This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

庁 日

20.01.00

PATENT OFFICE JAPANESE GOVERNMENT

REC'D 10 MAR 2000

別紙添付の書類に記載されている事項は下記の出願書類に記載されて

いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 1999年 9月 7日*

Application Number:

平成11年特許顯第253624号

Applicant (s):

麒麟麦酒株式会社

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年 2月25日

特許庁長官 Commissioner, Patent Office

特平11-253624

The same of the sa

【書類名】

特許願

【整理番号】

12139101

【提出日】

平成11年 9月 7日

【あて先】

特許庁長官殿

【国際特許分類】

C07D215/00

【発明の名称】

キノリン誘導体およびキナゾリン誘導体

【請求項の数】

25

【発明者】

【住所又は居所】

群馬県高崎市宮原町3番地 麒麟麦酒株式会社 医薬探

索研究所内

【氏名】

久 保 和 生

【発明者】

【住所又は居所】

群馬県高崎市宮原町3番地 麒麟麦酒株式会社 医薬探

索研究所内

【氏名】

藤原康成

【発明者】

【住所又は居所】

群馬県高崎市宮原町3番地 麒麟麦酒株式会社 医薬探

索研究所内

【氏名】

磯江敏幸

【特許出願人】

【識別番号】

000253503

【住所又は居所】

東京都中央区新川2丁目10番1号

【氏名又は名称】

麒麟麦酒株式会社

【代理人】

【識別番号】

100064285

【弁理士】

【氏名又は名称】

佐 藤 一 ぬ

【選任した代理人】

【識別番号】

100067079

【弁理士】

【氏名又は名称】 小 野 寺 捷洋

【選任した代理人】

【識別番号】 100091487

【弁理士】

中 村 行 【氏名又は名称】

【選任した代理人】

【識別番号】 100107342

【弁理士】

修 横田 【氏名又は名称】

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第 14858号

【出願日】

平成11年 1月22日

【先の出願に基づく優先権主張】

【出顧番号】

平成11年特許願第 26691号

【出願日】

平成11年 2月 3日

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第142493号

【出願日】

平成11年 5月21日

【手数料の表示】

【予納台帳番号】

004444

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9815991

要

【プルーフの要否】

【書類名】 明細書

【発明の名称】 キノリン誘導体およびキナゾリン誘導体

【特許請求の範囲】

【請求項1】

式(I)の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物。 【化 1 】

(上記式中、

XおよびZは、それぞれ、CHまたはNを表し、

 R^1 、 R^2 、および R^3 は、同一または異なっていてもよく、水素原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、こトロ基、またはアミノ基を表し、この C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、ハロゲン原子、水酸基、 C_{1-4} アルコキシ基、 C_{1-4} アルコキシカルボニル基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、 C_{1-4} アルキル基(この C_{1-4} アルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)により置換されていてもよい)、基 R^{12} R 13 N-C(=O)-O-(R^{12} および R^{13} は、同一または異なっていてもよく、水素原子または C_{1-4} アルキル基(このアルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)を表す)、または基 R^{14} -(S)m-(R^{14} は、 C_{1-4} アルキル基により置換されていてもよい飽和または不飽和の3 \sim 7員炭素環式基または複素環式基を表し、mは0または1を表す)により置換されていてもよく、

R⁴は、水素原子を表し、

 R^5 、 R^6 、 R^7 および R^8 は、同一または異なっていてもよく、水素原子、ハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、 C_{1-4} アルチオ基、ニトロ基、またはアミノ基を表し、但し、 R^5 、 R^6 、 R^7 および R^8 総てが水素原子を表すことはなく、

 R^9 および R^{10} は、同一または異なっていてもよく、水素原子、 C_{1-6} アルキル基、または C_{1-4} アルキルカルボニル基を表し、 C_{1-6} アルキル基または C_{1-4} アルキルカルボニル基のアルキル部分は、ハロゲン原子、 C_{1-4} アルコキシ基、アミノ基(アミノ基は C_{1-4} アルコキシ基により置換されていてもよい C_{1-4} アルキル基により置換されていてもよい)、または飽和または不飽和の3~7員炭素環式基または複素環式基により置換されていてもよく、

 R^{11} は、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-6} アルコキシ基により置換されていてもよい)、または R^{15} -(CH_2)n-(nは0~4の整数を表し、 R^{15} は飽和または不飽和の3~7員炭素環式基または複素環式基を表わし、この炭素環式基および複素環式基はハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の3~7員炭素環または複素環と縮合した二環性であってもよい)を表す)

【請求項2】

 R^1 、 R^9 および R^{10} が水素原子を表す、請求項1に記載の化合物。

【請求項3】

 R^1 が水素原子を表し、 R^9 および R^{10} のいずれかまたは両方が水素原子以外の基を表す、請求項1に記載の化合物。

【請求項4】

XがNまたはCHを表し、ZがCHを表す、請求項1に記載の化合物。

【請求項5】

式 (Ia) の化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物。

【化2】

(上記式中、

Xは、CHまたはNを表し、

 R^{21} および R^{22} は、同一または異なっていてもよく、非置換 C_{1-6} アルコキシ基または基 R^{31} - (CH_2) p - O - $(R^{31}$ は、ハロゲン原子、水酸基、 C_{1-4} アルコキシ基、 C_{1-4} アルコキシカルボニル基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、 C_{1-4} アルキル基(この C_{1-4} アルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)により置換されていてもよい)、基 $R^{12}R^{13}N-C$ (=O)-O - $(R^{12}$ および R^{13} は、同一または異なっていてもよく、水素原子または C_{1-4} アルキル基(このアルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)を表す)、または基 R^{14} - (S) m - $(R^{14}$ は、 C_{1-4} アルキル基により置換されていてもよい飽和または不飽和の3~7 員炭素環式基または複素環式基を表し、mは0または1を表す)を表し、pは1~6の整数を表す)を表し、

 R^{23} 、 R^{24} 、 R^{25} および R^{26} は、同一または異なっていてもよく、水素原子、ハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、 C_{1-4} アルキルチオ基、ニトロ基、またはアミノ基を表し、但し、 R^{23} 、 R^{24} 、 R^{25} および R^{26} 総てが水素原子を表すことはなく、

 ${
m R}^{27}$ および ${
m R}^{28}$ は、同一または異なっていてもよく、水素原子、 ${
m C}_{1-6}$ アルキル基、または ${
m C}_{1-4}$ アルキルカルボニル基を表し、 ${
m C}_{1-6}$ アルキル基または ${
m C}_{1-4}$ アルキルカルボニル基のアルキル部分は、ハロゲン原子、 ${
m C}_{1-4}$ アルコキシ基、アミノ基(アミノ基は ${
m C}_{1-4}$ アルコキシ基により置換されていてもよい ${
m C}_{1-4}$ アル

キル基により置換されていてもよい)、または飽和または不飽和の3~7員炭素 環式基または複素環式基により置換されていてもよく、

 R^{29} は、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または R^{32} -(C_{1-4} アルコキシ基を表し、 R^{32} は飽和または不飽和の6員炭素環式基または複素環式基を表し、この炭素環式基および複素環式基はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の5または6員炭素環または複素環と縮合した二環性であってもよい)を表す)

【請求項6】

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表す、請求項5に記載の化合物

【請求項7】

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (C_{12}) P_{10} - で表す、請求項 1 に記載の化合物。

【請求項8】

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つがハロゲン原子を表す、請求項5に記載の化合物。

【請求項9】

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つが塩素原子またはフッ素原子を表す、請求項5に記載の化合物。

【請求項10】

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つが C_{1-4} アルキル基を表す、請求項5に記載の化合物。

【請求項11】

 R^{23} 、 R^{24} 、 R^{25} および R^{26} のうち2つがメチル基を表し、残りの2つが水素原子を表す、請求項5に記載の化合物。

【請求項12】

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つがニトロ基、アミノ基、 C_{1-4} アルコキシ基、または C_{1-4} アルキルチオ基を表す、請求項5に記載の化合物。

【請求項13】

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、 R^{24} がハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、ニトロ基、またはアミノ基を表す、請求項 5 に記載の化合物。

【請求項14】

 R^{27} および R^{28} の両方が水素原子を表す、請求項5に記載の化合物。

【請求項15】

 R^{27} および R^{28} のいずれかまたは両方が水素原子以外の基を表す、請求項5に記載の化合物。

【請求項16】

XがCHまたはNを表し、

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} が水素原子を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ n $-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

【請求項17】

XがCHまたはNを表し、

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表し、

 R^{23} R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基

を表し、

 R^{27} および R^{28} のいずれかまたは両方が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

【請求項18】

XがCHまたはNを表し、

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

R²⁷が水素原子を表し、

R²⁸が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

【請求項19】

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (CH₂) p-O-を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 R^{24} がハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} が水素原子を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

【請求項20】

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (CH₂) p-O-を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 R^{24} がハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、またはニトロ基を表し

 R^{27} および R^{28} のいずれかまたは両方が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

【請求項21】

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (CH₂) p-O-を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

R²⁷が水素原子を表し、

R²⁸が水素原子以外の基を表し、

【請求項22】

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (C_{1} + C_{2}) P_{1} - C_{2} - を表し、

 R^{23} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} および \mathbb{R}^{25} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

R²⁷およびR²⁸が水素原子を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す、請求項5に記載の化合物。

【請求項23】

下記からなる群から選択される化合物またはそれらの薬学的に許容できる塩もしくは溶媒和物:

- 18. N- $\{2-クロロ-4-[(6,7-ジメトキシー4-キノリル) オキシ$
-] フェニル} -N'-(2-メトキシフェニル)ウレア、
- 28. N-(5-クロロ-2-ピリジル)-N'-{4-[(6,7-ジメトキ

- シー4ーキノリル)オキシ]ー2,3-ジメチルフェニル}ウレア、
- $37. N-(2, 4-ジフルオロフェニル)-N'-\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2, 5-ジメチルフェニル} ウレア、$
- 62. $N-\{2-\rho \Box \Box -4-[(6,7-i)] x + i)$ フェニル $\{-N,-i\}$ フェニル $\{-N,-i\}$ フェニル $\{-N,-i\}$ フェニル $\{-N,-i\}$ カープロピルウレア、
- $116. N' \{2-クロロ-4-[(6,7-ジメトキシー4-キナゾリニル) オキシ] フェニル <math>\}$ N -
- 143. N-(2-200-4-[6-3] N-(4-2000) N-4-4 N-4 N-4 N'-2 N'-3 N-4 N'-3 N'-4 N'-4
- 145. N-[2-クロロー4-(6-メトキシー7-[2-(1H-1, 2, 3 -トリアゾール-1-イル) エトキシ] -4-キノリルオキシ)フェニル] -N'-プロピルウレア、
- 148. N- [2-クロロー4-(6-メトキシー7-[2-(4-メチルピペラジノ) エトキシ] -4-キノリルオキシ) フェニル] -N ' -プロピルウレア 153. N-[2-クロロー4-(6-メトキシー7-[3-(1H-1, 2, 3-トリアゾールー1-イル) プロポキシ] -4-キノリルオキシ) フェニル] -N ' -プロピルウレア、
- 163. N-(2-クロロ-4-[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、

【請求項24】

4) ~ 1

請求項1~23のいずれか一項に記載の化合物またはそれらの薬学的に許容で きる塩もしくは溶媒和物を有効成分として含む、医薬組成物。

【請求項25】

腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、 およびカポジ肉腫からなる群から選択される疾患の治療に使用される、請求項2 4に記載の医薬組成物。

【発明の詳細な説明】

[0001]

【発明の背景】

発明の分野

本発明は、抗腫瘍効果を有するキノリン誘導体およびキナゾリン誘導体に関し、更に詳細には、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫等の疾患の治療に有効なキノリン誘導体およびキナゾリン誘導体に関する。

[0002]

背景技術

WO97/17329号公報には、抗腫瘍効果を有するキノリン誘導体およびキナゾリン誘導体が記載されている。しかし、WO97/17329号公報には、本発明による化合物はもちろんのこと、細胞形態変化への影響は開示されていない。

[0003]

【発明の概要】

本発明者らは、キノリン誘導体およびキナゾリン誘導体の一群が、抗腫瘍効果 を有するのみならず、細胞形態への影響が小さいことを見い出した。

[0004]

本発明は、抗腫瘍活性を有しかつ細胞形態への影響が小さい化合物の提供をその目的とする。細胞形態の巨大化作用は組織障害誘発作用とも捉えられる。

[0005]

本発明による化合物は、下記式(I)の化合物、またはそれらの薬学上許容される塩もしくは溶媒和物である。

【化3】

(上記式中、

XおよびZは、それぞれ、CHまたはNを表し、

 R^1 、 R^2 、および R^3 は、同一または異なっていてもよく、水素原子、 C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、こトロ基、またはアミノ基を表し、この C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、ハロゲン原子、水酸基、 C_{1-4} アルコキシ基、 C_{1-4} アルコキシカルボニル基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、 C_{1-4} アルキル基(この C_{1-4} アルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)により置換されていてもよい)、基 $R^{12}R^{13}N-C$ (=O)-O-(R^{12} および R^{13} は、同一または異なっていてもよく、水素原子または C_{1-4} アルキル基(このアルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)を表す)、または基 R^{14} -(S)m-(R^{14} は、 C_{1-4} アルキル基により置換されていてもよい飽和また

は不飽和の3~7員炭素環式基または複素環式基を表し、mは0または1を表す) により置換されていてもよく、

R⁴は、水素原子を表し、

 R^5 、 R^6 、 R^7 および R^8 は、同一または異なっていてもよく、水素原子、ハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、 C_{1-4} アルキルチオ基、ニトロ基、またはアミノ基を表し、但し、 R^5 、 R^6 、 R^7 および R^8 総てが水素原子を表すことはなく、

 R^9 および R^{10} は、同一または異なっていてもよく、水素原子、 C_{1-6} アルキル基、または C_{1-4} アルキルカルボニル基を表し、 C_{1-6} アルキル基または C_{1-4} アルキルカルボニル基のアルキル部分は、ハロゲン原子、 C_{1-4} アルコキシ基、アミノ基(アミノ基は C_{1-4} アルコキシ基により置換されていてもよい C_{1-4} アルキル基により置換されていてもよい)、または飽和または不飽和の $3\sim7$ 員炭素環式基または複素環式基により置換されていてもよく、

 R^{11} は、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-6} アルコキシ基により置換されていてもよい)、または R^{15} -(CH_2)n-(nは0~4の整数を表し、 R^{15} は飽和または不飽和の3~7員炭素環式基または複素環式基を表わし、この炭素環式基および複素環式基はハロゲン原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基により置換されていてもよく、また、他の飽和または不飽和の3~7員炭素環または複素環と縮合した二環性であってもよい)を表す)

[0006]

本発明による化合物は、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、ア テローム性動脈硬化症、カポジ肉腫、固形癌等の治療に有用である。

[0007]

【発明の具体的説明】

化合物

本明細書において、基または基の一部としての「 C_{1-6} アルキル」および「 C_{1-6} アルコキシ」という語は、基が直鎖または分枝鎖の炭素数 $1\sim 6$ 、好ましくは

 $1 \sim 4$ 、のアルキル基およびアルコキシ基を意味する。

[0008]

本明細書において、基または基の一部としての「 C_{2-6} アルケニル」および「 C_{2-6} アルキニル」という語は、基が直鎖または分枝鎖の炭素数 $2\sim 6$ 、好ましくは $2\sim 4$ 、のアルケニル基およびアルキニル基を意味する。

[0009]

 C_{1-6} アルキルの例としては、メチル、エチル、n - プロピル、イソプロピル、n - ブチル、i - ブチル、s - ブチル、t - ブチル、n - ペンチル、n - ヘキシルが挙げられる。

[0010]

 C_{1-6} アルコキシの例としては、メトキシ、エトキシ、n - プロポキシ、i - プロポキシ、n - ブトキシ、i - ブトキシ、s - ブトキシ、t - ブトキシが挙げられる。

[0011]

 C_{2-6} アルケニルの例としては、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が挙げられる。

[0012]

 C_{2-6} アルキニルの例としては、2-プロピニル基、ブチニル基、ペンチニル基、 ヘキシニル基が挙げられる。

[0013]

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子を意味する。

[0014]

飽和または不飽和の $3\sim7$ 員炭素環または複素環は、好ましくは、 $5\sim7$ 員、 更に好ましくは、5または6員、の飽和または不飽和の炭素環または複素環であることができる。

[0015]

飽和または不飽和の3~7員炭素環式基の例としては、フェニル基、シクロヘ プチル基、シクロヘキシル基、シクロペンチル基が挙げられる。 [0016]

4) ~ 1

飽和または不飽和の3~7員複素環は、酸素原子、窒素原子、および硫黄原子から選択される異種原子を一個以上含む。ここで、異種原子とは、酸素原子、窒素原子、および硫黄原子を意味する。飽和または不飽和の3~7員複素環式基の例としては、ピリジル基、ピペリジノ基、ピペラジノ基、モルホリノ基、イミダゾリル基、トリアゾリル基、テトラゾリル基、オキサゾリル基、チアゾリル基、ピロリジニル基、ピラゾリル基が挙げられる。

[0017]

R¹⁵およびR³²が表すことがある飽和または不飽和の複素環式基は他の飽和または不飽和の複素環と縮合して二環を形成していてもよく、この様な縮合環式基としては、ナフチル基、インダニル基、キノリル基、キナソリニル基が挙げられる。

[0018]

 R^1 は、好ましくは、水素原子を表す。

[0019]

 R^2 および R^3 は、好ましくは、置換されていてもよい C_{1-6} アルコキシ基を表す。

[0020]

 R^1 、 R^2 および R^3 が表すことができる C_{1-6} アルキル基、 C_{1-6} アルコキシ基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、基 R^{14} - (S) m-により置換されていてもよい。

R¹⁴が表すことができる炭素環式基および複素環式基は、好ましくは、飽和または不飽和の5または6員炭素環式基または複素環式基を表す。炭素環式基は、より好ましくは、フェニル基を表す。複素環式基は、より好ましくは、1~4個の窒素原子を含む飽和または不飽和の5員複素環式基、あるいは窒素原子および酸素原子から選択される1~2個の異種原子を含む飽和または不飽和の6員複素環式基を表す。

mが0のとき-(S)m-は結合を表す。

[0021]

 R^1 、 R^2 および R^3 が表すことができる置換された C_{1-6} アルコキシ基は、好ましくは、基 R^{31} - (CH_2) p-O- (R^{31} は、ハロゲン原子、水酸基、 C_{1-4} アルコキシ基、 C_{1-4} アルコキシカルボニル基、アミノ基(このアミノ基の1または2の水素原子は、それぞれ、 C_{1-4} アルキル基(この C_{1-4} アルキル基は水酸基または C_{1-4} アルコキシ基により置換されていてもよい)により置換されていてもよい)、基 $R^{12}R^{13}N$ -C (=O) -O- (R^{12} および R^{13} は式(I)で定義された内容と同義である)、または基 R^{14} - (S) m- (R^{14} は式(I) で定義された内容と同義である)を表し、Pは I- (I- (I- (I-) を表す。

[0022]

式(I)の化合物の好ましい群としては、

 R^1 が水素原子を表し、 R^2 および R^3 が非置換 C_{1-4} アルコキシ基(好ましくは メトキシ基)を表す化合物、

 R^1 が水素原子を表し、 R^2 が置換された C_{1-4} アルコキシ基(好ましくは基 R^3 1 - (CH_2) p-O-) を表し、 R^3 が非置換 C_{1-4} アルコキシ基(好ましくはメトキシ基)を表す化合物、

 R^1 が水素原子を表し、 R^2 が非置換 C_{1-4} アルコキシ基(好ましくはメトキシ基)を表し、 R^3 が置換された C_{1-4} アルコキシ基(好ましくは基 R^{31} - (CH_2) P-O-)を表す化合物、

が挙げられる。

[0023]

式(I)の化合物の好ましい群としては、

 R^5 、 R^6 、 R^7 および R^8 の少なくとも1つがハロゲン原子(好ましくは、塩素原子またはフッ素原子)を表す化合物、

 R^5 、 R^6 、 R^7 および R^8 の少なくとも1つが C_{1-4} アルキル基を表す化合物、 R^5 、 R^6 、 R^7 および R^8 のうち2つがメチル基を表し、残りの2つが水素原子を表す化合物、

 R^5 、 R^6 、 R^7 および R^8 の少なくとも1つがニトロ基、アミノ基、 C_{1-4} アルコキシ基、または C_{1-4} アルキルチオ基を表す化合物、

 R^5 、 R^7 および R^8 が水素原子を表し、 R^6 がハロゲン原子(更に好ましくは塩素原子またはフッ素原子)を表す化合物、

 R^5 および R^6 が C_{1-4} アルキル基(更に好ましくはメチル基)を表し、 R^7 および R^8 が水素原子を表す化合物、

 R^5 および R^8 が水素原子を表し、 R^6 および R^7 が C_{1-4} アルキル基(更に好ましくはメチル基)を表す化合物、

 R^5 、 R^7 および R^8 が水素原子を表し、 R^6 が C_{1-4} アルキル基、 C_{1-4} アルコキシ基、 C_{1-4} アルキルチオ基、ニトロ基、またはアミノ基を表す化合物、が挙げられる。

[0024]

 R^9 および R^{10} において、置換基としての飽和または不飽和の $3\sim7$ 員炭素環式基または複素環式基は、好ましくは、飽和または不飽和の5または6 員炭素環式基または複素環式基を表す。

[0025]

 R^9 および R^{10} は、好ましくは、水素原子、メチル基、エチル基、プロピル基、メトキシメチル基、ホルミル基、アセチル基、ベンジル基、またはフェネチル基を表す。

[0026]

式(I)の化合物の好ましい群としては、

 R^{1} 、 R^{9} および R^{10} が水素原子を表す化合物、および

 R^1 が水素原子を表し、 R^9 および R^{10} のいずれかまたは両方が水素原子以外の基を表す化合物

が挙げられる。

[0027]

 R^{11} が表すことができる基 R^{15} - (CH_2) n-において、nは好ましくは0 ~ 2 の整数、更に好ましくは、0 または1 を表す。 R^{15} の好ましい例としては、置換されていてもよい飽和または不飽和の6 員炭素環式基(更に好ましくは、フェニル基)および置換されていてもよい飽和または不飽和の窒素原子および/または酸素原子を含む6 員複素環式基(更に好ましくは、ピリジル基)が挙げられ

る。

[0028]

式(I)の化合物の好ましい群としては、XがNまたはCHを表し、ZがCHを表す化合物が挙げられる。

[0029]

式(I)の化合物の好ましい群としては、更に、式(I a)の化合物が挙げられる。

【化4】

(上記式中、

Xは、CHまたはNを表し、

 R^{21} および R^{22} は、同一または異なっていてもよく、非置換 C_{1-6} アルコキシ基または基 R^{31} - (C_{1}) P_{1} -O- (R_{2}) かいっと 同義である)を表し、

 R^{23} 、 R^{24} 、 R^{25} および R^{26} は、同一または異なっていてもよく、水素原子、ハロゲン原子、 C_{1-4} アルキル基、 C_{1-4} アルコキシ基、 C_{1-4} アルキルチオ基、ニトロ基、またはアミノ基を表し、但し、 R^{23} 、 R^{24} 、 R^{25} および R^{26} 総てが水素原子を表すことはなく、

 R^{27} および R^{28} は、同一または異なっていてもよく、水素原子、 C_{1-6} アルキル基、または C_{1-4} アルキルカルボニル基を表し、 C_{1-6} アルキル基または C_{1-4} アルキルカルボニル基のアルキル部分は、ハロゲン原子、 C_{1-4} アルコキシ基、アミノ基(アミノ基は C_{1-4} アルコキシ基により置換されていてもよい C_{1-4} アルキル基により置換されていてもよい)、または飽和または不飽和の $3\sim7$ 員炭素

環式基または複素環式基により置換されていてもよく、

 R^{29} は、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または R^{32} -(C_{1-4} アルコキシ基と、 R^{32} は飽和または不飽和の E_{1-4} でルキル基または E_{1-4} でルコキシ基により置換されていてもよく、また、他の飽和または不飽和の E_{1-4} でルコキシ基により置換されていてもよく、また、他の飽和または不飽和の E_{1-4} であってもよい)を表す)

[0030]

 R^{21} および R^{22} は、いずれも非置換 C_{1-6} アルコキシ基(好ましくはメトキシ基)を表すことができる。

 R^{21} および R^{22} は、いずれか一方が非置換 C_{1-6} アルコキシ基(好ましくはメトキシ基)を表し、他方が基 R^{31} -(CH_2)p-O-を表すことができる。

[0031]

式 (I a) の化合物の好ましい群としては、

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つがハロゲン原子(好ましくは、 塩素原子またはフッ素原子)を表す化合物、

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つが C_{1-4} アルキル基を表す化合物、

 R^{23} 、 R^{24} 、 R^{25} および R^{26} のうち2つがメチル基を表し、残りの2つが水素原子を表す化合物、

 R^{23} 、 R^{24} 、 R^{25} および R^{26} の少なくとも1つがニトロ基、アミノ基、 C_{1-4} アルコキシ基、または C_{1-4} アルキルチオ基を表す化合物、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、 R^{24} がハロゲン原子(更に好ましくは塩素原子またはフッ素原子)を表す化合物、

 R^{23} および R^{24} が C_{1-4} アルキル基(更に好ましくはメチル基)を表し、 R^{25} および R^{26} が水素原子を表す化合物、

 R^{23} および R^{26} が水素原子を表し、 R^{24} および R^{25} が C_{1-4} アルキル基(更に

好ましくはメチル基)を表す化合物、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、 R^{24} が C_{1-4} アルキル基、 C_{1-4} アルキルチオ基、ニトロ基、またはアミノ基を表す化合物、が挙げられる。

[0032]

式(I a)の化合物の好ましい群としては、 R^{27} および R^{28} が水素原子を表す化合物が挙げられる。

[0033]

式(Ia)の化合物の好ましい群としては、また、 R^{27} および R^{28} のいずれかまたは両方が水素原子以外の基を表す化合物が挙げられる。

[0034]

 R^{29} が表すことができる R^{32} - (CH_2) q-において、qは好ましくは $0\sim 2$ の整数、更に好ましくは、0または1を表す。 R^{32} の好ましい例としては、置換されていてもよいフェニル基および置換されていてもよい飽和または不飽和の窒素原子および/または酸素原子を含む6 員複素環式基(更に好ましくは、ピリジル基)が挙げられる。 R^{30} が表すことがある飽和または不飽和の6 員炭素環式基または複素環式基は、好ましくは、他の飽和または不飽和の6 員炭素環または複素環と縮合した二環性であってもよい。

[0035]

式(Ia)の化合物の好ましい群としては、

XがCHまたはNを表し、

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} が水素原子を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または-(CH_2)

 $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} のいずれかまたは両方が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

 R^{21} および R^{22} が非置換 C_{1-4} アルコキシ基を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

R²⁷が水素原子を表し、

R²⁸が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (CH₂) P^{-0} - を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} が水素原子を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ n $-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (CH₂) p-O-を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} のいずれかまたは両方が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ n $-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (CH₂) p-O-を表し、

 R^{23} 、 R^{25} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

R²⁷が水素原子を表し、

R²⁸が水素原子以外の基を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ n $-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物、

XがCHまたはNを表し、

 R^{21} および R^{22} のいずれか一方が非置換 C_{1-4} アルコキシ基を表し、他方が基 R^{31} - (C_{1-4}) P_{1-4} P_{1-4

 R^{23} および R^{26} が水素原子を表し、

 \mathbb{R}^{24} および \mathbb{R}^{25} がハロゲン原子、 \mathbb{C}_{1-4} アルキル基、 \mathbb{C}_{1-4} アルコキシ基、またはニトロ基を表し、

 R^{27} および R^{28} が水素原子を表し、

 R^{29} が、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基(C_{1-6} アルキル基、 C_{2-6} アルケニル基および C_{2-6} アルキニル基は、それぞれ、ハロゲン原子または C_{1-4} アルコキシ基により置換されていてもよい)または $-(CH_2)$ $n-R^{30}$ (nは0または1の整数を表し、 R^{30} はハロゲン原子、 C_{1-4} アルキル基または C_{1-4} アルコキシ基により置換されていてもよいフェニル基、ピリジル基、またはナフチル基を表す)を表す化合物が挙げられる。

[0036]

本発明による化合物の特に好ましい例としては、下記の化合物が挙げられる。 番号は実施例番号を示す。

1. N-(2, 4-ジフルオロベンジル) -N' - $\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ] -2-フルオロフェニル} ウレア、$

- 2. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル\} N' (2 フルオロエチル) ウレア、$
- 3. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル<math>\}$ N' (2 ピリジルメチル) ウレア、
- 4. $N-P リル-N'-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ] -2-フルオロフェニル <math>\}$ ウレア、
- 5. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル\} N' プロピルウレア、$
- 6. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル\} N' (4 フルオロブチル) ウレア、$
- 7. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル\} N' (2 プロピニル) ウレア、$
- 8. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル\} N' エチルウレア、$
- 9. $N プチル N' \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2 フルオロフェニル<math>\}$ ウレア、
- 10. N-(sec-ブチル)-N'-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フルオロフェニル}ウレア、
- 11. $N-\{4-[(6,7-i) + i) 4-i + i)$ オロフェニルN-N'-i イソブチルウレア、
- 12. N- $\{4-[(6,7-i)]$ トキシー4ーキノリル)オキシ] -2-フルオロフェニル $\}$ -N'- $\{1,2-i\}$ チルプロピル)ウレア、
- 14. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
-] フェニル $\}$ N' (4-フルオロ-2-メチルフェニル) ウレア、
- 15. $N-(5-プロモー6-メチルー2-ピリジル)-N'-{2-クロロー4-[(6,7-ジメトキシー4ーキノリル)オキシ]フェニル}ウレア、$
- 16. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ

-] フェニル $}$ N' (5-クロロー2-ピリジル) ウレア、
- 17. $N-(5-プロモー2-ピリジル)-N'-\{2-クロロー4-[(6,$
- **7ージメトキシー4ーキノリル)オキシ]フェニル}ウレア、**
- 18. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
- 19. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
- 20. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
- $1 フェニル} N' (5-メチルー2-ピリジル) ウレア、$
- 21. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
- 1 フェニル $\}$ N' (6-メチルー2-ピリジル) ウレア、
- 22. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
- $1 フェニル} N' (4 メトキシフェニル) ウレア、$
- 23. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル) オキシ
-] フェニル} -N'-(1-ナフチル)ウレア、
- 24. N-(2,4-ジフルオロフェニル)-N'-{4-[(6,7-ジメト +シ-4-キノリル) オキシ]-2,3-ジメチルフェニル}ウレア、
- 25. $N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル\}-N'-(4-フルオロ-2-メチルフェニル) ウレア、$
- 26. N- {4-[(6, 7-ジメトキシ-4-キノリル) オキシ] -2, 3-
- 7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルフェニル}ウレア
- 28. N-(5-クロロー2-ピリジル)-N'-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル}ウレア、
- 29. N- (5-プロモ-2-ピリジル) -N' $\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]$ -2, $3-ジメチルフェニル\}$ ウレア、
- 30. N- $\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-$

- ジメチルフェニル} N' (2-メトキシフェニル) ウレア、
- $31. N- \{4-[(6,7-ジメトキシ-4-キノリル) オキシ] -2,3-ジメチルフェニル\} -N'-(2-メチルフェニル) ウレア、$
- 32. N-(4-000-2-3) N-(4-00
- 33. $N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2, 3 ジメチルフェニル\} <math>N' (2 \mathcal{C} \cup \mathcal$
- $34. N- \{4-[(6,7-ジメトキシ-4-キノリル) オキシ] -2,3-ジメチルフェニル\} -N'-(5-メチル-2-ピリジル) ウレア、$
- $36. N \{4 [(6, 7 ジメトキシ-4 キノリル) オキシ] 2, 3 ジメチルフェニル\} N' (4 メトキシフェニル) ウレア、$
- $37. N-(2, 4-ジフルオロフェニル)-N'-{4-[(6, 7-ジメトキシ-4-キノリル)オキシ]-2, 5-ジメチルフェニル}ウレア、$
- $39. N-(4-000-2-34) -N'-{4-[(6,7-3) 39. N-(4-000-$
- $40. N- \{4-[(6,7-i)] 2,5-i)$ ジメチルフェニル $\} N'-(4-i)$ フルオロー2ーメチルフェニル $\} N'$ ウレア、
- $41. N- \{4-[(6,7-i)] + 10-4-i) + 10-4-i + 10-4$
- 42. $N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルフェニル\}-N'-(2-メチルフェニル) ウレア、$
- $43. N- \{4-[(6,7-ジメトキシ-4-キノリル) オキシ] -2,5-ジメチルフェニル\} -N'-(2-メトキシフェニル) ウレア、$
- $44. N-(5-プロモー6-メチルー2-ピリジル)-N'-{4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルフェニル}ウレア$

45. N-(2,6-i) N-(2,6-i) N-(4-i) N'-(4-i) N'-

(#)

- $46. N- \{4-[(6,7-ジメトキシ-4-キノリル) オキシ] -2,5- ジメチルフェニル\} -N'-(4-メトキシフェニル) ウレア、$
- $47. N \{4 [(6, 7 ジメトキシ 4 キノリル) オキシ] 2 ニトロフェニル <math>\} N' プロピルウレア$ 、
- $48. N-(2, 4-ジフルオロフェニル)-N'-\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2-ニトロフェニル}ウレア、$
- $49. N-\{3, 5-ジクロロ-4-[(6, 7-ジメトキシ-4-キノリル)$ オキシ] フェニル $\}$ -N'-(2, 4-ジフルオロフェニル) ウレア、
- 50. N-(2, 4-ジフルオロフェニル)-N'-(2-フルオロー4-{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル]オキシ}フェニル)ウレア、
- 51. $N-(2-\rho \Box \Box -4-\{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル] オキシ<math>\}$ フェニル)-N'-(2,4-ジフルオロフェニル) ウレア、
- 52. $N-(2, 4-ジフルオロフェニル)-N'-(4-{[6-メトキシー7-(2-モルホリノエトキシ)-4-キノリル]オキシ}-2, 5-ジメチルフェニル)ウレア、$
- 53. $N-(4-\{[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル] オキシ<math>\}$ 2, 5-ジメチルフェニル)-N'-(2-メトキシフェニル) ウレア、
- 54. $N-(2-7DDD-4-\{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル] オキシ フェニル <math>N'-(2,4-ジフルオロフェニル)$ ウレア、
- 55. N- (2-7ロロー4- $\{[6-メトキシ-7-(2-メトキシエトキシ)$ -4-キノリル] オキシ $\}$ フェニル)-N'-(2-メトキシフェニル)ウレア、

- 56. N- (2, 4-ジフルオロフェニル) -N' (4-{[6-メトキシ-7- (2-メトキシエトキシ) -4-キノリル] オキシ} -2, 3-ジメチルフェニル) ウレア、
- 57. $N-(4-\{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル] オキシ<math>\}$ 2, 3-ジメチルフェニル) N'-(2-メトキシフェニル) ウレア、
- 58. N-(2,4-ジフルオロフェニル)-N'-(4-{[6-メトキシー 7-(2-メトキシエトキシ)-4-キノリル]オキシ}-2,5-ジメチルフェニル)ウレア、
- 59. $N-(4-\{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル] オキシ<math>\}$ -2, 5-ジメチルフェニル)-N'-(2-メトキシフェニル) ウレア、
- 60. $N-(4-\{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]$ オキシ $\}-2$, 3-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア、
- 61. $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ オン $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ フェニルN'-(2,4-i) フェニル) ウレア、
- 62. $N \{2 \rho \Box \Box 4 [(6, 7 ジメトキシー4 キナゾリニル) オキシ フェニル <math>\}$ N プロピルウレア、
- 64. $N \{4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ] フェニル <math>\} N' プロピルウレア$ 、
- 65. $N-ブチル-N'-\{4-[(6,7-ジメトキシー4-キナゾリニル) オキシ] フェニル<math>\}$ ウレア、
- 66. $N \{4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ] フェニル <math>\} N' ペンチルウレア$ 、
- 67. $N-(\sec-ブチル)-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}ウレア、$

- 68. $N-Pリル-N' \{4-[(6, 7-ジメトキシー4-キナゾリニル) オキシ] フェニル<math>\}$ ウレア、
- 69. N- {4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]フェニル
- $\} N' (2 \mathcal{I} \cup \mathcal{I} \cup \mathcal{I}) \cup \mathcal{I} \cup \mathcal{I}$
- 70. N-(2, 4-ジフルオロベンジル) -N'- $\{4-[(6, 7-ジメト$ +シ-4-キナゾリニル) オキシ] フェニル $\}$ ウレア、
- 71. N- {4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ] フェニル
- 72. N-(2, 4-ジフルオロフェニル) -N'- $\{4-[(6, 7-ジメト$ キシ-4-キナゾリニル) オキシ]フェニル) ウレア、
- 73. N- {4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]フェニル
- 74. N- {4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]フェニル
- $\} N' (2 \lambda + \mu) + \mu$
- 75. N- {4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ] フェニル
- 76. $N-\{2-000-4-[(6,7-5)]$ アージメトキシー4ーキナゾリニル)オキシ] フェニル $\}$ N エチルウレア、
- 77. $N-ブチル-N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル <math>\}$ ウレア、
- 78. N- $\{2-\rho \Box \Box -4-[(6, 7-i)] + i \}$ (78. N- $\{2-\rho \Box \Box -4-[(6, 7-i)] + i \}$ (79. N- $\{2-\rho \Box \Box$
- 79. N- (sec-ブチル) -N' $\{2- 7 1 4 [(6, 7 3 + 5) 4 4 4 [(6, 7 3 + 5)]$ ウレア、
- 80. N- N-
- 81. $N \{2 \rho \Box \Box 4 [(6, 7 i j j k k + i j 4 k + j j j k k + i k k + i j k k + i k k + i k$
- 82. N- {2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル)オ

特平11-253624

- キシ]フェニル $\}$ N' (2, 4 ジフルオロベンジル) ウレア、
- 83. $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ オシ $| 2-\rho \Box \Box -4-[(6,7-i)] + i$ カンア、
- 85. $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$
- 86. $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i -2 -4 i -4 -i -4 -1 -4$
- 87. $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ オシ $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ カンア、
- 88. $N \{4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ] 2 フルオロフェニル <math>\}$ N' プロピルウレア、
- 89. $N-プチル-N'-\{4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]-2-フルオロフェニル<math>\}$ ウレア、
- 90. $N-(\sec-ブチル)-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル}ウレア、$
- 92. $N \{4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ] 2 フルオロフェニル<math>\}$ N' (2 プロピニル) ウレア、
- 94. $N-(2, 4-ジフルオロフェニル)-N'-\{4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ]-2-フルオロフェニル<math>\}$ ウレア、
- 95. $N \{4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ] 2 フルオロフェニル<math>\} N' (2 メチルフェニル) ウレア、$
- 96. $N-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]-2-フルオロフェニル\} <math>-N'-(2-メトキシフェニル)$ ウレア、
- 97. $N \{4 [(6, 7 ジメトキシ-4 キナゾリニル) オキシ] 3 メチルフェニル<math>\}$ N' プロピルウレア、

e (9)

- 99. N-(2, 4-i) N-(2, 4-i) N'-(4-i) N

- 103. $N-プチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-メチルフェニル<math>\}$ ウレア、
- 104. N-(2, 4-ジフルオロフェニル) -N'- $\{4-[(6, 7-ジメ$ トキシ-4-キナゾリニル) オキシ]-2-メチルフェニル $\}$ ウレア、
- 105. N- $\{4-[(6, 7-i)] + 105$

- 108. $N-プチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-ニトロフェニル<math>\}$ ウレア、
- 110. N-yセチルー $N-\{2-\rho \Box \Box -4-[(6,7-i)]$ メトキシー4-iキナゾリニル) オキシ]フェニル $N'-\mathcal{I}$ ロピルウレア、
- 111. $N' \{2- \rho \Box \Box 4 [(6, 7- ジメトキシー 4 キナゾリニル) オキシ] フェニル} N メチル- N プロピルウレア、$
- 112. N'-{2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル

-)オキシ]フェニル}ーNーエチルーNープロピルウレア、
- 113. N'- {2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル
-) オキシ]フェニル} -N, N-ジプロピルウレア、
- 114. $N-ブチル-N'-\{2-クロロ-4-[(6,7-ジメトキシー4-+ナゾリニル) オキシ]フェニル\} -N-メチルウレア、$
-) オキシ]フェニル} -N-(4-クロロフェニル) -N-メチルウレア、
- 116. N'-{2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル
-) オキシ] フェニル} N, N ジエチルウレア、
- 117. $N \{2 \rho \Box \Box 4 [(6, 7 ジメトキシ-4 キナゾリニル)$ オキシ] フェニル $\} N' メチルウレア$ 、
- 119. N-(2-クロロ-4-[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル] オキシフェニル) -N'-プロピルウレア、
- 120. N-(2-クロロ-4-[6-メトキシ-7-(2-モルホリノエトキシ)-4-キナゾリニル] オキシフェニル) -N'-プロピルウレア、
- 122. $N-(2-\rho \Box \Box -4-[7-(2-ヒドロキシエトキシ)-6-メトキシ-4-キナゾリニル] オキシフェニル) <math>-N'$ -プロピルウレア、
- 123. N- (2-クロロ-4-[6-メトキシ-7-(4-ピリジルメトキシ
-)-4-キナゾリニル]オキシフェニル<math>)-N'-プロピルウレア、
- 124. N-[2-クロロー4-(6-メトキシー<math>7-[(5-モルホリノペンチル) オキシ] -4-キナゾリニルオキシ) フェニル] -N' -プロピルウレア
- 125. N-2-クロロ-4-[(6-メトキシー7-[5-(1H-1, 2, 3-1)] フェートリアゾールー1ーイル) ペンチル] オキシー4ーキナゾリニル) オキシ] フェニルー<math>N ープロピルウレア、

126. N' $-(2-\rho \Box \Box -4-[6-メトキシ-7-(4-ピリジルメトキシ) -4-キナゾリニル] オキシフェニル) <math>-N$, N-ジエチルウレア、

(4)

- 127. $N-(2-\rho \Box \Box -4-[6-メトキシ-7-(4-モルホリノブトキシ) -4-キナゾリニル] オキシフェニル) <math>-N'$ -プロピルウレア、
- 128. N- [2-クロロー4-(6-メトキシー7-[2-(4-メチルピペラジノ)エトキシ] -4-キナゾリニルオキシ) フェニル] -N -プロピルウレア、
- 129. N-2-Dロロー4ー $[(7-2-[(2-E)^2+D)^2+D)^2+D]$ (メチル) $(7-2-[(2-E)^2+D)^2+D]$ (カープロピルウレア、
- 131. N' $-[2-\rho \Box \Box -4-(6-)++>-7-[2-(1H-1, 2, 3-)+y-y-)-1-4-)$ エトキシ] -4-キナゾリニルオキシ) フェニル] -N, N-ジエチルウレア、
- 132. $3-[4-(3-\rho \Box \Box -4-[(i \Box x + i \Box$
- 134. N-2-Dロロー4-[(6-メトキシ-7-3-[(1-メチルー1H-1, 2, 3, 4-テトラゾールー5-イル)チオ]プロポキシー4ーキナゾリニル)オキシ]フェニルーN'ープロピルウレア、
- 136. N-[2-クロロー4($\{7-x\}$ トキシー6-[2-(4-xチルピペラジノ) エトキシ] -4-キナゾリニル $\}$ オキシ) フェニル] -N'-プロピルウレア、

特平11-253624

- 138. N-(2-7000-4-[7-メトキシー6-(2-ピリジルメトキシ
-) -4-キナゾリニル]オキシフェニル)-N'-プロピルウレア、

-) アミノ]プロポキシー7ーメトキシー4ーキナゾリニル)オキシ]フェニルーN, ープロピルウレア、
- 141. N-(2-クロロ-4-[6-メトキシ-7-(2-ピリジルメトキシ
-)-4-+ノリル]オキシフェニル)-N'-プロピルウレア、
- 142. N-(2-クロロ-4-[6-メトキシ-7-(3-ピリジルメトキシ
-) -4-キノリル]オキシフェニル)-N'-プロピルウレア、
- 143. N-(2-クロロ-4-[6-メトキシ-7-(4-ピリジルメトキシ
-)-4-+ノリル]オキシフェニル)-N'-プロピルウレア、
- 144. N-(2-クロロ-4-[6-メトキシ-7-(2-モルホリノエトキ
- シ) -4-キノリル]オキシフェニル)-N'-プロピルウレア、
- 145. N-[2-クロロ-4-(6-メトキシ-7-[2-(1H-1, 2, 3)]]
- ートリアゾール−1−イル)エトキシ] −4−キノリルオキシ)フェニル] − N' −プロピルウレア、
- 146. N-[2-クロロ-4-(7-[2-(1H-1-イミダゾリル) エトキシ]-6-メトキシ-4-キノリルオキシ)フェニル]-<math>N'-プロピルウレア、
- 147. N-(2-)00-4-[7-(3-ヒドロキシプロポキシ)-6-メトキシ-4-キノリル]オキシフェニル)-N'-プロピルウレア、
- 148. N- [2-クロロー4-(6-メトキシー7-[2-(4-メチルピペラジノ) エトキシ] -4-キノリルオキシ) フェニル] -N -プロピルウレア
- 149. N- (2-クロロ-4-[7-(2-ヒドロキシエトキシ) -6-メト

キシ-4-キノリル]オキシフェニル)-N'-プロピルウレア、

150. N-2-DDD-4-[(7-2-[(2-E)D+DT+D)] (メチル) $P \in J$ $T \in S$ $T \in S$ T $T \in S$ $T \in$

152. $N-[2-\rho \Box \Box -4-(6-) + 2 -7-[3-(4-) + 2 -7 -1]$ ジノ) プロポキシ] -4- キノリルオキシ) フェニル] -N' -プロピルウレア、

154. N-[2-クロロ-4-(7-[3-(1H-1-イミダゾリル) プロポキシ]-6-メトキシ-4-キノリルオキシ) フェニル]-N'-プロピルウレア

156. N-2-DDD-4-[(7-3-[ij(2-EFD+ij+N)]] アミノ [ij(2-EFD+ij+N)] [ij

157. N-2-DDD-4-[(7-3-[(2-ヒドロキシエチル)(メチル)アミノ]プロポキシー<math>6-メトキシー4-キノリル)オキシ]フェニル-N'-プロピルウレア、

158. N-[2-クロロ-4-(6-メトキシ-7-[4-(1H-1, 2, 3-1)] - N' - プロピルウレア、

159. N-2-Dロロー4ー[(6ーメトキシー7ー[5ー(1H-1, 2, 3ートリアゾールー1ーイル)ペンチル]オキシー4ーキノリル)オキシ]フェニルーN'ープロピルウレア、

特平11-253624

- 160. $N-[2-\rho \Box \Box -4-(7-[4-(1H-1-イミダゾリル) プトキシ]-6-メトキシ-4-キノリルオキシ) フェニル]-<math>N'$ -プロピルウレア、 161. $N-(2-\rho \Box \Box -4-[6-メトキシ-7-(4-ピリジルメトキシ) -4-キナゾリニル]オキシフェニル)-<math>N'$ -(2,4-ジフルオロフェニル)ウレア、
- 162. N-(2-クロロー4-[6-メトキシー7-(2-モルホリノエトキシ) -4-キナゾリニル]オキシフェニル) -N'-(2,4-ジフルオロフェニル) ウレア、
- 164. N-[2-クロロ-4-(6-メトキシ-7-[3-(4-メチルピペラジノ) プロポキシ] <math>-4-キナゾリニルオキシ) フェニル]-N'-(2,4-ジフルオロフェニル) ウレア、
- 165. N- $(2-\rho \Box \Box 4-[(7-3-[(2-ヒ \Box \Box + 2 \Box \bot + 2 \Box \Box + 2 \Box + 2 \Box \Box + 2 \Box +$
- 167. N-2-Dロロー4-[(7-2-[(2-ヒドロキシエチル) (メチル) アミノ]エトキシー<math>6-メトキシー4-キノリル) オキシ]フェニル-N'-(2,4-ジフルオロフェニル) ウレア、
- 168. $N-(2-\rho \Box \Box -4-[6-)++>-7-(3-)$ ポーシ) -4-+ プロポートン -N'-(2,4-) プロポートン カレア、
- 169. N-(2-クロロ-4-[6-メトキシ-7-(3-ピリジルメトキシ)-4-キノリル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、

- 170. $N-[2-\rho \Box \Box -4-(6-) + + 2-7-[2-(1 H-1, 2, 3-)]$ リアゾールー1ーイル) エトキシ]-4-キノリルオキシ) フェニル]-N'-(2, 4-ジフルオロフェニル) ウレア、
- 171. N-(2-x)++y-4-[6-x)++y-7-(3-t) ポキシ) -4-t+yリニル] オキシフェニル) -N'-yロピルウレア、
- 172. N-(2, 4-ジフルオロフェニル)-N'-(2-メトキシー4-[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシフェニル)ウレア、
- 173. $N-(2-\lambda)+2-4-[6-\lambda)+2-7-(3-2-\lambda)-7-(3-2-\lambda$
- 174. N-(2-メトキシ-4-[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル]オキシフェニル)-N'-プロピルウレア、
- 175. N-エチル-N'-(4-[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル]オキシ-2, 5-ジメチルフェニル) ウレア、
- 176. N-[4-(6-メトキシ-7-[3-(4-メチルピペラジノ) プロポキシ]-4-キノリルオキシ)-2, <math>5-ジメチルフェニル]-N'-プロピルウレア、
- 177. N-(2, 4-ジフルオロフェニル)-N'-[4-(6-メトキシー7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キノリルオキシ)-2, 5-ジメチルフェニル] ウレア、
- 178. N' -(2-0)00-4-[6-メトキシ-7-(2-モルホリノエトキシ) -4-キナゾリニル]オキシフェニル) -N, N-ジメチルウレア、
- 180. N' -(2-7)00 -4-(6-3) -(4-2)
- 181. メチル 2-[4-(3-2)] 2-
- 182. N'-[2-クロロ-4-(6-メトキシ-7-[3-(4-メチルピ

ペラジノ) プロポキシ] - 4 - キナゾリニルオキシ) フェニル] - N、N - ジメチルウレア、および

[0037]

本発明による化合物の特に好ましい例としては、また、下記の化合物が挙げられる。

 $N - \{2 - \rho \Box \Box - 4 - [(6, 7 - ジメチル - 4 - キナゾリル) オキシ] フェニル<math>\} - N' - 4 \gamma$ ブチルウレア、

 $N - (4 - \{[7 - (ベンジルオキシ) - 6 - メトキシー4 - キナゾリル] オキシ} - 2 - クロロフェニル) - N' - プロピルウレア、$

 $N-(4-\{[6-(ベンジルオキシ)-7-メトキシ-4-キナゾリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、$

 $N-[2-\rho \Box \Box -4-(\{6-x\}+2)-7-[2-(1H-1-4)]$ ル) エトキシ $[2-\alpha]$ -4-キナゾリル $[2-\alpha]$ オキシ $[2-\alpha]$ -N' -エチルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キナゾリル} オキシ)フェニル]-N'-エチルウレア、$

 $N-[2-\rho \Box \Box -4-(\{6-x\}+2)-7-[3-(1H-1,2,3-k]+2)]$ リアゾールー1-4ル)プロポキシ]-4-2+1ブリル]-N ・エチルウレア、

 $N-[2-\rho \Box \Box -4-(\{6-x \} + 2) -7-[2-(4-x + 2)] - 2$) エトキシ] -4-++y (リル) オキシ) フェニル] -N'-x + 2

 $N-(2-クロロ-4-\{[6-メトキシ-7-(3-モルホリノプロポキシ$

)-4-キナゾリル]オキシ $\}$ フェニル)-N'-エチルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1-イミダゾリル) エトキシ]-4-キナゾリル} オキシ)フェニル]-N'-プロピルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1, 2, 3-トリアゾール-1-イル) エトキシ]-4-キナゾリル<math>\}$ オキシ $\}$ フェニル]-N'-プロピルウレア、

 $N-[2-クロロ-4-({6-メトキシ-7-[3-(1H-1, 2, 3-トリアゾールー1-イル)プロポキシ]-4-キナゾリル<math>\}$ オキシ $\}$ フェニル]-N

 $N-(2-\rho \Box \Box -4-\{[6- + N+ + 2 - 7 - (3- + 2 N +$

 $N-[2-クロロ-4-({6-メトキシ-7-[2-(1H-1-イミダゾリル) エトキシ]-4-キナゾリル} オキシ)フェニル]-N'-ブチルウレア、$

 $N-[2-クロロ-4-({6-メトキシ-7-[3-(1H-1, 2, 3-トリアゾール-1-イル) プロポキシ]-4-キナゾリル<math>\}$ オキシ $\}$ フェニル]-N ・ 一ブチルウレア、

N-[2-クロロ-4-({6-メトキシ-7-[2-(4-メチルピペラジノ

) エトキシ]-4-キナゾリル} オキシ)フェニル]-N'-ブチルウレア、

 $N-[2-\rho \Box \Box -4-(\{6-\lambda \land + \dot{\nu}-7-[2-(\dot{\nu}) \lor \dot{\nu} \lor \dot{\nu}]) \bot \uparrow$ $+\dot{\nu}]-4-\dot{\nu} \lor \dot{\nu}$ $N-[2-\rho \Box \Box -4-(\{6-\lambda \land + \dot{\nu}-7-[2-(\dot{\nu}) \lor \dot{\nu} \lor \dot{\nu}]) \bot \uparrow$ $+\dot{\nu}]-4-\dot{\nu}$ $+\dot{\nu}$

[0038]

本発明による化合物の一層好ましい例としては、下記の化合物が挙げられる:

- 18. $N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ オキシー N'-(2-i) カンフェニル カンア、
- 28. N-(5-クロロ-2-ピリジル) -N' $\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ] 2, 3-ジメチルフェニル} ウレア、$
- 37. $N-(2, 4-ジフルオロフェニル)-N'-\{4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2, 5-ジメチルフェニル} ウレア、$
- 62. $N \{2 \rho \Box \Box 4 [(6, 7 ジメトキシ 4 キナゾリニル) オキシ] フェニル<math>\}$ N' プロピルウレア、
- 111. $N' \{2- \rho \Box \Box 4 [(6, 7- ジメトキシ- 4 キナゾリニル) オキシ] フェニル\} N メチル- N プロピルウレア、$
- 116. $N' \{2- DDD-4-[(6, 7- ジメトキシ-4- キナゾリニル) オキシ] フェニル <math>\}$ -N $\}$ $N- ジエチルウレア <math>\}$
- 135. N-(2-700-4-[6-メトキシ-7-(3-ピペリジノプロポキシ)-4-キナゾリニル]オキシフェニル)-N'-プロピルウレア、
- 143. N-(2-7000-4-[6-メトキシ-7-(4-ピリジルメトキシ)-4-キノリル]オキシフェニル)-N'-プロピルウレア、
- 144. $N-(2-D_{1}-4-[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル] オキシフェニル) <math>-N'$ -プロピルウレア、
- 145. $N-[2-\rho \Box \Box -4-(6-)++>-7-[2-(1H-1, 2, 3-1)]$ -トリアゾール-1-イル) エトキシ] -4-キノリルオキシ)フェニル] N' -プロピルウレア、

148. N-[2-クロロー4-(6-メトキシー7-[2-(4-メチルピペラジノ) エトキシ] <math>-4-キノリルオキシ) フェニル]-N'-プロピルウレア

153. $N-[2-\rho \Box \Box -4-(6-) + + 2-7-[3-(1 H-1, 2, 3 -1] - N-[2-\rho \Box \Box -4-] - N-[3-(1 H-1, 2, 3 -1] - N-[$

164. $N-[2-\rho \Box \Box -4-(6-)++>-7-[3-(4-)+)$ ピペラジノ) プロポキシ] -4-++ ゾリニルオキシ) フェニル] -N'-(2,4-) フルオロフェニル) ウレア、

170. $N-[2-\rho \Box \Box -4-(6-) + + -7-[2-(1 H-1, 2, 3-)]$ リアゾールー1ーイル) エトキシ]-4-キノリルオキシ) フェニル]-N'-(2, 4-ジフルオロフェニル) ウレア。

[0039]

本発明による化合物はその薬学上許容される塩とすることができる。好ましい例としてはナトリウム塩、カリウム塩またはカルシウム塩のようなアルカリ金属またはアルカリ土類金属の塩、フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩のようなハロゲン化水素酸塩、硝酸塩、過塩素酸塩、硫酸塩、リン酸塩などの無機酸塩、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩のような低級アルキルスルホン酸塩、ベンゼンスルホン酸塩、 P-トルエンスルホン酸塩のようなアリールスルホン酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩、酢酸、リンゴ酸、乳酸、アスコルビン酸のような有機酸塩、およびグリシン塩、フェニルアラニン塩、グルタミン酸塩、アスパラギン酸塩のようなアミノ酸塩などが挙げられる。

[0040]

本発明による化合物は、また、溶媒和物(例えば、水和物)とすることができる。

[0041]

化合物の製造

本発明の化合物は、例えば、スキーム1およびスキーム2にしたがって製造で きる。

[0042]

スキーム1

【化5】

本発明による化合物の合成に必要な出発物質は市販されているか、または常法によって製造できる。例えば、4-クロロキノリン誘導体は、0rg. Synth. Col. Vol. 3, 272 (1955)、Acta Chim. Hung., 112, 241 (1983)またはW098/47873に

記載されるような慣用手段によって合成することができる。また、4-クロロキナゾリン誘導体は、J. Am. Chem. Soc., <u>68</u>, 1299 (1946)、J. Am. Chem. Soc., <u>68</u>, 1305 (1946)に記載されるような慣用手段によって合成することができる。

[0043]

次に適当な溶媒中または無溶媒中において、ニトロフェノールに対し4-クロロキノリン誘導体あるいは相当するキナゾリン誘導体を作用させ、4-(ニトロフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体を合成した後、適当な溶媒(例えばN,N-ジメチルホルムアミド)中、触媒(例えば水酸化パラジウム-炭素、パラジウム-炭素)の存在下、水素雰囲気下において撹拌すると4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体が得られる。あるいはまた、アミノフェノールに対し塩基(例えば水素化ナトリウム)の存在下、4-クロロキノリン誘導体あるいは相当するキナゾリン誘導体を作用させると4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体が得られる。

[0044]

スキーム2

【化6】

得られた4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリ

ン誘導体を塩基の存在下、酸クロリドあるいは酸無水物と反応させ、次いで、水素化リチウムアルミニウム等により還元することにより、R⁹に置換基を導入することができる(工程1A)。

[0045]

あるいは、得られた4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体をアルデヒドあるいはケトンと反応させ、イミン形成後にシアノ水素化ホウ素ナトリウム等により還元することにより、R⁹に置換基を導入することもできる(工程1B)。

[0046]

 R^9 に置換基が導入された誘導体を、公知の方法にしたがってイソシアナート 誘導体($O=C=N-R^{11}$)と作用させ(工程 2)、塩基(例えば、水素化ナト リウム)の存在下適当なアルキル化剤(R^{10} Ha 1)を作用させる(工程 3) ことにより式(I)の化合物を製造できる。

[0047]

 R^9 および R^{10} は、また、 R^9 および/または R^{10} が水素原子であるウレア誘導体に塩基(例えば、水素化ナトリウム)存在下、適当なアルキル化剤(R^9 Ha 1、 R^{10} Ha 1)を作用させることによっても導入できる(工程 5 および 7)。

[0048]

 R^9 および/または R^{10} が水素原子であるウレア誘導体は、スキーム1において得られた4-(アミノフェノキシ)キノリン誘導体あるいは相当するキナゾリン誘導体に、公知の方法に従ってイソシアナート誘導体を作用させるか、あるいは塩基(例えば、トリエチルアミン)の存在下トリホスゲン添加後に適当なアルキルアミン(R^{11} N H $_2$ 、 R^{10} R 11 N H) を反応させることにより製造できる(工程4 および6)。

[0049]

キノリン環の7位に特定の置換基を有する誘導体は、例えば、スキーム3に従って製造できる。

[0050]

<u>スキーム3</u>

【化7】

$$R^{24}$$
 R^{25}
 R^{26}
 R

市販の4'-ヒドロキシアセトフェノン誘導体に対し適当な置換基(例えば、ベンジル基)を作用させ、水酸基を保護した後、ニトロ化剤(例えば硝酸-酢酸)を作用させることによりニトロ基を導入できる。

[0051]

次に、ニトロ基を還元しアミノ基とした後、塩基の存在下、ギ酸エステルを作用させてキノロン環を形成させ、次いで塩素化剤(例えばオキシ塩化リン)を作用させることにより4-クロロキノリン誘導体を製造できる。

[0052]

アミノフェノールに対し塩基(例えば、水素化ナトリウム)の存在下、得られた4-クロロキノリン誘導体を作用させると4-(アミノフェノキシ)キノリン

誘導体を得ることができる。

[0053]

得られた誘導体に公知の方法に従いイソシアナート誘導体($O=C=N-R^{29}$)を作用させるか、あるいはトリホスゲン処理後に芳香族アミンまたはアルキルアミン($R^{29}NH_9$)を作用させることによりウレア部分を合成できる。

[0054]

次いで、キノリン環上の7位の水酸基の保護基(PG)を除去し、塩基の存在下ハロゲン化アルキル($R^{22'}$ Hal、 $R^{22'}$ は R^{22} がアルコキシ基であるときのアルキル部分を表す)を作用させることにより、あるいはアルコール誘導体($R^{22'}$ OH)を公知の方法(例えば、光延反応)により作用させることにより、キノリン環の7位にアルコキシ基を有する本願の化合物を製造できる。

[0055]

置換反応に用いるハロゲン化アルキルは市販されているか、あるいはJ.Am.Chem.Soc.,1945,67,736等に記載の方法に従って製造できる。

[0056]

置換反応に用いるアルコール誘導体は市販されているか、あるいはJ.Antibiot .(1993),46(1),177、Ann.Pharm.Fr.1977,35,503等に記載の方法に従って製造できる。

[0057]

キノリン環の6位に特定の置換基を有する誘導体は、出発物質として3'-ヒ ドロキシアセトフェノン誘導体を用い、スキーム3に従って製造できる。

[0058]

キナゾリン環の7位に特定の置換基を有する誘導体は、スキーム4に従って製造できる。

[0059]

スキーム4

【化8】

2-アミノー安息香酸エステル誘導体は、J.Med.Chem.1977,20,146等に記載の 方法に従って合成した2-二トロー安息香酸誘導体を塩基(例えば、炭酸カリウム)の存在下、例えばジメチル硫酸によりエステル化した後、二トロ基を例えば 鉄/酢酸により還元することにより製造できる。

[0060]

次に得られた化合物を塩基の存在下ホルムアミドと作用させることにより4-キナゾロン環を形成させ、次いで塩素化剤(例えばオキシ塩化リン)を作用させ ることにより4-クロロキナゾリン誘導体を製造できる。 [0061]

アミノフェノール誘導体に対し塩基(例えば、水素化ナトリウム)の存在下、 得られた4-クロロキナゾリン誘導体を作用させると4-(アミノフェノキシ) キナソリン誘導体を得ることができる。

[0062]

公知の方法に従い得られた誘導体にイソシアナート誘導体($O=C=N-R^{29}$)を作用させるか、あるいはトリホスゲン処理後に芳香族アミンまたはアルキルアミン($R^{29}NH_9$)を作用させることによりウレア部分を合成できる。

[0063]

次いで、キナゾリン環上の7位の水酸基の保護基(PG)を除去し、塩基の存在下ハロゲン化アルキル($R^{22'}$ Hal、 $R^{22'}$ は R^{22} がアルコキシ基であるときのアルキル部分を表す)を作用させることにより、あるいはアルコール誘導体($R^{22'}$ OH)を公知の方法(例えば、光延反応)により作用させることにより、キナゾリン環の7位にアルコキシ基を有する本願の化合物を製造できる。

[0064]

置換反応に用いるハロゲン化アルキルおよびアルコール誘導体は市販されているか、あるいはスキーム3の説明に記載の文献に従って製造できる。

[0065]

キナゾリン環の6位に特定の置換基を有する誘導体は、出発物質として3-ヒ ドロキシベンズアルデヒド誘導体を用い、スキーム4に従って製造できる。

[0066]

化合物の用途/医薬組成物

本発明による化合物は、インビボにおいて腫瘍増殖抑制作用を有する(薬理試験例3参照)。

[0067]

本発明による化合物は、また、インビトロにおいて血管内皮細胞をVEGF(Vascular endothelial growth factor)で刺激したときに起こるMAPK (mitogen-activated protein kinase) の活性化を阻害する(薬理試験例1参照)。血管内皮細胞をVEGFで刺激すると受容体下流のシグナル伝達系によりMAPK

が活性化され、リン酸化されたMAPKの上昇が認められる(Abedi,H. and Zachary, I., J.Biol.Chem., 272, 15442-15451(1997))。MAPKの活性化は血管新生における血管内皮細胞の増殖に重要な役割を担うことが知られている(Merenmies, J. et al., Cell Growth & Differ., 83-10(1997);Ferrara, N. and Davis-Smyth, T., Endocr. Rev., 18, 4-25(1997))。従って本発明による化合物は血管新生抑制作用を有する。

[0068]

病態部位における血管新生は、主として、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫のような疾患、並びに固形癌の転移と深く結びついている(Forkman, J. Nature Med. 1: 27-31(1995); Bic knell, R., Harris, A. L. Curr. Opin. Oncol. 8: 60-65(1996))。従って、本発明による化合物は、腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫のような疾患、並びに固形癌の転移の治療に用いることができる。

[0069]

本発明による化合物は、細胞形態へ与える影響が小さい(薬理試験例2参照) 。従って、本発明による化合物は、生体に投与した場合、安全性に非常に優れて いる。

[0070]

本発明のもう一つの面によれば、本発明による化合物を含む医薬組成物が提供される。本発明による医薬組成物は腫瘍、糖尿病性網膜症、慢性関節リウマチ、乾癬、アテローム性動脈硬化症、カポジ肉腫のような疾患、並びに固形癌の転移の治療に用いることができる。

[0071]

本発明の化合物を有効成分とする医薬組成物は、経口および非経口(例えば、静脈内投与、筋肉内投与、皮下投与、直腸投与、経皮投与)のいずれかの投与経路で、ヒトおよびヒト以外の動物に投与することができる。従って、本発明による化合物を有効成分とする医薬組成物は、投与経路に応じた適当な剤型とされる

[0072]

具体的には、経口剤としては、錠剤、カプセル剤、散剤、顆粒剤、シロップ剤などが挙げられ、非経口剤としては、注射剤、坐剤、テープ剤、軟膏剤などが挙げられる。

[0073]

これらの各種製剤は、通常用いられている賦形剤、崩壊剤、結合剤、滑沢剤、 着色剤、希釈剤などを用いて常法により製造することができる。

[0074]

賦形剤としては、例えば乳糖、ブドウ糖、コーンスターチ、ソルビット、結晶セルロースなどが、崩壊剤としては例えばデンプン、アルギン酸ナトリウム、ゼラチン末、炭酸カルシウム、クエン酸カルシウム、デキストリンなどが、結合剤としては例えばジメチルセルロース、ポリビニルアルコール、ポリビニルエーテル、メチルセルロース、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロース、ポリビニルピロリドンなどが、滑沢剤としては、例えばタルク、ステアリン酸マグネシウム、ポリエチレングリコール、硬化植物油などがそれぞれ挙げられる。

[0075]

また、上記注射剤は、必要により緩衝剤、 p H 調整剤、安定化剤、等張化剤、 保存剤などを添加して製造することができる。

[0076]

本発明による医薬組成物中、本発明による化合物の含有量は、その剤型に応じて異なるが、通常全組成物中0.5~50重量%、好ましくは、1~20重量%である。

[0077]

投与量は患者の年齢、体重、性別、疾患の相違、症状の程度などを考慮して、個々の場合に応じて適宜決定されるが、例えば $0.1\sim100$ mg/kg、好ましくは $1\sim50$ mg/kgの範囲であり、これを1日1回または数回に分けて投与する。

[0078]

【実施例】

以下本発明を下記例により説明するが、本発明はこれらに限定されるものではない。

[0079]

製造例1:2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ] アニリン

ジメチルスルホキシド(10m1)に水素化ナトリウム(60w%、0.72g)を加え、50℃で30分攪拌後室温にし、4-アミノ-3-クロロフェノール塩酸塩(1.61g)を加え室温で10分攪拌した。次に4-クロロ-6,7-ジメトキシキノリン(1.00g)を加え100℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え、析出した結晶を吸引ろ取し、表題の化合物を0.8g、収率60%で得た。

[0080]

 1 H-NMR (CDC1₃, 400MHz): δ 4. 05 (s, 3H), 4. 0 5 (s, 3H), 4. 0 8 (s, 2H), 6. 44 (d, J=5. 4Hz, 1H), 6. 85 (d, J=8. 5Hz, 1H), 6. 93-6. 96 (m, 1H), 7. 15 (d, J=2. 7Hz, 1H), 7. 41 (s, 1H), 7. 54 (s, 1H), 8. 48 (d, J=5. 1Hz, 1H)

[0081]

製造例2:4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルアニリン

ジメチルスルホキシド(10m1)に水素化ナトリウム(60w%、0.72g)を加え、50℃で30分攪拌後室温にし、4-アミノ-2,3-ジメチルフェノール塩酸塩(1.55g)を加え室温で10分攪拌した。次に4-クロロー6,7-ジメトキシキノリン(1.00g)を加え100℃で一晩攪拌した。反応被に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して

得られた残さにメタノールを加え、析出した結晶を吸引ろ取し、表題の化合物を 0.94g、収率65%で得た。

[0082]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 07 (s, 3H), 2. 15 (s, 3H), 3. δ 2 (s, 2H), 4. 05 (s, 3H), 4. 07 (s, 3H), δ 6. 25 (d, J=5. 4Hz, 1H), δ 6. δ 4 (d, J=8. 5Hz, 1H), δ 6. 83 (d, J=8. 5Hz, 1H), 7. 42 (s, 1H), 7. δ 8. 42 (d, J=5. 4Hz, 1H)

[0083]

製造例3:4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン

ジメチルスルホキシド (10ml) に水素化ナトリウム (60 w%、0.36g) を加え、50℃で30分攪拌後室温にし、4ーアミノー2,5ージメチルフェノール (1.23g) を加え室温で10分攪拌した。次に4ークロロー6,7ージメトキシキノリン (1.00g) を加え100℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (1/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を得た。

[0084]

製造例4:3,5-ジクロロー4-[(6,7-ジメトキシー4-キノリル)オ キシ]アニリン

ジメチルスルホキシド(10m1)に水素化ナトリウム(60w%、0.36g)を加え、50℃で30分攪拌後室温にし、4-アミノ-2,6-ジクロロフェノール(1.59g)を加え室温で10分攪拌した。次に4-クロロ-6,7ージメトキシキノリン(1.00g)を加え100℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(1/1)で展開するシリカゲルクロマトグ

ラフィーにより精製し、表題の化合物を0.35g、収率22%で得た。

[0085]

 1 H-NMR (CDC1₃, 400MHz): δ3. 84 (s, 2H), 4. 0 5 (s, 3H), 4. 08 (s, 3H), 6. 28 (d, J=5. 4Hz, 1H), 6. 74 (s, 2H), 7. 43 (s, 1H), 7. 64 (s, 1H), 8 . 48 (d, J=5. 4Hz, 1H)

[0086]

製造例5:4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-ニトロアニリン

ジメチルスルホキシド(15m1)に水素化ナトリウム(60w%、0.54g)を加え、70℃で30分攪拌後室温にし、4-アミノ-3-ニトロフェノール(2.07g)を加え室温で10分攪拌した。次に4-クロロ-6,7-ジメトキシキノリン(1.50g)を加え100℃で4時間攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(1/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を0.53g、収率23%で得た。

[0087]

製造例6:1-[2-アミノ-4-(ベンジルオキシ)-5-メトキシフェニル]-1-エタノン

1-(4-ヒドロキシ-3-メトキシフェニル)-1-エタノン(20g)、 炭酸カリウム(18.3g)、ヨウ化テトラーn-ブチルアンモニウム(4.4 5g)、ベンジルブロミド(17.3ml)をN,N-ジメチルホルムアミド(300ml)に溶解し100℃で1時間反応した。減圧下溶媒を留去し、得られ た残さに水を加え酢酸エチルで抽出し、酢酸エチル層を硫酸ナトリウムで乾燥し た。次に、減圧下溶媒を留去して得られた残さ、発煙硝酸(12.47ml)を 酢酸(120ml)に溶解し、室温で2時間反応した。0℃にて水酸化ナトリウ ム水溶液を加え中性にした後、クロロホルム抽出し、クロロホルム層を硫酸ナト リウムで乾燥した。次に、減圧下溶媒を留去して得られた残さを、エタノール(1160ml)、水(120ml)に熱をかけて溶解し、塩化アンモニウム(19.2g)、亜鉛(101.7g)を加え、加熱還流を3時間した。セライト濾過し、クロロホルム/メタノール(3/1)で洗浄し、減圧下溶媒を留去し、得られた残さを水酸化ナトリウム水溶液でアルカリ性にしクロロホルム抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/酢酸エチル(10/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を24.95g、収率77%(3ステップ)で得た。

[0088]

¹H-NMR (CDCl₃, 400MHz): δ2. 51 (s, 3H), 3. 84 (s, 3H), 5. 14 (s, 2H), 6. 12 (s, 2H), 7. 15-7. 62 (m, 7H)

[0089]

<u>製造例7:7-(ベンジルオキシ)-6-メトキシ-1,4-ジヒドロ-4-キ</u> ノリノン

1-[2-アミノー4-(ベンジルオキシ)-5-メトキシフェニル]-1-エタノン(24.95g)をテトラヒドロフラン(450m1)に溶解し、ナトリウムメトキシド(24.87g)を加え室温で1時間攪拌後、ぎ酸エチルエステル(37.07m1)を加え室温で2時間攪拌後、水(150m1)を加え1晩攪拌した。0℃にて濃硫酸を加えpH4にし、水を加えクロロホルム抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を17.16g、収率66%で得た。

[0090]

 1 H-NMR (DMSO- d_{6} , 400MHz): δ 3.84 (s, 3H), 5.19 (s, 2H), 5.97 (d, J=7.1Hz, 1H), 7.09 (s, 1H), 7.28-7.51 (m, 6H), 7.78 (d, J=7.3Hz, 1H), 11.50-11.75 (br, 1H)

[0091]

製造例8:7-(ベンジルオキシ)-4-クロロ-6-メトキシキノリン

7-(ベンジルオキシ)-6-メトキシ-1,4-ジヒドロ-4-キノリノン (17.16g)にオキシ塩化リン(14.19ml)を加え、加熱還流を1時間した。減圧下溶媒を留去し、得られた残さをクロロホルムに溶解し、水酸化ナトリウム水溶液を加えアルカリ性にし、クロロホルム抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(10/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3.82g、収率21%で得た。

[0092]

 1 H-NMR (CDC1₃, 400MHz) : δ 4. 06 (s, 3H),5. 32 (s,2H), 7. 30-7. 55 (m, 8H), 8. 56 (d, J=4. 9Hz, 1H)

[0093]

製造例9: $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オ$ キシ $\}$ -2, 5-ジメチルアニリン

ジメチルスルホキシド(25ml)に水素化ナトリウム(60w%、1.17g)を加え、60℃で30分攪拌後室温にした。次に4-アミノー2,5-ジメチルフェノール(4.00g)を加え室温で10分攪拌後、7-(ベンジルオキシ)-4-クロロー6-メトキシキノリン(4.36g)を加えた。22時間攪拌後反応液に水を加えクロロホルム抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え懸濁液とした。析出した結晶を吸引ろ取し、表題の化合物を3.04g、収率52%で得た。

[0094]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 05 (s, 3H), 2. 1 6 (s, 3H), 3. 58 (s, 2H), 4. 06 (s, 3H), 5. 32 (s, 2H), 6. 28 (d, J=5. 1Hz, 1H), 6. 61 (s, 1H), 6. 81 (s, 1H), 7. 28-7. 42 (m, 3H), 7. 44 (s, 1H), 7. 49-7. 54 (m, 2H), 7. 63 (s, 1H), 8. 39 (d, J)

= 5.1 Hz, 1H

質量分析値 (ESI-MS, m/z): 401 (M+1)

[0095]

製造例 $10:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,5-ジメチルフェニル)-N'-(2,4-ジフルオロフェニル)ウレア$

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ}-2$, $5-ジメチルアニリン(300mg)をクロロホルム(5m1)に溶解した後、2, <math>4-ジフルオロフェニルイソシアナート(200 \mu 1)を加え、70℃にて1晩攪拌した。反応液を、クロロホルム/アセトン(75/25)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を368mg、収率88%で得た。$

[0096]

 1 H-NMR (CDC1₃, 400MHz): δ2. 17 (s, 3H), 2. 26 (s, 3H), 4. 06 (s, 3H), 5. 33 (s, 2H), 6. 29 (d, J=5. 1Hz, 1H), 6. 42 (s, 1H), 6. 76-6. 93 (m, 3H), 6. 70 (s, 3H), 7. 30-7. 54 (m, 7H), 7. 60 (s, 1H), 8. 04-8. 12 (m, 1H), 8. 44 (d, J=5. 4Hz, 1H)

[0097]

製造例 $11:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,5-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア$

4-{ [7-(ベンジルオキシ) -6-メトキシ-4-キノリル] オキシ} -2,5-ジメチルアニリン(300mg)をクロロホルム(5m1)に溶解した後、2-メトキシフェニルイソシアナート(0.24m1)を加え、70℃にて1晩攪拌した。反応液を、クロロホルム/アセトン(75/25)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を365mg、収率89%で得た。

[0098]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 17 (s, 3H), 2. 28 (s, 3H), 3. 83 (s, 3H), 4. 07 (s, 3H), 5. 33 (s, 2H), 6. 26 (s, 3H), 6. 29 (d, J=5. 4Hz, 1H), 6. 86-7. 06 (m, 4H), 7. 12 (s, 1H), 7. 30-7. 41 (m, 3H), 7. 46 (s, 1H), 7. 50-7. 56 (m, 3H), 7. 61 (s, 1H), 8. 11-8. 16 (m, 1H), 8. 43 (d, J=5. 4Hz, 1H)

[0099]

製造例 $12:4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]$ オキシ $\}-2-クロロアニリン$

ジメチルスルホキシド(3.6m1)に水素化ナトリウム(60w%、320mg)を加え、60℃で30分攪拌後室温にした。次に4ーアミノー3ークロロフェノール塩酸塩(720mg)を加え室温で10分攪拌後、7ー(ベンジルオキシ)ー4ークロロー6ーメトキシキノリン(600mg)を加えた。105℃で22時間攪拌後反応液に水を加えクロロホルム抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え懸濁液とした。析出した結晶を吸引ろ取し、表題の化合物を533mg、収率66%で得た。

[0100]

[0101]

製造例13:N-(4-{[7-(ベンジルオキシ)-6-メトキシ-4-キノ

5 7

リル] オキシ $\}$ -2-クロロフェニル) -N' - (2, 4-ジフルオロフェニル) ウレア

4-{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]オキシ}-2-クロロアニリン(260mg)をクロロホルム(10m1)に溶解した後、2,4-ジフルオロフェニルイソシアナート(198mg)を加え室温で2時間攪拌した。反応液をクロロホルム/アセトン(10/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を337mg、収率94%で得た。

[0102]

 1 H-NMR (CDCl₃, 400MHz): δ 4.04 (s, 3H), 5.32 (s, 2H), 6.49 (d, J=5.1Hz, 1H), 6.86-6.96 (m, 3H), 7.10-7.17 (m, 2H), 7.22-7.28 (m, 1H), 7.28-7.41 (m, 3H), 7.45-7.53 (m, 4H), 7.96-8.04 (m, 1H), 8.27 (d, J=9.0Hz, 1H), 8.49 (d, J=5.4Hz, 1H)

質量分析値 (ESI-MS, m/z): 562, 564 (M+1)

[0103]

製造例14:N-{2-クロロ-4-[(7-ヒドロキシー6-メトキシー4-キノリル)オキシ]フェニル}-N'-(2,4-ジフルオロフェニル)ウレアN-(4-{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア(215mg)を、ジメチルホルムアミド(11m1)に溶解し、パラジウム炭素(215mg)を加え、水素雰囲気下室温で1晩攪拌した。反応液に酢酸エチル(30m1)を加え、セライト濾過した。溶媒を減圧下留去し、表題の化合物を174mg、収率96%で得た。

[0104]

 1 H-NMR (DMSO-d₆, 400MHz) : δ 3. 94 (s, 3H), 6 . 47 (d, J=5. 1Hz, 1H), 7. 01-7. 11 (m, 1H), 7. 18-7. 36 (m, 3H), 7. 44-7. 52 (m, 2H), 7. 95 (s , 1H), 7. 98-8. 13 (m, 1H), 8. 23 (d, J=9. 5Hz,
1H), 6. 50 (d, J=5. 1Hz, 1H), 8. 81 (s, 1H), 9.
31 (s, 1H)

質量分析値 (ESI-MS, m/z): 472 (M+1)

[0105]

製造例 $15:4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オ$ キシ $\}$ -2, 3-ジメチルアニリン

ジメチルスルホキシド(6 m 1)に水素化ナトリウム(60 w t %、0.32 g)を加え、室温で30分間攪拌した後、4-アミノ-2,3-ジメチルフェノール(1.10g)を加え室温で10分間攪拌した。次に7-(ベンジルオキシ)-4-クロロ-6-メトキシキノリン(1.20g)を加え110℃で6時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(6/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を0.78g、収率49%で得た。

[0106]

 1 H-NMR (DMSO- 1 6, 400MHz) δ 1. 87 (s, 3H), 1. 9 6 (s, 3H), 3. 97 (s, 3H), 4. 78 (s, 2H), 5. 23 (s, 2H), 6. 12 (d, J=5. 3Hz, 1H), 6. 54 (d, J=8. 4 Hz, 1H), 6. 69 (d, J=8. 4Hz, 1H), 7. 27-7. 51 (m, 7H), 8. 31 (d, J=5. 3Hz, 1H)

[0107]

製造例 $16:N-(4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノ リル]オキシ}-2,3-ジメチルフェニル)-N'-(2,4-ジフルオロフェニル)ウレア$

 $4-\{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ\}-2$, 3-ジメチルアニリン(260mg)をN, N-ジメチルホルムアミド(5m1)に溶解した後、2, <math>4-ジフルオロフェニルイソシアナート(121mg)を加えて室温で一晩反応した。メタノールを加え、減圧下溶媒を留去して得られ

た残さを、メタノール洗浄、濾取し、表題の化合物を219mg、収率61%で得た。

[0108]

 1 H-NMR (DMSO-d₆, 400MHz) δ 1. 99 (s, 3H), 2. 1 7 (s, 3H), 3. 90 (s, 3H), 5. 24 (s, 2H), 6. 18 (d, J=5. 1Hz, 1H), 6. 95-6. 98 (m, 2H), 7. 25-7. 63 (m, 9H), 8. 05-8. 08 (m, 1H), 8. 34-8. 36 (m, 2H), 8. 79 (s, 1H)

[0109]

製造例17:7-(ベンジルオキシ)-4-(3-フルオロ-4-ニトロフェノキシ)-6-メトキシキノリン

クロロベンゼン (3 m1) に7- (ベンジルオキシ) -4-クロロー6-メトキシキノリン (300 mg)、3-フルオロー4-ニトロフェノール (785 mg)を溶解し、130℃で5時間攪拌した。反応液にクロロホルム、水酸化ナトリウム水溶液を加え1時間攪拌した。反応液をクロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、ヘキサン/酢酸エチル (1/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を197 mg、収率47%で得た。

[0110]

 1 H-NMR (DMSO- 1 6, 400MHz) δ 3. 83 (s, 3H), 5. 2 5 (s, 2H), 6. 91 (d, J=5. 1Hz, 1H), 7. 29-7. 50 (m, 9H), 8. 18-8. 23 (m, 1H), 8. 56 (d, J=5. 1Hz, 1H)

[0111]

<u>製造例18:4-(4-アミノ-3-フルオロフェニキシ)-6-メトキシ-7</u> -キノリノール

7-(ベンジルオキシ)-4-(3-フルオロ-4-ニトロフェノキシ)-6ーメトキシキノリン(190mg)をN,N-ジメチルホルムアミド(5m1)、トリエチルアミン(1m1)に溶解し、水酸化パラジウム(40mg)を加え

、水素雰囲気下室温で一晩攪拌した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を75mg、収率56%で得た。

[0112]

 1 H-NMR (DMSO- d_{6} , 400MHz) δ 3. 87 (s, 3H), 5. 1 1 (s, 2H), 6. 29 (d, J=5. 1Hz, 1H), 6. 77-6. 80 (m, 2H), 6. 93-6. 99 (m, 1H), 7. 19 (s, 1H), 7. 40 (s, 1H), 8. 31 (d, J=5. 1Hz, 1H), 10. 03 (s, 1H)

[0113]

製造例 $19:N-(2,4-ジフルオロフェニル)-N'-\{2-フルオロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル<math>\}$ ウレア

4-(4-アミノ-3-フルオロフェニキシ)-6-メトキシ-7-キノリロール(70mg)をクロロホルム(1.5ml)、N,N-ジメチルホルムアミド(1ml)に溶解した後、2,4-ジフルオロフェニルイソシアナート(43mg)を加えて室温で3時間反応した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た

[0114]

 1 H-NMR (DMSO-d₆, 400MHz) δ 3. 94 (s, 3H), 6. 4 7 (d, J=5. 1Hz, 1H), 7. 04-7. 10 (m, 2H), 7. 28 -7. 34 (m, 2H), 7. 47 (s, 1H), 8. 05-8. 15 (m, 2 H), 8. 30 (s, 1H), 8. 43 (d, J=5. 1Hz, 1H), 8. 9 7-9. 03 (m, 2H), 10. 10 (s, 1H)

[0115]

製造例20:4-クロロー6-メトキシー7-キノリノール

7- (ベンジルオキシ) -4-クロロ-6-メトキシキノリン (100mg)

、チオアニソール($300\mu1$)、メタンスルホン酸($25\mu1$)をトリフルオロメタンスルホン酸(1m1)に溶解し30分間室温で攪拌した。減圧下溶媒を留去し、得られた残さに水酸化ナトリウム水溶液を加え中性にし、ヘキサンを加え懸濁液とした。結晶を吸引ろ取し、表題の化合物を53mg、収率75%で得た。

[0116]

¹H-NMR (DMSO-d₆, 400MHz): δ3. 98 (s, 3H), 7 . 33 (s, 1H), 7. 36 (s, 1H), 7. 47 (d, J=4. 9Hz, 1H), 8. 54 (d, J=4. 9Hz, 1H), 10. 37 (br, 1H)

製造例21:4-クロロー6-メトキシー7-(2-メトキシエトキシ) キノリン

4-クロロー6-メトキシー7-キノリノール(50mg)、炭酸カリウム(40mg)、ヨウ化テトラーnーブチルアンモニウム(9mg)、2ーブロモエチルメチルエーテル(40mg)をN,Nージメチルホルムアミド(10m1)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、ヘキサン/アセトン/ジクロロメタン(6/2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を47mg、収率74%で得た。

[0118]

¹H-NMR (CDCl₃, 400MHz): δ3. 49 (s, 3H), 3. 88 -3. 90 (m, 2H), 4. 04 (s, 3H), 4. 32-4. 35 (m, 2 H), 7. 35 (d, J=4. 9Hz, 1H), 7. 40 (s, 1H), 7. 4 3 (s, 1H), 8. 57 (d, J=4. 9Hz, 1H)

[0119]

製造例22:2-クロロー4-{[(6-メトキシー7-(2-メトキシエトキシ)-4-キノリル]オキシ}アニリン

ジメチルスルホキシド (2m1) に水素化ナトリウム (60w%、153mg

)を加え、60℃で30分攪拌後室温にし、4-アミノ-3-クロロフェノール塩酸塩(343mg)を加え室温で10分攪拌した。次にジメチルスルホキシド(2m1)に溶解した4-クロロ-6-メトキシ-7-(2-メトキシエトキシ)キノリン(254mg)を加え110℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(7/3)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を得た。

[0120]

 1 H-NMR (CDC1₃, 400MHz): δ 3. 49 (s, 3H), 3. 8 9-3. 91 (m, 2H), 4. 02 (s, 3H), 4. 09 (s, 2H), 4 . 33-4. 35 (m, 2H), 6. 43 (d, J=5. 4Hz, 1H), 6. 85 (d, J=8. 5Hz, 1H), 6. 93-6. 96 (m, 1H), 7. 1 5 (d, J=2. 7Hz, 1H), 7. 41 (s, 1H), 7. 52 (s, 1H), 8. 47 (d, J=5. 1Hz, 1H)

[0121]

製造例23:2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オ キシ]アニリン

ジメチルスルホキシド(40m1)に水素化ナトリウム(60w%、5.80g)を加え、60℃で30分攪拌後室温にした。次に4-アミノ-3-クロロフェノール塩酸塩(13.05g)を加え室温で10分攪拌後、J.Am.Chem.Soc.,68,1299(1946)、J.Am.Chem.Soc.,68,1305(1946)などに記載されるような慣用手段によって合成したクロロキナゾリン誘導体である、4-クロロー6,7-ジメトキシキナゾリン(8.14g)を加えた。110℃で30分攪拌した後、反応液に水を加えクロロホルム抽出した。次いで、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さにメタノールを加え懸濁液とした。析出した結晶を吸引ろ取し、表題の化合物を9.13g、収率76%で得た。

[0122]

 1 H-NMR (CDC1₃, 400MHz): δ 4. 05-4. 08 (m, 8H), 6. 85 (d, J=8. 5Hz, 1H), 7. 00 (dd, J=2. 7Hz, 8. 8Hz, 1H), 7. 21 (d, J=2. 7Hz, 1H), 7. 32 (s, 1H), 7. 52 (s, 1H), 8. 64 (s, 1H)

質量分析値(ESI-MS, m/z): 332(M+1)

[0123]

製造例24:N-ベンジル-N-(2,4-ジフルオロフェニル)アミン

2,4ージフルオロアニリン(2.37m1)、ベンズアルデヒド(2.36m1)を溶解したメタノール(46m1)に硫酸マグネシウム(5.59g)と少量の酢酸を加え、室温で45分間攪拌した。氷冷下水素化ホウ素ナトリウム(2.64g)を加え、室温で1時間攪拌した。減圧下溶媒を留去し、水、酢酸エチルを加え攪拌し、セライトろ過した。有機層を酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、ヘキサン/アセトン(30/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3.04g、収率60%で得た。

[0124]

¹H-NMR (CDCl₃, 400MHz): δ4. 34 (s, 2H), 6. 5 6-6. 82 (m, 3H), 7. 25-7. 38 (m, 5H)

[0125]

<u>製造例25:メチル 4-(ベンジルオキシ)-5-メトキシ-2-ニトロベン</u> <u>ゾエート</u>

市販のメチルバニレート(50g)、炭酸カリウム(76g)をN, Nージメチルホルムアミド(200ml)に溶解し、臭化ベンジル(33ml)を10分かけて滴下し、室温で一晩攪拌した。水を200ml加え、酢酸エチルで抽出後、さらに有機相に飽和食塩水を加え酢酸エチルで抽出した。有機相に硫酸ナトリウムを加え乾燥した。次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥すると白色の固体を68g得た。続いて、氷冷下で酢酸100mlおよび硝酸200mlを加え、8時間攪拌後に水を加えた。得られた固体

をろ取し、水で十分洗浄し真空ポンプで乾燥させ表題の化合物を74g得た。収率93%。

¹H-NMR (CDCl₃, 400MHz): 3. 90 (s, 3H), 3. 98 (s, 3H), 5. 21 (s, 2H), 7. 08 (s, 1H), 7. 31-7. 45 (m, 5H), 7. 51 (s, 1H)

[0126]

製造例26:7-(ベンジルオキシ)-6-メトキシ-3,4-ジヒドロ-4-キナゾリノン

室温下でメチル 4-(ベンジルオキシ)-5-メトキシー2-二トロベンゾエート(15.0g)を酢酸(200ml)に溶解後、鉄(粉末)(13.2g)を加え、90度まで昇温し1時間攪拌した。得られた灰色の固体をセライトろ過し、酢酸で洗浄した。母液に濃塩酸を加えた後、溶媒を減圧溜去すると固体が析出した。得られた固体をろ取し、酢酸エチル、エーテルで洗浄し、真空ポンプで乾燥した。続いて、得られた固体にクロロホルム、メタノールを加えけん濁させた後、10%水酸化ナトリウム水溶液を加え溶解した。さらにクロロホルムで抽出し、水で洗浄した後、有機相を硫酸ナトリウムで乾燥し、次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、メチル 2-アミノー4-(ベンジルオキシ)-5-メトキシベンゾエートの粗精製物を9.5g得た。収率70%。

得られたメチル 2-アミノー4-(ベンジルオキシ)-5-メトキシベンゾエート(650mg)をN, N-ジメチルホルムアミド(15m1)、メタノール(3m1)に溶解し、ホルムアミド(0.46m1)、ナトリウムメトキシド(373mg)を加え、100度まで昇温し、一晩攪拌した。室温まで冷却後水を10ml加えた。1M塩酸水で反応液を中和すると固体が析出した。固体をろ取し、水、エーテルで洗浄後真空ポンプで乾燥し、表題の化合物を566mg得た。収率87%。

¹H-NMR (DMSO-d₆, 400MHz): 3.88 (s, 3H), 5.25 (s, 2H), 7.23 (s, 1H), 7.33-7.49 (m, 6H), 7.9 7 (s, 1H), 12.06 (br, 1H)

[0127]

製造例27:7-(ベンジルオキシ)-4-クロロー6-メトキシキナゾリン

7-(ベンジルオキシ)-6-メトキシ-3,4-ジヒドロ-4-キナゾリノン(400mg)、ジイソプロピルエチルアミン(0.3ml)にオキシ塩化リン(515ml)を加え、20分間還流した。室温に冷却後、10%水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。有機相を硫酸ナトリウムで乾燥し、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、表題の化合物を420mg得た。収率99%。

¹ H-NMR (CDCl₃, 400MHz): 4.08 (s, 3H), 5.34 (s, 2H), 7.35-7.51 (m, 7H), 8.86 (s, 1H)

[0128]

<u>製造例28:メチル 5- (ベンジルオキシ) -4-メトキシ-2-ニトロベン</u> <u>ゾエート</u>

市販のメチル 3ーヒドロキシー4ーメトキシベンゾエート(10g)、炭酸カリウム(23g)をN,Nージメチルホルムアミド(50m1)に溶解し、臭化ベンジル(6.5m1)を10分かけて滴下し、室温で一晩攪拌した。水を200m1加え、酢酸エチルで抽出後、さらに有機相に飽和食塩水を加え酢酸エチルで抽出した。有機相に硫酸ナトリウムを加え乾燥した。次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥すると白色の固体を8.4g得た。続いて、得られた固体7.0gをフラスコに入れ、氷冷下で酢酸100m1および硝酸200m1を加え、8時間攪拌後に水を加えた。得られた固体を3取し、水で十分洗浄し真空ポンプで乾燥させ表題の化合物を7.9g得た。収率96%。

¹H-NMR (CDCl₃, 400MHz): 3.89 (s, 3H), 3.96 (s, 3H), 5.21 (s, 2H), 7.15 (s, 1H), 7.34-7.45 (m, 6H)

[0129]

<u>製造例29:6-(ベンジルオキシ)-7-メトキシ-3,4-ジヒドロ-4-</u> キナゾリノン 室温下でメチル 5- (ベンジルオキシ) -4-メトキシ-2-ニトロベンゾエート (15.8g) を酢酸 (200ml) に溶解後、鉄 (粉末) (13.9g) を加え、90度まで昇温し1時間攪拌した。得られた灰色の固体をセライトろ過し、酢酸で洗浄した。母液に濃塩酸を加えた後、溶媒を減圧溜去すると固体が析出した。得られた固体をろ取し、酢酸エチル、エーテルで洗浄し、真空ポンプで乾燥した。続いて、得られた固体にクロロホルム、メタノールを加えけん濁させた後、10%水酸化ナトリウム水溶液を加え溶解した。さらにクロロホルムで抽出し、水で洗浄した後、有機相を硫酸ナトリウムで乾燥し、次に、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、メチル 2-アミノー5- (ベンジルオキシ) -4-メトキシベンゾエートの粗精製物を10.4g得た。収率73%。

得られたメチル 2-アミノー5-(ベンジルオキシ)-4-メトキシベンゾエート(5.0g)をN,Nージメチルホルムアミド(150m1)、メタノール(30m1)に溶解し、ホルムアミド(3.5m1)、ナトリウムメトキシド(2.8g)を加え、100度まで昇温し、一晩攪拌した。室温まで冷却後水を10ml加えた。1 M塩酸水で反応液を中和すると固体が析出した。固体をろ取し、水、エーテルで洗浄後真空ポンプで乾燥し、表題の化合物を3.7g得た。収率76%。

 1 H-NMR (DMS0- d_{6} , 400MHz): 3. 92 (s, 3H), 5. 21 (s, 2H), 7. 16 (s, 1H), 7. 33-7. 49 (m, 5H), 7. 5 (s, 1H), 7. 99 (s, 1H), 12. 06 (br, 1H)

[0130]

製造例30:6-(ベンジルオキシ)-4-クロロ-7-メトキシキナゾリン

6-(ベンジルオキシ)-7-メトキシ-3,4-ジヒドロ-4-キナゾリノン(3.5g)、ジイソプロピルエチルアミン(11.5ml)にオキシ塩化リン(3.1ml)を加え、20分間還流した。室温に冷却後、10%水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。有機相を硫酸ナトリウムで乾燥し、有機相をろ過後減圧下で溶媒を溜去し、得られた残査を真空ポンプで乾燥し、表題の化合物を2.9g得た。収率72%。

¹H-NMR (CDCl₃, 400MHz): 4.07 (s, 3H), 5.32 (s, 2H), 7.35-7.53 (m, 7H), 8.86 (s, 1H)

[0131]

実施例 $1:N-(2,4-ジフルオロベンジル)-N'-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フルオロフェニル<math>\}$ ウレア

4-[(6,7-ジメトキシー4ーキノリル)オキシ]-2-フルオロアニリン(100mg)をトルエン(5.0m1)、トリエチルアミン(1.0m1)に加熱溶解した後、ジクロロメタン(1.0m1)に溶解したトリホスゲン(103mg)を加えて3分間加熱還流した。次に2,4-ジフルオロベンジルアミン(54mg)を加えて、さらに5時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を123mg、収率80%で得た。

[0132]

 1 H-NMR (CDCl₃, 400MHz): δ4. 02 (s, 3H), 4. 0 3 (s, 3H), 4. 47 (d, J=5. 9Hz, 2H), 5. 78-5. 90 (m, 1H), 6. 46 (d, J=5. 4Hz, 1H), 6. 74-6. 99 (m, 4H), 7. 03-7. 14 (m, 1H), 7. 35-7. 44 (m, 2H), 7. 50 (s, 1H), 8. 16 (t, J=9. 0Hz, 1H), 8. 47 (d, J=5. 1Hz, 1H)

質量分析値 (FD-MS, m/z):483 (M⁺)

[0133]

実施例 $2:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2-$ フルオロフェニル $\}-N'-(2-フルオロエチル)$ ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ] -2-iフルオロアニリン $(100\,\mathrm{mg})$ をトルエン $(10\,\mathrm{ml})$ 、トリエチルアミン $(0.5\,\mathrm{ml})$ に加熱溶解した後、ジクロロメタン $(1.0\,\mathrm{ml})$ に溶解したトリホスゲン $(4.7\,\mathrm{mg})$ を加えて5分間加熱還流した。次に塩酸2-iフルオロエチルアミン $(4.2\,\mathrm{mg})$

mg)を加えて、さらに8時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を93mg、収率72%で得た。

[0134]

 1 H-NMR (DMSO- 1 6, 400MHz): δ 3. 40 (m, 1H), 3. 47 (m,1H), 3. 93 (s, 3H), 3. 95 (s, 3H), 4. 42 (t, J=4. 9Hz, 1H), 4. 54 (t, J=4. 9Hz, 1H), 6. 5 1 (d, J=5. 4Hz, 1H), 6. 88 (m, 1H), 7. 05 (m, 1H), 7. 28 (dd, J=2. 7Hz, J=11. 7Hz, 1H), 7. 40 (s, 1H), 7. 49 (s, 1H), 8. 21 (m, 1H), 8. 47 (br, 1H), 8. 48 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):404 (M⁺+1)

[0135]

実施例 $3:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2-$ フルオロフェニルN'-(2-ピリジルメチル)ウレア

4-[(6,7-i)]メトキシー4-iナノリル)オキシ] -2-iフルオロアニリン (100mg) をトルエン (5m1)、トリエチルアミン (1m1) に溶解した後、ジクロロメタンに溶解したトリホスゲン (104mg) を加えてリフラックスを5分間した。次に2-(アミノメチル)

ピリジン(40μ1)を加え、加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液(1m1)、クロロホルム(2m1)を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(8/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を126mg、収率88%で得た。

[0136]

 1 H-NMR (CDC1₃, 400MHz) : δ 4. 07 (s, 3H), 4. 09 (s,3H), 4. 61 (d,J=5. 4Hz, 2H), 6. 40-6. 50 (b

r, 1H), 6. 61 (d, J=5. 9Hz, 1H), 6. 92-7. 01 (m, 2H), 7. 21-7. 25 (m, 1H), 7. 36 (d, J=7. 8Hz, 1H), 7. 56 (s, 1H), 7. 68-7. 78 (m, 2H), 7. 75 (s, 1H), 8. 27-8. 34 (m, 1H), 8. 49 (d, J=6. 1Hz, 1H), 8. 55 (d, J=4. 1Hz, 1H)

質量分析値 (FD-MS, m/z):448 (M⁺)

[0137]

<u>実施例4:N-アリル-N'-{4-[(6,7ジメトキシ-4-キノリル)オ</u> キシ]-2-フルオロフェニル}ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-フルオロアニリン(100mg)をトルエン(5ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(104mg)を加え、加熱還流を5分間した。次にアリルアミン(22mg)を加えて、さらに加熱還流を4時間した。反応液に飽和炭酸水素ナトリウム水溶液(1ml)、クロロホルム(2ml)を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を125mg、収率98%で得た。

[0138]

 1 H-NMR (CDC1₃, 400MHz): δ3. 91-3. 96 (m, 2H), 4. 06 (s, 3H), 4. 09 (s, 3H), 5. 14-5. 20 (m, 1H), 5. 26-5. 33 (m, 1H), 5. 58-5. 66 (br, 1H), 5. 86-5. 98 (m, 1H), 6. 56 (d, J=5. 9Hz, 1H), 6. 88-7. 01 (m, 2H), 7. 23 (s, 1H), 7. 55 (s, 1H), 7. 66 (s, 1H), 8. 26-8. 33 (m, 1H), 8. 47 (d, J=5. 9Hz, 1H)

質量分析値 (FD-MS, m/z):397 (M⁺)

[0139]

<u>実施例5:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-フ</u>

<u>ルオロフェニル</u>} - N' - プロピルウレア

4-[(6,7-ジメトキシー4ーキノリル)オキシ]-2-フルオロアニリン (100mg)をトルエン (10ml)、トリエチルアミン (2ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン (104mg)を加えて5分間加熱還流した。次にプロピルアミン (29mg)を加え、40分間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した後、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール (10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を89mg、収率71%で得た。

[0140]

 1 H-NMR (CDCl₃, 400MHz) : δ0. 97 (t, J=7. 6Hz, 3H), 1. 55-1. 64 (m, 2H), 3. 24-3. 29 (m, 2H), 4. 05 (s, 3H), 4. 06 (s, 3H), 5. 11 (t, J=5. 4Hz, 1H), 6. 51 (d, J=5. 4Hz, 1H), 6. 74-6. 76 (m, 1H), 6. 91-6. 99 (m, 2H), 7. 48 (s, 1H), 7. 52 (s, 1H), 8. 18-8. 23 (m, 1H), 8. 49 (d, J=5. 6Hz, 1H)

質量分析値 (FD-MS, m/z):399 (M⁺)

[0141]

実施例 $6:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2-$ フルオロフェニルN'-(4-フルオロブチル)ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ] -2-iフルオロアニリン $(100\,\mathrm{mg})$ をトルエン $(6\,\mathrm{m}\,1)$ 、トリエチルアミン $(1.0\,\mathrm{m}\,1)$ に加熱溶解した後、ジクロロメタン $(1.0\,\mathrm{m}\,1)$ に溶解したトリホスゲン $(104\,\mathrm{m}\,\mathrm{g})$ を加えて5分間加熱還流した。次に

4-フルオロブチルアミン塩酸塩(55mg)を加えて、さらに2時間加熱還流 した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、 クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られ た残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグ ラフィーにより精製し、表題の化合物を80mg、収率55%で得た。

[0142]

 1 H-NMR (CDCl₃, 400MHz): δ1. 66-1. 87 (m, 4H), 3. 33-3. 40 (m, 2H), 4. 04 (s, 3H), 4. 05 (s, 3 H), 4. 44 (t, J=5. 6Hz, 1H), 4. 56 (t, J=5. 7Hz, 1H), 4. 90 (t, J=5. 7H, z, 1H), 6. 48-6. 52 (m, 2H), 6. 93-7. 02 (m, 2H), 7. 42 (s, 1H), 7. 51 (s, 1H), 8. 15 (t, J=8. 9Hz, 1H), 8. 50 (d, J=5. 1Hz, 1H)

質量分析値(FD-MS, m/z):431 (M⁺)

[0143]

実施例 $7:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-$ フルオロフェニル $\}-N'-(2-プロピニル)$ ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-フルオロアニリン(150mg)をクロロホルム(10m1)、トリエチルアミン(2m1)に溶解し、ジクロロメタンに溶解したトリホスゲン(156mg)を加えて10分間加熱還流した。次にプロパルギルアミン(53mg)を加えて、さらに30分間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を164mg、収率87%で得た。

[0144]

 1 H-NMR (DMSO- d_{6} , 400MHz) δ 2. 49-2. 51 (m, 1H), 3. 90-3. 95 (m, 8H), 6. 52 (d, J=5. 1Hz, 1H), 6. 89-6. 92 (m, 1H), 7. 04-7. 06 (m, 1H), 7. 26-7. 29 (m, 1H), 7. 39 (s, 1H), 7. 49 (s, 1H), 8. 16-8. 20 (m, 1H), 8. 46-8. 49 (m, 2H)

[0145]

<u>実施例8:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2-</u>フルオロフェニル-N'-エチルウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-フルオロアニリン(100mg)をトルエン(8m1)、トリエチルアミン(1.0m1)に加熱溶解した後、トルエン(1.0m1)に溶解したトリホスゲン(47mg)を加えて5分間加熱還流した。次に塩酸エチルアミン(60mg)を加えて、さらに5時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を70mg、収率53%で得た。

[0146]

 1 H-NMR (CDCl₃, 400MHz): δ 1. 21 (t, J=7. 3Hz, 3H), 3. 34 (m,2H), 4. 06 (s, 3H), 4. 08 (s, 3H), 5. 64 (br, 1H), 6. 55 (d, J=5. 6Hz, 1H), 6. 89 (dd, J=2. 7Hz, J=11. 2Hz, 1H), 6. 97 (m, 1H), 7. 26 (br, 1H), 7. 54 (s, 1H), 7. 62 (s, 1H), 8. 28 (t, J=9. 0Hz, 1H), 8. 47 (d, J=5. 6Hz, 1H) 質量分析値 (ESI-MS, m/z): 386 (M⁺+1)

[0147]

実施例9: $N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キノリル)$ オキシ] $-2-フルオロフェニル\}$ ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-フルオロアニリン(100mg)をトルエン(8ml)、トリエチルアミン(1.0ml)に加熱溶解した後、トルエン(1.0ml)に溶解したトリホスゲン(47mg)を加えて5分間加熱還流した。次にブチルアミン(80mg)を加えて、さらに5時間加熱還流した。反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、酢酸エチル層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルク

ロマトグラフィーにより精製し、表題の化合物を117mg、収率81%で得た

[0148]

¹H-NMR (CDCl₃, 400MHz): δ0. 94 (t, J=7. 3Hz, 3H), 1. 40 (m,2H), 1. 55 (m,2H), 3. 29 (dd, J=7. 1Hz, J=12. 9Hz, 2H), 4. 06 (s, 3H), 4. 09 (s, 3H), 5. 72 (br, 1H), 6. 56 (d, J=5. 9Hz, 1H), 6. 88 (dd, J=2. 7Hz, J=11. 2Hz, 1H), 6. 97 (d, J=9. 0Hz, 1H), 7. 33 (s, 1H), 7. 55 (s, 1H), 7. 65 (s, 1H), 8. 30 (t, J=9. 0Hz, 1H), 8. 46 (d, J=5. 9Hz, 1H)

質量分析値(ESI-MS, m/z):414 (M⁺+1)

[0149]

<u>実施例10:N-(sec-ブチル)-N'-{4-[(6,7-ジメトキシ-4-</u> キノリル)オキシ]-2-フルオロフェニル}ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-フルオロアニリン (100mg)、をクロロホルム(5ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(104mg)を加えて5分間加熱還流した。次にsec-ブチルアミン(48μl)を加え、10分間加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(8/2)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を117mg、収率89%で得た。

[0150]

 1 H-NMR (CDCl₃, 400MHz): δ0. 95 (t, J=7. 6Hz, 3H), 1. 18 (d, J=6. 6Hz, 3H), 1. 47-1. 55 (m, 2H), 3. 79-3. 89 (m, 1H), 4. 04 (s, 6H), 5. 28 (d, J=8. 1Hz, 1H), 6. 48 (d, J=5. 4Hz, 1H), 6. 89-6. 98 (m, 2H), 7. 08 (d, J=2. 7Hz, 1H), 7. 42 (s, 1H), 7. 51 (s, 1H), 8. 20-8. 24 (m, J=9. 0Hz,

1H), 8. 48 (d, J=5. 4Hz, 1H) 質量分析値(ESI-MS, m/z):414 (M⁺+1) 【0151】

4-[(6,7-i)]メトキシー4-iナノリル)オキシ]ー2-iフルオロアニリン (100mg) をクロロホルム (5m1)、トリエチルアミン (1m1) に溶解した後、ジクロロメタンに溶解したトリホスゲン (104mg) を加えて5分間加熱還流した。次にイソブチルアミン $(50\mu1)$ を加え、10分間加熱還流した。反応液をクロロホルム/アセトン (4/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た。

[0152]

¹H-NMR (CDCl₃,400MHz): δ0.94 (d, J=6.6Hz, 6H), 1.77-1.84 (m, 1H), 3.10-3.13 (m, 2H), 4.03 (s, 3H), 4.03 (s, 3H), 5.58 (t, J=5.4Hz, 1H), 6.47 (d, J=5.4Hz, H), 6.88-6.97 (m, 2H), 7.18 (s, 1H), 7.41 (s, 1H), 7.50 (s, 1H), 8.18-8.23 (m, 1H), 8.48 (d, J=5.1Hz, 1H) 質量分析値 (ESI-MS, m/z): 414 (M⁺+1)

[0153]

実施例 $12:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2-$ フルオロフェニルN'-(1,2-ジメチルプロピル) ウレア

4-[(6,7-i)メトキシー4-iキノリル)オキシ]ー2-iフルオロアニリン $(100\,\mathrm{mg})$ 、をクロロホルム $(5\,\mathrm{m}\,1)$ 、トリエチルアミン $(1\,\mathrm{m}\,1)$ に溶解した後、ジクロロメタンに溶解したトリホスゲン $(4\,7\,\mathrm{mg})$ を加えて $3\,0$ 分間室温で攪拌した。次に1,2-iジメチルプロピルアミン $(5\,5\,\mu\,1)$ を加え、 $1\,0$ 分間室温で攪拌した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/1) で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を $8\,9\,\mathrm{mg}$ 、収率 $6\,5\%$ で得た。

[0154]

¹H-NMR (CDC1₃, 400MHz): δ0. 93 (d, J=2. 2Hz, 3H), 0. 95 (d. J=2. 4Hz, 3H), 1. 14 (d, J=6. 8Hz, 3H), 1. 72-1. 80 (m, 1H), 3. 76-3. 84 (m, 1H), 4. 04 (s, 3H), 4. 05 (s, 3H), 4. 91 (d, J=8. 5Hz, 1H), 6. 48 (d, J=5. 4Hz, 1H), 6. 74 (d, J=2. 9Hz, 1H), 6. 91-6. 98 (m, 2H), 7. 42 (s, 1H), 7. 51 (s, 1H), 8. 18-8. 23 (m, 1H), 8. 49 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):428 (M+1)

[0155]

<u>実施例 $13:N-\{2-DDD-4-[(6,7-i)++i-4-+J)$ </u>オキシ]フェニル]-N-プロピルウレア

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(100mg)をクロロホルム(7.5ml)、トリエチルアミン(1ml)に溶解した後、クロロホルムに溶解したトリホスゲン(99mg)を加えて、加熱環流を5分間した。次にn-プロピルアミン(21mg)を加えて、さらに加熱環流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(8/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た。

[0156]

 1 H-NMR (CDC1₃, 400MHz) : δ0. 99 (t, J=7. 3Hz, 3H), 1. 58-1. 65 (m, 2H), 3. 24-3. 31 (m, 2H), 4. 04 (s, 3H), 4. 05 (s, 3H), 4. 94 (t, J=5. 9Hz, 1H), 6. 48 (d, J=5. 1Hz, 1H), 6. 77 (s, 1H), 7. 11 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 21 (d, J=2. 7Hz, 1H), 7. 43 (s, 1H), 7. 52 (s, 1H), 8. 27 (d, J=9. 0Hz, 1H), 8. 50 (d, J=5. 1Hz, 1H)

質量分析値 (FD-MS, m/z):415,417 (M⁺) 【0157】

<u>実施例 $14:N-\{2-DDD-4-[(6,7-i)]$ </u> + i +

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)、をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に4-フルオロー2-メチルアニリン(126μ1)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を142mg、収率79%で得た

[0158]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 2. 37 (s, 3H), 4. 04 (s, 3H), 4. 04 (s, 3H), 6. 31 (s, 1H), 6. 47 (d, J=5. 1Hz, 1H), 6. 97-7. 06 (m, 3H), 7. 11-7. 14 (m, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 41-7. 44 (m, 2H), 7. 50 (s, 1H), 8. 35 (d, J=9. 0Hz, 1H), 8. 50 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):482,484 (M+1)

[0159]

実施例 $15:N-(5-プロモ-6-メチル-2-ピリジル)-N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]フェニル}ウレア 2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]アニリン(<math>122mg$)、をクロロホルム(10m1)、トリエチルアミン(1m1)に答

解した後、ジクロロメタンに溶解したトリホスゲン(1 1 0 mg)を加えて3 0 分間室温で攪拌した。次に6-アミノ-3-ブロモ-2-メチルピリジン(2 0 8 mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶 媒を留去して得られた残さを、クロロホルム/アセトン(2 / 1) で展開するシ リカゲルクロマトグラフィーにより精製し、表題の化合物を155mg、収率77%で得た。

[0160]

¹H-NMR (CDCl₃, 400MHz): δ2. 69 (s, 3H), 4. 06 (s, 6H), 6. 53 (d, J=5. 4Hz, 1H), 6. 56 (d, J=8. 5Hz, 1H), 7. 14-7. 17 (m, 1H), 7. 30 (d, J=2. 7Hz, 1H), 7. 44 (s, 1H), 7. 53 (s, 1H), 7. 75 (d, J=8. 5Hz, 1H), 7. 93 (s, 1H), 8. 49 (d, J=9. 0Hz, 1H), 8. 52 (d, J=5. 4Hz, 1H), 11. 92 (s, 1H)

質量分析値(ESI-MS, m/z):543,545,547(M⁺+1) 【0161】

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)、をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノー5-クロロピリジン(143mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を148mg、収率82%で得た。

[0162]

¹H-NMR (CDCl₃, 400MHz): δ4.06 (s, 3H), 4.06 (s, 3H), 6.53 (d, J=5.1Hz, 1H), 6.95 (d, J=8.8Hz, 1H), 7.14-7.17 (m, 1H), 7.31 (d, J=2.7Hz, 1H), 7.44 (s, 1H), 7.53 (s, 1H), 7.64-7.67 (m, 1H), 8.28 (d, J=2.7Hz, 1H), 8.50-8.53 (m, 2H), 8.92 (s, 1H), 12.11 (brs, 1H) 質量分析値 (ESI-MS, m/z) 485, 487, 489: (M⁺+1)

[0163]

実施例 $17:N-(5-プロモ-2-ピリジル)-N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]フェニル}ウレア$

2-クロロー4-[(6, 7-ジメトキシー4-キノリル) オキシ]アニリン (122mg)、をクロロホルム (10m1)、トリエチルアミン (1m1) に溶解した後、ジクロロメタンに溶解したトリホスゲン (110mg) を加えて30分間室温で攪拌した。次に2-アミノー5-ブロモピリジン (192mg) を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を108mg、収率55%で得た。

[0164]

¹H-NMR (CDC1₃, 400MHz): δ4. 06 (s, 3H), 4. 06 (s, 3H), 6. 53 (d, J=5. 1Hz, 1H), 6. 80 (d, J=8. 8Hz, 1H), 7. 14-7. 18 (m, 1H), 7. 30 (d, J=2. 7Hz, 1H), 7. 45 (s, 1H), 7. 53 (s, 1H), 7. 77-7. 80 (m, 1H), 8. 15 (s, 1H), 8. 39 (d, J=2. 4Hz, 1H), 8. 50 (d, J=9. 0Hz, 1H), 8. 52 (d, J=5. 4Hz, 1H), 12. 09 (brs, 1H)

質量分析値(ESI-MS, m/z):529,531,533 (M⁺+1) 【0165】

実施例 $18:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)]$ オキシ] フェニル1+(2-3) フェニル1+(2-3) フェニル1+(3) フェニー1+(3) フェ

2-クロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]アニリン(100mg)をクロロホルム(10ml)に溶解し、2-メトキシフェニルイソシアナート(54mg)を加えて60℃で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(6/4)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を111mg、収率77%で得た。

[0166]

 1 H-NMR (CDC1₃, 400MHz): δ3. 85 (s, 3H), 4. 04 (s, 3H), 4. 05 (s, 3H), 6. 50 (d, J=5. 1Hz, 1H), 6. 89-6. 93 (m, 1H), 6. 98-7. 03 (m, 1H), 7. 05-7. 10 (m, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 23 (d, J=2. 7Hz, 1H), 7. 35 (s, 1H), 7. 36 (s, 1H), 7. 44 (s, 1H), 7. 52 (s. 1H), 8. 05-8. 07 (m, 1H), 8. 34 (d, J=9. 0Hz, 1H), 8. 52 (d, J=5. 4Hz, 1H)

質量分析値 (ESI-MS, m/z):480,482 (M++1)

[0167]

実施例 $19:N-\{2-DDD-4-[(6,7-ジメトキシ-4-キノリル)$ オキシ]フェニルN'-(2-メチルフェニル)ウレア

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)をクロロホルム(10ml)に溶解し、oートルイルイソシアナート(59mg)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を59mg、収率34%で得た。

[0168]

 1 H-NMR (CDC1₃, 400MHz): δ2. 38 (s, 3H), 4. 04 (s, 3H), 4. 05 (s, 3H), 6. 22 (s, 1H), 6. 47 (d, J=5. 1Hz, 1H), 7. 01 (s, 1H), 7. 11-7. 14 (m, 1H), 7. 18 (d, J=2. 7Hz, 1H), 7. 25-7. 35 (m, 3H), 7. 42 (s, 1H), 7. 46 (d, J=6. 8Hz, 1H), 7. 50 (s, 1H), 8. 37 (d, J=8. 8Hz, 1H), 8. 50 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):464,466(M+1)

[0169]

実施例 $20:N-\{2-7000-4-[(6,7-ジメトキシ-4-キノリル)$

<u>オキシ] フェニル $\}$ -N' - (5 - メチル- 2 - ピリジル) ウレア</u>

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)、をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノー5-ピコリン(120mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を119mg、収率69%で得た。

[0170]

¹H-NMR (CDCl₃, 400MHz): δ2. 31 (s, 3H), 4. 06 (s, 6H), 6. 53 (d, J=5. 4Hz, 1H), 6. 76 (d, J=8. 3Hz, 1H), 7. 13-7. 16 (m, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 43 (s, 1H), 7. 49-7. 52 (m, 1H), 7. 54 (s, 1H), 8. 00 (s, 1H), 8. 14 (s, 1H), 8. 52 (d, J=5. 1Hz, 1H), 8. 55 (d, J=9. 0Hz, 1H), 12. 57 (brs, 1H)

質量分析値(ESI-MS, m/z):465,467 (M⁺+1)

[0171]

実施例 $21:N-\{2-700-4-[(6,7-ジメトキシ-4-キノリル)]$ オキシ]フェニルN'-(6-メチル-2-ピリジル) ウレア

2-クロロー4-[(6, 7-ジメトキシー4-キノリル) オキシ]アニリン(122mg)、をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に6-アミノー2-ピコリン(120mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を73mg、収率42%で得た。

[0172]

 1 H-NMR (CDC1₃, 400MHz) : δ 2. 57 (s, 3H), 4. 06

(s, 6H), 6. 54 (d, J=5. 4Hz, 1H), 6. 66 (d, J=8. 1Hz, 1H), 6. 83 (d, J=7. 6Hz, 1H), 7. 15-7. 18 (m, 1H), 7. 30 (d, J=2. 7Hz, 1H), 7. 44 (s, 1H), 7. 54-7. 59 (m, 2H), 8. 36 (s, 1H), 8. 52 (d, J=5. 1Hz, 1H), 8. 57 (d, J=9. 0Hz, 1H), 12. 45 (s, 1H)

質量分析値(ESI-MS, m/z):465,467 (M⁺+1)

[0173]

実施例 $22:N-\{2-DDD-4-[(6,7-ジメトキシ-4-キノリル)$ オキシ] フェニルN'-(4-メトキシフェニル) ウレア塩酸塩

2-クロロー4-[(6, 7-ジメトキシー4-キノリル) オキシ] アニリン (100mg) をクロロホルム (4m1) に溶解した後、4-メトキシフェニルイソシアナート(60μ1) を加えて室温で一晩反応した。減圧下溶媒を留去し、得られた残さを少量のクロロホルムに溶解した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、N-2-クロロー4-[(6, 7-ジメトキシー4-キノリル) オキシ] フェニルーN'-(4-メトキシフェニル) ウレアを90mg、収率67%で得た。これをメタノール4m1にけん濁し、塩酸ーメタノール溶液を加え室温で4時間攪拌後、溶媒を留去すると表題の化合物が得られた

[0174]

 1 H-NMR (DMSO- d_{6} , 400MHz): δ 3. 73 (s, 3H), 4. 03 (s, 3H), 4. 05 (s, 3H), 6. 90 (d, J=9. 3Hz, 2 H), 6. 97 (d, J=6. 6Hz, 1H), 7. 37-7. 41 (m, 3H), 7. 62 (s, 1H), 7. 67 (d, J=2. 7Hz, 1H), 8. 39 (d, J=9. 0Hz, 1H), 8. 49 (s, 1H), 8. 82 (d, J=6. 6Hz, 1H), 9. 49 (s, 1H)

[0175]

<u>実施例23:N-{2-クロロ-4-[(6, 7-ジメトキシ-4-キノリル)</u> オキシ]フェニル) - (1-ナフチル) ウレア

2-クロロー4-[(6,7-ジメトキシー4-キノリル)オキシ]アニリン(122mg)をクロロホルム(10ml)に溶解し、1-ナフチルイソシアナート(75mg)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を105mg、収率57%で得た。

[0176]

 1 H-NMR (CDC1₃, 400MHz) : δ4. 03 (s, 3H), 4. 04 (s, 3H), 6. 44 (d, J=5. 4Hz, 1H), 6. 72 (s, 1H), 7. 10-7. 13 (m, 3H), 7. 41 (s, 1H), 7. 48 (s, 1H), 7. 55-7. 69 (m, 4H), 7. 88-7. 96 (m, 2H), 8. 15 (d, J=7. 6Hz, 1H), 8. 38-8. 40 (m, 1H), 8. 48 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):500,502 (M+1)

[0177]

<u>実施例24:N-(2,4-ジフルオロフェニル)-N'-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル</u>ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ] -2, 3-iジメチルアニリン(710 mg)をクロロホルム(7 m1)に溶解した後、2, 4-iジフルオロフェニルイソシアナート(310 μ 1)を加えて加熱還流を1時間した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を735 mg、収率70%で得た。

[0178]

 1 H-NMR (CDCl₃, 400MHz): δ 2. 14 (s, 3H), 2. 2 7 (s, 3H), 4. 04 (s, 3H), 4. 06 (s, 3H), 6. 27 (d, J=5. 4Hz, 1H), 6. 78-6. 89 (m, 2H), 6. 95 (s, 1H), 7. 03 (d, J=8. 5Hz, 1H), 7. 10 (s, 1H), 7. 40-7. 45 (m, 2H), 7. 61 (s, 1H), 8. 03-8. 12 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H)

質量分析値(FAB-MS, m/z):480 (M⁺+1) 【0179】

実施例25:N-{4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルフェニル}-N'-(4-フルオロ-2-メチルフェニル)ウレア4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に4-フルオロ-2-メチルアニリン(126μ1)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を160mg、収率91%で得た。

[0180]

 1 H-NMR (CDC1₃, 400MHz) : δ2. 12 (s, 3H), 2. 22 (s, 3H), 2. 25 (s, 3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 24 (d, J=5. 1Hz, 1H), 6. 33 (s, 1H), 6. 42 (s, 1H), 6. 94-7. 03 (m, 3H), 7. 43 (s, 1H), 7. 46-7. 55 (m, 2H), 7. 60 (s, 1H), 8. 43 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):476 (M⁺+1)

[0181]

実施例 $26:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル<math>\}-N'-(3-フルオロ-2-メトキシフェニル)$ ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ]ー2、3-iジメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に3-iフルオロー0-アニシジン($132\mu1$)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去し

て得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を23mg、収率13%で得た。

[0182]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 15 (s. 3H), 2. 32 (s, 3H), 3. 84 (d, J=1. 7Hz, 3H), 4. 05 (s, 3H), 4. 08 (s, 3H), 6. 28 (d, J=5. 4Hz, 1H), 6. 72-6. 77 (m, 1H), 6. 96-7. 09 (m, 3H), 7. 43 (d, J=8. 5Hz, 1H), 7. 46 (s, 1H), 7. 60 (s, 1H), 7. 62 (s, 1H), 8. 02-8. 05 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):492(M+1)

[0183]

実施例27: $N-(5-プロモ-6-メチル-2-ピリジル)-N'-{4-[}(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル}ウレア$

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に6-アミノ-3-ブロモ-2-メチルピリジン(208mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を103mg、収率52%で得た。

[0184]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 16 (s, 3H), 2. 42 (s, 3H), 2. 65 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 32 (d, J=5. 1Hz, 1H), 6. 64 (d, J=8. 8Hz, 1H), 7. 04 (d, J=8. 8Hz, 1H), 7. 44 (s, 1H),

7. 64 (s, 1H), 7. 74 (d, J=8. 8Hz, 1H), 7. 91 (d, J=8. 8Hz, 1H), 8. 29 (s, 1H), 8. 45 (d, J=5. 4Hz, 1H), 11. 30 (brs, 1H)

質量分析値(ESI-MS, m/z):537,539 (M+1)

[0185]

<u>実施例28:N-(5-クロロ-2-ピリジル)-N'-{4-[(6,7-ジ</u>メトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル}ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(3.00g)をクロロホルム(150m1)、トリエチルアミン(6m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(2.74g)を加えて室温で30分間攪拌した。次に2-アミノー5-クロロピリジン(2.38g)を加えて、さらに室温で2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を3.4g、収率77%で得た。

[0186]

¹H-NMR (CDCl₃, 400MHz): δ2. 16 (s, 3H), 2. 38 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 31 (d, J=5. 4Hz, 1H), 6. 89 (d, J=8. 8Hz, 1H), 7. 0 4 (d, J=8. 8Hz, 1H), 7. 44 (s, 1H), 7. 62-7. 68 (m, 2H), 7. 90 (d, J=8. 8Hz, 1H), 8. 23 (d, J=2. 4Hz, 1H), 8. 45 (d, J=5. 4Hz, 1H), 8. 50 (s, 1H), 11. 23 (brs, 1H)

質量分析値(ESI-MS, m/z):479, 481 (M⁺+1) 【0187】

実施例 $29:N-(5-プロモ-2-ピリジル)-N'-\{4-[(6,7-ジ$ $メトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル<math>\}$ ウレア 4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルアニ リン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノー5-ブロモピリジン(192mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製した。溶媒を留去し、少量のメタノールと多量のエーテルで結晶を析出させ濾取し、表題の化合物を80mg、収率41%で得た。

[0188]

¹H-NMR (CDC1₃, 400MHz): δ2. 16 (s, 3H), 2. 38 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 31 (d, J=5. 1Hz, 1H), 6. 96 (d, J=8. 5Hz, 1H), 7. 03 (d, J=8. 8Hz, 1H), 7. 45 (s, 1H), 7. 64 (s, 1H), 7. 75-7. 77 (m, 1H), 7. 89 (d, J=8. 8Hz, 1H), 8. 31 (d, J=2. 4Hz, 1H), 8. 45 (d, J=5. 4Hz, 1H), 8. 81 (s, 1H), 11. 17 (brs, 1H)

質量分析値(ESI-MS, m/z):523,525 (M++1)

[0189]

実施例 $30:N-{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル}-N'-(2-メトキシフェニル)ウレア$

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(120mg)をクロロホルム(10m1)に溶解し、2-メトキシフェニルイソシアナート(60μ1)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を131mg、収率75%で得た。

[0190]

¹H-NMR (CDC1₃, 400MHz): δ2. 16 (s, 3H), 2. 32 (s, 3H), 3. 81 (s, 3H), 4. 06 (s, 3H), 4. 08 (s,

3 H), 6. 25 (s, 1 H), 6. 26 (d, J=5. 4 Hz, 1 H), 6. 85-6. 87 (m, 1 H), 6. 97-7. 07 (m, 4 H), 7. 41 (d, J=8. 5 Hz, 1 H), 7. 44 (s, 1 H), 7. 62 (s, 1 H), 8. 15-8. 17 (m, 1 H), 8. 45 (d, J=5. 4 Hz, 1 H) 質量分析値 (ESI-MS, m/z): 474 (M+1)

[0191]

<u>実施例31:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル}-N'-(2-メチルフェニル)ウレア</u>

4-[(6,7-i)メトキシー4-iナノリル)オキシ]ー2,3-iジメチルアニリン(120mg)をクロロホルム(10m1)に溶解し、0ートルイルイソシアナート($55\mu1$)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を130mg、収率70%で得た。

[0192]

 1 H-NMR (CDC1 $_{3}$, 400MHz): δ2. 12 (s, 3H), 2. 22 (s, 3H), 2. 26 (s, 3H), 4. 05 (s, 3H), 4. 07 (s, 3H), 6. 23-6. 28 (m, 3H), 7. 02 (d, J=8. 5Hz, 1H), 7. 14-7. 17 (m, 1H), 7. 24-7. 29 (m, 2H), 7. 43 (s. 1H), 7. 49 (d, J=8. 5Hz, 1H), 7. 60 (s, 1H), 7. 63 (d, J=7. 3Hz, 1H), 8. 43 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):458 (M+1)

[0193]

 30分間室温で攪拌した。次に4-クロロ-2-メチルアニリン($130\mu1$)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を136mg、収率75%で得た。

[0194]

¹H-NMR (CDCl₃, 400MHz): δ2. 14 (s, 3H), 2. 18 (s, 3H), 2. 27 (s, 3H), 4. 05 (s, 3H), 4. 07 (s, 3H), 6. 24 (d, J=5. 4Hz, 1H), 6. 33 (s, 1H), 6. 40 (s, 1H), 7. 03 (d, J=8. 5Hz, 1H), 7. 19-7. 21 (m, 2H), 7. 42-7. 44 (m, 2H), 7. 60 (s, 1H), 7. 65 (d, J=9. 0Hz, 1H), 8. 44 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 492, 494 (M⁺+1)

[0195]

<u>実施例33:N-{4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルフェニル}-N'-(2-ピリジル)ウレア</u>

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノピリジン(104mg)を加え、一晩加熱還流した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を72mg、収率44%で得た。

[0196]

 1 H-NMR (CDC 1 3, 400MHz): δ2. 16 (s, 3H), 2. 41 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 32 (d, J=5. 4 Hz, 1H), 6. 92-6. 98 (m, 2H), 7. 04 (d, J=8. 8 Hz, 1H), 7. 44 (s, 1H), 7. 65 (s, 1H), 7. 67-7. 69 (m, 1H), 7. 97 (d, J=8. 8 Hz, 1H), 8. 25

-8.27 (m, 1H), 8.45 (d, J=5.1Hz, 1H), 8.72 (s, 1H), 11.77 (br, 1H)

質量分析値(ESI-MS, m/z):445 (M++1)

[0197]

実施例 $34:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,3-ジメチルフェニル<math>\}-N'-(5-メチル-2-ピリジル)$ ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて30分間室温で攪拌した。次に2-アミノー5-ピコリン(120mg)を加え、2時間室温で攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(91/9)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を122mg、収率72%で得た

[0198]

¹H-NMR (CDCl₃, 400MHz): δ2. 15 (s, 3H), 2. 28 (s, 3H), 2. 39 (s, 3H), 4. 04 (s, 3H), 4. 07 (s, 3H), 6. 32 (d, J=5. 4Hz, 1H), 6. 90 (d, J=8. 3Hz, 1H), 7. 02 (d, J=8. 8Hz, 1H), 7. 43 (s, 1H), 7. 45-7. 48 (m, 1H), 7. 64 (s, 1H), 7. 99 (d, J=8. 8Hz, 1H), 8. 06 (d, J=1. 5Hz, 1H), 8. 44 (d, J=5. 4Hz, 1H), 9. 23 (s, 1H), 11. 77 (br, 1H) 質量分析値 (FD-MS, m/z): 458 (M⁺)

[0199]

<u>実施例35:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,3-ジメチルフェニル}-N'-(6-メチル-2-ピリジル)ウレア</u>

4-[(6,7-i)メトキシー4-iナノリル)オキシ]-2,3-iメチルアニリン(120mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(110mg)を加えて

30分間室温で攪拌した。次に6-アミノ-2-ピコリン(120mg)を加え、一晩加熱還流した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(40/60)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を64mg、収率38%で得た。

[0200]

¹H-NMR (CDCl₃, 400MHz): δ2. 16 (s, 3H), 2. 44 (s, 3H), 2. 54 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 32 (d, J=5. 4Hz, 1H), 6. 61 (d, J=8. 3Hz, 1H), 6. 82 (d, J=7. 6Hz, 1H), 7. 04 (d, J=8. 8Hz, 1H), 7. 44 (s, 1H), 7. 53-7. 57 (m, 1H), 7. 65 (s, 1H), 7. 79 (s, 1H), 7. 99 (d, J=8. 8Hz, 1H), 8. 44 (d, J=5. 1Hz, 1H), 11. 76 (br, 1H) 質量分析値 (FD-MS, m/z): 458 (M[†])

[0201]

実施例 $36:N-{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2$, $3-ジメチルフェニル}-N'-(4-メトキシフェニル) ウレア$

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,3-ジメチルアニリン(100mg)をクロロホルム(4m1)に溶解した後、4-メトキシフェニルイソシアナート(60μ1)を加えて室温で一晩反応した。減圧下溶媒を留去し、得られた残さを少量のクロロホルムに溶解した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を115mg、収率78%で得た。

[0202]

 1 H-NMR (CDCl₃, 400MHz) : δ 2. 02 (s, 3H), 2. 3 0 (s, 3H), 3. 76 (s, 3H), 4. 06 (s, 3H), 4. 12 (s, 3H), 6. 46 (d, J=6. 3Hz, 1H), 6. 78 (d, J=9. 0Hz, 2H), 6. 91 (d, J=8. 8Hz, 1H), 7. 39 (d, J=9. 0Hz, 2H), 7. 67 (s, 1H), 7. 69 (d, J=8. 8Hz, 1H), 7. 92 (s, 1H), 8. 20-8. 23 (m, 1H)

質量分析値(ESI-MS, m/z):474 (M⁺+1) 【0203】

<u>実施例37:N-(2,4-ジフルオロフェニル)-N'-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル</u>)ウレア

4-[(6,7-i)メトキシー4-iナノリル)オキシ] -2,5-iジメチルアニリン(200mg)をクロロホルム(15ml)に溶解した後、2,4-iジフルオロフェニルイソシアナート(88μl)を加えて加熱還流を1時間した。反応液を、クロロホルム/アセトン(4/l)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を287mg、収率97%で得た。

[0204]

 1 H-NMR (CDC1₃, 400MHz) : δ 2. 17 (s, 3H), 2. 2 6 (s, 3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 31 (d, J=5. 4Hz, 1H), 6. 57 (s, 1H), 6. 81-6. 95 (m, 3H), 7. 00 (s, 1H), 7. 43 (s, 1H), 7. 55 (s, 1H), 7. 59 (s, 1H), 8. 05-8. 13 (m, 1H), 8. 47 (d, J=5. 4Hz, 1H)

質量分析値(FD-MS, m/z):479 (M⁺)

[0205]

<u>実施例38:N-{4-[(6,7-ジメトキシー4-キノリル)オキシ]-2</u> , $5-ジメチルフェニル}-N'-プロピルウレア$

4-[(6,7-ジメトキシー4ーキノリル)オキシ]-2,5-ジメチルアニリン(150mg)をクロロホルム(13m1)、トリエチルアミン(1.5ml)に溶解した後、クロロホルムに溶解したトリホスゲン(151mg)を加えて、加熱還流を5分間した。次にn-プロピルアミン(33mg)を加えて、さらに加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(4/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を178mg、収率95%で得た。

[0206]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 94 (t, J=7. 3Hz, 3H), 1. 51-1. 65 (m, 2H), 2. 15 (s, 3H), 2. 26 (s, 3H), 3. 21-3. 28 (m, 2H), 4. 05 (s, 3H), 4. 0 (s, 3H), 4. 63-4. 69 (m, 1H), 5. 97 (s, 1H), 6. 31 (d, J=5. 1Hz, 1H), 6. 98 (s, 1H), 7. 43 (s, 2H), 7. 58 (s, 1H), 8. 46 (d, J=5. 4Hz, 1H) 質量分析値 (FD-MS, m/z): 409 (M⁺)

[0207]

実施例39:N-(4-クロロ-2-メチルフェニル)-N'-{4-[(6, 7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル}ウレア4-[(6,7-ジメトキシー4ーキノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に4-クロロ-2-メチルアニリン(44μ1)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を118mg、収率78%で得た

[0208]

 1 H-NMR (CDC1₃, 400MHz) : δ 2. 16 (s, 3H), 2. 21 (s, 3H), 2. 23 (s, 3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 28 (d, J=5. 4Hz, 1H), 6. 30 (s, 1H), 6. 32 (s, 1H), 6. 98 (s, 1H), 7. 22-7. 23 (m, 2H), 7. 43 (s, 1H), 7. 58 (s, 1H), 7. 59-7. 63 (m, 2H), 8. 45 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):492,494 (M⁺+1) 【0209】

<u>実施例40:N- $\{4-[(6,7-ジメトキシ-4-キノリル)$ </u>オキシ]-2,

5-ジメチルフェニル - N' - (4-フルオロ-2-メチルフェニル) ウレア 4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10ml)、トリエチルアミン(1ml)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に4-フルオロ-2-メチルアニリン(42μ1)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解させ、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を108mg、収率74%で得た。

[0210]

 1 H-NMR (CDC1₃, 400MHz) : δ 2. 15 (s, 6H), 2. 30 (s, 3H), 4. 05 (s, 3H), 4. 06 (s, 3H), 6. 24 (s, 2H), 6. 28 (d, J=5. 1Hz, 1H), 6. 94 (s, 1H), 6. 96-7. 00 (m, 2H), 7. 42 (s, 1H), 7. 49-7. 52 (m, 1H), 7. 58 (s, 1H), 7. 64 (s, 1H), 8. 44 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):476(M+1)

[0211]

実施例 $41:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルフェニル<math>\}-N'-(3-フルオロ-2-メトキシフェニル)$ ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に3-フルオロ-ο-アニシジン(44μ1)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲル

クロマトグラフィーにより精製し、表題の化合物を126mg、収率83%で得た。

[0212]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 16 (s, 3H), 2. 27 (s, 3H), 3. 83 (d, J=1. 7Hz, 3H), 4. 04 (s, 3H), 4. 07 (s, 3H), 6. 31 (d, J=5. 1Hz, 1H), 6. 74-6. 79 (m, 1H), 6. 97-7. 03 (m, 3H), 7. 44 (s, 1H), 7. 57 (s, 1H), 7. 60 (s, 1H), 7. 66 (s, 1H), 8. 02-8. 04 (m, 1H), 8. 48 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 492 (M⁺+1)

[0213]

実施例 $42:N-\{4-[(6,7-ジメトキシ-4-キノリル) オキシ]-2,5-ジメチルフェニル\}-N'-(2-メチルフェニル) ウレア$

4-[(6,7-i)メトキシー4-iキノリル)オキシ]ー2,5-iiメチルアニリン(100mg)をクロロホルム(10m1)に溶解し、0-トルイルイソシアナート($46\mu1$)を加えて室温で一晩攪拌した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を111mg、収率79%で得た。

[0214]

¹H-NMR (CDC1₃, 400MHz): δ2. 12 (s, 6H), 2. 26 (s, 3H), 4. 03 (s, 3H), 4. 05 (s, 3H), 6. 27 (d, J=5. 1Hz, 1H), 6. 77 (s, 1H), 6. 81 (s, 1H), 6. 91 (s, 1H), 7. 11-7. 15 (m, 1H), 7. 22 (s, 1H), 7. 24 (s, 1H), 7. 42 (s, 1H), 7. 59 (s, 1H), 7. 6 (d, J=7. 8Hz, 1H), 7. 68 (s, 1H), 8. 43 (d, J=5. 4Hz, 1H)

質量分析値 (ESI-MS, m/z):458 (M⁺+1)

[0215]

実施例 $43:N-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,$ 5-ジメチルフェニルN'-(2-メトキシフェニル)ウレア

4-[(6, 7-ジメトキシ-4-キノリル) オキシ]-2, 5-ジメチルアニリン(100mg)をクロロホルム(10ml)に溶解し、2-メトキシフェニルイソシアナート(49μ1)を加えて一晩加熱環流した。反応液にメタノールを加え、減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を定量的に得た。

[0216]

 1 H-NMR (CDC1 $_{3}$, 400MHz): δ 2. 14 (s, 3H), 2. 24 (s, 3H), 3. 75 (s, 3H), 4. 03 (s, 3H), 4. 07 (s, 3H), 6. 31 (d, J=5. 1Hz, 1H), 6. 84-6. 87 (m, 1H), 6. 95-7. 03 (m, 3H), 7. 06 (s, 1H), 7. 44 (s, 1H), 7. 56 (s, 1H), 7. 61 (s, 1H), 7. 63 (s, 1H), 8. 17-8. 20 (m, 1H), 8. 46 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 474 (M⁺+1)

[0217]

<u>実施例44:N-(5-ブロモー6-メチルー2-ピリジル)-N'-{4-[</u> (6, 7-ジメトキシー4-キノリル)オキシ]-2, 5-ジメチルフェニル}ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に6-アミノー3-ブロモー2-メチルピリジン(69mg)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を80mg、収率48%で得た。

[0218]

¹H-NMR (CDCl₃, 400MHz): δ2. 18 (s, 3H), 2. 42 (s, 3H), 2. 65 (s, 3H), 4. 06 (s, 3H), 4. 08 (s, 3H), 6. 34 (d, J=5. 4Hz, 1H), 6. 57 (d, J=8. 5Hz, 1H), 6. 98 (s, 1H), 7. 43 (s, 1H), 7. 62 (s, 1H), 7. 70 (s, 1H), 7. 74 (d, J=8. 5Hz, 1H), 8. 05 (s, 1H), 8. 46 (d, J=5. 4Hz, 1H), 11. 17 (br, 1H)

質量分析値 (ESI-MS, m/z):537,539 (M^++1)

[0219]

実施例 $45:N-(2,6-ジメトキシ-3-ピリジル)-N'-\{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2,5-ジメチルフェニル}ウレア$

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(10m1)、トリエチルアミン(1m1)に溶解した後、ジクロロメタンに溶解したトリホスゲン(92mg)を加えて30分間室温で攪拌した。次に3-アミノ-2,6-ジメトキシピリジン(70mg)を加え、室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、少量のクロロホルムに溶解し、そこに多量のエーテルを加えた。析出した結晶を濾取し、表題の化合物を124mg、収率79%で得た。

[0220]

¹H-NMR (CDCl₃, 400MHz): δ2. 17 (s, 3H), 2. 27 (s, 3H), 3. 89 (s, 3H), 3. 95 (s, 3H), 4. 06 (s, 3H), 4. 07 (s, 3H), 6. 31 (d, J=5. 1Hz, 1H), 6. 34 (d, J=8. 5Hz, 1H), 6. 36 (s, 1H), 6. 74 (s, 1H), 6. 99 (s, 1H), 7. 44 (s, 1H), 7. 57 (s, 1H), 7. 60 (s, 1H), 8. 20 (d, J=8. 3Hz, 1H), 8. 46 (d

J = 5.1 Hz, 1 H

質量分析値 (ESI-MS, m/z):505 (M++1)

[0221]

<u>実施例46:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2</u>, $5-ジメチルフェニル}-N'-(4-メトキシフェニル)ウレア$

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2,5-ジメチルアニリン(100mg)をクロロホルム(4m1)に溶解した後、4-メトキシフェニルイソシアナート(60μ1)を加えて室温で一晩反応した。減圧下溶媒を留去し、得られた残さを少量のクロロホルムに溶解した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を110mg、収率74%で得た。

[0222]

 1 H-NMR (CDC1₃, 400MHz): δ2.07 (s, 3H), 2.26 (s,3H), 3.76 (s, 3H), 4.03 (s, 3H), 4.08 (s,3 H), 6.39 (d, J=6.1Hz, 1H), 6.80 (d, J=9.0Hz, 2H), 6.87 (s, 1H), 7.36 (d, J=9.0Hz, 2H), 7.55 (br, 1H), 7.62 (s, 1H), 7.67 (s, 1H), 7.8 0 (s, 1H), 8.19 (br, 1H), 8.27 (d, J=6.1Hz, 1H)

質量分析値(ESI-MS, m/z):474 (M++1)

[0223]

<u>実施例47:N-{4-[(6,7-ジメトキシ-4-キノリル)オキシ]-2</u> -ニトロフェニル-N'-プロピルウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-ニトロアニリン(150mg)をクロロホルム(10m1)、トリエチルアミン(1.5m1)に溶解した後、クロロホルムに溶解したトリホスゲン(144mg)を加えて、加熱還流を5分間した。次にn-プロピルアミン(31mg)を加えて、さらに加熱還流を2時間した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、

クロロホルム/アセトン(4/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を160mg、収率86%で得た。

[0224]

 1 H-NMR (CDCl₃, 400MHz) : δ1. 01 (t, J=7. 5Hz, 3H), 1. 59-1. 69 (m, 2H), 3. 27-3. 34 (m, 2H), 4. 05 (s, 3H), 4. 06 (s, 3H), 4. 95-5. 01 (br, 1H), 6. 47 (d,J=5. 4Hz, 1H), 7. 43-7. 51 (m, 3H), 8. 04 (d,J=2. 7Hz, 1H), 8. 53 (d,J=5. 4Hz, 1H), 8. 81 (d,J=9. 3Hz, 1H), 9. 74-9. 79 (br, 1H)

質量分析値 (FD-MS, m/z):426 (M⁺)

[0225]

実施例48:N-(2,4-ジフルオロフェニル)-N'-(4-[(6,7- ジメトキシ-4-キノリル) オキシ]-2-ニトロフェニル) ウレア

4-[(6,7-ジメトキシー4-キノリル)オキシ]-2-ニトロアニリン (100mg)をクロロホルム (10m1)、トリエチルアミン (1m1)に溶解した後、クロロホルムに溶解したトリホスゲン (96mg)を加えて、加熱還流を5分間した。次に2,4-ジフルオロアニリン (45mg)を加えて、さらに加熱還流を1晩した。反応液に飽和炭酸水素ナトリウム水溶液を加えケイソウ土に保持し、クロロホルムで抽出した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン (3/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を81mg、収率56%で得た。

[0226]

 1 H-NMR (CDC1₃, 400MHz): 84. 05 (s, 3H), 4. 06 (s, 3H), 6. 50 (d, J=5. 1Hz, 1H), 6. 91-6. 98 (m, 3H), 7. 45 (s, 1H), 7. 49 (s, 1H), 7. 50-7. 54 (m, 1H), 7. 88-7. 97 (m, 1H), 8. 05 (d, J=2. 9Hz, 1H), 8. 54 (d, J=5. 1Hz, 1H), 8. 77 (d, J=9. 3Hz, 1H), 9. 98 (s, 1H)

質量分析値 (FD-MS, m/z):496 (M⁺)

[0227]

実施例 $49:N-\{3,5-ジクロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]フェニル<math>N'-(2,4-ジフルオロフェニル)ウレア$

3, 5-ジクロロ-4-[(6,7-ジメトキシ-4-キノリル)オキシ]アニリン(<math>53mg)をクロロホルム(5m1)に溶解し、2, $4-ジフルオロフェニルイソシアナート(<math>34\mu1$)を加えて一晩加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を56mg、収率74%で得た

[0228]

 1 H-NMR (CDC1₃, 400MHz): δ 4. 05 (s, 3H), 4. 09 (s, 3H), 6. 26 (d, J=5. 4Hz, 1H), 6. 86-6. 93 (m, 2H), 7. 05 (s, 1H), 7. 44 (s, 1H), 7. 46 (s, 1H), 7. 60 (s, 2H), 7. 64 (s, 1H), 8. 01-8. 05 (m, 1H), 8. 48 (d, J=5. 4Hz, 1H)

質量分析値 (FAB-MS, m/z):520,522,524 (M+1)

[0229]

N-(2,4-ジフルオロフェニル)-N'-{2-フルオロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}ウレア(20mg)、炭酸カリウム(7mg)、ヨウ化テトラーn-ブチルアンモニウム(2mg)、N-(2-クロロエチル)モルホリン塩酸塩(10mg)をN,N-ジメチルホルムアミド(1m1)に溶解し70℃で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(30/1)で展開する薄層シリカゲルクロマトグラフィーによ

り精製し、表題の化合物を14mg、収率57%で得た。

[0230]

 1 H-NMR (CDC1₃, 400MHz): δ 2. 57 (t, J=4. 4Hz, 4H), 2. 88 (m, 2H), 3. 69 (t, J=4. 4Hz, 4H), 3. 94 (s, 3H), 4. 26 (t, J=5. 9Hz, 2H), 6. 43 (d, J=5. 1Hz, 1H), 6. 77-6. 95 (m, 4H), 7. 35 (s, 1H), 7. 43 (s, 1H), 7. 96-8. 02 (m, 1H), 8. 13-8. 17 (m, 1H), 8. 44 (d, J=5. 1Hz, 1H)

[0231]

実施例 $51:N-(2-000-4-{[6-メトキシ-7-(2-モルモリノ エトキシ)-4-キノリル]オキシ}フェニル)-N'-(2,4-ジフルオロフェニル)_ウレア$

N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-(2,4-ジフルオロフェニル)ウレア(174mg)をN,N-ジメチルホルムアミド(9m1)に溶解した後、炭酸カリウム(64mg)、ヨウ化テトラーn-ブチルアンモニウム(14mg)、N-(2-クロロエチル)モルホリン塩酸塩(86mg)を加えた。70℃で17時間攪拌後、反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(20/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を75mg、収率35%で得た。

[0232]

 1 H-NMR (CDC1₃, 400MHz): δ 2. δ 2. δ 0-2. δ 7 (m, 4H), 2. 95 (t, J=6. 0Hz, 2H), 3. 71-3. 79 (m, 4H), 4. 01 (s, 3H), 4. 33 (t, J=6. 0Hz, 2H), 6. 50 (d, J=5. 1Hz, 1H), 6. 85-6. 97 (m, 2H), 7. 09-7. 17 (m, 2H), 7. 22-7. 27 (m, 2H), 7. 42 (s, 1H), 7. 50 (s, 1H), 7. 97-8. 01 (m, 1H), 8. 28 (d, J=9. 0Hz, 1H), 8. 51 (d, J=5. 1Hz, 1H)

質量分析値 (ESI-MS, m/z):585,587 (M++1)

[0233]

実施例52:N-(2,4-i)フルオロフェニル) $-N'-(4-\{[6-i])$ キシー7-(2-i)エトキシ)-4-iリル]オキシ-2,5-iメチルフェニル)ウレア

N-(4-{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,5-ジメチルフェニル)-N'-(2,4-ジフルオロフェニル)ウレア(366mg)をN,N-ジメチルホルムアミド(6m1)に溶解し、水酸化パラジウム(366mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(213mg)、炭酸カリウム(109mg)、ヨウ化テトラーn-ブチルアンモニウム(12mg)、N-(2-クロロエチル)モルホリン塩酸塩(74mg)をN,N-ジメチルホルムアミド(5m1)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を106mg、収率55%で得た。

[0234]

 1 H-NMR (CDC1₃, 400MHz) : δ 2. 17 (s, 3H), 2. 27 (s,3H), 2. 64 (t, J=4.6Hz, 4H), 2. 96 (t, J=6.0Hz, 2H), 3. 76 (t, J=4.6Hz, 4H), 4. 03 (s, 3H), 4. 34 (t, J=6.0Hz, 2H), 6. 31 (d, J=5.4Hz, 1H), 6. 47 (s, 1H), 6. 81-6. 92 (m, 3H), 7. 00 (s, 1H), 7. 43 (s, 1H), 7. 54 (s, 1H), 7. 58 (s, 1H), 8. 05-8. 12 (m, 1H), 8. 47 (d, J=5.4Hz, 1H)

[0235]

<u>実施例53:N-(4-{[6-メトキシ-7-(2-モルホリノエトキシ)-</u>

N-(4-{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,5-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア(363mg)をN,N-ジメチルホルムアミド(6m1)に溶解し、水酸化パラジウム(363mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(191mg)、炭酸カリウム(219mg)、ヨウ化テトラーn-ブチルアンモニウム(12mg)、N-(2-クロロエチル)モルホリン塩酸塩(148mg)をN,N-ジメチルホルムアミド(5m1)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を101mg、収率55%で得た。

[0236]

¹H-NMR (CDC1₃, 400MHz): δ2. 17 (s, 3H), 2. 28 (s,3H), 2. 64 (t, J=4. 5Hz, 4H), 2. 96 (t, J=5. 9Hz, 2H), 3. 76 (t, J=4. 6Hz, 4H), 3. 83 (s, 3H), 4. 04 (s, 3H), 4. 34 (t, J=6. 0Hz, 2H), 6. 30 (d, J=5. 4Hz, 2H), 6. 86-6. 90 (m, 1H), 6. 96 -7. 06 (m, 3H), 7. 16 (s, 1H), 7. 43 (s, 1H), 7. 57 (s, 1H), 7. 59 (s, 1H), 8. 11-8. 16 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H)

[0237]

<u>実施例54:N-(2-クロロ-4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル</u>オキシ}フェニル)-N'-(2,4-ジフルオロフェニル)ウレア

ジメチルスルホキシド (2 m1) に水素化ナトリウム (60 w%、153 mg

)を加え、60℃で30分攬拌後室温にし、4-アミノ-3-クロロフェノール塩酸塩(343mg)を加え室温で10分攪拌した。次にジメチルスルホキシド(2m1)に溶解した4-クロロ-6-メトキシ-7-(2-メトキシエトキシ)キノリン(254mg)を加え110℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(7/3)で展開するシリカゲルクロマトグラフィーにより精製し、2-クロロ-4-{[(6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル]オキシ}アニリンを主生成物とする混合物332mgを得た。そのうち83mgをクロロホルム(5m1)に溶解し、2,4-ジフルオロフェニルイソシアナート(32μ1)を加えて一晩加熱還流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を50mg得た。

[0238]

 1 H-NMR (DMSO- 1 6, 400MHz) δ 3. 75-3. 77 (m, 2H), 3. 94 (s, 3H), 4. 27-4. 29 (m, 2H), 6. 55 (d, J=5. 1Hz, 1H), 7. 04-7. 09 (m, 1H), 7. 25-7. 3 6 (m, 2H), 7. 42 (s, 1H), 7. 50 (s, 1H), 7. 51 (s, 1H), 8. 09-8. 15 (m, 1H), 8. 24 (d, J=9. 0Hz, 1H), 8. 49 (d, J=5. 4Hz, 1H), 8. 82 (s, 1H), 9. 31 (s, 1H)

[0239]

<u>実施例55:N-(2-クロロ-4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル]オキシ}フェニル)-N'-(2-メトキシフェニル)ウレア</u>

ジメチルスルホキシド(2m1)に水素化ナトリウム(60w%、153mg)を加え、60%730分攪拌後室温にし、4-アミノー3-クロロフェノール塩酸塩(343mg)を加え室温で10分攪拌した。次にジメチルスルホキシド(2m1)に溶解した4-クロロー6-メトキシー7-(2-メトキシエトキシ

)キノリン(254mg)を加え110℃で一晩攪拌した。反応液に水を加えクロロホルムで抽出した後、クロロホルム層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(7/3)で展開するシリカゲルクロマトグラフィーにより精製し、2-クロロー4-{[(6-メトキシー7-(2-メトキシエトキシ)-4-キノリル]オキシ}アニリンを主生成物とする混合物332mgを得た。そのうち83mgをクロロホルム(5m1)に溶解し、2-メトキシフェニルイソシアナート(35μ1)を加えて一晩加熱遺流した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を31mg得た。

[0240]

 1 H-NMR (DMSO-d₆, 400MHz) δ 3. 75-3. 77 (m, 2H), 3. 90 (s, 3H), 3. 94 (s, 3H), 4. 27-4. 29 (m, 2H), 6. 55 (d, J=5. 1Hz, 1H), 6. 89-7. 05 (m, 3H), 7. 24-7. 27 (m, 1H), 7. 42 (s, 1H), 7. 48 (d, J=2. 7Hz, 1H), 7. 50 (s, 1H), 8. 08-8. 11 (m, 1H), 8. 18-8. 22 (m, 1H), 8. 49 (d, J=5. 4Hz, 1H), 8. 99-9. 03 (m, 2H)

[0241]

<u>実施例56:N-(2,4-ジフルオロフェニル)-N'-(4-{[6-メトキシ-7-(2-メトキシエトキシ)-4-キノリル]オキシ}-2,3-ジメチルフェニル)ウレア</u>

N-(4-{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]オキシ } -2,3-ジメチルフェニル)-N'-(2,4-ジフルオロフェニル)ウレア(213mg)をN,N-ジメチルホルムアミド(5m1)、トリエチルアミン(1m1)に溶解し、水酸化パラジウム(40mg)を加え、水素雰囲気下室温で一晩攪拌した。反応液をセライト濾過しクロロホルム/メタノールで洗浄した。減圧下溶媒を留去して得られた残さ184mgのうちの90mgをN,N-ジメチルホルムアミド(1.5m1)に溶解し、そこに炭酸カリウム(32mg

)、ヨウ化テトラーnーブチルアンモニウム(7 mg)、2 ーブロモエチルメチルエーテル(3 2 mg)を加え、70℃で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2 / 1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を110 mg得た。

[0242]

 1 H-NMR (DMSO- 1 6, 400MHz): δ 1. 97 (s, 3H), 2. 17 (s, 3H), 3. 31 (s, 3H), 3. 70 (t, J=4. 4Hz, 2H), 3. 90 (s, 3H), 4. 21 (t, J=4. 4Hz, 2H), 6. 18 (d, J=5. 1Hz, 1H), 6. 95-6. 98 (m, 2H), 7. 22 -7. 31 (m, 1H), 7. 34 (s, 1H), 7. 51 (s, 1H), 7. 62 (d, J=8. 8Hz, 1H), 8. 03-8. 10 (m, 1H), 8. 3 6 (d, J=5. 1Hz, 1H), 8. 38 (s, 1H), 8. 79 (s, 1H)

[0243]

 $N-(4-\{[7-(ベンジルオキシ)-6-メトキシー4-キノリル] オキシ \} -2, 3-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア(161mg)をN, <math>N-ジメチルホルムアミド(4m1)$ 、トリエチルアミン(1m1)に溶解し、水酸化パラジウム(32mg)を加え、水素雰囲気下室温で一晩攪拌した。反応液をセライト濾過しクロロホルム/メタノールで洗浄した。減圧下溶媒を留去して得られた残さ223mgのうちの110mgをN, N-ジメチルホルムアミド(1.5m1)に溶解し、そこに炭酸カリウム(23mg)、ヨウ化テトラーn-ブチルアンモニウム(5mg)、2-ブロモエチルメチルエーテル(23mg)を加え、70℃で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネ

シウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を89mg得た。

[0244]

¹H-NMR (DMSO-d₆, 400MHz): δ2.00 (s, 3H), 2. 17 (s, 3H), 3.70 (t, J=4.2Hz, 2H), 3.83 (s, 3 H), 3.90 (s, 3H), 4.22 (t, J=4.2Hz, 2H), 6.1 9 (d, J=5.1Hz, 1H), 6.81-6.88 (m, 2H), 6.94 -6.97 (m, 2H), 7.34 (s, 1H), 7.51 (s, 1H), 7. 58 (d, J=8.8Hz, 1H), 8.07 (d, J=8.8Hz, 1H), 8.36 (d, J=5.1Hz, 1H), 8.48 (s, 1H), 8.58 (s, 1H)

[0245]

<u>実施例58:N-(2,4-ジフルオロフェニル)-N'-(4-{[6-メトキシー7-(2-メトキシエトキシー4-キノリル]オキシ}-2,5-ジメチルフェニル)ウレア</u>

N-(4-{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル] オキシ}-2,5-ジメチルフェニル)ーN'-(2,4-ジフルオロフェニル)ウレア(366mg)をN,N-ジメチルホルムアミド(6m1)に溶解し、水酸化パラジウム(366mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(213mg)、炭酸カリウム(109mg)、ヨウ化テトラーnーブチルアンモニウム(12mg)、2ーブロモエチルメチルエーテル(40μ1)をN,N-ジメチルホルムアミド(5m1)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を124mg、収率73%で得た。

[0246]

 1 H-NMR (CDC1₃, 400MHz): δ2. 17 (s, 3H), 2. 26 (s,3H), 3. 49 (s,3H), 3. 90 (t, J=4. 8Hz, 2H), 4. 03 (s,3H), 4. 34 (t, J=4. 8Hz, 2H), 6. 30 (d, J=5. 1Hz, 1H), 6. 57 (s, 1H), 6. 81-6. 95 (m, 3H), 7. 00 (s, 1H), 7. 43 (s, 1H), 7. 55 (s, 1H), 7. 57 (s, 1H), 8. 05-8. 14 (m, 1H), 8. 46 (d, J=5. 4Hz, 1H)

質量分析値 (ESI-MS, m/z):524 (M++1)

[0247]

<u>実施例59:N-(4-{[6-メトキシ-7-(2-メトキシエトキシ)-4</u> -キノリル] オキシ) - 2, 5-ジメチルフェニル) - N'-(2-メトキシフェニル) ウレア

N-(4-{[7-(ベンジルオキシ)-6-メトキシー4ーキノリル]オキシ}-2,5-ジメチルフェニル)-N'-(2-メトキシフェニル)ウレア(363mg)をN,N-ジメチルホルムアミド(6m1)に溶解し、水酸化パラジウム(363mg)を加え、水素雰囲気下室温で1晩攪拌した。減圧下溶媒を留去しクロロホルム、メタノールに溶解し、セライト濾過した。次に、減圧下溶媒を留去して得られた残さ(191mg)、炭酸カリウム(110mg)、ヨウ化テトラーn-ブチルアンモニウム(12mg)、2-ブロモエチルメチルエーテル(80mg)をN,N-ジメチルホルムアミド(5m1)に溶解し70℃で1晩攪拌した。減圧下溶媒を留去し、得られた残さに水を加えクロロホルムで抽出し、クロロホルム層を硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(10/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を128mg、収率76%で得た。

[0248]

¹H-NMR (CDCl₃, 400MHz): δ2. 17 (s, 3H), 2. 28 (s,3H), 3. 49 (s, 3H), 3. 83 (s, 3H), 3. 90 (t,

J=4.8 Hz, 2 H), 4.04 (s, 3 H), 4.35 (t, J=4.9 Hz, 2 H), 6.30 (d, J=5.4 Hz, 1 H), 6.33 (s, 1 H), 6.86-6.90 (m, 1 H), 6.96-7.06 (m, 3 H), 7.17 (s, 1 H), 7.43 (s, 1 H), 7.56 (s, 1 H), 7.58 (s, 1 H), 8.12-8.17 (m, 1 H), 8.45 (d, J=5.1 Hz, 1 H)

質量分析値(ESI-MS, m/z):518 (M++1)

[0249]

<u>実施例60:N-(4-{[7-(ベンジルオキシ)-6-メトキシ-4-キノリル]オキシ}-2,3-ジメチルフェニル)-N'-(2-メトキシフェニル)</u>) ウレア

4-{[7-(ベンジルオキシ)-6-メトキシー4-キノリル]オキシ}-2,3-ジメチルアニリン(260mg)をN,N-ジメチルホルムアミド(5m1)に溶解した後、2-メトキシフェニルイソシアナート(116mg)を加えて室温で一晩反応した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/アセトン(2/1)で展開する薄層シリカゲルクロマトグラフィーにより精製し、表題の化合物を169mg、収率47%で得た。

[0250]

 1 H-NMR (DMSO- 1 6, 400MHz): δ 1. 99 (s, 3H), 2. 02 (s, 3H), 3. 83 (s, 3H), 3. 90 (s,3H), 5. 25 (s, 2H), 6. 18 (d, J=5. 3Hz, 1H), 6. 81-6. 87 (m, 2H), 6. 95 (d, J=6. 1Hz, 1H), 7. 29-7. 59 (m, 7H), 8. 07 (d, J=6. 1Hz, 1H), 8. 35 (d, J=5. 3Hz, 1H), 8. 48 (s, 1H), 8. 58 (s, 1H)

[0251]

実施例 $61: N-\{2-\rho \Box \Box -4-[(6,7-i)] + i)$ フェニルN'-(2,4-i) フェニルN'-(2,4-i) ウレア

2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]アニリン(214mg)をクロロホルム(5m1)に溶解した後、2,4-ジフルオロフェニルイソシアナート(180μ1)を加えて70℃で4時間反応した。そこに多量のエーテルを加え、析出した沈殿を吸引濾過し、表題の化合物を146mg、収率46%で得た。

[0252]

¹H-NMR (DMSO-d₆, 400MHz): δ3. 98 (s, 3H), 3 . 99 (s, 3H), 7. 03-7. 10 (m, 1H), 7. 28-7. 37 (m, 2H), 7. 40 (s,1H), 7. 56 (s, 2H), 8. 08-8. 2 1 (m, 2H), 8. 57 (s, 1H), 8. 80 (s, 1H), 9. 30 (s , 1H)

質量分析値(ESI-MS, m/z):487, 489 (M++1)

[0253]

<u>実施例62:N-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル</u>N'-プロピルウレア

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(5.13g)をクロロホルム(100m1)、トリエチルアミン(50m1)に溶解した後、クロロホルム(1m1)に溶解したトリホスゲン(4.59g)を加えて30分間攪拌した。次にn-プロピルアミン(2.74g)を加えて、さらに2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さを、クロロホルム/メタノール(50/1)で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を4.14g、収率64%で得た。

[0254]

 1 H-NMR (DMSO-d₆, 400MHz) : δ 0. 91 (t, J=7. 3Hz, 3H), 1. 41-1. 53 (m, 2H), 3. 05-3. 12 (m, 2Hz, 1H), 7. 22 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 3

8 (s, 1H), 7. 46 (d, J=2.9Hz, 1H), 7. 54 (s, 1H), 8. 04 (s, 1H), 8. 20 (d, J=9.3Hz, 1H), 8. 55 (s, 1H)

質量分析値 (ESI-MS, m/z):417 (M++1)

[0255]

実施例 $6.3:N-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フ$ ェニルN'-エチルウレア

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にエチルアミン塩酸塩(69mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を10mg、収率16%で得た。

[0256]

 1 H-NMR (DMSO-d₆, 400MHz): δ1. 07 (t, J=7. 3 Hz, 3H), 3. 11-3. 14 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 10 (t, J=5. 4Hz, 1H), 7. 14 (d, J=9. 0Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 49 (br, 1H), 8. 53 (s, 1H)

質量分析値 (ESI-MS, m/z):369 (M++1)

[0257]

<u>実施例 6 4 : N- $\{4-[(6,7-i)]$ ストキシー 4-i リニル オキシ フェニル -N' -プロピルウレア</u>

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にプロピルアミン($21\mu1$)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより

精製し、表題の化合物を30mg、収率47%で得た。

[0258]

 1 H-NMR (DMSO-d₆, 400MHz): δ0. 89 (t, J=7. 6 Hz, 3H), 1. 41-1. 50 (m, 2H), 3. 04-3. 08 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 15 (t, J=5. 9Hz, 1H), 7. 15 (d, J=8. 8Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 48 (br, 1H), 8. 53 (s, 1H)

質量分析値 (ESI-MS, m/z):383 (M++1)

[0259]

実施例 $65:N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニ$ ル) オキシ] フェニル $\}$ ウレア

4-[(6,7-i)メトキシー4-iキナゾリニル)オキシ] アニリン(50 mg)をクロロホルム(3 m1)、トリエチルアミン(0.2 m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50 mg)を加えて室温で30 分間攪拌した。次にブチルアミン(22 μ 1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するIPLCにより精製し、表題の化合物を29 mg、収率43%で得た。

[0260]

 1 H-NMR (DMSO-d₆, 400MHz): δ0. 91 (t, J=7. 3 Hz, 3H), 1. 28-1. 47 (m, 4H), 3. 07-3. 12 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 12 (t, J=5. 6Hz, 1H), 7. 15 (d, J=8. 8Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 47 (br, 1H), 8. 53 (s, 1H)

質量分析値 (ESI-MS, m/z):397 (M++1)

[0261]

実施例 $66:N-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル <math>N'-ペンチルウレア$

4-[(6,7-i)]メトキシー4-iキナゾリニル)オキシ]アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にアミルアミン($26\mu1$)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を21mg、収率30%で得た。

[0262]

 1 H-NMR (DMSO-d $_{6}$, 400MHz): 80. 89 (t, J=7. 1 Hz, 3H), 1. 27-1. 47 (m, 4H), 1. 41-1. 48 (m, 2 H), 3. 06-3. 11 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 13 (t, J=5. 6Hz, 1H), 7. 15 (d, J=9. 0 Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=8. 8Hz, 2H), 7. 55 (s, 1H), 8. 47 (br, 1H), 8. 53 (s, 1H) 質量分析値 (ESI-MS, m/z): 411 (M⁺+1)

[0263]

4-[(6,7-i)メトキシー4-iキナゾリニル)オキシ] アニリン(50 mg)をクロロホルム(3 m1)、トリエチルアミン(0.2 m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50 mg)を加えて室温で30 分間攪拌した。次に1 sec-ブチルアミン(23 1 1 を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開する1 HPLCにより精製し、表題の化合物を33 mg、収率49%で得た。

[0264]

 1 H-NMR (DMSO-d₆, 400MHz): δ 0. 88 (t, J=7. 3 Hz, 3H), 1. 08 (d, J=6. 6Hz, 3H), 1. 40-1. 47 (m, 2H), 3. 58-3. 64 (m, 1H), 3. 97 (s, 3H), 3. 9 (s, 3H), 5. 98 (t, J=8. 1Hz, 1H), 7. 15 (d, J=9. 0Hz, 2H), 7. 37 (s, 1H), 7. 46 (d, J=9. 0Hz,

2H), 7. 55 (s, 1H), 8. 38 (s, 1H), 8. 53 (s, 1H) 質量分析値 (ESI-MS, m/z):397 (M⁺+1)

[0265]

<u>実施例68:NーアリルーN'- $\{4-[(6,7-i)]$ ストキシー4ーキナゾリニル) オキシ]フェニル $\}$ ウレア</u>

4-[(6,7-ジメトキシー4ーキナゾリニル)オキシ]アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にアリルアミン塩酸塩(31mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を21mg、収率33%で得た。

[0266]

 1 H-NMR (DMSO-d₆, 400MHz): 3. 73-3. 76 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 07-5. 21 (m, 2H), 5. 84-5. 92 (m, 1H), 6. 28 (t, J=5. 6Hz, 1H), 7. 16 (d, J=9. 0Hz, 2H), 7. 38 (s, 1H), 7. 47 (d, J=9. 0Hz, 2H), 7. 55 (s, 1H), 8. 53 (s, 1H), 8. 59 (s, 1H)

質量分析値 (ESI-MS, m/z):381 (M++1)

[0267]

実施例 $69:N-{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フ$ ェニルN'-(2-プロピニル) ウレア

4-[(6,7-i)メトキシー4-iキナゾリニル)オキシ] アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にプロパルギルアミン塩酸塩(31mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を26mg、収率41%で得た。 1mH-NMR(1mDMSO-1mg, 1mg 1mg

9-3.90 (m, 2H), 3.97 (s, 3H), 3.99 (s, 3H), 6
.49 (t, J=5.9Hz, 1H), 7.17 (d, J=9.0Hz, 2H)
, 7.38 (s, 1H), 7.48 (d, J=8.8Hz, 2H), 7.55 (
s, 1H), 8.53 (s, 1H), 8.68 (s, 1H)
質量分析値 (ESI-MS, m/z):379 (M⁺+1)

[0268]

実施例 $70:N-(2,4-ジフルオロベンジル)-N'-\{4-[(6,7-ジ$ $メトキシ-4-キナゾリニル)オキシ]フェニル}ウレア$

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次に2,4-ジフルオロベンジルアミン(22μ1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を32mg、収率41%で得た。

[0269]

 1 H-NMR (DMSO-d₆, 400MHz): 3.97 (s, 3H), 3.98 (s, 3H), 4.32-4.33 (m, 2H), 6.66 (t, J=5.9Hz, 1H), 7.06-7.10 (m, 1H), 7.16 (d, J=8.8Hz, 2H), 7.19-7.24 (m, 1H), 7.37 (s, 1H), 7.40-7.44 (m, 1H), 7.48 (d, J=9.0Hz, 2H), 7.55 (s, 1H), 8.52 (s, 1H), 8.69 (s, 1H) 質量分析値 (ESI-MS, m/z): 467 (M⁺+1)

[0270]

<u>実施例71:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フ</u>ェニル-N'-(2-ピリジルメチル)ウレア

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン(50 mg)をクロロホルム(3 m 1)、トリエチルアミン(0.2 m 1)に溶解した後、クロロホルムに溶解したトリホスゲン(50 m g)を加えて室温で30分間攪拌した。次に2,4-iジフルオロベンジルアミン(31 μ 1)を加えて、さらに

室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $31\,\mathrm{mg}$ 、収率43%で得た $^1\,\mathrm{H-NMR}$ (DMSO-d₆, $400\,\mathrm{MHz}$): 3. 42 (s, $2\,\mathrm{H}$), 3. 98 (s, $3\,\mathrm{H}$), 3. 99 (s, $3\,\mathrm{H}$), 7. 16-7. 19 (m, $2\,\mathrm{H}$), 7. 22-7. 27 (m, $3\,\mathrm{H}$), 7. 38 (s, $1\,\mathrm{H}$), 7. 57 (s, $1\,\mathrm{H}$), 7. 67 (d, J=8. $8\,\mathrm{Hz}$, $2\,\mathrm{H}$), 7. 88-7. 92 (m, $1\,\mathrm{H}$), 8. 46-8. 48 (m, $1\,\mathrm{H}$), 8. 54 (s, $1\,\mathrm{H}$), 8. 87 (s, $1\,\mathrm{H}$), 12. 19 (s, $1\,\mathrm{H}$)

質量分析値 (FD-MS, m/z):431 (M⁺)

[0271]

実施例 $72:N-(2,4-ジフルオロフェニル)-N'-\{4-[(6,7-ジ$ メトキシ-4-キナゾリニル)オキシ]フェニル)ウレア

4-[(6,7-i)] トキシー4-i ナゾリニル)オキシ] アニリン(50mg)をクロロホルム(3m1)に溶解した後、2,4-i フルオロフェニルイソシアナート($24\mu1$)を加えて一晩加熱還流した。析出した結晶を濾取、洗浄し表題の化合物を55mg、収率72%で得た

 1 H-NMR (DMSO- 1 d₆, 400MHz): 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 04-7. 08 (m, 2H), 7. 24 (d, J=8. 8Hz, 2H), 7. 29-7. 35 (m, 1H), 7. 38 (s, 1H), 7. 54 (d, J=9. 0Hz, 2H), 7. 56 (s, 1H), 8. 06-8. 14 (m, 1H), 8. 51-8. 54 (m, 1H), 8. 54 (s, 1H), 9. 11-9. 12 (m, 1H)

質量分析値 (ESI-MS, m/z):453 (M⁺+1)

[0272]

実施例 $73:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フ$ ェニルN'-(4-フルオロフェニル)ウレア

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] アニリン(50 mg)をクロロホルム(3 m 1)に溶解した後、p-iフルオロフェニルイソシアナート(23 μ 1)を加えて一晩加熱還流した。反応液にメタノールを加え、クロ

ロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を26mg、収率36%で得た.。

[0273]

[0274]

実施例 $74:N-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フ$ ェニル $\}$ -N'-(2-メチルフェニル) ウレア

4-[(6,7-i)]メトキシー4-iナゾリニル)オキシ] アニリン(50mg)をクロロホルム(3m1)に溶解した後、oートルイルイソシアナート($25\mu1$)を加えて一晩加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を30mg、収率41%で得た.。

[0275]

¹ H-NMR (DMSO-d₆, 400MHz): 2. 26 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 93-6. 98 (m, 1H), 7. 13-7. 19 (m, 2H), 7. 22 (d, J=8. 8Hz, 2H), 7 . 38 (s, 1H), 7. 54-7. 56 (m, 3H), 7. 83-7. 86 (m, 1H), 7. 93 (s, 1H), 8. 54 (s, 1H), 9. 10-9. 1 1 (m, 1H)

質量分析値 (ESI-MS, m/z):431 (M++1)

[0276]

実施例 $75:N-{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フ$ ェニルN'-(2-メトキシフェニル) ウレア

4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]アニリン(50m

g)をクロロホルム(3m1)に溶解した後、 $2-メトキシフェニルイソシアナート(<math>27\mu1$)を加えて一晩加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を34mg、収率45%で得た.。

[0277]

1 H-NMR (DMSO-d₆, 400MHz): 3. 89 (s, 3H), 3.
98 (s, 3H), 3. 99 (s, 3H), 6. 89-7. 05 (m, 3H),
7. 22 (d, J=8. 8Hz, 2H), 7. 38 (s, 1H), 7. 54 (d, J=8. 8Hz, 2H), 7. 56 (s, 1H), 8. 13-8. 15 (m, 1H), 8. 23-8. 24 (m, 1H), 8. 54 (s, 1H), 9. 40-9. 41 (m, 1H)

質量分析値 (ESI-MS, m/z):447 (M++1)

[0278]

実施例 $76:N-\{2-DDD-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル<math>\}-N$ ーエチルウ<u>レア</u>

2-クロロー4-[(6, 7-ジメトキシー4-キナゾリニル)オキシ]アニリン(200mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(179mg)を加えて室温で30分間攪拌した。次にエチルアミン塩酸塩(246mg)を加えて、さらに室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を159mg、収率65%で得た。

[0279]

 1 H-NMR (DMSO-d₆, 400MHz): δ1. 08 (t, J=7. 1 Hz, 3H), 3. 11-3. 16 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 96 (t, J=5. 6Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 8. 02 (s, 1H), 8.

20 (d, J=9.3Hz, 1H), 8.56 (s, 1H) 質量分析値 (ESI-MS, m/z):403 (M⁺+1)

[0280]

<u>実施例77:NーブチルーN'ー $\{2-2-2-4-[(6,7-2)]$ ストキシー4ーキナゾリニル) オキシ]フェニル $\}$ ウレア</u>

2-クロロー4- [(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン (50mg) をクロロホルム (5ml)、トリエチルアミン (1ml) に溶解した後、クロロホルムに溶解したトリホスゲン (45mg) を加えて室温で30分間提拌した。次にブチルアミン (22μl)を加えて、さらに室温で30分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を30mg、収率46%で得た。

[0281]

 1 H-NMR (DMSO-d₆, 400MHz): 80. 91 (t, J=7. 3 Hz, 3H), 1. 31-1. 46 (m, 4H), 3. 09-3. 14 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 96 (t, J=5. 6Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 7Hz, 1H), 7. 55 (s, 1 H), 8. 03 (s, 1H), 8. 20 (d, J=9. 0Hz, 1H), 8. 5 6 (s, 1H)

質量分析値 (ESI-MS, m/z):431 (M++1)

[0282]

実施例 $78:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル<math>\}-N'-ペンチルウレア$

2-クロロ-4- [(6, 7-ジメトキシ-4-キナゾリニル)オキシ] アニリン $(50\,\mathrm{mg})$ をクロロホルム $(5\,\mathrm{m}\,1)$ 、トリエチルアミン $(1\,\mathrm{m}\,1)$ に溶解した後、クロロホルムに溶解したトリホスゲン $(4\,5\,\mathrm{mg})$ を加えて室温で $3\,\mathrm{mg}$ の分間攪拌した。次にアミルアミン $(2\,6\,\mu\,1)$ を加えて、さらに室温で $3\,\mathrm{mg}$

間した。反応被に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、 クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られ た残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物 を33mg、収率49%で得た。

[0283]

 1 H-NMR (DMSO-d₆, 400MHz): δ 0. 90 (t, J=7. 1 Hz, 3H), 1. 24-1. 34 (m, 4H), 1. 43-1. 48 (m, 2 H), 3. 08-3. 14 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 97 (t, J=5. 1Hz, 1H), 7. 23 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 47 (d, J=2. 8Hz, 1H), 7. 55 (s, 1H), 8. 03 (s, 1H), 8. 20 (d, J=9. 0Hz, 1H), 8. 56 (s, 1H)

[0284]

実施例 $79:N-(sec-ブチル)-N'-\{2-クロロ-4-[(6,7-ジメト+シ-4-キナゾリニル)オキシ]フェニル}ウレア$

2-クロロー4- [(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン (50mg) をクロロホルム (5m1)、トリエチルアミン (1m1) に溶解した後、クロロホルムに溶解したトリホスゲン (45mg) を加えて室温で30分間攪拌した。次にsecーブチルアミン (23μ1)を加えて、さらに室温で30分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を34mg、収率52%で得た。

[0285]

 1 H-NMR (DMSO- $_{6}$, 400MHz): 80. 89 (t, J=7. 6 Hz, 3H), 1. 09 (d, J=6. 6Hz, 3H), 1. 43-1. 46 (m, 2H), 3. 58-3. 66 (m, 1H), 3. 97 (s, 3H), 3. 9 (s, 3H), 6. 88 (d, J=7. 6Hz, 1H), 7. 22 (dd, J

= 2. 4 H z, 9. 3 H z, 1 H), 7. 3 9 (s, 1 H), 7. 4 7 (d, J = 2. 7 H z, 1 H), 7. 5 5 (s, 1 H), 7. 9 8 (s, 1 H), 8. 2 3 (d, J=9. 0 H z, 1 H), 8. 5 5 - 8. 5 6 (m, 1 H) 質量分析値 (ESI-MS, m/z): 4 3 1 (M++1)

[0286]

実施例80:N-Pリル $-N'-\{2-D$ ロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル $\}$ ウレア

2-クロロー4- [(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次にアリルアミン塩酸塩(21mg)を加えて、さらに室温で30分間した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を45mg、収率72%で得た。

[0287]

1 H-NMR (DMSO-d₆, 400MHz): 3. 76-3. 79 (m, 2
H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 10-5. 24 (m, 2H), 5. 85-5. 94 (m, 1H), 7. 11 (t, J=5. 4Hz, 1H), 7. 24 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 39 (s, 1H), 7. 49 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 8. 14 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 56 (s, 1H)

質量分析値 (ESI-MS, m/z):415 (M++1)

[0288]

<u>実施例81:N-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル</u>) オキシ] フェニル $\}$ -N' - (2-プロピニル) ウレア

2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ] アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶

解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次にプロパルギルアミン塩酸塩(21mg)を加えて、さらに室温で30分間した。析出した結晶を濾取、洗浄し表題の化合物を38mg、収率61%で得た。

[0289]

 1 H-NMR (DMSO-d₆, 400MHz): 3. 16-3. 17 (m, 1 H), 3. 93-3. 95 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 7. 25 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 30 (t, J=5. 6Hz, 1H), 7. 39 (s, 1H), 7. 50 (d, J=2. 7Hz, 1H), 7. 55 (s, 1H), 8. 16 (d, J=9. 3Hz, 1H), 8. 18 (s, 1H), 8. 56 (s, 1H)

質量分析値 (ESI-MS, m/z): 413 (M⁺+1)

[0290]

実施例82:N- $\{2-\rho \Box \Box - 4-[(6,7-i)]$ + i

2-クロロー4- [(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次に2,4-ジフルオロベンジルアミン(22μ1)を加えて、さらに室温で30分間した。析出した結晶を濾取、洗浄し表題の化合物を48mg、収率64%で得た。

[0291]

 1 H-NMR (DMSO-d₆, 400MHz): 3.97 (s, 3H), 3.99 (s, 3H), 4.33-4.36 (m, 2H), 7.08-7.12 (m, 1H), 7.22-7.28 (m, 2H), 7.39 (s, 1H), 7.42-7.46 (m, 1H), 7.49 (d, J=2.7Hz, 1H), 7.54 (s, 1H), 8.18-8.20 (m, 2H), 8.56 (s, 1H) 質量分析値 (ESI-MS, m/z): 501 (M⁺+1)

[0292]

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次に2-(メチルアミノ)ピリジン(19μ1)を加えて、さらに60度で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を26mg、収率37%で得た。

[0293]

¹ H-NMR (CDCl₃, 400MHz): 3.51 (s, 2H), 4.07 (s, 3H), 4.07 (s, 3H), 7.03-7.10 (m, 2H), 7.19 (dd, J=2.7Hz, 9.0Hz, 1H), 7.35 (s, 1H), 7.36 (d, J=2.7Hz, 1H), 7.54 (s, 1H), 7.76-7.81 (m, 1H), 8.38-8.43 (m, 1H), 8.56 (d, J=9.0Hz, 1H), 8.64 (s, 1H), 13.53 (s, 1H) 質量分析値 (ESI-MS, m/z): 466 (M⁺+1)

[0294]

<u>実施例85:N-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル</u>) オキシ]フェニル) -)

 $2-\rho$ ロロー4-[(6,7-i)メトキシー4-iナゾリニル)オキシ]アニリン $(50\,\mathrm{m\,g})$ をクロロホルム $(5\,\mathrm{m\,I})$ に溶解した後、p-iフルオロフェニルイソシアナート $(2\,1\,\mu\,1)$ を加えて60度で1時間攪拌した。析出した結晶を濾取、洗浄し、表題の化合物を $57\,\mathrm{m\,g}$ 、収率 $8\,1\%$ で得た.。

[0295]

 1 H-NMR (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 13-7. 17 (m, 2H), 7. 30 (dd, J=2 .4Hz, 8. 8Hz, 1H), 7. 40 (s, 1H), 7. 48-7. 51 (

m, 2H), 7. 55-7. 56 (m, 2H), 8. 21 (d, J=9. 0Hz, 1H), 8. 31 (s, 1H), 8. 57 (s, 1H)
質量分析値 (ESI-MS, m/z): 469 (M⁺+1)

[0296]

実施例86: $N-\{2-DDD-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フェニル<math>N'-(2-メトキシフェニル)$ ウレア

 $2-\rho$ ロロー4ー [(6, 7ージメトキシー4ーキナゾリニル) オキシ] アニリン (50mg) をクロロホルム (5m1) に溶解した後、2-メトキシフェニルイソシアナート ($24\mu1$) を加えて60度で1時間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開する HPLC により精製し、表題の化合物を $39\,\mathrm{mg}$ 、収率54%で得た.。

[0297]

¹ H-NMR (DMSO-d₆, 400MHz): 3. 90 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 89-7. 05 (m, 3H), 7. 29 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 40 (s, 1H), 7. 54 (d, J=2. 7Hz, 1H), 7. 56 (s, 1H), 8. 09-8. 16 (m, 2H), 8. 58 (s, 1H), 8. 96-9. 02 (m, 2H)

質量分析値(ESI-MS, m/z):418(M+1)

[0298]

実施例87:N- $\{2-\rho \Box \Box -4-[(6,7-i)]$ カキシ]フェニル $\}$ -N'- $(5-\rho \Box \Box -2-i)$ リジル $\}$ ウレア

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(5m1)、トリエチルアミン(1m1)に溶解した後、クロロホルムに溶解したトリホスゲン(45mg)を加えて室温で30分間攪拌した。次に2-アミノー5-クロロピリジン(23mg)を加えて、さらに60度で1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより

精製し、表題の化合物を39mg、収率53%で得た。

[0299]

¹ H-NMR (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 4. 00 (s, 3H), 7. 33 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 40 (s, 1H), 7. 43-7. 48 (m, 1H), 7. 56 (s, 1H), 7. 60 (d, J=2. 7Hz, 1H), 7. 91 (dd, J=2. 7Hz, 9. 0Hz, 1H), 8. 35 (d, J=8. 8Hz, 1H), 8. 40 (d, J=2. 4Hz, 1H), 8. 58 (s, 1H), 10. 17 (s, 1H) 質量分析値 (ESI-MS, m/z): 486 (M⁺+1)

[0300]

実施例88: $N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル<math>N'-$ プロピルウレア

4-[(6,7-i)]メトキシー4-iナゾリニル)オキシ] -2-iフルオロアニリン (50mg) をクロロホルム (3m1)、トリエチルアミン (0.3m1)) に溶解した後、クロロホルムに溶解したトリホスゲン (47mg) を加えて室温で30分間攪拌した。次にプロピルアミン $(20\mu1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開する Π PLCにより精製し、表題の化合物を9mg、収率14%で得た。

[0301]

 1 H-NMR (DMSO-d₆, 400MHz): δ 0. 90 (t, J=7. 6 Hz, 3H), 1. 43-1. 49 (m, 2H), 3. 05-3. 10 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 61 (t, J=5. 6Hz, 1H), 7. 05-7. 07 (m, 1H), 7. 27-7. 31 (m, 1H), 7. 38 (s, 1H), 7. 54 (s, 1H), 8. 14-8. 19 (m, 1H), 8. 28-8. 29 (m, 1H), 8. 55 (s, 1H) 質量分析値 (ESI-MS, m/z): 401 (M⁺+1)

[0302]

実施例89: $N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニ ル)オキシ]-2-フルオロフェニル<math>\}$ ウレア

4-[(6,7-i)メトキシー4-iキナゾリニル)オキシ] -2-iフルオロアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ 、トリエチルアミン $(0.3\,\mathrm{m}\,1)$ に溶解した後、クロロホルムに溶解したトリホスゲン $(47\,\mathrm{mg})$ を加えて室温で30分間攪拌した。次にブチルアミン $(24\,\mu\,1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開する HPLC により精製し、表題の化合物を $25\,\mathrm{mg}$ 、収率38%で得た。

[0303]

 1 H-NMR (DMSO-d $_{6}$, 400MHz): δ 0. 91 (t, J=7. 3 Hz, 3H), 1. 30-1. 47 (m, 4H), 3. 09-3. 13 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 58 (t, J=5. 6Hz, 1H), 7. 04-7. 07 (m, 1H), 7. 28-7. 31 (m, 1H), 7. 38 (s, 1H), 7. 54 (s, 1H), 8. 14-8. 19 (m, 1H), 8. 26-8. 28 (m, 1H), 8. 55 (s, 1H) 質量分析値 (ESI-MS, m/z): 415 (M⁺+1)

[0304]

実施例90:N- $(\sec-ブチル)$ -N' - $\{4-[(6,7-ジメトキシ-4-キ$ ナゾリニル) オキシ] - $2-フルオロフェニル\}$ ウレア

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にsec-ブチルアミン(25μ1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を12mg、収率18%で得た。

[0305]

 1 H-NMR (DMSO-d₆, 400MHz): 0.89 (t, J=7.6Hz, 3H), 1.08 (d, J=6.6Hz, 3H), 1.39-1.48 (m, 2H), 3.58-3.64 (m, 1H), 3.97 (s, 3H), 3.99 (s, 3H), 6.51 (d, J=7.6Hz, 1H), 7.04-7.08 (m, 1H), 7.30 (dd, J=2.4Hz, 11.7Hz, 1H), 7.39 (

s, 1H), 7. 54 (s, 1H), 8. 16-8. 22 (m, 2H), 8. 5 6 (s, 1H)

質量分析値 (ESI-MS, m/z):415 (M++1)

[0306]

実施例91:N-アリル-N'-{4-[(6, 7-ジメトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル}ウレア

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にアリルアミン塩酸塩(30mg)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を18mg、収率28%で得た。

[0307]

 1 H-NMR (DMSO-d₆, 400MHz): 3. 75-3. 79 (m, 2 H), 3. 97 (s, 3H), 3. 99 (s, 3H), 5. 08-5. 22 (m, 2H), 5. 84-5. 94 (m, 1H), 6. 72 (t, J=5. 9Hz, 1H), 7. 06-7. 08 (m, 1H), 7. 30-7. 33 (m, 1H), 7. 39 (s, 1H), 7. 54 (s, 1H), 8. 13-8. 18 (m, 1H), 8. 40 (s, 1H), 8. 56 (s, 1H)

質量分析値 (ESI-MS, m/z):399 (M++1)

[0308]

実施例92:N- $\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-$ 2-フルオロフェニル $\}$ -N'-(2-プロピニル)ウレア

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次にプロパルギルアミン塩酸塩(29mg)を加えて、さらに室温で一晩攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出し、クロロホルム層を無水硫酸ナトリウムで乾燥した。減圧下溶

1 2 7

媒を留去して得られた残さクロロホルムで洗浄し、表題の化合物を21mg、収率33%で得た。

[0309]

 1 H-NMR (DMSO-d₆, 400MHz): 3. 15 (t, J=2.4 Hz, 1H), 3. 91-3. 94 (m, 2H), 3. 97 (s, 3H), 3. 9 (s, 3H), 7. 07-7. 11 (m, 1H), 7. 33 (dd, J=2.4 Hz, 11.7 Hz, 1H), 7. 39 (s, 1H), 7. 54 (s, 1H), 8. 09-8. 15 (m, 1H), 8. 47-8. 48 (m, 1H), 8. 5 (s, 1H)

質量分析値(ESI-MS, m/z):397(M++1)

[0310]

実施例 $93:N-(2,4-ジフルオロベンジル)-N'-\{4-[(6,7-ジ)$ メトキシ-4-キナゾリニル)オキシ]-2-フルオロフェニル $\}$ ウレア

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(47mg)を加えて室温で30分間攪拌した。次に2,4-ジフルオロベンジルアミン(28μ1)を加えて、さらに室温で一晩攪拌した。析出した結晶を濾取、洗浄し表題の化合物を20mg、収率26%で得た。

[0311]

1 H-NMR (DMSO-d₆, 400MHz): 3. 97 (s, 3H), 3.
99 (s, 3H), 4. 34 (d, J=5. 8Hz, 2H), 7. 07-7. 1
1 (m, 3H), 7. 21-7. 27 (m, 1H), 7. 30-7. 33 (m,
1H), 7. 39 (s, 1H), 7. 41-7. 47 (m, 1H), 7. 54 (
s, 1H), 8. 12-8. 16 (m, 1H), 8. 46-8. 47 (m, 1H)
), 8. 55 (s, 1H)

質量分析値 (FD-MS, m/z):484 (M⁺)

[0312]

実施例 $94:N-(2,4-ジフルオロフェニル)-N'-\{4-[(6,7-ジ$

メトキシー4ーキナゾリニル)オキシ]-2-フルオロフェニル)ウレア

4-[(6,7-i)] トキシー4-i ナゾリニル)オキシ] -2-i フルオロアニリン(50mg)をクロロホルム(3m1)に溶解した後、2,4-i フルオロフェニルイソシアナート($29\mu1$)を加えて60度で一晩攪拌した。析出した結晶を濾取、洗浄し表題の化合物を50mg、収率67%で得た。

[0313]

1 H-NMR (DMSO-d₆, 400MHz): 3. 98 (s, 3H), 3.
99 (s, 3H), 7. 04-7. 08 (m, 1H), 7. 13-7. 15 (m, 1H), 7. 29-7. 40 (m, 3H), 7. 55 (s, 1H), 8. 10
-8. 23 (m, 2H), 8. 57 (s, 1H), 8. 97-9. 04 (m, 2H)

質量分析値(ESI-MS, m/z):471(M+1)

[0314]

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-フルオロアニリン(50mg)をクロロホルム(3m1)に溶解した後、οートルイルイソシアナート(30μ1)を加えて60度で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を17mg、収率24%で得た。

[0315]

1 H-NMR (DMSO-d₆, 400MHz): 2. 27 (s, 3H), 3.
98 (s, 3H), 3. 99 (s, 3H), 6. 95-6. 98 (m, 1H),
7. 12-7. 20 (m, 3H), 7. 36-7. 39 (m, 2H), 7. 55
(s, 1H), 7. 86 (d, J=7. 8Hz, 1H), 8. 21-8. 26 (
m, 1H), 8. 35 (s, 1H), 8. 57 (s, 1H), 9. 00-9. 0
2 (m, 1H)

質量分析値(ESI-MS, m/z):449(M+1)

[0316]

実施例96:N- $\{4-[(6,7-i)]-1,2-i+1,2-i$

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ] -2-iフルオロアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ に溶解した後、2-iメトキシフェニルイソシアナート $(3\,2\,\mu\,1)$ を加えて60度で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開する HPLC により精製し、表題の化合物を $2\,2\,\mathrm{mg}$ 、収率 $3\,0\,\%$ で得た。

[0317]

 1 H-NMR (DMSO-d $_{6}$, 400MHz): 3.89 (s, 3H), 3.98 (s, 3H), 3.99 (s, 3H), 6.88-7.04 (m, 3H), 7.11-7.14 (m, 1H), 7.35-7.39 (m, 1H), 7.40 (s, 1H), 7.56 (s, 1H), 8.12-8.15 (m, 1H), 8.19-8.25 (m, 1H), 8.57 (s, 1H), 8.75-8.78 (m, 1H), 9.26-9.29 (m, 1H)

質量分析値(ESI-MS, m/z):465 (M++1)

[0318]

実施例 $9.7:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]-3-メチルフェニル}-N'-プロピルウレア$

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-3-メチルアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にプロピルアミン(20μ1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を30mg、収率47%で得た。

[0319]

 1 H-NMR (DMSO-d₆, 400MHz): δ0. 89 (t, J=7. 5 Hz, 3H), 1. 41-1. 50 (m, 2H), 2. 03 (s, 3H), 3. 03-3. 08 (m, 2H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 13 (t, J=5. 4Hz, 1H), 7. 04 (d, J=8. 5Hz, 1H)

), 7. 28 (dd, J=2. 4Hz, 8. 5Hz, 1H), 7. 36 (d, J=2. 4Hz, 1H), 7. 38 (s, 1H), 7. 58 (s, 1H), 8. 3
9 (s, 1H), 8. 50 (s, 1H)

質量分析値 (ESI-MS, m/z):397 (M++1)

[0320]

実施例98: $N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリニ$ ル) オキシ] -3-メチルフェニル} ウレア

4-[(6,7-i)]メトキシー4-iキナゾリニル)オキシ] -3-iメチルアニリン (50mg) をクロロホルム (3m1)、トリエチルアミン (0.2m1) に溶解した後、クロロホルムに溶解したトリホスゲン (48mg) を加えて室温で30分間攪拌した。次にブチルアミン $(24\mu1)$ を加えて、さらに室温で一晩攪拌した。反応被にメタノールを加え、クロロホルム/メタノールで展開する HPLCにより精製し、表題の化合物を31mg、収率47%で得た。

[0321]

¹ H-NMR (DMSO-d₆, 400MHz): δ0. 91 (t, J=7. 3 Hz, 3H), 1. 29-1. 46 (m, 4H), 2. 03 (s, 3H), 3. 07-3. 12 (m, 2H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 11 (t, J=5. 6Hz, 1H), 7. 05 (d, J=8. 8Hz, 1H), 7. 27 (dd, J=2. 3Hz, 8. 5Hz, 1H), 7. 36 (d, J=2. 4Hz, 1H), 7. 38 (s, 1H), 7. 58 (s, 1H), 8. 3 9 (s, 1H), 8. 51 (s, 1H)

質量分析値 (ESI-MS, m/z):411 (M++1)

[0322]

実施例99: $N-(2,4-ジフルオロフェニル)-N'-\{4-[(6,7-ジ$ $メトキシ-4-キナゾリニル)オキシ]-3-メチルフェニル}ウレア$

4-[(6,7-i)メトキシー4-iナゾリニル)オキシ]-3-iメチルアニリン (50mg) をクロロホルム (3m1) に溶解した後、2,4-iジフルオロフェニルイソシアナート $(23\mu1)$ を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を59mg、収率79%で得た。

[0323]

 1 H-NMR (DMSO-d₆, 400MHz): 2.07 (s, 3H), 3. 99 (s, 3H), 3.99 (s, 3H), 7.03-7.08 (m, 1H), 7.14 (d, J=8.5Hz, 1H), 7.29-7.37 (m, 2H), 7.39 (s, 1H), 7.43 (d, J=2.4Hz, 1H), 7.60 (s, 1H), 8.07-8.14 (m, 1H), 8.52 (s, 1H), 9.03-9.05 (m, 1H)

質量分析値(ESI-MS, m/z):467(M++1)

[0324]

実施例 $100:N-\{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]$ $-3-メチルフェニル\}-N'-(4-フルオロフェニル)ウレア$

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-3-メチルアニリン(50mg)をクロロホルム(3m1)に溶解した後、p-フルオロフェニルイソシアナート(22μ1)を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を42mg、収率58%で得た。

[0325]

 1 H-NMR (DMSO-d₆, 400MHz): 2.07 (s, 3H), 3.98 (s, 3H), 3.99 (s, 3H), 7.10-7.14 (m, 3H), 7.35 (dd, J=2.4Hz, 8.5Hz, 1H), 7.39 (s, 1H), 7.43 (d, J=2.4Hz, 1H), 7.46-7.49 (m, 2H), 7.59 (s, 1H), 8.51 (s, 1H), 8.66 (s, 1H), 8.70 (s, 1H)

質量分析値 (ESI-MS, m/z):449 (M++1)

[0326]

実施例 $101:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]}$ -3-メチルフェニルN'-(2-メトキシフェニル)ウレア

4-[(6,7-i)メトキシー4-iキナゾリニル)オキシ]-3-iメチルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ に溶解した後、2-iメトキシフェニルイソシアナート $(26\,\mu\,1)$ を加えて、一晩加熱還流した。反応液にメタノー

ルを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を41mg、収率55%で得た。

[0327]

¹ H-NMR (DMSO-d₆, 400MHz): δ2.07 (s, 3H), 3 .89 (s, 3H), 3.99 (s, 3H), 3.99 (s, 3H), 6.88 -6.97 (m, 2H), 7.01-7.03 (m, 1H), 7.12 (d, J =8.5Hz, 1H), 7.35 (dd, J=2.4Hz, 8.5Hz, 1H) ,7.39 (s, 1H), 7.44 (d, J=2.4Hz, 1H), 7.60 (s, 1H), 8.13-8.15 (m, 1H), 8.23 (s, 1H), 8.5 2 (s, 1H), 9.33 (s, 1H)

質量分析値 (ESI-MS, m/z):461 (M+1)

[0328]

実施例 $102:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]}$ $-2-メチルフェニル}-N'-プロピルウレア$

4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]-2-メチルアニリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にプロピルアミン(20μ1)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を30mg、収率47%で得た。

[0329]

 1 H-NMR (DMSO-d₆, 400MHz): δ0. 90 (t, J=7. 3 Hz, 3H), 1. 42-1. 51 (m, 2H), 2. 21 (s, 3H), 3. 04-3. 09 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 53 (t, J=5. 6Hz, 1H), 7. 02 (dd, J=2. 7Hz, 8 . 8Hz, 1H), 7. 08 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 54 (s, 1H), 7. 65 (s, 1H), 7. 85 (d, J=8. 8Hz, 1H), 8. 53 (s, 1H)

質量分析値 (ESI-MS, m/z):397 (M++1)

[0330]

<u>実施例103:NープチルーN'- $\{4-[(6,7-ジメトキシ-4-キナゾリ</u>$ <u>ニル)オキシ]-2-メチルフェニル}ウレア</u></u>

4-[(6,7-i)] トリン(50mg)をクロロホルム(3m1)、トリエチルアミン(0.2m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にブチルアミン($24\mu1$)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するmgといわり精製し、表題の化合物を37mg、収率56%で得た。

[0331]

 1 H-NMR (DMSO-d₆, 400MHz): 80. 92 (t, J=7. 1 Hz, 3H), 1. 31-1. 48 (m, 4H), 2. 21 (s, 3H), 3. 08-3. 13 (m, 2H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 50 (t, J=5. 4Hz, 1H), 7. 02 (dd, J=2. 7Hz, 8 . 8Hz, 1H), 7. 08 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 54 (s, 1H), 7. 64 (s, 1H), 7. 86 (d, J=8. 8Hz, 1H), 8. 53 (s, 1H)

質量分析値(ESI-MS, m/z):411(M++1)

[0332]

実施例 $104:N-(2,4-ジフルオロフェニル)-N'-\{4-[(6,7- ジメトキシ-4-キナゾリニル) オキシ]-2-メチルフェニル} ウレア$

4-[(6,7-i)] トキシー4-i ナゾリニル)オキシ] -2-i チルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{m}\,1)$ に溶解した後、2 ,4-i ブルオロフェニルイソシアナート $(2\,3\,\mu\,1)$ を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を定量的に得た。

[0333]

¹ H-NMR (DMSO-d₆, 400MHz): 2. 29 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 03-7. 11 (m, 2H), 7. 16 (d, J=2. 7Hz, 1H), 7. 29-7. 35 (m, 1H), 7 . 38 (s, 1H), 7. 55 (s, 1H), 7. 87-7. 90 (m, 1H), 8. 13-8. 19 (m, 1H), 8. 36-8. 39 (m, 1H), 8. 5 (s, 1H), 8. 92-8. 95 (m, 1H)
質量分析値 (ESI-MS, m/z): 467 (M⁺+1)

[0334]

実施例 $105:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]}$ $-2-メチルフェニル}-N'-(4-フルオロフェニル)ウレア$

4-[(6,7-i)メトキシー4-iキナゾリニル)オキシ] -2-iメチルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{ml})$ に溶解した後、p-iフルオロフェニルイソシアナート $(22\,\mu\,\mathrm{l})$ を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を定量的に得た。

[0335]

¹ H-NMR (DMSO-d₆, 400MHz): 2. 28 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 7. 08-7. 15 (m, 4H), 7. 38 (s, 1H), 7. 47-7. 50 (m, 2H), 7. 55 (s, 1H), 7. 84-7. 88 (m, 1H), 7. 98 (s, 1H), 8. 55 (s, 1H), 9. 03-9. 05 (m, 1H)

[0336]

実施例 $106:N-\{4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]$ $-2-メチルフェニル\}-N'-(2-メトキシフェニル) ウレア$

質量分析値 (ESI-MS, m/z):449 (M+1)

4-[(6,7-i)] トキシー4-i ナゾリニル)オキシ] -2-i チルアニリン $(50\,\mathrm{mg})$ をクロロホルム $(3\,\mathrm{ml})$ に溶解した後、2-i トキシフェニルイソシアナート $(26\,\mathrm{ml})$ を加えて、一晩加熱還流した。析出した結晶を濾取、洗浄し、表題の化合物を $70\,\mathrm{mg}$ 、収率95%で得た。

[0337]

¹ H-NMR (DMSO-d₆, 400MHz): 2. 29 (s, 3H), 3. 90 (s, 3H), 3. 98 (s, 3H), 3. 99 (s, 3H), 6. 87-6. 97 (m, 2H), 7. 02-7. 04 (m, 1H), 7. 08 (dd, J = 2. 9 Hz, 8. 8 Hz, 1 H), 7. 14 (d, J=2. 7 Hz, 1 H),
7. 38 (s, 1 H), 7. 55 (s, 1 H), 7. 84 (d, J=8. 8 Hz, 1 H), 8. 13-8. 15 (m, 1 H), 8. 55 (s, 1 H), 8. 58
(s, 1 H), 8. 61-8. 62 (m, 1 H)

質量分析値 (ESI-MS, m/z):461 (M+1)

[0338]

実施例 $107:N-{4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]}$ $-2-ニトロフェニル}-N'-プロピルウレア$

4-[(6,7-i)] トリン $(50 \, \text{mg})$ をクロロホルム $(10 \, \text{ml})$ 、トリエチルアミン $(0.2 \, \text{ml})$ とが解した後、クロロホルムに溶解したトリホスゲン $(43 \, \text{mg})$ を加えて室温で $30 \, \text{分間攪拌した}$ 。次にプロピルアミン $(18 \, \mu \, 1)$ を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を $24 \, \text{mg}$ 、収率 38% で得た。

[0339]

 1 H-NMR (DMSO-d₆, 400MHz): δ 0. 91 (t, J=7. 6 Hz, 3H), 1. 45-1. 51 (m, 2H), 3. 06-3. 09 (m, 2 H), 3. 98 (s, 3H), 4. 00 (s, 3H), 7. 40 (s, 1H), 7. 52 (br, 1H), 7. 58 (s, 1H), 7. 67-7. 70 (m, 1 H), 8. 04-8. 06 (m, 1H), 8. 38-8. 41 (m, 1H), 8. 57 (s, 1H), 9. 35 (s, 1H)

質量分析値(ESI-MS, m/z):428(M++1)

[0340]

実施例 $108:N-ブチル-N'-\{4-[(6,7-ジメトキシ-4-キナゾリ$ ニル) オキシ]-2-ニトロフェニル ウレア

4-[(6,7-i)] -2-i -2-i

一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を15mg、収率23%で得た。

[0341]

 1 H-NMR (DMSO-d₆, 400MHz): δ0. 91 (t, J=7. 3 Hz, 3H), 1. 30-1. 49 (m, 4H), 3. 10-3. 15 (m, 2 H), 3. 98 (s, 3H), 4. 00 (s, 3H), 7. 40 (s, 1H), 7. 51 (br, 1H), 7. 57 (s, 1H), 7. 68 (dd, J=2. 9 Hz, 9. 3Hz, 1H), 8. 05 (d, J=2. 9Hz, 1H), 8. 40 (d, J=9. 2Hz, 1H), 8. 57 (s, 1H), 9. 35 (s, 1H) 質量分析値 (ESI-MS, m/z): 442 (M⁺+1)

[0342]

実施例 $109:N-\{2-\rho \Box \Box -4-[(6,7-i)]$ N-i N-i

N- {2-クロロー4-[(6, 7-ジメトキシー4-キナゾリニル)オキシ]フェニル}ーN'ープロピルウレア(100mg)を無水テトラヒドロフラン(30ml)に溶解し、水素化ナトリウム(60wt%、88mg)を加えて室温で15分間攪拌した。次にクロロメチルメチルエーテル(67μl)を加えて、さらに室温で30分間攪拌した。減圧下溶媒を留去し、水を加えクロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を18mg、収率18%で得た。

[0343]

 1 H-NMR (DMSO-d₆, 400MHz): δ 0. 89 (t, J=7. 6 Hz, 3H), 1. 46-1. 55 (m, 2H), 3. 20 (br, 2H), 3. 48 (s, 3H), 4. 07 (s, 3H), 4. 08 (s, 3H), 4. 54 (br, 2H), 7. 29 (dd, J=2. 7Hz, 8. 5Hz, 1H), 7. 37 (s, 1H), 7. 47 (d, J=8. 8Hz, 1H), 7. 50 (s, 1H), 7. 50 (d, J=2. 7Hz, 1H), 8. 66 (s, 1H) 質量分析値 (ESI-MS, m/z): 461 (M⁺+1)

[0344]

実施例110:N-アセチル-N- $\{2-$ クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ]フェニル $\}$ -N' -プロピルウレア

N- {2-クロロー4-[(6, 7-ジメトキシー4-キナゾリニル) オキシ] フェニル} -N' -プロピルウレア (100mg) を無水テトラヒドロフラン (30ml) に溶解し、水素化ナトリウム (60wt%、88mg) を加えて室温で15分間攪拌した。次に塩化アセチル (63μl) を加えて、さらに室温で2時間攪拌した。減圧下溶媒を留去し、水を加えクロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/アセトンで展開するHPLCにより精製し、表題の化合物を27mg、収率26%で得た。

[0345]

 1 H-NMR (DMSO-d₆, 400MHz): δ0. 98 (t, J=7. 3 Hz, 3H), 1. 59-1. 68 (m, 2H), 2. 04 (s, 3H), 3. 27-3. 36 (m, 2H), 4. 07 (s, 3H), 4. 08 (s, 3H), 7. 31-7. 33 (m, 1H), 7. 35 (s, 1H), 7. 41 (d, J=9. 0Hz, 1H), 7. 50-7. 51 (m, 2H), 8. 63 (s, 1H), 9. 08 (br, 1H)

質量分析値(ESI-MS, m/z):459(M++1)

[0346]

実施例 $111:N'-\{2-D_{1}-4-[(6,7-i)]++i-4-i+1]$ ニル) オキシ]フェニル $\}$ -N-メチル-N-プロピルウレア

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(56mg)をクロロホルム(4m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(50mg)を加えて室温で30分間攪拌した。次にN-メチルプロピルアミン(26μ1)を加えて、さらに室温で1時間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をヘキサンで洗浄し、表題の化合物を42mg、収率58%で得た。

[0347]

 1 H-NMR (DMSO-d₆, 400MHz): δ 0. 99 (t, J=7. 3 Hz, 3H), 1. 64-1. 74 (m, 2H), 3. 08 (s, 3H), 3. 34 (t, J=7. 6Hz, 2H), 4. 07 (s, 3H), 4. 08 (s, 3 H), 7. 00 (s, 1H), 7. 17 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 38 (s, 1H), 7. 53 (s, 1H), 8. 41 (d, J=9. 0Hz, 1H), 8. 64 (s, 1H)

質量分析値(ESI-MS, m/z):431(M+1)

[0348]

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(80mg)をクロロホルム(3ml)、トリエチルアミン(0.3ml)に溶解した後、クロロホルムに溶解したトリホスゲン(72mg)を加えて室温で15分間攪拌した。次にN-エチルプロピルアミン(44μl)を加えて、さらに室温で30分間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をヘキサンで洗浄し、表題の化合物を40mg、収率37%で得た。

[0349]

 1 H-NMR (DMSO-d₆, 400MHz): δ 1.00 (t, J=7.3 Hz, 3H), 1.28 (t, J=7.1Hz, 3H), 1.69-1.74 (m, 2H), 3.32 (t, J=7.6Hz, 2H), 3.43 (q, J=7.1Hz, 2H), 4.07 (s, 3H), 4.07 (s, 3H), 7.02 (s, 1H), 7.17 (dd, J=2.9Hz, 9.2Hz, 1H), 7.31 (d, J=2.7Hz, 1H), 7.36 (s, 1H), 7.53 (s, 1H), 8.42 (d, J=9.0Hz, 1H), 8.63 (s, 1H) (質量分析値 (ESI-MS, m/z): 445 (M⁺+1)

[0350]

実施例 $113:N'-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリニル)オキシ]フェニル}-N,N-ジプロピルウレア$

2-クロロー4-[(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン(100mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1) に溶解した後、クロロホルムに溶解したトリホスゲン(90mg)を加えて室温で15分間攪拌した。次にジプロピルアミン(62μ1)を加えて、さらに室温で30分間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をヘキサンで洗浄し、表題の化合物を48mg、収率35%で得た。

[0351]

 1 H-NMR (DMSO-d $_{6}$, 400MHz): 80.99 (t, J=7.3 Hz, 6H), 1.66-1.76 (m, 4H), 3.32 (t, J=7.8Hz, 4H), 4.07 (s, 3H), 4.07 (s, 3H), 7.03 (s, 1H), 7.16 (dd, J=2.7Hz, 9.3Hz, 1H), 7.31 (d, J=2.7Hz, 1H), 7.34 (s, 1H), 7.52 (s, 1H), 8.43 (d, J=9.0Hz, 1H), 8.63 (s, 1H) 質量分析値 (ESI-MS, m/z): 459 (M++1)

[0352]

<u>実施例114:NープチルーN'ー {2ークロロー4ー[(6,7ージメトキシー4ーキナゾリニル)オキシ]フェニル}ーNーメチルウレア</u>

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(80mg)をクロロホルム(3m1)、トリエチルアミン(0.3m1)に溶解した後、クロロホルムに溶解したトリホスゲン(72mg)を加えて室温で15分間攪拌した。次にN-メチルブチルアミン(43μ1)を加えて、さらに室温で30分間攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をヘキサンで洗浄し、表題の化合物を26mg、収率24%で得た。

[0353]

 1 H-NMR (DMSO- 1 G, 400MHz) : δ 0. 99 (t, J=7. 3)

Hz, 3H), 1. 38-1. 43 (m, 2H), 1. 62-1. 66 (m, 2H), 3. 07 (s, 3H), 3. 40 (t, J=7. 3Hz, 2H), 4. 07 (s, 3H), 4. 07 (s, 3H), 7. 00 (s, 1H), 7. 17 (d, J=2. 7Hz, 9. 3Hz, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 36 (s, 1H), 7. 53 (s, 1H), 8. 41 (d, J=9. 3Hz, 1H), 8. 63 (s, 1H)

質量分析値(ESI-MS, m/z):445 (M++1)

[0354]

<u>実施例115:N'-{2-クロロー4-[(6,7-ジメトキシー4-キナゾリ</u>ニル)オキシ]フェニル-N-(4-クロロフェニル)ーN-メチルウレア

2-クロロー4- [(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(80mg)をクロロホルム(3ml)、トリエチルアミン(0.3ml)に溶解した後、クロロホルムに溶解したトリホスゲン(72mg)を加えて室温で15分間攪拌した。次に4-クロローNーメチルアニリン(35μl)を加えて、さらに30分間加熱還流した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、溶媒を留去して得られた結晶をエーテルで洗浄し、表題の化合物を83mg、収率69%で得た。

[0355]

¹ H-NMR (DMSO-d₆, 400MHz): 3. 36 (s, 3H), 4. 06 (s, 3H), 4. 07 (s, 3H), 6. 89 (s, 1H), 7. 17 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 23 (d, J=2. 7Hz, 1H), 7. 33-7. 35 (m, 3H), 7. 48-7. 50 (m, 3H), 8. 41 (d, J=9. 0Hz, 1H), 8. 61 (s, 1H)

質量分析値 (ESI-MS, m/z): 499 (M⁺+1)

[0356]

<u>実施例116:N'-{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾ</u>リニル) オキシ] フェニルN-N, N-ジエチルウレア

2-クロロ-4-[(6, 7-ジメトキシ-4-キナゾリニル) オキシ] アニリン(50mg)をクロロホルム(2m1)、トリエチルアミン(0.5m1)

に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次にジエチルアミン(0.5ml)を加えて、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を37mg、収率93%で得た。

[0357]

¹ H-NMR (CDCl₃, 400MHz): δ1. 30 (t, J=7. 1Hz, 6H), 3. 44 (q, J=7. 1Hz, 4H), 4. 12 (s, 3H), 4. 20 (s, 3H), 7. 16 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 27 (s, 1H), 7. 31 (d, J=2. 7Hz, 1H), 7. 59 (s, 1H), 8. 15 (s, 1H), 8. 48 (d, J=9. 0Hz, 1H), 8. 81 (s, 1H)

質量分析値(ESI-MS, m/z):431(M++1)

[0358]

実施例 $117:N-\{2-クロロ-4-[(6,7-ジメトキシ-4-キナゾリ$ ニル) オキシ] フェニル $\}-N'-メチルウレア$

2-クロロー4-[(6,7-ジメトキシー4-キナゾリニル)オキシ]アニリン(50mg)をクロロホルム(2m1)、トリエチルアミン(0.5m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次に-78度に冷却し、メチルアミン塩酸塩(130mg)を加えそのまま昇温し、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を41mg、収率70%で得た。

[0359]

¹ H-NMR (DMSO-d₆, 400MHz): δ2. 68 (d, J=4. 4 Hz, 3H), 3. 97 (s, 3H), 3. 99 (s, 3H), 6. 86-6. 88 (m, 1H), 7. 21 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 37 (s, 1H), 7. 43 (d, J=2. 7Hz, 1H), 7. 53 (s, 1H), 8. 07 (s, 1H), 8. 17 (d, J=9. 0Hz, 1H), 8. 54 (s, 1H)

質量分析値 (ESI-MS, m/z):389 (M++1)

[0360]

実施例 $118:N'-\{2-D_{10}-4-[(6,7-ジメトキシ-4-キナゾ)]$ リニル) オキシ] フェニル $\}-N$, N-ジメチルウレア

2-クロロー4- [(6, 7-ジメトキシー4-キナゾリニル) オキシ] アニリン(50mg)をクロロホルム(2m1)、トリエチルアミン(0.5m1)に溶解した後、クロロホルムに溶解したトリホスゲン(48mg)を加えて室温で30分間攪拌した。次に-78度に冷却し、ジメチルアミン塩酸塩(250mg)を加えそのまま昇温し、さらに室温で一晩攪拌した。反応液にメタノールを加え、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を33mg、収率53%で得た。

[0361]

 1 H-NMR (CDC1₃, 400MHz): δ 3. 11 (s, 6H), 4. 1 2 (s, 3H), 4. 20 (s, 3H), 7. 05 (s, 1H), 7. 17 (d d, J=2. 4Hz, 9. 3Hz, 1H), 7. 31 (d, J=2. 4Hz, 1 H), 7. 59 (s, 1H), 8. 15 (s, 1H), 8. 46 (d, J=9. 3Hz, 1H), 8. 82 (s, 1H)

質量分析値 (ESI-MS, m/z):403 (M++1)

[0362]

<u>実施例119:N-(2-クロロ-4-[6-メトキシ-7-(3-モルホリノ</u> プロポキシ)-4-キナゾリニル] オキシフェニル) -N' -プロピルウレア

た中間体 (74 mg)、炭酸カリウム (51 mg)、モルホリン (130 μ1)をN,N ージメチルホルムアミド (4 m1)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を49 mg、収率63%で得た。

[0363]

 1 H-NMR (CDC1 $_{3}$, 400MHz): δ0. 89 (t, J=7. 44Hz, 3H), 1. 41-1. 50 (m, 2H), 1. 97 (t, J=6. 83Hz, 1H), 2. 33-2. 49 (m, 4H), 3. 04-3. 09 (m, 2H), 3. 32-3. 38 (m, 4H), 3. 52-3. 68 (m, 3H), 4. 03 (s, 3H), 4. 23-4. 29 (m, 1H), 4. 32 (t, J=5. 89 Hz, 1H), 6. 98 (t, J=5. 49Hz, 1H), 7. 21 (dd, J=2. 68, 9. 03Hz, 1H), 7. 36 (s, 1H), 7. 46 (d, J=2. 68Hz, 1H), 7. 53 (d, J=7. 81Hz, 1H), 8. 03 (s, 1H), 8. 18 (d, J=9. 27Hz, 1H), 8. 54 (d, J=4. 39Hz, 1H)

質量分析値 (ESI-MS, m/z):529 (M⁺)

[0364]

<u>実施例120:N-(2-クロロ-4-[6-メトキシ-7-(2-モルホリノエトキシ)-4-キナゾリニル]オキシフェニル</u>)-N'-プロピルウレア

N-{2-クロロ-4-[(7-ヒドロキシー6-メトキシー4ーキナソリニル)オキシ]フェニル}ーN'ープロピルウレア(72mg)、炭酸カリウム(30mg)、1,2-ジブロモエタン(62μ1)をN,N-ジメチルホルムアミド(4m1)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-(4-{[7-(2-ブロモエトキシ)-6-メトキシー4ーキナゾリニル]オキシ}ー2ークロロフェニル)ーN'ープロピルウレアを40mg、収率45%で得た。得られた中

間体(45 mg)、炭酸カリウム(30 mg)、モルホリン(80 μ l)をN,N-ジメチルホルムアミド(2 m l)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を42 mg、収率56%で得た。

[0365]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ0. 89 (t, J=7. 32Hz, 3H), 1. 43-1. 49 (m, 2H), 2. 32-2. 38 (m, 2H), 2. 66 (bs, 1H), 2. 79 (t, J=5. 86Hz, 1H), 3. 04-3. 09 (m, 2H), 3. 29-3. 36 (m, 4H), 3. 53 (m, 1H), 3. 57-3. 59 (m, 2H), 3. 96 (s, 3H), 4. 31 (t, J=5. 85Hz, 1H), 6. 98 (m, 1H), 7. 21-7. 23 (m, 1H), 7. 41 (s, 1H), 7. 46-7. 47 (m, 1H), 7. 55 (d, J=12. 69Hz, 1H), 8. 03 (s, 1H), 8. 19 (d, J=9. 27Hz, 1H), 8. 55 (d, J=5. 37Hz, 1H), 9. 27Hz, 1H), 8. 55 (d, J=5. 37Hz, 1H), 9. 27Hz, 1H), 9. 27Hz, 1H), 9. 517 (M+1)

[0366]

実施例121:N-(2-クロロ-4-[7-(3-ヒドロキシプロポキシ)-6-メトキシ-4-キナゾリニル] オキシフェニル) -N' -プロピルウレア N- {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル) オキシ] フェニル} -N' -プロピルウレア (55mg),炭酸カリウム (20mg)、3-ブロモ-1-プロパノール (62 μl)をN,N-ジメチルホルムアミド (4ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を25mg、収率40%で得た。

[0367]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 0. 91 (t, J=7. 44Hz, 3H), 1. 24 (bs, 1H), 1. 43-1. 52 (m, 2H), 1. 97 (t, J=6. 22Hz, 2H), 3. 06~3. 11 (m, 2H), 3. 5 6-3. 71 (m, 2H), 3. 97 (s, 3H), 4. 27 (m, 2H), 6. 99 (t, J=5. 62Hz, 1H), 7. 23 (dd, J=2. 68, 9. 03Hz, 1H), 7. 38 (d, J=9. 03Hz, 1H), 7. 47 (d, J=2. 68Hz, 1H), 7. 54 (s, 1H), 8. 05 (s, 1H), 8. 20 (d, J=9. 03Hz, 1H), 8. 55 (s, 1H) 質量分析値 (ESI-MS, m/z): 461 (M⁺+1)

[0368]

実施例122:N-(2-クロロ-4-[7-(2-ヒドロキシエトキシ)-6-メトキシー4-キナゾリニル] オキシフェニル)-N'-プロピルウレア

N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキナゾリニル)オキシ]フェニル}-N'-プロピルウレア(50mg)、炭酸カリウム(30mg)、エチレンプロモヒドリン(44μl)をN,N-ジメチルホルムアミド(4ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を12mg、収率22%で得た。

[0369]

¹ H-NMR (CDCl₃, 400MHz): δ0. 91 (t, J=7. 44Hz, 3H), 1. 42-1. 49 (m, 2H), 3. 06-3. 11 (m, 2H), 3. 80-3. 83 (m, 2H), 3. 98 (s, 3H), 4. 22 (t, J=4. 64Hz, 2H), 4. 98 (t, J=5. 37Hz, 1H), 6. 99 (t, J=5. 37Hz, 1H), 7. 33 (dd, J=2. 69Hz, 9. 03Hz, 1H), 7. 39 (s, 1H), 7. 48 (d, J=2. 68Hz, 1H), 7. 55 (s, 1H), 8. 05 (s, 1H), 8. 19 (d, J=9. 27Hz, 1H), 8. 55 (s, 1H)

質量分析値 (ESI-MS, m/z):447 (M++1)

[0370]

実施例123:N-(2-クロロ-4-[6-メトキシ-7-(4-ピリジルメトキシ)-4-キナゾリニル]オキシフェニル)-N'-プロピルウレア

原料 (N- {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナソリニル) オキシ]フェニル} -N' -プロピルウレア、80mg),炭酸カリウム (138mg)、4-クロロメチルピリジン塩酸塩(41mg)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を65mg、収率66%で得た。

[0371]

 1 H-NMR (CDCl $_{3}$, 400MHz): 80.96 (t, J=7.6Hz, 3 H), 1.53-1.64 (m, 2H), 3.25 (dd, J=7.3Hz, 1 2.9Hz, 2H), 4.07 (s, 3H), 5.32 (s, 2H), 6.66 (s, 1H), 7.14 (dd, J=2.7Hz, 9.0Hz, 1H), 7.2 7 (s, 1H), 7.29 (d, J=2.7Hz, 1H), 7.41 (d, J=5.9Hz, 2H), 7.54 (s, 1H), 8.24 (d, J=9.0Hz, 1H), 8.59 (s, 1H), 8.63 (d, J=6.1Hz, 2H) 質量分析値 (ESI-MS, m/z): 494 (M+1)

[0372]

実施例124:N-[2-クロロ-4-(6-メトキシ-7-[(5-モルホリノペンチル) オキシ] <math>-4-キナゾリニルオキシ) フェニル]-N' -プロピルウレア

 $N-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル<math>\}-N'-プロピルウレア(70mg)$ 、炭酸カリウム(30mg)、ペンタメチレンブロマイド($80\mu I$)をN,N-ジメチルホルムアミド(5m1)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥

し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-[4-({7-(5-ブロモペンチル)オキシ}-6-メトキシー4ーキナゾリニル)オキシ]-2-クロロフェニル]-N'-プロピルウレアを43mg、収率46%で得た。得られた中間体(43mg)、炭酸カリウム(30mg)、モルホリン(70μ1)をN,N-ジメチルホルムアミド(4m1)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を30mg、収率68%で得た。

[0373]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ1. 71 (t, J=7. 32Hz, 3H), 2. 28 (t, J=7. 20Hz, 2H), 2. 63 (m, 2H), 3. 08-3. 14 (m, 5H), 3. 29~3. 30 (m, 5H), 3. 47 (bs, 1H), 3. 73 (m, 1H), 3. 86-3. 90 (m, 2H), 4. 36 (t, J=4. 65Hz, 3H), 4. 46 (t, J=4. 76Hz, 1H), 4. 77 (s, 1H), 4. 99 (t, J=6. 34Hz, 2H), 7. 80 (m, 1H), 8. 02 (dd, J=2. 68Hz, 9. 27Hz, 1H), 8. 18 (s, 1H), 8. 27 (d, J=2. 68Hz, 1H), 8. 34 (s, 1H), 8. 85 (s, 1H), 9. 00 (d, J=9. 03Hz, 1H), 9. 35 (s, 1H)

質量分析値(ESI-MS, m/z):559 (M++1)

[0374]

<u>実施例125:N-2-クロロー4-[(6-メトキシー7-[5-(1H-1, 2, 3-トリアゾール-1-イル) ペンチル]オキシー4ーキナゾリニル)オキシ]フェニル-N'-プロピルウレア</u>

トリアゾール(0.41ml)、1-ブロモ-5-クロロペンタン(1.0ml)、ヨウ化 テトラブチルアンモニウム(10mg)、および3 M水酸化ナトリウム水溶液(1ml) をアセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、 クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を 留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(390mg)を得た。

原料 (N- {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、前述の中間体(52mg)をN,N-ジメチルホルムアミド(1m1)に溶解し120℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製」し、表題の化合物を41mg、収率38%で得た。

[0375]

¹ H-NMR (CDCl₃, 400MHz): δ0. 96 (t, J=7.6Hz, 3 H), 1. 50-1. 65 (m, 4H), 1. 90-2. 08 (m, 4H), 3. 24 (dd, J=7.1Hz, 12.9Hz, 2H), 4. 01 (s, 3H), 4. 17 (t, J=6.6Hz, 2H), 4. 44 (t, J=7.3Hz, 2H), 4. 88-4. 94 (m, 1H), 6. 32 (s, 1H), 7. 14 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 25 (s, 1H), 7. 29 (dd, J=2.7Hz, 1H), 7. 48 (s, 1H), 7. 55 (s, 1H), 7. 70 (s, 1H), 8. 23 (d, J=9.0Hz, 1H), 8. 58 (s, 1H)

質量分析値 (ESI-MS, m/z):540 (M++1)

[0376]

<u>実施例126:N'-(2-クロロ-4-[6-メトキシ-7-(4-ピリジル</u> メトキシ) -4 -キナゾリニル] オキシフェニル) -N, N - ジエチルウレア

原料 (N' - {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナソリニル) オキシ]フェニル} -N, N-ジエチルウレア、83mg),炭酸カリウム (138mg)、4-クロロメチルピリジン塩酸塩(49mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表

題の化合物を57mg、収率56%で得た。

[0377]

 1 H-NMR (CDCl₃, 400MHz): δ1. 26 (t, J=7. 3Hz, 6 H), 3. 41 (q, J=7. 1Hz, 4H), 4. 08 (s, 3H), 5. 3 2 (s, 2H), 6. 98 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9 . 0Hz, 1H), 7. 27 (s, 1H), 7. 29 (d, J=2. 7Hz, 1 H), 7. 41 (d, J=5. 9Hz, 2H), 7. 55 (s, 1H), 8. 3 7 (d, J=9. 0Hz, 1H), 8. 58 (s, 1H), 8. 63 (d, J=5. 9Hz, 2H)

質量分析値 (ESI-MS, m/z):508 (M++1)

[0378]

実施例127:N-(2-クロロ-4-[6-メトキシ-7-(4-モルホリノブトキシ)-4-キナゾリニル]オキシフェニル)-N'-プロピルウレア

N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキナゾリニル)オキシ]フェニル}-N'-プロピルウレア(70mg)、炭酸カリウム(30mg)、ペンタメチレンブロミド(80μl)をN,Nージメチルホルムアミド(5ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-(4-{[7-(4-ブロモブトキシ)-6-メトキシー4ーキナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレアを43mg、収率46%で得た。得られた中間体(43mg)、炭酸カリウム(30mg)、モルホリン(40μl)をN,Nージメチルホルムアミド(4ml)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を23mg、収率53%で得た。

[0379]

 $^{^{1}}$ H-NMR (CDC1₃, 400MHz) : δ 0. 99 (t, J=7. 32H

z, 3H), 1. 56-1. 62 (m, 13H), 2. 00-2. 08 (m, 2H), 3. 26-3. 28 (m, 2H), 4. 04 (s, 3H), 4. 24 (m, 2H), 4. 72-4. 77 (m, 1H), 6. 65 (s, 1H), 6. 99 (s, 1H), 7. 19-7. 26 (m, 1H), 7. 30 (s, 1H), 7. 32-7. 34 (m, 1H), 7. 51 (s, 1H), 8. 25 (d, J=9. 03Hz, 1H), 8. 61 (s, 1H)

質量分析値 (ESI-MS, m/z):545 (M++1)

[0380]

実施例128:N-[2-クロロ-4-(6-メトキシ-7-[2-(4-メチルピペラジノ)エトキシ] <math>-4-キナゾリニルオキシ) フェニル]-N'-プロピルウレア

N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシー4ーキナゾリニル)オキシ]フェニル}ーN'ープロピルウレア(60mg)、炭酸カリウム(30mg)、1,2-ジプロモエタン(70μl)をN,N-ジメチルホルムアミド(4ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-(4-{[7-(2-ブロモエトキシ)-6-メトキシー4ーキナゾリニル]オキシ}ー2-クロロフェニル)ーN'ープロピルウレアを46mg、収率62%で得た。得られた中間体(46mg)、炭酸カリウム(20mg)、N-メチルピペラジン(50μl)をN,N-ジメチルホルムアミド(3ml)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えり口ホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を24mg、収率50%で得た。

[0381]

 1 H-NMR (CDC1₃, 400MHz): δ0. 99 (t, J=7. 32Hz, 3H), 1. 61-1. 64 (m, 2H), 2. 75 (m, 2H), 3. 00-3. 16 (m, 4H), 3. 25-3. 16 (m, 4H), 3. 25-3.

29 (m, 2H), 4. 02 (s, 3H), 4. 27-4. 35 (m, 2H),
4. 78-4. 83 (m, 2H), 5. 33 (s, 3H), 6. 69 (s, 1H),
7. 17 (dd, J=2. 68Hz, 9. 03Hz, 1H), 7. 31 (s, 1H), 7. 49 (s, 1H), 8. 26 (d, J=9. 27Hz, 1H), 8. 59 (s, 1H)

質量分析値 (ESI-MS, m/z):530 (M+1)

[0382]

実施例129:N-2-クロロ-4-[(7-2-[(2-ヒドロキシエチル) (メチル) アミノ] エトキシ-6-メトキシ-4-キナゾリニル)オキシ] フェ ニル-N'-プロピルウレア

N- {2-クロロー4- [(7-ヒドロキシー6-メトキシー4ーキナソリニル)オキシ]フェニル}ーN'ープロピルウレア(65 mg)、炭酸カリウム(30 mg)、1,2-ジブロモエタン(30 μl)をN,N-ジメチルホルムアミド(4 ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-(4-{[7-(2-ブロモエトキシ)-6-メトキシー4ーキナゾリニル]オキシ}ー2ークロロフェニル)ーN'ープロピルウレアを36 mg、収率45%で得た。得られた中間体(36 mg)、炭酸カリウム(30 mg)、N-メチルエタノールアミン(30 μl)をN,N-ジメチルホルムアミド(3 ml)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を21 mg、収率55%で得た。

[0383]

 1 H-NMR (CDCl₃, 400MHz): δ0. 98 (t, J=7. 32Hz, 3H), 1. 59 (m, 2H), 1. 94 (bs, 1H), 3. 23 (m, 2H), 4. 03 (s, 3H), 4. 07-4. 15 (m, 4H), 4. 76 (m, 4H), 5. 35 (s, 3H), 7. 10-7. 17 (m, 1H), 7. 2

8 (s, 3 H), 7. 4 0 (s, 1 H), 7. 5 4 (s, 1 H), 8. 3 7 (d, J=9. 0 3 Hz, 1 H), 8. 6 4 (s, 1 H)

質量分析値 (ESI-MS, m/z): 5 0 4 (M++1)

[0384]

実施例130:N-[2-クロロ-4-(6-メトキシ-7-[3-(4-メチルピペラジノ)プロポキシ] <math>-4-キナゾリニルオキシ) フェニル] -N'-プロピルウレア

N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキナゾリニル)オキシ]フェニル}ーN'ープロピルウレア(75mg)、炭酸カリウム(30mg)、1,3-ジブロモプロパン(75μl)をN,N-ジメチルホルムアミド(4ml)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、N-(4-([7-(3-ブロモプロポキシ)ー6-メトキシー4ーキナゾリニル]オキシ}ー2ークロロフェニル)ーN'ープロピルウレアを50mg、収率52%で得た。得られた中間体(30mg)、炭酸カリウム(20mg)、N-メチルピペラジン(40μl)をN,N-ジメチルホルムアミド(3ml)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を20mg、収率63%で得た。

[0385]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ0. 99 (t, J=7. 32Hz, 3H), 1. 58-1. 62 (m, 2H), 2. 25-2. 50 (m, 3H), 2. 70-2. 85 (m, 3H), 2. 92-2. 98 (m, 3H), 3. 25 (m, 2H), 4. 04 (s, 3H), 4. 25 (m, 2H), 4. 83 (m, 3H), 5. 34 (s, 3H), 6. 70 (s, 1H), 7. 21 (dd, J=2. 68, 9. 03Hz, 1H), 7. 26 (s, 2H), 7. 31 (s, 1H), 7. 49 (s, 1H), 8. 18 (d, J=9. 27Hz, 1H), 8

. 59 (s, 1H)

質量分析値(ESI-MS, m/z):544(M++1)

[0386]

原料 (N' - {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル} - N, N-ジエチルウレア、83mg),炭酸カリウム (138mg)、2-(1H-1, 2, 3-トリアゾル-1-イル)エチル 4-メチル-1-ベンゼンスルフォナート (59mg)をN,N-ジメチルホルムアミド (1m1)に溶解し80℃で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体を得た。中間体とトリエチルアミン (0.027ml)のクロロホルム (1ml)溶液に、0℃でトリホスゲン (90mg)加えて、30分間攪拌した。反応混合物を0℃に冷却した後、ジエチルアミン (0.044ml)を滴下して加え、2時間かけて室温まで昇温した。反応混合物に飽和炭酸水素ナトリウム水溶液をを加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を30mg、収率29%で得た。

[0387]

 1 H-NMR (CDCI $_{3}$, 400MHz): δ 1. 26 (t, J=7. 1 Hz, 6 H), 3. 41 (q, J=7. 1 Hz, 4 H), 4. 03 (s, 3 H), 4. 5 3 (t, J=4. 9 Hz, 2 H), 4. 94 (t, J=5. 1 Hz, 2 H), 6. 98 (s, 1 H), 7. 13 (dd, J=2. 7 Hz, 9. 0 Hz, 1 H), 7 . 26 (s, 1 H), 7. 73 (s, 1 H), 7. 94 (s, 1 H), 8. 38 (d, J=9. 0 Hz, 1 H), 8. 60 (s, 1 H)

[0388]

原料(N'-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナソリニル)オキシ]フェニル}-N, N-ジエチルウレア、83mg),炭酸カリウム(138mg)、3-ブロモ-1-プロパノール(0,027ml)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体を得た。中間体とトリエチルアミン(0.027ml)のクロロホルム(1ml)溶液に、0℃でトリホスゲン(90mg)加えて、30分間攪拌した。反応混合物を0℃に冷却した後、ジエチルアミン(0.044ml)を滴下して加え、2時間かけて室温まで昇温した。反応混合物に飽和炭酸水素ナトリウム水溶液をを加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を19mg、収率17%で得た。

[0389]

[0390]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ1. 04 (t, J=7. 1 Hz, 6 H), 1. 22 (t, J=7. 3 Hz, 6 H), 3. 09 (q, J=7. 1 Hz, 4 H), 3. 36 (q, J=7. 1 Hz, 4 H), 3. 75 (t, J=6. 3 Hz, 2 H), 3. 97 (s, 3 H), 4. 29 (t, J=6. 1 Hz, 2 H), 6. 93 (s, 1 H), 7. 10 (dd, J=2. 7 Hz, 9. 0 Hz, 1 H), 7. 24 (d, J=2. 7 Hz, 1 H), 7. 27 (s, 1 H), 7. 45 (s, 1 H), 8. 33 (d, J=9. 3 Hz, 1 H), 8. 55 (s, 1 H)

実施例133:N-[2-クロロ-4-(6-メトキシ-7-[3-(4-ピリジ ルチオ) プロポキシ]-4-キナゾリニルオキシ)フェニル]-<math>N'-プロピルウレア

原料 $(N-(4-\{[7-(3-プロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ\}-2-クロロフェニル)-N'-プロピルウレア、<math>80mg$

),炭酸カリウム(138mg)、4-メルカプトピリジン(22mg)をN,N-ジメチルホルムアミド(1 m1)に溶解し室温で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表顕の化合物を60mg、収率72%で得た。

[0391]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 0. 91 (t, J=7. 6Hz, 3H), 1. 50-1. 60 (m, 2H), 2. 24-2. 32 (m, 2H), 3. 11-3. 24 (m, 4H), 3. 99 (s, 3H), 4. 25 (t, J=5. 9Hz, 2H), 4. 70-4. 80 (m, 1H), 6. 62 (s, 1H), 7. 11 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 11-7. 16 (m, 2H), 7. 23 (s, 1H), 7. 25 (d, J=2. 7Hz, 1H), 7. 45 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 30-8. 34 (m, 2H), 8. 55 (s, 1H)

質量分析値 (ESI-MS, m/z): 554 (M⁺+1)

[0392]

原料 (N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、5-メルカプト-1-テトラゾール(23mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を71mg、収率85%で得た。

[0393]

 1 H-NMR (CDCl₃, 400MHz) : δ 0. 91 (t, J=7. 3Hz, 3 H), 1. 51-1. 56 (m, 2H), 2. 39-2. 48 (m, 2H), 3

. 17-3. 23 (m, 2H), 3. 56 (t, J=7. 1Hz, 2H), 3. 86 (s, 3H), 3. 97 (s, 3H), 4. 27 (t, J=5. 9Hz, 2H), 4. 75-4. 82 (m, 1H), 6. 63 (s, 1H), 7. 10 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 24 (d, J=3. 7Hz, 1H), 7. 44 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 5 (s, 1H)

質量分析値(ESI-MS, m/z):559 (M++1)

[0394]

<u>実施例135:N-(2-クロロ-4-[6-メトキシ-7-(3-ピペリジノ</u> プロポキシ) -4 - キナゾリニル] オキシフェニル) - N' - プロピルウレア

N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニ (857) ル) オキシ]フェニル} (-N) ープロピルウレア($(500 \, \mathrm{mg})$,炭酸カリウム((857)mg)、1,3-ジブロモプロパン(0.5m1)を<math>N,N-ジメチルホルムアミド(5m1)に溶解し室温で3時間攪拌した。減圧下溶媒を留去して得られた残さに 水を加え、クロロホルム/2ープロパノール(4/1)で抽出した。有機層を無水 硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄 し、N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾ リニル]オキシ} - 2-クロロフェニル} - N' -プロピルウレアを451mg、収 率71%で得た。N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ -4-キナゾリニル]オキシ} - 2-クロロフェニル} -N' -プロピルウレア (70mg)、炭酸カリウム(54mg)、ピペリジン(39ul)をN,N-ジメチルホル ムアミド(2m1)に溶解し室温で一晩攪拌した。減圧下溶媒を留去して得られ た残さに飽和炭酸水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層 を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホ ルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表顕 の化合物を35mg、収率50%で得た。

[0395]

 1 H-NMR (CDCl₃, 400MHz) : δ 0. 98 (t, J=7.6Hz, 3 H), 1.46 (br, 2H), 1.54-1.66 (m, 8H), 2.15 (br, 2H), 2. 44 (br, 2H), 2. 55 (br, 2H), 3. 20-3. 30 (m, 2H), 4. 04 (s, 3H), 4. 27 (t, J=6.6Hz, 2H), 4. 77 (t, J=5.9Hz, 1H), 6. 65 (s, 1H), 7, 17 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 32 (d, J=2.7Hz, 1H), 7. 33 (s, 1H), 7. 49 (s, 1H), 8. 24 (d, J=9.0Hz, 1H), 8. 61 (s, 1H)

[0396]

<u>実施例136:N-[2-クロロー4({7-メトキシー6-[2-(4-メチルピペラジノ)エトキシ]-4-キナゾリニル}オキシ)フェニル]-N'-プロピルウレア</u>

(N-{2-クロロ-4-[(6-ヒドロキシ-7-メトキシ-4-キナゾリ Δ (857mg)、1,3-ジブロモプロパン(0.5ml)をN,N-ジメチ ルホルムアミド(5 m 1)に溶解し室温で3時間攪拌した。減圧下溶媒を留去し て得られた残さに水を加え、クロロホルム/2ープロパノール(4/1)で抽出 した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残 さをエーテルで洗浄し、 $N-(4-\{[6-(2-プロモエトキシ)-7-メト$ キシー4ーキナゾリニル]オキシ}ー2ークロロフェニル}ーN'ープロピルウ レアを451mg、収率71%で得た。N-(4-{[6-(2-ブロモエトキ 'ープロピルウレア(50mg)、炭酸カリウム(40mg)、Nーメチルピペ ラジン (50μ1)をN, Nージメチルホルムアミド (1π1)に溶解し室温で 一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水 溶液を加えてクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、 減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリ カゲルクロマトグラフィーにより精製し、表題の化合物を20mg、収率44% で得た。

[0397]

 $^{^{1}}$ H-NMR (CDC1₃, 400MHz): δ 0. 98 (t, J=7. 3H

z, 3 H), 1. 56-1. 65 (m, 2 H), 1. 77 (br, 4 H), 2. 31 (s, 3 H), 2. 53 (br, 2 H), 2. 71 (br, 2 H), 2. 9 7 (t, J=6. 1 Hz, 3 H), 3. 24-3. 29 (m, 2 H), 4. 04 (s, 3 H), 4. 32 (t, J=6. 1 Hz, 2 H), 4. 83 (br, 1 H), 6. 69 (s, 1 H), 7. 16 (dd, J=2. 7 Hz, 9. 0 Hz, 1 H), 7. 30 (s, 1 H), 7. 31 (s, 1 H), 7. 55 (s, 1 H), 8. 25 (d, J=9. 0 Hz, 1 H), 8. 62 (s, 1 H)

[0398]

実施例 $137:N-[2-クロロ-4({7-メトキシ-6-[3-(4-メチルピペラジノ)プロポキシ]-4-キナゾリニル}オキシ)フェニル]-<math>N'-$ プロピルウレア

(N- {2-クロロー4- [(6-ヒドロキシー7-メトキシー4ーキナゾリ ニル) オキシ] フェニル > - N' - プロピルウレア (500mg)、炭酸カリウ ム (857 mg)、1,3-ジブロモプロパン(0.5 m1)をN,N-ジメチ ルホルムアミド (5 m 1) に溶解し室温で3時間攪拌した。減圧下溶媒を留去し て得られた残さに水を加え、クロロホルム/2-プロパノール(4/1)で抽出 した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残 さをエーテルで洗浄し、N-(4-{[6-(3-ブロモプロポキシ)-7-メ トキシ-4-キナゾリニル]オキシ}-2-クロロフェニル}-N'-プロピル ウレアを451mg、収率71%で得た。N-(4-{[6-(3-ブロモプロ ポキシ) -7-メトキシ-4-キナゾリニル] オキシ} -2-クロロフェニル} -N'-プロピルウレア (50mg)、炭酸カリウム (40mg)、N-メチル ピペラジン ($50\mu1$) をN, N-ジメチルホルムアミド (1m1) に溶解し室 温で一晩攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウ ム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し 、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシ リカゲルクロマトグラフィーにより精製し、表題の化合物を20mg、収率44 %で得た。

[0399]

 1 H-NMR (CDC1 $_{3}$, 400MHz): δ 0. 98 (t, J=7.6Hz, 3H), 1.58-1.64 (m, 2H), 1.71 (br, 4H), 2.31 (s, 3H), 2.53 (br, 2H), 2.71 (br, 2H), 2.11-2.17 (m, 2H), 2.30 (s, 3H), 2.59-2.62 (m, 2H), 3.24-3.29 (m, 2H), 4.04 (s, 3H), 4.26 (t, J=6.6Hz, 2H), 4.80 (br, 1H), 6.67 (s, 1H), 7.17 (dd, J=2.7Hz, 9.0Hz, 1H), 7.31 (s, 1H), 7.31 (s, 1H), 7.52 (s, 1H), 8.25 (d, J=9.0Hz, 1H), 8.61 (s, 1H)

質量分析値 (ESI-MS, m/z):543 (M+ +1)

[0400]

実施例138:N-(2-クロロ-4-[7-メトキシ-6-(2-ピリジルメトキシ)-4-キナゾリニル] オキシフェニル)-N'-プロピルウレア

原料 (N- {2-クロロ-4-[(6-ヒドロキシ-7-メトキシ-4-キナソリニル) オキシ]フェニル} -N'-プロピルウレア、80mg),炭酸カリウム (138mg)、2-(クロロメチル)ピリジン塩酸塩(41mg)をN,Nージメチルホルムアミド(1m1)に溶解し120℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを酢酸エチルで洗浄し、表題の化合物を54mg、収率55%で得た。

[0401]

¹ H-NMR (CDCl₃, 400MHz): δ0. 91 (t, J=7. 6Hz, 3H), 1. 51-1. 58 (m, 2H), 3. 17-3. 22 (m, 2H), 4. 02 (s, 3H), 4. 69 (br, 1H), 5. 36 (s, 2H), 6. 57 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 2 1-7. 29 (m, 2H), 7. 53-7. 55 (m, 2H), 7. 66-7. 71 (m, 1H), 8. 15 (d, J=9. 0Hz, 1H), 8. 55-8. 57 (m, 2H)

質量分析値(ESI-MS, m/z):494 (M+1)

[0402]

実施例139:N-(2-クロロ-4-[7-メトキシ-6-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシフェニル)-N'-プロピルウレア原料(N-(4-{[6-(3-プロポキシ)-7-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、54mg),炭酸カリウム(138mg)、モルホリン(0.017ml)をN,N-ジメチルホルムアミド(1m1)に溶解し120℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを酢酸エチルで洗浄し、表題の化合物を42mg、収率77%で得た。

[0403]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ0. 91 (t, J=7. 6Hz, 3H), 1. 47-1. 59 (m, 4H), 1. 88-2. 00 (m, 2H), 2. 35-2. 48 (m, 4H), 3. 20 (dd, J=7. 3Hz, 12. 9Hz, 2H), 3. 62-3. 74 (m, 4H), 3. 97 (s, 3H), 4. 15 (t, J=6. 3Hz, 2H), 4. 74-4. 80 (m, 1H), 6. 63 (s, 1H), 7. 09 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 24 (d, J=2. 7Hz, 1H), 7. 42 (s, 1H), 8. 18 (d, J=9. 0Hz, 1H), 8. 54 (s, 1H)

質量分析値(ESI-MS, m/z):530 (M⁺+1)

[0404]

実施例140:N-2-Dロロー4-[(6-3-(2-E)ロキシエチル) (メチル) アミノ]プロポキシー7-メトキシー4-キナゾリニル) オキシ]フェニル-N'-プロピルウレア

原料 $(N-(4-\{[6-(3-プロモプロポキシ)-7-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、<math>51mg$), 炭酸カリウム (68mg)、 2-(メチルアミノ) エタノール (15mg) をN, N-ジメチルホルムアミド <math>(1m1) に溶解し80Cで3時間攪拌した。反応混合物

に水を加え、クロロホルムープロパノール (3/1) で抽出した。有機層を無水 硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を25mg、収率48%で得た。

[0405]

¹ H-NMR (CDCl₃, 400MHz): δ0. 95 (t, J=7. 6Hz, 3 H), 1. 53-1. 62 (m, 2H), 2. 08-2. 15 (m, 2H), 2. 30 (s, 3H), 2. 58 (t, J=5. 4Hz, 2H), 2. 68 (t, J=7. 1Hz, 2H), 3. 21-3. 26 (m, 2H), 3. 60 (t, J=5. 4Hz, 2H), 4. 02 (s, 3H), 4. 23 (t, J=6. 3Hz, 2H), 5. 06 (t, J=5. 6Hz, 1Hz), 6. 79 (s, 1H), 7. 13 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 27-7. 28 (m, 2H), 7. 48 (s, 1H), 8. 21 (d, J=9. 0Hz, 1H), 8. 58 (s, 1H)

[0406]

<u>実施例141:N-(2-DDD-4-[6-X)トキシー7-(2-ピリジルメ)トキシ)-4-キノリル]オキシフェニル)-N'ープロピルウレア</u>

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム(138mg)、2-クロロメチルピリジン塩酸塩(41mg)をN,Nージメチルホルムアミド(1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製し、表題の化合物を81mg、収率82%で得た。

[0407]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 97 (t, J=7.6Hz, 3 H), 1.54-1.65 (m, 2H), 3.25 (dd, J=7.1Hz, 1 2.9Hz, 2H), 4.05 (s, 3H), 4.75-4.82 (m, 1H), 5.42 (s, 2H), 6.46 (d, J=5.4Hz, 1H), 6.67 (

s, 1H), 7.08 (dd, J=2.9Hz, 9.0Hz, 1H), 7.19 (d, J=2.7Hz, 1H), 7.44 (s, 1H), 7.53 (s, 1H), 7.56 (d, J=7.8Hz, 1H), 7.69 (dt, J=2.0Hz, 7.8Hz, 1H), 8.25 (d, J=9.0Hz, 1H), 8.46 (d, J=5.1Hz, 1H), 8.61 (d, J=4.6Hz, 1H)

質量分析値 (ESI-MS, m/z):493 (M+1)

[0408]

<u>実施例 $142:N-(2-\rho \Box \Box -4-[6-k++)-7-(3-l)$ </u>ルジルメトキシ)-4-+ノリル]オキシフェニル)-N'-プロピルウレア

原料(Nー $\{2-\rho \Box \Box -4-[(7-\nu \Box +\nu \Box +\nu \Box -6-\nu \Box +\nu \Box -4-\nu \Box +\nu \Box +\nu \Box -4-\nu \Box -4-$

[0409]

¹ H-NMR (CDCl₃, 400MHz): δ0. 97 (t, J=7. 3Hz, 3 H), 1. 54-1. 65 (m, 2H), 3. 25 (dd, J=7. 3Hz, 1 2. 9Hz, 2H), 4. 02 (s, 3H), 4. 82-4. 90 (m, 1H), 5. 30 (s, 2H), 6. 47 (d, J=5. 4Hz, 1H), 6. 72 (s, 1H), 7. 09 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 32 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 47 (s, 1H), 7. 52 (s, 1H), 7. 84 (d, J=7. 8Hz, 1H), 8. 26 (d, J=9. 3Hz, 1H), 8. 47 (d, J=5. 4Hz, 1H), 8. 58 (d, J=3. 2Hz, 1H), 8. 75 (s, 1H)

質量分析値(ESI-MS, m/z):493(M++1)

[0410]

<u>実施例143:N-(2-クロロ-4-[6-メトキシ-7-(4-ピリジルメ</u>トキシ) -4-キノリル] オキシフェニル) - N' - プロピルウレア

原料(N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム(138mg)、4ークロロメチルピリジン塩酸塩(41mg)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをHPLCにて精製」し、表題の化合物を71mg、収率71%で得た。

[0411]

¹ H-NMR (CDCl₃, 400MHz): δ0. 97 (t, J=7. 6Hz, 3 H), 1. 54-1. 65 (m, 2H), 3. 25 (dd, J=7. 1Hz, 1 2. 9Hz, 2H), 4. 05 (s, 3H), 4. 86-4. 92 (m, 1H), 5. 32 (s, 2H), 6. 48 (d, J=4. 7Hz, 1H), 6. 73 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 9Hz, 1H), 7. 38 (s, 1H), 7. 41 (d, J=6. 1Hz, 2H), 7. 54 (s, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 46 (d, J=5. 4Hz, 1H), 8. 61 (d, J=6. 1Hz, 2H)

質量分析値(ESI-MS, m/z):493 (M++1)

[0412]

実施例144:N-(2-クロロ-4-[6-メトキシ-7-(2-モルホリノエトキシ)-4-キノリル]オキシフェニル)-N'-プロピルウレア

原料 $(N-\{2-\rho \Box \Box -4-[(7-\nu \Box +2)-6-\nu \Box +2)-4-\nu \Box +2)$ リル)オキシ]フェニル $(N-\nu \Box +2)$ フェニル $(N-\nu \Box +2)$ フェニル $(N-\nu \Box +2)$ フェニル $(N-\nu \Box +2)$ ($N-\nu \Box +2$) $(N-\nu \Box +2)$ ($N-\nu \Box +2)$

【[7-(2-ブロモエトキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア)を得た。中間体、炭酸カリウム(13 8mg)、モルホリン(0.17ml)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で2時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を70mg、収率54%で得た。

[0413]

¹ H-NMR (CDCl₃, 400MHz): δ0. 91 (t, J=7. 6Hz, 3 H), 1. 50-1. 59 (m, 2H), 2. 57 (t, J=4. 6Hz, 4H), 2. 88 (t, J=5. 9Hz, 2H), 3. 18-3. 23 (m, 2H), 3. 68 (t, J=4. 6Hz, 4H), 3. 94 (s, 3H), 4. 26 (t, J=5. 9Hz, 2H), 4. 98 (t, J=5. 3Hz, 2H), 6. 4 1 (d, J=5. 3Hz, 1H), 6. 74 (br, 1H), 7. 03 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 34 (s, 1H), 7. 43 (s, 1H), 8. 42 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):515(M++1)

[0414]

実施例145:N-[2-クロロ-4-(6-メトキシ-7-[2-(1H-1,2,3-トリアゾール-1-イル) エトキシ]-4-キノリルオキシ)フェニル] <math>-N'-プロピルウレア

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、2-(1H-1,2,3-トリアゾール-1-イル)エチル 4-メチルー1ーベンゼンスルフォナート(59mg)をN,N-ジメチルホルムアミド(1m1)に溶解し120℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムーメタノールで展開した

HPLCにて精製し、表題の化合物を92mg、収率92%で得た。

[0415]

¹ H-NMR (CDCl₃, 400MHz): δ0. 97 (t, J=7. 6Hz, 3 H), 1. 57-1. 63 (m, 2H), 3. 23-3. 28 (m, 2H), 4. 01 (s, 3H), 4. 52 (t, J=5. 1Hz, 2H), 4. 81 (br, 1H), 4. 93 (t, J=5. 1Hz, 2H), 6. 47 (d, J=5. 4 Hz, 1H), 6. 69 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 18 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 51 (s, 1H), 7. 72 (d, J=1. 0Hz, 1H), 7. 97 (d, J=1. 0Hz, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 48 (d, J=5. 4Hz, 1H)

質量分析値 (ESI-MS, m/z):497 (M++1)

[0416]

<u>実施例146:N-[2-クロロ-4-(7-[2-(1H-1-イミダゾリル)</u> エトキシ]-6-メトキシ-4-キノリルオキシ)フェニル]-N'-プロピルウ レア

原料(N-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム(138mg)、2-(1H-1-イミダゾリル)エチル 4-メチルー1ーベンゼンスルフォナート(59mg)をN,Nージメチルホルムアミド(1m1)に溶解し120℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムーメタノールで展開したHPLCにて精製し、表題の化合物を81mg、収率82%で得た。

[0417]

¹ H-NMR (CDCl₃, 400MHz): δ 0. 96 (t, J=7.6Hz, 3 H), 1.50-1.65 (m, 2H), 1.90-2.08 (m, 2H), 3.24 (dd, J=7.1Hz, 12.9Hz, 2H), 4.01 (s, 3H), 4.17 (t, J=6.6Hz, 2H), 4.44 (t, J=7.3Hz, 2H)

), 4. 88-4. 94 (m, 1H), 6. 32 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 25 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 48 (s, 1H), 7. 55 (s, 1H), 7. 70 (s, 1H), 8. 23 (d, J=9. 0Hz, 1H), 8. 58 (s, 1H)

質量分析値(ESI-MS, m/z):496 (M⁺+1) 【0418】

<u>実施例147:N-(2-クロロ-4-[7-(3-ヒドロキシプロポキシ)-6-メトキシ-4-キ</u>ノリル]オキシフェニル)-N'-プロピルウレア

原料(N-{2-クロロ-4-[(7-ヒドロキシー6-メトキシー4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、3-ブロモー1-プロパノール(0.027m1)をN,Nージメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を94mg、収率100%で得た。

[0419]

¹ H-NMR (CDCl₃, 400MHz): δ0. 92 (t, J=7.6Hz, 3 H), 1. 45-1.62 (m, 2H), 2. 09-2.18 (m, 2H), 3. 21 (dd, J=7.1Hz, 12.9Hz, 2H), 3. 87 (t, J=5.6Hz, 2H), 3. 94 (s, 3H), 4. 31 (t, J=6.1Hz, 2H), 4. 81-4.87 (m, 1H), 6. 42 (d, J=5.1Hz, 1H), 6. 69 (s, 1H), 7. 03 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 14 (d, J=2.7Hz, 1H), 7. 36 (s, 1H), 7. 43 (s, 1H), 8. 20 (d, J=9.0Hz, 1H), 8. 42 (d, J=5.4Hz, 1H)

[0420]

<u>実施例148:N-[2-クロロ-4-(6-メトキシ-7-[2-(4-メチルピペラジノ)エトキシ]-4-キノリルオキシ)フェニル]-N'-プロピル</u>

ウレア

原料(N-(4-{[(7-(2-ブロモエトキシ)-6-メトキシー4ーキノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、50mg)、炭酸カリウム(138mg)、1-メチルピペラジン(0.055m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を54mg、収率100%で得た。

[0421]

¹ H-NMR (CDCl₃, 400MHz): δ0. 92 (t, J=7. 3Hz, 3H), 1. 49-1. 62 (m, 2H), 2. 24 (s, 3H), 2. 35-2. 70 (m, 2H), 2. 90 (t, J=4. 6Hz, 2H), 3. 21 (dd, J=7. 3Hz, 12. 9Hz, 2H), 3. 94 (s, 3H), 4. 26 (t, J=6. 1Hz, 2H), 4. 75-4. 85 (m, 1H), 6. 41 (d, J=5. 1Hz, 1H), 6. 67 (s, 1H), 7. 04 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 34 (s, 1H), 7. 42 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):528 (M++1)

[0422]

<u>実施例149:N-(2-クロロ-4-[7-(2-ヒドロキシエトキシ)-6</u> -メトキシ-4-キノリル]オキシフェニル)-N'-プロピルウレア

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム(138mg)、2-ブロモエタノール(0.021m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を80mg、収率90%で得た。

[0423]

¹ H-NMR (CDCl₃, 400MHz): δ0. 96 (t, J=7. 6Hz, 3 H), 1. 54-1. 65 (m, 2H), 3. 25 (dd, J=7. 1Hz, 1 2. 9Hz, 2H), 3. 99 (s, 3H), 4. 07 (t, J=4. 4Hz, 2 H), 4. 28 (t, J=4. 6Hz, 2H), 6. 46 (d, J=5. 4Hz, 1H), 6. 77 (d, J=8. 3Hz, 1H), 7. 08 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 42 (s, 1H), 7. 49 (s, 1H), 8. 25 (d, J=9. 0Hz, 1H), 8. 48 (d, J=2. 9Hz, 1H)

[0424]

原料(N-(4-{[7-(2-プロモエトキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、50mg),炭酸カリウム(138mg)、2-(メチルアミノ)エタノール(0.040m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を53mg、収率106%で得た。

[0425]

¹ H-NMR (CDCl₃, 400MHz): δ0. 97 (t, J=7. 6Hz, 3 H), 1. 54-1. 65 (m, 2H), 2. 42 (s, 3H), 2. 69 (t, J=5. 1Hz, 2H), 3. 00 (t, J=5. 6Hz, 2H), 3. 26 (dd, J=7. 1Hz, 12. 7Hz, 2H), 3. 64 (t, J=5. 1Hz, 2H), 3. 99 (s, 3H), 4. 26 (t, J=5. 6Hz, 2H), 4. 66-4. 69 (m, 1H), 6. 46 (d, J=5. 1Hz, 1H), 6. 70 (s, 1H), 7. 09 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 39 (s, 1H), 7. 47 (s, 47)

1 H), 8. 24 (d, J = 9. 0 Hz, 1 H), 8. 47 (d, J = 5. 1 Hz, 1 H)

質量分析値(ESI-MS, m/z):503(M++1)

[0426]

実施例151:N-(2-クロロ-4-[6-メトキシ-7-(3-モルホリノプロポキシ) -4-キノリル] オキシフェニル) -N' -プロピルウレア

原料 (N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、52mg),炭酸カリウム (138mg)、モルホリン (0.044m1)をN,N-ジメチルホルムアミド (1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を23mg、収率44%で得た。

[0427]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ0. 92 (t, J=7. 6Hz, 3 H), 1. 49-1. 60 (m, 2H), 2. 02-2. 11 (m, 2H), 2. 40-2. 47 (m, 4H), 2. 52 (t, J=7. 1Hz, 2H), 3. 21 (dd, J=7. 1Hz, 12. 9Hz, 2H), 3. 62-3. 69 (m, 4H), 3. 95 (s, 3H), 4. 20 (t, J=6. 6Hz, 2H), 4. 70-4. 78 (m, 1H), 6. 41 (d, J=5. 1Hz, 1H), 6. 64 (s, 1H), 7. 04 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 15 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 43 (s, 1H), 8. 20 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 4Hz, 1H)

[0428]

<u>実施例152:N-[2-クロロー4-(6-メトキシー7-[3-(4-メチル</u> ピペラジノ)プロポキシ] -4 - キノリルオキシ)フェニル] -N - プロピルウ レア

原料 $(N-(4-\{[7-(3-プロモプロポキシ)-6-メトキシ-4-キ$

ノリル]オキシ} -2-クロロフェニル) -N' -プロピルウレア、52mg),炭酸カリウム(138mg)、1-メチルピペラジン(0.055m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を41mg、収率76%で得た。

[0429]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 92 (t, J=7. 6Hz, 3 H), 1. 49-1. 64 (m, 2H), 2. 02-2. 10 (m, 2H), 2. 23 (s, 3H), 2. 30-2. 56 (m, 8H), 2. 52 (t, J=7. 3Hz, 2H), 3. 20 (dd, J=7. 1Hz, 12. 9Hz, 2H), 3. 94 (s, 3H), 4. 19 (t, J=6. 8Hz, 2H), 4. 83-4. 92 (m, 1H), 6. 40 (d, J=5. 1Hz, 1H), 6. 69 (s, 1H), 7. 03 (dd, J=2. 9Hz, 9. 3Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 35 (s, 1H), 7. 42 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 4Hz, 1H) 質量分析値 (ESI-MS, m/z): 542 (M⁺+1)

[0430]

<u>実施例153:N-[2-クロロー4-(6-メトキシー7-[3-(1H-1,2,3-トリアゾールー1-イル)プロポキシ]-4-キノリルオキシ)フェニル]-N'-プロピルウレア</u>

トリアゾール(0.41ml)、1ーブロモー3ークロロプロパン(0.79ml)、ヨウ化テトラブチルアンモニウム(10mg)、および3M水酸化ナトリウム水溶液(1ml)をアセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(327mg)を得た。

原料 $(N-\{2-\rho \Box \Box -4-[(7-ヒ \ddot \Box \Box + b)-6- \ddot \Box + b) -4- \ddot \Box \cup b$ ル) オキシ] フェニル(N-1) フェニル(N-1) ア、(N-1) ア、(N-1) ア、(N-1) のかり (N-1) が、(N-1) のかり (N-1) のか

mg)、前述の中間体(43mg)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム / メタノールで展開するHPLCにより精製し、表題の化合物を54mg、収率52%で得た。

[0431]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 97 (t, J=7. 6Hz, 3 H), 1. 54-1. 65 (m, 2H), 2. 49-2. 58 (m, 2H), 3. 26 (dd, J=7. 1Hz, 13. 2Hz, 2H), 4. 01 (s, 3H), 4. 15 (t, J=5. 9Hz, 2H), 4. 69 (t, J=6. 6Hz, 2H), 4. 90-5. 00 (m, 1H), 6. 46 (d, J=5. 1Hz, 1H), 6. 77 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 36 (s, 1H), 7. 51 (s, 1H), 7. 61 (s, 1H), 7. 67 (s, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 47 (d, J=5. 4Hz, 1H)

[0432]

実施例154:N-[2-クロロ-4-(7-[3-(1H-1-イミダゾリル)] プロポキシ]-6-メトキシ-4-キノリルオキシ)フェニル]-N, -プロピルウレア

イミダゾール(680mg)、1ーブロモー3ークロロプロパン(0.79ml)、ヨウ化テトラブチルアンモニウム(10mg)、および3 M水酸化ナトリウム水溶液(1ml)をアセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(1-(3-クロロプロピル)-1 H-イミダゾール、525mg)を得た。

 8mg)、前述の中間体(42mg)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム / メタノールで展開するHPLCにより精製し、表題の化合物を23mg、収率23%で得た。

[0433]

¹ H-NMR (CDCl₃, 400MHz): δ0. 91 (t, J=7. 3Hz, 3 H), 1. 48-1. 60 (m, 2H), 2. 27-2. 36 (m, 2H), 3 . 20 (dd, J=6. 8Hz, 12. 9Hz, 2H), 3. 97 (s, 3H), 4. 06 (t, J=5. 9Hz, 2H), 4. 21 (t, J=6. 8Hz, 2H), 6. 39 (d, J=5. 4Hz, 1H), 6. 90 (s, 1H), 6. 98 -7. 04 (m, 2H), 7. 12 (d, J=2. 7Hz, 1H), 7. 30 (s, 1H), 7. 44-7. 48 (m, 2H), 8. 22 (d, J=9. 0Hz, 1H), 8. 41 (d, J=5. 4Hz, 1H)

[0434]

実施例 $155:N-\{2-DDD-4-[(7-2-[ジ(2-ヒドロキシエチル) アミノ] エトキシー<math>6-$ メトキシー4-キノリル) オキシ] フェニル $\}-$ N $^*-$ プロピルウレア

原料(N-(4-{[7-(2-プロモエトキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、50mg),炭酸カリウム(138mg)、1-メチルピペラジン(0.055m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を46mg、収率92%で得た。

[0435]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 92 (t, J=7. 3Hz, 3 H), 1. 50-1. 60 (m, 2H), 2. 74 (t, J=4. 9Hz, 4H), 3. 04 (t, J=4. 9Hz, 2H), 3. 15-3. 24 (m, 2H)

, 3. 60 (t, J=5. 1Hz, 4H), 3. 94 (s, 3H), 4. 17 (t, J=5. 0Hz, 2H), 6. 41 (d, J=5. 4Hz, 1H), 6. 7 5 (s, 1H), 7. 04 (dd, J=2. 4Hz, 8. 8Hz, 1H), 7. 14 (d, J=2. 7Hz, 1H), 7. 38 (s, 1H), 7. 43 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 42 (d, J=5. 4Hz, 1H)

[0436]

<u>実施例156:N-2-Dロロ-4-[(7-3-[ジ(2-ヒドロキシエチル)アミノ]プロポキシー6-メトキシー4-キノリル)オキシ]フェニル-N'ープロピルウレア</u>

原料 (N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシー4ーキノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、52mg),炭酸カリウム (138mg)、ジエタノールアミン (53mg)をN,N-ジメチルホルムアミド (1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を41mg、収率82%で得た。

[0437]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ0. 89 (t, J=7. 3Hz, 3 H), 1. 46-1. 56 (m, 2H), 1. 97-2. 05 (m, 2H), 2. 63 (t, J=5. 1Hz, 4H), 2. 69 (t, J=6. 1Hz, 2H), 3. 19 (dd, J=7. 1Hz, 13. 2Hz, 2H), 3. 60 (t, J=4. 9Hz, 4H), 3. 94 (s, 3H), 4. 32 (t, J=5. 9Hz, 2H), 5. 27-5. 35 (m, 1H), 6. 37 (d, J=5. 4Hz, 1H), 6. 94 (s, 1H), 7. 01 (dd, J=2. 9Hz, 9. 0Hz, 1H), 7. 10 (d, J=2. 7Hz, 1H), 7. 42 (s, 1H), 7. 53 (s, 1H), 8. 19 (d, J=9. 0Hz, 1H), 8. 35 (d, J=5. 4Hz, 1H)

質量分析値(ESI-MS, m/z):547(M++1)

[0438]

実施例157:N-2-クロロー4-[(7-3-[(2-ビドロキシエチル) (メチル) アミノ]プロポキシー6-メトキシー4-キノリル) オキシ]フェニルーN ープロピルウレア

原料 (N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-プロピルウレア、52mg),炭酸カリウム (138mg)、2-(メチルアミノ)エタノール (0.040ml)をN,N-ジメチルホルムアミド (1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表題の化合物を51mg、収率98%で得た。

[0439]

[0440]

実施例158:N-[2-クロロ-4-(6-メトキシ-7-[4-(1H-1, 2, 3-トリアゾール-1-イル) ブトキシ]-4-キノリルオキシ) フェニル] <math>-N'-プロピルウレア

トリアゾール(0.41ml)、1 ーブロモー4 ークロロブタン(0.93ml)、ヨウ化テトラブチルアンモニウム(10mg)、および3 M水酸化ナトリウム水溶液(1ml)を

アセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(1-(4-クロロブチル)-1H-1, 2,3-トリアゾール、314mg)を得た。

原料 (N- {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム (13 8mg)、前述の中間体 (48mg)をN,N-ジメチルホルムアミド (1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム / メタノールで展開するHPLCにより精製し、表題の化合物を42mg、収率40%で得た。

[0441]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ0. 96 (t, J=7. 3Hz, 3 H), 1. 54-1. 65 (m, 2H), 1. 88-1. 98 (m, 2H), 2. 14-2. 24 (m, 2H), 3. 26 (dd, J=6. 6Hz, 13. 2Hz, 2H), 3. 99 (s, 3H), 4. 20 (t, J=5. 9Hz, 2H), 4. 55 (t, J=7. 1Hz, 2H), 5. 00-5. 06 (m, 1H), 6. 46 (d, J=5. 4Hz, 1H), 6. 80 (s, 1H), 7. 08 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 49 (s, 1H), 7. 68-7. 72 (m, 2H), 8. 26 (d, J=9. 0Hz, 1H), 8. 47 (d, J=5. 1Hz, 1H)

質量分析値(ESI-MS, m/z):525 (M++1)

[0442]

実施例159:N-2-Dロロー4-[(6-メトキシ-7-[5-(1H-1, 2, 3-トリアゾール-1-イル) ペンチル] オキシー<math>4-キノリル) オキシ] フェニル-N' ープロピルウレア

トリアゾール(0.41ml)、1-ブロモ-5-クロロペンタン (1.0ml)、ヨウ化

テトラブチルアンモニウム (10mg)、および3 M水酸化ナトリウム水溶液 (1ml)をアセトン (10ml) に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体 (1-(5-クロロペンチル-1H-1, 2, 3-トリアゾール、390mg)を得た。

原料(N-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}ーN'ープロピルウレア、80mg),炭酸カリウム(138mg)、前述の中間体(51mg)をN,N-ジメチルホルムアミド(1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム / メタノールで展開するHPLCにより精製し、表題の化合物を33mg、収率31%で得た。

[0443]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 92 (t, J=7.6Hz, 3 H), 1. 47-1.59 (m, 2H), 1. 85-2.03 (m, 4H), 3. 21 (dd, J=6.6Hz, 13.2Hz, 2H), 3. 94 (s, 3H), 4. 11 (t, J=6.3Hz, 2H), 4. 38 (t, J=7.1Hz, 2H), 4. 86-4.94 (m, 1H), 6. 41 (d, J=5.4Hz, 1H), 6. 71 (s, 1H), 7. 03 (dd, J=2.4Hz, 9.0Hz, 1H), 7. 14 (d, J=2.7Hz, 1H), 7. 31 (s, 1H), 7. 43 (s, 1H), 7. 51 (s, 1H), 7. 64 (s, 1H), 8. 20 (d, J=9.0Hz, 1H), 8. 41 (d, J=5.4Hz, 1H) \mathfrak{A} 5 0 Hz, 1H), 8. 41 (d, J=5.4Hz, 1H)

[0444]

<u>実施例 $160:N-[2-\rho \Box \Box -4-(7-[4-(1H-1-イミダゾリル)]$ </u>ブトキシ]-6-メトキシ-4-キノリルオキシ)フェニル]-N'-プロピルウレア

イミダゾール(680mg)、1-ブロモー4-クロロブタン(0.93ml)、ヨウ化テ

トラブチルアンモニウム(10mg)、および3M水酸化ナトリウム水溶液(1ml)をアセトン(10ml)に溶解し、50℃で18時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルムで展開するクロマトグラフィーにより精製し、中間体(1-(4-クロロブチル)-1H-イミダゾール、756mg)を得た

原料 (N- {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キノリル)オキシ]フェニル}-N'-プロピルウレア、80mg),炭酸カリウム (13 8mg)、および前述の中間体 (48mg)をN,N-ジメチルホルムアミド (1m1)に溶解し80℃で3時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム / メタノールで展開するHPLCにより精製し、表題の化合物を29mg、収率28%で得た。

[0445]

¹ H-NMR (CDCI₃, 400MHz): δ0. 96 (t, J=7. 3Hz, 3 H), 1. 54-1. 65 (m, 2H), 1. 83-1. 95 (m, 2H), 1. 98-2. 08 (m, 2H), 3. 25 (dd, J=6. 8Hz, 12. 7Hz, 2H), 4. 00 (s, 3H), 4. 10 (t, J=7. 1Hz, 2H), 4. 20 (t, J=6. 1Hz, 2H), 5. 08-5. 16 (m, 1H), 6. 46 (d, J=5. 1Hz, 1H), 6. 83 (s, 1H), 6. 97 (s, 1H), 7. 06 (s, 1H), 7. 08 (dd, J=2. 9Hz, 9. 3Hz, 1H), 7. 18 (d, J=2. 7Hz, 1H), 7. 37 (s, 1H), 7. 49 (s, 1H), 7. 58 (s, 1H), 8. 26 (d, J=9. 0Hz, 1H), 8. 46 (d, J=5. 4Hz, 1H)

[0446]

実施例161:N-(2-DDD-4-[6-メトキシ-7-(4-ピリジルメトキシ)-4-キナゾリニル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア

原料(N'-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4-キ

ナゾリニル)オキシ]フェニル > - N' - (2, 4 - ジフルオロフェニル) ウレア、80 mg),炭酸カリウム(138 mg)、4 - クロロメチルピリジン塩酸塩(4 1 mg)をN,N-ジメチルホルムアミド(1 m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を50 mg、収率52%で得た。

[0447]

 1 H-NMR (CDCl $_{3}$, 400MHz): 84.03 (s, 3H), 5.46 (s, 2H), 7.03-7.11 (m, 1H), 7.28-7.38 (m, 1H), 7.47 (s, 1H), 7.50 (d, J=5.9Hz, 2H), 7.56 (d, J=2.7Hz, 1H), 7.61 (s, 1H), 7.95 (s, 1H), 8.09-8.18 (m, 1H), 8.19 (d, J=9.0Hz, 1H), 8.57 (s, 1H), 8.63 (d, J=5.9Hz, 2H), 8.81 (s, 1H), 9.30 (s, 1H)

[0448]

実施例162:N-(2-クロロ-4-[6-メトキシ-7-(2-モルホリノ エトキシ)-4-キナゾリニル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア

原料(N'ー $\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル\}-N'-(2,4-ジフルオロフェニル)ウレア、100mg),炭酸カリウム(857mg)、1,2-ジブロモエタン(0.085m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N-(4-{[7-(2-ブロモエトキシ)-6-メトキシー4ーキナゾリニル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア)を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.05ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出し$

た。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を57mg、収率46%で得た。

[0449]

¹ H-NMR (CDCl₃, 400MHz): δ2. 54-2. 63 (m, 4H), 2. 85-2. 94 (m, 2H), 3. 66-3. 73 (m, 4H), 3. 97 (s, 3H), 4. 25-4. 32 (m, 2H), 6. 77-6. 88 (m, 2H), 7. 09 (s, 1H), 7. 14 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 257 (s, 1H), 7. 264 (s, 1H), 7. 44 (s, 1H), 7. 90-7. 99 (m, 1H), 8. 22 (d, J=9. 0Hz, 1H), 8. 56 (s, 1H)

質量分析値(ESI-MS, m/z):586 (M+1)

[0450]

<u>実施例163:N-(2-クロロ-4-[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア</u>

原料(N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、59mg),炭酸カリウム(857mg)、モルホリン(0.043ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を53mg、収率89%で得た。

[0451]

 1 H-NMR (CDCl₃, 400MHz): δ2. 06-2. 16 (m, 2H), 2. 43-2. 57 (m, 4H), 2. 56 (t, J=6.8Hz, 2H), 3 . 68-3. 75 (m, 4H), 4. 03 (s, 3H), 4. 27 (t, J=6.6Hz, 2H), 6. 79-6. 91 (m, 2H), 7. 14 (s, 1H), 7 . 19 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 28 (s, 1H), 7. 29 (d, J=9.0Hz, 1H), 7. 33 (s, 1H), 7. 49 (s, 1H), 8. 26 (d, J=9.0Hz, 1H), 8. 61 (s, 1H)
質量分析値 (ESI-MS, m/z):600 (M⁺+1)

[0452]

<u>実施例164:N-[2-クロロ-4-(6-メトキシー7-[3-(4-メチル</u> ピペラジノ)プロポキシ]-4-キナゾリニルオキシ)フェニル]-N'-(2, 4-ジフルオロフェニル)ウレア

原料(N-(4-{[7-(3-プロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、59mg),炭酸カリウム(138mg)、1-メチルピペラジン(0.055ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を58mg、収率95%で得た。

[0453]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ2. 01-2. 12 (m, 2H), 2. 23 (s, 3H), 2. 23-2. 80 (m, 8H), 2. 51 (t, J=7.1Hz, 2H), 3. 97 (s, 3H), 4. 20 (t, J=7.2Hz, 2H), 6. 73-6. 87 (m, 2H), 7. 13 (dd, J=2.7Hz, 9. 0Hz, 1H), 7. 24 (d, J=2.7Hz, 1H), 7. 27 (s, 1H), 7. 30 (s, 1H), 7. 44 (s, 1H), 7. 91-8. 00 (m, 2H), 8. 21 (d, J=9.0Hz, 1H), 8. 56 (s, 1H)

[0454]

実施例165:N-(2-クロロ-4-[(7-3-[(2-ヒドロキシエチル) (メチル) アミノ]プロポキシ-6-メトキシ-4-キナゾリニル) オキシ]フェニル-<math>N'-(2,4-ジフルオロフェニル)ウレア

原料 $(N-(4-\{[7-(3-プロモプロポキシ)-6-メトキシ-4-キナプリニル]オキシ\}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、<math>59mg$),炭酸カリウム (138mg)、2-(メトルアミノ)エ

タノール (0.040ml) をN,N-ジメチルホルムアミド (1ml) に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1) で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を58mg、収率100%で得た。

[0455]

¹ H-NMR (CDCl₃, 400MHz): δ2.06-2.16 (m, 2H),
2.30 (s, 3H), 2.57 (t, J=5.1Hz, 2H), 2.65 (t, J=6.8Hz, 1H), 3.63 (t, J=5.4Hz, 2H), 4.02 (s, 3H), 4.28 (t, J=6.1Hz, 2H), 6.79-6.91 (m, 2H), 7.18 (dd, J=2.7Hz, 9.0Hz, 1H), 7.28 (d, J=2.7Hz, 1H), 7.37 (s, 1H), 7.48 (s, 1H),
7.96-8.06 (m, 2H), 8.26 (d, J=9.0Hz, 1H), 8.59 (s, 1H)

質量分析値(ESI-MS, m/z):588 (M++1)

[0456]

実施例166:N-[2-クロロ-4-(6-メトキシ-7-[2-(4-メチル ピペラジノ) エトキシ] <math>-4-キノリルオキシ) フェニル]-N'-(2,4-ジ フルオロフェニル) ウレア

原料 (N-(4-{[7-(2-ブロモエトキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、50mg),炭酸カリウム(138mg)、1-メチルピペラジン(0.055ml)をN,N-ジメチルホルムアミド(1ml)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を48mg、収率93%で得た。

[0457]

 1 H-NMR (CDCl₃, 400MHz): δ 2. 31 (s, 3H), 2. 40-2. 75 (m, 8H), 2. 95 (t, J=6. 1Hz, 2H), 3. 99 (s, 3H), 4. 31 (t, J=5. 9Hz, 2H), 6. 48 (d, J=5. 1

Hz, 1H), 6. 85-6. 96 (m, 3H), 7. 12 (dd, J=2. 7 Hz, 9. 0Hz, 1H), 7. 15 (s, 1H), 7. 22 (d, J=2. 7 Hz, 1H), 7. 40 (s, 1H), 7. 47 (s, 1H), 7. 94-8. 03 (m, 1H), 8. 25 (d, J=9. 0Hz, 1H), 8. 49 (d, J=5. 1Hz, 1H)

[0458]

実施例167:N-2-クロロ-4-[(7-2-[(2-ヒドロキシエチル)) (メチル) アミノ]エトキシ-6-メトキシ-4-キノリル) オキシ]フェニル-N ' -(2,4-ジフルオロフェニル) ウレア

原料 (N-(4-{[7-(2-ブロモエトキシ)-6-メトキシー4ーキノリル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、50mg),炭酸カリウム(138mg)、2-(メチルアミノ)エタノール(0.040m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を48mg、収率97%で得た。

[0459]

¹ H-NMR (CDCl₃, 400MHz): δ2. 44 (s, 3H), 2. 71 (t, J=4.9Hz, 2H), 3. 02 (t, J=5.6Hz, 4H), 3. 6 (t, J=5.1Hz, 2H), 3. 97 (s, 3H), 4. 27 (t, J=5.6Hz, 2H), 6. 46 (d, J=5.4Hz, 1H), 6. 80-6. 93 (m, 2H), 7. 11 (dd, J=2.7Hz, 9. 0Hz, 1H), 7. 19 (d, J=2.7Hz, 1H), 7. 45 (s, 1H), 7. 96-8. 04 (m, 1H), 8. 25 (d, J=9.0Hz, 1H), 8. 48 (d, J=5.1Hz, 1H)

[0460]

実施例168:N-(2-クロロ-4-[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キノリル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア

原料 (N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キノリル]オキシ}-2-クロロフェニル)-N'-(2,4-ジフルオロフェニル)ウレア、50mg),炭酸カリウム(138mg)、モルホリン(0.044m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を32mg、収率64%で得た。

[0461]

 $^{1} H-NMR (CDCl_{3}, 400MHz) : \delta 2. 06-2. 16 (m, 2H),$ 2. 43-2. 51 (m, 4H), 2. 56 (t, J=7. 3Hz, 2H), 3 . 68-3. 74 (m, 4H), 4. 00 (s, 3H), 4. 25 (t, J=6), . 6Hz, 2H), 6. 47 (d, J=5. 1Hz, 1H), 6. 84-6. 9 3 (m, 2H), 7. 06 (s, 1H), 7. 12 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 22 (d, J=2. 9Hz, 1H), 7. 42 (s, 1H), 7. 47 (s, 1H), 7. 95-8. 04 (m, 1H), 8. 25 (d, J=9. 0Hz, 1H), 8. 48 (d, J=5. 4Hz, 1H)

[0462]

実施例 $169:N-(2-\rho \Box \Box -4-[6-メトキシ-7-(3-ピリジルメトキシ)-4-キノリル]オキシフェニル)-N'-(2,4-ジフルオロフェニル)ウレア$

N-{2-クロロ-4-[(7-ヒドロキシー6-メトキシー4ーキノリル) オキシ]フェニル}ーN'-(2,4-ジフルオロフェニル)ウレア(55mg)、 炭酸カリウム(31mg)、3-ピコリルクロリド塩酸塩(22mg)をN,N-ジメチルホルムアミド(1ml)に溶解し、80度で1時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を30mg、収率48%で得た

[0463]

 1 H-NMR (CDCl₃, 400MHz) : 84.03 (s, 3H), 5.31 (

s, 2H), 6. 49 (d, J=2. 4Hz, 1H), 6. 77-6. 88 (m, 2H), 7. 10-7. 16 (m, 2H), 7. 31-7. 35 (m, 1H), 7. 48 (s, 1H), 7. 54 (s, 1H), 7. 86 (d, J=7. 8Hz, 1H), 7. 96 (s, 1H), 8. 03-8. 10 (m, 1H), 8. 32 (d, J=9. 0Hz, 1H), 8. 42 (s, 1H), 8. 49 (d, J=5. 4Hz, 1H), 8. 59 (d, J=4. 0Hz, 1H), 8. 77 (s, 1H)

[0464]

実施例170:N-[2-クロロ-4-(6-メトキシ-7-[2-(1H-1, 2-3-トリアゾール-1-イル) エトキシ]-4-キノリルオキシ) フェニル]-N'-(2,4-ジフルオロフェニル) ウレア

N- {2-クロロー4-[(7-ヒドロキシー6-メトキシー4-キノリル) オキシ]フェニル} -N'- (2, 4-ジフルオロフェニル) ウレア (55mg)、 炭酸カリウム (31mg)、2-(1H-1, 2, 3-トリアゾールー1-イル) エチル 4-メチルー1ーベンゼンスルホナート (36mg) をN, N-ジメチルホルムアミド (1ml) に溶解し、80度で1時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を46mg、収率72%で得た。

[0465]

 1 H-NMR (CDCl₃, 400MHz): δ 4. 02 (s, 3H), 4. 53 (d, J=4.9Hz, 2H), 4. 95 (d, J=5.1Hz, 2H), 6. 47 (d, J=5.1Hz, 1H), 6. 83-6. 92 (m, 2H), 7. 11 (dd, J=2.7Hz, 9.0Hz, 1H), 7. 16 (d, J=2.7Hz, 1H), 7. 39 (s, 1H), 7. 52 (s, 1H), 7. 58 (s, 1H), 7. 70 (s, 1H), 7. 76 (s, 1H), 8. 00 (s, 1H), 8. 01-8. 07 (m, 1H), 8. 29 (d, J=9.0Hz, 1H), 8. 49 (d, J=5.4Hz, 1H)

[0466]

実施例171:N- (2-メトキシ-4- [6-メトキシ-7- (3-モルホリ $N-4-[(7-E)^2+5-6-3+5+5-4-5+7]$ 2-メトキシフェニル} -N' -プロピルウレア (100mg)、炭酸カリウム (138mg)、1,3-ジブロモプロパン(56mg)をN,N-ジメチルホ ルムアミド (5 m 1) に溶解し室温で3時間攪拌した。減圧下溶媒を留去した得 られた残さに水を加え、クロロホルム/2-プロパノール(4/1)で抽出した 。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを エーテルで洗浄し、N-(4-[7-(3-ブロモプロポキシ)-6-メトキシ -4-キナゾリニル] オキシー2-メトキシフェニル $\}$ -N' -プロピルウレア を53mg、収率41%で得た。N-(4-{[6-(3-ブロモプロポキシ) -7-メトキシ-4-キナゾリニル] オキシ $\} - 2-$ クロロフェニル $\} - N' -$ プロピルウレア(50mg)、炭酸カリウム(60mg)、N-メチルピペラジ ン (100μ1) をN, N-ジメチルホルムアミド (2m1) に溶解し室温で1 6時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸水素ナトリウム 水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥し、 減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリ カゲルクロマトグラフィーにより精製し、表題の化合物を22mg、収率42% で得た。

[0467]

¹ H-NMR (CDCl₃, 400MHz): δ0. 97 (t, J=7. 6Hz, 3H), 1. 56-1. 60 (m, 2H), 2. 14 (br, 2H), 2. 50 (br, 4H), 2. 58 (br, 2H), 3. 23-3. 26 (m, 2H), 3. 74 (br, 4H), 3. 87 (s, 3H), 4. 04 (s, 3H), 4. 27-4. 31 (m, 2H), 4. 62-4. 64 (m, 1H), 6. 65 (s, 1H), 6. 79-6. 85 (m, 2H), 7. 33 (s, 1H), 7. 53 (s, 1H), 8. 10 (d, J=8. 5Hz, 1H), 8. 62 (s, 1H)

質量分析値 (ESI-MS, m/z):526 (M+ +1)

[0468]

実施例172:N-(2,4-ジフルオロフェニル)-N'-(2-メトキシ-4-[6-メトキシ-7-(3-モルホリノプロポキシ)-4-キナゾリニル] オキシフェニル)ウレア

N-(2, 4-ジフルオロフェニル)-N'-4-[(7-ヒドロキシ-6-メトキシー4ーキナゾリニル)オキシ]ー2ーメトキシフェニルウレア(375 mg)、炭酸カリウム(442mg)、1,3-ジブロモプロパン(242mg) をN, N-ジメチルホルムアミド (5 m l) に溶解し室温で 3 時間攪拌した。 減圧下溶媒を留去した得られた残さに水を加え、酢酸エチルで抽出した。有機層 を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテル で洗浄し、N- {4- [7- (3-ブロモプロポキシ) -6-メトキシ-4-キ ナゾリニル] オキシー2-メトキシフェニル} -N'-(2,4-ジフルオロフ エニル) ウレアを210mg、収率45%で得た。N-(4-{[6-(3-ブ ロモプロポキシ) -7-メトキシ-4-キナゾリニル] オキシ} -2-クロロフ ェニル $\}$ -N' -プロピルウレア (130mg)、トリエチルアミン (0.5m 1)、モルホリン(0.5m1)をN,N -ジメチルホルムアミド(4m1)に 溶解し室温で18時間攪拌した。減圧下溶媒を留去して得られた残さに飽和炭酸 水素ナトリウム水溶液を加えクロロホルムで抽出した。有機層を無水硫酸ナトリ ウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノール で展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を81m g、収率62%で得た。

[0469]

 1 H-NMR (CDC1 $_{3}$, 400MHz): δ 1. 97-2. 00 (m, 2 H), 2. 39 (br, 4H), 2. 49-2. 51 (m, 2H), 3. 58-3. 60 (m, 4H), 3. 88 (s, 3H), 3. 98 (s, 3H), 4. 2 5 (t, J=6. 3Hz, 2H), 4. 27-4. 31 (m, 2H), 4. 62-4. 64 (m, 1H), 6. 84 (dd, J=2. 7Hz, 8. 8Hz, 1H), 7. 03-7. 07 (m, 2H), 7. 28-7. 34 (m, 1H), 7. 38 (s, 1H), 7. 55 (s, 1H), 8. 11-8. 17 (m, 2H),

8.55(s,1H),8.74(s,1H),9.18(s,1H) 質量分析値(ESI-MS,m/z):596(M++1)

[0470]

実施例173:N-(2-メトキシ-4-[6-メトキシ-7-(3-モルホリ)] プロポキシ) -4-キノリル] オキシフェニル) -N'-プロピルウレア

原料 (N- {4-[(7-ヒドロキシー6-メトキシー4-キノリル)オキシ] -2-メトキシフェニル} -N' -プロピルウレア、80mg),炭酸カリウム(138mg)、1,3-ジブロモプロパン(0.10m1)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.040ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するシリカゲルクロマトグラフィーにより精製し、表題の化合物を74mg、収率71%で得た。

[0471]

¹ H-NMR (CDCl₃, 400MHz): δ0. 95 (t, J=7. 6Hz, 3 H), 1. 52-1. 69 (m, 2H), 2. 06-2. 15 (m, 2H), 2. 43-2. 49 (m, 4H), 2. 55 (t, J=7. 3Hz, 2H), 3. 23 (dd, J=6. 1Hz, 12. 9Hz, 2H), 3. 67-3. 72 (m, 4H), 3. 81 (s, 3H), 4. 00 (s, 3H), 4. 24 (t, J=6. 8Hz, 2H), 6. 44 (d, J=5. 1Hz, 1H), 6. 68 (d, J=2. 4Hz, 1H), 6. 76 (dd, J=2. 4Hz, 8. 8Hz, 1H), 7. 40 (s, 1H), 7. 53 (s, 1H), 8. 12 (d, J=8. 8Hz, 1H), 8. 44 (d, J=5. 1Hz, 1H)

[0472]

<u>実施例174:N-(2-メトキシ-4-[6-メトキシ-7-(4-ピリジル</u>

メトキシ) -4-キノリル]オキシフェニル) -N' -プロピルウレア

原料 (N- {4-[(7-ヒドロキシー6-メトキシー4-キノリル) オキシ] -2-メトキシフェニル} -N'-プロピルウレア、80mg),炭酸カリウム(138mg)、4-クロロメチルピリジン塩酸塩(48mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を65mg、収率67%で得た。

[0473]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 95 (t, J=7. 3Hz, 3 H), 1. 52-1. 69 (m, 2H), 3. 24 (dd, J=7. 3Hz, 12 . 9Hz, 2H), 3. 82 (s, 3H), 4. 06 (s, 3H), 4. 63-4. 69 (m, 1H), 5. 32 (s, 2H), 6. 46 (d, J=5. 4Hz, 1H), 6. 68 (d, J=2. 7Hz, 1H), 6. 77 (dd, J=2. 4Hz, 8. 5Hz, 1H), 7. 37 (s, 1H), 7. 42 (d, J=6. 1Hz, 2H), 7. 59 (s, 1H), 8. 14 (d, J=8. 5Hz, 1H), 8. 43 (d, J=5. 4Hz, 1H), 8. 61 (d, J=6. 1Hz, 2H)

[0474]

<u>実施例175:N-エチル-N'-(4-[6-メトキシ-7-(2-モルホリ</u> ノエトキシ) -4-キノリル] オキシー2, 5-ジメチルフェニル) ウレア

原料 (N-x+n-N'-4-1) ((7-y+1) ((7-y+1)

ウム (138mg)、モルホリン (0.044ml)をN,N-ジメチルホルムアミド (1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加えクロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を72mg、収率73%で得た。

[0475]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 1. 10 (t, J=7. 3 Hz, 3 H), 2. 07 (s, 3H), 2. 16 (s, 3H), 2. 53-2. 59 (m, 4H), 2. 88 (t, J=5. 9 Hz, 2H), 3. 20-3. 30 (m, 2 H), 3. 66-3. 71 (m, 4H), 3. 96 (s, 3H), 4. 26 (t, J=5. 9 Hz, 2H), 4. 73-4. 82 (m, 1H), 6. 16 (s, 1H), 6. 23 (d, J=5. 4 Hz, 1H), 6. 88 (s, 1H), 7 . 35 (s, 1H), 7. 40 (s, 1H), 7. 50 (s, 1H), 8. 38 (d, J=5. 1 Hz, 1H)

[0476]

実施例176:N-[4-(6-メトキシ-7-[3-(4-メチルピペラジノ)] プロポキシ]-4-キノリルオキシ)-2,5-ジメチルフェニル]-N'-プロピルウレア

原料 (N- {4-[(7-ヒドロキシー6-メトキシー4ーキノリル) オキシ] -2,5-ジメチルフェニル} -N'-プロピルウレア、80mg),炭酸カリウム (138mg)、1,3-ジブロモプロパン(0.10ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、中間体(N-(4-{[7-(3-ブロモプロポキシ)-6-メトキシー4ーキノリル]オキシ}-2,5-ジメチルフェニル)-N'-プロピルウレア)を得た。中間体、炭酸カリウム(138mg)、1-メチルピペラジン(0.055ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナト

リウムで乾燥し、減圧下溶媒を留去して得られた残さを、エーテルで洗浄し、表 題の化合物を33mg、収率31%で得た。

[0477]

 1 H-NMR (CDCl₃, 400MHz): δ 0. 91 (t, J=7. 6Hz, 3H), 1. 50-1. 58 (m, 2H), 2. 07-2. 20 (m, 2H), 2. 12 (s, 3H), 2. 23 (s, 3H), 2. 28 (s, 3H), 2. 33-2. 70 (m, 10H), 3. 21 (dd, J=7. 3Hz, 13. 4Hz, 2H), 4. 00 (s, 3H), 4. 24 (t, J=6. 6Hz, 2H), 4. 64 -4. 76 (m, 1H), 5. 95-6. 05 (m, 1H), 6. 27 (d, J=5. 1Hz, 1H), 6. 95 (s, 1H), 7. 39-7. 43 (m, 2H), 7. 54 (s, 1H), 8. 42 (d, J=5. 1Hz, 1H) 質量分析値 (ESI-MS, m/z): 536 (M+1)

[0478]

実施例177:N-(2,4-ジフルオロフェニル)-N'-[4-(6-メトキシ-7-[2-(1H-1,2,3-トリアゾール-1-イル)エトキシ]-4-キノリルオキシ)-2,5-ジメチルフェニル]ウレア

原料 (N-(2,4-i)) ルオロフェニル) $-N'-\{4-[(7-i)]$ センー 6 ーメトキシー4 ーキノリル)オキシ] ー 2 、5 ージメチルフェニル) ウレア、93 m g) 、炭酸カリウム(138 m g)、2 ー(1 H ー 1 ,2 ,3 ートリアゾールー1 ーイル)エチル 4 ーメチルー1 ーベンゼンスルフォナート(52 m g)を N 、N-i ジメチルホルムアミド(1 m 1)に溶解し80℃で5時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3 / 1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さを、クロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を33 m g 、収率30%で得た。

[0479]

 1 H-NMR (CDCI₃, 400MHz): δ 2. 10 (s, 3H), 2. 19 (s, 3H), 4. 01 (s, 3H), 4. 51 (t, J=4. 9Hz, 2H), 4. 93 (t, J=5. 4Hz, 2H), 4. 94 (s, 1H), 6. 28 (d)

, J = 5. 1 H z, 1 H), 6. 75-6. 88 (m, 2 H), 6. 90 (s, 1 H), 7. 36 (s, 1 H), 7. 58 (s, 1 H), 7. 60 (s, 1 H), 7. 73 (s, 1 H), 7. 99 (s, 1 H), 8. 08 (dd, J = 9. 3 Hz, 1 Hz, 1 H), 8. 41 (d, J = 5. 1 Hz, 1 H)

[0480]

実施例178:N'-(2-クロロー4-[6-メトキシー7-(2ーモルホリノエトキシ)-4-キナゾリニル]オキシフェニル)ーN, Nージメチルウレア原料(N'-{2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキナゾリニル)オキシ]フェニル}ーN, Nージメチルウレア、80mg),炭酸カリウム(138mg)、1,2ージブロモエタン(0.085m1)をN,Nージメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N'-(4-{[7-(2-ブロモエトキシ)-6-メトキシー4ーキナゾリニル]オキシ}ー2-クロロフェニル)ーN, Nージメチルウレア)を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.043m1)をN,Nージメチルホルムアミド(1m1)に溶解し室温で一晩攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するIPLCにより精製し、表題の化合物を72mg、収率72%で得た。

[0481]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 2. 5 8-2. 6 6 (m, 4 H), 2. 9 0-2. 9 8 (m, 2H), 3. 0 8 (s, 6H), 3. 7 0-3. 7 9 (m, 4 H), 4. 0 2 (s, 3 H), 4. 2 9-4. 3 7 (m, 2H), 6. 9 7 (s, 1 H), 7. 1 5 (dd, J=2. 7 Hz, 9. 0 Hz, 1 H), 7. 2 4-7. 2 6 (m, 1H), 7. 2 9 (s, 1 H), 7. 4 9 (s, 1 H), 8. 3 6 (d, J=9. 3 Hz, 1 H), 8. 6 0 (s, 1 H) $\frac{1}{2}$ 9 $\frac{1}{2}$ 9

[0482]

実施例179:N'-(2-クロロ-4-[6-メトキシ-7-(4-モルホリノブトキシ)-4-キナゾリニル]オキシフェニル)-N, Nージメチルウレア原料(N'-{2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル)オキシ]フェニル}-N, Nージメチルウレア、80mg),炭酸カリウム(138mg)、1,4ージブロモブタン(0.12m1)をN,Nージメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N'-(4-{[7-(4-ブロモブトキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N, Nージメチルウレア)を得た。中間体、炭酸カリウム(138mg)、モルホリン(0.043m1)をN,Nージメチルホルムアミド(1m1)に溶解し室温で一晩攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を47mg、収率44%で得た。

[0483]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 1. 67-1. 77 (m, 2H), 1. 93-2. 03 (m, 2H), 2. 39-2. 50 (m, 4H), 3. 67 (s, 6H), 3. 64-3. 75 (m, 4H), 4. 02 (s, 3H), 4. 21 (t, J=6. 6Hz, 2H), 6. 97 (s, 1H), 7. 16 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 26 (s, 1H), 7. 28 (s, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 48 (s, 1H), 8. 36 (d, J=9. 3Hz, 1H), 8. 59 (s, 1H)

[0484]

実施例 $180:N'-(2-\rho \Box \Box -4-[6-メトキシ-7-(4-ピリジル$ メトキシ) -4-キナゾリニル] オキシフェニル) -N, N-ジメチルウレア 原料 $(N'-\{2-\rho \Box \Box -4-[(7-ヒドロキシ-6-メトキシ-4-キナゾリニル) オキシ] フェニル -N, N-ジメチルウレア、<math>50mg$,炭酸カリウム (138mg) 、 $4-\rho\Box\Box$ メチルピリジン塩酸塩(49mg)をN,N-ジメチル

ホルムアミド (1m1) に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1) で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を37mg、収率60%で得た。

[0485]

 1 H-NMR (CDCI $_{3}$, 400MHz): δ 3.07 (s, 6H), 4.07 (s, 3H), 5.32 (s, 2H), 6.97 (s, 1H), 7.15 (dd, J=2.7Hz, 9.0Hz, 1H), 7.26 (s, 1H), 7.29 (d, J=2.7Hz, 1H), 7.41 (d, J=6.1Hz, 1H), 7.55 (s, 1H), 8.37 (d, J=9.0Hz, 1H), 8.58 (s, 1H), 8.63 (d, J=6.1Hz, 1H) (ESI-MS, m/z): 480 (M⁺+1)

[0486]

実施例181:メチル $2-[4-(3-\rho \Box \Box -4-[(ジメチルアミノ) カルボニル]アミノフェノキシ) <math>-6-$ メトキシ-7-キナゾリニル]オキシアセタート

原料 (N' - {2-クロロ-4-[(7-ヒドロキシー6-メトキシー4-キナソリニル) オキシ]フェニル} -N, N-ジメチルウレア、50mg),炭酸カリウム (138mg)、ブロモ酢酸エチル (49mg)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール (3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをクロロホルム/メタノールで展開するHPLCにより精製し、表題の化合物を37mg、収率60%で得た。

[0487]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 3.07 (s, 6H), 3.82 (s, 3H), 4.06 (s, 3H), 4.87 (s, 2H), 6.97 (s, 1H), 7.14 (dd, J=2.7Hz, 9.0Hz, 1H), 7.18 (s, 1H), 7.29 (d, J=2.7Hz, 1H), 7.54 (s, 1H), 8.36 (d, J=9.0Hz, 1H), 8.60 (s, 1H)

[0488]

実施例182:N'-[2-クロロ-4-(6-メトキシ-7-[3-(4-メ チルピペラジノ) プロポキシ] -4 -キナゾリニルオキシ) フェニル] <math>-N、N- ジメチルウレア

原料 (N' - {2-クロロ-4-[(7-ヒドロキシ-6-メトキシ-4-キナソリニル) オキシ]フェニル} -N, N-ジメチルウレア、400mg),炭酸カリウム (966mg)、1,3-ジブロモプロパン (0.51m1)をN,N-ジメチルホルムアミド(5m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N'-(4-{[7-(3-ブロモプロポキシ)-6-メトキシ-4-キナゾリニル]オキシ}-2-クロロフェニル)-N, N-ジメチルウレア)を398mg、収率78%で得た。中間体(51mg)、炭酸カリウム(138mg)、1-メチルピペラジン(0.055ml)をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を46mg、収率85%で得た。

[0489]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 2. 06-2. 16 (m, 2H), 2. 29 (s, 3H), 2. 30-2. 60 (m, 10H), 3. 07 (s, 6H), 4. 02 (s, 3H), 4. 25 (t, J=6. 8Hz, 2H), 6. 96 (s, 1H), 7. 15 (dd, J=2. 7Hz, 9. 0Hz, 1H), 7. 29 (d, J=2. 7Hz, 1H), 7. 30 (s, 1H), 7. 48 (s, 1H), 8. 36 (d, J=9. 0Hz, 1H), 8. 59 (s, 1H) 質量分析値 (ESI-MS, m/z): 529 (M⁺+1)

[0490]

実施例183:N'-2-クロロ-4-[(7-3-[(2-ヒドロキシエチル) (メチル) アミノ] プロポキシ-6-メトキシ-4-キナゾリニル) オキシ] フェニル-N、N-ジメチルウレア

原料 (N' - {2-クロロー4-[(7-ヒドロキシー6-メトキシー4ーキナゾリニル) オキシ]フェニル} - N, N-ジメチルウレア、400mg),炭酸カリウム (966mg)、1,3-ジブロモプロパン (0.51m1)をN,N-ジメチルホルムアミド(5m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、中間体(N'-(4-{[7-(3-ブロモプロポキシ)-6-メトキシー4ーキナゾリニル]オキシ}-2-クロロフェニル)-N, N-ジメチルウレア)を398㎜、収率78%で得た。中間体(51㎜)、炭酸カリウム(138㎜)、2-(メチルアミノ)エタノール(0.040㎜]をN,N-ジメチルホルムアミド(1m1)に溶解し室温で18時間攪拌した。反応混合物に水を加え、クロロホルムープロパノール(3/1)で抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去して得られた残さをエーテルで洗浄し、表題の化合物を49mg、収率97%で得た。

[0491]

 1 H-NMR (CDCl $_{3}$, 400MHz): δ 2. 01-2. 11 (m, 2H), 2. 25 (s, 3H), 2. 52 (t, J=5. 1Hz, 2H), 2. 61 (t, J=7. 1Hz, 2H), 3. 03 (s, 6H), 3. 57 (t, J=5. 1Hz, 2H), 3. 98 (s, 3H), 4. 23 (t, J=6. 6Hz, 2H), 6. 92 (s, 1H), 7. 10 (dd, J=2. 7Hz, 9. 3Hz, 1H), 7. 24 (d, J=2. 7Hz, 1H), 7. 31 (s, 1H), 7. 44 (s, 1H), 8. 31 (d, J=9. 0Hz, 1H), 8. 54 (s, 1H) 質量分析値 (ESI-MS, m/z): 504 (M++1)

実施例に記載の化合物の構造は下記に示されるとおりである。

[0492]

【表1】

	x	z	R¹	R²	R³	R4	R5	R ⁶	R7	Rª	R°	R 10	R11
1	СН	СН	Н	сн,о	CH,0	н	н	F	н	н	н	н	
2	СН	СН	Н	CH,0	сн,о	н	н	F	Н	н	н	Н	√ F
3	СН	СН	н	CH ₃ O	CH3O	н	Н	F	н	н	н	Н	
4	СН	СН	Н	CH ₃ O	CH3O	н	н	F	н	H	н	н	~
5	СН	СН	н	СН₃О	СН,0	н	н	F	н	H	н	H	~
6	СН	СН	н	CH ₃ O	CH30	н	н	F	Н	н	н	H	~~ [*]
7	СН	СН	н	CH ₃ O	CH ₃ O	Н	н	F	Н	н	н	H	\
8	СН	СН	Н	CH30	CH30	H _.	н	F .	Н	Н	н	н	~
9	сн	СН	н	СН,О	СН,О	н	н	F	Н	н	н	н	~~
10	СН	СН	н	CH ₃ O	СН,О	н	н	F	н	н	н	Н	\checkmark

[0493]

【表2】

	x	z	R¹	R²	R³	R4	R 5	R ⁶	R ⁷	R ⁸	R°	R 10	R11
11	СН	СН	н	CH ₃ O	CH ₃ O	н	н	F	н	н .	н	Н	↓
12	СН	СН	н	CH30	СН3О	н	н	F	н	н	н	Н	4
13	СН	СН	н	CH,0	CH ₃ O	н	н	C 1	Н	н	н	, H	~
14	СН	СН	н	сн,о	сн,о	н	н	CI	Н	н	н	н	CH ₃
15	СН	СН	н	сн,о	СН3О	Н	н	C 1	н	Ħ	н	H	CH ₃
16	СН	СН	н	сн,о	CH3O	H	н	CI	н	Н	Н	Н	M _q
17	СН	СН	н	СН₃О	CH₃O	н	н	C 1	Н	Н	н	н	YN) _{Br}
18	СН	СН	н	CH30	CH30	H	н	C 1	н	Н	н	н	осн
19	СН	СН	н	CH ₃ O	СН3О	H	Н	C 1	н	Н	н	н	CH
20	СН	СН	H	СН,0	CH ₃ O	н	н	C 1	Н	н	н	Н	Y ^N

[0494]

【表3】

	x	z	R¹	R²	R³	R4	R 5	R e	R'	R ⁸	R°	R 10	R"
21	СН	СН	н	CH30	СН,0	н	н	C I	н	н	н	н	₩ CH ₈
2 2	СН	СН	н	CH ₃ O	CH ₃ O	н	н	C 1	н	н	н	н	ОСН
23	СН	СН	н	C H 3O	CH,O	н	н	C I	н	н	н	н	
24	СН	СН	н	CH ₃ O	СН3О	н	CH,	СН₃	н	н	н	н	The second secon
25	СН	СН	н	CH30	CH30	н	CH,	СН3	н	н	Н	H	CH6 F
26	СН	СН	н	CH30	СН,0	н	CH ₃	сн,	н	н	Н	H	-CH
27	СН	СН	н	CH ₃ O	CH ₃ O	н	сн,	СНз	н	н	H	Н	N CHe
28	СН	СН	н	CH,0	сн,о	н	CH,	CH3	н	н	н	н	C
29	СН	СН	н	СН,0	CH ₃ O	н	СН,	CH,	н	н	н	H	N Br
30	СН	СН	н	СН,0	СН,0	н	CH,	сн,	н	н	н	н	Ö

[0495]

【表4】

	x	z	R¹	R²	R³	R4	R ⁵	R 6	R7	Rª	R°	R 10	R¹¹ c⊬₃
31	СН	CH	н	СН3О	CH30	н	CH3	CH3	н	н	н	н	
32	СН	сн	н	CH,O	C H 3 O	н	CH ₃	СН3	н	н	н	н	CH C
33	СН	СН	н	CH3O	СН3О	н	CH ₃	СН3	Н	H	н	Н	O
34	СН	СН	H	СН₃О	CH ₃ O	н	CH,	СН,	н	н	н	Н	CHE
35	СН	СН	н	сн,о	СН,О	н	CH ₃	CH,	н	н	н	н	That
36	СН	СН	н	СН,О	CH ₃ O	н	СН3	CH,	н	Н	н	н	Core Core
37	СН	СН	н	СН,0	СН,0	н	Н	СН,	CH ₃	н	н	н	S
38	СН	СН	Н	СН,О	СН,О	н	н	сн,	CH,	н	н	н	CH ₅
39	СН	СН	н	СН3О	CH,O	н	н	сн,	сн,	н	H	н	T _a
40	СН	СН	н	СН3О	CH ₃ C	н	н	CH3	CH3	н	н	н	CH6

[0496]

【表5】

	x	Z	R1	R²	R³	R4	R5	R ⁶	R'	R ⁸	R°	R 10	R''
41	СН	СН	н	CH,O	CH ₃ O	н	н	СН3	СНэ	н	н	н	o CH6
42	СН	СH	н	CH3O	CH ₃ O	н	н	CH ₃	CH3	н	н	Н	GH G
43	СН	СН	н	CH3O	CH ₃ O	н	H	сн,	СН,	Н	Н	Н	S
44	СН	СН	н	сн,о	СН3О	н	н	CH3	СН₃	н	н	н	TH CH
45	СН	CH	н	сн,о	СН3О	н	н	CH ₃	СНз	н	Н	н	N
46	СН	СН	н	СН,О	сн,о	н	н	СНз	CH ₃	н	Н	н	
47	СН	СН	н	CH30	СН,О	н	н	NO ₂	н	н	Н	Н	√ ČH₃ F
48	СН	СН	н	сн,о	сн,о	н	н	NO ₂	H _.	н	н	Н	D _F
49	СН	СН	н	СН,О	СН,О	н	C 1	н	C 1	н	Н	н	Š.
50	СН	СН	н	СН₃О	٥.,	→ H	Н	F	н	Н	н	н	5

[0497]

【表6】

	x	Z	R¹	R²	R³	R4	R5	R°	R٬	R ⁸	R 9	R'O	R11
51	СН	СН	н	CH30	°\	н	н	Ci	Н	н	н	н	F _F
52	СН	СН	н	CH ₃ O	000	н	н	CH,	СН,	н	H	н	CT.
53	СН	СН	н	CH ₃ O	0~	н	н	сн,	CH,	н	н	н	Š
54	СН	СН	н	СН3О	CH30(CH2)20	н	н	C 1	н	Н	н	Н	Ú,
55	СН	СН	н	CH3O	CH30(CH2)20	н	H	Cl	н	н	н	н	J. Carlo
56	СН	СН	н	CH ₃ O	CH30(CH2)20	н	СНэ	сн,	H	H	н	Н	
57	СН	СН	н	CH ₃ O	CB30(CB2)20	н	CH3	сн,	н	н	н	H	S.CH.
58	СН	СН	н	CH.O	CH30(CH2)20	Н	н	СН,	СНз	н	н	н	G
59	СН	СН	н	CH₃O	CH30(CH2)20	H	н	СНэ	СН3	н	н	Н	CHS
60	СН	CH	Н	СН₃О	0,0	Н	CH ₃	сн,	н	н	Н	н	O'CH3

[0498]

【表7】

	x	z	R1	R²	R³	R4	R5	R 6	R 7	R ^s	R°	R 10	R 1 1 F
61	N	СН	н	сн,0	CH30	H	н	C 1	Н	Н	н	Н	₩
62	N	СН	Н	СН₃О	CH ₃ O	н	Н	C 1	н	н	н	Н	~
6 3	N	СН	Н	CH ₃ O	CH ₃ O	н	H	н	H	н	Н	Н	~
64	N	СН	Н	CH ₃ O	CH ₃ O	Н	Н	н	Н	н	Н	н	~
65	N	СН	н	СН₃О	СН3О	Н	Н	н	Н	н	Н	н	~~
66	N	СН	н	CH30	CH ₃ O	Н	н	Н	н	н	н	Н	>
67	N	СН	н	CH ₃ O	CH30	н	н	Н	Н	н	Н	н	\searrow
68	N	СH	Н	СН₃О	CH ₃ O	Н	н	н	Н	Н	Н	н	\
69	N	СН	н	CH30	CH30	н	Н	н	H	Н	Н	Н	\
70	N	СН	н	CH ₃ O	CH ₃ O	Ħ	н	н	н	н	н	н	F

[0499]

【表8】

	x	z	R¹	R²	R³	R4	R5	R6	R7	R ⁸	R°	R 10	R11
71	N	СН	Ħ	CH ₃ O	CH ₃ O	н	Н	н	Н	н	н	н	↓ F
72	N	СН	н	CH ₃ O	CH ₃ O	н	Н	н	н -	Н	н	н	Ŭ _₽
73	N	СН	Н	CH3O	СН30	н	н	н	н	н	Н	Н	ÇH _b
74	N	СН	н	СН,0	CH30	н	н	н	н	н	Н	н	
75	N	СН	н	CH30	CH ₃ O	Н	н	н	н	Н	н	Н	OCH?
76	N	СН	н	CH30	CH ₃ O	н	Н	C 1	н	н	Н	Н	~
77	N	СН	н	C H 3 O	CH ₃ O	н	Н	C 1	н	н	Н	н	~~
78	N	СН	н	СН3О	CH ₃ O	Н	н	C I	н	н	н	н	~ ~
79	N	СН	н	CH ₃ O	CH30	Н	н	C 1	н	н	H	н	\
80	N	СН	н	CH,O	CH3O	н	н	Ci	н	н	н	н	\

[0500]

【表9】

	x	z	R¹	R²	R'	R4	R ⁵	R 6	R 7	R ⁸	R°	R 10	R''
81	N	СН	н	CH ₃ O	CH3O	н	н	C I	н	н	н	н	\
82	N	СН	н	CH ₃ O	CH ₃ O	н	н	C 1	н	н	Н	н	
83	N	СН	Н	CH,O	сн,о	н	н	C I	н	H	н	н .	$\bigcirc\!$
85	N	СН	н	CH,O	CH,O	н	н	Ci	н	н	н	Н)
86	N	СН	н	сн,о	CH,0	н	Н	C 1	н	н	н	н	оснь
87	N	СН	н	сн,о	CH3O	н	н	CI	н	н	н	н	V)
88	N	СН	Ħ	сн,о	CH30	н	н	F	H	Н	Н	н	~ <u> </u>
89	N	СН	Н	CH3O	CH3O	н	н	F	Н	Н	Н	Н	~~
90	N	СН	н	CH3O	CH ₃ O	н	н	F	н	н	н	н	\

[0501]

【表10】

	x	z	R¹	R²	R³	R4	R.5	R ⁶	R ⁷	R*	R°	R 10	R''
91	N	СН	н	СН,О	CH ₃ O	н	н	F	н	н	H.	н	\
92	N	СН	н	CH ₃ O	CH30	н	Н	F	н	н	, н	н	
93	N	СН	н	CH30	сн,о	н	н	F	н	н	н	Н	
94	N	СН	н	C H 3 O	CH3O	н	н	F	н	н	н	н	G
95	N	СН	н	CH ₃ O	CH3O	н	н	F	Н	н	н	н	S. C. F.
96	N	СН	н	CH ₃ O	CH ₃ O	н	H	F	Н	н	н	н	Some .
97	N	СН	н	CH3O	CH ₃ O	н	CH3	н	Н	Н	Н	н	\sim
98	N	СН	н	сн,о	CH ₃ O	н	СНз	н	н	н	н	н	~~
99	N	СН	н	сн,о	CH3O	н	СН,	н	н	н	н	н	S
100	N	СН	н	CH ₃ O	CH ₃ O	Н	СН,	н	н	н	н	Н	Q

[0502]

【表11】

	x	z	R'	R²	R³	R4	R ⁵	R 6	R7	R ⁸	R°	R 10	R 1 1
101	N	СН	н	CH,O	CH3O	н	сн,	н	Н	н	н	н	OCHE
102	N	СН	Н	CH ₃ O	CH3O	н	н	сн,	H	н	н	н	\sim
103	N	СН	Н	CH ₃ O	CH ₃ O	Н	н	CH,	н	н	н	Н	~~
104	N	СН	н	CH ₃ O	CH ₃ O	н	н	сн,	Н	н	н	Н	₩,
105	N	СН	н	CH ₃ O	CH ₃ O	н	н	сн,	н	н	н	H	\bigcirc_{F}
106	N	СН	н	CH,0	CH ₁ O	H	н	сн,	H	н	н	н	OCH
107	N	СН	н	сн,о	сн,о	н	Н	NO ₂	н	н	н	н	~
108	N	СН	н	CH ₃ O	CH ₃ O	Н	н	NO2	н	н	н	н	~~
109	N	СН	н	СН,О	CH ₃ O	н	Н	C 1	н	н	CH ₂ OCH ₃	н	<u>~</u>
110	N	СН	Ħ	CH ₃ O	CH ₃ O	Н	н	C i	Н	н	CH ₃ C(=0)-	н	~

[0503]

【表12】

	x	z	R¹	R²	R³	R4	R 5	R ⁶	R,	R ⁸	R°	R 10	R 11
111	N	СН	H	CH,O	CH ₃ O	н	H	C I	н	н	н	CH3	\
112	N	СН	н	CH ₃ O	CH30	н	Н	C I	н	н	н	CH ₃ CH ₂	\
113	N	СН	н	CH3O	CH ₃ O	н	Н	CI	н	н	Н	CH ₃ (CH ₂) ₂	~
114	N	СН	н	CH ₃ O	CH30	н	н	Cı	н	н	н	CH,	~~
115	N	СН	Н	CH30	CH3O	н	н	CI	н	н	н	сн,	Qa
116	N	СН	Н	CH ₃ O	CH ₃ O	н	н	C I	Н	н	Н	Сн,Сн2	~
117	N	СН	н	CH30	CH ₃ O	н	Н	C 1	н	• н	н	Н	CH ₃
118	N	СН	н	CH,0	СН₃О	H	Н	C 1	н	н	Н	CH ₃	CH ₃
119	N	СН	н	CH,0 0		н	н	C 1	н	н	H	H	~
120	N	ÇН	н	СН,О ф	_ ~ ^~	н	н	C 1	Н	Н	Н	Н	~
	[050) 4]										

【表13】

X Н СН3О НО О Н C I Н СH 121 н сн,о ю т н C I СН 122 н сн,о Сто н н CI H СН N 123 н сн,о о √√√о′н CI H Н 124 N н сн₃о к√хххо н H . C1 СН 125 н сн,о ро н н CH3CH2 🗸 C 1 СН 126 H Cl H СH 127 C 1 СН H CH30 HO H C 1 СН н сн,о → С У н H C 1 H H Н H СH 130

[0505]

【表14】

	x	Z	R¹	R²	R 3	R4	R 5	R 6	R7	Rª	R°	R 10	R11
131	N	СН			N-N O								
132	N	СН	н	CH ₃ O	لبأمهم	н	H	CI	н	Н	н	CH ₃ CH ₂	~
133		СН	н	C H 3 O	N)	н	н	C 1	н	н	н	Н	~
134	N	СН	н	CH30	N-N-S	H	н	C I	н	Н	н	Н	<u>~</u>
135	N	сн	н	C H 3O	Or~~o~	н	н	CI	н	н	H	Н	~
136	N	СH	н		CH30	Н	H	C 1	н	Н	н	Н	~
137	N	СН	н	→()v~	O CH3O	H	н	C I	н	н	Н	H :	<u>~</u>
138	N	СН	Н		CH30	Н	H	C I	н	H	н	н	<u>~</u>
139	N	СН	н	$\bigcirc \smile$	_O_ CH,O	Н	н	CI	н	Н	Ħ	н	~
140	N	СН	Н	но~h~	_O CH₃O	H	н	C I	Н	н	н	н	<u>~</u>

[0506]

【表15】

	x	z	R۱	R²	R³	R4	R5	R ⁶	R7	R ^s	R°	R¹º	R''
141	СН	СН	н	CH ₃ O	00	Н	н	CI	н	н	н	Н	~
142	СН	СН	н	СН,О	O	н	н	C 1	н	Н	н	н	~
143	СН	сн	н	CH3O		н	Н	C 1	н	Н	Н	н	~
					€ \^ ° <								
145	СН	СН	н	C H 3 O	M-N ~ 0.	Н	H	C 1	н	н	н	н	~
146	СН	СН	н	CH3O	~~°	н	Н	C I	н	н	н	H	~
147	СН	СН	Н	CH ₃ O	но~~о́	н	н	C I	Н	Н	н	н	~
148	сн	СН	н	CH ₃ O		н	H	C I	н	н	н	н	~
149	СН				но~~								
150	СН	СН	Н	СН,О	HO~N~O	Н	н	Cl	н	Н	н	Н	~

[0507]

【表16】

	x	z	R'	R³	R³	R4	R ⁵	R6	R7	R*	R°	R 10	R11
151	СН	СН	Н	CH,0	•	н	н	C I	н	н	н	н	~
152	СН	СН	н	СН3О∹		н	н	C 1	Н	Н	н	н	~
153	СН	сн	н	CH3O	N-N O	н	Н	CI	н	Н	Н	Н	~
154	СН	СН	н	CH ₃ O	~~~o	H	Ħ	C I	н	н	н	н	~
155	СН	СН	н	CH30	H0~~0.	- н	Н	CI	Н	Н	н	н	~
156	сн	СН	Н	сн,о	*~~~°	′ н	Н	СI	Н	н	н	н	~
157	сн	СĦ	н	CH₃O	но ~ м ~ о.	_ 'H	н	CI	н	н	Н	н	~
158	СН	СН	H	CH,O		H	н	C 1	н	н	н	н	~
159	СН	СН	Н	CH30	NaN Nan	o H	н	C I	Н	Ħ	Н	Н	~
160	СН									Н		н	~

[0508]

【表17】

	x	z	R1	R²	R³	R4	R5	R ⁶	R7	R ⁸	R°	R 10	R''
161	N	СН	н	CH30	0	н	н	C I	н	н	н	н	Ų.
162	N	СН	н	сн,о	⊘ ^^•	н	н	СI	н	н	н	н	Ú.
163	N	СН	н	CH3O	√ ~~√	Н	н	C·I	Н	н	н	н	O F
164	N	СН	н	CH30	→ ○ / ^~	н	н	C 1	н	н	Н	н	Ď.
165	N	СН	н	CH30	HO	н	н	C 1	н	н	н	H	Q.
166	СН	СН	н	CH30	→ ○^^	н	н	C I	Н	н	н	н	Q.
167	СН	СН	н	CH ₃ O	HO~N~O′	Н	н	C I	н	н	н	н	Ú,
168	СН	СН	н .	сн,о	○ ^^	н	н	C I	н	H	н	н	Ó,
169	СН	СН	н	сн,о	100	Н	н	C I	н	н	н	н	S
	СН	СН	н	CH3O	N-N	н	н	CI	н	н	н	н	Č,

[0509]

【表18】

	x	z	R1	R?	R³	R4	R5	R6	R7	R ⁸	R°	R10	R''
171	N				o_v~~o∕								
172	N	СН	н	CH,O	°~~~	н	н	сн,о	н	Н	Н	н	Ú,
173	СН	СН	Н	CH ₃ O	€ ~~~	н	Н	сн,о	н	н	Ħ	н	~
174	СН	СН	н	СН,0		н	н	СН,О	н	н	н	н	~
175	СН	СН	н	сн,о	·_^^	н	Н	СН,	сн,	н	н	н	~
					-nno					н			<u>~</u>
										н	н	н	Ú,
178					© ~ ~~								сн,
179	N	СН	н	CH3O	Ovv.	н	н	Сí	н	н	H	CH,	СН3
180	N	СН			√ 0				н	н	н		СН

[0510]

【表19】

[0511]

<u>薬理試験例1:VEGF刺激による血管内皮細胞内のMAPKの活性化に対する</u> 阻害能の測定

ヒト臍帯静脈血管内皮細胞(クロネティクス社より購入)は5%炭酸ガスイン キュベーター内においてEGM-2培地(クロネティクス社より購入)で50~ 70%コンフルエントとなるまで培養し、同培地で96ウェル平底プレートに各 ウェル1.5×10⁵個で播種した。37℃で1晩培養した後、培地を0.5% ウシ胎仔血清を含むEBM-2培地(クロネティクス社より購入)に交換し24 時間培養した。ジメチルスルホキシドに溶解させた被験物質を各ウェルに添加し て37℃で更に1時間培養した。ヒト組み換え型血管内皮増殖因子(以下、VE GFと略す)を最終濃度が50ng/m1となるように添加し、37℃で8分間 、細胞を刺激した。培地を除去し細胞をリン酸緩衝生理食塩水(pH7.4)で 洗浄した後、可溶化緩衝液(1%TritonX100、2mMオルトバナジル 酸ナトリウム、1mMエチレンジアミン4酢酸2ナトリウムを含むトリス緩衝生 理食塩水 (pH7.4))を10μ1添加した。4℃で1時間振蕩して細胞を可 溶化し、その溶液に1%ラウリル硫酸ナトリウムを含むトリス緩衝生理食塩水を 等量添加しよく混合した。この溶液 2 μ 1 を P V D F フィルターにドットブロッ トすることで吸着させ、このフィルターについて抗チロシンリン酸化MAPK抗 体(第一化学薬品株式会社より購入)を用いたイムノブロッティングを行った。

[0512]

リン酸化されたMAPK量をデンシトメーターで定量し、被験物質非存在下でのVEGF添加によるリン酸化MAPK量を100%、被験物質およびVEGF

非存在下でのリン酸化MAPK量を0%として、被験物質存在下でのリン酸化MAPK率を求めた。このリン酸化MAPK率によりMAPKの活性化を50%阻害するのに必要な被験物質の濃度(IC_{50})を算出した。

[0513]

結果は表1に示すとおりであった。

【表20】

表1

化合物	IC _{so} (nM)	化合物	IC _{so} (nM)	化合物	IC _{so} (nM)	化合物	IC _{so} (nM)
1	1. 8	45	2. 0	85	0. 7	140	36. 0
4	2. 1	46	4. 3	86	0. 6	141	14. 0
5	2. 9	47	4. 0	87	58. 0	142	2. 6
7	5. 2	48	0. 5	89	45. 0	143	3. 5
8	11. 0	49	4. 3	90	42. 0	144	1.6
9	5. 1	50	0. 5	92	46. 0	145	0. 8
10	7. 8	52	4. 4	93	14. 0	146	1. 0
11	15. 0	53	5. 9	94	1. 8	147	1.0
13	2. 2	54	0. 5	95	2. 7	148	15. 0
14	0. 7	55	2. 8	96	<1	149	1.6
16	2. 9	56	5. 1	97	518. 0	150	1. 8
17	11.0	57	6. 5	98	450. 0	151	0. 5
18	0. 6	58	5. 1	99	8. 8	152	0. 8
19	0. 6	59	5. 8	100	5. 2	153	1. 5
20	8. 5	62	16. 0	102	150. 0	154	1. 5
21	3. 4	63	70. 0	103	53. 0	155	2. 1
22	0. 4	64	42. 0	104	5. 3	156	0. 8
23	5. 4	65	36. 0	105	2. 3	157	0. 4
24	0. 6	66	21. 0	106	<1	158	1.6
25	3. 9	67	345. 0	107	10. 2	159	1. 9
26	5. 3	68	45. 0	119	3. 6	160	0. 9
28	4. 0	69	67. 0	120	3. 9	161	3. 9
29	4. 4	70	6. 8	121	12. 5	162	1. 0
30	1. 7	71	750. 0	122	5. 8	163	1. 4
31	2. 5	72	3. 9	123	8. 9	164	0. 9
32	7. 3	73	<2	124	1. 9	165	0. 6
33	3. 5	74	6. 0	125	2. 6	166	2. 2
34	4. 2	75	1. 2	127	1. 1	167	2. 1
35	3. 7	76	8. 0	133	8. 3	168	4. 0
36	3. 3	77	71. 0	134	5. 0	169	3. 7
37	2. 3	78	4. 1	135	1. 0	170	1. 1
40	12. 0	79	30. 0	136	160. 0	176	4. 7
41	4. 9	80	13. 0	137	24. 0	177	3. 7
42	5. 9	82	3. 8	138	40. 0	178	2. 3
43	3. 8	83	>1000	139	15. 0	<u> </u>	

[0514]

薬理試験例2:核形態試験

A375ヒトメラノーマ細胞(財団法人癌研究会より入手) 2×10^4 個をカルチャースライド(Falcon製)上に播種し、37℃で培養した。5時間後、被験物質を 10μ M、 1μ Mとなるように添加し、さらに48時間培養を継続した。細胞を固定後、リボヌクレアーゼ(200μ g/m1)を含む 50μ g/m1ヨウ化プロピジウム溶液を加え核を染色した。染色された核を蛍光顕微鏡で観察し、核形態の異常の有無を解析した。被験物質の核形態変化は 1μ Mで形態変化した細胞が認められる場合には(2+)、 10μ Mで形態変化した細胞が認められる場合には(2+)、 10μ Mで形態変化した細胞が認められる場合には(2+)とした。また、 10μ Mで形態変化した細胞が認められる場合には(2+)とした。結果は表2に示すとおりであった。

[0515]

【表21】

表 2

化合物番号	形態変化	化合物番号	形態変化
13	(-)	37	(-)
14	(-)	38	(-)
15	(-)	39	(-)
16	(-)	40	(-)
17	(-)	41	(-)
18	(-)	42	(-)
20	(-)	43	(-)
21	(-)	44	(-)
22	(-)	45	(-)
24	(-)	46	(-)
25	(-)	47	(-)
26	(-)	48	(-)
28	(-)	49	(-)
29	(-)	52	(-)
30	(-)	53	(-)
31	(-)	55	(-)
32	(-)	58	(-)
33	(-)	59	(-)
34	(-)	60	(-)
35	(-)	61	(-)
36	(-)	62	(-)

[0516]

薬理試験例3:ヒトグリオーマ細胞 (GL07) に対する抗腫瘍効果

ヒトグリオーマ細胞GL07(実験動物中央研究所から入手)をヌードマウス に移植し、腫瘍体積が100mm³程度になった時点で各群の腫瘍体積の平均が 均一になるように1群4匹ずつに群分けをし、20mg/kgとなるように被験化合物を、対照群には媒体を9日間毎日、1日1回経口投与あるいは腹腔内投与した。投与開始日の腫瘍体積を1としたときの対照群のx日目の腫瘍体積をCx、被験化合物投与群の腫瘍体積をTxとし、腫瘍増殖抑制率(TGIR)=(1-Tx/Cx)×100を求めた。

[0517]

本発明の化合物群の代表例に関して、腫瘍増殖抑制率の結果を表3に示す。

【表22】

表3

表 3								
実施例	投与部	TGIR	実施例	投与部	TGIR	実施例	投与部	TGIR
番号	位	(%)	番号	位	(%)	番号	位	(%)
4	経口_	61	101	経口	44	145	経口	57
5	経口	59	102	経口	24	146	経口	48
9	腹腔内	59	103	経口	23	147	経口	34
13	腹腔内	52	104	経口	22	148	経口	54
14	腹腔内	81	105	経口	20	149	経口	47
16	腹腔内	77	107	経口	49	150	経口	22
17	腹腔内	85	109	経口	71	151	経口	44
18	経口	57	110	経口	26	152	経口	44
24	経口	63	111	経口	78	153	経口	53
25	腹腔内	68	112	経口	81	154	経口	34
28	腹腔内	84	113	経口	61	155	経口	29
29	経口	64	114	経口	60	156	経口	24
37	腹腔内	70	115	経口	74	157	経口	44
48	腹腔内	90	116	経口	83	158	経口	39
50	経口	59	119	経口	40	159	経口	40
51	経口	65	120	経口	30	160	経口	43
54	経口	59	121	経口	22	161	経口	39
62	経口	78	122	経口	21	162	経口	40
64	経口	37	123	経口	31	163	経口	52
66	経口	26	124	経口	27	164	経口	55
67	経口	30	125	経口	30	165	経口	44
68	経口	57	126	経口	52	166	経口	27
69	経口	26	127	経口	25	167	経口	28
71	経口	67	128	経口	21	168	経口	42
73	経口	34	129	経口	25	169	経口	55
74	経口	28	130	経口	32	170	経口	64
77	経口	26	131	経口	31	171	経口	13
78	経口	21	132	経口	24	172	経口	42
79	経口	28	133	経口	20	173	経口	21
80	経口	52	134	経口	29	174	経口	19
82	経口	27	135	経口	62	175	経口	17
83	経口	31	136	経口	23	176	経口	22
85	経口	26	137	経口	20	177	経口	35
89	経口	40	138	経口	21	178	経口	28
93	経口	29	139	経口	27	179	経口	33
94	経口	29	140	経口	21	180	経口	45
97	経口	48	141	経口	28	181	経口	21
98	経口	38	142	経口	48	182	経口	31
99	経口	33	143	経口	53	183	経口	22
100	経口	36	144	経口	56			

TGIR (%) = 腫瘍増殖抑制率 (%)

【書類名】 要約書

【要約】

【課題】 抗腫瘍活性を有しかつ細胞形態変化を生じさせない化合物の提供。

【解決手段】 式(I)の化合物並びにその薬学上許容される塩および溶媒和物

【化1】

(XおよびZはCHまたはNを表し、 R^{1-3} はH、置換アルコキシ、非置換アルコキシ等を表し、 R^4 はHを表し、 R^{5-8} はH、ハロゲン、アルキル、アルコキシ、アルキルチオ、ニトロまたはアミノを表すが、 R^{5-8} が総てHを表すことはなく、 R^9 および R^{10} はH、アルキル、アルキルカルボニルを表し、 R^{11} はアルキル、アルケニル、アルキニルまたはアラルキルを表す)

【選択図】 なし

特平11-253624

認定・付加情報

特許出願の番号 平成11年 特許願 第253624号

受付番号 59900871626

書類名特許願

担当官 字留間 久雄 7277

作成日 平成11年 9月13日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000253503

【住所又は居所】 東京都中央区新川二丁目10番1号

【氏名又は名称】 麒麟麦酒株式会社

【代理人】 申請人

[識別番号] 100064285

【住所又は居所】 東京都千代田区丸の内3-2-3 富士ビル 協

和特許法律事務所内

【氏名又は名称】 佐藤 一雄

【選任した代理人】

【識別番号】 100067079

【住所又は居所】 東京都千代田区丸の内3-2-3 富士ビル 協

和特許法律事務所内

【氏名又は名称】 小野寺 捷洋

【選任した代理人】

【識別番号】 100091487

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 協和特許

法律事務所

【氏名又は名称】 中村 行孝

【選任した代理人】

【識別番号】 100107342

【住所又は居所】 東京都千代田区丸の内3丁目2番3号 協和特許

法律事務所

【氏名又は名称】 横田 修孝

出願人履歴情報

識別番号

[000253503]

1. 変更年月日 1995年 6月14日

[変更理由]

住所変更

住 所

東京都中央区新川二丁目10番1号

氏 名

麒麟麦酒株式会社

THIS PAGE BLANK (USPTO)