Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A sputtering target, comprising a Co-Cr-Pt-B alloy sputtering target having consisting of an island-shaped rolled structure structures formed from a Co-rich phase based on a primary crystal formed upon casting, and having a Co-rich phase and B-rich phase island structures based on an eutectic structure formed upon solidification, and B-rich phase island structures based on an eutectic structure formed upon solidification, said Co-rich phase and B-rich phase island structures based on the eutectic structure formed upon solidification being located between the island-shaped structures formed from the Co-rich phase based on the primary crystal.

Claim 2 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 1, wherein the island-shaped rolled structure has an average size of 200µm or less.

Claims 3-6 (canceled).

Claim 7 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 2, wherein an average crystal grain size of the crystal in the Co-rich phase is 50µm or less.

Claim 8 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 7, wherein said target has a hot rolled structure.

Claim 9 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 8, wherein a hot rolling ratio of the hot rolled structure is 15 to 40%.

Claim 10 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 1, wherein an average crystal grain size of the crystal in the Co-rich phase is 50 nm or less.

Claim 11 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 10, wherein said target has a hot rolled structure.

Claim 12 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 11, wherein a hot rolling ratio of the hot rolled structure is 15 to 40%.

Claim 13 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 1, wherein said target has a hot rolled structure.

Claim 14 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 13, wherein a hot rolling ratio of the hot rolled structure is 15 to 40%.

Claim 15 (currently amended): A sputtering target for forming a magnetic film of a hard disk, comprising consisting of:

a sputtering target body having a maximum magnetic permeability of 20 or less and consisting of a Co-Cr-Pt-B alloy in which an as-cast dendrite structure of said alloy no longer exists as a result of said cast alloy being hot-rolled at a hot rolling ratio of 15 to 40%:

- said alloy of said sputtering target body having consisting of island-shaped rolled structures each formed from a Co-rich phase based on a primary crystal formed upon casting, Co-rich phase island structures based on an eutectic structure formed upon solidification, and B-rich phase island structures based on an eutectic structure formed upon solidification;
- said island-shaped rolled structures formed from said Co-rich phase based on the primary crystal formed upon casting extending in a direction of rolling and having an average size of 200µm or less, and the crystals in said Co-rich phase based on the primary crystal formed upon casting having an average crystal grain size of 50µm or less; and
- said alloy of said sputtering target body also having Co-rich phase and B-rich

 phase island structures based on an the eutectic structure formed upon

 solidification being located between said island-shaped rolled structures

 formed from said Co-rich phase based on said primary crystal.

Claim 16 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 15, wherein said island-shaped rolled structures formed from said Co-rich phase have an average size of 50 to 100μm.

Claim 17 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 17, wherein said alloy of said sputtering target body has an in-plane variation of coercive force (Hc) of ± 100 Oe or less.

Claim 18 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 17, wherein said in-plane variation of coercive force (Hc) is ±58 to ±68 Oe.

Claim 19 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 18, wherein said alloy of said sputtering target body has a coercive force (Hc) of 3282 to 3293 Oe.

Claim 20 (previously presented): A Co-Cr-Pt-B alloy sputtering target according to claim 19, wherein said alloy consists of 15at% Cr, 13at% Pt, 10at% B and a remainder of Co.