Дифференциальные уравнения 2020

Домашнее задание № 3

Зависимость от параметра. Линейные уравнения и системы

Дата сдачи задания: 15.12.2020

Рекомендация. В задачнике А.Ф. Филиппова "Сборник задач по дифференциальным уравнениям" имеется краткое изложение основных методов интегрирования предложенных ниже задач. Теория и полезные приемы представлены в начале каждого тематического раздела задачника.

Выберите значение параметра μ_0 , при котором точно решается задача для главного приближения $x_{(0)}(t)$. Разложите точное решение в ряд в окрестности μ_0 и вычислите явный вид главного приближения $x_{(0)}(t)$ и первого поправочного слагаемого $x_{(1)}(t)$. Для коэффициента второго порядка малости $x_{(2)}(t)$ выпишите задачу Коши (т.е., дифференциальное уравнение и начальные данные).

1.
$$\frac{dx}{dt} = \frac{2t + (\mu - 1)x^2}{\mu}, \qquad x(1) = \ln \mu.$$

Найдите значения частных производных $\partial x(t,\mu)/\partial \mu$ и $\partial y(t,\mu)/\partial \mu$ точного решения системы в точке $\mu=2$.

2.
$$\frac{dx}{dt} = xy + t^2$$
, $\frac{dy}{dt} = -y^2/2$, $x(1) = 3$, $y(1) = \mu$.

Для заданных функций $y_1(x)$ и $y_2(x)$ найдите линейное однородное дифференциальное уравнение (с единичным коэффициентом при старшей производной), для которого $y_1(x)$ и $y_2(x)$ образуют фундаментальную систему решений. Найдите решение y(x) соответствующего неоднородного уравнения для данной правой части f(x) и заданных начальных данных.

3.
$$y_1(x) = x$$
, $y_2(x) = x^2$; $f(x) = \frac{1}{x}$, $y(1) = y'(1) = -1$.

4.
$$y_1(x) = x$$
, $y_2(x) = e^x$; $f(x) = 1 - x^2$, $y(0) = y'(0) = 0$.

Найдите общее решение следующих неоднородных линейных уравнений:

5.
$$y''' - 2y'' + y' - 2y = x + \cos x$$

6.
$$y'' - 4y' + 4y = x \sin x$$

7.
$$y''' - 3y' + 2y = (x+1)e^x$$

Найдите общее решение следующих неоднородных систем линейных уравнений первого порядка для функций переменной t (штрих обозначает производную по t):

8.
$$\begin{cases} x' = 4x - 6y \\ y' = 3x - 5y + t \end{cases}$$

$$\begin{cases} x' = y + z + t \\ y' = x + z + 2t \\ z' = x + y + 3t \end{cases}$$