SDSC6015 Stochastic Optimization for Machine Learning

Lu Yu

Department of Data Science, City University of Hong Kong

October 9, 2025

Lu Yu SDSC6015 October 9, 2025 1/58

Momentum Methods

Motivation

Consider minimizing the function $f \in \mathbb{R}^d \to \mathbb{R}$, we turn to SGD

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \eta_t \nabla f(\boldsymbol{x}_t)$$

This method works well for smooth convex functions, but it struggles in situations where the function has elongated contours¹!

Lu Yu SDSC6015 October 9, 2025 3 / 58

Heavy-Ball Method (Polyak's Momentum)

Polyak's momentum, also known as the "heavy ball method", introduces a "momentum" term $\beta_t(x_t-x_{t-1})$. The update rule for momentum is

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \eta_t \nabla f(\boldsymbol{x}_t) + \beta_t (\boldsymbol{x}_t - \boldsymbol{x}_{t-1}).$$

This is equivalent to

$$egin{aligned} m{y}_t &= m{x}_t + eta_t (m{x}_t - m{x}_{t-1}) & ext{momentum step} \ m{x}_{t+1} &= m{y}_t - \eta_t
abla f(m{x}_t) & ext{gradient step} \end{aligned}$$

where β_t is a hyperparameter (typically $\beta_t \in [0,1]$), which scales down the previous step.

- ▶ This algorithm was first proposed in the 60s.
- ▶ It combines the current gradient with a history of the previous step to accelerate the convergence of the algorithm.
- ▶ It recovers gradient descent when $\beta_t = 0$.

4 D > 4 D > 4 E > 4 E > E 9 Q C

Heavy-Ball Method

Without momentum, gradient descent oscillates, whereas with momentum, we find that it converges much closer to the optimal point in the same number of iterations.

Without momentum Options Delication

With momentum

Lu Yu SDSC6015 October 9, 2025 5/58

Convergence of Heavy-Ball Method

Consider the strongly convex quadratic function:

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\top} Q \boldsymbol{x} - \mathbf{b}^{\top} \boldsymbol{x}$$
,

where Q is a symmetric positive definite matrix, and b is a vector.

- $m{\mu}=\lambda_{\min}(Q)$ is the smallest eigenvalue of Q (strong convexity constant)
- $lackbox{L} = \lambda_{\max}(Q)$ is the largest eigenvalue of Q (smoothness constant)
- ightharpoonup $\kappa=L/\mu>1$ is the condition number of Q

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
6□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□
7□

Lu Yu SDSC6015 October 9, 2025 6 / 58

Convergence of Heavy-Ball Method

Comparison of the convergence rates between the heavy-ball method and gradient descent:

Method	Step size	Momentum	Convergence rate
GD	$\eta_t = rac{2}{\mu + L}$	$\beta_t = 0$	$\rho_{GD} = 1 - \frac{2}{1+\kappa}$
Heavy-Ball	$\eta_t = \frac{4}{(\sqrt{\mu} + \sqrt{L})^2}$	$\beta_t = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$	$\rho_{HB} = 1 - \frac{1}{\sqrt{\kappa}}$

- Heavy-Ball method converges faster than Gradient Descent.
- ▶ However, there exist strongly-convex and smooth functions for which, by choosing carefully the hyperparameters η_t and β_t and the initial condition x_0 , the heavy-ball method fails to converge.

Counter Example

Consider piece-wise quadratic function f [LRP16]

$$f(x) = \begin{cases} \frac{25}{2}x^2 & x < 1\\ \frac{1}{2}x^2 + 24x - 12 & 1 \le x < 2\\ \frac{25}{2}x^2 - 24x + 36 & 2 \le x \end{cases}$$

whose gradient is

$$\nabla f(x) = \begin{cases} 25x & x < 1\\ x + 24 & 1 \le x < 2\\ 25x - 24 & 2 \le x \end{cases}$$

By construction, $\forall x_1, x_2 \|\nabla f(x_1) - \nabla f(x_2)\| \le 25 \|x_1 - x_2\|$, therefore f is 25-smooth, and $\nabla^2 f(x) \ge 1 > 0$, therefore f is 1-strongly convex.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Lu Yu SDSC6015

8 / 58

Counter Example

- ▶ This figure from [LRP16] gives the first 50 iterates of Polyak's momentum algorithm applied to f, using $\eta_t = \frac{1}{9}, \beta_t = \frac{4}{9}$ and $x_0 = 3.3$.
- ightharpoonup Despite the function f being 1-strongly convex and 25-smooth, the output values of the heavy-ball method cycle through 3 points indefinitely.

Counter Example

Illustration of the limit values of the failing case of Polyak's momentum algorithm.

There exists a sequence of iterates $\{x_t\}$ such that as $n \to \infty$

$$x_{t=3n} \to 0.65$$
, $x_{t=3n+1} \to -1.80$, $x_{t=3n+2} \to 2.12$

← 4 □ ト 4 □ ト 4 亘 ト ○ ■ の 9 ○ ○

Lu Yu SDSC6015 October 9, 2025 10 / 58

Failing case of Heavy-Ball Method

- ▶ It is worth pointing out that heavy-ball method has guaranteed convergence for quadratic functions (and not piece-wise quadratic).
- ▶ Discontinuous gradients may make the momentum term ineffective.

$$\nabla f(x) = \begin{cases} 25x & x < 1\\ x + 24 & 1 \le x < 2\\ 25x - 24 & 2 \le x \end{cases}$$

Lu Yu SDSC6015 October 9, 2025 11/58

Nesterov's Accelerated Gradient Descent

Heavy-ball method

$$egin{aligned} m{y}_t &= m{x}_t + eta_t (m{x}_t - m{x}_{t-1}) & ext{momentum step} \ m{x}_{t+1} &= m{y}_t - \eta_t
abla f(m{x}_t) & ext{gradient step} \end{aligned}$$

Nesterov's Accelerated Gradient Descent (Nesterov's AGD)

$$egin{aligned} m{y}_t &= m{x}_t + eta_t (m{x}_t - m{x}_{t-1}) & ext{momentum step} \ m{x}_{t+1} &= m{y}_t - \eta_t
abla f(m{y}_t) & ext{gradient step} \end{aligned}$$

As we see below, Nesterov's AGD enjoys convergence guarantees for (strongly) convex functions beyond quadratic functions!

←□ → ←□ → ← = → ← = → ○ ← ○ ○

Initialized at x_0 , set $x_{-1} = x_0$, the iterates of Nesterov's AGD for $t = 0, 1, \dots, T$

$$egin{aligned} m{y}_t &= m{x}_t + eta_t (m{x}_t - m{x}_{t-1}) & ext{momentum step} \ m{x}_{t+1} &= m{y}_t - \eta_t
abla f(m{y}_t) & ext{gradient step} \end{aligned}$$

Theorem 1

For Nesterov's AGD Algorithm applied to μ -strongly convex and L-smooth function f, we have

$$f(x_T) - f(x^*) \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^T \frac{(L+\mu)||x_0 - x^*||_2^2}{2}$$

provided that

$$\eta_t = \frac{1}{L}, \quad \beta_t = \frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1} \ .$$

Lu Yu SDSC6015 October 9, 2025 13/58

Proof.

Without loss of generality, assume $x^*=\mathbf{0}.^2$ Set $\rho^2:=1-\frac{1}{\sqrt{\kappa}},$ with $\kappa=L/\mu.$ Set $u_t:=\frac{1}{L}\nabla f(\boldsymbol{y}_t)$ and

$$V_t := f(\boldsymbol{x}_t) - f(\boldsymbol{x}^*) + \frac{L}{2} \|\boldsymbol{x}_t - \rho^2 \boldsymbol{x}_{t-1}\|_2^2.$$

The proof involves two steps

- ▶ Step 1: show that $V_{t+1} \leq \rho^2 V_t, \forall t \geq 0$
- ▶ Step 2: show that $f(\boldsymbol{x}_T) f(\boldsymbol{x}^*) \leqslant \left(1 \sqrt{\frac{\mu}{L}}\right)^T \frac{(L+\mu)\|\boldsymbol{x}_0 \boldsymbol{x}^*\|_2^2}{2}$

Lu Yu SDSC6015 October 9, 2025 14 / 58

Step 1: show that $V_{t+1} \leqslant \rho^2 V_t, \forall t \geqslant 0$

$$\begin{aligned} V_{t+1} &= f(\boldsymbol{x}_{t+1}) - f^* + \frac{L}{2} \| \boldsymbol{x}_{t+1} - \rho^2 \boldsymbol{x}_t \|^2 \\ &\leq f(\boldsymbol{y}_t) - f^* + \langle L u_t, \, \boldsymbol{x}_{t+1} - \boldsymbol{y}_t \rangle + \frac{L}{2} \| \boldsymbol{x}_{t+1} - \boldsymbol{y}_t \|^2 + \frac{L}{2} \| \boldsymbol{x}_{t+1} - \rho^2 \boldsymbol{x}_t \|^2 \\ &\leq f(\boldsymbol{y}_t) - f^* - \frac{L}{2} \| u_t \|^2 + \frac{L}{2} \| \boldsymbol{x}_{t+1} - \rho^2 \boldsymbol{x}_t \|^2 \\ &= \rho^2 \Big[f(\boldsymbol{y}_t) - f^* + L \langle u_t, \, \boldsymbol{x}_t - \boldsymbol{y}_t \rangle \Big] - \rho^2 L \langle u_t, \, \boldsymbol{x}_t - \boldsymbol{y}_t \rangle \\ &+ (1 - \rho^2) \Big[f(\boldsymbol{y}_t) - f^* - L \langle u_t, \, \boldsymbol{y}_t \rangle \Big] + (1 - \rho^2) \langle u_t, \, \boldsymbol{y}_t \rangle \\ &- \frac{L}{2} \| u_t \|^2 + \frac{L}{2} \| \boldsymbol{x}_{t+1} - \rho^2 \boldsymbol{x}_t \|^2 \,. \end{aligned}$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Lu Yu SDSC6015 October 9, 2025 15 / 58

Step 1: show that $V_{t+1} \leqslant \rho^2 V_t, \forall t \geqslant 0$

By strong convexity of f

$$f(\boldsymbol{y}_t) + L\langle u_t, \, \boldsymbol{x}_t - \boldsymbol{y}_t \rangle \leqslant f(\boldsymbol{x}_t) - \frac{\mu}{2} \|\boldsymbol{x}_t - \boldsymbol{y}_t\|^2$$

$$f(\boldsymbol{y}_t) - f^* - L\langle u_t, \, \boldsymbol{y}_t \rangle \leqslant -\frac{\mu}{2} \|\boldsymbol{y}_t\|^2$$

Thus,

$$V_{t+1} \leq \rho^{2} \left[f(\boldsymbol{x}_{t}) - f^{*} - \frac{\mu}{2} \|\boldsymbol{x}_{t} - \boldsymbol{y}_{t}\|^{2} \right] - \rho^{2} L \langle u_{t}, \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \rangle$$

$$- (1 - \rho^{2}) \frac{\mu}{2} \|\boldsymbol{y}_{t}\|^{2} + (1 - \rho^{2}) L \langle u_{t}, \boldsymbol{y}_{t} \rangle$$

$$- \frac{L}{2} \|u_{t}\|^{2} + \frac{L}{2} \|\boldsymbol{x}_{t+1} - \rho^{2} \boldsymbol{x}_{t}\|^{2}$$

$$= \rho^{2} \underbrace{\left[f(\boldsymbol{x}_{t}) - f^{*} + \frac{L}{2} \|\boldsymbol{x}_{t} - \rho^{2} \boldsymbol{x}_{t-1}\|^{2} \right]}_{V} + R_{t}$$

Lu Yu SDSC6015 October 9, 2025 16 / 58

Step 1: show that $V_{t+1} \leq \rho^2 V_t, \forall t \geq 0$

Plugging the definitions of $\eta_t, \beta_t, \rho, \boldsymbol{x}_{t+1}, \boldsymbol{y}_t$ into the definition of R_t

$$\begin{split} R_t := -\rho^2 \frac{\mu}{2} \| \boldsymbol{x}_t - \boldsymbol{y}_t \|^2 - (1 - \rho^2) \frac{\mu}{2} \| \boldsymbol{y}_t \|^2 \\ + L \langle \boldsymbol{u}_t, \, \boldsymbol{y}_t - \rho^2 \boldsymbol{x}_t \rangle - \frac{L}{2} \| \boldsymbol{u}_t \|^2 \\ + \frac{L}{2} \| \boldsymbol{x}_{t+1} - \rho^2 \boldsymbol{x}_t \|^2 - \frac{\rho^2 L}{2} \| \boldsymbol{x}_t - \rho^2 \boldsymbol{x}_{t-1} \|^2 \\ = -\frac{1}{2} L \rho^2 \left(\frac{1}{\kappa} + \frac{1}{\sqrt{\kappa}} \right) \| \boldsymbol{x}_t - \boldsymbol{y}_t \|^2 \leqslant 0 \end{split}$$

Thus,

$$V_{t+1} \leqslant \rho^2 V_t, \quad \forall t \geqslant 0.$$

マロトマ母トマミトマミト ミーのので

Lu Yu SDSC6015 October 9, 2025 17 / 58

Step 2: show that
$$f(x_T)-f(x^*)\leqslant \left(1-\sqrt{\frac{\mu}{L}}\right)^T\frac{(L+\mu)\|x_0-x^*\|_2^2}{2}$$

By the definition of V_t

$$f(\boldsymbol{x}_t) - f^* \leqslant V_t \leqslant \rho^{2t} V_0$$

Moreover,

$$\begin{split} V_0 &= f(\boldsymbol{x}_0) - f^* + \frac{L}{2} \|\boldsymbol{x}_0 - \rho^2 \boldsymbol{x}_0\|^2 \\ &= f(\boldsymbol{x}_0) - f^* + \frac{\mu}{2} \|\boldsymbol{x}_0\|^2 \\ &= f(\boldsymbol{x}_0) - f^* + \frac{\mu}{2} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 \\ &\leqslant \frac{L}{2} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 + \frac{\mu}{2} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 \\ &= \frac{L + \mu}{2} \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 \,. \end{split}$$

◆ロト ◆昼 ト ◆ 恵 ト ・ 恵 ・ 夕 Q ○

Lu Yu SDSC6015 October 9, 2025 18 / 58

Thus,

$$f(x_T) - f^* \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^T \cdot \frac{L + \mu}{2} ||x_0 - x^*||^2.$$

► Set $R^2 = \|x_0 - x^*\|^2$.

$$f(\boldsymbol{x}_T) - f^* \leqslant \left(1 - \sqrt{\frac{\mu}{L}}\right)^T \cdot \frac{(L+\mu)R^2}{2}$$

▶ Gradient Descent on μ -strongly convex and L-smooth functions³

$$f(\boldsymbol{x}_{\mathsf{best}}^{(T)}) - f(\boldsymbol{x}^*) \leqslant \left(1 - \frac{\mu}{L}\right)^T \frac{RL}{2}$$

 \blacktriangleright Nesterov's AGD improves by a factor of $\sqrt{\kappa}=\sqrt{\frac{L}{\mu}}$

Lu Yu SDSC6015

³Theorem 1 from Lecture 3

Theorem 2

For Nesterov's AGD Algorithm applied to convex and L-smooth function f, we have

$$f(x_T) - f(x^*) \leqslant \frac{2L||x_0 - x^*||_2^2}{T^2}$$

provided that

$$\eta_t = \frac{1}{L}, \quad \beta_t = \frac{\lambda_{t-1} - 1}{\lambda_t},$$

where

$$\lambda_t = \frac{1 + \sqrt{1 + 4\lambda_{t-1}^2}}{2}, \ \lambda_0 = 0, \ \beta_0 = 0$$

 $^4\lambda_{t+1}^2 - \lambda_{t+1} = \lambda_t^2$

SDSC6015

Proof.

By sufficient decrease (Lemma 3 from Lecture 2),

$$f(\boldsymbol{x}_{t+1}) \leqslant f(\boldsymbol{y}_t) - \frac{1}{2L} \|\nabla f(\boldsymbol{y}_t)\|^2 \leqslant f(\boldsymbol{y}_t).$$

Therefore,

$$f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{x}_t) = f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{y}_t) + f(\boldsymbol{y}_t) - f(\boldsymbol{x}_t)$$

$$\leq -\frac{1}{2L} \|\nabla f(\boldsymbol{y}_t)\|^2 + \langle \nabla f(\boldsymbol{y}_t), \, \boldsymbol{y}_t - \boldsymbol{x}_t \rangle$$

$$= -\frac{L}{2} \|\boldsymbol{y}_t - \boldsymbol{x}_{t+1}\|^2 + L\langle \boldsymbol{y}_t - \boldsymbol{x}_{t+1}, \, \boldsymbol{y}_t - \boldsymbol{x}_t \rangle. \tag{1}$$

Similarly,

$$f(\boldsymbol{x}_{t+1}) - f^* = f(\boldsymbol{x}_{t+1}) - f(\boldsymbol{y}_t) + f(\boldsymbol{y}_t) - f^*$$

$$\leq -\frac{1}{2L} \|\nabla f(\boldsymbol{y}_t)\|^2 + \langle \nabla f(\boldsymbol{y}_t), \, \boldsymbol{y}_t - \boldsymbol{x}^* \rangle$$

$$= -\frac{L}{2} \|\boldsymbol{y}_t - \boldsymbol{x}_{t+1}\| + L\langle \boldsymbol{y}_t - \boldsymbol{x}_{t+1}, \, \boldsymbol{y}_t - \boldsymbol{x}^* \rangle$$
(2)

Lu Yu SDSC6015 October 9, 2025 21 / 58

Define the optimality gap $\Delta_t := f(x_t) - f^*$. Taking $(1) \times \lambda_t (\lambda_t - 1) + (2) \times \lambda_t$, we get

$$\begin{split} & \lambda_t (\lambda_t - 1) (\Delta_{t+1} - \Delta_t) + \lambda_t \Delta_{t+1} \\ & \leqslant L \langle \boldsymbol{y}_t - \boldsymbol{x}_{t+1}, \ \lambda_t (\lambda_t - 1) (\boldsymbol{y}_t - \boldsymbol{x}_t) + \lambda_t (\boldsymbol{y}_t - \boldsymbol{x}^*) \rangle - \frac{L}{2} \lambda_t^2 \| \boldsymbol{y}_t - \boldsymbol{x}_{t+1} \|^2 \,. \end{split}$$

Rearranging terms gives

$$\lambda_t^2 \Delta_{t+1} - (\lambda_t^2 - \lambda_t) \Delta_t$$

$$\leqslant \frac{L}{2} \cdot \left[2 \langle \lambda_t (\boldsymbol{y}_t - \boldsymbol{x}_{t+1}), \, \lambda_t \boldsymbol{y}_t - (\lambda_t - 1) \boldsymbol{x}_t - \boldsymbol{x}^* \rangle - \|\lambda_t (\boldsymbol{y}_t - \boldsymbol{x}_{t+1})\|^2 \right]$$

4 D > 4 B > 4 E > 4 E > 9 Q C

Lu Yu SDSC6015 October 9, 2025 22 / 58

$$\begin{split} & \text{Using } \lambda_t^2 - \lambda_t = \lambda_{t-1}^2 \text{ and } 2\langle a,b \rangle - \|a\|^2 = \|b\|^2 - \|b-a\|^2 \text{, we obtain} \\ & \lambda_t^2 \Delta_{t+1} - \lambda_{t-1}^2 \Delta_t \\ & \leqslant \frac{L}{2} \cdot \left[\|\lambda_t \boldsymbol{y}_t - (\lambda_t - 1) \boldsymbol{x}_t - \boldsymbol{x}^*\|^2 - \|\lambda_t \boldsymbol{x}_{t+1} - (\lambda_t - 1) \boldsymbol{x}_t - \boldsymbol{x}^*\|^2 \right] \\ & = \frac{L}{2} \cdot \left[\|\lambda_t \boldsymbol{y}_t - (\lambda_t - 1) \boldsymbol{x}_t - \boldsymbol{x}^*\|^2 - \|\lambda_{t+1} \boldsymbol{y}_{t+1} - (\lambda_{t+1} - 1) \boldsymbol{x}_{t+1} - \boldsymbol{x}^*\|^2 \right] \end{split}$$

Summing over $t=0,\ldots,T,$ and note that $\lambda_0=0,\lambda_1=1,\beta_1=-1, {\boldsymbol y}_1={\boldsymbol x}_0$

$$\lambda_T^2 \Delta_{T+1}^2 - \lambda_0^2 \Delta_1 = \lambda_T^2 \Delta_{T+1} \leqslant rac{L}{2} \|m{x}_0 - m{x}^*\|^2 \,.$$

Lu Yu SDSC6015 October 9, 2025 23 / 58

Finally, note that

$$\lambda_k \geqslant \frac{1 + \sqrt{4\lambda_{k-1}^2}}{2} = \lambda_{k-1} + \frac{1}{2}$$

which, together with $\lambda_1=1$, implies $\lambda_T\geqslant \frac{T+1}{2}$. It follows that

$$f(\boldsymbol{x}_{T+1}) - f^* = \Delta_{T+1} \leqslant \frac{L \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2}{2\lambda_T^2} \leqslant \frac{2L \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2}{(T+1)^2}$$

イロト 4個ト 4 差ト 4 差ト 差 り 9 0 0

Lu Yu SDSC6015 October 9, 2025 24 / 58

Thus, when $R^2 = \|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2$,

$$f(\boldsymbol{x}_{T+1}) - f(\boldsymbol{x}^*) \leqslant \frac{2LR^2}{T^2}$$

► Gradient Descent on convex and smooth function⁵

$$f({m{x}}_{\mathsf{best}}^{(T)}) - f({m{x}}^*) \leqslant rac{R^2L}{2T}$$

Significant improvement by Nesterov's AGD

Yu SDSC6015

25 / 58

Questions?

Lu Yu SDSC6015 October 9, 2025 26 / 5

SGD with Classical Momentum

Idea: include an additional weight $\beta \in [0,1]$ which controls how much the update follows the current gradient versus past momentum.

The algorithm is defined over $t = 1, 2, \dots$

$$g_t = \nabla f_{i_t}(x_t)$$

$$v_t = \beta v_{t-1} + (1 - \beta)g_t$$

$$x_t = x_{t-1} - v_t$$

- \blacktriangleright A small β favors the current gradient
- ▶ A large β prioritizes previous movement.

Lu Yu SDSC6015 October 9, 2025 27 / 58

SGD with Classical Momentum

Idea:

$$egin{aligned} oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + (1-eta) oldsymbol{g}_t \ oldsymbol{x}_t &= oldsymbol{x}_{t-1} - oldsymbol{v}_t \ . \end{aligned}$$

In practice, it's common to use two hyperparameters: β affects the terminal velocity and η is a learning rate.

$$egin{aligned} oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + oldsymbol{\eta} oldsymbol{g}_t \ oldsymbol{x}_t &= oldsymbol{x}_{t-1} - oldsymbol{v}_t \end{aligned}$$

Lu Yu

SGD with Nesterov Momentum

Key Difference Between Classical Momentum and Nesterov Momentum

- ▶ In classical momentum, we compute the gradient at the current position
- ▶ In Nesterov momentum, we first take a lookahead step based on momentum and then compute the gradient at this predicted next position.

The algorithm is defined for t = 1, 2, ...

$$egin{aligned} oldsymbol{g}_t &=
abla f_{i_t}(oldsymbol{x}_{t-1} - \eta oldsymbol{v}_{t-1}) \ oldsymbol{v}_t &= eta oldsymbol{v}_{t-1} + \eta oldsymbol{g}_t \ oldsymbol{x}_t &= oldsymbol{x}_{t-1} - \eta oldsymbol{v}_t \end{aligned}$$

SGD with Momentum

SGD with momentum is used as a practical trick to speed up training, even though it lacks the theoretical guarantees...

Lu Yu SDSC6015 October 9, 2025 30 / 58

Adaptive Methods

Adaptive Learning Rates

▶ So far, we've looked at update steps that look like

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \frac{\boldsymbol{\eta}_t \boldsymbol{g}_t}{\boldsymbol{q}_t}$$

- ▶ Here, the step size η_t is fixed a priori for each iteration.
- ▶ What if we use a step size that varies depending on the model?
- ► This is the idea of an adaptive learning rate.

Lu Yu SDSC6015 October 9, 2025 32 / 58

Example: Polyak's Step Length

► This is a simple step size scheme for gradient descent that works when the optimal value is known.

$$\eta_t = \frac{f(\boldsymbol{x}_t) - f(\boldsymbol{x}^*)}{\|\nabla f(\boldsymbol{x}_t)\|^2}$$

▶ Can also use this with an estimated optimal value.

< ロト < 個 ト < 重 ト < 重 ト 三 重 の < @

Lu Yu SDSC6015 October 9, 2025 33 / 58

Intuition behind Polyak's Step Length

▶ Approximate the objective with a linear approximation at the current iterate.

$$\hat{f}(\boldsymbol{x}) = f(\boldsymbol{x}_t) + (\boldsymbol{x} - \boldsymbol{x}_t)^{\top} \nabla f(\boldsymbol{x}_t)$$

► Choose the step size that makes the approximation equal to the known optimal value.

$$f(\mathbf{x}^*) = \hat{f}(\mathbf{x}_{t+1}) = \hat{f}(\mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)) = f(\mathbf{x}_t) - \eta \|\nabla f(\mathbf{x}_t)\|^2$$

which implies

$$\eta = \frac{f(\boldsymbol{x}_t) - f(\boldsymbol{x}^*)}{\|\nabla f(\boldsymbol{x}_t)\|^2}$$

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 釣 9 C C

Lu Yu SDSC6015 October 9, 2025 34 / 58

Example: Line Search

▶ Idea: just choose the step size that minimizes the objective.

$$\eta_t = \operatorname*{arg\,min}_{\eta > 0} f(\boldsymbol{x}_t - \eta \nabla f(\boldsymbol{x}_t))$$

- ▶ Only works well for gradient descent, not SGD.
 - SGD moves in random directions that don't always improve the objective.
 - Doing line search on full objective is expensive relative to SGD update.

Lu Yu SDSC6015 October 9, 2025 35 / 58

Adaptive Methods for SGD

Several methods exist.

- ► AdaGrad (Adaptive Gradient Descent)
- RMSProp (Root Mean Squared Propagation)
- ADAM (AdaGrad with momentum)

Lu Yu SDSC6015 October 9, 2025 36 / 58

AdaGrad (Adaptive Gradient Descent)

- ▶ Main idea: use history of sampled gradients to choose the step size for the next SGD step to be inversely proportional to the usual magnitude of gradient steps in that direction.
- Adaptive subgradient methods for online learning and stochastic optimization
- ▶ J Duchi, E Hazan, Y Singer, "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization", *Journal of Machine Learning Research*, 2011

AdaGrad

The standard AdaGrad algorithm updates each element of parameter $oldsymbol{x}$ independently with an adaptive learning rate

$$m{x}_{t+1,i} = m{x}_{t,i} - rac{lpha}{\sqrt{G_{t,i}}} m{g}_{t,i}, \quad t = 1, 2, \dots$$

where

- $lackbox{} \alpha>0, \ m{g}_t:=\nabla f_{i_t}(m{x}_t), i_t\in\{1,2,\ldots,n\}$ are uniformly sampled at random
- $lackbox x_{t.i}$ denotes the i-th element of the iterate $oldsymbol{x}_t$
- $ightharpoonup G_{t,i}$ accumulates squared gradients for each element i separately

$$G_{t,i} = \sum_{j=1}^t \boldsymbol{g}_{j,i}^2$$

lacktriangle Each element of $oldsymbol{x}_t$ has its own adaptive learning rate

Lu Yu SDSC6015 October 9, 2025 38 / 58

AdaGrad (Scalar Version)

In the scalar version, we use a single scalar learning rate for all parameters:

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \frac{\alpha}{\sqrt{G_t}} \boldsymbol{g}_t, \quad t = 1, 2, \dots$$

where

- $m{ ilde{a}} > 0$, $m{g}_t := \nabla f_{i_t}(m{x}_t), i_t \in \{1,2,\ldots,n\}$ are uniformly sampled at random
- $ightharpoonup G_t$ is the global sum of squared gradients across all dimensions.

$$G_t = \sum_{j=1}^t \|\boldsymbol{g}_j\|^2$$

lacktriangle The same scaling factor $rac{lpha}{\sqrt{G_t}}$ is applied to all elements of $m{x}_t$ uniformly

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Key Differences Between Standard and Scalar AdaGrad

Feature	Standard AdaGrad	Scalar AdaGrad
Learning Rate	Element-wise adaptive	Single global adaptive
G_t	$G_{t,i} = \sum_{j=1}^t oldsymbol{g}_{j,i}^2$ (element-wise)	$G_t = \sum_{j=1}^t \ oldsymbol{g}_j\ ^2 ext{(global)}$
Use Case	sparse and non-uniform gradient	simpler but less adaptive

Why Use Scalar AdaGrad:

- \checkmark Computationally cheaper (avoids per-element storage of G_t).
- ✓ Still provides adaptive step size decay without tracking gradients individually.
- \pmb{x} Less adaptive than standard AdaGrad, making it less useful for problems with sparse features.

Lu Yu SDSC6015 October 9, 2025 40 / 58

For simplicity, we will focus on the nonstochastic and scalar version of AdaGrad⁶

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - \frac{\alpha}{\sqrt{G_t}} \nabla f(\boldsymbol{x}_t), \quad t = 1, 2, \dots$$

where $G_t = \sum_{j=1}^t \|\nabla f(\boldsymbol{x}_j)\|^2$.

Theorem 3

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable and let x^* be the unique global minimum of f. Assume that $\|\nabla f(x_t)\| \leqslant L$. Scalar AdaGrad with $\alpha = R$ yields

$$f\left(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{x}_{t}\right) - f(\boldsymbol{x}^{*}) \leqslant \frac{3RL}{2\sqrt{T}}$$

where $R = \max_{t=1}^{T} \|\boldsymbol{x}_t - \boldsymbol{x}^*\|$.

Lu Yu SDSC6015 October 9, 2025 41 / 58

$$f\left(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{x}_{t}\right) - f(\boldsymbol{x}^{*}) \leqslant \frac{3RL}{2\sqrt{T}}$$

- ▶ We implicitly assume that the domain has bounded diameter and we know an upper bound R on the diameter.
- ► The convergence rate is the same as SGD on convex and *L*-Lipschitz functions.

4 D > 4 B > 4 E > 4 E > E 9 Q C

Lu Yu SDSC6015 October 9, 2025 42 / 58

Proof. Let $\eta_t = \frac{R}{\sqrt{G_t}}$. From Lecture 4,

$$oldsymbol{x}_{t+1} = oldsymbol{x}_t - \eta_t
abla f(oldsymbol{x}_t)$$

is equivalent to

$$\boldsymbol{x}_{t+1} = \operatorname*{arg\,min}_{\boldsymbol{x}} \underbrace{\left\{ \nabla f(\boldsymbol{x}_t)^\top (\boldsymbol{x} - \boldsymbol{x}_t) + \frac{1}{2\eta_t} \|\boldsymbol{x} - \boldsymbol{x}_t\|^2 \right\}}_{\phi(\boldsymbol{x})}$$

The first-order optimality condition (Lemma 8 from Lecture 1) gives

$$egin{aligned} \langle
abla f(m{x}_t), \, m{x}_{t+1} - m{x}^*
angle \leqslant & rac{1}{\eta_t} \langle m{x}_t - m{x}_{t+1}, \, m{x}_{t+1} - m{x}^*
angle \ & = rac{1}{2\eta_t} \Big(\|m{x}_t - m{x}^*\|^2 - \|m{x}_{t+1} - m{x}^*\|^2 - \|m{x}_{t+1} - m{x}_t\|^2 \Big) \end{aligned}$$

Lu Yu SDSC6015 October 9, 2025 43 / 58

Thus,

→□▶ →□▶ → □▶ → □▶ → □

Lu Yu SDSC6015 October 9, 2025 44 / 58

Summing up and collecting terms

$$\begin{split} \sum_{t=1}^{T} \langle \nabla f(\boldsymbol{x}_{t}), \, \boldsymbol{x}_{t} - \boldsymbol{x}^{*} \rangle & \leqslant \sum_{t=2}^{T} \left(\frac{1}{2\eta_{t}} - \frac{1}{2\eta_{t-1}} \right) \underbrace{\|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}\|^{2}}_{\leqslant R^{2}} + \frac{1}{2\eta_{t}} \underbrace{\|\boldsymbol{x}_{2} - \boldsymbol{x}^{*}\|^{2}}_{\leq R^{2}} \\ & + \sum_{t=1}^{T} \frac{\eta_{t}}{2} \|\nabla f(\boldsymbol{x}_{t})\|^{2} \\ & \leqslant \frac{R^{2}}{2\eta_{T}} + \sum_{t=1}^{T} \frac{\eta_{t}}{2} \|\nabla f(\boldsymbol{x}_{t})\|^{2} \end{split}$$

Lu Yu SDSC6015 October 9, 2025 45 / 58

$$\sum_{t=1}^{T} \langle \nabla f(\boldsymbol{x}_t), \, \boldsymbol{x}_t - \boldsymbol{x}^* \rangle \leqslant \frac{R^2}{2\eta_T} + \sum_{t=1}^{T} \frac{\eta_t}{2} \|\nabla f(\boldsymbol{x}_t)\|^2$$

Recall the update rule for the step sizes

$$\frac{R^2}{\eta_T} = R \sqrt{\sum_{t=1}^T \|\nabla f(\boldsymbol{x}_t)\|^2} \qquad \sum_{t=1}^T \eta_t \|\nabla f(\boldsymbol{x}_t)\|^2 = R \sum_{t=1}^T \frac{\|\nabla f(\boldsymbol{x}_t)\|^2}{\sqrt{\sum_{i=1}^t \|\nabla f(\boldsymbol{x}_i)\|^2}}$$

Lemma: For any positive number a_1, \ldots, a_T , we have

$$\sqrt{\sum_{t=1}^{T} a_t} \leqslant \sum_{t=1}^{T} \frac{a_t}{\sqrt{\sum_{s=1}^{t} a_s}} \leqslant 2\sqrt{\sum_{t=1}^{T} a_t}$$

Using the inequality, we obtain

$$\sum_{t=1}^{T} \frac{\|\nabla f(x_t)\|^2}{\sqrt{\sum_{i=1}^{t} \|\nabla f(x_i)\|^2}} \leqslant 2\sqrt{\sum_{t=1}^{T} \|\nabla f(x_t)\|^2}$$
SDSC6015
October 9, 2025
46 / 58

Lu Yu

Using the bounded gradient assumption

$$\sum_{t=1}^{T} \langle \nabla f(\boldsymbol{x}_t), \, \boldsymbol{x}_t - \boldsymbol{x}^* \rangle \leqslant \frac{3}{2} RL \sqrt{T}$$

Hence,

$$f\left(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{x}_{t}\right) - f(\boldsymbol{x}^{*}) \leq \frac{1}{T}\sum_{t=1}^{T} \langle \nabla f(\boldsymbol{x}_{t}), \, \boldsymbol{x}_{t} - \boldsymbol{x}^{*} \rangle \leqslant \frac{3RL}{2\sqrt{T}}$$

Lu Yu SDSC6015 October 9, 2025 47 / 58

Convergence of AdaGrad on Smooth Functions

Theorem 4

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex, L-smooth and differentiable and let x^* be the unique global minimum of f. Scalar AdaGrad with $\alpha = R$ yields

$$f\left(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{x}_{t}\right) - f(\boldsymbol{x}^{*}) \leqslant \frac{2R^{2}L}{T}$$

where $R = \max_{t=1}^{T} \|\boldsymbol{x}_t - \boldsymbol{x}^*\|$.

The proof is based on the proof of Theorem 3, which is left as a homework exercise.

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 4 0 0

Lu Yu SDSC6015 October 9, 2025 48 / 58

Convergence of AdaGrad on Smooth Functions

$$f\left(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{x}_{t}\right) - f(\boldsymbol{x}^{*}) \leqslant \frac{2R^{2}L}{T}$$

- ► The convergence rate is the same as SGD on convex and L-smooth functions.
- ▶ Usually, AdaGrad performs better than SGD in sparse optimization problems⁷, eg. Lasso regression (Lecture 4)

⁷See motivating example from [Duchi et.al. 2011]

49 / 58

Lu Yu SDSC6015 October 9, 2025

RMSProp

RMSProp (Root Mean Squared Propagation)

- ► Main idea: replacing the gradient accumulation of AdaGrad with an exponential moving average.
- ▶ Introduced by Geoffrey Hinton in his lecture on neural networks.

RMSProp

$$x_{t+1,i} = x_{t,i} - \frac{\alpha}{\sqrt{G_{t,i}}} g_{t,i}, \qquad t = 1, 2, \dots$$

where

- $m{\lambda} > 0$, $m{g}_t := \nabla f_{i_t}(m{x}_t), i_t \in \{1,2,\ldots,n\}$ are uniformly sampled at random
- $ightharpoonup G_{t,i}$ uses an exponentially decaying average

$$G_{t,i} = \sum_{j=1}^{t} \beta^{j-1} (1-\beta) \boldsymbol{g}_{j,i}^{2}$$

where $\beta \in (0,1]$ is the decay factor.

Lu Yu SDSC6015 October 9, 2025

RMSProp

Key Differences from AdaGrad:

- ► AdaGrad accumulates squared gradients over time, which can lead to very small learning rates.
- ► RMSProp uses an exponentially decaying average, preventing the learning rate from shrinking too much.

Result: RMSProp maintains a more stable and effective learning rate throughout training.

Lu Yu SDSC6015 October 9, 2025 52 / 58

Example: AdaGrad vs. RMSProp

Setting:

- ▶ $f(x) = x^4$ (one-dimensional function)
- $x_0 = 10, x^* = 0.$

Questions?

Lu Yu

▶ The midterm exam will be held in class on October 16, 2025. from 7:00 PM to 9:30 PM.

▶ It will cover material from Lecture 1 to Lecture 6 (page 31), including content from the lecture slides, notes, and homework assignments.

▶ You are allowed to use an double-sided A4 cheat sheet.

▶ Exam questions are conceptual/theoretical; no coding.

► The exam includes true/false questions, multiple-choice questions, and theoretical questions.

► The theoretical questions will require short proofs, similar to those in Assignment 1.

Lu Yu SDSC6015 October 9, 2025 56 / 58

In-person Office Hours for Midterm Exam October 15, 4:00PM-5:30 PM LAU 16/279.

References

- John Duchi, Elad Hazan, and Yoram Singer, *Adaptive subgradient methods* for online learning and stochastic optimization., Journal of machine learning research **12** (2011), no. 7.
- Mor Harchol-Balter, *Introduction to probability for computing*, Cambridge University Press, 2023.
- Laurent Lessard, Benjamin Recht, and Andrew Packard, *Analysis and design of optimization algorithms via integral quadratic constraints*, SIAM Journal on Optimization **26** (2016), no. 1, 57–95.
- Arkadij Semenovič Nemirovskij and David Borisovich Yudin, *Problem complexity and method efficiency in optimization*.
- Stephen J Wright and Benjamin Recht, *Optimization for data analysis*, Cambridge University Press, 2022.

Lu Yu SDSC6015 October 9, 2025 58 / 58