Análise do fracionamento de fósforo em solo de Cerrado por meio de técnicas multivariadas

Vivian Aparecida Brancaglioni Carlos Tadeu dos Santos Dias Marta Jordana Arruda Coelho Paulo Sergio Pavinato

Pós-graduação em Estatística e Experimentação Agronômica Departamento de Ciências Exatas (LCE) ESALQ - USP

23 de novembro de 2018

Sumário

- Introdução
- Objetivo
- Material e Métodos
- Resultados e Discussão
- Conclusões
- 6 Bibliografia

Introdução

- O bioma Cerrado é uma das últimas alternativas viáveis de área para expansão da produção com alto potencial agrícola.
- Solos do Cerrado: altamente intemperizados, ácidos e com baixa quantidade de elementos essenciais para as plantas, além de altos teores de Al³⁺, baixa saturação por bases e baixo fósforo (P) disponível.

Área de abrangência do cerrado.

Fonte: https://www.significados.com.br/cerrado/

Motivação

Fonte: http://grupopaces.com.br/post/fosforo-abundancia-no-solo-e-escassez-na-agricultura-qual-o-caminho-da-fonte-limitada-de-p-/11

- O P é essencial para o crescimento das plantas, qualidade e produção das culturas.
- Devido à baixa disponibilidade de P no solo e a baixa eficiência do uso de fertilizantes, os agricultores aplicam, muitas vezes, fertilizantes fosfatados além das exigências das plantas.
- Apenas 10-20% do P aplicado como fertilizante é absorvido pelas plantas durante o ciclo de aplicação.
- As formas de aplicação mais utilizadas para a adubação de manutenção de P são: a lanço (área total), a localizada (sulco ou linha de plantio) e a fosfatagem (corretiva).

- Vários fatores influenciam a eficiência da adubação fosfatada, como o tipo de solo, fonte, formas de aplicação, doses de P e outros.
- O P está presente no solo em várias formas, orgânicas e inorgânicas, e que podem ser divididas em P lábil e não lábil.
- O fracionamento de P no solo é realizado usando diferentes extratores, que tem sido uma boa ferramenta para entender a total disponibilidade e solubilidade do P do solo e tem sido útil para o estudo da dinâmica e interação do P em diferentes sistemas de manejo do solo.

Objetivo

Avaliar a dinâmica das frações de P no solo em função das doses e formas de aplicação de fosfato solúvel, buscando encontrar tratamentos que sejam caracterizados por apresentar maiores valores de fósforo em fração lábil.

Material e Métodos

• O experimento utilizado compõe parte do trabalho de tese desenvolvida pelo Programa de Pós-Graduação em Solos e Nutrição de Plantas (Coelho, 2017).

Localização e Caracterização

- O experimento esteve localizado no município de Pedra Preta, Mato Grosso (16º37'23"S e 54º28'26"O) em área de rotação das culturas de algodão e soja.
- Trata-se de uma área aberta em um cerrado nativo no ano de 2003 que foi conduzido até 2015 em sistema convencional de cultivo, totalizando 12 anos de duração.

Delineamento experimental e manejo do experimento

- O experimento foi delineado em blocos ao acaso, num esquema fatorial 5×5 e quatro repetições.
- Cada parcela tinha dimensões de 9,0 m de largura (linhas espaçadas de 0,8 m) com 40,0 m de comprimento, apresentando área total de cada parcela de 360,0 m².

Tratamentos

Tabela: Descrição dos tratamentos do experimento da Fazenda Arizona, Pedra Preta - MT.

Tratamento	Corretivo ¹	Sulco
T1	0	0
T2	0	30
T3	0	60
T4	0	90
T5	0	120
T6	50	0
T7	50	30
T8	50	60
T9	50	90
T10	50	120
T11	100	0
T12	100	30
T13	100	60
T14	100	90
T15	100	120
T16	150	0
T17	150	30
T18	150	60
T19	150	90
T20	150	120
T21	200	0
T22	200	30
T23	200	60
T24	200	90
T25	200	120

 $^{^{1}}$ Aplicação corretiva realizada no início da condução do experimento Kg ha $^{-1}$.

Frações de fósforo

A sequência do fracionamento foi descrita por amostras de 0,5 g de solo submetidas a diferentes extratores em ordem sequencial, sendo eles:

- resina de troca aniônica RTA (lâmina de RTA de dimensões de 1,0 × 2,0 cm imersa em 10 mL de H₂O em contato direto com o solo), extraindo P-RTA (inorgânico);
- 10 mL de NaHCO₃ 0,5 mol L⁻¹, extraindo P-Bic (inorgânico e orgânico);
- 10 mL de NaOH 0,1 mol L⁻¹, extraindo P-Hid-0,1 (inorgânico e orgânico);
- 10 mL de HCl 1,0 mol L⁻¹, extraindo P-HCl (inorgânico);
- 10 mL de NaOH 0,5 mol L⁻¹, extraindo P-Hid-0,5 (inorgânico e orgânico).

Frações de fósforo

Para este trabalho as frações de P foram denotadas por:

- RESINA (P-RTA);
- BlCinorg e BlCorg (P-Bic inorgânico e orgânico);
- HIDinorg1 e HIDorg1 (P-Hid-0,1 inorgânico e orgânico);
- HCI (P-HCI inorgânico);
- HIDinorg2 e HIDorg2 (P-Hid-0,5 inorgânico e orgânico);
- RESIDUAL (P-Residual);
- TOTAL (soma de todas as frações);
- LABIL (fração de P lábil);
- MODLABIL (fração de P moderadamente lábil)
- NAOLABIL (fração de P não-lábil).

Análise Estatística

Os dados foram analisados por meio de técnicas multivariadas: componentes principais, análise de agrupamento e análise discriminante.

- Padronização, a fim de evitar efeito de escala.
- As variáveis RESINA, TOTAL, LABIL, MODLABIL e NAOLABIL foram retiradas da análise por apresentarem multicolinearidade com as demais.
- Transformação das variáveis pressuposições de normalidade e homogeneidade de variâncias
- Todas as análises foram realizadas por meio do software R.

Resultados e Discussão Análise de Agrupamento

- Aplicou-se a análise de agrupamento não hierárquica utilizando-se os valores médios de cada tratamento, com o objetivo de agrupar os tratamentos mais similares
- Divisão dos agrupamentos por meio do algoritmo K-means.

Resultados e Discussão

Análise de Agrupamento

Tabela: Análise de agrupamento não hierárquica obtida pelo método K-means para os tratamentos com diferentes doses de fósforo

Trat	Grupo								
T1	1	T6	1	T11	1	T16	1	T21	1
T2	1	T7	2	T12	1	T17	1	T22	1
Т3	2	T8	2	T13	2	T18	2	T23	2
T4	2	Т9	2	T14	2	T19	2	T24	2
T5	2	T10	2	T15	2	T20	2	T25	2

Os tratamentos que receberam dose de 0 ou $30~{\rm Kg~ha^{-1}}$ de fósforo durante a semeadura da cultura formaram o grupo 1, exceto T7 que foi atribuído ao grupo 2, que foi o grupo destinado as demais doses de fósforo no sulco.

Resultados e Discussão Análise de Componentes Principais

 A análise de componentes principais foi aplicada com a finalidade de explicar a maior parte da variabilidade dos dados por meio de poucos componentes (combinações lineares das variáveis originais), podendo assim caracterizar os tratamentos de acordo com as frações de fósforo.

Resultados e Discussão

Matriz de correlação

Resultados e Discussão

Análise de Componentes Principais

Tabela: Coeficientes de ponderação das variáveis com os componentes principais, autovalores e porcentagens da variação explicadas para a profundidade de 0,00-0,20m do fracionamento de fósforo.

Variáveis	CP1	CP2	CP3
BICinorg	0,477	0,097	0,243
BICorg	-0,220	0,485	-0,372
HIDinorg1	0,408	0,240	0,400
HIDorg1	0,295	-0,353	-0,385
HCI	0,474	0,229	0,040
HIDinorg2	-0,095	0,606	0,176
HIDorg2	0,42 5	-0,162	-0,230
RESIDUAL	0,237	0,357	-0,639
Autovalor	3,726	1,647	0,951
PVTE(%)	46,57	20,59	11,89
PVTA(%)	46,57	67,16	79,06

Resultados e Discussão Análise de Componentes Principais

- O CP1 explicou 46,57% da variabilidade total dos dados da área experimental. Esse componente foi constituído pelas variáveis BICinorg, HIDinorg1, HCl e HIDorg2.
- CP2 explicou 20,59% da variabilidade dos dados, com as variáveis BICorg e HIDinorg2 com maior peso sobre tal.
- Já CP3, explicou de 11,89% da variabilidade, tendo maior associação com as variáveis HIDinorg1 e RESIDUAL.

Resultados e Discussão $Eiglot CP1 \times CP2$

Resultados e Discussão $Eight CP1 \times CP3$

Resultados e Discussão Biplot CP2 x CP3

Resultados e Discussão

Análise Discriminante

A análise discriminante foi aplicada com o objetivo de avaliar se o agrupamento obtido para os 25 tratamentos foi satisfatório.

Tabela: Classificação das observações por grupo

Grupo	1	2
1	34	2
2	3	61
Acerto(%)	94,44	95,31

Mostrou-se satisfatória, apesar de indicar uma área de intersecção para as observações,com taxa de erro de classificação em torno de 5% para ambos os grupos.

Conclusões

- A análise de componentes principais foi satisfatória na caracterização dos tratamentos de acordo com as frações de fósforo.
- CP1 pode ser interpretado como um componente da parcela de fósforo disponível para as plantas.
- Em geral os tratamentos pertencente ao grupo 2 apresentaram maiores valores para CP1, indicando que tratamentos com doses de 60, 90 e 120 Kg ha⁻¹ de fósforo no sulco resultaram em maior disponibilidade de fósforo para as culturas.

Agradecimento à Fundação Mato Grosso pela concessão dos dados.

Referências Bibliográficas

ADAMOLI. J., MACEDO, J., AZEVEDO, L. G. & MADEIRA NETO, J. S. Caracterização da região dos cerrados. In: **Solos dos cerrados: tecnologias** e **estratégias de manejo**. Goedert WJ (Ed), Nobel, São Paulo; EMBRAPA-CPAC, Brasília, DF, Brasil, p. 33-74, 1985.

FERREIRA, D. F. Estatística Multivariada, 2ª Edição, UFLA, 2011.