Engineering Economy Cheatsheet

• <u>Terminology</u>:

• i : Interest rate in %

• N : no. of compounding periods/interest period

• P : Present value of money

• F : Future worth of money

• A : End of period cashflow or annuity

• G : Arithmetic gradient (amount by which cash flow is increased at the end of every period)

• Future worth of a single present value:

$$F=P*(1+i)^N=P\left(rac{F}{P},\ i\%,\ N
ight)$$

- ullet $(i+i)^N$ is called Single Payment Compound Amount Factor
- ullet $(1+i)^{-N}$ is called Single Payment Present Worth Factor

• Present value of uniform annuity:

$$P=A\left(rac{(1+i)^N-1}{i*(1+i)^N}
ight)=A\left(rac{P}{A},\ i\%,\ N
ight)$$

- ullet $\left(rac{(1+i)^N-1}{i*(1+i)^N}
 ight)$ is called Series Present Worth Factor
- The reciprocal of the above is called Capital Recovery Factor

Future worth of annuity:

$$F=A\left(rac{(1+i)^N-1}{i}
ight)=A\left(rac{F}{A},\ i\%,\ N
ight)$$

- ullet $\left(rac{(1+i)^N-1}{i}
 ight)$ is known as Uniform Series Compound Amount Factor
- The reciprocal of the above is known as Sinking Fund Factor

• Deffered annuities:

If the annuity is deferred for J periods (J < N), the present equivalent at time zero will be

$$P_0 = A\left(rac{P}{A},\ i\%,\ N-J
ight)\left(rac{P}{F},\ i\%,\ J
ight)$$

• Present value of G:

$$P = G\left(\frac{1}{i}\right) \left[\frac{(1+i)^N - 1}{i*(1+i)^N} - \frac{N}{(1+i)^N}\right] = G\left(\frac{P}{G}, i\%, N\right)$$
Gradient To Present Worth Conversion Factor

• Annual worth of G:

$$A = G * \left[\frac{1}{i} - \frac{N}{(1+i)^N - 1} \right] = G\left(\frac{A}{G}, i\%, N \right)$$
Gradient to uniform series conversion factor

• Present value of geometric gradient series:

$$P_g = A_1 \left[rac{1 - \left(rac{1 + g}{1 + i}
ight)^N}{i - g}
ight] = A_1 \left(rac{P}{A}, \ g\%, \ i\%, \ N
ight), \ g
eq i$$

where:

 $A_1 = \text{initial annual amount}$

g = geometric growth rate of gradient series

• For
$$i = g$$

$$P_g = A_1 \left(rac{N}{1+i}
ight)$$

Present value with varying interest rate given G at end of Nth period:

$$P=rac{F_N}{\prod_{k=1}^N(1+i)^k}$$

Methods for making economic studies