

MATHEMATICAL REASONING

Chapter 18

CONTEO DE FIGURAS II

HELICOMOTIVACIÓN

01

Determina la cantidad máxima de triángulos que se pueden contar en la cometa.

MÉTODO PRÁCTICO (conteo inductivo)

Para segmentos

N° segmentos = $\frac{n(n+1)}{2}$

Para ángulos

N° de ángulos
$$=\frac{n(n+1)}{2}$$

Para cuadriláteros

1 2 3 ... n

$${\operatorname{N}^{\circ} \operatorname{de} \atop \operatorname{cuadriláteros}} = \frac{n(n+1)}{2}$$

N° de cuadriláteros =
$$\left(\frac{n(n+1)}{2} \right) \times \left(\frac{m(m+1)}{2} \right)$$

01

CASO ESPECIAL: Para cuadrados en una cuadrícula

1	2	3	4	• • •	n-2	n-1	n
2							
•							
m-1							
m							

$$N^{\circ}$$
 de $\square_{S} = nxm + (n-1)(m-1)+(n-2)(m-2)+ (n-3)(m-3) + ...$

Ejemplo: calcular el total de cuadrados se pueden contar

N° de
$$\square_S = 8x5 + 7x4 + 6x3 + 5x2 + 4x1$$

= 40 + 28 + 18 + 10 + 4

¿Cuántos triángulos se cuentan en la siguiente figura?

Resolución

Recordemos:

N° de
$$\Delta_S = \frac{n(n+1)}{2}$$

Rpta

¿Cuántos trapecios se cuentan en la siguientes figura?

Recordemos:

$$=\frac{10(10+1)}{2}$$

$$=\frac{110}{2}$$

Rpta

¿Cuántos hexágonos se cuentan en la siguientes figura?

Recordemos:

$$\frac{\text{Total}}{\text{hexágonos}} = \frac{n(n+1)}{2}$$

Resolución

$$= \frac{20(20+1)}{2}$$

$$= \frac{20(21)}{2}$$

$$= 210$$

Rpta 210

¿Cuántos cuadriláteros se cuentan en la siguiente figura?

1	2	3	4	5	6
2					
3					
4					

Resolución

Recordemos:

N° de
$$\square_S = \frac{n(n+1)}{2} \chi \frac{m(m+1)}{2}$$

$$= \frac{6(6+1)}{2} \times \frac{4(4+1)}{2}$$

$$=\frac{42}{2}\times\frac{20}{2}$$

$$= 21 \times 10$$

Rpta

¿Cuántos rectángulos en total se cuentan en la siguiente

01

figura?

$$2\left[\frac{4(4+1)}{2}\right]=20$$

$$\frac{3(3+1)}{2}=6$$

Total:

$$20 + 6 + 3$$

Rpta

¿Cuántos triángulos hay en la figura?

Resolución

¿Cuántos triángulos simples se pueden contar en la siguiente figura?

Cuando Pedro aprendía a jugar ajedrez le parecía que las reglas eran tediosas; cierto día se distrajo tanto que se quedó mirando el tablero y se puso a pensar; "¿ Cuántos rectángulos en total se podrían contar en este tablero de juego?". Estaba contando hasta que s instructor lo despertó con un llamado de atención. ¿ Podrías responder la pregunta que se hacía Pedro?

Resolución

1	2	3	4	5	6	7	8
2							
3							
2 3 4 5 6							
5							
6							
7							
8							

Recordemos:

N° de
$$\square$$
 s = $\frac{n(n+1)}{2} \times \frac{m(m+1)}{2}$
= $\frac{8(8+1)}{2} \times \frac{8(8+1)}{2}$
= 36×36
= 1296