LEARNING MACHINES CAN CURL - ADAPTIVE DEEP REINFORCEMENT LEARNING ENABLES THE ROBOT CURLY TO WIN AGAINST HUMAN PLAYERS IN AN ICY WORLD

KOREA UNIVERSITY

Dong-Ok Won¹, Sang-Hoon Lee¹, Klaus-Robert Müller^{1,3,4}, and Seong-Whan Lee^{1,2*}

¹Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea ²Department of Artificial Intelligence, Korea University, Seoul, Korea ³Machine Learning Group, Technical University of Berlin, Berlin, Germany ⁴Max Planck Institute for Informatics, Saarbrücken, Germany *sw.lee@korea.ac.kr

Introduction

Research background

Recently, most artificial intelligence (AI) based learning systems act in virtual or laboratory environments

Objective

The fundamental objective is to understand and model the transfer in a better manner from simulation to real world scenarios

Al Curling Robot (Curly)

Methods

Development of a DRL Framework

A novel DRL framework which can transfer an action to the environment

Results and Discussion

Matches with National Curling Teams

**Korean national wheelchair curling team

Online Test (Throw) in Real Curling Ice Sheet

Conclusion

The proposed DRL framework minimizes the gap between the simulation and the real-world environment