Chapter 14

THYRISTOR CONVERTERS

14-1	Introduction
14-2	Thyristors (SCRs)
14-3	Single-Phase, Phase-Controlled Thyristor Converters
14-4	Three-Phase, Full-Bridge Thyristor Converters
14-5	Current-Link Systems
	References
	Problems

Thyristors (SCRs)

Figure 14-1 Thyristors.

Figure 14-2 A simple thyristor circuit.

Single-Phase, Phase-Controlled Thyristor Converters

Figure 14-3 Full-Bridge, single-phase thyristor converter.

Figure 14-4 Single-phase thyristor converter waveforms.

$$v_d(t) = v_s(t)$$
 and $i_s(t) = I_d$ $\alpha < \omega t \le \alpha + \pi$
$$v_d(t) = -v_s(t) \text{ and } i_s(t) = -I_d \qquad \alpha + \pi < \omega t \le \alpha + 2\pi$$

$$V_d = \frac{1}{\pi} \int_{\alpha}^{\alpha + \pi} \hat{V}_s \sin \omega t \cdot d(\omega t) = \frac{2}{\pi} \hat{V}_s \cos \alpha \qquad \qquad \hat{I}_{s1} = \frac{4}{\pi} I_d \qquad \qquad P = \frac{1}{2} \hat{V}_s \hat{I}_{s1} \cos \alpha$$

Fig. 14-5 Effect of the delay angle α .

The Effect of L_s on Current Commutation

Figure 14-6 Effect of L_s on Current Commutation.

$$\int_{\alpha}^{\alpha+u} v_L d(\omega t) = L_s \int_{\alpha}^{\alpha+u} \frac{di_s}{dt} d(\omega t) = \omega L_s \int_{-I_d}^{I_d} di_s = \omega L_s (2I_d)$$

$$\Delta V_d = \frac{2}{\pi} \omega L_s I_d$$

$$V_d = \frac{2}{\pi} V_s \cos \alpha - \frac{2}{\pi} \omega L_s I_d$$

PSpice Modeling: C:\FirstCourse_PE_Book03\Thyrect1ph.sch

Simulation Results

THREE-PHASE, FULL-BRIDGE THYRISTOR CONVERTERS

Figure 14-7 Three-phase Full-Bridge thyristor converter.

Figure 14-8 Waveforms with $L_s = 0$.

$$V_{do} = \frac{1}{\pi/3} \int_{-\pi/6}^{\pi/6} \hat{V}_{LL} \cos \omega t \cdot d(\omega t) = \frac{3}{\pi} \hat{V}_{LL}$$

$$\Delta V_{\alpha} = \frac{1}{\pi/3} \int_{0}^{\alpha} \hat{V}_{LL} \sin \omega t \cdot d(\omega t) = \frac{3}{\pi} \hat{V}_{LL} (1 - \cos \alpha)$$

Effect of L_s

Figure 14-9 Waveforms with L_s .

$$A_{u} = \int_{\alpha}^{\alpha+u} v_{L} d(\omega t) = \omega L_{s} \int_{0}^{I_{d}} di_{s} = \omega L_{s} I_{d}$$

$$\Delta V_{u} = \frac{A_{u}}{\pi/3} = \frac{3}{\pi} \omega L_{s} I_{d}$$

$$V_{d} = V_{do} - \Delta V_{\alpha} - \Delta V_{u}$$

$$V_{d} = \frac{3}{\pi} \hat{V}_{LL} \cos \alpha - \frac{3}{\pi} \omega L_{s} I_{d}$$

Current-Link Systems

Figure 14-10 Block diagram of current-link systems.

$$V_{d1} = \frac{3}{\pi} \hat{V}_{LL1} \cos \alpha_1 - \frac{3}{\pi} \omega L_{s1} I_d$$

$$I_d = \frac{V_{d1} + V_{d2}}{R_d}$$

$$V_{d2} = \frac{3}{\pi} \hat{V}_{LL2} \cos \alpha_2 - \frac{3}{\pi} \omega L_{s2} I_d$$