

(a) Select an enzyme and set it to the factor of the desired

perturbation strength (e.g. 50%)

- enzyme; = enzyme; * 50%
- (b) Simulate the model to steady state. c) Record the resulting data for all the data types

- (d) Reset the model and the perturbed enzyme
- (e) Repeat steps a-d until all enzymes have been perturbed and steady state responses have been recorded $\frac{1}{2} + \frac{1}{2}$

$$1 += 1$$

$$enzyme_{i} = enzyme_{i} * 50%$$

⑤ Post-BMCA analysis

a) Calculate the predicted control coefficient values with the means of the highest density interval for each posterior distribution.

b) Compare predicted control coefficient values from step 5 with the ground truth values from step 2.

4 BMCA

network. $v = (v^*\hat{e})(1 + \epsilon_x^*\chi + \epsilon_y^*\gamma)$

a) Write a system of linlog equations for all reactions in the

- Omit fluxes:
 Omit enzymes:
 Omit enzymes:
 Omit internal met.:
 Omit external met.:
 Omit external met.:
- v \hat{e} ϵ_x^* χ γ ...
- e) Approximate posterior distributions using ADVI.

