9.3 Equations and Inequalities with Absolute Values

Equations with Absolute Values

Recall that the absolute value of a number, $|\mathbf{x}|$, represents the distance from 0 for that number. Essentially, it takes any number and turns it positive. If we have an equation involving absolute values, we typically end up with 2 values as answers - why?

Rewriting Absolute Value Equations

If c is some positive number and u is an algebraic expression, then we can rewrite |u| = c as u = c or u = -c.

Example 9.3.1. Solve:

$$|2\mathbf{x} - 1| = 5$$

Example 9.3.2. Solve:

$$2|1 - 3x| - 28 = 0$$

Math 0098 Page 1 of 3

Rewriting Equations with 2 Absolute Values

If $\mathfrak u$ and $\mathfrak v$ are both some algebraic expression, then we can rewrite $|\mathfrak u|=|\mathfrak v|$ as $\mathfrak u=\mathfrak v$ or $\mathfrak u=-\mathfrak v.$

Example 9.3.3. Solve:

$$|2x - 7| = |x + 3|$$

Inequalities with Absolute Values

Inequalities of the form |u| < c

If c is a positive number and u is an algebraic expression, then |u| < c can be rewritten as the compound inequality -c < u < c.

Example 9.3.4. Solve:

$$|\mathbf{x} - 2| < 5$$

Math 0098 Page 2 of 3

Example 9.3.5. Solve:

$$-3|5x - 2| + 20 \ge -19$$

Inequalities of the form |u| > c

If c is a positive number and u is an algebraic expression, then |u|>c can be rewritten as u<-c or u>c.

Example 9.3.6. Solve:

$$|2x - 5| \geqslant 3$$

Math 0098 Page 3 of 3