Time: 3 hours

Max. Marks: 75

[7M]

III B. Tech II Semester Regular Examinations, June-2022 VLSI DESIGN

(Electronics and Communication Engineering)

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks UNIT-I 1. Derive an expression for transconductance of an n-channel [8M]enhancement MOSFET operating in active region. Derive I_d-V_{ds} relationship of MOS in Resistive region. b) [7M] 2. Draw the VLSI design flow diagram and explain. a) [8M]Explain about 2µm CMOS design rules and discuss with [7M] layout examples. UNIT-II Design a 2-input Ex-OR using CMOS Transmission gate. 3. [8M]Describe about methods for driving large capacitive loads. [7M] (OR) 4. Describe the following: [8M](i) Pseudo NMOS logic (ii) Domino CMOS Logic Discuss about choice of fan-in and fan-out selection in gate [7M]level design. UNIT-III What is current mirror? Explain the general properties of 5. [8M] current mirror with block diagram. Explain the operation of single stage amplifier with resistive [7M] load.

(OR)

- 6. a) What is the common-drain amplifier? How do you find the [8M] voltage gain of a common-drain amplifier?
 - b) Elaborate the principle of operation of an n-channel enhancement MOSFET and discuss the conditions for different regions of operation of MOSFET.

UNIT-IV

- 7. a) Write a short notes on: [8M]
 (i) Ratioed Circuits (ii) Dynamic Circuits
 - b) Describe pass transistor briefly with example. [7M]

R19

SET - 1

(OR)

		(011)	
8.	a)	Explain the following:	[8M]
		(i) Static power dissipation (ii) Dynamic power dissipation	
	b)	Briefly discuss about Master-Slave based edge triggered	[7M]
		register with a neat diagram.	
		UNIT-V	
9.		Illustrate with a neat architecture diagram about various	[15M]
		functional blocks of FPGAs.	
		(OR)	
10.	a)	Draw the FPGA design flow and explain.	[8M]
	b)	Explain about FinFET technology.	[7M]

SET - 2 Code No: R1932042 **R19**

III B. Tech II Semester Regular Examinations, June-2022 **VLSI DESIGN**

(Electronics and Communication Engineering)

Max. Marks: 75

Tim	ie: 3	hours Max. Marks	: 75
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks ******	
		<u>UNIT-I</u>	
1.	a)	Draw and Explain about BiCOMS inverter.	[8M]
	b)	Draw the schematic diagram, stick diagram and layout of 2-input CMOS NAND gate.	[7M]
		(OR)	
2.	a)	Determine the pull up to pull down ratio for NMOS inverter driven by another NMOS inverter.	[8M]
	b)	Analyze CMOS inverter with its transfer characteristics.	[7M]
		UNIT-II	
3.	a)	Describe the following:	[8M]
		(i) Dynamic CMOS logic (ii) np CMOS Logic	
	b)	Explain following:	[7M]
		(i) Fan-in (ii) Fan-out (iii) Choice of layers	
		(OR)	
4.	a)	What are the alternate gate circuits available? Explain any one of them with suitable sketch by taking NAND gate as an example.	[8M]
	b)	Explain different wiring capacitances used in gate level design with an example.	[7M]
		<u>UNIT-III</u>	
5.	a)	Write a short note on Current sources and sinks.	[8M]
	b)	Explain the operation of single stage amplifier with diode connected load.	[7M]
		(OR)	
6.	a)	Derive the expressions for input impedance, voltage gain and output impedance of common source amplifier with source resistor.	[10M]
	b)	Explain about body bias effect.	[5M]
	٥,	UNIT-IV	[0111]
7.	a)	Write and explain about the sources of power dissipation in VLSI design.	[8M]
	b)	How switch logic can be implemented using pass transistors? Explain?	[7M]

R19) (SET - 2

(OR)

		(OK)	
8.	a)	Explain about deep submicron processes with suitable	[8M
		schematic diagrams.	
	b)	Explain about Master-Slave Edge-Triggered Register.	[7M
		<u>UNIT-V</u>	
9.	a)	List out the different families of FPGAs. Explain how they are	[8M
		differing.	
	b)	Explain in detail about TFET technology.	[7M
		(OR)	_
10.	a)	Explain about High - k metal technology.	[8M
	b)	Draw the FPGA design flow and explain.	[7M

Code No: R1932042 (R19) (SET - 3)

III B. Tech II Semester Regular Examinations, June-2022 VLSI DESIGN

(Electronics and Communication Engineering)

Time: 3 hours

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

***** **UNIT-I**

1. a) What are the steps involved in CMOS n-Well Fabrication? [8M] Explain with neat sketches.

b) Explain design rules for layouts.

2.

[7M]

(OR)

Determine the pull up to pull down ratio for NMOS inverter [15M] driven by one or more pass transistor inverter.

UNIT-II

3. a) What is meant by sheet resistance Rs? Explain the concept of Rs [8M] applied to MOS transistors.

b) Design a 2-input Multiplexer using CMOS Transmission gate.

[7M]

(OR)

4. a) Implement Ex-OR logic gate using CMOS logic.

[8M]

b) Explain the concept of delay estimation and sizing of MOSFET.

[7M]

UNIT-III

5. a) Draw a standard Cascode current sink circuit and explain its [8M] operation and output characteristics.

b) Write a short note on following:

[7M]

- (i) Body bias effect
- (ii) Source degeneration of common source amplifier.

(OR)

6. a) Derive the expressions for input impedance, voltage gain and [10M] output impedance of common drain amplifier.

b) Explain about modelling of a transistor.

[5M]

UNIT-IV

7. a) With the help of a diagram, explain SR Master-Slave register. [8M]

b) Explain importance of Set up and hold time in the analysis of [7M] CMOS circuit.

R19

SET - 3

ı	UD I	
l	UK)	

8.	a)	Design a NOR gate using pass transistor logic.	[8M]
	b)	Define and explain the concept of Metastability.	[7M]
		UNIT-V	- '
9.	a)	What is FPGA? Draw its structure and also write its advantages.	[8M
	b)	With a neat sketch explain the CLB, IOB and programmable	[7M
		interconnects of an FPGA design.	- '
		(OR)	
10.	a)	Write a short note on Giga scale dilemma.	[8M
	b)	Explain about High-k metal technology.	7M

III B. Tech II Semester Regular Examinations, June-2022 VLSI DESIGN

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

1.	a)	Draw the circuit diagram for CMOS inverter and explain the	[8M]
		transfer characteristics using necessary equations, and the	
		different regions in the characteristics.	

What is meant by latch up? How can it be eliminated?

[7M]

(OR)

- Explain λ based design rules in VLSI circuit. 2. a)
 - Draw the stick diagram for 3 input NAND gate.

[7M]

[8M]

UNIT-II

- Calculate ON resistance of an inverter from VDD to GND. If 3. [8M] n- channel sheet resistance R_{sn} = 104 Ω per square and P-channel sheet resistance $R_{sp} = 3.5 \times 104 \Omega$ per square. $(Z_{pu}=4:4 \text{ and } Z_{pd}=2:2).$
 - Draw circuits using CMOS, pseudo NMOS and DCVS for the [7M] given function $OUT = D + A \bullet (B + C)$.

(OR)

- Classify different types of MOS scaling. Derive their effects on 4. [8M]a) various parameters of MOSFET.
 - Design a 2-input Ex-NOR using CMOS Transmission gate.

[7M]

UNIT-III

- Derive the expressions for input impedance, voltage gain and 5. [8M] a) output impedance of common source amplifier.
 - Write a short note on current sources and sinks. b)

[7M]

(OR)

- 6. Why do we use common-drain amplifier? How do you calculate [8M]voltage gain and current gain of common-drain amplifier?
 - Tabulate the differences between common-source amplifier and [7M] b) common-drain amplifier.

UNIT-IV

- 7. Explain the concept of pipelining used to optimize sequential a) [8M]circuits.
 - Explain about Mux based Latches with an example. b)

[7M]

R19

SET - 4

1	റ	D
ı	v	\mathbf{r}
•		

8.	a)	Explain about Master slave register.	[8M]
	b)	With neat diagrams, explain cross coupled NAND and NOR	[7M]
		gates.	
		<u>UNIT-V</u>	
9.	a)	Explain the step-by-step approach of the FPGA design process	[8M]
		in the Xilinx environment.	
	b)	Write a short note on Giga scale dilemma.	[7M]
		(OR)	
10.	a)	Explain about TFET technology.	[8M]
	b)	Write notes on short channel effects	[7M]
