2-11 LINE INTEGRAL WORK

Calculate $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ for the given data. If \mathbf{F} is a force, this

gives the work done by the force in the displacement along *C*. Show the details.

2.
$$\mathbf{F} = [y^2, -x^2], \quad C: y = 4x^2 \text{ from } (0, 0) \text{ to } (1, 4)$$

4.
$$\mathbf{F} = [xy, x^2y^2], \quad C \text{ from } (2, 0) \text{ straight to } (0, 2)$$

6.
$$\mathbf{F} = [x - y, y - z, z - x], \quad C: \mathbf{r} = [2\cos t, t, 2\sin t]$$
 from $(2, 0, 0)$ to $(2, 2\pi, 0)$

7.
$$\mathbf{F} = [x^2, y^2, z^2], \quad C: \mathbf{r} = [\cos t, \sin t, e^t] \text{ from } (1, 0, 1) \text{ to } (1, 0, e^{2\pi}). \text{ Sketch } C.$$

8.
$$\mathbf{F} = [e^x, \cosh y, \sinh z], \quad C: \mathbf{r} = [t, t^2, t^3] \text{ from } (0, 0, 0)$$
 to $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8})$. Sketch C .

9.
$$\mathbf{F} = [x + y, y + z, z + x], \quad C: \mathbf{r} = [2t, 5t, t] \text{ from } t = 0$$
 to 1. Also from $t = -1$ to 1.

10.
$$\mathbf{F} = [x, -z, 2y]$$
 from $(0, 0, 0)$ straight to $(1, 1, 0)$, then to $(1, 1, 1)$, back to $(0, 0, 0)$

11.
$$\mathbf{F} = [e^{-x}, e^{-y}, e^{-z}], \quad C: \mathbf{r} = [t, t^2, t] \text{ from } (0, 0, 0) \text{ to } (2, 4, 2). \text{ Sketch } C.$$