Problem 1. Verify that the functional

$$J[u] = \int_{R} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial y} \right)^{2} \right] dx \, dy \tag{1}$$

is invariant under a rotation of the coordinate axis:

$$\tilde{x} = x \cos \epsilon + y \sin \epsilon,$$
 $\tilde{y} = -x \sin \epsilon + y \cos \epsilon.$ (2)

Solution. The functional is invariant if $J[u(x,y)] = J[u(\tilde{x},\tilde{y})]$. By the chain rule,

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial x} + \frac{\partial}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial x} = \cos \epsilon \frac{\partial}{\partial \tilde{x}} - \sin \epsilon \frac{\partial}{\partial \tilde{y}}, \qquad \qquad \frac{\partial}{\partial y} = \frac{\partial}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial y} + \frac{\partial}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial y} = \sin \epsilon \frac{\partial}{\partial \tilde{x}} + \cos \epsilon \frac{\partial}{\partial \tilde{y}}.$$

The Jacobian for (2) is

$$A = \begin{bmatrix} \partial \tilde{x}/\partial x & \partial \tilde{x}/\partial y \\ \partial \tilde{y}/\partial x & \partial \tilde{y}/\partial y \end{bmatrix} = \begin{bmatrix} \cos \epsilon & \sin \epsilon \\ -\sin \epsilon & \cos \epsilon \end{bmatrix} \implies \det(A) = \cos^2 \epsilon + \sin^2 \epsilon = 1,$$

and therefore

$$\int_R dx \, dy \mapsto \int_{\tilde{R}} d\tilde{x} \, d\tilde{y} \, .$$

Making these substitutions into (??), we have

$$J[u(x,y)] = \int_{R} \left[\left(\cos \epsilon \frac{\partial u}{\partial \tilde{x}} - \sin \epsilon \frac{\partial u}{\partial \tilde{y}} \right)^{2} + \left(\sin \epsilon \frac{\partial u}{\partial \tilde{x}} + \cos \epsilon \frac{\partial u}{\partial \tilde{y}} \right)^{2} \right] dx \, dy$$

$$= \int_{R} \left(\cos^{2} \epsilon \frac{\partial^{2} u}{\partial \tilde{x}^{2}} - 2 \cos \epsilon \sin \epsilon \frac{\partial^{2} u}{\partial \tilde{x} \partial \tilde{y}} + \sin^{2} \epsilon \frac{\partial^{2} u}{\partial \tilde{y}^{2}} + \sin^{2} \epsilon \frac{\partial^{2} u}{\partial \tilde{x}^{2}} + 2 \cos \epsilon \sin \epsilon \frac{\partial^{2} u}{\partial \tilde{x} \partial \tilde{y}} + \cos^{2} \epsilon \frac{\partial^{2} u}{\partial \tilde{y}^{2}} \right) dx \, dy$$

$$= \int_{R} \left[\left(\frac{\partial u}{\partial \tilde{x}} \right)^{2} + \left(\frac{\partial u}{\partial \tilde{y}} \right)^{2} \right] dx \, dy = \int_{\tilde{R}} \left[\left(\frac{\partial u}{\partial \tilde{x}} \right)^{2} + \left(\frac{\partial u}{\partial \tilde{y}} \right)^{2} \right] d\tilde{x} \, d\tilde{y}$$

$$= J[u(\tilde{x}, \tilde{y})]$$

as desired.

Problem 2. Consider the real-valued Lagrangian density \mathcal{L} depending on a complex-valued function $\phi(t, x, y)$:

$$\mathcal{L} = \frac{i}{2} \left(\phi^* \frac{d\phi}{dt} - \frac{d\phi^*}{dt} \phi \right) - \nabla \phi^* \cdot \nabla \phi - m\phi^* \phi, \tag{3}$$

where * is complex conjugation, and $\nabla \phi = (\partial \phi/\partial x, \partial \phi/\partial y)$. Treating ϕ and ϕ * as independent objects, derive the Euler-Lagrange equations.

Solution. We will have two Euler-Lagrange equations; one for ϕ and one for ϕ^* . In general, they are given by

$$0 = \frac{\partial \mathcal{L}}{\partial \phi} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \phi_t} - \frac{d}{dx} \frac{\partial \mathcal{L}}{\partial \phi_x} - \frac{d}{dy} \frac{\partial \mathcal{L}}{\partial \phi_y}, \qquad 0 = \frac{\partial \mathcal{L}}{\partial \phi^*} - \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \phi_t^*} - \frac{d}{dx} \frac{\partial \mathcal{L}}{\partial \phi_x^*} - \frac{d}{dy} \frac{\partial \mathcal{L}}{\partial \phi_y^*}$$

Expanding out $\nabla \phi^* \cdot \nabla \phi$, (3) becomes

$$\mathcal{L} = \frac{i}{2} \left(\phi^* \frac{d\phi}{dt} - \frac{d\phi^*}{dt} \phi \right) - \frac{\partial \phi^*}{\partial x} \frac{\partial \phi}{\partial x} - \frac{\partial \phi^*}{\partial y} \frac{\partial \phi}{\partial y} - m\phi^* \phi.$$

November 23, 2019 1

Then

$$\frac{\partial \mathcal{L}}{\partial \phi} = -\frac{i}{2} \frac{d\phi^*}{dt} - m\phi^*, \qquad \qquad \frac{\partial \mathcal{L}}{\partial \phi_t} = \frac{i}{2} \phi^*, \qquad \qquad \frac{\partial \mathcal{L}}{\partial \phi_x} = -\frac{\partial \phi^*}{\partial x}, \qquad \qquad \frac{\partial \mathcal{L}}{\partial \phi_y} = -\frac{\partial \phi^*}{\partial y},$$

$$\frac{\partial \mathcal{L}}{\partial \phi^*} = \frac{i}{2} \frac{d\phi}{dt} - m\phi, \qquad \qquad \frac{\partial \mathcal{L}}{\partial \phi_t^*} = -\frac{i}{2} \phi, \qquad \qquad \frac{\partial \mathcal{L}}{\partial \phi_x^*} = -\frac{\partial \phi}{\partial x}, \qquad \qquad \frac{\partial \mathcal{L}}{\partial \phi_y^*} = -\frac{\partial \phi}{\partial y},$$

and

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \phi_t} = \frac{i}{2}\frac{d\phi^*}{dt}, \qquad \qquad \frac{d}{dx}\frac{\partial \mathcal{L}}{\partial \phi_x} = -\frac{\partial^2 \phi^*}{\partial x^2}, \qquad \qquad \frac{d}{dy}\frac{\partial \mathcal{L}}{\partial \phi_y} = -\frac{\partial^2 \phi^*}{\partial y^2},
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \phi_t^*} = -\frac{i}{2}\frac{d\phi}{dt}, \qquad \qquad \frac{d}{dx}\frac{\partial \mathcal{L}}{\partial \phi_x^*} = -\frac{\partial^2 \phi}{\partial x^2}, \qquad \qquad \frac{d}{dy}\frac{\partial \mathcal{L}}{\partial \phi_y^*} = -\frac{\partial^2 \phi}{\partial y^2}.$$

Then the Euler-Lagrange equations are

$$0 = -\frac{i}{2}\frac{d\phi^*}{dt} - m\phi^* - \frac{i}{2}\frac{d\phi^*}{dt} + \frac{\partial^2\phi^*}{\partial x^2} + \frac{\partial^2\phi^*}{\partial y^2}, \qquad 0 = \frac{i}{2}\frac{d\phi}{dt} - m\phi + \frac{i}{2}\frac{d\phi}{dt} + \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2},$$

which simplify to

$$0 = i\frac{d\phi^*}{dt} - \nabla^2 \phi^* + m\phi^*, \qquad 0 = i\frac{d\phi}{dt} + \nabla^2 \phi^* - m\phi^*.$$

Problem 3. The nondimensionalized, multidimensional Sine-Gordon equation,

$$\theta_{xx} + \theta_{yy} - \theta_{tt} = \sin \theta$$

for $\theta(x, y, t)$, is the Euler-Lagrange equation for the action integral

$$S[\theta] = \int_{R} \left\{ \frac{1}{2} \left[\theta_t^2 - (\nabla \theta)^2 \right] - \sin \theta \right\} dx dt \tag{4}$$

with $\nabla \theta = (\partial \theta / \partial x, \partial \theta / \partial y)$. The functional $S[\theta]$ is invariant under translation of x, y, and t. Find the associated energy-momentum tensor and energy-momentum vector.

Solution. The energy-momentum tensor is defined by

$$T_{ij} = \frac{\partial \mathcal{L}}{\partial \theta_{x_i}} \frac{\partial \theta}{\partial x_j} - \mathcal{L} \, \delta_{ij},$$

where $x_i \in \{x_1, x_2, x_3\} = \{x, y, t\}$, and

$$\mathcal{L} = \frac{1}{2}(\theta_t^2 - \theta_x^2 - \theta_y^2) - \sin \theta.$$

The diagonal elements of T are then

$$T_{11} = \frac{\partial \mathcal{L}}{\partial \theta_x} \frac{\partial \theta}{\partial x} - \mathcal{L} = -\theta_x^2 - \frac{1}{2} (\theta_t^2 - \theta_x^2 - \theta_y^2) + \sin \theta = -\frac{1}{2} (\theta_t^2 + \theta_x^2 - \theta_y^2) + \sin \theta,$$

$$T_{22} = \frac{\partial \mathcal{L}}{\partial \theta_y} \frac{\partial \theta}{\partial y} - \mathcal{L} = -\theta_y^2 - \frac{1}{2} (\theta_t^2 - \theta_x^2 - \theta_y^2) + \sin \theta = -\frac{1}{2} (\theta_t^2 - \theta_x^2 + \theta_y^2) + \sin \theta,$$

$$T_{33} = \frac{\partial \mathcal{L}}{\partial \theta_t} \frac{\partial \theta}{\partial t} - \mathcal{L} = \theta_t^2 - \frac{1}{2} (\theta_t^2 - \theta_x^2 - \theta_y^2) + \sin \theta = \frac{1}{2} (\theta_t^2 + \theta_x^2 + \theta_y^2) + \sin \theta,$$

November 23, 2019

and the nondiagonal elements are

$$T_{12} = \frac{\partial \mathcal{L}}{\partial \theta_x} \frac{\partial \theta}{\partial y} = -\theta_x \theta_y, \qquad T_{21} = \frac{\partial \mathcal{L}}{\partial \theta_y} \frac{\partial \theta}{\partial x} = -\theta_x \theta_y, \qquad T_{31} = \frac{\partial \mathcal{L}}{\partial \theta_t} \frac{\partial \theta}{\partial x} = \theta_x \theta_t,$$

$$T_{13} = \frac{\partial \mathcal{L}}{\partial \theta_x} \frac{\partial \theta}{\partial t} = -\theta_x \theta_t, \qquad T_{23} = \frac{\partial \mathcal{L}}{\partial \theta_y} \frac{\partial \theta}{\partial t} = -\theta_y \theta_t, \qquad T_{32} = \frac{\partial \mathcal{L}}{\partial \theta_t} \frac{\partial \theta}{\partial y} = \theta_y \theta_t.$$

While writing up these solutions, I consulted Gelfand and Fomin's Calculus of Variations.