Departamento de Matemáticas $1^{\underline{0}}$ Bachillerato

Autoevaluación 1 ev2

1.	p 21e01 - ¿Son equipolentes los vectores \overrightarrow{AB} y \overrightarrow{CD} siendo A, B, C y D los puntos de coordena-
	das:?

(a) A(2, 4), B(7, 3), C(-2, 0) y D(3, -1)

Sol: Point2D(5,-1), Point2D(5,-1): True

- 2. pa21e02 Sea $\{\overrightarrow{i}, \overrightarrow{j}\}$ la base canónica de V_2 , y los vectores: $\overrightarrow{u} = -3\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{v} = 2\overrightarrow{i} 2\overrightarrow{j}$, $\overrightarrow{w} = \overrightarrow{i} \overrightarrow{j}$, $\overrightarrow{z} = -\overrightarrow{i} 4\overrightarrow{j}$ Calcular:
 - (a) Las coordenadas de cada uno de ellos respecto de la base canónica. Las coordenadas de los vectores: $\overrightarrow{u} + 2\overrightarrow{v}$, $5\overrightarrow{u} \overrightarrow{w}$, $-3\overrightarrow{v} + 4\overrightarrow{w}$, $\overrightarrow{w} 2\overrightarrow{z}$

Sol:
$$[[(-3,1),(2,-2),(1,-1),(-1,-4)],[(1,-3),(6,-16),(2,-2),(3,7)]]$$

- 3. pa21e03 Estudia la dependencia lineal de los siguientes conjuntos de vectores:
 - (a) $\vec{u} = (8, 12) \ \vec{v} = (2, 3)$

Sol: True

Sol: False

- (b) $\vec{u} = (2,6) \ \vec{v} = (4,7)$
- 4. pa
21e04 Respecto de una base ortonormal tenemos dos vectores \overrightarrow{u} y \overrightarrow{v} . Calcular $\overrightarrow{u} \cdot \overrightarrow{v}$,
 $|\overrightarrow{u}|$ y $|\overrightarrow{v}|$ y $\angle(\overrightarrow{u}, \overrightarrow{v})$ siendo:
 - (a) $\vec{u} = (2, -5) \ \vec{v} = (6, 2)$

(b) $\vec{u} = (1,4) \ \vec{v} = (3,8)$

Sol: $[2, [\sqrt{29}, 2\sqrt{10}], 86,6335393365702]$ **Sol:** $[35, [\sqrt{17}, \sqrt{73}], 6,51980175165697]$

- 5. pa
21e05 Calcula x para que los vectores \overrightarrow{u} y \overrightarrow{v} forme
n 60° siendo:
 - (a) $\overrightarrow{u} = (6, x) \overrightarrow{v} = (10, 2)$

Sol: $\left[\frac{60}{11} + \frac{78\sqrt{3}}{11}, -\frac{78\sqrt{3}}{11} + \frac{60}{11}\right]$

- 6. pa21e06 Resolver las siguientes ecuaciones para ángulos en el primer cuadrante:
 - (a) $\sin 2x = \frac{\sqrt{3}}{2}$

Sol: $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$

(b) $\tan \frac{x}{2} = 1$

Sol: $\left[\frac{\pi}{2}\right]$

(c) $\sin(3x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$

Sol: $\left[\frac{\pi}{12}, \frac{7\pi}{12}\right]$

- 7. pa21e07 Resolver las siguientes ecuaciones:
 - (a) $\tan 2x = \cot x$

Sol: [-90, 90, -150, 150, -30, 30]

(b) $\sin x \cos x = \frac{1}{2}$

Sol: [-135, 45]

(c) $3\sin x + \cos x = 1$

Sol: $\left[0, \frac{360 \tan{(3)}}{\pi}\right]$

- 8. pa
21e08 Dado el siguiente número z, calcula el valor de
 $\frac{z-\overline{z}}{z+\overline{z}}$
 - (a) $\sqrt{3} 2\sqrt{2}i$

(b) $\sqrt{2} - 2\sqrt{5}i$

Sol: $-\frac{2\sqrt{6}i}{3}$

Sol: $-\sqrt{10}i$