关系理论

1、函数依赖

- (1) 非平凡的函数依赖: X→Y, Y∉X
- (12) 平凡的函数依赖: X→Y, Y∈X

无特殊说明下,均讨论非平凡的函数依赖。即X可以推出Y,但Y不是X的亏集。因为一般某个集合总能推出其亏集(这种情况就是平凡的函数依赖),没啥用。

- (3) 完全函数依赖: X→Y, 并且对于X的任意真方集X', 都有X→Y。则积Y完全函数依赖于X。论作X上Y。
- L4)部分函数依赖:Y不完全函数依赖于X。记作X户Y。例如A→C,又有AB→C,那么C就是部分函数依赖于AB的,这种情况会造成数据冗余。

2、码

(1) 核选码: 是一个属性组 (或者属性), 通过该属性组能推出所有的属性, 并且该属性组的任意方集都不能再推出所有属性 3。即在满足完全函数 依赖的前提下, 还得是最小的属性组。

求所有候选码的方法:

例:集合U=9A,B,C,D,E,G3。函数依赖集F=9AB→C,CD→E,E→A,A→G3 【Ster】】

找出一定属于候选码的属性,可能属于候选码的属性,以及不属于候选码的属性。方法如下:

一定属于候选码的属性: 只出现在左边, 或者左右都没出现

可能属于恢选码的属性:左右都出现 (BD)== BD X

不属于核选码的属性: 只出现在右边 $(ABD)_F^{\dagger} = ABDCEG = U V$ 【例题分析】 $(BCD)_F = BCDEAG = U V$

只出现在左边的是B和D,没有左右都没出现的属性,所以BD一定是属于候选码的属性。 $(BDE)_F = BDEAGC = UV$

左右都出现的有A, C, E, 因此这三个是可能属于候选码的属性, 即待定的备选。

只出现在石边的有G, 因此G是不属于候选码的属性, 可以不管了。

Ister 2]

先对确定的属性求闭包, 若不能构成候选码, 再将确定的属性和待定的属性进行组合, 做闭包运算, 直到得到的属性组能够推出全部的属性。

闭包运算:

若要求某属性组的闭包, 首先设有集合X, 令X=f该属性组j。

X凹自身

X"=X"中的属性所能推出的

当X"不等于X"时,X">X"中的属性能所推出的

依次类推…直到X⁽ⁿ⁾U或者X⁽ⁿ⁾就求得了属性组的闭包 (X)⁺。

【例题分析】

根据stepl的分析,一定是候选码的为BD。可能是候选码的有A、C、E。

于是先对BD求闭包 (这里可求得BD推不出全部的属性),因此再分别对BDA,BDC,BDE进行闭包运算,看其是否能得到全部属性。如若不能,再增加如BDAC,BDAE之类的组合,直到求出候选码为止。

以BDA为例: 设X=9BDA3

X(0)=BDA

X(1)=BDACG

··X"*X",有X°=BDACGE

因此 (BDA)产为U, 所以 (BDA)产是候选码

全部进行完闭包运算后,可知集合U在F下的候选码为f(BDA), LBDC), LBDE)引

- (2) 超码:能推出所有属性的属性组的集合,根据概念可知,候选码是极小的超码集,是超码的方集
- (3) 主码: 当有多个候选码时 (如例题那样), 挑出一个作为主码, 简称码
- (4) 主属性: 包含在任何一个候选码中的属性, 如例题中ABCDE都是主属性
- (5) 非主属性:不包含在任何一个核选码中的属性,如例题中的G
- (b) 外码: 关系模式R中, 若有一个属性或属性组X, 它不是R的码, 但X是另一个关系模式S中的码, 积X是R的外码
- (7) 全码: 最极端情况下, 整个属性组都是码, 积为全码

3、 港式

(1) INF: 所有属性都是不可分割的数据项

如果某个属性,例如学校,还可以继续拆分为高中和大学,就不满足INF3。 INF是关系数据库需要满足的最低要求

(2) 2NF: 在满足INF的前提下,不包含非主属性对码的部分函数依赖 (即每一个非主属性都完全函数依赖于码)

例如在关系R中,码是学号和班级,非主属性是姓名,因为通过学号就能直接 推出姓名3,不需要班级,此处姓名就部分依赖于码3,不满足2NF

(3) 3NF: 在满足2NF的前提下,不包含非主属性对码的传递函数依赖 L即码应该直接决定非主属性,不能间接决定)

传递函数依赖: 若X→Y, Y→Z, 且Z≠Y, Y→X, 有X→Z, 此时积Z对X有传递函数依赖。

例如在关系R中,码是客户此名,非主属性是订单编号和订单负责人,通过客户批名可以推出他的订单编号,再通过订单编号能推出订单负责人,这种情况下客户此名和订单负责人是间接决定的,存在传递函数依赖,不满足3NF(4)BCNF:消除任何属性对候选码的传递依赖,即每一个决定因素都包含码,表现为在函数依赖集当中,左边的都包含候选码(整个属性组!)(5)4NF(应该不考这个):不允许有非平凡且非函数依赖的多值依赖多值依赖(个人理解,仅供参考,我觉得不会细考):X,Y,Z属于集合U,且Z-2U-X-Y。 与给定一组(α、2)值的时候,可以确定一组Y的值,但这组Y的值仅仅取决于α,此时有X→→Y。 其实这里就是存在了一对多的关系,即一个α和一组2有关,但α并不能唯一确定一个2,通过α和2能找到一组y,但你只通过α也能确定y。

平凡的多值依赖: 2是空集

非平凡的多值依赖: 2不是空集

判断方法与分解方法:

R为fA, B, C, Di

2NF (没有部分函数依赖): 若码是AB, F中若为 (A→C, AB→D3, 对于C, 只需要A就能推出,那么C部分函数依赖于码AB, 这种情况就不是2NF。

若要分解为2NF, 只需将不符合要求的拿出来, 即分为R,fA, B, Dj和R,fA, Cj

3NF (没有部分函数依赖与传递函数依赖): 若码是AB, F若为fAB→C, C→Dj,

这里不存在部分函数依赖。但是对于D,需要A 供送品数位的 ZAD 不满足 ZAIE

传递函数依赖于AB,不满足3NF。

若要分解为3NF,同样将不符合要求的拿出来

BCNF (没有部分函数依赖,同时每一个决定因

连推出D, 那么D

C3和R 9C, D3.

老R是 (A, B, C), F是fAC→B, AB→C, B→Cf, 候选码则是AC和AB。这里不存在部分函数依赖, 但对于B→C来说, 决定因素B不包含码, 因此它不是BCNF。

4、最小函数依赖集

求最小函数依赖集的方法

step 1: 拆分右侧

例如将A→BC拆为A→B和A→C

step 2: 去除自身求闭包

若有有AB→C, BC→E, AE→G, 去除AB自身能推出的C, 基于剩余的依赖关系求AB的闭包, 若AB通过剩余的关系也能求出C, 那么删除AB→C这个依赖关系

step 3: 左侧最小化

例如目前保留的关系有ABC→D,观察左边的ABC与中,A是否能由BC推出,B是否能由AC推出,C是否能由AB推出。假设C能被AB推出,那么左侧去排C,更新为AB→D。

例:设F=9C→A, CG→BD, CE→A, ACD→B3, 求最小函数依赖集。

step 1:

将CG→BD拆分为CG→B和CG→D。

step 2:

 $LC_F^{\dagger}=C$,因此保留 $C\to A$ 。 $LCG_F^{\dagger}=CGADB$,因此去掉 $CG\to B$ 。 $LCG_F^{\dagger}=CGA$,因此保留 $CG\to D$ 。 $LCE_F^{\dagger}=CEA$,因此去掉 $CE\to A$ 。 $LACD_F^{\dagger}=ACD$,因此保留 $ACD\to B$ 。 step 3:

C→A已经是最小。CG→D已经是最小。ACD当中、C可以推出A、去掉A、更新为CD→B。

因此,本题的最小函数依赖集为℃→A, CG→D, CD→BJ。

5、模式分解

- (1) 模式分解的准则:无振连接、保持函数依赖
- (2) 无损连接: 分解后再次自然连接, 与分解前相同

判断无损连接的方法

step 1: 画表格。列表示所有的属性,有多少属性就画多少个属性列。行表示分解后的关系,有几个关系就画几个关系行。

step 2: 根据每一行关系进行判断。找到关系中的每个属性对应第几列,并在相应的位置上标为aj,下标,是表格里的列数。其余关系中不存在的属性则标为bij, i)是表格对应的行数和列数。

step 3: 依次对函数依赖集里的各个依赖关系进行考察。例如有XY→Z。在属性列中找到X和Y,观察X和Y的行列上是否有相同的标论(b的下标要相同)。若有,则查看它们对应在属性列Z上的各个标论。其中若有aj,则将属性列上的这些标论全部改为aj。若没有aj,则找到i值最小的bij,将这些标论全部改为bij。step 4: 仅复执行以上操作,直到某一行全部变为a为止,则表明具有无损连接性。否则不具有无损连接性。

例: F=9A→C, C→D, B→C, DE→C, CE→A3。分解为R, LAD), R₂LAB), R₃LBC), R₄LCDE), R_rLAE)。

ste	p 1:1	围表	格			ste	p 3:1	更新	表柱	2 7		ste	p 4:1	反复	更新	1表书	2 D
	A	B	C	D	E		A	В	C	D	E		A	В	C	D	E
				ay		R,	(a_1)	b_{α}	b13	ay	ρ'n	R,	a,	b ₁₂	(by)	ay	Pir
Rz	۵,	az	bzs	b24	pre	A-C R2	α_{i}	az	b 13	b24	pst C→D	Rz	a,	az	(b ₃)	ay	p=2
R3	P31	az	az	P3k	P32	Rz	P3)	az	az	b 34	bst	Rs	P31	az	(Az)	ay	Pic
Ry	b_{4l}	Ь42	az	αφ	as	R ₄	b4,	byz	az	αγ	as	R_{\star}	\mathcal{F}_{φ_l}	b_{ω}	(A3)	ay	ar
Rs	a	bsi	P23	Pra	aj	Rs-	(A)	bsz	b13	bog	a _s -	R _r	aı	Pr	(bis)	aγ	as
1		1. K	<u> </u>	r # +	·O			/ L	, <u>, , ,</u>	• •	LA		, ,	<u> </u>	<u>``</u>	セル	$\frac{1}{2}$

step 4:仅复史新表格 step 4:反复更新表格 step 4:反复史新表格 a, bo bo pie a ba ba pa R, a, b0 b13 a, Pre DE→C bzs CE→A Rz a, R_{2} α_1 α_2 α_3 $\alpha_2 \quad \alpha_3$ α_z α_s ay b3/ (a2) a3 R_z Rz bz az az a₂ Δ, ax Aγ as \az/ Rs a bis pr Ri Pr Aγ Rs Pr az a ab ay as

		$\stackrel{\cdot}{\longrightarrow}$																		
	ste	p 4:1	又复	吏亲	F表书	2		ste	p 4: 1	反复	吏弟	F表书	ک آ		ste	p 4:1	又复	更新	1表程	2
		A	В	C	D	E			A	В	C	D	E			A	В	C	D	E
	R,	(a ₁)	ba	az	ay	pir		R,	a	b_{α}	a,	ay	Pie		R,	a,	b_{α}	a3	ay	pir
A→C	R_{z}	(a_1)	az	aiz	Aφ	b ₂ s	C -D	R_{z}	a,	az	a ₃	Ay	Pzs	ByC	R ₂	α,	az	a ₃	Ay	p52
	R3	P31	az	az	a_y	p ^s C	没有	R ₃	p31	a ₂	az	Ay	-	没有	R3	P31	a ₂	a,	a _y	p ^s C
	Ry	(a,)	bu	a ₃	Ay	as	更新	R_{4}	۵,	bu	az	Aφ	as	更新	R ₄	α,	bys	az	Ay	ar
	R_{f}	(a_1)	Pr	a 3	ay	۵5		R _s	aı	Pr	Q3	α¥	as		Rs	aı	Pr	az	ay	as
	ste	p 4:1	反复	吏弟	F表木	2		ste	p 4:	反复	更新	 沂表木	 }		ste	y 4:	反复	更新	斩表木	各
		A	В	C	D	E			A	В	C	D	E			A	В	C	D	E
	R_1	a,	ba	a ₃	a,	Pir		R_1		ba	a ₃	ay	pır	三轮	R	a	ba	A 3	a	- pir
DE→C	R_{Σ}	α,	az	Δ ₃	α_{φ}		CE→A			az	Δ ₃	- ο _φ	Pzc	扫描	1 R2	α,	az	Δ3	α 4	- b25
没有	,	P31	α ₂	a,	Ay		没有	,	P31	a ₂	α,	a _y	p _{sc}	没有	R ₃	P31	a ₂	a,	Ay	- b _{sC}
更新		~ */- a,	b _{sa}	α_{i}	Α,		更新		.1	b ₄₂	ω ₃ α,	a.	مر	更新		<u>γ</u>	Ьи	α,	Α,,	- v.
	Rs	a	bsi	az	ay	as		R _s	'	b _{sr}	,	·	ar		Rs	a ₁	p ^{2r}	> 	a y	_ as
		不终.					为a的				分分	_a, 解不_		无报			- 75			_
							, 界持无										光)			_
		月属					がほと,										19/			_
	stej	· : ₹	求出	最八	\ 函拳	饭饭	赖集员	min								•				_
	•						中永在		才出	现芒	1的,	属性	, 准	其分	为-	一个	集台	> 7		_
	•						min中没													_
							个依束										四):	均划	分到	_
	•						相同的												70 70	_
							D→E,							1 10 1	7,7		- Ar	<i>y</i> .		_
							, 若1		-			•		1D. 12	月色	XD 1	李俊	洗码	分为	_
	- 対		1 101	'mın ^r	11%	<u>(</u> , , , ,	1 101	X 20	-	, J	~ ,,	× 1	<i>U</i> , <i>V</i>	701 7	1 1	1)(1)	112		<i>77</i> 77	_
			 :ボレ ·	加加	无洗石	吕为	ADG,	可力	山其	* #	1, ID	古 名	公 光		因此	v,	 か! ひ	i	 个	
		12 L 2 12 DG3.		WM1 1	x <11 1	<u> </u>	1 1 1 1 1	7/ 1	ソソ	1-1	1 110	117	N X	1 1	14111	VH	47 Z	/	<u>1 %</u>	_
	•			151 15	n †	1旦	收.651+	協コ	1 /2	及为	3C2 C	VD C 2 .	SDEZ	SADO	7					_
	ガ	/ Z(\bar{\chi})	7 191	177	W, L	大取	终的扩	实习	刀片	17 /7'	14 J 1/	16V]	1 <i>V D</i>]	14111	1		:			_

关系语言

1、关系代数语言

(1) 集合运算符 (设有关系R和关系S)

升U: R升S, 即由属于R或S的元组构成, 同时去掉重复的元组

差-: R差S, 即由属于R但不属于S的元组构成

交∩: R交S, 即由胍属于R又属于S的元组构成

笛卡尔·· 即由R中的每个元组与S中的所有元组进行组合

(2) 关系运算符

选择6:得到表中的指定行,写作6条件(表名)

投影心:得到表中的指定列,写作心则名 (表名),投影后要去除重复行

连接N:将两个表根据指定条件连接在一起,写作RMS

等值连接是指条件为属性R.A-S.B

自然连接是指条件为属性R.A-S.A, 并且要去掉重复列, 写作R SX

悬涉元组是指自然连接时由于S中不匹配而在R中被舍弃的元组

外连接是指保留悬汚元组的连接,不匹配的位置填NULL,写作™

左外连接是指只保留R中悬涉元组的连接,写作IN

石外连接是指只保留S中悬汚元组的连接, 写作区

烷→: 设R和S除运算的结果为T,则T包含所有在R中但不在S中的属性和值,且T的元组与S的元组经过组合均能出现在R中

1311:

R S R÷S

ABC BC R A

a, b, cz b, cz d, a

ar b3 c7 b, c, d,

as by ch be code

a, bz cz

ax bic ci az中虽然也出现了S中的bicz,但是az与S中其余的bicz和bici的

az bz cz 7组合并没有出现在R中

as be co

K	2.	12 14	127	BZ	+a	:t
大	水	代数	脚	RY.	KI	TU

(1) 常规题 (求某几个属性特定值)

格式一般为兀 (6 (表名∞表名))

(2) 除运算(求满足某属性全部值的其他属性)

这种题是指求是满足B表某属性全部值的在A表上的其他属性。这是除运算的特性,因此在出现"全部"二字时,需要用除运算完成。通常分别对A和B做投影运算,再对生成的方表进行除运算。

A中包含属性 α 和y,B中包含属性y,且B中属性y的值为全集且无重复,求全部y的 α 写作: $T_{\alpha, \, \gamma}(A) = T_{\gamma}(B)$

例如A表为学生选课表(属性包括学号和所选的课程),B表为课程信息表 (属性包括课程),求选3全部课程的学生学号。全部课程只在B表出现, 学号只在A表出现。于是先全选A表的学号字段和课程字段,再全选B表的课程字段,将二者相除: Tugg (B) + Tugg (B)

(3) 差运算

例:有学生表SC,包含属性姓名、成绩,求没有任何一门课程低于80分的学生的姓名。

周路: 可以先求有课程低于80分的学生姓名, 再用全表相减。

Tunalsc)-Tunalondon (SC))

2. 元组关系演算语言

- (1) 元组演算表达式: ft | Ø(t)j, 其中t是元组变量, Ø(t)是公式, 它由原 方公式和运算符组成。
- (2)原专公式
- 1、R(t) 表示t是关系R中的元组

- 2、tlitθμ[j]表示元组t的第i个分量和元组μ的第j个分量满足比较关系θ
- 3、tlijAc或oltlij表示元组t的第i个分量和常量c满足比较关系的
- (3) 运算符 (按优先级从高到低书写)
- 1、比较运算符: >><
- 2、量词运算符:包括3和V。其中3的优先级大于V
- 3、逻辑运算符:包括¬和Λ和V。其中¬的优先级大于Λ, Λ的优先级大于V 关系代数语言和元组演算语言的转换:

(1) 并

RUS = 9 t | RLt) VSLt)3

(12) 亥

 $RNS = 9 + 1 R(t) \Lambda S(t)$

しろ)差

 $R-S = 1 + 1 R(t) \wedge \neg S(t)$

(4) 笛卡尔积

 $R \times S =$ $f t^{(a+m)} | L_{J}u^{(n)} \rangle L_{J}u^{(m)} \rangle R | L_{J}u \rangle A | L_{J}u \rangle$

At[n+m]=v[m] 3

其中R有n个属性,S有m个属性,根据笛卡尔积的定义,t的目数为n+m (即有n+m个属性)

(5) 投款

Toilis, ..., it (R) = 9 to (B) (B(n) At[]]=n[i]] At[k]=n[ik]3

表示最终需要k列,因此t的目数为k。选取中间变量n、令n为R中的全部元组,令结果集t的第一列为R中需要的第一列(即il),最后一列k列为R中的让列

(b) 选择

6 (R) = 9 t | R(t) 1 F' 3

F是选择条件, F'是F等价代换后的元组演算表达式

例题:

1、 查询Student表中IS系的全体学生, 其中学生所在系为第五列属性。

Sis = 9 t | Student(t) 1 tl5]='IS' 3

上式表示设结果集为SIS,其中的元组t满足条件·t属于Student表且第五列为
IS.
2、 查询Student表中学生的姓名和所在系, 其中姓名为第二列, 所在系为第
五列。
S, = 9 to () (3m)(Student(n) 1 til)=niz] 1 tiz]=nis]) 3
上式表示设结果集为S, 其中的元组t有两列属性,这两列属性满足条件:
设有元组n, n是Student表中的元组,结果集的第一列(即tīl])为Stusent表
的第二列(即n[2]),钱果集的第二列为Student表的第五列。
解题格式:
首先设结果集 (例如设为S), 会其中的元组为t。若题目中指明了需要哪些
属性时,需要标注t的目数。当需要用量词运算符时,论得前后用括号括起
来。各条件之间一般用交运算。在元组表达式中, 论得首先要指出所设元组
属于哪个关系。
S=9t (量词运算) (指出元组所属的关系A元组需要满足的条件) 引
补: 把不产生无限关系的表达式称为安全表达式,所采取的指施称为安全指
施

事务调度

1、事务调度的准则

(1) 一组事务的调度必须保证:

包含3所有事务的操作指令;一个事务内部的指令顺序必须保持不变

(2) 并行事务调度必须保证:

可导性化,将所有可能的导行调度结果推演一遍,对于某个具体的并行调度再执行一遍,看是否能与某个串行调度的结果相同

(3) 判断可事性化的充分条件:冲突可事性化 (冲突可事性化一定是可事性化调度,但可事性化调度不一定是冲突可事性化)

冲突操作:不同事务对同一数据分别进行读和写;不同事务对同一数据分别进行写和写

冲突可导性化调度即不交换不同事务的冲突操作次序,也不交换同一事务的两个操作的次序。但可以交换不同事务对不同数据各种操作次序,也可以交换不同事务对同一数据的读取操作次序

2、封锁

(1) X锁: 写锁, 某事务对数据对象上锁后, 可读取和修改该数据对象, 其他事务不可再对该数据对象添加锁

表示方法: 上锁Xlock() 释放锁Unlock()

(2) S锁: 读锁, 某事务对数据对象上锁后, 可读取但不可修改该数据对象, 其他事务可以对该数据对象添加S锁, 但不能添加X锁

表示方法: 上锁Slock() 释放锁Unlock()

(3) 封锁协议

- 一级封锁协议: 写前加写锁, 事务结束释放写锁; 可防止丢失修改
- 二级封锁协议:写前加写锁,读前加读锁,读完辩放读锁,事务结束辩放写锁;可防止丢失修改和读脏数据

三级封锁协议 (常用:支持一致性维护): 写前加写锁, 读前加读锁, 事务 结束释放各锁; 可防止丢失修改、读脏数据和不可重复读

如果所有事务均遵循三级封锁协议,由于其隔离级别高,那么这些事务无论 怎样交叉并行,都是可串性化的调度

(4) 两段锁协议 (2PL)
三级封锁协议可以保证并发操作的正确性, 但由于其太过严苛, 对并发度
有负面影响。三级封锁协议实际是两段锁协议的特例,是更严格的两段锁
协议
两段锁协议要求: 事务在对任何数据进行读写前, 需要获得对该数据的封
锁;而当事务在释放任何一个封锁后,不可再获得任何其他封锁
事务遵循两段锁协议是可串性化的充分条件,遵循两段锁协议是可能发生
死锁的
—————————————————————————————————————
7
草稿本

数据库设计

	98 10 14 18 11
١,	画E-R图 L概念结构设计)
	実体:
	关系:
	属性: 注意: 实体和关系都可以具有属性
	对 联系: 个A对应 个B A / B
	对n联系: 个A对应n个B
	n对 n 联系: n 个A对应 m 个B
	E-R 图转换为关系模型 (逻辑结构设计)
	第一步: 将各个家体的名字转换为各个关系模式的名字
	第二步: 实体的属性就是关系的属性, 实体的码就是关系的码
	第三步: 实体间联系的转换
	1对1联系:在任意一方加入对方的主码并设为其外码,并加入联系
	本身的属性
	对n联系:将 方的主码加入n方作为外码,并同时将联系的属性加
	入n方
	n对m联系:将联系本身转换为一个关系模式,将联系双方的主码加
	入其中设为码,并将联系的属性也加入其中