

高中数学・二阶

适用于联赛二试与冬令营

作者: Johnny Tang 组织: DEEP Team

时间: January 21, 2022

请:相信时间的力量,敬畏概率的准则

目录

第四部	分	数 论部分	7
1.1	抽屉	原理	5
第1章	常见	结论	5
第三部	分	组合部分	4
第二部	分	几何部分	3
第一部	分	代数部分	2

第一部分

代数部分

第二部分

几何部分

第三部分

组合部分

第1章 常见结论

1.1 抽屉原理

定理 1.1 (抽屉原理)

有m个小球,n个抽屉,那么存在一个抽屉放了至少 $\left[\frac{m-1}{n}\right]+1$ 个、至多 $\left[\frac{m}{n}\right]$ 个小球.

证明 (1) 假设所有抽屉最多有 $\left\lceil \frac{m-1}{n} \right\rceil$ 个小球,则总小球数目至多为

$$\left[\frac{m-1}{n}\right] \times n \le \frac{m-1}{n} \times n = m-1 < m$$

这与条件矛盾.

(2) 假设所有抽屉至少有 $\left[\frac{m}{n}\right] + 1$ 个小球,则总小球数目至少为

$$\left(\left[\frac{m}{n}\right] + 1\right) \times n > \frac{m}{n} \times n = m$$

这与条件矛盾.

推论 1.1 (平均值原理)

对于给定的实数 a_1, \dots, a_n , 存在 a_i, a_i 使得

$$a_i \ge \frac{1}{n}(a_1 + \dots + a_n), \quad a_j \le \frac{1}{n}(a_1 + \dots + a_n)$$

例题 1.1.1 〔1〕证明:

- (1) 从前 100 个正整数中任意取出 51 个数,都可以找到两个数,使得它们中的一个是另一个的整数倍.
- (2) 从前 91 个正整数中任意取出 10 个数,则一定有两个数,使得这两个数中较大数不超过较小数的 1.5 倍.
- (3) 若 $a_1, a_2, \cdots, a_{100}$ 都是实数,且在集合 $\{a_1, \frac{a_1 + a_2}{2}, \cdots, \frac{a_1 + a_2 + \cdots + a_{100}}{100}\}$ 中至少有 51 个元素的值相等,则 $a_1, a_2, \cdots, a_{100}$ 中有两个数相等.

证明 (1) 构造:

$$\{1 \times 2^0, \dots, 1 \times 2^6\}, \{3 \times 2^0, \dots, 3 \times 2^5\}, \dots, \{99 \times 2^0\}$$

共 50 个抽屉. 由抽屉原理, 在前 100 个正整数中必有两个数在同一个抽屉中, 即它们有倍数关系.

(2) 构造:

 $\{1\}, \{2,3\}, \{4,5,6\}, \{7,8,9,10\}, \{11,12,13,14,15,16\}, \{17,\cdots 25\}, \{26,\cdots,39\}, \{40,\cdots,60\}, \{61,\cdots,91\}\}$

共 9 个抽屉. 由抽屉原理, 前 91 个正整数中必有两个在同一抽屉中, 即满足较大数不超过较小数的 1.5 倍.

(3) 记 $b_i = \frac{a_1 + \dots + a_i}{i}$, 注意到, 若 $b_i = b_{i+1} = p$, 则

$$\frac{a_1 + \dots + a_i}{i} = \frac{a_1 + \dots + a_i + a_{i+1}}{i+1}$$

可得 $a_{i+1} = \frac{a_1 + \cdots + a_i}{i} = b_i = p$. 设 b_1, \cdots, b_{100} 中相等的 51 个数均等于 p. 1° 当 $a_1 \neq p$ 时: 构造

$$\{b_1, b_2\}, \cdots, \{b_{99}, b_{100}\}$$

共 50 个抽屉, 同理存在 $a_{2k+1} = p$; 构造

$${b_2, b_3}, \cdots, {b_{98}, b_{99}}, {b_{100}}$$

共 50 个抽屉,同理存在 $a_{2l}=p$. 故 $a_{2k+1}=a_{2l}$.

 2° 当 $a_1 = p$ 时:构造

$$\{b_2, b_3\}, \cdots, \{b_{98}, b_{99}\}, \{b_{100}\}$$

共 50 个抽屉. 由抽屉原理, 必存在 $b_{2k} = b_{2k+1} = p$, 因而 $a_{2k} = p = a_1$.

例题 1.1.2 〔1〕证明:

- (1) 平面上任作 8 条互不平行的直线, 其中必有两条直线的夹角小于 23 度.
- (2) 给定一个由 10 个互不相等的两位十进制正整数组成的集合,则这个集合必有两个无公共元素的非空子集合,它们的元素和相等.
- (3)100个孩子围成一圈,其中41个男孩,59个女孩.则一定有2个男孩,他们中间的孩子个数恰为19的整数倍.证明(1)由于平面上两直线的夹角不会随平移而改变,不妨平移这8条线使得它们交于同一点.由平均值原理,必有两条直线的夹角小于等于22.5度,即小于23度.
- (2) 由于所有可能的非空子集个数为 $2^{10}-1$, 而子集和的所有可能情况只有在 [10,945] 中 (共 936 种), 由抽屉原理, 必有两个子集的和相同.

若这两个子集交集为空,则符合题意;若交集不空,则分别去掉交集中的元素,构成两个新的元素和相等且交 集为空的集合.

(3) 假设这 100 个孩子的编号分别为 1, · · · , 100, 则构造

$$\{1, 21, 41, 61, 81\}, \{2, 22, 42, 62, 82\}, \cdots, \{20, 40, 60, 80, 100\}$$

共20个集合. 由抽屉原理,至少有一个集合中同时有三个男孩,即满足题意.

例题 1.1.3 〔1〕证明:

- (1) 已知 $a_1, \dots a_{21}$ 是区间 (0, 400) 内的 21 个实数,总可以找到两个数 $a_i, a_j (1 \le i < j \le 21)$,满足 $a_i + a_j < 1 + 2\sqrt{a_i a_j}$.
- (2) 已知实数 $0 < a_1 < \dots < a_{2011}$,则存在两个数 $a_i, a_j (1 \le i < j \le 2011)$,满足 $a_j a_i < \frac{(1+a_i)(1+a_j)}{2010}$. 证明 (1) 只需证明 $\sqrt{a_i} \sqrt{a_j} < \sqrt{2}$ 即可. 实际上,不妨设 $a_1 < \dots < a_{21}$,那么在 $\sqrt{a_{21}} \sqrt{a_{20}}, \dots, \sqrt{a_2} \sqrt{a_1}$ 中,由于它们的和为 $\sqrt{a_{21}} \sqrt{a_1} < 20$,由平均值原理可知其中必有一个 $< 1 < \sqrt{2}$.
- (2) 只需证明 $\frac{1}{1+a_i} \frac{1}{1+a_j} < \frac{1}{2010}$. 与 (1) 同理可知.

第四部分

数论部分