432 Class 03 Slides

thomase love. github. io/432

2021-02-09

Today's Agenda

- Create a data set for week 2 analyses from smart_ohio
- Making cleaning / tidying decisions, then saving our work
- Simple imputation
- Splitting the sample with rsample tools
- Fitting a model (and then several more models) with 1m
 - Incorporating an interaction between factors
 - Incorporating polynomial terms
- Regression Diagnostics via Residual Plots
- Evaluating results in holdout sample with yardstick

Setup

```
knitr::opts chunk$set(comment = NA)
options(width = 60)
library(here)
library(knitr)
library(skimr)
library(patchwork)
library(janitor)
library(naniar)
library(simputation)
library(broom)
library(rsample)
                         ## new today: data splitting
library(yardstick)
                         ## new today: evaluating fits
library(tidyverse)
theme set(theme bw())
options(dplyr.summarise.inform = FALSE)
                                          ## avoid message
```

Similar approach as last time...

```
smart_ohio <- read_csv(here("data/smart_ohio.csv"))</pre>
week2 <- smart ohio %>%
    filter(hx diabetes == 0,
           mmsa == "Cleveland-Elyria",
           complete.cases(bmi)) %>%
    select(bmi, inc imp, fruit day, drinks wk,
           female, exerany, genhealth, race_eth,
           hx diabetes, mmsa, SEQNO) %>%
    type.convert() %>%
    mutate(ID = as.character(SEQNO - 2017000000)) \%
    relocate(ID)
```

```
# A tibble: 894 x 12
  ID
         bmi inc imp fruit day drinks wk female exerany
  <chr> <dbl>
             <int>
                      <dbl>
                              <dbl> <int>
                                           <int>
        23.0 86865
1 2
                      4
                               0
2 3
        26.9
                NΑ
                      3
                      2
3 4
      26.5 NA
                               4.67
      24.2 58311
4 5
                      0.570
                               0.93
5 7
      23.0 2318
                      2
                               2
6 8
      28.4 79667
7 9
        30.1 47880
                      0.23
8 10
        19.8 100136
                      0.77
                               0.47
9 11
        27.2 73145
                      0.71
10 12 24.6 76917
```

1.07

^{# ...} with 884 more rows, and 5 more variables:

[#] genhealth <fct>, race eth <fct>, hx diabetes <int>,

[#] mmsa <fct>. SEQNO <int>

Codebook for useful week2 variables

• 894 subjects in Cleveland-Elyria with bmi and no history of diabetes

Variable	Description
bmi	(outcome) Body-Mass index in kg/m ² .
${\tt inc_imp}$	income (imputed from grouped values) in \$
fruit_day	average fruit servings consumed per day
drinks_wk	average alcoholic drinks consumed per week
female	sex: $1 = \text{female}$, $0 = \text{male}$
exerany	any exercise in the past month: $1 = \text{yes}$, $0 = \text{no}$
genhealth	self-reported overall health (5 levels)
race_eth	race and Hispanic/Latinx ethnicity (5 levels)
•	

- plus ID, SEQNO, hx_diabetes (all 0), MMSA (all Cleveland-Elyria)
- See Chapter 2 of the Course Notes for details on the variables

Basic Data Summaries

Available approaches include:

- summary
- mosaic package's inspect()
- skimr package's skim_without_charts()
- Hmisc package's describe

all of which can work nicely in an HTML presentation, but none of them fit well on one of these slides.

Summarizing the Quantities (Raw week2)

var	n_missing	min	median	max	mean	sd
bmi	0	13.3	26.8	63	27.9	6.3
inc_imp	120	216.0	48224.5	700676	75673.5	90695.8
fruit_day	41	0.0	1.1	10	1.4	1.1
drinks_wk	39	0.0	0.5	56	3.0	6.1

Any signs of trouble? (What are we looking for?)

Quick Histogram of each quantitative variable

Code for previous slide

```
p1 <- ggplot(week2, aes(x = bmi)) +
    geom histogram(fill = "navy", col = "white", bins = 20)
p2 \leftarrow ggplot(week2, aes(x = inc imp)) +
    geom_histogram(fill = "forestgreen", col = "white",
                    bins = 20
p3 \leftarrow ggplot(week2, aes(x = fruit_day)) +
    geom_histogram(fill = "tomato", col = "white", bins = 20)
p4 \leftarrow ggplot(week2, aes(x = drinks_wk)) +
    geom_histogram(fill = "royalblue", col = "white",
                    bins = 20)
(p1 + p2) / (p3 + p4)
```

I also used warning = FALSE in the plot's code chunk label to avoid warnings about missing values, like this one for inc_imp:

Warning: Removed 120 rows containing non-finite values

Binary variables in raw week2

week2 %>% tabyl(female, exerany) %>% adorn_title()

```
exerany
female 0 1 NA_
0 95 268 20
1 128 361 22
```

- female is based on biological sex (1 = female, 0 = male)
- exerany comes from a response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?" (1 = yes, 0 = no, don't know and refused = missing)
- Any signs of trouble here?

Binary variables in raw week2

128 361 22

week2 %>% tabyl(female, exerany) %>% adorn_title()

exerany female 0 1 NA_ 0 95 268 20

- female is based on biological sex (1 = female, 0 = male)
- exerany comes from a response to "During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?" (1 = yes, 0 = no, don't know and refused = missing)
- Any signs of trouble here?
- I think the 1/0 values and names are OK choices.

Multicategorical genhealth in raw week2

week2 %>% tabyl(genhealth)

```
genhealth n percent valid_percent
1_Excellent 148 0.165548098 0.16573348
2_VeryGood 324 0.362416107 0.36282195
3_Good 274 0.306487696 0.30683091
4_Fair 112 0.125279642 0.12541993
5_Poor 35 0.039149888 0.03919373
<NA> 1 0.001118568 NA
```

- The variable is based on "Would you say that in general your health is ..." using the five specified categories (Excellent -> Poor), numbered for convenience after data collection.
- Don't know / not sure / refused were each treated as missing.
- How might we manage this variable?

Changing the levels for genhealth

Might want to run a sanity check here, just to be sure. . .

Checking health vs. genhealth in week2

week2 %>% tabyl(genhealth, health) %>% adorn_title()

health G F P NA genhealth VG 1 Excellent 148 0 324 0 0 0 2_VeryGood 0 0 274 0 3 Good 4 Fair 0 112 0 0 0 35 5 Poor 0 0 <NA> 0 0

• OK. We've preserved the order and we have much shorter labels. Sometimes, that's helpful.

Multicategorical race_eth in raw week2

week2 %>% count(race_eth)

```
A tibble: 6 x 2
  race eth
                                n
* <fct>
                            <int>
1 Black non-Hispanic
                               167
                               27
2 Hispanic
                               19
3 Multiracial non-Hispanic
                               22
4 Other race non-Hispanic
                              646
 White non-Hispanic
 <NA>
                                13
```

"Don't know", "Not sure", and "Refused" were treated as missing.

• What is this variable actually about?

Multicategorical race_eth in raw week2

```
week2 %>% count(race_eth)
```

```
A tibble: 6 x 2
  race eth
                                n
* <fct>
                            <int>
1 Black non-Hispanic
                              167
                               27
2 Hispanic
                               19
3 Multiracial non-Hispanic
                               22
4 Other race non-Hispanic
                              646
 White non-Hispanic
 <NA>
                                13
```

"Don't know", "Not sure", and "Refused" were treated as missing.

- What is this variable actually about?
- What is the most common thing people do here?

What is the question you are asking?

Collapsing race_eth levels *might* be rational for *some* questions.

- We have lots of data from two categories, but only two.
- Systemic racism affects people of color in different ways across these categories, but also *within* them.
- Is combining race and Hispanic/Latinx ethnicity helpful?

It's hard to see the justice in collecting this information and not using it in as granular a form as possible, though this leaves some small sample sizes. There is no magic number for "too small a sample size."

- Most people identified themselves in one of the categories.
- These data are not ordered, and (I'd argue) ordering them isn't helpful.
- Regression models are easier to interpret, though, if the "baseline" category is a common one.

Resorting the factor for race_eth

Let's sort all five levels, from most observations to least...

```
week2 <- week2 %>%
    mutate(race_eth = fct_infreq(race_eth))
week2 %>% tabyl(race eth)
```

```
race_eth n percent valid_percent
White non-Hispanic 646 0.72259508 0.73325766
Black non-Hispanic 167 0.18680089 0.18955732
Hispanic 27 0.03020134 0.03064699
Other race non-Hispanic 22 0.02460850 0.02497162
Multiracial non-Hispanic 19 0.02125280 0.02156640

<NA> 13 0.01454139 NA
```

• Not a perfect solution, certainly, but we'll try it out.

"Cleaned" Data and Missing Values

```
# A tibble: 13 \times 3
  variable n_miss pct_miss
  <chr>
           <int> <dbl>
              120 13.4
1 inc imp
               42 4.70
2 exerany
3 fruit_day 41 4.59
4 drinks wk
          39 4.36
5 race eth 13 1.45
6 health
                    0.112
                1
7 genhealth
                    0.112
8 ID
                0
                    0
```

Single Imputation Approach?

```
set.seed(43203)
week2im <- week2 %>%
    select(ID, bmi, inc_imp, fruit_day, drinks_wk,
           female, exerany, health, race_eth) %>%
    data.frame() %>%
    impute_cart(health ~ bmi + female) %>%
    impute pmm(exerany ~ female + health + bmi) %>%
    impute rlm(inc imp + drinks wk + fruit day ~
                   bmi + female + health + exerany) %>%
    impute cart(race eth ~ health + inc imp + bmi) %>%
    tibble()
prop_miss_case(week2im)
```

[1] 0

Saving the tidied data

Let's save both the unimputed and the imputed tidy data as R data sets.

```
saveRDS(week2, here("data", "week2.Rds"))
saveRDS(week2im, here("data", "week2im.Rds"))
```

To reload these files, we'd use readRDS.

 The main advantage here is that we've saved the whole R object, including all characteristics that we've added since the original download.

Splitting the Sample

Use initial_split from rsample to partition the data into:

- Model development (training) sample where we'll build models
- Model evaluation (testing) sample which we'll hold out for a while

```
set.seed(432) ## to make the work replicable in the future
week2im_split <- initial_split(week2im, prop = 3/4)

train_w2im <- training(week2im_split)
test_w2im <- testing(week2im_split)
dim(train_w2im); dim(test_w2im)</pre>
```

- [1] 671 9
- [1] 223 9

Should we transform our outcome?

bmi means by exerany and health

```
summaries_1 <- train_w2im %>%
   group_by(exerany, health) %>%
   summarise(n = n(), mean = mean(bmi), stdev = sd(bmi))
summaries_1 %>% kable(digits = 2)
```

exerany	health	n	mean	stdev
0	E	13	25.82	4.99
0	VG	49	27.00	5.35
0	G	57	29.82	6.78
0	F	38	32.70	9.79
0	Р	12	30.58	7.86
1	E	95	25.41	4.47
1	VG	195	26.55	4.63
1	G	147	29.30	6.31
1	F	51	27.46	6.07
1	Р	14	29.53	10.21

Code for Interaction Plot

- Note the use of factor here since the exerany variable is in fact numeric, although it only takes the values 1 and 0.
 - ullet Sometimes it's helpful to treat 1/0 as a factor, and sometimes not.
- Where is the evidence of serious non-parallelism (if any) in the plot on the next slide that results from this code?

Resulting Interaction Plot

Building a Model without interaction

• How well does this model fit the training data?

r.squared	adj.r.squared	sigma	nobs	df	df.residual	AIC	BIC
0.082	0.075	6	671	5	665	4316	4347.5

ANOVA for the m_1 model

```
anova(m 1)
Analysis of Variance Table
Response: bmi
          Df
              Sum Sq Mean Sq F value Pr(>F)
exerany 1 546.0 546.04 15.185 0.0001073 ***
health 4 1599.6 399.90 11.121 9.75e-09 ***
Residuals 665 23912.2 35.96
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Tidied ANOVA for the m_1 model

```
tidy(anova(m_1)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
exerany	1	546.04	546.04	15.19	0
health	4	1599.60	399.90	11.12	0
Residuals	665	23912.24	35.96	NA	NA

A summary of m_1 coefficients

summary(m_1)\$coeff

```
Estimate Std. Error t value
                                              Pr(>|t|)
(Intercept) 26.660139 0.7516549 35.468590 1.760701e-155
           -1.368895 0.5476208 -2.499712
                                          1.266926e-02
exerany
healthVG
            1.075617
                      0.6944477 1.548882
                                           1.218860e-01
healthG
            3.773133
                      0.7188867 5.248578
                                          2.064177e-07
healthF
            3.821700
                      0.8747353
                                4.368978
                                           1.447837e-05
            4.092343 1.3232015
                                 3.092759
healthP
                                          2.066074e-03
```

Tidied summary of m_1 coefficients

```
tidy(m_1, conf.int = TRUE, conf.level = 0.90) %>%
   kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	26.66	0.75	35.47	0.000	25.42	27.90
exerany	-1.37	0.55	-2.50	0.013	-2.27	-0.47
healthVG	1.08	0.69	1.55	0.122	-0.07	2.22
healthG	3.77	0.72	5.25	0.000	2.59	4.96
healthF	3.82	0.87	4.37	0.000	2.38	5.26
healthP	4.09	1.32	3.09	0.002	1.91	6.27

Plot the Residuals from model m_1?

```
par(mfrow = c(2,2))
plot(m_1)
par(mfrow = c(1,1))
```

That's the simplest code to get the four key plots to show up in the most familiar pattern, as shown on the next slide. . .

m_1 Residual Plots (conclusions?)

Adding the interaction term to m_1

• How does this model compare in terms of fit to the training data?

```
bind_rows(glance(m_1), glance(m_1int)) %>%
  mutate(mod = c("m_1", "m_1int")) %>%
  select(mod, r.sq = r.squared, adj.r.sq = adj.r.squared,
      sigma, nobs, df, df.res = df.residual, AIC, BIC) %>%
  kable(digits = c(0, 3, 3, 2, 0, 0, 0, 1, 1))
```

mod	r.sq	adj.r.sq	sigma	nobs	df	df.res	AIC	BIC
m_1	0.082	0.075	6.00	671	5	665	4316.0	4347.5
m_1int	0.098	0.085	5.96	671	9	661	4312.6	4362.2

ANOVA for the m_1int model

```
tidy(anova(m_1int)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
exerany	1	546.04	546.04	15.35	0.000
health	4	1599.60	399.90	11.24	0.000
exerany:health	4	401.12	100.28	2.82	0.024
Residuals	661	23511.12	35.57	NA	NA

ANOVA test comparing m_1 to m_1int

```
anova(m 1, m 1int)
Analysis of Variance Table
Model 1: bmi ~ exerany + health
Model 2: bmi ~ exerany * health
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 665 23912
2 661 23511 4 401.12 2.8193 0.02442 *
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A summary of m_1int coefficients

summary(m_1int)\$coeff

```
Estimate Std. Error t value
(Intercept)
                25.81923077 1.654109 15.60914361
                -0.41291498 1.763658 -0.23412422
exerany
healthVG
               1.17872841 1.860639 0.63350745
healthG
                3.99690958 1.833056 2.18046193
healthF
                 6.88155870 1.916274 3.59111495
healthP
              4.76160256
                             2.387501 1.99438748
exerany:healthVG -0.03278779
                             2.004692 -0.01635552
                -0.09955190 1.994109 -0.04992299
exerany:healthG
exerany:healthF -4.82826665
                             2.178060 -2.21677363
                -0.63720407
                             2.935169 -0.21709281
exerany:healthP
                    Pr(>|t|)
(Intercept)
               5.435751e-47
                8.149610e-01
exerany
healthVG
                5.266215e-01
```

Tidied summary of m_1int coefficients

```
tidy(m_1int, conf.int = TRUE, conf.level = 0.90) %>%
    rename(se = std.error, t = statistic, p = p.value) %>%
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	se	t	р	conf.low	conf.high
(Intercept)	25.82	1.65	15.61	0.000	23.09	28.54
exerany	-0.41	1.76	-0.23	0.815	-3.32	2.49
healthVG	1.18	1.86	0.63	0.527	-1.89	4.24
healthG	4.00	1.83	2.18	0.030	0.98	7.02
healthF	6.88	1.92	3.59	0.000	3.73	10.04
healthP	4.76	2.39	1.99	0.047	0.83	8.69
exerany:healthVG	-0.03	2.00	-0.02	0.987	-3.33	3.27
exerany:healthG	-0.10	1.99	-0.05	0.960	-3.38	3.19
exerany:healthF	-4.83	2.18	-2.22	0.027	-8.42	-1.24
exerany:healthP	-0.64	2.94	-0.22	0.828	-5.47	4.20

Plot the Residuals from model m_1int?

Adding in the covariate fruit_day to m_1

• How well does this model fit the training data?

```
bind_rows(glance(m_1), glance(m_2)) %>%
  mutate(mod = c("m_1", "m_2")) %>%
  select(mod, r.sq = r.squared, adj.r.sq = adj.r.squared,
      sigma, df, df.res = df.residual, AIC, BIC) %>%
  kable(digits = c(0, 3, 3, 2, 0, 0, 1, 1))
```

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.082	0.075	6.00	5	665	4316.0	4347.5
m_2	0.090	0.081	5.98	6	664	4312.6	4348.7

 Also available in glance for a model fit with lm are statistic, p.value, logLik, and deviance.

ANOVA for the m_2 model

```
tidy(anova(m_2)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
fruit_day	1	413.34	413.34	11.57	0.001
exerany	1	411.23	411.23	11.51	0.001
health	4	1509.31	377.33	10.56	0.000
Residuals	664	23724.00	35.73	NA	NA

Tidied summary of m_2 coefficients

```
tidy(m_2, conf.int = TRUE, conf.level = 0.90) %>%
   kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	27.34	0.81	33.93	0.000	26.01	28.67
fruit_day	-0.50	0.22	-2.30	0.022	-0.85	-0.14
exerany	-1.19	0.55	-2.15	0.032	-2.10	-0.28
healthVG	0.97	0.69	1.40	0.162	-0.17	2.11
healthG	3.65	0.72	5.09	0.000	2.47	4.84
healthF	3.64	0.88	4.16	0.000	2.20	5.08
healthP	3.92	1.32	2.96	0.003	1.74	6.09

m_2 Residual Plots (non-constant variance?)

What if we included the interaction term?

Compare m_2int fit to previous models...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.082	0.075	6.00	5	665	4316.0	4347.5
m_2	0.090	0.081	5.98	6	664	4312.6	4348.7
m_1int	0.098	0.085	5.96	9	661	4312.6	4362.2
m_2int	0.106	0.093	5.94	10	660	4308.2	4362.3

- m_1 = no fruit_day, no exerany*health interaction
- m_2 = fruit_day, but no interaction
- m_lint = no fruit_day, with interaction
- m_2int = both fruit_day and interaction

ANOVA for the m_2int model

```
tidy(anova(m_2int)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
fruit_day	1	413.34	413.34	11.71	0.001
exerany	1	411.23	411.23	11.65	0.001
health	4	1509.31	377.33	10.69	0.000
exerany:health	4	436.03	109.01	3.09	0.016
Residuals	660	23287.97	35.28	NA	NA

Tidied summary of m_2int coefficients

```
tidy(m_2int, conf.int = TRUE, conf.level = 0.90) %>%
    rename(se = std.error, t = statistic, p = p.value) %>%
    kable(digits = c(0,2,2,2,3,2,2))
```

term	estimate	se	t	р	conf.low	conf.high
(Intercept)	26.50	1.67	15.87	0.000	23.75	29.25
fruit_day	-0.54	0.22	-2.51	0.012	-0.90	-0.19
exerany	-0.14	1.76	-0.08	0.935	-3.04	2.76
healthVG	1.03	1.85	0.56	0.578	-2.02	4.08
healthG	3.98	1.83	2.18	0.030	0.97	6.98
healthF	6.85	1.91	3.59	0.000	3.70	9.99
healthP	4.58	2.38	1.92	0.055	0.66	8.50
exerany:healthVG	0.02	2.00	0.01	0.993	-3.27	3.31
exerany:healthG	-0.23	1.99	-0.12	0.906	-3.51	3.04
exerany:healthF	-5.07	2.17	-2.33	0.020	-8.65	-1.49
exerany:healthP	-0.61	2.92	-0.21	0.835	-5.42	4.21

ANOVA comparison of m_2 and m_2int

```
anova(m 2, m 2int)
Analysis of Variance Table
Model 1: bmi ~ fruit_day + exerany + health
Model 2: bmi ~ fruit_day + exerany * health
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 664 23724
2 660 23288 4 436.03 3.0893 0.01551 *
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual plots for model m_2int?

Which of the four models fits best?

In the training sample, we have. . .

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.082	0.075	6.00	5	665	4316.0	4347.5
m_2	0.090	0.081	5.98	6	664	4312.6	4348.7
m_1int	0.098	0.085	5.96	9	661	4312.6	4362.2
m_2int	0.106	0.093	5.94	10	660	4308.2	4362.3

- The interaction models look better by Adjusted R^2 and σ ; AIC likes m_2int while BIC likes m1. What to do?
- More importantly, the testing sample cannot judge between models accurately. Our models have already seen that data.
- For fairer comparisons, consider the (held out) testing sample. . .

Model predictions of bmi in the testing sample

We'll use augment from the broom package...

```
m1_test_aug <- augment(m_1, newdata = test_w2im)
m1int_test_aug <- augment(m_1int, newdata = test_w2im)
m2_test_aug <- augment(m_2, newdata = test_w2im)
m2int_test_aug <- augment(m_2int, newdata = test_w2im)
This adds fitted values (predictions) and residuals (errors) ...</pre>
```

```
m1_test_aug %>% select(ID, bmi, .fitted, .resid) %>%
    slice(1:2) %>% kable()
```

ID	bmi	.fitted	.resid
11	27.17	25.29124	1.878756
15	27.09	29.06438	-1.974377

Testing Results (using R^2)

We can use the yardstick package and its rsq() function.

```
testing_r2 <- bind_rows(
    rsq(m1_test_aug, truth = bmi, estimate = .fitted),
    rsq(m1int_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2int_test_aug, truth = bmi, estimate = .fitted)) %>%
    mutate(model = c("m_1", "m_1int", "m_2", "m_2int"))
testing_r2 %>% kable(dig = 4)
```

.metric	.estimator	.estimate	model
rsq	standard	0.0828	m_1
rsq	standard	0.0881	m_1int
rsq	standard	0.0782	m_2
rsq	standard	0.0829	m_2int

Mean Absolute Error?

Consider the mean absolute prediction error . . .

```
testing_mae <- bind_rows(
    mae(m1_test_aug, truth = bmi, estimate = .fitted),
    mae(m1int_test_aug, truth = bmi, estimate = .fitted),
    mae(m2_test_aug, truth = bmi, estimate = .fitted),
    mae(m2int_test_aug, truth = bmi, estimate = .fitted)) %>%
    mutate(model = c("m_1", "m_1int", "m_2", "m_2int"))
testing_mae %>% kable(dig = 3)
```

.metric	.estimator	.estimate	model
mae	standard	4.447	m_1
mae	standard	4.458	m_1int
mae	standard	4.411	m_2
mae	standard	4.425	m_2int

Root Mean Squared Error?

How about the square root of the mean squared prediction error, or RMSE?

```
testing_rmse <- bind_rows(
    rmse(m1_test_aug, truth = bmi, estimate = .fitted),
    rmse(m1int_test_aug, truth = bmi, estimate = .fitted),
    rmse(m2_test_aug, truth = bmi, estimate = .fitted),
    rmse(m2int_test_aug, truth = bmi, estimate = .fitted)) %>%
    mutate(model = c("m_1", "m_1int", "m_2", "m_2int"))
testing_rmse %>% kable(digits = 3)
```

.metric	.estimator	.estimate	model
rmse	standard	6.095	m_1
rmse	standard	6.079	m_1int
rmse	standard	6.110	m_2
rmse	standard	6.096	m_2int

Other Summaries for Numerical Predictions

Within the yardstick package, there are several other summaries, including:

- rsq_trad() = defines R^2 using sums of squares.
 - The rsq() measure we showed a few slides ago is a squared correlation coefficient and is guaranteed to fall in (0, 1).
- mape() = mean absolute percentage error
- mpe() = mean percentage error
- huber_loss() = Huber loss (often used in robust regression), which
 is less sensitive to outliers than rmse().
- ccc() = concordance correlation coefficient, which attempts to measure both consistency/correlation (like rsq()) and accuracy (like rmse()).

See the yardstick home page for more details.

Incorporating a non-linear term for fruit_day

Suppose we wanted to include a polynomial term for fruit_day:

```
lm(bmi ~ fruit_day, data = train_w2im)
lm(bmi ~ poly(fruit_day, 2), data = train_w2im)
lm(bmi ~ poly(fruit_day, 3), data = train_w2im)
```


Raw Polynomials vs. Orthogonal Polynomials

Predict bmi using fruit_day with a polynomial of degree 2.

Call:

```
lm(formula = bmi ~ fruit_day + I(fruit_day^2), data = train_w2
```

Coefficients:

```
(Intercept) fruit_day I(fruit_day^2)
29.2991 -1.3079 0.1284
```

This uses raw polynomials. Predicted bmi for fruit_day = 2 is

```
bmi = 29.2991 - 1.3079 (fruit_day) + 0.1284 (fruit_day^2)
= 29.2991 - 1.3079 (2) + 0.1284 (4)
= 27.1969
```

Does the raw polynomial match our expectations?

fruit_day .fitted 2 27.1969

and this matches our "by hand" calculation. But it turns out most regression models use orthogonal rather than raw polynomials...

Fitting an Orthogonal Polynomial

Predict bmi using fruit_day with an **orthogonal** polynomial of degree 2.

```
(temp2 <- lm(bmi ~ poly(fruit_day,2), data = train_w2im))</pre>
```

Call:

```
lm(formula = bmi ~ poly(fruit_day, 2), data = train_w2im)
```

Coefficients:

```
(Intercept) poly(fruit_day, 2)1
27.84 -20.33
poly(fruit_day, 2)2
7.21
```

This looks very different from our previous version of the model.

• What happens when we make a prediction, though?

Prediction in the Orthogonal Polynomial Model

Remember that in our raw polynomial model, our "by hand" and "using R" calculations both concluded that the predicted bmi for a subject with $fruit_{day} = 2$ was 27.1969.

• Now, what happens with the orthogonal polynomial model temp2 we just fit?

```
augment(temp2, newdata = data.frame(fruit_day = 2)) %>%
kable(digits = 4)
```

fruit_day	.fitted		
2	27.1969		

• No change in the prediction.

Why do we use orthogonal polynomials?

- The main reason is to avoid having to include powers of our predictor that are highly collinear. (x, x^2 and x^3 , for instance, are often highly correlated.)
- Instead, the orthogonal polynomial terms are uncorrelated with one another, so it's relatively easy to identify which of the polynomial terms are actually valuable in our model.

The tradeoff is that the raw polynomial is a lot easier to explain in terms of a single equation in the simplest case.

Actually, we'll usually avoid polynomials in our practical work, and instead use splines, which are more flexible and require less maintenance, but at the cost of pretty much requiring you to focus on visualizing their predictions rather than their equations.

Adding a Second Order Polynomial to our Models

• Comparison to other models without the interaction...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1	0.0823	0.0754	6.00	5	665	4316.0	4347.5
m_2	0.0896	0.0813	5.98	6	664	4312.6	4348.7
m_3	0.0903	0.0807	5.98	7	663	4314.1	4354.7

ANOVA for the m_3 model

```
tidy(anova(m_3)) %>%
kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
poly(fruit_day, 2)	2	465.32	232.66	6.51	0.002
exerany	1	376.32	376.32	10.53	0.001
health	4	1511.16	377.79	10.57	0.000
Residuals	663	23705.07	35.75	NA	NA

Tidied summary of m_3 coefficients

term	est	se	t	р	conf.low	conf.high
(Intercept)	26.58	0.75	35.35	0.000	25.35	27.82
poly(fruit_day, 2)1	-14.08	6.09	-2.31	0.021	-24.12	-4.05
poly(fruit_day, 2)2	4.41	6.06	0.73	0.467	-5.58	14.40
exerany	-1.12	0.56	-2.01	0.045	-2.04	-0.20
healthVG	0.96	0.69	1.39	0.165	-0.18	2.11
healthG	3.64	0.72	5.07	0.000	2.46	4.83
healthF	3.66	0.88	4.18	0.000	2.22	5.11
healthP	3.92	1.32	2.97	0.003	1.75	6.10

m_3 Residual Plots

Add in the interaction

• Comparison to other models with the interaction...

mod	r.sq	adj.r.sq	sigma	df	df.res	AIC	BIC
m_1int	0.0977	0.0854	5.96	9	661	4312.6	4362.2
m_2int	0.1063	0.0928	5.94	10	660	4308.2	4362.3
m_3int	0.1074	0.0925	5.94	11	659	4309.4	4368.0

ANOVA for the m_3int model

```
tidy(anova(m_3int)) %>% kable(dig = c(0, 0, 2, 2, 2, 3))
```

term	df	sumsq	meansq	statistic	p.value
poly(fruit_day, 2)	2	465.32	232.66	6.59	0.001
exerany	1	376.32	376.32	10.66	0.001
health	4	1511.16	377.79	10.70	0.000
exerany:health	4	444.77	111.19	3.15	0.014
Residuals	659	23260.30	35.30	NA	NA

Tidied summary of m_3int coefficients

term	est	se	t	р	conf.low	conf.high
(Intercept)	25.64	1.65	15.53	0.000	22.92	28.36
poly(fruit_day, 2)1	-15.42	6.08	-2.54	0.011	-25.43	-5.41
poly(fruit_day, 2)2	5.34	6.03	0.89	0.376	-4.59	15.28
exerany	-0.03	1.76	-0.02	0.987	-2.94	2.88
healthVG	1.04	1.85	0.56	0.574	-2.01	4.10
healthG	3.99	1.83	2.19	0.029	0.99	7.00
healthF	6.93	1.91	3.62	0.000	3.78	10.07
healthP	4.60	2.38	1.93	0.054	0.68	8.52
exerany:healthVG	-0.01	2.00	0.00	0.997	-3.30	3.28
exerany:healthG	-0.27	1.99	-0.14	0.891	-3.55	3.00
exerany:healthF	-5.15	2.17	-2.37	0.018	-8.73	-1.57
exerany:healthP	-0.61	2.92	-0.21	0.835	-5.42	4.21

m_3int Residual Plots

How do models m_3 and m_3int do in testing?

```
m3_test_aug <- augment(m_3, newdata = test_w2im)</pre>
m3int_test_aug <- augment(m_3int, newdata = test_w2im)</pre>
testing_r2 <- bind_rows(</pre>
    rsq(m1_test_aug, truth = bmi, estimate = .fitted),
    rsq(m1int_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2_test_aug, truth = bmi, estimate = .fitted),
    rsq(m2int test aug, truth = bmi, estimate = .fitted),
    rsq(m3 test aug, truth = bmi, estimate = .fitted),
    rsq(m3int test aug, truth = bmi, estimate = .fitted)) %>%
    mutate(model = c("m 1", "m 1int", "m 2", "m 2int",
                      "m 3". "m 3int"))
```

• I've hidden my calculations for RMSE and MAE here.

Results comparing all six models (testing)

model	rsquare	rmse	mae
m_1	0.0828	6.095	4.447
m_1int	0.0881	6.079	4.458
m_2	0.0782	6.110	4.411
m_2int	0.0829	6.096	4.425
m_3	0.0764	6.116	4.430
m_3int	0.0806	6.105	4.444

• Did the polynomial term in m_3 and m_3int improve our predictions?

Next Time

- Feedback from the Minute Paper after Class 03, due tomorrow at Noon, please.
- Incorporating splines into linear regression models
- Using the ols modeling structure (from the rms package) to fit and assess linear regression models
- \bullet The Spearman ρ^2 plot, and some thoughts on how to spend data / degrees of freedom on nonlinearity