TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK Dr. D. Peschka, A. Selahi

Numerical Mathematics II for Engineers Homework assignment 7: Problems with time.

Programming assignments can be solved in MATLAB/Python/Julia.

Deadline: submit until December, Friday 13, 2019.

1. Excercise: The Θ -scheme in $Q_T = (T_0, T) \times \Omega$ and $\Omega = (0, 1) \subset \mathbb{R}^1$ 12 points

Consider the parabolic problem

$$\partial_t u(t,x) + Lu(t,x) = f(x)$$
 $(t,x) \in Q_T$,

with the elliptic operator $Lu = -a\partial_x^2 u + b\partial_x u$ acting on the spatial part of u. We use Dirichlet boundary conditions $u(t,0) = g_0 \in \mathbb{R}$ and $u(t,1) = g_1 \in \mathbb{R}$ and initial conditions $u(T_0,x) = u_0(x)$. Suppose the initial conditions satisfy the boundary conditions $u_0(0) = g_0$ and $u_0(1) = g_1$ and $a, b \in \mathbb{R}$ with a > 0. As in the lecture $u_i^k = u_h(t^k, x_i)$ for $t^k = T_0 + k\tau$ for $k = 0 \dots M$ and $\tau M = (T - T_0)$.

- a) Let a=1, b=f=0 and assume $u \in C^{2,4}(\bar{Q}_T)$. Show the Θ scheme is consistent in $||w||_{\tau,h,\infty} = \max_{n,k} |w_n^k|$ with $\mathcal{O}(\tau+h^2)$. If $u \in C^{3,4}(\bar{Q}_T)$, $\Theta = 1/2$, then $\mathcal{O}(\tau^2+h^2)$.
- **b)** Let a = 1, b = f = 0 and $u_0(x) = H(x 1/2)$ (Heaviside function H at $T_0 = 0$) and $g_0 = 0$, $g_1 = 1$. Find the exact solution of the problem using the Fourier series

$$u_0(x) - x = -\frac{1}{\pi} (\frac{1}{1} \sin(w) - \frac{1}{2} \sin(2w) + \frac{1}{3} \sin(3w) + ...),$$

for $w = 2\pi x$ using a separation ansatz. Write a function u=a07ex01getsol(xh,t) returning the exact solution at time t and xh (use 300 terms in the series).

c) Write a function [Ah,Mh,fh] = a07ex01getPDE(xh,f,consts,theta,tau,flag), so that the discrete solution $u_h^k \in \mathbb{R}^{N+2}$ at time t^{k+1} is computed

$$A_h u_h^{k+1} = M_h u_h^k + \tau f_h,$$

using the Θ -scheme, where $\mathbf f$ is a function handle, $\mathtt{consts}=[\mathbf a\ \mathbf b]$, $\mathtt{flag}='+'$, '-', '0' indicates the discretization of u' in L. As usual $\mathtt{xh}=(0,h,2h,...,1)\in\mathbb R^{N+2}$. Use $u_i^{k+1}=u_i^k$ for i=0 and i=N+2 to satisfy the discrete boundary conditions.

d) Write a function [uM,err]=a07ex01d(N,M,T,Ah,Mh,fh) solving the problem for $N=\{10,100,1000\},\,T=0.01,\,M=\{50,500,5000\}$ for the explicit/implicit Euler and Crank-Nicolson scheme. Plot the solutions $u_h^M\in\mathbb{R}^{N+2}$ (overlayed 1D plots), compute the error $\text{err}=\|u_n^k-u(t^k,x_n)\|_{\tau,h,\infty}$ and discuss your observations.

- \mathbf{e}) For which M we have stability? Discuss advantages of the different methods.
- f) Now let $u_0(x) = 0$ at $T_0 = 0$, f(x) = 1, $g_0 = g_1 = 0$, a = 1/100, b = 1, T = 100. Solve the problem for N = 50 numerically, plot the solution, and discuss the effect of different choices flag='+', '-', '0' and $\Theta = \{0, 1/2, 1\}$. Discuss what changes for N = 200? Compare with the solution u_{ϵ} from Assignment 4, Exercise 3. Use the file/script/function a07ex01f.

Remark: Reuse functions whenever possible! E.g, reuse a07ex01getsol from b) to compute err in d). For the discretization of L reuse solutions of previous assignments.

Hint: Since H in b)-e) is nonsmooth, start the solution at $T_0 = 10^{-5}$ with $u_0(x)$ given by u0=a07ex01getsol(xh,T0). Use $\tau = (T - T_0)/M$ and $t^k = T_0 + k\tau$ defined above.

2. Exercise: Implicit Euler method in 3D (or 2D)

10 points

Let $\mathbf{x} \in \Omega = (0,1)^3 \subset \mathbb{R}^3$ and $t \in (0,\infty)$ and consider the heat equation

$$\partial_t u(t, \mathbf{x}) + Lu(t, \mathbf{x}) = f(\mathbf{x})$$
 (1)

for $Lu = -\Delta u$ with homogeneous Dirichlet boundary conditions $u(t, \mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega$.

a) Show $u_{klm}(\mathbf{x}) = a_{klm} \sin(k\pi x) \sin(l\pi y) \sin(m\pi z)$ is an eigenfunction $(k, l, m \in \mathbb{N})$. What is the eigenvalue λ_{klm} ? Compute a_{klm} so that $\int_{\Omega} |u_{klm}(\mathbf{x})|^2 dx dy dz = 1$ and then show

$$\int_{\Omega} u_{klm}(\mathbf{x}) \, u_{nop}(\mathbf{x}) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \begin{cases} 1 & k = n, l = o, m = p \\ 0 & \text{otherwise} \end{cases}.$$

First seek solutions of Lu = f with homogeneous Dirichlet boundary conditions. Assume $u_{klm}(\mathbf{x})$ form a basis, so that we can expand $u(\mathbf{x}) = \sum_{k,l,m \in \mathbb{N}} w_{klm} u_{klm}(\mathbf{x})$. Show the coefficients $w_{klm} \in \mathbb{R}$ are given by

$$w_{klm} = \frac{1}{\lambda_{klm}} \int_{\Omega} f(\mathbf{x}) u_{klm}(\mathbf{x}) \, dx \, dy \, dz.$$

Compute $u(\mathbf{x})$ for $f(\mathbf{x})=1$ and write u=a07ex02getsola(xx,yy,zz,R) which returns the truncated Fourier series as $u_h \in \mathbb{R}^{N+2\times N+2\times N+2}$ for k,l,m=1,...,R.

- b) Extend the sample code from assignment 4 to $\Omega = (0,1)^3$ and solve $-\Delta u = 1$ with homogeneous Dirichlet boundary conditions with h = 1/(N+1) as large as possible. Compare with the solution from a) and state the error in the maximum norm. Use the file/script/function a07ex02b(N).
- c) Extend the numerical solution from b) to solve the heat equation using the implicit Euler method with initial data $u(t=0,\mathbf{x})=0$. Solve the problem numerically in the file/function uh=a07ex02c(N,M,T).

- d) Compare the solution from c) with the exact solution at T=0.1. Assume the solution can be expanded $u(t,\mathbf{x})=\sum_{k,l,m}w_{klm}(t)u_{klm}(\mathbf{x})$. Derive ODEs for the coefficients $w_{klm}(t)$ and solve. Return a truncated expansion for k,l,m=1,...,R of the exact solution u via the file/function $\mathbf{u}=\mathbf{a07ex02getsold}(\mathtt{T,xx,yy,zz,R})$. Measure the error using $\max_{x\in\Omega_h}|u(t^M,x)-u_h(t^M,x)|$ for $t^M=M\tau=T$.
 - **Hint 1**: x'(t) = ax(t) + b with x(0) = 0 is solved by $x(t) = \frac{b}{a}(e^{at} 1)$.
 - Hint 2: If you like, you can also solve this exercise in 2D. Then you can solve larger domains and plotting is easier. Then introduce $u_{kl}(\mathbf{x}) = a_{kl} \sin(k\pi x) \sin(l\pi y)$, λ_{kl} , v_{kl} instead of the quantities with three indices. With a direct solver N=30-50 should be possible in 3D, otherwise you might want to try a (built-in) iterative solver such as pcg depending on your platform.
 - Hint 3: In order to help with visualization, we provide outvtk_structured3d to output the data to VTK file format (ParaView) for rectilinear 3D meshes. Download ParaView at https://www.paraview.org/download/ for free for Windows, Linux and macOS.
 - **Hint 4**: If there are problems with a,b) or you like another test case, you can also use $f(\mathbf{x}) = 0$ and the eigenfunction $u_0(\mathbf{x}) = \sin(\pi x)\sin(\pi y)\sin(\pi z)$ of L as alternative/additional initial data for c,d).

FIGURE 1 – Paraview visualization of solution $u(\mathbf{x})$ for b) with N = 200 (clip + contour).

total sum: 22 points