flow pred $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ 4b 4b SR noise L = 2L = 3L = 4L = 5L = 6L = 7L = 10L = 1L = 8L = 9Entries 4000 — 2000 2000 -2000 1000 log p_T, H₁ $\log p_{T,H1}$ log p_T, H1₄₀₀₀ $\log p_{T,H1}$ $\log p_{T,H1}$ $\log p_{T,H1}$ -2.5 $\log p_{T,H1}$ -2.5 $\log p_{T, H1}^{0.0}$ -2.5 -2.5 -2.5 -2.5 $\log p_{T, H1}^{0.0}$ $\log p_{T,H1}^{0.0}$ $\log p_{T, H1}$ Entries 2000 2000 — 2000 2000 -2000 1000 — 2500 — 1000 $\log p_{T,H1}$ -2.5 $\log p_{T, H1}$ log p_T, H1 log p_{T, H1} $\log p_{T, H1}^{0.0}$ $\log p_{T, H1}^{0.0}$ $\log p_{T, H1}^{0.0}$ $\log p_{T, H1}$ $\log p_{T, H1}$ -2.5 $\log p_{T,H1}$ -2.5 -2.5 -2.5 -2.5 -2.5 $\log p_{T, H1}^{0.0}$ Entries 4000 2000 — 2000 2000 -2000 1000 — 2000 — 1000 η_{H1}₄₀₀₀ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{2.5}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ -2.5 $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ $\eta_{H1}^{^{2.5}}$ -2.5 0.0 -2.5 0.0 -2.5 0.0 0.0 -2.5 0.0 -2.5 0.0 -2.5 0.0 2000 — 2000 — 2000 2000 2000 -2000 2000 1000 1000 -1000 $\eta_{H2}^{2.5}$ η_{H2} $\eta_{H2}^{2.5}$ ^{2.5} η_{H2} 0 -2.5 η_{H2} η_{H2} -2.5 0.0 -2.5 -2.5 -2.5 0.0 $\eta_{H2}^{^{2.5}}$ -2.5 0.0 2.5 0.0 0.0 0.0 η_{H2} η_{H2} η_{H2} 2000 — 2000 2000 2000 2000 2000 1000 2500 1000 — $X_{Wt}^{2.5}$ 0.0 0.0 $X_{Wt}^{^{2.5}}$ 0.0 -2.5 -2.5 -2.5 0.0 $X_{Wt}^{2.5}$ 0.0 0.0 $X_{Wt}^{2.5}$ 0.0 -2.5 -2.5 -2.5 2000 -2000 2000 2000 -1000 — 1000 — 1000 — $\log(\pi - \Delta\phi_{HH})$ $\overline{\log(\pi - \Delta\phi_{HH})}$ $\overline{\log(\pi - \Delta\phi_{HH})}^{2.5}$ $\overline{\log(\pi - \Delta\phi_{HH})}^{2.5}$ $\overline{\log(\pi - \Delta\phi_{HH})}$ $\log(\pi - \Delta\phi_{HH})$ $\log(\pi - \Delta\phi_{HH})$ $\log(\pi - \Delta\phi_{HH})$ $\overline{\log(\pi-\Delta\phi_{HH})}^{2.5}$ $\log(\pi - \Delta\phi_{HH})$ $\log(\pi - \Delta\phi_{HH})$

AILAS IIILEIIIAI