

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I. ET M.P.I.I.

Année 2024 - 2025

C3 : MODÉLISATION CINÉMATIQUE DES SYSTÈMES COMPOSÉS DE CHAINES DE SOLIDES

TD 8 - Cinématique du solide (C3-4)

Compétences

Modéliser

- o Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables.
- o Modéliser la cinématique d'un ensemble de solides.
- Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.

• Communiquer

o Utiliser un vocabulaire technique, des symboles et des unités adéquats.

Exercice 1 : Mécanisme d'ouverture de porte en accordéon

Source: Emilien DURIF

1 Présentation et paramétrage

L'étude porte sur le dimensionnement d'un système de porte "accordéon" motorisée utilisé dans un bus. Le cahier des charges est résumé sur le diagramme d'exigence ci-dessous :

La figure 2 ci-dessous représente une porte "accordéon" motorisée.

- Le battant 1
 - $\circ~$ est articulé par rapport à la paroi du bus $\boldsymbol{0}$ en A;
 - son repère associé est : $R_1 = (A, \vec{x}_1, \vec{y}_1, \vec{z}_{0,1})$;
 - son paramètre de mouvement est $\theta = (\overrightarrow{x}_0, \overrightarrow{x}_1) = (\overrightarrow{y}_0, \overrightarrow{y}_1)$;
 - $\circ \overrightarrow{BA} = a \cdot \overrightarrow{y}_1$
- Le battant 2
 - $\circ~$ est articulé par rapport à la chaine 3 en C et par rapport au battant 1 en B;
 - ∘ son repère associé est : $R_2 = (A, \overrightarrow{x}_2, \overrightarrow{y}_2, \overrightarrow{z}_{0,2});$
 - son paramètre de mouvement est $\beta = (\vec{x}_0, \vec{x}_2) = (\vec{y}_0, \vec{y}_2)$;
 - $\circ \overrightarrow{BC} = a \cdot \overrightarrow{y}_2.$
- La chaîne ${\bf 3}$ qui est mise en mouvement par un moto-réducteur ${\bf 4}$. Le maillon ${\bf C}$ se déplace à vitesse notée v(t).
- On considère la phase de fermeture de la porte, (à l'instant initial les points A et C sont confondus).
- Q 1 : Représenter les figures planes de projection permettant de paramétrer le problème

FIGURE 1 – Présentation de la problématique de l'étude.

FIGURE 2 – Système d'ouverture de porte en accordéon

Q 2 : Représenter sur la figure et la configuration ci-dessus les différents repères et les paramètres angulaires associés.

2 Résolution : détermination de la relation entrée-sortie du problème.

- Q 3: Quelle est la nature du mouvement du maillon de chaine 3 par rapport à la paroi du bus 0?
- Q 4 : Caractériser ce mouvement par son torseur cinématique en fonction de ν : $\left\{ \mathscr{V}_{(3/0)} \right\}$ au point C puis au point B.
 - Q 5: Quelle est la nature du mouvement du battant 1 par rapport à la paroi du bus 0?
 - **Q** 6 : Donner l'expression du torseur cinématique $\left\{\mathscr{V}_{(1/0)}\right\}$ au point A.
 - **Q 7 : Déduire le torseur cinématique** $\left\{ \mathscr{V}_{(1/0)} \right\}$ au point B.
 - **Q 8 : Calculer** $\overrightarrow{V}(B \in 1/0)$ par la mécanique du point (dérivation vectorielle).
 - Q 9 : Déterminer le torseur cinématique $\left\{\mathscr{V}_{(2/1)}\right\}$ au point B en fonction de $\dot{\beta}$ et $\dot{\theta}$.
 - Q 10 : Déterminer le torseur cinématique $\left\{\mathscr{V}_{(2/3)}\right\}$ au point C puis au point B en fonction de a et $\dot{\beta}$.

- Q 11 : Traduire la relation de Chasles au Point $B: \left\{ \mathcal{V}_{(1/0)} \right\} = \left\{ \mathcal{V}_{(1/2)} \right\} + \left\{ \mathcal{V}_{(2/3)} \right\} + \left\{ \mathcal{V}_{(3/0)} \right\}$.
 Q 12 : En projetant la relation en vitesse issue de la question précédente en déduire deux équations scalaires.
- Q 13 : A l'aide des conditions initiales lorsque la porte est ouverte ($\beta = \theta = 0$) et en intégrant par rapport au temps une des deux équations précédentes, en déduire une relation entre β et $\theta \forall t$ et l'expression de v(t) en fonc-
- Q 14: Déterminer numériquement l'expression de v(t) pour respecter le cahier des charges (On prendra a = v(t)1m).

Exercice 2 : Etude cinématique d'un centre d'usinage grande vitesse 5 axes

Source: Michel Ghidossi

1 Présentation des exigences

L'usinage est une opération de transformation d'un produit par enlèvement de matière. Cette opération est à la base de la fabrication de produits dans les industries mécaniques. On appelle le moyen de production associé à une opération d'usinage une machine outil ou un centre d'usinage. La génération d'une surface par enlèvement de matière est obtenue grâce à un outil muni d'au moins une arête coupante. Les différentes formes de pièces sont obtenues par des translations et des rotations de l'outil par rapport à la pièce.

Centre d'usinage 5 axes

Pièce complexe obtenue par usinage

FIGURE 3

La figure ci-dessus est un exemple de machine possédant 3 translations (X, Y et Z) et deux rotations (B et C). Une telle machine est appelée machine 5 axes (un axe est un ensemble qui gère un des mouvements élémentaire, translation ou rotation). Sur cette machine, 2 axes sont utilisés pour mettre en mouvement l'outil par rapport au bâti (ce sont les translations Y et Z) et 3 axes sont utilisés pour mettre en mouvement la pièce par rapport au bâti (ce sont la translation X et les deux rotations B et C).

	Variable	Course
Axe X	x(t)	800 mm
Axe Y	<i>y</i> (<i>t</i>)	600 mm
Axe Z	z(t)	500 mm

	Variable	Course
Axe B	$\theta_1(t)$	30°/-110°
Axe C	$\theta_0(t)$	360°

L'objectif de cette étude est de déterminer les conditions cinématiques à imposer pour respecter le critère de qualité d'usinage du cahier des charges. La chaîne cinématique pour déplacer l'outil par rapport au bâti.

FIGURE 4 - Diagramme partiel des exigences du centre d'usinage

2 Modélisation de la chaine cinématique associée à l'outil

• On associe à S₃ (Supposé galiléen), le repère :

$$R_3 = (O_3, \overrightarrow{x}_3, \overrightarrow{y}_3, \overrightarrow{z}_3)$$

• S₄ est en mouvement de translation de direction $\overrightarrow{y}_4 = \overrightarrow{y}_3$ par rapport à S_3 . On associe à S_4 , le repère :

$$R_4 = (O_4, \overrightarrow{x}_4 = \overrightarrow{x}_3, \overrightarrow{y}_4 = \overrightarrow{y}_3, \overrightarrow{z}_4 = \overrightarrow{z}_3)$$

• S_5 est en mouvement de translation de direction $\vec{z}_5 = \vec{z}_3$ par rapport à S_3 . On associe à S_5 , le repère :

$$R_5 = (O_5, \overrightarrow{x}_5 = \overrightarrow{x}_3, \overrightarrow{y}_5 = \overrightarrow{y}_3, \overrightarrow{z}_5 = \overrightarrow{z}_3)$$

- On pose:
 - $\circ \ \overrightarrow{O_3O_4} = y(t) \cdot \overrightarrow{y}_3 + l_3 \cdot \overrightarrow{z}_3;$

 - $\stackrel{\bigcirc}{\circ} \ \overrightarrow{DO_5} = \underbrace{l_4 \cdot \overrightarrow{x}_4}_{5};$ $\stackrel{\bigcirc}{\circ} \ \overrightarrow{DO_5} = z(t) \cdot \overrightarrow{z}_5;$
 - l_3 et l_4 sont des constantes.

Q 15 : Exprimer O_3O_5 dans la base associée au repère R_3 .

Q 16 : Définir et caractériser le lieu géométrique du point O_5 (extrémité de l'outil) dans son mouvement par rapport au repère R_3 , lorsque l'on commande les axes Y et Z.

Q 17 : Donner l'expression de $\overrightarrow{V}(O_5 \in 5/3)$ en utilisant la dérivation vectorielle.

Q 18 : A l'aide du diagramme des exigences (figure 4), calculer la valeur maximale de la norme du vecteur vitesse $\|\overrightarrow{V}(O_5 \in 5/3)\|_{max}$.

3 Chaîne cinématique pour déplacer la pièce par rapport au bâti.

- Le repère R₃ est toujours considéré comme galiléen.
- S_2 est en mouvement de translation de direction $\vec{x}_2 = \vec{x}_3$ par rapport à S_3 . On associe à S_2 , le repère:

$$R_2 = (O_2, \overrightarrow{x}_2 = \overrightarrow{x}_3, \overrightarrow{y}_2 = \overrightarrow{y}_3, \overrightarrow{z}_2 = \overrightarrow{z}_3)$$

• S_1 est en mouvement de rotation autour de l'axe $(O_2, \overrightarrow{y}_1 = \overrightarrow{y}_2)$ par rapport à S_2 (paramètre angulaire de mouvement $\theta_1 = (\overrightarrow{z}_2, \overrightarrow{z}_1)$). On associe à S_1 , le repère :

$$R_1 = (O_1, \overrightarrow{x}_1, \overrightarrow{y}_1 = \overrightarrow{y}_2, \overrightarrow{z}_1)$$

• S_0 est en mouvement de rotation autour de l'axe $(O_1, \vec{z}_0 = \vec{z}_1)$ par rapport à S_1 (paramètre angulaire de mouvement $\theta_0 = (\vec{x}_1, \vec{x}_0)$). On associe à S_0 , le repère :

$$R_0 = (O_0, \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0 = \overrightarrow{z}_1)$$

- On pose:
 - $\circ \ \overrightarrow{O_3A} = x_A(t) \cdot \overrightarrow{x}_3;$
 - $\circ \ \overrightarrow{AO_2} = l_2 \cdot \overrightarrow{z}_3;$
 - $\circ \overrightarrow{O_2O_1} = -l_1 \cdot \overrightarrow{y}_3;$
 - $\circ \overrightarrow{O_1O_0} = l_0 \cdot \overrightarrow{z}_1;$
 - \circ l_2 , l_1 et l_0 sont des constantes.
 - o La surface usinée est définie comme un ensemble de points M de coordonnées (x_M, y_M, z_M) dans le repère R_0 .

Q 19: Donner les figures planes de projection traduisant les deux rotations de S_0/S_1 et de S_1/S_2 .

- **Q 20 : Exprimer** $\overrightarrow{\Omega}(2/3)$
- **Q 21 : Exprimer** $\overrightarrow{\Omega}(1/2)$
- **Q 22 : Exprimer** $\overrightarrow{\Omega}(0/1)$
- **Q 23 :** En déduire $\overline{\Omega}(1/3)$ et $\overline{\Omega}(0/3)$
- Q 24 : Calculer $\left[\frac{d\vec{z}_1}{dt}\right]_{R_3}$.

Q 25 : Caractériser le lieu géométrique du point O_0 dans son mouvement par rapport au repère R_3 lorsque l'on commande les axes X, B et C.

- **Q 26 :** Exprimer le vecteur position O_3O_0 .
- **Q 27 : Calculer** $\overrightarrow{V}(O_0 \in 0/3)$ par dérivation vectorielle.
- **Q 28 :** Déterminer la valeur maximale de la norme de cette vitesse si $l_0 = 0, 1m$ et $\dot{x}_A = 0$.
- **Q 29 :** Exprimer le torseur cinématique $\{\mathscr{V}_{(0/3)}\}$ en O_0 .
- **Q 30 : Exprimer le torseur cinématique** $\left\{ \mathscr{V}_{(0/3)} \right\}$ en M.