

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

Diseño Digital Moderno

Profesor: Oscar Francisco Fuentes Casarrubias

Proyecto Final

Grupo: 04

Integrantes:

- Castro Rodríguez Ulises
- Hernández González Andrés Sebastián
- Pérez López Edilberto Yael
- Trujillo Salazar Wendy Jazmin

Semestre 2024-2

Descripción

Construcción de un robot seguidor de luz por medio de fotorresistencias y dos motores eléctricos.

• Diagrama de bloques:

Para la construcción del circuito primero se diseñan las entradas y salidas del sistema, en este caso se dividió en dos sistemas para una mejor visualización.

• Tablas de verdad

Se diseñaron dos tablas de verdad, uno por cada diagrama de bloques planteado.

-Potore	s?6tencl	حد		
COT.	FRI FRO		Mp	
0	0	0	0	0=Apagado 7=Encendido
0)	0	7-5-000
1	0	0	1	1-Encendido
1		- 1)	
- Motor				

Materiales:

- Fotorresistencias LDR
- Tabla de madera
- Resistencias 100kΩ
- Resistencias 1kΩ
- Protoboard
- Transistores 2N 2222A
- Led rojos
- Motorreductores
- Llantas para motorreductor
- Alambres para conexión de protoboard (calibre 22 o 24)
- Baterías
- Tornillos de 2 tamaños
- Tuercas
- Jumpers macho-macho
- Rueda loca
- Separadores metálicos para tornillos

Circuito

Carta ASM

Diagrama Eléctrico

Evidencias

Circuito en protoboard

Carro armado Vista desde arriba

Vista desde abajo

Conclusiones

En conclusión, el proyecto de construir un carrito seguidor de luz utilizando componentes como fotorresistencias LDR, transistores 2N 2222A, y motorreductores, demuestra un uso práctico y educativo de la electrónica básica. Este tipo de proyecto es excelente para aprender sobre la interacción entre sensores y actuadores, además de fomentar habilidades en la construcción de circuitos y ensamblaje mecánico. Es un ejemplo claro de cómo se pueden utilizar conceptos simples de electrónica y robótica para crear dispositivos autónomos que respondan a estímulos del entorno, en este caso, la luz. Y podemos fortalecer lo aprendido durante el curso ya que la implementación y armado de nuestro proyecto requirió de menos tiempo invertido respecto al armado del circuito y poder crear además un robot pequeño que para nosotros fue un gran logro y enorme satisfacción.