MEST - Assignment 3

Due date: 22/03/2022

(For each solution, show your work through a set of important steps.)

Langragian and Lagrange multiplier

- 1. Construct the Langrangian and find the maximum and minimum values of f(x, y, z) = 6x 3y 2z subject to the constraint $g(x, y, z) = 4x^2 + 2y^2 + z^2 70 = 0$. (3 pts)
- 2. Using Lagrange multipliers, find the shortest distance from the point (x_0, y_0, z_0) to the plane ax+by+cz=d. (3 pts)

Hartree-Fock Theory

- 3. Suppose in Lithium atom we have restricted Hartree-Fock spatial orbitals denoted by $\{\Psi_1, \Psi_2, \Psi_3, ..., \Psi_n\}$ and each can accommodate an α and/or β electrons. Assume that the orbitals (with indices 1, 2, ...) are arranged according to their energies. (4+3 pts)
 - (a) Determine the Slater determinant and the Hartree fock energy in terms of h, K and J integrals for
 - i. The ground state of Lithium atom
 - ii. The excited state where one electron from Ψ_1 is excited to Ψ_2
 - iii. The excited state where one alpha electron from Ψ_1 is excited to Ψ_3
 - iv. The excited state where one beta electron from Ψ_1 is excited to Ψ_3
 - (b) Derive the LUMO and LUMO+1 orbital energies.
- 4. Clementi and Roetti did Hartree-Fock calculations for ground and some excited states [E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 14, 177 (194)]. They consider the below Hartree-Fock ground state wave function for helium atom where they expressed the 1s orbital function f as combination of five 1s Slater-type orbitals.

$$\Psi_g = f(1)f(2) \cdot \left[\frac{\alpha(1)\beta(2) - \alpha(2)\beta(1)}{\sqrt{(2)}} \right] \quad \text{where, } f = \frac{1}{\sqrt{\pi}} \sum_{i=1}^5 c_i (\frac{\xi_i}{a_0})^{3/2} e^{-\frac{\xi_i r}{a_0}}$$

The expansion coefficient c_i are $c_1 = 0.76838$, $c_2 = 0.22346$, $c_3 = 0.04082$, $c_4 = -0.00994$, $c_5 = 0.00230$ and the orbital exponents ξ_i are $\xi_1 = 1.41714$, $\xi_2 = 2.37682$, $\xi_3 = 4.39628$, $\xi_4 = 6.52699$, $\xi_5 = 7.94252$. Calculate the total and first ionization energy of Helium using Hartree-Fock theory and compare it with experimental values. For solving the coloumb and exchange integrals express the electron repulsion term in spherical harmonics as done in Assignment 2 Q4. (10 pts)

- 5. (Taken from Szabo and Ostlund) Show that the energy required to remove an electron from χ_c and one from χ_d to produce the (N-2)-electron single determinant $|^{N-2}\Psi_{cd}\rangle$ is $-\epsilon_c \epsilon_d + \langle cd|cd\rangle \langle cd|dc\rangle$ where, ϵ_i denotes the Hartree-Fock orbital energy of obital i. (4 pts)
- 6. Derive the first order energy correction, using the fluctuation potential as a perturbation and the HF determinant as a zeroth order wavefunction for the many-electron HF operator. (3 pts)