# Analyzing Causal Relationships and Structural Effects of Cigarette Consumption on Income: Statistical and Machine Learning Approach



## Analysis Flow

- O1 Hypothesis & Objective
- **02** Data Exploration
- O3 Methodology Statistical Approach
- **O4** Methodology Machine Learning Approach
- 05 Conclusions

## Hypothesis

#### Factor Affecting Income

- 1. Cigarette consumption negatively effects income.
- 2. Education positively effects income.
- 3.Age positively effects income.
- 4. The effect of **age** on income decreases as age increases.

### Factor Affecting Cigarette Consumption

- 1. Income positively effects cigarette consumption.
- 2. Education negatively effects cigarette consumption.
- 3. Age positively effects cigarette consumption.
- 4. Cigarette price negatively effects cigarette consumption.
- 5. Smoking restriction regulation negatively effects cigarette consumption.
- 6. The effect of **age** on cigarette consumption decreases as age increases.



- To estimate the effects of various factors on income and cigarette consumption.
- To evaluate the related hypotheses.
- To **provide interpretations** of these effects to better understand the interrelationships.



## Data Descriptions

|         | Units                           |                     |  |  |
|---------|---------------------------------|---------------------|--|--|
| CigCon  | Cigarette Consumption           | Package per month   |  |  |
| YoS     | Education Level                 | Year                |  |  |
| Age     | Age                             | Year                |  |  |
| Linc    | Income                          | Ln(Million Rupiah)  |  |  |
| Sex     | Sex                             | Male/Female         |  |  |
| LCigPri | Cigarette Price                 | Ln(Thousand Rupiah) |  |  |
| CigRes  | Presence of smoking restriction | Yes/No              |  |  |



## **Exploratory Data Analysis**

✓ No missing value and no duplicate value.





# How the variables correlate each other?



- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

## Splitting Data



# Structural Equation Modeling

Statistical Approach



Analysis using the library



lavaan

in RStudio



## Assumptions Check



O.OO O.OO
Skewness p-value

Kurtosis p-value

**Assumption Violated!** 

- No Systematic Missing Data
   Assumption satisfied.
- Large Sample
   Satisfied, since the sample size is 807.
- No Multicollinearity
   Satisfied, VIF of all variables around 1.



**Normality** of RMSE

1/5

Normally Distributed

Based on Shapiro-Wilk Test

Homogeneity of Variance

**Bartlett Test** 

0.86

p-Value

## Best Model Determination

Evaluation Metrics using **RMSE** on **k-Fold Cross Validation** 

30 Folds







## Kruskal-Wallis Test on RMSE

47.6 O.00 p-Value

There's any significant difference between the models



Best Model: Model 5 with accounting for Parsimony

## Modelling

## The fifth model

- Income ~ Cigarette
   Consumption + Year of School
- Cigarette ~ Cigarette Restriction

### **RMSE**

2.001781 (Linc)6.211374 (CigCon)

| Variable      | p-value |  |  |
|---------------|---------|--|--|
| Linc~CigCon   | 0.000   |  |  |
| Linc~YoS      | 0.000   |  |  |
| CigCon~CigRes | 0.024   |  |  |

#### Structural Equation Model (SEM) Path Diagram



## Goodness-of-Fit Measurement

Chi-Square Test of GoF



**Good Fit!** 



RMSE of Approximation (RMSEA)



**Good Fit!** 

## Assumption is violated!



Even though the data fit well.

Another approach: Machine Learning method!



## Causal Inference

Machine Learning Approach





## Relationship of Variables



## Algorithm Double Machine Learning

**Linear DML** 

**Sparse Linear DML** 

**Causal Forest DML** 

## Machine Learning Algorithm Determination using PyCaret



### **Top 3 Outcome Regressor**

| Model                | MSE    | R2     | MAPE   |
|----------------------|--------|--------|--------|
| AdaBoost             | 1.1378 | 0.2879 | 1.0364 |
| Gradient<br>Boosting | 1.1677 | 0.2673 | 0.9542 |
| Linear<br>Regression | 1.1819 | 0,2580 | 1.0955 |

### **Top 3 Treatment Regressor**

| Model MSE                    |          | R2      | MAPE   |  |
|------------------------------|----------|---------|--------|--|
| Ridge<br>Regression          | 185.3285 | -0.0235 | 0.7844 |  |
| Least<br>Angle<br>Regression | 185.4286 | -0.0240 | 0.7849 |  |
| Linear<br>Regression         | 185.4286 | -0.0240 | 0.7849 |  |

## Best Model Determination

Evaluation Metrics using **RMSE** on **k-Fold Cross Validation** 

30 Folds

Homogeneity of Variance

Levene Test

0.91

p-Value

Normality of RMSE

ALL

Normally Distributed

Based on Shapiro-Wilk Test



## ANOVA Test on RMSE

No significant difference between the models



Best Model: Linear Double Machine Learning with mean RMSE of 1.034



## Linear DML Summary

#### Coefficient Results

|     | point_estimate | stderr | zstat  | pvalue | ci_lower | ci_upper |
|-----|----------------|--------|--------|--------|----------|----------|
| YoS | -0.002         | 0.001  | -2.383 | 0.017  | -0.004   | -0.0     |
| Age | -0.0           | 0.0    | -1.488 | 0.137  | -0.001   | 0.0      |
| Sex | 0.023          | 0.009  | 2.695  | 0.007  | 0.006    | 0.04     |

#### CATE Intercept Results

|                | point_estimate | stderr | zstat  | pvalue | ci_lower | ci_upper |
|----------------|----------------|--------|--------|--------|----------|----------|
| cate_intercept | -0.022         | 0.019  | -1.181 | 0.238  | -0.058   | 0.014    |

- Only Year of School and Sex significantly impact Income.
- YoS is negatively correlated to Income and Sex is positively correlated to Income.
- Treatment (Cigarette Consumption) effect is not significant.

## **SHAP Values**





## Conclusions

Based on RMSE value, Linear DML performs better than Structural Equation Modeling. Relationship between variables:

### **Based on Structural Equation Modeling:**

- Year of School positively correlate Income
- No Cigarette Restriction tends to make Cigarette Consumption higher
- Cigarettte Consumption negatively correlate Income

#### **Based on Linear Double Machine Learning:**

- Age negatively correlate Income, but unsignificant
- Male tends to have higher Income
- Year of School negatively correlate Income
- Cigarette Consumption negatively correlate Income, but unsignificant

This make more sense!



# Thank You

#### canva link:

https://www.canva.com/design/DAGTH5-FU2w/evK1qVNIGiGssb-qeF7Jtw/edit?utm\_content=DAGTH5-

FU2w&utm\_campaign=designshare&utm\_medium=link2&utm\_source=sharebutton