

Esercizi di Reti

Università di Verona Imbriani Paolo -VR500437 Professor Damiano Carra

October 30, 2024

Contents

1	Esercizi in classe			
	1.1	Esercizi su indirizzamento		
		1.1.1	Esercizio 1	
		1.1.2	Esercizio 2	
		1.1.3	Esercizio 3	
		1.1.4	Esercizio 4	

1 Esercizi in classe

1.1 Esercizi su indirizzamento

1.1.1 Esercizio 1

Qual'è l'indiizzo di rete se ho il seguente indirizzo IP?

Primo passo: tradurre in binario l'indirizzo e identificare i bit che appartengono al prefisso.

Secondo passo: azzerrare i bit del suffisso:

Scrivere la **subnet mask** con notazione decimale puntata:

1.1.2 Esercizio 2

All'insieme delle 3 LAN è stato assegnato il blocco:

Creare 3 sottoreti per le 3 LAN in modo che abbiano tutte lo stesso numero di hosts.

Primo passo:

Devo allungare il prefisso ma un singolo bit non è sufficiente, con 2 bit ho le seguenti combinazioni:

Ciascun blocco ha un numero di indirizzi pari a $2^6 = 64$. Uso 3 blocchi dei 4 creati per le 3 LAN, e l'ultimo rimane libero per utilizzi futuri.

1.1.3 Esercizio 3

Variante nello specifico \rightarrow LAN ha un numero doppio rispetto alle altre

Una di queste sottoreti andrà alla LAN1. Andiamo a scorporare ulteriormente il suffisso...

1010010 00000101 00000001 10 0000000 →
$$/26$$
 LAN 2 prefisso 1010010 00000101 00000001 11 0000000 → $/26$ LAN 3 prefisso

Da un blocco /24 (256 indirizzi ottengo:

- 1 blocco /25 (128 ind)
- 2 blocchi /26 (64 ind)

$$\begin{array}{c} \text{LAN1} \Longrightarrow 165.5.1.0/25 \\ \text{LAN2} \Longrightarrow 165.5.1.128/26 \\ \text{LAN3} \Longrightarrow 165.5.1.192/26 \end{array}$$

Altre soluzioni ugualmente valide dati i vincoli erano: dare a L1 0, L2 11, L3, 10 oppure dare L0, L2 10, L3 11 ecc.

1.1.4 Esercizio 4

Testo dell'esercizio. Si consideri la seguente rete suddivisa in 5 sottoreti:

Ci sono due indirizzi già assegnati alla rete:

- 101.75.79.255
- 101.75.80.0

Domande

- 1. Qual è il blocco CIDR più piccolo (con il minor numero di indirizzi) che contiene tali indirizzi?
- 2. Dato il blocco \mathbf{CIDR} del blocco precedente, si creano 5 sottoreti con i seguenti vincoli:

- LAN 1: deve essere una sottorete /21
- LAN 2: deve ospitare fino a 1000 host
- LAN 3: deve essere una sottorete /23
- LAN 4: deve ospitare fino a 400 host
- LAN 5: deve ospitare metà host rispetto al blocco iniziale

Prima domanda:

Per prima cosa dobbiamo trovare il prefisso CIDR che può includere entrambi questi indirizzi IP. Converto in binario i due indirizzi e considero solo i bit in comune:

La parte comune è lunga 19 bit. Quindi, il blocco CIDR più piccolo che contiene entrambi gli indirizzi è:

Seconda domanda:

1. La **prima LAN** ha bisogno di una sottorete /21. Per fare ciò basta allungare il prefisso di 2 bit.

In base alla preferenze o al bisogno si potrebbero scegliere le seguenti alternative reti:

2. La **seconda LAN** ha bisogno di 1000 host. Per indirizzare 1000 utenti abbiamo bisogno di 10 bit poiché $2^{10} = 1024$. Quindi la rete sarà un /22. (Poiché se ho 32 bit totali e 10 devo riservarli per gli host, mi rimangono 22 bit per la sottorete.) Un tipo di configurazione che potrei scegliere per la sottorete potrebbe essere:

Ma ce ne sono molteplici per questo caso.

3. La **terza LAN** deve essere una sottorete /23. Anche qua ci basta allungare il prefisso di 1 bit.

- 4. Per la **quarta LAN** la procedura è la stessa della seconda LAN solo che in questo caso per indirizzare 400 host basterà riservare 9 bit \rightarrow $2^9 = 512$.
- 5. Per la **quinta LAN** la procedura è la stessa della seconda LAN. In questo caso se il blocco iniziale doveva ospitare 2^{32-19} host, ovvero 8912 ora se dobbiamo ospitarne la metà ovvero 4096 dovremmo avere bisogno di una sottorete /20.