Math. - CC 1 - CORRECTION

EXERCICE 1

Résoudre les systèmes suivants :

1.
$$\begin{cases} 3x + y + z = 2 \\ x + y - 2z = -2 \\ 2x + 3y - 4z = -1 \end{cases}$$

$$S = \{(-1, 3, 2)\};$$

$$2. \begin{cases} 2x - y + z = 0 \\ x - 3y - 2z = 1 \\ x + 2y + 3z = -1 \end{cases}$$

$$S = \left\{\left(-\frac{1}{5} - z, -\frac{2}{5} - z, z\right)\right), z \in \mathbb{R} \right\}$$

EXERCICE 2

1. Résoudre dans \mathbb{R} l'inéquation d'inconnue x suivante

$$1 - \sqrt{2}\sin(2x) \ge 2$$

On a les équivalences suivantes :

$$\left(1 - \sqrt{2}\sin(2x) \ge 2\right) \Longleftrightarrow \left(-\sqrt{2}\sin(x) \ge 1\right) \Longleftrightarrow \left(\sin(2x) \le -\frac{\sqrt{2}}{2}\right) \Longleftrightarrow \left(2x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{3\pi}{4} + 2k\pi, -\frac{\pi}{4} + 2k\pi\right]\right)$$

La dernière équivalence peut s'obtenir à l'aide du cercle trigonométrique.

On conclut que l'ensemble des solutions est :

$$\bigcup_{k \in \mathbb{Z}} \left[-\frac{3\pi}{8} + k\pi, -\frac{\pi}{8} + k\pi \right]$$

2. Résoudre dans \mathbb{R} l'équation d'inconnue x suivante

$$\sqrt{3}\cos(x) + \sin(x) = -1$$

On a les équivalences suivantes :

$$\left(\sqrt{3}\cos(x) + \sin(x) = -1\right) \Longleftrightarrow \left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x) = -\frac{1}{2}\right) \Longleftrightarrow \left(\cos\left(\frac{\pi}{6}\right)\cos(x) + \sin\left(\frac{\pi}{6}\right)\sin(x) = -\frac{1}{2}\right) \Longleftrightarrow \left(\cos\left(x - \frac{\pi}{6}\right) = \cos\left(\frac{2\pi}{3}\right)\right) \Longleftrightarrow \left(x - \frac{\pi}{6} = \frac{2\pi}{3}[2\pi]\right)$$

La dernière équivalence peut s'obtenir à l'aide du cercle trigonométrique.

On conclut que l'ensemble des solutions est :

$$\left\{\frac{5\pi}{6}+2k\pi,k\in\mathbb{Z}\right\}\cup\left\{-\frac{\pi}{2}+2k\pi,k\in\mathbb{Z}\right\}$$

EXERCICE 3

Soit $a \in \mathbb{R}$, f_a la fonction définie par

$$f_a(x) = \ln(x^2 - ax + 4)$$

et C_a sa courbe représentative dans un repère orthonormé.

1. Donner, suivant les valeurs de a, le domaine de définition D_a de f_a .

On a $D_a = \{x \in \mathbb{R}, \ x^2 - ax + 4 > 0\}$. Il suffit donc de trouver le signe de $x^2 - ax + 4$ sur \mathbb{R} . Or le discriminant de $x^2 - ax + 4$ est $\Delta = a^2 - 16$. Dès lors, on dispose de trois cas :

- 2. Comparer $f_a(x)$ et $f_{-a}(-x)$. Que peut-on en déduire pour C_a et C_{-a} ? Si $x \in D_a$ alors $-x \in D_{-a}$ et réciproquement. De plus, $f_{-a}(-x) = \ln((-x)^2 - a(-x) + 4) = \ln(x^2 - ax + 4) = f_a(x)$. On peut conclure que C_a et C_{-a} sont symétriques par rapport à l'axe des ordonnées.
- 3. On suppose a=4. La fonction ln est représentée graphiquement dans le repère fourni en annexe.
 - a. Montrer que

$$\forall x \in D_4, \ f_4(x) = 2\ln|x - 2|$$

Soit
$$x \in D_4$$
. On a $f_4(x) = \ln(x^2 - 4x + 4) = \ln(-x - 2)^2 = \ln(|x - 2|^2) = 2\ln|x - 2|$.

- b. Représenter alors graphiquement C_4 dans le repère fourni en annexe. On justifiera. C_4 est la réunion des courbes représentatives de $x\mapsto 2\ln(x-2)$ et $x\mapsto 2\ln(2-x)$. Pour la première courbe, on effectue une translation de C_{\ln} de vecteur $2\vec{\imath}$, puis, au compas, on double l'ordonnée de chaque point de la translatée. La seconde est obtenue à partir de la première par la symétrie d'axe x=2.
- c. Enfin, représenter graphiquement C_{-4} dans le même repère fourni en annexe. On justifiera. D'après 2., C_{-4} et C_4 sont symétriques par rapport à l'axe des ordonnées.
- **4.** On suppose maintenant que -4 < a < 4.
 - a. Déterminer le tableau de variation complet de f_a . On déterminera les limites aux bornes de D_a . f_a est alors dérivable sur \mathbb{R} (composition) et $f'_a(x) = \frac{2x-a}{x^2-ax+4}$ dont le signe est celui de 2x-a. Dès lors, le tableau de variations de f_a en découle :

x	$-\infty$	$\frac{a}{2}$ $+\infty$
$f_a'(x)$	-	0 +
f_a	$+\infty$ $\ln\left(\frac{10}{2}\right)$	$+\infty$ $\left(\frac{5-a^2}{4}\right)$

b. Représenter alors graphiquement C_2 dans le même repère fourni en annexe.

Partie I : Somme des puissances p-èmes des n premiers entiers

Pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$, on pose :

$$K(n,p) = \sum_{k=1}^{n} k^{p}$$

1. Après avoir justifié que $K(n+1,p+1) = \sum_{k=-n}^{n} (k+1)^{p+1}$, montrer que

$$K(n+1, p+1) = 1 + \sum_{q=0}^{p+1} {p+1 \choose q} K(n, q)$$

 $K(n+1,p+1) = \sum_{i=1}^{n+1} k^{p+1} = \sum_{i=1}^{n} (1+i)^{p+1}$ en effectuant le changement k = i+1. On a donc :

$$K(n+1,p+1) = \sum_{k=0}^{n} (k+1)^{p+1} = 1 + \sum_{k=1}^{n} (k+1)^{p+1} = 1 + \sum_{k=1}^{n} \sum_{q=0}^{p+1} \binom{p+1}{q} k^{q}$$

$$=1+\sum_{q=0}^{p+1}\binom{p+1}{q}\sum_{k=1}^n k^q=1+\sum_{q=0}^{p+1}\binom{p+1}{q}K(n,q)$$

2. En déduire que

$$\sum_{q=0}^{p} {p+1 \choose q} K(n,q) = (n+1)^{p+1} - 1$$

On a
$$K(n+1,p+1) = \sum_{k=1}^{n+1} k^{p+1} = \sum_{k=1}^{n} k^{p+1} + (n+1)^{p+1} = K(n,p+1) + (n+1)^{p+1}$$
. D'après ce qui précède, on a donc :

$$1 + \sum_{q=0}^{p+1} {p+1 \choose q} K(n,q) = K(n,p+1) + (n+1)^{p+1} \text{ d'où }:$$

$$1 + \sum_{q=0}^{p} \binom{p+1}{q} K(n,q) + K(n,p+1) = K(n,p+1) + (n+1)^{p+1} \text{ ce qui donne le résultat attendu}.$$

3. a. Déterminer K(n,0).

$$K(n,0) = \sum_{k=1}^{n} 1 = n.$$

b. En déduire les valeurs de K(n,1), K(n,2) et K(n,3).

Le résultat de la question 2 donne :

Le resultat de la question 2 donne :
$$\binom{2}{0} K(n,0) + \binom{2}{1} K(n,1) = (n+1)^2 - 1 \text{ d'où } K(n,1) = \frac{(n+1)^2 - 1 - n}{2} = \frac{n(n+1)}{2}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} K(n,0) + \begin{pmatrix} 3 \\ 1 \end{pmatrix} K(n,1) + \begin{pmatrix} 3 \\ 2 \end{pmatrix} K(n,2) = (n+1)^3 - 1 \text{ d'où } :$$

$$K(n,2) = \frac{1}{3} \left((n+1)^3 - 1 - n - 3 \frac{n(n+1)}{2} \right) = \frac{n(n+1)(2n+1)}{6}$$

$$\binom{4}{0} K(n,0) + \binom{4}{1} K(n,1) + \binom{4}{2} K(n,2) + \binom{4}{3} K(n,3) = (n+1)^4 - 1 \text{ d'où} :$$

$$K(n,3) = \frac{1}{4} \left((n+1)^4 - 1 - n - 4 \frac{n(n+1)}{2} - 6 \frac{n(n+1)(2n+1)}{6} \right) = \frac{n^2(n+1)^2}{4}$$

Partie II : Somme des cubes des n premiers entiers

On considère une suite de nombres réels $(x_n)_{n\in\mathbb{N}}$ telle que :

$$x_0 = 0$$
, $\forall n \in \mathbb{N}^*$, $x_n > 0$, et $\forall n \in \mathbb{N}$, $\sum_{k=0}^n x_k^3 = \left(\sum_{k=0}^n x_k\right)^2$

Pour $n \in \mathbb{N}$, on note $S_n = \sum_{k=0}^n x_k$.

1. Montrer que pour tout $n \in \mathbb{N}$:

$$x_{n+1}^3 = 2S_n x_{n+1} + x_{n+1}^2$$

Pour $n \in \mathbb{N}$ on a

$$x_{n+1}^{3} = \sum_{k=0}^{n+1} x_{k}^{3} - \sum_{k=0}^{n} x_{k}^{3} = \left(\sum_{k=0}^{n+1} x_{k}\right)^{2} - \left(\sum_{k=1}^{n} x_{k}\right)^{2} = (S_{n} + x_{n+1})^{2} - S_{n}^{2} = 2S_{n}x_{n+1} + x_{n+1}^{2}$$

2. Montrer que pour tout $n \in \mathbb{N}$:

$$x_n = n$$

Pour $n \in \mathbb{N}$, on note $P_n : (x_n = n)$. Montrons par récurrence que pour tout $n \in \mathbb{N}$, P_n est vraie.

Initialisation : Par hypothèse, $x_0 = 0$ donc P_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$. On suppose que pour tout $k \in [0, n], P_k$ est vraie.

D'après la question précédente, on a $x_{n+1}^3 = 2S_n x_{n+1} + x_{n+1}^2$.

D'après l'hypothèse de récurrence, on a : $S_n = \sum_{k=0}^n k = \frac{n(n+1)}{2}$ on a donc $x_{n+1}^3 - n(n+1)x_{n+1} - x_{n+1}^2 = 0$ ce

qui équivaut à $x_{n+1} (x_{n+1}^2 - x_{n+1} - n(n+1)) = 0$.

Par hypothèse, $x_{n+1} \neq 0$ on en déduit que $x_{n+1}^2 - x_{n+1} - n(n+1) = 0$.

Le discriminant de ce trinôme du second degré est $\Delta = (2n+1)^2$ d'où l'on déduit ses racines : n+1 et -n.

Comme par hypothèse $x_{n+1} > 0$, on en déduit que $x_{n+1} = n + 1$. Ainsi P_{n+1} est vraie.

Par principe de récurrence, P_n est donc vraie pour tout $n \in \mathbb{N}$.

3. Réciproquement, en remarquant que pour $n \in \mathbb{N}$, $\left(\sum_{k=0}^{n} k\right)^2 = \sum_{k=0}^{n} k^2 + 2\sum_{0 \le i < j \le n} ij$, montrer que la suite des

entiers vérifie les conditions de l'énoncé.

On a
$$x_0 = 0$$
 et pour tout $n \in \mathbb{N}^*$, $x_n = n > 0$. De plus :
$$\left(\sum_{k=0}^n k\right)^2 = \sum_{k=0}^n k^2 + 2\sum_{0 \le i < j \le n} ij = \sum_{k=0}^n k^2 + \sum_{j=1}^n j\sum_{i=0}^{j-1} i = \sum_{k=0}^n k^2 + 2\sum_{j=1}^n j\frac{(j-1)j}{2} = \sum_{k=0}^n k^2 + \sum_{j=1}^n j^3 - \sum_{j=1}^n j^2 \text{ d'où }$$
$$\left(\sum_{k=0}^n k\right)^2 = \sum_{j=1}^n j^3 = \sum_{j=0}^n j^3$$

4. Retrouver K(n,3).

On a pour
$$n \in \mathbb{N}$$
: $K(n,3) = \sum_{k=1}^{n} k^3 = \sum_{k=0}^{n} k^3 = S_n^2 = \frac{n^2(n+1)^2}{4}$.