MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

1^a Lista de Exercícios

Para entregar: exercícios 2, 11 e 16.

- 1-) Exercícios dos capítulos 1 e 2 do livro-texto.
- **2-)** (a) Sejam X e Y conjuntos, e denote por $\mathcal{F}(X,Y)$ o conjunto de todas as funções de X em Y. Prove que, se X for finito e Y enumerável, então $\mathcal{F}(X,Y)$ é enumerável.
 - (b) Dada $f : \mathbb{N} \to \mathbb{N}$, seja $A_f \doteq \{n \in \mathbb{N} \mid f(n) \neq 1\}$. Seja X o conjunto formado por todas as funções $f : \mathbb{N} \to \mathbb{N}$ tais que A_f é finito. Prove que X é enumerável.
- **3-)** Sejam $(K, +, \cdot)$ um corpo e $a \in K \setminus \{0\}$. Defina a aplicação $n \in \mathbb{N} \mapsto a^n$ indutivamente por (i) $a^1 = a$ e (ii) $a^{n+1} = a \cdot a^n$. Mostre que $(\forall a, b \in K \setminus \{0\}, \forall n, m \in \mathbb{N})$:
 - 1. $a^{m+n} = a^m a^n$
 - 2. $(a^m)^n = a^{mn}$
 - $3. (ab)^n = a^n b^n$

Dados $a \in K \setminus \{0\}$ e $n \in \mathbb{N}$, define-se $a^0 \doteq 1$ e $a^{-n} \doteq (a^n)^{-1}$. Mostre que as propriedades acima também valem para $n, m \in \mathbb{Z}$.

- **4-)** Sejam K, L corpos. Uma função $f: K \to L$ diz-se um homomorfismo de corpos se $(\forall x, y \in K) f(x + y) = f(x) + f(y)$ e f(xy) = f(x)f(y).
 - (a) Dado um homomorfismo $f: K \to L$, prove que f(0) = 0
 - (b) Prove que, ou f(x) = 0 para todo $x \in K$, ou f(1) = 1 e f é injetiva.

OBSERVAÇÃO. Muitos autores exigem f(1) = 1 na definição, i.e. exclui-se da definição o caso em que o homomorfismo é nulo.

- **5-)** Seja $f: \mathbb{Q} \to \mathbb{Q}$ um homomorfismo de corpos, $f \neq 0$. Mostre que $(\forall x \in \mathbb{Q}) f(x) = x$.
- **6-)** Sejam A e B subconjuntos de um corpo K. Definimos $-A \doteq \{z \in K \mid z = -x, x \in A\}, A + B \doteq \{z \in K \mid z = x + y \text{ onde } x \in A, y \in B\}$ e $A \cdot B \doteq \{z \in K \mid z = x \cdot y \text{ onde } x \in A, y \in B\}$.

Seja $(K,+,\cdot,\leqslant)$ um corpo ordenado. Seja $P=\{x\in K\mid x>0\}$ o conjunto dos positivos de K. Então P satisfaz:

- 1. $P + P \subset P \in P \cdot P \subset P$
- 2. $P \cap (-P) = \emptyset$ e $K = P \cup \{0\} \cup (-P)$

Reciprocamente, mostre que, num corpo $(K, +, \cdot)$, dado $P \subset K$ satisfazendo as duas propriedades acima, existe uma única relação de ordem \leq em K que o torna um corpo ordenado e tal que P seja o conjunto dos positivos de (K, \leq) .

OBSERVAÇÃO. Sejam K e K' corpos ordenados. Uma aplicação $f: K \to K'$ diz-se um homomorfismo de corpos ordenados se for um homomorfismo de corpos e se for crescente, i.e. se satisfizer $(\forall x, y \in K) x \leq y \Rightarrow f(x) \leq f(y)$. Se $P \subset K$ e $P' \subset K'$ forem os conjuntos de elementos positivos de K e K', respectivamente, é imediata a verificação de que $f: K \to K'$ é um homomorfismo de corpos ordenados se, e somente se, for um homomorfismo de corpos e satisfizer $f(P) \subset P'$.

- 7-) Num corpo ordenado K, prove que $a^2 + b^2 = 0 \Leftrightarrow a = b = 0$.
- 8-) Considere em \mathbb{R}^2 as operações:

$$(x_1, y_1) + (x_2, y_2) \doteq (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) \cdot (x_2, y_2) \doteq (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$

(a) Mostre que estas duas operações definem em \mathbb{R}^2 uma estrutura de corpo, no qual o elemento neutro da adição é (0,0) e o elemento neutro da multiplicação é (1,0). Além disso, definindo $i \doteq (0,1)$, verifique que $i^2 = -(1,0)$.

Definição: O corpo $(\mathbb{R}^2,+,\cdot)$ acima é chamado de corpo dos números complexos e denotado por \mathbb{C} .

(b) Mostre que a aplicação $\mathbb{R} \to \mathbb{C}$ dada por $x \mapsto (x,0)$ é um homomorfismo injetivo de corpos (portanto a sua imagem é um subcorpo de \mathbb{C} , isomorfo ao corpo dos reais; assim sendo, podemos identificar tal imagem com o corpo dos reais, o que nos permite escrever $\mathbb{R} \subset \mathbb{C}$ e dizer que o corpo dos reais é subcorpo dos complexos).

OBSERVAÇÃO. Denota-se $(x,0) \in \mathbb{R} \subset \mathbb{C}$ por x. Usando-se esta notação, tem-se, para todo $(x,y) \in \mathbb{C}$, $(x,y) = x + i \cdot y$.

- (c) Mostre que $\mathbb C$ não admite estrutura de corpo ordenado (i.e. não existe relação de ordem em $\mathbb C$ que o torne um corpo ordenado).
- **9-**) Seja $b \in \mathbb{R}, b > 1$.
 - (a) Sejam m, n, p, q inteiros, n > 0, q > 0 e r = m/n = p/q. Prove que $\sqrt[n]{b^m} = \sqrt[q]{b^p}$. Assim, faz sentido definir $b^r \doteq \sqrt[n]{b^m}$.
 - (b) Mostre que $(\forall r, s \in \mathbb{Q}) b^{r+s} = b^r b^s$.
 - (c) Mostre que a função $r \in \mathbb{Q} \mapsto b^r$ é estritamente crescente.

SUGESTÃO. Mostre que $(\forall r \in \mathbb{Q})$ $b^r > 1$ e use o item anterior.

- (d) Dado $x \in \mathbb{R}$, define-se $B(x) \doteq \{b^t \mid t \in \mathbb{Q}, t \leqslant x\}$. Mostre que B(x) é limitado e que, se x for racional, sup $B(x) = b^x$. Assim, faz sentido definir, para todo $x \in \mathbb{R}$, $b^x \doteq \sup B(x)$.
 - (e) Mostre que $(\forall x, y \in \mathbb{R})$ $b^{x+y} = b^x b^y$.
- 10-) Um subconjunto $X \subset \mathbb{R}$ diz-se denso em \mathbb{R} se todo intervalo aberto de \mathbb{R} contém algum ponto de X. Um número real diz-se algébrico se for raiz de algum polinômio não identicamente nulo e com coeficientes inteiros, e diz-se transcendente se não for algébrico. Mostre que: (a) o conjunto dos números algébricos é enumerável e denso em \mathbb{R} ; (b) o conjunto dos números transcendentes é não-enumerável e denso em \mathbb{R} .

11-) Seja $p \in \mathbb{R}$, p > 1. Mostre que é enumerável e denso em \mathbb{R} o conjunto dos números reais da forma m/p^n , com $m \in \mathbb{Z}$ e $n \in \mathbb{N}$.

Sugestão.

- (a) Seja mais persistente e tente fazer o exercício sem ler os demais ítens. Se não conseguir, volte para cá.
 - (b) Mostre que $(\forall x \in \mathbb{R}, x \ge -1, \forall n \in \mathbb{N}) (1+x)^n \ge 1 + nx$ (designaldade de Bernoulli).
- (c) Use a desigualdade de Bernoulli para mostrar que, para todo M>0, existe $n\in\mathbb{N}$ tal que $p^n>M$. Ou, equivalentemente, para todo $\epsilon>0$ existe $n\in\mathbb{N}$ tal que $1/p^n<\epsilon$.
- (d) Seja $(a,b) \subset \mathbb{R}$ um intervalo aberto. Aplique o item anterior com $\epsilon = b-a$ para mostrar que existe algum número da forma m/p^n no referido intervalo (e se ainda tiver dúvidas sobre como se completa o argumento, veja como o Elon demonstra que \mathbb{Q} é denso em \mathbb{R}).
- 12-) Seja $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ um polinômio com coeficientes inteiros.
 - (a) Mostre que, se $\frac{p}{q} \in \mathbb{Q}$, com $p, q \in \mathbb{Z}$ primos entre si, for raiz de f, então p divide a_0 e q divide a_n .
 - (b) Conclua que, se $a_n = 1$, as raízes de f são inteiras ou irracionais. Em particular, dado $a \in \mathbb{N}$, tomando $f(x) = x^n a$ conclui-se que, se a não possui raiz n-ésima inteira, então $\sqrt[n]{a}$ é irracional.
 - (c) Mostre que $\sqrt{2} + \sqrt[3]{2}$ é irracional.
- 13-) Um corte de Dedekind é um par ordenado (A, B) onde A e B são subconjuntos não-vazios de \mathbb{Q} , tais que A não tem elemento máximo, $A \cup B = \mathbb{Q}$ e $(\forall x \in A, \forall y \in B)$ x < y.
 - (a) Prove que, num corte de Dedekind (A, B), tem-se sup $A = \inf B$.
 - (b) Seja \mathcal{D} o conjunto dos cortes de Dedekind. Prove que existe uma bijeção $\mathcal{D} \to \mathbb{R}$.
- 14-) Seja K um corpo ordenado completo. Indique com 0' e 1' os elementos neutros da adição e da multiplicação em K, respectivamente. Considere $f:\mathbb{Q}\to K$ dada por $\left(\forall\,\frac{p}{q}\in\mathbb{Q}\right)f(\frac{p}{q})=\frac{p\cdot 1'}{q\cdot 1'}$. Estenda esta função para os reais, tomando $F:\mathbb{R}\to K$ dada por $\left(\forall\,x\in\mathbb{R}\right)F(x)\doteq\sup\{f(r)\mid r\leqslant x\}$. Mostre que f é um isomorfismo de corpos ordenados de \mathbb{R} sobre K.
- 15-) Seja $f : \mathbb{R} \to \mathbb{R}$ um isomorfismo de corpos ordenados. Mostre que f é a identidade dos reais. Conclua que, se K e L são corpos ordenados completos, existe um único isomorfismo de corpos ordenados de K sobre L (use o exercício anterior).
- **16-**) Um conjunto G de números reais chama-se um grupo aditivo quando $0 \in G$ e $x, y \in G \Rightarrow x y \in G$. Então $x \in G \Rightarrow -x \in G$ e $x, y \in G \Rightarrow x + y \in G$.

Seja G um grupo aditivo de números reais, e denote por G^+ o conjunto dos elementos positivos de G. Suponha $G \neq \{0\}$, de modo que G^+ seja não-vazio. Prove que:

- (a) se inf $G^+=0$, então G é denso em \mathbb{R} ;
- (b) se inf $G^+ = a > 0$, então $a \in G^+$ e $G = \{0, \pm a, \pm 2a, \dots\}$.

SUGESTÃO. Para provar a segunda parte, verifique inicialmente que, se $a \notin G^+$, existiriam $g, h \in G^+$ tais que $a < g < h < a + \frac{a}{2}$, donde h - g < a/2, uma contradição. A seguir, prove que todo $g \in G$ se escreve sob a forma $a \cdot q + r$, com q inteiro e $0 \leqslant r < a$, e portanto $r = g - a \cdot q \in G$.

(c) Conclua que, se $\alpha \in \mathbb{R}$ é irracional, os números reais da forma $m + n\alpha$, $m, n \in \mathbb{Z}$, formam um subconjunto denso de \mathbb{R} .