

Nature de l'information

12D

Etude d'un signal analogique

TD01

Source : extrait du livre IT-I2D-2I2D de Hachette Technique

Etude d'un signal

Vous avez décidé de vous mettre au sport pour être en meilleure santé. Vous souhaitez pouvoir suivre votre progression et connaître précisément la quantité d'efforts à fournir pour avoir des résultats visibles.

Pour cela, vous vous équipez d'une montre connectée avec un accéléromètre reliée à une application sur votre smartphone.

Vous commencez par une marche rapide et vous analysez la figure suivante obtenue sur votre smartphone.

fig1 : Portion d'enregistrement de l'accéléromètre de votre montre connectée. En abscisse vous avez le temps de représenté en seconde et en ordonnée une tension en mV.

Etude globale

- **Q1.** Qu'est-ce qu'un accéléromètre ? capteur qui mesure l'accélération d'un objet
- Q2. Quelle grandeur physique mesure-t-il?

la différence de position de celui-ci

- Q3. Quelle grandeur physique fournit-il à son utilisateur (sur le graphe de la figure 1) ?

 des mV
- Q4. Quelles sont les 3 phases de cette séance de marche?

démarrage/régulière/arret

- **Q5.** Parmi ces 3 phases, laquelle vous semble la plus facile à décrire ou caractériser ?
 - la régulière, elle est périodique
- Q6. Pourquoi dans la légende sous la figure 1, il est fait mention de « portion d'enregistrement »?

car seul certaine portions régulière va nous servir à quelque chose

Caractéristiques du signal

Q7. Quelle est la valeur de départ du signal envoyé par l'accéléromètre ?

6mV

Q8. Pourquoi n'est-elle pas nulle?

car ya la gravité

Q9. A quelle constante physique est-elle proportionnelle ?

à la gravité

Q10. Quelle est la valeur max atteinte par le signal ?

14mV

Q11. A quel moment cette valeur est atteinte?

au pics de la portion régulière

Q12. Quelle est la valeur min atteinte par le signal?

3mV

Q13. A quel moment cette valeur est atteinte?

8s

Q14. Pendant la phase de marche régulière, le signal est quasi périodique. Combien de cycles (1 cycle = 1 pas) pouvez-vous identifiez ?

10

Q15. Combien de temps dure cette phase?

5,776 s

Q16. Vous avez le nombre de cycle et la durée totale. Comment obtenez-vous la durée d'un seul cycle c'est-àdire la période du signal ?

5,776/10 = 0.58s

Q17. Quelle est la fréquence de ce signal ?

1.72Hz 1/0.58s

Analyse de la performance pendant la phase de marche régulière

Q18. Que vous apprend cette dernière valeur sur votre performance?

que notre rythm de marche est de 1.72Hz

Q19. Sachant que la phase de marche régulière a réellement duré une heure, combien de pas avez-vous effectué?

3600/0.58 = 6207 pas

Q20. Sachant que votre pas mesure 80 cm, quelle est la distance parcourue et votre vitesse de marche?

 $6207*80 = 496\ 560$ cm soit 4.965m soit 5km V = 5km/h

Question pour départager les exæquos

Q21. Qu'est-ce qu'un signal analogique?