1

1.1

Buchstabe	Kodierung	" k_i/r "
${ m L}$	000	$\frac{3}{13}$
\mathbf{E}	001	
O	010	$\frac{\frac{2}{3}}{13}$
	011	$\frac{2}{13}$
Ä	100	$ \begin{array}{c} 13\\2\\13\\2\\13\\1\\13\\3\\13 \end{array} $
\mathbf{S}	101	$\frac{\frac{13}{3}}{13}$
${ m T}$	110	$\frac{1}{13}$

1.2

$$I = -\sum_{i=1}^{n} p_i \log p_i$$

$$= -\sum_{i=1}^{7} p_i \log p_i$$

$$= -\left(\frac{1}{7} \cdot \log \frac{1}{7}\right) \cdot 7 = -\log \frac{1}{7} \approx 2.81$$

1.3

$$\begin{split} I &= -\sum_{i=1}^n p_i \log p_i \\ &= -(\frac{3}{13} \cdot \log \frac{3}{13} + \frac{1}{13} \cdot \log \frac{1}{13} + \frac{2}{13} \cdot \log \frac{2}{13} + \frac{2}{13} \cdot \log \frac{2}{13} \\ &+ \frac{1}{13} \cdot \log \frac{1}{13} + \frac{3}{13} \cdot \log \frac{3}{13} + \frac{1}{13} \cdot \log \frac{1}{13}) \approx 2.06 \end{split}$$

1.4

Der Informationsgehalt ist um etwa 0.75 verringert.

1.5

Buchstabe	Kodierung		
\mathbf{S}	11		
${ m L}$	100		
	101		
O	001		
${ m T}$	000		
A	011		
${f E}$	010		

1.7

$$N = n_S + n_L + n + n_O + n_T + n_A + n_E = 3 \cdot 2 + 3 \cdot 3 + 2 \cdot 3 + 3 + 3 + 3 + 3 = 30$$

1.8

$$b=r\cdot I\approx 13\cdot 2.06=26.78$$

1.9

Der Huffman-Kode weicht um etwa 12% ab.

1.10

Der Huffman-Kode braucht $\frac{30}{13}\approx 2.31$ Zeichen, dies weicht um etwa 12% vom Informationsgehalt $I\approx 2.06$ ab.

 $\mathbf{2}$

2.1

a	b	c	$\neg a \lor b$	$(\neg a \lor b) \land \neg c)$	$(a \lor c)$	$b \wedge (a \vee c)$	f(a,b,c)
0	0	0	1	1	0	0	1
0	0	1	1	0	1	0	0
0	1	0	1	1	0	0	1
0	1	1	1	0	1	1	1
1	0	0	0	0	1	0	0
1	0	1	0	0	1	0	0
1	1	0	1	1	1	1	1
1	1	1	1	0	1	1	1

2.2

 $(\neg a \wedge \neg b \wedge \neg c) \vee (\neg a \wedge \neg b \wedge \neg c) \vee (\neg a \wedge b \wedge c) \vee (a \wedge b \wedge \neg c) \vee (a \wedge b \wedge c) = m_0 \vee m_2 \vee m_3 \vee m_6 \vee m_7 = \sum m(0,2,3,6,7)$

2.3

$$\neg y = \sum m(1, 4, 5)$$

2.4

$$\neg y = \prod M(0, 2, 3, 6, 7)$$

2.5

$$y = \prod M(1,4,5)$$

2.6

?

3

3.1

$$f_{x_1=0} = f(0, x_2, x_3) = \underbrace{[(x_2 \lor x_3) \land 0]}_{0} \lor \underbrace{[(x_2 \land (x_2 \lor x_3) \land x_3) \land 0]}_{0} = 0$$

$$f_{x_1=1} = f(0, x_2, x_3) = \underbrace{[(x_2 \lor x_3) \land 1]}_{x_2 \lor x_3} \lor \underbrace{[(x_2 \land (x_2 \lor x_3) \land x_3) \land 1]}_{x_2 \land (x_2 \lor x_3) \land x_3} = (x_2 \lor x_3) \lor [x_2 \land (x_2 \lor x_3) \land x_3]$$

3.2

$$f_{x_1=1,x_2=0} = f(0,0,x_3) = \underbrace{(0 \lor x_3)}_{x_3} \lor \underbrace{[0 \land (0 \lor x_3) \land x_3]}_{0} = x_3$$
$$f_{x_1=1,x_2=1} = f(0,1,x_3) = \underbrace{(1 \lor x_3)}_{1} \lor \underbrace{[1 \land (1 \lor x_3) \land x_3]}_{x_3} = x_3$$

3.3

$$f_{x_1=1,x_2=1,x_3=0} = f(0,1,0) = 0$$

 $f_{x_1=1,x_2=1,x_3=1} = f(0,1,1) = 1$

3.4

$$y = \underbrace{(x_1 \wedge \neg x_2 \wedge x_3)}_{101} \vee \underbrace{(x_1 \wedge x_2 \wedge x_3)}_{111} \vee \underbrace{(x_1 \wedge x_2 \wedge \neg x_3)}_{110} = \sum m(5, 6, 7)$$

3.5

