Lecture 12: Shrinkage

Reading: Section 3.4

GU4241/GR5241 Statistical Machine Learning

Linxi Liu March 8, 2019

Issues with Least Squares

Robustness

- Least squares works only if X has full column rank, i.e. if X^TX is invertible.
- ▶ If $\mathbf{X}^T\mathbf{X}$ almost not invertible, least squares is numerically unstable.

Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

- Modern problems: Many dimensions/features/predictors (possibly thousands)
- Only a few of these may be important
 - \rightarrow need some form of feature selection
- Least squares:
 - ► Treats all dimensions equally
 - ▶ Relevant dimensions are averaged with irrelevant ones
 - Consequence: Signal loss

Regularity of Matrices

Regularity

A matrix which is not invertible is also called a **singular** matrix. A matrix which is invertible (not singular) is called **regular**.

In computations

Numerically, matrices can be "almost singular". Intuition:

- A singular matrix maps an entire linear subspace into a single point.
- ▶ If a matrix maps points far away from each other to points very close to each other, it almost behaves like a singular matrix.

Regularity of Symmetric Matrices

A positive semi-definite matrix A is singluar \Leftrightarrow smallest EValue is 0 Illustration

If smallest EValue $\lambda_{\min} > 0$ but very small (say $\lambda_{\min} \approx 10^{-10}$):

- ▶ Suppose x_1, x_2 are two points in subspace spanned by ξ_{\min} with $\|x_1 x_2\| \approx 1000$.
- ▶ Image under $A: ||Ax_1 Ax_2|| \approx 10^{-7}$

In this case

- lacktriangleq A has an inverse, but A behaves almost like a singular matrix
- ▶ The inverse A^{-1} can map almost identical points to points with large distance, i.e.

small change in input \rightarrow large change in output

Consequence for Statistics

If a statistical prediction involves the inverse of an almost-singular matrix, the predictions become unreliable (high variance).

Implications for Linear Regression

Recall: Prediction in linear regression

For a point $\mathbf{x}_{\sf new} \in \mathbb{R}^p$, we predict the corresponding function value as

$$\hat{y}_{\mathsf{new}} = \left\langle \hat{eta}, \mathbf{x}_{\mathsf{new}}
ight
angle = \mathbf{x}_{\mathsf{new}} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Effect of unstable inversion

- Suppose we choose an arbitrary training point x_i and make a small change to its response value y_i .
- Intuitively, that should not have a big impact on $\hat{\beta}$ or on prediction.
- ▶ If $\mathbf{X}^T\mathbf{X}$ is almost singular, a small change to y_i can prompt a huge change in $\hat{\beta}$, and hence in the predicted value \hat{y}_{new} .

Measuring Regularity (of Symmetric Matrices)

Symmetric matrices

Denote by λ_{\max} and λ_{\min} the eigenvalues of A with largest/smallest absolute value. If A is symmetric, then

A regular
$$\Leftrightarrow |\lambda_{\min}| > 0$$
.

Idea

• We can use $|\lambda_{\min}|$ as a measure of regularity:

larger value of λ_{\min} $\ \leftrightarrow$ "more regular" matrix A

- We need a notion of scale to determine whether $|\lambda_{\min}|$ is large.
- ▶ The relevant scale is how A scales a vector. Maximal scaling coefficient: λ_{\max} .

Regularity measure

$$c(A) := \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$$

The function c(.) is called the **spectral condition** ("spectral" since the set of eigenvalues is also called the "spectrum").

Objective

Ridge regression is a modification of least squares. We try to make least squares more robust if $\mathbf{X}^T\mathbf{X}$ is almost singular.

Ridge regression solution

The ridge regression solution to a linear regression problem is defined as

$$\hat{oldsymbol{eta}}^{\mathsf{ridge}} := (\mathbf{X}^T\mathbf{X} + \lambda \mathbb{I})^{-1}\mathbf{X}^T\mathbf{y}$$

 λ is a tuning parameter.

Explanation

Recall

 $\mathbf{X}^T\mathbf{X} \in \mathbb{R}^{p \times p}$ is positive definite.

Spectral shift

Suppose ξ_1, \dots, ξ_p are EVectors of $\mathbf{X}^T \mathbf{X}$ with EValues $\lambda_1, \dots, \lambda_p$. Then:

$$(\mathbf{X}^T\mathbf{X} + \lambda \mathbb{I})\xi_i = (\mathbf{X}^T\mathbf{X})\xi_i + \lambda \mathbb{I}\xi_i = (\lambda_i + \lambda)\xi_i$$

Hence: $(\mathbf{X}^T\mathbf{X} + \lambda \mathbb{I})$ is positive definite with EValues $\lambda_1 + \lambda, \dots, \lambda_p + \lambda$.

Conclusion

 $\mathbf{X}^T\mathbf{X} + \lambda \mathbb{I}$ is a regularized version of $\mathbf{X}^T\mathbf{X}$.

Implications for statistics

Effect of regularization

- ▶ We deliberately distort prediction:
 - If least squares $(\lambda = 0)$ predicts perfectly, the ridge regression prediction has an error that increases with λ .
 - ▶ Hence: Biased estimator, bias increases with λ .
- Spectral shift regularizes matrix → decreases variance of predictions.

Bias-variance trade-off

- We decrease the variance (improve robustness) at the price of incurring a bias.
- \triangleright λ controls the trade-off between bias and variance.

Cost Function

- Linear regression solution was defined as minimizer of $L(\boldsymbol{\beta}) := \|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|^2$
- ▶ We have so far defined ridge regression only directly in terms of the estimator $\hat{\boldsymbol{\beta}}^{\text{ridge}} := (\mathbf{X}^T\mathbf{X} + \lambda \mathbb{I})^{-1}\mathbf{X}^T\mathbf{y}$.
- To analyze the method, it is helpful to understand it as an optimization problem.
- We ask: Which function L' does $\hat{\boldsymbol{\beta}}^{\text{ridge}}$ minimize?

Ridge regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

In blue, we have the RSS of the model.

In red, we have the squared ℓ_2 norm of $\boldsymbol{\beta}$, or $\|\boldsymbol{\beta}\|_2^2$. It is called a **penalty term**.

Ridge regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

In blue, we have the RSS of the model.

In red, we have the squared ℓ_2 norm of β , or $\|\beta\|_2^2$. It is called a **penalty term**.

The parameter λ is a tuning parameter. It modulates the importance of fit vs. shrinkage.

Ridge regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

In blue, we have the RSS of the model.

In red, we have the squared ℓ_2 norm of β , or $\|\beta\|_2^2$. It is called a **penalty term**.

The parameter λ is a tuning parameter. It modulates the importance of fit vs. shrinkage.

We find an estimate $\hat{\beta}_{\lambda}^{\rm ridge}$ for many values of λ and then choose it by cross-validation.

Ridge regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

In blue, we have the RSS of the model.

In red, we have the squared ℓ_2 norm of β , or $\|\beta\|_2^2$. It is called a **penalty term**.

The parameter λ is a tuning parameter. It modulates the importance of fit vs. shrinkage.

We find an estimate $\hat{\beta}_{\lambda}^{\text{ridge}}$ for many values of λ and then choose it by cross-validation. Fortunately, this is no more expensive than running a least-squares regression.

In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = X_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, ie. after doing this we have the same RSS.

In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = X_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, ie. after doing this we have the same RSS.

In ridge regression, this is not true.

In least-squares linear regression, scaling the variables has no effect on the fit of the model:

$$Y = X_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Multiplying X_1 by c can be compensated by dividing $\hat{\beta}_1$ by c, ie. after doing this we have the same RSS.

In ridge regression, this is not true.

In practice, what do we do?

- ► Scale each variable such that it has sample variance 1 before running the regression.
- ▶ This prevents penalizing some coefficients more than others.

Example. Ridge regression

Ridge regression of default in the Credit dataset.

Bias-variance tradeoff

In a simulation study, we compute bias, variance, and test error as a function of λ .

Cross validation would yield an estimate of the test error.

Selecting λ by cross-validation

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of $\boldsymbol{\beta}$, or $\|\boldsymbol{\beta}\|_1$.

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of $\boldsymbol{\beta}$, or $\|\boldsymbol{\beta}\|_1$.

Why would we use the Lasso instead of Ridge regression?

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of $\boldsymbol{\beta}$, or $\|\boldsymbol{\beta}\|_1$.

Why would we use the Lasso instead of Ridge regression?

▶ Ridge regression shrinks all the coefficients to a non-zero value.

Lasso regression solves the following optimization:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{i,j} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

In blue, we have the RSS of the model.

In red, we have the ℓ_1 norm of $\boldsymbol{\beta}$, or $\|\boldsymbol{\beta}\|_1$.

Why would we use the Lasso instead of Ridge regression?

- ▶ Ridge regression shrinks all the coefficients to a non-zero value.
- ► The Lasso shrinks some of the coefficients all the way to zero. Alternative to best subset selection or stepwise selection!

Example. Ridge regression

Ridge regression of default in the Credit dataset.

A lot of pesky small coefficients throughout the regularization path.

Example. The Lasso

Lasso regression of default in the Credit dataset.

Those coefficients are shrunk to zero.

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{\text{ridge}}$ solves:

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\beta}_{\lambda}^{\text{ridge}}$ solves:

Lasso: for every λ , there is an s such that $\hat{\boldsymbol{\beta}}_{\lambda}^{\text{lasso}}$ solves:

An alternative formulation for regularization

▶ **Ridge:** for every λ , there is an s such that $\hat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}}$ solves:

Lasso: for every λ , there is an s such that $\hat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{lasso}}$ solves:

Best subset:

Visualizing Ridge and the Lasso with 2 predictors

The Lasso

 $\bullet: \quad \sum_{j=1}^{p} |\beta_j| < s$

Ridge Regression

 $\bullet: \sum_{j=1}^p \beta_j^2 < s$

Example 1. Most of the coefficients are non-zero.

Example 1. Most of the coefficients are non-zero.

Bias, Variance, MSE.

0.6

0.8

1.0

Example 1. Most of the coefficients are non-zero.

▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).

Example 1. Most of the coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).
- ▶ The bias is about the same for both methods.

Example 1. Most of the coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (· · ·).
- ▶ The bias is about the same for both methods.
- ▶ The variance of Ridge regression is smaller, so is the MSE.

Example 2. Only 2 coefficients are non-zero.

When is the Lasso better than Ridge?

Example 2. Only 2 coefficients are non-zero.

► Bias, Variance, MSE.

When is the Lasso better than Ridge?

Example 2. Only 2 coefficients are non-zero.

▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).

When is the Lasso better than Ridge?

Example 2. Only 2 coefficients are non-zero.

- ▶ Bias, Variance, MSE. The Lasso (—), Ridge (···).
- ▶ The bias, variance, and MSE are lower for the Lasso.

Choosing λ by cross-validation

Suppose n=p and our matrix of predictors is $\mathbf{X}=I.$

Suppose n = p and our matrix of predictors is $\mathbf{X} = I$.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Suppose n = p and our matrix of predictors is $\mathbf{X} = I$.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda \beta_j^2.$$

Suppose n = p and our matrix of predictors is $\mathbf{X} = I$.

Then, the objective function in Ridge regression can be simplified:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda \beta_j^2.$$

It is easy to show that

$$\hat{\beta}_j^{\mathsf{ridge}} = \frac{y_j}{1+\lambda}.$$

Similar story for the Lasso; the objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Similar story for the Lasso; the objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda |\beta_j|.$$

Similar story for the Lasso; the objective function is:

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

and we can minimize the terms that involve each β_i separately:

$$(y_j - \beta_j)^2 + \lambda |\beta_j|.$$

It is easy to show that

$$\hat{\beta}_j^{\rm lasso} = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2; \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2; \\ 0 & \text{if } |y_j| < \lambda/2. \end{cases}$$

Lasso and Ridge coefficients as a function of λ

Bayesian interpretations

Ridge: $\hat{\beta}^{\text{ridge}}$ is the posterior mean, with a Normal prior on β .

Lasso: $\hat{\beta}^{lasso}$ is the posterior mode, with a Laplace prior on β .

Summary: Regression

Methods we have discussed:

- ► Linear regression with least squares
- ► Ridge regression, Lasso

Note: All of these are linear. The solutions are hyperplanes. The different methods differ only in how they *place* the hyperplane.

Summary: Regression

Ridge regression

Suppose we obtain two training samples \mathcal{X}_1 and \mathcal{X}_2 from the same distribution.

- Ideally, the linear regression solutions on both should be (nearly) identical.
- ▶ With standard linear regression, the problem may not be solvable (if $\mathbf{X}^T\mathbf{X}$ not invertible).
- ▶ Even if it is solvable, if the matrices $\mathbf{X}^T\mathbf{X}$ are close to singular (small spectral condition $c(\mathbf{X}^T\mathbf{X})$), then the two solutions can differ significantly.
- Ridge regression stabilizes the inversion of X^TX. Consequences:
 - ▶ Regression solutions for \mathcal{X}_1 and \mathcal{X}_2 will be almost identical if λ sufficiently large.
 - ▶ The price we pay is a bias that grows with λ .

Summary: Regression

Lasso

- ▶ The ℓ_1 -costraint "switches off" dimensions; only some of the entries of the solution $\hat{\boldsymbol{\beta}}^{\mathsf{lasso}}$ are non-zero (sparse $\hat{\boldsymbol{\beta}}^{\mathsf{lasso}}$).
- ▶ This variable selection also stabilizes $\mathbf{X}^T\mathbf{X}$, since we are effectively inverting only along those dimensions which provide sufficient information.
- ▶ No closed-form solution; use numerical optimization.

Formulation as optimization problem

Method	$f(oldsymbol{eta})$	Penalty	Solution method
Least squares Ridge regression Lasso	$\ \mathbf{y} - \mathbf{X}\boldsymbol{\beta}\ _2^2 \ \mathbf{y} - \mathbf{X}\boldsymbol{\beta}\ _2^2 \ \mathbf{y} - \mathbf{X}\boldsymbol{\beta}\ _2^2$	$egin{array}{c} 0 \ \ oldsymbol{eta}\ _2^2 \ \ oldsymbol{eta}\ _1 \end{array}$	Analytic solution exists if $\mathbf{X}^T\mathbf{X}$ invertible Analytic solution exists Numerical optimization