Reinforcement learning

© Paweł Kułakowski, AGH Kraków

Co wstrzymuje rozwój AI?

- 1. Computing (Moore's law, CPU/GPU, ASICs)
- 2. Data (complete and tidy, labeled)

Andrej Karpathy

- 3. Algorithms: research and ideas: backprop, CNNs, transformers, etc.
- 4. Infrastructure (Python, TensorFlow, Cloud Computing, Git)

"Expert data sets are often expensive, unreliable or simply unavailable. [...] Reinforcement learning systems are trained from their own experience, in principle allowing them to exceed human capabilities, and to operate in domains where human expertise is lacking."

David Silver

Uczenie ze wzmocnieniem

reinforcement learning (RL)

- obserwacja aktualnego STANU
- wybór określonej AKCJI
- uzyskanie NAGRODY/KARY

© towardsdatascience.com

Główne wyzwanie:

- adekwatne środowisko symulacyjne

Co zyskujemy?

- rozwiązania, niekonieczne zgodne z naszym oczekiwaniem

RL: agent, interakcja ze środowiskiem

Założenie 1: czas jest dyskretny

Założenie 2: stan zależy tylko od bieżącej obserwacji *Markov Decision Process*

Reinforcement vs supervised learning

Uczenie ze wzmocnieniem:

nie potrzebujemy danych(!)
 ale konieczne jest środowisko
 i zdefiniowane nagrody

 kolejne stany zależą od siebie (sekwencja: STAN-AKCJA-STAN-AKCJA...)

nagroda (feedback) może przyjść
 z opóźnieniem

Gdzie stosować RL?

1. Autonomiczna nawigacja/prowadzenie pojazdów (samochody, drony, roboty, itd)

2. AI dla gier

3. Robotyka

4. Inwestycje finansowe, transakcje giełdowe

W każdym wypadku potrzebujemy odpowiedniego środowiska dla RL!

Q-learning

Przykład z dziedziny gier: Wędrówka przez labirynt

STAN (s): B2

AKCJA (a): PRAWO

NAGRODA (r): -20

STAN (s): C2

AKCJA (a): ...

Kolejne gry: gromadzenie doświadczenia: (s, a, r, s)

Q-learning: podejmowanie decyzji

Konstruowanie tablicy Q-table:

	↑	\	←	\rightarrow	
A1					
A2					
A3					
A4					
B1					
B2	0	X	0	-20	???
•••					
D4					
	İ				

Q-learning: wartości akcji

Jak ocenić wartość akcji a w stanie s (Q-value)?

Równanie Bellmana:

Q-learning: proces uczenia

Równanie Bellmana:

$$Q(s,a) = r + \gamma \max(Q(s',a'))$$

Aktualizacja wartości po zdobyciu nowego doświadczenia:

$$Q_{\text{new}}(s,a) = Q(s,a) + \alpha [r + \gamma \max (Q(s',a')) - Q(s,a)]$$
szybkość uczenia

Q-learning: to explore or to exploit?

Exploitation:

→ wybór najlepszej akcji wg aktualnej wiedzy (Q-table)

Exploration (np. z p-stwem ε):

→ wybór losowej akcji

Opinie?

Q-table (γ =0.9)

	↑	\	←	\rightarrow	
A1	0	X	X	20	
A2	0	18	X	0	
A3	0	16.2	X	0	
A4	X	0	X	-20	
B1	X	X	18	18	
B2	0	X	16.2	-20	
•••	•••	•••	•••	•••	
D4	X	45	X	X	

Podejścia zaawansowane #1: policy-based

Policy π (s)

→ strategia 'co robić' (jaką akcję a wybrać) w stanie s

Strategie deterministyczne:
$$\pi(s_i) = a_i$$

Strategie stochastyczne/probabilistyczne: $\pi (a_i | s_i) = P(a_i | s_i)$

Np. dla wcześniejszego labiryntu:
$$\mathbf{P}(s=B2) = a: \uparrow (16\%), \leftarrow (73\%), \rightarrow (11\%)$$

- → wybierając akcję próbkujemy rozkład **P**
- → problem exploit/explore automatycznie rozwiązany

Policy gradient + deep neural network

Policy π (s)

Prawdopodobieństwa możliwych AKCJI a₁, ..., a_m:

Wektor danych opisujący STAN s.:

- → DNN: uniwersalny aproksymator :-)
- → w propagacji wstecznej liczymy gradient... ascent

Klasycznie, minimalizujemy funkcję kosztu ⇒ gradient descent

Tutaj maksymalizujemy **sumaryczną nagrodę** ⇒ gradient ascent

Narzędzia na dobry początek

→ Gymnasium (OpenAI Gym): gry video, fizyczne modele ruchu obiektów, i inne

→ Stable Baseline3 (OpenAI) implementacja szeregu algorytmów typu RL

- → Pyqlearning
- → Tensorforce

Ant

Hopper

Przykład gry Pong z podejściem policy-based

- → wektor stanu: 100 800 elementów (różnica dwóch kolejnych klatek, każda 210×160 pikseli RGB)
- → 2 możliwe akcje: ruch paletki góra/dół
- → nagrody: +1 wygrana, -1 porażka

Trening:

- nagroda pozwala na aktualizację parametrów sieci dopiero po ukończonej grze
- człowiek korzysta z intuicji dot. praw fizyki, RL startuje od zera
- RL by Karpathy: 3 noce treningu, wynik trochę lepszy niż bazowe AI
- czy można lepiej?

Podejścia zaawansowane #2: value-based

Celem jest obliczenie wartości Q(s,a)

Opcja 1. Podstawowe Q-learning

Opcja 2. Sieć neuronowa przewiduje Q(s,a):

Wektor danych opisujący STAN s.: $\begin{array}{c|c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \dots \\ x_n \end{array}$

Deep Q-Network (DQN)

Równanie Bellmana:

 $Q(s,a) = r + \gamma \max(Q(s',a'))$ Hunkcja kosztu (mse*) do propagacji wstecznej:

$$J = [r + \gamma \max (Q (s',a',\theta)) - Q(s,a,\theta)]^{2}$$
Szacowane przez DQN

Exploitation/exploration

→ kontrolowane

przez parametr ε

^{*} Mean Square Error. Gdy koszt (błąd przewidywania sieci) jest bardzo duży, to stosowany jest Mean Absolute Error. Dobry tutorial z MIT: https://cbmm.mit.edu/video/tutorial-reinforcement-learning-10733

DQN tricks and hacks

Efekt: AI dla 49 gier na tej samej sieci i tych samych hiperparametrach*

Everything together... multiplied → A3C

Asynchronous Advantage Actor-Critic algorithm

Mechanizmy:

1. Asynchronous:

wielu agentów jednocześnie zbiera doświadczenie na swoich kopiach środowiska

2. Actor-Critic:

oba podejścia: sieć Actor (policy-based) wspierana danymi z sieci Critic (value-based)

3. Advantage:

obliczanie wartości danej akcji w porównaniu ze średnią wartością strategii danego stanu

AI dla gier (DeepMind)

→ Monte Carlo Tree Search

- discrete
- deterministic
- with perfect information

- → Supervised (~milion gier) + multi-agent RL
- → Actor-Critic
- → Obserwacja gry przez sieć LSTM

Seria zwycięstw z topowymi graczami (m.in Grzegorz 'MaNa' Komincz)

Robot z kostką Rubika (OpenAI)

- → Algorytm RL: Proximal Policy Optimization (Advantage Actor-Critic z kontrolą tempa zmian parametrów sieci)
- → sieci splotowe, LSTM
- → symulacja z dużą losowością (domain randomization)
 - + trening na rzeczywistym robocie

Nawigacja/wyścigi samochodowe (Sony AI)

- → Algorytm QR-SAC (wersja Actor-Critic)
- → experience replay buffers
- → aspekty: kontrola pojazdu, taktyka na torze, etykieta
- → długa lista nagród i kar (dot. środka trasy, ścian, wyprzedzania, kolizje, itp.)

Wygrane wyścigi z najlepszymi zawodnikami Gran Turismo

RL w 802.11 (projekt Sz. Szotta)

RL: co zapamiętać

- 1. RL: bez danych, ale ze środowiskiem symulacyjnym
- 2. Uczenie: stan, akcja, nagroda, kolejny stan
- 3. Uczymy się strategii i/lub wartości (opłacalności) danych akcji
- 4. Głębokie sieci neuronowe zawsze się przydają
- **5.** Nowoczesne algorytmy: everything combined :-)

Dziękuję!

Pytania?

Komentarze?