## **EUROPEAN PATENT OFFICE**

# Patent Abstracts of Japan



PUBLICATION NUMBER : 03297063 PUBLICATION DATE : 27-12-91

APPLICATION DATE : 16-04-90 APPLICATION NUMBER : 02097687

APPLICANT: FUJI ELELCTROCHEM CO LTD;

INVENTOR: WATANABE NOBUAKI;

INT.CL. : H01M 4/96

TITLE : DIPPING TREATMENT METHOD FOR CARBON ROD FOR MANGANESE DRY CELL

ABSTRACT: PURPOSE: To enhance the high temp., storage characteristics by impregnating a carbon rod with a specific compound as impregnating material, and preventing ooze of the impregnating material at the surface of carbon rod during storage at high temp.

CONSTITUTION: An impregnating material shall contain chiefly parafin wax consisting of hydrocarbon compound with a molecular weight of 300-500 with normal parafin as major component, or micro-wax consisting of isoparafin and cycloparafin series hydrocarbon admixture with a molecular weight of 35-60, and thereto crystalline polyolefin series resin is added, wherein the resistant compound shall have a melting point of 90°C or more. A carbon rod is cast into an impregnation trough kept at a specified temp. depending upon the melt viscosity of the impregnating material, and impregnation is performed till the saturated state, followed by drawing up, and the impregnating material over the surface is removed with the aid of heat. This enables ooze of impregnating material components due to storage at a high temp. and enhancement of the high temp. storage characteristics.

COPYRIGHT: (C)1991, JPO& Japio

⑩ 日本国特許庁(JP)

①特許出願公開

## @ 公 開 特 許 公 報 (A)

平3-297063

@Int.Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)12月27日

H 01 M 4/96

Н 9062-4K

> (全3頁) 審査請求 未請求 請求項の数 1

69発明の名称

マンガン乾電池用炭素棒の浸漬処理方法

願 平2-97687 ②特

頤 平2(1990)4月16日 @出

健 篠 個発 明 者 Ħ 彰 英 個発 明 泉 明 村 拃 光 良 個発 贌 者 庭 隆 個発 朙 竹 昭 明 者 渡辺 個発 寫士電気化学株式会社 の出 顖 個代 理 人 弁理士 一色 健輔

東京都港区新橋5丁目36番11号 富士電気化学株式会社内 東京都港区新橋5丁目36番11号 富士電気化学株式会社内 東京都港区新橋 5 丁目36番11号 富士電気化学株式会社内 東京都港区新橋 5 丁目36番11号 富士電気化学株式会社内

東京都港区新橋 5 丁目36番11号 富士電気化学株式会社内

東京都港区新橋5丁目36番11号

外1名

明 細線

1. 発明の名称

マンガン乾電池用炭素棒の浸漬処理方法

2. 特許請求の範囲

(1) 正極集電体を構成する炭素棒を、溶融した 含提剤を収容した浸漬槽内に浸漬し、前配炭素棒 の多孔質内部に前記含浸剤を含浸した後引き上げ、 次いで前記炭素体の表面に付着した余剰の含浸剤。 を除去する工程からなるマンガン乾電池用炭素株 の浸渍処理方法において、

前記含複刺は、ノルマルバラフィンを主成分と する分子量300~500の炭化水素化合物から なるパラフィンワックス、もしくは分子至35~ 60のイソバラフィンおよびシクロバラフィン系 **炭化水素混合物からなるマイクロワックスを主成** 分とし、これに結晶性ポリオレフィン系樹脂を添 加し、少なくともその酸点を90℃以上に設定し た合浸剤組成物からなることを特徴とするマンガ ン院電池用炭素棒の浸渍処理方法。

3. 発明の詳細な説明

(産業上の利用分野)

この発明は、高温貯蔵性を改良したマンガン乾 電池用炭素棒の浸渍処理方法に関する。

(従来の技術)

マンガン乾電池の集電体として用いられている 炭素権は、それ自体が多孔質であるため、成形し た炭素棒をそのまま電池に組込んだのでは炭素棒 を通じて電池内への空気の侵入や、電解液の設出 による正極端子板の腐蝕が生ずる。

このような不具合を防止するために、従来から、 辞耻したパラフィンワックス浸漬精内に炭素棒を 役後することにより、パラフィンワックスからな る含浸剤を多孔質内部に含浸させて隙間を寒いだ 後に電池に組込んでいる。

ところで、近年ではマンガン乾電池にあっても 電子部品並みに高温貯蔵における耐久生が要求さ れ、その目安として従来の45で貯蔵から60で 貯蔵における耐久性を評価されるようになってき t.

また、このように高温貯蔵した場合には、前記

特開平3-297063(2)

炭素棒に含没されたパラフィンワックスの溶肚に よる劣化が問題となる。

この問題を解決するために、パラフィンワックスのうち、高温貯蔵に耐えられるものとして、市販されている。例えば、融点が180°F(84℃)のマイクロワックスを含浸剤として用いれば、

前述の高温貯蔵性能を満足するものと考えられて

### (発明が解決しようとする課題)

しかしながら、前記没後処理方法では、実際に 前記高融点マイクロワックスを使用して浸渡処理 したものを60℃で貯蔵すると、初期状態に比べ て内部抵抗が増加し、また封口剤の劣化などが生 じていた。

この原因として含没剤として用いられるパラフィンファクス、マイクロファクスは仮にその助点を 80 でとすると、その約20 で低い値が軟化点となり、60 でで貯蔵すると前記高融点パラフィンファクス中に含まれている低分子量成分が溶験して炭素棒の表面に滲み出し、正医合剤と炭素棒

オレフィン系樹脂としては、 融点 1 0 7 での結晶性ポリエチレン、または軟化点 1 4 5 での結晶性ポリプロピレン等が用いられる。

そしてこれを主成分である前に組成のパラフィンワックス、もしくはマイクロワックスに温度150~160℃で混合分散することで、少なくとも融点90℃以上の含没剤組成物が得られる。

なお、磁点が90℃以上という値は、前述のように一般に前記ワックスの数化点は、その融点に対して約20℃低く、60℃における貯蔵性を考慮すると、その歌化点を少なくても70℃程度に設定すれば良いことに若目して設定された値である。

このように融点を90℃以上に設定することに より前記結晶性ポリオレフィン系樹脂の添加量が でまる。

例えば前記樹脂がポリエチレンの場合、その添加量は5~10%、多くても15%(酸量、以下同じ)になる。

つまり、この限定理由としては、添加量が下限

との接触抵抗を増加させ、また、炭素棒に盤布されている針口剤を劣化させるからであると推定される。

この発明は、少なくとも含浸剤の酸点を90℃以上に設定すれば、高温貯蔵による含浸剤成分の 後み出しを防止できることに着目してなされたも のであり、高温貯蔵性を向上したマンガン乾電池 用炭素棒の浸渍処理方法を提供することを目的と

(課題を解決するための手段)

耐記目的を達成するため、この発明方法では、 含没 利 と し て、 ノ ル ペラフィンを主き物が ラフィンの 炭化 水素 化合 割 3 0 0 ~ 5 0 0 の 炭化 水素 化合 割 3 ち で か か か く な か か っ な と り ク ロ パ ラフィン な ま で イ ク ロ ワ ック ス ま び シ ク ロ ワ ック ス ま で く ク ロ ワ ック ス 表 底 で り つ フィン 系 底 気 か に は 島 性 ポ リ オ レ フィン系 長 分 加 と も そ の 駄 点 を 9 0 ℃ 以 上 と し た 合 後 と す る

含浸に用いられる含浸剤組成物中の結晶性ポリ

値の5%を下回った場合には、酸点が90℃以下 になり、所期の効果が得られなくなる。

逆に上限値の15%を上回った場合には、 溶験 粘度が上がりすぎ、含浸処理温度を相当高く 設定 するか、あるいは時間を長くしないと炭素棒に対 する含没性が低下するからである。

なお、他の結晶性ポリオレフィン樹脂を用いた場合にも、融点を90℃以上に設定することおよび含浸時における粘度を考慮することでその添加量が定まることになる。

前記炭素棒は、風鉛にパインダとしてピッチ。 タール等を混錬し、棒状に押出成形し、次いで焼 成した後、所定寸法に裁断したものが用いられる。

この炭素棒の投資処理方法は、前記組成物からなる含浸剤が満たされ、真空状態に保たれ、かつ含浸剤の溶験粘度に応じて150℃に保たれた浸漬精内に炭素棒を投入し、飽和状態まで含浸させ、その後引上げ、加熱によって表面の含浸剤を除去すれば、含浸処理済みの炭素棒が得られる。

その後前述の処理を終えた皮素棒を常法により

## 特開平3-297063(3)

電池に組み込めばマンガン乾電池が完成する。 (作 用)

上記処理により得られた炭素排を用いたマンガン乾電池は、60℃で貯蔵した場合でも、含没剤の融点は少なくとも90℃以上であるから、その軟化点は70℃以上であり、したがってこの貯蔵温度における低分子量成分の炭素稀表面への滲出は防止されるものと推定できる。

#### (発明の効果)

以上のように、この発明のマンガン乾電池用設 素棒の浸液処理方法にあっては、上述の含浸剤組 成物を炭素棒に含浸することにより60℃での高 温貯蔵下における炭素棒裏面への含浸剤の参出に 伴う内部抵抗の増加や封口剤の劣化などを防止し、 高温貯蔵性能を向上できる。

### (実施例)

次に本発明の実施例を説明する。但し本発明は以下の実施例に限定されるものではない。

#### 寒 施 例

融点180°F (84℃) のマイクロワックス

熱によって表面の含没剤を除去し、含畏処理済みの炭素維を得た。

その後常法によりこれを電池に組み込んで R 2 O型(単一)マンガン乾電池を完成した。

次に以上の実施例および比較例の各乾電池を5ケずつ60℃で20日貯蔵した後の連続放電性能(負荷抵抗2Ω、終止電圧0.9 V)を比較したところ、実施例の電池の平均放電時間が310分であったのに対し、比較例(従来品)の平均放電時間は270分と大巾に下回っていた。

また、以上の各転電池を20ケずつを60℃で20日貯蔵し、次いで常復で3ケ月放置した後の短絡電流を調べた結果、実施例の平均短絡電流は8.5A,またその範囲は7.8~8.8Aであったのに対し、比較例の平均短格電流は7.3Aであったの配開は7.0~7.5Aであった。

(分子量35~60のイソバラフィンおよびシクロバラフィン系度化水素混合物)が入っている150でに保たれた浸漬槽内に、マイクロワックス95%に対し融点130での結晶性ポリエチレン5%を投入し均一に分散混合することにより含浸剤組成物を得た。得られた含浸剤組成物の融点は105でであった。

この浸漬物内を真空にした状態で、最適溶融粘度となる温度150℃に保ち、成形処理された炭素体を投入し、数分間浸渍しすることにより飽和状態まで含浸させ、その後引上げ、140~150℃で加熱して表面に付着している余剰の含浸剤を除去し、含浸処理済みの炭素棒を得た。

その後常法によりこれを電池に組み込んで R 2 O型 (単一) マンガン乾電池を完成した。

#### 比較例

従来タイプの最高の融点である融点180°F(84℃)のマイクロファクスが入っている15 0℃に保たれた真空状態の浸漬槽内に炭素棒を投入し、約和状態まで含浸させ、その後引上げ、加

したがって、本発明方法における短路電流値は 従来に比べて大きく、またこのことは含浸剤の診 出を原因とする封口剤の劣化の程度も小さくなる ものと惟定できる。

特許出願人 代 理 人 高士電気化学株式会社 弁理士 一 色 60 解 弁理士 松 本 雅 利