Eksamen på Økonomistudiet. Sommeren 2012

MATEMATIK B

1. årsprøve

Tirsdag den 21. august 2012

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2012 S-1B rx

EKSAMEN I MATEMATIK B

Tirsdag den 21. august 2012

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. En symmetrisk 3×3 matrix A har egenværdierne 5, 7 og 9, og de tilhørende egenrum er

$$V(5) = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}, V(7) = \operatorname{span}\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\} \text{ og } V(9) = \operatorname{span}\left\{ \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}.$$

- (1) Er matricen A regulær?
- (2) Er matricen A positiv definit?
- (3) Bestem matricen A.
- (4) Bestem matricen $A^2 = AA$.
- (5) Bestem en diagonalmatrix Λ og en ortogonal matrix Q, så

$$\Lambda = Q^{-1}A^2Q.$$

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x > 0 \land y > 0\}$$

og funktionen $f: D \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = \sqrt{x} + \sqrt{y} + xy.$$

(1) Bestem værdimængden R(f) for funktionen f.

(2) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt (x,y), hvor x>0 og y>0.

- (3) Vis, at funktionen f ikke har nogen stationære punkter.
- (4) Bestem Hessematricen H(x, y) for funktionen f i et vilkårligt punkt (x, y), hvor x > 0 og y > 0, og bestem dernæst mængden

$$N = \{(x, y) \in \mathbf{R}^2 \mid H(x, y) \text{ er negativ definit}\}.$$

(5) Vi betragter funktionen $g:N\to\mathbf{R},$ som er givet ved forskriften

$$\forall (x,y) \in N : g(x,y) = f(x,y).$$

Vis, at funktionen g er strengt konkav.

(6) For ethvert u > 0 betragter vi mængden

$$A(u) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le u \ \land \ 0 \le y \le u\}.$$

Udregn integralet

$$I(u) = \int_{A(u)} f(x, y) d(x, y)$$

for et vilkårligt u > 0.

(7) Bestem grænseværdien

$$\lim_{u \to 0} \Big(\frac{I(u)}{u^{\frac{3}{2}} \sin(2u)} \Big).$$

Opgave 3. Vi betragter differentialligningen

$$\frac{dx}{dt} = 6t^2x^2.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x}=\tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(0)=-\frac{1}{16}$ er opfyldt.

Opgave 4. For ethvert $n \in \mathbb{N}$, hvor $n \geq 3$, betragter vi mængden

$$U = \{1, 2, 3, \dots, n\}$$

og funktionen $P:U\to\mathbf{R},$ som er givet ved

$$\forall i \in U : P(i) = ae^i,$$

hvor a>0 er en given positiv konstant.

- (1) Bestem konstanten a, så funktionen P er en sandsynlighedsfunktion.
- (2) Bestem sandsynligheden $P(\{1,2\})$.
- (3) Bestem $n \geq 3$, så

$$P(\{1,2\}) < \frac{e^2 - 1}{10000}.$$