МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	Охрименко Д.И
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Изучить принцип работы машины Тьюринга. На практике научиться составлять таблицы состояний автомата в виде словаря для написания рабочей программы на языке программирования Python.

Задание

Вариант 1

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга. На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' – последний в строке, то удалить его. Если первый встретившийся символ 'b' – предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- a
- b
- c
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).

5.	Курсор по окончании работы алгоритма может находиться на любом
символе.	

Выполнение работы

Вводим переменные R, L, N для сдвига головки автомата.

Считанная с клавиатуры строка сохранена в виде списка line. Задано начальное состояние автомата — state = "qStrt", head = 0, direction = 0. Оформлен словарь, содержащий ключи — состояния автомата и значения — словари, возвращающие по текущему символу кортеж из заменяющего символа, сдвига, последующего состояния.

Состояния:

- qStrt начальное состояние до нахождения первого символа строки;
- q1 нахождение символа b с проходом до конца строки;
- q2 случай (1): символа b нет;
- q3, q4, q5posta, q5postc состояния для замены символов для случая (1);
- q6 случай (2): b в конце строки;
- q7 обработка случая (2);
- q8 случай (3): после b идёт один символ;
- q9 обработка случая (3);
- q10, q11, q12posta, q12postb, q12postc, q12postv состояния для замены символов для случая (3);
 - q13 возвращение к началу строки;
- q14, q15, q16a, q16b, q16c состояния для замены символов для случая (4): после b идёт 2 символа;
- qEx состояние останавливающее работу как автомата, так и программы.

В цикле while изменяем положение головки автомата и видимый символ до того, как не получим на входе состояние "qEx".

Таблица состояний представлена в табл. 1

Таблица 1 - Таблица состояний

	'a'	'b'	'c'	6 6
qStrt	'a', 1, 'q1'	'b', 1, 'q6'	'c', 1, 'q1'	' ', 1, 'qStrt'

q1	'a', 1, 'q1'	'b', 1, 'q6'	'c', 1, 'q1'	' ', -1, 'q2'
q2	'a', -1, 'q2'	_	'c', -1, 'q2'	' ', 1, 'q3'
q3	' ', 1, 'q4'	_	' ', 1, 'q4'	' ', 1, 'q4'
q4	' ', -1, 'q5posta'		' ', -1,'q5postc'	'', 1, 'qEx'
q5posta				'a', 1, 'q3'
q5postc				'c', 1, 'q3'
q6	' ', 1, 'q8'	' ', 1, 'q8'	' ', 1, 'q8'	' ', -1, 'q7'
q7		'', 1, 'qEx'	_	
q8	'a', 0, 'q10'	'b', 0,'q10'	'c', 0, 'q10'	' ', -1, 'q9'
q9	' ', 1, 'qEx'	'', 1, 'qEx'	' ', 1, 'qEx'	'', 1, 'qEx'
q10	' ', 1, 'q11'	'', 1, 'q11'	' ', 1, 'q11'	' ', 1, 'q11'
q11	' ', -1, 'q12posta'	'', -1, 'q12postb'	'', -1, 'q12postc'	' ', -1, 'q12postv'
q12posta			_	'a', 1, 'q10'
q12postb			_	'b', 1, 'q10'
q12postc			_	'c', 1, 'q10'
q12postv			_	' ', -1, 'q13'
q13	'a', -1, 'q13'	'b', -1, 'q13'	'c', -1, 'q13'	' ', 0, 'q14'
q14	' ', 1, 'q15'	'', 1, 'q15'	' ', 1, 'q15'	' ', 1, 'q15'
q15	' ', -1, 'q16posta'	'', -1, 'q16postb'	'', -1, 'q16postc'	'', 1, 'qEx'
q16posta	_	_	_	'a', 1, 'q14'
q16postb	_	_	_	'b', 1, 'q14'
q16postc	_	_	_	'c', 1, 'q14'

Исходный код см. в приложении А

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	aaaabbbbbbb	aaaabbbbb	Верный вывод
2.	abcabcabc	abbcabc	Верный вывод
3.	aaaaaaaaaaaab	aaaaaaaaaaaaa	Верный вывод

Выводы

Была исследована схема работы машины Тьюринга. Изменяя состояния автомата происходило посимвольное изменение входящей строки. Написан словарь со всеми состояниями и описанием действий головки автомата, с помощью чего реализована программа.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: Okhrimenko Denis lb3.py

```
R = 1
     L = -R
     N = 0
     states = {
          "qStrt": {
              "a": ("a", R, "q1"),
              "b": ("b", R, "q6"),
              "c": ("c", R, "q1"),
              " ": (" ", R, "qStrt"),
          },
          "q1": {
              "a": ("a", R, "q1"),
              "b": ("b", R, "q6"),
              "c": ("c", R, "q1"),
              " ": (" ", L, "q2"),
          } ,
          "q2": {"a": ("a", L, "q2"), "c": ("c", L, "q2"), " ": (" ", R,
"q3")},
         "q3": {"a": (" ", R, "q4"), "c": (" ", R, "q4"), " ": (" ", R,
"q4")},
         "g4": {"a": (" ", L, "g5posta"), "c": (" ", L, "g5postc"), " ":
(" ", R, "qEx")},
          "q5posta": {" ": ("a", R, "q3")},
          "q5postc": {" ": ("c", R, "q3")},
          "q6": {
              "a": (" ", R, "q8"),
              "b": (" ", R, "q8"),
              "c": (" ", R, "q8"),
              " ": (" ", L, "q7"),
          "q7": {"b": (" ", R, "qEx")},
          "a8": {
              "a": ("a", 0, "q10"),
             "b": ("b", 0, "q10"),
              "c": ("c", 0, "q10"),
              " ": (" ", L, "q9"),
          },
          "q9": {
              "a": (" ", R, "qEx"),
              "b": (" ", R, "qEx"),
              "c": (" ", R, "qEx"),
              " ": (" ", R, "qEx"),
          },
          "q10": {
              "a": (" ", R, "q11"),
              "b": (" ", R, "q11"),
              "c": (" ", R, "q11"),
" ": (" ", R, "q11"),
          "q11": {
              "a": (" ", L, "q12posta"),
              "b": (" ", L, "q12postb"),
```

```
"c": (" ", L, "q12postc"),
        " ": (" ", L, "q12postv"),
    "q12posta": {" ": ("a", R, "q10")},
"q12postb": {" ": ("b", R, "q10")},
    "q12postc": {" ": ("c", R, "q10")},
    "q12postv": {" ": (" ", L, "q13")},
    "q13": {
        "a": ("a", L, "q13"),
        "b": ("b", L, "q13"),
        "c": ("c", L, "q13"),
        " ": (" ", 0, "q14"),
    } ,
    "q14": {
        "a": (" ", R, "q15"),
        "b": (" ", R, "q15"),
        "c": (" ", R, "q15"),
        " ": (" ", R, "q15"),
    "q15": {
        "a": (" ", L, "q16posta"),
        "b": (" ", L, "q16postb"),
        "c": (" ", L, "q16postc"),
        " ": (" ", R, "qEx"),
    "q16posta": {" ": ("a", R, "q14")},
    "q16postb": {" ": ("b", R, "q14")},
    "q16postc": {" ": ("c", R, "q14")},
line = list(input())
state = "qStrt"
head = 0
direction = 0
ans states = ["qStrt"]
while state != "qEx":
    line[head], direction, state = states[state][line[head]]
    head += direction
    ans states += [state]
print("".join(line))
```