

University of North Texas – EENG

Master's Thesis Defense

Implementation of Compressive Sampling for Wireless Sensor Network Applications

Committee Members:
Dr. Xinrong Li
Dr. Kamesh Namuduri
Dr. Tao Yang

Nathan Ruprecht

- Background and Motivation
- Terminology
- Compressive Sampling Theory
 - Compression and Reconstruction
 - Measurement Matrix Properties
 - Minimum Representation

- Implementation
 - Matlab
 - MCU MSP432
 - SBC Raspberry Pi 3
- Results
- Conclusion
- Further Research
- Questions

- ADCs are limiting advancement in RF tech
- Harry Nyquist (1928) and Claude Shannon(1948) Sampling Theorem
- Difficulties:
 - UWB communications 3.1GHz 10.6GHz
 - EHF 30 300GHz for satellite-based sensing, weapons systems, radar, etc.

- 1970s Seismologist use CS
- 2004 Emmanuel Candes and David Donoho
- Applications:
 - Imaging MRI, Radar, Satellite (astronomy)
 - Communications Cognitive Radio
- Big Picture Analog-to-Information Conversion (AIC)
- Focus of Thesis Application

- xo: the original signal of various length
- x: an N-sized frame of xo
- y: an M-sized observation/representation of x
- A: measurement matrix consisting of Φ and Ψ
- Φ: Phi distribution matrix or randomizer
- Ψ: Psi transformation matrix or sparsifier
- RMS: Root Mean Squared Error

CS Theory – Compress

$$y = Ax$$

 $y \in \mathbb{R}^M$, $A \in \mathbb{R}^{M \times N}$, $x \in \mathbb{R}^N$
 $M \ll N$

$$A = \Phi \Psi$$

 Φ is a distribution matrix (randomizer)

Ψ is a transformation matrix (sparsifier)

$$y = \Phi \Psi x$$
$$\Phi \in \mathbb{R}^{M \times N}, \quad \Psi \in \mathbb{R}^{N \times N}$$

CS Theory – Reconstruct

Goal: Solve $y = A\hat{x}$ using either LP or SOCP

minimum l_p norm min $\|\hat{x}\|_p$ subject to $A\hat{x} = y$

$$l_2$$
 norm is $\hat{x} = A^{-1}y$

Basic Pursuit: for large SOEs, l_1 norm = l_0 norm [11]

 l_0 norm is a problem – too sensitive to noise

Other techniques compared to BP – OMP, ROMP, CoSaMP, SLO

NORTH TEXAS

CS Theory – Reconstruct

Pg. 13

CS Theory – Measurement Matrix – Ψ

• Goal: Create K-sparse signal

Pg. 7

- $x(t) = \sin(1500\pi t) + \sin(3500\pi t)$
- Signal representable by a few, nonzero elements
- How we do it:
 - Detecting noise floor
 - Find K-sparsity of frame

CS Theory – Measurement Matrix – Ф

Goal: Randomize signal to create unique solution when reconstructing

$$\mu(\Phi, \Psi) = \max_{1 \le i, j \le N} \left| \left\langle \Phi_i, \Psi_j \right\rangle \right|$$

- Pass/fail RIP [19] almost always pass for random distributions, more so used for deterministic
- Matrix coherence coefficient, $1/\sqrt{N} \le \mu \le 1$, to actually characterize performance of $A = \Phi \Psi$

$$\mu(A) = \max_{1 \le i, j \le N} \frac{\left| \langle A_i, A_j \rangle \right|}{\|A_i\| \|A_j\|}$$

```
Pg. 22
```

```
for i=1:N
    for j=1:N
        temp = abs( dot(A(i,:),A(:,j)) );
        temp = temp./[norm( A(i,:) ).*norm( A(:,j) )];
        mu = max( mu, temp );
    end
end
```


CS Theory – Measurement Matrix – ΦΨ

CS Theory – Measurement Matrix – ΦΨ

	RMS — Time		Ψ	Φ	Overall Rank (Out of 135)		
	-	0.75 0.5 0.25			DCT	Binomial	12
	0.75					Poisson	13
	0.5					Uniform	15
	0.25					Normal	61
						Burr	1
					FFT	Triangular	2
Pg.	25	DCT FFT IWT1	Logistic T1 IWT4 WHT	Poisson		3	
		DCI FFI IW		II IWI4 WHI		Normal	17
	Ψ	Ф	RMS	Time		Normal	49
	DCT	Binomial	0.007	3.126	IWT1	Stable	59
	DCT	Normal	0.008	3.837		Logistic	64
İ	FFT	Burr	0.004	5.637	IWT4	Normal	25
		Normal	0.005	6.394		Logistic	29
ŀ	11.4.77.4					Stable	42
-	IWT1	Normal	0.235	3.138		Log Logistic	8
	IWT4	Normal	0.233	2.548		Multinomial	24
	WHT	Log Logistic	0.031	1.987	WHT	Rayleigh	27
		Normal	0.030	4.240		Normal	65

CS Theory – Minimum Representation

 Goal: Represent x with as few observations (y) as possible. Compression Ratio (CR)

$$M = O(K * logN)$$
[12]

- Equation works for $N \to \infty$, how about powers of 2?
- Better specify an equation for M that depends on sparsity, N sized frame that is "small", and μ
- Absolute minimum subjective judging would argue that this is too aggressive

$$M = \mu^2 K \ln N$$
[14]

Matlab Implementation

- Retrieve entire signal (not real time)
- Break it into N-sized frames
- Compress and Reconstruct
- RMS error then plot x and \hat{x}

Pg. 39

		Average Mu
	Normal	0.3589
DCT	Bernoulli	0.3488
	Normal	0.2776
FFT	Bernoulli	0.2728

NORTH TEXAS

MCU Implementation

```
MAP_ADC14_toggleConversionTrigger();
while(!ADC15_isBusy()){}
triple_buffer[input_index][sample_index] =
ADC14_getResult(ADC_MEM0);

//Update buffer indices and sample index
if(++sample_index >= N) {
    sample_index = 0;
    if(data_ready){buffer_overrun = true;}

    tmp_ui32 = input_index;
    input_index = data_index;
    data_index = output_index;
    output_index = tmp_ui32;
    data_ready = true;
}
```

- What we did...
- Failed for memory space, and processing speed

Pg. 46&48

```
while(1) {
   MAP PCM gotoLPM0();
    if( buffer overrun ) {
        UARTprintf( EUSCI A0 BASE, "Error: buffer
overrun\r\n");
        buffer overrun = false;
    if( data ready ) {
       x.pData = triple buffer[data index];
        arm_dct4_f32( &S, (float32 t *)pState,
          x.pData);
       K = detect_K(x.pData);
        M = pow(0.35, 2)*log(N)*K;
       for( i=0; i<=M/rows; i++ ) {
            if( i==0 ) {
                Phi.pData = A0;
            } else if( i==rows ) {
                Phi.pData = A1;
            } else if( i==n*rows ) {
                Phi.pData = An;
        arm mat mult f32( &Phi, &x, &y );
       y f32[0] = *y.pData
}}}
```


MCU Implementation

• DCT only available at certain N. Vary FCLK and N to compare sampling period (time for input buffer) against processing time (time to beat sampling)

Pg. 50

	N	128	512	2048
Clock Frequency (s)	Sampling Period	0.0160	0.0640	0.2560
48MHz	Processing Time	0.4983	0.6398	0.7838
24MHz	Processing Time	0.5224	0.5447	2.9056
12MHz	Processing Time	0.5380	0.5795	4.8783

Expectation

Reality – Buffer Overrun!

Fixed – More Process Data Buffers/Threads

Pg. 67-69

```
class data_buffer:
    def __init__(self, buff, M, start, end):
        self.buff = buff
        self.M = M
        self.start = start
        self.end = end
```


- Still detecting noise, K sparsity, and M in each processing thread
- On Windows, user input to start and stop recording. Pi goes on timer.
- Multithreading vs Multiprocessing

Comparing Python to Matlab

- Python less error, but not as compressed
- Implementation matching simulation

Initial comparison – CS vs Zip

Zip is faster on average

In depth comparison – CS vs Zip

- CS compresses to smaller file, but at what cost?
- Zip not always faster, but one trial

- Opinion: RMS ≤ 0.02
- CR ~30%

Conclusion

- We still need to sample at Nyquist Rate to have original xo
- Using a Bernoulli distribution (Φ) and DCT (Ψ) for A, we can assume a $\mu=0.35$, as well as better storage and ease of use with only real values
- Python producing expected results to Matlab simulations
- Raspberry Pi 3 can utilize multithreading to achieve real-time processing
- CS comparable to zip possibly superior if sampling sub-Nyquist

Further Research

- Random sampling for complete sequence [17]
- Buffer overrun at 44.1 kHz in Raspberry Pi
- Raspberry Pi microphone with adjustable Fs
- 2D and 3D signals

References	File folder	
create_Phi.m	MATLAB Code	1 KB
🖺 detect_Fmax.m	MATLAB Code	1 KB
🖺 detect_K.m	MATLAB Code	1 KB
🖺 detect_Mu.m	MATLAB Code	1 KB
detect_Noise.m	MATLAB Code	1 KB
Matlab_TxRx.m	MATLAB Code	7 KB
SL0.m	MATLAB Code	6 KB
Thesis Data.xlsx	Microsoft Excel W	46,865 KB
Ruprecht_ThesisReport.pdf	PDF File	1,704 KB
AudioFile.py	Python File	5 KB
MicrophoneRecord.py	Python File	8 KB
Python_Rx.py	Python File	5 KB
Python_Tx.py	Python File	1 KB
Phi128.txt	TXT File	96 KB
Phi256.txt	TXT File	384 KB
Phi512.txt	TXT File	1,536 KB
Phi1024.txt	TXT File	6,144 KB
📤 Clarity.wav	VLC media file (.w	2,617 KB
📤 NuvoleBianche.wav	VLC media file (.w	64,073 KB
📤 NuvoleBianche_1min.wav	VLC media file (.w	10,337 KB
≜ WhateverltTakes.wav	VLC media file (.w	37,889 KB
≜ WhateverltTakes_1min.wav	VLC media file (.w	10,335 KB

References

[1]	D. L. Donoho, "Compressed Sensing," IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-
	1306, 2006.
[2]	C. Moler, ""Magic" Reconstruction: Compressed Sensing," MathWorks, 2010. [Online]. Available:
	https://www.mathworks.com/company/newsletters/articles/magic-reconstruction-compressed-
	sensing.html. [Accessed 2017].
[3]	E. Candes and J. Romberg, L1 magic: Recovery of Sparse Signals via Convex Programming, Caltech, 2005.
[4]	S. Pinto, L. Menoza, H. Velandiz, V. Molina and a. L. Cervelon, "Compressive Sensing Hardware in 1-D
	Signals," TECCIENCIA, vol. 7, no. 19, pp. 5-10, 2015.
[5]	E. Candes and M. Wakin, "An Intoduction to Compressive Sampling," IEEE Signal Processing Magazine, pp.
	21-30, 2008.
[6]	Y. C. Eldar, "Compressed Sensing of Analog Signals in Shift-Invariant Spaces," Israel Science Foundation,
	2009.
[7]	H. Huang, S. Misra, W. tang, H. Barani and H. Al-Azzawi, "Aplications of Compressed Sensing in
	Communications Networks," New Mexico State University, 2014.
[8]	T. L. N. Nguyen and Y. Shin, "Deterministic Sensing Matrices in Compressive Sensing: A Survey," Soongsil
	University, 2013.
[9]	"Complex Matrices; Fast Fourier Transform," MIT OCW, Cambridge, 2011.
[10]	G. Mohimani, M. Babaie-Zadeh and C. Jutten, "Fast Sparse Representation based on Smoothed IO Norm,"
	Center for International Research, Tehran, 2006.

[11]	E. Candes and J. Romberg, Sparsity and Incoherence in Compressive Sampling, Caltech, 2006.
[12]	H. Xue, L. Sun and G. Ou, Speech Reconstruction based on Compressed Sensing Theory using Smoothed LO
	Algorithm, Nanjing: IEEE, 2016.
[13]	T. T. Do, L. Gan, N. H. Nguyen and T. D. Tran, "Fast and Efficient Compressive Sensing using Structurally
	Random Matrices," IEEE Transactions on Signal Processing, pp. 1-16, 2011.
[14]	C. Luo, F. Wu, J. Sun and C. W. Chen, "Compressive Data Gathering for Large-Scale Wireless Sensor
	Networks," Microsoft Research Asia, Beijing.
[15]	Z. Yu, S. Hoyos and B. M. Sadler, Mixed-Signal Parallel Compressed Sensing and Reception for Cognitive
	Radio, IEEE, 2008.
[16]	F. Chen, A. P. Chandrakasan and V. Stojanovic, A Signal-Agnostic Compressed Sensing Acquisition System
	for Wireless and Implantable Sensors, Cambridge: IEEE, 2010.
[17]	J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen and M. Strauss, Random Sampling for
	Analog-to-Information Conversion of Wideband Signals, DARPA, 2011.
[18]	J. Moreira, What is A RIP Matrix?.
[19]	Y. Wnag, J. Ostermann and YQ. Zhang, Video Processing and Communications, Upper Saddle River:
	Prentice-Hall, 2002.
[20]	J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles, Algorithms, and Applications, Upper
	Saddle River: Pearson Education, 2007.

Questions

