Final Exam

Quiz, 10 questions

2 points

1.

Consider a directed graph G=(V,E) with non-negative edge lengths and two distinct vertices s and t of V. Let P denote a shortest path from s to t in G. If we add 10 to the length of every edge in the graph, then: [Check all that apply.]

If P has only one edge, then P definitely remains a shortest s-t path.

 $oxedsymbol{oxedsymbol{\square}}$ P definitely remains a shortest s-t path.

 $oxedsymbol{P}$ might or might not remain a shortest s-t path (depending on the graph).

P definitely does not remain a shortest s-t path.

2 points

2.

What is the running time of depth-first search, as a function of n and m, if the input graph G=(V,E) is represented by an adjacency matrix (i.e., NOT an adjacency list), where as usual n=|V| and m=|E|?

 $\theta(n^2)$

 $\theta(n*m)$

 $\theta(n^2 \log m)$

 $\theta(n+m)$

2 points

3

What is the asymptotic running time of the Insert and Extract-Min operations, respectively, for a heap with n objects?

FinalEx	$\operatorname{SP}(\log n)$ and $\Theta(1)$
Quiz, 10 ques	$\Theta(\log n)$ and $\Theta(\log n)$
	$\Theta(1)$ and $\Theta(\log n)$
	$\Theta(n)$ and $\Theta(1)$
2 point	s
	ding one extra edge to a directed graph G, the number of strongly connected components?
	cannot decrease by more than 1
	cannot decrease
	cannot change
	might or might not remain the same (depending on the graph).
2 poin	rs
	of the following statements hold? (As usual n and m denote the number of vertices and edges, tively, of a graph.) [Check all that apply.]
	Breadth-first search can be used to compute shortest paths in $O(m+n)$ time (when every edge has unit length).
	Breadth-first search can be used to compute the connected components of an undirected graph in $O(m+n)$ time.
	Depth-first search can be used to compute the strongly connected components of a directed graph in $O(m+n)$ time.
	Depth-first search can be used to compute a topological ordering of a directed acyclic graph in $O(m+n)$ time.

2

points Final Exam	
Quiz, 10 questions	
•	directed graph have a unique topological ordering?
When	never it is a complete directed graph
None	e of the other options
When	never it is directed acyclic
When	never it has a unique cycle
2 points	
What is the w	i implement the operations Insert and Extract-Min using a <i>sorted</i> array (from biggest to smallest). worst-case running time of Insert and Extract-Min, respectively? (Assume that you have a large y to accommodate the Insertions that you face.)
$\Theta(1)$) and $\Theta(n)$
\bigcirc $\Theta(n)$) and $\Theta(1)$
$\Theta(\log \Theta)$	$\log n)$ and $\Theta(1)$
\bigcirc $\Theta(n)$) and $\Theta(n)$
2 points	
	following patterns in a computer program suggests that a heap data structure could provide a peed-up (check all that apply)?
None	e of the other options
Repe	eated maximum computations
Repe	eated lookups
Repe	eated minimum computations

9.

	of the following patterns in a computer program suggests that a hash table could provide a significant up (check all that apply)?
	Repeated minimum computations
	Repeated lookups
	Repeated maximum computations
	None of the other options
2 points	
	of the following statements about Dijkstra's shortest-path algorithm are true for input graphs that nave some negative edge lengths? [Check all that apply.]
	It may or may not correctly compute shortest-path distances (from a given source vertex to all other vertices), depending on the graph.
	It is guaranteed to correctly compute shortest-path distances (from a given source vertex to all other vertices).
	It is guaranteed to terminate.
	It may or may not terminate (depending on the graph).
	Lingua da ta gula mit
	Upgrade to submit
) P	