#### Implementation of a Near-Optimal Complex Root Clustering Algorithm

# **ICMS**

Rémi Imbach<sup>1,3</sup>, Victor Y. Pan<sup>2,4</sup> and Chee Yap<sup>1,5</sup>



- <sup>1</sup> Courant Institute of Mathematical Sciences, New York University, USA
- <sup>2</sup> Lehman College, City University of New York, USA
- <sup>3</sup> European Union's H2020 No. 676541 (OpenDreamKit)
- $^4$  NSF Grants # CCF-1116736 and # CCF-1563942 and PSC CUNY Award 698130048.
- $^5$  NSF Grants # CCF-1423228 and # CCF-1564132



## Root isolation problem

Input: a polynomial  $f \in \mathbb{C}[z]$ ,  $\epsilon > 0$ ,

Output:



#### Root isolation problem

Input: a polynomial  $f \in \mathbb{C}[z]$ ,  $\epsilon > 0$ ,

Output: a set  $\{\Delta_1, \ldots, \Delta_k\}$  of pairwise-disjoint discs such that:

- the  $\Delta_i$ 's have radius  $r(\Delta_i) \leq \epsilon$  and contain a unique root
- Global version:  $Z(\mathbb{C}, f) \subseteq \bigcup_i \Delta_i$



Notations: Z(S, f): roots of f in S

Outline

#### Root isolation problem

Input: a polynomial  $f \in \mathbb{C}[z]$ ,  $\epsilon > 0$ , a complex box B

Output: a set  $\{\Delta_1, \ldots, \Delta_k\}$  of pairwise-disjoint discs such that:

- the  $\Delta_i$ 's have radius  $r(\Delta_i) \leq \epsilon$  and contain a unique root
- Local version:  $Z(B, f) \subseteq \bigcup \Delta_i \subseteq Z(\delta B, f)$ , for  $\delta > 1$



Notations: Z(S, f): roots of f in S

#### Root isolation problem

Example: Mignotte-like polynomial:  $z^d - 2(2^{\sigma}z - 1)^2$ , where  $d = 16, \sigma = 4$ 





### Local root clustering problem

Input: a polynomial  $f \in \mathbb{C}[z]$ ,  $\epsilon > 0$ , a complex box B

Output:



Input: a polynomial  $f \in \mathbb{C}[z]$ ,  $\epsilon > 0$ , a complex box B

Output: a set of pairs  $\{(\Delta_1, m_1), \dots, (\Delta_k, m_k)\}$  where

- the  $\Delta_i$ 's are pairwise-disjoint discs of radius  $r(\Delta_i) \leq \epsilon$
- $\forall i$ ,  $\#(\Delta_i, f) = m_i$ ,



$$Z(B,f)\subseteq \bigcup_i \Delta_i\subseteq Z(\delta B,f)$$
, for  $\delta>1$ 

Notations: #(S, f): sum of multiplicities of roots of f in S

Input: a polynomial  $f \in \mathbb{C}[z]$ ,  $\epsilon > 0$ , a complex box B

Output: a set of pairs  $\{(\Delta_1, m_1), \dots, (\Delta_k, m_k)\}$  where

- the  $\Delta_i$ 's are pairwise-disjoint discs of radius  $r(\Delta_i) \leq \epsilon$
- $\forall i$ ,  $\#(\Delta_i, f) = m_i$ , and  $\#(3\Delta_i, f) = m_i$  (natural clusters)

$$Z(B,f)\subseteq \bigcup_i \Delta_i\subseteq Z(\delta B,f)$$
, for  $\delta>1$ 

Notations: #(S, f): sum of multiplicities of roots of f in S

## Local root clustering algorithm

[BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 71–78. ACM, 2016.

```
Input polynomial: f given via a black-box [f]
[f]: L \mapsto \tilde{f} L-bit approx. of (the coeffs. of) f
```

```
Near optimal: bit complexity \widetilde{O}(d^2(\sigma+d)) for the benchmark problem
```

Notations:  $d, \sigma$ : degree, bit-size of f

 $T_0(\Delta, [f]) = 0 \Rightarrow f$  has no root in  $\Delta$ 

## Discarding test: $T_0: (\Delta, [f]) \mapsto m \in \{-1, 0\}$

Counting test: 
$$T_*: (\Delta, [f]) \mapsto m \in \{-1, 0, \dots, d\}$$
  
 $T_*(\Delta, [f]) \ge 0 \Rightarrow \#(\Delta, f) = m$ 

Subdivision approach:

Discarding test: 
$$T_0: (\Delta, [f]) \mapsto m \in \{-1, 0\}$$
  
 $T_0(\Delta, [f]) = 0 \Rightarrow f \text{ has no root in } \Delta$ 

Counting test: 
$$T_*: (\Delta, [f]) \mapsto m \in \{-1, 0, \dots, d\}$$
  
 $T_*(\Delta, [f]) \ge 0 \Rightarrow \#(\Delta, f) = m$ 



Discarding test: 
$$T_0: (\Delta, [f]) \mapsto m \in \{-1, 0\}$$
  
 $T_0(\Delta, [f]) = 0 \Rightarrow f \text{ has no root in } \Delta$ 

Counting test: 
$$T_*: (\Delta, [f]) \mapsto m \in \{-1, 0, \dots, d\}$$
  
 $T_*(\Delta, [f]) \ge 0 \Rightarrow \#(\Delta, f) = m$ 



Discarding test: 
$$T_0: (\Delta, [f]) \mapsto m \in \{-1, 0\}$$
  
 $T_0(\Delta, [f]) = 0 \Rightarrow f \text{ has no root in } \Delta$ 

Counting test: 
$$T_*: (\Delta, [f]) \mapsto m \in \{-1, 0, \dots, d\}$$
  
 $T_*(\Delta, [f]) \ge 0 \Rightarrow \#(\Delta, f) = m$ 



Discarding test: 
$$T_0: (\Delta, [f]) \mapsto m \in \{-1, 0\}$$

$$T_0(\Delta, [f]) = 0 \Rightarrow f$$
 has no root in  $\Delta$ 

Counting test: 
$$T_*: (\Delta, [f]) \mapsto m \in \{-1, 0, \dots, d\}$$
  
 $T_*(\Delta, [f]) \ge 0 \Rightarrow \#(\Delta, f) = m$ 



## Outline of [BSS+16]

Discarding test:  $T_0: (\Delta, [f]) \mapsto m \in \{-1, 0\}$  $T_0(\Delta, [f]) = 0 \Rightarrow f \text{ has no root in } \Delta$ 

Counting test:  $T_*: (\Delta, [f]) \mapsto m \in \{-1, 0, \dots, d\}$  $T_*(\Delta, [f]) \ge 0 \Rightarrow \#(\Delta, f) = m$ 

Subdivision approach:



5/16

Pellet's Theorem:  $\Delta$  complex disc centered in c and radius r

Outline

$$f \in \mathbb{C}[z], f_{\Delta} = f(c + rz)$$

If  $\exists 0 < m < d \text{ s.t.}$ 

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in  $\Delta$ .



Pellet's Theorem:  $\Delta$  complex disc centered in c and radius r

$$f \in \mathbb{C}[z], f_{\Delta} = f(c + rz)$$

If  $\exists 0 \leq m \leq d \text{ s.t.}$ 

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in  $\Delta$ .

If f has no root in this annulus  $\rightarrow \exists m \text{ s.t. eq. } 1 \text{ holds.}$ 



Outline

5/16

Let 
$$N = 4 + \lceil log(1 + log(d)) \rceil$$

Pellet's Theorem:  $\Delta$  complex disc centered in c and radius r  $f \in \mathbb{C}[z]$ ,  $f_{\Delta} = f(c + rz)$ ,  $f_{\Delta}^{[N]}$ : N-th Graeffe iterate of  $f_{\Delta}$  If  $\exists 0 < m < d$  s.t.

$$|(f_{\Delta}^{[N]})_m| > \sum_{i \neq k} |(f_{\Delta}^{[N]})_i| \tag{1}$$

then f has exactly m roots in  $\Delta$ .

If f has no root in this annulus  $\rightarrow \exists m \text{ s.t. eq. } 1 \text{ holds.}$ 



#### The Pellet test with Graeffe iterations

Let 
$$N = 4 + \lceil log(1 + log(d)) \rceil$$

Pellet's Theorem:  $\Delta$  complex disc centered in c and radius r  $f \in \mathbb{C}[z], \ f_{\Delta} = f(c + rz)$ ,  $f_{\Delta}^{[N]}$ : N-th Graeffe iterate of  $f_{\Delta}$  If  $\exists 0 < m < d$  s.t.

$$|(f_{\Delta}^{[N]})_m| > \sum_{i \neq k} |(f_{\Delta}^{[N]})_i| \tag{1}$$

then f has exactly m roots in  $\Delta$ .

#### $GraeffePelletTest(\Delta, k, f)$

 $//Output in \{-1, 0, 1, ..., k\}$ 

- **1.** compute  $f_{\wedge}^{[N]}$
- 2. for m from 0 to k do
- 3. if  $|(f_{\Delta}^{[N]})_m| > \sum_{i \neq k} |(f_{\Delta}^{[N]})_i|$
- 4. return *m*
- 5. return -1

#### The soft Pellet test

$$\tilde{\mathcal{T}}_k^{\mathcal{G}}(\Delta, k, [f])$$
 //Output in  $\{-1, 0, 1, \dots, k\}$ 

... //soft version of GraeffePelletTest( $\Delta$ , k, f)

#### $GraeffePelletTest(\Delta, k, f)$

 $//Output in \{-1, 0, 1, ..., k\}$ 

- **1.** compute  $f_{\Delta}^{[N]}$
- 2. for m from 0 to k do
- 3. if  $|(f_{\Delta}^{[N]})_m| > \sum_{i \neq k} |(f_{\Delta}^{[N]})_i|$
- 4. return m
- 5. return -1

$$\tilde{T}_k^{\mathcal{G}}(\Delta, k, [f])$$
 //Output in  $\{-1, 0, 1, \dots, k\}$ 

... //soft version of GraeffePelletTest( $\Delta, k, f$ )

Discarding test:

$$T_0(\Delta, [f])$$
 //Output in  $\{-1, 0\}$ 

1. return  $\tilde{T}_k^G(\Delta, 0, [f])$ 

Counting test:

$$T_*(\Delta, [f])$$
 //Output in  $\{-1, 0, 1, \dots, d\}$ 

**1.** return  $\tilde{T}_k^G(\Delta, d, [f])$ 

#### Our implementation

Ccluster: library in C based on

- FLINT<sup>1</sup>: arithmetic for the geometric algorithm
- (\$\sigma(s)\$) Arb<sup>2</sup>: arbitrary precision floating arithmetic with error bounds

Available at https://github.com/rimbach/Ccluster

```
Ccluster.jl: interface for julia based on \mathbb{N}e^m\mathcal{O}^4 Available at https://github.com/rimbach/Ccluster.jl
```

<sup>1</sup>https://github.com/wbhart/flint2

<sup>&</sup>lt;sup>2</sup>http://arblib.org/

https://julialang.org/

<sup>4</sup>http://nemocas.org/

#### Improved soft Pellet test

$$\tilde{T}_k^{\mathcal{G}}(\Delta, k, [f])$$
 //Output in  $\{-1, 0, 1, \dots, k\}$ 

... //soft version of GraeffePelletTest( $\Delta, k, f$ )

#### GraeffePelletTest( $\Delta, k, f$ ) //Output in $\{-1, 0, 1, \dots, k\}$

- **1.** compute  $f_{\Delta}^{[N]}$
- **2. for** *m* **from** 0 **to** *k* **do**
- 3. if  $|(f_{\Delta}^{[N]})_m| > \sum_{i \neq k} |(f_{\Delta}^{[N]})_i|$
- 4. return *m*
- 5. return -1

**Implementation** 

#### Improved soft Pellet test

```
\tilde{T}_k^G(\Delta, k, [f]) //Output in \{-1, 0, 1, \dots, k\}
```

... //soft version of GraeffePelletTest( $\Delta, k, f$ )

```
GraeffePelletTest(\Delta, k, f) //Output in \{-1, 0, 1, \dots, k\}
```

- 1. compute  $f_{\Delta}$
- **1.b** for n from 0 to N do
- **1.c** compute  $f_{\Delta}^{[n]}$
- 2. for m from 0 to k do
- 3. if  $|(f_{\Delta}^{[n]})_m| > \sum\limits_{i \neq k} |(f_{\Delta}^{[n]})_i|$
- 4. return *m*
- 5. return -1

#### Improved soft Pellet test: results

#### Benchmark:

V1: Ccluster: original version

V2: Ccluster: with improved soft Pellet test

Table:  $\epsilon = 2^{-53}$ ,  $B = [-50, 50]^2$ 

| I                                | V1     |        |      | V2     |        |         |
|----------------------------------|--------|--------|------|--------|--------|---------|
|                                  | (n1,   | n3)    | tV1  | (n1,   | n3)    | tV2/tV1 |
| Bern., d = 64                    | (2308, | 20440) | 10.6 | (2308, | 6031)  | 2.96    |
| Mign., $d = 64$ , $\sigma = 14$  | (2060, | 18018) | 9.42 | (2060, | 5326)  | 3.03    |
|                                  |        |        |      |        |        |         |
| Bern., d = 128                   | (4676, | 42077) | 86.1 | (4676, | 12049) | 3.46    |
| Mign., $d = 128$ , $\sigma = 14$ | (3900, | 36281) | 75.3 | (3900, | 10007) | 3.55    |
|                                  |        |        |      |        |        |         |
| Bern., d = 256                   | (9572, | 98152) | 1024 | (9572, | 27059) | 3.75    |
| Mign., $d = 256$ , $\sigma = 14$ | (8756, | 89864) | 945  | (8756, | 24309) | 3.81    |

#### Notations:

n1: number of discarding testsn3: number of Graeffe iterations

#### Counting instead of discarding

$$\left[\widetilde{T}_k^{\mathcal{G}}(\Delta,k,[f])\right]$$
 //Output in  $\{-1,0,1,\ldots,k\}$ 

... //soft version of GraeffePelletTest( $\Delta$ , k, f)

Discarding test:

$$T_0(\Delta, [f])$$
 //Output in  $\{-1, 0\}$ 

1. return  $\tilde{T}_{k}^{G}(\Delta, 0, [f])$ 

Counting test:

$$T_*(\Delta, [f])$$
 //Output in  $\{-1, 0, 1, \dots, d\}$ 

**1.** return  $\tilde{T}_k^G(\Delta, d, [f])$ 

#### Counting instead of discarding

$$\tilde{T}_k^G(\Delta, k, [f])$$
 //Output in  $\{-1, 0, 1, \dots, k\}$ 

... //soft version of GraeffePelletTest( $\Delta, k, f$ )

```
GraeffePelletTest(\Delta, k, f) //Output in \{-1, 0, 1, \dots, k\}
```

- **1.** compute  $f_{\Delta}$
- **1.b** for n from 0 to N do
- **1.c** compute  $f_{\Delta}^{[n]}$
- 2. for m from 0 to k do
- 3. if  $|(f_{\Delta}^{[n]})_m| > \sum_{i \neq k} |(f_{\Delta}^{[n]})_i|$
- 4. return *m*
- 5. return -1

#### Counting instead of discarding: results

#### Benchmark:

V1: Ccluster: original version

V2: Ccluster: with improved soft Pellet test

V3: V2 with counting instead of discarding

Table:  $\epsilon = 2^{-53}$ ,  $B = [-50, 50]^2$ 

|                                  | V1     |        |      | V3               |         |  |
|----------------------------------|--------|--------|------|------------------|---------|--|
|                                  | (n1,   | n3)    | tV1  | (n1, alert¡1¿n3) | tV3/tV1 |  |
| Bern., d = 64                    | (2308, | 20440) | 10.6 | (2308, 2292)     | 7.39    |  |
| Mign., $d = 64$ , $\sigma = 14$  | (2060, | 18018) | 9.42 | (2060, 2080)     | 7.65    |  |
|                                  |        |        |      |                  |         |  |
| Bern., d = 128                   | (4676, | 42077) | 86.1 | (4676, 4496)     | 11.2    |  |
| Mign., $d = 128$ , $\sigma = 14$ | (3900, | 36281) | 75.3 | (3900, 3899)     | 11.6    |  |
|                                  |        |        |      |                  |         |  |
| Bern., d = 256                   | (9572, | 98152) | 1024 | (9572, 8847)     | 20.5    |  |
| Mign., $d = 256$ , $\sigma = 14$ | (8756, | 89864) | 945  | (8756, 7605)     | 20.6    |  |

#### Notations:

n1: number of discarding testsn3: number of Graeffe iterations

#### Local vs Global comparison

Benchmark: Bernoulli polynomials

Ccluster local:  $B = [-1, 1]^2$ ,  $\epsilon = 2^{-53}$ 

Ccluster global:  $B = [-150, 150]^2$ ,  $\epsilon = 2^{-53}$ 

Table:

|     | Ccluster Io   | cal   | Ccluster global |       |  |
|-----|---------------|-------|-----------------|-------|--|
| d   | (#Sols:#Clus) | t (s) | (#Sols:#Clus)   | t (s) |  |
| 64  | (4:4)         | 0.12  | (64:64)         | 2.10  |  |
| 128 | (4:4)         | 0.34  | (128:128)       | 9.90  |  |
| 191 | (5:5)         | 0.69  | (191:191)       | 32.5  |  |
| 256 | (4:4)         | 0.96  | (256:256)       | 60.6  |  |
| 383 | (5:5)         | 2.06  | (383:383)       | 181   |  |
| 512 | (4:4)         | 2.87  | (512:512)       | 456   |  |
| 767 | (5:5)         | 6.09  | (767:767)       | 1413  |  |

#### External comparison

Benchmark: Bernoulli polynomials

Ccluster local:  $B = [-1, 1]^2$ ,  $\epsilon = 2^{-53}$ 

Ccluster global:  $B = [-150, 150]^2$ ,  $\epsilon = 2^{-53}$ 

secsolve: secular algorithm of mpsolve

fsolve: Maple univariate solver

| Table | :              |       |               |       |          |        |
|-------|----------------|-------|---------------|-------|----------|--------|
|       | Ccluster local |       | Ccluster gl   | obal  | secsolve | fsolve |
| d     | (#Sols:#Clus)  | t (s) | (#Sols:#Clus) | t (s) | t (s)    | t (s)  |
| 64    | (4:4)          | 0.12  | (64:64)       | 2.10  | 0.01     | 0.1    |
| 128   | (4:4)          | 0.34  | (128:128)     | 9.90  | 0.05     | 6.84   |
| 191   | (5:5)          | 0.69  | (191:191)     | 32.5  | 0.16     | 50.0   |
| 256   | (4:4)          | 0.96  | (256:256)     | 60.6  | 0.37     | > 1000 |
| 383   | (5:5)          | 2.06  | (383:383)     | 181   | 1.17     | > 1000 |
| 512   | (4:4)          | 2.87  | (512:512)     | 456   | 3.63     | > 1000 |
| 767   | (5:5)          | 6.09  | (767:767)     | 1413  | 10.38    | > 1000 |

## Clustering ability

#### Polynomial with nested clusters of roots: $NestClus_{(D)}(z)$

- has degree  $d = 3^D$
- is defined by induction on *D*:
  - NestClus<sub>(1)</sub>(z) =  $z^3 1$  with roots  $\omega, \omega^2, \omega^3 = 1$
  - Suppose NestClus<sub>(D)</sub>(z) has roots  $\{r_j|j=1,\ldots,3^D\}$ , then we define

NestClus<sub>(D+1)</sub>(z) = 
$$\prod_{j=1}^{3^D} (z - r_j - \frac{\omega}{16^D})(z - r_j - \frac{\omega^2}{16^D})(z - r_j - \frac{1}{16^D})$$

Notations:  $\omega = e^{2\pi i/3}$ 

#### Conclusion

#### Ccluster:

- is still a work in progress
- robust to roots with multiplicity
- takes as input any polynomial
- works locally
- is competitive

#### Thank you!

https://github.com/rimbach/Ccluster https://github.com/rimbach/Ccluster.jl