

RONDA 2 Olimpiada Departamental de Física NIVEL II

Nombre Completo:
Fecha de Nacimiento:
Dirección:
Departamento:
Teléfono:
Institución Educativa:

Problema 1: Considere una gota de agua de masa m = 0.06 g que cae desde las nubes a una altura h = 5000 m y a una temperatura $T_n = 250 K$ hasta el suelo a temperatura $T_s = 300 K$. Determine el calor que la gota le extrajo al ambiente después de chocar con el suelo, si la capacidad calorífica especifica del agua es c = 4.186 J/g.

Problema 2: Se tienen una esfera conductora fija de radio R = 1 m inicialmente descargada a la cual se le están lanzando partículas con carga $q = 0.1 \mu c$ y masa m = 10 g desde muy lejos a una velocidad $v = 1.5 \, m/s$ con dirección hacia el centro de la esfera. Cuando las partículas chocan con la esfera, le seden su carga y se alejan, entonces:

- a) Si en un dado momento la carga de la esfera es Q. Escriba la expresión algebraica para el potencial eléctrico en la superficie de la esfera, y para la energía cinética inicial de cada partícula lanzada.
- b) Explique por qué dejarán de chocar las partículas sobre la esfera. Además, calcule cuantas partículas chocaran sobre la esfera.

Cada problema vale: 10 puntos

Problema 3: En el diagrama inferior se sabe que $P_0 = 3 \times 10^5$ Pa, $P_1 = 10^5$ Pa, $P_2 = 4 \times 10^5$ Pa, $(V_2 - V_1) = 0.01$ m^3 y que los segmentos $4 \rightarrow 3$ y $2 \rightarrow 1$ del ciclo son horizontales. Determine el trabajo W realizado por un gas ideal que sigue un ciclo cerrado $1 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$ como se muestra en el diagrama.

Nota: Recuerde que, para dos triángulos semejantes con alturas y bases, a_1 , b_1 y a_2 , b_2 , respectivamente. Se cumple que $\frac{a_1}{b_1}=\frac{a_2}{b_2}$.

Problema 4: Considere una lámpara que siempre utiliza una potencia P=1 *Watts* para funcionar. Si queremos reducir las pérdidas de energía, ¿Deberíamos conectar una batería de 8, 5 o 3 *voltios*? La resistencia interna del circuito es r=1 Ω .

Nota: Debido a que la corriente inicial es **0**, escoja la solución matemática de menor corriente como la corriente real para cada caso.

Problema 5: Se tienen n moles de un gas ideal diatómico aislado a una temperatura T_0 , dentro de un recipiente que se expande de forma que la presión del gas sea siempre P_0 . Se llama **decaimiento** al proceso por el cual una molécula se rompe en los dos átomos que la componen. Cuando todas las moléculas de gas decaen, debido a este fenómeno, el gas se expande desde V hasta kV. Calcule:

- a) ¿Cuál es la nueva temperatura del gas?
- b) ¿Cuánta energía se libera en cada decaimiento?