影像處理導論

宋其諭 0510888

Project goal

Apply histogram-specification method to the image below, assume desired histogram: nk=1248, $0 \le k \le 63$ and $192 \le k \le 255$, nk=800, $64 \le k \le 191$.

Determine the transformation function z = T(r) and the output image after applying the transformation function to the image.

A. Figures of the original and output histograms

在 Histogram 的分佈中我們可以觀察到,如果 Histogram 分佈的峰值 靠近左側(靠近 0),則代表這張影像偏暗;如果 Histogram 分佈的峰值 靠近右側(靠近 255),則代表這張影像偏亮;如果 Histogram 分佈的峰值 非常集中在中間,則明暗的對比就不太明顯。,Histogram Equalization

最理想分佈狀況就是平均分佈

B. Figure of the output image after applying the histogram-specification scheme

從結果來看經過灰階均化後圖形效果較能看到細節的部分也較為清晰

C. Table of transformation function to show the mapping from the input gray level r to the output gray level z

將做完轉換的灰階值存放在一個矩陣內

Output gray level:

0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	2
3	4	6	8	10	13	16	20	24	28	31	34	37	40	43	46	
49	52	55	58	61	63	67	71	75	79	82	86	90	93	97	101	
104	107	111	114	117	120	124	127	130	133	136	139	141	144	146	148	
151	153	155	157	159	161	163	165	166	168	170	171	172	174	175	177	
178	179	180	181	183	184	185	186	187	188	189	191	192	192	193	194	
194	195	195	196	197	197	198	199	199	200	201	201	202	203	203	204	
204	205	206	206	207	207	208	208	209	209	210	210	211	211	212	212	
213	213	214	214	215	215	215	216	216	217	217	217	218	218	218	219	
219	219	220	220	220	221	221	221	222	222	222	222	223	223	223	224	
224	224	225	225	225	225	226	226	226	227	227	227	228	228	228	228	
229	229	229	229	230	230	230	230	231	231	231	232	232	232	232	233	
233	233	233	234	234	234	234	234	235	235	235	235	235	235	235	236	
236	236	236	236	236	236	236	237	237	237	237	237	237	237	237	237	
237	237	238	238	238	238	238	238	238	238	238	238	238	238	239	239	
239	239	239	239	239	239	239	239	239	240	240	240	240	243	255		

D. Source codes

```
本次實驗使用 Matlab 軟體分析(含註解)
```

clc;

clear;

close;

```
a = imread('camellia (mono) 512x512.tif'); %Read the Image b = size(a);
```

```
scale = 1;
shift = 0;
r = 0.255;
                                                             %Defining input pixels
                                                         %linear Transformation
d = round(scale*r)+ shift;
function
count = zeros(3,256);
spec = zeros(1,256);
ep = zeros(b);
transform = zeros(b);
%loop for spec gray level accumulation
for i = 0.255
    if i>63 && i<192
         spec(1,i+1)=spec(1,i)+800;
    elseif i==0
         spec(1,i+1)=1248;
    else
         spec(1,i+1)=spec(1,i)+1248;
    end
end
    %loop for count input image gray level
for i=1:b(1)
                                                             %loop tracing the rows
of image
    for j=1:b(2)
                                                             %loop tracing thes
columns of image
         t=(a(i,j)+1);
                                                            %pixel values in image
                                                          %Making the ouput image
         ep(i,j)=d(t);
using
        count(1,ep(i,j))=count(1,ep(i,j))+1;
                                                 %counting
    end
end
%loop for count input gray level accumulation
for i = 0.255
    if i==0
         count(2,i+1)=0;
    else
         count(2,i+1)=count(2,i)+count(1,i+1);
    end
end
```

```
%loop for comparsion
for i=1:256
                                                             %loop tracing the
arrary count
    for j=1:256
                                                           %loop tracing thes
columns of image
        if count (2,i)>\operatorname{spec}(1,j)
             count (3,i)=j;
        end
    end
end
%transform
for i=1:b(1)
                                                             %loop tracing the rows
of image
    for j=1:b(2)
                                                             %loop tracing thes
columns of image
         t=(a(i,j)+1);
                                                            %pixel values in image
         ep(i,j)=d(t);
                                                           %Making the ouput image
using
        transform(i,j)=count(3,ep(i,j));
                                             %counting
    end
end
%Procedure for plotting histogram
hist1 = zeros(1,256);
                                                           %prealocation space for
input histogram
hist2 = zeros(1,256);
                                                           %prealocation space for
output histogram
for i1=1:b(1)
                                                             %loop tracing the rows
of image
    for i1=1:b(2)
                                                             %loop tracing the
Columns of image
         for k1=0:255
                                                               %loop checking which
graylevel
                                                             %match found at k1
              if a(i1,j1) == k1
```

```
%increase the value at k1
                    hist1(k1+1)=hist1(k1+1)+1;
               end
               if transform(i1,j1)==k1
                                                                    %for output
image
                    hist2(k1+1)=hist2(k1+1)+1;
               end
          end
     end
end
%Plotting input image output image and their respective histograms
subplot(2,2,1);
imshow(a);
title('original image');
subplot(2,2,3);
imshow(uint8(transform));
title('output image');
subplot(2,2,2);
plot(hist1);
subplot(2,2,4);
plot(hist2);
%Plotting input image output image
figure;
subplot(1,2,1);
imshow(a);
title('original image');
subplot(1,2,2);
imshow(uint8(transform));
title('output image');
%%%
figure;
plot(count(3,:));
xlabel('input gray level');
```

ylabel('output gray level');