Training with GPUs on Cloud MLE

Training models on GPUs can greatly reduce the processing time. In order to use GPUs on Cloud MLE, we make the following changes to our code example:

- 1. Change the scale tier to 'CUSTOM'. The CUSTOM tier makes a number of GPU accelerators available, namely:
 - a. standard_gpu: A single NVIDIA Tesla K80 GPU
 - b. complex_model_m_gpu: Four NVIDIA Tesla K80 GPUs
 - c. complex_model_l_gpu: Eight NVIDIA Tesla K80 GPUs
 - d. standard_p100: A single NVIDIA Tesla P100 GPU
 - e. complex_model_m_p100: Four NVIDIA Tesla P100 GPUs
 - f. standard_v100: A single NVIDIA Tesla V100 GPU
 - g. large_model_v100: A single NVIDIA Tesla V100 GPU
 - h. complex_model_m_v100: Four NVIDIA Tesla V100 GPUs
 - i. complex_model_l_v100: Eight NVIDIA Tesla V100 GPUs
- Add the following parameters to the 'yaml' file to configure the GPU instance.

```
trainingInput:
    scaleTier: CUSTOM
    masterType: complex_model_m_gpu
    workerType: complex_model_m_gpu
    parameterServerType: large_model
    workerCount: 2
    parameterServerCount: 3
```

3. The full configuration file in 'gpu_hptuning_config.yaml' now looks like this:

```
trainingInput:
    scaleTier: CUSTOM
    masterType: complex_model_m_gpu
    workerType: complex model m gpu
```

CHAPTER 41 GOOGLE CLOUD MACHINE LEARNING ENGINE (CLOUD MLE)

```
parameterServerType: large model
workerCount: 2
parameterServerCount: 3
hyperparameters:
  goal: MAXIMIZE
  hyperparameterMetricTag: accuracy
  maxTrials: 4
  maxParallelTrials: 2
  params:
    - parameterName: learning-rate
      type: DOUBLE
      minValue: 0.00001
      maxValue: 0.005
      scaleType: UNIT LOG SCALE
    - parameterName: first-layer-size
      type: INTEGER
      minValue: 50
      maxValue: 500
      scaleType: UNIT LINEAR SCALE
    - parameterName: num-layers
      type: INTEGER
      minValue: 1
      maxValue: 15
      scaleType: UNIT LINEAR SCALE
    - parameterName: scale-factor
      type: DOUBLE
      minValue: 0.1
      maxValue: 1.0
      scaleType: UNIT REVERSE LOG SCALE
```

Note that running GPUs on Cloud MLE is only available in the following regions:

- us-east1
- us-central1
- us-west1

- asia-east1
- europe-west1
- europe-west4

The updated execution code for training with GPUs on Cloud MLE is saved as 'gpuhyper-tune.sh' (code shown in the following).

```
export SCALE TIER=CUSTOM
DATE=`date '+%Y%m%d %H%M%S'`
export JOB NAME=iris $DATE
export HPTUNING CONFIG=gpu hptuning config.yaml
export GCS JOB DIR=gs://iris-dataset/jobs/$JOB NAME
export TRAIN FILE=gs://iris-dataset/train data.csv
export EVAL FILE=gs://iris-dataset/test data.csv
echo $GCS JOB DIR
gcloud ai-platform jobs submit training $JOB NAME \
                                     --stream-logs \
                                     --scale-tier $SCALE TIER \
                                     --runtime-version 1.8 \
                                     --config $HPTUNING CONFIG \
                                     --job-dir $GCS JOB DIR \
                                     --module-name trainer.task \
                                     --package-path trainer/ \
                                     --region us-central1 \
                                     -- \
                                     --train-files $TRAIN FILE \
                                     --eval-files $EVAL FILE \
                                     --train-steps 5000 \
                                     --eval-steps 100
```

```
To execute the code, run
```

```
source ./scripts/gpu-hyper-tune.sh
gs://iris-dataset/jobs/iris 20181112 211040
Job [iris 20181112 211040] submitted successfully.
                                     ps-replica-2
INFO
        2018-11-12 21:35:36 -0500
                                                     4
                                                         Module completed;
                                                         cleaning up.
INFO
                                     ps-replica-2
                                                         Clean up finished.
        2018-11-12 21:35:36 -0500
INFO
                                     service
        2018-11-12 21:36:18 -0500
                                                 Finished tearing down
                                                 training program.
INFO
        2018-11-12 21:36:25 -0500
                                     service
                                                 Finished tearing down
                                                 training program.
                                                 Job completed successfully.
INFO
        2018-11-12 21:37:11 -0500
                                     service
INFO
        2018-11-12 21:37:11 -0500
                                                 Job completed successfully.
                                     service
endTime: '2018-11-12T21:38:26'
```

jobId: iris_2018-11-12121:38:26

jobId: iris_20181112_211040

startTime: '2018-11-12T21:10:47'

state: SUCCEEDED

Scikit-learn on Cloud MLE

This section will provide a walk-through of training a Scikit-learn model on Google Cloud MLE using the same Iris dataset example. We'll begin by moving the appropriate data files from the GitHub repository of this book to GCS.

Move the Data Files to GCS

Walk through the following steps to move the data files to GCS:

1. Create bucket to hold the datasets.

```
gsutil mb gs://iris-sklearn
```