Lecture Notes

CS 417 - DISTRIBUTED SYSTEMS

Week 2: Part 3 Examples of RPC Systems

Paul Krzyzanowski

© 2021 Paul Krzyzanowski. No part of this content, may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

Overview of RPC Systems & Web Services

Remote Procedure Calls

Remote Objects

Web Services

ONC (Sun) RPC

ONC (Sun) RPC

- RPC for Unix System V, Linux, BSD, macOS
 - ONC = Open Network Computing
 - Created by Sun
 - RFC 1831 (1995), RFC 5531 (2009)
 - Remains in use mostly because of NFS (Network File System)

Interfaces defined in an Interface Definition Language (IDL)

IDL compiler is rpcgen

Sample IDL file

name.x

```
program GETNAME
    version GET VERS {
        long GET ID(string<50>) = 1;
        string GET ADDR(long) = 2;
    } = 1; /* version */
    version GET VERS2 {
        long GET ID(string<50>) = 1;
        string GET ADDR(string<128>) = 2;
    } = 2; /* version */
} = 0x31223456;
```

Why is versioning important?

Interface definition: version 2

rpcgen

rpcgen name.x

produces:

name.h header

name_svc.c server skeleton (stub)

name_clnt.cclient stub (proxy)

[name_xdr.c] optional XDR conversion routines

- Function names derived from IDL function names and version numbers.
- Client gets pointer to result
 - Allows it to identify failed RPC (null return)
 - Reminder: C doesn't have exceptions!

What goes on in the system: server

Start server

- Server skeleton creates a socket and binds any available local port to it
- Calls a function in the RPC library:
 - svc_register to register program #, port #, protocol (TCP/UDP)
 - Contacts the port mapper, rpcbind:
 - Name server
 - Keeps track of {program #, version #, protocol} → port # bindings
- Server then listens and waits to accept connections

What goes on in the system: client

Client calls *clnt_create* with:

- Name of server
- Program #
- Version #
- Protocol (TCP or UDP)

clnt_create contacts port mapper on that server to get the port for that interface

early binding – done once, not per procedure call

Communications

- Marshaling to XDR format (eXternal Data Representation)
 - Binary format using implicit typing

ONC RPC Advantages

- Don't worry about getting a unique transport address (port)
 - But with you need a unique program number per server
 - Greater portability
- Transport independent
 - Protocol can be selected at run-time
- Application does not have to deal with maintaining message boundaries, fragmentation, reassembly
- Applications need to know only one transport address
 - Port mapper (rpcbind process)
- Function call model can be used instead of send/receive
- Versioning support between client & server

DCE RPC

http://www.opengroup.org/dce/

DCE RPC

- Similar to ONC RPC
- Interfaces written in an Interface Definition Notation (IDN)
 - Definitions look like function prototypes
- Run-time libraries
 - One for TCP/IP and one for UDP/IP
- Authenticated RPC support with DCE security services
- Integration with DCE directory services to locate servers

Unique IDs

ONC RPC required a programmer to pick a "unique" 32-bit number

DCE: get unique ID with the <u>uuidgen</u> command

- Generates prototype IDN file with a 128-bit Unique Universal ID (UUID)
- 10-byte timestamp with version number
- 6-byte node identifier (ethernet address on ethernet systems)

IDN compiler

Similar to rpcgen:

Generates header, client stub, and server skeleton

Service lookup

Sun RPC requires client to know name of server

DCE allows several machines to be organized into an administrative entity cell (collection of machines, files, users)

Cell directory server

Each machine communicates with it for cell services information

DCE service lookup

Request service lookup from cell directory server

Return server machine name

DCE service lookup

Connect to endpoint mapper service and get port binding from this local name server

February 8, 2021 © 2021 Paul Krzyzanowski 16

DCE service lookup

Connect to service and request remote procedure execution

Marshalling

Standard formats for data

NDR: Network Data Representation

Goal

- Multi-canonical approach to data conversion
 - Fixed set of alternate representations
 - Byte order, character sets, and floating-point representation can assume one of several forms
 - Sender can (hopefully) use native format
 - Receiver may have to convert

What's Good

- DCE RPC improved Sun RPC
 - Universally Unique ID (UUID)
 - Multi-canonical marshalling format
 - Cell of machines with a cell directory server
 - No need to know which machine provides a service

The next generation of RPCs

Distributed objects: support for object-oriented languages

DOA: Distributed Object Architecture

Microsoft COM+ (DCOM)

Microsoft DCOM/COM+

COM+: introduced with Windows 2000

 Unified COM and DCOM plus support for transactions, resource pooling, publish-subscribe communication

Extends Component Object Model (COM) to allow objects to communicate between machines

Activation on server

Service Control Manager (SCM)

- Started at system boot. Functions as <u>RPC server</u>
- Maintains database of installed services
- Starts services on system startup or on demand
- Requests creation of object on server

Surrogate process runs components: dllhost.exe

Process that loads DLL-based COM objects

One surrogate can handle multiple clients simultaneously

Beneath COM+

Data transfer and function invocation via Object RPC (ORPC)

Small extension of the DCE RPC protocol

Standard DCE RPC messages plus:

- Interface pointer identifier (IPID)
 - Identifies interface and object where the call will be processed
 - Referrals: can pass remote object references
- Versioning & extensibility information

Marshalling

- Marshalling mechanism: NDR same Network Data Representation used by DCE RPC
 - One new data type added: represents a marshaled interface
 - Allows one to pass interfaces to objects

- Remember: NDR is multi-canonical
 - Efficient when both systems have the same architecture

MIDL

MIDL = Microsoft Interface Definition Language

MIDL files are compiled with an IDL compiler

DCE IDN + object definitions

Generates C++ code for marshalling, unmarshalling, & stubs

- Client side is called the proxy
- Server side is called the stub

Both are COM objects that are loaded by the COM libraries as needed

COM+ Distributed Garbage Collection

Object lifetime controlled by remote reference counting

- RemAddRef, RemRelease calls
- Object elided when reference count = 0

COM+ Distributed Garbage Collection

Abnormal client termination

- Insufficient RemRelease messages sent to server
- Object will not be deleted

In addition to reference counting:

Client Pinging

- Server has pingPeriod, numPingsToTimeOut
- Relies on client to ping
 - background process sends ping set IDs of all remote objects on server
- If ping period expires with no pings received, all references are cleared

Microsoft DCOM/COM+ Contributions

- Fits into Microsoft COM model
- Support for references to instantiated objects
- Generic server hosts dynamically loaded objects
 - Requires unloading objects (dealing with dead clients)
 - Reference counting and pinging
- But... COM+ was a Microsoft-only solution
 - And it did not work well across firewalls because of dynamic ports

Java RMI

Java RMI

Java language had no mechanism for invoking remote methods

- 1995: Sun added extension
 - Remote Method Invocation (RMI)
 - Allow programmer to create distributed applications where methods of remote objects can be invoked from other JVMs

RMI components

Client

Invokes method on remote object

<u>Server</u>

Process that owns the remote object

Object registry

Name server that relates objects with names

Interoperability

RMI is built for Java only!

- No goal of OS interoperability
- No language interoperability
- No architecture interoperability

No need for external data representation

All sides run a JVM

Benefit: simple and clean design

RMI similarities

Similar to local objects

- References to remote objects can be passed as parameters (not as pointers, of course)
 - You can execute methods on a remote object

Objects can be passed as parameters to remote methods

- Object can be cast to any of the set of interfaces supported by the implementation
 - Operations can be invoked on these objects

RMI differences

- Objects (parameters or return data) passed by value
 - Changes will visible only locally
- Remote objects are passed by reference
 - Not by copying remote implementation
 - The "reference" is not a pointer. It's a data structure:{ IP address, port, time, object #, interface of remote object }
- RMI generates extra exceptions

Classes to support RMI

remote class:

- One whose instances can be used remotely
- Within its address space: regular object
- Other address spaces:
 - Remote methods can be referenced via an object handle

serializable class:

- Object that can be marshaled
- Support serialization of parameters or return values
- If a parameter is a remote object, only the object handle is copied

Classes to support RMI

- remote class:
 - One whose iristances can be used remotely
 - Within its address spaneeded for remote objects
 - Other address spaces.
 - Remote methods can be referenced via an object handle
- serializable clas
 - Object that can be marshaled
 - If object is passed as paneededofor parameters remote method invocation, the value will be copied from one address space to another
 - If remote object is passed, only the object handle is copied between address spaces

Stub & Skeleton Generation

- Automatic stub generation since Java 1.5
 - Need stubs and skeletons for the remote interfaces
 - Automatically built from java files
 - Pre 1.5 (still supported) generated by separate compiler: rmic

- Auto-generated code:
 - Skeleton
 - Server-side code that calls the actual remote object implementation
 - Stub
 - Client-side proxy for the remote object
 - Communicates method invocations on remote objects to the server

Naming service

We need to look an object up by name

Get back a remote object reference to perform remote object invocations

Object registry does this: rmiregistry running on the server

Server

Register object(s) with Object Registry

```
Stuff obj = new Stuff();
Naming.bind("MyStuff", obj);
```

Client

Client contacts rmiregistry to look up the name

```
MyInterface test = (MyInterface)
    Naming.lookup("rmi://www.pk.org/MyStuff");
```

rmiregistry service returns a remote object reference.

lookup method gives reference to local stub.

The stub now knows where to send requests

Invoke remote method(s):

```
test.func(1, 2, "hi");
```

Java RMI infrastructure

RMI Distributed Garbage Collection

- Lease-based garbage collection
 - Two operations: dirty and clean

- Local JVM sends a dirty call to the server JVM when the object is in use
 - The dirty call is refreshed based on the lease time given by the server
- Local JVM sends a clean call when there are no more local references to the object

Unlike DCOM:
 no incrementing/decrementing of references

Web Services

From RPC to Web Services

From Web Browsing to Web Services

- Web browser:
 - Dominant model for user interaction on the Internet

- Not good for programmatic access to data or manipulating data
 - UI is a major component of the content
 - Site scraping is a pain!
- We wanted
 - Remotely hosted services that programs can use
 - Machine-to-machine communication

Web Services

- We wanted
 - Remotely hosted services that programs can use
 - Machine-to-machine communication
- Problems
 - Web pages are presentation-focused
 - Traditional RPC solutions usually used a range of ports
 - And we need more than just RPC sometimes
 - Many RPC systems didn't work well across languages
 - Firewalls restrict ports & may inspect the protocol
 - No support for load balancing

RPC Had Problems

Distributed objects mostly ended up in intranets of homogenous systems and low latency networks

- Interoperability different languages, OSes, hardware
- Transparency not really there
 - Memory access, partial failure
- Firewalls dynamic ports
- State load balancing, resources
- No group communication no replication
- No asynchronous messaging
 - Large streaming responses not possible
 - Notifications of delays not possibly
 - No subscribe-publish models

Web Services

Set of protocols by which services can be published, discovered, and used in a technology neutral form

Language & architecture independent

- Applications will typically invoke multiple remote services
 - Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA)

SOA = Programming model

- App is integration of network-accessible services (components)
- Each service has a well-defined interface
- Components are unassociated & loosely coupled

Neither service depends on the other: all are mutually independent

Neither service needs to know about the internal structure of the others

Benefits of SOA

Autonomous modules

- Each module does one thing well
- Supports reuse of modules across applications

Loose coupling

- Requires minimal knowledge don't need to know implementation
- Migration: Services can be located and relocated on any servers
- Scalability: new services can be added/removed on demand
 ... and on different servers or load balanced
- Updates: Individual services can be replaced without interruption

General Principles of Web Services

- Coarse-grained
 - Usually few operations & large messages
- Platform neutral
 - Messages don't rely on the underlying language, OS, or hardware
 - Standardized protocols & data formats
 - Payloads are text (XML or JSON)
- Message-oriented
 - Communicate by exchanging messages
- HTTP often used for transport
 - Use existing infrastructure: web servers, authentication, encryption, firewalls, load-balancers

Web Services vs. Distributed Objects

Web Services	Distributed Objects
Document Oriented Exchange documents	 Object Oriented Instantiate remote objects Request operations on a remote object Receive results Eventually release the object
 Document design is the key Interfaces are just a way to pass documents 	 Interface design is the key Data structures just package data
 Stateless computing State is contained within the documents that are exchanged (e.g., customer ID) 	Stateful computing Remote object maintains state

XML RPC

Origins

- Born: early 1998
- Data marshaled into XML messages
 - All request and responses are human-readable XML
- Explicit typing
- Transport over HTTP protocol
 - Solves firewall issues
- No IDL compiler support for most languages
 - Lots of support libraries for other languages
 - Great support in some languages those that support introspection (Python, Perl)
- Example: WordPress uses XML-RPC

XML-RPC example

XML-RPC data types

- int
- string
- boolean
- double
- dateTime.iso8601
- base64
- array
- struct

Assessment

- Simple (spec about 7 pages)
- Humble goals
- Good language support
 - Little/no function call transparency for some languages
- No garbage collection, remote object references, etc.
 - Focus is on data messaging over HTTP transport
- Little industry support (Apple, Microsoft, Oracle, ...)
 - Mostly grassroots and open source

SOAP

SOAP origins

(Simple) (Object) Access Protocol

- Since 1998 (latest: v1.2 April 2007)
- Started with strong Microsoft & IBM support
- Continues where XML-RPC left off:
 - XML-RPC is a 1998 simplified subset of SOAP
 - user defined data types
 - ability to specify the recipient
 - message specific processing control
 - and more …

SOAP

- Stateless messaging model
- Basic facility is used to build other interaction models
 - Request-response (RPC)
 - Request-multiple response
 - Asynchronous notification
- Objects marshaled and unmarshaled to SOAP-format XML
 - Usually sent over HTTP
- Like XML-RPC, SOAP is a messaging format
 - No garbage collection or object references
 - Does not define transport
 - Does not define stub generation

SOAP Web Services and WSDL

- Web Services Description Language
 - Analogous to an IDL

- A WSDL document describes a set of services
 - Name, operations, parameters, where to send requests
 - Goal is that organizations will exchange WSDL documents
 - If you get WSDL document, you can feed it to a program that will generate software to send and receive SOAP messages

WSDL Structure

```
<definitions>
 <types>
     data type used by web service: defined via XML Schema syntax
 </types>
  <message>
     describes data elements of operations: parameters
 </message>
 <portType>
     describes service: operations and messages involved
 </portType>
  <br/>binding>
     defines message format & protocol details for each port
 </binding>
</definitions>
```

Java Web Services

What do we do with WSDL?

It's an IDL - not meant for human consumption

JAX-WS: Java API for XML Web Services

Lots of them! We'll look at one

- JAX-WS (evolved from earlier JAX-RPC)
 - Java API for XML-based Web-Service messaging & RPCs
 - Invoke a Java-based web service using Java RMI
 - Interoperability is a goal
 - Use SOAP & WSDL
 - Java not required on the other side (client or server)

- Service
 - Defined to clients via a WSDL document

JAX-WS: Creating an RPC Endpoint

- Server
 - Define an interface (Java interface)
 - Implement the service
 - Create a publisher
 - Creates an instance of the service and publishes it with a name
- Client
 - Create a proxy (client-side stub)
 - wsimport command takes a WSDL document and creates a stub
 - Write a client that creates an instance of the service and invokes methods on it (calling the stub)

JAX-RPC Execution Steps

- Java client calls a method on a stub
- The stub creates marshals the request into a SOAP message for the web service
- 3. The request is sent to the server.
- Server gets the call and directs it to the framework
- 5. Framework calls the implementation

- 6. The implementation returns results to the framework
- The framework marshals the results into a SOAP message
- 8. The sends the results back to the client stub
- The client stub returns the information to the caller

The future of SOAP?

- Still used but...
 - Required a framework you won't create & parse messages yourself
 - Language support not always great
 - Hard to understand & hard to use in many cases
 - Allegedly complex because "we want our tools to read it, not people"
 unnamed Microsoft employee
 - Heavyweight: XML + verbose messaging strutcture

- Dropped by Google APIs in 2006
- Still used in many places, including Microsoft APIs
- But we wanted something lighter and easier

REST

REST

REpresentational State Transfer

- Stay with the principles of the web
 - Four HTTP commands let you operate on data (a resource):

```
PUT (create)
GET (read)
POST (update)
DELETE (delete)

CRUD: Create, Read, Update, Delete
```

- And a fifth one:
 - OPTIONS (query) determine options associated with a resource
 - Rarely used ... but it's there
- The URL identifies the resource
- Messages contain representation of data (contents)

Resource-oriented services

Blog example

Get a user's blogroll – a list of blogs subscribed by a user
 HTTP GET //myblogs.org/listsubs?user=paul

• To get info about a specific blog (id = 12345):

HTTP GET http://myblogs.org/bloginfo?id=12345

Resource-oriented services

Get parts info

```
HTTP GET //www.parts-depot.com/parts
```

Returns a document containing a list of parts

Resource-oriented services

Get detailed parts info:

```
HTTP GET //www.parts-depot.com/parts/00345
```

Returns a document with information about a specific part

REST vs. RPC Interface Paradigms

Example from wikipedia:

RPC

```
getUser(), addUser(), removeUser(), updateUser(), getLocation(), AddLocation(), removeLocation()
```

```
exampleObject = new ExampleApp("example.com:1234");
exampleObject.getUser();
```

REST

```
http://example.com/users
http://example.com/users/{user}
http://example.com/locations
userResource =
new Resource("http://example.com/users/001");
userResource.get();
```

Examples of REST services

- Various Amazon & Microsoft APIs
- Facebook Graph API
- Yahoo! Search APIs
- Flickr
- Twitter
- Open Zing Services Sirius radio

svc://Radio/ChannelList svc://Radio/ChannelInfo?sid=001-siriushits1&ts=2007091103205

Tesla Cars

POST https://owner-api.teslamotors.com/api/1/vehicles/vehicle_id/command/flash_lights

AJAX

Web Clients: AJAX

- Asynchronous JavaScript And XML
 - Bring web services to web clients (JavaScript)
- Asynchronous
 - Client not blocked while waiting for result
- JavaScript
 - Request can be invoked from JavaScript (using XMLHTTPRequest)
 - JavaScript may also modify the Document Object Model (DOM): the elements of the page: content, attributes, styles, events
- XML
 - Data sent & received as XML ... but JSON encodings can also be used

AJAX & XMLHttpRequest

 Allow Javascript to make HTTP requests and process results (change page without refresh)

```
var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function() {
    // stuff to do when the request is ready
}
ajax.open("GET", "http://poopybrain.com/stuff.txt", true);
ajax.send();
```

- Tell object:
 - Type of request you're making, URL to request
 - Function to call when request is made

AJAX on the Web

AJAX ushered in Web 2.0 – responsive web pages

- Early high-profile AJAX sites:
 - Microsoft Outlook Web Access, Gmail, Google Maps, Writely (Google Docs),
 ...

The End