Redes Neurais para a classificação de Imagens

Aluno: Victor Gabriel Orientador: Lucas Pedroso

Redes Neurais

- Inspiradas no cérebro humano (Neurônios)
- Estrutura:
 - Camada de Entrada
 - Camadas Ocultas
 - Camada de Saída

MLP Diagram - Imagem de: https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4

Redes Neurais

- Inspiradas no cérebro humano (Neurônios)
- Estrutura:
 - Camada de Entrada
 - Camadas Ocultas
 - o Camada de Saída

Imagem de:

https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a

Redes Neurais

- Inspiradas no cérebro humano (Neurônios)
- Estrutura:
 - Camada de Entrada
 - Camadas Ocultas
 - Camada de Saída
- Usam funções de ativação

Relu Activation Function - Imagem de: https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4

Redes Neurais Convolucionais

- Diferenças para redes densas
 - Uso de filtros
 - Lidam com informação espacial (Exemplo: bidimensional)

Redes Neurais Convolucionais

- Diferenças para redes densas
 - Uso de filtros
 - Lidam com informação espacial (Exemplo: bidimensional)
- Aplicações em Imagens
 - Classificação
 - Detecção
 - Segmentação

Imagem de:

https://medium.com/@kolungade.s/object-detection-image-classification-and-semantic-segmentation-using-aws-sagemaker-e1f768c8f57d

Victor Gabriel - II CiDWeek 27/04/2020

Composição das imagens

RGB, Grayscale e outros

Filtros

Pixel representation of filter

Visualization of a curve detector filter

Imagem de:

https://medium.com/neuronio/understanding-convnets-cnn-712f2afe4dd3

Filtros

Filter bank (to be learned)

Feature maps

Feature maps

https://medium.com/neuronio/understanding-convnets-cnn-712f2afe4dd3

Strides e Padding

3x3 filter with strides and Zero padding Imagem de:

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Pooling

Input							
7	7	3	5	2		Output	
8	3	7	1	6	maxpool	8	6
4	ļ.	9	3	9		9	9
C)	8	4	5			

Maxpooling with 2x2 unit

Imagem de: https://medium.com/neuronio/understanding-convnets-cnn-712f2afe4dd3

Problema

- Kaggle Intel Image Classification
- Proposto por Analytics Vidhya
- Dataset:
 - > 14000 imagens para treino
 - o 3000 imagens para teste
 - 7000 imagens para predição (imagens sem rótulos)

Problema

6 Rótulos: Construções, Florestas, Geleiras, Montanha, Oceano, Rua

Problema

6 Rótulos: Construções, Florestas, Geleiras, Montanha, Oceano, Rua

Objetivo

- Obter uma boa acurácia
- Redes utilizadas:
 - o Própria
 - o VGG
- Comparação e exibição do resultado
- Bibliotecas utilizadas
 - Tensorflow
 - Keras
 - ImageDataGenerator

Aplicação

Treino e Resultados

Rede Proposta:

Acurácia 75%

Treino e Resultados

Rede VGG:

Acurácia 87%

Predições

Acertos

label: forest

label: street

label: buildings

label: glacier

label: mountain

Erros

label: street

label: sea

label: mountain

Conclusões e Bibliografia

- Importância das Redes Neurais Convolucionais em Classificação de Imagem
- Comparação entre Redes Neurais clássicas
- Problemas que envolvem sequências (RNNs)

Trabalhos futuros:

- Estudar outras redes clássicas
- Problemas de classificação de áudio
 - usando redes convolucionais (CNN)
 - usando redes recorrentes (RNN)

Bibliografia

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Obrigado! Perguntas?

victorgsbarbosa

vector-b

victorgsbarbosa@gmail.com

