Exhibit 16

288-Pin DDR4 LRDIMM Core Product Description

DDR4 SDRAM LRDIMM Core

Product Description

This specification defines the electrical and mechanical requirements for 288-pin, 1.2V (V_{DD}) double data rate, synchronous DRAM, load-reduced, dual in-line memory modules (DDR4 SDRAM LRDIMMs). These DDR4 LRDIMMs are intended for use as main memory when installed in servers. Some specifications are part number-specific; refer to the module data sheet addendum of the specific Micron part number (MPN) for the complete specification.

Features

- DDR4 functionality and operations supported as defined in the component data sheet
- 288-pin LRDIMM

- Supports ECC error detection and correction
- On-board I²C temperature sensor with integrated serial presence-detect (SPD) EEPROM
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Low-power auto self refresh (LPASR)
- On-die V_{REFDO} generation and calibration
- Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the mode register set (MRS)
- Selectable BC4 or BL8 on-the-fly (OTF)
- Gold edge contacts
- Halogen-free
- · Fly-by topology
- · Multiplexed command and address bus
- Terminated control, command, and address bus

Table 1: Product Family Attributes

Parameter	Options	Notes
DIMM organization	x72 ECC	
DIMM dimensions (nominal)	133.35mm x 31.25mm	Refer to Module Dimensions
Pin count	288	
DDR4 SDRAM densities supported	4Gb, 8Gb, 16Gb, 32Gb, 64Gb	
Capacity	16GB-256GB	
DDR4 SDRAM width	x4, x8	
Data transfer rate	PC4-2133 to PC4-3200	Refer to Key Timing Parameters
Serial presence detect, thermal sensor (SPD/TS)	512-byte	
Voltage options (nominal)	1.2V V _{DD}	
	2.5V V _{PP}	
	2.5V V _{DDSPD}	This supply is separate from the V_{DD} power plane
Interface	1.2V signaling	
Operating temperature	T _{OPER} = 0 to 95°C	Refer to Thermal Characteristics

288-Pin DDR4 LRDIMM Core Features

Table 2: Key Timing Parameters - Non 3DS-Based DIMMs

				DBI D	isabled	- Data F	Rate (M	ſ/s) CL					
		24	22	21	20, 19	18, 17	16, 15	14, 13	12, 11	10			
Speed				DBI E	nabled	- Data R	ate (MT	/s) CL			^t RCD	^t RP	^t RC
Grade	PC4-	28	26	25	23, 22	21, 20	19, 18	16, 15	14, 13	12	(ns)	(ns)	(ns)
-3G2	3200	3200, 2933	3200, 2933	2933	2666	2400	2133	1866	1600	1333	13.75	13.75	45.75
-2G9	2933	-	2933	2933	2666	2400	2133	1866	1600	1333	14.32 (13.75) ¹	14.32 (13.75) ¹	46.32 (45.75) ¹
-2G6	2666	_	-	-	2666	2400	2133	1866	1600	1333	14.25 (13.75) ¹	14.25 (13.75) ¹	46.25 (45.75) ¹

Notes: 1. Down-bin timing; refer to component data sheet Speed Bin Tables for details.

Table 3: Key Timing Parameters - 3DS-Based DIMMs

Speed			Data Rate (MT/s) CL										^t RP	^t RC
Grade	PC4-	28	26	25	24	22	20	18	16	14	13	(ns)	(ns)	(ns)
-3\$2	3200	3200, 2933	3200, 2933	2933	2933, 2666	2666, 2400	2400, 2133	2133	1866	1600	1600	13.75	13.75	45.75
-259	2933	-	_	2933	2933, 2666	2666, 2400	2400, 2133	2133	1866	1600	-	14.32 (14.06) ¹	14.32 (14.06) ¹	46.32 (46.06) ¹
-256	2666	ı	П	_	2666	2666	2400	2133	1866	1600	ı	14.25 (14.06) ¹	14.25 (14.06) ¹	46.25 (46.06) ¹

Notes: 1. Down-bin timing; refer to component data sheet Speed Bin Tables for details.

288-Pin DDR4 LRDIMM Core Important Notes and Warnings

Important Notes and Warnings

Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron.

Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications.

Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product.

Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.

Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.

288-Pin DDR4 LRDIMM Core **Pin Assignments**

Pin Assignments

The pin assignment table below is a comprehensive list of all possible pin assignments for DDR4 LRDIMM modules. See the Functional Block Diagram located in the module MPN data sheet addendum for pins specific to the module.

Table 4: Pin Assignments

288-	3-Pin DDR4 LRDIMM Front							288-Pin DDR4 LRDIMM Back							
Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
1	NC	37	V _{SS}	73	V_{DD}	109	V _{ss}	145	NC	181	DQ29	217	V_{DD}	253	DQ41
2	V _{SS}	38	DQ24	74	CK0_t	110	DQS14_t	146	V _{REFCA}	182	V _{SS}	218	CK1_t	254	V _{SS}
3	DQ4	39	V _{SS}	75	CK0_c	111	DQS14_c	147	V _{SS}	183	DQ25	219	CK1_c	255	DQS5_c
4	V _{SS}	40	DQS12_t	76	V _{DD}	112	V _{SS}	148	DQ5	184	V _{SS}	220	V _{DD}	256	DQS5_t
5	DQ0	41	DQS12-c	77	V _{TT}	113	DQ46	149	V _{SS}	185	DQS3_c	221	V _{TT}	257	V _{SS}
6	V _{SS}	42	V _{SS}	78	EVENT_n	114	V _{SS}	150	DQ1	186	DQS3_t	222	PARITY	258	DQ47
7	DQS9_t	43	DQ30	79	A0	115	DQ42	151	V _{SS}	187	V _{SS}	223	V_{DD}	259	V _{SS}
8	DQS09_c	44	V _{SS}	80	V_{DD}	116	V _{SS}	152	DQS0_c	188	DQ31	224	BA1	260	DQ43
9	V _{SS}	45	DQ26	81	BA0	117	DQ52	153	DQS0_t	189	V _{SS}	225	A10_AP	261	V _{SS}
10	DQ6	46	V _{SS}	82	RAS_n/ A16	118	V _{SS}	154	V _{SS}	190	DQ27	226	V_{DD}	262	DQ53
11	V _{SS}	47	CB4	83	V _{DD}	119	DQ48	155	DQ7	191	V _{SS}	227	NC	263	V _{SS}
12	DQ2	48	V _{SS}	84	CS0_n	120	V _{SS}	156	V _{SS}	192	CB5	228	WE_n/ A14	264	DQ49
13	V _{SS}	49	CB0	85	V_{DD}	121	DQS15_t	157	DQ3	193	V _{SS}	229	V_{DD}	265	V _{SS}
14	DQ12	50	V _{SS}	86	CAS_n/ A15	122	DQS15_c	158	V _{SS}	194	CB1	230	NC	266	DQS6_c
15	V _{SS}	51	DQS17_t	87	ODT0	123	V _{SS}	159	DQ13	195	V _{SS}	231	V_{DD}	267	DQS6_t
16	DQ8	52	DQS17_c	88	V _{DD}	124	DQ54	160	V _{SS}	196	DQS8_c	232	A13	268	V _{SS}
17	V _{SS}	53	V _{SS}	89	CS1_n	125	V _{SS}	161	DQ9	197	DQS8_t	233	V_{DD}	269	DQ55
18	DQS10_t	54	CB6	90	V _{DD}	126	DQ50	162	V _{SS}	198	V _{SS}	234	A17	270	V _{SS}
19	DQS10_c	55	V _{SS}	91	ODT1	127	V _{SS}	163	DQS1_c	199	CB7	235	NF C2	271	DQ51
20	V _{SS}	56	CB2	92	V _{DD}	128	DQ60	164	DQS1_t	200	V _{SS}	236	V_{DD}	272	V _{SS}
21	DQ14	57	V _{SS}	93	CS2_n C0	129	V _{SS}	165	V _{SS}	201	CB3	237	CS3_n C1	273	DQ61
22	V_{SS}	58	RESET_n	94	V _{SS}	130	DQ56	166	DQ15	202	V _{SS}	238	SA2	274	V _{SS}
23	DQ10	59	V _{DD}	95	DQ36	131	V _{SS}	167	V _{SS}	203	CKE1	239	V _{SS}	275	DQ57
24	V _{SS}	60	CKE0	96	V _{SS}	132	DQS16_t	168	DQ11	204	V_{DD}	240	DQ37	276	V _{SS}
25	DQ20	61	V _{DD}	97	DQ32	133	DQS16_c	169	V _{SS}	205	NC	241	V _{SS}	277	DQS7_c
26	V _{SS}	62	ACT_n	98	V _{SS}	134	V _{SS}	170	DQ21	206	V_{DD}	242	DQ33	278	DQS7_t
27	DQ16	63	BG0	99	DQS13_t	135	DQ62	171	V _{SS}	207	BG1	243	V _{SS}	279	V _{SS}
28	V _{SS}	64	V_{DD}	100	DQS13_c	136	V_{SS}	172	DQ17	208	ALERT_n	244	DQS4_c	280	DQ63
29	DQS11_t	65	A12_B- C_n	101	V _{SS}	137	DQ58	173	V _{SS}	209	V _{DD}	245	DQS4_t	281	V _{SS}

288-Pin DDR4 LRDIMM Core Pin Assignments

Table 4: Pin Assignments (Continued)

288-	88-Pin DDR4 LRDIMM Front							288-Pin DDR4 LRDIMM Back							
Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
30	DQS11_c	66	A9	102	DQ38	138	V_{SS}	174	DQS2_c	210	A11	246	V _{SS}	282	DQ59
31	V_{SS}	67	V_{DD}	103	V _{ss}	139	SA0	175	DQS2_t	211	A7	247	DQ39	283	V _{SS}
32	DQ22	68	A8	104	DQ34	140	SA1	176	V _{SS}	212	V_{DD}	248	V _{SS}	284	V_{DDSPD}
33	V _{SS}	69	A6	105	V _{SS}	141	SCL	177	DQ23	213	A5	249	DQ35	285	SDA
34	DQ18	70	V_{DD}	106	DQ44	142	V _{PP}	178	V _{SS}	214	A4	250	V _{SS}	286	V _{PP}
35	V _{SS}	71	A3	107	V _{SS}	143	V _{PP}	179	DQ19	215	V_{DD}	251	DQ45	287	V _{PP}
36	DQ28	72	A1	108	DQ40	144	NC	180	V _{SS}	216	A2	252	V _{SS}	288	V _{PP}

288-Pin DDR4 LRDIMM Core Pin Descriptions

Pin Descriptions

The pin description table below is a comprehensive list of all possible pins for DDR4 modules. All pins listed may not be supported on this module. See the Functional Block Diagram located in the module MPN data sheet addendum for pins specific to the module.

Table 5: Pin Descriptions

Symbol	Туре	Description
Ax	Input	Address inputs: Provide the row address for ACTIVATE commands and the column address for READ/WRITE commands in order to select one location out of the memory array in the respective bank (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, and RAS_n/A16 have additional functions; see individual entries in this table). The address inputs also provide the op-code during the MODE REGISTER SET command. A17 is only defined for x4 SDRAM.
A10/AP	Input	Auto precharge: A10 is sampled during READ and WRITE commands to determine whether an auto precharge should be performed on the accessed bank after a READ or WRITE operation (HIGH = auto precharge; LOW = no auto precharge). A10 is sampled during a PRECHARGE command to determine whether the precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank addresses.
A12/BC_n	Input	Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH = no burst chop; LOW = burst chopped). See Command Truth Table in the DDR4 component data sheet.
ACT_n	Input	Command input: ACT_n defines the ACTIVATE command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15, and WE_n/A14 are considered as row address A16, A15, and A14. See Command Truth Table.
BAx	Input	Bank address inputs: Define the bank (with a bank group) to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command.
BGx	Input	Bank group address inputs: Define the bank group to which a REFRESH, ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configurations. x16-based SDRAM only has BG0.
C0, C1, C2 (RDIMM/LRDIMM only)	Input	Chip ID: These inputs are used only when devices are stacked; that is, 2H, 4H, and 8H stacks for x4 and x8 configurations using through-silicon vias (TSVs). These pins are not used in the x16 configuration. Some DDR4 modules support a traditional DDP package, which uses CS1_n, CKE1, and ODT1 to control the second die. All other stack configurations, such as a 4H or 8H, are assumed to be single-load (initiator/target) type configurations where C0, C1, and C2 are used as chip ID selects in conjunction with a single CS_n, CKE, and ODT. Chip ID is considered part of the command code.
CKx_t CKx_c	Input	Clock: Differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c.
CKEx	Input	Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is asynchronous for self refresh exit. After V _{REFCA} has become stable during the power-on and initialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and RESET_n) are disabled during self refresh.
CSx_n	Input	Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides external rank selection on systems with multiple ranks. CS_n is considered part of the command code (CS2_n and CS3_n are not used on UDIMMs).

288-Pin DDR4 LRDIMM Core Pin Descriptions

Table 5: Pin Descriptions (Continued)

Symbol	Туре	Description
ODTx	Input	On-die termination: ODT (registered HIGH) enables termination resistance internal to the DDR4 SDRAM. When enabled, ODT (R _{TT}) is applied only to each DQ, DQS_t, DQS_c, DM_n/DBI_n/TDQS_t, and TDQS_c signal for x4 and x8 configurations (when the TDQS function is enabled via the mode register). For the x16 configuration, R _{TT} is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode registers are programmed to disable R _{TT} .
PARITY	Input	Parity for command and address: This function can be enabled or disabled via the mode register. When enabled in MR5, the DRAM calculates parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG[1:0], BA[1:0], A[16:0]. Input parity should be maintained at the rising edge of the clock and at the same time as command and address with CS_n LOW.
RAS_n/A16 CAS_n/A15 WE_n/A14	Input	Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n) define the command and/or address being entered and have multiple functions. For example, for activation with ACT_n LOW, these are addresses like A16, A15, and A14, but for a non-activation command with ACT_n HIGH, these are command pins for READ, WRITE, and other commands defined in Command Truth Table.
RESET_n	CMOS Input	Active LOW asynchronous reset: Reset is active when RESET_n is LOW and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation.
SAx	Input	Serial address inputs: Used to configure the temperature sensor/SPD EEPROM address range on the I ² C bus.
SCL	Input	Serial clock for temperature sensor/SPD EEPROM: Used to synchronize communication to and from the temperature sensor/SPD EEPROM on the I ² C bus.
DQx, CBx	I/O	Data input/output and check bit input/output: Bidirectional data bus. DQ represents DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If cyclic reductions checksum (CRC) is enabled via the mode register, the CRC code is added at the end of the data burst. Any one or all of DQ0, DQ1, DQ2, or DQ3 may be used for monitoring of internal V _{RE} level during test via mode register setting MR[4] A[4] = HIGH; training times change when enabled.
DM_n/DBI_n/ TDQS_t (DMU_n, DBIU_n), (DML_n/ DBII_n)	I/O	Input data mask and data bus inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a write access. DM_n is sampled on both edges of DQS. DM is multiplexed with the DBI function by the mode register A10, A11, and A12 settings in MR5. For a x8 device, the function of DM or TDQS enabled by the mode register A11 setting in MR1. DBI_n is an input/output identifying whethe to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/output after inversion inside the DDR4 device and not inverted if DBI_n is HIGH. TDQS is only supported in x SDRAM configurations (TDQS is not valid for UDIMMs).
SDA	I/O	Serial Data: Bidirectional signal used to transfer data in or out of the EEPROM or EEPROM/TS combo device.
DQS_t DQS_c DQSU_t DQSU_c DQSL_t DQSL_c	I/O	Data strobe: Output with read data, input with write data. Edge-aligned with read data, centered-aligned with write data. For x16 configurations, DQSL corresponds to the data on DQ[7:0 and DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4 SDRAM supports a differential data strobe only and does not support a single-ended data strobe.
ALERT_n	Output	Alert output: Possesses functions such as CRC error flag and command and address parity error flag as output signal. If a CRC error occurs, ALERT_n goes LOW for the period time interval and returns HIGH. If an error occurs during a command address parity check, ALERT_n goes LOW unt the on-going DRAM internal recovery transaction is complete. During connectivity test mode, this pin functions as an input. Use of this signal is system-dependent. If not connected as signal ALERT_n pin must be connected to V _{DD} on DIMMs.
EVENT_n	Output	Temperature event: The EVENT_n pin is asserted by the temperature sensor when critical temperature thresholds have been exceeded. This pin has no function (NF) on modules without temperature sensors.

288-Pin DDR4 LRDIMM Core Pin Descriptions

Table 5: Pin Descriptions (Continued)

Symbol	Туре	Description				
TDQS_t TDQS_c (x8 DRAM-based RDIMM only)	Output	Termination data strobe: When enabled via the mode register, the DRAM device enables the same R _{TT} termination resistance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c. When the TDQS function is disabled via the mode register, the DM/TDQS_t pin provides the data mask (DM) function, and the TDQS_c pin is not used. The TDQS function must be disabled in the mode register for both the x4 and x16 configurations. The DM function is supported only in x8 and x16 configurations. DM, DBI, and TDQS are a shared pin and are enabled/disabled by mode register settings. For more information about TDQS, see the DDR4 DRAM component data sheet (TDQS_t and TDQS_c are not valid for UDIMMs).				
V _{DD}	Supply	Module power supply: 1.2V (TYP).				
V _{PP}	Supply	DRAM activating power supply: 2.5V -0.125V/+0.250V.				
V _{REFCA}	Supply	Reference voltage for control, command, and address pins.				
V _{SS}	Supply	Ground.				
V _{TT}	Supply	Power supply for termination of address, command, and control V _{DD} /2.				
V _{DDSPD}	Supply	Power supply used to power the I ² C bus for SPD.				
RFU	-	Reserved for future use.				
NC	-	No connect: No internal electrical connection is present.				
NF	-	No function: May have internal connection present, but has no function.				

288-Pin DDR4 LRDIMM Core General Description

General Description

High-speed DDR4 SDRAM modules use DDR4 SDRAM devices with two or four internal memory bank groups. DDR4 SDRAM modules utilizing 4- and 8-bit-wide DDR4 SDRAM devices have four internal bank groups consisting of four memory banks each, providing a total of 16 banks. 16-bit-wide DDR4 SDRAM devices have two internal bank groups consisting of four memory banks each, providing a total of eight banks. DDR4 SDRAM modules benefit from the DDR4 SDRAM's use of an 8*n*-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single READ or WRITE operation for the DDR4 SDRAM effectively consists of a single 8*n*-bit-wide, four-clock data transfer at the internal DRAM core and eight corresponding *n*-bit-wide, one-half-clock-cycle data transfers at the I/O pins.

DDR4 modules use two sets of differential signals: DQS_t and DQS_c to capture data and CK_t and CK_c to capture commands, addresses, and control signals. Differential clocks and data strobes ensure exceptional noise immunity for these signals and provide precise crossing points to capture input signals.

Fly-By Topology

DDR4 modules use faster clock speeds than earlier DDR technologies, making signal quality more important than ever. For improved signal quality, the clock, control, command, and address buses have been routed in a fly-by topology, where each clock, control, command, and address pin on each DRAM is connected to a single trace and terminated (rather than a tree structure, where the termination is off the module near the connector). Inherent to fly-by topology, the timing skew between the clock and DQS signals can be accounted for by using the write-leveling feature of DDR4.

Module Manufacturing Location

Micron Technology manufactures modules at sites worldwide. Customers may receive modules from any of the manufacturing locations listed below.

Table 6: DRAM Module Manufacturing Locations

Manufacturing Site Location	Country of Origin Specified on Label
Boise, USA	USA
Aguadilla, Puerto Rico	Puerto Rico
Xian, China	China
Singapore	Singapore

288-Pin DDR4 LRDIMM Core Address Mapping to DRAM

Address Mapping to DRAM

Address Mirroring

To achieve optimum routing of the address bus on DDR4 multirank modules, the address bus will be wired as shown in the table below, or mirrored. For quad-rank modules, ranks 1 and 3 are mirrored, and ranks 0 and 2 are non-mirrored. Highlighted address pins have no secondary functions allowing for normal operation when cross-wired. Data is still read from the same address it was written. However, LOAD MODE operations require a specific address. This requires the controller to accommodate for a rank that is mirrored. Systems may reference DDR4 SPD to determine whether the module has mirroring implemented or not. See the JEDEC DDR4 SPD specification for more details.

Table 7: Address Mirroring

Edge Connector Pin	DRAM Pin, Non-Mirrored	DRAM Pin, Mirrored
A0	A0	A0
A1	A1	A1
A2	A2	A2
A3	A3	A4
A4	A4	A3
A5	A5	A6
A6	A6	A5
A7	A7	A8
A8	A8	A7
A9	A9	A9
A10	A10	A10
A11	A11	A13
A13	A13	A11
A12	A12	A12
A14	A14	A14
A15	A15	A15
A16	A16	A16
A17	A17	A17
BA0	BA0	BA1
BA1	BA1	BA0
BG0	BG0	BG1
BG1	BG1	BG0

288-Pin DDR4 LRDIMM Core Thermal Sensor with SPD EEPROM Operation

Thermal Sensor with SPD EEPROM Operation

Thermal Sensor Operations

The integrated thermal sensor continuously monitors the temperature of the module PCB directly below the device and updates the temperature data register. Temperature data may be read from the bus host at any time, which provides the host real-time feedback of the module's temperature. Multiple programmable and read-only temperature registers can be used to create a custom temperature-sensing solution based on system requirements and JEDEC JC-42.2.

Note: Thermal sensor is only applicable on x72 ECC DIMMs.

EVENT_n Pin

The thermal sensor also adds the EVENT_n pin (open-drain), which requires a pull-up to V_{DDSPD} . EVENT_n is a thermal sensor output used to flag critical events that can be set up in the sensor's configuration registers. EVENT_n is not used by the serial presence-detect (SPD) EEPROM.

EVENT_n has three defined modes of operation: interrupt, comparator, and TCRIT. In interrupt mode, the EVENT_n pin remains asserted until it is released by writing a 1 to the clear event bit in the status register. In comparator mode, the EVENT_n pin clears itself when the error condition is removed. Comparator mode is always used when the temperature is compared against the TCRIT limit. In TCRIT only mode, the EVENT_n pin is only asserted if the measured temperature exceeds the TCRIT limit; it then remains asserted until the temperature drops below the TCRIT limit minus the TCRIT hysteresis.

Note: EVENT n is NF on DIMMs without thermal sensor.

SPD EEPROM Operation

DDR4 SDRAM modules incorporate SPD. The SPD data is stored in a 512-byte, JEDEC JC-42.4-compliant EEPROM that is segregated into four 128-byte, write-protectable blocks. The SPD content is aligned with these blocks as shown in the table below.

Block	F	Range Description				
0	0–127	000h–07Fh	Configuration and DRAM parameters			
1	128–255	080h–0FFh	Module parameters			
2	256–319	100h–13Fh	Reserved (all bytes coded as 00h)			
	320–383	140h–17Fh	Manufacturing information			
3	384–511	180h–1FFh	End-user programmable			

The first 384 bytes are programmed by Micron to comply with JEDEC standard JC-45, "Appendix X: Serial Presence Detect (SPD) for DDR4 SDRAM Modules." The remaining 128 bytes of storage are available for use by the customer.

The EEPROM resides on a two-wire I^2C serial interface and is not integrated with the memory bus in any manner. It operates as a slave device in the I^2C bus protocol, with all operations synchronized by the serial clock. Transfer rates of up to 1 MHz are achievable at 2.5V (NOM).

Micron implements reversible software write protection on DDR4 SDRAM-based modules. This prevents the lower 384 bytes (bytes 0 to 383) from being inadvertently programmed or corrupted. The upper 128 bytes remain available for customer use and are unprotected.

288-Pin DDR4 LRDIMM Core Registering Clock Driver Operation

Registering Clock Driver Operation

Registered DDR4 SDRAM modules use a registering clock driver device consisting of a register and a phase-lock loop (PLL). The device complies with the JEDEC DDR4 RCD specification.

To reduce the electrical load on the host memory controller's command, address, and control bus, Micron's RDIMMs use a DDR4 registering clock driver (RCD). The RCD presents a single load to the controller while redriving signals to the DDR4 SDRAM devices, which helps enable higher densities and increase signal integrity. The RCD also provides a low-jitter, low-skew PLL that redistributes a differential clock pair to multiple differential pairs of clock outputs.

Control Words

The RCD device(s) used on DDR4 RDIMMs, LRDIMMs, and NVDIMMs contain configuration registers known as control words, which the host uses to configure the RCD based on criteria determined by the module design. Control words can be set by the host controller through either the DRAM address and control bus or the I^2C bus interface. The RCD I^2C bus interface resides on the same I^2C bus interface as the module temperature sensor and EEPROM.

Parity Operations

The RCD includes a parity-checking function that can be enabled or disabled in control word RC0E. The RCD receives a parity bit at the DPAR input from the memory controller and compares it with the data received on the qualified command and address inputs; it indicates on its open-drain ALERT_n pin whether a parity error has occurred. If parity checking is enabled, the RCD forwards commands to the SDRAM when no parity error has occurred. If the parity error function is disabled, the RCD forwards sampled commands to the SDRAM regardless of whether a parity error has occurred. Parity is also checked during control word WRITE operations unless parity checking is disabled.

Rank Addressing

The chip select pins (CS_n) on Micron's modules are used to select a specific rank of DRAM. The RDIMM is capable of selecting ranks in one of three different operating modes, dependent on setting DA[1:0] bits in the DIMM configuration control word located within the RCD. Direct DualCS mode is utilized for single- or dual-rank modules. For quad-rank modules, either direct or encoded QuadCS mode is used.

Data Buffer Operation and Description

Data buffers operate as 4-bit bidirectional data registers with differential strobes, designed for $1.2\,V_{DD}$ operation. Each buffer has a dual 4-bit host bus interface connected to the memory controller and a dual 4-bit DRAM interface connected to two x4 DRAM devices. Each buffer has an input-only 4-bit control bus interface consisting of two dedicated control signals, a voltage reference input, and a differential clock signal.

All DQ inputs are pseudo-differentiated with an internal voltage reference. All DQ outputs are V_{DD} -terminated drivers that are optimized to drive single- or dual-terminated traces in DDR4 LRDIMM applications. The differential DQS strobes are used to sample the DQ inputs and are regenerated internally to drive the DQ outputs on the opposite side of the device.

Control inputs are sampled by the clock inputs, and each data buffer supports ZQ calibration for parity (with dedicated pins) and sequence error alerts.

288-Pin DDR4 LRDIMM Core Electrical Specifications

Electrical Specifications

Stresses greater than those listed may cause permanent damage to the module. This is a stress rating only, and functional operation of the module at these or any other conditions outside those indicated in each device's data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability.

Table 8: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units	Notes
V _{DD}	V_{DD} supply voltage relative to V_{SS}	-0.4	1.5	V	V_{DDQ} balls on DRAM are tied to V_{DD} .
V _{DDQ}	V_{DDQ} supply voltage relative to V_{SS}	-0.4	1.5	V	V_{DDQ} balls on DRAM are tied to V_{DD} .
V _{PP}	Voltage on V_{PP} pin relative to V_{SS}	-0.4	3.0	V	V _{PP} must be greater than or equal to V _{DD} at all times.
V _{IN} , V _{OUT}	Voltage on any pin relative to V _{SS}	-0.4	1.5	V	

Table 9: Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units	Notes
V _{DD}	V _{DD} supply voltage	1.14	1.20	1.26	V	1
V _{PP}	DRAM activating power supply	2.375	2.5	2.75	V	2
V _{REFCA(DC)}	Input reference voltage – command/address bus	0.49 × V _{DD}	0.5 × V _{DD}	0.51 × V _{DD}	V	3
I _{VTT}	Termination reference current from V _{TT}	-750	_	750	mA	
V _{TT}	Termination reference voltage (DC) – command/address bus	0.49 × V _{DD} - 20mV	0.5 × V _{DD}	0.51 × V _{DD} + 20mV	V	4
I _{IN}	Input leakage current; any input excluding ZQ; $0V < V_{IN} < 1.1V$	-5	_	5	μΑ	5, 7
I _{ZQ}	Input leakage current; ZQ	-50	-	10	μА	6
I _{OZpd}	Output leakage current; V _{OUT} = V _{DD} ; DQ is High-Z	-	_	25	μΑ	8
I _{OZpu}	Output leakage current; V _{OUT} = V _{SS} ; DQ is High-Z; ODT is disabled with ODT input HIGH	-25	_	-	μΑ	8
I _{VREFCA}	V_{REFCA} leakage; $V_{REFCA} = V_{DD}/2$ (after DRAM is initialized)	-4.5	-	4.5	μΑ	7

Notes: 1. V_{DDQ} balls on DRAM are tied to V_{DD} .

- 2. V_{PP} must be greater than or equal to V_{DD} at all times.
- 3. V_{REFCA} must not be greater than $0.6 \times V_{DD}$. When V_{DD} is less than 500mV, V_{REF} may be less than or equal to 300mV.
- 4. V_{TT} termination voltages in excess of specification limit adversely affect command and address signals' voltage margins and reduce timing margins.
- 5. Command and address inputs are terminated to V_{DD}/2 in the registering clock driver. Input current is dependent on termination resistance set in the registering clock driver.
- 6. Tied to ground. Not connected to edge connector.
- 7. RCD input current.
- 8. Data buffer input current.

288-Pin DDR4 LRDIMM Core Electrical Specifications

Table 10: Thermal Characteristics

Symbol	Parameter/Condition	Value	Units	Notes
T _C	Commercial operating case temperature	0 to 85	°C	1, 2, 3
T _C		>85 to 95	°C	1, 2, 3, 4
T _{OPER}	Normal operating temperature range	0 to 85	°C	5, 7
T _{OPER}	Extended temperature operating range (optional)	>85 to 95	°C	5, 7
T _{STG}	Non-operating storage temperature	–55 to 100	°C	6
RH _{STG}	Non-operating storage relative humidity (non-condensing)	5 to 95	%	
NA	Change rate of storage temperature	20	°C/hour	

- Notes: 1. Maximum operating case temperature; T_C is measured in the center of the package.
 - 2. A thermal solution must be designed to ensure the DRAM device does not exceed the maximum T_C during operation.
 - 3. Device functionality is not guaranteed if the DRAM device exceeds the maximum T_C during operation.
 - 4. If T_C exceeds 85°C, the DRAM must be refreshed externally at 2X refresh, which is a 3.9 μ s interval refresh rate.
 - 5. The refresh rate must double when $85^{\circ}\text{C} < \text{T}_{\text{OPER}} \le 95^{\circ}\text{C}$.
 - 6. Storage temperature is defined as the temperature of the top/center of the DRAM and does not reflect the storage temperatures of shipping trays.
 - 7. For additional information, refer to technical note TN-00-08: "Thermal Applications" available at micron.com.

288-Pin DDR4 LRDIMM Core DRAM Operating Conditions

DRAM Operating Conditions

Recommended AC operating conditions are given in the DDR4 component data sheets. Component specifications are available at micron.com. Module speed grades correlate with component speed grades, as shown below.

Table 11: Module and Component Speed Grades

DDR4 components may exceed the listed module speed grades; module may not be available in all listed speed grades

Module Speed Grade	Component Speed Grade
-3G2	-062E
-352	-062H (3DS)
-2G9	-068
-259	-068H (3DS)
-2G6	-075
-256	-075H (3DS)

Design Considerations

Simulations

Micron memory modules are designed to optimize signal integrity through carefully designed terminations, controlled board impedances, routing topologies, trace length matching, and decoupling. However, good signal integrity starts at the system level. Micron encourages designers to simulate the signal characteristics of the system's memory bus to ensure adequate signal integrity of the entire memory system.

Power

Operating voltages are specified at the edge connector of the module, not at the DRAM. Designers must account for any system voltage drops at anticipated power levels to ensure the required supply voltage is maintained.

288-Pin DDR4 LRDIMM Core Thermal Sensor with SPD EEPROM Operating Conditions

Thermal Sensor with SPD EEPROM Operating Conditions

The thermal sensor continuously monitors the module's temperature and can be read back at any time over the I^2C bus shared with the serial presence-detect (SPD) EEPROM. Refer to JEDEC JC-42.4 EE1004 and TSE2004 device specifications for complete details.

Note: Integrated thermal sensor only applicable to x72 ECC DIMMs. The following AC/DC operating condition specifications apply both to devices that do contain the integrated thermal sensor and devices that do not include the thermal sensor.

SPD Data

For the latest SPD data, refer to Micron's SPD page: micron.com/SPD.

Table 12: Thermal Sensor with SPD EEPROM DC Operating Conditions

Parameter/Condition	Symbol	Min	Nom	Max	Units
Supply voltage	V_{DDSPD}	1.7	2.5	3.3	V
Input low voltage: Logic 0; All inputs	V _{IL}	-0.5	-	V _{DDSPD} × 0.3	V
Input high voltage: Logic 1; All inputs	V _{IH}	V _{DDSPD} × 0.7	_	V _{DDSPD} + 0.5	V
Output low voltage: 3mA sink current V _{DDSPD} > 2V	V _{OL}	-	_	0.4	V
Input leakage current: (SCL, SDA) $V_{IN} = V_{DDSPD}$ or V_{SSSPD}	I _{LI}	-	_	±5	μА
Output leakage current: $V_{OUT} = V_{DDSPD}$ or V_{SSSPD} , SDA in High-Z	I _{LO}	_	_	±5	μΑ

Notes: 1. Table is provided as a general reference. Consult JEDEC JC-42.4 TSE2004 device specifications for complete details.

- 2. Operation at ${}^{t}SCL > 100 \text{ kHz may require } V_{DDSPD} \le 2.2$.
- 3. All voltages referenced to V_{DDSPD}.

Table 13: Thermal Sensor with SPD EEPROM AC Operating Conditions

Parameter/Condition	Symbol	Min	Max	Units
Clock frequency	^f SCL	10	1000	kHz
Clock pulse width HIGH time	^t HIGH	260	-	ns
Clock pulse width LOW time	^t LOW	500	-	ns
Detect clock LOW timeout	^t TIMEOUT	25	35	ms
SDA rise time	^t R	_	120	ns
SDA fall time	^t F	-	120	ns
Data-in setup time	^t SU:DAT	50	-	ns
Data-in hold time	^t HD:DI	0	-	ns
Data out hold time	^t HD:DAT	0	350	ns
Start condition setup time	^t SU:STA	260	_	ns
Start condition hold time	^t HD:STA	260	_	ns

288-Pin DDR4 LRDIMM Core Thermal Sensor with SPD EEPROM Operating Conditions

Table 13: Thermal Sensor with SPD EEPROM AC Operating Conditions (Continued)

Parameter/Condition	Symbol	Min	Max	Units
Stop condition setup time	^t SU:STO	260	_	ns
Time the bus must be free before a new transition can start	^t BUF	500	-	ns
Write time	^t W	-	5	ms
Warm power cycle time off	^t POFF	1	_	ms
Time from power-on to first command	^t INIT	10	-	ms

Notes: 1. Table is provided as a general reference. Consult JEDEC JC-42.4 TSE2004 device specifications for complete details.

^{2.} Operation at f SCL > 100 kHz may require $V_{DDSPD} \le 2.2$.

288-Pin DDR4 LRDIMM Core Registering Clock Driver Specifications

Registering Clock Driver Specifications

Table 14: Registering Clock Driver Electrical Characteristics

DDR4 RCD01 devices or equivalent

Parameter	Symbol	Pins	Min	Nom	Max	Units
DC supply voltage	V_{DD}	-	1.14	1.2	1.26	V
DC reference voltage	V _{REF}	V _{REFCA}	0.49 × V _{DD}	0.5 × V _{DD}	0.51 × V _{DD}	V
DC termination voltage	V _{TT}	-	V _{REF} - 40mV	V _{REF}	V _{REF} + 40mV	V
High-level input voltage	V _{IH. CMOS}	DRST_n	0.65 × V _{DD}	_	V_{DD}	V
Low-level input voltage	V _{IL. CMOS}		0	_	0.35 × V _{DD}	V
DRST_n pulse width	^t INI- T_Pow- er_stable	-	1.0	-	-	μs
AC high-level output voltage	V _{OH(AC)}	All outputs except ALERT_n	V _{TT} + (0.15 × V _{DD})	_	-	V
AC low-level output voltage	V _{OL(AC)}		_	_	V _{TT} + (0.15 × V _{DD})	V
AC differential out- put high measure- ment level (for output slew rate)	V _{OHdiff(A}	Yn_t - Yn_c, BCK_t - BCK_c	-	0.3 × V _{DD}	-	mV
AC differential out- put low measure- ment level (for output slew rate)	V _{OL} - diff(AC)		-	-0.3 × V _{DD}	-	mV

Notes: 1. Timing and switching specifications for the register listed are critical for proper operation of DDR4 SDRAM RDIMMs. These are meant to be a subset of the parameters for the specific device used on the module. See the JEDEC RCD01 specification for complete operating electrical characteristics. Registering clock driver parametric values are specified for device default control word settings, unless otherwise stated. The RC0A control word setting does not affect parametric values.

288-Pin DDR4 LRDIMM Core Data Buffer Specifications

Data Buffer Specifications

Table 15: Data Buffer Electrical Characteristics

DDR4 DB01 devices or equivalent

Parameter	Symbol	Pins	Min	Nom	Max	Unit
DC supply voltage	V _{DD}	-	1.14	1.2	1.26	V
DC reference voltage	BV _{REFCA}	BV _{REF}	0.49 × V _{DD}	0.5 × V _{DD}	0.51 × V _{DD}	
Low-level input voltage	$V_{IL(static)}$	BCK_t, BCK_c (during clock stop)	0	-	0.35 × V _{DD}	
Differential input cross point voltage range	V _{IX(BCK)}	BCK_t,	-120	-	120	mV
Extended differential input cross point voltage range	V _{IX_EX(BCK)}	BCK_t, BCK_c	-150	-	150	
Average common mode DC voltage	V _{CM(DC)}	BCK_t, BCK_c	0.46 × V _{DD}	0.5 × V _{DD}	0.54 × V _{DD}	V
Single-ended high level	V_{SEH}	BCK_t, BCK_c	DDR4-1866, 2133 (V _{DD} /2) + 90 DDR4-2400 (V _{DD} /2) + 75	-	-	mV
Single-ended low level	V _{SEL}	BCK_t, BCK_c	-	-	DDR4-1866, 2133 (V _{DD} /2) - 90 DDR4-2400 (V _{DD} /2) - 75	
AC input high	V _{IH(AC)}	BCK_t, BCK_c	DDR4-1866, 2133 BV _{REFCA} + 90 DDR4-2400 BV _{REFCA} + 75	-	-	mV
AC input low	V _{IL(AC)}	BCK_t, BCK_c	_	-	DDR4-1866, 2133 BV _{REFCA} - 90 DDR4-2400 BV _{REFCA} - 75	
Differential input high	$V_{IH,diff}$	BCK_t, BCK_c	DDR4-1866, 2133; 130 DDR4-2400; 100	-	-	mV
Differential input low	$V_{IL,diff}$	BCK_t, BCK_c	-	-	DDR4-1866, 2133; -130 DDR4-2400; -100	
AC differential input high	V _{IH,diff(AC)}	BCK_t, BCK_c	2 x (V _{IH(AC).MIN} - BV _{REF} CA)	-	-	mV
AC differential input low	V _{IL,diff(AC)}	BCK_t, BCK_c	_	_	2 x (V _{IL(AC).MAX} - BV _{REFCA})	

288-Pin DDR4 LRDIMM Core Data Buffer Specifications

Parameter	Symbol	Pins	Min	Nom	Max	Unit
AC output high	V _{OH(AC)}		-	(0.7 + 0.15) x V _{DD}	_	V
AC output low	V _{OL(AC)}		-	(0.7 - 0.15) x V _{DD}	_	
DC output high	V _{OH(DC)}		-	1.1 x V _{DD}	_	V
DC output mid	V _{OM(DC)}	All out- puts	-	0.8 x V _{DD}	_	
DC output low	V _{OL(DC)}	except ALERT_n	-	0.5 x V _{DD}	-	
AC differential output high	V _{OH,diff(AC)}	ALERI_II	-	0.3 x V _{DD}	-	V
AC differential output low	V _{OL,diff(AC)}		-	-0.3 x V _{DD}	_	
Junction temperature	Тј	-	0	-	125	C°
Case temperature	T _{CASE}	_	-	-	TBD	
Input clamp current	I _{IK}	_	-	-	-50	mA
output clamp current	I _{OK}	-	-	-	±50	
Continuous output current	Io	-	-	-	±50	
Continuous output current each V _{DD} or V _{SS} pin	I _{CCC}	-	-	-	±100	

Notes: 1. Data buffer parametric values are specified for the device default control word settings, unless otherwise stated.

288-Pin DDR4 LRDIMM Core Module Dimensions

Module Dimensions

Figure 1: 288-Pin DDR4 LRDIMM

Notes: 1. All dimensions are in millimeters; MAX/MIN or typical (TYP) where noted.

- 2. The dimensional diagram is for reference only.
- 3. Tolerance on all dimensions ±0.15mm unless otherwise specified.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006 208-368-4000, micron.com/support

Micron and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.

This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.