天津理工大学考试试卷

20XX~20XX学年第一学期 《数理统计》期末考试试卷

课程	代码: <u>1563163</u>	试卷编号:1	命题日期:	: 年 月	日		
答题	时限: 120 分钟	考试形式: _ 闭	卷				
得分	统计表						
	大题号总分		=	Ξ	四		
得分	填空题 (每题 4 分	,共 20 分)					
1. 设 x_1, x_2, x_3, x_4 是服从正态总体 $N(0,1)$ 的样本,则统计量 $Y = \frac{x_1 - x_2}{\sqrt{x_3^2 + x_4^2}}$ 服从的分布为							
	2. 设样本 $x_1,, x_n$ 取自两点分布 $b(1, p)$,考虑参数 p 的最大似然估计,则似然函数取为 $L(p) = $						
3. 请	5. 请描述统计推断中的"充分性原则":						

4. 设样本 x_1, \ldots, x_n 取自两点分布 b(1,p), 现要求 p 的 $1-\alpha$ 大样本置信区间, 利用中心极限

定理, 可取枢轴量为 $u = _____$.

二、选择题 (每题 4 分, 共	20分)		
得分			
1. 设样本 x ₁ ,,x _n 取自点	总体 x ,则偏差平方和	$\sum_{i=1}^{n} (x_i - \bar{x})^2$ 的自由度	是()
A. $n - 1$	B. <i>n</i>	C. $n+1$	D. 1
2. 设随机变量 $X \sim t(n)$, r	$n > 1, \Leftrightarrow Y = X^2, $	()	
A. $Y \sim \chi^2(n)$	B. $Y \sim \chi^2(n-1)$	C. $Y \sim F(n, 1)$	D. $Y \sim F(1, n)$
3. 设总体方差为 Var(X):	= σ^2 ,则样本标准差 S	$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - X_i)^2}$	\overline{X}) ² 是 σ 的(
A. 无偏估计		B. 有效估计	
C. 相合估计		D. 以上都不对	
4. 在一次假设检验中,下	列说法正确的是()	
A. 既可能犯第一类	错误,也可能犯第二类	错误.	
B. 如果备择假设是	正确的,但拒绝了备择	假设,则犯了第一类转	错误.
C. 增大样本容量,	则犯两类错误的概率都	不变.	
D. 如果原假设是错	误的,但接受了原假设	,则犯了第二类错误.	
5. 在假设检验中, 如果所记	十算的 p 值越小,说明	()	

A. 原假设越真实;

C. 否定原假设证据越不充分;

B. 备择假设越不真实;

D. 否定原假设证据越充分.

三、计算题 (每题 10 分, 共 40 分)

得分	
----	--

1. 设样本 x_1, \ldots, x_n 取自均匀分布 $U(\theta, \theta+1)$, 求 θ 的矩估计和最大似然估计.

2.	设一	-页书上的错别字/	卜数 X	服从泊松分布 $p(\lambda)$,	λ 有两个可能取值	1.5 和 1.8, 先验分布为
----	----	-----------	--------	-----------------------	-------------------	------------------

$$P(\lambda = 1.5) = 0.45, \quad P(\lambda = 1.8) = 0.55,$$

现检查了一页, 发现 3 个错别字, 试求 λ 的后验分布. (注: $\mathrm{e}^{-1.5}\approx 0.22313,\,\mathrm{e}^{-1.8}\approx 0.1653.)$

3. 假定某种元件的寿命服从指数分布 $e(1/\theta)$, 现取 5 个元件投入试验, 观测到如下失效时间:

395 4094 119 11572 6133 (单位: 小时)

经计算, 样本均值 $\bar{x}=4462.6$. 对显著水平 $\alpha=0.05$, 能否认为元件的平价寿命不小于 6000 小时? $(\chi^2_{0.05}(10)=3.94.)$

4. 研究某种传统中药对疟疾的治疗效果,获得了如下数据:

	痊愈数	未痊愈数	合计
对照组	114	36	150
中药组	132	18	150
合计	246	54	300

对显著水平 $\alpha=0.05$,试问该中药对治疗疟疾是否有显著效果? $(\chi^2_{0.95}(1)=3.8415.)$

四、证明题 (每题 10 分, 共 20 分)

得分

- 1. 设 x_1, \ldots, x_n 是取自总体 $N(\mu, 1)$ 的简单随机样本,
 - 1). 设 T 是 $g(\mu) = \mu^2$ 的任一无偏估计, 证明 $\mathbf{Var}(T)$ 的 C-R 下界为 $4\mu^2/n$;
 - 2). 求 μ^2 的 UMVUE, 并证明此 UMVUE 达不到 C-R 下界, 即它不是有效估计. (注: 设 $Z\sim N(\mu,\sigma^2)$, 则有 $\mathbb{E}(Z^4)=3\sigma^2(\mu^2+\sigma^2)$.)

