POLITECNICO DI TORINO

Electronic and Communications Engineering

Assignment Report 5 - Processing of Bio Signals

Applied Signal Processing Laboratory

01TUMLP

Academic Year 2019/20

Gloria DAL SANTO s245220

Exercise 1

The aim of this exercise is to retrieve the heart rate and the blood oxygen saturation ratio expressed in eq.(1), from a set of measurements done with a pulse oximeter.

$$SaO_2 = \frac{[HbO_2]}{[HbO_2] + [Hb]} \tag{1}$$

To find the saturation ratio I applied the following formulas:

$$R = \frac{\frac{I_{AC}(\text{Red})}{I_{DC}(\text{Red})}}{\frac{I_{AC}(\text{Infrared}))}{I_{DC}(\text{Infrared}))}}$$
(2)

$$SaO_2 = 110 - 25R$$
 (3)

(4)

where I_{AC} is defined as the component of the signal that is changing according to the arterial size variations and I_{DC} is the continuous component limited by the received signal at maximum arterial size.

Task 1

The data to be analyzed is taken from a set of 11564 measurements performed with an acquisition rate of $f_s = 100Hz$. I took a time interval of 60 seconds, from 10s to 70s to discard the initial transient. Figure 1 illustrates the acquired signals relative to the detected infrared (IR) and red (R) lights.

Figure 1: Exercise 1 - Oximeter output signals

Task 2

As it can be seen from Figure 1, the signals have some disturbances at higher frequencies related to noise and to the muscular movement. To filter these disturbances I applied a Butterworth low-pass filter of the fifth order with the -3dB cuf-off frequency at 3Hz. To design the filter I used the butter function from which I obtained the frequency response shown in Figure 2.(a).

To reduce also the disturbances at low frequencies related to the breath movements, I designed in a similar way a Butterworth high-pass filter of the third order with cut-off frequency at 0.5Hz. The frequency response of the high-pass filter is shown in Figure 2.(b).

I used the Butterworth filter since it has the flattest frequency response in the pass-band, leaving the interested bandwidth almost unchanged.

Figure 2: Exercise 1 - Frequency response of the filters

Task 3

Form Figure 3 it can be seen the effect that each filter has on the signals: the low-pass filter heavily reduced the high frequency ripples and the high-pass filter cut the DC component so that the signals are now centered around the zero axis.

Figure 3: Exercise 1 - Filtered signals

Task 4

To compute the pulse rate I first applied the function findpeaks to detect the peaks in the filtered signal related to the red light (Figure 4). Then I summed all the time intervals contained in each pair of

consecutive peaks and I divided the result by the total number of intervals to obtain the mean value \overline{T} . I obtained the following value of the pulse rate f_H :

$$f_H = \frac{60s}{\overline{T}} = 70.9699 \ bpm$$

Figure 4: Exercise 1 - Peaks of the red light signal

Task 5

Finally, to evaluate the saturation coefficient in eq.(3) I first computed the average value of the ratio R in eq.(2) for each second. To find I_{AC} and I_{DC} I interpolated the peaks to get the red curves depicted in Figure 5 and resampled them at frequency f=1Hz applying Matlab resample function. The values of I_{DC} coincide with the resampled curves that interpolate the lower peaks in the low-pass filtered signals, whereas the values of I_{AC} coincide with the difference between the upper and lower resampled curves of the band-pass filtered signals.

After computing the mean value of the ratio R, discarding the endpoints of the interpolating curves, I obtained the following value of the blood oxygen saturation:

$$Sa0_2 = 98.1664\%$$

Figure 5: Exercise 1 - Interpolating curves

Exercise 2

Pixel info: (X, Y) Intensity

The main objective of this exercise is to retrieve the thickness of the corneal layers from an image acquired by means of OCT (Optical Coherence Tomography) technique.

Task 1

The tomogram to be analyzed is a 640x1016 pixels grayscale image (Figure 6).

Figure 6: Exercise 2 - OCT image of the corneal layers

Task 2

To find the coordinates of the upper layer, I looked for the first full white pixel (255) using the function find, then I looked for the last white pixel along the same row, and I averaged the two values to find the x coordinate of the corneal axis, x_1 . The coordinates that I found for the upper boundary of the Epithelium region along the corneal axis are $(x_1, y_1) = (495, 173)$.

Task 3

To find the corneal radius, I first identified a second point $(x_A, y_A) = (248, 204)$ where x_A is the ceil of $x_1/2$ and y_A is the y-coordinate of the first white pixel found in the vertical line x_A . Then I obtained the radius r of the cornea applying the Pythagorean theorem as follows:

$$r^{2} = (r - (y_{A} - y_{1}))^{2} - (x_{1} - x_{A})^{2}$$
$$r = \frac{(x_{1} - x_{A})^{2} - (y_{A} - y_{1})^{2}}{2(y_{A} - y_{1})}$$

From this calculation I found that the radius is approximately 1000 pixels long (corresponding to $4130\mu m$) with center at $(x_c, y_c) = (495, 1172)$.

Task 4

I computed the mean intensity values by evaluating the mean value of the pixels in each sub row, that goes from pixel $x_1 - 25$ to pixel $x_1 + 25$. The central region and the mean intensity vector are shown in Figure 7.

Figure 7: Exercise 2 - Central region and mean intensity values

Task 5

The cornea is limited at the top from the Epithelium, whose coordinates on the central axis are (x_1, y_1) , and at the bottom from the Endothelium. To find the the y coordinate of the latter on the corneal axis, I looked for the second layer characterized by full white pixels. Then, I found the first three absolute minima of the mean intensity values applying the function islocalmin to find the position

of the boundaries of the inner layers. The plot in Figure 8 shows the values of the y-coordinates, highlighted on the mean intensity vector.

Figure 8: Exercise 2 - Position of the different regions

Task 6

With the coordinates found in Task 5, I computed the thickness of each layer as $y_i - y_{i-1}$. The final results are shown in Figure 9.(a) in pixels and in Figure 9.(b) in μm .

Epithelium = $45.43\mu m$ Bowman = $16.52\mu m$ Stroma = $417.13\mu m$ Endothelium = $4.13\mu m$

Figure 9: Exercise 2 - Corneal layers