1978 STEREO FM TUNER BUYING DIRECTORY

Build "CHARGE!" — a 12-V DC Electronic Bugler

How a Spectrum Analyzer Works

Plus

Direct-Disc Revolution + Exploring Computer Bus Lines + Read/Write Memory Experiments + Audio Loudness Controls + Lou Garner's **Annual Electronics Predictions**

ectronic

A roundup of latest microprocessor-based video and nonvideo electronic games sweeping the nation.

Retailers: Notice of display-allowance plan s within last three pages

TESTED THIS ISSUE:

Yamaha Model 2020 AM/Stereo FM Receiver Optonica Model RT-3535 Stereo Cassette Deck dbx Model 128 Dynamic Range Enhancer E.F. Johnson Viking 4360 CB AM Mobile Transceiver

The Cobra 50XLR CB has it all. AM/FM Stereo. Cassette. And CB. All in one compact unit. All engineered to bring you the same loud and clear sound Cobra is famous for.

The remote mike houses the channel selector, squelch control, and channel indicator. So all you need for talking CB is right there in your hand. The cassette player features through the dial loading and four-way fader control.

Because they're only five inches deep, there's a Cobra in-dash radio to fit almost any car with little or no modification to the dash. This feature, plus the step-by-step Installation Manual and Universal Installation Kit makes them the easiest in-dash radios to install. And our Nationwide network of Authorized Service Centers makes them the easiest to service.

There are four Cobra in-dash models to choose from including AM/FM/Stereo/8-track/CB. But no matter which you choose you can be sure of getting the best sounding radio going. The ultimate car radio.

The Cobra.

Obrae

Punches through loud and clear.

Cobra Communications Products
DYNASCAN CORPORATION

6460 W. Cortland St., Chicago, Illinois 60635

Write for color brochure

EXPORTERS: Empire • Plainview, NY • CANADA: Atlas Electronics • Toronto
Subject to FCC type acceptance

CIRCLE NO. 50 ON FREE INFORMATION CARD

THE ULTIMATE CAR RADIO.

Home B 000 Pressure computer

A new space-age measuring system lets you easily check your blood pressure quickly and accurately without a stethoscope.

The new Astropulse 10 lets you quickly read your blood pressure without a stethoscope and without even rolling up your sleeve.

The system is based on three micro-electronic circuits and a microphone transducer. The microphone picks up pulses in your artery, and the integrated circuits measure the pulses and relay this information to a meter which visually displays your two blood pressure readings. There is no expensive stethoscope required, no guesswork or complicated steps to follow.

EASY TO USE

Taking your own blood pressure is quite simple. Just stick your hand through a selftightening velcro cuff, slide the cuff up your arm, pull the tab and attach the tab to the velcro material. The tab will stick automatically without loosening. Then squeeze the rubber bulb to inflate the cuff, and take your blood pressure readings.

When a doctor reads your blood pressure, he uses his skill and a stethoscope to recognize your systolic and diastolic readings. Now a computer can do this in the convenience of your home and on a regular basis.

The Astropulse 10 also flashes an LED signal and an audible tone at the two blood pressure readings to assist the hard-of-hearing or those with poor eyesight.

DOCTORS ENCOURAGE USE

Knowing your correct blood pressure is very important. Statistics show that as many as 25 million Americans suffer from hypertension, yet only half know about it. Hypertension results in high blood pressure, and high blood pressure usually goes unnoticed until other symptoms of hypertension occur-often too late to correct.

The Astropulse 10 is so easy to use that it encourages regular blood pressure monitoring -exactly what doctors recommend. Even if your health has been perfect, hypertension and blood pressure can occur at anytime.

SOLIDLY BACKED

The Astropulse is powered by a readilyavailable 9-volt battery supplied with each unit. The Astropulse uses solid-state electronics so service should never be required. But if service is ever required, JS&A's prompt

The Astropulse 10 was designed to take your own blood pressure in the privacy of your home. The cuff is easily tightened with the self-tightening bar and the velcro material. Just pull the flap and attach it to the cuff.

The entire blood pressure kit fits nicely in the carrying case supplied free with each unit. The carrying case measures 3½"x 4"x 7" and the entire system weighs only 20 ounces.

service-by-mail center is as close as your mailbox. JS&A is a substantial company selling advanced space-age products directly to consumers for over a decade-further assurance that your modest investment is well protected.

To order your Astropulse 10, simply send your check for \$69.95 plus \$2.50 for postage and handling (Illinois residents add 5% sales tax) to the address shown below, or credit card buyers may call our toll-free number below. By return mail, you'll receive your Astropulse 10 complete with a 90-day limited warranty, carrying case and blood pressure record book.

TEST IT YOURSELF

When you receive your monitor, see how easy it is to slip the cuff on your arm, tighten and inflate. See how easy it is to read. If for any reason you are not absolutely pleased with your unit, return it within 30 days for a full refund, including your \$2.50 postage and handling. There is no risk.

Space-age technology has made it easy to know your own blood pressure. Order an Astropulse 10 at no obligation today.

In Illinois call (312) 498-0900 ©JS&A Group, Inc., 1977

(312) 498-6900

H ANALOG DELAY

INTRODUCING... TWO-CHANNEL ANALOG DELAY UNIT SYNTHESIS AND DELAY EFFECTS FOR AMBIENCE

FEATURES

- *TWO INDEPENDENT CHANNELS
- * 3072 STAGES OF DELAY PER CHANNEL
- * ADJUSTABLE INPUT AND OUTPUT LEVELS WITH INPUT OVERLOAD INDICATION
- * INTERNAL OR EXTERNAL VOLT-AGE CONTROLLED DELAY TIME
- * COMPANDOR IN EACH CHANNEL
- * 3 MODES/CHANNEL WITH ADJUST-**ABLE MIX**
- * CONVENTIONAL REVERB OUTPUT FOR MUSIC EFFECTS

it, stereo in your living room is flat and speakers can be of very modest perfor- instructions and application notes.

bucket-brigade semiconductor techno- pose. logy has made it possible to offer a reaambience system that is capable of creat- must be user supplied. ing the kind of 'space' you enjoy music

2 dimensional. Without the mixture of di-mance and yet still serve to create rect and delayed sounds that a large hall strikingly realistic spaciousness in your provides, almost all music reproduced in listening room. If you don't have 2 extra the home is lifeless. Quadraphonics has power amp channels on hand, we offer not proved to be the solution to this several low cost, low power amps in kit problem. The recent developement of form that would be ideal for this pur-

Although the 2AS-A has been desonably priced delay unit that can trans- signed for use in music reproduction form your listening room into a con-systems as an ambience synthesizer, its cert hall. Using your present stereo voltage controlled clock and mixing capasystem, the 2AS-A, and whatever you bilities allow it to be configured in a have in the way of 2 additional speakers number of ways for delay effects such as and 2 channels of power amplification phasing, flaging, chorous, and vibrato, Exyou have all the parts to put together an ternal voltage control for special effects

The 2AS-A is sold in kit form only If you haven't heard what analog in. You don't need state-of-the-art com- and includes the circuit boards, comdelay can do for home music reproduc- ponentry to enjoy an ambience system. ponents, chassis (11½" x 10" x 4"), tion, you're missing something. Let's face The secondary power amplifiers and cover 120VAC power supply, assembly

2AS-A Analog Delay Unit \$250.00 ppd. Cont. U.S.

Southwest Technical Products Corp.

219 W. Rhapsody, San Antonio, Texas 78216

London: Southwest Technical Products Co., Ltd. Tokyo: Southwest Technical Products Corp./Japan

Enclosed is \$ or B.	AC #
or Master Charge #	Bank #Expire Date
NAME	
ADDRESS	
ITY	STATEZIP
SOUTHWEST TECHN	ICAL PRODUCTS CORPORATION San Antonio, Texas 78284

pular Electronics®

VOLUME 13, NUMBER 1

WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE

Coming Next Month

BUILD A LOW-COST EPROM PROGRAMMER

NO CAMERA / NO CHEMICAL PRINTED-CIRCUIT BOARDS

MODERN TURNTABLE DESIGN

TEST REPORTS Garrard GT-25 Turntable Sherwood Micro CPU / 100 Stereo FM Tuner Ten-Tec Century / 21 CW Transceiver

Electronic games on the cover include: Fairchild's Video **Entertainment System** (upper left); Mattel ElectronicsTM Football (upper right); and Parker Bros. Code Name: SectorTM.

POPULAR ELECTRONICS, January 1978, Volume 13, Number 1, Published monthly at One Park Avenue, New York, NY 10016. One year subscription rate for U.S. and Possessions, S12.00. Canada, S15.00 all other countries, S17.00 (cash orders only, payable in U.S. currency). Second Class postage paid at New York, NY and at additional mailing offices. Authorized as second class mail by the Post Office Department, Oftawa, Canada, and for payment of postage in cash.

POPULAR ELECTRONICS including ELECTRONICS WORLD. Trade Mark Registered. Indexed in the Reader's Guide to Periodical Literature.

COPYRIGHT - 1977 BY ZIFF-DAVIS PUBLISH-ING COMPANY. ALL RIGHTS RESERVED.

Zift-Davis also publishes Boating, Car and Driver, Cycle, Flying, Modern Bride, Popular Photography, Skiing and Stereo Review.

Material in this publication may not be reproduced in any form without permission. Requests for permission should be directed to Jerry Schneider, Rights and Permissions, Zift-Davis Publishing Co., One Park Ave., New York, NY 10016.

Editorial correspondence: POPULAR ELEC-TRONICS, 1 Park Ave., New York, NY 10016. Edi-torial contributions must be accompanied by re-tum postage and will be handled with reasonable care; however, publisher assumes no responsi-bility for return or safety of manuscripts, art work.

Forms 3579 and all subacription corre-apondence: POPULAR ELECTRONICS, Circulation Dept., P.O. Box 2774, Boulder, CO 80302. Please allow at least eight weeks for change of address. Include your old ad-dress, enclosing, if possible, an address label from a recent issue.

The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this

Feature Articles

- 24 LOUDNESS CONTROL-BOON OR BANE? / Julian Hirsch
- 33 **NEW 1978 ELECTRONIC GAMES / Kris Jensen** Video and nonvideo games for the public's recreation.
- 49 THE SPECTRUM ANALYZER IN HI-FI MEASUREMENTS / Julian Hirsch
- 54 1978 STEREO FM TUNER BUYING DIRECTORY / Ivan Berger
- Specifications and features of today's FM tuners. 58

HOW FM TUNERS WORK! PART 2 / Julian Hirsch The detector and modulation / demodulation circuits.

Construction Articles

- 45 BUILD "CHARGE" / Ronald W. Reese A digital electronic bugle with amplifier for auto or home use.
- 60 **USING EXISTING HOUSE WIRING FOR COMPUTER** REMOTE CONTROL, PART 2 / Dan Sokol, Gary Muhonen, and Joel Miller Details on the remote circuits.

Columns

- 16 STEREO SCENE / Ralph Hodges The Direct-to-Disc Revolution (?)
- 64 SOLID STATE / Lou Garner 'For I Dipt Into the Future. . . . "
- 67 **EXPERIMENTER'S CORNER / Forrest M. Mims** Read / Write Memories (RAM's), Part 2.
- 69 HOBBY SCENE Q & A / John McVeigh
- 77 COMPUTER BITS / Hal Chamberlain Bus Systems.
- 80 CB SCENE / Gary Garcia. KOI4178 Automatic Transmitter Identification.

Julian Hirsch Audio Reports

- 26 YAMAHA MODEL CR-2020 AM / STEREO FM RECEIVER
- 29 **DPTONICA MODEL RT-3535 STEREO CASSETTE DECK**
- 31 **dbx MODEL 128 DYNAMIC RANGE ENHANCER**

Electronic Product Test Reports

- 74 E. F. JOHNSON VIKING 4360 REMOTE-CONTROL MOBILE AM CB TRANSCEIVER
- 75 SENCORE MODEL DVM37 DIGITAL MULTIMETER

Departments

- 4 EDITORIAL / Art Salsberg Electronics and the Handicapped.
- 6 LETTERS
- 12 **NEW PRODUCTS**
- 15 **NEW LITERATURE**
- 100 **OPERATION ASSIST**

Popular Electronics®

JOSEPH E. MESICS Publisher

ARTHUR P. SALSBERG

LEEL IE COLONO

Technical Editor

JOHN A. RIGGE Managing Editor

Senior Editor

ALEXANDER W. BURAWA

Features Editor

EDWARD I. BUXBAUM

JOHN MCVEIGH

Associate Editor

ANDRE DUZANT

CLAUDIA TAFARO

Production Editor

DORIS A. MATTHEWS

Editorial Assistant

Contributing Editors
Hall Chamberlin, Lou Garner, Glenn Hauser
Julian Hirach, Raiph Hodges, Forrest Mims
Ray Newhall, Wilfred Scherer

JOSEPH E. HALLORAN
Advertising Director

Adventising infector

JOHN J. CORTON Advertising Soles

LINDA BLUM
Advertising Service Manager

FRANCES YERKES

Executive Assistant

EDGAR W. HOPPER

Publishing Director

ZIFF DAVIS PUBLISHING COMPANY Editorial and Executive Offices One Park Avenue New York, New York 10016 212-725-3500

Hershel B. Sarbin, President
Philip Korsanti, Executive Vice President
Furman Hebb, Executive Vice President
John R. Emery, Sr. Vice President, Finance and Treasurer
Philip T. Helfernan, Sr. Vice President
Edward D. Muhlfeld, Sr. Vice President,
Philip Sine, Sr. Vice President

Frank Pomeramiz Vice President, Creative Services
Arthur W. Bulzow, Vice President, Production
Lawrenne Sporn, Vice President, Croulation
George Mornssey, Vice President
Sydney H. Rogers, Vice President
Sidney Holtz, Vice President
Albert S. Traina, Vice President
Paul H. Chodk, Vice President
Edgar W. Hopper, Vice President
Robert N. Bavier, Jr., Vice President
Charles B. Seton, Secretary

William Zilf, Chairman W Bradford Briggs, Vice Chairman

Midwostern Office
The Paths Group, 4761 West Touny Ave.
Lincornwood, Illinois 60646, 312 679-1100
Thumas Hockney, Michael Nen, Gerald E. Wolfe
Western Office
9025 Wilshire Boulevard, Beverly Hills, CA 90211
213-273-8050, BRadshaw 2-1161
Western Advertising Manager, Bud Dean

Japan, James Yagi Oji Palace Aoyartia, 6-25, Minami Aoyama 5 Chome, Minaio-Ku, Tokyo 407-1930/6821, 582-2851

ELECTRONICS AND THE HANDICAPPED

I was startled to learn at a recent AT&T press conference that there are about 50-million people in this country who are considered to be handicapped to some extent. (For example, 1 out of 4 elderly people suffer hearing-loss problems.) And I was impressed by the ongoing efforts of a voluntary organization of telephone-industry workers—the Telephone Pioneers of America—who create and make available various electrical and electronic aids for the blind, deaf, retarded, and motion- and speech-handicapped after working hours.

Many of these devices require some handiness with a soldering iron; a few demand kit-building experience. For instance, one "Pioneers" chapter supplies an "Audio Aid" device to enable needy persons who are hard-of-hearing to boost the sound level of a TV receiver, motion-picture, etc., so that it can be heard better. (A converted portable radio's speaker acts as a microphone in this case, and the am-

Putting the "beep" in the baseball.

plified sound is heard through an earphone.) Complete plans are available for converting a G.E. Model P2790 or Model 7-2705 portable radio for this purpose from Telephone Pioneers of America, Bell Telephone Laboratories, Room 6H-416, Murray Hill, NJ 07974, Any radio with an earphone jack can be similarly modified, though some parts substitutions may be required. A pc foil pattern (1" x 7/16") is included in the plans, as well as a point-to-point wiring diagram.

Another illustration of how Pioneers' ingenuity and dedication have made life more pleasurable for handicapped people is the development of a "beeping" softball. Here, a telephone engineer buried an amplifier and electronic beeper inside a ball so that blind children can play baseball. In 1973, the Audio Ball was

placed in the National Baseball Hall of Fame in Cooperstown. Today, local Pioneer chapters have devised other "beeping" sports aids for the blind: an audio basketball laced with bells that's played against a backboard wired for sound; an audible hockey puck; a beeping horseshoe game; a beeping golf putting device; an audio ring-toss game, and so on.

For retarded and autistic children who can't relate to adults, Telephone Pioneers developed, make and donate talking dolls and toy animals. The toys are equipped with two-way radios so that a therapist can remain out of sight and talk through the toy to young patients, who frequently respond to this "person."

There are a host of other ways in which persons with electronics know-how can aid the handicapped. For example, people confined to wheelchairs could be shown how their everyday living can be enhanced through listening to shortwave radio broadcasts, learning Morse code, building electronic kits, etc. There are other areas of assistance, too. For instance, one may record book and magazine articles on tape for distribution to the blind. A vocal interface for a computer would enable some handicapped people to control a variety of electric appliances, even opening and closing a door, by emitting a specific sound. The list of ways in which you can provide help through your knowledge of electronics is virtually endless. So why not set aside some time for this very worthwhile effort?

Any PE readers interested in contributing ideas or assistance to the Pioneers, or wish to receive free plans for any devices that help the handicapped, contact the Telephone Pioneers of America at AT&T, 195 Broadway, New York, NY 10007.

art Salshery

Send today for the NEW WINTER '78 HEATHKIT CATALOG

Select from nearly 400 unique electronic kits for the student, hobbyist and experimenter including:

- TEST & SERVICE INSTRUMENTS PERSONAL COMPUTERS
 - ELECTRONICS COURSES AMATEUR RADIO
 - COLOR TV HI-FI COMPONENTS HOME PRODUCTS
 - MARINE, AUTO & AIRCRAFT ACCESSORIES

Send for your Heathkit Mail Order
Catalog today! It's filled with large,
clear illustrations and complete descriptions of unique products you can build and service your-

You can get a PREE retail catalog by redeeming this coupon in person at any of the 50 Heathkill Electronic Centers (Units of Schlumberger Prod-

ucts Corporation) in major markets coast-to-coast, where Heathkit products are sold, displayed, and serviced, (Retail prices on some products may be slightly higher.) Check the while pages of your telephone books for the Heathkit Electronic Center nearost you.

HEATH
Schlumberger

CL-649

Heath Company, Dept. 010-370 Benton Harbor, Michigan 49022

Please send me my FREE Heathkit mail order Catalog. I am not on your mailing list.

Name____

Address____

City_____State_

ALGEBRAIC NOTATION TRANSLATION

To your many readers who have requested an "algebraic" translation of my June 1977 article "How to Program Calculators for Funand Games," all of the game programs have been translated from Hewlett-Packard "Reverse Polish Notation" into Texas Instruments "algebraic" notation for the SR-56. They are available for the nominal fee of \$2.00 to cover printing, postage, and handling-Dale G. Platteter, Suite 201, 1315 Q St., Bedford, IN 47421.

RADAR DETECTORS

This is In rebuttal to your November Editorial's comments about whether it was morally correct to use radar detectors. My corporation uses them in all our vehicles; not to "outfox" the law, but as a reminder that "radar" is being used on our vehicles. We do this because we know that some highway patrolmen running speed traps will lie to make "brownie points."-Clarence Jones, Saint George, SC.

GREMLINS AT WORK

About the article in the November issue, "How to Dress up Your Projects." The first page was terrible. I could hardly read it. -Damon Hill, Atlanta, GA.

The circuits in Figs. 2 and 3 of "Experimenter's Corner," October 1977, should be interchanged .- G. Levelius, Mansfield, OH.

COMPLIMENTS ON QUALITY

Permit me to compliment POPULAR ELEC-TRONICS' quality and content. Some 25 years ago, I was reading the Amateur Radio magazines and remember PE as a pulp magazine that appeared to be written for the average sixth grader. I guess those sixth graders have grown up, and PE has kept pace with the growth, providing us with sophisticated and fascinating articles and magnificent ads. My only wish is that you would have more ads from some of the computer stores because I am so ignorant about computers that I do not know where or how to start digging out the information, equipment sources, etc.-Jay M. Burns, Luling, LA.

WANTS MORE "GUIDES"

I very much enjoyed and benefitted from "Guide to Oscilloscopes" (June 1977). I am a third-year electrical engineering student, and the article on scopes answered many questions my college instructors never bothered to address. I would like to see POPULAR ELEC-TRONICS publish similar features on power supplies, r-f generators, and VOM's. I am particularly interested in these items.-Charles B. Howard, Minneapolis, MN.

INTERFACING

While considering the construction of a giant digital scoreboard ("A Digital Timer-Scoreboard for Athletic Events," August 1975), I found a simple and very effective means of directly interfacing digital IC's to large ac displays. I used a light-activated SCR optoisolator (GE's H11C1). The Ga-As LED in this device can be driven directly by the current that normally drives one segment of a small LED display. I used the Intersil 7205 stopwatch IC, which has a 5-volt, 20mA multiplexed output. Each segment of my giant display consists of four clear "nite lites" wired in parallel. The display consumes about 150 mA at 117 volts ac per segment, which is well within the 300-mA rating of the LASCR .- Doug Henry, Corvallis, OR.

LOG CONVERTER PART NUMBER CHANGE

In the "1/2-octave Real Time Audio Analyzer, Part 2," in the October 1977 issue, Texas Instruments has changed the number of IC36 from SN76502 to TL441 - Gil Gamesh, Babylon, N.Y.

NEW LSI TECHNOLOGY

FREQUENCY COUNTER

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION (PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

SIZE . 3" High 6" Wide

51/2" Deep

ORDER BY PHONE OR MAIL COD ORDERS WELCOME

DISPLAY: 8 HED LED DIGITS .6" CHARACTEM HEIGHT
GATE TIMES 1 SCCOND AND 1/10 SECOND
[AUTO DEC. PT. PLACEMENT]
RESOLUTION: 1 HZ AT 1 SECOND, 10 HZ AT 1/10 SECOND,
RESOLUTION: 1 HZ AT 1 SECOND, 10 HZ AT 1/10 SECOND,
RECOUR

SENSITIVITY: 10 MV RMS TO 50 MHZ. 20 MV RMS TO 60 MHZ TYP-INPUTIMPEDANCE: MEGOHM AND 20 PF
|DIODE PROTECTED INPUT FOR OVER VOLTAGE PROTECTION.|
ACCURACY _ 1 PPMI _ .0001 | AFTER CALIBRATION TYPICAL,
STABILITY WITHIN 1 PPM PER HOUR AFTER WARM UP |.001 | XTAL |
IC PACKAGE COUNT: 8 | ALL SOCKETED |
INTERNAL POWER SUPPLY: 5.2 V DC AT 800 MA REGULATED INPUT POWER REQUIRED: 8-12 VDC OR 115 VAC AT 50/50 HZ.
POWER CONSUMPTION: 4 WATTS
INPUT CONNECTOR: BNC TYPE

KIT#FC-50 C \$119.95

KIT#PSL-650 850 MHZ PRESCALER (NOT SHOWN) 29.95

KIT #FC-50C IS COMPLETE WITH PREDRILLED CHASSIS ALL HARDWARE AND STEP-BY-STEP INSTRUCTIONS. WIRED & TESTED UNITS ARE CALIBRATED AND GUARANTEED. PRESCALERS WILL FIT INSIDE COUNTER CABINET.

TERMS: FOR SHIPPING, HANDLING & INSURANCE TO US & CANADA AOD 5% ALL OTHERS 10%, FLORIDA RES. ADD 4% SALES TAX. COD

134 LBS.

COLOR:

BLACK

OPTOELECTRONICS. INC

ay we send you your choice of 4 of these practical, time-and-money-saving books as part of an unusual offer of a Trial Membership in Electronics Book Club?

Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics. Whatever your interest in electronics, you'll find Electronics Book Club offers practical, quality books that you can put to immediate use and benefit.

This extraordinary offer is intended to prove to you, through your own experience, that these very real advantages can be yours...that it is possible to keep up with the literature published in your areas of interest, and to save substantially while so doing. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway...without the substantial savings offered through Club Membership.

To start your Membership on these attractive terms, simply fill out and mail the coupon today. You will receive the 4 books of your choice for 10-day inspection. YOU NEED SEND NO MONEY! If you are not delighted, return the books within 10 days and your Trial Membership will be cancelled without cost or obligation.

ELECTRONICS BOOK CLUB, Blue Ridge Summit, Pa. 17214

Facts About Club Membership

- ◆ The 4 introductory books of your choice carry publishers' retail prices of up to \$65.80. They are yours for only 99¢ each (plus postage and handling) with your Trial Membership.
- You will receive the Club News, describing the current Selection. Alternates and other offerings, every 4 weeks (13 times a year).
- If you want the Selection, do nothing; it will be sent to you automatically. If you do not wish to receive the Selection, or if you want to order one of the many Alternates offered, you simply give instructions on the reply form (and in the envelope) provided, and return it to us by the date specified. This date allows you at least 10 days in which to return the form. If, because of late mail delivery, you do not have 10 days to make a decision and so receive an unwanted Selection, you may return it at Club expense.
- To complete your Trial Membership, you need buy only four additional monthly selections or alternates during the next 12 months. You may cancel your Membership any time after you purchase these four books.
- All books—including the introductory Offer—are fully returnable after 10 days if you're not completely satisfied.
- All books are offered at low Member prices, plus a small postage and handling charge.
- Continuing Bonus: If you continue after this Trial Membership, you will earn a Dividend Certificate for every book you purchase. Three Certificates, plus payment of the nominal sum of \$1.99, will entitle you to a valuable Book Dividend of your choice which you may choose from a list provided Members.

ELECTRONICS BOOK CLUB Blue Ridge Summit, Pa. 17214

Please open my Trial Membership in ELECTRONICS BOOK CLUB and send me the 4 books circled below. I understand the cost of the books I have selected is only 99c each, plus a small shipping charge. If not delighted, I may return the books within 10 days and owe nothing, and have my Trial Membership cancelled. I agree to purchase at least four additional books during the next 12 months, after which I may cancel my membership at any time.

	Name				Phone		
	921	927	934	950	952	955	975
Ì	84	1	868	885	893	9	13
ı	101	554	629	6/8	709	704	000

Address_	
City	

(This offer valid for new Members only, Foreign and Conada add 18%) PE-18

Learn to service Communications/CB equipment at home...with NRI'S COMPLETE COMMUNICATIONS COURSE

Learn design, installation and maintenance of commercial, amateur, or CB communications equipment.

The field of communications is bursting out all over. In Citizens Band alone, class D licenses grew from 1 to over 2.6 million in 1975, and the FCC projects about 15 million CB'ers in the U.S. by 1979. That means a lot of service and maintenance jobs . . . and NRI can train you at home to fill one of those openings. NRI's Complete Communications Course covers all

Learn on your own 400-channel digitallysynthesized VHF transceiver.

You will learn to service all types of communication equipment, with the one unit that is designed mechanically and electronically to train you for CB, Commercial and Amateur communications: a digitally-synthesized 400-channel VHF transceiver and AC power supply. This 2-meter unit gives you "Power-On" training. Then we help you get your FCC Amateur License with

special instruction so you can go on the air.

The complete course includes 48 lessons, 9 special reference texts, and 10 training kits.

Included are: your own electronics Discovery Lab, Antenna Applications Lab, CMOS Frequency Counter, and an Optical Transmission System. You'll learn at home, progressing at your own speed, to your FCC license and into the communications field of your choice.

NEW CB SPECIALIST COURSE NOW OFFERED

NRI now offers a special course in CB Servicing. You get 37 lessons, 8 reference texts, your own CB Transceiver, AC power supply and multimeter . . . for hands-on training. Also included are 14 coaching units to make it easy to get your commercial radio telephone FCC license—enabling you to test, install, and service communications equipment.

FOR YOUR FREE CATALOG. NO SALESMAN WILL CALL.

NRI FIRSTS!

Find out why TV/Audio Pros choose NRI 2 to 1 (Documented national survey.)

- First and only 4-channel quadraphonic receiver with 4 speakers . . . for audio training.
- ★ First and only synthesized 400-channel, 2-meter VHF Transceiver and regulated power supply.
- First and only training with actual digital computer.
- ★ First and only CB Specialist Course with 40-channel CB Transceiver for hands-on training.

Name (Please Print) Age

Sweet

City State Zip 1-018

Accredited by the Accrediting Commission of the National Home Study Council

CHECK ONE: TV/Audio Servicing Choose from 5 courses Communications with CB . Complete Communications Flectronics • FCC Licenses · Aircraft Electronics · Mobile Communications · Marine Electronics **C8 Specialist Course** Amateur Radio · Basic and Advanced Courses Industrial & Business Electronics - Digital Computer Electronics · Electronic Technology · Basic Flectronics Small Engine Servicing · Basic and Master Courses Electrical Appliance Servicing · Basic and Master Courses **Automotive Mechanics** · Basic and Master Technician Auto Air Conditioning Specialist Air Conditioning, Heating & Refrigeration . Basic and Master Courses All career courses approved under GI BILL. Check for facts.

POPULAR ELECTRONICS

FIRST CLASS
PERMIT
NO 20-R
WASHINGTON, D.C

BUSINESS REPLY MAIL

No Postage necessary if mailed in the United States

Postage will be paid by

NRI Schools

McGraw Hill Center for Continuing Education 3939 Wisconsin Avenue Washington, D.C. 20016 NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service TV equipment and audio systems. You can

choose from 5 courses, starting with a 48-lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning 25" diago-

nal solid state color TV and a 4-speaker SQTM Quadraphonic Audio System. NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.

All courses are available with low down payment and convenient monthly payments. All courses provide professional tools and "Power-On" equipment along with NRI kits engineered for training. With the Master Course, for instance, you build your own 5" wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discovery Lab.

"Trademark of CBS Inc.

NRI's complete computer electronics course gives you real digital training.

Digital electronics is the career area of the future . . . and the best way to learn is with NRI's Complete Computer Electronics Course. NRI's programmable digital computer goes far beyond any "logic trainer" in preparing you to become a computer or digital technician. With the IC's in its new Memory Kit, you get the only home training in machine language programming . . . experience essential to trouble shooting digital computers. And the NRI programmable computer is just one of ten kits you receive, including a TVOM and NRI's exclusive electronics lab. It's the quickest and best way to learn digital logic and computer operation.

You pay less for NRI training and you get more for your money.

NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.

More than one million students have enrolled with NRI in 62 years.

Mail the insert card and discover for yourself why NRI is the recognized leader in home training. No

salesman will call. Do it today and get started on that new career.

APPROVED UNDER GI BILL

if taken for career purposes Check box on card for details.

NRI SCHOOLS

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue, Washington, D.C. 20016

New Products

Additional information on new products covered in this section is available from the manufacturers. Either circle the item's code number on the Reader Service Card inside the back cover or write to the manufacturer at the address given.

SETTON TURNTABLE

The TS-11, a turntable with several convenience features, has been announced by Setton International. Controls are arranged on the front panel for easy access, and the dust-cover telescopes, rather than lifting, both to prevent jarring of the arm and to allow the

turntable's use on shelves with limited headroom. The two-speed turntable has an automatic return and shutoff. A light illuminates the stylus path as it moves across the disc, for easier manual cueing.

CIRCLE NO 91 ON FREE INFORMATION CARD

COBRA CB/RADIO COMBINATIONS

Cobra Communications has announced two 40-channel CB/stereo FM-AM combination units for in-dash mobile use. Both are only 5 inches deep, with adjustable tuning shafts for easier adaptation to most cars, and are supplied with 24-page installation manuals. A built-in monitor circuit automatically cuts off sound from the AM/FM radio section when calls are received on any pre-selected CB channel. CB sections feature DynaMike gain control and an r-f/S meter. The Cobra 47XLR, with remote-control digital-readout microphone, pushbutton AM-FM tuning and PA output provision is \$299.95. The 46XLR, without those three features, is \$259.95. It includes front-panel LED channel readout.

CIRCLE NO SO ON FREE INFORMATION CARD

SHARP CASSETTE DECK

Microprocessor control is used to add several unique functions to Sharp's new AT-3388 cassette deck. The Auto Program Locate Device (APLD), which searches ahead to the next blank space between selections on existing Sharp decks, can be programmed on this one to jump ahead to the 2nd, 3rd, or even 19th such blank space, and either stop

or begin playing at that point. The memory rewind will not only rewind to zero (or any other point) and stop or begin playing, but can also be programmed to stop at any given point on the tape thereafter. The tape counter is an LCD digital display which can also be set to show the time a tape has been running. A built-in quartz digital clock allows timeroperated automatic recording or playback. Other features include Dolby noise reduction, dual VU meters with peak indicators, mike and line mixing, and separate bias and equalization selector switches. \$300.

GIRCLE NO 93 ON FREE INFORMATION CARD

RAM STEREO PREAMPLIFIER

The RAM200 stereo preamplifier from RAM Audio Systems, Inc. features FET inputs, class-A output circuits, and some unusual control features. Balance is controlled by an array of 5 pushbuttons, which gives a range up to 30 dB of attenuation, in 2-dB steps, in either channel. Preamplifier output level is indicated in dBm by dual LED arrays. Input and autput connections, including two phono circuits, tuner, aux, two tape monitor circuits and one external processor loop, are accessible beneath a removable panel at the toprear of the cabinet. There is an additional front-panel input and tape output. Other features include direct input for moving-coil cartridges, automatic muting for amplifier and speaker protection, and a tape-output interlock that prevents feedback howl. THD and IM are reportedly each less than 0.02%, and S/N is greater than 80 dB on phono inputs. \$1000.

CIRCLE NO. 54 ON FREE INFORMATION CARD

MODULAR ELECTRONIC PROJECTS

A modular system of snap-in components that can be used to assemble a variety of educational electronic projects has been an-

nounced by Takahashi and Associates. Six kits are available, each consisting of a number of interchangeable module blocks carrying the symbols of the components they contain, plus a plastic frame with battery case, tuning capacitor meter and antenna. The number of module blocks supplied ranges from 12 in the smallest kit to 46 in the largest, whose frame also includes a light-sensitive CdS cell, a speaker and several built-in controls. Among the projects that can be assembled from the kits are a radio, a wireless microphone, a light control circuit, touch buzzer, morse code tone circuit, and others. No soldering is required. Address: Takahashi & Associates, 3183-G Airway Ave, Costa Mesa. CA 92626.

COMMANDER CB ANTENNA

"Magnum Ears", a twin-loaded CB mobile or apartment antenna only 13 inches high, has been announced by Commander. VSWR is adjustable to 1.2:1 or better, according to the

manufacturer. The twin-loaded radiating elements form a centerfed dipole with a claim of high efficiency. The antenna comes with a 6-pole magnetic base mount that measures 4" in diameter. \$21.95.

CIRCLE NO 95 ON FREE INFORMATION CARD

OHIO SCIENTIFIC COMPUTER

Ohio Scientific has added the Challenger II to its Challenger microcomputer series. The new model is a complete computer, equipped with CPU, optional 8k BASIC in ROM, a 256k

Memory Management ROM, a 4k RAM and a serial port. The system can be operated at clock rates of 1 MHz or 2 MHz. It's available in two video-based models, the IIV and IIP.

CIRCLE NO 96 ON FREE INFORMATION CARD

B.I.C. INDOOR FM ANTENNA

The "Beam Box," an electronically directable FM antenna styled to resemble other stereo components, has been announced by B.I.C.

Where superior technology makes the musical difference: Sansui's new DC integrated amplifier and matching tuner.

Sansui is proud to introduce the new AU-717 DC integrated amplifier and matching TU-717 tuner, designed for your greatest listening pleasure. We are proud of the superlative specifications that our saphisticated research has achieved. The finest available at any price.

But the best specs alone don't always mean the finest music reproduction. And so we are proud that our precision engineering and superior circuitry design create pure and brilliantly clean tonal quality that's distinctly superior.

brilliantly clean fonal quality that's distinctly superior.

Listen to what we offer: Frequency response of the AU-717 from main in. OHz to 200kHz (+0dB, -3dB), (the widest of any DC integrated amplifier available), gives you sharp, clean transients and greatly reduced phase shift problems. Total harmonic distortion is astoundingly low, less than 0.025%, from 10-20,000Hz. 85 watts channel min. RMS, both channels driven into 8 ohms.

Dual independent power supplies provide in extereo separation and a large power reservoir. For the ored phono reproduction equalization is with the control of the control

attenuator level control guarantees volume precision.

The matching TU-717 tuner features dual IF bandwidth to let you select for lowest distortion (0.07% mono, 0.07% stereo) or maximum selectivity (80dB). S/N is excellent: 80dB mono, 77dB stereo.

In addition, the AU/TU 717's are elegantly styled, offer rack mounting adaptors and are most attractively priced. Less than \$450° for the AU-717 and less than \$320° for the TU-717.

Listen to these brilliant new components at your franchised Sansul dealer today. When you hear the new Sansul AU/TU-717's, you will never again want to settle for less than the best.

Sansul. A whole new world of musical pleasure.

 Approximate nationally advertised value. The actual retail price will be set by the incividual dealer at his option.

Milniosh CATALOG

Get all the newest and latest information on the new McIntosh Solid State equipment in the McIntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 113

FM/FM STEREO - AM TUNER AND PREAMPLIFIER

1	McIntosh Lab East Side Stati Binghamton, N Dept. PE	on P.O. Box 96		1
1	NAME			- 1
١	ADDRESS			
1	CITY	STATE	ZIP	- ¦

If you are in a hurry for your catalog please send the coupon to McIntosh. For non rush service send the Reader Service Card to the magazine. CIRCLE NO. 27 ON FREE INFORMATION CARD

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night even if you've never used a computer before!

SPECIFICATIONS

ELF II features an RCA COSMAC COS/MOS 8-bit COSMAC COS/MOS 8-bit microprocessor addressable to 64k bytes with DMA, interrupt, 16 registers, ALU, 256 byte RAM, full hex keyboard, two digit hex output display, 5 slot plug-in expansion bus, stable crystal clock for timing purposes and a double-sided plated-through PC board plus RCA 1861 video IC to display any segment of memplay any segment of mem-ory on a video monitor or ory on a v TV screen.

USE ELF II FOR ... GAMES

Play interactive keyboard games, games with analog inputs, ga utilizing your TV set for a video display!

GRAPHICS

Create pictures, designs, alpha-numerics and fabulous animated effects on your TV screen for hour after hour of family fun!

CIRCUIT DESIGN

Design circuits using a micro-processor. Use ELF II as a counter, alarm system, lock, controller, thermostat, timer, telephone dialer, etc. The possibilities are infinite!

sibilities are infinite:

Coming Soon!

Exclusive Netronics Plug-In Program Debugger and monitor allows visual display of any program on a clock pulse by clock pulse basis to help you learn programming f-as-ti • 4k memory • Cassette I/O • D to A, A to D • Controller plug-ins.

Available now

RCA COSMAC microprocessor/minicomputer

SEND TODAY NETRONICS R&D LTD., Dept. PE-1 333 Litchfield Road, New Milford, CT 06776 Phone (203) 354-9375

Yes! I want to run programs at controllers, etc. (soon to be home and have enclosed: available as kits). Manual in
\$99.95 plus \$3 p&h for RCA cludes instructions for assembly, tes: I want to run programs at home and have enclosed:

□ \$99.95 plus \$3 p&h for RCA

COSMAC ELF II kit. Featured in POPULAR ELECTRONICS. in POPULAR ELECTRONICS.

Includes all components plus everything you need to write and run machine language programs plus the new Pixie chip that lets you display video graphics on your TV screen. Designed to give engineers practice in computer programming and microprocessor it result design. microprocessor circuit design, ELF II is also perfect for college and college-bound students (who must understand computers for any engineering, scientific or business career). Easy instruc-tions get you started right away, even if you've never used a computer before!

As your need for computing power grows, five card expansion bus (less connectors) allows memory expansion, program debugger/monitor, cassette I/O, A to D and D to A converters, PROM, ASCII keyboard inputs,

cludes instructions for assembly, testing, programming, video graphics and games plus how you can get ELF II User's Club bulletins. Kit can be assembled in a single evening and you'll still have time to run programs, including games, video graphics, controllers, etc., before going to bed!
\$\Begin{array}\] \$4.95 for 1.5 amp 6.3 VAC power supply, required for ELF II kit. \$\Begin{array}\] \$5.00 for RCA 1802 User's Manual.

☐ I want mine wired and tested with the power transformer and RCA 1802 User's Manual for \$149.95 plus \$3 p&h. Conn. res. add sales tax.

NAME	
ADDRESS_	

STATE ZIP

Send info on other kits!

Dealer Inquiries Invited

The antenna, which requires no batteries or power, has a bi-directional pickup pattern which can be oriented into any of four pairs of quadrants at 45° intervals, to reduce multipath interference. Switch-selected, broad and narrow bandwidth settings are available and the antenna may be tuned, in the narrowband position, to be less selective to unwanted signals. Bandwidth at the narrow setting is 3 MHz at -3-dB points. At approximately 4 MHz from the tuned frequency, response is claimed down 10 to 12 dB. Gain is said to be -5 dB in narrowband position, -12 dB in wideband, referenced to a standard dipole. \$89.95.

CIRCLE NO. 97 ON FREE INFORMATION CARD

AP PRODUCTS BREADBOARDS

The Unicard series of reusable, solderless breadboard module cards from AP products has been revised. Like the previous Unicards, the new models include matrix breadboarding sockets on bus-wired circuit boards designed to plug into standard 51/4" card racks. They also have extractor handles for easy withdrawal and rubber feet for protection during bench work. The new Unicards' matrix sockets now have rows of 5 tie-points (vs. the previous models' 4), giving the new Unicard I a total of 960 tie-points (192 rows of 5) and 1620 (324×5) for the new version of the Unicard II. Prices start at \$31,50 for the Unicard 1.

CIRCLE NO. 98 ON FREE INFORMATION CARD

BOSE SPEAKER SYSTEM

A new Bose Direct/Reflecting speaker system, Model 601, features four 3" tweeters and two 8" woofers, all radiating in different directions through the top and front of the ported enclosure. System impedance is 8 ohms;

crossover frequency, 2 kHz. Minimum amplifier power required is 15 watts rms per channel or more. A major portion of the sound energy is directed upward, both directly to the listener and indirectly via the wall above and behind the speaker, to position the sound above the level of sound-absorbing furniture and simplify speaker placement. A 2-position "symmetry control," which alters the speaker's directional characteristics by verying the signal level to the various drivers, is also provided is an aid to easier placement. The 601 is supplied in mirror-image pairs. Dimensions are 25,5"H × 15"W × 13"D (66 × 39 × 33 cm).

CIRCLE NO 99 ON FREE INFORMATION CARD

PANASONIC CAR CASSETTE PLAYER

The Model CX-7100 cassette player is one of a new line of car audio components introduced by Panasonic. The CX-7100 has an auto reverse mechanism for continuous play, a two-stage preamp and dual-channel amplifier. Output power is 4.5 watts per channel at 400 Hz with 10% THD into a 4-ohm load. Other features include one-lever operation for fast forward/rewind/eject, lockable fast forward and rewind, and automatic and manual program selector, and a direction indicator lamp. Dimensions are 7 4/5"W × 2 12/25"H × 5 3/10"D (190 × 64 × 135 mm) and weight is 3.3 lb (1.5 kg). Price \$99.95.

CIRCLE NO 100 ON FREE INFORMATION CARD

New Literature

CB ANTENNA TUNER BROCHURE

"The Ultimate in Antenna Tuning Systems," a new four-page brochure that describes new "isolated circuit" antenna tuners for mobile and base stations for CB operation is available from Norcom Electronics Inc. The brochure illustrates and describes the company's "Iso-Tune," "Back Talk," and "Ultra-Tune" antenna tuners, all of which are said to tune antenna systems to optimum SWR across all 40 channels. Address: Norcom Electronics Inc., 23611 Chagrin Blvd., Beachwood, OH 44122.

NBS HOME SECURITY ALARM PAMPHLET

Descriptions of the different home security alarm systems and their operation are highlighted in "Home Security Alarms: What They Are and How They Work" from the National Bureau of Standards. The pamphlet suggests where each type of system should be installed for best protection, explains how the sensors and "panic buttons" are connected to the control unit, tells how the alarm reports intrusions, and offers tips on cost, quality, and performance. Address: Home Security Alarms, Dept. 676E, Consumer Information Center, Pueblo, CO 81009.

ORA REPLACEMENT CATALOG

Eight-page catalog contains original Japanese replacement parts for the service of CB radio, TV, hi-fi equipment, etc. It features integrated circuits, transistors, ceramic filters, tape and cassette heads, plus more. Address: Ora Electronics, Box 7548, Van Nuys, CA 91409.

HEATH INSTRUMENTS CATALOG

A 32-page Heath/Schlumberger catalog lists their complete line of test instruments and new products. These include three new frequency counters with ranges up to 1 GHz, a FET multimeter, a lin/log swept-function generator, and a low-cost voltage-controlled function generator. Other instruments included are oscilloscopes, chart recorders, VOM's and VTM's, power supplies, distortion analyzers, color TV service equipment, learn-athome electronics courses, and more. Address: Heath/Schlumberger Instruments, Dept. 570-010, Benton Harbor, Mi 49022.

Stereo Scene

By Ralph Hodges

THE DIRECT-TO-DISC REVOLUTION(?)

OT LONG AGO, I got my first chance to participate in a direct-todisc recording session. It was not what you'd call a major production. Only one performer, a function generator, was involved, and the object was to put about a minute or so of a 1-kHz square wave on lacquer (i.e., the lacquer-coated aluminum disc on which a master disc recording is cut).

You probably have noticed oscilloscope photos of 1-kHz square waves in phono-cartridge test reports, usually from CBS. If the cartridge is reasonably good, the photos can look pretty decent in terms of waveform and visible resonances; and if a cartridge can make the waveform look good, we can generally assume that the recording itself is good, right? A fair assumption. However, CBS has cut that square wave without RIAA equalization, so that, with a magnetic phono cartridge, the recording must be played back with a "flat" phono preamplifier. Most consumers don't have a

made with a square-wave test record

suitable high-sensitivity preamplifier that lacks RIAA equalization. Therefore, our intention was to cut a square wave with the full RIAA recording preemphasis, so that it would play back flat on the average audiophile's phono system. This makes a world of difference and of difficulty in the cutting studio.

The Agony of Defeat. The sorry fact is that the best of modern disc-recording equipment cannot cut a clean 1-kHz RIAA square wave. At least it couldn't the way we were going about it, with a modified Wavetek function generator having a rise time almost faster than light. We used in succession the current Ortofon and Neumann cutters, generally considered to represent the state of the art, with about an equal lack of success. Even some of the cutters' electronics were found not up to the task, so that we had to bypass them and run straight into the lathes' power amplifiers. Still not good enough! A cutting-stylus assembly is a comparatively massy, inertiaplagued structure which, when stimulated in this brutal way, is just bound to ring. We could see the ringing under the microscope and we could see it when we played the test cuts, indicating that -in this respect at least-the playback phono cartridge was actually better than the cutting instrument.

Finally we fudged and cut a 500-Hz square wave instead (which, because we were doing half-speed cutting, was actually 250 Hz as far as the cutter head was concerned). This turned out to be much easier.

Direct-Cutting Philosophy, I began this column by saying that this was a direct-to-disc recording session, and it certainly was for a minute or two. However, almost all the rest of the many cuts we were putting onto our test record were derived from a master tape, and you may be justified in wondering why the square-wave test couldn't come from the master tape as well. The reason is that, as bad as a cutter head seems to be at handling a square wave, the typical tape machine is about a hundred times worse. Although tape recording involves no mechanical inertia (according to Barkhausen, thera is definitely a sort of magnetic "inertia" involved, however), it does involve oodles of phase shift. Sony offers a phase-corrected machine (Model TC-880-2) that can reproduce a nicely recognizable

FREQ.OUT.

CSC's done it again.

Broken the price and performance barriers with new MAX-100. The multimode, professional portable frequency counter that gives you more range, visibility, accuracy and versatility than any comparable unit at anywhere near its low, low price.

MAXimum performance.

MAX-100 is a cinch to use. It gives you continuous readings from 20Hz to a guaranteed 100MHz, with 8-digit accuracy. Fast readings with 1/6-sec. update and 1-sec. sampling rate. Precise readings, derived from a crystal-controlled time base with 3ppm accuracy. High-sensitivity readings from signals as low as 30 mV, with diode overload protection up to 200V peaks.

Input signals over 100MHz automatically flash the most significant digit. And to indicate low-battery condition and extend remaining battery life, the *entire* display flashes at 1Hz.

MAXimum versatility. Wherever and whenever you need accurate frequency readings, MAX can do the job. Use it with clip-lead cable supplied. Mini-whip antenna. Or low-loss in-line tap with UHF connectors. For AM or FM; CB, ham, business radio and R/C transmitter or receiver alignment. Monitoring audio and RF gen-

erators. Checking computer clocks and other digital circuits. Repair of depth sounders and fish spotters. Troubleshooting ultrasonic remote controls. For these, and hundreds of other applications, you'll find it indispensable.

MAXimum visibility. MAX-100 features a big, bright 0.6" multiplexed 8-digit LED display, with leading-zero blanking. So you don't have to squint, or work up close. And, MAX's flip-up stand is built-in.

MAXimum flexibility. MAX-100 operates from four power sources, for use in lab or field. Internal alkaline or NiCad batteries. 110 or 220V with charger/eliminator. 12V with automobile cigarette-lighter adapter/charger. And external 7.2-10V supply.

MAXimum value. With all its impressive specs, you'd exped MAX to cost a lot more than a low \$134.95, complete with clip-lead cable and applications/instruction manual. But that's another nice thing about MAX: though it's accurate enough for lab use, it's well within the reach of hobbyists' and CB-ers' budgets.

Try MAX for yourself at your CSC dealer—or contact us for full specs and your local dealer's name. Once you see how handy MAX is, you'll want to "freq out" too. With CSC.

Specifications.

Range: 20 Hz to 100 MHz, guaranteed.
Gatetime: 1 sec. Resolution: 1 Hz. Accuracy: ± 1 count + time base error. Input Impedance: 1 Mth./56 pt. Coupling: AC. Sine Wave Sensitivity: 30 mVRMS @ 50 MHz. Internal Time Base Frequency: 3.579545 MHz crystal osc. Setability: ± 3 ppm @ 25°C. Temp-Stability: Better than 0.2 ppm/°C, 0-50°C. Max. Aging: 10 ppm/year. Display: Eight.6" LED digits; anti-glare window. Leadzero blanking: decimal point appears between 6th and 7th digit when input exceeds 1 MHz. Overflow: with signals over 99.999.999 Hz, most significant (left hand) digit flashes, allowing readings in excess of 100 MHz. Display update: 1/6-second plus 1 sec. gate time.Low Battery Indicator: When power supply falls below 6.6 VDC. all digits flash @ 1 Hz rate. Flashing display extends battery life. Power: 6 AA Alkaline or NiCad cells (internal): External: 110 or 220/VAC Eliminator/charger. Auto cigarette lighter adapter; 7.2-10 VDC ext. supply; Bat. Charging: 12-14hr. Size (HWD): 1.75°x 5.63° x 7.75° (4.45 x 14.30 x 19.69 cm.)
Weight: Less than 1.51b. (0.68 kg) w/batteries. Accessories Included: Clip-lead input cable; manual.

CONTINENTAL SPECIALTIES CORPORATION

70 Fulton Terrace, Box 1942, New Haven, CT 06509
203-624-3103 TWX 710-465-1227
WEST COAST: 351 California St., San Francisco, CA 94104,
415-421-8872 TWX 910-372-7992
GREAT BRITAIN: CSC UK LTD.
Spur Road, North Feltham Trading Estate.
Feltham, Middlesex, England.
01-890-8782 Int'l Telex. 851-881-3669
MEXICO: ELPRO, S.A., Mexico City 5-23-30-04
CANADA: Len Finkler Ltd.: Ontario

Good soldering begins with the right solder selection

Different soldering applications require different alloys and different fluxes. Even different combinations of the two. You can't solder stainless steel, a pc board or aluminum with the same material. It just won't work. And that's a fact.

Now Multicore makes soldering easy.

Not only to select the right solder. But to
use it also. The flux is included in the solder as multiple cores. And in just the right
ratios. There's no mess. Nothing to add.
Think of it. Multiple cores for better distribution of the flux, You solder faster. Use less
solder. Get better results. And that's a fact
too.

Prove it to yourself.

Send For Your Solder Sampler Kit

Consists of 5 special solders each in a feed-out metal dispenser. Totals over 60 ft. for every solder requirement.

ELECTRICAL: Best general purpose solder with non-corrosive rosin flux for all types of wiring. Savbit® formula protects soldering iron tip from wearing out.

ELECTRONIC: A 60/40 tin/lead alloy, but extra thin (22 gauge) for electronic applications. Noncorrosive rosin flux cores.

STAINLESS STEEL AND SILVER JEWELRY: A tin/silver alloy with special flux; contains no lead. Blends in so well, you can hardly tell where its been used.

ALUMINUM: Special flux and silver alloy combination for soldering aluminum. There's nothing like it on the market.

PLUMBING AND SHEET METAL: For most metal joining applications except aluminum. Uses acid type flux.

ALL 5 FOR \$895 Shipping and handling included

Plus Bonus Pak of Emergency Solder

A flat, tape-like solder that melts with a match, ideal for most on-the-spot emergency repairs

MULTICORE SOLDERS DEPT. PE 178, WESTBURY, N.Y. 11590

☐ Send me a "Solder Sampler Kit" at the special \$8.95 price (limit of one per person) and include my bonus Emergency Solder.

1	
NA	ME
AD	DRESS
.CIT	Y/STATE/ZIP
	Check or money order must accompany order N.Y. State residents add approp. Sales Tax

FREE Solder User's Guide

square wave for an oscilloscope display. But even so, in comparison with a cutting lathe, most tape machines come off a distinct second best, all possible things being considered.

At present, phase shift is a controversial subject in audio circles. It's easy to demonstrate that you can put a square wave through huge amounts of it and never hear the difference. But on the other hand, process it in another way and you might hear a very distinct difference. And, of course, keeping track of phase phenomena in a modern recording facility handling music signals by means of multiple microphones, several tape machines, numerous processors, and finally a cutting lathe is staggeringly complex. In fact, in practice no one really attempts to do it; everyone down the line just tries to trust his ears.

This is one of the cases frequently made for direct-to-disc recordings, the recent proliferation of which has come as a great surprise to many both within and outside the music/recording industry. To take the points made by the direct-cut recordists and their disciples in some sort of order:

- (1) Simplify. Eliminate all those generations of tape, which can only degrade rather than exalt the final result, and take the music right to its final recorded form as directly as possible.
- (2) Again, simplify. A direct-cut recording must take place in real time, and it is absolutely final. The mixing engineer will therefore have to decide on his basic balances right at the start, and forget about any possibility of "fixing" them somehow in a later mixdown session. He will also realize that any wrong move he makes at the mixing console will ruin an entire LP side, every single note of which will have to be rerecorded. On the assumption that an engineer/producer's second and third guesses are frequently worse than his first (made when the performers were actually present and playing), the direct-to-disc approach imposes a harsh discipline that will (theoretically) make for a better final recording. It will also serve to make the engineer/producer much more conservative. which is the way audio purists generally think he ought to be.
- (3) And yet again, simplify. Many audiophiles and many audio professionals suspect that the Dolby system and other noise-reduction processors, which have largely contributed to making the whole multitrack recording technique possible, are responsible for considerable audible degradation of the final result. (This is

not by any means proven, I hasten to point out.) Properly executed direct-disc recording is inherently quiet, so you can get rid of all the black boxes.

- (4) Improve. The tape medium in its present form is seriously limited by noise on the one hand and magnetic-saturation effects on the other. The disc medium is temperature, excursion, and velocity limited. Temperature is always a consideration; it is readily possible to burn out the coils of a cutter head. But temperature considerations are largely irrelevant to noise and distortion. As for excursion and velocity, a modern cutter can create a groove that undulates widely and rapidly enough to throw any available playback stylus into fits of mistracking. Hence a tape recordist constantly flirts with distortion to maintain dynamic range. A disc recordist need worry only about seeing smoke-and about the possibility of cutting a groove that no consumer record player will be able to follow. Thus, disc recording is superior (theoretically) in performance potential and overall flexibility.
- (5) Rationalize. The disc medium does of course have some serious ultimate limitations, most of them concerned with the fact that an LP record is only 12 inches wide. Grooves take up space, and the more vigorous their excursions the more space they take up. It occasionally happens that a recording studio sends a 60-minute tape, full of electric bass and kick drum, to a discmastering house with instructions to turn it into a single LP that is louder and bassier than anything in the "Top Ten." Well, it simply can't be done. So the disc engineer curses the tape engineer, and finally some compromise is worked out whereby the tape is either "conditioned" to suit the disc's limitations and/or some material is dropped. Now had the disc engineer been involved from the moment the first microphone was set up, making available his intimate knowledge of the potential and limitations of his equipment (with which the tape engineer often has only a passing familiarity), the final recording would be (theoretically) much more rationally and carefully produced. I need hardly point out that, in a direct-to-disc situation, the disc engineer is present right from the beginning.

The Consumer View. Everyone I know who has heard any of the better direct-to-disc productions has recognized their sonic merits to at least some degree (the musical merits of some of them are debatable, though). I will never

MAIL TODAY

MAGAZINES AT DISCOUNT!

YES! Please enter my subscription(s) for the magazine(s) whose code numbers I have indicated in the box(es) below.

INDICATE MAGAZINES YOU WANT BY CODE NUMBER

LIMIT: 5 SUBSCRIPTIONS

Mr. Mrs.	8MT7
Ms	(please print full name)
Address	Apt
City	
State	Zip
Signature	

Payment enclosed (mail form and payment in envelope). □ Bill me

Offer available in United States only. PROMPT DELIVERY—your first issue will be shipped 6 to 10 weeks from receipt of your order.

You SAVE up to 50%

ELECTRONICS

FIRST CLASS Permit No. 1157 Boulder, Colorado

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States

Postage will be paid by:

MAGAZINES AT DISCOUNT

P.O. Box 2703

Boulder, Colorado 80321

A Division of Ziff-Davis Publishing Company

Magazines At Discount

Lowest Avail. Sub. Rate/32 Issues

Reg Rate 26 Issues/\$18

You SAVE up to 50%

Here's your chance for a real bargain bonanza on your favorite magazines. You may select as many as five of these titles at the special introductory rates shown—up to 50% off! To order, indicate the magazines you want by inserting their code numbers in the boxes on the attached order card. Or write to: MAGAZINES AT DISCOUNT, A Division of Ziff-Davis Publishing Co., P.O. Box 2703, Boulder, Colorado 80322.

CHOOSE YOUR FAVORITES AT DISCOUNT PRICES!

SEARN S MONEY

as a

Wilson Dealer

You can make large profits as a Judrative Wilson Dealer of Citizens Band and Amateur products: Base Station and Mobile Antennas, Crank-up Towers, Rotors, Amateur Radios . . . and more!

The Dealer Program provides for prepaid freight, fast delivery of in-stock products, sales assistance — with extensive national advertising and free descriptive literature. Get the details of how easily you can qualify in your marketing area, no inventory investment required.

forget the expression on the face of a widely known and respected tape authority when he heard the concluding finger-cymbal "ping" on the "Peace Train" cut (Sheffield release number 2) come through his speakers. And that points up one of direct-to-disc's distinct advantages: the disc medium is capable of considerably more dynamic range at high frequencies than is the current tape medium. As Craig Stark clearly pointed out in an article in the November issue of this magazine, tape will actually lose high-frequency energy the further it is driven into saturation. The disc medium, particularly if a CD-4 cutting stylus is used, will not lose "recoverable" energy in this way; it may actually gain energy from distortion products (which may come from overload of the cutter-head amplifiers, the cutter head itself, or your playback stylus or electronics).

Otherwise, reaction to the direct-todisc phenomenon seems to be mixed. In what I think is the majority view, serious listeners believe that a disc recording originating from a tape source can be just as technically satisfying, although it may not be capable of quite so many sonic pyrotechnics. I won't comment except to say that most recordings I hear are far from equalling the better directto-disc productions. Of course, this is readily attributable to the typical record's being a mass-produced product-a carefully mass-produced product, yes, but one that does not generally receive more care than what is considered necessary for mass-marketability. When someone goes to the trouble of producing a direct-to-disc recording, he is not likely to neglect the subsequent metalwork, pressing, and packaging that will bring it to the consumer in the most attractive form possible. Some, like the Umbrella albums distributed by Audio Technica, bear a prominent individual serial number, and are treated in every way like a limited-edition fine arts print. (Incidentally, direct-to-disc recordings are true limited editions. When all the parts involved in pressing the record, from lacguer to metal master to mother to stamper are worn out, the recording ceases to be available unless the performers go back into the recording studio and do it all over again. Some directto-disc producers even skip the motherstamper stages and press from the metal masters, which makes the edition even more limited, although of potentially higher quality.)

Aesthetics may also deserve a part in the direct-to-disc picture. My reaction on

first hearing the Lincoln Mayorga Brahms-Handel piano coupling (Sheffield Lab 4) was that the performance, although not likely to devastate the musical world, had a very satisfying vitality, flow and continuity. Continuity is forced upon a performer by the direct-cut process; a cutting lathe cannot be stopped at mid-LP side and then restarted. Many music appreciators seem to feel that the patched-together performance made possible by tape editing has become a wretched excess-another instance in which direct-to-disc imposes a possibly beneficial discipline on all the parties that are involved.

Most people believe that economics will determine the final fate of direct-todisc recording. As far as I know, you cannot buy a direct-cut disc for less than about \$12, which may be a bargain because these recordings are not cheap to produce. The one truly large-scale production to emerge so far is Telarc's recording, distributed by Discwasher, of the Cleveland Orchestra playing selections of Berlioz and others. (However, look for at least one big orchestral release from Sheffield at any moment.) I have nothing but admiration for the dedicated people who embarked on this project, but it must have been frighteningly expensive to finance. And it is, alas, flawed (flawed in my opinion by an improper application of multi-miking techniques-a practice that the "simplicity" philosophy of direct-to-disc seemed destined to resist). As has been pointed out, the recording does not offer an overwhelming amount of music per side, both because the sides were intended to be of the highest quality and because the recording engineer had to space the grooves by intuition. (When you cut a record from a tape, a "preview" head some distance in front of the actual playback head scans the tape and directs a computer to allow as much groove spacing-but no more-as is necessary to accommodate the musical violence that is to follow).

Still, the Telarc/Cleveland production has some exciting things to be heard, if your sound system and your aural expectations are as demanding as my own. As listeners to recorded music, we may never encounter its like again. And there is one thing everyone is hopeful about: that the conspicuous success of the direct-to-disc revolution will force the standards of all recorded music to become that much higher. At present, the great body of recorded music has a long way to go.

25 FACT-FILLED CHAPTERS ARRANGED IN "EASY-TO-FIND" QUESTION AND ANSWER FORM

- Basic Principles of Sound
- Acoustics, Studio techniques, and Equipment
- Constant-Speed Devices, Motors, and Generators
- Microphones
- Attenuators
- Equalizers
- Wave Filters
- · Transformers and Coils
- Sound Mixers
- VU and Volume Indicator Meters
- Vacuum Tubes, Transistors, and Diodes
- Audio Amplifiers
- · Disc Recording
- Cutting Heads
- · Recording and Reproducing Styli
- Pickups
- Magnetic Recording
- Optical Film Recording
- Motion Picture Projection Equipment
- Loudspeakers, Enclosures, Headphones, and Hearing Aids
- Power Supplies
- Test Equipment
- Audio-Frequency Measurements
- Installation Techniques
- General Information, Charts and Tables

Be our guest. Examine the AUDIO CYCLOPEDIA free for 15 days. You'll find out why it is considered the most comprehensive and authoritative book ever written on the subject. And you'll get a FREE \$3.50 bonus book to keep no matter what!

The AUDIO CYCLOPEDIA is literally a one-book audio library. It has long been considered "the bible" by amateur stereo buffs as well as professional technicians. That's why you'll find it in constant use not only in home workshops and at stereo centers, but also in recording studios, broadcast booths and concert halls.

This giant reference book is over 3" thick,

and packed with 1,757 illustrated pages. It features 3,645 questions and answers and a 50 page "instant-find" index for subject identification. It is truly the big one in audio electronics and it puts all the information you'll ever need right at your fingertips, chapter by chapter.

Send for the AUDIO CYCLOPEDIA today. If you don't agree that it's the most important piece of audio equipment you own, just return it within 15 days. You won't owe a cent. And no matter what you decide, you'll get a free \$3.50 copy of *The ABC's of Tape Recording* to keep just for mailing the coupon.

FREE-BOOK FREE-TRIAL COUPON

Save postage & handling costs. Full payment enclosed (plus tax where applicable). 15-day return privilege still applies.

Yes, please rush me the AUDIO CYCLOPEDIA (#21455) for my free trial. I understand if not completely satisfied, I may return it within 15 days, and owe nothing. Otherwise, it's mine to keep for only \$39.95 plus postage and handling and local taxes (where applicable).

And, whatever I decide, a copy of "The ABC's of Tape Recording" (valued at \$3.50) is mine free!

Ivanie	
Address	
City	
2: :	

Mail to Audel
4300 W. 62nd Street EB37A
Indianapolis, Indiana 46206
A Division of Howard W. Sams & Co., Inc.

Julian Hirsch

Audio Reports

LOUDNESS CONTROL—BOON OR BANE?

Most People, when they first see a knob labelled "loudness" on a high-fidelity amplifier or receiver, probably assume that it is just a volume control under a different name. To be sure, it does control volume, but the distinction between a volume control and a loudness control is much more than a matter of semantics or word choice.

In the earliest days of hi-fi, people became aware that, when the volume of a musical or vocal program was reduced, the balance between the low, middle, and high frequencies was altered. The apparent bass volume decreased much more than the mid-range, or overall volume level, and to a lesser extent there was an exaggerated loss of highs as well. The effect was to give a program a thin, constricted sound at low listening levels, even when the system was capable of delivering a full-frequency-range response at normal listening levels.

The explanation of this effect lies not in the equipment, but in a property of the human ear. We do not hear all frequencies with equal loudness, even though they may impinge on the ear with equal intensity. The ear is most sensitive at about 3500 Hz and slightly less so at lower and higher frequencies, even at high volume levels. In addition, the change in hearing sensitivity (the human frequency response, if you will) is also level dependent. At sound levels of 90 dB or more (a rather loud level for home music reproduction) there is relatively little difference in hearing sensitivity over much of the audio range, except for the broad peak in response at about 3500 Hz. As the absolute sound level is decreased, low frequencies must be emphasized proportionally in order to sound as loud as a 1000-Hz reference tone. The same sort of emphasis is required at high frequencies for equal apparent loudness, except that the shape of the curve at high frequencies changes very little with changes in loudness.

A number of acousticians have made experimental studies of this effect. Perhaps best-known were Fletcher and Munson, of Bell Telephone Laboratories, whose findings were published in the early 1930's. Subsequently, other investigators derived somewhat different families of curves that relate subjective loudness to frequency and level. The Fletcher-Munson Equal Loudness Contours are reproduced in

Fig. 1. As we shall see, their validity, or lack of it, as compared to the results obtained in later experiments, has little bearing on the subject at hand. The contours represent the sound pressure level (SPL) required at various frequencies to sound as loud as a 1000-Hz tone does at the indicated level.

Early hi-fi enthusiasts were quick to relate the phenomenon of apparent loss of bass at low volumes to the Fletcher-Munson effect. If their findings were correct, it would be reasonable to assume that, if a truly high-fidelity recording of a musical performance which would be heard at levels of 90 dB or more in the concert hall were to be played in the home at a 60-dB average level, there would be a considerable loss of apparent bass response. In fact, the Fletcher-Munson contours show that a 30-Hz tone would have to be boosted in level by about 25 dB to sound as loud as a 1000-Hz tone at 60 dB but would require a correction of only about 3 dB at 90-dB levels.

An apparently simple and logical solution to this dilemma would be to build a frequency compensating circuit into the volume control of the amplifier so that reducing the midrange level boosts the bass (and possibly the treble, although there are differing views on this) in the correct amounts to conform to the shape of the equal-loudness contour for each listening level. This is essentially what has been done (or at least attempted) in the vast majority of amplifiers and receivers manufactured for the high-fidelity market in

the past 25 years or more.

Unfortunately, although all of these loudness compensators do pretty much what they were designed to do (electrically), most of them fail dismally to make a recording or broadcast sound as natural at low levels as it does at higher listening levels. Worse, most of them make the sound so tubby and heavy that few serious music lovers would even consider using the compensation. Fortunately, in almost every amplifier, it can be switched off, leaving the "loudness control" to act as a normal volume control.

To see why these schemes fail, take another look at the Fletcher-Munson curves. Each is related to a specific sound pressure level at the listener's ear. Now look at the family of loudness compensation frequency-response curves in Fig. 2, which are typical of the performance of most modern amplifiers and re-

Fig. 1. Fletcher-Munson curves show how perceived loudness varies with frequency even though test signal amplitude remains constant over range.

ceivers. Each is related to a specific amplifier volume control setting, with 0 dB corresponding to a maximum volume setting. Unfortunately, there is no relationship between the two sets of curves. Even their shapes are different, but if they were alike, the situation would be no better. Depending on the gain of the amplifier, efficiency and frequency response of the speaker systems, size of the listening room and its furnishings, listening level preferences, particular recording, sensitivity of the phono cartridge, acoustic conditions under which the recording was made, and other factors equally beyond the listener's control or knowledge, the amount of boost provided by the loudness control may be nearly correct. However, it is more likely to give too much or too little compensation at any given frequency. There is literally almost no chance for such a system to perform properly.

It would appear to be self-evident that any type of loudness compensation must have a means for independently setting the absolute listening level and the amount of compensation applied. In effect, this means two volume controls are required. Inexplica-

bly, this point seems to have escaped the attention of the vast majority of receiver and amplifier designers. (They know better, of course, but marketing considerations tend to dominate the situation.) The end result is the almost universal use of a simple tapped volume control with a capacitor or a simple RC network that comes into play at a certain control setting, regardless of program level.

All of the equal-loudness contour curves were derived from measurements made on numbers of human subjects and statistically processed so that the result is a sort of composite or "average" hearing response. Statistics being what they are, there is always a good chance that you or I will hear things differently from the predictions of the curves. Even if the compensation worked perfectly, it would not be correct for us. In this author's opinion, the exact compensation curve used at any given control setting is relatively unimportant, since the whole process is at best a crude approximation. Any of the proposed compensation curves, when applied correctly, is probably better than nothing. However, when they are applied

Fig. 2. Loudness compensation curves typical of performance of most modern amplifiers and receivers. Each is related to a specific volume setting.

incorrectly, it is certain that any of them is worse than nothing at all.

The situation is not completely hopeless, however. The handful of receivers and amplifiers that do have separate volume and loudness controls can usually be made to sound at least acceptable when loudness compensation is used for low-level listening. Some are better than others, and individual preferences certainly play a part in such quality judgments. One of the best indications of a good loudness compensation system is that the loudness of the program hardly seems to change as the control setting is changed.

This may seem paradoxical (after all, we do want to change the volume), but the key word is "seems."

A case in point is the Yamaha Model CR-2020 receiver reviewed in this issue. It is astonishing how little the quality of the program changes as the loudness control is operated through its full range, yet the midrange level has changed by 20 dB, or a power ratio of 100 times. The program becomes less loud, but almost imperceptibly so because the frequency balance is maintained at a subjectively constant value. This is the entire justification for the loudness control in the first place.

YAMAHA MODEL CR-2020 AM/STEREO FM RECEIVER

Medium-high-power receiver has exceptionally versatile operating flexibility.

All Yamaha hi-fi recievers share a basic family resemblance. The Model CR-2020

AM/stereo FM receiver represents no exception. It is rated to give 100 watts/ channel into 8 ohms from 20 to 20,000 Hz with less than 0.05% total harmonic distortion (THD). The receiver's front panel has a simple rectangular dial cutout with no bezel or decorative trim across the top of its silver-colored panel.

The receiver is supplied in an attractively finished walnut-grain wooden cabinet. It measures $21\frac{1}{4}$ "W \times $16\frac{1}{4}$ "D \times $6\frac{1}{2}$ "H $(54 \times 41.5 \times 16.7 \text{ cm})$ and weighs 42.5 lb (19.3 kg). National advertised value is \$700.

General Description. The FM scale has linearly spaced calibrations at 0.5-MHz intervals and red LED's that indicate which tuner section (FM or AM) is in use. The dial "pointer" is a piece of plastic that resembles the cursor on a slide rule, with a fine red line that facilitates precise frequency readings. The smooth flywheel mechanism that drives the tuning system is operated by a large aluminum knob to the right of the dial window.

To the left of the dial are three meters. The FM TUNING meter is a conventional center-of-channel indicator. The other two meters are labelled SP OUT: they indicate the voltages across the speaker terminals and are calibrated logarithmically in watts delivered to 8-ohm loads over a range of from less than 0.01 watt to 200 watts. The center meter, moreover, serves a dual function. In addition to being an SP OUT meter, it also serves as a SIGNAL Q meter to indicate the signal quality and is, hence, a combination signal-strength and multipath-distortion meter. When a signal has been tuned for a maximum pointer deflection and the antenna is oriented for minimum fluctuation of the meter's pointer, the signal is heard with the least amount of noise and distortion

A button under one of the meters converts the center meter to a full-time sig-NAL Q meter when it is depressed, simultaneously disengaging the other SP OUT meter. In normal use, with the button in its out position, the function change occurs automatically. As soon as the tuning knob is touched, the center meter indicates signal quality. Releasing the knob automatically switches the meter back to indicating output power. The

switch is provided for situations where one cannot hold the tuning knob, as when changing antenna orientation.

At the lower right of the front panel is a large VOLUME control knob, behind which is a center-detented BALANCE ring. The other controls are arranged in functional groups, with the tone controls at the lower center of the panel. The BASS, TREBLE, and PRESENCE controls each have 11 detented positions. Buttons above them can be used to change the bass and treble turnover frequencies, with a choice of 125 or 500 Hz for the bass and 2.5 or 8 kHz for the treble. The action of the PRESENCE control is centered at 3000 Hz, unlike the usual midrange tone control that operates at 1000 or 1500 Hz. A button located between the turnover selectors is used to switch in and out the tone controls.

The LOUDNESS compensation control, located to the right of the tone controls, is a Yamaha exclusive. This 11-position detented control allows a user to vary the midrange gain over a 20-dB range while simultaneously boosting the low and high frequencies relative to the midrange. With the LOUDNESS control fully clockwise, the response is flat and the VOLUME control is set to give the loudest listening level one expects to use. Then when the volume is adjusted with the LOUDNESS control, a proper balance is maintained between the different frequencies without the unnatural heaviness that mars the sound of most loudness-compensation systems.

The MODE selector can be used to connect either channel or their sum to both audio channels as well as to provide normal and reversed channel stereo operation. The INPUT SELECTOR

1000-Hz total harmonic distortion and 60/7000-Hz IM distortion.

controls an afc system that is automatically deactivated when the tuning knob is touched. When a station is tuned in and the tuning knob is released, the afc system comes on slowly. With the OTS button engaged, the OTS is disabled at all times.

Completing the front-panel control lineup are lever switches for POWER and LOW and HIGH FILTERS and a rotary switch that connects any or none of three pairs of speaker systems or two combinations of two pairs at a time to the amplifier's outputs. The FILTER switches each have three positions with center OFF. The Low turnover frequencies are nominally at 15 and 70 Hz, the HIGH at 8000 and 12,000 Hz. All filter slopes are at a rate of 12 dB/octave. Above these switches is a row of LED's that indicate the status of the POWER, TONE CONTROL. AUDIO MUTING. FM BLEND, and OTS switches and when a stereo FM station is being received.

On the rear apron of the receiver are a full complement of phono-jack connectors for the signal sources, three sets of insulated spring clips for the amplifier outputs, and antenna terminals for 75-and 300-ohm FM antennas and a wire-type AM antenna. The ferrite-rod AM antenna is hinged. Separate PRE OUT and MAIN IN amplifier connectors that are normally joined together by a slide switch make it possible to insert signal-processing devices between the two parts of the circuit. There are also three accessory ac outlets on the rear apron, one of which is switched.

Laboratory Measurements. Yamaha does not use the "standard" method for rating the distortion and noise performance of its receivers. The company's Noise-Distortion Clearance Range method is an expression of the

The INPUT SELECTOR has positions for TAPE 1, TAPE 2, TUNER, PHONO, and AUX. The REC OUT SELECTOR can supply either one or two tape decks with signals from TUNER, AUX, or PHONO sources or from the preamplifier output (PRE OUT). The last permits the full tone-control and filter capability of the receiver to be used ahead of the tape recording process. There are two cross-connected dubbing positions for copying tapes from either machine to the other and providing the capability of monitoring the playback from either deck with the appropriate setting of the INPUT SELECTOR.

Above the tape switches are a TUNER button that allows selection of either AM or FM reception and a small PHONO selection switch with positions for a magnetic and a moving-coil cartridge input. (The receiver has a built-in "prepreamplifier" for the very low output of moving-coil cartridges.) The AUDIO MUTE button, located near these controls, permits the audio level to be reduced by 20 dB for temporary interruptions.

Other buttons under the dial scales include switching for an external DOLBY FM ADAPTER, which simultaneously changes the deemphasis from 75 to 25 µs; FM BLEND for noise reduction on weak stereo signals; FM MUTING, which in its OFF position switches the tuner to mono operation; and MUTING LEVEL for selection of either a 3- or a 30-µV muting threshold. The final button, labelled OTS (Optimum Tuning System), actually

Total harmonic distortion at rated (100 W), half, and low power.

Noise and sensitivity curves for FM section of receiver.

total noise and distortion in the output of the amplifier as a function of output power when measured with a conventional null-type distortion meter. This part is quite standard; where the departure from the standard arises is in making the measurement through the preamplifier at 1000 Hz with the VOLUME control set 20 db below its maximum.

In the case of the Model CR-2020, Yamaha's NDCR rating is less than 0.1% noise and distortion between 100 mW and 100 watts output into 8 ohms. This represents very good performance, especially at the low-power end where the distortion of most amplifiers is masked by noise. To a great extent, this is due to the use of a dual volume control, with one section before the tone control amplifier and the other following it. This causes the noise to drop steadily as the volume setting is reduced, yet minimizes the possibility of overload from a high-level input signal.

We did not measure the NDCR as such, but much of the same information can be inferred from our normal measurements. The one-hour pre-conditioning period at one-third power made the receiver quite hot, especially on the grille above the output transistors, but with no ill effects. The outputs clipped at 130 watts/channel, with both channels driving 8-ohm loads at 1000 Hz. The 4-and 16-ohm clipping levels were 172 and 82 watts, respectively.

The 1000-Hz THD was below the 0.003% residual of our test equipment from 0.1 watt to more than 50 watts output and was only 0.007% at 120 watts, just short of the clipping point. The IM distortion was 0.057% at 0.1 watt and about 0.1% in the 10-to-130-watt output range. Even at a very low output of 10 mW, the IM was under 0.1%, which was an indication of the relative absence of crossover distortion.

At rated power and below, the THD was 0.02% to 0.03% at 20 to 50 Hz (approximately the residual of the test equipment at those frequencies). It reduced to 0.003% to 0.006% at middle frequencies and increased to 0.01% to 0.015% at 20,000 Hz. The risetime, through the Aux inputs, was 5 μ s, and the slew rate of the amplifier was 21 volts per microsecond.

As might be expected, the tone controls could provide almost any desired response characteristic. With the 125-and 8,000-Hz turnover frequencies, a considerable variation was possible in the output at the frequency extremes, with no effect between 300 and 3000

Frequency response and crosstalk with optimum tuning in and out.

Hz. The action of the PRESENCE control peaked at 3500 Hz and had no effect below 1000 Hz or beyond 10,000 Hz. Since the maximum range of this control was ± 6 dB, extreme effects were not possible. It was much more subtle in its action than some earlier so-called "presence" controls we had seen.

The filters are among the best to be found on a contemporary receiver. The measured cutoff frequencies of the HIGH filter (where the response was down 3 dB) were 7 and 10 kHz, and with its 12-dB/octave slope, it was possible to reduce hiss significantly without a serious effect on program quality. The Low filter had its -3-dB frequency at 75 Hz (in its 70-Hz position) and was an effective rumble filter. In the 15-Hz position, the response was down 2 dB at our lower measurement limit of 20 Hz.

Yamaha's loudness compensation is, in our opinion, one of the best (if not the best) currently available. It is probably the only one we are able to use without unacceptable deterioration of listening quality. As the control is turned counterclockwise, the loudness drops almost imperceptibly, because the apparent frequency balance remains constant over the full 20-dB range of the control. (That range is somewhat limited and might require the main VOLUME control to be reset from time to time, but this is a small price to pay for the listening benefits of the system.)

The RIAA equalization error of the phono preamplifier was too small to measure, being less than the inherent ±0.25 dB resolution of the General Radio frequency-response plotter. The equalization changed by less than 0.5 dB at any frequency when measured through the inductance of a typical phono cartridge.

The receiver has an unusually high audio gain. It required only 35 mV at the AUX inputs, 0.58 mV at the PHONO input, for a reference output of 10 watts. The respective unweighted noise levels were

-82 and -72 dB, which in addition to the very low distortion readings tend to confirm Yamaha's NDCR rating. In spite of its high sensitivity, the phono input overloaded at a very high 280-mV input. No measurements were made on the moving coil "prepreamplifier."

The FM tuner section was in many ways as impressive as the receiver's audio amplifier. In mono, the IHF sensitivity was 12 dBf (2.2 µV) with 1% distortion. In stereo, the IHF sensitivity was 17.8 dBf (4.3 μ V), but the 50-dB quieting sensitivity could not be measured accurately because of a considerable level of 19kHz pilot carrier signal that masked the noise level in the audio outputs. The pilot carrier level was -48 dB, making this one of the very few specifications in which the receiver fell short of its published ratings. (The rated suppression is 60 dB, which is not a particularly low figure, either.)

The distortion at a 65-dBf (1000 μ V) input was 0.085% in mono and 0.16% in stereo, and the mono S/N at that input was 72.5 dB. These measurements were made, as the IHF standard specifies, with the AFC (OTS) turned off. Turning it on resulted in a substantial increase in distortion, to 0.58%. Carefully centering the tuning meter actually made the distortion greater, yielding a 0.75% reading. The stereo distortion, with L — R modulation and OTS off, was 0.4% at 100 Hz, 0.089% at 1000 Hz, and 0.12% at 6000 Hz.

The FM frequency response was ruler-flat, varying no more than about ±0.1 dB from 30 to 15,000 Hz with the OTS on. With the OTS off, the response was much the same, except that the tuner section switched into mono below 50 Hz for some inexplicable reason. This was one of several strange effects we observed, mostly relating to the automatic functions of the receiver, such as the OTS and the meter function switching. For example, the stereo channel separation was virtually uniform at 44 to 45 dB from 100 to 12,000 Hz and still a superb 40 dB at 30 and 15,000 Hz with the OTS off. Turning on the OTS improved the separation dramatically to an almost unbelievable 59 to 60 dB between 500 and 2000 Hz.

The other tuner performance characteristics ranged from good to excellent. The capture ratio was 1 dB at a 45-dBf (100 μ V) input and 0.8 dB at 65 dBf. The AM rejection was a very good 70 dB. Image rejection was about 88 dB. Alternate channel selectivity was 74 dB, and adjacent channel selectivity was 4 dB. The

stereo threshold was 12 and 33 dBf (2.2 and 25 μ V) in the alternate positions of the MUTE switch. The corresponding muting thresholds were 14 and 35 dBf (2.7 and 30 μ V). The muting had no hysteresis allowing it to drop in and out with almost no change in signal level. This is undesirable, since a fading signal can rapidly jump in and out of stereo, with more audible side effects than if the mute and unmute levels were slightly different. However, the muting action was very smooth and noise-free.

The AM tuner section had a frequency response (and overall listening quality) far above the average. It had a notable lack of background noise and a frequency response that was down 6 dB at 35 and 7200 Hz.

User Comment. The Yamaha Model CR-2020 receiver was so outstanding in its performance that the few instances where it fell short of expectations are obvious only because of the contrast. Even so, the "plusses" so far outweighed the "minuses" that we were left with a strongly positive net impression of the receiver.

In actual use, the receiver was a pleasure to hear and to operate. Not only does it have just about the best loud-

ness compensator in the business, but its operating flexibility is extraordinary. The receiver competes with a host of very fine receivers, but it can match any of them in sound quality and has few, if any, peers with respect to versatility.

Yamaha does not use a low-pass filter in its FM audio outputs to remove the 19-kHz pilot carrier. Instead, a proprietary carrier cancellation circuit is used. This gives a truly flat frequency response, but in our test unit, it allowed an undesirable amount of the 19-kHz carrier to leak into the program outputs. It is probable that the adjustment of the cancellation circuit had shifted on our test sample. There were, of course, no audible effects from the -48-dB level of the carrier, although it did make some of our measurements difficult to perform. It could easily cause problems with an inadequately filtered tape recorder and almost certainly with an external Dolby unit. There would be no problem if the rated -60-dB suppression were obtained.

In addition to the strange behavior of the OTS system and its effect on distortion and channel separation, the accuracy of the SP OUT meter could not be checked because at power levels exceeding about 10 watts, the meters cut off and returned to zero. On program material, the meters could be driven to about 50 watts before the same thing occurred. Obviously, this is not normal behavior, and we would not be surprised to find that a single fault was responsible for all of these mysterious effects. These are likely unique to our test sample, not the typical production run.

The SIGNAL Q meter was an outstandingly effective tuning aid. It accurately indicated relative signal strength and multipath distortion over a wide range of receiving conditions. Only an oscilloscope might tell the user more, but it would be much more expensive and certainly not as easy to interpret as the meter. Those listeners who depend on AM for any significant part of their listening will find the AM tuner in this receiver to be one of the handful that have acceptably good AM quality—in this case, much more than acceptably good.

In sum, the Yamaha Model CR-2020 is an elegant receiver, tastefully styled and distinctively different from any of its competitors in appearance, operating features, and performance. It is powerful enough for the majority of home installations; yet it is not burdened by excessive size, weight, or price.

CIRCLE NO. 101 ON FREE INFORMATION CARD

OPTONICA MODEL RT-3535 STEREO CASSETTE DECK

Features automatic program locating feature for cueing tape selections.

Optonica's Model RT-3535 tape deck features a novel Auto Program Locator De-

vice (APLD) that can be used to cue rapidly to any of several selections recorded on a single cassette. To some extent, the APLD system overcomes a fundamental limitation of the tape medium, which usually cannot be readily accessed in a random manner as can be done with disc recordings.

The front-loading deck, which is the company's top-of-line model, features two tape heads and two motors. The

capstan is driven by a dc servomotor/voltage-generator setup, while a high-torque dc motor drives the tape hubs.

The deck measures 18¾"W \times 14"D \times 5¾"H (466 \times 356 \times 146 mm) and weighs 22.4 lb (10.2 kg). Its nationally advertised value is \$429.95:

General Description. At the left of the front panel is the tape compartment, below which is the usual row of control levers. Pressing the EJECT lever causes the cassette compartment door to swing upward into the machine. To load a cassette, it must be pushed into the loading ramp at a slight upward angle for a dis-

tance of about 2" (5.1 cm), which allows the cassette to drop easily into playing position.

The cassette compartment door must be closed manually. (It can also be left open during play.) If a cassette is already in the compartment, a firm pressure on the EJECT lever pops it out of the compartment for easy removal. Although the cassette compartment door has a window, the angle of the cassette and the lack of internal illumination make it difficult to determine visually the playing status of the tape.

The other levers in the grouping are for controlling tape motion stop/start, turning on and off the record circuits, switching to fast forward or reverse wind, and activating the pause function. It is possible to go from any operating mode to any other operating mode without stopping the tape. The one exception to this is that the tape must come to a stop before the EJECT lever is operated. There is an automatic mechanical disengagement of the capstan at the end of the tape.

Record/playback response of Optonica RT-3535 with Sony FeCr tape.

To the left of the control levers are two microphone jacks, a stereo headphone jack and a pushbutton POWER switch. To the right of the cassette compartment are three pushbuttons labelled SPACE, INPUT and LIMITER, respectively. The SPACE button is used in connection with the APLD system to insert non-signal segments on the tape; the INPUT switch connects the recording preamplifier to either the LINE or the MICROPHONE sources (the two cannot be mixed); and pressing the LIMITER switch automatically prevents distortion from excessive signal levels when the recording level exceeds 0 dB. The index counter and its reset button are located immediately below these pushbuttons.

Three lever switches at the lower center of the panel permit adjustment of the deck's operating parameters for different tape formulations. The BIAS switch has positions labelled Low, MED, and нідн. The EQ (equalization) switch has two positions labelled 70 µs and a third labelled 120 µs. Between the BIAS and EQ switches are legends for NORM, FeCr, and CrO2 that indicate the recommended settings for the three basic tape formulations. (A fourth formulation, low noise/high output, can also be obtained by changing switch positions.) The third switch controls the Dolby noise-reduction system that is built into the deck. It has an OFF and two ON positions, the uppermost connecting the MPX FILTER to remove any 19-kHz pilot carrier from FM signals in addition to providing noise reduction.

At the upper right of the panel are two large illuminated dB meters, between which are a red RECORDING indicator and a green DOLBY indicator. At the bottom of the panel are the OUTPUT control (for adjusting the level of the playback signal simultaneously for both channels) and separate RECORD level controls for

the two channels. Between the controls and meters is a row of 10 small black buttons numbered 1 through 9 and C, plus a button with no identification. These are the APLD system controls.

The APLD system functions in both the fast-forward and the rewind modes. It senses the absence of a recorded program between the selections recorded on the tape. As an example of how it works, assume you wish to hear the fifth selection on the tape, omitting the first four selections. A light touch on button number 4 will cause the deck to skip the first four selections and stop at the beginning of the fifth selection. Then, all you need do is operate the PLAY lever to hear the desired selection.

When the number 4 button is touched, the unidentified button proves to be a seven-segment numeric LED indicator that displays the number of the button activated (in this case, a numeral 4). Each time the fast-moving tape passes an interval between selections, the displayed number decrements by one digit.

The C button clears the APLD system's memory. This permits the user to resume normal operation of the deck. If C is pressed during a fast-speed search, the tape stops at that point.

The proper operation of the APLD system depends on the absence of program material for a duration of at least 4 seconds between selections. When the user makes his own recordings, the deck is equipped to insert the necessary silent interval automatically. To accomplish this, the SPACE button is first depressed and at the end of each selection the PAUSE lever is operated. This immediately cuts off the recording signal but allows the tape to run for a few seconds to provide the silent interval.

The level meters are fast-responding, peak-indicating types to minimize the chances of overloading the tape on high-level transients. The tape heads are not accessible from the front. However, a small door on top of the deck can be removed to permit cleaning.

Laboratory Measurements. We checked the playback equalization of the deck with TDK and Nortronics tapes for the "normal" (120-µs) EQ setting and Teac tape for the 70-µs settings. In both cases, the response was within ±1 dB from 40 to 10,000 Hz. The overall record/playback response was then measured with Maxell UD-XL (normal), TDK SA (CrO₂), and Sony Ferrichrome (FeCr), as recommended by Optonica. The "normal" response had a slightly depressed upper midrange output, but was within ±2 dB from 21 to 15,000 Hz. The CrO2 response was flatter, with a ±2.5-dB variation from 22 to just beyond 15,000 Hz. The best overall frequency response was with FeCr tape, which varied only ±2 dB from 23 to 17,000 Hz, bettering the company's own specification of 30 to 17,000 Hz.

The Dolby circuits changed the high-frequency response by no more than 2 dB at a -20-dB level, and caused no measurable change at a -40-dB level. The MPX FILTER had less than a 1-dB effect on the response at 14,000 Hz, but it attenuated the incoming signals by more than 20 dB at 16,500 Hz and higher frequencies.

For a 0-dB recording level, the input was 72 mV through the LINE inputs and 0.185 mV through the MIC inputs. The playback output from a 0-dB recording depended on the tape used. It ranged from a maximum of 0.77 volt with TDK SA to a minimum of 0.53 volt with Sony FeCr tape. The limiter had no effect until the input level reached +1 dB, but an input of as much as +20 dB was held to an effective 2.7-dB increase in recording level, with only 3% playback distortion. The meters had a 10% to 15% overshoot on 0.3-second tone bursts and indicated +0.5 dB on a standard Dolby level tape of 200 nWb/m. (The calibrated Dolby level is at 0 dB.)

At a 0-dB recording level, the play-back distortion was 0.71% with Maxell UD-XL, 2.5% with TDK SA, and 1.8% with Sony FeCr tapes. The reference 3% distortion level was reached at recording inputs of +6 dB, +1 dB, and +3 dB, respectively.

The IEC "A" weighted S/N reading (without Dolby) for the tapes, referred to the 3% distortion signal level, was 60.7 dB with UD-XL, 57.4 dB with SA, and 58.3 dB with FeCr tapes. With the Dolby

system switched in and using CCIR weighting, these figures improved to 68.5, 66.4, and 67 dB. At maximum gain, the noise through the microphone inputs increased by 10 dB. But at usable gain settings, the noise increase was both inaudible and unmeasurable.

Although the headphone output was designed for 8-ohm phones, the volume level was adequate with 200-ohm phones as well.

The flutter was 0.13% on playback only in an unweighted rms measurement and 0.14% in a combined record/playback measurement. The transport operated smoothly and quietly. In its fast speeds, it moved a C60 cassette from end to end in about 82 seconds.

User Comment. As our lab measure-

ments reveal, this is a very good recorder, whose performance is generally of the caliber one would expect from a machine in its price class.

One difficult test for many cassette recorders to pass is to record FM tuner interstation hiss at a -10-dB level and to compare the playback with the incoming signal. Most machines reveal varying degrees of dulling of the highs and sometimes low-frequency colorations. The Model RT-3535, however, passed this test with a virtually perfect reproduction of the hiss, using TDK SA tape.

We found that the APLD system performed well on most commercially recorded tapes, but it could be "fooled" by an insufficiently long silent interval between selections or by unexpected silences within a selection. With our own recordings, made with the aid of the SPACE button on the deck, the APLD worked perfectly every time.

This deck marks an auspicious entry for Optonica into the American audio scene. There are a host of cassette decks with generally similar features and performance, but this one offers something different. Perhaps not everyone will find the APLD equally useful, but if random rapid access to one of a series of recordings on the same cassette is of any importance to you, this machine offers an ideal answer to the problem. Best of all, none of the fundamental performance qualities of a firstrate cassette deck seem to have been sacrificed in any way as a result of the inclusion of the APLD system.

CIRCLE NO. 102 ON FREE INFORMATION CARD

dbx MODEL 128 DYNAMIC RANGE ENHANCER

Remarkably effective, versatile unit's operation is formidable to master.

The expanders and compressors from dbx have been a part of professional and

home audio scenes for several years. During this time, they have undergone considerable modification and improvement to make them better, more unobtrusive performers. The latest, and perhaps most effective, of the dbx devices is the Model 128 dynamic range enhancer. It is a remarkably versatile accessory that can provide noise reduction and dynamic range enhancement either separately or simultaneously.

The Model 128 is normally connected into the tape recording and monitoring path of an amplifier or receiver. The tape recorder then connects to the system via jacks located on the rear apron of the Model 128. In operation, the Model 128

consumes only 10 watts of power from the ac line.

The Model 128 is compact, measuring only $11^{\circ}W \times 10^{3}4^{\circ}D \times 3^{3}4^{\circ}H$ (28 × 27.3 × 9.5 cm) and weighing 8 lb (3.6 kg). Its nationally advertised value is \$450.

General Description. As a tape recording noise-reduction system, the Model 128 compresses the signal going into the recorder by a factor of 2:1. (A 20-dB input change emerges as a 10-dB change in output.) The dynamic range of the system is approximately 110 dB, making it theoretically possible to compress a "live" program with a 100-dB dynamic range into 50 dB, which can be accommodated by any good open-reel tape recorder and some of the better cassette decks.

During playback, the Model 128 acts as an expander whose slope comple-

ments the recording compression slope. Hence a 10-dB playback level change coming out of the recorder is converted to the original 20-dB change by the dbx circuits. The program dynamics are not modified in the recording and playback process through the Model 128, but any noise added in the recorder is reduced by the amount of the playback expansion (values up to 30 dB are possible in practice). Unlike the Dolby and ANRS systems, whose operation depend on precisely controlled levels within the system, the dbx system is virtually independent of level. (A 60-dB program range can be located anywhere within the unit's 110-dB range without affecting the final results).

The successful operation of a compander requires close matching of the recording and playback slopes and operating time constants. Since the same circuits are used for both functions, dbx manages to achieve this quite successfully. The detailed operation of the dbx Model 128 (employing what dbx calls the "dbx II" system) is quite complex. It is explained in considerable detail in the instruction manual for the Model 128. It is worth noting that "encode" and "decode" frequency response characteris-

tics of the Model 128, in its noise reduction mode, are far from "flat." About 10 dB of high-frequency preemphasis is used during recording and a corresponding deemphasis during playback to further reduce the modulation noise that accompanies the action of the dbx processor.

The second function of the dbx 128 is as a dynamic range enhancer, or volume expander. This is done with a separate expansion channel, usable simultaneously with the noise reducer or by itself when playing ordinary disc or FM radio programs. Actually, the enhancer channel can be continuously varied from full ("infinite") compression to an expansion slope of 2.0, although compression is not likely to be used except for such purposes as background music or accommodating the wide range of signal levels that usually exist during a conference or meeting. As the control knob is advanced through a slope of 1.0 (linear), the most prominent effect is usually the change in background noise, which drops markedly during expansion. With an expansion slope of 1.2 or 1.3, it is possible to realize a worthwhile noise reduction on most programs, without objectionable side effects, and with a corresponding enhancement of the program dynamics.

The basic operation of the dbx 128 is controlled by six pushbutton switches, three of which are for the noise-reduction functions during tape recording. The BYP (bypass) button routes the tape recorder signals around the dbx circuits; REC switches in the compressor (with a 2.0 slope) between the program and the recorder's input, with the high-frequency preemphasis added; and PLAY places the dbx circuits in the recorder's playback path with high-frequency deemphasis and in a 2.0 expander mode.

The two enhancement buttons are labelled PRE and POST and refer to the position of the variable compander circuit relative to the tape noise reduction circuit. PRE allows the program to be expanded or compressed before it is recorded, while POST makes these operations possible on the playback signal (in both cases, independent of the action of the noise reducer). With proper use of this feature, the Model 128 actually makes it possible to improve the quality of a tape recording, relative to the original signal, instead of merely not adding any more noise to it.

A control knob to the left of the enhancement buttons permits the compander slope to be varied. A LEVEL con-

trol near it operates in conjunction with amber and red LED's on the panel to set the level at which the device goes from expansion to compression. The enhancement circuit can also be set to go into operation above a certain signal level (as set by the LEVEL control) instead of operating over the full dynamic range of the instrument. Pressing the button changes the mode from linear to "above threshold" so that the dbx system becomes a peak unlimiter or a peak compressor, according to one's needs. Program levels are unaffected when the amber LED is on.

The remaining controls include a power switch, a tape playback level matching control, and an input selector button labelled TAPE and DISC. The latter position bypasses all the tape recorder circuits to permit the enhancement circuits to operate on the program coming from the associated amplifier or receiver. The DISC nomenclature applies to the playing of dbx-encoded phonograph records, of which there are a few, through the decoding circuits of the Model 128.

Laboratory Measurements. The dynamic nature of the dbx Model 128 range enhancer makes it impractical to make quantitative performance measurements. Except for verifying the deemphasis and preemphasis curves and the complementary nature of the recording and playback slopes, we evaluated the system's performance entirely by actual use.

User Comment. In spite of its small size and accessory nature, the Model 128 is a formidable unit to master. The user's manual is very complete (almost too complete, in some respects), but it is not easy reading. Our recommendation is that it be studied like a textbook on dynamic signal processing, which it very nearly is, and that the Model 128 be set up in a system and the controls experimented with until one has a fairly clear idea of what is happening when any particular control configuration is used.

The SLOPE control must be set to 1.0 when noise reduction is in use. Otherwise, the input and output signal relationships will be altered. The control has no detent or definite center position but appears to be accurately calibrated.

With a slope of about 1.2, the expander was very effective in reducing background hiss from phonograph records and FM tuners, with a light enhancement of dynamic range and almost never any signs of noise "pumping" (a common weakness of expanders). The entire operation was so noncritical that, in most cases, one would not be concerned unduly about the actual signal levels, or when the threshold lights were flashing. (Although out of habit, we tried to keep them flashing on normal program variations.)

As a noise reducer, the Model 128 was at its best. The magnitude of the compression during recording can be appreciated by listening to the program off the tape while recording. It is incredibly noisy and shrill. When the same program is played back through the PLAY mode, however, one would never guess that it ever had been in compressed form. It sounded exactly like the original program, in every respect, without an audible hint of processing.

With a cassette recorder, the Model 128 makes it possible to record at a low level (as low as -20 dB, hardly moving the recorder meter pointers), thus avoiding the usual problems with high-frequency tape saturation. Yet, during playback, the S/N ratio is at least as good as with normal operation of the machine. Although Dolby noise reduction can be used with the Model 128, dbx points out that it offers no advantage, and should be switched off when one is making a dbx recording.

A drawback of the dbx system is its incompatibility with other noise-reduction systems, such as the omnipresent Dolby and ANRS, or with no system at all. A dbx recording must be played back through a dbx decoder since it is unlistenable in its encoded form. The same applies to dbx phonograph discs; they have an unbelievable dynamic range when properly played, but cannot be listened to without a dbx decoder. Moreover, the Model 128 does not provide the ability to monitor a program off the tape while recording. (It has only one set of circuits. The reasons for making the Model 128 in this way are obvious when one considers its price, even without the duplication of facilities required.)

Aside from the foregoing, and likely more important to serious recordists, the Model 128 is perhaps the most effective and versatile tape recording noise reducer and dynamic range enhancer available to the amateur recordist or hi-fi enthusiast. Aside from the considerable practice needed to become familiar with its operating modes, it is a virtually foolproof product and is outstandingly free of the undesirable side effects that often accompany such signal processing.

CIRCLE NO. 103 ON FREE INFORMATION CARD

Hew 1978 Electronic Games

electronic games, many using microprocessors, promises the public more stimulating fun for leisure time.

BY KRIS JENSEN

A host of video and nonvideo

COUPLE of years ago, an electronic video game consisted of a simple "black box" that, when connected to a TV receiver, produced little more than some version of video table tennis. In some cases today, that black box is virtually a personal computer. Now there are games whose color images try your gambling instincts at blackjack, your "destroy" capability against an enemy tank, your patience and fortitude through a maze while a "cat" attempts to devour you, your artistic talent with computerdrawn pictures, or your knowledge of math and history. And that is just the beginning in video games!

Furthermore, there are nonvideo games—a new breed of electronic battlegrounds emerging from game manufacturers who were never in the electronics business. Traditional game manufacturers like Parker Brothers (of MonopolyTM fame), Milton Bradley, Mattel Toys, and others now offer nonvideo hand-held or table-top electronic games. Consequently, these manufacturers blithely sidestepped the FCC and the production delays caused by Class I interference tests.

The Electronic Industries Association estimates that some 3.5-million video games were sold last year. The figure for this year is expected to reach 10 million—and that is for video games alone;

non-TV games are coming on strong, too. With figures like these, integrated-circuit chip suppliers such as General Instruments, Texas Instruments, National Semiconductor, and Rockwell are hard pressed just to keep up with anticipated demands.

Then and Now. Atari got the videogame ball rolling across TV screens in a big way in 1975 with its "Pong" game, a hit-the-ball with a paddle game that featured automatic on-screen digital scoring. "Super Pong" followed, offering four resident games—two forms of tennis, Catch, and Robot, all in full color with automatic scoring and sound effects. A host of other companies shared the success in this market, including Coleco and Magnavox, among leaders of "dedicated" games.

Now these games are commonplace. Prices have dropped considerably—to as low as \$19.95. Moreover, there are many more game variations available in a number of 1977–1978 models. Atari, as an example, has dropped its former line and introduced "Ultra Pong," with 16 color-game variations selling for 40% less than last year's more limited "Super Pong." National Semiconductor's "Adversary 370"—introduced last year as a tennis-hockey-handball game—has been joined by the company's new "Ad-

SPACE WAR

T.V. SCHOOL HOUSE T

T.V. CASINO I BLACKJACK

66 Only after you've experienced the sheer joy of slaughtering your best friend will you know the true meaning of fun. 99

BOWLING

versary 600," which has 12 action fields and 23 games that include "Pinball" and "Wipeout" (with 240 stationary targets) games as well as some of the traditional paddle-ball games. It uses NS's MM57106 game chip, combined with an LM1889 Modulator IC to produce full color, audio and r-f signals. Magnavox's "Odyssey 4000" has eight full-color games with remote, hand-held joysticks. Unlike most other paddle-ball games, users can move on-screen players in horizontal as well as vertical directions. In addition, an "Odyssey 5000," with many more built-in games, is expected to be marketed.

There are also video games that do not feature paddle-ball formats. For example, Atari has debuted a \$79.95 "Video Pinball" game, a tank battle game, and a "Stunt Cycle" game.

Most games provide a host of devices to make them more interesting, such as different paddle sizes, choice of ball speeds, etc. An interesting innovation this year on a few games is indenting the hockey-goal areas so that the puck can rebound behind the goal, as in the reallife sport. The major consideration here is to minimize eventual boredom. But a new generation of video games will surely overcome this possibility: programmable video games.

Programmable Video Games. Fairchild Camera and Instrument broke the ice on programmable video games at the end of 1976 with its "Video Entertainment System." Based on a reprogrammable microcomputer chip set, it spearheaded the format used by other manufacturers of programmable games. Here, one inserts what appears to be a tape cartridge (actually it's a solid-state circuit that contains game programs on ROM) into a slot on the game machine to select a particular game or games in full color if played on a color TV receiver. Hockey and tennis are resident games

stored in the machine's F8 microprocessor. These games are disabled when a VideocartTM is inserted. There are 15 different cartridges available at this writing, including "Baseball," "Desert Fox" (a tank battle game), "Shooting Gallery," "Math Quiz," and an introduction to "Backgammon." The machine is priced at \$169.95, while each game cartridge is listed at \$19.95.

The baseball game may be cited as an example of the degree of sophistication that microprocessor games can achieve. Here, a "green" team plays nine innings against a "blue" team. The player whose team is in the field can control the positioning of outfielders in order to "catch" the ball hit by the batter. Furthermore, he can pitch a fast ball, letup ball, slow ball, and curve ball in any direction. Balls, strikes, outs and runs register on screen. Hit the batter and a figure on the screen goes to first base. The score is automatically maintained on screen, of course. Clearly, the challenge of outfoxing one's opponent makes the enjoyment of a game last that much longer.

Following on the heels of Fairchild's programmable video game was RCA with its "Studio II Home TV Programmer." Whereas Fairchild's game has remote controls. RCA's features two calculator-type keyboards on the console, which measures 15" long × 7" wide × 2" deep. There are five resident games: Bowling, Freeway, Addition, Doodle, and Patterns. Plug-in cartridges, of which there are currently six, also consist of ROM's that plug into a socket. Built-in games are then disabled; players continue to control new games via the front-panel keyboards. Among the plug-in cartridge games available are baseball, space war, and "TV School House" (social studies and mathematics quizzes). The latter has a Yellow Series for elementary students and an Orange Series for advanced students. Both are accompanied by manuals to answer questions randomly selected by the Studio II computer. The faster the correct answer is selected and entered on the keyboard, the higher the score registered on the TV screen. The console is priced at \$149.95, and cartridge prices range from \$14.95 to \$19.95 each, depending on contents.

The RCA Studio II game is based on the CDP1802, the same 8-bit chip used in the POPULAR ELECTRONICS "Elf" microcomputer, as well as the black-and-white graphics chip. In addition, inside the machine are two 512 × 8-bit ROM's. They act as an "interpreter" to provide common game-display patterns such as scorekeeping, alphanumerics and sub-routines. A second ROM contains programming to execute any of five resident games. TV refresh (direct-memory access or DMA is used), and stack and variable storage are provided by 512 bytes of RAM.

Atari's new \$189.95 "Video Computer System" comes with one plug-in cartridge that provides 27 game variations with full-color capability, including a combat package of "Tank" and "Jet Fighter." The latter game provides steerable and nonsteerable missiles. cloud formations and multiple fighter versus bomber combinations. The system includes two joystick controls, four detachable paddle controls and a player difficulty option switch. Five additional cartridges are currently available, offering 10 to 50 game variations each. They include "Space Mission," "Air-Sea Battle," "Street Racer," "Indy 500" and "Video Olympics."

Bally, well known for its arcade games, has entered the consumer electronics market with a programmable video game called, "Professional Arcade." The model has two on-board games called "Gunfight" and "Checkmate," with controls for up to four players. In addition, it incorporates a 4-func-

Electronics (assembled by Rockwell International) for Mattel, Inc.'s "Auto Race" include PPS-4/1 microcomputer and segmented LED matrix.

Milton Bradley's nonvideo "Comp IV" selects one of 32,000 random-number combinations when turned on. The players then try to guess number.

In Fidelity Electronics' "Chess
Challenger," moves are entered
via keyboard. Display indicates player/
machine moves and game outcome.

Microphotograph of Texas Instruments'
TMS-1000 microprocessor. It can be
tailored to fit any number of games
and has direct drive for displays.

Studio II, RCA's TV programmer, has five built-in games and also uses optional plug-in cartridges for other types of programs.

At CIE, you get electronics career training from specialists.

If you're interested in learning how to fix air conditioners, service cars or install heating systems—talk to some other school. But if you're serious about electronics, come to CIE—The Electronics Specialists.

Special Projects Director Cleveland Institute of Electronics

this card today

FREE SCHOOL CATALOG

or call this toll-free number: 800-321-2155 (In Ohio ... 800-362-2105) Tell us which electronics programs interest you most. Check one or more: Intermediate College Level FCC License Preparation Equipment Troubleshooting By return mail we will send you a FREE CIE school catalog including authoritative information about the value of the FCC License and how to get one . . . plus a complete package of home-study information. Print Name Address State Phone (area code) Check box for G. I. Bill information \(\subseteq \text{Veteran} \subseteq \text{Active Duty} \)

DETACH AND MAIL TODAY!

Place Stamp Here

1776 East 17th Street Cleveland, Ohio 44114 y father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand."

I believe he was right. Today is the age of specialization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your family doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist. And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education and career future to anything less than a specialist?

You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exclusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool—and want the training it takes—to make sure that a sound blackout during a prime time TV show will be corrected in seconds—then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting because it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas — and builds on them.

That's what happens with CIE's Auto-Programmed® Lessons. Each lesson uses world-famous

"programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day—things like servicing a beauty of a Zenith color TV set... or studying a variety of screen display patterns with the help of a color bar generator.

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic waveform patterns of electronic equipment.

You work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained electronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast . . . in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License School."

We don't mind. We have a fine record of preparing people to take... and pass... the government-administered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take

the exams get their Licenses. You may already know that an FCC License is needed for some careers in electronics—and it can be a valuable credential anytime.

Find out more! Mail this card for your FREE CATALOG today!

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if you are serious about learning electronics... or building upon your present skills, your best bet is to go with the electronics specialists—CIE. Mail the card or coupon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloscope screens are simulated.

	eveland Institute of Electronics, Inc. 76 East 17th Street, Cleveland, Ohio 44114
	76 East 17th Street, Cleveland, Ohio 44114
	Accredited Member National Home Study Council
Send me my FREE	, I want to learn from the specialists in electronics—CIE. IE school catalog—including details about troubleshootin EE package of home study information. PE-5
Print Name	
Address	_Apt
City	
State	Zip
Age	Phone (area code)
Check box for G.I. Mail today:	ll information: Veteran C Active Duty

tion, 10-memory printing calculator with a screen display, entry correction and scroll button. A cassette mode permits plugging in "Videocade" electronic programs, which consist of an Action/Skill series, a Sports series, an Educational series, and a Strategy series. This programmable machine also features music. For example, in "Gunfight," the user operates the movable arm of a computer-generated "cowboy" to aim and fire at an opponent-assuming he is not hiding behind a movable cactus. If the player "Kills" the opponent, the latter dies on the screen to the sounds of "Taps" and "The Funeral March." The Arcade is priced at about \$290, while cassettes are \$20 each. At this writing, the model is awaiting FCC type approval.

Coleco Industries, Inc. also has an "Arcade" programmable game on the market, It's called, "Telstar Arcade," and features a three-sided console. One side has a built-in car steering wheel that acts as an input controller for auto racing games, another a pistol and holster for target and shooting games, and the third a set of knobs for paddle games such as tennis, hockey, etc. Games are determined by the programmed Telstar cartridge used, which is triangular in shape. The unit comes with a cartridge that contains programming for three games: "Road Race," "Quick Draw" and "Tennis." The console with one cartridge is priced between \$100 and \$125

at this writing, while other cartridges (unannounced) will be priced at \$20.

No TV Needed. Games that do not require a TV receiver have begun to enter the electronic-game market in force. Milton Bradley, for example, has introduced a hand-held game incorporating a microprocessor, called "Comp IV." When the \$30 game is first switched on, it selects one of 32,000 random-number combinations. By using the keyboard, a player enters his number guesses. LEDs display how close the player's guesses are to the game-selected number. The idea is to logically deduce the numbers and their order in as few tries as possible.

Comp IV can be programmed to operate with three, four, or five number strings to make the game as easy or as simple as one likes.

This MB game is built on a single board that utilizes a multikey keyboard and a TI 970 game chip. (The 970 is actually part of the new Texas Instruments TMS1000 series of p-channel MOS four-bit microprocessors, During its manufacture, however, a masking technique is used to program an on-board 1-k ROM that tailors the TMS-1000 to fit a customer's requirements in software and allows direct-drive for displays. The chip also supports 256 bits of RAM and an arithmetic unit.)

Milton Bradley was not alone in see-

ing the value of a microprocessor for nonvideo games. A TI system is also the integral component in "Code Name: Sector," a submarine pursuit game from Parker Brothers. This game is truly challenging. Two opponents compete against each other, each commanding a destroyer in an effort to sink a computercontrolled sub as it moves through 4800 possible sections of a nautical-chart board. Seven-segment and crete-LED displays indicate speed, depth, range, and headings (directions) as opponents try to blow the sub out of the water. Collisions can occur to throw a player off course, and if a player misses the sub, the underwater craft not only moves on a secret course, it will fire back to put the attacker in a random position out of firing range.

Though "Code Name: Sector's" instructions are stored in ROM, a RAM, system is used to temporarily store information on ship positions, compass headings, and speeds. Decoding for the displays is accomplished with a programmable logic array for conversions from BCD (binary coded decimal) to seven-segment format. A Klixon keyboard from TI is used to input information such as speed, steering, sonar control, etc. The entire system operates on a single 9-volt battery. It's priced at \$40.

Mattel Electronics has also come up with some innovative ideas on three pocket-size electronic games called

PIN CONFIGURATION 28 LEAD DUAL IN LINE

		rop View		
Ve	E *1	O	28	Background
Right Player Video	2 2 5		27	Blanking
Left Player Video	0 3		26	Explosion Envelage
Tank 1 Strope	E 4		25	Guntire Envelope
Left Track Forward	1 45		24	Tank 2 Strobe
Right Track Forward	16		23	Tank 2 Motor Sound
Right Track Reverse	7		22	Bearing Squeek
Left Track Reverse	1 0 8		21	Tank 1 Moler Sound
Fire Gun in	1 4		70	Explosion and Gentire Noise
Game Rese	1 7 10		19	Clock Input (4 09MHz)
Tos	T 11		16	Test-Do not connect
Do not connect Tes	1 12		17	Sync
	1 [13		16	Color Burst Locator
Tes	1 14		15	V _{cc}

Above is pin configuration for General Instrument's AY-3-8700 single-chip tank game. It provides 32 rotational angles of tank control and also has noise outputs.

Video screen (left) using GI's AY-3-8600 hockey game chip has two new provisions: lateral as well as vertical movement of forwards and space behind goal for puck to bounce off the wall instead of disappearing.

"Football," "Auto Race" and "Missile Attack." A LED array marks a player's position on the football field as he attempts to avoid other LED "tacklers" that are controlled by the game's electronics package. Seven-segment displays keep track of downs, time, and yardage to go. If a player scores a touchdown, the game plays the tune "Charge!"

In playing "Auto Race," you are racing around a four-lap LED-lighted course. Steering and speed/shift controls allow you to maneuver around opponent cars under the game's control. While playing, motor sounds are produced. You hear a beep to indicate a collision; a victory sound when and if you beat the seven-segment clock through the course.

In "Missile," a LED array indicates that enemy missiles are launched toward your "city." The object of the game is to use your anti-missile missiles to destroy the enemy missiles before they reach home turf. A seven-segment display keeps track of your "kills," but make one mistake, letting an enemy missile through, and the game plays "Taps" just after your city is destroyed.

The display is what makes the Mattel games unique. It is a cross between a hand-held calculator number display and a true video display, minus the video. Designed by Rockwell International, it consists of a matrix of 40 × 10 mil GaAs LED's. Three columns of seven vertical line segments make up the Auto Race and Missile Attack displays, while three rows of nine horizontal seqments make up the display for the Football field runners. All multiplexing and buffering is accomplished with Rockwell's PPS-4/1 microprocessor. This dedicated chip contains all the software for all three Mattel games. Cost of these is \$29.95 for Football, \$24.95 each for Auto Race and Missile Attack.

Rockwell is also responsible for the design of another system, sold by Unisonic. Called the "Unisonic 21," it is a Blackjack card game that comes in both shirt-pocket and desk-top models. If you would like to calculate your odds before picking up the next electronic "card," you can flip a switch that converts the game into an eight-digit, four-function calculator.

Taking its game more seriously, Fidelity Electronics has developed the "Chess Challenger." It uses four alphanumeric displays and a keyboard. Moves are entered via the keyboard and shown on the displays. Two seconds later, the display indicates the machine's move. An average player will win 25% to

MORE VIDEO GAMES

Bally's "Professional Arcade" with two on-board games has 4-function, 10-memory printing calculator with screen display.

70% of the time in which case, a LED labelled "I LOSE" indicates the machine's defeat. With the "Chess Challenger," you move real chess pieces around a real chess board. (The chess board does not use the standard chess-square identifier terminology. Instead, the terminology is unique to the computer logic system around which the game is built.)

"Chess Challenger" employs a standard 8080 microprocessor chip, a ROM system for strategy storage, and a RAM system for game moves. The game sells for \$200 (Heath sells it for \$179.95, assembled), and for an extra \$75, it can be reprogrammed (another ROM installed) for tournament strength. The upgraded version begins a game by asking at which level you would like to play. You can begin at level 1 and, as you become more proficient, work up to level 3.

The game level approach is also used by Staid's "Compuchess," another chess game recently introduced. The \$159.95 hand-held game requires you to supply the chess board. It can be programmed for up to six different skill levels. Levels 1 and 2 are for teaching purposes; levels 3 to 5 are for players already familiar with the game. Because of all the algorithms performed at level 5, it takes the game nearly seven hours to respond to your move. Hence, levels 5 and 6, which require a couple of days to

respond, are for the chess-by-mail addict only.

Yet another computerized chess game—"Boris" from Applied Concepts—is a \$299.95 machine designed with both beginner and advanced chess players in mind. It features a programmable starting position, handicapping, en passant, castling, automatic queening, editing capabilities, timer, and an 8-digit alphanumeric readout. The computer concedes defeat by flashing "Congratulations" on the display.

The increasingly popular game of Backgammon has not been neglected, either. "Gammonmaster II" by Trycom Inc. and "Computer Backgammon" by Texas Micro Games, Inc. have both been announced and exhibited at shows. In both cases, the computer is a real thinking machine, being required to analyze the entire board before making its move against its human opponent.

National Semiconductor has not confined itself to the pure video game market. Based on its calculator-oriented processor system (COPS), NS has three versions of a learning game called Quizkid. The hand-held games present math problems of varying complexity and require answers within preset time limits. The latest Quizkid Racer game can operate as a single unit, or it can be linked by a cable to another Racer game

to allow two opponents to challenge each other while competing against the machine. The COPS series includes two single-chip microprocessors, the MM5799 and MM57140, 8 or 16 k of ROM, 1 k of RAM, and other IC's, including a printer interface chip.

The hand-held game, as a teaching aid for children, could prove an important tool in child education. Other manufacturers, such as Texas Instruments and APF, are also beginning to produce such games.

Still Many More. The number of manufacturers who produce electronic games seems endless, thanks to a steady stream of totally new chips being offered as off-the-shelf items to them. TI, for instance, has Space War, from its new line of game chips. GI has its "Gemini TV Games" IC's, which include cassette-programmable IC's designed around a CP1600 microprocessor and a system instruction ROM (2048 × 10 bit). With appropriate RAM's and graphics processor chips, games such as "Roadrace," "Submarine," "Dogfight," and "Blackjack" can be generated.

The most widely used GI chips employed by game makers are the 8500 and second-generation 8550 n-channel MOS devices. With just a few outboard components, these chips can provide

tennis, hockey, handball, practice, and two target games, the last with remote guns. On-screen scoring with sound effects are generated by the chips, as are color outputs for use with a color-generator circuit. It is this flexibility that has made the GI chips so attractive with such manufacturers as Magnavox, Lloyd's, Monteverdi, Venturi, Hanimex, etc. Simply jumpering or switching certain pins of the 28-pin IC adds as much complexity (and cost) to the final product as desired.

Speaking at last year's winter Consumer Electronics Show, Dr. E.A. Sack, Vice President for GI, stated that his company believes in the dedicated approach to microprocessor game designs. GI backed up this position by introducing its Gemini video game circuits that are capable of playing more than 50 different games. While some of the new chips allow a manufacturer to make stand-alone games that can be reprogrammed, others can be added to existing games that use the GI 8600 eightgame chip (tennis, hockey, soccer, squash, practice, gridball, basketball, and basketball practice). Using much of the 8699's video and player-control circuits and adding an 8603 chip, for example, the normal ball-type games can be transformed into a road race when game number 1 is selected on the control switch. The idea, of course, is to allow a manufacturer to upgrade his entire stock easily and relatively inexpensively simply by adding one IC chip.

GI has just recently begun delivery of its AY-3-8700 single-chip tank game. This is a 28-pin IC package that provides 32 rotational angles of tank control for two players. Video outputs from the chip include left and right player tanks, shells, shell bursts, mines, fixed barri-

Microcomputers like Radio Shack's TRS-80 can be used to play video games or as educational tools,

ers, score, blanking, background, sync, and color-burst locator. Audio output circuitry is just as complete with tank-1 and tank-2 motor sounds, bearing and track squeals, and explosion and gun-fire envelopes. The chips are \$9.95 each, but don't send in an order unless it is for 50,000 or more chips.

Among other companies in the electronic game business, APF Electronics has a broad line of video paddle games with two new additions—the Model 500 with 20 space-type games, including Space War, and an M1000 microprocessor programmable game at \$149.95.

Sears, too, has increased its line of games, which begins at \$20 and goes on up to a sophisticated programmable game that sells for \$179.95 Sears' program library ranges from antiaircraft torpedo shooting to an outer-space game. Mid-priced dedicated games are available for other games like "Tank."

Microelectronic Systems' "Interact" is a joystick-and-keyboard-operated game that can be programmed by a *tape* system. Running at 810 bits/inch, the tapes set up the game to play Trail Blazers, Blackjack, or Regatta racing. You can also draw computerized color pictures on a TV screen. With a built-in cassette machine and alphanumeric keyboard input, it lists for \$249.

Even though game manufacturers are now designing games for the home, office, and shirt pocket, this is just the beginning of a whole new era of gamesmanship. Datatime Corp. may be saying this with its new wristwatch, which gives time and date on a liquid-crystal display as well as allowing you to play Jackpot, Dive, and Roulette. A backlighted display on the \$100 timepiece keeps you in action no matter what the hour.

Too, let us not overlook the home computer while we're exploring electronic games. Though computers are at the peak of the triangle in terms of numbers expected to be sold this year (owing to higher costs), a myriad of fun games can be played on a TV screen if you have your own computer. There are more possibilities, in fact, than any programmable-type video game has because you can create your own game programs as well as having access to an overwhelming amount of game software and written programs.

In spite of predictions in numbers and dollars for the future of electronic games, perhaps their real interest for all of us was best expressed by Nolan Bushnell, Chairman of Atari: "Only after you've experienced the sheer joy of slaughtering your best friend will you know the true meaning of fun."

Two sources of perfection in stereo sound.

Match one to your equipment

"The right Pickering Cartridge for your equipment is the best Cartridge money can buy."

We've been saying that for years; and tens of thousands of consumers have profited by applying this principle in assembling their playback systems.

If you have a fine manual turntable, the XSV/3000 is a perfect choice.

If you have a high quality automatic turntable, then installing an XV-15/625E in its tone arm is a perfect choice.

The summary advice of Stereo's Lab Test, in an unusual dual product review, we think brilliantly states our position: "The XV-15/625E offers performance per dollar; the XSV/3000, the higher absolute performance level." That makes both of these cartridges best buys!

Pickering's new XSV/3000 is a remarkable development. It possesses our trademarked Stereohedron Stylus Tip, designed to assure the least record wear and the longest stylus life achievable in these times with a stereo cartridge. Its frequency response is extraordinarily smooth and flat; its channel separation is exceptional; its transient response affords superb definition. It represents à whole new concept of excellence in stereo cartridges.

Read the whole evaluation report. Send for your free copy of the Stereo "Lab Test" reprint; write to

Pickering & Co., Inc., 101 Sunnyside Blvd., Plainview, N.Y. 11803.

Department PE PICKERING & CO., INC., COPYRIGHT 1977

A digital electronic bugle-call generator with an audio amplifier for mobile or home use.

F YOU have ever seen a Western movie, you're no doubt familiar with the bugle call played as the U.S. Cavalry charges over the hill to the rescue. This project generates that bugle call electronically. Because digital circuitry establishes the musical intervals between the notes, it will never drift out of tune. "Charge!," as the project is called, can be built from readily available, inexpensive TTL logic, 555 timer IC's, and silicon transistors.

Two versions of the circuit are presented. One, incorporating a high-power output stage, requires a 12-volt dc supply and is well suited for use as a vehicle horn or a cheerleading device at parades and school sporting events. The low-power version, operated from the ac line, can be used as an annunciator, doorbell, alarm, or simply as an atten-JANUARY 1978

tion-getting conversation piece. Two controls allow the user to vary both the tempo and pitch of the bugle call.

About the Circuit. Free running timer *IC1* and its associated components (Fig. 1) form a tone oscillator whose operating frequency is governed by the setting of *R2*. The oscillator output, a square wave with a duty cycle close to 50%, is frequency divided by factors of 10, 12, and 15 by *IC2*, *IC3*, and *IC4*, respectively. In this way the three tones that form the bugle call melody are generated. Digital frequency division ensures that the intervals between the three notes remain constant. However, the pitch of the bugle call can be varied by adjusting *R2*.

Square waves from IC1 are applied to the three frequency dividers simultane-

ously. The 7490 functions as a symmetrical \div 10 counter in the following manner. Input signals are routed to the internal \div 5 counter (pin 1). The output of this counter is connected to the input (pin 14) of the IC's \div 2 counter. Output signals appearing at pin 12 have a frequency one-tenth that of the input and a duty cycle of 50%. A \div 12 counter (IC3) is formed in a similar manner by interconnecting the \div 6 and \div 2 counters contained in a 7492 IC.

A different approach must be taken to realize a ±15 function because 15 is not divisible by two and some other integer. In this project, a 74193 presettable up/down counter is used as the ±15 stage. This counter IC has four data inputs (pins 15, 1, 10 and 9) and four corresponding outputs (pins 3, 2, 6 and 7). The counter outputs can be preset to

Fig. 1. Schematic diagram of "Charge!" Tempo and musical notes of the bugle call are generated digitally.

PARTS LIST

C1-0.001-µF disc ceramic capacitor C2, C5-0.1-µF disc ceramic capacitor

C3-22-µF, 16-V electrolytic capacitor

C4-1-µF, 16-V electrolytic capacitor

C6-0.0047-µF disc ceramic capacitor

C7-220-µF, 16-V electrolytic capacitor

C8-10-µF, 16-V electrolytic capacitor

IC1, IC7-NE555 timer

IC2-SN7490 decade counter

IC3-SN7492 +12 counter

IC4-SN74193 synchronous 4-bit binary up/ down counter IC with preset inputs

IC5, IC9-SN74150 16-line to 1-line data selector/multiplexer

IC6, IC8—SN7493 4-bit binary counter

IC10-SN7402 quadruple 2-input NOR gate

IC11-LM340 5-volt regulator

Q1,Q2,Q4,Q5-Silicon npn power tab transistor (GE D42C3 or equivalent)

Q3, Q6—Silicon pnp power tab transistor (GE

D43C3 or equivalent) The following are 1/4-W, 10% carbon resistors:

R I-4700 ohms

R3-47,000 ohms

R4,R6-1000 ohms

R7-3300 ohms

R8,R13-470 ohms

R9,R11-2200 ohms

R2-I-megohm linear taper potentiometer

R5-25,000-ohm linear taper potentiometer

R10,R12-100-ohm, 1-W, 10% carbon composition resistor

S1-Spst 3-ampere switch

SPKR-8-ohm, 15-W weatherproof horn speaker

Misc.—Printed circuit or perforated board, IC sockets, suitable enclosure, control knobs, heat sink (if necessary), heat sink paste, screw-type terminal strips, machine hardware, hookup wire, solder, etc.

form a four-bit binary number by applying four bits to the data inputs and grounding the load input (pin 11) momentarily. When this is done, the four bits applied to the inputs appear at the outputs.

After the load input returns to the logic one state, the IC can count down if pulses are applied to the count down input (pin 4) while the count up input (pin 5) is at logic one, or count up if pulses are applied to the count up input while the count down input is at logic one. In this application, the 74193 is used as a down counter. It is loaded with the binary number 1111 (1510), and is then allowed to count down as pulses are received from IC1. When the counter out-

put reaches 0000 (010) and the count down input falls to logic zero, a logic zero appears at pin 13, the borrow output of the IC.

The logic zero at the borrow output indicates that 15 pulses from IC1 have been counted by IC3 and that the IC must be preset again to 15 for the next counting cycle. By connecting all data inputs to the +5-volt supply and the borrow output to the load input, the counter will automatically preset itself to 15 after it has counted down to zero. Square waves appearing at the Q output of the counter's D flip-flop (pin 7) are used as the output signal from this stage. The output of this flip-flop will be at logic one for seven pulses from IC1 and at logic zero for eight pulses. This results in a duty cycle of about 47%, which is reasonably close to 50%.

A sequential tone selector is formed by IC5, a 16-line to 1-line data selector/ multiplexer and IC6, a 7493 four-bit binary counter. Pulses from the beat generator, which will be discussed later, are counted by IC6 over the range 00002 to 11112. The binary number generated by IC6 is applied to the data select inputs of IC5. As IC6 counts upward, IC5 sequentially selects signals from frequency dividers IC2, IC3, and IC4. The three tones produced by the counters appear at the data inputs of IC5 in the order in which they appear in the bugle call. In this way tones are selected and gated in proper sequence for application to the power amplifier.

The tempo at which the call is played is governed by the beat generator. This circuit also establishes the timing relationships between the notes and rests, and supplies a clock signal to counter IC6 in the tone selector circuit. The beat generator is formed by interconnecting IC7, a free-running 555 timer, IC8, a 7493 four-bit binary counter, and IC9, a 74150 16-line to 1-line data selector/ multiplexer. The oscillating frequency of IC7, determined by the setting of potentiometer R5, sets the amount of time allotted to each beat.

A repetitive beat can be used due to the nature of the song. The notes in the bugle call are played in pairs. That is, one note is played, followed by a short

the low-power version.

ware, terminal strip, solder, etc.

rest, and then the next note is played, followed by a longer rest. All notes are of the same duration—five beats. The short rest separating the two notes forming a pair is one beat long. The longer rest separating pairs of notes is five beats long. Therefore, a total of 16 beats is required by one pair of notes and two rests (one short, one long).

Binary counter IC8 will count 16 pulses and automatically overflow to zero, providing a convenient way to determine the passage of 16 beats. The four binary outputs of the counter (pins 12, 9, 8 and 11) are connected to the four data select inputs of multiplexer IC9. The data inputs of the multiplexer are connected to either +5 volts or ground. The first five inputs (zero through four, pins four through eight) are tied to the +5-volt line. An internal NOR gate is the multiplexer's output stage, so a logic zero appears at pin 10 (the multiplexer output) for the first five beats. This allows NOR gates IC10A and IC10B to pass an inverted version of the output signal at pin 10 of multiplexer integrated circuit IC5.

Input five (pin 3) of multiplexer IC9 is connected to ground, so a logic one appears at the multiplexer's output on the sixth beat. This causes the outputs of IC10A and IC10B to remain at logic zero regardless of what is applied to the other input of each gate. No signals can pass to the power amplifier during this interval, resulting in a one-beat rest. Inputs six through ten, pins 2, 1, 23, 22, and 21, are connected to +5 volts. When IC9 selects input six, its output goes low, causing two things to happen. Decade counter IC6 counts up one pulse, allowing IC5 to select the next note. Also, NOR gates IC10A and IC10B pass signals from the tone multiplexer to the power amplifier. The output of IC9 remains low through the tenth beat.

The last five inputs, 11 through 15 at pins 16 through 20, are connected to ground. This causes the output of IC9 to go high, disabling the power amplifier. By this time, two notes have been played and the beat generator counter, IC8, has overflowed to 0000 and the beat sequence will repeat itself. The sequence must be repeated eight times for

AUTOMATIC CUTOFF PARTS LIST

IC12-SN7474 dual D-type edge-triggered flip-flop

Q7-Silicon pnp power tab transistor (GE D43C3 or equivalent)

Q8-2N2222 npn switching transistor

The following are 10% carbon composition re-

R15-1000 ohms, 1/2 W

-220 ohms, 2 W

R17-330 ohms, 1/2 W

S1-Spst 3-A switch (optional)

Misc.—Normally open momentary-contact pushbutton switches (optional), IC socket, heat sink, mica washer, heat sink paste, machine hardware, hookup wire, solder, etc.

Fig. 4. Ac supply for low-power "Charge!"

LOW-POWER LINE-OPERATED SUPPLY PARTS LIST

C9-500-µF, 25-V electrolytic capacitor

D1 through D4-1N4001 silicon rectifier diode

F1-1/4-ampere fuse

S2-Spst 1-ampere switch

T1-12.6-V, 1-A filament transformer

all the notes to be selected and played. When all notes have been played, both beat generator counter *IC8* and note selector counter *IC6* will overflow to 0000, and the bugle call will repeat until power is removed. An auto start circuit comprising *IC10C*, *R7* and *C3* ensures that *IC6* and *IC8* start counting at 0000 when power is applied.

Transistors Q1 through Q6 and resistors R8 through R13 form the power amplifier. The tone selected by IC5 is applied to one input of IC10B. The output of this gate provides base drive for Q4 and is also applied to one input of IC10A. Gate IC10A inverts and passes the signal to Q1 when the output of IC9 is low. When the square wave applied to IC10B goes low, the output of the gate goes high, turning on transistors Q4, Q5, and Q6, which energize the speaker. The logic one at IC10B's output also produces a logic zero at the output of IC10A, cutting off transistors Q1, Q2, and Q3.

When the output of *IC10B* goes low, *Q4*, *Q5* and *Q6* are cut off, the output of *IC10A* goes high, and *Q1*, *Q2*, and *Q3* turn on. Current again flows through the speaker, but in the opposite direction. The transistors are, of course, turning on and off at the audio frequency of the selected tone. This arrangement is considerably more complex than the more commonly used switching circuits, but provides much more output power.

The amplifier draws current directly from the power source. The TTL integrated circuits, however, require +5 volts, which is provided by *IC11*.

Circuit Options. Your particular application might not require the high output power and/or continuous play capability of the circuit shown in Fig. 1. Therefore, a low-power output stage (Fig. 2) and an automatic cutoff circuit (Fig. 3) are possible options.

The manual cutoff, high-power circuit will start playing the bugle call each time

power switch *S1* is closed. It will continue to play the call until *S1* is opened. This version of Charge! is suitable for use in a vehicle or as a cheerleading device. However, if the unit is intended for indoor use, the low-power output stage should be employed. (A line-powered supply for the low-power version is shown in Fig. 4.)

If Charge! is to be operated so that it plays the tune once after a momentary switch (such as a doorbell switch or magnetic door switch) closes, the automatic cutoff circuit should be included. Either circuit option can be employed separately, or both used together. The power supply shown in Fig. 4 can accommodate the auto cutoff as well as the low-power output stage.

The auto cutoff circuit controls power to regulator *IC11*. A momentary switch closure latches the circuit on until the bugle call has been played in its entirety. If the "A" wiring is used, flip-flop *IC12A* will then toggle and turn off *Q8*. This, in turn, cuts off pass transistor *Q7*. If the "B" wiring is used, *IC12A* will not toggle until the bugle call has been played twice. Of course, you can install an SPDT switch to select either the "A" or "B" connection. Similarly, you can connect power switch *S1* across *Q7* to provide a choice of either continuous or automatic cutoff operation.

Transistors Q2 through Q6 and resistors R9 through R13 are omitted in the low-power output stage. Gate IC10A inverts the tone square waves at the output of multiplexer IC9 and applies them to the base of Q1. When the output of IC10A is high, Q1 conducts and current flows through the speaker. Potentiometer R14 functions as an output level control. When the output of IC10A is low. the transistor is cut off and the speaker coil passes no current. Referring to the previous description of the high-power output stage, it can be seen that the average current through the speaker is doubled by that circuit as compared to the low-power stage. This results in a four-fold increase in output power.

If you decide to employ the low-power stage, be sure to connect the output of multiplexer *IC9* to the strobe input of multiplexer *IC5*. When the strobe input is high, the multiplexer output remains high no matter what logic levels appear at the data and data select inputs. A logic zero at the strobe input of *IC5* allows the chip to pass signals (in inverted form) from the selected input to the output. All other connections remain the same whether the high- or low-power output circuit is used.

Construction. Printed circuit, point-to-point, or Wire Wrap assembly techniques can be used. Parts placement is not critical. Wire Wrap sockets should be used with the IC's if this method of duplicating the circuit is chosen. Wire no smaller than No. 24 should be used for all power supply and output stage connections. All ground connections should be made to one common point.

If Charge! is housed in a metallic utility box, *IC11* should be mounted on the enclosure with thermal coupling through heat sink paste. The utility box will then be connected to the circuit common or ground. If desired, a small heat sink approximately 1" x 1" (2.5 x 2.5 cm) with ½" (1.3-cm) fins can be used with *IC11*. A heat sink is a necessity if the project is housed in a nonmetallic enclosure.

Power switch S1, PITCH control R2, and TEMPO potentiometer R5 can be mounted at convenient spots on the enclosure. The power switch must be able to handle at least 3 amperes dc at 12 volts. If the automatic cutoff circuit is used, the momentary contact switches should be rated for 50 mA, and, if preferred, S1 can be eliminated.

For automotive applications, tap +12 volts at a convenient point and route it to the project's power input. (Screw-type terminal strips mounted on the project enclosure simplify connections.) If the circuit is housed in a metallic enclosure. bolting it to the vehicle chassis will furnish a ground return. When connecting a speaker to the audio output, note that both sides of the speaker coil are floating. It's important, therefore, not to let one side of the speaker become inadvertently grounded. Mount the speaker, which should be a horn-type transducer for outdoor use, in or on the vehicle at a suitable location. The box housing the circuitry should be installed so that the power switch, TEMPO and PITCH controls can be easily reached.

NLY a few years ago, the spectrum analyzer was an exotic, expensive, and relatively unknown test instrument to most people in the audio industry. By contrast, spectrum analysis today is almost a household word (albeit not always fully understood) among audio design engineers, recording engineers, and technically minded hobbyists.

The spectrum analyzer is, in the frequency domain, what the oscilloscope is in the time domain. As shown in Fig. 1A, a scope displays the signal amplitude as

and duration, of pulses or signal level states are of greatest interest, making the scope the logical tool for digital circuit analysis. The frequency analysis of most complex digital signals would convey little or no information about their timing. On the other hand, the scope is of little value in distortion analysis of linear systems (such as hi-fi amplifiers). Unless the distortion is severe, the test signal looks like a "perfect" sine wave on the scope. The spectrum analyzer, however, clearly resolves the distortion

The Spectrum Analyzer in Hi-Fi Measurements

Frequency-domain instrument provides graphic solution of distortion products undetected by other means.

BY JULIAN HIRSCH

a function of time, which we know as the waveform. A laboratory-grade scope, with its accurately calibrated time base and deflection sensitivity, can be considered as a voltmeter with virtually instantaneous response, able to display and measure signal voltage variations over any selected period of time from microseconds to minutes.

Every signal also has a unique spec-

trum signature in the frequency domain

which can be broken down into one or

components, whose frequencies and amplitudes can be determined directly from the display.

Types of Analyzers. Two basic types of spectrum analyzers are used in audio measurements. The so-called real-time analyzer is widely used for acoustic measurements, since it is able to display the distribution of energy throughout the entire audio spectrum. The frequency content of a musical performance or a recording can be analyzed as it takes place, hence the term "real time".

A real-time analyzer consists of a series of contiguous band-pass filters, whose cut-off slopes intersect at their —3-dB response frequencies. The filter group usually covers the entire audio band of 20 to 20,000 Hz, and their outputs are normally displayed as vertical lines on a cathode ray tube (CRT), the heights of the lines being proportional to the signal levels in the individual passbands. The filter outputs are electroni-

cally commutated rapidly enough to avoid a flickering display. For certain specialized applications such as monitoring programs at a recording console, an array of light emitting diodes (LED's) is sometimes used as an inexpensive substitute for a CRT display.

The individual filter bandwidths are typically a fixed percentage of their center frequencies (for example, 1/3 octave or 1/10 octave). For practical reasons, the "skirt" widths of the filters are quite broad, so that lower-order harmonics cannot be resolved. Also, the range of amplitudes that can be shown simultaneously on the display is rather limited, rarely exceeding 40 dB. These characteristics do not limit the application of real-time analysis to acoustic measurements, or other relatively broad-band measurements. However, for circuit measurements or performance testing, in which the presence and levels of distortion products or other spurious signals are of interest, the real-time analyzer lacks the frequency resolution (selectivity) and dynamic range to be a useful tool. For such applications, a scanning analyzer is used.

The scanning spectrum analyzer, as we still consider it, is basically a superheterodyne receiver with a highly selective i-f amplifier, whose local oscillator is tuned automatically and repetitively through a selected frequency range. As signals are "tuned in", their amplitudes are detected and used to deflect a CRT beam vertically. The horizontal sawtooth sweep voltage that deflects the CRT beam along its horizontal axis is also used to sweep the oscillator frequency, so that the horizontal axis becomes a frequency scale. This is shown in Fig. 2.

Most of us are accustomed to thinking

of a superheterodyne receiver as an r-f device, but the principle is applicable to any frequency range. For example, a low-frequency scanning (sweeping) spectrum analyzer typically uses a 100kHz i-f with the oscillator sweeping from 100 kHz to 150 kHz. Thus, input signals from 0 to 50 kHz will be successively heterodyned to the intermediate frequency and displayed as "pips" on the CRT. Scanning analyzers normally have a number of selectable, fixed i-f bandwidths that make it possible to resolve and measure individual frequency components closely spaced in frequency. Since only one filter is involved, as compared to the dozens employed in realtime analyzers, the skirt selectivity of a scanning analyzer can be made very sharp without incurring prohibitive expense.

One might think that by simply sweeping the audio band at a rapid rate, comparable to the commutation rate of a real-time analyzer, a scanning analyzer could be used to make essentially "realmeasurements. Unfortunately, electronic "laws" require that a highresolution (narrow-band) analysis be made slowly. A finite time is required for the output of a filter to reach its final value after a signal is applied to its input, and with very sharp filters, this time can be in the order of seconds. A frequency band must be swept at a rate that allows each component of interest to remain within the filter pass-band long enough for the full output level to be reached. Even a relatively crude measurement over the 20-to-20,000-Hz band requires about 1 second, and high-resolution scans, even over limited bands, may take many minutes. Thus, the scanning analyzer is poorly suited to measuring transient or nonrepetitive signals, and is most useful with continuous, or periodic signals—the types normally used in testing high-fidelity components.

Advantages of Spectrum Analyzers. The most common audio measurements (frequency and distortion) can be made with simpler, less expensive instruments than spectrum analyzers. What unique advantages of spectrum analysis justify its considerable cost? Most often, the speed of measurement is greatly increased. For example, a total harmonic distortion (THD) measurement with a null-type distortion analyzer is made by setting its controls for a reference full-scale meter indication, then tuning it to the fundamental signal frequency and carefully nulling it out with the controls. Depending on the specific design of the instrument, this can reguire 30 seconds to 1 minute each time the frequency is changed (although some recent analyzers have automatic nulling that reduces measurement time to a few seconds).

The distortion meter reading, known as the THD, includes all harmonics of the fundamental frequency, plus any noise, hum, and other spurious signals that may be present. It does not distinguish in any way between these several signals. Therefore, it is good practice to display the distortion products on an oscilloscope, which gives a rough indication of the residual signal components included in the THD measurement. In the case of the best modern amplifiers. whose distortion may be 80 to 90 dB below the fundamental (0.01% to 0.003%), the nulling process can be quite time consuming, and the oscilloscope usually shows that most of the "distortion" is really hum, hiss, or stray r-f pickup. A somewhat similar situation exists when making FM tuner measurements, since the signal may contain appreciable amounts of 19- and 38-kHz stereo subcarrier signals in addition to noise and distortion. In fact, meaningful measurements of channel separation in most tuners cannot be made without some sort of filtering to remove these unwanted signal components which otherwise would mask the weaker signal crosstalk.

In contrast, a good spectrum analyzer shows the frequency and amplitude of each discrete frequency component, clearly separated on the CRT display (and usually in a single scan requiring only a second or two). All significant harmonic and intermodulation products can be readily identified and measured, even in the presence of much stronger

hum or noise signals. Since each harmonic is measured as "X dB" below the amplitude of the fundamental, it is necessary to convert the decibel readings to percentages, and combine all significant readings by taking the square root of the sum of their squares, to obtain a true total harmonic distortion reading (less noise and hum, of course). With the aid of a good scientific calculator, this is a simple and rapid procedure.

A major advantage of the scanning spectrum analyzer is its ability to discriminate against random noise. A THD meter, or any other wide-band instrument, is sensitive to noise over a wide range of frequencies. In general, this is "white" noise (equal energy per unit of bandwidth) so that each octave of frequency coverage contains as much energy as the total of all lower octaves. No matter how quiet an amplifier may be, if its distortion is very low, it is likely to be submerged in the noise, especially at low power levels. This is why THD measurements made on very clean amplifiers usually rise as the power output is reduced to a small fraction of one watt. The distortion is below the fixed noise level, which becomes a greater percentage of the reference level as power is reduced.

The narrow bandwidth of the spectrum analyzer drastically reduces its susceptibility to noise. Signal components which are totally submerged in noise in a wide-band measurement can easily be seen and measured with the analyzer. The resulting "THD" figure, computed as described previously, is not only lower than the reading of a distortion analyzer, but is more meaningful as well.

Applications. It would be impossible to list, even in a cursory manner, the many applications of a spectrum analyzer in audio equipment testing. In gener-

al, it can be used in any situation where one would use an oscilloscope, since it is capable of analyzing the same signal from a different viewpoint, so to speak. By viewing the signal simultaneously on a scope and an analyzer, the maximum amount of information can be obtained in a minimum time.

It is possible, by a simple heterodyning process, to generate a constant amplitude sine-wave signal at the exact frequency to which the analyzer is tuned. Sometimes this requires an accessory instrument, but many spectrum analyzers now have this capability built-in. If the signal is applied to the device under test, such as an amplifier or filter, and the output of the device is connected to the spectrum analyzer input, it becomes possible to measure frequency response characteristics over an almost incredible dynamic range. For example, if the rejection characteristics of a filter are to be measured conventionally using a broadband meter or chart recorder to display its output, it is difficult to measure the actual depth of the rejection notch, which can become obscured or filled in by noise, hum, or other extraneous signals. With the combination of an analyzer and synchronous sweeping generator, a narrow i-f bandwidth can be used to virtually eliminate noise, so that the lower limit of measurement is set only by the available signal voltage and the analyzer sensitivity. Measurement dynamic ranges of 100 to 120 dB are routine, and even greater ranges can be achieved with care.

Just as scopes are made with narrow or wide amplifier bandwidths, depending on their application, spectrum analyzers are available for all frequency ranges from subsonic to microwave. The resolution and stability requirements, and the input impedance required for the different frequency ranges vary widely, as do the specific applications.

Using an Analyzer. At Hirsch-Houck Laboratories, we have recently acquired a Hewlett-Packard 3580A spectrum analyzer. This is one of the most advanced scanning analyzers yet developed for the low-frequency range from 5 Hz to 50 kHz. The 3580A has a digital tuning dial that sets the frequency corresponding to either the start (low end) or the center of the swept range, anywhere in its 50-kHz operating range. The sweep width can be set (in steps having a 1,2,5 sequence) to values from 5 Hz to 5 kHz per horizontal division of the display, or 50 Hz to 50 kHz overall. Depending on the measurement requirements, the bandwidth (resolution) can be switched over a 1-to-300-Hz range, in a 1,3,10 sequence.

Earlier, we mentioned the importance of scanning slowly enough for the highly selective filter to "build up" to its full response. An ingenious interlocking logic system between the sweep width, bandwidth, and sweep time controls warns the user of excessive scanning velocity (the frequency range covered in a given time) by turning on a front-panel LED, in this case, the sweep must be slowed down, or the bandwidth increased, until the LED is extinguished. The scan time can be adjusted from 0.01 seconds per division to 200 seconds per division, corresponding to full scan times from 0.1 seconds to 2000 seconds (more than 33 minutes).

Since typical scanning times in audio measurements are often 10 seconds to a minute or more, an ordinary CRT display would be of little value (one would see only a slowly moving dot of light, rather than a complete trace). Sometimes a storage cathode ray tube is used to "hold" the display, but H-P has chosen to incorporate a highly effective digital storage system to achieve the same result with a relatively inexpensive, conventional cathode ray tube. A random

Fig. 3. Harmonics don't show in scope photo (A, top) of 1-kHz sine wave, but they do in photo of analyzer display (B, bottom).

access memory (RAM) is used to hold the horizontal and vertical CRT spot position information. The frequency scan data, corresponding to the horizontal axis of the display, is stored sequentially in the 1024 memory addresses of the RAM. At each address, the signal amplitude (vertical axis) is converted to an 8bit "word" by an A/D (analog-to-digital) converter, and stored in that address. The 8 bits gives a total of 256 amplitude levels, and the maximum resulting error of 0.4% is well within the instrument's ratings. The information is stored in "real time", as it is being developed by the slow analyzer scan. However, it is simultaneously read out of the memory at a fixed rate of 50 times per second, passed through D/A (digital-to-analog) converters, and used to position the spot on the CRT display. The display is seen as a bright, nonflickering trace, which moves more or less slowly across the screen as the analyzer scan proceeds.

It is possible to store any one trace indefinitely by using the "single sweep" capability of the analyzer. If one wishes to store a trace and have it available for comparison to a later scan, pressing the STORE button on the panel retains the existing scan information in half the addresses, while the remaining 512 addresses are used for the subsequent scan storage. By reading out all 1024 addresses, one sees both scans simultaneously.

The amplitude display of the H-P 3580A has an effective range of about 90 dB, with each vertical division corresponding to a 10-dB level change. The amount of noise visible on the baseline depends on the i-f bandwidth and the signal characteristics, but in most cases signal measurements can be made over a range of more than 80 dB. For a more detailed study of small amplitude variations, the vertical scale can be changed to 1-dB per division, with the top 10 dB of the full display covering the entire screen height. In addition, there is a linear vertical scale, providing an absolute voltage readout. Depending on the input attenuator setting, a full-screen deflection can be obtained with signal amplitudes as great as 100 volts (across the 1-megohm input impedance of the analyzer) to as little as 100 nanovolts (0.1 microvolts).

An intriguing and unique feature of the 3580A is its "adaptive sweep". To accelerate a very slow scan analysis, when only a few signal components are expected to be present, the scan can be adjusted to speed up by a factor of about 20 times until a signal greater than the pre-determined level is encountered. At this point the sweep stops, "backs up" slightly in frequency, and scans through the signal at the selected slow rate, to give an accurate frequency and amplitude readout. Then, it speeds up until the next signal is encountered.

Fig. 4. Spectrum analyzer (B, bottom) shows undesirable even harmonics in square wave which appears clean on scope (A, top).

Fig. 5. Top (A) is output of one channel of FM tuner with 1-kHz signal. Spectrum analysis (below) shows 42-dB channel separation.

Especially in audio-frequency response measurements, it is often desirable to expand the lower frequency portion of the display to show greater detail in the few octaves which would otherwise be compressed into a small portion of a linear frequency scan. A logarithmic sweep is provided for this purpose, spreading the 20-to-20,000-Hz audio band across almost the full screen width in three equal decades of frequency.

Waveform Examples. To illustrate the capabilities of a high-resolution scanning spectrum analyzer in audio testing, we have taken photographs of its display in some typical measurement situations, contrasting them with the appearance of the same signal on an oscilloscope screen. Fig. 3A shows two cycles of a 1000-Hz sine-wave signal at an amplifier output. To the eye, it appears to be a pure, undistorted sine wave. The same signal displayed on the spectrum analyzer, sweeping from 0 to 5000 Hz is shown in Fig. 3B. The 2nd, 3rd, and 4th harmonics are visible, at amplitudes of -62 dB, -59 dB, and -70 dB. The equivalent THD reading (which was confirmed by our distortion analyzer) was 0.014%. Obviously, much lower distortion percentages, down to 0.003% or less, can be displayed on the analyzer screen.

To all appearances the 1-kHz square wave shown in Fig. 4A has good POPULAR ELECTRONICS

Fig. 6. Spectrum analysis of line power shows hum components at 60, 120, and 180 hertz.

Fig. 7. Analysis of FM tuner has 1-kHz component at right, 400-Hz AM near left, indicating AM rejection is about 68 dB.

Fig. 8. Analysis of FM tuner has 1-kHz modulation signal followed by harmonics. Also shown are 19-kHz pilot carrier, its modulation products, and 38-kHz signal leakage.

symmetry and rise-time characteristics. The same signal, viewed on the spectrum analyzer scanning from 0 to 10 kHz (Fig. 4B) shows higher than theoretical amplitudes for the 3rd, 5th, 7th, and 9th harmonics, and the presence of all even harmonics (which should be entirely absent in a true square wave) at a level of about -30 dB, or 3%, relative to the fundamental frequency. The even harmonic content shows a lack of symmetry in the square wave, which is not easily seen in the scope photo.

We supplied an FM stereo tuner with an r-f signal modulated 100% in the left channel by a 1000-Hz sine wave. The tuner's left channel output is shown in Fig. 5A as it appeared on the scope, essentially a sine wave. However, in Fig. 5B, the spectrum analyzer displays both the left and right channel tuner outputs (using its storage facility), over a range of 0 to 5000 Hz. The fundamental 1000 Hz output is seen at two levels, showing that the channel separation of the tuner was a good 42 dB. Note that the various harmonics of the modulating frequency appear at the same amplitude in both channels. If the channel separation measurement had been made with a meter, the 2nd harmonic would have dominated the measurement, making the separation appear to be about 33 to 34 dB. The analyzer display also shows that the THD of the tuner under these conditions was 2.1%, or -33.7 dB.

We next examined the tuner output for signs of power line hum, using a 0-to-200-Hz sweep with an analyzer bandwidth of 1 Hz. The time required for this measurement (Fig. 6) was 500 seconds, or more than 8 minutes. The reference (0-dB) level was set to the output from a 100% modulated test signal. The presence of hum components at 60, 120, and 180 Hz can be seen, with respective amplitudes of -85 dB, -84 dB, and -84 dB.

Another common tuner measurement

Fig. 9. Upper trace (A, left) shows tuner response flat to about 15 kHz. Note "glitch" at 10 kHz. Lower trace is on 1-dB scale. Linear scan (B, right) shows more detail.

is for AM rejection, using a signal which is frequency modulated 100% at 1000 Hz, and simultaneously amplitude modulated 30% at 400 Hz. The resulting spectrum centered at 700 Hz is shown in Fig. 7 with a scale factor of 0.1-kHz per division. At the right is the output from the FM modulation, and at the left is the 400-Hz component resulting from the tuner's inability to completely reject the AM portion of the signal. Nevertheless, the AM rejection of 68 dB represents excellent performance.

The total output of the FM tuner, over the full range of the analyzer, is shown in Fig. 8. The frequency scale is 5-kHz per division. At the left is the 1000-Hz audio output, followed by its harmonics. The 19-kHz pilot carrier leekage is down 68 dB (very good) and it is flanked by a number of modulation products. Note that any of these products below 15 kHz are more than 70 dB below program level, and therefore inaudible. Finally, there is a small amount of 38-kHz leakage from the multiplex demodulator, with adjacent sidebands at 37 and 39 kHz.

To make a frequency-response measurement on the tuner, we passed the synchronously swept signal from the spectrum analyzer through the Sound Technology 1100A Signal Conditioner (a precision FM preemphasis unit) and modulated the S-T 1000A Signal Generator with its output. Using the LOG sweep of the spectrum analyzer, we can see in Fig. 9A that the response is essentially flat to just beyond 15 kHz, dipping sharply at 19 kHz and higher frequencies. Noticing a "glitch" at about 10 kHz, we repeated the scan using the 1-dB per division amplitude scale, shown as the lower trace on the photo (again, a convenience afforded by the dual-trace storage capability of the instrument). This reveals a response flat within 1 dB from 20 Hz to just below 15 kHz, but with a definite, sharp irregularity at about 10 kHz. For a still better look, we repeated these measurements with the linear scan from 0 to 20 kHz (Fig. 9B). This shows the response "glitch" in better detail, and also shows that the high-frequency roll-off becomes significant above 14 kHz (the LOG scan cannot be read as accurately).

These examples illustrate but a few of the audio measurements which can be made more rapidly, thoroughly, and accurately with the spectrum analyzer than with more conventional instrumentation. With the addition of this powerful tool to our laboratory, we expect to provide even more definitive test information in our future product reports.

M tuner specifications can help you assess how well a given model will work in a particular area, given a good FM antenna. You won't find many of these specifications in most advertisements, but you will likely read them in manufacturers' literature on FM tuners (and on the tuner sections of receivers).

In the accompanying tables, you'll find the most important specifications (as listed by their manufacturers) for nearly 100 separate tuner models, grouped by suggested retail prices for easy comparison. Bear in mind, though, that manThe dBf figure is significant for two reasons. First, because it measures power, not voltage, it is the same for measurements taken at a tuner's 300-ohm and 75-ohm antenna inputs. A tuner rated at 1.0 μ V across its 75-ohm input (common practice, overseas) is not more sensitive than one rated at 2.0 μ V across 300 ohms (as is the practice here)—both are equivalent to 11.2 dBf. Second, because the figures are logarithmic, as all dB figures are, they emphasize the real meaning of differences in sensitivity. A difference in tuner sensi-

microvolts are needed at a tuner's 75ohm input as at its 300-ohm one; 75ohm microvolt figures should therefore be doubled before comparing them with 300-ohm figures.)

Selectivity. This measures the tuner's ability to reject signals on frequencies near that of the station to which it is tuned. The alternate-channel selectivity figures given here indicate ability to reject signals 400 kHz above or below the desired frequency. An IHF selectivity figure of 70 dB, for example, means that it

BY IVAN BERGER, Senior Editor

1978 STEREO FM TUNER BUYING DIRECTORY

Specifications and features of today's most popular FM tuners

ufacturers reserve the right to change these suggested prices without notice, and dealers need not adhere to them.

Sensitivity. The single most-advertised tuner specification, IHF monophonic sensitivity, is among the least useful ones in judging tuner performance. This "usable sensitivity" figure defines the input signal a tuner requires for a signal-to-noise and distortion ratio of only 30 dB—hardly "usable," in hi-fi terms. Still, in many cases, it's the only sensitivity specification provided.

More significant is the second sensitivity figure, the signal needed for 50 dB of quieting—listenable, if still not quite hi-fi by current standards. Since most listening is done in stereo, the 50-dB stereo sensitivity figure is more significant still. Though usable sensitivity figures are usually given in microvolts of signal voltage level, the 50-dB figures are usually given in "dBf"—that is, dB above a signal power level of one femtowatt (10-15 watt).

tivity of 3 dBf always means one tuner is twice as sensitive as the other, whether the figures we're comparing are 9.8 and 12.8 or 35 and 38 dBf. But a sensitivity difference of 0.5 microvolts, quite significant when we're comparing 1.5 and 2.0 μ V, is of almost no significance when comparing 35 with 35.5 μ V.

Whether in dBf or μV , sensitivity is most important to listeners in weak signal areas. If that's your problem, try a better antenna before replacing your tuner. It can often make your current tuner the equivalent, for all practical purposes, of a rather more expensive one. Even if you then find you still need a better tuner, the new antenna will help your new model deliver all the performance you're paying for.

The smaller the sensitivity figure the better, whether it's expressed in microvolts across a 300-ohm input or in dBf. (Note that dBf, which expresses signal power, remains constant for both 75-ohm and 300-ohm antenna inputs. For the same power, only half as many

takes an alternate-channel signal 70 dB stronger than the desired-channel signal to produce interference 30 dB below the level of the desired signal. Interference from signals less than 70 dB stronger would produce much less interference than that.

Tuners with variable i-f bandwidth (see under Features) are more selective at their narrow-band settings. (However, not all makers of dual-bandwidth tuners give both narrow-band and wide-band figures.) The higher the selectivity, the less potential interference. High selectivity is especially desirable in suburban and metropolitan areas where signals from different towns or cities are sometimes found on alternate channels. (Selectivity figures for adjacent-channel signals-those 200 kHz above or below the desired frequency-are rarely published by manufacturers, and are always considerably lower than alternate-channel figures.)

Capture Ratio. FM tuners can distin-(Continued on page 57)

☐ Send me one year of

Popular Electronics | Popular Electronics

(more than 33% OFF subscription price)

The regular price for 12 issues of POPULAR ELECTRONICS is \$12.00 by subscription

YOU PAY ONLY \$7.97

4534

☐ I prefer 2 years	☐ I prefer 3 years
(24 Issues) for \$14.97	(36 Issues) for \$20.97
Section of the sectio	Annual or other state of States and States a

(please print full name)

Address	Apt
City	
State	Zip.
CHECK ONE: Payment enclosed (please mail in an envelo	Bill me later.
☐ 4999 Send me 1 year of Stere	o Review for \$4.99
Additional postage per year: add 5 other countries outside the U.S. corders only, payable in U.S. currence first issue will be shipped 30 to 6 your order. Satisfaction guaranteer.	and possessions. Cash by. Prompt delivery: your days from receipt of

☐ Send me one year of

(more than 33% OFF subscription price)

The regular price for 12 issues of POPULAR ELECTRONICS is \$12.00 by subscription

YOU PAY ONLY \$7.97

☐ I prefer 2 years	☐ I prefer 3 years
(24 issues) for \$14.97	(36 issues) for \$20.97

Ms. (please print full name) 4			
Address	Apt			
City				
State	Zip			
CHECK ONE: Payment enclosed (please mail in an envelope)	Bill me later.			
☐ 4999 Send me 1 year of Stereo I	Review for \$4.99			

Additional postage per year: add \$3 for Canada, \$5 for all other countries outside the U.S. and possessions. Cash orders only, payable in U.S. currency. Prompt delivery: your first issue will be shipped 30 to 60 days from receipt of your order. Satisfaction guaranteed or a prompt refund on the remaining issues.

FIRST CLASS Permit No. 906 Boulder, Colo.

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States

Postage will be paid by:

Popular Electronics

P.O. Box 2774 Boulder, Colorado 80321

A Division of Ziff-Davis Publishing Company

FIRST CLASS Permit No. 906 Boulder, Colo.

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States

Postage will be paid by:

Popular Electronics

P.O. Box 2774 Boulder, Colorado 80321

		Sens	illivity in ¿¿ V (ð	idBf)	. =	S/N		o z		Disto	dion	Separation (in dB) at	Reis	ction (ii	n dR)		L		atur	_		
Make & Model	Price (S)	nue.	50-dB Q	uleting	Selectivity IMF) (indB)	Capture ratio	ate S	(per		S =		1		Meters		phasis	HI-Blend	35	igh H	Remarks		
	1	Mono M	Mono	Stereo	Selec (IHF)	Captur	Ultimate ((10 dB)	Mona	Stereo	1K/10K Hertz	AM	image	Spur- lous		Dolby	Deem	# · B	Rec	Bands			
1: UP TO \$200																						
Akai AT-2200	165	1.9(10.8)	-(-)	-(-)	60	1.3	70	0.3	0.5	40/—	50	55	85	S.C	Н	Н			+			
Akai AT-2400	185	1.8(10.3)	-(-)	-(-)	80	1.0	75	0.2	0.3	42/-	55	90	100	S,C			x					
Fisher FM2110	160	1.8(10.3)	2.8(14.1)	38(36.8)	70	1.0	72	0.4	0.5	40/30	60	60	85	S,C		li						
Harman-Kardon T403	195	1.7(9.8)	3.8(16.8)	45(38.3)	50	2.0	73	0.5	0.7	40/30	55	45		a	П	П	ĺ	- 1				
Heath AJ-1219	110	2.0(11.2)	-(-)	— (—)	60	2.0	-	-	-	-/40	50	-	-	-	П	П		- 1	1	Kit only.		
JVC JT-V31	170	1.9(10.8)	4.0(17.2)	40(37.2)	60	1.2	72	0.2	0.35	45/35	50	-	-	S,C	П		1					
JVC JT-V11	150	1.9(10.8)	-(-)	40(37.2)	60	1.0	72	0.2	0.4	40/30	_	_	-	S,C	П							
Kenwood KT-5300 Lafayette LT-40	140	1.9(10.8)	5.0(19.2) 3.1(15.0)	— (—) 39(37.0)	60 68	1.0	70 72	0.2	0.3	30/30 40/—	50	50	70 90	C S.C	П							
Marantz 2100	200	1.9(10.8)	2.5(13.2)	40(37.2)	80	1.0	75	0.15	0.3	45/40	55	85	90	S.C	П	x						
Nikko FAM-450	140	2.0(11.2)	-(-)	-(-)	55	1.6	65	0.4	-	42/	_	45		-	П	^	x					
Onkyo T-4	200	1.9(10.8)	3.5(16.1)	40(37.2)	60	1.5	70	0.2	0.4	40/30	50	60	85	S,C	П	x		- 1				
Optonica ST-1515	180	1.7(9.8)	5.5(20.0)	44(38.1)	60	1.2	72	0.2	0.3	45/35	50	82	80	S,C	П		X	X				
Pionear TX-6500 II	200	1.9(10.8)	2.8(14.1)	44(38)	60	1.0	75	7.15	0.3	40/30	50	60	_	C	П							
Pioneer TX-5500 II	150	1.9(10.8)	2.8(14.1)	44(38)	60	1.0	72	0.15	0.3	35/30	50	60	-	C	П			-1				
Realistic TM-1000	170	2.0(11.2)	-(-) 3.0(14.7)	— (—)	65	2.0	70	-	- 0.2	35/-			_	S	11	U	, l					
Rotel RT-725 Rotel RT-425	170	1.8(10.3)	3.0(14.7) 3.1(15.0)	44(38.1) 44(38.1)	50	1.5	70 70	0.2	0.3	42/31 40/30	50 50		_	S,C C		X	X					
Sansui TU-3900	160	2.0(11.2)	- (-)	— (—)	60	2.0	70	0.2	0.4	40/-	50	55	70	S,C	11	X			-			
Sansui TU-217	175	1.85(10.5)	2.7(13.8)	-(-)	50	_	71	0.12	0.13	-/-	_		_	S.C		1						
Sanyo FMT 1001K	150	2.0(11.2)	-(-)	-(-)	_	1.0	70	0.4	2,13	40/	55	60	_	C	П		X					
H.H. Scott T-516	150	2.2(12.0)	3.5(16.1)	70(42.1)	55	1.5	68	0.3	0.5	40/34	50	50	80	S			X					
Superscope T-210	105	-(-)	10(25.2)	55(40.0)	25	6.0	80	1.0	-	30/15	35	-	-	S	Н							
Technics ST-7300	180	2.0(11.2)	3.0(14.8)	45(38.3)	75	1.0	75	0.5	0.5	45/35	55	55	80	S,C	П		П	Х				
Webcor 291	130	-(-)	-(-)	-(-)	45	1.2	65	0.2	0.4	30/25	45	50	-	s,c	Ц	Ц						
Average	165	1.9	(16.2)	(38.1	60	1.6	71	0.3	0.4	38/32	48	57	84									
II: \$201-\$280																						
Akai AT-2600	275	1.7(9.8)	-(-)	-(-)	100	1.0	75	0.2	0	45/	55	110	110	S/D,C	П		X	- 1				
Armstrong 624	250	3.0(10.3)	-(-)	-(-)	56	1.75	65	0.2	0.2	40/-	50	50	_	S/C	П	П			1	FM only; 6-station preselect		
Fisher FM-2310	250	1.7(9.8)	2.5(13.2)	34(35.8)	75	0.8	75	0.1	0.15	46/36	65	80	100	S,C,M/D	П	П	1	X				
Hitachi FT/520	240	1.7(9.8)	3.5(16.1)	39(37.0)	80	1.0	74	0.15	0.25	45/-	55	85	100	S,C	П	П		- 1				
JVC JT-V71	270	1.8(10.3)	3.8(16.8)	38(36.8)	75	1.0	75	0.1	0.1	50/45	55		-	S,C	П		X	1	v			
Kenwood KT-7500	275	1.7(9.8)	2.8(14.1)	35(36.1)	302	1.02	75	0.08	0.1	50/432	_	105	110	S,C	П			- 1	X			
Mitsubishi DA-F10	260	2.5(13.2)	5.5(20.0)	55(40.0)	100°3	2.0 ³ 0.8 ³	75	0.062	0.12	45/38 ³ 45/40 ²	551	75	90	S,C	Н	Ш		- 1	x			
MASSONSIII DAT 10	200	2.5(10.2)	0.0(20.0)	55(40.0)	753	1.53	_	0.23	_	35/303	50°	_	_	-1.5	П	М	П	_				
Nikko NT 850	230	1.8(10.3)	-(-)	-(-)	352	1.02	752	0.083	0.152	48/40°	60	-	-	S,C	П		X	١	X	Multipath indication.		
					903	1.50	708	0.23	0.43	35/32*	_	-	-	0.0	П							
Onkyo T-9	280	1.7(9.8)	3(14.7)	35(36.1)	80	1.5	-	0.15	0.3	40/35	50 55	83 50	95 65	S,C	П		X	- 1	X			
Sansui TU-5900	230	1.8(10.3)	3.5(16.1)	45(38.3)	60	2.0	70 68	0.25	0.35	40/30 40/34	50	70	80	S,C S,C	П	X	^	1				
H.H. Scott T-527 H.H. Scott T-526	250 230	1.8(10.3) 1.9(10.8)	3.5(16.1) 3.5(16.1)	40(37.2) 40(37.2)	55 55	1.5	68	0.3	0.5	40/34	50	50	80	S.C	П	x						
Sherwood ST-8080	250	2.0(11.2)	-(-)	— (—)	_	1.0	70	-	-	45/-	55	85	_	S,C			1					
Sony ST-2950SD	220	2.0(11.2)	4.0(17.2)	50(39.2)	50	1.0	73	0.2	0.3	40/35	54	45	75	S,C	Х		X					
Technics ST-8080	250	1.9(10.8)	2.5(13.2)	28(34.1)	85	1.0	75	0.15	0.3	45/35	55	85	95	S.C			X	1				
Toshiba ST-420	220	1.9(10.8)	-(-)	-(-)	70	1.0	72	0.2	0.3	45/—	55	85	100	S,C			X					
Yamaha CT-810	250	1.8(10.3)	3.2(15.3)	40(37.2)	80	1.0	80	80.0	0.1	50/45	55	90	100	S/Q.C	Ш		Х	X				
Average	250	1.9	(16.0)	(37.3)	73	1.1	73	0.14	0.27	41/34	55	76	92		Ц		1					
III: \$281-\$380		0.0400.00				. 75	Pr	0.2	0.0	407	FO			eir	H		-	-	1	3 FM & 3 AM preselect.		
Armstrong 623	359	3.0(10.3)	-(-) 5 (V19 2)	-(-)	65	1.75	65 65	0.2	0.2	40/— 40/30	50 58	50		S/C S,CL	x4					FM only. Also as kit, \$199.		
Dynaco FM-5	319 380	1.75(10.1) 1.8(10.3)	5.0(19.2) — (—)	- (-) - (-)	65 100	1.5	70	0.5	0.35	40/25	65	90	90	S,C	x					Kit only. Dig. readout.		
Heath AJ-1515 Hitachi FT/920	300	1.6(9.3)	3.1(15.0)	34(35.8)	80	1.0	74	0.15	0.25	45/-	55	_	100	S/M,C			1					
Lux T-88V	345	2.0(11.2)	2.8(14.1)	— (—)	60	1.8	72	0.2	0.3	43/30	50	75	_	1			x					
Marantz 2120	300	1.8(10.3)	2.5(13.2)	35(36.1)	_	_	80	-	-	50/42	55	90	100	S,C	Χ¢	X		X	X			
Nikko Gamma 1	350	1.8(10.3)	4.5(18.3)	34(35.8)	35°	1.0	752	0.05	0.082	50/402	60	-	110	S.C	1				X	FM only.		
				1000	853	-	72*	0.083	0.23	35/32°	-	-	_									
Optonica ST-3636	300	1.7(9.8)	-(-)	-(-)	80	2.0	77	0.2	0.4	50/40	50	120	120	S,C/M	П			X				
Pioneer TX-8500 II	300	1.8(10.3)	3.5(16.1)	40(37.2)	352	0.83	792	0.15	0.8	45/353	55	85	90	S,C			X	X	X			
The state of the s	100.0	3.4 p	Land Contract		802	2.03	753	0.15	0.98	45/303	_	-	_									
Rogers T-75, Series 2	319	1.5(8.75)	4.0(17.2)	30(34.7)	60	1.5	70	0.3	0.7	40/35	50	-	_	8 004	1	V	V					
Rotel RT-925	340	1.7(9.9)	3.0(14.7)	35(36.1)	80 50t	1.5	70 80	0.1	0.3	45/31 45/38	60 60	86	90	S,C/M S,C		X	X	x	Y			
Sensul TU-717	320	1.75(10.1)	2.45(13.0)	40(37.2)	50 ^a 80 ^a	1.70	-	0.15	0.07	-3/30	-00	-00	90	-	П	^	1	^	"			
Seiton TUS-600	380	1.8(10.3)	4.0(17.2)	40(37.2)	80	1.5	70.5	0.09	0.11	55/45	65		_	S,C		x						
Sony ST-3950 SD	300	1.7(9.8)	3.0(14.7)	40(37.2)	30	1.0	75	0.15	0.25	40/35	56	80	90	S/M.C	x	"	x					
Sony ST-4950	350	1.9(10.8)	-()	-(-)	80	1.0	70	0.15	0.3	40/-	53	70	100	S/M,C		П	X					
Technics ST-8600	330	1.9(10.8)	-(-)	-(-)	85	1.0	80	0.15	0.2	-/-	-	-	95	S,C		П	X ⁵	X				
Yamaha CT-1010	350	1.9(10.8)	3.2(15.3)	40(37.2)	85	1.0	80	0.07	0.1	52/45	65	110	110	S/Q,C				X				
Average	350	1.85	(15.7)	(36.5)	78	1.3	74	0.18	0.33	45/36	57	72	100									
					1	1	I	1	1	i		1		1								

¹C = center of channel D = deviation d = digital indication L = light indication

M = multipath
Q = algnal quality (S/N or signal-minus multipath)
S = signal strength

^{*}With I-f bandwidth set at "wide" position: *With i-f bandwidth set at "narrow" position. *Optional.

FM TUNER COMPARISON TABLE (Continued)

		Sens	itivity in μ V (&dBf)	- m	므	Z.	Disto	rtion	Separation (in dB) at	Reje	iction (ir	n dB)		Features					
Make & Model	Price (S)	IHF	50-d8 Q	uleting	Selectivity (IHF) (indB)	Capture ratio	Ultimate S/N (in dB)	(per		1K/10K			Spur-	Meters'	þ	Bandwidth Bean Bandwidth Bean Bandwidth		Remarks		
		Mono	Mono	Stereo	S 🚊	S	ã,	Mono	Stereo		AM	lmage	lous		Dog	ă	É	ř	0	
V: \$381-\$600		A																		
ccuphase T-101	500	2.0(11.2)	4.5(18.3)	45(38.3)	552	2.0	75	0.1	0.2	45/30	55	80	100	S,C,M			T	7	X FM only.	
bunnes AE C	395	1.75(10.1)	E 0/10 0)	()	1003		C.F.	0.5		10/00	-0			0.01			4	1	W. 8080	
lynaco AF-6 larman-Kardon	395	1,75(10.1)	5.0(19.2)	-(-)	65	1.5	65	0.5	0.9	40/30	58	-	-	S,CL		П		1	Kit \$269.	
Citation 18	595	2.0(11.2)	3.2(15.3)	40(37.2)	70	1.5	74	0.15	0.3	50/—	55	63	100	Q,CL		X	1	1		
leath AJ-1510A	500	1.8(10.3)	- (-)	-(-)	95	1.5	68	0.3	-	40/25	-	-	90	S/M			X	1	Kit only, Dig. synth. Autoscan & 3 preser	de
eath AN-2016											THE	12					1	-		
"Modulus"	600	1.7(9.8)	3.5(16.1)	35(36.1)	100	1.3	68	0.3	0.35	40/20	68	90	90	S,C	Χª			- 1	Kit only, Incl. 2/4- cl preamp. Dig. displa	
VC T-3030	600	2.0(11.2)	3.8(16.8)	38(36.8)	70	1.0	75	0.08	0.1	50/45	65	110	110	SL	П	X		x	Dig. synth. 7 preseled	
			4.41.1.41	20,200		1	44						0.3	1	Ш				Autoscan.	
Kenwood L-D7T	500	1.6(9.3)	2.8(14.2)	38(36.8)	30 ² 100 ³	1.0 ² 1.5 ³	80	0.082	0.12	50/45	65	110	110	S,C	П	X		1	X FM only.	
Cenwood 600T	600	1.6(9.3)	2.8(14.1)	38(36.8)	110	0.8	84	0.05	0.08	50/45	65	120	120	S,C,M/D	Н	X		- 1	X FM only, 3 i-f bandw	vidth.
Kenwood KT-8300	450	1.6(8.3)	2.8(14.1)	30(34.8)	40°	1.02	78	0.08	0.1	50/452	60	110	110	S,C,M/D					x	
					1102	1.53				45/353										
Lux T-110 Nakamichi 430	525 400	1.6(9.3) 1.8(10.3)	2.2(12.0) 4.0(17.2)	34(35.8) 40(37,2)	70 60 ¹	1.3 1.5 ²	78 70	0.08	0.08	48/38 50/35 ²	53 60	100	100	S,C CL	X4	X			FM only. X FM only.	
Tanannion 450	,	1.5(10.5)	4.0(11.2)	10(01,12)	403	4.03		0.02	0.049	30/30	~	,00	100	OL.	^		X	1	A. FM Olly.	
Phase Linear 5000	499	2.0(11.2)	4.0(17.2)	30(34.7)	75	1.5	70	0.2	0.25	40/30	60	110	120	S,C,ML		X		1	FM only. With expan	ders
Philips AH673 Pionser TX-9500 II	600 400	1.6(9.3) 1.5(8.7)	2.5(13.2) 2.5(13.2)	30(34.7) 35(36.1)	110 35 ²	1.0 0.8 ²	75 82	0.09	0.1	47/38 50/35 ²	50 65	110	110	S,C/M S,C			1	x	X Audible multipath ch	hank
1011001 1X-9300 H		1.5(0.1)	2.5(13.2)	33(30.1)	85ª	1.03	-	0.03	0.253	35/303	-	-	_	3,0				^	X Audible multipath ch	IBCR.
Rotel RT-1024	570	1.5(8.7)	2.1(11.6)	35(36.1)	80	1.0	75	0.1	0.2	47/35	60	_	-	S,C,M,D				X		
Sensui TU-9900	460	1.5(8.7)	3.0(14.7)	-(-)	55 ² 90 ⁵	1.0 ² 3.0 ³	80° 76°	0.06 ² 0.5 ³	0.083	50/40 ^a 30/30 ^a	58	96	100	S/M,C	П	X	X	X	×	
Sherwood HP-5500	500	1.6(9.3)	2.5(13.2)	25(33.2)	85	1.0	70	0.12	0.15	55/40	65	120	120	S.C		x	X	1		
Sony ST-5950 SD	470	1.5(8.7)	2.8(14.1)	35(36.1)	85	1.0	76	0.1	0.2	50/40	66	90	100	S/M,C	X					
Technics ST-9030	400	2.4(12.8)	4.4(18.1)	44(38.1)	25° 90°	0.8° 2.0°	80	0.082	0.082	50/40 ² 40/30°	582	135	135	S,C	П	1	(8		(3	
Average	510	1,7	(15.5)	(36.2)	87	1.2	75	0.14	0.2	47/36	60	104	109				1	1		
V: \$601 and up.																	1			
Accuphase T-100	750	2.0(11.2)	4.5(18.3)	45(38.3)	70	1.5	75	0.1	0.2	45/30	60	90	100	S,C,M		Н	+	1		
Lux 5T50	1495	1.7(9.8)	2.5(13.2)	35(36.1)	72	1.1	70	0.08	0.1	45/40	55	100	100	Sd	X		X	1	Digital synth. FM only	y.
					1	110									П	П		- 1	Audible multipath d	
McIntosh MR 78	899	2.0(11.2)	-(-)	-(-)	552	2.5	75	0.2	0.2	40/—	_	100	100	S/M.C	И	П	П		7-station preselect. K FM only. 3 i-f bandwi	
************		2000			90°								1		П		1	-		
McIntosh MR 77 McIntosh MR 74	699 699	2.0(11.2) 2.5(13.2)	— (—) — (—)	-(-)	50 58	2.5	-	0.2	0.2	40/— 35/—	69	100	100	S.ML.C	П	П	1		FM only.	
Nakamichi 630	630	1.5(8.7)	5.0(19.2)	— (—)	452	1.0	35	0.052	0.083	55/352	69	100	100	S,ML,C SL,CL	X	X			Combined with stereo	o prea
	200	200 00			90°	-		0.13	0.13	30/303	-	-	-				1	1	FM only.	,,,,,,,
RAM Audio 102 Revox 8760	639 1145	1.6(9.3) 2.0(11.2)	2.2(12.0) 2.0(11.2)	34.5(36.0) 20(31.2)	70 80	1.5	75 75	0.08	0.08	46/35	53 70	106	106	S,C	v	X		1	FM only.	
	1145	2.0(11.2)	2.0(11.2)	20(01.2)	00	0.3	13	0.15	0.15	72,-	,,,	100	100	3,0	^	^	^		Digital synthesis. 15- preselect.	Statio
SAE 8000/Mark VIII	650	1.6(9.3)	2.2(12.0)	25(33.2)	120	1.5	70	0.15	0.2	45/35	100	100	100	S,C		х	1		Digital readout. FM or	nly.
H.H. Scott T-33S	1000	1.8(10.3)	3.5(16.1)	40(30.3)	55	1.2	70	0.2	0.4	40/40	75	75	90	S,M		X	1	١	Dig. Synth. Pre-progr	
Sequerra Model 1	3000	— (—)	1.7(9.8)	15.5(29)	100	0.75	75	0.07	0.07	52/38	70	90	-	Scope	х	x	X	- 1	channel select. Dig. Built-in oscilloscope.	
Sequerra Model 2	1750*	-(-)	1.7(9.8)	15.5(29)	100	0.75	75	0.07	0.07	52/38	70	90	-	S,M		X	X		3-station preselect.	
Setton RC3 X1000 Sherwood Micro	3500	1.2(6.8)	5.0(19.2)	20(31.2)	-	1.0	72	0.2	0.4	55/30	-	80	90	SL,CL		XS		X	Digital display. Built-in	nprea
CPU 100	2000	1.7(9.8)	2.6(13.5)3	30(34.7)2	182	0.52	75	0.072	0.152	50/402	65	130	130	S.M		x			X Dig. Synth. FM only.	
Tachiha CT Can	****	. 0/07 01	2.1(11.7)2	25(33.4)3	80°	1.00	-	0.13	0.23	45/353									Call-letter display.	
Toshiba ST-910	1800	1.8(10.3)	-(-)	-(-)	70	1.0	75	0.15	0.2	-/40	65	100	100	SL					Dig. synth. Autoscan. 7-sta. preselect. FM	
Yamaha CT-7000	1200	2.0(—)	—(—)	-(-)	182	0.72	782	0.083	0.15	50/35	60	120	120	S/Q.C		,	(8		()	uniy
	1				85*	1.03	0.23	0.38												
Average	1390	1.5	(13.6)	(33.2)	81	1.2	74	0.13	0.18	45/33	67	100	104			14	1			_

56

¹C = center of channel D = deviation d = digital Indication L = light indication

 $[\]begin{split} M &= \text{multipath} \\ Q &= \text{signal quality (S/N or signal-minus multipath)} \\ S &= \text{signal strength} \end{split}$

^{*}With i-f bandwidth set at "wide" position.
*With i-f bandwidth set at "narrow" position. *Optional.

SAutomatic. *Estimated.

guish between two signals on the same channel, even when they are of almost equal strength, suppressing the weaker to "capture" the stronger one. Capture ratio is the minimum ratio in dB between co-channel signals which will allow the tuner to suppress the weaker one's interference by 30 dB. The *smaller* this figure, therefore, the better. (Note that, unlike selectivity, capture ratio improves at a tuner's wide-band setting.) Capture ratio is likely to be most important for listeners in fringe areas equidistant from two stations on the same frequency.

Ultimate S/N. This is the maximum signal-to-noise ratio the tuner can deliver. Since most tuners will reach this maximum with signals of 65 dBf (978 microvolts) or less, ultimate S/N is usually measured at that point. The monophonic figure is listed here; the stereo figure would be lower. As with all signal-to-noise ratios, the higher the figure, the cleaner the sound.

Distortion. Manufacturers differ in their distortion specification methods. Some list harmonic distortion only at one frequency (usually 1 kHz), others list it at several. Some list harmonic distortion only, while others give intermodulation distortion figures, too. When only a single distortion figure is given, assume it to be harmonic distortion at 1 kHz, which is the figure listed here. Note that stereo distortion figures tend to be higher than mono.

Separation. This figure measures the crosstalk between stereo channels. The more separation, the greater the potential stereo effect. Since separation tends to decrease at higher audio frequencies, it is listed in the table, wherever possible, for both 1 kHz and 10 kHz. Separation commonly decreases at bass frequencies, too, but its effects are less audible at those frequencies.

AM Suppression. This has nothing to do with AM broadcasting, but rather with the tuner's ability to reject amplitude variations in the FM signal. This gives some indication of how well the tuner can cope with multipath interference, which causes such amplitude modulation of the FM signal.

Multipath interference, created by the simultaneous reception of a signal and of several delayed signal echoes, is most troublesome in cities and in mountainous or hilly regions, where there are many reflective surfaces from which the signals can bounce. The higher the AM suppression figure, the more resistant the tuner is to such interference.

Image Suppression. This measures the tuner's ability to reject signals 21.4 MHz above the desired signal (21.4 MHz is twice the tuner's i-f frequency of 10.7 MHz). This is most important to those who live near airports, as air-to-ground channels (108-136 MHz) are within the image-frequency range for FM tuners.

Spurious Response Rejection. The interaction of two strong signals (neither of them necessarily within the FM band) can cause a tuner with a nonlinear front end to "receive" nonexistent signals which are actually the sum of or difference between the two interacting signals. A strong station's popping up at several points along the dial would be a typical spurious-response symptom. If your tuner suffers from this or other strong-signal overload problems, look for a tuner with a high spurious-response rejection figure.

Meters. Several types of meters are provided as tuning aids. Center-channel meters (C) help you tune accurately to the station's exact frequency. They're found on virtually all tuners except the lowest-priced ones-and some of the highest-priced tuners, whose digitalsynthesis circuits render these meters superfluous because they always tune directly to the channel's center. Signalstrenath meters (S) provide some help in finding the exact station frequency (the signal presumably peaks at that point), but are more useful in orienting the antenna for maximum signal strength.

Multipath meters (M) or signal-quality meters (Q) are even more useful in orienting the antenna, as they help you find the direction which yields the cleanest signal. (This may not necessarily be the same direction that yields the strongest one). Deviation meters (D) measure the station's modulation level, which you can use as a guide in setting modulation levels on your tape recorder when taping off the air.

Oscilloscopes show multipath, tuning accuracy, modulation and signal level all at once; such a scope is built into the Sequerra Model 1; and many others have connections for use with external scopes. The Sequerra's scope also

shows the presence of other signals on nearby frequencies.

Features. We have listed here only some of the more common and significant features. A few significant ones are listed under "Remarks."

Dolby decoding is built into several of the tuners in our table, and available as a plug-in option for a few more. A deemphasis switch, necessary for correct frequency response when using an external Dolby decoder, is available on several tuners also.

High-blend is a very useful aid in listening to marginal stations in stereo. By blending together the higher frequencies of both stereo channels, it reduces noise and distortion while maintaining separation at the middle frequencies to keep some stereo effect.

A recording oscillator is simply an aid to setting recording levels for taping off the air. The oscillator's output corresponds to the tuner's output at a specified signal modulation level (usually 50% modulation), allowing the recording level to be adjusted for best signal-tonoise ratio and minimum distortion.

Bandwidth switching allows the user to trade selectivity (at its maximum when the i-f bandwidth is narrowest) for better capture ratio, signal-to-noise ratio, distortion and separation (all best at wider bandwidths). When extra selectivity is needed to pick a particular station out from a clutter of strong ones on nearby frequencies, the user can narrow the tuner's bandwidth to get extra selectivity at the expense of a slight reduction in the other parameters. Tuners with three-position bandwidth selectors are noted under "Remarks."

Digital tuning comes in two flavors: Tuners with digital displays may be otherwise conventional in that they tune continuously across the FM band. Digital synthesis tuners, though, also have digitally controlled local oscillators that allow them to tune in direct jumps from one station frequency to another without observably moving through any of the frequencies between. This also simplifies the addition of such features as automatic scanning and station preselects, which are often found on such tuners.

There remain a few features and specifications which we have not listed. Some, such as i-f rejection, were omitted because they are of little practical significance to the listener. Others, such as muting and stereo threshold, are not listed consistently enough for us to cover them reliably.

In the Black II

Performance, beauty, quality

— three attributes that have
always been the hallmarks of
SAE products. SAE systems in
the past have had them, this
system's predecessor had them,
and the new In The Black system has them and much more.

The 2900 Parametric Preamplifier offers our new flexible parametric tone control system, full dubbing and tape EQ. New phono and line circuitry results in unparalled clarity and definition with distortion of less than 0.01% THD & IM.

The 2200 Stereo Power Amplifier with fully complementary circuitry delivers 100 Watts RMS per channel from 20-20K at less than 0.05% Total Harmonic Distortion, from 250mW to full rated power.

The 8000 Digital FM Tuner has linear phase filters, phaselock multiplex, and of course, our famous digital readout tuning indicator system.

Combine these products together and you have a system that ensures superior performance in all areas, excellent control flexibility, and the sonic quality that is typically SAE.

HOW FM TUNERS WORK

PART 2 The detector and modulation/ demodulation circuits.

BY JULIAN HIRSCH

AST MONTH, in the first part of this article, we discussed the basic principles of frequency modulation and started dissecting the "innards" of an FM tuner by examining the front and the i-f section. We continue here with the detector section and stereo modulation and demodulation.

The Detector. The ratio detector is the most widely used circuit for converting FM r-f to audio signals. The Foster-Seely discriminator originally used in FM tuners has fallen into disuse. Quadrature detectors are sometimes found, especially in lower-priced tuners that use a single IC for i-f amplification, limiting, and detection functions. It also has the virtue of requiring only a single external tuned circuit, which simplifies alignment. A little-used detector with a clear theoretical advantage is the so-called "pulse counter," which generates a short pulse each time the 10.7-MHz i-f signal voltage crosses the zero axis. These pulses can be created with a constant amplitude and duration so that the average value of a series of pulses from an FM signal follows the modulating waveform. This is the most linear type of FM detector (it is often used to measure the inherent distortion of an FM signal generator) but it is rarely used in consumer products. Apparently its advantages are more theoretical than practical, due to limitations elsewhere in the broadcast chain. In other words, a tuner with a pulse counter detector does not necessarily have less distortion than one with a more conventional circuit.

Stereo Modulation/Demodulation. Earlier, we referred to the spectrum of a stereo FM signal as having a 38-kHz double-sideband, suppressed-carrier component that contains L - R program information. Figure 2 is a spectrum analyzer display of the composite

modulating signal from our Sound Technology Model 1000A signal generator with a 2000-Hz external signal used to 100% modulate the left channel. The frequency scale is 5000 Hz/division, with the scan covering from 0 to 50 kHz. The base band audio signal at 2000 Hz can be seen at the left with a 0-dB reference amplitude. The 19-kHz pilot carrier can be seen near the center, followed by the two difference sidebands spaced 2000 Hz above and below the 38-kHz carrier. The latter is suppressed to about 54 dB below the difference sidebands.

The relative amplitudes of the base band and subcarrier band signal levels vary in a complex manner according to the spatial distribution of the program. But the general appearance of the signal that modulates the transmitter, and which is recovered at the output of the tuner's detector, resembles the spectrum of Fig. 2.

Although this is one way to look at the stereo signal, it is easier to consider the signal as being created by a sampling process at the transmitter. The left and right channels are alternately selected at a 38-kHz switching rate, and the composite signal modulates the transmitter. Since the normal program bandwidth does not exceed 15 kHz, this meets the requirement that the sampling rate be at least twice the highest frequency in the program. The 38-kHz switching signal does not appear in the output of the switching system (except as the result of inevitable unbalance conditions). Hence, it is divided down to 19 kHz, after which it is transmitted with the audio and subcarrier programs as a pilot carrier.

There are several ways in which the composite detected signal can be separated into its left and right channel components in the tuner. Basically, tuners use the 19-kHz pilot carrier to either synchronize or generate (as by frequency doubling in a full-wave rectifier, or through a PLL) a 38-kHz demodulating

carrier. It is imperative that this signal be in-phase with the 38-kHz switching signal at the transmitter, since an error of a few degrees can seriously degrade channel separation.

In a switching demodulator, the composite signal is sampled by the 38 kHz waveform, which reverses the process employed at the transmitter and separates the composite signal into left and right channels. In a matrix demodulator, the composite signal is first separated by filters into the base band (up to 15,000 Hz) and the subcarrier band (23 to 53 kHz). The latter is detected in a balanced modulator, where it is heterodyned with the 38-kHz signal. The output of the modulator is the L - R program (the base band contains the L + R program). The two are then combined in a resistive matrix that adds and subtracts them to derive the left and right program channels.

Following separation, each program channel is individually deemphasized to compensate for the 75-µs preemphasis used at the transmitter and usually passes through a low-pass filter to remove any residual 19- or 38-kHz signal components. These cannot be heard because the tuner's deemphasis reduces even the 19-kHz component to greater than 20 dB below the 100% modulation level. However, even at that level, the 19-kHz signal can interfere with the operation of a Dolby circuit, which interprets its presence as signifying high-frequency program content and alters its frequency response accordingly. With some tape recorders, it is also possible to have harmonics of the pilot carrier beat with the bias oscillator, giving rise to "birdies."

Ideally, the low-pass filter should have a flat response to 15,000 Hz but should attenuate 19-kHz signals (and those at higher frequencies) by at least 30 dB. Such filters can be made, but they are relatively complex and costly, and most tuner manufacturers use simpler filters whose responses begin to roll off above 10,000 or 12,000 Hz and may be down 2 or 3 dB at 15,000 Hz. This is responsible for some of the subtle differences sometimes heard between tuners. In a few deluxe tuners, a switch allows the lowpass filter to be bypassed at the user's option, giving a flat high-frequency response (and with no ill effects, if neither Dolby processing nor tape recording is involved).

Other Features. The multiplex demodulator uses the 19-kHz pilot carrier in the received signal to operate a stereo indicator light. In the absence of the 38-kHz signal, the internal oscillator is disabled and the detected signal passes unchanged through both channels of the demodulator and goes to the amplifier as a mono signal. A control voltage from the tuner's limiter also disables the 38-kHz oscillator when the signal is too weak for noise-free stereo reception. The stereo/mono switch on most tuners does the same thing, under the listener's control.

Interstation noise muting is often controlled by the same signal-derived voltage that operates the stereo switching circuit. In some tuners, multiplex IC's contain muting circuits, while in other tuners, the muting voltage acts on the limiter IC. A preferable system, used in a few tuners, is to combine the signal sensing voltage with the detector output so that the tuner "un-mutes" only when a signal is sufficiently strong and when it is tuned with sufficient accuracy for lownoise, low-distortion reception.

Perhaps the most serious cause of distortion in FM reception is multipath in-

terference. When a signal is reflected to the tuner over several different path lengths, the various components arrive with random phase relationships. The result is a partial or total cancellation of some of the frequency components of the FM signal. This appears to the tuner like a severely distorted amplitude modulation of the signal. To the extent that the FM detector is able to respond to amplitude modulation, the audio output from the tuner will be distorted by the multipath condition.

The most effective way to deal with the multipath problem is to use a directional antenna, oriented to favor one component of the arriving signal (preferably the earliest arrival) over the others. The AM resulting from the multipath condition, and its distortion, will be reduced, depending on how "selective" the antenna is. If the distortion is not severe, it may not always be heard in an easily identified form. It is useful, therefore, to have some indication of the multipath condition as an aid to orienting the antenna.

For some years, this has been offered in the better tuners and receivers in the form of external oscilloscope jacks. The horizontal output is taken from the detector, so that it represents frequency deviation with the channel center located at the center of the CRT screen when a station is correctly tuned. The vertical output, taken from the limiter, is proportional to the amplitude of the signal as it reaches the limiter section of the tuner. The display traces the i-f passband of the tuner on the screen if there is no multipath distortion present, showing the peak deviation of the signal and whether it remains within the tuner's linear response region. Any amplitude modulation present in the signal appears as ripples on the top of the trace. (The antenna should be oriented to give the smoothest and most nearly horizontal display.)

In many cases a meter is used as a multipath indicator. Usually the signal strength meter can be switched for this purpose. The exact mode of operation of the multipath meter differs from one manufacturer to another, as does effectiveness. Typically, the meter "kicks" on program modulation if AM is present, so that the antenna can be adjusted for the steadiest pointer indication. Most meters are not sensitive enough to show up moderate amounts of multipath that would be instantly visible on an oscilloscope; fortunately, this level of distortion is not often disturbing to the listener. \diamondsuit

Fig. 2. Spectrum analyzer display of composite stereo modulation, with 100% modulation at 2000 hertz.

PART 2

How to build a typical remote.

BY DAN SOKOL, GARY MUHONEN, AND JOEL MILLER

AST MONTH, we described the theory and construction of an Intelligent Remote Controller that utilizes a building's standard ac wiring for communicating between a computer and appliances. In this concluding part, we cover the details of a typical two-channel remote unit (sometimes called just a "remote") and

discuss some software to get the composite system "up and running."

The basic block diagram of a remote is shown in Fig. 1. Note that many sections of the remote resemble their counterparts in the controller because both devices can send and receive data over an ac power line.

How It Works. The user determines which remote he wishes to communicate with and what command he wishes to issue. For example, if he wants to toggle remote 41, a 233 must be outputted to the controller output port. The computer then executes the assembly language command OUT 5. (5 is the num-

Fig. 1. Block diagram shows similarity of remote to last month's main controller.

ber of the output port while 233 is data.) The I/O port decoding logic on the controller board determines that the controller is being addressed with an output instruction. The controller UART transmitter then reads the data bus, formats the word, and sends it out to the power driver as a serial stream of data bits.

The power driver impresses the signal on the ac line via the ac interface adapter. The data appears on the ac line as a digitally modulated signal at about 50 kilchertz.

All the remotes are constantly monitoring the ac line for possible commands. Each remote contains two independent channels, each capable of controlling one external device plugged into its power socket. This means that each remote is assigned two sequential addresses (selected by the user by putting jumpers on the remote board).

The signal received by the remote is coupled through an ac interface adapter tuned to 50 kHz. A high-pass filter (rolling off at 6 dB per octave below 20 kHz) removes the 60-Hz line frequency and all its relevant harmonics. The filtered output is amplified and used to drive a phase-locked loop (PLL). There, the vco

output from the loop is divided by 16 and used as the clock for the internal UART. The received data is recovered at the lock output of the PLL, and this signal is used as the input to the UART receiver.

When the receiver detects a data word, that word appears on its eight parallel output lines, along with error and flag information. The address and decode logic then determines whether or not that word is intended for that remote.

The three valid outputs from the address and decode logic are toggle-A, toggle-B, or poll. The latter is actually two commands—poll-A or poll-B—and the

C1,C2, C14, C15—0.1-μF, 200-V capacitor C3—0.015-μF capacitor C4,C5—0.001-μF capacitor C6 through C10, C16, C17, C22 through C27, C34—0.1-μF, 25-V capacitor C11—0.39-μF capacitor

C12, C18, C19, C28 through C33—0.01-µF, 200-V capacitor

C20, C21-470-µF, 25-V electrolytic

D1 through D5, D10, D11-1N4148

D6 through D9—1N4001 F1—1/4-A fuse and holder

F2,F3—5-A fuse and holder

ICI-TR1602 UART

IC2, IC3-4069 CMOS hex inverter IC4, IC8-4001 quad 2-input NOR gate

IC5-4011 quad 2-input NAND gate

IC6—74C107 dual JK flip-flop IC7—74C30 8-input NAND gate

IC9—74LS93 4-bit binary counter

IC10, IC11—NE535 op amp IC12—NE567 PLL tone decoder

PARTS LIST

K1, K2—Spdt, 5-A contact-rating relay (Stancor MS64-931 or similar)

Q1, Q2, Q4—2N2907 transistor

Q3, Q5, Q6, Q7—2N2222 transistor

Following resistors are 1/4-watt, 5% unless otherwise noted:

R1-15,000 ohms

R2-3900 ohms

R3, R13, R17, R18, R19, R23, R24—1000 ohms

R4, R11-2200 ohms

R5, R6-10,000 ohms

R7, R8, R9, R20, R21, R22-3300 ohms

R10-390 ohms

R12-27,000 ohms

R14-1800 ohms

R15-1000-ohm, 10-turn trimmer potentiom-

R16-10 ohms

R25-200 ohms

R26, R28, R30-100,000 ohms

R27, R29-270,000 ohms

RV1, RV2,-V33MA1A varistor (GE)

SØ,S1—Spst normally open, pushbutton

T1—Coupling transformer (see Note)

T2-25-V CT 180-mA transformer

VR1-7805 5-volt regulator

VR2-79L12 -12-volt regulator

Misc.—In-line fuseholders (3), 117-volt, chassis-mount ac sockets (2), line cord, suitable enclosure, mounting hardware, etc.

Note: The following are available from Mountain Hardware, Inc., P.O. Box 1133, Ben Lomond, CA 95005 (Tel: 408-336-2495): T1 (MH-71) for \$6.00; complete kit for one dual-channel remote including walnut case for \$99.

Diodes are identified by letters "CR" and IC's by letter "U" in parts placement guide in Fig. 7.

status logic determines which of the two is acted upon.

A toggle command causes one of the two flip-flops to change states. This opens or closes a relay associated with that channel and controls the external device connected to that socket.

A poll command causes the status logic to place a word into the UART transmitter buffer in accordance with the following format. The first five bits of the data word contain the address of the remote channel being polled. The sixth bit contains the status of the remote device

(on or off), while the seventh bit is set to zero to inform the system that a remote is responding to the controller. This indicates to all other remotes that the digital word on the ac line is not a command. The word is then formatted by the UART transmitter and sent via the ac interface to the power line.

AC Interface and Power Supply.

This circuit (Fig. 2) forms the power supply to the electronic system and provides the interface between the digital receiver, the transmitter, and the ac line. Transformer T2 and its associated components provide regulated +5 and -12 volts. Other components provide the unregulated ± 15 V required by the various circuits.

Transformer *T1*, resonant at 50 kHz, provides the actual interface and isolation from the ac line.

Filter, Amplifier, Limiter. This circuit (Fig. 3) operates in exactly the same way as its companion circuit in the controller described last month. See the December issue for details.

Next month, Part 3 will conclude this article with the final circuit discussions, construction and software.

POPULAR ELECTRONICS

This is Coby 1. A brand new electronic home control center that will change your way of life.

You can automate your home with the Coby 1 System.

Coby 1 Control plugs in anywhere to give you computerized ON/OFF control over electrical devices in your

It's the most sophisticated timer you can buy. It turns things on or off at precise times, at the preset intervals you select, and can be programmed up to 11 months in advance.

It's an instant control center for electrical devices right from your bedside-or wherever you and Coby 1 Control happen to be.

 Its elegant digital clock gives you the month, day, hour, minute, and second, with accuracy to within five seconds per month.

COBY 1 CONTROL NEEDS NO WIRING -PLUGS IN ANYWHERE.

The compact control panel, which we call Coby 1 Control, plugs into any ordinary wall outlet, sending computer-coded pulses

through your present wiring. The pulses trigger Coby 1 Remotessmall remote switches to go between plug-in appliances and wall sockets. Soon March) we will also have Coby 1 Remotes

to replace wall switches and Coby 1 Remotes to take care of built-in appliances like water heaters and air conditioners. It's safe, simple, and sure. There's nothing like it.

A REMARKABLE APPLICATION **BREAKTHROUGH IN** MICROELECTRONICS AND PULSE-CODE COMMUNICATION.

The Coby 1 System™ is the result of brilliant engineering by a team of aerospace electronics people. Coby 1 Control includes an Intel 8085 Microprocessor-a complete tiny computer—plus control circuitry, power supply electronics, coding and signal-generating circuits, an emergency power cell, and memory. The memory contains 2048 words of lowpower, programmable random access memory (RAM) and 2048 bytes of read-only memory (ROM). It stores device numbers, commands, and status information for up to one hundred Coby 1 Remotes.

The coding and signal-generating hardware translates commands and distributes them through your home wiring (but without interfering with any of your other appliances) to the Coby 1 Remotes, which decode the signals and turn things ON or OFF.

As you enter commands through the keyboard, the display lights up to confirm. It can also be used to review commands stored in memory. All programs are entered, stored, and modified through 12 function and control

keys and a 10-key numeric pad (plus AM and PM keys).

ITS ACCURACY IS BLACKOUT-PROOF.

Power blackout? Built-in battery power keeps Coby 1's memory fresh. Unlike a conventional timer or clock radio, Coby 1's clock won't lose a second. When power comes back on, the batteries automatically recharge. This feature also lets you unplug your control unit and

plug it in again anywhere. Its handsome digi- comfortable--no need to have them on contal clock gives you the year, month, day, hour, minute and second with accuracy to five seconds per month. The calendar will show the correct date until 2021.

We've protected Coby 1's sophisticated brain with a handsome, precision-aluminum package that is spillproof. Since Coby 1 has no moving parts, it requires no maintenance.

IT'S FUN TO USE COBY 1.

Each Coby 1 Remote is assigned an identification number. If the front half lamp is Number One, you simply tell Coby 1 Control to turn Number One on or off—now, Tuesday, any day or every day, if you like. And if you've ever operated a pocket calculator, you'll have no problem whatsoever with Coby 1.

COBY 1 IS AMONG THE **GREATEST LUXURIES YOU CAN OWN.**

Picture yourself on a frigid winter morning. Coby 1 can wake you with your hi-fi system and a lamp.

You rise to a warm bathroom. When you come out, the coffee is ready to pour. Coby 1 turns the hi-fi off and the TV on, while you enjoy your coffee and paper.
Coby 1 has warmed the car engine for you,

so it starts readily and warms up quickly.
At bedtime, with Coby Control now plugged in at bedside, you turn off all the lights and switch off the TV—without getting up. You go to sleep knowing things will be ready for you again in the morning. If, during the night, you want to turn on the outside or living room light, you have the comfort and security of being able to do so from your bedside table.

IT'S A CARETAKER WHEN YOU'RE GONE.

Now you can go away for a week (or a month) and leave Coby 1 in charge. Consider a potential thief watching your house: lights (Nos. 1-6) go on and off as if people were mov-ing around. The TV (No. 7) goes on; then goes off. Finally, the bathroom (No. 8) and bedroom lights (No. 9) go out. You can repeat the pattern daily or vary it for up to a year in cycles as short as a second or as

long as 100 hours. Yet it will use less energy and suggest more activity than leaving lights or a radio on constantly.

When you come home, Coby 1 can have the house warm (or cool, in summer), the porch light on, the sofa lamp on, and the hi-fi on to welcome you.

CONSIDER THE ENERGY SHORTAGE.

Coby 1 can do wonders for your electrical bill. It never forgets to turn things off. It can turn car heaters, air conditioners, or electric heaters on just far enough ahead to make things signature

stantly. You can change the times from your easy chair. No mechanical timers; no wasted power.

WE'RE INTRODUCING THE COBY 1 SYSTEM AT A SPECIAL LOW PRICE.

We're anxious to get the first factory run into the hands of users as quickly as we can because we're interested in how you put Coby 1 to work. So until February 15, 1978, we'll accept advance orders for a Coby 1 Control at \$399.00, the price to include a free Coby 1 Remote. Other remotes will be extra.

Simply fill out the coupon and send it with your check, money order, or credit card data. You can also call in your order or get more information by calling (505) 526-3358. We'll ship your Coby 1 along with full instructions and suggestions on its use, after our first production run in January. We'll also include our 90-day parts-and-labor limited warranty.

WHO ENERGY TECHNOLOGY IS:

The company was started by the three of us. Brook Reece, Phil Reed, and Keith Burn, We developed the system ourselves. We're excited about Coby 1 because everyone we've talked to has expressed real interest in the product and sees a need for it.

We've been working on Coby 1 for months, Devel opment and testing of production models is now complete. They'll be ready to ship in January. Dealer inquiries

invited. Energy Technology, Incorporated, 1601 South Main St., P.O. Box Q Las Cruces, NM 88001. Phone: (505) 526-3358

Mail to:

1601 South Main St., P.O. Box Q, Las Cruces, NM 88001 Put me down for one of the first Coby 1's. I understand that this is an advance order, and that shipment is expected after

Ship me one Coby 1 Control and one 10-amp plug-in Coby 1 Remote at the Special Introductory Price of \$399.00, ship-

ping included.	\$399.00
In addition, I want to order the fo	ollowing:
more 10-amp plug-in Coby 1 F	Remotes @ \$39.95
25-amp plug-in Coby 1 Remo	otes @ \$49.95
	Total
New Mexico residents: please add Gross Receipt tax Check BA/V Money Order MC	Total
Card No.:	
Interbank No.	Card Exp. date
Ship to	
Address	
City Sta	iteZip

Solid State

By Lou Garner

"FOR I DIPT INTO THE FUTURE "

THE WORDS in the title of this month's column are from Lord Tennyson's famous poem, "Locksley Hall." Written in the mid-1800's, it contained some rather startling predictions: the invention of the airplane, air freight service, great aerial battles, and, many feel, the formation of the United Nations, although he referred to it as "the Parliament of Man, Federation of the World."

Did Tennyson have the Gift of Prophecy? Did he receive advice from noted scientists? Or was he just plain lucky in his predictions? Perhaps none of these, perhaps a bit of each, but one thing is certain—long-range predictions always have been "safer" to make than short-term forecasts.

This explains, perhaps, why our annual guessing game with the electronics industry is such a challenge. It's strictly a short term proposition—one year! As always, we have a few predictions for 1978; but, first, let's check the record for 1977. Some of you may recall that, in my January 1977 column, I predicted the following:

A drop in the price of simple pocket calculators to the "five-dollar" range. Right on! Not only are five-dollar (give or take a

buck) pocket calculators available from a number of sources, even lower prices may prevail during special sales. In early Fall, for example, a major national department store chain offered 8-digit LED "4-bangers" for less than three dollars each, with a limit of "two to a customer."

- Similarly, basic digital electronic watches, probably 3-function LED types, retailing in the ten-dollar range. Another winner! In last September's column, you may recall, I announced that Texas Instruments, Inc. had cut the suggested retail price of their Model 503 sports/youth watches to a low \$9.95. Since then, a number of watch manufacturers have introduced low-priced models, with some types available for less than eight dollars during special promotions.
- Basic microcomputer kits for less than fifty dollars each in small quantities, greatly expanding their appeal to hobbyists and experimenters. On target! In recent advertisements in these pages as well as in other electronics magazines, the Digi-Key Corporation (P.O. Box 677, Thief River Falls, MN 56701) has offered a basic 8080A chip kit for only \$49.95, plus handling. The kit includes an 8080A, an 8212, an 8224,

64

an 8338 and sixteen 2102-1's, virtually all the IC's required for a basic microcomputer. Naturally, you'll need a suitable pc board and support components.

- Commercial digital multimeters selling in the fifty-dollar, or less, price bracket. Check (if I'm allowed the customary 20% tolerance—otherwise, a close miss)! In a full-page advertisement in our June 1977 issue, page 33, Sabtronics International, Inc. (P.O. Box 64683, Dallas, TX 75206) offered a 3½-digit DMM kit for only \$59.95. On the other hand, if you're willing to settle for a single-range DPM (digital panel meter), you can buy one of these fully assembled, less power supply, for only \$35.00 each in unit quantities and as low as \$29.00 each in quantities over 100 from Datel Systems, Inc. (1020 Turnpike Street, Canton, MA 02021). If you prefer to assemble a DPM from a kit, you can purchase a 3½-digit LED kit for \$24.95 or a comparable LCD kit for \$29.95 from any distributor stocking Intersil products.
- A marked increase in the availability and use of analog (linear) devices. Still on target! Virtually every major semiconductor manufacturer introduced new linear devices (both discrete and IC) during the year and these are being used in ever increasing quantities by equipment manufacturers. RCA has expanded its line of arrays (see this column in the October 1977 issue); TI is pushing its dual-technology BIFET line of operational amplifiers; Siliconix is making waves with VMOS devices (see our May 1977 column); and National Semiconductor, Signetics, Motorola, Fairchild, and Delco have all expanded their lines of linear devices, with special emphasis on voltage regulators, audio amplifiers, operational amplifiers and special purpose devices.
- A breakthrough in solar-cell technology, leading to price reductions of up to fifty percent in the dollar/watt cost ratio of solar-powered electrical systems. A hit and a miss on this one! There was a breakthrough in solar-cell technology when Motorola Semiconductor Products, Inc. entered the field with a new type of high-efficiency cell featuring a unique textured surface to provide maximum light absorption, as reported in our October column. However, although the expected major reduction in solar-cell prices did not materialize, a recent sales bulletin from Poly Paks (P.O. Box 942, South Lynnfield, MA 01940) did offer a single solar cell with a rated output of 1 ampere at 0.5 volts for only \$9.95! Prices are dropping, but slowly.
- The development of fast-response liquid crystal displays, paving the way for the eventual development of practical flat-screen TV receivers. Check! Sparked by the increasing use of LCD's in watches, clocks and digital instruments, significant developments have been made in the field, with response times reduced from a substantial fraction of a second down to the millisecond range. Although the microsecond response needed for television reproduction has not been achieved in commercial units, it is possible to build slow-moving displays with off-the-shelf LCD's today. Progress is continuing, however, and many scientists doing liquid crystal research seem to feel that flat-screen TV LCD's are "just around the corner" (although none will vouchsafe which corner).
- Increasing sophistication and complexity in solid-state video and calculator-based games. A super winner! For confirmation, refer to the editorial by Art Salsberg which appeared in last September's issue—or you could just check any major department store or large mail-order firm's catalog!
- Solid-state/fiber-optic control and/or communication projects and kits for experimenters and hobbyists. A clear miss!
 Unless a press release, advertisement, or flyer slipped by

SEND FOR FREE CATALOG

without my noticing it, I really bombed out on this prediction. Interestingly, industrial and commercial interest in fiber-optic applications continues at fever pitch, with a number of firms offering fiber-optic "cable," connectors, and fittings, as well as transmitter and receiver sub-assemblies and complete systems. But none of this seems to have filtered down to the hobbyist level. In fact, the only fiber-optic projects I've seen offered to the experimenter are novelty lamp kits.

Things to Come. Considering the result of my last prediction, I'm sorely tempted to swap my old crystal ball for a cup of tea leaves. But nonetheless, for 1978 watch for:

- The introduction of ultrasophisticated solid-state games involving a broader range of control—perhaps even voice commands and audible responses (other than simple "sound effects"). Actually, the possibilities for game designs are virtually unlimited, given a large enough market, and, eventually, each designer and manufacturer will try to "out-do" all others to maintain a competitive edge.
- Along with the introduction of more sophisticated μP -based video and nonvideo games, substantial reductions in the prices of conventional games. It would come as no surprise if a basic "table tennis" type game for B/W receivers were to be offered in the ten-dollar range before year's end, with complex programmable video games in the \$50 to \$100 range.
- The development of a new solid-state microwave device. The details are fuzzy, but the device may be a unit capable of challenging the long reign of TWT's . . . or it might be a FET with substantial power output in the GHz range.

- The introduction of solid-state portable security alarm systems. Portable, self-contained, fool-proof, and difficult to defeat, which business travelers, tourists, and campers can use to protect a motel or hotel room or, perhaps, even a tent or camper-trailer.
- The development of a new type of solid-state sensor or transducer. A number of new devices are needed in this area, for often the measurement or control system is superior in performance to the device used to interface with the rest of the physical world.
- The development of a new family of logic devices. For some time, now, TTL has been "King of the Mountain," even though challenged by I²L, low-power Schottky, and CMOS. The new family may be an adaptation of an existing technology, such as VMOS, or may represent a completely new concept. It's all a bit misty.
- Dedicated home computers—not kits—in the \$200.00 price range. Regardless of what the optimists believe, I can't visualize home computers as a mass market item unless the programming problem can be solved. Most people other than hobbyists look for products which save time, work and effort. And mental work (i.e., programming) is the toughest of all. Therefore, means must be used to greatly simplify or eliminate this task if computers are to achieve widespread public acceptance. . . And, generally, this means a "dedicated" computer—one designed to perform a specific series of tasks with a minimum of input data.
- The introduction of dual-technology IC's (not BiFET's, which are now available) but devices combining digital and analog (linear) circuits in a single package, if not on a single chip. There is an increasing need for devices which can operate in both the linear and digital domains without costly A/D and D/A converters. Where there is a need, someone will find a suitable solution.

Reader's Circuit. Searching for an attention-getting display for their popcorn stand, the members of a local Jaycee club in Michigan looked at several ideas. Someone suggested a movie-style marquee with rotating lights. All agreed it was a terrific idea but, unfortunately, too costly for the budget, inasmuch as these displays required a motor-driven, heavy-duty sequential switch to activate the multiple lamp strings in order. Then one of our readers, Jim Harvey, WB8NBS (15026 Sunbury, Livonia, MI 48154), tackled the problem. Applying his ingenuity and doing a little research with Signetics Application Notes, Jim decided he could do the job electronically using solid-state circuitry and a combination of "junk box" and lowcost surplus components. His circuit, capable of flashing up to three strings of lamps, is illustrated in Fig. 1. Jim writes that his total cost (exclusive of lamps) was a fraction of the \$75.00 price asked for a motor-driven sequential switch.

Jim's design has a pair of 556 dual timers, *IC1* and *IC2*, three simple opto-couplers, and three medium power Triacs, which serve to switch the (lamp) loads. Dc power is obtained from a simple supply comprising a 12.6-volt step-down transformer, a bridge rectifier, and a 250-μF, 20-volt electrolytic capacitor. The Triacs are isolated from the control circuit by the opto-couplers. Three of the timer IC sections, *IC1B*, *IC2A*, and *IC2B*, are wired as one-shots, inter-connected through RC differentiating networks so that they trigger each other sequentially. The remaining timer section, *IC1A*, is connected as a free-running multivibrator with about a 4-second period. It is used in one mode to control the sequential circuits for special lighting effects.

Any of several operational modes can be selected by means of three-position switch S2. With this switch in its ALL ON position, the one-shot inputs are all grounded, forcing their outputs high and switching all three LED's on, thus activating the Triacs and furnishing line current to all lamp loads continuously. The ALL ON position is used both for general illumination and when the operator wishes to identify any burnt out lamps. In the ALL ROTATE position, S2 applies VCC to the oneshot trigger inputs, permitting the circuits to cycle on and off sequentially and creating an optical rotation effect as lamp loads "A," "B," and "C" are switched on and off in order. Finally, with \$2 in its ALTERNATE position, the free-running multivibrator (IC1A) serves to switch the one-shot trigger inputs alternately between ground and V_{CC}, causing the lamp loads to "rotate" for a half period (about 2 seconds) and then stop for a half period, repeating the cycle over and over.

With cost a critical factor, Jim used inexpensive, readily available components in his design. As indicated earlier, the IC's are type 556, while the Triacs are 200-V, 6-A types; any commercial units with these ratings should be acceptable. The optocouplers are home-made, with each consisting of a "jumbo" red LED, a small CdS photocell, a piece of heatshrink tubing for assembly, and a dab or two of black paint, Except for the potentiometers, which may be either Trimpots or small volume controls, all resistors are standard 1/2-watt types. The electrolytic capacitors, identified by a polarity sign, are 20-volt units, while the other capacitors may be either lowvoltage ceramics or small tubular paper or plastic film types. The bridge rectifier used in the dc power supply can be either a standard bridge assembly or four diodes with (at least) a 36-PIV rating and minimum 500-mA current handling capacity. Finally, power switch S1 may be a toggle, slide, or rotary spst unit, while function switch S2 is a single-pole, three-position lever or rotary type.

Since layout and lead dress are not overly critical, the flasher circuit may be assembled on perf board using point-topoint wiring or on a suitable pc board, at the builder's option. Heat sinks should be provided for the Triacs if they are to be loaded to near maximum ratings. All dc polarities must be observed, or course, and the assembled circuit should be double-checked for accidental shorts, opens, and wiring errors before power is applied. When connecting the load lamps, which are wired in parallel within each string, make sure that Triac maximum ratings are observed. While the 6-A Triacs can handle almost any standard 120-V incandescent lamp, the greater the number of lamps, the better the overall optical effect, hence low-wattage bulbs (71/2-W units or even 120-V Christmas tree strings) are preferred to permit a maximum number of lights within each string without overload. Naturally, the lamps in each load string should be arranged in alternate patterns to achieve the desired effect . . . A-B-C-A-B-C-A-B-C, and so on. Jim offers the following hints to insure optimum performance:

- (1) Since the one-shots require an initial trigger to begin cycling, the circuit may not operate if S2 is in its ALL ROTATE position initially. In this case, switch S2 to the ALL ON or ALTERNATE position momentarily before switching back to the ALL ROTATE position.
- (2) Once the display is operating in the ALL ROTATE mode, "tweak" each one-shot's potentiometer until equal *on* times are achieved for each load string . . . or simply until the effect is pleasing when viewed from a distance.
- (3) Finally, switch S2 to the ALTERNATE mode and adjust IC1A's potentiometer for the most eye-catching display. ♦

By Forrest M. Mims

READ/WRITE MEMORIES (RAM's), PART 2

N LAST month's column we discussed the 7489 RAM, a TTL chip that can store up to sixteen 4-bit words. This month we'll complete our experiments with the 7489 and get to know the 74193 4-bit counter.

First, let's cover a few facts about the 7489 we didn't have room for last month. We already know that the 7489 is a RAM, that is, a random access, read/write memory. But did you know you can also think of the 7489 as a string of sixteen 4-bit latches? Each storage element in a 7489 is a latch flip-flop, so it's a perfectly valid way of describing the 7489.

Thinking of the 7489 as a string of 4-bit latches is a good way to better appreciate this important TTL memory chip. How would you like to make your own 7489 from a handful of 4-bit latches? I don't think you would. Besides the latches, you would need a decoder chip and some gates.

RAM Demonstration Circuit. Did you build the RAM demonstrator de-

scribed in last month's column? If so, you've probably learned a fair amount about working with bipolar (TTL) RAM's. If not, you might want to consider retrieving last month's POPULAR ELECTRONICS and collecting the necessary parts. You can buy 7489's for as little as a couple of dollars or so from suppliers who advertise in this magazine.

Programming. Let's discuss programming procedures for the RAM demonstrator. Programming is semi-automatic since the 7490 address pointer (see Figure 4 in last month's column)

will advance to the next address if you apply a single clock pulse. The best way to do this is to slow down the clock to about one pulse per second by adjusting the one-megohm potentiometer and disconnecting the clock input from pin 14 of the 7490. To advance the pointer to the next address, simply touch the clock lead to pin 14 of the 7490 long enough for the clock LED to flash one time.

After you learn to advance the 7490 in single address increments, you're ready to load data into the RAM. Set up the data by grounding the input pins that are to be at logic 0 and leave floating the inputs that are to be at logic 1. You can use switches or jumpers to load data.

Momentarily grounding the 7489's WE input (pin 3) will load the data word into the selected address slot. The word that was previously in the selected address will be lost. After the word is loaded, you're ready to move on to the next address. Remember, you're using a 7490 decade counter for an address pointer. That means you can select only the first ten (0000 through 1001) of the RAM's sixteen addresses.

If you want an easy way of knowing

Fig. 2. Block diagram of pseudo-random data loader.

Fig. 1. Circuit indicates address pointer output.

Fig. 3. Automated RAM demonstrator with pseudo-random data generator.

The first and only lab accuracy portable DMM Kit featuring MOS/LSI IC economy and reliability. Measures DC/AC Volts, Kilohms, DC/AC milliamps in 21 ranges. Polarity indicators and overload protection are provided, and 0.5 inch LED displays give easiest-to-read digital readout to 1999. The 270 features a basic 0.5% DC accuracy, 10 Megohm input impedance, low voltage drop in all current ranges and automatically-flashing overrange indicator. **Assembled \$109.95**

FREE '78 EICO CATALOG

Check reader service card or send 75¢ for first class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepted.

EICO-108 New South Rd.

EICO-108 New South Rd.

CIRCLE NO. 12 ON FREE INFORMATION CARD

Don Lancaster's ingenius design provides software controllable options including:

- Scrolling Full performance cursor
- Over 2K on-screen characters with only 3MHz bandwidth
- Variety of line/character formats including 16/32, 16/64
 even 32/64
- · User selectable line lengths

	MORE! struction manual for operational details.	
		41 0001000
Address:		
City:	State:	Zip;
÷Λ°Α.	[] SEND	FREE CATALO

() SEND FREE CATALOG

DEPT. 1-P 1020 W.WILSHIRE BLVD., OKLAHOMA CITY, OK 73116

ELECTRONICS. INC.

exactly what address the 7490 is pointing to, connect LED's and 620-ohm series resistors between the four 7490 outputs (pins 11, 8, 9, and 12) and plus 5 volts. Be sure to arrange the LED's in the proper sequence (Fig. 1).

You don't really need to know to which address the 7490 is pointing if you let it recycle to address 0000. Then you can simply load ten words, one at a time, using the programming procedure outlined above.

How do you know when the 7490 is pointing to 0000? The pointer LED is on when the D bit in the address is logic 0 and off when it is logic 1, as shown:

Decimal count	Add	iress	poi	inter	Pointer
	(74	490 d	outp	ut)	LED
	D	C	В	A	
0	0	0	0	0	On
1	0	0	0	1	On
•					
8	1	0	0	0	Off
0	1	0	0	1	Off

To find the 0000 address, slow the clock down and watch the pointer LED. Eventually it will turn off for two clock pulses. As soon as it flashes on again, disconnect the clock lead from pin 14 of the 7490. The RAM will be at address 0000 and you can begin programming.

Expanding the Demonstrator. It's easy to expand the RAM demonstrator by adding an automatic, pseudo-random data loader. The data loader is merely a decade counter that rapidly cycles between 0000 and 1001 again and again. The output lines of the counter are connected to the data imputs of the 7489. Whatever number is present when the 7489 is advanced to the next address is loaded into the RAM.

Figure 2 is a block diagram that shows how the data loader is connected to the RAM. As you can see, the data loader is identical to the combination clock and address pointer that automatically advances the RAM to its next address. The complete circuit diagram for the expanded circuit is shown in Fig. 3, where the data loader is literally a mirror image of the address pointer circuit.

Since you already know how the address pointer portion of the circuit works from last month's installment, there's no need to describe the detailed operation of the data loader here. You'll find a few operating tips helpful, however.

First, the RAM will accept (write) new data from the data loader when S2 (WRITE ENABLE) is closed. Otherwise, the RAM will continue to store any existing data. Second, both S1 and S3 should be closed when you want to load pseudo-random data, unless you want all the RAM addresses to contain the same number. (In that case, leave S3 off after the data loader reaches the number you want to store in each address.)

Third, remember to turn S2 off when you want to read out the contents of the 7489 with the help of the four output LED's. The LED's will be blanked (off) when S2 is on and data is being loaded. Finally, be sure to experiment with the settings of both R1 and R2. Decreasing the effective resistance of R2 increases the count rate of the 7490, and this will

Fig. 4. 74193 pin diagram.

improve the "randomness" of the data loaded into the RAM. Similarly, lowering the resistance of *R1* will speed up the address pointer and let you load new data in a fraction of a second.

Incidentally, be sure to slow down the address pointer with the help of *R1* when you want to read out the data with the LED's.

Improving the Demonstrator.

Since we're using a decade counter as an address pointer, we can only gain access to ten of the sixteen storage slots in the 7489. You can remedy this by replacing the 7490 address pointer (and the 7490 data loader if you want to load (1010 through 1111) with a 74193 4-bit (0000-1111) counter. Figure 4 is the pin diagram for this chip.

An important advantage of the 74193 is the CLEAR input (pin 14). In normal use, this input is grounded. Disconnecting the ground clears the counter to 0000. The 74193 has lots of other features including carry, borrow, count up, and count down. Its count can even be preset to any desired value between 0000 and 1111.

By John McVeigh

RECEIVER OVERLDAD

Q. A CB'er about a half mile away from my house uses a beam antenna and a power mike. When he transmits, he puts out a very strong signal (about 30 over on my S meter), and his audio is superb—no distortion at all. However, he causes interference to all the other channels. Sometimes, the signals on the other channels drop in strength (the S meter drops several S units) and my receiver gets very quiet. Why does this happen, and is there anything I can do to my radio to help stop the interference?—Andy Gill, Carrollton, KY.

A. You mention that the CB'er is putting out clean-sounding audio. This seems to

imply that he is not overmodulating his transmitter—which often occurs when a power mike is abused. If there was severe overmodulation, "splatter" would appear on many channels. But the situation sounds more like a case of receiver overload. If his signal is very strong, it can cause distortion and/or override the selective circuits in the receiver i-f and cause the automatic gain control to cut back on receiver gain. The net result is a reduction in signal strength on the channel you're tuned to.

There's no practical filter that could be inserted in the transmission line and would be sharp enough to attenuate the undesired signal but not affect the desired one. If your rig has an r-f gain control, you could try backing down on it. An

attenuator in the feedline to the receiver might help if you had separates, rather than a transceiver. You might try asking the CB'er to back off on the modulation, or perhaps turn his beam so that you're off its side!

SOUND VIA POWER LINE

Q. Instead of running extension speaker wires, I'd like to build a unit that would sense the audio signal over the ac wiring in my house. Another unit would pick up the signal at the wall socket and feed the signal to a speaker. Do you know where I can find suitable schematic diagrams?—David Mast, Holland, MI.

A. The January 1976 issue of Popular Electronics contains a construction project that does exactly what you're interested in. If you can't find that issue, you can order a back issue for \$1.50 (includes postage and handling) from the Ziff-Davis Consumer Service Division, 595 Broadway, New York, NY 10012. Readers outside the U.S. can order back issues for \$2.00. Copies are available for magazines from April 1974 through the present issue.

If you can't go to college for you career in electronics -read this!

CREI brings college-level training to you with eight educational advantages, including special arrangements for engineering degrees The best way to qualify for top positions and top pay in electronics is obviously with college-level training. The person with such training usually steps more quickly into an engineering level position and is paid considerably more than the average technician who has been on the job several years.

A regular college engineering program, however, means several years of full-time resident training-and it often means waiting several years before you can even start your career. This, of course, is difficult if you must work full time to support yourself and your fam-

If your career in electronics is limited without college-level training, take a look at the advantages a CREI home study program can offer you.

1. Convenient Training

CREI brings the college to you. Through the convenience of home study, you receive exactly the same level of training you will find in any college or university offering programs in electronic engineering technology. With CREI, however, you can "go to college" whenever you have spare time at home or on the job.

2. Specialized Programs

With CREI, you enjoy the advantage of specialized training. That is, your program will include only those courses directly applicable to your career in electronics. We omit such courses as English, social studies and other subjects, which are usually required in resident schools. Therefore, with CREI, you move ahead faster to the more interesting and useful part of your train-

3. Practical Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer, you may qualify for faster career advancement.

4. Engineering Degrees

CREI offers you a number of special arrangements for earning engineering degrees at recognized colleges and universities. You can earn college credit while you are taking your CREI program or apply later, whatever is best for your career plans.

Mail This Card for

Mail this card today for 80 page, full color CREI catalog describing programs and career opportunities for you in college-level electronics. Please note these programs are for high school graduates or the equivalent ONLY. Check area of interest below:

Design Technology (new) Computers C Broadcast TV C Other

Communications	☐ Digital	☐ Cable TV	
Name			Age
Address			
City	_State	ZIP	Phone
•		Type of	

Employed by

ELECTRONICS

POPULAR

Accredited by the Accrediting Commission of the National Home Study Council

For G.I. Bill information, check here

E1201T

McGraw-Hill Center for Continuing Education, Washington, D. C. 20016

If you have previous training in electronics, check here

FIRST CLASS Permit No. 20-R Washington, D.C.

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in the United States

Postage will be paid by

ENGINEERING INSTITUTE

McGraw-Hill Center for Continuing Education 3939 Wisconsin Avenue Washington, D. C. 20016

Career Training at Home

5. Unique Laboratory

Only CREI offers you the unique Electronic Design Laboratory Program. This complete college laboratory makes learning advanced electronics easier and it gives you extensive practical experience in many areas of engineering, including design of electronic circuits. No other school offers this unique program. It is a better "Lab" than we have found in many colleges. And the professional equipment included in the program becomes yours to keep and use throughout your professional career.

6. Wide Program Choice

CREI gives you a choice of specialization in 14 areas of electronics. You can select exactly the area of electronics best for your career field. You can specialize in such areas as computer electronics, communications engineering, microwave, CATV, television (broadcast) engineering and many other areas of modern electronics.

7. Prepared by Experts

Experts in industry and technical organizations of government develop CREI programs. Each part of your training is developed by a recognized expert in that area of electronics. That means you get the most up-to-date and practical instruction for your career.

8. Industry Recognition

That CREI training is recognized by industry and government is evident from the fact CREI provides training to advanced technical personnel in over 1,700 technical organizations. Many subsidize the training of their employees with CREI. If there is any question about the advantages of CREI training for you, ask your employer or any engineer to evaluate the outline of a CREI program for you.

Other Advantages

Of course, there are many other advantages to CREI training. For example, throughout your training, CREI's staff gives you personal instruction for each step of your program. And in many industrial areas, both in the U. S. and abroad, CREI Field Service Representatives provide a number of important personal services for your training and your career.

FREE Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog (if you are qualified). This fully illustrated, 80 page catalog describes in detail the programs, equipment and services of CREI.

Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate (or the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

Mail card or write describing qualifications to

CAPITOL RADIO ENGINEERING INSTITUTE

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue Northwest Washington, D.C. 20016

Accredited Member National Home Study Council

GI Bill

CREI programs are approved for training of veterans and servicemen under the G.I. Bill.

E.F. JOHNSON VIKING 4360 REMOTE CONTROL MOBILE AM CB TRANSCEIVER.

Features telephone-type handset and speaker interconnect box.

HE 40-channel Viking 4360 AM CB transceiver from E.F. Johnson differs from other digitally frequency-synthesized, remote-control mobile rigs in that it consists of three pieces. One is a telephone-type handset, the second is a main electronics unit that can be tucked out of sight, and the third is a small dashboard-mounted interconnect box that contains a 3" loudspeaker and numerical LED channel display. The handset assembly contains a small speaker, VOLUME and SQUELCH controls, and up- and down-channel pushbuttons for switching to the various channels.

Other features found in this transceiver include: LED dimmer switch (off/dim/bright); external-speaker jack; non-switchable anl (automatic noise limiter); speech compressor circuit; and a transmitter output network designed to minimize harmonics that can cause TVI. Operation is from a nominal 13.8-volt dc, negative- or positive-ground source.

The main unit measures 8%"W \times 6%"D \times 2%"H ($21.9 \times 15.6 \times 7.3$ cm), while the interconnect box is 4%"W \times 3%"H \times 15%"D ($11.4 \times 9.8 \times 4.1$ cm), less mounting flanges. Supplied with handset and 8' (2.4-m) cable for interconnecting the main unit with the inter-

connect box, the transceiver's price is \$229.95.

Technical Details. The receiver employs double conversion to a 455-kHz i-f, which is obtained by heterodyning the CB signal with a local-oscillator signal that is 455 kHz lower in frequency than the input signal. The heterodyning signal is obtained by sum-mixing the output of the voltage-controlled oscillator (vco) in the PLL system with a 5120kHz signal from a crystal-controlled oscillator. (The standard reference signal is also derived from the 5120-kHz oscillator.) The heterodyning signal is mixed down and digitally divided for a comparison reference that is fed to the phase comparator along with the standard reference to provide the error voltage for the vco.

The i-f selectivity is obtained with a lumped-constant, bandpass-coupled circuit. There are two i-f stages, a detector, an audio anl, and an audio preamplifier following the r-f section. An IC that contains the output stage (it also modulates the transmitter) rounds out the receiver section. An agc amplifier and detector system is included.

The channel-indicating system consists of the usual seven-segment LED displays and decoder/driver electronics.

On transmit, the heterodyning signal from the receiver is shifted upward by 455 kHz to generate the on-channel carrier frequency. This signal then goes to a predriver, driver, and r-f output-power amplifier. A multi-element output network matches to 50-ohm loads and minimizes spurious output responses to maximize the attenuation in the TV range. On "power up," channel 19, the most popular CB highway channel, is automatically switched in.

The driver and power amplifiers are collector-modulated by the audio section in the receiver, where a compression circuit provides automatic modulation control. Transmit/receive transfer is via diode switches.

Laboratory Measurements. We measured a 0.55- μ V receiver sensitivity for 10 dB (S + N)/N at 30% modulation with a 1000-Hz test tone. The agc held the audio output to within 15 dB with a 20-dB r-f input change at 1 to 10 μ V and to 20 dB with an 80-dB input variation at 1 to 10,000 μ V. The squelch threshold range was 0.7 to 200 μ V.

Adjacent-channel rejection and desensitization measured 55 dB. Image rejection on channel 1 was 12 dB and gradually deteriorated to 5 dB on channel 40. I-f rejection was greater than 80 dB, and other unwanted signals were down a minimum of 40 dB.

The audio response at the 6-dB points varied between 240 to 2900 Hz and 215 to 3250 Hz, depending on the setting of the VOLUME control. Maximum sinewave output at 10% THD measured 1 watt into 8 ohms. However, at the start of clipping and with 12.5% THD, the output measured 1.4 watts.

Powering the transceiver from a 13.8-volt dc source, we measured a transmitter carrier output of 3.75 watts. At microphone input levels 16 and 25 dB greater than that required for 50% modulation, the THD with a 1000-Hz signal was 3.5% and 11%, respectively, with the modulation averaging a nominal 90%. The THD with a 500-Hz tone under the same conditions was 6% and 24%.

Splatter greater than ± 5000 Hz from the carrier was 60 and 55 dB down at +16- and +25-dB levels. However, the splatter with a 2500-Hz tone was nominally only 40 dB down. Nevertheless, at maximum voice levels, the splatter was more than 60 dB down. The modulation peaks held to just short of 100%.

The audio response measured 500 to 4000 Hz at the 6-dB points. Slight down-

ward modulation (negative carrier shift) was noted during these tests. The output frequency held to within ± 30 Hz, referred to ± 176 Hz on channel 21.

User Comment. The main electronics package that makes up this transceiver's system can be mounted up forward in a vehicle. Alternatively, it can be mounted under a seat or in the trunk. The interconnect box is designed to be installed on the dashboard or wherever its controls can be conveniently reached and its LED display affords an unobstructed view. This box has a toggle switch for turning on and off the power and dimming the channel displays.

Another switch permits the operator to select either the box speaker or the speaker in the microphone's housing. The speaker in the box faces downward. The handset connects to the interconnect box via a multipin connector at the end of its heavy coiled-cord cable.

The speaker in the handset is located at the top of the housing, while the microphone element is at the bottom. In the middle of the handset are two pushbuttons, labelled PLUs and MINUS, for stepping through the channels in either an upward or a downward sequence.

Either button can be operated momentarily for single-step operation or held down for continuous (and fast) scanning of the channels. We determined that only a light tap of either button is all that is needed to step through the channels. One must be careful here to press and quickly release the button to avoid going into the scan mode.

The VOLUME and SQUELCH controls are thumbwheel types, located at the right side of the handset. With a little practice, one quickly becomes accustomed to this arrangement and the directions in which the controls must be rotated to obtain the desired effects.

The rationale behind the usual remote-control CB rig is to have the transceiver out of sight or in a safe place as a theft deterrent. With this rig, however, mounting of the interconnect box is somewhat revealing, though not on the order of conventional-type rigs. Even so, locating the main section of the system in the trunk should minimize the possibility of it being stolen.

Since the interconnecting cable between the box and main unit is just 8' long, for trunk installations it may be necessary to obtain Johnson's optional 12' extension cable.

CIRCLE NO. 104 ON FREE INFORMATION CARO

Although the modulation distortion at low audio frequencies measured somewhat greater than usual at high compression levels, the transmissions sounded very good under most voice conditions. Additionally, adverse splatter was absent. The quality on receive was good, too.

As noted by our measurements, the image rejection on some channels was less than usual for a single conversion to a 455-kHz i-f.

The anl was not especially effective in our rigid bench tests with an impulsenoise generator. However, in on-theroad tests in our noisy vehicle, its performance was very good indeed.

Overall, the Viking 4360 transceiver is a most satisfactory performer. Of special importance is its user-operation conveniences. For example, the lightweight handset can be held comfortably, partly as a result of using a larger speaker in the interconnect box instead of in the handset itself. Also, the slight compromise of having a third small unit—the interconnect/speaker housing/channel display—makes it easier and safer for the driver to view under typical motoring situations. Lastly, the handset offers true one-handed operation.

SENCORE MODEL DVM37 DIGITAL MULTIMETER

Portable DMM boasts 0.1% dc accuracy, automatic zero and switch-controlled probe.

THE MODEL DVM37 digital multimeter from Sencore features a 3½-digit, 0.3" (7.6-mm) high red seven-segment LED display, 0.1% dc measuring accuracy, and 15- or 30-megohm input resistance to keep circuit loading and erroneous readings to a minimum. Automatic zeroing, polarity indication, and decimal-point placement provide for fast

direct measurements. The instrument is designed to permit resistance and ac and dc voltage and current measurements.

The multimeter measures 7"H \times 5"W \times 4"D (17.9 \times 12.8 \times 10.2 cm) and weighs 2.25 lb (about 1 kg), including its internal battery pack. Power for the DMM can be from throw-away standard

carbon-zinc or alkaline cells (four C size), rechargeable nickel-cadmium cells, or from an optional ac adapter/battery charger.

The Model DVM37 multimeter price is \$248. Available as options are a No. 39G90 ac power adapter/battery charger for \$9.95 and a No. HP200 50-kV high-voltage probe clip-on for \$25.

Technical Details. A total of 28 ranges is provided. Dc voltages can be measured in four ranges to 2, 20, 200, and 2000 volts full-scale with an accuracy of 0.1% (0.2% on the 2000-volt range). Resolution is 1 mV on the 2-volt range. The input resistance is 15 megohms, which can be extended to 30 megohms via a switch on the built-in probe. Using this switch rescales the ranges to 4, 400, and 2000 volts full-scale, with an accuracy of 1.1%. Ac re-

Put Professional Knowledge and a

COLLEGE DEGREE

in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic. Profit from, and enjoy, the advantages of directed but self-paced home study.

The Grantham electronics degree program begins with basics, leads first to the A.S.E.T. degree, and then to the B.S.E.E. degree. Our *free* bulletin gives complete details of the program itself, the degrees awarded, the requirements for each degree, and how to enroll. Write for *Bulletin E78*.

Grantham College of Engineering 2000 Stoner Avenue P. O. Box 25992

Los Angeles, CA 90025

Worldwide Career Training thru Home Study
CIRCLE NO. 17 ON FREE INFORMATION CARD

SAVE!

MONEY • TIME • FREIGHT

QUALITY STEREO EQUIPMENT AT LOWEST PRICES.

YOUR REQUEST FOR QUOTA-

FACTORY SEALED CARTONS— GUARANTEED AND INSURED.

SAVE ON NAME BRANDS LIKE:

PIONEER

SANSUI

KENWOOD SHURE

SONY

MARANTZ

KOSS

AND MORE THAN 50 OTHERS BUY THE MODERN WAY BY MAIL - FROM

12 East Delaware Chicago, Illinois 60611 312-664-0020 jection is 60 dB at 50/60 Hz, and the input is protected to 2000 volts dc plus peak on all ranges.

There are four ac voltage ranges that go up to 2, 20, 200, and 1000 volts fullscale. Accuracy on the three low ranges is 0.5%, while on the 1000-volt range, it is 0.75%. Measurements can be made down to 1 mV on the 2-volt range. The input impedance is rated at 1.5 megohms shunted by less than 100 pF. The frequency response is from 40 to 5000 Hz ±0.5 dB. The average-detecting measuring system provides rms readings. Input protection is to 2000 volts peak and dc or 1400 volts rms. The five ac and dc current ranges go to 200 µA, 2 mA, 20 mA, 200 mA, and 2 A fullscale. Measuring accuracy is 0.3% on dc and 1.0% of reading plus three digits on ac. Resolution is rated at 0.1 µA on the 200-µA range. The internal shunt resistance on the respective ranges is 1000, 100, 10, 1, and 0.1 ohms. The voltage drop is 200 mV on the three lower ranges, 250 mV on the 200-mA range, and 1 volt on the 2-A range. The input is protected up to 2000 volts dc and peak.

Resistance measurements can be made with either high or low power. The high-power ranges (to 2 k, 20 k, 200 k, 2 megohms, and 20 megohms full-scale) deliver a 1-volt maximum test potential to the test probes. The low-power ranges (200 ohms, 2 k, 20 k 200 k, and 2 megohms full-scale) deliver a 0.2-volt test potential to the probes. Accuracy is rated at 0.2% ±3 digits on all but the 20megohm range, where it is 0.5% ± 3 digits. Resolution is 0.1 ohm on the 200ohm range. Maximum current through the resistance being measured is 1 mA, 100 μA, 20 μA, 1 μA, and 0.1 μA on the low-power-ohms ranges and 500, 50, 5, and 0.05 µA for the high-power ranges. Input protection is provided to a maximum of 2000 volts dc and peak on all ranges.

The multimeter is made more useful by a permanently connected probe assembly, which consists of a flexible ground lead terminated in an insulated alligator clip and a signal lead terminated in the actual probe tip. Because these test leads are a permanent part of the DMM, they cannot be misplaced.

The special probe tip features two touch switches. The one labelled PUSH ON turns on power to the meter for as long as it is held down and instantly removes the power when released, which saves on battery power. Of course, the main power ON/OFF switch on the instru-

ment's front panel can be used to turn on the power for continuous operation when desired. The second probe switch, labelled ISO DCV+2, provides an extra 15 megohms of isolation for critical circuits where loading presents problems, as in oscillators, very-high-impedance CMOS circuits, and the like. Operating this switch not only adds isolation resistance. It also doubles the measurement capability of the range on which it is used, as mentioned above.

User Comment. For our tests, we installed four C cells in the DMM. Then we used our usual laboratory voltage and current standards and high-tolerance resistors to check out the various functions and ranges. In each case, the instrument performed comfortably within its published specifications.

After completing our standard bench tests, we put the DMM to work under actual in-service conditions for a month, both on a service bench and in a field-service vehicle, taking no particular care to treat it gently. At the end of the test period, we could find not one fault in the instrument's performance or handling, based on combined bench and field experience. In fact, we feel it was among the most convenient multimeters we have ever used for the full range of different test and measuring conditions encountered.

At the end of the in-service test, we again examined the DMM, both physically and electrically. The DMM easily survived the rough environment of a service van. When we performed accuracy tests again, we noted no degradation from the results obtained in the original bench tests.

We like Sencore's new approach to test probes, particularly the switch that allows us to control the power to the instrument right at the probe body. The impedance and range doubling switch is a nice touch that adds practical utility to the instrument. It greatly simplified our measurements under some very trying conditions. The body of the probe itself is triangular in shape, making it comfortable to handle and easier to manipulate under actual measuring conditions than is usually the case.

In sum, the Model DVM37 combines all the utility, accuracy, and human engineering one could expect of a well-designed digital multimeter. Its high-impact case and recessed control knobs are particularly suitable for the rigors of actual servicing conditions.

CIRCLE NO. 105 ON FREE INFORMATION CARO

By Hal Chamberlin

BUS SYSTEMS

ALL HOBBYIST computers have some kind of bus system for tying the various computer elements together. Component computers use a "motherboard" which contains only the bus connected to a number of pc board sockets. Each component of the system such as the CPU board or a memory board plugs into a socket and communicates with the rest of the system over the bus. Even an all-on-one-board system has a bus running around on the board to connect the CPU, memories, and input/output circuits together. For expansion purposes, the on-board bus is usually brought out to the edge of the main board.

Actually a bus sytem by itself is nothing more than a set of parallel wires. These wires can be conveniently broken down into four major groups. The most basic is the power group which supplies operating voltages to the circuits tied to the bus. On some systems this may consist of only two lines—one for +5 volts and the other for ground while others may have three separate power voltages, typically +15, +5, and -15 volts. Some systems may even distribute unregulated power voltages on the bus expecting the individual circuits to regulate the voltages as required. Often several of the bus wires are assigned as grounds in order to reduce the possibility of ground loops.

The next major group is the data lines. These lines carry binary data around to the various sytem components. In most systems, data either flows from a peripheral device or memory into the CPU during a read cycle, or flows from the CPU to a memory or peripheral during a write cycle. One widely used bus system has 8 lines for carrying data from the CPU to other system components and 8 more lines for carrying data into the CPU from other components. Most other systems use a single set of 8 lines for both purposes forming what is called a bidirectional data bus. This is allowable because none of the available microprocessor chips can simultaneously read and write.

Both schemes make use of integrated circuits having Tri-State® (National Semiconductor), sometimes called three-state, outputs which allow the outputs of several IC's on different boards to be tied onto the same bus lines. A three-state output can be in one of three conditions. Two of these are the familiar logic "0" and "1" states. The third is a disabled state in which the IC output essentially disconnects itself from the bus line. If only one of the three-state IC's connected to the bus line is enabled (in the "0" or "1" state) and all of the others are disabled, then the bus line assumes the logic state of the enabled IC output.

Another group is the address lines. Generally only the CPU supplies addresses, so frequently these are simply lines driven by the CPU and received by other system components.

The last major group is the control signals. These differ greatly in number and function among the various bus systems in common use; but in all cases they control the response of various system components. Many of the control signals are called strobes. Their purpose is to delay and qualify the response to an address or data change until the logic levels on the bus are stable. This prevents a response to erroneous address and data patterns caused by one bus line switching slightly faster than the others.

Occasionally the data lines and address lines are multiplexed onto the same physical bus wires. This is particularly advantageous in 16-bit systems since 16 bus lines and associated socket pins can be eliminated. In such a system, control lines indicate when an address or data appears on the bus. Flipflop registers on the various system boards are used to remember the address while data transfer is taking place.

Often a bus system may have special features over and above what is required to read and write memory or I/O devices. One of these is called *direct memory access* or DMA. In a system with DMA capability, the CPU is not the only subsystem capable of generating

addresses and reading or writing memory. DMA I/O devices are also allowed to do these operations. In a system with DMA capability, the address lines must also have three-state capability.

DMA is typically used by video display and floppy disk subsystems. Both of these require data transfer at such a high speed that conventional programcontroled input/output techniques are not usable. In operation, a DMA device will temporarily stop the CPU and gain control of the bus for the duration of the data transfer. During this time, the full speed capability of the bus, which may easily reach 2-million bytes per second, can be utilized. When data transfer is complete, the CPU is allowed to resume normal operation. A couple of particularly sophisticated bus systems do not even stop the CPU during DMA operation. Instead, DMA transfers take place between the "cracks" when the CPU is not using the bus anyway.

The Altair Bus. By far the most popular bus system in use by hobbyists today is the original Altair bus. Although usually called the S-100 bus because of its 100 lines, its popularity approaches standardization. However, the fact re-

NEW CATALOG OF HARD-TO-FIND PRECISION TOOLS

Jensen's new 144-page catalog is jampacked with more than 3000 quality items. Your single source for hard-tofind precision tools used by electronic technicians, scientists, engineers, instrument mechanics, schools, laboratories and government agencies. This popular catalog also contains Jensen's world-famous line of more than 40 tool kits. Plus 10 pages of useful "Tool Tips" to aid in tool selection. Send for your free copy today!

A BUSS & LAUGHLW INDUSTRY

CIRCLE NO. 25 ON FREE INFORMATION CARD

mains that MITS introduced it in early 1975 with its Altair 8800 computer.

Of the 100 lines, only 81 are actually assigned. Six lines are used to distribute +8, +16 and -16 volts, all rectified and filtered but unregulated. Separate datain and data-out groups of 8 lines each constitute the data lines. Another 16 lines form the address bus. There is an unusually large complement of 43 control lines; but they are not necessarily an advantage since they are provided in their raw, undecoded state.

The bus timing and control functions are entirely dependent on the 8080 CPU for which the bus was designed.

However, when newer microprocessors such as the 8085 or the Z80 are interfaced to the S-100 bus, true compatibility with the original bus specification can only be attained by adding circuitry to "fake" the same timing and control sequences as used by the 8080. Actually most peripheral board designs, particularly static memories, can tolerate considerable variation in timing and control details and still operate satisfactorily, However, more complex boards such as floppy disk controllers and graphic display interfaces may depend heavily on standard 8080 control timing. Thus, these more complex boards may not operate correctly with a Z80 CPU board that does a poor job of faking the 8080 control sequences.

Control and timing is not the only source of potential incompatibilities among "standard" S-100 boards. Some manufacturers have assigned their own functions to the 19 unused bus lines. Of course, with only 19 to go around, not everyone has assigned them to the same functions. Nevertheless, the S-100 bus is the closest thing to a standard bus this industry has.

Benton Harbor (Heath) Bus. Another bus structure that has just been introduced with the announcement of the H8 microcomputer is the "Heath" bus. Unlike the S-100 bus, this one was carefully planned with the benefit of 2 years hindsight of the hobby computer market. Major differences are the much smaller number of lines, 50 instead of 100, and more generalized control signal assignments. The smaller number of bus lines and use of less expensive board-bus connectors greatly reduces the cost of a motherboard/bus system over the S-100 equivalent. Generalized control signals make the transition to newer processors more orderly.

Eight lines are used to distribute +18,

POPULAR ELECTRONICS

+8, and -18 volts, all unregulated. Four of these are grounds scattered among the other signals to further reduce noise. Although separate address and data busses are used, the data bus is bidirectional in order to conserve bus lines. The control signals are already decoded on the bus into the basic 4 operations; memory read, memory write, I/O read, and I/O write.

KIM-1 Bus. Probably the most popular "one board" microcomputer is the KIM-1. Although it has most of the subsystems needed for a complete system already on-board, it also has a 44-pin edge connector which brings the CPU bus out for expansion. While the busses described earlier were all TTL busses... capable of driving dozens of subsystems boards simultaneously, the KIM-1 bus is a "MOS" bus having limited drive capability. Using the signals raw, a maximum of four expansion boards can be driven and then only if they use "L" or "LS" TTL to connect to the bus. For greater expansion capability, a "bus expansion motherboard" can be used. This contains the typical parallel lines and board connectors as well as TTL buffers to drive a large number of

boards. One of these in effect converts the KIM-1 bus to an S-100 bus and allows all of the less sophisticated S-100 boards to be used with a KIM-1 system.

General Purpose Interface Bus (GPIB). All of the bus systems discussed so far have been processor busses. That is, they connect both memory and I/O boards to the CPU. Although they are very fast and relatively simple to interface to, operational speed restricts the overall length to two feet or less. Running the parallel lines over a longer distance than this produces intolerable noise and crosstalk as well as a general slowdown of all signals. What this means is that all interface boards must plug directly into the bus in the computer cabinet. Since input/output is usually done much more slowly than memory access, it would be nice to have a parallel I/O bus that can be run through a cable to a variety of peripheral devices.

One bus designed for just this purpose is the General Purpose Interface Bus (GPIB), developed by Hewlett-Packard and adopted as a standard by the IEEE. The bus consists of 16 lines, 8 of which are bidirectional data/

address lines and 8 of which are control lines. Although slower than the typical processor bus, it is much faster than a serial interface and uses full "handshake" control signal exchange to prevent data loss in the event a peripheral device is unable to receive data. Data transfers over the bus are in the form of 8-bit bytes and the control signals insure that devices on the bus are ready to receive or send data. Maximum bus length is about 16 feet, long enough to interconnect a table full of microcomputer peripherals. A maximum of 14 different devices can be addressed.

The significance of the GPIB is that the recently announced PET computer from Commodore has a GPIB connector on the back. Their plans call for interfacing add-on peripherals through this connector rather than adding boards inside the computer itself. Because of the large market expected for the PET computer and the fact that it is a formal industry standard not dominated by a single manufacturer, it is likely that the GPIB will soon become the preferred standard method of interfacing peripheral devices to a microcomputer. The familiar motherboard bus may disappear as 16k and 64k RAM chips make their appearance.◊

By Gary Garcia, KQI4178

AUTOMATIC TRANSMITTER IDENTIFICATION

ANDATORY USE of automatic transmitter identification systems (ATIS) was proposed (Docket 20351) in early 1975 as a means of alleviating the perplexing station identification problem and augmenting the enforcement efforts of the FCC. Two years later, in Docket 21137, the FCC again tendered the use of ATIS, this time for possible use on a voluntary basis. Here are some of the features of ATIS and its possible impact on the Citizens Band Radio Service.

Benefits. There are many benefits to be gained by CB'ers through the use of ATIS. Extensive application of ATIS will:

- Promote rules compliance, making for more reliable communications.
- Ease compliance with station identification requirements.
- Aid recovery of stolen transceivers.
- · Simplify licensing procedures.
- · Reduce necessary air time.

MICROPHONE

In addition, as pointed out by Stuart Lipofl of Arthur D. Little, Inc., ATIS and selective calling systems can easily be integrated. On our crowded channels, the functions provided by such an integrated system will certainly be a valuable communications aid to CB'ers.

Methodology. The purpose of an automatic transmitter identification system is easily accomplished. A basic system is shown in Fig. 1. The identifying information is stored in ROM, and the transmission of this identifier is regulated by timer circuitry. The output of the memory is converted from parallel to serial form before being fed into an audio-frequency tone generator. Finally, the audio-frequency tones are input to the audio-frequency amplifier of the transceiver.

Note that ATIS functions between the microphone and the transceiver's audio-frequency amplifier. This facilitates the addition of ATIS to equipment currently in use. An ATIS module could easily be inserted between the microphone and the microphone jack of a transceiver. In fact, if the use of ATIS were approved by the FCC, we could

soon see commercial ATIS modules offered by those companies presently manufacturing automatic identification systems for the General Mobile Radio Service and amateur radio repeaters.

Your Electronic Fingerprint. The FCC has thus far proposed two methods of encoding the information used as identifier. Originally it was suggested that the identifier be transmitted in ASCII format by audio frequency-shift keying (AFSK) at a 100-baud rate. Using this method the identifier would be heard as a one-second burst. The audio-frequency tone used should not be over 4 kHz so as not to exceed FCC bandwidth limitations. In the first ATIS proposal, AFSK between two tones of 1115 and 1285 Hz is recommended.

Most recently, use of Morse Code transmitted at a rate of 25 words per minute has been suggested. On-off keying of a 750-Hz tone would be used here. The time required to transmit the identifier in this format is about five seconds. Currently, the EIA is working to standardize the format of signalling used in selective calling systems. It would be advantageous to use the same format for ATIS to allow integration of the two.

Whatever form of signalling and encoding is ultimately chosen, it probably will not be easily deciphered by the average CB'er. This will necessitate verbal transmission of callsigns in situations where the communicators require this information, such as when reporting an emergency on channel 9.

Another decision which must be made is what information to use as the identifier. If programming of the ATIS memory is to be done by manufacturers of CB transceivers and ATIS modules, it would be expedient to use, say, the serial number of the transceiver or module as the identifier. Programming of the licensee's callsign in the field, as was originally suggested by the FCC, would then be circumvented. However, if the transceiver's or module's serial number, or any other number other than the licensee's callsign, were used as an identifier, then the problem of station identification by use of the FCC-assigned callsigns remains unresolved. It is possible that the FCC would alter the regulations to allow identification by the number programmed into ATIS. Transmissions made using a transceiver equipped with ATIS, no matter what information is used as identifier, would all carry a unique "brand" which could be correlated with manufacturers' records to pro-

Fig. 1. Block diagram of a basic indentification system.

duce positive identification of the source of the transmissions.

Implementation. If ATIS were universally implemented on a mandatory basis, it would be necessary to retrofit the approximately 25-million CB transceivers now in use as well as all units "on the shelf." This is a seemingly impossible task. Certainly, if mandatory retrofitting of CB equipment with ATIS became law, it would just be another unenforceable regulation.

Voluntary implementation of ATIS is another possibility, as indicated in the

STATEMENT OF OWNERSHIP, MANAGE-MENT AND CIRCULATION (Required by 39 U.S.C. 3685). 1. Title of Publication: Popular Electronics. A. Publication No. 438240 2. Date of filing: October 1, 1977. 3. Frequency of issue: Monthly. A. No. of issues published annually: 12. B. Annual subscription price: \$12.00. 4. Location of known office of publication: One Park Avenue, New York, New York 10016. 5. Location of the Headquarters or General Business Offices of the publishers: One Park Avenue, New York, New York 10016. 6. Names and complete addresses of publisher, edi-6. Names and complete addresses of publisher, edi-tor, and managing editor: Publisher, Joseph E. Mes-ics, One Park Avenue, New York, New York 10016; Editor, Arthur P. Salsberg, One Park Avenue, New York, New York 10016; Managing Editor, John R. Riggs, One Park Avenue, New York, New York 10016, 7. Owner: Ziff-Davis Publishing Company, One Park Avenue, New York, New York 10016; Ziff Carnatics One Dark Avenue, New York New York New Corporation, One Park Avenue, New York, New York, 10016. 8. Known bondholders, mortgagees. and other security holders owning or holding I percent or more of total amount of bonds, mortgages or other securities: None.

10		Average no. copies each issue	Actual no. copies of single issue	
Extent and nature of circulation		during preceding 12 months	published nearest to filing date	
A.	Total No. Copies Printed (Net Press Run)	480, 817	490,875	
В.	Paid Circulation 1. Sales through Dealers and Carriers, Street Vendors and Counter Sales 2. Mail Subscriptions	82,467 322,809	86,000 323,235	
C.	Total Paid Circulation (Sum of 10B1 and 10B2)	405,276	409,235	
D.	Free Distribution by Mail, Carrier or Other Means Samples, Com- plimentary, and Other Free Copies	8,451	7,863	
Ē.	Total Distribution (Sum of C and D)	413,727	417,098	
F.	Copies not distributed 1. Office Use, Left Over, Unaccounted, Spoiled After Printing	2,135	1,577	
	2. Returns from News Agents	64,955	72,200	
G.	Total (Sum of E, F1 and 2—should equal net press run shown in A)	480,817	490,875	

11. I certify that the statements made by me above are correct and complete.
WILLIAM L. PHILLIPS, Assistant Treasurer

12. For Completion by Publishers Mailing at the Regular Rates: (Section 132.121, Postal Service Manual)

39 U. S. C. 3626 provides in pertinent part: "No person who would have been entitled to mail matter under former section 4359 of this title shall mail such matter at the rates provided under this subsection unless he files annually with the Postal Service a written request for permission to mail matter at such rates."

In accordance with the provisions of this statute, I hereby request permission to mail the publica-tion named in item 1 at the phased postage rates presently authorized by 39 U. S. C. 3626. WILLIAM L. PHILLIPS, Assistant Treasurer

FCC's most recent proposal. Though this would make concurrence with station identification requirements easier for those who are willing to apply ATIS. we can hardly expect CB's bad guys (those who use excessive r-f power, work DX, broadcast obscenities, etc.) to subscribe to ATIS.

If ATIS is eventually implemented by the FCC it will probably be on a voluntary basis for equipment now in use. It is possible, of course, that manufacturers of CB transceivers will be compelled to incorporate ATIS into their products in the future. But it's doubtful that this will occur on the present band. Certainly, if a new personal use radio service on a band other than 11 meters were opened to the public, ATIS will play an important part in helping the FCC police the band effectively. But initiating such a system would have to be mandatory at the onset, lest a situation similar to the present one develops. Besides, a new band is not in the cards in the near future.

For the present, it seems that the FCC will have to continue to rely on conventional, catch-as-catch-can enforcement techniques, as well as on self-policing among CB'ers.

Bearcat Ell Scanner

The Bearcat 210 super synthesized receiver scans and searches over 16,000 different frequencies without expensive crystals. The Bearcat 210 covers 32-50, 146-174 & 416-512 Mhz., and has AC/DC operation. Save over \$60.00 now by ordering on our 24 hour toll-free credit card order line 800-521-4414. In Michigan and outside the U.S. call 313-994-4441. Add \$5.00 for shipping in the U.S. or \$9.00 for air UPS to the west coast. Charge cards or money orders only. Foreign orders invited.

COMMUNICATIONS ELECTRONICS P.O. BOX 1002 DEPT. PE1 ANN ARBOR, MICHIGAN 48106

CIRCLE NO. 7 ON FREE INFORMATION CARD

"My father built this Schober Organ for me

You'd be proud to buy her an organ this good...but how would you feel if you'd also built it? It's a special kind of satisfaction. The gift of a lifetime of magnificent music, crafted with your own hands!

And you can do it! You need no prior electronic or mechanical abilities. Just the capacity to follow instructions. Every step is clearly detailed, every component is supplied. You'll find the assembly process as enjoyable as the music which follows!

And what music! For this is a truly fine instrument you will build. Far superior to most

"ready-made" organs...easily comparable to others at twice the price. Kit costs range from \$650 to \$2850 for all basic components, and you can purchase it in sections to spread costs out...or have two-year time payments.

When you've completed the basic organ, Schober offers a full complement of accessories...plus complete organ playing courses! People have been building Schober Electronic Organs for their daughters, sons, wives, husbands...for themselves...for 20 years now. Join the thousands of delighted Schober people.

You can have all the details, without cost or obligation. Just send the coupon for the fascinating Schober color catalog (or enclose \$1 for a record that lets you hear as well as see the quality of Schober). Why not clip it right now, before you forget?

The Schober Organ Corp., Dept. PE-75 43 West 61st Street, New York, N.Y. 10023

- ☐ Please send me Schober Organ Catalog.
- Enclosed please find \$1.00 for 12-inch L.P. record of Schober Organ music.

NAME

ADDRESS

STATE ZIP

SHOP YOUR NEARBY RADIO SHACK FOR QUALITY PARTS AT LOW PRICES!

Top quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well known American manufacturers, and all have to pass

manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Count on Radio Shack for the finest quality electronic parts.

TTL Digital ICs

First Quality

Made by National Semiconductor and Motorola

Туре	Cal. No.	ONLY
7400	276-1801	350
7402	276-1811	39c
7404	276-1802	350
7406	276-1821	494
7410	276-1807	39c
7413	276-1815	79e
7420	276-1809	39c
7427	276-1823	490
7432	276-1824	490
7441	276-1804	990
7447	276-1805	99¢
7448	276-1816	994
7451	276-1825	390
7473	276-1803	490
7474	276-1818	494
7475	276-1806	79¢
7476	276-1813	59¢
7465	276-1926	1.19
7486	276-1827	490
7490	276-1808	79¢
7492	276-1819	690
74123	276-1817	990
74145	276-1828	1.19
74150	276-1629	1.39
74154	276-1834	1.29
74192	276-1831	1.19
74193	276-1820	1.19
74194	276-1832	1.19
74196	276-1833	1.29

CMOS ICs

100% guaranteed electronically and mechanically

Type	Cat. No.	ONLY
74C00	276-2301	49¢
74C02	275-2302	499
74C04	276-2303	49¢
74C08	276-2305	49¢
74074	276-2310	890
74C76	276-2312	89¢
74C90	276-2315	1.49
74C192	276-2321	1.69
74C193	276-2322	1.69
4001	276-2401	490
4011	276-2411	490
4013	276-2413	890
4017	276-2417	1.49
4020	276-2420	1.49
4027	276-2427	899
4049	276-2449	690
4050	276-2450	690
4511	276-2447	1.69
4518	276-2490	1.49

Linear ICs

By National Semiconductor and Motorola — first quality

Туре	Cat. No.	ONLY
301CN	276-017	49¢
324N	276-1711	1.49
339N	276-1712	1.49
386CN	276-1731	99¢
555CN	276-1723	794
556CN	276-1728	1,39
566CN	276-1724	1.69
567CN	276-1721	1.99
723CN	276-1740	694
741CN	276-007	494
741H	276-010	490
3900N	276-1713	990
3909N	276-1705	99¢
3911N	276-1706	1.99
4558CN	276-038	79¢
75491	276-1701	99¢
75492	276-1702	990
7805	276-1770	1.29
7812	276-1771	1.29
7815	276-1772	1.29

Resistor and Capacitor Packs

Resistor and capacitor kits in handy plastic storage boxes you
can use over and over again. Stock up!
½ Watt. 10% Tolerance Resistors. 271-601 Pkg. of 350/8-95 ¼ Watt. 5% Tolerance Resistors. 271-602 Pkg. of 350/8-95 50WVDC Caramic Disc Capacitors. 272-601 Pkg. of 175/9-95 35WVDC Hadial Lead Capacitors. 272-602 Pkg. of 35/9-95 35WVDC Atlal Lead Capacitors. 272-603 Pkg. of 36/9-95

Tantalum Capacitors

Maximum capacity in smallest size. Low ESR, highly stable electrical characteristics and low leakage. Radial leads.

272-1401	0.1	39¢			
		359	272-1407	2.2	45¢
272-1402	0.22	39¢	272-1408	3.3	45¢
272-1403	0.33	39¢	272-1409	4.7	49¢
272-1404	0.47	39¢	272-1410	6.8	490
272-1405	0.58	39¢	272-1411	10.0	49¢
272-1406	1.0	39¢	******	218	

Nos. 1401-1408, 35WVDC; 1409-1411, 15WVDC,

1 10

PC Board Accessories

8-piece photographic PC board processing kit -	
easiest way to produce perfect printed circuit project	5.
276-1560	12.95
Etch-Resist Marking Pen. 276-1530	1.19
Etchant Solution, 276-1535	1.89
PC Board Assortment. 276-1573	. 1.98

Build an LED Digital Clock

12-HR LED Clock Module. Just add a transformer and switches for a
complete clock with 0.5" LED display: 277-1001
Transformer for above. 120VAC 60 Hz. 273-1520
SPST Miniature Pushbutton Switch. 275-1547
Display Case. 113/16x37/6x47/16". 270-285

LED Digital Displays

IC Accessories

3115	Size	Drive	Cal. No.	ONLY	Digits	Size	Drive	Cat. No.	ONLY
1	0.6*	Anad.	276-056	2.99	(6) 1	0.31	Anod	276-1210	4/6.99
1	0.6	Cam.	276-066	2.99	(9) 1	0.3	Cath.	276-1211	4/6.99
1	0.3	Arrod	278-053	1.99	@1.4	0.5	Annd	276-1201	6,95
1	0.3	Cath	276-062	1.99	E 4	0.5	Cath.	276-1202	6.95

Power Supply Parts

50V 3-		ower Recti	lier. 300-A		1,00
276-11		2000 11000			kg. 2/69¢
		Electro	lytic Capa	citors	
3300 A	F at 35	V. 272-102	1	1-1117	2.99
		V. 272-102		executive entre executive	3.49
Henry.	Duty 1	ransforme	rs. All for 1	20VAC. 60 Hz.	
Cal	No.	Volts	Current	Size	Each
696	cin	25 5 24		010 010 00	1.00

Cal No.	Volts	Current	Size	Each
273-1512	25.2 CT	24	214x214x2	4.99
273-1513	12	5A	4x2x21/1	8.95
273-1514	18 GT	4A	4x2x2\/5	8.95

Computer Chips

The CPU and Memory IC's you need for building your own personal computer.

2102 Static RAM, 1024-word by one bit read/write memory. Under 600 nS access time. 2.49 Ea. or 6/14,95

Silicon Solar Cells

roduce Pow	er from Light!	
2cmx4cm. 0.5	V at 100mA. 276-120	2.99
2cmx2cm. 0.5	v at 60mA. 276-128	1.99

Clock Chips

50252. 12-hour clock, 24-hour alarm chip. With full specifications. 276-1751 6.99 7001. 12-hour calendar alarm clock IC. With all data. 276-1756 10.95

WHY WAIT FOR MAIL ORDER DELIVERY? IN STOCK NOW AT OUR STORE NEAR YOU!

Prices may vary at individual stores and dealers

A TANDY COMPANY • FORT WORTH, TEXAS 76102 OVER 6000 LOCATIONS IN NINE COUNTRIES

DIGI-KEY CORPORATION

Quality Electronic Components

TOLL

MINNESOTA RESIDENTS

218-681-6674

ACITORS . DIODES . I.C. SOCKETS & PINS . SWITCHES BREADBOADING & TESTING DEVICES . DRAFTING SUPPLIES I.C.'S . RESISTORS . TRANSISTORS . CAPACITORS OPTOELECTRONICS . BREAD BO CLOCK MODULES DATA BOOKS . HEAT SINKS . WIRE . TOOLS ... AND MORE ... WRITE FOR FREE CATALOG

INTEGRATED CIRCUITS

74108	3 114		ED CIK	COLIS
7460 21 74LS54 28 4000 22 NASSH 72 A740 20 74LS54 28 4001 22 NASSH 72 A747 23 74LS54 28 4001 22 NASSH 72 A747 23 74LS54 28 4001 22 NASSH 72 NASSH 74 A747 23 74LS74 28 A745 28	7400 71 7407 7407 7407 7407 7407 7407 74	74199 1.49 74221 8.6 74221 8.7 74221 8.7 74231 8.7 74361 6.7 74362 6.7 74362 7.7 74363 7.7 74362 7.7 74363	2445266 39 2445279 62 2445279 245279 245279 62 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 130 2445278 245278 250 2445278 250 2445278 250 2445278 250 2445278 250 2445278 250 2445278 250 2445278 250 245288 250 24	M301AN
	7440 21 7442 53 7445 70 7447 1744 770 7447 7744 770 7447 7744 770 7457 1744 770 7457 1744 770 7457 1745 1746 7477 30 7	741533 23 24 24 24 24 24 24 24 24 24 24 24 24 24	25454 51 75492 1.04 75493 1.07 75493 1.07 75493 1.07 75493 1.07 75493 1.07 75493 1.07 4001 2.23 4007 2.23 4007 1.23 4007 1.23 4008 1.23 4001 2.23 4001 2.23 4001 2.23 4001 1.23 4001 1.23	LM359N 72 LM359N 72 LM350N 64 LM1800N 94 LM1800N 170 LM1812N 4.80 LM1830N 1.30 LM1839N 2.00 LM2111N 1.25 LM2907N 1.50 LM2917N 1.50 LM3989H 1.30

7.415574 7.415578 7.41578 7.415578 7.41 4000 CMOS
4000 C 75 50 76 1.20

MISC IC MM5314N 375 I.C. SOCKETS

1 40/10 1 90/10 2 10/10 2 75/10 2 75/10 3 80/10 4 25/10 6 00/10 2 85/10 2 85/10 5 76/10 6 800/10 9 10/10 14.50/C 17.00/C 18.75/C 24.50/C 25.25/C 32.25/C 32.25/ 64/10 66/10 68/10 70/10 82/10 90/10 99/10 40/10 5.50 5.60 5.80 5.95 7.05 7.75 Digi-Key

MOLEX I.C. SOCKET PINS 275,00/50M 38.20/5M

LIDE SWITCHES 15 1 25/10 10 90/C 19 1 70/10 13 00/C 23 2 00/10 19:00/C TRANDED HOOK UP WIR PD ga PVC 2 50/100 10/00/500 P2 ga PVC 2 80/100 11/25/500 P4 ga PVC 2 10/100 8:50/500

8080A CHIP SET

ONE EACH 8080A, 8212, 8224 and 8228 PLUS

SIXTEEN 2102-1's - ALL FOR

\$49.95

MICROPROCESSORS

Part Values Vat

	Best Values Yell	
B080A	8-BIT CPU. 2 USEC CYCLE	312.95
8212	R-BIT I/O PORT	5 3 9
8216	BI-DIRECTIONAL BUS DRIVER	5 4.75
8224	CLOCK GENERATOR.	1 3 9
6228	SYSTEM CONTROLLER	5 6 95
8251	COMMUNICATIONS INTERFACE	\$17.95
B255	PERIPHERAL INTERFACE	\$11.95
17024	2K (PROM (256x8)	\$ 6 9
2708	BK FPROM (1Kx8)	529.50
2107.1	IK RAM 500 NS	\$ 1.79
5C/MP	5 VOLT SC/MP CPU	\$ 9.05
2655	MICROPROCESSOR 1,25 MH-2 CLOCK 40 DIL	574 05
	WIRE WRAPPING WIRE IN BULD	i.

100' \$2.00 500' \$8 50 1000 \$15.00

5% CARBON FILM RESISTORS

WA WATT SIZE 5 mairates 5' en. 10 pes enter 1.74 1000 per/yeller 1.2" pe

PLESSEY SAMPLER AN ASSORTMENT OF METALIZED POLYESTER CAPACITORS 576.00 300 CAPS IN VALUES

MINIBOX METALIZED POLYESTER CAPACITORS

13 15 1 25/10 10.00/0 17 15 1 25/10 10.00/0 18 15 1 25/10 10.00/0 17 1 35/10 10.00/0
2 23 1.85/10 15:00/0 3 30 2.50/10 20.00/0 7 34 3.00/10 24.00/0

P-0	CARGES INC.	PROPERTY.	WHA
VALUE	RADIAL LEA	05	AXIAL LIADS
47/50V	08 65/10 5	41/C 11	90/10 7.65/0
1/5DV	.08 .65/10 5	41/C 11	90/10 7.65/C
2.2/50V	.08 65/10 5	41/C 12	90/10 7.82/C
3.3/SOV	CB 65/10 5		00/10 8.31/0
6.7/35V	08 65/10 5		95/10 7 91/C
4.7/50V	08 68/10 5		1.00/16 9 31/C
10/16V		41/C 11	90/10 7 65/C
10/25V	.08 .65/10 5	66/C 12	1.00/10 8.31/C
10/35V			10/10 8.94 C
10/50V		58/C 14	1 15/10 7.56/C
22/16V	OR 67/10 5	66/C 12	1.00/10 8.31/0
22/25V	09 70/10 6		05/10 8.74/C
22/35V			19/10 9 98/0
22/50V	.12 1.00/10 8	48/C 17	32/10 11 22/C
33/16V	.09 .75/10 5		00/19 8.48/C
33/25V			1.15/10 9.56/C
33/35V	13 1.03/10 9		34/10 11.23/0
D. D. (Call)			100000000000000000000000000000000000000

33/50V 47/16V 47/16V 47/25V 47/35V 47/35V 100/16V 100/16V 100/35V 100/50V 220/16V 220/16V 220/35V 220/ 103/10 115/10 120/18 15/10 17/10 17/10 13/10 1.55/10 1.55/10 1.55/10 1.55/10 1.55/10 2.35/10 2.25/10 3.23/10 1.46/10 2.45/10 2

B\$125 of 1 perhaps to 19 comment 15, and on 12 57 11 14 12 or recognition of 1 perhaps on 17 stations 55, and on 11 15 a 10 24 pr. or one 970 15 WATT SESSION ASSORTMENTS M5150 59.90

Œ) Bishop Graphics 574

TANNA 12.50

CLOCK MODULES

- 1	
MA1010C SET Module w/framsformat & Switches	\$16.45
MATOTOC 45 ATD 24 How Class Middle	113.00
MA1010A SET Manua wifreminimas & Switches	16.45
MATOTOA BY 150 12 HOUR AMPIN Chie Moscola	\$13.00
MA1003 17 Vale Co-Clock with Switches	124.95
MA1001C SET Micke William & Switches	13.95
MA1002C 5" LED 74 Hour Elect Medical	
	110.50
MA1002A SET Module with Transformer & Switches	113.95
MATOOZA 5 160 12 Hour AMPM Chrk Michile	110.50
tellified for self-ing the finte.	

0,00-\$ 24.99 NFT 25.00-\$ 99.99 . Less 10% 100.00-\$499.99 . Less 15%

Less 25

DOUBLE DIGIT DISCOUNTS SAVE YOU EVEN MORE! VOLUME DISCOUNT &

	MANOE HOLING
0.00-\$ 4.99 Add \$2.00 5.00-\$24.99 Add \$0.75 5.00-\$99.99 Add \$0.50 50.00-\$99.99 Add \$0.50 50.00-\$99.99 No Cherge	All tems except those with calculus unabers enfine with the visit MD rail be combined for discount. First—ratio oil discountable items and apply the valume discount. Then add to first when the first the handling change. This is yet to cast. We pay all shipping and assurant to addresses in the U.S.A. and Countain

Orders Accepted by Phone MasterCharge & Bank-Americand & COD P.O. Box 677, Thiof River Falls, Minn. 56701

Quality P.D. Box 677 Thief River Falls, MN 56701 (218) 681-6674 MJ5955 99 92010 85.00/C 800. Thief River Falls, MN 56701 (218) 681-6674

DATA BOOKS LED DIGITS AND LAMPS \$4 00 \$3 00 \$3 00 \$3 00 \$4 00 \$4 00 \$4 00 \$4 00 \$4 00 \$4 00 \$5 00 Der CC.
Der CA.
Der CA. 375 Single 5 Single 5 Single 8 Single 8 Single 3 Duni 0 3 Duni 0 5 Dusi 0 7 Duni 0 7 Duni 0 1 De 6ed 1 SEMI 00/100 L. Leng CARBON FILM RESISTORS 90318 MICROPROCESSOR BOOKS

(NON (DISCOUNTABLE)

AN INTRODUCTION TO MICROCOMPUTERS VOL 18
8ASIC CONCEPTS 9008-ND \$ 7.50
MINITRODUCTION TO MICROCOMPUTERS, VOL 11
SOME REAL PRODUCTS 90018-ND \$ 15.500
8809 PROGRAMMING FOR LOGIC DESIGN 90028-ND \$ 7.50
8809 PROGRAMMING FOR LOGIC DESIGN 90038-ND \$ 7.50

	JAMS SOOKS						
	(NOM-DISCOUNTABLE)	Т					
	CMOS COOKBOOK	21	39#	-NO	5	Ų,	45
	THE BIG CMOS WALLCHART	21	399	-ND	S	2.1	80
	FET CIRCUITS	71	439	-ND	5	4	70
	IC TIMER COOKBOOK	21	416	-ND	š	Q.	17
	PRINCIPLES & APPLIC OF INVERT & CONV.	21	454	-ND	\$	7.	55
١	ABC S OF CAPACITORS (2ND EDIT.)	20	849	-ND	\$	4	04
۱	ABC'S OF INTEGRATED CIRCUITS	20	873	-ND	•	3	33
	ABC'S OF RESISTANCE & RESISTORS	21	126	-ND	š	3	75
	ABC'S OF VOLTAGE-DEPENDENT RESISTORS	20	771	-ND	ŝ	3.1	o a
	ACTIVE-FILTER COOKSOOK	21	168	-ND	\$	14	70
	COLLECTED BASIC CIRCUITS	20	784	-ND	5	3.	23
	HOW TO DESIGN & USE MULTIVIERATORS	21	043	-NO	\$	3.	75
	HOW TO USE IC LOGIC ELEMENTS	21	081	NO	5	4.	70
	IC OP-AMP COOKBOOK	20	940	-NO	5	12 :	OF
	LED CIRCUITS AND PROJECTS	21	006	NO.	5	4.3	99
	MOS DIGITAL IC'S. PRACTICAL SOLID-STATE CIRCLET DESIGN	21	299	.ND	3	4.	in.
	PRACTICAL SOLID-STATE CIRCLET DESIGN	21	DIE	-NO	Š	6	18
	REGULATED POWER SUPPLIES	21	332	-ND	1	4	7Ö
	REGULATED POWER SUPPLIES	20	844	-ND	ŝ	5.3	23
	RTL COOKEDOX	70	715	NIS	3	5.	46
	TRANSISTOR SPECIFICATIONS MAN. (8TH ED.)	21	335	-NO	\$	6.	60
	TRANSISTOR SUBSITUTION HOBY (16TH ED.)	21	333	-ND	5	4.	70
	ABC'S OF FET'S	20	789	-ND	\$	2.1	80
	ABC'S OF FET'S ABC'S OF TRANSISTORS (3RD EO.)	21	145	-ND	3	4.1	ĎÂ.
	ABC'S OF ZENER DIODES	21	045	-HD	5	3	
	FET PRINCIPLES, EXPER., & PROJECTS (2ND)	21	167	-ND	\$	8.0	08
	LINEAR IC PRINC., EXPER., & PROJECTS	21	019	-HD	5	8.3	50
	MICROMINIATURE ELECTRONICS	20	582	-ND	5	3.4	46
	SEMICONDUCTOR REPLACEMENT GUIDE	21	092	ND	5	3.	75
	TRANSISTOR FUNDAMENTALS — A CAREFULI	YF	LAP	INED	1	-	6
	PROGRAMMED COURSE IN SEMICONDUCTO	OR '	THE	YAE			
	AND CIRCUITRY	-					

CUITRY:
BASIC SEMICOND. & CIRC. PRINC
BASIC TRANSISTOR CIRCUITS
-ELECTRONIC EQUIP. CIRCUITS
-DIGITAL & SPECIAL CIRCUITS C. 20641-MD 20643-MD 20643-MD 20644-MD 20645-MD 20645-MD 21225-MD 21227-MD 21227-MD 21049-MD 21035-MD 21035-MD 21035-MD 21035-MD 21035-MD 211313-MD VOL. 3.—ELECTRONIC GUIDE CIRCUITS 706-3.—N 2 4 99 VOL. 4.—DIGITAL & SPECIAL CIRCUITS 706-3.—N 2 4 99 VOL. 4.—DIGITAL & SPECIAL CIRCUITS 706-3.—N 2 4 99 VOL. 4.—DIGITAL & SPECIAL CIRCUITS 706-3.—N 2 4 99 VOL. 4.—DIGITAL & SPECIAL CIRCUITS 706-3.—N 3 4 99 VOL. 4.—DIGITAL & SPECIAL CIRCUITS 706-3.—N 5 6 1.7 TRANSISTOR TOTAL THE SUBSTITUTION HORK (1914 EDIT) 706-4.—N 5 6 1.7 SPECIAL TWIN-PAK TUBE SUB. PACKAGE 71273-N 5 2.16 SPECIAL TWIN-PAK TUBE SUB. PACKAGE 71273-N 5 2.60 SOLID-STATE GOMPON SYSTEMS 71009-N D 5 7.0 SPECIAL TOTAL TOT

11,00/E 6 1/4 SCREW 6 1/2 SCREW 0 1/4 SCREW 0 1/4 SCREW 2 1/4 SCREW 2 1/2 SCREW 2 1/2 SCREW 2 5/8 SCREW 6 MEX NUT 2 NEX NUT 2 LOCKWASHER 6 LOCKWASHER 8 LOCKWASHER 8 LOCKWASHER 8 LOCKWASHER 12V 13V 14V 15V 16V 17V 18V 22V 25V 25V 28V 33V 3.3V 3.6V 4.7V 5.1V 5.6V 6.0V 6.8V 7.5V 8.7V 9.1V 1 M5228B 1 M5229B 1 M5230B 1 M5231B 1 M5232B 1 M5233B 1 M5236B 1 M5237B 1 M5237B 1 M5238B 4 M5239B 6-32 8-32 NO HO HO HO

EDEE CATALOG

11922918 119	IMPERIO OF	100	EE CA	IMLUG
	SILICON TI	RANSIST	ORS	
JAPS918	16	1.55/10	13 60/C	130.00/M
MP5930	10 11 11 10	1,55/10	13.60/C	130.00/M
MPS2222A	. 11 16	1 55/10	13.60/C	130.00/M
MP52369A		1.55/10	13.60/C	130.00/M
MPS2907 A	16	1.35/10	13.60/C	130.00/M
MPS3393	16	1.55/10	13.60/€	130.00/M
MPS3393		1.55/10	13.60/C	130.00/M
MPS3394	144145 116	1.55/10	13.60/C	130.00/M
MP\$3395	111111111111111111111111111111111111111	1-55/10	13.60/C	130.00/M 130.00/M
MP\$3563	10	1,55/10	13.60/C	130,00/M
	###### .16	1.55/10	13.60/0	130.00 M
MP53640	1.1.1.1.16	1 55/10	13.60/C	130.00/M
MPS3641	- 111111118	1.55/10	13.60/C	130.00/M
MPS3643	# = # T T T = -10	1.55/10	13.60/C	130.00/M
2N3904	14	1.55/10	13.60/C	130.00/M
2H2D0A	16	1 55 10	13.60/C	130.00/M
284124	16	1 55/10 1 55/10 1 55/10	13.60/C	130.00/M
284126	16	1.55/10	13.60 C	130.00/M
2N4401	16	1.55/10	13.60/C	130.00/M
2N4403	16	1.55/10	13.60/C	130.00/M
2N4410	16	1:55/10	13.60/C	130.00/M
2N5087	16	1.55/10	13.60/C	130.00/M
2N5089	16	1.55/10	13.60/C	130.00/M
2N5210		1.55/10	13.60/C	130,00/M
2N3055		9.20/10	85.00/C	600.00/M
MPF102		3.35/10	30.60/C	300.00/M
2N5457	1444B	4.50/10	41,00 C	400,00/M
MPSA13	28	2.60/10	24 00/C	230.00/M
MJ2955	711-11-199	9,20/10	85 00/C	800.00/M

PORTABLE 15 MHz OSCILLOSCOPE

The MS-15 miniscope is only 2.7" x 6.4" x 7.5", and weighs only 3 lbs. Vertical bandwidth is 15 MHz. The graticuled rectangular viewing area is four divisions high by five divisions wide. Division specing is 0.25 inches. Internal and external triggering, automatic and line synchronization modes, and a horizontal input are provided. There are 12 vertical gain settings from 0.01 V to 50 V per division, and twenty one time base settings from 0.1 μ s to 0.5 μ s per division. An optional 10 to 1 probe and a carrying case are also available. Power is provided by batteries or the 115 V, 60 Hz line.

MS-15 MINISCOPE \$289.00 **CARRYING CASE** 30.00 41-141 10 TO 1 PROBE 24.50

71 171	10 TO TITHOBE	24.50
EXAR -	INTEGRATED CIRCUIT	S
COMMUNIC	ATION CIRCUITS	
	Four-Quadrant Operational	
X11 220001	Multiplier	\$5.20
PHASE-LOC	KED LOOPS	45.20
XR-210	FSK Modulator/Demodulator	\$5,20
XR-215	General Purpose Phase-Locked	40.20
	Loop	\$6.56
XR-2211CP	FSK Demodulator/Tone Decoder	\$6.88
FUNCTION	GENERATORS	
XR-205	Waveform Generator	\$8.40
XR-2206CP	Monolithic Function Generator	\$5.12
XR-2207CP	Current-Controlled Oscillator	\$3.84
TONE DECC	DERS	
XR-567CP	Tone Decoder	\$1.68
XR-2567CP	Dual Tone Decoder	\$5.18
	REGULATORS	
XR-1468CN	Dual ±15 Volt Tracking	
	Regulator	\$3.84
XR-4194CN	Adjustable Dual Tracking	
	Voltage Regulator	\$4.56
XR-4195CP	Dual ±15V Tracking Voltage	
	Regulator	\$3.38
	IAL AMPLIFIERS	
XR-3403CP	Quad Operational Amplifier	\$3.33
XR-4202P	Programmable Quad Operational	
	Amplifier	\$3.60
XR-4212 CP		\$2.05
XR-4558CP	Dual Operational Amplifier	\$0.86
XR-4739CP	Dual Low-Noise Operational	
	Amplifier	\$1.15
TIMING CIR		
XR-320P	Timing Circuit	\$1.52
XR-555CP	Timing Circuit	\$1.07
XR-556CP	Dual 555 Timing Circuit	\$1.82
XR-2240CP	Programmable Timing Circuit	\$3.44
XR-2556CP	Dual 555 Timing Circuit	\$3.20
INTERFACE		
XR-2200CP	Hammer Driver	\$1.17
XR-2201CP/		
-2202CP/	Darlington Transistor Arrays	\$2.25
-2203CP/		each
-2204CP		
XR-2271CP	Flourescent Display Drivers	\$1.15
OTHER CIR		
XR-1310P	FM Stereo Demodulator	\$3.20
XR-2264CP	Proportional Servo IC	\$4.24
XR-4151CP	Voltage-To-Frequency Converter	\$7.50

5% CARBON FILM RESISTOR ASSORTMENTS Each assortment contains 5 pcs each of 10 different values

Values included are shown in (Ohms) 12, 15, 18, 22, 27, 33, 39, 47, 56
13, 16, 20, 24, 30, 36, 43, 51, 62 Asst.1: 10. Asst.1A: 11, 82, 100, 120, 150, 180, 220, 270, 330, 390 Asst.2A: 75. 91, 110, 130, 160, 200, 240, 300, 360, 430 Asst.3: 470, 560, 680, 820, 1K, 1.2K, 1.5K, 1.8K, 2.2K, 2.7K Asst.3A: 510, 620, 750, 910, 1.1K, 1.3K, 1.6K, 2K, 2.4K, 3K Asst.4: 3.3K, 3.9K, 4.7K, 5.6K, 6.8K, 8.2K, 10K, 12K, 15K, 18K Asst.4A: 3.6K, 4.3K, 5.1K, 6.2K, 7.5K, 9.1K, 11K, 13K, 16K, 20K Asst.5: 22K, 27K, 33K, 39K, 47K, 56K, 69K, 82K, 100K,120K Asst.5A: 24K, 30K, 36K, 43K, 51K, 62K, 75K, 91K, 110K,130K Asst. 6: 150K, 180K, 220K, 270K, 330K, 390K, 470K, 560K, 680K, 820K Asst.6A: 160K,200K,240K,300K,360K,430K,510K,620K,750K,910H Asst.7: 1M, 1.2M, 1.5M, 1.8M, 2.2M, 2.7M, 3.3M, 3.9M, 4.7M, 5.6M Asst.7A: 1.1M, 1.3M, 1.6M, 2M, 2.4M, 3M, 3.6M, 4.3M, 5.1M, 6.2M (XWart assortment No. 7 does not include 5.6Ml (XWart assortment No. 7 does not include 5.1 or 6.2M)

(Consists of Asst's 1, 2, 3, 4, 5, 6 and 7) Asst.8A: (Consists of Asst's 1A, 2A, 3A, 4A, 5A, 6A and7A) Asst's 8 or 8A- %Watt \$10.95 %Watt \$11.55

COMPUTER II	NTERFAC	E CIRCU	ITS								
	1-9	10 UP		1-9	10 UP		1-9	10 UP		1-9	10 UP
MH0026CN	\$ 2.60	\$ 2.20	SN7524N	\$ 1,50	\$ 1.35	DM8820N	\$ 2.20	\$ 1.75	AM8228PC	\$ 8.20	\$ 7.10
DS0056CN	5.85	4.70	SN7525N	1.40	1.25	DM8820AN	2.95	2.35	AM8238PC	8.20	7.10
DS3603N	4.10	3.30	SN75107BN	2.58	2.06	DM8830N	2.95	2,35	9600PC	1.65	1.50
AM1488PC	2.10	1.65	SN75108BN	2.58	2.06	DM8831N	3.25	2.80	9601PC	1.65	1.30
AM1489PC	2.10	1.65	SN75109N	2.58	2.06	DM8832N	3.25	2.80	9602PC	1.90	1.65
AM1489APC	2,10	1.65	SN75110N	2.58	2.06	DS8838N	2.95	2.35	9614PC	2.15	1.80
P3212	4,35	3.75	SN75234N	1.55	1.40	N8T26B	3.10	2,70	9615PC	2.15	1.80
P3216	3,90	3,15	SN75235N	1.10	1.00	P8212	4.35	3.75	9616PC	3.15	2.60
DS3604N	6.65	5.35	SN75238N	1.95	1.60	P8216	3.90	3.15	9617PC	2,15	1.80
SN7521N	1.40	1.25	SN75239N	1.50	1.25	AMB224PC	6,50	5.40	9620PC	3.00	2.50
P3226	3.90	3.15	SN75325N	2.60	2.35	PB226	3.90	3.15	9621PC	3.00	2.50
2900 SERIES	BI-POLA	R MICRO	PROCESSOR A	ND SUPP	ORT CIR	CUITS					
AM2901 APC	\$22.00	\$17,40	AM2913PC	\$ 4.10	\$ 3.15	AM29700PC	\$ 5.65	\$ 4.50	AM29721PC	\$ 5.00	\$ 4.20
AM2901 DC	29.40	22.05	AM2914DC	60.00	45.00	AM29701PC	5.65	4.50	AM297500C	4.50	3.60
AM2902PC	3.62	3.18	AM2915APC	8,10	7.00	AM29702PC	5.65	4.50	AM29751DC	4.50	3.60
AM2905PC	8,10	7.00	AM2916APC	11.20	8.95	AM29703PC	5.65	4.50	AM29760DC	6.80	5.50
AM2906PC	11.20	8.95	AM2917APC	7.15	6.20	AM29704PC	15.75	12.60	AM29761DC	6.80	5.50
AM2907PC	7.15	6.20	AM2918PC	5.40	4.32	AM29705PC	15.75	12.60	AM29803DC	7,65	5.95
AM2909PC	8.95	7.15	AM2922PC	5.78	4.93	AM29720PC	5.00	4.20	AM29811DC	4.85	3.90
AM2911PC	5,95	4,75		••••	4100		0.00	4120	72551164	4.00	0.5-
BI-POLAR ME	MORY										
AM27LS00PC	\$ 5.00	\$ 4.20	AM27LS08DC	\$ 4.50	\$ 3.60	P3101	\$ 4.40	\$ 3.50	MM6561N	\$ 4.40	\$ 3.50
AM27LS01PC	5.00	4.20	AM27LS09DC	4.50	3.60	P3101A	4.75	3,70	DM8599N	3.30	2.60
AM27LS02PC	5.65	4.50	AM27LS10DC	6.80	5.50	IM5501CPE	4,40	3.50	82S25PC	4.75	4.20
AM27LS03PC	5.65	4.50	AM27LS11DC	6.80	5.50	MM6560N	4,40	3.50	93403PC	5.25	4.20
SILICON GAT											
MK1002L	\$ 7.00	\$ 6.00	P2111	\$ 2.50	\$ 2.00	AM2806HC	\$ 7.00	\$ 5.60	C4702A	\$18.30	\$13.85
P1101A	4.05	3.25	P2111-1	3.70	3.00	AM2807PC	2,92	2.34	MM5025N	40.80	33.60
1402APC	4.42	2,75	P2112	2.50	2.00	AM2808PC	5.02	4.02	MM5025D	44,00	35.20
1403 APC	4.42	2.90	P2112-2	3.70	3.00	AM2809PC	3.52	2.82	MM5027N	40.80	33.60
1404APC	4.42	2.75	P2401	24.00	17.55	AM2857PC	7.15	5.75	MM5055N	7.15	5,75
1405A	5.80	4.25	P2405	10.85	7.90	AM2896PC	5.00	4.50	MM5056N	7.15	5.75
1405	10.20	8.40	2505K	3.70	3.56	TMS3114NC	9.96	7.32	MM5057N	7.15	5.75
1407	10.20	8.40	2512K	4.30	4.05	TMS31133NC	10.85	4.02	MM5058N	10.85	8.70
1506	4.05	3.24	2521V	2.65	2.55	3341 APC	8.25	6.55	P8080A	18.60	15.85
1507	4.05	3.24	2524V	2.60	2.25	3347PC	6.40	5.10	AM9080APC	18.60	15.85
C1702A	18.30	13.85	2525V	3.65	3.55	MM4025D	73.00	58.40	P8101	2.95	2.40
P2101	2.95	2.40	2533V	4,90	4.02	MM4025D	73.00	58.40	P8101	2.95	1.80
P2101-1	4.20	3.40	26028	4.10	3.85	MM4027D	75.00	60.00	PB111	2.50	2.00
P2101-2	4.20	3.40	AM2802PC	4.42	2.75	MM4055D	16.00	12.80	P8251		17.50
P2101A	4.74	3.85	AM2803PC	4.42	3.54	MM4056H	11,50	9.20	P8255	12.50 12.50	11.50
P2101A-2	5.50	4,50	AM2804PC	4.42	2.75	MM4057D	16.00	12.80	C8702A		13.85
P2107A-2	2.30	1.80	AM2805HC	3.70	3.56	MK4102P	21.60	18.00	AM9401PC	18.30 16.88	13.86
P2102-1	3.45	2.80	-WZQUJIC	3,70	3.30	MAG TUZF	21.00	10.00	MM9401FC	10.68	13.50
. 2102-1	3.45	2.00									

2N TRANSISTORS

ALWAYS FIRST QUALITY COMPONENTS

.34 .40 .52 .60 .70 .70 .34

2N.5824 2N.5825 2N.5827 2N.5827 2N.5827 2N.5827 2N.5827 2N.5828 2N.582

ZENER

DIODES

INS 2248 INS

I WATT V PRICE

33.89.34.7.15.52.85.10.11.20.22.24.7.30.33.89.43.7.15.62.85.22.24.7.30.33.89.43.7.15.62.85

ANCRONA

INFORMATION

NO. 101

Contains 236 pages of data, applications and cross reference information. ONLY

2N699
2N706
2N711
2N718
2N718
2N918
2N929
2N930
2N1132
2N1613
2N1711
2N1893
2N2102
2N2160
2N2218
2N2218
2N2219
2N2219
2N2221
2N2221
2N2222
2N2224
2N2368
2N2369
2N2369
2N2475

ONLY		\$4.95	2N2904	.35	2N3645	5 .2	0
74L	S	74LS78N		74LS		.80	Γ
,,,	-	74LS83N		74LS		4.92	ı
		74L\$85N		74LS	190N	1.50	ı
74LS00N	.36	74 LS86N	.46	74LS	191N	1.50	ı
74 L S 0 1 N	.44	74LS90N		74 LS	192N	1.20	ı
74 LS02N	.32	74LS92N		74 LS	193N	1.21	ı
74LS03N	.32	74LS93N		74LS	194N	1.32	ı
74 LS04N	.36	74LS95N	1.00	74LS	195N	.99	ı
74LS05N	.33	74LS96N	1.24	74 LS	196N	2.76	ı
74 LS08 N	.36	74LS107	N .46	74 LS	197N	2.84	ı
74 LS09 N	.44	74LS109	N .46	74LS	221N	1.76	ı
74LS10N	.32	74LS112	N .64	74 LS:	241N	3.00	ı
74LS11N	.32	74LS113	N .64	74LS	251N	1.10	ı
74LS15N	.44	74LS114		74 LS:	253N	1.10	ı
74 LS20N	.32	74LS123	N 1.10	74 LS:	257N	.95	ı
74LS21N	.44	74LS125	N .60	74 LS:	258N	1.10	ı
74 LS22N	.44	74LS132	N 1.44	74 LS:	260N	.44	ı
74LS26N	.33	74LS136	N .74	74 LS:	261N	1.90	ı
74LS27N	.44	74LS138	N .99	74 LS:	266N	.72	ı
74 LS28N	.33	74LS139	N .99	74LS	273N	2.66	ı
74 LS30N	.32	74LS145	N 1.64	74 LS:	281N	7.60	ı
74LS32N	.36	74LS148	N 3.45	74LS	283N	2.00	ı
74 LS33N	.56	74LS151	88. N	74 LS:	290N	1.76	ı
74LS37N	.50	74LS153	88. N	74LS	293N	1.76	ı
74 LS3BN	.58	74LS155	N 1.50	74LS	299N	6.14	ı
74LS40N	.44	74LS157	N .88	74 LS:	365N	.70	ı
74LS42N	.92	74LS158	N .99	74LS	367N	.70	ı
74LS51N	.44	74LS160	N 1.25	74LS	374N	3.21	1
74 LS54N	.44	74LS161	N 1.25	74LS	375N	.82	ı
74LS55N	.44	74LS162	N 1.25	74LS	37BN	1.60	г
74LS73N	.46	74LS163	N 1,25	74 LS	381N	4.56	ı
74LS74N	.46	74LS164	N 1.50	74LS	386N	.72	ı
74LS75N	.70	74LS170		74LS		2.15	ı
741 S76N	56	741 5174	N 80	741 5		2.05	ı

	PLESSEY SAMPLER 300 METALIZED CAPACITORS 18 DIFFERENT STD. VALUES \$26.00	SINGLE POLE DOUBLE THROW 7101
A:C·E 20 Part No. 923334 24 95	plugaret tion bus terminals. Bus	LESS PLUG-IN TIE POINTS ITY: UP TO 12 14-PIN DIP's "TWO 5-way binding posts Size: 4-9/16" by 7" Kit form Here's the larger of the Two his in the ACE series. To larger crucit-building capac- ity. The matrix is 1002 solderless, in the points comprised of 192 sep- 5 tie point terminals and 2 distribu- sach with 9 connected 4-tie-point es are typically used for voltage and Assembly instructions included.

.21	2 2N3958 0 2N3962 0 2N3970 0 2N4032	1.60 .35 1.20 .60	2N 2N
0	DIO	DES	
2000129648	IN914 IN4002 IN4003 IN4004 IN4005 IN4006 IN4007	10/ 10/ 10/ 10/ 10/	1.0 1.0 1.0 1.0 1.1 1.2
2964600050402600664001206	2SB405 2SC536 2SC828 2SC829 2SC930 2SC933 2SC1226 2SC1359 2SC1974 2SC1975 2SC1975 2SC2034 2SC72 2SD313 2SD325	2/ 2/ 2/ 2/ 2/	.8 1.2 1.5 1.5 1.0 1.2 .9 1.3 3.0 3.1 1.0 1.1 1.2
6		Mi	ni

2N4032	.60 2N4	919
DIO	DES	T
IN914 IN4002 IN4003 IN4004 IN4005 IN4006 IN4007	10/1.00 10/1.00 10/1.00 10/1.00 10/1.10 10/1.20 10/1.20	
2SB405 2SC536 2SCB28 2SCB29 2SC929 2SC930 2SC933 2SC1226A 2SC1359 2SC1973	.85 2/1.20 2/1.50 2/1.50 2/1.40 2/1.30 1.00 1.25 .90 1.30	

Toggle Switches

SINGLE POLE DOUBLE THROW

Miniature TTL COOKE

THE DMM FOR THE PROFESSIONAL

200-Hr. Battery Life
26 Ranges for 7 Functions
2000 Count Resolution
High Low Power Ohms
Autozero and Auto
polarity
MOV protected to 600V
against hidden transients
and overload protection
to 300V AC
Diode Test Function
Conductance Function
chacks leakage resistance
to 10,000 mag ohms
Size HWL (7.1 X 3.4 X 1.8 IN.)
Weight: 13 oz. ONLY \$169.00

PLESSEY SL1600 APPLICATIONS MANUAL Contains 114 pages circuit data, system design and technical data for SL1600 Series Radio Communications Integrated Circuits. \$1.95

NEW from FLUKE MODEL 8020A THE DMM FOR THE PROFESSIONAL

2NA9212 2NA9222 2NA9222 2NA9222 2NA922 2NA92

SAM'S BOOK	воок

No. 21035	5	8.95
IC OP AMP COOKBOOK		
No. 20969	\$	12,95
TV TYPEWRITER COOKBOOK		
No. 21313	S	9.95
C-MOS COOKBOOK	_	0.00
No. 21398	•	9.95
TRANSISTOR SUBSTITUTION	Ψ	3.55
HANDBOOK, 15th Ed.		
No. 21169	_	
		4,50
TRANSISTOR SPEC MANUAL, 7th		
No. 21208		5.95
SEMICONDUCTOR REPLACE GUII		
No. 21092	\$	3.95
BUILDING AND INSTALLING		
ELECTRONIC INTRUSION ALARN	15	
No. 20929	\$	4.50
UNDERSTANDING IC OF AMPS	•	4,00
No. 20855	•	3.95
HOW TO USE IC LOGIC ELEMENT	٠,	3.53
2nd Ed	3	
No. 21081	_	
	Þ	4.50
UNDERSTANDING CMOS IC's	_	
No. 21129	\$	4.95
		_

FAIRCHILD LM741PC 3 for \$1.00

SPECIAL

8-BIT D TO A DAC-08CN ONLY \$5,15

INTERSIL 8038 PRECISION WAVEFORM GENERATOR AND VCO

or simultaneous sine, square an angular waveforms 001 Hz t

ART NO. 8038CCPD \$4.20

Designed for mobile radios, tap-players, etc. Easy to use, High Gain — 53 dB (Closed Circuit).

\$3 90 e

NOT US

Market Place

関語が対象を

1 MICRO HOOK "

Specify color. ORDER P/N XM

Jumper with XM Micro Hooks Order No. Length Price 204×M-12* 12" \$1.80 204×M-24* 24" \$1.80 Specify color

you make the said of

XM-S MICRO HOOK SET (Includes 1 as. red, black, blue, green, orange, yellow, white, brown, violet and gray Micro Hook). At this low

E-Z-HOOK

E-Z Hooks have been designed and field tested through the industry to save time and money in commercial electronic production and servicing. The spring-loaded hook attached hook attached industry and so gently it will not damage component – frees hands while testing. Durably constructed and fully insulated to a single contact point assuring true readings. Meets exacting laboratory and

spring-loaded node attaches firmly, yet so gently it will not damage component — frees hands while resting. Durably constructed and fully insulted to a single contact point assuring true readings. Meets exacting laboratory and space age computer technology requirements. AVALLABLE IN 10 RETMA COLORS: Red, black, blue, green, oragne, yellow, white, violet, brown

COMPLETE SET (10) MICRO HOOKS

MINI HOOK MARKET !

Specify ORDER P/N X100W

Jumper with X-100W X100W Mini Hook (2.25" long) combines rugged construction, ministure size and Finger-eze Hypo Action Mini Hooks Order No. Length Price 204-12W 204-24W 12" \$1.70 24" \$1.70 Specify color. - Marchant I

Jumper X-100W Mini Hook to Stacking Banana Plug

Order No. Length Price 201W 32" \$1.45 Specify color

Jumper with X-100W Mini Order No. Length \$1.50

EXTRA LONG MINI HOOK

XL-1 Mini Hook (5.0" long) combines all the proven features of the X100W with an extra long body. It will make safe, short-free test connections in card racks and trhough deep wiring nest up to 4"... ORDER P/N XL-1

Specify color, \$1.30

Order No. Length 201XL-1 Specify color. Price \$2.05

COSMAC MICROPROCESSOR Integrated Circuits

CDP1802CD COSMAC CPU CDP1821CD 1024 x 1 Static CMOS CDP1822CD 256 x 4 Static CMOS

4-8 Volt Op-erating Range \$19.95 14.75 15.50

CDP1824CD 32 x 8 Static CMOS \$7.75 CDP1852CD Byte I/O Port 8.25 COP1856CD Bus Separator/Buffer (Memory) 5.50 COP1867CO Bus Separator/Buffer 5.50

KIM-1 MICROCOMPUTOR

KIM-1—Computer Module from MOS Technology, 1K RAM, 2K ROM continuing system executive, complete audio cassett interface, 15 bidirec-tional 1/O lines, a 24 key keyboard and a six-digit LED display.

Documentation-KIM-1 Users Manual 6500 Hardware Manual, and 6500 Programming Manual.

Fully Assembled

\$245.00 Fully Tested

QUITE PORTABLE **VERY AFFORDABLE** AND UNBELIEVABLY VERSATILE the PET computer may very well be a lifetime investment

MODEL 2001

SPECIFICATIONS OIMENSIONS LWO 18-1/2 x 16-1/2 x 14 WEIGHT 44 lbs

PET

EMORY
AM (user) 4K (8K OPT) exp to 32K
DM (resident operating system) 14K
8K-9 ASIC interpretor
4K-Operating system
1K-Oisgnostic routine
1K-Machine language monitor

MODEL 2001 \$595,00 with 4K RAM

\$795.00 with 8K RAM

1.K-Watchine language monitor
VIOEO DISPLAY UNIT
9" bew high resolution CRT = 1000 char display 40 col by 25 lines = 8x8 dot matrix for characters and continuous graphics = Auto scrolling from bottom of screen = Winking cursur with full imidion control = Reverse field on all characters = 64 standard ASCU chris [64 graphic characters = 64 standard ASCU chris [64 gr

PFT

KEYBOARD >1/2" wide x 3" deep, 73 keys = All 64 ASCU characters available without shift * Calculator style numeric key pad = All 64 graphic and reverse field characters accessible from keyboard (with shift) Screen: Control Clear and ereas * Editing; Character insertion and deletion?

CASSETTE STORAGE

Fast redundant recording scheme assuring reliable data recor-rellability of recording and record retention • High notice correction • Jsas standard audio cassette tapes • Tape files named. OPERATING SYSTEM

Supports multiple languages a Machine language accessibility a File management in operating system a Cursor control, reverse field and graphics under simple BASIC control a Cassate file management from BASIC = True random number perhetation or pseudo random sequence. INPUT/OUTPUT

All other I/O supported through IEEE-488 instrument interface which allows for multiple intelli-gent peripheats • All I/O automatically managed by operating system software • Single charac-ter I/O with GET command • Eary screen ine-edit capability • Flexible I/O structure allows for 8ASIC expansion with intelligent perpheats.

BASIC INTERPRETER

Expanded 8K BASIC • Upward expansion from current popular BASIC language • Strings, integers and multi-dim arrays • High-precision [10 significant digits] • Oirect memory access through PEEK and POKE commands

ALLOW 60 TO 90 DAYS DELIVERY

CAPACITORS

SOV CERAMIC DISC \$1.00 Per Package

	300	CLI	TAINIC DI	30 30	.OU FOF FACE	cage	
5pf			300pf	7/pkg	.0047mfd	9/pkg	
15pf			330pf	7/pkg	.005mfd	9/pkg	
25pf			390pf	7/pkg	.01mfd	9/pkg	
27pf			470pf	7/pkg	.015mfd	8/pkg	ĺ
47pf			560pf	7/pkg	.02mfd	8/pkg	
68pf			680pf	7/pkg	.022mfd	8/pkg	
100p			.001mfd	9/pkg	.03mfd	8/pkg	
150pt			.0015mfd	9/pkg	.039mfd	7/pkg	
220pt			.0022mfd	9/pkg	.047mfd	7/pkg	
270pt	7/p	okg	.003mfd	9/pkg	.1mfd	6/pkg	

PLESSEY POLYESTER MINI BOX

MF	V	S	MF	V	S	MF	V	S
.001	1000	.14	.012	630	.14	15	100	.20
.0012	1000	.14	.015	400	15	.18	100	.21
0015	1000	.14	.018	400	,15	.22	100	.23
.0018	1000	.14	.022		.15	.27	100	.26
.0022	1000	.14	.027	400	.15	.33	100	.30
.0027	1000	.14	.033	250	.15	.39	100	33
.0033	1000	.14		250		.47	100	36
.0039	630	.14	.047	250		.56	100	44
.0047	630	.14	.056	250		.68	100	.47
.0056	630	.14	.068			.82	100	
.0068	630	,14	.082	250		1.0	100	.60
.0082	630	.14	1					
.01	630	.14	12	100	.18			

MATSUO DIPPED TANTALUM

MF	V	S	MF	V	\$	ME	V	S
1	35	.33	2.2	20	33	10.0	35	.90
.15	35	.33	2.2	35	.40	15 0	20	45
22	35	.33	3.3	35	.42	15 0	35	1.32
.33	35	.33	4.7	35	.45	22.0	16	45
.47	35	.33	6.B	16	40	33.0	20	1.32
.68	35	.33	6.B	35	.45	47.0	20	1.53
1.0	35	.33	10.0	16	42	68,0	16	1.62
1.5	35	.40	10.0	25	.45			

1% MICA 500V					
51 PF .29	220 PF .41	1500 PF .60			
62 PF .29	240 PF .46	2000 PF .90			
75 PF .29	300 PF .50	2200 PF .94			
82 PF .29	390 PF .50	4700 PF 1.80			
100 PF .30	470 PF 50	5100 PF 1.80			
120 P.F .32	620 PF .52	10000 PF 3.60			
150 PF .35	820 PF .53				
180 PF .41	1000 PF 60				

Intersil 3½ DIGIT PANEL METER

KITS

BUILD A WORKING DPM IN 1/2 HOUR WITH THESE COMPLETE EVALUATION KITS

Test these new parts for yourself with Intersit's low cost prototyping kits, complete with A/D converter and LCD display (for the 710F). Kits provide all materials, including PC board, for a functioning panel mater.

SANKEN AUDIO AMPLIFIERS

ICL7106EV (LCD) \$29.95

ICL7107 (LED) \$24.95

FOR 30 & 50 W, A-SI-10 \$.95

RESISTOR KITS 5% CARBON FILM RESISTORS

QUALITY PARTS

COMPLETE WITH STORAGE BIN 1/4 WATT KIT

1/2 WATT KIT

1/4W - \$24.90 PER KIT 1/2W - \$25.90 PER KIT

CARBON FILM RESISTORS (5%)
Only in Multiples of
100 pcs per value (ohms)
%W \$1.69 per 100
%W \$1.79 per 100
10 100 1.0K 10K 100K 1.0M

42 Different Values (68 Ω to 4.7 M Ω) 20 Each Value

42 Different Values (68 Ω to 4.7 M Ω) 20 Each Value

11	110	1.1K	11K	110K	1.1M
12	120	1.2K	12K	120K	1.2M
13	130	1.3K	13K	130K	1.3M
15	150	1.5K	15K	150K	1.5M
16	160	1.6K	16K	160K	1.6M
18	180	1.8K	18K	180K	1.8M
20	200	2.0K	20K	200K	2.0M
22	220	2.2K	22K	220K	2.2M
24	240	2.4K	24K	240K	2.4M
27	270	2.7K	27K	270K	2.7M
30	300	3.0K	30K	300K	3.0M
33	330	3.3K	33K	330K	3.3M
36	360	3.6K	36K	360K	3.6M
39	390	3.9K	39 K	390K	3.9M
43	430	4.3K	43K	430K	4.3M
47	470	4.7K	47K	470K	4.7M
51	510	5.1K	51K	510K	5.1M
56	560	5.6K	56 K	560K	5.6M
62	620	6.2K	62K	520K	6.2M
68	680	6.8K	68 K	680K	6.BM
75	750	7 5 K	75 K	750K	7.5M
82	820	8.2K	82K	820K	8.2M
91	910	9.1K	91K	910K	9.1M

SGS-ATES - AUDIO

POWER	AMPLIFIER	IC'S
TBABOO	5 watt	\$1.95
TBA810S	7 watt	2.10
TBA810AS	7 watt	2.10
TB, 820	2 watt	1.35
TBA830\$	4.2 watt	1.95
TCA940	10 watt	3.30
TDA2002	8 watt	4.20
TDA2010	12W Hi-Fi	5.25
TDA2020	20W Hi-Fr	6.00

MN6040 C-MOS PLL — a single-chip plase-locked loop intended for use as a frequency synthesizer in CB transceivers and other communications equipment.

S7.90
TO 220 VOLTAGE
REGULATOR FROM
FAIRCHILD
C 5V 7815C
C 6V 7818C 15V 7806C 7812C 18V 24V 12V 7824C 2 for \$1.20

INCRONA

SANKEN Series SI-1000G amplifiers are self-contained power hybrid amplifiers designed for Hi-Fi, stereo, musical instruments, public address systems and other audio applications. The amplifiers have quasi-complementary class B output. The circuit employs flip-chip transistors with high reliability and passivated chip power transistors with excellent secondary breakdown strength. Built-in current limiting is provided for SI-1050G and all devices can be operated from a single or split power supply.

SI-1010G (10W output) ...\$ 6.90 SI-1020G (20W output) ...\$13.95 SI-1030G (30W output) ...\$19.00 \$1-1050G (50W output) ... \$27.80

HYBRID AUDIO **POWER**

AMPLIFIERS

Multi-purpose linear amplifiers for comercial and industrial applicacations. Less than 0.5% harmonic distortion at full power level.

Only

1/2 dB response from 20 to 100,000 Hz. · Single or split (dual) power supply.

Rugged, compact and lightweight packages

Built-in current limiting for SI-1050G and efficient heat radiating construction.

TYPICAL CONNECTIONS SI-1050G WITH SPLIT SUPPLY LEFT RIGHT 00 80YA 100YA (120YA 140 A 195 & 55 F Data Sheet with Application Notes - \$0.50

DIP SOCKETS

.24 .29 .32 1.45

WIREWRAP (Level No. 3)

\$10.00. ADD \$1.00 to cover postage and handling. Master Charge and Bankamericard welcomed (include your card number and exp. date). TELEPHONE ORDERS: Call (213) 641-4064 VISIT ONE OF OUR STORES TODAY

CANADA, B.C. ANCRONA 5656 Fraser St. ANCRONA STORES DO NOT ACCEPT MAIL OR Vancouver, B.C. TELEPHONE ORDERS (604) 324-0707 CALIFORNIA CALIFORNIA ARIZONA **ANCRONA** ANCRONA ANCRONA 11080 Jefferson Blvd. Culver City,CA 90230 (213) 390-3595 1300 E. Edinger Ave. Santa Ana, CA 92705 (714) 547-8424 4518 E. Broardway Tucson, AZ 85711 (602) 881-2348 GEORGIA ANCRONA 3330 Piedmont Rd, NE Atlanta, GA 30305 (404) 261-7100 OREGON TEXAS ANCRONA 1125 N.E. 82nd Ave. Portland, OR 97220 (503) 254-5541 ANCRONA 2649 Richmond douston, TX 77098 (713) 529-3489

Ø

....\$10.00 / kit

the leads are bent 90° for easy insertion.
Whre langth is classified by color coding.
All wire is solid tinned 22 gauge with PVC insulation.
The wires come packed in a convenient plastic box.

SOCKET Mates with two rows of .025" sq. or dia. posts on patterns of .100" centers and shielded receptacles. **JUMPERS** Probe access holes in back. Choice of 6" or 18" length

Part No.	No. of Contacts	Length	Price
924003-18R	26	18"	\$ 5.38 ea.
924003-06R	26	6"	4.78 ea.
924005-18R	40	18"	8.27 ea.
924005-06R	40	6"	7.33 ea.
924006-18R	50	18"	10.31 ea.
924006-06R	50	6"	9.15 ea.

JUMPER Solder to PC boards for instant plug-in access via socket-connector HEADERS [Jumpers. .025" sq. posts. Choice of straight or right angle. Part No. No. of Posts Angle Price

Price \$13.80 ea.

Part No.	NO. OT POSTS	Angle	Price
923863-R	26	straight	\$1.28 ea.
923873-R	26	right angle	1.52 ea.
923865-R	40	straight	1.94 ea.
923875-R	40	right angle	2.30 ea.
923866-R	50	straight	2.36 ea.
923876-R	50	right angle	2.82 ea.

INTRA-CONNECTOR

Provides both straight and right angle functions. Mates ith standard .10" x .10" dual row connectors (i.e. 3m, Ainsley, etc.) Permits quick testing of inaccessible lines. Part No.: 922576-26 No. of contacts: 26 Price \$6.90 ea

INTRA-SWITCH

Permits instant line-by-line switching for diagnostic or QA testing. Switches actuated with pencil or probe tip. Mates with standard .10" x .10" dual-row connectors. Low profile design. Switch buttons recessed to eliminate accidental switching Part No.: 15-26 No. of contacts; 26

	CRYST	ALS	<u> </u>
Part #	Frequency	Case/Style	Price
CY1A	1 000 MHz	HC33 U	\$5.95
CY2A	2 000 MHz	HC33 U	\$5.95
CY2 01	2.010 MHz	HC33/U	\$1.95
CY3A	4 000 MHz	HC18 U	S4 95
CY7A	5 000 MHz	HC18 U	54 95
CY12A	10 000 MHz	HC18 U	\$4 95
CY14A	14 31818 MHz	HC18U	\$4 95
CY19A	18 000 MHz	HC18 U	\$4 95
CY22A	20 000 MHz	HC18 U	\$4 95
CY30B	32 000 MHz	HC18 U	\$4 95

15/30

18/36

Bifurcated Contacts \$1.95 \$2.49 PINS (Solder Evelet) 22/44 PINS (Solder Eyelet) \$2.95 \$6.95

50/100 PINS (Wire Wrap) 50/100A (.100 Spacing) PINS (Wire Wrap)

	25 PIN-D SUBMINATURE (R\$232)	
DB25P	PLUG	\$3.25
DB25S	SOCKET	\$4.95
	ALLE NA	

205-CB	THEAT SINKS	68075A
205-CB	Beryllium Copper w-black finish for TO-5	\$.25
29136H	Aluminum for T0-220 Transistors &	
	Regulators	\$.25
68075A	Black Anodized Aluminum for T0-3	\$1.60
Dude 4	Black Anodized Aluminum — predrilled	
	mounting holes for TO-3 - 434 v 114 v 2"	21 75

Etching Kits 32 X A-1	(cannot be shipped via air) P.C. Etch Materials Kif	600 OF
32 A M-1	enough for 5 circuit boards	\$29.95 ea.
27 X A-1	Etoned Circuit Kit	\$ 9.95 ea.
Plugboards	Complete kil — only add water	
3662	- 6 5 X 4 5 X 1 16 Epoxy glass P-Pattern-44 P C Tabs-spaced 156	\$ 6.95 ea.
22/44	Mating connector for plugboard — 22 pin double readout	\$ 2.95 ea.
8800V	Universal Microcomputer Processor	\$19.95 ea.
② Vector	plugboard — Epoxy Glass — complete with heatsink and mounting hardware 5 313 X 10 X 1 16 copper clad	

*****	1/16 VECT	OR BOAR	D	_
*****	0 1 Hole Spacing	- P-Pattern	Price	
*****	Part No	L W	1-9 10 up	
PHENGLIC	64P44 062XXXP	4.50 6.50	1.72 1.54	
	169P44 062XXXP	4.50 17.00	3.69 3.32	
EPOXY	64P44 D62WE	4.50 5.50	2.07 1.85	
GLASS	84P44 052WE	4 50 8 50	2.56 2.31	
	169P44 062WE	4 50 17 00	5.04 4.53	
	169P84 052WE	8 50 17 00	9.23 8.26	
FPOXY GLASS	150P44 052WEC1	4 50 17 00	6.80 6.12	

COPPER CLAD **63 KEY KEYBOARD**

\$29.95 This keyboard features 63 une coded SPST keys unattached

F keys unaltaching F C B A very soli Astro 13 x 4 bas Encoder Chip (encodes 16 Keys)

MICROPROCESSOR COMPONENTS

	1111011011101		0110	O 1 4 1 1	CITEIRIO	
8080A	CPU	\$16.00	CDP1802	CPU		\$19.95
8212	8 Bit Input/Output	4 95	MC6800	8 Bit M	PU	24.95
8214	Priority Interrupt Control	15.95	MC6820	Periph.	Interface Adapter	15.00
8216	Bi-Directional Bus Driver	6.95	MC6810AF	1 128 x 8	Static RAM	6.00
8224	Clock Generator/Driver	9.95	MC6830L8	1024 x	8 Bit ROM	15.00
8228	System Controller Bus Dr	iver 10.95	Z80	CPU		29.95
					RAM'S	
	CPU'S		1101	256 • 1	Statil	\$ 1.49
B080A	Super 8008	16.00	2101	256 x 4	Static	5 98
2650	8 BIT MPU	26 50	2102	1024 + 1	Static	1.75
8085	CPU	29 95	2107 5280	4096 x 1	Dynamic	4 95

SRIS 1024 Dynamic Mex 32 Bit Hex 40 Bit Dual 132 Bit SSR 512 Dynamic 1024 Dynamic Dual 255 Bit Dual 512 Bit Dual 512 Bit Dual 512 Bit 1024 Static Filo Static Static Static Static Static Static 489 8101 8111 5.95 6 95 4 00 2.95 8599 21LD2/91L02 2522 2524 2525 2527 2529 2532 2533 3341 74LS670 93421 25 MM5262 2K UPD414(2104)4K \$ 9 95 Filo 16 x 4 Reg 520 -H2S73 82S123 74S78 UART'S 30K Baud ROM'S 44.5.1013 Char Gen -upper case Char Gen -lower case Char Gen 2048 BiT (512 x 4 on 256 x 8) 2513(2140) \$ 9 95 2513(2140) 2513(3021) 2516 MM5230

	SPE	CIAL	HEU	フロショロ	ווע	EM2	
	\$5.00	11090	19.95	7205	19.95	9366	
0-1	8 95	4N33	3.95	ICM7045	24 95	LO110/111	
0	17.50	8720	7.50	ICM7207	7.50	95H90	

						_1110		MM5309	59 95	
CM3817	\$5.00	11090	19.95	7205	19 95	9368	3.95	MM5311	4.95	
Y-3-8500-1	8 95	4N33	3.95	ICM7045	24 95		25.00/set	MM5312	4 95	
Y-5-9100	17.50	8720	7.50	ICM7207	7.50	95H90	11.95	MM5314	4.95	
Y-5-9200	14 95	8T97	2.00	ICM7208	22 00	MC3061P	3.50	MM5316	6.95	
Y-5-9500	4 95	HD0165	7.95	ICM7209	7 50	MC4016 (7441		MM531B	9.95	
Y-5-2376	14 95	MCM6571	13.50	MK50240	17 50	MC1408L7	8.95	MM5369	2.95	
374	1 95	MCM6574	13.50	DS0026CH	3 75	MC1408LB	9.95	MM5841	9.95	
25115	25.00	MCM6575	13.50	TIL308	10 50			CT7001	5.95	

PARATRONICS

Featured on February's Front Cover of Popular Electronics Model 100A

Logic Analyzer Kit Model 100A \$229.00/kit

Model 100A assembled \$295.00 Analyzes any type of digital system

Checks data rates in excess of 8 million words per second Trouble shoot TTL, CMOS, DTL, RTL,

\$99.95

Comes with test

Schottky and MOS families
Displays 16 logic states up to 8 digits wide

See ones and zeros displayed on your CRT, octal or hexadecimal format Tests circuits under actual operating conditions Checking counter and shift register operation
 Monitoring I/O sequences Easy to assemble — comes with step-by-step construction manual which includes 80 pages on logic analyzer operation.

- Verifying proper system operations (Model 100A Manual - \$4,95) during testing PARATRONICS TRIGGER EXPANDER - Model 10 Adds 16 additional bits. Provides digital delay and qualification of input clock and 24-bit trigger word. — Connects direct to Model 100A for integrated unit).

31/2-Digit Portable DMM

Overload Protected
In the Display
Battery or AC operation
Auto Zeroing
Inv. 1Va. 0.1 ohm resolution

-5-

....

100 MHz 8-Digit Counter

111 1

4444

Troubleshooting microprocessor

address, instruction, and data flow Examine contents of ROMS Tracing operation of control logic

Model 10 Kit — \$229.00 Model 10 Assembled — \$295 Baseplate — \$9.95 Model 10 Manual — \$4.95

. Some applications are:

20 Ht-100 MHz Ranga Four power souces, Le-bettens, 110 or 220 with Cogsid-controlled limbesses charger 12V with auto Portables completely Portables Controlled Sec. 21 75 x 7.88° MAX-100 \$134.95

1mv, 1Va, 0 1 ohm resolution
 Overange reading
 10 mag input Impendence
 DC Accuracy 1% typical
 Hanges: DC Voltage - 0-1000V/
AC Voltage 0-1000V
Freq Response, 50-400 HZ

DC/AC Current: 0-100mA Resistance 0-10 meg ohm Size, 6 4" x 4 4" x 2" Accessories:

Model 2800 AC Adapter BC-28 \$9.00 Rechargeable
Batteries BP-26 20.00
Carrying Case LC-28 7.50 leads, operating manual

14 157 AND

ACCESSORIES FOR MAX 100:
Mobile Charger Eliminator
use power from car battery
Charger/Eliminator
use 110 V AC
Model
Model

Model 100 - CLA \$3.95 Model 100 - CAI \$9.95

DESIGN MATES

DM1 - Circuit Designer

DM3 - RC Bridge

\$69.95

\$74.95

bus strip 470

bus strip 350

bus strip 180 120

Function Generator 574 95

\$ 9.95

CONTINENTAL SPECIAL PROTO BOARD 6 PB100 - 4.5" x 6 \$15.95 long X 4" wide) PB101 - 5.8" x 4.

AL	TII	ES		PROTO	CLIPS
	Board	S	14	PIN	\$4.50
	S	19.95	16	PIN	4.75
5"		29.95	24	PIN	8.50
		39.95	40	PIN	13.75
		59.95	_	DESIGN	MATES

PB102 - 7" x 4.5 PB103 - 9" x 6" PB104 - 9.5" x 8" PB203 - 9.75 x 61/2 x 23/4 80.00 PB203A - 9.75 x 61/2 x 21/4 129.95 (includes power supply) LOGIC MONITOR \$84.95

for DTL. HTL. TTL or CMOS Devices

SE QT PROTO STRIPS 2 - 185 OT - 185 * OT-598 0T-598 0T-47S QT-125 им при вы под мес при лит • QT-47B 07-85 QT-35S ·遍。 (四年。OT-75

\$5.00 Minimum Order — U.S. Funds Only California Residents — Add 6% Sales Tax

\$10.95 Experimentor 600 Spec Sheets - 25c - Send 35c Stamp for 1978 Catalog Dealer Information Available

QT-85 QT-75

Experimentor 300

1978 CATALOG NOW **AVAILABLE**

The Incredible

'Pennywhistle 103'

\$129.95 Kit Only The Pennywhistie 103 is capable of recording data to and from audio tape without critical speed requirements for the recorder and it is able to communicate directly with another modern and terminal for telephone "Insmring" and communications for the deat. In addition, it is free of critical adjustments and is built with non-precision, readily available parts.

Data transmission Method ... Frequency-Shift Keying, full-duples, seat-weight available parts.

Data transmission Method ... Frequency-Shift Keying, full-duples, seat-weight seat seat characters.

Maximum Data Rate. ... 300 Baud Observation Serial instum to mark level required between each characters.

Receive Channel Frequencies ... Swinch seetcable Live (normal) = 1070 space. 225 Hz for mark Transmit Channel Frequencies ... Swinch seetcable Live (normal) = 1070 space. 225 mark ... 8 sective Senzitivity ... 45 dom accountably coupled Transmit Level ... 5 dom normal Adjustable from -6 dom Receive Frequency Tolerance ... Frequency reference automatically adjusts to what for cognation between 1800 Hz and 2400 Hz ... 14 RS-212C or 20 mA current loop (receiver is optioscalated and non-poly). optosobated and non-polar).

Power Requirements ... 120 VAC. Single phase, 10 Walts

Physical ... All components mount on a single 5 by 9

printed crictor board. All components included.

Requires a VOM, Audio Oscillator, Frequency Counter and/or Oscilloscope to align

GRC AM/FM 8-Track Stereo Receiver With BSR Changer

PLL System
 BSR Record Changer

Slide Controls
Automatic AFC Control

 4 Speaker Output
 Walnut finish vinyl covered wood veneer with smake

dust cover Size: 20"W x 9%"H x 15%"D

Model 8365 \$149.95

DIGITAL STOPWATCH

Bright 6 Digit LED Orsplay
Times to 59 minutes 59 59 seconds
Crystal Controlled Time Base
Three Stopwatches in One
Times Single Event — Spiti & Taylor
Stre 45 x 2 15 x 90 (14"x punces)
Uses 3 Pentire Cells

Kit __ \$39.95 Assembled — \$49.95

Heavy Duty Carry Case \$5.95

Stop Watch Chip Only (7205)

31/2 DIGIT DPM KIT

New Binolar Unit

 Auto Zeroing 5" 1 FD

Model KB500 DPM Kit

· Auto Polarity Single IC Unit

\$49.00

Model 311D-5C-5V Power Kit \$17.50 JE700 CLOCK

The JE700 is a low cost digital clock is a very high quality unit. The unit tures a simulated walnut case with mensions of 6 x 21 x x 1. If utilize

KIT ONLY \$16.95 115 VAC HEXADECIMAL

ENCODER 19-KEY PAD

· ABCDEF

. Shift Key 2 Optional Keys

\$10.95 each

INSTRUMENT/CLOCK CASE Injection molded unit. Complete with red bezel.4½" x 4" x 1-9/16", \$3.95 ea.

JE803 PROBE

The Logic Probe is a unit which is for the most part indespensible in trouble shooting logic families. TTL OTL RTL CMOS it derives the power in needs to operate hereity of or the circuit under test or drawing a scant 10 mM max. If uses a MAN3 readout to indicale any of the following states by these symbols: httl: 1 (LOW): o (PULSE): P. The Doces and factor has less your largest of S.M. wase sympols. IPO + 1 (LOW) + g (PULSE) + P. The Probe can detect high frequency pulses to 45 MHz. It can tibe used at MOS levels or circuit damage will result.

\$9.95 Per Kit

printed circuit board

T²L 5V 1A Supply LM309K regulator IC to provide a solid 1 AMP of curr volts. We try to make things easy for you by on

everything y for only \$9.95 Per Kit

All Advertised Prices Good Thru January

Let us know 8 weeks in advance so that you won't miss a single issue of POPULAR ELECTRONICS.

Attach old label where indicated and print new address in space provided. Also include your mailing label whenever you write concerning your subscription. It helps us serve you promptly.

Write to: PO Box 2774, Boulder, CO 80322 giving the following information

Change address only | Extend my subscription

ENTER NEW SUBSCRIPTION

- 1 year \$12,00 Allow 30-60 days for delivery,
- ☐ Payment enclosed (1 extra BONUS issue) ☐ Bill me later

Status Additional postage on foreign orders add \$3 a year for Canada, \$5 a year for all other countries outside the U.S. and its possessions. Cash only on foreign orders, payable in U.S. currency.

Seeking Original Japanese Replacement Parts for CB and Stereo Repair Use?

59 | 25C 897 | 2.65 | 25C 1449 | 1.00 | 25D 358

Original Japanese Transistors, FET, IC, Diodes CHECK OUR LOW PRICES!

\$28A 00 130 28A 899 2.18 28A 841 59 28C 456 59 28C 990 59 28C 14785 7.0 28D 88P 3.40 28A 841 59 28C 456 59 28C 456 59 28C 990 59 28C 14785 7.0 28D 88P 3.40 28A 841 59 28C 456 59 28C 990 59 28C 14785 7.0 28D 88P 3.40 28A 841 59 28C 456 59 28C 990 59 28C 14785 7.0 28D 88P 3.40 28A 842 90 28A 850 77 28C 456 59 28C 456 59 28C 993 1.20 28C 1584 6.50 28D 427 2.20 28A 850 77 28C 456 59 28C 456 59 28C 993 1.20 28C 1584 6.50 28D 427 2.20 28A 850 77 28C 456 59 28C 456 1.60 28C 1647 4.50 28D 427 2.20 28B 84 50 28C 456 1.60 28C 456 1.60 28C 1647 4.50 28D 427 2.20 28B 84 50 28C 456 1.60 28C 456 1.60 28C 1647 4.50 28D 456 1.60 28C 456 1.60 28C 1647 4.50 28D 456 1.60 28C 456 1.60 28C 1647 4.50 28D 456 1.60 28C 456 1.60 28C 1647 4.50 28D 456 1.60 28C 456 1.60 28C 1647 4.50 28D 456 1	2SA 49	.59	2SA 818	1.40	2SC 430	1.10	25C 898	4.40	2SC 1451	1.60	2SD 360	1.20
25A 101												
25A 402 59 23A 847 59 28C 460 59 28C 930 59 28C 1504 1.00 28C 28A 24A 28A 29A 29A 39 29A 872A 59 28C 48A 1.20												
25A 2244 59 28A 850 70 28C 481 59 28C 481 1.50 28C 943 1.20 28C 1864 8.50 28D 427 2.80 28A 352 90 28A 872 A 59 28C 481 1.60 28C 945 59 28C 1866 8.50 28D 427 2.80 28A 357 70 28A 908 1100 28C 482 1.50 28C 951 1.60 28C 952 1.60 2		59				59						
28A 234 99 28A 850 70 28C 941 59 28C 941 1.50 28C 943 1.20 28C 1866 8.50 28D 427 2.80 28A 852 99 28A 872A 59 28C 481 1.50 28C 945 59 28C 1866 8.50 28D 427 2.80 28A 853 70 28A 98B 1 50 28C 482 1.50 28C 947 1.00 28C 1824 1.50 28D 526 1.10 28C 484 1.50 28C 947 1.00 28C 1826 1.00 28C 1	25A 102	-59				.59						8.50
28A 382 99 18A 872A 59 28C 481 1.99 22C 485 3.99 28C 1866 6.60 22C 483 3.99 28C 1866 6.60 22C 483 3.99 28C 1866 6.60 22C 483 3.99 28C 1866 6.60 28C 483 4.00 28C 1868 6.60 28C 483 4.00 28C 4	2SA 234	59	2SA 850						2SC 1584	8.50	250 427	2.80
28A 4853		on.	2SA 872A	59	2SC 481	1.60	2SC 945	.59	2SC 1586	6.60	25/3 525	1.60
28A 4877 2.00 2 Seb 54 .59 28C 485 1.60 28C 971 1.00 28C 1628 1.70 28D 555A 6.60 28C 484 3.00 28B 75 .59 28C 495 1.00 28C 1628 1.70 28C 1627 1.59 28C 486 1.60 28C 983 1.00 28C 1628 1.70 28C 28A 48A 2.50 28B 77 .59 28C 495 1.00 28C 1984 .90 28C 1647 1.59 28C 48A 2.50 28B 187 .59 28C 495 1.00 28C 10008L .59 28C 1647 1.59 28C 48A 485 2.00 28B 186 .59 28C 559 9.90 .90 28C 1014 1.20 28C 1678 5.99 28C 1667 1.90 28C 1647 1.59 28C 48A 495 7.70 28B 202 1.60 28C 555 7.0 28C 1017 1.40 28C 1678 5.9 28K 49 1.00 28C 48A 2.50 28A 495 7.70 28B 202 1.60 28C 555 7.0 28C 1014 1.20 28C 1678 2.25 59 28K 49 1.00 28C 48A 2.50 28C 555 7.0 28C 556 1.00 28C 168A 2.25 2.50 28C 556 1.00 28C 168A 2.50 28C 556 2.50		70										
28A 4440 90 300 28B 75 59 28C 486 160 28C 983 100 28C 1628 130 28C 1628 130 28C 486 160 28C 984 490 28C 1628 130 28C 1628												
2SA 488									200 1020			
2SA 488	2SA 440	.90									250 610	1,90
25A 486	2SA 483	3.00	258 75	.59	2SC 495	1.00					Photo:	
25A 485 2.00 25B 186 59 25C 509 90 25C 1014 1.20 25C 1674 5.9 25K 18 1.60 25C 349 495 7.0 25C 360 2.5 25C 1017 1.40 25C 1675 5.9 25K 39 90 25A 496 1.10 25B 220 70 25C 536 59 25C 1030 2.5C 360 2.5C 1678 2.25 25K 33 1.11 25A 497 1.60 25G 303 59 25C 537 5.9 25C 1047 7.0 25C 1684 5.9 25K 49 1.00 25A 497 1.60 25G 303 59 25C 537 5.9 25C 1047 7.0 25C 1684 5.9 25K 49 1.00 25A 497 1.60 25G 303 5.9 25C 537 5.9 25C 1047 7.0 25C 1684 5.9 25K 49 1.00 25A 497 1.60 25G 383 4.70 25C 1684 5.9 25K 49 1.00 25A 497 1.60 25G 303 5.9 25C 537 5.9 25C 1060 2.5 25 25C 1068 5.9 25K 49 1.00 25A 452 25A 55A 55A 55A 55A 55A 55A 55A 55A 5		2.50	2SB 77	59	2SC 497	1.60	2SC 1000BL	.59	2SC 1669	1.60		
28A 489			2SB 186	59	2SC 509	90	2SC 1014	1.20	2SC 1674		2SK 18	7.60
28A 498											2SK 30	90
\$\colored{\colo											25K 33	
\$\frac{2}{2}\text{SA} \frac{4}{2}\text{T} \frac{1}{1}\text{C}{0} \frac{2}{2}\text{S} \					200 000							
ZSA A009 70 288 324 70 28C 53BA 27 28C 53BA												
2SA 328	2SA 497	1.60										
2SA 525 250 2SB 337 1.60 2SC 582 2.15 2SC 1081 1.40 2SC 1728 2.00 2SN SB 1.30 2SA 537 7.0 2SB 368B 2.15 2SC 620 2SC 582 1.10 2SC 1080 4.40 2SC 1760 2.00 3SK 22 2.55 2SA 563 5.9 2SB 408 5.9 2SC 620 4.0 2SC 1111 3.40 2SC 620 5.9 2SB 408 5.9 2SB 408 5.9 2SC 620 5.9 2SC 1080 4.40 2SC 1760 2.00 3SK 22 2.55 2SA 5645 5.9 2SB 406 5.9 2SC 644 5.9 2SC 1111 5.3.40 2SC 6186 5.7 2SS 548 565 1.10 2SC 686 5.9 2SC 6111 5.3.40 2SC 6186 5.7 2SS 548 565 1.10 2SC 686 5.9 2SC 6111 5.3.40 2SC 6186 5.7 2SS 548 566 1.10 2SB 407 7.0 2SC 686 5.9 2SC 1116 4.40 2SC 688 5.7 2SS 548 548 41 2.50 2SS 548 566 1.10 2SB 407 7.0 2SC 688 5.9 2SC 1116 4.40 2SC 6186 5.7 2SS 548 568 1.10 2SB 408 1.70 2SC 688 5.9 2SC 1116 4.40 2SC 6186 5.7 2SS 548 548 549 549 549 549 549 549 549 549 549 549	2SA 509	.70	2SB 324	.70	2SC 538A	.70	2SC 1060	2 25		.59		
25A 537		2.50	2SB 337	1.60	2SC 562	2.15	2SC 1061	1.40	2SC 1728	2.00		
\$\frac{25A}{25A}\$ \frac{25B}{50}\$ \frac{25D}{50}\$ \frac{25B}{25B}\$ 2								4.40	2SC 1730		2SK 68	1.30
\$28A 569		70								2.00		2.55
\$\frac{582}{28A}\$ \frac{562}{28B}\$ \frac		100				20						
\$\frac{584}{856}\$ \$\frac{564}{59}\$ \$\frac{564}{258}\$ \$\frac{564}{59}\$ \$\frac{564}{258}\$ \$\frac{564}{59}\$ \$\frac{564}{258}\$ \$\frac{564}{59}\$ \$\frac{564}{258}\$ \$\frac{564}{59}\$ \$\frac{564}{258}\$ \$\frac{564}{59}\$ \$\frac{110}{258}\$ \$\frac{564}{40}\$ \$\frac{7}{258}\$ \$\frac{40}{258}\$ \$\frac{256}{258}\$ \$\frac{110}{258}\$ \$\frac{256}{408}\$ \$\frac{15}{258}\$ \$\frac{110}{258}\$ \$\frac{256}{409}\$ \$\frac{1}{258}\$ \$\frac{10}{258}\$ \$\frac{15}{258}\$ \$\frac{110}{258}\$ \$\frac{15}{400}\$ \$\frac{15}{258}\$ \$1		59										
\$\frac{25A}{668}\$\$ \text{10}\$\$ \text{256}\$\$ \text{468}\$\$ \text{10}\$\$ \text{256}\$\$ \text{468}\$\$\$ \text{10}\$\$ \text{256}\$\$ \text{468}\$\$\$ \text{10}\$\$ \text{256}\$\$ \text{468}\$\$\$ \text{256}\$\$ \text{256}\$\$\$ \text{256}\$\$ \text{256}\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$\$ \text{256}\$\$\$\$ \text{256}\$\$\$\$\$ \text{256}\$\$\$\$\$\$ \text{256}\$\$\$\$\$ \text{256}\$\$\$\$\$\$ \text{256}\$\$\$\$\$\$\$ \text{256}\$\$\$\$\$\$\$\$ \text{256}\$\$\$\$\$\$\$\$\$\$ \text{256}\$	2SA 562	59										
\$\frac{2}{2}\$A 666 \$\frac{1}{4}\$A 0\$\frac{2}{2}\$B 443 \$\frac{1}{2}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 434 \$\frac{1}{2}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 434 \$\frac{1}{2}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 434 \$\frac{1}{2}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 60 \$\frac{1}{2}\$B 434 \$\frac{1}{2}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 60 \$\frac{1}{2}\$B 434 \$\frac{1}{2}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 60 \$\frac{1}{2}\$B 440 \$\frac{1}{7}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 60 \$\frac{1}{2}\$B 440 \$\frac{1}{7}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 60 \$\frac{1}{2}\$B 440 \$\frac{1}{7}\$C \$\frac{1}{2}\$C \$\frac{1}{2}\$B 60 \$\fr	25A 564A	59	2SB 405	.70	23C 645	.70	2SC 1116		2SC 1885	70		
2SA 6666 3.40 2SB 4434 1.70 2SC 668 59 2SC 1162 1.10 2SC 1961 1.10 2SC 4661 1.10 2SB 4434 1.20 2SC 668 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.8	2SA 565	1.10	2SB 407	1.40	2SC 650	1.30	2SC 1116A	4.90	2SC 1908	.59		
2SA 606				.70		.59	2SC 1124	1.30			3SK 45	2,50
\$28 A 824											MK 10	2.00
2SA 627 3.60 288 463 1.50 25C 6938 59 28C 1173 90 28C 1969 4.90 AN 2140 3.70 2SA 634 9.0 2SC 484 11 1.60 2SC 6938 1.95 2SC 1175 9.0 2SC 1975 4.40 2SC 484 1.00 2SC 484 1.00 2SC 484 1.00 2SC 1975 4.00 2SC 1975 4.00 2SC 484 1.00 2SC 484 1.00 2SC 1975 4.00 2SC 484 1.00 2SC 484 1.00 2SC 1975 4.00 2SC 484 1.00 2SC 484 1.00 2SC 1975 4.00 2SC 484 1.00 2SC 484 1.00 2SC 1975 4.00 2SC 484 1.00 2SC 484 1.00 2SC 1975 4.00 2SC 484 1.00 2SC 484					200 000	2.40		50			100	
2SA 628 59 2SB 471 1.60 2SC 686 190 2SC 1177 14.00 2SC 1973 1.10 AN 3 180 2SA 634 59 2SB 634 72 2.80 2SC 706 A 190 2SC 1177 14.00 2SC 1973 1.40 B 51 3.40 2SA 640 59 2SB 474 1.20 2SC 710 59 2SC 1177 14.00 2SC 2028 390 2SA 634 70 2SB 492 1.00 2SC 711 59 2SC 1189 1.40 2SC 2028 3.90 2SA 633 70 2SB 509 1.90 2SC 711 59 2SC 1219 70 2SC 2029 3.90 2SA 659 3.90 2SB 509 1.90 2SC 717 59 2SC 1219 70 2SC 2029 3.90 2SA 656 70 2SB 556 1.30 2SC 730 4.40 2SC 1226 1.00 2SC 2089 3.90 2SA 668 70 2SB 556C 1.30 2SC 730 4.40 2SC 1226 1.00 2SC 2089 3.90 2SA 673 70 2SB 556C 1.30 2SC 730 4.40 2SC 1226 1.00 2SC 2089 3.90 2SA 673 70 2SB 556C 1.30 2SC 730 4.40 2SC 1226 1.00 2SC 2089 3.90 2SA 673 70 2SB 556C 1.30 2SC 730 4.40 2SC 1226 1.00 2SC 730 2SA 683 70 2SB 5280 1.60 2SC 734 59 2SC 1237 4.25 2SD 28 2.80 2SA 740 2SS 288 59 40 2SC 736 59 2SC 1237 4.90 2SD 75 1.10 1A 7055P 3.00 2SA 683 70 2SB 5280 1.60 2SC 734 59 2SC 1239 3.50 2SD 75 1.10 1A 7056P 1.50 2SA 683 70 2SB 559 4.90 2SC 738 59 2SC 1237 4.90 2SD 91 1.50 1A 7064P 1.50 2SA 685 70 2SB 559 4.90 2SC 738 59 2SC 1307 4.90 2SD 91 1.50 1A 7064P 1.50 2SA 685 70 2SB 559 4.90 2SC 738 59 2SC 1307 4.90 2SD 91 1.50 1A 7064P 1.50 2SA 685 70 2SB 558 14.40 2SC 756 2.80 2SC 1377 5.90 2SC 1377 5.90 2SC 1377 3.90 2SC 738 59 2SC 1377 4.90 2SD 11 1.50 1A 7064P 1.50 2SA 695 70 2SB 554 10 2SC 778 5.50 2SC 1377 5.90 2SC 1378 59 2SD 11 18 3.00 1A 7064P 1.50 2SA 735 59 2SC 1377 4.00 2SC 738 59 2SC 1377 4.90 2SD 12 1.50 1A 7064P 1.50 2SA 735 59 2SC 1377 4.00 2SC 738 59 2SC 1377 4.00 2SC 738 59 2SC 1378 59 2SD 138 3.00 1A 70 2SC 738 1.50 1A 7064P 1.50 1A 70					250 004	1,40					1C	
2SA 628 59											AN 2140	3.40
28A 634 90 28B 472 2.80 28C 708A 190 28C 1117 14.00 28C 2092 3.90 8A 511 3.40 28C 208A 643 70 28B 492 1.00 28C 711 59 28C 1211 0 70 28C 2029 3.90 8A 521 3.70 28A 683 4.90 28B 507 1.60 28C 712 59 28C 1213 70 28C 2091 3.60 4.400 3.70 28A 683 4.90 28B 507 1.60 28C 712 59 28C 1213 70 28C 2091 3.60 4.400 3.70 28A 685 4.90 28B 507 1.60 28C 712 59 28C 1213 70 28C 2091 3.60 4.400 3.70 28A 6872 70 28B 526C 1.30 28C 732 4.40 28C 2012 3.90 TA 7045M 3.00 19 28A 672 70 28B 526C 1.30 28C 732 59 28C 1223 4.25 28D 28 2.80 8N 7400 19 28A 678 70 28B 527 1.90 28C 733 59 28C 1239 3.50 28C 728 3.90 8N 7400 19 28A 688 4.70 28B 536 1.60 28C 734 59 28C 1239 3.50 28C 738 59 28C 1239 3.00 28A 688 4.70 28B 536 4.90 28C 736 59 28C 1239 3.50 28D 71 160 TA 7065M 1.90 28A 686 70 28B 536 4.90 28C 736 59 28C 1336 4.00 28C 2089 3.90 8N 7400 8D 28A 686 70 28B 536 4.90 28C 736 59 28C 1239 3.00 160 TA 7065M 1.90 28A 686 70 28B 536 4.90 28C 736 59 28C 1336 4.00 28D 91 1.60 TA 7065M 1.90 28A 686 70 28B 536 4.90 28C 736 59 28C 1336 4.00 28D 91 1.60 TA 7065M 1.90 28A 687 70 28B 551 1.40 28C 736 59 28C 1336 59 28C 1336 59 28C 136 6.00 28C 736 59 28C 1336 59	2SA 628	59										
2SA 640	2SA 634	.90	288 472	2.80	25C 708A	1.90	25C 1177	14.00	2SC 1975	4.40		
28A 643		50	2SB 474	1.20	2SC 710	59	2SC 1189	1.40	2SC 2028	.90		
2SA 6899		70			280 711							
\$\frac{25A}{686}\$ \frac{4}{90}\$ \text{25A}{25A} \frac{25B}{66}\$ \frac{7}{10}\$ \text{25A}{25A} \frac{25B}{66}\$ \text{70}\$ \text{25C}{25A} \frac{25B}{66}\$ \text{70}\$ \text{25C}{25A} \frac{25B}{66}\$ \text{70}\$ \text{25C}{25A}\$ \text{25C}{25A}\$ \text{25C}\$ \text{25C}{25A}\$ \text{25C}\$ \text{25C}\$ \text{25C}\$ \text{25C}\$ \text{25C}\$ \text{25C}\$ \text{25C}\$		40										
25A 6866 70 28B 514 1.90 28C 730 4.40 28C 7226 1.00 28C 2988 9.90 8A 7480 80 28A 672 70 28B 526C 1.30 28C 733 59 28C 1237 4.25 28D 28 2.80 3A 7480 80 28C 23A 678 70 28B 5280 1.60 28C 734 59 28C 1239 3.50 28C 75 1.10 1A 7055P 3.00 28A 68B 70 28B 5280 1.60 28C 734 59 28C 1239 3.50 28C 75 1.10 1A 7055P 3.00 28A 68B 70 28B 539 4.90 28C 736 59 28C 1307 4.90 28D 91 1.60 1A 7054P 1.50 28A 68B 70 28B 539 4.90 28C 738 59 28C 1307 4.90 28D 92 1.50 1A 7064P 1.50 28A 695 70 28B 541 4.40 28C 756 2.80 28C 1376 4.90 28D 92 1.50 1A 7064P 1.50 28A 695 70 28B 544 1.00 28C 756 2.80 28C 1376 4.90 28D 92 1.50 1A 7064P 1.50 28A 695 70 28B 544 1.00 28C 756 2.80 28C 1376 4.90 28D 92 1.50 1A 7064P 1.50 28A 706 1.60 28B 5518 70 28C 773 70 28C 1317 59 28D 142 2.00 1A 7251P 3.50 28A 718 70 28B 505 4 1.90 28C 773 70 28C 1317 59 28D 142 2.00 1A 7251P 3.50 28A 719 70 28B 505 4 1.90 28C 773 70 28C 1317 59 28D 142 2.00 1A 7251P 3.50 28A 720 70 28B 600A 7.00 28C 775 1.50 28D 1327 59 28D 142 2.00 1A 7251P 3.50 28A 720 70 28C 80A 59 28C 778 3.60 28C 1376 59 28D 142 2.00 1A 7251P 3.50 28A 720 70 28C 80A 59 28C 778 3.60 28C 1376 59 28D 142 2.00 1A 7251P 3.50 28A 720 70 28C 80A 59 28C 778 3.60 28C 1376 59 28D 142 2.00 1A 7251P 3.50 28A 720 70 28C 80A 59 28C 778 3.60 28C 1380 1.00 28C 778 1.50 28C 788											LA 4400	3.70
2SA 672 70 2SB 526C 1.30 2SC 732 59 2SC 1237 4.25 2SD 28 2.80 50 A7 1390 60 2SC 733 59 2SC 1239 3.50 2SC 75 1.10 7A 7055 3.00 2SA 678 70 2SB 526 1.60 2SC 734 59 2SC 1239 70 2SD 11 160 7A 7055 3.00 2SA 683 70 2SB 536 1.60 2SC 734 59 2SC 1306 4.0 2SD 91 160 7A 7055 3.00 2SA 685 70 2SB 536 1.40 2SC 735 59 2SC 1307 4.90 2SD 91 160 7A 7054 1.50 2SA 685 70 2SB 541 4.40 2SC 756 2.80 2SC 1317 4.90 2SD 91 160 7A 7064 1.50 2SA 697 70 2SB 541 4.40 2SC 756 2.80 2SC 1317 4.90 2SD 118 3.00 7A 7064 1.50 2SA 697 70 2SB 554 1.00 2SC 756 2.80 2SC 1317 4.90 2SD 118 3.00 7A 7064 1.50 2SA 705 1.60 2SB 5518 70 2SC 756 2.80 2SC 1316 59 2SC 1312 2.00 2SC 756 2SD 125 2SA 705 1.00 2SB 5518 70 2SC 757 1.50 2SC 1317 59 2SD 142 2.00 2SC 756 2SD 2SA 705 1.00 2SC 756 2SD 130 1.50 2SD 140 2SC 756 2SD 2SA 705 1.00 2SC 756 2SD 130 1.50 2SD 140 2SC 756 2SD 2SA 705 1.00 2SC 756 2SD 130 1.50 2SD 140 2SC 756 2SD 2SA 725 59 2SC 183 59 2SC 754 2SC 1317 2SC 1317 59 2SD 145 2SD 186 2SD 2SA 725 59 2SC 183 59 2SC 754 2SC 754 2SD 130 1.50 2SD 180 2SD 180 2SD 180 2SA 725 59 2SC 183 59 2SC 756 2SD 130 2SC 756 2SD 130 2SC 756 2SD 130 1.50 2SD 180 2						26					TA 7045M	3.00
25A 672 70 25B 526C 1.30 25C 732 59 25C 1239 3.50 25C 730 50 25C 734 25C 736 70 25B 527 190 25C 733 59 25C 1239 3.50 25C 736 50 25C 736		70									SN 7400	19
28A 673 70 28B 5280 1.60 25C 734 59 25C 1307 4.90 25D 1 1.60 1.60 TA 70650P 1.60 28A 68B 70 28B 539 4.90 28C 738 59 28C 1307 4.90 25D 21 1.50 TA 70650P 1.60 28A 68A 70 28B 549 4.90 28C 738 59 28C 1307 4.90 25D 21 1.50 TA 70640P 1.90 28A 695 70 28B 541 4.40 28C 756 2.80 28C 1307 4.90 25D 21 1.50 TA 70640P 1.90 28A 695 70 28B 541 4.40 28C 756 2.80 28C 1307 4.90 25D 21 1.50 TA 70640P 1.90 28A 695 70 28B 548 70 28C 758 2.80 28C 1307 4.90 25D 21 1.50 TA 70640P 1.90 28A 706 1.60 28B 5518 70 28C 778 7.0 28C 1317 5.9 25D 142 2.00 UPC 50242 1.80 28A 710 7.0 28C 351 7.0 28C 1317 5.9 25D 142 2.00 UPC 50242 1.80 28A 710 7.0 28C 603 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	2SA 672	.70			2SC 732	.59	2SC 1237	4.25				
28A 678 70 28B 5280 1.60 25C 734 59 28C 1279 70 28D 90 1.60 7A 70620 1.60 28A 684 70 28B 536 1.60 25C 735 59 28C 1306 4.40 28D 91 1.60 TA 7061Ap 1.50 28A 685 70 28B 539 4.90 28C 738 59 28C 1307 4.90 28D 92 1.50 TA 7061Ap 1.50 28A 697 70 28B 554 1.40 28C 756 2.80 28C 1312 59 28D 138 1.00 TA 7061Ap 1.50 28A 697 70 28B 554 10.00 25C 763 59 28C 1312 59 28D 130 1.20 TA 7062A 1.50 28A 706 1.60 28B 5618 70 28C 773 70 28C 738 59 28C 1314 59 28D 130 1.20 TA 7308P 3.80 28A 715 1.40 28B 5618 70 28C 773 70 28C 1317 59 28D 130 1.20 UPC 502A2 28A 715 1.40 28B 5618 70 28C 773 70 28C 1316 59 28D 130 1.20 UPC 502A2 1.80 28A 720 70 25B 600A 7.00 28C 775 1.95 28C 1316 59 28D 142 2.80 UPC 502A2 28A 720 70 25B 600A 7.00 28C 776 2.85 28D 130 1.50 28D 140 28C 28A 725 59 28C 183 59 28C 781 2.80 28C 1342 59 28D 180 2.50 PLOOMES 28A 725 59 28C 183 59 28C 781 2.80 28C 1342 59 28D 180 2.50 PLOOMES 28A 725 59 28C 281 4.40 28C 781 2.80 28C 1345 59 28C 136 2.50 PLOOMES 28A 725 59 28C 281 4.40 28C 781 2.80 28C	2SA 873	70	2SB 527	1,90	2SC 733	.59	2SC 1239	3.50	250 75	1.10		
2SA 683 70 2SB 539 490 2SC 735 59 2SC 1307 4,90 2SD 91 160 7A 7061AP 1.90 2SA 695 70 2SB 541 4.40 2SC 756 2.80 2SC 1307 4,90 2SD 92 1.50 7A 7061AP 1.90 2SA 695 70 2SB 554 10.00 2SC 756 2.80 2SC 1312 59 2SD 130 1.00 7A 7061AP 1.90 2SA 706 1.60 2SB 554 10.00 2SC 756 5.90 2SC 1313 59 2SD 130 1.00 7A 7061AP 1.90 2SA 710 1.60 2SB 554 10.00 2SC 773 70 2SB 554 10.00 7SC 756 2.80 2SC 1314 59 2SD 130 1.00 7A 7061AP 1.90 2SA 710 1.00 2SC 756 2.80 2SC 1316 2.00 7A 7361AP 1.90 2SA 710 70 2SB 564 90 2SC 773 70 2SC 1317 59 2SD 142 2.00 7A 7361AP 1.80 2SA 715 70 2SC 1316 2.00 7A 7361AP 1.80 2SA 715 70 2SC 51316 2.00 7A 7361AP 1.80 2SA 715 70 2SC 51316 2.00 7A 7361AP 1.80 2SA 715 70 2SC 51314 2.00 7A 7361AP 1.80 2SC 773 1.95 2SC 1313 7.59 2SD 142 2.00 7A 7361AP 1.80 2SA 715 70 2SC 51316 2.00 7A 7361AP 1.80 2SC 774 1.60 2SC 1314 5.9 2SC 1314 2.80 PLL 02A 8.80 PLL 02A 8.80 2SA 721 70 2SC 5600A 7.00 2SC 776 2.85 2SC 1330 1.50 2SC 136 2.50 2SC 184 2.80 PLL 02A 8.80 2SC 783 2SC 2SC 1304 2.80 PLL 02A 8.80 2SC 783 2SC 2SC 134 2.80 2SC 134 2.80 PLL 02A 8.80 2SC 783 2SC 2SC 134 2.80 2SC 134 2.80 PLL 02A 8.80 2SC 783 2SC 2SC 134 2.80 2SC 134 2.80 2SC 134 2.80 2SC 134 2.80 2SC			2SB 528D	1.60	2SC 734	.59	2SC 1279	.70	2SD 90	1.60		
28A 6854 70 28B 539 4.90 28C 738 59 28C 1307 4.90 28D 92 1.50 7A 7082 1.90 28A 6867 70 28B 5541 4.40 28C 756 2.80 28C 1312 59 28D 130 1.20 7A 72087 3.90 28A 6867 70 28B 554 10.00 28C 763 59 28C 1313 6 59 28D 130 1.20 7A 72087 3.90 28A 715 1.40 28B 5618 70 28C 773 70 28C 737 70 28C 737 70 28B 555 1.90 28C 734 70 28C 737 70 70 28C 739 70 70 28C 739 70 70 70 70 70 70 70 70 70 70 70 70 70									10.020			
28A 695 70 28B 541 4.40 28C 756 2.80 28C 1312 59 28D 118 3.00 7A 720pp 3.90 28A 706 160 28B 554 10.00 28C 763 59 28C 13137 59 28D 142 2.00 7A 7310p 3.90 28A 7106 160 28B 5518 70 28C 773 70 28B 564 90 28C 773 70 28C 1317 59 28D 142 2.00 7A 7310p 3.90 28A 710 70 28B 564 90 28C 774 160 28C 1314 59 28D 142 2.00 7A 7310p 3.96 28A 719 70 28B 564 90 28C 774 160 28C 1316 59 28D 142 2.00 7A 7310p 3.96 28A 719 70 28B 565 1,90 28C 775 1,95 28C 13137 59 28D 142 2.00 PLL 02A 8.80 28A 721 70 28B 600A 7.00 28C 776 2.85 28C 1324 1.50 28C 1316 2.50 28A 725 59 28C 183 59 28C 778 3.60 28C 1342 59 28D 180 2.50 180 2.50 180 2.50 28A 725 59 28C 184 59 28C 783 8.60 28C 1342 59 28C 180 28C 134 2.80 28C 134 2.												
2SA 697 70 2SB 554 10.00 2SC 763 59 2SC 1313G 59 2SD 130 1.20 17.7.230P 3.85 2SA 766 1.60 2SB 5618 70 2SC 773 70 2SC 737 70 2SC 1317 59 2SD 143 2.80 UPC 582 H2 1.80 2SA 715 1.40 2SB 564 80 2SC 774 1.60 2SC 1316 59 2SD 143 2.80 UPC 582 H2 1.80 2SA 719 70 2SB 595 1.90 2SC 775 1.95 2SC 1327 59 2SD 180 2.50 180 2SA 725 770 2SC 183 59 2SC 766 2.85 2SC 1330 1.50 2SD 180 2.50 180 2SA 725 59 2SC 183 59 2SC 767 2.85 2SC 1327 59 2SD 180 2.50 180 2SA 725 59 2SC 183 59 2SC 781 2.65 2SC 1327 59 2SD 180 2.50 180 2SA 725 59 2SC 281 4.40 2SC 781 2.65 2SC 1324 59 2SD 188 3.00 1S 186 4.52 2SA 725 59 2SC 281 4.40 2SC 781 2.65 2SC 1344 59 2SC 180 3.00 1S 186 4.52 2SA 725 59 2SC 281 4.40 2SC 781 2.65 2SC 1345 59 2SC 1327 4.40 1S 9S3 4.52 2SA 725 2.65 2SC 369 9.25 2SC 781 2.65 2SC 1345 10.00 2SD 227 1.40 1S 9S3 4.52 2SA 725 2SC 369 9.70 2SC 785 1.00 2SC 1380 1.00 2SD 221 1.90 1S 1007 4.52 2SA 725 2SC 725 2SC 725 2SC 729 3.60 2SC 1325 1.00 2SC 727 59 2SC 728 1.00		.70									TA 7062	1.90
28A 697 70 28B 584 10.00 28C 763 59 28C 1313 59 28D 130 12 20 UPC 59242 1.60 28A 715 1.40 28B 5618 70 28C 773 70 28C 1316 59 28D 143 2.60 UPC 59242 1.60 28A 715 1.40 28B 564 90 28C 774 1.60 28C 1316 59 28D 143 2.60 UPC 59242 1.60 28A 719 70 28B 650A 7.00 28C 775 1.95 28C 1327 59 28D 143 2.60 UPL 02A 8.80 28A 720 70 28B 650A 7.00 28C 776 2.85 28C 1327 59 28D 180 2.50 D100 28C 725 28A 725 59 28C 183 59 28C 781 2.85 28C 1327 59 28D 187 59 184 1.00 28A 725 59 28C 183 59 28C 781 2.85 28C 1327 59 28D 187 59 184 1.00 28A 725 59 28C 281 4.40 28C 781 3.80 28C 1342 59 28D 187 59 184 1.00 28A 725 59 28C 281 4.40 28C 781 59 28C 1345 59 28D 187 59 184 1.00 28A 725 59 28C 281 59 28C 781 2.85 28C 1345 1.00 2		70				2.00					TA 7205P	3.90
25A 7106 1.60 28B 5618 70 28C 773 70 28C 7317 .59 28D 142 2.00 UPC 502H2 1.80 25C 713 1.40 28B 5644 80 28C 773 1.50 28C 1316 2.50 28D 178 1.40 28B 564 80 28C 775 1.95 28C 1316 2.50 28D 178 1.40 28C 28A 720 70 28B 600A 7.00 28C 775 1.95 28C 1327 5.9 28D 178 1.40 2A 8.80 28A 720 70 28C 83 .59 28C 778 3.60 28C 1484 5.9 28D 178 1.50 28D 178 1.40 28C 28A 725 59 28C 284 2.80 28C 728 3.80 28C 728 3.60 28C 1484 5.9 28D 188 3.00 18 84 1.00 28A 725 59 28C 284 2.80 28C 284 3.80 28C 285 3.80 2						.59						
2SA 715	2SA 706	1.60			2SC 773				250 142			
2SA 719	2SA 715	1.40	2SB 564	.90	250 774	1.60	2SC 1316	.59	2SD 143	2.80		
2SA 720		70	2SB 595	1.90	2SC 775	1.95	250 1327	59	2SD 178		PLL UZA	0.00
2SA 725		70				2.85					DIODES	i .
2SA 7255 59 2SC 184 59 2SC 781 2.65 2SC 7344 5.9 2SC 1360 5.9 2SC 185 3.00 15.186		70										
28A 726 59 28C 281 59 28C 783R 3.80 28C 03440 59 28C 295 140 15322 45 28A 733 59 28C 284 4.0 28C 784 59 28C 1360 1.00 28D 222 1.90 18 190 45 28A 734 74 2.85 28A 736 28A 740 2.85 28A 740 2.85 28C 399 70 28C 789 1.00 28C 1360 1.00 28D 222 1.90 18 1007 45 28A 746 74 4.00 18 28C 277 59 28C 789 1.00 28C 1360 1.00 28D 222 1.90 18 1007 45 28A 746 74 4.00 18 28C 277 59 28C 789 1.00 28C 1360 1.00 28D 224 1.90 18 1007 45 28A 746 74 4.00 18 28C 277 59 28C 789 1.00 28C 1364 1.40 28D 227 5.9 18D 24 1.00 18 1007 45 28A 750 1.00 18 1007 45 28A 750 1.00 18 1007 45 28C 277 59 28C 28B 5.00 28C 1364 1.40 28D 227 5.9 18 1211 4.00 18 1007 45 28A 756 1.00 18 1007 45 28C 277 59 28C 28B 5.00 28C 1364 1.40 28D 227 5.9 18 1211 4.00 18 1007 45 28A 756 1.40 28C 277 5.9 28C 28B 5.00 28C 1364 1.00 18 1658 3.2 28A 756 1.40 28C 274 5.9 28C 28B 5.00 28C 28B 28C 28												
2SA 733 59 2SC 284 1.40 2SC 784 59 2SC 789 1.00 2SC 785 70 2SC 789 1.40 2SD 227 4.40 15.953 45. 2SA 740 2.65 2SG 367 90 2SC 785 70 2SC 789 1.00 2SC 787 70												
2SA 740 2.65 29C 367 90 29C 785 7.0 2SC 1360 1.00 2SD 222 1.90 15 1007 45 2SA 746 3.70 2SC 369 7.0 2SC 786 1.00 2SC 1362 59 2SD 222 1.90 15 1007 45 2SA 746 4.40 2SC 371 59 2SC 793 2.80 2SC 1374 49 2SD 222 58 15 1211 45 2SA 750 59 2SC 372 59 2SC 85 59 2SC 1374 49 2SD 234 1.00 15 1585 .32 2SA 756 1.40 2SC 374 59 2SC 826 59 2SC 1333 59 2SC 2362 59 2SC 826 59 2SC 1402 3.70 2SD 287 1.00 15 1588 .32 2SA 756 1.40 2SC 381 59 2SC 826 59 2SC 1402 3.70 2SD 383 1.00 15 1588 .32 2SA 758 58 2SC 381 59 2SC 828 <												
2SA 7444 3.70 2SC 369 .70 2SC 769 1.00 2SC 1362 .59 2SD 224 1.90 1S 1209 .45 2SA 7456 14.0 2SC 371 .59 2SC 799 3.60 2SC 1364 1.40 2SD 227 .59 1S 1211 .45 2SA 747 5.60 2SC 373 .59 2SC 799 3.60 2SC 1373 .49 2SD 234 1.00 1S 1555 .32 2SA 756 1.40 2SC 373 .59 2SC 826 5.59 2SC 1400 .59 2SC 250 254 .50 01 ST 1588 .32 2SA 756 1.40 2SC 374 .59 2SC 826 .59 2SC 1400 .59 2SD 235 1.00 1S 1586 .32 2SA 756 5.60 2SC 360 .59 2SC 826 .59 2SC 1400 .59 2SD 287 .70 1S 1895 .45 2SA 774 .59 2SC 381 .59 2SC 882 .59 2SC 1402 3.70 2SD 313 1.00 1S 12076 .45 2SA 774 .59 2SC 381 .59 2SC 882 .59 2SC 883 .	2SA 733	.59				.59				4,40	15 953	.45
2SA 7444 3.70 2SC 369 .70 2SC 769 1.00 2SC 1362 .59 2SD 224 1.90 1S 1209 .45 2SA 7456 14.0 2SC 371 .59 2SC 799 3.60 2SC 1364 1.40 2SD 227 .59 1S 1211 .45 2SA 747 5.60 2SC 373 .59 2SC 799 3.60 2SC 1373 .49 2SD 234 1.00 1S 1555 .32 2SA 756 1.40 2SC 373 .59 2SC 826 5.59 2SC 1400 .59 2SC 250 254 .50 01 ST 1588 .32 2SA 756 1.40 2SC 374 .59 2SC 826 .59 2SC 1400 .59 2SD 235 1.00 1S 1586 .32 2SA 756 5.60 2SC 360 .59 2SC 826 .59 2SC 1400 .59 2SD 287 .70 1S 1895 .45 2SA 774 .59 2SC 381 .59 2SC 882 .59 2SC 1402 3.70 2SD 313 1.00 1S 12076 .45 2SA 774 .59 2SC 381 .59 2SC 882 .59 2SC 883 .	2SA 740	2.65	2SC 367	90	2SC 785	.70	2SC 1360	1.00	2SD 223	1.90	1S 1007	45
2SA 745F				.70		1.00	250 1362					
2SA 747 5.60 2SC 372 59 2SC 759 3.60 2SC 1377 4.90 2SD 234 1.00 1S 1555 .32 2SA 756 59 2SC 373 59 2SC 855 59 2SC 1385 59 2SD 250 1.00 1S 1588 .32 2SA 756 1 40 2SC 374 59 2SC 826 59 2SC 1400 59 2SD 267 .70 1S 1885 .45 2SA 758 5,80 2SC 380 59 2SC 829 59 2SC 1402 3,70 2SD 315 1,10 1S 2076 45 2SA 774 59 2SC 381 59 2SC 839 59 2SC 1403 3,70 2SD 315 1,20 1S 2093 45 2SA 774 59 2SC 381 59 2SC 839 59 2SC 1403 3,70 2SD 315 1,20 1S 2093 45 2SA 776 70 2SC 382 59 2SC 826 1,10 1S 2053 45 2SA 814 1,90 2SC 3												
2SA 756 58 2SC 373 59 2SC 815 59 2SC 14383 59 2SD 235 1.00 1S 1588 32 2SA 756 1 40 2SC 374 59 2SC 856 59 2SC 1402 3.70 2SD 235 3.70 1S 1898 45 2SA 758 5.80 2SC 380 59 2SC 859 59 2SC 1402 3.70 2SD 312 1.10 1S 2078 45 2SA 774 59 2SC 381 59 2SC 858 59 2SC 1402 3.70 2SD 315 1.00 1S 2078 45 2SA 774 1.10 2SC 382 59 2SC 858 59 2SC 1403 3.70 2SD 315 1.00 1S 2078 45 2SA 774 5.70 2SC 382 59 2SC 858 59 2SC 1409 1.10 2SD 355 1.10 1S 2078 45 2SA 776 70 2SC 387 59 2SC 870 59 2SC 1448 2.80 2SD 355 1.10 1S 2473 45 2SA 814 1.90 2SC 384 59 2SC 871 59 2SC 1448 1.10 2SD 3570 1.00 1N 80												
2SA 756 140 2SC 374 59 2SC 826 59 2SC 1400 59 2SD 287 3.70 1S 1885 45 2SA 758 580 2SC 380 59 2SC 829 59 2SC 1402 3.70 2SD 313 10 1S 2078 45 2SA 774 59 2SC 381 59 2SC 838 59 2SC 1403 3.70 2SD 315 120 1S 2078 45 2SA 774 1.00 2SC 382 59 2SC 639 59 2SC 1403 3.70 2SD 315 120 1S 2093 45 2SA 796 7.0 2SC 387 59 2SC 639 59 2SC 1449 1.10 2SD 325 1.10 1S 2473 45 2SA 796 7.0 2SC 387 59 2SC 870 59 2SC 1448 1.10 2SD 357D 1.00 1N 34 25 2SA 814 1.90 2SC 384 59 2SC 871 59 2SC 1448 1.10 2SD 357D 1.00 1N 80 25												
2SA 776						.59						
2SA 776						-59					15 1885	.45
2SA 774 59 2SC 381 59 2SC 838 59 2SC 838 59 2SC 8403 3.70 2SD 315 1.20 15 2093 45 2SA 7777 1.00 2SC 382 59 2SC 839 59 2SC 1449 1.10 2SD 325 1.10 15 2473 55 2SA 786 70 2SC 387 59 2SC 870 59 2SC 1444 2.80 2SD 355D 1.10 1N 34 25 2SA 814 1.90 2SC 384 59 2SC 871 59 2SC 1448 1.10 2SD 357D 1.00 1N 80 25	2SA 758	5.80	2SC 380	59	2SC 829	59	250 1402	3.70	250 313	04.1	15 2076	
25A 777 1:00 25C 362 59 25C 639 59 25C 1449 1:10 25D 325 1:10 15 2473 45 25A 796 7:0 25C 367 59 25C 670 59 25C 1448 2:80 25D 357D 1:00 1N 34 25 25C 86 1:10 1N 34 25 25C 871 59 25C 1448 1:10 25D 357D 1:00 1N 86 25			2SC 381	59		.59	2SC 1403	3.70				
2SA 796 .70 2SC 387 .59 2SC 870 .59 2SC 1444 2.80 2SD 356D 1.10 10.34 .25 2SA 814 1.90 2SC 394 .59 25C 871 .59 2SC 1448 1.10 2SD 357D 1.00 10 80 .25									2SD 325			
25A 814 1.90 28C 394 .59 25C 871 59 25C 1448 1.10 25D 357D 1.00 1N 60 25												
		1,00										
	KOW HIA									1.00	164 00	25

IMMEDIATE DELIVERY WITHIN 48 HOURS

PRICES MAY CHANGE WITHOUT NOTICE

ON ALL TRANSISTORS IN STOCK
Minimum order \$5.00 Ohio residents add 4% sales tax.
Add \$1.00 postage and handling. Quantity discount prices.
ASK FOR OUR COMPLETE PRICE LIST
MANUFACTURER INQUIRIES WELCOMED
All Parts Guaranteed Against Factory Defects

GOD ORDERS WELCOMED
FUJI-SVEA ENTERPRISE
DIV. OF PUJI-SVEA INCORPORATED
Dept. Popular Electronics
P.O. Box 40325
Cincinnati, OH 45240
(513)874-0220

874-0223

Pushbutton AM AUTO RADIO

1099 •Mounts In Or Under-Dash •Volume & Tone

NiCad Rechargeable "AA" Cell
PEN-LITE BATTERY

BA-341 *12 Volt

Volume Controls, Pkg. of 12 Assorted. VC-274	59¢
Hardware 1 Lb. Assorted, HW-076.	50¢
Capacitors, Low Voltage Elect. 50 Pc. CD-407	. 30
	59€ 79€
2" PM Speaker, 8-10 0hm. 2 for 1.00. SS-295	
	79¢
8-Track Tage, 40 Migute TA-907	
8-Track Tape, 40 Minute, TA-907 Earphones, 8 Ohm, Less Cord, Pkg. of 4, PH-405	494
Singer 12 Digit MOS Calculator Chip With Data, XM-635 . 1	79
UHF Varactor luner with Data Sheet XM-6/6	1,43
Ceramic Capacitors, Pkg. of 100, CC-211	,00
RED LED, 2 Volt, 10mA. Pkg. of 5. PL-233	59¢
LCO 3½ Digit Display, XM-371	79
709 High Gain OP AMP, RE-131	/94
Slide Switches, 10 Assorted, SW-836	996
Famous Brand Stereo Receiver With Built-In B-Track Tap	100
Player RA-598 69	nn
Player. RA-598 69 Ni-Cad Battery Pack (2 "AA" Size Cells). BA-359 2 Ni-Cad Battery Pack (3 "AA" Size Cells). BA-327 3	50
Ni-Cad Battery Pack (3 "AA" Size Cells), BA-327 3	.50
Ni-Cad Battery 1.2 Volt at 1.5 Amp/Hr. BA-348	.75
Ni-Gad Battery 1,2 Volt at 2 Amp/Hr, BA-349	25
Mallory Duracell Photo Type PX-825. BA-323	.50
Cassette Laplel Mike, 3.5mm Plug, MM-174	.00
3" Recording Tape, Pkg. of 5 (125" to 300"), TA-928 1 Slidemount For Auto Stereo or CB, AU-149	.00
Slidemount For Auto Stereo or CB, AU-149	.99
6 to 12 Volt DC Converter, 6V. Acc. On 12V. Batt. AU-297 . 4 650 RPM Motor, 51/2" Shaft, 120V. AC. MO-265	.33
9.6VDC Motor, 4 Step Shaft, MO-365	nn.
4000 RPM 117V AC/DC Motor MO-395	79
18 RPM Geared Motor, 120VAC. MO-409	59
TV Tuner Motor, 14 RPM, 120VAC, MO-392	.59
TV Tuner Motor, 14 RPM, 120VAC, MO-392	.49
3½" Digit L-C Display, XM-371	.75
Sperry 9 Digit Display, 180VDC XM-643	.00
RED LED, Pkg. of 5. Pt233 20 Key Calculator Keyboard, XM-339	.69
20 Key Calculator Keyboard, XM-339	.50
Solder Type Terminal Strips, Pkg. of 40. XM-501	,00
Assorted Knobs, Kit of 25, KN-030	CDA
.3" 7 Seg. L.E.D. Comm. Anode, Green, XM-341	
3" 7 Seg. L.E.D. Comm. Anode, Red. XM-370	30
.3" 7 Sed, L.E.D. Comm, Anode, Yellow, XM-342	.99
100 MFO, Elect. Capacitor, 50 VDC. CC-216	99c
12K Ohm Globar Resistor, RS-241	i9t
Mini Poly-Styrene Caps. 500 pf. 125V, Pkg. of 5. CC-234	59¢
	59¢
12 Digit Calculator IC Chip, Data Incl. XM-330 1	.49
2" Waterproof Speaker, B Ohms. SP-471	.49
80-40-20 MFD: 150V. Elect. Cap. CC-144	9¢
100-150 MFD* 150V. Elect. Cap. CC-144 100-150 MFD* 150-50V Elect. Cap. CC-213 3VDC Buzzer, 11/6" Diameter. XM-756	59¢
Wire Terminal Lug, 50 Pcs. Solderless, XM-735	10.
100mA Selenium Rect. 130VAC RF-117	394
100mA. Selenium Rect. 130VAC, RE-117 Output Transistor, 25B474, to-66. TR-147 8-Track Tape Deck Chassis, Includes Pre-Amp. 117VAC., J	.29
8-Track Tape Deck Chassis, Includes Pre-Amp. 117VAC	ust
Add Cables, RA-604	.00
Telechron Digital Clock, 117VAC, SW-853	.99
20,000 MFD. 30VDC Capacitor, Computer Grade. CD-478 . 2	.00
600 MFD-360V. Photo Flash Capacitor, CO-475	/Uc
	_

0	SO	n. 26 pt. I-7 Akro	0 S. Fo	ronic rge Si 4432
NAME ADDE CITY Oty.		STATE	ZI Price Ea.	
		Postage :		

BASED ON OUR PLEDGE TO OFFER YOU THE LOWEST POSSIBLE PRICES ON PRIME TTL ICs, THIS MONTH WE HAVE REDUCED OUR ALREADY LOW PRICES, EVEN FURTHER, ON MANY ITEMS. HOWCOME? WE JUST NEGOTIATED A MULTI-MILLION UNIT CONTRACT FOR OUR INTERNATIONAL CUSTOMERS AND ARE HAPPY TO

EVERY IC PURCHASED FROM US TO BE OF PRIME QUALITY AND WITH ORIGINAL MANUFACTURER'S FULL MARKING AND BRAND SYMBOL NO RETESTS, FUNCTIONAL ONLYS, OR FALLOUTS AT ICC. IN ADDITION, OUR VOLUME DISCOUNT SCHEDULE ALLOWS YOU TO MIX ALL YOUR REQUIREMENTS FOR

PASS ON THE S	SAVINGS TO YOU.	AS ALWAYS, OF	COURSE, WE GU	RANTEE THAT	EVEN GREATER	SAVINGS.
	7470	74166	74LS09 23	74LS13970	74LS386	74\$257 1.15
7400 TTI	7472	74167 3.20	74LS1021	74LS15165	74LS390 1.65	74S258 1,15
7400 TTL	7473	74170 1.85	74LS1121	74LS15265	74LS393 . , 1.35	74S280 2.25
7400 S .14	7474	74173 1.10	74LS1227	74LS15366	74LS490 1.10	74\$287 3.20
7401 15	7475	74174 85	74LS13 40	74LS154 1.00	74LS670 2.29	74S289 3.55
7402 15	7476 29	74175 , .75	74LS14 85	74LS15562		74S300, 1.60
7403 15	7480	74176 69	74LS15	74LS15662	74000 TT	74S305 1.90
7404 16	7482 50	7417770	74LS20 23	74LS15762	74500 TTL	74S310 2.85
7405 , 16	7483 54	74178 1.20	74LS2123	74LS15870	74500 \$.35	74S312 1.05
7406	7485 80	74179 1.20	74LS2223	74LS16082	74S02 35	745313 1.55
7407	7486 27	74180 65	74LS26 ,	74LS16182	74S03	74S316 2.80
7408 17	7489 1.75	74181 1.75	74LS27	74LS16282	74504	745341 4.10
7409 17	7490 ,	7418275	74LS3023	74LS16382	74S05	745342 1.20
7410 15	7491 51	74184 1.75	74LS3230	74LS164	74S10	74S343 4.95
7411 ,	7492 40	74185 , 1.75	74LS3731	74LS16883	7451138	745346 1.25
7412	7493 40	74188 2.80	74LS38	74LS16983	74S15 ,38	74S362 2.15
7413	7494 60	74190	74LS4026	74LS170 1.60	74520	745387 , 4.70
7414 55	7495 60	74191	74LS4260	74LS173 1.00	74522	
7416	7496 60	74192 80	74LS4775	74LS17475	74\$3027	74C00 TTL
7417	7497 2.45	74193 80	74LS4872	74LS175 79	74S32 ,50	74000 TTE
7420 15	74107 29	74194 80	74LS5125	74LS181 2.50	74\$4035	74C00 \$.27
7421 17	74109	74195 49	74LS5425	74LS19090	74S5117	74C02
7423	74121	74196	74LS5525	74LS19190	74S64	74C0429
7425	74122	74197	74LS7335	74LS19290	74S65	74C08 29
7426	74123	74198 , . 1.30	74LS74	74LS19390	74574 58	74C10
7427 19	74125	74199 , . 1.30	74LS76 ,37	74LS194 , , .85	74511258	74C14 1.50
7430 , 15	74126	74251 1.00	74LS7836	74LS19550	74\$113 58	74C2027
7432	7413265	74279 49	74LS8375	74LS19680	74S11458	74C30
7437	74141	74283 1.00	74LS85 1.30	74LS19780	74S13275	74C32
743821	7414565	74290 59	74LS8636	74LS221 1.05	74S133	74C42 , , 1.50
7439	74147 , 1.50	74293 57	74LS9050	74LS25180	74513438	74C48 1.95
7440 15	74148 1.15	74298	74LS9250	74LS25380	74S13549	74C73, .75
7441	7415079	74365 62	74LS93 . ,50	74LS257 70	74\$13877	74C74 65
7442	74151 59	74366 62	74LS9585	74LS25870	74S139 1.50	74C7695
744355	74152 59	74367 , .62	74LS10735	74LS259 1.60	74S14047	74C83 , 1.50
7444	7415360	74368 62	74LS10935	74LS26034	74S1511.25	74C85 1.20
7445	74154		74LS11235	74LS266	74\$153 2.10	74C88 1.45
7446 62	7415565	74LS00 TTL	74LS11335	74LS27952	74S15775	74089 3.95
7447 57	74156 65		74LS114	74LS283 . , .72	74S158 1.25	74C90 1.10
7448 60	7415759	74LS00 S . 21	74LS12390	74LS29060	74S174, 1.50	74093 1.10
7450 15	74160	74LS0127	74L\$12546	74LS29590	74S175 1.45	74C95 1.30
7451 15	74161	74LS02 21	74LS12646	74LS29890	74\$189 2.75	74C107 80
7453	74162	74LS0321	74LS13272	74LS36552	74S194 1.75	74C151 2.75
7454 15	74163	74LS04 24	74LS133 . , .34	74LS366 52	74S200 3.25	74C154 2.70
7459 15	74164 79	74LS0524	74LS13635	74LS36752	74S206 3.75	74C157 2.00
7460 15	74165 90	74LS0823	74LS13870	74LS36852	74S25395	74C160 1.30

.36	74S257 1.15	74C161 1.90	VOLUME DISCOUNT SCHEDULE
1.65	74S258 1.15	74C162 1.90	
1.35	74S280 2.25	74C163 1.90	Merchandise Total Discount
1.10	745287 3.20	74C164 2.95	\$ 0.00-\$ 9.99NET
2.29	74S289 3.55	74C165 2.95	\$ 10.00-\$ 24.99 LESS 5%
	74\$300, 1.60	74C173 1.60	\$ 25.00-\$ 99.99 LESS 10%
T :	74S305 1.90	74C174 1.95	\$ 100.00-\$499.99 LESS 15%
ΤL	74S310 2.85	74C175 1.95	\$ 500.00-\$999.99 LESS 20% \$1000.00 and Up LESS 25%
.35	74S312 1.05	74C192 2.00	31000.00 and 0p LE33 25%
.35	74S313 1.55	74C193 2.25	
.35	74S316 2.80	74C195 2.25	STANDARD SHIPPING CHARGES
.36	745341 4.10	74C200 8.25	STANDARD SHIFTING CHARGES
.36	745342 1.20	74C221 2.00	If your merchandise total is between:
.35	74S343 4.95	74C90196	\$ 0.00-\$ 4.99add \$2.00

.96

.96

. 6.60

. . . 2.10

2 20 74C925 ... 9.25

. . . 9.25

... 9.25 740928 . . . 9.25

74C902 96 74C903 96 740904

740905

740907

74C908

740000 74C910 ... 6.60 74C914

740918

740926

74C927

\$ 0.00-\$ 4.99add \$2.00 \$ 5.00-\$24.99 add \$1.00 \$ 25.00-\$49.99 add \$0.75 \$ 50.00-\$99.99add \$0.50 The above charges include shipping via First Class Mail or UPS (your choice),

and insurance on all domestic shipments. SPECIAL SHIPPING CHARGES

COD\$1.00-additional Special Delivery \$1.25-additional

INTERNATIONAL GOMPONENTS GORP.

1208 Bowling Street

Columbia, MO 65201 (314) 874-1150

For prompt 24-hour shipment of your order, we are glad to accept your Mastercharge or VISA (BankAmericard). COD orders are also accepted for same day shipment.

UNIVERSAL 4Kx8 MEMORY BOARD KIT \$69.95 32:2102.1 fully buffered, 16 address times, on board decorling for any 4 of 64 pages, standard 44 pin bass

EXPANDABLE F8 CPU BOARD KIT \$99.00 featuring Fambus PSU 1K-of stand ram, RS 232 interface, documentation, 64 BYTE register

4K BASIC FOR FAIRBUG F8 on paper tape

C/MOS (DIODE CLAMPED) 74C10 22 4012 22 4024 2.75 4049 40 4001 22 4015 95 4024 .75 4049 40 4001 22 4015 95 4025 .22 4056 .80 4006 22 4016 40 4027 .40 4055 .150 4006 120 4017 1.05 4028 .88 4066 .80 4006 120 4018 1.00 4029 1.10 4071 .27 4009 42 4019 .75 4030 .22 4076 1.05 4010 47 4020 1.05 4038 1.05 4010 47 4020 1.05 4038 1.05 4011 22 4022 95 4042 .78

WSU-30 Hand wire wrap tool used

to wrap,	unwrap & strip # 30	wire	55.30	
#24, EIGHT CONDUCTOF SPECTRA FLAT CABLE 10'/\$1.50 100'/\$13.50	DIP SOCKETS 8 PIN - 22 24 PIN - 14 PIN - 25 28 PIN - 16 PIN - 28 40 PIN - 18 PIN 30	50	#30 WII WRAP W SINGL STRAN 100'/\$1	IRE E
257: 61 281 281 281 281 291 203: 45 2102 12 1078 MK4008 5780 44 1101 A-2 MM520 1 702 A L 5204 48 82523	P DYNAMIC HAM DYNAMIC HAM 256 BIT RAM 3 UV PROM JV PROM		15.75 1.95 6.75 1.4.95 4.95 4.50 1.19 3.50 4.75 4.75 5.95 10.95 10.95 10.95 6.95	
1 11 117 5	CTIMETER CCC.			

LUBET ACTIVATED SCH & SILICON SOLAR CELLS sameter .4V at 500 ma \$4.00

LED READOUTS

FND 359 C.C. 4" S .50 DL.704.3" C C. FND 70 C C .4" S .55 MAN.7.3" C.A FND 503 C.C. .5" S .85 NS 33-3 dg, array FND 510 C.A. 5" S .85 DL.747 C.A., 6" .95 .95

		P	RIN	13	D, C	IRC	Ú	TE	SOA	RD
4	1	2	44	2	5	1.5	S	R	210	K 1

CIRCLE NO 20 ON FREE INFORMATION CARD

	200.09	2 25 00				
7	WATT LD-65 LASER DIO	DE IR	\$8.	95		
Ī	2N 3820 P FET	5	45			
	2N 5457 N FET	5	45			
	2N2646	S	45			
	ER 900 TRIGGER DIODES	4 5	00			
	25. 6028 PROG. LUIT	ς.	fre.			

00, 500, 1K,2K,5K,10K,25K,50K,100K 00K,500K 1 Meg. \$ 75 each 3/\$2,0K

CCD202-100 x 100 charge counted divice

VERIPAX PC BOARD
The float that 1.16' she wallfall paper appay board, 4', '46', ' DR', LED and ETCHED which will had be a 2' single 14', in 10's or 8, 16, or LSI DIF IC's with tusses for the floating part of the second will be seen and the second will be seen as the second will be DI NE NUBD Y COARECTOR
NY 5691 TELLOWGREEN
BIROLAR LED
FR 100 PHOTO TRANS 54 00

100/S1 00 1000-S8.00 10 WATT ZENERS 3.9, 4.7, 5 6, 8 2.

Silicon Power Rectifiers

SAD 1024 a REDICON 1024 stage analog "Bucket Brigade" shift register. \$18.95 1 4148 15914

REGULATORS
- S .95 340K-5,12,15 5.50 or 24V..... S 85 340T-5, 6, 8, 12 15,18 or 24VS.10 78 MG .51.35 51.15 79 MG .51.35

RS232 OB 25P male DB 25S female CONNECTORS

TRANSISTOR SPECIALS

MRF-8004 a CB RF Transistor	S	1.50	
2 \ 3 7 7 2 \ \ P \ S T 3	S	1.00	
2N1546 PNP GE TO-3	. \$.75	
21.490b Ph.P S	5	1 50	
2N6056 127. St. 1) 3 Da Imaton	5	7 70	
2N5086 P12P St TCt 92 4	S	1.00	
2N4898 PNP TO 66	S	.6n	
	5	1.00	
2N3919 NPN 5; TO 3 MF		1 50	
		1.00	
2N3767 NPM ScTO 66	5	70	
	5	00	
2N3055 NPN St TO 3	S	.80	
	S:S	.00	
		1 00	
2N5296 NPN \$1 TO 220	\$	50	
2N6109 PNP St TO 220	8	55	
2N3G3R PAP 5: E015 E	S	1 00	

TTL IC SERIES

		I I L IO SERIES	
7400	.16	7445 65 7415	165
7401	.10	7446 ,70 7418	3 .65
7402	16	7447 G5 7415	4-1.00
7403	,16	7448 70 7415	5 .70
7404	.20	7450- 15 7438	7- 65
7405-	20	7472 32 7416	.85
7406	25		3 .80
7407	21.		495
7408	20	7475 45 7416	5 - 1.05
7409	20	7476 30 7417	0 -2.25
			3-1.35
7411-			495
7412			590
7413		7486 .30 7413	675
7414-	.85	7490 .45 7417	7- 75
7416-	.25	7491- 65 7418	3065
7417-			1-2.00
			10-1.20
7425-			11 - 1.20
7426-	25	7495 .65 7418	32B3
7427 -		7496 .65 7419	.83
7430 -	16	74107 .28 7419	4- 85
7432-			5- 85
7437 -			76- B6
7438-		74123- 40 7427	987
7440-			150
7441		7412640	

DIGITAL CASSETTES 1/2 hr. TAPE AND ERASABLE MM5387AA with FC\$8024 readouts. This new Ne-tional clock thip will directly drive LED displays. Four .8" high readouts supplied. \$10.95

MCM 6571A 7 x 9 upper & lower \$10.75 CTS 206-8 eight position dip switch \$2.20 CTS-206 4 four position dio switch \$1.75

CO MEHATURE VITA 106 SPDT MTA 206 DPDT TOGGLE SWITCHES \$1.20

Full Wave Bridges									
PRV	2A	6A	25.4						
100			1.30						
200	.75	1.25	2.00						
100	05	1.50	2.00						

SANKEN AUDIO POWER AMPS

TANTULUM CAPACITORS

22UF 35V 5:\$1.00 47UF 35V 5:\$1.00 68UF 35V 5:\$1.00 1UF 35V 5:\$1.00 22 UF 20V5:\$1.00 3 3UF 35V 4:\$1.00 4.7UF 15V 5:\$1.00 6 8UF 35V 4-S1 00 10UF 10V \$.25 22UF 28V \$ 40 15UF 35V 3/\$1.00 30UF 6V 5/\$1.00 47UF 20V \$.35 68 UF 15V \$.50

	1.6			JUN 3				
PRV	1.A	10A	25A	1.5A	6A	35A		
100	.40	.70	1.30	.40	50	1.20		
200	.70	1.10	1.75	· .60	.70	1.60		
400	1,10	1.60	2.60	1.00	1.20	2.20		
600	1.70	2.30	3.60		1.50	3.00	-	

Send 25¢ for our catalog featuring Transistors and Rectifiers 145 Hampshire St., Cambridge, Mass.

WE SHIP OVER 95% OF OUR ORDERS THE DAY WE RECEIVE THEM

Send for Free Hobbi House Catalog 969 BALL AVE., UNION, N.J. 07083

lowest prices

MOBILE CLOCK MODULE (National) \$1895 complete

Attaches directly to 9-12V Battery. Automatic Nighttime Dimming. Fluorescent Display gives Color Choice (Red, Blue, Green or Yellow) when used w/corresponding Color Filter. Includes — Module, Switches, Filter & Specs.

INTRODUCING ALL NEW **3-WAY AUTO SPEAKER** STEREO SYSTEM

Two 6"x9" 20 ounce 3-Way Speakers complete with chrome accents padded vinyl grills, mounting cables and hardware, Only \$49.95

3-WAY Concert Hall Sound

Woofer - Heavy duty 6"x9" high compliance woofer, with foam rolled edge, delivers full bass ranges. Air suspension allows free cone response.

TWEETER — 2" Mylar cone supertweeter provides ultimate in high frequency reproduction.

MID-RANGE — Powerful 3" deluxe

mid-range adds dimension to between frequency response for enhanced clarity in mid-range sound.

AM/FM Casette Stereo \$99.95 WITH ENCLOSED SPEAKERS Complete with all mounting hardware NOT A KIT

12VDC Regulated CB Power Supply Converts 120VAC to Regulated 12VDC Use Car CB or Stereo at Home Complete - NOT A KIT --- \$18.95

TRANSFORMER 6.3 volts at 1.2 amps — \$1.49

DIFFUSED LEDS JUMBO RED LEDS 7/\$1.00 0.2", and Factory Prime 100/\$11.00

DL 741 Jumbo 7 Segment Displays Common Annode — \$1.35

Sound Actuated Switch - \$.85

6 FT LINE CORDS -- 6 for \$1.00

Your Home for Quality Kits, Projects and Components Toll-Free Wats Line — 800-631-7485 ● Open Saturdays In New Jersey Call (201) 964-5206

WESTINGHOUSE TUBE SPECIAL **BOXED AND BRANDED**

6GH8A	\$1.60
6LQ6/6JE6C	4.00
6DW4B/6CL3	2.00
3A3C	2.50
6HM5/6HA5	2.00
6FQ7/6CG7	1.60
6LB6	4.00
6GF7A	2.50
6BK4C/6EL4A	4.00
8FQ7/8CG7	2.00
6JS6C	4.00
12GN7A/12HG7	3.00
6GJ7/ECF801	2.00
17JZ8	2.00
5GH8A	2.50

Dual Range DIGITAL Voltmeter/ MULTI-METER kit \$29.95 DVM kit only

0 to + .2 Volts DC - 0 to + 2 Volts DC

- · Features latest Technology DVM chip set
- Non Critical Comp.
- High Noise Rejection
- Accuracy to within .001

Contains - P.C. Boards; 4-large .50 Fairchild Readouts; Display Drivers; Op-Amps; Inverter; all electronic comp. Switches, Pots; Complete Instructions and Specs; & DVM Chip Set Requirements: Power Supply w/+5V, +15V and -15V.

OPTIONS - Set/Precision Resistors for Increasing Voltage Range up to 200 Volts - \$2.95

Complete Multi-Meter Kit including Power Supply -\$49.95

NEW KIT SPECIALS -

MOTOR SPEED CONTROL LIGHT DIMMER \$8,99

Adjust motor speed to suit application or use as a light dimmer control. A.C. operated. Case and assembly instructions included.

CODE PRACTICE **OSCILLATOR**

Practice Morse code with this battery operated (not included) compact portable code generator. Emits a loud pleasant tone. Case and assembly instructions included.

ELECTRONIC DICE

LED's arranged as dice. Each press of the toss switch generates a random roll of the dice. Operates on 9 volt battery (not included). Case and assembly instructions included.

ELECTRONIC COIN TOSS /

\$9.95 **DECISION MAKER** Generates a statistically random "coin toss" for those difficult decisions requiring an unbiased guess. Great fun testing your ESP too. Battery operated (not included). Case and assembly instructions included.

T.V. SCRAMBLER Use to remotely blank out T.V. set during commercials or while answering phone. Can also be used as a high frequency oscillator. Battery operated (not included). Case and assembly instructions included.

F-M TRANSMITTER. Portable battery operated F-M transmitter enables you to broadcast over your F-M radio. Use as a portable microphone or in-house paging system

TTL POWER SUPPLY \$11.95 5 volt, 600ma., regulated power supply. Use to power all your TTL projects. Case and assembly instructions included.

AUDIO AMPLIFIER

\$12 Use as a portable P.A. system or remote listening device. Easy to assemble, battery operated (not included) and great fun. Case and assembly instructions included.

NEON RANDOM

BLINKER Randomly flashes six neon lamps. A-C operated. Case and assembly instructions included.

TRANSISTOR & SEMI-CONDUCTOR TESTER \$18.99 Use to check a wide range of bipolar transistors either in or out of

circuit. Designed for dynamic testing for both NPN and PNP types. Attractive case and assembly instructions included.

TRANSISTOR **CURVE TRACER** \$49.95

Adapts to your scope to form a transistor tester that generates a family of characteristic curves to give you semi-conductor information not otherwise obtainable (beta, leakage current, forward resistance, etc.). Will test both signal and power devices. Case and assembly instructions included.

SIGNAL INJECTOR Useful for checking and troubleshooting amplifiers, radios, stereos, etc. Generates a 1-kHZ tone with harmonics to 250 MHZ. Battery operated. Case and assembly instructions included.

Terms and Conditions Orders Shipped Within 24 Hours

\$5.00 Minimum Order, Telephone C.O.D.'s accepted. \$15.00 Minimum Bank Americard/ MasterCharge order.

Add \$1.00 Postage for orders under \$10.00.

Outside Continental U.S. add postage -U.S. Funds. N.J. Residents add 5% Sales Tax.

Money Back Guarantee.

MICROCOMPUTER

F-8 19.95 1702A 5.00 Z-80 25.00 2704 15.00 Z-80A 35.00 2708 20.00 CDP1802CD 24.95 3601 4.50 6502 12.95 5203AQ 4.00 6800 19.95 5203AQ 4.00 6800 19.95 6834 16.95 8080A 15.95 6834-1 14.95 TMS-9900TL 89.95 82523B 4.00 825129B 4.25 8223B 2.70	8212 3.95 8214 9.95 8216 4.50 8224 4.95 8228 8.75 8238 8.00 8251 12.00 8253 28.00 8255 12.00 8257 25.00 8259 25.00	
---	--	--

STATIC RAMS	1-24	25-99	100	
21L02 (450)	1.50	1.40	1.25	
21L02 (250)	1.95	1.80	1.50	
21L11	4.25	4.10	3.95	
1101A	1.49	1.29	1.10	
2101-1	2.95	2.75	2.60	
2102	1.25	1,15	1.00	
2102-1	1.50	1.30	1.15	
2111-1	4.00	3.50	3.25	
2112-1	3.00	2.80	2.69	
2114	17.95	16.95	16.50	
31L01	2.50	2.35	2.00	
3107	3.95	3.70	3.25	
4200A	12.95	12.50	11.95	
4804/2114	17.95	16.95	16.50	
5101C-E	11.95	11.25	10.25	
74C89	3.25	3.05	2.85	
74S201	4.50	4.30	4.25	
7489	2.25	2.10	1.90	
8599	1.88	1.75	1.60	
9102BPC	1.65	1.45	1.30	

KEYBOARD	CHIPS	1	CIM
AY5-2376	13.95	KIM-1	245.00
AY5-3600	13.95	6502	12.95
		6520	9.00
UART'S		6522	9.25
AY5-1013A	5.50	6530-002	15.95
AY5-1014A	8.95	6530-003	15.95
TR-1602A	5.50	6530-004	15.95
TMS-6011	6.95	6530-005	15.95
IM-6402	10.80		
IM-6403	10.80	USRT	
		S-2350	10.95
FLOPPY DIS	C CONTROLLER	WD1671B	29.95
1771B	55.95		
1771B-01	59.95	WAVEFORM	GENERATOR
		8038	4.00
SHIFT REG	ISTERS STATIC	MC4024	2.50
2518B	3.95	566	1.75
2533V	2.00		
TMS3002	1.00		
TMS3112	3.95		

MI	SC. OTHER	COMPONENTS	
NH0025CN	1.70	P-3408A	5.00
NH0026CN	2.50	P-4201	4.95
N8T20	3.50	MM-5320	7.50
N8T26	2.45	MM-5369	1.90
74367	.90	DM-8130	2.90
DM8098	.90	DM8131	2.75
1488	1.95	DM-8831	2.50
1489	1.95	DM-8833	2.50
D-3207A	2.00	DM-8835	2.50
C-3404	3.95	SN74LS367	.90
	0.00	SN74L S368	90

MM5058

TV Game Chip Now Only \$10.95

PerSci DISK AND CONTROLLER

Use the PerSci Disk and Controller now with the Info 2000 Adapter for the S-100 Bus.

INFO 2000 "SPECIAL" (includes Model 277 Dual Drive, Model 1070 Controller, Case with power supply and fan, and cable) \$2,150 Model 277 Dual Diskette Drive \$1,130 Model 1070 Controller \$740 Slimline case with power supply and fan \$280 Adapter for the S-100 Bus (Kit) \$120

JADE PARALLEL/SERIAL INTERFACE KIT

\$124.95 KIT

JADE VIDEO INTERFACE KIT \$89.95 KIT

8K STATIC RAM BOARD

ASSEMBLED & TESTED

250ns. \$199.95 350ns. 450ns.

- * WILL WORK WITH NO FRONT PANEL
- FULL DOCUMENTATION
- * FULLY BUFFERED
- * S100 DESIGN
- * ADEQUATELY BYPASSED
- LOW POWER SCHOTTKY SUPPORT IC'S

KIT

250ns. \$169.95 \$139.95 350ns. 450ns. \$129.95

IMSAI/ALTAIR S-100 COMPATIBLE

JADE Z80

-with PROVISIONS for **ONBOARD 2708 and POWER ON JUMP**

\$135.00 EA. (2MHZ) \$149.95 EA. (4MHZ)

BARE BOARD **\$35.00**

IMSAI/ALTAIR S-100 COMPATIBLE JADE 8080A

- WITH EIGHT LEVEL VECTOR INTERRUPT

\$110.00 KIT BARE BOARD **\$35.00**

Computer Products

5351 WEST 144th STREET LAWNDALE, CALIFORNIA 90260 (213) 679-3313

RETAIL STORE HOURS M-F 9-7 SAT. 9-5

Discounts available at OEM quantities. Add \$1.25 for shipping. California residents add 6% sales tax.

CATALOG FREE WITH \$10.00 ORDER

Market Place

6828P 6834P

6852P

6860P 6862P

3881 3882

3853

1103 2104

2107A 2107B

4096 4116 MM5270

2107B-4 TMS4050

TMS4060

MM5280 MCM6605

CHARACTER

2513 UP 2513 DOWN 2513 UP (5v) 2513 DOWN(5v)

MCM6571

MCM6571 MCM6572 MCM6574 MCM6575

11.25

16.95 11.95 14.95 17.95

12.95 12.95

14.95 14.95

1.50

4.50

3.75 4.50

4.00

4,50 4.50

42.00 5.00

6.00

6.75 6.75

9 95 10.95

10.80

10.80 10.80

GENERATORS

Z80 SUPPORT DEVICES

F-8 SUPPORT DEVICES

DYNAMIC RAMS

Money back guarantee. NO COD'S. Texas residents add 5% sales tax. Add 5% of order for postage and handling. Orders under \$15.00 add 75 cents. Foreign orders add 20% for postage. For your convenience, call your Bank Americard or Master Charge orders in on our Toll Free Watts Line: 1-800-527-2304. Texas residents call collect: 1-214-271-8423.

(All prices subject to change without prior notice.) P.O. Box 38323P Dallas, Texas 75238

VARIABLE POWER SUPPLY KIT NO. 1 ONLY Continuously variable from 5V to \$10.95

KIT NO. 2 Same as above but with a 1 Amp output, also with case
ONLY \$13.95 This model will power a 5 watt tran-sistorized CB Radio

LOOK AT THIS SPECIAL FROM RADIO HUT

Power Supply Kit. 5V1 amp reg.
 Line regulation .005°.
 Load regulation 50mV
Kit includes components, PC board, transformer, fuse and pilot light. Line cord not included.

Only \$6.50

60 Hz. Crystal Time Base for Digital Clocks

\$4.50 Buy 2 for \$8.

A 60 Hz. output with accuracy comparable to a digital watch.

B. Directly interfaces with all MOS clock chips.
C. Super low power consumption (1.5 ma type.)
O. Uses latest MOS 17 stage divider IC.
E. Eliminates forever the problem of AC line glitches.
F. Perfect for cars, boats, campers, or even for portable clocks at ham field days.
G. Small size, can be used in existing enclosures.
KIT INCLUDES CRYSTAL, DIVIDER IC, P.C. BOARD PLUS ALL NECESSARY PARTS & SPECS.

UNSCRAMBLER

\$19.95

Plugs into earphone or external speaker of any Scanner or Monitor. Guaranteed to unscramble any 1085 call.

Easily tuned
 Full instruction included
 Drilled fiberglass P.C. Board
 One Hour Assembly
 Punched Case

Om.	PLUS ALL NECESSARY PA	into a SPECS.
MA 1003 CAR CLOCK FROM INCLUDES SPECS. AND 3		LSO, THIS MONTH ONLY, REE EDGE CONNECTOR.
7400 TTL DIGITAL CIRCUITS	ITT HIGH LEVEL LOGIC	HOUSE # TTL IC's CRYSTALS
7400 11 7430 13 7480 31 74153 61 74161 39 89 74161 13 7432 23 7480 57 74154 89 89 74161 13 7432 23 7480 57 74155 89 89 74161 13 7432 23 7480 57 74156 89 74161 15 7438 23 7480 89 74167 74156 89 74167 74156 89 74167 74161 15 7438 23 7486 89 74167 55 74160 55 74160 15 7440 113 7489 1 25 74160 65 74161 65 7440 13 7442 47 7491 61 74163 65 74161 65 74161 65 74161 65 74161 67 7417 61 7444 59 7493 43 74164 85 7497 7416 15 7446 89 74167 7416 15 7446 89 74167 7416 89 74167 7416 15 7446 89 74167 7416 89 74167 7416 13 7467 89 7467 8	301	7400 10/1 00 Please specify 7437 6/1.00 7404 10/1 00 Please specify 7438 6/1.00 7408 10/1 00 That you 74418 3/1.00 7408 10/1 00 are ordering 74153 3/1.00 House Number TTL COUNTER AND CLOCK CHIPS MK50252 Clock Chip
7427 19 7475 47 74141 75 9L04 35 7428 26 7476 31 74151 61		8 Pin Low Profile 20 14 Pin Low Profile 22 INTERSIL DUAL TRANSISTORS
74LS00 LOW POWER SCHOTTKY 74LS00 .21	ITT MOS TO LED DRIVERS ITT 501 Ouar Seq Dr 175 502 Hos Dail Dr 49 175 503 Ouar Seq Dr 175 508 B Dight Dr 175 510 Quad Seq Dr 175 10 Qua	** 16 Pin Low Profile
74H00 .18 74H21 .29 74H53 29 74H73 39 74H05 29 74H40 .29 74H61 25 74H74 39	946 Quad 11 Input Gate NAND/NOR 8/\$1 948 JK F/F 8/\$1	1,900 MFD 35WVDC (Mini) 3/\$2 68 PEd 50V 680 PEd 50V 88.000 MFD 15WVDC 95 cents each 100 PEd 100V. 500 Fd 33.000 MFD 46WVDC \$4.00 Each 150 PEd 50V. 302 MFD 50V
74H05 29 74H40 29 74H51 25 74H74 39 CMOS CD400 19 CD401 95 CD4040 1.00 CD401 19 CD4001 19 CD4018 95 CD4041 89 CD408 19 CD4002 19 CD4020 19 CD4024 69 CD4030 19 CD4002 19 CD4020 97 CD4044 60 CD4508 28 CD4003 47 CD4020 197 CD4044 60 CD4508 28 CD4004 19 CD4020 197 CD4041 199 CD4042 100 CD4009 47 CD4020 197 CD4044 60 CD4508 28 CD4009 47 CD4022 197 CD4044 60 CD4508 28 CD4010 39 CD4022 197 CD4048 139 CD4516 79 CD4011 19 CD4024 75 CD4048 139 CD4516 79 CD4011 29 CD4024 75 CD4049 35 CD4518 110 CD4013 32 CD4027 39 CD4051 119 CD4520 69 CD4014 78 CD4028 85 CD4058 1.19 74C02 45 CD4015 78 CD4029 39 CD4056 119 74C02 45 CD4016 78 CD4029 39 CD4056 78 74C107 79	950 F / F / 951 One Shot Multivibrator 5/\$1 1800 (see 934 above) 10/\$1 1900 Oud 2 input NAND Gate 90/\$1 20/\$1 19/\$1 20/\$1 2	33,000 MFD 40WVDC \$4.00 Each 150 PFd 50V 0.02 MFd 200V 330 PFd 50V 0.01 MFd 200V 330 PFd 50V 0.01 MFd 200V 330 PFd 50V 0.01 MFd 200V 0.01 LFd 50V 0.02 LFd 50V 0.
	VOLTAGE REGULATORS	
7805 Pas. 5V1 Amp 99 7818 Pas 18V1 Amp .99 7806 Pas 6V1 Amp .99 7824 Pas. 24V1 Amp 99 7808 Pas 8V1 Amp 99 7805 Neg 5V1 Amp 10 7815 Pas 15V1 Amp 99 7812 Neg 12V1 Amp 10 7815 Pas 15V1 Amp 99 7815 Neg 15V1 Amp 10	723 VOLTAGE REGULATORS Output voltages variable from 2 volts to 37 volts A very versatile and popular device —14 PIN DIP 69c	MOTOROLA VOLTAGE REGULATOR MC1469R TO-66. 9 lead package for 3 to 30V out- puts Provides 600 MA direct output or more by using an external power transistor Regular cata- log price — \$4 00 each! With specs \$1.95 each
PINCE PECTIFIEDS	DIODE	e .

BRIDGE RECTIFIERS DIODES ZENER DIODES 1N 745 3 3 V 400M 4/\$1 1N 752 5.6V 400M 4/\$1 1N 1958 8.2 V 400M 4/\$1 1N 5259 39 V 500M 10/\$1 1N 5271 100 V 500M10/\$1 1N 5280 180 V 500M10/\$1 IN 4002 1 Amp 100 PIV 40/\$1 IN 4004 1 Amp 400 V 15/\$1 IN 4007 1 Amp 1000 V 10/\$1 HOUSE # ZENER 4.7 V 500 MW 10/\$1 9. V 500 MW 10/\$1 10 V 1 Watt 8/\$1 15 V 500 MW 10/\$1 22 V 5 Watt 6/\$1 SWITCHING DIODES IN 4148/IN914 Long Leads20/\$1 IN 4148/IN914 Cut Leads 40/\$1 IN 4148/IN914 PC Leads 100/\$1 GERMANIUM DIODES IN 54A B/\$1 IN 270 10/\$1 LINEARS Operational Amplifier 25 Differential Comparators 40 Dual Differential Comp 35 Half Adder 55 Stereo Pre-Amp by Fairchild 2 St Operational Amplifier 30 Operational Amplifier 30 LM 308 Operational Amplifier LM 309K 5V Lamp Regulator LM 710 Voltage Gemparator LM 318 Operational Amplifier LM 324 Guad Operational Amplifier LM 324 Guad Operational Amplifier LM 377 Dual 2W Amplifier LM 3900 Quad Op-Amplifier LM 741 Operational Amplifier Operational Amplifier NE 555 Cust Timer NE 556 Union Timer .95 1.49 25 85 1 15 69 Tone Decoder Dual Op-Amphilier Quad Segment Driver Hex Digil Driver IF Amphilier Voltage Cont. Osc. 1 25 55 35 35 75 3 95 1 85 40 25 25 1 95 40 95

P. O. Box 38323 • Dallas, Texas 75238

1-800-527-2304

Use Our Toll Free Watts Line For Master Charge and BankAmericard Orders

S. D. SALES CO. AN EMPIRE IND. CO.

P.O. BOX 28810 DALLAS, TEXAS 75228

ORDER BY PHONE CALL TOLL FREE 1-800-527-3460

EXPANDO RAM KIT

32K FOR \$475.00

MEMORY CAPACITY MEMORY ADDRESSING MEMORY WRITE PROTECTION

BROTECTION

8K, 16K, 24K, 32K using Mostek MK4115 with 8K boundaries and protection. Utilizes
DIP switches. PC board comes
with sockets for 32K operation.
Orders now being accepted.
Allow 6 to 8 weeks for delivery.

8K FOR \$151.00

INTERFACE CAPABILITY Control, data and address in-puts utilizes low power Schottky devices.

POWER REQUIREMENTS + 8VDC 400MA DC + 18VDC 400MA DC --18VDC 30MA DC

on board regulation is provid-ed. On board (invisible) refresh is provided with no wait states or cycle stealing required. MEMORY ACCESS TIME IS 375ns. Memory Cycle Time Is 500ns.

Buy an \$100 compatible 8K Ram Board and upgrade the same board to a maximum of 32K in steps of 8K at your option by merely purchasing more ram chips from S.D. Sales! At a guaranteed price — Look at the features we have built into the board. PRICES START AT \$151. FOR 8K RAM KIT
Add \$108.00 for each additional 8K Ram

S.D. SALES NEW **EXPANDABLE EPROM BOARD**

16K or 32K EPROM \$49.95 w/out EPROM Allows you to use either 2708's for 16K of Eprom or 2716's for 32K of Eprom.

KIT FEATURES:

- 1. All address lines & data lines buffered.
- 2. Quality plated through P.C. Board, including solder mask and silk screen.
- Selectable wait states.
- 4. On board regulation provided.
- 5. All sockets provided w/board.

WE CAN SUPPLY 450ns 2708's AT \$11.95 WHEN PURCHASED WITH BOARD.

Z-80 CPU BOARD KIT — \$139.

CHECK THE ADVANCED FEATURES OF OUR Z—80 CPU BOARD: Expanded set of 158 instructions, 8080A software capability, operation from a single 5VDC power supply; always stops on an M1 state, true sync generated on card (a real plus featurel), dynamic refresh and NMI available, either 2MHZ or 4MHZ operation, quality double sided plated through PC board; parts plus sockets priced for all IC's. 'Add \$10 extra for Z—80A chip which allows 4MHZ operation.

8K LOW POWER RAM — \$159.95

Fully assembled and tested. Not a kit. Imsal — Altair — S-100 Buss compatible, uses low power static 21L02-500ns fully buffered on board regulated, quality plated through PC board, including solder mask. 8 pos. dip switches for address select.

4K LOW POWER RAM KIT

Fully Buffered — on board regulated — reduced power consumption utilizing low power 21L02 — 1 500ns RAMS — Sockets provided for all IC's. Quality plated through PC board. *Add \$10. for

The Whole Works - \$79.95

DIGITAL LED READOUT MUSICAL HORN Jumbo LED Car Clock Kit

One tune supplied with each kit. Additional tunes — \$6.95 each, Special tunes available. Standard tunes now available: — Dixle — Eyes of Texas — On Wisconsin — Yankee Doodle Dandy — Notre Dame — Pink Panther — Aggle War Song — Anchors Away — Never on Sunday — Yellow Rose of Texas — Deep in the Heart of Texas — Boomer Sooner — Bridge over River Kwai.

CAR & BOAT KIT \$34.95

FEATURES:
A. Bowmar Jumbo. 5 inch LED array.
B. MOSTEK — 50250 — Super clock chip.
C. On board precision crystal time base.
D. 12 or 24 hour Real Time format.
E. Perfect for cars, boats, vans, etc.
F, PC board and all parts (less case) inc.

Alarm option - \$1.50 AC XFMR - \$1.50

\$16.95

THERMOMETER — \$29.95

Features: Litronix dual 1/2" displays. Uses Silicoaix LD131 single chip CMOS A/D converter. Kit includes all necessary parts (except case); AC line cord and power supply included. 0-149° F.

6 DIGIT ALARM CLOCK KIT

Features: Litronix dual 1/2" displays, Mostek 50250 super clock chip, single I.C. segment driver, SCR digit drivers. Kit includes all necessary parts (except case). Xfmr optional. Eliminate the hassle.

AC.XFMR - \$1.50 Case \$3.50

5 Digit Countdown Utility Darkroom Timer Kit

Features: Large LED 1/2" displays oper. from 0.1 sec. to 59 min. 59.99 sec. 54-15V. Relay included to control appliances. Operates on 115V AC. Displays can be turned off for total darkness while counting. All necessary parts included darkness while parts included. Special design case \$3.75.

6 Digit General Purpose or Computer Timer Kit — \$29.95 Features: Large LED 1/2" displays, Mostek

Features: Large LED 1/2" displays, Mostek 50397 counter display/driver, counts up to 59 minutes, 59.99 seconds with crystal con-trolled 1/100 second accuracy, operates on 115V AC or 12V DC supply. All necessary parts included. Special design case \$3.75.

Bowmar 4 Digit LED Readout Array Full ½" Litronix Jumbo Dual **Digit LED Displays**

4 JUMBO .50" DIGITS ON ONE STICK! WITH COLONS & AM/PM INDICATOR

DL 722 - C.C. DL 721 8 C.A. 99c

CALL IN YOUR BANKAMER-ICARD (VISA) OR MASTER CHARGE ORDER IN ON OUR CONTINENTAL TOLL FREE

WATTS LINE:

DL 728 - C.C.

DL 727 - C.A. \$1.29

NEW COMPETITION CHESS TIME KIT WITH TWO INDEPENDENT FIVE DIGIT 1/2" LED DISPLAYS

The timers can be used in-dependently or coupled. The timer can be set to 59 minutes 59.9 seconds at 0.1 intervals. Kit includes all necessary parts and an attractive wondrigal case. tractive woodgrain case.

Low Cost Cassette Interface Kit \$14.95

Features: K.C. standard 2400/1200 Hz, 300 Baud, TTL, I/O compatible, phase lock loop, 22 pin connector. Feeds serial data via microprocessors I/O ports and from cassette tape recorder.

RAM'S 21L02-500NS 8/11.50 21L02-250NS 8/15.95 2114 - 4K 14.95 1101A - 255 8/\$4.00 1103 - 1K	THERMISTORS MEPCO — NEW! 1.5K OHM 5/\$1.00	TANTALUM CAPS 1 MFD. 20VDC. P.C. LEADS 15 for \$1.00	FLAT PACK IC ASSORT. FLAT PACK 5400 SERIES. SPECIAL BUY FROM ITT. 20 Assorted Devices for \$1.00	ELECTRICAL COIL 13T TYPE C 10T TYPE C YOUR CHOICE 12/\$1	2 TRANSISTOR AUDIO amf. W/Specs. 6/\$1	TRIMMER POTS 10K, 20K, 25K OHM. Mini for PC boards. YOUR CHOICE 10/\$1.
CPU'S Z=80 includes manual 29.95 Z=80A includes manual 34.95 8080A CPU 8 BIT 11.95 8008 CPU 8 BIT 6.95	DISC CAPS FOR BYPASS .01 MFD — 100 WVDC, PC leads. 40/\$1.	BALUM Used In TV Tuners Can be rewound for Ham freq. 6/\$1	STANDARD COILS Use in TV Sets. 1.2 uh 5% and 1.5 uh 10% Your choice. 12/\$1	AUTO COIL TRANF. Ideal for the exper. 1281	NEW CAMBION JACKS PART # 450-4352 Gold Plated 50/\$1	SILICON RECTIFIER Special! 1N4007.1 AMP 1000 PIV. PRIME UNITS 10/\$1.
PROMS 1702A - 1K - 1.5us3.95 or 10/35. 2708 - 8K intel - 450ns14.95 5204 - 4K7.95 828129 - 1K2.50 27088 8 8K signetics 650ns9.95	Photocell Asst. We bought almost 200K from a big US mlg. Three product families: small, medium and dual photocells. Perfect for all light sensitive applications. # 12/\$1.00	PLASTIC READ- OUT FILTERS Originally used in desk top calcula- tors, Parfect for use with LED and other type readouts. AMBER — 6 for \$1.	TTL ASSORTMENT Contains a high yield of usable parts. 50/\$1.50	RESISTOR Special! 22 Ohm. 1 Watt. Carbon Comp. 10%. Handy value. Parsilel to make low ohmage power resistors. Heip! Wa bought 100,000 picest! 25 for \$1.	DISC CAP ASST. PC leads. At least 10 different values; includes .001, .01, .05 plus other standard values. 60/\$1.00	P.C. LEAD DIODES 1N4148/1N914 —100/\$2.00 1N4002 - 1A —100 PIV 40/\$1.00
COUNTER CHIPS MK50397 6 Digit elapsed timer 8.95 MK50250 Alarm clock 4.99 MK50380 Alarm chip 2.95 MK50386 6 digit up/down counter 12.95 MK5002 4 digit counter 8.95 MK5021 - Cal. chip sq. root 2.50	MICA TRIMMER PC 402 Miniature 1.5 — 20 P.F. P.C. Mount 4/\$1	The Wor Coded BC Si 2300 02G E	- Series 2300 rld's Smallest D Dual-In-Line witch! PC Mount 3CD 1-2-4-8 3CD 1-2-4-8		K-OHMS \$3.95	STANDARD ANT. TER. Used for Ant. Hook- up on all TV Sets. 12!1

MICROPROCESSOR CHIPS

8212-170 port	
8214 — P.I.C	
8216 - Non Invert Bus 4.95	
8224 — Clock Gen 4.95	
8226 - Invert Bus 3.95	
PIO for Z-80 14.95	
CTC for Z-80	
8228 Sys. Controller 8.20	
8251 Prog. comm. interface 10.95	
8255 Prog. perp. interface 13.50	
8820 Dual Line Recr	
8830 Dual Line Dr	
2513 Char. Gen 7.50	
8838 Quad Bus. Recvr	
74LS138N - 1/8 decoder	
8T97-Hex Tri-State Buffer 1.25	
1488/1489 RS232	
TR 1602B Uart	
7	

Z-80 PROGRAMMING MANUAL

IN DEPTH DETAIL OF THE Z-80 CPU MICRO-COMPUTER

> S.D. Sales Special \$9.95

*Choose \$1. Free Merchandise From Asterisk Items on each \$15 order!

Texas Residents Call Collect: 214/271-0022

800-527-3460 DEALER INQUIRIES INVITEDI

Terms - 60 Day Money Back Guarantee! NO COD'S. TEXAS RESIDENTS ADD 5% SALES TAX. ADD 5% OF ORDER FOR POSTAGE & HANDLING . OR-DERS UNDER \$10. ADD 75c HAND-LING.FOREIGN ORDERS — U. S. **FUNDS ONLY!**

MORE THAN 20,000 DIFFERENT COMPONENTS

VOLT REG

1			7400	TT	L	1	1
	7400 7401 7402 7404 7405 7407 7409 7410 7411 7413 7416 7427 7428 7430 7432 7437 7438 7430 7440 7441	.21 .24 .45 .25 .20 .30 .85 .43 .43 .43 .37 .26 .31 .40	7442 7448 7450 7451 7453 7454 7462 7473 7475 7482 7485 7485 7486 7490 7491 7493 7494 7494 7496 74100	1.08 1.15 .26 .27 .41 .39 .45 .80 1.75 1.15 2.49 .69 1.20 .82 .91 .91	74107 74122 74122 74125 74126 74126 74151 74151 74153 74157 74164 74166 74174 74175 74185 74185 74185 74185 74187	.49 .55 .60 .81 3.00 1.15 1.25 1.54 1.35 1.65 1.65 1.95 1.95 3.55 1.00	
		-44	055		-		

74L SERIES TTL

74L5U4 .45	/4L5113 .98
74LS10 .39	74LS138 1.89
74LS20 .39	74LS174 2.50
74LS51 .39	74LS386 5.50
74LS74 .65	74S153 2.25
74LS112.65	74\$387 1.95
	74LS10 .39 74LS20 .39 74LS51 .39 74LS74 .65

74H00 TTL

74H00	.33	74H11	.33	/4H53	
74H01	.33	74H20	.33	74H55	.3
74H04	.33	74H21	.33	74H73	.5
74H05	.35	74H30	.33	74H74	.5
74H10	.33	74H40	.33	74H76	.6

MOTOROLA

MCGGSP	2.50	MC1460	3.95	
MC666P	1.60	MC1469R	2.50	
MC670P	1.60	MC1489	4.60	
MC679P	2.50	MC1496	1.65	
MC725P	1.50	MC1510G	8.00	
MC789P	1.50	MC1514L	4.50	
MC790P	1.50	MC1595L	6.25	
MC817P	1.30	MC1723CL	3.60	
MC836P	1.35	MC1741CG	1.20	
MC844	1.25	MC1810P	1.25	
MC853P	2.25	MC3004L	2.25	
MC876P	2.25	MC3007P	2.25	
MC1004L	1.25	MC3021L	2.15	
MC1010L		MC3060L	2.65	
	1.25			
MC1305	1.95	MC3062L	3.00	
MC1352P	1.55	MC4024P	2.20	
MC1357	1.70	MC4044P	4.80	
MC1371	1.85	MC14507CP	1.25	
MC1439	2.65	MC14511CP	2.76	
MC1458P	.50	MC14512CP	1.70	

CMOS

4001AE	.29	4023AE	.29
4002AE	.29	4024AE	1.50
4007AE	.29	4025AE	.35
4010AE	.58	4028AE	1,60
4011AE	.29	4029AE	2.90
4012AE	.29	4030AE	.65
4015AE	1.25	4037AE	4.50
4016AE	.65	4040AE	2.40
4018AE	1.10	4044AE	1.50
4019AE	.65	4049AE	.75
4020AE	1.75	4050AE	.75
4021AE	1.50		

RECTIFIERS

LINEAR

75450BP	.49	LM301H	.35	LM741CH	.45			
75451BP	.39	LM307H	.35	LM747	.90			
75452BP	.39	LM309K	1.25	LM748H	.45			
75453BP	.39	LM311H	.90	LM1458N	.80			
75454BP	.39	LM318N	1.50	N5556V	1.50			
75491BP	.79	LM339N	1.85	NE5558	1.00			
75492BP	.85	LM351AN	.65	NE555V	.60			
CA3005	1.60	LM370N	1.25	NE556	1.50			
CA3006	3.50	LM380N	1.45	UA702	.80			
CA3018	1.10	LM566	2.25	UA703CH	.45			
CA3018A	1.60	LM711CH	.60	UA709CH	.30			
CA3026	1.50	LM723H	.75	UA749CH	.45			
CA3046	.35	LM741CN	.45	G/11 10 G/1				
CASCAL CALTUE MOVE								

IC's ON THE MOVE BBD BUCKET BRIGADE DEVICE

MN3002 11.70 MM3001 19.50 MM3003 9.45

HALL IC:DN834 DN837 1.50 1.25 DN838(NEW) **DN835** 1.35

ZENER DIODES

1/2 Watt, ± 10%	\$.30 each to 33 V
1 Watt, ± 10%	\$.40 each to 33 V
Voltages to 200V, and	

1 Megohm Potentiometer - Made by Clarostat. 1/8" diam., split, knurled shaft 1/2" long. NT544 \$.39 Three for \$1.00

5400 SERIES

			_	
5400	1.00	5475	1,50	LM340K-5 1.95
5404	1.25	5486	1.90	LM340K-6 1.95
5410	1.00	5493	2.00	LM340K-8 1.95
5426	1.25	54100	1.80	LM340K-15 1.95
5473	1.50	54LS04	1.00	LM340K-18 1.95
				LM340K-24 1.95
				LM340T0-5 1.75
P	ECIC	TORS	2	LM340T0-6 1.75
				LM340T0-8 1.75
		Packed 5		LM340T0-12 1.75
one va	ue		. 5.25	LM340T0-15 1.75

SEE OUR AD ON JAPANESE TRANSISTORS AND IC's

IN THIS ISSUE

MINIMUM ORDER \$5.00 All orders add 1.00 Spstage and Handling. Canada \$1.50 N.J. Residents add 5% sales tax

ELECTROLYTIC CAPACITORS Axial Leads .15 30MF25 Axial Leads

ı	3.3MF10	Axial Lead	s .15	47MF25	Radial Leads	.19
ı	3.3MF10	No Polarin	.15	47MF50	Radial Leads	.24
ı	10MF25	Axial Leads	.15	100MF16	Radial Leads	.19
ı	10MF50	Axial Leads	.16	100MF25	Radial Leads	.24
	10MF150	Axial Lead	s .20	500MF50	Axial Leads	.60
	25MF35	Axial Lead:	.18	1000MF35	Axial Leads	.65
		MICE	OPRO	CESS	OR	
l	C1702A	9.95	2708	34.95	8008	19.95
ı	2101		C5101-3	4.50	8080A	19.95
١	2102		MM5013	3.25	8224	10.45

Contact us for all your microprocessor needs

UNIJUNCTIONS

	10	100		
	For	For	2N2160 .65	MU4892.50
1N4001	.60	5.00	2N2646 .45	MU4893.50
1N4002	.70	6.00	2N2647 .55	MU4894.50
1N4003	.80	7.00	2N4851 .75	2N6027 .55
1N4004	.90	8.00	2N4852 .75	2N6028 .70
1N4005	1.00	9.00	2N4870 .50	D5E37 .35
1N4006	1.10	10.00	2N4871 .50	MU10 .35
1NA007	1 20	11.00	MI MRG1 50	BALIZO AC

HARDWARE-SOCKETS

Nylon Screws, Nu	its and Rivets - 50 piec	e assortment \$1.99
MK 20 TO-3 Mout	nting Kit	5 for \$.99
NT-505 Mica and TO-3, TO-66 or TO	bushing. Specify	10 sets for \$.99
IC Socket	14-Pin DIL	\$.25 each
IC Socket	16-Pin DIL	\$.27 each
Wire Wrap	16-Pin DIL	\$.32 each

POPULAR JEDEC TYPES

1				•									-
	1N34	.25	2N1540	.90	2N2712	.18	2N3394	.17	2N3856	.20	2N4402	.16 .20 .20	1
	1N60	.25	2N1544	.80	2N2894	.40	2N3414	.17	2N3866	1.25	2N4403	.20	1
	1N270	.25	2N1554	1.25	2N2903	3.30	2N3415	.18	2N3903	.16	2N4409	.20	
	1N914	.10	2N1560	2.80	2N2904	.25	2N3416	.19	2N3904	.16	2N4410	.16	1
	1N4148	.25	2N1605	1.75	2N2904A	.30	2N3417	.20	2N3905	.16	2N4416	.75	L
	1S1555	.35	2N1613	.50	2N2905	.25	2N3442	1.65	2N3906	.16	2N4441	1.00	F
			2N1711	.50	2N2905A	.30	2N3553	1.50	2N3954A	3.75	2N4442	1.15	V
	2N173	1.75	2N1907	4.10	2N2906	.25	2N3563	.20	2N3955	2.45	2N4443	1.35	,
	2N338A	1.05	2N2102	.70	2N2906A	.30	2N3565	.20	2N3957	1.25	2N4852	.55	
	2N404	.75	2N2160	.70	2N2907	.25	2N3638	.20	2N3958	1.20	2N5061	.30	
	2N443	2.50	2N2218	.25	2N2907A	.30	2N3642	.20	2N4037	.60	2N5064	.50	
	2N508A	.45	2N2218A	.30	2N2913	.75	2N3643	.20	2N4093	.85	2N5130	.20	
	2N706	.25	2N2219	.25	2N2914	1.20	2N3645	.20	2N4124	.16	2N5133	.15	
	2N718	.25	2N2219A	.30	2N3019	1.00	2N3646	.14	2N4126	.16	2N5138	.15	
	2N718A	.30	2N2221	.25	2N3053	.30	2N3731	3,75	2N4141 .	.20	2N5294	.50	
	2N918	.60	2N2221A	.30	2N3054	.70	2N3740	1.00	2N4142	.20	2N5296	.50	
	2N930	.25	2N2222	.25	2N3055	.75	2N3771	1.75	2N4143	.20	2N5306	.20	
	2N956	.30	2N2222A	.30	2N3227	1.00	2N3772	1.90	2N4220A	.45	2N5400	.40	
	2N1302	1.25	2N2270	.40	2N3247	3.40	2N3773	3.00	2N4234	.95	2N5401	.50	
	2N1305	.75	2N2369	.25	2N3250	.50	2N3819	.40	2N4400	.16	2N5457	.35	
	2N1420	.20	2N2484	.32	2N3393	.20	2N3823	.70	2N4401	.16	2N5458	.30	

ALL PARTS GUARANTEED WRITE FOR FREE CATALOG

NEW FROM NEWTONE

Regulated Power Supply Components Kit - Contains the components needed to build a fixed-voltage regulated supply including: 117/17V- 1 ampere Transformer, Bridge Rectifier, 2000 uF Capacitor, and a 1 ampere LM340 3-terminal IC Regulator. Makes a fine "on board" supply or use it for breadboarding. Components only. Specify 5, 6, 8, 12 or 15 volts.

Pioneer 6" Speaker - 71/2-watt, 3.2-ohm speaker made the way speakers should be made. Has heavy-duty treated paper cone, protected magnet housing, and a ceramic terminal strip marked with polarity. A beautiful speaker at half the price you'd expect. NT526 \$2.39 Three for \$6.00 PC Boards · MIL grade, 1/16" glass-epoxy boards with 2-

ounce copper on one side.

NT521 6"x3" \$.50. NT522 6"x6" \$.90' NT523 6"x8" \$1.20 Dry Transfer Patterns for PC Boards - Includes 0.1" spaced IC pads, donuts, angles, and 3-and 4-connector pads. Over 225 patterns on a 2" x 7 1/4" sheet. NT520 \$1.49 3PDT - 24 Volt DC Relay - Potter & Bromfield KUP14D15. Each contact can handle 10 amperes at voltages to 240 Vac. Coil resistance is 450 ohms. A super buy! Limited quantities.

5" Taunt-Band Meter · One milliampere full scale, 31/2", scale length. Coil resistance 465 ohms. Made by Modutec for Bose. Meter scale in VUs (-20 to +30). Meter is designed to be mounted coil up. Complete with "smoke" plastic cover. Over-all 51/8"x4". Meter face mounts in a 51/8"x23/8" cutout: A beautiful meter. NT539 \$4.89

Aluminum Knob · Solid machined aluminum knob with fluted sides made for Bose. Black front-face insert, black pointer line. Fits flat 1/4" shaft, does not require set screws. .8 high, .7 diam. Easily worth \$1.50 NT540 \$.82 2 for \$1.50

BOSE SPEAKERS

Bose has discontinued their original 301 System. New-Tone purchased the speakers remaining in inventory when the 301 was discontinued, and is offering them at prices that seem impossible. The speakers have been tested with the Bose "Tone Standard" as a reference and have been subjected to the Bose power-handling test which includes both fixed and sweep-frequency testing. 8-Inch Woofer (Bose Part No. 102606) has a free-air resonant frequency of 25-35 Hz., and has a 1.5", 8.5-ounce magnet. The upper tested-frequency is 4000 Hz. 3-Inch Tweeter (Bose Part No. 107376) has a

free-air resonant frequency of 1200-1500 Hz., and has an upper tested-frequency of 16.5 kHz. Supplies are limited. We urge you to take advantage of these prices and stock up for your

future needs,

Sorry, we have no information about the Bose enclosures or the crossover networks; nor do we have more specs. Bose says these data are proprietary information.

> 8" Woofer NT541 \$10.95 3" Tweeter NT542 \$ 3.95

NEW-TONE ELECTRONICS

PO BOX 1738A BLOOMFIELD, N.J. 07003 PHONE: (201) 748-6171, 6172, 6173

は 10mm では、 10mm では、

FM WIRELESS MIKE KIT

TONE DECODER KIT

te Kit, TD-1 .

LED BLINKY KIT

h alternately

SUPER-SHOOP AMPLIFIER

MUSIC LIGHTS KIT

\$7.95

CODE OSCILLATOR KIT

e Kit. CPO-1......\$2.50

POWER SUPPLY KIT

DECADE COUNTER PARTS KIT

Frequency Counter \$79.95 KIT

You've requested it, and now it's here! The CT-50 Frequency Counter Kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button, the CT-50 will automatically place the decimal point in all modes, giving you quick, reliable readings. Want to use the CT-50 mobile? No problem, it runs equally as well on 12 VDC as it does on 110 VAC. Want super accuracy? The CT-50 uses the popular TV color burst freq. of 3.579545 MHz for time base. Tap off a color TV with our adapter and get ultra accuracy - .001 ppm! The CT-50 offers professional quality at the unheard of price of \$79.95. Order yours today!

CT-50, 60MHz Counter Kit	\$79.95
CT-50WT, 60 MHz counter, wired and tested	159.95
CT-600, 600 MHz prescaler option for CT-50, add	\$29.95

UTILIZES NEW MOS-LSI CIRCUITRY

SPECIFICATIONS

Sensitivity: less than 25MV

Frequency range: 5Hz to 60MHz, typically 65MHz Gate time: 1 second, 1/10 second, with automatic decimal point positioning on both direct and prescale

Display: 8 digit red LED .4" height

Accuracy: 10 ppm, .001 ppm with TV time base! Input: BNC, 1 meg ohm direct, 50 ohm with prescale option

Power: 110 VAC 5 watts or 12 VDC@ 1 Amp

Size: Approx. 6" x 4" x 2", high quality aluminum case Color burst adapter for .001 ppm accuracy available in 6 weeks. CB-1, Kit\$14.95

VIDEO TERMINAL KIT \$149.95

A compact 5 x 10-inch PC card that requires only an ASCII key-board and a TV set to become a complete interactive terminal for connection to your microprocessor asynchronous interface, its connection to your microprocessor asynchronous interface, its many features are single 5-volt supply, crystal controlled sync and beud rates (up to 9600 baud), 2 pages of 32 characters by 16 lines, read to and from memory, computer and keyboard-operated curvar and page control, parity error display and control, power-on ini-tialization, full 64-character ASCII display, block-type see-thru cur-Sor. Kayboard/computer control backspaces, forward spaces, line feeds, rev. line feeds, nome, returns oursor. Also clears pacel clears to end of line, selects page 1 or 2, reads from or to memory. The card requires 5 volts at approx. 900 ma and outputs standard 75 ohm composite video.

TH3216 Kit	
	239.95
VD-1, Video to RF Modulator Kit	6.95

600 mHz Prescaler

SIX DIGIT 12/24 HR **CLOCK KIT**

LINEAR

556

1458

Want a clock that tooks good enough for your living room? Forgat the competitor's kludges and try one of ours! Features; jum-to, 4" digits, Polaroid lens filter, extruded alimnum case available in 5 colors, quality PC boards and super instructions. All parts are nocluded, no extras to buy. Fully guaranteed. One to two hour as-sembly time. Colors: silver, gold, black, blue and bronze (specify).

Clock Kit, DC-5	\$50 RS
Alarm Clock, DC-8, 12 hr. only	
DC-5 with 10 min, ID timer,	
Mobile Version, DC-7	525.95
Assembled and tested clocks available	e, add
\$10.00 to kit price.	

Satisfaction guaran-tead or money refund-ed, Orders under \$10 add 75c. COD add \$1.00. NY add 7% sales tax.

CAR CLOCK KIT \$27.95

REGS

12/24-Hour 12-Volt AC or DC

10 14 35

TRANSISTORS

11.4	EAR	NEG	3	INAMOISIC	no
5	.50	309K	.99	NPN 2N3904 type	10/\$1.00
6	.75	340K-12	.99	PNP 2N3906 type	10/\$1.00
6	1.49	7805	.99	NPN Power Tab 40W	3/\$1,00
7	1.49	7812	.99	PNP Power Tab 40W	3/\$1.00
4	1.49	7815	.99	FET MPF-102 type	3/\$2.00
58	.49	78MG	1.50	UJT 2N2646 type	3/\$2.00
0	1.49	723	.49	2N3055 NPN Power	.75
	2			The second second	
16	2 N N S	.4911	•		144

BOX 4072A ROCHESTER, NY 14610 (716) 271-6487

Amp Adjustable Positive Voltage Regulator
 Amp Adjustable Negative Voltage Regulator
 Amp Adjustable Positive Voltage Regulator

2.10 1 Amp Adjustable Negative Voltage Regulator

CIRCLE NO. 40 ON FREE INFORMATION CARD

CMOS TEXAS INSTRUMENTS CD4000BE 74C14/40014PC TTL PLASTIC DUAL-IN-LINE I.C. CD4052BE 1.15 I.C. SOCKETS (Low Profile Solder Tail) CD4001BE SN7453N SN7454N SN74132N SN74136N 74C85/40085PC SN74186N CD40538E .89 1.20 SN7400N SN74S188AN C04002BF CD4055BE 1.29 80C97/40097PC .65 SN7401N .14 1.85 .59 80C98/40098PC CD4006BE SN7402N SN7460N SN74141N .88 SN74190N 1.04 .99 CD4060BE .99 .65 Price SN7403N SN7404N .14 SN7470N SN7472N SN74142N SN74143N 3.70 SN74191N SN74192N CD4007BE .16 CD4066BE 74C160/40160PC 8 Pin DIL 14 Pin DIL (C840802) (C841402) .15 74C161/40161PC **CD4008BE** CD4068BE 1.50 .84 .89 .54 .87 .80 .24 3.98 .69 1.58 16 Pin DIL SN7405N SN7473N SN74144N SN74193N CD4009BE .37 CD4069BE 74C162/40162PC (C841602 .19 .29 .35 .34 .45 18 Pin DIL 20 Pin DIL 22 Pin DIL 24 Pin DIL 28 Pin DIL .25 SN7474N SN7475N SN74145N SN74147N SN74194N SN74195N (C841802) (C842002) (C842202) CD4010BE CD4070BF 1 50 .37 .24 74C163/40163PC SN7407N CD4011BE 74C174/40174PC .17 SN7408N SN7476N SN74148N 1.19 SN74196N 16 1.40 CD4012BF CD4072RF 29 74C175/40175PC (C842402) (C842802) (C844002) SN7480N SN7481AN SN74150N SN74151N SN74197N SN74198N 74C192/40192PC CD4013BE CD4073BE .29 SN7410N .14 .95 .61 1.64 1.50 CDADIARE 74 CD4075RF .29 74C193/40193PC .20 SN7411N SN7482N .55 SN74152N 3.45 SN74199N 1.64 40 Pin DIL CD4015BE CD4076BE SN7483AN SN7484AN SN74153N SN74154N SN74221N SN74246N 1.14 .61 .29 .79 .24 CD4016BE CD4078BF 74C195/40195PC 1.40 SN7413N 1,50 .95 CD4017BE CD4081BE .70 .64 .59 SN7414N .62 .24 .29 .14 .20 .25 .25 .25 .22 .25 .28 .14 .23 .30 .21 SN7485N SN74155N SN74247N 1.70 **VOLTAGE REGULATORS** SN7416N SN7417N SN7486N SN7489N SN74156N SN74157N SN74248N SN74249N .29 ±5V Dual Tracking Regulator Switching Regulator Converter ±15V Dual Tracking Regulator Variable Dual Tracking Regulator ±35V ±9.5V Fixed ±15V Dual Tracking Regulator T05 Fixed ±15V Dual Tracking Regulator T066 Amp 5 Volt Popular Regulator T066 CD4018BF .79 CD4082RF SG3501AT CD4019B£ .38 CD4085BE SG3524J SG4501T RC4194TK 1.85 SN7420N SN7490AN SN74159N 2.50 SN74251N 1.05 CD4020BF 84 CD4086BF .75 SN7491AN SN7492AN SN74160N SN74161N SN74259N SN74265N 1.35 CD4502BE 1.15 CD4021BE .89 3.95 2.35 SN7422N RC4195T RC4195TK .85 CD4022BE .89 CD4507BE 1.35 .75 1.99 SN7423N SN7493AN SN74162N .85 SN74273N CD4023BE .16 CD4510BF 1 05 SN7494N SN7495AN .69 SN74163N SN74164N SN74276N SN74278N 5.15 The Unit Tracking negulator 103 6.35 5 Amp 5 Volt Positive Regulator 103 6.99 Positive Voltage Regulators (Plastic) 1 amp 6.6.8, 12, 15, 18, 24 Volts 7.5, 6.8, 12, 15, 18, 24 Volts CD4024BE CD4511BE 1.25 7BH05KC SN7426N 7800 Series TO-220 / LM340T .98 CD4025BE 16 CD4512BE .69 .57 1.39 SN7427N SN7496N .65 SN74165N 97 SN74279N CD4026BE 1.39 CD4514BE 2.50 SN7497N SN74100N SN74166N SN74167N 1.09 SN74283N SN74284N SN7428N 78M00 Series 78m. 10-5 / Lm. 7800 Series 70.3 / LM340K *WC Series CD4027BE .38 CD4515BE 2.50 SN7430N .97 4.50 .42 CD4028BE CD4516BE .84 4.50 SN74326 SN74104N SN74170N 1 69 SN74285N SN7432N SN7433N SN7437N SN74105N SN74107N SN74172N SN74173N SN74290N SN74293N CD4029BF .78 CD45188F CD4030BE .37 CD4519BE 78L00 AWC Series 1.24 .29 Positive Voltage Regulator 100 MA 2.6, 5, 6.2, 8.2, 12, 15 Volts .83 .21 SN74109N SN74110N .94 .84 .77 SN743RN SN74174N SN74298N CD4033BE 1.60 CD4520BF .79 SN74351N SN74365N 1.92 CD4034BE 2.95 CD4522BE 1.98 7900 Series Negative Voltage Regulator 1 Amp 5, 6, 8, 12, 15, 18, 24 Volts Negative Voltage Regulator 1/2 Amp 5, 6, 8, 12, 15, 20, 24 Volts 1.25 T0-220 / LM320T 79M00 Series T0-5 / LM320H SN7442N SN74111N .69 SN74176N .65 CD4035BF .98 CD4526BE 1.50 SN7443N .68 SN74116N SN74120N SN74177N 76 SN74366N .65 .65 1.35 CD4040BE .99 CD4527BE 1.50 SN74367N SN74368N SN74178N SN74179N CD4041BE CD4042BE .67 CD4528BE 1.20 T0-5 / LM320H 7900 Series T0-3 / LM320K 78MGT2C 1.75 Negative Voltage Regulator 1 Amp 5, 6, 8, 12, 15, 18, 24 Volts 1.20 Dual In Line Adjustable 4 Terminal .65 .34 SN7445N SN74121N 1.49 .65 .75 .58 CD4531BE 1.25 SN74122N SN74123N SN74125N SN7446AN SN741 RON SN74376N CD40438E CD4044BE .45 CD4539BE 1.20 SN7447AN SN7448N .48 SN74181N SN74182N SN74390N SN74393N 1.40 .45 CD45558E .75 .69 .14 .14 Positive Voltage Regulator Dual In Line Adjustable 4 Terminal .59 CD4046BE 2.45 CD4556B£ SN745ON SN74126N SN74184N 1 75 SN74426N 45 79MGT2C CD4047BE 2.45 CD4581BE 2.25 SN7451N SN74490N Negative Voltage Regulator

Our new comprehensive 1978 Catalogue, listing complete descriptions, illustrations and special monolithic pricing on over 10,000 items, is now available on request.

PO BOX 1035 FRAMINGHAM, MASSACHUSETTS 01701 OVER-INE-COUNTER SALES, 12 Mercer Rd., Natick, Mass. 01760 Behind Zayres on Rte. 9 (stephone Orders & Enquiries (617) 879-0077 CANADA SEST Ferrier at. Af Fanken Pr-Unit 238 CANADA SEST Ferrier at. Af Fanken Pr-Unit 238 CANADA Tell (1914) 735-6425 Tal. (418) 676-3311

78GH1 TO-220 79GU1 TO-220 78GKC TO-3 79GKC TO-3

CD4585BE 1.80

.34 CD4049BE

CD4050BE

2 Locations

EDMUND SCIENTIFIC

WIDE FIELD TELESCOPE

Astroscan lets you enjoy clear, bright, wide-angle views of stars, moon, comets, etc. Com-pletely portable, this unique 4¼", f/4 New-tonian reflector houses top quality optics. Designed for ease of handling and use, Astro-scan weighs only 10 lbs. and stands 17" high. What an instrument!

MAX.-MIN. THERMOMETER FIND OUT HOW COLD IT WAS

This self-registering maximum-minimum thermometer shows high and low temperatures in 2° increments from -40 to +120 f. See how temperatures vary in a day or why fuel costs are so high for a given period. Resets with magnet. Mount-ing screws. 2½ x 10½".

No. 71,478 . . .

\$16.00 Ppd.

SUPER POWER FOR ANY AM RADIO Antenna assist has pulled in station 1,000 miles off! No wires clips, grounding. Solid state. No batteries, tubes, plugs. No. 72,095 . .

\$19.95 Pod.

ULTRA SELECT-A-TENNA No. 72,147

\$24.95 Ppd.

ALPHA FROM THETA!

For greater relaxation & concentra-tion, monitor your Alpha/Theta brainwaves with audio or visual signals on Biosone II. Features of \$200-up units. Incl. 3 feedback modes! 4-lb.

\$149.95 Ppd. No. 1668

No. 71,809 (FOR BEGINNERS) \$59.95

Free Catalog

STOP WATCH WITH PROFESSIONAL TIMING ACCURACY FOR ONLY \$39.95

Used at AAU, NCAA, and the Olympics this two function stop watch times single segments of events with time in/out delays. Press the button and stop watch displays time action stopped-then resumes with next button press. Accurate to 1 sec./yr.; bright LED display reads to 59:99.99, runs on disposable batts. (incl.); lanyard; 1-yr.

\$39.95 Ppd.

Free Catalog

TRACK & FORECAST THE WEATHER WITH YOUR HOME WEATHER STATION

The Edmund Deluxe Weather Station combines high quality instruments with the best forecasting materials. Measure wind speed, barometric pressure, precipitation, tempera-ture, humidity, cloud types & wind-

chill. Kit includes: wind speed indicator, rain gauge, holosteric barometer, thermometer, wet & dry bulb hygrometer, 372-pg. Weather Log, cloud chart, wind-chill chart, and U.S. Weather Bureau symbol log.

No. 80,216

No. 1695

\$79.50 Ppd.

Send for your FREE 164 page Edmund Scientific Catalog with over 4000 bargains

SAVE 25%-DELUXE AM/FM WALL RADIO Great surplus buy saves you 25% on brand new AM/FM Deluxe Wall Radio w/ handsome silver/ black control panel. Mount anywhere den, kitchen, black control panel. Mount anywhere den, kitchen bedroom, office, workshop. Self-cont. Philco-Ford radio chassis (141/a x313/6 x31/2") w/11 transistors, vol. control, AM/FM hi-sensitivity tuner, AFC, 23/4" dia. speaker, 71/2" 110V AC cord. Orig. cost \$30 ea. in 3000 quant. for nat'l motel chain. Buy several now.

No. 72,275 (READY TO PLAY!)

\$22.50 Pnd

REST YOUR MIND WITH THE EDMUND PROFESSIONAL SOUND CONDITIONER

Unique new scientific device masks unwanted noise while adding restful, interesting background sounds Modern electronics now simulates soothing sounds of ocean surf, falling rain, and a rushing waterfall, 5" dia speaker, onoff volume controls, tone control, & 4 sound channel adjustments. 7½' AC cord, 5½x7½x6½. \$129.95

SPOTTING SCOPE...TAKE A GOOD LOOK...AT NATURE, SPORTS & THE WORLD Precision 10X spotting scope with fully-coated optics. 30mm objective lens has twice the light gathering power of standard 20mm lenses. Weighs a mere 11 oz. and offers a field of view of 183 ft. at 1,000 yds. 10" long.

No. 72,218

\$19.95 Pod.

ORDER PRODUCTS JSE THIS COUPON

			AD 2015
EDMUND SCIENTIFIC CO.	AMERICAN)		1, Edscorp I n, N.J. 08007
Dept. AV02, Edscorp Bldg.	DORESS.	-	
Barrington, N.J. 08007	Limit	Charge my	Amer. Exp

Send GIANT 164 Page Catalog

packeu wii	ii unusuai vaigams.
Name	
Address	
City	
State	Zip

EDMUND SCIENTIFIC	CO.
Dept. AVOL. Edscorp Bldg.	

Charge my ☐ Amer. Exp. ☐ BAC (VISA) ☐ MC

Interbank # ___ Acct. # __ Card # ___ Exp. Date ___

30 DAY GUARANTEE You must be completely satis-fied with any Edmund item or return it within 30 days for a full refued. Please send me the following items I have indicated below:

Stock No. \$1.00 N.J. residents add 5% sales tax Handling

Name Address City. __ State _____

INFORMATION:

Learning more about a product that's advertised or mentioned in an article in this month's issue is as simple as one, two, three. And absolutely free.

Print or type your name and address on the attached, card. Use only one card per person.

Circle the number(s) on the card that correspond to the number(s) at the bottom of the advertisement or article for which you want more information.

(Key numbers for advertised products also appear in the Advertisers' Index.)

Simply mail the card, and the literature will be mailed to you free of charge from the manufacturer.

This address is for our product Free Information Service only. Editorial inquiries should be directed to POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016.

POPULAR ELECTRONICS USE ONLY ONE CARD PER PERSON

NAME

ADDRESS

CITY STATE

(Zip Code must be included to insure delivery.) (Void after Mar. 31, 1978)

Do you own any of the following:

a.

CB- Stereo Combination b. Stereo Unit Only

c. Stereo Unit with tape player d. Separate auto speakers

e. None of the above

Please send me 12 issues of Popular Electronics for \$7.97 and bill me.

6 7 8 9 10 11 12 13 14 21 22 23 24 25 26 30 35 36 37 38 39 40 50 51 52 53 54 55 65 66 67 68 69 70 71 78 79 80 81 82 83 84 85 86 96 97 98 99 100 101 102 103 104 105 92 93 94 95

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

POPULAR ELECTRONICS USE ONLY ONE CARD PER PERSON

PE1781

NAME

ADDRESS

STATE____

(Zip Code must be included to insure delivery.) (Void after Mar. 31, 1978) Do you own any of the following:

a. CB- Stereo Combination

b. Stereo Unit Only

c. Stereo Unit with tape player d. Separate auto speakers

e. None of the above

Please send me 12 issues of Popular Electronics for \$7.97 and bill me.

10 24 25 26

36 37 38 39 40 35 41

50 51 52 53 54 55 56 66 67 68 69 70 71 65

81 82 83 84 85 86 87 88 89 90

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

PE1782

First Class Permit No. 217 Clinton, lowa

BUSINESS REPLY MAIL

No postage necessary if mailed in the United States

POSTAGE WILL BE PAID BY

Popular Electronics

P.O. Box 2905 Clinton, Iowa 52732

> First Class Permit No. 217 Clinton, Iowa

BUSINESS REPLY MAIL

No postage necessary if mailed in the United States

POSTAGE WILL BE PAID BY

<u>Popular Electronics</u>

P.O. Box 2905 Clinton, Iowa 52732

Popular Electronics

Many important articles covering a variety of interests in the broad field of electronics are published in POPULAR ELECTRONICS. Reprints of selected articles and test reports are now available in the event that you missed some you would like to have for reference or study purposes—or for projects you wish to build. Reprints in this series are only \$1 each (*75c for those marked with an asterisk.) Minimum order is \$2.

TEST REPORTS

AUDIO

- 18. ADC Accutrac 4000 Record Player
- 19. *Empire Model 698 Manual Turntable
- 20. Kenwood Model 600 Integrated Stereo Amplifier
- 21. MXR Stereo Graphic Equalizer
- 22. Nakamichi Model 500 Stereo Cassette Deck
- 23. Onkyo Model TX-4500 AM/Stereo FM Receiver
- 24. Ortofon MC20 Moving Coil Phone Cartridge
- 25.* Pickering Model XV-15/625E Stereo Phono Cartridge
- 26. Pioneer Model CT-F8282 Stereo Cassette Deck
- Radio Shack "Realistic" Model STA-2000 AM/Stereo FM Receiver
- 28. Rotel RX-7707 AM/Stereo FM Receiver
- 29. Sansui Model TU-9900 AM/Stereo FM Tuner
- 30. Shure Model M24H Stereo Phono Cartridge
- 31. Sony Model TA-4650 V-FET Stereo Power Amplifier
- 32. Spectro Acoustics Model 210 Stereo Graphic Equalizer
- 33. Stanton Model 681EEE Stereo Phono Cartridge
- 34. Teac Model PC-10 Portable Stereo Cassette Deck
- 35. 'Technics Model SB-6000A Linear Phase Speaker System
- 36. Thorens Model TD-126C Record Player

COMMUNICATIONS

- 37. Cobra Model 29XLR 40-Ch. AM CB Mobile Transceiver
- Drake Model SSR-1 AM/SSB Communications Receiver
- 39. *Kenwood Model TS-820 Amateur Radio Transceiver
- 40. Kris Model XL-50 40-Ch. AM CB Mobile Transceiver
- 41. "President Model "Washington" 40-Ch. AM/SSB CB Base Station
- Yaesu Model FRG-7 AM/SSB Communications Receiver

*REPRINTS MARKED WITH ASTERISK 75¢; ALL OTHERS \$1.00. MINIMUM ORDER \$2.00.

HERE'S HOW TO ORDER

Mail your order along with your name, address and remittance in the amount of \$1.00 for each reprint; 75¢ for reprints marked with asterisk, Residents of CA, CO, FL, IL, MI, MO, NY STATE, DC and TX add applicable sales tax.

Please be sure you identify reprints being ordered by the appropriate numbers shown above.

OUTSIDE U.S.A. ADO \$1 PER ORDER. MINIMUM ORDER \$2.

ORDER FROM: POPULAR ELECTRONICS IN-FORMATION CENTER, ZIFF-DAVIS PUB. CO., ROOM 721A, 1 PARK AVE., N.Y., N.Y. 10016.

POLY PAK'S IS THE "BARREL KIT KING" OF THE WORLD! Oly Pak' EXCLUSIVE Avg. Ship. Wt. 6 ozs. BARREL KIT :253 LINE CORDS Buy 8 for \$1.98 100's of AC power uses! Heavy-duty, 6-ft, long, 1s gage. White vinyl insula-tion & molded plug, Wt. 8 100's of AC power Heavy-duty, 6-ft, for gage, White vinyl tion & molded plug, nzs. 1E3843 YOUR BARREL KITS CHOICE AND CHOOSE THE BARREL KIT :270 BRIDGES! BRIDGES! OF BRIDGES! HRIDGES1 20 for \$1.98 We hat 2 tons of 2, 4, 10 and 25 amp full wave bridges, flow good, we don' know. Untested and hobbs W(7 9 ozs. 1E4022 ANY KIT Free! 100'S OF BARRELS PURCHASED! For the first time anywhere, Poly Pak merchandisers introduce a new way in buying the economical way. Raw stock from the "barrel". Remember the "good ole days"? They're back again. The same way merchandisers throughout the United States buy from various factories . . . their over-runs in barrels. Poly Pak has done the same. Therefore you are getting the same type of material as the RE-TESTERS DO! BARREL KIT 2249 UTILITY AC OUTLET BARREL KIT #244 HOBBY 1702A ROMS livery kit carries 12 for \$1.98 a money back quarantee! ting the leads! Wt. 12 1E3766 POLY PAKS CHIPS AWAY IC & XTAL PRICES BARREL KIT 225 SOUND TRIGGERS 3 for \$1.98 Ifand clap' sensinges crystal mids amplifer, riggers \$KR. Use for alarms, etc! With to zes. 125625 | 125625 | 125625 | 125625 | BARREL KIT #219 MIXED READOUTS 15 for \$1.98 Barrels of untested 17" 3".5", 7-segs. Like FND 377, 500, 503, MAN-3's. Wut a buy! No. 1E3619 REL KIT #239 ELDED CABLE 11. \$1.98 miker, stereos; 1-cond. shield, 22 ga, vinyl et, Wt. 1 lb, No. 9 18 3577 REL KIT #205 ii 91.00 for \$1.98 clerable Worth \$5.0 i precision submin. for all applications, 3 oss. No. 125528 BARREL KIT #239 HIELDED CABLE BARREL KIT #210 GLOWIN' PANELS. 3 for \$1.98 40 -ft. \$1.98 Order Cat. No. 1E404B and Type No. Hand clap" sensitizes crys tal mike amplifier, trigger SCR, Use for alarms, etc Wt. 6 ozs. 1E3625 der Cat. No. 1E4041 Stopwatch Six TV Games 4½ Digit DVM Volt Control McCD 350 MHz Prescaler Touch Tone Encoder Char, Gen. (2513 eq Brequency Caunter, 3½ Digit DPM Alarm Clock Microprocessor Eressable PROM SK EPM SK ENCOME Mfr unloads! Four 14-pm, four 18-pm, Solder tall, in-profile. No. 1E3621 " x 1" panels that glow blue-green with 110VAC. Use for nite lites, indica-tors, etc.Cat. No. 1E3550 Type ICM7205 BARREL NIT :203 CALCULATOR MEYBOARDS 10 for \$1.98 it's true: 20.key, 4 func-BARREL NIT 2185 PC BOARDS 400 PARTS 5.1.98 Computer maker dumps 1000's of PC boards loaded with IC's, resistors, 1000's Wt. 2 lbs. No. 183388 BARREL KIT :205 BARREL KIT #200 LOCK BARREL MIT :201 BARREL NI #20 6 DIGIT READOUT MINI BLOCK CAPACITORS | SHAPEL | S MODULES S for \$1.98 Barrels and barrels and no time to test. Calculator and driver chips beneath epoxy on back. Wt. 6 on 1E3515 15 for \$1.98 It's true! 20-key, 4 func-tion keyboards at ridicu-lous give-nway, Wt. 12 ozs. Cat. No. 1E3524 Test lamp manufact dumps inventory' We 69c ea. Like grain-o-wh Cat. No. 1E 3526 BARREL KIT #163 BARREL KIT #177 BARREL KIT :182 BARREL KIT #181 MICRO ZENERS 100 for \$1.98 MINI TRIM POTS [L. 30 for \$1.98 are pe use, Asst. values 100 to 1 mg tapprox) because factory discontinued line & barreled (em. What a buy. Single turn, 1/4 W. m. os. 1 12345 15 for \$1.98 30 for \$1.98 m. 1-Watt, tiny, 100% material, from 2V to 30V. Axia leads, No shorts, no opens 90-7 & micro spoxy units Cat. No. 123368 100% material, user con-cellation from factory dimps, 3V 10 mils, For 100% of projects, red iens. Cat. No. 123369 2's, for driving mult LEDs. Clocks, calculate BARREL KIT :150 BARREL KIT :159 MOGULAR SWITCHES REGULATORS W. 25 for w. 20 for \$1.98 LM: 499 K TO: 1. harreled. Cartadab push-0 N mounts to check lem? Your ress. Drdf. spidt, etc. Brand now. Cat. No. 1E3350 BARREL KIT :158 MAGNIFIED MAN: 3's MAGNIFIED MAN: 3's mont readout, built on magnification of the company of the BARREL KIT :149 ROCKER SWITCHES. BARREL KIT #145 BUY 25% OFF TRANSFORMER 12 for \$1.98 BLY 15% OFF We know we have the lowest prices! Miniature transformer ba again, Asst. outputs, inte stage and audio, Only sq. Wt. 2 lbs 1E3294 Barrels 'n barrels, so many, our customers should get the deal, No. 1E3302 er by Cat. No. 1£1981 À Type No. 1.4 □ \$N74153 ...35 2.20 □ \$N74153 ...35 2.20 □ \$N74153 ...35 2.20 □ \$N74153 ...36 2.21 □ \$N74155 ...36 2.21 □ \$N74155 ...36 2.21 □ \$N74163 ...37 2.21 □ \$N74163 ...37 2.22 □ \$N74161 ...37 2.23 □ \$N74163 ...37 2.24 □ \$N74163 ...37 2.25 □ \$N74163 ...37 2.28 □ \$N74163 ...37 2.28 □ \$N74163 ...37 2.28 □ \$N74163 ...37 2.28 □ \$N74163 ...37 2.30 □ \$N74163 ...37 2.31 □ \$N7 by Cat. No. 1E1981 A Type No Sale | SN7404 Sale | SN7404 Solid | SN7470 SOLID | SN7477 SOLID | SN7477 1.14 | SN7475 1.17 | SN7475 1.19 | SN7478 1.19 | SN7478 1.19 | SN7478 1.19 | SN7478 1.19 | SN7488 1.19 | SN7488 1.19 | SN7488 1.19 | SN7488 1.20 | SN7488 1.21 | SN7488 1.22 | SN7488 1.24 | SN7488 1.25 | SN7488 1.26 | SN7488 1.27 | SN7488 1.28 | SN7488 1.29 | SN7488 1.20 | SN7488 1.20 | SN7488 1.21 | SN7488 1.21 | SN7488 1.22 | SN7488 1.23 | SN7488 1.24 | SN7488 1.25 | SN7488 1.26 | SN7488 1.27 | SN7488 1.28 | SN7488 1.29 | SN7488 1.20 | SN7488 1.20 | SN7488 1.21 | SN7488 1.22 | SN7488 1.23 | SN7488 1.24 | SN7488 1.25 | SN7488 1.26 | SN7488 1.27 | SN7488 1.28 | SN7488 1.29 | SN7488 1.30 | SN7488 1.40 | SN7488 1.41 | SN7488 1.41 | SN7488 BARREL KIT :138 PANEL SWITCHE 30 for \$1.98 Did you hear of Mak: An other early maker barrellest and of the control of the cont BARREL KIT :144 RCA PHONO PLUGS 40 for \$1.98 BARREL KIT #127 AXIAL ELECTROS 40 for \$1.98 BARREL KIT :128 5N7400 5N7401 5N7403 5N7404 5N7405 5N7406 5N7410 5N7411 5N7413 100 for \$1.98 1 92. 41's, LM.(80, 70 t) 55, who knows? Fa Truthfully the factories to mixing 'en in barrels' de all of us a favor, WUT A BUY! Asst. capacities and voltages, No. 1E3227 Skinny 4 - 1... Monsanto, infra - rec photo darlingtons, photo cansistors No. 1E3262 this one, You hi-fi-ow wut they are 17 material, Look price, No. 1E3293 mixed, you test. U and hobby Wt. 1 lb. Cet. No 1E3245 BARREL KIT:107 SQUARE OHMS 60 for \$1.98 BARREL KIT :126 UPRIGHT ELECTROS, BARREL KIT :112 MICRO MINI LEDS 40 for 1 111 \$1.98 BARREL KIT :109 TERMINAL STRIPS BARREL KIT #115 MOLEX SOCKETS | SN7414 | SN7417 | SN7420 | SN7423 | SN7423 | SN7430 | SN7430 | SN7436 | SN7440 | SN7440 | SN7440 | SN7440 | SN7445 | SN7453 | SN7453 | SN7453 100 for \$1.98 nle asst of terminal strip 150 for 40 for \$1.98 Factory people are some-times "squares" when they topple prime square chms mix 'em up in barrels, Aust, values watts. \$1.98 Wide asst of terms connectors, from 1 up, Strip manuf barrel dump All the tiny leds, right of Monsanto Yield 50 % or Cat. No. Calculator maker dump! We gut a zillion of 'em, Used for IC sockets, 123144 better. 1E3139 Why bar 1E3226 BARREL KIT #101 RESISTOR SPECIAL 200 for \$1.98 BARREL NIT #88 PHOTO ELECTRIC CELLS 10 for \$1.98 BARREL KIT #104 SLIDE VOLUME CONTROLS BARREL KIT #93 HALF WATTERS BARREL KIT #87 MILE 200 for \$1.98 4 ox. 100 for \$1.98 15 for \$1.98 1E 3046 100 for \$1.98 Robby and untested, fac mixed in barrels, Linc 7400's, ROMS, DTL'S, isters, clock and calculchips and more, Wt. 12 Resistor factory tried to tool us by mixing 100's color-coded resistors in barrel, But value is there. Used in hi-fi, volume cortrol maker unloads. Assivalues, what a huy. Wort \$1 ea. 1E 3057 Asst, Gk types, CDS types, Mixed by factory, Big job for us to separate, 100% good. Cat. No. 1E3052 Includes: 1 , 1/4, 1 , 1, 2, watters, carbon. 8 oz 100 % good, 1E3054 BARREL KIT 271 CAPACITOR SPECIAL 100 pcs. \$1.98 BARREL KIT :83 LM-340T VOLTAGE REGULATORS 15 for \$1.98 BARREL KIT :73 TRANSISTOR ELECTROS 50 for \$1.98 BARREL KIT :68 2 WATTERS 100 for \$1.98 BARREL KIT :81 SUBMINI RESISTORS BARREL KIT :76 10 BARREL KIT :86 200 for \$1.98 100 for \$1.98 40 for \$1.98 OW! Top U.S.A. make mps discretes in barrels abby and untested. Use le yield 50% or better t. 4 ozs.No. 1E2859 So many suppliers don-count, but throw em in th barrel, It's a h'l gold mine All narked. Factory rejects, hobbunetic rejects, May 5, 6, 12, 15, 18 volts, TO-220 now Wt. 4 ozs. Pt, upright type, color cod-ed, in watt. Asst values, tame to us in a barrel, Cat. No. 1E2746 Emptie of mylars, moldeds, 10, 12, 15V, under . Double plug, 1E274 oltage 1E273 1E2635 1E 2747 BARREL KIT 554 8 & B DIGIT READOUTS 10 for \$1.98 Bargain of a lifetime. Wi HARREL KIT #39 HOBBY NPN POWER TRANSISTORS BARREL KIT :62 MIXED IC'S 100 for \$1.98 BARREL KIT #61 POLYSTYRENE CAPS BARREL KIT :58 SLIDE SWITCHES BARREL KIT :56 POWERS! POWERS! BARREL KIT :40 HOBBY PNP POWER 15 for TRANSISTORS \$1.98 100 for -25 for \$1.98 1E2726 \$1.98 \$1.98 Finest caps made. As a gamble we bought 10 barrels from factory, mixed values; all good. 1E2729 types, 7400's, 8000's, 9000's, 7400's, 8000's, RAMS, ROMS, RTLL, incars of all kinds at a mix Hobby and unled, Wt. 12 oz 1E2730 Popular germanum and sili-con TO-3's, factory "off-spec" and fallonts, 100 % hobby, no onens, no shortsl Wt. 16 ozs. No. 1E2618 15 for \$1.98 Factory fallouts and "off spec" TO-3 powers, 100 % hobby, no opens, no shorts, Wt. 1 lb. No. 152617 All shapes, sizes, spst, dp momentaries, etc. Trend dons shop pak for 100's switching projects arge distributor Cat. No. 1E2724 1E2722 METALLIC RESISTORS 100 for \$1.98 PREFORMED PRESISTORS 200 for \$1.98 BARREL KIT 27 PREFORMED DISCS 0 Ninkgy BARREL KIT #35 NEON LAMPS BARREL KIT :36 GERMANIUM DIODES ELECTRONICS IN A DRI 200 for\$1.98 Untests 30 for \$1.98 Famous NE-2's, fill prime, but factory made millions and harrel'ed 'em, Voor advantage. 1E 2613 e got barrels of 14 and 2" watters for pc use, ou'll get even amount 00: 14, 100 1 " watters Famous maker, popular item, Never graws old, But this is the way the RE-TESTERS buy 'em from the factories, 1E2614 e libest resistor ostly 12 watters. G tol. & a batters. lh-Fi mfr's shelf inventory but he dumped 'em in har-rels, Preformed, for PC use, Mixed values too 18260 IC'S COST LESS AT POLY PAR: 1E 2609 Cat. No. 1E260B MONO STERVO K A STE BARREL KIT #17 LINEARS AND 7400'S DIPS 100 for \$1.98 BARREL KIT #25 METAL CAN TRANSISTORS 100 for \$1.98 BARREL KIT #19 DIPPED MYLARS BARREL KIT #14 PRECISION RESISTOR BARREL KIT #26 PLASTIC TRANSISTORS 100 for \$1.98 Untested and hobby tors, TO-92 (TO-18 2N numbers, asst, m torers, Wt. 8 ozs, Cat. No. 1E 2604 60 for \$1.98 200 for \$1.98 OP AMPS 11 factory to you, Mari unmarked, some wit nal numbers, Wt. 18 Cat. No. - 1E2431 12, 2 watts. Marked 1. ansistors, Marked arked, Wt. 20 ozs lumping lent in No. 1E 2597 122428 BARREL KIT #4 BARREL KIT :11 POWER TAB TRANSISTORS 40 for BARREL KIT #7 VOLUME CONTROL BONANZAL BARREL KIT #5 SCRS, TRIACS, QUADRACS NO. BARREL KIT :10 ROMS-REGISTERS 40 for \$1.98 NPN, plasti 30 for \$1.98 40 for \$1.98 miniature recisf Send for your FREE PN, plastic TO220 sorted 2N numbers the famous plast tab type, Raw ick! All the 10 am t. No. 1E2419 type ingles, duals, variet alues, styles, big one mail ones. 1E2421 clude 25, 50, 100, 200 400, 600, 500 and 1000 volters, Cat. No. 1E2417 16 POLY PAKS CATALOG Untested. 1E 2424 BARREL KIT :2 LINEAR OP AMPS DIPS 75 for BARREL KIT 2 3 050 1 N4148/914 Hold SWITCHING DIODES 100 for \$1.98 BARREL KIT #1 SN7400 DIP IC'S 75 for \$1.98 Marked 11 and 16 jun daps may include gates, flap Terms: Add postage Rated: net 30 Phone: Wakefield, Mass. (617) 245-3829 C.O.D.'s Retail: 16-18 Del Carmine St., Wakefield, FEATURING THE WORLD'S 75 for \$1.98 ST BARGAINS MAY MINIMUM ORDER -- \$6.00 include 70 POLY PAKS PHONED IN ELECTRONICS Staction. 1E241B d Cat. N P.O. BOX 942E LYNNFIELD, MA. 01940 © Poly Paks Inc. Wakefield, Mass., U.S.A. 1977 CIRCLE NO. 37 ON FREE INFORMATION CARD

JANUARY 1978

ar I | Silica | 1 is New! ECONORAM VI ECONORAM I

12K×8 memory kit for the Heath H8 \$235.00

We proudly welcome our newest memor We proudly welcome our newest memory board family member, designed from the ground up for full compatibility with the Heath Company H8. Organized as two independent blocks, one 8K block and one 4K. Has the same basic features as our ECONORAM IITM—all static design, switch selected protect and phantom, sockets for all ICs, full buffer. and phantom, sockets for air ICs. full outlet-ing-plus the required hardware and edge connector to mate mechanically with the H8. You can have our 12K board for the price of the Heath Company's 8K... with the performance you've come to expect from pro-ducts carrying the ECONORAM^{1M} name

Selected computer kits

10 SLOT MOTHERBOARD (\$90: 18 SLOTS \$124) These S 100 motherboards come with edge connectors and active

ACTIVE TERMINATOR (\$29.50) Plugs into \$100 buss mother boards lacking active termination: cleans up the glitches associated with unterminated lines.

12 Volt, 8 Amp Power **Supply Kit**

\$44,50 brings you crowbar overvoltage protection, current limiting, out put protection, and easy assembly. Use with ham, CB, automotive equipment when you need hefty AC power Les-

Popular SK x 8 memory plugs into Altair. IMSALother S-100 machines. Two independent 4K blocks with separate protect and vector interrupt provision if you try to write into protected memory. Handles DMA devices. Fully buffered. Tri-state outputs. Selectable write strobe, Sockets for all ICs. Join the thousands who have made this our most popular board!

Kit form \$130; assembled, tested warranted for 1 year \$150; SPECIAL - Four ECONORAM IITM kits \$475 (32K of

The first 8K x 8 dunamic RAM that The first 8K x 8 dynamic RAM that performs well enough to merit the ECONO-RAM**Mname. Not a kit—assembled, tested, ready to run in your \$ 100 machine. (Altair etc.). Low power Configuration as 2 separate 4K blocks. Zero wait states with 8080 CPU.

Includes 1 year warranty

TERMS: Please allow up to 5th for shipping. (10% for 12V supply); excess refunded. Call tes add tax. COD orders OK with street address for UPS VISA. Mastercharge orders call (415) 562-0636, 24 hours

FREE FLYER: We carry many items of interest to all electronic hobbyists. Send us your name and address, we'll send you our current flyer.

CIRCLE NO 16 ON FREE INFORMATION CARD

DISCOUNT ON ALL LINEAR CIRCUITS LM372N LM376CN LM380N LM380-RCN LM381N LM382N LM385K NE531V NE540L NE546A NE550A LM555CN NE556A LM560N LM561N LM300H E IC'S AND LED'S LM301CN LM302H 10% OFF ON \$25.00 LM304H 15% OFF ON \$50.00 LM307GN LM307H 2708 **LM308H** 5314 6 DIGIT LM309H **FULL SPEED EROM** CLOCK CHIP LM309H \$14.95 LM310CN LM311CN 2102 LM311H 74S200 LM311N **500NS 1 K RAM** LM319N 256 RIT RAM LM320K \$1.29 TRI-STATE 5,5 2 12 15 1 29 LM320T LMS65 8080A. 8008 5. 12 15 1 19 \$16.95 LM322N

LD110, LD111 AY51013A \$6.95 SET \$24.75 2513 82S23 CHARACTER GEN 64 x 8 x 5 ASCII 256 BIT PROM \$2.95 \$8.95

CERAMIC CAPACITORS 10-100 \$.05 ea 270pf .00luf 56pf 390pf .0047uf 470pf .01uf 68pf 82pf 10pf 100pf 600pf .01uf/1KV 120pf 820pf .022uf 27pf 150pf .030uf 33pf 180pf .050uf

47pf 220pf .luf IC SOCKETS Solder Tail - low profile 24 pin 28 pin 40 pin 8 pin 14 pin 5 .17 22 18 pin

LM739N 99 LM741CN(8) 32 LM741CN(14) 32 LM741CH 35 LM741CH LM747H LM747N LM748CN LM1310N LM1414N LM1458CN LM1458CN LM1496N LM1496N ULN2208 ULN2209 CA3046 CA3081 LM568H LM566CN LM567CN LM567CN LM567H LM703H LM709N LM709N LM709N LM710N LM711N LM723H LM723H LM723N LM3900N LM324N LM7524 ILM2902N1 1 52 1 58 LM7525 LM339N 8038B LM340 75451CN 75452CN 15, 18, 24 75453CN M340 75454CN 75491N 75492N

XR320 1:5 XR2567 199 XR4212 175 NE6263N 475 XR2206 295 XR4138 175 XR4739 1:15 NE8267B 175 XR2207 2:95 XR4202 175

ELECTRONIC DOOR CHIME KIT

WITH TI TMS 1000 MICROPROCESSOR CHIP PROGRAMMED TO PLAY 24 DIFFERENT TUNES

PLASS NATIONAL ANTHOMS OF U.S. BRITAIN
NY PLAS DITHER FOLK TENES, CLASSICAL AND

OW POWER CONTINUED OF TUNE, VOLUME, INMEDIAND THENS

PROGRAMMED MATHEMATICALLY TO PLAY IN PERFECT PITCH PROMAINSTA ATTRACTIVE CASE, CONVENIENT WALL MIREST

\$39.50

Satisfaction guaranteed. Shipment will be made postage prepaid within 3 days from receipt of order. Payment may be made with personal check, charge card (include number and exp. date), or money order. Phone Orders - Bo(A and M/C card or C.O.D. FREE CATALOG AVAILABLE ON REQUEST

Add \$1.00 to cover shipping and handling if order is less than \$10.00. California residents add sales tax. Include shipping expense for orders shipped out of U.S. and Canada approx. 10% of order.

INTERNATIONAL ELECTRONICS UNLIMITED VILLAGE SQUARE, P.O. BOX 449, CARMEL VALLEY, CA 93924 USA **TELEPHONE 408 659-3171**

faster service USE CODE

For

peration Assist

equipment—a schematic, parts list, etc.—another reader might be able to assist. Simply send a postcard to Operation Assist. Popular Electronics. 1 Park Ave., New York, NY 10016 For those who can help readers, please respond directly to them. They II appreciate it. (Only those items regarding equipment not available from normal sources are published)

I.T.T. Model 1735D oscilloscope. Schematics or information for power supply. Allen Currey, 330 Scott Dr., Silver Spring, MD 20904.

B&K TV Analyst Model 1075, Manual and/or schematic. Harry Matosian, 14035 Hartsook St., Sherman Oaks, CA

Hallicrafter S-38C shortwave receiver. Schematic or any available information. Mark Stefanik, 20 Old Farm Rd., Cedar Knolis, NJ 07927

REK-o-KUT Model R-34 manual tumtable. Need drive belt. Arthur C. McReynolds, 1841 Isabella Ave., Monterey Park, CA 91754

Novus Scientist PR calculator. Need Programs. E.C. Fante, 3085 Adams Way, Santa Clara, CA 95051.

Jefferson-Travis Radio Model 350-A-1, Schematics and any other information. Richard Harris, Box 518, Chase City, VA 23924.

Philes Standard shortwave radio Model 19A. Code 121. Schematic, R. Mills, 46 Harts Lane, Guelph, Ontario, CAN.

Sherwood SA-5200 tube-type stereo amplifier. Schematic. Fred Avery, Box 5883, Raleigh, NC 27607.

Pioneer Model SX-82 stereo receiver. Schematic and service manual. Eric Archer, 3402 Community Ave., Glendale, CA 91214

Masco Commercial PA amplifier Model MA60. Operator's manual and schematic. Van Lynn Floyd, R.R. #1, Box 94, Johnson, KS 67855.

Halficrafter Model S40A. Prints and documentation. Richard Fumari, 33 Highland Ave., Yonkers, NY 10705.

International 100D Executive CB transceiver and external speakers meter. Schematics and service manual. Larry R. Jewell, 223 Cedar Springs Rd., Spartanburg, SC 29302.

Hammarlund Super-Pro Model ASP 779 shortwave receiver. Schematic, parts list, service and operator's manual. Nelson Allan, Box 164, New Hartford, NY 13413.

Friden (Singer) Model EC1114, 14 digit desk calculator. Schematic or service manual. Robert Miller, Rt. 1, Anadarke, OK 73005

Dumont Model 208 oscilloscope. Schematic and service manual. Alex P. Cameron, Rt. 3 Box 93, Samson, AL 36477.

Tektonix, Inc. Model S-32 Serviscope oscilloscope. Otto R. Jans, 400 Grove St., Ridgewood, NJ 07450.

Heathkit Oscilloscope I0-21. Schematic. R.L. Conhaim, 1329 Stanley Ave., Dayton, OH 45404.

Feranti 3 Band, 220-V ac-dc, 6-tube receiver. Model # unknown. Schematic, company address. Stephen Ostrom, 2167 Beaumont Rd., Ottowa, Ontario, CAN KIH 5V2.

Seeburg Select-o-matic 100 Model M 100-B, Ser. 5830. Seeburg Wall-o-matic 100 Model 3W-1, Ser. 10203. Service manuals and sources. Rod Stebelton, 6155 Coonpath Rd, Carroll, OH 43122.

Harvey Wells Model TBS-50 Amateur Transmitter. Owner's manual and schematic. Patrick W. Keogh, 1404 So. 87th St., West Allis, WI 53214.

Grand 5-Brand Radio, Model FP-1211-G. Dial string instruction and diagram. Bernard Grupe, 3012 Highland Dr., Gary, IL 60013.

Gonset Communicator 2, 2-meter VFO, VHF Amp Model 3063. Manuals. Richard Dawson, 1308 F. St., The Dalles, OR 97058

Vernon 47/26 Tape Recorder. Schematic, James L. Negron, Box 162, Sandy Spring, MD 20860.

General Electric sweep generator Model ST-4A, General Electric marker generator St-5A. Schematic, operating

POPULAR ELECTRONICS

This originate only coupler was manufactured for use in T.I. 725 data terminal. It is compatible with Bell 103 and 113 data sets or the equivalent. The coupler operates asynchronously to

perates asynchronously to operates asynchronously to operates asynchronously to a maximum speed of 300 baud in the full or half duplex mode. All signal outputs are compared to the speed of the speed o

o (:######) a

SPECIAL OFFER!

JEW! GREEN INSERT, DBM-25-S CONNECTOR SALE!

SOLDER-CUP PINS.

ONLY \$3.50 EACH 10 FOR \$32.50

680-1.25A,black anodized alum. 1.81"base x 1.25"high.\$1.25 10 for \$9.95

THE PITTMAN 12VDC MOTOR runs on low as 2 volts, rated 12 volts 250ma low as 2 volts, rated 12 volts 250ma with 2.8 oz. in. of torque at 5000RPM, 1-1/8" dia. x 2" long with 0.118" shaft. 10/815.

SPRAGUE

360 POWERLYTICS

LIKE NEW PARTS AT USED PRICES! PULLED FROM NEW EQUIPMENT AND OFFERED TO YOU AT SUBSTANTIAL SAVINGS. AVAILABLE IN: 8200MFD @ 25V CHOICE \$1.00 EA. 10 FOR \$7.95

EAGLE-PICHER BATTERY CF6V5. 6 VOLT 5A.H. SPILL-PROOF, RE-CHARGEABLE BATTERY, \$12,50EA. 10/S99.95. NEW-1 YEAR WARRANTY.

KYNAR WIRE WRAP WIRE. Solid silver plated 30AWG available in blue, red, yellow, black, green, or white. 100'spool for \$2.50; 500'spool for \$5.95; 1000'spool for \$7.95.

26AWG red or black 500'spool for \$7.95; 1000'spool for \$12.50

12VDC COOLING FAN THAT'S RIGHT A L2VDC! IDEAL FOR SMALL COOLING PROBLEMS, 24" BLADE ONLY \$4.95

THERMALLOY 6030B flat power device heat sink. \$2.52ea. 10/81.88 \$.75ea. 10/85.00

EDGE CONNECTOR

43/86 PIN DUAL READ-OUT, .156 SPACING WITH SOLDER EYELET PINS. USED, BUT YOU WILL LOVE THEM AT \$1.00 EACH.

Stranded 22 GA, available in white, brown, orange, red. black, blue, purple, yellow, green, or gray.

MINIMUM ORDER \$10 | SEND FOR FREE CATALOG

TERMS: Send check or money order. NO COD. Texas residents add 5% sales tax. Canada and Mexico add \$2,50. Oversoas countries add \$5,00 for surface rates. We pay postage up to 10 pounds.

ACE ELECTRONIC PARTS 5400 MITCHELLDALE B-8 HOUSTON, TEXAS 77092 (713) 688-8114

CIRCLE NO. 2 ON FREE INFORMATION CARD

manuals. Richard Roggeveen, 5569 Dunsburry Ct., San Jose, CA 95123.

Knight Model 150 transmitter and R-99 receiver. Operating manual and schematic. Mike Libonati, 100 Sulliyan St., New York, NY 10012

Heathkit Model W-2 power amplifier. Need output transformer, John Million, 1115 Barkley Rd., Charlotte, NC 28109.

Paco Model S-55 oscilloscope. Schematic and operating manual. Ed Palmer, #26-67 Angus Rd., Regina, Sask, CAN

Military oscilloscope Model OS-4B/AP, # N383-46496A. Schematic and instruction manual, Carl G. Kramer, 2525 Midpine Dr., York, PA 17404.

Schuttig & Co. Diversity Receiving TTY converter serial #61 made for U.S. Army Signal Corps. Information and schematics. Richard Dawson, 1308 F. St., The Dalles, OR

Philco Model 40-95 Code 122 console battery radio. Schematic, parts list, and source. Robert Michael, R.D. 3442, Fleetwood, PA 19522.

ABOUT YOUR SUBSCRIPTION

Your subscription to POPULAR ELECTRONICS is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of POPULAR ELECTRONICS each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly,

Same day shipment. First line parts only. Factory tested. Guaranteed money back. Quality IC's and other components at factory prices.

INTEGRATED CIRCUITS

74001TL		74LS38N	30	LM370	1 15	CD4013	38 86 86	74030	28		١
7400N	17	74LS74N	35	LM377	4.50	CD4014	86	74048	2.95		
7402N	17	74LS75N	47	LM379	5 00	CD4015	86	74074	75		
7404H	19	74L590N	51	LM3864	1 00	CD4016	36	74C76	1 40	MM5314	
7409N	23	74LS93N	51	LM351	1.60	CD4017	94	74090	1 15	MM5315	
7410N	17	74LS95N	1 89	LM382	1 60		94	74093	1 40	MM5316	
7414N	63	74LS107N	25	LM703H	40	CD4018			3.00	MM5318	
7420N	17	74LS112H	35 35 35	LM703H	28	CD4019	1 02	740154	3.00	MM5389	
7422N	1 39	74LS113N	24	LM723H N	50	CD4020	1 02	740160	1.44		
7430N	20	74LS132N	33.	LM733N	67	CD4021	1 02	740192	2.40	MM5841	
7442N	.50	74LS136N	357		01	CD4022	86	740221	2.75	MM5865	
7445N	69	/4La1368	33.	LM741CH	35	CD4023	21	740905	3 00	CT7801	
7447N	bs	74LS151N	67	LM741N	25 62	CD4024	75	740906	1 50	CT7002	
	60	74L5155N	67 67	LM747H N	52	CD4025	21	740914	1 95	CT7010	
7448N	59	74LS157N 74LS162N	67	LM748N	35	CD4026	1 51 38 79	740923	7.50	CT7015	
7450N	57	74LS162N	91	1M1303N	82	CD4027	20	740925	10.50	MM5375AA:N	
7474N	29 49 88	74L\$163N	91	LM1304	1 10	CD4028	70	740926	10.50	MM5375AB N	
7475N	.49	74LS174N	95	LM1305	1.27	CD4029	1 02	740927	10.50	7205	
7485N	.88	74LS190N	1 05	LM1307	2.00	CD4029	21	INTERFACE	10.50	DS0025CN	
7489N		74LS221N	1.95	LM1310	2 00	0.04030	1.02	MIEHPALE		DSCOSSEN	
7490N	.43	74LS258M	.67	LM1458	47	CD4035	1,02	8095	65	MM53104	
7492N	77	74LS367	89	LM1830	75	034040	1.02	5096	65		
7493N	43		23	LM1812	7.50	CD4942	71	1097	65	IC SOCKET	
7495N	69	LINEAR		LM1899	7 50	CD4043	.63 63	8098	65	Solder Tin Low	3
74100N	23	CA3045	90	FW1968	3 00	CD4044	63	8109	1 25	PIN 1 UP PIN	ı
74100N	90 29	CA3046	67	LM2111	1 75	CD4046	1 67	STID	4 50	8 15 24	
74107N	29	CA3049	85	LM2902	1 50	C04049	35	8713	3 00 5.50	14 18 28	
741218	34	CA3081	1:80	LM39004	60	C04050	36	8120	5 50	16 20 36	
74123N	.59 39	CA3092	1 00	LM3905	1.75	CD4051	1 13	8T23	3 10	18 27 40	
74125N	39	CA3089	1 90	LM3909N	61	CD4950	1 42	5724	3 60	22 35	
74145N	.69	CASOSOAO	4 75	MC1458V	50	CD4066	71	5T25	3 50 3 20	3 level wire mrap (
74150N	95	LM301AN/AH		NE540L	2 89	CD4068	40		1 69	14 ma 25 11	
74151N	89	LM305H	.35	NESSON	65			8126	1 69		
74154N	1.00	FM3034	8,7	NESSSV	.43	CD4059	40	8728	2 75	MICROPROCES	ŝ
74157N	60	LM307N	.35	NESSEA	79	CD4070	40	6197	1 59	6800	
74161N	.69 :87	LM3D8N	.89	NE565A	1 00	CD4071	21	8798	1 69	8080A with data	
74162N	87	FW308H	1.15	NE566V	1 15	CD4072	.21	MOS/MEMOI	MAR YR	ZBC	
74163N	01	LM309K	95	NESOBY	1 13	CD4073	.21	2101-1	4.50	8212	
74163N	87 95	LM311H/N	-90	NE567V	1.20	CD4075	1 75	2102-1	1 80	8214	
74174N	850	LM3177/K	2 92	78L05	.50	CD4078	1 75	2104A-4	4 95	8216	
74175N	.90	LM318	1 35	78L08	.60	CD4078	.40	21078	4 00	8224	
74190N	1 15	LM320K-5	1 20	79105	70	CD4081	21	2111-1	7 00	8228	
741924	87	LM323K-5	2 92 1 20 1 20 1 20 1 35 1 35	78M05	.85	CO4082	21	2112-2	7 90	9559	
74193N	85	LM320K-12	1 25	75108	1.75	CD4116	1 30 5 60 1 00	MK4116	48 00	8251	
74221N	1,55	LM320K-15	2 76	75491CN	.50	CD4490	0.3 3		8 75	8255	
74298N	1 65	LM3201-5	1 85	75492CN	55	CD4507	1 00	2513B		CDP1602CD	
74365N	86	LM320T-8	1 80	75494CN	89	CO4508	4 25	21L02-1	1 90	CDP18020	
74386N	88	LW7501-9	1 60	A to D CONVE		UU45G8	4 23	MM5262	50	UART/FIFD	
74357N	66	LM320T-12	1 50	8700CJ	RIEH	CD4510	1 02	MM5320	5 95	AY5-1013	
		LM320T-15	3 50	9/00W	13 95	CD4511	.94	MM5330	5 94	3341	
74LS00 TTL		LM324N	1 15	8701CN	22 00	CD4515	2 52	PD411D-3	4 00		
74L500N	25	LM339H	1 55	8750CJ	13 95	C04516	1 10	PO411D-4	5 00	PROM	
74LS02N	25	LM340k-5	1 10	LD130	9 95	CD4518	1 02	P5101	13 95	1702A	
74LS04N 74LS05N	25	LM340K-8	1 10	9400CJ V to 1	7 40	CD4520	1.02	4200A	15 95	N82523	
74LSQ5N	25 25	LM340K-12	1 10	CMOS		CD4527	1.51	82525	2 00	N82S123	
74LSGBN	25	LM340K-15	1 10	CD34001 Fair	.50	CD4528	.79	91L02A	2 90 2.50	N82S126	
74LS10N	25	LM340K-24	1 10	CD4000	.50	CD4553	5.75	HD0185-5	6 95	NB2S129	
74L513N	40	LM340T-5	1 10	CD4001	31	CD4566	2.25	MM52100	0 93	N82S131	
74LS14N		LM340T-8	1 10	CD4002	21	CD4583	4 50	CHANGE COO	13 00	2708	
74L520N	90 25	LM3407-12	1 10	C04006	1.10	C04585	1 10	GIAY38500	18 50	OM8577	
74LS22M	25	LM3407-15	1 10	CD40007	.21	CD40192	1 00	CLOCKS		8223	
140955M	65	FW2401.19	1 10	604007	.21	CD40192	3.00	MM5309	3 00	07.63	

TS Profile 1 10P 1 36 3 43 5 58 6 61 24.50 24.50 11.50 29.95 3.50 8.00 3.85 3.50 6.25 11.50 10.75 19.95 25.00 5 50 6 95

P.O. Box 4430C Santa Clara, CA 95054

ELECTRONICS

(408) 988-1640

31/2 Digit Multimeter \$49.95

Batt. oper. 1mV and .1NA resolution. Resistance to 20 meg. 1% accuracy. Small, portable, completely assem. in case. 1 vear quarantee.

Not a Cheap Clock Kit \$14.95 Includes everything except case. 2-PC boards. 6-.50" LED Displays. 5314 clock chip, transformer, all components and full instructions. Same clock kit with .80"

Digital Temperature Meter Kit Indoor and outdoor. Automatically switches back and forth. Beautiful. 50 LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure -100° to +200°F, air or liquid. Very accurate. Complete instructions. \$39.95

Clock Calendar Kit \$19.95 CT7015 direct drive chip displays date and time on .6" LEDS with AM-PM indicator. Alarm/doze feature includes buzzer. Complete with all parts, power supply and instructions, less case.

1977 IC Update Master Manual

Final 1977 closeout \$15.00 while they last, 1978 Master available late Jan. 1978 \$30.00. Complete IC data selector, 1234 pg. master ref. guide, 17,000 cross references. Free update for 1977. Domestic postage \$2.00. Foreign \$6.00

Shipping charges will be added.

60 Hz Crystal Time Base

Kit \$4.75 Converts digital clocks from AC line frequency to crystal time base. Outstanding accuracy. Kit includes: PC board. MM5369, crystal, resistors, capacitors and trimmer

New Cosmac Super "ELF"
RCA CMOS expandable microcomputer

w/HEX keypad input and video output for graphics. Just turn on and start loading your program using the resident monitor on ROM. Pushbutton selection of all four CPU modes. LED indicators of current CPU mode and four CPU states. Single step op. for program debug. Built in pwr. supply, 256 Bytes of RAM, audio amp. & spkr. Detailed assy. man. w/PC board & all parts. Comp. Kit \$106.95 Custom hardwood cab.; drilled front panel 19.75 Nicad Battery Backup Kit w/all parts 4.95 Fully wired and tested in cabinet 151.70 1802 software xchng. club; write for info

RCA Cosmac VIP Kit 275.00 Video computer with games and graphics

Original Cosmac "ELF" kit with PC board, monitor, power supply plus all parts and instructs. \$89.50 14.95

41/2 Digit DMM kit \$85.00 Volts-ohms-milliameter accuracy ±1 count. Ranges: Volts-2, 20, 200. Ohms

-2K, 2meg, 20 meg. Ma-200, 2000. 4" display. Variable update rate. Comp. TERMS: \$5.00 min. order U.S. Funds. Calif residents add 6% tax. BankAmericard and Master Charge accepted.

Paratronics 100A Logic Analyzer Kit \$199.00

Converts an oscilloscope into a digital tester and analyzer. Trace computer program flow, monitor I/O sequences, etc. Trouble shoot all digital, CMOS and MOS families, 128 bit truth table (8 by 16 bits). Complete with case, parts and instructs.
Model 10 Trigger Expander Kit expands
Model 100A to 24 bits \$229.00. Model
150 Bus Grabber Kit \$369.00, a one board logic analyzer for S-100 bus appli-cations. Instant access to 56 S-100 bus signals. Complete kit with all parts and

2.5 MHz Frequency Counter Kit Complete kit less case \$37.50 30 MHz Frequency Counter

Kit Complete kit less case Prescaler Kit to 250 MHz \$19.95

\$26.95 Stopwatch Kit Full six digit battery operated. 2–5 volts. 3.2768 MHz crystal accuracy. Times to 59 min., 59 sec., 99 1/100 sec. Times storabilit and Taylor. 7205 chip, all components minus case. Full instruc. White or black plexiglass case \$5.00

Auto Clock Kit DC clock with 4-.50" displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal timebase PC boards. Fully regulated, comp. instructs. Add \$3.95 for beautiful dark gray case. Best value anywhere.

FREE: Send for your copy of our 1977 QUEST CATALOG. Include 13¢ stamp.

OUTSIDE OF JAPAN...

NEW-TONE ELECTRONICS Has the Largest Inventory of Original Japanese Components Anywhere!

• NEC•HITACHI• MITSUMI•

SHINDENGEN• MITSUBISHI•

• FUJITSU• FUJI-TEN• JRC•

• SANYO•R-OHM• UNIDEN•

• PANASONIC• CYBERNET•

.SONY-RIKYU-TOSHIBA-

28A-98
2SB434 115 2SC732 49 2SC1403 3.60 MPS8001 1.25 MN6040A 16.75 UPC1156H 3.95 2SB440 60 2SC734 49 2SC1447 90 MPSU31 4.00 PLL01A 13.50 UPC1156H 4.50 2SB461 1.60 2SC735 49 2SC1448 1.00 MRF8004 3.00 PLL02A 8.50 UPC1156H 4.50 2SB463 1.40 2SC736 49 2SC1448 1.00 MRF8004 3.00 PLL02A 8.50 UPC1156H 5.50 UPC1360C 9.50 UPC1360C 9.50 UPC1360C 9.50 UPC1360C 9.50 UPC1360C 9.50 UPC360C 9.50 UPC360

MINIMUM ORDER \$5.00
All orders add \$1.00 Postage and Handling.
Canada \$1.50
N.J. Residents add \$76 sales tax

N.J. Residents add 5% sales tax

DEALERS: Write on letterhead for confidential price list.

24 HOUR SHIPMENT ON ALL DEVICES IN STOCK.

ALL PARTS GUARANTEED — COD ORDERS WELCOME

NEW-TONE ELECTRONICS

P.O. Box 1738A, Bloomfield, N.J. 07003 Phone: (201) 748-6171, 2, 3

Popular Electronics

ADVERTISERS INDEX

_	ADVERTISERS INDEX
	ADER RVICE NO. ADVERTISER PAGE NO.
1	A P Products Incorporated89
2	Ace Electronic Parts101
3	Active Electronic Sales Corp95
4	Ancrona Corp
	CREI Capitol Radio Engineering Institute
	Cleveland Institute of Electronics, Inc
50	Cobra, Division of Dynascan CorporationSECOND COVER
7	Communications Electronics81
8	Continental Specialties Corporation17
10	Davis Electronics
11	Digi-Key Corporation
12	EICO68
13	Edmund Scientific Co96
14	Electronics Book Club7
	Energy Technology, Inc63
15	Fuji-Svea Enterprise88
16	Godbout Elecs., Bill100
17	Grantham College of Engineering76
5 18	Heath Company5 Hobbi-House90
40	Hillanda Avalla
19	Illinois Audio
21	International Electronics Unlimited100
51	JS & A National Sales Group1
22	Jade Computer Products91
23	James ElectronicsTHIRD COVER
24 25	James Electronics
27	Malaka da baharan da
26	McIntosh Laboratory Inc
	NRI Schools
28	Netronics R & D Ltd14
29	New-Tone Electronics94
30	New-Tone Electronics102
31	OK Machine & Tool Corporation15
32	OK Machine & Tool Corporation79
33 49	Olson Electronics
34	Olson Electronics
35	PAIA Electronics, Inc68
36	Pickering & Co44
37	Poly Paks99
38	Quest Electronics101
39	Radio Hut92
40	Radio Shack82 Ramsey Electronics95
	S. D. Sales Co93
·	Sams & Co., Inc., Howard W23
42	Sansui Electronics Corp13
43	Schober Organ Corp., The81
44	Scientific Audio Electronics, Inc58
45 46	Solid State Sales
47	TEAC Corporation of America FOURTH COVER Tri-Tek, Inc
48	Wilson Electronics Corp22
CLA	SSIFIED ADVERTISING103, 104, 105

Electronics (

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, \$2.40 per word. Minimum order \$36.00. EX-PAND-AD* CLASSIFIED RATE: \$3.60 per word. Minimum order \$54.00. Frequency discount; 5% for 6 months; 10% for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, \$1.40 per word. No minimum! DISPLAY CLASSIFIED: 1" by 1 column (2-1/4" wide), \$280,00, 2" by 1 column, \$560.00. 3" by 1 column, \$840.00. Advertiser to supply film positives. For frequency rates, please inquire.

GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising, POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016, Attention: Hal Cymes

FOR SALE

FREE! Bargain Catalog-I.C.'s, LED's, readouts, fiber optics, calculators parts & kits, semiconductors, parts. Poly Paks, Box 942PE, Lynnfield, Mass. 01940.

GOVERNMENT and industrial surplus receivers, transmitters, snooperscopes, electronic parts. Picture Catalog 25 cents, Meshna, Nahant, Mass. 01908

LOWEST Prices Electronic Parts, Confidential Catalog Free, KNAPP, 3174 8th Ave. S.W., Largo, Fla. 33540.

ELECTRONIC PARTS, semiconductors, kits, FREE FLYER, Large catalog \$1.00 deposit. BIGELOW ELECTRONICS. Bluffton, Ohio 45817.

RADIO_T.V. Tubes_36 cents each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.

AMATEUR SCIENTISTS, Electronics Experimenters, Science Fair Students. . Construction plans-Complete, including drawings, schematics, parts list with prices and sources...Robot Man — Psychedelic shows — Lasers — Emotion/Lie Detector — Touch Tone Dial — Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm Sound Meter...over 60 items, Send 50 cents coin (no stamps) for complete catalog. Technical Writers Group. Box 5994, University Station, Raleigh, N.C. 27607.

METERS-Surplus, new, used, panel or portable. Send for list. Hanchett, Box 5577, Riverside, CA 92507.

MECHANICAL, ELECTRONIC devices catalog 10 cents. Greatest Values - Lowest Prices. Fertik's, 5249 "D", Philadelphia, Pa. 19120.

SOUND SYNTHESIZER KITS-Surf \$12.95, Wind \$12.95, Wind Chimes \$17.95, Musical Accessories, many more. Catalog free, PAIA Electronics, Box J14359, Oklahoma City, OK 73114.

BUGGED??? New locator finds them fast, Write, Clifton, 11500-L N.W. 7th Avenue, Miami, Florida 33168.

YOU WILL SAVE BIG MONEY! Surplus, Clearouts, Bankruptcy, Inventory, Deals. Catalog \$1 (redeemable). ET-COA Electronics, Box 741, Montreal, H3C 2V2. U.S. Inquiries

HEAR POLICE / FIRE Dispatchers! Catalog shows exclusive directories of "confidential" channels, scanners. Send postage stamp. Communications, Box 56-PE, Commack, N.Y. 11725.

UNSCRAMBLERS: Fits any scanner or monitor, easily adjusts to all scrambled frequencies. Only 4" square \$29.95, fully guaranteed. Dealer inquiries welcomed. PDQ Electronics, Box 841, North Little Rock, Arkansas 72115.

RECONDITIONED Test Equipment, \$0.50 for catalog, Walter's Test Equipment, 2697 Nickel, San Pablo, CA

POLICE/Fire scanners, large stock scanner crystals, antennas. Also CBs. Harvey Park Radio, Box 19224, Denver, CO 80219.

TELETYPE EQUIPMENT for sale for beginners and experienced computer enthusiast. Teletype machines, parts, supplies. Catalogue \$1.00 to: ATLANTIC SALES, 3730 Nautilus Ave., Brooklyn, NY 11224. Tel: (212) 372-0349.

WHOLESALE C.B., Scanners, Antennas, Catalog 25 cents. Crystals: Special cut. \$4.95. Monitor \$3.95. Send make. model, frequency. G. Enterprises, Box 461P, Clearfield, UT

ORGAN KITS **KEYBOARDS**

THE ULTIMATE IN DESIGN AND SOUND

Demo Record & Brochure \$1.00

DEVTRONIX ORGAN PRODUCTS, Dept. C 5872 Amapola Dr. . San Jose, CA 95129

BUILD STEREO SPEAKERS WITH JUST GLUE AND STAPLES.

Save up to 50% of the cost of readybuilt speakers by assembling Speakerlab kits. We've done the design. carpentry and wiring, leaving you only the actual installation of the

speaker drivers. Most people take less than two hours to assemble a kit. Illustrated, easy-to-follow instructions check you each step of the way. (And if you still can't finish the kit, we'll do it for you for just the cost of return freight.)
When you're through, you have a high quality, multielement stereo speaker with a resonance-free enclosure, fiberglass damping, a crossover with real L-pads, and drivers that are some of the best in the industry. Send for our free 52-page catalog. It's practically a manual on speaker building and acoustics.

Speakerlab Inc., Dept. PE-F 5500 35th N.E., Seattle, WA 98105

BUILD AND SAVE, TELEPHONES, TELEVISION, DETEC-TIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service. Speakerphones, Answering Machines, Carphones, Phonevision, Dialers, Color TV Converters, VTR, Games, \$25 TV Camera, Electron Microscope, Special Effects Generator, Time Base Corrector, Chroma Key. Engineering Courses in Telephone, Integrated Circuits, Detective Electronics, PLUS MUCH MORE, NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter, \$1.00. Don Britton Enterprises, 6200 Wilshire Blvd., Los Angeles, Calif, 90048.

NAME BRAND Digital/Analog Test Equipment. Discount prices. Free catalog. Salen Electronics, Box 82, Skokie, IIlinois 60076

SURPLUS COMPONENTS, Communication and test equipment, Illustrated catalog 25 cents, E. French, P.O. Box 249, Aurora, Illinois 60505.

CB RADIOS, monitors, crystals, CD ignitions, Southland, Box 3591-B, Baytown, Texas 77520.

TELEPHONES UNLIMITED, Equipment, Supplies, All types, Regular, Keyed, Modular. Catalog 50 cents. Box 1147E, San Diego, California 92112.

CARBON FILM RESISTORS 1/4W, 1/2W - 1,7 cents each. FREE sample / specifications, Other components, CQMPO-NENTS CENTER, Box 134P, New York, N.Y. 10038.

PROFESSIONAL UNSCRAMBLERS - several models that fit any scanner, Free information, Capri Electronics, 8753T Windom, St. Louis, MO 63114.

UNSCRAMBLE CODED MESSAGES from Police. Fire and Medical Channels, Same day service. Satisfaction guaranteed. Don Nobles Electronics, Inc., Rt. 7, Box 265B, Hot Springs, Arkansas 71901. (501) 623-6027.

ANYONE CAN SOLDER WITH-

Let Kester solder aid you in your home repairs or hobbies. A radio, TV, model train, jewelry, plumbing, etc. Save money — repair it yourself. Send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

KESTER SOLDER / 4201 Wrightwood Ave.

KESTER SOLDER / Chicago, III. 60639

USED TEST EQUIPMENT - Tektronix, HP, GR, Write: PTI, Box 8699, White Bear Lake, MN 55110. Phone: (612) 429-2975.

WEATHER MAP RECORDERS: Copy Satellite Photographs, National-Local Weather Maps. Learn How! \$1.00. Atlantic Sales, 3730 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 372-0349.

SURPLUS ELECTRONICS

ATTENTION HOBBYISTS — SEND FOR YOUR FREE CATALOG

Great buys in tape drives, keyboards, power supplies, and transformers. We also have heat sinks, steel cabinets, I/O terminals, video displays, printers, and equipment cases. And of course components, fans, wire, and cable. Write now to

10 Flagstone Drive Worldwide Electronics Hudson, NH 03051

AUDIO EXPERIMENTERS, Serious Music Synthesizer Stuff: literature, kits, components, circuits and more. Send SASE for FREE INFO. CFR Associates, POB F, Newton, NH 03858.

SEEKING ORIGINAL JAPANESE TRANSISTORS FOR CB AND STEREO REPAIR? Request complete list. Compare 1 to 9 prices. 2SC710, 59 cents; 2SC517, \$3.95; 2SC799, \$3.60; 2SC1306, \$4.40; 2SC1678, \$2.25; TA7205P, \$3.90; BA521, \$3.70, BA511, \$3.40, Fuji-Svea Enterprises, Dept. P. Box 40325, Cincinnati, OH 45240.

FREE CATALOG. Solar Cells, Nicads, Kits, Calculators, Digital Watch Modules. Ultrasonics, Strobes, LEDS, Transistors, IC's, Unique Components, Chaney's, Box 27038, Denver, Colorado 80227.

MAKE YOUR PLANS COME TRUE by using electronic kit of Touch Switch, Patrol Car Siren, Sound Switch, Singing Bird, Each Kit \$5.00 ppd. QMC, P.O. Box 4816, Irvine, California 92716.

SPEAKERS - Save 60%. Factory assembled or kits, Free catalog. Quality Acoustics, 15428 Center, Harvey, Illinois

Build The Artisan Electronic Organ....

The 20th century successor to the classic pipe organ. Kits feature modular construction, with logic controlled stops and RAM Pre-Set Memory System. Be an ar-ti-san. Write for our free brochure. AOK Manufacturing, Inc. P.O. Box 445, Kenmore, WA 98028.

TRANSISTORS FOR CB REPAIR, IC's and diodes. TV audio repairs, 2SC799 — \$3.00, 2SC1306 — \$2.95, 2SC1307 — \$3.85, TA7205 — \$3.50, more. Free catalog and transistor. B&D Enterprizes, Box 32, Mt. Jewett, PA 16740.

CRYSTAL CONTROLLED DIGITAL CROSSHATCH/DOT GENERATOR. Kit \$31.95, built \$41.95. Free Catalog. PHOTOLUME CORP., 118 East 28 Street, New York, NY 10016.

MAKE PROFESSIONAL QUALITY PC boards with silkscreen techniques. Complete information, \$4.95 postpaid. TerraTronic Research, Box 513JP, Quincy, III. 62301.

GOLDMINE OF PARTS, POWERFUL POWER SUPPLY, DOCUMENTATION, in complete CARTRIVISION electronic assembly. Perfect for MICROPROCESSOR and all electronic applications. \$24.95 total. Master Charge, Bank-Americard, Free Brochure, MADISON ELECTRONICS, IN-CORPORATED, 369, Madison, Alabama 35758. SATISFAC-

17-DIGIT ELECTRONIC TIMEPIECE KIT. Simultaneous date, time, alarm, and timer readout, \$109.00. PINK NOISE GENERATOR KIT, \$9.95. West Side Electronics, Box 636-P2, Chatsworth, California 91311.

MUSIC - CMOS Envelope Generator - Attack - Fallback -Sustain - Decay: Versatile - Highest quality - Inexpensive. Plans \$2.50. POE, 18578 Haskins, Chagrin Falls, Ohio 44022

UNREAL CATALOGS, Surplus, Factory Liquidations, Bankruptcy Inventories, Deals. Thousands of items at Bargain Surplus Prices. Rush \$1. Etcoa Electronics, 521 5th Ave., NYC, NY 10017.

NEW PERIODIC TABLE OF ELEMENTS. Atomic physics breakthrough now reveals precise atomic models of each element. Striking wall chart, \$3.00. Circlon, 29500 Greenriver Gorge, Enumclaw, WA 98022.

CB SWL LOG, 10 Code CB SWL Freqs log sheets only \$3.00. Tatinger, 4028 West 83th Street, Chicago, Illinois

TESLA COILS, 40 page booklet shows how to construct five coils from 50,000 to 5,000,000 volts. Arcs to 100". Also includes history, theory, 25 experiments and information you need to design tesla coils. Booklet \$10.00. High Tension Electronics, Box 1371, Garden Grove, California 92642.

LOWEST COMPONENT PRICES, test equipment & surplus. Free flyer, A&S Supply, 265 Willard, Qunicy, MA 02169.

ULTRAVIOLET EPROM ERASER. Automatic. Handles all eprom types. \$98.00. Free data sheet. Kingston Laboratories, Box 894-P, Melbourne, Fla. 32901. (305) 723-2200.

GIVE MAKE, Model, we'll quote price. CB scanners ect. Randall's, 7035 N. 39th, Milwaukee, WI 53209, Scanner crystal certificates \$2.50 each

X&K RADAR DETECTORS, Factory overstock sale of a nationally sold unit that is fully assembled and sold as is with schematic - untested and less case. Microwave parts alone worth twice this, X Band, \$29.95; XEK Band, \$39.95. Check or money order, KEC Electronics, 508 East Oak St., Lafayette, CO 80026. Tech. info. catalog 35 cents.

WIRE and cable. Send for free list, Ram Electronics, Box 336-P, Brookhaven, N.Y. 11719.

IMPROVE MOBILE C.B. output power up to 45%, cheap and simple to make accessory, complete instructions, \$1.00. R. Brodell, Box 530, Farmingdale, N.Y. 11735.

UNBELIEVABLE Goldmine of Electronic Schematics, 201 Dynamite Projects, \$9.99. Send for Free Project List, Professional FM Wireless Mic Plans. \$2.00. Spacetech, Box 182, Gillette, N.J. 07933.

PARALINE Manufactures and stocks transformers. Free Data. Paraline, Dept-S, 515 S. Palm, Alhambra, CA 91803. UNSCRAMBLER KIT: Tunes all scramble frequencies, may be built-in most scanners, 2-3/4 X 2-1/4 X 1/2. \$19.95. Factory built Code-Breaker. \$29.95. Free Catalog: KRYSTAL KITS, Box 445, Bentonville, Ark. 72712. (501) 273-5340.

BEARCAT 210/Regency Touch, \$259.95. All radios discounted. Call (707) 544-4388. McDonald, Box 7492(P), Santa Rosa, CA 95401

SEKTRONIX USED EQUIPMENT bought and sold. Call: COM-TEC ASSOCIATES, 18 Gould Street, Stoneham, Mass, 02180, (617) 438-6190.

PLANS AND KITS

AMAZING ELECTRONIC PRODUCTS N

LASERS SUPER POWERED, RIFLE, PISTOL, POCKET, SEE IN DARK, PYRO-TECHNICAL, DE-BUGGING, UNCRANBLERS, GIANT LESLA, STUMMAND, DISRUPTER, "ENREGY PRODUCING, SCIENTIFIC DETECTION, ELECTRIPPING, CHEMICAL, ULTRASONIC, CB, AERO, AUTO AND MECH DEVICES, HUNDREDS MORE" ALL NEW PLUS INFO UNITO PARTS SERVICE.

CATALOG SI

INFORMATION unlimited Box 626 Lord Jeffery PZ. . Amherst, N.H. 03031

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P, Livermore, CA 94550.

NOW! a high quality CD Electronic Ignition System in kit form,

Contains all components and solder to build complete Solid-State Electronic CD Ignition System for your car, Assembly requires less than 3 hours.

- Increases MPG 15% Eliminates 4 of 5 tune-ups
 Increases horsepower 15% Instant starting, any Plugs and Points last 50,000 miles
- weather
 Dual system switch Fits only 12 volt neg. ground..., Only \$21.95 postpaid

Tri-Star Corporation • P.O. Box 1727 Grand Junction, Colorado 81501 NEW! 6 FT. WIDE SCREEN! Easy Do-It-Yourself Kit

Project a giant 5'x6' picture onto wall or screen. B&W/Color. Kit contains detailed plans, Inst., and Precision Lens System. Only \$15.95 ppd., or write for Free illustrated details. The Macrocoma Co., Dept. DE Washington Crossing, PA 18977

MIXERS—Preamps—Speakers, Top Quality —Plans—Parts, Send 25 cents for catalog. Audio Design & Engineering Co., P.O. Box 154, Lee, Mass. 01238. (413) 243-1333.

THE "KING OF KITS". Artisan Organ Kits feature all new modular construction, with logic-controlled stops and RAM Preset Memory System. Write for brochure to: AOK Manufacturing, Inc., P.O. Box 445, Kenmore, WA 98028.

ROBOT Plans That Work! \$5,00, American Robots, Dept. E. P.O. Box 1304, Tulsa, OK 74101

FIVE LASER PLANS — \$8.00; Welding-Burning Laser plans — \$9.00. Catalog \$2.00. Solaser, PE 178, Box 1005, Claremont, California 91711

NEGATIVE ion generator. Complete plans. \$10.00. Fascinating details, \$1.00. Golden Enterprises, Box 1282-PE, Glendale, Arizona 85311.

DIGITAL REVERB. Fully electronic, Plans and PCB available. Send SASE for free info. Neves, Box 10327, Stanford, CA 94305

BUILD YOUR OWN UFO Detector with complete easy to follow plans. Three designs, \$3.00 postpaid. UFO Alert, P.O. Box 1741, Owensboro, KY 42301

BUILD YOUR OWN SYMPHONY OF SOUND!

It's fun and easy—takes just minutes a day! Complete kits for organs, pianos, strings, rhythms amplifiers, synthesizers. Also factory assembled. 104-page catalog \$2.00

@WERSI

Wersi Electronics, Inc., Dept. ZD, Box 5318, Lancaster, PA 17602.

HIGH FIDELITY

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog. LYLE CARTRIDGES, Dept. P. Box 69, Kensington Station, Brooklyn, New York 11218. For Fast Service call Toll Free 800-221-0906.

BURGLAR ALARMS

FIRE

MINTRUDER

5

Burglar . Smoke Fire Alarm Catalog

 Billions of dollars lost annually due to lack of protective warning alarms.

FREE CATALOG Shows you how to

protect your home, business and person. Wholesale prices. Do-it-yourself. Free engineering service.

Burdex Security Co.

Box 82802 PE 018 Lincoln, Ne. 68501

QUALITY BURGLAR/FIRE ALARM equipment at discount prices. Catalog 50 cents. Steffens, Box 624C, Cranford, N.J.

WHY WORRY about leaving car lights on? ALARM ALERTS with pulsing tone, \$11.75, INFORMATION AVAILABLE, CFL Enterprises, Box 415, Export, PA 15632.

DON'T PURCHASE alarm equipment before getting our free value packed catalog. SASCO, 5619-C St. John, Kansas City, MO 64123. (816) 483-4612.

INVENTIONS WANTED

RECOGNITION...FINANCIAL REWARD...OR CREDIT OR "INVENTING IT FIRST" MAY BE YOURS!

If you have an idea for a new product, or a way to make an old product better, contact us, "the idea people" We'll develop your idea, introduce it to industry, negotiate for cash sale or royalty licensing.

Write now without cost or obligation for free information. Fees are charged only for contracted services. So send for your FREE "Inventor's Kit." It has important Marketing Information, a special "Invention Record Form" and a Directory of 1001 Corporations Seeking New Products.

RAYMOND LEE ORGANIZATION 230 Park Avenue North, New York, NY 10017 idea At no cost or obligation, please rush my FREE "Inventor's Kit No. A-112 "

FREE PAMPHLET: "Tips on Marketing Your Invention", from an experienced fee-based invention service company. Write: United States Inventors Service Company, Dept. T. 1435 G Street NW, Washington DC 20005.

Area Code

INVENTIONS, IDEAS, WANTED! Presentation to Industry. IMI, Suite 1200-ZD, 401 Wood Street, Pittsburgh, Pennsyl-

TELEPHONES & PARTS

TELEPHONES GALORE, beautiful styles, colors, spectacular designs to enhance any decor. Lowest Prices! Full Details, \$1.00 refundable. Mailine, P.O. Box 570, Wall St. Sta., NYC, NY 10005.

TELEPHONES AND PARTS, Free catalog, Write: Surplus Saving Center, P.O. Box 117, Waymart, PA 18472.

YOUR TELEPHONE STORE. Free mail-order catalog of phones, cords, plugs, jacks, much more. Flemco, 20272 37th Ave. N.E., Seattle, Wash. 98155.

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-troubleshooting. Accredited NHSC, Free Booklet, NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820

SCORE high on F.C.C. Exams., Over 300 questions and answers. Covers 3rd, 2nd, 1st and even Radar. Third and Second Test, \$14.50; First Class Test, \$15.00. All tests, \$26.50. R.E.I., Inc., Box 806, Sarasota, Fla. 33577

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE01, Tustin, California 92680.

SELF-STUDY CB RADIO REPAIR COURSE, THERE'S MONEY TO BE MADE REPAIRING CB RADIOS. This easyto-learn course can prepare you for a career in electronics enabling you to earn as much as \$16.00 an hour in your spare time. For more information write: CB RADIO REPAIR COURSE, Dept. PE018, 531 N. Ann Arbor, Oklahoma City, Okla, 73127.

LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion, Box 24-ZD, Olympia, Washington 98507.

GRANTHAM'S FCC LICENSE STUDY GUIDE - 377 pages, 1465 questions with answers/discussions - covering third. second, first radiotelephone examinations. \$13.45 postpaid. GSE, P.O. Box 25992, Los Angeles, California 90025. INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc., 61 N. Pineapple Ave., Sarasota, FL 33577 and 2402 Tidewater Trail, Fredericksburg, VA 22401.

1977 TESTS-ANSWERS for FCC First Class License. Plus "Self-Study Ability Test." Proven! \$9.95. Moneyback Guarantee. "FREE" BRO-CHURE. Command, Box 26348-P, San Francisco 94126

NEW FCC License Exams and instructional material by author of published FCC License workbooks. Covers Second-First Classes and Radar. Hundreds of questions and answers with full solutions. Free counselling service. \$19.95. Victor Veley, P.O. Box 14, La Verne, Calif. 91750.

LEARN LANDSCAPING AT HOME. Start profitable business or hobby. Free booklet. Lifetime Career Schools, Dept. A-429, 2251 Barry Avenue, Los Angeles, California 90064.

WANTED

GOLD, Silver, Platinum, Mercury wanted. Highest prices paid by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood, MA 02062.

TUBES

RADIO & T.V. Tubes—36 cents each. Send for free Catalog. Cornell, 4213 University, San Diego, Calif. 92105. TUBES receiving, factory boxed, low prices, free price list. Transleteronic, Inc., 1365–39th Street, Brooklyn, N.Y. 11218A, Telephone: 212-633-2800.

TUBES: "Oldies", Latest, Supplies, components, schematics, Catalog Free (stamp appreciated), Steinmetz, 7519-PE Maplewood, Hammond, Ind. 46324.

TUBES, free low priced list. Specializing obsolete types. TJ, Inc., Box 43, Bradley Beach, N.J. 07720.

TAPE AND RECORDERS

8-TRACK and CASSETTE BELTS — money back guarantee. Long wearing. Free Catalog — \$3 minimum order. PRB Corp., Box 176, Whitewater, Wisconsin 53190.

GOVERNMENT SURPLUS

MANUALS for Govt Surplus radios, test sets, scopes. List 50 cents (coin). Books, 7218 Roanne Drive, Washington, D.C. 20021.

GOVERNMENT SURPLUS, Buy in your Area. How, where Send \$2.00. Surplus, 30177-PE Headquarters Building, Washington, D.C, 20014.

JEEPS...\$59.301 CARS...\$33.50! 200,000 ITEMS...GOV-ERNMENT SURPLUS...Most COMPREHENSIVE DIRECTORY AVAILABLE tells how, where to buy...YOUR AREA...\$2.00...MONEYBACK GUARANTEE...Government.Information Services, Department GE-7, Box 99249, San Francisco, California 94109. (433 California.)

GOV'T SURPLUS — buy direct from gov't. Complete info plus application form \$2.00, Info-Capsule A-1, P.O. Box 151, Shelocta, PA 15774.

DO-IT-YOURSELF

MODULAR TELEPHONES now available. Sets and components, compatible with Western Electric concept. Catalog 50 cents. Box 1147W, San Diego, California 92112.

TAPE-SLIDE SYNCHRONIZER, lap-dissolve, multiprojector audiovisual plans \$8.50. Free Catalog. Millers, 1896 Maywood, South Euclid, OH 44121.

REAL ESTATE

BIG...NEW...FREE...SPRING CATALOG! Over 2,500 top values coast to coast! UNITED FARM AGENCY, 612-EP. West 47th, Kansas City, MO 64112.

SERVICES

QSL CARDS 500/\$10. Sample. Bowman Printing, Dept. PE, 743 Harvard, St. Louis, MO 63130.

RUBBER STAMPS

RUBBER STAMPS, BUSINESS CARDS. Many new products. Catalog. Jackson's, Dept. K, Brownsville Rd., Mt. Vernon, III. 62864.

MUSICAL INSTRUMENTS

UP TO 60% DISCOUNT. Name brand instruments catalog. Freeport Music, 114 G. Mahan St., W. Babylon, N.Y. 11704,

BUSINESS OPPORTUNITIES

I MADE \$40.000.00 Year by Mailorder! Helped others make money! Free Proof. Torrey, Box 318-NN. Ypsilanti, Michigan 48197.

FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

MAILORDER MILLIONAIRE helps beginners make \$500 weekly. Free report reveals secret plan! Executive (1K1), 333 North Michigan, Chicago 60601.

GET RICH with Secret Law that smashes debts and brings you \$500 to \$5 Million cash. Free report! Credit 4K1, 333 North Michigan, Chicago 60601.

PROFITABLE ONE-MAN ELECTRONIC FACTORY

investment unnecessary, knowledge not required, sales handled by professionals. Postcard brings facts about this unusual opportunity. Write today! Barta-DA, Box 248, Walnut Creek, CA 94597

NEW LUXURY Car Without Cost, Free Details! Codex-ZZ, Box 6073, Toledo, Ohio 43814.

S500 PER DAY POSSIBLE. New C.B. related business. Send 25 cents. P.A. Schubert Company, P.O. Box 187. Howell, Mich. 48843.

FREE REPORT: Big Money In Mail! Transworld-9K, Box 6226, Toledo, Ohio 43614.

GET RICH!!! Secret law erases debts. Free report exposes millionaire'\$\$ secrets. Blueprints, No. EE1 453 W. 256, NYC 10471.

MECHANICALLY INCLINED Individuals desiring ownership of Small Electronics Manufacturing Business — without investment. Write: Marks, 92-K1 Brighton 11th, Brooklyn, New York 11235.

EARN IMMEDIATELY STUFFING ENVELOPES, \$300.00 Thousand Possible. Free supplies. Send Stamped envelope. Salamon Industries - PE4, 6059 W. 55th St., Chicago, IL 60538.

FIRMS SEEKING MAILERS, homeworkers, addressers, \$500.00 weekly possible. For list, rush \$2.00, stamped self-addressed envelope. Bruce Raber Company, Dept. 01, Greensburg, Kansas 67054.

GUARANTEED SECRETS of stuffing envelopes for comfortable income! Free! Wayne, Box 644ZD, Ottawa, Kansas 66067.

MAKE DURABLE building plastic easily, Waterproof, Fireproof, Economical. Bays Laboratory, Rt. 1, Box 168, Cedaredge, CO 81413.

\$1,000 TO \$5,000 MONTHLY possible, work from your home, be your own boss. Details send 50 cents: Sulray Enterprises, Box 6-D, Dept. PE, Concord, Ark. 72523.

PART-TIME CB DEALERS Wanted. McElectronics, Box 1385(P), Rohnert Park, CA 94928.

EARN \$1,000 monthly, spare time, at home, "GUARAN-TEED." Write: UNICORN, ZE1, 7350 Nugget, Colorado Springs, CO 80911.

EMPLOYMENT OPPORTUNITIES

ELECTRONICS/AVIONICS EMPLOYMENT OPPORTUN-ITIES. Report on jobs now open. Details FREE. Aviation Employment Information Service, Box 240E, Northport, New York 11768.

TRANSLATORS required for freelance assignments in 30 languages. Electronics, physics, chemistry, etc. SCITRAN, P.O.B. 5456, Santa Barbara, CA 93108.

BOOKS AND MAGAZINES

FREE book prophet Elijah coming before Christ. Wonderful bible evidence. Megiddo Mission, Dept. 64, 481 Thurston Rd., Rochester, N.Y. 14619,

POPULAR ELECTRONICS INDEXES For 1976 now available. Prepared in cooperation with the Editors of "P/E." this index contains hundreds of references to product tests, construction projects, circuit tips and theory and is an essential companion to your magazine collection. 1976 Edition, \$1.50 per copy. All editions from 1972 onward still available at the same price. Add \$.25 per order for postage and handling, \$.50 per copy, foreign orders, INDEX, Box 2228, Falls Church, Va. 22042.

HOME ENTERTAINMENT FILMS

YOUR XMAS GIFT \$\$\$ GO FURTHER WITH SPORTLITE. Where Jesus Walked (filmed entirely in the Holyland), 400' \$8 Eastman Color Sound, \$43.95 ea PPD, Ross Hunter's Airport (Burt Lancaster, Jacqueline Bisset) \$8, 400' Color Snd, \$42.95 (you save \$7.). Universal 16mm B&W/Optical Snd 400' reel Horror Science Fiction — your choice The Mummy's Ghost (No. 1049), The Wolfman (No. 1059), Dracula (No. 1023) only \$33.95 ea + \$1. shipping (you save \$6.). For a laugh. Abbott & Costello in High Filers (No. 816) & No Indians, Please (No. 808) 16mm B&W Snd \$32.95 ea + \$1. shipping (you save \$7.). LIMITED OFFER. For Speed Sports Fans, "Wheels Keep Rolling" 76 Indy "500" spectacular \$8 color, 200' rael, \$18.95 ea PPD, Enclose ad with order, Columbia catalog \$0.85; Universal 8 catalog \$0.75; Sportlite forms \$0.35. SPORTLITE FILMS, Elect-1. Box 24-500, Speedway, Indiana 46224.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. Illustrated brochure free. Hermes-Verlag, Box 110660/Z. D-1000 Berlin 11, Germany.

CHESS ENTHUSIASTS — play by mail. Free information for SASE, ARS-Chess, P.O. Box 1145, MacArthur Station, PA 15001.

MAGNETS

MAGNETS. All types. Specials-20 disc, or 10 bar, or 2 stick or 8 assorted magnets, \$1,00. Magnets, Box 192-H Randallstown, Maryland 21133.

HYPNOTISM

SLEEP learning. Hypnotic method. 92% effective. Details free. ASR Foundation, Box 23429EG, Fort Lauderdale. Florida 33307.

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.

AMAZING self-hypnosis record releases fantastic mental power, Instant results! Free trial, Write: Forum (AA1), 333 North Michigan, Chicago 60601.

MISCELLANEOUS

1978 Electronic Experimenter's Handbook

This latest edition includes a Hobbyist and Microcomputer Section! It also features a host of exciting construction projects with complete construction plans, parts lists and printed-circuit board patterns. PLUS —A complete Home Computer Buying Directory with product specifications. latest prices, and photos. Only \$1.95!

Order your copy from ELECTRONIC EXPERIMENTER'S HANDBOOK, Consumer Service Division, 595 Broadway, New York, N.Y. 10012. Enclose \$2.50* (\$1.95 plus 55c postage and handling). Outside U.S.A. \$3. *Residents of CA, CO, FL, IL, MI, MO, NY STATE, DC and TX add applicable sales tax (Postage and handling charges non-taxable).

MPG INCREASED! Bypass Pollution Devices easily. RE-VERSIBLY!! Free details—Posco GEE1, 453 W. 256, NYC 10471.

STOP LOSING YOUR HAIR. Free information. Write: Cheveux, Box 171, Station F, Montreal, Canada H3J 2L1. Dept. 1. U.S. Inquiries.

Retail Display Plan

All magazine retailers in the United States and Canada interested in earning an allowance for the display and sale of publications of the Ziff-Davis Publishing Company are invited to write for details. Sales Manager, Select Magazines, 229 Park Avenue South, New York, New York 10003.

OUR OWN SOFTWARE OUR OWN HARDWARE A perfect team from the Digital Group

Something new has been added to our great line of Digital Group hardware: DIGITAL GROUP SOFTWARE!

With all new languages, enhancements to existing languages and new sophistication designed to give the Digital Group system user the greatest capabilities yet available in a microprocessor.

Most importantly, you can rest assured that the same painstaking attention we devote to quality in our hardware has gone into Digital Group Software. Our software works — as simply as that.

Here are just a few of the Digital Group Software packages:

WOPROC

This simple-to-learn, user-oriented Word Processing System is text-editing and a whole lot more. WOPROC automatically takes care of the menial tasks of typing, easily corrects errors and prints exactly as you desire. In short, WOPROC doesn't stop at merely editing text: it also processes this text in a variety of ways. Use it to prepare and print anything that could be prepared with a typewriter.

CONVERS

Through incorporation of a variety of software concepts, CONVERS, a unique, highly-flexible package, has evolved. It offers a combination of easy programming, high memory efficiency and fast operating speed ideally suited for many types of applications.

The potential capabilities of this type of language are breathtaking, but for now the Digital Group recommends our preliminary version to those users already familiar with computers.

BUSINESS-BASIC

By adding a significant number of extensions, our standard Digital Group Maxi-BASIC has been converted to Business-BASIC — an extremely productive and powerful language for business-oriented microcomputer users.

OPUS/ONE and /TWO

These software packages are major extensions of BASIC-type languages. This language's major emphasis has been to maximize function and capability and is particularly well-suited to personal/business type applications.

Z80 ASSEMBLER II

An updated version of Z80 Assembler I with added capabilities.

We've tried to give you a glimpse of what Digital Group Software has in store for you. If you have one of our systems already, you know our quality. And if you're just looking around, take a look at our hardware.

Then you'll know how well our software works, too.

po box 6528 denver, colorado 80206 (303) 777-7133

One-Stop **Component Center**

QUALITY PRODUCTS

MICROPROCESSOR DIODES IN4148(IN914)

CAPACITORS m Electrolytic

Ceramic Disc

SWITCHES

SPST 4 11st into
SPST 8 1st into
SPST 8 1st into
SPST 0 north on
SPST 1 push in
SPST 1 on north on
SPST 1 push in
SP

LEDS Discrete

CONNECTORS

DATA BOOKS*

7400 74LS Data Book
CMOS L near Oata Book
Microprocessor LEO Oata Bnok

A component product line developed for the independent dealer, Guaranteed, nationally advertised products. Complete JIM-PAK program includes national advertising, direct mail programs, store display racks, stock rotation plan and return policy. For dealer information, write or call JIM-PAK, 1021 Howard Avenue, San Carlos, CA 94070 (415) 592-8097.

SEE YOUR LOCAL Jim-pak DEALER TODAY...

ALABAMA Lafavette Radio Electronics CALIFORNIA Berkeley Monterey Al Lasher Electronics Zack Electronics Pain Alto Dow Radio Inc. The Radio Place Sacramento Sacramento Zackit J& H Outlet Store San Carlos San Francisco San Jose Sunnyvale Electronics Vallejo Walnut Creel Byte Shop Computer Store CANADA Alberta (Calgary)
CONNECTICUT The Computer Shop Computer World FLORIDA Altair Computer Center of Orlando Orlando Tampa AMF Electronics Tampa FRANCE Microcomputer Systems Computer Routique GEORGIA Atlanta Computer Mart HAWAII

IDAHO Idaho Falls Audiotronics ILLINOIS Itty Bitty Machine Co. Evanston Groveland Mount Prospect Oak Park Moyer Electronics Tri-State Electronics Spectronics Inc. INDIANA East Chicago Acro Electronics

Delcoms Hawaii Integrated Circuit Supply

Ouantum Computer Works

Aiea Honolulu

LOUISIANA Davis Electronics Supply Baton Rouge MARYL AND Baltimore Computer Workshop of Baltimore Baltimore Everything Electronics Computer Workshop Computers, Etc. Rockville Towson MASSACHUSETTS

Tufts Electronics Electronics Service Center Computer Mart Inc. Medford North Adams MICHIGAN Fulton Radio Supply Lansing MINNESOTA Duluth Eagan MISSOURI Northwest Radio of Duluth

Computer Workshop of Kansas City MONTANA Billings NEBRASKA Conley Radio Supply Lincoln Omaha Altair Computer Center Omaha Computer Store NEVADA Las Vegas NEW JERSEY

Hoboken Hoboken Computer Works Ramses Typetronic Computer Store Fort Orange Electronics Albany New York New York Troy The Computer Stores Inc. Computer Mart of New York

NORTH CAROLINA Byte Shop of Raleigh Raleigh OHIO Bucyrus Cincinnati Steubenville Mead Electronics Digital Design Hosfelt Electronics

White Plains

OKLAHOMA Guymon Oklahoma City OREGON Beaverton Coos Bay

Ontario PENNSYLVANIA Hershev Murraysville

RHODE ISLAND Cranston Pawtucket SOUTH CAROLINA

TENNESSEE Memphis Oak Ridge TEXAS

Houston

Houston

VIRGINIA

San Antonio

Alexandria

Century 23

Alexandria Springfield WASHINGTON Trojan Electronics Longview The Computer Corner

> WEST VIRGINIA Morgantown Morgantown

Sound Service Bits, Bytes & Micros

Altair Computer Center Herrick Electronix Miller Electronics

Microcomputer Systems Inc. Computer Workshop of Pittsburgh

Jahhour Electronics City Jabbour Electronics City Technical Services Inc.

Sere-Rose & Spencer Electronics Computer Denn Computer Shoos Inc.

Altair Computer Center Interactive Computers Sherman Electronics Supply

Computer Hardware Store Computers Plus Computers-To-Go Computer Workshop of North Virginia

Altair Computer Center Progress Electronics Riverview Electronics Personal Computers

The Computer Comer Electro Distributing Co.

There are certain other instruments every serious musician should know how to play.

The implements used in every art form except music both create and preserve the art. If music isn't captured at the time it's created, it's gone forever.

But the instruments used to capture music can also be used to alter, refine and improve it.

Instruments like the
A-2340SX and A-3340S
4-channel tape recorders
with Simul-Sync for
multitrack recording and
over-dubbing, as well as
mastering decks like the
A-6100 and A-3300SX-2T for
mixing down multichannel
tapes to stereo.

Instruments like the Model 2A Mixing Console with an MB-20 Meter Bridge for control of volume, tone, blend and spatial positioning. There are also microphones for every recording need along with accessories like the PB-64 Patch Bay and cables to help organize the process.

TEAC is the leader in multitrack. Less than a decade after multitrack equipment was introduced to the professional industry, TEAC introduced it to people serious about their music. Today, thousands of musicians and recordists are getting many of the important elements of the studio experience but without the studio bill. And TEAC continues its

commitment to multitrack excellence.

To find out more about the adventure of multitrack recording and to hear the quality of music that can be made on TEAC multitrack equipment, send \$2 to Dept. 38 for our "Home Made With TEAC" Album.* Or, if you can't wait to get your hands on the instruments every musician should know how to play, see your TEAC dealer now.

TEAC

