

APRENDIZADO AUTOMÁTICO DE REDES SOMA-PRODUTO

Renato Lui Geh (autor) e Denis Deratani Mauá (orientador)

Instituto de Matemática e Estatística, Universidade de São Paulo

{renatolg,ddm}@ime.usp.br

Objetivos

Redes soma-produto (SPN, de *Sum-Product Networks*) são modelos probabilísticos que podem representar distribuições de probabilidade com um grande número de variáveis. Recentemente, SPNs tiveram resultados impressionantes em diversas aplicações. Apesar disso, atualmente existem poucas bibliotecas para inferência e aprendizado de SPNs, além de não existir nenhum estudo comparativo entre os diferentes métodos de aprendizado. Este projeto busca criar uma biblioteca livre, aberta e gratuita para inferência e aprendizado de SPNs, além de comparar três algoritmos de aprendizado no domínio de classificação e compleição de imagens.

Métodos e Procedimentos

Os algoritmos foram implementados como parte da biblioteca GoSPN¹ escrita na linguagem Go. Foram implementados os algoritmos de aprendizado de Poon-Domingos [3], Dennis-Ventura [1] e Gens-Domingos [2]. Em seguida, foram feitos testes comparando a performance dos três métodos nos conjuntos de dados DigitsX, MNIST, Caltech-101 e Olivetti Faces.

Resultados

Os dois algoritmos que tiveram melhores desempenhos foram o de Gens-Domingos e Dennis-Ventura. O de Poon-Domingos ou excedeu o limite de tempo ou memória, ou teve resultados abaixo do esperado. A Tabela 1 mostra a porcentagem de acerto em classificação dos dois melhores algoritmos usando 50% do conjunto de dados como treino e o restante como teste.

Tabela 1. Acurácia em classificação (em %).

	Dennis-Ventura	Gens-Domingos
DigitsX	99.42	97.14
Caltech	81.38	88.66
Olivetti	89.93	95.50
MNIST	77.85	81.55

¹Disponível em: https:github.com/RenatoGeh/gospn

Para a tarefa de compleição de imagem, foi dada metade da imagem como evidência para o modelo (visualizada na Figura 1 em escala de cinza) e gerada a outra metade (na Figura 1 em tons de verde) tomando as valorações mais prováveis dada evidência. A imagem da esquerda foi gerada pelo algoritmo de Gens-Domingos, e o da direita pelo de Dennis-Ventura.

Figura 1. Compleição de imagem.

Conclusões

Obteve-se bons resultados em classificação em diferentes domínios, como classificação de dígitos, identificação de objetos e reconhecimento de face. Em compleição, os algoritmos identificaram de forma razoável características como nariz, olhos e boca no conjunto Olivetti. Todo código foi documentado e disponibilizado de forma livre e gratuita como parte da biblioteca GoSPN.

Referências Bibliográficas

- [1] A. Dennis e D. Ventura. "Learning the Architecture of Sum-Product Networks Using Clustering on Variables". Em: *NIPS* 25 (2012).
- [2] R. Gens e P. Domingos. "Learning the Structure of Sum-Product Networks". Em: *ICML* 30 (2013).
- [3] H. Poon e P. Domingos. "Sum-Product Networks: A New Deep Architecture". Em: *UAI* 27 (2011).