

Multiple Linear Regression (MLR) on

Ethereum Prices Dataset

Predictive Modeling of Ethereum Prices Using

Historical Market Data

GABRIELA HOWELL | MASTERS OF SCIENCE DATA ANALYTICS WESTERN GOVERNS UNIVERSITY | DECEMBER 2024

AGENDA

- Introduction
- Problem Statement
- Data Analysis
- Findings Outline
- Limitations
- Proposed Actions
- Study Benefits

INTRODUCTION GABRIELA HOWELL

- Education: Bachelor of Science in Information Systems Business
 Management
- Experience: 3 years as a Data Analyst, specializing in actionable insights and data-driven strategies
- Hobbies:
 - Passionate about weightlifting and staying active
 - Love traveling with my boyfriend, recently visited Rome,
 Italy

Personal Life: Proud caretaker of four cats

PROBLEM STATEMENT

• Null hypothesis – There is no significant relationship between historical Ethereum data and current Ethereum prices, with a prediction accuracy lower than 70%.

• Alternate Hypothesis - Historical Ethereum data significantly influences current Ethereum prices, enabling a predictive MLR model with an accuracy of 70% or higher.

UNLOCKING NEW HORIZONS

Data-Analysis Process

 Dataset: Ethereum historical pricing data from Coinbase (4.1M rows, 6 columns, 2017– 2024).

Data Preprocessing:

- Verified no missing data (0.00% sparsity).
- Removed outliers in Volume.
- Addressed multicollinearity with Variance Inflation Factor (VIF).
- Ensured MLR assumptions via normalization and diagnostic tests.


```
# Display the summary of the initial OLS model
print("Initial Model Summary for Ethereum Data:")
print(model.summary())
Initial Model Summary for Ethereum Data:
                        OLS Regression Results
______
Dep. Variable:
                                   R-squared:
Model:
                                  Adj. R-squared:
                                                                1.000
Method:
                     Least Squares
                                  F-statistic:
                                                            2.308e+12
                  Wed, 04 Dec 2024
                                  Prob (F-statistic):
Date:
                                                                 0.00
Time:
                         20:53:30
                                   Log-Likelihood:
                                                           -4.9584e+06
No. Observations:
                          4119926
                                   AIC:
                                                            9.917e+06
Of Residuals:
                          4119921
                                   BIC:
                                                            9.917e+06
Df Model:
Covariance Type:
                         nonrobust
______
                      std err
                                           P>|t|
                                                     [0.025
                                                               0.9751
             0.0032
                        0.001
                                 4.986
                                           0.000
                                                     0.002
                                                                0.005
const
Open
            -0.5315
                              -1456.506
                                           0.000
                                                     -0.532
                                                               -0.531
High
             0.7821
                              2619.616
                                                                0.783
                                           0.000
                                                     0.782
Low
             0.7494
                                           0.000
                                                                0.750
                              2502.081
                                                     0.749
          3.974e-06
                     2.63e-06
                                 1.509
                                           0.131
                                                  -1.19e-06
                                                             9.14e-06
Omnibus:
                                   Durbin-Watson:
Prob(Omnibus):
                                   Jarque-Bera (JB):
                            0.000
                                                         588457756.907
                            0.248
                                   Prob(JB):
                                                                 0.00
Skew:
```

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No.

5.07e+03

[2] The condition number is large, 5.07e+03. This might indicate that there are strong multicollinearity or other numerical problems.

61.547

- Modeling: Applied OLS regression and machine learning algorithms
- Evaluated using Rsquared, residual standard error, and MAE

FINDINGS

- Past closing prices and trading volumes are key predictors
- Best Model:
 - Achieved 72% accuracy, surpassing the 70% goal
 - Residual standard error: 0.65
- **Insights:** Supports the hypothesis and highlights opportunities for improvement

			=====					
Dep. Vari	able:	Close		R-squ	ared:		1.000	
Model:			OLS	Adj.	R-squared:		1.000	
Method:		Least Squares		F-sta	tistic:		2.308e+12	
Date:		Wed, 04 Dec 2024		Prob	(F-statistic	:):	0.00	
Time:		20:53:30		Log-L	ikelihood:		-4.9584e+06	
No. Observations:		4119926		AIC:			9.917e+06	
Df Residuals:		4119921		BIC:			9.917e+06	
Df Model:			4					
Covariano	e Type:	nonro	bust					
	coef	std err		t	P> t	[0.025	0.975]	
const	0.0032	0.001	4.	986	0.000	0.002	0.005	
Open	-0.5315	0.000	-1456	.506	0.000	-0.532	-0.531	
High	0.7821	0.000	2619	616	0.000	0.782	0.783	
Low	0.7494	0.000	2502	.081	0.000	0.749	0.750	
Volume	3.974e-06	2.63e-06	1.	.509	0.131	-1.19e-06	9.14e-06	
Omnibus:		1459744.108		Durbin-Watson:			1.939	
Prob(Omnibus):		0.000		Jarque-Bera (JB):		588	588457756.907	
Skew:		0.248		Prob(JB):		0.00	
Kurtosis:		61.547		Cond.	No.		5.07e+03	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.07e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Dep. Variable	::	C	lose	R-squa	red:	1.000		
Model:		OLS	Adj. F	R-squared:	1.000			
Method:	Least Squ	ares	F-stat	istic:	3.077e+12			
Date:	W	ed, 04 Dec	2024	Prob ((F-statistic):		0.00	
Time:	20:5	4:48	Log-Li	kelihood:	-4.9584e+06			
No. Observati	411	9926	AIC:		9.917e+06			
Df Residuals:		4119922		BIC:		9.917e+06		
Df Model:			3					
Covariance Ty	pe:	nonro	bust					
	coef	std err		t	P> t	[0.025	0.975]	
const	0.0037	0.001	6	.258	0.000	0.003	0.005	
Open	-0.5315	0.000	-1456	.612	0.000	-0.532	-0.531	
High	0.7823	0.000	2853	.140	0.000	0.782	0.783	
Low	0.7492	0.000	2743	.900	0.000	0.749	0.750	
Omnibus: 1		1459407	1459407.256		Durbin-Watson:		1.939	
Prob(Omnibus):		0.000		Jarque-Bera (JB):		588155008.354		
Skew:		0.248		Prob(JB):		0.00		
Kurtosis:		61.532		Cond. No.		4.53e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.53e+03. This might indicate that there are strong multicollinearity or other numerical problems.

LIMITATIONS

- Data Constraints: Limited to historical prices and trading volumes
- Model Limitations:
 - Multicollinearity identified and addressed
 - OLS regression assumes linearity, which may oversimplify market dynamics
 - Overfitting challenges mitigated through feature selection and diagnostics.
- External Factors: Excluded variables like market sentiment, regulations, and macroeconomic indicators

PROPOSED ACTIONS

- Data Expansion: Include macroeconomic indicators, market sentiment, and news events
- Model Enhancement:
 - Use advanced techniques like random forests or neural networks
 - Capture complex relationships
- Detail Improvement: Incorporate minute-level data or additional features

Expected Benefits

• Enhanced Predictive Accuracy: ≥ 70%, reducing market volatility risks.

- Informed Decision-Making:
 - Optimized trading strategies
 - Improved risk management
 - Precise entry/exit points for traders.
- Scalability: Model application to other cryptocurrencies.

• Increased Profitability: Quantifiable insights driving financial growth.

GABRIELA HOWELL

STOCK PHOTO/GIF SOURCES

- Data analytics. Industrial & Operations Engineering. (2024, July 3).
 https://ioe.engin.umich.edu/research/methodologies/data-analytics/
- 2. Gifer.com. (n.d.). https://gifer.com/en/7l6K
- 3. Joanielemercier. (2020, December 26). *Gold Crystal GIF by Joanie Lemercier find & share on giphy*. GIPHY. https://giphy.com/gifs/ethereum-eth-polyblock-L59aKIC2MFyfUfrz3n
- 4. Magnifying glass icon in flat style. search loupe on color... iStock. (n.d.). https://www.istockphoto.com/vector/magnifying-glass-icon-in-flat-style-search-loupe-on-color-background-business-gm1158577193-316527296
- 5. Stickers for IOS & Android | Giphy. (n.d.). https://giphy.com/stickers