

Types de données, preuves

Chapitre 3 - Terminaison des fonctions récursives

Révisions Notion d'ordre bien fondé.

Ordre bien fondé et Terminaison de fonctions

Sommaire

Ordre bien fondé et Terminaison de fonctions

Ordre bien fondé Prouver la terminaison

Exemples d'ordres bien fondés

Mesure Ordre lexicographique Multiensembles (finis)

Comment prouver la terminaison d'une fonction récursive?

Ordre bien fondé

Définition

Considérons A un ensemble quelconque, et < un ordre strict sur A. On le note (A, <).

Exemple: L'ensemble des entiers naturels \mathbb{N} , muni de son ordre usuel <.

Définition

Un ordre strict < sur un ensemble A est bien fondé, s'il n'existe pas de suite infinie décroissante.

Exemple: $(\mathbb{N}, <)$ est un ordre bien fondé.

Ordre bien fondé

Exemples

Question: Quel est l'ordre bien fondé?

- a. $(\mathcal{P}(\mathbb{N}),\subset)$
- b. $(\mathbb{Z}, <)$
- c. $(\mathbb{R}, <)$
- d. $(\Sigma^*, "est un préfixe strict de")$
- e. $(\Sigma^*, ordre lexicographique)$
- où Σ^* désigne l'ensemble des chaînes de caractères.

Sommaire

Ordre bien fondé et Terminaison de fonctions

Ordre bien fondé

Prouver la terminaison

Exemples d'ordres bien fondés

Mesure Ordre lexicographique Multiensembles (finis)

→ À quoi servent les ordres bien fondés?

Terminaison d'une fonction récursive

Prouver la terminaison

À quoi servent les ordres bien fondés?

Méthode

Pour prouver qu'une fonction récursive se termine :

- * Trouver une quantité appartenant à un ensemble A muni d'un ordre bien fondé <
- * Prouver que cette quantité décroit strictement à chaque appel récursif

Remarque : Cette quantité est appelée variant ou convergent est souvent un des paramètres d'appel de la fonction.

Terminaison d'une fonction récursive

Prouver la terminaison

Exemple 1: Prouver la terminaison de la fonction suivante :

```
let rec facto = function
0 -> 1
| n -> n * facto(n-1) ;;
```

Exemple 2: Comment prouver la terminaison de la fonction positif?

```
let rec positif = function
[ ] -> 0
| x :: q -> if x < 0 then positif(q)
else 1 + positif(q) ;;</pre>
```

Sommaire

Ordre bien fondé et Terminaison de fonctions

Ordre bien tondé Prouver la terminaison

Exemples d'ordres bien fondés

Mesure Ordre lexicographique Multiensembles (finis)

À ce stade, nous manquons d'ordres bien fondés!

→ Comment construire de nouveaux ordres bien fondés?

Mesure

Point de départ :

- ► A un ensemble muni d'un ordre bien fondé <A
- B un autre ensemble

Objectif: Nous souhaitons munir B d'un ordre bien fondé.

Ingrédient n° 1: Trouvons une fonction $m: B \rightarrow A$.

La fonction m est appelée une mesure.

Ingrédient n° 2 : Définissons une relation $<_B$ sur l'ensemble B par

$$x <_B y \iff m(x) <_A m(y)$$

Proposition

Alors $<_B$ est un ordre bien fondé sur B.

Mesure - Exemple

Question

Question: Pour prouver la terminaison de la fonction positif ci-contre, quelle mesure utiliseriez-vous?

Sommaire

Ordre bien fondé et Terminaison de fonctions

Ordre bien tondé Prouver la terminaison

Exemples d'ordres bien fondés

Mesure

Ordre lexicographique

Multiensembles (finis`

Ordre lexicographique

Remarque - Caml connaît cet ordre lexicographique!

Question: Qui est l'intrus?

- a. (3,4) < (1,5)
- b. (3, true) > (3, false)
- c. (3,2,1) > (3,2,0)
- d. (3,'a') < (3,'b')

Ordre lexicographique

Définition

Soient $(A, >_A)$ et $(B, >_B)$ deux ensembles munis d'un ordre. L'ordre lexicographique $>_{lex}$ est défini sur $A \times B$ par :

$$(a,b)>_{lex}(a',b')\iff (a>_{\mathcal{A}}a') ext{ ou } ((a=a') ext{ et } (b>_{\mathcal{B}}b'))$$

Remarque - Peut se généraliser pour n'importe quel produit cartésien $A_1 \times A_2 \times \ldots \times A_n$.

Attention - Ne pas confondre avec l'ordre lexicographique sur les chaînes de caractères!

Ordre lexicographique

Proposition

 $Si >_A et >_B sont bien fondés,$

alors $>_{lex}$ est un ordre bien fondé.

Les idées de la preuve

Idées de la preuve.

- Raisonnement par l'absurde : Supposons que >_{lex} n'est pas bien fondé.
- On traduit ce que cela signifie : Il existe une suite infinie décroissante

$$(S): (a_1,b_1) > (a_2,b_2) > \ldots > (a_n,b_n) > (a_{n+1},b_{n+1}) > \ldots$$

 $(A, >_A)$ et $(B, >_B)$ sont bien fondés. On aboutit à une contradiction en montrant que la suite infinie (S) conduit à une suite infinie décroissante sur A ou sur B.

Ordre lexicographique

Application: Terminaison d'une fonction

```
Exemple 1

Justifier la terminaison de cette fonction :

let rec f (x,y) =
   if x=0 || y=0 then 0
   else if x=1 then f(x,y-1)
   else f(x-1,y) ;;

- : int * int -> int = <fun>
```

Ordre lexicographique

Exemple 2 - Fonction d'Achermann

L'exemple le plus célèbre est la fonction d'Ackermann

```
let rec ack = function
(0,y) -> y+1
| (x,0) -> ack(x-1 , 1)
| (x,y) -> ack(x-1, ack(x,y-1)) ;;
```

Pause Culture : Définie en 1928 par W. Ackermann comme exemple de fonction

- qui termine en faire la preuve!
- récursive non récursive primitive (Théorie des langages)

Sommaire

Ordre bien fondé et Terminaison de fonctions

Ordre bien fondé Prouver la terminaison

Exemples d'ordres bien fondés

Mesure Ordre lexicographique Multiensembles (finis)

Lié au Chapitre suivant, sur le problème d'Unification

Multiensembles

Les multiensembles sont des "ensembles" dans lesquels on s'autorise des répétitions.

Exemple

- ► {true, true, false, false, false} ► {0,1,1,2,3,3,3}

L'ordre des éléments dans un multiensemble n'a pas d'importance.

Multiensembles

Nous avons vu (TP n° 1) qu'il est possible de définir un ordre sur les multi-ensembles **finis** d'entiers naturels :

Définition

Si M et N sont deux multi-ensembles tels que $M \neq N$,

- ▶ on calcule l'intersection de M et $N: I = M \cap_m N$.
- ▶ on détermine $X = M \setminus_m I$. Il faut que $X \neq \emptyset$.
- ▶ on détermine $Y = N \setminus_m I$.
- ▶ on regarde si l'élément maximal de X est plus grand que tous les éléments de Y.

Dans ce cas, on dit que N < M.

Multiensembles

Exemple

```
\begin{split} &\{5,3,2\} > \{5,2,2,1\} \\ &\text{En effet, } X = \{3\}, \ Y = \{2,1\}. \end{split}
```

Question: Qui est l'intrus?

- 1. $\{5,3,2\} > \{4,4,4,2,2\}$
- $2. \ \{5,3,2\} > \{5,5\}$
- 3. $\{5,3,2\} > \{5,1,1,1\}$
- $4. \ \{5,3,2\} > \{5,3\}$

Multiensembles

Proposition

Cet ordre sur les multi-ensembles d'entiers naturels (noté $>_{mul}$) est total et **bien fondé**

Application: Dans le prochain chapitre, nous verrons l'algorithme d'Unification (qui sert à l'Inférence de types) et nous prouverons la terminaison de cet algorithme grâce à cet ordre sur les multiensembles.