Nivel 2 Introducción a la teledetección SAR

Francisco Nemiña^{1*}y Tomas Zajc^{**}

 * Unidad de Educación y Formación Masiva , Comisión Nacional de Actividades Espaciales

 ${\it ***} Misi\'on \ SAOCOM \ , \ Comisi\'on \ Nacional \ de \ Actividades \ Espaciales$

 $^{^1 {\}it fnemina@conae.gov.ar}$

Clase 4

Polarimetría

Esta clase tiene como objetivo comprender los conceptos básicos de polarimetria. Para ello se estudiará la forma de obtener descomposiciones polarimétricas a partir de imágenes radar.

4.1. Cálculo de matrices polarimétricas

Para poder realizar descomposiciones polatrimétricas es necesario conservar la información completa de la imagen SAR a lo largo de todo el proceso. Para hacer esto repetiremos los pasos vistos en la clase anterior, pero haciendo foco en como mantener dicha información.

4.1.1. Calibración

Abra la imagen \subset ALPSRP278916070-L1.1.zip que descargó del *Alaska Satellite Facility*. Diríjase a Radar Radiometric Calibrate (Figura 4.1) y, en este caso, tilde la opción *Save as complex output* en *Processing parameters*. Recuerde siempre asignar la ruta de guardado.

4.1.2. Cálculo de matriz de coherencia

Para calcular la matriz de coherencia, una vez calibrada la imagen, utilice la herramienta Radar » Polarimetric » Polarimetric matrix generation.

Seleccione la imagen \bigcirc ALOS-P1_1_A-ORBIT_ALPSRP278916070_Cal y en Processing parameters elija en *Polarimetric Matrix* la opción T3. Por el momento, no se preocupe por el significado de esta matriz (Figura 4.2).

a) I/O Parameters (b) I

Figura 4.1 – Calibración de productos SAR utilizando el SNAP. Recuerde seleccionar en este caso la opcíon *Save as complex output*.

Figura 4.2 – Cálculo de matrices polarimétricas en el SNAP.

4.1.3. Filtrado

En el caso de imágenes full polarimetricas se pueden aplicar distintos tipos de filtros. Diríjase a Radar Polarimetric Polarimetric speckle filter. Utilice en este caso el filtro Refined Lee Filter en Speckle filter sobre la imagen (Figura 4.3)

ALOS-P1_1_A-ORBIT_ALPSRP278916070_Cal_mat

Figura 4.3 – Filtro Refined Lee Filter para imágenes full polarimétricas.

4.1.4. Proyección

Reproyecte la imagen en el terreno (GTC) aplicando los procesos de *Deskewing* y proyección sobre un modelo de elevación digital.

4.2. Descomposición de Pauli

La descomposición de Pauli permite separar la información sobre interacciones de tipo doble rebote, en volumen y especulares, en una imagen full polarimétrica

La descomposición genera tres bandas que suelen mostrarse de la siguiente manera:

- Azul: Información por procesos de un solo rebote o un número impar de rebotes.
- Verde: Información por procesos de scattering en volumen.
- Rojo: Información por procesos de doble rebote o un número par de rebotes.

Diríjase a Radar Polarimetric Polarimetric Decomposition. Seleccione como entrada la imagen corregida en terreno y la descomposición Pauli Decomposition en Processing parametric (Figura 4.5)

Observe los resultados haciendo click derecho sobre la imagen obtenida en la opción Open RGB image window (Figura 4.5).

(a) I/O Parameters

(b) Processing parameters

Figura 4.4 – Cálculo de la descomposición de Pauli utilizando las matrices polarimétricas en el SNAP.

Figura 4.5 – Descomposición de Pauli para la zona de interés.

4.3. Preguntas para debate

- 4.3.1. En la descomposición de Pauli, de qué color se observan:
 - 1. La pista de aterrizaje de la ciudad de Ushuaia.
 - 2. Zonas urbanas en la ciudad de Ushuaia.

- 3. Zonas con vegetación sobre la ladera de la montaña.
- 4. La bahía encerrada con coordenadas $54^{\circ}48'51''$ latitud sur y $68^{\circ}18'58''$ longitud oeste.
- 5. El canal de Beagle.

Estas preguntas no serán evaluadas. Su objetivo es discutirlas en el foro de sonsultas e intercambio de la clase.