Automated Machine Learning for Soft Voting in an Ensemble of Tree-based Classifiers

Jungtaek Kim and Seungjin Choi

Machine Learning Group,
Department of Computer Science and Engineering, POSTECH,
77 Cheongam-ro, Nam-gu, Pohang 37673,
Gyeongsangbuk-do, Republic of Korea

June 6, 2018

Table of Contents

Automated Machine Learning

Background

Our Automated Machine Learning System

AutoML Challenge 2018

Automated Machine Learning

- Attempt to find automatically the optimal machine learning model without human intervention.
- ▶ Usually include feature transformation, algorithm selection, and hyperparameter optimization.
- Given a training dataset \mathcal{D}_{train} and a validation dataset \mathcal{D}_{val} , the optimal hyperparameter vector $\boldsymbol{\lambda}^*$ for an automated machine learning system:

$$\lambda^* = \operatorname{AutoML}(\mathcal{D}_{\operatorname{train}}, \mathcal{D}_{\operatorname{val}}, \Lambda)$$

where AutoML is an automated machine learning system and $\lambda \in \Lambda$.

Background: Soft Majority Voting

- ► An ensemble method to construct a classifier using a majority vote of *k* base classifiers.
- Class assignment of soft majority voting classifier:

$$c_i = \arg\max\sum_{j=1}^k w_j \mathbf{p}_i^{(j)}$$

for $1 \leq i \leq n$ where n is the number of instances, arg max returns an index of maximum value in given vector, $w_j \in \mathbb{R} \geq 0$ is a weight of base classifier j, and $\mathbf{p}_i^{(j)}$ is a class probability vector of base classifier j.

Background: Bayesian Optimization

- A useful method to find global minimum or maximum for black-box function.
- ▶ Improve the current solution as iterating the following steps:
 - 1. modeling a surrogate function,
 - 2. acquiring next point that has maximum of acquisition function.
- ▶ In our system, use Gaussian process (GP) regression as surrogate function and GP-UCB as acquisition function.
- GP-UCB for a minimization case:

$$a_{\text{UCB}}(\mathbf{x}) = -\mu(\mathbf{x}) + \kappa \sigma(\mathbf{x})$$

where $\mu(\mathbf{x})$ and $\sigma(\mathbf{x})$ are posterior mean and posterior standard deviation functions from GP regression. κ is a balancing hyperparameter for exploitation and exploration.

Our Automated Machine Learning System, mlg.postech

Figure 1: Our automated machine learning system, *mlg.postech*. Voting classifier constructed by three tree-based classifiers: gradient boosting, extra-trees, and random forests classifiers produces predictions, where voting classifier and tree-based classifiers are iteratively optimized by Bayesian optimization for the given time budget.

Our Automated Machine Learning System, mlg.postech

- Written in Python.
- Use scikit-learn and our own Bayesian optimization package.
- Split training dataset to training (0.6) and validation (0.4) sets for Bayesian optimization.
- Optimize six hyperparameters:
 - extra-trees classifier weight/gradient boosting classifier weight for voting classifier,
 - random forests classifier weight/gradient boosting classifier weight for voting classifier,
 - 3. the number of estimators for gradient boosting classifier,
 - 4. the number of estimators for extra-trees classifier,
 - 5. the number of estimators for random forests classifier,
 - 6. maximum depth of gradient boosting classifier.
- Use GP-UCB.

AutoML Challenge 2018

Place	Team	Set 1	Set 2	Set 3	Set 4	Set 5	Average
1	aad_freiburg	0.5533	0.2839	0.3932	0.2635	0.6766	2.8
		(3)	(4)	(1)	(1)	(5)	
2	mlg.postech	0.5418	0.2894	0.3665	0.2005	0.6922	3.8
		(5)	(2)	(2)	(9)	(1)	
3	wlWangl	0.5655	0.4851	0.2829	-0.0886	0.6840	5.4
		(2)	(1)	(5)	(16)	(3)	
	thanhdng	0.5131	0.2256	0.2605	0.2603	0.6777	5.4
		(6)	(8)	(7)	(2)	(4)	
	Malik	0.5085	0.2297	0.2670	0.2413	0.6853	5.4
		(7)	(7)	(6)	(5)	(2)	

Figure 2: AutoML Challenge 2018 result. A normalized area under the ROC curve (AUC) score (upper cell in each row) is computed for each dataset, and a dataset rank (lower cell in each row) is determined by numerical order of the normalized AUC score. Finally, an overall rank is determined by the average rank of five datasets.