

US012385501B2

(12) United States Patent

Cooper

(54) TENSIONED SUPPORT POST AND OTHER MOLTEN METAL DEVICES

(71) Applicant: Molten Metal Equipment Innovations,

LLC, Middlefield, OH (US)

(72) Inventor: Paul V. Cooper, Middlefield, OH (US)

(73) Assignee: Molten Metal Equipment Innovations,

LLC, Middlefield, OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 18/753,675

(22) Filed: Jun. 25, 2024

(65) Prior Publication Data

US 2024/0344528 A1 Oct. 17, 2024

Related U.S. Application Data

- (63) Continuation of application No. 18/139,936, filed on Apr. 26, 2023, now Pat. No. 12,031,550, which is a (Continued)
- (51) **Int. Cl. F04D 29/60** (2006.01) **F04D 29/043** (2006.01)

 F04D 7/00 (2006.01)
- (52) U.S. Cl.

CPC *F04D 29/605* (2013.01); *F04D 29/043* (2013.01); *F04D 7/00* (2013.01); *F05B 2240/60* (2013.01); *F05B 2240/90* (2013.01)

(10) Patent No.: US 12,385,501 B2

(45) **Date of Patent:** *Aug. 12, 2025

(58) Field of Classification Search

CPC F04D 29/605; F04D 29/042; F04D 7/065; F05B 2240/90

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

35,604 A 6/1862 Guild 116,797 A 7/1871 Barnhart (Continued)

FOREIGN PATENT DOCUMENTS

CA 683469 3/1964 CA 2115929 8/1992 (Continued)

OTHER PUBLICATIONS

"Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627," including Declarations of Haynes and Johnson, Apr. 16, 2001.

(Continued)

Primary Examiner — Todd M Epps (74) Attorney, Agent, or Firm — SNELL & WILMER L.L.P.

(57) ABSTRACT

A vertically-elongated member, which is preferably a support post used in a molten metal pump, includes a ceramic tube and tensioning structures to add a compressive load to the tube along its longitudinal axis. This makes the tube less prone to breakage. Another vertically-elongated member, such as a support post, includes one or more reinforcement members to help alleviate breakage. A device, such as a pump, used in a molten metal bath includes one or more of such vertical members.

20 Claims, 11 Drawing Sheets

	Relate	ed U.S. A	application Data	2,543,633	A	2/1951	Lamphere
	continuation of application No. 17/496,229, filed on			2,566,892 2,625,720		9/1951 1/1953	
	Oct. 7, 2021, now Pat. No. 11,976,672, which is a			2,626,086			Forrest
	continuation	of applic	ation No. 16/195,678, filed on	2,676,279		4/1954	
			at. No. 11,149,747.	2,677,609 2,698,583			Moore et al. House et al.
				2,714,354	Α	8/1955	Farrand
(60)		pplication	No. 62/588,090, filed on Nov.	2,762,095		9/1956 10/1956	Pemetzrieder Cornoil
(50)	17, 2017.			2,768,587 2,775,348			Williams
(58)	Field of Cla		n Search 248/677; 415/216.1	2,779,574	A		Schneider
		2,787,873 2,808,782		4/1957 10/1957	Thompson et al.		
	вес аррпсан	on me to	r complete search history.	2,809,107	Α	10/1957	Russell
(56)		Referen	ces Cited	2,821,472 2,824,520		1/1958 2/1958	Peterson et al.
	II C	DATENIT	DOCUMENTS	2,832,292			Edwards
	U.S.	FAIENI	DOCUMENTS	2,839,006		6/1958	
	209,219 A		Bookwalter	2,853,019 2,865,295			Thornton Nikolaus
	251,104 A 307,845 A	12/1881 11/1884		2,865,618	Α	12/1958	Abell
	364,804 A	6/1887		2,868,132 2,901,006			Rittershofer Andrews
	390,319 A		Thomson	2,901,600			Chessman et al.
	495,760 A 506,572 A	4/1893 10/1893	Wagener Wagener	2,906,632			Nickerson
	585,188 A	6/1897	Davis	2,918,876 2,948,524		12/1959 8/1960	Sweeney et al.
	757,932 A 882,477 A	4/1904	Jones Neumann	2,958,293	Α	11/1960	Pray, Jr.
	882,478 A		Neumann	2,966,345 2,966,381		12/1960 12/1960	Burgoon et al.
	890,319 A	6/1908		2,978,885			Davison
	898,499 A 909,774 A	9/1908 1/1909	O'Donnell Flora	2,984,524			Franzen
	919,194 A	4/1909	Livingston	2,987,885 3,010,402		6/1961 11/1961	Hoage King
	1,037,659 A 1,100,475 A		Rembert Franckaerts	3,015,190	Α	1/1962	Arbeit
	1,170,512 A		Chapman	3,039,864 3,044,408		6/1962	Hess Mellott
	1,185,314 A		Hedgcock	3,048,384			Sweeney et al.
	1,196,758 A 1,304,068 A	9/1916 5/1919		3,070,393			Silverberg et al.
	1,331,997 A	2/1920	Neal	3,092,030 3,099,870		8/1963	Wunder Seeler
	1,377,101 A 1,380,798 A		Sparling Hansen et al.	3,128,327	Α	4/1964	Upton
	1,439,365 A	12/1922		3,130,678 3,130,679		4/1964 4/1964	Chenault Sence
	1,454,967 A	5/1923		3,151,565			Albertson et al.
	1,470,607 A 1,513,875 A	10/1923 11/1924		3,171,357 3,172,850		3/1965	Egger Englesberg et al.
	1,518,501 A	12/1924		3,203,182		8/1965	
	1,522,765 A 1,526,851 A	1/1925 2/1925		3,227,547			Szekely
	1,669,668 A	5/1928	Marshall	3,244,109 3,251,676		4/1966 5/1966	Johnson
	1,673,594 A 1,697,202 A	6/1928 1/1929	Schmidt Nagle	3,255,702	Α	6/1966	Gehrm
	1,717,969 A		Goodner	3,258,283 3,272,619		6/1966 9/1966	Winberg et al. Sweeney et al.
	1,718,396 A 1,896,201 A		Wheeler Sterner-Rainer	3,289,473	Α	12/1966	Louda
	1,988,875 A		Saborio	3,291,473 3,368,805			Sweeney et al. Davey et al.
	2,013,455 A	9/1935		3,374,943			Cervenka
	2,035,282 A 2,038,221 A	3/1936 4/1936	Schmeller, Sr. Kagi	3,400,923			Howie et al.
	2,075,633 A	3/1937	Anderegg	3,417,929 3,432,336			Secrest et al. Langrod et al.
	2,090,162 A 2,091,677 A	8/1937 8/1937	Tighe Fredericks	3,459,133	Α	8/1969	Scheffler
- 2	2,138,814 A	12/1938		3,459,346 3,477,383		8/1969 11/1969	Tinnes Rawson et al.
	2,173,377 A		Schultz, Jr. et al.	3,487,805	Α	1/1970	Satterthwaite
	2,264,740 A 2,280,979 A	12/1941 4/1942		3,512,762 3,512,788			Umbricht Kilbane
	2,290,961 A	7/1942	Heuer	3,532,445			Scheffler et al.
	2,300,688 A 2,304,849 A	11/1942 12/1942	Nagle Ruthman	3,561,885	Α	2/1971	Lake
- 2	2,368,962 A	2/1945	Blom	3,575,525 3,581,767			Fox et al. Jackson
	2,383,424 A 2,423,655 A	8/1945	Stepanoff Mars et al.	3,612,715			Yedidiah
	2,423,033 A 2,488,447 A		Tangen et al.	3,618,917	Α	11/1971	Fredrikson et al.
	2,493,467 A	1/1950	Sunnen	3,620,716 3,650,730		11/1971	Hess Derham et al.
	2,515,097 A 2,515,478 A		Schryber Tooley et al.	3,689,048			Foulard et al.
2	2,528,208 A	10/1950	Bonsack et al.	3,715,112	Α	2/1973	Carbonnel
1	2,528,210 A	10/1950	Stewart	3,732,032	Α	5/1973	Daneel

(56)		Referen	ces Cited	4,392,888			Eckert et al.
	11.0	DATENIT	DOCUMENTS	4,410,299 4,419,049	A		Shimoyama Gerboth et al.
	0.6	5. PAIENI	DOCUMENTS	4,456,424			Araoka
	3,737,304 A	6/1973	Blayden et al.	4,470,846		9/1984	
	3,737,305 A		Blayden et al.	4,474,315			Gilbert et al.
	3,743,263 A		Szekely	4,496,393			Lustenberger
	3,743,500 A		Foulard et al.	4,504,392 4,509,979		3/1985 4/1985	Groteke
	3,753,690 A	8/19/3 9/1973	Emley et al.	4,530,641		7/1985	Gschwender
	3,759,628 A 3,759,635 A		Carter et al.	4,537,624		8/1985	Tenhover et al.
	3,767,382 A		Bruno et al.	4,537,625		8/1985	
	3,776,660 A	12/1973	Anderson et al.	4,545,887		10/1985	
	3,785,632 A		Kraemer et al.	4,556,419 4,557,766			Otsuka et al. Tenhover et al.
	3,787,143 A 3,799,522 A		Carbonnel et al. Brant et al.	4,586,845		5/1986	
	3,799,522 A 3,799,523 A	3/1974		4,592,700	A		Toguchi et al.
	3,807,708 A	4/1974		4,594,052			Niskanen
	3,814,400 A		Seki	4,596,510			Arneth et al.
	3,824,028 A		Zenkner et al.	4,598,899 4,600,222			Cooper Appling
	3,824,042 A 3,836,280 A	9/1974	Barnes et al.	4,607,825			Briolle et al.
	3,839,019 A		Bruno et al.	4,609,442	A		Tenhover et al.
	3,844,972 A		Tully, Jr. et al.	4,611,790			Otsuka et al.
	3,871,872 A		Downing et al.	4,617,232 4,634,105			Chandler et al. Withers et al.
	3,873,073 A		Baum et al.	4,640,666		2/1987	
	3,873,305 A 3,881,039 A		Claxton et al. Baldieri et al.	4,655,610			Al-Jaroudi
	3,886,992 A		Maas et al.	4,668,166		5/1987	
	3,915,594 A	10/1975	Nesseth	4,669,953			Gechwender
	3,915,694 A		Ando	4,673,434 4,682,585			Withers et al. Hiltebrandt
	3,935,003 A 3,941,588 A		Steinke et al. Dremann	4,684,281			Patterson
	3,941,588 A		Norman et al.	4,685,822		8/1987	
	3,942,473 A		Chodash	4,696,703			Henderson et al.
	3,954,134 A		Maas et al.	4,701,226			Henderson et al.
	3,958,979 A	5/1976		4,702,768 4,714,371		10/1987	Areauz et al.
	3,958,981 A 3,961,778 A		Forberg et al. Carbonnel et al.	4,717,540			McRae et al.
	3,966,456 A		Ellenbaum et al.	4,739,974	A	4/1988	Mordue
	3,967,286 A		Andersson et al.	4,741,664			Olmstead
	3,972,709 A		Chin et al.	4,743,428 4,747,583			McRae et al. Gordon et al.
	3,973,871 A	8/1976	Hance Claxton et al.	4,767,230			Leas, Jr.
	3,984,234 A 3,985,000 A	10/1976		4,770,701			Henderson et al.
	3,997,336 A		van Linden et al.	4,786,230		11/1988	
	4,003,560 A	1/1977	Carbonnel	4,802,656		2/1989 2/1989	Hudault et al.
	4,008,884 A		Fitzpatrick et al.	4,804,168 4,810,314		3/1989	Otsuka et al. Henderson et al.
	4,018,598 A 4,043,146 A	4/1977 8/1977	Markus Stegherr et al.	4,822,473		4/1989	Arnesen
	4,052,199 A	10/1977	Mangalick	4,834,573	A	5/1989	Asano et al.
	4,055,390 A		Young	4,842,227		6/1989	Harrington et al.
	4,063,849 A		Modianos	4,844,425 4,851,296			Piras et al. Tenhover et al.
	4,068,965 A 4,073,606 A	1/1978 2/1978		4,854,834	A		Gschwender et al.
	4,091,970 A		Komiyama et al.	4,859,413	A	8/1989	Harris et al.
	4,119,141 A	10/1978	Thut et al.	4,860,819		8/1989	
	4,125,146 A		Muller	4,867,638 4,884,786			Handtmann et al. Gillespie
	4,126,360 A 4,128,415 A		Miller et al. van Linden et al.	4,898,367			Cooper
	4,120,413 A 4,147,474 A		Heimdal et al.	4,908,060			Duenkelmann
	4,169,584 A		Mangalick	4,909,704		3/1990	
	4,191,486 A	3/1980		4,911,726 4,923,770		3/1990 5/1990	Warkentin Grasselli et al.
	4,213,742 A		Henshaw	4,923,770			Cooper
	4,242,039 A 4,244,423 A	12/1980 1/1981	Villard et al. Thut et al.	4,931,091			Waite et al.
	4,286,985 A		van Linden et al.	4,940,214		7/1990	Gillespie
	4,305,214 A		Hurst	4,940,384		7/1990	Amra et al.
	4,322,245 A		Claxton	4,954,167 4,967,827	A	11/1990	Cooper Campbell
	4,338,062 A 4,347,041 A	7/1982 8/1982		4,973,433			Gilbert et al.
	4,351,514 A	9/1982		4,986,736		1/1991	
	4,355,789 A	10/1982	Dolzhenkov et al.	4,989,736		2/1991	Andersson et al.
	4,356,940 A	11/1982		5,000,025		3/1991	Beekel
	4,360,314 A	11/1982		5,015,518			Sasaki et al.
	4,370,096 A 4,372,541 A	1/1983 2/1983	Bocourt et al.	5,025,198 5,028,211		6/1991 7/1991	Mordue et al. Mordue et al.
	4,372,341 A 4,375,937 A	3/1983		5,028,211			Bar-on et al.
	4,389,159 A		Sarvanne	5,058,654			Simmons
	. ,			. ,			

(56) References Cited 5,613,245 A 3/1997 Robert 5,616,167 A 4/1997 Eckert					
т	I C DATENT	DOCLIMENTS	5,616,167 A 5,622,481 A	4/1997 4/1997	
·	U.S. PATENT	DOCUMENTS	5,629,464 A		Bach et al.
5,078,572	Δ 1/1992	Amra et al.	5,634,770 A		Gilbert et al.
5,080,715		Provencher et al.	5,640,706 A	6/1997	Nagel et al.
5,083,753			5,640,707 A		Nagel et al.
5,088,893	A 2/1992	Gilbert et al.	5,640,709 A		Nagel et al.
5,092,821		Gilbert et al.	5,655,849 A 5,660,614 A		McEwen et al. Waite et al.
5,098,134		Monckton	5,662,725 A		Cooper
5,099,554 5,114,312		Cooper Stanislao	5,676,520 A	10/1997	
5,126,047		Martin et al.	5,678,244 A		Shaw et al.
5,131,632			5,678,807 A	10/1997	
5,135,202	A 8/1992	Yamashita et al.	5,679,132 A		Rauenzahn et al.
5,143,357		Gilbert et al.	5,685,701 A 5,690,888 A	11/1997	Chandler et al.
5,145,322		Senior, Jr. et al.	5,695,732 A		Sparks et al.
5,152,631 5,154,652		Ecklesdafer	5,716,195 A	2/1998	
5,158,440		Cooper et al.	5,717,149 A		Nagel et al.
5,162,858	A 11/1992	Shoji et al.	5,718,416 A		Flisakowski et al.
5,165,858		Gilbert et al.	5,735,668 A 5,735,935 A	4/1998	Areaux
5,177,304			5,741,422 A		Eichenmiller et al.
5,191,154 5,192,193		Cooper et al.	5,744,093 A	4/1998	
5,202,100		Nagel et al.	5,744,117 A	4/1998	Wilkinson et al.
5,203,681		Cooper	5,745,861 A		Bell et al.
5,209,641		Hoglund et al.	5,755,847 A		Quayle
5,215,448			5,758,712 A 5,772,324 A	6/1998	Pederson
5,268,020			5,772,324 A 5,776,420 A	7/1998	
5,286,163 5,298,233		Amra et al.	5,785,494 A		Vild et al.
5,301,620		Nagel et al.	5,842,832 A	12/1998	Thut
5,303,903		Butler et al.	5,846,481 A	12/1998	
5,308,045		Cooper	5,858,059 A		Abramovich et al.
5,310,412		Gilbert et al.	5,863,314 A 5,866,095 A		Morando McGeever et al.
5,318,360 5,322,547		Langer et al. Nagel et al.	5,875,385 A		Stephenson et al.
5,324,341		Nagel et al.	5,935,528 A		Stephenson et al.
5,330,328			5,944,496 A		Cooper
5,354,940			5,947,705 A		Mordue et al.
5,358,549		Nagel et al.	5,948,352 A 5,951,243 A		Jagt et al. Cooper
5,358,697 5,364,078			5,961,285 A		Meneice et al.
5,369,063		Gee et al.	5,963,580 A	10/1999	
5,383,651		Blasen et al.	5,992,230 A		Scarpa et al.
5,388,633		Mercer, II et al.	5,993,726 A 5,993,728 A	11/1999 11/1999	
5,395,405 5,399,074		Nagel et al. Nose et al.	6,007,313 A *	12/1999	Sigel F04D 29/0413
5,407,294		Giannini	, ,		417/424.1
5,411,240	A 5/1995	Rapp et al.	6,019,576 A	2/2000	
5,425,410		Reynolds	6,027,685 A		Cooper Gilbert et al.
5,431,551		Aquino et al.	6,036,745 A 6,074,455 A		van Linden et al.
5,435,982 5,436,210		Wilkinson et al.	6,082,965 A		Morando
5,443,572		Wilkinson et al.	6,093,000 A	7/2000	Cooper
5,454,423		Tsuchida et al.	6,096,109 A		Nagel et al.
5,468,280			6,113,154 A	9/2000	
5,470,201		Gilbert et al.	6,123,523 A 6,152,691 A	11/2000	Cooper
5,484,265 5,489,734		Horvath et al. Nagel et al.	6,168,753 B1		Morando
5,491,279		Robert et al.	6,187,096 B1	2/2001	
5,494,382		Kloppers	6,199,836 B1		Rexford et al.
5,495,746		Sigworth	6,217,823 B1		Vild et al.
5,505,143			6,231,639 B1 6,250,881 B1		Eichenmiller Mordue et al.
5,505,435 5,509,791			6,254,340 B1		Vild et al.
5,511,766		Vassilicos	6,270,717 B1		Tremblay et al.
5,520,422	A 5/1996	Friedrich	6,280,157 B1		Cooper
5,537,940	A 7/1996	Nagel et al.	6,293,759 B1	9/2001	
5,543,558		Nagel et al.	6,303,074 B1	10/2001	
5,555,822 5,558,501		Loewen et al. Wang et al.	6,345,964 B1 6,354,796 B1		Cooper Morando
5,558,505		Mordue et al.	6,358,467 B1		Mordue
5,571,486		Robert et al.	6,364,930 B1	4/2002	
5,585,532			6,371,723 B1		Grant et al.
5,586,863		Gilbert et al.	6,398,525 B1		Cooper
5,591,243		Colussi et al.	6,439,860 B1	8/2002	
5,597,289	A 1/1997	1 nut	6,451,247 B1	9/2002	Mordue et al.

Company	(56) Referen	nces Cited	8,840,359 B2 8,899,932 B2		Vick et al.
6-4579-96 Bl. 10-2002 Cebere al. 9,011-76 B2 42015 Cooper 6-464-488 B2 10-2002 Vild et al. 9,011-76 B2 42015 Cooper 6-464-488 B2 10-2002 Vild et al. 9,011-76 B2 42015 Cooper 6-464-488 B2 10-2002 Cooper 1 9,011-76 B2 42015 Cooper 6-464-496 B1 11-2002 Cooper 1 9,011-76 B2 42015 Cooper 1 9,011	U.S. PATENT	DOCUMENTS	8,915,830 B2	12/2014	March et al.
6479/390 Bl 10/2002 Coper et al. 6474902 Bl 11/2002 Allen et al. 6474902 Bl 11/2002 Allen et al. 6474902 Bl 11/2002 Allen et al. 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2002 Garett III 9,087476 Bl 2 (2015) Thut 6474902 Bl 11/2003 Mardue et al. 9,108,244 Bl 2 (2015) Coper 6,533,535 Bl 3/2003 Thut 9,158,244 Bl 2 (2015) Coper 6,533,535 Bl 3/2003 Thut 9,158,244 Bl 2 (2015) Coper 6,502,236 Bl 1/2003 Mardue et al. 9,158,037 Bl 2 (1021) Marche 6,534,535 Bl 3/2003 Thut 9,158,245 Bl 2 (1021) Marche 6,502,236 Bl 1/2004 Qaackonbush 9,233,006 Bl 2 (2016) Coper 9,338,615 Bl 2 (2016) Coper 6,699,316 Bl 2 (2004) Coper 9,338,615 Bl 2 (2016) Coper 9,388,025 Bl 2 (2016) Coper 9,388	6 457 0 40 D1 10/2002	T 1			
6-64-45-8 B2 10/2002 Vilid et al. 9.094-248 B2 2015 Copper 6-649-598 B1 11/2002 Garrett, III 907-4601 B1 6-2015 B1 11/2002 Garrett, III 907-4601 B1 6-2015 B1 12/2002 Garrett, III 907-4601 B1 6-2015 B1 12/2002 Garrett, III 907-4601 B1 70/2015 Tibut 6-649/598 B1 12/2002 Garrett, III 907-4601 B1 70/2015 Tibut 6-649/598 B1 12/2002 Garrett, III 907-4601 B1 70/2015 Tibut 6-649/598 B1 12/2002 Garrett, III 907-4601 B1 70/2015 Tibut 6-649/598 B1 12/2002 Garrett, III 907-4601 B1 70/2015 Tibut 6-649/598 B1 20/2013 Tibut 91/854/85 B2 87/2015 Copper 6-6340,669 B2 20/2003 That 91/854/85 B2 12/2015 Copper 6-6340,669 B1 5/2003 Lehman 91/854/85 B2 12/2015 Copper 6-6541/69 B1 5/2003 Lehman 91/854/85 B2 12/2015 Copper 6-6564/85 B1 5/2003 Lehman 91/854/85 B2 12/2015 March et al. 91/854/85 B2 12/2016 Copper 93/88/16 B2 12/2016 March et al. 93/854/85 B2 20/2016 Copper 6-6762-76 B1 4/2004 Hinkle et al. 93/852/99 B2 7/2016 Copper 6-6723-76 B1 4/2004 Copper 93/88/16 B2 20/2016 Coppe			9,017,597 B2	4/2015	Cooper
G-975-948 Bi 12/2002 Garzett, III 9,087-377 Bi 6,2015 Thut	6,464,458 B2 10/2002	Vild et al.			
6-697-559 Bil 122002 Grant 9,074-601 Bil 7,2015 Thut 6,650,202 Bil 122003 Kingensmith et al. 9,080,577 Bil 7,2015 Cooper 6,650,302 Bil 122003 Thut 9,108,224 Bil 2,2000 Thut 9,108,224 Bil 2,2000 Thut 9,108,224 Bil 2,2000 Thut 9,108,224 Bil 2,2000 Cooper 6,331,358 Bil 2,2000 Thut 9,108,232 Bil 1,2015 March et al. 9,108,232 Bil 1,2016 Morando 6,650,236 Bil 2,2000 Cooper 9,328,613 Bil 2,2004 Cooper 9,328,613 Bil 2,2005 Grant et al. 9,379,028 Bil 2,2005 Grant et al. 9,379,028 Bil 2,2005 Grant et al. 9,379,028 Bil 2,2005 Grant et al. 9,430,231 Bil 2,000 Cooper 6,383,497 Bil 2,2005 Grant et al. 9,400,231 Bil 2,000 Cooper 6,388,497 Bil 2,2005 Grant et al. 9,400,231					
6.503.238 Bi 12.2002 Kilngensmith et al. 9.080.577 Bz 2.72015 Cooper 6.6503.235 Bz 1.2003 Kilngensmith et al. 9.108.244 Bz 8.2015 Scherer val. 6.523.606 Bz 2.2003 Thut 9.108.244 Bz 8.2015 Scherer val. 6.523.606 Bz 2.2003 Mordue et al. 9.108.528 Bz 1.2004 Group Gro					
6.532.056 B2 2:2003 Plut 9,108.244 B2 8:2015 Cooper 6.535.060 B2 4:2003 Mordue et al. 9,195.532 B2 12:2015 Cooper 6.551,060 B2 4:2003 Mordue et al. 9,195.532 B2 12:2015 Cooper 6.655,060 B2 4:2003 Mordue et al. 9,195.532 B2 12:2015 Cooper 6.6562.058 B1 5:2003 Cooper 9,234.538 B2 12:2016 Cooper 6.6579.361 B2 12:2004 Cooper 9,334.538 B2 12:2016 Cooper 9,338.140 B2 5:2004 Cooper 9,338.140 B2 5:2005 Cooper 9,338.140 B2 5:2005 Cooper 9,338.140 B2 12:2016 Cooper 9,338.140 B2 12:2016 Cooper 9,338.140 B2 12:2016 Cooper 9,338.140 B2 12:2005 Mordue et al. 9,409.232 B2 7,2016 Cooper 6.6849.479 B2 2:2005 Sale et al. 9,409.232 B2 7,2016 Cooper 6.6849.479 B2 2:2005 Sale et al. 9,409.232 B2 7,2016 Cooper 6.6869.548 B2 2:2005 Cooper 9,388.140 B2 12:2005 Mordue et al. 9,409.232 B2 7,2016 Cooper 6.6869.548 B2 2:2005 Cooper 9,388.140 B2 12:2005 Mordue et al. 9,409.232 B2 8:2016 Cooper 6.6869.548 B2 2:2005 Cooper 9,388.140 B2 2:2005 Cooper 9,388.	6,500,228 B1 12/2002	Klingensmith et al.		7/2015	Cooper
6.553,535 B2 3-2003 Thur					
6,562,286 Bit 5,2003 Lehman 9,205,490 B2 12,2015 Cooper 6,679,36 B2 12,2004 Quackenhush 9,273,376 B2 3,2016 Lutes et al. 6,679,316 B1 2,2004 Cooper 9,328,615 B2 5,2016 Cooper 6,700,234 B2 3,2004 Gilbert et al. 9,377,028 B2 7,2016 Cooper 6,716,147 B1 4,2004 Cooper 9,328,615 B2 5,2016 Cooper 6,723,276 B1 4,2004 Cooper 9,328,615 B2 5,2016 Cooper 6,723,276 B1 4,2004 Cooper 9,328,163 B2 7,2016 Cooper 6,848,640 B2 10,2004 Cooper 9,328,163 B2 7,2016 Cooper 6,848,640 B2 12,2005 Morduc et al. 9,410,744 B2 8,2016 Cooper 6,869,541 B2 2,3005 Gilbert et al. 9,422,49 B2 * 8,2016 Cooper 6,874,240 B2 2,3005 Gilbert et al. 9,435,343 B2 9,2016 Cooper 6,887,424 B2 5,2005 Ohno et al. 9,470,239 B2 10,2016 Cooper 6,887,424 B2 5,2005 Morduc et al. 9,470,239 B2 10,2016 Cooper 6,887,424 B2 5,2005 Morduc et al. 9,470,436 B2 12,0016 Cooper 6,887,428 B2 5,2005 Morduc et al. 9,470,436 B2 12,0016 Cooper 7,074,361 B2 7,2006 Carolla et al. 9,481,405 B2 11,12016 Cooper 7,074,361 B2 7,2006 Carolla et al. 9,481,405 B2 11,12016 Villed et al. 7,074,361 B2 7,2006 Carolla et al. 9,482,405 B2 11,12016 Villed et al. 7,083,788 B2 8,2006 Carolla et al. 9,482,405 B2 11,12016 Villed et al. 7,131,482 B2 12,000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,0000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,0000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,0000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,0000 Morduc et al. 9,360,346 B2 12,0016 Cooper 7,279,128 B2 2,0000 Morduc e			9,156,087 B2	10/2015	Cooper
Geof-66-415 B2 12-2003 Sos 9,234,520 B2 12-916 Lutes et al.					
6.689.316 B1 22004 Quackembush 9,273,376 B2 32016 Luste et al. 6.689.316 B1 22004 Cooper 9,328.615 B2 52016 Cooper 6,709,234 B2 32,004 Gilbert et al. 9,377,028 B2 6,2016 Cooper 6,709,234 B2 32,004 Gilbert et al. 9,377,028 B2 6,2016 Cooper 7,709,234 B2 32,004 Gilbert et al. 9,377,028 B2 7,7016 Guoper 7,709,000 Gilbert et al. 9,388,925 B2 7,7016 Guoper 7,709,000 Gilbert et al. 9,408,232 B2 8,2016 Cooper 8,709,000 Gilbert et al. 9,409,232 B2 8,2016 Cooper 8,709,000 Gilbert et al. 9,409,249 B2 8,2016 Cooper 8,709,000 Gilbert et al. 9,409,400 Gilbert et al. 9,409,			9,234,520 B2		
6,709,234 B2 3/2004 Gilbert et al. 9,337,028 B2 6/2016 Cooper 6,723,276 B1 4/2004 Cooper 9,383,140 B2 7/2016 Cooper 6,838,343 B2 10/2004 Thut 9,388,925 B2 7/2016 Cooper 6,843,640 B2 1/2005 Mordue et al. 9,409,232 B2 8/2016 Cooper 6,843,640 B2 1/2005 Sale et al. 9,410,744 B2 8/2016 Cooper 6,869,271 B2 3/2005 Gilbert et al. 9,409,232 B2 8/2016 Cooper 6,869,271 B2 3/2005 Gilbert et al. 9,410,744 B2 8/2016 Cooper 7,2016 G881,030 B2 4/2005 Thut 9,464,636 B2 10/2016 Cooper 7,2016 G887,424 B2 5/2005 Ohno et al. 9,435,343 B2 9/2016 Cooper 6,887,425 B2 5/2005 Ohno et al. 9,436,436 B2 10/2016 Cooper 6,887,425 B2 5/2005 Ohno et al. 9,481,045 B2 11/2016 Cooper 6,887,425 B2 5/2005 Chingensmith et al. 9,481,045 B2 11/2016 Cooper 7,703,7462 B2 5/2005 Klingensmith et al. 9,481,045 B2 11/2016 Cooper 7,703,7462 B2 5/2005 Klingensmith et al. 9,481,045 B2 11/2016 Cooper 7,703,7462 B2 5/2005 Klingensmith et al. 9,481,045 B2 11/2016 Cooper 7,703,7462 B2 5/2005 Klingensmith et al. 9,481,045 B2 11/2016 Cooper 7,703,7462 B2 5/2005 Klingensmith et al. 9,481,045 B2 11/2016 Cooper 7,703,7462 B2 5/2006 Klingensmith et al. 9,481,045 B2 11/2016 Cooper 1,11/2016 Vlincent et al. 9,482,469 B2 11/2016 Cooper 7,703,7462 B2 7/2006 Cooper 7,703,7462 B2 7/2006 Volume 9,566,645 B2 2/2007 Mordue 9,566,645 B2 2/2007 Mordue 9,566,645 B2 2/2007 Mordue 9,566,645 B2 2/2007 Mordue 9,566,645 B2 2/2007 Kennedy et al. 9,581,388 B2 2/2017 Cooper 7,723,128 B2 1/2006 Morando 9,583,670 B2 1/2017 Vanessen 7,403,276 B2 7/2008 Gooper 9,632,670 B2 1/2017 Vanessen 7,403,276 B2 7/2008 Gooper 9,632,670 B2 1/2017 Cooper 7,403,276 B2 7/2008 Gooper 9,632,670 B2 1/2017 Cooper 7,403,276 B2 7/2008 Gooper 9,632,670 B2 7/2018 Cooper 9	6,679,936 B2 1/2004	Quackenbush			
6,716,147 B1 4/2004 Hinkle et al. 9,382,599 B2 7/2016 Cooper 6,805,334 B2 10/2004 Thut 9,388,925 B2 7/2016 Cooper 6,805,334 B2 10/2004 Thut 9,388,925 B2 7/2016 Cooper 6,805,334 B2 10/2005 Mordue et al. 9,409,232 B2 8/2016 Cooper 6,808,936 B2 2/2005 Sale et al. 9,410,744 B2 8/2016 Cooper 6,809,271 B2 3/2005 Gilbert et al. 9,429,42 B2 8/2016 Cooper 7,000,000 Gilbert et al. 9,429,42 B2 8/2016 Cooper 7,000,000 Gilbert et al. 9,429,42 B2 8/2016 Cooper 7,000,000 Gilbert et al. 9,470,239 B2 10/2016 Cooper 6,881,424 B2 5/2005 Ohno et al. 9,470,239 B2 10/2016 Cooper 6,887,424 B2 5/2005 Mordue et al. 9,470,239 B2 10/2016 Cooper 6,887,424 B2 5/2006 Mordue et al. 9,470,239 B2 10/2016 Cooper 6,887,424 B2 5/2006 Mordue et al. 9,470,436 B2 11/2016 Cooper 7,000,436 B2 7/2006 Carolla et al. 9,470,436 B2 11/2016 Cooper 7,000,436 B2 7/2006 Carolla et al. 9,482,469 B2 11/2016 Cooper 7,000,436 B2 7/2006 Carolla et al. 9,482,469 B2 11/2016 Cooper 7,000,436 B2 11/2006 Vincent et al. 9,482,469 B2 11/2016 Cooper 7,131,482 B2 11/2006 Vincent et al. 9,506,346 B2 11/2016 Cooper 7,131,482 B2 11/2006 Vincent et al. 9,506,346 B2 11/2016 Cooper 7,131,482 B2 11/2006 Vincent et al. 9,506,346 B2 11/2016 Cooper 7,131,482 B2 11/2006 Vincent et al. 9,506,346 B2 11/2016 Cooper 7,131,482 B2 11/2006 Vincent et al. 9,506,346 B2 11/2016 Cooper 7,200,358 B2 9/2007 Morduo 9,566,645 B2 2/2017 Cooper 7,200,358 B2 9/2007 Morduo 9,566,645 B2 2/2017 Cooper 7,200,358 B2 9/2008 Morduo 9,506,345 B2 2/2017 Cooper 9,506,345 B2 9/2009 Morduo 9,506,345 B2 2/2017 Cooper 9,506,345 B2 2/2017 Cooper 9,506,345 B2 2/2017 Cooper 9,506,345 B2 2/2017 Cooper 9,506,345 B2 2/2018 Cooper 9,506,345 B2 2/2017 Cooper 9,506,345 B2 2/2018 C					
6.805.834 B2 10/2004 That 9.388,925 B2 7/2016 Juaraz 6.818,490 B2 1/2005 Mordue et al. 9.409,233 B2 8/2016 Cooper 6.818,497 B2 2/2005 Sale et al. 9.410,744 B2 8/2016 Cooper 6.809,526 B2 3/2005 Gilbert et al. 9.42,942 B2* 8/2016 Cooper 6.809,560 B2 3/2005 Gilbert et al. 9.42,942 B2* 8/2016 Cooper 6.887,424 B2 5/2005 Thut 9.464,636 B2 10/2016 Cooper 6.887,424 B2 5/2005 Ohno et al. 9.470,239 B2 10/2016 Cooper 6.887,424 B2 5/2005 Mordue et al. 9.470,239 B2 10/2016 Cooper 6.887,424 B2 5/2005 Mordue et al. 9.470,239 B2 10/2016 Cooper 6.887,424 B2 5/2005 Mordue et al. 9.470,239 B2 10/2016 Cooper 6.887,424 B2 5/2006 Mordue et al. 9.470,239 B2 10/2016 Cooper 6.887,424 B2 5/2006 Group 6.887,424 B2 5/2007 Mordue 6.887,425 B2 5/20			9,382,599 B2	7/2016	Cooper
6.833.640 B2 12005 Mordue et al. 9,409,232 B2 8,2016 Cooper 6.843.647 B2 22005 Sale et al. 9,410,744 B2 8,2016 Cooper 6.869,271 B2 32005 Gilbert et al. 9,410,744 B2 9,2016 Cooper 6.869,564 B2 32005 Gilbert et al. 9,435,343 B2 9,2016 Cooper 6.869,564 B2 32005 Gilbert et al. 9,435,343 B2 10,2016 Cooper 6.887,425 B2 5,2005 Ohno et al. 9,470,239 B2 10,2016 Cooper 6.887,425 B2 5,2005 Ohno et al. 9,470,239 B2 10,2016 Cooper 6.887,425 B2 5,2005 Mingensmith et al. 9,481,035 B2 11,2016 Cooper 7,037,402 B2 5,2005 Mordue et al. 9,481,035 B2 11,2016 Cooper 7,037,402 B2 5,2006 Klingensmith et al. 9,481,035 B2 11,2016 Cooper 7,037,402 B2 5,2006 Klingensmith et al. 9,482,469 B2 11,2016 Cooper 7,131,482 B2 11,2006 Carolla et al. 9,482,469 B2 11,2016 Cooper 7,131,482 B2 11,2006 Vincent et al. 9,482,469 B2 11,2016 Cooper 7,131,482 B2 11,2006 Vincent et al. 9,506,129 B2 11,2016 Cooper 7,204,948 B2 42,007 Mizuno 9,352,670 B2 11,2016 Cooper 7,204,948 B2 42,007 Mizuno 9,352,670 B2 12,007 Kennedy et al. 9,506,464 B2 2,2017 Cooper 7,207,358 B2 10,0007 Kennedy et al. 9,881,388 B2 2,2017 Cooper 7,207,358 B2 10,0007 Kennedy et al. 9,881,388 B2 3,2017 Cooper 9,643,347 B2 5,2017 Cooper 9,903,388 B2 5,2018 Cooper 9					
6.884,978 B 2 32005 Sale et al. 9,410,744 B2 8,2016 Cooper					
6.88/1.04 B2 3/2005 Gilbert et al. 9435/343 B2 9/2016 Cooper (6.881/04) B2 4/2005 Thut 9.464,636 B2 10/2016 Cooper (6.887.424 B2 5/2005 Ohnot et al. 9476,644 B2 10/2016 Cooper (6.887.424 B2 5/2005 Mordue et al. 9476,644 B2 10/2016 Howitt et al. 6.902,606 B2 6/2005 Mordue et al. 9476,644 B2 11/2016 Cooper (7.073.62 B2 5/2006 Carolla et al. 9481,918 B2 11/2016 Cooper (7.073.64 B2 7/2006 Carolla et al. 9481,918 B2 11/2016 Cooper (7.181.482 B2 11/2006 Fremblay 9.494,366 B1 11/2016 Thut (7.181.482 B2 11/2006 Vincent et al. 9.506,129 B2 11/2016 Cooper (7.181.482 B2 11/2006 Vincent et al. 9.506,346 B2 11/2016 Cooper (7.181.482 B2 11/2006 Vincent et al. 9.506,346 B2 11/2016 Group (7.181.482 B2 11/2006 Vincent et al. 9.506,346 B2 11/2016 Fight et al. 9.532,670 B2 11/2016 Fight et al. 9.	6,848,497 B2 2/2005	Sale et al.			
6.881,030 B2 4/2005 Dhn et al. 9,476,634 B2 10/2016 Cooper 6.887,425 B2 5/2005 Ohn et al. 9,470,239 B2 10/2016 Cooper 6.887,425 B2 5/2005 Ohn et al. 9,476,644 B2 10/2016 Howitt et al. 6.902,660 B2 6/2026 B2 6/2026 Klingensmith et al. 9,481,035 B2 11/2016 Cooper 7.074,346 B2 5/2006 Klingensmith et al. 9,481,018 B2 11/2016 Vild et al. 7.074,346 B2 5/2006 Fremblay 9,482,469 B1 11/2016 Cooper 7.083,788 B2 8/2006 Fremblay 9,482,469 B1 11/2016 Cooper 9,482,469 B1 11/2016 Cooper 7.157,643 B2 11/2010 Fremblay 9,506,129 B2 11/2016 Cooper 7.157,643 B2 11/2010 Fremblay 9,506,129 B2 11/2016 Cooper 9,506,346 B1 11/2016 Fremblay 1.273,582 B2 9/2007 Mordue 9,506,346 B2 11/2016 Bright et al. 7.273,582 B2 9/2007 Mordue 9,506,464 B2 2/2017 Cooper 7.273,582 B2 9/2007 Mordue 9,506,464 B2 2/2017 Cooper 7.279,128 B2 10/2018 Cooper 9,581,388 B2 2/2017 Cooper 7.279,128 B2 10/2018 Cooper 9,581,388 B2 2/2017 Cooper 7.279,128 B2 10/2018 Cooper 9,643,247 B2 5/2017 Cooper 9,643,247 B2 5/2018 Cooper 9,643,247 B2 5/2017 Cooper 9,643,247 B2 5/2018 Cooper 9,2018 B2 3/2018 K1 Cooper 9,2018 B2 3/2018 Cooper 9,2018 B2 3/20					
6.887.424 B2 5/2005 Ohno et al. 9,470,239 B2 10/2016 Cooper 6.887.425 B2 5/2005 Mordue et al. 9,476.644 B2 10/2016 Howitt et al. 6.902.606 B2 6/2005 Klingensmith et al. 9,481.035 B2 11/2016 Cooper 7.073.762 B2 5/2006 Klingensmith et al. 9,481.035 B2 11/2016 Cooper 7.073.763 B2 12/2016 Klingensmith et al. 9,482.469 B2 11/2016 Cooper 7.774.361 B2 7/2006 Klingensmith et al. 9,482.469 B2 11/2016 Cooper 7.774.361 B2 1/2016 Vide tal. 9,482.469 B2 11/2016 Cooper 7.774.361 B2 1/2016 Vide tal. 9,506.129 B2 11/2016 Cooper 7.774.361 B2 1/2017 Netfl 9,506.346 B2 11/2016 Finght et al. 9,506.129 B2 11/2016 Bright et al. 9,506.129 B2 11/2016 Cooper 9,506.436 B2 11/2016 Cooper 9,506.436 B2 1/2017 Vide season 9,507.402.276 B2 1/2009 Morando 9,537.838 B2 3/2017 Cooper 9,632.670 B2 4/2017 Wide 1/2018 B2 1/2018 Cooper 9,632.670 B2 4/2017 Wide 1/2018 B2 1/2009 Morando 9,507.578 B2 5/2017 Cooper 9,632.670 B2 1/2018 Cooper 1,457.573.65 B2 3/2009 Thut 9,855.600 B2 1/2018 Cooper 1,507.365 B2 3/2009 Thut 9,805.838 B2 2/2018 Cooper 1,507.365 B2 3/2009 Cooper 9,909.808 B2 3/2018 Cooper 1,507.365 B2 3/2009 Cooper 9,909.808 B2 3/2018 Cooper 1,507.365 B2 3/2010 Cooper 9,909.808 B2 3/2018 Cooper 1,507.365 B2 3/2010 Cooper 9,909.808 B2 3/2018 Cooper 1,507.365 B2 3/2011 Cooper 9,909.808 B2 3/2018 Cooper 1,507.365 B2 3/2011 Cooper 9,909.808 B2 3/2018 Cooper 1,507.365 B2 3/2019 Cooper 1,507.365 B			9,464,636 B2	10/2016	Cooper
6,902,666 B2	6,887,424 B2 5/2005				
7.037.462 B2 5.2006 Klingensmith et al. 9.481.918 B2 11/2016 Vide dal.					
7.083,758 B2	7,037,462 B2 5/2006		9,481,918 B2		
7,131,482 B2 1/2006 Vincent et al. 7,131,482 B2 1/2007 Verified 9,506,129 B2 11/2016 Bright et al. 7,204,934 B2 1/2007 Mordue 9,532,670 B2 1/2017 Cooper 7,273,582 B2 9/2007 Mordue 9,536,645 B2 1/2017 Cooper 7,279,128 B2 10/2007 Kennedy et al. 9,581,388 B2 2/2017 Cooper 7,326,028 B2 2/2008 Morando 9,587,833 B2 2/2017 Cooper 7,402,767 B2 7/2008 Cooper 9,632,670 B2 4/2017 Wu 7,470,392 B2 1/2009 Thut 9,633,247 B2 5/2017 Cooper 7,470,392 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,481,966 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,491,938 B2 3/2009 Thut 9,862,206 B2 1/2018 Cooper 7,507,365 B2 3/2009 Thut 9,862,206 B2 1/2018 Cooper 7,507,365 B2 3/2009 Cooper 9,909,808 B2 3/2018 Cooper 7,507,365 B2 3/2009 Cooper 9,909,808 B2 3/2018 Cooper 7,507,365 B2 3/2010 Cooper 9,909,808 B2 3/2018 Cooper 7,507,365 B2 3/2010 Mohr 9,920,767 B2 3/2018 Paul File Cooper 7,507,368 B2 3/2010 Mohr 9,925,887 B2 3/2018 Cooper 7,541,600 B1 6/2009 Morando 9,920,787 B2 3/2018 Morando 19,920,787 B2 3/2018 Cooper 7,541,600 B1 3/2011 Morando 9,951,777 B2 4/2018 Morando 19,951,777 B2 1/2016 Vans 9,951,777 B2 4/2018 Morando 19,951,777 B2 1/2018 Morando 19,951,777 B2 1/2018 Morando 19,952,945 B2 5/2018 Cooper 7,841,939 B1 1/2010 Evans 9,970,442 B2 5/2018 Morando 19,952,945 B2 5/2018 Cooper 8,078,837 B2 1/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,101,414 B2 2/2012 Cooper 10,072,897 B2 9/2018 Cooper 8,117,803 B2 1/2011 Cooper 10,126,059 B2 11/2018 Cooper 8,137,023 B2 3/2012 Gooper 10,126,059 B2 11/2018 Cooper 8,137,033 B2 1/2011 Cooper 10,126,059 B2 11/2018 Cooper 8,137,037 B2 1/2011 Cooper 10,126,059 B2 11/2018 Cooper 8,137,037 B2 1/2011 Cooper 10,126,059 B2 11/2018 Cooper 8,137,037 B2 1/2011 Cooper 10,030,361 B2 5/2019 Cooper 8,366,939 B2 2/2013 Cooper 10,322,451 B2 6/2019 Cooper 8,366,939 B2 1/2013 Cooper 10,322,451 B2 6/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,322,620 B2 1/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,325,679 B2 20/200 Cooper 8,440,133 B2 5/2013 Cooper 10,325,679 B2 20/200 Cooper 8,580,288 B2 9/					
7,157,043 B2 1/2007 Neff 9,596,346 B2 11/2016 Vanessen 7,273,582 B2 9/2007 Mordue 9,566,645 B2 2/2017 Vanessen 7,273,582 B2 9/2007 Mordue 9,566,645 B2 2/2017 Cooper 7,279,128 B2 10/2007 Kennedy et al. 9,581,388 B2 2/2017 Cooper 7,279,128 B2 10/2007 Kennedy et al. 9,581,388 B2 2/2017 Cooper 7,470,276 B2 7/2008 Cooper 9,632,670 B2 4/2017 Wu 4/20,276 B2 7/2008 Cooper 9,632,670 B2 4/2017 Wu 4/20,276 B2 7/2008 Cooper 9,632,670 B2 4/2017 Wu 4/20,276 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,476,357 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,479,988 B2 3/2009 Thut 9,862,026 B2 1/2018 Cooper 7,507,367 B2 3/2009 Thut 9,862,026 B2 1/2018 Cooper 7,507,367 B2 3/2009 Cooper 9,909,808 B2 3/2018 Cooper 7,543,605 B1 6/2009 Morando 9,902,767 B2 3/2018 Cooper 7,543,605 B1 6/2009 Morando 9,902,767 B2 3/2018 Klain et al. 7,731,891 B2 6/2010 Cooper 9,925,587 B2 3/2018 Klain et al. 7,731,471 B2 8/2010 Lott 9,951,777 B2 4/2018 Morando 9,925,587 B2 1/2018 Morando 1,052,688 B2 8/2018 Cooper 10,052,688 B2 8/2018 Cooper 10,052,688 B2 8/2018 Cooper 10,052,688 B2 1/2018 Cooper 10,052,688 B2 1/2018 Cooper 10,126,059 B2 1/2019 C			9,506,129 B2	11/2016	Cooper
7.273,582 B.2 9/2007 Mordue 9.566,645 B.2 2/2017 Cooper 7.279,128 B.2 10/2007 Kennedy et al. 9.581,388 B.2 3/2017 Cooper 7.326,028 B.2 2/2018 Morando 9.587,883 B.2 3/2017 Cooper 7.402,276 B.2 7/2008 Cooper 9.643,247 B.2 5/2017 Cooper 7.476,357 B.2 7/2008 Cooper 9.643,247 B.2 5/2017 Cooper 7.476,357 B.2 1/2009 Thut 9.657,578 B.2 5/2017 Cooper 7.481,966 B.2 1/2009 Mizuno 9.855,5000 B.2 1/2018 Cooper 7.497,988 B.2 3/2009 Thut 9.855,500 B.2 1/2018 Cooper 7.507,367 B.2 3/2009 Thut 9.903,383 B.2 2/2018 Cooper 7.507,367 B.2 3/2009 Morando 9.909,808 B.2 3/2018 Cooper 7.507,367 B.2 3/2009 Morando 9.909,808 B.2 3/2018 Cooper 7.543,605 B.1 6/2009 Morando 9.920,787 B.2* 3/2018 Klain et al. 7.731,891 B.2 6/2010 Cooper 9.920,787 B.2* 3/2018 Klain et al. 7.731,891 B.2 6/2010 Cooper 9.920,787 B.2* 3/2018 Morando 9.925,587 B.2 3/2018 Cooper 7.5841,379 B.1 11/2010 Evans 9.970,442 B.2 5/2018 Morando et al. 7.841,379 B.1 11/2010 Evans 9.970,442 B.2 5/2018 Morando et al. 7.896,617 B.1 3/2011 Morando 9.982,945 B.2 5/2018 Cooper 7.906,608 B.2 3/2011 Cooper 10.052,688 B.2 8/2018 Cooper 8.175,837 B.2 1/2011 Cooper 10.072,897 B.2 8/2018 Cooper 8.175,837 B.2 1/2011 Cooper 10.072,897 B.2 11/2018 Cooper 8.178,037 B.2 1/2012 Cooper 10.126,058 B.2 11/2018 Cooper 8.178,037 B.2 1/2012 Cooper 10.126,058 B.2 11/2018 Cooper 8.333,740 B.2 1/2012 Cooper 10.074,256 B.2 4/2019 Cooper 8.345,40 B.2 1/2012 Cooper 10.303,361 B.2 4/2019 Cooper 8.345,40 B.2 1/2012 Cooper 10.303,361 B.2 4/2019 Cooper 8.345,50 B.2 1/2012 Cooper 10.303,361 B.2 4/2019 Cooper 8.345,50 B.2 1/2012 Cooper 10.303,361 B.2 4/2019 Cooper 8.345,50 B.2 1/2012 Cooper 10.345,645 B.2 1/2019 Cooper 8.345,50 B.2 1/2013 Cooper 10.345,645 B.2 1/2019 Cooper 8.345,50 B.2 1/2013 Cooper 10.352,620 B.2 1/2019 Cooper 8.345,50 B.2 1/2013 Cooper 10.345,645 B.2 1/2019 Cooper 8.345,50 B.2 1/2013 Cooper 10.345,645 B.2 1/2019 Cooper 8	7,157,043 B2 1/2007	Neff			
7,279,128 B2 10/2007 Kennedy et al. 9,581,388 B2 2/2017 Cooper 7,326,028 B2 2/2008 Morando 9,587,883 B2 3/2017 Cooper 9,632,670 B2 4/2017 Wu 7,470,392 B2 1/2008 Cooper 9,632,670 B2 4/2017 Cooper 7,470,392 B2 1/2009 Cooper 9,643,247 B2 5/2017 Cooper 7,476,357 B2 1/2009 Thut 9,657,578 B2 5/2017 Cooper 7,476,357 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,491,966 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,507,365 B2 3/2009 Thut 9,862,026 B2 1/2018 Cooper 7,507,365 B2 3/2009 Thut 9,903,383 B2 2/2018 Cooper 7,507,365 B1 6/2009 Morando 9,903,838 B2 2/2018 Cooper 7,543,605 B1 6/2009 Morando 9,920,767 B2 3/2018 Cooper 7,543,605 B1 6/2009 Morando 9,920,767 B2 3/2018 Morando 7,731,891 B2 6/2010 Cooper 9,920,787 B2 3/2018 Morando 7,731,891 B2 6/2010 Morando 9,920,787 B2 3/2018 Cooper 7,744,799 B1 8/2010 Morando 9,920,767 B2 4/2018 Morando 1,731,499 B1 1/2010 Evans 9,970,442 B2 5/2018 Tipton 7,886,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Cooper 7,906,068 B2 3/2011 Cooper 10,972,897 B2 9/2018 Cooper 8,117,013 B2 2/2012 Cooper 10,972,897 B2 9/2018 Cooper 8,117,013 B2 3/2012 Cooper 10,972,897 B2 9/2018 Cooper 8,117,013 B2 3/2012 Cooper 10,972,897 B2 11/2018 Cooper 8,117,013 B2 3/2012 Cooper 10,972,897 B2 11/2018 Cooper 8,117,013 B2 3/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,137,037 B2 1/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,137,037 B2 1/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,337,746 B2 12/2012 Wang 10,267,314 B2* 4/2019 Cooper 8,346,037 B2 1/2012 Cooper 10,309,725 B2 6/2019 Cooper 8,346,043 B2 5/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,458,708 B2 11/2019 Cooper 10,458,708 B2 11/2019 Cooper 8,449,8					
7,402,276 B2 7/2008 Cooper 9,643,247 B2 5/2017 Wu 7,470,392 B2 12,009 Fulut 9,657,578 B2 5/2017 Cooper 7,476,357 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,481,966 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,497,988 B2 3/2009 Thut 9,862,026 B2 1/2018 Cooper 7,507,367 B2 3/2009 Thut 9,993,838 B2 2/2018 Cooper 7,507,367 B2 3/2009 Cooper 9,999,808 B2 3/2018 Cooper 7,531,801 B2 6/2010 Cooper 9,920,767 B2 3/2018 Cooper 7,531,801 B2 6/2010 Cooper 9,920,767 B2 3/2018 Paul			9,581,388 B2	2/2017	Cooper
7,470,392 B2 12/2008 Cooper 9,643,247 B2 5/2017 Cooper 7,476,357 B2 12/2009 Thut 9,657,578 B2 5/2017 Cooper 7,481,366 B2 1/2009 Mizuno 9,855,600 B2 1/2018 Cooper 7,481,366 B2 1/2009 Thut 9,852,026 B2 1/2018 Cooper 7,507,365 B2 3/2009 Thut 9,852,026 B2 1/2018 Cooper 7,507,367 B2 3/2009 Thut 9,903,388 B2 2/2018 Cooper 7,507,367 B2 3/2009 Cooper 9,909,808 B2 3/2018 Cooper 7,543,605 B1 6/2009 Morando 9,920,767 B2 3/2018 Cooper 7,543,605 B1 6/2010 Cooper 9,909,808 B2 3/2018 Cooper 7,711,171 B2 8/2010 Mohr 9,925,587 B2 3/2018 Cooper 7,781,171 B2 8/2010 Mohr 9,925,587 B2 3/2018 Cooper 7,7841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Cooper 7,841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Cooper 7,906,068 B2 3/2011 Cooper 10,052,688 B2 8/2018 Cooper 10,052,688 B2 8/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,110,141 B2 2/2012 Cooper 10,126,058 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B1 11/2018 Cooper 10,126,058 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,126,058 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 10,126,059 B2 11/2019 Cooper 10,126,059 B2 11/2019 Cooper 10,126,059 B2 11/2019 Cooper 10,126,059 B2 11/2019 Cooper 10,126,0					
7,476,357 B2 1/2009 Mizuno 9,855,608 B2 1/2018 Cooper 7,497,988 B2 1/2018 Cooper 9,855,608 B2 1/2018 Cooper 9,955,608 B2 1/2018 Cooper 7,497,988 B2 3/2009 Thut 9,855,608 B2 1/2018 Cooper 7,507,365 B2 3/2009 Thut 9,903,383 B2 2/2018 Cooper 7,507,365 B2 3/2009 Cooper 9,909,808 B2 3/2018 Cooper 7,543,605 B1 6/2009 Morando 9,920,767 B2 3/2018 Rain et al. 7,731,891 B2 6/2010 Cooper 9,920,767 B2 3/2018 Paul F16C 33/1045 7,771,171 B2 8/2010 Mohr 9,925,587 B2 3/2018 Paul F16C 33/1045 7,771,171 B2 8/2010 Lott 9,951,777 B2 4/2018 Morando et al. 7,841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Tipton 7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Tipton 7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,052,688 B2 8/2018 Cooper 10,052,688 B2 8/2018 Cooper 8,110,141 B2 2/2012 Cooper 10,126,058 B2 11/2018 Cooper 10,126,058 B2 11/2018 Cooper 8,137,023 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 11,12018 Coope					
7,497,988 B2 3/2009 Thut 9,903,383 B2 1/2018 Cooper 7,507,365 B2 3/2009 Thut 9,903,383 B2 2/2018 Cooper 7,507,365 B2 3/2009 Cooper 9,909,808 B2 3/2018 Cooper 7,543,605 B1 6/2009 Morando 9,920,767 B2 3/2018 Klain et al. 7,731,891 B2 6/2010 Mohr 9,925,587 B2 3/2018 Klain et al. 7,731,891 B2 6/2010 Mohr 9,925,587 B2 3/2018 Cooper 7,784,999 B1 8/2010 Lott 9,951,777 B2 4/2018 Morando et al. 7,841,379 B1 11/2010 Evans 9,970,444 B2 5/2018 Tipton 7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Tipton 7,906,068 B2 3/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,110,141 B2 2/2012 Cooper 10,126,058 B2 11/2018 Cooper 10,126,058 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,126,058 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,126,058 B2 11/2018 Cooper 8,1378,037 B2 5/2012 Cooper 10,126,638 B2 21/2019 Cooper 8,333,921 B2 12/2012 Cooper 10,126,638 B2 11/2018 Cooper 10,126,638 B2 11/2019 Cooper 10,	7,476,357 B2 1/2009	Thut			
7,507,365 B2 3/2009 Thut 9,903,383 B2 2/2018 Cooper 7,507,367 B2 3/2009 Cooper 9,909,808 B2 3/2018 Klain et al. 3/2018 Cooper 9,909,808 B2 3/2018 Klain et al. 3/2018 Klain et al. 7,731,891 B2 6/2010 Cooper 9,920,787 B2* 3/2018 Ralı					
7,507,367 B2 3/2009 Cooper 7,543,605 B1 6/2009 Morando 9,920,767 B2 3/2018 Klain et al. 7,731,891 B2 6/2010 Cooper 9,920,787 B2 * 3/2018 Klain et al. 7,731,891 B2 6/2010 Mohr 9,925,587 B2 3/2018 Cooper 7,784,999 B1 8/2010 Lott 9,951,777 B2 4/2018 Morando et al. 7,841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Tipton 7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Cooper 7,906,068 B2 3/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,110,141 B2 2/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,156,664 B2 2/2019 Cooper 8,178,037 B2 5/2012 Cooper 10,195,664 B2 2/2010 Cooper 8,333,921 B2 12/2012 Wang 10,267,314 B2* 4/2019 Cooper 8,331,746 B2 12/2012 Wang 10,267,314 B2* 4/2019 Cooper 8,361,379 B2 11/2013 Cooper 10,307,821 B2 6/2019 Cooper 8,366,938 B2 2/2013 Cooper 10,307,821 B2 6/2019 Cooper 8,440,495 B2 4/2013 Cooper 10,342,454 B2 7/2019 Cooper 8,440,415 B2 5/2013 Cooper 10,342,840 B2 7/2013 Cooper 8,440,814 B2 5/2013 Cooper 10,342,840 B2 7/2013 Cooper 10,342,840 B2 7/2019 Cooper 8,440,814 B2 5/2013 Cooper 10,342,843 B2 10/2019 Cooper 8,440,814 B2 5/2013 Cooper 10,342,845 B2 7/2019 Cooper 8,440,814 B2 5/2013 Cooper 10,342,845 B2 7/2019 Cooper 8,445,814 B2 5/2013 Cooper 10,342,845 B2 7/2019 Cooper 8,445,814 B2 5/2013 Cooper 10,342,845 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,352,620 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,365,688 B2 11/2019 Cooper 8,490,848 B2 8/2013 Cooper 10,365,688 B2 11/2019 Cooper 8,490,848 B2 8/2013 Cooper 10,465,688 B2 11/2019 Cooper 8,490,848 B2 8/2013 Cooper 10,465,688 B2 11/2019 Cooper 8,524,146 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,279 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al.			9,903,383 B2	2/2018	Cooper
7,731,891 B2 6/2010 Cooper 9,920,787 B2 * 3/2018 Paul F16C 33/1045 7,771,171 B2 8/2010 Mohr 9,925,587 B2 3/2018 Cooper 7,784,999 B1 8/2010 Lott 9,951,777 B2 4/2018 Morando et al. 7,841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Cooper 7,906,068 B2 3/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,107,837 B2 12/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,113,023 B2 3/2011 Cooper 10,126,055 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,178,037 B2 5/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,178,037 B2 5/2012 Cooper 10,126,059 B2 11/2018 Cooper 10,126,059 B2 11/2018 Cooper 10,126,059 B2 11/2018 Cooper 8,333,921 B2 12/2012 Cooper 10,126,059 B2 11/2018 Cooper 10,267,314 B2 * 4/2019 Cooper 8,361,379 B2 12/2012 Cooper 10,274,256 B2 4/2019 Cooper 8,361,379 B2 12/2012 Cooper 10,309,725 B2 6/2019 Cooper 8,366,939 B2 2/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,332,451 B2 6/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,352,650 B2 7/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,352,650 B2 7/2019 Cooper 8,440,814 B2 5/2013 Cooper 10,352,650 B2 7/2019 Cooper 8,445,814 B2 5/2013 Cooper 10,352,650 B2 7/2019 Cooper 8,445,814 B2 5/2013 Cooper 10,352,650 B2 7/2019 Cooper 8,455,94 B2 7/2013 Cooper 10,458,808 B2 11/2019 Cooper 8,450,950 B2 7/2013 Edite et al. 10,458,708 B2 11/2019 Cooper 8,501,084 B2 8/2013 Cooper 10,452,828 B2 11/2019 Cooper 8,501,084 B2 8/2013 Cooper 10,561,279 B2 5/2020 Cooper 8,502,828 B2 9/2013 Cooper 10,561,279 B2 5/2020 Cooper 8,502,828 B2 9/2013 Cooper 10,561,279 B2 5/2020 Cooper 8,502,828 B2 9/2013 Cooper 10,561,279	7,507,367 B2 3/2009				
7,771,171 B2 8/2010 Mohr 9,925,587 B2 3/2018 Cooper 7,784,999 B1 8/2010 Lott 9,951,777 B2 4/2018 Morando et al. 7,841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Tipton 7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Cooper 10,052,688 B2 8/2018 Cooper 10,072,897 B2 9/2018 Cooper 10,072,897 B2 9/2018 Cooper 10,072,897 B2 9/2018 Cooper 10,072,897 B2 9/2018 Cooper 10,126,058 B2 11/2018 Cooper 10,138,073 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 1/2012 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 1/2012 Cooper 10,195,664 B2 1/2012 Cooper 10,195,664 B2 1/2012 Cooper 10,195,664 B2 1/2012 Cooper 10,307,465 B2 4/2019 Cooper 10,302,361 B2 5/2013 Cooper 10,302,361 B2 5/2019 Cooper 8,361,379 B2 1/2013 Cooper 10,302,361 B2 5/2019 Cooper 8,409,495 B2 1/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,352,600 B2 7/2013 Cooper 10,352,600 B2 7/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,352,600 B2 7/2019 Cooper 8,445,594 B2 7/2013 Cooper 10,352,600 B2 7/2019 Cooper 8,445,594 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,475,594 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,480,950 B2 7/2013 Bright et al. 10,465,688 B2 11/2019 Cooper 8,524,146 B2 9/2013 Cooper 10,570,745 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,570,745 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,270 B2* 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,270 B2* 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,270 B2* 5/2020 Cooper 8,530,088 B2 11/2013 Turenne et al. 11,020,798 B2 6/2012 Cooper 10,640,279 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2012 Cooper 10,640,279 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,640,27					
7,841,379 B1 11/2010 Evans 9,970,442 B2 5/2018 Tipton 7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Cooper 7,906,068 B2 3/2011 Cooper 10,052,688 B2 8/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,110,141 B2 2/2012 Cooper 10,126,059 B2 11/2018 Cooper 8,137,023 B2 3/2012 Greer 10,126,059 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 8,142,145 B2 3/2012 Cooper 10,195,664 B2 2/2019 Cooper 8,178,037 B2 5/2012 Cooper 10,195,664 B2 2/2019 Cooper 8,338,3921 B2 12/2012 Wang 10,267,314 B2 4/2019 Cooper 10,274,256 B2 4/2019 Cooper 8,337,746 B2 12/2012 Thut 10,274,256 B2 4/2019 Cooper 8,337,746 B2 12/2012 Cooper 10,302,361 B2 5/2019 Cooper 8,366,993 B2 1/2013 Cooper 10,302,361 B2 5/2019 Cooper 8,409,495 B2 4/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,409,495 B2 4/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,475,594 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,480,950 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,480,950 B2 7/2013 Cooper 10,362,620 B2 7/2019 Cooper 8,501,084 B2 8/2013 Cooper 10,562,097 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,562,097 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,562,097 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al.	7,771,171 B2 8/2010	Mohr	9,925,587 B2		
7,896,617 B1 3/2011 Morando 9,982,945 B2 5/2018 Cooper 7,906,068 B2 3/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,075,837 B2 12/2011 Cooper 10,126,058 B2 11/2018 Cooper 10,126,058 B2 11/2018 Cooper 10,126,058 B2 11/2018 Cooper 10,126,059 B2 11/2018 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 2/2019 Cooper 10,195,664 B2 2/2019 Cooper 10,274,256 B2 4/2019 Cooper 10,274,256 B2 4/2019 Cooper 10,274,256 B2 4/2019 Cooper 10,307,821 B2 6/2019 Cooper 10,307,821 B2 6/2019 Cooper 10,307,821 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,345,045 B2 7/2013 Cooper 10,345,045 B2 7/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,8095 B2 7/2013 Bright et al. 10,562,097 B2 2/2020 Cooper 8,449,814 B2 8/2013 Cooper 10,456,688 B2 11/2019 Cooper 8,475,798 B2 7/2013 Jetten et al. 10,562,097 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,661,279 B2 6/2020 Cooper 8,5305,603 B2 9					
8,075,837 B2 12/2011 Cooper 10,072,897 B2 9/2018 Cooper 8,110,141 B2 2/2012 Cooper 10,126,058 B2 11/2018 Cooper 11/2019 Cooper 11/2018 Cooper 11/2019 Cooper 11/2018 Cooper 11/2019 Cooper 11/2018 Cooper			9,982,945 B2	5/2018	Cooper
8,110,141 B2 2/2012 Cooper 10,126,058 B2 11/2018 Cooper 8,137,023 B2 3/2012 Greer 10,126,059 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 11,126,185 B2 11/2018 Cooper 11,126,185 B2 11/2018 Cooper 11,126,185 B2 11/2018 Cooper 12,126,059 B2 11/2019 Cooper 12,126,054 B2 12/2019 Cooper 12,226,054 B2 12/2012 Wang 10,267,314 B2* 4/2019 Cooper 12,327,4256 B2 4/2019 Cooper 12,307,46 B2 12/2012 Cooper 10,302,361 B2 5/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 10,322,451 B2 6/2019 Cooper 10,322,451 B2 6/2019 Cooper 10,322,451 B2 6/2019 Cooper 10,345,045 B2 7/2019 Cooper 10,345,045 B2 7/2019 Cooper 10,345,045 B2 7/2019 Cooper 10,352,620 B2 7/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,80,950 B2 7/2013 Bright et al. 10,458,708 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,461,270 B2 5/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,641,270 B2 5/2020 Co					
8,137,023 B2 3/2012 Greer 10,126,059 B2 11/2018 Cooper 8,142,145 B2 3/2012 Thut 10,138,892 B2 11/2018 Cooper 8,178,037 B2 5/2012 Cooper 10,195,664 B2 2/2019 Cooper et al. 8,328,540 B2 12/2012 Wang 10,267,314 B2* 4/2019 Cooper F04D 7/065 8,333,921 B2 12/2012 Cooper 10,302,361 B2 5/2019 Cooper 8,361,379 B2 1/2013 Cooper 10,302,361 B2 5/2019 Cooper 8,366,993 B2 2/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,409,495 B2 4/2013 Cooper 10,322,451 B2 6/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,475,504 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,480,950 B2					
8,178,037 B2 5/2012 Cooper 10,195,664 B2 2/2019 Cooper et al. 8,328,540 B2 12/2012 Wang 10,267,314 B2* 4/2019 Cooper	8,137,023 B2 3/2012	Greer			
8,328,540 B2 12/2012 Wang 10,267,314 B2 * 4/2019 Cooper F04D 7/065 8,333,921 B2 12/2012 Thut 10,274,256 B2 4/2019 Cooper 8,337,746 B2 12/2012 Cooper 10,302,361 B2 5/2019 Cooper 8,361,379 B2 1/2013 Cooper 10,307,821 B2 6/2019 Cooper 8,366,993 B2 2/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,469,495 B2 4/2013 Cooper 10,322,451 B2 6/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,352,620 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,428,821 B2 10/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,428,821 B2 10/2019 Cooper 8,475,594 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,475,708 B2 7/2013 Cooper 10,465,688 B2 11/2019 Cooper 8,480,950 B2 7/2013 Jetten et al. 10,562,097 B2 2/2020 Cooper 8,501,084 B2 8/2013 Cooper 10,570,745 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,561,279 B2 5/2020 Cooper 8,529,828 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,279 B2 6/2020 Cooper 8,535,5603 B2 9/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,6675,679 B2 6/2021 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,000 B2 6/					
8,333,921 B2 12/2012 Thut 10,274,256 B2 4/2019 Cooper 8,337,746 B2 12/2012 Cooper 10,307,821 B2 5/2019 Cooper 8,361,379 B2 1/2013 Cooper 10,307,821 B2 6/2019 Cooper 8,366,993 B2 2/2013 Cooper 10,309,725 B2 6/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,322,451 B2 6/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,428,821 B2 10/2019 Cooper 8,475,594 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 8,475,708 B2 7/2013 Jetten et al. 10,562,097 B2 2/2020 Cooper 8,501,084 B2 8/2013 Cooper 10,562,097 B2 2/2020 Cooper 8,529,828 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper			10,267,314 B2*	4/2019	Cooper F04D 7/065
8,361,379 B2 1/2013 Cooper 10,307,821 B2 6/2019 Cooper 8,366,993 B2 2/2013 Cooper 10,309,725 B2 6/2019 Cooper 10,309,725 B2 6/2019 Cooper 8,409,495 B2 4/2013 Cooper 10,322,451 B2 6/2019 Cooper 8,440,135 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 10,352,620 B2 7/2019 Cooper 10,352,620 B2 7/2019 Cooper 10,352,620 B2 7/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,458,708 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,500,084 B2 8/2013 Cooper 10,570,745 B2 2/2020 Cooper 8,501,084 B2 8/2013 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,641,270 B2* 5/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 8,535,503 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,503 B2 9/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,000 B2 6/2021 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,000 B2 6/2021 C	8,333,921 B2 12/2012	Thut			
8,366,993 B2					
8,440,135 B2 5/2013 Cooper 10,345,045 B2 7/2019 Cooper 8,444,911 B2 5/2013 Cooper 10,352,620 B2 7/2019 Cooper 10,352,620 B2 7/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 10,458,708 B2 7/2013 Bright et al. 10,458,708 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,502,097 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,641,270 B2 5/2020 Cooper 10,641,270 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 10,675,679 B2 6/2020 Cooper 10,675,679 B2 6/2					
8,444,911 B2 5/2013 Cooper 10,352,620 B2 7/2019 Cooper 8,449,814 B2 5/2013 Cooper 10,428,821 B2 10/2019 Cooper 10,428,821 B2 10/2019 Cooper 8,475,594 B2 7/2013 Bright et al. 10,458,708 B2 10/2019 Cooper 10,465,688 B2 11/2019 Cooper 8,480,950 B2 7/2013 Jetten et al. 10,562,097 B2 2/2020 Cooper 8,501,084 B2 8/2013 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,641,270 B2 5/2020 Cooper 10,641,270 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper Cooper 10,675,679 B2 6/2021 Cooper 10,675,679 B2 6/2021 Cooper 10,675,679 B2 6/2021 Cooper 10,675,679 B2 6/2021 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,000 FC	8,409,495 B2 4/2013				
8,449,814 B2 5/2013 Cooper 10,428,821 B2 10/2019 Cooper 10,455,594 B2 7/2013 Bright et al. 10,458,708 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,465,688 B2 11/2019 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,570,745 B2 2/2020 Cooper 10,641,270 B2 5/2020 Cooper 10,641,270 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 10,641,279 B2 5/2020 Cooper 10,675,679 B2 6/2020 Cooper 10,675,679 B2 6/20			10,352,620 B2		
8,475,708 B2 7/2013 Cooper 10,465,688 B2 11/2019 Cooper 8,480,950 B2 7/2013 Jetten et al. 10,562,097 B2 2/2020 Cooper 8,501,084 B2 8/2013 Cooper 10,570,745 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,270 B2 5/2020 Cooper 10,641,270 B2 5/2020 Cooper 8,529,828 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper 10,020,798 B2 6/2021 Cooper 11,020,798 B2 6/2021	8,449,814 B2 5/2013	Cooper			
8,480,950 B2 7/2013 Jetten et al. 10,562,097 B2 2/2020 Cooper 8,501,084 B2 8/2013 Cooper 10,570,745 B2 2/2020 Cooper 8,524,146 B2 9/2013 Cooper 10,641,270 B2* 5/2020 Cooper			, ,		
8,524,146 B2 9/2013 Cooper 10,641,270 B2 * 5/2020 Cooper 5/2020 Cooper F04D 29/628 8,529,828 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper Cooper 8,535,603 B2 9/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper	8,480,950 B2 7/2013	Jetten et al.	10,562,097 B2	2/2020	Cooper
8,529,828 B2 9/2013 Cooper 10,641,279 B2 5/2020 Cooper 8,535,603 B2 9/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper			, ,		
8,535,603 B2 9/2013 Cooper 10,675,679 B2 6/2020 Cooper 8,580,218 B2 11/2013 Turenne et al. 11,020,798 B2 6/2021 Cooper			, ,		*
•			10,675,679 B2		
V 6 L4 VV4 D2 - 12/2012 Cooper 11 00V 2/10 D2 - V/2021 Cooper					
8,613,884 B2 12/2013 Cooper 11,098,719 B2 8/2021 Cooper 8,714,914 B2 5/2014 Cooper 11,098,720 B2 8/2021 Cooper			11,098,719 B2 11,098,720 B2*		
8,753,563 B2 6/2014 Cooper 11,103,920 B2 8/2021 Cooper 11,103,920 B2 8/2021 Cooper					

(56)	Referen	ices Cited	2013/0306687		11/2013	
U.S.	PATENT	DOCUMENTS	2013/0334744 2013/0343904		12/2013 12/2013	Tremblay Cooper
0.5.	171112111	Bocombino	2014/0008849		1/2014	Cooper
11,130,173 B2		Cooper	2014/0041252			Vild et al.
11,149,747 B2* 11,167,345 B2		Cooper F04D 29/60:	5 2014/0044520 2014/0083253		2/2014 3/2014	Lutes et al.
11,185,916 B2	11/2021 11/2021	1	2014/0210144		7/2014	Torres et al.
11,286,939 B2		Cooper	2014/0232048			Howitt et al.
11,358,216 B2		Cooper	2014/0252697 2014/0252701		9/2014	Kauch Cooper
11,358,217 B2 11,391,293 B2		Cooper Cooper	2014/0261800			Cooper
11,471,938 B2		Fontana	2014/0263482			Cooper
11,519,414 B2	12/2022		2014/0265068 2014/0271219			Cooper
12,031,550 B2* 2001/0000465 A1	7/2024 4/2001	Cooper F04D 29/04:	2014/02/1219			Cooper Henderson et al.
2002/0089099 A1		Denning	2015/0069679	A1	3/2015	Henderson et al.
2002/0102159 A1	8/2002		2015/0184311			Turenne
2002/0146313 A1 2002/0185789 A1	10/2002	Thut Klingensmith et al.	2015/0192364 2015/0217369			Cooper Cooper
2002/0185789 A1 2002/0185790 A1		Kilgensmith	2015/0219111			Cooper
2002/0185794 A1		Vincent	2015/0219112			Cooper
2003/0047850 A1		Areaux	2015/0219113 2015/0219114			Cooper Cooper
2003/0075844 A1 2003/0082052 A1		Mordue et al. Gilbert et al.	2015/0224574			Cooper
2003/0151176 A1	8/2003		2015/0252807			Cooper
2003/0201583 A1		Klingensmith	2015/0285557 2015/0285558		10/2015 10/2015	
2004/0050525 A1 2004/0076533 A1		Kennedy et al. Cooper	2015/0323256		11/2015	
2004/0096330 A1		Gilbert	2015/0328682		11/2015	
2004/0115079 A1		Cooper	2015/0328683 2016/0031007		11/2015	Cooper Cooper
2004/0245684 A1 2004/0262825 A1	12/2004 12/2004		2016/0040265			Cooper
2005/0013713 A1		Cooper	2016/0047602	A1	2/2016	Cooper
2005/0013714 A1	1/2005	Cooper	2016/0053762			Cooper
2005/0013715 A1		Cooper	2016/0053814 2016/0082507			Cooper Cooper
2005/0053499 A1 2005/0077730 A1	3/2005 4/2005	Cooper	2016/0089718			Cooper
2005/0081607 A1		Patel et al.	2016/0091251			Cooper
2005/0116398 A1		Tremblay	2016/0116216 2016/0221855			Schlicht et al. Retorick et al.
2006/0180963 A1 2006/0198725 A1	8/2006 9/2006		2016/0250686			Cooper
2007/0253807 A1	11/2007		2016/0265535			Cooper
2008/0163999 A1		Hymas et al.	2016/0305711 2016/0320129		10/2016 11/2016	
2008/0202644 A1 2008/0211147 A1	8/2008 9/2008	Cooper Cooper	2016/0320129		11/2016	
2008/0213111 A1		Cooper	2016/0320131		11/2016	
2008/0230966 A1		Cooper	2016/0346836 2016/0348973		12/2016 12/2016	Henderson et al.
2008/0253905 A1 2008/0304970 A1	10/2008	Morando et al.	2016/0348974		12/2016	
2008/0304970 A1 2008/0314548 A1	12/2008		2016/0348975	A1	12/2016	
2009/0054167 A1	2/2009	Cooper	2017/0037852 2017/0038146		2/2017	Bright et al. Cooper
2009/0140013 A1 2009/0269191 A1	6/2009 10/2009	Cooper	2017/0038140			Cooper
2010/0104415 A1		Morando	2017/0056973	A1	3/2017	Tremblay et al.
2010/0200354 A1	8/2010	Yagi et al.	2017/0082368			Cooper
2011/0133374 A1 2011/0135457 A1		Cooper	2017/0106435 2017/0106441			Vincent Vincent
2011/0133437 A1 2011/0140318 A1		Cooper Reeves et al.	2017/0130298			Teranishi et al.
2011/0140319 A1	6/2011	Cooper	2017/0167793			Cooper et al.
2011/0140619 A1	6/2011		2017/0198721 2017/0219289			Cooper Williams et al.
2011/0142603 A1 2011/0142606 A1		Cooper Cooper	2017/0241713			Henderson et al.
2011/0148012 A1		Cooper	2017/0246681			Tipton et al.
2011/0163486 A1		Cooper	2017/0274446 2017/0276430			Wagstaff Cooper
2011/0210232 A1 2011/0220771 A1		Cooper Cooper	2018/0058465			Cooper
2011/0227338 A1		Pollack	2018/0111189			Cooper
2011/0303706 A1	12/2011	1	2018/0178281 2018/0195513			Cooper Cooper
2012/0003099 A1 2012/0163959 A1		Tetkoskie Morando	2018/0311726		11/2018	-
2013/0105102 A1		Cooper	2019/0032675			Cooper
2013/0142625 A1	6/2013	Cooper	2019/0160642			Joo et al.
2013/0214014 A1		Cooper Totkoskio et al	2019/0270134			Cooper
2013/0224038 A1 2013/0292426 A1	8/2013	Tetkoskie et al. Cooper	2019/0293089 2019/0351481			Cooper Tetkoskie
2013/0292420 A1	11/2013		2019/0360491		11/2019	
2013/0299524 A1	11/2013	Cooper	2019/0360492		11/2019	
2013/0299525 A1	11/2013	Cooper	2019/0368494	Al	12/2019	Cooper

(56)	Refere	nces Cited		GB	1565911	4/1980		
				GB	1575991	10/1980		
	U.S. PATEN	Γ DOCUMENTS		GB	212260	1/1984		
				GB	2193257	2/1988		
2020/0130	050 A1 4/2020	Cooper		GB	2217784	3/1989		
2020/0130	051 A1 4/2020) Cooper		GB	2289919	12/1995		
2020/0130) Cooper		JP	58048796	3/1983		
2020/0130) Cooper		JP	63104773	5/1988		
2020/0130		Cooper		JP	11-270799	10/1999		
2020/0182		Cooper		JP	5112837	1/2013		
2020/0182		Cooper		MX	227385	4/2005		
2020/0256		Cooper		NO	90756	1/1959		
2020/0360		Cooper		SU	416401	2/1974		
2020/0360) Fontana		su	773312	10/1980		
2020/0360		Cooper		WO	199808990	3/1998		
2020/0360		Cooper		WO	199825031	6/1998		
2020/0362		Cooper Cooper		WO	200009889	2/2000		
2020/0363		Cooper Cooper		WO	2002012147	2/2002		
2021/0199		Cooper		WO	2004029307	4/2004		
2021/0155		Cooper		WO	2010147932	12/2010		
2022/0025		Cooper Cooper		WO	2014031484	2/2014		
				WO	2014055082	4/2014		
2022/0080		2 Cooper		WO	2014150503	9/2014		
2022/0193		2 Cooper		WO	2014185971	11/2014		
2022/0213		2 Cooper						
2022/0234		2 Cooper			OTHER DI	IDI IG ITIONG		
2022/0381		? Cooper			OTHER PU	JBLICATIONS		
2023/0001	474 A1 1/2023	Cooper		_				
2023/0219	132 A1 7/2023	Cooper				ts from "Pyrotek Inc.'s Motion for		
				Summary	y Judgment of Invalidit	y and Unenforceability of U.S. Pat.		
	FOREIGN PATE	ENT DOCUMEN	ITS	No. 7,40	2,276," Oct. 2, 2009.			
	T ORLEGOT TEMP	SIVI BOCOMBI	110	Documer	nt No. 505026: Exce	rpts from "MMEI's Response to		
CA	2244251	6/1998				Judgment of Invalidity or Enforce-		
CA	2305865	2/2000		ability of U.S. Pat. No. 7,402,276," Oct. 9, 2009.				
CA	2176475	7/2005		Document No. 507689: Excerpts from "MMEI's Pre-Hearing Bridge				
CA	2924572	4/2015				ummary Judgment of Infringement		
CH	392268	9/1965				28 and 29 of the '074 Patent and		
CN	102943761	2/2013				he Validity of Claims 7-9 of the '276		
CN	102943701	1/2014			Nov. 4, 2009.	the variety of Claims 7-9 of the 270		
DE DE		12/1969		,	,	C 450 14 12 E 1 10		
DE DE				Document No. 517158: Excerpts from "Reasoned Award		s from "Reasoned Award," Feb. 19,		
DE DE	19541093 19614350	5/1997 10/1997		2010.				
	102006051814	7/2008				ots from "Molten Metal Equipment		
						in Support of Application to Con-		
		8/1995		firm Arb	itration Award and Opp	position to Motion to Vacate," May		
EP 665378				12, 2010		•		
EP GB	1019635	6/2006		USPTO:	Notice of Reissue Exa	mination Certificate dated Aug. 27,		
	161707 A	4/1921			U.S. Appl. No. 90/005.			
GB	543607	3/1942		2001 III (C.S. 11ppi. 110. 50/005.	,		
GB	942648	11/1963		* -:+1	hrr arraminan			
GB 1185314 3/1970				ched	by examiner			

FIG.1

FIG.2

Aug. 12, 2025

Щ О Ш

TENSIONED SUPPORT POST AND OTHER MOLTEN METAL DEVICES

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of, and claims priority to U.S. patent application Ser. No. 18/139,936, filed Apr. 26, 2023 and entitled "Tensioned Support Post and Other Molten Metal Devices," which is a continuation of, and claims 10 priority to U.S. patent application Ser. No. 17/496,229, filed Oct. 7, 2021 and entitled "Tensioned Support Post and Other Molten Metal Devices," which is a continuation of, and claims priority to U.S. patent application Ser. No. 16/195, 678 (Now U.S. Pat. No. 11,149,747), filed Nov. 19, 2018, 15 and entitled "Tensioned Support Posts and Other Molten Metal Devices" which claims priority to U.S. Provisional Application 62/588,090, filed Nov. 17, 2017, and entitled "Tensioned Support Post and Other Molten Metal Devices," each of the disclosures of which are incorporated herein by 20 reference. This Application incorporates by reference U.S. application Ser. No. 15/406,515 (now U.S. Pat. No. 10,267, 314), filed Jan. 13, 2017, and entitled "Tensioned Support Shaft and Other Molten Metal Devices," to the extent such application does not conflict with the present disclosure.

FIELD

The invention relates to tensioned support posts and other components, such as a reinforced support post that may be 30 used in pumps for pumping molten metal.

BACKGROUND

As used herein, the term "molten metal" means any metal 35 or combination of metals in liquid form, such as aluminum, copper, iron, zinc, and alloys thereof. The term "gas" means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which are released into molten metal.

Known molten-metal pumps include (a) a pump base (also called a housing or casing), (b) one or more inlets (an inlet being an opening in the housing to allow molten metal to enter a pump chamber), (c) a pump chamber of any suitable configuration, which is an open area formed within 45 the housing, (d) a discharge, which is a channel or conduit of any structure or type communicating with the pump chamber (in an axial pump the chamber and discharge may be the same structure or different areas of the same structure) and that leads from the pump chamber to (e) an outlet, which 50 is an opening formed in the exterior of the housing through which molten metal exits the casing. An impeller, also called a rotor, is mounted at least partially in the pump chamber and is connected to a drive system. The drive shaft is typically (a) an impeller shaft having one end connected to 55 the impeller and the other end connected to a coupling, and (b) a motor shaft having one end connected to a motor (such as an electric, hydraulic, or pneumatic motor) and the other end connected to the coupling. Often, the impeller (or rotor) shaft is comprised of graphite and/or ceramic (such as 60 silicon carbide), the motor shaft is comprised of steel, and the coupling is comprised of steel.

As the motor turns the drive shaft, the drive shaft turns the impeller and the impeller pushes molten metal out of the pump chamber, through the discharge, out of the outlet and 65 into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the

2

inlet and into the pump chamber as the impeller pushes molten metal out of the pump chamber.

Some molten metal pumps do not include a base or support posts and are sized to fit into a structure by which molten metal is pumped. Most pumps have a metal platform, or superstructure, that is either supported by a plurality of support posts attached to the pump base, or supported by another structure if there is no pump base. The motor is positioned on the superstructure, if a superstructure is used.

This application incorporates by reference the portions of the following documents that are not inconsistent with this disclosure: U.S. Pat. No. 4,598,899, issued Jul. 8, 1986, to Paul V. Cooper, U.S. Pat. No. 5,203,681, issued Apr. 20, 1993, to Paul V. Cooper, U.S. Pat. No. 5,308,045, issued May 3, 1994, to Paul V. Cooper, U.S. Pat. No. 5,662,725, issued Sep. 2, 1997, to Paul V. Cooper, U.S. Pat. No. 5,678,807, issued Oct. 21, 1997, to Paul V. Cooper, U.S. Pat. No. 6,027,685, issued Feb. 22, 2000, to Paul V. Cooper, U.S. Pat. No. 6,124,523, issued Sep. 26, 2000, to Paul V. Cooper, U.S. Pat. No. 6,303,074, issued Oct. 16, 2001, to Paul V. Cooper, U.S. Pat. No. 6,689,310, issued Feb. 10, 2004, to Paul V. Cooper, U.S. Pat. No. 6,723,276, issued Apr. 20, 2004, to Paul V. Cooper, U.S. Pat. No. 7,402,276, issued Jul. 22, 2008, to Paul V. Cooper, U.S. Pat. No. 7,470,392, issued Dec. 30, 2008, to Paul V. Cooper, U.S. Pat. No. 7,507,367, issued Mar. 24, 2009, to Paul V. Cooper, U.S. Pat. No. 7,906,068, issued Mar. 15, 2011, to Paul V. Cooper, U.S. Pat. No. 8,075,837, issued Dec. 13, 2011, to Paul V. Cooper, U.S. Pat. No. 8,110,141, issued Feb. 7, 2012, to Paul V. Cooper, U.S. Pat. No. 8,178,037, issued May 15, 2012, to Paul V. Cooper, U.S. Pat. No. 8,337,746, issued Dec. 25, 2012, to Paul V. Cooper, U.S. Pat. No. 8,361,379, issued Jan. 29, 2013, to Paul V. Cooper, U.S. Pat. No. 8,366,993, issued Feb. 5, 2013, to Paul V. Cooper, U.S. Pat. No. 8,409,495, issued Apr. 2, 2013, to Paul V. Cooper, U.S. Pat. No. 8,440,135, issued May 15, 2013, to Paul V. Cooper, U.S. Pat. No. 8,444,911, issued May 21, 2013, to Paul V. Cooper, U.S. Pat. No. 8,449,814, issued May 28, 2013, to Paul V. Cooper, U.S. Pat. No. 8,475,708, issued Jul. 2, 2013, to Paul V. 40 Cooper, U.S. Pat. No. 8,501,084, issued Aug. 6, 2013, to Paul V. Cooper, U.S. patent application Ser. No. 12/895,796, filed Sep. 30, 2010, to Paul V. Cooper, U.S. patent application Ser. No. 13/791,952, filed Mar. 9, 2013, to Paul V. Cooper, U.S. Pat. No. 8,529,828, issued Sep. 10, 2013, to Paul V. Cooper, U.S. Pat. No. 8,535,603 issued Sep. 17, 2013, to Paul V. Cooper, U.S. Pat. No. 8,613,884, issued Dec. 24, 2013 to Paul V. Cooper, U.S. Pat. No. 8,714,914, issued May 6, 2014 to Paul V. Cooper, U.S. Pat. No. 8,753,563, issued Jun. 17, 2014, to Paul V. Cooper, U.S. Pat. No. 9,011,761, issued Apr. 21, 2015, to Paul V. Cooper, U.S. Pat. No. 9,017,597, issued Apr. 28, 2015, to Paul V. Cooper, U.S. Pat. No. 9,034,244, issued May 19, 2015, to Paul V. Cooper, U.S. Pat. No. 9,080,577, issued Jul. 14, 2015, to Paul V. Cooper, U.S. Pat. No. 9,108,244, issued Aug. 18, 2015, to Paul V. Cooper, U.S. Pat. No. 9,156,087, issued Oct. 13, 2015, to Paul V. Cooper, U.S. Pat. No. 9,205,490, issued Dec. 8, 2015, to Paul V. Cooper, U.S. Pat. No. 9,328,615, issued May 3, 2016 to Paul V. Cooper, U.S. Pat. No. 9,377,028, issued Jun. 28, 2016, to Paul V. Cooper, U.S. Pat. No. 9,382,599, issued Jul. 5, 2016, to Paul V. Cooper, U.S. Pat. No. 9,383,140, issued Jul. 5, 2016, to Paul V. Cooper, U.S. Pat. No. 9,409,232, issued Aug. 9, 2016, to Paul V. Cooper, U.S. Pat. No. 9,410,744, issued Aug. 9, 2016, to Paul V. Cooper, U.S. Pat. No. 9,422,942, issued Aug. 23, 2016, to Paul V. Cooper, U.S. Pat. No. 9,435,343, issued Sep. 6, 2016, to Paul V. Cooper, U.S. Pat. No. 9,464,636, issued Oct. 11, 2016, to Paul V. Cooper, U.S. Pat. No.

9,470,239, issued Oct. 18, 2016, to Paul V. Cooper, 9,481,

035, issued Nov. 1, 2016, to Paul V. Cooper, U.S. Pat. No. 9,482,469, issued Nov. 1, 2016, to Paul V. Cooper, U.S. Pat. No. 9,506,129, issued Nov. 29, 2016, to Paul V. Cooper, U.S. Pat. No. 9,566,645, issued Feb. 14, 2017, to Paul V. Cooper, 5 9,581,388, issued Feb. 28, 2017, to Paul V. Cooper, U.S. Pat. No. 9,587,883, issued Mar. 7, 2017, to Paul V. Cooper, U.S. Pat. No. 9,643,247, issued May 9, 2017, to Paul V. Cooper, U.S. Pat. No. 9,657,578, issued May 23, 2017, to Paul V. Cooper, U.S. Pat. No. 9,855,600, issued Jan. 2, 2018, to Paul 10 V. Cooper, U.S. Pat. No. 9,862,026, issued Jan. 9, 2018, to Paul V. Cooper, U.S. Pat. No. 9,903,383, issued Feb. 27, 2018, to Paul V. Cooper, U.S. Pat. No. 9,909,808, issued Mar. 6, 2018, to Paul V. Cooper, U.S. Pat. No. 9,925,587, issued Mar. 27, 2018, to Paul V. Cooper, entitled U.S. Pat. 15 No. 9,982,945, issued May 29, 2018, to Paul V. Cooper, U.S. Pat. No. 10,052,688, issued Aug. 21, 2018, to Paul V. Cooper, U.S. Pat. No. 10,072,891, issued Sep. 11, 2018, to Paul V. Cooper, U.S. Pat. No. 10,126,058, issued Nov. 13, 2018, to Paul V. Cooper, U.S. Pat. No. 10,126,059, issued 20 Nov. 13, 2018, to Paul V. Cooper, U.S. Pat. No. 10,138,892, issued Nov. 27, 2018, to Paul V. Cooper, U.S. Pat. No. 10,195,664, issued Feb. 5, 2019, to Paul V. Cooper, U.S. Pat. No. 10,267,314, issued Apr. 23, 2019, to Paul V. Cooper, U.S. Pat. No. 10,274,256, issued Apr. 30, 2019, to Paul V. 25 Cooper, U.S. Pat. No. 10,302,361, issued May 28, 2019, to Paul V. Cooper, U.S. Pat. No. 10,309,725, issued Jun. 4, 2019, to Paul V. Cooper, U.S. Pat. No. 10,307,821, issued Jun. 4, 2019, to Paul V. Cooper, U.S. Pat. No. 10,322,451, issued Jun. 18, 2019, to Paul V. Cooper, U.S. Pat. No. 30 10,345,045, issued Jul. 9, 2019, to Paul V. Cooper, U.S. Pat. No. 10,352,620, issued Jul. 16, 2019, to Paul V. Cooper, U.S. Pat. No. 10,428,821, issued Oct. 1, 2019, to Paul V. Cooper, U.S. Pat. No. 10,458,708, issued Oct. 29, 2019, to Paul V. Cooper, U.S. Pat. No. 10,465,688, issued Nov. 5, 2019, to 35 Paul V. Cooper, U.S. Pat. No. 10,562,097, issued Feb. 18, 2020, to Paul V. Cooper, U.S. Pat. No. 10,570,745, issued Feb. 25, 2020, to Paul V. Cooper, U.S. Pat. No. 10,641,279, issued May 5, 2020, to Paul V. Cooper, U.S. Pat. No. No. 10,675,679, issued Jun. 9, 2020, to Paul V. Cooper, U.S. Pat. No. 10,947,980, issued May 16, 2021, to Paul V. Cooper, U.S. Pat. No. 11,020,798, issued Jun. 1, 2021, to Paul V. Cooper, U.S. Pat. No. 11,098,719, issued Aug. 24, 2021, to Paul V. Cooper, U.S. Pat. No. 11,098,720, issued 45 Aug. 24, 2021, to Paul V. Cooper, U.S. Pat. No. 11,103,920, issued Aug. 31, 2021, to Paul V. Cooper, U.S. Pat. No. 11,130,173, issued Sep. 28, 2021, to Paul V. Cooper, U.S. Pat. No. 11,149,747, issued Oct. 19, 2021, to Paul V. Cooper, U.S. Pat. No. 11,167,345, issued Nov. 9, 2021, to Paul V. 50 Cooper, U.S. Pat. No. 11,185,916, issued Nov. 30, 2021, to Paul V. Cooper, U.S. Pat. No. 11,286,939, issued Mar. 29, 2022, to Paul V. Cooper, U.S. Pat. No. 11,391,293, issued Jul. 19, 2022, to Paul V. Cooper, U.S. Pat. No. 11,471,938, issued Oct. 18, 2022, to Paul V. Cooper, U.S. Pat. No. 55 11,358,216, issued Jun. 14, 2022, to Paul V. Cooper, U.S. Pat. No. 11,358,217, issued Jun. 14, 2022, to Paul V. Cooper, U.S. Pat. No. 11,519,414, issued Dec. 6, 2022, to Paul V. Cooper, U.S. Pat. No. 11,759,854, issued Sep. 19, 2023, to Paul V. Cooper, U.S. Pat. No. 11,759,853, issued Sep. 19, 60 2023, to Paul V. Cooper, U.S. patent application Ser. No. 16/413,142, filed May 15, 2019, by Paul V. Cooper, U.S. patent application Ser. No. 16/533,383, filed Aug. 6, 2019, by Paul V. Cooper, U.S. patent application Ser. No. 16/533, 404, filed Aug. 6, 2019, by Paul V. Cooper, U.S. patent 65 application Ser. No. 16/877,267, filed May 18, 2020, by Paul V. Cooper, U.S. patent application Ser. No. 16/877,364, filed

May 18, 2020, by Paul V. Cooper, U.S. patent application Ser. No. 17/200,785, filed Mar. 13, 2021, by Paul V. Cooper, U.S. patent application Ser. No. 17/334,259, filed May 28, 2021, by Paul V. Cooper, U.S. patent application Ser. No. 17/496,229, filed Oct. 7, 2021, by Paul V. Cooper, U.S. patent application Ser. No. 17/703,912, filed Mar. 24, 2022, by Paul V. Cooper, U.S. patent application Ser. No. 17/719, 274, filed Apr. 12, 2022, by Paul V. Cooper, U.S. patent application Ser. No. 17/826,111, filed May 26, 2022, by Paul V. Cooper, U.S. patent application Ser. No. 17/939,898 filed Sep. 7, 2022, by Vince Fontana, U.S. patent application Ser. No. 18/114,665, filed Feb. 27, 2023, by Paul V. Cooper, U.S. patent application Ser. No. 18/139,936, filed Apr. 26, 2023, by Paul V. Cooper, U.S. patent application Ser. No. 18/480, 755, filed Oct. 4, 2023, by Vince Fontana, U.S. patent application Ser. No. 18/502,457, filed Nov. 6, 2023, by Paul V. Cooper.

Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Circulation pumps may be used in any vessel, such as in a reverberatory furnace having an external well. The well is usually an extension of the charging well, in which scrap metal is charged (i.e., added).

Standard transfer pumps are generally used to transfer molten metal from one structure to another structure such as a ladle or another furnace. A standard transfer pump has a riser tube connected to a pump discharge and supported by the superstructure. As molten metal is pumped it is pushed up the riser tube (sometimes called a metal-transfer conduit) and out of the riser tube, which generally has an elbow at its upper end, so molten metal is released into a different vessel from which the pump is positioned. Alternate transfer pumping systems can pump molten metal upwards to a launder, which can greatly eliminate turbulence and resulting dross.

Gas-release pumps, such as gas-injection pumps, circulate 10,641,270, issued May 5, 2020, to Paul V. Cooper, U.S. Pat. 40 molten metal while introducing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium. As is known by those skilled in the art, the removing of dissolved gas is known as "degassing" while the removal of magnesium is known as "demagging." Gas-release pumps may be used for either of both of these purposes or for any other application for which it is desirable to introduce gas into molten metal.

> Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second end submerged in the molten metal bath. Gas is introduced into the first end and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where molten metal enters the pump chamber. The gas may also be released into any suitable location in a molten metal bath.

Molten metal pump casings and rotors often employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber (such as rings at the inlet and outlet) when the rotor is placed in the pump chamber. The purpose of the

bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump base, during pump operation.

Generally, a degasser (also called a rotary degasser) includes (1) an impeller shaft having a first end, a second end and a passage for transferring gas, (2) an impeller, and (3) a drive source for rotating the impeller shaft and the impeller. The first end of the impeller shaft is connected to the drive source and to a gas source and the second end is connected to the impeller.

Generally a scrap melter includes an impeller affixed to an end of a drive shaft, and a drive source attached to the other end of the drive shaft for rotating the shaft and the impeller. The movement of the impeller draws molten metal and scrap metal downward into the molten metal bath in order to melt 15 the scrap. A circulation pump is preferably used in conjunction with the scrap melter to circulate the molten metal in order to maintain a relatively constant temperature within the molten metal.

The materials forming the components that contact the 20 molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein "ceramics" or "ceramic" refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, or other ceramic material capable of being used in the environment of a molten metal bath. "Graphite" means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.

Ceramic, however, is more resistant to corrosion by molten aluminum than graphite. It would therefore be ³⁵ advantageous to develop vertical members used in a molten metal device that are comprised of ceramic, but less costly than solid ceramic members, and less prone to breakage than normal ceramic.

SUMMARY

Devices are disclosed that have increased resistance to breakage. One device comprises at least one tension rod positioned inside an outer core. The tension rod and optionally other structures apply tension (or compressive force) to the outer core in order to make it more resistant to breakage. In this disclosure, the tension rod is preferably tightened by in part using a molten metal pump superstructure (also called a platform) that supports the motor. All or most of the 50 outer core is on the side of the superstructure opposite the surface on which the pump is positioned.

The tension rod may be affixed to the outer core by being affixed to a first block of material at the top of the outer core, and affixed to a second block of material at the bottom of the outer core. When the tension rod is tightened, it draws the first block and the second block together which applies axial compressive force to the outer core.

The outer core can be compressed in any suitable manner. If the first block and second block are utilized, the tension 60 rod may be affixed to each by a bolt or other device attached to, and preferably having an area at least about 30% to 150% greater than the cross-sectional area of the tension rod. The bolt or other device could be inside or outside of the first block and/or second block.

A device according to this disclosure, such as a support post or impeller shaft, includes an outer core made of 6

structural refractory material, such as graphite, graphitized carbon, clay-bonded graphite, carbon-bonded graphite, silicon carbide, ceramics, or the like. The outer core has a first end and a second end and the tension rod includes a first end and a second end. At least one end of the tension rod can extend beyond and terminate outside of the one end of the outer core. Either the first end or the second end of the tension rod, or both, can be tightened against a superstructure. This puts the outer core under compression, and makes the outer core more resistant to breakage. By using the system of the invention, it is also possible to use a thinner cross-sectional outer core wall, thereby reducing material costs.

Also disclosed is a device, such as a support post, for use in molten metal that includes a reinforcement section to strengthen the device and help alleviate breakage.

Also disclosed are molten metal pumps that include one or more devices disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side, partial cross-sectional view of a support post according to this disclosure.

FIG. 2 is a side, partial cross-sectional view of the support post of FIG. 1 being mounted to a pump superstructure.

FIG. 2B is an optional bottom portion of the support post of FIGS. 1 and 2.

FIG. 2C is a top view of the bottom portion of the support post of FIG. 2B.

FIG. **2**D is a cross-sectional view taken along lines D-D of FIG. **2**C.

FIG. 2E is a cross-sectional view taken along lines E-E of

FIG. 3 is a side view of an alternate support post according to this disclosure.

FIG. 4 is a side, cross-sectional view of the support post

FIG. 5 is a top view of the support post of FIG. 3.

FIG. 6 is a partial, side view of the support post of FIG. 3 without the outer casing.

FIG. 7 is a partial, side view of the support post of FIG. 3 without the outer casing.

FIG. 8 is a top view of the support post of FIG. 6.

FIG. 9 is a close up view of detail B of FIG. 7.

FIG. 10 is a side view taken along lines A-A of FIG. 7.

FIG. 11 is a bottom view of the support post of FIGS. 6 and 7.

FIG. 11A is an end view of the support post of FIG. 11.

FIG. 12 is a cross-sectional side view of the support post of FIG. 11 taken along lines E-E.

FIG. 13 is a side view of an alternate support post according to this disclosure.

FIG. **14** is an exploded view of the support post of FIG. **13**.

FIG. 15 is a top view of the support post of FIG. 13.

FIG. 16 is a cross-sectional, partial side view of the support post of FIG. 15 taken along lines A-A.

FIG. 17 is a close-up view of detail B shown in FIG. 16.

FIG. 18 is a close-up view of detail C shown in FIG. 16.

FIG. 19 is a side view of the base of the support post of FIGS. 3 and 6.

FIG. 20 is a top view of the base of FIG. 19.

FIG. 21 is a cross-sectional side view taken along line 65 D-D of FIG. 20.

FIG. ${\bf 22}$ is a cross-sectional side view taken along line E-E of FIG. ${\bf 20}$.

FIG. 23 is a perspective, side view of an outer core according to this disclosure.

FIG. 24 is a top view of the outer core of FIG. 23.

FIG. 25 is a side, cross-sectional view of the outer core taken along line F-F of FIG. 24.

FIG. 26 is a perspective side view of a tension rod according to this disclosure.

FIG. 27 is a partial, side view of the tension rod of FIG. 26.

FIG. 28 is a perspective, top view of a support post top 10 according to this disclosure.

FIG. 29 is a top view of the support post top of FIG. 28. FIG. 30 is a side, cross-sectional view taken along line G-G of FIG. 29.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

For any device described herein, any of the components that contact the molten metal are preferably formed by a 20 material that can withstand the molten metal environment. Preferred materials are oxidation-resistant graphite and ceramic, such as silicon carbide.

FIG. 1 shows a support post 10 in accordance with aspects of the disclosure. Shaft has an outer core 50 that has axial 25 tension applied to it to make outer core 50 more resistant to breakage. Similar techniques, however, may be used to tension rotor shafts or other elongate molten metal pump components. Shaft 10 has a tension rod 20, a top support block 30, a bottom support block 60, an outer core 50, and 30 a bottom 70.

Tension rod 20 is preferably comprised of steel and has a body 24, a first end 24 and a second end 26. As shown, tension rod 20 is threaded along about 5% to 25% of its length starting at first end 24 and moving upward, and along about 10% to 25% of its length starting at second end 26 and moving downward. The threaded portion 24A juxtaposed end 24 is preferably configured to be threaded into a channel 64 in second end 60 and into channel 76A in section 76. Portion 24A need only have sufficient threads to anchor it in second end 60 and/or section 76. Alternatively, shaft 20 need not be threaded into second end 60 and/or section 76, but could instead pass through them and be retained by nut 85 (or other suitable fastener) in section 76 or section 74.

Threaded portion **26**A can optionally be threaded partially 45 into bore **39** of top block **30**. Nut **40** and nut **120** are threaded onto portion **26**A as further described.

Tension rod 20 includes a top, threaded portion 26A that (as shown) threaded partially into top block 30. Top block 30 has an upper portion 34, a top surface 35, an opening 32, a 50 sleeve 38, an internal wall surface 36, and a passage 39. Upper portion 34 is on top of and outside of outer core 50, and surface 36 rests on the top 52 to apply axial tension to outer core 50. Passage 39 is configured so rod 20 can pass therethrough. Opening 32 is formed in top surface 35, is 55 preferably about 1.5 to 2.5 times the diameter of rod 20, and extends into top block 30 from upper surface 35 by about 1" to 3", although opening 32 can be of any suitable dimension. Sleeve 38 fits inside of outer coating 50 and extends downward about 10-30% of the length (although any suitable 60 distance would work, or top bock 30 could be stabilized in another manner) of outer coating 50 in order to stabilize top block 30 to outer coating 50.

Channels **80** and **82** are for injecting cement into the bottom of support post **20** to help connect it to a molten 65 metal pump base in a manner known in the art. Any suitable molten metal pump base could be utilized.

8

FIG. 2 shows the support post 10 of FIG. 1 being connected to a superstructure 100 of a molten metal pump, wherein the superstructure 100 supports the pump motor. The superstructure 100 is preferably a steel plate or platform, and is known in the art. Here, it has an opening 102 formed therethrough, a bottom surface 104, and a top surface 106. To add additional tension to outer core 50, a compression spring 110 and nut 120 are positioned on tension rod 20 above surface 106. Nut 120 is then tightened, which ultimately tightens surface 35 of top block 30 against bottom surface 104. Spring 110 need not be used but it or a similar flexible structure is preferred.

Outer core **50** could instead be comprised of graphite and/or blocks **30** and **60** could be comprised of ceramic. Further, any of sections **72**, **74**, **76** could be comprised of graphite or ceramic.

FIGS. 3-5 show an alternate support post 200 with graphite core 210 and an outer ceramic (preferably silicon carbide) core 250. Alternatively, core 210 could be comprised of ceramic and/or outer core 250 could be comprised of graphite. A reinforcement member 300 is positioned in graphite core 210. In this embodiment outer core 250 is optional. Further, there may be more than one reinforcement member at either one end, or both ends of core 210. Or core 210 could have a single reinforcement member at each end or that extends therethrough or substantially therethrough.

As shown, the reinforcement member 300 is positioned in a manner, and is comprised of a material, such that it helps prevent the core 210 from breaking. Reinforcement member 300 is preferably comprised of steel, has a length of about 10% to 35%, or 15%-25% of the length of core 210, or a length of about 8" to 12", 10" to 16", or 12" to 16", and the cylindrical with a diameter about ½10", ½1", ½4" or ½1", or about 10%-30% the diameter of portion 214 of core 210.

Core 210 has a top end 212, a bottom end 214, a top section 212A, a bottom section 214A, and a central portion 216. A bore 220 is formed in core 210 and extends from end 214, preferably through bottom section 214A and partially into section 216. As shown, bore 220 is formed in the center of core 210, although it could be off center.

Reinforcement member 300 is positioned in bore 220 and may be secured by cement. Member 300 has a first end 302 that is preferably tapered and a second end 304. As shown, second end 304 is wider than the body portion 306. A cap 230 is positioned over second end 304 and preferably cemented in place to prevent molten metal from contacting reinforcement member 300. All or part of body portion 306 may be threaded so that member 300 is threaded into bore 220. As shown in FIG. 12, reinforcement member has a smaller-diameter portion 306A that is threaded. Portion 306A is threaded into smaller diameter portion 220A of bore 220. Larger diameter bore portion 220B receives second end 204.

Bores 250 and 252 are for connecting first end 212 of support post 200 to a support post clamp preferably positioned above the superstructure of a molten metal pump.

Some non-limiting examples of the disclosure are as follows:

Example 1: A component for use in a molten metal pump, the component comprising:

an outer core constructed of graphite or ceramic;

a tension rod positioned partially inside the outer core, wherein the tension rod has a first end and a second end, and is configured to apply an axial compressive force to the outer core in order to make the outer core less susceptible to breakage;

wherein the first end of the tension rod extends beyond the outer core and has an axially-compressive component positioned thereon, the axially-compressive component positioned against the outer core to place an axialcompressive force on the outer core.

Example 2: The component of example 1, wherein the tension rod has a first end and a second end, the outer core has a first end and a second end, and at least one of the first end or second end of the tension rod extends beyond either the first end or second end of the outer core.

Example 3: The component of example 2, wherein either the first end or the second end of the outer core has a cap, and the end of the tension rod that extends beyond the end of the outer core is tightened against the cap.

Example 4: The component of example 1, wherein the 15 tension rod comprises at least one elongate, metal rod.

Example 5: The component of example 4, wherein the tension rod is comprised of steel.

Example 6: The component of example 1 that is a molten metal pump

support post.

Example 7: The component of example 1, wherein the tension rod is secured in the outer core by cement.

Example 8: The component of example 7, wherein the tension rod is bonded to the outer core by the cement.

Example 9: The component of example 1, wherein the outer core comprises graphite.

Example 10: The component of example 1, wherein the outer core comprises silicon carbide.

Example 11: The component of example 1, wherein the 30 outer core comprises material harder than graphite.

Example 12: The component of example 1, wherein the second end of the tension rod is inside of the outer core.

Example 13: The component of example 1, wherein the compressive component is a nut threaded onto the tension rod and tightened against the outer core.

Example 14: The component of example 1 that further includes a second axially-compressive component on the second end of the tension rod.

Example 15: The component of example 1, wherein the second end of the tension rod is threaded and that further comprises a second axially-compressive component at the second end of the tension rod.

Example 16: The component of example 15, wherein the 45 second end of the tension rod is threaded and the second axially-compressive component is a nut threaded into the second end.

Example 17: The component of example 13, wherein the nut is hexagonal.

Example 18: The component of example 16, wherein the nut is hexagonal.

Example 19: The component of example 1 that further comprises a first support block at the first end of the outer

Example 20: The component of example 19, wherein the second axially-compressive component is positioned inside of the second support block.

Example 21: The component of example 19, wherein the first support block has a narrow portion positioned inside of 60 the outer core and an enlarged portion that presses against at least part of the wall of the outer core.

Example 22: The component of example 20, wherein the second support block has an extension positioned inside of the outer core and an enlarged portion that presses against at 65 least part of the wall of the outer core to provide axiallycompressive force to the outer core.

10

Example 23: The component of example 1, wherein the second end of the extension rod extends beyond a stationary plate and a third axially-compressive component is positioned on the second end of the extension rod on a side of the stationary plate opposite the outer core, and the third axially-compressive component is compressed to the stationary plate.

Example 24: The component of example 23, wherein the stationary plate is a molten metal pump superstructure.

Example 25: The component of example 23 that includes a compression device between the third axially-compressive component and the stationary plate.

Example 26: The component of example 25, wherein the compression device is a spring.

Example 27: The component of example 19, wherein the first support block is comprised of graphite.

Example 28: The component of example 22, wherein the second support block is comprised of graphite.

Example 29: The component of example 20 that further includes a cap at the second end distal to the second axially-compressive component.

Some other non-limiting examples of the disclosure follow:

Example 1: A support post comprising an elongated body having a longitudinal axis and a height, a first end configured to connect to a superstructure and a second end configured to connect to a pump base, wherein the second end comprises at least one reinforcement section configured to make the second end resistant to breakage.

Example 2: The support post of example 1, wherein the at least one reinforcement section is elongated and has a longitudinal axis.

Example 3: The support post of example 2, wherein the first end of the tension rod is threaded and the first axially- 35 longitudinal axis of the at least one reinforcement section is aligned with the longitudinal axis of the support post.

> Example 4: The support post of example 1, wherein the support post is comprised of graphite and the at least one reinforcement section is comprised of one or more of the group consisting of: silicon carbide and steel.

> Example 5: The support post of example 1, wherein the at least one reinforcement section is completely surrounded by the material of the support post so the reinforcement section is configured not to contact molten metal.

Example 6: The support post of example 1, wherein the at least one reinforcement section is less than 50% of the height of the support post.

Example 7: The support post of example 1, wherein the at least one reinforcement section is between 15%-35% of the 50 height of the support post.

Example 8: The support post of example 1, wherein the at least one reinforcement section is between 15%-25% of the height of the support post.

Example 9: The support post of example 1, wherein the at 55 least one reinforcement section has a cross-sectional area that is between 1/4 and 1/10 the cross-sectional area of the second end of the support post.

Example 10: The support post of example 1, wherein the at least one reinforcement section has a cross-sectional area that is between $\frac{1}{5}$ and $\frac{1}{8}$ the cross-sectional area of the second end of the support post.

Example 11: The support post of example 1, wherein the support post has a bore in its second end and the at least reinforcement section is positioned in the bore.

Example 12: The support post of example 11 that further includes cement in the bore to anchor the at least one reinforcement section.

Example 13: The support post of example 1 that further includes a ceramic outer cover.

Example 14: The support post of example 1 that is cylindrical.

Example 15: The support post of example 1, wherein the ⁵ reinforcement section is cylindrical.

Example 16: The support post of example 1, wherein the second end includes a first portion having a first diameter, and a second portion having a second diameter, wherein the second diameter is less than the first diameter.

Example 17: The support post of example 1, wherein the second end includes a first portion having a first cross-sectional area, and a second portion having a second cross-sectional area is less than the first cross-sectional area.

Example 18: The support post of example 16, wherein the at least one reinforcement section is positioned partially in the first portion and partially in the second portion.

Example 19: The support post of example 17, wherein the reinforcement section is positioned partially in the first 20 portion and partially in the second portion.

Example 20: The support post of example 1 that is cylindrical with a center and the reinforcement section is positioned in the center.

Example 21: The support post of example 1 that further 25 includes one or more channels in the second end, wherein the channels are configured to receive cement.

Example 22: The support post of example 1, wherein the first end is configured to fit into a coupling.

Example 23: The support post of example 11 that further 30 includes a plug at a second tip of the support post, wherein the plug is configured to cover the bore.

Example 24: The support post of example 1 that includes a single reinforcement section.

Example 25: The support post of example 1, wherein the 35 at least one reinforcement section is concrete, positioned in a bore inside of the second end of the support post.

Example 26: The support post of example 1, wherein the at least one reinforcement section extends the length of the support post.

Example 27: The support post of example 1, wherein the at least one reinforcement section has an outer surface including threads, wherein the at least one reinforcement section is threadingly received in the support post.

Example 28: The support post of example 27, wherein the 45 threads are received in the support post at its first diameter and first cross-sectional area.

Example 29: The support post of example 27, wherein the at least one reinforcement section has a length and the threads extend along the entire length.

Example 30: The support post of example 27, wherein the at least one reinforcement section has a length and the threads extend at least 50% of the length.

Example 31: The support post of example 27, wherein the at least one reinforcement section has a length and the 55 comprised of steel. threads extend at least 25% of the length.

9. The componer to the componer of the section has a length and the 55 comprised of steel.

Example 32: The support post of example 1 that has one or more air-relief grooves.

Example 33: The support post of example 32 that has two air-relief grooves.

Example 34: The support post of example 16, wherein the second diameter is between 3.5" and 4.5".

Example 35: The support post of example 16, wherein the second portion has a height of between 6.0" and 7.0".

Example 36: The support post of example 1, wherein the 65 reinforcement section has a diameter of between 0.75" and 1.25".

12

Having thus described different embodiments, other variations and embodiments that do not depart from the spirit of this disclosure will become apparent to those skilled in the art. The scope of the claims is thus not limited to any particular embodiment, but is instead set forth in the claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired product. No language in the specification should be construed as indicating that any non-claimed limitation is included in a claim. The terms "a" and "an" in the context of the following claims are to be construed to cover both the singular and the plural, unless otherwise indicated herein.

What is claimed is:

1. A component for use in a molten metal pump, the component comprising:

an inner core and an outer core; and

- a tension rod positioned inside the inner core, wherein the tension rod has a first end that is threaded and has a length of 25% or less than a length of the inner core and has a second end that is threaded and has a length that is 25% or less than the length of the inner core, and the tension rod is configured to apply an axial compressive force to the inner core.
- 2. The component of claim 1, wherein the first end of the tension rod extends beyond the outer core and has an axially-compressive component positioned thereon, the axially-compressive component positioned against the outer core to place an axial-compressive force on the outer core.
- 3. The component of claim 1, wherein the second end of the tension rod is threaded and that further comprises a third axially-compressive component at the second end of the tension rod.
- **4**. The component of claim **3**, wherein the third axially-compressive component is positioned inside of a support block
- 5. The component of claim 4, wherein the support block has an extension positioned inside of the outer core and an enlarged portion that presses against at least part of the wall of the outer core to provide axially-compressive force to the outer core.
 - 6. The component of claim 1, wherein the outer core has a first end and a second end, and at least one of the first end or second end of the tension rod extends beyond either the first end or second end of the outer core.
 - 7. The component of claim 6, wherein either the first end or the second end of the outer core has a cap, and each end of the tension rod that extends beyond the end of the outer core is tightened against the cap.
 - **8**. The component of claim **1**, wherein the tension rod comprises at least one elongate, metal rod.
 - **9**. The component of claim **1**, wherein the tension rod is comprised of steel.
 - 10. The component of claim 1 that is a molten metal pump support post.
 - 11. The component of claim 1, wherein the outer core comprises graphite.
 - 12. The component of claim 1, wherein the outer core comprises silicon carbide.
 - 13. The component of claim 1, wherein the outer core comprises material harder than graphite.
 - 14. The component of claim 1, wherein the first end of the tension rod is threaded and the first axially-compressive component is a nut threaded onto the tension rod and tightened against the outer core.

5 What

20

- 15. The component of claim 1, wherein the inner core has one or more bores that are configured to receive the tension rod
- 16. The component of claim 1, wherein the second end of the extension rod extends beyond a stationary plate and a 5 second axially-compressive component is positioned on the second end of the extension rod on a side of the stationary plate opposite the outer core, and the second axially-compressive component is compressed to the stationary plate.
- 17. The component of claim 16, wherein the stationary 10 plate is a molten metal pump superstructure.
- 18. The component of claim 16 that includes a compression device between the second axially-compressive component and the stationary plate.
- 19. The component of claim 18, wherein the compression 15 device is a spring.
- 20. The component of claim 19 that further includes a cap at the second end distal to the second axially-compressive component.

ate ate ate