MBA Business Foundations, Quantitative Methods: Session Three

Boris Babic, Assistant Professor of Decision Sciences

INSEAD

The Business School for the World*

Today

Functions

Line

asics Inverse

Two equations

Quadratic

Exponents

Exponents Application: interest rates

Exponential functions

Logarithmic functions

Logarithms Logarithmic functions

Logarithmic and exponential equations

Case: pricing Derivatives

Derivatives Optimal decisions

Case: production

Statistics

Uncertainty Probability & statistics

Session 3 (Logarithms)

Exponential functions: review

Boris Babio

Logarithmic functions

Exponentia and

Logarithm Equations

Case: pricing

Derivatives

A hypothetical: the infinitely evil loan shark...

Exponential functions: review

Boris Babi

Logarithmic functions

Exponentia and Logarithmi Equations

Case: pricing

n . ..

Suppose you borrow one dollar from an ordinary loan shark that charges 100% interest, n times per year. Then after the year, you will owe:

$$\left(1+\frac{1}{n}\right)^n$$

• In particular, after 1 year:

For n = 1, you will owe 2.

For n=2, you will owe 2.25

For n = 3, you will owe 2.37.

For n = 100, you will owe 2.704.

- The infinitely evil loan shark: $n = \infty$, owe e.
- That is, $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e \approx 2.7182818...!!$
- Your debt to the infinitely evil loan shark is finitely bounded by e!
- Thanks Fuler!

Exponential functions: review

Boris Babi

Logarithmic functions

Exponentia and Logarithmi Equations

Case: pricing

Derivatives

• If you borrow A_0 , after t years, you will owe,

$$A = \lim_{n \to \infty} A_0 \left[\left(1 + \frac{1}{n} \right)^n \right]^t = A_0 e^t$$

- We have now recovered the growth model for bacteria and populations that we saw last class (with k, the growth rate, equal to 1)!
- Now suppose the loan shark charges $(k \cdot 100)\%$ interest continuously.
- Reminder: A_0 is your starting point, $(k \cdot 100)\%$ is the growth rate, t is the number of periods, and $e = (1 + 1/n)^n$ as n gets arbitrarily large.
- Then in general you will owe

$$A = A_0 e^{kt}$$

• The growth model involving e appears naturally as the continuous generalization of the compounding interest formula.

Session 3 (Logarithms)

Boris Bahic

Logarithmic functions

Exponentia and Logarithmi Equations

Case: pricing

Derivatives

Example

The parents of a newborn child want to have \$25,000 for the child's college education when she is 18.

At what rate of interest, compounded continuously, must \$10,000 be invested now to achieve this goal?

Solution

Boris Babio

Logarithmic functions

Exponentia and Logarithmi

Case: pricing

. . . .

$$A = A_0 e^{rt}$$

$$25000 = 10000 e^{r18}$$

$$\ln(25000) = \ln(10000 \cdot e^{r18})$$

$$\ln(25000) = \ln(10000) + \ln e^{r18}$$

$$\ln(25000) = \ln(10000) + r18$$

$$\ln(25000) - \ln(10000) = r18$$

$$\ln(\frac{25000}{10000}) = r18$$

$$r = 0.05 = 5\%$$

Case: pricing

 A logarithmic function is the inverse of an exponential function:

If $\log_b x = c$ then $b^c = x$ and $\log_b b^x = x$.

- Special case where the base b of the exponential is e.
- We call it the natural logarithm (natural log) and it has its own notation: $\log_e x = \ln x$.

Case: pricing

.

Natural log is the inverse of the exponential function of base e: $e^x = c \leftrightarrow \ln c = x$ or $\ln e^x = x$.

Session 3 (Logarithms)

Logarithmic applications

Boris Babio

Logarithmic functions

Exponentia and Logarithmic Equations

Case: pricing

Dani.........

 Logarithms are often used for measurement scales, where we need to compare orders of magnitude.

• Magnitude 6 earthquake is 10 times stronger than magnitude 5 earthquake. Magnitude 7 earthquake is $10 \times 10 = 100$ times strong than magnitude 5 earthquake.

Order in which websites are presented to you when you search on Google

Richter scale for earthquakes

Decibels for sound

Logarithmic applications

Logarithmic functions

Logarithms are also present in many "laws" in economics, statistics, finance, psychology, etc.

Economics: economies of scale

Total cost as a function of quantity: $c = \ln(10 + q)$

Psychology: how human beings make decisions (Hick's law)

$$T = b \log_2(n+1)$$

T: time to react n: number of choices

Exponential and logarithmic equations

Boris Babi INSEAD

Logarithm functions

Exponential and Logarithmic Equations

Case: pricing

Derivatives

 How to solve equations that involve exponentials and logarithms?

Formulas at our disposal:

$$e^x = e^y \leftrightarrow x = y$$

$$\ln x = \ln y \leftrightarrow x = y$$

$$e^{\ln x} = x$$

$$ln(e^y) = y$$

Practice

Boris Babi

functions Exponential

and Logarithmic Equations

Case: pricing

Solve for x:

$$\bullet e^x = p$$

$$e^{3x} = 403.43$$

$$\ln(x+1) = 2$$

$$\ln(3x - 2) = 5$$
- more challenging -

6
$$\ln(10) - \ln(7 - x) = \ln(x)$$

Practice Solutions, 1-4

Boris Babi

Logarithm functions

Exponential and Logarithmic Equations

Case: pricing

Solve for x:

•
$$e^x = p \rightarrow x = \ln p$$

•
$$e^{3x} = 403.43 \rightarrow x = 2$$

•
$$\ln(x+1) = 2 \to x = e^2 - 1$$

•
$$\ln(3x-2) = 5 \rightarrow x = \frac{1}{3}(e^5+2) \approx 50.138$$

Ex 5 Solution

Boris Babio INSEAD

Logarithm functions

Exponential and Logarithmic

Equations

Case: pricing

$$\ln(x) + \ln(x+6) = \ln(5x+12)$$
$$\ln(x(x+6)) = \ln(5x+12)$$
$$x(x+6) = 5x+12$$
$$x^2 + 6x = 5x + 12$$
$$x^2 + x - 12 = 0$$
$$(x-3)(x+4) = 0 \to x = 3$$

Ex 6 Solution

Boris Babio

Logarithmi functions

Exponential

Logarithmic Equations

and

Case: pricing

$$\ln(10) - \ln(7 - x) = \ln(x)$$

$$\ln\left(\frac{10}{7 - x}\right) = \ln x$$

$$\left(\frac{10}{7 - x}\right) = x$$

$$10 = x(7 - x)$$

$$10 = 7x - x^2$$

$$x^2 - 7x + 10 = 0$$

$$(x - 5)(x - 2) = 0$$

$$\Rightarrow x = 2, x = 5$$

Exponents and logarithms: changing basis

Boris Babi

Logarithm functions

Exponential and Logarithmic Equations

Case: pricing

• How does one go from a^x to e^x ?

$$a^{x} = (e^{\ln a})^{x} = e^{x \ln a} = (e^{x})^{\ln a}$$

• How does one go from $\log_a y$ to $\ln y$?

$$\log_a y = \frac{\ln y}{\ln a}$$

Summary of logs and exponents

Exponential and Logarithmic Equations

- Exponential function is a function of the type $f(x) = b^x$
- Logarithmic function is the inverse of this function, $\log_b(b^x) = x$
- Applications: for exponents, compounded growth (GDP, population growth, interest); for logarithms, order of magnitude scales, statistics, utility functions.
- Solving exponential and logarithmic equations.
- Special case of $b = e \approx 2.71828$: $f(x) = e^x$, and $f(x) = \ln x$.

Session 3 (Logarithms) Case discussion

Boris Babio INSEAD

Logarithm functions

Exponentia and Logarithmic

Case: pricing

Derivatives

Case 1: Motorcycle helmets with bluetooth (A): pricing bluetooth chips

Rate of change of linear functions

Boris Babio

Logarithmi

Exponentia and Logarithmic Equations

Case: pricing

Derivatives

Example of linear function: f(x) = 2x - 1

- Rate of change: $\frac{\text{change in } f(x)}{\text{change in } x}$
- If x changes from 0 to 5 what values does f(x) take?
- What is the rate of change here?
- Does it depend on the points we pick? What does it correspond to?

Session 3 (Logarithms)

Rate of change of linear functions

Boris Babio INSEAD

Logarithmi functions

Exponentia and Logarithmi Equations

Case: pricing

- The steeper the curve, the larger the rate of change
- Slope = 0, horizontal line. Slope = ∞ , vertical line.

Session 3 (Logarithms)

Rate of change of nonlinear functions

Boris Babio

Logarithm functions

Exponential and Logarithmic Equations

Case: pricing

Derivatives

 Like linear functions, would like to find the slope of the curve.

- But the "slope" of the curve is changing along the curve.
- Thus, rate of change will be point specific (point??).
- Given by the slope of the tangent line at that "point."

Session 3 (Logarithms)

Rate of change of nonlinear functions

Boris Babio

Logarithmi functions

and Logarithm

Case: pricing

Derivatives

 The slope of the tangent can be viewed as the slope of a (shrinking) chord (green) – secant line.

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

- This gives us average rate of change over a (small) interval.
- Ex: average speed (per minute).

Derivatives

Boris Babi

functions

and Logarithmi Equations

Case: pricing

Derivatives

- What if we want instantaneous speed (huh?)
- Find the value as the chord shrinks to 0.
- That is, as $\Delta x \to 0$ and $\Delta y \to 0$.
- Derivative of f at x:

$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

where $h = \Delta x$ and $[f(x+h) - f(x)] = \Delta y$.

- Ex: use this definition to find $\frac{d}{dx}x^2$.
- Ex: use it to find $\frac{d}{dx}\log x$. Hint: $\lim_{k\to 0}\frac{\log(1+k)}{k}=1$.

Boris Babio

Logarithmic functions

Exponentia and Logarithmic

Case: pricing

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{2hx + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x$$

Boris Babio

Logarithmic functions

and Logarithmi

Case: pricing

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\log(x+h) - \log(x)}{h}$$

$$= \lim_{h \to 0} \frac{\log\left(\frac{x+h}{x}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\log\left(1 + \frac{h}{x}\right)}{h}$$

$$= \lim_{h \to 0} \frac{\log\left(1 + \frac{h}{x}\right)}{h} \cdot \frac{1}{x}$$

$$= 1 \cdot \frac{1}{x} - \frac{1}{x}$$

Rules for differentiation

Boris Babio

Logarithmi functions

Exponentia and Logarithmi

Case: pricing

•
$$f(x) = a \rightarrow f'(x) = 0$$
, and $f(x) = x \rightarrow f'(x) = 1$

- $f(x) = bx \rightarrow f'(x) = b$
- $f(x) = x^n \rightarrow f'(x) = nx^{n-1}$
- $f(x) = bx^n \rightarrow f'(x) = bnx^{n-1}$
- $f(x) = x \rightarrow f'(x) = 1$
- (f(x) + g(x))' = f'(x) + g'(x)
- [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)
- f(g(x)) = f'(g(x))g'(x)
- $[\log(x)]' = 1/x$, and $(e^x)' = e^x$

Case: pricing

Derivatives

Differentiate the following functions:

•
$$f(x) = 7x + 5$$

•
$$f(x) = x^2 + 3x + 4$$

•
$$f(x) = 5x^7 + 3x^4 + x^2 + 4x + 100$$

•
$$f(x) = e^{3x^2}$$

Practice Solutions

Boris Babio INSEAD

Logarithmi functions

Exponentia and Logarithmi Equations

Case: pricing

Derivatives

Differentiate the following functions:

•
$$f(x) = 7x + 5 \rightarrow f'(x) = 7$$

•
$$f(x) = x^2 + 3x + 4 \rightarrow f'(x) = 2x + 3$$

•
$$f(x) = 5x^7 + 3x^4 + x^2 + 4x + 100 \rightarrow f'(x) = 35x^6 + 12x^3 + 2x + 4$$

•
$$f(x) = e^{3x^2}$$

$$f(x) = e^x$$
, $g(x) = 3x^2 \rightarrow f'(g(x))g'(x) = e^{3x^2} \cdot 6x = 6xe^{3x^2}$

Analyzing functions with derivatives

Boris Babi INSEAD

Logarithmi functions

and Logarithmi Equations

Case: pricing

- We are given some function f(x) and want to know something about its behavior at x_1 .
- Find f'(x).
- Find $f'(x_1)$.
- If $f'(x_1) > 0$ the function is increasing "at that point".
- $f'(x_1) < 0$ the function is decreasing "at that point".
- if for all x, f'(x) > 0 the function is increasing.
- if for all x, f'(x) < 0 the function is decreasing.
- $f'(x_1) = 0$ the function is at a maximum or minimum (most likely).

Example

Boris Babio

Logarithmic functions

Exponentia and Logarithmic Equations

Case: pricing

Derivatives

Consider the function $f(x) = 2x^3 + x^2 - 4x - 3$

- Find f'(x).
- Evaluate x at (-2, -1, 0, 1, 1.5).

Solution

Boris Babio INSEAD

Logarithm functions

Exponentia and Logarithmic Equations

Case: pricing

•
$$f'(x) = 6x^2 + 2x - 4$$

•
$$f'(-2) = 16$$

•
$$f'(-1) = 0$$

•
$$f'(0) = -4$$

•
$$f'(1) = 4$$

•
$$f'(1.5) = 12.5$$

Session 3 (Logarithms)

Today

Boris Babio

Logarithm functions

and Logarithmi Equations

Case: pricinខ្

Derivatives

Functions

Inverse

Two equations

Quadratic

Exponents

Application: interest rates

Exponential functions

Logarithmic functions

Logarithms

Logarithmic functions
Logarithmic and exponential equations

Case: pricing Derivatives

Derivatives

Optimal decisions

Statistics

Uncertaint

Probability & statistics

Europe | Asia | Middle Eas