Developing BMI Compatibility with Coastal Hydraulic Models for the Next Generation Water Resources Modeling Framework (NextGen)

J. Ducker^{1,2}, H. Kefelegn^{1,2}, C. George³, J. Zhang⁴, B. Jagers⁵, M. Williamson¹, N. Frazier^{1,2}, D. Johnson¹, J. Zyserman^{1,2}, R. Gibbs³, D. Sang^{1,3}, Q. Shi^{1,2}, H. Mashriqui⁶, J. Allen^{1,2}, R. Grout^{1,2}, T. Flowers¹, E.P. Clark¹

¹NOAA Office of Water Prediction, National Water Center, Tuscaloosa, AL, United States ²Lynker Technologies, Boulder CO, United States ³University of Alabama Tuscaloosa, AL, United States

> Freshwater Forcing 1-D Hydraulic

Streamflow

Runoff Groundwate

Precipitation

Evaporation

⁴Virgina Institute of Marine Science, VA, United States ⁵Deltares, Delft, Netherlands ⁶NOAA Office of Water Prediction, Silver Spring, MD, United States

NextGen Motivation

NextGen is an open source, model-agnostic water resources model interoperability software infrastructure. NextGen aims to support both operational and research hydrology and coastal models running simultaneously while interacting with a common hydrofabric. The NextGen Framework uses the Basic Model Interface (BMI) model coupling standard, A BMI is a list of "self-describing" functions used to standardize a model's main program and to exchange variable fields between model components across a variety of program languages (Hulton et al. 2020; Peckham et al. 2013).

Coastal Models

- Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) (Zhang et al... 2008, 2016)

Julio Zyserman - H34D-07 (Oral presentation Henok Kefelegn - H31W-1813 (Online Poster) Haccan Machriqui - H31W-1802 (Poeter Hal

OWP is Addressing a Critical Gap in Coastal Flooding Forecast Capability by Integrating the Total

Water Level (TWL) Capability into the NextGen Framework

Expectations for TWL Capability within the NextGen Framework (Lake Champlain Results) NWM Total Water Level (TWL) Forecast

When coastal model BMI capabilities are fully developed long-term. OWP will be able to produce a reliable TWL forecasting scheme within the NextGen framework.

			- / / - (mbrier - / c-
Model	Bias	Root Mean Square Error	Skill Score
Dflow FM	-0.109	0.252	0.958
SCHISM	-0.026	0.179	0.979

Here, we have demonstrated the capability to integrate the NWMv3.0 TWL fields into the NextGen Framework, which will allow OWP and the science community to continue to help improve our coastal forecasting capabilities in the long term.

NextGen Optimizations Ongoing

ACKNOWLEDGEMENTS:

CONTACT

Website: https://water.noaa.gov Email: iason.ducker@noaa.gov

Many thanks to colleagues at Lynker, the Office of Water Prediction, Deltares, and SCHISM developers for assisting with the initial development phases of the coastal model BMIs presented here.