Information Architecture and Search

INFO 200

Part I

Joseph Janes Associate Professor, Information School

Information Architecture & Search 1

- search, and what makes it work: structured search
 - data modeling & encoding
 - database management systems

information behaviors

information use, seeking, retrieval, organization, encountering, etc

- all imply seeking or finding at some level (so does information destruction, censorship for that matter)
- so what enables search? what makes search work, makes it possible?

(and, by the way, all of what is to come are information behaviors too)

search, and what makes it work

for what?

information objects

fair enough - what are information objects?

Web pages, books & published materials, tweets

words, facts

people, organizations

sounds, images, moving images, objects

basically anything

different objects, different searches

the search for each of these is enabled differently, with common

features

an example: General Education Requirement Course Search

search

search is the **matching** of **representations** in a **database** by means of an **algorithm**

(representations = metadata)

this implies those representations, databases, algorithms have been somehow created, defined, decided on (all information behaviors)

and structured

so this "simple" instance is referred to as **structured search** more examples:

UW Faculty/Staff/Student Directory - Seattle

Olympedia

no metadata, no search

these are all examples of information systems - so where is power?

Jacquard Loom

If computers store only patterns of bits, how do we reliably encode **text** into files so that multiple programs can display that text again?

character sets

Define a mapping between patterns of bits and characters

Contain decisions that may have significant social ramifications

	Bex	Dec	Char		Stex	Dec	Char	Nex	Dec	Char	Sten	Dec	Char
	0×00	. 0	PULL	mall	0x20	3/5	Space	0.640	64		0140	96	-
	0w01	- 1	908	Start of heading	0x21	33		0x41	65	A	0:461	97	
	0×0.2	2	FTX	Start of test	0x22	34		0x42	66		0x62	51	
	0w03	3	STR	End of text	0x23	315		0x43	67	6	0 m6.3	22	
	0×04	- 4	DOT	End of transmission	0x24	34		0.44	68		0.464	100	4
	0x05	5	2200	Enquiry	0x25	37		0x45	69		0.465	101	
	0x04	- 6	ACK.	Acknowledge	0x24	38		0x46	7.0		0:164	162	£
	0w07	7	9617	Bull.	0x27	39		0x47	71	- 6	0x67	163	9
	0.00		80	Buckspace	0x29	40	- 6	0.40	7.2		0.468	104	
	0409	. 9	TAR	Rorisontal tab	0x29	41	- 1	0x49	73	1	0 44/9	105	
	Ew0A	10	1.0	New line	tim2th	4.2		Owth	7.6		Darkin	104	3
4	0x08	11	77	Vertical tab	0x29	4.3		0x40	75		0.468	387	18.
ι	Bedc	1.2	**	Form Feed	tim20	44		0.64C	76		Date	109	1
	Beds	13	CR	Carriage return	0x20	43		0x4D	77	H	DetD	109	-
	Debt	14	80	Shift out	tix2t	46		0x45	78		0+48	110	-
	DEST	15	87	Shift in	Dalif	47	- /	Owtr	79	0	Custr	111	
	0×1.0	14	DILE	Data link escape	0x30	48		0x50			0x70	112	
	0 m 1 l	17	BC1	Device control 1	0x31	49		0.653	*1	- 0	Oa71	113	- 4
	0×1.7	18	BC2	Device control 2	0x12	10		0+52	8.2		0+72	114	
	0×1.3	19	BC3	Device control 3	0x33	51	-)	0.653	83		0×73	115	
	0×14	29	BC4	Device control 4	(m)4	5.2	4	0.654	84		0×74	114	4.
	0×15	21	MAGE	Regative ack	0x35	5.3	- 1	0x55	85		0.475	117	-
	0 = 1.6	2.2	0.00	Synchronous idle	0x34	54		0x34	86	¥	0x74	110	*
	0×17	23	878	End transmission block	0x37	5/5		0.657	81		DaTT	119	*
	0×1.0	24	CAR	Cancel	0x10	14		0x54	**		0x10	129	
	0×19	25	8.80	End of medium	0x39	57		0x39	89	Y	0.679	121	Y
	GulA	26	8778	Buberitune	0x10	14		0x5A	90		GaTA	125	
	0+18	27	PRE	Encape	0x10	5/9		0+58	91	- 1	0.479	123	- 6
	0×10	28	7.6	File separator	0x30	60		0x50	9.7		0x70	124	1
	0x10	29	66	Group separator	0x30	61		0x50	93	- 1	0.670	125	- 1
	0×18	30	8.6	Record separator	0x10	62		0×58	94		0.676	126	-
	Galf	31	116	Unit separator	Ex3F	63		0x5F	95		0x7F	127	DEL

ASCII Character Set (1963) 7 bits per character = 128 possible characters

multiple character sets cause serious problems

	bits	enc	oding	characters			
11000100 0	1000010	Window	ws Latin 1	ÄB			
11000100 0	1000010	Mac Ro	man	fB			
11000100 0	1000010	GB1805	30	際			
characters	encod	ling					bits
Føö	Windows	Latin 1			01000110	11111000	11110110
Feö	Mac Rom	an			01000110	10111111	10011010
100	Pane recail						

Unicode (1991)

16 bits per character 65,536 possible "code points" (characters)

http://unicode-table.com

multiplane Unicode

32 bits per-character = 4.2 billion code points

Multiple encoding strategies:

UTF-32 32 bits for every character (UNIX)

UTF-16 16 bits for low chars; 32 for high (Java, .Net)

UTF-8 8 to 32 bits, depending on char (the web, Go)

unicode encoding strategies

character	encoding				bits
A	UTF-8				01000001
A	UTF-16			00000000	01000001
A	UTF-32	00000000	00000000	00000000	01000001
あ	UTF-8		11100011	10000001	10000010
あ	UTF-16			00110000	01000010
あ	UTF-32	00000000	00000000	00110000	01000010

raster image encoding

Red: 233 Green: 157 Blue: 144

3 numbers per pixel, each 0-255 24 bits per pixel

Bit depth is the number of bits available for each sample. The higher the bit depth, the higher the quality of the audio. Bit depth is usually 16 bits on a CD and 24 bits on a DVD.

A bit depth of 16 has a resolution of 65,536 possible values (ranging from 0 to 65,535), and a bit depth of 24 has over 16 million possible values (ranging from 0 to 16,777, 216). The bit rate is calculated using the formula:

Frequency * bit depth * channels * bit rate

A typical, uncompressed high-quality audio file has a sample rate of 44,100 samples per second, a bit depth of 16 bits per sample and 2 channels of stereo audio. The bit rate for this file would be:

44,100 samples per second × 16 bits per sample × 2 channels × 1,411,200 bits per second (or 1,411.2 kbps)

A four-minute (240 second) song at this bit rate would create a file size of:

14,411,200 = 240 = 338,688,000 bits (or 40.37 megabytes)

https://electronics.howstuffworks.com/analog-digital3.htm https://www.bbc.com/bitesize/guides/z7vc7ty/revision/1


```
$82485-/1006-786 000-}JID+"563600;A=6g,qI=6380-E‡A5(4n(8-Q2006+8857890`A=","8"p8<881";"{VEB1;
 "Bradagnarii nee tav. Aragrati-(ti, taeraek) jäkiji "Aajieekoloja" seedensa "Goze" ""ebeli "Arangyar rado"ak: "Aktisee "nagaterlät
3- cwp-f20002w
f/CDD-t-SA4.feliCE+
  .onlite10-caoanosE_198°CN/30FRAsy
ABBELyttmeZ7Ma18100000**Prajewe-
 ~#"$r~GGF619768889901+V<-2*"*L"88; J_G1K"F8-8<-68+0964+09686"+"E70
60 u*lov4=1-'0x-5x Stiesc(1*8x-Ar.g5y, "78*), s==00 I=j1*x)<0 MBy(MBYU), OIR, 62myW*t'15MgAx-UtaEdmOp;'--\7A-kb0')1fwq, 0*X)bc-4c'x
                                                                                                    s=+80 I=j$YE)=$"98107E>e;HBEFK e-;>"50
MSH_GOS*TI A-{"-AE7Emc/gEfi"ee/dg=EBKV2MDL6[*MFACA*1CMGCS = "BH=5±1Z INGeDRIL
 ...###$LVa"z"@ndevogúqYDnos&/Beffoq"&|"e"E"9x"$#8L+"\\!?"""ze0"@U$hde="...E8x""-@(\\&/z:HMf.:r@r)&=Eejma(f
gd_t lend[5]:07240000__10]&Compt="id=acff" ==476- $5:000_Http://doi.off" . (**
'CeSC+ 0Acj-_og '' -Xt'045a66040,"+60-*Ertp:7 "#inFjc''=
$46°613300-866°°°, 8-080-0917, 1680-0-11±, $65[1/$466-0-157-56]$0†$7]$45[107]$4617°06°06, $1980-0-17, 1680-0-157-0-158]$1950-567-0-158
<87"Ö(AGGApCpHaBEGS ETWAWK)ÄZ"ÜgürniEPMEG#
6ri0EcAbs_1>4find86V"Q066"ec681"(6+^266"<,6VZ596"e5c0a]""30"6VZ_Aafu
8465+$A_087
bBVftai>',/a'Enc.""GtynAnfibq*"p29BTV'Ck,,*TeVee'B'faE8B"c6m't'
BE NEEV A"+N/" (7VWS-FxtF"C") "8; "7AOR
oh-"Adudx-"lopā"iga (yç6" čelož/ Ade HTRĮs timzzīnāyyjlógnigāla)/iG čau a' "li ot/ó(locedokah-a
4_z"6s0E[",240*6" W"-6
6198s=/8106Zzj!'ma}!fM', <6"880";r6bAm M'Ac6"-W6
h6*5e"Pn0"V"Bel;""~85.C
ZBazA ç.i,S1Qo8#=i+8604"6A;9f0=E((na9="50=taZ7-6Ej"]oZ.ZWoA=#'6uB3e>"eR=Zy2Him>6=p7b8;_Uu-6gEiB'iDSr$
 _cu=80.65MPAegks0-0-02550**;610;***4652/wsn8xAsbp_-*1-kztzte%;08.7x15**f7s*W,1254Hkuf1x4H05*b76)0**MQ60*12%*ysz*06*c
  kdBykigÁkő /#kEe*ig4vóÉ+6Éé*HTC∏b+E,n4{éé+é*id,éésU*
HE -ERL -ELL" 31/0 = [] EN, SE C"S+B_REA" JAY
āx]×ēšaā"
ob(1-*a:V_Yros i*:
 "### C"### | TROWN | T
sgit-DCLAs, -Mr_sg-S-chok-Soujkg*1:-ev*6ukjk*AmeojLebulisk7z*pAROBeasoafrfüU*vMr, e-otövartsi#*Ckt7s*-10_be*e*f--137/YBG731-
Define, And Loy
Dihodjatkuti-08-8e5l0gT,"«pE6_860" "c#4+81.8"2/_E"68+4c#3In8"‡+"6u
SDFL-8G*0CZ_C*zeC~intervetAdDe~igas----iEDEy1*L0_a**6Jt6Ww,?a7/Tv*4*EQQ_#Effzreq1*
skulip5)y3zeEjvayvsső;1eCoJ-RbR'u='IV!10=eAd7R'=y
6894 - No., Trob7y
Tweffel "Me office
```

representation

anything stored, digitally or otherwise, has to be **represented** in a structured, standardized way - so that it can be accessed and found ("representation" has multiple meanings, yes?)

we've seen representing text, sound, images, moving images - now another kind at a higher conceptual level

Database Management System (DBMS)

A software process that allows clients to define a data structure; add data to that structure; navigate, tabulate, update, and delete those data; maintain data security and integrity; and automatically recover from failure

relational data modeling

The process of designing a structure capable of holding the data the system needs to track, while avoiding redundancy and ensuring data integrity

Resulting structure is called a schema

Visually designed and represented in an Entity-Relationship Diagram (ERD)

entity

A person, place, thing, or concept included in a system

Look for the **core concepts** as people talk about their data, as well relationships that have their own data

"I want to track the courses we can teach, the sections of those courses we offer, the students who register for those sections, and what their final grades were."

attributes

What do you want to track about each entity?

PK = Primary Key = Unique record identifier FK = Foreign Key = PK value in related table

attributes with (null) allow missing data (null values)

representation

anything stored, digitally or otherwise, has to be represented in a structured, standardized way - so that it can be accessed and found ("representation" has multiple meanings, yes?)

US Census schedule 1940

other examples of keys?

1940 US census instructions

INSTRUCTIONS FOR FILLING OUT THE POPULATION SCHEDULE

General Instructions

24. Use black ink. Write legibly and keep your schedules nest and clean. Make all entries carefully.

25. Study very carefully the headings of all questions on the schedule and the symbols and explanatory notes at the bottom of the

6. The Census Day.—There should be a return on the Population

Schedule for each person alive at the beginning of the census day, i. e., 12:01 A. M. on April 1, 1940.

7. Who is to be enumerated.—Enumerate all men, women, and children (including infants) whose usual place of residence (the place where they "live" or have their "home") is in your district, including persons temporarily absent; all persons who are in your dis-trict at the time of the enumeration who have no usual place of residence elsewhere from which they will be reported; and all persons who move into your district after the enumeration begins and who have not previously been enumerated. Enumerate as residents of the institution all inmates of a jail, however short their term of sentence, and all inmates of a prison, home for orphans, or similar institution located in your district in which persons remain for long periods of time.

https://1940census.archives.gov/

1940 US census instructions

40. How names are to be written.—Enter the last name first, then the given name and initial, making sure that the spelling is correct. Where the surname is the same as that of a member of the same household enumerated on a line above, do not repeat the name but enter a long dash. (See Illustrative Example, Form P-2.) Where there are not enough lines left on a schedule to enumerate all members of the household, fill out that side of the schedule completely, leaving no line vacant, make a check in the box labeled "Household continued on next page" in the lower left-hand margin of the schedule, and write "Contd." (for "Continued") in cols. I and 2, (and leave cols. 3 to 6 blank) at the top of the "B" side of the schedule, or at the top of the

and tion.

member hand r

44. Column 9. Sex.-Write "M" for male and "F" for female.

45. Column 10. Color or race.—For symbols to be entered in this column, see the note at the bottom of the schedule. Any mixtures of white and nonwhite blood should be recorded according to the race of the nonwhite parent. A person of mixed Negro and Indian blood should be reported as Negro unless the Indian blood greatly predominates and he is universally accepted in the community as an Indian. Other mixtures of nonwhite parentage should be reported according to the race of the father. Mexicans are to be returned as white, unless definitely of Indian or other nonwhite race.

https://1940census.archives.gov/

Information Architecture and Search

INFO 200

Part I

Joseph Janes Associate Professor, Information School

