Discrete Mathematics 6

Tryhard solution

Supervisior: Marton Havasi 23/02/2018

1. Prove that if A and B are sets such that $A \cong \mathbb{R}$ and $B \cong \mathbb{R}$ then $A \cup B \cong \mathbb{R}$.

Note: I tried to come up with a proof that does not prove the Schröder–Bernstein theorem at the same time but I could not. In set theory, the Schröder–Bernstein theorem states that, if there exist injective functions $f:A\to B$ and $g:B\to A$ between the sets A and B, then there exists a bijective function $h:A\to B$. Check out the theorem here.

Assume that a and b are bijections between A and \mathbb{R} and B and \mathbb{R} respectively.

Consider $f(x) = e^x$. $f: \mathbb{R} \to \mathbb{R}^+$ is a bijection between \mathbb{R} and \mathbb{R}^+ .

Consider $i: A \cup B \to \mathbb{R}$:

$$i(x) = \begin{cases} a(x) & \text{if } x \in A \\ b(x) & \text{otherwise} \end{cases}.$$

i is injective.

Consider $j: \mathbb{R} \to A \cup B$:

$$j(x) = \begin{cases} (f^{-1} \circ a^{-1})(x) & \text{if } x > 0\\ (f^{-1} \circ b^{-1})(-x) & \text{if } x < 0\\ a^{-1}(0) & \text{otherwise} \end{cases}.$$

j is injective.

Define the equivalence relations

$$e_{\mathbb{R}}(x,y) = \exists n \ge 0. ((i \circ j)^n(x) = y \wedge (i \circ j)^n(y) = x)$$

$$e_{A\cup B}(u,v) = \exists n \ge 0. ((j \circ i)^n(u) = v \land (j \circ i)^n(v) = u)$$

Now we are ready to construct the bijection between \mathbb{R} and $A \cup B$. By definition, the equivalence classes partition their respective sets. Every element is in exactly one equivalence class.

We will construct h by exhibiting a bijection between $[x]_{e_{\mathbb{R}}}$ and $[j(x)]_{e_{A\cup B}}$ for arbitrary x in \mathbb{R} . The resulting relation is a bijection, since it also bijects the elements of $[u]_{e_{A\cup B}} = [j(i(u))]_{e_{A\cup B}}$ and $[i(u)]_{e_{\mathbb{R}}}$ for arbitrary u in $A \cup B$.

- Case 1 $[x]_{e_{\mathbb{R}}}$ has an element y such that $\forall u \in A \cup B.i(u) \neq y$. In this case, j is a bijection between $[x]_{e_{\mathbb{R}}}$ and $[j(x)]_{e_{A \cup B}}$.
- Case $2[x]_{e_{\mathbb{R}}}$ does not have an element y such that $\forall u \in A \cup B.i(u) \neq y$. In this case, i is a bijection between $[j(x)]_{e_{A \cup B}}$ and $[x]_{e_{\mathbb{R}}}$.