ASEN 5044 Spring 2020 - Project Progress Report 1

Team 10 - Jamie Voros; Himanshu Gupta

Our group has decided to solve the state estimation problem for system A - Cooperative Air-Ground Robot Localization

Please note that for a and b, we double checked our work.

a)

First, let us set up the CT system

$$n = \begin{bmatrix} \mathcal{E}_{9} \\ \eta_{9} \\ \theta_{g} \\ \mathcal{E}_{\alpha} \\ \eta_{\alpha} \\ Q_{\alpha} \end{bmatrix} \qquad \begin{array}{l} \mathcal{H} = \begin{bmatrix} \mathcal{M}, \mathcal{O}(x_{3}) + \tilde{\omega}_{2} \\ \mathcal{M}_{1} \sin(n_{3}) + \tilde{\omega}_{2} \\ \mathcal{M}_{2} \sin(n_{4}) + \tilde{\omega}_{3} \\ \mathcal{M}_{3} \cos(n_{6}) + \tilde{\omega}_{4} \\ \mathcal{M}_{2} \sin(n_{6}) + \tilde{\omega}_{5} \\ \mathcal{M}_{4} + \tilde{\omega}_{6} \end{bmatrix}$$

$$\mathcal{M} = \begin{bmatrix} \mathcal{V}_{9} \\ \mathcal{N}_{9} \\ \mathcal{V}_{\alpha} \\ \mathcal{V}_{\alpha} \\ \mathcal{O}_{\alpha} \end{bmatrix} \qquad \begin{array}{l} \mathcal{U} = \begin{bmatrix} \mathcal{W}_{9} \\ \mathcal{W}_{9} \\ \mathcal{W}_{2} \\ \mathcal{W}_{2} \\ \mathcal{W}_{3} \\ \mathcal{W}_{2} \\ \mathcal{W}_{2} \\ \mathcal{W}_{3} \\ \mathcal{W}_{2} \\ \mathcal{W}_{3} \\ \mathcal{W}_{2} \\ \mathcal{W}_{3} \\ \mathcal{W}_{3} \\ \mathcal{W}_{2} \\ \mathcal{W}_{3} \\ \mathcal{W}_{4} \\ \mathcal{W}_{5} \\ \mathcal{W}_{4} \\ \mathcal{W}_{5} \\ \mathcal{W}_{5} \\ \mathcal{W}_{5} \\ \mathcal{W}_{5} \\ \mathcal{W}_{5} \\ \mathcal{W}_{5} \\ \mathcal{W}_{6} \\ \mathcal{W}_{7} \\ \mathcal{W}$$

Now let's compute the Jacobians by taking the partial derivative with respect to vectors x and u

$$\frac{R}{B} = \frac{\partial n}{\partial u} = \begin{bmatrix} \omega_S(n_3) & 0 & 0 & 0 \\ S_1n(x_3) & 0 & 0 & 0 \\ \frac{ton(u_2)}{L} & \frac{u_1}{L} \cdot \frac{1}{co^2(u_2)} & 0 & 0 \\ 0 & 0 & S_1n(n_6) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial \dot{x}}{\partial \ddot{\omega}} = I_6 \qquad \frac{\partial y}{\partial u} = 0 \qquad \frac{\partial \dot{y}}{\partial \ddot{v}} = I_5$$

for
$$\vec{A}$$
, we use $\frac{d}{dn} S M(n) = \omega S(n)$
and $\frac{d}{dn} \omega S(n) = -SM(n)$.

cs Scanned with CamScanner

We use the following definitions to compute C~

To compute
$$\frac{\partial y}{\partial x}$$
 we use

$$\frac{d}{dn} \text{ ton}^{-1}(n) = \frac{1}{n^2 + 1}$$
and
$$\frac{d}{dn} = (\alpha - n)^{-2}$$

$$\frac{d}{dn} = -(n + \alpha)^{-2}$$

$$= \frac{1}{n_5 - n_1} \frac{(n_5 - n_2)}{n_4 - n_1} - n_3$$

$$= \frac{1}{n_4 - n_1} \frac{(n_5 - n_2)}{n_4 - n_1} \cdot (n_5 - n_2) \cdot (n_4 - n_1)^{-2}$$

$$= \frac{n_5 - n_2}{(n_4 - n_1)^2} + 1$$
Similarly
$$\frac{d}{dn_5} \frac{n_5 - n_2}{n_4 - n_1} - n_5$$

$$= \frac{1}{(n_7 - n_2)^2} \cdot (n_4 - n_1)$$

$$= \frac{1}{(n_7 - n_2)^2} \cdot (n_4 - n_1)$$

$$= \frac{1}{(n_7 - n_2)^2} \cdot (n_4 - n_1)$$

Scanned with CamScanner

Using the fact that $\frac{\pi_s - \chi_2}{\pi_4 - \pi_1} = \frac{\chi_2 - \chi_5}{\pi_1 - \pi_4}$ It we can apply the same diff process to saw 3 of y(t) to find $\frac{2y}{2\pi}$.

Nent ve note:

((n,-N4) 2 + (n2-N5)2) =

 $\frac{1}{2}\left(\left(\chi_1-\chi_4\right)^2+\left(\chi_2-\chi_5\right)^2\right)^{-\frac{1}{2}}\cdot\frac{\partial \text{Cihride}}{\partial \chi_i}$

CS Scanned with CamScanner

Let
$$P = \frac{1}{2} ((\eta_1 - \eta_4)^2 + (\eta_2 - \chi_5)^2)^{-\frac{1}{2}}$$
 Let $K = \frac{\eta_5 - \eta_2}{\eta_4 - \eta_1}$

$$\int \frac{k}{(u^2 + 1)(\eta_4 - \eta_1)} \frac{-1}{(k^2 + 1)(\eta_4 - \eta_1)} - 1 \frac{-k}{(u^2 + 1)(\eta_4 - \eta_1)} \frac{1}{(k^2 + 1)(\eta_4 - \eta_1)} = 0$$

$$\frac{2P(\eta_1 - \eta_4)}{2P(\eta_2 - \eta_5)} \frac{2P(\eta_2 - \eta_5)}{(k^2 + 1)(\eta_4 - \eta_1)} = 0 \frac{-k}{(u^2 + 1)(\eta_4 - \eta_1)} = 0$$

$$\frac{k}{(k^2 + 1)(\eta_4 - \eta_1)} \frac{-1}{(k^2 + 1)(\eta_4 - \eta_1)} = 0 \frac{-k}{(u^2 + 1)(\eta_4 - \eta_1)} = 0$$

$$0 = 0 = 0 = 0$$

CS Scanned with CamScanner

We will simply get identity matrices (for jacobians) when we take partial derivatives with respect to noise vectors.

	Project Progress Report - 1
a)	Given that $x(t) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_q \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} v_q \\ v_q \end{bmatrix}$ $x_q = \begin{bmatrix} x_q \\ x_q \end{bmatrix} = \begin{bmatrix} $
all	$\dot{x}(t) = \overline{x} \left[x(t), u(t), \tilde{w}(t) \right]$ $= x_1 $

	7
	24
Coject Groves Report 1	
$\dot{x}(t) = \mathcal{F}[x(t), u(t), \tilde{\omega}(t)]$	24
~ 7 [~ 7	
=	
$u_1 \sin(x_3) + \tilde{w}_2$	7
$\frac{u_1}{L} \tan(u_1) + \widetilde{w}_3 = \widetilde{\xi}_4$	
~	0
	6 1
u3 sin (x6) + w5 F6	
$\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{6}$	9
	2
Also,	
	9
$y(t) = \mathcal{H}[n(t), \hat{v}(t)]$	\$ 9 \$ 9
	9
= tan (nang) - og [\alpha a \ \xi_g \] - \langle g [\alpha a \ \xi_g \] - \langle g	9
(& a - & g)] H	-
(a) (a)	8.0
J (49 1a) (19 1a)	3.0
H ₃	5 0
tan (ng-na) - Oa Hy	5.0
n	
Sxl + 11 (at not (v.)	
7 A D (42) A V	
paris + paris N pis	
v(t) → AWGIN E R ⁵	9 0
	00
	44

		47.9%
•		
	:y(t) = H[x(t), v(t)) = (1) is 10 = 1	
9 0=	$= \frac{1}{1} \frac{1}{2} $	H.]
•		
3	$\int (x_1 - x_4)^2 + (x_2 - x_5)^2 + \tilde{V}(t) =$	H ₂ /
•	$\frac{\tan^{-1}\left(\frac{x_2-x_5}{x_1-x_4}\right)-x_6}{x_1-x_4}$	H ₃
	X4 3	14
· 0 · 30	74 = 36 = 36 = 36 = 36 = 36 = 36 = 36 = 3	H5
• PMC	and and and and	
9	We have been asked to calculate the	· · · · · · · · · · · · · · · · · · ·
. 0	CT Torolion A B	
0	12 JE [2(t), u(t), w(t)]	
	All JF [2(t), u(t), w(t)]	
)x(t)	
9	$= \frac{\partial \mathcal{L}_1}{\partial \mathcal{X}_1} \frac{\partial \mathcal{L}_1}{\partial \mathcal{X}_2} \cdots \frac{\partial \mathcal{L}_n}{\partial \mathcal{X}_n}$	
9		
	3 £ 3 £	
-	$\frac{\partial x_i}{\partial x_1} \frac{\partial x_i}{\partial x_2} \frac{\partial x_i}{\partial x_i}$	
	3×1 3×2 3×6	A
	$\overline{\xi_1} = u_1(\omega s(x_3) + \widetilde{\omega}_1)$	
	W + W E of	
	$\frac{\partial f_1}{\partial x_1} = \frac{\partial f_2}{\partial x_2} = \frac{\partial f_1}{\partial x_3} = \frac{\partial f_1}{\partial x_4} = \frac{\partial f_1}{\partial x_5} = \frac{\partial f_1}{\partial x_6} = 0$	
	$\frac{\partial x_1}{\partial x_2} = -\frac{\partial x_2}{\partial x_3} = \frac{\partial x_4}{\partial x_5} = \frac{\partial x_5}{\partial x_5}$	
	$\frac{\partial \mathcal{L}_{1}}{\partial x_{3}} = -u_{1} \sin (x_{3})^{1/2} = 8 \times 6 \times 6$	
2	<i>V</i> 3	

 $F_2 = U_1 \sin(\gamma_3) + \widetilde{W}_2$ $\frac{\partial f_2}{\partial x_1} = \frac{\partial f_2}{\partial x_2} = \frac{\partial f_2}{\partial x_4} = \frac{\partial f_2}{\partial x_5} = \frac{\partial f_2}{\partial x_6} = 0$ 8 f2 = 4, (00(23) F3 = u1 tan(u2) + w3 $\frac{1}{2} \frac{\partial f_3}{\partial x_1} = \frac{\partial f_3}{\partial x_2} = \frac{\partial f_3}{\partial x_3} = \frac{\partial f_3}{\partial x_4} = \frac{\partial f_3}{\partial x_5} = \frac{\partial f_3}{\partial x_6} = 0$ Fy = 43 (00 (26) + Wy $\frac{\partial f_{1}}{\partial n_{1}} = \frac{\partial f_{1}}{\partial n_{2}} = \frac{\partial f_{1}}{\partial n_{3}} = \frac{\partial f_{1}}{\partial n_{4}} = 0$ dfy = - M3 sin (x6) F5 = 4, sin(N6) + W5 $\frac{\partial f_5}{\partial x_1} = \frac{\partial f_5}{\partial x_2} = \frac{\partial f_5}{\partial x_3} = \frac{\partial f_5}{\partial x_4} = \frac{\partial f_5}{\partial x_5} = 0$ DES = U3(0) (x6) Fo= un+ wi $\frac{\partial F_6}{\partial n_1} = \frac{\partial F_6}{\partial n_2} = \frac{\partial F_6}{\partial n_3} = \frac{\partial F_6}{\partial n_4} = \frac{\partial F_6}{\partial n_6} = 0$

	:) F[x(t), u(t), ~(t)]	M + CNMU E F	
•	dx(t)		7
(3)	as a pitch sign	0 0 -u, sin (x3) 0	0 0
•	ENG	0 0 4,600 (23) 0	
•		0 0 0 0	00
		0 0 0 0 0 0 0 0	
		0 0 0 0	
(4)	ME - 376		0 0
	216	0 = 0 = 0 = 0 0 = 0 0 0 0 0 0 0 0 0 0 0	
		4	6×6
	Th' I	6 × 6 × 6	
	tis amenisions are	6 × 6	
	1 24	->	
	· 55 0 4 . ~	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
	1 2 (t), u(t), w(t)	$= \frac{\int \overline{f_1}}{\partial u_1} \frac{\partial \overline{f_2}}{\partial u_2}.$	27,
2	du(t)	041 342	duy
0 0	- (sell) 0 C	(BE) (B) N (B) F 6 1	
0 0	0 (28) Nic .	276 276 (A) 016.	2 FG
000	(ter (1) " xec (1)	du, du2	du4
	1 1		
0.00	F = 4, (0) (x3) + w		
	1 2 Fi = 600 x3	df = df = df =0	
	dui	duz dus duy	
	$f_2 = u_1 \sin(x_3) + \widetilde{w}_2$		
	72 = 41 - (13)	15 15 15	
	111 = Dun 213	$\frac{\partial f_2}{\partial u_2} = \frac{\partial f_2}{\partial u_3} = \frac{\partial f_2}{\partial u_4} = 0$)
	001	3 3 3 4	
		~	
	$F_3 = \frac{u_1}{1} \tan \left(u_2\right) +$	w ₃	
	: DF3 = tan (42)):	$f_3 = \frac{u_1 \sec^2(u_2)}{L} \frac{\partial f_3}{\partial u_3}$	= dF3 = 0
	du, L	u ₂ L du ₃	duy

Fy = 43 (00 (76) + W4 $\frac{\partial f_4}{\partial u_1} = \frac{\partial f_4}{\partial u_2} = \frac{\partial f_4}{\partial u_2} = 0$ dfy = (00 (26) duz F5 = 43 sin (76) + ws $\frac{\partial F_5}{\partial u_1} = \frac{\partial F_5}{\partial u_2} = \frac{\partial F_5}{\partial u_4} = 0$ 2 = sin (26) Fr un + w $\frac{1}{2} \frac{\partial f_6}{\partial u_1} = \frac{\partial f_6}{\partial u_2} = \frac{\partial f_6}{\partial u_3} = 0$ d 76 = 244 (00) (x3) 0 0 0 du(t) 36 Din (23) 0 0 0 tan (u2) uxec (u2) 0 0 0 0 (2) 0 0 (11) 0 sin (71) 0 0 6×4 Its dimensions are 6x4

•	
	$\frac{\partial F[x(t), u(t), \tilde{w}(t)]}{\partial \tilde{w}_{1}} = \begin{bmatrix} \frac{\partial F_{1}}{\partial \tilde{w}_{2}} & \frac{\partial F_{1}}{\partial \tilde{w}_{2}} & \frac{\partial F_{1}}{\partial \tilde{w}_{2}} \end{bmatrix}$
	$\partial \tilde{\omega}(t)$
3	
	$ \frac{\partial F_{k}}{\partial \widetilde{w}_{1}} \frac{\partial F_{\ell}}{\partial \widetilde{w}_{2}} \cdots \frac{\partial F_{\ell}}{\partial \widetilde{w}_{\ell}} $
must be	F, = u, (cox(x3) + w, (1) (1)
(3) 17	135 = 1 35 = 35 = 35 = 0
9	$\frac{\partial \mathcal{F}_{1}}{\partial \tilde{\omega}_{1}} = \frac{\partial \mathcal{F}_{1}}{\partial \tilde{\omega}_{2}} = \frac{\partial \mathcal{F}_{1}}{\partial \tilde{\omega}_{3}} = \frac{\partial \mathcal{F}_{1}}{\partial \tilde{\omega}_{4}} = \frac{\partial \mathcal{F}_{1}}{\partial \tilde{\omega}_{5}} = \frac{\partial \mathcal{F}_{1}}{\partial \tilde{\omega}_{6}} = 0$
	F = u sin (x.) + w
· trebragher m	1 3F2 = 1 3F2 = 3F2 = 3F2 = 3F3 = 0
•	$\frac{\partial f_2}{\partial \tilde{w}_1} = \frac{\partial f_2}{\partial \tilde{w}_1} = \frac{\partial f_2}{\partial \tilde{w}_2} = \frac{\partial f_3}{\partial \tilde{w}_1} = 0$ $\frac{\partial \tilde{w}_2}{\partial \tilde{w}_2} = \frac{\partial \tilde{w}_2}{\partial \tilde{w}_1} = \frac{\partial \tilde{w}_2}{\partial \tilde{w}_2} = \frac{\partial \tilde{w}_2}{\partial \tilde{w}_2} = 0$
	$F_3 = u_1 \tan (u_2) + \widetilde{w_3}$
9	
9 0	$\frac{\partial f_{3} = \partial f_{3} = \partial f_{3} = \partial f_{3} $
	$\frac{\partial w_3}{\partial w_1} = \frac{\partial w_2}{\partial w_2} = \frac{\partial w_3}{\partial w_3} = \frac{\partial w_3}{\partial$
.9	Fy= u3(0>(71)+ Wy
•	$\frac{\partial F_{4} = 1}{\partial \widetilde{\omega}_{4}} \frac{\partial F_{4} = \partial F_{$
	F5 = U3 sin (76) + W5
	.: 25 = 1 25 = 25 = 25 = 25 = 25 = 2
	$\frac{\partial f_{5}}{\partial \widetilde{w}_{5}} = \frac{\partial f_{5}}{\partial \widetilde{w}_{1}} = \frac{\partial f_{5}}{\partial \widetilde{w}_{$
.9	F6 = 44 + W6
.0	$\frac{\partial F_6}{\partial \widetilde{\omega}_6} = \frac{\partial F_6}{\partial \widetilde{\omega}_1} = \frac{\partial F_6}{\partial \widetilde{\omega}_2} = \frac{\partial F_6}{\partial \widetilde{\omega}_3} = \frac{\partial F_6}{\partial \widetilde{\omega}_4} = \frac{\partial F_6}{\partial \widetilde{\omega}_3} = 0$
	Jũ Jũ Jũ, Jũ, Jũ,
	~ ~ C~ (1) ~ (1) ~ (1) ~ (1) ~
•	$\therefore \delta \mathcal{L}[x(t), u(t), \tilde{\omega}(t)] = [00000]$
9	32(t) 010000 = I,
9	000100
	000010
	000001 6×6
	Its dimensions are 6x 6

	-
6) 3H[x(t), v(t)] = 3H, 3H,	·= 10H, 7
Du(t) Du, du	376
1+ / X5 X2 2 : 1 - 1 + 1 X5 X2 2	
3H6 3H5	
) H5
1 3×1 3×2	3×6
	* KR
H, = tan (25-22) - 2	
$H_1 = \tan^{-1}\left(\frac{\chi_5 - \chi_2}{\chi_4 - \chi_1}\right) - \chi_2$	- 1
	**
(Note: $\frac{\partial}{\partial x} \tan(x) = \frac{1}{1+x^2}$)	- 4106
2 (x-x) 2+ (x-x) (x-x) 2 (x-x) 2 x	
$\frac{1}{2}\frac{\partial \mathcal{H}_{1}}{\partial x_{1}} = - \times - \times \left(\frac{\varkappa_{5} - \varkappa_{2}}{(\varkappa_{4} - \varkappa_{1})^{2}}\right) =$	x ₅ - x ₂
	(n4-x1)2
1+ / 75-72 2	9
$1 + \left(\frac{x_5 - x_2}{x_4 - x_1}\right)^2$	$\left(\frac{\chi_5 - \chi_2}{\chi_4 - \chi_1}\right)^2$
	= 40%
: bH = -1x 1	4×41
3×2 ×4-×1 =	24-21
1+ (25-22)2 24-21	$\frac{1+\left(\frac{\varkappa_{5}-\varkappa_{2}}{\varkappa_{4}-\varkappa_{1}}\right)^{2}}{\left(\frac{\varkappa_{4}-\varkappa_{1}}{\varkappa_{4}-\varkappa_{1}}\right)^{2}}$
24-x1	(n4-x,)
>H-1 (2K-1K) 5- 2)	- 286
dx3 x	2×6
$3H_1 = -1 \times \left(\frac{\chi_5 - \chi_2}{2}\right) =$	- (1 ₅ -1 ₂)
$\delta \chi_{\mu} = (\chi_{\mu} - \chi_{\nu})^{2}$	(x4-x1)2
1 + (15-12)	1+ (x5-x2)2
x4-x, /	(x4-x1)

3H1 = 1x 1 156 (xy-x1) 24-2116 JXS 1 x5-x2 2 - x4-x1) 1+ (x5-x2)2 x4-x1) 146 1 166 Les tout = H (x,-xu)2 + (x2-x5)2 $\frac{\partial \mathcal{H}_{2}}{\partial x_{1}} = \frac{1}{2} \frac{2(x_{1} - x_{4})}{\sqrt{(x_{1} - x_{4})^{2} + (x_{2} - x_{5})^{2}}} \frac{x_{1} - x_{4}}{\sqrt{(x_{1} - x_{4})^{2} + (x_{2} - x_{5})^{2}}}$ 别 别 3 分份 $\frac{\partial \mathcal{H}_2}{\partial x} = \frac{1}{2} \times \frac{2(x_2 - x_5)}{2}$ $\sqrt{(x_1-x_4)^2+(x_2-x_5)^2} \sqrt{(x_1-x_4)^2+(x_2-x_5)^2}$ dx2 粉 分份 dH2 = 0 5} 1×3 3 * $\frac{1}{2} \times \frac{-2 (\lambda_1 - \lambda_4)}{\sqrt{(\lambda_1 - \lambda_4)^2 + (\lambda_2 - \lambda_5)^2}} = \frac{-(\lambda_1 - \lambda_4)}{\sqrt{(\lambda_1 - \lambda_4)^2 + (\lambda_2 - \lambda_5)^2}}$ 2H2 = 3 3 824 ** * $\frac{1 \times -2 (\chi_2 - \chi_5)}{2} = -(\chi_2 - \chi_5)$ $= -(\chi_2 - \chi_5)$ dH2 = ** 125 ** ** 2H2 = 0 0 25 326 0 0)-5 1

This is the huge H matrix. Kindly zoom into the image to see the actual values.

A	
	(B) 0 + Toj + 5 = (3) 4 Junio (1)
b)	From discussions in the class, we know
	that DT jacobians can be obtained using
	Euler approximation.
	The formulas/equations for DT Jacobians
	The formulas/equations for DT Jacobians from CT Jacobians are
	~ - \C \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$F_k = \frac{\partial F}{\partial x_k} nom[k] \approx I + \Delta J \cdot \tilde{A} (x^*, u^*, t = t_k)$
	$G_{k} = \frac{\partial f}{\partial u_{k}} \alpha \Delta I \cdot \tilde{B} (x^{*}, u^{*}, t = t_{k})$
(4) v + (3)	suk nom(k) (2, 4, L-1k)
7	$\tilde{\Omega}_{k} = \frac{\partial f}{\partial w_{k} nom[k]} \approx \Delta T. \Gamma(t) _{t=t_{k}}$
(N(0)N ~	dwk nom[k]
TA TA	$\frac{1}{1}$ K+1 nom[k+1] = $\frac{3h}{3x}$ nom[k] = $\frac{2}{1}$ ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$
	$[x^*]$ $[x^*]$ $[x^*]$ $[x^*]$ $[x^*]$ $[x^*]$ $[x^*]$ $[x^*]$
	ITA IJ = D = N test mans sil
alf out 1	(where x*, u* is the nominal trajectory)
100-7	
7.3	Le top said transmission M. a. (4) v soil
and the	meanined in meters, thus, is (k) is measured in
a section of	Marian w (A) is managed in material in
The said of the said	

Next, let us go from Jacobians to and LTI system.

To do this, we compute the Jacboians at nominal. Sub in $x_nom values$ to A~, B~, C~, and D~ to find:

$$\begin{aligned}
\xi_{g} &= 10 & \text{Ng} &= 10 & \text{Og} &: \frac{\pi}{2} & \text{Vg} &= 2 & \text{Vg} &= -\frac{\pi}{13} \\
\xi_{a} &= -60 & \text{ng} &= 0 & \text{Og} &: -\frac{\pi}{2}
\end{aligned}$$

$$\begin{aligned}
\chi_{non_{1}} &= \begin{bmatrix} 2 \\ -\frac{\pi}{13} \\ 2 \\ -60 \\ 0 \\ -\frac{\pi}{2} \end{bmatrix}$$

$$\begin{aligned}
\chi_{non_{2}} &= \begin{bmatrix} 2 \\ -\frac{\pi}{13} \\ 12 \\ \frac{\pi}{25} \end{bmatrix}
\end{aligned}$$

Next, we use our A \sim , B \sim , C \sim and D \sim to compute F, G, H and M. C \sim = H and D \sim = M.

We discretize to compute F and G. Performing this numerically gives:

0

$$F = I + dt*A \sim =$$

1.0000 0 -0.2000

0

0

```
1.0000
    0
                  0
                        0
                             0
                                   0
    0
          0
               1.0000
                        0
                              0
                                    0
    0
                  0 1.0000
          0
                              0 1.2000
    0
          0
                  0
                        0 1.0000
    0
          0
                  0
                        0
                              0 1.0000
G =
          , 0.
array([[ 0.
                , 0. , 0.
                                  ],
   [0.1
          , 0.
                  , 0.
                         , 0.
                                 ],
                                , 0.
   [-0.0352654, 0.41243648, 0.
                                        ],
   [ 0.
          , 0.
                , 0.
                         , 0.
   [ 0.
          , 0.
                 , -0.1
                        , 0.
                                ],
   [ 0.
          , 0.
                 , 0.
                         , 0.1
                                 ]])
H =
    0 0.0143 -1.0000
                          0 -0.0143
                                0
  1.0000
            0
                  0 -1.0000
                                      0
                        0 -0.0143 -1.0000
    0 0.0143
                  0
    0
          0
                0 1.0000
                             0
                                   0
    0
          0
                0
                      0 1.0000
                                   0
```

M = 0

The DT jacobians that we obtained are state (and thus time) dependent. Thus, we will have to check for observability and controllability at every time step. Since the result is time varying, we won't go into that analysis as mentioned in the question.

Various different plots are as follows :

