Convert the following regular expressions to equivalent NFAs. (In each case, break down the given regex into manageable pieces such that you can directly construct a DFA/NFA for each "piece". Then combine the pieces using the procedures we discussed in class.)

(a)

$$r = (0|1)^*000(0|1)^*$$

Let
$$r_0 = (0|1)^*, r_1 = 000$$

Let NFA M_0 recognise $L(r_0) = L(M_0), M_0$ has:

- ullet state $P=\{p_0\}$
- ullet start state $p_0 \in P$
- ullet accept state $A=\{p_0\}$
- transition function δ :

Input State	Letter	Output State
p_0	0	p_0
p_0	1	p_0

Let NFA M_1 recognise $L(r_1)=L(M_1), M_0$ has:

- ullet state $Q=\{q_0,q_1,q_2,q_3\}$
- ullet start state $q_0 \in Q$
- ullet accept state $A=\{q_3\}$
- transition function δ :

Input State	Letter	Output State
q_0	0	q_1
q_1	0	q_2
q_2	0	q_3

Combining the 3 parts: Let NFA M recognise L(r)=L(M), M has:

- ullet states $Q=\{p_0,q_0,q_1,q_2,q_3,r_0\}$
- ullet start state $p_0\in Q$
- ullet accept state $A=\{r_0\}$
- transition function δ :

Input State	Letter	Output State
p_0	0	p_0

Input State	Letter	Output State
p_0	1	p_0
p_0	ϵ	q_0
q_0	0	q_1
q_1	0	q_2
q_2	0	q_3
q_0	ϵ	r_0
r_0	0	r_0
r_0	1	r_0