Lecture 1. Class Introduction

ECEN 5283 Computer Vision

Dr. Guoliang Fan School of Electrical and Computer Engineering Oklahoma State University

OKLAHOMA

Goals

▶ To get general information about this course

▶ To introduce basic problems in this class.

▶ To know the basic requirements of this course

Textbook

- Computer Vision: A Modern Approach (2nd Edition)
 - Authors: David Forsyth and Jean Ponce
 - Publisher: Prentice Hall ISBN: 0-13-085198-1

Prof. David Forsyth CS @ UIUC

Prof. Jean Ponce CS @ ENS, France

- ▶ The final grade is based on
 - ▶ All class projects (75%)
 - Class presentation (15 %)
 - Attendance & quiz (10%)
- The letter grade is based on
 - >=90: A
 - ▶ 80-89: B
 - ▶ 70-79: C
 - ▶ 60-69: D
 - ► <60: F

What is Computer Vision?

- Computer vision is the science and technology of machines that see.
 - As a scientific discipline, computer vision is concerned with the theory for building artificial systems that obtain information from images or videos.
 - As a technological discipline, computer vision seeks to apply the theories and models of computer vision to the construction of real computer vision systems.
- Every computer vision system is goaloriented and application-dependent.

Relation with Other Fields

http://en.wikipedia.org

Class Structure

Class Projects

- Project I: Geometric camera calibration
- Project 2: Edge detection and its applications
- Project 3: Texture analysis and classification
- Project 4: Clustering for image segmentation
- Project 5: Object detection
- Project 6: Face recognition

Moderate Matlab skills are needed!

- Project 7: Hidden Markov Models-based recognition
- In-class oral presentation

▶ To build the geometric mapping between the 3D world with the 2D images.

Figure 1: An image of a calibration rig, left with calibration points, right with cubes to check the calibration.

▶ To identity pixels in a digital image where the image brightness changes sharply (or has discontinuities).

Project 3: Texture Analysis

To classify different textures according to some quantitative representations.

Project 4: Clustering for Image Segmentation

To segment an image into different regions of different homogeneous behaviors.

▶ To detect and localize a given object in an image.

To recognize a given face image by projecting it into a low-dimensional linear space.

Project 7. HMM-based Recognition

▶ To apply the hidden Markov model (HMM) for recognition problems from a temporal sequence.

Computer Vision Lecture 1. Class Introduction