Statistique descriptive bivariée

Marie-Ange Remiche

Université de Namur

Conditions d'analyse

Soit $(\underline{X},\underline{Y})$ la distribution statistique d'un couple de variables mesurées sur un échantillon dont l'effectif total est n. Nous avons plusieurs manières de décrire cette distribution, à savoir

- sous forme de données brutes, soit (X_i, Y_i) pour i = 1, ..., n,
- sous forme de valeurs distinctes. Soit (x_1,\ldots,x_p) avec $x_1 < x_2 \ldots < x_p$ pour la variable X et (y_1,\ldots,y_q) avec $y_1 < y_2 \ldots < y_q$ pour la variable Y, nous avons alors le tableau de contingence

	<i>y</i> ₁	•••	Уј	•••	Уq
<i>x</i> ₁	n_{11} n_{i1} n_{p1}	• • •	n_{1j}		n_{1q}
÷			_		
Xi	n_{i1}	• • •	nį	<u>.</u>	n _{iq}
÷					
x_p	n_{p1}	• • •	n_{pj}	• • •	n_{pq}

 n_{ij} représente l'effectif de l'échantillon pour lequel sont observées la mesure x_i pour la variable X et la mesure y_j pour la variable Y, avec $i \in \{1, \ldots, p\}$ et $j \in \{1, \ldots, q\}$.

Le tableau de contingence fournit ce qu'on appelle la distribution jointe de la série statistique $(\underline{X},\underline{Y})$.

On peut aisément y adjoindre les totaux des lignes et des colonnes. On obtient alors la représentation suivante

	<i>y</i> ₁	•••	Уј	•••	Уq	Total
<i>x</i> ₁	n ₁₁	•••	n_{1j}	•••	n_{1q}	$n_{1\bullet}$ $n_{i\bullet}$
:						
Xi	n _{i1}	• • •	n _{ij}	• • •	n _{iq}	n _{i∙}
:						n _{p•}
Xp	n_{p1}	• • •	n _{pj}	• • •	n_{pq}	n _{p•}
Total	$n_{\bullet 1}$		n _{●j}		n₀q	n

• L'effectif marginal de x_i est donné par

$$n_{iullet}\stackrel{ ext{def}}{=} \sum_{j=1}^q n_{ij},$$

celui de yi est défini comme

$$n_{ullet j} \stackrel{ ext{def}}{=} \sum_{i=1}^p n_{ij},$$

• la fréquence marginale de x_i est donnée par

$$f_{i\bullet} \stackrel{\text{def}}{=} \sum_{j=1}^{q} \underbrace{\frac{n_{ij}}{n}}, \quad f_{i\bullet}$$

celle de yi est définie comme

$$f_{ullet j} \stackrel{ ext{def}}{=} \sum_{i=1}^p rac{n_{ij}}{n},$$

- la distribution marginale des effectifs de X est $(x_i, n_{i\bullet})_{i=1,...,p}$, celle de Y est $(y_i, n_{\bullet i})_{i=1,...,p}$,
- la distribution marginale des fréquences de X est $(x_i, f_{i\bullet})_{i=1,...,p}$, celle de Y est $(y_i, f_{\bullet i})_{i=1,...,p}$, avec

$$f_{i\bullet} \stackrel{\text{def}}{=} \frac{n_{i\bullet}}{n},$$

$$f_{\bullet i} \stackrel{\text{def}}{=} \frac{n_{\bullet i}}{n}.$$

Exemple

Nous avons les codes suivants

```
table (BD$age, BD$genre)
addmargins (table (BD$age, BD$genre))
```

addmargins (prop. table (table (BD\$age, BD\$genre)))

Distribution conditionnelle

Définition

La fréquence conditionnelle de la valeur y_j sachant que $X=x_i$, notée $f_{j|i}^{Y|X}$ est donnée par

$$f_{j|i}^{Y|X} \stackrel{\text{def}}{=} \frac{n_{ij}}{n_{i\bullet}}$$
$$= \frac{f_{ij}}{f_{i\bullet}}$$

La fréquence conditionnelle de la valeur x_i sachant que $Y = y_j$, notée $f_{i|j}^{X|Y}$ est donnée par

$$f_{i|j}^{X|Y} \stackrel{\text{def}}{=} \frac{n_{ij}}{n_{ullet}}$$

$$= \frac{f_{ij}}{f_{ullet}}$$

Exemple

```
Nous avons les codes suivants
```

```
prop. table (table (BD$age, BD$genre), 2)
addmargins (prop. table (table (BD$age, BD$genre), 2), 1)
```

```
AgeFnFemme<-
addmargins(prop.table(table(BD$age,BD$genre),2),1)
```

AgeFnFemme[,1]

```
\label{eq:plot_plot} \begin{split} & \textbf{plot} \left( \times = & (\textbf{rownames} \left( \textbf{AgeFnFemme} \right) [1: (\textbf{nrow} \left( \textbf{AgeFnFemme} \right) - 1)] \right), \\ & \textbf{y} = & \textbf{AgeFnFemme} \left[ 1: (\textbf{nrow} \left( \textbf{AgeFnFemme} \right) - 1), 1 \right], \\ & \textbf{type} = "l", \textbf{xlab} = "Age", \textbf{ylab} = "Fréquence\_conditionnelle") \end{split}
```


Représentations graphiques - Deux variables qualitatives

Exemple

Nous avons le diagramme en bâtons superposés pour les effectifs ou le diagramme en bâtons juxtaposés.

```
\label{eq:barplot} \begin{split} &\textbf{barplot} (\, \textbf{table} \, (\text{BD\$maux} \, , \text{BD\$genre} \, )) \\ &\textbf{barplot} (\, \textbf{table} \, (\text{BD\$maux} \, , \text{BD\$genre} \, ) \, , \, \text{beside=TRUE}) \end{split}
```


Exemple

Nous avons le diagramme en bâtons superposés pour les fréquences

conditionnelles ou le diagramme en bâtons juxtaposés.

Tf=prop.table(table(BD\$maux,BD\$genre),2) barplot(Tf))

barplot(Tf, beside=TRUE)

Une variable qualitative et une variable quantitative

Exemple

 $\textbf{boxplot} \, (\texttt{BD\$age~BD\$maux})$

Deux variables quantitatives

Exemple

 $\textbf{plot} \, (\texttt{BD\$taille ,BD\$poids})$

Caractéristiques conditionnelles

Définition

La moyenne conditionnelle de la variable X sachant que $Y=y_j$ est définie par

$$\overline{X}_{j} \stackrel{\text{def}}{=} \frac{1}{n_{\bullet j}} \sum_{i=1}^{p} n_{ij} x_{i}$$
$$= \sum_{i=1}^{p} f_{i|j}^{X|Y} x_{i}.$$

La moyenne conditionnelle de la variable Y sachant que $X=x_i$ est définie par

$$\overline{Y}_i \stackrel{\text{def}}{=} \frac{1}{n_{i\bullet}} \sum_{j=1}^q n_{ij} y_j$$
$$= \sum_{j=1}^q f_{j|i}^{Y|X} y_j.$$

La variance conditionnelle de la variable X sachant que $Y=y_j$ est définie par

$$S_j^2(\underline{X}) \stackrel{\text{def}}{=} \frac{1}{n_{\bullet j}} \sum_{i=1}^p n_{ij} \left(x_i - \overline{X}_j \right)^2$$
$$= \sum_{i = 1}^p f_{i|j}^{X|Y} x_i^2 - \overline{X}_j^2.$$

La variance conditionnelle de la variable Y sachant que $X=x_i$ est définie par

$$S_i^2(\underline{Y}) \stackrel{\text{def}}{=} \frac{1}{n_{i\bullet}} \sum_{j=1}^q n_{ij} (y_j - \overline{Y}_i)^2$$
$$= \sum_{j=1}^q f_{j|i}^{Y|X} y_j^2 - \overline{Y}_i^2.$$

Indépendance

Définition

Les séries statistiques \underline{X} et \underline{Y} sont dites indépendantes si et seulement si pour tout $i \in \{1, \dots, p\}$ et pour tout $j \in \{1, \dots, q\}$, nous avons

$$f_{i|j}^{X|Y} = f_{i\bullet}$$

 $f_{j|i}^{Y|X} = f_{\bullet j}$.

Propriété

Lorsque X et Y sont indépendantes, nous avons

$$f_{ij}=f_{i\bullet}f_{\bullet j},$$

pour tout $i \in \{1, \ldots, p\}$ et pour tout $j \in \{1, \ldots, q\}$.

Exemple

independance \$ expected independance \$ observed

Covariance et corrélation

Définition

La covariance entre \underline{X} et \underline{Y} , notée $Cov(\underline{X},\underline{Y})$ est définie de la manière suivante

$$Cov(\underline{X},\underline{Y}) \stackrel{\text{def}}{=} \sum_{1 \le i \le p, 1 \le j \le q} (x_i - \overline{X})(y_j - \overline{Y}) f_{ij}$$

Remarque

Une autre équation existe pour définir la notion de covariance, soit

$$\mathsf{Cov}(\underline{X},\underline{Y}) \stackrel{\mathsf{def}}{=} \sum_{1 \leq i \leq p, 1 \leq j \leq q} x_i y_j f_{ij} - \overline{X} \, \overline{Y}.$$

Le coefficient de corrélation entre \underline{X} et \underline{Y} , notée $R(\underline{X},\underline{Y})$ est défini de la manière suivante

$$\mathsf{R}(\underline{X},\underline{Y}) \stackrel{\mathsf{def}}{=} \frac{\mathsf{Cov}(\underline{X},\underline{Y})}{S(\underline{X})S(\underline{Y})}.$$

Propriété

Le coefficient de corrélation entre X et Y est tel que

$$|\mathsf{R}(\underline{X},\underline{Y})| \leq 1.$$

Propriété

Soit \underline{X} et \underline{Y} deux séries statistiques. Leur covariance respecte les identités suivantes,

$$\begin{aligned} &\mathsf{Cov}(\underline{X},\underline{Y}) = \mathsf{Cov}(\underline{Y},\underline{X}) \\ &\mathsf{Cov}(\underline{X},\underline{X}) = S^2(\underline{X}) \\ &|\mathsf{Cov}(\underline{X},\underline{Y})| \leq \sqrt{S^2(\underline{X})\,S^2(\underline{Y})} \end{aligned}$$

Exemple

```
femme<-subset (BD,BD$genre==0)
cov(femme$taille ,femme$poids)
plot(femme$taille ,femme$poids)
cor(femme$taille ,femme$poids)</pre>
```


Association entre deux variables nominales

Remarque

Si il y a indépendance entre les deux variables

$$n_{jk}^* = \frac{n_{j\bullet}n_{\bullet k}}{n}.$$

On peut mesurer "l'écart" à l'indépendance comme

$$e_{jk} = n_{jk} - n_{jk}^*$$

Définition

La mesure du Khi-deux, notée D^2 , donne la mesure de l'association qui existe entre deux variables nominales. Elle est donnée par

$$D^{2} \stackrel{\text{def}}{=} \sum_{j=1}^{p} \sum_{k=1}^{q} \frac{e_{jk}^{2}}{n_{jk}^{*}}$$

Association entre deux variables ordinales

Définition

Soit R(X) le rang attribué à la valeur X.

Le coefficient de corrélation de rang de Spearman, noté r_S est défini comme

$$r_S \stackrel{\text{def}}{=} \frac{1/n\sum_{i=1}^n (R(X_i) - \overline{R}_X)(R(Y_i) - \overline{R}_Y)}{\sqrt{(1/n\sum_{i=1}^n [R(X_i) - \overline{R}_X]^2)(1/n\sum_{i=1}^n [R(Y_i) - \overline{R}_Y]^2)}}$$

οù

$$\overline{R}_X \stackrel{\text{def}}{=} 1/n \sum_{i=1}^n R(X_i)$$

$$= \frac{n+1}{2}$$

Propriété

Nous avons

$$r_S = 1 - \frac{6\sum_{i=1}^{n}(R(X_i) - R(Y_i))^2}{n(n^2 - 1)}$$

et

$$-1 \le r_S \le 1$$
.

Régression linéaire

Théorème

La droite de régression de Y par rapport à X est la droite

$$Y = aX + b$$

Elle est définie de telle manière qu'elle rend la quantité d(a,b), définie comme

$$d(a,b) \stackrel{\text{def}}{=} \sum_{i=1}^{n} (Y_i - aX_i - b)^2.$$

la plus petite possible.

Dans ce cas, on peut établir que

$$a = \frac{\operatorname{Cov}(\underline{X}, \underline{Y})}{S^{2}(\underline{X})}$$
$$b = \overline{Y} - a\overline{X}.$$

La pente de la droite de régression

Rappelons la définition du coefficient de corrélation entre X et Y,

$$R(\underline{X},\underline{Y}) = \frac{Cov(\underline{X},\underline{Y})}{S(\underline{X})S(\underline{Y})}.$$

Ainsi, nous avons

$$a = R(\underline{X}, \underline{Y}) \frac{S(\underline{Y})}{S(X)}.$$

Le rapport $S(\underline{Y})/S(\underline{X})$ étant positif, seul $R(\underline{X},\underline{Y})$ indique la pente de la droite de la régression linéaire selon la méthode des moindres carrés. Positif, la droite est croissante; négatif, elle est décroissante.

