Mas afinal, o que são "materiais"?

- De uma maneira bem simples, os materiais são uma combinação de átomos...
- Estes átomos, são basicamente os "ingredientes" dos materiais

Átomos e Ligações atômicas A experiência de Rutherford

A experiência de Rutherford

Modelo Quântico - Ondulatório

- O Elétron assume comportamento tanto de onda, como de partícula
- A posição do elétron é dada pela probabilidade do mesmo estar em vários locais ao redor do núcleo
- Direita: Átomo do Hidrogênio

ms Número quântico magnético

Número Quântico Secundário Sharp - Nítidas

p Principal

d

Diffuse - Difusas

Fundamental

ml Número quântico de spin

Orbitais s

- Todos os orbitais *s* são esféricos.
- À medida que *n* aumenta, os orbitais *s* ficam maiores.
- À medida que *n* aumenta, aumenta o número de nós.
- Um nó é uma região no espaço onde a probabilidade de se encontrar um elétron é zero.
- Em um nó, $\Psi^2 = 0$
- Para um orbital *s*, o número de nós é *n*-1.

3s

Orbitais p

- Existem três orbitais p, p_x , p_y , e p_z .
- Os três orbitais *p* localizam-se ao longo dos eixos *x*-, *y* e *z* de um sistema cartesiano.
- As letras correspondem aos valores permitidos de m_l , -1, 0, e +1.
- Os orbitais têm a forma de halteres.
- À medida que *n* aumenta, os orbitais *p* ficam maiores.
- Todos os orbitais *p* têm um nó no núcleo.

Orbitais p

Orbitais de f

- Existem cinco orbitais d e sete orbitais f.
- Três dos orbitais d encontram-se em um plano bissecante aos eixos x-, y- e z.
- Dois dos orbitais *d* se encontram em um plano alinhado ao longo dos eixos *x*-, *y* e *z*.
- Quatro dos orbitais d têm quatro lóbulos cada.
- Um orbital d tem dois lóbulos e um anel.

	s (I=0)	=0) p (I=1)		d (I=2)				f(I=3)								
n=1	m=0															
n=2	● m=0	1 m=-1	6 m=0	m=1												
n=3	⊚ m=0	© m=-1	% m=0	m=1	m=-2	m=-1	m=0	%	m=2							
n=4	m=0	m=-1	% m=0	m=1	m=-2	6 m=−1	m=0	% m=1	m=2	m=-3	m=-2	₩ m=-1	~ m=0	₹ m=1	m=2	m=3
n=5	m=0	% m=-1	€ m=0	m=1	m=-2	m=-1	* m=0	% m=1	m=2							
n=6	⊚ m=0	6 m=-1	% m=0	m=1												
n=7	m=0															

Note: apparently Copyright © 2006 Pearson Prentice Hall, Inc. only two values for the magnetic field

Átomos estáveis, eletropositivos e eletronegativos

Átomos e Ligações atômicas Átomos estáveis, eletropositivos e eletronegativos

Quando não sobra, nem falta: NEUTRO

• Quando sobra elétrons: ELETROPOSITIVO

Quando falta elétrons: ELETRONEGATIVO

A Tabela Periódica

151.96

95

Am

(243)

150.35

94

PII

(244)

157.25

96

Cm

(247)

158.92

97

Bk

(247)

162.50

98

Cf

(251)

164.93

99

Es

(252)

167.26

100

Fm

(257)

168.93

101

Md

(258)

173.04

102

No

(259)

174.97

103

Lr

(262)

Actinide series

138.91

89

(227)

140.91

91

Pa

231.04

140.12

90

Th

232.04

144.24

92

U

238.03

(145)

93

No

(237)

O que faz um material ser diferente do outro?

Ligação Iônica

- Resulta da atração mútua entre íons positivos e negativos;
- Íons que são espécies eletricamente carregadas formadas por átomos que perderam elétrons (cátions) ou que ganharam elétrons (ânions).

Ligação Iônica

Ligação Covalente

Os sólidos são formados por um compartilhamento dos elétrons de valência entre todos os átomos adjacentes.

Ligação Covalente

Ligação Metálica

- Estrutura formada por íons positivos e elétrons livres de valência que formam uma "nuvem eletrônica" que circula livremente entre os íons positivos;
- A nuvem eletrônica atua como uma "cola" para manter os núcleos catiônicos juntos (superando a força repulsiva de carga iguais)

Ligação Metálica

Ligação Metálica

- Alta condutividade elétrica e térmica: Cerâmicos são isolantes pois não possuem elétrons livres na ligação química;
- Permitem grande deformação plástica pois as ligações são móveis ou seja não são rígidas como as iônicas e as covalentes;
- Os materiais cerâmicos são frágeis pois as ligações são rígidas;
- Possuem o brilho metálico, como os elétrons são muito móveis trocam de nível energético com facilidade emitindo fótons;
- Não são transparentes: Pela mesma razão acima mas nesse caso absorvendo a luz incidente. Já os cerâmicos podem ser transparentes.

Átomos e Ligações atômicas Molécula Polar

- Dipolos elétricos ocorrem quando os centros das cargas positivas não coincidem com o centro das cargas negativas em uma molécula.
- As diferenças nas propriedades entre a grafita e o diamante estão relacionadas a esse tipo de ligação.

Ligações intermoleculares

 São ligações secundárias fracas que estão relacionadas a atração de dipolos elétricos

Atomic or molecular dipoles

Ligações intermoleculares

Ligações intermoleculares

Ligações de Hidrogênio

Forças de Van der Waals

poliamidas

$$\begin{array}{c|c} & H \\ & C \\ \hline & \delta + C - \cdots - N \delta - \\ & \parallel & \parallel \parallel \\ & \delta - N - \cdots - C \delta + \\ & - C \\$$

EFSA entro Educacional de Fundação Saleador Arens

Ligações intermoleculares

Ligações intermoleculares

Mecanismo de deformação de uma borracha (Elastômero).

amorphous polymer

largely crystalline polymer

$$-CH_{2}-C=CH-CH- \\ -CH_{2}-C=CH-CH- \\ -CH_{2}-C-CH-CH_{2}- \\ -CH_{2}-C-CH-CH_{2}- \\ -CH_{2}-C-CH-CH_{2}- \\ -CH_{2}-C-CH-CH_{2}- \\ -CH_{3}-CH_{3}- \\ -CH_{3}- \\ -C$$

Influência da energia de ligação

		Bond	Melting		
Bonding Type	Substance	kJ/mol	eV/Atom, Ion, Molecule	Temperature (°C)	
Tana'a	NaCl	640	3.3	801	
Ionic	MgO	1000	5.2	2800	
Constant	Si	450	4.7	1410	
Covalent	C (diamond)	713	7.4	>3550	
	Hg	68	0.7	-39	
Matallia	ΑÏ	324	3.4	660	
Metallic	Fe	406	4.2	1538	
	W	849	8.8	3410	
1 337 1	Ar	7.7	0.08	-189	
van der Waals	Cl_2	31	0.32	-101	
II. dan and	NH_3	35	0.36	-78	
Hydrogen	H_2O	51	0.52	0	

Resumo das ligações

Iônica	Covalente	Metálica	van der Waals
Transferência de	Elétrons	Elétrons	Atração
elétrons entre	compartilhados	compartilhados	eletrostática
orbitais de	em orbitais de	entre	(fraca) por
valência	ligação	muitos átomos	dipolo induzido
eletropositivo	eletronegativo	eletropositivo	
+	+	+	
eletronegativo	eletronegativo	eletropositivo	

Resumo das ligações

Forças e Energia de Ligação

The **DLVO** theory (named after <u>Boris</u> <u>Derjaguin</u> and <u>Lev Landau</u>, <u>Evert</u> <u>Verwey</u> and <u>Theodoor Overbeek</u>)

Propriedades dos Materiais

Transparência

Propriedades dos Materiais

Transparência

Propriedades dos Materiais

Transparência

Metais são em sua maioria (Praticamente absoluta) sólidos cristalinos

