# DEPARTMENT OF MATHEMATICS

| Course: DIFFERENTIAL EQUATIONS & NUMERICAL METHODS | CIE-I (QUIZ & TEST)       | Maximum marks:<br>10+50=60            |
|----------------------------------------------------|---------------------------|---------------------------------------|
| Course code:21MA21                                 | Second semester 2021-2022 | Time: 120 Minutes<br>Date: 26-09-2022 |

Instructions to candidates:

i. Part A must be answered within the first two pages of the Booklet.

ii. Answer all questions.

|      | ii. Answer all questions.                                                                                                                                                                     |   |    |    |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|
| Q.No | PART - A                                                                                                                                                                                      | M | BT | CO |
| 1.1  | If A is an invertible matrix, then rank of A is                                                                                                                                               | 1 | 1  | 1  |
| 1.2  | If 1, 2, -3 are the eigenvalues of a matrix A, then eigenvalues of the matrix $(A^{-1})^3$ are                                                                                                | 1 | 2  | 3  |
| 1.3  | In solving $n \times n$ nonhomogeneous system of equations $AX = B$ , using Gauss elimination method, the coefficient matrix $A$ is reduced to                                                | 1 | 1  | 2  |
| 1.4  | The rank of the matrix $A = \begin{bmatrix} 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 \end{bmatrix}$ is                                                | 1 | 2  | 2  |
| 1.5  | For the square matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ the eigenvalue corresponding to the eigenvector $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ is | 2 | 1  | 3  |
| 1.6  | If $y_c = e^x(c_1 \cos 2x + c_2 \sin 2x)$ is complementary solution of a differential equation, then corresponding differential equation is                                                   | 2 | 2  | 1  |
| 1.7  | The particular integral of the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = e^{x/2}$                                                                                      | 2 | 1  | 1  |

| Q.No | PART- B                                                                                                                                                                                                                                                                                                       | M | BT | CO |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|
| 1(a) | The concept of rank of a matrix is used in the field of communication complexity. The rank of the communication matrix of a function gives bounds on the amount of communication needed for two parties to compute the function. Find the rank of one such matrix A using the elementary row transformations. | 5 | 2  | 1  |
| 1    | $A = \begin{bmatrix} 2 & 3 & -2 & 4 \\ -2 & -2 & 1 & 2 \\ -3 & -2 & -3 & -4 \\ -2 & 4 & 0 & 5 \end{bmatrix}$                                                                                                                                                                                                  |   |    |    |
| 1(b) | Investigate the values of $a$ and $b$ for which the following system of equations                                                                                                                                                                                                                             | 5 | 2  | 2  |
|      | x + 2y + 4z = 6, $x + 3y + 7z = 6$ , $2x + 5y + az = b$                                                                                                                                                                                                                                                       |   |    |    |

have (i) No Solution (ii) unique solution 11:11 Infinetly many solution

|      |                                                                                                                                                                 | 10 | 2 | 3 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|
| 2    | System of linear equations can be found in the resistive circuit, $x_1, x_2, x_3, x_4$ , represent                                                              | 10 | - |   |
| -    | node voltages as functions of input voltages and input current. Compute $x_1, x_2, x_3, x_4$                                                                    |    |   |   |
|      | by using Gauss –Seidel method, with initial approximations (0,0,0,0) for the following                                                                          |    |   |   |
|      | equations.                                                                                                                                                      |    |   |   |
|      | $x_1 + x_2 + 6x_3 + 10x_4 = 30.9$                                                                                                                               |    |   |   |
|      | $10x_1 + 8x_2 + x_3 = 16.4$                                                                                                                                     |    |   |   |
|      | $2x_1 + 10x_3 + 2x_4 = 36.9$                                                                                                                                    |    |   |   |
|      | $x_1 + 10x_2 + 2x_3 + 4x_4 = -3.8$                                                                                                                              |    |   |   |
|      | Carry out five iterations.                                                                                                                                      |    |   |   |
| 3(a) | The Eigenvalues give the displacement of an atom or a molecule from its equilibrium                                                                             | 6  | 3 | 3 |
|      | position and the direction of displacement is given by eigen vectors. Use the                                                                                   |    |   |   |
|      | Rayleigh's power method to estimate the dominant eigen value and corresponding                                                                                  |    |   |   |
|      | eigenvector of the matrix                                                                                                                                       |    |   |   |
|      |                                                                                                                                                                 |    |   |   |
|      | $\begin{bmatrix} 6 & -2 & 2 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 \end{bmatrix}$                                                                        |    |   |   |
|      | $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$ with initial vector $X^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ . Carry out five iterations. |    |   |   |
|      | l 2 -1 3 J l1J                                                                                                                                                  |    |   |   |
| 3(b) | For what values of k the following system of equations                                                                                                          | 4  | 3 | 2 |
|      | x + y + 3z = 0, $4x + 3y + kz = 0$ , $2x + ky + 2z = 0$                                                                                                         |    |   |   |
|      | 1                                                                                                                                                               |    |   |   |
|      | has non-trivial solution.                                                                                                                                       |    |   |   |
| 4(a) | Solve the following system of equations by Gauss –Jordon method                                                                                                 | 6  | 3 | 2 |
|      |                                                                                                                                                                 |    |   |   |
|      | x + 2y + z = 3                                                                                                                                                  |    |   |   |
|      | 2x + 3y + 3z = 10                                                                                                                                               |    |   |   |
|      | 3x - y + 2z = 13                                                                                                                                                |    |   |   |
| 4(b) | If $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ , then compute the eigenvalues of and corresponding eigenvectors of                                     | 4  | 2 | 3 |
|      |                                                                                                                                                                 |    |   |   |
|      | the matrix A.                                                                                                                                                   |    |   |   |
| 5(a) | Find the particular solution of the initial value problem $y'' + 4y' + 13y = 18e^{-2x}$                                                                         | 6  | 2 | 4 |
|      | given $y(0) = 0$ and $y'(0) = 4$ .                                                                                                                              |    |   |   |
| 5(b) | If $F(D) = (D^4 - 1)$ , where D is the linear differential operator, with $D = \frac{d}{dx}$ , obtain                                                           | 4  | 3 | 2 |
|      |                                                                                                                                                                 |    | ~ |   |
|      | the general solution of $F(D)y = 0$ .                                                                                                                           |    |   |   |
|      |                                                                                                                                                                 |    |   |   |

# BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

| Marks        | Part                     | iculars | CO1 | CO2 | соз | CO4 | L1 | L2 | L3 | L4 | L5 | L6 |
|--------------|--------------------------|---------|-----|-----|-----|-----|----|----|----|----|----|----|
| Distribution | Distribution <b>Test</b> | Max     | 11  | 17  | 23  | 6   | 6  | 34 | 20 |    | -  | -  |
|              |                          | Marks   |     |     |     |     |    |    |    |    |    |    |

\*\*\*\*\*\*\*\*



# R V COLLEGE OF ENGINEERING (An autonomous institution affiliated to VTU, Belagavi) DEPARTMENT OF MATHEMATICS

### EVEN SEMESTER 2018-19 SECOND SEMESTER, TEST- I CHEMISTRY CYCLE SECTIONS (A-I)

**COURSE: ENGINEERING MATHEMATICS-II** 

**DATE: 05-02-2019** 

**MARKS: 50** 

**COURSE CODE: 18MA21** 

TIME: 2:00-3.30pm

| Q.NO | Answer all questions                                                                                                                                                                                                                                                                                                                               | MARKS | CO  | BTL |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----|
| 1.a  | Find the value of 'k' such that the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 3 & k \\ 1 & 4 & k^2 \end{bmatrix}$ is equal to two by reducing it to echelon form.                                                                                                                                                                   | 6     | 1   | 2   |
| 1.b  | Check for consistency and obtain the solution, if consistent: $3x_1 + 2x_2 + x_3 = 3$ , $2x_1 + x_2 + x_3 = 0$ , $6x_1 + 2x_2 + 4x_3 = 6$ ,                                                                                                                                                                                                        | 4     | 2   | 1   |
| 2    | Solve the following system of equations by Gauss-Jordan elimination method:<br>x + 2y + z - w = -2, $2x + 3y - z + 2w = 7$ ,<br>x + y + 3z - 2w = -6, $x + y + z + w = 2$ .                                                                                                                                                                        | 10    | 2   | 3   |
| 3.a  | Compute the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by Rayleigh's Power method using $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as initial eigenvector, carry out five iterations.                                                           | 5     | 3   | 4   |
| 3.b  | Diagonalize the matrix $A = \begin{bmatrix} -5 & 9 \\ -6 & 10 \end{bmatrix}$ , hence verify $P^{-1}AP = D$ , where 'D' is the diagonal matrix.                                                                                                                                                                                                     | 5     | 4 : | 4   |
| 4.   | The temperatures $u_1$ , $u_2$ , $u_3$ and $u_4$ of a square metal plate, under some circumstances are given by: $13u_1 + 5u_2 - 3u_3 + u_4 = 18,$ $2u_1 + 12u_2 - u_3 - u_4 = 13,$ $3u_1 - 4u_2 + 10u_3 + u_4 = 29,$ $2u_1 + u_2 - 3u_3 + 9u_4 = 31$ Solve for the temperatures, using Gauss-Seidel iterative method. Carry out seven iterations. | 10    | 3   | 3   |
| 5. a | A state of linear dynamical system is given by $\frac{d^2y}{dt^2} - 10\frac{dy}{dt} + 25y = 0$ , determine the response $y = y(t)$ of the system under the conditions $y(0) = 1$ , $y(1) = 0$ .                                                                                                                                                    | 5     | 4   | 3   |
| 5. b | Solve: $(D^3 - D^2 + 100D - 100)y = 0$                                                                                                                                                                                                                                                                                                             | 5     | 2   | 3   |

#### Course Outcomes:

- 1. Demonstrate the understanding of rank of a matrix, classification and types of solution of higher order linear ODE and PDE, necessity of numerical methods and few basic definitions.
- 2. Solve system of equations using Gauss elimination and Gauss Jordan methods, homogeneous linear differential equations & Lagrange linear PDE, interpolate data using finite differences and use intermediate value property.
- 3. Apply acquired knowledge to solution of equations using Gauss-Seidel method, derivatives and integrals of numerical data and solve differential equations numerically.
- Estimate the solutions of problems involving applications of differential equations using both analytical and numerical methods.