#### Metoda sjekućih ravni. Gomorijev rez.

#### Ema Djedović

Odsjek za matematičke i kompjuterske nauke Prirodno-matematički fakultet Univerzitet u Sarajevu

06/2024

#### Uvod

**Algoritam sjekućih ravni** rješava cjelobrojne programe modificirajući rješenja linearnih programa dok se ne dobije cjelobrojno rješenje. Ne dijeli dopušteno područje na podpodručja, kao u pristupima grananja i ograničavanja, već radi s jednim linearnim programom koji se rafinira **dodavanjem novih ograničenja**.

Nova ograničenja sukcesivno smanjuju dopušteno područje dok se ne pronađe optimalno cjelobrojno rješenje. Iako su u praksi postupci grananja i ograničavanja gotovo uvijek efikasniji, algoritam sjekućih ravni je bio važan za evoluciju cjelobrojnog programiranja. Historijski gledano, to je bio prvi algoritam za koji se moglo dokazati da konvergira u konačno mnogo koraka i koji je doveo do drugih, efikasnijih algoritama.

#### Uvod



Slika: Linearni program s realnim rješenjem (**Fractional solution**) na sjecištu prvog i drugog ograničenja. Cilj je doći do cjelobrojnih rješenja istaknutih crnim tačkama. U tu svrhu dodajemo jedan po jedan rez kako bismo "odsjekli" realna rješenja.

Bit će nam od koristi da izrazimo  $s_1$  i  $s_2$  preko varijabli  $x_1$  i  $x_2$ :

$$s_1 = 6 + x_1 - 3x_2$$
  
$$s_2 = 35 - 7x_1 - x_2$$

Ako zanemarimo cjelobrojnost, dobit ćemo sljedeću optimalnu simplex tablicu:

| Variable | $x_1$ $x_2$ |   | $s_1$ | $s_2$ | -z | RHS |  |
|----------|-------------|---|-------|-------|----|-----|--|
| $x_2$    | 0           | 1 | 7/22  | 1/22  | 0  | 7/2 |  |
| $x_1$ 1  |             | 0 | -1/22 | 3/22  | 0  | 9/2 |  |
| -z       | 0           | 0 | 28/11 | 15/11 | 1  | 63  |  |

Posmatrajmo prvo ograničenje:

$$x_2 = \frac{7}{22}s_1 + \frac{1}{22}s_2 = \frac{7}{2}$$

Stavimo sve cijele dijelove na lijevu stranu, a sve razlomke na desnu:

$$x_2 - 3 = \frac{1}{2} - \frac{7}{22}s_1 - \frac{1}{22}s_2$$

$$x_2 - 3 = \frac{1}{2} - \frac{7}{22}s_1 - \frac{1}{22}s_2$$

Sada, budući da lijeva strana sadrži samo cijele brojeve, desna strana također mora biti cjelobrojna. Kako imamo neki pozitivni razlomak (u našem slučaju  $\frac{1}{2}$ ) umanjen za niz nekih pozitivnih vrijednosti, tako desna strana može biti samo 0, -1, -2, .... Dakle, dobijamo sljedeće ograničenje:

$$\frac{1}{2} - \frac{7}{22}s_1 - \frac{1}{22}s_2 \le 0$$

Uvrstimo vrijednosti  $s_1 = 6 + x_1 - 3x_2$  i  $s_2 = 35 - 7x_1 - x_2$ .

$$\frac{1}{2} - \frac{7}{22}(6 + x_1 - 3x_2) - \frac{1}{22}(35 - 7x_1 - x_2) \le 0$$

Sređivanjem dobivamo  $-3 + x_2 \le 0$  odnosno  $x_2 \le 3$ .

Ograničenje koje smo dobili nazivamo **rez**, dodajemo ga u naš linearni program i isti ponovo rješavamo. Postupak ponavljamo sve dok optimalne vrijednosti za varijable odluke ne postanu cijeli brojevi - tada algoritam staje.

Rez smo mogli generirati i iz **drugog ograničenja**. Osmotrimo ponovo tablicu s početka:

| Variable | $x_1$ $x_2$ |   | $s_1$ | $s_2$ | -z | RHS |  |
|----------|-------------|---|-------|-------|----|-----|--|
| $x_2$    | 0           | 1 | 7/22  | 1/22  | 0  | 7/2 |  |
| $x_1$    | 1           | 0 | -1/22 | 3/22  | 0  | 9/2 |  |
| -z       | 0           | 0 | 28/11 | 15/11 | 1  | 63  |  |

Ovdje moramo biti oprezni da dobijemo pravilne znakove.

$$x_1 - \frac{1}{22}s_1 + \frac{3}{22}s_2 = \frac{9}{2}$$

$$x_1 + \left(-1 + \frac{21}{22}\right)s_1 + \frac{3}{22}s_2 = 4 + \frac{1}{2}$$

$$x_1 - s_1 - 4 = \frac{1}{2} - \frac{21}{22}s_1 - \frac{3}{22}s_2$$

$$x_1 - s_1 - 4 = \frac{1}{2} - \frac{21}{22}s_1 - \frac{3}{22}s_2$$

Odavdje dobivamo ograničenje (rez):

$$\frac{1}{2} - \frac{21}{22}s_1 - \frac{3}{22}s_2 \le 0$$

Ponovo izrazimo  $s_1$  i  $s_2$  preko varijabli odluke:

$$\frac{1}{2} - \frac{21}{22}(6 + x_1 - 3x_2) - \frac{3}{22}(35 - 7x_1 - x_2) \le 0$$

čijim se sređivanjem dobije:

$$x_2 \le \frac{10}{3}$$
 odnosno  $x_2 \le 3$  (radi cjelobrojnosti)

#### Generalizirano

Ako imamo ograničenje  $x_k + \sum a_i x_i = b$ , gdje b nije cijeli broj, možemo pisati  $a_i = \lfloor a_i \rfloor + a_i'$ , za neko  $0 \le a_i' < 1$ , i  $b = \lfloor b \rfloor + b'$  za neko 0 < b' < 1:

$$x_k + \sum (\lfloor a_i \rfloor + a_i')x_i = \lfloor b \rfloor + b'$$

$$x_k + \sum \lfloor a_i \rfloor x_i + \sum a_i'x_i = \lfloor b \rfloor + b'$$

$$x_k + \sum \lfloor a_i \rfloor x_i = \lfloor b \rfloor + b' - \sum a_i'x_i$$

$$x_k + \sum \lfloor a_i \rfloor x_i - \lfloor b \rfloor = b' - \sum a_i'x_i$$

Tako dobijamo rez:

$$b'-\sum a_i'x_i\leq 0$$

Ovo novo ograničenje dodajemo u linearni program i ponovo rješavamo problem.

#### Komentar

Metoda sjekućih ravni može garantirati pronalaženje optimalnog cjelobrojnog rješenja. Međutim, postoje neki nedostaci:

- Greška zaokruživanja može uzrokovati velike poteškoće: Je li to 3.000000001 stvarno 3, ili trebamo generirati rez?
- Kao što metoda grananja i ograničenje može generirati veliki broj podproblema, ova tehnika može generirati veliki broj ograničenja (rezova).

### Python biblioteka lippy

```
import lippy as lp
# biblioteka za rjesavanje problema linearnog programiranja
c_{\text{vektor}} = [3, 3, 7]
a_matrica =
[[1, 1, 1],
[1, 4, 0],
 [0, 0.5, 31]
b_{vektor} = [3, 5, 7]
gomory = Ip.CuttingPlaneMethod(c_vektor, a_matrica, b_vektor)
print("Rjesenje:-", gomory.solve())
```

# Optimizacijski problem: Maksimizirati profit knjižare

**Cilj:** Maksimizirati profit knjižare određivanjem optimalnog broja knjiga iz različitih kategorija.

- Beletristika
- Publicistika
- Edukativne knjige

Ograničenja su postavljena u odnosu na budžet, prostor na policama i minimalne zalihe knjiga za svaku kategoriju.



### Formulacija problema

#### Varijable odluke:

- x<sub>1</sub>: broj beletrističkih knjiga
- x<sub>2</sub>: broj publicističkih knjiga
- x<sub>3</sub>: broj edukativnih knjiga

#### Koeficijenti:

- ▶  $p_1 = 5 \in$ ,  $p_2 = 6 \in$ ,  $p_3 = 8 \in$  (profit po knjizi za svaku kategoriju)
- $ightharpoonup c_1=12$   $\in$ ,  $c_2=15$   $\in$ ,  $c_3=20$   $\in$  (trošak po knjizi za svaku kategoriju)
- $ightharpoonup s_1=0.5\,\mathrm{m}^2$ ,  $s_2=0.7\,\mathrm{m}^2$ ,  $s_3=1.0\,\mathrm{m}^2$  (prostor po knjizi za svaku kategoriju)
- B = 2000 € (ukupni budžet)
- $ightharpoonup S = 100 \,\mathrm{m}^2$  (ukupni prostor na policama)
- $ightharpoonup m_1=10,\ m_2=5,\ m_3=8$  (minimalne zalihe za svaku kategoriju)

## Funkcija cilja

Maksimizirati 
$$Z = 5x_1 + 6x_2 + 8x_3$$

$$12x_1 + 15x_2 + 20x_3 \le 2000$$

$$0.5x_1 + 0.7x_2 + x_3 \le 100$$

$$x_1 \ge 10$$

$$x_2 \ge 5$$

$$x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0$$

 $x_1, x_2, x_3 \in \mathbb{Z}$ 

## Primjena metode sjekućih ravni

#### Algoritam:

- Riješiti linearnu relaksaciju problema.
- Ako rješenje nije cjelobrojno, generirati Gomorijev rez.
- Dodati rez u originalni problem.
- Ponovno riješiti LP relaksaciju s novim ograničenjem.
- Ponavljati dok se ne pronađe cjelobrojno rješenje.



### Primjena metode sjekućih ravni

Riješimo LP relaksaciju koristeći Simplex metodu, a zatim primijenimo Gomory rezove kako bismo dobili cjelobrojno rješenje. Prvo ćemo nejednadžbe pretvoriti u jednadžbe uvođenjem varijabli viška.

$$\begin{array}{ll} \mathsf{Maksimizirati} & Z = 5 x_1 + 6 x_2 + 8 x_3 \\ & 12 x_1 + 15 x_2 + 20 x_3 + s_1 = 2000 \\ 0.5 x_1 + 0.7 x_2 + 1.0 x_3 + s_2 = 100 \\ & x_1 - s_3 = 10 \\ & x_2 - s_4 = 5 \\ & x_3 - s_5 = 8 \\ & x_1, x_2, x_3, s_1, s_2, s_3, s_4, s_5 \geq 0 \end{array}$$

## Primjena metode sjekućih ravni

Postavimo početnu Simplex tablicu.

|   | $x_1$ | <i>x</i> <sub>2</sub> | <i>X</i> 3 | $s_1$ | <i>s</i> <sub>2</sub> | <i>5</i> <sub>3</sub> | <i>S</i> <sub>4</sub> | <i>S</i> <sub>5</sub> | RHS  |
|---|-------|-----------------------|------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|------|
| Z | 5     | 6                     | 8          | 0     | 0                     | 0                     | 0                     | 0                     | 0    |
|   |       |                       |            |       |                       |                       |                       |                       | 2000 |
| 2 | 0.5   | 0.7                   | 1.0        | 0     | 1                     | 0                     | 0                     | 0                     | 100  |
| 3 | 1     | 0                     | 0          | 0     | 0                     | -1                    | 0                     | 0                     | 10   |
| 4 | 0     | 1                     | 0          | 0     | 0                     | 0                     | -1                    | 0                     | 5    |
| 5 | 0     | 0                     | 1          | 0     | 0                     | 0                     | 0                     | -1                    | 8    |

#### Izvori

- https://pypi.org/project/lippy
- https://mat.tepper.cmu.edu
- Marija Ivanović (2009) Vežbe iz Operacionih istraživanja Univerzitet u Beogradu,
   Matematički fakultet
- ▶ Bradley, S.P., Hax, A.C. and Magnanti, T.L. (1977) *Applied mathematical programming* Reading, Mass: Addison-Wesley.