

Model Development Phase Template

Date	15 th July 2024
Team ID	739743
Project Title	Auto Foresight : A Predictive Model for Streamlining Car Loan Repayment Planning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report:

Theinitialmodeltrainingcodewillbeshowcasedinthefuturethroughascreenshot. Themodel validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

```
[72]: X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0,test_size=.25)
      print(X_train.shape)
      print(X_test.shape)
      print(y_train.shape)
      print(y_test.shape)
       (168016, 14)
       (56006, 14)
       (168016,)
      (56006,)
[73]: from sklearn.tree import DecisionTreeClassifier
      classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
      classifier.fit(X_train, y_train)
                         DecisionTreeClassifier
      DecisionTreeClassifier(criterion='entropy', random_state=0)
[74]: prediction = classifier.predict(X_test)
[75]: print("accuracy on training set: %f" % classifier.score(X_train, y_train))
      print("accuracy on test set: %f" % classifier.score(X_test, y_test))
      conf_mat = confusion_matrix(y_test, prediction)
      sns.heatmap(conf_mat, annot=True, cmap='Blues', fmt='d',
                  xticklabels=['Predicted Not-default', 'Predicted default'],
                  yticklabels=['Actual Not-default','Actual default'])
      plt.show()
```


Model Validation and Evaluation Report:

Model Random Forest	Classification Report and forest * **Randorforest(lassifier(n_estimatorsolffo,rundom_stateods)** and_forest_fist_train_y_train_y and_forest_fist_train_y_train_y *** *** *** *** ** ** ** **	Accuracy 99.8%	Confusion Matrix			
			Actual default Actual Not-default	27926	.96 27982	- 25000 - 20000 - 15000 - 10000
	(M) (Ance) V			Predicted Not-default	Predicted default	
K Nearest Neighbors	Ni from sklears.mighbors import MinighborsClassifier NN = GleighborsClassifier() NN fit(X_train, y_train) NhighborsClassifier	85.5%	Actual Not-default		7918	- 2500 - 2000 - 1500
	[84] prediction_kon = kNNi_predict(K_test) [85] print(Trealing_set : "_kON.core(K_train, y_train)) print(Trealing_set : "_kON.core(K_train, y_train)) print(Trealing_set : "_kON.core(K_test, y_test)) conf_est = confusion_setrict(_test, prediction_knn) conf_est = confusion_setrict(_test, prediction_knn) conf_est = confusion_setrict(_test, prediction_knn) conf_est = confusion_setrict(_test, prediction_knn) conf_est = confusion_setrict(_test_int = confusion_knn) Training_set : 0.0002/c002/431030		Actual default	150	27834	- 10000 - 5000
	Testing set 8.8559440859993572			Predicted Not-default	Predicted default	
Gaussian NB	from skinarm.nsive_beyes_tapert_GaussleeNE classifier = GaussleeNE classifier_fit(X_train, y_train)	54.4%	Actual Not-default	7873	20149	- 22000 - 20000 - 18000 - 16000
	<pre>print(f*Training set = (classifier.score(X_train,y_train))*) print(f*Training set = (classifier.score(X_text,y_text))*) conf_set = confision_matrix(y_text_predict) ers_bustusp(conf_set_amoutsTrux_cuspy*[sudv*_frain**]; xxitialselse[**redicted foot-default*, **predicted default*), yiikiabelse[**Actual Not-default*, **predicted default*), plt-shou()</pre>		Actual default	5373	22611	- 14000 - 12000 - 10000 - 8000
	Training set : 8.5454182934958576 Testing set : 8.5442988251258793			Predicted Not-default	Predicted default	1000000
Decision Tree	Prom. Stlarm. from Logarit OcclasionTree(Lossifier classifier = DecisionTree(Lossifier) = "entropy", random_state = 0) classifier.fit(X_train, y_train)	99.8%	Actual Not-default	25251	2771	- 25000 - 20000 - 15000
Classifier	[75] print("accuracy on brilling set: NF % classifier.score(X train, y_train)) print("accuracy on test set: NF % classifier.score(X_train, y_train)) print("accuracy on test set: NF % classifier.score(X_train, y_train)) print("accuracy on test set: NF % ("accuracy on test se		Actual default	2	27982	- 10000 - 5000
	accuracy on training set: 1.000000			Predicted Not-default	Predicted default	