Analysis of the NMF algorithms in Facial Recognition

Members: TRINH Van Hoan

VUONG Tung Duong

Outline

```
Introduction
```

What is Non-Negative Matrix Factorization (NMF)?

NMF with the L2-norm

Algorithms

NMF with the KL-divergence

Modification of the algorithm

Theoretical results

Experimental Setup

Experimental Methodology and Results

Classification with SVM

Influence of Number of Components

Influence of Noise

Conclusion

What is Non-Negative Matrix Factorization (NMF)?

- Given non-negative $n \times m$ matrix V, i.e. $V_{ij} \ge 0 \forall i, j$.
- An "approximate" factorization of this matrix $V \approx WH$ is called NMF if $W \in R^{n \times k}$ and $H \in R^{k \times m}$ are non-negative matrices.
- Intuition: W contains a basis for linear approximation of data in V in k —dimension.

(Lee, Seung. 2000)

NMF with the L2-norm

The objective function is the Euclidean distance:

 $||X - WH||^2$, w.r.t W, H with constraint $W, H \ge 0$.

Algorithms

- Optimize alternatively over one of the two factors, W or H, while keeping the other fixed.
- Additive update rule based on gradient descent:
 - $-W \leftarrow W \eta_W \nabla_W F$
 - $H \leftarrow H \eta_H \nabla_H F$

Algorithms(cont'd)

After derivation:

$$- \nabla_W F = -2VH^T + 2WHH^T$$

$$- \nabla_H F = -2W^T V + 2W^T W H$$

Chosing the appropriate step size:

$$- (\eta_W)_{uj} = \frac{W_{uj}}{(WHH^T)_{uj}}$$

$$- (\eta_H)_{uj} = \frac{H_{uj}}{(W^T W H)_{uj}}$$

Algorithms(cont'd)

The algorithm becomes multiplicative:

$$- W_{iu} \leftarrow W_{iu} \frac{(VH^T)_{iu}}{(WHH^T)_{iu}}$$
$$- H_{uj} \leftarrow H_{uj} \frac{(W^TV)_{uj}}{(W^TWH)_{uj}}$$

- Ensure non-negativity.
- Ensure the non-increasing property of the loss function.

NMF with the KL-divergence

$$\min_{W,H} F(W,H) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(V_{ij} \log \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij} \right)$$

constrained to $W \geq 0$ and $H \geq 0$.

With the same workflow:

$$- H_{aj} \leftarrow \frac{\sum_{i} v_{i} \frac{W_{ia} H_{aj}}{W_{i} H_{j}}}{\sum_{i} W_{ia}}$$

- Similarly to W.

Modification of the algorithm

- If $\sum_i W_{ia} = 0$, skip the update for H_{aj} .
- If $W_iH_i = 0$ for some i:
 - If $v_i > 0$, update H_{aj} to a constant positive number.
 - If $v_i=0$, replace the part $v_i \frac{w_{ia}H_{aj}}{w_{i}H_j}$ by 0.
- Ensure the non-negativity.
- Ensure the non-increasing of the loss function.

Modification of the algorithm(cont'd)

Do the normalization on the W's columns.

$$- H_{aj}^{t+1,u} = \frac{\sum_{i} v_i \frac{W_{ia} H_{aj}^t}{W_i H_j^t}}{\sum_{i} W_{ia}}$$

- After get $W^{t+1,u}$, $H^{t+1,u}$, normalize to W^{t+1} , H^{t+1} such that W^{t+1} 's columns' sum is 1 or 0.

Theoretical Results

- Under the modifications, there exists a limit point W^*, H^* .
- For every limit point W^* , H^* , if $H^*_{aj} > 0$ then its partial derivative is 0: $\nabla_{H_{aj}} F(W^*, H^*) = 0$

See report for details

Experimental Setup

- 1. NMF implementation
- 2. SVD-based initialization
- 3. Noise
 - Salt and Pepper Noise
 - Gaussian Noise
 - Laplace Noise
- 4. Metrics
- 5. Datasets

NMF implementation

In Python, implement based on (Lee, Seung. 2000)

1. L2NMF update rules

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}} \qquad W_{ia} \leftarrow W_{ia} \frac{(V H^T)_{ia}}{(W H H^T)_{ia}}$$

2. KLNMF update rules

$$H_{a\mu} \leftarrow H_{a\mu} \frac{\sum_{i} W_{ia} V_{i\mu} / (WH)_{i\mu}}{\sum_{k} W_{ka}} \qquad W_{ia} \leftarrow W_{ia} \frac{\sum_{\mu} H_{a\mu} V_{i\mu} / (WH)_{i\mu}}{\sum_{\nu} H_{a\nu}}$$

See code for details

SVD-based initialization

Method 1: Standard randomization

- Sample from a Uniform or Gaussian distribution

Method 2: SVD-based

- NNDSVD (C. Boutsidis, E. Gallopoulos. 2007)

NNDSVD initialization of nonnegative matrix, in MATLAB notation

```
Inputs: Matrix A \in \mathbb{R}_+^{m \times n}, integer k < \min(m, n).

Output: Rank-k nonnegative factors W \in \mathbb{R}_+^{m \times k}, H \in \mathbb{R}_+^{k \times n}.

1. Compute the largest k singular triplets of A: [U, S, V] = \operatorname{psvd}(A, k)

2. Initialize W(:, 1) = \operatorname{sqrt}(S(1, 1)) * U(:, 1) and H(1, :) = \operatorname{sqrt}(S(1, 1)) * V(:, 1)'

for j = 2 : k

3. x = U(:, j); y = V(:, j);

4. xp = \operatorname{pos}(x); xn = \operatorname{neg}(x); yp = \operatorname{pos}(y); yn = \operatorname{neg}(y);

5. xpnrm = \operatorname{norm}(xp); ypnrm = \operatorname{norm}(yp); mp = xpnrm * ypnrm;

6. xnnrm = \operatorname{norm}(xn); ynnrm = \operatorname{norm}(yn); mn = xnnrm * ynnrm;

7. if mp > mn, u = xp/xpnrm; v = yp/ypnrm; sigma = mp;

else u = xn/xnnrm; v = yn/ynnrm; sigma = mn; end

8. W(:, j) = \operatorname{sqrt}(S(j, j) * sigma) * u and H(j, :) = \operatorname{sqrt}(S(j, j) * sigma) * v';

end
```

See code for details

SVD-based initialization

Method 1: Standard randomization

- Sample from a Uniform or Gaussian distribution

Method 2: SVD-based

- NNDSVD (C. Boutsidis, E. Gallopoulos. 2007)

In practice, the images are corrupted with noise Three common types:

- 1. Salt and Pepper Noise:
 - generated by malfunctioning of pixel elements in camera sensors or errors in conversion process,...
 - commonly corrupt by 255(salt), 0(pepper)
 - parameters:
 - p: noise level
 - s_vs_p: salt vs pepper ratio

See code for details

In practice, the images are corrupted with noise Three common types:

1. Salt and Pepper Noise:

Figure 2: Image with Salt and Pepper noise with different values of hyper-parameters p and s_vs_p

In practice, the images are corrupted with noise Three common types:

2. Gaussian noise:

usually happens in amplifiers or detectors, generates disturbs in the gray values in the digital images,...

$$P(g) = \sqrt{\frac{1}{2\pi\sigma^2}} e^{-\frac{(g-\mu)^2}{2\sigma^2}}$$

parameters: g, sigma, mu

See code for details

In practice, the images are corrupted with noise Three common types:

2. Gaussian noise:

Figure 4: Image with Gaussian noise with different values of σ

In practice, the images are corrupted with noise Three common types:

2. Gaussian noise vs Laplacian noise:

Figure 3: PDF of Gaussian and Laplace noise

In practice, the images are corrupted with noise Three common types:

3. Laplacian noise:

similar to Gaussian noise, but is from the Laplace Distribution

$$f(x|\mu,\lambda) = \frac{1}{2\lambda} \exp(-\frac{|x-\mu|}{\lambda}) = \frac{1}{2\lambda} \begin{cases} \exp(-\frac{\mu-x}{\lambda}) & \text{if } x < \mu \\ \exp(-\frac{x-\mu}{\lambda}) & \text{if } x \ge \mu \end{cases}$$

parameter: mu, lambda

See code for details

In practice, the images are corrupted with noise Three common types:

3. Laplacian noise:

Figure 5: Image with Laplace noise with different values of λ

Metrics

1. Relative Reconstruction Errors (RRE)

$$RRE = \frac{\|\widehat{X} - UV\|_F}{\|\widehat{X}\|_F}$$

2. Average Accuracy

$$ACC(Y, Y_{pred}) = \frac{1}{n} \sum_{i=1}^{n} 1\{Y_{pred}(i) == Y(i)\}$$

3. Normalized Mutual Information (NMI)

$$NMI(Y, Y_{pred}) = \frac{2 * I(Y, Y_{pred})}{H(Y) + H(Y_{pred})}$$

See code for details

Datasets

1. Yale face dataset

- sample 165 images of 15 subjects
- under different poses and illumination conditions
- split into 150 images for training and 15 images for testing

2. ORL face dataset

- sample 400 images of 40 subjects
- under different lighting, facial expressions and facial details
- split into 360 images for training and 40 images for testing

Experimental Methodology and Results

- 1. Classification with SVM
- 2. Influence of Number of Components
- 3. Influence of Noise

Classification with SVM

Three different scenarios

1. Vanilla SVM:

directly train SVM and evaluate

2. L2NMF+SVM

- fit L2NMF using the training images
- use it to reduce the dimensions of train and test set
- train SVM and evaluate

3. KLNMF+SVM

similar to L2NMF+SVM, but using NMF with the KL divergence

Classification with SVM

Three different scenarios

- 1. Vanilla SVM
- 2. L2NMF+SVM
- 3. KLNMF+SVM

			ORL			
Model	Fit+Train time	Predict time	Accuracy	Precision	Recall	F1-score
Vanila SVM	0+12.194s	0.020s	0.95	0.93	0.95	0.93
L2NMF+SVM	2.165+3.367s	0.003s	0.93	0.89	0.93	0.90
KLNMF+SVM	0.345+3.359s	0.004s	0.93	0.89	0.93	0.90
П			T7 1			

			Yale			
Model	Fit+Train time	Predict time	Accuracy	Precision	Recall	F1-score
Vanila SVM	0+15.959s	0.016s	0.73	0.66	0.73	0.68
L2NMF+SVM	0.803+0.695s	0.001s	0.67	0.56	0.67	0.59
KLNMF+SVM	1.176+0.794s	0.001s	0.67	0.56	0.67	0.59

Table 1: Table results for experiment with SVM

Influence of Number of Components

- Influence of the reduced rank k
- Add Gaussian noise with sigma=0.05 to images data
- No. components range from 10 to 80

Figure 6: Influence of number of components on RRE, ACC and NMI

Influence of Number of Components

Each experiment was executed 3 times

Figure 7: Mean and standard deviation of multiple runs

k = 60 is good

Influence of Noise

- Apply Salt&Pepper, Lapacian, Gaussian noise to images
- Set no. components k = 60 as found previously
- Document the mean and sd of multiple runs
- Experimental setup:

	ORL			Yale			
Model	Max Iter.	No. Exp.	Repeated	Max Iter.	No. Exp.	Repeated	
L2NMF	300	3	3	100	3	2	
KLNMF	300	3	3	100	3	2	

Table 2: Table of parameters used in the experiments

Influence of Noise

- Apply Salt&Pepper, Lapacian, Gaussian noise to images
- Gaussian noise

Figure 8: Influence of σ value on REE, ACC and NMI

Influence of Noise

Experiment		ORL			Yale		
noise_type=S&P (p=0.125, s_v_p=0.167)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.235	0.575	0.722	0.237	0.637	0.690	
KLNMF	0.243	0.577	0.728	0.259	0.655	0.685	
noise_type=S&P (p=0.188, s_v_p=0.25)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.272	0.426	0.606	0.274	0.637	0.687	
KLNMF	0.281	0.455	0.620	0.298	0.614	0.654	
noise_type=S&P (p=0.25, s_v_p=0.333)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.303	0.348	0.524	0.303	0.585	0.634	
KLNMF	0.311	0.355	0.535	0.328	0.577	0.601	
noise_type=gaussian (mean=0, sigma=0.01)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.149	0.726	0.845	0.125	0.596	0.659	
KLNMF	0.150	0.729	0.852	0.134	0.581	0.642	
noise_type=gaussian (mean=0, sigma=0.1)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.172	0.719	0.838	0.140	0.648	0.692	
KLNMF	0.174	0.704	0.829	0.147	0.618	0.662	
noise_type=gaussian (mean=0, sigma=0.5)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.377	0.234	0.423	0.319	0.544	0.593	
KLNMF	0.387	0.232	0.430	0.327	0.562	0.614	
noise_type=laplace (loc=0, scale=0.06)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.158	0.680	0.820	0.134	0.622	0.682	
KLNMF	0.162	0.706	0.841	0.139	0.670	0.704	
noise_type=laplace (loc=0, scale=0.09)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.182	0.662	0.810	0.148	0.614	0.659	
KLNMF	0.187	0.677	0.804	0.152	0.644	0.678	
noise_type=laplace (loc=0, scale=0.12)	RRE	ACC	NMI	RRE	ACC	NMI	
L2NMF	0.208	0.647	0.777	0.163	0.622	0.686	
KLNMF	0.213	0.632	0.774	0.168	0.637	0.688	

Table 3: Table of results for Noise experiment

Conclusion

- Investigate and discuss the convergence of KL-NMF algorithm
- Present and implement the formulation of 2 types of NMF
- Experiment with SVM shows NMF is a
 Speed/Interpretability Performance tradeoff
- Examine the effect of varying no. components k shows the performance reach a maximum then decline
- Implement 3 types of noise and analyze the interactions between them and the 2 NMF algorithms

Future work

Algorithms:

- Continue to investigate the convergence of NMF

Experiments:

- Experiment with more data
- Try other face databases, also work with colored images
- NMF in other tasks rather than Facial recognition e.g. signal processing, topic modeling,....

References

- [1] C. Boutsidisa and E. Gallopoulosb. Svd based initialization: A head start for nonnegativematrix factorization. 2007.
- [2] Ajay Kumar Boyat and Brijendra Kumar Joshi. A review paper: Noise models in digital image processing. ArXiv, abs/1505.03489, 2015.
- [3] Lee, DD & Seung, HS. Learning the parts of objects by non-negative matrix factoriza- tion. Nature 401, 788-791. 1999
- [4] Lee, DD & Seung, HS. Algorithms for non-negative matrix factorization. In Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS'00). MIT Press, Cambridge, MA, USA, 535–541. 2000