www.AlevelApi.com

AL/2019/10/S-I(NEW)

සියලු ම හිමිකම් ඇවිටිනි / (ආඥාට පුණිට්පුහිණාදානාදා (All Rights Reserved)

නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අභෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics

2019.08.05 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමහර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතු**ය** කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමු**බත්ව** දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

හියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතු**රු**, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A **තොටගෙහි** පිළිතුරු පතුය, B **තොටගෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පයෝජනය සඳහා පමණි.

තාටස	ළශ්න අංකය	ලකුණු
	107 307	300
	2	W .
	3	
	4	
. [5	
A	6	
	7	
	8	
	9	
	10	
30.000000000000000000000000000000000000	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

(10) ഭാരത്ത നൽതര I

evelapi.com

එකතුව ඉලක්කමෙන් අකුරින්

උත්තර පතු පරීක්ෂක
පරීක්ෂා කළේ: 1
2
අධීක්ෂණය කළේ:

[දෙවැනි පිටුව බලන්න.

	A Gauca
1.	ගණිත අභනුභන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n (2r\!-\!1) = n^2$ බව සාධනය කරන්න.

2.	එක ම රූප සටහනක $y=\left 4x-3\right $ හා $y=3-2\left x\right $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒ නයින් හෝ අත් අයුරකින් හෝ, $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	www.alevelapi.com
	÷
	[තුත්වැනි පිටුව බලන්න.

3.	අාගන්ඩ් සටහනක, $\mathrm{Arg}ig(z-2-2iig)=-rac{3\pi}{4}$ සපුරාලන z සංකීර්ණ සංඛ්‍යා නිරූපණය කරන ලක්ෂාවල
	පථයෙහි දළ සටහනක් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}(z-2-2i)=-rac{3\pi}{4}$ වන පරිදි $ i\overline{z}+1 $ හි අවම අගය සොයන්න.

ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}ig(z-2-2iig)=-rac{3\pi}{4}$ වන පරිදි $ig|i\,\overline{z}+1ig|$ හි අවම අගය සොයන්න.

 ********	**************	***************	 	

/ · · ·) ⁷

$$4. \quad \left(x^3 + \frac{1}{x^2}\right)^7$$
හි ද්විපද පුසාරණයේ x^6 හි සංගුණකය 35 බව පෙන්වන්න.

ඉහත ද්විපද පුසාරණයේ x වලින් ස්වායක්ක පදයක් **නොපවතින** බවක් පෙන්වන්න.

**************	****************	 	 ****************	

		W 63		

[ගතරවැනි පිටුව බලන්ත.

5.	$\lim_{x\to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi} \text{බව ලපත්වන්න.}$
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩිය න 2π වලින්
	භූමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	www.alevelapi.com
	······································
	,

7.	C යනු $t\in\mathbb{R}$ සඳහා $x=at^2$ සහ $y=2at$ මගින් පරාමිතිකව දෙනු ලබන පරාවලය යැයි ගනිමු; මෙහි $a\neq 0$ වේ.
	C පරාවලයට $\left(at^2,2at ight)$ ලක්ෂායෙහි දී වූ අහිලම්බ රේඛාවෙහි සමීකරණය $y+tx=2at+at^3$ මගින් දෙනු
	ලබන බව පෙන්වන්න.
	C පරාවලය මත $P \equiv (4a,4a)$ ලක්ෂායෙහි දී වූ අහිලම්බ රේඛාවට එම පරාවලය නැවත $Q \equiv (aT^2,2aT)$
	ලක්ෂායක දී හමු වේ. $T=-3$ බව පෙන්වන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
8.	
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුහින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුහින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුහින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට ඇති ලම්බ දුර ඒකක 1 ක් වන පරිදි ය. P හි හා Q හි ඛණ්ඩාංක සොයන්න.

9.	$A \equiv (-7,9)$ ලක්ෂාය $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$ වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න. $S = 0$ වෘත්තය මත වූ, A ලක්ෂායට ආසන්නතම ලක්ෂායෙහි බණ්ඩාංක සොයන්න.
	* T
	. 2
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\in \mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{1+t^2}$ බව පෙන්වන්න.
	$ an rac{\pi}{12} = 2 - \sqrt{3}$ බව අපෝහනය කරන්න.
	12
	www.alevelapi.com

සියලු ම හිමිකම් ඇවිරිණි / (மුඟුට பதிப்புரிமையுடையது / All Rights Reserved

නව නිර්දේශය/பුනිш பாடத்திட்டம்/New Syllabus)

මත්තුව ලී ලංකා විතාග දෙපාර්තුල් කියල් සියල් පතුවිනා දැන පිහිට සියල් පතුව දැන දැන දෙපාර්තමේත්තුව ලී ලංකා විතාග දෙපාර්තමේත්තුව නිශානාස්සභාග இலங்கைப் படுகளின் இணைக்களும் இணைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும் ions, Sri Lanka Department of **இலங்கைப் Sri Uprik கொது வணைக்களா**ம். Sri Lanka Department of Examinations, Sri Lanka මත්තුව ලී ලංකා විතාග දෙපාර්තමේත්තුව ලී ලංකා විශාග දෙපාර්තමේත්තුව ලී ලංකා විශාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග අදපාර්තමේත්තුව ලී ලංකා විභාග සේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තම්ත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තුව ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තිය ලේවාර්තමේත්තුව ලී ලේවාර්තමේත්තිය ලේවාර්තමේත්තුව ලී

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය இணைந்த கணிதம்

Combined Mathematics

B කොටස

* පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.

 $\mathbf{11}$. (a) p \in \mathbb{R} හා 0 < p \leq 1 යැයි ගනිමු. $p^2x^2 + 2x + p = 0$ සමීකරණයෙහි, 1 මූලයක් **නොවන** බව පෙන්වන්න. lpha හා eta යනු මෙම සමීකරණයෙහි මූල යැයි ගනිමූ. lpha හා eta දෙකම තාත්ත්වික බව පෙන්වන්න. p ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වා

$$\frac{1}{(\alpha - 1)} \cdot \frac{1}{(\beta - 1)} = \frac{p^2}{p^2 + p + 2}$$

 $\frac{\alpha}{\alpha-1}$ හා $\frac{\beta}{\beta-1}$ මූල වන වර්ගජ සමීකරණය $(p^2+p+2)x^2-2(p+1)x+p=0$ මගින් දෙනු ලබන බවත්, මෙම මූල දෙකම ධන වන බවත් පෙන්වන්න.

- (b) c හා d යනු **නිශ්ශන** තාත්ත්වික සංඛාා දෙකක් යැයි ද $f(x)=x^3+2x^2-dx+cd$ යැයි ද ගනිමු. (x-c) යන්න f(x) හි සාධකයක් බවත්, (x-d) මගින් f(x) බෙදු විට ශේෂය cd බවත් දී ඇත. c හා d හි අගයන් සොයන්න. c හා d හි මෙම අගයන් සඳහා, $(x+2)^2$ මගින් f(x) බෙදු විට ශේෂය සොයන්න.
- $m{12}$. (a) P_1 හා P_2 යනු පිළිවෙළින් $ig\{A,B,C,D,E,1,2,3,4ig\}$ හා $ig\{F,G,H,I,J,5,6,7,8ig\}$ මගින් දෙනු ලබන කුලක දෙක යැයි ගනිමු. $P_1 \cup P_2$ න් ගනු ලබන වෙනස් අකුරු 3 කින් හා වෙනස් සංඛාහංක 3 කින් යුත්, අවයව 6 කින් සමන්විත මුරපදයක් සෑදීමට අවනාව ඇත. පහත එක් එක් අවස්ථාවේ දී සෑදිය හැකි එවැනි වෙනස් මුරපද ගණන සොයන්න:
 - (i) අවයව 6 ම P_1 න් පමණක් ම තෝරා ගනු ලැබේ,
 - (ii) අවයව 3 ක් P_1 න් ද P_2 න් අනෙක් අවයව 3 ද තෝරා ගනු ලැබේ.
 - $(b) \ r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ හා $V_r = \frac{1}{r(r+1)(r+2)}$ යැයි ගනිමු. $r \in \mathbb{Z}^+$ සඳහා $V_r - V_{r+2} = 6U_r$ බව පෙන්වන්න.

ජ නයින්,
$$n\in\mathbb{Z}^+$$
 සඳහා $\sum_{r=1}^n U_r = \frac{5}{144} - \frac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ බව පෙන්වන්න.

 $r \in \mathbb{Z}^+$ සඳහා $W_r = U_{2r-1} + U_{2r}$ යැයි ගනිමු.

 $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=0}^n W_r = \frac{5}{144} - \frac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ බව **අපෝෂනය** කරන්න.

ඒ නයින්, $\sum W_r$ අපරිමිත ශේුණිය අභිසාරී බව පෙන්වා එහි ඓකාසය සොයන්න.

[අටවැනි පිටුව බලන්න.

$$\mathbf{13}.(a) \ \mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$$
 හා $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ යනු $\mathbf{A}\mathbf{B}^{\mathrm{T}} = \mathbf{C}$ වන පරිදි වූ නාහස යැයි

ගනිමු; මෙහි $a,b \in \mathbb{R}$ වේ.

a=2 හා b=1 බව පෙන්වන්න.

තව ද ${f C}^{-1}$ නොපවතින බව පෙන්වන්න.

 ${f P}=rac{1}{2}({f C}-2{f I})$ යැයි ගනිමු. ${f P}^{-1}$ ලියා දක්වා, $2{f P}({f Q}+3{f I})={f P}-{f I}$ වන පරිදි ${f Q}$ නහාසය සොයන්න; මෙහි I යනු ගණය 2 වන ඒකක නහාසය වේ.

- (b) $z,z_1,z_2\in\mathbb{C}$ යැයි ගනිමු.
 - (i) Re $z \le |z|$, 800

(ii)
$$z_2 \neq 0$$
 සඳහා $\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$

බව පෙන්වන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right) \leq \frac{\left|z_1\right|}{\left|z_1+z_2\right|}$ බව **අපෝහන** කරන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right)+\operatorname{Re}\left(\frac{z_2}{z_1+z_2}\right)=1$ බව සතාපනය කර,

 $|z_1,z_2| \in \mathbb{C}$ සඳහා $|z_1+z_2| \leq |z_1|+|z_2|$ බව පෙන්වන්න.

$$(c)$$
 $\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$ යැයි ගනිමු.

 $1+\omega$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r(>0) හා $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ යනු නිර්ණය කළ යුතු නියත වේ.

ද මුවාවර් පුමේයය භාවිතයෙන්, $(1+\omega)^{10}+(1+ar{\omega})^{10}=243$ බව පෙන්වන්න.

14.(a)
$$x \neq 3$$
 සඳහා $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ යැයි ගතිමු.

$$x \neq 3$$
 සඳහා $f(x)$ හි වසුත්පන්නය, $f'(x)$ යන්න $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුඛ, y – අන්තඃඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

$$x \neq 3$$
 සඳහා $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ **බව දී ඇත**. $y = f(x)$ හි පුස්තාරයේ නතිවර්තන ලක්ෂාවල $x - 0$ ණ්ඩාංක

සොයන්න.

(b) යාබද රූපයෙන් පතුලක් සහිත සෘජූ වෘත්තාකාර කේතු ඡින්නකයක ආකාරයෙන් වූ බේසමක් පෙන්වයි. බේසමෙහි ඇල දිග $30\,\mathrm{cm}$ ක් ද උඩත් වෘත්තාකාර දාරයෙහි අරය පතුලෙහි අරය මෙන් දෙගුණයක් ද වේ. පතුලේ අරය $r\,\mathrm{cm}$ යැයි ගනිමු.

බේසමේ පරිමාව $V \, \mathrm{cm}^3$ යන්න 0 < r < 30 සඳහා

$$V=rac{7}{3}\pi r^2\sqrt{900-r^2}$$
 මගින් දෙනු ලබන බව පෙන්වන්න.
බේසමේ පරිමාව උපරිම වන පරිදි r හි අගය සොයන්න.

「නවවැනි පිටුව බලන්න.

15.
$$(a)$$
 $0 \le \theta \le \frac{\pi}{4}$ සඳහා $x = 2\sin^2\theta + 3$ ආදේශය භාවිතයෙන්, $\int_3^4 \sqrt{\frac{x-3}{5-x}} \, \mathrm{d}x$ අගයන්න.

$$(b)$$
 හින්න භාග භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)} \, \mathrm{d}x$ සොයන්න.

$$t > 2$$
 සඳහා $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ යැයි ගනිමු.

t>2 සඳහා $f(t) = \ln(t-2) - \ln(t-1) + \ln 2$ බව **අපෝහන**ය කරන්න.

කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int \ln{(x-k)}\,\mathrm{d}x$ සොයන්න; මෙහි k යනු තාත්ත්වික නියතයකි.

ඒ නයින්, $\int f(t) \, \mathrm{d}t$ සොයන්න.

$$(c)$$
 a හා b තියත වන $\int\limits_a^b f(x)\mathrm{d}x=\int\limits_a^b f(a+b-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} dx$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} \, \mathrm{d}x$$
 හි අගය සොයන්න.

 $16. \ 12x - 5y - 7 = 0$ හා y = 1 සරල රේඛාවල ඡේදන ලක්ෂාය වන A හි ඛණ්ඩාංක ලියා දක්වන්න.

l යනු මෙම රේඛාවලින් සෑදෙන සුළු කෝණයෙහි සමච්ඡේදකය යැයි ගනිමු. l සරල රේඛාවේ සමීකරණය සොයන්න.

P යනු l මත වූ ලක්ෂායක් යැයි ගනිමු. P හි බණ්ඩාංක $(3\lambda+1,2\lambda+1)$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි λ \in \mathbb{R} වේ.

 $B\equiv (6,0)$ යැයි ගනිමු. B හා P ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S+\lambda U=0$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි $S\equiv x^2+y^2-7x-y+6$ හා $U\equiv -3x-2y+18$ වේ.

 $S\!=\!0$ යනු $A\!B$ විෂ්කම්භයක් ලෙස ඇති වෘත්තයෙහි සමීකරණය බව **අපෝහන**ය කරන්න.

 $U\!=\!0$ යනු l ට ලම්බව, B හරහා යන සරල රේඛාවේ සමීකරණය බව පෙන්වන්න.

සියලු λ \in \mathbb{R} සඳහා S + λU = 0 සමීකරණය සහිත වෘත්ත මත වූ ද B වලින් පුහින්න වූ ද අචල ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.

S=0 මගින් දෙනු ලබන වෘත්තය, $S+\lambda\,U=0$ මගින් දෙනු ලබන වෘත්තයට පුලම්බ වන පරිදි λ හි අගය සොයන්න.

17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනි පුකාශනයක් ලබා ගන්න.

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

බව **අපෝහනය** කරන්න.

ඒ නයින්, $0<\theta<\frac{\pi}{2}$ සඳහා $2\sin3\theta\cos2\theta=\sin7\theta$ විෂඳන්න.

- (b) ABC තිකෝණයක BD=DC හා AD=BC වන පරිදි D ලක්ෂාය AC මත පිහිටා ඇත. $B\hat{A}C=\alpha$ හා $A\hat{C}B=eta$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $2\sin\alpha\cos\beta=\sin(\alpha+2\beta)$ බව පෙන්වන්න. $\alpha:\beta=3:2$ නම්, ඉහතු (a) හි අවසාන පුතිඵලය භාවිතයෙන්, $\alpha=\frac{\pi}{6}$ බව පෙන්වන්න.
- $(c) \ 2 \tan^{-1} x + \tan^{-1} (x+1) = \frac{\pi}{2}$ විසඳන්න. ඒ නයින්, $\cos \left(\frac{\pi}{4} \frac{1}{2} \tan^{-1} \left(\frac{4}{3} \right) \right) = \frac{3}{\sqrt{10}}$ බව පෙන්වන්න.

