Linear Algebra Review

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots \\ a_{21} & a_{22} & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$
 be a $m \times n$ matrix and $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix}$ a column vector of length n .

1. Write AX in two ways: in terms of column vectors of A and in terms of row vectors of A.

2. For compatible matrices A and B, write AB in terms of A and column vectors B_i of B.

Linear Regression

Suppose some real-valued outcome y depends on p covariates $x_1, x_2, ..., x_p$ with random noise. That is, for $y \in \mathbb{R}$ and $X \in \mathbb{R}^p$:

$$y = f(X) + \epsilon$$
 for some $f: \mathbb{R}^p \to \mathbb{R}$ (1)

In linear regression, we approximate a model of f with a linear function of the covariates $x_1, ..., x_p$:

$$y = f(X) + \epsilon = \beta_0 + \sum_{j=1}^{p} \beta_j x_j + \epsilon$$
 (2)

Given n data points, $(y^{(1)}, X^{(1)}), (y^{(2)}, X^{(2)}), ..., (y^{(n)}, X^{(n)})$, we want to estimate the true linear function f. One natural way to do this is to find a $\hat{\beta} \in \mathbb{R}^{p+1}$ that minimizes the **R**esidual **S**um of **S**quares:

$$\hat{\beta}$$
 minimizes $RSS(\beta) = \sum_{i=1}^{N} (y^{(i)} - \beta_0 - \sum_{j=1}^{p} \beta_j x_j^{(i)})^2$ (3)

Letting
$$Y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$
 and $X = \begin{bmatrix} 1 & {X^{(1)}}^T \\ \vdots & \vdots \\ 1 & {X^{(n)}}^T \end{bmatrix}$, this can be rewritten as:

$$\hat{\beta}$$
 minimizes $RSS(\beta) = (Y - X\beta)^T (Y - X\beta)$ (4)

Since we want to minimize $RSS(\beta)$, we take the derivative ¹:

$$\frac{\partial RSS}{\partial \beta} = 2(Y - X\beta)^T (-X) \tag{5}$$

and set it to $\overrightarrow{0}$, the zero vector, to find $\hat{\beta}^2$:

$$\hat{\beta} = (X^T X)^{-1} X^T Y \tag{6}$$

With our $\hat{\beta}$, if we wanted to predict Y given X we would estimate $Y \approx \hat{Y} = X\hat{\beta}$.

3. Based on question 1, can you describe the subspace \hat{Y} lives in?

4. $(Y - \hat{Y})$ is the residual, the error between Y and its approximation \hat{Y} . Since $\hat{\beta}$ was found by setting (5) to $\overrightarrow{0}$, what is the dot product between $(Y - \hat{Y})$ and any column of X? Question 2 might be helpful.

5. Putting together questions 3 and 4, what can you say about the geometric relationship between $(Y - \hat{Y})$ and \hat{Y} ?

¹some books write the transpose $-2X^{T}(y-X\beta)$.

²we assumed X^TX is invertible, which is true if and only if X has full column rank. If X doesn't have full column rank, then X^TX is not invertible and many solutions exist

Time Series

Let's work with time series data. Suppose we have a linear trend in time: $Y_t = \beta_0 + \beta_1 t + W_t$, where W_t is white noise with variance σ^2 .

6. For times 1,..,k, calculate the $k \times k$ covariance matrix for $Y_1,...,Y_k$.

7. Let's try to do a linear regression on $y_1,...,y_n$ for $n \ge 2$ with t as our only covariate. Show that $\hat{\beta}$ is an unbiased estimator of (β_0, β_1) , the true linear weights.

Conceptual questions / Problems

For questions 9-11, write formulas for each of the terms.

- 8. Expectation
 - (a) E(aX + bY + c)
 - (b) E(f(X)g(Y)) if X and Y are independent
- 9. Variance
 - (a) Var(X)
 - (b) Var(aX + bY + c)
- 10. Covariance:
 - (a) Cov(X, Y)
 - (b) $Cov(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j)$
- 11. Correlation
 - (a) Corr(X, Y)
 - (b) Write down bounds for Corr(X, Y)

R Code

In the astsa library, there is a dataset on the price of chicken, called *chicken*. We will use that as our example here.

- 12. Load the astsa package and plot the chicken dataset.
- 13. What type of trend do you see?
- 14. Use the lm() function to fit this trend and add the trend line to the plot.
- 15. How does your trendline look?
- 16. Plot the residuals over time. Do they appear stable/stationary? If not, what might you do instead of or in addition to your current model?