

Computational Noise & Noisy Derivatives

Stefan Wild

Argonne National Laboratory
Mathematics and Computer Science Division

January 31, 2014

III. Computational Noise

- What is computational noise?
- How can noise be estimated efficiently?
- How does noise affect numerical differentiation?
- How accurate are near-optimal finite-difference estimates?

Two Questions To Ask Yourself

- 1. Do you know how accurate your derivatives are?
- 2. What do you do with this information?

Noise May Hurt You, Or It May Not

These are the same problem:

Noise May Hurt You, Or It May Not

So are these:

Computational Noise is not a Newcomer

From Hamming's 1971 Introduction to Numerical Analysis:

Where does this noise come from? ...infinite processes in mathematics which of necessity must be approximated by finite processes.

Truncation vs. roundoff Finite number length leads to roundoff. Finite processes lead to truncation.

Competing errors Smaller steps usually reduce truncation error and may increase roundoff error.

Deterministic In practice, the same input, barring machine failures, gives the same result.

Computational Noise is not a Newcomer

From Hamming's 1971 Introduction to Numerical Analysis:

Where does this noise come from? ...infinite processes in mathematics which of necessity must be approximated by finite processes.

Truncation vs. roundoff Finite number length leads to roundoff. Finite processes lead to truncation.

Competing errors Smaller steps usually reduce truncation error and may increase roundoff error.

Deterministic In practice, the same input, barring machine failures, gives the same result. ← changing!

Living In A Finite-Precision World

Floating Point Arithmetic

Commutative:

$$A + B = B + A$$
 and $A * B = B * A$

Non-associative:

$$A + (B + C) \neq (A + B) + C$$

 This is likely to affect the reproducibility of your calculations in the future (for performance reasons)

 $\mbox{\bf Many details} \rightarrow \mbox{[What Every Computer Scientist Should Know About Floating-Point Arithmetic, Goldberg, 1991]}$

The Effects of Computational Noise

Noise is not truncation error $R_{m+1}(x) = f_a(x) - \sum_{i=0}^m P_i(x)$ and is not roundoff error $f_\infty(x) - f(x)$

Which do you prefer?

- A less noise, more error
- B less error, more noise

The Effects of Computational Noise

It matters how noisy your simulation is!

Which do you prefer?

- A less noise, more error
 - \rightarrow Optimization
 - \rightarrow Sensitivity Analysis
- B less error, more noise
 - \rightarrow Physics

True

Computational Noise in Deterministic Simulations

Finite precision + finite processes

- Iteratively solving systems of PDEs or estimating eigenvalues
- Adaptively computing integrals
- Discretizations/meshes

destroy underlying smoothness

$\underline{\mathsf{Goal:}}$ estimate the "variation" in $f(\mathbf{x})$

- a few f evaluations
- deterministic and stochastic noise

Difference $|f(x) - f(x + Z\omega)|$,

Sparse linear large-scale system

The Noise Level ϵ_f

Simple model for the noise

$$f(t) = f_s(t) + \varepsilon(t), \quad t \in \mathcal{I}$$

- f the computed function
- f_s a smooth, deterministic function
- ε is the noise with $\{\varepsilon(t):t\in\mathcal{I}\}$ iid

 $\leftarrow \mathsf{only} \; \mathsf{assumption}$

The <u>noise level</u> of f is $\varepsilon_f = \left(\operatorname{Var}_{\{\varepsilon(t)\}} \right)^{1/2}$

(independent of t)

The k-th Order Difference $\Delta^k f(t)$

$$\Delta^{k+1}f(t) = \Delta^k f(t+h) - \Delta^k f(t), \qquad \Delta^0 f(t) = f(t)$$

$$\Delta^k f(t) = \Delta^k f_s(t) + \Delta^k \varepsilon(t)$$

- 1. Differences of smooth f_s tend to zero rapidly
- 2. Differences of noise are bounded away from zero
 - If h is sufficiently small,

$$\Delta^k f(t) \approx \Delta^k \varepsilon(t)$$

• If f_s is k-times differentiable,

$$\Delta^k f(t) = f_s^{(k)}(\xi_k) h^k + \Delta^k \varepsilon(t), \qquad \xi_k \in (t, t + kh)$$

Goal: make h small enough to remove smooth component

Theory Underlying the ECNoise Algorithm

For $\{\varepsilon(t+ih): i=0,\ldots,m\}$ iid and $k\leq m$:

- 1. $\mathrm{E}\left\{\Delta^k\varepsilon(t)\right\}=0$
- 2. $\gamma_k \mathbf{E}\left\{ [\Delta^k \varepsilon(t)]^2 \right\} = \varepsilon_f^2 \qquad \gamma_k = \frac{(k!)^2}{(2k)!}$
- 3. If f_s is continuous at t, then

$$\lim_{h\to 0} \gamma_k \mathbf{E}\left\{ \left[\Delta^k f(t) \right]^2 \right\} = \varepsilon_f^2$$

4. If f_s is k-times continuously differentiable at t, then

$$\lim_{h \to 0} \frac{\gamma_k \mathbf{E} \left\{ [\Delta^k f(t)]^2 \right\} - \varepsilon_f^2}{h^{2k}} = \gamma_k \left[f_s^{(k)}(t) \right]^2$$

$$\Rightarrow \varepsilon_f^2 \approx \gamma_k \mathbf{E} \left\{ [\Delta^k f(t)]^2 \right\},$$

when the sampling distance h is sufficiently small

The ECNoise Algorithm

Uses
$$\sigma_k = \left(\frac{\gamma_k}{m+1-k}\sum_{i=0}^{m-k}[\Delta^k f(t+ih)]^2\right)^{1/2}$$

- 1. Chooses k
- 2. Verifies h is small enough
- \diamond Works for deterministic f

[Estimating Computational Noise. Moré & W., SISC 2011]

ECNoise Estimator
$$\sigma_k = \left(\frac{\gamma_k}{m+1-k}\sum_{i=0}^{m-k}[\Delta^k f(t_i)]^2\right)^{1/2}$$

For
$$f(t) = \cos(t) + \sin(t) + 10^{-3} U_{[0,2\sqrt{3}]} \ \left(m = 6, t_i = \frac{i}{100} \right)$$

$f(t_i)$	$\Delta f(t_i)$	$\Delta^2 f(t_i)$	$\Delta^3 f(t_i)$	$\Delta^4 f(t_i)$	$\Delta^5 f(t_i)$	$\Delta^6 f(t_i)$
1.003	7.54e-3	2.15e-3	1.87e-4	-5.87e-3	1.46e-2	-2.49e-2
1.011	9.69e-3	2.33e-3	-5.68e-3	8.73e-3	-1.03e-2	
1.021	1.20e-2	-3.35e-3	3.05e-3	-1.61e-3		
1.033	8.67e-3	-2.96e-4	1.44e-3			
1.041	8.38e-3	1.14e-3				
1.050	9.52e-3					
1.059						
σ_k	6.78e-3	8.96e-4	9.02e-4	9.93e-4	1.10e-3	1.14e-3

Extension to Multivariate $g: \mathbb{R}^n \mapsto \mathbb{R}$

Given base point $x_b \in \mathbb{R}^n$, unit direction $p \in \mathbb{R}^n$, consider

$$f_p(t) = g(x_b + tp), \quad t \ge 0$$

Apply univariate theory

- Directional differences, directional derivatives
- \diamond ε_f may now depend on a direction $p \in \mathbb{R}^n$
- \diamond ECnoise uses $T_{i,0} = f(x_b + ihp)$ with random unit direction $p \in \mathbb{R}^n$

Computational Experience with Stochastic Noise

Validate ECnoise and empirical properties of

$$\sigma_k^2 = \frac{\gamma_k}{m+1-k} \sum_{i=0}^{m-k} T_{i,k}^2$$

under known conditions:

- \diamond Known noise level ε_f
- Theory directly applies

Target: every estimate within a factor $\eta=4$ of the mean $% \left(1\right) =1$

Noisy Quadratic,
$$f(x) = (x^T x)(1 + R), \quad x \in \mathbb{R}^{10}$$

Estimate relative noise

$$\frac{\sigma_k}{f(x_h)} \approx \sqrt{\operatorname{Var}\{R\}} = 10^{-3}$$

- x_b random base point
 - p 10000 random unit directions
- m evaluations

Noisy Quadratic,
$$f(x) = (x^T x)(1 + R), \quad x \in \mathbb{R}^{10}$$

$$R \sim \! \mathsf{Uniform} \! \left[-\sqrt{3} \cdot 10^{-3}, \sqrt{3} \cdot 10^{-3} \right]$$

Estimate relative noise
$$\frac{\sigma_k}{f(x_h)} \approx \sqrt{\operatorname{Var}\left\{R\right\}} = 10^{-3}$$

 x_b random base point

p 10000 random unit directions

m evaluations

99.2% within a factor $\eta=4$ for m=6

Noisy Quadratic,
$$f(x) = (x^T x)(1 + R), \quad x \in \mathbb{R}^{10}$$

Estimate relative noise
$$\frac{\sigma_k}{f(x_h)} \approx \sqrt{\operatorname{Var}\left\{R\right\}} = 10^{-3}$$

 x_b random base point

 $p \ 10000$ random unit directions

m evaluations

98.9% within a factor $\eta=4$ for m=6

$R \sim \! \mathsf{Normal} \! \left(0, 10^{-6} \right)$

MC Finance Example with Higher Order Derivatives

Today's value of a \$1 payment n years from now rates [Caflisch]:

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \prod_{i=0}^n \frac{e^{-\frac{\|u\|^2}{2}}}{1 + r_i(u, x)} du, \quad r_i(u, x) = \begin{cases} \frac{1}{10} & i = 0 \\ r_{i-1}(u, x) e^{x_i u_i - x_i^2/2} & i \ge 1 \end{cases}$$

10000 MC integrations (directions p) with

- n=3 years, $x_b = [.1, .1, .1]$
- tol = 5000 standard normal random variables
- no variance reduction

99.6% within a factor 4 for m=6

Finite Differences Sensitive to Choice of h

$$\frac{f(t_0+h)-f(t_0)}{h}\approx f_s'(t_0)$$

Noisy Forward Differences

$$E\left\{\mathcal{E}(h)\right\} = E\left\{\left(\frac{f(t_0+h)-f(t_0)}{h} - f'_s(t_0)\right)^2\right\}$$

Our h will depend on

- Loose estimate of noise
- ♦ Loose estimate of |f''|
- Stochastic theory:
 - 1. $f(t) = f_s(t) + \epsilon$ on $I = \{t_0 + h : 0 \le h \le h_0\}$
 - 2. f_s twice differentiable
 - 3. $\mu_L \le |f_s''| \le \mu_M$ on I

[Estimating Noisy Derivatives. Moré & W., TOMS 2012]]

Optimal Forward Difference Parameter h

$$\frac{1}{4}\mu_{\scriptscriptstyle L}^2h^2 + 2\frac{\varepsilon_f^2}{h^2} \leq \operatorname{E}\left\{\mathcal{E}(h)\right\} \leq \frac{1}{4}\mu_{\scriptscriptstyle M}^2h^2 + 2\frac{\varepsilon_f^2}{h^2}$$

- $h \downarrow Variance (noise) dominates$
- $h \uparrow \text{ Bias } (f'') \text{ dominates}$

For h_0 sufficiently large

- 1. Upper bound minimized by $h_M = 8^{1/4} \left(\frac{\varepsilon_f}{\mu_M}\right)^{1/2}$
- 2. When $\mu_L > 0$, h_M is near-optimal:

$$\mathrm{E}\left\{\mathcal{E}(h_{M})\right\} = \sqrt{2}\mu_{M}\varepsilon_{f} \leq \left(\frac{\mu_{M}}{\mu_{L}}\right) \min_{0 \leq h \leq h_{0}} \mathrm{E}\left\{\mathcal{E}(h)\right\}.$$

[Gill, Murray, Saunders, Wright; 1983]

Given uniform bound on roundoff error,

$$|f(t) - f_{\infty}(t)| \le \varepsilon_A \qquad t \in I,$$

Minimizer of (upper bound on) l_1 error is

$$h_A = 2 \left(\frac{arepsilon_A}{\mu_M} \right)^{1/2}$$

Assumes:

- \diamond $h_A < h_0$
- \diamond Estimate of ε_A available

20 ⁴ □ ▶

Stochastic Examples

Estimate
$$f_s'(t) = E\{f(t)\}'$$
 at $t=1$ $(\varepsilon_f = 10^{-6})$

Log-log realizations of
$$\mathcal{E}(h) = \mathrm{E}\left\{\left(\frac{f(t_0+h)-f(t_0)}{h} - f_s'(t_0)\right)^2\right\}$$

Expected error and uncertainty regions predicted by the theory

Extension: Central Differences

First derivatives, $\frac{f(t_0+h)-f(t_0-h)}{2h}$

$$|h_M| = \gamma_5 \left(\frac{\varepsilon_f}{\mu_M}\right)^{1/3}, \qquad \gamma_5 = 3^{1/3} \approx 1.44$$

$$\diamond \ \mathrm{E}\left\{\mathcal{E}_c(h_M)\right\} \le \left(\frac{\mu_M}{\mu_L}\right)^{2/3} \min_{|h| \le h_0} \mathrm{E}\left\{\mathcal{E}_c(h)\right\}$$

Second derivatives, $\frac{f(t_0+h)-2f(t_0)+f(t_0-h)}{h^2}$

$$|h_M| = \gamma_7 \left(\frac{\varepsilon_f}{\mu_M}\right)^{1/4}, \qquad \gamma_7 = 2^{5/8} \, 3^{1/8} \approx 2.33$$

$$\diamond \ \mathrm{E}\left\{\mathcal{E}_{2}(h_{M})\right\} \leq \left(\frac{\mu_{M}}{\mu_{L}}\right) \min_{|h| \leq h_{0}} \mathrm{E}\left\{\mathcal{E}_{2}(h)\right\}$$

• use to obtain rough estimate of $|f_s''|$ for forward-difference h

Ex.- Highly Nonlinear MINPACK-2 Problems

25 problems, $n \le 64 \cdot 10^4$

♦ Accurate estimates obtained even when f" not constant

Compared with hand-coded derivative

Using the Noise in Nesterov's Random Gradient Method

General RG iteration

- 1. Generate direction d_k
- 2. Evaluate gradient-free oracle $g(x_k;h_k)=\frac{f(x_k+h_k\,d_k)-f(x_k)}{h}d_k$
- 3. Compute $x_{k+1} = x_k \delta_k g(x_k; h_k)$, evaluate $f(x_{k+1})$

bicgstab quadratic: tol= 10^{-2} , $\frac{\varepsilon_f}{|f|} \approx$ 5e-3

Summary: How Loud Are Your Functions?

- Computational noise complicates analysis of real-world functions, worst-case bounds overly pessimistic
- With a few (6-8) additional evaluations, ECNoise reliably estimates the noise
- ♦ Stochastic theory for near-optimal difference parameters
- \diamond Coarse estimates of |f''| (2-4 evaluations) yield more accurate directional derivatives
- Both work on deterministic functions in practice

[Estimating Computation Noise, SISC 2011]
[Estimating Derivatives of Noisy Simulations, TOMS 2012]
[Do You Trust Derivatives or Differences? Preprint, 2013]
[Obtaining Quadratic Models of Noisy Functions, Preprint, 2013]

Computing http://mcs.anl.gov/~wild/cnoise

