15.415x Foundations of Modern Finance

Leonid Kogan and Jiang Wang MIT Sloan School of Management

Lecture 14: Portfolio Theory

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

Mean-variance preferences

- How to choose a portfolio: Maximize expected utility.
- Special case assume investors care only about the first two moments: average return and return variance/volatility (risk).
 - Minimize risk for a given expected return, Or:
 - Maximize expected return for a given risk.

Investor's problem

- Among all the portfolios with a target level of expected return, find the one with the lowest variance.
- Formally, we need to solve the following problem:

(P): Minimize
$$\sigma_p^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \sigma_{ij}$$

subject to: (1) $\sum_{i=1}^{N} w_i = 1$
(2) $\sum_{i=1}^{N} w_i \, \bar{r}_i = \bar{r}_p$

• Of all the portfolios [constraint (1)] with an expected return of \bar{r}_p [constraint (2)], find the one that has the lowest variance.

Empirical examples

- We use ETFs to construct portfolios.
- Each ETF in our examples represents an exposure to a distinct asset class.

ETF	Description	Inception date
SPY	US Equity: S&P 500	Jan 22, 1993
AGG	Aggregate bonds	Sep 22, 2003
HYG	High yield bonds	Apr 04, 2007
IAU	Gold	Jan 21, 2005
IYR	US Equity: Real estate sector	Jun 12, 2000

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

Two assets, long only

$$\bar{r}_p = w\bar{r}_1 + (1 - w)\bar{r}_2$$

$$\sigma_p^2 = w^2\sigma_1^2 + (1 - w)^2\sigma_2^2 + 2w(1 - w)\sigma_{12}$$

SPY and AGG (2008/01-2018/12).

Mean Returns					
SPY AGG					
8.70%	3.26%				

Covariances							
SPY AGG							
SPY	0.0230	0.0004					
AGG	0.0004	0.0014					

Portfolio return and risk (unique solution):

Weight in SPY	0.0%	10.0%	20.0%	30.0%	40.0%	50.0%	60.0%	70.0%	80.0%	90.0%	100.0%
Mean	3.26%	3.80%	4.35%	4.89%	5.44%	5.98%	6.52%	7.07%	7.61%	8.16%	8.70%
St Dev	3.80%	3.83%	4.43%	5.41%	6.61%	7.93%	9.32%	10.75%	12.20%	13.68%	15.16%

Two assets, long only

Two assets, with short sales allowed

■ When short sales are allowed, portfolio weights are unrestricted.

Mean Returns					
SPY AGG					
8.70%	3.26%				

Covariances						
SPY AGG						
SPY	0.0230	0.0004				
AGG	0.0004	0.0014				

Weight in SPY	-60.0%	-40.0%	-20.0%	0.0%	20.0%	40.0%	60.0%	80.0%	100.0%	<mark>120.0%</mark> 140.0	%
Mean	-0.00%	1.09%	2.17%	3.26%	4.35%	5.44%	6.52%	7.61%	8.70%	9.79% <mark>10.87</mark>	' %
St Dev	10.62%	7.81%	5.32%	3.80%	4.43%	6.61%	9.32%	12.20%	15.16%	18.16% <mark>21.19</mark>	%

Two assets, with short sales allowed

Two assets: safe and risky

$$\bar{r}_p = w\bar{r}_1 + (1 - w)r_F$$

$$\sigma_p = w\sigma_1$$

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

Multiple assets

Optimal portfolios using in-sample return moments (annualized returns)

- Given an expected return, the portfolio that minimizes risk (measured by SD or variance) is a mean-variance optimal portfolio.
- The locus of all frontier portfolios in the mean-SD plane is called portfolio frontier.
- The upper part of the portfolio frontier gives the efficient frontier portfolios.

Multiple assets

Add 3-asset frontier (dashed line): AGG, SPY, and IAU

- When more assets are included, the portfolio frontier improves, i.e., moves toward upper-left: higher mean returns and lower risk.
- Intuition: Since one can always choose to ignore the new assets, including them cannot make one worse off.

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

Portfolio frontier with a safe asset

- Observation: A portfolio of risk-free and risky assets can be viewed as a portfolio of two portfolios:
 - the risk-free asset, and
 - a portfolio of only risky assets.
- Example: consider a portfolio with \$40 invested in the risk-free asset and \$30 each in the Equity Index and LT Bonds:
 - $w_0 = 40\%$ in the risk-free asset,
 - $w_1 = 30\%$ in Equities,
 - $w_2 = 30\%$ in LT Bonds.

Portfolio frontier with a safe asset

- We can also view the portfolio as follows:
 - 1 x = 40% in the risk-free asset,
 - $\mathbf{x} = 60\%$ in a portfolio of only risky assets, which has:
 - o 50% in Equities,
 - o 50% in LT Bonds.
- Consider a portfolio *p* with:
 - \blacksquare x invested in a risky portfolio q, and
 - \blacksquare 1 x invested in the risk-free asset.

$$ar{r}_p = (1 - x)r_F + xar{r}_q$$
 $\sigma_p^2 = x^2\sigma_q^2 \; (\text{use Var}(r_F) = 0)$

Portfolio frontier with a safe asset

- With a risk-free asset, frontier portfolios are combinations of:
 - the risk-free asset,
 - the tangency portfolio (consisting of only risky assets).
- The frontier is also called the Capital Market Line (CML).

Sharpe ratio

Sharpe ratio is a measure of a portfolio's risk-return trade-off, equal to the portfolio's risk premium divided by its volatility:

Sharpe Ratio
$$\equiv \frac{\bar{r}_p - r_F}{\sigma_p}$$
 (higher is better!)

■ The tangency portfolio has the highest possible Sharpe ratio of all portfolios. So do all the portfolios on the CML.

Standard deviation of return

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

The tangency portfolio

- Use the optimality condition to characterize the Tangency portfolio explicitly.
 - N risky assets, i = 1, 2, ..., N,
 - **Expected return vector** \bar{r} ,
 - **Expected excess return vector** \bar{x} ,
 - \blacksquare Covariance matrix Σ (positive definite),
 - \blacksquare (N × 1) vector of 1's ι ,
 - \blacksquare (N × 1) vector of portfolio weights w of risky assets.

Then,

- $\blacksquare \quad \bar{x} = \bar{r} r_F \iota,$
- The weight in the risk-free asset is $1 w'\iota$,
- The expected excess return on portfolio w is $w'\bar{x}$.

The tangency portfolio

Solve for the efficient portfolio:

$$w'\Sigma w = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j \Sigma_{ij}$$

$$w'\bar{x} = \sum_{i=1}^{N} w_i \bar{x}_i$$
 min $w'\Sigma w$ (portfolio variance)
s. t. $w'\bar{x} = m$ (portfolio expected excess return)

Solve the optimization portfolio using the method of Lagrange multipliers:

$$L = w' \Sigma w + 2\lambda \left(m - w' \bar{x} \right)$$

The first order condition (FOC) $\partial L/\partial w = 0$:

$$2\Sigma w - 2\lambda \bar{x} = 0 \implies \text{Solution: } w_T = \lambda \Sigma^{-1} \bar{x}$$

Tangency portfolio weights on risky assets sum up to one: $w'_T \iota = 1$. Find

$$\lambda = \frac{1}{\bar{x}' \Sigma^{-1} \iota}$$

$$w_T = \frac{1}{\bar{x}' \Sigma^{-1} \iota} \Sigma^{-1} \bar{x}$$

Example: optimal portfolio

- Consider an asset allocation problem with three asset classes: T-Bills,
 Stock Market Index, and a Hedge Fund Index.
- Returns on the Stock Market Index (SMI) and Hedge Fund Index (HFI) are uncorrelated.
- What fraction of the Tangency portfolio should be allocated to the Hedge Fund Index?
- What are the Sharpe ratios for the SMI, HFI, and the Tangency portfolio?

	Expected return	Standard deviation
T-Bills	3%	0%
Stock Market Index	9%	20%
Hedge Fund Index	5%	10%

Example: optimal portfolio

Use the general portfolio solution

$$w_T = \lambda \, \Sigma^{-1} \bar{x}$$

■ The covariance matrix of returns is diagonal, easy to invert:

$$w_{SMI} = \lambda \frac{(9\% - 3\%)}{0.20^2} = \lambda \times 1.5$$

$$w_{HFI} = \lambda \frac{(5\% - 3\%)}{0.10^2} = \lambda \times 2.0$$

$$w_{SMI} = \frac{1.5}{1.5 + 2.0} = 43\%$$

$$w_{HFI} = \frac{2.0}{1.5 + 2.0} = 57\%$$

Over 50% allocation into the HFI. How does HFI compare to SMI on a stand-alone basis?

Example: optimal portfolio

Recall that the Sharpe ratio equals expected excess return over volatility:

$$SR_{SMI} = \frac{9\% - 3\%}{20\%} = 30\%$$
 vs. $SR_{HFI} = \frac{5\% - 3\%}{10\%} = 20\%$

- HFI has a lower Sharpe ratio yet receives a higher allocation.
 - HFI is an excellent diversifier: it is uncorrelated with SMI.
 - HFI has much lower volatility than SMI.
- Sharpe ratio of the Tangency portfolio:

$$SR_T = \frac{0.43 \times 6\% + 0.57 \times 2\%}{\sqrt{0.43^2 \times 0.2^2 + 0.57^2 \times 0.10^2}} = 36\%$$

Achieve higher Sharpe ratio thanks to diversification.

vs.
$$SR_{SMI} = 30\%$$

and $SR_{HFI} = 20\%$

Risk aversion and portfolio choice

- All mean-variance investors choose the tangency portfolio of stocks.
- Individual risk aversion determines allocation to the risky assets.

High risk aversion

invest in the risk-free asset and the tangency portfolio

Low risk aversion

borrow at the risk-free rate and buy the tangency portfolio

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

Portfolio and individual assets

- Contribution of an asset to a portfolio:
 - In the presence of a risk-free asset, portfolio's return is:

$$\tilde{r}_p = \left(1 - \sum_{i=1}^N w_i\right) r_F + \sum_{i=1}^N w_i \tilde{r}_i = r_F + \sum_{i=1}^N w_i (\tilde{r}_i - r_F)$$

- Each individual asset contributes to the portfolio on two dimensions:
 - Expected return;
 - Risk measured by return volatility (SD).
- We consider these two aspects separately.

Individual contribution to expected return

Expected portfolio return is:

$$\bar{r}_p = r_F + \sum_{i=1}^{N} w_i (\bar{r}_i - r_F)$$

- Describe the marginal contribution of risky asset i to the expected portfolio return.
 - "Marginal contribution of x to A" means the incremental change of A when x changes by a small amount.
- Marginal contribution is the partial derivative: change in the portfolio properties per unit change in the weight on asset i, holding all other risky asset weights fixed (if we change w_i by δ , the weight on the risk-free asset must change by $-\delta$):

$$\frac{\partial \bar{r}_p}{\partial w_i} = \bar{r}_i - r_F \quad \text{(risk premium of asset } i\text{)}$$

Individual contribution to return volatility

■ The variance of portfolio return is given by

$$\sigma_p^2 = \sum_{i=1}^N \sum_{j=1}^N w_i w_j \sigma_{ij} = w_i^2 \sigma_i^2 + 2 \sum_{j \neq i}^N w_i w_j \sigma_{ij} + [\text{Terms not including } w_i]$$

■ The marginal contribution of asset i to portfolio variance is $2\text{Cov}(\tilde{r}_i, \tilde{r}_p)$:

$$\frac{\partial \sigma_p^2}{\partial w_i} = 2w_i \sigma_i^2 + 2\sum_{j \neq i}^N w_j \sigma_{ij} = 2\sum_{j=1}^N w_j \sigma_{ij} = 2\text{Cov}\left(\tilde{r}_i, \sum_{j=1}^N w_j \tilde{r}_j\right) = 2\text{Cov}\left(\tilde{r}_i, \tilde{r}_p\right)$$

 \blacksquare The marginal contribution of asset i to portfolio standard deviation is

$$\frac{\partial \sigma_p}{\partial w_i} = \frac{\partial \left(\sigma_p^2\right)^{\frac{1}{2}}}{\partial w_i} = \frac{\operatorname{Cov}(\tilde{r}_i, \tilde{r}_p)}{\sigma_p} = \frac{\sigma_{ip}}{\sigma_p}$$

Optimality of the tangency portfolio

■ Summarize the marginal contribution of risky asset *i* to portfolio *p* by its marginal return-to-risk ratio (RRR):

$$RRR_{ip} = \frac{\left(\frac{\partial \bar{r}_p}{\partial w_i}\right)}{\left(\frac{\partial \sigma_p}{\partial w_i}\right)} = \frac{\bar{r}_i - r_F}{\left(\sigma_{ip}/\sigma_p\right)}$$

Claim: For the tangency portfolio (T), which optimal, the return-to-risk ratio of all risl assets must be the same, and equal to the Sharpe ratio of the tangency portfolio:

$$RRR_{iT} = \frac{\bar{r}_i - r_F}{(\sigma_{iT}/\sigma_T)} = \frac{\bar{r}_T - r_F}{\sigma_T} = SR_T$$

Intuition: The SR of a frontier portfolio cann be improved.

Expected return

Standard deviation of return

Optimality of the tangency portfolio: a supplement

■ Claim: For the tangency portfolio (T),

$$RRR_{iT} = \frac{\bar{r}_i - r_F}{(\sigma_{iT}/\sigma_T)} = \frac{\bar{r}_T - r_F}{\sigma_T} = SR_T$$

- Derive this result algebraically.
- Tangency portfolio composition is given by $w_T = \lambda \Sigma^{-1} \bar{x}$.
- Let e_i be the i'th basis vector, $e_i = (0, ..., \underbrace{1}_{i}, ... 0)$ '. Then,

$$\sigma_{iT} = e_i' \Sigma w_T = e_i' \Sigma (\lambda \Sigma^{-1} \bar{x}) = \lambda e_i' \bar{x} = \lambda \bar{x}_i$$

$$\sigma_T^2 = w_T' \Sigma w_T = w_T' \Sigma (\lambda \Sigma^{-1} \bar{x}) = \lambda w_T' \bar{x} = \lambda \bar{x}_T$$

And therefore

$$\frac{\bar{x}_i}{\sigma_{iT}} = \frac{\bar{x}_T}{\sigma_T^2} \Rightarrow \text{ this is the same as } \frac{\bar{r}_i - r_F}{(\sigma_{iT}/\sigma_T)} = \frac{\bar{r}_T - r_F}{\sigma_T}$$

Regression interpretation

■ Optimality of the tangency portfolio is mathematically equivalent to the intercept α_i in the following regression being equal to zero:

$$\tilde{r}_i - r_F = \alpha_i + \beta_i (\tilde{r}_T - r_F) + \tilde{\varepsilon}_i$$

$$\beta_i = \frac{\sigma_{iT}}{\sigma_T^2}$$

$$RRR_{iT} = \frac{\bar{r}_i - r_F}{\beta_i \sigma_T} = \frac{\bar{r}_T - r_F}{\sigma_T} \implies \alpha_i = 0$$

- If α_i is non-zero, can improve on the Sharpe ratio of the tangency portfolio the portfolio is not optimal.
- Can test for optimality in the data using regression methods.

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective

Beyond the static mean-variance theory

- In practice, portfolio choice problems are often dynamic:
 - Household managing investments to support several consumption objectives over the life cycle.
- Even in static problems, the objective may not be captured by the first two moments.
 - Maximize expected return with a penalty for portfolio value falling below a given threshold.
- Can capture various objectives within the expected utility framework, e.g.

$$\max E[U(V_p)], \qquad U(v) = \begin{cases} v, & v \ge \underline{v} \\ v + a(v - \underline{v}), & v < \underline{v} \end{cases}, \qquad a > 0$$

Marginal contribution of an asset to portfolio

Consider the objective

$$\max E[U(1+\tilde{r}_p)], \ \tilde{r}_p = r_F + \sum_{i=1}^{N} w_i(\tilde{r}_i - r_F)$$

The first-order optimality condition is

$$\begin{split} \mathbb{E}\big[U'\big(1+\tilde{r}_p\big)\times(\tilde{r}_i-r_F)\big] &= 0\\ \mathbb{E}\big[U'\big(1+\tilde{r}_p\big)\big]\times(\bar{r}_i-r_F) + \mathbb{C}\mathrm{ov}\big(U'\big(1+\tilde{r}_p\big),\tilde{r}_i\big) &= 0 \end{split}$$

- Marginal contribution to portfolio risk is captured by $Cov(U'(1 + \tilde{r}_p), \tilde{r}_i)$: this places emphasis on nonlinear measures of return co-movement, e.g., $Cov(\tilde{r}_p^2, \tilde{r}_i)$.
- Different investors no longer hold the same risky portfolio, the shape of the objective affects the optimal portfolio composition.

- Introduction: portfolio choice with mean-variance preferences
- Portfolios with two assets
- Portfolio frontier with multiple risky assets
- Portfolio choice with a safe asset
- Analytics of the portfolio frontier
- Properties of the tangency portfolio
- Non-mean-variance objective