

Licence L2 STS Mention SPI Parcours Informatique Unité 174EN007 Sécurité Informatique

TP3 Implémentation du chiffre RC4

Ce TP porte sur l'implémentation et la mise en œuvre du système de chiffrement symétrique RC4 en langage C.

Système de chiffrement symétrique RC4

- Conçu par RSA Labs (Ronald Rivest), 1987
- Publié anonymement sur Internet en 1994
- Chiffrement par flot à clé de taille variable (≤ 2048 bits) : un générateur de bits pseudo-aléatoires combiné avec le texte en clair via une opération XOR
- Le déchiffrement se fait de la même manière
- Algorithme très rapide (5 fois DES et 15 fois 3DES) mais considéré maintenant comme peu sûr (différentes attaques potentielles connues)
- Utilisé dans WEP et WPA (Wi-Fi)
- RC4-40 a été cassé en 1995
- Principe du système RC4
 - Initialisation du tableau S (suite pseudo-aléatoire) à partir de la clé secrète K
 - Tant que flux d'entrée non vide
 - · calcul d'une suite aléatoire d'octets S // Réorganisation à chaque tour
 - m = octet courant du flux d'entrée // m : un octet du message clair
 - c = S[?] XOR m // c : un octet du chiffré; S[?] : un octet de S

- Structures de données
 - Tableau K d'octets // La clé
 - Tableau S de 256 octets // La suite pseudo-aléatoire
 - Tableau T de 256 octets // Pour l'initialisation de la suite pseudo-aléatoire

Travail à faire

- 1) Récupérez les fichiers RC4.h et test RC4.c sur UMTICE (fichier implementation.zip)
- 2) Créez et éditez le fichier RC4.c en implémentant les fonctions de l'algorithme RC4.
- 3) Compilez le programme de test avec la commande : gcc RC4.c test_RC4.c -o test_RC4 Vous pouvez, si vous le souhaitez, définir un fichier d'aide à la compilation de type makefile.

L'exécution du programme de test doit être le suivant :

```
solution — -bash — bash

...2016/Semestre_2/L2-174EN007-Sécurité_Informatique/tp/tp3/solution — -bash +

ic2-aragorn:solution lemeunie$ gcc RC4.c test_RC4.c -o test_RC4

ic2-aragorn:solution lemeunie$ ./test_RC4

BBF316E8D940AF0AD3

1021BF0420

45A01F645FC35B383552544B9BF5

ic2-aragorn:solution lemeunie$
```

4) Que faire pour déchiffrer un message précédemment chiffré avec RC4?

Pour montrer comment procéder au déchiffrement, vous partirez de la fonction de chiffrement suivante :

$$E(k, m) = k \oplus m = c$$

avec c le texte chiffré, m le texte clair, k la clé et \oplus l'opération XOR.

- (a) Que vaut c lorsque k=01011011 (en binaire) et $m=1001\ 0010$ (en binaire)?
- (b) Quel est le résultat de l'opération $c \oplus k$?

Réessayez (a) puis (b) avec d'autres valeurs pour k et m.

Ecrivez alors la fonction D(k, c).

Modifiez les fichiers nécessaires (y compris test RC4.c) pour déchiffrer.

L'exécution du programme de test devra maintenant être le suivant :

```
solution — -bash — bash

...nt/2015-2016/Semestre_2/L2-174EN007-Sécurité_Informatique/tp/tp3/solution — -bash 

ic2-aragorn:solution lemeunie$ gcc RC4.c test_RC4.c -o test_RC4
ic2-aragorn:solution lemeunie$ ./test_RC4
BBF316E8D940AF0AD3
Plaintext
1021BF0420
pedia
45A01F645FC35B383552544B9BF5
Attack at dawn
ic2-aragorn:solution lemeunie$
ic2-aragorn:solution lemeunie$
```

5) Modifiez le programme de test pour chiffrer avec une même clé deux messages proches l'un de l'autre. Par exemple testez avec :

```
text4 = "From: Bob" et text5 = "From: Eve".
```

Que remarquez-vous sur le chiffrement de m1 par rapport au chiffrement de m2? Donnez une explication.

6) Vérifiez (en modifiant le programme de test) que :

Si
$$c' = E(k, m) \oplus p = m \oplus k \oplus p$$

Alors $D(k, c') = m \oplus p$
avec pour m la valeur $text4$ de la question précédente
et $p = \{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x19, 0x07\}$.

Qu'obtenez-vous comme valeur déchiffrée par D(k, c')? A quoi correspond p? Est-ce que D(k, c') correspond bien à $m \oplus p$?

Donnez une explication.

Travail à rendre

Dans un fichier nommé *Prénom_Nom_RC4.zip* (remplacez *Prénom_Nom* par vos propres prénom et nom), compressez au format Zip les fichiers RC4.h, RC4.c et test_RC4.c (+ éventuellement un fichier *makefile*) ainsi que les réponses aux questions puis déposez le fichier Zip sur UMTICE.