Modern Methods in Computational Economics

University of Economics Ho Chi Minh City

John Stachurski

November 2016

Topics

• Modern computational methods with Python and Julia

Assumptions

Some programming but unfamiliar with Python / Julia

Aims

- Background, overview and comparisons
- Lower fixed costs to getting started
- Provide resources for further study

Topics

• Modern computational methods with Python and Julia

Assumptions

Some programming but unfamiliar with Python / Julia

Aims

- Background, overview and comparisons
- Lower fixed costs to getting started
- Provide resources for further study

Topics

• Modern computational methods with Python and Julia

Assumptions

ullet Some programming but unfamiliar with Python / Julia

Aims

- Background, overview and comparisons
- Lower fixed costs to getting started
- · Provide resources for further study

Thanks

- 1. UEH
- 2. Sponsors supporting quantecon.org

See

- http://quantecon.org/
- http://www.numfocus.org/

Resources

Workshop homepage:

• https://github.com/QuantEcon/HCMC_workshop_2016

Other

- Cheat sheets: http://cheatsheets.quantecon.org/
- Lectures: http://lectures.quantecon.org/
- Discourse forum: http://discourse.quantecon.org/

Resources

Workshop homepage:

• https://github.com/QuantEcon/HCMC_workshop_2016

Other

- Cheat sheets: http://cheatsheets.quantecon.org/
- Lectures: http://lectures.quantecon.org/
- Discourse forum: http://discourse.quantecon.org/

Software options

- 1. Install Anaconda Python (Python only)
- 2. Install Julia + Anaconda Python
- 3. Use our server http://workshop.quantecon.org:8000/

Notes

- See workshop home page for more instructions
- Remember that http://workshop.quantecon.org:8000/ is temporary!

Software options

- 1. Install Anaconda Python (Python only)
- 2. Install Julia + Anaconda Python
- 3. Use our server http://workshop.quantecon.org:8000/

Notes:

- See workshop home page for more instructions
- Remember that http://workshop.quantecon.org:8000/ is temporary!

Testing, testing

Try starting

- Julia REPL (REPL = Read Eval Print Loop)
- Python and IPython REPLs

Use menus or terminal

terminal in UNIX/macOS and cmd in Windows

Overview of Scientific Computing

Tasks

- Solve numerical problems
- Produce figures and graphs
- Manipulate data
- Explore (simulate, plot, visualize, etc.)

And sometimes we need speed

Overview of Scientific Computing

Tasks

- Solve numerical problems
- Produce figures and graphs
- Manipulate data
- Explore (simulate, plot, visualize, etc.)

And sometimes we need speed

The Need for Speed

Maximum speed:

- Optimal use of hardware
- High level of control over calculations / logic

First best = assembly / machine code

Individual instructions at the CPU level

Example here sums 1+2

The Need for Speed

Maximum speed:

- Optimal use of hardware
- High level of control over calculations / logic

First best = assembly / machine code

Individual instructions at the CPU level

Example here sums 1+2

The Need for Speed

Maximum speed:

- Optimal use of hardware
- High level of control over calculations / logic

First best = assembly / machine code

Individual instructions at the CPU level

Example here sums 1+2

Now imagine a large general equilibrium model

And of course you need to optimize for specific hardware

- pipelining
- cache hierarchies
- branch prediction
- coprocessors
- etc.

And then Intel brings out a new processor...

Now imagine a large general equilibrium model

And of course you need to optimize for specific hardware

- pipelining
- cache hierarchies
- branch prediction
- coprocessors
- etc.

And then Intel brings out a new processor...

Now imagine a large general equilibrium model

And of course you need to optimize for specific hardware

- pipelining
- cache hierarchies
- branch prediction
- coprocessors
- etc.

And then Intel brings out a new processor...

Lesson: There's a trade off between

- · machine speed
- coding efficiency

Low level languages give us fine grained control

High level languages give us

- abstraction
- automation of some tasks
- natural language representations

Lesson: There's a trade off between

- machine speed
- coding efficiency

Low level languages give us fine grained control

High level languages give us

- abstraction
- automation of some tasks
- natural language representations

Lesson: There's a trade off between

- machine speed
- coding efficiency

Low level languages give us fine grained control

High level languages give us

- abstraction
- automation of some tasks
- natural language representations

Although the curve is starting to shift...

A Horse Race

Task is to simulate the time series

$$X_{t+1} = \alpha X_t + \beta + \sigma W_{t+1}$$

This gives us

$$X_1, X_2, X_3, \ldots, X_N$$

Set N = 10,000,000 and then compute the sample mean

See fast loops

Overview of Python and Julia

- History
- Pros and cons
- Which to choose?

What's Python?

Modern, high level, open source, general purpose programming language

Used extensively by

- Tech firms (YouTube, Dropbox, Reddit, etc., etc.)
- Hedge funds and finance industry
- Scientists (academia, NASA, CERN, etc.)
- etc., etc.

Very popular in "data science" / machine learning

Strength 1: Intelligent, modern design

- Often used to teach first courses in comp sci
 - MIT
 - Stanford
 - Chicago, etc.

Strength 2: Simple, readable syntax

```
for name in name_list:
if name not in list_of_users:
    print("Your name is not found"
```

Strength 1: Intelligent, modern design

- Often used to teach first courses in comp sci
 - MIT
 - Stanford
 - Chicago, etc.

Strength 2: Simple, readable syntax

```
for name in name_list:
if name not in list_of_users:
    print("Your name is not found")
```

Other pros

- Great libraries
- Friendly community
- High productivity

Some negatives for scientific work

- Need scientific libraries
- Need some tricks to get speed

What's Julia?

Modern, high level, open source, scientific programming language

Strengths:

- High productivity...
- and high performance!

Negatives

- Still under development
- The "rabbit hole" of advanced features (plus or minus?)

What's Julia?

Modern, high level, open source, scientific programming language

Strengths:

- High productivity...
- and high performance!

Negatives

- Still under development
- The "rabbit hole" of advanced features (plus or minus?)

Interacting with Python / Julia

Options

- 1. The REPLs
- 2. Text editors (e.g., Atom or Sublime) plus the REPL
- 3. IDEs like Spyder and Juno
- 4. Jupyter notebooks

Atom + REPL

Jupyter notebooks

Jupyter Notebooks

Let's focus on Jupyter notebooks

- Connect via browser
- Dashboard and notebooks (multilingual)
- Modal interface
- Allows for rich text, equations, etc.
- Remote or local

Examples

http://notebooks.quantecon.org/

Jupyter Notebooks

Let's focus on Jupyter notebooks

- Connect via browser
- Dashboard and notebooks (multilingual)
- Modal interface
- Allows for rich text, equations, etc.
- Remote or local

Examples:

• http://notebooks.quantecon.org/