第 31 卷第 1 期 1997 年 1 月 №1 Vol. 31 Jan. 1997

7

IGBT 过流保护方法的研究

42-49

王正仕 陈辉明 吴益良 向 群 TN 32

(浙江大学电力电子技术研究所,杭州,310027)

提要

↑ 介绍了 IGBT 过流的特点和过流保护的特殊问题,给出了过流保护的方法和综合保护的方案,并进行了试验,还介绍了过流保护中的抗干扰措施.

关键词:IGBT;过流;保护;慢降栅压;慢关断

绝缘栅晶体管。

中图法分类号:TN34

0 引 言

过流保护, 晶体管, 综合保护

绝缘栅晶体管 (IGBT), 既具有少子器件 GTR 的通态压降低, 易高压大电流的优点, 又兼有多子器件 MOSFET 的开关速度快、无二次击穿、驱动微功耗的长处, 被认为是最有前途、理想的电力电子器件之一, 在新一代电力电子装置中得到了广泛的应用。

过流保护是 IGBT 应用中的关键技术,由于 IGBT 器件本身以及它在电路中运行条件的特点,决定了 IGBT 的过流保护和 GTR、GTO、MOSFET 等其他自关断器件相比,有很大的差别.

1 IGBT 过流的特点

1.1 能够承受过流的时间短

IGBT 能够承受过流的时间通常仅为几个 µs,因此要求检测、保护电路的响应速度要快.为了对过流期间的各种信息进行处理(如甄别真、假过流),希望能够延长器件允许承受过流的时间,这是通过降栅压保护实现的.

1.2 拳住效应

由于 IGBT 器件在结构上有一个寄生晶闸管,若此晶闸管一旦触通,IGBT 便会失去栅极的控制而无法关断,产生擎住现象、流过 IGBT 的稳态电流过大会产生静态擎住,而在开通和关断过程中,若开、关速度过快,也会使寄生晶闸管触通,产生动态擎住、

1.3 过流状态和栅极驱动电压有关

在相同的应用电路中,由于栅极驱动电压的不同,IGBT 能够承受过流的时间也不同,受

[•] 本文于 1995 年 3 月 23 日收到 王正仕: 男, 1965 年出生, 讲师

到过流冲击的大小幅度也不同。图 1 给出了过流状态和驱动电压的关系: 当栅极驱动电压 $V_{se}=10\mathrm{V}$ 时,器件受到 250A 的过流冲击,能够承受的时间仅为 $5\mu\mathrm{s}$; 当驱动电压 $V_{se}=15\mathrm{V}$,器件受到过流冲击的幅度下降到 $100\mathrm{A}$,同时能够承受过流的时间可延长到 $15\mu\mathrm{s}$. 图 2 是 IGBT 的一组过流典型失效曲线,可以看出,过流时若降低栅极驱动电压,则可以延长 IGBT 能够承受过流的时间.

图1 过流状态与栅压 Via 关系

图 2 IGBT 典型失效曲线

2 过流保护需要解决的几个问题

IGBT 的过流保护电路除了要求能够检测过流信号,在器件能够承受过流的时间内,封锁棚极驱动信号以外,还需解决以下几个问题,否则仍将导致器件损坏。

2.1 过压击穿

IGBT 处在过流的大电流状态下、若保护电路将其快速关断,极大的电流下降率di/dt将在电路的感性元件、外电路杂散电感和内封电感上感应出一个大小为 Ldi/dt 的电压,过高的电压过冲会造成 IGBT 雪崩击穿,使器件失效。对于常工作于高压、大电流下的 IGBT 的止过流保护时,因快速关断,造成的过压击穿,显得尤为突出。无论是降栅压的速度,即慢降栅压(如栅压 V_{se} 由 15 V 降到 10 V 的速度),还是慢关断的速度(如栅压 V_{se} 再由 10 V 降到 -5 V),都必须考虑由此造成的电压过冲 Ldi/dt.

2.2 整住

过流保护时,极大的电流下降 di/dt 和极大的电压上升 du/dt,容易造成寄生晶闸管的触通,一旦发生擎住现象、即使在 IGBT 栅极加上 — 5V 的关断电压、也无法使其关断,为避免发生擎住、关断速度应受到限制、

2.3 热损坏

在过流、保护关断这段时间内,IGBT 同时承受大电流和高电压,器件热功耗急剧增加. 为了防止热损坏,过流的时间也受到了限制。

3 对流保护的方法

由以上介绍可以看出、IGBT 过流保护在实现器件过流保护的同时,还必须解决保护动作带来的过电压冲击、擎住和热损坏问题,而这些在很大程度上取决于器件的关断方式、作为自关断器件,IGBT 的关断方式可以通过对其栅极驱动电压的控制来实现.

3.1 降栅压保护

当 IGBT 出现过流时, 先将其栅极驱动电压降低, 然后再将其关断, 这种保护有两大优点: 一是延长了 IGBT 能够承受过流的时间, 二是可以降低过流的幅度, 文献 1 给出了降栅压时, 集极电流 I_c 的轨迹, 如图 3 所示, 虚线为不降栅压时电流 I_c 轨迹, 流过 IGBT 正常电流为 40A,瞬时过流, 电流 I_c 迅速上升到 220A,图 3(a) 为过流时将栅极电压由 15V 下拉到 10V,大约 10μ s 后过流撤除, I_c 恢复到原状态, IGBT 栅极也恢复 15V 全栅压驱动; 图 3(b) 为过流条件下, 栅压 V_{sc} 由 15V 下降到 8V,过流一直持续, 10μ s 后关断 IGBT.

从以上电流轨迹可以看出;过流时,若仍保持全栅压驱动,则 IGBT 过流幅度大、持续时间长;若将栅极驱动电压降低,则 IGBT 过流幅值小,电流很快回落,持续大电流的时间短,降栅压保护是 IGBT 过流保护的基本方法之一,

降栅压带来的问题是过流时器件通态压降的升高,这样管子瞬时热损耗急剧增大,为防止热损坏,这个时间应足够短,事实上,过流保护电路的整个响应时间通常小于10µs.

图 3 降栅压保护的电流轨迹

3.2 慢降栅压保护

这里的慢降栅压指的是降栅压保护时,栅极驱动电压 V_{sr} 由正常的 15V 下降到到保护时的 10V(或8V等),电压下降速度不能太快,这主要是为了避免擎住效应和防止di/dt引起的电压 过冲。图 4 示出了不同的降栅压速度时,电压过冲的波形。图 4(b) 的降栅压速度慢于图 1(a),电压 U_{c} 的过冲也小于图 4(a)。

图 4 降栅压速度与电压过冲的关系

3.3 慢关断保护

与上述不同,慢关断是指器件的关断速度,对应于橱板,是驱动电压 V_{sc} 由保护栅压(如 10V 或 8V) 到关断栅压(-5V) 的下降过程,慢关断保护也是为了防止过压冲击和擎住效应。图 5 为 IGBT 处于过流状态下,不同的关断速度时,di/dt 引起的电压 U_{sc} 过冲情况。显然,关断速度越慢,电压过冲越小,慢关断保护也是 IGBT 过流保护的基本方法,富士公司的 IGBT 专用驱动保护模块 EXB 系列中,也采用了该方法。

图 5 关断速度与电压过冲的关系

◆4 过流保护中的抗干扰

这里的"干扰"是指过流出现,但在IGBT 允许的时间内就自行消失的现象,如果此时保护 电路将IGBT 关断,就相当于造成一次没有必要的"扰动"掉闸、采用以下两种方法可以甄别过流的真假。

4.1 延时搜索法

也即延长检测的时间, 若IGBT 出现过流,且一直持续(如几个μs),则可判为真过流;若过流迅速消失,则可认为是"假性过流"、检测时间的延长,意味着 IGBT 处于过流状态时间的延长, 因此延时搜索法通常与降栅压保护法一起运用。

4.2 脉冲计数法

过流信号一出现,保护电路就封锁本周期的驱动开通信号,下一个周期开通信号到来,封锁已撤除,IGBT 再次被驱动导通,若此时过流仍存在,再一次封锁这一周期的开通信号,这样,若连续几次(超过预先设定的次数)出现过流,保护电路将撤除开通信号,直至过流故障被清除;如果连续检测到的过流信号次数少于预先设定的次数,则认为是"假性过流"而不与响应。

5 综合保护的设计

综合保护的目的是为了获得合理的关断方式,改善保护关断时器件上的电流、电压轨迹.当 IGBT 过流时,保护电路首先设法延长器件能够承受过流的时间,并使大电流回落,为关断创造条件,然后再合理关断,这个过程中应该能够甄别"真假过流".显然,慢降栅压保护、降栅压保护、慢关断保护都被采用.如前所述,这些保护方法都是通过控制栅极驱动电压的变化来实现的.综合保护法对栅极驱动电压的控制如图 6 所示. IGBT 在时间为 t_0 时出现过流,延时 t_0 1 = t_1 1 - t_0 1 过流持续,栅压 V_{se} 1 由 15V1 以 5V1/V1 的速度慢降至 10V1 ,然后保持 V_{se} 1 = 10V1 ,再延

图 6 综合保护时栅压 V_g 的变化波形

时 $t_{sc}=t_3-t_2$,若过流持续,则从 t_3 开始慢关断, V_{sc} 由 10V 降至 t_4 时的 -5V. 两次延时用以 甄别真假过流. 综合保护的动作流程如图 7.

图 7 综合保护动作流程设计

6 过流保护试验及结论

过流保护试验的波形如图 8 所示:流过 IGBT 电流 I_c 为 15A,过流时电流 I_c 上冲到 75A,保护动作,使电流 I_c 关断. 由于采用慢降栅压和慢关断,器件上电压 U_c 在关断过程中因电流下降造成的过冲尖峰也受到了控制.

图 3 过流保护试验的电流,电压动态轨过

通过以上介绍和试验结果,有以下结论:综合保护法对改善IGBT 过流及关断时的电流、电压轨迹是有益的,合理选取参数(如降栅压幅值、速度,慢关断速度),实现过流保护是可能的:

- (1) 降栅压可以延长 IGBT 能够承受过流的时间,并且减小过流冲击;
- (2) 慢降栅压和慢关断可以避免发生擎住、减小电压过冲、

参考 文献

- 1 Larrg Rinehait. Designing short circuit protection into PWM transistor inVerters. Power Convevsion. October 1990—Proceedings
- 2 Castino G、IGBT 短路保护、IR 公司资料 AN-984
- 3 Rahul Chokhawala, Jamie Catt. Laszlo Kiraly A Discussion on IGBT Short Circuit Behvior and Fault Protection Schemes, APEC'93,393~401
- 4 Locher R. Short Circuit Proof IGBTS Simplify Overcurrent Protection, IAS-IEEE, 1991
- 5 王正仕. IGBT 高频斩波器. [学位论文]. 杭州: 浙江大学硕士论文, 1994
- 6 卢红,梁任秋,戴忠达, IGBT 驱动保护与应用技术, 电力电子技术, 1993, (2):1~5

The stuolg of IGBT overcurrent protection methods

Wang Zhengshi Cheng Huimin Wu Yiliang Xiang Qun

(Power Electronic Technique Institute, Zhejiang University, Hangzhou, 310027)

Abstract

This paper introduces the methods of overcurrent protection for IGBT devices: reducing gate driver voltage, reducing gate driver voltage slowling and tunning off the device slowling as the IGBT goes into overcurrent. A new overcurrent protection method is described and experiment is carried out to verify its reiability. Some anti-interfere methods in overcurrent protection are discussed.

Key words: IGBT; overcurrent; protection; method