Part 1

1.4, Problem 2

$$\frac{dy}{dt} = 2y + 1$$

$$y(0) = 3$$

$$0 \le t \le 2$$

$$\Delta t = 0.5$$

$$k \mid t \mid y \mid f$$

k	t	y	f
0	0	3	7
1	0.5	6.5	14
2	1	13.5	28
3	1.5	27.5	56
4	2	55.5	—

Excel was used for calculation and TikZ/PGF was used to graph the coordinate outcomes from Euler's Method.

1.4, Problem 6

$$\frac{\mathrm{d}w}{\mathrm{d}t} = (3 - w)(w + 1)$$
$$w(0) = 0$$
$$0 \le t \le 2$$

$$\Lambda + - 0.5$$

$$\Delta t = 0.5$$

k	t	w	f
1	0	3	3
2	0.5	1.5	3.75
3	1	3.375	-1.641
4	1.5	2.555	1.583
5	2.0	3.346	_

1.4, Problem 11

The equilibrium solutions to $\frac{dw}{dt} = (3 - w)(w + 1)$ occur for w(t) = 3; however, we had our initial condition at w(0) = 0 and yet the solution seemed to oscillate around the equilibrium point (rather than approaching it from below, as we would expect for a solution that started below the equilibrium value).

1.4, Problem 15

• $\Delta t = 1$:

• $\Delta t = 0.5$:

• $\Delta t = 0.25$:

The actual solution to the initial value problem should be some quadratic function.

Part 2

1.5, Problem 2

Since 0 < y(0) < 2 and $y_2(t) = 2$, $y_3(t) = 0$ are equilibrium solutions for $\frac{dy}{dt} = f(y)$, it is the case that y(t) that solves the initial value problem with y(0) = 1 will be restricted between 0 and 2 for all t.

1.5, Problem 3

For the initial condition y(0) = 1, we can see that it is, in a sense, trapped between $y_1(t)$ and $y_2(t)$, meaning that y(t) that solves the initial value problem will be restricted between $y_1(t) = t + 2$ and $y_2(t) = -t^2$.

1.5, Problem 12

(a)

$$\frac{dy_1}{dt} = -\frac{1}{(t-1)^2}$$

$$= -y_1^2$$

$$\frac{dy_2}{dt} = -\frac{1}{(t-2)^2}$$

$$= -y_2^2$$

(b) If -1 < y(0) < -1/2, we know that y will be of the form $\frac{1}{t+y(0)}$, as this satisfies the initial value problem, and f(y), $\frac{\partial f}{\partial y}$ are continuous in a region about (0,y(0)) (satisfying the uniqueness condition).

1.5, Problem 14

$$\frac{dy}{dt} = \frac{1}{(y+1)(t-2)}$$

$$\int (y+1) dy = \int \frac{1}{t-2} dt$$

$$\frac{1}{2} (y+1)^2 = \ln|t-2| + C$$

$$y = \sqrt{2 \ln|t-2| + K} - 1.$$

Thus, we have

$$0 = \sqrt{2 \ln |(0) - 2| + K} - 1$$

$$2 \ln |-2| + K = 1$$

$$K = \frac{1}{2} - \ln 2.$$

The solution is defined for all $t \ne 2$ and $y \ne -1$, implying that the solution's domain is -2 < t < 2.. The solution's slope blows up (to negative infinity) as it approaches the edge of its domain.

1.5, Problem 15

$$\frac{dy}{dt} = \frac{1}{(y+2)^2}$$

$$\int (y+2)^2 dy = \int dt$$

$$\frac{1}{3}(y+2)^3 = t + C$$

$$y = \sqrt[3]{3t + K} - 2.$$

Evaluating the initial condition, we have

$$1 = \sqrt[3]{3(0) + K} - 2$$
$$3 = \sqrt[3]{K}$$
$$K = 27.$$

In particular, since y(0) > -2 , the allowed values for y are -2 < y < 2, meaning -9 < t < 9.