Measure	Binary and undirected definitions	Weighted and directed definitions
Modularity	Modularity of the network (Newman, 2004b), $Q = \sum_{u \in M} \left[e_{uu} - \left(\sum_{v \in M} e_{uv} \right)^2 \right],$	Weighted modularity (Newman, 2004), $Q^{w} = \frac{1}{l^{w}} \sum_{i,j \in N} \left[w_{ij} - \frac{k_{i}^{w} k_{j}^{w}}{l^{w}} \right] \delta_{m_{i},m_{j}}.$ Directed modularity (Leicht and Newman, 2008), $Q^{\rightarrow} = \frac{1}{l} \sum_{i,j \in N} \left[a_{ij} - \frac{k_{i}^{\text{out}} k_{i}^{\text{in}}}{l} \right] \delta_{m_{i},m_{j}}.$
	where the network is fully subdivided into a set of nonoverlapping modules M , and e_{uv} is the proportion of all links that connect nodes in module u with nodes in module v . An equivalent alternative formulation of the modularity (Newman, 2006) is given by $Q = \frac{1}{T} \sum_{i,j \in N} \left(a_{ij} - \frac{k_i k_j}{T} \right) \delta_{m_i, m_j}$, where m_i is the module containing node i , and $\delta_{m_i, m_j} = 1$ if $m_i = m_j$, and 0 otherwise.	
Measures of centrality Closeness centrality	Closeness centrality of node i (e.g. Freeman, 1978), $L_i^{-1} = \frac{n-1}{\sum_{j \in N, j \neq i} d_{ij}}.$	Weighted closeness centrality, $(L_i^{w})^{-1} = \frac{n-1}{\sum_{j\in N, j\neq i} d_{ij}^{w}}$. Directed closeness centrality, $(L_i^{\rightarrow})^{-1} = \frac{n-1}{\sum_{j\in N, j\neq i} d_{ij}^{\rightarrow}}$.
Betweenness centrality	Betweenness centrality of node i (e.g., Freeman, 1978), $b_i = \frac{1}{(n-1)(n-2)} \sum_{\substack{h,j \in N \\ h \neq j, h \neq i, j \neq i,}} \frac{\rho_{hj}(i)}{\rho_{hj}},$	Betweenness centrality is computed equivalently on weighted and directed networks, provided that path lengths are computed on respective weighted or directed paths.
Within-module degree z-score	where ρ_{hj} is the number of shortest paths between h and j , and ρ_{hj} (i) is the number of shortest paths between h and j that pass through i . Within-module degree z -score of node i (Guimera and Amaral, 2005), $z_i = \frac{k_i(m_i) - \overline{k}(m_i)}{\sigma^{k(m_i)}},$	Weighted within-module degree z-score, $z_i^{w} = \frac{k_i^{w}(m_i) - \overline{k}^{w}(m_i)}{\sigma^{k^{w}(m_i)}}$. Within-module out-degree z-score, $z_i^{out} = \frac{k_i^{out}(m_i) - \overline{k}^{out}(m_i)}{\sigma^{k^{out}(m_i)}}$. Within-module in-degree z-score, $z_i^{in} = \frac{k_i^{in}(m_i) - \overline{k}^{in}(m_i)}{\sigma^{k^{in}}(m_i)}$.
	where m_i is the module containing node i , k_i (m_i) is the within-module degree of i (the number of links between i and all other nodes in m_i), and $\overline{k}(m_i)$ and $\sigma^{k(m_i)}$ are the respective mean and standard deviation of the within-module m_i degree distribution.	

Network / Graph topology: It's a Small World After All

