CHEM2201: Section 1

Alex Ganose

December 28, 2012

Contents

1	Oxi	idation and Reduction Reactions	3
	1.1	Example Reactions	4
2	Enc	ols and Enolates	6
	2.1	Example Reactions	6
	2.2	Aldol Reaction	7
3	\mathbf{Ald}	lol Reaciton	8
	3.1	Unsymmetrical Ketones	9
	3.2	Electrophiles	11
	3.3	Other Reactions	11
4	Cor	njugate Addition Reactions	13
5	Ret	crosynthetic Analysis	14
6	Spe	ectroscopy	15
	6.1	Summary of IR Frequencies	15
	6.2	$\mathrm{H^1~NMR}$	16
		6.2.1 Summary of Chemical Shifts	16
		6.2.2 J Couplings	17

1 Oxidation and Reduction Reactions

Alcohol to Carboxylic Acid

Use:

- \bullet KMnO₄
- CrO_3
- Na₂Cr₂O₇

Alcohol to Aldehyde

$$R \frown OH \longrightarrow R \bigcirc O$$

Use:

• PCC

 ${\bf Aldehyde\ to\ Alcohol}\ (+\ {\bf Ketones\ and\ C=O\ of\ higher\ reactivity})$

Use:

- $\bullet \ \mathrm{NaBH}_4$
- LiAlH₄

Ester to Alcohol and RCONHR to $\mathrm{RCH}_2\mathrm{NHR}$

$$\stackrel{\mathsf{O}}{\underset{\mathsf{B}}{\longleftarrow}} \stackrel{\mathsf{O}}{\longrightarrow} \mathsf{R} \stackrel{\mathsf{O}}{\longrightarrow} \mathsf{R}$$

Use:

 \bullet LiAlH₄

Carboxylic Acid to Alcohol

Use:

- $\bullet \ \, \mathrm{LiAlH}_{4}$
- BH_3THF

 $\rm RCH{=}NR^1$ to $\rm RCH_2NHR^1$

$$R \nearrow N$$
 $\stackrel{R}{\longrightarrow}$ $R \nearrow N$ $\stackrel{R}{\mapsto}$ H

Use:

• NaCNBH₃

The basic principles of addition to C=O groups are:

- How reactive is the C=O group
- How reactive is the nucleophile
- Which is more reactive, the starting material or the product (Example 3)
- Will an unreactive C=O need activation (e.g. H⁺)? If the nucleophile is unreactive?
- Can H₂O be eliminated.

1.1 Example Reactions

1. Reduction of aldehyde with $NaBH_4$

Good electrophile
$$\begin{array}{c} O \\ R \\ H \\ H \end{array}$$
 $\begin{array}{c} O \\ R \\ H \end{array}$ $\begin{array}{c} O \\ H \\ H \end{array}$

No further reactions can take place as there are no leaving groups

This reaction will not take place with esters as the electrophile is not sufficiently reactive. Instead use ${\rm LiAlH_4}$

2. Carboxylic acid from acid chloride with NaOH

Cl is a good leaving group therefore there is a further reaction

3. Ester with a grignard reagent

Poor electrophile

4. Addition of water

Poor electrophile and poor nucleophile therefore the C=O group is activated by adding water.

5. Elimination of H_2O

$$H_3C-OH$$
 H_3C-OH
 H_3C-OH

Reasonable electrophile and a poor nucleophile therefore activation of C=O required.

6. Elimination of H₂O using methylamine

Reasonable electrophile and poor nucleophile therefore activation of C=O required.

2 Enols and Enolates

Formation of an enol using acid + ketone

2.1 Example Reactions

 $Enol + DCl + D_2O$

 $H \longrightarrow D$ exchange takes place at the α -position

Enol + Acid and Br₂

Forms a brominated ketone

Enolate formation using base + ketone

$$\bigcap_{H} \bigcap_{OH} \bigcap_{O} \bigcap_{O} \bigcap_{(A)}$$

Enolate formation from esters

Enolate formation with diketone

Order of stability goes C > B > A

Enolate with ${\rm Br}_2\,+\,{\rm base}$

For compounds with α -H's:

- Central protons are easier to remove as this further delocalises the negative charge.
- The pKa of the base must be no higher than the compound to deprotonate.

2.2 Aldol Reaction

3 Aldol Reaciton

In mild or dilute base, results in the self condensation of an aldehyde or ketone.

In presence of conc base a further reaction can take place

Forms a α,β -unsaturated aldehyde

If an unsymmetrical ketone with more than one α -H is used then 2 different products will be formed. However if the material only has 1 way to enolise, then the aldol reaction will only form one product.

Adol reactions can also occur between two different C=O compounds.

$$\stackrel{-}{\downarrow}$$
 $\stackrel{-}{\downarrow}$ $\stackrel{-}$

However other reactions can happen, e.g. it will react with itself and the other starting product may also enolise. NaOH is therefore not an efficient way to form a single product. However it is possible to form a single product by taking into account that:

- \bullet A compound with no $\alpha\textsc{-H}$ cannot enolise
- Aldehydes are more reactive than ketones

Beware however that if you have a molecule with no α -H and it is a ketone reacting with an aldehyde the ketone will be ignored and a single product will be formed by the aldehyde reacting with itself.

Using acetoacetate as a reagent for $\int_{-\infty}^{\infty}$

Crossed aldol product reaction with only one product using LDA to from lithium enolates.

Addition of LDA results in complete conversion to lithium enolate

3.1 Unsymmetrical Ketones

To remove the less sterically hindered protons, a bulky base is used. E.g. LDA $\,$ -78 $\,$ °C. If we need the more sterically hindered enolate, we can do this by acknowledging that this is the more stable enolate and use Me₃SiCl and Et₃N then MeLi. E.g.

 $\mathrm{Et_3N}$ is used as a mild unhindered base that an remove either protons

Aldehydes and LDA will not react to form enolates as H Instead to make an enolate from an aldehyde use cyclohexanamine, H^+ and then LDA.

Formaldehyde is even more reactive than other aldehydes, this makes it impossible to control as an enol. Formaldehyde is therefore not useful for adding a $\mathrm{CH_2-OH}$ group to molecules. To convert

we can't therefore go through:

Instead the Mannich reaction is therefore used:

3.2 Electrophiles

The choice of electrophile for for enolate alkylation is important:

- \bullet Enolate alkylation are $S_{\rm N}2$ reactions
- R-X: X must be a good leaving group
- $\bullet \ \operatorname{Mesylate} > \operatorname{Tosylate} > \operatorname{I} > \operatorname{Br} > \operatorname{Cl}$

Example:

3.3 Other Reactions

Diekman Condensation - Both esters in the same molecule:

Crossed Claisen Reactions - Between 2 esters or one ester and a ketone. The conditions are:

- Need one ester that can't enolise
- This is ester must be a better electrophile

There are only 3 reagents. All are more reactive than simple esters.

Example:

With Claisen you normally end up with a diketone, e.g.

4 Conjugate Addition Reactions

Occurs due to the resonance effects of a α,β -

5 Retrosynthetic Analysis

Spectroscopy 6

Summary of IR Frequencies

Single Bonds to Hydrogen

$- sp^3$	C-H	2850 - 2960s
$- sp^2$	C-H	3010 - 3095
- Aldehyde	O=C-H	2700 - 2900
- sp	C-H	3000 sharp
- Nitrile	N-H	$3300 - 3500 \mathrm{m}$
- Free	О-Н	$3590-3600s\; sharp$
- Normally H-bonded	O-H	3200 - 3600s broad
- Strongly H-bonded	О-Н	2500 - 3200s broad

Triple Bonds

- Nitriles	RCN	2200 - 2260v
- Alkynes	$RC \equiv CR^1$	2150 - 3095w
	$RC\equiv CH$	2100 - 2140w

Double Bonds

- Alkenes	C=C	1620 - 1680v
- Enones	C=C-C=O	1590 - 1640s
- Aromatics, up to 3 of		1600, 1580, 1500v
- Nitro	NO_2	1560, 1350s

Carbonyl Group, C=O

rbonyl Group, C=O	1715 ± 10	
- Dialkyl ketone	alkyl	0 (also carboxylic acid is \pm 0)
- Anhydride	OCOR	+35, +110
- Acid chloride	COOCI	+85
- Ester	OCOR	+25
- Aldehyde	Н	+15
- Aryl ketone	Ar	-25
- Enone	C=C	-35
- Amide	NH_2	-65

$6.2 ext{ } H^1 ext{ NMR}$

Most signals are from $0-12~\mathrm{ppm}$

- Carboxylic acids	10 - 12
- Aldehydes	9 - 10
- Aromatics	7 - 9
- Alkenes	5 - 7
- H - O	3 – 5
- H N	2 - 3.5
- H	2 – 3
- H	2-3
- Alkynes	2 - 3
- Alkanes	0.5 - 1.5

R-OH, R-SH, R-NH $_2$ are hard to predict. Often 0 – 5 ppm with little H bonding. Higher if more H bonding. The more shielded the hydrogen the further upfield it appears (i.e. lower frequency).

6.2.1 Summary of Chemical Shifts

Methyl Groups

- CH_3-C	10 - 12
- CH_3 - C = C	9 - 10
- $\mathrm{CH_3}\mathrm{-Ar}$	7 - 9
- CH_3 - CO - R	5 - 7
- CH_3 -O-R	3 - 5
- CH_3 -N	2 - 3.5

Protons Attached to Unsaturated Linkages

- Ar-CHO	9.7 - 10.5
- RCHO	9.4 - 10.0
- H-CO-O	8.0 - 8.2
- Aromatic	$6.0 - 9.0 \text{ (usually } \approx 7)$
- C=CH-CO	5.8 - 6.7
- C=CH	4.5 - 6.0
- C≡C−H	1.8 - 3.1

6.2.2 J Couplings

Methyl Groups

- Open chain single bond 7 Hz

- Trans alkene $12-18~{\rm Hz}~{\rm (typically~16~Hz)}$ - Cis alkene $7-11~{\rm Hz}~{\rm (typically~10~HZ)}$

- Ortho 6 - 9 Hz - Meta 1 - 3 Hz - Para 0 - 1 Hz