XPT2046 用户手册 V2.0

2008年9月

目录

1	功能说明		4
2	主要特性		4
3	应用领域	<u> </u>	4
4		电路	
5			
		电气特性	
	5.1		
6	芯片引脚	描述	
6	5.1	引脚分配图	
	6.1.1	QFN-16 封装	
	6.1.2 6.1.3	TSSOP-16 封装VFBGA-16 封装	
í	6.1.3 5.2	引脚功能描述	
7		6典型参考特性	
		大生多少有工	
8			
	3.1	基本原理描述	
	3.2	模拟输入特性	
	3.3 3.4	内部参考电压	
	3.4 3.5	单端工作模式	
	3.6	差分工作模式	
8	3.7	触摸屏应用建议	
8	3.8	温度测量	
	3.9	电池电压测量	
8	3.10	压力测量	
9	数字接口		18
10		笔中断输出	19
11	1	转换周期	20
1	11.1	16 时钟周期转换	20
	1.2	数字时序	
]	11.3	15 时钟周期转换	21
	1.4	数据格式	
]	11.5	8 位转换模式	22
12		功耗	22
13		应用注意事项	23
14		芯片封装物理尺寸	25
]	14.1	QFN-16 封装	25
]	14.2	TSSOP-16 封装	
1	14.3	VFBGA-48 封装	27

图目录

图 1 XPT2046 典型应用电路	4
图 2 XPT2046 的QFN-16 封装管脚(产品代号: XPT2046IRGVR)	8
图 3 XPT2046 的TSSOP-16 封装管脚(产品代号: XPT2046IPW)	8
图 4 XPT2046 的VFBGA-16 封装管脚(产品代号: XPT2046IZQCR)	8
图 5 XPT2046 模拟输入简图	13
图 6 内部电压源示意图	14
图 7 单端模式工作示意图(SER/ $\overline{\mathrm{DFR}}$ =1,Y开关闭合,XP作为模拟输入)	15
图 8 差分参考源工作模式简图(SER/DFR=0,Y开关闭合,XP作为模拟输入)	15
图 9 温度测量功能示意图	
图 10 电池电压测量功能模块图	
图 11 压力测量模块图	
图 13 PEN IRQ 功能模块图	20
图 14 8 位总线接口, 无DCLK时钟延迟 16 时钟周期转换时序	
图 15 详细时序图	21
图 16 最快转换速率, 15 时钟周期转换	
图 17 理想情况输入电压和输出编码对应关系	
图 18 工作电流与采样率的关系	
图 19 QFN-16 封装尺寸	
图 20 TSSOP-16 封装尺寸	26
图 21 VFBGA-48 封装尺寸	27
表 1 芯片极限参数表	
表 1 芯片极限参数表表 2 XPT2046 电气特性表	
表 3 单端模式输入配置(SER/DFR=1)	
表 4 差分模式输入配置(SER/DFR=0)	
表 5 制字的控制位命令	
表 6 控制字节各位描述	
表 7 掉电和内部参考电压选择	
丰 8 时 左 知 茹 说 明	21

功能说明 1

XPT2046 是一款 4 线制电阻式触摸屏控制器,内含 12 位分辨率 125KHz 转换速率逐步逼近型 A/D 转换器。 XPT2046 支持从 1.5V 到 5.25V 的低电压 I/0 接口。XPT2046 能通过执行两次 A/D 转换查出被按的屏幕位置, 此之外,还可以测量加在触摸屏上的压力。内部自带 2.5V 参考电压,可以作为辅助输入、温度测量和电池监测 之用, 电池监测的电压范围可以从 0V 到 6V。XPT2046 片内集成有一个温度传感器。 在 2.7V 的典型工作状态 下, 关闭参考电压, 功耗可小于 0.75mW。XPT2046 采用微小的封装形式: TSSOP-16, QFN-16 和 VFBGA-48。工作 温度范围为-40℃~+85℃。与 ADS7846、TSC2046、AK4182A 完全兼容

主要特性 2

- 工作电压范围为 1.5V~5.25V
- 支持 1.5V~5.25V 的数字 I/O 口
- 内建 2.5V 参考电压源
- 电源电压测量(0V~6V)
- 内建结温测量功能
- 触摸压力测量
- 采用3线制SPI通信接口
- 具有自动省电功能

应用领域

- 移动电话(手机等)
- 触摸屏显示器,个人数字助理(PDA)
- 便携式仪器, 收款终端设备, 等等

典型应用电路 4

图1 XPT2046 典型应用电路

5 极限参数

表1 芯片极限参数表

名称	参数
VCC和IOVDD电压	-0.3V至+6V
模拟输入信号电压	-0.3V至+VCC+0.3V
数字输入信号电压	-0.3V至IOVDD+0.3V
功耗	250mW
最大结温	+150°C
工作温度	-40°C∼+85°C
贮存温度	-65°C ~ +150°C
焊接温度(小于10秒)	+300°C

注: 在极限值之外或任何其他条件下, 芯片的工作性能不予保证。

5.1 电气特性

限定条件: V_S =+2.7V~+5.5V , T_A =-40°C~+85°C ,VCC=+2.7V, V_{REF} =2.5V内部电压, f_s =125KHz, f_{clk} =2MHz,12 位模式;数字输入接地或为IOVDD;VCC与IOVDD相同

表2 XPT2046 电气特性表

			XPT2046		
参数	条件	最小值	典型值	最大值	单位
模拟输入:					
差分输入	正极输入一负极输入	0		V_{REF}	V
单端输入	正极输入	-0.2		+VCC+0.2	V
	负极输入	-0.2		+0.2	V
输入电容			25		pF
漏电流			0.1		μА
ADC系统性能:					
分辨率			12		Bits
无失码		11		· ·	Bits
积分线性误差				±2	LSB ¹
失调误差				±6	LSB
增益误差	外部参考电压			±4	LSB
噪声性能	包括内部参考电压		70		μV_{rms}
电源电压抑制比			70		dB
转换时间				12	时钟周期
建立时间		3			时钟周期
转换速率				125	KHz
选择器稳定时间			500		ns
延时时间			30		ns
抖动时间			100		ps
通道间隔离	V_{IN} =2.5 V_{pp} fs=50KHz		100		dB
开关驱动					
开关导通电阻					
YP、XP			5		Ω
YN、XN	-		6		Ω
驱动电流2	保持100ms			50	mA
参考电压输出					
内部参考电压精度		2.45	2.50	2.55	V
内部参考电压温漂			15		ppm/℃
参考电压静态电流			500		μA
外部参考电压					
输入范围		1.0		VCC	V
输入阻抗	SER/DFR=0, PD1=0		1		$\mathbf{G}\Omega$
	内部参考关断				
	内部参考打开		250		Ω

			* *		
电池电压检测					
输入电压范围		0.5		6.0	V
输入阻抗					
采样电池时			4		$\mathbf{K} \Omega$
关闭电池检测			1		$\mathbf{G}\Omega$
精确度	V _{BAT} =0.5V~5.5V,外部V _{REF} =2.5V	-2		+2	%
	V _{BAT} =0.5V~5.5V,使用内部V _{REF}	-3		+3	%
温度测量					
温度范围		-40		+85	$^{\circ}\!\mathbb{C}$
分辨率	差分方式3		1.6		$^{\circ}\! \mathbb{C}$
	TEMP0 ⁴		0.3		$^{\circ}$ C
精确度	差分方式3		±2		℃
	TEMP0 ⁴		±3		℃
数字输入输出					
逻辑类型			CMOS		
电容	所有数字控制输入引脚		5	15	pF
V _{IH}	I _{IH} ≤+5μA	IOVDD*0.7		IOVDD+0.3	V
V _{IL}	I _{IL} ≤+5μA	-0.3		0.3*IOVDD	V
V _{OH}	I _{OH} =-250μA	IOVDD*0.8			V
V _{OL}	I _{OL} =250μA			0.4	V
数据格式		直接二进制			
电源要求					
VCC ⁵	特性	2.7		3.6	V
	工作范围	2.2		5.25	V
IOVDD ⁶		1.5		VCC	V
静态电流7	内部参考关闭		280	650	μΑ
	内部参考打开		780		μΑ
	f _{采样} =12.5KHz		220		μΑ
	掉电状态			3	μΑ
	(CS=DCLK=DIN=IOVDD)				
功耗	VCC=+2.7V			1.8	mW
温度范围					
特性		-40		+85	$^{\circ}$

说明:

- 1. LSB表示最低有效位。当 V_{REF} = +2.5V时, 其LSB是 610 μV
- 2. 为确保芯片可靠, X、Y的驱动电流不能大于 50mA
- 3. 测试 TEMP0 和 TEMP1 之差,不需校正
- 4. 温漂是-2.1mV/℃
- 5. XPT2046 工作于 2.2V
- 6. IOVDD 必须小于 VCC
- 7. VCC 和 IOVDD 的总电流。 典型值包括来自当 PD0 = 0 时的辅助输入转换

6 芯片引脚描述

6.1 引脚分配图

6.1.1 QFN-16 封装

图2 XPT2046的 QFN-16 封装管脚(产品代号: XPT2046IRGVR)

6.1.2 TSSOP-16 封装

图3 XPT2046的 TSSOP-16 封装管脚(产品代号: XPT2046IPW)

6.1.3 VFBGA-16 封装

图4 XPT2046的 VFBGA-16 封装管脚(产品代号: XPT2046IZQCR)

6.2 引脚功能描述

QFN引脚号	TSSOP引脚号	VFBGA引脚号	名称	说明
1	13	A5	BUSY	忙时信号线。当CS为高电平时
				为高阻状态
2	14	A4	DIN	串行数据输入端。当CS为低电
				平时,数据在DCLK上升沿锁存
				进来
3	15	A3	\overline{CS}	片选信号。控制转换时序和使能
				串行输入输出寄存器,高电平时
				ADC掉电
4	16	A2	DCLK	外部时钟信号输入
5	1	B1和C1	VCC	电源输入端
6	2	D1	XP	XP位置输入端
7	3	E1	YP	YP位置输入端
8	4	G2	XN	XN位置输入端
9	5	G3	YN	YN位置输入端
10	6	G4和G5	GND	接地
11	7	G6	V_{BAT}	电池监视输入端
12	8	E7	AUX	ADC辅助输入通道
13	9	D7	V_{REF}	参考电压输入/输出
14	10	C7	IOVDD	数字电源输入端
15	11	В7	PENIRQ	笔接触中断引脚
16	12	A6	DOUT	串行数据输出端。数据在DCLK
				的下降沿移出,当 <u>CS</u> 高电平时
				为高阻状态

7 XPT2046 典型参考特性

条件: $T_A = 25$ °C, VCC = +2.7V, IOVDD = +1.8V; $V_{REF} = 2.5V$ 外部电压, 12 位模式; PD0 = 0, $f_S = 125 KHz$, $f_{clk} = 2 MHz$ 。

工作原理 8

基本原理描述 8.1

XPT2046 是一种典型的逐次逼近型模数转换器(SAR ADC),包含了采样/保持、模数转换、串口数据 出等功能。同时芯片集成有一个 2.5V的内部参考电压源、温度检测电路,工作时使用外部时钟。XPT2046 可以 单电源供电,电源电压范围为 2.7V~5.5V。参考电压值直接决定ADC的输入范围,参考电压可以使用内部参考 电压,也可以从外部直接输入1V~VCC范围内的参考电压(要求外部参考电压源输出阻抗低)。X、Y、Z、 VBAT、Temp和AUX模拟信号经过片内的控制寄存器选择后进入ADC,ADC可以配置为单端或差分模式。选择VBAT、 Temp和AUX时应该配置为单端模式; 作为触摸屏应用时, 应该配置为差分模式, 这可有效消除由于驱动开关的寄 生电阻及外部的干扰带来的测量误差, 提高转换精度。

8.2 模拟输入特性

图 5 描述了XPT2046 片内多路选择器、ADC的模拟差分输入和差分参考电压基准。表 3 和表 4 说明了A2、 A1、A0 和SER/ DFR 控制位与XPT2046 的配置关系。这些控制位来自DIN脚的串行数据(更详细的说明见数字接 口部分)。

图5 XPT2046模拟输入简图

A2	A 1	A0	V_{BAT}	AUXIN	TEMP	YN	XP	ΥP	Y-位置	X-位置	Z ₁ -位 置	Z ₂ -位 置	X-驱动	Y-驱动
0	0	0			+IN (TEMP0)								off	off
0	0	1					+IN		测量				Off	On
0	1	0	+IN										Off	Off
0	1	1					+IN				测量		XN, On	YP, On
1	0	0				+IN						测量	XN, On	YP, On
1	0	1						+IN		测量			On	Off
1	1	0		+IN			·						Off	Off
1	1	1			+IN (TEMP1)								Off	Off

表3 单端模式输入配置(SER/DFR=1)

表4 差分模式输入配置(SER/DFR=0)

A2	A1	A0	+REF	-REF	YN	XP	YP	Y-位置	X-位置	Z ₁ -位置	Z₂-位置	驱动
0	0	1	YP	YN		+IN		测量				YP, YN
0	1	1	ΥP	XN		+IN				测量		YP, XN
1	0	0	ΥP	XN	+IN						测量	YP, XN
1	0	1	XP	XN			+IN		测量			XP, XN

8.3 内部参考电压

XPT2046的内部 2.5V参考电压源可通过控制位PD1(见表 6 和图 6)进行关闭或者打开。一般地,内部参考电压只用于单端模式下 V_{BAT} 、Temp和AUX输入测量。使用差分模式,触摸屏可以获得最佳性能。如果要与ADS7843 兼容,XPT2046的内部参考电压源必须强行关闭。因此,上电后要对控制位PD1 置 0 以确保关闭内部参考源(见典型特性中参考电压从掉电到上电时间的关系)。

图6 内部电压源示意图

8.4 外部参考电压输入

+REF和-REF(见图 5)之间的电压差(下文用V_{REF}表示)决定了模拟输入的电压范围。XPT2046的 参考电压输入范围为 1V~ VCC。参考电压越低,则ADC输出的二进制数据结果每一个数字位所代表的模 拟电压也越低。

在 12 位工作方式下,数据结果的最低位所代表的模拟电压为 V_{REF} / 4096,其余位依此类推。因此,参考电压越低,干扰引入的误差会越大,此时要求尽可能使用低噪声、低波动的参考电压源;在设计电路板时,尽可能减少干扰,输入的信号噪音也不能太高,否则会直接影响转换精度。

8.5 单端工作模式

SER/DFR置为高电平时,XPT2046工作在为单端模式,单端工作模式的应用原理图 7 所示。 单端模式简单,在采样过程完成后,转换过程中可以关闭驱动开关,降低功耗。但这种模式的缺点是精度 直接受参考电压源的精度限制,同时由于内部驱动开关的导通电阻存在,导通电阻与触摸屏电阻的分压作 用,也会带来测量误差。

图7 单端模式工作示意图($SER/\overline{DFR}=1$,Y开关闭合,XP作为模拟输入)

8.6 差分工作模式

SER/DFR置为低电平时,XPT2046为差分工作模式,如图 8 所示。

差分模式的优点是: +REF 和-REF 的输入分别直接接到 YP、YN上,可消除由于驱动开关的导通电阻引入的坐标测量误差。缺点是: 无论是采样还是转换过程中,驱动开关都需要接通,相对单端模式而言,功耗增加了。

图8 差分参考源工作模式简图($SER/\overline{DFR}=0$,Y开关闭合,XP作为模拟输入)

8.7 触摸屏应用建议

在应用中,建议添加一些外部电容跨接于触摸屏,以便虑掉触摸屏自身产生的噪声(如:由LCD和背光电路产生的噪声)。电容和电阻形成一个低通滤波器从而抑制了噪声。电容值过大可能导致建立时间的增加,出现增益错误,因此选择电容时要考虑输入信号的带宽要求。

8.8 温度测量

XPT2046集成温度检测功能,用于温度的检测。XPT2046的温度测量有两种方法。

方法一:直接测量

利用二极管的 PN 结温度系数相对稳定的特点,通过测试二极管的 PN 结电压来测量温度,可以预先测试并存储室温下的 PN 结电压(典型值为 600mV 左右),PN 结的温度系数约为一2mV/℃,测试其他温度时的 PN 结电压,就可以得到温度。这种方法测试出的温度随工艺的变化有较大变化,而且需要校正

图9 温度测量功能示意图

方法二:间接测量

这种方法不要求指定测试温度基准,精确度可以达到2℃。这种方法需要进行二次转换:

第一次,设置 "A2A1A0" = "000",测试 temp0 电流时的 PN 结电压 V0

第二次,设置 "A2A1A0" = "111",实现 91 倍 temp0 大的电流,测试此时的 PN 结电压 V1。

第二次和第一次转换的电压差可以通过等式(1)表示:

$$\triangle V = \frac{kT}{q} \bullet \ln(N) \quad \dots \qquad (1)$$

其中:

N——电流比率系数,等于91:

k——伯尔兹曼常数,等于 1.38054×10^{-23} 伏特每开($V \cdot K^{-1}$); q——电荷量,等于 $1.602189 \cdot 10^{-19}C$

T——温度值(开尔文)

方法二比方法一提供更精确的测量精度,可达到2℃

绝对温度换算公式为:

$$^{\circ}K = q \bullet \frac{\Delta V}{(k \bullet \ln(N))} \dots (2)$$

其中:

$$\triangle V = V (I91) - V (I1) (in mV)$$

° $K = 2.573$ $K/mV \cdot \triangle V$

 $^{\circ}$ C = 2.573 • \triangle V(mV) – 273

注意:由于每个测温二极管的偏置电流仅仅工作 3 个采样时钟周期(仅采样期间),因此,功耗的上升是不明显的,尤其是温度测量仅仅是偶尔出现,此时的 XPT2046 内部的结温可以代表环境温度。

K

8.9 电池电压测量

如图 11 所示,电池电压可以从 0V到 6V之间变化,输入电压(V_{BAT})经过分压(1/4)后输入至 ADC,所以 5.5V的电池电压被化成 1.375V输入到ADC,这样也简化了复选器和控制逻辑。为了降低功耗,分压电路仅仅工作在当A2A1A0="010"(具体意义见表 3)的采样周期。

图10 电池电压测量功能模块图

8.10 压力测量

XPT2046 也能对触摸的压力进行处理。为了判断触摸物体是笔还是手指,有必要对触摸压力进行测量。一般而言,这种测量的性能要求不高,所以采用 8 位分辨率模式(但是,下面的计算是采用 12 位分辨率模式的)即可。有好几种不同的方法实现本测量。第一种方法需要知道 X 面板的电阻,X 位置的测量值,触摸屏两附加面板之间的测量值(Z1和 Z2),如图 12 所示。可用公式(3)计算该触摸电阻:

$$R_{\text{ee模}} = R_{\text{X面板}} \cdot \frac{X \oplus \Xi}{4096} \left(\frac{Z2}{Z1} - 1 \right) \dots$$
 (3)

第二种方法要求测出 X 面板和 Y 面板的电阻, X 和 Y 的位置, 和 Z1 的位置。可采用公式(4) 计算触摸

电阻:
$$R$$
触摸= $\frac{\text{Rx面板} \cdot \text{x位置}}{4096} \left(\frac{4096}{Z_1} - 1 \right) - R_{\text{Y面板}} \left(1 - \frac{\text{Y位置}}{4096} \right) \dots$ (4)

图11 压力测量模块图

9 数字接口

XPT2046数据接口是串行接口,其典型工作时序如图 12 所示,图中展示的信号来自带有基本串行接口的单片机或数据信号处理器。处理器和转换器之间的的通信需要 8 个时钟周期,可采用 SPI、SSI 和 Microwire 等同步串行接口。一次完整的转换需要 24 个串行同步时钟(DCLK)来完成。

前8个时钟用来通过DIN引脚输入控制字节。当转换器获取有关下一次转换的足够信息后,接着根据获得的信息设置输入多路选择器和参考源输入,并进入采样模式,如果需要,将启动触摸面板驱动器。3个多时钟周期后,控制字节设置完成,转换器进入转换状态。这时,输入采样一保持器进入保持状态,触摸面板驱动器停止工作(单端工作模式)。接着的12个时钟周期将完成真正的模数转换。如果是度量比率转换方式(SER/DFR=0),驱动器在转换过程中将一直工作,第13个时钟将输出转换结果的最后一位。剩下的3个多时钟周期将用来完成被转换器忽略的最后字节(DOUT置低)。

图12 8位总线接口, 无 DCLK 时钟延迟, 24 时钟周期转换时序

控制字节由 DIN 输入的控制字如表 5 所示,它用来启动转换,寻址,设置 ADC 分辨率,配置和对 XPT2046 进行掉电控制。图 12、表 5 和表 6 给出控制字的各控制位的详细说明。

起始位——第一位,即 S 位。控制字的首位必须是 1,即 S=1。在 XPT2046 的 DIN 引脚检测到起始位前,所有的输入将被忽略。

地址——接下来的 3 位(A2、A1 和 A0)选择多路选择器的现行通道(见表 3、表 4 和图 6),触摸 屏驱动和参考源输入。

MODE——模式选择位,用于设置 ADC 的分辨率。MODE=0,下一次的转换将是 12 位模式; MODE=1,下一次的转换将是 8 位模式。

SER/DFR——SER/DFR位控制参考源模式,选择单端模式(SER/DFR=1),或者差分模式 (SER/DFR=0)。在X坐标、Y坐标和触摸压力测量中,为达到最佳性能,首选差分工作模式。参考电压来自开关驱动器的电压。在单端模式下,转换器的参考电压固定为VREF相对于GND引脚的电压(更详细的说明,见表3和表4,图5和图8)。

PD0 和 PD1——表 5 展示了掉电和内部参考电压配置的关系。ADC 的内部参考电压可以单独关闭或者打开,但是,在转换前,需要额外的时间让内部参考电压稳定到最终稳定值;如果内部参考源处于掉电

状态,还要确保有足够的唤醒时间。ADC要求是即时使用,无唤醒时间的。另外还得注意,当 BUSY 是高电平的时候,内部参考源禁止进入掉电模式。XPT2046的通道改变后,如果要关闭参考源,则要重新对 XPT2046写入命令。

表5 制字的控制位命令

位 7	(MSB)	位 6	位 5	位 4	位3	位 2	位1	位 0(LSB)
	S	A2	A1	A0	MODE	SER/DFR	PD1	PD0

表6 控制字节各位描述

		777 42-104 1 1 1 12-10-2
位	名称	功能描述
7	S	开始位。为1表示一个新的控制字节到来,为0则忽略 PIN 引脚上数据
6-4	A2-A0	通道选择位。参见表 1 和表 2
3	MODE	12 位/8 位转换分辨率选择位。为 1 选择 8 位为转换分辨率, 为 0 选择 12 位分辨率
2	SER/DFR	单端输入方式/差分输入方式选择位。为1是单端输入方式,为0是差分输入方式
1-0	PD1-PD0	低功率模式选择位。若为 11, 器件总处于供电状态; 若为 00, 器件在变换之间处于 低功率模式

如果采用单端模式测量 X 坐标、Y 坐标和触摸压力,则需要添加一个外部参考电压,并且 XPT2046 的电源也必须来自这个外部参考源。需要特别注意的一点是,当使用单端模式时,输入 ADC 的电压不能超过内部参考电压,尤其是当工作电压大于 2.7V 的时候。

注意: 差分模式仅用于 X 坐标、Y 坐标和触摸压力的测量, 其它测量要求采用单端模式。

表7 掉电和内部参考电压选择

PD1	PD0	PENIRQ	功能说明
0	0	使能	在两次 A / D 转换之间掉电,下次转换一开始,芯片立即进入完全上电状态,而无
			需额外的延时。在这种模式下,YN 开关一直处于 ON 状态
0	1	禁止	参考电压关闭,ADC 打开
1	0	使能	参考电压打开,ADC 关闭
1	1	禁止	芯片处于上电状态,参考电压和 ADC 总是打开

10 笔中断输出

笔中断输出功能如图 13 所示。在PD0=0 的掉电状态下,Y驱动器工作,触摸屏的Y一面板被连到GND。PENIRQ输出通过两个开关和XP输入连在一起。当屏幕上有触摸动作时,XP输入通过触摸屏下拉到地。

在XPT2046 的绝大部分工作方式下,内部上拉电阻标称值是 50K Ω ,但它的实际值可随温度的变动而在 36 K Ω \sim 67 K Ω 之间波动。为了确保出现在 $\frac{1}{PENIRQ}$ 电路中的逻辑 0 电平电压低于 0.35 • VCC,XP和 YN之间的总电阻必须小于 21K Ω 。

需要注意的是,上拉电阻越高,PENIRQ对触摸屏的反应也就也越慢,所以,编写软件时要考虑到这一点。

图13 PENIRO 功能模块图

由于电流通过触摸屏流到地,PIN IRQ 变低并作为处理器的中断信号。在测量X、Y和Z坐标的过程中,XP输入将与PEN IRQ内部上拉电阻分离,这样可以避免来自这个内部上拉电阻的漏电流流过触摸屏,同时也避免了误差。此外,在X、Y和Z坐标测量中,PEN IRQ被禁止,输出为低电平;在测量VBAT、AUX和temp过程中,PEN IRQ被禁止,输出为高电平。如果最后写进XPT2046的控制字包含了PD0=1,笔中断输出功能禁止,不能监测触摸屏上触摸动作。在这些情况下,要重新使能笔中断输出功能,需把带有PD0=0的控制字写入XPT2046。如果在最后写入的控制字中包含了PD0=0,笔中断输出将在这次转换结束后使能。转换结束发生在输出转换数据位1时的DCLK时钟的下降沿。建议无论在任何时候,处理器在发控制字给XPT2046之前都要屏蔽 PEN IRQ的中断,以避免错误的中断的触发。

11 转换周期

11.1 16 时钟周期转换

第 n+1 次转换的控制位可以与第 n 次转换部分重叠,所以可以用 16 个时钟周期完成一次转换,如图 15 所示。图 14 也说明了处理器和转换器之间的串行通信是可以双向独立进行的。此时,每次转换必须在 开始后(接收到 start)的 1.6mS 内完成,否则输入采样保持电路取样的信号会逐渐被放电衰减,影响转换结果。另外,在转换过程中另一串行通信的存在会使 XPT2046 工作于全功耗状态下。

图14 8 位总线接口, 无 DCLK 时钟延迟 16 时钟周期转换时序

11.2 数字时序

图 12、图 15 和表 8 指明了 XPT2046 数字接口的详细时序。

图15 详细时序图

表8 时序规范说明

i -	•) H1/1/2/201			
符号	说明	+VCC • 2.7V	, +VCC · IOVDD ·	1.5V, C _{LOAD} =	单位
			50pF		
		最小值	典型值	最大值	
tACQ	获取时间	1.5			μS
tDS	DIN在 DCLK上升沿前生效	100			ns
tDH	DIN 保持在DCLK高电平后	50			ns
tDO	DCLK 下降沿到 DOUT生效			200	ns
tDV	 CS 下降沿到 DOUT 使能			200	ns
tTR	CS 上升沿到 DOUT禁止			200	ns
tCSS	CS 下降沿到第一个 DCLK 上升沿	100			ns
tCSH	CS 上升沿到 DCLK被忽略	10			ns
tCH	DCLK 高电平	200			ns
tCL	DCLK低电平	200			ns
tBD	DCLK下降沿到 BUSY上升/下降			200	ns
tBDV	CS 下降沿到 BUSY 使能	V		200	ns
tBTR	CS 上升沿到BUSY 禁止			200	ns

11.3 15 时钟周期转换

图 16 给出了 XPT2046 的最快时序。这种方法不支持大部分的微控制器和数字信号处理器的串行接口,因为它们一般都不提供 15 周期的串行传输方式。但是,这种方法适用于 FPGA 和 ASIC。需要注意的是,这样有效地提高了转换器的最大转换速率。

图16 最快转换速率, 15 时钟周期转换

11.4 数据格式

XPT2046 的输出数据格式是标准二进制格式。图 17 给出了不同电压对应的理想输出编码。

图17 理想情况输入电压和输出编码对应关系

11.5 8 位转换模式

在不影响输出精度的前提下提高数据吞吐量,XPT2046可以采用 8 位的转换模式。切换到 8 位转换模式,完成提前 4 个时钟完成一次转换。不仅每次转换缩短了都 4 位(数据吞吐量提高了 25%),而且由于精度的降低,可以工作在更快的转换速率下,时钟速度可以提高 50%,时钟速度的提高和转换周期的减少,共同可以使转换速率提高 2 倍。

12 功耗

XPT2046 存在两种功耗模式:全功耗(PD0=1)和自动掉电(PD0=0)。在频繁转换时,XPT2046 花大部分时间在捕捉或转换上,所以即使进入自动掉电模式,也是很少有时间停留在掉电状态的。因此,在这种情况下的全功耗和自动掉电之间的差别可以忽略。但在不频繁转换时,每次转换间隔很久,自动掉电模式可以节省很多功耗。

图 18 展示了降低 DCLK 时钟频率(正比于转换速率)或者保持 DCLK 时钟频率最高(2MHz)与减少每秒钟转换次数之间的差别。后者进入省电模式的时间明显比前者的要多(假定自动省电模式被激活)。

另一种有关功耗的重要因素是转换器的参考源模式。单端模式下,仅当在采集模拟输入电压(图 8 和表 3)时触摸面板驱动器工作。因此,仅在在采集周期为外部设备(如,电阻式触摸屏)提供电源。差分模式下,整个采集和转换周期(见图 9)都得提供电源给外部设备。在频繁转换时,这将导致功耗大幅度增长。

CS 信号也可以让XPT2046 进入掉电模式。当 CS 置高时,XPT2046 立即进入掉电模式,当前转换终止,但内部参考源并没有关闭。如果要关闭内部参考源,则要在 CS 置高前写入命令(PD1=0)对其进行关闭。

在XPT2046 首次上电时,芯片将吸取大约 20μA的电流,直到写入PD0=0 的命令字让其进入掉电模式。在 CS =0、DCLK=IOVDD时,不会有这种情况。

13 应用注意事项

遵循以下规则,可以让 XPT2046 的优越性能得到充分发挥。大多数便携系统设计中都存在着有关功耗、成本、尺寸和重量之间的矛盾。一般来说,绝大部分便携系统的芯片需要有相当干净的电源和地,这是因为其内部大部分器件的功耗非常低。这将意味着更少的旁路和更少的共地。况且,情况各不尽相同,所以应注意下面的建议与要求。

为使芯片的性能得以最优发挥,必须特别小心处理好 XPT2046 电路的物理连线。基本的 SAR 结构对脉冲干扰,电源电压、参考电压、地线连接的突变,和仅发生在模拟比较器输出锁存之前的数字输入是相当敏感的。因此,在 n 位的 SAR 转换器的任何一次转换中,都将有 n 个由外部瞬态电压变化形成的"窗口"影响着转换结果。类似这样的脉冲干扰还有可能来源于开关电源,数字逻辑电路附近,和大功率器件。这些干扰对数字逻辑输出造成的误差取决于参考电压、布局布线和外部时序。DCLK 输入时序的变化同样也对数字逻辑输出的误差存在影响。

出于上述的干扰影响考虑,供给 XPT2046 的电源必须是干净的,并且是有很好的旁路。在尽量紧靠芯片旁边,加一个 0.1 IPI 的瓷介电容。如果 VCC(或者 IOVDD)与电源之间呈高阻抗,那么还应该添加一个 1 IPI ~ 10 IPI 的电容。所有电容的漏电流务必足够小,避免在 XPT2046 掉电时给系统带来额外的功耗。一般地,VREF 管脚不需要加旁路电容,因为内部参考电压已经通过内部运算放大器缓冲输出。但是,如果使用外部参考电压源,需加旁路电容,并确保不引起振荡。

XPT2046 对外部参考电压源输入没有噪声抑制能力,如果参考电压源输入直接与电源连在一起,电源上的噪声和纹波将直接影响转换数值精度。尽管高频噪声可以滤除,但工频信号干扰的滤除相当困难,这是在设计中需要高度注意的。

XPT2046 的 GND 一般地认为模拟地 GND,管脚必须接到相当干净的接地点上去,避免与微控制器或者数字信号处理器的接地点靠近。如果有可能,最好将转换器的地单独连线至电源内部(或者电池)的接地点。最理想的布局将转换器和其他模拟电路置于同一个模拟地平面上。

特别地,在使用电阻式触摸屏时要留意触摸屏与 XPT2046 之间的连接。因为电阻式触摸屏的电阻比较小, 所以屏与 XPT2046 之间的连线要尽量短,连线的电阻要尽量小。长连线会带来更多的误差,这正像开关的导通 电阻。另外,焊接点松弛以及接触点不牢固也会给应用带来误差。

除了前面所说的,另外在触摸屏应用(例如,应用中使用了LCD 背光板)中噪声也是造成误差的重要原因。EMI 噪声可以通过LCD 面板耦合给触摸屏面板,造成数据输出不稳定、有"毛刺"、无法校准等等。尽量减少这些误差,有几种可行的方法:在触摸屏底部加一个金属屏蔽罩,屏蔽罩要接地;在YP、YN、XP和XN引脚上分别对地接滤波电容;……但必须注意到,这些设置会对触摸屏的响应时间带来影响,特别是在单端模式同时数据传输速度又比较高的应用场合。

14 芯片封装物理尺寸

14.1 QFN-16 封装

Side View

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203REF.		0.008REF.	
D	3.900	4.100	0.154	0.161
E	3.900	4.100	0.154	0.161
D1	2.000	2.200	0.079	0.087
E1	2.000	2.200	0.079	0.087
k	0.200MIN.		0.008MIN.	
b	0.250	0.350	0.010	0.014
е	0.650TYP.		0.026TYP.	
L	0.450	0.650	0.018	0.026

图19 QFN-16 封装尺寸

14.2 TSSOP-16 封装

Symbo1	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
D	4.900	5.100	0.193	0.201
Е	4.300	4.500	0.169	0.177
b	0.190	0.300	0.007	0. 012
с	0.090	0.200	0.004	0.008
E1	6.250	6.550	0. 246	0. 258
A		1.100		0.043
A2	0.800	1.000	0. 031	0. 039
A1	0.020	0.150	0.001	0.006
e	0.65 (BSC)		0.026 (BSC)	
L	0.500	0.700	0.020	0. 028
Н	0. 25 (TYP)		0. 01 (TYP)	
θ	1°	7°	1°	7°

14.3 VFBGA-48 封装

图21 VFBGA-48 封装尺寸