PhD Diary

Nathan Hughes

November 13, 2018

CONTENTS November 13, 2018

Contents

1	Calculus Book [23%]
2	Things TODO
	2.1 DONE High Performance Computing Course
	2.2 DONE Meet with Jeroen
	2.3 TODO FF Journal Club ((Brulé et al.)) [33%]
	2.3.1 Some definitions for paper:
3	Diffusion Stuff [33%]
	3.1 DONE Convection Model
	3.2 TODO 1D Diffusion Model
	3.2.1 Steady State
	3.2.2 Time-dependent solutions
	3.3 TODO 2D Diffusion Model

1 Calculus Book [23%]

	Chapter 1
	Chapter 2
	- Could do with refreshing limits some more
\boxtimes	Chapter 3
\boxtimes	Chapter 4
	Chapter 5
	- Again, this chapter on differential equations is worth re-reading
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
0	
2	Things TODO
2.1	DONE High Performance Computing Course
2.2	DONE Meet with Jeroen
•	Discussed helping out with wet-lab work, poss helping with some harvesting next week
	J is looking into any additional (side) projects I could possibly lend a hand with
•	J is meeting with Eva D. during the week to discuss her thesis and possibility of working with her? Deinum (2013) (TBD)
2.3	TODO FF Journal Club ((Brulé et al.)) [33%]
	Print a copy
	Annotate
	Summarise

2.3.1 Some definitions for paper:

- Lytic Cycle:
 - One of two cycles of viral reproduction (referring ot bacterial viruses or bacteriophages)
 - The other being the lysogenic cycle
 - Lytic cycle results in the destruction of an infected cell
 - The viral DNA exists as a separate free floating molecule within the bacterial cell and replicates separately from the host bacterial DNA (in contrast to the Lysogenic cycle)
- Lysogenic Cycle:
 - Lysogeny is characterised by integration of the bacteriophage nucleic acid into the host bacterium's genome
 - Or formations of a circular replicon (A replicon is a DNA molecule or RNA molecule, or a region of DNA or RNA, that replicates from a single origin of replication)
 - The genetic material of the bacteriophage, called prophage, can be transmitted to daughter cells at each subsequent cell division
- · Lysin: Also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages
 - They cleave the host's cell wall during final stage of the lytic cycle

Figure 1: Lytic Cycle

3 Diffusion Stuff [33%]

3.1 **DONE** Convection Model

```
def OneD Conv Model(nx=40, nt=60, dt=0.01, c=1):
       dx = 2/(nx)
       u = np.ones(nx)
       dtdx = dt/dx
       fig, axes = plt.subplots(2, 2)
        # Initial boundary Condition
       u[int(.5 / dx):int(1 / dx + 1)] = 2
        # For each time point
10
       for it in range(0, nt):
11
           un = u.copy()
12
           for i in range(1, nx):
13
              u[i] = un[i] - un[i]*(dtdx)*(un[i] - un[i-1])
14
15
              axes[0, 0].plot(np.linspace(0, 2, nx), u)
16
              axes[0, 0].set\_title('T: \{0\}'.format(it*dt))
17
           elif it == int(nt/4):
18
              axes[0, 1].plot(np.linspace(0, 2, nx), u)
19
              axes[0, 1].set title('T: {0}'.format(it*dt))
           elif it == int(nt/4)*3:
21
              axes[1, 0].plot(np.linspace(0, 2, nx), u)
22
              axes[1, 0].set title('T: {0}'.format(it*dt))
           elif it == ((nt-1)/4)*4:
24
              axes[1, 1].plot(np.linspace(0, 2, nx), u)
25
              axes[1, 1].set\_title('T: \{0\}'.format(it*dt))
26
        fig.tight_layout()
27
```


Figure 2: Convection Model

3.2 TODO 1D Diffusion Model

• More info found here and here

• And best one here

3.2.1 Steady State

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \qquad 0 \le x \le l \tag{1}$$

Setting ϑ C partial $t = 0 \vartheta$ we obtain

$$\frac{d^2C}{dx^2} = 0 \qquad \Rightarrow C_s = ax + b$$

We determine that a, b from the boundary conditions

$$C(0) = C_i, \qquad C(l) = C_2 \tag{2}$$

It follows that:

$$b = C_1, a = \frac{C_2 - C_1}{l} (3)$$

$$C_s(s) = \frac{C_2 - C_1}{l}x + C_1 \tag{4}$$

$$Flux = -D\frac{\partial C_s}{\partial x} = \frac{C_1 - C_2}{l} \tag{5}$$

3.2.2 Time-dependent solutions

We choose again the boundary conditions as before and:

$$C(x,0) = C_0(x) \tag{6}$$

as initial condition. It is convenient to consider the excess quantity

$$u(x,t) = C(x,t) - C_s(x) \tag{7}$$

We see that u satisfies

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} \tag{8}$$

with

$$u(0) = u(l) = 0$$

$$u(x,0) = C_0 - C_s(x)$$

$$\equiv u_0(x)$$

Let ϕ_m be the eigenfunctions of the diffusion operator d^2/dx^2 . Since the operator is dissipative, the corresponding eigenvalues are non-positive. We donate them by $-k_m^2(k \text{ real})$

$$\frac{d^2\phi_m(x)}{dx^2} = -k_m^2\phi_m(x) \tag{9}$$

Any function of the form $u=A_m(t)\phi_m$ satisfies the previous equation , provided that $A_m(t)$ satisfies the ODE.

$$\frac{dA_m}{dt} = Dk_m^2 A_m \tag{10}$$

or

$$A_m(t)A_m(0)e^-Dk_m^2t\tag{11}$$

3.3 TODO 2D Diffusion Model

• Lecture on it found here

REFERENCES November 13, 2018

References

Daphnée Brulé, Clizia Villano, Laura J. Davies, Lucie Trdá, Justine Claverie, Marie-Claire Héloir, Annick Chiltz, Marielle Adrian, Benoît Darblade, Pablo Tornero, Lena Stransfeld, Freddy Boutrot, Cyril Zipfel, Ian B. Dry, and Benoît Poinssot. The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. *Plant Biotechnology Journal*, 0(0). ISSN 1467-7652. doi: 10.1111/pbi.13017. 00000.

E. E. Deinum. Simple Models for Complex Questions on Plant Development. PhD thesis, s.n., S.l., 2013. 00010.