

Algoritmia y Estructura de Datos

Profesores:

Cueva, R. | Allasi, D. | Roncal, A. | Huamán, F.

Capítulo 4
Grafos

Definición

- Un grafo G = (V, E) está definido por el par de conjuntos:
 - V: conjunto finito no vacío de elementos llamados vértices
 - E: conjunto de pares de vértices llamados aristas

$$E = \{(a,c),(a,d),(b,c),(b,f),(c,e),(d,e),(e,f)\}$$

LEVITIN, A. **Introduction to The Design and Analysis of Algorithms**. 3ra edición. USA: Pearson, 2012. ISBN-13 978-0-13-231681-1

Grafos No Dirigidos

- Si las aristas (u, v) y (v, u) son las mismas, se dice que los vértices u y v son adyacentes y que están conectados por la arista no dirigida (u, v)
- Un grafo G es llamado no dirigido si cada una de sus aristas es no dirigida

$$V = \{a,b,c,d,e,f\}$$

 $E = \{(a,c),(a,d),(b,c),(b,f),(c,e),(d,e),(e,f)\}$

Grafos Dirigidos o Digrafos

- Si las aristas (u, v) y (v, u) no son las mismas, se dice que la arista (u, v) está dirigida desde el vértice u
- Un grafo es llamado dirigido (o digrafo) si todas sus aristas son dirigidas

$$V = \{a,b,c,d,e,f\}$$

$$E = \{(a,c),(b,c),(b,f),(c,e),(d,a),(d,e),(e,c),(e,f)\}$$

Grafo dirigido G

Terminología

 Un grafo con todos sus pares de vértices conectados por una arista es llamado completo

Terminología

- Un grafo con relativamente pocas aristas faltantes es llamado denso
- Un grafo con pocas aristas relativas al número de sus vértices es llamado esparso

Representación de Grafos

TAD Grafo: Operaciones

- Crear un grafo vacío
- Insertar una arista en un grafo
- Insertar un vértice en un grafo
- Verificar si existe determinada arista en el grafo
- Verificar si existe determinado vértice en el grafo
- Eliminar una arista del grafo
- Eliminar un vértice del grafo
- Imprimir un grafo
- Obtener el número de vértices del grafo

TAD Grafo: ¿Cómo se representa?

- La selección de la estructura de datos correcta para representar grafos tiene un impacto enorme en el desempeño de un algoritmo
- Representaciones usuales:
 - · Matriz de adyacencia
 - Estructura de adyacencia (con listas de adyacencia)

Matriz de Adyacencia

- Dado un grafo G = (V, E), la matriz de adyacencia M es una matriz de orden n x n, tal que:
 - n = número de vértices
 - M[i, j] = 1, si existe la arista del nodo i al nodo j
 - M[i, j] = 0, si no existe la arista del nodo i al nodo j

Matriz de Adyacencia

- Es la forma más simple de representación
- Propiedades:
 - Es **simétrica** para un grafo no dirigido
 - M[i, j] = M[j, i], para todo 0 <= i, j <= n − 1</p>
 - Almacenamiento: O (n²)
 - Prueba de si la arista (i,j) está en el grafo: O(1)

Estructura de Adyacencia

- Dado un grafo G = (V, E), la estructura de adyacencia A es conjunto de n listas A(v), una para cada vértice v que pertenece a V
- Cada lista A(v) es llamada lista de adyacencia del vértice v y contiene los vértices w adyacentes a v en G

¿Y para un grafo dirigido?

$$G = (V, E)$$

		a	b	C	d	е	f
	а	0	0	1	0	0	0
	b	0	0	1	0	0	1
	С	0	0	0	0	1	0
M =	d	1	0	0	0	1	0
	е	0	0	1	0	0	1
	f	0	0	0	0	0	0

$$A = \begin{array}{c} a \longrightarrow c \\ b \longrightarrow c \longrightarrow c \\ \hline c \longrightarrow e \\ \hline d \longrightarrow a \longrightarrow e \\ \hline e \longrightarrow c \longrightarrow c \\ \hline f \end{array}$$

Estructura de Adyacencia

- Representación más elaborada
- Propiedades:
 - Almacenamiento: O(|V| + |E|)
 - Prueba de si la arista (i,j) está en el grafo: O(d_i), donde d_i es el grado del vértice i

Comparación de Representaciones

Característica	Matriz de Adyacencia	Lista de Adyacencia
Almacenamiento	O(V ²)	O(V + E)
Insertar vértice	O(V ²)	O(1)
Insertar arista	O(1)	O(1)
Eliminar vértice	O(V ²)	O(E)
Eliminar arista	O(1)	O(E)
Consultar si existe arista (u,v)	O(1)	O(V)
Observación	Lento para insertar o eliminar vértices porque la matriz debe ser redimensionada o copiada	Cuando se eliminan aristas o vértices, se necesita encontrar todos los vértices o aristas

¿Cuándo usar cada representación?

- Si un grafo es esparso, la representación por listas de adyacencia podría usar menos espacio que su correspondiente matriz de adyacencia; la situación es exactamente opuesta para grafos densos
- En general, cuál de las dos representaciones es más conveniente depende de la naturaleza del problema, el algoritmo usado para resolverlo y, posiblemente, el tipo de grafo (esparso o denso)

Recorrido de Grafos

Recorriendo un Grafo

- Recorrer un grafo es un problema fundamental
- Se debe tener una forma sistemática de visitar las aristas y los vértices
- El algoritmo debe ser lo suficientemente flexible para adecuarse a una diversidad de grafos
 - **Eficacia:** No debe haber repeticiones (innecesarias) de visitas a un vértice y/o arista
 - Correctitud: Todos los vértices y/o aristas deben ser visitados

Estrategia General

- Marcar los vértices como
 - No visitados
 - Visitados
 - Procesados
 - •
- Si se mantiene una lista de vértices procesados existen dos posibilidades de implementación:
 - Cola
 - Pila

BFS: Breadth-First Search

- Búsqueda en amplitud (o por niveles)
- Estructuras de datos y variables:
 - Por Visitar: Contiene la cola de vértices del grafo que van siendo procesados y aún faltan visitar
 - Visitados: Contiene toda la lista de nodos que han sido visitados a lo largo del algoritmo
 - P: Vértice del grafo que está siendo procesado en cada paso (iteración)
 - Hijos_P: Lista de nodos adyacentes a P
 - Vértice Inicial y Vértice Final
 - Sentido de lectura (horario/antihorario)

BFS: Breadth-First Search

```
Inicio BFS (Grafo, PorVisitar, VerticeIni, VerticeFin, Sentido)
  Cola_Inicializar(PorVisitar)
  Lista_Inicializar(Visitados)
   Cola_Enqueue(VerticeIni, PorVisitar)
Mientras Cola_EsVacia (PorVisitar) = FALSO Y P <> VerticeFin hacer
     P = Cola_Dequeue (PorVisitar)
     Procesar P
     Lista_Insertar (Visitados, P)
     Hijos_P = Grafo_Adyacentes (Grafo, P, Sentido)
     Para cada u ∈ Hijos_P / u ∉ Visitados hacer
        Cola_Enqueue(PorVisitar, u)
   Fin Mientras
Fin BFS
```


Ejemplo BFS

 Recorra el siguiente grafo con BFS comenzando por el vértice a y buscando el vértice f:

DFS: Depth-First Search

- Búsqueda en profundidad
- Estructuras de datos y variables:
 - **Por Visitar:** Contiene la <u>pila</u> de vértices del grafo que van siendo procesados y aún faltan visitar
 - Visitados: Contiene toda la lista de nodos que han sido visitados a lo largo del algoritmo
 - P: Vértice del grafo que está siendo procesado en cada paso (iteración)
 - Hijos_P: Lista de nodos adyacentes a P
 - Vértice Inicial y Vértice Final
 - Sentido de lectura (horario/antihorario)

DFS: Depth-First Search

```
Inicio DFS (Grafo, PorVisitar, VerticeIni, VerticeFin, Sentido)
  Pila_Inicializar(PorVisitar)
  Lista_Inicializar(Visitados)
  Pila_Push(VerticeIni, PorVisitar)
  Mientras Pila_EsVacia(PorVisitar) = FALSO Y P <>
VerticeFin hacer
     P = Pila_Pop (PorVisitar)
     Procesar P
     Lista_Insertar (Visitados, P)
     Hijos_P = Grafo_Adyacentes (Grafo, P, Sentido)
     Para cada u ∈ Hijos_P / u ∉ Visitados hacer
        Pila_Push(PorVisitar, u)
  Fin Mientras
Fin DFS
```


Ejemplo DFS

 Recorra el siguiente grafo con DFS comenzando por el vértice a y buscando el vértice f:

Caminos Más Cortos

Aplicación en Mapas

Aplicaciones Típicas

Aplicación	Vértice	Arista
Мара	Intersección	Camino
Red	Router	Conexión
Programación de horarios	Tarea	Restricción de precedencia

Definición

 El camino más corto desde el vértice s hasta el vértice t en un digrafo ponderado es un camino dirigido desde s hasta t con la propiedad de que no otro camino tiene un peso menor

¿Cuál es el camino más corto de 0 a 6?

Camino Más Corto de 0 a 6:

 $0 \rightarrow 2 \quad 0.26$

 $2 \rightarrow 7 \quad 0.34$

 $7 \rightarrow 3 \quad 0.39$

 $3 \rightarrow 6 \quad 0.52$

Variantes

Desde un único origen

 Encontrar los caminos más cortos desde un vértice origen s a todos los demás vértices del grafo

Con un único destino

 Encontrar los caminos más cortos desde todos los vértices del grafo a un único vértice destino

Entre un único par de vértices

 Encontrar el camino más corto entre los vértices u y v

Entre todos los pares de vértices

 Encontrar los caminos más cortos entre cada par de vértices u y v del grafo

Algoritmo de Dijkstra

- Aplicable en grafos dirigidos y no dirigidos con pesos no negativos
- Idea básica:
 - Se inicia desde un vértice s
 - Se posee un conjunto de vértices para cuales <u>conocemos</u> sus caminos más cortos desde s (inicialmente vacío)
 - En cada iteración, se añade a este conjunto aquel vértice u adyacente al vértice actual u* que esté más cerca de s
 - Se debe considerar la distancia desde s hasta el vértice actual u* y el peso de la arista (u, u*)

Ejemplo 1

Hallar los caminos más cortos desde el vértice a

Ejemplo 1: Solución

Por Visitar Visitados a(-,0)**b**(**a**,**3**) $c(-,\infty)$ d(a,7) $e(-,\infty)$ c(b,3+4) **d(b,3+2)** $e(-,\infty)$ b(a,3)d(b,5)c(b,7) e(d,5+4)e(d,9)c(b,7)e(d,9)

LEVITIN, A. Introduction to The Design and Analysis of Algorithms. 3ra edición. USA: Pearson, 2012. ISBN-13 978-0-13-231681-1

Ejemplo 2

Hallar los caminos más cortos desde el vértice 1

Ejemplo 2: Solución

Hallar los caminos más cortos desde el vértice 1

Eficiencia del Algoritmo de Dijkstra

- La implementación más simple:
 - El conjunto de vértices **NoVisitados** es una lista enlazada o un <u>arreglo</u>
 - Extraer el mínimo de NoVisitados es una búsqueda lineal
 - $O(|E|+|V|^2) = O(|V|^2)$
- Para grafos esparsos:
 - · Grafo como <u>lista de adyacencia</u>
 - El conjunto de vértices NoVisitados es implementado usando:
 - ABBs auto-balanceables: 2-3, AVL, rojo-negro, etc.
 - Montículos (*heaps*): binarios, Fibonacci, etc.
 - O(|E|+|V|log|V|)

Árbol de Expansión Mínimo

- El **árbol de expansión** de un grafo conexo *G* es un subgrafo conexo acíclico de *G* tal que incluye todo los vértices *G*
- El árbol de expansión mínimo de un grafo conexo ponderado
 G es un árbol de expansión de G de peso total mínimo

El algoritmo de Dijkstra genera un árbol de expansión, pero no es mínimo

