Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Two Problems

- Type checking
 - Question: Does exp. e have type τ in env Γ ?
 - Answer: Yes / No
 - Method: Type derivation
- Typability
 - Question Does exp. e have some type in env. \(\Gamma\)?
 If so, what is it?
 - Answer: Type T / error
 - Method: Type inference

Type Inference - Outline

- Begin by assigning a type variable as the type of the whole expression
- Decompose the expression into component expressions
- Use typing rules to generate constraints on components and whole
- Recursively find substitution that solves typing judgment of first subcomponent
- Apply substitution to next subcomponent and find substitution solving it; compose with first, etc.
- Apply comp of all substitution to orig. type var. to get answer

Type Inference - Example

- What type can we give to (fun x -> fun f -> f (f x))
- Start with a type variable and then look at the way the term is constructed

First approximate:

$$\{ \} | - (fun x -> fun f -> f (f x)) : \alpha \}$$

Second approximate: use fun rule

$$\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma \} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha$$

• Remember constraint $\alpha = (\beta \rightarrow \gamma)$

Third approximate: use fun rule

Fourth approximate: use app rule

{f:δ; x:β}|- f:
$$\varphi \to \varepsilon$$
 {f:δ; x:β}|- f x: φ
{f:δ; x:β}|- (f (f x)): ε
{x:β}|- (fun f -> f (f x)): γ
{ }|- (fun x -> fun f -> f (f x)): α

Type Inference - Example

- Fifth approximate: use var rule, get constraint $\delta = \phi \rightarrow \epsilon$, Solve with same
- Apply to next sub-proof

Type Inference - Example

■ Current subst: $\{\delta = \phi \rightarrow \epsilon\}$

■ Current subst: $\{\delta = \phi \rightarrow \epsilon\}$

```
\{f:\varphi \rightarrow \varepsilon; x:\beta\} | -f:\zeta \rightarrow \varphi \{f:\varphi \rightarrow \varepsilon; x:\beta\} | -x:\zeta
                      \{f: \varphi \rightarrow \varepsilon; x:\beta\} | -fx: \varphi
              \{f:\delta;x:\beta\} |- (f (f x)) : \epsilon
           \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma\}
       \{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}
```

- Current subst: $\{\delta = \phi \rightarrow \epsilon\}$
- Var rule: Solve $\zeta \rightarrow \varphi = \varphi \rightarrow \varepsilon$ Unification

```
\{f: \varphi \rightarrow \varepsilon; x: \beta\} | - f: \zeta \rightarrow \varphi \quad \{f: \varphi \rightarrow \varepsilon; x: \beta\} | - x: \zeta
\dots \quad \{f: \varphi \rightarrow \varepsilon; x: \beta\} | - fx: \varphi
\{f: \delta; x: \beta\} | - (f(fx)): \varepsilon
\{x: \beta\} | - (fun f \rightarrow f(fx)): \gamma
\{\} | - (fun x \rightarrow fun f \rightarrow f(fx)): \alpha
\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \varepsilon)
```

- Current subst: $\{\zeta \equiv \varepsilon, \varphi \equiv \varepsilon\}$ o $\{\delta \equiv \varphi \rightarrow \varepsilon\}$
- Var rule: Solve $\zeta \rightarrow \varphi \equiv \varphi \rightarrow \varepsilon$ Unification

```
\{f: \phi \to \varepsilon; x:\beta\} | -f: \zeta \to \phi \{f: \phi \to \varepsilon; x:\beta\} | -x: \zeta
... \{f: \phi \to \varepsilon; x:\beta\} | -f x: \phi
```

 $\{f:\delta;x:\beta\}\mid -(f(fx)):\epsilon$

 $\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma$

 $\{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}$

$$\alpha = (\beta \rightarrow \gamma); \gamma = (\delta \rightarrow \epsilon)$$

- Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Apply to next sub-proof

```
\{f: \varepsilon \rightarrow \varepsilon; x: \beta\} | - x: \varepsilon
                           \{f: \varphi \rightarrow \varepsilon; x:\beta\} | -fx: \varphi
                 \{f:\delta;x:\beta\}\mid -(f(fx)):\epsilon
              \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma\}
        \{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}
\alpha \equiv (\beta \rightarrow \gamma); \gamma \equiv (\delta \rightarrow \epsilon)
```

- Current subst: $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Var rule: ε≡β

```
\{f: \varepsilon \rightarrow \varepsilon; x: \beta\} | - x: \varepsilon
                        \{f: \varphi \rightarrow \varepsilon; x:\beta\} | -fx: \varphi
              \{f:\delta;x:\beta\}\mid -(f(fx)):\epsilon
           \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma\}
    \{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}
\alpha \equiv (\beta \rightarrow \gamma); \gamma \equiv (\delta \rightarrow \epsilon)
```

- Current subst: $\{\varepsilon = \beta\}$ o $\{\zeta = \varepsilon, \varphi = \varepsilon, \delta = \varepsilon \rightarrow \varepsilon\}$
- Solves subproof; return one layer

```
\{f: \varepsilon \rightarrow \varepsilon; x: \beta\} | - x: \varepsilon
                     \{f: \varphi \rightarrow \varepsilon; x:\beta\} | -fx: \varphi
             \{f:\delta;x:\beta\}\mid -(f(fx)):\epsilon
           \{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma\}
      \{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}
```

- Current subst: $\{\varepsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$
- Solves this subproof; return one layer

```
 \frac{\{f: \phi \to \epsilon; x: \beta\}| - f x: \phi}{\{f: \delta; x: \beta\}| - (f (f x)): \epsilon} 
 \frac{\{x: \beta\}| - (f un f -> f (f x)): \gamma}{\{\}| - (f un x -> f un f -> f (f x)): \alpha} 
 \alpha = (\beta \to \gamma); \gamma = (\delta \to \epsilon)
```

- Current subst: $\{\varepsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$
- Need to satisfy constraint $\gamma = (\delta \rightarrow \epsilon)$, given subst: $\gamma = ((\beta \rightarrow \beta) \rightarrow \beta)$

Current subst:

$$\{\gamma \equiv ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon \equiv \beta, \zeta \equiv \beta, \phi \equiv \beta, \delta \equiv \beta \rightarrow \beta\}$$

Solves subproof; return one layer

Type Inference - Example

Current subst:

$$\{\gamma \equiv ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon \equiv \beta, \zeta \equiv \beta, \phi \equiv \beta, \delta \equiv \beta \rightarrow \beta\}$$

Need to satisfy constraint $\alpha = (\beta \rightarrow \gamma)$ given subst: $\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta))$

$$\{x : \beta\} \mid - (\text{fun } f -> f (f x)) : \gamma \} \mid - (\text{fun } x -> \text{fun } f -> f (f x)) : \alpha$$

Type Inference - Example

Current subst:

$$\{\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta)),$$

$$\gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$$

Solves subproof; return on layer

$$\{x:\beta\}$$
 |- (fun f -> f (f x)) : γ
{ } |- (fun x -> fun f -> f (f x)) : α

Current subst:

$$\{\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta)), \\ \gamma = ((\beta \rightarrow \beta) \rightarrow \beta), \epsilon = \beta, \zeta = \beta, \varphi = \beta, \delta = \beta \rightarrow \beta\}$$
• Done: $\alpha = (\beta \rightarrow ((\beta \rightarrow \beta) \rightarrow \beta))$

$$\{ \} \mid - (fun x -> fun f -> f (f x)) : \alpha \}$$

Type Inference Algorithm

Let infer $(\Gamma, e, \tau) = \sigma$

- I is a typing environment (giving polymorphic types to expression variables)
- e is an expression
- τ is a type (with type variables),
- o is a substitution of types for type variables
- Idea: σ is the constraints on type variables necessary for $\Gamma \mid -e : \tau$
- Should have $\sigma(\Gamma) \mid -e : \sigma(\tau)$

Type Inference Algorithm

has_type $(\Gamma, exp, \tau) =$

- Case exp of
 - Var $v \rightarrow \text{return Unify}\{\tau = \text{freshInstance}(\Gamma(v))\}$
 - Replace all quantified type vars by fresh ones
 - Const $c \longrightarrow \text{return Unify}\{\tau \equiv \text{freshInstance } \phi \}$ where $\Gamma \mid -c : \phi$ by the constant rules
 - fun x -> e -->
 - Let α , β be fresh variables
 - Let $\sigma = \inf \{(x: \alpha\} + \Gamma, e, \beta)$
 - Return Unify($\{\sigma(\tau) \equiv \sigma(\alpha \rightarrow \beta)\}$) o σ

- Case exp of
 - App $(e_1 e_2) -->$
 - Let α be a fresh variable
 - Let $\sigma_1 = \inf(\Gamma, e_1, \alpha \rightarrow \tau)$
 - Let $\sigma_2 = \inf(\sigma(\Gamma), e_2, \sigma(\alpha))$
 - Return σ_2 o σ_1

- Case exp of
 - If e_1 then e_2 else e_3 -->
 - Let $\sigma_1 = infer(\Gamma, e_1, bool)$
 - Let σ_2 = infer($\sigma\Gamma$, e_2 , $\sigma_1(\tau)$)
 - Let $\sigma_3 = \inf(\sigma_2 \circ \sigma_1(\Gamma), e_2, \sigma_2 \circ \sigma(\tau))$
 - Return $\sigma_3 \circ \sigma_2 \circ \sigma_1$

- Case exp of
 - let $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let $\sigma_1 = \inf(\Gamma, e_1, \alpha)$
 - Let $\sigma_2 =$
 - infer({x:GEN($\sigma_1(\Gamma)$, $\sigma_1(\alpha)$)} + $\sigma_1(\Gamma)$, e_2 , $\sigma_1(\tau)$)
 - Return $\sigma_2 \circ \sigma_1$

- Case exp of
 - let rec $x = e_1$ in e_2 -->
 - Let α be a fresh variable
 - Let $\sigma_1 = \inf\{(x: \alpha\} + \Gamma, e_1, \alpha)$
 - Let σ_2 = infer({x:GEN($\sigma_1(\Gamma)$, $\sigma_1(\alpha)$)} + $\sigma_1(\Gamma)$ }, e_2 , $\sigma_1(\tau)$)
 - Return $\sigma_2 \circ \sigma_1$

- To infer a type, introduce type_of
- Let α be a fresh variable
- type_of (Γ, e) =
 - Let $\sigma = \inf(\Gamma, e, \alpha)$
 - Return $\sigma(\alpha)$

Need an algorithm for Unif

Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

Simple Implementation Background

Unification Problem

Given a set of pairs of terms ("equations") $\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$ (the *unification problem*) does there exist

a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

- Type Inference and type checking
- Pattern matching as in OCAML
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

Unification Algorithm

• Let $S = \{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$ be a unification problem.

Case S = { }: Unif(S) = Identity function (i.e., no substitution)

• Case $S = \{(s, t)\} \cup S'$: Four main steps

-

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = f(r_1, ..., r_m)$ (same f, same m!), then Unif(S) = Unif({(q_1, r_1), ..., (q_m, r_m)} \cup S')
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x,s)} ∪ S')

Unification Algorithm

- Eliminate: if s = x is a variable, and x does not occur in t (the occurs check), then
 - Let $\varphi = x \rightarrow t$
 - Let $\psi = \text{Unif}(\varphi(S'))$
 - Unif(S) = $\{x \mid \rightarrow \psi(t)\}\ o \psi$
 - Note: {x |→ a} o {y |→ b} = {y |→ ({x |→ a}(b))} o {x |→ a} if y not in a

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

x,y,z variables, f,g constructors

• $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

- x,y,z variables, f,g constructors
- S is nonempty

• $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), x)

• $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y))), x)
- Orient: (x, g(y,f(y)))
- $S = \{(f(x), f(g(y,z))), (g(y,f(y)), x)\}$
- $-> \{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

x,y,z variables, f,g constructors

• S -> $\{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (f(x), f(g(y,z)))

• S -> $\{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (f(x), f(g(y,z)))
- Decompose: (x, g(y,z))
- S -> $\{(f(x), f(g(y,z))), (x, g(y,f(y)))\}$
- $-> \{(x, g(y,z)), (x, g(y,f(y)))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (x, g(y,f(y)))
- Substitute: {x |-> g(y,f(y))}
- S -> $\{(x, g(y,z)), (x, g(y,f(y)))\}$
- $-> \{(g(y,f(y)), g(y,z))\}$
- With {x |-> g(y,f(y))}

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), g(y,z))

• S -> $\{(g(y,f(y)), g(y,z))\}$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,f(y)), g(y,z))
- Decompose: (y, y) and (f(y), z)
- S -> $\{(g(y,f(y)), g(y,z))\}$
- -> {(y, y), (f(y), z)}

- x,y,z variables, f,g constructors
- Pick a pair: (y, y)

S -> {(y, y), (f(y), z)}

- x,y,z variables, f,g constructors
- Pick a pair: (y, y)
- Delete
- S -> {(y, y), (f(y), z)}
- -> {(f(y), z)}

- x,y,z variables, f,g constructors
- Pick a pair: (f(y), z)

S -> {(f(y), z)}

- x,y,z variables, f,g constructors
- Pick a pair: (f(y), z)
- Orient: (z, f(y))
- S -> {(f(y), z)}
- -> {(z, f(y))}

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))

S -> {(z, f(y))}

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- Eliminate: {z|-> f(y)}
- S -> {(z, f(y))}
- **->** { }

With
$$\{x \mid \rightarrow \{z \mid \rightarrow f(y)\} (g(y,f(y))) \}$$

o $\{z \mid \rightarrow f(y)\}$

- x,y,z variables, f,g constructors
- Pick a pair: (z, f(y))
- Eliminate: {z|-> f(y)}
- $S \rightarrow \{(z, f(y))\}$
- **->** { }

With $\{x \mid \rightarrow g(y,f(y))\}\ o \{(z \mid \rightarrow f(y))\}\$

S = {(f(x), f(g(y,z))), (g(y,f(y)),x)}
Solved by {x
$$\rightarrow$$
 g(y,f(y))} o {(z \rightarrow f(y))}
f(g(y,f(y))) = f(g(y,f(y)))
x

and

$$g(y,f(y)) = g(y,f(y))$$

10/14/14

4

Example of Failure: Decompose

- $S = \{(f(x,g(y)), f(h(y),x))\}$
- Decompose: (f(x,g(y)), f(h(y),x))
- $S \rightarrow \{(x,h(y)), (g(y),x)\}$
- Orient: (g(y),x)
- $S \rightarrow \{(x,h(y)), (x,g(y))\}$
- Eliminate: (x,h(y))
- S -> $\{(h(y), g(y))\}$ with $\{x \mid \rightarrow h(y)\}$
- No rule to apply! Decompose fails!

•

Example of Failure: Occurs Check

- $S = \{(f(x,g(x)), f(h(x),x))\}$
- Decompose: (f(x,g(x)), f(h(x),x))
- $S \rightarrow \{(x,h(x)), (g(x),x)\}$
- Orient: (g(y),x)
- $S \rightarrow \{(x,h(x)), (x,g(x))\}$
- No rules apply.

Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis

Symbol Table

Translate

Intermediate

Representation

Optimize

Optimized IR

Instruction

Selection

Unoptimized Machine-

Specific Assembly Language

Optimize

Optimized Machine-Specific

Assembly Language

Emit code

Assembly Language

Assembler

Relocatable Object Code

Linker

Machine Code

Modified from "Modern Compiler Implementation in ML", by Andrew Appel

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Syntax of English Language

Pattern 1

Subject	Verb
David	sings
The dog	barked
Susan	yawned

Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

Elements of Syntax

- Character set previously always ASCII, now often 64 character sets
- Keywords usually reserved
- Special constants cannot be assigned to
- Identifiers can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

Expressions

```
if ... then begin ...; ... end else begin ...; ... end
```

Type expressions

```
typexpr<sub>1</sub> -> typexpr<sub>2</sub>
```

Declarations (in functional languages)

```
let pattern_1 = expr_1 in expr
```

Statements (in imperative languages)

$$a = b + c$$

Subprograms

```
let pattern₁ = let rec inner = ... in expr
```


Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
 - Specification Technique: Regular Expressions
 - Parsing: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

Formal Language Descriptions

 Regular expressions, regular grammars, finite state automata

 Context-free grammars, BNF grammars, syntax diagrams

 Whole family more of grammars and automata – covered in automata theory

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs