Thông tin các thành viên trong nhóm 5:

- 1) Lê Thị Thu An, 18001975, K63 TN Toán học.
- 2) Thiều Đình Minh Hùng, 21000006, K66 TN Toán học.

Bài tập 1: Giải bài toán quy hoạch tuyến tính sau:

$$\begin{array}{ll}
\max & c^T x \\
\text{s.t.} & Ax = b, \\
& x > 0
\end{array}$$

với:

$$c = \begin{bmatrix} 1 \\ -1 \\ 0 \\ -3 \end{bmatrix}, \quad , A = \begin{bmatrix} 1 & -2 & 3 & 0 \\ 3 & -1 & 4 & 1 \\ -2 & -1 & -1 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ 13 \\ -7 \end{bmatrix}.$$

Lời giải.

Đây là bài toán quy hoạch tuyến tính dạng chính tắc. Nhân hai vế điều kiện thứ 3 với (-1), ta có thể viết lai bài toán như sau:

Bài toán bổ trợ \mathfrak{D} :

Bảng đơn hình (có hàm mục tiêu của cả bài toán gốc và bài toán bổ trợ):

	Basis	x_1	x_2	x_3	x_4	y_1	y_2	y_3	RHS
	y_1	1	-2	3	0	1	0	0	6
	y_2	3	-1	4	1	0	1	0	13
	y_3	2	1	1	1 1	0	0	1	7
_	z	1	-1	0	-3	0	0	0	0
	w	6	-2	8	2	0	0	0	0

Ta thực hiện các phép xoay để tìm cơ sở chấp nhận được cho bài toán ban đầu bằng cách giải bài toán bổ trợ:

Basis	x_1	x_2	x_3	x_4	y_1	y_2	y_3	RHS	Ratio
y_1	1	-2	3	0	1	0	0	6	6
y_2	3	-1	4	1	0	1	0	13	13/3
y_3	2	1	1	1	0	0	1	7	7/2
z	1	-1	0	-3	0	0	0	0	
w	6	-2	8	2	0	0	0	0	

				x_4				
$\overline{y_1}$	0	-5/2	5/2	-1/2 -1/2	1	0	-1/2	5/2
y_2	0	-5/2	5/2	-1/2	0	1	-3/2	5/2
x_1	2	1	1	1	0	0	1	7
\overline{z}	0	-3/2	-1/2	-7/2	0	0	-1/2	-7/2
w	0	-5	5	-1	0	0	-3	-21

Basis	x_1	x_2	x_3	x_4	y_1	y_2	y_3	RHS	Ratio
y_1	0	-5/2	(5/2)	-1/2	1	0	-1/2	5/2	1
y_2	0	-5/2	$\widetilde{5/2}$	-1/2	0	1	-3/2	5/2	1
x_1	1	1/2	1/2	1/2	0	0	1/2	7/2	7
\overline{z}	0	-3/2	-1/2	-7/2	0	0	-1/2	-7/2	
w	0	-5	5	-1	0	0	-3	-21	

	Basis	$ x_1 $	x_2	x_3	x_4	y_1	y_2	y_3	RHS
_	x_3	0	-5/2	5/2	-1/2	1	0	-1/2	5/2
	y_2	0	0	0	0	-1	1	-1	0
	x_1	1	1	0	-1/2 0 3/5	-1/5	0	3/5	3
_	z	0	-2	0	-18/5	1/5	0	-3/5	-3
	w	0	0	0	0	-2	0	-2	-26

Basis	x_1	x_2	x_3	x_4	y_1	y_2	y_3	RHS
$\overline{x_3}$	0	-1	1	-1/5	2/5	0	-1/5	1
y_2	0	0	0	0	-1	1	-1	0
x_1	1	1	0	-1/5 0 3/5	-1/5	0	3/5	3
\overline{z}	0	-2	0	-18/5	1/5	0	-3/5	-3
w	0	0	0	o o	-2	0	-2	-26

Nghiệm tối ưu của bài toán bổ trợ có y = 0 nên bài toán ban đầu có nghiệm CNĐ, với cơ sở thu được từ bảng đơn hình trên bị suy biến và chứa biến y_2 .

Vì dòng ứng với biến y_2 có các hệ số ứng với các biến x_1, x_2, x_3, x_4 bằng 0, nên ta có thể bỏ dòng này đi và ta có cơ sở CNĐ cho bài toán ban đầu là $\{x_3, x_1\}$.

Bảng đơn hình của bài toán ban đầu với cơ sở CNĐ tương ứng ở trên là:

Basis	$ x_1 $	x_2	x_3	x_4	RHS
$\overline{x_3}$	0	-1	1	-1/5	1
x_1	1	1	0	3/5	3
\overline{z}	0	-2	0	-18/5	-3

Như vậy $\{x_3, x_1\}$ chính là cơ sở CNĐ tối ưu cho bài toán ban đầu, và ta có nghiệm tối ưu:

$$x = \begin{bmatrix} 3 & 0 & 1 & 0 \end{bmatrix}^T,$$

với giá trị tối ưu là 3.

Bài tập 2. Viết bài toán đối ngẫu của bài toán sau:

Bài toán đối ngẫu là:

Bài tập 3. Xét dạng chuẩn tắc của (P):

$$\max c^{T} x$$
s.t. $Ax \le b$

$$-Ax \le -b'$$

$$x \ge 0$$

$$(\mathcal{P}')$$

Bài toán đối ngẫu của (\mathcal{P}') là:

$$\begin{aligned} & \min & b^T s - b^T u \\ & \text{s.t.} & A^T s - A^T u \geq c^T \\ & & s \geq 0 \\ & & u > 0 \end{aligned}$$
 (\mathcal{D}')

Đặt y=s-u, ta có bài toán tương đương với (\mathcal{D}') là:

$$\begin{aligned} & \min & b^T y \\ & \text{s.t.} & A^T y \geq c^T \end{aligned}$$

Bài tập 4. Sử dụng định lý về độ lệch bù, kiểm tra xem $x = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$ có phải là nghiệm tối ưu của LP sau không:

Lời giải.

Ký hiệu bài toán đã cho là (\mathcal{P}) . Trước hết, ta dễ thấy $x = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}^T$ là nghiệm CNĐ của (\mathcal{P}) . Giả sử x là nghiêm tối ưu của (\mathcal{P}) . Xét bài toán đối ngẫu (\mathcal{D}) của (\mathcal{P}) :

Giả sử $y = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 \end{bmatrix}^T$ là nghiệm tối ưu tương ứng của (\mathcal{D}) . Thay giá trị của x vào các điều kiện của (\mathcal{P}) ta có:

Mặt khác, để ý rằng: $x_1 = 0$ và $x_i > 0, \forall i = \overline{2,4}$.

Do đó, theo định lý về độ lệch bù, đối với nghiệm y tương ứng của bài toán đối ngẫu tương ứng \mathcal{D} ta có: $y_3=0$, đồng thời các điều kiện 2, 3, 4 của (\mathcal{D}) phải xảy ra dấu bằng.

Như vậy, nghiệm $y=\begin{bmatrix}y_1 & y_2 & y_3 & y_4\end{bmatrix}^T$ của (\mathcal{D}) thỏa mãn hệ phương trình:

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 0 & 3 & 1 \\ 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 0 \end{pmatrix}$$

Ta giải hệ phương trình trên bằng phương pháp khử Gauss:

$$\begin{pmatrix}
1 & 1 & 2 & 0 & 2 \\
1 & 0 & 3 & 1 & 2 \\
1 & 2 & 1 & 1 & 4 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}$$

$$\frac{H2 - H1, H3 - H1}{\longrightarrow} \begin{pmatrix}
1 & 1 & 2 & 0 & 2 \\
0 & -1 & 1 & 1 & 0 \\
0 & 1 & -1 & 1 & 2 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}$$

$$\underbrace{H4 \leftrightarrow H3}_{0} \begin{pmatrix}
1 & 1 & 2 & 0 & 2 \\
0 & -1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 2
\end{pmatrix}$$

$$\Leftrightarrow y = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^T$$

Ta cần kiểm tra xem $y = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}^T$ có là nghiệm CNĐ của (\mathcal{D}) hay không. Thật vậy, dễ thấy rằng $y \geq 0$, đồng thời từ cách xây dựng ta thấy nghiệm này thỏa mãn các điều kiện 2, 3, 4 của (\mathcal{D}) .

Ta thay giá trị của y vào điều kiện 1 của (\mathcal{D}) :

$$2(1) \ + \ 1(1) \ + \ 1(0) \ + \ 2(1) \ > \ 4$$

Như vậy, y là nghiệm CNĐ của (\mathcal{D}) , và do đó theo định lý về độ lệch bù, giả sử của ta đúng, hay $x = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$ là nghiệm tối ưu của (\mathcal{P}) .

Câu trả lời là khẳng định.

 ${\bf Bài}$ tập 5. Giải LP sau dùng thuật toán đơn hình đối ngẫu: