EPFL Quantum Computing Association Quantum Hackathon Baptiste Claudon

November 19, 2021

Contents

I Algorithms for Quantum Simulation

I.	A. Motivation B. Theory C. Results	3 3 4
II.	Trotterization and projected-Variational Quantum Dynamics A. Motivation B. Theory C. Results	5 5 5 5
	Open Quantum Systems: Dynamics through spectral density and Non-Equilibrium Steady States A. Motivation B. Theory 1. Dynamics through spectral density 2. Quantum Fourier Transform and Quantum Phase Estimation 3. Non-Equilibrium Steady State C. Results 1. A spin in a spin bath 2. NESS of single spin subject to relaxation and external fields Quantum Approximate Optimization Algorithm A. Motivation B. Theory	6 6 6 7 8 9 9 9
II (Competition	
V.	Constrained Variational Quantum Eigensolver	12
VI.	Simulate a molecule	12
VII.	Imaginary Time Propagation	13
VIII.	Use of symmetry to improve eigenfunction calculations	13
	A Summary of Group Representation Theory 1. Representations of finite groups 2. Characters and Projection Formulas	14 14 14
В.	Aspects of dynamics of open quantum systems 1. Dynamics of open quantum systems 2. Weak-coupling limit 3. The Caldeira-Legett model 4. Von Neumann equation and spectral density	15 15 16 16 17
	References	17

Part I

Algorithms for Quantum Simulation

I. VARIATIONAL QUANTUM EIGENSOLVER

A. Motivation

The Variational Quantum Eigensolver (VQE) is an algorithm aimed at computing the ground state of a physical Hamiltonian. Its optimization-based approach makes it suitable for applications on Noisy Intermediate-Scale Quantum (NISQ) computers. It is an example of a Variational Quantum Algorithm, sometimes considered the quantum analogues of the highly successful Machine Learning methods employed in classical computing [1].

B. Theory

The VQE bases itself on the so-called Variational principle in quantum mechanics.

Theorem 1. Variational principle Let \mathcal{E} be the finite dimensional Hilbert space of states of a quantum system, and $H \in \mathcal{L}(\mathcal{E})$ be the Hamiltonian of this system. Then:

$$\forall |\psi\rangle \in \mathcal{E} : \langle \psi | H | \psi \rangle \ge E_0 \tag{1}$$

where $E_0 \in \mathbb{R}$ is the system's ground state energy.

Given a d parametrized circuit $C: \mathbb{R}^d \to \mathcal{L}(\mathcal{E})$, the VQE aims at finding:

$$\theta^* = \underset{\theta \in \mathbb{R}^d}{\arg \min} \langle 0 | C(\theta)^* H C(\theta) | 0 \rangle$$
 (2)

A common method to find such a minimum is the gradient descent algorithm.

Definition 1. Gradient Descent Algorithm Given $f \in C^1(\mathbb{R}^d, \mathbb{R})$. An algorithm to find:

$$x^* = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} f(x) \tag{3}$$

is the following. Fix $x^{(0)} \in \mathbb{R}^d$. Then, iteratively compute $x^{(k+1)} = x^{(k)} - \eta \nabla f(x^{(k)})$, with $\eta > 0$, until either $k \in \mathbb{N}$ is large enough or $||x^{(k+1)} - x^{(k)}||$ is small enough.

As it turns out, certain parametrized quantum circuits allow for very efficient gradient calculations [2].

Theorem 2. The parameter-shift rule Let \mathcal{E} be the 2^N dimensional state space of N qubits. Let $C: \mathbb{R}^d \to \mathcal{L}(\mathcal{E})$ be a unitary parametrized circuit and $B \in \mathcal{L}(\mathcal{E})$ a hermitian operator. If for each $\theta \in \mathbb{R}^d$, the circuit is of the form $U(\theta) = Ve^{-i\theta_1 G}W$ with $V, W \in \mathcal{L}(\mathcal{E})$ independent of $\theta_1 \in \mathbb{R}$ the first component of θ , and $G \in \mathcal{L}(\mathcal{E})$ is a hermitian and unitary 1-spin operator, then:

$$\forall s \in \mathbb{R} : \partial_1 \langle 0 | C(\theta)^* BC(\theta) | 0 \rangle = \frac{\langle 0 | C(\theta + se_1/2)^* BC(\theta + se_1/2) | 0 \rangle - \langle 0 | C(\theta - se_1/2)^* BC(\theta - se_1/2) | 0 \rangle}{2 \sin s} \tag{4}$$

In particular, the gradient can be calculated exactly by measuring the B operator only twice.

Definition 2. Variational Quantum Eigensolver Algorithm The VQE consists in minimizing the Hamiltonian expectation value as in equation 2 using the gradient descent algorithm and a parametrized circuit that is suitable for efficient gradient calculations.

C. Results

Consider a system of N spins of Hamiltonian:

$$H = J \sum_{i=1}^{N} Z_i Z_{i+1} + h \sum_{i=1}^{N} X_i$$
 (5)

where J, h are respectively the coupling and field constants, and we assume boundary conditions $Z_{N+1} = Z_1$. In our case, consider J = h = 1. Our goal is to use the VQE algorithm to find the ground state of this Hamiltonian. The following ansatz is used [3]:

$$C(\omega) = \prod_{l=1}^{d} \left(\prod_{i=1}^{N} R_{\alpha}^{(i)}(\omega_{i,l}) \right) \left(\prod_{j=1}^{N-1} e^{-i\omega_{j,l} Z_j Z_{j+1}} \right)$$

$$(6)$$

where $\alpha = x$ if l is odd, $\alpha = y$ if l is even.

Figure 1: Calculation of the Ising model ground state via Variational Quantum Eigensolver

Figure 1 illustrates the ground state calculation using the VQE. After 100 steps, the ground state approximation is -3.454831823965546 whereas exact diagonalization yields -3.464101615137755.

II. TROTTERIZATION AND PROJECTED-VARIATIONAL QUANTUM DYNAMICS

A. Motivation

After focusing on the calculation of a time-independent property, one may wonder about the simulation of dynamics. This section aims at presenting two algorithms for the time evolution of a quantum system. The first one is the most naive and bases itself on the Trotter-Suzuki formula. The second one, more advanced, is named projected-Variational Quantum Dynamics (p-VQD) and realizes an iterative global projection of the exact time-evolution onto a well-chosen parametrized manifold.

B. Theory

This section on the simulation of unitary dynamics is taken from [3].

Definition 3. Let \mathcal{E} be the Hilbert space of states, and $H \in \mathcal{L}(\mathcal{E})$ a time-independent Hamiltonian acting on it. Write the exact state at time $t \in \mathbb{R}$: $|\psi(t)\rangle \in \mathcal{E}$. Let $w(t) \in \mathbb{R}^p$ be a set of p parameters and $|\psi_{w(t)}\rangle \in \mathcal{E}$ be the approximation of the state vector. Also, define the evolved state:

$$\forall t, \delta t \in \mathbb{R} : |\phi(t + \delta t)\rangle = e^{-iH\delta t} |\psi_{w(t)}\rangle \in \mathcal{E}$$
(7)

Given an initial choice w(t), the projected-Variational Quantum Dynamics (p-VQD) proposes to choose $w(t+\delta t) = w(t) + dw^*$, with dw^* satisfying:

$$dw^* = \underset{dw \in \mathbb{R}^p}{\arg \max} \left| \left\langle \phi(t + \delta t) | \psi_{w(t) + dw} \right\rangle \right|^2 \tag{8}$$

Proposition 1. Define the step infidelity $L: \mathbb{R}^p \times \mathbb{R} \to \mathbb{R}$:

$$(dw, \delta t) \mapsto \frac{1 - \left| \langle \phi(t + \delta t) | \psi_{w(t) + dw} \rangle \right|^2}{\delta t^2} \tag{9}$$

The, for all $dw \in \mathbb{R}^p$, the limit $\lim_{\delta t \to 0} L(dw, \delta t)$ exists.

Thus, at each time step, dw^* can be found by minimizing the step infidelity L. In practice, $d\omega^*$ can be found by using the gradient descent algorithm 1, and $|\phi(t+\delta t)\rangle$ by using an approximation inspired by the Trotter-Suzuki formula 2:

Proposition 2. Trotter-Suzuki formula Let $A, B \in \mathcal{M}_n(\mathbb{C})$. Then:

$$e^{A+B} = \lim_{m \to \infty} \left(e^{A/m} e^{B/m} \right)^m \tag{10}$$

C. Results

Let us consider the following open boundary Ising model:

$$H = \frac{1}{4} \sum_{k=0}^{1} Z_k Z_{k+1} + \sum_{k=0}^{2} X_k \tag{11}$$

Figure 2 illustrates the time evolution of the magnetization $\langle \sigma_z \rangle$ along the z direction, starting from $|000\rangle$ at time t=0. Both methods capture the exact behaviour of the system.

Figure 2: Time evolution of the $\langle \sigma_z \rangle$ magnetization.

III. OPEN QUANTUM SYSTEMS: DYNAMICS THROUGH SPECTRAL DENSITY AND NON-EQUILIBRIUM STEADY STATES

A. Motivation

Until now, each considered system was a so-called closed system. However, most physical systems are open in the sense that they present a coupling to their environment. This section starts with a simple method to simulate the dynamics of such a system, using the spectral density to approximate the interaction with the environment. Then, it introduces the Quantum Fourier Transform and the Quantum Phase Estimation algorithms to compute Non-Equilibrium Steady States.

B. Theory

1. Dynamics through spectral density

This algorithm on the simulation of dissipative dynamics is taken from [4].

Let $\mathcal{E}_S, \mathcal{E}_B, \mathcal{E}_I$ be the Hilbert space of states for the open system, the bath and the interaction between the two. For $H_{S,B,I} \in \mathcal{L}(\mathcal{E}_{S,B,I})$ the respective Hamiltonians, the global Hamiltonian is assumed to be $H = H_S + H_B + H_I \in \mathcal{L}(\mathcal{E}_S \otimes \mathcal{E}_B)$. Further assume there exists a sequence $(\omega_k, c_k)_{k \in \mathbb{N}} \subset \mathbb{R}^2$ of frequencies of the environment and coupling constants with the open system, such that:

$$H_B = \sum_{k=0}^{\infty} \omega_k (b_k b_k^{\dagger} + 1/2) \tag{12}$$

and

$$H_I = \sum_{k=0}^{\infty} c_k A_k \otimes (b_k^{\dagger} + b_k) \tag{13}$$

where $(b_k, b_k^{\dagger})_{k \in \mathbb{N}} \in \mathcal{L}(\mathcal{E}_B)$ are the corresponding ladder operators, as well as a sequence $(A_k)_{k \in \mathbb{N}} \in \mathcal{L}(\mathcal{E}_S)$, depending on the corresponding coupling mechanism and spectral density [5] of the form:

$$\mathcal{D}(\mathbb{R}) \ni J : \omega \mapsto \pi \sum_{k=0}^{\infty} c_k^2 \delta(\omega - \omega_k)$$
 (14)

where the δ can be the Dirac delta or an approximation of it.

Definition 4. Dynamics through spectral density

Given the initial density matrix for the total system $\rho^{(0)} \in \mathcal{L}(\mathcal{E}_S \otimes \mathcal{E}_B)$ and the thermalized bath density matrix at each time and temperature $t \in \mathbb{R}, T \in \mathbb{R}_+$: $\rho_B(t,T) \in \mathcal{L}(\mathcal{E}_B)$, the proposed algorithm consists in iteratively calculating the open system density matrix as:

$$\forall j \in \mathbb{N} : \rho_S^{(j+1)} = \mathcal{T}_B\left(U(t)\rho_S^{(j)} \otimes \rho_B(t,T)U^{\dagger}(t)\right) \in \mathcal{L}(\mathcal{E}_S)$$
(15)

where \mathcal{T}_B denotes the partial trace over the bath and $U \in \mathcal{L}(\mathcal{E}_S \otimes \mathcal{E}_B)$ is the global system evolution operator.

2. Quantum Fourier Transform and Quantum Phase Estimation

The Quantum Fourier Transform (QFT) and Quantum Phase Estimation (QPE) circuits [6] will be useful in order to compute the Non-Equilibrium Steady State (NESS) of open quantum systems.

Definition 5. Quantum Fourier Transform Given a N-dimensional Hilbert space V with orthonormal basis $(|j\rangle)_i$, the QFT is defined by:

$$\mathcal{F}: V \to V, |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} e^{2\pi i j k/N} |k\rangle$$
 (16)

Proposition 3. If there exists $n \in \mathbb{N} : N = 2^n$, the QFT of j can be written:

$$\mathcal{F}|j\rangle = \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left(|0\rangle + e^{2\pi i j 2^{-l}} |1\rangle \right)$$

Proposition 4. Let R_k denote the gate $\begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix}$. Then, the following circuit, figure 3, performs $\mathcal{F}|j\rangle$.

Figure 3: Quantum Fourier Transform circuit [6].

Definition 6. Phase Estimation Let $U \in U(n)$. Let $|u\rangle$ be the eigenvector corresponding to the eigenvalue $e^{2\pi i\varphi}$ with $\varphi \in [0, 2\pi[$ unknown. Assume we are able to prepare $|u\rangle$ and perform $C(U^{2^j})$ for necessary $j \in \mathbb{N}$. The estimation uses two registers so that the first step is shown on figure 4. Then, the inverse QFT, \mathcal{F}^{\dagger} , is applied on the first register. Measurement on the first register yields the output.

Proposition 5. After the first step, the result is:

$$\frac{1}{2^{t/2}} \bigotimes_{k=0}^{t-1} \left(|0\rangle + e^{2\pi i 2^{t-1}\varphi} |1\rangle \right) = \frac{1}{2^{t/2}} \sum_{k=0}^{t-1} e^{2\pi i \varphi k} |k\rangle \tag{17}$$

Proposition 6. The output of QPE is $|\varphi_1, ..., \varphi_t\rangle$.

Proposition 7. Let $\phi_0 \in \partial B_1(0) \subset \mathbb{C}$ be the eigenvalue of $U \in \mathsf{U}(n)$ to which is applied the QPE algorithm. The probability $p \in [0,1]$ of measuring the corresponding eigenvector $|\phi_0\rangle \in \mathcal{E}$ in the second registrer is:

$$p = \frac{|\langle \psi_0 | \phi_0 \rangle|^2}{2^{2t}} \frac{1 - \cos(2\pi \delta 2^t)}{1 - \cos(2\pi \delta)}$$
(18)

where $|\psi_0\rangle \in \mathcal{E}$ is the initial state of the second register and $\delta = \phi_0 - \lfloor 2^t \phi_0 \rfloor / 2^t$.

Figure 4: First stage of the Quantum Phase Estimation [6].

3. Non-Equilibrium Steady State

This section follows [7].

Definition 7. Let \mathcal{E} be the finite dimensional Hilbert space of states for a given system of orthonormal basis $(|j\rangle)_j$. Given a density operator acting on \mathcal{E} of the form $\rho = \sum_{jk} \rho_{jk} |j\rangle \langle k|$, the vectorized version of this operator is $\mathcal{E} \otimes \mathcal{E} \ni |\rho\rangle = \sum_{jk} \rho_{jk} |j\rangle \otimes |k\rangle$. The Liouvillian super-operator \mathcal{L} such that $\frac{d}{dt} |\rho\rangle = \mathcal{L} |\rho\rangle$, as in the formalism for an open quantum system interacting with a Markovian environment, is vectorized the same manner.

Postulate 1. A Non-Equilibrium Steady State $|\rho_{ss}\rangle \in \mathcal{E} \otimes \mathcal{E}$, defined by the condition $\mathcal{L} |\rho_{ss}\rangle = 0$, exists and is unique.

Proposition 8. Let \mathcal{L} be the vectorized Liouvillian super-operator and $|\rho_{ss}\rangle$, $|I\rangle$ respectively the vectorized NESS density matrix and vectorized identity matrix. Then, the following hold:

$$\mathcal{L} |\rho_{ss}\rangle = 0$$
 $\mathcal{L}^{\dagger} |I\rangle = 0$ (19)

Definition 8. Let $2^N \in \mathbb{N}$ be the dimension of the space \mathcal{E} . Define the following hermitian operator M by:

$$M = \begin{pmatrix} 0 & \mathcal{L} \\ \mathcal{L}^{\dagger} & 0 \end{pmatrix} \tag{20}$$

acting on a 2^{2N+1} -dimensional space.

Proposition 9. Under postulate 1, the operator M has exactly two eigenvectors associated to the 0 eigenvalue, namely $|\eta_0\rangle = |0\rangle |I\rangle$ and $|\eta_1\rangle = |1\rangle |\rho_{ss}\rangle$.

Definition 9. The M **operator encoding** Decompose the Liouvillian as $\mathcal{L} = \mathcal{L}_H - i\mathcal{L}_A$, with $\mathcal{L}_H = \mathcal{L}_H^{\dagger}$ and $\mathcal{L}_A = \mathcal{L}_A^{\dagger}$. The M operator is encoded as $M = X \otimes \mathcal{L}_H + Y \otimes \mathcal{L}_A$.

Definition 10. Quantum Circuit for NESS Solver The Quantum circuit of the gate \mathcal{P} corresponds to the preparation of an estimate to the eigenvector corresponding to the 0 eigenvalue. The second part of the algorithm is the QPE circuit with $U = \exp(2\pi i t_0 M)$, $t_0 \in \mathbb{R}$ a normalizing factor for the spectrum of M.

Proposition 10. Let $|\psi\rangle$ be the circuit output state and O a hermitian operator to be measured. Then:

$$\langle O \rangle = \langle \psi | I_t \otimes X \otimes I_N \otimes O | \psi \rangle \tag{21}$$

where I_t is the identity operator acting on the first register, X the Pauli matrix acting on the first qubit of the second register, I_N the identity acting on the N following qubits and O acting on the N remaining qubits of the second register.

Figure 5: Quantum circuit for NESS solver [7].

C. Results

1. A spin in a spin bath

Consider the example of simulating the Markovian dynamics of a spin in a spin bath at thermal equilibrium. Assume the global system Hamiltonian is of the form:

$$H = -\frac{1}{2}Z_0 - \frac{1}{2}\sum_{k=1}^8 \omega_k Z_k + \frac{1}{2}X \otimes \sum_{k=1}^8 c_k X_k$$
 (22)

where the index 0 refers to the system spin and indexes k = 1, ..., 8 refer to the bath spins. The $(\omega_k)_k$ coefficients are the frequencies of the environment modes and $(c_k)_k$ the coupling constants. Assume the spectral density of the spin bath is expressed as:

$$J(\omega) = 2\pi\alpha\omega e^{-\omega/\omega_c} \tag{23}$$

such that:

$$\int_{w_k - \Delta\omega/2}^{w_k + \Delta\omega/2} J(\omega) d\omega = \pi c_k^2 \tag{24}$$

Set $\alpha = 2 \cdot 10^{-4}$, $\omega_c/\Delta_0 = 100$, $\beta\Delta_0 = 1$. Furthermore, $\omega_k/\Delta_0 = 0.8 + 0.05k$ and $\Delta_0\tau = 30$. For an initial density matrix $\rho = |1\rangle\langle 1|$ corresponding to a purely excited state, the simulation results is given on figure 6, showing similar results to those presented in the original article [4].

2. NESS of single spin subject to relaxation and external fields

Let us consider the Linblad equation for a single spin subject to relaxation and external fields:

$$\dot{\rho} = -i[H, \rho] - \frac{1}{2} \{ \sigma^{+} \sigma^{-}, \rho \} + \sigma^{-} \rho \sigma^{+}$$
(25)

with $H = h\sigma_x$. After vectorization, the Liouvillian becomes:

$$\mathcal{L} = -i(I \otimes H - H^T \otimes I) - \frac{1}{2}(I \otimes \sigma^+ \sigma^- + \sigma^+ \sigma^- \otimes I - 2\sigma^- \otimes \sigma^+ -)$$
 (26)

The decomposition writes:

$$\mathcal{L}_{A} = I \otimes H - H^{T} \otimes I$$

$$\mathcal{L}_{H} = \frac{1}{2} \left(\sigma^{-} \otimes \sigma^{+} + \sigma^{+} \otimes \sigma^{-} - I \otimes \sigma^{+} \sigma^{-} - \sigma^{+} \sigma^{-} \otimes I \right)$$
(27)

Figure 6: Evolution of the $\rho_{1,1}$ element through spectral density

from which the M operator can be obtained. The following Trotter-Suzuki approximation may be applied:

$$U^{2^j} \approx \left(\prod_{\gamma} \exp(2\pi i 2^j \alpha_{\gamma} M_{\gamma}/r)\right)^r$$

Running the algorithm with t = 3 qubits and h = 1 yields an expectation value $\langle \sigma_y \rangle = -0.14$, which is close to the value found in the original article [7].

IV. QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

A. Motivation

Let us now see how Hamiltonians can appear, even when solving a non-physics-related problem. This section introduces an algorithm capable of producing approximate solutions to combinatorial problems: the Quantum Approximate Optimization Algorithm (QAOA).

B. Theory

Let us consider the general form of a combinatorial optimization problem: find $x^* \in S$ a set of discrete variables such that $x^* = \arg\max_{x \in S} C(x)$, given the cost function $C: S \to \mathbb{R}$. In this case, let $S = \{0,1\}^n$, $n \in \mathbb{N}$ and:

$$C(x) = \sum_{(Q,\bar{Q}) \in \llbracket n \rrbracket} \omega_{(Q,\bar{Q})} \prod_{i \in Q} x_i \prod_{j \in \bar{Q}} (1 - x_j)$$
(28)

where $\omega_{(Q,\bar{Q})} \in \mathbb{R}$. Denote by Z_i the Pauli operator acting on qubit i. Map the cost function C to the following n-qubit Hamiltonian:

$$H = \sum_{(Q,\bar{Q}) \in [\![n]\!]} \omega_{(Q,\bar{Q})} \frac{1}{2^{|Q| + |\bar{Q}|}} \prod_{i \in Q} (1 - Z_i) \prod_{j \in \bar{Q}} (1 + Z_i)$$
(29)

Definition 11. The weighted MAXCUT problem

Given a set of edges G. Assume $\omega_{(i,j)} = \chi_{(i,j) \in E}$. The problem Hamiltonian becomes:

$$H = \frac{1}{2} \sum_{(j,k) \in E} \omega_{jk} (1 - Z_j Z_k)$$
 (30)

Definition 12. The QAOA trial state

Let $B = \sum_{i=1}^{n} X_i$. Given $\gamma, \beta \in \mathbb{R}^p$, define the trial state [8]:

$$|\psi_p(\gamma,\beta)\rangle = \prod_{j=n}^1 \left(e^{-i\beta_j B} e^{-i\gamma_j H}\right)|+\rangle^n$$
 (31)

with $|+\rangle$ eigenvector of X with eigenvalue 1.

It then remains to find:

$$(\gamma^*, \beta^*) = \underset{(\gamma, \beta) \in \mathbb{R}^p \times \mathbb{R}^p}{\arg \max} \langle \psi_p(\gamma, \beta) | H | \psi_p(\gamma, \beta) \rangle$$
(32)

Proposition 11. The following equality holds:

$$\lim_{p \to \infty} \langle \psi_p(\gamma^*, \beta^*) | H | \psi_p(\gamma^*, \beta^*) \rangle = \max_{x \in S} C(x)$$
(33)

Part II

Competition

V. CONSTRAINED VARIATIONAL QUANTUM EIGENSOLVER

Proposition 12 can help computing excited energy levels [1].

Proposition 12. The *n*-th excited state $|n\rangle \in \mathcal{E}$ of the Hamiltonian $H \in \mathcal{L}(\mathcal{E})$ is the ground state of the following Hamiltonian:

$$H' = H + a \sum_{j=0}^{n-1} |j\rangle \langle j| \in \mathcal{L}(\mathcal{E})$$
(34)

for a > 0 is large enough.

VI. SIMULATE A MOLECULE

Let \mathcal{E} be a single-particule Hilbert space and $\mathcal{F} = \overline{\bigoplus_{n=0}^{\infty} S_n \mathcal{E}^{\otimes n}}$, with S_n the anti-symmetrizing operator of tensor products, the corresponding Fock space. Let $(a_k)_{k \in \mathbb{N}}, (a_k^{\dagger})_{k \in \mathbb{N}} \in \mathcal{L}(\mathcal{E})$ be the creation and annihilation operators satisfying the fermionic Canonical Commutation Relations:

$$\forall j, k \in \mathbb{N} : \{a_j, a_k^{\dagger}\} = \delta_{j,k} \qquad \{a_j, a_k\} = \{a_j^{\dagger}, a_k^{\dagger}\} = 0$$
 (35)

Definition 13. Jordan-Wigner mapping 1 Mapping qubit operators to fermionic operators can be done the following way:

$$\forall j \in \mathbb{N} : a_j = -\left(\bigotimes_{k=1}^{j-1} Z_k\right) \otimes \sigma_j \tag{36}$$

where $\sigma_j = |0\rangle \langle 1|$.

Definition 14. Jordan-Wigner mapping 2 Mapping fermionic operators to qubit operators can be done the following way:

$$\forall j \in \mathbb{N}: \qquad Z_{j} = [a_{j}, a_{j}^{\dagger}]$$

$$X_{j} = -\left(\prod_{k=1}^{j-1} Z_{k}\right) (a_{j} + a_{j}^{\dagger})$$

$$Y_{j} = i \left(\prod_{k=1}^{j-1} Z_{k}\right) (a_{j}^{\dagger} - a_{j})$$

$$(37)$$

Proposition 13. Verify both transformations preserve the Canonical Commutation Relations 35.

Assume the annihilation operators correspond to a basis of one-particle states: $(|\phi\rangle_i)_{i\in\mathbb{N}}$.

Postulate 2. In the Born-Oppenheimer approximation, the absence of external fields, the second-quantization nonrelativistic and spin-free molecular electronic Hamiltonian is given by:

$$H = \sum_{j,k \in \mathbb{N}} h_{jk} a_j^{\dagger} a_k + \frac{1}{2} \sum_{i,j,k,l \in \mathbb{N}} g_{ijkl} a_i^{\dagger} a_j^{\dagger} a_k a_l + H_{\text{nuc}}$$

$$(38)$$

where in atomic units:

$$h_{jk} = \int \phi_j^* \left(-\frac{1}{2} \nabla^2 - \sum_l \frac{Z_l}{r_l} \right) \phi_k$$

$$g_{ijkl} = \iint \frac{\phi_i^*(x_1) \phi_k^*(x_2) \phi_j(x_1) \phi_l(x_2)}{r_{12}} dx_1 dx_2$$

$$H_{\text{nuc}} = \frac{1}{2} \sum_{i \neq j} \frac{Z_i Z_j}{R_{ij}}$$
(39)

Here, the Z_i are the nuclear charges, r_l the electron-nuclear separations, $r_{1,2}$ the electron-electron separation and R_{ij} the internuclear separation.

VII. IMAGINARY TIME PROPAGATION

This section is taken from [9].

Proposition 14. Given a time-independent Hamiltonian $H \in \mathcal{L}(\mathcal{E})$, an arbitrary state $|\psi\rangle \in \mathcal{E}$ can be formally evolved in imaginary time $\tau = it \in i\mathbb{R}$:

$$|\psi(\tau)\rangle = \sum_{n=0}^{\infty} c_n e^{-E_n \tau} |\phi_n\rangle \tag{40}$$

with the $(c_n)_{n\in\mathbb{N}}$ complex coefficients and $|\phi_n\rangle$ the Hamiltonian eigenvectors.

By multiplying the imaginary time propagator by $e^{\tau E_T}$, for E_T the ground state, the normalization of the ground state is preserved, whereas the other components vanish.

Definition 15. Mapping to extended Hilbert space Let us map an arbitrary state $|\psi_s\rangle$ to $|\Psi_0\rangle = |0\rangle |\psi_s\rangle$ and define the following unitary operator acting on the total Hilbert space:

$$U(\tau) = \begin{pmatrix} Q_{ITP}(\tau) & (1 + e^{-2(H - E_T)\tau})^{-1/2} \\ (1 + e^{-2(H - E_T)\tau})^{-1/2} & -Q_{ITP}(\tau) \end{pmatrix}$$
(41)

where $Q_{ITP}(\tau) = (1 + e^{-2(H - E_T)\tau})^{-1/2} e^{-(H - E_T)\tau}$.

Proposition 15. The application of $U(\tau)$ to $|\Psi_0\rangle$ yields:

$$|\Psi(\tau)\rangle \propto |0\rangle \otimes Q_{\rm ITP}(\tau) |\psi_s\rangle + |1\rangle \otimes \left(1 + e^{-2(H - E_T)\tau}\right)^{-1/2} |\psi_s\rangle$$
 (42)

Proposition 16. If τ is large enough, performing a measurement along the reservoir state $|0\rangle$ pushes the system to collapse to the state $|\Psi_f\rangle$:

$$|\Psi_f\rangle = C|0\rangle \otimes |\phi_0\rangle \tag{43}$$

for $C \in \mathbb{C}$ a normalization coefficient.

VIII. USE OF SYMMETRY TO IMPROVE EIGENFUNCTION CALCULATIONS

Knowing a set of symmetries of a given Hamiltonian allows us to make use of group theory, see appendix A, to facilitate the diagonalization.

Proposition 17. Let (D, V) be, as in proposition 24, a representation of a finite group G, commuting with the Hamiltonian H. For $\mu > 0$ large enough, the eigenfunctions of H can be found by successively using the projectors $(\pi_i)_i$. These projectors force the ansatz to respect the desired symmetry. More specifically, if $|\phi_i\rangle \in \mathcal{E}$ transforms like a basis function of the j-th irreducible representation V_i , $|\phi_i\rangle$ can be found as the ground state of:

$$H_i = H + \mu(1 - \pi_i) \in \mathcal{L}(\mathcal{E}) \tag{44}$$

Appendix A: A Summary of Group Representation Theory

This section is mainly taken from [10].

1. Representations of finite groups

Definition 16. A representation of a finite group G on a finite-dimensional complex vector space V is a homorphism $\rho: G \to \mathsf{GL}(V)$. A subrepresentation of a representation V is called irreducible if there is no proper nonzero invariant subspace W of V.

Definition 17. Direct sum, tensor product, dual and regular.

Proposition 18. If W is a subrepresentation of a representation V of a finite group G, then there is a complementary invariant subspace W' of V, so that $V = W \oplus W'$.

Corollary 1. Any representation is a diect sum of irreducible representations

Theorem 3. Schur's lemma If V and W are irreducible representations of G and $\varphi: V \to W$ is a G-module homomorphism, then:

- 1. either φ is an isomorphism of $\varphi = 0$
- 2. if V = W, then $\varphi = \lambda$ for some $\lambda \in \mathbb{C}$

Proposition 19. For any representation V of a finite group G, there is a decomposition:

$$V = V_1^{\oplus a_1} \oplus \dots \oplus V_k^{\oplus a_k} \tag{A1}$$

where the (V_i) are distinct irreducible representations. The decomposition of V into a direct sum of the k factors is unique, as are the V_i that occur and their mulitplicities a_i .

2. Characters and Projection Formulas

Definition 18. Let (D, V) be a finite-dimensional representation of the finite group G. Its character is the complex-valued function on the group defined by:

$$\forall g \in G : \chi_V(g) = \text{Trace}(D(g)) \tag{A2}$$

Proposition 20. Let V and W be representations of G. Then: $\chi_{V \oplus W} = \chi_V + \chi_W$ and $\chi_{V \otimes W} = \chi_V \chi_W$.

Notation For G a finite group and (D, V) one of its representation:

$$V^G = \{ v \in V : D(g)v = v, \forall g \in G \}$$
(A3)

Proposition 21. The map

$$\operatorname{End}(V) \ni \varphi : v \mapsto \frac{1}{|G|} \sum_{g \in G} D(g)v$$
 (A4)

is a projector of V onto V^G .

Definition 19. Define $(\mathbb{C}_{class}(G), (\cdot, \cdot))$ the hermitian space with $\mathbb{C}_{class}(G)$ the set of class functions on G and the hermitian product:

$$(\alpha, \beta) = \frac{1}{|G|} \sum_{g \in G} \alpha(g)^* \beta(g)$$
(A5)

Theorem 4. The characters of the irreducible representations of G are orthonormal in $(\mathbb{C}_{class}(G), (\cdot, \cdot))$.

Lemma 1. If V is an irreducible representation, then dim $\text{Hom}(V,W)^G$ is the multiplicity of V in W.

Corollary 2. The number of irreducible representations of G is less than or equal to the number of conjugacy classes.

Corollary 3. Any representation is determined by its character.

Corollary 4. A representation V is irreducible if and only if $(\chi_V, \chi_V) = 1$.

Corollary 5. The mutiplicity a_i of the irreducible representation V_i in V is given by: $a_i = (\chi_V, \chi_{V_i})$

Definition 20. Let G be a group. A G-module consists of an abelian group (M, +) with a left group action $\cdot : G \times M \to M$ verifying:

$$g \cdot (a+b) = g \cdot a + g \cdot b \tag{A6}$$

Proposition 22. Let $\alpha : \mathbb{C} \to \mathbb{C}$ be any function on the group G, and for any finite-dimensional representation (D, V) of G, set:

$$\varphi_{\alpha,V} = \sum_{g \in G} \alpha(g)D(g) : V \to V \tag{A7}$$

Then $\varphi_{\alpha,V}$ is a homomorphism of G-modules for all V if and only if α is a class function.

Proposition 23. The characters of irreducible representations of a finite group G form an orthonormal basis of $(\mathbb{C}_{class}(G), (\cdot, \cdot))$.

Proposition 24. Let (D, V) be a finite-dimensional representation of the finite group G and write:

$$V = V_1^{\oplus a_1} \oplus \dots \oplus V_k^{\oplus a_k} \tag{A8}$$

its decomposition. Then, the operator

$$\pi_i = \frac{\dim V_i}{|G|} \sum_{g \in G} \chi_{V_i}(g)^* D(g) \tag{A9}$$

is the projection of V onto $V_i^{\oplus a_i}$.

Appendix B: Aspects of dynamics of open quantum systems

This appendix follows [5].

1. Dynamics of open quantum systems

Let \mathcal{E}_S , \mathcal{E}_B , \mathcal{E}_I be the Hilbert space of states for the open system, the bath and the interaction between the two. For $H_{S,B,I} \in \mathcal{L}(\mathcal{E}_{S,B,I})$ the respective Hamiltonians, the global Hamiltonian is assumed to be $H = H_S + H_B + H_I \in \mathcal{L}(\mathcal{E}_S \otimes \mathcal{E}_B)$.

Proposition 25. Let $A \in \mathcal{L}(\mathcal{E}_S)$ be an operator to be measured. Then:

$$\langle A \rangle = \mathcal{T}_S(A\rho_S) \tag{B1}$$

with $\rho_S = \mathcal{T}_B \rho \in \mathcal{L}(\mathcal{E}_S)$ the system's density matrix, for $\rho \in \mathcal{L}(\mathcal{E}_S \otimes \mathcal{E}_B)$ the total density matrix.

Proposition 26. The system's density matrix ρ_S verifies the following:

$$\forall t > 0: \rho_S(t) = \mathcal{T}_B \left(U(t)\rho(t)U^{\dagger}(t) \right)$$
(B2)

where t = 0 is the initial time and U is the unitary evolution operator of the Schrödinger equation for the total system, assumed to be closed.

Proposition 27. A corollary from proposition 26 is the following equation:

$$\forall t > 0 : \frac{d}{dt}\rho_S(t) = -i\mathcal{T}_B[H(t), \rho(t)]$$
(B3)

Definition 21. Interaction picture von Neumann equation Decompose the global Hamiltonian as $H(t) = H_0 + H_I(t)$. Define $U_I(t) = U_0^{\dagger}(t)U(t)$ and finally $\rho_I(t) = U_I(t)\rho(0)U_I^{\dagger}(t)$. The von Neumann equation can be written for the interaction density matrix ρ_I as:

$$\frac{d}{dt} = -i[H_I(t), \rho_I(t)] \tag{B4}$$

From now on, we will denote by ρ the interaction density matrix ρ_I .

2. Weak-coupling limit

Proposition 28. Assuming $\mathcal{T}_B[H_I(t), \rho(0)] = 0$, the integral form of the interaction picture von Neumann equation takes the form:

$$\forall t > 0: \frac{d}{dt}\rho_S(t) = -\int_0^t ds \mathcal{T}_B[H_I(t), [H_I(s), \rho(s)]]$$
(B5)

Definition 22. Born approximation Assume the density matrix takes the form:

$$\forall t > 0: \rho(t) = \rho_S(t) \otimes \rho_B \tag{B6}$$

Proposition 29. Assuming we can replace, in the integrand, $\rho_S(s)$ by $\rho_S(t)$ (Markov approximation) and that this integrand vanishes rapidly when $s \to \infty$, the Markovian quantum master equation holds:

$$\forall t > 0: \frac{d}{dt}\rho_S(t) = -\int_0^\infty ds \mathcal{T}_B[H_I(t), [H_I(t-s), \rho_S(t) \otimes \rho_B]]$$
 (B7)

3. The Caldeira-Legett model

The model describes a particle of mass m with coordinate x which moves in a potential V(x). The free Hamiltonian H_S of the particle is taken to be:

$$H_S = \frac{p^2}{2m} + V(x) \tag{B8}$$

with p the particle momentum. The bath is assumed to be governed by:

$$H_B = \sum_{n=0}^{\infty} \omega_n \left(b_n^{\dagger} b_n + \frac{1}{2} \right) \tag{B9}$$

with b_n^{\dagger} and b_n the annihilation and creation operator of the bath, ω_n the mode frequency. The interaction is assumed to be of the form:

$$H_I = -x \sum_{n=0}^{\infty} \frac{\kappa_n}{(2m_n \omega_n)^{1/2}} (b_n^{\dagger} + b_n)$$
 (B10)

In addition, the counter-term $H_C \in \mathcal{L}(\mathcal{E}_S)$ appears in this model, for renormalization reasons.

$$H_C = x^2 \sum_{n=0}^{\infty} \frac{\kappa_n^2}{2m_n \omega_n^2} \tag{B11}$$

yielding the final Hamiltonian $H = H_S + H_B + H_I + H_C$.

4. Von Neumann equation and spectral density

Proposition 30. For the Caldeira-Legett model, the Von Neumann equation can be written:

$$\frac{d}{dt}\rho_S(t) = -i[H_S + H_C, \rho_s(t)] - \int_0^\infty d\tau \mathcal{T}_B[H_I(\tau), [H_I(-\tau), \rho_S(t) \otimes \rho_B]]$$
(B12)

where the second term on the right hand side is denoted by $\mathcal{K}\rho_S(t)$.

Definition 23. Thermal equilibrium hypothesis Assume the bath at thermal equilibrium and temperature $T = \frac{1}{k_B \beta}$ has the following density matrix:

$$\rho_B = \frac{\exp(-\beta H_B)}{\mathcal{T}_B(\exp(-\beta H_B))} \tag{B13}$$

Averages with respect to the bath will be denoted by $\langle \cdot \rangle_B$.

Definition 24. Correlation functions It is convenient to introduce the following correlation functions:

$$D(\tau) = i\langle [H_I(\tau)x, H_I(-\tau)x] \rangle_B$$

$$D_1(\tau) = \langle \{H_I(\tau)x, H_I(-\tau)x\} \rangle_B$$
(B14)

which are respectively called the dissipation and noise kernel.

Definition 25. Spectral density It is defined as:

$$J(\omega) = \sum_{n=0}^{\infty} \frac{\kappa_n^2}{2m_n \omega_n} \delta(\omega - \omega_n)$$
 (B15)

Proposition 31. The bath correlation functions can be written in terms of the spectral density as:

$$D(\tau) = 2 \int_0^\infty d\omega J(\omega) \sin(\omega \tau)$$

$$D_1(\tau) = 2 \int_0^\infty d\omega J(\omega) \coth(\omega \beta/2) \cos(\omega \tau)$$
(B16)

Proposition 32. The following expression for $K\rho_S(t)$ holds:

$$\mathcal{K}\rho_{S}(t) = \int_{0}^{\infty} d\tau \left(\frac{i}{2} D(\tau)[x(\tau), [x(-\tau), \rho_{S}(t)]] - \frac{1}{2} D_{1}(\tau)[x(\tau), \{x(-\tau), \rho_{S}(t)\}] \right)$$
(B17)

^[1] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al., *Variational quantum algorithms* (2020), 2012.09265.

^[2] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Physical Review A 99 (2019), ISSN 2469-9934, URL http://dx.doi.org/10.1103/PhysRevA.99.032331.

^[3] S. Barison, F. Vicentini, and G. Carleo, An efficient quantum algorithm for the time evolution of parameterized circuits (2021), 2101.04579.

^[4] H. Wang, S. Ashhab, and F. Nori, Physical Review A 83 (2011), ISSN 1094-1622, URL http://dx.doi.org/10.1103/ PhysRevA.83.062317.

^[5] Breuer and Petruccione, The theory of open quantum systems (2002).

^[6] M. A. Nielsen and I. I. Chuang, Quantum Computation and Quantum Information (2010).

^[7] N. Ramusat and V. Savona, Quantum 5, 399 (2021), ISSN 2521-327X, URL http://dx.doi.org/10.22331/q-2021-02-22-399.

⁸ E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014), 1411.4028.

^[9] F. Turro, V. Amitrano, P. Luchi, K. A. Wendt, J. L. DuBois, S. Quaglioni, and F. Pederiva, *Imaginary time propagation on a quantum chip* (2021), 2102.12260.

^[10] W. Fulton and J. Harris, Representation Theory (2004).