

What is Statistics?

Statistics is the study of collecting, analyzing, interpreting, and presenting data. It allows us to make sense of data and draw conclusions from it.

Two Main Areas of Statistics:

- 1. Descriptive Statistics: Summarizing and organizing data to describe its key features.
- 2. Inferential Statistics: Drawing conclusions and making predictions about a population based on a sample of data.

What is Statistics?

Descriptive Statistics Basics

• Mean (Average):

 $\mathrm{Mean} = \frac{\mathrm{Sum\ of\ all\ values}}{\mathrm{Number\ of\ values}}$

•

Example: The mean of the numbers

$$\frac{2+4+6}{3}=4$$

• Median: The middle value when the data is ordered. Example: The median of 1,3,7,8,9 is 7 (the middle number).

What is Statistics?

• Variance: A measure of how much the data values differ from the mean.

$$Variance = \frac{\sum (x_i - mean)^2}{n}$$

• Standard Deviation: The square root of the variance, indicating how spread out the data is.

Standard Deviation =
$$\sqrt{\text{Variance}}$$

What is Statistics?

Inferential Statistics Basics

Inferential statistics helps us make predictions or inferences about a population based on a sample of data.

Key Concepts:

- 1. Population vs. Sample:
 - Population: The entire group of individuals or items we want to study.
 - Sample: A subset of the population used to make inferences.
- 1. Hypothesis Testing: A method to test if an assumption about a population is true, using sample data.
 - Null Hypothesis (H0H_0H0): The default assumption (e.g., no effect or no difference).
 - Alternative Hypothesis (HAH_AHA): The assumption we want to test (e.g., there is an effect or difference).

What is Statistics?

Probability Distributions

In statistics and machine learning, understanding probability distributions is critical for analyzing random variables and data behavior.

Types of Distributions:

- 1. Discrete Probability Distributions: Deals with variables that take specific, distinct values.
 - Example: Binomial Distribution (number of successes in a fixed number of trials).
- 2. Continuous Probability Distributions: Deals with variables that can take any value within a range.
 - Example: Normal Distribution (bell-shaped curve, common in nature and machine learning).

What is Statistics?

Normal Distribution (Gaussian Distribution):

The normal distribution is important in AI and statistics because many natural phenomena follow this pattern.

- It is symmetric around the mean.
- Most of the data falls within 1 standard deviation from the mean.

Example:

In a normal distribution with mean 50 and standard deviation 5:

- About 68% of the data falls within 45 to 55 (1 standard deviation).
- About 95% of the data falls within 40 to 60 (2 standard deviations).