Natural Language Processing

Lecture 5: Applications of NLP

Information Extraction (From 10,000 Feet)

- Input: text, empty relational database
- Output: populated relational database

Senator John Edwards is to drop out of the race to become the Democratic party's presidential candidate after consistently trailing in third place.

In the latest primary, held in Florida yesterday, Edwards gained only 14% of the vote, with Hillary Clinton polling 50% and Barack Obama on 33%. A reported 1.5m voters turned out to vote.

State	Party	Candidate	Fraction
FL	D	Edwards	0.14
FL	D	Clinton	0.50
FL	D	Obama	0.33

Named Entity Recognition

drop out of the race to become the <u>Democratic party</u>'s presidential candidate after consistently trailing in third place. In the latest primary, held in <u>Florida</u> yesterday, <u>Edwards</u> gained only 14% of the vote, with <u>Hillary Clinton</u> polling 50% and <u>Barack Obama</u> on 33%. A reported 1.5m voters turned out to vote.

Senator John Edwards is to

Reference Resolution

Senator John Edwards is to drop out of the race to become the <u>Democratic party</u>'s presidential candidate after consistently trailing in third place.

In the latest primary, held in <u>Florida</u> yesterday, <u>Edwards</u> gained only 14% of the vote, with <u>Hillary Clinton</u> polling 50% and Barack Obama on 33%.

A reported 1.5m voters turned

out to vote.

Coreference Resolution

Senator John Edwards is to drop out of the race to become the Democratic party's presidential candidate after consistently trailing in third place. In the latest primary, held in <u>Florida</u> yesterday, <u>Edwards</u> gained only 14% of the vote, with <u>Hillary Clinton</u> polling 50% and Barack Obama on 33%. A reported 1.5m voters turned out to vote.

Relation Detection

Senator John Edwards is to drop out of the race to become the <u>Democratic party</u>'s presidential candidate after consistently trailing in third place.

In the latest primary, held in <u>Florida</u> yesterday, <u>Edwards</u> gained only 14% of the vote, with <u>Hillary Clinton</u> polling 50% and <u>Barack Obama</u> on 33%. A reported 1.5m voters turned out to vote.

member_of				
John Edwards	Democratic party			
Hillary Clinton	Democratic party			
Barack Obama	Democratic party			

NER

Encoding the NER Problem

With that, Edwards' campaign will end the way it began 13 months ago -- with the candidate pitching in to rebuild lives in a city still ravaged by Hurricane Katrina. Edwards embraced New Orleans as a glaring symbol of what he described as a Washington that didn't hear the cries of the downtrodden.

```
• ravaged
    O by
B-NAT Hurricane
I-NAT Katrina
B-PER Edwards
    • embraced
B-LOC New
I-LOC Orleans
    • as
      а
    • glaring
    • symbol
    • of
    • what
    • he
      described
    • as
      а
B-GPE Washington
    • that
    O didn't
    • hear
```

Evaluating an NER System

$$recall = \frac{|C \cap H|}{|C|}$$

$$precision = \frac{|C \cap H|}{|H|}$$

NER System Building Process

Figure 22.10 Basic steps in the statistical sequence labeling approach to creating a named entity recognition system.

Relation Extraction

Examples of Relations

Relations		Examples	Types
Affiliations			
	Personal	married to, mother of	$PER \rightarrow PER$
	Organizational	spokesman for, president of	$PER \rightarrow ORG$
	Artifactual	owns, invented, produces	$(PER \mid ORG) \rightarrow ART$
Geospatial			
	Proximity	near, on outskirts	$LOC \rightarrow LOC$
	Directional	southeast of	$LOC \rightarrow LOC$
Part-Of		-	
	Organizational	a unit of, parent of	$ORG \rightarrow ORG$
	Political	annexed, acquired	$GPE \rightarrow GPE$
Figure 22.11	Semantic relations	with examples and the named entity	v types they involve.

Bootstrapping Relations

Information Retrieval

The Vector Space Model

• Each document is a $|\Sigma|$ -dimensional vector d_i : $d_i[j] = \mathrm{count} \ \mathrm{of} \ w_j \ \mathrm{in} \ \mathrm{document} \ i$

• Given a query q, represent it in the same way. $q[j] = \text{count of } w_j \text{ in query}$

• Similarity of vectors ⇒ relevance:

cosine_similarity
$$(d_i, q) = rac{\displaystyle\sum_j d_i[j] imes q[j]}{\sqrt{\displaystyle\sum_j d_i[j]^2} imes \sqrt{\displaystyle\sum_j q[j]^2}}$$

• Twists: tf-idf

$$x[j] = \operatorname{count}(w_j) \times \log \frac{\# \operatorname{docs}}{\# \operatorname{docs} \operatorname{with} w_j}$$

Evaluating Information Retrieval

Question Answering

Question Answering Architecture

Figure 23.8 The 3 stages of a generic question answering system: question processing, passage retrieval, and answer processing..

Your Project (Perhaps)

Figure 23.8 The 3 stages of a generic question answering system: question processing, passage retrieval, and answer processing..

Evaluating QA

$$\text{mean reciprocal rank} = \frac{1}{T} \sum_{i=1}^{T} \frac{1}{\text{rank of first correct answer to question } i}$$

Some General Tools

- Supervised classification
- Feature vector representations
- Bootstrapping
- Evaluation:
 - Precision and recall (and their curves)
 - Mean reciprocal rank