看解答 上微信小程序 搜数之谜

2021 年全国高中数学联合竞赛一试 (B 卷)

- 一、填空题: 本大题共 8 小题, 每小题 8 分, 满分 64 分.
- **1.** 设等差数列 $\{a_n\}$ 的公差 $d \neq 0$,且 $a_{2021} = a_{20} + a_{21}$,则 $\frac{a_1}{d}$ 的值为______.
- **2.** 设 m 为实数,复数 $z_1 = 1 + 2i$, $z_2 = m + 3i$ (这里 i 为虚数单位). 若 $z_1\overline{z_2}$ 为纯虚数,则 $|z_1 + z_2|$ 的值为_____.
 - **3.** 当 $\frac{\pi}{4} \le x \le \frac{\pi}{2}$ 时, $y = \sin^2 x + \sqrt{3} \sin x \cos x$ 的取值范围为______.
- **4.** 设函数 f(x) 的定义域为 $D=(-\infty,0)\cup(0,+\infty)$,且对任意 $x\in D$,均有 $f(x)=f(1)\cdot x+f(2)-\frac{1}{x}$,则 f(x) 的所有零点之和为_____.
 - **5.** 设 a, b, c > 1, 满足 $(a^2b)^{\log_a c} = a \cdot (ac)^{\log_a b}$, 则 $\log_c(ab)$ 的值为_____.
 - **6.** 在 $\triangle ABC$ 中,AB = 1, AC = 2, $\cos B = 2\sin C$,则 BC 的长为______.
- 7. 在平面直角坐标系 xOy 中,已知抛物线 $y = ax^2 3x + 3 (a \neq 0)$ 的图像与 抛物线 $y^2 = 2px(p > 0)$ 的图像关于直线 y = x + m 对称,则实数 a, p, m 的乘积为______.
- **8.** 设 a_1, a_2, \dots, a_{10} 是 $1, 2, \dots, 10$ 的一个随机排列,则在 $a_1 a_2, a_2 a_3, \dots, a_9 a_{10}$ 这 9 个数中既出现 9 又出现 12 的概率为______.

看解答 上微信小程序 搜数之谜

看解答 上微信小程序 搜数之谜

9. (本题满分 16 分) 设数列 $\{a_n\}$ 满足 $a_1=a_2=a_3=1$, 令 $b_n=a_n+a_{n+1}+a_{n+1}$ $a_{n+2}, n \ge 1$. 若 $\{b_n\}$ 是公比为 3 的等比数列, 求 a_{100} 的值.

10. (本题满分 20 分) 在平面直角坐标系中,函数 $y = \frac{1}{|x|}$ 的图像为 Γ . 设 Γ 上 的两点 P,Q 满足: P 在第一象限, Q 在第二象限, 且直线 PQ 与 Γ 位于第二象限 的部分相切于点 Q. 求 |PQ| 的最小值.

- **11. (本题满分 20 分)** 在正 $n(n \ge 3)$ 棱锥 $P A_1 A_2 \cdots A_n$ 中, O 为底面
- 正 n 边形 $A_1A_2\cdots A_n$ 的中心,B 为棱 A_1A_n 的中点. (1) 求证: $PO^2\sin^2\frac{\pi}{n} + PA_1^2\cos^2\frac{\pi}{n} = PB^2$; (2) 设正 n 棱锥 $P-A_1A_2\cdots A_n$ 的侧棱与底面所成的角为 α ,侧面与底面所成 的角为 β ,试确定 $\frac{1}{n}\sum_{i=1}^{n}\cos \angle A_{i}PB$ 与 $\sin \alpha \sin \beta$ 的大小关系,并予以证明.

看解答 看讨论 上微信小程序 搜数之谜

2021 年全国高中数学联合竞赛加试 (B 卷)

一、(本题满分 40 分)如图,I 是 $\triangle ABC$ 的内心,点 P,Q 分别为 I 在 边 AB,AC 上的投影. 直线 PQ 与 $\triangle ABC$ 的外接圆交于点 X,Y (P 在 X,Q 之间). 已知 B,I,P,X 四点共圆,求证: C,I,Q,Y 四点共圆.

二、(**本题满分 40 分**) 求最大的正整数 n, 使得存在 8 个整数 x_1, x_2, x_3, x_4 和 y_1, y_2, y_3, y_4 , 满足:

 $\{0, 1, \dots, n\} \subseteq \{|x_i - x_j| \mid 1 \le i < j \le 4\} \cup \{|y_i - y_j| \mid 1 \le i < j \le 4\}.$

三、(本题满分 50 分) 已知 $a,b,c,d \in [0,\sqrt[4]{2})$, 满足 $a^3+b^3+c^3+d^3=2$. 求

$$\frac{a}{\sqrt{2-a^4}} + \frac{b}{\sqrt{2-b^4}} + \frac{c}{\sqrt{2-c^4}} + \frac{d}{\sqrt{2-d^4}}$$

的最小值.

四、(本题满分 50 分)设 a 为正整数,数列 $\{a_n\}$ 满足:

$$a_1 = a$$
, $a_{n+1} = a_n^2 + 20$, $n \ge 1$.

- (1) 求证:存在一个非立方数的正整数 a,使得数列 $\{a_n\}$ 中有一项为立方数.
- (2) 求证:数列 $\{a_n\}$ 中至多有一项为立方数.