Deep Learning

1주차

12기 이두형 12기 임효진

Curriculum

- 1. 딥러닝 소개 및 기초 (XOR문제, 퍼셉트론, 활성화 함수 등)
- 2. Multi-layer Neural Network (Loss Function, Gradient Descending, Backpropagation, MNIST practice)
- 3. CNN 소개 및 기초 (Convolution, Padding, Stride, Pooling등 기초 개념 소개)
- 4. CNN 실습 (세션 후 조별 과제 부여)
- 5. RNN, LSTM, GRU 소개 및 기초
- 6. seq2seq 소개 및 실습 (세션 후 조별 과제 부여)
- 7. 프로젝트 발표

kaggle

colab

- Google Duplex: https://youtu.be/znNe4pMCsD4
- Word Lens: https://youtu.be/h2OfQdYrHRs
- Google Assistant: https://youtu.be/Pk6a6mvOoJA

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

Machine Learning

- Input data point
- Examples of the expected output
- A way to measure whether the algorithm is doing a good job

Deep Learning

Deep Learning is Representation Learning

(aka Feature Learning)

Machine Learning

Deep Learning

ML vs DL

- 1. Data Dependency
- 2. Hardware Dependency
- 3. Execution Time
- 4. Interpretability

Why now?

- Big Data
 - Larger Datasets
 - Easier Collection & Storage
- Hardware
 - GPU
 - o Massively Parallelizable
- Software
 - Improved Techniques
 - Toolboxes

www.shivonzilis.com/machineintelligence

Growing Use of Deep Learning at Google

Across many products/areas: Android Apps drug discovery Gmail Image understanding Maps Natural language understanding Photos Robotics research Speech Translation YouTube ... many others ...

Bloomberg BETA

Perceptron

$$y = \begin{cases} 0 & (w_1 x_1 + w_2 x_2 \le \theta) \\ 1 & (w_1 x_1 + w_2 x_2 > \theta) \end{cases}$$

$$y = \begin{cases} 0 & (b + w_1 x_1 + w_2 x_2 \le 0) \\ 1 & (b + w_1 x_1 + w_2 x_2 > 0) \end{cases}$$

• AND

<i>x</i> ₁	<i>x</i> ₂	у
0	0	0
1	0	0
0	1	0

NAND

<i>X</i> ₁	<i>X</i> ₂	у
0	0	1
1	0	1
0	1	1
1	1	0

OR

x_1	x_2	у
0	0	0
1	0	1
0	1	1
1	1	1

• XOR

x_1	x_2	y
0	0	0
1	0	1
0	1	1
1	1	0

$$y = \begin{cases} 0 & (-0.5 + x_1 + x_2 \le 0) \\ 1 & (-0.5 + x_1 + x_2 > 0) \end{cases}$$

The Perceptron: Forward Propagation

Dense layer from scratch


```
class MyDenseLayer(tf.keras.layers.Layer):
 def init (self, input dim, output dim):
   super(MyDenseLayer, self). init ()
   self.W = self.add_weight([input_dim, output_dim])
   self.b = self.add weight([1, output dim])
 def call(self, inputs):
   z = tf.matmul(inputs, self.W) + self.b
   output = tf.math.sigmoid(z)
   return output
```


- Vanishing gradients
- Not zero centered

Vanishing gradients

ReLU

Not zero centered

Leaky RELU/Parametric RELU

ELU

Maxout

$$f(x) = max(w_1^Tx + b_1, w_2^Tx + b_2)$$

Regression vs Classification

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

$$f(x) = x$$
 for all elements x in M .[1]

$$softmax(x) = \frac{x_i}{\sum_{j=0}^{k} e^{x_j}} (i = 0, 1, ... k)$$

Loss Functions

- Loss function quantifies gap between prediction and ground truth
- For regression:
 - Mean Squared Error (MSE)
- For classification:
 - Cross Entropy Loss

Mean Squared Error

$$MSE = rac{1}{N}\sum_{i=1}^{\text{Prediction}} (t_i - s_i)^2$$

Cross Entropy Loss

Classes Prediction
$$CE = -\sum_{i}^{C} t_{i} log(s_{i})$$
 Ground Truth {0,1}

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

#

loss = tf.reduce_mean(tf.square(tf.subtract(y, predicted)))

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$J(W) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; W) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; W) \right)$$
Actual Predicted Actual Predicted

loss = tf.reduce mean(tf.nn.softmax cross entropy with logits(y, predicted))

