

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

MATEMATYKA Poziom podstawowy

TEST DIAGNOSTYCZNY

*Symbol arkusza*MMAP-P0-**100**-2212

DATA: **14 grudnia 2022 г.**

GODZINA ROZPOCZĘCIA: 9:00

Czas trwania: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 46

WYPEŁNIA ZESPÓŁ NADZORUJĄCY				
Uprawnienia zdającego do:				
dostosowania zasad oceniania				
dostosowania w zw. z dyskalkulią				
nieprzenoszenia zaznaczeń na kartę.				

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 32 strony (zadania 1–33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Symbol camieszczony w nagłówku zadania oznacza, że rozwiązanie zadania zamkniętego musisz przenieść na kartę odpowiedzi.
- 6. Odpowiedzi do zadań zamkniętych zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 7. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy odpowiednich zadaniach.
- 8. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 9. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 10. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z taką okładką, jak poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\left(5\cdot 5^{\frac{1}{2}}\right)^{\frac{1}{3}}$ jest równa

- **A.** $\sqrt[6]{5}$
- **B.** $\sqrt[3]{25}$
- **C.** $\sqrt{5}$
- **D.** $\sqrt[3]{5}$

Zadanie 2. (0-1)

Pan Nowak kupił obligacje Skarbu Państwa za $40\,000\,$ zł oprocentowane $7\%\,$ w skali roku. Odsetki są naliczane i kapitalizowane co rok.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość obligacji kupionych przez pana Nowaka będzie po dwóch latach równa

- **A.** $40\ 000\cdot(1,07)^2\ z^{\frac{1}{2}}$
- **B.** $40\ 000\cdot(1,7)^2$ zł
- **C.** $40\ 000 \cdot 1,14\ z^{1}$
- **D.** $40\ 000 \cdot 1,49\ z^{1}$

Zadanie 3. (0–1) □□□□ 🕖

Właściciel sklepu kupił w hurtowni 50 par identycznych spodni po x zł za parę i 40 identycznych marynarek po y zł za sztukę. Za zakupy w hurtowni zapłacił 8000 zł. Po doliczeniu marży 50% na każdą parę spodni i 20% na każdą marynarkę ceny detaliczne spodni i marynarki były jednakowe.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Cenę pary spodni $\,x\,$ oraz cenę marynarki $\,y\,$, jakie trzeba zapłacić w hurtowni, można obliczyć z układu równań

A.
$$\begin{cases} x + y = 8000 \\ 0.5x = 0.2y \end{cases}$$

B.
$$\begin{cases} 50x + 40y = 8000 \\ 0.5x = 0.2y \end{cases}$$

c.
$$\begin{cases} 50x + 40y = 8000 \\ 1.5x = 1.2y \end{cases}$$

D.
$$\begin{cases} x + y = 8000 \\ 1.5x = 1.2y \end{cases}$$

Zadanie 4. (0–1)

Liczby rzeczywiste x i y są dodatnie oraz $x \neq y$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wyrażenie $\frac{1}{x-y} + \frac{1}{x+y}$ można przekształcić do postaci

A.
$$\frac{2}{x-y}$$

A.
$$\frac{2}{x-y}$$
 B. $\frac{2}{x^2-y^2}$ **C.** $\frac{2x}{x^2-y^2}$ **D.** $\frac{-2xy}{x+y}$

c.
$$\frac{2x}{x^2 - y^2}$$

D.
$$\frac{-2xy}{x+y}$$

Zadanie 5. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wszystkich różnych liczb naturalnych czterocyfrowych, w których zapisie dziesiętnym wszystkie cyfry są różne, jest

B.
$$9 \cdot 9 \cdot 8 \cdot 7$$
 C. $10 \cdot 9 \cdot 8 \cdot 7$

D.
$$9 \cdot 10 \cdot 10 \cdot 10$$

Funkcja f jest określona wzorem $f(x) = -\log x$ dla wszystkich liczb rzeczywistych dodatnich x.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość funkcji f dla argumentu $x = \sqrt{10}$ jest równa

- **A.** 2
- **B.** $\left(-\frac{1}{2}\right)$ **C.** $\frac{1}{2}$ **D.** (-2)

Zadanie 7.

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej $f(x)=ax^2+bx+c$. Wierzchołek paraboli, która jest wykresem funkcji f, ma współrzędne (5,-3). Jeden z punktów przecięcia paraboli z osią Ox układu współrzędnych ma współrzędne (4,0).

7.1. 0–1

Zadanie 7.1. (0-1)

Zapisz poniżej zbiór wszystkich wartości funkcji f.

.....

Zadanie 7.2. (0-2)

Wyznacz wzór funkcji kwadratowej f w postaci kanonicznej.

7.2. 0–1–2

Zapisz obliczenia.

Zadanie 8. (0-1)

Dana jest nierówność kwadratowa

$$(3x - 9)(x + k) < 0$$

z niewiadomą x i parametrem $k \in \mathbb{R}$. Rozwiązaniem tej nierówności jest przedział (-2,3).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba k jest równa

- **A.** (-2)
- **B.** 2
- **C.** (-3)
- **D.** 3

Zadanie 9. (0–1)

Dana jest funkcja kwadratowa $f(x) = ax^2 + bx + c$, gdzie a, b i c są liczbami rzeczywistymi takimi, że $a \neq 0$ oraz c < 0. Funkcja f nie ma miejsc zerowych.

Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A albo B oraz jej uzasadnienie 1., 2. albo 3.

Wykres funkcji f leży w całości

	A.	nad osią Ox ,	· ponieważ	1.	$a < 0$ i $b^2 - 4ac < 0$.
•		pod osią Ox ,		2.	$a > 0$ i $b^2 - 4ac < 0$.
	B.			3.	$a < 0$ i $b^2 - 4ac = 0$.

Dany jest układ równań

$$\begin{cases} y = x - 1 \\ y = -x + 1 \end{cases}$$

Na którym z rysunków A–D przedstawiona jest interpretacja geometryczna tego układu równań? Wybierz właściwą odpowiedź spośród podanych.

A.

В.

C.

D.

Zadanie 11. (0-1)

Dany jest wielomian W określony wzorem $W(x) = x^3 - 2x^2 - 3x + 6$ dla każdej liczby rzeczywistej x.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wielomian $\,W\,$ przy rozkładzie na czynniki ma postać

A.
$$W(x) = (x+2)(x^2-3)$$

B.
$$W(x) = (x-2)(x^2-3)$$

C.
$$W(x) = (x+2)(x^2+3)$$

D.
$$W(x) = (x-2)(x^2+3)$$

Zadanie 12. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Równanie $\frac{(4-x)(2x-3)}{(3x-5)(3-2x)}=0$ w zbiorze liczb rzeczywistych ma dokładnie

A. jedno rozwiązanie.

B. dwa rozwiązania.

C. trzy rozwiązania.

D. cztery rozwiązania.

Dana jest nierówność

$$2 - \frac{x}{2} \ge \frac{x}{3} - 3$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Największą liczbą całkowitą, która spełnia tę nierówność, jest

A. 6

- **B.** 5
- **C.** 7
- **D.** (-6)

Zadanie 14. (0-2)

Wykaż, że dla każdej liczby naturalnej n liczba $5n^2 + 15n$ jest podzielna przez 10.

Zadanie 15. (0-1)

Dany jest ciąg (a_n) określony wzorem $a_n=2n^2+n$ dla każdej liczby naturalnej $n\geq 1.$

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Ciąg (a_n) jest malejący.	Р	F
Ósmy wyraz ciągu (a_n) jest równy 136 .	Р	F

Zadanie 16. (0-1)

Pięciowyrazowy ciąg $\left(-3, \frac{1}{2}, x, y, 11\right)$ jest arytmetyczny.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczby x oraz y są równe

A.
$$x = 4$$
 oraz $y = \frac{15}{2}$.

B.
$$x = \frac{15}{2}$$
 oraz $y = 4$.

C.
$$x = -4$$
 oraz $y = \frac{15}{2}$.

D.
$$x = -\frac{15}{2}$$
 oraz $y = 4$.

Zadanie 17. (0-2)

Dany jest ciąg geometryczny (a_n) , określony dla każdej liczby naturalnej $n\geq 1$. W tym ciągu $a_1=-5, a_2=15, a_3=-45$.

Dokończ zdanie. Zaznacz <u>dwie</u> odpowiedzi tak, aby dla każdej z nich dokończenie poniższego zdania było prawdziwe.

0-1-2

Wzór ogólny ciągu (a_n) ma postać

A.
$$a_n = -5 \cdot (-3)^{n-1}$$

B.
$$a_n = -5 \cdot (-3)^n$$

C.
$$a_n = -5 \cdot 3^{n-1}$$

D.
$$a_n = -5 \cdot \frac{(-3)^n}{3}$$

E.
$$a_n = 5 \cdot \frac{(-3)^n}{3}$$

F.
$$a_n = 5 \cdot (-3)^n \cdot 3$$

Zadanie 18. (0–1)

Kąt α jest ostry oraz $\frac{1}{\sin^2 \alpha} + \frac{1}{\cos^2 \alpha} = \frac{64}{9}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $\sin \alpha \cdot \cos \alpha$ jest równa

- **A.** $\frac{8}{3}$
- **B.** $\frac{3}{8}$
- **c**. $\frac{64}{9}$
- **D.** $\frac{9}{64}$

Zadanie 19. (0-1)

Punkty A,B,\mathcal{C} leżą na okręgu o środku \mathcal{O} (zobacz rysunek).

Ponadto $| \not AOC | = 130^{\circ}$ oraz $| \not AOA | = 110^{\circ}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Miara kąta wewnętrznego BAC trójkąta ABC jest równa

Kolejne zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 20. (0-4)

Do wyznaczenia trzech boków pewnego kąpieliska w kształcie prostokąta należy użyć liny o długości 200 m. Czwarty bok tego kąpieliska będzie pokrywał się z brzegiem plaży, który w tym miejscu jest linią prostą (zobacz rysunek).

Oblicz wymiary a i b kąpieliska tak, aby jego powierzchnia była największa.

Zapisz obliczenia.

Zadanie 21. (0-1)

Dany jest kwadrat ABCD o boku długości 8. Z wierzchołka A zakreślono koło o promieniu równym długości boku kwadratu (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Pole powierzchni części wspólnej koła i kwadratu jest równe

- **A.** 16π
- **B.** 8π
- **C.** $4\sqrt{2}\pi$
- **D.** $16\sqrt{2}\pi$

Zadanie 22. (0-1)

Odcinki AC i BD przecinają się w punkcie O. Ponadto |AD|=4 i |OD|=|BC|=6. Kąty ODA i BCO są proste (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość odcinka OC jest równa

A. 9

- **B.** 8
- **C.** $2\sqrt{13}$
- **D.** $3\sqrt{13}$

Zadanie 23. (0-2)

Przekątne równoległoboku ABCD mają długości: |AC|=16 oraz |BD|=12. Wierzchołki E, F, G oraz H rombu EFGH leżą na bokach równoległoboku ABCD (zobacz rysunek).

Boki tego rombu są równoległe do przekątnych równoległoboku.

23. 0–1–2 Oblicz długość boku rombu *EFGH*.

Zapisz obliczenia.

Zadanie 24. (0-2)

Dany jest trójkąt ABC, w którym |AC|=4, |AB|=3, $\cos \angle BAC=\frac{4}{5}$.

Oblicz pole trójkąta ABC.

Zapisz obliczenia.

Zadanie 25.

Dany jest sześciokat foremny ABCDEF o polu równym $6\sqrt{3}$ (zobacz rysunek).

Zadanie 25.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Pole trójkata ABE jest równe

A. 6

B. $4\sqrt{3}$

C. $2\sqrt{3}$

D. 4

Zadanie 25.2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość odcinka AE jest równa

A. 2

B. $2\sqrt{3}$ **C.** $4\sqrt{3}$

D. 4

Zadanie 26. (0-1)

Dany jest trapez ABCD, w którym AB||CD oraz przekątne AC i BD przecinają się w punkcie O (zobacz rysunek). Wysokość tego trapezu jest równa 12. Obwód trójkąta ABO jest równy 39, a obwód trójkąta CDO jest równy 13.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wysokość trójkąta ABO poprowadzona z punktu O jest równa

- **A.** 3
- **B.** 4

C. 9

D. 6

Zadanie 27. (0-1)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dany jest okrąg $\mathcal O$ o równaniu

$$(x-3)^2 + (y-3)^2 = 13$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Okrąg ${\mathcal O}$ przecina oś ${\mathcal O} y$ w punktach o współrzędnych

A. (0,1) i (0,5).

B. (0,1) i (0,-5).

C. (1,0) i (5,0).

D. (0,-1) i (0,5).

Zadanie 28. (0-1)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dane są proste k oraz l o równaniach

$$k: \ y = \frac{1}{3}x - 1$$

$$l: y = -3x + 6$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Proste k oraz l

- A. nie mają punktów wspólnych.
- B. są prostopadłe.
- **C.** przecinają się w punkcie P = (0, -1).
- D. się pokrywają.

Zadanie 29. (0-1)

Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dane są punkty A=(1,2) i B=(2m,m), gdzie m jest liczbą rzeczywistą, oraz prosta k o równaniu y=-x-1.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prosta przechodząca przez punkty A i B jest równoległa do prostej k, gdy

A.
$$m = -1$$

B.
$$m = 1$$

C.
$$m = \frac{1}{2}$$

D.
$$m = 2$$

Zadanie 30.

Dany jest sześcian ABCDEFGH o krawędzi długości 9. Wierzchołki podstawy ABCD sześcianu połączono odcinkami z punktem W, który jest punktem przecięcia przekątnych podstawy EFGH. Otrzymano w ten sposób ostrosłup prawidłowy czworokątny ABCDW (zobacz rysunek).

Zadanie 30.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Objętość V ostrosłupa ABCDW jest równa

- **A.** 243
- **B.** 364,5
- **C.** 489
- **D.** 729

Zadanie 30.2. (0-2)

Oblicz cosinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.

Zapisz obliczenia.

Zadanie 31. (0-1)

Dany jest sześcian $\mathcal F$ o krawędzi długości a i objętości V oraz sześcian $\mathcal G$ o krawędzi długości 3a.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Objętość sześcianu $\mathcal G$ jest równa

- **A.** 3*V*
- **B.** 9*V*
- **C.** 18*V*
- **D.** 27*V*

Zadanie 32. (0-1)

Na loterii stosunek liczby losów wygrywających do liczby losów przegrywających jest równy 2:7. Zakupiono jeden los z tej loterii.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prawdopodobieństwo zdarzenia polegającego na tym, że zakupiony los jest wygrywający, jest równe

- **A.** $\frac{1}{9}$
- **B.** $\frac{1}{2}$
- **c**. $\frac{2}{9}$
- **D.** $\frac{2}{7}$

Zadanie 33. (0-2)

W eksperymencie badano kiełkowanie nasion w pięciu donicach. Na koniec eksperymentu policzono wykiełkowane nasiona w każdej z donic:

- w I donicy 133 nasiona
- w II donicy 140 nasion
- w III donicy 119 nasion
- w IV donicy 147 nasion
- w V donicy 161 nasion.

Odchylenie standardowe liczby wykiełkowanych nasion jest równe $\sigma = 14$.

Podaj numery donic, w których liczba wykiełkowanych nasion mieści się w przedziale określonym przez jedno odchylenie standardowe od średniej.

Zapisz obliczenia.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom podstawowy Formuła 2023

MATEMATYKA Poziom podstawowy Formuła 2023

MATEMATYKA Poziom podstawowy Formuła 2023