

Autumn Mid-Semester Examination-2015 1st Semester B.Tech & B.Tech Dual Degree Chemistry (CH-1003)

Full Mark: 25

Time: 2 Hours

(Answer any five questions including Question No. 1 which is compulsory)
The figures in the margin indicate full marks
All parts of a question should be answered at one place only

- (a) Among H₂⁺ and H₂⁻ molecular ions which one is more stable and why? [1x5]
 - (b) K₂CrO₄ is intensely colored. Explain.
 - (c) Extrinsic semi-conductors have more conductivity value than intrinsic semiconductors. Explain
 - (d) Justify that nearly all tetrahedral complexes are high spin.
 - (e) Find the magnetic moment of $[Co (NH_3)_6]^{3+}$ complex ion.
- (a) What do you mean by LCAO. Show the shapes of molecular orbitals formed by the linear combinations of '2p' orbitals. [2x2.5]
 - (b) B₂ molecule is stable where as Be₂ molecule is unstable.
- Explain the following:

[2x2.5]

- (a) Magnesium is good conductor of electricity in spite of completely filled valence band.
- (b) NO is paramagnetic while NO+ is diamagnetic.
- (a) Explain [Ni (H₂O)₆]²⁺ is green but [Ni(CN)₆]²⁻ is colorless.

[2x2.5]

- (b) Assign the colors green and blue to the complexes: $[Cu (H_2O)_6]^{2+}$ and $[Fe(H_2O)_6]^{2+}$.
- 5. (a) Δ_0 for $[Fe(H_2O)_6]^{2+}$ is found to be 21,000 cm⁻¹ from electronic spectrum. If average pairing energy of Fe (II) is 28,000 cm⁻¹, calculate its CFSE value. [2x2.5]
 - (b) Draw the crystal field splitting diagram with distribution of d-electrons for the complex ion $[Fe (NO)(H_2O)_5]^{2+}$. Also calculate its magnetic moment due to spin only.
- 6. $[Ni\ Cl_4]^2$ is paramagnetic while $[Ni\ (CN)_4]^2$ is diamagnetic. Deduce the geometry of both the complexes. Also calculate μ_{spin} on the basis of CFT. [5]
- (a) When excess of ammonia is added to copper sulphate solution, a deep blue colored complex is formed. Predict the geometry of the complex on the basis of VBT. [2x2.5]
 (b) [Co (NH₃)₆]³⁺ ion is more stable than [Co (NH₃)₆]²⁺ ion. Explain on the basis of CFT.