Algoritmi e Strutture Dati

Foglio 8 19/05/2023

Esercizio 1. Il trasposto di un grafo orientato G=(V,E) è il grafo $G^T=(V,E^T)$, dove $E^T=\{(v,u)\in V\times V:(u,v)\in E\}$. Quindi, G^T è G con tutti i suoi archi invertiti. Descrivete un algoritmo con tempo di esecuzione O(n+m) per calcolare G^T da G, assumendo che i grafi siano rappresentati tramite liste di adiacenza.

Esercizio 2. Calcolate i valori d e π che si ottenngono effettuando una visita in ampiezza del seguente grafo utilizzando il vertice 3 come sorgente.

Esercizio 3. Sa G = (V, E) un grafo non diretto connesso. L'eccentricità $\varepsilon(u)$ di un vertice $u \in V$ è la massima distanza tra u e un qualsiasi altro vertice di G. Dato $s \in V$, fornite un algoritmo lineare che calcoli $\varepsilon(s)$.

Esercizio 4. Illustrate come funziona una visita in profondità del seguente grafo, supponendo che i vertici siano inizialmente ordinati alfabeticamente e che ogni lista di adiacenza sia ordinata alfabeticamente.

Esercizio 5. Ci sono due tipi di lottatori professionisti: "buoni" e "cattivi". Fra una coppia qualsiasi di lottatori professionisti ci può essere o no rivalità. Supponete di avere n lottatori e una lista di r coppie di lottatori fra i quali c'è rivalità. Create un algoritmo con tempo di esecuzione O(n+r) che determini se sia possibile designare alcuni lottatori come buoni e tutti gli altri come cattivi, in modo che la rivalità sia sempre fra un buono e un cattivo. Se tale designazione è possibile, il vostro algoritmo dovrebbe effettuarla.

Esercizio 6. Riscrivete la procedura DFS utilizzando una pila (stack) per eliminare la ricorsione.

Esercizio 7. Trovate un controesempio alla congettura che, se esiste un cammino da u a v in un grafo diretto G e se u.d < v.d in una visita in profondità di G, allora v è un discendente di u nella foresta DFS risultante.

Esercizio 8. Modificate lo pseudocodice per la visita in profondità di un grafo diretto in modo che assegni il tipo corretto ad ogni arco.

Esercizio 9. Descrivete un algoritmo che determini in tempo O(n) se un grafo non diretto G con n vertici contiene un ciclo oppure no.