Definitions		
Name	Definition	Visual Clue
Complementary Angles	Two angles whose measures have a sum of 90°	
Supplementary Angles	Two angles whose measures have a sum of 180°	
Theorem	A statement that can be proven	
Vertical Angles	Two angles formed by intersecting lines and facing in the opposite direction	
Transversal	A line that intersects two lines in the same plane at different points	
Corresponding	Pairs of angles formed by two lines and a	
angles	transversal that make an F pattern	
Same-side interior	Pairs of angles formed by two lines and a	
angles	transversal that make a C pattern	
Alternate interior	Pairs of angles formed by two lines and a	
angles	transversal that make a Z pattern	
Congruent triangles	Triangles in which corresponding parts (sides and angles) are equal in measure	
Similar triangles	Triangles in which corresponding angles are equal in measure and corresponding sides are in proportion (ratios equal)	
Angle bisector	A ray that begins at the vertex of an angle and divides the angle into two angles of equal measure	
Segment bisector	A ray, line or segment that divides a segment into two parts of equal measure	
Legs of an isosceles triangle	The sides of equal measure in an isosceles triangle	
Base of an isosceles triangle	The third side of an isosceles triangle	
Equiangular	Having angles that are all equal in measure	
Perpendicular	A line that bisects a segment and is	
bisector	perpendicular to it	
Altitude	A segment from a vertex of a triangle	
	perpendicular to the line containing the opposite side	

Definitions		
Name	Definition	Visual Clue
Geometric mean	The value of x in proportion	
	a/x = x/b where a, b, and x are positive	
	numbers (x is the geometric mean between a	
	and b)	
Sine, sin	For an acute angle of a right triangle, the ratio	
	of the side opposite the angle to the measure	
	of the hypotenuse. (opp/hyp)	
Cosine, cos	For an acute angle of a right triangle the ratio	
	of the side adjacent to the angle to the measure	
	of the hypotenuse. (adj/hyp)	
Tangent, tan	For an acute angle of a right triangle, the ratio	
	of the side opposite to the angle to the measure	
	of the side adjacent (opp/adj)	

Algebra Postulates		
Name	Definition	Visual Clue
Addition Prop. Of	If the same number is added to equal	
equality	numbers, then the sums are equal	
Subtraction Prop. Of	If the same number is subtracted from equal	
equality	numbers, then the differences are equal	
Multiplication Prop.	If equal numbers are multiplied by the same	
Of equality	number, then the products are equal	
Division Prop. Of	If equal numbers are divided by the same	
equality	number, then the quotients are equal	
Reflexive Prop. Of	A number is equal to itself	
equality		
Symmetric Property	If $a = b$ then $b = a$	
of Equality		
Substitution Prop. Of	If values are equal, then one value may be	
equality	substituted for the other.	
Transitive Property of	If $a = b$ and $b = c$ then $a = c$	
Equality		
Distributive Property	a(b+c) = ab + ac	

Congruence Postulates			
Name	Definition	Visual Clue	
Reflexive Property of Congruence	$A \cong A$		
Symmetric Property of	If $A \cong B$, then $B \cong A$		
Congruence			
Transitive Property of Congruence	If $A \cong B$ and $B \cong C$ then		
	$A \cong C$		

Angle Postulates And Theorems		
Name	Definition	Visual Clue
Angle Addition	For any angle, the measure of the whole is	
postulate	equal to the sum of the measures of its non-	
	overlapping parts	
Linear Pair Theorem	If two angles form a linear pair, then they	
	are supplementary.	
Congruent	If two angles are supplements of the same	
supplements theorem	angle, then they are congruent.	
Congruent	If two angles are complements of the same	
complements	angle, then they are congruent.	
theorem		
Right Angle	All right angles are congruent.	
Congruence		
Theorem		
Vertical Angles	Vertical angles are equal in measure	
Theorem		
Theorem	If two congruent angles are supplementary,	
	then each is a right angle.	
Angle Bisector	If a point is on the bisector of an angle, then	
Theorem	it is equidistant from the sides of the angle.	
Converse of the	If a point in the interior of an angle is	
Angle Bisector	equidistant from the sides of the angle, then	
Theorem	it is on the bisector of the angle.	

Lines Postulates And Theorems		
Name	Definition	Visual Clue
Segment Addition	For any segment, the measure of the whole	
postulate	is equal to the sum of the measures of its non-overlapping parts	
Postulate	Through any two points there is exactly one line	
Postulate	If two lines intersect, then they intersect at exactly one point.	
Common Segments	Given collinear points A,B,C and D	
Theorem	arranged as shown, if $\overline{A}\overline{B} \cong \overline{C}\overline{D}$ then	
	$\overline{A}\overline{C} \cong \overline{B}\overline{C}$	
Corresponding Angles	If two parallel lines are intersected by a	
Postulate	transversal, then the corresponding angles	
	are equal in measure	
Converse of	If two lines are intersected by a transversal	
Corresponding Angles	and corresponding angles are equal in	
Postulate	measure, then the lines are parallel	

Lines Postulates And Theorems		
Name	Definition	Visual Clue
Postulate	Through a point not on a given line, there	
	is one and only one line parallel to the	
	given line	
Alternate Interior	If two parallel lines are intersected by a	
Angles Theorem	transversal, then alternate interior angles	
	are equal in measure	
Alternate Exterior	If two parallel lines are intersected by a	
Angles Theorem	transversal, then alternate exterior angles	
	are equal in measure	
Same-side Interior	If two parallel lines are intersected by a	
Angles Theorem	transversal, then same-side interior angles	
	are supplementary.	
Converse of Alternate	If two lines are intersected by a transversal	
Interior Angles	and alternate interior angles are equal in	
Theorem	measure, then the lines are parallel	
Converse of Alternate	If two lines are intersected by a transversal	
Exterior Angles	and alternate exterior angles are equal in	
Theorem	measure, then the lines are parallel	
Converse of Same-side	If two lines are intersected by a transversal	
Interior Angles	and same-side interior angles are	
Theorem	supplementary, then the lines are parallel	
Theorem	If two intersecting lines form a linear pair	
	of congruent angles, then the lines are	
	perpendicular	
Theorem	If two lines are perpendicular to the same	
	transversal, then they are parallel	
D 1' 1	1. 1. 1.	
Perpendicular	If a transversal is perpendicular to one of	
Transversal Theorem	two parallel lines, then it is perpendicular	
	to the other one.	
Darman diaular Digastar	If a point is an the narrandicular his actor	
Perpendicular Bisector Theorem	If a point is on the perpendicular bisector of a segment, then it is equidistant from	
THEOLEIN	the endpoints of the segment	
Converse of the	If a point is the same distance from both	
Perpendicular Bisector	the endpoints of a segment, then it lies on	
Theorem	the perpendicular bisector of the segment	
Parallel Lines Theorem	In a coordinate plane, two nonvertical	
Taraner Emes Theorem	lines are parallel IFF they have the same	
	slope.	
Perpendicular Lines	In a coordinate plane, two nonvertical	
Theorem	lines are perpendicular IFF the product of	
	their slopes is -1.	
Two-Transversals	If three or more parallel lines intersect two	
Proportionality	transversals, then they divide the	
Corollary	transversals proportionally.	
J	1	

Triangle Postulates And Theorems		
Name	Definition	Visual Clue
Angle-Angle (AA) Similarity Postulate	If two angles of one triangle are equal in measure to two angles of another triangle, then the two triangles are similar	
Side-side (SSS) Similarity Theorem	If the three sides of one triangle are proportional to the three corresponding sides of another triangle, then the triangles are similar.	
Side-angle- side SAS) Similarity Theorem	If two sides of one triangle are proportional to two sides of another triangle and their included angles are congruent, then the triangles are similar.	
Third Angles Theorem	If two angles of one triangle are congruent to two angles of another triangle, then the third pair of angles are congruent	
Side-Angle- Side Congruence Postulate SAS	If two sides and the included angle of one triangle are equal in measure to the corresponding sides and angle of another triangle, then the triangles are congruent.	
Side-side-side Congruence Postulate SSS	If three sides of one triangle are equal in measure to the corresponding sides of another triangle, then the triangles are congruent	
Angle-side- angle Congruence Postulate ASA	If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.	
Triangle Sum Theorem	The sum of the measure of the angles of a triangle is 180°	
Corollary	The acute angles of a right triangle are complementary.	
Exterior angle theorem	An exterior angle of a triangle is equal in measure to the sum of the measures of its two remote interior angles.	
Triangle Proportionality Theorem	If a line parallel to a side of a triangle intersects the other two sides, then it divides those sides proportionally.	
Converse of Triangle Proportionality Theorem	If a line divides two sides of a triangle proportionally, then it is parallel to the third side.	

Triangle Postulates And Theorems		
Name	Definition	Visual Clue
Triangle Angle	An angle bisector of a triangle divides the opposite	
Bisector	sides into two segments whose lengths are	
Theorem	proportional to the lengths of the other two sides.	
Angle-angle-	If two angles and a non-included side of one	
side	triangle are equal in measure to the corresponding	
Congruence	angles and side of another triangle, then the	
Theorem	triangles are congruent.	
AAS		
Hypotenuse-	If the hypotenuse and a leg of a right triangle are	
Leg	congruent to the hypotenuse and a leg of another	
Congruence	right triangle, then the triangles are congruent.	
Theorem		
HL		
Isosceles	If two sides of a triangle are equal in measure, then	
triangle	the angles opposite those sides are equal in	
theorem	measure	
Converse of	If two angles of a triangle are equal in measure,	
Isosceles	then the sides opposite those angles are equal in	
triangle	measure	
theorem	If a triangle is a spiletonal than it is a spiem splan	
Corollary	If a triangle is equilateral, then it is equiangular	
Corollary	The measure of each angle of an equiangular	
	triangle is 60°	
Corollary	If a triangle is equiangular, then it is also	
	equilateral	
Theorem	If the altitude is drawn to the hypotenuse of a right	
	triangle, then the two triangles formed are similar	
	to the original triangle and to each other.	
Pythagorean	In any right triangle, the square of the length of the	
theorem	hypotenuse is equal to the sum of the square of the	
	lengths of the legs.	
Geometric	The length of the altitude to the hypotenuse of a	
Means	right triangle is the geometric mean of the lengths	
Corollary a Geometric	of the two segments of the hypotenuse.	
Means	The length of a leg of a right triangle is the geometric mean of the lengths of the hypotenuse	
Corollary b	and the segment of the hypotenuse adjacent to that	
Coronary	leg.	
Circumcenter	The circumcenter of a triangle is equidistant from	
Theorem	the vertices of the triangle.	
Incenter	The incenter of a triangle is equidistant from the	
Theorem	sides of the triangle.	
-	<u> </u>	

Triangle Postulates And Theorems		
Name	Definition	Visual Clue
Centriod	The centriod of a triangle is located 2/3 of the	
Theorem	distance from each vertex to the midpoint of the	
	opposite side.	
Triangle	A midsegment of a triangle is parallel to a side of	
Midsegment	triangle, and its length is half the length of that	
Theorem	side.	
Theorem	If two sides of a triangle are not congruent, then	
	the larger angle is opposite the longer side.	
Theorem	If two angles of a triangle are not congruent, then	
	the longer side is opposite the larger angle.	
	The season state is approximate amount and season	
Triangle	The sum of any two side lengths of a triangle is	
Inequality	greater than the third side length.	
Theorem		
Hinge	If two sides of one triangle are congruent to two	
Theorem	sides of another triangle and the third sides are not	
	congruent, then the longer third side is across from	
	the larger included angle.	
Converse of	If two sides of one triangle are congruent to two	
Hinge	sides of another triangle and the third sides are not	
Theorem	congruent, then the larger included angle is across	
	from the longer third side.	
Converse of	If the sum of the squares of the lengths of two	
the	sides of a triangle is equal to the square of the	
Pythagorean	length of the third side, then the triangle is a right	
Theorem	triangle.	
Pythagorean	In $\hat{e}ABC$, c is the length of the longest side. If $c^2 >$	
Inequalities	$a^2 + b^2$, then êABC is an obtuse triangle. If $c^2 < a^2$	
Theorem	+ b ² , then êABC is acute.	
THEOTEIN	, then exist is dedic.	
45°-45°-90°	In a 45°-45°-90° triangle, both legs are congruent,	
Triangle	and the length of the hypotenuse is the length of a	
Theorem	length times the square root of 2.	
Theorem	length times the square root of 2.	
30°-60°-90°	In a 30°-60°-90° triangle, the length of the	
Triangle	hypotenuse is 2 times the length of the shorter leg,	
Theorem	and the length of the longer leg is the length of the	
1110010111	shorter leg times the square root of 3.	
Law of Sines	For any triangle ABC with side lengths a, b, and c,	
	$\frac{\sin A}{\sin A} = \frac{\sin B}{\sin A} = \frac{\sin C}{\sin A}$	
Lower	For any triangle, ABC with sides a, b, and c,	
Law of		
Cosines	$a^2 = b^2 + c^2 - 2bc \cos A, b^2 = a^2 + c^2 - 2ac \cos B,$	
	$c^2 = a^2 + b^2 - 2ac\cos C$	

Plane Postulates And Theorems		
Name	Definition	Visual Clue
Postulate	Through any three noncollinear points there is exactly one plane containing them.	
Postulate	If two points lie in a plane, then the line containing those points lies in the plane	
Postulate	If two points lie in a plane, then the line containing those points lies in the plane	

Polygon Postulates And Theorems		
Name	Definition	Visual Clue
Polygon Angle	The sum of the interior angle measures of a	
Sum Theorem	convex polygon with <i>n</i> sides.	
Polygon Exterior	The sum of the exterior angle measures, one	
Angle Sum	angle at each vertex, of a convex polygon is	
Theorem	360°.	
Theorem	If a quadrilateral is a parallelogram, then its	
	opposite sides are congruent.	
Theorem	If a quadrilateral is a parallelogram, then its	
	opposite angles are congruent.	
Theorem	If a quadrilateral is a parallelogram, then its	
	consecutive angles are supplementary.	
Theorem	If a quadrilateral is a parallelogram, then its	
	diagonals bisect each other.	
Theorem	If one pair of opposite sides of a quadrilateral are	
	parallel and congruent, then the quadrilateral is a	
	parallelogram.	
Theorem	If both pairs of opposite sides of a quadrilateral	
	are congruent, then the quadrilateral is a	
	parallelogram.	
Theorem	If both pairs of opposite angles are congruent,	
TEM .	then the quadrilateral is a parallelogram.	
Theorem	If an angle of a quadrilateral is supplementary to	
	both of its consecutive angles, then the	
Tl	quadrilateral is a parallelogram.	
Theorem	If the diagonals of a quadrilateral bisect each	
	other, then the quadrilateral is a parallelogram.	
Theorem	If a quadrilateral is a rectangle, then it is a	
THEOTEH	parallelogram.	
	paranelogiam.	
Theorem	If a parallelogram is a rectangle, then its	
	diagonals are congruent.	
	<u> </u>	
Theorem	If a quadrilateral is a rhombus, then it is a	
	parallelogram.	

Polygon Postulates And Theorems		
Name	Definition	Visual Clue
Theorem	If a parallelogram is a rhombus then its diagonals are perpendicular.	
Theorem	If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.	
Theorem	If one angle of a parallelogram is a right angle, then the parallelogram is a rectangle.	
Theorem	If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.	
Theorem	If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus.	
Theorem	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.	
Theorem	If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a rhombus.	
Theorem	If a quadrilateral is a kite then its diagonals are perpendicular.	
Theorem	If a quadrilateral is a kite then exactly one pair of opposite angles are congruent.	
Theorem	If a quadrilateral is an isosceles trapezoid, then each pair of base angles are congruent.	
Theorem	If a trapezoid has one pair of congruent base angles, then the trapezoid is isosceles.	
Theorem	A trapezoid is isosceles if and only if its diagonals are congruent.	
Trapezoid Midsegment Theorem	The midsegment of a trapezoid is parallel to each base, and its length is one half the sum of the lengths of the bases.	

Polygon Postulates And Theorems		
Name	Definition	Visual Clue
Proportional Perimeters and	If the similarity ratio of two similar figures is $\frac{a}{b}$,	
Areas Theorem	then the ratio of their perimeter is $\frac{a}{b}$ and the	
	ratio of their areas is $\frac{a^2}{b^2}$ or $\left(\frac{a}{b}\right)^2$	
Area Addition	The area of a region is equal to the sum of the	
Postulate	areas of its nonoverlapping parts.	

Circle Postulates And Theorems		
Name	Definition	Visual Clue
Theorem	If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.	
Theorem	If a line is perpendicular to a radius of a circle at a point on the circle, then the line is tangent to the circle.	
Theorem	If two segments are tangent to a circle from the same external point then the segments are congruent.	
Arc Addition Postulate	The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.	
Theorem	In a circle or congruent circles: congruent central angles have congruent chords, congruent chords have congruent arcs and congruent acrs have congruent central angles.	
Theorem	In a circle, if a radius (or diameter) is perpendicular to a chord, then it bisects the chord and its arc.	
Theorem	In a circle, the perpendicular bisector of a chord is a radius (or diameter).	
Inscribed Angle Theorem	The measure of an inscribed angle is half the measure of its intercepted arc.	
Corollary	If inscribed angles of a circle intercept the same arc or are subtended by the same chord or arc, then the angles are congruent	
Theorem	An inscribed angle subtends a semicircle IFF the angle is a right angle	
Theorem	If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.	

Circle Postulates And Theorems		
Name	Definition	Visual Clue
Theorem	If a tangent and a secant (or chord) intersect on a circle at the point of tangency, then the measure of the angle formed is half the measure of its intercepted arc.	
Theorem	If two secants or chords intersect in the interior of a circle, then the measure of each angle formed is half the sum of the measures of the intercepted arcs.	
Theorem	If a tangent and a secant, two tangents or two secants intersect in the exterior of a circle, then the measure of the angle formed is half the difference of the measure of its intercepted arc.	
Chord-Chord	If two chords intersect in the interior of a circle,	
Product	then the products of the lengths of the segments of	
Theorem	the chords are equal.	
Secant- Secant Product Theorem	If two secants intersect in the exterior of a circle, then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment.	
Secant-	If a secant and a tangent intersect in the exterior of a	
Tangent	circle, then the product of the lengths of the secant	
Product	segment and its external segment equals the length	
Theorem	of the tangent segment squared.	
Equation of a Circle	The equal of a circle with center (h, k) and radius r is $(x - h)^2 + (y - k)^2 = r^2$	

Other		
Name	Definition	Visual Clue