Teoría Microeconómica 2.

Tarea 2.

Fecha de entrega: miércoles 19 de abril de 2017.

Resuelva los siguientes ejercicios, sea concis@ pero explícit@ en sus respuestas. Muestre todos los procedimientos que lo llevaron a la solución. Pueden entregar esta tarea en grupos de máximo 4 personas.

1. Separación de efectos en la elección del consumidor.

- a. En el siguiente gráfico se muestran las preferencias y elecciones del consumidor ante un cambio en el precio de un (y sólo un) bien. Los números sólo indican un "nombre" para el punto.
 - i. ¿Qué precio tuvo que haber variado? ¿En qué dirección? ¿Qué tipo de bienes son?
 - ii. ¿Qué tipo de separación se usó (Hicks o Slutsky)?
 - iii. ¿Qué tipo de variación se utilizó (equivalentes o compensatoria)?
 - iv. Si los puntos 1 y 3 invierten su significado, ¿Cuáles serían las respuestas de a, b y
 - v. ¿Es posible que el punto 2 represente un punto final o un punto inicial? ¿Por qué?

- b. En los siguientes gráficos se muestran elecciones del consumidor, ante un aumento del precio de Y, se usaron variaciones compensatorias.
 - i. ¿Qué tipo de bienes son (Inferior, Normal, Giffen)?

- ii. ¿Qué tipo de relación hay entre los bienes (complementariedad, sustitubilidad)?
- iii. ¿Dónde se debería ubicar el punto intermedio de Slutsky?
- iv. ¿Por dónde debería pasar la restricción presupuestaria inicial?

- 2. Separación de efectos analítica y gráficamente. Encuentre el efecto sustitución y efecto ingreso, gráfica y analíticamente (encuentre el valor numérico de cada efecto). Dado que el individuo tiene un ingreso de 10. Elija dos de las siguientes combinaciones para desarrollar cada caso: Hicks con variaciones compensatorias; Hicks con variaciones equivalentes; Slutsky con variaciones compensatorias; Slutsky con variaciones equivalentes. Utilice cada una de las combinaciones al menos una vez.
 - a. $U(x, y) = \ln(x) + y$. m = 10. $P_x = 5$. $P_y = 5$. $P_y' = 15$.
 - b. $U(x, y) = \ln(x) + 3\ln(y)$. m = 10. $P_x = 5$. $P_y = 5$. $P_y' = 15$.

c.
$$U(x,y) = x^2 + y^2$$
. $m = 10$. $P_x = 5$. $P_y = 5$. $P_y' = 15$.

- 3. **Demandas Marshallianas.** Encuentre las demandas por el bien X (por el método que más le convenga) en cada uno de los siguientes casos:
 - a. $U(x,y) = (x-y)^2$. m = 10. $P_y = 1$.
 - b. $U(x,y) = \min(x^2 + y^2, 2xy)$. m = 10. $P_y = 1$.
 - c. $U(x, y) = \ln(x) + \ln(y) + z$. m = 10.
 - d. $U(x,y) = x^2 + y^2$. m = 10. $P_v = 1$.
 - e. $U(x,y) = \max(3x, 2(x+y), 3y) \cdot m = 10. P_v = 1.$
- 4. **Separación de efectos partiendo de las funciones demandas.** Encuentre los efectos sustitución e ingreso para ambos bienes, en los siguientes casos:
 - a. $x = \frac{m}{2P_x}$. $P_y = 1$. $P_x = 1$. $P_{x'} = 2$. (Según Slutsky con variaciones compensatorias)
 - b. $x = \frac{P_y}{P_x}$, si $P_y < m$; $x = \frac{m}{P_x}$, si $P_y \ge m$. m = 1. $P_x = 1$. $P_y = 0.5$. $P_x' = 2$. (Según Slutsky con variaciones equivalentes).
 - c. $x=2U\left(\frac{P_y}{P_x}\right)^{1/2}$ (Demanda Hicksiana). $e=4UP_y^{-1/2}P_x^{-1/2}$. m=1. $P_x=1$. $P_y=0.5$. $P_x'=2$. (Según Slutsky con variaciones equivalentes y Hicks con variaciones equivalentes).

Nota: m representa el ingreso, U representa el nivel de utilidad, $e(U, P_x, P_y)$ es la función de mínimo gasto, $V(U, P_x, P_y)$