Building Energy Simulation - Calibration

University of Maryland, College Park

Mechanical Engineering Departments

ENME808i / ENME424 – Urban Microclimate and Energy

Spring Semester 2015

Jelena Srebric, Ph.D.

Model Calibration

Coefficient of variation of the root mean square error CV(RMSE)
 How good does my model do at predicting data?

$$CV(RMSE) = 100 * \frac{\sqrt{\sum_{i}^{n} \frac{(y_{i} - \hat{y}_{i})^{2}}{n - p}}}{\bar{y}}$$

Normal mean bias error (NMBE)

Does my model tend to over or underestimate actual use?

$$NMBE = 100 * \frac{\sum^{n} (y_i - \hat{y}_i)}{(n-p)*\bar{y}}$$

y_i = utility data predicted data for period i

 \hat{y}_i = simulation-predicted data for period i

 $\bar{y} = mean of utility data$

n=# of data periods (12 months $\rightarrow n=12$)

p = # parameters in baseline model (p=1)

Model Calibration

Calibration requirements:

Statistic	Monthly	Hourly
CV(RMSE)	<i>15%</i>	<i>30</i> %
NMBE	<i>5%</i>	10%

Model Calibration

Data on ELMS:

- 15 min elec
- 1 hr steam
- .csv and .mat

Credit: Ryan Mazurick

