Constraint Satisfaction Problems

Intro Example: 8-Queens

Generate-and-test: 88 combinations

Intro Example: 8-Queens

Constraint Satisfaction Problem

- Set of variables {X1, X2, ..., Xn}
- Each variable Xi has a domain Di of possible values
 - Usually D_i is discrete and finite
- Set of constraints {C1, C2, ..., Cp}
 - Each constraint Ck involves a subset of variables and specifies the allowable combinations of values of these variables
- Assign a value to every variable such that all constraints are satisfied

- ♦ 8 variables Xi, i = 1 to 8
- Domain for each variable {1,2,...,8}
- Constraints are of the forms:
 - $X_i = k \rightarrow X_j \neq k$ for all j = 1 to 8, $j\neq i$
 - $X_i = k_i$, $X_j = k_j$ $\rightarrow |i-j| \neq |k_i k_j|$
 - for all j = 1 to 8, $j \neq i$

Example: Map Coloring

- 7 variables {WA,NT,SA,Q,NSW,V,T}
- Each variable has the same domain {red, green, blue}
- No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, SA≠V,Q≠NSW, NSW≠V

Constraint Graph

Binary constraints

Two variables are adjacent or neighbors if they are connected by an edge or an arc

Backtracking Algorithm

CSP-BACKTRACKING(PartialAssignment a)

- If a is complete then return a
- X ← select an unassigned variable
- D ← select an ordering for the domain of X
- For each value v in D do
 - If v is consistent with a then
 - Add (X= v) to a
 - result ← CSP-BACKTRACKING(a)
 - If result ≠ failure then return result
- Return failure

CSP-BACKTRACKING({})

Questions

- 1. Which variable X should be assigned a value next?
- 2. In which order should its domain D be sorted?
- 3. In which order should constraints be verified?

8-queen

Most-constrained-variable heuristic:

Select a variable with the fewest remaining values

= Fail First Principle

Most-constraining-variable heuristic:

Select the variable that is involved in the largest number of constraints on other unassigned variables

= Fail First Principle again

Choice of Value

Choice of Value

Least-constraining-value heuristic:

Prefer the value that leaves the largest subset of legal values for other unassigned variables

Choice of Constraint to Test

Most-constraining-Constraint:

Prefer testing constraints that are more difficult to satisfy

= Fail First Principle

Constraint Propagation ...

... is the process of determining how the possible values of one variable affect the possible values of other variables

Forward Checking

After a variable X is assigned a value v, look at each unassigned variable Y that is connected to X by a constraint and deletes from Y's domain any value that is inconsistent with v

WA	NT	Q	NSW	V	SA	T
RGB						

WA	NT	Q	NSW	V	SA	T
RGB						
R	GB	RGB	RGB	RGB	GB	RGB

WA	NT	Q	NSW	V	SA	T
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB

		Imp	ossible	assianm	ents th	nat forwa	arc	
WA	NT		Impossible assignments that forward checking do not detect					
RGB	RGB	RGB	RGB	RGB	RGB	RGB		
R	GB	RGB	RGB	RGB	GB	RGB		
R	В	G	RB	RGB	В	RGB		
R	В	G	R	В		RGB		

