MODEL AND PRECISE CONTROL OF HEAT EXCHANGER

LI HONG RONG

May 7, 2019

National Cheng Kung University

Steady State Analysis Of Heat Load

Facility water loop		
Work fluid	Facility water from an open loop	
	or a closed loop	
Flow rate temperature	11.4LPM at 10° C	
	15.0LPM at 18° C	
	20.5LPM at 25° C	
Pressure drop	< 0.7 bar at 11.4LPM	
	< 1.7 bar at 20.5LPM	
Adjusting time	≤ 30 seconds(Mixing valve time)	
Device	Temperature sensor, pressure gauge	
	flow meter for water input	

Steady State Analysis Of Heat Load- Continue

Process water loop	
Work fluid	Distilled water
Discharge	$\pm 2^{\circ}$ C(with accuracy $\pm 0.25^{\circ}$ C)
temperature	
Water delivery	"ON" mode: 79±4.5LPM / 3.7±0.1 bar
	"Standby" mode: 68 ± 5.5 LPM $/$ 2.8 ± 0.2 bar
Device	Temperature sensor $ imes$ 2 for water delivery and return
	Water level switch for water level
Cooling capacity	Heat load can vary between 7.7 and 25KW

Steady State Analysis Of Heat Load- Continue

- 1KJ/s = 0.239kcal/s
- Heat Load
 - Standby Mode: 7.7kW $7.7\,KJ/s = 1.84\,kcal/s$ $70\,LPM = 1.13\,L/s$ temperature increase at the output of the load: $1.63^{\circ}C$
 - On Mode: 25kW $$25\,{\rm KJ/s}=5.975\,{\rm kcal/s}$$ $79\,{\rm LPM}=1.32\,{\rm L/s}$$ temperature increase at the output of the load: 4.53°C
 - Temperature difference bewtween two mode: 2.9°C
- SB/ON mode switching time constant and time delay to be determined

Dynamic Model Of HEX

Dynamic Model Of HEX- Continue

- Process water output temperature(T_4) $m_p c_v \dot{T}_4 = m \times c_v (T_3 T_4) \frac{1}{R} (\frac{T_3 + T_4}{2} \frac{T_1 + T_5}{2})$
- Facility water output temperature(T_5) $m_f c_V \dot{T}_5 = m_t \times c_V (T_1 - T_5) - \frac{1}{R} (\frac{T_1 + T_5}{2} - \frac{T_3 + T_4}{2})$
- Heat carried by Facility water $m_t \times c_v (T_5 T_1)$
- m : process mass flow rate
 m_p : process water in HEX

 m_f : facility water in HEX

 m_t : 3-way valve mass flow rate

Reservoir Dynamic Model

• Resevoir volume: 37L

$$\dot{T}_2 = \frac{(37 - \text{flow rate})T_2 + (\text{flow rate})T_4}{37} - T_2$$

$$= \frac{\text{flow rate}}{37}(T_4 - T_2)$$

time constant and time delay to be determined

Input-Output Relations

- Control variable: T_1 , δT , v (opening of 3-way valve)
- Disturbance:

$$\checkmark \delta T$$
 due to heat emission of the process,
$$T_3 = (T_2 + \delta T)(1 - e^{-0.8t})$$

$$\delta T = [1.63~4.53]$$

- System States: T_5 (not available), T_4 , T_2
- System output: T₂
- Data for modeling
 - Effect of valve opening(0 \sim 1)
 - Effect of T_1 (facility water)
 - Effect of δT (operation mode SB/ON)

Figure 1: Heat load:8kW; T_1 :25°C

Figure 2: Heat load:15kW; T_1 :25°C

Figure 3: Heat load:25kW; T_1 :25°C Part 1

Figure 4: Heat load:25kW; T₁:25°C Part 2

Figure 5: Heat load:25kW; T_1 :25°C Part 3

Reservoir Dynamic ID

To find the model of reservoir, I use Figure 4 to analyze. I simulate the system with the following condition

- delay 4 sec; one pole; none zero
- delay 5 sec; one pole; none zero
- delay 6 sec; one pole; none zero
- delay 5 sec; two poles; none zero

Reservoir ID- Continue

Figure 6: Reservoir ID

Reservoir ID- Continue

• The best fit result is $e^{-5s} \frac{0.01101}{s+0.009888}$

Figure 7: Reservoir ID Error

Linearization Of Dynamics

$$\Delta \dot{T}_{2} = -\frac{\text{flow}}{37} \Delta T_{2} + \frac{\text{flow}}{37} \Delta T_{4} \tag{1}$$

$$\Delta \dot{T}_{4} = \left(\frac{m}{m_{p}} - \frac{1}{2Rm_{p}c_{v}}\right) (1 - e^{-0.8t}) \Delta T_{2}$$

$$+ \left(-\frac{m}{m_{p}} - \frac{1}{2m_{p}c_{v}R}\right) \Delta T_{4} + \frac{1}{2m_{p}c_{v}R} \Delta T_{5}$$

$$+ \frac{1}{2Rm_{p}c_{v}} \Delta T_{1} + \left(\frac{m}{m_{p}} - \frac{1}{2Rm_{p}c_{v}}\right) (1 - e^{-0.8t}) \Delta \delta T \tag{2}$$

$$\Delta \dot{T}_{5} = \frac{(1 - e^{-0.8t})}{2Rm_{f}c_{v}} \Delta T_{2} + \frac{1}{2Rm_{f}c_{v}} \Delta T_{4}$$

$$+ \left(-\frac{mv_{0}}{m_{f}} - \frac{1}{2Rm_{f}c_{v}}\right) \Delta T_{5} + \left(\frac{mv_{0}}{m_{f}} - \frac{1}{2Rm_{f}c_{v}}\right) \Delta T_{1}$$

$$+ \frac{(1 - e^{-0.8t})}{2Rm_{f}c_{v}} \Delta \delta T + \frac{m(T_{10} - T_{50})}{m_{f}} \Delta v \tag{3}$$

17/20

Linearization Of Dynamics - Continue

where
$$\Delta x = [\Delta T_2 \Delta T_4 \Delta T_5]^T$$
, $\Delta u = [\Delta T_1 \Delta \delta T \Delta v]^T$ with operating point $[T_{20} T_{40} T_{50} T_{10} \delta T_0 v_0]$

State Space Model

Combine equation(1) (2) (3)

$$\begin{bmatrix}
\Delta \dot{T}_{2} \\
\Delta \dot{T}_{4} \\
\Delta \dot{T}_{5}
\end{bmatrix} = \begin{bmatrix}
(\frac{m}{m_{p}} - \frac{1}{2Rm_{p}c_{v}})(1 - e^{-0.8t}) & \frac{flow}{37} & 0 \\
(\frac{1}{2Rm_{p}c_{v}})(1 - e^{-0.8t}) & (-\frac{m}{m_{p}} - \frac{1}{2Rm_{p}c_{v}}) & \frac{1}{2Rm_{p}c_{v}} \\
(\frac{1}{2Rm_{f}c_{v}}) & \frac{1}{2Rm_{f}c_{v}} & (-\frac{mv_{0}}{m_{f}} - \frac{1}{2Rm_{f}c_{v}})
\end{bmatrix} \begin{bmatrix}
\Delta T_{2} \\
\Delta T_{4} \\
\Delta T_{5}
\end{bmatrix} \\
+ \begin{bmatrix}
0 & 0 & 0 & 0 \\
\frac{1}{2Rm_{p}c_{v}} & (\frac{m}{m_{p}} - \frac{1}{2Rm_{p}c_{v}})(1 - e^{-0.8t}) & 0 \\
(\frac{mv_{0}}{m_{f}} - \frac{1}{2Rm_{f}c_{v}}) & \frac{(1 - e^{-0.8t})}{2Rm_{f}c_{v}} & \frac{m(T_{10} - T_{50})}{m_{f}}
\end{bmatrix} \begin{bmatrix}
\Delta T_{1} \\
\Delta \delta T \\
\Delta V
\end{bmatrix}$$
(4)

$$\Delta y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta T_2 \\ \Delta T_4 \\ \Delta T_5 \end{bmatrix}$$
 (5)

Equilibrium point

Make the R.H.S of nonlinear differential equation to be zero $T_{10}=T_{50}=T_{40}=T_{20},~\delta T_0=0,~v_0$ can be arbitrary number Choose $T_{10}=T_{50}=25^{\circ}\mathrm{C}$