Default dependence in Thailand's housing and automobile loan portfolio: A copula approach

Supanut Wanchai

Motivation

- According to the Bank of Thailand, loan growth contracted 0.9% in 2023 quarter 3. NPL increased to 2.7%
- Thailand has high household debt about 90.7% to GDP
- Housing and automobile loans are top 2 loans KKP Bank, my excompany.
- KKP Bank forecasted an upward trend in NPL.

Introduction and literature

- Traditional credit risk model employed linear correlation which assumes normally distributed. However, some studies shows normality was not met.
- In 2011, Crook and Moreira claimed that they first studied empirically applying copulas to consumer loan credit analyses.
- A study (Chan and Kroese, 2010) shows that Gaussian copulas failed to properly detect loan default correlation during period of high financial distress.
- Archimedean copula is more efficient to explain loan default than Gaussian copula (Fenesh, Vosgha, and Shafik 2015)

Methodology

Normal copula

$$C_{\alpha}(u_1, u_2) = \frac{1}{2\pi\sqrt{1-\alpha^2}} \int_{-\infty}^{\Phi^{-1}(u_1)} \int_{-\infty}^{\Phi^{-1}(u_2)} exp(\frac{-(v_1^2 - 2\alpha v_1 v_2 + v_2^2)}{2(1-\alpha^2)}) dv_1 dv_2, \ \alpha \in (-1, 1)$$
 where Φ is the distribution function of $N(0, 1)$

Clayton copula

$$C_{\alpha}(u_1, u_2) = (u_1^{-\alpha} + u_2^{-\alpha} - 1)^{-\frac{1}{\alpha}}, \ \alpha > 0$$

Frank copula

$$C_{\alpha}(u_1, u_2) = -\frac{1}{\alpha} ln(1 + \frac{(e^{-\alpha u_1} - 1)(e^{-\alpha u_2} - 1)}{e^{-\alpha} - 1}), \ \alpha \neq 0$$

Gumbel copula

$$C_{\alpha}(u_1, u_2) = e^{-((-lnu_1)^{\alpha} + (-lnu_2)^{\alpha})^{\frac{1}{\alpha}}}, \ \alpha \in [1\infty)$$

Copula feature

Based on Sklar's theorem, for all (x1, x2) $\in R^2$ and joint distribution function F, there exists a unique copula C such that F(x1, x2) = C(F1(x1), F2(x2))

Figure 1: Copula Plots
Source: Park, C., Kim, N. and Haftka, R. (2015). The effect of ignoring
dependence between failure modes on evaluating system reliability. Structural
and Multidisciplinary Optimization. 52. 10.1007/s00158-015-1239-7.

Copula	Dependence structure
Normal	Symmetric dependence without tail dependence
Clayton	Left (lower) tail dependence
Frank	Symmetric dependence without tail dependence
Gumbel	Right (upper) tail dependence

Data

- BoT provides a data set called "FI_NP_003_S2 Gross NPLs Outstanding Classified by Business Sector_ISIC Rev.4.0 1/"
- It contains NPL outstanding and %NPL from Q1/2013 to Q2/2023 (42 observations)
- I selected only housing and automobile loan for this study.

2.6

Normality test and data transformation

Variable	Jarque-Bera statistic	p-value
housing automobile	2.5858 6.6873	0.2745 0.03531

Table 1: Jarque-Bera test

- Housing follows normal distribution with mean 3.007 and S.D. 0.548
- Automobile was transformed by Pseudo-Observation

Given n realizations $x_i = (x_{i1}, ..., x_{id})^T$, $i \in \{1, ..., n\}$ of a random vector X, the pseudo-observation are defined via $u_{ij} = r_{ij}/(n+1)$ for $i \in \{1, ..., n\}$ and $j \in \{1, ..., d\}$, where r_{ij} denotes the rank of x_{ij} among all $x_{kj}, k \in \{1, ..., n\}$

Result

Family	α	AIC	BIC
Normal	-0.5542	-10.45036	-8.712686
Clayton	-0.1861	-2.914093	-1.176423
Frank	-4.552	-16.40813	-14.67046
Gumbel	1	2.000001	3.73767

Table 2: Copula coefficient and information criteria

• Clayton copula performed best based on AIC and BIC

Result

Limitation and future research

- Customer level data
- Goodness-of-fit test
- Marginal distribution fitting
- Additional copulas such as Student t and Galambos