

Function approximation

Lecture 13 of "Mathematics and Al"

Outline

- 1. A linear classifier for $y(x) = I[x^2 x > 0]$
- 2. Feature mapping
- 3. Function approximations
 Taylor series, Fourier series, infinite-dimensional vector spaces
- 4. Koopman operator theory

A linear classifier for a quadratic function

Observations of $y(x) = I[x^2 - x > 0]$

Manifold learning, algebraic topology, algebraic geometry

Observations of $y(x) = I[x_1^2 - x_1 > 0]$

- Introduce new variable x_2
- Define $x_2 := x_1^2$

$$> y(x) = I[x_2 - x_1 > 0]$$

Feature mapping/
Feature augmentation

Feature mapping

Feature mapping

• How many powers of x should we include?

• Should we use other functions of x?

• What patterns can be fitted in the augmented feature space?

Function approximations

Taylor's theorem and Taylor series

DEFINITION

If f has n derivatives at x=a, then the nth Taylor polynomial for f at a is

$$p_{n}\left(x
ight)=f\left(a
ight)+f^{\prime}\left(a
ight)\left(x-a
ight)+rac{f^{\prime\prime\prime}(a)}{2!}(x-a)^{2}+rac{f^{\prime\prime\prime\prime}(a)}{3!}(x-a)^{3}+\cdots+rac{f^{(n)}\left(a
ight)}{n!}(x-a)^{n}.$$

The nth Taylor polynomial for f at 0 is known as the nth Maclaurin polynomial for f.

- $p_k(x)$ is a *linear combination* of the *functions* $(x-a)^j$
- Each function $(x-a)^j$ in $p_k(x)$ has a **coefficient** $\beta \coloneqq \frac{f^{(j)}(a)}{j!}$

THEOREM 6.7

Taylor's Theorem with Remainder

Let f be a function that can be differentiated n+1 times on an interval I containing the real number a. Let p_n be the nth Taylor polynomial of f at a and let

$$R_{n}\left(x
ight) =f\left(x
ight) -p_{n}\left(x
ight)$$

be the *n*th remainder. Then for each *x* in the interval *I*, there exists a real number *c* between *a* and *x* such that

$$R_{n}\left(x
ight) =rac{f^{\left(n+1
ight) }\left(c
ight) }{\left(n+1
ight) !}(x-a)^{n+1}.$$

If there exists a real number M such that $\left|f^{(n+1)}\left(x
ight)
ight|\leq M$ for all $x\in I,$ then

$$\left|R_{n}\left(x
ight)
ight|\leqrac{M}{\left(n+1
ight)!}{\left|x-a
ight|}^{n+1}$$

for all x in I.

Function approximation with Taylor polynomials

THEOREM 6.8

Convergence of Taylor Series

Suppose that f has derivatives of all orders on an interval I containing a.

Then the Taylor series

$$\sum_{n=0}^{\infty}rac{f^{(n)}\left(a
ight)}{n!}(x-a)^{n}$$

converges to f(x) for all x in I if and only if

$$\lim_{n
ightarrow\infty}R_{n}\left(x
ight) =0$$

for all x in I.

Example: ln(x + 1)

Taylor polynomials as models of finite complexity

- Consider (noise-free measurements of) a pattern
 - y(x) = f(x) (regression) or
 - y(x) = I[f(x) > 0] (classification)
- If f(x) is an order-k polynomial
 - $\triangleright p_k(x)$ is a perfect model
- If f(x) can be approx. by an order-k polynomial with a small error
 - $\triangleright p_k(x)$ is a good model

Taylor series as models of infinite complexity

Function	Maclaurin Series	Interval of Convergence
$f\left(x ight) =rac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	-1 < x < 1
$f\left(x ight) =e^{x}$	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$-\infty < x < \infty$
$f\left(x ight) =\sin x$	$\sum_{n=0}^{\infty}{(-1)^n}\frac{x^{2n+1}}{(2n+1)!}$	$-\infty < x < \infty$
$f\left(x ight) =\cos x$	$\sum_{n=0}^{\infty}{(-1)^n}\frac{x^{2n}}{(2n)!}$	$-\infty < x < \infty$
$f\left(x ight) =\ln \left(1+x ight)$	$\sum_{n=1}^{\infty}{(-1)^{n+1}\frac{x^n}{n}}$	$-1 < x \leq 1$
$f\left(x ight) = an^{-1}x$	$\sum_{n=0}^{\infty}{(-1)^n}\frac{x^{2n+1}}{2n+1}$	$-1 \leq x \leq 1$
$f\left(x\right) =\left(1+x\right) ^{r}$	$\sum_{n=0}^{\infty} \left(rac{r}{n} ight) x^n$	-1 < x < 1

Fourier series

Taylor series

$$f(x) = \sum_{j=1}^{\infty} \beta_j x^j$$

has "∞" coefficients

$$\beta_j = \frac{f^{(j)}(a)}{j!}$$

• For polynomial f, only a finite number of $\beta_i \neq 0$

Fourier series

Fourier series

$$f(x) = \frac{1}{2}\alpha_0 + \sum_{j=1}^{\infty} \alpha_j \cos(jx) + \sum_{j=1}^{\infty} \beta_j \sin(jx)$$

has " $2\infty + 1$ " coefficients

$$\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
, $\alpha_j = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(jx) dx$, $\beta_j = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(jx) dx$

relevant for applications in signal processing of periodic signals

Fourier series

Vector spaces of functions

DEFINITION

A vector is a quantity that has both magnitude and direction.

THEOREM 2.1

Properties of Vector Operations

Let **u**, **v**, and **w** be vectors in a plane. Let **r** and **s** be scalars.

i.
$$u+v = v+u$$

ii. $(u+v)+w = u+(v+w)$
iii. $u+0 = u$
iv. $u+(-u) = 0$
v. $r(su) = (rs)u$
vi. $(r+s)u = ru+su$
vii. $r(u+v) = ru+rv$
viii. $1u = u, 0u = 0$

Commutative property
Associative property
Additive identity property
Additive inverse property
Associativity of scalar multiplication
Distributive property
Distributive property
Identity and zero properties

Definition: A vector space consists of a set V (elements of V are called vectors), a field \mathbb{F} (elements of \mathbb{F} are called scalars), and two operations

- An operation called *vector addition* that takes two vectors $v, w \in V$, and produces a third vector, written $v + w \in V$.
- An operation called *scalar multiplication* that takes a scalar $c \in \mathbb{F}$ and a vector $v \in V$, and produces a new vector, written $cv \in V$.

which satisfy the following conditions (called *axioms*).

- 1. Associativity of vector addition: (u + v) + w = u + (v + w) for all $u, v, w \in V$.
- 2. Existence of a zero vector: There is a vector in V, written 0 and called the **zero vector**, which has the property that u + 0 = u for all $u \in V$
- 3. Existence of negatives: For every $u \in V$, there is a vector in V, written -u and called the **negative of** u, which has the property that u + (-u) = 0.
- 4. Associativity of multiplication: (ab)u = a(bu) for any $a, b \in \mathbb{F}$ and $u \in V$.
- 5. Distributivity: (a + b)u = au + bu and a(u + v) = au + av for all $a, b \in \mathbb{F}$ and $u, v \in V$.
- 6. Unitarity: 1u = u for all $u \in V$.

Examples of function spaces and bases

- C^k and C^{∞}
 - Definition: the space of k -times differentiable functions
 - Possible basis: polynomials (Taylor series)
- L^p spaces, Sobolov spaces
 - Intuition: spaces of nice* functions that taper off quickly* as $x \to \pm \infty$
 - Possible basis: Sines and cosines (Fourier series) or radial basis functions (e.g., $\exp(-rc_i)$)

Koopman operator theory

II. THE KOOPMAN OPERATOR

Let $\mathcal{D} \subseteq \mathbb{R}^n$, let $f : \mathcal{D} \to \mathcal{D}$, and, for all $k \geq 0$, consider the discrete-time system

$$x(k+1) = f(x(k)), \quad x(0) = x_0,$$
 (1)

where $x_0 \in \mathbb{R}^n$ is the initial condition. In addition, let $g: \mathcal{D} \to \mathbb{R}$ determine the output of (1) given by

$$y(k) = g(x(k)). (2)$$

Note that, for all $k \geq 0$,

$$g(x(k)) = g(f^{(\circ k)}(x_0)) = (g \circ f^{(\circ k)})(x_0), \tag{3}$$

where $f^{(\circ 0)}$ is the identity map on \mathcal{D} , $f^{(\circ 1)} \stackrel{\triangle}{=} f$, $f^{(\circ 2)} \stackrel{\triangle}{=} f \circ f$, and $f^{(\circ k)}$ denotes the composition of f with itself k times.

Next, motivated by (3), let \mathcal{G} be a set of real-valued functions on \mathcal{D} which satisfy the following property:

If
$$g \in \mathcal{G}$$
, then $g \circ f \in \mathcal{G}$. (4)

If (4) holds, then \mathcal{G} is compositionally complete. Note that, if $g \in \mathcal{G}$, then, for all $r \geq 0$, $g \circ f^{(\circ r)} \in \mathcal{G}$. If \mathcal{G} is compositionally complete and $g \in \mathcal{G}$, then g is an observable.

Next, define the *Koopman operator* $\mathcal{K}: \mathcal{G} \to \mathcal{G}$ by

$$\mathcal{K}(g) \stackrel{\triangle}{=} g \circ f. \tag{5}$$

Note that, since \mathcal{G} is compositionally complete, it follows that, if $g \in \mathcal{G}$, then $g \circ f \in \mathcal{G}$ and thus $\mathcal{K}(g) \in \mathcal{G}$.

We now assume that \mathcal{G} is a compositionally complete vector space over \mathbb{R} . Then, for all $g_1, g_2 \in \mathcal{G}$ and all $a_1, a_2 \in \mathbb{R}$,

$$\mathcal{K}(a_1g_1 + a_2g_2) = (a_1g_1 + a_2g_2) \circ f$$

$$= a_1g_1 \circ f + a_2g_2 \circ f$$

$$= a_1\mathcal{K}(g_1) + a_2\mathcal{K}(g_2). \tag{6}$$

Therefore, K is a linear operator on G.

In terms of powers of \mathcal{K} , note that, for all $g \in \mathcal{G}$, $\mathcal{K}^0(g) = g \circ f^{\circ 0} = g$, thus \mathcal{K}^0 is the identity map on \mathcal{G} . Furthermore, for all $g \in \mathcal{G}$, $\mathcal{K}^2(g) = \mathcal{K}(\mathcal{K}(g)) = \mathcal{K}(g \circ f) = (g \circ f) \circ f = g \circ (f \circ f) = g \circ f^{\circ 2}$, and thus, for all $k \geq 0$, $\mathcal{K}^k(g) = g \circ f^{\circ k}$. Hence, for all $k \geq 1$, the output (2) is given by

$$y(k) = \mathcal{K}^{k}(g)(x_0) = \mathcal{K}^{k-1}(g)(x_1). \tag{7}$$