Linear Algebra [KOMS120301] - 2023/2024

15.1 - Ruang Hasil Kali Dalam dan Ortogonalitas

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 15 (Desember 2023)

Tujuan pembelajaran

Setelah perkuliahan ini, Anda diharapkan mampu:

- menjelaskan konsep hasilkali dalam secara umum (khususnya ditinjau dari 4 aksioma hasilkali dalam);
- menjelaskan konsep ruang hasil kali dalam;
- menghitung hasil kali dalam dari dua vektor dalam suatu ruang;
- menghitung hasil kali dalam tertimbang dari dua vektor;
- bitung sudut dua vektor dalam bentuk hasil kali dalam;
- menghitung jarak dua vektor;
- menunjukkan bahwa dua vektor ortogonal atau tidak.

Bagian 1: Hasil kali dalam & ruang hasil kali dalam

Hasil kali dalam

Suatu hasil kali dalam pada ruang vektor real* V adalah fungsi yang menghubungkan bilangan real u,v dengan setiap pasangan vektor di V sedemikian rupa sehingga aksioma berikut terpenuhi untuk semua vektor u,v, dan w di V dan semua skalar k.

[Aksioma penjumlahan]

[Aksioma homogenitas]

$$\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$$
 and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = \mathbf{0}$

[Aksioma positif]

Ruang vektor real dengan hasil kali dalam disebut ruang hasil kali dalam real.

Hasil kali dalam Euclid

hasil kali dalam dari dua vektor \mathbf{u} dan \mathbf{v} pada \mathbb{R}^n didefinisikan sebagai:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Ini disebut Perkalian dalam Euclidean (hasil kali dalam standar).

Inner product vs dot product:

Sifat aljabar dari ruang hasil kali dalam

Jika $\mathbf{u}, \mathbf{v}, \mathbf{w}$ adalah vektor-vektor pada ruang hasilkali dalam real V, dan jika $k \in \mathbb{R}$, maka:

Latihan: Buktikan teorema tersebut

Hasil kali dalam berbobot

Jika $w_1, w_2, \ldots, w_n \in \mathbb{R}$ dan $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ dan $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ adalah vektor-vektor dalam \mathbb{R}^n . Kemudian:

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \cdots + w_n u_n v_n$$

disebut hasil kali dalam Euclidean tertimbang dengan bobot w_1, w_2, \ldots, w_n .

Example

Latihan 1: Perhitungan dengan hasil kali dalam Euclidean tertimbang

Hasil kali dalam standar pada M_{nn}

Diketahui $\mathbf{u} = U$ dan $\mathbf{v} = V$, matriks dalam ruang vektor M_{nn} . standard product pada M_{nn} didefinisikan sebagai:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{tr}(U^T V)$$

Example

Untuk \mathbb{R}^2 , dan matriks:

$$U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$$

Hasil kali dalam standar dari *U* dan *V* adalah:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \text{tr}(U^T V) = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

Latihan: Buktikan bahwa keempat aksioma hasil kali dalam berlaku!

Evaluasi hasil kali dalam pada P_n

Misalkan $\mathbf{p} = a_0 + a_1 x + \cdots + a_n x^n$ dan $\mathbf{q} = b_0 + b_1 x + \cdots + b_n x^n$ adalah polinomial dalam P_n .

 x_0, x_1, \ldots, x_n adalah bilangan real berbeda.

hasil kali dalam evaluation pada P_n pada x_0, x_1, \dots, x_n didefinisikan sebagai:

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + \cdots + p(x_n)q(x_n)$$

Latihan: Buktikan bahwa keempat aksioma hasil kali dalam berlaku!

Latihan 2: Perhitungan dengan hasil kali dalam Euclidean tertimbang

Part 2: Sudut dan Ortogonalitas dalam Ruang hasil kali dalam

Norma vektor dan sifat aljabar

Misalkan V adalah ruang hasil kali dalam yang nyata. Kemudian: norma dari $\mathbf{v} \in V$:

$$\|v\| = \sqrt{\langle v, v \rangle}$$

Teorema (Sifat norma vektor)

If \mathbf{u} and \mathbf{v} are vectors in a real inner product space V, and if $k \in \mathbb{R}$, then:

- **1** $\|\mathbf{v}\| \geq 0$ where equality holds iff $\mathbf{v} = \mathbf{0}$;
- $||k\mathbf{v}|| = |k| ||\mathbf{v}||.$

Latihan: Buktikan teorema tersebut

Jarak dua vektor dan sifat aljabar

Misalkan V adalah ruang hasil kali dalam yang nyata. Kemudian: jarak antara dua vektor \mathbf{u} dan \mathbf{v} :

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{\|\mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v}\|}$$

Pertanyaan: Bisakah anda menghubungkan definisi di atas dengan definisi jarak yang telah kita bahas sebelumnya?

Teorema (Sifat jarak)

Jika **u** dan **v** adalah vektor-vektor dalam ruang hasil kali dalam riil V, dan jika $k \in \mathbb{R}$, maka:

- ② $d(\mathbf{u}, \mathbf{v}) \ge 0$ di mana kesetaraan berlaku jhj $\mathbf{u} = \mathbf{v}$.

Latihan: Buktikan teorema tersebut

Jarak antara dua vektor di \mathbb{R}^n

Ingatlah bahwa:

Sudut antara dua simpul **u** dan **v** di \mathbb{R}^n didefinisikan sebagai:

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Teorema (Cauchy-Schwarz inequality)

Jika **u** dan **v** adalah vektor-vektor pada ruang hasil kali dalam real V, maka:

$$|\langle u,v\rangle| \leq \|u\| \|v\|$$

Perhatikan bahwa teorema tersebut menyiratkan bahwa sudut antara u dan **v** berkisar antara 0 dan $\pi = 180^{\circ}$.

$$0 \leq \theta \leq \pi$$

Latihan: Buktikan pertidaksamaan Cauchy-Schwarz!

Sudut antara dua vektor dalam ruang vektor nyata

Ketaksamaan Cauchy-Schwarz mengakibatkan:

$$-1 \leq rac{\langle \mathbf{u}, \mathbf{v}
angle}{\|\mathbf{u}\| \|\mathbf{v}\|} \leq 1$$

yang berarti ada sudut unik θ yang mana:

$$cos(\theta) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
 and $0 \le \theta \le \pi$

Dengan demikian,

$$\theta = \cos^{-1}\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Sudut vektor di M_{22}

Pada contoh sebelumnya, kita diberikan dua vektor di M_{22} , yaitu $\mathbf{u} = U$ dan $\mathbf{v} = V$, dimana:

$$U = \begin{bmatrix} u_1 & u_2 \\ u_3 & u_4 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$$

Bagaimana cara mencari sudut antara \mathbf{u} dan \mathbf{v} ?

Solusi:

$$\theta = \cos^{-1}\left(\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)$$

• Compute $\langle \mathbf{u}, \mathbf{v} \rangle$

$$\langle \mathbf{u}, \mathbf{v} \rangle = 1(-1) + 2(0) + 3(3) + 4(2) = -1 + 0 + 9 + 8 = 16$$

Apa yang dapat kamu simpulkan tentang sudut dua vektor pada ruang hasilkali dalam?

Ketaksamaan segitiga

Teorema (Ketaksamaan segitiga pada norma dan jarak)

Jika \mathbf{u} , \mathbf{v} , dan \mathbf{w} adalah vektor-vektor pada ruang hasilkali dalam rruang V, dan $k \in \mathbb{R}$, maka:

Figure: Illustration of triangular inequality

Ortogonalitas

Definisi

Dua vektor **u** dan **v** dalam ruang hasil kali dalam V disebut ortogonal jika $\langle u, v \rangle = 0$.

Latihan 1: Ortogonalitas tergantung pada produk bagian dalam

Diberikan dua vektor $\mathbf{u} = (1,1)$ dan $\mathbf{v} = (1,-1)$.

• **u** dan **v** adalah w.r.t ortogonal. hasil kali dalam Euclidean pada \mathbb{R}^2 .

$$\mathbf{u} \cdot \mathbf{v} = (1)(1) + (1)(-1) = 0$$

• tapi bukan w.r.t ortogonal. produk dalam Euclidean tertimbang: $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$, since:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3(1)(1) + 2(1)(-1) = 1 \neq 0$$

Latihan 2: Vektor ortogonal di M_{22}

Ingat kembali definisi hasil kali dalam pada M_{nn} :

$$\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{tr}(U^T V)$$

Apakah matriks-matriks berikut ini ortogonal?

$$U = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $V = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$

Solusi:

$$\langle U, V \rangle = 1(0) + 0(2) + 1(0) + 1(0) = 0$$

Oleh karena itu, U dan V ortogonal.

Latihan 3: Vektor ortogonal di P_2

Definisikan produk dalam pada P_2 sebagai berikut.

Untuk $\mathbf{p}, \mathbf{q} \in P_2$, definisikan:

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x) q(x) \ dx$$

Misal $\mathbf{p} = x \operatorname{dan} \mathbf{q} = x^2$. Maka:

$$\|\mathbf{p}\| = \langle \mathbf{p}, \mathbf{p} \rangle^{1/2} = \left[\int_{-1}^{1} xx \ dx \right]^{1/2} = \left[\int_{-1}^{1} x^{2} \ dx \right]^{1/2} = \sqrt{\frac{2}{3}}$$

$$\|\mathbf{q}\| = \langle \mathbf{q}, \mathbf{q} \rangle^{1/2} = \left[\int_{-1}^{1} x^{2} x^{2} \ dx \right]^{1/2} = \left[\int_{-1}^{1} x^{4} \ dx \right]^{1/2} = \sqrt{\frac{2}{5}}$$

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} xx^{2} \ dx = \int_{-1}^{1} x^{3} \ dx = 0$$

Oleh karena itu, vektor-vektor $\mathbf{p} = x$ dan $\mathbf{q} = x^2$ adalah ortogonal relatif terhadap hasil kali dalam.

Latihan

Buktikan Teorema Umum Pythagoras berikut

Jika ${\bf u}$ dan ${\bf v}$ adalah vektor ortogonal pada ruang hasilkali dalam real, maka:

$$\|\boldsymbol{u}+\boldsymbol{v}\|^2=\|\boldsymbol{u}\|^2+\|\boldsymbol{v}\|^2$$

bersambung...