Stanford Univ. CS231n 스터디 2팀

2025.04.29

발표자 : 양재영

스터디원 소개 및 만남 인증

스터디원 1: 방세현

스터디원 2: 이가연

스터디원 3: 양재영

스터디원 4: 최재민

목차

- 1. 스터디 주제
- 2. 스터디 진행 방식
- 3. 스터디 진행 현황
- 4. 스터디 내용 공유

스터디 주제

스터디 진행 방식

- 대면 스터디
- 매주 유튜브에 업로드 된 2017년 강의 시청 후 발제
- 2025년 버전에 추가된 내용 또한 추가적으로 공부 후 공유

Date	Lecture
3/13	ОТ
3/20	Introduction(Lecture 1), Deep learning Basics(Lecture 2, 3)
3/27	Deep learning Basics(Lecture 4), Perceiving and Understanding the Visual World(Lecture 5, 6)
4/3	Perceiving and Understanding the Visual World(Lecture 7, 8, 9)
5/1	Perceiving and Understanding the Visual World(Lecture 10, 11), Generative and Interactive Visual Intelligence(Lecture 12)
5/8	Generative and Interactive Visual Intelligence(13, 14)
5/15	Generative and Interactive Visual Intelligence(15, 16)
5/22	Generative and Interactive Visual Intelligence(17, 18)

스터디 진행 현황

$lacksquare$ \Rightarrow $+$ CS231n Study			4월 3일 편집 🚳 🔾 💲 공유 킫 ☆ … — 🙃	×
	CS231n Study			
	⊞ ≖			
	Lecture 정리			
		♣ 사람		
	Lecture3. Loss Function and Optimization			
	Lecture4. Introduction to Neural Networks	C Choi Jaemin		
	Lecture 5	☐ lgy7721@cau.ac.kr		
	Lecture6. Training Neural Networks 1. (Activation function)	s SeHyun Bang		
	Lecture7. Training Neural Networks 2			
	Lecture8. Deep Learning Software	© Choi Jaemin		
	■ 캘린더 보기			
	2025년 4월	〈 오늘		
	30 31 4월	1일 2 3 4 ⓑ Meetings	5	

스터디 진행 현황

lacksquare $lacksquare$ $lacksquare$ $lacksquare$ CS231n Study		» ^к ⁄	🍪 공유 🗐 ☆ ··· - ♂ ×
		Nesterov Momen	tum ^
CS231n Study		$V_{t+1} = \varrho V_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha V_{t+1}$	오떠슈팅 당제
田丑			^-
Lecture 정리		속도 살제 스템 속도 설제스템	
Aa 이름	♣♣ 사람	$\hspace{0.1cm} \longleftarrow \hspace{0.1cm} \longrightarrow \hspace{0.1cm} \hspace{0.1cm}$	
Lecture 3. Loss Function and Optimization	☑ J_young	(현재 위치에서 가장 기 <u>계</u> 론	機) 22HにRZE
Lecture4. Introduction to Neural Networks	© Choi Jaemin		· ⁴ 그레디인트 < 속도 ⁹ 여서 최소 지연용 지나려 바라는 문제
Lecture 5	☐ lgy7721@cau.ac.kr		지수 사이용 시대체 마이는 소개
Lecture 6. Training Neural Networks 1. (Activation function)	S SeHyun Bang	Momentum의 단점 중 하나는 Overs	shooting임.
Lecture 7. Training Neural Networks 2		이를 해결하기 위해 등장한 것이 Nest	terov Momentum!
Lecture8. Deep Learning Software	© Choi Jaemin		
+ 새 페이지		Nestrov Momentum	
		. 4	두 벡터 : 현재 이동하는 속도
1			그레디언트 벡터
□ 캘린더보기		수도 : 현재 수도로 한 방음 이리 가본 위치에서 바라만일 방향로 되어	
2025년 4월	2025년 4월 〈 오늘 〉 일 월 화 수 목 금 토		
일 월 화			→ 한 걸음 미리 가기
30 31 4월 1일	2 3 4 5	$V_{t+1} = eV_t$	- d D f (又++ PV+) P: 内型相子

Lecture_4. Introduction to Neural Networks

Lecture_4. Introduction to Neural Networks

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

Lecture_5. Convolutional Neural Networks

Lecture_5. Convolutional Neural Networks

Lecture_6-7. Training Neural Networks

Batch Normalization

[loffe and Szegedy, 2015]

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Lecture_6-7. Training Neural Networks

Gradient Descent SGD Nesterov Momentum RMS Prop ADAM

.

.

.

Lecture_6-7. Training Neural Networks

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

감사합니다