TINU PHYSICS AND LICCHUMOS Laboratory

TNO Defence Research

TD 93-2434

Phone +31 70 326 42 21

TNO-report

copy no.

title

FEL-93-B227

Fields and waves in elliptic waveguides

AD-A285 337

TDCK RAPPORTENCENTRALE

Frederikkazerne, gebouw 140 v/d Burchlaan 31 MPC 16A TEL.: 070-3166394/6395 FAX.: (31) 070-3166202 Postbus 90701 2509 LS Den Haag

TD 93-2434

Best Available Copy

TNO Defence Research

TN Lat

TD

Oude Waalsdorperweg 63 2597 AK The Hague P.O. Box 96864 2509 JG The Hague The Netherlands

Fax +31 70 328 09 61 Phone +31 70 326 42 21

TNO-report

FEL-93-B227

copy no.

title

Fields and waves in elliptic waveguides

author(s):

date:

H.J. Visser

TDCK RAPPORTENCENTRALE

Frederikkazerne, gebouw 140 v/d Burchlaan 31 MPC 16A TEL.: 070-3166394/6395

FAX.: (31) 070-3166202

Postbus 90701 2509 LS Den Haag

classification

February 1994

classified by : G.A. van der Spek

classification date : November 16, 1993

title

Ongerubriceerd

managementuittreksel

Ongerubriceerd

abstract

Ongerubriceerd

report text

Ongerubriceerd

no. of copies

: 22

no. of pages

12 (excluding RDP and distribution list)

no. of appendices

_

All information which is classified according to Dutch regulations shall be troubly the recipient in the same way as classified information of corresponding value in his own country. No part of this information will be disclosed to any party.

The classification designation ongerubriceerd is equivalent to unclassified.

Netherlands organization for applied scientific research

All rights reserved.

contracting parties.

permitted.

F TNO

No part of this publication may be reproduced and/or published by print, photoprint, microfilm or any other means without the previous written consent of

In case this report was drafted on instructions, the rights and obligations of

contracting parties are subject to either the 'Standard Conditions for Research

Instructions given to TNO', or the relevant agreement concluded between the

Submitting the report for inspection to parties who have a direct interest is

TNO Defence Research consists of: the TNO Physics and Electronics Laboratory, the TNO Prins Maurits Laboratory and the TNO Institute for Perception

The Standard Conditions for Research Instructions given to TNO, as filed at the Registry of the District Court and the Chamber of Commerce in The Hague shall apply to all instructions given to TNO.

94-31719

Ministerie van Defensie

Instituut Defensie Leergangen

Wetenschappelijk en Technisch Documentatie- en Informatiecentrum voor de Krijgsmacht

Postbus 90701 2509 LS 's-Gravenhage

Bezoekadres: Frederikkazerne Gebouw 140, v.d. Burchlaan 31

Telefoon 011 31 70 3166399 Telefax 011 31 70 3166202 Telex 31337 MVD/GV/NL

REFERENCE NUMBER : DTES1

Defense Technical Information Center Cameron Station

Alexandria, Virginia United States of America

DATE: September 6, 1994

TDCKNR:	REPORTNR:	COPYNR:
TD93-2434	FEL-93-B227	8
TD93-2438	FEL-93-A158	8
TD93-2783	FEL-93-B160	8
TD93-3091	FEL-93-A286	23
TD93-3418	FEL-93-A323	8
TD94-0166	FEL-93-B366	8
TD94-0176	FEL-94-B062	8
TD94-1395	FEL-94-B195	8
TD92~1515	PML 1992-64	8
TD93-0422	PML 2994-29	25
TD93~2051	PML 1993-46	7
TD93-2570	PML 1994-B2	8
TD94-0028	PML 1994-A24	8
TD93~2534	IZF 1993 B-14	7
TD93-2536	IZF 1993 B-15	7
TD94-0033	IZF 1994 B-1	7
TD94-0037	TM 1994 B-3	7
TD94-0043	TM 1994 B-5	7
TD94-0045	TM 1994 B-6	7
TD94-0046	TM 1994 B-7	7
TD94-0048	TM 1994 B-8	7
TD94-0049	TM 1994 B-9	7
TD94-0052	TM 1994 B-10	7_
TD94-0053	TM 1994 B-11	7
TD94-0055	TM 1994 B-12	7
TD94-0063	TM 1994 B-13	7

RETURN THIS SIGNED COPY TO: MINISTRY OF DEFENCE TDCK/RAPPORTENCENTRALE FREDERIKKAZERNE GEB. 140 VAN DEN BURCHTAAN 31 2509 LS DEN HAAG NETHERLANDS

Bijlage(n)

Opsteller mw. J.I. van Soest-Tuininga

SIGNATURE: NAME: DATE:

> Doorkiesnummer 31.70.3166394

Verzoeke bij beantwoording datum,

Page

Managementuittreksel

Titel

: Velden en golven in elliptische golfpijpen

Auteur(s)

: ir. H.J. Visser

Datum

: februari 1994

Opdrachtnr.

:-

IWP-nr.

: 710.2

Rapportnr.

: FEL-93-B227

Licht elliptische golfpijpen kunnen gebruikt worden voor het maken van hoog vermogen millimeter-golf polarisers. Een andere toepassing wordt gevonden in de constructie van een magnetron voorverwarmde auto-katalysator. Een nadeel van elliptische golfpijpen is de complexiteit van het berekenen van de elektromagnetische eigenschappen.

Teneinde de afsnij-golflengten te berekenen van elliptische golfpijpen zonder de wortels van Mathieu functies te bepalen, wordt een eerste orde benadering afgeleid.

De elliptische golfpijp wordt ontbonden in twee cirkelvormige golfpijpen voor even en oneven mode propagatie. De afsnijgolflengten van deze golfpijpen worden berekend en gebruikt als benaderde afsnijgolflengten van de elliptische golfpijp.

Afsnijgolflengten voor de dominante TE₁₁-mode kunnen benaderd worden met een maximale fout van 5 procent voor alle eccentriciteiten. De benadering is ook geldig voor de andere modes voor kleine eccentriciteiten.

De benadering is met succes toegepast in het ontwerp en de realisatie van hoog vermogen millimetergolf polarisers.

FEL-93-B227		Page
		3
Contents		
Manageme	ntuittreksel	2
1	Introduction	4
2	SOLUTION OF MAXWELL'S EQUATIONS FOR AN ELLIPTIC CYLINDER	5
3	APPROXIMATE METHOD	7
4	COMPARISON EXACT AND APPROXIMATE METHOD	9
5	Conclusions	11
6	References	12

Page

4

1 Introduction

Slightly elliptic waveguides can, for example, be used for making high power millimetre-wave polarisers [1]. Another application is found in the construction of a magnetron pre-heated catalytic converter [2]. The problem with elliptic waveguides, however, is the difficulty in calculating the electromagnetic field properties.

In order to be not completely dependent on experimental methods, an easy to understand approximate method for calculating cut-off wavelengths is developed. The idea, originating from Frans A. Nennie, is explained and results are compared with exact solutions, yielding the field of reliability of the approximate cut-off wavelength formula.

Page

2 SOLUTION OF MAXWELL'S EQUATIONS FOR AN ELLIPTIC CYLINDER

For an elliptic coordinate system as shown in figure 1, the following relations apply:

$$Z = Z ag{1a}$$

$$X = q \cosh \zeta \cos \eta \tag{1b}$$

$$Y = q \sinh \zeta \sin \eta \tag{1c}$$

Fig. 1: Elliptic coordinate system

The following expressions for the axial electric field E_z and the axial magnetic field H_z are found [3]:

$$\frac{E_z}{H_z} = \left[B_1 S_{en}(\eta) R_{en}(\zeta) + B_2 S_{on}(\eta) R_{on}(\zeta) \right] e^{j\omega t - jkz}$$
(2)

where B_1 and B_2 are complex constants, S_{en} and S_{on} are the even and odd angular Mathieu functions of order n, and R_{en} and R_{on} are the even and odd radial Mathieu functions of order n, where n is a positive integer.

Applying the boundary conditions for TM waves leads to [3]:

$$\left. \begin{array}{l} R_{en}(\zeta_o) \\ R_{on}(\zeta_o) \end{array} \right\} = 0$$
(3)

Applying the boundary conditions for TE waves leads to [3]:

$$\frac{R'_{en}(\zeta_o)}{R'_{on}(\zeta_o)} = 0$$
 (4)

The prime denotes the derivative with respect to ζ .

FEL-93-B227 Page

Calculating the roots of Mathieu functions is far from easy [4, 5], so that the search for an approximate method to calculate electromagnetic field properties in elliptic waveguides is appropriate

age

7

3 APPROXIMATE METHOD

The dominant mode of an elliptic waveguide is the TE_{11} -mode [6]. Figure 2 shows the even and odd TE_{11} -mode patterns for elliptic waveguides with axes $2a_1$ (long) and $2a_2$ (short). The TE_{11} -mode patterns for circular waveguides with radii a_1 and a_2 are shown in the same figure.

Fig. 2: TE_{II} -mode patterns for elliptic and circular waveguides

Since the mode patterns of an elliptic waveguide are very similar to those of a circular waveguide with a diameter equal to the ellipse axis length parallel to the E-field, it is likely that the cut-off wavelengths for even and odd mode can be approximated by the cut-off wavelengths of the corresponding circular waveguides. The cut-off wavelength of a circular waveguide is easy to calculate. Naturally, the error in the approximation increases with increasing eccentricity of the elliptic waveguide.

FEL-93-B227 Page

The cut-off wavelength is thus approximated by, for TE-waves [6]:

$$\lambda_{c} = \frac{2\pi}{P_{nl}} a_{i} \qquad (i = 1, 2) \tag{5a}$$

$$J_n(P_{nl}) = 0 ag{5b}$$

with p_{nl} root of the Bessel function of order n.

For TM-waves:

$$\lambda_c = \frac{2\pi}{P_{nl}} a_i \qquad (i = 1, 2)$$
(6a)

$$J_{n} * (P_{nl}^*) = 0 \tag{6b}$$

with p_{nl}^{-*} root of the Bessel function of order n.

The roots of the Bessel functions [5] are substituted in (5a) and (6a) and shown in table 1.

Table 1: Cut-off wavelengths circular waveguide

mode	TM_{01}	TM ₁₁	TE ₀₁	TE ₁₁
	2πa _i	$2\pi a_i$	$2\pi a_i$	2πa _i
	2.40482	3.83171	3.83171	1.84118

4 COMPARISON EXACT AND APPROXIMATE METHOD

For comparison of the approximate cut-off frequencies with the exact ones, use is made of the formulae of Kretzschmar for calculating the roots of Mathieu functions and the roots of the derivatives of Mathieu functions [7]. These formulae are shown in table 2.

In these formulae, e is the eccentricity of the elliptic waveguide, defined as [4]:

$$e = 1/\cosh \zeta_0 = \sqrt{1 - (a_2/a_1)^2}$$
 (7)

The cut-off wavelengths are given by [7]:

$$\lambda_c = \frac{\pi a e}{\sqrt{q_c}} \tag{8}$$

a is half the length of the long axis of the elliptic waveguide.

With the above and equations (5,6) the deviations of the cut-off wavelengths from the exact ones as function of eccentricity are calculated. The results are shown in table 3.

Table 2: Roots of Mathieu functions

mode	formula	interval e	max. rel. error
TE _{e11}	$\overline{q}_{e11} = 0.8476e^2 - 0.0379e^4$	[0.0, 0.4]	0.01 %
	$\overline{q}_{e11} = -0.0064e + 0.8838e^2 - 0.0696e^3 + 0.0820e^4$	[0.4, 1.0]	0.02 %
	$\overline{q}_{e11} = -0.00012e + 0.8520e^2 - 0.0196e^3 + 0.0573e^4$	[0.0, 0.3]	0.20 %
	$q_{e11} = -0.00012e + 0.8520e - 0.0190e + 0.0575e$	[0.3, 1.0]	0.04 %
TE _{e01}	$\overline{q}_{e01} = -0.0073e + 3.8569e^2 - 1.3105e^3 + 4.6802e^4$	[0.05, 0.45]	0.3 %
201	$\overline{q}_{e01} = -1.2264 - 1.3936e + 1.5515e^2 + 1.3156 / (1 - e)$	[0.45, 0.95]	0.3 %
TE _{oll}	$\overline{q}_{o11} = -0.0018e + 0.8974e^2 - 0.3679e^3 + 1.612e^4$	[0.05, 0.50]	0.4 %
	$\overline{q}_{011} = -0.1483 - 1.0821e + 1.0829e^2 + \frac{0.3493}{(1-e)}$	[0.50, 0.95]	0.5 %
TM _{e01}	$q_{e01} = -0.0016e + 1.488e^2 - 0.314e^3 + 1.425e^4$	[0.05, 0.50]	0.2 %
	$q_{e01} = -0.222 - 0.728e + 1.308e^2 + \frac{0.341}{(1-e)}$	[0.50, 0.95]	0.2 %
TM _{ell}	$q_{e11} = -0.0049e + 3.7888e^2 - 0.7228e^3 + 2.2314e^4$	[0.05, 0.55]	0.3 %
	$q_{e11} = -0.1379 - 1.3138e + 3.9307e^2 + \frac{0.4056}{(1-e)}$	[0.55, 0.95]	0.3 %
TM _{ol1}	$q_{ol1} = -0.0063e + 3.8316e^2 - 1.1351e^3 + 5.2229e^4$	[0.05, 0.45]	0.3 %
	$q_{ol1} = -1.2014 - 1.6271e + 2.1684e^2 + \frac{1.3089}{(1-e)}$	[0.45, 0.95]	0.3 %

Page

Table 3: Deviation approximate cut-off wavelengths

e	TE _{e11}	TE _{e01}	TE _{off}	TM_{e01}	TM _{e11}	TM _{off}	
0.1	0.15 %	0.10 %	0.23 %	0.14 %	0.27 %	0.04 %	
0.2	0.15 %	1.03 %	0.16 %	1.01 %	0.54 %	0.53 %	
0.3	0.21 %	2.16 %	0.31 %	2.42 %	1.17 %	1.17 %	ĺ
0.4	0.33 %	3.57 %	0.26 %	4.74 %	2.34 %	1.99 %	1
0.5	0.55 %	5.36 %	0.77 %	7.93 %	4.07 %	3.26 %	
0.6	0.79 %	7.02 %	1.21 %	13.00 %	6.65 %	4.70 %	
0.7	1.09 %	8.64 %	1.59 %	21.51 %	11.11 %	6.47 %	İ
0.8	1.47 %	10.47 %	2.75 %	37.03 %	19.50 %	8.78 G	1
0.9	1.93 %	12.67 %	5.20 %	75.14 %	41.11 %	11.77 %	

The above table shows that the approximate method works well for all modes for small eccentricities. The method works well (within 6 percent) for all eccentricities for the dominant TE_{13} -mode.

This method has been used in the design and realisation of high power millimetre-wave polarisers [1].

Page 11

5 CONCLUSIONS

Shown is that, in first order approximation, elliptic waveguides can be thought of as being consisting of two circular waveguides with diameters equal to the axis lengths of the elliptic waveguide.

Cut-off wavelengths for the dominant TE₁₁-mode can be approximated with a maximum error of 5 percent for all eccentricities. The approximation is also valid for the other modes for small eccentricities.

The approximation has been successfully applied in the design and realisation of high power millimetre-wave polarisers.

6 REFERENCES

- [1] F.A. Nennie: 'High Power Millimetre-Wave Polarizers',
 TNO Physics and Electronics Laboratory, Report No. FEL-91-A324,
 April 1992.
- J.H.M. Strijbos: 'Microwave Heating of an Automobile Exhaust Catalyst for Otto Engines',
 TNO Physics and Electronics Laboratory, Report No. FEL-92-C351, 1992.
- [3] L.J. Chu: 'Electromagnetic Waves in Elliptic Hollow Pipes of Metal',
 Journal of Applied Physics, Vol.9, pp.583-591, September 1938.
- [4] M.E. Mathieu: 'Memoire Sur le Mouvement Vibratoire d'une Membrane de Forme Elliptique',
 Journal de Mathematiques, pp.18-203, April 1868 (in French).
- [5] M. Abramowitz and I.E. Stegun: 'Handbook of Mathematical Functions',
 Dover Publications, 1970.
- [6] N. Marcuwitz: 'Waveguide Handbook', McGraw Hill Book Company Inc., 1951.
- J. Kretzschmar: 'Theoretische en Praktische Studie van Elliptische Golfgeleiders en Trilholtes',
 Ph.D. Thesis, Leuven University, Belgium, pp.39-55, 1969 (in Dutch).

G.A. van der Spek (group leader)

H.J. Visser (author)

Kjim

ONGERUBRICEERD

REPORT DOCUMENTATION PAGE (MOD NL)

(MOD NL)				
1. DEFENSE REPORT NUMBER (MOD-NL)	2. RECIPIENT'S ACCESSION NUMBER	3. PERFORMING ORGANIZATION REPORT NUMBER		
TD93-2434		FEL-93-B227		
4. PROJECT/TASK/WORKUNIT NO.	5. CONTRACT NUMBER	6. REPORT DATE		
22448	-	February 1994		
7. NUMBER OF PAGES	8. NUMBER OF REFERENCES	9. TYPE OF REPORT AND DATES COVERED		
12 (excl. RDP & distribution list)	7			
10. TITLE AND SUBTITLE				
Fields and waves in elliptic waveg	uides			
11, AUTHOR(S)				
H.J. Visser				
12. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			
TNO Physics and Electronics Labo Oude Waalsdorperwerg 63, The H	oratory, P.O. Box 96864, 2509 JG Thague, The Netherlands	e Hague		
13. SPONSORING AGENCY NAME(S) AND A	ADDRESS(ES)			
TNO Physics and Electronics Labo Oude Waalsdorperwerg 63, The H	oratory, P.O. Box 96864, 2509 JG Thague, The Netherlands	e Hague		
14. SUPPLEMENTARY NOTES				
The classification designation ong	erubriceerd is equivalent to unclassif	ied		
15. ABSTRACT (MAXIMUM 200 WORDS (10-	44 BYTE))			
functions, a first order approximat The elliptic waveguide is decompo- cut-off wavelengths of these wave elliptic waveguide. Cut-off wavelengths for the domin	ion is derived. osed in two circular waveguides for e guides are calculated and used as app	oroximate cut-off wavelengths of the with a maximum error of 5 percent for		
16. DESCRIPTORS	IDENTIFIERS			
Wave guides Wave lengths in transmission lines Analysis of waves	Elliptic wave	guides		
17A. SECURITY CLASSIFICATION (OF REPORT)	17B. SECURITY CLASSIFICATION (OF PAGE)	17C. SECURITY CLASSIFICATION (OF ABSTRACT)		
ongerubriceerd	ongerubriceerd	ongerubriceerd		
18. DISTRIBUTION AVAILABILITY STATEME	NT	17D. SECURITY CLASSIFICATION (OF TITLES)		
Unlimited Distribution		ongerubriceerd		

Distributielijst

1.	Bureau TNO-Defensieonderzoek
2.	Directeur Wetenschappelijk Onderzoek en Ontwikkeling*)
3.	HWO-KL*)
4.	HWO-KLu*)
5.	HWO-KM*)
6 t/m 8.	Hoofd TDCK
9.	TNO-TM, Bibliotheek
10.	TNO-PML, Bibliotheek
11.	TNO-M&P, Marketing Communicatie
12.	Directie TNO-FEL, t.a.v. dr. J.W. Maas
13.	Directie TNO-FEL, t.a.v. ir. J.A. Vogel, daarna reserve
14.	Archief TNO-FEL, in bruikleen aan ir. G.H. Heebels
15.	Archief TNO-FEL, in bruikleen aan ir. G.A. van der Spek
16.	Archief TNO-FEL, in bruikleen aan ir. W.P.M.N. Keizer
17.	Archief TNO-FEL, in bruikleen aan ing. A.P. de Hek
18.	Archief TNO-FEL, in bruikleen aan ir. M.H.A. Paquay
19.	Archief TNO-FEL, in bruikleen aan F.A. Nennie
20.	Archief TNO-FEL, in bruikleen aan ir. H.J. Visser
21.	Documentatie TNO-FEL
22.	Reserve

Indien binnen de krijgsmacht extra exemplaren van dit rapport worden gewenst door personen of instanties die niet op de verzendlijst voorkomen, dan dienen deze aangevraagd te worden bij het betreffende Hoofd Wetenschappelijk Onderzoek of, indien het een K-opdracht betreft, bij de Directeur Wetenschappelijk Onderzoek en Ontwikkeling.

^{*)} Beperkt rapport (titelblad, managementuittreksel, RDP en distributielijst).