

We are working on Moody's dataset with multiple features and responses for each market.

It is quarterly data that means, that every quarter, new record come for each market.

It is real estate dataset.

I am currently working with feature name business_bankruptcies s and response vacancy_rate.

Help me understand how it works

Excellent — this is a rich and meaningful feature–response pair to explore. Let's unpack it step by step, keeping in mind the **real estate market context** and **economic intuition** behind the relationship between **business bankruptcies** and **vacancy rates**.

Step 1: What each variable represents

1. Business Bankruptcies

- This variable typically measures the **number (or rate) of business failures** in a given market and quarter.
- It's an **economic distress indicator**, reflecting how healthy or unhealthy the business ecosystem is
- When bankruptcies rise, it signals that **local businesses are struggling**—due to weaker demand, tighter credit, or economic shocks.

2. Vacancy Rate

- This is your **target** (**response**) variable.
- In real estate, the **vacancy rate** measures the percentage of total available units (in offices, retail spaces, industrial properties, etc.) that are **unoccupied** at a given time.
- High vacancy rate = weaker demand for space.
- Low vacancy rate = stronger occupancy/demand.

🦈 Step 2: The causal/economic relationship

The **link between bankruptcies and vacancy rate** is both intuitive and empirically supported:

Economic Situation	Business Bankruptcies	Vacancy Rate	Explanation
Economic Boom	↓ Fewer bankruptcies	↓ Lower vacancy	Businesses expand → rent more space → occupancy increases

Economic Situation	Business Bankruptcies	Vacancy Rate	Explanation
Economic Slowdown	↑ More bankruptcies	↑ Higher vacancy	Firms close down → vacate offices/retail → vacancy rises
Credit Tightening / Interest Rate Hike	↑ Bankruptcies	↑ Vacancy	Higher costs make businesses default → spaces empty out
Stimulus / Economic Recovery	↓ Bankruptcies	↓ Vacancy	Businesses reopen/expand → occupancy improves

So the expected **correlation is positive** — as **bankruptcies rise**, **vacancy rates** also tend to rise (lagged relationship is often stronger).

Step 3: The lagged effect

In most real estate datasets like Moody's:

- The **impact of bankruptcies** on vacancy rates **is not immediate**.
- When businesses go bankrupt this quarter, their space **may only become vacant next quarter or later** (due to lease expirations, legal proceedings, etc.).

Hence, testing **lagged versions** is essential:

```
python

df["business_bankruptcies_lag1"] = df.groupby("market")["business_bankruptcies"].shift(1)
 df["business_bankruptcies_lag2"] = df.groupby("market")["business_bankruptcies"].shift(2)
```

You can then analyze correlations or run models with these lagged terms to see which lag predicts vacancy best.

📊 Step 4: Feature Engineering Ideas

Here are some powerful transformations often used by analysts in real estate economics:

1. Growth rate or percentage change

```
python

df["business_bankruptcies_qoq"] = df.groupby("market")["business_bankruptcies"].pct_change()
```

Captures how quickly bankruptcies are rising/falling.

2. Rolling average or volatility

```
python

df["bankruptcies_rolling_mean4"] = df.groupby("market")
["business_bankruptcies"].rolling(4).mean().reset_index(0, drop=True)
```

• Smooths short-term noise and captures sustained distress trends.

3. Interaction with market type

• The effect of bankruptcies might differ by **property type** (retail vs. industrial):

```
python

df["bankruptcies_x_retail"] = df["business_bankruptcies"] * (df["property_type"] ==
    "Retail")
```

4. Relative-to-national level

• Compute local bankruptcies as a ratio to national average:

```
python

df["bankruptcies_relative"] = df["business_bankruptcies"] /
 df["business_bankruptcies"].mean()
```

• Helps capture whether a specific market is suffering **more or less** than the country overall.

💤 Step 5: Analytical Approaches

To explore the relationship empirically:

1. Correlation / Scatterplot

```
python

df.groupby("market")[["business_bankruptcies", "vacancy_rate"]].corr().iloc[0::2, -1]
```

• See direction and strength of correlation.

2. Regression model (simple example)

```
import statsmodels.formula.api as smf
model = smf.ols("vacancy_rate ~ business_bankruptcies_lag1 + C(market)", data=df).fit()
print(model.summary())
```

3. Causal interpretation (advanced)

- You can test for **Granger causality** (does bankruptcies "predict" vacancy rate?).
- Or use **causal graphs / DoWhy** to see if bankruptcies have a causal effect after controlling for confounders (e.g., GDP, employment, interest rate).

Step 6: Interpretation summary

In essence:

- Rising business bankruptcies → rising vacancy rates (with lag).
- The **magnitude** of this effect varies by **property type**, **market**, and **economic cycle**.
- You can **quantify** and **visualize** this relationship to build stronger narratives for clients (e.g., "A 10% increase in business bankruptcies leads to a 0.5% increase in vacancy after one quarter").

Would you like me to show how to visualize this relationship (e.g., lag plot, rolling trend, or crossmarket comparison) using Python code next?

Sorry I was asking can you look for some more top notch features engineering which top real estate industry use

Ah, got it 👍 — you're not just asking about how business bankruptcies affect vacancy rates, but you want high-quality, industry-level feature engineering ideas — the kind that top real estate analytics firms (like Moody's, CoStar, CBRE, or JLL) use in vacancy forecasting models.

Let's go deep and structured.

Below are **powerful and realistic feature-engineering strategies**, grouped by **theme** — specifically for combining business bankruptcies and related economic/real estate dynamics.

1. Temporal Dynamics Features

These features capture trends, momentum, and seasonality of bankruptcies — highly valued in quarterly forecasting.

Feature Name	Formula / Logic	Why It Matters
Quarter-over-quarter growth rate	Δ bankruptcies / bankruptcies_prev	Measures short-term business stress. Rapid increase → future vacancy pressure.
Year-over-year growth rate	Compare with same quarter last year	Smooths seasonality; structural deterioration of business base.
Rolling mean (4Q or 8Q)	rolling_mean(bankruptcies, window=4)	Captures sustained patterns, not quarterly noise.
Rolling volatility	rolling_std(bankruptcies, window=4)	High volatility = market instability → unpredictable vacancies.
Bankruptcy acceleration	Δ (growth rate)	Captures how quickly distress is accelerating — a leading signal.
Lagged bankruptcies (1Q, 2Q)	.shift(1)/.shift(2)	Vacancy impact often delayed; crucial in temporal models.

M 2. Cross-Market and Benchmark Relative Features

Top firms never look at a market in isolation — they compare to regional or national context.

Feature	Formula / Logic	Why It Matters
Local-to-national bankruptcy ratio	market_bankruptcies / national_bankruptcies	Shows whether distress is local or systemic.
Market deviation from region	bankruptcies_market - bankruptcies_region_mean	Highlights markets under- or over- performing relative to their peers.
Regional contagion index	avg(bankruptcies of neighboring markets)	Captures economic spillovers (e.g., business distress in nearby metros).

🥊 How to define "neighbors": use geographic proximity or similar economic clusters (e.g., "Sunbelt markets").

🚅 3. Macro Interaction Features

Real estate analysts often interact economic signals to capture nonlinear effects.

Feature	Formula / Logic	Insight
Bankruptcies × Unemployment	bankruptcies * unemployment_rate	Amplifies distress during labor downturns.
Bankruptcies × Interest rate	bankruptcies * fed_funds_rate	Credit tightening worsens vacancy effects of bankruptcies.
Bankruptcies × Inflation	bankruptcies * inflation	Cost shocks may push weak firms to close → vacancies rise.
Bankruptcies × Construction activity	bankruptcies * new_supply	If new supply continues despite rising bankruptcies → oversupply risk.

📕 4. Real Estate Market Structure Features

Professional models connect bankruptcies to **property fundamentals** (supply, rent, absorption).

Feature	Logic	Why It's Powerful
Bankruptcy density per sq.ft.	bankruptcies / total_inventory	Normalizes by market size.
Bankruptcy-to- absorption ratio	bankruptcies / net_absorption	Indicates how distress offsets leasing activity.
Bankruptcy-to- construction ratio	bankruptcies / new_construction	Evaluates mismatch between distress and development pipeline.
Weighted bankruptcies by property type	Weight bankruptcies by property exposure (retail-heavy, office-heavy, etc.)	Retail bankruptcies affect retail vacancies more strongly.

🛸 5. Credit & Business Health Indices (Composite Features)

Elite firms often synthesize indicators into composite "stress indices."

Feature	Components	Description
Local Business Stress Index (LBSI)	f(bankruptcies, delinquencies, unemployment, credit_spreads)	A synthetic index capturing business solvency environment.
Economic Distress Momentum (EDM)	rolling_zscore(Δ bankruptcies + Δ unemployment)	Measures acceleration of distress — leads vacancy spikes.
Business Survival Ratio	new_businesses / bankruptcies	Reflects net churn — if < 1, net contraction \rightarrow likely higher vacancy.

6. Temporal Alignment Features (Lead-Lag Analysis)

Since vacancies react after business failures, leading indicators are engineered explicitly:

Feature	Logic	Purpose
Lead vacancy signal	vacancy_rate.shift(-1)	For model alignment or supervised lag experiments.
Bankruptcy momentum lags	1Q, 2Q, 3Q	Test which lag correlates most with future vacancy.
Cumulative bankruptcies	rolling_sum(bankruptcies, 4)	Sustained high bankruptcies → vacancy structurally elevated.

7. Cross-Sector Spillover Features

Vacancy in one property type often relates to business distress in others.

Feature	Example	Logic
Retail bankruptcy impact on office vacancy	<pre>bankruptcies_retail / total_retail_units</pre>	Consumer downturns can spill into office demand.
Industrial bankruptcy ratio vs retail bankruptcies	Compare trends across property types	Captures sectoral contagion effects.

8. Statistical Transformations (Modeling Enhancers)

Feature	Formula / Logic	When Useful
Z-score normalization per market	<pre>(bankruptcies - mean_market) / std_market</pre>	Removes scale bias across markets.
Log-transform	log(1 + bankruptcies)	Stabilizes variance, especially when data are skewed.
First-difference transform	<pre>bankruptcies_t - bankruptcies_(t-1)</pre>	Focuses on short-term changes rather than absolute levels.
Min–max scaling per quarter	Normalize across markets for each quarter	Captures relative distress across space per time.

9. Causal/Behavioral Derived Features

For advanced explainable modeling (used by analysts and causal inference teams):

Feature	Logic	Insight
Counterfactual vacancy predictor	Predicted vacancy if bankruptcies stayed constant	Measures marginal impact of bankruptcy shocks.
Instrumented bankruptcies	Using external shocks (e.g., rate hikes) as IVs	Strengthens causal validity in modeling.

10. Narrative/Client-Explainable Indicators

Executives love interpretable storytelling features.

Feature	Example	Use Case
Distress turning point indicator	1 if bankruptcy growth switches sign	Signal of recovery or worsening.
Local stress percentile	Percentile rank of bankruptcies among markets	Easy to visualize "top 10% most distressed" markets.
Stress score composite	Weighted index combining bankruptcies, unemployment, delinquencies	Used in dashboards for high-level summaries.

🖋 Putting it all together

A top-tier model might combine:

- **Direct metrics:** bankruptcies, growth rates, lags
- Relative metrics: to national/region
- Interactions: with unemployment, supply, interest rates
- Rolling aggregates: 4Q average, volatility
- Composite indices: distress or sentiment

This gives both predictive power and economic explainability, which clients love.

Would you like me to create a **Python feature-engineering pipeline** that automatically builds these advanced features (for each market and quarter) — so you can plug it into your modeling workflow?

Like I want all the top notch features engineering from the column business bankruptcies

Perfect — you want an **industry-grade**, **exhaustive feature-engineering blueprint** derived purely from the column **business_bankruptcies**, designed at the level used by leading real estate analytics and econometric teams (e.g., Moody's, CBRE, JLL, CoStar).

Let's build this **comprehensive list** — **grouped by concept and economic rationale** — so you can later choose which ones fit your data and model.

Feature Engineering for business_bankruptcies

(For quarterly real estate datasets by market)

1. Raw & Basic Transformations

Feature	Formula / Description	Why It Matters
business_bankruptcies	Original count or rate	Base measure of business distress

Feature	Formula / Description	Why It Matters
log_bankruptcies	log(1 + business_bankruptcies)	Stabilizes skewed distributions, reduces outlier influence
bankruptcies_per_1000_businesses	<pre>business_bankruptcies / total_businesses * 1000</pre>	Normalizes by market size — critical for cross-market comparison
bankruptcies_per_sqft	<pre>business_bankruptcies / total_inventory_sqft</pre>	Relates distress to physical real estate base

📈 2. Temporal Change Features

These capture *momentum* and *trend* in bankruptcies — essential for forward-looking models.

Feature	Formula	Insight
bankruptcies_qoq_change	(B_t - B_(t-1)) / B_(t-1)	Quarter-over-quarter growth rate
bankruptcies_yoy_change	(B_t - B_(t-4)) / B_(t-4)	Year-over-year growth (controls seasonality)
bankruptcies_diff	B_t - B_(t-1)	Absolute quarter change
bankruptcies_acceleration	(B_t - 2*B_(t-1) + B_(t-2))	Captures second-order change — acceleration or deceleration of distress
rolling_mean_4q	Mean over last 4 quarters	Smoothed trend of sustained distress
rolling_std_4q	Std. dev. over last 4 quarters	Volatility of bankruptcies
rolling_cv_4q	Coefficient of variation	Relative volatility — normalized by mean

鱼 3. Lagged Features

Vacancies respond with delay to bankruptcies \rightarrow lags capture temporal causality.

Feature	Formula	Typical Lag
bankruptcies_lag1	B_(t-1)	1 quarter lag
bankruptcies_lag2	B_(t-2)	2 quarter lag
bankruptcies_lag3	B_(t-3)	3 quarter lag
bankruptcies_lag4	B_(t-4)	1-year lag
avg_lag12	Mean of 1–2Q lags	Smoother delayed effect
cumulative_lag4	Sum of last 4 quarters	Captures cumulative distress pressure

4. Relative & Benchmark Features

Professional analysts always contextualize local numbers vs. peers or national averages.

Feature	Formula	Why It Matters
bankruptcies_vs_national	B_market / B_national	Relative local stress
bankruptcies_vs_region	B_market / mean(B_region)	Shows regional deviation
bankruptcies_percentile	Percentile rank among all markets per quarter	Identifies most distressed markets
bankruptcies_zscore_per_quarter	(B_market - mean_quarter) / std_quarter	Standardized relative distress per quarter
bankruptcies_share_total	B_market / sum(B_all_markets)	Market's share of national bankruptcies

5. Derived Structural Features

Ties bankruptcies to **real estate fundamentals** (for better explanatory power).

Feature	Formula	Insight
bankruptcies_to_absorption	B / net_absorption	How distress offsets leasing activity
bankruptcies_to_construction	B / new_construction	Stress vs. supply expansion
bankruptcies_to_employment	B / total_employment	Measures per-worker distress
bankruptcies_weighted_by_property_type	Weighted by property exposure (retail-heavy, office-heavy, etc.)	Property-specific sensitivity
bankruptcies_to_rent_level	B / avg_rent	Higher rents amplify bankruptcy vulnerability

6. Composite Indices (Used by Top Real Estate Analytics Firms)

Feature	Formula / Logic	Description
Local Business Stress Index (LBSI)	Normalize & combine bankruptcies, unemployment, credit delinquency	Composite local economic stress measure
Business Churn Ratio	new_business_openings / bankruptcies	Captures business creation– destruction balance
Distress Momentum Index (DMI)	Weighted avg of bankruptcies_qoq_change, unemployment_change, etc.	Quantifies accelerating distress
Normalized Bankruptcy Index	zscore(bankruptcies_growth, by_market)	Converts into a standardized stress signal
Economic Pulse Index	Combine bankruptcies with GDP growth, vacancies, rents	Holistic local pulse variable

→ 7. Macro Interaction Features

These help capture **nonlinear relationships** between bankruptcies and macroeconomic factors.

Feature	Formula	Economic Rationale
bankruptcies_x_unemployment	B * unemployment_rate	When labor weakens, distress effect magnifies
bankruptcies_x_interest_rate	B * interest_rate	Credit tightening intensifies bankruptcies' real estate impact
bankruptcies_x_inflation	B * inflation_rate	Cost shocks worsen fragility
bankruptcies_x_gdp_growth	B * gdp_growth	Negative GDP + high bankruptcies = contraction signal
bankruptcies_x_supply_growth	B * (new_supply_growth)	Oversupply + distress → strong vacancy driver

2 8. Statistical Transforms for Modeling Stability

Feature	Formula	Purpose
sqrt_bankruptcies	sqrt(B)	Stabilizes variance
diff_log_bankruptcies	log(B_t) - log(B_(t-1))	Captures growth rate robustly
zscore_bankruptcies	(B - mean_market) / std_market	Removes cross-market scale effects
winsorized_bankruptcies	Cap extreme outliers at 1st and 99th percentile	Robust to outliers
rolling_zscore_4q	Rolling standardized bankruptcy	Tracks shifts in relative stress over time

9. Cyclical and Turning Point Features

Feature	Logic	Why Useful
bankruptcy_trend_up	1 if B_t > B_(t-1) else 0	Distress increasing
trend_duration	Number of consecutive quarters trend persists	Measures sustained stress phases
turning_point_flag	Detect local minima/maxima in bankruptcy time series	Early warning or recovery indicator
bankruptcy_cycle_phase	Using HP-filter or moving average crossover	Identifies expansion vs contraction phase

10. Spatial / Spillover Features (Advanced)

Feature	Feature Formula	
neighbor_avg_bankruptcies	Mean bankruptcies in nearby markets	Spatial contagion (economic spillover)
neighbor_growth	Growth in neighboring markets	Detects regional distress diffusion
weighted_neighbor_bankruptcies	Weighted by distance or population	Quantifies regional influence strength

11. Interpretability & Visualization Features

Feature	Example	Purpose
bankruptcy_rank	Rank within quarter	Easy to interpret & visualize
bankruptcy_heat_score	0–100 normalized score	For client dashboards
stress_category	{Low, Moderate, High, Extreme}	Based on percentile bins (e.g., 0–25, 25–50, 50–75, 75–100)

🚅 12. Causal-Ready & Predictive Composite Features

Feature	Formula / Logic	Why Important
expected_vacancy_impact	Model-predicted vacancy given change in bankruptcies	Quantifies sensitivity
bankruptcy_shock_indicator	1 if bankruptcies jump > 2 std dev in a quarter	Flags large shocks
residual_bankruptcies	From regression vs GDP, employment	Captures "excess" bankruptcies unexplained by economy — true distress signal

Summary — Top-Tier Industry Feature List

From business bankruptcies, you can engineer:

- 6-10 trend/momentum variables
- 4–6 **lagged** features
- 4–5 **relative/benchmark** ratios
- 3–4 **interaction** features
- 3–5 **rolling/volatility** metrics
- 2-3 composite or stress indices
- 2–3 **spatial spillover** indicators

That gives ~25–35 **high-quality, industry-level features** — exactly the scale seen in Moody's or CBRE forecasting systems.

Would you like me to create a **Python feature-engineering pipeline** (with code) that automatically builds all these features from your business_bankruptcies column — given your quarterly dataset by market?

It'll be reusable and fully compatible with your Moody's dataset structure.