

INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY

Campus Estado de México

TC2008B.302

Modelación de sistemas multiagentes con gráficas computacionales (Gpo 302)

M1. Actividad

Equipo 7

Víctor Alejandro Morales García A01749831

David Sánchez Báez A01798202

Profesor

Jorge Adolfo Ramírez Uresti

Mauricio Bezares Peñúñuri

Fecha de entrega:

8 de noviembre de 2024

1. Introducción	2
2. Descripción de la Simulación	<u>)</u>
Comportamiento de los Agentes:	
3. Recolección de Datos.	
4. Resultados y Análisis	
5. Conclusiones	
6. Enlace al Repositorio de Código	5

1. Introducción

Analizamos y crearemos una simulación de un robot de limpieza reactivo en un entorno de MxN espacios con el objetivo de estudiar el comportamiento y las estadísticas del robot, incluyendo también el tiempo necesario para limpiar cada una de las celdas, además de mostrar el porcentaje de celdas limpias al finalizar la simulación y el número de movimientos realizados por los agentes y se evalúa el impacto de la cantidad de agentes en el tiempo y los movimientos realizados.

2. Descripción de la Simulación

La simulación se lleva a cabo bajo los siguientes parámetros:

- Habitación de MxN espacios.
- Un número configurable de agentes(menor a).
- Un porcentaje predeterminado de celdas inicialmente sucias.
- Un tiempo máximo de ejecución(1 min).

Comportamiento de los Agentes:

- Los agentes comienzan en la celda [1,1].
- En cada paso de tiempo:
 - Si la celda en la que se encuentra un agente está sucia, el agente realiza la acción de aspirar.

- Si la celda está limpia, el agente elige una dirección aleatoria y se mueve a una de las 8 celdas vecinas (o permanece en la misma celda si no puede moverse).
- Los agentes no se pueden encimar (2 en el mismo cuadro)
- La simulación se ejecuta hasta que se limpie toda la habitación o se alcance el tiempo máximo.

3. Recolección de Datos

Durante la ejecución de la simulación se recopilan los siguientes datos:

- Tiempo necesario hasta que todas las celdas estén limpias o hasta el tiempo límite.
- Porcentaje de celdas limpias al finalizar la simulación.
- Número total de movimientos realizados por todos los agentes.

Estos datos serán utilizados para analizar la eficiencia de los agentes y cómo el número de agentes influye en el rendimiento de la limpieza.

4. Resultados y Análisis

Se espera observar lo siguiente:

- A mayor cantidad de agentes, el tiempo necesario para limpiar la habitación debería disminuir debido a la mayor cantidad de movimientos simultáneos y el área abarcada.
- Puede que un número muy elevado de agentes podría generar movimientos redundantes(agentes que no se mueven), lo que podría afectar la eficiencia.
- Se analizará la relación entre el número de agentes y el porcentaje de celdas limpias al finalizar la simulación.

Tabla de resultado y graficos

Agentes limpiadores	Suciedad	Tiempo (S)	pasos
3	10	47.14	121
3	20	52.17	144
3	30	86.62	241
3	40	56.6	156
3	50	65.34	185

3	60	77.64	153
3	70	62.19	174
3	80	59.82	168
3	90	85.25	231

Agentes limpiadores, Suciedad, Tiempo (S) y pasos

Agentes limpiadores	Suciedad	Tiempo	pasos
6	10	29.27	70
6	20	26.08	71
6	30	37.32	100
6	40	29.66	80
6	50	55.5	159
6	60	37.42	103
6	70	37.3	104
6	80	43.56	120
6	90	23.51	62

Agentes limpiadores, Suciedad, Tiempo y pasos

Agentes limpiadores	Suciedad	Tiempo	pasos
9	10	15.23	32
9	20	11.74	31
9	30	22.78	58
9	40	26.39	68
9	50	19.37	50
9	60	34.55	92
9	70	21.04	53
9	80	22.42	51
9	90	22.37	59

Agentes limpiadores, Suciedad, Tiempo y pasos

Las graficas colocadas arriba se pueden visualizar en: <u>Gráficas y registros</u>

5. Conclusiones

Con los resultados obtenidos, podemos concluir que agregar más agentes influye significativamente en la eficiencia de la limpieza, ya que permite completar la tarea en menos tiempo y con un menor número de pasos. Sin embargo, también es importante considerar el factor de aleatoriedad en los movimientos de los agentes, ya que su capacidad de dirigirse directamente a las zonas sucias afecta notablemente el rendimiento general.

6. Enlace al Repositorio de Código

El código desarrollado para esta simulación puede encontrarse en el siguiente enlace al repositorio de GitHub: https://github.com/A01749831/AgentesLimpiadores.git