A PROJECT REPORT ON

AUTOMATED DETECTION OF GLAUCOMA STAGES FROM RETINAL FUNDUS IMAGES USING SVM CLASSIFIER

Submitted in partial fulfilment of the Requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

V. THARUN KUMAR REDDY 18091A04M8
K. ANIL KUMAR 18091A0409
G. RAHUL 18091A04E8
M. MEGHANATH REDDY 18091A04A4

Under the Esteemed Guidance of

Dr. N. RAMANJANEYULU M. Tech., Ph.D., MIETE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING AND TECHONOLOGY Autonomous

Affiliated to J.N.T.U.A- Anantapuramu, Approved by A.I.C.T.E., New Delhi,

Accredited By N.B.A & NAAC with 'A+' Grade, New Delhi,

NANDYAL – 518501, Kurnool (Dt), A.P.

YEAR: 2018-2022

RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING & TECHNOLOGY Autonomous

Affiliated to J.N.T.U.A- Anantapuramu, Approved by A.I.C.T.E., New Delhi,

Accredited By N.B.A & NAAC with 'A+' Grade, New Delhi,

NANDYAL – 518501, Kurnool (Dt), A.P.

CERTIFICATE

This is to certify that the desertion entitled "AUTOMATED DETECTION OF GLAUCOMA STAGES FROM RETINAL FUNDUS IMAGES USING SVM CLASSIFIER" that is being submitted by V.THARUN KUMAR REDDY (18091A04M8), K.ANIL KUMAR (18091A0409), G. RAHUL (18091A04E8), M. MEGHANATH REDDY (18091A04A4) Under the guidance of Dr.N.RAMANJANEYULU for Project of the award of B.Tech Degree in ELECTRONICS COMMUNICATIONS AND ENGINEERING in the RAJEEV GANDHI MEMORIAL COLLEGE OF ENGINEERING & TECHNOLOGY, Nandyal Affiliated to J.N.T. University Anantapur) is a record of bonafied work carried out by them under our guidance and supervision.

Head of the Department:

Dr.K.Mallikarjuna

M. Tach, Ph.D. MISTE FIETE MIE

M.Tech, Ph.D., MISTE, FIETE, MIEProfessor and H.O.D

Project Guide:
Dr.N.Ramanjaneyulu

M. Tech, Ph.D., MIETE
Associate Professor

Signature of the External Examiner:

Date:

CANDIDATE'S DECLARATION

We hereby declare that the work done in this major project titled "AUTOMATED DETECTION OF GLAUCOMA STAGES FROM RETINAL FUNDUS IMAGES USING SVM CLASSIFIER" submitted towards completion of major project in IV-year second semester of B. Tech (ECE) at the Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal. It is an authentic record of our original work done under the guidance of Dr.N.RAMANJANEYULU, Assoc. Professor, Dept. of ECE, RGMCET, Nandyal. We have not submitted the matter embodied in this major project for the award of any other degree in any other institution.

By

V. THARUN KUMAR REDDY	18091A04M8
K. ANIL KUMAR	18091A0409
G. RAHUL	18091A04E8
M. MEGHANATH REDDY	18091A04A4

ACKNOWLEDGEMENT

We manifest our heartier thankfulness pertaining to your contentment over our project guide **Dr. N. RAMANJANEYULU GARU**, Assistant Professor of Electronics and Communication Engineering department, with whose adroit concomitance the excellence has been exemplified in bringing out this project to work with artistry.

We express our gratitude to **Dr. K. MALLIKARJUNA GARU**, Head of the Department of Electronics and communication Engineering department, all teaching and nonteaching staff of the Electronic and communication engineering department of Rajeev Gandhi memorial College of Engineering and Technology for providing continuous encouragement and cooperation at various steps of our project.

Involuntarily, we are perspicuous to divulge our sincere gratefulness to our Principal, **Dr. T. JAYACHANDRA PRASAD GARU**, who has been observed posing valiance in abundance towards our individuality to acknowledge our project work tangentially.

At the outset we thank our honourable Chairman **Dr. M. SANTHI RAMUDU GARU**, for providing us with exceptional faculty and moral support throughout the course.

Finally, we extend our sincere thanks to all the **Staff Members** of ECE Department who have co-operated and encouraged us in making our project successful.

Whatever one does, whatever one achieves, the first credit goes to the **Parents** be it not for their love and affection, nothing would have been responsible. We see in every good that happens to us their love and blessings.

SUBMITTED BY:

V. THARUN KUMAR REDDY	18091A04M8
K. ANIL KUMAR	18091A0409
G. RAHUL	18091A04E8
M MEGHANATH REDDY	18091A04A4

CONTENTS

s.	NO	TOPICS	PAGE NO
		CHAPTER 1	
1.	INTRODUC	TION	
	1.1	Introduction to Retina	1
	1.2	Diabetic Retinopathy	2
	1.3	Exudates	4
		CHAPTER 2	
2.	BASICS OF	IMAGE PROCESSING	
	2.1	Digital Image processing	6
	2.1.1	Fundamentals of Digital Image	6
	2.1.2	Image File Sizes	8
	2.1.3	Image processing	9
	2.2	Fundamental step in Digital Image Processing	9
	2.2.1	Image Acquisition	9
	2.2.2	Image Enhancement	10
	2.2.3	Image Restoration	11
	2.2.4	Colour Image Processing	11
	2.2.5	Segmentation	12
	2.2.6	Image Compression	12
	2.2.7	Wavelets and Multiresolution	20
	2.2.8	Morphological Processing	20
	2.2.9	Representation and Description	20
	2.2.10	Object Recognition	20
	2.2.11	Knowledge Base	24
		CHAPTER 3	
3	. LITERATU	JRE SURVEY	25
		CHAPTER 4	
4	SYSTEM A	ANALYSIS	
	4.1	Existing system	30
	4.2	Problem Statement	30

4.3	Proposed	d System	31
4.4	System Architecture		32
	4.4.1	Blocks Description	32
4.5	Modules		33
	4.5.1	Flow Diagram	33
	4.5.2	Module Description	34
4.6	Hardware	e requirement	36
4.7	Software	requirement	36
4.8	MATLAB	window	38
4.9	MATLAB	Files	41
4.10	MATLAB	System	42
4.11	MATLAB	Working Environment	43
		CHAPTER 5	
5. ALGORITHMS	}		
5.1	Introduc	tion	46
5.2	Support	vector Algorithm	46
5.3	Types of	SVM	48
5.4	Hyper Pl	ane and Support Vectors	48
		CHAPTER 6	
6. FEASIBILITY	STUDY		
6.1	Introduc	tion	52
	6.1.1	Economic Feasibility	52
	6.1.2	Technical Feasibility	52
	6.1.3	Behavioural Feasibility	53
6.2	System	Implementation	53
6.3	User Tr	raining	53
6.4	Trainin	g on the Application Software	54
6.5	Operati	ional Documentation	54
6.6	System	Maintenance	54
6.7	Correct	ive Maintenance	55
6.8	Adaptiv	e Maintenance	55

	6.9	Perceptive Maintenance	55
	6.10	Preventive Maintenance	55
		CHAPTER 7	
7. EXPERI	MENTAL RESULT	'S AND EVALUATION	
	7.1	Introduction	56
,	7.2	Results	56
,	7.3	Output 1	57
,	7.4	Output 2	60
		CHAPTER 8	
8. CONCLU	JSION, FUTURE S	COPE & REFERENCES	63

LIST OF FIGURES

FIGURE NO	DESCRIPTION	PAGE NO
1.1	Retina	1
1.2	Exudate	4
2.1	Hue Saturation Process of RGB SCALE Image	7
2.2	Colour image to Gray Scale Conversion process	7
2.3	Gray Scale Image Pixel Value Analysis	8
2.4	Digital Camera	9
2.5	Basics steps of Image Processing	10
2.6	Image Enhancement Process for Gray	10
	Scale Image & Colour Image Using	
2.7	Histogram Bits Noise Image to Image Enhancement	11
2.8	Gray Scale Image to Colour Image	11
2.9	Image Segment Process	12
2.10	Decompression Process for Image	13
2.11	PSNR of Lossy compression in relation to compression ratio	14
2.12	Decoding time in relation to compression ratio	16
4.1	System Architecture	32
4.2	Flow Diagram	33
4.3	Representation of MATLAB Window	43
5.1	SVM classifier	46
5.2	Feature extraction using SVM algorithm	47
5.3	Dataset with two different tags	49
5.4	2-D space diagram using one straight line	49
5.5	Optical hyperplane, support vector	50
5.6	Linear data is separated by using a straight line	50
5.7	Space diagram after adding the third dimension	51
5.8	2-D space diagram with non-linear data	51
7.1	MATLAB home page consisting of main code.	56
7.2	Opening dialog box for selection of image from dataset	57
7.3	Selection of dataset	57

7.4	Intermediate images of selected dataset.	58
7.5	Epochs	58
7.6	Training vectors	59
7.7	Cup to disc ratio and pop up shows that given dataset is a normal image.	59
7.8	Final OD (over depletion) segmented image is taken from input image which is taken from dataset.	60
7.9	Intermediate images of selected dataset.	60
7.10	Epochs	61
7.11	Training vectors	61
7.12	Cup to disc ratio and pop up shows that given dataset is a Glaucoma image.	62

LIST OF TABLES

S. NO	DESCRIPTION	PAGE NO
1	Trade-off between quality and speed for the kodak test set	19
2	Lossless compression ratios of PGF (Placental Growth Factor) test set.	20
3	Runtime of lossless compression of the PGF test set	21

ABSTRACT

Glaucoma is one of the leading causes of irreversible vision loss, it progresses gradually without easily noticeable symptoms. The detection of glaucoma in the early stage is crucial as it may help to decelerate the progress. The traditional instrument methods are manual, time-consuming and less accurate. Hence, the automated diagnosis of glaucoma is needed for detection of glaucoma in the early stage with high accuracy. The flexible analytic wavelet transforms (FAWT) based novel method has been proposed for the classification of glaucoma stages. In the proposed method, FAWT has been used to decompose the pre-processed images into various sub-band images. Then, Relief and sequential boxcounting (SBC) algorithms are applied to extract the various entropies and fractal dimension (FD) based features, respectively.

Further, the extracted feature values are ranked using Fisher's linear discriminant analysis (LDA) dimensionally reduction. Finally, the higher rank features have been used for the classification of glaucoma stages using least squares-support vector machine (LS-SVM) classifier. The proposed method has been evaluated on publicly available large and diverse glaucoma database. The classification accuracy of the proposed method is 93.40% using tenfold cross validation. The proposed method has demonstrated better performance for glaucoma classification as compared to the existing methods. The proposed method is ready to help the ophthalmologist in their daily screening for glaucoma detection