

EMC Technologies (NZ) Ltd
PO Box 68-307
Newton, Auckland
Phone 09 360 0862
Fax 09 360 0861
E-Mail Address: aucklab@ihug.co.nz
Web Site: www.emctech.com.au

TEST REPORT

Millar MT110 tBase Wireless Charger and Data Receiver

tested to the

Code of Federal Regulations (CFR) 47

Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators

Section 15.249 – Operation in the band 2400 – 2483.5 MHz

Millar Instruments Ltd

Global for roduct Certification

This Test Report is issued with the authority of:

Andrew Cutler - General Manager

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Table of Contents

1.	STATEMENT OF COMPLIANCE	3
2.	RESULTS SUMMARY	3
3.	CLIENT INFORMATION	3
4.	DESCRIPTION OF TEST SAMPLE	4
5.	EQUIPMENT PARAMETERS	4
6.	ATTESTATION	5
7.	TEST RESULTS	6
8.	TEST EQUIPMENT USED	21
9.	ACCREDITATIONS	21
10.	PHOTOGRAPHS IECNIOOGIES	22

Global Product Certification

Page 2 of 27 Test Report No 161007.3 18th November 2016

1. STATEMENT OF COMPLIANCE

The **Millar MT110 tBase Wireless Charger and Data Recevier** complies with 47 CFR Part 15 and in particular Sections, 15.205, 15.207, 15.209, 15.215 and 15.249 as detailed below when tested in accordance with ANSI C63.10 – 2013.

2. RESULTS SUMMARY

The results of testing carried out in November 2016 are detailed below.

Clause	Description	Result
15.201	Equipment authorisation requirement	New equipment. Certification
		process applied.
15.203	Antenna requirement	Complies
15.204	External power amplifiers	Not applicable
15.205	Operation in restricted bands	Complies
15.207	Conducted emissions	Complies
15.209	Radiated emissions	See below
15.215	Additional provisions	Complies
15.249 (a)	Field strength of fundamental	Complies
15.249 (a)	Field strength of harmonics	Complies
15.249 (b)	Fixed, point to point operations	Not applicable
15.249 (c)	3 metre measurement distance	Noted
15.249 (d)	Spurious emission levels except harmonics	Complies
15.249 (e)	Detectors above 1000 MHz	Noted
15.249 (f)	Reference to section 15.37(d)	Noted

Giodal Fioduct Certificati

3. CLIENT INFORMATION

Company Name Millar Instruments Ltd

Address Level 1, Uniservices

70 Symonds Street

City Auckland 1010

Country New Zealand

Contact Mr David Budget

4. DESCRIPTION OF TEST SAMPLE

Brand Name Millar

Model MT110

Product tBase Wireless Charger plus Data Receiver

Manufacturer Millar Ltd

Country of Origin New Zealand

Serial Number 11208

FCC ID V58HU11

5. EQUIPMENT PARAMETERS

The 2.4 GHz transceiver in this device has the following RF specifications:

FCC Band: 2400 MHz – 2483.5 MHz

Test Frequencies: 2402 MHz, 2440 MHz, 2480 MHz

Rated Power: 1.00 mW (+0 dBm)

Modulation Type: 0.358 ms GFSK packet sent every 7.7 ms

Antenna Type: Integral

Power Supply: External 120 Vac to 48 Vdc external power supply

The device tested is a wireless power transfer device that operates on 614 kHz and is used to power telemeter devices.

The Telemeter and Charge pad communicate automatically using a 2.4 GHz transceiver to determine whether the Telemeter needs to be charged and if so for how long.

Typically the device would be used in a laboratory environment with the telemeter being attached to rats and mice.

The wireless power transfer device is covered by FCC part 18 and is subject to a separate test report.

Measurements have been made on the 2.4 GHz as required by FCC part 15 when the 614 kHz power transfer device was not operating.

6. ATTESTATION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification with the following conditions:

The client selected the test sample.

The report relates only to the sample tested.

This report does not contain corrections or erasures.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

In addition this equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations.

To the best of my knowledge, these tests were performed using measurement procedures that are consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards.

I further certify that the necessary measurements were made by EMC Technologies NZ Ltd, 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand.

Technologies

Andrew Cutler General Manager

General Manager
EMC Technologies NZ Ltd

Page 5 of 27 Test Report No 161007.3 18th November 2016

7. TEST RESULTS

Section 15.201: Equipment authorisation requirement

Certification as detailed in Subpart J of Part 2 is being sought for the low power 2.4 GHz band transmitter device which is a located in this device.

Section 15.203 – Antenna requirement

This device uses a 2.4 GHz antenna that is integral to the device.

Result: Complies.

Section 15.204: External radio frequency power amplifiers and antenna modifications

An external power amplifier is not supplied with this device and it is NOT possible to attach an external power amplifier.

Result: Complies.

Section 15.205 – Restricted bands of operation

Refer to measurements made with reference to Section 15.249 (a).

This device operates in the 2400 – 2483.5 MHz which is not a restricted band.

Result: Complies.

Page 6 of 27 Test Report No 161007.3 18th November 2016

Section 15.207: Conducted limits

Conducted emission testing has been carried out when the device was powered at 120 Vac 60 Hz using the supplied AC power supply.

Conducted emission testing was carried out over the frequency range of 150 kHz to 30 MHz at the Laboratory's MacKelvie Street premises in a 2.4 m x 2.4 m x 2.4 m screened room.

Testing was carried out in accordance with section 15.207(a) using a measuring receiver and a 50 uH / 50 ohm artificial mains network which is also known as a line impedance stabilisation network (LISN).

Measurements on both the phase and neutral lines were made using either a Quasi Peak or an Average detector with a 9 kHz bandwidth.

The supplied conducted emission plot is a combined plot showing the worst case of the Peak, Quasi Peak and Average levels for both phase and neutral.

The Class B conducted limits have been applied

Testing was carried out when the 614 kHz Wireless Power Transfer Transmitter was disabled.

The Wireless Charging Transmitter is covered separately in a report to FCC Part 18.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is: Conducted emissions tests (0.15 - 30 MHz) ± 2.2 dB

diopai rioduct cei tii tation

Conducted Emissions – AC Input Power Port

Setup: Device tested when powered at 120 Vac 60 Hz when in standby mode (LED flashing orange) with the wireless power charger not activated.

Peak --- Average -- Quasi Peak X Average +

Final Quasi-Peak Measurements

Frequency (MHz)	Level (dBµV)	Limit (dBµV)	Margin (dB)	Phase	Rechecks (dBµV)
	No final results				
	recorded within 15 dB				
	of the limit.				

Final Average Measurements

Frequency (MHz)	Level (dBµV)	Limit (dBµV)	Margin (dB)	Phase	Rechecks (dBµV)
	No final results				
	recorded within 15 dB				
	of the limit.				

Conducted Emissions – AC Input Power Port

Setup:

Device tested when powered at 120 Vac 60 Hz when transmitting diagnostic data to a laptop computer using a configurator transceiver (LED flashing red) with the wireless power charger not activated.

	Peak	Average	Quasi Peak X	Average +
Level [dBµV]				
70				
60				
50				
40				
40				
30			Land Hilliam	
20 Manual	NAM AND ALL	WWWWW		
10			Wha, June	
	'W' 'L/' '\	M A MA A M.	118	

Final Quasi-Peak Measurements

300k

500k

150k

I mai Quasi i cak n	icusuiciicii				
Frequency (MHz)	Level (dBµV)	Limit (dBµV)	Margin (dB)	Phase	Rechecks (dBµV)
	No final results				
	recorded within 15 dB				
	of the limit.				

2M

Frequency [Hz]

3M

5M

10M

30M

Final Average Measurements

Frequency (MHz)	Level (dBµV)	Limit (dBµV)	Margin (dB)	Phase	Rechecks (dBµV)
	No final results				
	recorded within 15 dB				
	of the limit.				

Section 15.209 - Radiated emissions below 30 MHz

In accordance with section 15.249 (d) the general emission limits specified in Section 15.209 (a) have been applied to all emissions except the transmitter harmonics.

See Section 15.249 (a) for further details.

As this device contains digital devices that operate using various frequencies below 30 MHz, low frequency measurements were attempted between 9 kHz – 30 MHz at the open area test site over a distance of 10 metres using a loop antenna the centre of which was 1 metre above the ground.

Testing was carried out using a representative AC power supply system that was powered at 120 Vac 60 Hz which supplied 48 Vdc to the device under test.

Testing was carried out with the device being placed in the centre of the test table laying flat.

The device was transmitting continuously on 2402 MHz with the Smart Pad Wireless Charger, that transmits on 614 kHz, disabled.

The general limits described in 15.209 have been applied with the 300 metre and 30 metre limits being extrapolated by a factor of 40 dB per decade as allowed for in section 15.31(d)(2).

Between 9 – 90 kHz and between 110 – 490 kHz an Average detector and a Peak detector were used.

Where a peak detector was used the limit was increased by +20 dB.

Between 90 kHz and 110 kHz and between 490 kHz and 30 MHz a Quasi Peak detector was used.

No emissions were detected on these frequencies of interest and no other emissions were detected from this device over the range of $9 \, \text{kHz} - 30 \, \text{MHz}$

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(9 \text{ kHz} - 30 \text{ MHz}) \pm 4.8 \text{ dB}$

Section 15.209 – Radiated emissions above 30 MHz

In accordance with section 15.249 (d) the general emission limits specified in Section 15.209 (a) have been applied to all emissions except the transmitter harmonics.

See Section 15.249 (a) for further details.

Testing for general radiated emissions was carried out over the frequency range of 30 MHz to 25000 MHz as the device contains a 2.4 GHz transmitter.

Testing was carried out at the laboratory's open area test site - located at Driving Creek, Orere Point, Auckland, New Zealand.

An enclosure containing absorber material, Panashield HYB-NF-12, has been placed between the turntable and the measurement antenna for when measurements are made above 1 GHz.

This material has no absorbing affect below 1 GHz with site verification measurements.

Testing was carried out using a representative AC power supply system that was powered at 120 Vac 60 Hz which supplied 48 Vdc to the device under test.

Above 1000 MHz the transmitter was placed on the test table top which was a total of 1.5 m above the test site ground plane.

Below 1000 MHz the transmitter was placed on the test table top which was a total of 0.8 m above the test site ground plane.

The device was transmitting continuously on 2402 MHz with the Wireless Power Transfer transmitter that transmits on 614 kHz, disabled.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height, where appropriate, with an automated antenna tower.

Above 30 MHz the emission is measured in both vertical and horizontal antenna polarisations, where appropriate, using a quasi peak detector.

The emission level was determined in field strength by taking the following into consideration:

Level $(dB\mu V/m) = Receiver Reading (dB\mu V) + Antenna Factor (dB/m) + Coax Loss (dB)$

Results:

Frequency (MHz)	Vertical (dBuV/m)	Horizontal (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna	Detector
55.912	22.1		40.0	17.9	Vertical	QP
60.835	24.1		40.0	15.9	Vertical	QP
61.455	27.5		40.0	12.5	Vertical	QP
73.741		23.7	40.0	16.3	Horizontal	QP
86.027		20.0	40.0	20.0	Horizontal	QP
110.599		22.0	43.5	21.5	Horizontal	QP
122.840	23.2		43.5	20.3	Vertical	QP
135.171		26.1	43.5	17.4	Horizontal	QP
147.443	32.5	35.3	43.5	8.2	Horizontal	QP
158.524	32.6		43.5	10.9	Vertical	QP
159.743	37.5	40.1	43.5	3.4	Horizontal	QP
172.029		30.1	43.5	13.4	Horizontal	QP
184.315		27.4	43.5	16.1	Horizontal	QP

Result: Complies

Measurement uncertainty with a confidence interval of 95% is:

Free radiation tests

 $(30 - 1000 \text{ MHz}) \pm 4.1 \text{ dB}$

Technologies

Global Product Certification

Section 15.215 (c) – Additional provisions to the general radiated emission limitations

The device operates in the 2400 - 2483.5 MHz band.

Relative spectrum mask measurements have been made when the device was operating on 2402 MHz and 2480 MHz.

Measurements have actually been made at the -20 dB points.

Frequency (MHz)	F low (MHz)	F high (MHz)
2402.000	2401.463	-
2480.000	-	2481.407

The device can be seen to stay within the band of 2400 – 2483.5 MHz at the -20 dB points

2402 MHz

1.JAN.1997 04:59:20

2480 MHz

Date: 1.JAN.1997 05:12:45

Results: Complies

Page 14 of 27 Test Report No 161007.3 18th November 2016

Section 15.249 (a) – Field strength of the Fundamental and Harmonics

Radiated emission measurements were carried out with the limits as per section 15.249 (a) being applied to the Fundamental and Harmonics of each transmitter.

Testing was carried out at EMC Technologies (NZ) Ltd Open Area Test Site, which is located at Driving Creek, Orere Point, Auckland.

An enclosure containing absorber material, Panashield HYB-NF-12, has been placed between the turntable and the measurement antenna for when measurements are made above 1 GHz.

This material has no absorbing affect below 1 GHz with site verification measurements.

Above 1000 MHz the transmitter was placed on the test table top which was a total of 1.5 m above the test site ground plane.

Below 1000 MHz the transmitter was placed on the test table top which was a total of 0.8 m above the test site ground plane.

Measurements of the radiated field were made 3 metres from the transmitting antenna.

Measurements below 1000 MHz were made using a Quasi Peak Detector with a bandwidth of 120 kHz.

Measurements above 1000 MHz were made using an average detector with a bandwidth of 1.0 MHz and also a peak detector with a bandwidth of 1.0 MHz.

When an emission is located, it is positively identified and its maximum level is found by rotating the automated turntable, and by varying the antenna height with an automated antenna tower.

All emissions were measured in both vertical and horizontal antenna polarisations.

The emission is measured in both vertical and horizontal antenna polarisations with no measurements were made above the 10th harmonic.

Testing was carried out using a representative AC power supply system that was powered at 120 Vac 60 Hz which supplied 48 Vdc to the device under test.

Testing was carried out with the device being placed in the centre of the test table laying flat.

The device was tested transmitting on various test frequencies with the Wireless Power Transfer transmitter disabled.

The emission level is determined in field strength by taking the following into consideration:

Level (dB μ V/m) = Receiver Reading (dB μ V) + Antenna Factor (dB/m) + Coax Loss (dB) - Amplifier Gain (dB)

Fundamental emission

Testing was carried out as detailed below

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	\mathbf{BW}
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
2402.000	89.5	91.3	114.0	22.7	Peak	Horizontal	1 MHz
2402.000	70.1	73.1	94.0	20.9	Average	Horizontal	1 MHz
2440.000	87.3	96.1	114.0	17.9	Peak	Horizontal	1 MHz
2440.000	67.3	71.8	94.0	22.2	Average	Horizontal	1 MHz
2480.000	90.3	95.4	114.0	18.6	Peak	Horizontal	1 MHz
2480.000	72.5	74.5	94.0	19.5	Average	Horizontal	1 MHz

Section 15.249 specifies a limit of 50 mV/m (94 dBuV/m) when an average detector is used for devices operating in the band of 2400 - 2483.5 MHz.

A peak limit of 114 dBuV/m has also been applied.

This limit has been converted to dBuV/m using the formula 20 * (log 0.050 / 0.000001)

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25,000 \text{ MHz}) \pm 4.1 \text{ dB}$

Global Product Certification

Spurious emissions

Transmitting on 2402 MHz

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	BW
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
4804.000	55.1	58.3	74.0	15.7	Peak	Horizontal	1 MHz
	46.2	51.2	54.0	2.8	Average	Horizontal	1 MHz
7206.000	54.3	54.3	74.0	19.7	Peak	Vertical	1 MHz
	42.9	42.9	54.0	11.1	Average	Vertical	1 MHz
9608.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
9008.000							
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
12010.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
12010.000	< 46	< 46	54.0	> 13	Average	Vert/Hort	1 MHz
	\ 4 0	\ 4 0	34.0	/ 0	Average	VEIUIIOIT	1 WILLS
14413.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
16814.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
19216.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
21618.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
24020.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz

Transmitting on 2440 MHz

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	\mathbf{BW}
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
4880.000	54.7	56.8	74.0	17.2	Peak	Horizontal	1 MHz
	44.8	48.5	54.0	5.5	Average	Horizontal	1 MHz
7320.000	54.7	56.0	74.0	18.0	Peak	Horizontal	1 MHz
	46.5	47.3	54.0	6.7	Average	Horizontal	1 MHz
9760.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
12200 000	70	5 0	74.0	1.5	D 1	**	1 3 677
12200.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
14640,000	. 50	. 50	74.0	. 15	Peak	Vert/Hort	1 MII-
14640.000	< 59 < 46	< 59 < 46	74.0 54.0	> 15		Vert/Hort	1 MHz 1 MHz
	< 40	< 40	34.0	> 8	Average	vert/Hort	1 MITZ
17080.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
17000.000	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
	. 10	. 10	2 110	, 0	TTYGIUGG	V 614 11610	1 IVIII
19520.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
21960.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
24400.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz

Transmitting on 2480 MHz

Frequency	Vertical	Horizontal	Limit	Margin	Detector	Antenna	\mathbf{BW}
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	_			
4960.000	55.3	50.0	74.0	18.7	Peak	Vertical	1 MHz
	47.1	45.0	54.0	6.9	Average	Vertical	1 MHz
7440.000	53.5	52.6	74.0	20.5	Peak	Vertical	1 MHz
	45.1	51.5	54.0	2.5	Average	Horizontal	1 MHz
9920.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
12400.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
14880.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
1							
17360.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
19840.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
22320.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz
24800.000	< 59	< 59	74.0	> 15	Peak	Vert/Hort	1 MHz
	< 46	< 46	54.0	> 8	Average	Vert/Hort	1 MHz

Measurements were attempted at a distance of 3 metres using vertical and horizontal polarisations with a peak and an average detector with a 1 MHz bandwidth being used.

As per section 15.249 a limit of 500 uV/m applies to the harmonic emissions when an average detector is used.

This limit has been converted to dBuV/m using the formula 20 * (log 500) with a factor of + 20 dB being added to determine the peak limit.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25,000 \text{ MHz}) \pm 4.1 \text{ dB}$

2310 - 2390 MHz and 2483.5 - 2500.0 MHz Restricted Band Measurements

When the device was transmitting alternately on 2402, 2440 and 2480 MHz radiated emission measurements were made at the open area test site in the 2310 - 2390 MHz restricted band and in the 2483.5 - 2500 MHz restricted band to determine compliance.

2310 - 2390 MHz Restricted Band

Frequency	Vertical	Hort	Limit	Margin	Detector	\mathbf{BW}	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
2390.000	57.7	57.7	74.0	16.3	Peak	Vertical	1 MHz
2390.000	43.6	43.6	54.0	10.4	Average	Vertical	1 MHz

The highest emission observed at 2390 MHz occurred when the transmitter was operating on 2402 MHz

2483.5 - 2500.0 MHz Restricted Band

Frequency	Vertical	Hort	Limit	Margin	Detector	\mathbf{BW}	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)			
2483.500	61.5	70.3	74.0	3.7	Peak	Horizontal	1 MHz
2480.000	44.3	44.3	54.0	9.7	Average	Vertical	1 MHz
2500.000	54.5	58.5	74.0	15.5	Peak	Horizontal	1 MHz
2500.000	43.1	44.4	54.0	9.6	Average	Horizontal	1 MHz

The highest emission observed at 2483.5 MHz occurred when the transmitter was operating on 2480 MHz.

All measurements were attempted at a distance of 3 metres using vertical and horizontal polarisations with a peak and an average detector with a 1 MHz bandwidth was used.

As per section 15.249 a limit of 500 uV/m applies to the harmonic emissions when an average detector is used.

This limit has been converted to dBuV/m using the formula 20 * (log 500) with a factor of + 20 dB being added to determine the peak limit.

Result: Complies.

Measurement uncertainty with a confidence interval of 95% is:

- Free radiation tests $(30 - 25,000 \text{ MHz}) \pm 4.1 \text{ dB}$

8. TEST EQUIPMENT USED

Instrument	Manufacturer	Model	Serial No	Asset Ref	Cal Due	Period
Aerial Controller	EMCO	1090	9112-1062	RFS 3710	Not applic	Not applic
Aerial Mast	EMCO	1070-1	9203-1661	RFS 3708	Not applic	Not applic
Biconical Antenna	Schwarzbeck	BBA 9106	•	3680	3 Feb 2018	3 years
Horn Antenna	EMCO	3115	9511-4629	E1526	4 June 2017	3 years
Horn Antenna	EMCO	3116	92035	E1527	10 June 2019	3 years
Log Periodic	Schwarzbeck	VUSLP 9111	9111-228	3785	1 Dec 2017	3 years
Loop Antenna	EMCO	6502	9003-2485	3798	4 July 2017	3 years
Mains Network	R & S	ESH2-Z5	881362/032	3628	2 Oct 2017	2 years
Receiver	R & S	ESHS 10	828404/005	3728	27 June 2017	2 years
Receiver	R & S	ESIB 40	100171	EMC4003	15 Feb 2017	1 year
SG Horn Antenna	EMCO	3160-04	00224819	-	11 Sept 2018	3 years
SG Horn Antenna	EMCO	3160-05	00114635	-	11 Sept 2018	3 years
SG Horn Antenna	EMCO	3160-06	00114821	-	11 Sept 2018	3 years
SG Horn Antenna	EMCO	3160-07	00144919	-	11 Sept 2018	3 years
SG Horn Antenna	EMCO	3160-08	00114637	-	11 Sept 2018	3 years
Spectrum Analyser	Hewlett Packard	E7405A	US39150142	3776	8 Sept 2017	1 year
Turntable	EMCO	1080-1-2.1	9109-1578	RFS 3709	Not applic	Not applic
VHF Balun	Schwarzbeck	VHA 9103	9594	3696	3 Feb 2018	3 years

9. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies NZ Ltd registration with the Federal Communications Commission as a listed facility, Registration Number: 90838, which was updated in February 2014.

In addition testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (IANZ) Accreditation to NZS/IEC/ISO 17025.

All measurement equipment has been calibrated in accordance with the terms of EMC Technologies (NZ) Ltd's International Accreditation New Zealand (IANZ) Accreditation to NZS/IEC/ISO 17025.

International Accreditation New Zealand has Mutual Recognition Arrangements for testing and calibration with a number of accreditation bodies in various economies. This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden). Further details can be supplied on request.

10. PHOTOGRAPHS

External photo

Radiated emissions test set up

Below 1 GHz (80 cm)

Test Report No 161007.3

This report may not be reproduced except in full.

Page 23 of 27

Conducted emissions test set up

Technologies

Global Product Certification