Metody numeryczne

Mateusz Kwolek

Rozwiąż układ równań

$$\begin{bmatrix} 4 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 4 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 4 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$
(1)

Uzasadnij wybór algorytmu. <u>Uwaga!</u> (I) to macierz rzadka, więc użycie algorytmu dla macierzy pełnej jest nieprawidłowe (zadanie nie będzie zaliczone).

1) Wybór algorytmu

Algorytmem, którym posłużyłem się rozwiązując podane zadanie jest metoda eliminacji Gaussa-Crouta. Algorytm ten jest swoistym ulepszeniem samej eliminacji Gaussa, w której mogłoby się zdarzyć, że przy dzieleniu przez elementy przekątnej głównej macierzy współczynników, któryś z nich jest równy zero lub zostanie wyzerowany w wyniku obliczeń. Algorytm Gaussa-Crouta jest stosowany w przypadku macierzy rzadkich gdyż jest on dla nich szybkobieżny i eliminuje błąd numeryczny. Metoda Gaussa-Crouta polega na tym, iż na początku eliminacji wyszukujemy w wierszu macierzy element o największym module, po czym zamieniamy miejscami kolumnę ze znalezionym elementem z kolumną zawierającą element głównej przekątnej. W ten sposób dzielnik będzie posiadał największą na moduł wartość i pozbędziemy się sytuacji, gdy może on posiadać wartość 0.

2) Kod źródłowy

Do stworzenia programu użyłem języka Python ze względu na jego prostotę, bogactwo bibliotek oraz częste zastosowanie do wykonywania obliczeń matematycznych.

```
1 import numpy as np
    from scipy.sparse import csc_matrix
    from scipy.sparse.linalg import spsolve
    A = csc_matrix([
        [4, 1, 0, 0, 0, 0, 1],
        [1, 4, 1, 0, 0, 0, 0],
        [0, 1, 4, 1, 0, 0, 0],
        [0, 0, 1, 4, 1, 0, 0],
        [0, 0, 0, 1, 4, 1, 0],
        [0, 0, 0, 0, 1, 4, 1],
        [1, 0, 0, 0, 0, 1, 4]
   ])
    b = np.array([1, 2, 3, 4, 5, 6, 7])
    # metodę eliminacji Gaussa-Crouta.
20 # Opcja #1 - bogactwo bibliotek Pythona
   def solve_matrix_scipy(A,b):
        # Skorzystanie z biblioteki SciPy,
       x = spsolve(A, b)
       return x
    # Opcja #2 - własna implementacja algorytmu
   def gauss_crout(A, b):
        n = A.shape[0]
        L = np.zeros((n, n))
        U = np.zeros((n, n))
        for i in range(n):
            for j in range(i, n):
                L[j, i] = A[j, i] - sum(L[j, k] * U[k, i] for k in range(i))
            for j in range(i, n):
                if i == j:
                    U[i, j] = 1
                else:
                    U[i, j] = (A[i, j] - sum(L[i, k] * U[k, j] for k in range(i))) / L[i, i]
        y = np.zeros(n)
        for i in range(n):
45
            y[i] = (b[i] - sum(L[i, j] * y[j] for j in range(i))) / L[i, i]
        x = np.zeros(n)
        for i in range(n-1, -1, -1):
            x[i] = y[i] - sum(U[i, j] * x[j] for j in range(i+1, n))
        return x
56 C = gauss_crout(A, b)
   C1 = solve_matrix_scipy(A, b)
    print("Rozwiązanie układu równań:")
    print("1) Rozwiązanie układu równań funkcją z biblioteki SciPy:\n", C1)
    print("2) Rozkład LU metodą Gaussa-Crouta:\n", C)
```

3) Wynik

Rozwiązanie układu równań:

1) Rozwiązanie układu równań funkcją z biblioteki SciPy:

[-0.2601626 0.44715447 0.47154472 0.66666667 0.86178862 0.88617886 1.59349593]

2) Rozkład LU metodą Gaussa-Crouta:

[-0.2601626 0.44715447 0.47154472 0.66666667 0.86178862 0.88617886 1.59349593]