Análise preditiva teste - Dataset Bruto

In [1]:

```
# Imports
import os
import subprocess
import stat
import numpy as np
from numpy.random import randn
import pandas as pd
from pandas import Series, DataFrame
import seaborn as sns
#sns.set(style='white')
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from datetime import datetime
from datetime import time
from datetime import date
```

In [2]:

```
testedf = pd.read_excel('Plancopy.xlsx')
testedf.head()
```

Out[2]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	reı
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	4 , 8
1	1459	1	23	0	362	SIM	ASSINANTE	М	01.01.1900 00:00:00	3 , 4
2	1630	5	16	11	4	NAO	ASSINANTE	М	01.01.1900 00:00:00	pos
3	905	9	13	8	25	SIM	ASSINANTE	F	01.01.1900 00:00:00	ACI 25
4	1219	1	1	0	9	SIM	ASSINANTE	М	16.08.1977 00:00:00	4 , 8
4										•

In [3]:

```
testedf.dtypes
```

```
Out[3]:
```

id int64 qt_hit int64 diasnav int64 notlidas int64 visita_capa int64 usou_app object perfil object object genero dt_nasc object renda object dtype: object

In [4]:

```
testedf['nasc'] = pd.to_datetime(testedf['dt_nasc'], errors='coerce')
```

In [5]:

```
testedf['idade'] = date.today().year - testedf['nasc'].dt.year
```

In [6]:

testedf.head(2)

Out[6]:

	id	qt_hit	diasnav	notlidas	visita_capa	usou_app	perfil	genero	dt_nasc	ren
0	3321	0	0	0	0	NAO	ASSINANTE	F	23.04.1981 00:00:00	1 45 A 85
1	1459	1	23	0	362	SIM	ASSINANTE	М	01.01.1900 00:00:00	[35 A 45
4										•

In [7]:

```
df1 = testedf[['id', 'qt_hit', 'diasnav', 'notlidas', 'visita_capa', 'idade', 'genero', 'usc
```

```
In [8]:
```

df1.head(2)

Out[8]:

perfil	renda	usou_app	genero	idade	visita_capa	notlidas	diasnav	qt_hit	id	
ASSINANTE	DE 4SM ATE 8SM	NAO	F	38.0	0	0	0	0	3321	0
ASSINANTE	DE 3SM ATE 4SM	SIM	М	119.0	362	0	23	1	1459	1

Observação: possível dataset sem renda, usou_app

```
In [9]:
```

```
dfnew = testedf[['id', 'qt_hit', 'diasnav', 'notlidas', 'visita_capa', 'idade', 'genero', '
```

In [10]:

dfnew.head(2)

Out[10]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	perfil
0	3321	0	0	0	0	38.0	F	ASSINANTE
1	1459	1	23	0	362	119 0	М	ASSINANTE

Fim da observação

In []:

Início modelo preditivo

Dataset sem filtro (bruto)

```
In [11]:
```

df1.shape

Out[11]:

(5600, 10)

```
In [12]:
```

```
# Verificando se existem valores nulos
df1.isnull().values.any()
```

Out[12]:

True

In [13]:

```
df1.isnull().sum()
```

Out[13]:

id 0 qt_hit 0 diasnav 0 notlidas 0 visita_capa 0 idade 10 genero 0 0 usou_app renda 0 0 perfil dtype: int64

In [14]:

```
df2 = df1.dropna()
df2.head(2)
```

Out[14]:

perfil	renda	usou_app	genero	idade	visita_capa	notlidas	diasnav	qt_hit	id	
ASSINANTE	DE 4SM ATE 8SM	NAO	F	38.0	0	0	0	0	3321	0
ASSINANTE	DE 3SM ATE 4SM	SIM	М	119.0	362	0	23	1	1459	1

In [15]:

```
df2.shape
```

Out[15]:

(5590, 10)

In [16]:

```
df2.isnull().values.any()
```

Out[16]:

False

```
In [17]:
```

```
df2.dtypes
Out[17]:
id
                 int64
qt_hit
                 int64
diasnav
                 int64
notlidas
                 int64
                 int64
visita_capa
               float64
idade
genero
                object
                object
usou_app
renda
                object
perfil
                object
dtype: object
In [18]:
# Trannsformando a coluna perfil em booleano
p = {'ASSINANTE': True, 'PROSPECT': False}
u = {'SIM': True, 'NAO': False}
g = {'M': True, 'F': False}
In [19]:
df2['perfil'] = df2['perfil'].map(p)
df2['usou_app'] = df2['usou_app'].map(u)
df2['genero'] = df2['genero'].map(g)
C:\Users\Resende\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand
as-docs/stable/indexing.html#indexing-view-versus-copy)
  """Entry point for launching an IPython kernel.
C:\Users\Resende\Anaconda3\lib\site-packages\ipykernel launcher.py:2: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand
as-docs/stable/indexing.html#indexing-view-versus-copy)
C:\Users\Resende\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/s
table/indexing.html#indexing-view-versus-copy (http://pandas.pydata.org/pand
as-docs/stable/indexing.html#indexing-view-versus-copy)
  This is separate from the ipykernel package so we can avoid doing imports
 until
```

In [20]:

df2.head(2)

Out[20]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
0	3321	0	0	0	0	38.0	False	False	DE 4SM ATE 8SM	True
1	1459	1	23	0	362	119.0	True	True	DE 3SM ATE 4SM	True

In [21]:

df2.isnull().sum()

Out[21]:

0 id qt_hit 0 0 diasnav notlidas 0 0 visita_capa idade 0 genero 136 usou_app 0 renda 0 perfil 4990

dtype: int64

In [22]:

```
df2copy = df2.copy()
df3 = df2copy.fillna({
    'genero': False,
    'perfil': False
})
df3
```

Out[22]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
0	3321	0	0	0	0	38.0	False	False	DE 4SM ATE 8SM	True
1	1459	1	23	0	362	119.0	True	True	DE 3SM ATE 4SM	True
2	1630	5	16	11	4	119.0	True	False	não possui	True
3	905	9	13	8	25	119.0	False	True	ACIMA DE 25SM	True
4	1219	1	1	0	9	42.0	True	True	DE 4SM ATE 8SM	True
5	2645	1	6	3	7	52.0	True	False	DE 3SM ATE 4SM	True
6	842	11	16	10	0	49.0	True	False	DE 4SM ATE 8SM	True
7	3474	0	0	0	0	119.0	False	False	DE 4SM ATE 8SM	True
8	187	0	0	0	0	119.0	False	False	não possui	True
9	3218	0	0	0	0	119.0	True	False	DE 4SM ATE 8SM	True
10	3167	0	0	0	0	119.0	True	False	não possui	True
11	2607	0	0	0	0	119.0	False	False	não possui	True
12	935	0	0	0	0	119.0	True	False	não possui	True
13	3081	4	4	0	20	119.0	True	True	DE 3SM ATE 4SM	True

1	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
14	3561	24	49	0	295	119.0	True	True	DE 8SM ATE 14SM	True
15	1918	0	0	0	0	119.0	True	False	não possui	True
16	96	0	0	0	0	119.0	False	False	DE 4SM ATE 8SM	True
17	174	0	6	2	0	119.0	False	False	DE 3SM ATE 4SM	True
18	630	1	19	14	18	119.0	False	False	DE 4SM ATE 8SM	True
19	1729	0	0	0	0	30.0	True	False	DE 3SM ATE 4SM	True
20	2282	0	0	0	0	119.0	True	False	DE 4SM ATE 8SM	True
21	961	0	0	0	0	119.0	True	False	DE 4SM ATE 8SM	True
22	2135	0	0	0	0	119.0	True	False	DE 8SM ATE 14SM	True
23	2619	0	2	0	7	119.0	True	True	DE 4SM ATE 8SM	True
24	2713	14	37	51	54	119.0	True	True	DE 3SM ATE 4SM	True
25	2621	0	0	0	0	44.0	False	False	DE 8SM ATE 14SM	True
26	2617	0	0	0	0	119.0	False	False	DE 4SM ATE 8SM	True
27	1452	7	1	0	0	53.0	False	False	não possui	True
28	2469	0	0	0	0	119.0	True	False	DE 4SM ATE 8SM	True
29	3593	0	0	0	0	119.0	False	False	não possui	True

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
5570	302844	1	1	0	0	49.0	True	False	não possui	False
5571	108026	0	14	13	1	49.0	True	False	DE 3SM ATE 4SM	False
5572	224708	0	2	1	0	49.0	False	False	não possui	False
5573	95375	0	1	1	0	49.0	True	False	DE 4SM ATE 8SM	False
5574	274853	0	1	3	0	59.0	True	False	DE 3SM ATE 4SM	False
5575	177216	0	6	3	0	23.0	False	False	DE 4SM ATE 8SM	False
5576	75145	0	3	1	0	49.0	False	False	DE 8SM ATE 14SM	False
5577	329457	0	22	33	0	49.0	True	False	DE 8SM ATE 14SM	False
5578	306667	0	8	9	1	49.0	False	False	não possui	False
5579	21141	1	6	8	0	49.0	False	False	não possui	False
5580	189942	0	6	9	0	49.0	False	False	não possui	False
5581	364097	3	4	7	0	49.0	False	False	não possui	False
5582	142028	5	11	8	0	49.0	True	False	não possui	False
5583	232110	0	3	2	0	49.0	True	False	não possui	False
5584	352424	0	15	16	0	49.0	True	False	DE 4SM ATE 8SM	False
5585	112454	0	3	4	0	49.0	True	False	DE 3SM ATE 4SM	False
5586	135941	1	2	3	0	49.0	False	False	não possui	False
5587	325262	26	22	48	0	49.0	True	False	não possui	False
5588	89001	1	3	2	0	49.0	False	False	não possui	False

		id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
	5589	99874	0	14	6	0	49.0	False	False	não possui	False
;	5590	31672	0	1	0	0	49.0	False	False	não possui	False
;	5591	90149	0	48	610	597	57.0	True	True	não possui	False
,	5592	82617	3	2	3	1	66.0	False	False	DE 3SM ATE 4SM	False
,	5593	302409	0	13	16	0	49.0	False	False	não possui	False
,	5594	254703	0	3	3	0	49.0	True	False	DE 3SM ATE 4SM	False
;	5595	274416	4	13	15	6	49.0	True	True	não possui	False
;	5596	321609	0	1	1	0	49.0	True	False	DE 3SM ATE 4SM	False
;	5597	255568	0	1	1	0	79.0	False	False	DE 4SM ATE 8SM	False
,	5598	267946	0	1	1	0	52.0	False	False	não possui	False
;	5599	361762	25	18	34	2	49.0	False	False	DE 4SM ATE 8SM	False

5590 rows × 10 columns

```
In [23]:
```

```
df3.shape
```

Out[23]:

(5590, 10)

In [24]:

```
len(df3.loc[df3['perfil'] == True])
```

Out[24]:

600

In [25]:

```
len(df3.loc[df3['perfil'] == False])
```

Out[25]:

4990

Verificando a correlação entre os atributos

Dataset sem filtro (bruto)

In [26]:

```
# Visualizando a correlação em tabela
# Coeficiente de correlação:
# +1 = forte correlação positiva
# 0 = não há correlação
# -1 = forte correlação negativa
df3.corr()
```

Out[26]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_
id	1.000000	-0.004106	0.019052	-0.014108	0.007825	-0.395799	-0.049148	0.004
qt_hit	-0.004106	1.000000	0.401866	0.049497	0.324415	0.030324	0.062392	0.188
diasnav	0.019052	0.401866	1.000000	0.505616	0.621880	-0.021463	0.135948	0.457
notlidas	-0.014108	0.049497	0.505616	1.000000	0.505728	0.002333	0.007213	0.188
visita_capa	0.007825	0.324415	0.621880	0.505728	1.000000	0.016683	0.071687	0.442
idade	-0.395799	0.030324	-0.021463	0.002333	0.016683	1.000000	0.088139	-0.003
genero	-0.049148	0.062392	0.135948	0.007213	0.071687	0.088139	1.000000	0.147
usou_app	0.004670	0.188668	0.457095	0.188590	0.442490	-0.003048	0.147089	1.000
perfil	-0.488037	0.022210	-0.036064	0.013929	0.003556	0.816646	0.101751	-0.022
4								•

In [27]:

```
# Identificando a correlação entre as variáveis
# Correlação não implica causalidade
def plot_corr(df3, size=10):
    corr = df3.corr()
    fig, ax = plt.subplots(figsize = (size, size))
    ax.matshow(corr)
    plt.xticks(range(len(corr.columns)), corr.columns)
    plt.yticks(range(len(corr.columns)), corr.columns)
```

In [28]:

```
# Criando o gráfico
plot_corr(df3)
```


In [29]:

```
# Definindo as classes
perfil_map = {True : 1, False : 0}
usou_app_map = {True : 1, False : 0}
genero_map = {True : 1, False : 0}
```

In [30]:

```
# Aplicando o mapeamento ao dataset
df3['perfil'] = df3['perfil'].map(perfil_map)
df3['usou_app'] = df3['usou_app'].map(usou_app_map)
df3['genero'] = df3['genero'].map(genero_map)
```

In [31]:

```
# Verificando como os dados estão distribuídos
num_true = len(df3.loc[df3['perfil'] == True])
num_false = len(df3.loc[df3['perfil'] == False])
print("Número de assinantes: {0} ({1:2.2f}%)".format(num_true, (num_true/ (num_true + num_f
print("Número de não assinantes: {0} ({1:2.2f}%)".format(num_false, (num_false/ (num_true +
```

Número de assinantes: 600 (10.73%) Número de não assinantes: 4990 (89.27%)

In [32]:

os números de assinantes não estão muito bem distribuídos

fatiando o dataset a fim de distrubiuir melhor os dados

In [33]:

```
df4 = df3.iloc[2000:4000]
df4.head(2)
```

Out[33]:

perfil	renda	usou_app	genero	idade	visita_capa	notlidas	diasnav	qt_hit	id	
0	não possui	1	0	49.0	7	0	2	1	240976	2004
0	não possui	0	1	49.0	202	2	60	0	136834	2005

In [34]:

```
len(df4.loc[df4['perfil'] == 0])
```

Out[34]:

2000

In [35]:

```
len(df4.loc[df4['perfil'] == 1])
```

Out[35]:

0

In [36]:

```
df5 = df3.iloc[0:3000]
df5.head(2)
```

Out[36]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
0	3321	0	0	0	0	38.0	0	0	DE 4SM ATE 8SM	1
1	1459	1	23	0	362	119.0	1	1	DE 3SM ATE 4SM	1

```
In [37]:
len(df5.loc[df5['perfil'] == 0])
Out[37]:
2400
In [38]:
len(df5.loc[df5['perfil'] == 1])
Out[38]:
600
In [39]:
df6 = df3.iloc[0:2000]
df6.head(2)
Out[39]:
     id qt_hit diasnav notlidas visita_capa idade genero usou_app
                                                                     renda perfil
                                                                DE 4SM ATE
0 3321
            0
                    0
                            0
                                          38.0
                                                   0
                                      0
                                                                               1
                                                                      8SM
                                                                DE 3SM ATE
1 1459
                   23
                                    362
                                         119.0
                                                                               1
                                                                      4SM
In [40]:
len(df6.loc[df6['perfil'] == 0])
Out[40]:
1400
In [41]:
len(df6.loc[df6['perfil'] == 1])
Out[41]:
600
In [42]:
# Verificando como os dados estão distribuídos
n_true = len(df6.loc[df6['perfil'] == True])
n_false = len(df6.loc[df6['perfil'] == False])
print("Número de assinantes: {0} ({1:2.2f}%)".format(n_true, (n_true + n_false)) *
print("Número de não assinantes: {0} ({1:2.2f}%)".format(n_false, (n_false/ (n_true + n_fal
```

Spliting

Número de assinantes: 600 (30.00%) Número de não assinantes: 1400 (70.00%)

Inserir a imagem do spliting chamadotreinamento

```
In [43]:
from sklearn.model_selection import train_test_split
In [44]:
# Seleção de variáveis preditoras (Feature Selection)
atributos = ['qt_hit', 'diasnav', 'notlidas', 'visita_capa', 'idade', 'genero', 'usou_app',
In [45]:
# Variável a ser prevista
atrib_prev = ['perfil']
In [46]:
# Criando objetos
X = df6[atributos].values
Y = df6[atrib_prev].values
In [47]:
Χ
Out[47]:
array([[ 0., 0., 0., ..., 0., 0., 1.],
       [ 1., 23., 0., ...,
                             1.,
                                 1., 1.],
       [ 5., 16., 11., ...,
                             1.,
                                 0.,
       [12., 13., 41., ...,
                             1.,
                                  0., 0.],
       [ 0., 2., 0., ...,
                            1.,
                                 1., 0.],
       [0., 2., 0., \ldots, 1., 0., 0.]
In [48]:
Υ
Out[48]:
array([[1],
       [1],
       [1],
       [0],
       [0],
       [0]], dtype=int64)
In [49]:
# Definindo a taxa de split
split_test_size = 0.30
In [50]:
# Criando dados de treino e de teste
X_treino, X_teste, Y_treino, Y_teste = train_test_split(X, Y, test_size = split_test_size,
```

```
In [51]:
```

```
# Imprimindo os resultados
print("{0:0.2f}% nos dados de treino".format((len(X_treino)/len(df6.index)) * 100))
print("{0:0.2f}% nos dados de teste".format((len(X_teste)/len(df6.index)) * 100))
70.00% nos dados de treino
30.00% nos dados de teste
In [52]:
X treino
Out[52]:
array([[ 0., 1., 0., ...,
                            0., 0., 0.],
      [ 0., 0., 0., ...,
                            1.,
      [ 0.,
             0., 0., ...,
                            1.,
                                 0.,
      [ 5., 16., 12., ..., 1., 1.,
      [0., 1., 1., ..., 1., 0., 0.],
            3., 1., ...,
      [ 0.,
                            1.,
                                 0., 0.11
```

Verificando o split

In [53]:

```
print("Original True : {0} ({1:0.2f}%)".format(len(df6.loc[df6['perfil'] == 1]),
                                                (len(df6.loc[df6['perfil'] ==1])/len(df6.ind
print("Original False : {0} ({1:0.2f}%)".format(len(df6.loc[df6['perfil'] == 0]),
                                                (len(df6.loc[df6['perfil'] == 0])/len(df6.ir
print("")
print("Training True : {0} ({1:0.2f}%)".format(len(Y_treino[Y_treino[:] == 1]),
                                                (len(Y_treino[Y_treino[:] == 1])/len(Y_treino[
print("Training False : {0} ({1:0.2f}%)".format(len(Y_treino[Y_treino[:] == 0]),
                                                (len(Y treino[Y treino[:] == 0])/len(Y trein
print("")
print("Test True : {0} ({1:0.2f}%)".format(len(Y_teste[Y_teste[:] == 1]),
                                                (len(Y_teste[Y_teste[:] == 1])/len(Y_teste)
print("Test False : {0} ({1:0.2f}%)".format(len(Y_teste[Y_teste[:] == 0]),
                                                (len(Y teste[Y teste[:] == 0])/len(Y teste)
Original True : 600 (30.00%)
Original False : 1400 (70.00%)
Training True : 407 (29.07%)
Training False : 993 (70.93%)
Test True: 193 (32.17%)
Test False: 407 (67.83%)
In [80]:
# Valores Missing ocultos
```

In [81]:

df6.isnull().values.any()

Out[81]:

False

In [82]:

df6.head()

Out[82]:

perfil	renda	usou_app	genero	idade	visita_capa	notlidas	diasnav	qt_hit	id	
1	DE 4SM ATE 8SM	0	0	38.0	0	0	0	0	3321	0
1	DE 3SM ATE 4SM	1	1	119.0	362	0	23	1	1459	1
1	não possui	0	1	119.0	4	11	16	5	1630	2
1	ACIMA DE 25SM	1	0	119.0	25	8	13	9	905	3
1	DE 4SM ATE 8SM	1	1	42.0	9	0	1	1	1219	4

In [83]:

```
# O zero não é um valor missing.
```

Atenção com os valores zero e um em genero e usou_app

In [84]:

Verificar a quantidade de valores zero que há no dataset

In [85]:

Na análise exploratória do dataset, verificou-se que a moda de valores sobre os atributos # destacados antariormente. Assim, optou-se por substituir pela média.

In [86]:

```
# Valores Missing Ocultos
```

Dataset fsem filtro (bruto)

In [87]:

```
# Verificando se existem valores nulos
df6.isnull().values.any()
```

Out[87]:

False

[#] Será que o zero representa uma informação correta sobre as variáveis?

[#] No caso dos atributos sobre qt_hit, diasnav, notlidas, visita_capa, o zero não tornaria o

[#] dados tendenciosos.

In [88]:

```
df6.head(5)
```

Out[88]:

	id	qt_hit	diasnav	notlidas	visita_capa	idade	genero	usou_app	renda	perfil
0	3321	0	0	0	0	38.0	0	0	DE 4SM ATE 8SM	1
1	1459	1	23	0	362	119.0	1	1	DE 3SM ATE 4SM	1
2	1630	5	16	11	4	119.0	1	0	não possui	1
3	905	9	13	8	25	119.0	0	1	ACIMA DE 25SM	1
4	1219	1	1	0	9	42.0	1	1	DE 4SM ATE 8SM	1

In [89]:

```
print("# Linhas no dataframe {0}".format(len(df6)))
print("# Linhas missing qt_hit: {0}".format(len(df6.loc[df6['qt_hit'] == 0])))
print("# Linhas missing diasnav: {0}".format(len(df6.loc[df6['diasnav'] == 0])))
print("# Linhas missing notlidas: {0}".format(len(df6.loc[df6['notlidas'] == 0])))
print("# Linhas missing visita_capa: {0}".format(len(df6.loc[df6['visita_capa'] == 0])))
print("# Linhas missing idade: {0}".format(len(df6.loc[df6['idade'] == 0])))
```

```
# Linhas no dataframe 2000
# Linhas missing qt_hit: 1247
# Linhas missing diasnav: 307
# Linhas missing notlidas: 657
# Linhas missing visita_capa: 1247
# Linhas missing idade: 0
```

In [90]:

```
## Tratando Dados Missing - Impute
# Substituindo os valores iguais a zero, pela média dos dados
```

In [91]:

```
from sklearn.preprocessing import Imputer
```

In [92]:

```
# Criando objeto
preenche_0 = Imputer(missing_values = 0, strategy = "mean", axis = 0)
# Substituindo os valores iguais a zero, pela média dos dados
X_treino = preenche_0.fit_transform(X_treino)
X_teste = preenche_0.fit_transform(X_teste)
```

```
In [93]:
```

```
X_treino
Out[93]:
                                , 27.42963753, ..., 1.
array([[19.41977612, 1.
                  , 1.
         1.
       [19.41977612, 13.31787521, 27.42963753, ..., 1.
                  , 1.
       [19.41977612, 13.31787521, 27.42963753, ..., 1.
                      1.
                                ],
       . . . ,
                                , 12.
                  , 16.
       [ 5.
                                             , ..., 1.
                     1.
                                ],
       [19.41977612, 1.
                                , 1.
                                             , ..., 1.
                  , 1.
                                ],
       [19.41977612, 3.
                                , 1.
                                             , ..., 1.
                     1.
                                ]])
```

Contruindo e treinando o modelo

```
In [94]:
```

```
# Utilizando um classificador Naive Bayes
from sklearn.naive_bayes import GaussianNB
```

```
In [95]:
```

```
# Criando o modelo preditivo
modelo_v1 = GaussianNB()
```

```
In [96]:
```

```
# Treinando o modelo
modelo_v1.fit(X_treino, Y_treino.ravel())
```

Out[96]:

GaussianNB(priors=None)

Verificando a exatidão no modelo nos dados de treino

```
In [97]:
```

```
from sklearn import metrics
```

```
In [98]:
```

```
nb_predict_train = modelo_v1.predict(X_treino)
```

In [99]:

```
print("Exatidão (Accuracy): {0:.4f}".format(metrics.accuracy_score(Y_treino, nb_predict_tra
print()
```

Exatidão (Accuracy): 0.9400

Verificando a exatidão no modelo nos dados de teste

In [100]:

```
nb_predict_test = modelo_v1.predict(X_teste)
```

In [101]:

```
print("Exatidão (Accuracy): {0:.4f}".format(metrics.accuracy_score(Y_teste, nb_predict_test
print()
```

Exatidão (Accuracy): 0.9317

Métricas

In [102]:

```
from IPython.display import Image
Image('ConfusionMatrix.jpg')
```

Out[102]:

In [103]:

```
# Criando uma Confusion Matrix
print("Confusion Matrix")

print("{0}".format(metrics.confusion_matrix(Y_teste, nb_predict_test, labels = [1, 0])))
print("")

print("Classification Report")
print(metrics.classification_report(Y_teste, nb_predict_test, labels = [1, 0]))
Confusion_Matrix
```

```
Confusion Matrix
[[166 27]
[ 14 393]]
```

Classification Report

	precision	recall	f1-score	support	
1	0.92	0.86	0.89	193	
0	0.94	0.97	0.95	407	
avg / total	0.93	0.93	0.93	600	

In [104]:

```
# Será que podemos melhorar o algoritmo?
```

Testando outro algoritmo

In [105]:

```
# conjunto de árvorede decisão = random forest
```

Otimizando o modelo com RandomForest

In [106]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [107]:

```
modelo_v2 = RandomForestClassifier(random_state = 42)
modelo_v2.fit(X_treino, Y_treino.ravel())
```

Out[107]:

```
In [108]:
```

```
# Verificando os dados de treino
rf_predict_train = modelo_v2.predict(X_treino)
print("Exatidão (Accuracy): {0:.4f}".format(metrics.accuracy_score(Y_treino, rf_predict_tra

Exatidão (Accuracy): 0.9936

In [109]:
# Verificando nos dados de teste
rf_predict_test = modelo_v2.predict(X_teste)
print("Exatidão (Accuracy): {0:.4f}".format(metrics.accuracy_score(Y_teste, rf_predict_test
print()

Exatidão (Accuracy): 0.9383
```

In [110]:

```
print("Confusion Matrix")

print("{0}".format(metrics.confusion_matrix(Y_teste, rf_predict_test, labels = [1, 0])))
print("")

print("Classification Report")
print(metrics.classification_report(Y_teste, rf_predict_test, labels = [1, 0]))
```

```
Confusion Matrix
[[161 32]
[ 5 402]]
```

Classification Report

support	f1-score	recall	precision	
193	0.90	0.83	0.97	1
407	0.96	0.99	0.93	0
600	0.94	0.94	0.94	avg / total

Testando outro algoritmo

```
In [111]:
```

```
# Regressão logística
# é um algoritmo de classificação diferente de regressão linear simples
```

Regressão Logística

```
In [112]:
```

```
from sklearn.linear_model import LogisticRegression
```

```
In [113]:
```

```
# Terceira versão do modelo usando Regressão Logística
modelo_v3 = LogisticRegression(C = 0.7, random_state = 42)
modelo_v3.fit(X_treino, Y_treino.ravel())
lr_predict_test = modelo_v3.predict(X_teste)
```

In [114]:

```
print("Exatidão (Accuracy): {0:.4f}".format(metrics.accuracy_score(Y_teste, lr_predict_test
print()
print("Classification Report")
print(metrics.classification_report(Y_teste, lr_predict_test, labels = [1, 0]))
```

Exatidão (Accuracy): 0.9400

Classification Report

	precision	recall	+1-score	support
1	0.95	0.85	0.90	193
0	0.93	0.98	0.96	407
avg / total	0.94	0.94	0.94	600

In [115]:

```
### Resumindo
## Exatidão nos dados de teste

# Modelo usando algoritmo Naive Bayes = 0.93
# Modelo usando algoritmo Random Forest = 0.94
# Modelo usando algoritmo Regressão Logística = 0.94
```

In [116]:

Escolheu-se a regressão logística para realizar previsões

Fazendo previsões com o modelo treinado

In [117]:

```
import pickle
```

In [118]:

```
# Salvando o modelo para usar mais tarde
filename = 'modelo_treinado_v3.sav'
pickle.dump(modelo_v3, open(filename, 'wb'))
```

In [123]:

```
type(X_teste)
```

Out[123]:

numpy.ndarray

```
In [127]:
len(X_teste)
Out[127]:
600
In [139]:
# Carregando o modelo e fazendo previsão com novos conjuntos de dados
# (X_teste, Y_teste devem ser novos conjuntos de dados preparados com o procedimento de lim
loaded_model = pickle.load(open(filename, 'rb'))
resultado1 = loaded_model.predict(X_teste[15].reshape(1, -1))
resultado2 = loaded model.predict(X teste[20].reshape(1, -1))
resultado3 = loaded_model.predict(X_teste[25].reshape(1, -1))
resultado4 = loaded_model.predict(X_teste[30].reshape(1, -1))
resultado5 = loaded_model.predict(X_teste[35].reshape(1, -1))
resultado6 = loaded_model.predict(X_teste[40].reshape(1, -1))
resultado7 = loaded_model.predict(X_teste[45].reshape(1, -1))
resultado8 = loaded_model.predict(X_teste[50].reshape(1, -1))
resultado9 = loaded_model.predict(X_teste[55].reshape(1, -1))
resultado10 = loaded_model.predict(X_teste[60].reshape(1, -1))
print(resultado1)
print(resultado2)
print(resultado3)
print(resultado4)
print(resultado5)
print(resultado6)
print(resultado7)
print(resultado8)
print(resultado9)
print(resultado10)
[1]
[0]
[1]
[0]
[1]
[1]
[0]
[0]
[0]
[0]
In [124]:
print(X_teste[15]) # Assinante
[ 47. 40.
            50.
                            1.
                                       1.]
                 29. 119.
                                  1.
In [129]:
print(X_teste[20]) # Não assinante
```

[14. 15. 4. 1. 49.

```
In [131]:
```

```
print(X_teste[25]) # Assinante
[ 15.
                18.
                              29.82962963
                                           54.
                                                        119.
   1.
                1.
                               1.
                                         ]
In [132]:
print(X_teste[30]) # Não assinante
                              29.82962963 114.21461187 49.
[ 17.26728111
                 1.
   1.
                 1.
                               1.
                                         ]
In [134]:
print(X_teste[35]) # Assinante
[ 17.26728111
                6.
                               9.
                                            5.
                                                        119.
                                         1
                               1.
   1.
                 1.
In [135]:
print(X_teste[40]) # Assinante
[ 17.26728111 13.78500986 29.82962963 114.21461187 119.
   1.
                                         ]
                               1.
In [137]:
print(X_teste[45]) # Não assinante
                                                    31.
                                                                  1.
[17.26728111 5.
                                        3.
                           1.
 1.
               1.
                         ]
In [138]:
print(X_teste[50]) # Não assinante
[17.26728111 6.
                                        4.
                                                    36.
                                                                  1.
                           2.
 1.
               1.
                         1
In [140]:
print(X_teste[55]) # Não assinante
[ 17.26728111
                 1.
                               3.
                                          114.21461187 49.
                 1.
                               1.
   1.
                                         ]
In [141]:
print(X_teste[60]) # Não assinante
[ 30.
                48.
                              29.82962963 263.
                                                         49.
   1.
                 1.
                               1.
                                         ]
```

In [145]:

```
# Carregando o modelo e fazendo previsão com novos conjuntos de dados
# (X_teste, Y_teste devem ser novos conjuntos de dados preparados com o procedimento de lim
loaded_model = pickle.load(open(filename, 'rb'))
resultado11 = loaded_model.predict(X_teste[215].reshape(1, -1))
resultado12 = loaded_model.predict(X_teste[220].reshape(1, -1))
resultado13 = loaded_model.predict(X_teste[225].reshape(1, -1))
resultado14 = loaded_model.predict(X_teste[230].reshape(1, -1))
resultado15 = loaded_model.predict(X_teste[235].reshape(1, -1))
resultado16 = loaded_model.predict(X_teste[240].reshape(1, -1))
resultado17 = loaded model.predict(X teste[245].reshape(1, -1))
resultado18 = loaded_model.predict(X_teste[250].reshape(1, -1))
resultado19 = loaded_model.predict(X_teste[255].reshape(1, -1))
resultado20 = loaded_model.predict(X_teste[260].reshape(1, -1))
print(resultado11)
print(resultado12)
print(resultado13)
print(resultado14)
print(resultado15)
print(resultado16)
print(resultado17)
print(resultado18)
print(resultado19)
print(resultado20)
[0]
[0]
[0]
[0]
[1]
[0]
[1]
[0]
[0]
[0]
In [146]:
print(X_teste[215]) # Não assinante
[ 17.26728111
                2.
                             1.
                                         114.21461187 49.
   1.
                1.
                             1.
                                        1
In [ ]:
In [ ]:
In [ ]:
```