DATASHEET

V1.0 Feb.28 2012

AXP15x

Enhanced Power Supply IC

x-powers

© 2010 x-powers Limited - All rights reserved

目录

1	. 概述(Summary)	3
2	. 特性(Feature)	4
3	. 典型应用(Typical Application)	5
4	. 极限参数(Absolute Maximum Ratings)	7
5	. 电气特性(Electrical Characteristics)	7
6	. 典型特性(Typical Characteristics)	10
7	. 管脚定义(Pin Description)	10
8	. 功能框图(Functional Block Diagram)	12
9	. 控制和操作(Control and Operating)	13
	9.1 工作模式和复位(Power On/Off & Reset)	13
	9.2 多路电源输出(Multi-Power Outputs)	15
	9.3 默认电压/启动时序的设置(Default Voltage/Timing Setting)	17
	9.4 多功能管脚说明(Multi-Function Pin Description)	17
	9.5 定时器(Timer)	18
	9.6 HOST 接口及中断(TWSI and IRQ)	18
	9.7 寄存器(Registers)	20
10) 封装(Package)	22

1. 概述(Summary)

AXP15X 是一款高度集成的电源芯片,内部提供 4 路 DCDC、7 路 LDO,输出电压可灵活配置,驱动能力强大。AXP15X 用于需要多路电源转换输出的应用,并可与本公司其它 PMU 配合构成完整的单芯或多芯锂电池(锂离子或锂聚合物)应用场景电源解决方案,充分满足目前日益复杂的应用处理器系统对于电源多输出、大电流、高精度的要求。

AXP15X 内部集成了过压欠压保护(OVP/UVP)、过温保护(OTP)等保护功能,可充分保障供电的安全稳定。

AXP15X 提供了一个两线串行通讯接口:Two Wire Serial Interface (TWSI),应用处理器可以通过这个接口去打开或关闭某些电源输出,设置它们的电压,访问内部寄存器,配置灵活的中断和睡眠唤醒条件。

AXP15X 提供 5mm x 5mm 40-pin QFN 封装。

应用产品

- 手持式移动设备 智能移动电话, PMP/MP4, 数 码相机, 数字摄像机, 手持导 航设备 GPS, PDA, 手持数字 广播电视接收机
- 移动互联网设备 xPad,MID
- 数码相框, 便携 DVD 播放器, 超便携移动电脑 UMPC and UMPC-like, 学习机
- 应用处理器电路系统 Application Processor systems
- 其它电池和多电源应用系统

管脚定义

2. 特性(Feature)

• 4 路同步降压转换器 (DC-DC)

- o DC-DC1: PFM/PWM 两种工作模式,可在 1.7-3.5V 之间部分调节,驱动能力 1A
- DC-DC2: PFM/PWM 两种工作模式,可在
 0.7-2.275V 之间调节,25mV/step,驱动能力2A,支持DVM
- o DC-DC3: PFM/PWM 两种工作模式,可在 0.7-3.5V 之间调节,50mV/step,驱动能力1A
- o DC-DC4: PFM/PWM 两种工作模式,可在 0.7-3.5V 之间调节,25mV/step,驱动能力1A

• 系统管理(System Management)

- o支持软复位和硬复位
- o支持软关机和硬关机
- o支持外部触发源唤醒
- o支持输出电压监测、自诊断功能
- o输出 PWROK,用于系统复位或关机指示
- o所有输入输出都支持软启动
- o 过/欠压保护 (OVP/UVP)
- o 过温保护 (OTP)
- o可定制时序和输出电压

• 7 路线性稳压器 (LDO)

- o LDO0:输出电压可调,驱动能力1.5A,内部500/900/1500mA限流
- o RTCLDO: 1路 RTC31,输出 3.1V(可外灌)。 1路 RTC13,输出电压 1.3/1.8V 可选
- o ALDO1: Analog LDO, 1.2-3.3V 部分可调, 驱动能力 300mA
- o ALDO2: Analog LDO, 1.2-3.3V 部分可调, 驱动能力 300mA
- o DLDO1: Digtal LDO 或 Swtich, 0.7-3.5V 可调, 100mV/step, 驱动能力 300mA
- o DLDO2: Digtal LDO 或 Swtich, 0.7-3.5V 可调, 25mV/step, 驱动能力 300mA
- o GPIOLDO: low noise LDO, 1.8-3.3V 可调节, 100mV/step, 驱动能力 20mA

• 应用处理器接口(Host Interface)

- o Host 可以通过 TWSI 接口进行数据交换
- o可以灵活配置的中断及休眠管理
- o 灵活的管脚功能设置,多路 GPIO 可灵活配置

Page 4/22

o内置可配置计时器

3. 典型应用(Typical Application)

• 单独使用(各路电源直接使用单芯电池供电, LDO0 作为普通的 LDO)

• 与本公司其它 PMU 配合使用(多芯电池供电)

4. 极限参数(Absolute Maximum Ratings)

Symbol	Description	Value	Units
LDO0IN	Input Voltage 输入电压	-0.3 to 12	V
ALDOIN	Input Voltage 输入电压	-0.3 to 6	V
T_{J}	Operating Temperature Range 工作温度	-40 to 130	$^{\circ}$
Ts	Storage Temperature Range 储运温度	-40 to 150	${\mathbb C}$
T_{LEAD}	Maximum Soldering Temperature (at leads, 10sec) 锡焊温度	300	${\mathbb C}$
V _{ESD}	Maximum ESD stress voltage,Human Body Model 抗静电能力	>4000	V
P_{D}	Internal Power Dissipation 内部功率消耗耐受	,	mW

5. 电气特性(Electrical Characteristics)

 $V_{LDO0IN} = 5V$, $V_{ALDOIN} = 3.8V$, $T_A = 25$ °C

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
LDO0IN		7				
V_{IN}	LDO0IN Input Voltage		3		6.8	V
ALDOIN						
V_{IN}	ALDOIN Input Voltage		3		5.5	V
$V_{\rm UVLO}$	ALDOIN Under Voltage Lockout	Default		3.3		V
Off Mode C	urrent	7	_			
I_{OFF}	OFF Mode Current	LDO0IN=ALDOIN=		15		^
		0V, RTC31=3.3V		13		μΑ
Logic						
V_{IL}	Logic Low Input Voltage			0.3		V
V_{IH}	Logic High Input Voltage			2		V
TWSI	7					
V_{CC}	Input Supply Voltage			3.3		V
ADDRESS	TWSI Address	Default		0x60		
f_{SCK}	Clock Operating Frequency			400		kHZ
$t_{\rm f}$	Clock Data Fall Time	2.2Kohm Pull High		60		ns
$t_{\rm r}$	Clock Data Rise Time	2.2Kohm Pull High		100		ns
SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
DCDC						
f_{OSC}	Oscillator Frequency	Default		2.25		MHz

Enhanced Power Supply IC

DCDC1						
I _{VIN1}	Input Current	PFM Mode		45		4
		$I_{DC1OUT} = 0$		43		μΑ
I _{LIM1}	PMOS Switch Current Limit	PWM Mode		1600		mA
I_{DC1OUT}	Available Output Current	PWM Mode		1000		mA
V _{DC1OUT}	Output Voltage		1.7	3.3	3.5	V
DCDC2						
I _{VIN2}	Input Current	PFM Mode		20		4
		$I_{DC2OUT} = 0$		20		μΑ
I _{LIM2}	PMOS Switch Current Limit	PWM Mode		2400		mA
I _{DC2OUT}	Available Output Current	PWM Mode		2000		mA
V_{DC2OUT}	Output Voltage Range		0.7	1.25	2.275	V
DCDC3						
I _{VIN3}	Input Current	PFM Mode		45		uA
		$I_{DC3OUT} = 0$	/	43		uA
I_{LIM3}	PMOS Switch Current Limit	PWM Mode		1600		mA
I _{DC3OUT}	Available Output Current	PWM Mode		1000		mA
V_{DC3OUT}	Output Voltage Range		0.7	2.5	3.5	V
DCDC4						
I _{VIN4}	Input Current	PFM Mode		45		A
		$I_{DC3OUT} = 0$		43		uA
I_{LIM4}	PMOS Switch Current Limit	PWM Mode		1600		mA
I _{DC3OUT}	Available Output Current	PWM Mode		1000		mA
V _{DC3OUT}	Output Voltage Range		0.7	1.25	3.5	V

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
LDO0						
$V_{ m LDO0}$	Output Voltage	I _{LDO1} =1mA	-1%	5 3.3 2.8 2.5	1%	V
I _{Limit}	Output Current Limited			Not 1500 900 500		mA
I_Q	Quiescent Current			55		μΑ
R _{DSON}	$V_{\rm LD00}$ =5V, $I_{\rm LD00}$ not limited	PIN to PIN,LDO0IN to LDO0		200		mΩ
RTC31						
V _{RTC31}	Output Voltage	I _{RTC31} =1mA	-1%	3.1	1%	V
I _{RTC31}	Output Current			30		mA

Enhanced Power Supply IC

RTC13						
V _{RTC13}	Output Voltage	I _{RTC31} =1mA	-1%	1.3 1.8	1%	V
I _{RTC13}	Output Current			30		mA
ALDO1						
V _{ALDO1}	Output Voltage	I _{ALDO1} =1mA	-1%	3	1%	V
I _{ALDO1}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	I _{ALDO1} =60mA, 1KHz		TBD		dB
e_N	Output Noise,20-80KHz	Vo=3V , Io=150mA		V	-	μV_{RMS}
ALDO2					7	
V _{ALDO2}	Output Voltage	I _{ALDO2} =1mA	-1%	1.2/	1%	V
I _{ALDO2}	Output Current			300		mA
I_Q	Quiescent Current	/<		55		μΑ
PSRR	Power Supply Rejection Ratio	I _{ALDO2} =60mA, 1KHz	7	TBD		dB
e_N	Output Noise,20-80KHz	Vo=1.2V , Io=150mA				μV_{RMS}
DLDO1						•
V_{DLDO1}	Output Voltage	I _{DLDO1} =1mA	-1%	2.8	1%	V
I _{DLDO1}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	I _{DLDO1} =10mA, 1KHz		TBD		dB
e_N	Output Noise,20-80KHz	Vo=2.8V , Io=150mA				μV_{RMS}
DLDO2						
$V_{\rm DLDO2}$	Output Voltage	I _{DLDO2} =1mA	-1%	1.8	1%	V
I _{DLDO2}	Output Current			300		mA
I_Q	Quiescent Current			55		μΑ
PSRR	Power Supply Rejection Ratio	I _{DLDO2} =10mA, 1KHz		TBD		dB
e_N	Output Noise,20-80KHz	Vo=1.8V , Io=150mA				μV_{RMS}
GPIOLDO						
V _{GPIOLDO}	Output Voltage	I _{GPIOLDO} =1mA	-1%	2.8	1%	V
I _{GPIOLDO}	Output Current			20		mA
I_Q	Quiescent Current					μΑ
PSRR	Power Supply Rejection Ratio	I _{GPIOLDO} =10mA , 1KHz		TBD		dB
e _N	Output Noise,20-80KHz	Vo=1.8V, Io=30mA				μV_{RMS}

6. 典型特性(Typical Characteristics)

7. 管脚定义(Pin Description)

Num	Name	Type	Condition	Function Description
1	GPIO1	Ю	REG91[2:0]	GPIO1
2	PWRON	I		Power On-Off key input, Internal 100k pull high to APS
3	DC3SET	I		Set the default output voltage for DCDC3
4	VIN2	PI		DCDC2 input source
5	LX2	Ю		Inductor Pin for DCDC2
6	PGND2	G		NMOS Ground for DCDC2
7	DCDC2	I		DCDC2 feedback pin
8	DLDO1	О		Output Pin of DLDO1
9	DLDO2	О		Output Pin of DLDO2
10	DLDOIN	PI		DLDO1/2 input source
11	DCDC3	I		DCDC3 feedback pin
12	VIN3	PI		DCDC3 input source
13	LX3	Ю		Inductor Pin for DCDC3
14	PGND3	G		NMOS Ground for DCDC3
15	VINT	РО		Internal logic power, 2.5V
16	N. DCTO	О	Manner A	Output enable signal for external power module
10	N_RSTO		Manner B	Output reset singnal when VINT<1.87V
17	RTC13	О		RTC power output for HOST RTC block
18	RTC31	Ю		RTC power output or input for HOST RTC block
19	ALDOIN	PI		Power supply for analog and ALDO1/2
20	VREF	0		Internal reference voltage
21	ALDO2	PO		Output Pin of ALDO2
22	ALDO1	PO		Output Pin of ALDO1
23	PWREN	IO	Manner A	GPIO3(REG93[3:0])
23	FWKEN	10	Manner B	Enable input for some power module
24	SYSEN	IO	Manner A	GPIO2(REG92[2:0])
24	SISEN		Manner B	Enable input for some power module
25	DCDC4	I		DCDC4 feedback pin
26	PGND4	G		DCDC4 input source
27	LX4	Ю		Inductor Pin for DCDC4
28	VIN4	PI		NMOS Ground for DCDC4
29	LDO0IN	PI		LDO0 input source
30	LDO0EN	I		Enable input for LDO0
31	IRQ	Ю		IRQ output

AXP15x

Enhanced Power Supply IC

32	LDO0	PO		Output Pin of LDO0
33	PWROK	О		Power Good Indication OutPut
34	SDA	Ю		Data pin for serial interface, normally it connect a 2.2K resistor to 3.3V I/O power
35	SCK	I		it is the Clock pin for serial interface, normally it connect a
				2.2K resistor to 3.3V I/O power
36	PGND1	G		NMOS Ground for DCDC1
37	LX1	IO		Inductor Pin for DCDC1
38	VIN1	PI		DCDC1 input source
39	DCDC1	I		DCDC1 feedback pin
40	GPIO0	IO	REG90[2:0]	GPIO0
41	EP	G		Exposed Pad, need to connect to system ground

8. 功能框图(Functional Block Diagram)

9. 控制和操作(Control and Operating)

当 AXP15x 工作时, TWSI 接口 SCK/SDA 管脚上拉到系统 IO 电源,则 Host 可以通过此接口对 AXP15x 的工作状态进行灵活的调整和监视,并可获得丰富的信息。

某些简单的应用可能不需要使用 I2C 接口,则可以把 SCK 和 ALDOIN 短接,芯片将在开机过程中识别为 stand alone MODE(即 SIEN=0)。而在正常应用情况下,SCK 没有和 ALDOIN 短接,而是和系统 IO 电源 VCC 接有 K 级上拉电阻,此时 IC 处于 Host Control MODE(即 SIEN=1)。

注: "Host"指的是应用系统的主处理器。

9.1 工作模式和复位(Power On/Off & Reset)

工作模式按键(PEK)

AXP15x的PWRON管脚到GND之间可以连接一个按键,作为独立的开关机键Power Enable Key(PEK)或休眠/唤醒按键。AXP15x可以自动识别这个按键的"长按"和"短按"并做出相应的反应。

几个开机源(Power on Source)

- 1、ALDOIN 来临:
- 2、PEK 按键时间超过 ONLEVEL;
- 3、PEK接收到一个特定的按键序列;
- 4、若 REG8F [7]=1,且 SIEN=1,IRQ 出现超过 16ms 的低电平。
- 注: SIEN 标志 I2C 通信接口是否可用, 1: 可用; 0: 不可用。

开机(Power On)

当有符合要求 ALDOIN(大于 V_{OFF} 且经过 16ms debounce)接入时,AXP15x 会自动开机(ALDOIN 接入时是否自动开机可根据客户需求改写)。

在一般应用情况下,可通过 PWRON 按键开机(关机情况下 PEK 按键时间超过 ONLEVEL)。在实际应用中, Host 的定时(Alarm)输出信号也可以连接到 PWRON—与 PEK 并联, Alarm 信号有效(低电平)时相当于 PEK 按下,也可以将 AXP15x 开机。

另外当 PEK 接受到一个特定的按键序列时也会自动开机(是否自动开机可根据客户需求改写),该功能在 AXP15x 与我司其它电源芯片构成双节电池解决方案时使用。

开机后,DC-DC 和 LDO 将按照设定的时序顺序软启动(时序可根据客户需求改写),启动完成后可由 Host 或是通过 PWREN 管脚打开/关闭相应电源。

关机(Power Off)

PEK"长按"时间大于 IRQLEVEL 时,在 PEK 中断服务程序中,Host 可将"寄存器 REG32H[7]"写入"1"来通知 AXP15x 进入关机状态。AXP15x 进入关机状态时会关掉除 RTCLDO 之外的所有电源输出。

有下列情况,AXP15x 会自动关机:

- 1、当 SIEN=0 时, PEK 长度大于 IRQLEVEL; 当 SIEN=1 时, PEK 长度大于 OFFLEVEL;
- 2、输入电压 LDO0IN>6.8V, 过压保护:
- 3、输入电压 ALDOIN<V_{OFF}(该电压可通过 REG31_[2:0]设置,默认 3.3V),低电保护;
- 4、负载过大引起电源的输出电压过低,过负载保护(是否自动关机可根据客户需求改写);
- 5、IC 温度过高,过温保护;

AXP15x 的自动保护机制,可以避免应用系统异常时发生被供电器件的不可逆转损坏,从而保护整个系统。

休眠和唤醒(Sleep and wakeup)

在开机的情况下,如果系统需要进入 Sleep 模式,并将其中某一路或几路电源输出关闭,则可由 REG31[3] 控制 , 决 定 是 否 由 LDO0IN low go high IRQ(REG48_[6]) 、 POKNIRQ(REG4A_[5]) 、 POKLIRQ(REG49_[0])或 GPIO0/1/2/3 input edge IRQ(REG4A_[3:0])等触发 wakeup,让 PMU 将各路输出电源开关状态恢复到 REG31[3]被写'1'前的状态并将电压恢复为默认值,各路被关闭的电源依次按照规定的上电时序进行恢复。

注意:请确保应用中用于 wakeup 的 IRQ 对应 enable 位为有效,否则将不能唤醒!如下为 Sleep 和 wakeup 模式下其控制流程。

系统复位功能和输出监控功能 (PWROK)

AXP15x 的 PWROK 可以作为应用系统的复位信号。在 AXP15x 的开机过程中, PWROK 输出低电平, 当各路电源的输出电压稳定达到预设值后, PWROK 会被拉高, 从而实现应用系统的上电复位。

在应用系统正常工作过程中,AXP15x一直监视各路输出的电压和负载状况,并且在过负载或是欠电压的情况下,PWROK立刻输出低电平,复位应用系统,防止误动作以及可能的数据错误。

9.2 多路电源输出(Multi-Power Outputs)

AXP15x	的提供的多路输出电压及功能列表如下:

输出通路	类型	默认电压	应用举例	驱动能力
DCDC1	BUCK	可设置	3.3V I/O	1000 mA
DCDC2	BUCK	可设置	1.25Vcore	2000 mA
DCDC3	BUCK	可设置	1.5Vddr	1000 mA
DCDC4	BUCK	可设置	1.25Vcpu	1000 mA
RTCLDO	LDO	3.1/1.3/1.8	RTC	30 mA
LDO0	LDO	可设置		
ALDO1	LDO	可设置		300 mA
ALDO2	LDO	可设置		300 mA
DLDO1	LDO	可设置		300 mA
DLDO2	LDO	可设置		300 mA
LDO_{IO0}	LDO	可设置		20 mA

AXP15x 包含 4 路同步降压型 DC-DC、7 路 LDO、多种启动时序及控制方式。DC-DC 的工作频率默认为 2.25MHz,可以通过设置寄存器来调整,外围可使用小型电感和电容元件。4 个 DC-DC 都可以设置成 PWM 模式或自动模式(由 AXP15x 根据负载的大小自动切换),参见"寄存器 REG80H"。

DC-DC1/2/3/4

DCDC1 输出电压范围为 1.7-3.5V, DCDC2 输出电压为 0.7-2.275V, DCDC3/4 输出电压范围为 0.7-3.5V 可由寄存器设置(参见"寄存器 REG23H 26H 27H 2BH")。

DCDC1/2/3/4 输出电容推荐使用 10uF X7R 以上小 ESR 陶瓷电容; 当输出电压设置为 2.5V 以上时,推荐使用 2.2uH 电感,在 2.5V 以下时,推荐使用 3.3uH 电感,其中电感饱和电流需大于此电源通路最大需求电流的 50%以上。

如下是推荐电感电容列表:

电感		
型号	电流规格	直流内阻

Enhanced Power Supply IC

Murata LQH55PN2R2NR0	2100mA@2.2uH	30mOhm
Murata LQH55PN4R7NR0	1400mA@4.7uH	60mOhm
Murata LQH44PN2R2MP0	2000mA@2.2uH	49mOhm
Murata LQH44PN4R7MP0	1700mA@2.2uH	80mOhm
TDK VLF5010ST-2R2M2R3	2700mA@2.2uH	41mOhm
TDK VLF5014ST-4R7M1R7	1700mA@4.7uH	98mOhm
TDK SLF6045T-4R7N2R4-3PF	2400mA@4.7uH	27mOhm
电容		
电容 型号	温度特性	容差
	温度特性 X5R/X7R	容差 10%@4.7uF
型号		
型号 TDK C2012X5R0J475K	X5R/X7R	10%@4.7uF
型号 TDK C2012X5R0J475K TDK C2012X5R0J106K	X5R/X7R X5R/X7R	10%@4.7uF 10%@10uF

RTCLDO

RTCLDO31/13 永远开启,可以为应用系统的实时时钟电路(RTC)提供不间断的电源,可根据系统需要选取输出电压 3.1V/1.3V/1.8V, 其驱动能力为 30mA。

ALDO1/2

ALDO1/2 采用了低噪声设计,可以为应用系统的模拟电路提供电源,其驱动能力为 300mA。

ALDO1/2

DLDO1/2 可以为应用系统的数字电路提供电源, 其驱动能力为 300mA。

GPIOLDO

GPIOLDO 也采用了低噪声的设计,输出驱动能力为 20mA。

软启动(Soft Start)

所有 DC-DC 和 LDO 都支持软启动的输出建立方式,避免启动时电流的突然变化对输入通路的冲击。

自诊断:负载监测与限流保护

所有 DC-DC 和 LDO 都有负载监测和限流功能,当负载电流超过其驱动能力时,各输出电压都会下降,以保护内部电路。4 个 DC-DC 输出电压低于设定电压的 85%时,AXP15x 自动关机。

所有 DC-DC 不需要外部的肖特基二极管和电阻分压反馈电路。如果应用中不需要用到某个 DC-DC,只需要将对应的 LX 管脚悬空即可。

9.3 默认电压/启动时序的设置(Default Voltage/Timing Setting)

AXP15x 可定制各路电源的默认电压、启动时序等。

启动时序:共包含 8 级启动,即 0-7,其中第 7 级表示上电默认不启动此路电源。其他 0-6 级分别表示第 1-7 步启动此路电源。同时可设置每步启动时间间隔,可选范围为 1、4、16、32ms。

默认电压设置:每一路 DCDC/LDO 可设置范围包含输出范围内除最低档电压外的所有电压。

9.4 多功能管脚说明(Multi-Function Pin Description)

GPIO[3:0]

可作为 GPIO[3:0]、LDO、PWM 等,具体参见 REG90H-9DH 说明。其中 GPIO2、GPIO3 在 Manner B 时为 SYSEN 和 PWREN,用于控制芯片各路电源输出。各路电源输出到底受 SYSEN 控制,还是受 PWREN 控制,由寄存器 REG10A 决定,可根据客户需求改写。

N_RSTO

Manner A:该引脚用于控制外部的高压转 5V 芯片。开机时,先将该引脚置为高电平,等待电源稳定后再启动各输出模块;关机时,需等到各路输出都已关闭并 delay 8ms 后才能将该引脚置为低电平。

Manner B: VINT 状态监测信号(上拉到 RTC31), VINT<1.87V 时输出低电平, VINT>2V 并延时 128ms 后输出低电平。

IRQ(WAKEUP)

当 AXP15x 处于开关机方式 A 时,此管脚作为 IRQ 状态指示管脚,当有中断发生时,其输出拉低通知 HOST 进行中断处理,上拉到系统 IO 电源。IRQ 开机功能: 若 REG8F_[7]=1,且 I2C 接口有效,IRQ 出现超过 16ms 的低电平时芯片将开机。

当 AXP15x 处于开关机方式 B 时,此管脚作为 WAKEUP 触发信号指示,上拉到 LDO1。

PWROK(N_LBO)

在开关机方式 A 下为系统复位信号(上拉到系统 IO 电源),在开关机方式 B 下用于指示系统电源 ALDOIN 是否大于 V_{OFF} (上拉到 RTC31),通常接 HOST 的 N BAT FAULT。

9.5 定时器(Timer)

AXP15x 包含一个内部定时器,通过设置寄存器 REG8AH[6:0]可改变计时器值,其最低分辨率为分钟(Minute),计时器超时后将置位 REG8AH[7],并发出 IRQ(REG42H_[7])。

9.6 HOST 接口及中断(TWSI and IRQ)

图 1:Single Read and Write

图 2:Multi Read and Write

Host 可以通过 TWSI 接口访问 AXP15x 的寄存器, 其操作时序如上图所示, 支持标准 100KHz 或 400KHz 频率, 最高速度可达 1.2MHz, 同时支持连读/写操作, 设备地址为 61H(读)和 60H(写)。(该地址的 bit2/1 可根据客户需要改写, 参见寄存器 REG100[3:2])

在某些特定事件发生时,AXP15x 通过拉低 IRQ 的中断机制来提醒 Host,并将中断状态保存在中断状态寄存器中(参见寄存器 REG48H、寄存器 REG49H、寄存器 REG4AH),向相应的状态寄存器位写 1则清除相应的中断,当无中断事件时,IRQ 输出拉高(通过外部上拉 51K 电阻)。每个中断都可以通过中断控制寄存器来屏蔽(参见寄存器 REG40H、寄存器 REG41H、寄存器 REG42H)。

位置	中断号	含义		
寄存器 48H[7]		Reserved		
寄存器 48H[6]	IRQ1	LDO0IN from low go high IRQ		
寄存器 48H[5]	IRQ2	LDO0IN from high go low IRQ		
寄存器 48H[4])	Reserved		
寄存器 48H[3]	IRQ3	ALDOIN from low go high IRQ		
寄存器 48H[2]	IRQ4	ALDOIN from high go low IRQ		
寄存器 48H[1]		Reserved		
寄存器 48H[0]		Reserved		
寄存器 49H[7]		Reserved		
寄存器 49H[6]		Reserved		
寄存器 49H[5]	IRQ5	DCDC1 output voltage is smaller than 90% IRQ		
寄存器 49H[4]	IRQ6	DCDC2 output voltage is smaller than 90% IRQ		
寄存器 49H[3]	IRQ7	DCDC3 output voltage is smaller than 90% IRQ		

Enhanced Power Supply IC

寄存器 49H[2]	IRQ8	DCDC4 output voltage is smaller than 90% IRQ	
寄存器 49H[1]	IRQ9	PEKSIRQ	
寄存器 49H[0]	IRQ10	PEKLIRQ	
寄存器 4AH[7]	IRQ11	Envent timer timeout IRQ	
寄存器 4AH[6]	IRQ12	PEKPIRQ	
寄存器 4AH[5]	IRQ13	PEKNIRQ	
寄存器 4AH[4]			
寄存器 4AH[3]	IRQ14	GPIO3 input edge IRQ	
寄存器 4AH[2]	IRQ15	GPIO2 input edge IRQ	
寄存器 4AH[1]	IRQ16	GPIO1 input edge IRQ	
寄存器 4AH[0]	IRQ17	GPIO0 input edge IRQ	

9.7 寄存器(Registers)

第1组,电源控制类

地址	寄存器描述	R/W	默认值
01	电源模式/状态寄存器	R	
12	DC-DC1/2/3/4 & ALDO1/2&DLDO1/2 开关控制寄存器	R/W	
13	ALDO1/2 工作模式控制寄存器	R/W	
15	LDO0 控制寄存器	R/W	
23	DC-DC2 电压设置寄存器	R/W	
25	DC-DC2 电压斜率参数设置寄存器	R/W	
26	DC-DC1 电压设置寄存器	R/W	
27	DC-DC3 电压设置寄存器	R/W	
28	ALDO1/2 电压设置寄存器	R/W	
29	DLDO1 电压设置寄存器	R/W	
2A	DLDO2 电压设置寄存器	R/W	
2B	DCDC4 电压设置寄存器	R/W	
31	电源恢复和 Voff 电压设置寄存器	R/W	
32	关机和关机时序控制寄存器	R/W	
36	PEK 参数设置寄存器	R/W	
37	DCDC 转换器工作频率设置寄存器	R/W	
80	DCDC 工作模式设置寄存器	R/W	
81	内部泄放和输出监视器控制寄存器	R/W	
8A	定时器控制寄存器	R/W	
8F	IRQ PIN 开机和过温关机控制寄存器	R/W	
В8	解密控制寄存器		00H

第2组,GPIO控制类

Page 21/22

Enhanced Power Supply IC

地址	寄存器描述	R/W	默认值
90	GPIO0 控制寄存器	R/W	
91	GPIO1 控制寄存器	R/W	
92	GPIO2 控制寄存器	R/W	
93	GPIO3 控制寄存器	R/W	
96	GPIO2 LDO 模式电压控制寄存器	R/W	
97	GPIO[3:0]输入信号寄存器	R/W	
98	PWM0 频率设置寄存器	R/W	
99	PWM0 占空比设置寄存器 1	R/W	
9A	PWM0 占空比设置寄存器 2	R/W	
9B	PWM1 频率设置寄存器	R/W	
9C	PWM1 占空比设置寄存器 1	R/W	
9D	PWM1 占空比设置寄存器 2	R/W	

第3组,中断控制类

地址	寄存器描述	R/W	默认值
40	IRQ 使能控制寄存器 1	R/W	
41	IRQ 使能控制寄存器 2	R/W	
42	IRQ 使能控制寄存器 3	R/W	
48	IRQ 状态寄存器 1	R/W	
49	IRQ 状态寄存器 2	R/W	
4A	IRQ 状态寄存器 3	R/W	

10. 封装(Package)

© 2010 x-powers Limited - All rights reserved

x-powers cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a x-powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-powers reserves the right to make changes to the specifications and products at any time without notice.