OPTICAL DEVICE MEASUREMENT & ANALYSIS SYSTEM

NEON PHOTONICS

System Engineering Laboratory

www.neonphotonics.com

Document Version	0.6
Last Update	2018-12-12
Approved By	Dr. BAE
	samyong.bae@gmail.com
Signature	

REVISION HISTORY

v0.5 (2018-08-25)

- Mounting Jigs Mountable DUT Dimensions Air Lock Mount :
 - added width 50 -150mm
- Mounting Jigs Mountable DUT Dimensions Air Lock Mount :
 - added min width 60
- Mounting Jigs Mountable DUT Dimensions Screw Lock Mount :
 - added min width 5
 - added length 6-150mm
- Mechanical Alignment Part Stage Properties :
 - corrected $\theta y, \theta z$ stroke : $70^{\circ} \rightarrow 16^{\circ}$

v0.6 (2018-12-13)

- Cover
 - unknown \longrightarrow Neon Photonics
- added 'Functions & Purpose of the System' page

I. GENERAL SPECIFICATIONS

Figure 1: Photo of Optical Device Measurement System

Figure 2: GUI of Control SW

Figure 3: Function Diagram of Optical Device Measurement System

A. System Configuration

- Control PC & SW
 - PC: Windows 7 x86, 4GB RAM, 23" LCD Monitor
 - SW: GUI, Motion Control, Camera Control, Automatic Align & Measurement
- Optical Device Measurement System
 - DUT/FAB Mount Jig Part
 - Mechanical Alignment Part
 - Optical Measurement Part
- Data Server
 - Linux x64, 4GB RAM, 23" LCD Monitor
 - DBMS Service
 - Web Service
 - WDM Analysis Service

B. Available DUTs (Measurement & Analysis)

- O-Band 4 channel CWDM MUX & DeMUX chip
- O-Band 4 channel DWDM chip
- O/E-Band 8 channel CWDM MUX & DeMUX chip (optional)
- O/E/C/L-Band 4/16/40 channel DWDM chip (optional)

C. Output Data & File Format

- Discrete spectra of transmittance of all DUT channels
- Horizontal tab (ASCII code 0x09) separated text file format

D. WDM Analysis Service Outputs

- Peak Insertion Loss, Peak Wavelength
 - Maximum transmitted point of each channel
- Bandwidth Min/Max Insertion Loss
 - Min/max transmitted point in the pass bandwidth of each channel
- Crosstalk (Adjacent/Total/Non-Adjacent)

- Ratio of maximum transmitted power of other channel wavelength to the peak power of measured channel
- Center Wavelength
 - Central wavelength of the channel calculated with 3dB pass band
- Pass Band (1dB, 3dB)
 - Wavelength range at which the transmittance is larger than 1dB or 3dB

II. Mounting Jigs

A. DUT Mounting Scheme

- Air lock and screw lock mount

Figure 4: DUT Mounting Jig

B. Mountable DUT Dimensions

- Air Lock Mount : Width 5 150mm, Length 60 150mm
- Screw Lock Mount: Width 5 30mm, Length 6 150mm

C. Mountable FAB Dimensions

- Width 1 - 15mm

Figure 5: FAB Mounting Jig

D. FAB Section Angle

- 0°, -8°, +8° from optic axis

Figure 6: FAB Section Angle Selector

III. MECHANICAL ALIGNMENT PART

A. Motion Control Configurations

• Motion Controller: PCI board in the control PC

• Number of Controllable Axis: 16

• Align Stages & Axes

- Left Stage : 6 axes $(X, Y, Z, \theta x, \theta y, \theta z)$ - Right Stage : 6 axes $(X, Y, Z, \theta x, \theta y, \theta z)$

- Center Stage : 1 axes- Camera Stage : 1 axes

(a) Left Stage System

(b) Right Stage System

Figure 7: Left & Right Aligner

B. Stage Properties

Axis	Stroke	Mechanical Resolution	Min. Controllable Distance
Χ	20 mm	1.0 μm	0.05 μm
Υ	20 mm	1.0 μm	0.05 μm
Z	70 mm	1.0 μm	0.05 μm
θх	16 °	0.003°	0.00015°
θу	16°	0.0032°	0.00016°
θz	16°	0.0032°	0.00016°

^{*}Left and right stages are all the same as each corresponding axis

C. Z-Axis Approach Sensor

- Contact Detection Sensor

D. Vision Cameras

- Top View and Side View (orthogonal to optic axis)

III. OPTICAL MEASUREMENT PART

A. Laser Source

Laser Source Type	Continuous Sweep Tunable Laser Source (TLS)
Wavelength Sweep Range	1240nm – 1380nm
Wavelength Resolution	0.1pm at 1310nm
Wavelength Stability	±2.5pm ¹⁾
Absolute Wavelength Accuracy	±10pm ²⁾³⁾
Wavelength Repeatability	±1.5pm ²⁾
Maximum Sweep Speed	200nm/s
Minimum Sweep Step	0.001nm
Maximum Output Power	+13dBm
Signal To Source Spontaneous Emissions Ratio	70dB/nm ⁴⁾
Operating Temperature	+10°C to +35°C
Operating Humidity	< 80% R.H.
Line Power	AC 100–240V ±10%, 50-60Hz, 280VA max
Trigger Bandwidth	100kHz
GPIB Interface Performance	300kB/s ⁵⁾
GPIB Interface Function Code	SH1, AH1, T6, L4, SR0, RL1, PP0, DC1, DT0, CO. SCPI standard ⁶⁾

- 1) 24 hours at constant temperature ±1K
- 2) Continuous sweep mode, both direction
- 3) Full wavelength range for sweep speed < 50nm/s
- 4) At maximum output power, between 1320nm and 1350nm
- 5) Burst data rate during read of 12001 points
- $6) \ all \ modes \ and \ parameters \ accessible \ via \ GPIB \ interface$

B. Optical Powermeters

Sensor Element	InGaAs Photodiode
Wavelength Range	1250nm – 1650nm
Power Range	-80dBm – +10dBm
Maximum Safe Power	+16dBm
Averaging Time	1μs – 10s
Applicable Fiber Type	Standard SM/MM ≤62.5μm, NA≤0.24
Data Logging Capability	2 buffers/port, 1M samples/buffer
Dynamic Range At Logging Mode	> 63dB ¹⁾
Frequency Response	250kHz ²⁾
(3dB Cutoff Frequency)	ZOUKITZ *
Total Uncertainty	±2.5% ³⁾
Polarization Dependent Responsivity	< ±0.01dB (1250nm to 1580nm) ⁴⁾
Noise Peak-To-Peak	< 7pW ⁵⁾
Noise 2σ	< 0.8nW ⁶⁾
Port Seperation	> 85dB ⁷⁾ (CW)
Return Loss	> 57dB (1280nm to 1580nm)
Line Power	AC 100–240V ±10%, 50/60Hz, 60VA max
Operating Temperature	+5°C to +40°C
Operating Humidity	15% to 95% R.H. (non-condensing)
Warm-up Time	20 minutes
Recommended Recalibration Period	24months

- 1) 0dBm PM Range, 1ms averaging time, ambient temperature 23±5°C, temperature constant within $\pm 1 K$ after zeroing
- 2) 1 μ s averaging time, -10dBm to +10dBm range
- 3) Operating conditions
- Single mode fiber, within one year of calibration
- Spectral FWHM of laser source < 10nm
- Wavelength setting corresponds to laser source wavelength ± 0.4 nm
- 4) Ambient temperature 23±5°C, SMF straight connector
- 5) 1s of averaging time, 300s observation time, ambient temperature $23\pm5^{\circ}\text{C}$

- 6) 100k samples, 0dBm range, 1ms averaging time
- 7) One neighbor port with 0dBm, excluding noise and offset drift

C.	Optical Polarization Controller (Optional)
	(TBD)