



# CSE 1326: Digital Logic Design Lab Registers

**United International University** 



- Implement Registers
  - Regular Registers
  - Select from multiple registers
  - Shift Registers
  - Registers with multiple functions



19-Dec-21

# Flip Flop (FF)

- A circuit that stores 1-bit.
- There are different types of flip-flops, one of them is d FF.



| R | Clk      | D | Q | Q' |
|---|----------|---|---|----|
| 1 | X        | X | 0 | 1  |
| 0 | <b>↑</b> | 0 | 0 | 1  |
| 0 | <u> </u> | 1 | 1 | 0  |

Functional Table of D FF

Symbol of DFF

# 74AHC74-Dual D Flip-flop

Pin Diagram





Truth Table

| 140    | SOR   | SORTIES |   |     |    |
|--------|-------|---------|---|-----|----|
| PRESET | CLEAR | CLOCK   | D | Q   | ā  |
| 0      | . 1   | ×       | × | . 1 | 0  |
| 1      | 0     | ×       | × | 0   | -1 |
| 0      | 0     | ×       | × | 1   | 1  |
| 1      | 1     | +       | 1 | 1   | 0  |
| 1      | . 1   | +       | 0 | 0   | 1  |
| 1      | 1     | 0       | × | Q0  | Q0 |
| 1      | 1     | 1       | × | QB  | Q0 |



#### Question:

If we want to store, say 3 bits, what should we do?



- Use 3 FFs. An array of flip flops called a register.
- What to do (1) Construct a 3-bit register Logisim



3-bit Register



## What to do

 (2) Select between two registers using a MUX -Logisim



## What to do

(3) Construct a 4-bit right shift register – Trainer board



(4) Construct a left shift register - Logisim

## What to do

 (5) Construct a 3-bit register with the functions given in the function table below – Trainer board

| Mode Control |    | Register         |  |
|--------------|----|------------------|--|
| S,           | s₀ | Operation        |  |
| 0            | 0  | No change (Hold) |  |
| 0            | 1  | Shift left       |  |
| 1            | 0  | Shift right      |  |
| 1            | 1  | Parallel load    |  |



- ICs being used
- Logic diagram
  - (1) Construct a 3-bit register
  - (2) Select between two 4-bit registers using MUX
  - (3) Construct a right shift register
  - (4) Construct a left shift register
  - (5) Construct a 3-bit register with the functions given in the function table in the previous slide.