

FIGURE 1

Figure 3

Liver Lineage Model

HUMAN LIVER PROGENITORS

HUMAN ADULTS HEPATOCYTES

Her: PV - partal vela, RD - bile that, HA - heparic artery, SB - sinusoidal craditionium tives the Space of Dissec. Cv - Contal ving. The portal triad will central vein are surrounded by a ingitic which differs from the vaccular

becomen meatheur; we take below

Multicoaxial Bioreactor Design

PLGA Microcarriers for Cells in Bioreactors Porous, Biocompatible, Biodegradable

Physical Analysis of the Liver Acinus

Membrane 'Fouling' Studies

Effect of No Hemoglobin on Oxygen Mass Transfer (0, Gradients)

Clotting factors - 'fouling'
Perflourinated
hydrocarbons are
peroxisome proliferators
Synthetically modified
hemoglobin blood
substitutes that lack
function: cooperativity.

FISUR 9

Multicoaxial Bioreactor Comparison of Conventional and Our

Multicoaxial

Conventional

RESULTS

Hydrodynamic Model

Darcy's Law, $v = -K\nabla P$.

MRI used to determine axial flow

Predicted Pressure Profile and Optimum K_1 and K_2

Average Sinusoidal Blood Flow = 0.01 cm/sec Average Pressure in Sinusoid = 5-10 mm Hg

Membrane 'Fouling' and Adverse Effect on Mass Transfer

Configurations for the Fouling Study Dead-end and Cross Flow

Multicoaxial Bioreactor

Dead-ended Flow Configuration

Direct Dead-ended Flow Configuration

Cross Flow Configuration

Results of the Dead-end and Cross Flow Configurations for the Fouling

Pressue Drop (gpsi)

Results of the Dead-end and Cross Flow

Polypropylene + Cross-flow Configurations for the Fouling Study Polypropylene+ D.E Figure 17 Polysulfone + D-E Clean polypropylene hollow fiber

Incorporated into Multicoaxial Bioreactors Fouling Studies of Woven Vasculature

