CheasePy

Reconstruct MHD Equilibrium for Modified Plasma Profiles and Geometry

Ehab Hassan¹, Gabrielle Merlo, and David Hatch IFS, University of Texas at Austin

1/15

Motivation

The growing need to build new fusion reactors based on various engineering and physics increasing the need for reactor system codes which requires MHD equilibrium for profiles and geometry. This can be achieved using CHEASE code. CheasePy is developed to facilitate running CHEASE code using different types of input files or by importing any user-defined profiles and geometry.

CHEASE Code - INPUTS/OUTPUTS

CHEASE code solves the Grad-Shafranov equation which is given by:2

$$\mathbf{\nabla \cdot \frac{1}{R^2} \nabla \Psi = \frac{j_{\phi}}{R} = - p'(\Psi) - \frac{1}{R^2} TT'(\Psi)}$$

²Lütjens et al. CPC1996

Input/Output Types and Data Structures

NAMELIST		
Measurement	Description	
NS(NT)	Number of radial (poloidal) equilibrium- $\sigma(\theta)$ intervals.	
NPSI	Number of radial stability-s intervals.	
NCHI	Number of poloidal nodes for ballooning.	
NRBOX(NZBOX)	Number of R (Z) points used to save equilibrium in EQDSK.	
NSTTP(NPROPT)	Input (output) current profiles $(1=ff', 2=I^*, 3=I_{\parallel}, 4=J_{\parallel})$.	
NPPFUN	Input pressure profiles $(4=P', 8=P)$.	
NEQDSK	Source of equilibrium geometry (0=EXPEQ, 1=EQDSK).	
NRHOMESH	Input grid $(0=\rho_{\psi_N}, 1=\rho_{\phi_N})$.	

EXPTNZ		
Measurement	Description	
ρ_{ψ_N} or ρ_{ϕ_N}	Grid Effective Atomic Number	
Z_{eff} T_i and n_i	Ion Temperature and Density	
T_e and n_e	Electron Temperature and Density	

EXPEQ		
Measurement	Description	
$ ho_{\psi_N}$ or $ ho_{\phi_N}$	Grid	
ϵ	Inverse aspect ratio	
r_{bound} and z_{bound} P or P'	Boundary Coordinates	
P or P'	Pressure Profile	
ff' , I_{\parallel} , J_{\parallel} , or I^*	Current (Flux) Density	

CheasePy Package Structure

Example

```
srcVals= {}
srcVals['gfname'] = 'DIIID_162940_EQDSK'
srcVals['iterdbfname'] = 'DIII_162940_ITERDB'
srcVals['inputpath'] = 'shots/DIIID_KEFITD_162940'
srcVals['rhomesh_src'] = 'eqdsk'
srcVals['current_src'] = 'eqdsk'
srcVals['pressure_src'] = 'eqdsk'
srcVals['eprofiles_src'] = 'iterdb'
srcVals['iprofiles_src'] = 'iterdb'
srcVals['boundary_type'] = 'asis'
namelistVals= {}
namelistVals['NS'] = 64
namelistVals['NT'] = 64
namelistVals['NPSI'] = 128
namelistVals['NCHI'] = 128
namelistVals['NRBOX'] = 60
namelistVals['NZBOX'] = 60
namelistVals['NSTTP'] = 3
namelistVals['NPPFUN'] = 8
importedVals= {}
importedVals['Iprl'] = Iprl
```


Example

```
remove_input_files()
remove_output_files()
init_chease_inputs(srcVals.namelistVals.importedVals)
runchease()
update_chease_outputs(suffix=0)
namelistVals['NRBOX'] = 513
namelistVals['NZBOX'] = 513
srcVals['rhomesh_src'] = 'chease'
srcVals['current_src'] = 'chease'
srcVals['pressure_src'] = 'chease'
srcVals['inputpath'] = './'
srcVals['cheasefname'] = "chease_iter000.dat"
del importedVals['Iprl']
init_chease_inputs(srcVals,namelistVals,importedVals)
runchease()
update_chease_outputs(suffix=1)
plot_chease(fpath='chease_iter001.dat',skipfiqs=0,eqdskfname="EQDSK_iter001")
```

https://github.com/ehabhassan/CheasePy

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 差 め 9 0 0 0

Modules of CheasePy - cheasefiles.py (read files)

Generally, the **read_xxxx**() methods take the following arguments:

```
read_xxxx(fpath, setParam, **kwargs)
```

With the differences between the read functions embedded in the setParam argument.

Argument	Default	Description
fpath	user-input	The path to TARGET file.
setParam	{}	nrhopsi=0 for ρ_{ψ_N} and nrhopsi=1 for ρ_{ϕ_N} grid.
		Zeff=True for global Zeff or Zeff=False for local Zeff.
		norm=True for Normalized or norm=False for SI units.
**kwargs	None	Choose a source for the $ ho_{\psi_{N}}$ and $ ho_{\phi_{N}}$ grid to interpolate on.

Example

```
setParam = {'nrhomesh':1,'norm':True}
cheasepath = 'chease_iter000.dat'
eqdskpath = 'g162940.2334'
read_chease(fpath=cheasepath,setParam,eqdsk=eqdskpath)
```


Modules of CheasePy - cheasefiles.py (write files)

Generally, the write_xxxx() methods take the following arguments:

```
write_xxxx(setParam, **kwargs)
```

With the differences between the read functions embedded in the setParam argument.

Argument	Default	Description
setParam	{}	Specify the types and sources for different grids and profiles.
		outfile=True to create EXPTNZ file or outfile=False to return EXPTNZ data
**kwargs	None	Specify the path to the source files.

Example

```
exptnzParam = {}
exptnzParam['outfile'] = False
exptnzParam['nrhomesh'] = [0,'eqdsk']
exptnzParam['eprofiles'] = 'profiles'
exptnzParam['iprofiles'] = 'profiles'
gpath = 'g162940.2334'
pppath = 'p162940.2334'
```

exptnzDATA = write_exptnz(setParam=exptnzParam,profiles=ppath,eqdsk=gpath)

Modules of CheasePy - cheasefiles.py (write files)

Example

```
external = {}
external['Iprl'] = Iprl
                               % Should be predefined
external['ROEXP'] = 1.7
external['BOEXP'] = 2.2
external['rbound'] = rbound
                               % Should be predefined
external['zbound'] = zbound
                               % Should be predefined
expegParam = {}
expeqParam['outfile'] = True
expeqParam['geometry'] = ['imported']
expeqParam['nrhomesh'] = [0,'expeq'] or ['rhopsi','expeq']
expeqParam['nppfun'] = [8,'expeq'] or ['pressure','expeq']
expegParam['nsttp'] = [3,'imported'] or ['Iprl','imported']
expeapath = 'expea_iter000'
write_expeq(setParam=expeqParam,expeq=expeqpath,imported=external)
```


Groebner and Stefanikova Fitting Methods and Parameters

$$F_{groebner} = \frac{1}{2} \left(F_{ped_height} - F_{ped_sol} \right) \left[m tanh(\alpha_{ped}, z) + 1 \right] + F_{ped_sol}$$

$$F_{stefanikova} = F_{groebner} + \left[F_{cor_height} - F_{groebner} \right] e^{-\left(\frac{\rho_{\phi}}{\Delta \rho_{cor}}\right)^{\alpha_{cor}}}$$

$$z = 2 \left(\frac{\rho_{ped_mid} - \rho_{\phi}}{\Delta \rho_{ped}} \right)$$

$$m tanh(\alpha_{ped}, z) = \frac{(1 + \alpha_{ped}z)e^z - e^{-z}}{e^z + e^{-z}}$$

- $lacktriangleq lpha_{ped} = ext{slope of the inner pedestal}$
- lacktriangledown $lpha_{\it cor} =$ exponential degree at the core
- lacksquare $ho_{ extit{ped_mid}} =
 ho_{\phi}$ at the middle of the pedestal
- lacksquare $\Delta
 ho_{\it ped}=$ width of the pedestal $(\Delta
 ho_\phi)$
- lacksquare $\Delta
 ho_{\mathit{cor}}=$ width of the core region $(\Delta
 ho_{\phi})$
- \blacksquare $F_{ped_height} = \text{profile value at the pedestal top}$
- $ightharpoonup F_{ped_sol} = \text{profile value at the scrap-off layer}$
- $F_{cor_height} = \text{profile value at core top}$

Kovari Fitting Method and Parameters

$$n(\rho) = \begin{cases} n_{ped} + (n_0 - n_{ped}) \left(1 - \frac{\rho^2}{\rho_{ped,n}^2}\right)^{\alpha_n} & 0 \leq \rho \leq \rho_{ped,n} \\ n_{sep} + (n_{ped} - n_{sep}) \left(\frac{1 - \rho}{1 - \rho_{ped,n}}\right) & \rho_{ped,n} < \rho \leq 1 \end{cases}$$

$$T(\rho) = \begin{cases} T_{ped} + (T_0 - T_{ped}) \left(1 - \frac{\rho^{\beta}T}{\rho_{ped,T}^{\beta}T}\right)^{\alpha_T} & \leq \rho \leq \rho_{ped,T} \\ T_{sep} + (T_{ped} - T_{sep}) \left(\frac{1 - \rho}{1 - \rho_{ped,T}}\right) & \rho_{ped,T} < \rho \leq 1 \end{cases}$$

$$\begin{split} n_0 &= \frac{(\alpha_n + 1)}{3\rho_{ped,n}^2} \left[3\langle n_e \rangle + n_{sep} \left(-2 + \rho_{ped,n} + \rho_{ped,n}^2 \right) - n_{ped} \left(\left(1 + \rho_{ped,n} \right) + \frac{(\alpha_n - 2)}{(\alpha_n + 1)} \rho_{ped,n}^2 \right) \right] \\ T_0 &= T_{ped} + \left[T_{ped} \rho_{ped,T}^2 - \langle T_e \rangle + \frac{1}{3} \left(1 - \rho_{ped,T} \right) \left[\left(1 + 2\rho_{ped,T} \right) T_{ped} + \left(2 + \rho_{ped,T} \right) T_{sep} \right] \right] \gamma \\ \gamma &= \begin{cases} \frac{-\Gamma(1 + \alpha_T + 2/\beta_T)}{\rho_{ped,T}^2 \Gamma(1 + \alpha_T)\Gamma(1 + 2/\beta_T)} & \text{if } \alpha_T \in \mathbb{N} \\ \frac{\sin(\pi \alpha_T)\Gamma(-\alpha_T)\Gamma(1 + \alpha_T + 2/\beta_T)}{\pi \rho_{ped,T}^2 \Gamma(1 + 2/\beta_T)} & \text{if } \alpha_T \in \mathbb{R} \end{cases} \end{split}$$

Example

```
gpath = "g162940.2334"
ppath = "p162940.2334"
gdata = read_egdsk(fpath=gpath)
pdata = read_profiles(fpath=ppath.setParam={'nrhomesh':1}.egdsk=qpath)
setparam = \{\}
setparam['plot'] = True
setparam['norm'] = False
pres_fit_param = fit_profile(pdata['rhotor'],pdata['pressure'],method='groebner',
                  setParam=setparam, fitParam={}, fitBounds={})
setparam['norm'] = True
fitparam = {}
fitparam['ped_mid'] = pres_fit_param['ped_mid']
fitparam['ped_width'] = pres_fit_param['ped_width']+0.05
ne_fit_param = fit_profile(pdata['rhotor'],pdata['ne'],method='groebner',
                  setParam=setparam.fitParam=fitparam)
neProfile = groebner_fit(gdata['rhotor'],*ne_fit_param)
```

Future Development Plan:

- Add more models for profile fitting.
- Add read (write) capabilities from (to) databases.
- Add read (write) capabilities from (to) files of different formats.

Thank You

Questions are Welcome ...