

DG AGRI LUNCHTIME SESSION The BioMA platform and applications

Marcello Donatelli

marcello.donatelli@crea.gov.it

Outline

- Do we need a modelling framework?
- What is BioMA?
- BioMA applications
- BioMA in MODEXTREME
- Conclusions

Model development and reuse

- The demand of model tools to perform integrated evaluation of agro-ecological systems has further increased in the last decade.
- The major obstacle to develop such simulation systems has been the fragmented availability of modelling resources, partly due to technical bottlenecks.
- Extension of modelling resources by adding modules, and replacing or changing existing ones to accommodate new modules, has not been at reach except by full recoding.

Statistical vs. process-based models in brief

- Statistical models: based on regression and correlation analysis
 - PROS: Robustness, relatively simple.
 - CONS: valid for conditions accounted for in the data used to develop them; show "what", but not "why".
- Process-based models: based on knowledge on physics, biology, chemistry etc.
 - PROS: Allow extrapolation to new conditions; make available insight on system dynamics.
 - CONS: Complex to build and maintain, require articulated inputs.

The generic modelling problem

Agronomists, Soil scientists, Geographers, Meteorologists, ...

!@#\$%#\$%^?

Slide courtesy of I.Athanasiadis

Model frameworks

- Since many years model frameworks have represented a substantial step forward with respect to monolithic implementations of biophysical models.
- The separation of algorithms from data, the reusability of services such as I/O and visualization procedures, have brought a solid advantage in the development of simulation systems.
- However, the reusability of model units has proved to be negligible; a model unit for a given framework is not usable in other frameworks.

New requirements

- Also, some new high level requirements emerged for modelling frameworks:
 - To increase the transparency of the modelling solutions being built compared to legacy code available, for each of the modelling solutions being built;
 - To increase the traceability of performance of each modelling unit used in modelling solutions;
 - To involve teams without requiring them to commit to a whole infrastructure they would not own.
- To maximize both reusability and accessibility, we chose to develop a simulation system based software components for models and tools, limiting dependencies.

Outline

- Do we need a modelling framework?
- What is BioMA?
- BioMA applications
- BioMA in MODEXTREME
- Conclusions

What is BioMA?

- BioMA (Biophysical Model Applications) is a open software framework designed for analyzing, parameterizing and running modelling solutions based on biophysical models.
- The framework is provided by a set of tools to perform sensitivity analysis based on different methods, optimization extensible for objective functions and solvers, and model evaluation, based on simple and composite metrics.
- The goal of this framework is to rapidly bridge from prototypes to operational applications, enabling also running and comparing different modeling solutions.

From models to viewers

Configuration
Layer
Composition
Layer
Model
Layer
Layer

 Model Layer: fine grained/composite models implemented in components

- Composition Layer: modeling solutions from model components
- Configuration Layer: adapters for advanced functionalities in controllers
- Applications: from console to advanced MVC implementations
- DevTools: code generators, UI components and applications

From models to applications

Weather

Weather variables (AirTemperature, Evapotranspiration, LeafWetness, Precipitation, SolarRadiation, Wind) Weather generators (ClimGen)

Abiotic stress

Heat damage, cold shocks, lodging, water stress

Biotic stress

Generic air-borne diseases simulator (*Diseases, Magarey*) Soil-borne diseases (*SBD*) Corn borer (*MYMICS*)

Quality

Agricultural products (AgroProQ)

Crop / Plant

Generic crop simulators (Wofost, CropSyst3;
in progress AcquaCrop, new CropSyst)
Rice (WARM)
Wheat (in progress SiriusQ)
Tree species: (Hazelnut; in progress Grapes, Poplar)
Sugarcane (Canegro)
Giant Reed (Arungro)
Generic pasture (STICS-Pasture)

Agro-chemicals

Agro-chemicals dynamics (AgroChemicals)

Soil

Soil water erosion runoff (CN, Eurosem)
Soil water (cascading, cascading travel time, Richards)
Soil surface and profile temperature
Soil carbon and nitrogen
Soil Pedotransfer functions (SoilPAR)

Agro-management

Rule-based models (AgroManagement)

Impact models responding to AgroManagement events in crop/plant, soil, diseases, agro-chemicals models

The IPR model

- Working with a model framework requires investing resources, and it requires a medium-term perspective;
- No institution will do it on a code base of core components which are owned by someone else and which have code not accessible;
- BioMA has adopted a MIT license with open source access to core components on GitHub.

Outline

- Do we need a modelling framework?
- What is BioMA?
- BioMA applications
- BioMA in ModExtreme
- Conclusions

BioMA applications

- BioMA applications have been used for different research projects (https://en.wikipedia.org/wiki/BioMA):
 - weather datasets for biophysical simulation
 - estimate agro-meteorological variables
 - CC impact on crop production adaptation in Europe
 - soil pathogens under climate change
 - corn borers under climate change
 - modelling solutions comparison at sub-model level
 - impact of CC on crop production in Latin America
 - fungal infections
 - functions to estimate soil hydraulic properties
 - quality of agricultural products

Potential CC impact on yield, no adaptation

Best technical adaptation strategy

Potential infection of brown/stripe rust on wheat under CC

Outline

- Do we need a modelling framework?
- What is BioMA?
- BioMA applications
- BioMA in MODEXTREME
- Conclusions

BioMA for MODEXTREME

- The need of extending simulation capabilities has been key for the MODEXTREME analyses.
- Traditional modelling solutions needed to be compared to the same approaches adding the new models developed to better account for «extreme» events.
- Modelling solutions used in the analyses are:
 - CropSyst and CropSyst+ModExt.ExtremeEvents; (crop generic)
 - Wofost and Wofost+ModExt.ExtremeEvents; (crop generic)
 - WARM and WARM+ModExt.ExtremeEvents; (rice)
- Other modelling solutions AquaCrop (crop generic), SiriusQ (wheat), Grapes (grapes), PaSim (pasture) are being finalized.

Models in MODEXTREME

Conclusions, BioMA-Site

- BioMA-Site is a multi-modelling solutions runner, open to load any modelling solution respecting the interface required by the software framework.
- The modelling solutions running in BioMA-Site can also run in the application BioMA-Spatial, that is, iteratively against explicit spatial units as done operationally at DG JRC.
- Modelling solutions other than the examples provided can be loaded, becoming simulation options; if they are alternate solutions to a specific modelling problem, BioMA-Site can also be used to compare their performance.

Conclusions

- The BioMA software framework is an open system which has been enriched of simulation capabilities for extreme weather events impact on crops.
- The MODEXTREME project has allowed its further development to match project objectives.
- BioMA has allowed to test different modelling solutions to more accurately simulate crops under increased climate variability worldwide.
- The modelling system is open for further development based on a set of open source components, and with free access to a variety of tools both for model development and use.

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

