Research Article

Cyclic Opioid Peptide Agonists and Antagonists Obtained Via Ring-Closing Metathesis

Irena Berezowska¹, Carole Lemieux¹, Nga N. Chung¹, Brian C. Wilkes¹ and Peter W. Schiller^{1,2}*

¹Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, Canada H2W 1R7

²Department of Pharmacology, Université de Montréal, Montreal, OC, Canada - H3C 3JT

The opioid peptide H-Tyr-c[D-Cys-Phe-Phe-Cys]NH₂ cyclized via a methylene dithiother is a potent and selective μ opioid agonist (Przydial M.J. et al., J Peptide Res, 66, 2005, 255). Dicarba analogues of this peptide with Tyr, 2',6'-dimethyltyrosine (Dmt), 3-[2.6-dimethyl-4-hydroxyphenyl)propanoic (Dhp) or (2S)-2-methyl-3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid [(2S)-Mdp] in the 1-position were prepared. The peptides were synthesized on solid-phase by substituting p-allylglycine and (2S)-2-amino-5-hexenoic acid in position 2 and 5, respectively, followed by ring-closing metathesis. Mixtures of cis and trans isomers of the resulting olefinic peptides were obtained, and catalytic hydrogenation yielded the saturated -CH2-CH2bridged peptides. All six Tyr1- and Dmt1-dicarba analogues retained high μ and δ opioid agonist potency and showed only slight or no preference for μ over δ receptors. As expected, the six Dhp¹and (2S)-Mdp1-dicarba analogues turned out to be μ opioid antagonists but, surprisingly, displayed a range of different efficacies (agonism, partial agonism or antagonism) at the δ receptor. The obtained results indicate that the μ versus δ receptor selectivity and the efficacy at the δ receptor of these cyclic peptides depend on distinct conformational characteristics of the 15-membered peptide ring structure, which may affect the spatial positioning of the exocyclic residue and of the Phe³ and Phe⁴ side chains.

Key words: opioid activity profiles, opioid peptide analogues, opioid peptide SAR, peptide synthesis, ring-closing metathesis

Abbreviations: Aha, $\{2S\}$ -2-amino-5-hexenoic acid; Allylgly, allylglycine, DAMGO, H-Tyr-D-Ala-Gly-N^eMePhe-Gly-ol; Dhp, 3-(2,6-dimethyl4-hydroxyphenyl)propanoic acid; DIC, 1,3-diisopropylcarbodiimide; Dmt, 2',6'-dimethyltyrosine; DPDPE, H-Tyr-c[D-Pen-Gly-Phe-D-Pen]OH; DPLPE, H-Tyr-c[D-Pen-Gly-Phe-Pen]OH; DSLET, H-Tyr-D-Ser-Gly-Phe-Leu-Thr-OH; GPI, guinea pig ileum; HOBt, 1-hydroxybenzotriazole; HPLC, high-performance liquid chromatography; JOM-13, H-Tyr-c[D-Cys-Phe-D-Pen]OH; (2S)-Mdp, 2-methyl-3-{2,6-dimethyl-4-hydroxyphenyl)propanoic acid; MVD, mouse vas deferens; RCM, ring-closing metathesis; TFA, trifluoroacetic acid; U69,593, $\{5\alpha,7\alpha,8\beta-(-)-N\text{-methyl-}N\text{-}[7-(pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]benzeneacetamide.$

Received 30 April 2009; revised 30 June 2009 and accepted for publication 11 July 2009

The first cystine-containing cyclic enkephalin analogues, H-Tyr-c[-D-Cys-Gly-Phe-D-(or L)-Cys]NH2 were synthesized independently by two groups (1.2) and were found to have high binding affinity for μ and δ opioid receptors. The corresponding peptides with a free Cterminal carboxyl group, H-Tyr-c[D-Cys-Gly-Phe-D(or L)-Cys]OH, showed subnanomolar δ opioid agonist potency and moderate δ receptor selectivity (3). Replacement of the two Cys residues in the latter peptides with penicillamine residues resulted in compounds with high δ receptor selectivity [H-Tyr-c[D-Pen-Gly-Phe-D-Pen]OH (DPDPE) and H-Tyr-c[D-Pen-Gly-Phe-Pen]OH (DPLPE)] (4). Subsequently, a dermorphin-derived cyclic tetrapeptide analogue containing the Phe residue in the 3-position of the peptide sequence, H-Tyr-c[D-Cys-Phe-Cys]NH₂, was reported to be a μ receptor-selective agonist (5). Substitution of D-Pen for Cys in the 4-position of the latter peptide and replacement of the C-terminal carboxamide function with a free carboxyl group led to a compound, H-Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13) which is almost as δ -selective as DPDPE and has 3.5-fold higher binding affinity for δ receptors (6). More recently, a pentapeptide containing a Phe residue in the 3- and 4position, H-Tyr-c[D-Cys-Phe-Phe-Cys]NH2-cyclized via a methylene dithioether, was described as a selective μ opioid receptor ligand with very high binding affinity (7).

Replacement of the disulphide bridge in cyclic opioid peptides with a bismethylene moiety ($-CH_2-CH_2-$) or a carbon-carbon double

This is an invited publication from the International Symposium on Organic Synthesis and Drug Development (2008). CB&DD honorary editors of this manuscript: Dr. Rao Rapaka, Prof. Guoqiang Lin, Prof. Yi Pan and Prof. Guigen Li.

^{*}Corresponding author: Peter W. Schiller, schillp@ircm.qc.ca

Berezowska et al.

bond (-CH=CH-) is of interest because the resulting dicarba analogues have altered conformational properties and may show different opioid activity profiles. In the past, this structural modification was synthetically demanding, as it required the replacement of cystine with diaminosuberic acid in cumbersome multistep syntheses (8,9). The development of ring-closing metathesis (RCM) using Grubbs catalysts (10) has greatly facilitated the preparation of dicarba analogues of cystine-containing peptides, as exemplified by the recent synthesis of a dicarba analogue of oxytocin (11).

The first report on the replacement of the disulphide bond in cystine-containing opioid peptides with a carbon-carbon single- or double bond described the synthesis and characterization of the dicarba analogues of the cyclic tetrapeptides H-Tyr-c[D-Cys-Phe-Cys]NH₂ (5) and H-Tyr-c[D-Cys-Phe-D-Cys]NH₂ (12). This was achieved by substitution of allylglycine (Allylgly) for Cys in the 2and 4-position and subsequent RCM, resulting in the cyclic olefinic peptides which upon catalytic hydrogenation yielded the saturated -CH₂-CH₂- bridged peptide. The -CH₂-CH₂- bridged peptide with L-configuration in position 4 showed about the same μ and δ opioid agonist potencies as its cystine-containing parent in the guinea pig ileum (GPI) and mouse vas deferens (MVD) bioassays, whereas the bismethylene analogue with p-configuration in position 4 was less potent than its parent by an order of magnitude. The cyclic olefinic peptides were also significantly less potent than their respective disulphide-bridged parents in both assays. Dicarba analogues of the enkephalin-derived cyclic peptides H-Tyr-c[D-Cys-Gly-Phe-D(or L)-Cys]NH2 were first reported by Schiller's group (13,14). RCM of the Allylgly-substituted precursor peptides resulted again in mixtures of cis and trans isomers of the cyclic olefinic peptides which, upon catalytic hydrogenation, yielded the bismethylene analogues. All dicarba analogues retained high μ and δ opioid agonist potencies. Remarkably, the trans isomer of H-Tyr-[D-Allylgly-Gly-Phe-L-Allylgly]NH2 was a μ agonist/ $\!\delta$ agonist with subnanomolar potency at both receptors. Subsequently, the same dicarba analogues of H-Tyrc[D-Cys-Gly-Phe-D-Cys]NH2 with a C-terminal carboxylic acid group, H-Tyr-c[D-Cys-Gly-Phe-D-Cys]OH (3), were also reported to have high μ and δ opioid agonist activity (15).

no.	Yyy	- X - X - X -
1	Tyr	- HC = CH - CH ₂ - (cis)
2	Tyr	- $HC = CH - CH_2 - (trans)$
3	Туг	- CH ₂ -CH ₂ - CH ₂ -
4	Dmt	- HC = CH - CH ₂ - (cis)
5	Dmt	- HC = CH - CH_2 - (trans)
6	Dmt	- CH ₂ - CH ₂ - CH ₂ -
7	Dhp	- HC = CH - CH ₂ - (cis)
8	Dhp	- HC = CH - CH ₂ - $(trans)$
9	Dhp	- CH2 - CH2 - CH2 -
10	(2S)-Mdp	- HC = CH - CH ₂ - (cis)
11	(2S)-Mdp	- $HC = CH - CH_2 - (trans)$
12	(2S)-Mdp	- CH ₂ - CH ₂ - CH ₂ -
13	Tyr	- S - CH ₂ - S -
	<u>-</u>	

Figure 1: Structural formulas of compounds 1-13.

In the present paper, we describe the syntheses and in vitro opioid activities of dicarba analogues of the μ agonist peptide H-Tyr-c[D-Cys-Phe-Phe-Cys]NH₂ cyclized via a methylene dithioether (7) (Figure 1, compound 13). The goal was to assess the effect of replacing the sulphurs of this peptide with methylenes on the opioid activity profile. As substitution of 2',6'-dimethyltyrosine (Dmt) for Tyr^1 in opioid peptides is known to generally result in an opioid potency enhancement (16), the corresponding dicarba analogues with Dmt in place of Tyr^1 were also synthesized. Replacement of Tyr^1 in opioid peptides with 3-{2,6-dimethyl-4-hydroxyphenyl}propanoic acid (Dhp) or (2S)-2-methyl-3-{2,6-dimethyl-4-hydroxyphenyl}propanoic acid [(2S)-Mdp] has been shown to convert opioid agonist peptides into antagonists (17,18). In an effort to develop μ -selective opioid antagonists, we also prepared dicarba analogues of 13 containing Dhp or (2S)-Mdp in place of Tyr^1 .

The syntheses were performed on solid phase (Rink amide Nova Gel resin) by assembly of the linear precursor peptides containing p-Allylgly and (2*S*)-2-amino-5-hexenoic acid (Aha) in position 2 and 5, respectively, and subsequent RCM using a second generation Grubbs catalyst. After cleavage from the resin, the olefinic peptides were obtained as mixtures of *cis* and *trans* isomers and subsequent catalytic hydrogenation yielded the saturated –CH₂–CH₂– bridged peptides. Opioid activities of the compounds *in vitro* were determined in the GPI and MVD bioassays, and in μ -, δ - and κ -receptor binding assays.

Methods and Materials

General methods

Precoated plates (silica gel 60 F₂₅₄, 250 μm, Merck, Darmstadt, Germany) were used for ascending TLC in the following systems (all v/v); (I) n-BuOH/AcOH/H₂O (4:1:1); (II) n-BuOH/pyridine/AcOH/H₂O (15:10:3:12). Preparative reversed-phase HPLC was performed on a Vydac 218-TP1022 column (22 x 250 mm) with a linear gradient of 30-55% MeOH in 0.1% trifluoroacetic acid (TFA) over 40 min at a flow rate of 13 mL/min for the Tyr1- and Dmt1-peptide analogues, and with a linear gradient of 40-70% MeOH in 0.1% TFA over 50 min at the same flow rate for the Dhp1- and (2S)-Mdp1-peptide analogues. Analytical reversed-phase HPLC was performed on a Vydac 218-TP54 column (5 \times 250 mm) at a flow rate of 1.5 mL/min using the same linear gradients of MeOH in 0.1% TFA as in the preparative HPLC. The same column was also used for the determination of the capacity factors (K' values) under the same conditions. Molecular masses of the compounds were determined by electrospray mass spectrometry on a Hybrid Q-Tof mass spectrometer interfaced to a MassLynx 4.0 data system (Micromass Ltd., Pointe-Claire, QC, Canada).

Peptide synthesis

The linear peptides were prepared by the manual solid-phase technique using Fmoc-protection for the α -amino group of amino acids and 1,3-diisopropylcarbodiimide (DIC)/1-hydroxybenzotriazole (HOBt) as coupling agents. The peptides were assembled on a Rink amide resin (Novabiochem, Läufelfingen, Switzerland) according to a published protocol (19). After completion of peptide assembly, cyclization

Cyclic Opioid Peptide Agonists and Antagonists

between the Allylgly and 2-amino-5-hexenoic acid residues was achieved using the second generation Grubbs catalyst benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(tricyclohexylphosphine)-ruthenium (20). The catalyst in 20 mol% (as compared with resin-bound peptide) was added to the peptide resin suspended in CH2Cl2 under a flow of argon. The reaction mixture was refluxed for 48 h, and after cooling to room temperature, dimethylsulfoxide (DMSO) (50 equiv relative to the catalyst) was injected and the mixture was stirred for another 24 h. The peptide resin was filtered and washed successively with DMSO, CH2Cl2 and MeOH. Fmoc protection was removed by 30% piperidine/N,Ndimethylformamide (DMF) treatment, and the cyclic olefinic peptides were cleaved from the resin by TFA treatment in the usual manner. The yield of the cyclization reaction was 40-47% for the Tyr1-, Dmt1and (2S)-Mdp1-analogues and 89% for the Dhp peptide. Mixtures of cis and trans isomers were obtained in all cases and the configuration of the double bond was established by measurement of the Jcoupling constants between the olefinic protons (cis. $J \sim 10$ Hz; trans: $J \sim 15$ Hz). The cis/trans ratios for the peptides containing the four different N-terminal residues were as follows: Tyr (3:1), Dmt (6.7:1), Dhp (1.4:1), (2S)-Mdp (2:1). The crude peptides were purified by preparative reversed-phase HPLC and were found to be at least 98% pure, as assessed by HPLC and TLC. Catalytic hydrogenation of the cyclic olefinic peptides was performed with the mixtures of the cis and trans isomers with 10% Pd/C in EtOH at 40°C for 18 h $(p_{H2} = 45 psig)$. The resulting $-CH_2-CH_2-$ bridged peptides were obtained in 75-98% yield and were purified by preparative HPLC.

H-Tyr-c[D-Allylgly-Phe-Phe-Aha]NH₂ (cis; 1)

HPLC \mathcal{K}' 1.236; TLC $B_{\rm f}$ 0.742 (I), $R_{\rm f}$ 0.782 (II); ES-ML m/e 655; $^1{\rm H}$ NMR (500 MHz, CD₃OD) δ 7.36-7.28 (m, 4H), 7.28-7.15 (m, 4H), 7.15-7.07 (d, 2H, J = 8.5 Hz), 7.01-6.97 (d, 2H, J = 8.5 Hz), 6.83-6.79 (d, 2H, J = 8.5 Hz), 5.41-5.34 (ddd, 1H, J = 6.5 Hz, J = 6.5 Hz, J = 10.7 Hz), 5.27-5.20 (ddd, 1H, J = 3.0 Hz, J = 10.7 Hz, J = 11.9 Hz), 4.43-4.39 (dd, 1H, J = 6.2 Hz, J = 8.3 Hz), 4.39-4.33 (dd, 1H, J = 3.4 Hz, J = 10.7 Hz), 4.22-4.17 (dd, 1H, J = 4.15 Hz, J = 8.3 Hz), 4.13-4.05 (m, 2H), 3.30-3.23 (m, 1H), 3.23-3.17 (m, 1H), 3.12-2.98 (m, 4H), 2.90 (s, 2H), 2.90-2.83 (m, 2H), 2.40-2.31 (m, 1H), 2.31-2.22 (m, 1H), 2.08-2.02 (m, 1H), 1.98-1.93 (m, 1H), 1.80-1.72 (m, 1H), 1.37-1.31 (m, 2H).

H-Tyr-c[D-Allylgly-Phe-Phe-Aha]NH2 (trans; 2)

HPLC K' 1.270; TLC $B_{\rm f}$ 0.730 (I), $R_{\rm f}$ 0.772 (II); ES-ML m/e 655; $^1{\rm H}$ NMR (500 MHz, CD₃0D) δ 7.40-7.28 (m, 5H), 7.28-7.18 (m, 3H), 7.13-7.11 (d, 2H, J = 8.5 Hz), 7.10-7.08 (d, 2H, J = 8.5 Hz), 6.83-6.81 (d, 2H, J = 8.5 Hz), 5.14-5.04 (m, 2H), 4.64-4.60 (dd, 1H, J = 6.2 Hz, J = 8.3 Hz), 4.34-4.30 (dd, 1H, J = 3.4 Hz, J = 10.7 Hz), 4.30-4.25 (dd, 1H, J = 4.15 Hz, J = 8.3 Hz), 4.21-4.17 (t, 1H, J = 7.8 Hz), 4.18-4.15 (t, 1H, J = 7.8 Hz), 3.22-3.00 (m, 7H), 2.90 (s, 2H), 2.40-2.34 (m, 1H), 2.10-1.90 (m, 4H), 1.80-1.72 (m, 1H).

H-Tyr-c[D-Allylgly-Phe-Phe-Aha]NH₂ (saturated; 3)

HPLC K' 1.260; TLC $R_{\rm f}$ 0.659 (I), $R_{\rm f}$ 0.765 (II); ES-ML m/e 657; $^{1}{\rm H}$ NMR (500 MHz, CD₃OD) δ 7.38-7.14 (m,10H), 7.08-7.06 (d, 2H,

H-Dmt-c[D-Allylgly-Phe-Phe-Aha]NH2 (cis; 4)

HPLC K1.211; TLC $R_{\rm f}$ 0.840 (I), $R_{\rm f}$ 0.838 (II); ES-ML m/e 683; 1 H NMR (500 MHz, DMSO-d₆) δ 9.80-9.70 (s, 1H), 8.51-8.42 (s, 2H), 8.30-8.25 (d, 1H, J = 8.5 Hz), 8.05-8.00 (d, 1H, J = 8.5 Hz), 7.90-7.85 (d, 1H, J = 8.5 Hz), 7.40-7.15 (m, 10H), 7.08-7.05 (s, 2H), 6.55-6.52 (s, 2H), 5.36-5.30 (m, 1H), 5.14-5.06 (m, 1H), 4.25-4.12 (m, 3H), 4.06-4.00 (m, 1H), 3.83-3.75 (m, 1H), 3.26-3.20 (m, 2H), 3.09-2.96 (m, 4H), 2.90-2.83 (m, 2H), 2.28-2.24 (s, 6H), 2.07-2.00 (m, 1H), 1.85-1.74 (m, 1H).

H-Dmt-c[D-Allylgly-Phe-Phe-Aha]NH2 (trans; 5)

HPLC \mathcal{K}' 1.230; TLC $R_{\rm f}$ 0.824 (I), $R_{\rm f}$ 0.842 (II); ES-ML m/e 683; ¹H NMR (500 MHz, DMSO-d₆) δ 9.28-9.22 (s, 1H), 8.68-8.56 (d, 3H, J = 8.5 Hz), 7.38-7.16 (m, 9H), 7.10-7.04 (m, 2H), 6.68-6.64 (s, 1H), 6.62-6.58 (s, 2H), 5.06-4.98 (ddd, 1H, J = 4.9 Hz, J = 9.05 Hz, J = 14.1 Hz), 4.90-4.82 (ddd, 1H, J = 6.95 Hz, J = 7.3 Hz, J = 14.1 Hz), 4.55-4.48 (dt, 1H, J = 5.3 Hz, J = 8.8 Hz), 4.25-4.20 (dt, 1H, J = 4.4 Hz, J = 8.0 Hz), 4.20-4.12 (m, 2H), 4.02-3.93 (m, 1H), 3.18-2.89 (m, 6H), 2.83-2.80 (d, 1H, J = 4.1Hz), 2.26-2.22 (s, 6H), 2.26-2.16 (m, 1H), 2.10-1.88 (m, 3H), 1.75-1.67 (m, 1H), 1.62-1.53 (m, 1H).

H-Dmt-c[D-Allylgly-Phe-Phe-Aha]NH₂ (saturated; 6)

HPLC K' 1.220; TLC $R_{\rm f}$ 0.791 (I), $R_{\rm f}$ 0.815 (II); ES-ML m/e 685; ¹H NMR (500 MHz, DMSO-d₆) δ 7.40-7.03 (m, 10H), 6.62-6.58 (s, 2H), 4.75-4.71 (dd, 1H, J = 6.2 Hz, J = 8.3 Hz), 4.38-4.34 (dd, 1H, J = 4.15 Hz, J = 8.3 Hz), 4.28-4.24 (dd, 1H, J = 3.4 Hz, J = 10.7 Hz), 4.22-4.14 (m, 2H), 3.28-3.02 (m, 6H), 2.30-2.22 (s, 6H), 2.05-1.90 (m, 2H), 1.75-1.60 (m, 2H), 1.40-1.23 (m, 6H).

Dhp-c[D-Allylgly-Phe-Phe-Aha]NH₂ (cis; 7)

HPLC K 1.181; TLC $R_{\rm f}$ 0.912 (I), $R_{\rm f}$ 0.891 (II); ES-ML m/e 668; ¹H NMR (500 MHz, DMSO-d₆) δ 8.63-8.59 (d, 1H, J = 8.05 Hz), 8.52-8.47 (d, 1H, J = 8.78 Hz,), 8.22-8.18 (d, 1H, J = 6.84 Hz), 7.49-7.46 (d, 1H, J = 6.1Hz), 7.43-7.40 (s, 1H), 7.36-7.23 (m, 12H), 7.20-7.17 (m, 1H), 5.48-5.36 (m, 2H), 4.96-4.90 (m, 2H), 4.74-4.64 (dd, 2H, J = 4.15 Hz, J = 3.42 Hz, J = 10.1 Hz, J = 10.7 Hz), 4.38-4.20 (m, 1H), 4.09-4.03 (m, 1H), 3.15-3.07 (m, 2H), 3.00-2.82 (m, 8H), 2.76-2.67 (m, 2H), 2.28-2.18 (m, 2H), 2.11-2.00 (m, 2H), 1.81-1.70 (m, 1H), 1.68-1.57 (m, 1H).

Dhp-c[D-Allylgly-Phe-Phe-Aha]NH2 (trans; 8)

HPLC K' 1.162; TLC $R_{\rm f}$ 0.901 (I), $R_{\rm f}$ 0.875 (II); ES-ML m/e 668; ¹H NMR (500 MHz, DMS0-d₆) δ 9.00 s, 1H), 8.11-8.06 (d, 1H, J = 7.8 Hz), 8.02-7.98 (d, 1H, J = 8.8 Hz), 7.90-7.86 (d, 1H, J = 6.6 Hz), 7.81-7.76 (d, 1H, J = 8.1 Hz), 7.38-7.14 (m, 10H), 7.10-7.05 (s, 1H), 6.72-6.68 (s, 1H), 6.65-6.60 (s, 2H), 5.26-5.19 (ddd, 1H,

Berezowska et al.

J = 5.6 Hz, J = 8.5 Hz, J = 14.7 Hz), 5.13-5.06 (ddd, 1H, J = 6.6 Hz, J = 7.8 Hz, J = 14.7 Hz), 4.60-4.52 (m, 1H), 4.25-4.13 (m, 2H), 4.05-3.95 (m, 1H), 3.12-2.86 (m, 4H), 2.72-2.65 (m, 4H), 2.42-2.28 (m, 2H), 2.28-2.24 (s, 6H), 2.08-2.00 (m, 2H), 1.94-1.86 (m, 1H).

Dhp-c[D-AllyIgly-Phe-Phe-Aha]NH₂ (saturated; 9) HPLC \mathcal{K}' 1.156; TLC \mathcal{B}_{I} 0.791 (I), \mathcal{B}_{I} 0.853 (II); ES-ML m/e 670; ¹H NMR (500 MHz, DMSO-d₆) δ 9.00 (s, 1H), 8.14-8.10 (d, 1H, J=8.8 Hz), 7.84-7.80 (d, 1H, J=8.8 Hz), 7.92-7.90 (d, 1H, J=6.6 Hz), 7.84-7.80 (d, 1H, J=8.1 Hz), 7.40-7.16 (m, 10H), 7.11-7.06 (s, 1H), 6.74-6.70 (s, 1H), 6.65-6.60 (s, 2H), 4.62-4.54 (m, 1H), 4.28-4.18 (m, 1H), 4.18-4.12 (m, 1H), 4.00-3.94 (m, 1H), 3.15-2.85 (m, 4H), 2.75-2.66 (m, 4H), 2.30-2.22 (s, 6H), 1.90-1.75 (m, 2H), 1.65-1.50 (m, 2H), 1.42-1.22 (m, 6H).

(2S)-Mdp-c[D-Allylgly-Phe-Phe-Aha]NH $_2$ (cis; 10) HPLC K 1.138; TLC $R_{\rm f}$ 0.923 (I), $R_{\rm f}$ 0.902 (II); ES-ML m/e 682; ¹H NMR (500 MHz, DMSO-d₆) δ 8.95 (s, 1H), 8.21-8.18 (d, 1H, J = 7.3 Hz), 7.58-7.55 (d, 1H, J = 7.8 Hz), 7.45-7.40 (d, 1H, J = 8.1 Hz), 7.35-7.30 (d, 1H, J = 8.5 Hz), 7.30-6.98 (m, 12H), 6.41 (s, 2H), 5.28-5.21 (ddd, 1H, J = 4.3 Hz, J = 7.4 Hz, J = 11.7 Hz), 5.19-5.13 (ddd, 1H, J = 5.6 Hz, J = 9.5 Hz, J = 10.7 Hz), 4.24-4.10 (m, 3H), 3.87-3.81 (m, 1H), 3.12-3.02 (m, 3H), 2.72-2.54 (m, 4H), 2.16 (s, 6H), 2.04-1.93 (m, 2H), 1.79-1.68 (m, 3H), 1.48-1.40 (m, 1H), 0.98-0.96 (d, 3H, J = 6.4 Hz).

(2*S*)-Mdp-c[D-Allylgly-Phe-Phe-Aha]NH₂ (*trans*; 11)

HPLC K' 1.108; TLC $R_{\rm f}$ 0.901 (I), $R_{\rm f}$ 0.897 (II); ES-ML m/e 682; $^1{\rm H}$ NMR (500 MHz, DMSO-d₆) δ 9.00-9.85 (s, 1H), 8.03-7.98 (d, 1H, J = 8.5 Hz); 7.84-7.79 (d, 1H, J = 8.0 Hz), 7.67-7.62 (d, 1H, J = 8.0 Hz), 7.30-7.06 (m, 11H), 7.00 (s, 1H), 6.62 (s, 1H), 6.42 (s, 2H), 5.14-5.06 (ddd, 1H, J = 4.7 Hz, J = 9.0 Hz, J = 15.1 Hz), 4.97-4.90 (dt, 1H, J = 6.9 Hz, J = 15.1 Hz), 4.45-4.42 (m, 1H), 4.16-4.06 (m, 2H), 3.93-3.86 (m, 1H), 3.10-3.00 (m, 2H), 2.99-2.80 (m, 3H), 2.73-2.62 (m, 2H), 2.21-2.08 (m, 1H), 2.16 (s, 6H), 2.05-1.88 (m, 3H), 1.88-1.78 (m, 1H), 1.56-1.48 (m, 1H), 0.96-0.92 (d, 3H, J = 6.35 Hz).

(2S)-Mdp-c[D-Allylgly-Phe-Phe-Aha]NH₂ (saturated; 12)

HPLC K^{σ} 1.128; TLC $R_{\rm f}$ 0.890 (I), $R_{\rm f}$ 0.880 (II); ES-ML m/e 684; $^1{\rm H}$ NMR (500 MHz, DMS0-d₆) δ 9.00 (s,1H), 7.90-7.86 (d, 1H, J = 7.6 Hz), 7.85-7.82 (d, 1H, J = 7.6 Hz), 7.76-7.73 (d, 1H, J = 6.8 Hz), 7.40-7.20 (m, 11H), 7.15 (s, 2H), 6.48 (s, 2H), 4.50-4.41 (m, 1H), 4.38-4.33 (m, 1H), 4.26-4.21 (m, 1H), 3.92-3.86 (m, 1H), 3.16-2.98 (m, 6H), 2.26-2.20 (s, 6H), 1.24-1.22 (d, 3H, J = 8.3Hz),1.78-1.14 (m,11H).

In vitro bioassays and receptor binding assays

The GPI (21) and MVD (22) bioassays were carried out as reported in detail elsewhere (23,24). A dose–response curve was determined with [Leu^5]enkephalin as standard for each ileum and vas preparation, and IC_{50} values of the compounds being tested were normal-

ized according to a published procedure (25). Ke values for antagonists were determined from the ratio of IC_{50} values obtained with an agonist in the presence and absence of a fixed antagonist concentration (26). μ Antagonist $K_{\rm e}$ values of compounds were determined in the GPI assay against the μ agonist H-Tyr-D-Ala-Phe-Phe-NH $_2$ TAPP (27) and δ antagonist $K_{\rm e}$ values were measured in the MVD assay against the δ agonist DPDPE. Opioid receptor binding studies were performed as described in detail elsewhere (23). Binding affinities for μ and δ receptors were determined by displacing, respectively, [3H]DAMGO (Multiple Peptide Systems, San Diego, CA, USA) and [3H]DSLET; (Multiple Peptide Systems) from rat brain membrane binding sites, and κ -opioid receptor binding affinities were measured by displacement of [3H]U69,593 (Amersham) from quinea pig brain membrane binding sites. Incubations were performed for 2h at 0°C with [3H]DAMGO, [3H]DSLET and [3H]U69,593 at respective concentrations of 0.72, 0.78 and 0.80 nm. IC_{50} values were determined from log-dose displacement curves, and K_i values were calculated from the obtained IC_{50} values by means of the equation of Cheng and Prusoff (28), using values of 1.3, 2.6 and 2.9 nm for the dissociation constants of [3H]DAMGO, [3H]DSLET and [3H]U69,593, respectively.

Results

Nearly all Tyr¹- and Dmt¹-olefinic and saturated cyclic peptides (compounds 1–6) showed subnanomolar μ and δ opioid agonist potencies in the functional GPI and MVD bioassays (Table 1). Most remarkable were the Dmt¹-analogues 5 and 6 which displayed picomolar δ agonist potencies in the MVD assay. In agreement with the functional assay data, agonist peptides 1–6 also showed subnanomolar or very low nanomolar μ and δ opioid receptor affinities in the binding assays, with the cis and trans olefinic peptides having slightly higher binding affinities than the corresponding saturated ones (Table 2). The obtained K_i^μ/K_i^δ ratios indicate that the Tyr¹-analogues 1–3 show only slight preference for μ over δ receptors, whereas the Dmt¹-analogues 4–6 are non-selective in their

Table 1: GPI and MVD assay of dicarba analogues of 13^a

	GPI		MVD	
Compound	IC ₅₀ (пм)	K _e (nm) ^b	IC ₅₀ (nm)	K _e (nм) ^c
1	0.401 ± 0.058		0.851 ± 0.057	
2	1.34 ± 0.18		4.51 ± 0.61	
3	1.05 ± 0.22		0.740 ± 0.043	
4	0.161 ± 0.017		0.191 ± 0.041	
5	0.407 ± 0.056		0.0444 ± 0.0076	
6	0.509 ± 0.021		0.0655 ± 0.0098	
7		32.2 ± 2.2	PA (e = 0.38)	
8		44.3 ± 3.5	239 ± 10	
9		41.7 ± 8.1	7500 ± 1630	
10		32.4 ± 5.7	PA	
11		157 ± 28	PA (e = 0.33)	
12		25.7 ± 1.1		147 ± 36

PA. partial agonist.

 a Values represent means of 3–6 determinations \pm SEM. b Determined against H-Tyr-D-Ala-Phe-Phe-NH $_2$ (TAPP). c Determined against DPDPE.

Table 2: Opioid receptor binding data of dicarba analogues of

	K _i (nm) ^a			K _i ratio
Compound	μ^{b}	δ^{b}	κ ^c	μ/δ/κ
1	0.281 ± 0.028	0.910 ± 0.349	9.36 ± 2.73	1/3/12
2	0.332 ± 0.038	1.53 ± 0.89	15.2 ± 3.2	1/5/14
3	1.04 ± 0.14	2.24 ± 0.15	11.3 ± 2.6	1/2/11
4	0.528 ± 0.005	0.491 ± 0.011	12.8 ± 2.5	1/1/2
5	0.438 ± 0.012	0.286 ± 0.021	4.97 ± 1.18	1/1/11
6	1.54 ± 0.27	1.20 ± 0.14	15.8 ± 1.6	1/1/10
7	23.5 ± 3.9	86.3 ± 7.7	266 ± 51	1/4/11
8	16.7 ± 1.7	27.0 ± 0.3	>500	1/2/ > 30
9	8.95 ± 0.27	39.2 ± 3.6	>500	1/4/ > 56
10	7.44 ± 1.21	7.67 ± 0.87	185 ± 21	1/1/25
11	323 ± 36	35.3 ± 1.3	635 ± 73	1/0.1/2
12	18.3 ± 0.9	18.7 ± 1.7	302 ± 14	1/1/17
13 ^d	0.016 ± 0.01	1.8 ± 0.8	2.5 ± 1.5	1/112/156

^aValues represent mean of 3–6 determinations \pm SEM. ^bDisplacement of [³H]DAMGO (μ -selective) and [³H]DSLET (δ -selective) from rat brain membrane binding sites. ^cDisplacement of [³H]U69,593 (κ -selective) from guinea pig brain membrane binding sites. ^dData taken from Przydział *et al.* (7).

interaction with μ and δ opioid receptors. All six agonist peptides had relatively weaker binding affinity for κ opioid receptors.

As expected, the Dhp1- and (2S)-Mdp1-olefinic and saturated peptides (7-12) were quite potent μ opioid antagonists with \mathcal{K}_{e} values ranging from 26 to 44 nm, except for the trans olefinic (2S)-Mdp1analogue (11) which had weaker μ antagonist activity ($K_{\rm e}^{\mu}=$ 157 nM). In the MVD assay, these peptides were partial δ agonists (compounds 7, 10 and 11), weak full δ agonists (compounds 8 and 9) or, in one case, a δ antagonist (12). Interestingly, compounds 8 and 9, both lacking a positively charged nitrogen, are mixed δ agonist/ μ antagonists. The μ receptor binding affinities of peptides 7-12 are in reasonable correlation with their μ agonist potencies determined in the GPI functional assay. Compounds 7-10 and **12** displayed either only slight or no preference for μ over δ receptors. In agreement with its weak μ opioid agonist potency in the GPI assay, the *trans* olefinic peptide **11** also displayed weak μ receptor affinity in the binding assay. Surprisingly, these data indicate that compound ${\bf 11}$ is a δ receptor-selective ligand. Peptides **7–12** all showed very weak κ -receptor binding affinity.

Conclusions

The six Tyr¹- and Dmt¹-peptides (compounds **1–6**) all display similar μ and δ opioid agonist potencies despite the somewhat different conformational constraints in their ring structures, with the rings containing the –CH=CH– bond (cis or trans) being more rigid than those containing the –CH₂–CH₂– bond. The parent peptide **13**, containing the methylene dithioether linkage, has been reported to be a very selective μ receptor ligand ($K_{\rm e}^{\mu}/K_{\rm i}^{\delta}=112$) (7). In comparison with **13**, the Tyr¹- and Dmt¹-dicarba analogues with agonist properties described here show similar δ receptor binding affinity, but 18- to 96-fold lower μ receptor binding affinity. Consequently, these

Cyclic Opioid Peptide Agonists and Antagonists

compounds have either no or only slight μ versus δ receptor selectivity. The very high μ receptor binding affinity of parent peptide 13 may be the result of specific conformational constraints in the peptide ring structure because of the presence of the two sulphur atoms.

As expected, compounds **7–12** are all antagonists at the μ opioid receptor. Compound **11** has 14- to 43-fold lower μ receptor binding affinity than the other Dhp¹- and (2S)-Mdp¹-analogues, possibly as a consequence of an unfavourable interaction of its (2S)-Mdp residue with the μ receptor in its inactive state. Unexpectedly, compounds **7–12** display a range of different efficacies (agonism, partial agonism or antagonism) at the δ receptor. This divergent behaviour may be due to the various conformational constraints in their peptide ring structures in conjunction with possible distinct intramolecular interactions of the extracyclic Dhp¹- or (2S)-Mdp¹-residues or distinct positioning of the Phe³/Phe⁴ side chains, which may affect their binding to the δ receptor in its activated or inactive state. Compounds **8** and **9** are rare examples of compounds with δ opioid agonist activity that lack a positively charged nitrogen.

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse, NIH (DA004443) and the Canadian Institutes of Health Research (MOP-89716).

References

- 1. Sarantakis D. (1979) Analgesic polypeptide. U.S. Patent 4148786.
- Schiller P.W., Eggimann B., DiMaio J., Lemieux C., Nguyen T.M.-D. (1981) Cyclic enkephalin analogs containing a cystine bridge. Biochem Biophys Res Commun;101:337–343.
- 3. Schiller P.W., DiMaio J., Nguyen T.M.-D. (1985) Activity profiles of conformationally restricted opioid peptide analogs. In: Ovchinnikov Y.A., editor. Proceedings of the 16th FEBS Congress, Part B. Utrecht: VNU Science Press;p. 457–462.
- 4. Mosberg H.I., Hurst R., Hruby V.J., Gee K., Yamamura H.I., Galligan J.J., Burks T.F. (1983) Bis-penicillamine enkephalins possess highly improved specificity toward δ opioid receptors. Proc Natl Acad Sci USA;80:5871–5874.
- Schiller P.W., Nguyen T.M.-D., Maziak L.A., Wilkes B.C., Lemieux C. (1987) Structure-activity relationships of cyclic opioid peptide analogues containing a phenylalanine residue in the 3-position. J Med Chem;30:2094–2099.
- 6. Mosberg H.I., Omnaas J.R., Medzihradsky F., Smith C.B. (1988) Cyclic disulfide- and dithioether-containing opioid tetrapeptides: development of a ligand with high δ opioid receptor selectivity and affinity. Life Sci;43:1013–1020.
- 7. Przydział M.J., Pogozheva I.D., Ho J.C., Bosse K.E., Sawyer E., Traynor J.R., Mosberg H.I. (2005) Design of high affinity cyclic pentapeptide ligands for κ -opioid receptors. J Pept Res;66:255–262.

Berezowska et al.

- Keller O., Rudinger J. (1974) Synthesis of (1,6-α,α'-diaminosuberic acid)-oxytocin ('dicarba-oxytocin'). Helv Chim Acta;57:1253– 1259.
- Nutt R.F., Veber D.F., Saperstein R. (1980) Synthesis of nonreducible bicyclic analogs of somatostatin. J Am Chem Soc;102:6539

 6545
- Grubbs R.H., Chang S. (1998) Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron;54:4413–4450.
- Stymiest J.L., Mitchell B.F., Wong S., Vederas J.C. (2003) Synthesis of biologically active dicarba analogues of the peptide hormone oxytocin using ring-closing metathesis. Org Lett;5:47–49
- 12. Berezowska I., Chung N.N., Lemieux C., Wilkes B.C., Schiller P.W. (2006) Cyclic dermorphin tetrapeptide analogues obtained via ring-closing metathesis. Acta Biochim Pol;53:73–76.
- Schiller P.W., Weltrowska G., Berezowska I., Lemieux C., Chung N.N., Wilkes B.C. (2006) Synthesis and in vitro activity profiles of novel cyclic enkephalin analogs. In: Blondelle S.E., editor. Understanding Biology Using Peptides: Proceedings of the 19th American Peptide Symposium. San Diego, CA: American Peptide Society;p. 31–35.
- Berezowska I., Chung N.N., Lemieux C., Wilkes B.C., Schiller P.W. (2007) Dicarba analogues of the cyclic enkephalin peptides H-Tyr-c[D-Cys-Gly-Phe-D(or L)-Cys]NH₂ retain high opioid activity. J Med Chem;50:1414–1417.
- 15. Mollica A., Guardiani G., Davis P., Ma S.-W., Porreca F., Lai J., Mannina L., Sobolev A.P., Hruby V.J. (2007) Synthesis of stable and potent δ/μ opioid peptides: analogues of H-Tyr-c[D-Cys-Gly-Phe-D-Cys]-OH by ring-closing metathesis. J Med Chem;50: 3138–3142.
- 16. Hansen D.W. Jr, Stapelfeld A., Savage M.A., Reichman M., Hammond D.L., Haaseth R.C., Mosberg H.I. (1992) Systemic analgesic activity and δ -opioid selectivity in [2,6-dimethyl-Tyr 1 ,D-Pen 2 ,D-Pen 5]enkephalin. J Med Chem;35:684–687.
- 17. Lu Y., Nguyen T.M.-D., Weltrowska G., Berezowska I., Lemieux C., Chung N.N., Schiller P.W. (2001) [2',6'-Dimethyltyrosine]dynorphin A(1-11)-NH $_2$ analogues lacking an N-terminal amino group: potent and selective κ opioid antagonists. J Med Chem;44: 3048–3053.
- 18. Schiller P.W., Lu Y., Weltrowska G., Berezowska I., Wilkes B.C., Nguyen T.M.-D., Chung N.N., Lemieux C.A. (2001) A general new concept for the development of opioid peptide derived μ -,

- δ and κ -antagonists. In: Lebl M., Houghten R.A., editors. Peptides: The Wave of the Future (Proceedings of the 2nd International Peptide Symposium/17th American Peptide Symposium). Dordrecht: Kluwer Academic Publishers;p. 676–678.
- 19. Chen H., Chung N.N., Lemieux C., Zelent B., Vanderkooi J.M., Gryczynski I., Wilkes B.C., Schiller P.W. (2005) [Aladan³]TIPP: a fluorescent δ opioid antagonist with high δ receptor binding affinity and δ selectivity. Biopolymers;80:325–331.
- Scholl M., Ding S., Lee C.W., Grubbs R.H. (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org Lett;1:953–956.
- Paton W.D.M. (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol Chemother;12:119– 127.
- 22. Henderson G., Hughes J., Kosterlitz H.W. (1972) A new example of a morphine-sensitive neuro-effector junction: adrenergic transmission in the mouse vas deferens. Br J Pharmacol;46:764–766.
- 23. Schiller P.W., Lipton A., Horrobin D.F., Bodanszky M. (1978) Unsulfated C-terminal 7-peptide of cholecystokinin: a new ligand of the opiate receptor. Biochem Biophys Res Commun;85:1332–1338
- 24. DiMaio J., Nguyen T.M.-D., Lemieux C., Schiller P.W. (1982) Synthesis and pharmacological characterization in vitro of cyclic enkephalin analogues: effect of conformational constraints on opiate receptor selectivity. J Med Chem;25:1432—1438.
- 25. Waterfield A.A., Leslie F.M., Lord J.A.H., Ling N., Kosterlitz H.W. (1979) Opioid activities of fragments of β -endorphin and of its leucine ⁶⁵-analogue. Comparison of the binding properties of methionine- and leucine-enkephalin. Eur J Pharmacol;58:11–18.
- Kosterlitz H.W., Watt A.J. (1968) Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother;33:266–276.
- 27. Schiller P.W., Nguyen T.M.-D., Chung N.N., Lemieux C. (1989) Dermorphin analogues carrying an increased positive net charge in their ''message domain'' display extremely high μ opioid receptor selectivity. J Med Chem;32:698–703.
- 28. Cheng Y., Prusoff W.H. (1973) Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem Pharmacol;22:3099–3108.