Probability Theory

VII Central Limit Theorem

Seongho, Joo

August 7, 2025

Seoul National University

Definition 1

Let $\mu \in \mathsf{Prob}(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right))$. For $\xi \in \mathbb{R}^d$, define

$$\mu(\hat{\xi}) := \int_{\mathbb{R}^d} e^{i\xi \cdot x} \mu(\,\mathrm{d}x)$$

the Fourier transform of μ .

If $\bar{X}:(\Omega,\mathcal{F})\to(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$ is a random vector, its *chracteristic function* $\varphi_{\bar{X}}:\mathbb{R}^d\to\mathbb{C}$ is

$$\varphi_{\overline{\mathbf{X}}}(\xi) = \hat{\mu}_{\overline{\mathbf{X}}}(\xi) = \mathbb{E} e^{i\xi \cdot \bar{X}}$$

Proposition 1

$$\mu \mapsto \hat{\mu}$$
 is injective: if $\hat{\mu}(\xi) = \hat{\nu}(\xi) \ \forall \xi \in \mathbb{R}^d$, then $\mu = \nu$.

Thus, in principle, we can recover μ from $\hat{\mu}$.

Theorem 1

If $\mu \in \operatorname{Prob}(\mathbb{R},\mathcal{B}\left(\mathbb{R}\right))$, then for a < b in \mathbb{R} ,

$$\lim_{R\to\infty}\frac{1}{2\pi}\int_{-R}^{R}\hat{\mu}(\xi)\left(\frac{e^{-ia\xi}-e^{-ib\xi}}{i\xi}\right)\,\mathrm{d}\xi=\mu((a,b))+\frac{1}{2}\mu(\{a,b\})$$

In addition,

$$\mu(\{a\}) = \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^R e^{-ia\xi} \hat{\mu}(\xi) \,\mathrm{d}\xi$$

Corollary 1

If $\mu\in\operatorname{Prob}(\mathbb{R},\mathcal{B}\left(\mathbb{R}\right))$ and $\hat{\mu}\in L^{1}(\lambda)$, then $\mu<<\lambda$ and its density $\rho=\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}$ is

$$\rho(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{\mu}(\xi) e^{-I\xi x} \,\mathrm{d}\xi$$

Proposition 2 (Properties of the Fourier Transform $\hat{\mu}$)

- 1. $\hat{\mu}(0) = 1$ and $|\hat{\mu}(\xi)| \leq 1 \ \forall \xi \in \mathbb{R}^d$
- 2. $\hat{\mu} \in C_{\mathbb{C}}(\mathbb{R}^d)$

3.
$$\overline{\hat{\mu}(\xi)} = \hat{\mu}(-\xi) \ \forall \xi \in \mathbb{R}^d$$
. In particular, $\hat{\xi}$ is \mathbb{R} -valued if and only if μ is symmetric $(\mu(B) = \mu(-B) \ \forall B \in \mathcal{B}\left(\mathbb{R}^d\right))$

4. If $\int_{\mathbb{R}^d} |x|^k \mu(\,\mathrm{d} x) < \infty$ then $\hat{\mu} \in C^k_{\mathbb{C}}$ and

$$\frac{\partial}{\partial \xi_{j_1}} \dots \frac{\partial}{\partial \xi_{j_k}} = \int_{\mathbb{R}^d} (ix_{j_1}) \dots (ix_{j_k}) e^{i\xi \cdot x} \mu(dx)$$

Proof.

Proposition 3

If $\mu, \nu \in \mathsf{Prob}(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right))$, then

$$\widehat{\mu * \nu} = \hat{\mu} \cdot \hat{\nu}$$

I.e. If $\overline{\underline{\mathbf{X}}}, \overline{\underline{\mathbf{Y}}}$ are independent random vectors in \mathbb{R}^d , then

$$\varphi_{\overline{\mathbf{X}} + \overline{\mathbf{Y}}}(\xi) = \varphi_{\overline{\mathbf{X}}}(\xi) \cdot \varphi_{\overline{\mathbf{Y}}}(\xi) \quad \forall \xi \in \mathbb{R}^d$$

Moreover, if $a\in\mathbb{R},v\in\mathbb{R}^d$, then $\varphi_{a\overline{\mathbf{X}}+v}=e^{i\xi\cdot v}\varphi_{\overline{\mathbf{X}}}(a\xi)$

Example.

- $\bullet \ N \stackrel{d}{=} \mathsf{Poisson}(\lambda). \ \varphi_N(\xi) = \mathbb{E} \, e^{i\xi \cdot N} = \textstyle \sum_{n=0}^{\infty} e^{i\xi \cdot n} e^{-\lambda} \frac{\lambda^n}{n!} = e^{\lambda(e^{i\xi}-1)}$
- $Y \stackrel{d}{=} \mathsf{Rademacher} : \mathbb{P}(Y \pm 1) = \frac{1}{2}. \ \varphi_Y(\xi) = \mathbb{E} \, e^{i\xi \cdot Y} = \frac{1}{2} e^{i\xi 1} + \frac{1}{2} e^{i\xi (-1)} = \cos \xi$ So, if Y_1, \dots, Y_N and iid Rademachers, $S_n = Y_1 + \dots Y_n$,

$$\varphi_{S_n}(\xi) = \varphi_{Y_1}(\xi) \dots \varphi_{Y_n}(\xi) = (\cos \xi)^n$$

By the taylor theorem, for some $\eta \in (0,t)$

$$\log \varphi_{S_n/b_n}(\xi) = n \cdot (-\sec^2(n/b_n))\xi^2/b_n^2$$

Take $b_n=\sqrt{n},\log\varphi_{S_n/\sqrt{n}}\to -\frac{1}{2}\xi^2,$ and $\varphi_{S_n/\sqrt{n}}(\xi)\to e^{-\frac{1}{2}\xi^2}$ which the characteristic function of $\mathcal{N}(0,1).$

Riemann-Lebesgue

If μ admits a density ρ w.r.t Lebesgue measure, we denote $\hat{\mu}=\hat{\rho}.$

Lemma 1 (Riemann-Lebesgue)

If $ho \in L^1$, then $\hat{
ho} \in C_0$, i.e. $\hat{
ho}(\xi) o 0$ as $o \infty$

Proof.

Step 1: Show that the result holds for $\rho \in C^\infty_c(\mathbb{R}^d)$

Step 2: For general $\rho \in L^1(\mathbb{R}^d,\lambda)$, approximate by C_c^∞ functions.

Step 3: Combine. Let $\varepsilon>0$, and $\psi\in C_c^\infty(\mathbb{R}^d)$ s.t. $\|\rho-\psi\|_{L^1}<\varepsilon/2$

If $\mu_n \xrightarrow{w} \mu$, then $\hat{\mu}(\xi) \to \hat{\mu}(\xi) \ \forall \xi \in \mathbb{R}^d$. The converse also holds!

Theorem 2 (Continuity Theorem)

Let $\{\mu_n\}_{n=1}^{\infty}\subset \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$. Suppose that $\varphi(\xi):=\lim_{n\to\infty}\hat{\mu}_n(\xi)$ exists $\forall \xi\in\mathbb{R}^d$. If φ is continuous at 0, then $\exists \mu\in\operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$ such that $\varphi=\hat{\mu}$, and $\mu_n\stackrel{\longrightarrow}{\longrightarrow}\mu$.

Example. The Scaled sum of iid Rademacher random variables converges to uniform normal distribution: $\frac{X_1+\cdots+X_n}{\sqrt{n}} \xrightarrow{w} \mathcal{N}(0,1)$.

If $\mu_n \xrightarrow{w} \mu$, then $\hat{\mu}(\xi) \to \hat{\mu}(\xi) \ \forall \xi \in \mathbb{R}^d$. The converse also holds!

Theorem 2 (Continuity Theorem)

Let $\{\mu_n\}_{n=1}^{\infty}\subset \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$. Suppose that $\varphi(\xi):=\lim_{n\to\infty}\hat{\mu}_n(\xi)$ exists $\forall \xi\in\mathbb{R}^d$. If φ is continuous at 0, then $\exists \mu\in\operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$ such that $\varphi=\hat{\mu}$, and $\mu_n\stackrel{w}{\longrightarrow}\mu$.

Example. The Scaled sum of iid Rademacher random variables converges to uniform normal distribution: $\frac{X_1+\cdots+X_n}{\sqrt{n}} \xrightarrow{w} \mathcal{N}(0,1)$.

Proposition 4 (Characteristic tail estimate)

Let ρ be a probability density on \mathbb{R}^d , supported in \bar{B}_1 . Let M>0 be such that $|\hat{\rho}(\xi)|\leq \frac{1}{2}$ for all $|\xi|\geq M$.

Then $\forall \mu \in \mathsf{Prob}(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, and a > 0,

$$\mu(\left\{x \in \mathbb{R}^d : |x| \ge a\right\}) \le 2 \int_{B_1} \left[1 - \Re \hat{\mu}(\frac{M}{a}x)\right] \rho(x) \, \mathrm{d}x$$

Corollary 2

If $\{\mu_n\}_{n=1}^{\infty} \subset \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right) \text{ are such that } \varphi(\xi) := \lim_{n \to \infty} \hat{\mu}_n(\xi) \text{ exists } \forall \xi \in \mathbb{R}^d \text{ and } \varphi \text{ is continuous at } 0, \text{ then } \{\mu_n\}_{n=1}^{\infty} \text{ is tight.}$

Corollary 2

If $\{\mu_n\}_{n=1}^{\infty} \subset \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right) \text{ are such that } \varphi(\xi) := \lim_{n \to \infty} \hat{\mu}_n(\xi) \text{ exists } \forall \xi \in \mathbb{R}^d \text{ and } \varphi \text{ is continuous at } 0, \text{ then } \{\mu_n\}_{n=1}^{\infty} \text{ is tight.}$

Proof. Fix ρ , M as in the tail estimate proposition:

$$\mu_n\left\{x \in \mathbb{R}^d : |x| \ge a\right\} \le 2\int_{B_1} \left[1 - \Re\hat{\mu}_n\left(\frac{M}{a}x\right)\right] \rho(x) \, \mathrm{d}x \le 2\delta(a) + \frac{\varepsilon}{2} \dots (\dagger)$$

where $\delta(a)=\sup_{|x|\leq x}|1-\Re\varphi(\frac{M}{a}x)|$, since φ is continuous at 0, $\lim_{a\to\infty}\delta(a)=0$ Fix $\varepsilon>0$, choose a large enough so that $\delta(a)<\frac{\varepsilon}{4}$. Choose N such that $\forall n\geq N$ \dagger holds,

$$\mu_n(\mathbb{R}^d \setminus \bar{B}_a) \le 2\delta(a) + \frac{\varepsilon}{2} < \varepsilon$$

Proof for continuity Theorem

Claim: $\mu_n \stackrel{w}{\longrightarrow} \mu$

Theorem 3 (Continuity Theorem)

Let $\{\mu\}_{n=1}^{\infty}\subset \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$. Suppose that $\varphi(\xi):=\lim_{n\to\infty}\hat{\mu}_n(\xi)$ exists $\forall \xi\in\mathbb{R}^d$. If φ is continuous at 0, then $\exists \mu\in\operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$ such that $\varphi=\hat{\mu}$, and $\mu_n\xrightarrow{w}\mu$.

Proof. By the preceding corollary, $\{\mu\}_{n=1}^{\infty}$ is tight. By Prokhorov, \exists subsequence s.t. $\mu_{n_k} \xrightarrow{w} \mu$ for some $\mu \in \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}(\mathbb{R}))$. Therefore $\hat{\mu}_{n_k}(\xi) \to \hat{\mu}(\xi) = \varphi(\xi) \quad \forall \xi \in \mathbb{R}^d$.

If not, $\exists g \in C_b(\mathbb{R}^d)$ s.t. $\int g \, \mathrm{d}\mu_n \not\to \int g \, \mathrm{d}\mu$ l.e. $\exists \varepsilon > 0, \exists n_k'$ s.t. $\left| \int g \, \mathrm{d}\mu_{n_k'} - \int g \, \mathrm{d}\mu \right| \ge \varepsilon \quad \forall k$ By Prokhorov, \exists further subsequence $\{n_k''\}_{k=1}^\infty \subseteq \{n_k'\}_{k=1}^\infty$ s.t. $\mu_{n_k''} \xrightarrow{w} \nu$ for some $\nu \in \operatorname{Prob}(\mathbb{R}^d, \mathcal{B}\left(\mathbb{R}^d\right)) \implies \hat{\nu} = \hat{\mu}$. By the injectivity of Fourier transform, $\nu = \mu \implies \mu_{n_k''} \to \mu$. However, this contradicts the assumption that n_k' s.t. $\left| \int g \, \mathrm{d}\mu_{n_k'} - \int g \, \mathrm{d}\mu \right| \ge \varepsilon \quad \forall k$.

Basic Central Limit Theorem

Theorem 4

Let $\{x_n\}_{n=1}^{\infty}$ be i.i.d. L^2 random variables with common mean $\mathbb{E}\,x_n=t$ and variance $\mathrm{Var}x_n=\sigma^2$. Let $S_n=X_1+\cdots+X_n$. $\frac{\mathring{S}_n}{\sigma\sqrt{n}}=\frac{S_n-nt}{\sigma\sqrt{n}}\xrightarrow{w}Z\stackrel{d}{=}\mathcal{N}(0,1)$

Proof. By Levy's continuity theorem, it suffices to show that

$$\begin{split} \varphi_{\mathring{S}_n/\sigma\sqrt{n}}(\xi) \to e^{-\xi^2/2} \quad \forall \xi \in \mathbb{R} \\ \varphi_{\mathring{S}_n/\sigma\sqrt{n}} &= \varphi_{\mathring{S}_n}(\xi/\sigma\sqrt{n}) = \varphi_{\mathring{X}_1+\dots+\mathring{X}_n}(\xi/\sigma\sqrt{n}) = \varphi_{\mathring{X}_1}(\xi/\sigma\sqrt{n})^n \end{split}$$

Note that $X_1\in L^2$, so $\mathbb{E}\,\mathring{X}_1^2={\rm Var}X_1=\sigma^2<\infty,\ \therefore \varphi_{\mathring{X}_1}\in C^2$ By Taylor's theorem,

$$\begin{split} \varphi_{\hat{X}_1}(x) &= \varphi_{\hat{X}_1}(0) + \varphi_{\hat{X}_1}'(0)x + \frac{1}{2}\varphi_{\hat{X}_1}''(r(x))x^2, \quad \text{ form some } r(x) \text{ between } 0 \text{ and } x \\ &= 1 + \frac{1}{2}\varphi''(r(x))x^2 \\ & \therefore (\varphi_{\hat{X}_1}(\xi/\sigma\sqrt{n}))^n = \left(1 + \frac{1}{2}\varphi_{\hat{X}_1}''(r(\xi/\sigma\sqrt{n})(\frac{\xi}{\sigma\sqrt{n}})^2\right)^n \end{split}$$

$$\lim_{n\to\infty}\varphi_{\mathring{X}_1}(\xi/\sigma\sqrt{n})^n=\lim_{n\to\infty}\left(1+\tfrac{1}{2}(-\sigma^2)(\tfrac{\xi^2}{\sigma^2n})\right)^n=e^{-\xi^2/2}$$

Central Limit Theorem

There is a similar CLT for iid random *vectors*, with any given (common) covariance of entries.

Definition 2

Let Q be a positive definite $d\times d$ matrix i.e. $Q=AA^{\top}$ for some $d\times d$ matrix A. The centered normal distribution of covarianne Q is the unique measure $\mu\in \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$ with $\hat{\mu}=e^{-\frac{1}{2}Q\xi\cdot\xi}=e^{-\frac{1}{2}|A\xi|^2}$. Denote is as $\mathcal{N}(0,Q)$

• If
$$\overline{\underline{\mathbf{X}}} \stackrel{d}{=} \mathcal{N}(0,Q)$$
, then $\mathrm{Cov} X_i X_j = Q_{ij}$, and $X_i \stackrel{d}{=} \mathcal{N}(0,Q_{ii})$

Central Limit Theorem

There is a similar CLT for iid random *vectors*, with any given (common) covariance of entries.

Definition 2

Let Q be a positive definite $d\times d$ matrix i.e. $Q=AA^{\top}$ for some $d\times d$ matrix A. The centered normal distribution of covarianne Q is the unique measure $\mu\in \operatorname{Prob}(\mathbb{R}^d,\mathcal{B}\left(\mathbb{R}^d\right))$ with $\hat{\mu}=e^{-\frac{1}{2}Q\xi\cdot\xi}=e^{-\frac{1}{2}|A\xi|^2}$. Denote is as $\mathcal{N}(0,Q)$

• If $\underline{\overline{X}} \stackrel{d}{=} \mathcal{N}(0,Q)$, then $\text{Cov} X_i X_j = Q_{ij}$, and $X_i \stackrel{d}{=} \mathcal{N}(0,Q_{ii})$

Theorem 5 (Multivariate CLT)

If $\left\{\overline{\underline{\mathbf{X}}}_n\right\}n$ are i.i.d random vectros in \mathbb{R}^d with L^2 entries, and $Q=\mathring{\underline{\underline{\mathbf{X}}}}_1\mathring{\underline{\underline{\mathbf{X}}}}_1^{\top}$, then

$$\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \overset{\circ}{\underline{\mathbf{X}}}_{j} \xrightarrow{w} Z_{1} \overset{d}{=} \mathcal{N}(0, Q)$$

Multivariate CLT

Lemma 2 (Cramer-Wold Device)

Let $\{\overline{\underline{\mathbf{X}}}_n\}_{n=1}^\infty$ and $\overline{\underline{\mathbf{X}}}$ be random vectors in \mathbb{R}^d . Then $\overline{\underline{\mathbf{X}}}_n \xrightarrow{w} \overline{\underline{\mathbf{X}}}$ if and only $\xi \cdot \overline{\underline{\mathbf{X}}}_n \xrightarrow{w} \xi \cdot \overline{\underline{\mathbf{X}}}$ $\forall \xi \in \mathbb{R}^d$.

Theorem 5 Proof. Fix $\xi \in \mathbb{R}^d$. Let $X_n^{\xi} := \xi \cdot \overline{\underline{\mathbf{X}}}$. Then $\{X_n^{\xi}\}_{n=1}^{\infty}$ are independent, and $\varphi_{_{\mathbf{X}}\xi}(u) = \mathbb{R}e^{iu\xi \cdot \overline{\underline{\mathbf{X}}}_n} = \varphi_{\overline{\mathbf{X}}_n}(u\xi) = \varphi_{\overline{\mathbf{X}}_n}(u\xi)$

 $\therefore \{X_n^{\xi}\}_{n=1}^{\infty}$ are i.i.d. They are in L^2 .

$$\begin{split} & \mathbb{E} \, X_n^\xi = \mathbb{E} \, \xi \cdot \overline{\underline{\mathbf{X}}}_n = \xi \cdot \mathbb{E} \, \overline{\underline{\mathbf{X}}}_n = \xi \cdot \mathbb{E} \, \overline{\underline{\mathbf{X}}}_1 \\ & \mathrm{Var} X_n^\xi = \mathbb{E} \, (\xi \cdot \overline{\underline{\mathbf{X}}}_n)^2 - (\xi \cdot \mathbb{E} \, \overline{\underline{\mathbf{X}}}_n)^2 \\ & = \mathbb{E} \, \xi \cdot \overline{\underline{\mathbf{X}}}_n \overline{\underline{\mathbf{X}}}_n^\top - \xi \cdot \mathbb{E} \, \vec{x} \, \mathbb{E} \, \vec{x}^\top \xi \\ & = \xi \cdot (\underbrace{\mathbb{E} \, \overline{\underline{\mathbf{X}}} \overline{\underline{\mathbf{X}}}^\top - \mathbb{E} \, \overline{\underline{\mathbf{X}}}_n \, \mathbb{E} \, \overline{\underline{\mathbf{X}}}_n^\top}_{=\mathbb{E} \, \mathbb{E} \, (\overline{\underline{\mathbf{X}}}_1 - \mathbb{E} \, \overline{\underline{\mathbf{X}}}_1)^\top = Q} \end{split}$$

By basic CLT,

$$\frac{1}{\sqrt{Q\xi \cdot \xi}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(X_{j}^{\xi} - \xi \cdot \mathbb{E} \, \overline{\underline{\mathbf{X}}}_{1} \right) \xrightarrow{w} \mathcal{N}(0,1)$$

Infinite divisibility

Definition 3

A probability measure $\mu \in \operatorname{Prob}(\mathbb{R},\mathcal{B}\left(\mathbb{R}\right))$ is infinitely divisible if, for each $n \in \mathbb{N}$ $\exists \mu_n \in \operatorname{Prov}(\mathbb{R},\mathcal{B}\left(\mathbb{R}\right))$ such that $\mu = \mu_n^{*n} = \mu_n * \mu_n * \dots * \mu_n$

I.e.
$$\exists \{X_{n,k}\}_{k=1}^{\infty}$$
 iid s.t. $S_n = X_{n,1} + \dots + X_{n,n} \stackrel{d}{=} \mu$

I.e. \exists non-constant characteristic function φ_n such that $\hat{\varphi}(\xi) = \varphi_n(\xi)^n \quad \forall \xi \in \mathbb{R}^d$

Example. If $X_{n,k} \stackrel{d}{=} \mathcal{N}(0, \sigma^2/n)$ are independent, then

$$S_n = X_{n,1} + \dots X_{n,n} \stackrel{d}{=} \mathcal{N}(0, \sigma^2)$$

Note: If μ, ν are infinitely divisible, so is $\mu * \nu = (\mu_n * \nu_n)^*$

When a measure is infinite divisible?

Theorem 6

A probability measure $\mu \in \operatorname{Prob}(\mathbb{R},\mathcal{B}(\mathbb{R}))$ is infinitely divisible if and only if \exists a triangular array $\{X_{n,k}\}_{k=1}^{m_n}$ $m_n \uparrow \infty, n \in \mathbb{N}$ of random variables such that for each $n, \{X_{n,k}\}_{k=1}^{m_n}$ are iid, and

$$S_n = \sum_{k=1}^{m_n} X_{n,k} \xrightarrow{w} X \stackrel{d}{=} \mu$$

The CLT arises from independence. Identical distribution is \underline{not} strictly required, but some kind of "average uniformity" is needed.

Triangular Arrays

$$\{X_{n,k}\}_{k=1}^n$$
 independent, centered L^2 random variables such that $\mathbb{E}\,X_{n,k}=0, \mathbb{E}\,X_{n,k}^2=\mathrm{Var}X_{n,k}=\sigma_{n,k}^2<\infty.$ We may assume $\sum_{k=1}^n\sigma_{n,k}^2=1$

The CLT arises from independence. Identical distribution is \underline{not} strictly required, but some kind of "average uniformity" is needed.

Triangular Arrays

 $\{X_{n,k}\}_{k=1}^n$ independent, centered L^2 random variables such that $\mathbb{E}\,X_{n,k}=0, \mathbb{E}\,X_{n,k}^2=\mathrm{Var}X_{n,k}=\sigma_{n,k}^2<\infty.$ We may assume $\sum_{k=1}^n\sigma_{n,k}^2=1$

Definition 4 (Average Uniformity Conditions)

 $\{X_n,\}_{k=1}^n$ centered L^2 random variables with above conditions.

■ DV: The Decaying Variance condition:

$$\max_{1 \leq k \leq n} \sigma_{n,k}^2 \to 0 \ \text{ as } n \to \infty$$

■ UAN: The uniform Asymptotic Negligibility condition:

$$\varepsilon > 0$$
, $\lim_{n \to \infty} \max_{1 \le k \le n} \mathbb{P}(|X_{n,k}| > \varepsilon) = 0$

Above are two conditions that precisely interpret the requirement that "the terms are small and comparable in size"

Note: DV condition implies UAN condition:

$$\max_{1 \leq k \leq n} \mathbb{P}(|X_{n,k}| > \varepsilon) \leq \max_{1 \leq k \leq n} \frac{\mathrm{Var} X_{n,k}}{\varepsilon^2} \leq \frac{1}{\varepsilon^2} \max_{k \leq n} \sigma_{n,k}^2 \to 0$$

We'd like to prove a CLT for triangular arrays assuming something like (DV). Actually, slightly stronger conditions:

• (Lind) The Lindberge condition:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{E} X_{n,k}^{2} : |X_{n,k}| > \varepsilon = 0 \ \forall \varepsilon > 0$$

Example: $X_{n,k} = \frac{1}{b\sqrt{n}}\mathring{X}_k$ where $\{X_k\}_{k=1}^{\infty}$ are iid, $\operatorname{Var} X_k = b^2$.

$$\sum_{k=1}^n \mathbb{E}\,X_{n,k}^2: |X_{n,k}| > \varepsilon = \frac{1}{b^2n}\sum_{k=1}^n \mathbb{E}\,\mathring{X}_k^2: |\mathring{X}_k| > |b|\sqrt{n}\varepsilon = \frac{1}{b^2}\,\mathbb{E}\,\mathring{X}_1^2\mathbf{1}_{|\mathring{X}_1| > |b|\sqrt{n}\varepsilon} \to 0$$

We'd like to prove a CLT for triangular arrays assuming something like (DV). Actually, slightly stronger conditions:

• (Lind) The Lindberge condition:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \mathbb{E} X_{n,k}^{2} : |X_{n,k}| > \varepsilon = 0 \ \forall \varepsilon > 0$$

Example: $X_{n,k} = \frac{1}{b\sqrt{n}}\mathring{X}_k$ where $\{X_k\}_{k=1}^{\infty}$ are iid, $\mathrm{Var}X_k = b^2$.

$$\sum_{k=1}^n \mathbb{E}\,X_{n,k}^2: |X_{n,k}| > \varepsilon = \frac{1}{b^2n}\sum_{k=1}^n \mathbb{E}\,\mathring{X}_k^2: |\mathring{X}_k| > |b|\sqrt{n}\varepsilon = \frac{1}{b^2}\,\mathbb{E}\,\mathring{X}_1^2\mathbf{1}_{|\mathring{X}_1| > |b|\sqrt{n}\varepsilon} \to 0$$

Proposition 5

Lindberg condition ⇒ DV condition

Proof.

Lindberg CLT

If $\{X_{n,k}\}_{1\leq k\leq n}^{n\in\mathbb{N}}$ is a standard triangular array satisfying Lindberg condition, then $S_n \xrightarrow{w} \mathcal{N}(0,1)$.

Lemma 3

If $a_i, b_i \in \mathbb{C}$ with $|a_i|, |b_i| \leq 1$, then

$$|a_1 a_2 \dots a_N - b_1 b_2 \dots b_n| \le \sum_{j=1}^n |a_j - b_j|$$

Proof. Proceed by induction.

Lemma 4

If
$$X\in L^2$$
, $|\varphi_X(\xi)-\left(1+i\operatorname{\mathbb{E}} X\xi-\frac{1}{2}\operatorname{\mathbb{E}} X^2\xi^2\right)|\leq \xi^2\mathcal{E}(\xi)$ where $\mathcal{E}(\xi)=\operatorname{\mathbb{E}} X^2\wedge\frac{|X|^3}{3!}|\xi|\downarrow 0$ as $|\xi|\to 0$ by DCT

Proof. Taylor's theorem:
$$|e^{it}-(1+it-\frac{1}{2}t^2)|\leq \frac{|it|^3}{3!}$$

Lindberg CLT

 $\overline{\text{If }}\{X_{n,k}\}_{1\leq k\leq n}^{n\in\mathbb{N}} \text{ is a standard triangular array satisfying Lindberg condition, then } S_n\xrightarrow{w}\mathcal{N}(0,1).$

Proof. Suffice to show
$$\varphi_{S_n}(\xi) \to e^{-\frac{\xi^2}{2}} \ \forall \xi \in \mathbb{R}$$
.

$$\mathsf{LHS} = \varphi_{X_{n,1}} \dots \varphi_{X_{n,n}}(\xi), \, \mathsf{RHS} = e^{-\frac{\xi^2}{2}\sigma_{n,1}^2} \dots e^{-\frac{\xi^2}{2}\sigma_{n,n}^2}$$

By Lemma 3,
$$\left| \varphi_{S_n}(\xi) - e^{-\frac{\xi^2}{2}} \right| \leq \sum_{k=1}^n \left| \varphi_{X_{n,k}}(\xi) - e^{-\frac{\xi^2}{2}\sigma_{n,k}^2} \right|.$$

Note that
$$\varphi_{X_n,}(\xi) pprox 1 + i\,\mathbb{E}\,X_{n,k}\xi - \frac{1}{2}\,\mathbb{E}\,X_{n,k}^2\xi^2 = 1 - \frac{1}{2}\sigma_{n,k}^2\xi^2$$

$$\left| \varphi_{X_{n,k}}(\xi) - e^{-\frac{\xi^2}{2}\sigma_{n,k}^2} \right| \leq \underbrace{\left| \varphi_{X_{n,k}}(\xi) - \left(1 - \frac{1}{2}\sigma_{n,k}^2\xi^2\right) \right|}_{A_{n,k}} + \underbrace{\left| \left(1 - \frac{1}{2}\sigma_{n,k}^2\xi^2\right) - e^{-\frac{\xi^2}{2}\sigma_{n,k}^2}\right|}_{B_{n,k}}$$

Suffices to show $\sum_{k=1}^{n} (A_{n,k} + B_{n,k}) \to 0$ as $n \to \infty$.

$$\begin{split} A_{n,k} &= \left| \varphi_{X_{n,k}} - \left(1 - \frac{1}{2} \sigma_{n,k}^2 \xi^2 \right) \right| \underset{Lemma17}{\leq} \xi^2 \operatorname{\mathbb{E}} X_{n,k}^2 \wedge |\xi| \frac{|X_{n,k}|^3}{3!} \\ &\leq \xi^2 \left(\operatorname{\mathbb{E}} X_{n,k}^2 \wedge \frac{|\xi|}{3!} |X_{n,k}|^3 : |X_{n,k}| \leq \varepsilon + \operatorname{\mathbb{E}} X_{n,k}^2 \wedge \frac{|\xi|}{3!} |X_{n,k}|^3 : |X_{n,k}| > \varepsilon \right) \\ &\leq \frac{|\xi|^3}{3!} \varepsilon \sigma_{n,k}^2 + \varepsilon \operatorname{\mathbb{E}} X_{n,k}^2 : |X_{n,k}^2| > \varepsilon \\ &\qquad \qquad \therefore \sum_{k=1}^n A_{n,k} \leq \frac{|\xi|^3}{3!} \varepsilon \sum_{k=1}^n \sigma_{n,k}^2 + \xi^2 \sum_{k=1}^n \operatorname{\mathbb{E}} X_{n,k}^2 : |X_{n,k}| > \varepsilon \end{split}$$

The second term goes to 0 as $n \to \infty$ by the Lindberg condition.

$$\therefore \lim \sup_{n \to \infty} \sum_{k=1}^{n} A_{n,k} \le \frac{|\xi|^3}{6} \varepsilon \, \forall \varepsilon > 0$$

$$B_{n,k} = \left| e^{-\frac{\xi^2}{2}\sigma_{n,k}^2} - \left(1 - \frac{1}{2}\sigma_{n,k}^2 \xi^2\right) \right|$$
Note that: $|e^{-u} - (1 - u)| \le \frac{u^2}{2} \ \forall u \ge 0$

$$\therefore \sum_{k=1}^n B_{n,k} \le \sum_{k=1}^n \frac{1}{2} \left(\frac{1}{2}\sigma_{n,k}^2 \xi^2\right)^2 = \frac{1}{8} \xi^4 \sum_{k=1}^n \sigma_{n,k}^4$$
Note that $\sigma_{n,k}^4 = \sigma_{n,k}^2 \cdot \sigma_{n,k}^2 \le \max_{1 \le j \le n} \sigma_{n,j}^2 \sigma_{n,k}^2$

$$\therefore \frac{1}{8} \xi^4 \sum_{k=1}^n \sigma_{n,k}^4 \le \frac{1}{8} \xi^4 \max_{1 \le j \le n} \sigma_{n,j}^2 \cdot \sum_{k=1}^n \sigma_{n,k}^2$$