A Novel Tensor-based Video Rain Streaks Removal Approach via Utilizing Discriminatively Intrinsic Priors Supplementary material

Anonymous CVPR submission

Paper ID 1636

Abstract

This supplementary appendix provides additional details of the convergency analysis of our algorithm, and details of the conduction of our experiments. Sections 1 illustrates that our algorithm fits the typical ADMM framework and its convergency is theoretically ensured. Section 2 gives some details of our experiments.

1. Convergency

The minimization problem in our paper is

$$\min_{\boldsymbol{\mathcal{R}}, \boldsymbol{\mathcal{Y}}, \boldsymbol{\mathcal{S}}, \boldsymbol{\mathcal{X}}, \boldsymbol{\mathcal{T}}, \boldsymbol{\mathcal{L}},} \quad \alpha_{1} \| \boldsymbol{\mathcal{Y}} \|_{1} + \alpha_{2} \| \boldsymbol{\mathcal{S}} \|_{1} \\
+ \alpha_{3} \| \boldsymbol{\mathcal{X}} \|_{1} + \alpha_{4} \| \boldsymbol{\mathcal{T}} \|_{1} + \| \boldsymbol{\mathcal{L}} \|_{*} \\
\text{s.t.} \quad \boldsymbol{\mathcal{Y}} = \nabla_{y} \boldsymbol{\mathcal{R}}, \quad \boldsymbol{\mathcal{S}} = \boldsymbol{\mathcal{R}}, \\
\boldsymbol{\mathcal{X}} = \nabla_{x} (\boldsymbol{\mathcal{O}} - \boldsymbol{\mathcal{R}}), \\
\boldsymbol{\mathcal{T}} = \nabla_{t} (\boldsymbol{\mathcal{O}} - \boldsymbol{\mathcal{R}}), \\
\boldsymbol{\mathcal{L}} = \boldsymbol{\mathcal{O}} - \boldsymbol{\mathcal{R}}, \quad \boldsymbol{\mathcal{O}} \geqslant \boldsymbol{\mathcal{R}} \geqslant 0,$$
(1)

where $\mathcal{S}, \mathcal{Y}, \mathcal{X}, \mathcal{T}$ and $\mathcal{L} \in \mathbb{R}^{m \times n \times t}$.

Although there are five components in the objective function, they can be categorized as the l_1 part and the nuclear norm part. Actually, let

$$\mathcal{A} = \begin{pmatrix} \alpha_1 \mathcal{Y} \\ \alpha_2 \mathcal{S} \\ \alpha_3 \mathcal{X} \\ \alpha_4 \mathcal{T} \end{pmatrix}, \tag{2}$$

where $\mathcal{A} \in \mathbb{R}^{m \times n \times t \times 4}$ and we can get that

$$\|\mathcal{A}\|_{1} = \begin{pmatrix} \alpha_{1} \mathbf{y} \\ \alpha_{2} \mathbf{S} \\ \alpha_{3} \mathbf{x} \\ \alpha_{4} \mathbf{T} \end{pmatrix}_{1}$$

$$= \|\alpha_{1} \mathbf{y}\|_{1} + \|\alpha_{2} \mathbf{S}\|_{1} + \|\alpha_{3} \mathbf{x}\|_{1} + \|\alpha_{4} \mathbf{T}\|_{1}$$

$$= \alpha_{1} \|\mathbf{y}\|_{1} + \alpha_{2} \|\mathbf{S}\|_{1} + \alpha_{3} \|\mathbf{x}\|_{1} + \alpha_{4} \|\mathbf{T}\|_{1}.$$
(3)

Besides, the constraints can be equivalently transformed to

$$\begin{pmatrix} \mathcal{A} \\ \mathcal{L} \end{pmatrix} = \begin{pmatrix} \alpha_1 \mathcal{Y} \\ \alpha_2 \mathcal{S} \\ \alpha_3 \mathcal{X} \\ \alpha_4 \mathcal{T} \\ \mathcal{L} \end{pmatrix} = \begin{pmatrix} \alpha_1 \nabla_y \mathcal{R} \\ \alpha_2 \mathcal{R} \\ \alpha_3 \nabla_x (\mathcal{O} - \mathcal{R}) \\ \alpha_4 \nabla_t (\mathcal{O} - \mathcal{R}) \\ \mathcal{O} - \mathcal{R} \end{pmatrix}. \quad (4)$$

Thus, the minimization problem (1) can be rewrote as:

s.t.
$$\begin{pmatrix} \mathcal{A} \\ \mathcal{L} \end{pmatrix} = \begin{pmatrix} 0 & \alpha_{1} \nabla_{y} \\ 0 & \alpha_{2} \mathcal{I} \\ \alpha_{3} \nabla_{x} & -\alpha_{3} \nabla_{x} \\ \alpha_{4} \nabla_{t} & -\alpha_{4} \nabla_{t} \\ \mathcal{I} & -\mathcal{I} \end{pmatrix} \cdot \begin{pmatrix} \mathcal{O} \\ \mathcal{R} \end{pmatrix}$$
(5)

2. Experimental details

References

[1] Authors. The frobnicatable foo filter, 2014. Face and Gesture submission ID 324. Supplied as additional material fg324.pdf.