2023 METŲ PAKARTOTINĖS SESIJOS MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	A	A	D	C	C	В	A	D	D	В

II dalis

11	$f'(x) = 6x^2 - 30x + 24$
12.1	$x \in [0;5] \text{ (arba } [0;5])$
12.2	-5
12.3	$y \in [-3; 6] \text{ (arba } [-3; 6] \text{)}$
13	$\cos \angle ABC = -\frac{1}{2} (\text{arba } -\frac{1}{2})$
14.1	$0.25 \text{ (arba} \frac{1}{4}\text{)}$
14.2	$\mathbf{P}(A) = \frac{2}{15} \text{ (arba 0,1(3))}$
15.1	75°
15.2	S = 25 (arba 25)
16	y = 11 - 3x
17	$\sin \alpha$
18	p^2-q

 $^{^{\}hbox{\scriptsize (C)}}$ Nacionalinė švietimo agentūra, 2023 m.

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19		2	
19.1	$m(4) = 20 \cdot 3^{0,25 \cdot 4} = 20 \cdot 3 = 60$ (muselių).	1	Už gautą teisingą atsakymą.
	Ats.: 60 muselių.		
19.2	$20 \cdot 3^{0,25 \cdot t} = 4860,$	1	Už teisingai pasirinktą sprendimo
	$20 \cdot 3^{0,25 \cdot t} = 4860,$ $3^{0,25 \cdot t} = 243,$		būdą.
	0,25t = 5,	1	Už gautą teisingą atsakymą.
	0,25t = 5, t = 20 (val.). Ats.: po 20 valandų.		
	Ats.: po 20 valandų.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		6	, 42 922222
20.1	25 + 27 + 29 = 81.	1	Už gautą teisingą atsakymą.
	Arba		
	$S_3 = \frac{25 + 29}{2} \cdot 3 = 81.$		
	Ats.: 81 vieta.		
20.2		2	
	25 + 2(n-1) = 101,	1	Už teisingai sudarytą tiesinę lygtį.
	2n-2=76,	1	Už gautą teisingą atsakymą.
	n = 39 (eil.).		
	Ats.: 39 eilės.		
20.3		3	
	$S_n = \frac{2 \cdot 25 + 2(n-1)}{2} \cdot n = (24+n)n.$	1	Už teisingai pritaikytą ir pertvarkytą aritmetinės progresijos pirmųjų <i>n</i> narių sumos formulę.
	$n = 9k, k \in N;$	1	Už teisingai pasirinktą įrodymo
	$(24+9k)\cdot 9k =$		būdą.
	$= (8+3k)\cdot 27k.$	1	Už pagrindimą, kad sandauga dalijasi iš 27.
	Kadangi $(8+3k)k \in N$ su $k \in N$, tai		
	$27 \cdot (8+3k)k$ dalijasi iš 27.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21	· ·	5	
21.1		2	
	$\log_2(x^2 - 1) = 3,$ $x^2 - 1 = 2^3,$	1	Už teisingai pritaikytą logaritmo apibrėžimą.
	$x^{2} = 9,$ $x = \pm 3.$ $Ats.: x = \pm 3.$	1	Už gautą teisingą atsakymą.
21.2		3	
	$\sqrt{x+3} + 2x = 0,$ $\sqrt{x+3} = -2x,$ $x+3 = 4x^2,$	1	Už teisingai pasirinktą iracionaliosios lygties sprendimo būdą.
	$4x^{2} - x - 3 = 0,$ $x = -\frac{3}{4} \text{ arba } x = 1.$	1	Už gautus teisingus kvadratinės lygties sprendinius.
	Patikriname sprendinius, ar tinka pradinei lygčiai: $x = -\frac{3}{4}$ tinka, $x = 1$ netinka. Ats.: $x = -\frac{3}{4}$.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22	-	6	
22.1		2	
	Įvykis A – "moneta atvirto arba tris kartus herbu, arba tris kartus skaičiumi". Todėl $m=2$, o $n=2\cdot 2\cdot 2=8$.	1	Už įvykiui palankių arba visų baigčių skaičiaus nustatymą.
	$\mathbf{P}(A) = \frac{2}{8} = \frac{1}{4}.$ $Ats.: \frac{1}{4}.$	1	Už gautą teisingą atsakymą.
22.2.1		2	
	{(H;H;S); (H;S;H); (S;H;H)}	1	Už teisingai išvardytas įvykiui X = 2 palankias baigtis.
	$\mathbf{P}(X=2) = \frac{3}{8}.$ Ats.: $\frac{3}{8}$.	1	Už gautą teisingą atsakymą.
22.2.2		2	
	$\mathbf{P}(X=1) = 1 - \frac{1}{8} - \frac{1}{8} - \frac{3}{8} = \frac{3}{8}.$	1	Už teisingai užpildytą lentelę.
	m 0 1 2 3		
	$\mathbf{P}(X=m) \qquad \frac{1}{8} \qquad \frac{3}{8} \qquad \frac{1}{8}$		
	$\mathbf{E}X = 0 \cdot \frac{1}{8} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = 1,5.$ Ats.: 1,5.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		4	
23.1		2	
	Trikampiai AMN ir CBN yra panašūs pagal du kampus, nes $\angle ANM = \angle CNB$ (kryžminiai) ir	1	Už pagrindimą, kad trikampiai <i>AMN</i> ir <i>CBN</i> yra panašūs.
	$\angle NAM = \angle NCB$ (vidaus priešiniai, $AD \parallel BC$). Todėl:	1	TTY 4.'.'
	$\frac{AM}{CB} = \frac{MN}{BN} = \frac{1}{6},$	1	Už teisingą pagrindimą, kad $BN = \frac{6}{7}BM.$
	$MN = \frac{1}{6}BN,$ $BN = BM - MN = BM - \frac{1}{6}BN \Rightarrow$		
	$\frac{7}{6}BN = BM \Rightarrow BN = \frac{6}{7}BM.$		
23.2		2	
	$\overrightarrow{BN} = \frac{6}{7} \overrightarrow{BM} = \frac{6}{7} \left(\overrightarrow{BA} + \overrightarrow{AM} \right) =$	1	Už teisingai pritaikytą vektorių sudėties trikampio taisyklę.
	$= \frac{6}{7} \left(\overrightarrow{BA} + \frac{1}{6} \overrightarrow{AD} \right) = \frac{6}{7} \left(-\overrightarrow{a} + \frac{1}{6} \overrightarrow{b} \right) = -\frac{6}{7} \overrightarrow{a} + \frac{1}{7} \overrightarrow{b}.$ $Ats.: \overrightarrow{BN} = -\frac{6}{7} \overrightarrow{a} + \frac{1}{7} \overrightarrow{b}.$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		4	
	$kx^{3} = k, k > 0,$ $x^{3} = 1,$ $x = 1.$	1	Už teisingai rastą grafikų susikirtimo taško abscisę.
	$\int_{0}^{1} \left(k - kx^{3}\right) dx = 6,$	1	Už teisingai užrašytą apibrėžtinį integralą figūros plotui apskaičiuoti.
	$\left \left(kx - \frac{kx^4}{4} \right) \right _0^1 = 6,$	1	Už teisingai surastą pirmykštę funkciją.
	$k - \frac{k}{4} = 6,$ $k = 8.$ $Ats.: k = 8.$	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25	·	7	
25.1		3	
	$\pi r l = 16\pi\sqrt{3},$ $l = \frac{16\sqrt{3}}{3},$	1	Už teisingai pasirinktą sprendimo būdą.
	$t = \frac{r}{r}$		
	$h = \sqrt{l^2 - r^2} = \sqrt{\frac{768}{r^2} - r^2} = \frac{1}{r}\sqrt{768 - r^4},$	1	Už teisingai išreikštą <i>h</i> per <i>r</i> .
	$V(r) = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \cdot \frac{1}{r}\sqrt{768 - r^4} = \frac{1}{3}\pi r\sqrt{768 - r^4}.$	1	Už teisingą pagrindimą.
25.2		2	
	$V'(r) = \left(\frac{1}{3}\pi r\sqrt{768 - r^4}\right)' = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right) = \frac{1}{3}\pi \left(\sqrt{768 - r^4} - \frac{2r^4}{\sqrt{768 - r^4}}\right)$	1	Už teisingai gautą sudėtinės funkcijos išvestinę.
	$\frac{1}{3}\pi \frac{768 - r^4 - 2r^4}{\sqrt{768 - r^4}} = \frac{1}{3}\pi \frac{768 - 3r^4}{\sqrt{768 - r^4}}.$	1	Už gautą teisingą išvestinę.
25.3		2	
	$\frac{1}{3}\pi \frac{768 - 3r^4}{\sqrt{768 - r^4}} = 0, 1 \le r \le 5,$	1	Už teisingai gautą kritinį tašką.
	$768 - 3r^4 = 0,$		
	r=4.		
	$\frac{V'(r)}{V(r)} + \frac{1}{4} + \frac{5}{5} r$	1	Už teisingą pagrindimą, kad kūgio tūris yra didžiausias, kai $r = 4$.
	Ats.: $r = 4$.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		3	
	B C D A		
	I būdas Pastebėkime, kad $S_{\Delta ADC} + S_{\Delta BDC} = S_{\Delta ABC}$. Pažymėkime $CD = k$. $\frac{1}{2}ak\sin\gamma + \frac{1}{2}bk\sin\gamma = \frac{1}{2}ab\sin(2\gamma),$	1	Už teisingai pasirinktą sprendimo būdą (pastebėjimą, kad dviejų trikampių <i>ADC</i> ir <i>BDC</i> plotų suma lygi trikampio <i>ABC</i> plotui) ir teisingai pritaikytą ploto formulę.
	$\frac{1}{2}ak\sin\gamma + \frac{1}{2}bk\sin\gamma = \frac{1}{2}ab\cdot 2\sin\gamma\cos\gamma,$ $ak\sin\gamma + bk\sin\gamma = 2ab\sin\gamma\cos\gamma,$	1	Už teisingai pritaikytą sinuso dvigubo kampo formulę.
	$k \sin \gamma (a+b) = 2ab \sin \gamma \cos \gamma \Rightarrow$ $k = \frac{2ab \sin \gamma \cos \gamma}{\sin \gamma (a+b)} = \frac{2ab \cos \gamma}{a+b} = \frac{2ab}{a+b} \cdot \cos \gamma.$	1	Už teisingą įrodymą.
	II būdas Pažymėkime $CD = k$. Pagal kosinusų teoremą: $AD^2 = b^2 + k^2 - 2bk\cos\gamma,$ $BD^2 = a^2 + k^2 - 2ak\cos\gamma.$	1	Už teisingai pasirinktą sprendimo būdą (kosinusų teoremos pritaikymą trikampiams <i>ADC</i> ir <i>BDC</i>).
	Pagal trikampio pusiaukampinės savybę: $\frac{AD}{BD} = \frac{b}{a} \Rightarrow \frac{AD^2}{BD^2} = \frac{b^2}{a^2} \Rightarrow$ $\frac{b^2 + k^2 - 2bk \cos \gamma}{a^2 + k^2 - 2ak \cos \gamma} = \frac{b^2}{a^2} \Rightarrow$	1	Už teisingai pritaikytą trikampio pusiaukampinės savybę ir teisingai pertvarkytą reiškinį.
	$a^{2}b^{2} + a^{2}k^{2} - 2a^{2}bk\cos\gamma = b^{2}a^{2} + b^{2}k^{2} - 2b^{2}ak\cos\gamma,$ $a^{2}k^{2} - b^{2}k^{2} = 2a^{2}bk\cos\gamma - 2b^{2}ak\cos\gamma,$ $k^{2}(a-b)(a+b) = 2abk\cos\gamma(a-b) \Rightarrow$ $k = \frac{2ab\cos\gamma(a-b)}{(a-b)(a+b)} = \frac{2ab}{a+b} \cdot \cos\gamma.$	1	Už teisingą įrodymą.
	III būdas Pažymėkime $CD = k$. Pagal sinusų teoremą: $\frac{BD + AD}{\sin(2\gamma)} = \frac{a}{\sin \angle BAC},$ $\frac{k}{\sin \angle BAC} = \frac{AD}{\sin \gamma}.$	1	Už teisingai pasirinktą sprendimo būdą (sinusų teoremos pritaikymą trikampiams <i>ABC</i> ir <i>ADC</i> arba <i>ABC</i> ir <i>BDC</i>).

2023 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pal	kartotinė sesija

$\sin \angle BAC = \frac{a\sin(2\gamma)}{BD + AD} = \frac{k\sin\gamma}{AD}.$ Pagal trikampio pusiaukampinės savybę: $\frac{AD}{BD} = \frac{b}{a} \Rightarrow \frac{a\sin(2\gamma)}{AD \cdot a} = \frac{k\sin\gamma}{AD} \Rightarrow$	1	Už teisingai pritaikytą trikampio pusiaukampinės savybę ir teisingai pertvarkytą reiškinį.
$\Rightarrow \frac{ab\sin(2\gamma)}{a+b} = k\sin\gamma \Rightarrow \frac{ab\cdot 2\sin\gamma\cos\gamma}{a+b} = k\sin\gamma \Rightarrow$ $\Rightarrow k = \frac{2ab}{a+b} \cdot \cos\gamma.$	1	Už teisingai pritaikytą sinuso dvigubo kampo formulę ir teisingą įrodymą.