Continuocoo ... União AUB. EW I WEAV WEBJ Inturció A 1B = { W | W E A 1 W E B} X = { 0 } 0 { 6 } ~ 0 , de, 6} $\rightarrow 0$ A·B= d K. y I X E A n y & B & Concoli no GÓO Y = { 0, 6} · { c} Y = ({ 0} 0 (6 }) · { c} Ā = {W|WE Z* A W & A} Z= {E, a, ac, aca, ...} Estula de Kleene { ε, e, ee, ... } $A^* = \bigcup_{i=0}^{\infty} A^i$ b () v ding vogen: d E, bv, bv bv,...} 66 v 3°*

-> {c, bvc, bvbvc,...}
{bv}*. {c}

(bv)*· (xx)* mõe oceito brxxbv (1 6 × 1 · 1 × × 3)* móo ouito bubu r () r (150). (RR)*)* noo outo ex ({bv} U (xx))* A= {bv, KK} dEf dbv, xxf lbv, xxf. lbv, xxf. lbvbv, bvxx, xxbv, xxxs A = A° U A' U A² outra soluçõe seia (1643. 2xx)*) 6 Provor mes equivalesces é trobolhoso Jolen tidodes {E}. A - A . {e} J dentidoole A v Ø - A Conf. vogio. $\emptyset \cdot A = \emptyset = A \cdot \emptyset$ (A · B) · C = A · (B · C) Conocatividode (AUB)UC = AU(BUC) anocatividade Distribuição A. (BUC) = A. BUA.C = (oly workat) (ringuém pertence 00 vojo)

f 5

(A · B) · C

= (olf concetinação)

{ w 2 | w & (A · B) n 2 & C }

= (olf concetinação)

{ w 2 | w & {xy | x & A n y & B} n 2 & C }

= (w = xy)

{(xy)2 | x & A n y & B n 2 & C }

= (amocativoloob ob strings)

{ x (y2) | x & A n y & B n 2 & C }

= (v = y2)

{ x v | x & A n v & {y & B n 2 & C }

= (olf concotinação)

{ x v | x & A n v & {y & B n 2 & C }

= (olf concotinação)

{ x v | x & A n v & {B & C }

}

(olf concotinação)

A · (B · C)

A · {E}

= (oly concotinoçóo)

{ xy | x & A ^ y & de}}

= (y = E)

{ x & | x & A}

= (E é elementro neutro do concot string)

{ x | x & A}

= A