Implementazione, creazione e ottimizzazione di una pipeline per l'analisi biofisica su cluster a basso consumo energetico

Daniele Dall'Olio

Relatore: Dott. Enrico Giampieri

Correlatori: Prof. Gastone Castellani Ing. Andrea Ferraro

ALMA MATER STUDIORUM · UNIVERSITÁ DI BOLOGNA

22 Settembre 2017

Daniele Dall'Olio

Problema

- Costo medio elevato
- Consumo energetico elevato
- Spese per il raffreddamento elevate

Conseguenze

- Minor accessibilità
- Poche unità acquistabili
- Ridotta scalabilità e flessibilità per aggiornare l'hardware dei server

Tecnologia di calcolo low power

Vantaggi

- Costo delle singole unità basso
- Consumo elettrico inferiore
- Flessibilità nell'acquisto di nuovi hardware

Svantaggi

- Potenza inferiore
- Cache ridotta
- Numero inferiori di core

Objettivo della tesi

Verificare se sia possibile ottenere delle prestazioni comparabili fra i nodi low power e quelli tradizionali.

GATK-LODn

Requisiti molto elevati in termini di potenza di calcolo, di occupazione di memoria e di spazio d'archiviazione.

Next Generation Sequencing

- Comprende le nuove tecniche per il sequenziamento del DNA.
- Tecniche più rapide e meno costose dei metodi precedenti.
- Shotgun Sequencing.

L'analisi di dati NGS richiede algoritmi dedicati, derivati anche da metodi fisici come la teoria dei network.

Studio sulle varianti

- Confronto con il genoma di riferimento.
- Individuazione delle mutazioni somatiche sia nel tessuto sano del paziente che in quello tumorale.
- Ricerca di quelle mutazioni che sono presenti solo nel tumore.
- Confronto tumori simili tra diversi soggetti.

Lavoro svolto per la tesi

- Reimplementazione di una parte di GATK-LOD_n nel tool Snakemake.
- Scritti i file di configurazione per il programma.
- Scritto uno script per l'estrazioni di subset.
- Scritto uno script per raggruppare i dati.
- Creato l'installer.
- Creato uno script che automatizzi l'intero procedimento.
- Effettuate le simulazioni.
- Analisi dei dati.

Regole indipendenti dal paziente

Indicizzazione del genoma di riferimento per:

- BWA
- Picard
- Samtools(e GATK)

Regole dipendenti dal paziente

- Mapping: mappatura delle sequenze del paziente sul riferimento.
- Sort Picard: riordinamento dei file.
- Mark Duplicates: identificazione dei duplicati.
- Build BAM: indicizza i file per velocizzare l'analisi.
- Realigner: determina gli intervalli che necessitano del riallineamento.

Snakemake

- Sistema di gestione dell'esecuzione di pipeline
- Pochi requisiti
- Ottimizzabile per l'uso di risorse limitate
- Permette l'esecuzione in parallelo e su cluster
- Permette l'installazione automatica di tutti i requisiti

Procedura tradizionale

Procedura ricercata

Analisi effettuate

- Tempo di esecuzione
- Memoria utilizzata

Simulazioni effettuate

numero di letture	dimensione su disco
1×10^5	2x 28.4 MB
$1 imes 10^6$	2x 284.9 MB
$3 imes 10^6$	2x 854.9 MB
$9 imes 10^6$	2x 2.6 GB
4.5×10^{7}	2x 12.8 GB

Tabella: Stima della dimensione dei subset in relazione al numero di letture. L'ultimo valore si riferisce all'intero paziente.

Nodo	CPU	Memory	Storage	Costo*	Consumo*
xeond	1x Xeon D-1540	16 <i>GB</i>	8 TB(HDD)	€1000	60 W
avoton	1x Atom C2750	16 <i>GB</i>	5 TB(HDD)	€600	30 <i>W</i>
n3700	1x Pentium N3700	8 <i>GB</i>	0.5 <i>TB(SSD)</i>	€130	8 W
bio8	2x Xeon E5-2620v4	128 <i>GB</i>	2 TB(HDD)	€10000	180 W

^{*} I valori di costo e consumo energetico sono stimati.

Tabella: Caratteristiche dei nodi.

CPU	Microarchitecture(Platform)/litho	Freq(GHz)	Cores	Cache	TDP
Xeon D-1540	Broadwell/14nm	2.0(2.60)	8(16)	12 MB	45 W
Atom C2750	Silvermont(Avoton)/22nm	2.40(2.60)	8	4 MB	25 W
Pentium N3700	Airmont(Braswell)/14nm	1.60(2.40)	4	2 <i>MB</i>	6 W
Xeon E5-2620v4	Broadwell — EP/14nm	2.10(3.00)	8(16)	20 <i>MB</i>	85 W

Tabella: Caratteristiche delle CPU.

Figura: Tempi per Sort Picard

Figura: Tempi complessivi.

Figura: Sort Picard.

Tempo di esecuzione

- avoton e n3700 impiegano il doppio del tempo
- xeond è comparabile a bio8 consumando un terzo dell'energia e costando 10 volte di meno

Memoria utilizzata

- Saturazione
- Valori di saturazioni consistenti
- Sempre inferiore al massimo di memoria accessibile

Conclusione

In base a questi risultati questa pipeline di calcolo bioinformatico sembra essere realisticamente eseguibile anche su nodi a bassa potenza senza una perdita considerevole di prestazioni.

Sviluppo futuro

- Simulazioni a core multipli sui singoli nodi
- Completamento della pipeline
- Simulazioni su cluster

Una volta terminati questi passi intendiamo pubblicarli.

