# Определения по матану, семестр 4

#### 11 июня 2018 г.

# Содержание

| 1        | Свойство, выполняющееся почти везде                                          | 5 |
|----------|------------------------------------------------------------------------------|---|
| <b>2</b> | Сходимость почти везде                                                       | 5 |
| 3        | Сходимость по мере                                                           | 5 |
| 4        | Теорема Егорова о сходимости почти везде и почти рав-<br>номерной сходимости | 5 |
| 5        | Интеграл ступенчатой функции                                                 | 5 |
| 6        | Интеграл неотрицательной измеримой функции                                   | 6 |
| 7        | Суммируемая функция                                                          | 6 |
| 8        | Интеграл суммируемой функции                                                 | 7 |
| 9        | Произведение мер                                                             | 7 |
| 10       | Теорема Фубини                                                               | 7 |
| 11       | Образ меры при отображении                                                   | 8 |
| 12       | Взвешенный образ меры                                                        | 8 |

| 13 | Плотность одной меры по отношению к другой                                                              | 9              |
|----|---------------------------------------------------------------------------------------------------------|----------------|
| 14 | Заряд, множество положительности         14.1 Заряд                                                     | <b>9</b><br>9  |
| 15 | Сферические координаты в $\mathbb{R}^3$ и в $\mathbb{R}^m$ , их Якобианы                                | 9              |
| 16 | Интегральные неравества Гельдера и Минковского         16.1 Нераветсво Гельдера                         | 10<br>10<br>10 |
| 17 | Интеграл комплекснозначных функции                                                                      | 11             |
| 18 | Пространство $L_p(E,\mu), \ 1 \le p < +\infty$                                                          | 11             |
| 19 | Пространство $L_{\infty}(E,\mu)$                                                                        | 12             |
| 20 | Существенный супремум                                                                                   | 12             |
| 21 | Фундаментальная последовательность, полное пространство         21.1 Фундаментальная последовательность | 12<br>12<br>13 |
| 22 | Плотное множество                                                                                       | 13             |
| 23 | Финитная функция                                                                                        | 13             |
| 24 | Мера Лебега-Стилтьеса                                                                                   | 13             |
| 25 | Функция распределения                                                                                   | 13             |
| 26 | Измеримое множество на простой двумерной поверхности в $\mathbb{R}^3$                                   | 14             |
| 27 | Мера Лебега на простой двумерной поверхности в $\mathbb{R}^3$                                           | 14             |

| 28 | Поверхностный интеграл первого рода                       | 14       |
|----|-----------------------------------------------------------|----------|
| 29 | Кусочно-гладкая поверхность в $\mathbb{R}^3$              | 14       |
| 30 | Гильбертово пространство                                  | 14       |
| 31 | Ортогональный ряд                                         | 15       |
| 32 | Сходящийся ряд в Гильбертовом пространстве                | 15       |
| 33 | Ортогональное семейство векторов                          | 15       |
| 34 | Ортонормированное семейство векторов                      | 15       |
| 35 | Коффициенты Фурье                                         | 15       |
| 36 | Ряд Фурье в Гильбертовом пространстве                     | 16       |
| 37 | Базис, полная, замкнутая ОС                               | 16       |
| 38 | Сторона поверхности                                       | 16       |
| 39 | Задание стороны поверхности с помощью касательных реперов | 16       |
| 40 | Интеграл II рода                                          | 17       |
| 41 | Ориентация контура, согласованная со стороной поверхности | 17       |
| 42 | Тригонометрический ряд                                    | 18       |
| 43 | Коэффициенты Фурье функции                                | 18       |
| 44 | Ядро Дирихле и Фейера           44.1 Ядро Дирихле         | 19<br>19 |

| 45 Ротор, дивергенция векторного поля               | 19 |
|-----------------------------------------------------|----|
| 46 Соленоидальное векторное поле                    | 19 |
| 47 Бескоординатное определение ротора и дивергенции | 19 |
| 48 Свертка                                          | 20 |
| 49 Аппроксимативная единица. (а. е.)                | 20 |
| 50 Усиленная аппроксимативная единица.              | 20 |
| 51 Метод суммирования средними арифметическими      | 20 |
| 52 Суммы Фейера.                                    | 21 |
| 53 Преобразование Фурье.                            | 21 |
| 54 Свертка в $L^1(\mathbb{R}^m)$ .                  | 21 |
| 55 Интеграл Фурье, частичный интеграл Фурье. TODO   | 21 |
| 56 Несобственный интеграл по мере Deprecated        | 21 |
| $57~L_{loc}~{ m Deprecated}$                        | 22 |

# 1 Свойство, выполняющееся почти везде

 $< X, \mathbb{A}, \mu >$  - пространство с мерой, и  $\omega(x)$  – утверждение, зависящее от точки x.

 $E:=\{x:\omega(x)$  — ложно $\}$  и  $\mu E=0$ . Тогда говорят, что  $\omega(x)$  верно при почти всех (п.в.) x.

#### 2 Сходимость почти везде

 $< X, \mathbb{A}, \mu >$  - пространство с мерой, и  $f_n, f: X \to \overline{\mathbb{R}}$ . Говорим, что  $f_n \to f(x)$  почти везде, если  $\{x: f_n(x) \not\to f(x)\}$  измеримо и имеет меру 0.

#### 3 Сходимость по мере

 $< X, \mathbb{A}, \mu > -$  пространство с мерой  $f_n, f: X \to \overline{\mathbb{R}}$  - п.в. конечны, измеримы Говорят, что  $f_n$  сходится к f по мере  $\mu$  (при  $n \to +\infty$ ) (обозначается  $f_n \stackrel{\mu}{\Rightarrow} f$ ) если  $\forall \epsilon > 0$   $\mu(X(|f_n - f| > \epsilon)) \stackrel{n \to +\infty}{\to} 0$ 

# 4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 $< X, A, \mu >$  - пространство с мерой,  $\mu(X) < +\infty$   $f_n, f: X \to \mathbb{R}$  - п.в. конечны, измеримы  $f_n \to f$  почти всюду. Тогда  $\forall \epsilon > 0 \; \exists X_\epsilon \subset X, \mu(X \setminus X_\epsilon) < \epsilon, \; f_n \;$ равномерно сходится к f на  $X_\epsilon$ 

## 5 Интеграл ступенчатой функции

 $< X, A, \mu >$  - пространство с мерой.

 $f = \sum_{k=1}^{n} (\lambda_k \cdot \chi_{E_k})$  - ступенчатая функция,  $E_k$  - измеримые дизъюнктные множества,  $f \geqslant 0$ .

Интегралом ступенчатой функции f на множестве X назовём

$$\int\limits_X f d\mu := \sum_{k=1}^n \lambda_k \cdot \mu E_k$$

Будем считать, что  $[0 \cdot \infty = 0]$ .

# 6 Интеграл неотрицательной измеримой функции

 $< X, \mathbb{A}, \mu >$  - пространство с мерой. f - измеримо,  $f \geqslant 0$ , её интегралом на множестве X назовём

$$\int\limits_X f d\mu := \sup(\int\limits_X g d\mu)$$

по всем g:  $0 \leqslant g \leqslant f, g$ —ступенчатая.

## 7 Суммируемая функция

 $< X, \mathbb{A}, \mu >$  - пространство с мерой. f – измерима,  $\int\limits_X f^+$  или  $\int\limits_X f^-$  конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int\limits_X f d\mu := \int\limits_X f^+ - \int\limits_X f^-$$

Если конечен  $\int\limits_X f$  (то есть конечны интегралы по обеим срезкам), то f называют суммируемой.

## 8 Интеграл суммируемой функции

 $< X, A, \mu >$  - пространство с мерой.

f— измерима,  $E \in \mathbb{A}$ .

Тогда интегралом f на множестве E назовём

$$\int\limits_{\mathbb{E}} f d\mu := \int\limits_{X} f \cdot \chi(E) d\mu$$

f суммируемая на E, если  $\int\limits_X f^+\chi(E)$  и  $\int\limits_X f^-\chi(E)$  конечны.

## 9 Произведение мер

 $< X, \mathbb{A}, \mu >, < Y, \mathbb{B}, \nu >$  - пространства с мерой.

 $\mu, \nu$  -  $\sigma$ -конечные меры.

 $\mathbb{A} \times \mathbb{B} = \{ A \times B \subset X \times Y : A \in \mathbb{A}, B \in \mathbb{B} \}$ 

 $m_0: \mathbb{A} \times \mathbb{B} \to \overline{\mathbb{R}}$ 

 $m_0(A \times B) = \mu A \cdot \nu B$ 

m - называется произведением мер  $\mu$  и  $\nu$ , если m - мера, которая ялвяется Лебеговским продолжением  $m_0$  с полукольца  $\mathbb{A} \times \mathbb{B}$  на некоторую  $\sigma$ -алгебру  $\mathbb{A} \otimes \mathbb{B}$ .

 $m=\mu imes 
u$  - обозначение.

 $< X \times Y, \mathbb{A} \otimes \mathbb{B}, \mu \times \nu >$  - произведение пространств с мерой.

## 10 Теорема Фубини

 $< X, A, \mu >, < Y, B, \nu >$  - пространства с мерой,

 $\mu$ ,  $\nu - \sigma$ -конечные и полные,

 $m = \mu \times \nu$ ,

f — суммируемая на  $X \times Y$  по m.

Тогда:

ullet при почти всех x функция  $f_x \in L(Y, \nu)$ , то есть суммируема на Y по  $\nu$ 

при почти всех y функция  $f^y \in L(X, \mu)$ 

$$x \mapsto \phi(x) \mid \phi(x) = \int_{Y} f_x d\nu \in L(X, \mu)$$

$$y \mapsto \psi(y) \mid \psi(y) = \int\limits_X f^y d\mu \in L(Y, \nu)$$

Эти функции суммируемы (по  $\mu$  в X и по  $\nu$  в Y соответствено).

$$\int\limits_{X\times Y}fdm=\int\limits_{X}\phi(x)d\mu=\int\limits_{X}(\int\limits_{Y}fd\nu)d\mu$$

$$\int\limits_{X\times Y} fdm = \int\limits_{Y} \psi(y)d\nu = \int\limits_{Y} (\int\limits_{X} fd\mu)d\nu$$

## 11 Образ меры при отображении

 $< X, \mathbb{A}, \mu > -$  пространство с мерой,  $< Y, \mathbb{B}, \_> -$  пространство с  $\sigma$ -алгеброй.

 $\Phi: X \to Y, \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$  (прообраз любого множества из  $\mathbb{B}$  лежит в  $\mathbb{A}$ ).

Пусть для  $\forall E \in \mathbb{B} \ \nu(E) = \mu(\Phi^{-1}(E)).$ 

u является мерой на Y и называется образом меры  $\mu$  при отображении  $\Phi$ .

## 12 Взвешенный образ меры

 $< X, \mathbb{A}, \mu > -$  пространство с мерой,  $< Y, \mathbb{B}, \_ > -$  пространство с  $\sigma$ -алгеброй.

 $\Phi: X \to Y, \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$  (прообраз любого множества из  $\mathbb{B}$  лежит в  $\mathbb{A}$ ).

 $\omega:X \to \overline{\mathbb{R}},\, \omega \geq 0$  — измеримая. Пусть для  $E \in \mathbb{B} \ \nu(E) = \int\limits_{\Phi^{-1}(E)} \omega \ d\mu.$ 

u является мерой на Y и называется взвешенным образом меры  $\mu$ . При  $\omega \equiv 1$  взвешенный образ меры является обычным образом меры.

# 13 Плотность одной меры по отношению к другой

 $< X, \mathbb{A}, \mu > -$  пространство с мерой.

 $\omega: X \to \overline{\mathbb{R}}, \, \omega \geq 0$  — измеримая.

 $u(E) = \int_E \omega(x) \; d\mu$ . u — мера на X.

 $\omega$  называется плотностью  $\nu$  относительно  $\mu.$ 

## 14 Заряд, множество положительности

#### 14.1 Заряд

 $< X, \mathbb{A}, \_> -$  пространство с  $\sigma$ -алгеброй.

 $\phi: \mathbb{A} \to \mathbb{R}$  (конечная, не обязательно неотрицательная).

 $\phi$  счётно аддитивна.

Тогда  $\phi$  — заряд.

#### 14.2 Множество положительности

 $A\subset X$  — множество положительности, если  $\forall B\subset A,\ B$  измеримо:  $\phi(B)\geq 0.$ 

# 15 Сферические координаты в $R^3$ и в $R^m$ , их Якобианы

$$x_1 = r \cdot \cos \phi_1$$
  
$$x_2 = r \cdot \sin \phi_1 \cdot \cos \phi_2$$

$$1 \le i \le m - 2 : \phi_i \in [0, \pi]$$
$$i = m - 1 : \phi_i \in [0, 2\pi]$$

$$x_{3} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cos \phi_{3}$$

$$\vdots$$

$$x_{m-2} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cdots \sin \phi_{m-3} \cdot \cos \phi_{m-2}$$

$$x_{m-1} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cdots \sin \phi_{m-2} \cdot \cos \phi_{m-1}$$

$$x_{m} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cdots \sin \phi_{m-2} \cdot \sin \phi_{m-1}$$

$$\mathcal{J} = r^{m-1} \cdot (\sin \phi_1)^{m-2} \cdot (\sin \phi_2)^{m-3} \cdots (\sin \phi_{m-2})^1 \cdot (\sin \phi_{m-1})^0$$

Что тут происходит идейно. Сначала мы проецируем наш m-мерный вектор на нормаль к (m-1)-мерной гиперплоскости. Потом рассматриваем проекцию на эту гиперплоскость и в ней рекурсивно повторяем процедуру, пока не дойдём до нашего любимого  $\mathbb{R}^2$ . Уже в нём рассматривем обычные полярные координаты (отсюда и другие ограничения на размер угла).

## 16 Интегральные неравества Гельдера и Минковского

 $< X, \mathbb{A}, \mu > ; f, g : E \subset X \to \mathbb{C} (E$  - изм.) — заданы п.в, измеримы.

#### 16.1 Нераветсво Гельдера

$$p,q>1: rac{1}{p}+rac{1}{q}=1.$$
 Тогда:  $\int\limits_{E}|fg|d\mu\leq \left(\int\limits_{E}|f|^{p}d\mu
ight)^{rac{1}{p}}\cdot \left(\int\limits_{E}|g|^{q}d\mu
ight)^{rac{1}{q}}$ 

#### 16.2 Нераверство Минковского

$$1 \le p < +\infty$$
. Тогда:  $\left(\int\limits_E |f+g|^p d\mu\right)^{\frac{1}{p}} \le \left(\int\limits_E |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int\limits_E |g|^p d\mu\right)^{\frac{1}{p}}$ 

## 17 Интеграл комплекснозначных функции

 $(X,\mathbb{A},\mu)$  - пространство с мерой.  $E\in\mathbb{A}$   $f:E\to\mathbb{C}$  f измерима (суммируема), если Im(f) и Re(f) измеримы (суммируема)  $\int_E f=\int_E Re(f)+i\cdot\int_E Im(f)$ 

# 18 Пространство $L_p(E,\mu), 1 \leq p < +\infty$

$$< X, \mathbb{A}, \mu>, E\in \mathbb{A}.$$
  $L_p'(E,\mu)=\{f: \text{п.в. } E o \mathbb{C}, \text{ изм.}, \int\limits_E |f|^p d\mu<+\infty\}$ 

Это линейное пространство (по нер-ву Минковского и линейности пространства измеримых функций).

У этого пространства есть дефект — если определить норму как ||f||=

$$\left(\int\limits_{E}|f|^{p}\right)^{\frac{1}{p}}$$
, то будет сразу много нулей пространства (ненулевые функ-

ции, которые п.в. равны 0, будут иметь норму 0). Поэтому перейдем к фактор-множеству функций по отношению эквивалентности:

$$f \sim g$$
, если  $f = g$  п.в.

$$L_p(E,\mu) := L_p'(E,\mu)/\sim$$
 - лин. норм. пр-во с нормой  $||f|| = \left(\int\limits_E |f|^p\right)^{\frac{1}{p}}$ .

<u>NB1</u>: Его элементы — классы эквивалентности обычных функций. Будем называть их тоже функциями. Они не умеют вычислять значение в точке (т.к. можно всегда подменить значение на любое другое и получить представителя все того же класса эквивалентности), но зато их можно интегрировать!

 $\frac{\mathrm{NB2}}{L_p}$ : также иногда будем обозначать  $||f||_p$  за норму f в пространстве

## 19 Пространство $L_{\infty}(E,\mu)$

$$L_{\infty}(E,\mu) = \{f : \text{п.в. } E \to \mathbb{C}, \text{ ess sup } |f| < +\infty \}$$
  
 $\underline{\text{NB1}}: ||f||_{\infty} = \underset{E}{\text{ess sup }} |f|.$ 

<u>NB2</u>: Новый вид нер-ва Гельдера :  $||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$  (причем можно брать  $p = +\infty, q = 1$  или наоборот).

#### 20 Существенный супремум

$$< X, \mathbb{A}, \mu >, E \subset X$$
 — изм.,  $f : \pi.в. E \to \overline{\mathbb{R}}$ .

 $\underline{\text{Тогда}}$ :  $\underset{x \in E}{\text{ess sup }} f(x) = \inf\{A \in R : f(x) \le A \text{ при п.в. } x\}.$ 

В этом определении A - существенная верхняя граница.

#### Свойства:

- $1. \operatorname{ess\,sup}_E f \leq \sup_E f$
- 2.  $f(x) \leq \operatorname{ess\,sup} f$  при п.в.  $x \in E$ .
- 3.  $\int_{E} |fg| d\mu \le \operatorname{ess\,sup}_{E} |g| \cdot \int_{E} |f| d\mu$ .

## 21 Фундаментальная последовательность, полное пространство

#### 21.1 Фундаментальная последовательность

 $\{a_n\}$  - фунд. посл. в метрическом пр-ве  $(X,\rho)$ , если  $\forall \epsilon>0 \exists N: \forall n,k>N: \rho(a_n,a_k)<\epsilon$ 

#### 21.2 Полное пространство

X - полное пространство, если любая фундаментальная последовательность в нём сходится.

#### 22 Плотное множество

Множество A плотно во множестве B, если  $\forall b \in B \ \forall \epsilon > 0$  верно, что  $U_{\epsilon}(b) \cap A \neq \emptyset$ .

#### 23 Финитная функция

 $\varphi : \mathbb{R}^m \to \mathbb{R}$ .  $\exists$  шар  $B : \varphi \equiv 0$  вне B. Тогда  $\phi$  — финитная. Множество непрерывных финитных функций обозначаем как  $C_0(\mathbb{R}^m)$ .

## 24 Мера Лебега-Стилтьеса

 $\mathbb{P}^1$  — полукольцо ячеек в  $\mathbb{R}.\ g:\mathbb{R} \to \mathbb{R}$  — непрерывна слева, монотонно неубывающая.

Тогда:

- $\bullet$   $\mu[a,b):=g(b)-g(a)-\sigma$ -конечная мера на  $\mathbb{P}^1$ .
- Мерой Лебега-Стилтьеса будем называть меру  $\mu_g$ , полученную из  $\mu$  по теореме о лебеговском продолжении меры.

## 25 Функция распределения

 $< X, \mathbb{A}, \mu >, \, h: X o \overline{\mathbb{R}}$  — измерима, п.в. конечна.

Пусть  $\forall t \in \mathbb{R} \quad \mu X(h < t) < +\infty$ .

Тогда  $H(t) := \mu X(h < t)$  — это функция распределения функции h по мере  $\mu$ .

## 26 Измеримое множество на простой двумерной поверхности в $\mathbb{R}^3$

 $M\subset R^3$  — простое 2-мерное многообразие,  $C^1$  гладкости.  $\phi: \underset{\text{откр. обл.}}{O}\subset R^2\to R^3,\,\phi\in C^1$  — гомеофорфизм,  $\phi(O)=M$   $E\subset M$  — изм. по Лебегу, если  $\phi^{-1}(E)$  — изм. по Лебегу в  $R^2$ 

# 27 Мера Лебега на простой двумерной поверхности в $\mathbb{R}^3$

 $S(E):=\iint\limits_{\phi^{-1}(E)}|\phi_u' imes\phi_v'|dudv$  — взвеш. образ меры Лебега отн.  $\phi$ . Значит это мера на  $\mathbb{A}_M$ 

## 28 Поверхностный интеграл первого рода

M — простое, гл, 2-мерное в  $R^3$ ,  $\phi$  — параметризация f — изм. отн. S (см. выше), f>0 (или f — суммируем. по S) — Тогда:  $\int_M f dS$  — называет инт. первого рода функ. f по поверхности M

# 29 Кусочно-гладкая поверхность в $\mathbb{R}^3$

 $M\subset\mathbb{R}^3$  называется кусочно-гладкой, если M представляет собой объединение:

- \* конечного числа простых гладких поверхностей
- \* конечного числа простых гладких дуг
- \* конечного числа точек

## 30 Гильбертово пространство

 $\mathbb{H}$  — линейное пространство над  $\mathbb{R}$  или  $\mathbb{C}$ , в котором задано скалярное произведение, и полное относительно соответствуйющей нормы, назы-

#### 31 Ортогональный ряд

 $x_k \in \mathbb{H}, \sum x_k$  называется ортогональным рядом, если  $\forall k, l: k \neq l: x_k \bot x_l.$ 

## 32 Сходящийся ряд в Гильбертовом пространстве

 $x_n\in\mathbb{H}$ .  $\sum x_n$  сходится к x, если  $S_n:=\sum_{k=1}^n x_k,\,S_n\to x \text{ (то есть, } |S_n-x|\to 0-\text{сходимость по норме}).$ 

#### 33 Ортогональное семейство векторов

 $\{e_k\} \in \mathbb{H}$  - ортогональное семейство векторов, если  $\forall k \neq l : e_k \bot e_l, \ \forall k : e_k \neq 0.$ 

## 34 Ортонормированное семейство векторов

 $\{e_k\} \in \mathbb{H}$  - ортонормированное семейство векторов, если  $e_k$  — ортогональное семейство векторов, и  $\forall k : |e_k| = 1$ .

## 35 Коффициенты Фурье

 $\{e_k\}$  - ортонормированная система в  $\mathbb{H}, x \in \mathbb{H}$ .  $c_k(x) = \frac{\langle x, e_k \rangle}{|e_k|^2}$  называются коэффициентами Фурье вектора x по ортогональной системе  $\{e_k\}$ .

## 36 Ряд Фурье в Гильбертовом пространстве

 $\sum c_k(x) \cdot e_k$  называется рядом Фурье вектора x по ортогональной системе  $\{e_k\}$ .

## 37 Базис, полная, замкнутая ОС

 $\{e_k\}$  — ортогональная система в  $\mathbb{H}$ .

1. 
$$\{e_k\}$$
 — базис, если  $\forall x \in \mathbb{H}: \ \exists c_k$ , что  $x = \sum_{k=1}^{+\infty} c_k \cdot e_k$ 

2.  $\{e_k\}$  — полная О.С., если  $(\forall k : z \perp e_k) \Rightarrow z = 0$ .

3. 
$$\{e_k\}$$
 — замкнутая О.С., если  $\forall x \in \mathbb{H} : \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$ .

## 38 Сторона поверхности

Сторона (простой) гладкой двумерной поверхности — непрерывное поле единичных нормалей. Поверхность, для которой существует сторона, называется двусторонней. Если же стороны не существует, она называется односторонней.

# 39 Задание стороны поверхности с помощью касательных реперов

 $F_1, F_2$  — два касательных векторных поля к поверхности M.  $\forall p \in M$  —  $F_1(p), F_2(p)$  — Л.Н.З. касательные векторы. Тогда поле нормалей стороны определяется, как  $n := F_1 \times F_2$ 

Репе́р - пара векторов из  $F_1 \times F_2$ .

## 40 Интеграл II рода

M — простая гладкая двусторонняя двумерная поверхность в  $\mathbb{R}^3$ .

 $n_0$  — фиксированная сторона (одна из двух).

 $F: M \to \mathbb{R}^3$  – векторное поле.

 $\underline{\text{Тогда}}$  интегралом II рода назовем  $\int\limits_{M}\langle F,n_0 \rangle ds$ 

#### Замечания

- 1. Смена стороны эквивалентна смене знака.
- 2. Не зависит от параметризации.
- 3. F = (P, Q, R).

Тогда интеграл имеет вид  $\iint Pdydz + Qdzdx + Rdxdy$ .

 $\underline{\text{NB:}} \ Qdxdz = -Qdzdx.$ 

# 41 Ориентация контура, согласованная со стороной поверхности

Ориентация контура согласована со стороной поверхности, если она задает эту сторону.

Пояснение: Рассмотрим некоторый контур (замкнутую петлю) и точку на нем. Построим два касательных вектора к контуру в этой точке: первый — снаружи от контура (задает направление «движения» по петле), второй — внутри контура. Тогда будем называть такую ориентацию согласованной со стороной, если направление векторного произведения первого и второго векторов в точке совпадает с направлением нормали к поверхности.



## 42 Тригонометрический ряд

•

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

(где  $a_i, b_i$  – коэффициенты ряда).

• Другая форма:

$$\sum_{k=\mathbb{Z}} c_k e^{ikx}$$

Тогда  $S_n := \sum_{k=-N}^N c_k e^{ikx}$ .

## 43 Коэффициенты Фурье функции

•

$$a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \ dx$$

•

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \ dx$$

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

## 44 Ядро Дирихле и Фейера

#### 44.1 Ядро Дирихле

$$D_n(t) = \frac{1}{\pi} (\frac{1}{2} + \sum_{k=1}^n \cos kt)$$

#### 44.2 Ядро Фейера

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

## 45 Ротор, дивергенция векторного поля

F=(P,Q,R) — векторное поле в  $\mathbb{R}^3$ .  $rot\ F=(R'_y-Q'_z,P'_z-R'_x,Q'_x-P'_y)$  — ротор, вихрь  $div\ F=P'_x+Q'_y+R'_z$ . Многомерный случай определяется аналогично.

#### 46 Соленоидальное векторное поле

Векторное поле A — соленоидальное, если  $\exists$  векторное поле B : rot B = A. Тогда B называется векторным потенциалом поля A.

# 47 Бескоординатное определение ротора и дивергенции

 $rot\ F$  — это такое векторное поле, что  $\forall a\ \forall n_0(rotF(a))_{n_0}=\lim_{r\to 0}\frac{1}{\pi r^2}\int\limits_{\partial B_r}F_ldl$  где  $B_r$  — круговой контур,  $n_0$  — нормаль контура,  $F_l$  — проекция на касательное направление контура.

Пояснение: 
$$\frac{1}{\pi r^2} \int_{\partial B_r}^1 F_l dl = \frac{1}{\pi r^2} \iint_{B_r}^{\infty} \langle rot \ F, n_0 \rangle dS \approx rot F(a)$$
$$div F(a) = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iiint_{B(a,r)} div F \, dx \, dy \, dz = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iint_{\partial B(a,r)} \langle F, n_0 \rangle dS$$

## 48 Свертка

 $f, K \in L_1[-\pi, \pi]$  – пеорид.

$$(f * K)(x) = \int_{-\pi}^{\pi} f(x - t)K(t)dt$$

## 49 Аппроксимативная единица. (а. е.)

Пояснения: нужна 1-ца по свертке, но это не совсем функция, поэтому зададим как предел послед.

 $D \subset R, h_0$  – придельная точка D в  $\overline{R}$ , тогда  $\{K_h\}_{n \in D}$  – а. е. если:

AE1: 
$$\forall h \in D \ K_h \in L_1[-\pi, \pi] \int_{-\pi}^{\pi} K_h = 1$$

AE2: 
$$\exists M \ \forall h \ \int_{-\pi}^{\pi} |K_h| \leq M$$

AE3: 
$$\forall \delta \in (0,\pi) \int_{E_{\delta}} |K_h| \underset{h \to h_0}{\longrightarrow} 0$$
 Что такое  $E_{\delta}$ ?

## 50 Усиленная аппроксимативная единица.

Изменяем свойство АЕЗ, на АЕЗ':

$$\forall h \ K_h \in L_{\infty}[-\pi, \pi]; \ \forall \delta \in (0, \pi) \ \operatorname{ess\,sup}_{t \in E_{\delta}} |K_h(t)| \underset{h \to h_0}{\longrightarrow} 0$$

# 51 Метод суммирования средними арифметическими

$$\sum a_n = \lim_{n \to \infty} \frac{1}{n+1} \cdot \sum_{k=0}^n S_k$$

## 52 Суммы Фейера.

$$\sigma_n = \frac{1}{n+1} \sum_{k=0}^n S_k(f(x)) = \int_{-\pi}^{\pi} f(x-t) \Phi_n(t) dt$$
 где  $S_i$  – частичные суммы ряда Фурье

## 53 Преобразование Фурье.

$$f \in L_1(\mathbb{R}^m); y \in \mathbb{R}^m$$
$$\hat{f}(y) := \int_{\mathbb{R}^m} f(x) e^{-2\pi i \langle y, x \rangle} d\lambda_m(x)$$

# 54 Свертка в $L^1(\mathbb{R}^m)$ .

$$f,g \in L_1(\mathbb{R}^m)$$

$$f * g (x) = \int_{R^m} f(x - t)g(t)d\lambda_m(x)$$

# 55 Интеграл Фурье, частичный интеграл Фурье. TODO

**TODO** 

## 56 Несобственный интеграл по мере Deprecated

$$\int_{a}^{b} f d\lambda_{1} = \lim_{B \to b-0} \int_{a}^{B} f d\lambda_{1}$$

где f - локально суммируемая (т. е.  $\forall [a,B] \subset [a,b) \ f$  — сумм. на [a,B])

## 57 $L_{loc}$ Deprecated

 $f: X imes Y o \overline{\mathbb{R}}$   $(X, \mathbb{A}, \mu)$  — пространство с мерой. Y — метрическое пространство (или метризуемое).  $\forall y \ f^y(x) = f(x,y)$  — суммируема на X. f удовлетворяет  $L_{loc} \ (f \in (L_{loc}))$  если:

- $\exists g: X \to \overline{\mathbb{R}}$  суммируема.
- $\exists U(a) \ \forall y \in \dot{U}(a)$  при п. в.  $x \in \mathbb{X} \ |f(x,y)| \leq g(x)$