2-19 电路仿真

2-19 利用 Multisim 分析图 P2.5 所示电路中 R_b、R_c和晶体管参数(β、r_{bb})变化对 Q 点、A_u、R_i、R_o和 U_{om}的影响。

首先在 Multisim 中搭建 P2.5 中所示的电路并连入万用表和示波器用以测量需要的电流和电压值,如图:

其中 XMM1 测量 I_{BQ} 、XMM2 测量 I_{CQ} 、XMM3 测量 U_{CEQ} 、示波器测量 U_{imax} (输入电压峰值)、 U_{omax} (输出电压峰值)和 U_{omax} (空载输出电压峰值)。设置函数发生器的电压峰值为 1mV,频率为 1kHz。如图(此处及之后测试晶体管参数前的 β 都为 80, r_{bb} 都为 100Ω):

运行程序,稳定后测量个项数据。随后,保持其他数值不变,将 R_b 的值从 $510k\Omega$ 调至 $610~k\Omega$,重新测量各项数据。如图:

同样的,将 R_b再次从 610 kΩ 调制 710 kΩ,重复上述测量过程。

也可以通过 parameter sweep 来求得 Rb 变化对 Icq、IBQ 和 Uctq 的影响:

将 R_b 回调至 510 kΩ,分别将 R_c 的值改变至 4 kΩ、5 kΩ 和 6 kΩ,反复测量各项数据并记录,完成对 R_c 的测量。同理也可以用 parameter sweep:

之后将 R_c回调至 5kΩ,将晶体管的 β 分别调至 60、80 和 100,重复上述测量过程并记录:

最后,调 β 值至 80,在 r_{bb} 为 100Ω 、 200Ω 和 300Ω 下测量各项数据并记录:

在最后利用测得的数据计算 Au、Ri和 Ro、Uom,所得结果如图:

	Α	В	С	D	Е	F	G	Н		J	K
1	$R_b/k\Omega$	$I_{BQ}/\mu A$	I _{CQ} /mA	U_{CEQ}/V	$U_{imax}/\mu V$	U_{omax}/mV	A_{u}	$R_i/k\Omega$	$R_o/k\Omega$	U_{om}	
2	510	27.848	2.228	3.861	337.596	-65.388	-193.68713	1.01931	4.98	2.23516	
3	610	23.291	1.863	5.684	374.789	-61.687	-164.59128	1.19892	4.98	3.52422	
4	710	20.016	1.601	6.993	406.506	-58.12	-142.97452	1.36987	4.98	4.44982	
5											
6	$R_c/k\Omega$	$I_{BQ}/\mu A$	I _{cQ} /mA	U_{CEQ}/V	$U_{imax}/\mu V$	U_{omax}/mV	U_{oomax}/mV	A_{u}	$R_i/k\Omega$	$R_o/k\Omega$	U_{om}
7	4	27.848	2.228	6.089	337.646	-58.115	-104.796	-172.12	1.01953	4.01626	3.8106
8	5	27.848	2.228	3.861	337.596	-65.388	-130.737	-193.69	1.01931	4.99702	2.23516
9	6	27.848	2.228	1.633	337.724	-71.316	-156.925	-211.17	1.01989	6.00209	0.65973
10											
11	β	$I_{BQ}/\mu A$	I _{cQ} /mA	U_{CEQ}/V	$U_{imax}/\mu V$	U_{omax}/mV	A_{u}	$R_i/k\Omega$	$R_o/k\Omega$	U_{om}	
12	60	27.862	1.672	6.641	337.68	-49.032	-145.20256	1.01969	4.98	4.20092	
13	80	27.842	2.227	3.863	336.492	-65.498	-194.6495	1.01428	4.98	2.23658	
14	100	27.836	2.784	1.082	337.805	-81.705	-241.87031	1.02026	4.98	0.27011	
15											
16	β	$r_{bb'}/\Omega$	I _{BQ} /μΑ	I _{cQ} /mA	U _{CEQ} /V	$U_{imax}/\mu V$	U_{omax}/mV	A_{u}	$R_i/k\Omega$	$R_o/k\Omega$	U_{om}
17	80	100	27.848	2.228	3.861	337.596	-65.388	-193.69	1.01931	4.98	2.23516
18	80	200	27.842	2.227	3.863	358.582	-63.278	-176.47	1.11809	4.98	2.23658
19	80	300	27.837	2.227	3.865	376.116	-61.317	-163.03	1.20572	4.98	2.23799

由测量和计算的结果可以得出:

增大 R_b, I_{BQ}和 I_{CQ}减小, U_{CEQ}增大, A_u减小, R_i增大, U_{om}增大; 增大 R_c, I_{BQ}和 I_{CQ}不变, U_{CEQ}减小, A_u增大, R_i不变, R_o增大, U_{om}减小; 增大 β, I_{BQ}不变, I_{CQ}增大, U_{CEQ}减小, A_u增大, R_i不变, R_o不变, U_{om}减小。 增大 r_{bb'}, I_{BQ}不变, I_{CQ}不变, U_{CEQ}微微变大, A_u减小, R_i增大, R_o不变, U_{om}不变。