Solving inverse problems in imaging with Shearlab.jl

Héctor Andrade Loarca (github: arsenal9971)
Notebook and Beamer:

https://github.com/arsenal997/Shearlab.jl/presentations/SIAM-IS

TU Berlin, BMS

8th of June, 2018

Inverse problems in Imaging

Goal

Recover parameters characterizing a system under investigation from measurements (recover image from data).

Inverse problems in Imaging

Goal

Recover parameters characterizing a system under investigation from measurements (recover image from data).

Mathematical formulation

Recover $f_{\text{true}} \in X$ from data

$$g = \mathcal{T}(f_{\mathsf{true}}) + \delta g$$

where $y \in Y, \mathcal{T} : X \longrightarrow Y$ and $\delta g \in Y$.

Inverse problems in Imaging

Goal

Recover parameters characterizing a system under investigation from measurements (recover image from data).

Mathematical formulation

Recover $f_{\text{true}} \in X$ from data

$$g = \mathcal{T}(f_{\mathsf{true}}) + \delta g$$

where $y \in Y, \mathcal{T} : X \longrightarrow Y$ and $\delta g \in Y$.

Classical solution: Minimization of the miss-fit against data:

$$\min_{f \in X} \mathcal{L}(\mathcal{T}(f), g)$$

 $\mathcal{L}: Y \times Y \longrightarrow \mathbb{R}$ is a transformation of the negative data log-likelihood, e.g. $L(f) = ||\mathcal{T}(f) - g||_2^2$.

Hadamard well-posedness

Existance and uniqueness of solution for all data, and continuous dependence of solution on the data.

Hadamard well-posedness

Existance and uniqueness of solution for all data, and continuous dependence of solution on the data.

► Ill-posed problems produce overfitting when minimizing the data miss-fit, but they are the most common in applications (CT, EEG, MRI,...).

Hadamard well-posedness

Existance and uniqueness of solution for all data, and continuous dependence of solution on the data.

- Ill-posed problems produce overfitting when minimizing the data miss-fit, but they are the most common in applications (CT, EEG, MRI,...).
- ▶ **Regularization:** Set of methods to avoid overfitting by slightly modify the original problem to increase its regularity.

Hadamard well-posedness

Existance and uniqueness of solution for all data, and continuous dependence of solution on the data.

- ▶ Ill-posed problems produce overfitting when minimizing the data miss-fit, but they are the most common in applications (CT, EEG, MRI,...).
- Regularization: Set of methods to avoid overfitting by slightly modify the original problem to increase its regularity.
- Variational regularization: Introduces a "regularization functional" $S: X \longrightarrow \mathbb{R}$ to encode a priori information about f_{true} , obtaining a new objective functional to minimize:

$$\min_{f \in X} \left[\mathcal{L}(\mathcal{T}(f), g) + \lambda \mathcal{S}(f)
ight] \quad ext{for a fixed } \lambda \geq 0$$

Some examples

Denoising

$$\mathcal{T}(f)(x) = f(x) + \delta g(x)$$

Inpainting

$$\mathcal{T}(f) = P_K(f)$$

Deconvolution

$$\mathcal{T}(f)(x) = (h \circledast f)(x)$$

Computarized Tomography (CT)

$$\mathcal{T}(f)(\theta,s) = \int_{-\infty}^{\infty} f(x_1,x_2)\delta(x_1\cos(\theta) + x_2\sin(\theta) - s)dx_1dx_2$$

Magnetic Resonance Imaging (MRI)

$$\mathcal{T}(f) = (k\text{-space sampling})f$$

Image denoising

Goal

Recover an image $f \in X = \mathcal{E}^2(\mathbb{R}^2)$ from noisy data:

$$g = f + \delta g$$

where δg is Gaussian white noise, with sd. σ .

Image denoising

Goal

Recover an image $f \in X = \mathcal{E}^2(\mathbb{R}^2)$ from noisy data:

$$g = f + \delta g$$

where δg is Gaussian white noise, with sd. σ .

▶ The risk of an estimator \tilde{f} is given by the MSE:

$$\mathbb{E}||f-\tilde{f}||_2^2$$

 $\mathbb E$ is the expectation with respect of the probability distribution of δg .

Image denoising

Goal

Recover an image $f \in X = \mathcal{E}^2(\mathbb{R}^2)$ from noisy data:

$$g = f + \delta g$$

where δg is Gaussian white noise, with sd. σ .

▶ The risk of an estimator \tilde{f} is given by the MSE:

$$\mathbb{E}||f-\tilde{f}||_2^2$$

 \mathbb{E} is the expectation with respect of the probability distribution of δg .

The worst behaviour of the estimator is the supremum

$$\sup_{f \in X} \mathbb{E}||f - \tilde{f}||_2^2$$

the Minimax MSE will be

$$\inf_{\tilde{f}} \sup_{f \in X} \mathbb{E}||f - \tilde{f}||_2^2$$

Minimax MSE

Frame

A frame for $\mathcal{E}^2(\mathbb{R}^2)$ is a collection $\Psi = \{\psi_i\}_{i \in \mathcal{I}} \subset \mathcal{E}^2(\mathbb{R}^2)$ satisfying $A||f||_2^2 \leq ||\{\langle f, \psi_i \rangle\}_{i \in \mathcal{I}}||_{\ell^2(\mathcal{I})}^2 \leq B||f||_2^2 \quad \forall \in \mathcal{E}^2(\mathbb{R}^2)$ for some $0 < A < B < \infty$.

Minimax MSE

Frame

A frame for $\mathcal{E}^2(\mathbb{R}^2)$ is a collection $\Psi = \{\psi_i\}_{i \in \mathcal{I}} \subset \mathcal{E}^2(\mathbb{R}^2)$ satisfying $A||f||_2^2 \leq ||\{\langle f, \psi_i \rangle\}_{i \in \mathcal{I}}||_{\ell^2(\mathcal{I})}^2 \leq B||f||_2^2 \quad \forall \in \mathcal{E}^2(\mathbb{R}^2)$ for some $0 < A < B < \infty$.

It is proven (Labate et al.,2012): If an image is sparse within a frame $\{\psi_i\}_{i\in\mathcal{I}}$, one can obtain a *Minimax* MSE estimator by thresholding the coefficients in the expansion of the noisy data:

$$g = \sum_{i \in \mathcal{I}} \langle g, \psi_i \rangle \psi_i$$

Image inpainting

Goal

Recover an image $f \in \mathcal{E}^2(\mathbb{R}^2)$ from known data:

$$g = P_K(f)$$

where P_K is and orthogonal projection onto the known subspace $(\mathcal{E}^2(\mathbb{R}^2))_K$.

Image inpainting

Goal

Recover an image $f \in \mathcal{E}^2(\mathbb{R}^2)$ from known data:

$$g = P_K(f)$$

where P_K is and orthogonal projection onto the known subspace $(\mathcal{E}^2(\mathbb{R}^2))_K$.

▶ Compressed sensing result: If a signal (image) is sparse within a frame Ψ , it can be recovered from highly underdetermined, non-adaptive linear measurements by ℓ^1 -regularization (Davenport et al., 2012), i.e.

$$\min_{\tilde{f} \in \mathcal{E}^2(\mathbb{R}^2)} ||\{\langle \tilde{f}, \psi_i \rangle\}_{i \in \mathcal{I}}||_{\ell^1(\mathcal{I})} \quad \text{s.t. } P_K(\tilde{f}) = g = P_K(f)$$

Error estimate

Let $\delta > 0$ and $\Lambda \subset \mathcal{I}$ be a δ -cluster for f with respect to Ψ .

If $\mu_c(\Lambda, P_M \Psi) < 1/2$ and f^* is the minimizer of the problem, then

$$||\{\langle f^* - f, \psi_i \rangle\}_{i \in \mathcal{I}}||_{\ell^1(\mathcal{I})} \le \frac{2\delta}{1 - \mu_c(\Lambda, P_M \Psi)}$$

where P_M is the projection onto the missing subspace and $\mu_c(\Lambda, P_M \Psi)$ the cluster coherence, defined by

$$\mu_{c}(\Lambda, P_{M}\Psi) := \max_{j \in \mathcal{I}} \sum_{i \in \Lambda} |\langle P_{M}\psi_{i}, P_{M}\psi_{j}\rangle|$$

Error estimate

Let $\delta > 0$ and $\Lambda \subset \mathcal{I}$ be a δ -cluster for f with respect to Ψ .

If $\mu_c(\Lambda, P_M \Psi) < 1/2$ and f^* is the minimizer of the problem, then

$$||\{\langle f^* - f, \psi_i \rangle\}_{i \in \mathcal{I}}||_{\ell^1(\mathcal{I})} \le \frac{2\delta}{1 - \mu_c(\Lambda, P_M \Psi)}$$

where P_M is the projection onto the missing subspace and $\mu_c(\Lambda, P_M \Psi)$ the cluster coherence, defined by

$$\mu_{c}(\Lambda, P_{M}\Psi) := \max_{j \in \mathcal{I}} \sum_{i \in \Lambda} |\langle P_{M}\psi_{i}, P_{M}\psi_{j}\rangle|$$

► Conclusion: A sparsifying frame for images allows you to perform image denoising and inpainting, the reconstruction quality depends on the sparsifying level. **Problem:** Pick a good frame.

Cartoon-like functions

Definition

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$, $f \in \mathcal{E}^2(\mathbb{R}^2)$ if $f = f_0 + \chi_B f_1$, with $B \subset [0,1]^2$, $\partial B \in C^2$ and with bounded curvature. Moreover, $f_i \in C^2(\mathbb{R}^2)$ with $||f_i||_{C^2} \leq 1$ and $\text{supp} f_i \subset [0,1]^2$ for i=0,1.

Cartoon-like functions

Definition

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$, $f \in \mathcal{E}^2(\mathbb{R}^2)$ if $f = f_0 + \chi_B f_1$, with $B \subset [0,1]^2$, $\partial B \in C^2$ and with bounded curvature. Moreover, $f_i \in C^2(\mathbb{R}^2)$ with $||f_i||_{C^2} \leq 1$ and $\text{supp} f_i \subset [0,1]^2$ for i=0,1.

Examples of frames for images

- ► Gabor frames (Gabor, 1946).
- ▶ Wavelet frames (Morlet et al., 1984).
- Curvelet frames (Candès et al., 1999).
- Shearlet frames (Kutyniok et al., 2005).

Optimal approximation error for images

Best N-term approx. error (Donoho, 2001)

Let $\{\psi_{\lambda}\}_{\lambda\in\Lambda}\subset L^2(\mathbb{R}^2)$ a frame. The optimal best N-Term approximation error for any $f\in\mathcal{E}^2(\mathbb{R}^2)$ is

$$\sigma_N(f, \{\psi_\lambda\}_{\lambda \in \Lambda}) = O(N^{-1})$$

Optimal approximation error for images

Best N-term approx. error (Donoho, 2001)

Let $\{\psi_{\lambda}\}_{\lambda\in\Lambda}\subset L^2(\mathbb{R}^2)$ a frame. The optimal best N-Term approximation error for any $f\in\mathcal{E}^2(\mathbb{R}^2)$ is

$$\sigma_{N}(f, \{\psi_{\lambda}\}_{\lambda \in \Lambda}) = O(N^{-1})$$

Error of 2D-wavelets

$$\sigma_N(f, \{\psi_{j,m}\}_{j,m}) \sim N^{-1/2}$$

Optimal approximation error for images

Best N-term approx. error (Donoho, 2001)

Let $\{\psi_{\lambda}\}_{\lambda\in\Lambda}\subset L^2(\mathbb{R}^2)$ a frame. The optimal best N-Term approximation error for any $f\in\mathcal{E}^2(\mathbb{R}^2)$ is

$$\sigma_N(f, \{\psi_\lambda\}_{\lambda \in \Lambda}) = O(N^{-1})$$

Error of 2D-wavelets

$$\sigma_N(f, \{\psi_{j,m}\}_{j,m}) \sim N^{-1/2}$$

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

Shearlet Transform (Kutyniok, Guo, Labate, 2005)

Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

where

$$\mathcal{SH}(\psi) = \{\psi_{j,k,m}(x) = 2^{3j/4}\psi(S_kA_jx - m) : (j,k) \in \mathbb{Z}^2, m \in \mathbb{Z}^2\}$$

Cone-adapted shearlet transform

$$\mathcal{SH}(\phi,\psi,\tilde{\psi},c) := \mathcal{P}_{\mathcal{R}}\Phi(\phi,c1) \cup \mathcal{P}_{\mathcal{C}_1}\Psi(\psi,c) \cup \mathcal{P}_{\mathcal{C}_2}\tilde{\Psi}(\tilde{\psi,c})$$

Cone-adapted shearlet transform

$$\mathcal{SH}(\phi,\psi,\tilde{\psi},c) := \mathcal{P}_{\mathcal{R}}\Phi(\phi,c1) \cup \mathcal{P}_{\mathcal{C}_1}\Psi(\psi,c) \cup \mathcal{P}_{\mathcal{C}_2}\tilde{\Psi}(\tilde{\psi,c})$$

Best N-term approximation error

$$\sigma_N(f, \{\psi_{i,k,m}\}_{i,k,m}) \sim N^{-1}(\log(N))^{3/2}$$

Current software

- Matlab
 - ► FFST- Fast Finite Shearlet Transform (Häuser, Steidl, TU Keiserlautern)
 http://www.mathematik.uni-kl.de/imagepro/software/ffst/
 - ➤ 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
 - ► **Shearlab3D** (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/
- Python
 - pyShearLab (Stefan Loock, U Götingen) http://na.math.uni-goettingen.de/pyshearlab/
- Julia
 - ► Shearlab.jl (H. Andrade, TU Berlin) https://github.com/arsenal9971/Shearlab.jl

Why Julia?

- Extensive use of fft, well implemented in Julia.
- Fast vectorization and loops as well as JIT-compilation.
- ▶ Plenty of image filtering, import and rescaling functions with Images. jl , Wavelets. jl .
- Support of multithreading and painless GPU processing with ArrayFire . jl .

Thanks!

Questions?

