Formelsammlung Mathematik

Daniel Winz, Ervin Malagic

29. Oktober 2012

Über diese Arbeit

Dies ist das Ergebnis einer Zusammenarbeit auf Basis freier Texte erstellt von Studierenden der Fachhochschule Luzern.

Dieses Schriftstück ist lizenziert unter der GPLv2 und der TEX- bzw. LATEX- Code ist auf github.com/daniw/fosamath hinterlegt.

Inhaltsverzeichnis

1	Vektorgeometrie			
	1.1	Vektorgeometrie in der Ebene		
		1.1.1	Anstand zweier Puntke	8
		1.1.2	Geradengleichungen	8
		1.1.3	Normalenvektor	9
		1.1.4	Abstand Punkt zu Gerade	9
		1.1.5	Schnittwinkel zwischen Geraden	9
1.2 Vektorgeometrie im Raum				10
		1.2.1	Ortsvektor	10
		1.2.2	Länge eines Ortsvektors (Norm bzw. Be-	
			trag)	10
		1.2.3	Länge eines Vektors (Norm bzw. Betrag)	11
		1.2.4	Vektor aus Anfangs- und Endpunkt	11
		1.2.5	Distanz zweier Punkte	11
		1.2.6	Mittelpunkt einer Strecke	11
	1.3	Reche	enoperationen mit Vektoren	12
		1 3 1	Addition/Subtraktion	12

		1.3.3 $1.3.4$	Multiplikation mit Skalar	12 12
		1.3.6	Spatprodukt	13
2	Differenzieren			15
	2.1	Ableit	ungsregeln	16
		2.1.1	Grundoperationen	16
		2.1.2	Spezielle Regeln	17

Kapitel 1

Vektorgeometrie

1.1 Vektorgeometrie in der Ebene

1.1.1 Anstand zweier Puntke

$$\overline{P_1 P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

1.1.2 Geradengleichungen

Normalform (explizite Form)

$$g: y = mx + q$$

Steigung
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tan\varphi$$

Koordinatenform (implizite Form)

$$g: ax + by + c = 0$$

Achsenabschnittsform

$$g: \frac{x}{p} + \frac{y}{q} = 1$$

Hesse'sche Normalform

$$g: \frac{ax + by + c}{\sqrt{a^2 + b^2}} = 0$$

Parameterform

$$g: \vec{r} = \vec{r_0} + t \cdot \vec{a} = \left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) + t \cdot \left(\begin{array}{c} a_x \\ a_y \end{array}\right)$$

1.1.3 Normalenvektor

Der Normalenvektor ist ein Vektor, welcher senkrecht auf einem anderen Vektor bzw. einer Geraden liegt. Hier im Beispiel in welchem $\vec{n} \perp g(x)$

$$\left[\vec{n} = \left(\begin{array}{c} n_x \\ n_y \end{array} \right) = \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} -a_y \\ a_x \end{array} \right) \right]$$

Der Richtungsvektor von g(x) ist $\begin{pmatrix} a_x \\ a_y \end{pmatrix} \Rightarrow \begin{pmatrix} -a_y \\ a_x \end{pmatrix} = \vec{n}$.

1.1.4 Abstand Punkt zu Gerade

Für eine Gerade g: ax + by + c = 0 und einen Punkt $P_1(x_1|y_1)$ gilt:

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

1.1.5 Schnittwinkel zwischen Geraden

Für den spitzen Schnittwinkel φ zwischen den Geraden

 $g_1: y = m_1x + q_1$ und $g_2: y = m_2x + q_2$ gilt:

$$tan\varphi = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right| \qquad \text{für } \varphi \neq 90^{\circ}$$

$$g_1||g_2 \Leftrightarrow m_1 = m_2 \text{und } g_1 \perp g_2 \Leftrightarrow m_2 = -\frac{1}{m_1}$$
 für $m_1 \neq 0$

1.2 Vektorgeometrie im Raum

1.2.1 Ortsvektor

Ein Ortsvektor beschreibt den Vektor vom Urspung des Koordinatensystems O(0|0|0) zu einem beliebigen Punkt P(x|y|z).

$$\overrightarrow{r} = \overrightarrow{OP} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z} := \left(egin{array}{c} x \\ y \\ z \end{array}
ight)$$

Die Vektoren $\vec{e_x}, \vec{e_y}, \vec{e_z}$ sind die Einheitsvektoren des Koordinatensystems (meist einfach 1 ohne Einheit).

1.2.2 Länge eines Ortsvektors (Norm bzw. Betrag)

$$\boxed{|\vec{r}| = r = \sqrt{x^2 + y^2 1 z^2}}$$

11

1.2.3 Länge eines Vektors (Norm bzw. Betrag)

$$|\vec{a}| = a = \overrightarrow{P_1 P_2} = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

In dieser Form entspricht a der Raumdiagonale im Quader zu $(a_x|a_y|a_z)$.

1.2.4 Vektor aus Anfangs- und Endpunkt

Möchte man den Vektor \vec{a} von P_1 (Anfangspunkt) zu P_2 (Endpunkt) haben, so rechnet man Anfang - Ende, bzw. $\vec{P_2} - \vec{P_1}$.

$$\vec{a} = \overrightarrow{P_1 P_2} = \vec{r_2} - \vec{r_1} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

1.2.5 Distanz zweier Punkte

Um die Distanz von P_1 zu P_2 zu ermitteln, berechnet man die Norm von $\overrightarrow{P_1P_2}$.

$$\overline{P_1P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 + z_1)^2}$$

1.2.6 Mittelpunkt einer Strecke

$$r_M^{ec{}}=rac{1}{2}\cdot(ec{r_1}+ec{r_2})$$

$$\Rightarrow x_M = \frac{x_1 + x_2}{2} y_m = \frac{y_1 + y_2}{2} z_M = \frac{z_1 + z_2}{2}$$

1.3 Rechenoperationen mit Vektoren

1.3.1 Addition/Subtraktion

$$\vec{a} \pm \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \pm \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_x \pm b_x \\ a_y \pm b_y \\ a_z \pm b_z \end{pmatrix}$$

1.3.2 Multiplikation mit Skalar

$$\begin{bmatrix} k \cdot \vec{a} = k \cdot \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} k \cdot a_x \\ k \cdot a_y \\ k \cdot a_z \end{pmatrix}$$
für $k \in R$

1.3.3 Skalarprodukt

$$\vec{a} \cdot \vec{b} = a \cdot b \cdot cos(\varphi) = a_x b_x + a_y b_y + a_z b_z$$

Der Winkel φ ist der Zwischenwinkel von \vec{a} und \vec{b} . Für $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ gilt: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$!

1.3.4 Winkel zwischen zwei Vektoren

$$cos\varphi = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \cdot ||\vec{b}||}$$

$$cos\varphi = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

1.3.5 Vektorprodukt (Kreuzprodukt)

Mit dem Vektorprodukt erhält man einen Vektor der senkrecht zur Ebene steht, also den Normalenvektor zur Ebene.

Die Fläche die von \vec{a} und \vec{b} aufgespannt wird, entspricht der Norm des Vektorprodukts $c = |\vec{a} \times \vec{b}| = a \cdot b \cdot \sin \varphi$. Zu Beachten ist, dass $\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$

1.3.6 Spatprodukt

Das Spatprodukt entspricht dem Volumen welches von drei Vektoren aufgespannt wird.

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$$

Kapitel 2

Differenzieren

2.1 Ableitungsregeln

2.1.1 Grundoperationen

Summenregel

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Wichtig: Ableitung einer konstanten Funktion ist Null!

$$\Rightarrow (f(x) + c)' = f'(x) \text{ für } c \in R$$

Faktorregel

$$c \cdot f(x) = c \cdot f'(x)$$

Ein konstanter Faktor bleiobt beim Differenzieren (Ableiten) erhalten!

Produkteregel

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotientenregel

$$\left| \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} \right|$$
gilt falls $g(x) \neq 0$!

${\bf Ketten regel}$

$$(f(g(x)))' = g'(x) \cdot f'(g(x))$$

17

2.1.2 Spezielle Regeln

Exponenten

$$(x^n)' = n \cdot x^{(n-1)}$$

$$(e^x)' = e^x$$

$$(e^{k \cdot x})' = k \cdot e^x$$

$$\boxed{(a^x)' = ln_a(a^x)}$$

Logarithmen

$$(ln(x))' = \frac{1}{x}$$

Trigonometrie

$$(\sin(x))' = \cos(x)$$

$$(\cos(x))' = -\sin(x)$$

$$(tan(x))' = \frac{1}{cos^2(x)}$$

$$(\cot(x))' = -\frac{1}{sn^2(x)}$$