Оглавление

1	Лен	кция первая. Введение в БД.	2
	1.1	Базы данных	2
	1.2	Основные требования к БД	2
	1.3	СУБД, журнализация	3
	1.4	Основные компоненты СУБД	3
	1.5	Классификация СУБД	4
2	Лабораторная работа 1.		
	2.1	Задание:	5
3	Семинар 1.		
	3.1	$\overline{\mathrm{SQL}}$	6
	3.2	Основные языки	7
	3.3	Способы хранения данных	8
4	Рел	іяционная модель	10
	4.1	ER - модель	10
	4.2	Реляционная модель	11

1

Лекция первая. Введение в БД.

1.1 Базы данных.

 $B\mathcal{A}$ - это самодокументированная собрание интегрированных записей. Набор таблиц.

 ${\it Camodokymenmupoвanhas}$ - хранятся метаданные, т.е. данные о данных.

Интегрированные записи - Файлы данных. Целый комплекс. Имеются индексы. Метаданные

1.2 Основные требования к БД.

- Не избыточность не храним лишнюю информацию.
- Эффективность доступа малое время отклика на действие пользователя.
- Совместное использование.
- Безопасность. Также внутренняя безопасность защита от дурака (пример: вместо числа ввел букву).

- Восстановление после сбоя.
- Целостность если ссылаемся на какой-то объект, то он должен быть. Не ссылаться на несуществеющие объекты.
- Независимость от сторонних приложений. Если программа отправляет ерунду БД должна обработать.

1.3 СУБД, журнализация.

СУБД - (Средства управления БД) приложение, обеспечивающее создание, хранение, обновление и поиск информации в БД.Программа. **СУБД управляет БД**.

 $Cucmema\ B \mathcal{I}$ - совокупность $B \mathcal{I}$.

Транзакция - набор действий, которые выполняются одновременно. (Пример: онлайн перевод, одновременно в одном месте деньги ушли, в другом появились.)

Xурнализация - информация о действиях, которые происходили в системе. Помогает в откате каких-то действий. $\mathbf{Б}\mathcal{\mathbf{\Pi}}$ сохраняет запросы в журнале.

СУБД должна поддерживать языки.

1.4 Основные компоненты СУБД

- Ядро управление памятью. Журнализация.
- Процессор языка БД оптимизация. Выполнение.
- Подсистема поддержки времени исполнения.
- Сервисные программы те утилиты, которые мы пишем, доп. возможность. (Вывод звездочек вокруг имени.)

1.5 Классификация СУБД

- По модели данных
 - Дореляционная.
 - * Инвертированный список (рис 1)
 - * Иерархия. (Дерево)
 - * Сетевые (граф)
 - Реляционная.
 - Постреляционная
- По архитектуре.
 - Локальные на одном устройстве.
 - Распространенные на многих устройствах.
- По способу доступа к БД
 - Файл-серверный подход Подключились, взяли всё. Нагружаем клиента, а не сервер. Минусы: У каждого клиента своя копия.
 - клиент-серверные запросы выполняются на сервере, клиент получает только нужное
 - Встраиваемые маленькие базы, которые не нужны всем.

2

Лабораторная работа 1.

2.1 Задание:

- Выбрать тему.
- Рисуем ER-модель нашей базы.
- Создать БД. Создать таблицу. (>= 3ёх объектов (таблицы связки не считаются объектами)). Создать ключи. (Все это в SQLскрипт)
- Наполнить (csv) >= 1000 строк.

По итогу 2 фала: 1 SQL-скрипт и 1 модель.

Семинар 1.

3.1 SQL

SQL - SQL (Structured Query Language – язык структурированных запросов)

декларативный язык программирования, применяемый для создания, модификации и управления данными в реляционной базе данных.

SQL - работает в любой БД. В основах лежит реляционная модель.

В основе реляционной модели лежит теория множеств и логика предикатов.

T-SQL - нек-ое дополнение. Надстройка.

Рис. 3.1: SQL

Заголовок – набор атрибутов (В SQL - столбцы), каждый из которых имеет определенный тип.

Атрибут — совокупность имени и типа данных (Атрибут == столбец). Атрибут — название столбца, его тип + дополнительные настройки

Тело – множество картежей (В SQL – строки).

Заголовок кортежа – заголовок отношения.

Рис. 3.2: Пример таблицы.

3.2 Основные языки

Логику работы с данными можно разделить на три основных языка:

- DLL (Data Definition Language) (Создаем объекты для хранения данных).Служит для описания структуры БД:
 - Создать (Create)
 - Удалить (Drop)
 - Изменить (Alter)
- DML (Data Manipulation Language) Язык для работы с данными
 - Обновить (update)
 - Загружать (insert)
 - Удалять (delete/truncate)

- Читать (select)
- DCL (Data Control Language) Служит для управления доступа к объектам.
 - Выдача прав доступа к объекту (grand)
 - Удаление прав доступа на объект (revoke)

Обращение к таблице. Схема обращения к таблице: [название БД].[название схемы].Название таблицы. Рис. 3.3

Рис. 3.3: Структура БД.

3.3 Способы хранения данных

- Таблица (table).
- Временные таблица (temp table). По завершению сессии таблица удаляется.
- Представление (View)

- Производные таблицы. (Временная)
- Индексированное представление.

Пример создания таблицы

```
CREATE TABLE dbo.EmployeePhoto

(
Id int IDENTITY(1, 1),
EmployeeId int NOT NULL PRIMARY KEY,
Photo varbinary (max) FILESTREAM NULL,
MyRowGuidColumn uniqueidentifier NOT NULL ROWGUIDCOL
UNIQUE DEFAULT NEWID()
);
```

id - ATPИБУТ типа int счетчик шагаем начиная с единицы с шагом 1.

Employer id - поле, которое используем в кач-ве идентификатора. Photo - По умолчанию NULL - пустой.

MyRawGuidColumn - Уникальное, DEFAULT - по умолчанию поле задается newID.

nvarchar - Выделяет столько памяти, какова длина строки varchar - Физически занята вся строка. Занято пробелами.

Salary - numeric(15, 2) - Сколько всего цифр выделено в нашем числа, сколько знаков после запятой.

4

Реляционная модель

4.1 ER - модель

- Сущность
- Связь

Объекты обозначаются прямоугольниками. Внутри пишем название.

Виды сущностей:

- Сильные Обозначаются просто в рамке.
- Слабые не могут существовать друг без друга. Факультет и предметы. Обозначается вложенным квадратом (рамочка).

Атрибуты отображаются овалами. Внутри пишем название атрибута.

Виды связей:

- Один к одному. Студент-зачетка.
- Один ко многим. Статья-рецензия. Добавляем внешний ключ со стороны многих. Из многих в сторону одного.
- Многие ко многим. Студент-преподаватель. Добавляем связочную таблицу.

4.2 Реляционная модель

Реляционная модель

- Структурная часть отвечает за то, какие объекты есть.
- Целостная отвечает за ссылки. DDL.
 - Ссылочная целостность (FK)
 - Целостность сущности (PK) говорит о том, что есть первичный ключ. Нет повторения. Всегда знаем на что ссылаемся.
- Манипуляционная за механизм работы с данными. DML.

Домен = (примерно равно) тип данных.

Атрибут (отношения) = (примерно равно) столбец. Упорядоченная пара вида:

имя-атрибута,имя-домена

Схема отношений = (примерно равно) Заголовок. имя-отношение, имя-домена

Кортеж = (примерно равно) Строка. Имя-атрибута, значение-атрибута **Отношение** = (примерно равно) таблица.

Непустое подмножество множества атрибутов схемы отношения будет **потенциальным ключом** тогда и только тогда, когда оно будет обладать свойствами:

- уникальности (в отношении нет двух различных кортежей с одинаковыми значениями потенциального ключа)
- неизбыточности (никакое из собственных подмножеств множества потенциального ключа не обладает свойством уникальности

Внешний ключ в отношении R2 – это непустое подмножество множества атрибутов FK этого отношения, такое, что:

- Существует отношение R1 (причем отношения R1 и R2 необязательно различны) с потенциальным ключом СК;
- Каждое значение внешнего ключа FK в текущем значении отношения R2 обязательно совпадает со значением ключа CK некоторого кортежа в текущем значении отношения R1.