Project Proposal: Text Classification using Neural Networks

Problem

Our goal is to develop a system that uses the content of a text (such as a news article) to identify its category from a predefined list. For example, given a passage that includes the words "ball" and "bat", we want to identify the text as belonging in the "sports - baseball" category. This is not a task that can be easily hard coded, as words can appear in multiple categories and the frequency of a word, or proximity to certain other words in a category, might be more indicative than the presence of the word alone.

Methods

We will address this problem using a neural network approach and compare the results to other supervised learning algorithms.

For the document preprocessing step, we will perform the following:

- 1) Eliminate all common/uninformative words, such as "and", "from", etc.
- 2) Experiment with various ways of using word counts as feature vectors. For example, a document could be represented by a vector counting the number of times each of the top 2000 words in the training set appear.⁷
- 3) Reduce the dimensionality of these vectors (using the DF method, CF-DF, etc.¹). Once we have reduced features, we will train our neural network using a backpropagation technique², where we will label feature vectors with their corresponding category and adjust weights of the network accordingly. The output of the network will be a classification vector in which the nth position indicates the relative likelihood of the input belonging to the nth category. We will compare the performance of our neural network with a Naive Bayes³ approach, a decision tree approach, and a supervised SVM approach, which may be more efficient considering the dimensionality of our data⁶. Our goal is to pinpoint the top-performing combination of supervised learning approach and dimensionality reduction technique.

Data Sets

We will incorporate the following dataset of approx. 20,000 newsgroup documents organized into 20 topic groups. The groups include different sports, medicine, technology, politics, etc. http://gwone.com/~jason/20Newsgroups/

In addition, we will use a list of the most common words in the English language, most likely to remove the top 500-1000 from our text during preprocessing.

http://www.wordfrequency.info/free.asp?s=y

Milestone

By the milestone, we will have all of the data preprocessed according to our needs and have a functional neural network classifier. Moving forwards, we will implement the other supervised learning approaches for comparison.

Sources

- [1] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=765752
- [2] http://neuralnetworksanddeeplearning.com/chap2.html
- [3] https://web.stanford.edu/class/cs124/lec/naivebayes.pdf
- [4] http://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf
- [5] http://courses.unt.edu/ruiz/Publications/asis-sigcr8.pdf
- [6] http://link.springer.com/chapter/10.1007%2FBFb0026683
- [7] http://web.mit.edu/6.863/www/fall2012/projects/writeups/newspaper-article-classifier.pdf