Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik

Lineare Algebra für Informatik (MA0901)

PD Dr. S. Borgwardt, Dr. R. Brandenberg

Aufgabenblatt 10

Präsenzaufgabe 10.1 (Ganzzahlige Nullstellen von Polynomen)

a) Es sei

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0$$

ein normiertes Polynom mit lauter ganzzahligen Koeffizienten a_i .

Zeigen Sie: Ist x_0 eine ganzzahlige Nullstelle von f, so ist x_0 ein Teiler des konstanten Gliedes a_0 .

Bemerkung: Beim Suchen von ganzzahligen Nullstellen eines solchen Polynoms genügt es also, die (positiven und negativen) Teiler des konstanten Terms a_0 zu testen.

b) Schreiben Sie als Produkt von Linearfaktoren:

$$f(x) = x^6 + 2x^5 + 2x^4 + 2x^3 - 19x^2 - 40x - 20 \in \mathbb{C}[x].$$

Präsenzaufgabe 10.2 (Matrixpotenzen)

a) Es seien $S, D \in K^{n \times n}$ quadratische Matrizen über einem Körper K, sodass S invertierbar ist. Beweisen Sie:

$$\forall k \in \mathbb{N} : \left(SDS^{-1} \right)^k = SD^k S^{-1}$$

b) Es sei
$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
.

- (i) Bestimmen Sie eine invertierbare Matrix S und eine Diagonalmatrix D, sodass $A = SDS^{-1}$ gilt.
- (ii) Geben Sie A^k explizit an.

In welcher Anwendung, die Ihnen am Anfang der Vorlesung vorgestellt wurde, traten Matrixpotenzen auf?

Präsenzaufgabe 10.3 (Diagonale Darstellungsmatrix)

Es seien

$$A := \begin{pmatrix} 2 & 2 & -3 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3} \text{ und } \varphi_A : \mathbb{R}^3 \to \mathbb{R}^3, x \mapsto Ax.$$

- a) Bestimmen Sie die Eigenwerte von A.
- b) Zeigen Sie, dass A diagonalisierbar ist und bestimmen Sie eine Basis B des \mathbb{R}^3 , sodass $D_B(\varphi_A)$ eine Diagonalmatrix ist. Wie lauten die Diagonaleinträge?

Hausaufgabe 10.4 (Polynomfaktorisierung)

Sei $A \in \mathbb{C}^{5 \times 5}$ eine Matrix von der wir nur das charakteristische Polynom kennen:

$$\chi_A(x) = x^5 - 3x^4 - 16x + 48.$$

- a) Schreiben Sie χ_A als Produkt von Linearfaktoren.
- b) Bestimmen Sie alle Eigenwerte von A, sowie deren algebraischen und geometrischen Vielfachheiten. Ist die Matrix A diagonalisierbar?

Hausaufgabe 10.5 (Matrixpotenzen bestimmen)

Für eine reelle Zahl a sei

$$A = \begin{pmatrix} -a & a & 0 \\ 0 & 0 & 0 \\ 0 & -a & a \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Berechnen Sie A^{101} .

Hausaufgabe 10.6 (Eigenwerte, Eigenvektoren, Diagonalisierung - Alte Klausur)

Sei

$$A = \begin{pmatrix} 0 & 1 & 3i \\ -1 & 0 & 3 \\ 0 & 0 & i \end{pmatrix} \in \mathbb{C}^{3 \times 3}.$$

- a) Bestimmen Sie das charakteristische Polynom χ_A in faktorisierter Form, und geben Sie die Eigenwerte von A an.
- b) Bestimmen Sie zu allen Eigenwerten λ von A die zugehörigen Eigenräume E_{λ} .
- c) Begründen Sie, dass A diagonalisierbar ist und geben Sie eine invertierbare Matrix S an, so dass $S^{-1}AS$ eine Diagonalmatrix ist.

Hausaufgabe 10.7 (Eigenwerte: wahr/Falsch)

Seien $A, B \in K^{n \times n}$ invertierbare Matrizen, $v \in K^n$ und $\lambda \in K$.

Welche der nachfolgenden Aussagen sind wahr, welche falsch? Geben Sie <u>kurze</u> Begründungen (Beweisskizze / Gegenbeispiel wo angebracht)

- a) Ist λ ein Eigenwert zu A, dann ist $\lambda \neq 0$.
- b) Ist λ ein Eigenwert zu A, dann ist λ auch ein Eigenwert zu A^T .
- c) Ist v ein Eigenvektor zu A, dann ist v auch ein Eigenvektor zu A^T .
- d) Ist λ ein Eigenwert zu A, dann ist $1/\lambda$ ein Eigenwert zu A^{-1}
- e) Ist v ein Eigenvektor zu A und B, dann ist v auch Eigenvektor zu AB.
- f) Ist v ein Eigenvektor zu A und AB, dann ist v auch Eigenvektor zu B.

Abgabe: bis Mittwoch, 29.6.2016, 11:00 Uhr im dafür vorgesehenen Kasten im Untergeschoss.

Verwenden Sie bei Abgabe das auf der Homepage hochgeladene Deckblatt und geben Sie in Zweier- oder Dreiergruppen ab.