Tópicos de Matemática Discreta

- folha 8 -

3. Indução nos naturais

- 3.1. Prove, por indução nos naturais, as seguintes propriedades:
 - (a) 2+4+6+...+2n = n(n+1), para todo $n \ge 1$.
 - (b) $1+2+3+4+...+n=\frac{n(n+1)}{2},$ para todo $n\geq 1.$
 - (c) $2^0 + 2^1 + \dots + 2^n = 2^{n+1} 1$, para todo $n \ge 1$.
 - (d) $1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, para todo $n \ge 1$.
 - (e) $n^2 > 2n + 1$, para todo $n \ge 3$.
 - (f) $n! \ge n^2$, para todo $n \ge 4$.
 - (g) $n^3 n$ é múltiplo de 3, para todo $n \ge 1$.
 - (h) $5^n 1$ é múltiplo de 4, para todo $n \ge 1$.
 - (i) $7n < 2^n$ para todo $n \ge 6$.
 - (j) $2^n > n^3$, para todo $n \ge 10$.
 - (k) $a^n \leq b^n$, para todo $n \geq 1$ e para todo $a, b \in \mathbb{R}$ tais que $0 \leq a \leq b$.
- **3.2.** Seja p(n) a seguinte afirmação:

$$1+2+\cdots+n=\frac{(n-1)(n+2)}{2}.$$

- (a) Mostre que se p(k) é verdadeira (com $k \in \mathbb{N}$), então p(k+1) também é verdadeira.
- (b) Podemos concluir que p(n) é válida para todo $n \in \mathbb{N}$?
- **3.3.** Seja X um conjunto tal que $X \subseteq \mathbb{N}, 3 \in X$ e, para cada $n \in \mathbb{N},$

$$n \in X \Rightarrow n + 3 \in X$$
.

Prove que $\{3n : n \in \mathbb{N}\} \subseteq X$.

- 3.4. Recorrendo ao Princípio de Indução Completa, mostre que
 - (a) Todo o número natural n pode ser representado como a soma de potências distintas de 2, i.e., na forma $n = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_r}$ onde i_1, i_2, \ldots, i_r são inteiros tais que $0 \le i_1 < i_2 < \ldots < i_r$.
 - (b) A sequência de Fibonacci (definida por F_1 , $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$, para todo $n \ge 3$) satisfaz, para todo $n \in \mathbb{N}$, $F_n \ge (3/2)^{n-2}$.