

proof of quotients in C^* -algebras

 ${\bf Canonical\ name} \quad {\bf ProofOfQuotientsInCalgebras}$

Date of creation 2013-03-22 17:41:56 Last modified on 2013-03-22 17:41:56 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Proof

Classification msc 46L05

Proof: We have that \mathcal{I} is http://planetmath.org/InvolutaryRingself-adjoint, since it is a closed ideal of a http://planetmath.org/CAlgebra C^* -algebra (see http://planetmath.org/ClosedIdealsInCAlgebrasAreSelfAdjointthis entry). Hence, the involution in \mathcal{A} induces a well-defined involution in \mathcal{A}/\mathcal{I} by $(x+\mathcal{I})^* := x^* + \mathcal{I}$.

Recall that, since \mathcal{I} is closed, the quotient norm is indeed a norm in \mathcal{A}/\mathcal{I} that makes \mathcal{A}/\mathcal{I} a Banach algebra (see http://planetmath.org/QuotientsOfBanachAlgebrasthis entry). Thus we only have to prove the C^* to prove that \mathcal{A}/\mathcal{I} is a C^* -algebra.

Recall that http://planetmath.org/CAlgebrasHaveApproximateIdentities C^* -algebras have approximate identities. Notice that \mathcal{I} itself is a C^* -algebra and pick an approximate identity (e_{λ}) in \mathcal{I} such that

- each e_{λ} is positive.
- $||e_{\lambda}|| \leq 1$

We will only prove the case when \mathcal{A} has an identity element e. For the non-unital case, one can consider \mathcal{A} as a C^* -subalgebra of its minimal unitization and the same proof will still work.

Let $\|\cdot\|_q$ denote the quotient norm in \mathcal{A}/\mathcal{I} . We claim that for every $x \in \mathcal{A}$:

$$||x + \mathcal{I}||_q = \lim_{\lambda} ||x(e - e_{\lambda})|| \tag{1}$$

We will prove the above equality as a lemma at the end of the entry. Assuming this result, it follows that for every $a \in \mathcal{A}$

$$||x + \mathcal{I}||_q^2 = \lim ||x(e - e_{\lambda})||^2 = \lim ||(e - e_{\lambda})x^*x(e - e_{\lambda})|| \le \lim ||(e - e_{\lambda})|| ||x^*x(e - e_{\lambda})||$$

Since each e_{λ} is positive and $||e_{\lambda}|| \leq 1$ we know that its spectrum lies on the interval [0,1]. Hence $e-e_{\lambda}$ is also positive and its spectrum also lies on the interval [0,1]. Thus, $||e-e_{\lambda}|| \leq 1$. Therefore:

$$||x + \mathcal{I}||_q^2 \le \lim ||(e - e_\lambda)|| ||x^*x(e - e_\lambda)|| \le \lim ||x^*x(e - e_\lambda)|| = ||x^*x + \mathcal{I}||_q$$

Since \mathcal{A}/\mathcal{I} is a Banach algebra, we also have $||x^*x + \mathcal{I}||_q \leq ||x + \mathcal{I}||_q^2$ and so

$$||x + \mathcal{I}||_q^2 = ||x^*x + \mathcal{I}||_q$$

which proves that \mathcal{A}/\mathcal{I} is a C^* -algebra. \square

We now prove equality (1) as a lemma.

Lemma - Suppose \mathcal{A} is a C^* -algebra with identity element e. Let $\mathcal{I} \subset \mathcal{A}$ be a closed ideal and (e_{λ}) be an approximate identity in \mathcal{I} such that each e_{λ} is positive and $||e_{\lambda}|| \leq 1$. Then

$$||x + \mathcal{I}||_q = \lim_{\lambda} ||x(e - e_{\lambda})||$$

for every x in \mathcal{A} .

Proof: Since $y(e - e_{\lambda}) \longrightarrow 0$ for every $y \in \mathcal{I}$ it follows that

$$\limsup \|x(e - e_{\lambda})\| = \limsup \|x - xe_{\lambda} - y + ye_{\lambda}\|$$
$$= \limsup \|(x - y)(e - e_{\lambda})\|$$
$$\leq \|x - y\|$$

Therefore, taking the infimum over all $y \in \mathcal{I}$ we obtain:

$$\limsup \|x(e - e_{\lambda})\| \le \inf_{y \in \mathcal{I}} \|x - y\| = \|x + \mathcal{I}\|_q$$

Also, since $xe_{\lambda} \in \mathcal{I}$,

$$\lim\inf \|x(e-e_{\lambda})\| \ge \inf_{y\in\mathcal{I}} \|x-y\| = \|x+\mathcal{I}\|_q$$

and this proves the lemma. \square