AVALIAÇÃO DA ATIVIDADE POZOLÂNICA DA CINZA DO BAGAÇO DE CANA-DE-AÇÚCAR

Marcos Oliveira de Paula¹, Ilda de Fátima Ferreira Tinôco², Conrado de Souza Rodrigues³, Elizabeth Neire da Silva⁴, Cecília de Fátima Souza⁵

RESUMO

Neste trabalho, teve-se como objetivo avaliar as potencialidades de utilização da cinza do bagaço da cana-de-açúcar (CBC) como material pozolânico. A presente investigação foi conduzida no DEA/UFV, e contou com a colaboração da infra-estrutura de diversos laboratórios da UFV, UFOP e UENF. A CBC empregada neste estudo foi obtida do bagaço cana-de-açúcar, originária da indústria Jatiboca, localizada na cidade de Ponte Nova/MG. O trabalho foi dividido em duas fases: obtenção e caracterização da CBC e avaliação do seu emprego como material pozolânico, por meio de ensaio mecânico. Os resultados mostraram que o bagaço da cana-de-açúcar apresenta rendimento de CBC de 10%. A CBC em estudo apresentou 84% de SiO₂ e 5% de carbono. A sílica na CBC apresenta-se, tanto na fase amorfa quanto nas fases cristalinas, de cristobalita e quartzo. Os resultados encontrados para a composição granulométrica e área de superfície demonstraram que a cinza em estudo é composta por partículas com tamanhos entre 1 e 14 μm e com uma área de superfície específica da ordem de 24 m²/g. Os resultados encontrados comprovam a pozolanicidade da CBC.

Palavras-chave: manejo de resíduos, materiais de construção, resíduo agroindustrial.

ABSTRACT

Evaluation of Pozzolanic Acivity of the Sugarcane Bagasse Ash

This study was done to evaluate the potential of using the sugarcane bagasse ash (SBA) as pozzolanic material. The study was done at DEA/UFV, in collaboration with the infrastructure of several laboratories of UFV, UFOP and UENF. The residue generated at the Jatiboca sugar mill located in Urucânia county-MG was used to produce SBA. The SBA was characterized and evaluated for compressive strength to be used used as pozzolanic material. Sugarcane bagasse yielded 10% ash, which had 84% SiO₂ and 5% carbon. The SBA silica is either in amorphous or crystalline form of crystobalite and quartz. The particle size ranged from 1 to 14 μm with specific surface area of 24 m^2/g . The pozzolan activity indices corroborated the reactivity by SBA.

Keywords: solid waste management, building materials, sustainable development.

Recebido para publicação em 08.11.2006 Aprovado em 14.05.2008

¹Eng° Civil, Estudante de Pós Graduação, Depto de Eng. Agrícola, UFV, Viçosa–MG, (031) 91725297, e-mail: modep@vicosa.ufv.br .

²Eng^a Agrícola, Prof. Adjunta, Depto de Eng. Agrícola, UFV, Viçosa-MG.

³Eng^o Civil, Prof. CEFET-MG.

⁴Eng^a Florestal, Estudante de Pós Graduação, Depto de Eng. Florestal, UFV, Vicosa-MG.

⁵Eng^a Agrícola, Prof. Adjunta, Depto de Eng. Agrícola, UFV, Viçosa-MG.

INTRODUÇÃO

O meio rural, além das atividades agropecuárias e florestais, abriga também atividades industriais como produção de açúcar e álcool, mineração, transformação, abate de animais, entre outras, que geram grandes quantidades de resíduos poluentes, quase sempre danosos ao meio ambiente. Grande parte desses resíduos pode ser reciclada, reutilizada, transformada e incorporada, de modo a produzir novos materiais de construção e atender à crescente demanda por tecnologia mais simples, eficiente e econômica de construção.

A reciclagem destes materiais apresenta inúmeras vantagens, dentre elas: redução no volume de resíduos destinados a aterros sanitários e, consequentemente, diminuição no risco de contaminação do meio ambiente; redução na quantidade de matéria-prima necessária à produção de materiais para construção, preservando, assim, os recursos naturais. Além disso. significativamente a liberação de CO₂ para a gerado em atmosfera, gás arande quantidade durante produção, a exemplo, do cimento Portland e da cal, tanto pela queima do combustível quanto pela descarbonatação da rocha calcária (JOHN, 1999).

Grande quantidade de resíduos (biomassa) são utilizados para a geração de energia por meio da queima, que podem ser empregados na construção civil, hoje praticamente ignorados pelo mercado е até pesquisadores brasileiros. O aproveitamento destes resíduos gera consideráveis quantidades de cinza, que demandam condições específicas de disposição (SOUZA et al., 1999). Dentre os resíduos passíveis de aproveitamento. destacam-se minerais oriundas de diferentes atividades agroindustriais. aue apresentam porcentagens de sílica e de outros óxidos, podendo ser utilizadas como pozolanas. A pozolanicidade de um material pode ser avaliada por métodos químicos, físicos e mecânicos (FREIRE, 2003).

A principal propriedade de uma pozolana é a sua capacidade de reagir e se combinar com o hidróxido de cálcio, formando compostos estáveis de poder aglomerante, tais como os silicatos e aluminatos de cálcio hidratados. Assim, no cimento Portland, o hidróxido de cálcio liberado pela hidratação dos silicatos reage com a pozolana, resultando em uma produção extra de silicatos de cálcio hidratados, que são os produtos mais estáveis do cimento Portland, responsáveis pela resistência e durabilidade das argamassas e concretos (OLIVEIRA et al., 2004).

A aplicação da cinza do bagaço da canade-açúcar como material pozolânico obedece a dois fatores: o rendimento da cinza e a sua constituição química. É importante salientar que a cana-de-açúcar está sendo, cada vez mais, empregada como fonte de combustível, indicando aumento substancial da geração da cinza do bagaço da cana-de-açúcar (CBC).

Com base no exposto, na presente pesquisa, teve-se como objetivo avaliar o potencial de utilização da cinza do bagaço de cana-de-açúcar como material pozolânico.

MATERIAL E MÉTODOS

A presente investigação foi conduzida no Departamento de Engenharia Agrícola da Universidade Federal de Viçosa, cidade de Viçosa/MG, e contou com a colaboração da infra-estrutura de diversos laboratórios como: Laboratório de Construções Rurais - DEA/UFV; Laboratório de Painéis e Energia - DEF/UFV; Núcleo de Valorização de Materiais Minerais - UFOP.

A cinza de bagaço de cana-de-açúcar (CBC) empregada neste estudo foi obtida do bagaço da cana-de-açúcar coletado na da Usina Jatiboca, localizada no município de Urucânia-MG, localizada a 200 km de Belo Horizonte. Após a coleta, o bagaço da canade-açúcar foi levado ao Departamento de Química, onde foi incinerada a 700°C, por 3 horas, utilizando-se uma mufla da marca Thermo Kiln, modelo KK260 SO 1060. Após a queima, a CBC foi resfriada, naturalmente, e levada ao Departamento de Engenharia Agrícola, Área de Construções Rurais, onde foi quantificado o teor de carbono e realizada a moagem utilizando-se um moinho de bolas. O tempo estabelecido para moagem da CBC foi de 11 horas.

A caracterização química da CBC foi realizada com base nos ensaios de espectroscopia de fluorescência de Raios-X e difração de Raios-X, enquanto que, para a análise física, foi realizado o ensaio de granulometria, por difração a laser.

A atividade pozolânica da cinza foi avaliada por meio da determinação do índice de atividade pozolânica com cimento Portland (IAP), conforme NBR 5752 (1992) da ABNT. O índice de atividade pozolânica é definido utilizando-se a Equação 1:

$$IAP = \frac{f_{cp}}{f_{cc}} \times 100 \tag{1}$$

em que,

Fcp = resistência à compressão média, aos 28 dias, dos corpos-de-prova moldados com cimento Portland e cinza (material pozolânico);

Fcc = resistência à compressão média, aos 28 dias, dos corpos-de-prova moldados somente com cimento Portland.

Nesta etapa do trabalho, além do cimento CPV, ARI e PLUS (Cimento Portland de Alta Resistência Inicial) da marca Barroso, foi utilizada a Areia Normal Brasileira, cuja produção está normalizada na NBR 7214 (1982) da ABNT.

Para os ensaios de resistência à compressão, foram moldados corpos-deprova com traço 1:3 (cimento: areia) e com relação a/c = 0,48, com 5 cm de diâmetro e de altura. seguindo-se procedimentos indicados na norma NBR 7215 (1991) da ABNT, no Laboratório de Engenharia Civil/UFV. Foram preparados corpos-de-prova com as diferentes combinações de cimento-cinza, a saber: C1 (100-0), C2 (90-10), C3 (80-20), C4 (70-30) [% de cimento - % de cinza, em massa], utilizando-se um misturador mecânico para amostras. Para cada preparar as combinação de cimento-cinza. foram moldados 6 corpos-de-prova, destinados aos ensaios de resistência à compressão

simples aos 28 dias após a moldagem dos corpos-de-prova.

experimento desenvolvido foi delineamento experimental adotando-se inteiramente casualizado, constituído de 4 tratamentos, ou seja: 3 níveis de adição de CBC e um tratamento testemunha (100% cimento), com 6 repetições. Os melhores níveis de adição de CBC foram avaliados com base no teste de Tukey, para todas as combinações, aos 28 dias após a moldagem.

RESULTADOS E DISCUSSÕES

No Quadro 1, apresenta-se a composição química da CBC. Neste caso, a cinza apresenta baixo teor de carbono (5%) e em decorrência disso possui cor cinza clara. Segundo COOK (1996), em materiais à base de cimento com incorporação de cinza, a presença de até 20% de carbono na cinza não afetou significativamente a resistência à compressão. De acordo com os dados apresentados no Quadro 1, observa-se que a composição química da CBC assemelhase àquelas relatadas por FREITAS et al. (1998) e CORDEIRO (2008), com teor de sílica de cerca de 80%.

O espectro de difração da CBC está mostrado na Figura 1, onde a intensidade das fases, em contagens por segundo (CPS), é dada em função do ângulo de difração, 20.

Analisando-se a Figura 1, observa-se um halo entre 2θ =06 e 18° e entre 24 a 40° , que caracteriza a fase amorfa. Os picos $(2\theta$ = 21° e 2θ = 27°) indicam que a estrutura da CBC apresenta as fases cristalinas da sílica, cristobalita (C) e quartzo (Q), além de cristais de muscovita (M).

A presença de SiO₂ na fase de quartzo, pode ter ocorrido devido aos seguintes fatores: a) ocorrência de contaminação do bagaço por areia, uma vez que este é despejado no pátio da indústria. Neste caso, a presença de quartzo pode ser evitada com a lavagem do bagaço; b) ocorrência em decorrência do processo da queima.

Quadro 1. Composição química da CBC realizada por espectroscopia de fluorescência de Raios-X

Composto químico	Composição (%)	
SiO ₂	83,707	
Fe ₂ O ₃	6,537	
K_2O	6,146	
CaO	1,183	
TiO ₂	1,162	
SO_3	0,682	
ZrO_2	0,303	
Cr_2O_3	0,094	
MnO	0,081	
Sc_2O_3	0,040	
ZnO	0,037	
V_2O_5	0,029	

Figura 1. Análise de difração de Raio-X da CBC.

Com base nos ensaios de composição granulométrica e superfície específica, observou-se que: a amostra de CBC é compostas por partículas com tamanho entre 1 e 14 μ m, com os tamanhos médios, nos diferentes períodos de moagem, variando de cerca de 3 μ m a cerca de 12 μ m; os valores de superfície específica mantiveram-se próximos de 24 m²/g.

Na análise de variância aplicada aos dados de resistência à compressão, verificou-se, em nível de 5% de probabilidade, pelo teste Tukey, alto grau de significância para combinações aos 28 dias após a moldagem dos corpos-de-prova.

Os maiores valores de resistência foram obtidos quando se fez as combinações C1, C2 e C3, estatisticamente iguais entre si (Quadro 2). Este emparelhamento da resistência aos 28 dias após a moldagem indicaram que a reação pozolânica tem início entre 7 e 15 dias após a mistura, quando a hidratação do cimento apresenta já em estado avançado, conforme observado por Rodrigues (2006).resultados apontam a possibilidade de se substituir até 20% do cimento Portland por cinzas de bagaço de cana-de-açúcar, sem prejudicar a resistência dos corpos-de-prova à compressão.

Quadro 2. Valores médios da resistência a compressão (fcm) aos 28 dias de idade na argamassa sem CBC e com adição de CBC no níveis de 10, 20 e 30% (C2, C3 e C4 respectivamente).

Idade	Mistura			
luaue	C1	C2	C3	C4
fc28	48,0 a	47,8 a	46,9 a	40,7 b

^{*} As médias seguidas de pelo menos uma mesma letra não diferem entre si, em nível de 5% de probabilidade, pelo teste Tukey

Quadro 3. Resultados dos ensaios de resistência à compressão na argamassa, aos 28 dias após a moldagem dos corpos-de-prova.

Mistura	Resistência média* (MPa) aos 28 dias	Atividade Pozolânica (%)
C1	47,8	100
C2	48,0	100
C3	46,9	99
C4	40,7	86

^{*}Média de 6 corpos de prova

Os resultados apresentados no Quadro 3 indicaram que os índices de atividade pozolânica, obtidos para cada combinação cimento-cinza, são valores superiores, com valor mínimo de 75%, conforme estabelecido na NBR 5752 (1992), logo, o material pode ser classificado como pozolana.

CONCLUSÕES

Com base nos resultados obtidos, podese concluir que:

- O bagaço de cana-de-açúcar proporcionou rendimento de CBC de 10%, com teor SiO₂ de 84% e de carbono de 5%;
- Na CBC, a sílica apresentou-se tanto na fase amorfa como nas fases cristalinas (cristobalita e quartzo).
- A cinza de cana-de-acúcar apresentou partículas com tamanhos entre 1 e 14 μm e com superfície específica da ordem de 24 m^2/g ;
- Os resultados encontrados comprovam a pozolanicidade da CBC.
- Cinzas de bagaço de cana-de-açúcar puderam substituir até 20% do cimento Portland no preparo de argamassas, sem prejuízo da resistência, à compressão, dos corpos-de-prova.

AGRADECIMENTOS

À Universidade Federal de Viçosa, nos seus diversos seguimentos, em especial ao Departamento de Engenharia Agrícola e Ambiental.

À FAPEMIG, pelo financiamento do projeto e pela bolsa de Iniciação científica e de apoio técnico, e a CAPES, pela concessão da bolsa de estudos.

REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5752: Materiais pozolânicos - Determinação de atividade pozolânica com cimento Portland - Índice de atividade pozolânica com cimento. Rio de Janeiro, 1992. 3p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7214: Areia Normal para Ensaio de Cimento. Rio de Janeiro, 1982. 7p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: Cimento Portland – Determinação da resistência a compressão. Rio de Janeiro, 1991. 7p.

COOK, D.J. Rice husk ash. In: Swamy, R.N (ed). **Concrete technology and design**-v.3: Cement replacement materials, Blackie & Son Ltd, London, 1996. 138 p

CORDEIRO, G.C.; TOLEDO FILHO, R.D.; FAIRBAIRN, E.M.R.; TAVARES, L.M.M. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. **Cement & Concrete Composites**, v. 30, p. 410-418, 2008.

FREIRE, W.J. **Tecnologias e materiais alternativos de construção.** Campinas, SP: Editora Unicamp, 2003. 332p.

FREITAS, E.G.A.; RODRIGUES, E.H.V.; ARAUJO, R.C.L.; FAY, I. Efeito da adição de cinzas de bagaço de cana na resistência à compressão de argamassa normal. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 27., 1998, Poços de Caldas. Anais... Lavras: Sociedade Brasileira de Engenharia Agrícola, 1998. v.4, p.219-221.

JOHN, V.M.J. Panorama sobre a reciclagem de resíduos na construção civil. In: SEMINÁRIO DESENVOLVIMENTO SUSTENTÁVEL E A RECICLAGEM NA CONSTRUÇÃO CIVIL, 2., São Paulo, 1999. Anais. São Paulo, IBRACON, 1999. p.44-55.

OLIVEIRA, M.P.; NÓBREGA, A.F.; CAMPO, M.S.; BARBOSA, N.P. Estudo do caulim calcinado como material de substituição parcial do cimento Portland. Conferencia Brasileira de Materiais e Tecnologias Não-Convencionais: Habitação e Infra-estrutura de Interesse Social, Pirassununga, SP, **Anais...**, Pirassununga: NOCMAT, 2004. p. 15 – 30.

SOUZA, U.E.L.; REIS, G.G; REZENDE, J.L.P.; OLIVEIRA, A.D. Desperdício de materiais nos canteiros de obras: a quebra do mito. In: SIMPÓSIO NACIONAL — DESPERDÍCIO DE MATERIAIS NOS CANTEIROS DE OBRAS: A QUEBRA DO MITO. São Paulo, 1999. **Anais...** São Paulo (PCC/EPUSP), 1999. 48p.

RODRIGUES, C. S.; GHAVAMI,, KHOSROW; STROEVEN, P. Porosity and water permeability of rice husk ash-blended cement composites reinforced with bamboo pulp. **Journal of Materials Science**, v.41, p.6925-6937, 2006.