Statistical Computing

Michael Mayer

March 2023

Statistical Computing: What will we do?

Chapters

- 1. R in Action
- 2. Statistical Inference
- 3. Linear Models
- 4. Model Selection and Validation
- 5. Trees
- 6. Neural Nets

Remarks

- Chapters 3 to 6: Statistical ML in Action
- Two weeks per chapter
- Exercises at end of chapter notes

Linear Models

Outline

- ► Start of "Statistical ML in Action"
- Linear Regression
- ► Generalized Linear Models (GLM)
- Modeling Large Data

Statistical MI in Action

What is MI?

Collection of statistical algorithms used to

- 1. predict things (supervised ML) or to
- 2. investigate data structure (unsupervised)

Focus on supervised ML

- Regression numerical
 Classification categorical

Chapters

- 3. Linear Models
- 4. Model Selection and Validation
- Trees
- 6 Neural Nets

Model Setup

usually the expectation but an be madia, quantity IVaR
$$T(Y \mid X = x) \approx f(x)$$

This means: Approximate property T of response Y (often $T = \mathbb{E}$) by function f of p-dim covariate vector $\mathbf{X} = (X^{(1)}, \dots, X^{(p)})$ with value $\mathbf{x} = (x^{(1)}, \dots, x^{(p)})$

 \triangleright Estimate f by \hat{f} from data by minimizing objective

$$Q(f) = \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

- ► L: loss function in line with T, e.g. squared error $L(y,z) = (y-z)^2$ for $T = \mathbb{E}$ ► $\lambda\Omega(f)$: optional penalty

 $\mathbf{v} = (v_1, \dots, v_n)^T$: observed values of Y

 $\mathbf{x}_1, \dots, \mathbf{x}_n$: n feature vectors; $\mathbf{x}_i^{(j)}$: i-th value of $X^{(j)}$; $\mathbf{x}^{(j)}$: n values of feature $X^{(j)}$

Linear Regression

Postulate model equation 455000

$$\mathbb{E}(Y \mid \mathbf{x}) = f(\mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

- ▶ Interpretation of parameters β_j ? Ceteris Paribus!
- **Description** Optimal $\hat{\beta}_j$? Minimize as objective the sum of squared errors/residuals

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
Residual

- Predicted/fitted values $\hat{y}_i = \hat{f}(x_i)$
- ▶ This means: we work with the squared error loss and no penalty

Example

Simple linear regression: $\mathbb{E}(Y \mid x) = \alpha + \beta x$

Aspects of Model Quality

Predictive performance independent less its Va

MSE = $\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$

► MSE =
$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

Relative performance: weasure $R^2 = 1 - MSE/MSE_0$

$$R^2 = 1 - MSE/MSE_0$$

 \triangleright MSE₀ \rightarrow intercept-only model

Validity of assumptions

- Model equation is correct main assurption
- Normal linear model

$$Y = f(x) + \varepsilon$$
 with $\varepsilon \sim N(0, \sigma^2)$ if assurptions are context, statistical inference is exact

Example

Typical Problems

Missing values

With the model missing values

Outliers

Overfitting

more covariates than suples

Collinearity

but the more dependent, the more difficult it gets to interpret the B's

Categorical Covariates

- One-Hot-Encoding
- Dummy coding has one a du less
- Interpretation?

Example

color Н

Example of One-Hot-Encoding

Linear Regression is Flexible

- 1. Non-linear terms
- 2. Interactions
- 3. Transformations like logarithms

These elements are essential but tricky!

a good in odel in pradice - ando forest - see the transformations in the ML mostels creak a LM from them, almost as good asML but interpretable

Non-Linear Terms

Interactions

Additivity of effects not always realistic

$$\mathbb{E}(Y \mid \mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

- Adding interaction terms brings necessary flexibility → more parameters
- Interaction between features X and Z
 - Multiplication (for categoricals?)
 - ► For categorical Z, effects of X are calculated by level of Z
 - Like separate models per level of Z

Interactions can lead to a lot of parameters fast

Carat and color

Transformations of Covariates

Examples

- Dummy variables for categoricals
- Decorrelation
- Logarithms against outliers

Effects are interpreted for transformed covariates

Logarithmic Covariates

- $\mathbb{E}(Y \mid x) = \alpha + \beta \log(x)$
- Properties of logarithm allow interpretation for original covariate
- ▶ A 1% increase in X is associated with an increase in $\mathbb{E}(Y)$ of about $\beta/100$
- ► Why?

$$\mathbb{E}(Y \mid 1.01x) - \mathbb{E}(Y \mid x) = \alpha + \beta \log(1.01x) - \alpha - \beta \log(x)$$
$$= \beta \log\left(\frac{1.01x}{x}\right)$$
$$= \beta \log(1.01) \approx \beta/100$$

Example

Logarithmic Responses

We see: log-transforming X allows to talk about relative effects in X

Idea: log-transformed Y allows to talk about relative effects on Y Assume for a moment that $\mathbb{E}(\log(Y) \mid x) = \alpha + \beta x \implies \log(\mathbb{E}(Y \mid x)) = \alpha + \beta x$

$$\mathbb{E}(\log(Y) \mid x) = \alpha + \beta x \implies \log(\mathbb{E}(Y \mid x)) = \alpha + \beta x$$

- Multiplicative model $\mathbb{E}(Y \mid x) = e^{\alpha + \beta x}$
- Relative interpretation: "A one-point increase in X is associated with a relative increase in $\mathbb{E}(Y)$ of $100\%(e^{\beta}-1)\approx 100\%\beta$ "
- \triangleright If also $\log(X)$?

But assumption is wrong \rightarrow biased predictions for $Y \rightarrow \mathsf{GLMs}$

Examples

Example: Realistic Model for Diamond Prices

- Response: log(price)
- Covariates: log(carat), color, cut and clarity

Generalized Linear Model (GLM)

(One) extension of linear regression

Model equation

Two equivalent formulations

$$g(\mathbb{E}(Y \mid \mathbf{x})) = \eta(\mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

$$\mathbb{E}(Y \mid \mathbf{x}) = g^{-1}(\eta(\mathbf{x})) = g^{-1}(\beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)})$$

Components

- ightharpoonup Linear function/predictor η
- ▶ Link function g to map $\mathbb{E}(Y \mid x)$ to linear scale
- lacktriangle Distribution of Y conditional on covariates o loss function (unit deviance)

Typical GLMs

Regression	Distribution	${\bf Range\ of\ }Y$	Natural link	Unit deviance
Linear	Normal	$(-\infty,\infty)$	Identity	$(y-\hat{y})^2$
Logistic	Binary	$\{0,1\}$	logit	$-2(y\log(\hat{y})+(1-y)\log(1-\hat{y}))$
Poisson	Poisson	$[0,\infty)$	log	$2(y\log(y/\hat{y})-(y-\hat{y}))$
Gamma	Gamma	$(0,\infty)$	$1/x$ (typical: \log)	$2((y-\hat{y})/\hat{y} - \log(y/\hat{y}))$
Multinomial	Multinomial	$\{C_1,\ldots,C_m\}$	mlogit	$-2\sum_{j=1}^m \mathbb{1}(y=C_j)\log(\hat{y}_j)$

- Predictions?
- Log-Link?
- For binary Y: $\mathbb{E}(Y) = P(Y = 1) = p$
- ► MSE → Deviance
- Losses in ML?

Why GLM, not Linear Regression?

Linearity assumption not always realistic

- 1. Binary Y:

 Jump from 0.5 to 0.6 success probability less impressive than from 0.89 to 0.99
- 2. Count Y: Jump from $\mathbb{E}(Y)$ of 2 to 3 less impressive than from 0.1 to 1.1.
- Right-skewed Y:
 Jump from 1 Mio to 1.1 Mio deemed larger than from 2 Mio to 2.1 Mio.

Logarithmic Y not possible in the first two cases

GLM solves problem by suitable link g

Further advantages?

Interpretation of Effects guided by Link

Identity link

Like linear regression

Log link

Like linear regression with log response

- Multiplicative model for response
- Now in mathematically sound way

Logit link

- Additive model for logit(p)
- logit(p) = $\log(\text{odds}(p)) = \log\left(\frac{p}{1-p}\right)$
- ▶ Remember: $p = P(Y = 1) = \mathbb{E}(Y)$
- Multiplicative model for odds(p)
- Coefficients $e^{\beta} 1 \approx 100\%\beta$ interpreted as odds ratios

Examples with Insurance Claim Data

- 1. Poisson regression for claim counts
- 2. Binary logistic regression for claim (yes/no)

Modeling Large Data

As per 2023

- On normal laptops, we can model datasets up to 8 GB in size (1 Mio iris data)
- Cloud computing allows 1000 times more
- We focus on in-memory situations
 - \rightarrow data fits in RAM

Aspect and example technology

- 1. Data storage \rightarrow Apache Parquet
- 2. Data loading \rightarrow Apache Arrow
- 3. Preprocessing \rightarrow data.table
- 4. Modeling \rightarrow H2O

Example