1 Auswertung

1.1 Justieren des Thermoelementes

Zu Beginn des Veruches musste das Thermoelement justiert werden. Für die Ausgleichgerade ergibt sich die folgende Funktion.

$$T(U) \approx 25.77 \cdot U + 273,15$$
 $[T(U)] = K$

Die Funktion ist abhängig von den gemessenen Spannungen U([U] = mV).

1.2 Bestimmen der spezifischen Wärmekapazität des Kalorimeters

Zu Beginn des Versuches wurde die spezifische Wärmekapazität des Kalorimeters $c_g m_g$ bestimmt, da diese Größe für die Berechnung der spezifischen Wärmekapazität der Stoffe c_k notwendig ist. Mittels Formel (??) wurde $c_g m_c$ ermittelt. Mit den folgenden Werten wurde $c_g m_g$ berechnet.

 $T_r = 294,28 \,\mathrm{K}$

 $T_u = 354,59 \,\mathrm{K}$

 $T_m = 322,38 \, \mathrm{K}$

 $m_x = 278,97\,\mathrm{g}$

 $m_y\,=298{,}98\,{
m g}$

Für die spezifische Wärmekapazität von Wasser wurde der Wert $c_w=4.18\,\mathrm{J/(g\,K)}$ verwendet. Es ergibt sich ein Wert von $c_qm_q=267.09\,\mathrm{J/K}$.

2 Bestimmen der spezifischen Wärmekapazität von verschiedenen Stoffen

Es wurden in dem Versuch die spezifische Wärmekapazität der Stoffe Graphit, Blei und Kupfer bestimmt, wobei für Blei die Probe Blei 2 verwendet wurde. Für Graphit und Blei wurden jeweils drei Messungen und für Kupfer lediglich eine Messung durchgeführt. Die spezifische Wärmekapazität c_k eines Körpers wird über Formel (??) ermittelt. In der beiliegenden Tabelle sind die gemessenen Größen des jeweiligen Stoffes eingetragen.

Tabelle 1: Messdaten der verwendeten Stoffe

	T_w in K	T_k in K	T_m in K	m_w in g
Graphit				
Messung 1	293,77	$377,\!27$	296,09	$772,\!50$
Messung 2	$297,\!38$	374,44	299,70	$772,\!50$
Messung 3	$299,\!95$	$375,\!45$	$302,\!53$	$772,\!50$
Blei Messung 1 Messung 2 Messung 3	295,31 296,86 298,41	371,60 369,28 370,57	296,86 298,41 299,95	765,89 765,89 765,89
Kupfer Messung 1	293,77	377,79	294,80	769,56

Für die untersuchten Proben ergibt sich somit:

$$c_{Graphit} = (1,020 \pm 0,064) \frac{J}{g K}$$

$$c_{Blei} = (0,190 \pm 0,004) \frac{J}{g K}$$

$$c_{Kupfer} = 0.18 \frac{J}{g K}$$

Die Fehler für Graphit und Blei wurden über die folgende Formel bestimmt.

$$\Delta \bar{x} = \sqrt{\frac{1}{N(N-1)} \cdot \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (1)

Dabei ist \bar{x} der Mittelwert der gemessenen Größe.

2.1 Bestimmen der Atomwärme

Damit die Atomwärme C_p eines Stoffes bestimmt werden kann, muss die spezifische Wärmekapazität dieses mit seiner Molarenmasse multipliziert werden.

$$C_p = c_k \cdot M \tag{2}$$

Für den jewiligen Stoff ergibt sich somit:

$$\begin{split} C_{pG} &= (12{,}290 \pm 0{,}768) \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \\ C_{pB} &= (39{,}990 \pm 0{,}727) \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \\ C_{pK} &= 11{,}50 \frac{\mathrm{J}}{\mathrm{mol}\,\mathrm{K}} \end{split}$$

2.2 Vergleich mit Dulong-Petit

Aus den Überlegungen der klassischen Mechanik, die bereits in der Theorie erwähnt wurden ergibt sich, dass die Atomwärme C_V materialunabhängig und konstant den Wert $3 \cdot R \approx 24,94\,\mathrm{J/(mol\,K)}$ beträgt. Nun gilt es diese Aussage zuüberprüfen. Der Zusammenhang zwischen C_p und C_V ist nach Formel (??) bekannt. Für die geprüften Stoffe ergit sich:

$$\begin{split} C_{VG} &= (12,\!26 \pm 0,\!0002) \frac{\mathrm{J}}{\mathrm{K}} \\ C_{VB} &= (38,\!26 \pm 0,\!0052) \frac{\mathrm{J}}{\mathrm{K}} \\ C_{VK} &= 10,\!78 \frac{\mathrm{J}}{\mathrm{K}} \end{split}$$