Aristos & Lysi: Efficient MoE Collective Communication and Pipelining

Notation	Description
H(x, y)	Heaviside Function $H(x)$, where $H(0) = y$ following [Con23]
k	Number of experts selected during token routing, $k \in \mathbb{N}$ see top_k in [Sha+17; FZS22]
X	Set of all experts
N	Set of all nodes, $N \subset \mathbb{Z}^+$
J_n	Set of all ranks in node $n, J_n \subset \mathbb{Z}^+$
W	World of workers, note $ N \cdot J_n = W > 0$
ε	Optimism factor, $\varepsilon \in \{0, \ldots, W -1\} \subset \mathbb{Z}^+, \forall w \in W \ \varepsilon_w = \varepsilon$
G_j^n	Worker with rank j in node n
X_j^n	Set of experts hosted on $G_i^n, X_i^n \subseteq X$
ϕ	Tensor mapping G_i^n tokens T to experts $X' \subseteq X, \phi \in \mathbb{R}^{ T \times k}$
$\stackrel{'}{S}$	Sharding specification tensor mapping X to $W'\subseteq W$

Table 1: Notation

```
Algorithm 1: Aristos executed by each G_i^n
```

```
Data: Q: a blocking task FIFO queue
   Require: X_j^n, S, \phi, \varepsilon, |W|
1 begin
 2
       G_{\phi} \leftarrow \mathbf{GetWorkers}(\phi, S)
 3
       \mu \leftarrow |G_{\phi}| + H(|X_i^n|, 0) \cdot (|W| - 1)
                                                                    // Upper bound for tasks
 4
        flag \leftarrow \textbf{False}
 5
       W' \leftarrow S.W'
 6
       if G_i^n \in G_\phi then
 7
 8
            \mu \leftarrow \mu + 1
           \xi \leftarrow \xi + 1
 9
       end if
10
11
       // Send token slices to corresponding workers
       broadcast(shouldProcess, \phi, G_{\phi})
12
       while Q.timeout == False and \mu > 0 do
13
            if flag == False and \xi == 0 then
14
                Q.ActivateCountdown()
15
                flag \leftarrow \mathbf{True}
16
            end if
17
            t \leftarrow Q.\mathbf{take}()
18
            if t.processed == True then
19
20
                PostProcessing(\phi, t)
                \xi \leftarrow \xi - 1
21
                \mu \leftarrow \mu - 1
22
            else if t.shouldProcess == True then
23
                \theta = \mathbf{ExpertProcessing}(t.\tau, X_i^n)
24
                Send<sup>†</sup>(processed, \theta, t.workers)
25
                W' \leftarrow W' - t.workers
26
                \mu \leftarrow \mu - 1
27
       end while
28
29
       if \epsilon > 0 and Q.timeout == True then
            broadcast(processed, W')
31
       end if
32 end
```

Notation	Description
\overline{W}	Set of multi-node, distributed workers, $ W > 0$
g	Subset of workers, $g \subseteq G$, $g = (V_q, E_q)$
${\cal G}$	Set of all g , note $1 \leq \mathcal{G} \leq V $
i, j	Workers $i, j \in W$
$lpha_{ij}$	α cost between i and j , $\alpha \in \mathbb{R}^+$ See [Sol16] for an overview
eta_{ij}	β cost between i and j , $\beta \in \mathbb{R}^+$
G	Graph adjacency matrix where $G[i,j]=(\alpha_{ij},\beta_{ij})$ and $G=(V,E),V=W$
m_{i}	Memory capacity available for experts on worker j
$\mathcal{X}^{"}$	Set of all experts. For valid groups $g^* \in \mathcal{G}$, $\sum_{j \in V_{a^*}} m_j \geq \mathcal{X} $
$\pi(g)$	Expert compute cost of group g
f_x	Floating-point operations for computing <i>x</i> [Nar+21]
$egin{array}{c} \mathcal{F}_j \ \mathcal{C}_j \end{array}$	Actual FLOPS of worker j
C_i^{J}	Communication cost for worker <i>j</i>
$T_{\rho}(n)$	Time for all-reduce on n processes, see [Rab04; TRG05]

Table 2: Notation for *Lysi*

Lysi

Preliminaries

Let's define $\gamma(\omega) \geq 1$ as the frequency, due to Distributed Data Parallelism (DDP), at which the MoE layer is executed in a single iteration.

$$\gamma(\omega) = \frac{(2+r) \cdot L \cdot B}{i \cdot \omega \cdot b} \tag{1}$$

Note that r: activation re-computation amount [Nar+21], L: num of layers, B: global batch, i: MoE layer frequency [Lie+24], b: mini-batch and ω : effective world size $\omega \in (0, W]$. Also define η as the frequency of communicating over an edge.

Objective

We capture how MoE Expert Parallelism (EP) and DDP affect the end-to-end time of a single training iteration below. For inference, $T_{\rho}(|\mathcal{G}|)=0$

$$\forall g \in \mathcal{G} \quad \min \ T(g), \quad \text{where } T(g) = \gamma(\omega) \left(\pi(g) + \max_{i \in V_g} \mathcal{C}_j \right) + T_\rho(|\mathcal{G}|)$$
 (2)

Further, we assume, only these parallelism types and not tensor parallelism for the MoE layers *only*. Conversely, the parallelism strategy of non-MoE layers is of no concern to this work and thus does not affect any of its results.

We solve **Equation** 2 using **LysiGroup** (Algorithm 2), a novel *deterministic* graph partitioning algorithm reminiscent of Kruskal's classical MST algorithm [Wik24]. We do not yet have a tight bound, as precisely analyzing the complexity of evaluating T(g) in Line 9 is non-trivial due to the communication cost \mathcal{C} . However, clearly $o(N^4)$ holds. We reiterate T_g below, clarifying $\pi(g)$, and \mathcal{C} . We define T_ρ per the worst case latency of [Rab04]

$$T(g) = \begin{cases} T'(g) & \sum_{j \in V_g} m_j \ge |\mathcal{X}| \\ \infty & \text{otherwise} \end{cases}$$
 (3)

where

$$T'(g) = \gamma(\omega) \left(\frac{\sum_{x \in \mathcal{X}} f_x}{\sum_{j \in g} \mathcal{F}_j} + \max_{i \in V_g} \sum_{(i,j) \in E_g} \eta(\alpha_{ij} + \frac{d}{|V_g|} \beta_{ij}) \right) + 2(|\mathcal{G}| - 1) \left(\alpha^* + d_{ar} \frac{\beta^*}{|\mathcal{G}|} \right)$$
(4)

and $\forall a, b \in \mathcal{G}$, $\alpha^* = \max\{\alpha_{ab}\}$ and $\beta^* = \max\{\beta_{ab}\}$. Also d_{ar} is the all-reduce buffer size.

LysiGroup

Compared to Kruskal's, in Line 11, we only merge groups when the objective value is minimized.

Algorithm 2: LysiGroup Generates expert parallel groups Require: $G = (V, E), \mathcal{F}, f, \eta, d, d_{ar}$ **Result:** G: Groups 1 begin Compute weights and sort E ascending $\mathcal{G} \leftarrow \{V\}$, Initialize disjoint-set data structure with all nodes in V 3 while E.size() > 0 do 4 $(u, v, w) \leftarrow E.pop()$ 5 $g_u \leftarrow \mathcal{G}.\text{FIND}(u)$ 6 $g_v \leftarrow \mathcal{G}.\text{FIND}(v)$ 7 if $g_u \neq g_v$ then 8 9 $T_{uv} \leftarrow \mathbf{T}(g_u \cup g_v)$ if $[T(g_u) == \infty$ or $T_{uv} < T(g_u)]$ and $[T(g_v) == \infty$ or $T_{uv} < T(g_v)]$ then 10 $g_m \leftarrow \mathcal{G}.\mathbf{UNION}(g_u, g_v)$ 11 end if 12 end if 13 end while 14

LysiAssign

15 | r 16 end

return \mathcal{G}

Now, we present the final algorithm that allocates experts to workers within a single group $W_g \in \mathcal{G}$ generated by **LysiGroup**.

Algorithm 3: LysiAssign allocates experts \mathcal{X} to workers W_g while optimizing computation and satisfying memory constraints m

```
Require: W_q, \mathcal{X}, m, \mathcal{F}, f
    Result: S: Assignment
 1 begin
         W_q' = \mathtt{Sort}(W_g), descending order by FLOPS
         B \leftarrow [\mathcal{X}], binary search structure ordered by compute cost of x \in \mathcal{X}
 3
         while B.size() > 0 do
 4
              j \leftarrow W_a'.RoundRobinNext()
 5
             budget \leftarrow \left\lceil \frac{\mathcal{F}_{j} \cdot \sum\limits_{x \in \mathcal{X}} f_{x}}{\sum\limits_{i \in W'_{g}} \mathcal{F}_{i}} \right\rceil
 6
              while budget > 0 and m_i > 0 and \mathcal{X}.size() > 0 do
 7
                   x \leftarrow \texttt{BestFit}(budget, B)
 8
                   S[j].Append(x)
 9
                   B \setminus x
10
                   budget \leftarrow budget - f_x
11
12
                   m_j \leftarrow m_j - 1
              end while
13
              if m_i == 0 or WrapAround () == False then
14
                  W'_g \setminus j
15
              end if
16
         end while
17
         return S
18
19 end
```

Problem Statement

Formally, LysiAssign solves an optimization problem with objective

$$\min \ \frac{\sum\limits_{x \in \mathcal{X}} y_{xj}}{\mathcal{F}_j} \qquad \forall j \in W_g$$
 (5)

subject to,

per-worker memory constraint
$$\sum_{x \in \mathcal{X}} y_{xj} \geq m_j \qquad \forall j \in W_g \qquad (6)$$
 allocating all experts
$$\sum_{g \in \mathcal{G}} \sum_{j \in W_g} y_{xj} = |\mathcal{X}| \qquad \forall j \in W_g, x \in \mathcal{X} \qquad (7)$$
 allocating an expert to one worker only
$$\sum_{j \in W_g} y_{xj} = 1 \qquad \forall x \in \mathcal{X} \qquad (8)$$
 binary decision variable
$$y_{xj} \in \{0,1\} \qquad \forall j \in W_g, x \in \mathcal{X} \qquad (9)$$

LysiAssign adopts a best-fit greedy approach with complexity $\mathcal{O}(|\mathcal{X}|\log|\mathcal{X}|)$.

References

- [Rab04] Rolf Rabenseifner. "Optimization of Collective Reduction Operations". In: Computational Science ICCS 2004. Ed. by Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–9. ISBN: 978-3-540-24685-5. URL: https://link.springer.com/content/pdf/10.1007/978-3-540-24685-5_1.pdf.
- [TRG05] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. "Optimization of Collective Communication Operations in MPICH". In: *The International Journal of High Performance Computing Applications* 19.1 (2005), pp. 49–66. DOI: 10.1177/1094342005051521. eprint: https://doi.org/10.1177/1094342005051521. URL: https://doi.org/10.1177/1094342005051521.
- [Sol16] Edgar Solomonik. CS 598: Communication Cost Analysis of Algorithms Lecture 1: Course motivation and overview; collective communication. 2016. URL: https://solomonik.cs.illinois.edu/teaching/cs598%5C_fall2016/lectures/lec1.pdf.
- [Sha+17] Noam Shazeer et al. "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer". In: CoRR abs/1701.06538 (2017). arXiv: 1701.06538. url: http://arxiv.org/abs/1701.06538.
- [Nar+21] Deepak Narayanan et al. "Efficient large-scale language model training on GPU clusters using megatron-LM". In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC '21. St. Louis, Missouri, Association for Computing Machinery, 2021. ISBN: 9781450384421. DOI: 10.1145/3458817. 3476209. URL: https://doi.org/10.1145/3458817.3476209.
- [FZS22] William Fedus, Barret Zoph, and Noam Shazeer. "Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity". In: *Journal of Machine Learning Research* 23.120 (2022), pp. 1–39. URL: http://jmlr.org/papers/v23/21-0998.html.
- [Con23] PyTorch Contributors. *Torch.heaviside*. 2023. url: https://pytorch.org/docs/stable/generated/torch.heaviside.html.
- [Lie+24] Opher Lieber et al. Jamba: A Hybrid Transformer-Mamba Language Model. 2024. arXiv: 2403.1987 [cs.CL].
- [Wik24] Wikipedia contributors. Kruskal's algorithm Wikipedia, The Free Encyclopedia. [Online; accessed 6-May-2024]. 2024. URL: https://en.wikipedia.org/w/index.php?title=Kruskal%27s_algorithm&oldid=1221098161.