

Gowin 存储器(B-SRAM & S-SRAM) 用户指南

UG285-1.2,2020-08-17

版权所有© 2020 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明
2016/05/17	1.05	初始版本。
2016/07/15	1.06	标准化插图。
2016/10/27	1.07	适用 GW2AR 系列 FPGA 产品。
2017/05/03	1.08	● 更新 B-SRAM 操作时序图,添加 ROM、字节使能信号、字节校验、上电情况、输出寄存器复位、位置约束; 增加附录 A 注意事项。
2018/05/31	1.09	 添加第三章端口和参数介绍; 添加存储扩展; 更新 A.3 读写注意。
2019/04/03	1.1	更新表 A.1 写操作注意列表。
2020/08/17	1.2	章节调整及内容优化。

i

目录

图	目录	÷	iii
表	是目录		v
1	关于	本手册	1
		手册内容	
		相关文档	
	1.3	术语、缩略语	1
	1.4	技术支持与反馈	2
2	概述		3
	2.1	B-SRAM 特性介绍	3
		B-SRAM 配置模式	
3	B-SI	RAM 原语	6
		双端口模式	
		单端口模式	
		伪双端口模式	
	3.4	只读模式	28
4	B-SI	RAM 输出复位	32
		RAM 原语	
Ū		RAM16S1	
		RAM16S2	
		RAM16S4	
	5.4	RAM16SDP1	42
	5.5	RAM16SDP2	44
	5.6	RAM16SDP4	47
	5.7	ROM16	49
6	IP 调	9月	51
	6.1	B-SRAM 双端口模式	51
	6.2	S-SRAM 单端口模式	54

7	初始化文件	. 56
	7.1 二进制格式(Bin File)	56
	7.2 十六进制格式(Hex File)	56
	7.3 带地址十六进制格式(Address-Hex File)	57

UG285-1.2 ii

图目录

图 3-1 DPB/DPX9B Normal 写模式时序波形图(Bypass 读模式)	7
图 3-2 DPB/DPX9B Normal 写模式时序波形图(Pipeline 读模式)	8
图 3-3 DPB/DPX9B Write-through 写模式时序波形图(Bypass 读模式)	9
图 3-4 DPB/DPX9B Write-through 写模式时序波形图(Pipeline 读模式)	10
图 3-5 DPB/DPX9B Read-before-write 写模式时序波形图(Bypass 读模式)	11
图 3-6 DPB/DPX9B Read-before-write 写模式时序波形图(Pipeline 读模式)	12
图 3-7 DPB/DPX9B 端口示意图	13
图 3-8 SP/SPX9 端口示意图	19
图 3-9 伪双端口 B-SRAM Normal 写模式时序波形图(Bypass 读模式)	23
图 3-10 伪双端口 B-SRAM Normal 写模式时序波形图(Pipeline 读模式)	23
图 3-11 SDPB/SDPX9B 端口示意图	24
图 3-12 只读 ROM 时序波形图(Bypass 模式)	28
图 3-13 只读 ROM 时序波形图(Pipeline 模式)	28
图 3-14 pROM/pROMX9 端口示意图	29
图 4-1 复位输出结构框图	32
图 4-2 同步复位时序图(Pipeline 模式)	33
图 4-3 同步复位时序图(Bypass 输出模式)	33
图 4-4 异步复位时序图(Pipeline 模式)	33
图 4-5 异步复位时序图(Bypass 输出模式)	34
图 5-1 RAM16S1 模式时序波形图	36
图 5-2 RAM16S1 端口示意图	36
图 5-3 RAM16S2 端口示意图	38
图 5-4 RAM16S4 端口示意图	40
图 5-5 RAM16SDP1 模式时序波形图	42
图 5-6 RAM16SDP1 端口示意图	43
图 5-7 RAM16SDP2 端口示意图	45
图 5-8 RAM16SDP4 端口示意图	47
图 5-9 ROM16 模式时序波形图	49
图 5-10 ROM16 端口示意图	49

UG285-1.2

图 6-1 DPB 的 IP Customization 窗口结构	52
图 6-2 RAM16S 的 IP Customization 窗口结构	54

UG285-1.2 iv

表目录

表 1-1 术语、缩略语	1
表 2-1 B-SRAM 配置模式列表	. 3
表 2-2 B-SRAM 数据和地址位宽对应关系	. 4
表 2-3 双端口模式数据宽度配置列表	. 4
表 2-4 伪双端口模式数据宽度配置列表	. 5
表 3-1 DPB/DPX9B 数据宽度和地址深度配置关系	. 12
表 3-2 DPB/DPX9B 端口介绍	. 13
表 3-3 DPB/DPX9B 参数介绍	. 14
表 3-4 SP/SPX9 数据宽度和地址深度配置关系	. 18
表 3-5 SP/SPX9 端口介绍	. 19
表 3-6 SP/SPX9 参数介绍	. 19
表 3-7 SDPB/SDPX9B 数据宽度和地址深度配置关系	. 23
表 3-8 SDPB/SDPX9B 端口介绍	. 24
表 3-9 SDPB/SDPX9B 参数介绍	. 25
表 3-10 pROM/pROMX9 配置关系	. 29
表 3-11 pROM/pROMX9 端口介绍	. 29
表 3-12 pROM/pROMX9 参数介绍	. 30
表 5-1 S-SRAM 模式	. 35
表 5-2 RAM16S1 端口介绍	. 36
表 5-3 RAM16S1 参数介绍	. 37
表 5-4 RAM16S2 端口介绍	. 38
表 5-5 RAM16S2 参数介绍	. 38
表 5-6 RAM16S4 端口介绍	. 40
表 5-7 RAM16S4 参数介绍	. 41
表 5-8 RAM16SDP1 端口介绍	. 43
表 5-9 RAM16SDP1 参数介绍	. 43
表 5-10 RAM16SDP2 端口介绍	. 45
表 5-11 RAM16SDP2 参数介绍	. 45
表 5-12 RAM16SDP4 端口介绍	. 47

表 5-13 RAM16SDP4 参数介绍	47
表 5-14 ROM16 端口介绍	50
表 5-15 ROM16 参数介绍	50

UG285-1.2 vi

1 关于本手册 1.1 手册内容

$oldsymbol{1}$ $_{eta$ 于本手册

1.1 手册内容

Gowin 存储器(B-SRAM&S-SRAM)用户手册主要描述高云半导体 B-SRAM 和 S-SRAM 的特性、工作模式、原语介绍、IP 调用等旨在给用户 提供应用说明。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u> 可以下载、查看以下相关文档:

- <u>DS100</u>, GW1N 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- SUG100, Gowin 云源软件用户手册

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
B-SRAM	Block SRAM	块状静态随机存储器
S-SRAM	Shadow SRAM	附加静态随机存储器
SP	Single Port	单端口
DP	Dual Port	双端口
SDP	Semi Dual Port	伪双端口
CFU	Configurable Function Unit	可配置功能单元
CST	Constraints	物理约束文件

UG285-1.2 1(57)

1.4 技术支持与反馈

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

UG285-1.2 2(57)

2 概述 2.1B-SRAM 特性介绍

2 概述

高云半导体 FPGA 产品提供了丰富的存储器资源,包括块状静态随机存储器 (B-SRAM) 和附加静态随机存储器 (S-SRAM)。

每个 B-SRAM 可配置最高 18Kbits,数据位宽和地址深度均可配置。每个 B-SRAM 具有独立的 A、B 两个端口,具有独立的时钟、地址、数据和控制信号,可以独立的进行读写操作,且两个端口共享一块存储空间。

可配置功能单元(CFU) 是构成高云半导体 FPGA 产品内核的基本单元,可根据应用场景配置成 S-SRAM,包括 16 x 4 位的静态随机存储器(SRAM)或只读存储器(ROM16)。

2.1 B-SRAM 特性介绍

- 一块 B-SRAM 最大容量为 18Kbits
- 时钟频率达到 380MHz(在 Read-before-write 模式下 230MHz)
- 支持单端口模式(SP)
- 支持双端口模式模式(DP)
- 支持伪双端口模式(SDP)
- 支持只读模式(ROM)
- 数据位宽最大支持 36 bits
- 双端口模式和伪双端口模式支持读写时钟独立、数据位宽独立
- 读模式支持寄存器输出或旁路输出
- 写模式支持 Normal 模式、read-before-write 模式和 write-though 模式

2.2 B-SRAM 配置模式

每个 B-SRAM 可配置成 16Kbits 或 18Kbits 大小,四种模式可配置的数据宽度和地址深度如表 2-1 所示。

表 2-1 B-SRAM 配置模式列表

存储容量 单端口模式		双端口模式	伪双端口模式	只读模式	
16Kbits	16K x 1	16K x 1	16K x 1	16K x 1	
	8K x 2	8K x 2	8K x 2	8K x 2	

UG285-1.2 3(57)

2 概述 2.2B-SRAM 配置模式

存储容量	单端口模式	双端口模式	伪双端口模式	只读模式
4K x 4		4K x 4	4K x 4	4K x 4
	2K x 8	2K x 8	2K x 8	2K x 8
	1K x 16	1K x 16	1K x 16	1K x 16
	512 x 32	_	512 x 32	512 x 32
	2K x 9	2K x 9	2K x 9	2K x 9
18Kbits	1K x 18	1K x 18	1K x 18	1K x 18
	512 x 36	_	512 x 36	512 x 36

每个 B-SRAM 的地址线位宽是 14 位,即 AD[13:0],最大地址深度 16,384。不同数据位宽使用的地址线不一样,对应关系如表 2-2 所示。

表 2-2 B-SRAM 数据和地址位宽对应关系

存储容量	配置模式	数据位宽	地址深度	地址位宽
	16K x 1	[0:0]	16,384	[13:0]
	8K x 2	[1:0]	8,192	[13:1]
16Kbits	4K x 4	[3:0]	4,096	[13:2]
TOKDIIS	2K x 8	[7:0]	2,048	[13:3]
	1K x 16	[15:0]	1,024	[13:4]
	512 x 32	[31:0]	512	[13:5]
18Kbits	2K x 9	[8:0]	2,048	[13:3]
	1K x 18	[17:0]	1,024	[13:4]
	512 x 36	[35:0]	512	[13:5]

双端口和伪双端口模式写时钟和读时钟独立,支持读/写操作数据位宽独立。在双端口模式下,A端口和B端口支持的数据位宽如表 2-3 所示。在伪双端口模式下,A端口和B端口支持的数据位宽如

表 2-4 所示。

表 2-3 双端口模式数据宽度配置列表

存储容量	B端口	A 端口						
		16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	2K x 9	1K x 18
	16K x 1	*	*	*	*	*	N/A	N/A
	8K x 2	*	*	*	*	*	N/A	N/A
16Kbits	4K x 4	*	*	*	*	*	N/A	N/A
	2K x 8	*	*	*	*	*	N/A	N/A
	1K x 16	*	*	*	*	*	N/A	N/A
18Kbits	2K x 9	N/A	N/A	N/A	N/A	N/A	*	*
TONDIES	1K x 18	N/A	N/A	N/A	N/A	N/A	*	*

UG285-1.2 4(57)

_ 2 概述 2.2B-SRAM 配置模式

表 2-4 伪双端口模式数据宽度配置列表

存储容量B端		A 端口	A 端口							
	B端口	16K x 1	8K x 2	4K x 4	2K x 8	1K x 16	512x32	2K x 9	1K x 18	512 x 36
	16K x 1	*	*	*	*	*	*	N/A	N/A	N/A
	8K x 2	*	*	*	*	*	*	N/A	N/A	N/A
	4K x 4	*	*	*	*	*	*	N/A	N/A	N/A
16Kbits	2K x 8	*	*	*	*	*	*	N/A	N/A	N/A
	1K x 16	*	*	*	*	*	*	N/A	N/A	N/A
	512 x 32	*	*	*	*	*	*	N/A	N/A	N/A
18Kbits	2K x 9	N/A	N/A	N/A	N/A	N/A	N/A	*	*	*
TONDIES	1K x 18	N/A	N/A	N/A	N/A	N/A	N/A	*	*	*

注!

• 标注为"*"的表示支持的模式。

UG285-1.2 5(57)

3 B-SRAM 原语

Block Memory 是块状静态随机存储器,具有静态存取功能。根据 B-SRAM 的特性建立软件模型,可分为单端口模式(SP/SPX9)、双端口模式(DPB/DPX9B)、伪双端口模式(SDPB/SDPX9B)和只读模式(pROM/pROMX9)。

注!

- GW1N-9/GW1NR-9/GW1NS-2 系列/GW1NS-4 系列,不支持双端口模式;
- GW1N-9/GW1NR-9/GW1NS-2 系列/GW1NS-4 系列,32/36 位宽的 SP/SPX9 被拆成 两个 SP/SPX9 实现,因此会占用两个 B-SRAM 的位置:
- GW1NZ-1 不支持位宽为 1/2/4/8/9 的双端口模式。

3.1 双端口模式

原语介绍

DPB/DPX9B(True Dual Port 16K Block SRAM/True Dual Port 18K Block SRAM),16K/18K 双端口 B-SRAM。

功能描述

DPB/DPX9B 的存储空间分别为 16K bit/18K bit, 其工作模式为双端口模式,端口 A 和端口 B 均可分别独立实现读/写操作,可支持 2 种读模式 (bypass 模式和 pipeline 模式)和 3 种写模式 (normal 模式、write-through模式和 read-before-write 模式)。

● 读模式

通过参数 READ_MODE0、READ_MODE1 来启用或禁用 A 端、B 端输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

● 写模式

包括 normal 模式、write-through 模式和 read-before-write 模式,A 端、B 端写模式通过参数 WRITE_MODE0、WRITE_MODE1 来分别配置使用,不同模式对应的内部时序波形图如图 3-1 到图 3-6 所示。

UG285-1.2 6(57)

UG285-1.2 7(57)

UG285-1.2 8(57)

UG285-1.2 9(57)

UG285-1.2 10(57)

UG285-1.2 11(57)

配置关系

表 3-1 DPB/DPX9B 数据宽度和地址深度配置关系

双端口模式	B-SRAM 容量	数据宽度	地址深度
	16Kbits	1	14
		2	13
DPB		4	12
		8	11
		16	10
DPX9B	18Kbits	9	11
		18	10

UG285-1.2 12(57)

端口示意图

图 3-7 DPB/DPX9B 端口示意图

端口介绍

表 3-2 DPB/DPX9B 端口介绍

端口名	I/O	描述
DOA[15:0]/DOA[17:0]	Output	A 端数据输出信号
DOB[15:0]/DOB[17:0]	Output	B端数据输出信号
DIA[15:0]/DIA[17:0]	Input	A 端数据输入信号
DIB[15:0]/DIB[17:0]	Input	B端数据输入信号
ADA[13:0]	Input	A 端地址输入信号
ADB[13:0]	Input	B端地址输入信号
		A端写使能输入信号
WREA	Input	1: 写入
		0: 读出
MDED	la must	B端写使能输入信号
WREB	Input	1:写入 0:读出
054	1	2,1.1
CEA	Input	A端时钟使能信号,高电平有效
CEB	Input	B端时钟使能信号,高电平有效
CLKA	Input	A 端时钟输入信号
CLKB	Input	B端时钟输入信号
RESETA	Input	A 端复位输入信号, 支持同步复位和
REGETA	прис	异步复位,高电平有效
RESETB	Input	B端复位输入信号,支持同步复位和
		异步复位,高电平有效
OCEA	Input	A 端输出时钟使能信号,用于 A 端
	-	pipline 模式,对 bypass 模式无效
OCEB	Input	B 端输出时钟使能信号,用于 B 端 pipline 模式,对 bypass 模式无效
		B-SRAM A端口块选择信号, 用于需
BLKSELA[2:0]	Input	要多个 B-SRAM 存储单元级联实现
	liiput	容量扩展
		11 ± 1/ /K

UG285-1.2 13(57)

端口名	I/O	描述
BLKSELB[2:0]	Input	B-SRAM B端口块选择信号, 用于需要多个 B-SRAM 存储单元级联实现容量扩展

参数介绍

表 3-3 DPB/DPX9B 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE0	Integer	1'b0,1'b1	1'b0	A 端读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
READ_MODE1	Integer	1'b0,1'b1	1'b0	B 端读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
WRITE_MODE 0	Integer	2'b00,2'b01,2'b10	2'b00	A 端写模式配置 2'b00: normal 模式 2'b01: write-through 模式 2'b10: read-before-write 模式
WRITE_MODE	Integer	2'b00,2'b01,2'b10	2'b00	B 端写模式配置 2'b00: normal 模式 2'b01: write-through 模式 2'b10: read-before-write 模式
BIT_WIDTH_0	Integer	DPB:1,2,4,8,16 DPX9B:9,18	DPB:16 DPX9B:18	A 端数据宽度配置
BIT_WIDTH_1	Integer	DPB:1,2,4,8,16 DPX9B:9,18	DPB:16 DPB:18	B端数据宽度配置
BLK_SEL_0	Integer	3'b000~3'b111	3,p000	B-SRAM A 端口块选择参数设置,与端口 BLKSELA 相等时该 B-SRAM 被选中。使用 IP Core Generator 进行存储扩展时软件自动进行扩展处理
BLK_SEL_1	Integer	3'b000~3'b111	3'b000	B-SRAM B 端口块选择参数设置,与端口 BLKSELB 相等时该 B-SRAM 被选中。使用 IP Core Generator 进行存储扩展时软件自动进行扩展处理
RESET_MODE	String	"SYNC","ASYNC"	"SYNC"	复位模式配置 SYNC: 同步复位 ASYNC: 异步复位
INIT_RAM_00 ~ INIT_RAM_3F	Integer	DPB:256'h00~256'h1 1 DPX9B:288'h00~288' h11	DPB:256'h0 0 DPX9B:288'h 00	用于设置 B-SRAM 存储单元的 初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第6章</u> IP 调用。

UG285-1.2 14(57)

原语例化以 DPB 为例介绍:

```
Verilog 例化:
   DPB bram_dpb_0 (
       .DOA({doa[15:8],doa[7:0]}),
       .DOB({doa[15:8],dob[7:0]}),
       .CLKA(clka),
       .OCEA(ocea),
       .CEA(cea),
       .RESETA(reseta),
       .WREA(wrea),
       .CLKB(clkb),
      .OCEB(oceb),
       .CEB(ceb),
       .RESETB(resetb),
       .WREB(wreb),
       .BLKSELA({3'b000}),
       .BLKSELB({3'b000}),
       .ADA({ada[10:0],3'b000}),
       .DIA({{8{1'b0}},dia[7:0]})
       .ADB({adb[10:0],3'b000}),
       .DIB({{8{1'b0}},dib[7:0]})
   );
   defparam bram_dpb_0.READ_MODE0 = 1'b0;
   defparam bram_dpb_0.READ_MODE1 = 1'b0;
   defparam bram_dpb_0.WRITE_MODE0 = 2'b00;
   defparam bram_dpb_0.WRITE_MODE1 = 2'b00;
   defparam bram_dpb_0.BIT_WIDTH_0 = 8;
   defparam bram_dpb_0.BIT_WIDTH_1 = 8;
   defparam bram_dpb_0.BLK_SEL_0 = 3'b000;
   defparam bram_dpb_0.BLK_SEL_1 = 3'b000;
   defparam bram_dpb_0.RESET_MODE = "SYNC";
   defparam bram_dpb_0.INIT_RAM_00 =
000000000B;
   defparam bram_dpb_0.INIT_RAM_3E =
```

UG285-1.2 15(57)

```
000000000B;
  defparam bram dpb 0.INIT RAM 3F =
00000000B:
 Vhdl 例化:
   COMPONENT DPB
         GENERIC (
                 BIT WIDTH 0:integer:=16;
                 BIT WIDTH 1:integer:=16;
                 READ MODE0:bit:='0';
                 READ_MODE1:bit:='0';
                 WRITE_MODE0:bit_vector:="00";
                 WRITE MODE1:bit vector:="00";
                 BLK_SEL_0:bit_vector:="000";
                 BLK SEL 1:bit vector:="000";
                 RESET_MODE:string:="SYNC";
                 INIT RAM 00:bit vector:=X"000000000000000
INIT_RAM_01:bit_vector:=X"0000000000000000
INIT_RAM_3F:bit_vector:=X"0000000000000000
);
         PORT (
                 DOA,DOB:OUT std_logic_vector(15 downto 0):
=conv_std_logic_vector(0,16);
                 CLKA, CLKB, CEA, CEB, OCEA, OCEB, RESETA,
RESETB,WREA,WREB:IN std_logic;
                 ADA, ADB: IN std_logic_vector(13 downto 0);
                 BLKSELA:IN std_logic_vector(2 downto 0);
                 BLKSELB:IN std_logic_vector(2 downto 0);
                 DIA, DIB: IN std logic vector (15 downto 0)
         );
   END COMPONENT;
   uut:DPB
      GENERIC MAP(
                 BIT WIDTH 0=>16.
```

UG285-1.2 16(57)

BIT_WIDTH_1=>16,

```
READ_MODE0=>'0',
             READ_MODE1=>'0',
             WRITE MODE0=>"00",
             WRITE_MODE1=>"00",
             BLK_SEL_0=>"000",
             BLK_SEL_1=>"000",
             RESET_MODE=>"SYNC",
  0000000000000000000000000000
   )
   PORT MAP(
     DOA=>doa.
     DOB=>dob,
     CLKA=>clka,
     CLKB=>clkb.
     CEA=>ceb.
     CEB=>ceb.
     OCEA=>ocea,
     OCEB=>oceb,
     RESETA=>reseta,
     RESETB=>resetb,
     WREA=>wrea,
     WREB=>wreb,
     ADA=>ada,
     ADB=>adb,
     BLKSELA=>blksela,
     BLKSELB=>blkselb.
     DIA=>dia,
     DIB=>dib
   );
```

UG285-1.2 17(57)

3.2 单端口模式

原语介绍

SP/SPX9(Single Port 16K B-SRAM/Single Port 18K B-SRAM),16K/18K 单端口 B-SRAM。

功能描述

SP/SPX9 存储空间为 16K bit/18K bit, 其工作模式为单端口模式,由一个时钟控制单端口的读/写操作,可支持 2 种读模式 (bypass 模式和 pipeline模式)和 3 种写模式 (normal 模式、write-through 模式和 read-before-write模式)。

● 读模式

通过参数 READ_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

● 写模式

包括 normal 模式、write-through 模式和 read-before-write 模式,通过参数 WRITE_MODE 来配置使用。

单端口 B-SRAM 不同读写模式对应的内部时序波形图可参考双端口 B-SRAM A 端/B 端时序图 3-1 到图 3-6。

配置关系

表 3-4 SP/SPX9 数据宽度和地址深度配置关系

单端口模式	B-SRAM 容量	数据宽度	地址深度
	16Kbits	1	14
		2	13
SP		4	12
or .		8	11
		16	10
		32	9
	18Kbits	9	11
SPX9		18	10
		36	9

UG285-1.2 18(57)

端口示意图

图 3-8 SP/SPX9 端口示意图

端口介绍

表 3-5 SP/SPX9 端口介绍

端口名	I/O	描述
DO[31:0]/DO[35:0]	Output	数据输出信号
DI[31:0]/DI[35:0]	Input	数据输入信号
AD[13:0]	Input	地址输入信号
WRE	Input	写使能输入信号 1: 写入 0: 读出
CE	Input	时钟使能输入信号, 高电平有效
CLK	Input	时钟输入信号
RESET	Input	复位输入信号,支持同步复位和异 步复位,高电平有效
OCE	Input	输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效
BLKSEL[2:0]	Input	B-SRAM 块选择信号, 用于需要多个 B-SRAM 存储单元级联实现容量扩展

参数介绍

表 3-6 SP/SPX9 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE	Integer	1'b0,1'b1	1'b0	读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
WRITE_MODE	Integer	2'b00,2'b01,2'b10	2'b00	写模式配置 2'b00: normal 模式 2'b01:write-through 模式;

UG285-1.2 19(57)

参数名	参数类型	取值范围	默认值	描述
				2'b10: read-before-write 模式
BIT_WIDTH	Integer	SP:1,2,4,8,16,32 SPX9:9,18,36	SP:32 SPX9:36	数据宽度配置
BLK_SEL	Integer	3'b000~3'b111	3'b000	B-SRAM 块选择参数设置, 与端口 BLKSEL 相等时该 B-SRAM 被选中。使用 IP Core Generator 进行存储 扩展时软件自动进行扩展 处理
RESET_MODE	String	"SYNC","ASYNC"	"SYNC"	复位模式配置 SYNC: 同步复位 ASYNC: 异步复位
INIT_RAM_00~ INIT_RAM_3F	Integer	SP:256'h00~256'h11 SPX9:288'h00~288'h1 1	SP:256'h00 SPX9:288'h00	用于设置 B-SRAM 存储单元的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。原语例化以 SP 为例介绍,

Verilog 例化:

```
SP bram_sp_0 (
   .DO({dout[31:8], dout[7:0]}),
   .CLK(clk),
   .OCE(oce),
   .CE(ce),
   .RESET(reset),
   .WRE(wre),
   .BLKSEL({3'b000}),
   .AD({ad[10:0], 3'b000}),
   .DI({{24{1'b0}}, din[7:0]})
);
defparam bram_sp_0.READ_MODE = 1'b0;
defparam bram_sp_0.WRITE_MODE = 2'b00;
defparam bram_sp_0.BIT_WIDTH = 8;
defparam bram_sp_0.BLK_SEL = 3'b000;
defparam bram_sp_0.RESET_MODE = "SYNC";
defparam bram_sp_0.INIT_RAM_00 =
A00000000000B;
```

UG285-1.2 20(57)

```
defparam bram_sp_0.INIT_RAM_01 =
  A00000000000B:
  defparam bram_sp_0.INIT_RAM_3F =
  A00000000000B:
 Vhdl 例化:
   COMPONENT SP
        GENERIC(
               BIT WIDTH:integer:=32;
               READ_MODE:bit:='0';
               WRITE_MODE:bit_vector:="01";
               BLK SEL:bit vector:="000";
               RESET MODE:string:="SYNC":
               INIT RAM 00:bit vector:=X"00A00000000000B
INIT RAM 01:bit vector:=X"00A00000000000B
INIT RAM 3F:bit vector:=X"00A00000000000B
);
        PORT(
               DO:OUT std_logic_vector(31 downto 0):=conv_
std_logic_vector(0,32);
               CLK,CE,OCE,RESET,WRE:IN std_logic;
               AD:IN std_logic_vector(13 downto 0);
               BLKSEL:IN std_logic_vector(2 downto 0);
               DI:IN std logic vector(31 downto 0)
         );
    END COMPONENT;
    uut:SP
       GENERIC MAP(
                 BIT_WIDTH=>32,
                 READ MODE=>'0',
                 WRITE MODE=>"01",
                 BLK_SEL=>"000",
                 RESET MODE=>"SYNC",
```

UG285-1.2 21(57)

```
INIT_RAM_00=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B ",
                     INIT_RAM_01=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B ",
                     INIT_RAM_02=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B ",
                     INIT RAM 3F=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B"
         )
        PORT MAP (
            DO=>dout.
            CLK=>clk,
            OCE=>oce.
            CE=>ce.
            RESET=>reset,
            WRE=>wre,
            BLKSEL=>blksel,
            AD=>ad.
            DI=>din
         );
```

3.3 伪双端口模式

原语介绍

SDPB/SDPX9B(Semi Dual Port 16K Block SRAM /Semi Dual Port 18K Block SRAM),16K/18K 伪双端口 B-SRAM。

功能描述

SDPB/SDPX9B 存储空间分别为 16K bit/18K bit, 其工作模式为伪双端口模式,端口 A 进行写操作,端口 B 进行读操作,可支持 2 种读模式(bypass模式和 pipeline 模式)和 1 种写模式(normal 模式)。

● 读模式

通过参数 READ_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

写模式

SDPB/SDPX9B 端口 A 进行写操作,端口 B 进行读操作,支持 normal 模式。

伪双端口B-SRAM不同读模式对应的内部时序波形图如图 3-9 和图 3-10 所示。

UG285-1.2 22(57)

图 3-10 伪双端口 B-SRAM Normal 写模式时序波形图(Pipeline 读模式)

配置关系

表 3-7 SDPB/SDPX9B 数据宽度和地址深度配置关系

伪双端口模式	B-SRAM 容量	数据宽度	地址深度
SDPB 10		1	14
	16Kbits	2	13
		4	12

UG285-1.2 23(57)

伪双端口模式	B-SRAM 容量	数据宽度	地址深度
		8	11
		16	10
		32	9
		9	11
SDPX9B	18Kbits	18	10
		36	9

端口示意图

图 3-11 SDPB/SDPX9B 端口示意图

端口介绍

表 3-8 SDPB/SDPX9B 端口介绍

端口名	I/O	描述
DO[31:0]/DO[35:0]	Output	数据输出信号
DI[31:0]/DI[35:0]	Input	数据输入信号
ADA[13:0]	Input	A 端地址输入信号
ADB[13:0]	Input	B端地址输入信号
CEA	Input	A 端时钟使能信号,高电平有效
CEB	Input	B 端时钟使能信号,高电平有效
CLKA	Input	A 端时钟输入信号
CLKB	Input	B端时钟输入信号
RESETA	Input	A 端复位输入信号,支持同步复位和 异步复位,高电平有效
RESETB	Input	B 端复位输入信号,支持同步复位和 异步复位,高电平有效
OCE	Input	输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效
BLKSELA[2:0]	Input	B-SRAM A 端口块选择信号, 用于需要多个 B-SRAM 存储单元级联实现容量扩展

UG285-1.2 24(57)

端口名	I/O	描述
BLKSELB[2:0]	Input	B-SRAM B 端口块选择信号, 用于需要多个 B-SRAM 存储单元级联实现容量扩展

参数介绍

表 3-9 SDPB/SDPX9B 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE	Integer	1'b0,1'b1	1'b0	读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
BIT_WIDTH_0	Integer	SDPB:1,2,4,8,16,32 SDPX9B:9,18,36	SDPB:32 SDPX9B:36	A 端数据宽度配置
BIT_WIDTH_1	Integer	SDPB:1,2,4,8,16,32 SDPX9B:9,18,36	SDPB:32 SDPX9B:36	B端数据宽度配置
BLK_SEL_0	Integer	3'b000~3'b111	3'b000	B-SRAM A 端口块选择参数 设置,与端口 BLKSEL 相等 时该 B-SRAM 被选中。使用 IP Core Generator 进行存 储扩展时软件自动进行扩 展处理。
BLK_SEL_1	Integer	3'b000~3'b111	3'b000	B-SRAM B 端口块选择参数设置,与端口 BLKSEL 相等时该 B-SRAM 被选中。使用 IP Core Generator 进行存储扩展时软件自动进行扩展处理
RESET_MODE	String	"SYNC","ASYNC"	"SYNC"	复位模式配置 SYNC:同步复位 ASYNC:异步复位
INIT_RAM_00~ INIT_RAM_3F	Integer	SDPB:256'h00~256'h1 1 SDPX9B:288'h00~288' h11	SDPB:256'h0 0 SDPX9B:288'h 00	用于设置 B-SRAM 存储单元的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。原语例化以 SDPB 为例介绍,

Verilog 例化:

SDPB bram_sdpb_0 (

.DO({dout[31:16],dout[15:0]}),

.CLKA(clka),

.CEA(cea),

.RESETA(reseta),

UG285-1.2 25(57)

```
.CLKB(clkb),
     .CEB(ceb),
     .RESETB(resetb),
     .OCE(oce),
     .BLKSELA({3'b000}),
     .BLKSELB({3'b000}),
     .ADA({ada[9:0], 2'b00, byte en[1:0]}),
     .DI({{16{1'b0}},din[15:0]}),
     .ADB({adb[9:0],4'b0000})
  );
  defparam bram_sdpb_0.READ_MODE = 1'b1;
  defparam bram_sdpb_0.BIT_WIDTH_0 = 16;
  defparam bram_sdpb_0.BIT_WIDTH_1 = 16;
  defparam bram sdpb 0.BLK SEL 0 = 3'b000;
  defparam bram_sdpb_0.BLK_SEL_1 = 3'b000;
  defparam bram_sdpb_0.RESET_MODE = "SYNC";
  defparam bram_sdpb_0.INIT_RAM_00 =
  A00000000000B:
  defparam bram sdpb 0.INIT RAM 3F =
  A00000000000B:
 Vhdl 例化:
   COMPONENT SDPB
         GENERIC(
                 BIT_WIDTH_0:integer:=16;
                 BIT_WIDTH_1:integer:=16;
                 READ MODE:bit:='0';
                 BLK_SEL_0:bit_vector:="000";
                 BLK SEL 1:bit vector:="000";
                 RESET_MODE:string:="SYNC";
                 INIT RAM 00:bit vector:=X"00A00000000000
INIT_RAM_01:bit_vector:=X"00A000000000000
INIT_RAM_3F:bit_vector:=X"00A000000000000
```

UG285-1.2 26(57)

```
);
            PORT(
                    DO:OUT std_logic_vector(31 downto 0):=conv_
std_logic_vector(0,32);
                    CLKA,CLKB,CEA,CEB:IN std_logic;
                    OCE, RESETA, RESETB: IN std logic;
                    ADA, ADB: IN std logic vector (13 downto 0);
                    BLKSELA:IN std_logic_vector(2 downto 0);
                    BLKSELB:IN std_logic_vector(2 downto 0);
                    DI:IN std_logic_vector(31 downto 0)
             );
    END COMPONENT:
    uut:SDPB
        GENERIC MAP(
                      BIT_WIDTH_0=>16,
                      BIT WIDTH 1=>16,
                      READ_MODE=>'0',
                      BLK_SEL_0=>"000",
                      BLK_SEL_1=>"000",
                      RESET_MODE=>"SYNC",
                      INIT RAM 00=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B".
                      INIT RAM 01=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B",
                      INIT_RAM_3F=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B"
          PORT MAP(
             DO=>dout.
             CLKA=>clka,
             CEA=>cea,
             RESETA=>reseta,
             CLKB=>clkb,
             CEB=>ceb.
             RESETB=>resetb,
             OCE=>oce,
```

UG285-1.2 27(57)

BLKSELA=>blksela,
BLKSELB=>blkselb,
ADA=>ada,
DI=>din,
ADB=>adb
);

3.4 只读模式

原语介绍

pROM/pROMX9(16K/18K Block ROM),16K/18K 块状只读储存器。

功能描述

pROM/pROMX9 存储空间分别为 16K bit/18K bit, 其工作模式为只读模式, 可支持 2 种读模式(bypass 模式和 pipeline 模式)。

通过参数 READ_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

只读 ROM 不同读模式对应的内部时序波形图可参考伪双端口 B-SRAM 的 B端口时序,如图 3-12 和图 3-13 所示。

图 3-12 只读 ROM 时序波形图 (Bypass 模式)

图 3-13 只读 ROM 时序波形图 (Pipeline 模式)

UG285-1.2 28(57)

配置关系

表 3-10 pROM/pROMX9 配置关系

只读模式	B-SRAM 容量	数据宽度	地址深度
	16Kbits	1	14
		2	13
pROM		4	12
PROM		8	11
		16	10
		32	9
		9	11
pROMX9	18Kbits	18	10
		36	9

端口示意图

图 3-14 pROM/pROMX9 端口示意图

端口介绍

表 3-11 pROM/pROMX9 端口介绍

端口名	I/O	描述
DO[31:0]/DO[35:0]	Output	数据输出信号
AD[13:0]	Input	地址输入信号
CE	Input	时钟使能输入信号, 高电平有效
CLK	Input	时钟输入信号
RESET	Input	复位输入信号,支持同步复位和 异步复位,高电平有效
OCE	Input	输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效

UG285-1.2 29(57)

参数介绍

表 3-12 pROM/pROMX9 参数介绍

参数名	参数类型	取值范围	默认值	描述
READ_MODE	Integer	1'b0,1'b1	1'b0	读模式配置 1'b0:bypass 模式 1'b1:pipeline 模式
BIT_WIDTH	Integer	pROM:1,2,4,8,16,32 pROMX9:9,18,36	pROM:32 pROMX9:36	数据宽度配置
RESET_MODE	String	"SYNC","ASYNC"	"SYNC"	复位模式配置 SYNC:同步复位 ASYNC:异步复位
INIT_RAM_00~ INIT_RAM_3F	Integer	pROM:256'h00~256'h1 1 pROMX9:288'h00~288' h11	pROM:256'h0 0 pROMX9:288' h00	用于设置 B-SRAM 存储 单元的初始化数据

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。原语例化以 pROM 为例介绍,

Verilog 例化:

```
pROM bram_prom_0 (
     .DO({dout[31:8],dout[7:0]}),
     .CLK(clk),
     .OCE(oce),
     .CE(ce),
     .RESET(reset),
     .AD({ad[10:0],3'b000})
  );
  defparam bram_prom_0.READ_MODE = 1'b0;
  defparam bram_prom_0.BIT_WIDTH = 8;
  defparam bram_prom_0.RESET_MODE = "SYNC";
  defparam bram prom 0.INIT RAM 00 =
  256'h9C23645D0F78986FFC3E36E141541B95C19F2F7164085E63
  1A819860D8FF0000;
  defparam bram_prom_0.INIT_RAM_01 =
  000FFFFFBDCF;
Vhdl 例化:
```

UG285-1.2 30(57)

COMPONENT pROM

GENERIC(

```
BIT_WIDTH:integer:=1;
              READ MODE:bit:='0';
              RESET_MODE:string:="SYNC";
              INIT RAM 00:bit vector:=X"9C23645D0F78986FF
C3E36E141541B95C19F2F7164085E631A819860D8FF0000";
              );
       PORT(
              DO:OUT std_logic_vector(31 downto 0):=conv_std
_logic_vector(0,32);
              CLK,CE,OCE,RESET:IN std_logic;
              AD:IN std_logic_vector(13 downto 0)
      );
  END COMPONENT;
  uut:pROM
     GENERIC MAP(
               BIT_WIDTH=>1,
               READ MODE=>'0',
               RESET MODE=>"SYNC".
               INIT RAM 00=>X"9C23645D0F78986FFC3E36
E141541B95C19F2F7164085E631A819860D8FF0000",
               )
     PORT MAP(
          DO=>do.
          AD=>ad,
          CLK=>clk,
          CE=>ce.
          OCE=>oce.
          RESET=>reset
      );
```

UG285-1.2 31(57)

4 B-SRAM 输出复位

RESET 信号作用于输出模块,输出复位数据 0,结构框图如图 4-1 所示。

图 4-1 复位输出结构框图

RESET 信号高电平有效时输出端口输出 0。

RESET 支持同步复位和异步复位,当用户直接调用库原语时,通过参数 RESET_MODE 设置。当用户使用 IP Core Generator 时,可通过窗口选择复位模式,详细资料请参考第 6 章 IP 调用。

RESET 信号复位锁存器和输出寄存器,因此,当设置 RESET 信号有效时,不管用户使用的是寄存器输出模式还是旁路输出模式,端口都输出 0。

注!

写操作过程中 RESET 信号须置为 0 (无效状态)。

图 4-2、图 4-3、图 4-4 和图 4-5 为不同模式下复位时序图,其中,DO_RAM 表示存储阵列中的数据,DO 表示输出端口的数据。

寄存器输出模式如下所示:

- 同步复位有效时, DO 在 CLK 上升沿复位为 0:
- 异步复位有效时, DO 随之复位为 0, 不需要等到 CLK 上升沿;
- 复位无效,且 OCE 信号有效时,DO 输出 DO RAM;
- 复位无效,且 OCE 信号无效时,DO 保持上一次输出的数据 旁路输出模式如下所示:
- 同步复位有效时, DO 在 CLK 上升沿复位为 0:

UG285-1.2 32(57)

- 异步复位有效时, DO 随之复位为 0, 不需要等到 CLK 上升沿;
- 复位无效时,不管 OCE 信号是否有效, DO 输出 DO_RAM。

图 4-2 同步复位时序图(Pipeline 模式)

图 4-3 同步复位时序图(Bypass 输出模式)

UG285-1.2 33(57)

UG285-1.2 34(57)

5S-SRAM 原语 5.1RAM16S1

5 s-sram 原语

Shadow SRAM 是附加静态随机存储器,可配置成单端口模式,伪双端口模式和只读模式,如表 5-1 所示。

表 5-1 S-SRAM 模式

原语	描述
RAM16S1	地址深度 16,数据宽度为 1 的单端口 S-SRAM
RAM16S2	地址深度 16,数据宽度为 2 的单端口 S-SRAM
RAM16S4	地址深度 16,数据宽度为 4 的单端口 S-SRAM
RAM16SDP1	地址深度 16,数据宽度为 1 的伪双端口 S-SRAM
RAM16SDP2	地址深度 16,数据宽度为 2 的伪双端口 S-SRAM
RAM16SDP4	地址深度 16,数据宽度为 4 的伪双端口 S-SRAM
ROM16	地址深度 16,数据宽度为 1 的只读 ROM

注!

GW1N-1、GW1N-1S、GW1N-4、GW1N-4B、GW1NR-1、GW1NR-4、GW1NR-4B、GW1NRF-4B、GW1NS-4、GW1NS-4C、GW1NSER-4C、GW1NSR-4、GW1NSR-4C、GW1NR-4C 、GW1NR-4C 、GW

5.1 RAM16S1

原语介绍

RAM16S1(16-Deep by 1-Wide Single-port S-SRAM)是地址深度为 16,数据位宽为 1 的单端口 S-SRAM。

功能描述

RAM16S1 是数据位宽为 1 的单端口 S-SRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 S-SRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

UG285-1.2 35(57)

5S-SRAM 原语 5.1RAM16S1

图 5-1 RAM16S1 模式时序波形图

端口示意图

图 5-2 RAM16S1 端口示意图

端口介绍

表 5-2 RAM16S1 端口介绍

端口	I/O	描述
DI	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
AD[3:0]	Input	地址输入信号
DO	Output	数据输出信号

UG285-1.2 36(57)

5S-SRAM 原语 5.1RAM16S1

参数介绍

表 5-3 RAM16S1 参数介绍

参数	范围	默认	描述
INIT_0	16'h0000~16'hffff	16'h0000	RAM16S1 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

```
Verilog 例化:
  RAM16S1 instName(
      .DI(DI),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'h1100;
Vhdl 例化:
  COMPONENT RAM16S1
         GENERIC (INIT:bit_vector:=X"0000");
         PORT(
               DO:OUT std_logic;
               DI:IN std_logic;
               CLK:IN std_logic;
               WRE:IN std_logic;
               AD:IN std_logic_vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16S1
        GENERIC MAP(INIT=>X"0000")
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
```

UG285-1.2 37(57)

5S-SRAM 原语 5.2RAM16S2

AD=>AD

);

5.2 RAM16S2

原语介绍

RAM16S2(16-Deep by 2-Wide Single-port S-SRAM)是地址深度为 16,数据位宽为 2 的单端口 S-SRAM。

功能描述

RAM16S2 是数据位宽为 2 的单端口 S-SRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 S-SRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

端口示意图

图 5-3 RAM16S2 端口示意图

端口介绍

表 5-4 RAM16S2 端口介绍

端口	I/O	描述
DI[1:0]	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
AD[3:0]	Input	地址输入信号
DO[1:0]	Output	数据输出信号

参数介绍

表 5-5 RAM16S2 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_1	16'h0000~16'hffff	16'h0000	RAM16S2 初始值

UG285-1.2 38(57)

5S-SRAM 原语 5.2RAM16S2

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

```
Verilog 例化:
  RAM16S2 instName(
      .DI(DI[1:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT 0=16'h0790;
  defparam instName.INIT 1=16'h0f00;
Vhdl 例化:
  COMPONENT RAM16S2
         GENERIC (INIT_0:bit_vector:=X"0000";
                    INIT_1:bit_vector:=X"0000"
        );
         PORT(
               DO:OUT std_logic_vector(1 downto 0);
               DI:IN std_logic_vector(1 downto 0);
               CLK:IN std_logic;
               WRE:IN std_logic;
               AD:IN std_logic_vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16S2
        GENERIC MAP(INIT_0=>X"0000",
                       INIT 1=>X"0000"
        )
        PORT MAP (
            DO=>DOUT.
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
```

UG285-1.2 39(57)

5S-SRAM 原语 5.3RAM16S4

AD=>AD

);

5.3 RAM16S4

原语介绍

RAM16S4(16-Deep by 4-Wide Single-port S-SRAM)是地址深度为 16 ,数据位宽为 4 的单端口 S-SRAM。

功能描述

RAM16S4 是数据位宽为 4 的单端口 S-SRAM,读写地址相同,WRE为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 S-SRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

端口示意图

图 5-4 RAM16S4 端口示意图

端口介绍

表 5-6 RAM16S4 端口介绍

端口	I/O	描述
DI[3:0]	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
AD[3:0]	Input	地址输入信号
DO[3:0]	Output	数据输出信号

UG285-1.2 40(57)

5S-SRAM 原语 5.3RAM16S4

参数介绍

表 5-7 RAM16S4 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_3	16'h0000~16'hffff	16'h0000	RAM16S4 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

```
Verilog 例化:
  RAM16S4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT_0=16'h0450;
  defparam instName.INIT 1=16'h1ac3;
  defparam instName.INIT_2=16'h1240;
  defparam instName.INIT_3=16'h045c;
Vhdl 例化:
  COMPONENT RAM16S4
          GENERIC (INIT_0:bit_vector:=X"0000";
                     INIT_1:bit_vector:=X"0000";
                     INIT_2:bit_vector:=X"0000";
                     INIT 3:bit vector:=X"0000"
         );
          PORT(
                DO:OUT std_logic_vector(3 downto 0);
                DI:IN std_logic_vector(3 downto 0);
                CLK:IN std_logic;
                WRE:IN std_logic;
                AD:IN std_logic_vector(3 downto 0)
         );
```

UG285-1.2 41(57)

5S-SRAM 原语 5.4RAM16SDP1

5.4 RAM16SDP1

原语介绍

RAM16SDP1(16-Deep by 1-Wide Semi Dual-port S-SRAM)是地址深度为 16 , 数据位宽为 1 的伪双端口 S-SRAM。

功能描述

RAM16SDP1 是数据位宽为 1 的伪双端口 S-SRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

图 5-5 RAM16SDP1 模式时序波形图

UG285-1.2 42(57)

5S-SRAM 原语 5.4RAM16SDP1

端口示意图

图 5-6 RAM16SDP1 端口示意图

端口介绍

表 5-8 RAM16SDP1 端口介绍

端口	I/O	描述
DI	Input	数据输入信号
CLK	Input	时钟输入信号
WRE	Input	写使能输入信号
WAD[3:0]	Input	写地址信号
RAD[3:0]	Input	读地址信号
DO	Output	数据输出信号

参数介绍

表 5-9 RAM16SDP1 参数介绍

参数	范围	默认	描述
INIT_0	16'h0000~16'hffff	16'h0000	RAM16SDP1 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

Verilog 例化:

RAM16SDP1 instName(

.DI(DI),

.WRE(WRE),

UG285-1.2 43(57)

5S-SRAM 原语 5.5RAM16SDP2

```
.CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'h0100;
Vhdl 例化:
  COMPONENT RAM16SDP1
         GENERIC (INIT_0:bit_vector:=X"0000");
         PORT(
               DO:OUT std_logic;
               DI:IN std_logic;
               CLK:IN std_logic;
               WRE:IN std_logic;
               WAD:IN std_logic_vector(3 downto 0);
               RAD:IN std_logic_vector(3 downto 0)
        );
  END COMPONENT;
  uut:RAM16SDP1
        GENERIC MAP(INIT 0=>X"0000")
        PORT MAP (
            DO=>DOUT,
            DI=>DI.
            CLK=>CLK.
            WRE=>WRE.
            WAD=>WAD.
            RAD=>RAD
       );
```

5.5 RAM16SDP2

原语介绍

RAM16SDP2(16-Deep by 2-Wide Semi Dual-port S-SRAM)是地址深度为 16 , 数据位宽为 2 的伪双端口 S-SRAM。

功能描述

RAM16SDP2 是数据位宽为 2 的伪双端口 S-SRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进

UG285-1.2 44(57)

5S-SRAM 原语 5.5RAM16SDP2

行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

端口示意图

图 5-7 RAM16SDP2 端口示意图

端口介绍

表 5-10 RAM16SDP2 端口介绍

端口	I/O	描述	
DI[1:0]	Input 数据输入信号		
CLK	Input	时钟输入信号	
WRE	Input	写使能输入信号	
WAD[3:0]	Input 写地址信号		
RAD[3:0]	Input	读地址信号	
DO[1:0]	Output	数据输出信号	

参数介绍

表 5-11 RAM16SDP2 参数介绍

参数	范围	默认	描述
INIT_0~ INIT_1	16'h0000~16'hffff	16'h0000	RAM16SDP2 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第6章</u> IP 调用。

Verilog 例化:

RAM16SDP2 instName(

.DI(DI[1:0]),

.WRE(WRE),

.CLK(CLK),

UG285-1.2 45(57)

5S-SRAM 原语 5.5RAM16SDP2

```
.WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT 0=16'h5600;
  defparam instName.INIT 1=16'h0af0;
Vhdl 例化:
  COMPONENT RAM16SDP2
         GENERIC (INIT_0:bit_vector:=X"0000";
                   INIT_1:bit_vector:=X"0000"
        );
         PORT(
               DO:OUT std_logic_vector(1 downto 0);
               DI:IN std_logic_vector(1 downto 0);
               CLK:IN std_logic;
               WRE:IN std_logic;
               WAD:IN std_logic_vector(3 downto 0);
               RAD:IN std_logic_vector(3 downto 0)
        );
  END COMPONENT;
  uut:RAM16SDP2
        GENERIC MAP(INIT_0=>X"0000",
                       INIT 1=>X"0000"
       )
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE,
            WAD=>WAD,
            RAD=>RAD
        );
```

UG285-1.2 46(57)

5S-SRAM 原语 5.6RAM16SDP4

5.6 RAM16SDP4

原语介绍

RAM16SDP4(16-Deep by 4-Wide Semi Dual-port S-SRAM)是地址深度为 16 , 数据位宽为 4 的伪双端口 S-SRAM。

功能描述

RAM16SDP4 是数据位宽为 4 的伪双端口 S-SRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

端口示意图

图 5-8 RAM16SDP4 端口示意图

端口介绍

表 5-12 RAM16SDP4 端口介绍

端口	I/O 描述		
DI[3:0]	Input 数据输入信号		
CLK	Input 时钟输入信号		
WRE	Input 写使能输入信号		
WAD[3:0]	Input 写地址信号		
RAD[3:0]	Input	读地址信号	
DO[3:0]	Output	数据输出信号	

参数介绍

表 5-13 RAM16SDP4 参数介绍

参数	范围	默认	描述	
INIT_0~ INIT_3	16'h0000~16'hffff	16'h0000	RAM16SDP4 初始值	

UG285-1.2 47(57)

5S-SRAM 原语 5.6RAM16SDP4

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

```
Verilog 例化:
  RAM16SDP4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT 0=16'h0340;
  defparam instName.INIT 1=16'h9065;
  defparam instName.INIT 2=16'hac12;
  defparam instName.INIT 3=16'h034c;
Vhdl 例化:
  COMPONENT RAM16SDP2
         GENERIC (INIT_0:bit_vector:=X"0000";
                    INIT_1:bit_vector:=X"0000";
                    INIT_2:bit_vector:=X"0000";
                    INIT 3:bit vector:=X"0000";
         );
         PORT(
                DO:OUT std_logic_vector(3 downto 0);
                DI:IN std_logic_vector(3 downto 0);
                CLK:IN std logic;
                WRE:IN std_logic;
               WAD:IN std_logic_vector(3 downto 0);
                RAD:IN std_logic_vector(3 downto 0)
        );
  END COMPONENT;
  uut:RAM16SDP2
        GENERIC MAP(INIT_0=>X"0000",
                        INIT_1=>X"0000"
```

UG285-1.2 48(57)

5S-SRAM 原语 5.7ROM16

5.7 ROM16

原语介绍

ROM16 是地址深度为 16,数据位宽为 1 的只读存储器,存储器的内容通过 INIT 进行初始化。

功能描述

ROM16 是数据位宽为 1 的只读存储器,由地址确定输出存储在 ROM 对应位置的数据。其时序波形图如图 5-9 所示。

图 5-9 ROM16 模式时序波形图

端口示意图

图 5-10 ROM16 端口示意图

UG285-1.2 49(57)

5S-SRAM 原语 5.7ROM16

端口介绍

表 5-14 ROM16 端口介绍

端口	I/O 描述	
AD[3:0]	Input 地址输入信号	
DO	Output 数据输出信号	

参数介绍

表 5-15 ROM16 参数介绍

参数	范围	默认	描述
INIT_0	16'h0000~16'hffff	16'h0000	ROM16 初始值

原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第</u>6 章 IP 调用。

```
Verilog 例化:
  ROM16 instName (
      .AD(AD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT_0=16'hfc00;
Vhdl 例化:
  COMPONENT ROM16
         GENERIC (INIT:bit_vector:=X"0000");
         PORT(
               DO:OUT std_logic;
               AD:IN std_logic_vector(3 downto 0)
        );
  END COMPONENT;
  uut:ROM16
        GENERIC MAP(INIT=>X"0000")
        PORT MAP (
            DO=>DOUT,
            AD=>AD
       );
```

UG285-1.2 50(57)

6IP 调用 6.1B-SRAM 双端口模式

$\mathbf{6}$ IP 调用

高云半导体 Gowin 云源软件的 IP Core Generator 支持 IP 核的界面调用,用户在界面中设置数据宽度、地址深度、写模式和读模式,Gowin 云源软件生成对应的 IP 模块,用户在使用中调用模块即可。此外,还有两种方式实现B-SRAM、S-SRAM 的功能。一是用户可以通过调用高云半导体 Gowin 云源软件库文件,设置端口和参数生成需要的 IP 模块。二是代码综合时选择综合工具自动综合成 B-SRAM、S-SRAM 模式。

IP Core Generator 中, B-SRAM 模块可实现单端口模式、伪双端口模式、双端口模式以及只读模式,S-SRAM 模块可实现单端口模式、伪双端口模式和只读模式。下面 B-SRAM 以双端口模式,S-SRAM 以单端口模式为例来介绍 IP 调用。

6.1 B-SRAM 双端口模式

B-SRAM 双端口工作模式 (DP),可通过 DPB、DPX9B 原语实现。在 IP Core Generator 界面中,单击"DPB",界面右侧会显示 DPB 的相关信息概要。

IP 配置

在 IP Core Generator 界面中,双击"DPB",弹出 DPB 的 IP Customization 窗口。该窗口包括"File"配置框、"Options"配置框、端口显示框图和 "Help" 按钮,如图 6-1 所示。

UG285-1.2 51(57)

6IP 调用 6.1B-SRAM 双端口模式

🖺 IP Customization **DPB** File Part Number: GW2A-LV55PG1156C8/I7 Device: GW2A-55 E:\fpga_project\src\gowin_alu54 ... Module Name: Gowin DPB File Name: gowin_dpb Verilog dina[0:0] dinb[0:0] Options douta[0:0] doutb[0:0] Port A * ■ ada[0:0] adb[0:0] Address Depth: 2 Address Depth: 2 **^** + • Data Width: Data Width: Read Mode: Read Mode: Bypass Bypass - clka dkb Write Mode: Write Mode: Norma Resources Usage ce b Calculate DPB Usage: 1 DFF Usage: 0 —▶ reseta wreb 🕨 LUT Usage: 0 MUX Usage: 0 → wrea resetb < Reset Mode: Synchronous Asynchronous Memory Initialization File: ... Port A Port B Dimension Match: થ OK Cancel Help

图 6-1 DPB 的 IP Customization 窗口结构

- 1. File 配置框。File 配置框用于配置产生的 IP 设计文件的相关信息。
 - Device: 显示已配置的 Device 信息:
 - Part Number: 显示已配置的 Part Number 信息;
 - Language: 配置产生的 IP 设计文件的硬件描述语言。选择右侧下拉列表框,选择目标语言,支持 Verilog 和 VHDL;
 - Module Name: 配置产生的 IP 设计文件的 module name。在右侧文本框可重新编辑模块名称。Module Name 不能与原语名称相同,若相同,则报出 Error 提示;
 - File Name: 配置产生的 IP 设计文件的文件名。在右侧文本框可重新编辑文件名称:
 - Create In: 配置产生的 IP 设计文件的目标路径。可在右侧文本框中 重新编辑目标路径,也可通过文本框右侧选择按钮选择目标路径。
- 2. Options 配置框。Options 配置框用于用户自定义配置 IP, 双端口模式分为 A、B 两个端口,Options 配置框如图 6-1 所示。
 - Data Width & Address Depth: 配置地址深度(Address Depth)和数据宽度(Data Width)。当配置的地址深度和数据宽度无法通过单个模块实现时,IP Core 会实例化多个模块组合实现;
 - Resource Usage: 计算并显示当前容量配置上占用的 Block Ram、 DFF、LUT、MUX 的资源情况;
 - Read/Write Mode: 配置读写模式。DPB 支持以下模式:

UG285-1.2 52(57)

6IP 调用 6.1B-SRAM 双端口模式

- 两种读模式: Bypass 和 Pipeline;
- 三种写模式: Normal、Write-Through、Read-before-Write;
- Reset Mode: 配置复位模式,支持同步模式 "Synchronous" 和异步模式 "Asynchronous";
- Initialization: 配置初始值。初始值以二进制、十六进制或带地址十 六进制的格式写在初始化文件中。"Memory Initialization File"选取 的初始化文件可通过手写或者 IDE 菜单栏 "File > New > Memory Initialization File"产生,具体产生方式请参考文档 <u>SUG100</u>,Gowin 云源软件用户指南,初始化文件的格式请参考 7 初始化文件。

注!

- Options 配置框中可独立配置 DPB 的 Port A 和 Port B 的地址深度、数据宽度和读写模式。
- DPB 的 Port A 和 Port B 是对同一块 memory 进行读写,因此 Port A 和 Port B 的 Address Depth*Data Width 的结果必须相同。
- Options 配置中的初始化文件(Memory initialization File)中的数据宽度应与 Dimension Match 选择的 Port 数据宽度一致。
- 如 Port A 和 Port B 的 Address Depth*Data Width 的结果不同,则会弹出 Error 提示信息。
- 如数据宽度不一致,则产生的 DPB 实例 Init 值默认初始化为 0,并且在 Output 窗口中,会弹出如下提示信息: Error (MG2105): Initial values' width is unequal to user's width。

3. 端口显示框图

- 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端口的位宽根据 Options 配置实时更新,如图 6-1 所示;
- Options 配置中的 Port A 和 Port B 的地址深度 Address Depth 配置 影响地址的位宽,数据位宽 Data Width 配置影响输入数据和输出数据的位宽。

4. Help 按钮

单击"Help",显示 IP Core 的配置信息的页面。Help 页面包括当前 IP Core 的概要介绍,以及 Options 各项配置的简要说明。

IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

- IP 设计文件"gowin_dpb.v"为完整的 verilog 模块,根据用户的 IP 配置, 产生实例化的 DPB;
- IP 设计使用模板文件 gowin_dpb_tmp.v,为用户提供 IP 设计使用模板文件;
- IP 配置文件: "gowin_dpb.ipc",用户可加载该文件对 IP 进行配置。

注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

UG285-1.2 53(57)

6IP 调用 6.2S-SRAM 单端口模式

6.2 S-SRAM 单端口模式

RAM16S为S-SRAM单端口工作模式,可以通过RAM16S1、RAM16S2、RAM16S4 原语实现。在 IP Core Generator 界面中,单击"RAM16S",界面右侧会显示 RAM16S 的相关信息概要。

IP 配置

在 IP Core Generator 界面中,双击"RAM16S",弹出 RAM16S 的"IP Customization"窗口。该窗口包括"File"配置框、"Options"配置框、端口显示框图和"Help"按钮,如图 6-2 所示。

图 6-2 RAM16S 的 IP Customization 窗口结构

- 1. File 配置框。File 配置框用于配置产生的 IP 设计文件的相关信息。 RAM16S 的 File 配置框的使用和 B-SRAM 双端口模式类似,具体请参考 6.1B-SRAM 双端口模式的 File 配置框。
- 2. Options 配置框。Options 配置框用于用户自定义配置 IP。Options 配置框如图 6-2 所示。RAM16S 的 Options 配置框的使用和 B-SRAM 双端口模式类似,具体请参考 <u>6.1</u>B-SRAM 双端口模式的 Options 配置框。
- 3. 端口显示框图
 - 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端口的位宽根据 Options 配置实时更新,如图 6-2 所示;

UG285-1.2 54(57)

61P 调用 6.2S-SRAM 单端口模式

● Options 配置中的地址深度 "Address Depth"配置影响地址数据的 位宽,数据位宽"Data Width"配置影响输入数据和输出数据的位宽。

4. Help 按钮

单击"Help",显示 IP Core 的配置信息的页面。Help 页面包括当前 IP Core 的概要介绍,以及 Options 各项配置的简要说明。

IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

- IP 设计文件 "gowin_ram16s.v" 为完整的 verilog 模块,根据用户的 IP 配置,产生实例化的 RAM16S;
- IP 设计使用模板文件 gowin_ram16s_tmp.v,为用户提供 IP 设计使用模板文件;
- IP 配置文件: "gowin_ram16s.ipc",用户可加载该文件对 IP 进行配置。 注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

UG285-1.2 55(57)

7初始化文件

在 B-SRAM、S-SRAM 模式中,可以将存储器的每一位初始化为 0 或 1。 初始值以二进制、十六进制或带地址十六进制的格式写在初始化文件中。

7.1 二进制格式 (Bin File)

Bin 文件是由二进制数 0 和 1 组成的文本文件,行数代表存储器的地址深度,列数代表存储器的数据宽度。

#File format=Bin

#Address_depth=16

#Data width=32

0000110000010000000100100010000

100000001001000010000001000000

01000001000000100000010000000

00100000100001001100000011000000

7.2 十六进制格式(Hex File)

Hex 文件与 Bin 文件格式类似,由十六进制数 0~F 组成,行数代表存储器的地址深度,每一行数据的二进制位数,代表存储器的数据宽度。

#File_format=Hex

#Address_depth=8

#Data width=16

3A40

A₂₈E

0B52

1C49

D602

0801

03E6

UG285-1.2 56(57)

4C18

7.3 带地址十六进制格式(Address-Hex File)

Address-Hex 文件是在文件中对有数据记录的地址和数据都进行记录,地址和数据都是由十六进制数 0~F 组成,每行中冒号前面是地址,冒号后面是数据,文件中只对写入数据的地址和数据进行记录,没有记录的地址默认数据为 0~

#File_format=AddrHex

#Address_depth=256

#Data width=16

9:FFFF

23:00E0

2a:001F

30:1E00

UG285-1.2 57(57)

