מטלת מנחה 14 – מערכות ספרתיות

שאלה 1

עלינו לממש בעזרת מפענח ו3 שערים לוגיים בעלי מספר מינימלי של כניסות את:

$$F_1(x, y, z) = x'(y' + z) = \sum (0,1,3)$$

$$F_2(x, y, z) = y(x + z') = \sum (2,6,7)$$

$$F_3(x, y, z) = y' + x'yz = \sum (0,1,3,4,5) = F_2'$$

.0R(0,1,3) ניתן לממש בעזרת שער לוגי אחד עם 3 ניסות: ${
m F}_1$ ניתן לממש

את הפונקציה F_3 ניתן לממש בעזרת שער לוגי אחד עם 3 כניסות: $OR(F_1,4,5)$. בכך חסכנו שתי כניסות לשער הפונקציה F_3 את הפונקציה הלוגי שייצג את

את הפונקציה ${\rm F}_2$ ניתן לייצג בעזרת שער לוגי אחד בעל כניסה אחת: $NOT(F_3)$. בכך חסכנו שתי כניסות לשער, כי אילו היינו מממשים את הפונקציה בעזרת שער OR היו לו 3 כניסות.

שאלה 2

ננסה להבין את הפונקציה במעגל ולכתוב אותה בצורה אלגברית כלשהי. לאחר מכן נפשט את הביטוי.

(y_3, y_5, y_7) ערכי היציאות במפענח (נסמן אותם

$$y_3 = d'cb$$

$$y_5 = dc'b$$

$$y_7 = dcb$$

<u>ערכי היציאות בחצי המחבר:</u>

חצי המחבר מחבר סיבית אחת (של (a) עם סיבית אחת (של (y_3)). הסכום שלהם יכול להיות (a) אחד מהערכים (אם מחבר מחבר סיבית אחת (של (a)), 1 (אם אחד בדיוק מהערכים הוא 1), 12 (אם שני הערכים הם 1) – במקרה כזה ערך הנשא יהיה 1.

 $\mathbb{S}=a\oplus y_3$ כלומר: $\mathbb{S}=1$. כלומר: $a\neq y_3$, ובכל מקרה בו S=0, ובכל מקרה בו S=0, יתקיים אבכל מקרה בו S=0

a וגם y_3 הם 1, כלומר גם a וגם a הם 1, ערך הנשא יהיה 1 רק כאשר

לכן –

$$S = a \oplus d'cb$$

$$C_{out} = ad'cb$$

<u>ערך היציאה במרבב:</u>

 y_5 כאשר כניסת הבקרה, שהיא C_{out} , היא C_{out} ערך היציאה יהיה

 y_7 כאשר כניסת הבקרה היא 1, ערך היציאה יהיה

 $\mathcal{C}'_{out} \cdot y_5 + \mathcal{C}_{out} \cdot y_7$ יהיה היה, שנסמנו שנסמנו, במרבב, לכן ערך היציאה לכן

$$= (ad'cb)' \cdot dc'b + ad'cb \cdot dcb$$

יש לשים לב שבמחובר הימני אנחנו מכפילים d' בd, לכן ערך המחובר הימני יהיה תמיד d'

$$m = (a'+d+c'+b')dc'b = a'dc'b+d \cdot dc'b+c' \cdot dc'b+b' \cdot dc'b =$$

$$c'c' = c'$$
ו $dd = d$, $b'b = 0$ בגלל ש

$$= a'dc'b + dc'b + dc'b + 0 =$$

נשתמש בפילוג ונקבל:

$$= dc'b(a' + 1 + 1) = dc'b$$

<u>:z ערך</u>

ולכן-

 $z = a \oplus d'cb \oplus dc'b$:S-ו אבין XOR נפעיל

נכתוב טבלת אמת:

а	b	С	d	d'cb	dc'b	Z
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	1	1
0	1	1	0	1	0	1
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	0	1
1	0	1	1	0	0	1
1	1	0	0	0	0	1
1	1	0	1	0	1	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

$$z = \sum (5,6,8,9,10,11,12,15)$$

עלינו לפשט לצורת מכפלת סכומים. לכן נכין מפת קרנו ונקיף אפסים (נסמן במפה אפסים בצהוב ו1-ים באדום).

מכפלה	а	b	С	d	ערכים במלבן
a'b'	0	0	משתנה	משתנה	0,1,2,3
a'c'd'	0	משתנה	0	0	0,4
a'cd	0	משתנה	1	1	3,7
abc'd	1	1	0	1	13
abcd'	1	1	1	0	14

לכן –

$$z' = a'b' + a'c'd' + a'cd + abc'd + abcd'$$

ולפי דה-מורגן

$$z = (a+b)(a+c+d)(a+c'+d')(a'+b'+c+d')(a'+b'+c'+d)$$