Corso di laurea in Informatica - Università di Udine CALCOLO DELLE PROBABILITÀ E STATISTICA

Prova scritta del 17 febbraio 2020 (i frequentanti dell'a.a. 15/16 o precedenti omettono l'esercizio 6)

- 1. Un'urna contiene 5 palline nere e 95 bianche. Una seconda urna contiene 30 palline nere e 70 bianche. Una terza urna contiene 50 palline nere e 50 bianche. Uno sperimentatore sceglie a caso un'urna fra le tre con equiprobabilità, poi estrae a caso, con reinserimento, sei palline dall'urna scelta. Si determini la probabilità che l'urna scelta sia stata quella con 5 nere, se le palline estratte risultano, senza tener conto dell'ordine di estrazione, una nera e cinque bianche.
- 2. Sia X una variabile casuale con supporto S_X = [0,1] e funzione di densità di probabilità di forma p_X(x) = cx(1-x) per x ∈ S_X e 0 altrove. Si completi la definizione della funzione di densità di X, determinando il valore della costante di normalizzazione c. Si calcoli la funzione di ripartizione di X, esplicitandola in tutti i suoi tratti. Si ottengano valore atteso e mediana di X. Sia infine T = 1 − X. Si ottengano supporto e funzione di ripartizione di T e si calcoli il valore atteso di T.
- 3. Una apparecchiatura ha solo tre componenti che si possono guastare. La vita operativa X_i della componente i (i = 1, 2, 3) ha distribuzione esponenziale con valore atteso pari a 3i anni, indipendentemente dalla durata di corretto funzionamento delle altre. Quando almeno una delle tre è guasta, l'apparecchiatura non è più operativa. Sia T il tempo di corretto funzionamento dell'apparecchiatura. Si esprima T come funzione di X₁, X₂, X₃. Si dica qual è il supporto di T. Si ottengano poi la funzione di ripartizione e la funzione di densità di probabilità di T, esplicitandole in tutti i loro tratti. Si calcolino il cinquantesimo percentile di T (è il quantile-p con p = 50/100) e la probabilità condizionale P(T > 4|T > 2).
- 4. Sia Y una variabile casuale univariata avente quale funzione generatrice dei momenti M_Y(t) = 1/(1−2t), per t < 1/2. Siano poi Y₁, Y₂ copie indipendenti di Y e si ponga W = Y₁ + Y₂. Si calcoli la funzione generatrice dei momenti di W. Si ottengano valore atteso e varianza di W.
- 5. La variabile casuale multivariata (Y₁,..., Y_n) ha componenti indipendenti e identicamente distribuite con legge marginale normale, in particolare Y₁ ~ N(7,1). Si mostri che la variabile casuale Y

 n = ∑ⁿ_{i=1} Y_i/n ha legge normale, Y

 n ~ N(7,1/n). Sia n = 16. Si calcolino P(Y

 16 > 7.5) e P(Y

 16 < 6). Si ottenga infine il novantanovesimo percentile di Y

 16 (è il quantile-p con p = 99/100).</p>
- 6. Dato un campione y₁,..., y_n, realizzazione di variabili casuali Y₁,..., Y_n, n > 1, indipendenti con legge di Poisson con valore atteso λ > 0 ignoto, si reperisca una stima di λ e si indaghino le proprietà campionarie dello stimatore corrispondente.

Buon lavoro!