You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

Submission ID: 1051

Abstract

Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns typically specified using intuitive sketch-based interfaces. Despite their potential in accelerating data exploration, more than a decade of past work on VQSs has not been translated to adoption in practice. Through a year-long collaboration with experts from three diverse domains, we examine the role of VQSs in real data exploration workflows, enhance an existing VQS to support these workflows via a participatory design process, and evaluate how VQS components are used in practice. Via these observations, we formalize a taxonomy of key capabilities for VQSs, organized by three sensemaking processes. Perhaps somewhat surprisingly, we find that ad-hoc sketch-based querying is not commonly used during data exploration, since analysts are often unable to precisely articulate the patterns they are interested in. We find that there is a spectrum of VQS-centric data exploration workflows, depending on the application domain, and that many of these workflows are not effectively supported in present-day VQSs. Our insights can pave the way for next-generation VQSs to be adopted in a variety of real-world applications.

Keywords: Visual analytics, exploratory analysis, visual query

1. Introduction

Line charts are commonly employed during data exploration—the intuitive connected patterns often illustrate complex underlying processes and yield interpretable and visually compelling data-driven narratives. To discover patterns in line charts, analysts construct them using toolkits like ggplot or matplotlib, or visualization construction interfaces like Excel or Tableau, specifying *exactly* what they want to visualize. For example, when trying to find celestial objects corresponding to supernovae, which have a specific pattern of brightness over time, astronomers individually inspect the corresponding line chart for each object—numbering in the hundreds—until they find ones that match the pattern. This process of manual exploration of large numbers of line charts to identify patterns is not only error-prone, but also overwhelming for analysts.

To address this challenge, there has been a large number of papers dedicated to building *Visual Query Systems* (VQSs)—systems that allow users to specify and search for desired visual patterns via interactive interfaces [MVK*11, HS04, Wat01, SKL*16, RLL*05, CG16, MA18, EZ15, HF09]. These interactive interfaces often include a sketching canvas where users can draw a visual pattern of interest, with the system automatically traversing all potential visualization candidates to find those that match the specification. Since the intent of a sketch can be ambiguous, follow-up work has developed mechanisms to enable users to clarify how a sketch should be interpreted [RLL*05, CG16, MA18, EZ15, HF09].

While this intuitive specification interface appears to be a promising solution to the problem of painful manual exploration of visualizations, to the best of our knowledge, VQSs are not very commonly used in practice. Our paper seeks to bridge this gap to understand

Figure 1: Desired insights, problem and dataset challenges for each of the three application domains in our study.

how VQSs can actually be used in practice, as a first step towards the broad adoption of VQSs in data analysis. Unlike prior work on VQSs, we set out to not only evaluate VQSs in-situ on real problem domains, but also involve participants from these domains in the VQS design. We present findings from a series of interviews, contextual inquiry, participatory design, and user studies with scientists from three different domains—astronomy, genetics, and material science—over the course of a year-long collaboration. As illustrated in Figure 1, these domains were selected to capture a diverse set of goals and datasets wherein VQSs can help address important scientific questions, such as: How does a treatment affect the expression of a gene in a breast cancer cell-line? Which battery components have sustainable levels of energy-efficiency and are safe and cheap to manufacture in production?

Via contextual inquiries and interviews, we first identified challenges in existing data analysis workflows in these domains that could be potentially addressed by a VQS. Building on top of an existing open-source VQS, zenvisage [SLK*17, SKL*16], we engaged participants in a process of participatory design (PD) [MK93, BGK93, HJ93] to enable them to better compose data exploration workflows that lead to insight discovery, over the course of a year. We organize our PD findings into a taxonomy of VQS capabilities, involving three sensemaking processes inspired by Pirolli and Card's notional model of analyst sensemaking [PC05]. The sensemaking processes include top-down pattern search (translating a pattern "in-the-head" into a visual query), bottom-up data-driven inquiries (querying or recommending based on data), and context-creation (navigating across different collections of visualizations). We find that prior VQSs have focused on enabling top-down processes, while largely ignoring the other two processes that we found to be crucial for all three domains.

To study how various VQSs are used in practice, we conducted a final evaluation study with nine participants using our final VQS prototype to address their research questions on their own datasets. During this 1.5-hour study, participants were able to gain novel scientific insights, such as identifying a star with a transient pattern that was known to harbor a Jupiter-sized planet and finding characteristic gene expression profiles confirming the results of a related publication.

By analyzing the evaluation study results, we discovered that sketching a pattern for querying is often ineffective on its own. This is due to the fact that sketching makes the problematic assumption that users know the pattern that they want to sketch and are able to sketch it precisely. Instead, participants typically opted to combine sketching with other means of pattern specification—one common mechanism was to drag-and-drop a recommended pattern onto the canvas, and then modify it (e.g., by smoothing it out). However, most VQSs do not support these other mechanisms (as we argued earlier, they typically focus only on top-down sensemaking processes, without covering bottom-up and context creation), partially explaining why such systems have not been widely adopted in practice.

Further analysis of how participants transition between different sensemaking processes during analysis using a Markov model illustrated how participants adopt a diverse set of workflows tailored to their domains. We find that participants often construct analysis workflows focused around a primary sensemaking process, while iteratively interleaving their analysis with the two other processes. This finding points to how all three sensemaking processes, along with seamless transitions between them, are essential for enabling users to effectively use VQSs for data exploration.

To the best of our knowledge, our study is the first to holistically examine how VQSs can be designed to fit the needs of real-world analysts and how they are actually used in practice. Working with participants from multiple domains (an uncommon practice for visualization design studies) enabled us to compare the differences and commonalities across different domains, thereby identifying general VQS challenges and requirements for supporting common analytical goals. Our contributions include:

- a characterization of the problems addressable by VQSs through design studies with three different domains,
- the construction of a taxonomy of essential VQSs capabilities, as well as an articulation of the problem space that is amenable to VQSs, both grounded in participatory design findings,

- an integrative VQS, zenvisage++, post participatory design capable of facilitating rapid hypothesis generation and insight discovery,
- study findings on how VQSs are used in practice, leading to the development of a novel sensemaking model for VQSs.

Our work not only opens up a new space of opportunities beyond the narrow use cases considered by prior studies, but also advocates common design guidelines and end-user considerations for building next-generation VQSs.

Table 1: Table summarizing whether key functional components (columns) are covered by past systems (row), indicated by checked cells. Column header colors blue, orange, green represents three sensemaking process (top-down querying, search with context, and bottom-up querying) described in Section 4. The heavily-used, practical features in our study for context-creation and bottom-up inquiry is largely missing from prior VQSs.

2. Methods

2.1. Background and Motivation

Visual query systems enable users to directly search for visualizations matching certain patterns through an intuitive specification interface. Early work in this space focused on interfaces to search for time series with specific patterns. This includes Time-Searcher [HS01, HS04], where the query specification mechanism is a rectangular box, with the tool filtering out all of the time series that does not pass through it, QuerySketch [Wat01] and Google Correlate [MVK*11], where the query is sketched as a pattern on canvas, with the tool filtering out all of the time series that have a different shape. Subsequent work recognized the ambiguity in sketching by studying how humans rank the similarity in patterns [EZ15, CG16, MA18] and improving the expressiveness of sketched queries through finer-grained specification interfaces and pattern-matching algorithms [RLL*05, HF09].

While these systems have been effective in controlled lab studies, they have never been designed and evaluated in-situ on multiple real-world use cases. Even when use cases were involved [HS04, CG16], the inclusion of these use cases had a narrow objective and had little influence on the major design decisions of the system. In the context of Munzner's nested model [Mun09], this represents the common "downstream threat" of jumping prematurely into the

deep levels of encoding, interaction, or algorithm design, before a proper domain problem characterization and data/operation abstraction design is performed. In this work, we performed design studies [LBI*12, SP06, SMM12] with three different subject areas for domain problem characterization. Comparing and contrasting between the diverse set of questions, datasets, and challenges across these three use cases revealed new generalizable insights and enabled us to better understand how VQSs can be extended for novel and unforeseen use cases. Based on these findings, we developed a taxonomy for understanding the sensemaking process in VQSs as part of the data/operation abstraction design. Finally, we validated the abstraction design with grounded evaluation [Pla04, IZCC08], where we invited participants to bring in their own datasets and research problems that they have a vested interest in to test our final deployed system. Next, we will describe these two phases of our study in more detail.

2.2. Phase I: Participatory Design

We recruited participants by reaching out to research groups, who have experienced challenges in data exploration, via email and word of mouth. Based on our early conversations with analysts from 12 different potential application areas, we narrowed down to three use cases in astronomy, genetics, and material science for our design study, chosen based on their suitability for VQSs as well as diversity in use cases. Six scientists (1 female, 5 male), with an average of more than 6 years of research experience in their respective fields, participated in the design process. Via interviews and contextual inquiries, we identified the needs and challenges of these use cases based on each participant's existing analysis workflow.

For the participatory design study, we built on an existing VQS, zenvisage [SLK*17, SKL*16], that allowed users to sketch a pattern or drag-and-drop an existing visualization as a query, with the system returning visualizations that had the closest Euclidean distance to the queried pattern. We chose to build on top of zenvisage, since it was open-source, extensible, and included features beyond pattern and match specification typically found in existing systems (as compared in Table 1) and described in Section 5. Past research on participatory design has found that the use of functional prototypes is a common and effective way of engaging with participants and providing a starting point for participatory design [CAM*16]. Our motivation for providing a functional prototype at the beginning of the participatory design sessions was to showcase capabilities of VQSs. Since our participants were not aware of the existence of VQSs, let alone using them in their workflows, they would not have been able to imagine use cases for VQS without a starting point.

During participatory design, we collaborated with each team closely with an average of two meetings per month, where we learned about their datasets, objectives, and what additional VQS functionalities could help address their research questions. Since some of the essential features that were crucial for effective exploration were lacking in *zenvisage* and still under development in the new version of our VQS, *zenvisage*++, we did not provide a deployed prototype for participants to actively use on their own during the participatory design period. Instead, as we iterated on the design of these features, relevant capabilities from intermediate versions of *zenvisage*++ were demonstrated to the participants. Participants also had the opportunity to interact with the low-fidelity

prototype through the help of a guided facilitator. Such use of "simulated future work situation" is common in cooperative prototyping when the real use of the prototype is not feasible [SG91]. During this process, we elicited feedback from participants on how the VQS could better support their scientific goals. A summary timeline of our collaboration with participants over a year can be found in Figure 7 in the Appendix. Through this process, we identified and incorporated several crucial capabilities into *zenvisage++*. Given the space limitations, we will focus our discussion in Section 4 on the major capabilities relevant to the study findings, and defer the details of other features to the appendix and online documentation[†].

	ID	Dataset	Design Participant	Position	Years of Experience	Dataset Familiarity
Ę,	A 1	DES	✓	Researcher	10+	3
Astronomy	A2	Kepler		Postdoc	8	5
	А3	Kepler		Postdoc	8	5
Genetics	G1	Mouse	✓	Grad Student	4	4
	G2	Breast Cancer		Grad Student	2	2
	G3	Mouse	✓	Professor	10+	2
Material Science	M1	Solvent (8k)	✓	Postdoc	4	5
	M2	Solvent (Full)	✓	Professor	10+	5
	М3	Solvent (Full)	✓	Grad Student	3	5

Table 2: Participant information. The Likert scale used for dataset familiarity ranges from 1 (not familiar) to 5 (extremely familiar).

2.3. Phase II: Evaluation Study

At the end of our participatory design study, we performed a qualitative evaluation to study how analysts interact with different VQS components in practice. In order to make the evaluation more realistic, we invited participants to use datasets that they have a vested interest in exploring to address unanswered research questions. As shown in Table 2, the evaluation study participants included the six scientists from participatory design, along with three additional "blank-slate" participants who had never encountered *zenvisage++* before. The use of all or a subset of the project participants as evaluation participants is common in participatory design [BDI16].

Evaluation study participants were recruited from each of the three aforementioned research groups, as well as domain-specific mailing lists. Prior to the study, we asked potential participants to fill out a pre-study survey to determine eligibility. Eligibility criteria included: being an active researcher in the subject area with more than one year of experience, and having worked on a research project involving data of the same nature used in participatory design. None of the participants received monetary compensation for the study, as this is not a common practice for participatory design with stakeholders. As detailed in Table 2, the nine participants brought a total of six different datasets to the study.

At the start, participants were provided with an interactive walk-through of system details and given approximately ten minutes for a guided exploration of *zenvisage++* with a preloaded real-estate example dataset from Zillow [zill6]. After familiarizing themselves with the tool, we loaded the participant's dataset and encouraged

[†] github.com/[AnonymizedforSubmission]/wiki

them to talk-aloud during data exploration, and use external tools or other resources as needed. If the participant was out of ideas, we suggested one of the main VQS functionalities ‡ that they had not yet used. If any of these operations were not applicable to their specific dataset, they were allowed to skip the operation after having considered how it may or may not be applicable to their workflow. The user study ended after they covered all the main functionalities and lasted on average for 63 minutes. After the study, we asked participants open-ended questions about their experience.

3. Participants and Datasets

In this section, we describe our study participants, their scientific goals, and their preferred analysis workflows. At the start of our design study, we conducted a contextual inquiry to learn about our participants' existing data analysis workflows. While we collaborated with each application domain in depth, we focus on the key findings in each domain to highlight their commonalities and differences, in order to provide a backdrop for our generalized VQSs findings described later on.

Astronomy: The Dark Energy Survey (DES) is a multi-institution project that surveys 300 million galaxies over 525 nights to study dark energy [Drl17]. The telescope used to survey these galaxies also focuses on smaller patches of the sky on a weekly interval to discover astronomical transients (objects whose brightness changes dramatically as a function of time), such as supernovae or quasars. Their dataset consists of a large collection of *light curves*: brightness observations over time, one associated with each astronomical object, plotted as time series. Over five months, we worked closely with A1, an astronomer on the project's data management team working at a supercomputing facility. Their scientific goal is to identify potential astronomical transients in order to study their properties.

To identify transients, astronomers programmatically generate visualizations of candidate objects with matplotlib and visually examine each light curve. If an object of interest is identified through visual analysis, the astronomer may inspect the image of the object for verifying that the significant change in brightness is not due to an imaging artifact.

While an experienced astronomer who has examined many transient light curves can often distinguish an interesting transient object from noise by sight, manual searching for transients is time-consuming and error prone, since the large majority of the objects are false positives. A1 was interested in VQSs as he recognized how specific pattern queries could help astronomers directly search for these rare transients.

Genetics: Gene expression is a common measurement in genetics obtained via microarray experiments [PS16]. We worked with a graduate student (G1) and professor (G3) at a research university who were using gene expression data to understand how genes are related to phenotypes expressed during early embryonic development.

Their data consisted of a collection of gene expression profiles over time for mouse stem cells, aggregated over multiple experiments.

Their typical workflow is as follows: G1 first loads the preprocessed gene expression data into custom desktop application to visualize and cluster the profiles. After setting several system parameters and executing the clustering algorithm, the overlaid time series for each cluster is displayed on the interface. G1 visually inspects that the patterns in each cluster looks "clean" and checks that the number of outlier genes (i.e., those that do not fall into any of the clusters) is low. If the number of outliers is high or the clustered visualizations look "unclean", she reruns the analysis by increasing the number of clusters. Once the visualized clusters look "good enough", G1 exports the clusters to her downstream regression tasks.

Prior to the study, G1 and G3 spent over a month attempting to determine the best number of clusters based on a series of static visualizations and statistics computed after clustering. While regenerating their results took no more than 15 minutes every time they made a change, the multi-step, segmented workflow meant that all changes had to be done offline. They were interested in VQSs, as interactively querying time series with clustering results had the potential to dramatically speed up their collaborative analysis process.

Material Science: We collaborated with material scientists at a research university who are working to identify solvents for energy efficient and safe batteries. These scientists work on a large simulation dataset containing chemical properties for more than 280,000 solvents [KKV18]. Each row of their dataset represents a unique solvent with 25 different chemical attributes. We worked closely with a postdoctoral researcher (M1), professor (M2), and graduate student (M3) for over a year to design a sensible way of exploring their data. They wanted to use VQSs to identify solvents that not only have similar properties to known solvents, but are also more favorable (e.g., cheaper or safer to manufacture). To search for these desired solvents, they need to understand how changes in certain chemical attributes affect other properties under specific conditions.

M1 typically starts his data exploration process by iteratively applying filters to a list of potential battery solvents using SQL queries. Once the remaining solvent list is sufficiently small, he manually examines the properties of each solvent individually by examining the 3D chemical structure of the solvent in a custom software, as well as gathering information regarding the solvent by cross-referencing an external chemical database and existing uses of this solvent in literature. The collected information, including cost, availability, and other physical properties, enable researchers to select the final set of desirable solvents that they can feasibly experiment with in lab. They were interested in VQSs as it was impossible for them to uncover hidden relationships between different attributes across large numbers of solvents manually.

Next, we describe the collaborative feature discovery process and system prototype from participatory design.

4. Design Process and System Overview

Holzblatt and Jones [HJ93] describes contextual inquiry as a technique that forms the basis for "developing a system model that

[‡] query by sketching, drag-and-drop, pattern loading, input equations, representative and outliers, narrow/ignore x-range options, filtering, data smoothing, creating dynamic classes, data export

Figure 2: The *zenvisage++* system consists of: (A) data selection panel (where users can select visualized dataset and attributes), (B) query canvas (where the queried data pattern is submitted and displayed), (C) results panel (where the visualizations most similar to the queried pattern are displayed as a ranked list), (D) control panel (where users can adjust various system-level settings), and (E) recommendations (where the typical and outlying trends in the dataset is displayed).

will support user's work" that subsequently "fosters participatory design". Given the need for a VQS highlighted via contextual inquiry, we further collaborate with participants to develop features to address their problems and challenges. In this section, we first reflect on our feature discovery process to introduce the participatory design (PD) findings, then we provide a high-level system overview of the product of PD, zenvisage++.

4.1. The Collaborative Feature Discovery Process

Throughout the PD process, we worked closely with participants to discover VQS capabilities that are essential for addressing their highlevel domain challenges. We identified various subtasks based on participant's workflow, designed sensible features for accomplishing these subtasks that could be used in conjunction with existing VQS capabilities, and elicited feedback on intermediate feature prototypes. Bodker et al. [BGK93] cites the importance of encouraging user participation and creativity in cooperative design through different techniques, such as future workshops, critiques, and situational role-playing. Similarly, our PD objective was to collect as many feature proposals as possible, while being inclusive across different domains. We further organized these features into Table 3 through an iterative coding process by one of the authors.

In grounded theory methods [MK12], researchers first create open codes to assign descriptive labels to the raw data, followed by grouping open codes together by relationships or categories to form axial codes. Finally, selective codes are obtained by focusing on specific sets of axial codes to come up with a set of core emerging concepts. Using the list of features and example usage scenarios from PD and similar capabilities in existing VQSs as open codes, we then organized this list into axial codes representing "components" (first column in Table 3): core functionalities that are essential in VQSs. Finally, as we will describe in Section 5, the selective codes capture each of the sensemaking processes (denoted by cell colors in Table 3). Instead of describing this table in detail, we present a typical example of how this table is organized. As shown in row 4 of Table 3, smoothing is a feature in *zenvisage++* that enables users

to adjust data smoothing algorithms and parameters on-the-fly to both denoise the data and change the degree of shape approximation applied to all visualizations when performing pattern matching. This is useful for domains such as astronomy and material science where the dataset is noisy with large numbers of false positives that could be matched to any given pattern query. Smoothing, along with range selection and range invariance (row 5 and 6), is part of the *match specification* component: VQS mechanisms for clarifying how matching should be performed. Both match specification and pattern specification (a description of what the pattern query should look like) are essential components for supporting the sensemaking process top-down pattern search (in blue) described in Section 5.

It is important to note that while some of the proposed features are pervasive in other general visual analytics (VA) systems [HS12,AES05], they have not been incorporated in present-day VQSs. In fact, one of the key contributions of our work is recognizing the need for an integrative VQS whose sum is greater than its parts, that encourages users to rapidly generate hypotheses and discover insights by facilitating all three sensemaking process. Aditya: missing flow

Given the highly-evolving, undirected nature of exploratory data analysis [KMSZ06, Tuk70], our collaborative feature discovery approach comes with its advantages and limitations. One such advantage is that introducing the newly-added features from <code>zenvisage++</code> that addressed a particular domain often results in unexpected use cases with other groups of participants. Considering feature proposals from multiple use cases can also lead to more generalized design choices. For example, around the same time when we spoke to astronomers who wanted to eliminate sparse time series from their pattern queries, our material science collaborators also expressed a need for inspecting only solvents with properties above a certain threshold. Through these use cases, data filtering arose as a crucial, common operation that was later incorporated into <code>zenvisage++</code> to support this class of queries.

While our collective brainstorming led to the cross-pollination

Component	Feature	Purpose	Task Example	Similar Features in Past VQSs	
	Query by Sketch	Freehand sketching of a pattern query.	A: Find supernovae candidates with	All include sketch canvas	
	(Figure 2B1)		peak-then-long-tail-decay pattern.	except [HS04].	
Pattern	Input Equation	Specify a exact functional form as	M: Find patterns exhibiting inversely		
Specification	(Figure 2A1)	a pattern query (e.g., $y=x^2$).	proportional chemical relationship.		
	Pattern Upload	Upload a pattern consisting of a	A: Find supernovae based on	Upload CSV [MVK*11]	
	(Figure 2D2)	sequence of X,Y points as a query.	previously discovered sources.	1	
	a	Adjust the level of denoising on		Smoothing [MA18]	
	Smoothing	visualizations, effectively changing the	A, M: Eliminate patterns matched	Angular slope queries [HS04]	
	(Figure 2D2)	degree of shape approximation	to spurious noise.	Trend querylines [RLL*05]	
	Range	when performing pattern matching. • Restrict to query only in specific x/y	A: Match only around peaked region.	Text Entry [Wat01, MA18]	
Match	Selection	ranges of interest through brushing	M: Match only around regions exhibiting	Min/max bounds [RLL*05]	
Specification	(Figure 2B2, D4)	x-range and filtering y-range selections.	linear or exponential relationships.	Range Brushing [HS01]	
		Ignore vertical or horizontal differences	*	Kange Brushing [11301]	
	Range	in pattern matching through option for	A: Search for existence of a peak		
	Invariance	x-range normalization and y-invariant	above a certain amplitude.	Temporal invariants [CG16]	
	(Figure 2D1,4)	similarity metrics .	G: Search for "generally-rising" patterns.		
	Data selection	Alter the collection of visualizations	M: Explore tradeoffs and relationships		
View	(Figure 2A)	to search over.	between physical attributes.	-	
Specification	Display control	Modify how visualizations are displayed.	M: Non-time-series data should be		
	(Figure 2D4)	Modify now visualizations are displayed.	displayed as scatterplot.		
			A: Eliminate unlikely candidates by		
	Filter	Display and query only on data that	navigating to more probable data regions.		
	(Figure 2D3)	satisfies the composed filter constraints.	M, G: Compare overall patterns		
Slice-and-Dice			in different data subsets.		
Silve and Dive		Create custom classes of data that satisfies			
	Dynamic Class	one or more specified range constraints.	A, M: Examine aggregate patterns of		
	(Figure 9)	Display aggregate visualizations for	different data classes.		
		separate data classes.	A C M Fi 1 d i i i i i i	D III MOOII	
Result Querying	Drag-and-drop	Query with selected visualization (either from recommendations or results).	A, G, M: Find other similar objects and	Drag-and-drop [HS01]	
	(Figure 2C, E)	(cities from recommendations of results).	examine their overall properties. A: Examine anomalies and debug data	Double-Click [CG16]	
	Representative	Display visualizations of common trends	errors through outliers.		
Recommendation	and Outliers	and outlier instances based on clustering.	G, M: Understand representative trends		
	(Figure 2E)	and outlier instances based on clustering.	common in dataset (or filtered subset).		
			common in dataset (or intered subset).		

Table 3: List of major features incorporated via participatory design. We organize each feature based on its functional component. Table cells are further colored according to the sensemaking process that each component corresponds to (Blue: Top-down, Yellow: Context creation, Green: Bottom-up). We list the functional purpose of each feature based on how it is implemented in *zenvisage++*, example use cases from participatory design (A: astronomy, M: material science, G: genetics), and how similar features have been incorporated in past VQSs.

and generalization of features, this technique can also lead to unnecessary features that result in wasted engineering effort. During the design phase, there were numerous problems and features proposed by participants, but not all were incorporated in the tool. We detail the list of criteria that was used to decide whether to carry a feature from design to implementation stage (including eliminating features that were nice-to-haves, one-shot operations, non-essential, or required substantially different set of research questions) in Appendix A. Failure to identify these early signs in the design phase may result in feature implementations that turn out not to be useful for the participants. Given exhaustive nature of Table 3, each motivated by example use cases from one or more domains, we further organize the features list in terms of the Section 5 sensemaking framework and assess its effectiveness in the Section 6 evaluation study.

4.2. System Overview

The aforementioned features were incrementally incorporated and improved over time, leading to our final PD product, *zenvisage++*. The *zenvisage++* interface is organized into 5 major regions all of which dynamically update upon user interactions. Typically, users

begin analysis by selecting the dataset and attributes to visualize in the data selection panel (Figure 2A). Then, they specify a pattern of interest as a query (hereafter referred to as pattern query), through either sketching, inputting an equation, uploading a data pattern, or dragging and dropping an existing visualization, displayed on the *query canvas* (Figure 2B). *zenvisage*++ performs shape-matching between the queried pattern and other possible visualizations and returns a ranked list of visualizations that are most similar to the queried pattern, displayed in the results panel (Figure 2C). At any point during the analysis, analysts can adjust various system-level settings through the *control panel* (Figure 2D) or browse through the list of recommendations provided by zenvisage++ (Figure 2E). For comparison, as shown in Figure 8 in the Appendix, the existing zenvisage system from [SLK*17] allowed users to query via sketching or drag-and-drop and displayed representative and outlier pattern recommendations, but had limited capabilities to navigate across different data subsets and had few control settings. Our zenvisage++ system is open source and available at: github.com/[AnnonymizedforSubmission].

Taxonomy of Key Capabilities in Visual Query Systems

Figure 3: Taxonomy of key capabilities essential to VQSs. Each of the three sensemaking process is broken down into key functional components in VQSs. Each component addresses a pro-forma question from a system's perspective.

5. The Sensemaking Model for VQSs

To convey how the features in <code>zenvisage++</code> addresses the analytical needs posed by each domain, we organize our PD findings into a sensemaking framework for VQSs. In this section, we first describe the space of problems addressable by VQSs. Then, as shown in Figure 3, we develop a taxonomy for organizing VQS capabilities into three sensemaking processes. From top to bottom, we first describe the design objectives of each sensemaking process, then we outline the design challenge addressed by each of the functional components that supports the sensemaking process. The mapping between specific <code>zenvisage++</code> features and these functional components and sensemaking processes can be found in Table 3.

After understanding how each sensemaking process fits into the problem space addressable by VQSs, we further explore design objectives of each sensemaking process, grounded in our collaborative design experience. Proceeding to the lower level of the Figure 3 taxonomy, we then discuss how each sensemaking process is comprised of functional components that address challenges posed by the problem and dataset characteristics of each domain. Each of these VQS capabilities enable essential subtasks in accomplishing our participant's scientific goal, as exemplified in the usage scenarios in this section and further detailed in Appendix Table 3.

5.1. Top-Down Pattern Search

Top-down pattern search begins with the analyst's intuition about how the desired patterns should look like based on "theory", including visualizations from past experience or abstract conceptions based on external knowledge. The goal of top-down pattern search is to address the *which* question of visual sensemaking: *which data instances exhibit this pattern?* Based on this preconceived notion of what to search for, the design challenge is to translate the query from the analyst's head to a query executable by the VQS. This requires both components for specifying the pattern (*pattern specification*), as well as controls governing the underlying algorithm of how shape-matching is performed (*match specification*).

Pattern Specification interfaces allow users to submit exact descriptions of a pattern query. This is useful when the dataset contains *large numbers of potentially-relevant pattern instances*. Since it is often difficult to sketch precisely, additional characteristics of the pattern query (e.g., patterns with specific shape characteristics, or expressible in a functional form) can be used to further winnow the list of undesired matches.

Match Specification addresses the well-known problem in VQSs

where pattern queries are imprecise [CG16, HF09, EZ15] by allowing users to clarifying how pattern matching should be performed. Match specification is useful when the dataset is *noisy* (i.e., containing large numbers of false-positives). When the pattern query satisfies some additional constraints (e.g., pattern is x,y invariant), adjusting match specification prunes away false-positives to help reveal true candidates.

Usage Scenario: A1 knows based on a textbook definition of what a supernovae pattern should look like and the detailed shape characteristics, such as the amplitude of the peak and the level of error tolerance for defining a match. He can search for transient patterns through sketching, select the option to ignore differences along the temporal dimension, and change the similarity metric for flexible matching.

5.2. Context creation

Context creation addresses the where question of sensemaking by enabling analysts to navigate across different parts of the visualization collection to learn about where in the dataset do the patterns of interest lie. The design challenge of context creation is to help users visualize and compare how data changes between different contexts by constructing different visualization collections via different visualization encodings (view specification or different data subsets (slice-and-dice).

View specification settings alter the encoding for all visualizations on the VQS. This ability to work with different collections of visualizations is useful when the dataset is *multidimensional* and the axes of interest is *unknown*. Modifying the view specification offers analysts different perspectives on the data to locate visualization collections of interest.

Slice-and-Dice empowers users to navigate and compare collections of visualizations constructed from different portions of the data. Data navigation capabilities is essential when the dataset has *large numbers of non-visualized attributes* that may be related to the visualized attributes (e.g., geographical location may influence the time series pattern for housing prices). Analysts can either make use of pre-existing knowledge regarding these "support attributes" to navigate to a data region that is more likely to contain the desired pattern (e.g., filtering to suburbs to find cheaper housing) or discover unknown patterns and relationships between different data subsets (e.g., housing prices is lower in winter than compared to summer).

Usage Scenario: M1 recognizes salient trends in his dataset such as inverse or linear correlations, but does not have a pattern in mind to query with. Given a list of physical properties that he is interested in,

he switches between different visualized attributes or dynamically creates different classes of data to examine the data from alternative perspectives.

5.3. Bottom-Up Data-Driven Inquiry

Bottom-up data-driven inquiry is a browsing-oriented sensemaking process that goes from data to theory to addresses the what questions in visual sensemaking: what are the patterns of interest in the dataset? The design challenge include developing the right set of "stimuli" through recommendations that could provoke further data-driven inquiries, as well as low-effort mechanisms to search via these results through result querying.

Recommendation displays visualizations that may be of interest to users based on the current data context. Representative trends and outliers are useful for understanding common and outlying behaviors when a *small number of common patterns* is exhibited in the dataset.

Result querying enables users to query for patterns similar to a selected data pattern from the ranked list of results or recommendations. Typically, analyst select visualizations with *semantic or visual properties* of interest and make use of results querying to understand characteristic properties of similar instances.

Usage Scenario: G2 does not have a preconceived knowledge of what to search for in the dataset. She is interested in learning about the characteristic patterns that exist in the dataset through representative trends, as a means to jumpstart further queries, as well as to understand groups of data instances with shared characteristics.

The three aforementioned sensemaking processes are akin to the well-studied sensemaking paradigms of search, browse, and faceted navigation on the Web [Hea09, OC03]. Due to each of their advantages and limitations given different information seeking tasks, search interfaces have been designed to support all three complementary acts and transition smoothly between them to combine the strength of all three paradigms. Similarly for VQSs, our design objective is to enable all three sensemaking in <code>zenvisage++</code>. Our Section 6 evaluation study reveals that this integrative approach not only accelerates the process of visualization discovery, but also encourages hypotheses generation and experimentation.

6. Evaluation Study Findings

Based on audio, video screen capture, and click-stream logs recorded during our evaluation study, we performed thematic analysis via open coding to label every event with a descriptive code. Event codes included specific feature usage, insights, provoked actions, confusion, need for capabilities unaddressed by the system, and use of external tools, detailed in Appendix C. To characterize the usefulness of each feature, we further labeled whether each feature was useful to a particular participant's analysis. A feature was deemed useful if the feature was either used in a sensible and meaningful way during the study, or has envisioned usage outside of the constrained time limit during the study (e.g., if data was available or downstream analysis was conducted). We derived these labels from the study transcript to circumvent self-reporting bias [WJVB17], which can

often artificially inflate the usefulness of the feature under examination. In this section, we will apply our thematic analysis results to understand how each sensemaking process occurs in practice.

6.1. The Ineffectiveness of Sketch

To our surprise, despite the prevalence of sketch-to-query systems in the literature, only two out of our nine participants found it useful to directly sketch desired pattern onto the canvas. The reason why most participants did not find sketching useful was that they often do not start their analysis with a specific pattern in mind. Instead, their intuition about what to query is derived from other visualizations they encounter during exploration, in which case it makes more sense to query using those visualizations as examples directly (e.g., by dragging and dropping that visualization onto the canvas to submit the query). Even if a user has a pattern in mind, translating that pattern into a sketch is often hard to do. For example, A2 wanted to search for a highly-varying signal enveloped by a sinusoidal pattern indicating planetary rotation which is hard to draw by hand.

Figure 4: The number of times a pattern query originates from one of the workflows. We find that pattern queries are far more commonly generated via bottom-up than top-down processes.

Given these initial findings, we further investigated how users construct pattern queries, as presented in Figure 4. Pattern queries can be generated by either top-down (sketching) or bottom-up (dragand-drop) processes, driven by various different querying intentions. Within top-down processes, a pattern query could arise from users directly sketching a new pattern (sketch-to-query) or by modifying an existing sketch (sketch-to-modify). For example, M2 first sketched a pattern to find solvent classes with anticorrelated properties without much success in returning a desired match. So he instead dragged and dropped one of the peripheral visualizations similar to his desired visualization and then smoothed out the noise in the visualization via sketching yielding a straight line, as shown in Figure 5 (left). M2 repeated this workflow twice in separate occurrences during the study and was able to derive insights from the results. Likewise, Figure 5 (right) illustrates how A3 first picked out a regular pattern (suspected star spot), then modified it slightly so that the pattern looks more irregular (to find pulsating stars). As described in the following section, bottom-up pattern queries can come from either the ranked list of results, recommendations, or by selecting a particular object of interest as a drag-and-drop query. Figure 4 shows that bottom-up processes are more common than top-down processes for generating a pattern query.

The lack of practical use of top-down pattern specification is also reflected in the fact that none of the participants queried using an equation. In both astronomy and genetics, the visualization patterns

Figure 5: Example of sketch-to-modify, based on canvas traces from M2 (left) and A3 (right). The original drag-and-dropped query is shown in blue and sketch-modified queries in red.

resulting from complex physical processes that could not be written down as an equation analytically. Even in the case of material science when analytical relationships do exist, it is challenging to formulate patterns as functional forms in a prescriptive manner.

Our findings suggest that while sketching is a useful construct for people to express their queries, the existing ad-hoc, sketch-only model for VQSs is insufficient without data examples that can help analysts jumpstart their exploration. In fact, from Figure 4, we can see that sketch-to-query was only used 8 times, while the remaining querying modalities were used 29 times altogether, more than three times as much as sketch-to-query. This finding has profound implications on the design of future VQSs, since Table 1 suggests that past work have primarily focused on optimizing top-down process components, without considering how useful these features are in real-world analytic tasks. We suspect that these limitations may be why existing VQSs are not commonly adopted in practice.

6.2. Context Creation and Bottom-up Applications

As alluded to earlier, bottom-up data-driven inquiries and context creation are far more commonly used than top-down pattern search when users have no desired patterns in mind, which is typically the case for exploratory data analysis. In particular, we find that top-down approaches were only useful for 29% of the use cases, whereas it was useful for 70% of the use cases for bottom-up approaches and 67% for context creation§. We now highlight some exemplary workflows demonstrating the efficacy of the latter two sensemaking processes.

As shown in Figure 4, the most common use of bottom-up querying is via recommended visualizations. For example, G2 and G3 identified that the three representative patterns recommended in zenvisage++ corresponded to the same three groups of genes discussed in a recent publication [GSC*17]: induced genes (profiles with expression levels going up _____), repressed genes (starting high then), and transients (rising first then dropping at andecreasing other time point _____). The clusters provoked G2 to generate a hypothesis regarding the properties of transients: "Is that because all the transient groups get clustered together, or can I get sharp patterns that rise and ebb at different time points?" To verify this hypothesis, G2 increased the parameter controlling the number of clusters and noticed that the clusters no longer exhibited the clean, intuitive patterns he had seen earlier. G3 expressed a similar sentiment and proceeded by inspecting the visualizations in the cluster via drag-and-drop. He found a group of genes that all transitioned at the same timestep, while others transitioned at different timesteps.

By browsing through the ranked list of results in *zenvisage++*, participants were also able to gain a peripheral overview of the data and spot anomalies during exploration. For example, A1 spotted time series that were too faint to look like stars after applying the filter CLASS_STAR=1, which led him to discover that all stars have been mislabeled with CLASS_STAR=0 as 1 during data cleaning.

Past studies in visual analytics have shown that it is important to design features that enable users to select relevant subsets of data [AES05, HS12]. Context creation in VQSs enables users to change the "lens" by which they look through the data when performing visual querying, thereby creating more opportunities to explore the data from different perspectives. All participants found at least one of the features in context creation to be useful.

Both A1 and A2 expressed that interactive filtering enabled them to test conditions and tune values that they would not have otherwise modified, effectively lowering the barrier between the iterative hypothesize-then-compare cycle during sensemaking. During the study, participants used filtering to address questions such as: Are there more genes similar to a known activator when we subselect only the differentially expressed genes? (G2) or Can I find more supernovae candidates if I query only on objects that are bright and classified as a star? (A1). Three participants had also used filtering as a way to query with known individual objects of interest, as shown in Figure 4. For example, G2 set the filter as gene=9687 and explained that since "this gene is regulated by the estrogen receptor, when we search for other genes that resemble this gene, we can find other genes that are potentially affected by the same factors."

While filtering enabled users to narrow down to a selected data subset, dynamic classes (buckets of data points that satisfies one or more range constraints) enabled users to compare relationships between multiple attributes and subgroups of data. For example, M2 divided solvents in the database into eight different categories based on voltage properties, state of matter, and viscosity levels, by dynamically setting the cutoff values on the quantitative variables to create these classes. By exploring these custom classes, M2 discovered that the relationship between viscosity and lithium solvation energy is independent of whether a solvent belongs to the class of high voltage or low voltage solvents. He cited that dynamic class creation was central to learning about this previously-unknown attribute properties:

All this is really possible because of dynamic class creation, so this allows you to bucket your intuition and put that together. [...] I can now bucket things as high voltage stable, liquid stable, viscous, or not viscous and start doing this classification quickly and start to explore trends. [...] look how quickly we can do it!

6.3. Combining Sensemaking Processes in VOS Workflows

Given our observations so far as to how participants make use of each sensemaking process in practice, we further investigate the interplay between these sensemaking processes in the context of an analysis workflow. The event sequences from the evaluation study consist of labels describing when specific features were used. Using the taxonomy in Table 3, we map each usage of a feature in zenvisage++ to one of the three sensemaking processes. Each

[§] See Appendix C for details on how this measure was computed.

participant's event sequence is divided into sessions, each indicating a separate line of inquiry during the analysis. Based on these event sequences—one for each session, we compute the aggregate state transition probabilities (shown as edge weights in Figure 6) to characterize how participants from each domain move between different sensemaking processes. For example, in material science, bottom-up exploration leads to context creation 60% of the time and to top-down pattern-specification the rest of the time. Self-directed edges indicate the probability that the participant would continue with the same type of sensemaking process. For example, when an astronomer performs top-down pattern search, it is followed by another top-down specification 64% of the time and context creation the rest of the time, but never followed by a bottom-up processes. This high self-directed transition probability reflects how astronomers often need to iteratively refine their top-down query through pattern or match specification when looking for a specific pattern.

Figure 6: Markov models computed based on the evaluation study event sequences, with edges denoting the probability that a participant in the particular domain will go from one sensemaking process to the next. Nodes are scaled according to the eigenvector centrality, which represents the percentage of time users would spend in a particular sensemaking process in steady state.

To study how important each sensemaking process is for participant's overall analysis, we compute the eigenvector centrality of each graph, displayed as node labels in Figure 6. These values represent the percentage of time the participants spend in each of the sensemaking processes when the transition model has evolved to a steady state [Pie11]. Given that nodes in Figure 6 are scaled by this value, in all domains, we observe that there is always a prominent node connected to two less prominent ones—but it is also clear that all three nodes are essential to all domains. Our observation demonstrates how participants often construct a central workflow around a main sensemaking process and interleave variations with the two other processes as they iterate on the analytic task. For example, material scientists focus on context creation 56% of the time, mainly through dynamic class creation, followed by bottom-up inquiries (such as drag-and-drop) and top-down pattern searches (such as sketch modification). The central process adopted by each domain is tightly coupled with the problem characteristics associated with each subject area, as illustrated in Appendix Table 4. For example, without an initial query in-the-head, geneticists relied heavily on bottom-up querying through recommendations to jumpstart their queries.

The Markov transition model exemplifies how participants adopted a diverse set of workflows based on their unique set of research questions. The bi-directional and cyclical nature of the transition graphs in Figure 6 highlight how the three sensemaking processes do not simply follow a linear progression, going from

unknown to known in the Figure 11 problem space. Instead, the high connectivity of the transition model illustrates how these three equally-important processes form a sensemaking loop, representing iterative acts of dynamic foraging and hypothesis generation. This flexibility is enabled by the diverse set of potential workflows that could be constructed in an integrative VQS like *zenvisage++*, for addressing a wide range of analytical inquiries.

6.4. Limitations

Although evidence from our evaluation study suggests that direct sketch is inefficient, we have not performed controlled studies with a sketch-only system as a baseline to validate this hypothesis. The goal of our study is to uncover qualitative insights that might reveal why VQSs are not widely used in practice; further validation of specific findings is out of the scope of this paper. Given that this paper covered three design studies along with one evaluation study, we were unable to cover each domain to the level of detail typically found in a dedicated design study paper. Instead, our focus was to highlight the differences and similarities among these domains in relevant to the capabilities required in VQS and we divert domainspecific participatory design details and artifacts to Appendix A. While we have generalized our findings by employing three different and diverse domains (see Figure 6), our case studies have so far been focused on scientific data analysis, as a first step towards greater adoption of VQSs. Other potential domains that could benefit from VQSs include: financial data for business intelligence, electronic medical records for healthcare, and personal data for "Quantified Self". These different domains may each pose different sets of challenges unaddressed by the findings in this paper, pointing to a promising direction for future work.

7. Conclusion

While VQSs hold tremendous promise in accelerating data exploration, they are rarely used in practice. In this paper, we worked closely with analysts from three diverse domains to characterize how VQSs can address their analytic challenges, collaboratively design VOS capabilities, and evaluate how VOSs are used in practice. Participants were able to use our final deployed system, zenvisage++, for discovering desired patterns and trends, and obtaining valuable insights to address unanswered research questions. Based on these experiences, we developed a sensemaking model for how analysts make use of VQSs. Contrary to past work, we found that sketchto-query is not as effective in practice as past work may suggest. Beyond sketching, we find that each sensemaking process fulfills a central role in participants' analysis workflows to address their high-level research objectives. We advocate that future VQSs should invest in understanding and supporting all three sensemaking processes to effectively "close the loop" in how analysts interact and perform sensemaking with VQSs. While more work certainly remains to be done, by contributing to a better understanding of how VQSs are used in practice across domains, our paper serve as a roadmap towards broader adoption of VQSs for novel future use cases.

References

- [AES05] AMAR R., EAGAN J., STASKO J.: Low-level components of analytic activity in information visualization. In *Information Visualization*, 2005. INFOVIS 2005. IEEE Symposium on (2005), IEEE, pp. 111–117. 5, 10
- [BDI16] BOSSEN C., DINDLER C., IVERSEN O. S.: Evaluation in participatory design: A literature survey. In *Proceedings of the 14th Participatory Design Conference: Full Papers Volume 1* (New York, NY, USA, 2016), PDC '16, ACM, pp. 151–160. 3
- [BGK93] BODKER S., GRONBAEK K., KYNG M.: Cooperative design: Techniques and experiences from the scandinavian scene. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1993, ch. 8. 2, 5
- [CAM*16] CIOLFI L., AVRAM G., MAYE L., DULAKE N., MARSHALL M. T., VAN DIJK D., MCDERMOTT F.: Articulating Co-Design in Museums: Reflections on Two Participatory Processes. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing - CSCW '16 (2016), 13–25. 3
- [CG16] CORRELL M., GLEICHER M.: The semantics of sketch: Flexibility in visual query systems for time series data. In Visual Analytics Science and Technology (VAST), 2016 IEEE Conference on (2016), IEEE, pp. 131–140. 1, 2, 6, 8
- [Drl17] DRLICA WAGNER ET AL.: Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology. 4
- [EZ15] EICHMANN P., ZGRAGGEN E.: Evaluating Subjective Accuracy in Time Series Pattern-Matching Using Human-Annotated Rankings. Proceedings of the 20th International Conference on Intelligent User Interfaces - IUI '15 (2015), 28–37. 1, 2, 8
- [GSC*17] GLOSS B. S., SIGNAL B., CHEETHAM S. W., GRUHL F., KACZOROWSKI D. C., PERKINS A. C., DINGER M. E.: High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci. *Scientific Reports* 7, 1 (2017), 6731. 10
- [Hea09] HEARST M. A.: Search User Interfaces, 1st ed. Cambridge University Press, New York, NY, USA, 2009. 8
- [HF09] HOLZ C., FEINER S.: Relaxed selection techniques for querying time-series graphs. In *Proceedings of the 22Nd Annual ACM Symposium* on *User Interface Software and Technology* (New York, NY, USA, 2009), UIST '09, ACM, pp. 213–222. 1, 2, 8
- [HJ93] HOLTZBLATT K., JONES S.: Contextual inquiry: A participatory technique for system design. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 1993, ch. 9. 2, 4
- [HS01] HOCHHEISER H., SHNEIDERMAN B.: Interactive exploration of time series data. In *Discovery Science* (Berlin, Heidelberg, 2001), Springer, pp. 441–446. 2, 6
- [HS04] HOCHHEISER H., SHNEIDERMAN B.: Dynamic query tools for time series data sets: Timebox widgets for interactive exploration. *Information Visualization 3*, 1 (2004), 1–18. 1, 2, 6
- [HS12] HEER J., SHNEIDERMAN B.: A taxonomy of tools that support the fluent and flexible use of visualizations. *Interactive Dynamics for Visual Analysis* 10 (2012), 1–26. 5, 10
- [IZCC08] ISENBERG P., ZUK T., COLLINS C., CARPENDALE S.: Grounded Evaluation of Information Visualization. Proceedings of the 2008 conference on BEyond time and errors novel evaLuation methods for Information Visualization - BELIV '08 (2008), 1. 3
- [KKV18] KHETAN A., KRISHNAMURTHY D., VISWANATHAN V.: Towards synergistic electrode-electrolyte design principles for nonaqueous li-o2 batteries. 4
- [KMSZ06] KEIM D. A., MANSMANN F., SCHNEIDEWIND J., ZIEGLER H.: Challenges in Visual Data Analysis. *Tenth International Conference on Information Visualization*, 2006, Iv 2006 (2006), 9–16. 5
- [LBI*12] LAM H., BERTINI E., ISENBERG P., PLAISANT C., CARPEN-DALE S.: Empirical studies in information visualization: Seven scenarios. *IEEE Transactions on Visualization and Computer Graphics* 18, 9 (2012), 1520–1536. 3

- [MA18] MANNINO M., ABOUZIED A.: Expressive Time Series Querying with Hand-Drawn Scale-Free Sketches. 1–12. 1, 2, 6
- [MK93] MULLER M. J., KUHN S.: Participatory design. *Communications of the ACM 36*, 6 (June 1993), 24–28. 2
- [MK12] MULLER M. J., KOGAN S.: Grounded Theory Method in HCI and CSCW. Human Computer Interaction Handbook (2012), 1003–1024.
- [Mun09] MUNZNER T.: A nested model for visualization design and validation. *IEEE transactions on visualization and computer graphics 15*, 6 (2009). 2
- [MVK*11] MOHEBBI M., VANDERKAM D., KODYSH J., SCHONBERGER R., CHOI H., KUMAR S.: Google correlate whitepaper. 1, 2, 6
- [OC03] OLSTON C., CHI E. H.: ScentTrails: Integrating Browsing and Searching on the Web. ACM Transactions on Computer-Human Interaction 10, 3 (2003), 177–197. 8
- [PC05] PIROLLI P., CARD S.: The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In *Proceedings of International Conference on Intelligence Analysis* (2005), vol. 5, pp. 2–4. 2, 14
- [Pie11] PIERRE B.: Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Springer, 2011. 11
- [Pla04] PLAISANT C.: The challenge of information visualization evaluation. In *Proceedings of the Working Conference on Advanced Visual Interfaces* (2004), ACM, pp. 109–116. 3
- [PS16] PENG P. C., SINHA S.: Quantitative modeling of gene expression using dna shape features of binding sites. *Nucleic Acids Research* 44, 13 (2016), e120. 4
- [RLL*05] RYALL K., LESH N., LANNING T., LEIGH D., MIYASHITA H., MAKINO S.: Querylines: approximate query for visual browsing. In CHI'05 Extended Abstracts on Human Factors in Computing Systems (2005), ACM, pp. 1765–1768. 1, 2, 6
- [SG91] SUSANNE BODKER, GRØNBÆK K.: Cooperative Prototyping -. *International Journal of man-machine studies* (1991), 1–23. 3
- [SKL*16] SIDDIQUI T., KIM A., LEE J., KARAHALIOS K., PARAMESWARAN A.: Effortless data exploration with zenvisage: an expressive and interactive visual analytics system. *Proceedings of the VLDB Endowment 10*, 4 (2016), 457–468. 1, 2, 3
- [SLK*17] SIDDIQUI T., LEE J., KIM A., XUE E., YU X., ZOU S., GUO L., LIU C., WANG C., KARAHALIOS K., PARAMESWARAN A.: Fast-forwarding to desired visualizations with zenvisage. In *The biennial Conference on Innovative Data Systems Research (CIDR)* (2017). 2, 3, 7
- [SMM12] SEDLMAIR M., MEYER M., MUNZNER T.: Design study methodology: Reflections from the trenches and the stacks. *IEEE Transactions on Visualization and Computer Graphics 18*, 12 (Dec 2012), 2431–2440.
- [SP06] SHNEIDERMAN B., PLAISANT C.: Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In *Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for information visualization* (2006), ACM, pp. 1–7. 3
- [Tuk70] TUKEY J. W.: Exploratory data analysis. Addison-Wesley, 1970.
- [Wat01] WATTENBERG M.: Sketching a graph to query a time-series database. In *CHI'01 Extended Abstracts on Human factors in Computing Systems* (2001), ACM, pp. 381–382. 1, 2, 6
- [WJVB17] WILLIAMS P., JENKINS J., VALACICH J., BYRD M.: Measuring Actual Behaviors in HCI Research âĂŞ A call to Action and an Example. AIS Transactions on Human-Computer Interaction 9, 4 (2017), 339–352
- [zil16] Zillow. www.zillow.com, 2016. Accessed: February 1, 2016. 3

In Appendix A, we first describe additional details about the participatory design process, as well as domain-specific artifacts collected from contextual inquiry. Next, in Appendix B, we articulate the space of problems amenable to VQSs and describe how the sensemaking processes introduced in Section 5 into different parts of the problem space. Finally, in Appendix C, we provide supplementary information regarding our analysis methods and results.

Appendix A: Artifacts from Participatory Design

Our collaboration with participants is illustrated in Figure 7, where we began with an existing VQS (*zenvisage*, as illustrated in Figure 8) and incrementally incorporated features, such as dynamic class creation (Figure 9), throughout the participatory design process.

Figure 7: Timeline for progress in participatory design studies.

Figure 8: The existing *zenvisage* prototype allowed users to sketch a pattern in (a), which would then return (b) results that had the closest Euclidean distance from the sketched pattern. The system also displays (c) representative patterns obtained through K-Means clustering and (d) outlier patterns to help the users gain an overview of the dataset.

Figure 9: Example of dynamic classes. (a) Four different classes with different Lithium solvation energies (li) and boiling point (bp) attributes based on user-defined data ranges. (b) Users can hover over the visualizations for each dynamic class to see the corresponding attribute ranges for each class. The visualizations of dynamic classes are aggregate across all the visualizations that lie in that class based on the user-selected aggregation method.

During the contextual inquiry, participants demonstrated the use of external tools for conducting analysis in their existing workflow, as shown in Figure 10, including:

- Image Cutout Service (Astronomy)
- Short Time-series Expression Miner (Genetics)
- Solubility Database (Material Science)

Figure 10: Screenshots from contextual inquiry: a) A1 examines a light curve manually using the Jupyter notebook environment, b) G2 uses a domain-specific software to examine clustering outputs.

Based on our meeting logs with participants, we found that reasons for not carrying a feature from the design to implementation stage included:

- Nice-to-haves: One of the most common reasons for unincorporated features comes from participant's requests for nice-to-have features. To this end, we use two criteria to heuristically judge whether to implement a particular feature:
 - Necessity: Without this feature, can participants still work with this dataset using the tool and meet their information needs?
- 2. *Generality:* Will this feature benefit only this specific use case or be potentially useful for other domains as well?
- "One-shot" operations: We decided not to include features that
 only needed to be performed once and remain fixed thereafter in
 the analysis workflow. For example, certain preprocessing operations such as filtering null values only needed to be performed
 once with an external tool.
- Substantial research or engineering effort: Some proposed features did not make sense in the context of VQS or required a completely different set of research questions. For example, the question of how to properly compute similarity between time series with non-uniform number of datapoints arose in the astronomy and genetics use case, but requires the development of a novel distance metric and algorithm that is out of the scope of our design study objective.
- Underdeveloped ideas: Other feature requirements came from casual specification that were underspecified. For example, A1 wanted to look for objects that have deficiency in one band and high emission in another band, but the scientific definition of "deficiency" in terms of brightness levels was ambiguous.

Figure 4 illustrates how each of the subtasks in participant's work-flow can be addressed by a sensemaking process.

Appendix B: Characterizing the Problem Space for VQSs

We now characterize how each sensemaking process fits into different problem areas that VQSs are aimed to solve. Visual querying

Sensemaking Process

		Top-Down Pattern Search	Context Creation	Bottom-Up Data-Driven Inquiry		
Domain	Astronomy	Goal: Discover potential supernovae candidates that exhibits peak-thendecay pattern.	Support: Examine data regions that are more likely to have supernovae candidates.	Support: Identify and eliminate sources of data anomaly to improve match accuracy for finding candidates.		
	Material Science	Support: Find data classes that follows desired functional pattern to understand which solvent types exhibit certain tradeoffs and relationships.	Goal: Compare characteristics from different data classes to find a solvent (datapoint) that satisfies desirable properties.	Support: Understand the overall tradeoffs and relationships between data attributes.		
	Genetics	Support: Search and browse for genes belonging to the same cluster.	Support: Compare genes belonging to different clusters and their known properties.	Goal: Understand characteristic pattern profiles in dataset.		

Table 4: Each VQS sensemaking process maps to scientific tasks and goals from each use case, from pattern search to comparing visualization collections to gaining overall data understanding. We find that our scientific participants typically have one focussed goal expressible through a single sensemaking process, but since their desired insights may not always be achievable with a single operation, they make use of the two other sensemaking processes to support them in accomplishing their main goal.

often consists of searching for a desired pattern instance (Z) across a visualization collection specified by some given attributes (X,Y). Correspondingly, we introduce two axes depicting the amount of information known about the visualized attribute and pattern instance.

Along the **pattern instance** axis, the visualization that contains the desired pattern may already be known to the analyst, exist as a pattern in-the-head of the analyst, or be completely unknown to the analyst. In the known pattern instance region (Figure 11 grey), visualization-at-a-time systems such as Tableau, where analyst manually create and examine each visualization one at a time, is more well-suited than VQSs, since analysts can directly work with the selected instance without the need for visual querying. Inspired by Pirolli and Card's information foraging framework [PC05], which distinguishes between information processing tasks that are topdown (from theory to data) and bottom-up (from data to theory), we define top-down pattern search as the process where analysts query a fixed collection of visualizations based on their in-the-head pattern (Figure 11 blue). On the other hand, bottom-up data-driven inquiries (Figure 11 green) are driven by recommendations or queries that originate from the data (or equivalently, the visualization), since the pattern of interest is unknown and external to the user. As we will discuss later, this process is crucial but underexplored in past work on VQSs.

The second axis, **visualized attributes**, depicts how much the analyst knows about which X and Y axes they are interested in visualizing. In both the astronomy and genetics use cases, as well as past work in this space, the attribute to be visualized is known, as data was in the form of a time series. In the case of our material science participants, they wanted to explore relationships between different X and Y variables. In this realm of unknown attributes, context creation (Figure 11 yellow) is essential for allowing users to pivot across different visualization collections.

Figure 11: The problem space for VQSs is characterized by how much the analyst knows about the visualized attributes and the pattern instance. Colored areas highlight the three sensemaking processes in VQSs for addressing these characteristic problems. While prior work has focused solely on use cases in the blue region, we envision opportunities for VQSs beyond this to a larger space of use cases covered by the yellow and green regions.

Appendix C: Evaluation Study Analysis Details

We analyzed the transcriptions of the evaluation study recordings through open-coding and categorized every event in the user study using the following coding labels:

- Insight (Science) [IS]: Insight that connected back to the science (e.g. "This cluster resembles a repressed gene.")
- Insight (Data) [ID]: Data-related insights (e.g. "A bug in my data cleaning code generated this peak artifact.")
- Provoke (Science) [PS]: Interactions or observations that provoked a scientific hypothesis to be generated.
- Provoke (Data) [PD]: Interactions or observations that provoked further data actions to continue the investigation.
- Confusion [C]: Participants were confused during this part of the analysis.
- Want [W]: Additional features that participant wants, which is not currently available on the system.
- External Tool [E]: The use of external tools outside of zenvisage++ to complement the analysis process.
- Feature Usage [F]: One of the features in zenvisage++ was used.
- Session Break [BR]: Transition to a new line of inquiry.

Domain	IS	ID	PS	PD	C	W	Е	BR	F
astro	4	12	13	57	2	18	20	22	67
genetics	8	12	7	35	4	13	1	21	52
mat sci	14	8	7	44	8	11	3	12	48

Table 5: Count summary of thematic event code across all participants of the same subject area.

In addition, based on the usage of each feature during the user study, we categorized the features into one of the three usage types:

- Practical [P]: Features used in a sensible and meaningful way.
- Envisioned usage [E]: Features which could be used practically
 if the envisioned data was available or if they conducted downstream analysis, but was not performed due to the limited time
 during the user study.
- Not useful [N]: Features that are not useful or do not make sense for the participant's research question and dataset.

The feature usage labels for each user is summarized in Figure 12. A feature is regarded as *useful* if it has a **P** or **E**

code label. Using the matrix from Figure 12, we compute the percentage of useful features for each sensemaking process as:
of useful features in process

total # of features in process×total # of users.

Figure 12: Heatmap of features categorized as practical usage (P), envisioned usage (E), and not useful (N). Columns are arranged in the order of subject areas and the features are arranged in the order of the three foraging acts. Participants preferred to query using bottom-up methods such as drag-and-drop over top-down approaches such as sketching or input equations. Participants found that context creation via filter constraints and dynamic class creation were powerful ways to compare between subgroups or filtered subsets.