LSTM_NORMALIZATIONS

Xiaohe Xue

LSTM NORMALIZATIONS Form of Normalizations 1. normal cells 2. normal_cells_conb 3. normal_cells_separate Models 0. General Arguments 1. Sequential MNIST 1.1 Data - MNIST 1.2 Introduction 1.3 Run 1.4 Results #normal_cells #normal_cells_separate normal_cells_separate 2. PTB 2.1 Data - PTB 2.2 Introduction 2.3 Run 2.4 Results - small model #normal cells #normal_cells_separate 3. DRAW 3.1 Data - MNIST 3.2 Introduction 3.3 Run 3.4 Results #normal_cells: #normal_cells_separate: 4. NMT 4.1 Data - Neural Machine Translation 4.2 Introduction 4.3 Run Small Data: Medium Data: 4.4 Result 4.4.1 Small Data: #normal_cells: #normal_cells_separate:

4.4.1 Medium Data:

Other

Form of Normalizations

1. normal_cells

```
egin{aligned} \left[ i \ f \ g \ o 
ight] &= norm(h_{t-1}, W_h) \ + \ norm(x_t, W_x) \ new\_c &= \left( c * \sigma(f + bias) + \sigma(i) * 	anh(j) 
ight) \ (new\_c &= batch\_norm(new\_c) \ / \ layer\_norm(new\_c) 
ight) \ new\_h &= 	anh(new\_c) * \sigma(o) \end{aligned}
```

2. normal_cells_conb

```
egin{aligned} \left[ i \ f \ g \ o 
ight] &= norm(\left[ h_{t-1}, \ x_t \ 
ight], W) \ new\_c &= \left( c * \sigma(f + bias) + \sigma(i) * 	anh(j) 
ight) \ (new\_c &= batch\_norm(new\_c) \ / \ layer\_norm(new\_c)) \ new\_h &= 	anh(new\_c) * \sigma(o) \end{aligned}
```

3. normal_cells_separate

```
egin{aligned} [i\ f\ g\ o\ ] &= [norm(h_{t-1},w_{ih}),\ norm(h_{t-1},w_{fh}),\ norm(h_{t-1},w_{gh}),\ norm(h_{t-1},w_{oh})] +\ norm(x_t,W_x) \ new\_c &= (c*\sigma(f+bias)+\sigma(i)*	anh(j)) \ (new\_c &= batch\_norm(new\_c)\ /\ layer\_norm(new\_c)) \ new\_h &= 	anh(new\_c)*\sigma(o) \end{aligned}
```

Models

0. General Arguments

1. Sequential MNIST

1.1 Data - MNIST

1.2 Introduction

该项目的每个数据是一个28*28的数字手写体图片。在数据预处理中图片被转换成784*1的向量,所以LSTM 一共有784个timestep即LSTM的每次输入都是图片集的单个向量(大小为: batch size * 1)

- 在转换成784*1的向量时,可以尝试固定的随机置换索引方式转换即permuted MNIST。 本项目还未进行尝试。
- 参考
 - https://github.com/OlavHN/bnlstm (有瑕疵)
 - https://gist.github.com/spitis/27ab7d2a30bbaf5ef431b4a02194ac60

1.3 **Run**

```
python test_784*1.py --cell=base --log_dir=/tmp/logs/ --g=0.5 --lr=0.001
```

1.4 Results

#normal_cells

Rank	Normal	Scale	lr	Accuracy
1	wn	1.0	0.01	0.98203125
2	cn	1.0	0.01	0.97796
3	base	0.0	0.01	0.651671875

#normal_cells_separate

Rank	Normal	Scale	lr	Accuracy
1	wn	1.0	0.01	0.9814609375
2	cn	1.0	0.01	0.9811328125

normal_cells_separate

None

2. PTB

2.1 Data - PTB

Download: <u>simple-examples</u>

2.2 Introduction

RNN TensorFlow

2.3 Run

```
python ptb_word_lm.py --lr=1.0 --g=5.0 --rnn_mode=cn_sep --num_gpus=1 \
--save_path=$HOME/log/ptb_cob
```

2.4 Results - small model

#normal_cells

Rank	Normal	Ir	Scale	ppl
1	cn	1.0	5.0	107.70843414
2	pcc	1.0	5.0	108.879889268
3	wn	1.0	1.0	115.074287843
4	base	1.0	0.0	117.544
5	bn	1.0	1.0	129.818630436
6	In	1.0	1.0	130

#normal_cells_separate

3. DRAW

3.1 Data - MNIST

3.2 Introduction

char-rnn-tensorflow

char-rnn

The Unreasonable Effectiveness of Recurrent Neural Networks

3.3 **Run**

```
python train.py --model=base --lr=0.001 \
--save_dir=/tmp/char_seq100_refactor/save/base_0.001 \
--log_dir=/tmp/char_seq100_refactor/log/base_0.001
```

3.4 Results

#normal_cells:

Rank	Normal	Scale	Ir	cost
1	In	1.0	0.001	107.849250519
2	wn	1.0	0.001	107.638289787
3	bn	1.0	0.001	111.273218102
4	рсс	5.0	0.001	112.98063578
5	base	0.0	0.01/0.001	120
6	cn	5.0	0.001	123.905787323

#normal_cells_separate:

Rank	Normal	Scale	lr	cost
1	In	1.0	0.001	104.878376785
2	cn	5.0	0.001	109.033839409
3	wn	1.0	0.001	111.994892326
4	рсс	5.0	0.001	116.779598183

4. NMT

4.1 Data - Neural Machine Translation

- IWSLT'15 English-Vietnamese data [Small]
- WMT'14 English-German data [Medium]

4.2 Introduction

Neural Machine Translation (seq2seq) Tutorial

4.3 Run

Small Data:

Train: 133K examples, vocab=vocab.(vi|en), train=train.(vi|en) dev=tst2012.(vi|en), test=tst2013.(vi|en), download script.

Training details: We train 2-layer LSTMs of 512 units with bidirectional encoder (i.e., 1 bidirectional layers for the encoder), embedding dim is 512. LuongAttention (scale=True) is used together with dropout keep_prob of 0.8. All parameters are uniformly. We use SGD with learning rate 1.0 as follows: train for 12K steps (~ 12 epochs); after 8K steps, we start halving learning rate every 1K step.

```
python -m nmt.nmt \
    --unit_type=base \
    --src=vi --tgt=en \
    --learning_rate=1.0 \
    --grain=0.0 \
    --vocab_prefix=../../data/nmt_data/vocab \
    --train_prefix=../../data/nmt_data/train \
    --dev_prefix=../../data/nmt_data/tst2012 \
    --test_prefix=../../data/nmt_data/tst2013 \
    --out_dir=/tmp/nmt_model/base \
    --num_train_steps=12000 \
    --steps_per_stats=100 \
    --num_layers=2 \
    --num_units=128 \
```

```
--dropout=0.2 \
--metrics=bleu
```

Medium Data:

Train: 4.5M examples, vocab=vocab.bpe.32000.(de|en),train=train.tok.clean.bpe.32000.(de|en), dev=newstest2013.tok.bpe.32000.(de|en),train=train.tok.clean.bpe.32000.(de|en), dev=newstest2015.tok.bpe.32000.(de|en),train=train.tok.clean.bpe.32000.(d

Training details. Our training hyperparameters are similar to the English-Vietnamese experiments except for the following details. The data is split into subword units using BPE(32K operations). We train 4-layer LSTMs of 1024 units with bidirectional encoder (i.e., 2 bidirectional layers for the encoder), embedding dimis 1024. We train for 350K steps (~ 10 epochs); after 170K steps, we start halving learning rate every 17K step. But, dopout is 0.0, and forget_bias is 0.0.

```
python -m nmt.nmt \
   --unit type=base \
   --encoder_type=bi \
   --attention=scaled luong \
    --src=de --tgt=en \
    --vocab_prefix=../../data/nmt_data_large/wmt16_de_en/vocab.bpe.32000 \
   --train_prefix=../../data/nmt_data_large/wmt16_de_en/train.tok.clean.bpe.32000
\
    --dev prefix=../../data/nmt data large/wmt16 de en/newstest2013.tok.bpe.32000
    --test_prefix=../../data/nmt_data_large/wmt16_de_en/newstest2015.tok.bpe.32000
\
   --out_dir=$HOME/log/nmt_attention_model_large\
    --learning rate=1.0 \
    --grain=1.0 \
    --start_decay_step=170000 \
    --decay steps=17000 \
    --decay factor=0.5 \
    --num_train_steps=350000 \
    --steps per stats=100 \
    --num layers=4 \
    --num units=1024 \
    --dropout=0.0 \
    --forget bias=0.0 \
    --metrics=bleu
```

4.4 Result

4.4.1 Small Data:

#normal_cells:

Rank	Normal	Scale	Ir	bleu test
1	cn	5.0	1.0	6.115/5.719
2	рсс	5.0	1.0	5.838
3	In	1.0	1.0	5.486
4	wn	1.0	1.0	5.272
5	base	0.0	1.0	4.625/5.177/4.898

#normal_cells_separate:

Rank	Normal	Scale	Ir	bleu test
1	cn	5.0	1.0	5.869
2	pcc	5.0	1.0	5.819
3	wn	1.0	1.0	5.559
没有效果	In	/	/	0.7

4.4.1 Medium Data:

#normal_cells_separate:

Rank	Normal	Scale	Ir	bleu test
1	wn	1.0	1.0	30.7
2	рсс	5.0	1.0	30.5
3	cn	5.0	1.0	30.3
4	In	1.0	1.0	30.2
5	base	0.0	1.0	27.6
6	bn	1.0	1.0	崩溃

Other

- 1. Cosine Normalization does not well on all vanilla LSTM model
- 2. Batch Normalization:
- 因为在Batch Normalization在测试时需要用到 population mean 和 population var,所以在Batch Normalization初始化state时,除了 h 和 c ,还有step来标记当前的time step。具体请看代码。
- 因为Batch Normalization的规范化算法是纵向的,所以理论上它在normal_cells上的效果应该和在其余两个cells的效果一样,所以就没有进行试验。
- 3. Initializer:
- RNN 中 Weights 的initializer 全部等于变量 weights_initializer,默认值为None。 <u>生成方式</u>
- Normalization 中scale 变量的initialer全部为truncated_normal_initializer。