

Theoretical Mechanics, Lab 6: STATICS 1

Statics: one body

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS	
Type of Contact and Force Origin	Action on Body to Be Isolated
 Flexible cable, belt, chain, or rope Weight of cable negligible Weight of cable not negligible 	Force exerted by a flexible cable is always a tension away from the body in the direction of the cable. T
2. Smooth surfaces	Contact force is compressive and is normal to the surface.
3. Rough surfaces	Rough surfaces are capable of supporting a tangential component F (frictional force) as well as a normal component N of the resultant

Center of gravity VS Center of mass

For classical mechanics - it's the same. More info here

Where a center of mass can be used?

How to find the center of mass in real life

Task 1 (mine)

Find reaction forces in supports of the construction systems. The size of all objects and the loads are given.

Task 2 (yours): M (rus) 2.26

A uniform rod AB is hinged at A to a vertical wall and is held at an angle of 60° to the vertical by a string BC? forming and angle of 30° with the rod.

Determine the magnitude and direction of the reaction *R* of the hinge, if the weight of the rod is 2 kgf.

Answer: $R = 1 \, \text{kgf}$, $\angle (R, AC) = 60^{\circ}$

New devices morph and transform - like Iron Man's suit

Video

Task 3 (yours): M (rus) 3.12

A uniform horizontal beam 4 m long and weighing 500 kgf is placed with one end in a wall of 0.5 m thick so that it rests against points A and B (Fig. 35).

Calculate the reactions of the supports at the points A and B, if a load P = 4000 kg is attached to the free end of the beam.

Ans. $R_A = 34,000 \text{ kgf upwards}$; $R_B = 29,500 \text{ kgf downwards}$.

Task 4 (yours): M (rus) 3.28

56. Two uniform rods AB and BC with equal cross-sections are connected with their ends at an angle of 60° thus forming a cranking lever ABC, as shown in Fig. 42. AB is one half BC. The lever is suspended by a thread AD from the end A. Determine the angle α of inclination formed by the rod BC and the horizontal when in equilibrium. The sizes of the cross-sections may be neglected.

Ans.
$$\tan \alpha = \frac{\sqrt{3}}{5}$$
; $\alpha = 19^{\circ}05'$.

