Study Guide for Midterm 1

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

September 21, 2019

1 Memory Bank

- Unit conversions: 1 km = 1000 m, 1 m = 100 cm, 1 hr = 3600 s, $1 \text{ year} = \pi \times 10^7 \text{ s}$, $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$.
- $\vec{x} = a\hat{i} + b\hat{j}$... Component form of a two-dimensional vector.
- $|\vec{x}| = \sqrt{a^2 + b^2}$... Pythagorean theorem for obtaining vector magnitude.
- $\theta = \tan^{-1}(b/a)$... Obtaining the angle between vector and x-axis.
- $a = |\vec{x}| \cos(\theta)$... Obtaining the x-component with trigonometry.
- $b = |\vec{x}| \sin(\theta)$... Obtaining the y-component with trigonometry.
- $\Delta x = \vec{x}_f \vec{x}_i$... Definition of displacement.
- $\vec{v} = \frac{\Delta \vec{x}}{\Delta t} = \frac{\vec{x}_f \vec{x}_i}{t_f t_i}$... Definition of velocity.
- $\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_f \vec{v}_i}{t_f t_i}$... Definition of acceleration.
- $x(t) = x_i + vt$... Velocity is the slope of position versus time.
- $x(t) = \frac{1}{2}at^2 + v_it + x_i$... With constant acceleration, position is quadratic. If a = 0 this becomes the prior function.
- $v(t) = v_i + at$... With constant acceleration, acceleration is the slope of velocity.
- $v^2 = v_i^2 + 2a\Delta x$... The kinematic equation without time, assuming constant acceleration.
- $\vec{v}(t) = \frac{d\vec{x}}{dt}$... General calculus-based definition of velocity.
- $\vec{a}(t) = \frac{d\vec{v}}{dt}$... General calculus-based definition of acceleration.
- General set of 2D kinematic equations, assuming gravity provides constant vertical negative acceleration.

$$\vec{x}(t) = (x_i + v_{x,i}t)\hat{i} \tag{1}$$

$$\vec{y}(t) = (-\frac{1}{2}gt^2 + v_{i,y}t + y_i)\hat{j}$$
 (2)

$$\vec{v}_y = (v_{i,y} - gt)\hat{j} \tag{3}$$

$$\vec{a} = -g\hat{j} \tag{4}$$

$$T_{tof} = \frac{2v_0 \sin(\theta_0)}{g} \tag{5}$$

$$R = \frac{v_0^2 \sin(\theta_0)}{g} \tag{6}$$

$$v_{x,i} = v_0 \cos(\theta) \tag{7}$$

$$v_{u,i} = v_0 \sin(\theta) \tag{8}$$

2 Chapter 1: Estimations and Unit Analysis

- Nerve fibers are often observed to make nerve signals propagate at a speed of 100 m/s. Estimate the reaction time of a person, if they touch something hot. That is, the signal must travel from their finger touching a hot surface, to the spinal chord, and back to the finger to make it move.
 A distance of 1 AU is the distance from the Earth to the Sun, and is equal to ≈ 1.5 × 10⁸ km. Jupiter is about 5 AU from the Sun. How many kilometers between Jupiter and the Sun?
 The speed of sound is measured to be 342 m/s on a certain day. What is this measurement in kilometers per hour?
- 4. A two *liter* bottle of water has a volume of 2000 cm³. What is this volume in m³? Should it be a large or small number?