

Theory of Computation SY BTech CSE-AIDS

Push Down Automata(PDA)

Course Objectives & Course Outcomes

Course Objectives:

- •To understand the basics of automata theory and its operations.
- •To understand problem classification and problem solving by machines.
- •To study computing machines by describing, classifying and comparing different types of computational models.
- •To understand the fundamentals of decidability and computational complexity.

Course Outcomes:

- After completion of this course students will be able:
- •To construct finite state machines to solve problems in computing.
- •To write mathematical expressions and syntax verification for the formal languages.
- •To construct and analyze Push Down Automata and Turing Machine for formal languages.
- •To express the understanding of decidability and complexity.

Text Books & Reference Books

Text Books

- •John C. Martin, Introduction to Language and Theory of Computation, TMH, 3rdEdition, ISBN: 978-0-07-066048-9.
- •Vivek Kulkarni, Theory of Computation, Oxford University Press, ISBN-13: 978-0-19-808458-7.

Reference Books

- •K.L.P Mishra,N. Chandrasekaran,Theory of Computer Science (Automata, Languages and Computation), Prentice Hall India, 2nd Edition.
- •Michael Sipser, Introduction to the Theory of Computation, CENGAGE Learning, 3rd Edition, ISBN:13:978-81-315-2529-6.
- •Daniel Cohen, Introduction to Computer Theory, Wiley India, 2nd Edition, ISBN: 9788126513345.
- •Kavi Mahesh, Theory of Computation: A Problem Solving Approach, 1st Edition, Wiley-India, ISBN: 978-81-265-3311-4.

Unit IV Push Down Automata

Pushdown automata: Definition, Acceptance of PDA by final State and Empty Stack, Designing PDA, Equivalence of Pushdown automata and CFG, Deterministic Pushdown Automata, Nondeterministic Pushdown Automata.

Push Down Automata

Context-Free Languages

Pushdown Automaton - PDA

Input String

Initial Stack Symbol

Formal definition of PDA

The PDA is as:

 $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

Where

Q : A finite set of states

 Σ : A finite set of input symbols

Γ : A finite stack alphabet or pushdown symbols

 δ : the transition function Q X(Σ U { ϵ }) X Γ to the set of finite subsets of Q X Γ^*

q₀. the start state

Z₀: the start symbol(pushdown symbol)

F: the set of accepting state or final states

Transition Function

- δ:The transition function is a triple δ(q,a,x) where
 - 1. q is a state in Q
 - 2. a is either an input symbol in Σ or a = ϵ , the empty string,
 - 3. \times is a stack symbol, that is a member of Γ .

The output of δ is a finite set of pairs (p, γ)

Where

- p is the new state and
- Y is the string of stack symbols that replaces x at the top of the stack.

Instantaneous Description of a PDA

The configuration of a PDA by a **triple (q,w,x)** where

- 1. **q** is the state
- 2. w is the remaining input
- 3. **Y** is the stack contents

we show the top of the stack at the left end of γ and the bottom at the right end.

Such a triple is called an **Instantaneous Description** or **ID** of a PDA.

$$\delta(q, a, b) = (q, c)$$

$\delta(q, a, b) = (q, cb)$

$$\delta(q, a, b) = (q, \epsilon)$$

$$\delta(q, a, b) = (q, b)$$

A PDA Example

 $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

 $Q=\{q_0, q_1, q_2\}, \Sigma=\{a,b\}, \Gamma=\{Z_0, a\}, F=\{q_2\}, \delta \text{ as below}$

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_{1,} \in)$
5	q_1	€	Z_0	$(\mathbf{q}_2, \mathbf{Z}_0)$

Acceptance by PDA using final state

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_{1,} \in)$
5	q_1	€	Z_0	$(\mathbf{q}_2, \mathbf{Z}_0)$

For the string aabb

 $(q_0, aabb, Z_0)$

 $\mathbf{F}(\mathbf{q}_0, \mathbf{abb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_0, \mathbf{bb}, \mathbf{aaZ_0})$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{a}\mathbf{Z}_0)$

 $\mathbf{F}(\mathbf{q}_{1} \in \mathbf{Z}_{0})$

 $\mathbf{H}(\mathbf{a} \in \mathbf{Z})$

String aabb is

accepted, as final

state q2 is

reached on

reading string

aabb completely

Rejection by PDA

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_{1,} \in)$
5	q_1	€	Z_0	$(\mathbf{q}_2, \mathbf{Z}_0)$

For the string aabbb

 $(q_0 \text{ aabbb } Z_0)$

 $\mathbf{F}(\mathbf{q}_0, \mathbf{abbb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_0, \mathbf{b}\mathbf{b}\mathbf{b}, \mathbf{a}\mathbf{a}\mathbf{Z}_0)$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{bb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{Z}_0)$

String **aabbb** is rejected as q₁ is not final state and string **aabbb** is not

final state and string aabbb is not

read completely.

Acceptance by PDA using null store or empty store or empty stack

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_{1,} \in)$
5	q_1	€	Z_0	(q_1, \in)

For the string aabb

 $(q_0, aabb, Z_0)$

 $\mathbf{F}(\mathbf{q}_0, \mathbf{abb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_{0}, \mathbf{bb}, \mathbf{aaZ_0})$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_{1,} \in \mathbf{Z}_{\mathbf{0}})$

 $\mathbf{L}_{1}(\alpha = \mathbf{c})$

String aabb is

accepted, as

stack is empty on

reading string

aabb completely

Rejection by PDA

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_{1,} \in)$
5	q_1	€	Z_0	(q_1, \in)

For the string aabbb

 $(q_{0, aabbb, Z_0})$

 $\mathbf{F}(q_0, \mathbf{a}bbb, \mathbf{a}\mathbf{Z_0})$

 $\mathbf{F}(\mathbf{q}_0, \mathbf{b}\mathbf{b}\mathbf{b})$ aa \mathbf{Z}_0

 $\mathbf{F}(\mathbf{q}_1, \mathbf{bb}, \mathbf{aZ_0})$

 $\mathbf{F}(\mathbf{q}_1, \mathbf{b}, \mathbf{Z}_0)$

String **aabbb** is rejected as string **aabbb** is not read completely and stack is not empty.

Acceptance by PDA

Acceptance of input strings by PDA can be defined in terms of **final** states or in terms of **PDS(pushdown store)**.

Let $A = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA.

The set accepted by final state is defined by

$$T(A) = \{ w \in \Sigma^* \mid (q_{0}, w, Z_0) \vdash * (q_{f}, \Lambda, \alpha) \text{ for some } q_f \in F \text{ and } \alpha \in \Gamma^* \}$$

The set accepted by null store(or empty store)is defined by

$$N(A) = \{ w \in \Sigma^* \mid (q_0 w, Z_0) \vdash (q_1 \Lambda, \Lambda) \text{ for some } q \in Q \}$$

PDA for $L=\{a^nb^n | n>0 \}$

Logic:

W

Let

$$A=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

$$Q = \{q_0, q_1\},$$

$$\Sigma = \{a,b\},$$

$$\Gamma = \{a, Z_0\},$$

$$F = \{q_1\}$$

is a PDA.

δ (Transition Function) by Final State is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_{1,} \in)$
5	q_1	€	Z_0	$(\mathbf{q}_1, \mathbf{Z}_0)$

Acceptance of a string aabb

 (q_{0}, abb, Z_{0}) $F(q_{0}, abb, aZ_{0})$ $F(q_{0}, bb, aaZ_{0})$ $F(q_{1}, b, aZ_{0})$ $F(q_{1}, e, Z_{0})$

δ (Transition Function) by Empty stack or Empty store or Null stack is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	a	a	(q ₀ ,aa)
3	q_0	b	a	(q_1, \in)
4	q_1	b	a	$(q_1 \in)$
5	q_1	€	Z_0	(\mathbf{q}_1,\in)

Acceptance of a string aabb

 $(q_{0}, aabb, Z_{0})$ $F(q_{0}, abb, aZ_{0})$ $F(q_{0}, bb, aaZ_{0})$ $F(q_{1}, b, aZ_{0})$ $F(q_{1}, \in Z_{0})$ $F(q_{1}, \in Z_{0})$

Ex: PDA to accept language of palindromes with the marker. i.e. $L=\{xcx^r \mid x \in \{a,b\}^*\}$

Let $A=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA. where $Q = \{q_0, q_1, q_f\},$ $\Sigma = \{a,b,c\},$ $\Gamma = \{a,b,Z_0\},$ $F = \{q_f\}$

δ (Transition Function) by **Final State** is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	b	Z_0	(q_0,bZ_0)
3	q_0	a	a	(q_0,aa)
4	$ q_0 $	b	b	(q_0,bb)
5	$ q_0 $	a	b	(q_0, ab)
6	$ q_0 $	b	a	(q ₀ , ba)
7	$ q_0 $	c	Z_0	(q_1,Z_0)
8	q_0	c	a	(q_1,a)
9	$ q_0 $	c	b	(q_1,b)
10	q_1	a	a	(q_1, \in)
11	q_1	b	b	(q_1, \in)
12	q_1	€	Z_0	$(\mathbf{q}_{\mathbf{f}}, \mathbf{Z}_{0})$

δ (Transition Function) by Empty stack or Empty store or Null stack is

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	(q_0,aZ_0)
2	q_0	b	Z_0	(q_0,bZ_0)
3	q_0	a	a	(q_0,aa)
4	q_0	b	b	(q_0,bb)
5	q_0	a	b	(q ₀ , ab)
6	q_0	b	a	(q ₀ , ba)
7	q_0	c	Z_0	(q_1,Z_0)
8	q_0	c	a	(q_1,a)
9	q_0	c	b	(q_1,b)
10	q_1	a	a	(q_1, \in)
11	q_1	b	b	(q_1, \in)
12	q_1	€	Z_0	(q_1, \in)

Examples for practice

- 1. PDA for $L=\{a^nb^{2n} | n>0\}$
- 2. PDA for L= $\{a^nb^nc^md^m \mid n, m>0\}$
- 3. PDA for $L=\{a^mb^n | m>n>=1\}$

Deterministic and non-deterministic PDA

DPDA:

transition function is:

$$Q X \Sigma X \Gamma \square Q X \Gamma^*$$

e.g. $\delta(q,a,Z)$ is either empty or a singleton.

$$\delta(q,a,Z) \neq \emptyset$$

NPDA:

 $Q X \Sigma U \{ \epsilon \} X \Gamma \blacksquare$ finite subsets of $Q X \Gamma^*$

e.g.
$$\delta(q,a,Z) = \{(p1,x1),(p2,x2),...,(pm,xm)\}$$

DPDA and NPDA

NPDA and DPDA

- For every NPDA, there may not exist an equivalent DPDA.
- The NPDA can accept any CFL, while DPDA is a special case of NPDA that accepts only a subset of the CFLs accepted by the NPDA.
- Thus, DPDA is less powerful than NPDA.

NPDA to accept language of palindromes without the marker.

Let

A=
$$(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 is a PDA.

where

$$Q = \{q_0, q_1, q_f\},$$

$$\Sigma = \{a,b\},$$

$$\Gamma = \{a,b,Z_0\},$$

$$F = \{q_f\}$$

NPDA to accept language of all palindrome strings

Move no	<u>State</u>	<u>input</u>	stack symbol	Move
1	q_0	a	Z_0	$\{(q_0,aZ_0), (q_1, Z_0)\}$
2	q_0	ь	Z_0	$\{(q_0,bZ_0), (q_1,Z_0)\}$
3	q_0	a	a	$\{(q_0,aa),(q_1,a)\}$
4	q_0	b	a	$\{(q_0,ba), (q_1,a)\}$
5	q_0	a	b	$\{(q_0, ab), (q_1,b)\}$
6	q_0	ь	b	$\{(q_0, bb), (q_1,b)\}$
7	q_0	€	Z_0	$\{(\mathbf{q}_1, \mathbf{Z}_0)\}$
8	q_0	€	a	$\{(q_1,a)\}$
9	q_0	€	b	$\{(q_1,b)\}$
10	q_1	a	a	$\{(q_1, \in)\}$
11	q_1	ь	b	$\{(q_1, \in)\}$
12	q_1	€	Z_0	$\{(\mathbf{q_f}, Z_0)\}$

CFG to PDA

Theorem: If L is a CFL then we can construct a PDA A accepting L by empty store ie. L=N(A).

Proof: We construct A by making use of productions in G.

Let L=L(G) where G=(V, T, P, S) is a CFG.

We construct PDA A as

$$A=(Q, \Sigma, \Gamma, \delta, q, Z_0, F)$$

where $\Sigma = T$

 Γ is (V U T)

$$Z_0 = S$$

$$F = \Phi$$

 δ is defined as

 $R_1: \delta(q, \in A) = \{(q, \alpha) \mid A \boxtimes \alpha \text{ is in } P\}$

 $R_2 : \delta(q, a, a) = \{(q, \in)\}$ for every a in Σ .

CFG to PDA

1 .Construct a PDA for the CFG

Test whether 010^4 is in N(A).

We construct PDA A as

$$A = (Q, \Sigma, \Gamma, \delta, q, Z_0, F)$$

$$Q = \{q\}$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \{S, B, 0, 1\}$$

$$Z_0 = S$$

$$F = \Phi$$

Move no	<u>State</u>	input	stack symbol	Move
1	q	€	S	{(q,0BB)}
2	q	€	В	{(q,0S), (q,1S), (q,0)}
3	q	0	0	{(q, ∈)}
4	q	1	1	{(q, ∈)}

CFG to PDA

1 .Construct a PDA for the CFG

Test whether 010^4 is in N(A).

2. Convert the grammar

$$A \searrow bSa |S| \in$$

To a PDA that accepts the same language by empty stack.

Thank You...!!!