Multi-dimensional Femtosecond-laser induced dynamics of CO on metals:

ACCOUNTING FOR ELECTRONIC FRICTION AND SURFACE MOTION WITH COMBINED MODELS

Robert Scholz¹, Peter Saalfrank¹, Ivor Lončarić², Jean Cristophe Tremblay³, Gernot Füchsel³, and Gereon Floß¹

¹Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany ²Ruder Bošković Institute, Div. of Theor. Physics, Bijenička cesta 54, 10000 Zagreb, Croatia ³Freie Universität, Inst. für Chemie und Biochemie, Takustr. 3, 14195 Berlin, Germany

Introduction

Motivation

- Aim: gain precise understanding of adsorbate bonding on metals ⇒ Important for Catalysis
- Why femtosecond(fs)-lasers?
- -produce non-equilibrium 2-T-states ⇒ different than normal heating
- -further **tool** besides STM and scattering -direct future applications possible \Rightarrow "femtochemistry"[1]
- Why CO/Ru(001) and CO/Cu(100)?
- -both are well studied **model systems**
- -recently, interesting **fs-laser experiments**[2][3]
- -also, **ab-initio** based **6-dim. potentials** available [4][5]

How do fs-Lasers affect Adsorbate-Metal Systems?

Desorption

iffusion (and possibly Reactions)

- **Electron-phonon coupling**
- **Electronic friction**
 - Phonon-adsorbate interaction

high

Fermi-Dirac-Distribution

t/ps

- only **electrons** of metal **absorb laser** Af(E)
- electron-hole pairs thermalize fast
- ⇒ "hot" Fermi-Dirac-distribution • electrons transfer energy to ion lattice,
- via 1 electron-phonon coupling
- equilibration within ps-timescale
- \Rightarrow Thus, for few ps **two temperatures**:
 - $-T_{\rm el}$ electron temperature
 - $-T_{\rm ph}$ phonon temperature
- both can **couple** to adsorbed **molecule**
- low electron heat **capacity** \Rightarrow $T_{\rm el}$ higher

Femtochemistry example

....low T_{el}

 T_{el} (Ru)

 $_{---}\ T_{ph}\left(Ru\right) |_{I}$

fs-Laser

Ru TTM

depth z

Electronic Friction: Langevin Dynamics [7] and

Force on

Atom *k*

Local Density Friction Approximation (LDFA)[8] • the Langevin equation of motion, a stochastical differential equation:

Potential for CO/Ru(001)

• simulates **interaction** of **electrons** with **phonons** • electron and phonon heat

 $= -\underline{\nabla}_k V(\underline{r}_1, \underline{r}_2) - \eta_{\mathrm{el},k}(\underline{r}_k) \frac{a\underline{r}_k}{dt} + \underline{R}_{\mathrm{el},k}(t).$ Friction force Random force Force due

to PES slows movement from e-h pairs • describes movement of CO and interaction with electron-hole pairs (friction and excitation)

0.150

0.125

0.100

0.075 ्रे

0.025

Potential for CO/Cu(100)

capacities $C_{\rm el}$ and $C_{\rm ph}$

 \bullet elec. heat conductivity κ

• elec.-phonon coupling g

• laser source term S(z,t)

• Local Density Friction Approx. (LDFA): ab-initio model that gives friction coefficients $\eta_{el,k}$

Models and Methods

Basis of the Dynamics: the Six-dimensional Potential Energy Surfaces (PES)[4][5]

Two-Temperature Model (2TM)[6]

 $C_{\rm el} \frac{\partial T_{\rm el}}{\partial t} = \frac{\partial}{\partial z} \kappa \frac{\partial}{\partial z} T_{\rm el} - g(T_{\rm el} - T_{\rm ph}) + S(z, t),$ $C_{\rm ph} \frac{\partial T_{\rm ph}}{\partial t} = g(T_{\rm el} - T_{\rm ph}).$

and laser \Rightarrow gives $T_{\rm el}$ and $T_{\rm ph}$ as f(z,t)

• **precomputed** with DFT (GGA)

⇒ many trajectories possible

• but: surface frozen \Rightarrow **no phonons**

• analytical \Rightarrow very fast

• all **six dimensions** of the adsorbate (3)

- -Atom k embedded in free electron gas with density of bare surface at current position \underline{r}_k
- Random forces $\underline{R}_{el,k}$: white noise, dependent on both $\eta_{el,k}$ (from LDFA) and T_{el} (from 2TM)

Inclusion of Phonons: Generalized Langevin Oscillator(GLO)-model[9]

- influence of **phonons** effectifely **modeled** (**augments frozen surface**)
- entire surface understood as 3D oscillator (coords. \underline{r}_s , mass 1 atom)
- coupling to molecule via shifting: $V_{\text{GLO}}(\underline{r}_{\text{C}},\underline{r}_{\text{O}};\underline{r}_{s}) = V(\underline{r}_{\text{C}} \underline{r}_{s},\underline{r}_{\text{O}} \underline{r}_{s})$
- additionally coupled to **ghost oscillator** \underline{r}_q , **models** influence of **bulk** -ghost oscillator is subject to **friction** η_{ph} and **random forces** $\underline{\mathbf{R}}_{ph}(T_{ph})$

Results

Desorption (Data for Ru)

• desorption mainly dur-5 ing first 50 ps (\mathring{A}) \mathbf{N} to experiment • no barrier in PMF MDEF, n=6.99 ■ MDEF-GLO, n=5.17

- fluence dependence of desorption yield close

Diffusion (Data for Ru, but Cu similar)

- typical trajectory: hops between top sites and vibration
- increase in θ -angle when CO moves away from top
- overall, very large diffusion
- also, nonisotropic diffusion behaviour observed:
- dynamical trapping effect at hcp site predicted

Vibrations (Data for Cu)

• Frequency-shift from time-resolved SFG

• Preliminary results from our dynamics

Conclusions

- 6D Langevin dynamics of CO on Ru and Cu
- based on first principles, no "free" parameters
- accounting for (via LDFA) electronic friction, hot electron excitation and (via GLO) substrate motion
- allows for detailed time- and space-resolved insights
- no physisorbed state, molecules desorp directly

Outlook

- better electronic friction ($\eta(T_{\rm el})$) and beyond LDFA) \Rightarrow Long term goal: use tensorial friction (exact)
- non-equilibrium lattice model (NLM) instead 2TM
- simulate other coveages (bigger super cells)
- simulate bigger systems (CO + H; hydrocarbons)
- include interaction between adsorbate molecules

References

- [1] M. Bonn, S. Funk, Ch. Hess, D.N. Denzler et al., Science 285, 1042 (1999).
- [2] M. Dell'Angela, T. Anniyev, M. Beye, R. Coffee et al., Science **339**, 1302 (2013).
- [3] K. Inoue, K. Watanabe, T. Sugimoto et al., Phys. Rev. Lett. 117, 186101 (2016).
- [4] G. Füchsel, J.C. Tremblay, and P. Saalfrank, *J. Chem. Phys.* **141**, 094704 (2014).
- [7] M. Head-Gordon and J.C. Tully, *J. Chem. Phys.* **103**, 10137 (1995).
- [5] R. Marquardt, F. Cuvelier, R.O. Olsen et al., J. Chem. Phys. 132, 074108 (2010).

[6] S.I. Anisimov, B.L. Kapeliovich and T.L. Perelman, Sov. Phys. - JETP 39, 375 (1974). [9] H.F. Busnengo, M.A. Di Césare, W. Dong et al., Phys. Rev. B 72, 125411 (2005).

- [8] J.I. Juaristi, M. Alducin, R. Díez Muiño et al., Phys. Rev. Lett. 100, 116102 (2008).
 - LATEX TikZposter