Aprendizagem de Máquina - Laboratório 2

Maria Teresa Kravetz Andrioli

Universidade Federal do Paraná (UFPR) Curitiba – PR – Brasil

Repositório github com programa usado e dados extraídos: https://github.com/mariaandrioli/aprendizagem-de-maquina/tree/main/L2

1. Comparação em função da base de treinamento

1.1. KNN

A curva do gráfico tem tendências de ficar mais reta a partir de 9000 dados.

1.2. Naive Bayes

A curva do gráfico tem tendências de ficar mais reta a partir de 9000 dados.

1.3. LDA

A curva do gráfico tem tendências de ficar mais reta a partir de 10000 dados, mas tem um curva significante para baixo no marco de 15000 dados.

1.4. Logistic Regression

A curva do gráfico tem tendências de ficar mais reta a partir de 10000 dados, mas continua até 20000 com um crescimento constante.

1.5. Perceptron

A curva do gráfico não tem tendência de ficar mais reta, com bastante variação.

2. Melhor desempenho com poucos dados (1000 dados)

Classificador	Precisão (arredondado para 3 casas)	Tempo (sys+user)
KNN	0.782	66.76s
Naïve Bayes	0.674	13.95s
Linear Discriminant Analysis	0.787	11.01s
Logistic Regression	0.729	16.39s
Perceptron	0.756	12.39s

Com o parâmetro de 1000 linhas na base de dados de treinamento, o classificador com melhor desempenho foi o Linear Discriminant Analysis, com o menor tempo e maior índice de precisão.

3. Melhor desempenho com todos os dados

Classificador	Precisão (arredondado para 3 casas)	Tempo (sys+user)
KNN	0.939	233.55s
Naïve Bayes	0.889	15.02s
Linear Discriminant Analysis	0.928	13.69s

Logistic Regression	0.912	43.03s
Perceptron	0.927	10.74s

Com todos os dados, a comparação fica um pouco mais complicada, pois o KNN tem uma precisão levemente mais alta, porém um tempo muito maior (17 vezes maior). Arredondando mais uma casa, a precisão ficaria 0,94 para o KNN e 0,93 para o LDA. por causa disso, o desempenho do LDA é melhor. No entanto, acredito que se a diferença de precisão fosse um pouco maior e o tempo de resolução do problema não fosse tão relevante, existem casos que o KNN possa ser o escolhido.

4. Análise matrizes de confusão

4.1. KNN

	[54	472	3	1	15	6	2	26	2	32	1]
	[0	6105	175	119	56	6	35	66	34	59]
ı	[12	11	5607	165	3	1	16	51	20	2]
	[4	1	25	5646	2	51	1	53	20	16]
	[12	11	13	3	5305	9	132	24	11	202]
	[9	3	9	489	4	4842	41	16	83	43]
	[31	10	4	2	3	44	5724	0	40	0]
	[1	25	41	119	54	1	0	5773	7	76]
	[36	24	42	114	32	38	50	27	5165	167]
	[16	9	17	107	78	9	9	131	34	5403]]
				pre	ecisio	on	recal	ll f:	l-scor	e	support
			0.6)	0.9	98	0.9	98	0.9	8	5560
			1.6)	0.9	98	0.9	92	0.9	95	6655
			2.6)	0.9	94	0.9	95	0.9	95	5888
			3.6)	0.8	33	0.9	97	0.9	90	5819
			4.6)	0.9	96	0.9	93	0.9	94	5722
			5.6)	0.9	97	0.8	37	0.9	92	5539
			6.6)	0.9	95	0.9	98	0.9	96	5858
			7.6)	0.9	94	0.9	95	0.9	94	6097
			8.6)	0.9	95	0.9	91	0.9	93	5695
			9.6)	0.9	91	0.9	93	0.9	92	5813
		aco	curacy	/					0.9	94	58646
	١	macr	o avg	3	0.9	94	0.9	94	0.9	94	58646
V	vei	ghte	ed avg	g	0.9	94	0.9	94	0.9	94	58646

4.2. Naive Bayes

Γ	5220	1	11	32	2	1	41	0	251	1]
_		5184	583	238	86	22	85	340	80	
	9	24	5289	447	4	1	8	52	53	1]
	_ 2	1	212	5390	1	33	0	127	31	22]
	14	2	44	12	5273	0	32	44	90	211]
	9	6	29	103	31	4958	46	2	169	186]
	78	7	89	8	15	90	5286	0	285	0]
	1	47	175	426	21	1	1	5323	60	42]
	175	5	53	182	23	7	38	13	5112	87]
	25	5	62	151	221	4	0	55	184	5106]]
			pre	ecisio	on	recal	l1 f:	1-scor	re	support
		0.6	9	0.9	94	0.9	94	0.9	94	5560
		1.6	3	0.9	98	0.7	0.78		37	6655
		2.6	3	0.8	31	0.90		0.85		5888
		3.6	9	0.7	77	0.93		0.8	34	5819
		4.6	9	0.9	93	0.9	0.92		93	5722
		5.6	9	0.9	97	0.9	90	0.9	93	5539
		6.6	9	0.9	95	0.9	90	0.9	93	5858
		7.6	3	0.8	39	0.8	37	0.8	88	6097
		8.6	3	0.8	31	0.9	90	0.8	35	5695
		9.6	9	0.9	90	0.8	38	0.8	39	5813
	ac	curacy	y					0.8	39	58646
	macı	o avg	g	0.9	90	0.8	39	0.8	39	58646
W	eight	ed avg	5	0.9	90	0.8	39	0.8	39	58646

4.3. LDA

```
[[5358]
     10
           11
                 15
                      19
                             0
                                 47
                                       17
                                            80
                                                   3]
 0 6027
                                                  22]
          222
                 85
                            22
                                 38
                                      199
                                            31
22
     41 5605
                       1
                 12
                             0
                                      175
                                            27
                                                   1]
     12
           29 5470
                       1
                                  1
                                      247
                                            23
                                                  16]
                            19
20
     71
           42
                  0 5208
                             0
                                 86
                                            29
                                                 261]
     11
                314
                       4 5015
                                 50
                                       24
                                                  39]
77
     49
                 15
                      56
                            36 5460
                                        0
                                           125
                                                   3]
           47
                  6
                      58
                            1
                                  0 5882
                                            22
                                                  23]
     58
80
     59
           38
                      51
                            29
                                 54
                                       57 4961
                                                 361]
34
                 91
                      69
                                 16
                                       98
      31
            9
                                            29 5429]]
```

	precision	recall	f1-score	support
0.0	0.96	0.96	0.96	5560
1.0	0.95	0.91	0.93	6655
2.0	0.93	0.95	0.94	5888
3.0	0.91	0.94	0.92	5819
4.0	0.95	0.91	0.93	5722
5.0	0.98	0.91	0.94	5539
6.0	0.95	0.93	0.94	5858
7.0	0.88	0.96	0.92	6097
8.0	0.92	0.87	0.89	5695
9.0	0.88	0.93	0.91	5813
accuracy			0.93	58646
macro avg	0.93	0.93	0.93	58646
weighted avg	0.93	0.93	0.93	58646

4.4. Logistic Regression

ГГ	E 2	81	5	16	12	15	4	69	6	51	11
											1]
[5595	116	269	200	74	179	74	78	69]
[22	18	5585	89	12	1	33	82	45	1]
[4	3	37	5597	16	39	1	74	20	28]
[35	8	30	1	5315	2	104	41	9	177]
[6	12	23	497	78	4728	50	22	73	50]
[87	26	0	1	20	96	5517	0	111	0]
[0	41	40	121	165	2	0	5600	17	111]
[83	43	47	59	85	46	53	58	5000	221]
[55	22	8	143	251	0	4	150	19	5161]]
_				pre	ecisio	on	reca]	ll f1	L-scor	re :	support
			0.6)	0.9	95	0.9	97	0.9	96	5560
			1.6)	0.9	97	0.8	34	0.9	90	6655
			2.6)	0.9	95	0.9	95	0.9	95	5888
			3.6)	0.8	32	0.9	96	0.8	39	5819
			4.6)	0.8	36	0.9	93	0.8	39	5722
			5.6		0.9		0.8		0.9		5539
			6.6		0.9		0.9		0.9		5858
			7.6		0.9		0.9		0.9		6097
			8.6		0.9		0.8		0.9		5695
			9.6)	0.8	39	0.8	39	0.8		5813

accurac	zy .		0.91	58646	
macro av	g 0.91	0.91	0.91	58646	
weighted av	g 0.91	0.91	0.91	58646	

4.5 Perceptron

[[5532	1	0	6	0	1	18	1	1	0]
[14	6114	46	217	14	176	27	43	2	2]
[88	32	5548	137	2	0	16	62	3	0]
[5	3	12	5698	0	60	1	28	2	10]
[116	13	46	17	5172	7	108	39	5	199]
[21	5	4	129	3	5318	40	1	6	12]
[129	8	5	4	5	57	5648	0	2	0]
[2	42	51	157	31	4	0	5796	1	13]
[329	39	45	457	35	225	185	20	4211	149]
[89	36	26	115	106	25	3	83	3	5327]]
			pre	ecisio	on	reca]	l1 f:	1-scor	e .	support
		0.6	9	0.8	37	0.9	99	0.9	3	5560
		1.6	9	0.9	97	0.9	92	0.9	4	6655
		2.6	9	0.9	96	0.9	94	0.9	5	5888
		3.6	9	0.8	32	0.9	98	0.8	9	5819
		4.6	9	0.9	96	0.9	90	0.9	3	5722
		5.6	9	0.9	91	0.9	96	0.9	3	5539
		6.6	9	0.9	93	0.9	96	0.9	5	5858
		7.6	9	0.9	95	0.9	95	0.9	5	6097
		8.6	9	0.9	99	0.7	74	0.8	5	5695
		9.6	9	0.9	93	0.9	92	0.9	2	5813
	ac	curacy	/					0.9	3	58646
	mac	ro avę	3	0.9	93	0.9	93	0.9	3	58646
W€	eight	ed av	3	0.9	93	0.9	93	0.9	3	58646

4.6 Melhores combinações

Uma boa combinação de algoritmos seria o Perceptron e o KNN. Como os dados são balanceados, é possível usar a precisão para compará-los. Dessa forma, observando os valores de precisão a partir das matrizes de confusão, esses dois comparadores podem ser bons complementos um do outro.