Capítulo 1

Introducción

El presente informe busca dar a conocer al lector las tareas y actividades desarrolladas por el autor, en el marco del Trabajo Final de la carrera Ingeniería Electrónica, dictada en la Facultad de Ingeniería de la Universidad Nacional de San Juan. El objetivo del trabajo es diseñar e implementar una interfaz para la transmisión de datos hacia una computadora personal (PC), adquiridos por sistemas desarrollados en arreglos de compuertas de campo programables (FPGA) para aplicaciones científicas, a través del Bus Serial Universal (USB). A lo largo de este documento, se comprenderá la problemática que se resuelve y la configuración, fundamentos y modo de uso del sistema propuesto.

En la sección 1.1 se presentan las motivaciones de este trabajo y se detalla la problemática a resolver. Luego, se detallan los objetivos que persigue este trabajo. Seguido a esto, se otorga un esquema que describe la solución planteada y se justifica el protocolo elegido. Finalmente, se repasan algunos conceptos importantes de la norma USB que luego se utilizan en el trabajo desarrollado.

1.1. Motivación

El grado de avance que han experimentado la electrónica y la tecnología en general, gracias a la industria de los semiconductores, permite que la producción científica pueda adquirir una gran cantidad de datos. Para llevar a cabo la producción del conocimiento, es necesario el relevamiento y registro de diferentes tipos de magnitudes físicas y/o químicas sobre el objeto o proceso a investigar. En muchas ocasiones, estas magnitudes resultan difíciles de observar y cuantificar, por lo que es conveniente transformar las variables a conocer en otras más sencillas de medir. Para este propósito, se utilizan transductores.

Se conoce como transductor a cualquier dispositivo que recibe estímulos energéticos de una condición, situación o fenómeno físico y/o químico y los convierte en una señal asociada y definida de otra forma de energía[1][2]. En otras palabras, los transductores son conversores de energías[2][1][3]. Se denomina sensor a una clase particular de transductor que genera, como variable de salida, una señal eléctrica que está especialmente adaptada para ser ingresada en un circuito electrónico, o adecuada al sistema de medida que se utilice [4][5][6].

Figura 1.1: Esquema físico de un pixel del tipo APS

Las altas escalas de integración de circuitos alcanzadas en la actualidad posibilitan el diseño de sistemas sensoriales cada vez más complejos, en los cuales se logra agrupar miles de sensores en áreas reducidas, obteniendo medidas simultáneas y flujos crecientes de datos. Este trabajo se centrará en la transmisión de datos provenientes de sensores de imagen, uno de los desarrollos que se encuentra en boga.

Una imagen, desde un punto de vista digital, es un arreglo bidimensional de números, los cuales pueden ser exhibidos en una pantalla en forma de intensidad y colores de luz. Cada punto del arreglo que se muestra en pantalla se denomina pixel, acrónimo del ingles *PIcture ELement*, o elemento de imágen. Por esto, un sensor de imagen puede estar compuesto, bien por un arreglo bidimensional de sensores lumínicos (cómo la cámara de un teléfono celular), como por un transductor que es simultáneamente desplazado y medido, (método utilizado, entre otras, para la microscopía de fuerza atómica [7]), o por una combinación de ambos métodos. Por ejemplo, un scanner posee un arreglo lineal de transductores que son desplazados a través de la hoja para generar una imagen digital. En cualquiera de los casos, es de suma utilidad que la lectura de imágenes sea realizada en el menor tiempo posible, ya que cada imagen conlleva una cantidad no menor de datos.

Uno de los trabajos que más aportó al desarrollo de sensores de imágenes modernos, fue la introducción de los APS (Active Pixel Array Sensor, o sensor matricial de pixeles activos) [9]. Este sensor integra en un proceso CMOS (acrónimo ingles de Metal-Óxido-Semiconductor Complementario, que es el método actualmente más económico para integrar transistores en una única pastilla de silicio), un fotodiodo, un transistor de reset (utilizado para controlar el tiempo de integración, es decir, de exposición a la luz) transistores de selección (utilizados para conectar un pixel determinado dentro del arreglo) y un amplificador seguidor de fuente en cada pixel[8]. El fotodiodo, previamente cargado, transduce la luz en una pequeña descarga eléctrica y el amplificador convierte la carga remanente en tensión para facilitar su lectura. La Figura 1.1 muestra un dibujo de un pixel activo. Se observa el fotodiodo que es el elemento sensible a la luz iones de boro y fósforo sobre una pastilla de silicio y los diferentes transistores que intervienen en el funcionamiento del APS. Además se incorpora una microlente cuya función es la de enfocar

de Bayer

separar la luz en los tres colores primarios

los fotones sobre el área sensible y un filtro utilizado para identificar los diferentes colores. En el caso de sensores monocromáticos, se omite la colocación del filtro de color durante la fabricación.

Bayer

A partir del desarrollo de los APS, se fue perfeccionando el método hasta obtener circuitos integrados con mayor cantidad de pixeles o que pueden tener diversas aplicaciones. Por ejemplo, en los trabajos [10] y [11] se presentan sensores CMOS basados en la arquitectura MIMOSA (de Minimum Ionizing particule MOS Active pixel Sensor, Sensor con Pixel activo MOS de particulas ionizantes mínimas). Estos sensores se desarrollaron con el objetivo específico de detección de radiación ionizante.

También existen desarrollos de sensores de radiación a través de APS comerciales. Perez et al. identificaron eventos producidos por partículas alfa en campos de radiación mixtos mediante el procesamiento de imágenes adquiridas con sensores comerciales CMOS[12] y desarrollaron detectores de neutrones térmicos con sensores APS comerciales cubiertos con una capa de $Gd_2O_3[13]$. Galimberti et al. utilizaron un sensor de imágenes comercial para realizar un detector de gas Rn en el ambiente[14]. En otro trabajo, Hizawa, et al. fabricaron un sensor que adquiere imágenes midiendo el pH de cada uno de los pixeles[15], obteniendo imágenes de fenómenos químicos en tiempo real.

Como se mencionó antes, una imagen digital es un arreglo de datos. Esto quiere decir que un sensor de imágenes con n pixeles de largo y m de ancho, captura $n \times m$ datos en cada lectura. A su vez, para digitalizar valores, un circuito debe poseer, al menos, un conversor analógico-digital (ADC) de x cantidad de bits, lo que implica que cada dato estará compuesto por x dígitos binarios, es decir, un volumen importante de datos por cada lectura. Como ejemplo, un pequeño sensor comercial VGA, en su configuración más básica, posee 640 líneas horizontales y 480 verticales, con una resolución de 8 bits por cada pixel, lo que otorga 2.457.600 bits por cada lectura del sensor [16], Si además se incorpora la cantidad de imágenes que se toman en función del tiempo (cuadros por segundo o fps), nos otorga un flujo de datos para nada despreciable.

Desde el punto de vista de la electrónica digital, para poder adquirir y transmitir grandes volúmenes de datos, se requiere de circuitos que sean capaces de operar a altas frecuencias de conmutación. El diseño de dichos circuitos no es trivial, ya que cuando las longitudes de onda de las señales presentes son comparables con las dimensiones físicas de dichos circuitos, debe considerarse el uso de líneas de transmisión[17]. Esto implica que no se puede diseñar utilizando un criterio de uniformidad en los parámetros y exige un análisis mas detallado y preciso.

Otro problema que presentan los circuitos electrónicos digitales tiene que ver con los tiempos de propagación de las corrientes y tensiones que circulan a través de ellos. Cuando se aplica un impulso en un conductor, debido a las capacidades propias de los materiales utilizados, las tensiones pueden demorar unos instantes en establecerse. Puede suceder que varias señales lleguen a los puertos de un dispositivo por conductores con distintas longitudes y generen retardos diferentes. Esto puede ocasionar un comportamiento indeseado si no se toman los recaudos adecuados.

Aún suponiendo un perfecto diseño, los circuitos digitales de alta velocidad se encuentran

limitados en la frecuencia de conmutación por la temperatura que se necesita disipar. La potencia consumida por estos dispositivos es proporcional a la frecuencia de funcionamiento[18]. Parte de esta potencia se transforma en calor y produce un aumento en la temperatura. Si el incremento es indiscriminado, puede destruir los circuitos.

Una posible solución para disminuir la frecuencia de las señales sin perjudicar la tasa de transferencia es la incorporación de varios conductores para enviar datos en paralelo. La cantidad de conductores a través de los cuales circula la información, se denomina ancho de bus. Idealmente, para lograr una tasa de transferencia determinada, se podría disminuir la frecuencia tantas veces cómo conductores se agreguen. Por ejemplo, transmitiendo por cuatro filamentos, se podría enviar la misma información a un cuarto de la frecuencia que se necesitaría con uno solo de iguales características.

Existen distintas tecnologias para realizar la lectura de los datos producidos por los sensores y la posterior transmisión de los datos generados:

La incorporación y evolución de microcontroladores permite capturar y procesar volúmenes crecientes de datos. Sin embargo, este tipo de dispositivos posee una estructura rígida, su capacidad de procesamiento se encuentra limitada a una instrucción por ciclo de reloj y a un ancho de bus definido. Para aumentar los volúmenes de datos que circulan a través de ellos, no es posible aumentar el ancho de bus, sino que se torna necesario incrementar la frecuencia de funcionamiento, generando los problemas anteriormente detallados.

Una solución óptima, sin considerar los costos asociados a esto, sería el desarrollo de un circuito integrado de aplicación específica (ASIC del inglés Application Specific Integrated Circuit). En este tipo de circuitos, el diseñador elabora un circuito que puede operar a altas velocidades y, a su vez, obtener un ancho de bus sin restricciones, más que las dimensiones físicas del área donde será realizado el circuito. Sin embargo, cuando sí se considera el costo asociado a este enfoque, se vuelve una solución ineficiente en bajas cantidades. La manufactura de este tipo de dispositivos puede tener un costo de miles hasta cientos de miles de dólares, dependiendo del proceso de fabricación utilizado. Gran parte de estos costos son no recurrentes, es decir, solo se pagan una vez por proyecto. En grandes cantidades de dispositivos, este tipo de soluciones se vuelven más convenientes.

Otro enfoque, es la utilización de Arreglos de Compuertas Programables por Campo (FPGA, acrónimo del inglés Field-Programmable Gate Array). Un FPGA es un dispositivo electrónico que posee la capacidad de sintetizar casi cualquier circuito digital. En esencia, es una matriz de bloques lógicos (también llamadas slices o celdas lógicas, dependiendo del fabricante), que contienen Tablas de Verdad(LUTs o Look-Up-Table) y flip-flops (ff), entre otras cosas, y pueden ser interconectadas entre sí, según el criterio del usuario. Así, permite implementar una solución digital en un circuito físico, a diferencia de los microcontroladores, lo realiza a través de un algoritmo almacenado en una memoria, incorporando la ventaja de definir el ancho de bus necesario para relevar una gran cantidad de datos y transmitirlos a frecuencias de trabajo menores, además de ejecutar tareas en paralelo, disminuyendo los tiempos de procesamiento. A su vez, al ser implementado en un área muy pequeña, debido a la integración del sistema, este tipo de sistemas puede trabajar a frecuencias muy elevadas, lo que implica una mayor tasa de datos aún. A pesar de la gran diversidad de precios existentes en el mercado, una FPGA de costos menores a la centena de dólares suele tener muy buenas prestaciones para la mayor parte de las aplicaciones.

Existen diversas publicaciones en donde se observa el uso de FPGAs para la implementación de sistemas que producen imágenes. Por ejemplo, el desarrollo de un detector de radiación ionizante utilizando una sensor de imagen CMOS comercial. Para ello, los autores utilizaron una FPGA para configurar diversos parámetros del sensor con el fin de generar estrategias para la identificación de partículas alfa en campos de radiación mixtos y transmitir imágenes a una computadora personal (PC) a través de un puerto UART[19].

Se denomina ultrasonografía a la técnica de adquirir imágenes basandose en reflexiones de ultrasonido. Sus aplicaciones son múltiples, en las que se destaca el diagnóstico médico debido. Un trabajo reciente desarrolló un sistema que mejora la obtención de ecografías médicas con bajo costo utilizando una FPGA[20]. El autor presentó un algoritmo para la supresión de ruido de impulso en tiempo real para imágenes codificadas como JPEG 2000 realizado y probado en Matlab e implementado en una FPGA.

Yanagisawa et al, desarrollaron un sistema con telescopios pequeños para explorar objetos de campo cercano con la finalidad de monitorear cuerpos celestes que puedan colisionar con el planeta[21]. En este trabajo, se aprovechó la velocidad de los circuitos implementados en FPGA para minimizar el tiempo de adquisición.

El desarrollo de nuevos sensores brinda a los investigadores un gran volumen de datos. En muchos casos, la obtención de datos por si misma no otorga información, sino que es necesario procesar y analizar los mismos. La invención y evolución de las computadoras, como así también el desarrollo de nuevos algoritmos, dan lugar a procesamiento de datos cada vez más complejos en tiempos mucho menores.

Las primeras ENIAC, computadora de propósito general desarrollada en el año 1946 para el cálculo de tablas balísticas de las fuerzas armadas estadounidenses, podía ejecutar 20 operaciones cada $10\,\mu s$ [22], es decir, ejecutaba instrucciones con una frecuencia máxima de $200\,kHz$. A su vez, tuvo un costo aproximado de U\$S 500.000, pesaba 5 t y consumía $175\,kW$.

En contraste con aquello, es posible conseguir en el mercado actual, computadoras con tamaño y peso reducido, que ejecutan instrucciones en cuenstión de nanosegundos, (5 ordenes de magnitud menos), consumen menos de 1 kW y cuestan algunos cientos de U\$S. A tal punto ha evolucionado esta tecnología, que se cuenta con computadoras muy potentes en casi cualquier laboratorio, oficina u hogar. La capacidad de cálculo que exhiben estos dispositivos, sumada al desarrollo de nuevos métodos y algoritmos de cálculo, permite a los investigadores procesar datos en tiempo reducido, facilitando el análisis y la generación de nueva información.

En todos los casos que se consideran en este trabajo, la generación de datos y el procesamiento de lo mismos se da en sistemas diferentes. Es decir, los datos son relevados por los sensores y adquiridos luego por los FPGAs. Finalmente llegan a una PC para su posterior procesamiento y análisis. Se requiere, por tanto, de una conexión a través de la cual los datos puedan ser transferidos de un sistema, FPGA, al otro, PC y viceversa. Se torna de suma utilidad, entonces, proveer una comunicación efectiva y robusta que permita transmitir grandes volúmenes de datos en poco tiempo, y de esta forma facilitar los tiempos de desarrollo, pruebas, depuración,

Unir parrafos

> Unir parrafos

procesamiento y análisis.

La implementación de un sistema de comunicación en una FPGA puede ser resuelta de muchas maneras, quedando a criterio del desarrollador utilizar algún protocolo estándar, o bien diseñar uno propio. Sin embargo, en una computadora, las formas de comunicar datos se vuelven un poco más restrictivas y acotadas a los puertos y señales que puede manejar el equipo, conforme el fabricante haya establecido.

Unir parrafos

Este trabajo busca implementar una comunicación entre una computadora personal y una FPGA, utilizando un protocolo estándar, que esté disponible en cualquier computadora comercial y que posea una tasa de bit suficiente para poder transmitir imágenes.

PERFECTO:) !!!!!!! LE PONEMOS EL MOÑO Y LO CERRAMOS!!!!

1.2. Protocolos disponibles para la transmisión de datos entre PC y FPGA

Pero, ¿Cuántos datos son suficientes para el propósito de trasmitir imágenes? ¿Y cuál es el protocolo que mejor se ajusta a la necesidad de disponibilidad? Para responder la primera pregunta, se toma como base de diseño el sensor que utiliza Pérez en su Tesis de Maestría [23], una cámara para adquirir imágenes monocromáticas de código MT9M001C12STM, comercializado por Actina Imaging [24] que transmite datos a una tasa de $48\,\mathrm{Mbit\,s^{-1}}$.

Además, pensando en que la implementación sea compatible con equipos informáticos convencionales, es decir, se encuentren fácilmente en el mercado y no posean especificaciones que escapen al uso de oficina. Esto se cumple hoy en día con tres tipos de puertos: Ethernet, dedicado principalmente a conexión de redes mediante cables; Wi-Fi, utilizado para el accesos a la red de forma inalámbrica; y USB, dirigido a la comunicación de periféricos con la PC.

Al hablar de Ethernet o Wi-Fi, se hace referencia a dos formas diferentes de conectarse a una red de computadoras. En otras palabras, se habla de dos o más nodos, compuestos por PCs o cualquier dispositivo electrónico con capacidad de realizar cálculo binario, que pueden intercambiar datos a través de una trama bastante compleja de componentes diferentes. Ambos protocolos hacen referencia solo a la conexión física de los dispositivos y el control de acceso de cada uno de ellos a la conexión. Quedando a cargo de otros sistemas, con sus protocolos, que los datos enviados puedan ser correctamente recibidos por el usuario de la PC. La gran diferencia entre ellos radica en el medio físico que utilizan: Wi-Fi emplea ondas electromagnéticas emitidas mediante radiofrecuencia, mientras que en Ethernet, estas ondas son acarreadas por uno o más conductores, como ser cable coaxial, cables de par trenzado o fibra óptica.

Ethernet, también conocido como IEEE 802.3, es una norma que define cómo se deben conectar nodos a través de conductores para conformar redes de área local (LAN o *Local Area Network*), es decir, redes pequeñas, como ser domésticas, de oficinas o de pequeñas empresas, de forma que puedan transmitir información a velocidades seleccionables entre 1 Mbit/s y 400 Gbit/s [25]. Utiliza una tecnología denominada Acceso Múltiple Sensando la Portadora con Detección