

Zero-Shot Visual Numerical Reasoning in Dual-Stream Neural Networks

Jessica A.F. Thompson¹, Hannah Sheahan², Tsvetomira Dumbalska¹, Julian Sandbrink¹, Manuela Piazza³, Christopher Summerfield¹ ¹Department of Experimental Psychology, University of Oxford ²Google DeepMind, London, UK ³University of Trento, Trento, Italy

Introduction

Visual scene understanding requires reasoning about the relations among objects—the "structure" of visual scenes. Here we use numerical reasoning as a testbed to study visual relational reasoning in the primate brain.

Research Goals:

- Formalize theory of primate relational reasoning in a neural network model
- Demonstrate that the model can generalize numerical reasoning zero-shot
- Show that it generalizes *because* of the specific neural-inspired features we built in
- Understand how its function and organization relate to visual numerical reasoning in biology

structure man *inside* car man *next to* car structure

Zero-shot numerical reasoning challenges modern AI systems

Numerical Reasoning in the Primate Brain

Hypothesize that relational reasoning enabled by:

Factorized representations of scene contents

and structure in the parallel visual pathways

Efferent copies of action-related signals (e.g.,

Signal integration in posterior parietal cortex

enabling abstractions grounded in action

eye movements) provide relational information,

Beyond the ventral stream:

- Patients with damage to parietal regions like the intraparietal sulcus show deficits in numerical cognition.
- Electrophysiology in monkeys and fMRI in humans have revealed topographic representations of visual number in posterior parietal cortex
- Eye-movements contain contentinvariant information about the structure of visual scenes

Model

Simulating Foveated Glimpses

Saccadic targets (fixation points) are sampled from a saliency map of the image, subject to the constraint that all items are glimpsed at least once.

Then we model the retinal-to-cortical transformation as a log-polar transform centered on the fixation point.

Dual-Stream Recurrent Glimpse Network

Model embodies our hypotheses about how the parallel pathways of the primate visual systems and posterior parietal cortex serve zero-shot visual numerical reasoning.

Inspecting Model Performance

Neural and Behavioural Comparisons

Conclusion

Neuro and cognitively-inspired dual-stream neural network:

- Displays zero-shot numerical reasoning
- Mirrors behavioural and neural
- signatures of numerical/spatial cognition Makes verified predictions about human

behaviour Evidence for a theory of the role of PPC in visual relational reasoning

References

- Summerfield, C., Luyckx, F., & Sheahan, H. (2020). Structure learning and the posterior parietal cortex. Progress in Neurobiology.
- Viswanathan, P., & Nieder, A. (2017). Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral
- intraparietal area in macaques. European Journal of Neuroscience. Viswanathan, P., & Nieder, A. (2013). Neuronal correlates of a visual "sense of number" in primate parietal and prefrontal cortices.
- PNAS. Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and spatial enumeration processes in the primate parietal cortex. Neuroforum.
- Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition.