ZERO-KNOWLEDGE (INTRO)

ALON ROSEN

IDC HERZLIYA

Zero-knowledge proofs

Prover P Verifier V

P interacts with V convincing him that a proposition is true

Interaction reveals nothing beyond validity of the proposition

If proposition is true, any V^* might as well have generated (simulated) the interaction on his own

Avoids the question "what is knowledge?" altogether!

Example: color non-blindness

Example: color non-blindness

Example: color non-blindness

- V's "view": a random bit that equals his "swap or not" bit
- V could simulate view by picking random bit on his own!

What is zero-knowledge good for?

Can prove that I know a secret without having to reveal it

Identification:

- **1.** Alice publishes y = f(x)
- 2. Alice proves to Bob in ZK that she knows $x' \in f^{-1}(y)$

Protocol design:

- 1. Design against parties that follow instructions
- 2. Use ZK proof to force honest behavior

"trusted party" → protocol

Why zero-knowledge?

Remarkable definitional framework:

- At the heart of protocol design and analysis
- Brings to light key concepts and issues

Right level of abstraction:

- Simple enough to be studied/realized
- Feasibility/limitations delineate what is attainable

ZK is just a means to an end

- Weaker definitions are also useful (WI/WH/NIZK)
- Tension between <u>modularity and efficiency</u>

Proof Systems

What is a proof?

A method for establishing truth:

- 1. legal
- 2. authoritative
- 3. scientific
- 4. philosophical
- 5. mathematical

$$\frac{\pi}{\text{Axioms}} \rightarrow \rightarrow \cdots \rightarrow \text{Propositions}$$

6. probabilistic, interactive

Proof Systems

Want to prove: $x \in L$ for some language $L \subseteq \Sigma^*$

$$L = \{x \mid \exists \pi, V(x, \pi) = ACCEPT\}$$

<u>Definition:</u> A <u>proof system</u> for membership in L is an algorithm V such that $\forall x$:

<u>Completeness:</u> If $x \in L$, then $\exists \pi$, $V(x, \pi) = ACCEPT$

Soundness: If $x \notin L$, then $\forall \pi$, $V(x, \pi) = REJECT$

NP Proof Systems

efficient verification ⇔ poly-time verification

<u>Definition:</u> An <u>NP proof system</u> for membership in L is an algorithm V such that $\forall x$:

Completeness: If $x \in L$, then $\exists \pi$, $V(x,\pi) = ACCEPT$ Soundness: If $x \notin L$, then $\forall \pi$, $V(x,\pi) = REJECT$ Efficiency: $V(x,\pi)$ halts after at most poly(|x|) steps

- V's running time is measured in terms of |x|, the length of x
- $poly(|x|) = |x|^c$ for some constant c
- Necessarily, $|\pi| = poly(|x|)$

Example I: Boolean Satisfiability

$$SAT = \{\phi | \phi \text{ is a satisfiable Boolean formula}\}$$

$$SAT = \{\phi(w_1, ..., w_n) \mid \exists w \in \{0,1\}^n, \phi(w) = 1\}$$

$$\phi \in SAT: \qquad \frac{\pi = w}{} \Rightarrow \qquad \bigvee \phi(w) \stackrel{?}{=} 1$$

Complete: every $L \in NP$ reduces to SAT

<u>Unstructured:</u> exp(O(n)) time (<u>worst case</u>).

Example II: Linear Equations

$$LIN = \{(A, b) | Aw = b \text{ has a solution over } \mathbb{F} \}$$

Structured: decidable in time $O(n^{2.373}) = poly(n)$

The class P

poly-time ⇔ efficient

<u>Definition:</u> $L \in P$ if there is a poly-time algorithm A such that $L = \{x \mid A(x) = ACCEPT\}$

BPP: A is probabilistic poly-time (PPT) and errs w.p. $\leq 1/3$

Example III: Quadratic Residuosity

$$QR_N = \{x \mid x \text{ is a quadratic residue mod } N\}$$

$$x \in QR_N: \qquad \xrightarrow{\pi = w} \qquad \qquad X \stackrel{?}{=} w^2 \bmod N$$

Structured: QR_N is a subgroup of \mathbb{Z}_N^*

$$N = PQ$$
 ($|P| = |Q| = n$): $exp\left(\tilde{O}\left(n^{1/3}\right)\right)$ time (avg. case)

Summary so far

efficient verification ⇔ poly-time verification

Proving non-membership?

$$(A,b) \notin LIN$$
?

$$\phi \notin SAT: \qquad w_1, \dots, w_{2^n} \qquad \forall i, \phi(w_i) \stackrel{?}{=} 0$$

$$x \notin QR_N: \qquad \psi_1, \dots, \psi_{\phi(N)} \qquad \forall i, x \not\equiv w_i^2 \bmod N$$

Naïve proof is exponentially large

[GMR'85]: allow proof to use

- Randomness (tolerate "error")
- Interaction (add a "prover")

Interactive Proofs

Interactive proof for $\overline{QR_N}$ [GMR'85]

P
$$x \notin QR_{N}$$

$$z = y^{2} \qquad b = 0$$

$$z = xy^{2} \qquad b = 1$$

$$b \in_{R} \{0,1\}$$

$$y \in_{R} \mathbb{Z}_{N}^{*}$$

$$b'(z) = 0 \qquad z \in QR_{N}$$

$$b'(z) = 1 \qquad z \notin QR_{N}$$

$$b' \stackrel{?}{=} b$$

Completeness: $x \notin QR_N \rightarrow y^2 \in QR_N$ and $xy^2 \notin QR_N$

Soundness: $x \in QR_N \rightarrow y^2 \in QR_N$ and $xy^2 \in QR_N$ $\forall P^*, Pr_h[P^*(z) = b] = 1/2$

Interactive Proof

V is probabilistic polynomial time (PPT)

For any common input x, let:

$$Pr[(P,V) \text{ accepts } x] \triangleq Pr_r[(P,V)(x,r) = ACCEPT]$$

Interactive Proof Systems

<u>Definition [GMR'85]:</u> An <u>interactive proof system</u> for L is a PPT algorithm V and a function P such that $\forall x$:

Completeness: If $x \in L$, then $Pr[(P, V) \text{ accepts } x] \ge 2/3$

Soundness: If $x \notin L$, then $\forall P^*, Pr[(P^*, V) \text{ accepts } x] \leq 1/3$

- Completeness and soundness can be bounded by any $c: \mathbb{N} \to [0,1]$ and $s: \mathbb{N} \to [0,1]$ as long as
 - $c(|x|) \ge 1/2 + 1/poly(|x|)$
 - $s(|x|) \le 1/2 1/poly(|x|)$
- poly(|x|) independent repetitions $\rightarrow c(|x|) s(|x|) \ge 1 2^{-poly(|x|)}$
- NP is a special case (c(|x|) = 1 and s(|x|) = 0)
- BPP is a special case (no interaction)

The Power of IP

Proposition: $\overline{QR_N} \in IP$

- NP proof for $\overline{QR_N}$ not self-evident
- This suggests that maybe NP ⊂ IP
- Turns out that $\overline{SAT} \in IP$ (in fact #SAT)

Theorem [LFKN'90]: $P^{\text{#P}} \subseteq IP$

Theorem [Shamir'90]: IP = PSPACE

The power of IP

Zero-Knowledge

A Proof that (presumably) Does Leak Info

 $QR_N = \{x \mid x \text{ is a quadratic residue mod } N\}$

$$x \in QR_N: \qquad \xrightarrow{\pi = w} \qquad \xrightarrow{} \qquad \qquad X \stackrel{?}{=} w^2 \bmod N$$

- Generating π $exp(\tilde{O}\left(n^{1/3}\right)$ time
- Verifying $O(n^2)$ time

V "got something for free" from seeing π V may have not been able to find W on his own!

Defining that "no knowledge leaked"

Some attempts:

- *V* didn't learn *w* (sometimes good enough!)
- V didn't learn any symbol of w
- V didn't learn any information about w
- V didn't learn any information at all (beyond $x \in L$)

When would we say that V did learn something?

If following the interaction V could compute something he could have not computed without it!

Zero-knowledge: whatever is computed following interaction could have been computed without it

Zero-Knowledge (at last)

V's view = V's random coins and messages it receives

 $\forall x \in L, V$'s view can be efficiently "simulated"

What does this mean?

Philosophically: V is given the information that $x \in L$

Modulo this, V might as well have talked to himself

<u>Technically</u>: $V(\text{view}) \cong V(\text{simulation})$

Whatever V could compute following the interaction, he could have computed even without talking to P, by running the simulator on his own

V might as well talk to himself

 $V(\sin(x))$

Honest Verifier Zero-Knowledge

V's view distribution can be simulated in poly-time

- We will allow simulator S to be probabilistic (PPT)
- Efficient ⇔ Probabilistic poly-time (BPP instead of P)

Definition [GMR'85]: An interactive proof (P, V) for L is (honest-verifier) zero-knowledge if $\exists PPT \ S \ \forall x \in L$

$$S(x) \cong (P, V)(x)$$

- We use (P,V)(x) to denote V's view
- Usually (P, V)(x) = V(view) denotes V's output
- Simulator for V's view implies simulator for V's output

Sanity check

$$x \in QR_N$$
:
$$\pi = w \qquad \Rightarrow \qquad X \stackrel{?}{=} w^2 \bmod N$$

- $\forall x \in QR_N, S(x)^2 \equiv x \bmod N$
- $\forall x \notin QR_N$, $S(x)^2 \not\equiv x \bmod N$
- $QR_N \notin BPP \to S(x)^2 \not\equiv x \bmod N \text{ for some } x \in QR_N$

(P, V) for L is <u>not</u> (honest-verifier) zero-knowledge if $\forall PPT \ S \ \exists x \in L$ so that

$$S(x) \ncong (P,V)(x)$$

A Zero-Knowledge proof for QR_N

$$x = w^{2} \mod N$$

$$x \in QR_{N}$$

$$y = r^{2}$$

$$b \in_{R} \{0,1\}$$

$$b = 0: \quad z = r$$

$$b = 1: \quad z = wr$$

$$z^{2} \stackrel{?}{=} y$$

$$z^{2} \stackrel{?}{=} xy$$

- P is randomized and has auxiliary input w
- Distribution of V's "view" (P(w),V)(x): uniformly random (y,b,z) such that $z^2=x^by$

A Zero-Knowledge proof for QR_N

Claim: (P, V) is an interactive proof for QR_N

$$y = r^2$$

Soundness:

$$x \in QR_N$$

$$\updownarrow$$

$$\exists y, y \in QR_N \text{ and } xy \in QR_N$$

If
$$Pr_b[(P^*, V) \text{ accepts } x] > 1/2$$

then both $z_0^2 = y \text{ and } z_1^2 = xy$

Simulating V's view

Simulator S(x)

- **1.** Sample $z \in_R \mathbb{Z}_N^*$
- **2.** Sample $b \in_{R} \{0,1\}$
- 3. Set $y = z^2/x^b$
- 4. Output (y, b, z)

random (y, b, z) such that $z^2 = x^b y \cong \text{random } (y, b, z)$ such that $z^2 = x^b y$

Proposition: $QR_N \in HVZK$

Simulating malicious V*'s view

Simulator S(x)

- **1.** Sample $z \in_R \mathbb{Z}_N^*$
- **2.** Sample $b \in_R \mathbb{Z}_N^*$
- 3. Set $y = z^2/x^b$
- **4.** If $V^*(y) = b$ output (y, b, z)
- 5. Otherwise repeat

$$x \in QR_N$$

 $\mathbb{E}[\#\text{repetitions}] = 2$

random
$$(y, b, z)$$
 such that $z^2 = x^b y$ and $b = V^*(y)$

random
$$(y, b, z)$$
 such that $z^2 = x^b y$ and $b = V^*(y)$

Perfect Zero-Knowledge

<u>Definition:</u> An interactive proof system (P, V) for L is <u>perfect zero-knowledge</u> if $\forall PPT \ V^* \ \exists PPT \ S \ \forall x \in L$ $S(x) \cong (P, V^*)(x)$

Proposition: $QR_N \in PZK$

- Actually showed "black-box" ZK: $\exists PPT \ S \ \forall PPT \ V^* \ \forall x \in L$ $S^{V^*}(x) \cong (P, V^*)(x)$
- We allowed S to run in expected polynomial time
- Can we build S with strict polynomial running time?

Amplifying soundness

<u>Proposition</u>: $QR_N \in PZK$ w/ soundness error $2^{-poly(|x|)}$

Parallel repetition

$$\mathbb{E}\big[\mathrm{time}\big(S^{V^*}\big)\big] = 2^k \, \mathrm{time}(V^*)$$

Later:

- Black-box impossibility
- V^* whose view cannot be efficiently simulated

Auxiliary input and Composition

IP for $\overline{QR_N}$ is not ZK $^{"}$

$$x \notin QR_N$$

V

$$z = y^2 \qquad b = 0$$

$$z = xy^2 \qquad b = 1$$

$$b' = 0 z \in QR_N$$

$$b' = 1 z \notin QR_N$$

Not ZK wrt "auxiliary input"

$$V^*(z)$$
: use P to decide if $z \in QR_N$

z is V^* 's auxiliary input

Proposition: $\overline{QR_N} \in HVZK$

Claim: (P, V) is not ZK (wrt auxiliary input)

ZK wrt auxiliary input

<u>Definition:</u> An interactive proof (P,V) for L is (perfect) **ZK** wrt auxiliary input if $\forall PPT\ V^* \exists PPT\ S\ \forall x \in L\ \forall z$ $S(x,z) \cong \big(P,V^*(z)\big)(x)$

- z captures "context" in which protocol is executed
 - Other protocol executions ("environment")
 - A-priori information (in particular about w)
- Simulator is also given the auxiliary input z
- Simulator runs in time poly(|x|)
- Auxiliary input z is <u>essential for composition</u>

Sequential composition of ZK

simulating view of each of V_i 's \rightarrow simulating view of V^*

Sequential composition of ZK

<u>Theorem</u>: ZK is closed under sequential composition

Summary

Defined:

- NP, P, BPP, IP (= PSPACE)
- PZK, HVZK

Saw:

- $LIN, QR_N, SAT \in NP$
- $QR_N \in HVZK$
- $QR_N \in PZK$
- $\overline{QR_N} \in HVZK$
- auxiliary input for ZK protocols
- sequential composition of ZK protocols

Food for Thought

What if P=NP?

- If P = NP then all $L \in NP$ can be proved in PZK
- P sends nothing to V, who decides $x \in L$ on his own
- But what about ZK within P?
- For instance against quadratic time verifiers?

Exercise: Suppose $\omega > 2$. Construct an interactive proof for LIN that is PZK for quadratic time verifiers

- An issue: composition. What about say n executions?
- In contrast, poly(n) is closed under composition

History

Shafi Goldwasser

Silvio Micali

Charlie Rackoff

The End

Definition: An interactive proof system for L is a PPT algorithm V and a function P such that $\forall x$:

Completeness: If $x \in L$, then $Pr[(P, V) \text{ accepts } x] \ge 2/3$

Soundness: If $x \notin L$, then $\forall P^*, Pr[(P^*, V) \text{ accepts } x] \leq 1/3$

Definition: (P, V) for L is (perfect) **ZK** wrt auxiliary input if $\forall PPT \ V^* \ \exists PPT \ S \ \forall x \in L \ \forall z$

$$S(x,z) \cong (P(w),V^*(z))(x)$$