Homework 5 David Yang

Chapter IV (Complex Integration and Analyticity) Problems.

Section IV.4 (The Cauchy Integral Formula), Problem 4

Let D be a bounded domain with smooth boundary ∂D , and let $z_0 \in D$. Using the Cauchy integral formula, show that there is a constant C such that

$$|f(z_0)| \le C \sup \{|f(z)| : z \in \partial D\}$$

for any function f(z) analytic on $D \cup \partial D$. By applying this estimate to $f(z)^n$, taking nth roots, and letting $n \to \infty$, show that the estimate holds with C = 1. Remark. This provides an alternative proof of the maximum principle for analytic functions.

Solution.

Section IV.5 (Liouville's Theorem), Problem 4

Suppose that f(z) is an entire function such that $f(z)/z^n$ is bounded for $|z| \ge R$. Show that f(z) is a polynomial of degree at most n. What can be said if $f(z)/z^n$ is bounded on the entire complex plane?

Solution.