TP MICRO-332

1ÈRE SÉANCE PRATIQUE: CARACTÉRISATION DU RÉSINE

1. Objectif

La résine est un matériau largement utilisée en microfabrication comme un masque lors de réalisation des circuits intégrés en semi-conducteurs. Pour obtenir des circuits avec une meilleure résolution, la résine doit posséder un certain nombre de propriétés comme un contraste élevé, une meilleure sensibilité aux radiations UV et une grande résistance à la gravure chimique. Le but de cette séance du TP est de caractérisé une résine pour déterminer son contraste et sa sensibilité à la lumière UV d'exposition.

Pour cette séance, des wafers en silicium seront utilisés pour l'étude de contraste de la résine et dea wafers en SiO₂/Si pour l'exercice d'alignement et la gravure chimique (préparation du masque en résine uniquement).

Durant votre TP, l'assistant expliquera le protocole de chaque étape. Il faut prendre des notes de ces protocoles pour les inclure dans votre rapport. Pour plus d'informations, la majorité de ces protocoles se trouvent à la rubrique« process » du site https://cmi.epfl.ch. L'objectif est de ne pas faire copier-coller du protocole comme décrit sur le site, mais de le présenter à votre manière de façon brève et claire.

2. Matériels et équipements.

- a. Substrats
 - Nature du substrat
 - Numéro d'identification
 - Orientation et dopage
- b. Masque : Choisir le bon masque pour l'exercice d'étude de contraste de résine.
- c. Produits chimiques. Donner les noms des différents produits chimiques utilisés pendant le TP.
 - Résine
 - Promoteur d'adhésion
 - Développeur
 - Solvant (Stripping)
- d. Equipements.
 - Donner les noms des équipements et leur utilisation

3. Etude de la courbe de contraste de la résine.

- a. Durant la réalisation des différentes étapes, la feuille de route doit être complétée avec les paramètres expérimentaux utilisés à chaque étape de fabrication. Ces informations seront nécessaires pour la rédaction du rapport.
- b. Préparation de la surface du substrat : silanisation (Promoteur d'adhésion)
 - Quelle est le rôle de cette opération ?
 - Décrire le protocole de la silanisation
- c. Test de mouillabilité : poser une goutte d'eau DI sur du silicium avant et après silanisation.
 - Qu'observez-vous?
- d. Déposition de la résine : description des différentes étapes (les paramètres expérimentaux et le but de l'opération)
 - Programme d'étalement de la résine
 - Recuit thermique
 - Réhydratation/relaxation
 - Température et taux d'humidité en zone 13
- e. Exposition de la résine
 - Longueur d'onde

- Intensité
- Temps d'exposition. Pour la courbe de contraste, plusieurs temps d'exposition seront testés (à définir avec l'assistant)
- Dose (= Intensité x temps d'exposition)
- f. Développement de la résine
 - Composition de la solution de développement
 - Temps de développement
- g. Nettoyage
- h. Séchage
- i. Caractérisation et résultats
 - Avec le Filmetrics, mesurer l'épaisseur de la résine restante après exposition et développement pour chaque temps d'exposition (ou Dose).
 - Donner une description de la méthode optique de mesure
 - Compléter le tableau suivant (attention aux unités)

Substrat : N° d'identification						
Temps d'exposition (unité)	Dose (unité)	Epaisseur mesurée (unité)	Epaisseur normalisée			
t_0						
$ t_1 $						
t_{12}						

- Tracer la courbe épaisseur normalisée en fonction de la Dose d'exposition.
- Quelle est l'utilité de la courbe de contraste?
- En déduire la sensibilité D_{100} et la valeur de contraste de la résine, γ . (Attention la courbe doit être claire avec les unités, un titre et une légende).

4. Exercice d'alignement.

a. Objectif:

La réalisation de chaque circuit intégré nécessite l'utilisation de plusieurs masques pour modifier de façon sélective chaque film constituant le circuit intégré. Chaque nouveau masque doit être placé avec une grande précision par rapport aux précédents. Lors de cette séance, un exercice d'alignement permettra de tester l'importance de cette opération pour la réussite du composant final.

- b. Discuter le procédé de fabrication le procédé de fabrication avec votre assistant et la feuille de route correspondante.
 - Niveau 1 étant déjà réalisé sur le substrat
 - Donner un petit résumé sur ce premier niveau :
 - a. type de film sur substrat
 - b. son épaisseur
- c. Choisir le niveau du masque à aligner (Choix entre niveau 2 ou 3)
- d. Décrire la procédure d'alignement
 - Étalement de la résine
 - Alignement
 - Exposition UV
 - Développement
 - Nettoyage

2ÈME SÉANCE PRATIQUE (GRAVURE DE SiO2)

1. Objectif.

L'oxyde de silicium SiO₂ est un matériau largement utilisé dans la technologie de fabrication de circuits intégrés. Le SiO₂ possède des propriétés chimique, électrique et optique intéressantes lui permettant de trouver plusieurs applications (passivation, isolant électrique, miroir optique, etc.). En général, le SiO₂ est structurée selon des motifs précis lors de la formation d'un circuit intégré. La structuration de SiO₂ se fait par gravure humide dans une solution à base d'acide fluorhydrique (HF). Le but de ce projet est de caractériser cette gravure humide par la détermination de la vitesse de gravure du SiO₂ et d'étudier l'effet de l'isotropie de la gravure sur la résolution des motifs.

2. Matériels et équipements.

- a. Substrats.
- b. Equipements.
- c. Produits chimiques.

3. Gravure de SiO₂ (pour chaque étape, il faut donner une description claire)

- a. Discuter le procédé de fabrication avec votre assistant et la feuille de route correspondante.
- b. Habillement supplémentaire pour l'opération de gravure.
- c. Préparation de la solution de gravure.
- d. Gravure de SiO₂ pour un temps de gravure fixe (à définir avec votre assistant).
- e. Nettoyage du substrat.
- f. Mesurer optiquement l'épaisseur restante de SiO₂.
- g. Répéter les opérations (3d-3f) pour trois temps de gravure (les temps de gravure sont à définir avec l'assistant).
- h. Compléter le tableau suivant.

Temps de gravure (unité)	Epaisseur restante de SiO ₂ (unité)
t_1	
t_2	
t_3	

i. Tracer la courbe épaisseur restante de SiO₂ en fonction du temps de gravure. En déduire la vitesse de gravure et le temps, T_{fin}, nécessaire pour la gravure totale du film SiO₂.

4. Etude de la sous-gravure.

- a. Gravure du substrat pour un temps de gravure $T_{fin} + 8min$.
- b. Nettoyage du substrat.
- c. Elimination de la résine (stripping).
- d. Nettoyage du substrat.
- e. En supposant la gravure est isotrope, quelle doit être la largeur de la ligne après ce temps de gravure ?

5. Travail à faire en dehors de la salle blanche

- a. Etude de la résolution
 - Choisir un motif sur le masque comme référence pour l'étude de la résolution et prendre des photos avec un bon grossissement de ce motif. Ensuite pour chaque dose sélectionnée, prendre une photo du même motif sur le substrat avec le même grossissement.

(Attention ! pour chaque photo, noter l'échelle et le grossissement utilisé pour les inclure dans le rapport)

- Mesurer les dimensions des motifs et les comparer à celles du masque de référence.
- Discuter les résultats.

b. Etude d'alignement

• Prendre des photos du vernier à 200 nm ou 500 nm (selon la grandeur de l'erreur d'alignement) et mesurer l'erreur d'alignement et compléter le tableau.

X (mm)	Y (mm)	ΔX (unité)	ΔY (unité)

- (x, y) étant les coordonnées de la zone de mesure.
- Δx étant l'erreur d'alignement selon l'axe x.
- Δy étant l'erreur d'alignement selon l'axe y.

c. Etude de la sous-gravure

- Choisir un motif de référence sur le masque et prendre des photos de ce motif. Mesurer les dimensions de ce motif; W_{masq}. Faire le même travail sur le substrat avec résine avant l'étape de gravure, W_{résine}.
- Prendre des photos du même motif de référence sur la couche de SiO₂ sans résine et mesurer les dimensions de ce motif, W_{SiO2}.
- Compléter le tableau suivant :

Temps de gravure	Wrésine	W_{mask}	W_{SiO2}	$\Delta W = W_{résine} - W_{SiO2}$
(unité)	(unité)	(unité)	(unité)	(unité)
$T_{fin} + 8min$				

- d. En déduire la vitesse de sous-gravure et la comparer à la vitesse de gravure verticale.
- e. Discuter votre résultat.

Procédé de fabrication "Process Flow": Contrast curve

Procédé de fabrication : exercice d'alignement

5- Exposition de la résine aux UV.

6- Développement de la résine.

Masque

Procédé de fabrication: gravure humide

1 - Substrat avec un film en couche mince

3- Etalement de la résine.

4- Exposition de la résine aux UV.

5 - Développement de la résine.

6- Gravure du film mince.

7- Elimination de la résine.

Si

Masque

Projet : TP Micro332 - Photolithographie **Student** : Group:

Date :

Step	Description	Equipement	Program / Parameters	Target	Actual	Remarks					
1		•	WAFER PREPAR	ATION							
1.1	Stock out "litho" wafers										
1.2	Stock out "align" wafers										
1.3	Check	Z15/F20 Thin-Film Analyzer				First calibrate on sample Si wafer					
2	PHOTOLITHOGRAPHY: "LITHO"										
		Z13/SSE coater		100mm chuck in position							
	Check machines	Z13/SSE hotplate		100°C							
0.4	LIMADO accionina a	Z13/MJB4		Lamp on							
2.1	HMDS priming										
2.2	AZ1512HS coating										
2.3	AZ1512HS softbake										
2.4	AZ1512HS relaxation time										
2.5	AZ1512HS expose										
2.6	AZ1512HS develop										
2.7	Water cleaning										
2.8	Inspection										
3			MEASUREMENTS:	"LITHO"							
3.1	AZ1512HS Thickness										
4			MEASUREMENTS:	RESOLUTION							
4.1	Resolution of structures			Correctly exposed, underexposed and overexposed regions.							
4.2	Alignment quality			Measurements on Vernier microstructures.							

Exposure						
time						
Dose						
Thicknes s						

Projet : TP wet etch

Student: Group:

Date:

Substrates :SiO2/Si wafer; WOX (500 nm) or LTO (1000nm)

WORK BEFORE STUDENT SESSION

Step	Description	Equipement	Program / Parameters	Target	Actual	Remarks			
1	WAFER PREPA	WAFER PREPARATION							
1.1	Stock out								
2	PHOTOLITHO	GRAPHY							
2.1	Dehydration	Z1/ ACS200							
2.2	AZ1512 coating/bake	Z1/ ACS200	Std recipe AZ1512 2um Dehydr.	Coat 14 "wet etch" wafers, 7 WOX and 7 LTO		First dummy wafer (Target PR height = 2um)			
2.3	AZ1512 expose	Z6/ MABA6	Alignment level 3 (TP Micro). Hard contact time: 10s, light intensity: CP	Exposure dose: 60[mJ/cm ²]		all 14 "wet etch" wafers			
2.4	AZ1512 develop	Z1/ ACS200 followed by Z6/ EVG150	Std recipe Dev AZ1512 2um followed by AZ1512_1to2um_Std_1_5			First dummy wafer. Development incomplete after first run. Completed development on the EVG150			

WORK DURING STUDENT SESSION

Step	Description	Equipement	Program / Parameters	Target	Actual	Remarks
4	ETCHING					
4.1	Pre-etching measurements		Take pictures of reference structure with known size from the mask and from the wafer			Mask and wafer with photos.
4.2	Prepare Acid Bench in Z14					
4.3	Wear					
4.4	Pour HF in container and fill DI water in					
4.5	Etching					Use just one wafer to determine the etching rate
4.6	Water cleaning					
4.7	Measure thickness					
4.8	Etching repeat 4.5-4.6 3 times					
4.9	Etching to observe the underetching					
4.10	Water cleaning					
4.11	Photoresist removal (stripping)					
4.12	Water cleaning					
5.0	Checking underetching					

Etching time		
Thickness		