Discrete Mathematics and Logic Lecture 2

Andrey Frolov

Innopolis University

Propositions

True or False

- "2 + 2 = 4"
- "All apples are brown"
- "There are prime even numbers greater than 2"
- "Oh, great!" is not!

TRUE	FALSE
Т	F
1	0

Operations

1. Negation (logical "not")

A proposition P is true iff the negation of P is false.

Notions $\overline{P} \neg P$

Р	$\neg P$
• 2+2=4	2+2≠4
• "All apples are brown"	• "Not all apples are brown"
• "There are prime even	• "There are no prime even
numbers greater than 2"	numbers greater than 2"

Operations

1. Negation (logical "not")

Р	$\neg P$
0	1
1	0

*
$$0 = F(alse), 1 = T(rue)$$

Operations

2. Conjunction (logical "and")

The conjunction of propositions P_1 and P_2 is true iff the both P_1 and P_2 are true.

Notions
$$P_1 \wedge P_2 \quad P_1 \cdot P_2 \quad P_1 \& P_2$$

P_1	P_2	$P_1 \& P_2$
0	0	0
0	1	0
1	0	0
1	1	1 1

Operations

3. Disjunction (logical "or")

The disjunction of propositions P_1 and P_2 is true iff at least one of P_1 and P_2 are true.

Notions $P_1 \vee P_2$

P_1	P_2	$P_1 \vee P_2$
0	0	0
0	1	1
1	0	1
1	1	1

Operations

4. Implication (logical "if ..., then ...")
"True implies only true."

Notions
$$P_1 \Rightarrow P_2 \quad P_1 \rightarrow P_2$$

P_1	P_2	$P_1 \rightarrow P_2$
0	0	1
0	1	1 1
1	0	0
1	1	1 1

Operations

4. Implication (logical "if ..., then ...")

Example

If x is dividable by 4, then x is dividable by 2

$$x = 8$$

P_1	P_2	$P_1 \rightarrow P_2$
0	0	1
0	1	1
1	0	0
1	1	1

Operations

4. Implication (logical "if ..., then ...")

Example

If x is dividable by 4, then x is dividable by 2

$$x = 6$$

P_1	P_2	$P_1 \rightarrow P_2$
0	0	1
0	1	1
1	0	0
1	1	1

Operations

4. Implication (logical "if ..., then ...")

Example

If x is dividable by 4, then x is dividable by 2

$$x = 5$$

P_1	P_2	$P_1 \rightarrow P_2$
0	0	1
0	1	1
1	0	0
1	1	1

Operations

4. Implication (logical "if ..., then ...")

Example

If x is dividable by 4, then x is dividable by 2

There is no x such that x is dividable by 4 and not dividable by 2

P_1	P_2	$P_1 \rightarrow P_2$
0	0	1
0	1	1
1	0	0
1	1	1

Operations

5. Equivalence (logical "... if and only if ...")

 P_1 is true iff P_2 is true

Notions $P_1 \Leftrightarrow P_2 \quad P_1 \leftrightarrow P_2$

P_1	P_2	$P_1 \leftrightarrow P_2$
0	0	1
0	1	0
1	0	0
1	1	1

Definition (by induction)

- 1) Any proposition is a formula (with 0 operations).
- 2) Suppose that Φ , Φ_1 , Φ_2 are formulas (with *n* operations). Then the following are formulas (with n+1 operations):
 - (¬Φ)
 - (Φ₁ & Φ₂)
 - $(\Phi_1 \vee \Phi_2)$
 - $(\Phi_1 \rightarrow \Phi_2)$
 - $(\Phi_1 \leftrightarrow \Phi_2)$

Example

If a line l_1 is parallel to a line l_3 and a line l_2 is parallel to l_3 , then l_1 is parallel to l_2 .

Let
$$A=\mathit{I}_{1}\parallel\mathit{I}_{3},\;B=\mathit{I}_{2}\parallel\mathit{I}_{3},\;C=\mathit{I}_{1}\parallel\mathit{I}_{2}$$

$$(A \& B) \rightarrow C$$

Example

$$(A \& B) \rightarrow C$$

- A
- B
- C
- (A & B)
- $((A \& B) \rightarrow C)$

Α	В	С	A & B	$(A \& B) \rightarrow C$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

The naive set theory Operations

1. Complement

$$x \in \overline{A} \text{ iff } \neg (x \in A)$$

2. Intersection

$$x \in A_1 \cap A_2 \text{ iff } (x \in A_1) \& (x \in A_2)$$

3. Union

$$x \in A_1 \cup A_2$$
 iff $(x \in A_1) \lor (x \in A_2)$

The naive set theory Operations

5. Subset

$$A \subseteq B$$
 iff, for any $x, [(x \in A) \rightarrow (x \in B)]$

6. Equivalence

$$A = B$$
 iff, for any $x, [(x \in A) \leftrightarrow (x \in B)]$

Properties

$$a \& 0 = 0$$
 $a \lor 1 = 1$
 $a \& 1 = a$ $a \lor 0 = a$
 $a \to b = \neg a \lor b$ $a \leftrightarrow b = (a \to b) \& (b \to a)$

Idempotency

$$a \& a = a \quad a \lor a = a$$

Commutativity

$$a\&b=b\&a$$
 $a\lor b=b\lor a$

Associativity

$$a \& (b \& c) = (a \& b) \& c \quad a \lor (b \lor c) = (a \lor b) \lor c$$

Distributivity

$$a \& (b \lor c) = (a \& b) \lor (a \& c) \quad a \lor (b \& c) = (a \lor b) \& (a \lor c)$$

Negation Properties

$$\neg(\neg a) = a$$

 $a \& \neg a = 0$ $a \lor \neg a = 1$

De Morgan's laws

$$\neg(a \& b) = \neg a \lor \neg b \quad \neg(a \lor b) = \neg a \& \neg b$$

The naive set theory

Properties

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Proof

$$x \in A \cup (B \cap C) \Leftrightarrow (x \in A) \lor (x \in B \& x \in C)$$

Since
$$a \lor (b \& c) = (a \lor b) \& (a \lor c)$$
,

$$(x \in A) \lor (x \in B \& x \in C) \Leftrightarrow (x \in A \lor x \in B) \& (x \in A \lor x \in C) \Leftrightarrow$$

$$\Leftrightarrow x \in (A \cup B) \cap (A \cup C)$$

Exercise

- Write the rest properties/laws
- Prove all of them

Definition

A conjunctive term is a conjunction of literals, where each literal is either a variable, or its negation.

Definition

A disjunctive normal form (DNF) is a disjunction of conjunctive terms.

DNF	Not!
$(a\& \neg b) \lor (\neg a\& c)$	$(a\& \neg b) \lor \neg (a\& c)$
$(\neg a \& b) \lor d$	$\neg a \& (b \lor d)$
$a \lor c$	a&(b∨(c&d))
$\neg b \& d$	
а	

Definition

A disjunctive term is a disjunction of literals, where each literal is either a variable, or its negation.

Definition

A conjunctive normal form (CNF) is a conjunction of disjunctive terms.

CNF	Not!
$\overline{(a \vee \neg b) \& (\neg a \vee c)}$	$(a \lor \neg b) \& \neg (a \lor c)$
$(\neg a \lor b) \& d$	$\neg a \lor (b \& d)$
a & c	a&(b∨(c&d))
$\neg b \lor d$	
a	

Theorem

Any formula has both a DNF and a CNF.

Example

$$(A \& B) \to C = \neg (A \& B) \lor C =$$
$$= \neg A \lor \neg B \lor C$$

Theorem

Any formula has both a DNF and a CNF.

Proof by induction

Initial step. If Φ_0 is a formula with 0 operations, then Φ_0 is equal to a variable. So, Φ_0 itself is a DNF and a CNF.

Induction hypothesis. Suppose that any formula with k operations has both a DNF and a CNF.

Induction step. Let Φ be a formula with k+1 operations. Then, by definition, there are formulas Φ', Φ_1, Φ_2 such that every of them has k operations and either $\Phi = \neg(\Phi')$, or $\Phi = \Phi_1 \& \Phi_2$, or $\Phi = \Phi_1 \lor \Phi_2$, or $\Phi = \Phi_1 \to \Phi_2$, or $\Phi = \Phi_1 \to \Phi_2$.

Induction step. 1) Suppose that $\Phi = \neg(\Phi')$, where Φ' has k operations. By induction hypothesis, Φ' has a CNF, i.e.,

$$\Phi' = (I_1^1 \vee \ldots \vee I_{i_1}^1) \& \ldots \& (I_1^m \vee \ldots \vee I_{i_m}^m)$$

Hence,

$$\Phi = \neg [(l_1^1 \lor \dots \lor l_{i_1}^1) \& \dots \& (l_1^m \lor \dots \lor l_{i_m}^m)] =
= \neg (l_1^1 \lor \dots \lor l_{i_1}^1) \lor \dots \lor \neg (l_1^m \lor \dots \lor l_{i_m}^m) =
= (\neg l_1^1 \& \dots \& \neg l_{i_1}^1) \lor \dots \lor (\neg l_1^m \& \dots \& \neg l_{i_m}^m)$$

De Morgan's laws

$$\neg(a \& b) = \neg a \lor \neg b \quad \neg(a \lor b) = \neg a \& \neg b$$

Proof by induction

So,

$$\Phi = \left(\neg \mathit{I}_{1}^{1} \,\&\, \ldots \,\&\, \neg \mathit{I}_{\mathit{i}_{1}}^{1}\right) \vee \ldots \vee \left(\neg \mathit{I}_{1}^{m} \,\&\, \ldots \,\&\, \neg \mathit{I}_{\mathit{i}_{m}}^{m}\right)$$

Since each I_i^i is a literal, $\neg I_i^i$ is also a literal. (Recall $\neg (\neg a) = a$.)

Thus, Φ has a DNF.

Similarly, Φ has a CNF.

Proof by induction

2) Suppose that $\Phi = \Phi_1 \& \Phi_2$.

By induction hypothesis, Φ_1 and Φ_2 have both a CNF, i.e.,

$$\Phi_1 = (\mathit{I}_1^1 \vee \ldots \vee \mathit{I}_{i_1}^1) \,\&\, \ldots \,\&\, (\mathit{I}_1^m \vee \ldots \vee \mathit{I}_{i_m}^m)$$

$$\Phi_2 = (t_1^1 \vee \ldots \vee t_{j_1}^1) \& \ldots \& (t_1^p \vee \ldots \vee t_{j_p}^p)$$

Then

$$\begin{split} \Phi &= \Phi_1 \,\&\, \Phi_2 = (\mathit{l}_1^1 \vee \ldots \vee \mathit{l}_{\mathit{l}_1}^1) \,\&\, \ldots \,\&\, (\mathit{l}_1^m \vee \ldots \vee \mathit{l}_{\mathit{l}_m}^m) \,\&\, (\mathit{t}_1^1 \vee \ldots \vee \mathit{t}_{\mathit{l}_n}^1) \,\&\, \ldots \,\&\, (\mathit{t}_1^p \vee \ldots \vee \mathit{t}_{\mathit{l}_p}^p) \text{ is also CNF}. \end{split}$$

Proof by induction

2) Suppose that $\Phi = \Phi_1 \& \Phi_2$.

By induction hypothesis, Φ_1 and Φ_2 have both a DNF, i.e.,

$$\Phi_1 = (l_1^1 \& \dots \& l_{i_1}^1) \lor \dots \lor (l_1^m \& \dots \& l_{i_m}^m)$$

$$\Phi_2 = (t_1^1 \& \dots \& t_{j_1}^1) \lor \dots \lor (t_1^p \& \dots \& t_{j_p}^p)$$

$$\begin{split} & \Phi_1 \& \Phi_2 = [(l_1^1 \& \dots \& l_{i_1}^1) \lor \dots \lor \\ & (l_1^m \& \dots \& l_{i_m}^m)] \& [(t_1^1 \& \dots \& t_{j_1}^1) \lor \dots \lor (t_1^p \& \dots \& t_{j_p}^p)]. \end{split}$$

$$A \& (B \lor C) = (A \& B) \lor (A \& C)$$

$$\Phi_1 \& \Phi_2 = [(l_1^1 \& \dots \& l_{i_1}^1) \lor \dots \lor (l_1^m \& \dots \& l_{i_m}^m)] \& [(t_1^1 \& \dots \& t_{j_1}^1) \lor \dots \lor (t_1^p \& \dots \& t_{j_p}^p)] =$$

$$= (l_1^1 \& \dots \& l_{i_1}^1 \& t_1^1 \& \dots \& t_{j_1}^1) \lor (l_1^1 \& \dots \& l_{i_1}^1 \& t_1^2 \& \dots \& t_{j_2}^2) \lor \dots \lor (l_1^m \& \dots \& l_{i_1}^m \& t_1^p \& \dots \& t_{j_p}^p) \lor \dots$$

$$(l_1^m \& \dots \& l_{i_1}^m \& t_1^p \& \dots \& t_{j_p}^p) \lor (l_1^m \& \dots \& l_{i_2}^m \& t_1^p \& \dots \& t_{j_p}^p) \lor \dots \lor (l_1^m \& \dots \& l_{i_m}^m \& t_1^p \& \dots \& t_{j_p}^p) \lor \dots \lor (l_1^m \& \dots \& l_{i_m}^m \& t_1^p \& \dots \& t_{j_p}^p) \lor \text{is a DNF.}$$

Similarly, if $\Phi=\Phi_1\vee\Phi_2$, or $\Phi=\Phi_1\to\Phi_2$, or $\Phi=\Phi_1\leftrightarrow\Phi_2$, then Φ has both a DNF and a CNF.

Exercise

• Finish the proof.

Thank you for your attention!