

Central Limit Theorem for $\hat{\pi}_i$

Beate Franke

Stochastic Processes Group, University College London, UK

May 10, 2013

Assumption simple graph, $A_{ii} \sim \text{Bern}(p_{ii})$ with $p_{ii} = \pi_i \pi_i$

Assumption

simple graph, $A_{ii} \sim \text{Bern}(p_{ii})$ with $p_{ii} = \pi_i \pi_i$

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Assumption simple graph, $A_{ii} \sim \text{Bern}(p_{ii})$ with $p_{ii} = \pi_i \pi_i$

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Aim: Asymptotic distribution of $\hat{\pi}_i$

Assumption

simple graph, $A_{ii} \sim \text{Bern}(p_{ii})$ with $p_{ii} = \pi_i \pi_i$

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Aim: Asymptotic distribution of $\hat{\pi}_i$

What is a Degree Distribution? [1]

$$\pi_i = \theta_n i^{-\gamma};$$
 $\mathbb{E}(d_i|\pi)$ is growing to ∞

Assumption

simple graph, $A_{ij} \sim \text{Bern}(p_{ij})$ with $p_{ij} = \pi_i \pi_j$

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Aim: Asymptotic distribution of $\hat{\pi}_i$

What is a Degree Distribution? [1]

$$\pi_i = \theta_n i^{-\gamma};$$
 $\mathbb{E}(d_i|\pi)$ is growing to ∞

 \Rightarrow

$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1}} \stackrel{d}{\to} N(0,1)$$

Additional Assumptions

$$\mathbb{E}(d_i|\pi)$$
 is growing to ∞ ,

$$\frac{||\pi||_2^2}{||\pi||_1} \stackrel{n \to \infty}{\to} 0.$$

Additional Assumptions

$$\mathbb{E}(d_i|\pi)$$
 is growing to ∞ ,

$$\frac{||\pi||_2^2}{||\pi||_1} \stackrel{n \to \infty}{\to} 0.$$

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1}} \stackrel{d}{\to} N(0,1).$$

Additional Assumptions

$$\mathbb{E}(d_i|\pi)$$
 is growing to ∞ , $\frac{||\pi||_2^2}{||\pi||_1} \stackrel{n \to \infty}{\to} 0$.

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1}} \stackrel{d}{\to} N(0,1).$$

But, excludes Erdös Rényi graph; i.e., $p_{ij} = p$.

Additional Assumptions

$$\mathbb{E}(d_i|\pi)$$
 is growing to ∞ , $\qquad \frac{||\pi||_2^2}{||\pi||_1} \stackrel{n \to \infty}{\to} 0.$

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1}} \stackrel{d}{\to} N(0,1).$$

But, excludes Erdös Rényi graph; i.e., $p_{ij} = p$.

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1 - \pi_i^2(||\pi||_2^2/||\pi||_1^2)}} \stackrel{d}{\to} N(0,1).$$

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1 - \pi_i^2(||\pi||_2^2/||\pi||_1^2)}} \stackrel{d}{\to} N(0, 1).$$

Additional Assumptions

 $Var(d_i|\pi)$ is growing to ∞ .

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1 - \pi_i^2(||\pi||_2^2/||\pi||_1^2)}} \stackrel{d}{\to} N(0,1).$$

Additional Assumptions

 $Var(d_i|\pi)$ is growing to ∞ .

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1 - \pi_i^2(||\pi||_2^2/||\pi||_1^2)}} \stackrel{d}{\to} N(0,1).$$

Power law case √

Additional Assumptions

 $Var(d_i|\pi)$ is growing to ∞ .

Estimator:
$$\hat{\pi}_i = \frac{d_i}{\sqrt{||d||_1}}$$

Then,
$$\frac{\hat{\pi}_i - \pi_i}{\sqrt{\pi_i/||\pi||_1 - \pi_i^2(||\pi||_2^2/||\pi||_1^2)}} \stackrel{d}{\to} N(0,1).$$

Power law case √

Erdös Rényi graph ✓

References

S. C. Olhede and P. J. Wolfe. What is a Degree Distribution? arXiv:1211.6537v1, 2012.