Notes on NEWUOA

Zaikun Zhang *

June 7, 2021 8:49pm

$\frac{1}{\text{Algorithm 0.1}}$

Input $\Delta_0 \in (0, +\infty)$, $m \in \{n+2, n+3, \dots, (n+1)(n+2)/2\}$, and $\mathcal{X}_0 \subset \mathbb{R}^n$ with $x_0 \in \mathcal{X}_0$ and $|\mathcal{X}_0| = m$. Set $Q_{-1} = 0$ and k = 0.

- 1. $Q_k = \operatorname{argmin}\{\|\nabla^2 Q \nabla^2 Q_{k-1}\|_F : Q \in \mathcal{Q} \text{ and } Q(x) = f(x) \text{ for } x \in \mathcal{X}_k\}.$
- 2. $x_k = \operatorname{argmin}\{f(x) : x \in \mathcal{X}_k\}, x_k^+ = \operatorname{argmin}\{Q_k(x) : ||x x_k|| \le \Delta_k\}.$
- 3. $\rho_k = [f(x_k) f(x_k^+)]/[Q_k(x_k) Q_k(x_k^+)];$ update Δ_k according to ρ_k .
- 4. $x_k^- = \operatorname{argmin} \{ \kappa(\mathcal{X}_k, x_k^+, x) : x \in \mathcal{X}_k \}$
- 5. If $\kappa(\mathcal{X}_k, x_k^+, x_k^-) \le \kappa_0$, then $\mathcal{X}_{k+1} = \mathcal{X}_k \cup \{x_k^+\} \setminus \{x_k^-\}$.
- 6. If $\kappa(\mathcal{X}_k, x_k^+, x_k^-) > \kappa_0$ or $\rho_k < \eta$

^{*}Hong Kong Polytechnic University, zaikun.zhang@polyu.edu.hk