

Data sheet

Dual-issue Microcontroller

Features

- High performance with dual issue
- System Clock up to 45MHz (Depended on LUTs technology of Arty-z7)
- RISC Architecture
 - 34 instructions most single-clock execution
 - 32 general purpose registers
- Memory:
 - 2Kb of Data-memory (SRAM)
 - 8Kb of Program-memory (SRAM)
- All Features:
 - One 16-bit Timer/Counter with separate prescaler, compare mode
 - One external interrupt
 - One internal interrupt
 - Two UART peripheral
 - One SPI peripheral
 - One I2C peripheral
 - 16 general purpose input-output

Contents

1	Pin	Configurations	5
	1.1	Pin Description	6
		1.1.1 VCC	6
		1.1.2 GND	6
		1.1.3 Port A (PA0:7)	6
		1.1.4 Port B (PB0:7)	6
		1.1.5 Periperhal Port	6
2	Ove	view	7
	2.1	Introduce	7
	2.2	Block Diagram	8
3	IDE		9
4	Cer	ral Processing Unit	10
	4.1	Overview	10
	4.2	ALU	11
	4.3	General purpose registers	11
5	Me	ories	15
	5.1	Program Memory	15
	5.2	Data memory	16
		5.2.1 Memory Map	16
		5.2.2 Access Time	16

	5.3	Peripherals Memory	17
	5.4	General Purpose I/O Memory	17
	5.5	I/Os & Peripherals configuration registers description	18
6	Ger	$ m neral ext{-}Purpose I/O$	23
	6.1	Overview	23
	6.2	Block Diagram	23
	6.3	Configuring the Pin	24
	6.4	Assembly Code Example	24
		6.4.1 Reading/Writing pin value	24
	6.5	Alternate Port Functions	25
		6.5.1 Alternate Functions of Port A	25
		6.5.2 Alternate Functions of Port B	25
7	Inte	errupts	26
8	Ext	ernal Interrupt	27
	8.1	Features	27
	8.2	Overview	27
	8.3	Register Description	28
		8.3.1 External Interrupt Register	28
	8.4	Assembly Code Example	28
		8.4.1 Configuring External Interrupt	29
		8.4.2 External Interrupt Routine Program	29
9	16-l	oit Timer/Counter	30
	9.1	Features	30
	9.2	Overview	30
	9.3	Register Description	30
		9.3.1 Timer Interrupt Register	31
		9.3.2 Timer Limit Value Registers	32
	9.4	Assembly Code Example	32
		9.4.1 Configuring Timer Interrupt	32

		9.4.2 Timer Interrupt Routine Program	33
10	UAI	RT	34
	10.1	Features	34
	10.2	Overview	34
	10.3	Block Diagram	36
	10.4	Registers Decription	37
		10.4.1 UARTn Registers	37
	10.5	Communication between CPU and UART	41
		10.5.1 Transmitter (TX)	41
		10.5.2 Receiver (RX)	41
	10.6	Assembly Code Example	42
		10.6.1 Configuring UART Peripheral	42
		10.6.2 Transmitting and Receiving UART peripheral	43

Pin Configurations

Figure 1.1: Pinout

1.1 Pin Description

1.1.1 VCC

Supply voltage - 3.3v

1.1.2 GND

Ground

1.1.3 Port A (PA0:7)

External Interrupt (EXTINT)

Port A is an 8bit bidirectional IO port, with 1 external-interrupt pin.

1.1.4 Port B (PB0:7)

Timer Limit Toggle Flag (TLTF)

Port B is an 8bit bidirectional IO port, with 1 timer flag.

1.1.5 Periperhal Port

Peripheral Port consists of 4 pins: RX1 - TX1; RX2 - TX2.

Overview

2.1 Introduce

- Dual-issue microcontroller is a 64-bit RISC-V microcontroller with dual-issue and 40MHz system clock.
- The CPU has dual-issue processor.
- Each issue-processor has a 32-general-purpose-register set, so one issue-processor is not depended on another in Execution stage (except Data-hazard case).
- The Dual-issue microcontroller uses Harvard Architecture. Memory of the microcontroller is separated into 2 spaces: Data Memory & Program Memory.
- The Dual-issue microcontroller provides features: 8Kb Program-memory (SRAM), 2Kb Data-memory (SRAM), 16 Gernal purpose I/O, dual-issure, UART periperhal, SPI peripheral, I2C peripheral, External interrupt and Timer/Counter.
- Additionally, Data memory has read-while-write mechanism, 2 read-handlers to support 2 issue processor. Program memory has "half" alignment mechanism to fetch 2 instructions at the same time.
- The dual-issue microcontroller has 2 system buses for 2 issue processors. Therefore, each issue processor can access I/Os, peripherals, and memory (except write case) independently.

2.2 Block Diagram

Figure 2.1: Block Diagram of Dual-issue Microcontroller

IDE

In this datasheet, we will provide some example code to use or configure peripherals and hardware components via assembly code.

Assembler and Program Device (Update later)

Central Processing Unit

4.1 Overview

Figure 4.1: Central Processing Unit Block (Blue block)

The CPU is able to access Data Memory, calculate, control peripherals and handle interrupts with dual issue core.

Instructions in the program memory are executed with multi-cycle pipeline (2-stage). Program processor is multi-cycle-clock processor and processes Instruction Fetch stage (consist of Instruction Fetch + Instruction Dispath). Two Issue processor is multi-

cycle-clock processor and processes Execution stage (consist of Execution + Data Memory Access + Write Back).

Instructions set consist of arithmetic instruction, logical instruction, conditional-jump instruction, unconditional-jump instruction, data-transfer instruction and some system instructions (hardware supportive instruction).

When the program processor acknowledges interrupt flag is high (from the Interrupt Controller) in Interrupt detect state, the program processor will store the current PC to internal stack buffer (It's not Data memory \rightarrow reduce clock cycles when Processors access Data memory).

Data memory consists of some memory space for Data memory space, Peripheral memory space, GPIO memory space. Users can use data-transfer instructions to configure or use them .

4.2 ALU

The ALU (in each issue processor) is connected to 32 GPRs directly.

Have 2 types of calculation

- Single-cycle calculation
- Multi-cycle calculation (for multiplication arithmetic and division arithmetic)

Have 3 categories:

- Arithmetic
- Logical
- Bit-function

4.3 General purpose registers

32 general purpose registers (GPRs) are 64-bit registers.

Caution: Data in registers is not restored when program enter interrupt service routine. Therefore, the user or compiler must add restored-and-recovery steps like calling procedure to ISR memory space.

x0 0x00 x1 0x01 x2 0x02 x3 0x03 x4 0x04 x5 0x05 x6 0x06 x7 0x07 x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 x22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x31 0x1F	63	0	Address
X2 0x02 X3 0x03 X4 0x04 X5 0x05 X6 0x06 X7 0x07 X8 0x08 X9 0x09 X10 0x0A X11 0x0B X12 0x0C X13 0x0D X14 0x0E X15 0x0F X16 0x10 X17 0x11 X18 0x12 X19 0x13 X20 0x14 X21 0x15 X22 0x16 X23 0x17 X24 0x18 X25 0x19 X26 0x1A X27 0x1B X28 0x1C X29 0x1D X30 0x1E	x0		0x00
x3 0x03 x4 0x04 x5 0x05 x6 0x06 x7 0x07 x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x1		0x01
x4 0x04 x5 0x05 x6 0x06 x7 0x07 x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 x22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x2		0x02
x5 0x05 x6 0x06 x7 0x07 x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 x22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x3		0x03
x6 0x06 x7 0x07 x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x4		0x04
x7 0x07 x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x 5		0x05
x8 0x08 x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x6		0x06
x9 0x09 x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x7		0x07
x10 0x0A x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x8		0x08
x11 0x0B x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x9		0x09
x12 0x0C x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x10		0x0A
x13 0x0D x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x11		0x0B
x14 0x0E x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x12		0x0C
x15 0x0F x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x13		0x0D
x16 0x10 x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1E	x14		0x0E
x17 0x11 x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1E	x15		0x0F
x18 0x12 x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1E	x16		0x10
x19 0x13 x20 0x14 x21 0x15 X22 0x16 x23 0x17 x24 0x18 x25 0x19 x26 0x1A x27 0x1B x28 0x1C x29 0x1E	x17		0x11
X20	x18		0x12
X21	x19		0x13
X22	x20		0x14
X23	x21		0x15
X24	X22		0x16
X25	x23		0x17
x26 0x1A x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x24		0x18
x27 0x1B x28 0x1C x29 0x1D x30 0x1E	x25		0x19
x28 0x1C x29 0x1D x30 0x1E	x26		0x1A
x29 0x1D x30 0x1E	x27		0x1B
x30 0x1E	x28		0x1C
	x29		0x1D
x31 0x1F	x30		0x1E
	x31		0x1F

Figure 4.2: General-Purpose Registers

Registers Description

- Stack pointer register (x2 0xFF is initial value): To store the address of stack space in Data memory.
- Global pointer register (x3 0x2B is initial value): To store the address of global data space in Data memory.

Instruction Execution Timing

Following example common case execution without interrupt case, jump case

 \bullet One square block is equivalent to one clock cycle.

• Program Processor: Yellow block

• Issue Processor 1: Blue block

• Issue Processor 2: Green block

(a) Wort case (4 Load-instructions)

(b) Best case (4 1-cycle-arithmetic-instructions)

Figure 4.3: Sequential Execution

Memories

This microcontroller has 2 main memory spaces, the data memory and the program memory. And both of them are SRAM.

5.1 Program Memory

Figure 5.1: SRAM Program Memory Map

The Dual-issue Microcontroller contains 8Kbits on-chip system memory for program storage. Because all instructions are 32 bits wide (word), the program memory is organized as 256 x 32. The program memory is separated into 2 spaces: interrupt routine space and main program space (See the figure 5.1).

Each interrupt routine cannot have a maximum of 16 instructions.

The main program cannot have a maximum of 208 instructions.

Moreover, the program memory provides a half-alignment mechanism, meaning the user can double-fetch instructions at any word base.

5.2 Data memory

Figure 5.2: Data Memory Map

The Dual-issue Microcontroller contains 2Kbits on-chip system memory for data storage.

5.2.1 Memory Map

The data memory is separated into 3 spaces: I/Os & peripherals configuration space; data space; I/Os & peripherals space. (See more details in section 5.3 Peripherals Memory and section 5.4 GPIO Memory)

5.2.2 Access Time

Data memory has 2 read-handlers and 1 write-handler. when CPU puts the address to the address line, which will be valid after 1 clock cycle.

5.3 Peripherals Memory

Peripherals in the Dual-issue Microcontroller are accessed and configured via Data Memory (see **figure 5.3**). Bandwidth of communication between the CPU and peripheral is up to 64bit/cycle. CPU uses general-purpose registers to transmit or receive data between the CPU and peripherals.

5.4 General Purpose I/O Memory

The Dual-issue microcontroller has 2 configuration registers to configure state of 16 GPIOs (more details in **Section: 5.5**) and 2 registers to set the value of the output state (see **figure 5.3**)

Figure 5.3: I/Os Peripherals Map in Data Memory

5.5 I/Os & Peripherals configuration registers description

All configuration registers are placed in I/Os & Peripherals Configuration Memory (See figure 5.2)

GPIO Port A - General Purpose I/O Configuration Register 1

PORT_A							
register							
(Default = 8'b000000)							

| I/O |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PORT_7 | PORT_6 | PORT_5 | PORT_4 | PORT_3 | PORT_2 | PORT_1 | PORT_0 |
| MSB | 6 | 5 | 4 | 3 | 2 | 1 | LSB |

0x000000

Figure 5.4: PORTA Register

GPIO Port B - General Purpose I/O Configuration Register 1

PORT_B
register
(Default = 8'b000000)

| I/O |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PORT_7 | PORT_6 | PORT_5 | PORT_4 | PORT_3 | PORT_2 | PORT_1 | PORT_0 |
| MSB | 6 | 5 | 4 | 3 | 2 | 1 | LSB |

0x000001

Figure 5.5: PORTB Register

UART RX 1 - UART RX 1 Configuration Register

UART_1_RX_CONFIG register	baud	rate_se	lector	stop bit config (1 - 2 bit) Parity bit (No/Yes) (0 - 1 b (odd/evi			data bi	0x000004	
(Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	0x000004

Figure 5.6: UART1RX Register

UART TX 1 - UART TX 1 Configuration Register

UART_1_TX_CONFIG register (Default = 8'b00100011)	baud	rate_se	lector	stop bit config (1 - 2 bit)	Parity bit (No/Yes)	parity bit (0 - 1 bit) (odd/even)	data bit	config	0x000005
(Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	

Figure 5.7: UART1TX Register

COM PERIPH - Comunication peripheral Configuration Register

COM_PERIPHERAL					Disable / UART_TX (2)	Disable / UART_RX (2)	Enable / Disable SPI	Enable / Disable I2C	
register (Default = 8'b00000000)	MSB	6	5	4	3	2	1	LSB	0x000006

Figure 5.8: COMPER Register

UART RX 2 - UART RX 2 Configuration Register

UART_2_RX_CONFIG register (Default = 8'b00100011)	baud	lrate_se	lector	stop bit config (1 - 2 bit)	Parity bit (No/Yes)	parity bit (0 - 1 bit) (odd/even)	data bit	config	0x000008
(Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	

Figure 5.9: UART2RX Register

UART TX 2 - UART TX 2 Configuration Register

UART_2_TX_CONFIG register	baudrate_selector			stop bit config (1 - 2 bit)	Parity bit (No/Yes)	parity bit (0 - 1 bit) (odd/even)		t config	0x000009
(Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	0,000000

Figure 5.10: UART1RX Register

SPI - SPI Configuration Register

SPI_CONFIG register	Master Slave bit	СРНА	CPOL	MSB / LSB first	SS co	ntroller	SCK	(div	0x00000A
(Default = 8'b11111000)	MSB	6	5	4	3	2	1	LSB	SXSSSSA

Figure 5.11: SPI Register

${\rm I2C}$ - ${\rm I2C}$ Configuration Register

I2C_CONFIG register	Master Slave bit						SDL	livider	0x00000B
(Default = 8'b11111000)	MSB	6	5	4	3	2	1	LSB	

Figure 5.12: I2C Register

EXT INT - External Interrupt Configuration Register

EXTERNAL_INTERRUPT	Enable Interrupt	CHANGE	RISING or FALLING	Debounce					
register (Default = 8'b00000000)	MSB	6	5	4	3	2	1	LSB	0x00000D

Figure 5.13: EXTINT Register

TIM INT - Timer Interrupt Configuration Register

TIMER_INTERRUPT register	Enable Interrupt	Limit / Overflow	TLTF			pre	escaler[2	2:0]	0x00000E
(Default = 8'b00000000)	MSB	6	5	4	3	2	1	LSB	GXGGGGE

Figure 5.14: TIMINT Register

TIM LIM - Timer Limit Configuration Register

Figure 5.15: TIMLIMH & TIMLIML Registers

General-Purpose I/O

6.1 Overview

The dual-issue microcontroller provides 16 digital I/O pins. Users can configure the state of pins via GPIO configuration registers and set the level of GPIO via GPIO Memory spaces.

6.2 Block Diagram

Figure 6.1: General-Purpose I/O Diagram

6.3 Configuring the Pin

Each port pin consists of 2 register bits: PORTx and PIN BUFx.

6.4 Assembly Code Example

6.4.1 Reading/Writing pin value

The following code example shows how to set port B pin 7, 5 HIGH and 6, 4 LOW as output state. Set pin 3, 2, 1, 0 as input state, then read pin value from pin 3, 0.

```
; Configure pin state
                          ; Set PB[7:4]-Output PB[3:0]-Input state
      ADDI x9, x0, 0x0F
      SB
            x9, 1(x0)
                            ; Store configuration data
3
      ; Set up address mapping value
                            ; Address mapping to GPIO Channel
            x10, 0x40000
      LUI
      ADDI x10, x10, 1
                          ; Address mapping to PORT B
6
      ; Write pin value
      LB
            x11, 0(x10)
                            ; Restore some unchanged value
            x11, x11, 0xA0; Mask value (set pin 7 and pin 5 HIGH)
9
      ANDI x11, x11, 0xAF; Mask value (set pin 6 and pin 4 LOW)
10
                            ; Write pin value to pin buffer
      SB
            x11, 0(x10)
11
      ; Read pin value (Read value of pin0 to LSB of x13 and value
12
         \hookrightarrow of pin3 to LSB of x14)
      LOOP:
            x12, 0(x10)
      LB
                            ; Read pin value
14
            x13, x12, x0
                           ; Copy data from x12 to x13
15
      ANDI x13, x13, 0x01; Clear others bits
16
      ADD
            x14, x12, x0
                            ; Copy data from x12 to x14
17
```



```
SRL
            x14, x14, 3
                           ; Move value of pin3 to LSB of x14
18
      ANDI x14, x14, 0x01; Clear others bit
19
           x14, x0, LOOP; Polling until pin 3 is HIGH
      BEQ
21
      ; When pin 3 is high, toggle pin 7, 6, 5 and 4
22
      LB
                        ; Restore some unchanged value
            x11, 0(x10)
            x11, x11, 0x50; Mask value (set pin 7 and pin 5 LOW)
      ORI
24
      ANDI x11, x11, 0x5F; Mask value (set pin 6 and pin 4 HIGH)
25
      SB
           x11, 0(x10)
                           ; Write pin value to pin buffer
26
```

6.5 Alternate Port Functions

6.5.1 Alternate Functions of Port A

Port Pin	Alternate Function
PA2	External Interrupt

Figure 6.2: Alternate Function of Port A

• EXTINT - Port A, Pin 2:

EXTINT: External Interrupt source.

6.5.2 Alternate Functions of Port B

Port Pin	Alternate Function
PB1	Timer Limit Toggle Flag

Figure 6.3: Alternate Function of Port B

• TLTF - Port B, Pin 1:

TLTF: Timer Flag will be toggled when the counter has reached the top of TIMER_LIMIT_VALUE.

Interrupts

The Dual-issue microcontroller has External Interrupt, Timer Interrupt and Reset Interrupt.

The ISR of each interrupt is placed on top of the Program memory. Each Routine can contain up to 16 instructions.

Vector Number	Program Address	Vector Description
1	0x00	Reset Interrupt Routine
2	0x40	External Interrupt Routine
3	0x80	Timer Interrupt Routine
4	0xC0	Main Program

Figure 7.1: Interrupt Vector

Caution:

- Common: Users must restore data of registers in Stack and recover them when RETI instruction is executed.
- Reset Interrupt: Users must boot Reset Program to Program memory (Recovery Stack pointer → Clear all Enable Interrupt bits → Execute Reset Program Instruction).

External Interrupt

8.1 Features

- Maskable interrupt
- Three sense control
- Debounce module

8.2 Overview

The external interrupt is triggered by PA2 pin. The interrupt is triggered when PA2 is configured as Output or Input mode.

The configuration reigster (EXTINT) is placed at 0x0000000000000.

Users can configure sense of external interrupt (rising edge, falling edge, pin-change).

Additionally, the dual-issue microcontroller provides debounce mechanism for external interrupt.

8.3 Register Description

8.3.1 External Interrupt Register

EXTERNAL_INTERRUPT	Enable Interrupt	CHANGE	RISING or FALLING	Debounce					
register (Default = 8'b00000000)	MSB	6	5	4	3	2	1	LSB	0x00000D

Figure 8.1: EXTINT Register

• Bit 7: External Interrupt Enable

Enable request of External Interrupt to Interrupt Controller (IC)

• Bit 6 - 5: Sense Control

Sense Encode[6]	Sense Encode[5]	Sense Description
0	0	Rising Edge
0	1	Falling Edge
1	0	Change Level
1	1	Reserved

Figure 8.2: Sense Control Encode Table

• Bit 4: Debounce option

Enable/Disable debounce for interrupt pin

• Bit 3 - 0: Reserved

8.4 Assembly Code Example

8.4.1 Configuring External Interrupt

The following code example shows how to enable external interrupt as input state with rising and debounce mode.

```
; Configure pin state
      LB
           x9, 0(x0)
                           ; Restore some unchanged value
      ORI
           x9, x9, 0x04
                           ; Set PA[2] as Input
           x9, 0(x0)
                           ; Store configuration data
      SB
      ADDI x8, x0, 0x90
                           ; Enable << 1; Rising << 1; Debounce << 1
5
      SB
           x8, 13(x0)
                           ; Set configuration data to EXT_INT
```

8.4.2 External Interrupt Routine Program

```
; Pre-process: Allocate stack & Restore registers
      ADDI x2, x2, -16; Increase Stack space(2 64-bit registers)
           x8, 0(x2)
                       ; Store x8 to Stack
      SD
      SD
           x9, 8(x2)
                       ; Store x9 to Stack
      ; In-process
      ADDI x9, x0, 144; Load global variable's address to x9
                      ; Load global variable's data to x8
      LD
            x8, 0(x9)
                      ; Set global variable's data HIGH (set flag)
      ADDI x8, x8, 1
      SD
            x8, 0(x9)
                       ; Store global variable's
      ; Post-process: Recovery
10
           x8, 0(x2)
                       ; Recover register
      LD
11
                      ; Recover register
      LD
            x9, 8(x2)
12
      ADDI x2, x2, 16 ; De-allocate Stack space(2 64-bit registers)
13
      ; Execute RETI (return from interrupt) instruction
14
      RETI
                       ; Return from interrupt
15
```

16-bit Timer/Counter

9.1 Features

- Clear timer when comparing match automatically.
- Timer counter's width is up to 16-bit.
- Four prescaler options.
- Timer flag signal at PB1

9.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing, wave generator and signal timing measurement

The module provides 4 prescaler options and 16-bit counter.

Configuration reighter (TIMINT) is placed at 0x00000000000E. Users can configure prescaler, limit-trigger or overflow-trigger, timer flag pin enable.

Timer Limit registers (TIMLIMx) is placed at 0x00000000000F and 0x0000000000000

9.3 Register Description

9.3.1 Timer Interrupt Register

TIMER_INTERRUPT
register
(Default = 8'b00000000)

Enable Interrupt	Limit / Overflow	TLTF			prescaler[2:0]				
MSB	6	5	4	3	2	1	LSB		

0x00000E

Figure 9.1: TIMINT Register

- Bit 7: Timer Interrupt Enable.

 Enable request of Timer Interrupt to Interrupt Controller
- Bit 6: Timer Flag Modes (TFM)

 If TFM is set to "1", the module will trigger when the counter reaches TIMLIM's value.

 If TFM is set to "0", the module will trigger when the counter is overflow
- Bit 5: Timer limit toggle flag (TLTF)

 If TLTF is set to "1", the PB1 pin will be toggled when the timer interrupt is invoked
- Bit 5 3: Reserved
- Bit 2 0: Prescaler Select Bit

PRES[1]	PRES[0]	Description
0	0	system_clk / 2
0	1	system_clk / 16
1	0	system_clk / 128
1	1	system_clk / 512

Figure 9.2: Precaler Encode Table

9.3.2 Timer Limit Value Registers

Figure 9.3: TIMLIMx Register

- Bit 7 0 (0x0F): Timer Limit Value LOW.

 Contain lower 8btts of the limit counter
- Bit 7 0 (0x10): Timer Limit Value HIGH.

 Contain upper 8bits of the limit counter.

9.4 Assembly Code Example

9.4.1 Configuring Timer Interrupt

The following code example shows how to enable timer interrupt; enable the timer flag of PB1 pin; set the prescaler option is "512"; set 0x300F (12303) to TIMER LIMIT VALUE.

```
; Configure timer
; First, set TIMER_LIMIT_VALUE

ADDI x8, x0, 0x30; TIMLIMH = 0x30

SB x8, 16(x0); Set TIMLIMH

ADDI x8, x0, 0x0F; TIMLIML = 0x0F

SB x8, 15(x0); Set TIMLIML

Second, set Configuration data
```


9.4.2 Timer Interrupt Routine Program

```
; Pre-process: Allocate stack & Restore registers
      ADDI x2, x2, -16; Increase Stack space(2 64-bit registers)
      SD
           x8, 0(x2)
                      ; Store x8 to Stack
           x9, 8(x2)
      SD
                      ; Store x9 to Stack
      ; In-process
      ADDI x9, x0, 144; Load global variable's address to x9
           x8, 0(x9)
                      ; Load global variable's data to x8
      LD
                       ; Set global variable's data HIGH (set flag)
      ADDI x8, x8, 1
                       ; Store global variable's data
      SD
           x8, 0(x9)
      ; Post-process: Recovery
10
           x8, 0(x2)
                       ; Recover register
      LD
11
           x9, 8(x2)
                      ; Recover register
      LD
12
      ADDI x2, x2, 16; De-allocate Stack space(2 64-bit registers)
13
      ; Execute RETI (return from interrupt) instruction
14
      RETI
                       ; Return from interrupt
15
```

UART

10.1 Features

- Full duplex operation
- Serial frames with 5, 6, 7, 8 data bits; 1 or 2 stop bits; none, even or odd parity bit
- Odd and Even parity generator and checker supported by hardware
- Store program port (Only for UART1)
- TX buffer contains up to 64 bytes (32 bytes of Atfox exTensible Interface + 32 bytes of FIFO module).
- RX buffer contains 56 bytes (24 bytes of Atfox exTensible Interface + 32 bytes of FIFO module).

10.2 Overview

The Dual-issue Microcontroller provides 2 UART communication peripherals.

For UART1:

- The UART1 space is placed at 0x80000000000000.
- The UART1TX's configuration register is placed at 0x0x00000000000005.

• The module has special wires to store instructions to Program Memory.

For UART2:

- The UART2 space is placed at 0xC0000000000000.

Users can access the UART modules via data transfer instructions (LW, LD, SW, SD).

Caution: UART transfer package aligns with word or double-word. If the user uses LB or SB instructions to access UART, the package will be extended to word automatically.

10.3 Block Diagram

The UART module is connected with the CPU via ATI (Atfox exTensible Interface) System Bus Structure. The bandwidth of the ATI bus is up to 64bits/clock cycle. For more details see Section 13: "System Bus Structure".

Each UART is connected to 1 configuration bus and 1 system bus. UART 1 is connected to system bus 1, is managed by Issue-Processor 1. UART 2 is connected to system bus 2, is managed by Issue-Processor 2.

Figure 10.1: UART Block Diagram

10.4 Registers Decription

Each UART module has 2 registers to configure the Receiver (RX) and the Transmitter (TX). They are placed at the top of the Data Memory.

10.4.1 UARTn Registers

UART RXn Register

For UART 1, the Receiver's configuration register is placed at 0x0004 in the Data memory. For UART 2, the Receiver's configuration register is placed at 0x0008 in the Data memory.

UART_1_RX_CONFIG register	baud	rate_se	lector	stop bit config (1 - 2 bit)	Parity bit (No/Yes) parity bit (0 - 1 bit) (odd/even) data bit confi			t config	0x000004
(Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	0000004

Figure 10.2: UART1RX Register

UART_2_RX_CONFIG	baudrate_selector			stop bit config (1 - 2 bit)	I (No/Yes)	parity bit (0 - 1 bit) (odd/even)	/-		0x000008
register (Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	

Figure 10.3: UART2RX Register

• Bit 7 - 5: Baudrate select.

Select baudrate for the receiver.

BAUD[7]	BAUD[6]	BAUD[5]	Descripion
0	0	0	Baudrate 4800
0	0	1	Baudrate 9600
0	1	0	Baudrate 19200
0	1	1	Baudrate 38400
1	0	0	Baudrate 14400
1	0	1	Baudrate 28800
1	1	0	Baudrate 57600
1	1	1	Baudrate 115200

Figure 10.4: Baudrate select table

• Bit 4: Stop bits select.

Select the Stop bits amount for the receiver.

STB[4]	Description
0	1 Stop bit
1	2 Stop bits

Figure 10.5: Stop bit select table

• Bit 3 - 2: Parity bits select.

Select the Parity bits for the receiver (Not - Odd - Even).

PAR[3]	PAR[2]	Description
0	0	Not Parity
0	1	Not Parity
1	0	Odd Parity
1	1	Even Parity

Figure 10.6: Parity bit select table

• Bit 1 - 0: Data bits select.

Select the Data bits for the receiver (5-6-7-8) .

DATA[1]	DATA[0]	Description
0	0	5-bit data frame
0	1	6-bit data frame
1	0	7-bit data frame
1	1	8-bit data frame

Figure 10.7: Data bit select table

UART TXn Register

For UART 1, the Transmitter's configuration register is placed at 0x0005 in the Data memory. For UART 2, the Transmitter's configuration register is placed at 0x0009 in the Data memory.

UART_1_TX_CONFIG register	baudrate_selector			stop bit config (1 - 2 bit)	Parity bit (No/Yes)	parity bit (0 - 1 bit) (odd/even)		config 8)	0x000005
(Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	

Figure 10.8: UART1TX Register

UART_2_TX_CONFIG	baud	lrate_se	lector	stop bit config (1 - 2 bit)	Parity bit (No/Yes)	parity bit (0 - 1 bit) (odd/even)	data bit		0x000009
register (Default = 8'b00100011)	MSB	6	5	4	3	2	1	LSB	0,000000

Figure 10.9: UART2TX Register

• Bit 7 - 5: Baudrate select.

Select baudrate for the transmitter.

BAUD[7]	BAUD[6]	BAUD[5]	Descripion
0	0	0	Baudrate 4800
0	0	1	Baudrate 9600
0	1	0	Baudrate 19200
0	1	1	Baudrate 38400
1	0	0	Baudrate 14400
1	0	1	Baudrate 28800
1	1	0	Baudrate 57600
1	1	1	Baudrate 115200

Figure 10.10: Baudrate select table

• Bit 4: Stop bits select.

Select the Stop bits amount for the transmitter.

STB[4]	Description
0	1 Stop bit
1	2 Stop bits

Figure 10.11: Stop bit select table

• Bit 3 - 2: Parity bits select.

Select the Parity bits for the transmitter (Not - Odd - Even).

PAR[3]	PAR[2]	Description
0	0	Not Parity
0	1	Not Parity
1	0	Odd Parity
1	1	Even Parity

Figure 10.12: Parity bit select table

• Bit 1 - 0: Data bits select.

Select the Data bits for the transmitter (5 - 6 - 7 - 8) .

DATA[1]	DATA[0]	Description
0	0	5-bit data frame
0	1	6-bit data frame
1	0	7-bit data frame
1	1	8-bit data frame

Figure 10.13: Data bit select table

10.5 Communication between CPU and UART

10.5.1 Transmitter (TX)

The Issue-processor will send 4-byte or 8-byte data to UART via Store instruction.

- Store word (SW): Transmit 4-byte data
- Store doubleword (SD): Transmit 8-byte data

The sending data format of the register

Figure 10.14: 4-byte Data Format - Store word instruction

Figure 10.15: 8-byte Data Format - Store doubleword instruction

10.5.2 Receiver (RX)

The Issue-processor will receive from 0 to 6 bytes of data via Load instruction. Users can load data from UART with 2 options:

- Load word (LW): Load data whose size less than 3 bytes
- Load doubleword (**LD**): Load data whose size **more** than 3 bytes (less than or equal to 6 bytes)

To know specific size, the user can read 1 (or 2) AMOUNT byte, which is the first (and second) byte in the register (See the figure **10.16** and **10.17**).

The receiving data format of the register:

Figure 10.16: General-Purpose register format in Load word instruction

Figure 10.17: General-Purpose register format in Load doubleword instruction

10.6 Assembly Code Example

10.6.1 Configuring UART Peripheral

The following code example shows how to configure UART peripheral

- RX1 is configured 115200-8E1 (115200BD 1StopBit 8DataBit EvenParity).
- TX1 is configured 9600-7N1 (9600BD 1StopBit 7DataBit NotParity).
- RX2 is configured 14400-5O2 (14400BD 2StopBit 5DataBit OddParity).
- TX2 is configured 9600-8N1 (9600BD 1StopBit 8DataBit NotParity).

```
ADDI x6, x0, 0xEF ; 115200BD << 1; 8E1 << 1;
ADDI x7, x0, 0x22 ; 9600BD << 1; 7N1 << 1;
```



```
ADDI x8, x0, 0x98
                           ; 14400BD << 1; 502 << 1;
3
      ADDI x9, x0, 0x23
                          ; 9600BD << 1; 8N1 << 1;
4
           x6, 4(x0)
      SB
                           ; Set UART1RX at 0x04
           x7, 5(x0)
                           ; Set UART1TX at 0x05
      SB
6
           x8, 8(x0)
      SB
                           ; Set UART2RX at 0x08
           x9, 9(x0)
      SB
                           ; Set UART2TX at 0x09
```

10.6.2 Transmitting and Receiving UART peripheral

The following code example shows how to

- Transmit a sentence ("Hello Atfox!" 0x48 0x65 0x6C 0x6C 0x6F 0x20 0x41 0x74 0x66 0x6F 0x78 0x21) via TX2.
- Receive data to x8 and byte amount to x9 via RX1. (Polling until CPU received successfully)

Transmitting

```
; Set up sentence's content (x8 = "Hello At" x9 = "fox!")
      ADDI x8, x0, 0x74
      SLLI x8, x8, 8
3
      ADDI x8, x8, 0x41
      SLLI x8, x8, 8
      ADDI x8, x8, 0x20
      SLLI x8, x8, 8
      ADDI x8, x8, 0x6F
      SLLI x8, x8, 8
9
      ADDI x8, x8, 0x6C
10
      SLLI x8, x8, 8
11
      ADDI x8, x8, 0x6C
12
      SLLI x8, x8, 8
13
      ADDI x8, x8, 0x65
14
```



```
SLLI x8, x8, 8
15
       ADDI x8, x8, 0x48
16
       SLLI x8, x8, 8
       ADDI x9, x0, 0x21
18
       SLLI x9, x9, 8
19
       ADDI x9, x9, 0x78
20
       SLLI x9, x9, 8
^{21}
       ADDI x9, x9, 0x6F
22
       SLLI x9, x9, 8
^{23}
       ADDI x9, x9, 0x66
24
       ; Send the sentence to UART2
25
            x10, 0xC0000; Map address to UART2 (at 0xC000000000000)
       LUI
26
       SD
            x8, O(x10); Send "Hello At"
                        ; Send "fox!"
            x9, 0(x10)
       SW
28
```

Receiving

```
; Set up address at 0x80000000000000
1
                   x7, 0x80000 ; Map address to UART1
              LUI
2
              ; Receive Data
3
      LOOP:
                   x8, 0(x7)
              LD
4
              ANDI x9, x8, 0x0FF; x9 = amount
5
                   x9, x0, LOOP; while (amount == 0)
              BEQ
              SRL
                   x8, x8, 16
                                  ; Remove 2 amount bytes from x8
      EXIT:
```