PCT/EP 0 3 / 0 7 1 2 PCT

Europäisches Patentamt **European Patent Office**

Office européen des brevets

REÇU 18 AOUT 2003

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page sulvante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

02405591.5

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

01/04/03

EPA/EPO/OEB Form

1014 - 02.91

This Page Blank (uspto)

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.: Application no.: Demande n':

02405591.5

Anmeldetag: Date of filing: Date de dépôt:

11/07/02

Applicant(s): Demandeur(s):

Ciba Specialty Chemicals Holding Inc.

4057 Basel SWITZERLAND

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Verwendung von Metallkomplexverbindungen als Oxidationskatalysatoren

In Anspruch genommene Prioriti(en) / Priority(les) claimed / Priorité(s) revendiquée(s)

Staat: State:

Aktenzeichen:

Pays:

File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets: C1103/395, C1103/16, C070213/68, C070213/74

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing:
Etats contractants désignés lors du depôt:

AT/BG/BE/CH/CY/CZ/DE/DK/EE/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/

Bemerkungen: Remarks; Remarques;

This rage Blank (uspto)

1

Verwendung von Metallkomplexverbindungen als Oxidationskatalysatoren

Die vorliegende Erfindung betrifft die Verwendung von Metallkomplexverbindungen mit Terpyridinliganden, welche mindestens ein quaternisiertes Stickstoffatom beinhalten, als Oxidationskatalysatoren. Gegenstand der vorliegenden Erfindung sind ferner solche Metallkomplexverbindungen enthaltende Formullerungen, neue Metallkomplexverbindungen sowie neue Liganden.

Die Metalikomplexverbindungen dienen insbesondere zur Verbesserung der Wirkung von Peroxiden, beispielsweise bei der Behandlung von Textilmaterial, ohne dabei nennenswerten Schaden an Faser und Färbungen zu verursachen.

Peroxidhaltige Bleichmittel gelangen in Wasch- und Reinigungsprozessen seit geraumer Zeit zum Einsatz. Bei einer Flottentemperatur von 90°C oder höher wirken sie ausgezeichnet. Mit sinkender Temperatur fällt ihre Leistungsfähigkeit jedoch merklich ab. Es ist bekannt, dass diverse Übergangsmetallionen, zugesetzt in Form von geeigneten Salzen, bzw. derartige Kationen enthaltenden Koordinationsverbindungen, H₂O₂ aktivieren. Auf diesem Wegs kann die bei tieferen Temperaturen mangelhafte Bleichwirkung von H₂O₂ bzw. von H₂O₂ freisetzenden Vorläufern und von andem Peroxoverbindungen gesteigert werden. Von Bedeutung für die Praxis sind dabei insbesondere jene Kombinationen aus Übergangsmetallionen und Liganden, deren Peroxidaktivierung sich in gesteigerter Oxidationsfreudigkeit bezüglich Substraten und nicht nur in einer katalaseähnlichen Disproportionierung niederschlägt. Die letztgenannte, im vorliegenden Fall eher unerwünschte Aktivierung, könnte die bei tiefen Temperaturen unzulänglichen Bleicheffekte von H₂O₂ und seinen Derivaten sogar verschlechtem.

Hinsichtlich bleichwirksamer H₂O₂-Aktivierung werden gegenwärtig ein- und mehrkernige Varianten von Mangankomplexen mit diversen Liganden, insbesondere mit 1,4,7-Trimethyl-1,4,7-Triazazyclononan und gegebenenfalls sauerstoffhaltigen Brückenliganden, als besonders wirksam angesehen. Derartige Ketalysatoren eind unter Praxisbedingungen hinreichend stabil und enthalten mit Mnⁿ⁺ ein ökologisch unbedenkliches Metallkation. Ihr Einsatz ist aber leider mit einer erheblichen Schädigung von Farbstoffen und Fasern verbunden.

Aufgabe der vorliegenden Erfindung war es daher, verbesserte Metalikomplexkatalysatoren für Oxidationsprozesse bereitzustellen, welche die obigen Anforderungen erfüllen und insbesondere die Wirkung von Peroxidverbindungen auf den verschiedensten Anwendungsgebieten verbessern, ohne zu nennenswerten Schädigungen Anlass zu geben.

Gegenstand der Erfindung ist somit die Verwendung von Metalikomplexverbindungen der Formel (1)

$$[L_n Me_n X_n]^{\Delta} Y_q$$
 (1),

worln Me Mangan, Titan, Eisen, Kobalt, Nickel oder Kupfer ist.

X ein koordinierender oder verbrückender Rest ist,
n und m unabhängig voneinander eine ganze Zahl mit einem Wert von 1 bis 8 bedeuten,
p eine ganze Zahl mit dem Wert von 0 bis 32,
z die Ladung des Metalikomplexes,
Y ein Gegenion ist,
q = z/(Ladung Y), und
L ein Ligand der Formel (2)

$$\begin{array}{c|c}
R_3 & R_5 \\
R_4 & B \\
R_1 & R_{10}
\end{array}$$
(2)

ist, worin

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} und R_{11} unabhänglg vanelnander je Wasserstoff; gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl; Cyano; Halogen; Nitro; -COOR $_{12}$ oder -SO $_3$ R $_{12}$, worin R_{12} jeweils Wasserstoff, ein Kation oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl ist; -SR $_{13_1}$ -SO $_2$ R $_{19}$ oder -OR $_{13}$, worin R_{19} jeweils Wasserstoff oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl ist; -NR $_1$ 4 R_{16} ; -(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} ; -N $_1$ 4 R_{16} 3; -(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} 3; -N(R_{19})-(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} 3; -N(R_{19})-(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} 3; -N(R_{19})-(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} 3; -N(R_{19})-(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} 3; -N(R_{19})-(C_1 - C_6 alkylen)-NR $_1$ 4 R_{16} 3; -N(R_{19} 3)-(C_1 - C_6 alkylen)-N $_1$ 4 R_{16} 3.

 $-N[(C_1-C_6alkylen)-N^aR_{14}R_{15}R_{16}]_2;$ $-N(R_{13})-N-R_{14}R_{15}$ oder $-N(R_{13})-N^aR_{14}R_{15}R_{16}$, worin R_{13} die oben angegebenen Bedeutungen hat und R_{14} , R_{15} und R_{16} unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes $C_1-C_{18}-Alkyl$ oder Aryl sind, oder R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden mit der Massgabe, dass

- (i) mindestens einer der Substituenten $R_1 R_{11}$ ein quaternisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dass
- (ii) Y weder I' noch Cl' ist, falls Me Mn(II) ist, $R_1 R_6$ und $R_7 R_{11}$ Wasserstoff sind und R_8

bedeutet, als Katalysatoren für Oxidationen.

Im Falle der genannten C₁-C₁₆-Alkylreste handelt es sich generell z.B. um geradkettige oder verzweigte Alkylreste, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec-Butyl, iso-Butyl, tert-Butyl oder geradkettiges oder verzweigtes Pentyl, Hexyl, Heptyl oder Octyl. Bevorzugt sind C₁-C₁₂-Alkylreste, Insbesondere C₁-C₈-Alkylreste und vorzugsweise C₁-C₄-Alkylreste. Die genannten Alkylreste können unsubstituiert oder z.B. durch Hydroxyl, C₁-C₄-Alkoxyl, Sulfo oder Sulfato, insbesondere durch Hydroxyl, substituiert sein. Bevorzugt sind die entsprechenden unsubstituierten Alkylreste. Ganz besonders bevorzugt sind Methyl und Ethyl, insbesondere Methyl.

Als Arylreste kommen generell z.B. unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, wobei die Aminogruppen gegebenenfalls quaternisiert sein können, Phenyl, Phenoxy oder Naphthoxy substituiertes Phenyl oder Naphthyl in Betracht. Bevorzugte Substituenten sind C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyl oder Hydroxy. Besonders bevorzugt sind die entsprechenden Phenylreste.

Im Falle der genannten C₁-C₆-Alkylengruppen handelt es sich generell z.B. um geradkettige oder verzweigte Alkylenreste, wie Methylen, Ethylen, n-Proylen, oder n-Butylen. Die genannten Alkylenreste können unsubstituiert oder z.B. durch Hydroxyl, C₁-C₄-Alkoxy substituiert sein.

Halogen bedeutet generell vorzugsweise Chlor, Brom oder Fluor, wobei Chlor besonders bevorzugt ist,

Als Kationen kommen generell z.B. Alkalikationen, wie Lithium, Kalium oder vor allem Natrium, Erdalkalikation, wie Magnesium oder Calcium, oder Ammoniumkationen in Frage. Bevorzugt sind die entsprechenden Alkalikationen, insbesondere Natrium.

Geeignete Metallionen für Me sind z.B. Mangan in den Oxidationsstufen (I-V, Titan in den Oxidationsstufen (II) und IV, Elsen in den Oxidationsstufen I bis IV, Kobalt in den Oxidationsstufen I bis III, Nickel in den Oxidationsstufen I bis III. Nickel in den Oxidationsstufen I bis III. Besonders bevorzugt ist hierbei Mangan, insbesondere Mangan in den Oxidationsstufen II bis IV, vorzugsweise in der Oxidationsstufe II. Von Interesse sind ferner Titan IV, Elsen II-IV, Cobalt II-III, Nickel II-III und Kupfer II-III, Insbesondere Eisen II-IV.

Für den Rest X kommen z,B. CH_2CN ; H_2O ; F; $C\Gamma$; $B\Gamma$; HOO; O_2^2 ; O^2 ; $R_{17}COO$; $R_{17}O$; LMeO' oder LMeOO' in Betracht, worin R_{17} Wasserstoff, $-SO_3C_1$ - C_4 alkyl oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl ist, und für C_4 - C_{18} -Alkyl, Aryl, L und Me die zuvor und im folgenden angegebenen Bedeutungen und Bevorzugungen gelten. Besonders bevorzugt ist R_{17} Wasserstoff; C_1 - C_4 -Alkyl; Sulfophenyl oder Phenyl, insbesondere Wasserstoff.

Als Gegenion Y kommen z.B. R₁₇COO; CIO₄; BF₄; PF₆; R₁₇SO₃; R₁₇SO₄; SO₄²; NO₃; F; CF; Br oder I' in Betracht, worin R₁₇ Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist. Für R₁₇ als C₁-C₁₈-Alkyl oder Aryl gelten die zuvor und im folgenden angegebenen Bedeutungen und Bevorzugungen. Besonders bevorzugt ist R₁₇ Wasserstoff; C₄-C₄-Alkyl; Phenyl oder Sulfophenyl, insbesondere Wasserstoff oder 4-Sulfophenyl. Die Ladung des Gegenions Y ist dementsprechend bevorzugt 1- oder 2-, insbesondere 1-. Y kann auch ein übliches organisches Gegenion sein, wie z.B. Citrat, Oxalat oder Tartrat,

n ist vorzugsweise eine ganze Zahl mit einem Wert von 1 bis 4, vorzugsweise 1 oder 2 und insbesondere 1.

m ist vorzugsweise eine ganze Zahl mit einem Wert von 1 oder 2, insbesondere 1.

p ist vorzugsweise eine ganze Zahl mit dem Wert von 0 bis 4, Insbesondere 2.

z ist vorzugswelse eine ganze Zahl mit einem Wert von 8- bie 8+, insbesondere 4- bis 4+ und besonders bevorzugt 0 bis 4+. Ganz besonders bevorzugt ist z die Zahl 0.

q ist vorzugsweise eine ganze Zahl von 0 bis 8, insbesondere 0 bis 4 und besonders bevorzugt die Zahl 0.

 R_{12} ist bevorzugt Wasserstoff, ein Kation, C_1 - C_{12} -Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl. Besonders bevorzugt ist R_{12} Wasserstoff, ein Alkali-, Erdalkali- oder Ammoniumkation, C_1 - C_4 -Alkyl oder Phenyl, insbesondere Wasserstoff oder ein Alkali-, Erdalkali- oder Ammoniumkation,

R₁₃ ist bevorzugt Wasserstoff, C₁-C₁₂-Alkyl oder unsubstitulertes oder wie oben angegeben substituiertes Phenyl. Besonders bevorzugt ist R₁₃ Wasserstoff, C₁-C₄-Alkyl oder Phenyl, insbesondere Wasserstoff oder C₁-C₄-Alkyl, vorzugsweise Wasserstoff. Als Beispiele für den Rest der Formel -OR₁₃ seien Hydroxyl und C₁-C₄-Alkoxy, wie Methoxy und insbesondere Ethoxy, genannt.

Falls R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen 5-, 6- oder 7gliedrigen Ring bilden handelt es sich bevorzugt um einen unsubstituierten oder durch
C₁-C₄-Alkyl substituierten Pyrrolldin-, Piperidin-, Piperazin-, Morpholin- oder Azepanring,
wobei die Aminogruppen gegebenenfalls quaternisiert sein können, wobei bevorzugt die
Stickstoffatome quaternisiert sind, welche nicht direkt an einen der drei Pyridinringe A, B
oder C gebunden sind,

Der Piperazinring kann z.B. am nicht mit dem Phenylrest verbundenen N-Atom durch eine oder zwei unsubstitulerte C₁-C₄-Alkyl und/oder substitulerte C₁-C₄-Alkyl substitulert sein. Zudem sind R₁₄, R₁₅ und R₁₆ bevorzugt Wasserstoff, unsubstitulertes oder durch Hydroxyl substitulertes C₁-C₁₂-Alkyl oder unsubstitulertes oder wie oben angegeben substituiertes

Phenyl. Besonders bevorzugt sind hierbei Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₄-Alkyl oder Phenyl, insbesondere Wasserstoff oder unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₄-Alkyl, vorzugsweise Wasserstoff.

Bevorzugt sind Liganden der Formel (2), worin Re nicht Wasserstoff bedeutet.

 R_{θ} ist bevorzugt C_1 - C_{12} -Alkyl; unsubstituiertes oder durch C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkylteil durch Hydroxy substitulertes N-Mono- oder N,N-Di-C1-C4-Alkylamino, N-Phenylamino, N-Naphthylamino, Phenyl, Phenoxy oder Naphthoxy substituiertes Phenyl; Cyano; Halogen; Nitro; -COOR12 oder -SO₃R12, worin R12 jewells Wasserstoff, ein Kation, C1-C12-Alkyl oder unsubstitujertes oder wie oben angegeben substituiertes Phenyl ist; -SR₁s, -SO₂R₁s oder -OR₁₅, worin R₁₅ [ewei]s Wasserstoff, C_1 - C_{12} -Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl ist; -NR₁₄R₁₆; -(C₁-C₆alkylen)-NR₁₄R₁₆; $-N^{\oplus}R_{14}R_{18}R_{16}; \ -(C_{1}-C_{8}alkylen)-N^{\oplus}R_{14}R_{16}R_{16}; \ -N(R_{13})-(C_{1}-C_{8}alkylen)-NR_{14}R_{18};$ $-N(R_{13})-(C_{1}-C_{6}a|kylen)-N^{\oplus}R_{14}R_{15}R_{16}; -N(R_{10})-N-R_{14}R_{15} \text{ oder } -N(R_{13})-N^{\oplus}R_{14}R_{15}R_{16}, \text{ worin } R_{13}=0$ eine der obigen Bedeutungen haben kann und R_{14} , R_{16} und R_{18} unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C1-C12-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind, oder R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstitujertes C1-C4-Alkyl und/oder substituiertes C1-C4-Alkyl substituierten Pyrrolidin-, Piperidin-, Piperazin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann.

R₈ ist besonders bevorzugt unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Phenyl oder Hydroxyl substituiertes Phenyl; Cyano; Nitro; -COOR₁₂ oder -SO₃R₁₂₁ worin R₁₂ jewells Wasserstoff, ein Kation, C₁-C₄-Alkyl oder Phenyl ist; -SR₁₃₁ -SO₂R₁₃ oder -OR₁₃₁ worin R₁₃ jewells Wasserstoff, C₁-C₄-Alkyl oder Phenyl ist; -N(CH₃)-NH₂ oder -NH-NH₂; Amino; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, worin die Stickstoffatome, vor allem die nicht an einen der drei Pyridinringe A, B oder C gebundenen Stickstoffatome, gegebenenfalls quaternisiert sein können; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkyl-N[®]R₁₄R₁₅R₁₅₁ worin R₁₄₁ R₁₅ und R₁₈ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder

wie oben angegeben substituiertes Phenyl sind oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein C₁-C₄-Alkyl oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Piperazin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkyl-NR₁₄R₁₆, worin R₁₄ und R₁₅ die oben genannten Bedeutungen haben können.

Ganz besonders bevorzugt ist R₈ C₁-C₄-Alkoxy; Hydroxy; unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Phenyl oder Hydroxy substituiertes Phenyl; Hydrazin; Amino; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, worin die Stickstoffatome, vor allem die nicht an einen der drei Pyridinringe A, B oder C gebundenen Stickstoffatome, gegebenenfalls quaternisiert sein können; oder ein unsubstituierter oder durch eine oder zwei unsubstituierte C₁-C₄-Alkyl und/oder substituierte C₁-C₄-Alkyl substituierter Pyrrolidin-, Piperidin-, Morpholin- oder Azepanring, worin das Stickstoffatom quaternisiert sein kann.

erwähnt, worin der Ring und die beiden Alkylgruppen gegebenenfalls zusätzlich substituiert sein können.

Besonders wichtig als Reste R₀ sind C₁-C₄-Alkoxy; Hydroxy; Hydrazin; Amino; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, worin die Stickstoffatome, vor allem die nicht an einen der drei Pyridinringe A, B oder C gebundenden Stickstoffatome, gegebenenfalls quaternisiert seln können; oder der unsubstituierte oder durch mindestens ein C₁-C₄-Alkyl substituierte Pyrrolldin-, Piperidin-, Piperizin-, Morpholin- oder Azepanring, wobei die Stickstoffatome gegebenenfalls quaternisiert sein können.

Als weiteres besonders wichtiges Beispiel für Re sei der Rest

Als ebenfalls ganz besonders bevorzugter Rest für Re sei

erwähnt, worin der Ring und die beiden Alkylgruppen gegebenenfalls zusätzlich substituiert sein können.

Ganz besonders wichtig als Reste R_θ sind C_1 - C_4 -Alkoxy; Hydroxy; im Alkyltell durch Hydroxy substitujertes N-Mono- oder N₁N-Di- C_1 - C_4 -Alkylamino, worin die Stickstoffatome, vor allem die nicht an einen der drei Pyridinringe A₁ B oder C gebundenen Stickstoffatome, gegebenenfalls quaternisiert sein können; oder der unsubstituierte oder durch mindestens ein C_1 - C_4 -Alkyl substituierter Pyrrolidin-, Piperidin-, Morpholin- oder Azepanring, wobei die Aminogruppen gegebenenfalls quaternisiert sein können.

Als weiteres ganz besonders wichtiges Beispiel für Re sei der Rest

$$-\left(CH_{2}\right)_{0/2}^{-2}N \bigvee_{C_{1}-C_{2}a|ky|}^{C_{1}-C_{2}a|ky|}$$

erwähnt, worin der Ring und die belden Alkylgruppen gegebenenfalls zusätzlich substituiert sein können.

Als Beispiele des Restes Re sind insbesondere

Von besonderem Interesse ist hierbei Hydroxyl.

Für R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_9 , R_9 , R_{10} und R_{11} gelten hierbei die oben für R_9 angegebenen Bevorzugungen, wobei diese Reste jedoch zusätzlich Wasserstoff bedeuten können.

Gemäss einer Ausführungsform der vorliegenden Erfindung sind R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} und R_{11} Wasserstoff und R_6 ist ein von Wasserstoff verschiedener Rest, für welchen die oben angegebenen Bedeutungen und Bevorzugungen gelten.

Gemäss einer weiteren Ausführungsform der vorliegenden Erfindung sind R_1 , R_2 , R_4 , R_5 , R_7 , R_8 , R_{10} und R_{11} Wasserstoff und R_9 , R_6 und R_9 sind von Wasserstoff verschiedene Reste, für welche jeweils die oben für R_6 angegebenen Bedeutungen und Bevorzugungen gelten.

Eine ebenfalls bevorzugte Verwendung von Metalikomplexverbindungen der Formel (1) als Katalysator für Oxidationen ist dadurch gekennzeichnet, dass mindestens einer der Substituenten R₁ - R₁₁, bevorzugt R₈, R₆ und/oder R₆, einen der folgenden Reste -(C₁-C₆aikylen)-N[®]R₁₄R₁₈R₁₆; --N(R₁₃)-(C₁-C₆aikylen)-N[®]R₁₄R₁₅R₁₅; -N[(C₁-C₀alkylen)-N®R₁₄R₁₅R₁₅]₂; -N(R₁₃)-N®R₁₄R₁₅R₁₅, worin R₁₅ die oben angegebenen Bedeutungen hat und R14. R18 und R18 unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C1-C18-Alkyl oder Aryl sind, oder R14 und R16 zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder -NR₁₄R₁₅; -(C₁-C₆alkylen)-NR₁₄R₁₅; -N(R₁₅)-(C₁-C₆alkylen)-NR₁₄R₁₅; -N[(C1-C44lkylen)-NR14R15]2; -N(R13)-N-R14R16 world R13 und R15 die oben angegebenen Bedeutungen haben und R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen unsubstitujerten oder durch mindestens ein unsubstitujertes C1-C4-Alkyi und/oder substituiertes C1-C4-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.

Eine ebenfalls mehr bevorzugte Verwendung von Metalikomplexverbindungen der Formel (1) als Katalysator für Oxidationen ist dadurch gekennzelchnet, dass mindestens einer der Substituenten R₁ – R₁₁, bevorzugt R₃, R₆ und/oder R₆, einen der folgenden Reste -(C₁-C₄alkylen)-N⁶R₁₄R₁₅R₁₆; –N(R₁₂)-(C₁-C₄alkylen)-N⁶R₁₄R₁₅R₁₆; –N(R₁₂)-(C₁-C₄alkylen)-N⁶R₁₄R₁₅R₁₆; –N(R₁₃)-N⁶R₁₄R₁₅R₁₆, worin R₁₃ Wasserstoff, gegebenenfalls substituiertes C₁-C₁₂-Alkyl oder Aryl ist und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₂-Alkyl oder Aryl einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl

substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder

 $-NR_{14}R_{16}$; $-(C_1-C_4a)kylen$ $-NR_{14}R_{16}$; $-N(R_{10})-(C_1-C_4a)kylen$ $-NR_{14}R_{16}$;

-N[(C₁-C₄alkylen)-NR₁₄R₁₅]₂; -N(R₁₅)-N-R₁₄R₁₅, worin R₁₈ und R₁₆ unabhängig voneinander Wasserstoff, gegebenenfalls substituiertes C₁-C₁₂-Alkyl oder Aryl sind und R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.

Eine ebenfalls besonders bevorzugte Verwendung von Metallkomplexverbindungen der Formel (1) ist dadurch gekennzeichnet, dass mindestens einer der Substituenten $R_1 - R_{11}$, bevorzugt R_{21} R_{3} und/oder R_{2} , einen der folgenden Reste

 $-(C_1-C_4a]kylen)-N^{\oplus}R_{14}R_{15}R_{16}; \ -N(R_{13})-(C_1-C_6a]kylen)-N^{\oplus}R_{14}R_{15}R_{16};$

-N[(C_1 - C_6 alkylen)-N[®]R₁₄R₁₅R₁₆]₂; -N(R_{12})-N[®]R₁₄R₁₆R₁₆, worin R₁₃ die oben angegebenen Bedeutungen hat und R₁₄, R₁₆ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₂-Alkyl oder Aryl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder -NR₁₄R₁₅; -(C₁-C₆alkylen)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylen)-NR₁₄R₁₅;

-N[(C₁-C₈alkylen)-NR₁₄R₁₅]₂; -N(R₁₃)-N-R₁₄R₁₅ worin R₁₅ und R₁₅ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfeljs substituierten und gegebenenfalls weltere Heteroatome enthaltenden 5-, 6-oder 7-gliedrigen Ring bilden, worin das Stickstoffatom, das nicht an eines der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.

Eine ebenfalls wichtige Verwendung von Metallkomplexverbindungen der Formel (1) ist dadurch gekennzeichnet, dass mindestens einer der Substituenten $R_1 - R_{11}$, bevorzugt R_2 , R_4 und/oder R_3 , einen Rest

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substitutert sein kann und worin die unabhängig voneinander unverzweigten oder verzweigten Alkylgruppen gegebenenfalls substitutiert sein können.

Der Piperazinring kann gegebenenfalls auch substituiert sein.

Eine ebenfalls basonders wichtige Verwendung von Metallkomplexverbindungen der Formel (1) ist dadurch gekennzelchnet, dass mindestens einer der Substituenten $R_1 - R_{11}$, bevorzugt R_3 , R_6 und/oder R_6 , einen Rest

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann und worin die Alkylgruppen unabhängig vonelnander gegebenenfalls substituiert sein können.

Der Piperazinring kann gegebenenfalls auch substituiert sein.

Bevorzugt als Liganden L sind solche der Formel (3)

$$R'_{3} = A \qquad \qquad B \qquad \qquad R'_{9} \qquad \qquad (3)$$

wobei für R'₉ R'₆ und R'₉ die oben für R₆ angegebenen Bedeutungen und Bevorzugungen gelten, wobei R'₃ und R'₉ zusätzlich Wasserstoff sein können, ebenfalls mit der Massgabe, dass

- (i) mindestens einer der Substituenten R'3, R'6 und oder R'6 ein quaternisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dass
- (ii) Y weder I' noch Cl' ist, falls Me Mn(II) ist, R'a und R's Wasserstoff sind und R's

Mehr bevorzugt als Liganden L sind solche der Formel (3)

$$R'_{s} \xrightarrow{A}_{N} R'_{s}$$

$$R'_{s} \xrightarrow{R'_{s}} R'_{s}$$

$$(3)$$

wobei für R'_3 , R'_6 und R'_9 die oben für R_6 angegebenen Bedeutungen und Bevorzugungen gelten, wobei R'_3 und R'_9 zusätzlich Wasserstoff sein können, mit der Massgabe, dass

- (i) mindestens einer der Substituenten R'3, R'6 und R'9 einen Rest
 - $\hbox{-(C$_1$-C$_6a]kylen)-N$^$R$_{14}R$_{15}R$_{16}; \hbox{-N(R$_{13})-(C$_1$-C$_6a]kylen)-N$^R_{14}R$_{15}R$_{16}; }$
 - -N[(C₁-C₅aikylen)-N⁹R₁₄R₁₅R₁₆] $_{2i}$ -N(R₁₃)-N⁹R₁₄R₁₅R₁₆, worin R₁₃ die oben angegebenen Bedeutungen hat und R₁₄, R₁₅ und R₁₅ unabhängig voneinander
 - Wasserstoff oder gegebenenfalls substitulertes C₁-C₁₈-Alkyl oder Aryl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7- gliedrigen Ring bilden; oder
 - $-NR_{14}R_{16}; -(C_1-C_6aikylen)-NR_{14}R_{16}; -N(R_{19})-(C_1-C_6aikylen)-NR_{14}R_{15}; -N(R_{19})-(C_1-C_6aikylen)-NR_{14}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{15}R_{$
 - -N[(C₁-C₈alkylen)-NR₁₄R₁₅]₂; -N(R₁₃)-N-R₁₄R₁₅, worin R₁₅ und R₁₆ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellen und dass
- (ii) Y weder I noch CI ist, falls Me Mn(II) ist, R'3 und R'6 Wasserstoff sind und R'6

bedeutet.

Noch mehr bevorzugt als Liganden L sind solche der Formel (3)

$$R'_{s} = A N C R'_{s}$$

$$(3)$$

wobei für R'_{3} R'_{6} und R'_{9} die oben für R_{9} angegebenen Bedeutungen und Bevorzugungen gelten, wobei R'_{9} und R'_{9} zusätzlich Wasserstoff sein können, mit der Massgabe, dass

(i) mindestens einer der Substituenten R'3, R'6 und R'9 einen der Reste

$$-c_1-c_4$$
alkylen $-N$
 $+C_1-C_4$ alkyl , oder

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann, und worin die unabhängig voneinander unverzweigten oder verzweigten Alkylgruppen gegebenenfalls substituiert sein können und worin der Piperazinring kann gegebenenfalls substituiert sein kann, darstellen und dass

(ii) Y weder I noch Cl' ist, falls Me Mn(II) ist, R's und R's Wasserstoff sind und R's

bedeutet.

Soeziell bevorzugt als Liganden L sind solche der Formel (3)

$$R'_{3} \xrightarrow{A} N \xrightarrow{R'_{8}} R'_{8}$$
 (3)

wobei für R'₃, R'₆ und R'₉ die oben für R₆ angegebenen Bedeutungen und Bevorzugungen gelten, wobei R'₃ und R'₉ zusätzlich Wasserstoff sein können, mit der Massgabe, dass (i) mindestens einer der Substituenten R'₃, R'₆ und R'₉ einen der Reste

$$-\,C_1\text{-}C_2\text{alkylen} -N \\ N \\ C_1\text{-}C_2\text{alkyl} \\ C_1\text{-}C_2\text{alkyl} \\ \text{, oder}$$

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalle substituiert sein kann, und worin die unabhängig voneinander unverzweigten oder verzweigten Alkylgruppen gegebenenfalls substituiert sein können und worin der Piperazinning kann gegebenenfalls substituiert sein kann, darstellen und dass

(ii) Y weder I noch Cir ist, falls Me Mn(II) lst, R'2 und R'8 Wasserstoff sind und R'8

bedeutet.

Bevorzugt sind R'₃, R'₆ und R'₉ unabhängig voneinander unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Phenyl oder Hydroxyl substituiertes Phenyl; Cyano; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation, C₁-C₄-Alkyl oder Phenyl ist; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worin R₁₃ jeweils Wasserstoff, C₁-C₄-Alkyl oder Phenyl ist; -N(CH₃)-NH₂ oder -NH-NH₂; Amino; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, worin die Stickstoffatome, vor allem die nicht an einen der drei Pyridinringe A, B oder C gebundenen Stickstoffatome, gegebenenfalls quaternisiert sein können; unsubstituiertes oder im Alkylteil durch Hydroxy

substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkyl-N[®]R₁₄R₁₅R₄₆, worin R₁₄, R₁₅ und R₁₅ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein C₁-C₄-Alkyl oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Piperazin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann; unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkyl-NR₁₄R₁₅, worin R₁₄ und R₁₅ die oben genannten Bedeutungen haben kann.

Insbesondere kann R's, R's und R's einen Rest

$$-(CH_2)_{\overline{0.4}}N$$
 R_{10}

worin R_{16} und R_{16} die oben genannten Bedeutungen haben und der Ring gegebenenfalls substituiert ist, bedeuten,

R's und R's können ebenfalls noch Wasserstoff sein.

Bevorzugt sind Verbindungen, worin 1 quaternisiertes Stickstoffatom vorhanden ist. Ebenfalls bevorzugt sind Verbindungen worin 2 oder 3 quaternisierte Stickstoffatome vorhanden sind.

Besonders bevorzugt sind Verbindungen, worin alle quatemisierte Stickstoffatome nicht direkt an einen der Pyridinringe A, B oder C gebunden sind.

Die Metallkomplexverbindungen der Formei (1) können in Analogie zu bekannten Verfahren erhalten werden. Man erhält sie auf an sich bekannte Art und Weise, indem man mindestens einen Liganden der Formei (2) im gewünschten molaren Verhältnis mit einer Metall-Verbindung, insbesondere einem Metallsalz, wie dem Chlorid, zum entsprechenden Metallkomplex umsetzt. Die Umsetzung erfolgt z.B. in einem Lösungsmittel, wie Wasser oder einem niederen Alkohol, wie Ethanol, bei einer Temperatur von beispielsweise 10 bis 60°C, insbesondere bei Raumtemperatur.

Liganden der Formel (2), welche durch Hydroxyl substitulert sind, können auch gemäss dem folgenden Schema als Verbindungen mit Pyridonstruktur formuliert werden:

Terpyridin-4'-on-Gerüst

Terpyridin-4'-ol-Gerûst

Generell sind daher unter durch Hydroxyl substitulerten Terpyridinen auch solche mit entsprechender Pyridon-Struktur zu verstehen.

Die Liganden der Formel (2) können auf an sich bekannte Art und Weise hergestellt werden. Hierzu kann man beisplelsweise eine Verbindung der Formel (4)

$$\begin{array}{c|c}
R_{3}^{1} & R_{5}^{1} & R_{7}^{1} & R_{9}^{1} \\
R_{2}^{1} & R_{1}^{1} & R_{1}^{1}
\end{array}$$
(4)

welche keine quaternisierte Stickstoffatome enthält und worin R'_1 – R'_{11} die für die Substituenten R_1 – R_{11} angegebenen Bedeutungen und Bevorzugungen haben können, mit der Ausnahme von quaternisierten Stickstoffatomen und der Massgabe, dass mindestens einer der Substituenten R'_1 – R'_{11} Halogen, NO_2 oder OR_{18} , worln R_{18} – SO_2CH_3 oder Tosylat ist, enthält, bedeutet mit einer entsprechenden stöchlometrischen Menge einer Verbindung der Formel (5)

HNR (5),

wobei R eine der Bedeutungen von $R_1 - R_{11}$ hat mit der Massgabe, dass diese eine quaternisierbare Stickstoffgruppe, welche nicht direkt an einen der drei Pyridinninge A, B oder C gebunden wird, enthält, umsetzt. Die stöchlometrische Menge der Verbindung (5) richtet sich nach der Anzahl der vorhandenen Halogene, NO_2 oder OR_{18} , worin R_{18} wie oben definiert ist, in der Verbindung der Formel (4). Bevorzugt sind Verbindungen der Formel (4), welche 1, 2 oder 3 derartige Reste haben.

In einem weiteren Schritt wird das Reaktionsprodukt der Verbindung (4) und (5) mit bekannten Quatemisierungsmitteln, wie z.B. insbesondere Methyllodid oder Dimethylsulfat quaternisiert, so dass mindestens ein quatemisiertes Stickstoffatom vorliegt. Es wurde nun gefunden, dass sich zur beschleunigten Substitution von Halogenid durch Amin am Terpyridingerüst auch katalytische Mengen an Nicht-Übergangsmetallsalzen wie z.B. Zink(II)-Salze verwenden lassen, was Reaktionsführung und Aufarbeitung wesentlich vereinfacht.

Einen weiteren Gegenstand der vorliegenden Erfindung stellen Verbindungen der Formel (4)

$$\begin{array}{c|c}
R_{5}^{l} & R_{7}^{l} & R_{7}^{l} \\
R_{2}^{l} & R_{1}^{l} & R_{1}^{l} \\
R_{2}^{l} & R_{1}^{l} & R_{1}^{l}
\end{array}$$
(4)

dar, worin

 R'_{1} – R'_{11} die für die Substituenten R_{1} – R_{11} angegebenen Bedeutungen und Bevorzugungen haben können, mit der Ausnahme von quaternisierten Stickstoffatomen und der Massgabe, dass

- (i) mindestens einer der Substituenten R¹₁ R¹₂ Halogen, NO₂ oder OR₁a, worin R₁a
 –SO₂CH₃ oder Tosylat ist, bedeutet und
- (II) die Substituenten R'₈- R'₁₁ weder Halogen, NO₂ noch R₁₈, worin R₄₈ die unter (i) angegebenen Bedeutungen hat, sind.

Einen weiteren Gegenstand der vorliegenden Erfindung stellen Verbindungen der Formel (4a), welche Reaktionsprodukte der Verbindungen der Formel (4) mit den Verbindungen der Formel (5) sind, dar

$$\begin{array}{c|c} R_{3}^{"} & R_{5}^{"} & R_{7}^{"} \\ R_{3}^{"} & A & N & C & R_{9}^{"} \\ R_{2}^{"} & R_{1}^{"} & R_{10}^{"} \end{array}$$

$$(4a)$$

worin $R_{1}^{o} - R_{11}^{o}$ die für die Substituenten $R_{1} - R_{11}$ angegebenen Bedeutungen und Bevorzugungen haben können mit der Ausnahme von quaternisierten Stickstoffatomen und der Massgabe, dass

mindestens einer der Substituenten $R_1^n - R_7^n$ eine quaternisierbare Stickstoffgruppe enthält, welche nicht direkt an einen der beiden Pyridinringe A und/oder B gebunden ist, enthält.

Die Verbindungen der Formel (4) können nach an sich bekannten Verfahren hergestellt werden. Diese Verfahren sind beschrieben in K. T. Potts, D. Konwar, J. Org. Chem, 2000, 56, 4815-4816, E. C. Constable, M. D. Ward, J. Chem, Soc. Dajton Trans. 1990, 1405-1409, E. C. Constable, A. M. W. Cargill Thompson, New. J. Chem. 1992, 16, 855-867, G. Lowe et al., J. Med. Chem., 1999, 42, 999-1006, E.C. Constable, P. Harveson, D.R. Smith, L. Whall, Polyhedron 1997, 16, 3616-3623, R. J. Sundberg, S. Jiang, Org. Prep. Proced. Int. 1997, 29, 117-122, T. Sammakia, T. B. Hurley, J. Org. Chem. 2000, 65, 974-978 und J. Limburg et al., Science 1999, 283, 1524-1527

Gegenstand der vorliegenden Erfindung sind femer die neuen Metalikomplexverbindungen der Formel (1a)

$$[L_n M e_m X_p]^2 Y_q \tag{1a},$$

worin Me Mangan, Titan, Eisen, Kobalt, Nickel oder Kupfer,

X ein koordinierender oder verbrückender Rest ist,

n und m unabhängig voneinander eine ganze Zahl mit einem Wert von 1 bis 8 bedeuten,

p eine ganze Zahl mit dem Wert von 0 bis 32,

z die Ladung des Metalikomplexes,

Y ein Gegenion ist,

q = z/(Ladung Y), und

L ein Ligand der Formel (2a)

$$\begin{array}{c|c}
R_3 & R_4 & R_5 \\
R_4 & R_5 & R_6 \\
R_2 & R_1 & R_{11}
\end{array}$$
(2a)

ist, worin

- $-N[(C_1-C_6a|kylen)-NR_{14}R_{16}]_2; -N(R_{13})-(C_1-C_6a|kylen)-N^aR_{14}R_{16}R_{16},$
- -N[(C₁-C₆alkylen)-N[®]R₁₄R₁₅R₁₆]₂; -N(R₁₃)-N-R₁₄R₁₅ oder -N(R₁₃)-N[®]R₁₄R₁₅R₁₆, worin R₁₃ die oben angegebenen Bedeutungen hat und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₆-Alkyl oder Aryl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, bedeutet und

 R_1 , R_2 , R_3 , R_4 , R_6 , R_7 , R_8 , R_9 , R_{10} und R_{11} unabhängig voneinander die oben für R_6 angegebenen Bedeutungen haben oder Wasserstoff oder gegebenenfalls substituiertes Aryl sind,

mit der Massgabe, dass

- mindestens einer der Substituenten R₁ R₁₁ ein quaternisiertes Stickstoffatom,
 welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dass
- (ii) Y weder I noch Cl ist, falls Me Mn ist, $R_1 R_8$ und $R_7 R_{11}$ Wasserstoff sind und R_8

Hierbei gelten für die Metallkomplexverbindungen der Formel (1a) die oben für die Verbindungen der Formel (1) angegebenen Bedeutungen und Bevorzugungen.

Im Falle des Liganden L der Metalikomplexverbindungen der Formel (1a) handelt es sich insbesondere um eine Verbindung der Formel (3)

$$R'_{\mathfrak{d}} = \begin{pmatrix} R'_{\mathfrak{d}} & & \\ & &$$

worin

R's C1-C12-Alkyl; unsubstitujertes oder durch C1-C4-Alkyl, C1-C4-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkylteil durch Hydroxy substitujertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, Phenyl, Phenoxy oder Naphthoxy substitutertes Phenyl; Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worln R₁₂ jeweils Wasserstoff, ein Kation. C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl Ist; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worln R₁₃ jeweils Wasserstoff, C_1 - C_{12} -Alkyl oder unsubstitulertes oder wie oben angegeben aubstituiertes Phenyl Ist; -NR₁₄R₁₅; -(C₄-C₆alkylen)-NR₁₄R₁₈; ${}^{+}N^{\oplus}R_{14}R_{15}R_{16}; -(C_{1}-C_{6}alkylen)-N^{\oplus}R_{14}R_{16}R_{16}; -N(R_{13})-(C_{1}-C_{6}alkylen)-NR_{14}R_{16};$ $-N[(C_1 - C_8 a | kylen) - NR_{14}R_{15}]_2; -N(R_{13}) - (C_1 - C_8 a | kylen) - N^{\oplus}R_{14}R_{15}R_{16},$ $-N[(C_{1}-C_{8}a]kylen)-N^{\oplus}R_{14}R_{15}R_{18}]_{2}; -N(R_{15})-N-R_{14}R_{15} \text{ oder } -N(R_{19})-N^{\oplus}R_{14}R_{15}R_{16}, \text{ worin } R_{13} \text{ elne } R_{14}R_{15}R_{16}, \text{ worin } R_{15} \text{ elne } R_{15}R_{16}, \text{ worin } R_{15}R_{16}, \text{ worin } R_{15}R_{16}, \text{ worin } R_{15}R_{16}R_{16}, \text{ worin } R_{15}R_{16}R_$ der obigen Bedeutungen haben kann und R_{14} , R_{15} und R_{15} unabhängig voneinander Wasserstoff, unsubstitulertes oder durch Hydroxyl substitulertes C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substitulertes Phenyl sind, oder R_{14} und R_{16} zusammen mit dem sie verbindenden N-Atom einen unsubstitulerten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Piperazin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quatemisiert sein kann, und R'a und R's die oben angegebenen Bedeutungen haben oder Wasserstoff bedeuten, mit der Massgabe, dass

(i) mindestens einer der Substituenten R's, R's und R's einen Rest

-(C₁-C₈alkylen)-N[®]R₁₄R₁₅R₁₆, -N(R₁₃)-(C₁-C₅alkylen)-N[®]R₁₄R₁₅R₁₆,

-N[(C₁-C₅alkylen)-N[®]R₁₄R₁₅R₁₆]₂, -N(R₁₃)-N[®]R₁₄R₁₅R₁₆, worin R₁₈ die oben

angegebenen Bedeutungen hat und R₁₄, R₁₅ und R₁₆ unabhängig voneinander

Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl sind, oder R₁₄

und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls

substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7gliedrigen Ring bilden; oder

-NR₁₄R₁₆, -(C₁-C₆alkylen)-NR₁₄R₁₅,-N(R₁₅)-(C₁-C₆alkylen)-NR₁₄R₁₅,
-N[(C₁-C₆alkylen)-NR₁₄R₁₅]₂, -N(R₁₅)-N-R₁₄R₁₆ worin R₁₅ und R₁₆ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten und

gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinninge A, B oder C gebunden ist, quaternisiert ist, darstellen und dass

(iii) Y weder I noch Cl' ist, falls Me Mn(II) ist, R's und R's Wasserstoff sind und R's

bedeutet.

Hier gelten ebenfalls die oben für R'_{θ} und R'_{θ} und R'_{θ} angegebenen Bedeutungen und Bevorzugungen.

Einen weiteren Gegenstand der vorllegenden Erfindung stellen die neuen Liganden der Formel (2b)

$$\begin{array}{c|c}
R_3 & R_5 \\
R_2 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_6 \\
R_{11}
\end{array}$$

$$\begin{array}{c|c}
R_7 \\
R_9 \\
R_{10}
\end{array}$$
(2b)

dar, worin

 R_6 Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation oder gegebanenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worin R₁₃ jeweils Wasserstoff oder gegebanenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist; -NR₁₄R₁₅, -N⁹R₁₄R₁₅R₁₆, -N(R₁₃)-(CH₂)₁₋₅NR₁₄R₁₅.

-N(R₁₂)-(CH₂)₁₋₆-N[®]R₁₄R₁₅R₁₈, -N(R₁₃)-N-R₁₄R₁₆ oder -N(R₁₃)-N[®]R₁₄R₁₅R₁₆, worln R₁₈ eine der obigen Bedeutungen haben kann und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Morpholin- oder Azepanring bilden, worln das Stickstoffatom quaternisiert sein kann;

oder einen Rest

$$-(CH_{2})_{\overline{04}}N$$
 R_{16}

worin der R_{15} und R_{16} die oben genannten Bedeutungen haben und der Ring gegebenenfalls substituiert sein kann, bedeutet und

 R_1 , R_2 , R_3 , R_4 , R_6 , R_7 , R_6 , R_{10} und R_{11} unabhängig voneinander die oben für R_6 angegebenen Bedeutungen haben oder Wasserstoff oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl sind,

mit der Massgabe, dass

- (i) mindestens einer der Substituenten $R_1 R_{11}$ ein quaternisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dass
- (ii) Y weder I noch CI ist, falls $R_1 \sim R_6$ und $R_7 \sim R_{11}$ Wasserstoff sind und R_6

Hier gelten die oben für die Liganden der Formel (2) angegebenen Bedeutungen und Bevorzugungen.

Bevorzugt sind Liganden der Formel (3)

$$R'_{a} \xrightarrow{A_{N}} R'_{e}$$

$$(3),$$

worin

R's Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation, C₁-C₁₂-Alkyl oder unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, wobei die Aminogruppen gegebenenfalls quaternisiert sein können, Phenyl, Phenoxy oder Naphthoxy substituiertes Phenyl; -SR₁₉, -SO₂R₁₃ oder -OR₁₃, worin R₁₀ jeweils Wasserstoff,

 C_1 - C_{12} -Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl ist; - $NR_{14}R_{15}$, - $N^mR_{14}R_{16}R_{18}$, - $N(R_{18})$ -(CH_2)₁₋₆ $NR_{14}R_{15}$,

-N(R₁₈)-(CH₂)_{1.8}-N[®]R₁₄R₁₆R₁₈, -N(R₁₃)-N-R₁₄R₁₆ oder -N(R₁₃)-N[®]R₁₄R₁₆R₁₈, worin R₁₈ eine der obigen Bedeutungen haben kann und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstitulertes oder wie oben angegeben substituiertes Phenyl sind, oder R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Morpholin- oder Azepanring bilden, wortn das Stickstoffstom quaternisiert sein kann;

oder einen Rest

$$-(CH_2)_{\overline{0.4}}N$$
 R_{16}
 R_{16}

worin R_{15} und R_{16} die oben genannten Bedeutungen, bevorzugt C_1 - C_4 alkyl, haben und der Ring gegebenenfalls aubstitulert sein kann, bedeutet und

R's und R's die oben angegebenen Bedeutungen haben oder Wasserstoff, C₁-C₁₂-Alkyl, oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl bedeuten. Hier gelten ebenfalls die oben für R's und R's und R's für die Liganden der Metallkomplexverbindungen der Formel (3) angegebenen Bedeutungen, Massgaben und Bevorzugungen.

Speziell bevorzugte Liganden der Formet (3) sind dadurch gekennzeichnet, dass R'_3 , R'_6 und R'_9 die oben genannten Bedeutungen haben, und dass mindestens einer der Substituenten R'_3 , R'_8 und R'_9 einen Rest

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kenn und worin die unabhängig voneinander unverzweigten oder verzweigten Alkylgruppen

gegebenenfalls substitulert sein können und worin der Piperazinning gegebenenfalls substitulert sein kann.

Sehr speziell bevorzugte Liganden der Formel (3) sind dadurch gekennzeichnet, dass R'_{3} , R'_{8} und R'_{9} die oben genannten Bedeutungen haben, und dass mindestens einer der Substituenten R'_{3} , R'_{8} und R'_{9} einen Rest

$$- \, C_4 - C_2 a \|ky\| = N \\ N \\ C_4 - C_2 a \|ky\| \\ C_4 - C_2 a \|ky\| \\ \text{oder}$$

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann und worin die unverzweigten Alkylgruppen unabhängig voneinander gegebenenfalls substituiert sein können und worin der Piperazinring gegebenenfalls substituiert sein kann.

Noch spezieller bevorzugte Liganden der Formel (3) sind dadurch gekennzeichnet, dass R'₃ und/oder R'_B einen Rest

R's OH ist.

Bevorzugt finden die Metalikomplexverbindungen der Formel (1) Verwendung zusammen mit Persauerstoffverbindungen. Als Beisplele hierzu seien die folgenden Anwendungen genannt:

- a) Bleichen von Flecken oder Anschmutzungen auf Textilmaterial im Rahmen eines Waschprozesses,
- b) Verhinderung des Wiederaufziehens von migrierenden Farbstoffen beim Waschen von Textilmaterial,

- c) Reinigen von harten Oberflächen, insbesondere Kacheln oder Filesen, z.B. zum Entfernen von Flecken, die durch Einwirkung von Schimmelpilzen entstanden sind ("mold stains"),
- d) Verwendung in Wasch- und Reinigungsläsungen, die eine antibakterielle Wirkung zeigen.
- e) als Vorbehandlungsmittel für die Textilbleiche.
- f) als Katalysatoren in selektiven Oxidationen im Rahmen der organischen Synthese.

Eine weitere Verwendung betrifft die Verwendung der Metallkomplexverbindungen der Formel (1) als Katalysatoren für Reaktionen mit Persauerstoffverbindungen zum Bleichen im Rahmen der Papierherstellung. Dies betrifft insbesondere das Bleichen der sog. Pulpe, wobei dieses gemäss hierzu üblichen Verfahren erfolgen kann. Femer von Interesse ist die Verwendung der Metallkomplexverbindungen der Formel (1) als Katalysatoren für Reaktionen mit Persauerstoffverbindungen zum Bleichen von bedrucktem Altpapier.

Bevorzugt ist das Bleichen von Flecken oder Anschmutzungen auf Textilmaterial, die Verhinderung des Wiederaufziehens von migrierenden Farbstoffen im Rahmen eines Waschprozesses, oder das Reinigen von harten Oberflächen, insbesondere Kacheln oder Fliesen. Die bevorzugten Metalle sind in diesem Fall Mangan und/oder Eisen.

Hervorzuheben ist, dass die Metallkomptexverbindungen z.B. beim Bleichen von Textilmaterial keinen nennenswerten Schaden an Fasern und Färbungen verursachen.

Verfahren zur Verhinderung des Wiederaufziehens von migrierenden Farbstoffen in einer Waschflotte werden in der Regel so ausgeführt, dass man der Waschflotte, die ein peroxidhaltiges Waschmittel enthält, 0,1 bis 200, vorzugsweise 1 bis 75, insbesondere 3 bis 50 mg, pro Liter Waschflotte, einer oder mehrerer Metallkomplexverbindungen der Formel (1) zusetzt. Alternativ kann man ein Waschmittel zusetzen, welches schon einen oder zwei Metallkomplexverbindungen enthält zusetzen. Selbstverständlich können in dieser wie auch in den anderen Anwendungen die Metallkomplexverbindungen der Formel (1) auch alternativ in situ gebildet werden, wobei man das Metallsalz (z.B. Mangan(II)-Salz, wie Mangan(II)-Chlorid und/oder Eisen(II)-Salz, wie Eisen(II)-Chlorid) und den Liganden in den gewünschten molaren Verhältnissen zugibt.

Die vorliegende Erfindung betrifft ausserdem ein kombiniertes Verfahren zur Verhinderung des Wiederaufziehens von migrierenden Farbstoffen und gleichzeitigem Bleichen von

Flecken oder Anschmutzungen auf Textilmaterial. Dazu werden Mischungen von Metalikomplexen der Formel (1) verwendet, Insbesondere Mischungen von Mangankomplexen der Formel (1) mit Eisenkomplexen der Formel (1). Besonders bevorzugt sind Mischungen von Mangankomplexe der Formel (1) mit Eisenkomplexe der Formel (1'), welche der Formel (1) entspricht, jedoch keine quaternisierte Stickstoffatome enthält. Verfahren zur Verhinderung des Wiederaufziehens von migrierenden Farbstoffen in einer Waschflotte werden in der Regel so ausgeführt, dass man der Waschflotte, die ein peroxidhaltiges Waschmittel enthält, 0,1 bis 200, vorzugsweise 1 bis 75, inspesondere 3 bis 50 mg, pro Liter Waschflotte, die Mischung von quaternisierten Mangankomplexen der Formel (1) und die nicht quaternisierten Eisenkomplexe der Formel (1') zusetzt. Alternativ kann auch ein Mittel zugesetzt werden, welches die entsprechende Metalikomplexmischung schon enthält. Selbstverständlich können in dieser wie auch in den anderen Anwendungen die Metalikomplexverbindungen der Formel (1) auch alternativ in situ gebildet werden, wobei man das Metalisalz (z.B. Mangan(II)-Salz, wie Mangan(II)-Chlorid und/oder Eisen(II)-Salz, wie Eisen(II)-Chlorid) und den Liganden in den gewünschten molaren Verhältnissen zugibt,

Bestandteil der vorliegenden Erfindung sind Mischungen von Mangankomplexen der Formel (I) mit Eisenkomplexen der Formel (I'). Die Verbindungen der Formel (1') entsprechen denjenigen der Formel (1) jedoch sind keine quatemisierten Stickstoffatome enthalten.

Die vorliegende Erfindung betrifft ausserdem ein Wasch-, Reinigungs-, Desinfektions- oder Bleichmittel, enthaltend

- 0 50 %, vorzugsweise 0 30 %, A) eines anionischen Tensids und/oder B) eines nichtjonischen Tensids,
- II) 0 70 %, vorzugsweise 0 50 %, C) einer Builderaubstanz,

bis 1 %.

- 11) 1 99 %, vorzugsweise 1 50 %, D) eines Peroxids oder einer ein Peroxid bildenden
 Substanz, und
- (V) E) Metallkomplexverbindungen der Formel (1) in einer Menge, die in der Flotte eine Konzentration von 0.5 50, vorzugsweise 1 30 mg/L Flotte ergibt, wenn man der Flotte 0.5 bis 20 g/L des Wasch-, Reinigungs-, Desinfektions- und Bleichmittels zusetzt.
 Die obigen Prozentangaben sind jeweils Gewichtsprozente, bezogen auf das Gesamtgewicht des Mittels. Bevorzugt enthalten die Mittel 0.005 2 % einer Metallkomplexverbindung der Formel (1), insbesondere 0.01 1 % und vorzugsweise 0.05

Falls die erfindungsgemässen Mittel eine Komponente A) und/oder B) enthalten, so ist deren Menge vorzugsweise 1 - 50 %, insbesondere 1 - 30 %.

Falls die erfindungsgemässen Mittel eine Komponente C) enthalten, so ist deren Menge vorzugsweise 1 - 70 %, insbesondere 1 - 50 %. Besonders bevorzugt ist eine Menge von 5 bis 50 % und insbesondere eine Menge von 10 bis 50 %.

Entsprechende Wasch-, Reinigungs-, Desinfektions- oder Bleichverfahren werden in der Regel so ausgeführt, dass man eine wässrige Flotte verwendet, die ein Peroxid enthält und 0,1 - 200 mg einer oder mehrerer Verbindungen der Formel (1) pro Liter Flotte, Vorzugsweise enthält die Flotte 1 bis 30 mg der Verbindung der Formel (1) pro Liter Flotte.

Das erfindungsgemässe Mittel kann z.B. ein peroxidhaltiges Vollwaschmittel oder ein separates Bleichzusatzmittel sein. Ein Bleichzusatzmittel findet Verwendung bei der Entfernung von farbigen Anschmutzungen auf Textil in einer separaten Flotte, bevor die Kleider mit einem bleichmittelfreien Waschmittel gewaschen werden. Ein Bleichzusatzmittel kann auch in einer Flotte zusammen mit einem bleichmittelfreien Waschmittel eingesetzt werden.

Das erfindungsgemässe Wasch- oder Reinigungsmittel kann in fester oder flüssiger Form vorliegen, beispielswelse als flüssiges, nichtwässriges Waschmittel, entheltend nicht mehr als 5, vorzugsweise 0 bis 1 Gew. % Wasser, und als Basis eine Suspension einer Buildersubstanz in einem nichtlonischen Tensid haben, z. B. wie in der GB-A-2,158,454 beschrieben.

Vorzugsweise liegt das Wasch- oder Reinigungsmittel als Pulver, Tablette (ein- oder mehrschichtig) oder insbesondere als Granulat vor.

Dieses kann z. B. hergestellt werden, indem man zunächst ein Ausgangspulver herstellt durch Sprühtrocknen einer wässrigen Anschlämmung, enthaltend alle vorstehend aufgeführten Komponenten ausser den Komponenten D) und E), und anschliessend die trockenen Komponenten D) und E) zugibt und alles miteinander vermischt. Man kann auch die Komponente E) zu einer wässrigen Anschlämmung, enthaltend die Komponenten A),

B) und C), zugeben, danach sprühtrocknen und dann die Komponente D) mit der trockenen Masse vermischen.

Es ist ausserdem möglich, von einer wässrigen Anschlämmung auszugehen, die zwar die Komponenten A) und C), die Komponente B) aber nicht oder nur tellweise enthält. Die Anschlämmung wird sprühgetrocknet, dann die Komponente E) mit der Komponente B) vermischt und zugesetzt und anschliessend wird die Komponente D) trocken zugemischt.

Es ist auch möglich, alle Komponenten trocken zц mischen.

Das anionische Tensid A) kann z. B. ein Sulfat-, Sulfonat- oder Carboxylat-Tensid oder eine Mischung aus diesen sein. Bevorzugte Sulfate sind solche mit 12 - 22 C-Atomen im Alkylrest, ggf. in Kombination mit Alkylethoxysulfaten, deren Alkylrest 10 - 20 C-Atome besitzt.

Bevorzugte Sulfonate sind z. B. Alkylbenzolsulfonate mit 9 - 15 C-Atomen im Alkylrest. Das Kation bei den anionischen Tensiden ist vorzugsweise ein Alkalimetalikation, insbesondere Natrium.

Bevorzugte Carboxylate sind Alkalimetalisarcosinate der Formel R_{18} -CO-N(R_{20})-CH₂COOM¹, worin R_{19} Alkyl oder Alkenyl mit 8 -18 C-Atomen im Alkyl- oder Alkenylrest, R_{20} C₁-C₄-Alkyl und M¹ ein Alkalimetali bedeutet.

Das nichtionische Tensid B) kann z. B. ein Kondensationsprodukt von 3 - 8 Mol Ethylenoxid mit 1 Mol primärem Alkohol, der 9 - 15 C-Atome besitzt, sein.

Als Buildersubstanz C) kommen z. B. Alkalimetallphosphate, insbesondere Tripolyphosphate, Karbonate oder Bikarbonate, Insbesondere deren Natriumsalze, Silikate,
Aluminiumsilikate, Polycarboxylate, Polycarbonsäuren, organische Phosphonate,
Aminoalkylenpoly(alkylenphosphonate) oder Mischungen dieser Verbindungen in Betracht.

Besonders geeignete Silikate sind Natriumsalze von kristallinen Schichtsilikaten der Formel NaHSi₁O₂₊₁.pH₂O oder Na₂Si₁O₂₊₁.pH₂O, worin t eine Zahl zwischen 1.9 und 4 und p eine Zahl zwischen 0 und 20 ist.

Von den Aluminiumsjlikaten eind die kommerziell unter den Namen Zeolith A, B, X und HS erhältlichen bevorzugt sowie Mischungen, enthaltend zwei oder mehrere dieser Komponenten.

Bevorzugt unter den Polycarboxylaten sind die Polyhydroxycarboxylate, Insbesondere Citrate, und Acrylate sowie deren Copolymere mit Maleinsäureanhydrid. Bevorzugte Polycarbonsäuren sind Nitrilotriessigsäure, Ethylendiamintetraessigsäure sowie Ethylendiamindisuccinat sowohl in racemischer Form als auch in der enantiomerenreinen (S,S)-Form.

Besonders geeignete Phosphonate oder Aminoalkylenpoly(alkylenphosphonate) sind Alkalimetallsalze der 1-Hydroxyethan-1,1-diphosphonsäure, Nitrilotris(methylenphosphonsäure), Ethylendiamintetramethylenphosphonsäure und Diethylentriaminpentamethylenphosphonsäure.

Als Peroxidkomponente D) kommen z. B. die in der Literatur bekannten und im Markt erhältlichen organischen und anorganischen Peroxide in Frage, die Textilmaterialien bei üblichen Waschtemperaturen, beispielsweise bei 10 bis 95°C bielchen.

Bei den organischen Peroxiden handelt es sich beispielsweise um Mono- oder Polyperoxide, insbesondere um organische Persäuren oder deren Salze, wie Phthalimidoperoxycapronsäure, Peroxybenzoesäure, Diperoxydodecandisäure, Diperoxynonandisäure, Diperoxydecandisäure, Diperoxyphthalsäure oder deren Salze.

Vorzugsweise verwendet man jedoch anorganische Peroxide, wie z. B. Persulfate, Parborate, Percarbonate und/oder Persilikate. Man kann selbstverständlich auch Mischungen aus anorganischen und/oder organischen Peroxiden verwenden. Die Peroxide können in unterschiedlichen Kristaliformen und mit unterschiedlichem Wassergehalt vorliegen und sie können auch zusammen mit anderen anorganischen oder organischen Verbindungen eingesetzt werden, um ihre Lagarstabilität zu verbessern.

Die Zugabe der Peroxide zu dem Mittel erfolgt vorzugsweise durch Mischen der Komponenten, z. B. mit Hilfe eines Schneckendosiersystems und/oder eines Fliessbettmischers.

Die Mittel können zusätzlich zu der erfindungsgemässen Kombination einen oder mehrere optische Aufheller enthalten, beispielsweise aus der Klasse Bis-triezinylamino-stilben-disulfonsäure, Bis-triezolyl-stilben-disulfonsäure, Bis-styryl-biphenyl oder Bis-benzofuranylbiphenyl, ein Bis-benzoxalyiderivat, Bis-benzimidazolylderivat, Cumarinderivat oder ein Pyrazotinderivat.

Ferner können die Mittel Suspendiermittel für Schmutz, z. B. Natriumcarboxymethylcellulose, pH-Regulatoren, z. B. Alkali oder Erdalkalimetallsilikate, Schaumregulatoren, z. B. Selfe, Salze zur Regelung der Sprühtrocknung und der Granuliereigenschaften, z. B. Natriumsulfat, Duftstoffe sowie gegebenenfalls, Antistatica und Weichspüler, Enzyme, wie Amylase, Bleichmittel, Pigmente und/oder Nuanciermittel enthalten. Diese Bestandtelle sollten insbesondere stabil gegenüber dem eingesetzten Bleichmittel sein.

Zusätzlich zu dem Bleichkatalysator gemäss Formel (1) können weitere als bleichaktivierende Wirkstoffe bekannte Übergangsmetallsalze beziehungsweise -komplexe
und/oder konventionelle Bleichaktivatoren, das heisst Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituterte Perbenzo- und/oder Peroxocarbonsäuren mit 1
bis 10 C-Atomen, Insbesondere 2 bis 4 C-Atomen ergeben, eingesetzt werden, Geeignet
sind die eingangs zitierten üblichen Bleichaktivatoren, die O- und/oder N-Acylgruppen der
genannten C-Atomzahl und/oder gegebenenfalls substituterte Benzoylgruppen tragen.
Bevorzugt sind mehrfach acylierte Alkylendiamine, Insbesondere Tetraacetylethylendiamin
(TAED), acylierte Glykolurile, Insbesondere Tetraacetylglykoluril (TAGU), N,N-diacetyl-N,Ndimethyl-harnstoff (DDU), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4dioxohexahydro-1,3,5-triazin (DADHT), Verbindungen der Formel (6):

$$R_{21} = \begin{pmatrix} 0 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

worin R₂₁ ein Sulfonat-, eine Carbonsäure- oder eine Carboxylat-Gruppe ist, und worin R₂₂ lineares oder verzweigtes (C₇-C₁₆)-Alkyl ist, speziell Aktivatoren, die bekannt sind unter den Namen SNOBS, SLOBS und DOBA, acylierte mehrwertige Alkohole, Insbesondere Triacetin, Ethylengiykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran sowie acetyliertes Sorbit und Mannit und acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Sucrosepolyacetat (SUPA), Pentaacetylfructose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton. Auch die aus der deutschen Patentanmeldung DE-A-44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Weiter kommen Nitriiverbindungen, die mit Peroxiden Periminsäuren bilden, als Bleichaktivatoren in Betracht.

Weitere bevorzugte Zusätze zu den erfindungsgemässen Mitteln sind Polymere, die Anschmutzungen beim Waschen von Textillen durch in der Waschflotte befindliche Farbstoffe, die sich unter Waschbedingungen von den Textillen abgelöst haben, verhindern. Vorzugsweise handelt es sich um Polyvinylpyrrolldone oder Polyvinylpyridin-Nockide, die gegebenenfalls durch Einbau von anionischen oder kationischen Substituenten modifiziert sind, insbesondere um solche mit einem Molekulargewicht im Bereich von 5000 bis 60000, vor allem von 10000 bis 60000. Diese Polymere werden vorzugsweise in einer Menge von 0.05 bis 5 Gew. %, vor allem 0.2 bis 1.7 Gew. %, bezogen auf das Gesamtgewicht des Waschmittels, eingesetzt.

Ein weiterer Gegenstand dieser Erfindung sind Granulate, welche die erfindungsgemässen Katalysatoren enthalten, und die geelgnet sind, um in ein pulver- oder granulatförmiges Wasch-, Reinigungs- oder Bleichmittel eingearbeitet zu werden. Solche Granulate enthalten vorzugsweise:

- a) 1 bis 99 Gew. %., vorzugsweise 1 bis 40 Gew.% und insbesondere 1 bis 30 Gew.% einer Metalikomplexverbindung der Formel (1), insbesondere der Formel (1a),
- b) 1 bis 99 Gew. %, vorzugswelse 10 bis 99 Gew. % und insbesondere 20 bis 80 Gew.%
 eines Bindemittels, .
- c) 0 bis 20 Gew. %, insbesondere 1 bis 20 Gew. % eines Umhüllungsmaterials,
- d) 0 bis 20 Gew. % aines weiteren Zusatzes sowie
- e) 0 bis 20 Gew. % Wasser.

Als Bindemittel (b) kommen wasserlösliche, dispergierbare oder in Wasser emulgierbare, anlonische Dispergatoren, nichtionsiche Dispergatoren, Polymere und Wachse in Betracht.

Bei den verwendeten anionischen Dispergatoren handelt es sich z. B. um die im Handel erhältlichen wasserlöslichen anionischen Dispergiermittel für Farbstoffe, Pigmente etc. Insbesondere kommen folgende Produkte in Frage: Kondensationsprodukte aus aromatischen Sulfonsäuren und Formaldehyd, Kondensationsprodukte von aromatischen Sulfonsäuren mit ggf. chlorierten Diphenylen oder Diphenyloxiden und ggf. Formaldehyd, (Mono/Di-)Alkylnaphthalinsulfonate, Na-Salze polymerislerter organischer Sulfosäuren, Na-Salze polymerisierter Alkylnaphtalinsulfosäure, Na-Salze polymerisierter Alkylnaphtalinsulfosäure, Na-Salze von Alkylpolyglykolehersulfaten, polyalkylierte polynukteare Arylsulfonate, methylenverknüpfte Kondensationsprodukte von Arylsulfosäuren und Hydroxyarylsulfosäuren, Na-Salze von Dialkylsulfobersteinsäure, Na-Salze von Alkyldiglykolethersulfaten, Na-Salze von Polynaphthalinmethansulfonaten, Ligninoder Oxiligninsulfonate oder heterocyclische Polysulfonsäuren.

Besonders geeignete anionische Dispergatoren sind Kondensationsprodukte von Naphthalinsulfosäuren mit Formaldehyd, Na-Salze polymerisierter organischer Sulfosäuren, (Mono/Di-)Alkylnaphthalinsulfonate, Polyalkylierte polynukleare Arylsulfonate, Na-Salze von polymerisierten Alkylbenzolsulfosäure, Ligninsulfonate, Oxiligninsulfonate und Kondensationsprodukte von Naphthalinsulfosäure mit einem Polychlormethyldiphenyl.

Geeignete nichtionische: Dispergatoren sind vor allem in Wasser emulgierbare, dispergierbare, oder lösliche Verbindungen mit einem Schmelzpunkt von vorzugsweise mindestens 35°C. Es handelt sich zum Beispiel um folgende Verbindungen:

- 1. Fettalkohole mit 8 bis 22 C-Atomen, vor allem Cetylalkohol,
- 2. Anlagerungsprodukte von vorzugsweise 2 bis 80 Mol Alkylenoxid, insbesondere Ethylenoxid, wobei einzelne Ethylenoxidelnheiten durch substituierte Epoxide, wie Styroloxid und/oder Propylenoxid ersetzt seln k\u00f6nnen, an h\u00f6here unges\u00e4ttigte oder ges\u00e4ttigte Monoalkohole, Fetts\u00e4uren, Fettamine oder Fettamide mit 8 bis 22 C-Atomen oder an Benzylalkohole, Phenylphenole, Benzylphenole oder Alkylphenole, deren Alkylreste mindestens 4 Kohlenstoff\u00e4tome aufweisen,
- 3. Alkylenoxid-, Insbesondere Propylenoxid-Kondensationsprodukte (Blockpolymerisate),
- 4. Ethylenoxid-Propylenoxid-Addukte an Diamine, vor allem Ethylendiamin,

- 5. Umsetzungsprodukte aus einer 8 bis 22 C-Atome aufwelsenden Fettsäure und einem primären oder sekundären, mindestens eine Hydroxynlederalkyl- oder Niederalkoxyniederalkylgruppe aufweisenden Amin oder Alkylenoxid-Anlagerungsprodukte dieser hydroxyalkylgruppenhaltigen Umsetzungsprodukte,
- Sorbitanester, vorzugsweise mit langkettigen Estergruppen, oder ethoxylierte Sorbitanester, wis z. B. Polyoxyethylen-Sorbitanmonolaurat mit 4 bis 10 Ethylenoxideinheiten oder Polyoxyethylen-Sorbitantrioleat mit 4 bis 20 Ethylenoxideinheiten,
- 7. Anlagerungsprodukte von Propylenoxid an einen drei- bis sechswertigen aliphatischen Alkohol von 3 bis 6 Kohlenstoffatomen, z. B. Glycerin oder Pentaerythrit, und
- 8. Fettalkoholpolyglykolmischether, insbesondere Anlagerungsprodukte von 3 bis 30 Mol Ethylenoxid und 3 bis 30 Mol Propylenoxid an aliphatische Monoalkohole von 8 bis 22 Kohlenstoffatomen.

Besonders geeignete nichtjonogene Dispergatoren sind Tenside der Formel

R₂₃-O-(Alkylen-O)_n-R₂₄

(7),

worin

R₂₅ C₅-C₂₂-Alkyl oder C₆-C₁₆-Alkenyl;

R₂₄ Wasserstoff; C₁-C₄-Alkyl; einen cycloaliphatischen Rest mit mindestens 6 C-Atomen oder Benzyl;

"Alkylen" einen Alkylenrest von 2 bis 4 Kohlenstoffatomen und

n eine Zahl von 1 bis 60

bedeuten.

Die Substituenten R_{28} und R_{24} in der Formel (7) stellen vorteilhafterweise den Kohlenwasserstoffrest eines ungesättigten oder vorzugsweise gesättigten aliphatischen Monoalkohols mit 8 bis 22 Kohlenstoffatomen dar. Der Kohlenwasserstoffrest kann geradkettig oder verzweigt sein. Vorzugsweise bedeuten R_{23} und R_{24} unabhängig voneinander je einen Alkylrest mit 9 bis 14 C-Atomen.

Als aliphatische gesättigte Monoalkohole können natürliche Alkohole, wie z.B. Laurylalkohol, Myristylalkohol, Cetylalkohol oder Stearylalkohol, sowie synthetische Alkohole, wie z.B. 2-Ethylhexanol, 1,1,3,3-Tetramethylbutanol, Octan-2-ol, Isononylalkohol, Trimethylhexanol,

Trimethylnonylalkohol, Decanol, Cg-C11-Oxoalkohol, Tridecylalkohol, Isotridecylalkohol oder lineare primäre Alkohole (Alfole) mit 8 bis 22 Kohlenstoffatomen in Betracht kommen. Einige Vertreter dieser Alfole sind Alfol (8-10), Alfol (9-11), Alfol (10-14), Alfol (12-13) oder Alfol (16-18). ("Alfol" ist ein eingetragenes Warenzeichen).

Ungesättigte aliphatische Monoalkohole sind belsplelsweise Dodecenylalkohol, Hexadecenylalkohol oder Oleylalkohol.

Die Alkoholreste können einzeln oder in Form von Gemischen aus zwei oder mehreren Komponenten vorhanden sein, wie z.B. Mischungen von Alkyl- und/oder Alkenylgruppen, die sich von Sojafettsäuren, Palmkernfettsäuren oder Talgölen ableiten.

(Alkylen-O)-Ketten sind bevorzugt zweiwertige Reste der Formeln

Beispiele für einen cycloaliphatischen Rest sind Cycloheptyl, Cycloactyl oder vorzugsweise Cyclohexyl.

Vorzugsweise kommen als nichtionogene Dispergatoren Tenside der Formel

in Betracht, worln

Ras Co-Car-Alkyl;

R28 Wasserstoff oder C1-C4-Alkyl;

Y₁, Y₂, Y₃ und Y₄, unabhängig voneinander, Wasserstoff, Methyl oder Ethyl;

na eine Zahl von 0 bis 8; und

ns eine Zahl von 2 bis 40;

bedeuten.

Weitere wichtige nichtionogene Dispergatoren entsprechen der Formel

worin

bedeuten.

R27 C8-C14-Alkyl;

R28 C1-C4-Alkyl;

 Y_5 , Y_6 , Y_7 und Y_8 , unabhängig voneinander, Wasserstoff, Methyl oder Ethyl, wobel einer der Reste Y_6 , Y_8 bzw. Y_7 , Y_8 immer Wasserstoff iet; und n_4 und n_6 , unabhängig voneinander, eine ganze Zahl von 4 bis 8;

Die nichtionogenen Dispergatoren der Formein (7) bis (9) können als Gemische eingesetzt werden. So kommen beispielsweise als Tensidgemische nicht-endgruppenverschlossene Fettalkoholethoxylate der Formei (7), z.B. Verbindungen der Formei (7), worin

R₂₃ C₈-C₂₂-Alkyl,

R₂₄ Wasserstoff und

die Alkylen-O-Kette den Rest -(CH2-CH2-O)-

bedeuten sowie endgruppenverschlossene Fettalkoholethoxylate der Formel (9) in Betracht. Als Beispiele für die nichtionogene Dispergatoren der Formeln (7), (8) oder (9) sind Umsetzungsprodukte eines C₁₀-C₁₈-Fettalkohols, z,B, eines C₁₈-Oxoalkohols mit 3 bis 10 Mol Ethylenoxid, Propylenoxid und/oder Butylenoxid oder das Umsetzungsprodukt aus einem Mol eines C₁₃-Fettalkohols mit 6 Mol Ethylenoxid und 1 Mol Butylenoxid zu nennen, wobei die Additionsprodukte jeweils mit C₁-C₄-Alkyl, vorzugsweise Methyl oder Butyl, endgruppenverschlossen sein können.

Diese Dispergatoren können einzeln oder als Mischungen aus zwei oder mehreren Dispergatoren verwendet werden.

Anstelle von oder zusätzlich zu dem anionischen oder nichtionischen Dispergator können die erfindungsgemässen Granulate ein wasserlösliches organisches Polymer als Bindemittel enthalten. Diese Polymere können einzeln oder als Mischungen von zwei oder mehreren Polymeren verwendet werden.

Als wasserlösliche Polymere kommen z. B. Polyethylenglykole, Copolymere von Ethylenoxid mit Propylenoxid, Gelatine, Polyacrylate, Polymethacrylate, Polyvinylpyrrolidone, Vinylpyrrolidone, Vinylpyrrolidone, Vinylpyrrolidone, Vinylpyrrolidone, Vinylpyrrolidone, Vinylpyrrolidone, Polyvinylpyrrolidone, Copolymere von Vinylpyrrolidon mit Vinylimidazol, Poly(vinylpyrrolidon/dimethylaminoethylmethacrylate), Copolymere von Vinylpyrrolidon/dimethylaminopropylmethacrylamiden, Copolymere von Vinylpyrrolidon/dimethylaminopropylacrylamiden, quartemisierte Copolymere von Vinylpyrrolidonen und Dimethylaminoethylmethacrylaten, Terpolymere von Vinylpyrrolidonen und Methacrylamidopropyl-Trimethylaminoethylmethacrylaten, Copolymere von Vinylpyrrolidon und Methacrylamidopropyl-Trimethylaminoithylaminoithylaminoithylaminoithylaminoithylaminopropylaten, Copolymere aus Styrol und Acrylsäure, Polycarbonsäuren, Polyacrylamide, Carboxymethylcellulose, Hydroxymethylcellulose, Polyvinylalkohole, ggf. verselites Polyvinylacetat, Copolymere aus Ethylacrylat mit Methacrylat und Methacrylsäure, Copolymere aus Malejnsäure mit ungesättigten Kohlenwasserstoffen sowie Mischpolymerisate aus den genannten Polymeren in Frage.

Unter diesen organischen Polymeren sind Polyethylenglykole, Carboxymethylcellulose, Polyacrylamide, Polyvinylalkohole, Polyvinylpyrrolidone, Gelatine, verseifte Polyvinylacetate, Copolymere aus Vinylpyrrolidon und Vinylacetat sowie Polyacrylate, Copolymere aus Ethylacrylat mit Methacrylat und Methacrylsäure und Polymethacrylate besondere bevorzugt.

Als wasseremulgierbare oder wasserdispergierbare Bindemittel kommen auch Paraffinwachse in Betracht.

Als Umhüllungsmateriallen (c) kommen vor allem wasserlösliche und wasserdispergierbare Polymere und Wachse in Betracht. Unter diesen sind Polyethylenglykole, Polyamide, Polyacrylamide, Polyvinylaikohole, Polyvinylpyrrolidone, Gelatine, verseifte Polyvinylacetate, Copolymere aus Vinylpyrrolidon und Vinylacetat sowie Polyacrylate, Paraffine, Fettsäuren, Copolymere aus Ethylacrylat mit Methacrylat und Methacrylsäure und Polymethacrylate bevorzugt.

Als weitere Zusatzstoffe (d) kommen z.B. Netzmittel, Entstäuber, wasseruniösliche oder wasserlösliche Farbstoffe oder Pigmente sowie Lösungsbeschleuniger, optische Aufheiler und Sequestriermittel in Betracht.

Die Herstellung der erfindungsgemässen Granulate erfolgt z. B. ausgehend von:

- a) einer Lösung oder Suspension mit anschliessendem Trocknungs-/Formgebungsschritt oder
- b) einer Suspension des Wirkstoffes in einer Schmeize mit anschliessender Formgebung und Erstarrung.
- a) Man löst zunächst den anlonischen oder nichtionischen Dispergator und/oder das Polymer und gegebenenfalls die weiteren Zusätzen in Wasser und rührt, gegebenenfalls unter Erwärmen, solange, bis eine homogene Lösung erhalten wird. Anschliessend wird in dieser wässrigen Lösung der erfindungsgemässe Katalysator gelöst oder suspendiert. Der Feststoffgehalt der Lösung sollte vorzugsweise mindestens 30 Gew. %, vor allem 40 bis 50 Gew. %, bezogen auf das Gesamtgewicht der Lösung, betragen. Die Viskosität der Lösung liegt bevorzugt unter 200 mPas.

Der so zubereiteten wässrigen Lösung, enthaltend den erfindungsgemässen Katalysator wird dann in einem Trocknungsschritt bis auf eine Restmenge sämtliches Wasser entzogen, wobei gleichzeitig Feststoffpartikel (Granulate) gebildet werden. Zur Herstellung der Granulate aus der wässrigen Lösung sind bekannte Verfahren geeignet. Prinzipiell eignen sich sowohl Verfahren mit einer kontinuierlichen als auch mit einer diskontinuierlichen Prozessführung. Bevorzugt werden kontinuierlich arbeitende Prozesse, insbesondere Sprühtrocknungs- und Wirbeischicht-Granulationsverfahren angewendet.

Geeignet sind insbesondere Sprühtrocknungsverfahren, in denen die Wirkstofflösung in eine Kammer mit zirkulierender heisser Luft gesprüht wird. Die Atomisierung der Lösung erfolgt z.B. mit Einstoff- oder 2-Stoffdüsen oder durch den Dralleffekt einer schnell rotlerenden Scheibe. Das Sprühtrocknungsverfahren kann zur Vergrösserung der Partikelgrösse mit einer zusätzlichen Agglomeration der Flüssigkeitspartikel mit festen Keimen in einem in der Kammer integrierten Wirbelbett kombiniert werden (sog, Fluid-Spray). Die aus einem konventionellen Sprühtrocknungsverfahren entstandenen Feinpartikel (<100µm) können gegebenenfalls nach dem Abtrennen aus dem Abluftgasstrom ohne weitere Behandlung als Keime direkt in den Sprühkegel des Atomisators des Sprühtrockners zur Agglomeration mit den Flüssigkeitstropfen des Wirkstoffes zugeführt werden.

Den Lösungen, enthaltend den erfindungsgemässen Katalysator, Bindemittel und weitere Zusätze, lässt sich das Wasser während des Granulationsschrittes rasch entziehen. Ein Agglometieren der sich im Sprühkegel bildenden Tropfen, bzw. Tropfen mit Feststoffpartikeln ist ausdrücklich beabsichtigt.

Falls erforderlich, werden die Im Sprühtrockner gebildeten Granulate in einem kontinuierlich arbeitenden Verfahren, z.B. durch einen Siebungsvorgang abgetrennt. Die Feinanteile und das Überkorn werden im Verfahren entweder direkt (ohne Zwischenlösen) rezykliert oder in der flüssigen Wirkstoffformulierung gelöst und anschliessend nochmals granuliert.

Eine weitere Herstellungsmethode gemäss a) ist ein Verfahren wobei das Polymer mit Wasser gemischt wird und anschliessend der Katalysator in die Polymerlösung gelöst/suspendiert wird. Hiermit wird eine wässrige Phase gebildet wobei der erfindungsgemässe Katalysator homogen in dieser Phase verteilt ist. Zur gleichen Zeit oder anschliessend wird die wässrige Phase in eine Flüssigkeit, die nicht mit Wasser mischbar ist, dispergiert in Anwesenheit eines Dispersionsstabilisators damit eine stabile Dispersion gebildet wird. Anschliessend wird das Wasser aus der Dispersion entfernt durch Destillation wobei im wesentlichen trockene Teilchen gebildet werden. In diesen Teilchen ist der Katalysator homogen in der Polymermatrix verteilt.

Die erfindungsgemässen Granulate sind abriebfest, staubarm, rieselfählig und gut dosierbar. Sie können in der gewünschten Konzentration des erfindungsgemässen Katalysators direkt einer Formulierung, wie einer Waschmittelformulierung, zugesetzt werden.

Soll der farbige Aspekt der Granulate im Waschmittel unterdrückt werden, dann lässt sich dies z. B. durch Einbettung des Granulats in einen Tropfen aus einer weisslichen, schmelzbaren Substanz ("wasserlösliches Wachs"), bzw. durch Zusatz eines weissen Pigmentes (z.B. TiO₂) in die Formulierung des Granulats erreichen oder bevorzugt durch Umhüllen des Granulats durch eine Schmelze, bestehend z. B. aus einem wasserlöslichen Wachs, so wie es in der EP-A-0 323 407 beschrieben ist, wobei der Schmelze ein weisser Feststoff zugesetzt wird, um den Maskierungseffekt der Hülle zu verstärken.

b) Der erfindungsgemässe Katalysator wird vor der Schmelzgranulierung in einem separaten Schritt getrocknet und, falls erforderlich, in einer Mühle trocken gemahlen, so dass alle Feststoffpartikel < 60µm gross sind. Die Trocknung erfolgt in einer für diesen Zweck üblichen Anlage, z. B. in einem Schaufeltrockner, Vakuumschrank oder Gefriertrockner.

Der feinkörnige Kajalysator wird in der Schmelze des Trägermaterials suspendiert und homogenisiert. Die gewünschten Granulate werden aus der Suspension in einem Formgebungsschritt unter gleichzeitiger Erstamung der Schmelze hergestellt. Die Wahl des geeigneten Schmelzgranulierungsverfahrens ist bedingt durch die gewünschte Grösse der Granulate. Prinzipiell eignen sich alle Verfahren, mit denen sich Granulate in einer Partikelgrösse zwischen 0.1 und 4 mm herstellen lassen. Dies sind Zertropfungsverfahren (mit Erstarrung auf einem Kühlband oder während einer freien Fell in kalter Luft), Schmelzprillierung (Kühlmedium Gas/Flüssigkeit), Schupplerung mit anschliessendem Zerkleinerungsschritt, wobei die Granullerungsanlage kontinuierlich oder diskontinuierlich betrieben wird.

Falls der farbige Aspekt der Granulate, die aus einer Schmelze hergestellt wurden, im Waschmittel unterdrückt werden soll, können neben dem Katalysator in der Schmelze auch weisse, bzw. farbige Pigmente suspendiert werden, die nach der Erstarrung dem Granulat den gewünschten Farbaspekt verleihen (z.B. Titandioxyd).

Eventuell können die Granulate mit einem Umhüllungsmaterial umhüllt oder verkapselt werden. Als Methoden für diese Umhüllung kommen die üblichen Methoden sowie Umhüllen des Granulats durch eine Schmelze, bestehend z. B. aus einem wasseriöslichen Wachs, wie z.B. in der EP-A-0 323 407 beschrieben, Koazervation, Komplexkoazervation und Oberflächenpolymerisation in Betracht.

ł

Als Umhüllungsmaterialien (c) kommen z.B. wasserlösliche, -dispergierbare oder in Wasser emulgierbare Polymere und Wachse in Betracht.

Als weitere Zusatzstoffe (d) kommen z.B. Netzmittel, Entstäuber, wasserunlösliche oder wasserlösliche Farbstoffe oder Pigmente sowie Lösungsbeschleuniger, optische Aufheller und Sequestriermittel in Betracht.

Überraschenderweise haben die Metalikomplexverbindungen der Formel (1) ausserdem eine deutlich verbesserte bleichkatalysierende Wirkung auf gefärbte Anschmutzungen, die sich z.B. auf Kacheln oder Fliessen befinden.

Die Verwendung von Metallkomplexverbindungen der Formel (1) als Katalysatoren für Reaktionen mit Persauerstoffverbindungen in Reinigungslösungen für harte Oberflächen, insbesondere für Kacheln oder Fliesen, ist daher von besonderem Interesse.

Die Metailkomplexverbindungen der Formel (1) besitzen ausserdem zusammen mit Persauerstoffverbindungen hervorragende antibakterielle Wirkung. Die Verwendung der Metailkomplexverbindungen der Formel (1) zur Abtötung von Bakterien oder zum Schutz vor Befall mit diesen ist daher ebenfalls von Interesse.

Die Metalikomplexverbindungen der Formel (1) eignen sich ausserdem hervorragend zur selektiven Oxidation im Rahmen der organischen Synthese. Hierbei handelt es sich im besonderen um die Oxidation von organischen Molekülen, wie z.B. Olefinen zu Epoxiden. Solche selektiven Transformationen werden insbesondere in der Prozesschemie benötigt. Die Verwendung der Metalikomplexverbindungen der Formel (1) in selektiven Oxidationsreaktionen im Rahmen der organischen Synthese stellt daher einen weiteren Erfindungsgegenstand dar.

Die folgenden Beispiele dienen zur Erläuterung der Erfindung, ohne sie darauf zu beschränken. Teile und Prozentangaben beziehen sich auf das Gewicht, falls nicht anders angegeben. Temperaturen sind, falls nicht anders vermerkt, in Grad Celsius angegeben.

Beispiel 1: 4-Chlor-pyridin-2-carbonsaureethylester

a) Schritt 1:

Zu 295 ml (4.06 mol) Thionylchlorid werden unter Rühren bei 40°C 10,0 ml (0.130 mol) N,N-Dimethylformamid getropft. Anschliessend wird über eine halbe Stunde 100 g (0.812 mol) Picolinsäure zugegeben. Man erwärmt vorsichtig auf 70°C und rührt bei dieser Temperatur während 24 Stunden, wobei die entstehenden Gase über eine mit Natronlauge beschickte Waschflasche abgeleitet werden. Man engt ein, koevaporiert noch dreimal mit je 100 ml Toluol, verdünnt mit diesem Lösemittel auf 440 ml, und trägt die Lösung in ein Gemisch aus 120 ml abs. Ethanol und 120 ml Toluol ein. Die Mischung wird auf ca. die Hälfte des Volumens aufkonzentriert, auf 4°C gekühlt, abgenutscht und mit Toluol gewaschen. Man erhält 4-Chlor-pyridin-2-carbonsäureethylesterhydrochlorid als beiges, hygroskopisches Pulver.

b) Schritt 2;

Das in Schritt 1 erhaltene Hydrochlorid wird in 300 ml Essigsäureethylester und 200 ml deionisiertem Wasser aufgenommen und mit 4N Natriumhydroxid-Lösung neutral gestellt. Nach Phasentrennung wird zweimal mit je 200 ml Essigsäureethylester extrahiert. Die organischen Phasen werden vereinigt, über Natriumsulfat getrocknet, filtriert und eingeengt. Man 4-Chlor-pyridin-2-carbonsäureethylester als braunes Öl, welches bei Bedarf destillativ gereinigt werden kann. ¹H-NMR (360 MHz, CDCl₃): 8.56 (d, 1H, J=5.0 Hz); 8.03 (d, 1H, J=1.8 Hz); 7.39 (dd, 1H, J=5.4.1.8 Hz); 4.39 (q, 2H, J=7.0 Hz); 1.35 (t, 3 H, J=7.0 Hz).

Beispiel 2: 1-Pyridin-2-yl-butan-1,3-dion

Zu einer Lösung von 20.42 g (300 mmol) Natriumethanolat in 300 ml abs. Tetrahydrofuran addiert man unter Argon eine Lösung von 8.71 g (150 mmol) trockenem Aceton in 100 ml abs. Tetrahydrofuran. Anschliessend wird eine Lösung von 22.68 g (150 mmol) Pyridin-2-carbonsäureethylester in 100 ml abs. Tetrahydrofuran innerhalb von 20 Minuten zugetropft. Das Gemlsch wird 15 Stunden bei Raumtemperatur und vier Stunden bei Siedetemperatur gerührt. Man engt am Rotationsverdampfer ein, versetzt mit 150 ml Wasser, und stellt mit Eisessig neutral. Man extrahiert zweimal mit Diethylether, vereinigt und trocknet (Natriumsulfat) die organischen Extrakte, und erhält nach Einengen am Rotationsverdampfer 1-Pyridin-2-yi-butan-1,3-dion als oranges Öl. ¹H-NMR (360 MHz, CDCl₃) für Enoltautomer: 15.8-15.5 (br s, OH); 8.60-8.55 (dm, 1H); 8.20-7.95 (dm, 1H); 7.79-7.71 (tm, 1H); 7.35-7.29 (m, 1H); 6.74 (s, 1H); 2.15 (s, 3H). Ketotautomer: CH₂-Gruppe bei 4.20 ppm (Verhältnis Enol/Ketoform=87:13).

Beispiel 3: 1-(4-Chlor-pyridin-2-yl)-5-pyridin-2-yl-pentan-1,3,5-trion

Zu 10.43 g (261 mmol, ca. 60 % Dispersion) Natriumhydrid in 200 ml abs. Tetrahydrofuran wird bei Siedetemperatur ein Gemisch aus 21,3 g (131 mmol) 1-Pyridin-2-yl-butan-1,3-dion und 36,3 g (196 mmol) 4-Chlor-pyridin-2-carbonsäureethylester in 100 ml abs.

Tetrahydrofuran innerhalb von zwei Stunden zugetropft. Man rührt noch zwei Stunden bei 70°C nach, engt am Rotationsverdampfer ein, und gibt anschliessend bei 4°C vorsichtig 200 ml Wasser zu. Man stellt mit 5N Salzsäure neutral, und filtriert 1-(4-Chlor-pyridin-2-yl)-5-pyridin-2-yl-pentan-1,3,5-trion als gelb-grünen Feststoff ab. Das getrocknete, schwerlösliche Produkt wird ohne besondere Reinigungsschritte weiterverarbeitet.

Beispiel 4: 4-Chlor-1'H-[2,2';6',2"]terpyridin-4'-on

Zu wie vorstehend beschrieben erhaltenen 1-(4-Chlor-pyridin-2-yl)-5-pyridin-2-yl-pentan-1,3,5-trion in 100 ml (sopropanol gibt man 110 m) 25-prozentige Ammoniumhydroxid-Lösung und kocht für 4.5 Stunden am Rückfluss. Man stellt bei Raumtemperatur mit 6N Salzsäure auf pH=5 und filtriert. Der Rückstand wird über Silikagel (Laufmittel: Chloroform/Methanol/Ammoniumhydroxid-Lösung 4:1:0.1) filtriert und eingeengt. Nach Umkristallisation aus Aceton erhält man 4-Chlor-1'H-[2,2':6',2"]terpyridin-4'-on als grauen Feststoff, der ohne besondere Reinigungsschritte weiterverarbeitet wird. ¹H-NMR (360 MHz, DMSO-d₈): 8.72-8.63 (m, 2H); 8.62-8.53 (m, 2H); 7.98 (ddd, 1H, J=7.7,7.7,1.8 Hz); 7.87 (d, 1H, J=2.2 Hz); 7.83 (d, 1H, J=2.2 Hz); 7.59 (dd, 1H, J=5.4,2.2 Hz); 7.43-7.51 (m, 1H); 2.07 (s, 1H).

Beispiel 5: 4-(4-Methyl-piperazin-1-yl)-1'H-[2,2';6',2"]terpyridin-4'-on (Ligand L1)

Ein Gemisch aus 5.22 g (18.4 mmol) 4-Chlor-1'H-[2,2';6',2"]terpyrldin-4'-on, 18.36 g (184 mmol, 20.4 ml) 1-Methyl-piperazin und 125 mg (0.92 mmol, 0.05 Äquivalente) Zink(II)-chlorid in 80 ml 2-Methyl-2-butanol wird für 30 Stunden am Rückfluss gekocht. Man engt am Rotationsverdampfer zur Trockne ein. Man versetzt mit 100 ml Wasser und stellt mit konz. Salzsäure neutral. Nach viermaliger Extraktion mit Chloroform, Vereinigen und Trocknen (Natriumsulfat) der organischen Extrakte erhält man das Rohprodukt, welches anschliessend aus Acetonitril umkristallisiert wird. Man erhält 4-(4-Methyl-piperazin-1-yl)-1'H-[2,2';6',2']terpyridin-4'-on als welssen Feststoff. ¹H-NMR (360 MHz, CDCl₃): 8.69 (d, 1H, 4.5 Hz); 8.32 (d, 1H, J=5.9 Hz); 7.92-7.74 (m, 2H); 7.37-7.30 (m, 1H); 7.20 (d, 1H, J=2.3 Hz); 7.01 (s, 1H); 6.98 (s, 1H); 8.71-6.63 (m, 1H); 3.45-3.35 (tm, 4H); 2.58-2.48 (tm, 4H); 2.32 (s, 3H).

Beispiel 6: 1,1-Dimethyl-4-(4'-oxo-1',4'-dihydro-[2,2';6',2"]terpyridin-4-yl)-piperazin-1-jum methosulfat (Ligand L2)

Zu einer Suspension von 1.22 g (3.5 mmol) 4-(4-Methyl-piperazin-1-yl)-1'H-[2,2';5',2"]terpyridin-4'-on in 60 ml Aceton tropft man 0.33 ml (3.5 mmol, 442 mg) Dimethylsulfat zu. Nach 17 Stunden filtrlert und wäscht (Aceton bzw. Dichlormethan) man das Rohprodukt, welches anschliessend aus Methanol umkristallisiert wird. Man erhält 1,1-Dimethyl-4-(4'-oxo-1',4'-dihydro-[2,2';6',2"]terpyridin-4-yl)-piperazin-1-ium methosulfat als welssen Feststoff. $C_{22}H_{27}N_5O_5S$ *0.09 H_2O , 475.17; berechnet C 55.61 H 5.77 N 14.74 S

6.75 H_2O 0.34; gefunden C 55.56 H 5.85 N 14.63 S 6.75 H_2O 0.33. ¹H-NMR (360 MHz, D_2O): 8.31 (d, 1H, J=4.1 Hz); 7.76 (dd, 1H, J=7.7); 7.64 (d, 1H, J=7.7 Hz); 7.68 (d, 1H, J=5.4 Hz); 7.22 (dd, 1H, J=7.2,5.0 Hz), 6.71 (s, 1H; 6.48 (dm, 1H); 6.48-6.39 (dm, 1H); 6.34 (dm, 1H); 3.67 (s, 3H); 3.48 (br s, 8 H); 3.19 (s, 6H).

<u>Beispiel 7</u>: Mangan(II)-Komplex mit 1.1-Dimethyl-4-(4'-oxo-1',4'-dihydro-[2,2';6',2"]terpyridin-4-yl)-piperazin-1-ium methosulfat

Zu einer Suspension von 1,1-Dimethyl-4-(4'-oxo-1',4'-dihydro-[2,2';6',2'']terpyridin-4-yl)-plperazin-1-ium methosulfat in 4 ml Methanol addiert man eine Lösung von 37,6 mg (0.19 mmol) Mangan(II)-chlorid tetrahydrat in 4 ml Methanol. Anschllessend wird am Rotationsverdampfer (30°C, 20 mbar Enddruck) eingeengt. Man erhält den Mangankomplex der Formel $C_{22}H_{27}Cl_2MnN_3O_5S$ *0.38 H_2O (Fw = 606.24) als gelbes Pulver; berechnet C 43.59 H 4.62 N 11.55 S 5,29 Cl 11.70 Mn 9.06 H_2O 1.13; gefunden C 43.54 H 4.50 N 11.73 S 5.07 Cl 11.69 Mn 9.06 H_2O 1.14.

Beispiel 8: 1,5-Bis-(4-chlor-pyridin-2-yl)-pentan-1,3,5-trion

In einer Stickstoffatmosphäre werden 4 g (0.1 mol, ca. 60 % Dispersion) Natriumhydrid in 100 ml abs. Tetrahydrofuran vorgelegt. Bei < 56°C tropft man innerhalb von zwei Stunden eine Lösung von 18.5 g (0.1 mol) 4-Chlor-pyridin-2-carbonsäureethylester und 2.32 g (0.04 mol) getrocknetem Aceton in 75 ml THF zu. Die rote Suspension wird sodann vorsichtig auf 900 ml Wasser gegossen. Man stellt mit 6N HCl neutral destilliert am Rotationsverdampfer Tetrahydrofuran ab, und filtriert das gebildete, gelbe bis beige 1,5-Bis-(4-chlor-pyridin-2-yl)-pentan-1,3,5-trion ab, Das getrocknete, schwerlösliche Produkt wird ohne besondere Reinigungsschritte welterverarbeitet. IR (cm⁻¹): 1619 (m); 1564 (s); 1546 (s); 1440 (m); 1374 (s); 1156 (m); 822 (w).

Beispiel 9; 4,4"-Dichlor-1"H-[2,2";6",2"]terpyridin-4'-on

38.5 g (0.114 mol) 1,5-Bis-(4-chlor-pyridin-2-yl)-pentan-1,3,5-trion werden in 1.25 L 2-Propanol suspendiert. Man addiert 60°C - 70°C innerhalb von fünfeinhalb Stunden insgesamt 230 ml 25 % (w/w) Ammoniak-Lösung. Man kühlt auf 4°C und filtriert das gebildete, weissliche 4,4"-Dichlor-1'H-[2,2';6',2"]terpyridin-4'-on ab. ¹H-NMR (360 MHz, DMSO-d_a): 8,65 (d, 2H, J=5.4 Hz); B.57 (d, 2H, J=2.2 Hz); 7.82 (s, 2H); 7.59 (dd, 2H, J=5.4,2.2 Hz).

Beispiel 10: 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2"]terpyridin-4'-on (Ligand L3)

Ein Gemisch aus 10.89 g (34.2 mmol) 4,4"-Dichlor-1'H-[2,2';6',2"]terpyridin-4'-on, 68.6 g (685 mmol, 76.1 ml) 1-Methyl-piperazin und 233 mg (1.71 mmol, 0.05 Äquivalente) Zink(II)-chlorid in 200 ml 2-Methyl-2-butanol wird für 24 Stunden am Rückfluss gekocht. Man engt am Rotationsverdampfer zur Trockne ein. Das Rohprodukt wird aus Essigsäureethylester/Methanol 33:1 (v/v) umkristallisiert. Man nimmt in 100 ml Wasser auf, stellt mit 4N Natronlauge auf pH=8-9, und filtriert leicht beiges 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2"]terpyridin-4'-on ab. ¹H-NMR (360 MHz, CDCl₃): 8.32 (d, 2H, J=5.9 Hz): 7.18 (dm, 2H); 6,93 (s, 2H); 6.66 (dd, 2H; J=6,9,2,3 Hz); 3.41-3,32 (tm, 8H); 2.55-2.44 (tm, 8H); 2.29 (s, 6H).

Beispiel 11: Zweifach-Quaternisierung von 4,4"-Bis-(4-methyl-piperazin-1-yi)-1'H-[2,2',6',2']terpyridin-4'-on mit Methyllodid (Ligand L4)

Zu einer Suspension von 3.12 g (7 mmol) 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H-[2,2';6',2"]terpyridin-4'-on in 150 ml Acetonitril tropft man 8.7 ml (19.9 g, 140 mmol) Methyliodid zu. Man rührt während fünf Stunden bei Raumtemperatur, fiitriert und wäscht (Acetonitril) das entstandene, zweifach quaternisierte, welssliche 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2"]terpyridin-4'-on ($C_{27}H_{37}I_2N_7O$). ¹H-NMR (360 MHz, D_2O): 7.73 (d, 2H, J=5.9 Hz); 6.98 (s, 2H); 6.63-6.54 (dm, 2H); 6.45 (s, 2H); 3.69-3.43 (dm, 16H); 3.20 (s, 12H).

Belspiel 11a: Dreifach-Methylisrung von 4,4"-Bis-(4-methyl-piperazin-1-yl)-1"H-[2,2';6',2"]terpyridin-4'-on mit Methyliodid (Ligand L4a)

Zu einer Suspension von insgesamt ca. 30 mg Natriumhydrid (ca. 0.75 mmol, 60-proz. in Mineralōi) in 3 ml abs. N,N-Dimethylformamid werden bei 4°C 156 mg (0.35 mmol) 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2"]terpyrldin-4'-on gegeben. Man rührt noch 20 Minuten bei dieser Temperatur, erwärmt für eine Stunde auf Raumtemperatur, und kühlt erneut ab. Anschliessend werden 66 µl (1.05 mmol) Methyliodid zugetropft, und die Mischung für 20 Minuten in der Kälte bzw. dreissig Minuten bei Raumtemperatur gerührt. Nach erneutem Abkühlen und Addition von 2 ml Wasser filtriert man weisses, dreifach methyliertes 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2"]terpyrldin-4'-on der Formel C₂₈H₃₈I₂N₇O ab, ¹³C-NMR

47

(40 MHz, DMSO-d₀): 167.2; 156.8; 155.6; 154.7; 149.8; 109.4; 106.4; 105.6; 59.9; 55.5; 50.4; 40.0.

Beispiel 12: Anionentausch bei L4 (Ligand L5)

Man löst 0.96 g (1.32 mmol) mit Methyllodid zweifach quaternisiertes 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2']terpyridin-4'-on in 10 ml verdünnter HCl (pH=6). Die Lösung wird über eine Ionentauscher-Säule (100 g DOWEX 1x8, 200-400 mesh, Chlorid-Form) eluiert und am Rotationsverdampfer eingeengt. $C_{27}H_{37}Cl_2N_7O^*1.8$ HCl*2 H_2O , berechnet C 50.03 H 6.66 N 15.13 Cl 20.78, gefunden C 50.47 H 6.67 N 14.90 Cl 20.4 (I-Gehalt <0.3). ¹H-NMR (400 MHz, D_2O): 8.17 (dm, 2H, J=7Hz); 7.59 (8, 2H); 7.46 (s, 2H); 7.15 (dm, 2H, J=7Hz); 4.14 (br s, 8H); 3.71 (br s, 8H); 3.30 (s, 12H). Belspiel 13: Zweifach-Quaternisierung von 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H-[2,2'6',2']terpyridin-4'-on mit Dimethylsulfat (Ligand L6)

Zu einer Suspension von 6.22 g (13.96 mmol) 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H-[2,2';6',2"]terpyridin-4'-on in 250 ml Aceton tropft man 2.66 ml (27,92 mmol) Dimethylsulfat zu. Nach zwanzig Stunden filtrlert und wäscht (Aceton) man zweifach quaternisiertes, weissliches 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H- [2,2';6',2"]terpyridin-4'-on ab. $C_{28}H_{43}N_7O_9S_2$ "0.39 H_2O , 704.86; berechnet C 49.42 H 6.26 N 13.91 S 9.10 H_2O 1.00; gefunden C 49.30 H 6.19 N 13.85 S 8.99 H_2O 1.00. 1 H-NMR (380 MHz, D_2O): 8.08 (d, J=5.9Hz, 2H); 7.18 (dm, 2H); 6.79 (dd, J=5.9,2.3 Hz); 6.74 (s, 2H); 3.77-3.68 (m, 8H); 3.65 (s, 6 H); 3.59-3.50 (m, 8H).

Bejsplet 14: Mangan(II)-Komplex mit zwelfach quaternisiertem 4,4"-Bis-(4-methyl-piperazin-1-yl)-1'H-[2,2';6',2"]terpyridin-4'-on

Zu einer Suspension von 419 mg (0.6 mmol) Ligand C₂₀H₄₅N₇O₆S₂ addiert man eine Lösung von 119 mg (0.6 mmol) Mangan(II)-chlorid tetrahydrat in 11 ml Methanol. Anschliessend wird am Rotationsverdampfer (30°C, 20 mbar Enddruck) eingeengt. Man erhält den Mangankomplex der Formel C₂₀H₄₅Cl₂MnN₇O₆S₂*2,22 H₂O (Fw 863,67) als gelbes Pulver; berechnet C 40.33 H 5.54 N 11.35 S 7.43 Cl 8.21 Mn 6.36 H₂O 4.63; gefunden C 41.10 H 5.35 N 11.77 S 7.18 Cl 8.36 Mn 5.91 H₂O 4.64.

ANWENDUNGSBEISPIELE

Anwendungsbeispiel 1: (Bleichwirkung in Waschmitteln)

7,5 g weisses Baumwollgewebe und 2,5 g einer Teeanschmutzung auf Baumwollgewebe werden in 80 ml Waschlauge behandelt. Diese Lauge enthält ein Standardwaschmittel (IEC 60456 A*) In einer Konzentration von 7,5 g/l. Die Wasserstoffperoxid-Konzentration beträgt B,6 mmoV). Die Katalysator-Konzentration (1:1-Komplex aus Mangan(II)chlorid-tetrahydrat mit dem jeweiligen Liganden, hergesteilt in methanolischer oder wässriger Lösung) beträgt 20 µmol/l. Der Waschprozese findet in einem Stahlbecher in einem LINITEST-Apparat während 30 Minuten bei 40°C statt, Zur Bewertung der Bleichergebnisse wird die durch die Behandlung hervorgerufene Helligkeitszunahme DY (Helligkeitsdifferenz gemäss CIE) der Anschmutzung spektrophotometrisch ermittelt, im Vergleich zu Werten ohne Zusatz von Katalysator.

Im Falle des zu Vergleichszwecken in der folgenden Tabelle 1 angegebenen Mn-Komplexes der Formel (10) handelt es sich um die Verbindung der Formel

Tabelle 1

Mn-Komplex mit Ligand	. DY Zunahme	
L1 (Beispiel 5)	5.9	
L2 (Beispiel 6)	8,8	
L3 (Beispiel 10)	5.6	
L4 (Beispiel 11)	9,7	
L5 (Beispiel 12)	10,0	
L6 (Belspiel 13)	10.1	
Terpyridin (10)	1.4	

Wie der obigen Tabelle 1 entnommen werden kann, zeigen die erfindungsgemässen Liganden mit quaternisierter Stickstofffunktion eine welt bessere Bleichwirkung als die entsprechenden Stammverbindungen. Alle Komplexe sind dem Referenzsystem Terpyridin deutlich überlegen.

Anwendungsbeispiel 2: (Katalytische Bleiche von Zellstoff)

20 g Zellstoff [TMP-CT CSF129, Ref. Nr. P-178635 (ISO 57.4)] wird in einem Liter Wasser während 65 Stunden eingeweicht und anschliessend 2 Minuten im Mixer zu einer breiartigen Pulpe verrührt. Ein Bleichbad, enthaltend 50 g der derart hergestellten Pulpe in 180 ml Wasser, 100 μM Dequest 2041 (Sequestriermittel), 8.6 mM Wasserstoffperoxid, und 5 μM Katalysator aus Beispiel 14, wird während 30 Minuten bei 40°C gehalten. Dabei dosiert man 1N Natronlauge so zu, dass ein pH-Wert von 10.0 eingehalten wird. Anschliessend wird filtriert und luftgetrocknet. Ein zu einem runden Blatt mit Durchmesser 10 cm gepresstes Muster wird anschliessend auf die erreichte Helligkeit Y (gemäss CIE,

Remissionspektroskopie) hin untersucht. Die Resultate sind in der untenstehenden Tabelle 2 zusammengefasst.

Tabelle 2

Prüfmuster	Helligkeit Y
unbehandelt	61.9
katalytisch gebleicht	62.9

50

Anwendungsbeispiel 3: (Wirkung als Katalysator für DTI (dye transfer inhibition))
Gemäss dieser Anwendung soll, insbesondere in Waschflotten, das Wiederaufziehen von migrierenden Farbstoffen verhindert werden.

7.5 g weisses Baumwollgewebe wird in 80 ml Waschlauge behandelt. Diese Lauge enthält ein Standardwaschmittel (IEC 60456 A*) in einer Konzentration von 7.5 g/L, 8.6 mmol/L Wasserstoffperoxid und eine Lösung des Testfarbstoffes Reactive Blue 238. Man stellt vorgängig in Methanol durch Mischen einer wässrigen Lösung von äquimolaren Mengen Eisen(III)-chlorid und Ligand L6 aus Beispiel 13 die Katalysatorösung her. Damit wird eine Katalysator-Konzentration von 50 µmol/l in der Flotte eingestellt. Der Waschprozess findet in einem Stahlbecher in einem LINITEST-Apparat während 30 Minuten bei 40°C statt. Zur Untersuchung der Wirksamkeit der Katalysatoren wird die DTI- Wirksamkeit bestimmt. Die DTI (Dye transfer inhibition/ Farbstofftransferverhinderung) -Wirksamkeit a ist als folgender Prozentsatz definiert:

a = ([Y(E) - Y(A)] / [Y(W) - Y(A)]) + 100

wobei Y(W), Y(A) und Y(E) die CIE-Helligkeiten des weissen Materials, des ohne Katalysatorzusatz behandelten Materials und des mit Katalysatorzusatz behandelten Materials (in dieser Rejhenfolge) bedeuten, a = 100% entspricht einem perfekten Katalysator, der die Anfärbung des Weissmaterials vollständig unterbindet. Die Reflexionsspektren der Muster wurden mit einem SPECTRAFLASH 2000 gemessen und gemäss Standardprozedur nach CIE in Helligkeiten (D65/10) transformiert. Nach dem vorstehend beschriebenen Prüfverfehren ergibt sich ein Wert a = 71 %.

Anwendungsbelspiel 4: Der Einsatz der erfindungsgemässen Katalysatoren verursacht kaum zusätzliches Ausbleichen der Farbstoffe von gefärbtem Baumwoll-Waschgut. Bei einer Verwendung in wie vorstehend in Anwendungsbeispiel 4 beschrieben, wird im Vergleich zum Katalysator-freien System, nach fünffacher Behandlung von farbigem Gewebe praktisch kein Farbschaden verzeichnet. Die Werte in der untenstehenden Tabelle 3 sind relative prozentuale Farbstoffverluste, ermittelt auf der Basis von Kubelka-Munk-Werten im jeweiligen Absorptionsmaximum.

Tabelle 3

Baumwollfarbung '	Farbstoffverlust (%) im System	
mit Farbstoff	mit MnCl₂-L4 (50 µM)	ohne Katalysator
V Br 1	1	2
VBI4	7	4
R Br 17	13	15
D BI 85	19	14

Anwendunasbaispiel 5: (katalytische Wirkung für die Epoxidierung von Olefinen)

Zu einer Lösung von 1.09 ml (10 mmol) Ethylacrylat in 0.5 ml Acetonitril werden 35 mg (0.06 mmol) Ligand L6 (Beispiel 13), 10 mg (0.04 mmol) Mangan(II)-acetat tetrahydrat, und 0.32 mmol Natriumascorbat gegeben. Man kühlt im Eisbad und tropft innerhalb von 20 Minuten eine 30-prozentige Lösung Wasserstoffperoxid (2.27 g, 20 mmol) zu. Man belässt anschliessend für 16 Stunden bei Raumtemperatur, verdünnt mit Diethylether, und trennt die Phasen. Der organische Auszug wird über Natriumsulfat getrocknet, filtriert und eingeengt. Die katalytische Wechselzahl für das gebildete Epoxid, Ethyloxiran-2-carboxylat, wird durch Vergleich der Intensität des Epoxid-Methinprotons bei 3.38-3.42 ppm mit einem Olefinsignal des verbliebenen Edukts bei 5.95 ppm als Referenz bestimmt und beträgt 39±5. Ethyloxiran-2-carboxylat, Epoxid-Signale ¹H-NMR (360 MHz, CDCh): 2.68-2.89 (m, 2H, CH₂); 3.38-3.42 (m, 1H, CH). Ohne Zusatz von Ligand kann kein Epoxid nachgewiesen werden. (siehe auch Berkessel, A. et al., *Tetrahedron Lett.* 1999, 40, 7965-7968).

52

Patentansprüche

1. Die Verwendung von Metallkomptexverbindungen der Formel (1)

 $[L_nMe_mX_p]^2Y_q$ (1),

worin Me Mangan, Titan, Eisen, Kobalt, Nickel oder Kupfer ist,
X ein koordinierender oder verbrückender Rest ist,
n und m unabhängig voneinander eine ganze Zahl mit einem Wert von 1 bis 8
bedeuten,
p eine ganze Zahl mit dem Wert von 0 bis 32,
z die Ladung des Metalikomplexes,
Y ein Gegenion ist,
q = z/(Ladung Y), und
L ein Ligand der Formel (2)

$$\begin{array}{c|c}
R_3 & R_8 \\
R_2 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_8 & R_7 \\
R_9 & R_{10}
\end{array}$$

$$\begin{array}{c|c}
R_{11} & R_{10}
\end{array}$$
(2)

ist, worin

R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₆, R₈, R₁₀ und R₁₁ unabhängig voneinander je Wasserstoff; gegebenenfalls substituiertes C₁-C₁₆-Alkyl oder Aryl; Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation oder gegebenenfalls substituiertes C₁-C₁₆-Alkyl oder Aryl let; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worin R₁₃ jeweils Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist; -NR₁₄R₁₆; -(C₁-C₈alkylen)-N⁸R₄R₁₆R₁₆; -(C₁-C₈alkylen)-N⁸R₄R₁₆R₁₆; -N(R₁₃)-(C₁-C₈alkylen)-NR₁₄R₁₆; -N[(C₁-C₆alkylen)-NR₁₄R₁₆R₁₆]₂; -N(R₁₃)-(C₁-C₈alkylen)-N⁸R₁₄R₁₆R₁₆, -N[(C₁-C₆alkylen)-N⁸R₁₄R₁₆R₁₆]₂; -N(R₁₃)-N-R₁₄R₁₆ oder -N(R₁₃)-N⁸R₁₄R₁₆R₁₆, worin R₁₃ die oben angegebenen Bedeutungen hat und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes

C₁-C₁₈-Alkyl oder Aryl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden mit der Massgabe, dass

- (i) mindestens einer der Substituenten $R_1 \sim R_{11}$ ein quatemisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dass
- (ii) Y weder I' noch CI' ist, falls Me Mn(II) ist, $R_1 R_5$ und $R_7 R_{11}$ Wasserstoff sind und R_8

bedeutet, als Katalysatoren für Oxidationen.

- Verwendung gemäss Anspruch 1. dadurch gekennzeichnet, dass Me Mangan ist, welches im Oxidationszustand II, III, IV oder V vorliegt.
- Verwendung gemäss Anspruch 1, dadurch gekennzeichnet, dass Me Eisen ist, welches im Oxidationszustand II, III oder IV vorliegt.
- 4. Verwendung gemäss einem der Ansprüche 1, 2 und 3, dadurch gekennzelchnet, dass X CH₃CN, H₂O, F, Cl, Br, HOO, O₂², O², R₁₇COO, R₁₇O, LMeO der LMeOO ist, worin R₁₇ Wasserstoff, -SO₃C₁-C₄alkyl oder gegebenenfalls substitulertes C₁-C₁₉-Alkyl oder Aryl ist, und L und Me die in Anspruch 1 angegebenen Bedeutungen haben.
- Verwendung gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Y R₁₇COO', ClO₄⁻, BF₄⁻, PF₆⁻, R₁₇SO₃⁻, R₁₇SO₄⁻, SO₄², NO₃⁻, F', Cl', Br', l', Citrat, Tartrat oder Oxalat ist, worin R₁₇ Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₆-Alkyl oder Aryl ist.
- Verwendung gemäss einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass n eine ganze Zahl mit einem Wert von 1 bis 4, insbesondere 1 oder 2, bedeutet.

- Verwendung gemäss einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass m eine ganze Zahl mit einem Wert von 1 oder 2, insbesondere 1, bedeutet.
- 8. Verwendung gemäss einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass p eine ganze Zahl mit dem Wert von 0 bis 4, insbesondere 2, bedeutet.
- Verwendung gemäss einem der Ansprüche 1 bls 8, dadurch gekennzeichnet, dass z eine ganze Zahl mit einem Wert von 8- bls 8+ bedeutet.
- 10. Verwendung gemäss einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass Aryl für unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, Phenyl, Phenoxy oder Naphthoxy substituiertes Phenyl oder Naphthyl steht.
- 11. Verwendung gemäss einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, dass es sich bei dem von R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom gebildeten 5-, 6- oder 7-gliedrigen Ring um einen unsubstituierten oder durch C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Piperazin-, Morpholin- oder Azepanning handelt, worin die Stickstoffatome gegebenenfalls quaternisiert sein können.
- Verwendung gemäss einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass R₈ C₁-C₁₂-Alkyl; unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amlno, unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N₁N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, Phenyl, Phenoxy oder Naphthoxy substituiertes Phenyl; Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worln R₁₂ jewells Wasserstoff, ein Kation, C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl ist; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worln R₁₃ jeweils Wasserstoff, C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl ist; -NR₁₄R₁₆; -(C₁-C₆alkylen)-NR₁₄R₁₆; -NR₁₄R₁₆; -(C₁-C₆alkylen)-NR₁₄R₁₅; -NR₁₄R₁₆; -N(R₁₃)-(C₁-C₆alkylen)-NR₁₄R₁₆; -N(R₁₃)-N-R₁₄R₁₆ oder -N(R₁₃)-N⁶R₁₄R₁₅R₁₆, worln R₁₃ eine der obigen Bedeutungen haben kann und R₁₄, R₁₆ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch

Hydroxyl substituiertes C_1 - C_{12} -Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind, oder R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C_1 - C_4 -Alkyl und/oder substituiertes C_1 - C_4 -Alkyl substituierten Pyrrolidin-, Piperidin-, Piperazin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann, und R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_{10} und R_{11} die in Anspruch 1 angegebenen Bedeutungen haben kann oder Wasserstoff bedeuten.

Verwendung gemäss Anspruch 12, dadurch gekennzeichnet, dass R_s

bedeutet und

und

 R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_{8} , R_{10} und R_{11} die oben angegebenen Bedeutungen haben oder Wasserstoff bedeuten.

14. Verwendung gemäss Anspruch 12 oder 13, dadurch gekennzeichnet, dass es sich bei dem Liganden L um eine Verbindung der Formei

$$R'_3 \xrightarrow{A_N} R'_8$$

$$R'_9 \xrightarrow{A_N} R'_9$$
(3)

handelt, worin

 R'_3 , R'_6 und R'_5 die in Anspruch 12 oder 13 für R_6 angegebenen Bedeutungen haben, wobei R'_3 und R'_6 zusätzlich Wasserstoff sein können.

56

15. Verwendung gemäss Anspruch 14, dadurch gekennzeichnet, dass R'_{3} , R'_{6} und R'_{9} unabhängig voneinander unsubstituiertes oder durch C_{1} - C_{4} -Alkyl, C1-C4-Alkoxy, Halogen, Phenyl oder Hydroxyl substituiertee Phenyl; Cyano; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jewei|s Wasserstoff, ein Kation, C₁-C₄-Alkyl oder Phenyl ist; -SR₁₈₁ -SO₂R₁₃ oder -OR₁₈, worin R₁₅ jeweils Wasserstoff, C₁-C₄-Alkyl oder Phenyl ist; -N(CH₃)-NH₂ oder -NH-NH₂; Amino; unsubstitulertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C1-C4-Alkylamino, worin die Stickstoffatome, vor allem die nicht an einen der drei Pyridinringe A, B oder C gebundenen Stickstoffatome, gegebenenfalls quaternisiert sein können; unsubstituiertes oder im Alkyltell durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alky-N[®]R₁₄R₁₅R₁₃, worin R₁₄, R₁₅ und R₁₅ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C1-C12-Aikyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind oder R14 und R15 zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein .C₁-C₄-Alkyl oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C1-C4-Alkyl substituierten Pyrrolidin-, Piperidin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann; unsubstituiertes oder im Alkyltell durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkyl- $NR_{14}R_{16}$, worin R_{14} und R_{15} die oben genannten Bedeutungen haben kann; oder einen einen Rest

worin R_{15} und R_{16} die oben genannten Bedeutungen, bevorzugt, C_1 - C_4 alkyl, haben und der Ring gegebenenfalls substituiert ist, bedeuten, wobei R' $_3$ und R' $_6$ ebenfalls noch Wasserstoff sein können.

- 16. Verwendung gemäss Anspruch 14 oder 15, dadurch gekennzeichnet, dass Rs Hydroxy ist.
- 17. Verwendung gemäss den Ansprüchen 1 13, dadurch gekennzeichnet, dass mindestens einer der Substituenten R₁ R₁₁, bevorzugt einer der Substituenten R₃, R₆ und/oder R₃, einen der folgenden Reste -(C₁-C₆alkylen)-N⁶R₁₄R₁₅R₁₆; –N(R₁₃)-(C₁-C₆alkylen)-N⁶R₁₄R₁₅R₁₆;

-N[(C₁-C₈alkylen)-N⁶R₁₄R₁₅R₁₆]₂; -N(R₁₃)-N⁶R₁₄R₁₅R₁₆, worin R₁₃ jeweils Wasserstoff, C₁-C₄-Alkyl oder Phenyl ist und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substitulertes C₁-C₁₆-Alkyl oder Aryl sind, oder R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substitulerten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder -NR₁₄R₁₆; -(C₁-C₆alkylen)-NR₁₄R₁₅; -N(R₁₉)-(C₁-C₆alkylen)-NR₁₄R₁₆; -N[(C₁-C₆alkylen)-NR₁₄R₁₅]₂; -N(R₁₃)-N-R₁₄R₁₅ worin R₁₃ und R₁₆ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten und gegebenenfalls weltere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.

18. Verwendung gemäss den Ansprüchen 14 – 16, dadurch gekennzeichnet, dass mindestens einer der Substituenten R₃, R'₆ und R'₉, bevorzugt R'₃ und/oder R'₆ einen der folgenden Reste

-(C₁-C₈alkylen)-N[®]R₁₄R₁₈R₁₈; -N(R₁₃)-(C₁-C₈alkylen)-N[®]R₁₄R₁₆R₁₈;
-N[(C₁-C₈alkylen)-N[®]R₁₄R₁₈R₁₆]₂; -N(R₁₃)-N[®]R₁₄R₁₆R₁₆, worin R₁₃ jeweils Wasserstoff, C₁-C₄-Alkyl oder Phenyl ist und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₆-Alkyl oder Aryl sind, oder R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder -NR₁₄R₁₅; -(C₁-C₆alkylen)-NR₁₄R₁₆; -N(R₁₃)-(C₁-C₆alkylen)-NR₁₄R₁₅; -N(R₁₃)-N-R₁₄R₁₆ worin R₁₃ und R₁₆ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden,

worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinringe A, B oder C

gebunden ist, quaternisiert ist, darstellt.

- 19. Verwendung gemäss den Ansprüchen 1 13, dadurch gekennzeichnet, dass mindestens einer der Substituenten R₁ R₁₁, bevorzugt einer der Substituenten R₃, R₀ und/oder R₀, einen der folgenden Reste
 - -(C₁-C₄alkylen)-N[®]R₁₄R₁₅R₁₆; -N(R₁₃)-(C₁-C₆alkylen)-N[®]R₁₄R₁₅R₁₆;
 - $-N[(C_1-C_6alkylen)-N^{\oplus}R_{14}R_{16}R_{16}]_2; -N(R_{15})-N^{\oplus}R_{14}R_{16}R_{16}, \ worin \ R_{13} \ die \ oben$ angegebenen Bedeutungen hat und R_{14} , R_{16} und R_{15} unabhängig voneinander Wasserstoff oder gegebenenfalls substitulertes C_1-C_{12} -Alkyl oder Aryl sind, oder R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen unsubstitulerten oder durch mindestens ein unsubstitulertes C_1-C_4 -Alkyl und/oder substitulertes C_1-C_4 -Alkyl substitulerten und gegebenenfalls weitere Hateroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder
 - $-NR_{14}R_{15}; -(C_1-C_6aikylen)-NR_{14}R_{15}; -N(R_{15})-(C_1-C_6aikylen)-NR_{14}R_{15};\\$
 - -N[(C₁-C₆alkylan)-NR₁₄R₁₅]₂: -N(R₁₅)-N-R₁₄R₁₅ worin R₁₅ und R₁₆ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin das Stickstoffatom, das nicht an eines der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.
- 20. Verwendung gemäss den Ansprüchen 14 16, dadurch gekennzeichnet, dass mindestens einer der Substituenten R₁ R₁₁, bevorzugt einer der Substituenten R₃₁ R₅ und/oder R₃, einen der folgenden Reste
 - $\hbox{-(C_1-C_4alkylen)-$N^9R_{14}R_{15}R_{16}; -N(R_{13})-(C_1-C_8alkylen)-N^9R_{14}R_{15}R_{16}$;}\\$
 - -N[(C₁-C₈alkylen)-N⁶R₁₄R₁₅R₁₅]₂; -N(R₁₃)-N⁶R₁₄R₁₅R₁₅, worin R₁₀ die oben angegebenen Bedeutungen hat und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₂-Alkyl oder Aryl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 6-, 6- oder 7-gliedrigen Ring bilden; oder
 - -NR₁₄R₁₅; -(C₁-C₆alkylen)-NR₁₄R₁₆; -N(R₁₅)-(C₁-C₆alkylen)-NR₁₄R₁₅;
 - -N[(C_1 - C_6 alkylen)-NR₁₄R₁₅]₂; -N(R₁₃)-N-R₁₄R₁₈ worin R₁₈ und R₁₈ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere

Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin das Stickstoffatom, das nicht an eines der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, daretellt.

21. Verwendung gemäss den Ansprüchen 19 und 20 dadurch gekennzeichnet, dass mindestens einer der Substituenten $R_1 - R_{11}$, bevorzugt einer der Substituenten R_3 , R_6 und/oder R_{8_1} einen der Reste

$$- \, C_1 - C_4 \text{alkylen} - N \qquad \uparrow \qquad C_1 - C_4 \text{alkyl}$$

$$C_1 - C_4 \text{alkyl}$$
 oder

worin die unverzweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann, und worin die unabhängig voneinander unverzweigten oder verzweigten Alkylgruppen gegebenenfalls substituiert sein können und worin der Piperazinring kann gegebenenfalls substituiert sein kann, darstellt.

22. Verwendung gemäss Anspruch 21 dädurch gekennzeichnet, dass mindestens einer der Substituenten $R_1 - R_{11}$, bevorzugt einer der Substituenten R_3 , R_4 und/oder R_9 , einen der Reste

worin die unverzweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann, und worin die Alkylgruppen unabhängig voneinander gegebenenfalls substituiert sein können und worin der Piperazinring kann gegebenenfalls substituiert sein kann, darstellt.

يرير بي ريالي و حالالات

- 23. Verwendung gemäss einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass man die Metalikomplexverbindungen der Formel (1) in Wasch-, Reinigungs-, Desinfektions- oder Bleichmitteln verwendet.
- 24. Verwendung gemäss Anspruch 23, dadurch gekennzeichnet, dass die Metallkomplexverbindungen der Formel (1) in dem Wasch-, Reinigungs-, Desinfektions- oder Bleichmittel in situ gebildet werden.
- 25. Verwendung gemäss einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass man die Metallkomplexverbindungen der Formel (1) zusammen mit Persauerstoffverbindungen zum Bleichen von Flecken oder Anschmutzungen auf Textilmaterial oder zur Verhinderung des Wiederaufziehens von migrierenden Farbstoffen im Rahmen eines Waschprozesses, oder zum Reinigen von harten Oberflächen verwendet.
- 26. Verwendung gemäss einem der Ansprüche 1 bls 22, dadurch gekennzeichnet, dass man die Metalikomplexverbindungen der Formel (1) gemäss Anspruch 1 als Katalysatoren für Reaktionen mit Persauerstoffverbindungen zum Bleichen im Rahmen der Papierherstellung verwendet.
- 27. Verwendung gemäss einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass man Mischungen von Mangankomplexen der Formel (1) mit Eisenkomplexen der Formel (1) zur Verhinderung des Wiederaufzlehens von migrierenden Farbstoffen und gleichzeitigem Bleichen von Flecken oder Anschmutzungen auf Textilmaterial verwendet.
- 28. Verwendung gemäss Anspruch 27, dadurch gekennzeichnet, dass man Mischungen von Mangankomplexe der Formel (1) mit Eisenkomplexe der Formel (1'), welche der Formel (1) entspricht jedoch keine quaternisierte Stickstoffatome enthält, verwendet.
- 29. Metalikomplexverbindungen der Formel (1a)

 $[L_nMe_mX_p]^{T}Y_q$

(1a),

worin Me Mangan, Titan, Eisen, Kobalt, Nickel oder Kupfer, X ein koordinierender oder verbrückender Rest ist, n und m unabhängig vonelnander eine ganze Zahl mit einem Wert von 1 bis 8 bedeuten.

p eine ganze Zahl mit dem Wert von 0 bis 32.

z die Ladung des Metailkomplexes,

Y ein Gegenjon ist,

q = z/(Ladung Y), und

Lein Ligand der Formei (2a)

$$\begin{array}{c|c}
R_3 & R_5 & R_7 \\
R_2 & R_1 & R_{10}
\end{array}$$
(2a)

ist, worin

mit der Massgabe, dass

Rs gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl; Cyano; Halogen; Nitro; - COOR_{12} oder $\mathsf{-SO}_3\mathsf{R}_{12}$, worin R_{12} jeweils Wasserstoff, ein Kation oder gegebenenfalls substitulertes C_{1} - C_{18} -Alkyl oder Aryl ist; -SR₁₃, -SO₂R₁₅ oder -OR₁₃, worin R₁₅ jeweils Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist; -NR₁₄R₁₅; -(C₁-C₆alkylen)-NR₁₄R₁₅; -N[®]R₁₄R₁₅R₁₆; -(C₁-C₆alkylen)-N[®]R₁₄R₁₅R₁₆; $-N(R_{13}) - (C_1 - C_6 a | kylen) - NR_{14} R_{15} \\ - N[(C_1 - C_6 a | kylen) - NR_{14} R_{15}]_2;$ $-N(R_{15})-(C_{1}-C_{8}alkylen)-N^{\oplus}R_{14}R_{15}R_{16}; -N[(C_{1}-C_{8}alkylen)-N^{\oplus}R_{14}R_{16}R_{16}]_{2}; -N(R_{15})-N-R_{14}R_{16}$ oder -N(R₁₃)-N[®]R₁₄R₁₅R₁₆, worin R₁₃ die oben angegebenen Bedeutungen hat und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, bedeutet und $R_1,\,R_2,\,R_3,\,R_4,\,R_5,\,R_7,\,R_8,\,R_9,\,R_{10}$ und R_{11} unabhängig voneinander die oben für R_8 angegebenen Bedeutungen haben oder Wasserstoff oder gegebenenfalls substitulertes Aryl sind,

- mindestens einer der Substituenten R₁ R₁₁ ein quaternisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dess
- (ii) Y weder I noch CI ist, falls Me Mn ist, $R_1 R_5$ und $R_7 R_{11}$ Wasserstoff sind und

R

- 30. Metallkomplexverbindungen gemäss Anspruch 29, dadurch gekennzeichnet, dass Me Mangan ist, welches im Oxidationszustand II, III, IV oder V vorliegt.
- 31. Metallkomplexverbindungen gemäss Anspruch 29, dadurch gekennzeichnet, dass Me Elsen ist, welches im Oxidationszustand II, III oder IV vorliegt.
- 32. Metallkomplexverbindungen gemäss einem der Ansprüche 30 und 31, dadurch gekennzeichnet, dass es sich bei dem Liganden L um eine Verbindung der Formel (3)

$$R'_{3} = A N N C R'_{9}$$

$$(3),$$

handelt, worin

R'₈ Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation, C₁-C₁₂-Alkyl oder unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkyltell durch Hydroxy substituiertes N-Mono- oder N₁N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, wobel die Aminogruppen gegebenenfalls quaternisiert sein können, Phenyl, Phenoxy oder Naphthoxy substituiertes Phenyl; ¬SR₁₃, ¬SO₂R₁₃ oder -OR₁₃, worin R₁₃ jeweils Wasserstoff, C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl ist; ¬NR₁₄R₁₅; ¬N[®]R₁₄R₁₅R₁₆; oder -N(R₁₃)-(CH₂)₁₋₂NR₁₄R₁₅; -N(R₁₃)-N-R₁₄R₁₅ oder -N(R₁₃)-N[®]R₁₄R₁₅R₁₆, worin R₁₃ eine der obigen Bedeutungen haben kann und R₁₄, R₁₆ und R₁₆ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben

substituiertes Phenyl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Morpholin-oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann; oder einen Rest

$$-(CH_2)_{04}N$$
 R_{16}

worin R₁₅ und R₁₆ die oben genannten Bedeutungen haben und der Ring gegebenenfalls substituiert sein kann, bedeutet und R'₃ und R'₆ die oben angegebenen Bedeutungen haben oder Wasserstoff, C₁-C₁₂-Alkyl, oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl bedeuten.

33. Verbindungen der Formel (2b)

$$\begin{array}{c|c}
R_3 & R_6 \\
R_2 & R_1
\end{array}$$

$$\begin{array}{c|c}
R_0 & R_0 \\
R_1 & R_{10}
\end{array}$$
(2b)

worln

R₆ Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worin R₁₃ jeweils Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl ist; -NR₁₄R₁₅; -N[®]R₁₄R₁₆R₁₆; -N(R₁₃)-(CH₂)₁₋₈NR₁₄R₁₅; -N(R₁₃)-(CH₂)₁₋₈NR₁₄R₁₆R₁₆, worin R₁₃ eine der obigen Bedeutungen haben kann und R₁₄, R₁₆ und R₁₆ unabhängig voneinander Wasserstoff, unsubstituiertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind, oder R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolidin-, Piperidin-, Morpholin- oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann; oder einen Rest

worin der R_{16} und R_{16} die oben genannten Bedeutungen haben und der Ring gegebenenfalls substituiert sein kann, bedeutet und R_1 , R_2 , R_3 , R_4 , R_6 , R_7 , R_6 , R_6 , R_{10} und R_{11} unabhängig voneinander die oben für R_6 angegebenen Bedeutungen haben oder Wasserstoff oder gegebenenfalls substituiertes C_1 - C_{16} -Alkyl oder Aryl sind, mit der Massgabe, dass

- mindestens einer der Substituenten R₁ R₁₁ ein quatemisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A, B oder C gebunden ist, enthält und dass
- (ii) Y weder I' noch Cli ist, fails R1 R5 und R7 R11 Wasserstoff sind und R6

34. Verbindungen gemäss Anspruch 33 der Formel (3)

$$R'_{\bullet} = A \qquad R'_{\bullet}$$

Worin

R'₆ Cyano; Halogen; Nitro; -COOR₁₂ oder -SO₂R₁₂, worin R₁₂ jeweils Wasserstoff, ein Kation, C₁-C₁₂-Alkyl oder unsubstituiertes oder durch C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Halogen, Cyano, Nitro, Carboxyl, Sulfo, Hydroxyl, Amino, unsubstituiertes oder im Alkylteil durch Hydroxy substituiertes N-Mono- oder N,N-Di-C₁-C₄-Alkylamino, N-Phenylamino, N-Naphthylamino, wobei die Aminogruppen gegebenenfalls quaternisiert sein können, Phenyl. Phenoxy oder Naphthoxy substituiertes Phenyl; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worin R₁₃ jeweils Wasserstoff, C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl ist; -NR₁₄R₁₅; -N[®]R₁₄R₁₆R₁₆; -N(R₁₆)-N-R₁₄R₁₅ oder

-N(R₁₃)-N[®]R₁₄R₁₅R₁₆, worin R₁₃ eine der obigen Bedeutungen haben kann und R₁₄, R₁₅ und R₁₆ unabhängig voneinander Wasserstoff, unsubstitulertes oder durch Hydroxyl substituiertes C₁-C₁₂-Alkyl oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl sind, oder R₁₄ und R₁₆ zusammen mit dem sie verbindenden N-Atom einen unsubstitulerten oder durch mindestens ein unsubstitulertes C₁-C₄-Alkyl und/oder substituiertes C₁-C₄-Alkyl substituierten Pyrrolldin-, Piperidin-, Morpholin-oder Azepanring bilden, worin das Stickstoffatom quaternisiert sein kann; oder einen Rest

$$-(CH_2)_{04}-N$$
 R_{16}

worin R_{16} und R_{16} die oben genannten Bedeutungen haben und der Ring gegebenenfalls substituiert sein kann, bedeutet und R_{16}' und R_{16}' die oben angegebenen Bedeutungen haben oder Wasserstoff, C_{1} - C_{12} -Alkyl, oder unsubstituiertes oder wie oben angegeben substituiertes Phenyl bedeuten.

Verbindungen gemäss Anspruch 32 und 34, dadurch gekennzeichnet, dass mindestens einer der Substituenten R'3, R'6 und R'9 einen der folgenden Reste -(C1-C5alkylen)-N°R14R15R15; -N(R13)-(C1-C5alkylen)-N°R14R15R15; -N(R13)-(C1-C5alkylen)-N°R14R15R15; $-N[(C_1-C_6a]ky]en)-N^{\phi}R_{14}R_{16}R_{16}]_2$: $-N(R_{13})-N^{\phi}R_{14}R_{16}R_{16}$, worin R_{13} jewells Wasserstoff, C_1 - C_4 -Alkyl oder Phenyl ist und R_{14} , R_{18} und R_{10} unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl sind, oder R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder -NR₁₄R₁₅; -(C₁-C₅alkylen)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylen)-NR₁₄R₁₅; -N[(C₁-C₅alkylen)-NR₁₄R₁₅]₂; -N(R₁₅)-N-R₁₄R₁₅ worin R₁₅ und R₁₆ die oben angegebenen Bedeutungen haben und R_{14} und R_{15} zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C1-C4-Alkyl und/oder substituiertes C1-C4-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin mindestens ein Stickstoffatom, das nicht an einen der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.

- Verbindungen gemäss Anspruch 32 und 34, dadurch gekennzeichnet, dass mindestens einer der Substituenten R'3, R'8 und R'8 einen der folgenden Reste -(C1-C4alkylen)-N®R14R16R16; -N(R13)-(C1-C6alkylen)-N®R14R15R16; -N[(Ċ1-C6alkylen)-N®R14R13R16]2; -N(R13)-N®R14R14R16, worin R13 die oben angegebenen Bedeutungen hat und R14, R15 und R16 unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C1-C12-Alkyl oder Aryl sind, oder R14 und R16 zusammen mit dem sie verbindenden N-Atom einen unsubstituierten oder durch mindestens ein unsubstituiertes C1-C4-Alkyl und/oder substituiertes C1-C4-Alkyl substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden; oder
 - -NR₁₄R₁₆; -(C₁-C₆alkylen)-NR₁₄R₁₅; -N(R₁₃)-(C₁-C₆alkylen)-NR₁₄R₁₅;
 -NI(C₁-C₆alkylen)-NR₁₄R₁₆]₂; -N(R₁₃)-N-R₁₄R₁₅ worin R₁₃ und R₁₆ die oben angegebenen Bedeutungen haben und R₁₄ und R₁₅ zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substitulerten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden, worin das Stickstoffatom, das nicht an eines der Pyridinringe A, B oder C gebunden ist, quaternisiert ist, darstellt.
- 37. Verwendung gemäss Anspruch 32 und 34 dadurch gekennzeichnet, dass mindestens einer der Substituenten R'a, R'a und R'e einen der folgenden Reste

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann, und worin die unabhängig voneinander unverzweigten oder verzweigten Alkylgruppen gegebenenfalls substituiert sein können und worin der Piperazinting kann gegebenenfalls substituiert sein kann, darstellt.

38. Verwendung gemäss Anspruch 32 und 34 dadurch gekennzeichnet, d dass mindestens einer der Substituenten R'3, R'3 und R'4 einen der folgenden Reste

worin die unverweigte oder verzweigte Alkylengruppe gegebenenfalls substituiert sein kann, und worin die Alkylgruppen unabhängig voneinander gegebenenfalls substituiert sein können und worin der Piperazinring kann gegebenenfalls substituiert sein kann, darstellt

39. Verbindungen der Formei (4)

$$\begin{array}{c|c}
R_{3}^{l'_{6}} & R_{7}^{l'_{6}} \\
R_{3}^{l'_{6}} & R_{N}^{l'_{6}} & R_{7}^{l'_{6}} \\
R_{3}^{l'_{6}} & R_{N}^{l'_{6}} & R_{10}^{l'_{6}} \\
R_{3}^{l'_{6}} & R_{10}^{l'_{6}} & R_{10}^{l'_{6}}
\end{array}$$
(4)

dar, worin

 R'_{1} – R'_{11} die für die Substituenten R_1 – R_{11} angegebenen Bedeutungen haben können, mit der Ausnahme von quaternisierten Stickstoffatomen und der Massgabe, dass

- (iv) mindestens einer der Substituenten R'₁ R'₇ Halogen, NO₂ oder OR₁₈, wortn R₁₈ gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder gegebenenfalls substituiertes Aryl lst, bedeutet und
- (v) die Substituenten R'₅- R'₁₁ weder Halogen, NO₂ noch R₁₅, worin R₁₅ die unter (i) angegebenen Bedeutungen hat, sind.

40. Verbindungen der Formel (4a)

worin $R_{1}^{n} - R_{11}^{n}$ die für die Substituenten $R_{1} - R_{11}$ angegebenen Bedeutungen haben können mit der Ausnahme von quaternisierten Stickstoffatomen und der Massgabe, dass

mindestens einer der Substituenten $R^*_1 - R^*_7$ eine quaternisierbare Stickstoffgruppe enthält, welche nicht direkt an einen der balden Pyridinninge A und/oder B gebunden ist, enthält.

- 41. Wasch-, Reinigungs-, Desinfektjons- oder Bleichmittel, enthaltend
 - 0 50 %, A) eines anionischen Tensids und/oder B) eines nichtionischen Tensids,
 - II) 0 70 %, C) einer Buildersubstanz,
 - III) 1 99 %, D) eines Peroxids und
 - E) Metalikomplexverbindungen der Formel (1) in einer Menge, die in der Flotte eine Konzentration von 0,5 50, vorzugsweise 1 30 mg/l Flotte ergibt, wenn man der Flotte 0,5 bis 20 g/l des Wasch-, Reinigungs-, Desinfektions- und Bleichmittels zusetzt, wobei die Prozentangaben jeweils Gewichtsprozente, bezogen auf das Gesamtgewicht des Mittels bedeuten.
- 42. Feste Zubereitungen, enthaltend
 - a) 1 bis 99 Gew, % einer Metalikomplexverbindung gemäss Anspruch 29,
 - b) 1 bis 99 Gew. % eines Bindemittels,
 - c) 0 bis 20 Gew. % eines Umhüllungsmaterials,
 - d) 0 bis 20 Gew. % eines weiteren Zusatzes sowie
 - e) 0 bis 20 Gew. % Wasser.
- 43. Feste Zubereitungen gemäss Anspruch 42, dadurch gekennzeichnet, dass es sich um Tabletten oder Granulate handeit.

Zusammenfassung

Verwendung von Metallkomplexverbindungen der Formel

 $[L_nMe_mX_p]^{z}Y_q$

L ein Ligand der Formel (2)

(1),

worin Me Mangan, Titan, Eisen, Kobalt, Nickel oder Kupfer ist,
X ein koordinierender oder verbrückender Rest ist,
n und m unabhängig vonelnander eine ganze Zahl mit einem Wert von 1 bis 8
bedeuten,
p eine ganze Zahl mit dem Wert von 0 bis 32,
z die Ladung des Metalikomplexes,
Y ein Gegenion ist,
q = z/(Ladung Y), und

$$\begin{array}{c|c}
R_3 & R_6 \\
R_4 & R_6 \\
R_1 & R_{10}
\end{array}$$
(2)

ist, worin

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_{10} und R_{11} unabhängig voneinander je Wasserstoff; gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl; Cyano; Hałogen; Nitro; -COOR₁₂ oder -SO₃R₁₂, worin R_{12} jeweils Wasserstoff, ein Kation oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl ist; -SR₁₃, -SO₂R₁₃ oder -OR₁₃, worin R_{13} jewells Wasserstoff oder gegebenenfalls substituiertes C_1 - C_{18} -Alkyl oder Aryl ist; -NR₁₄R₁₅; -(C₁-C₆alkylen)-NR₁₄R₁₅; -N $^{\oplus}$ R₁₄R₁₆R₁₆; -(C₁-C₆alkylen)-N $^{\oplus}$ R₁₄R₁₅R₁₉; -N(R₁₃)-(C₁-C₆alkylen)-NR₁₄R₁₅; -N[(C₁-C₆alkylen)-NR₁₄R₁₆R₁₆, -N[(C₁-C₆alkylen)-NR₁₄R₁₆R₁₆]; -N(R₁₃)-(C₁-C₆alkylen)-N $^{\oplus}$ R₁₄R₁₅R₁₆, worin R₁₃ die oben angegebenen Bedeutungen hat und R₁₄, R₄₅ und R₁₆ unabhängig voneinander Wasserstoff oder gegebenenfalls substituiertes C₁-C₁₈-Alkyl oder Aryl sind, oder R₁₄ und R₁₆

zusammen mit dem sie verbindenden N-Atom einen gegebenenfalls substituierten und gegebenenfalls weitere Heteroatome enthaltenden 5-, 6- oder 7-gliedrigen Ring bilden mit der Massgabe, dass

- (i) mindestens einer der Substituenten $R_1 \sim R_{11}$ ein quaternisiertes Stickstoffatom, welches nicht direkt an einen der drei Pyridinringe A. B oder C gebunden ist, enthält und dass
- (ii) Y weder I' noch Cl' ist, falls Me Mn(II) ist, $R_1 R_8$ und $R_7 R_{11}$ Wasserstoff sind und R_8

bedeutet, als Katalysatoren für Oxidationen, sowie die neuen Metalikomplexverbindungen der Formel (1), die neuen Liganden der Formel

(2) und deren Ausgangsprodukte.