# **The Opioid Crisis**

Group 5: Ben Glicksman, Jonah Lourie, Sharon Luo, Natalie Edman

### **Research Question**

- 1. How has the opioid crisis affected Connecticut?
  - a. Opioid Prescriptions
  - b. Opioid Rehab Admissions
  - c. Opioid deaths
- 2. How does this data fit into the larger federal opioid crisis?
  - a. Federal drug overdose
  - b. Federal prescribing rates

# **CT Prescriptions Dataframe**

In [3]: CT\_Prescript\_per\_Year\_df

#### Out[3]:

|   | Year | <b>Controlled Substance Prescriptions</b> | Opioid Prescriptions | Benzodiazepine Prescriptions |
|---|------|-------------------------------------------|----------------------|------------------------------|
| 0 | 2014 | 6064563                                   | 2602050              | 1729192                      |
| 1 | 2015 | 6249637                                   | 2625042              | 1667184                      |
| 2 | 2016 | 6545550                                   | 2510702              | 1687910                      |
| 3 | 2017 | 6724447                                   | 2161959              | 1617171                      |
| 4 | 2018 | 6908152                                   | 1960988              | 1532053                      |
| 5 | 2019 | 7330910                                   | 1946427              | 1458611                      |
| 6 | 2020 | 8516519                                   | 1785575              | 1454611                      |

# Create an opioid filter

#### Out[6]:

|   | opioid_prescriptions | Year |
|---|----------------------|------|
| 0 | 2602050              | 2014 |
| 1 | 2625042              | 2015 |
| 2 | 2510702              | 2016 |
| 3 | 2161959              | 2017 |
| 4 | 1960988              | 2018 |
| 5 | 1946427              | 2019 |
| 6 | 1785575              | 2020 |

# Plot Opioid Prescriptions per Year

```
In [7]:
          #Step 3: Create a plot
          opioid filter.set index('Year').plot()
          plt.ylabel('Opioid Prescriptions (millions)')
          plt.title('CT Opioid Prescriptions 2014-2020')
Out[7]: Text(0.5, 1.0, 'CT Opioid Prescriptions 2014-2020')
                          CT Opioid Prescriptions 2014-2020
                 le6
                                                  opioid_prescriptions
             2.6
           Opioid Prescriptions (millions)
             2.4
             2.2
             2.0
             1.8
                 2014
                         2015
                                2016
                                        2017
                                               2018
                                                       2019
                                                              2020
```

Year

# Calculate percent change from 2012 to 2020

#### Out[8]:

#### opioid\_prescriptions

| Year |           |
|------|-----------|
| 2014 | NaN       |
| 2020 | -0.313781 |

A 31.4% **decrease** in perscriptions

1. Load in opioid rehab admissions by year/town DF

|     | FiscalYear | Town        | Admissions | Unduplicated Clients | TownGeo                                  |
|-----|------------|-------------|------------|----------------------|------------------------------------------|
| 0   | 2016       | Suffield    | 35.0       | 24.0                 | Suffield, CT\n(41.983549, -72.663124)    |
| 1   | 2014       | Thomaston   | 51.0       | 34.0                 | Thomaston, CT\n(41.674124, -73.073189)   |
| 2   | 2013       | Sprague     | 35.0       | 16.0                 | Sprague, CT\n(41.640692, -72.066224)     |
| 3   | 2015       | Monroe      | 83.0       | 46.0                 | Monroe, CT\n(41.331612, -73.206797)      |
| 4   | 2016       | Cheshire    | 85.0       | 50.0                 | Cheshire, CT\n(41.498834, -72.901448)    |
|     |            |             |            |                      |                                          |
| 845 | 2012       | Salisbury   | 6.0        | NaN                  | Salisbury, CT\n(41.983411, -73.422268)   |
| 846 | 2013       | Bridgewater | 7.0        | NaN                  | Bridgewater, CT\n(41.535109, -73.366386) |
| 847 | 2012       | Lisbon      | NaN        | NaN                  | Lisbon, CT\n(41.614599, -71.960584)      |
| 848 | 2016       | Goshen      | 15.0       | NaN                  | Goshen, CT\n(41.831925, -73.225323)      |
| 849 | 2016       | Scotland    | 8.0        | NaN                  | Scotland, CT\n(41.6975, -72.119465)      |

850 rows x 5 columns

- 1. Load in opioid rehab admissions by year/town DF
- 2. Clean up data

|     | year | town          | admis | undup_clients | lat       | Ing        |
|-----|------|---------------|-------|---------------|-----------|------------|
| 0   | 2012 | Andover       | NaN   | NaN           | 41.728789 | -72.370309 |
| 1   | 2012 | Ansonia       | 134.0 | 85.0          | 41.341980 | -73.078296 |
| 2   | 2012 | Ashford       | 20.0  | 13.0          | 41.871915 | -72.124128 |
| 3   | 2012 | Avon          | 8.0   | 6.0           | 41.809641 | -72.830547 |
| 4   | 2012 | Barkhamsted   | 18.0  | 10.0          | 41.927066 | -72.911918 |
|     |      |               | •••   |               |           |            |
| 845 | 2016 | Windsor Locks | 70.0  | 46.0          | 41.924953 | -72.627177 |
| 846 | 2016 | Wolcott       | 141.0 | 87.0          | 41.601588 | -72.986414 |
| 847 | 2016 | Woodbridge    | 15.0  | 10.0          | 41.352933 | -73.014356 |
| 848 | 2016 | Woodbury      | 32.0  | 21.0          | 41.545058 | -73.208654 |
| 849 | 2016 | Woodstock     | 35.0  | 17.0          | 41.950652 | -71.977285 |

850 rows x 6 columns

- 1. Load in opioid rehab admissions by year/town DF
- 2. Clean up data
- 3. Group data by yr & graph

#### **Conclusions:**

Admissions are going up



- 1. Load in opioid rehab admissions by year/town DF
- 2. Clean up data
- 3. Group data by yr & graph
- Transform data into GeoPandas DF & merge w/ CT town geodata

#### **Conclusions:**

Admissions are going up

|      | shape_area    | shape_len     | town_left | town_no | geometry                                               | index_right | town_right | admis | undup_clients | town_geo                                     | lat       |        |
|------|---------------|---------------|-----------|---------|--------------------------------------------------------|-------------|------------|-------|---------------|----------------------------------------------|-----------|--------|
| year |               |               |           |         |                                                        |             |            |       |               |                                              |           |        |
| 2016 | 438072078.45  | 86301.9757031 | Andover   | 1       | MULTIPOLYGON<br>(I)-72.32832<br>41.73850,<br>-72.32908 | 16          | Andover    | 22.0  | 9.0           | Andover,<br>GT/n(41.728789,<br>-72.370309)   | 41.728789 | -72.37 |
| 2012 | 438072078.45  | 86301.9757031 | Andover   | 1       | MULTIPOLYGON<br>(I)-72.32832<br>41.73850,<br>-72.32908 | 823         | Andover    | NaN   | NaN           | Andover,<br>CTrn(41.728789,<br>-72.370309)   | 41.728789 | -72.37 |
| 2014 | 438072078.45  | 86301.9757031 | Andover   | 1       | MULTIPOLYGON<br>(I)-72.32832<br>41.73850,<br>-72.32908 | 124         | Andover    | 9.0   | 7.0           | Andover,<br>CTvn(41.728789,<br>-72.370309)   | 41.728789 | -72.37 |
| 2015 | 438072078.45  | 86301.9757031 | Andover   | 1       | MULTIPOLYGON<br>(I)-72.32832<br>41.73850,<br>-72.32908 | 71          | Andover    | 17.0  | 10.0          | Andover,<br>GTn(41.728789,<br>-72.370309)    | 41.728789 | -72.37 |
| 2013 | 438072078.45  | 86301.9757031 | Andover   | 1       | MULTIPOLYGON<br>(I)-72.32832<br>41.73850,<br>-72.32908 | 837         | Andover    | NaN   | NaN           | Andover,<br>CTvn(41.728789,<br>-72.370309)   | 41.728789 | -72.37 |
|      |               |               | -         |         |                                                        |             |            |       |               |                                              |           |        |
| 2015 | 1719966271.12 | 166595.548744 | Woodstock | 169     | MULTIPOLYGON<br>(I)-71.96318<br>42.02619,<br>-71.95353 | 384         | Woodstock  | 19.0  | 11.0          | Woodstock,<br>CTvn(41.950652,<br>-71.977285) | 41.950652 | -71.97 |
| 2013 | 1719966271.12 | 166595.548744 | Woodstock | 169     | MULTIPOLYGON<br>(I)-71.96318<br>42.02619,<br>-71.95353 | 512         | Woodstock  | 16.0  | 14.0          | Woodstock,<br>CT/n(41.950652,<br>-71.977285) | 41.950652 | -71.97 |
| 2014 | 1719966271.12 | 166595.548744 | Woodstock | 169     | MULTIPOLYGON<br>(I)-71.96318<br>42.02619,<br>-71.95353 | 748         | Woodstock  | 18.0  | 12.0          | Woodstock,<br>CT/n(41.950652,<br>-71.977285) | 41.950652 | -71.97 |
| 2016 | 1719966271.12 | 166595.548744 | Woodstock | 169     | MULTIPOLYGON<br>())-71.96318<br>42.02619,<br>-71.95353 | 160         | Woodstock  | 35.0  | 17.0          | Woodstock,<br>CT/n(41.950652,<br>-71.977285) | 41.950652 | -71.97 |
| 2012 | 1719966271.12 | 166595.548744 | Woodstock | 169     | MULTIPOLYGON<br>(I)-71.96318<br>42.02619,<br>-71.95353 | 441         | Woodstock  | 19.0  | 13.0          | Woodstock,<br>CT/n(41.950652,<br>-71.977285) | 41.950652 | -71.97 |
|      | ws × 12 colum |               |           |         |                                                        |             |            |       |               |                                              |           |        |

- 1. Load in opioid rehab admissions by year/town DF
- 2. Clean up data
- 3. Group data by yr & graph
- 4. Transform data into GeoPandas DF & merge w/ CT town geodata
- 5. Map geodata to CT towns & compare across years

#### **Conclusions:**

- Admissions are going up
- Not much change by town from 2012 to 2016



- 1. Load in opioid rehab admissions by year/town DF
- 2. Clean up data
- 3. Group data by yr & graph
- Transform data into GeoPandas DF & merge w/ CT town geodata
- 5. Map geodata to CT towns & compare across years
- 6. Sum admissions data for further analyses of CT towns

#### **Conclusions:**

- Admissions are going up
- Not much change by town from 2012 to 2016
- Certain towns have more admissions across time



# Group the opioid deaths by year

```
In [10]: # distribution by year
         accidental_opioid_deaths_df.groupby('year').size()
Out[10]:
         year
         2012
                   257
         2013
                   356
         2014
                   449
         2015
                   593
         2016
                   803
         2017
                   898
         2018
                   901
         2019
                  1091
         2020
                  1224
         dtype: int64
```

# **CT Opioid Deaths**

```
In [7]: accidental drug deaths df.columns
Out[7]: Index(['ID', 'Date', 'Date Type', 'Age', 'Sex', 'Race', 'Residence City',
               'Residence County', 'Residence State', 'Death City', 'Death County',
               'Location', 'Location if Other', 'Description of Injury',
               'Injury Place', 'Injury City', 'Injury County', 'Injury State',
               'Cause of Death', 'Other Significant Conditions', 'Heroin', 'Cocaine',
               'Fentanyl', 'Fentanyl Analogue', 'Oxycodone', 'Oxymorphone', 'Ethanol',
               'Hydrocodone', 'Benzodiazepine', 'Methadone', 'Amphet', 'Tramad',
               'Morphine (Not Heroin)', 'Hydromorphone', 'Xylazine', 'Other',
               'Opiate NOS', 'Any Opioid', 'Manner of Death', 'DeathCityGeo',
               'ResidenceCityGeo', 'InjuryCityGeo'],
              dtype='object')
```

# Create a filter that looks at all opioid deaths

```
# Step 2: Create an opioid filter
# Note: Using the 'Any_Opioid' filter did not work since the data was not updated in this column and there was a lot of
# Therefore, I will create my own 'all_opioid' column to include all of the drugs that are considered opioids.
# Now I will create filters for all of the different opioids in this data set
heroin_filter = accidental_drug_deaths_df['Heroin'] == 'Y'
fetanyl_filter = accidental_drug_deaths_df['Fentanyl'] == 'Y'
fentanyl_analogue_filter = accidental_drug_deaths_df['Oxycodone'] == 'Y'
oxycodone_filter = accidental_drug_deaths_df['Oxycodone'] == 'Y'
hydrocodone_filter = accidental_drug_deaths_df['Hydrocodone'] == 'Y'
morphine_filter = accidental_drug_deaths_df['Morphine_Not_Heroin'] == 'Y'
hydromorphone_filter = accidental_drug_deaths_df['Hydromorphone'] == 'Y'
opiate_filter = accidental_drug_deaths_df['Hydromorphone'] == 'Y'
opiate_filter = accidental_drug_deaths_df['Opiate_NOS'] == 'Y'
```

```
# Now I will add a column that incorporates all of these filters
all_opioids_filter = heroin_filter | fetanyl_filter | fentanyl_analogue_filter | oxycodone_filter | oxymorphone_filter
# now create a new column 'all_opioids' with True/False
accidental_drug_deaths_df['all_opioids'] = all_opioids_filter
```

# Look at all drug deaths vs. opioid deaths

```
# check the shape of the two data frames
print('All drug deaths', accidental_drug_deaths_df.shape)
print('Opioid drug deaths', accidental_opioid_deaths_df.shape)
```

All drug deaths (7679, 41) Opioid drug deaths (6572, 41)

# Visualize the data: opioid deaths by year



# Look at percent change by year

```
In [12]: # clearly increasing
        # you can quantify the rate year by year with the pct change function
        # so 2016 is a 29.4% increase over 2015
        accidental opioid deaths df.groupby('year').size().pct change()
Out[12]: year
        2012
                     NaN
         2013
               0.385214
        2014 0.261236
        2015 0.320713
        2016 0.354132
        2017 0.118306
        2018
               0.003341
        2019 0.210877
         2020
                0.121907
        dtype: float64
```

# Visualize percent change by year

```
In [13]: deaths_year_pct_change=accidental_opioid_deaths_df.groupby('year').size().pct_change()

deaths_year_pct_change.plot(style='-o')
plt.title('Year by year change in CT opioid deaths')
plt.ylabel('Percent change (from previous year)')
plt.show()
```



# Federal Drug Overdose Death Data

### **Questions:**

- Have total number of deaths increased or decreased?
- Have total opioid deaths increased or decreased?
- Which states have the highest and lowest number of opioid deaths?

# **Steps**

- Load the Data
- Create two filters: one for number of deaths and opioid deaths
- Group the filtered data sets by year, sum the data, and sort
- Plot the grouped and filtered sums to see the trend of the data over time
- Group the data by state and sum to see the total number of opioid deaths

### **Load Data**

The data comes from <a href="https://catalog.data.gov/dataset/vsrr-provisional-drug-overdose-death-counts">https://catalog.data.gov/dataset/vsrr-provisional-drug-overdose-death-counts</a> and shows the different number of overdose deaths for each drug, total drug overdose deaths, and percentages of deaths with specific drugs.

Named the DataFrame od\_df

Clean Data has 41624 rows and 8 cols

|       | State Year Month Indicate                                                                       |      | Indicator                                      | Data_Value                                          | Percent_Complete | Percent_Pending_Investigation | Predicted_Value |        |
|-------|-------------------------------------------------------------------------------------------------|------|------------------------------------------------|-----------------------------------------------------|------------------|-------------------------------|-----------------|--------|
| C     | ) AK                                                                                            | 2015 | April                                          | April Natural, semi-synthetic, & synthetic opioids, |                  | 100                           | 0.000000        | NaN    |
| 1     | 2 AK 2015 April Natural & semi-synthetic opioids, incl. methad 3 AK 2015 April Number of Deaths |      | Natural & semi-synthetic opioids (T40.2)       | NaN                                                 | 100              | 0.000000                      | NaN             |        |
| 2     |                                                                                                 |      | Natural & semi-synthetic opioids, incl. methad | NaN                                                 | 100              | 0.000000                      | NaN             |        |
| 3     |                                                                                                 |      | 4133.000000                                    | 100                                                 | 0.000000         | NaN                           |                 |        |
| 4     |                                                                                                 |      | Opioids (T40.0-T40.4,T40.6)                    | NaN                                                 | 100              | 0.000000                      | NaN             |        |
|       |                                                                                                 |      |                                                |                                                     |                  |                               |                 |        |
| 41620 | YC                                                                                              | 2021 | March                                          | Cocaine (T40.5)                                     | 908.000000       | 100                           | 0.258858        | 937.0  |
| 41621 | YC                                                                                              | 2021 | March                                          | Percent with drugs specified                        | 99.063754        | 100                           | 0.258858        | NaN    |
| 41622 | YC                                                                                              | 2021 | March                                          | Natural, semi-synthetic, & synthetic opioids,       | 1853.000000      | 100                           | 0.258858        | 1914.0 |
| 41623 | yc                                                                                              | 2021 | March                                          | Natural & semi-synthetic opioids, incl. methad      | 672.000000       | 100                           | 0.258858        | 693.0  |
| 41624 | YC.                                                                                             | 2021 | March                                          | Synthetic opioids, excl. methadone (T40.4)          | 1718.000000      | 100                           | 0.258858        | 1778.0 |

### **Create Row Filters**

- Created two row filters:
  - One for total number of drug overdose deaths called "num\_deaths\_filter"
  - One for opioid overdose deaths called "opioid\_filter"

```
#create row filters
num_deaths_filter = od_df['Indicator']=='Number of Deaths'
opioid_filter = od_df['Indicator']=='Opioids (T40.0-T40.4,T40.6)

num_deaths_df = od_df[num_deaths_filter]
opioid df = od_df[opioid_filter]
```

# **Group by Year and Sum Deaths**

```
#grouping by year and summing the deaths
num deaths df.groupby('Year')['Data Value'].sum().sort values(ascending=False)
opioid df.groupby('Year')['Data Value'].sum().sort values(ascending=False)
 2020
           74011854.0
                                    2020
                                              1311148.0
 2018
           68362228.0
                                              1026757.0
                                    2019
 2019
           68048908.0
                                    2018
                                               937172.0
                                               555589.0
 2017
           67034290.0
                                    2017
                                               552054.0
 2016
           65172392.0
                                    2015
                                    2016
                                               452369.0
 2015
           64861344.0
                                    2021
                                                391396.0
 2021
           21141198.0
```





# **Group by State and Sum Opioid Deaths**

```
1 #grouping by state and summing total opioid deaths
   opioid df.groupby('State')['Data Value'].sum().sort values(ascending=False)
State
US
      3465069.0
OH
       166984.0
       107298.0
TI.
        98016.0
MD
        93749.0
CA
        92622.0
NY
        90928.0
NC
                               Connecticut has the 12th most opioid deaths for
        85345.0
NJ
                               states in this data set
        79635.0
MA
        73661.0
TN
        62762.0
VA
YC
        60343.0
AZ
        52996.0
CT
        49339.0
        46112.0
TX
KY
        45278.0
        44013.0
SC
```

# **Geopandas Map by State**

Total opioid deaths from 2015-2021



### **Conclusions**

- The total number of deaths has increased over time.
  - This can be seen by the increased in the plot of the deaths graph up until 2021, which is so because the data was taken during this year and does not represent the full years worth of data. Looking at similar data taken from the entire year of 2021 will likely show continued increase.
- The total number of opioid deaths has also increased over time.
  - The same issue with 2021 as with total deaths can be seen here.
- The states with the highest number of opioid deaths were Ohio, Illinois, Maryland, California, and New York. The states with the lowest number were Montana, South Dakota, Wyoming, Hawaii and Alaska.
  - These states make sense because large more populous states have more deaths and smaller less populous states have less deaths, with some exceptions.

#### Notes:

- Missing overdose death data for some states from some years

# **Federal Opioid Prescribing Rates**

- Used data from Department of Veterans Affairs medical centers on 2012 and 2018 opioid prescribing rates
  - Prescribing rate is the percentage of total prescriptions administered by the medical centers
- Grouping data by state, CT was the 4th lowest in 2012 with an 8.9% rate and was the 8th lowest in 2018 with a 6.5% rate. So which states have the highest rates?

| States with prescribing ra |       | OK's rate is 2.73x | States with prescribing ra | ID's rate is 2.31x |         |
|----------------------------|-------|--------------------|----------------------------|--------------------|---------|
| Oklahoma                   | 0.243 | of CT's            | Idaho                      | 0.150              | of CT's |
| Nevada                     | 0.238 | rate in            | Oklahoma                   | 0.133              | rate in |
| Oregon                     | 0.238 | 2012!              | New Mexico                 | 0.131              | 2018!   |
| Arkansas                   | 0.236 |                    | Oregon                     | 0.130              |         |
| New Mexico                 | 0.234 |                    | Montana                    | 0.127              |         |

# Federal Opioid Prescribing Rates (cont'd)

- Based on the observations, states in the Midwest/West had the highest prescribing rates → is this a national trend?
  - Question: Does longitude have an effect on the opioid prescribing rates?

(Note: Filtered out Alaska, Hawaii, Philippines, and PR)



Yes! There is a moderate negative correlation between longitude and opioid prescribing rates in both 2012 and 2018. As you move further East the rate decreases, or as you move further West the rate increases!

# **Geographic Pattern in Opioid Prescribing Rates**

 Used geopandas and US state map to plot data points, focusing on most recent data (2018 opioid prescribing rate) → visually see that prescribing rates increase further West



# Review of main findings

- CT Prescriptions have decreased from 2012 to 2020.
- CT rehab admissions are increasing.
- Accidental opioid deaths have increased from 2012 to 2020.
- Federal overdose deaths increased from 2015-2020, and opioid deaths also increased in the same time frame at a faster rate
- Connecticut has a large amount of opioid overdose deaths compared to other states
- Federal opioid prescribing rates for CT are low
  - Nationwide trend that prescribing rates increase as you move further West