Operations on Functions

In general, if f and g are any functions, we use the terminology and notation given in the following chart.

Sum, Difference, Product, and Quotient of Functions

Terminology	Function value		
sum $f + g$	(f+g)(x) = f(x) + g(x)		
difference $f - g$	(f-g)(x) = f(x) - g(x)		
product fg	(fg)(x) = f(x)g(x)		
quotient $\frac{f}{g}$	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$		

The domains of f + g, f - g, and fg are the intersection I of the domains of f and g—that is, the numbers that are *common* to both domains. The domain of f/g is the subset of I consisting of all x in I such that $g(x) \neq 0$.

EXAMPLE 1 Finding function values of f + g, f - g, fg, and f/g

If f(x) = 3x - 2 and $g(x) = x^3$, find (f + g)(2), (f - g)(2), (fg)(2), and (f/g)(2).

Since f(2) = 3(2) - 2 = 4 and $g(2) = 2^3 = 8$, we have (f+g)(2) = f(2) + g(2) = 4 + 8 = 12

$$(f-g)(2) = f(2) - g(2) = 4 - 8 = -4$$

$$(fg)(2) = f(2)g(2) = (4)(8) = 32$$

$$\left(\frac{f}{g}\right)(2) = \frac{f(2)}{g(2)} = \frac{4}{8} = \frac{1}{2}.$$

EXAMPLE 2 Finding (f+g)(x), (f-g)(x), (fg)(x), and (f/g)(x)

If $f(x) = \sqrt{4 - x^2}$ and g(x) = 3x + 1, find (f + g)(x), (f - g)(x), (fg)(x), and (f/g)(x), and state the domains of the respective functions.

50LUTION The domain of f is the closed interval [-2, 2], and the domain of g is \mathbb{R} . The intersection of these domains is [-2, 2], which is the domain of f + g, f - g, and fg. For the domain of f/g, we exclude each number x in [-2, 2] such that g(x) = 3x + 1 = 0 (namely, $x = -\frac{1}{3}$). Thus, we have the following:

$$(f+g)(x) = \sqrt{4-x^2} + (3x+1), \qquad -2 \le x \le 2$$

$$(f-g)(x) = \sqrt{4-x^2} - (3x+1), \qquad -2 \le x \le 2$$

$$(fg)(x) = \sqrt{4-x^2}(3x+1), \qquad -2 \le x \le 2$$

$$\left(\frac{f}{g}\right)(x) = \frac{\sqrt{4-x^2}}{3x+1}, \qquad -2 \le x \le 2 \text{ and } x \ne -\frac{1}{3}$$

A function f is a **polynomial function** if f(x) is a polynomial—that is, if

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

where the coefficients a_0, a_1, \ldots, a_n are real numbers and the exponents are nonnegative integers.

An algebraic function is a function that can be expressed in terms of finite sums, differences, products, quotients, or roots of polynomial functions.

Algebraic Function

$$f(x) = 5x^4 - 2\sqrt[3]{x} + \frac{x(x^2 + 5)}{\sqrt{x^3 + \sqrt{x}}}$$

Functions that are not algebraic are transcendental.

Definition of Composite Function

The composite function $f \circ g$ of two functions f and g is defined by

$$(f \circ g)(x) = f(g(x)).$$

The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f.

For the composite function $g \circ f$, we reverse this order, first finding f(x) and second finding g(f(x)). The domain of $g \circ f$ is the set of all x in the domain of f such that f(x) is in the domain of g.

Since the notation g(x) is read "g of x," we sometimes say that g is a function of x. For the composite function $f \circ g$, the notation f(g(x)) is read "f of g of x," and we could regard f as a function of g(x). In this sense, a composite function is a function of a function or, more precisely, a function of another function's values.

A number x is in the domain of $(f \circ g)(x)$ if and only if both g(x) and f(g(x)) are defined.

Figure 1

EXAMPLE 3 Finding composite functions

Let
$$f(x) = x^2 - 1$$
 and $g(x) = 3x + 5$.

- (a) Find (f ∘ g)(x) and the domain of f ∘ g.
- **(b)** Find $(g \circ f)(x)$ and the domain of $g \circ f$.
- (c) Find f(g(2)) in two different ways: first using the functions f and g separately and second using the composite function $f \circ g$.

SOLUTION

(a)
$$(f \circ g)(x) = f(g(x))$$
 definition of $f \circ g$
$$= f(3x + 5)$$
 definition of g
$$= (3x + 5)^2 - 1$$
 definition of f
$$= 9x^2 + 30x + 24$$
 simplify

The domain of both f and g is \mathbb{R} . Since for each x in \mathbb{R} (the domain of g), the function value g(x) is in \mathbb{R} (the domain of f), the domain of $f \circ g$ is also \mathbb{R} . Note that both g(x) and f(g(x)) are defined for all real numbers.

(b)
$$(g \circ f)(x) = g(f(x))$$
 definition of $g \circ f$
$$= g(x^2 - 1)$$
 definition of f
$$= 3(x^2 - 1) + 5$$
 definition of g
$$= 3x^2 + 2$$
 simplify

Since for each x in \mathbb{R} (the domain of f), the function value f(x) is in \mathbb{R} (the domain of g), the domain of $g \circ f$ is \mathbb{R} . Note that both f(x) and g(f(x)) are defined for all real numbers.

(c) To find f(g(2)) using $f(x) = x^2 - 1$ and g(x) = 3x + 5 separately, we may proceed as follows:

$$g(2) = 3(2) + 5 = 11$$

 $f(g(2)) = f(11) = 11^2 - 1 = 120$

To find f(g(2)) using $f \circ g$, we refer to part (a), where we found

$$(f \circ g)(x) = f(g(x)) = 9x^2 + 30x + 24.$$

Hence,

$$f(g(2)) = 9(2)^2 + 30(2) + 24$$

= 36 + 60 + 24 = 120.

Note that in Example 3, f(g(x)) and g(f(x)) are not always the same; that is, $f \circ g \neq g \circ f$.

EXAMPLE 4 Finding composite functions

Let $f(x) = x^2 - 16$ and $g(x) = \sqrt{x}$.

- (a) Find (f ∘ g)(x) and the domain of f ∘ g.
- (b) Find (g ∘ f)(x) and the domain of g ∘ f.

50LUTION We first note that the domain of f is \mathbb{R} and the domain of g is the set of all nonnegative real numbers—that is, the interval $[0, \infty)$. We may proceed as follows.

(a)
$$(f \circ g)(x) = f(g(x))$$
 definition of $f \circ g$
 $= f(\sqrt{x})$ definition of g
 $= (\sqrt{x})^2 - 16$ definition of f
 $= x - 16$ simplify

If we consider only the final expression, x-16, we might be led to believe that the domain of $f \circ g$ is \mathbb{R} , since x-16 is defined for every real number x. However, this is not the case. By definition, the domain of $f \circ g$ is the set of all x in $[0, \infty)$ (the domain of g) such that g(x) is in \mathbb{R} (the domain of g). Since $g(x) = \sqrt{x}$ is in \mathbb{R} for every g(x) in g(x), it follows that the domain of g(x) is g(x). Note that both g(x) and g(x) are defined for g(x).

(b)
$$(g \circ f)(x) = g(f(x))$$
 definition of $g \circ f$
 $= g(x^2 - 16)$ definition of f
 $= \sqrt{x^2 - 16}$ definition of g

By definition, the domain of $g \circ f$ is the set of all x in \mathbb{R} (the domain of f) such that $f(x) = x^2 - 16$ is in $[0, \infty)$ (the domain of g). The statement " $x^2 - 16$ is in $[0, \infty)$ " is equivalent to each of the inequalities

$$x^2 - 16 \ge 0$$
, $x^2 \ge 16$, $|x| \ge 4$.

Thus, the domain of $g \circ f$ is the union $(-\infty, -4] \cup [4, \infty)$. Note that both f(x) and g(f(x)) are defined for x in $(-\infty, -4] \cup [4, \infty)$. Also note that this domain is different from the domains of both f and g.

EXAMPLE 5 Finding composite function values from tables

Several values of two functions f and g are listed in the following tables.

x	1	2	3	4
f(x)	3	4	2	1

x	1	2	3	4	
g(x)	4	1	3	2	

Find $(f \circ g)(2)$, $(g \circ f)(2)$, $(f \circ f)(2)$, and $(g \circ g)(2)$.

50LUTION Using the definition of composite function and referring to the tables above, we obtain

$$(f \circ g)(2) = f(g(2)) = f(1) = 3$$

 $(g \circ f)(2) = g(f(2)) = g(4) = 2$
 $(f \circ f)(2) = f(f(2)) = f(4) = 1$
 $(g \circ g)(2) = g(g(2)) = g(1) = 4$.

EXAMPLE 7 Finding a composite function form

Express $y = (2x + 5)^8$ as a composite function form.

Suppose, for a real number x, we wanted to evaluate the expression $(2x + 5)^8$ by using a calculator. We would first calculate the value of 2x + 5 and then raise the result to the eighth power. This suggests that we let

$$u = 2x + 5 \qquad \text{and} \qquad y = u^8,$$

which is a composite function form for $y = (2x + 5)^8$.

Composite Function Forms

Function value Choice for
$$u = g(x)$$
 Choice for $y = f(u)$
 $y = (x^3 - 5x + 1)^4$ $u = x^3 - 5x + 1$ $y = u^4$
 $y = \sqrt{x^2 - 4}$ $u = x^2 - 4$ $y = \sqrt{u}$
 $y = \frac{2}{3x + 7}$ $u = 3x + 7$ $y = \frac{2}{u}$

The composite function form is never unique. For example, consider the first expression in the preceding illustration:

$$y = (x^3 - 5x + 1)^4$$

If n is any nonzero integer, we could choose

$$u = (x^3 - 5x + 1)^n$$
 and $y = u^{4/n}$.

Thus, there are an *unlimited* number of composite function forms. Generally, our goal is to choose a form such that the expression for y is simple, as we did in the illustration.

Exercises

Exer. 1-2: Find

(a)
$$(f+g)(3)$$
 (b) $(f-g)(3)$
(c) $(fg)(3)$ (d) $(f/g)(3)$

(b)
$$(f-g)(3)$$

(d)
$$(f/g)(3)$$

1
$$f(x) = x + 3$$
, $g(x) = x^2$

$$a(x) = x^2$$

$$f(x) = -x^2$$
, $g(x) = 2x - 1$

$$g(x) = 2x - 1$$

Exer. 3-8: Find

(a)
$$(f+g)(x)$$
, $(f-g)(x)$, $(fg)(x)$, and $(f/g)(x)$

(b) the domain of
$$f + g$$
, $f - g$, and fg

(c) the domain of
$$f/g$$

$$f(x) = x^2 + 2,$$
 $g(x) = 2x^2 - 1$

$$g(x) = 2x^2 - 1$$

4
$$f(x) = x^2 + x$$
, $g(x) = x^2 - 3$

$$g(x) = x^2 - 3$$

$$f(x) = \sqrt{x+5}, \quad g(x) = \sqrt{x+5}$$

$$g(x) = \sqrt{x+5}$$

$$f(x) = \sqrt{3-2x}, \quad g(x) = \sqrt{x+4}$$

$$f(x) = \frac{2x}{x-4}, \qquad g(x) = \frac{x}{x+5}$$

$$g(x) = \frac{x}{x+5}$$

8
$$f(x) = \frac{x}{x-2}$$
, $g(x) = \frac{3x}{x+4}$

$$g(x) = \frac{3x}{x + 4}$$

Exer. 9-10: Find

(a)
$$(f \circ g)(x)$$

(b)
$$(g \circ f)(x)$$

(c)
$$(f \circ f)(x)$$

(c)
$$(f \circ f)(x)$$
 (d) $(g \circ g)(x)$

$$g(x) = 2x - 1, \quad g(x) = -x^2$$

$$g(x) = -x^2$$

10
$$f(x) = 3x^2$$
, $g(x) = x - 1$

$$g(x) = x - 1$$

Exer. 11-20: Find

(a)
$$(f \circ g)(x)$$

(b)
$$(g \circ f)(x)$$

(c)
$$f(g(-2))$$
 (d) $g(f(3))$

(d)
$$g(f(3))$$

11
$$f(x) = 2x - 5$$
, $g(x) = 3x + 7$

$$g(x) = 3x + 7$$

12
$$f(x) = 5x + 2$$
, $g(x) = 6x - 1$

$$g(x) = 6x - 1$$

13
$$f(x) = 3x^2 + 4$$
, $g(x) = 5x$

$$g(x) = 5x$$

14
$$f(x) = 3x - 1$$
, $g(x) = 4x^2$

$$g(x) = 4x^2$$

15
$$f(x) = 2x^2 + 3x - 4$$
, $g(x) = 2x - 1$

16
$$f(x) = 5x - 7$$
, $g(x) = 3x^2 - x + 2$

17
$$f(x) = 4x$$
, $g(x) = 2x^3 - 5x$

18
$$f(x) = x^3 + 2x^2$$
, $g(x) = 3x$

19
$$f(x) = |x|$$
, $g(x) = -7$

20
$$f(x) = 5$$
, $g(x) = x^2$

Exer. 21–34: Find (a) $(f \circ g)(x)$ and the domain of $f \circ g$ and (b) $(g \circ f)(x)$ and the domain of $g \circ f$.

21
$$f(x) = x^2 - 3x$$
, $g(x) = \sqrt{x+2}$

22
$$f(x) = \sqrt{x - 15}$$
, $g(x) = x^2 + 2x$

23
$$f(x) = x^2 - 4$$
, $g(x) = \sqrt{3x}$

24
$$f(x) = -x^2 + 1$$
, $g(x) = \sqrt{x}$

25
$$f(x) = \sqrt{x-2}$$
, $g(x) = \sqrt{x+5}$

26
$$f(x) = \sqrt{3-x}$$
, $g(x) = \sqrt{x+2}$

27
$$f(x) = \sqrt{3-x}$$
, $g(x) = \sqrt{x^2-16}$

28
$$f(x) = x^3 + 5$$
, $g(x) = \sqrt[3]{x - 5}$

29
$$f(x) = \frac{3x+5}{2}$$
, $g(x) = \frac{2x-5}{3}$

30
$$f(x) = \frac{1}{x-1}$$
, $g(x) = x-1$

31
$$f(x) = x^2$$
, $g(x) = \frac{1}{x^3}$

32
$$f(x) = \frac{x}{x-2}$$
, $g(x) = \frac{3}{x}$

33
$$f(x) = \frac{x-1}{x-2}$$
, $g(x) = \frac{x-3}{x-4}$

34
$$f(x) = \frac{x+2}{x-1}$$
, $g(x) = \frac{x-5}{x+4}$

Exer. 35–36: Solve the equation $(f \circ g)(x) = 0$.

35
$$f(x) = x^2 - 2$$
, $g(x) = x + 3$

36
$$f(x) = x^2 - x - 2$$
, $g(x) = 2x - 1$

37 Several values of two functions f and g are listed in the following tables:

Y	5	6	7	R	q
f(x)	8	7	W.S.	5	4
1 4.7				8	0
A.	5	0	7	0	3

If possible, find

(a)
$$(f \circ g)(6)$$
 (b) $(g \circ f)(6)$ (c) $(f \circ f)(6)$

(d)
$$(g \circ g)(6)$$
 (e) $(f \circ g)(9)$