Bass Model

1. The first step of creating the data model is to load the dataset and calculate cumulative sales for each week. We shall also calculate the square transformation for the cumulative sales to include in as the dependent variable in the regression equation $S_t = a + b * N_{t-1} + c * N_{t-1} ^2$

```
data sales;
      input week sales;
      datalines;
      1
            160
      2
            390
      3
            800
      4
            995
      5
            1250
      6
            1630
      7
            1750
      8
            2000
      9
            2250
      10
         2500
      ;
run;
data sales cumulative;
      set sales; by week;
      if week = 1 then cum sum = 0;
      cum sum + lag(sales);
      cum sum sq = cum sum ** 2;
run;
proc reg
      data = sales cumulative outest = mylib.est;
      model sales = cum sum cum sum sq / stb ;
run;
```

				N	REG Pro Model: MC dent Var	DDE	1	25				
			Num	ber o	of Observations Read				0			
			Num	ber o	f Observations Used			d 1	0			
		Ana				alysis of Variance						
	Sou	Source		DF	Sum of Squares S		Mean quare F\		alue	Pr > F		
	Mod	odel		2	5372770	268	6385	5	8.05	<.0001		
	Erro	r		7	191793	2	27399	7399				
	Con	rected Total		9	5584583							
		Root	MSE		165.52	823	R-Sq	uare	0.96	955		
		Depe	ndent l	Mean	1372.50	000	Adj F	R-Sq 0.9		57		
		Coeff Var			12.08	020						
				Par	ameter E	stim	ates					
Variabl			Parar Esti	neter mate			t Val	ue	Pr> t	200000000000000000000000000000000000000	Standardized Estimate	
Interce	pt	t 1 417.46282 93.92583 4.		44	0.0030)	0					
cum_su	ım	1	0.3	35647	0.04	953	7.	20	0.0002	2	1.78713	
cum su	ım sq	1	-0.000	01601	0.00000	458	-3.	51	0.0099	9	-0.87138	

We see that the model is significant with extremely small p-value. The R² value of 0.9655 suggest that the model is able to explain 96.55% of the variation in the sales during the period of 10 weeks. To calculate the estimates for the p, q and M we need the intercept, and co-efficient for cumulative sales and transformed variable (square of cumulative sales).

```
data estimates;
      set mylib.est;
      a = Intercept;
      b = cum sum;
      c = cum sum sq;
      M = ((-1 * b) - sqrt(b*b - 4 * a * c))/(2 * c);
      p = a / M;
      q = p + b;
      peak time = log(q / p) * 1 / (p + q);
      peak\_sales = M * ((p + q) ** 2) / (4 * q);
      call symput('p coeff', p);
      call symput('q_coeff', q);
      call symput('M coeff', M);
run;
proc print
     data = estimates;
run;
```

Model Estimates																
Obs	_MODEL_	_TYPE_	_DEPVAR_	_RMSE_	Intercept	cum_sum	cum_sum_sq	sales	a	b	С	М	р	q	peak_time	peak_sales
1	MODEL1	PARMS	sales	165.526	417.483	0.35647	000016006	-1	417.483	0.35847	000016008	23386.22	0.017851	0.37432	7.75951	2402.20

From the output we have p = 0.0179, q = 0.3743 and M = 23386.22. Also, the peak sales, predicted is 2402.20 units of sales / currency. The peak time predicted is 7.76 i.e. around second half between 7^{th} and 8^{th} week of sales.

Predicting sales in each period using model parameters with sales at time period 0 = 0.

Predicted Sales								
nt1	predicted_sales	cum_sum_sq	cum_sum	sales	week	Obs		
0.00	417.48	0	0	160	1	1		
417.48	583.49	25800	160	390	2	2		
980.95	751.74	302500	550	800	3	3		
1732.69	987.08	1822500	1350	995	4	4		
2719.75	1268.58	5499025	2345	1250	5	5		
3988.33	1584.58	12924025	3595	1630	6	6		
5572.92	1906.94	27300625	5225	1750	7	7		
7479.86	2188.30	48650625	6975	2000	8	8		
9668.16	2387.74	80550625	8975	2250	9	9		
12035.90	2389.23	126000625	11225	2500	10	10		

Week	Observed Sales	Predicted Sales
1	160	417.46
2	390	563.49
3	800	751.74
4	995	987.06
5	1250	1268.58
6	1630	1584.58
7	1750	1906.94
8	2000	2188.3
9	2250	2367.74
10	2500	2389.23

Plotting a graph of actual versus predicted sales

```
proc sgplot
```

```
data = predicted_sales;
series X = week Y = sales / legendlabel = 'Actual Sales' markers;
series X = week Y = predicted_sales / legendlabel = 'Actual Sales'
markers;
title 'Actual v/s Predicted Sales';
yaxis label = 'Sales in units';
xaxis type = DISCRETE;
run;
```

