

YMG8K16F18L5BR1

8Kx16 bits Embedded MTP

Common Specification

Whole Macro

Process		0.18um 3.3V/(5V)6Vdual-gate MCU Technology Process		
	16 MHz	$I_{DR} \approx 6.5 \text{ mA (typ.)}$ [High speed mode]		
	4 MHz	$I_{DR} \approx 3.5 \text{ mA (typ.) [High speed mode]}$		
Dood Commont @ 5 0V	2 MHz	$I_{DR} \approx 1.3 \text{ mA (typ.) [Low power mode]}$		
Read Current @ 5.0V	1 MHz	$I_{DR}\approx 0.8 \ mA \ (typ.) \ [Low \ power \ mode]$		
	500 KHz	$I_{DR} \approx 0.5 \text{ mA (typ.)}$ [Power saving mode]		
	32 KHz	$I_{DR} \approx 30 \text{ uA (typ.)}$ [Power saving mode]		
Write Current		$I_{DW} \approx 30 \text{ mA (typ.)}$		
Standby Current		$I_{SB} \approx 1 \text{ uA (typ.)}$		
Operating Temperature		Tj = -40°C to 85 °C		
IP layout (Non-Isolated)		1P3M (Metal 3 layer follow the top metal thickness: 11 KÅ)		
Device Information		nmos_5p0, pmos_5p0, ppolyf_u, VPNP_10X10		

Note: The IP requires an extra mask for cell implant.

MTP and Information blocks

Read Voltage		VDD: 1.8V~5.5V	
	High and d	60 ns (min.) @ 4.5V≤VDD≤5.5V	
	High speed	300 ns (min.) @ 1.8V≤VDD<4.5V	
Read Cycle Time	T	500 ns (min.) @ 4.5V≤VDD≤5.5V	
	Low power	1 us (min.) @ 1.8V≤VDD<4.5V	
	Power saving	2 us (min.) @ 1.8V≤VDD≤5.5V	
Write Voltage		VDD: 4.5V~5.5V	
XX7.24. (TV		16-bit Write Time (changed code): 0.3 ms (typ.)	
Write Time		16-bit Write Time (non-changed code) : 20 us (min.)	
Data Retention		10 Years under 85°C (Pre-condition: VDD=5.0V/1,000T Cycles)	
Endamonas	MTP block	1,000 Cycles (16-bit Write)	
Endurance	Information block	1,000 Cycles (16-bit Write)	

1

EEPROM block

Read Voltage		VDD: 1.8V~5.5V	
Dood Cycle Time	High speed	300 ns (min.) @ 1.8V≤VDD≤5.5V	
Read Cycle Time	Power saving	2 us (min.) @ 1.8V≤VDD≤5.5V	
Write Voltage		VDD: 2.6V~5.5V	
		Byte Write Time (changed code): 0.7 ms (typ.)	
Write Time		Byte Write Time (non-changed code): 80 us (min.)	
Data Retention		10 Years under 85°C (Pre-condition: VDD=5.0V/10,000T Cycles)	
Endurance (Byte Write)		10,000 Cycles	

Features

■ Memory Organization :

▶ MTP block: 8K x 16 bits

▶ Information block: 32 x 16 bits ▶ EEPROM block: 128 x 8 bits

■ I/O Configuration :

▶ MTP block: x16 separate DIN [15:0] / DOUT [15:0] Bus

▶ Information block: x16 separate DIN [15:0] / DOUT [15:0] Bus

▶ EEPROM block: x8 separate DIN [7:0] / DOUT [7:0] Bus

■ Read / Write Operation

▶ MTP block: 16-bit Read / 16-bit Write Operation

▶ Information block: 16-bit Read / 16-bit Write Operation

▶ EEPROM block: Byte Read / Byte Write Operation

■ Write time is not a fixed value

■ BUSY signal provides a hardware method of detecting write operation completion

■ Built-in charge pump

General Description

YMG8K16F18L5BR1 is an embedded MTP IP macro fabricated in the 0.18um 3.3V/(5V)6Vdual-gate MCU Technology Process. The memory arrays are partitioned into three memory blocks each. One is the MTP block (8K x 16 bits); one is the Information block (32 x 16 bits); the other is the EEPROM block (128 x 8 bits). The YMG8K16F18L5BR1 supports two operating modes: User mode and Test mode. User mode provides five memory operations: standby (STANDBY) / static (STATIC) / non-static (NON-STATIC) / read (READ) / write with internal high voltage (INTHV WRITE). Test mode provides three memory operations: measure memory cell current (CLEN) / read for data retention test (MRGN READ) / write with internal high voltage for data retention test (MRGN INTHV WRITE).

Pin Description¹

Pin Name	Direction	Signal Level	Description		
ADR[12:0]	I	VDD	Address input pin.		
DIN[15:0]	I	VDD	Data input pin.		
DOUT[15:0]	О	VDD	Data output pin.		
CS	I	VDD	IP macro selective input, active HIGH.		
READ	I	VDD	Read operation enable input, active HIGH.		
WR	I	VDD	Write operation enable input, active HIGH.		
CLEN	I	VDD	Define test mode of cell current measurement.		
IFREN	I	VDD	IFREN = "H" to select the Information block.		
EEPROM	I	VDD	EEPROM = "H" to select the EEPROM block.		
SRL ²	I	VDD	Select default or shadow cell in MRGN READ / CLEN operation.		
MDCN	т	VDD	MRGN = "H" to select MRGN READ / MRGN INTHV WRITE		
MRGN	Ι	VDD	operation for data retention test when select the EEPROM block.		
CLKIN	т	VDD	Define User-Supplied clock cycle under 12.5us (typ.).		
CLKIN	I	עטע	CLKIN must be stable before asserting WR.		
			Option setting for Read operation:		
ISAVB	I	VDD	ISAVB = "H" to select the high speed mode.		
			ISAVB = "L" to select the low power or power saving mode.		
CT A TICEN	т	VDD	STATICEN = "H", STATIC mode (I _{DS} <500uA).		
STATICEN	I	VDD	STATICEN = "L", NON-STATIC mode ($I_{NDS} < 10uA$).		
BUSY	О	VDD	Flag indicating that write operation is complete or not.		
VDD	I	-	Power supply		
VSS	I	-	Ground		

- 1. We suggest multiplexing all control, address and data signals to package pins to facilitate direct memory test.
- 2. There are two memory cells per bit, one is default memory cell, and the other is shadow memory cell.

Recommended DC Operating Conditions (Tj = specified, Cload=1pF)

Whole Macro

Operation Mode	Parameter Min.		Тур.	Max.	Unit
Power supply	$\mathrm{VDD}_{\mathrm{min}}$	1.8	-	-	V
Ground	VSS	0	0	0	V

MTP and Information blocks

Operation Mode	Parameter	Min.	Тур.	Max.	Unit
READ	VDD	1.8	5.0	5.5	V
INTHV WRITE	VDD	4.5	5.0	5.5	V
CLEN	VDD	-	5.0	-	V
CLEN	DIN		1.0]

EEPROM block

Operation Mode	Parameter	Min.	Тур.	Max.	Unit
READ /	VDD	1 0	5.0	5.5	V
MRGN READ	VDD	1.8	5.0	3.3	v
INTHV WRITE /	WDD	2.6	5.0	5.5	V
MRGN INTHV WRITE	VDD	2.6	5.0	5.5	V
CLEN	VDD	-	5.0	-	1 7
CLEN	DIN		1.0		V

DC Electrical Characteristics (Tj = specified, VDD = specified, VSS =0V, Cload=1pF)

Operation Mode	Parameter	Min.	Тур.	Max.	Unit
READ / MRGN READ (VDD Current @ 5V)	I _{DR} (@ 16 MHz)	-	6.5	-	mA
[High speed mode]	I _{DR} (@ 4 MHz)	-	3.5	-	
READ	I _{DR} (@ 2 MHz)	-	1.3	-	
(VDD Current @ 5V) [Low power mode]	I _{DR} (@ 1 MHz)	-	0.8	-	mA
READ / MRGN READ	I _{DR} (@ 500 KHz)	-	0.5	-	mA
(VDD Current @ 5V) [Power saving mode]	I _{DR} (@ 32 KHz)	-	30	-	uA
INTHV WRITE / MRGN INTHV WRITE (VDD Current)	$ m I_{DW}$	-	30	-	mA
STATIC (VDD Current)	I_{DS}	-	-	500	uA
NON-STATIC (VDD Current)	$I_{ m NDS}$	-	-	10	uA
STANDBY (VDD Current)	I_{SB}	-	1	10	uA

READ (MRGN READ) Peak Current

Parameter	Symbol	Slow (VDD = 1.8V@ 85℃)	Typical (VDD = 5.0V@ 25°C)	Fast $(VDD = 5.5V@ -40^{\circ}C)$	Unit
Read in Peak Current	т	TBD	TBD	TBD	mA
(VDD Current)	I _{DRP}	TBD	TBD	TBD	ns

INTHV WRITE (MRGN INTHV WRITE) Peak Current

Parameter	Symbol	Slow (VDD = 2.6V@ 85°C)	Typical (VDD = 5.0V@ 25℃)	Fast (VDD = 5.5V@ -40℃)	Unit
Write in Peak Current	, T	TBD	TBD	TBD	mA
(VDD Current)	IDWP	TBD	TBD	TBD	ns

Operating Mode Selection¹

User Mode

Pin Name	STANDBY	STATIC NON-STATIC READ ² INTHV		READ ²		WRITE			
CS	L	Н	Н	ŀ	ł	H	H		
READ	L or H	L	L	F	ł	I	٠.		
WR	L or H	L	L	I		F	Н		
CLEN	L or H	L	L	L		L		I	
IFREN	L or H	L or H	L or H	L or H	L	L or H	L		
EEPROM	L or H	L or H	L or H	L	Н	L	Н		
SRL	L or H	L	L	L		I			
MRGN	L or H	L	L	L		I	. 1		
CLKIN	L or H	L or H	L or H	Lo	r H	L/H	toggle		
ISAVB	L or H	L or H	L or H	*	2	Lo	r H		
STATICEN	L or H	Н	L	*2		Lo	r H		

Test Mode

Pin Name	CLEN		MRGN READ ²	MRGN INTHV WRITE
CS	H	H	Н	Н
READ	I		Н	L
WR	I	_	L	Н
CLEN	Н		L	L
IFREN	L or H	L	L	L
EEPROM	L	Н	Н	Н
SRL	L	L or H	L or H	L
MRGN	I		Н	Н
CLKIN	L or H		L or H	L / H toggle
ISAVB	L or H		*2	L or H
STATICEN	Lo	r H	**2	L or H

Notes:

1. Please refer to user and test mode waveform.

2. Option setting for Read operation:

IFREN	EEPROM	ISAVB	STATICEN	Remark			
L or H	L	Н	Н	High ground mode (16 MHz, 4 MHz, groundiers)			
L	Н			High speed mode (16 MHz, 4 MHz operation)			
L or H	L	L	Н	Low power mode (2 MHz, 1 MHz operation)			
L or H	L	т	т	D			
L	Н	L	L	L	L	L	Power saving mode (500 KHz & 32 KHz operation)

We propose to select high speed mode when the operation is more than 4 MHz, select low power mode should follow the operating voltage, at less than or equal to 500 KHz operation, select the power saving mode. To change the option setting for read operation, the READ signal must be low, and the next READ signal can be pulled "H" after 100 ns.

SRL Function Table

Mode	SRL=L	SRL=H
CLEN	Measure Cell Current	Measure Cell Current
CLEN	in default cell per bit	in shadow cell per bit
MRGN READ	Read Data in default cell	Read Data in shadow cell

MRGN Function Table

Mode	MRGN = L or H	Note		
READ MRGN = L		Normal read operation.		
KEAD	WIKGN = L	(Default or shadow cell code could not be read out alone.)		
INTHV WRITE MRGN = L		Default and shadow cells will be written into the inverse code.		
CLEN	MDCN I	Default or shadow cell could be measure current alone.		
CLEN	MRGN = L	User could use SRL pin to select default or shadow cell.		
MDCNDEAD	MDCN II	Default and shadow cells code could be read out.		
MRGN READ	MRGN = H	User could use SRL pin to select default or shadow cell.		
MRGN INTHV WRITE	MRGN = H	Default and shadow cells will be written into the same code.		

Capacitance

Parameter	Symbol	Min.	Max.	Unit
Address/Control Input Pin Capacitance	C_{IN}	-	0.2	pF
Data Input Pin Capacitance	C_{DIN}	-	0.2	pF
Data Output Pin Capacitance	C _{DOUT}	-	0.1	pF

MTP, Information and EEPROM blocks Selection

EEPROM Pin	IFREN Pin	Used Address Pin	Selected Block	Selected Address
L	L	ADR[12:0]	MTP	0000H ~ 1FFFH
L	Н	ADR[4:0]	Information ¹	0000H ~ 001FH
Н	L	ADR[6:0]	EEPROM ²	0000H ~ 007FH

Notes:

1. Information block: ADR [12:5] should remain logic "L" state.

2. EEPROM block: ADR [12:7] should remain logic "L" state.

I/O Configuration: x8 separate DIN [7:0] / DOUT [7:0] Bus. Write mode: DIN [15:8] should remain logic "H" or "L" state.

Timing Parameters (Tj = specified, VDD = specified, VSS =0V, Cload=1pF)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Setup Time between VDD and CS	Tpwcss	1.8V≤VDD≤5.5V	1	-	-	us
Hold Time between VDD and CS	Tpwcsh	1.8V≤VDD≤5.5V	0	-	-	ns
CS to READ / WR Setup time	Tesetrls	1.8V≤VDD≤5.5V	100	-	-	ns
Address/Data Setup Time	Tads	1.8V≤VDD≤5.5V	15	-	-	ns
DOUT Hold Time	Tdoh	1.8V≤VDD≤5.5V	0	-	-	ns
Address Hold Time for Read	Tadhr	1.8V≤VDD≤5.5V	5	-	-	ns
Clock Cycle	Tclk	2.6V≤VDD≤5.5V	10	12.5	15	us
WR Pulse Width	Twpw	2.6V≤VDD≤5.5V	100	-	-	ns
BUSY Access Time to WR	Tbas	2.6V≤VDD≤5.5V	-	-	100	ns
Write Recovery Time	Twrc	2.6V≤VDD≤5.5V	1	-	-	us
Measurement Current Wait Time	Tmcw	VDD=5.0V	100	-	-	ns
Address Hold Time for CLEN	Tadhc	VDD=5.0V	0	-	-	ns

Write Time (changed code) @ MTP/Information		4.5V≤VDD≤5.5V	-	0.3	-	ms
Write Time (changed code) @ EEPROM	Т	2.6V≤VDD≤5.5V	ı	0.7	1	ms
Write Time: (non-changed code) @ MTP / Information	Twr	4.5V≤VDD≤5.5V	20	-	1	us
Write Time: (non-changed code) @ EEPROM		2.6V≤VDD≤5.5V	80	-	-	us

Read Operation: High speed mode

Parameter		Condition	Min.	Тур.	Max.	Unit
DEAD Coal Time & MED/L formation		4.5V≤VDD≤5.5V	60	-	-	ns
READ Cycle Time @ MTP / Information	Trc	1.8V≤VDD<4.5V	300	-	-	ns
READ Cycle Time @ EEPROM		1.8V≤VDD≤5.5V	300	-	-	ns
DEAD Access Time @ MTD / Information	Trac	4.5V≤VDD≤5.5V	-	-	60	ns
READ Access Time @ MTP / Information		1.8V≤VDD<4.5V	-	-	300	ns
READ Access Time @ EEPROM		1.8V≤VDD≤5.5V	-	-	300	ns

Read Operations: Low power mode

Parameter S		Condition	Min.	Тур.	Max.	Unit
DEAD Cycle Time @ MTD / Information	Trc	4.5V≤VDD≤5.5V	500	ı	1	ns
READ Cycle Time @ MTP / Information		1.8V≤VDD<4.5V	1	-	-	us
DEAD Assess Time @ MED / Life working	Т	4.5V≤VDD≤5.5V	-	-	500	ns
READ Access Time @ MTP / Information	Trac	1.8V≤VDD<4.5V	-	-	1	us

Read Operations: Power saving mode

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
READ Cycle Time	Trc	1.8V≤VDD≤5.5V	2	-	-	us
READ Access Time	Trac	1.8V≤VDD≤5.5V	-	-	2	us

Operation Sequence and Timing

User Mode

1. Power on and Power down Timing

2. READ Operation (ADR toggle type)

- 2.1. READ Operation Sequence
 - I. READ operation is controlled by "ADR" signal. When "ADR" changing, the data of corresponding ADDRESS can be read-out through "DOUT" pin after the read access time.
- 2.2. Sequence for READ
 - I. Set "CS" as "H".
 - II. Set the target address, and then set "READ" to "H".
 - III. Valid data is accessible by through "DOUT" pin after specified "access time."
- 2.3. READ Operation Timing

DOUT Pin Connection Requirement

- 1. It is NOT allowed to connect DOUT to the drain nor source of NMOS / PMOS. (Refer to figure A as below.)
- 2. Strongly recommend user connecting DOUT to the gate of NMOS / PMOS. (Refer to figure B as below.)

3. INTHV WRITE Operation

- 3.1. INTHV WRITE Operation Sequence
 - I. INTHV WRITE means to execute WRITE operation by internal charge pump of IP macro itself.
 - II. The data in DIN will be written into the corresponding ADDRESS after "WR" signal rising.
 - III. "BUSY" signal is necessary to be detected during WRITE operation to judge whether WRITE operation is completed.

3.2. Sequence for INTHV WRITE

- I. Set "CS" as "H". Set "CLKIN" as "L" / "H" toggle.
- II. Set the Data and corresponding ADDRESS, and then execute a WR Pulse.
- III. Detect "BUSY" signal for judging whether WRITE operation is completed.
- 3.3. INTHV WRITE Operation Timing

- 1. The time period for a data written-in is not fixed. User is NOT allowed to finish the writing operation by waiting a fixed time period.
- 2. Data access operation is allowable in 1us later after "BUSY" is pulled to "L". Otherwise incorrect Data may be read-out.
- 3. CLKIN duty cycle: 50%/50%
- 4. An unexpected write cycling number over the endurance specification may make BUSY signal keep at logic H level. Please pull-down CS signal to reset BUSY signal and the next CS signal can be pulled "H" after 100 ns.

Test Mode

1. CLEN Operation

- 1.1. CLEN Operation Sequence
 - I. "CLEN" operation is used for the measurement of memory cell current by through DIN pin. This function provides great help for the analysis if there is any failure event and issue. User is recommended strongly to set this function up.
- 1.2. Sequence for CLEN
 - I. Set "CS" as "H".
 - II. Set the target ADDRESS.
 - III. Set "CLEN" as "H" and to keep it.
 - IV. Force bias on DIN pin to measure the bit cell current.
- 1.3. CLEN Operation Timing

- 1. DIN pin should be tied to IO pad and forced the bias which is mentioned in the "Recommended DC Operating Conditions table."
- 2. After the target ADDRESS is set, the bit cell current can be measured by through the specific IO pad.
- 3. IFREN and EEPROM can't be high at the same time.
- 4. SRL = L, measured default memory cell; SRL = H, measured shadow memory cell.

2. MRGN READ Operation (ADR toggle type)

- 2.1. MRGN READ Operation Sequence
 - MRGN READ operation is a test mode for data retention test. Default or shadow cell code could be read out alone.
- 2.2. Sequence for MRGN READ
 - I. Set "CS" as "H". Set "EEPROM" as "H". Set "MRGN" as "H".
 - II. Set the target address, and then set "READ" to "H".
 - III. Valid data is accessible by through "DOUT" pin after specified "access time."
- 2.3. MRGN READ Operation Timing

DOUT Pin Connection Requirement

- 1. It is NOT allowed to connect DOUT to the drain nor source of NMOS / PMOS. (Refer to figure A as below.)
- 2. Strongly recommend user connecting DOUT to the gate of NMOS / PMOS. (Refer to figure B as below.)

3. MRGN INTHV WRITE Operation

- 3.1. MRGN INTHV WRITE Operation Sequence
 - MRGN INTHV WRITE means to execute WRITE operation by internal charge pump of IP macro itself.
 - II. The data in DIN will be written into the corresponding ADDRESS after "WR" signal rising.
 - III. "BUSY" signal is necessary to be detected during WRITE operation in order to judge whether WRITE operation is completed.
- 3.2. Sequence for MRGN INTHV WRITE
 - I. Set "CS" as "H". Set "EEPROM" as "H". Set "MRGN" as "H".
 - II. Set "CLKIN" as "L" / "H" toggle.
 - III. Set the Data and corresponding ADDRESS, and then execute a WR Pulse.
 - IV. Detect "BUSY" signal for judging whether WRITE operation is completed.
- 3.3. MRGN INTHV WRITE Operation Timing

- 1. The time period for a data written-in is not fixed. User is NOT allowed to finish the writing operation by waiting a fixed time period.
- 2. Data access operation is allowable in 1us later after "BUSY" is pulled to "L". Otherwise incorrect Data may be read-out.
- 3. CLKIN duty cycle : 50%/50%

Update history:

Date	Rev		What	Who
2022/04/27	Y10	1.0	Initial draft	Miffy Lin

Warning:

The specification obtained arrives from individual testing result before integration; it has possibility to have the difference because of the mutual disturbing effect after integration. Therefore, the user must precede the full test and verification to conform the function and the reliability after integration. After the confirmation, and does not have any problem, it can enter the pilot run then the production run. YMC will not be responsible for the related responsibility and loss, if the procedure does not pass through the full test and verification.