do poluente eram, em média, 28% maiores para o álcool do que para o

gasool. Jacobson (2007) juntou modelos de previsão para a poluição do ar e o clima com inventários de emissões futuras e dados populacionais e epidemiológicos para examinar o efeito da troca da gasolina por E85 na incidência de câncer e casos de mortalidade e hospitalização em Los Angeles, em particular, e nos Estados Unidos, como um todo. O autor concluiu o risco de câncer era o mesmo com a utilização dos dois combustíveis, mas uma frota futura de veículos rodando com E85 aumentaria a hospitalização por complicações relacionadas à poluição por ozônio.

Salvo e Geiger (2014) utilizaram uma mudança real na preferência por gasolina ocasionada em flutuações de larga escala no preço do etanol para analisar a associação entre proporções de carros a gasolina rodando na cidade de São Paulo¹ com os níveis de ozônio medidos no começo da tarde durante os anos de 2008 a 2011. Os autores concluíram que o uso do etanol em São Paulo está associado a maiores concentrações do poluente. Esse estudo foi ampliado por Salvo et al. (2017), utilizando dessa vez dados de 2008 a 2013 e analisando também o efeito na concentração de partículas ultrafinas. Os resultados apontaram novamente associação entre o maior uso de etanol e aumento na concentração de ozônio, mas queda na concentração de partículas ultrafinas.

Nesta Seção, utilizaremos os dados disponibilizados por Salvo et al. (2017) para explorar análises cujo objetivo é entender o mecanismo de formação dos poluentes a partir da relação entre as variáveis associadas.

5.1.1 Dimensionando o problema

Far better an approximate answer to the right question, which is often vague, than an exact answer to the wrong question, which can always be made precise.

— John Tukey

Dimensionar o problema significa diminuir a complexidade da análise. Muitas vezes, quando o fenômeno sob estudo é complicado e temos muitas variáveis para analisar, é possível reduzir a dimensão dos dados sem perder informação relevante para responder a pergunta de interesse.

O objetivo no nosso exemplo é investigar como o uso do etanol pode ajudar a explicar a variação da concentração de ozônio. De maneira geral, queremos descobrir qual é relação entre a variável resposta e um dos preditores ou, em outras palavras, entender melhor o mecanismo escondido dentro da caixa preta em (REF).

Conforme discutido no Capítulo 3, o mecanismo gerador do fenômeno sob estudo pode ser muito complexo, não sendo possível em algumas situações nem mesmo discriminar as variáveis envolvidas. A formação do ozônio troposférico certamente é um exemplo disso. É um processo espaço-temporal que depende de reações químicas complicadas e um grande número de variáveis, a maior parte delas difícil de ser medida com precisão.

Diante um cenários complicados, dois cuidados devem ser tomados durante a análise:

1. A depender dos dados disponíveis, reduzir a dimensão do problema àquela necessária para responder a pergunta de interesse.

¹Proporção de carros a gasolina entre os carros bicombustíveis.

2. Não escolher um modelo muito restritivo para descrever a associação entre as variáveis.

Mostraremos aqui exemplos de como dimensionar o problema e como isso interfere diretamente na escolha da estratégia de análise. O segundo item será discutido ao longo de toda a Seção.

O ponto chave para dimensionar problema é entender bem o objetivo do estudo. Os dados disponibilizados por Salvo et al. (2017) contêm informação horária da concentração de ozônio e das variáveis climáticas e de trânsito. Uma ideia inicial seria propor um modelo para as observações horárias. Idealmente, esse modelo deve contemplar a correlação das observações medidas no mesmo dia, o que pode ser feito, por exemplo, com a inclusão termos aleatórios. No entanto, analisando a variável que representa o uso de etanol, verificamos que ela varia, no máximo, de um dia para o outro, nunca assumindo dois valores dentro do mesmo dia. Assim, sem perda de informação, podemos diminuir a dimensão dos dados utilizando a média diária da concentração de ozônio, eliminando o problema da correlação dentro de cada dia.

Salvo et al. (2017), além de considerarem a média diária, excluíram da análise os meses frios de junho a setembro. Para a análise de partículas ultrafinas, os autores excluíram também os finais de semana e os feriados². Isso implica em manter na amostra apenas dias parecidos em relação ao clima e trânsito. Repare que, nessa abordagem, apesar de estarmos simplificando o problema, estamos perdendo informação, pois não poderemos tirar conclusões sobre a relação entre o uso de etanol e a concentração de ozônio nos dias mais frios. Outra consequência está na escolha do modelo. Removendo esses dias da amostra, não teremos mais um problema de série temporal usual, já que as medidas não são mais equidistantes no tempo. Discutiremos nas próximas seções como modelar tanto a série completa quanto essa amostra reduzida.

As abordagens apresentadas até aqui levam em conta apenas o objetivo do estudo e conhecimento prévio sobre as variáveis disponíveis. Podemos continuar reduzindo a complexidade do problema, além de criar *insight* para a escolha de modelos adequados, extraindo mais informação dos dados a partir de uma análise exploratória.

5.1.2 Análise exploratória

A partir da análise exploratória, vamos estudar o comportamento dos preditores e entender como eles se relacionam com a concentração de ozônio.

Por pragmatismo, apresentaremos aqui apenas a análise exploratória para a estação Dom Pedro II. A maior parte dos resultados são compartilhados entre as outras estações, a análise exploratória completa pode ser visualizada em https://rpollution.com.

Na Seção 2.1.1, nós começamos a explorar a série de ozônio. Pela Figura ??, observamos como a concentração média do poluente se comporta ao longo do dia. Como no período da manhã o ozônio ainda está sendo gerado e no final do dia o ozônio já foi quase inteiramente consumido, é razoável analisarmos apenas a média diária no intervalo de pico, entre o meio-dia e as 17 horas. Isso significa que vamos relacionar o uso de etanol com o pico diário do ozônio, o que nos faz perde informação sobre a velocidade de formação e dissipação do poluente, mas é suficiente para gerar informação relevante sobre a pergunta de interesse.

No entanto, mesmo considerando apenas a concentração de ozônio medida entre o meio-dia e as 17 horas, as condições climáticas e de tráfego no período da manhã são fatores importantes na

²Essa estratégia também foi adota para a análise do ozônio em Salvo e Geiger (2014).

Figura 5.1: Séries da concentração de ozônio diária média e da proporção estimada de carros a gasolina rodando na cidade. Dados da estação Dom Pedro II, de 2008 a 2013.

formação do poluente. Assim, além das médias dessas variáveis no período da tarde, consideraremos também os valores médios pela manhã (entre 8 e 11 horas).

Primeiro, vamos investigar a associação entre a concentração de ozônio e a proporção estimada de carros à gasolina rodando na cidade. Pela Figura 5.1, observamos que existem dois picos de utilização de gasolina durante o período analisado, um no começo de 2010 e outro no começo de 2011. Após o segundo pico, a proporção estimada de carros a gasolina varia próximo ao 50%. Analisando o gráfico de dispersão apresentado na Figura 5.2, não encontramos indícios claros de associação entre o ozônio e a proporção estimada de carros a gasolina. Isso significa que, se as variáveis estão associadas, essa relação está sendo mascarada pelo efeito dos outros preditores.

Nas Figuras 5.3 e 5.4, podemos observar a distribuição da temperatura média, pela manhã e pela tarde, para cada mês do ano, e também comparar as séries de cada variável. Repare que a temperatura de manhã é muito mais sensível às estações do ano, enquanto a temperatura à tarde varia mais. Pela Figura 5.5, observamos que a concentração de ozônio parece mais associada com a temperatura pela tarde, o que é razoável devido ao papel da luz solar no mecanismo gerador do poluente.

Repetindo a mesma análise para as outras variáveis climáticas³, podemos concluir:

- dias com maior radiação estão associados a maiores níveis de ozônio;
- como a precipitação apresenta muitos valores iguais a zero, podemos pensar em categorizá-la como "Choveu no período"e "Não choveu no período";
- considerando a variável precipitação categorizada, períodos com chuva estão associados a menores concentrações de ozônio;
- umidade alta, principalmente à tarde, está associada com menores concentrações de ozônio;

 $^{^3}$ Os gráficos para os outros preditores podem ser encontrados em https://www.rpollution.com/flexdashboards/ozonio-clima-sp/dash-ozonio-clima-sp.html.

Figura 5.2: Gráfico de dispersão da concentração de ozônio contra a proporção estimada de carros rodando a gasolina na cidade. Dados da estação Dom Pedro II, de 2008 a 2013.

Figura 5.3: Gráficos ridge da temperatura diária média nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados da estação Dom Pedro II, de 2008 a 2013.

Figura 5.4: Gráficos das séries da concentração de ozônio e da temperatura diária média nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados da estação Dom Pedro II, de 2008 a 2013.

Figura 5.5: Gráficos de dispersão da concentração de ozônio pela temperatura diária média nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados da estação Dom Pedro II, de 2008 a 2013.

5.1 ETANOL E OZÔNIO 59

Figura 5.6: Gráficos de dispersão da concentração de ozônio pelo congestionamento diário médio, na região da estação de monitoramento, nos períodos da manhã (das 8 às 11 horas) e no período da tarde (12 às 17 horas). Dados da estação Dom Pedro II, de 2008 a 2013.

- a relação enter a velocidade do vento, tanto de manhã quanto à tarde, e a concentração de ozônio não é muito clara; e
- parece haver uma leve associação entre a ocorrência de inversões térmicas e maiores concentrações de ozônio.

Analisando agora o trânsito diário médio na região da estação de monitoramento (Figura 5.6), não parece ficar clara qual a relação com a concentração de ozônio. No entanto, se observamos agora a Figura 5.7, observamos que a concentração diária média de ozônio é, em geral, maior nos fins de semana, enquanto o congestionamento tende a ser menor nesses dias. Como não há motivos para acreditar que as condições climáticas sejam diferentes nos fins de semana, é razoável supor que a concentração de ozônio é maior em dias de pouco tráfego.

Se essa relação for verdadeira, isso implica que, independentemente de qual for a relação entre o uso de etanol a concentração de ozônio, as emissões veiculares tendem a diminuir os níveis do poluente. Para melhor avaliar isso, vamos estudar a concentração de ozônio em dias com maior proporção de estimadas de carros rodando a álcool e em dias com maior proporção estimada de carros rodando a gasolina. Como podemos observar pela Figura 5.8, a concentração de ozônio é maior em dias de menor tráfego independentemente de qual combustível está sendo mais utilizado na cidade.

Devido à complexidade do problema e ao grande número de variáveis, a análise exploratória pode continuar em diversas direções. Poderíamos, por exemplo, analisar a associação entre os preditores para buscar indícios de interação, investigar a concentração de ozônio fora e durante as férias escolares, avaliar também o congestionamento médio em toda cidade em vez de apenas o congestionamento na região da estação e, é claro, generalizar a análise para as outras estações de monitoramento. No entanto, como já apresentamos uma visão geral de como realizar a análise exploratória, vamos seguir em frente e a justar alguns modelos aos dados.

Figura 5.7: Relação entre a concentração de ozônio e o congestionamento na região da estação de monitoramento ao longo da semana. (a) Concentração de ozônio diária média ao longo da semana. (b) Congestionamento diário médio, no período da manhã e da tarde, na região da estação de monitoramento ao longo da semana. Dados da estação Dom Pedro II, de 2008 a 2013.

Figura 5.8: Concentração de ozônio diária média ao longo da semana em dias com maior proporção de estimadas de carros rodando a álcool e em dias com maior proporção estimada de carros rodando a gasolina. Dados da estação Dom Pedro II, de 2008 a 2013.

5.1.3 A análise conduzida por Salvo et al. (2017)

Antes de discutir as diferentes estratégias que adotamos para tentar explicar a relação entre o ozônio e o uso de etanol, vamos apresentar os resultados da análise feita por Salvo et al. (2017).

Como discutido anteriormente, os autores optaram por remover da análise os dias meses de junho a setembro, optando por uma amostra mais homogênea em relação às condições climáticas. Além disso, eles juntaram as observações de todas as 12 estações de monitoramento, formando uma única amostra.

O modelo final apresentado por Salvo *et al.* (2017) foi o modelo de regressão linear 3.3, considerando as variáveis apresentadas na Tabela 5.1.

Tabela 5.1: Preditores considerados pelo modelo para a concentração de ozônio ajustado em Salvo et al. (2017).

Tipo	Variáveis	Número de parâmetros
Etanol	Proporção de carros a gasolina.	1
Estação	Indicador de estação.	11
Calendário	Indicadores de dia da semana, semana do ano, férias e feriados públicos.	44
Tendência	Tendência geral e tendência específica para cada estação.	12
Clima	Temperatura, radiação, umidade, velocidade do vento e indicadores de precipitação e de inversão térmica.	9
Trânsito	Indicadores de congestionamento na região da estação de monitoramento, na cidade como um todo e inauguração de vias importantes.	18
Total	${\bf 16}{\bf preditores}+{\bf intercepto}$	96 parâmetros*

^{*95} parâmetros dos preditores + 1 parâmetro do intercepto.

A estimativa reportada para o parâmetro referente à proporção de carros rodando a gasolina foi -8.3 ± 5.0 (mais ou menos dois desvios-padrão)⁴, o indica que o aumento da proporção estimada de carros rodando a gasolina na cidade está associada à diminuição da concentração de ozônio. Como medida de qualidade de ajuste, os autores reportaram o \mathbb{R}^2 do modelo (70,7%).

Nas estratégias adotadas a seguir, consideramos algumas mudanças em relação ao modelo considerado por Salvo *et al.* (2017). Primeiro, vamos considerar tanto a amostra reduzida (sem os meses frios) quanto a amostra completa. Apesar de as concentrações de ozônio serem menores no inverno, gostaríamos também de tentar explicar a relação entre as variáveis ao longo de todo o ano.

Segundo, vamos ajustar um modelo para cada estação. Ainda que seja a mesma variável medida em todas as estações, o mecanismo gerador do ozônio pode ser diferente em cada local da cidade. O efeito do vento ou da chuva, por exemplo, pode variar de localidade para localidade, e, para contemplar essas relações, precisaríamos incluir diversos termos de interação, o que deixaria o modelo mais complexo e difícil de ser interpretado. Em vez disso, vamos adotar uma estratégia

⁴Esse foi o resultado de um dos modelos, no qual foi utilizo mínimos quadrados ordinários para estimação dos parâmetros e bootstrap para o cálculo do erro padrão das estimativas.

mais simples e ajustar um modelo para cada estação. Assim, podemos comparar os 12 resultados e levantar hipóteses para explicar possíveis diferenças.

Em relação aos preditores, consideraremos os mesmos que os autores, com as seguintes exceções:

- como as categorias da variável de congestionamento local foram construídas pelos autores com base na amostra agregada, utilizaremos os valores numéricos dessa variável, assim como a de congestionamento total na cidade;
- como estamos ajustando um modelo para cada estação, não incluiremos preditores específicos de estação.

Com essas mudanças, o número de parâmetros passou de 96 para 76.

Por fim, separaremos as observações em uma amostra de treino (70%) e uma amostra de teste (30%) para estimar o erro preditivo (raiz do erro quadrático médio) do modelo. O erro preditivo será usado como uma forma de comparar a qualidade do ajuste dos diferentes modelos considerados as seguir.

5.1.4 Estratégia I: regressão linear

Como primeira estratégia de análise, vamos ajustar o modelo de regressão linear apresentado em (3.3).

Tabela 5.2: Estimativas do parâmetro referente à proporção de carros rodando a gasolina do modelo de regressão linear.

Estação	Estimativa	Estimativa
Estação	(modelo com todos os meses)	(excluindo meses frios)
Diadema	-18.01	
Dom Pedro II	-23.30	
Ibirapuera	-10.59	
${\rm IPEN}$	5.15	
Mauá	-25.23	
Mooca	-60.63	
Nossa Senhora do Ó	-32.92	
Parelheiros	-21.20	
Pinheiros	-23.04	
Santana	-16.99	
Santo André	-23.13	
São Caetano do Sul	39.86	

5.1.5 Estratégia II: modelo aditivo generalizado

5.1.6 Estratégia III: LASSO

5.1 ETANOL E OZÔNIO 63

Tabela 5.3: Estimativas do parâmetro referente à proporção de carros rodando a gasolina do modelo aditivo generalizado.

Estação	Estimativa	Estimativa
Dstação	(modelo com todos os meses)	(excluindo meses frios)
Diadema		
Dom Pedro II		
Ibirapuera		
${\rm IPEN}$		
Mauá		
Mooca		
Nossa Senhora do Ó		
Parelheiros		
Pinheiros		
Santana		
Santo André		
São Caetano do Sul		

Tabela 5.4: Estimativas do parâmetro referente à proporção de carros rodando a gasolina do modelo com LASSO.

Estação	Estimativa	Estimativa
Estação	(modelo com todos os meses)	(excluindo meses frios)
Diadema		
Dom Pedro II		
Ibirapuera		
${\rm IPEN}$		
Mauá		
Mooca		
Nossa Senhora do Ó		
Parelheiros		
Pinheiros		
$\operatorname{Santana}$		
Santo André		
São Caetano do Sul		

Poluição e saúde pública

Previsão

68 Previsão 7.0

Obtendo dados de poluição

- 8.1 Dados no Brasil
- 8.2 Dados nos EUA
- 8.3 Dados na Europa

Discussão

Referências Bibliográficas

- Barros et al. (2009) Michelli Barros, Gilberto A. Paula e Victor Leiva. An r implementation for generalized birnbaum-saunders distributions. Computational Statistics and Data Analysis, 53(4): 1511–1528. Citado na pág. 34
- Beer et al. (2011) Tom Beer, John Carras, David Worth, Nick Coplin, Peter K. Campbell, Bin Jalaludin, Dennys Angove, Merched Azzi, Steve Brown, Ian Campbell, Martin Cope, Owen Farrell, Ian Galbally, Stephen Haiser, Brendan Halliburton, Robert Hynes, David Jacyna, Melita Keywood, Steven Lavrencic, Sarah Lawson, Sunhee Lee, Imants Liepa, James McGregor, Peter Nancarrow, Michael Patterson, Jennifer Powell, Anne Tibbett, Jason Ward, Stephen White, David Williams e Rosemary Wood. The health impacts of ethanol blend petrol. Energies, (4): 352–367. Citado na pág. 1
- Belusic et al. (2015) Andreina Belusic, Ivana Herceg-Bulic e Zvjezdana Bencetic Klaic. Using a generalized additive model to quantify the influence of local meteorology on air quality in zagreb. Geofizika, 32: 48–78. Citado na pág. 1
- **Bollerslev**(1986) T. Bollerslev. Generalized autoregressive conditional heteroscedasticity. J Econ., 31: 307–327. Citado na pág. 40
- Box e Jenkins (1970) G. E. P. Box e G. M. Jenkins. Time series analysis: forecasting and control. Holden-Day, San Francisco. Citado na pág. 37
- Breiman(2001) Leo Breiman. Statistical modeling: The two cultures. Statistical Science, 16(3): 199–231. Citado na pág. 21
- Carslaw et al. (2007) David C. Carslaw, Sean D. Beevers e James E. Tate. Modelling and assessing trends in traffic-related emissions using a generalised additive modelling approach. Atmospheric Environment, 41: 5289–5299. Citado na pág. 1, 2
- Casella e Berger (2001) George Casella e Roger L. Berger. Statistical Inference. Duxbury Press; 2nd edition. Citado na pág.
- Chang et al. (2017) Shih Ying Chang, William Vizuete, Marc Serre, Lakshmi Pradeepa Vennam, Mohammad Omary, Vlad Isakov, Michael Breen e Saravanan Arunachalam. Finely resolved onroad PM2.5 and estimated premature mortality in central north carolina. Risk Analysis. doi: 10.1111/risa.12775. URL http://dx.doi.org/10.1111/risa.12775. Citado na pág. 1
- Conceição et al. (2001a) Gleice M.S. Conceição, Simone G.E.K. Miraglia, Humberto S. Kishi, Paulo Hilário Nascimento Saldiva e Julio da Motta Singer. Air pollution and child mortality: a time-series study in São Paulo, Brazil. *Environmental Health Perspectives*, 109(3): 347–350. Citado na pág. 1, 2
- Conceição et al. (2001b) Gleice M.S. Conceição, Paulo Hilário Nascimento Saldiva e Julio da Motta Singer. Modelos MLG e MAG para análise da associação entre poluição atmosférica e marcadores de morbi-mortalidade: uma introdução baseada em dados da cidade de São Paulo. Revista Brasileira de Epidemiologia, 4(3): 206–219. Citado na pág. 1, 2, 32, 34

- **Dobson(1990)** A. J. Dobson. An introduction to generalized linear models. Chapman and Hall, New York. Citado na pág. 32
- Engle(1982) R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. *Econometrica*, 50: 987–1007. Citado na pág. 40
- European Commission (1999) European Commission. EU focus on clean air. Office for Official Publications of the European Communities. Citado na pág. 1
- European Commission (2011) European Commission. Climate action. https://ec.europa.eu/clima/policies/strategies/2050_en, 2011. [Online; acessado 15-03-2017]. Citado na pág. 53
- Hastie e Tibshirani(1990) Trevor Hastie e Robert Tibshirani. Generalized additive models. London:Chapman & Hall. Citado na pág. 3, 35
- Hastie et al. (2008) Trevor Hastie, Robert Tibshirani e Jerome Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer. Citado na pág. 2, 21, 23, 29, 30, 35, 36, 51
- Jacobson(2007) Mark Z. Jacobson. Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the united states. *Environmental Science & Technology*, 41(11): 4150–4157. Citado na pág. 2, 54
- James et al. (2013) Gareth James, Daniela Witten, Trevor Hastie e Robert Tibshirani. An Introduction to Statistical Learning. Springer Series in Statistics. Springer, New York. Citado na pág. 3, 23, 25, 29, 35, 36, 37, 46, 47, 48, 49, 50, 51
- Jasarevic et al. (2014) Tarik Jasarevic, Glenn Thomas e Nada Osseiran. 7 million premature deaths annually linked to air pollution. http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/, 2014. [Online; acessado 13-03-2017]. Citado na pág. 1
- Katsouyanni et al. (1996) K. Katsouyanni, J. Schwartz, C. Spix, G. Touloumi, D. Zmirou, A. Zanobetti, B. Wojtyniak, J. M. Vonk, A. Tobias, A. Pönkä, S. Medina, L. Bachárová e H. R. Anderson. Short term effects of air pollution on health: a european approach using epidemiologic time series data: the aphea protocol. Journal of Epidemiology & Community Health, 50(Suppl 1): S12–S18. ISSN 0143-005X. doi: 10.1136/jech.50.Suppl_1.S12. URL http://jech.bmj.com/content/50/Suppl_1/S12. Citado na pág. 1, 2
- Kloog et al. (2012) Itai Kloog, Francesco Nordio, Brent A. Coull e Joel Schwartz. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the mid-atlantic states. American Chemical Society, 46: 11913–11921. Citado na pág. 1
- Leiva (2015) Victor Leiva. The Birnbaum-Saunders distribution. Academic Press; 1 edition. Citado na pág. 34
- Leiva et al. (2008) Victor Leiva, Michelli Barros, Gilberto A. Paula. e Antonio Sanhueza. Generalized birnbaum-saunders distribution applied to air pollutant concentration. *Environmetrics*, 19: 235–249. Citado na pág. 34
- Lin et al. (1999) C. A. Lin, M. A. Martins, S. C. Farhat, C. A. Pope, G. M. Conceição, V. M. Anastácio, M. Hatanaka, W. C. Andrade, W. R. Hamaue, G. M. Bohm e P. H. Saldiva. Air pollution and respiratory illness of children in São Paulo, Brazil. Paediatric and Perinatal Epidemiology, 13(4): 475–488. ISSN 1365-3016. doi: 10.1046/j.1365-3016.1999.00210.x. URL http://dx.doi.org/10.1046/j.1365-3016.1999.00210.x. Citado na pág. 1, 2
- Morettin e Toloi (2004) Pedro A. Morettin e Clelia M.C. Toloi. Análise de Series Temporais. ABE Projeto Fisher e Editora Edgard Blucher, São Paulo. Citado na pág. 15, 38, 39, 40

- Mulawa et al. (1997) Patricia A. Mulawa, Steven H. Cadle, Kenneth Knapp, Roy Zweidinger, Richard Snow, Randy Lucas e Joseph Goldbach. Effect of ambient temperature and E10 fuel on primary exhaust particulate matter emissions from light-duty vehicles. American Chemical Society: Environ. Sci. Technol., 31 (5): 1302–1307. Citado na pág. 53
- Nelder e Wedderburn (1972) J. A. Nelder e R. W. M. Wedderburn. Generalized linear models. Stat Soc A, 135: 370–384. Citado na pág. 3, 31, 50
- Nicholson (2001) W. Keith Nicholson. Elementary Linear Algebra. McGraw-Hill Ryerson, 2^a edição. Citado na pág. 16
- Paula(2013) Gilberto A. Paula. *Modelos de Regressão com apoio computacional*. São Paulo. URL https://www.ime.usp.br/~giapaula/texto 2013.pdf. Citado na pág. 31, 32, 33
- Pereira et al. (2004) Pedro Afonso Pereira, Leilane Maria B. Santos, Eliane Teixeira Sousa e Jailson B. de Andrade. Alcohol- and gasohol-fuels: a comparative chamber study of photochemical ozone formation. Journal of the Brazilian Chemical Society, 15(5): 646–651. Citado na pág. 53
- R Core Team (2016) R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/. Citado na pág. 3
- Saldiva et al. (1994) P. H. N. Saldiva, A. J. F. C. Lichtenfels, P. S. O. Paiva, I. A. Barone, M. A. Martins, E. Massad, J. C. R. Pereira, V. P. Xavier, J. M. Singer e G. M. Bohm. Association between air pollution and mortality due to respiratory diseases in children in São Paulo, Brazil: a preliminary report. *Environmental Research*, 65(2): 218 225. ISSN 0013-9351. doi: http://dx.doi.org/10.1006/enrs.1994.1033. URL http://www.sciencedirect.com/science/article/pii/S0013935184710334. Citado na pág. 1, 2
- Saldiva et al. (1995) Paulo H. N. Saldiva, C. Arden Pope, Joel Schwartz, Douglas W. Dockery, Ana Julia Lichtenfels, Joao Marcos Salge, Ivana Barone e Gyorgy Miklos Bohm. Air pollution and mortality in elderly people: a time-series study in São Paulo, Brazil. Archives of Environmental Health: An International Journal, 50: 159–163. Citado na pág. 1, 2, 22
- Salvo e Geiger (2014) Alberto Salvo e Franz M. Geiger. Reduction in local ozone levels in urban São Paulo due to a shift from ethanol to gasoline use. *Nature Geoscience*, 7: 450–458. Citado na pág. x, 2, 5, 16, 17, 30, 48, 54, 55
- Salvo et al. (2017) Alberto Salvo, Joel Brito, Paulo Artaxo e Franz M. Geiger. Reduced ultrafine particle levels in São Paulo's atmosphere during shifts from gasoline to ethanol use. *Nature Communications*, 8: 1–14. Citado na pág. viii, xiii, 2, 5, 22, 48, 54, 55, 61
- Schwartz e Dockery(1992) J. Schwartz e D. W. Dockery. Particulate air pollution and daily mortality in Steubenville, Ohio. Am J Epidemiol., 1(135): 12–19. Citado na pág. 1, 2
- Schwartz et al. (1996) J. Schwartz, D. W. Dockery e L. M. Neas. Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc, 10(46): 927–939. Citado na pág. 1, 2
- Schwartz(1994) Joel Schwartz. Nonparametric smoothing in the analysis of air pollution and respiratory illness. Statistical Society of Canada, 22(4): 471–487. Citado na pág. 1, 2
- Schwartz(1996) Joel Schwartz. Air pollution and hospital admissions for respiratory disease. Epidemiology, 1(7): 20–28. Citado na pág. 1, 2
- Schwartz e Marcus (1990) Joel Schwartz e Allan Marcus. Mortality and air pollution in London: a time series analysis. American Journal of Epidemiology, 131(1): 185. doi: 10.1093/oxfordjournals. aje.a115473. URL +http://dx.doi.org/10.1093/oxfordjournals.aje.a115473. Citado na pág. 1, 2

- Shumway e Stoffer (1982) R. H. Shumway e D. S. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. *Journal of Time Series Analysis*, 3(4): 253–264. ISSN 1467-9892. doi: 10.1111/j.1467-9892.1982.tb00349.x. URL http://dx.doi.org/10.1111/j. 1467-9892.1982.tb00349.x. Citado na pág. 2
- Shumway e Stoffer (2006) Robert H. Shumway e David S. Stoffer. *Time Series Analysis and Its Applications (with R examples)*. Springer Texts in Statistics. Springer, New York, 2^a edição. Citado na pág. 12, 14, 15, 25, 37, 38, 39, 40, 41
- Wickham e Grolemund (2017) Hadley Wickham e Garrett Grolemund. R for Data Science. O'Reilly, 1^a edição. Citado na pág. 3, 5
- Wilkinson (2005) Leland Wilkinson. The Grammar of Graphics. Statistics and Computing. Springer. 2nd edition. Citado na pág. 6
- Williams (1987) A. D. Williams. Generalized linear model diagnostic using the deviance and single case deletion. *Applied Statistics*, 36: 181–191. Citado na pág. 33
- Yoon et al. (2009) S. H. Yoon, S. Y. Ha, H. G. Roh e C. S. Lee. Effect of bioethanol as an alternative fuel on the emissions reduction characteristics and combustion stability in a spark ignition engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223: 941–951. Citado na pág. 53