Calc III: Workshop 10, Fall 2017

Problem 1. Let $R = \{(x,y) : x^2 + y^2 \le a^2, y \ge 0\}$ be the upper half disk of radius a, with mass density $\delta(x,y) = x^2 + y^2$.

- (a) Compute the mass of R.
- (b) Compute the center of mass $(\overline{x}, \overline{y})$ of R.

Problem 2. Use Green's Theorem to compute the line integral $\oint_C \mathbf{F} \cdot \mathbf{T} ds$, where $\mathbf{F}(x,y) = (x^2 + y^2)\mathbf{i} + (2xy + x)\mathbf{j}$ and C is the closed triangular path consisting of straight line segments from (0,0) to (1,1), then to (1,0) and back to (0,0).

Problem 3. Compute the volume of the solid region between the surfaces $z = x^2 + y^2$ and $z = 8 - x^2 - y^2$

Problem 4. Set up, but do not evaluate, the triple integral $\iiint_E xy \, dV$, where E is the region bounded below by the cone $z = \sqrt{3(x^2 + y^2)}$ and above by the sphere $x^2 + y^2 + z^2 = 4$, using:

- (a) Cartesian coordinates (x, y, z),
- (b) Cylindrical coordinates (z, r, θ) , and
- (c) Spherical coordinates (ρ, φ, θ) .

Problem 5.

- (a) Verify that the vector field $\mathbf{F}(x,y) = (2xy + ye^x)\mathbf{i} + (x^2 + e^x)\mathbf{j}$ is conservative, and find a potential function f(x,y).
- (b) Compute the line integral $\int_C \mathbf{F}(x,y) \cdot \mathbf{T} ds$, where C is the curve $y = 1 + x^2$ from (0,1) to (1,2).