COMP9414/9814/3411 13s1

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1 Environments

The PEAS model of an Agent

- Performance measure
- Environment
- Actuators
- Sensors

Environments

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1 Environments

Agents as functions

Agents can be evaluated empirically, sometimes analysed mathematically

Agent is a function from percept sequences to actions

Ideal rational agent would pick actions which are expected to maximise the performance measure.

UNSW © Alan Blair, 2013

UNSW

2

© Alan Blair, 2013

3

COMP9414/9814/3411 13s1 Environments 4 COMP9414/9814/3411 13s1 Environments

Example AI Environment - Wumpus World

Environment

- ► Squares adjacent to Wumpus are Smelly
- ► Squares adjacent to Pit are Breezy
- ▶ Glitter iff Gold is in the same square
- Shoot
 - kills Wumpus if you are facing it
 - uses up the only arrow
- ▶ Grab

COMP9414/9814/3411 13s1

• picks up Gold if in same square

SS SSSS Stench S		Breeze	PIT
100 P	S S S S S S S S S S S S S S S S S S S	PIT	Breeze
SS SSS S Stench S		Breeze	
START	Breeze /	PIT	Breeze
1	2	3	4

UNSW © Alan Blair, 2013

Environments

Exploring a Wumpus World

ОК		
OK A	ок	

Wumpus World PEAS description

Performance measure

- ▶ Return with Gold +1000, death -1000
- ► -1 per step, -10 for using the arrow

Actuators

- ► Left, Right, Forward, Grab, Shoot
- Sensors
 - ▶ Breeze, Glitter, Stench

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1

Environments

ente

Exploring a Wumpus World

Exploring a Wumpus World

© Alan Blair, 2013

Exploring a Wumpus World

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1

UNSW

Environments

Environments

10

COMP9414/9814/3411 13s1

Environments

11

Exploring a Wumpus World

Exploring a Wumpus World

COMP9414/9814/3411 13s1 Environments 12 COMP9414/9814/3411 13s1 Environments 13

Exploring a Wumpus World

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1 Environments 14 COMP9414/9814/3411 13s1 Environments 15

Example: Automated Taxi

Performance measure: safety, reach destination, maximize profits, obey laws, passenger comfort, . . .

Environment: city streets, freeways, traffic, pedestrians, weather, customers, ...

Actuators: steer, accelerate, brake, horn, speak/display, ...

Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS,

Exploring a Wumpus World

UNSW © Alan Blair, 2013

Examples of AI Tasks?

COMP9414/9814/3411 13s1 Environments 16

Environment types

We can classify environments as:

- Fully Observable vs. Partially Observable

- Deterministic vs. Stochastic

- Single-Agent vs. Multi-Agent

- Episodic vs. Sequential

- Static vs. Dynamic

- Discrete vs. Continuous

- Known vs. Unknown

Simulated vs. Situated or Embodied

UNSW ©Alan Blair. 2013

COMP9414/9814/3411 13s1 Environments 18

Environment types

Chess	Wumpus	Dice	Poker	Internet	Robocup
	World	Game		Shopping	Soccer

Fully Observable

Deterministic

Multi-Agent

Episodic

Static

Discrete

Known

Simulated

The real world is (of course) partially observable, stochastic, multi-agent sequential, dynamic, continuous, unknown, situated and embodied.

Environment types

COMP9414/9814/3411 13s1

Fully Observable: percept contains all relevant information about the world

Environments

Deterministic: current state of world uniquely determines the next

Episodic: only the current (or recent) percept is relevant

Static: environment doesn't change while the agent is deliberating

Discrete: finite number of possible percepts/actions

Known: the rules of the game, or physics/dynamics of the environment are known to the agent

Simulated: a separate program is used to simulate an environment, feed percepts to agents, evaluate performance, etc.

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1

Environments

19

Situated and Embodied Cognition

Rodney Brooks 1991:

- Situatedness: The robots are situated in the world they do not deal with abstract descriptions, but with the "here" and "now" of the environment which directly influences the behaviour of the system.
- Embodiment: The robots have bodies and experience the world directly their actions are part of a dynamics with the world, and actions have immediate feedback on the robot's own sensations.

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1 Environments 20 COMP9414/9814/3411 13s1 Environments 2

22

Situated vs. Embodied

- Situated but not Embodied: Airline reservation system:
 - ▶ it deals with thousand of requests per second and its responses vary as its database changes.
 - ▶ but it interacts with the world only through sending and receiving messages.
- Embodied but not Situated: an industrial spray painting robot:
 - does not perceive any aspects of the shape of an object presented to it for painting; simply goes through a pre-programmed series of actions
 - but it has physical extent and its servo routines must correct for its interactions with gravity and noise present in the system.

UNSW © Alan Blair, 2013

COMP9414/9814/3411 13s1 Environments

Summary

- Environments can be classified in terms of whether they are observable, deterministic, single- or multi- agent, episodic, static, discrete, known, simulated.
- The environment type strongly influences the agent design (discussed in the next lecture..)

UNSW © Alan Blair, 2013

State of the art

Which of the following can be done at present?

- Play a decent game of table tennis
- Drive along a curving mountain road
- Drive in the center of Cairo
- Play a decent game of bridge
- Discover and prove a new mathematical theorem
- Write an intentionally funny story
- Give competent legal advice in a specialized area of law
- Translate spoken English into spoken Swedish in real time

UNSW © Alan Blair, 2013