Problem Set 1

Quiz, 9 questions

4/9 points (44.44%)

× Try again once you are ready.

Required to pass: 70% or higher

You can retake this quiz up to 3 times every 8 hours.

Retake

Back to Week 1

1/1 point

1

1\2	Х	у	Z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0

Find the strictly dominant strategy:

- 1) a;
- 2) b;
- 3) c;

Correct

(3) c is a strictly dominant strategy.

- Because when 2 plays x or y or z, playing c always gives 1 a strictly higher payoff than playing a, b or d.
- None of the strategies is always strictly best for player 2.
- 4) d;
- 5) x;
- 6) y;

Quiz, 9 questions 4/9 points (44.44%)

×

0 / 1 point

2.

1\2	Х	у	Z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0

Find a very weakly dominant strategy that is not strictly dominant.

- 7) z
- 4) d;
- 2) b;
- 1) a;
- 5) x;
- 3) c;

This should not be selected

6) y;

1/1 point

3.

Problem Set 1

4/9 points (44.44%)

Quiz, 9	questions	X	У	Z
	a	1,2	2,2	5,1
	b	4,1	3,5	3,3
	С	5,2	4,4	7,0
	d	2,3	0,4	3,0

a) Only	X
---------	---

0	b) Only y

Correct

(b) only y is a best response for player 2.

When player 1 plays d, player 2 earns 3 from playing x, 4 from playing y and 0

from playing z. Thus only y is a best response.

) Only z

d) Both y and z
a, boarry arra 2

0/1 point

4.

1\2	х	у	Z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0

Find all strategy profiles that form pure strategy Nash equilibria (there may be more than one, or none):

Un-selected is correct

4/9 points (44.44%)

(b, z);
Un-selected is correct
(a, y);
Un-selected is correct
(c, x);
Un-selected is correct
(c, y);
This should be selected
(a, x);
Un-selected is correct
(b, x);
Un-selected is correct
(a, z);
Un-selected is correct
(d, z).
Un-selected is correct
(c, z);

https://www.coursera.org/learn/game-theory-1/exam/iq6KQ/problem-set-1

4/9 points (44.44%)

Un-selected is correct

1/1 point

5.

There are 2 players who have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the share they would like to receive s_1 and s_2 , with $0 \le s_1$, $s_2 \le 1$. If $s_1 + s_2 \le 1$, then the players receive the shares they named and if $s_1 + s_2 > 1$, then both players fail to achieve an agreement and receive zero. This game is known as `Nash Bargaining'.

Which of the following is a strictly dominant strategy?

- (a)1;
- () b) 0.5;
- c) 0;
- d) None of the above.

Correct

(d) is true.

- No player has any strictly dominant strategies. Any of the options given constitutes a best response to some strategy played by the other player, and so no strategy always strictly outperforms all other strategies.
- Strategies (a) and (c) are in the set of best responses of player i when player j's strategy is $s_j>1$.
- Strategies (b) is the best response of player i when player j's strategy is $s_i = 0.5$.

0/1 point

6

There are 2 players who have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the share they would like to receive s_1 and s_2 , with $0 \le s_1$, $s_2 \le 1$. If $s_1 + s_2 \le 1$, then the players receive the shares they named and if $s_1 + s_2 > 1$, then both players fail to achieve an agreement and receive zero.

Which of the following strategy profiles is a pure strategy Nash equilibrium?

4/9 points (44.44%)

This should not be selected

c) (1.0,	1 (1)
C) (1.U,	1.0),
, , ,	,,

1/1 point

7.

Two firms produce identical goods, with a production cost of c>0 per unit.

Each firm sets a nonnegative price (p_1 and p_2).

All consumers buy from the firm with the lower price, if $p_1 \neq p_2$. Half of the consumers buy from each firm if $p_1 = p_2$.

D is the total demand.

Profit of firm i is:

- 0 if $p_i>p_j$ (no one buys from firm i);
- $ullet \ \ D \, rac{p_i c}{2} \, ext{if} \, p_i = p_j ext{(Half of customers buy from firm i);}$
- $D(p_i-c)$ if $p_i < p_j$ (All customers buy from firm i)

Find the pure strategy Nash equilibrium:

- a) Both firms set p=0.
- b) Firm 1 sets p=0, and firm 2 sets p=c.
- O c) Both firms set p=c.

Correct

(c) is true.

- Notice than in a) and b) at least one firm i is making negative profits since $p_i < c$ and it sells a positive quantity. Thus, firm i would prefer to deviate to $p_i > p_j$ and earn a profit of 0.
- ullet It is easy to verify that $p_1=p_2=c$ is an equilibrium by checking that no firm wants to deviate:
- ullet When $p_1=p_2=c$, both firms are earning null profits.
- If firm 1 increases its price above $c \, (p_1 > c)$, it will still earn null profits.

	d) No pure strategy Nash equilibrium exists.
K	0 / 1 point
	ee voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and e for B.
	en A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 1. Thus, 1 prefers A, and 2 and 3 prefer B.
The	candidate getting 2 or more votes is the winner (majority rule).
ind al	l <i>very weakly</i> dominant strategies (click all that apply: there may be more than one, or none).
	a) Voter 1 voting for A.
Corr	ect
(a) a	nd (d) are (very weakly) dominant strategies.
fo	heck (b): for voter 1, voting for candidate A always results in at least as high a payoff as voting or candidate B and indeed is sometimes strictly better (when the other players vote for ifferent candidates).
• V	When voters 2 and 3 vote for B, voter 1 is indifferent between A or B (since B will win anyways).
• V	When either 2 or 3 (or both) vote for A, voter 1 strictly prefers to vote for A than for B.
• 0	heck (c): for voter 2, voting for candidate B is a very weakly dominant strategy.
• V	When voters 1 and 3 vote for A, voter 2 is indifferent between A or B (since A will win anyways).
	When either 1 or 3 (or both) vote for B, voter 2 strictly prefers to vote for B than for A.
• V	

c) Voter 2 (or 3) voting for A.

Un-selected is correct Problem Set 1

Quiz, 9 questions

4/9 points (44.44%)

	(

d) Voter 2 (or 3) voting for B.

This should be selected

0/1 point

9.

- Three voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and vote for B.
- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find **all** pure strategy Nash equilibria (click all that apply)? Hint: there are three.

a) 1 voting for A, and 2 and 3 voting for B.

This should be selected

b) All voting for A.

Correct

(a), (b) and (c) are pure strategy Nash equilibria.

- It is easy to verify that (a), (b) and (c) are equilibria by checking that no voter wants to deviate:
- When all voters vote for the same candidate, no single voter has any incentives to deviate because his/her individual vote can't modify the outcome of the election.
- In (a), voter 1 is indifferent between candidates A and B, and voters 2 and 3 are best responding to the strategies played by the remaining voters (if voter 2 votes for A, candidate A wins; if voter 2 votes for B, candidate B wins).
- (d) is not an equilibrium, since voter 2 has incentives to deviate and vote for candidate B.

c) All voting for B.

This should be selected

d) 1 and 2 voting for A, and 3 voting for B. Problem Set 1

Quiz, 9 questions **Un-selected is correct**

4/9 points (44.44%)