PLAY Cálculo

123456180 123456180 123415

COORDENADORES

Ricardo Ramos Fragelli

Vinícius de Carvalho Rispoli

Tatiane da Silva Evangelista

DEMAIS AUTORES

Arthur Jahn Sturzbecher Ina Tayane Barbosa Tavares

Bruno Nunes de Freitas Jefferson Andrade da Rocha

Daniela Neves de Lima Kalil Martins Mota

Eduardo Jonathan Ramos e Silva Sampaio

FRAÇÕES

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$\frac{25}{4} - \frac{3}{3} + 2 = ?$$

$$\frac{(12-3)}{(10-8)} \cdot \frac{(8+4)}{(5-3)} = ?$$

PLAY CÁLCULO - MÓDULO 1 (ESTUDO DAS FRAÇÕES)

Teoria e Exemplos

1. FRAÇÕES

Denomina-se fração um número inteiro dividido em finitas partes iguais, veja:

 $\frac{a}{b}$

Onde a parte a é o numerador e b é o denominador da fração.

Exemplo 1:

<u>6</u>

3 5 $\frac{-2}{7}$

2. REGRAS DE SINAL PARA FRAÇÕES

A)
$$\frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}$$

Exemplo 1:

$$\frac{-7}{3} = \frac{7}{-3} = -\frac{7}{3}$$

B)
$$\frac{-a}{-b} = \frac{a}{b}$$

Exemplo 2:

$$\frac{-2}{-3}=\frac{2}{3}$$

3. ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES

A) DENOMINADORES IGUAIS

Para trabalhar com frações cujo denominadores são iguais, basta somar ou subtrair o numerador, mantendo o mesmo denominador. Veja:

Exemplo1:

$$\frac{1}{2} + \frac{5}{2} = \frac{1+5}{2} = \frac{6}{2} = \boxed{3}$$

Exemplo 2:

$$\frac{7}{3} - \frac{2}{3} = \frac{7-2}{3} = \boxed{\frac{5}{3}}$$

Exemplo 3:

$$\frac{2}{5} - \frac{7}{5} - \frac{9}{5} + \frac{4}{5} = \frac{2 - 7 - 9 + 4}{5} = \frac{-10}{5} = \boxed{-2}$$

B) DENOMINADORES DIFERENTES

Caso os denominadores não sejam iguais, basta encontrar o Mínimo Múltiplo Comum (MMC), transformar as frações para o mesmo denominador e, assim, efetuar a operação desejada (soma ou subtração).

MMC é denominado como o menor múltiplo comum entre dois ou mais números diferentes de zero.

Exemplo 1:

Múltiplos de 4: 0, 4, 8, 12, 16, ... Múltiplos de 8: 0, 8, 16, 24, 32, ...

Ou seja, para os números 4 e 8, o MMC entre eles é o 8.

Exemplo 2:

$$\frac{7}{6} + \frac{5}{3}$$

Primeiramente, encontrar o MMC entre 3 e 6:

Múltiplos de 3: 0, 3, 6, 9, 12, ...

Múltiplos de 6: 0, 6, 12, 18, ...

 $MMC = \boxed{6}$

Depois, transformar as frações com o mesmo MMC. Ou seja, o denominador de ambas deverá ser igual a 6:

$$\frac{7}{6} + \frac{5}{3} = \frac{7}{6} + \frac{5 \cdot 2}{3 \cdot 2} = \frac{7}{6} + \frac{10}{6} = \frac{7 + 10}{6} = \boxed{\frac{17}{6}}$$

Exemplo 3:

$$\frac{3}{4} + \frac{5}{2} + \frac{3}{6} = \frac{3 \cdot 3 + 6 \cdot 5 + 2 \cdot 3}{12} = \frac{9 + 30 + 6}{12} = \boxed{\frac{45}{12}}$$

Observe que 12/4 é igual a 3, 12/2 é igual a 6 e 12/6 é igual a 2.

Exemplo 4:

$$-\frac{3}{2} - \frac{5}{3} + \frac{1}{4} = \frac{6 \cdot (-3) + 4 \cdot (-5) + 3 \cdot 1}{12} = \boxed{-\frac{35}{12}}$$

4

4. PRODUTO E QUOCIENTE DE FRAÇÕES

Para efetuar o produto entre frações, basta multiplicar numerador com numerador e denominador com denominador. A simplificação faz-se necessária para um melhor resultado.

Exemplo 1:

$$\frac{5}{6} \cdot \frac{12}{3} = \frac{5 \cdot 12}{6 \cdot 3} = \frac{60}{18} = \frac{60 : 6}{18 : 6} = \boxed{\frac{10}{3}}$$

Nesse caso, poderíamos simplificar antes mesmo de realizar a operação, veja:

$$\frac{5}{6} \cdot \frac{12}{3} = \frac{5}{\cancel{6}} \cdot \frac{\cancel{12}}{3} = \frac{5 \cdot 2}{3} = \boxed{\frac{10}{3}}$$

Para efetuar o quociente entre frações, basta multiplicar a primeira fração pelo inverso da segunda, veja:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$$

Exemplo 2:

$$\frac{\frac{4}{7}}{\frac{11}{14}} = \frac{4}{7} : \frac{11}{14} = \frac{4}{7} \cdot \frac{14}{11} = \frac{4}{7} \cdot \frac{\cancel{14}}{11} = \frac{4 \cdot 2}{11} = \boxed{\frac{8}{11}}$$

Exercícios

E1. Faça as operações seguintes:

a)
$$\frac{1}{6} + \frac{4}{6}$$

b)
$$\frac{8}{3} - \frac{5}{3}$$

c)
$$\frac{-4}{8} + \frac{-5}{8}$$

d)
$$\frac{3}{8} + \frac{2}{8} - \frac{1}{8}$$

e)
$$-\frac{3}{2} - \frac{18}{2} - \frac{4}{2}$$

f)
$$\frac{12}{30} - \frac{10}{(2 \cdot 15)}$$

g)
$$-\frac{1}{7} - \frac{5}{3}$$

$$\frac{12}{5} - \frac{10}{3}$$

h)

i)
$$\frac{2}{8} - \frac{5}{1}$$

j)
$$\frac{5}{2} + \frac{3}{125} - \frac{5}{5}$$

k)
$$\frac{25}{4} - \frac{3}{3} + 2$$

1)
$$\frac{2}{6} + \frac{16}{2} - 3$$

E2. Faça as operações seguintes:

a)

$$\frac{8}{25} \cdot \frac{5}{1}$$

b)

$$\frac{13}{(3+5)} \cdot \frac{6}{8}$$

c)

$$\frac{15}{10} \cdot \frac{10}{100}$$

d)

$$\frac{(12-3)}{(10-8)} \cdot \frac{(8+4)}{(5-3)}$$

e)

$$\frac{3}{4} \cdot \frac{(12+1)}{(12-1)}$$

f)

$$\left(\frac{2}{10} \cdot \frac{2}{12-2}\right)$$

g)

$$\frac{1}{4} \cdot \frac{7}{(2-1)} \cdot 3$$

h)

$$\frac{(-8)}{(-1)} \cdot \frac{100}{10}$$

i)

$$-\left(\frac{22}{12},\frac{6}{1}\right)$$

j)

Gabarito

E1.

a) $\frac{5}{6}$

b) 1

c) $\frac{8}{-9}$

d) $\frac{1}{2}$

e) $-\frac{25}{2}$

f) $\frac{1}{15}$

g) $-\frac{38}{21}$

h) $-\frac{14}{15}$

i) $-\frac{19}{4}$

 $j)\frac{381}{250}$

k) $\frac{29}{4}$

 $1)\frac{16}{3}$

E2.

a) $\frac{8}{5}$

b) $\frac{39}{32}$

c) $\frac{3}{20}$

d) 27

e) $\frac{39}{44}$

f) $\frac{1}{25}$

g) $\frac{21}{4}$

h) 80

i) -11

 $j)\frac{1}{6}$

POTENCIAÇÃO

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$\frac{9^8}{9^5} \cdot \frac{9^7}{9^5} = ?$$

$$7^5 \cdot \frac{7}{7^5} \cdot (7^8)^4 = ?$$

$$[(x \cdot y^5)^4]^2 \cdot (y \cdot x^7)^5 \cdot \frac{x^2}{x^5} = ?$$

PLAY CÁLCULO - MÓDULO 2 (POTENCIAÇÃO)

Teoria e Exemplos

1. POTENCIAÇÃO

A potenciação a^n (n = 1, 2, 3...) é calculada assim:

$$a^n = \underbrace{a \cdot a \cdot a \dots a \cdot a \cdot a}_{n \text{ vezes}}$$

onde a parte a é chamada de base e n é o expoente.

Exemplo:

$$5^4 = 5 \cdot 5 \cdot 5 \cdot 5$$

2. REGRAS E PROPRIEDADES DA POTENCIAÇÃO

A) $a^1 = a$

Exemplo 1:

$$7^1 = 7$$

B) $a^0 = 1$, onde $a \neq 0$

Exemplo 2:

$$5^0 = 1$$

C)
$$a^m \cdot a^n = a^{m+n}$$

Exemplo 3:

$$3^5 \cdot 3^7 = 3^{5+7} = 3^{12}$$

D)
$$a^{-n} = \frac{1}{a^n}$$
 onde $a \neq 0$

Exemplo 4:

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

E)
$$\frac{a^m}{a^n} = a^{m-n}$$
, onde $a \neq 0$

Exemplo 5:

$$\frac{3^7}{3^5} = 3^{7-5} = 3^2 = 9$$

Exemplo 6:

$$\frac{5^3}{5^5} = 5^{3-5} = 5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

 $\mathsf{F)} \quad (a^m)^n = a^{m \cdot n}$

Exemplo 7:

$$(2^3)^4 = 2^{3\cdot 4} = 2^{12}$$

G) $(a \cdot b)^n = a^n \cdot b^n$

Exemplo 8:

$$(2\cdot 3)^5 = 2^5\cdot 3^5$$

$$\mathsf{H)} \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Exemplo 9:

$$\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2} = \frac{9}{25}$$

E1. Dê a resposta em potenciação:

$$2^4 \cdot 2^8 \cdot 2^1$$

b)

$$\frac{4^4}{4^2}$$

c)

$$5^0 \cdot 5^2 \cdot 5^8 \cdot 5$$

Exercícios

d)

$$\frac{2^{\frac{7}{2}}}{2^5} \cdot \frac{16}{2^2}$$

e)

$$\frac{9^3}{3^2} \cdot \frac{27^3}{9^5}$$

f)

$$5\cdot 25\cdot 5^{10}$$

g)

$$\frac{9^8}{9^5} \cdot \frac{9^7}{9^5}$$

h)

i)

j)

k)

$$\frac{8^2}{8^5} \cdot \frac{64^2}{64^3}$$

I)

$$y^5 \cdot y^{-7} \cdot y^3 \cdot y^9$$

m)

$$\frac{1}{x} \cdot \frac{x^8}{x} \cdot \frac{x}{x^5}$$

n)

$$\frac{7^{-3}}{7^3} \cdot \frac{1^{209}}{7^{-9}}$$

o)

$$\frac{7}{7^3} \cdot \frac{7^7}{7^2 \cdot 7^6} \cdot 7^{-3}$$

E2. Dê a resposta em potenciação:

a)
$$\frac{6^9 \cdot 6^8 \cdot 36^2}{6^{12}} \cdot \frac{6^7}{6^5 \cdot 36^6} \cdot 6$$

$$\frac{z}{z^k} \cdot \frac{z^k \cdot z}{z^5 \cdot z} \cdot \frac{1}{z}$$

b)

c)
$$\frac{23^{-5}}{23} \cdot \frac{23 \cdot 23^{15}}{(23^2)^6}$$

d)
$$4^{12} \cdot \frac{1}{8} \cdot 2^{-7}$$

e)
$$y^x \cdot y \cdot (y^k)^5$$

f)
$$a^{2n} \cdot a^3 \cdot (a^n)^5$$

g)
$$7^5 \cdot \frac{7}{7^5} \cdot (7^8)^4$$

h)
$$y^2 \cdot x^5 \cdot y^3 \cdot \frac{y^7}{y^5} \cdot \frac{x^8}{x^9}$$

i)
$$[(x \cdot y^5)^4]^2 \cdot (y \cdot x^7)^5 \cdot \frac{x^2}{x^5}$$

j)
$$\frac{5}{5^{\frac{3}{5}}} \cdot \frac{5^{\frac{5}{5}}}{5^2}$$

k)
$$\frac{\frac{x^2 \cdot (x^3)^4}{x} \cdot \frac{x^5}{x \cdot x^8}}{x^5} \cdot \frac{1}{x^{-8}}$$

1)
$$9^{\frac{1}{6}} \cdot 3^{\frac{3}{8}}$$

m)
$$\frac{8^{\frac{3}{7}}}{2^{\frac{1}{3}}}$$

n)
$$16^{\frac{3}{5}} \cdot 4^{\frac{2}{3}} \cdot 2^{\frac{1}{15}}$$

$$\frac{2^4 \cdot 2^4}{4_6^4 \cdot 8^2}$$

Gabarito

E1.

o)

d)
$$2^{\frac{1}{2}}$$

e)
$$3^{3}$$

I)
$$y^{10}$$

m)
$$x^2$$

E2.

b)
$$z^{-5}$$

c)
$$23^{-2}$$

e)
$$y^{5k+x+1}$$

f)
$$a^{7n+3}$$

h)
$$x^4y^7$$

i)
$$x^{40} \cdot y^{45}$$

k)
$$x^{-4}$$

I)
$$3^{\frac{17}{24}}$$

m)
$$2^{\frac{20}{21}}$$

n)
$$2^{\frac{57}{15}}$$

o)
$$2^{\frac{-14}{3}}$$

RADICIAÇÃO

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$\frac{\sqrt{45}}{\sqrt{15}} = ?$$

$$\sqrt{\left(\frac{34}{2} \cdot \frac{4}{17}\right)^{\frac{4}{3}}} = ?$$

$$\frac{1}{\left(\sqrt[3]{3} - \sqrt[3]{2}\right)} = ?$$

$$\frac{3}{2^{-\frac{1}{2}}(2^{\frac{1}{2}} + 7)} + \frac{4}{\left(2^{\frac{1}{2}}\right)^5 - 4} = ?$$

PLAY CÁLCULO - MÓDULO 3 (RADICIAÇÃO)

Teoria e Exemplos

1. RADICIAÇÃO

A radiciação é um caso particular da exponenciação com expoente fracionário, veja:

$$a^{m/n} = \sqrt[n]{a^m}$$
, onde $a > 0$.

Exemplo 1:

$$2^{1/2} = \sqrt{2^1} = \sqrt{2}$$

Exemplo 2:

$$7^{3/5} = \sqrt[5]{7^3}$$

2. REGRAS E PROPRIEDADES DA RADICIAÇÃO

A)
$$\left(\sqrt{a}\right)^n = \sqrt{a^n}, a > 0$$

Exemplo 1:

$$\left(\sqrt{2}\right)^3 = \sqrt{2^3}$$

Exemplo 2:

$$\left(\frac{\sqrt[4]{73}}{\sqrt[3]{49}}\right)^3 = \frac{\left(\sqrt[4]{73}\right)^3}{\left(\sqrt[3]{49}\right)^3} = \boxed{\frac{\sqrt[4]{(73)^3}}{49}}$$

B)
$$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$$

Exemplo 3:

$$\sqrt{3} \cdot \sqrt{2} = \sqrt{3 \cdot 2} = \boxed{\sqrt{6}}$$

C)
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

Exemplo 1:

$$\frac{\sqrt{60}}{\sqrt{30}} = \sqrt{\frac{60}{30}} = \boxed{\sqrt{2}}$$

2. RACIONALIZAÇÃO DE DENOMINADORES

A racionalização consiste em se obter uma fração equivalente com denominador racional, para substituir aquela com denominador irracional.

A) QUANDO O DENOMINADOR É UMA RAIZ QUADRADA

No caso de um radical \sqrt{a} no denominador, fazemos a multiplicação por \sqrt{a}/\sqrt{a} .

Exemplo 1:

$$\frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5^2}} = \boxed{\frac{\sqrt{5}}{5}}$$

B) QUANDO O DENOMINADOR É UMA RAIZ NÃO QUADRADA

No caso de um radical $\sqrt[m]{a}$ no denominador, fazemos a multiplicação por $\sqrt[m]{a^{m-1}}/\sqrt[m]{a^{m-1}}$.

Exemplo 2:

$$\frac{2}{\sqrt[3]{5}} = \frac{2}{\sqrt[3]{5}} \cdot \frac{\sqrt[3]{5^2}}{\sqrt[3]{5^2}} = \frac{2\sqrt[3]{5^2}}{\sqrt[3]{5^3}} = \boxed{\frac{2\sqrt[3]{5}}{5}}$$

C) QUANDO O DENOMINADOR É UMA SOMA OU DIFERENÇA DE DOIS QUADRADOS

No caso de um radical $\sqrt[m]{a}$ no denominador, fazemos a multiplicação por $\sqrt[m]{a^{m-1}}/\sqrt[m]{a^{m-1}}$.

Exemplo 3:

$$\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{1}{\sqrt{5} + \sqrt{2}} \cdot \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \boxed{\frac{\sqrt{5} - \sqrt{2}}{3}}$$

Exercícios

E1. Faça as operações a seguir:

a) b) c)
$$\sqrt[4]{32} \cdot \sqrt[4]{2}$$
 $\sqrt{1!}$

d) e) f)
$$\sqrt[7]{3^5}$$
. $\sqrt[14]{3^4}$ $\sqrt[5]{5^3}$. $\sqrt[5]{6}$

g) h) i)
$$\sqrt{32^{-2}}$$
 $\sqrt[5]{\sqrt[3]{3^5}}$ $\sqrt[7]{7^6} \cdot \sqrt{7^6}$

j)
$$\frac{\sqrt[7]{45 + 83}}{\sqrt[3]{7}}$$

$$\sqrt{\left(\frac{34}{2} \cdot \frac{4}{17}\right)}$$

$$\sqrt[3]{5^{14} \cdot 7^2 \cdot 10^3}$$

E2. Transforme os expoentes em raízes, simplifique as operações e, se necessário, efetue a racionalização

a)
$$\frac{(12-4)^{-\frac{1}{2}}}{3^{-2}}$$

$$\frac{(12^{\frac{1}{2}} + 4^{\frac{1}{2}})^{-1}}{2^{-3}}$$

$$(2+5^{\frac{1}{2}})^{-1}.3$$

d)
$$(3^{\frac{1}{2}} - 4^{\frac{1}{2}})^{-1} \cdot 4^{\frac{1}{3}}$$

e)
$$\frac{1}{2^{\frac{1}{2}} + 3} \cdot \frac{3 - 2^{\frac{1}{2}}}{1 - 4^{\frac{1}{4}}} + \frac{4 + 2^{\frac{1}{2}}}{7(1 - 2^{\frac{1}{2}})}$$

12
$$\frac{1}{2}$$
 - $(2^{\frac{7}{3}} + 5^{\frac{3}{5}})$

g)
$$144^{\frac{1}{2}} - (\sqrt[3]{8}.\sqrt{81})$$

h)
$$\frac{3}{2^{-\frac{1}{2}}(2^{\frac{1}{2}}+7)} + \frac{4}{(2^{\frac{1}{2}})^5 - 4}$$

$$\frac{3}{2^{-\frac{1}{2}(2^{\frac{1}{2}}+7)}} + \frac{4}{(2^{\frac{1}{2}})^5 - 4}$$
i)
$$\frac{\left(2^{\frac{2}{5}}\right)^6 + 2}{2^{\frac{6}{5}} - 8} - \frac{66 \cdot 2^{-2}}{\left(2^{-\frac{2}{5}}\right)^2 - 2}$$

j)
$$\left(\sqrt{16} + 12^{\frac{1}{2}} \right)^{-\frac{1}{2}}$$

$$\frac{2 - 2^{\frac{1}{2}} \cdot \left(-2 \cdot \left(-2^{\frac{1}{3}} \cdot 2^{\frac{2}{3}}\right)\right)}{4}$$

$$\frac{1}{\left(\sqrt[3]{3}-\sqrt[3]{2}\right)}$$

Gabarito

E1.

b)
$$2\sqrt{2}$$

c)
$$\sqrt{3}$$

e)
$$\frac{7^2}{25}$$

f)
$$2^{16}\sqrt{2}$$

g)
$$\frac{1}{32}$$

h)
$$\sqrt[3]{3}$$

k)
$$2^{\frac{4}{3}}$$

I)
$$5^4\sqrt[3]{25}$$
. $\sqrt[3]{49}$. 10

E2.

a)
$$9\frac{\sqrt{2}}{4}$$

b)
$$2\sqrt{3} - 2$$

c)
$$3(\sqrt{5}-2)$$

d)
$$-\sqrt[3]{4}(\sqrt{3} + 2)$$

f)
$$2\sqrt{3} - 4\sqrt[3]{2} + \sqrt[5]{5^3}$$

h)
$$\frac{3\sqrt{2}(\sqrt{2}-7)}{-47} + \sqrt{2} + 1$$

i)
$$2^{\frac{6}{5}} + 8$$

$$j)\frac{\left(4-\sqrt{12}\right)\!\sqrt{4\!+\!\sqrt{12}}}{4}$$

k)
$$\frac{1-2\sqrt{2}}{2}$$

I)
$$\sqrt[3]{4} + \sqrt[3]{6} + \sqrt[3]{9}$$

EXPRESSÕES NUMÉRICAS

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$-14 + \{-[4(-2) + (-5039)]\} = ?$$
$$3 \cdot \{2^2 \cdot [(3 + 2 \cdot 3) \cdot (3^3 + 3) - 4^2 \cdot (5 \cdot 2^2)]\} = ?$$

PLAY CÁLCULO - MÓDULO 4 (EXPRESSÕES NUMÉRICAS)

Teoria e Exemplos

1.EXPRESSÕES NUMÉRICAS

Expressão numérica é uma sequência de operações que devem obedecer as seguintes ordens de operação:

- 1: Potenciação, radiciação e outras funções;
- 2: Multiplicação e divisão;
- 3: Adição e subtração.

Exemplo 1:

$$3 + 3 * 5 = 3 + 15 = \boxed{18}$$

Exemplo 2:

$$1 + 2 * 3 * 3^2 - 1 + 3^2 * 2^2 = 6 * 9 + 9 * 4 = 54 + 36 = 90$$

Expressões numéricas que possuam parênteses (), colchetes [] e chaves {}, resolvemos de dentro para fora, ou seja, efetuamos primeiro os parênteses, depois os colchetes e, por último, as chaves respeitando as prioridades de operações. Veja:

Exemplo 3:

$$(3^2 + 5^2) \cdot 5 + 7^2 \cdot 2 = (9 + 25) \cdot 5 + 49 \cdot 2 = 34 \cdot 5 + 98 = 170 + 98 = 268$$

Exemplo 4:

$$3 \cdot \{2^2 \cdot [(3+2\cdot 3)\cdot (3^3+3) - 4^2 \cdot (5\cdot 2^2)]\} = 3 \cdot \{4 \cdot [(3+6)\cdot (30) - 16(5\cdot 4)]\} =$$

$$= 3 \cdot \{4[270 - 360]\} = 3 \cdot \{4[-90] = 3 \cdot \{-360\} = \boxed{1080}$$

Exercícios

E1. Resolva as expressões seguintes:

j) k)
$$(2^2 + 5)^1$$
 $(2^2 - 2^3)$ $[-2^2(3 \cdot 3)](-1)$

m)
$$[(2\cdot 3)(-3^2)](-1) + 5^2$$

$$2\cdot\frac{[4\cdot5(-4)]^1}{2}$$

n)

o)
$$(-5)^2 \cdot \left(\frac{1}{25}\right) - (3 + 2 + 4^2)$$

					Gabarito
E1.					
a)	F022	b)	20	c)	20
d)	5033	e)	20	f)	-20
g)	14	h)	39	i)	33
	27		$\frac{3}{4}$		345
j)	3	k)	-4	l)	36
m)		n)		o)	
,	79	,	-80	-,	-20

EXPRESSÕES ALGÉBRICAS

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$(60x^{80}y^8) \cdot (2x^3y) = ?$$

Solução da inequação:
$$\frac{x}{3} - \frac{x+1}{2} < \frac{1-x}{4}$$

Solução do sistema de inequações: $3 \le x^2 - 2x + 8 < 8$

PLAY CÁLCULO - MÓDULO 5 (EXPRESSÕES ALGÉBRICAS)

Teoria e Exemplos

1. EXPRESSÕES ALGÉBRICAS

Expressões algébricas são expressões que contém letras e números:

Exemplo 1:

$$a = 4b + 3b + 7c$$

Do mesmo modo que vimos no Módulo 4 para as expressões numéricas, nas expressões algébricas devemos obedecer a uma ordem para as operações:

- 1: Potenciação, radiciação e outras funções;
- 2: Multiplicação e divisão;
- 3: Adição e subtração.

E também devemos seguir a uma ordem para os sinais de associação:

- 1: Parênteses ();
- 2: Colchetes [];
- 3: Chaves { }.

Exemplo 2:

$$8a \cdot (2 + 8) - 3a = 8a \cdot (10) - 3a = 80a - 3a = \boxed{77a}$$

A) POTENCIAÇÃO

Para resolver potências literais, devemos aplicar as mesmas regras estudadas no Módulo 2, contudo, devemos simplificar os expoentes numéricos. Veja

Exemplo 1:

$$(4x^2y)^3 = 4^3(x^2)^3(y)^3 = 4^3x^{2\cdot 3}y^3 = \boxed{64 \ x^6y^3}$$

Exemplo 2:

$$(-2x^3y^4)^3 = (-2)^3(x^3)^3(y^4)^3 = \boxed{-8x^9y^{12}}$$

B) MULTIPLICAÇÃO E DIVISÃO

Para efetuarmos multiplicações em expressões algébricas, devemos multiplicar os valores numéricos, observando os sinais, e multiplicar as variáveis de mesma base somando seus expoentes.

Exemplo 1:

$$-(4x^2y)\cdot(-2xy)=\boxed{8x^3y^2}$$

Já a divisão, devemos dividir os valores numéricos, observando os sinais, e dividir as variáveis conservando a base e subtraindo os expoentes.

Exemplo 2:

$$\frac{4x^2y^3}{2xy} = \boxed{2xy^2}$$

Exemplo 3:

$$\frac{-4x^2y^3}{6x^5y} = -\frac{2}{3}x^{2-5}y^{3-1} = \boxed{-\frac{2}{3}x^{-3}y^2} \quad \text{ou} \quad \boxed{-\frac{2y^2}{3x^3}}$$

C) ADIÇÃO E SUBTRAÇÃO

Para somar ou subtrair os integrantes de expressões algébricas, devemos identificar parcelas que possuem o mesmo produto de potência de variáveis e realizar as operações, isto é, 7x pode ser somado com 3x; $4x^2$ pode ser somado com $3x^2$; $2x^5y^2$ pode ser somado com $6x^5y^2$; mas, $2xy^2$ não pode ser somado com $3x^2y^2$. Veja:

Exemplo 1:

$$7x + 3x + 5y = (7 + 3)x + 5y = \boxed{10x + 5y}$$

Exemplo 2:

$$2x - 4x^{2} + y + 2xy + x + 1 + x^{2} + 3y + 5xy - 7$$

$$(2+1)x + (-4+1)x^{2} + (1+3)y + (2+5)xy + (1-7)$$

$$3x - 3x^{2} + 4y + 7xy - 6$$

2. INEQUAÇÕES

As inequações são desigualdades que utilizam os seguintes sinais em sua estrutura: ≠, >, <, ≥, ≤. As técnicas de resolução são muito parecidas com as utilizadas nas equações, contudo, é importante ressaltar que as inequações respeitam as restrições de acordo com o sinal utilizado.

Os intervalos das soluções podem ser abertos, semi-abertos ou fechados, dependendo do sinal da inequação.

Exemplo 1:

$$4x + 12 > 2x - 2 \quad \rightarrow \quad 4x - 2x > -2 - 12$$

$$2x > -14 \quad \rightarrow \quad x > \frac{-14}{2}$$

$$\boxed{x > -7}$$

Logo, na reta real a inequação é representada por um intervalo aberto:

Ou seja, todos os números maiores que -7 são soluções da inequação, excluindo o -7.

Exemplo 2:

$$5 \le x + 3 \le 7$$
$$5 - 3 \le x \le 7 - 3$$
$$2 \le x \le 4$$

Logo,

A solução da inequação é $S = \{x \in \mathbb{R}/2 \le x \le 4\}$, o que representa um intervalo fechado.

Exercícios

E1. Encontre a forma mais simples das expressões algébricas:

a) b) c)
$$2x + 3x + 8x = 10x^3 + 5x^2 + 5x^2 - 10x^3 = 4x^2x^3 + 5x^5 = 10x^3 + 5x^5 = 10x^3 + 5x^5 = 10x^3 + 5x^5 = 10x^3 + 5x^5 = 10x^5 + 5x^5 + 5x^5 = 10x^5 + 5x^5 = 10x^5 + 5x^5 + 5x^5$$

d) e) f)
$$2x \cdot (5x^3 + 9x) = (60x^{80}y^8) \cdot (2x^3y) = xy^{\frac{1}{2}} \cdot (2xy^4 + y^2) =$$

g) h) i)
$$(2x^2)^3 + 2xy \cdot [4x + 5]^2 = ((((x)^2)^3)^5)^2 = \frac{(x^{1/2}y)^2}{y^2} =$$

j)
$$\frac{(\sqrt{zw})^2}{zw^2} = \begin{cases} k \\ \{2x(35xyw)(x^2)\} \cdot \{6xw(y)\} = \\ \frac{\{x^{300} \cdot [yw(y^{\frac{3}{2}})]\}}{2(y^2 \cdot y^2)^{\frac{1}{4}} + \{-y[(wx)^2/(w^2x^2)]\}} \end{cases}$$

E2. Encontre as soluções das seguintes inequações:

- a) 2x + 1 < 0
- b) 2 3x > x + 14
- c) 3(1-2x) < 2(x+1) + x 7

- d) [1-2(x-1)] < 2
- e) 8(x + 3) > 12(1 x)
- $\frac{x}{3} \frac{x+1}{2} < \frac{1-x}{4}$

Gabarito

E1.

a) 13*x*

 $10x^{2}$

b)

h)

k)

c) $9x^5$

- d) $10x^4 + 18x^2$
- e) $120x^{83}y^9$
- f) $2x^2y^{\frac{9}{2}} + xy^{\frac{5}{2}}$

- g) $8x^6 + 50xy + 80x^2y + 32x^3y$
- x⁶⁰

 $420w^2x^5y^2$

i)

 \boldsymbol{x}

j)

1

- ..
- I)
- $x^{300}y^{3/2}w$

E2.

- a) $x < -\frac{1}{2}$
- b) x < -3
- c)

f)

 $x > \frac{8}{9}$

- d) $x > \frac{1}{2}$
- e) $x > -\frac{3}{5}$

x < 9

EXPRESSÕES POLINOMIAIS

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

Quanto vale
$$P(x) = 2x^3 - 3x^2 + 2 \text{ para } x = 1 \text{ e } x = 2?$$

Resolva:
$$x^2 - 14x + 48 = 0$$

Resolva:
$$-x^4 + 113x^2 - 3136 = 0$$

PLAY CÁLCULO - MÓDULO 6 (EXPRESSÕES POLINOMIAIS)

Teoria e Exemplos

1. POLINÔMIOS

Um polinômio ou função polinomial P, na variável x, é toda expressão do tipo:

$$P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

Onde a_0 , a_1 , ... a_n são números reais, $x \in \mathbb{R}$ e $n \in \mathbb{N}$.

Exemplo 1:

$$P(x) = 4x^4 + 3x^3 + 2x^2 + x + 2$$

Exemplo 2:

$$P(x) = 3x^2 + 3x + 3$$

Não são polinômios as expressões que contenham a variável com expoentes negativos ou fracionários, por exemplo:

Exemplo 3:

$$P(x) = x^{-3} + x - 1$$

A) VALOR NUMÉRICO DE UM POLINÔMIO

Seja $P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$ um polinômio e α um numero real qualquer, então o valor numérico do polinômio P no ponto $x = \alpha$ é obtido substituindo x por α na expressão que define P(x), veja:

Exemplo 1:

Os valores numéricos do polinômio $P(x) = x^2 + 3x + 1$ nos pontos x = 1 e x = 2 são respectivamente:

$$P(1) = 1^2 + 3 \cdot 1 + 1 = 5$$

$$P(2) = 2^2 + 3 \cdot 2 + 1 = 11$$

B) GRAU DO POLINÔMIO

O grau de um polinômio P(x) é o maior expoente da variável, com o coeficiente não nulo, que aparece na representação do polinômio P(x).

Exemplo 1:

$$P(x) = 3x^5 + 4x^4 - 7x^2 + 3x + 2$$

O grau desse polinômio é cinco.

Exemplo 2:

$$P(x) = 7x^3 + 6x^2 - 12$$

O grau desse polinômio é três.

C) RAÍZES DO POLINÔMIO

Quando ocorrer $P(\alpha) = 0$, dizemos que o número α é uma raiz ou um zero do polinômio P.

Exemplo 1:

$$P(x) = x^4 - 16$$

As raízes do polinômio são -2 e 2, pois P(-2) = P(2) = 0, veja:

$$P(2) = 2^4 - 16 = 16 - 16 = 0$$

$$P(-2) = (-2)^4 - 16 = 16 - 16 = 0$$

D) RAÍZ DO POLINÔMIO DE 1° GRAU

Para encontrar a raiz de um polinômio de 1°, basta igualar o polinômio a 0 e isolar a variável. Veja:

Exemplo1:

$$P(x) = 5x - 10$$

$$5x - 10 = 0$$

$$5x = 10$$

$$x = \frac{10}{2} = 5$$

E) RAÍZES DO POLINÔMIO DE 2° GRAU

Para encontrar as raízes dos polinômios de 2° grau $P(x) = ax^2 + bx + c$, onde $a, b \in c$ são números reais, podemos utilizar a fórmula de Bháskara:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
, sendo $\Delta = b^2 - 4ac$.

O valor de Δ identifica o número de raízes reais do polinômio: a) se Δ = 0, existem duas raízes reais iguais; se Δ > 0, existem duas raízes reais diferentes; e se Δ < 0, o polinômio não possui nenhuma raiz real.

Exemplo 1:

$$P(x) = x^2 - 3x + 2 = 0$$

Nesse caso, temos a=1, b=-3 e c=2. Com esses valores encontramos o valor de Δ :

$$\Delta = h^2 - 4ac$$

$$\Delta = 3^2 - 4 \cdot 1 \cdot 2 = 1$$

Depois substituímos o valor do Δ na fórmula de Bháskara e encontramos as duas raízes do polinômio:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$x = \frac{3 \pm \sqrt{1}}{2 \cdot 1} = \frac{3 \pm 1}{2}$$

As duas raízes, x_1 e x_2 , são:

$$x_1 = \frac{3+1}{2} = 2$$
 e $x_1 = \frac{3-1}{2} = 1$

Sempre que encontrar raízes, você pode conferir o resultado substituindo os valores no polinômio, veja:

$$P(x) = x^2 - 3x + 2$$

$$P(1) = 1^2 - 3 \cdot 1 + 2 = 0$$

$$P(2) = 2^2 - 3 \cdot 2 + 2 = 0$$

Exemplo 2:

$$P(x) = -x^2 + 2x - 2 = 0$$

Encontrando o Δ com base em a=-1, b=2 e c=-2:

$$\Delta = 2^2 - 4 \cdot (-1) \cdot (-2) = 0$$

Como $\Delta = 0$, o polinômio possui duas raízes reais iguais. Para encontrá-las utilizamos Bháskara:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-2 \pm \sqrt{0}}{2 \cdot (-1)}$$

$$x_1 = x_2 = \frac{-2}{-2} = 1$$

F) RAÍZES DO POLINÔMIO DE 2° GRAU (CASOS ESPECIAIS)

Em qualquer problema de raízes de polinômio de 2° grau podemos utilizar a fórmula de Bháskara, contudo, o desafio de encontrar as raízes é facilitado se b=0 ou c=0.

No caso de b = 0, basta isolarmos a variável. Veja:

Exemplo 1:

$$P(x) = 2x^2 - 18 = 0$$

$$2x^2 - 18 = 0$$

$$2x^2 = 18$$

$$x^2 = \frac{18}{2} = 9$$

$$x = \pm \sqrt{9} = \pm 3$$

As raízes são

$$x_1 = -3$$
 e $x_2 = 3$

No caso de c = 0, uma das raízes será sempre igual a 0. Para encontrar a outra, colocamos a variável e o seu coeficiente em evidência (essa é uma das técnicas de fatoração e será vista em maior detalhes no módulo 8). Veja:

Exemplo 2:

$$P(x) = 2x^2 - 6x = 0$$

$$2x^2 - 6x = 0$$

$$2x \cdot (x-3) = 0$$

Para o produto entre 2x e x - 3 ser igual a 0, basta que um dos dois seja igual a 0. Sendo assim, fazemos:

$$2x = 0 \rightarrow \boxed{x = 0}$$

$$x-3=0 \rightarrow \boxed{x=3}$$

Sendo assim, as raízes são $x_1 = 0$ e $x_2 = 3$.

Exercícios

E1. Encontre os valores numéricos para os seguintes polinômios nos pontos x = 0, x = 1 e x = 2:

a)
$$P(x) = x^3 + 3x^2 - 2x + 1$$
 b) $P(x) = x^2 - 2x + 5$ c) $P(x) = x^3 - 4x^2 + x$

b)
$$P(x) = x^2 - 2x + 5$$

c)
$$P(x) = x^3 - 4x^2 + x$$

d)
$$P(x) = x^5 - x^4 + 3x$$

d)
$$P(x) = x^5 - x^4 + 3x$$
 e) $P(x) = 2x^3 - 3x^2 + 2$ f) $P(x) = 3x^4 - 2x^3 + 1$

f)
$$P(x) = 3x^4 - 2x^3 + 1$$

E2. Encontre as raízes dos polinômios de primeiro grau:

a)
$$2x - 6 = 0$$

b)
$$x + 12 = 0$$

c)
$$-3x + 6 = 0$$

d)
$$6x + 2 = 0$$

e)
$$-14x + 7 = 0$$

f)
$$12 - 5x = 0$$

E3. Encontre as raízes dos polinômios, observando a existência de casos especiais:

a)
$$x^2 + 2x - 3 = 0$$

b)
$$2x^2 - 10x + 12 = 0$$
 c) $5x^2 - 3x - 2 = 0$

c)
$$5x^2 - 3x - 2 - 0$$

d)
$$(2x + 5)^2 + 3x - 25 = 0$$
 e) $x^2 - 14x + 48 = 0$ f) $x^2 - 6x = 0$

$$= 1.02 - 1.02 + 1.02 - 0.02$$

f)
$$x^2 - 6x = 0$$

q)
$$x^2 - 10x + 25 = 0$$

h)
$$x^2 - x - 20 = 0$$

i)
$$x^2 - 8x + 7 = 0$$

$$j) (x + 2) \cdot (x - 1) = 0$$

k)
$$(x + 3) \cdot (x - 1) = 0$$

I)
$$x^2 - 3x - 4 = 0$$

m)
$$3x^2 - 36 = 0$$

n)
$$4x^2 - 16 = 0$$

o)
$$-x^4 + 113x^2 - 3136 = 0$$

E1.

a)
$$P(0) = 1, P(1) = 3, P(2) = 17$$

b)
$$P(0) = 5, P(1) = 4, P(2) = 5$$

b) c)
$$P(0) = 5, P(1) = 4, P(2) = 5$$
 $P(0) = 0, P(1) = -2, P(2) = -6$

d)
$$P(0) = 0, P(1) = 3, P(2) = 22$$

e)
$$P(0) = 2, P(1) = 1, P(2) = 6$$

e) e)
$$P(0) = 0, P(1) = 3, P(2) = 22$$
 $P(0) = 2, P(1) = 1, P(2) = 6$ $P(0) = 1, P(1) = 2, P(2) = 33$

E2.

$$x = 3$$

f)

$$x = 2$$

$$x = -\frac{1}{2}$$

b)

e)

$$x=\frac{1}{2}$$

x = -12

$$x = \frac{12}{5}$$

E3.

a)
$$x_1 = -3, x_2 = 1$$

$$x_1 = 3, \quad x_2 = 2$$

c)
$$x_1 = 1, \ x_2 = -\frac{2}{5}$$

d)
$$x_1 = 0, \ x_2 = -\frac{23}{4}$$

$$x_1 = 8, x_2 = 6$$

f)
$$x_1 = 0, x_2 = 6$$

$$x_1 = x_2 = 5$$

h)
$$x_1 = 5, x_2 = -4$$

i)
$$x_1 = 7, x_2 = 1$$

$$x_1 = -2, \ x_2 = 1$$

$$x_1 = -3, \ x_2 = 1$$

$$x_1 = 4, \ x_2 = -1$$

m)
$$x_1 = \sqrt{12}, x_2 = -\sqrt{12}$$

n)
$$x_1 = 2, x_2 = -2$$

0)
$$x_1 = 7, x_2 = -7, x_3 = 8, x_4 = -8$$

MÓDULO 7

DIVISÃO DE POLINÔMIOS

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$\frac{48x^4 - 4x^3 + x - 1}{4x^3 + 1} = ?$$

$$\frac{(x-9)(x-2)(x+2)}{x-1} = ?$$

PLAY CÁLCULO - MÓDULO 7 (DIVISÃO DE POLINÔMIOS)

Teoria e Exemplos

1. DIVISÃO DE POLINÔMIOS

Para exemplificarmos o processo de divisão de dois polinômios, começaremos com um exemplo da divisão de dois números inteiros positivos.

Exemplo 1:

Note que o primeiro passo foi encontrar um número que ao multiplicar por 4 se aproxima de 22. O valor encontrado foi 5, que ao multiplicar por 4, resulta em 20. Contudo, colocamos esse resultado com sinal trocado, -20. Depois, efetuamos a operação (22-20) que resulta em 2, que é o resto. Na divisão de polinômios fazemos passos bem parecidos como veremos mais adiante.

Na divisão entre dois polinômios P(x) e D(x) aparecem os mesmos elementos:

$$\begin{array}{c|c} P(x) & D(x) \\ R(x) & Q(x) \end{array}$$

Onde P(x) é o dividendo, D(x) é o divisor, Q(x) é o quociente e R(x) é o resto da divisão. Do mesmo modo que podemos escrever $22 = 4 \cdot 5 + 2$, podemos escrever P(x) = D(x)Q(x) + R(x). Veja algumas considerações importantes sobre a divisão de polinômios:

- O grau do dividendo deve ser sempre maior ou igual ao grau do divisor;
- O grau do resto será sempre menor que o grau do quociente;
- O grau do quociente será sempre o grau do dividendo menos o grau do divisor;
- Quando o dividendo for divisível pelo divisor, o resto será igual a zero.

Exemplo 2:

$$2x^4 + x^3 - 7x^2 + 9x - 1 \mid x^2 + 3x - 2$$

Note que o grau do dividendo, $2x^4 + x^3 - 7x^2 + 9x - 1$, é igual a 4 (maior expoente) e do divisor, $x^2 + 3x - 2$, é 2. Como o grau do dividendo é maior que o do divisor, podemos prosseguir com o processo de divisão de polinômios.

Para encontrarmos o primeiro termo do quociente, que será multiplicado pelo divisor, devemos dividir o primeiro termo do dividendo pelo primeiro termo do divisor: $2x^4 \div x^2 = 2x^2$. Logo em seguida, o resultado $2x^2$ será multiplicado pelo polinômio $(x^2 + 3x - 2)$.

O resultado dessa multiplicação deve ser subtraído pelo polinômio $(2x^4 + x^3 - 7x^2 + 9x - 1)$, como pode ser visto abaixo:

$$-\frac{2x^4 + x^3 - 7x^2 + 9x - 1 \left[x^2 + 3x - 2 \right]}{2x^4 + 6x^3 - 4x^2} \frac{2x^2}{-5x^3 - 3x^2 + 9x - 1}$$

Utilizamos o polinômio resultante da etapa anterior para dividir o seu primeiro termo pelo dividendo: $-5x^3 \div x^2 = -5x$.

O resultado encontrado deverá ser multiplicado pelo divisor e subtraído do polinômio $(-5x^3 - 3x^2 + 9x - 1)$:

Adotando o mesmo raciocínio e seguindo os mesmo passos chegamos ao final da divisão:

$$\begin{array}{r}
-2x^4 + x^3 - 7x^2 + 9x - 1 & x^2 + 3x - 2 \\
-2x^4 + 6x^3 - 4x^2 & 2x^2 - 5x + 12 \\
\hline
-5x^3 - 3x^2 + 9x - 1 \\
-5x^3 - 15x^2 + 10x \\
\hline
12x^2 - x - 1 \\
-12x^2 + 36x - 24 \\
\hline
-37x + 23
\end{array}$$

Logo, a divisão do polinômio $2x^4 + x^3 - 7x^2 + 9x - 1$ pelo polinômio $x^2 + 3x - 2$ é igual a $2x^2 - 5x + 12$ com resto -37x + 23. Podemos escrever:

$$2x^4 + x^3 - 7x^2 + 9x - 1 = (x^2 + 3x - 2)(2x^2 - 5x + 12) + (-37x + 23)$$

ou então:

$$\frac{2x^4 + x^3 - 7x^2 + 9x - 1}{x^2 + 3x - 2} = 2x^2 - 5x + 12 + \frac{-37x + 23}{x^2 + 3x - 2}$$

Veja outros exemplos de divisão de polinômios:

Exemplo 3:

$$\begin{array}{rrr}
10x^2 + 4x - 7 & |2x - 2| \\
-(10x^2 - 10x) & 5x - 3
\end{array}$$

$$\begin{array}{rrrr}
-6x - 7 \\
-(-6x + 6) \\
\hline
-13
\end{array}$$

Exemplo 4:

$$\begin{array}{c|cccc}
x^3 - 2x^2 - 5x + 2 & \underline{x^2 + x - 2} \\
\underline{-(x^3 + x^2 - 2x)} & x - 3 \\
\hline
-3x^2 - 3x + 2 \\
\underline{-(-3x^2 - 3x + 6)} & -4
\end{array}$$

Uma boa dica para facilitar a divisão de polinômios é escrever o polinômio do maior para o menor expoente completando com coeficientes nulos os termos inexistentes. Veja:

Exemplo 5:

$$\frac{10x^4 - 2x + 1}{x^2 - 2} = \frac{10x^4 + 0x^3 + 0x^2 - 2x + 1}{x^2 + 0x - 2}$$

O processo de divisão fica assim:

Exercícios

E1. Faça as divisões:

a) b) c)
$$\frac{x^2 + x^3 + 2x}{x^2}$$
 $\frac{3x^3 - 7x^2 + 14x - 12}{x^2 - 4}$ $\frac{3x^3 - 2x^2 + x + 1}{x^2 - x + 2}$

d) e)
$$\frac{x^3 - 7x^2 + 16x - 12}{x^2 - 3} \qquad \frac{x^3 - 3x^2 + 3x - 1}{x^3 - 1} \qquad \frac{4x^9 + 7x^6 + 4x^3 + 3}{x^3 + 1}$$

g) h) i)
$$\frac{x^4}{x^2 - 1} \qquad \frac{2x^4 + 5x^3 - 12x + 7}{x^2 - 1} \qquad \frac{x^3 - 5x^2 + 7x - 2}{x^2 - 3x + 1}$$

j) k)
$$150x^3 - 10x^2$$
 l) $48x^4 - 4x^3 + x - 1$ $5x^2$ $48x^4 - 4x^3 + x - 1$

E2. Faça as divisões:

a)
$$(4x-1)(x-4)(x+2)$$
 b)
$$2(x-1)(x-5)(x+2)$$
 c)
$$(x-3)(x-2)(x+2)$$

$$x-3$$

$$x-4$$

d)
$$\frac{(x-9)(x-2)(x+2)}{x-1}$$

e)
$$\frac{4(2x-3)(x-2)(x+2)}{x-1}$$
 f)
$$\frac{(2x-3)(x-2)(x+2)}{x-1}$$

$$\frac{(2x-3)(x-2)(x+2)}{x-1}$$

g)
$$\frac{(x-9)(x-2)(x+2)}{x-1}$$
$$\frac{(2x-3)(2x-2)(2x+2)}{x-3}$$

h)
$$\frac{(2x-3)(2x-2)(2x+2)}{x-1}$$

i)
$$\frac{x^{15} + 5x^2 + x - 20}{x^3 + 2}$$

$$\frac{3y^3 + 6y^2}{3y^2 + 3}$$

$$\frac{12x^2-8x}{2x+1}$$

$$\frac{-18x^2+6x}{2x+3}$$

E1.

a)
$$1 + x + \frac{2}{x}$$

$$3x - 7 + \frac{26x - 40}{x^2 - 4}$$

3x + 1 +
$$\frac{-4x - 1}{x^2 - x + 2}$$

d)
$$x - 7 + \frac{19x - 33}{x^2 - 3}$$

$$1 + \frac{-3x^2 + 3x}{x^3 - 1}$$

$$4x^3 + 7x^2 + \frac{7x^2 + 3}{x^3 + 1}$$

g)
$$x^2 + 1 + \frac{1}{x^2 - 1}$$

h)
$$2x^2 + 5x + 2 + \frac{-7x + 9}{x^2 - 1}$$

$$x + 2$$

I)

$$3x - 2 + \frac{12x - 4}{x^2 - 4}$$

$$30x - 2$$

$$12x - 1 + \frac{-11x}{4x^3 + 1}$$

E2.

a)
$$4x^2 + 3x - 21 + \frac{-55}{x - 3}$$

$$2x^2 - 2x - 20 + \frac{-40}{x - 3}$$

c)
$$x^2 + x + \frac{12}{x - 4}$$

d)
$$x^2 - 8x - 12 + \frac{24}{x - 1}$$

e)
$$8x^2 - 4x - 36 + \frac{12}{x - 1}$$

f)
$$2x^2 - x - 9 + \frac{3}{x - 1}$$

g)
$$8x^2 - 12x + 28 + \frac{96}{x - 3}$$

$$8x^2 - 4x - 12$$

i)
$$x^{12} - 2x^9 + 4x^6 - 8x^3 + 16 + \frac{-52 + x + 5x^2}{x^3 + 2}$$

$$y + 2 + \frac{-3y - 6}{3y^2 + 3}$$

$$y + 2 + \frac{-3y - 6}{3y^2 + 3}$$
 k) $6x - 7 + \frac{7}{2x + 1}$

1)
$$\frac{33}{2} - 9x - \frac{99/2}{2x+3}$$

MÓDULO 8

FATORAÇÃO

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

Escreva as expressões seguintes na forma fatorada:

$$18x - 24x^{2} - 36xy$$
$$x^{2} + 6x + 9$$
$$a^{2} + 2ab + b^{2} + ac + bc$$

PLAY CÁLCULO - MÓDULO 8 (FATORAÇÃO)

Teoria e Exemplos

1. FATORAÇÃO

A fatoração é a decomposição de uma expressão algébrica em um produto de outras expressões, as quais multiplicadas retomam àquela original. Existem alguns tipos comuns de fatoração de expressões algébricas que serão exemplificadas abaixo.

A) FATOR COMUM EM EVIDÊNCIA

Em expressões algébricas que possuem em cada um de seus termos um mesmo fator, é possível colocá-lo em evidência.

Exemplo 1:

$$8x^2 + 4xy^2 = 4x \cdot 2x + 4x \cdot y^2 = 4x(2x + y^2)$$

Exemplo 2:

$$12ax^{2}z - 4axz^{2} + 36xa^{2}z = 4axz \cdot 3x - 4axz \cdot z + 4axz \cdot 9a = \boxed{4axz(3x - z + 9a)}$$

B) AGRUPAMENTO

Consiste em aplicar o caso do fator comum duas, ou mais, vezes em algumas expressões especiais.

Exemplo 1:

$$2az - 2a - bz + b = 2a \cdot z - 2a \cdot 1 - b \cdot z + b \cdot 1 = 2a(z - 1) - b(z - 1)$$
$$= (2a - b) \cdot (z - 1)$$

Exemplo 2:

$$3a - 3b - a^{3} + a^{2}b = 3 \cdot a - 3 \cdot b - a^{2} \cdot a + a^{2} \cdot b = 3(a - b) - a^{2}(a - b)$$
$$= \boxed{(3 - a^{2}) \cdot (a - b)}$$

C) DIFERENÇA DE QUADRADOS

Expressões algébricas na forma $a^2 - b^2$ são fatoradas na forma $a^2 - b^2 = (a + b) \cdot (a - b)$.

Exemplo 1:

Efetuando o produto entre as expressões a + b e a - b, tem-se

$$(a + b) \cdot (a - b) = a^2 - a \cdot b + b \cdot a - b^2$$

como $a \cdot b = b \cdot a$, então

$$= a^2 - b^2$$

Exemplo 2:

$$a^2 - 4 = a^2 - 2^2 = (a + 2) \cdot (a - 2)$$

Exemplo 3:

$$3 - (xy)^2 = (\sqrt{3})^2 - (xy)^2 = \sqrt{(\sqrt{3} + xy) \cdot (\sqrt{3} - xy)}$$

Exemplo 4:

$$16y^4 - z^4 = (4y^2 + z^2)(4y^2 - z^2) = \boxed{(4y^2 + z^2) \cdot (2y - z) \cdot (2y + z)}$$

D) QUADRADO PERFEITO

Expressões algébricas na forma $a^2 \pm 2 \cdot a \cdot b + b^2$ são fatoradas na forma $(a \pm b)^2$.

Exemplo 1:

Efetuando o produto entre as expressões a + be a + b, tem-se

$$(a + b)^2 = (a + b) \cdot (a + b) = a^2 + a \cdot b + b \cdot a + b^2$$

como $a \cdot b = b \cdot a$, seque que

$$(a + b)^2 = a^2 + 2ab + b^2$$

Exemplo 2:

$$x^2 - 4x + 4 = x^2 - 2 \cdot 2 \cdot x + 2^2 = (x - 2)^2$$

Exemplo 3:

$$2x^{2} - 6\sqrt{2}xa^{2} + 9a^{4} = (\sqrt{2}x)^{2} - 2\cdot(\sqrt{2}x)\cdot(3a^{2})^{2} + (3a^{2})^{2} = (\sqrt{2}x - 3a^{2})^{2}$$

Exemplo 4:

$$(6x - 2y)(72x^2 - 48xy + 8y^2) = 2(3x - y) \cdot 8(9x^2 - 6xy + y^2)$$
$$= 16(3x - y)(3x - y)^2 = \boxed{16(3x - y)^3}$$

E) TRINÔMIO DO SEGUNDO GRAU

Expressões algébricas na forma $x^2 + (a + b)x + a \cdot b$ são fatoradas na forma (x + a)(x + b).

Exemplo 1:

Efetuando o produto entre as expressões x + a e x + b, tem-se

$$(x+a)\cdot(x+b)=x^2+x\cdot b+a\cdot x+a\cdot b$$

como $x \cdot b = b \cdot x$, então é possível colocar x em evidência nas duas expressões intermediárias resultando em

$$x^2 + (a+b)x + ab$$

Exemplo 2:

$$x^{2} - 2x + 1 = x^{2} - (1 + 1)x + 1 \cdot 1 = x^{2} + [(-1) + (-1)]x + (-1) \cdot (-1)$$
$$= (x - 1)(x - 1) = \boxed{(x - 1)^{2}}$$

Exemplo 3:

$$x^{2} - 5x + 6 = x^{2} - (2+3)x + 2 \cdot 3 = x^{2} + [(-2) + (-3)]x + (-2) \cdot (-3)$$
$$= (x-2)(x-3)$$

Exemplo 4:

$$(9 - y^2)(3y^2 + 21y + 36) = (3 - y)(3 + y).3(y^2 + 7y + 12)$$
$$= 3(3 - y)(3 + y)(y + 3)(y + 4) = 3(3 - y)(y + 4)(y + 3)^2$$

Exercícios

E1. Fatore as expressões seguintes:

- a) 3x 3y
- b) 12a + 36b 144c
- $18x 24x^2 36xy$

- d) ab + 2a 3b 6
- e) xy + 3x + y + 3
- ab + ay + bx + xy

- g) $4a^2 1$
- h) $1 x^2$
- i) $x^2 9y^2$

- j) $x^2 + 6x + 9$
- k) $4a^2 12ab + 9b^2$
- 1) $4a^2 4abc + b^2c^2$

- m) $x^2 + 5x + 4$
- n) $x^2 + x 6$
- o) $a^2 a 12$

E2. Fatore as seguintes expressões:

- a) $32a^4 16a^4b + 16a^3c^2$
- 3 $\frac{z^4}{w} 3\frac{z^2}{w} + 12\frac{z^3}{w}$
- c) $4a^2\sqrt{c} + 20ba\sqrt{c} + 28a^3\frac{c^{3/2}}{a}$

- d) $x^2 5x + zx 5z$
- $2b^2 + 2c^3 + ab^2 + ac^3$
- f) $a^2 + 2ab + b^2 + ac + bc$

g)
$$4 - 16z^2$$

h)
$$a^8 - b^8$$

$$x^2 + y^2$$

j)
$$5x^2 + 10x + 5$$

$$(4-c^2)(c^2-4c+4)$$

$$z^4 - 8w^2z^2 + 16w^4$$

m)
$$s^2 + 8s + 15$$

n)
$$(s-3)(6s^2+12s-90)$$

0)
$$4s^4 + 16s^3 - 48s^2 - 128s + 256$$

E1.

a)
$$3(x-y)$$

b)
$$12(a + 3b - 12c)$$

c)
$$6x(3-4x-6y)$$

d)
$$a - 3(b + 2)$$

e)
$$(x + 1)(y + 3)$$

$$(a+x)(b+y)$$

g)
$$(2a-1)(2a+1)$$

h)
$$(1-x)(1+x)$$

i)
$$(x + 3y)(x - 3y)$$

j)
$$(x + 3)^2$$

$$(2a-3b)^2$$

$$(2a + bc)^2$$

m)
$$(x + 1)(x + 4)$$

n)
$$(x-2)(x+3)$$

o)
$$(a + 3)(a - 4)$$

E2.

a)
$$16a^3(2a - ab + c^2)$$

$$3\frac{z^2}{w}(z^2 - 1 + 4z)$$

c)
$$4a\sqrt{c}(a+5b+7ac)$$

$$(z-5)(x+z)$$

e)
$$(2+a)(b^2+c^3)$$

b)

$$(a+b)(a+b+c)$$

g)
$$(2-4z)(2+4z)$$

h)
$$(a^4 + b^4)(a^2 + b^2)(a + b)(a - b)$$

i)
$$(x + y + \sqrt{2xy})(x + y - \sqrt{2xy})$$

$$5(x+1)^2$$

k)
$$-(c+2)(c-2)^3$$

$$(z + 2w)^2 (z - 2w)^2$$

m)
$$(s+3)(s+5)$$

$$6(s-3)^2(s+5)$$

$$4(s-2)^2(s+4)^2$$

MÓDULO 9

FUNÇÕES RACIONAIS

EXEMPLOS DE PROBLEMAS QUE SERÃO RESOLVIDOS NESTE MÓDULO:

$$\frac{1}{x+7} + \frac{5x}{x+3} = ?$$

$$\frac{x^3 - 2}{x+1} - \frac{5x^3 + 2}{x^2 - x - 2} = ?$$

$$\frac{x-3}{x^2 - 16} \cdot \frac{x+4}{x-3} = ?$$

PLAY CÁLCULO - MÓDULO 9 (FUNÇÕES RACIONAIS)

Teoria e Exemplos

1. ADIÇÃO E SUBTRAÇÃO DE FUNÇÕES RACIONAIS

A) MESMO DENOMINADOR

Em expressões com o mesmo denominador, faz-se do mesmo modo com a soma de frações. Desse modo, basta repetir o denominador e somar (ou subtrair) os numeradores, veja:

Exemplo 1:

$$\frac{x}{x+1} + \frac{2x-1}{x+1} = \frac{(x)+(2x-1)}{x+1} = \frac{x+2x-1}{x+1} = \boxed{\frac{3x-1}{x+1}}$$

Exemplo 2:

$$\frac{3x+1}{x^2-4} - \frac{x^2-x+3}{x^2-4} = \frac{(3x+1)-(x^2-x+3)}{x^2-4} = \frac{3x+1-x^2+x-3}{x^2-4} = \frac{-x^2+4x-2}{x^2-4}$$

B) DENOMINADORES DIFERENTES

No caso de denominadores diferentes, deve-se encontrar um polinômio (em forma fatorada ou não) que seja divisível pelos denominadores originais das funções que serão somadas (ou subtraídas). Uma forma fácil de encontrar esse polinômio é multiplicar os polinômios dos denominadores, veja:

Exemplo 1:

$$\frac{7x}{x+1} + \frac{2x-5}{x-3} = \frac{?}{(x+1)(x-3)}$$

Após encontrado o denominador, deve-se fazer a operação com os numeradores. Para isso, deve-se dividir o polinômio encontrado (x + 1)(x - 3) pelo denominador original (x + 1) e multiplicar pelo numerador (7x). Faça o mesmo com a segunda fração. O resultado é o seguinte:

$$\frac{7x}{x+1} + \frac{2x-5}{x^2-1} = \frac{(7x)(x-3) + (2x-5)(x+1)}{(x+1)(x-3)} = \frac{7x^2 - 21x + 2x^2 + 2x - 5x - 5}{(x+1)(x-3)} = \frac{9x^2 - 19x - 5}{(x+1)(x-3)}$$

É possível encontrar fatores em comum nos denominadores, veja:

Exemplo 2:

$$\frac{x}{x^2-4} - \frac{x+1}{x-2} = \frac{x}{(x-2)(x+2)} - \frac{x+1}{x-2}$$

Desse modo, fica mais fácil encontrar o resultado final que é o seguinte:

$$\frac{x}{x^2 - 4} - \frac{x + 3}{x - 2} = \frac{x}{(x - 2)(x + 2)} - \frac{x + 3}{x - 2} = \frac{x \cdot 1 - (x + 3)(x + 2)}{(x - 2)(x + 2)} = \frac{x - (x^2 + 2x + 3x + 6)}{(x - 2)(x + 2)}$$
$$= \frac{x - x^2 - 2x - 3x - 6}{(x - 2)(x + 2)} = \frac{-x^2 - 4x - 6}{(x - 2)(x + 2)} = \frac{-x^2 - 4x - 6}{x^2 - 4}$$

2. PRODUTO E QUOCIENTE DE FUNÇÕES RACIONAIS

Basta seguir as mesmas regras utilizadas para operações com frações (estudada no Módulo 1).

Exemplo 1:

$$\frac{5x}{x^2-1} \cdot \frac{x+3}{x+2} = \frac{(5x)(x+3)}{(x^2-1)(x+2)} = \boxed{\frac{5x^2+15x}{x^3+2x^2-x-2}}$$

Em alguns casos é possível simplificar antes de realizar a operação, veja:

Exemplo 2:

$$\frac{5x}{x^2 - 1} \cdot \frac{x + 1}{x + 2} = \frac{5x}{(x - 1)(x + 1)} \cdot \frac{\cancel{(x + 1)}}{x + 2} = \frac{5x}{(x - 1)(x + 2)} = \frac{5x}{x^2 + x - 2}$$

Exemplo 3:

$$\frac{\frac{2x}{x^2-4}}{\frac{5x}{x^2+x-2}} = \frac{2x}{x^2-4} \cdot \frac{x^2+x-2}{5x} = \frac{2x}{(x-2)(x+2)} \cdot \frac{(x+2)(x-1)}{5x} = \frac{2(x-1)}{5(x-2)} = \boxed{\frac{2x-2}{5x-10}}$$

Evercícios

E1. Faça as operações seguintes:

a)
$$\frac{1}{x+7} + \frac{5x}{x+7}$$
 b)
$$\frac{6x-3}{2x+17} + \frac{1-5x}{2x+17}$$
 c)
$$\frac{4x^3 - 12x + 1}{x+1} - \frac{5x^3 - 15x + 2}{x+1}$$
 d) e) f)

$$\frac{1}{x+7} + \frac{5x}{x+3} \qquad \frac{3}{x+5} - \frac{x}{2x-1} \qquad \frac{3x}{x+1} - \frac{x+2}{3x+5}$$

g)
$$\frac{3x}{x^2 - 1} + \frac{x^3 + 2}{x + 1}$$
 h)
$$\frac{6x - 3}{x + 5} + \frac{1 - 5x}{2x - 1}$$
 i)
$$\frac{x^3 - 2}{x + 1} - \frac{5x^3 + 2}{x^2 - x - 2}$$

j)
$$\frac{1}{x-2} + \frac{3x-2}{x+1} + \frac{5}{x}$$
 k) $\frac{5}{x-5} - \frac{3x-2}{x+1} + 2$ $\frac{3}{2x+2} + \frac{x-6}{x+1} - 3$

E2. Faça as operações seguintes:

a)
$$\frac{1}{x+7} \cdot \frac{5x}{x+7}$$

b)
$$\frac{6x-3}{3x+2} \cdot \frac{1-5x}{3x+1}$$

$$\frac{x^3 + 1}{x + 1} \cdot \frac{5x^4 - 2}{x - 1}$$

$$\frac{x-3}{x^2-16} \cdot \frac{x+4}{x-3}$$

e)
$$\frac{3}{3x+1} \cdot \frac{x+1}{x-1}$$

$$\frac{2x}{x+1} - \frac{x^2 + 2x}{x^2 - 1} \cdot \frac{x-1}{x}$$

g)
$$(x + 1) \frac{x}{x+3} + \frac{1}{x} \cdot \frac{x-2}{2-x}$$

(x + 1)
$$\frac{x}{x+3} + \frac{1}{x} \cdot \frac{x-2}{2-x}$$
 h) $\frac{(x-2) \cdot (4x-12)}{x-3} \cdot \frac{x}{x-1}$

$$\frac{x^3-2}{x^2+1} - \frac{5x^3+2}{x+1}$$

$$\frac{\frac{x+1}{x-2}+1}{x+1} \cdot \frac{3}{x+1}$$

k)
$$\frac{\left(x-2\cdot\left(x-2\cdot\left(x-2\right)\right)\right)}{x-2}+1$$

$$\frac{\frac{x^2-1}{x-2} \cdot \frac{x^2-4}{x+3}}{x-1} + \frac{1}{x}$$

E1.

a)
$$\frac{5x+1}{x+7}$$

$$\frac{x-2}{2x+17}$$

c)
$$\frac{-x^3 + 3x - 1}{x + 1}$$

d)
$$\frac{5x^2 + 36x + 3}{x^2 + 10x + 21}$$

e)
$$\frac{-x^2 + x - 3}{2x^2 + 9x - 5}$$

$$\frac{8x^2 + 12x - 2}{3x^2 + 8x + 5}$$

g)
$$\frac{x^4 - x^3 + 5x - 2}{x^2 - 1}$$

h)
$$\frac{7x^2 - 36x + 8}{2x^2 + 9x - 5}$$

i)
$$\frac{x^4 - 7x^3 - 2x + 2}{x^2 - x - 2}$$

j)
$$\frac{3x^3 - 2x^2 - 10}{x(x-2)(x+1)}$$

k)
$$\frac{-3x^2 + 2x^2 + 14x - 15}{x^2 - 4x - 5}$$

$$-\frac{x+7}{x+1}$$

E2.

a)
$$\frac{5x}{(x+7)^2}$$

b)
$$-3 \cdot \frac{10x^2 - 7x + 1}{9x^2 + 9x + 2}$$

c)
$$\frac{5x^7 + 5x^4 - 2x^3 - 2}{x^2 - 1}$$

d)
$$x-4$$

e)
$$\frac{3x+3}{3x^2-2x-1}$$

f)
$$\frac{2x(x+2)}{(x+1)^2}$$

j)

$$\frac{x^3 + x^2 - x - 3}{x(x+3)}$$

$$\frac{4x^2 - 4x}{x-1}$$

$$\frac{-5x^5 + x^4 - 4x^3 - 2x^2 - 2x - 4}{(x^2+1)(x+1)}$$

$$\frac{6x - 3}{(x-2)(x+1)^2}$$

$$\frac{8x - 10}{x-2}$$

$$\frac{x^3 + 3x^2 + 3x + 3}{x^2 + 3x}$$