Model 1

In [1]:

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from statsmodels.graphics.regressionplots import influence_plot
import statsmodels.formula.api as smf
from scipy import stats
import statsmodels.api as sm

import warnings
warnings.filterwarnings('ignore')
```

Import data

In [3]:

```
cars = pd.read_csv('ToyotaCorolla.csv')
cars
```

Out[3]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_(
0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors	13500	23	10	2002	46986	Diesel	90	
1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors	13750	23	10	2002	72937	Diesel	90	
2	3	◆TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors	13950	24	9	2002	41711	Diesel	90	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3-Doors	14950	26	7	2002	48000	Diesel	90	
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	
1431	1438	TOYOTA Corolla 1.3 16V HATCHB G6 2/3- Doors	7500	69	12	1998	20544	Petrol	86	
1432	1439	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	10845	72	9	1998	19000	Petrol	86	
1433	1440	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	8500	71	10	1998	17016	Petrol	86	

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_(
1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	
1435		TOYOTA Corolla 1.6 LB LINEA TERRA 4/5-Doors	6950	76	5	1998	1	Petrol	110	
1436 ı	rows ×	38 columns								
4										•

Data Understanding

In [5]:

```
cars.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 38 columns):

Data # 	columns (total 38 Column	Columns): Non-Null Count	Dtype
0	Id	1436 non-null	int64
1	Model	1436 non-null	object
2	Price	1436 non-null	int64
3	Age_08_04	1436 non-null	int64
4	Mfg_Month	1436 non-null	int64
5	Mfg_Year	1436 non-null	int64
6	KM	1436 non-null	int64
7	Fuel_Type	1436 non-null	object
8	HP	1436 non-null	int64
9	Met_Color	1436 non-null	int64
10	Color	1436 non-null	object
11	Automatic	1436 non-null	int64
12	CC	1436 non-null	int64
13	Doors	1436 non-null	int64
14	Cylinders	1436 non-null	int64
15	Gears	1436 non-null	int64
16	Quarterly_Tax	1436 non-null	int64
17	Weight	1436 non-null	int64
18	Mfr_Guarantee	1436 non-null	int64
19	BOVAG_Guarantee	1436 non-null	int64
20	Guarantee_Period	1436 non-null	int64
21	ABS	1436 non-null	int64
22	Airbag_1	1436 non-null	int64
23	Airbag_2	1436 non-null	int64
24	Airco	1436 non-null	int64
25	Automatic_airco	1436 non-null	int64
26	Boardcomputer	1436 non-null	int64
27	CD_Player	1436 non-null	int64
28	Central_Lock	1436 non-null	int64
29	Powered_Windows	1436 non-null	int64
30	Power_Steering	1436 non-null	int64
31	Radio	1436 non-null	int64
32	Mistlamps	1436 non-null	int64
33	Sport_Model	1436 non-null	int64
34	Backseat_Divider	1436 non-null	int64
35	Metallic_Rim	1436 non-null	int64
36	Radio_cassette	1436 non-null	int64
37	Tow_Bar	1436 non-null	int64

dtypes: int64(35), object(3) memory usage: 426.4+ KB

localhost:8888/notebooks/python_files/Assignment 5.1(MR).ipynb

In [6]:

cars.isna().sum()

Out[6]:

Ιd 0 Model 0 Price 0 Age_08_04 0 Mfg_Month 0 Mfg_Year 0 0 ΚM Fuel_Type 0 0 ΗP Met_Color 0 Color 0 0 Automatic 0 cc0 Doors Cylinders 0 0 Gears Quarterly_Tax 0 0 Weight Mfr_Guarantee 0 BOVAG_Guarantee 0 Guarantee_Period 0 0 **ABS** 0 Airbag_1 Airbag_2 0 Airco 0 0 Automatic_airco Boardcomputer 0 CD_Player 0 Central_Lock 0 Powered_Windows 0 Power_Steering 0 Radio 0 Mistlamps 0 Sport_Model 0 Backseat_Divider 0 Metallic_Rim 0 Radio_cassette 0 0 Tow_Bar dtype: int64

In [8]:

cars= pd.concat([cars.iloc[:,2:4],cars.iloc[:,6:7],cars.iloc[:,8:9],cars.iloc[:,12:14],cars
cars

Out[8]:

	Price	Age_08_04	KM	HP	cc	Doors	Gears	Quarterly_Tax	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1431	7500	69	20544	86	1300	3	5	69	1025
1432	10845	72	19000	86	1300	3	5	69	1015
1433	8500	71	17016	86	1300	3	5	69	1015
1434	7250	70	16916	86	1300	3	5	69	1015
1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In [9]:

cars= cars.rename({'Age_08_04':'Age','cc':'CC','Quarterly_Tax':'QT'},axis=1)
cars

Out[9]:

	Price	Age	KM	HP	СС	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1431	7500	69	20544	86	1300	3	5	69	1025
1432	10845	72	19000	86	1300	3	5	69	1015
1433	8500	71	17016	86	1300	3	5	69	1015
1434	7250	70	16916	86	1300	3	5	69	1015
1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In [10]:

cars[cars.duplicated()]

Out[10]:

	Price	Age	KM	HP	СС	Doors	Gears	QT	Weight
113	24950	8	13253	116	2000	5	5	234	1320

In [11]:

cars = cars.drop_duplicates().reset_index(drop=True)
cars

Out[11]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

In [12]:

cars.shape

Out[12]:

(1435, 9)

In [13]:

```
cars.dtypes
```

Out[13]:

Price int64 int64 Age ΚM int64 HP int64 CC int64 Doors int64 Gears int64 QΤ int64 Weight int64 dtype: object

In [14]:

cars.describe

Out[14]:

<box< th=""><th>d metho</th><th>od NDF</th><th>rame.de</th><th>scrib</th><th>e of</th><th>Price</th><th>e Ag</th><th>e</th><th>KM</th><th>HP</th><th>CC</th><th>Doors</th></box<>	d metho	od NDF	rame.de	scrib	e of	Price	e Ag	e	KM	HP	CC	Doors
Gears	QΤ	Weigh	t									
0	13500	23	46986	90	2000	3	5	210	11	L65		
1	13750	23	72937	90	2000	3	5	210	11	L65		
2	13950	24	41711	90	2000	3	5	210	11	L65		
3	14950	26	48000	90	2000	3	5	210	11	L65		
4	13750	30	38500	90	2000	3	5	210	11	L70		
1430	7500	69	20544	86	1300	3	5	69	16	925		
1431	10845	72	19000	86	1300	3	5	69	16	915		
1432	8500	71	17016	86	1300	3	5	69	16	15		
1433	7250	70	16916	86	1300	3	5	69	16	15		
1434	6950	76	1	110	1600	5	5	19	11	L14		

[1435 rows x 9 columns]>

In [15]:

cars.max

Out[15]:

<boun< th=""><th>d metho</th><th>d NDF</th><th>ramea</th><th>dd_nı</th><th>umeric_</th><th>operation</th><th>ns.<lo< th=""><th>cals></th><th>.max of</th><th>Price</th><th>Α</th></lo<></th></boun<>	d metho	d NDF	ramea	dd_nı	umeric_	operation	ns. <lo< th=""><th>cals></th><th>.max of</th><th>Price</th><th>Α</th></lo<>	cals>	.max of	Price	Α
ge	KM	HP	CC Do	ors	Gears	QT We:	ight				
0	13500	23	46986	90	2000	3	5	210	1165		
1	13750	23	72937	90	2000	3	5	210	1165		
2	13950	24	41711	90	2000	3	5	210	1165		
3	14950	26	48000	90	2000	3	5	210	1165		
4	13750	30	38500	90	2000	3	5	210	1170		
						• • •			• • •		
1430	7500	69	20544	86	1300	3	5	69	1025		
1431	10845	72	19000	86	1300	3	5	69	1015		
1432	8500	71	17016	86	1300	3	5	69	1015		
1433	7250	70	16916	86	1300	3	5	69	1015		
1434	6950	76	1	110	1600	5	5	19	1114		

[1435 rows x 9 columns]>

```
In [16]:
```

```
cars.min
```

Out[16]:

<bour< th=""><th>nd metho</th><th>od NDF</th><th>ramea</th><th>dd_nı</th><th>umeric_</th><th>operatio</th><th>ns.<lo< th=""><th>cals></th><th>.min of</th><th>Price</th><th>Α</th></lo<></th></bour<>	nd metho	od NDF	ramea	dd_nı	umeric_	operatio	ns. <lo< th=""><th>cals></th><th>.min of</th><th>Price</th><th>Α</th></lo<>	cals>	.min of	Price	Α
ge	KM	HP	CC Do	ors	Gears	QT We:	ight				
0	13500	23	46986	90	2000	3	5	210	1165		
1	13750	23	72937	90	2000	3	5	210	1165		
2	13950	24	41711	90	2000	3	5	210	1165		
3	14950	26	48000	90	2000	3	5	210	1165		
4	13750	30	38500	90	2000	3	5	210	1170		
						• • •					
1430	7500	69	20544	86	1300	3	5	69	1025		
1431	10845	72	19000	86	1300	3	5	69	1015		
1432	8500	71	17016	86	1300	3	5	69	1015		
1433	7250	70	16916	86	1300	3	5	69	1015		
1434	6950	76	1	110	1600	5	5	19	1114		

[1435 rows x 9 columns]>

Skewness and kurtosis || Normality test (using Distplot)

```
In [24]:
```

```
cars['Price'].skew()
```

Out[24]:

1.6965785809803777

In [22]:

```
cars['Price'].kurtosis()
```

Out[22]:

In [25]:

```
sns.distplot(a=cars['Price'],hist=False)
plt.title('Normamlity Test - price')
plt.show()
```


In [26]:

```
cars['Age'].skew()
```

Out[26]:

-0.8255666018465969

In [27]:

```
cars['Age'].kurtosis()
```

Out[27]:

-0.076573436732565

In [28]:

```
sns.distplot(a=cars['Age'],hist=False)
plt.title('Normality test-Age')
plt.show()
```


In [29]:

```
cars['KM'].skew()
```

Out[29]:

1.0170229723462332

In [30]:

```
cars['KM'].kurtosis()
```

Out[30]:

```
In [31]:
```

```
sns.distplot(cars['KM'],hist=False)
plt.title('Normality test-KM')
plt.show()
```


In [32]:

```
cars['HP'].skew()
```

Out[32]:

0.9578333639343268

In [33]:

```
cars['HP'].kurtosis()
```

Out[33]:

In [34]:

```
sns.distplot(a=cars['HP'],hist=False)
plt.title('Normality test-HP')
plt.show()
```


In [35]:

cars['CC'].skew()

Out[35]:

27.45219619846663

In [36]:

cars['CC'].kurtosis()

Out[36]:

In [37]:

```
sns.distplot(a=cars['CC'],hist=False)
plt.title('Normality test-CC')
plt.show()
```


In [38]:

```
cars['Doors'].skew()
```

Out[38]:

-0.07505603155165053

In [39]:

```
cars['Doors'].kurtosis()
```

Out[39]:

-1.8748873416868563

In [41]:

```
sns.distplot(a=cars['Doors'],hist=False)
plt.title('Normality test-Doors')
plt.show()
```


In [42]:

```
cars['Gears'].skew()
```

Out[42]:

2.282921227095275

In [43]:

```
cars['Gears'].kurtosis()
```

Out[43]:

```
In [44]:
```

```
sns.distplot(a=cars['Gears'],hist=False)
plt.title('Normality test-Gears')
plt.show()
```


In [45]:

```
cars['Weight'].skew()
```

Out[45]:

3.1165183382777437

In [46]:

```
cars['Weight'].kurtosis()
```

Out[46]:

In [47]:

```
sns.distplot(a=cars['Weight'],hist=False)
plt.title('Normality test-Weight')
plt.show()
```


Normality test using probplot

In [49]:

```
stats.probplot(x=cars['Age'],dist='norm',plot=plt)
plt.show()
```


In [50]:

```
stats.probplot(x=cars['KM'],dist='norm',plot=plt)
plt.show()
```


In [52]:

stats.probplot(x=cars['Weight'],dist='norm',plot=plt)
plt.show()

In [53]:

```
stats.probplot(x=cars['CC'],dist='norm',plot=plt)
plt.show()
```


In [54]:

```
stats.probplot(x=cars['Doors'],dist='norm',plot=plt)
plt.show()
```


In [55]:

```
stats.probplot(x=cars['Gears'],dist='norm',plot=plt)
plt.show()
```


In [56]:

```
stats.probplot(x=cars['QT'],dist='norm',plot=plt)
plt.show()
```


Correlation

In [57]:

```
cars_corr = cars.corr().round(2)
cars_corr
```

Out[57]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
Price	1.00	-0.88	-0.57	0.31	0.12	0.18	0.06	0.21	0.58
Age	-0.88	1.00	0.50	-0.16	-0.10	-0.15	-0.01	-0.19	-0.47
KM	-0.57	0.50	1.00	-0.33	0.10	-0.04	0.01	0.28	-0.02
HP	0.31	-0.16	-0.33	1.00	0.04	0.09	0.21	-0.30	0.09
СС	0.12	-0.10	0.10	0.04	1.00	0.08	0.01	0.31	0.34
Doors	0.18	-0.15	-0.04	0.09	0.08	1.00	-0.16	0.11	0.30
Gears	0.06	-0.01	0.01	0.21	0.01	-0.16	1.00	-0.01	0.02
QT	0.21	-0.19	0.28	-0.30	0.31	0.11	-0.01	1.00	0.62
Weight	0.58	-0.47	-0.02	0.09	0.34	0.30	0.02	0.62	1.00

Heatmap using correlation data

In [58]:

```
plt.figure(figsize=(12,10))
sns.heatmap(cars_corr,annot=True)
plt.show()
```


Scatterplot between variables alongs with hiistogram

In [59]:

```
# format the plot background and scatter plots for all variables
sns.set_style('whitegrid')
sns.pairplot(cars)
plt.show()
```


Let's create a Referance data to understand how x features should behave with y.

```
In [60]:

cars.shape

Out[60]:
(1435, 9)

In [61]:

X = np.random.randn(81)
y = 10*X + np.random.randn(81)*2
```

In [62]:

```
X_df = pd.DataFrame(data=[X,y]).T
X_df.columns = ['X','y']
X_df
```

Out[62]:

	Х	у
0	0.601813	5.907716
1	-0.096511	0.160175
2	-0.259820	1.623354
3	-1.139655	-11.219657
4	-0.892138	-7.630030
76	0.004091	4.202127
77	0.583285	6.926263
78	-1.182763	-12.001279
79	0.152666	1.614262
80	0.218696	2.612352

81 rows × 2 columns

1. Linearity Test

In [63]:

```
sns.lmplot(x='X',y='y',data=X_df)
```

Out[63]:

<seaborn.axisgrid.FacetGrid at 0x1713ab6fe20>

2. Noramality Test

In [64]:

```
sns.distplot(a = X_df['X'],hist=False)
plt.show()
```



```
In [65]:
```

```
X_df.skew()
```

Out[65]:

X 0.302946
y 0.165813
dtype: float64

In [66]:

```
stats.probplot(x = X_df['X'],dist='norm',plot=plt)
plt.show()
```


Model Building

```
In [67]:
```

```
x = X_df[['X']]
y = X_df[['y']]
```

sklearn Model Building

In [69]:

```
from sklearn.linear_model import LinearRegression
linear_model = LinearRegression() #object creation/ model initialization
linear_model.fit(x,y)
```

Out[69]:

LinearRegression()

In [70]:

```
linear_model.intercept_
```

Out[70]:

```
array([0.03028772])
```

```
In [71]:
```

```
linear_model.coef_
```

Out[71]:

array([[9.82889751]])

Model Testing

In [72]:

```
y_pred = linear_model.predict(x)
```

Model Evalution

In [73]:

у

Out[73]:

у

- **o** 5.907716
- **1** 0.160175
- **2** 1.623354
- **3** -11.219657
- **4** -7.630030
- ...
- **76** 4.202127
- **77** 6.926263
- **78** -12.001279
- **79** 1.614262
- **80** 2.612352

81 rows × 1 columns

In [74]:

y_pred

```
Out[74]:
```

```
array([[
         5.94544899],
       [ -0.91831117],
       [-2.52345475],
       [-11.17126058],
       [ -8.73844709],
       [-20.22869582],
       [-1.39569544],
       [ -6.92749955],
       [-2.30113954],
       [ 3.77771079],
       [ -0.81183966],
       [-14.21694704],
       [ 10.58516067],
       [-7.21083072],
       [-8.78033632],
       [-4.55037354],
       [-5.13723528],
       [-7.72880814],
       [-12.98995183],
         9.63118171],
       [ 11.89158797],
       [-5.97010887],
       [-3.14348342],
       [-13.195718
         2.65341961],
         4.44111032],
       [-2.19167123],
       [ -5.71263474],
         4.40327598],
       [-6.51698593],
       [-31.17217592],
         6.02423908],
       [-6.12705275],
         2.32832951],
         -4.209956031,
         1.95620909],
       [-3.60588212],
        -4.83503681],
          7.83105452],
        -3.64146767],
         6.44844693],
       [-14.19695116],
          3.58761155],
          3.02453013],
          6.59910635],
       [-11.47050575],
          8.48934031],
          0.73359534],
          0.2265824 ],
        14.98814785],
         1.55079862],
       [-15.12169875],
        18.00744439],
         -5.46559552],
          9.54893994],
```

```
[-19.14338864],
[-6.23021321],
 13.42794582],
[ -5.1140456 ],
[-3.42722676],
 -7.89310225],
 34.82755202],
[ -5.77910744],
[ 16.91152962],
[ 14.01567302],
[-13.01908541],
  3.40889692],
[-13.57877979],
[-1.61159401],
  1.43719986],
  4.36163612],
[ -2.03392216],
 -2.44042108],
  6.26129242],
 -5.90161508],
[ 11.52041415],
  0.07049662],
  5.76333218],
[-11.59497159],
  1.53082229],
  2.17983308]])
```

In [75]:

```
err = y-y_pred
err
```

Out[75]:

```
У
 0 -0.037733
    1.078487
    4.146809
   -0.048396
     1.108417
    4.131630
76
     1.162931
77
78
    -0.406307
    0.083440
79
80
    0.432519
```

81 rows × 1 columns

5. Homoscedasticity Check

In [76]:

```
plt.scatter(x= X_df['X'],y=err)
plt.title('Homoscedacity Check - X vs Error')
plt.xlabel('X')
plt.ylabel('Error')
plt.show()
```


6. Zero Residual Mean Test

It is a plot between Actual Output Vs Predicted Plot.

In [77]:

```
plt.scatter(x= y,y=y_pred)
plt.title('Actual Output Vs Predicted Plot')
plt.xlabel('Actual Output')
plt.ylabel('Predicted Plot')
plt.show()
```


BACK to CARS DATA

In [78]:

cars

Out[78]:

	Price	Age	KM	HP	СС	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

Model Building

```
In [79]:
```

```
X = cars.drop(['Price'],axis= 1)
y = cars[['Price']]
```

In [80]:

```
x.columns
```

Out[80]:

Index(['X'], dtype='object')

In [81]:

```
from sklearn.preprocessing import StandardScaler
std_scaler = StandardScaler()
X_scaled = std_scaler.fit_transform(X)
X_scaled = pd.DataFrame(data=X_scaled,columns= X.columns)
X_scaled
```

Out[81]:

	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	-1.777268	-0.575958	-0.767351	0.998113	-1.084443	-0.140475	3.003513	1.774964
1	-1.777268	0.116474	-0.767351	0.998113	-1.084443	-0.140475	3.003513	1.774964
2	-1.723380	-0.716707	-0.767351	0.998113	-1.084443	-0.140475	3.003513	1.774964
3	-1.615603	-0.548902	-0.767351	0.998113	-1.084443	-0.140475	3.003513	1.774964
4	-1.400049	-0.802384	-0.767351	0.998113	-1.084443	-0.140475	3.003513	1.870688
1430	0.701602	-1.281492	-1.034441	-0.651898	-1.084443	-0.140475	-0.440104	-0.905299
1431	0.863267	-1.322689	-1.034441	-0.651898	-1.084443	-0.140475	-0.440104	-1.096747
1432	0.809379	-1.375627	-1.034441	-0.651898	-1.084443	-0.140475	-0.440104	-1.096747
1433	0.755490	-1.378295	-1.034441	-0.651898	-1.084443	-0.140475	-0.440104	-1.096747
1434	1.078821	-1.829626	0.568103	0.055249	1.015659	-0.140475	-1.661245	0.798582

1435 rows × 8 columns

Before Scaling

In [82]:

X.mean()

Out[82]:

55.980488 Age ΚM 68571.782578 ΗP 101.491986 CC1576.560976 Doors 4.032753 Gears 5.026481 87.020209 QΤ Weight 1072.287108

dtype: float64

```
In [83]:
```

```
X.std()
```

Out[83]:

Age 18.563312 KM 37491.094553 ΗP 14.981408 CC424.387533 0.952667 Doors Gears 0.188575 QΤ 40.959588 Weight 52.251882

dtype: float64

After Scaling

```
In [84]:
```

```
X_scaled.mean()
```

Out[84]:

Age -1.668042e-16 2.503611e-16 KM HP 1.166856e-15 CC-1.581923e-15 -1.241902e-15 Doors -2.065363e-15 Gears QΤ -1.220085e-15 Weight 1.496287e-16

dtype: float64

In [85]:

```
X_scaled.std()
```

Out[85]:

1.000349 Age KM 1.000349 ΗP 1.000349 CC1.000349 Doors 1.000349 Gears 1.000349 QΤ 1.000349 Weight 1.000349 dtype: float64

Model Training

```
In [86]:
linear_model_02 = LinearRegression()
linear_model_02.fit(X_scaled,y)

Out[86]:
LinearRegression()

In [87]:
linear_model_02.coef_
Out[87]:
array([[-2.25862554e+03, -7.77200045e+02, 4.73017054e+02, -5.02968400e+01, -8.76327907e-01, 1.12674914e+02, 1.57999990e+02, 8.80423097e+02]])

In [88]:
linear_model_02.intercept_
Out[88]:
array([10720.91567944])
```

Model Testing

```
In [89]:

y_pred = linear_model_02.predict(X_scaled)
```

Model Evalution

In [90]:

```
err = y - y_pred
err
```

Out[90]:

	Price
0	-3291.958871
1	-2503.800414
2	-2829.635210
3	-1455.789389
4	-2450.217277
1430	-1294.255037
1431	2552.422658
1432	44.565598
1433	-1329.222041
1434	-3446.087526

1435 rows × 1 columns

Homoscedascity Check

In [91]:

```
plt.scatter(x = cars['Age'],y = err)
plt.title('Homoscedasticity Check -Age Vs Error')
plt.xlabel('Age')
plt.ylabel('Error')
plt.show()
```


In [92]:

```
plt.scatter(x = cars['HP'],y = err)
plt.title('Homoscedasticity Check - HP Vs Error')
plt.xlabel('HP')
plt.ylabel('Error')
plt.show()
```


In [93]:

```
plt.scatter(x = cars['CC'],y = err)
plt.title('Homoscedasticity Check - CC Vs Error')
plt.xlabel('CC')
plt.ylabel('Error')
plt.show()
```


In [94]:

```
plt.scatter(x = cars['Doors'],y = err)
plt.title('Homoscedasticity Check - Doors Vs Error')
plt.xlabel('Doors')
plt.ylabel('Error')
plt.show()
```


In [95]:

```
plt.scatter(x = cars['Gears'],y = err)
plt.title('Homoscedasticity Check - Gears Vs Error')
plt.xlabel('Gears')
plt.ylabel('Error')
plt.show()
```


In [96]:

```
plt.scatter(x = cars['QT'],y = err)
plt.title('Homoscedasticity Check - QT Vs Error')
plt.xlabel('QT')
plt.ylabel('Error')
plt.show()
```


In [97]:

```
plt.scatter(x = cars['Weight'],y = err)
plt.title('Homoscedasticity Check - Weight Vs Error')
plt.xlabel('Weight')
plt.ylabel('Error')
plt.show()
```


Homoscedascity Test Failed

6. Zero Residual Mean Test

It is a plot between Actual Output Vs Predicted Plot.

In [98]:

```
plt.scatter(x = y,y = y_pred)
plt.title('Actual Output Vs Predicted Output')
plt.xlabel('Actual Output')
plt.ylabel('Predicted Output')
plt.show()
```


Model Building || using statsmodel

In [100]:

```
model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=cars).fit()
```

Model Testing

In [101]:

model.params

Out[101]:

Interce	ept -5472.540368
Age	-121.713891
KM	-0.020737
HP	31.584612
CC	-0.118558
Doors	-0.920189
Gears	597.715894
QT	3.858805
Weight	16.855470
dtype:	float64

In [102]:

```
#Finding tvalues and pvalues of model
model.pvalues,'\n', model.tvalues
```

Out[102]:

```
(Intercept
             1.113392e-04
Age
             1.879217e-288
ΚM
             1.994713e-56
HP
             5.211155e-28
CC
              1.882393e-01
Doors
            9.816443e-01
             2.452430e-03
Gears
              3.290363e-03
QΤ
Weight
              1.031118e-51
dtype: float64,
 '\n',
Intercept
            -3.875273
Age
            -46.551876
ΚM
            -16.552424
HP
            11.209719
CC
             -1.316436
Doors
             -0.023012
Gears
             3.034563
QΤ
             2.944198
Weight
             15.760663
dtype: float64)
```

In [103]:

```
#R squarred values model.rsquared_adj
```

Out[103]:

(0.8625200256947, 0.8617487495415146)

Simple linear regression model

In [104]:

```
model_1 = smf.ols('Price~CC',data=cars).fit()
print(model_1.tvalues,'\n',model_1.pvalues)
model_1.summary()
```

Intercept 24.879592 CC 4.745039

dtype: float64

Intercept 7.236022e-114 CC 2.292856e-06

dtype: float64

Out[104]:

No

OLS Regression Results

Covariance Type:

Dep. Variable:	Price	R-squared:	0.015
Model:	OLS	Adj. R-squared:	0.015
Method:	Least Squares	F-statistic:	22.52
Date:	Wed, 23 Feb 2022	Prob (F-statistic):	2.29e-06
Time:	02:50:14	Log-Likelihood:	-13779.
. Observations:	1435	AIC:	2.756e+04
Df Residuals:	1433	BIC:	2.757e+04
Df Model:	1		

Di Model.

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 Intercept
 9053.5368
 363.894
 24.880
 0.000
 8339.715
 9767.359

 CC
 1.0576
 0.223
 4.745
 0.000
 0.620
 1.495

nonrobust

 Omnibus:
 463.846
 Durbin-Watson:
 0.269

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1386.822

 Skew:
 1.645
 Prob(JB):
 7.17e-302

 Kurtosis:
 6.518
 Cond. No.
 6.28e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.28e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [105]:

```
model_2 =smf.ols('Price~Doors',data=cars).fit()
print(model_2.tvalues,'\n',model_2.pvalues)
model_2.summary()
```

Intercept 19.421546 Doors 7.070520

dtype: float64

Intercept 8.976407e-75 Doors 2.404166e-12

dtype: float64

Out[105]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.034
Model:	OLS	Adj. R-squared:	0.033
Method:	Least Squares	F-statistic:	49.99
Date:	Wed, 23 Feb 2022	Prob (F-statistic):	2.40e-12
Time:	02:50:49	Log-Likelihood:	-13765.
No. Observations:	1435	AIC:	2.753e+04
Df Residuals:	1433	BIC:	2.755e+04
Df Model:	1		
Covariance Type:	nonrobust		

coef std err P>|t| [0.025 0.975] t **Intercept** 7916.1452 407.596 19.422 0.000 7116.596 8715.694 **Doors** 695.4978 98.366 7.071 0.000 502.541 888.454

Durbin-Watson: Omnibus: 465.543 0.289 Prob(Omnibus): 0.000 Jarque-Bera (JB): 1403.980 Skew: **Prob(JB):** 1.35e-305 1.647 **Kurtosis:** 6.554 Cond. No. 19.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [106]:

```
model_3 = smf.ols('Price~CC+Doors',data=cars).fit()
print(model_3.tvalues,'\n',model_3.pvalues)
model_3.summary()
```

Intercept 12.786341 CC 4.268006 Doors 6.752236

dtype: float64

Intercept 1.580945e-35 CC 2.101878e-05 Doors 2.109558e-11

dtype: float64

Out[106]:

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.046
Model:	OLS	Adj. R-squared:	0.045
Method:	Least Squares	F-statistic:	34.40
Date:	Wed, 23 Feb 2022	Prob (F-statistic):	2.55e-15
Time:	02:51:04	Log-Likelihood:	-13756.
No. Observations:	1435	AIC:	2.752e+04
Df Residuals:	1432	BIC:	2.753e+04
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	6568.3395	513.700	12.786	0.000	5560.655	7576.024
СС	0.9398	0.220	4.268	0.000	0.508	1.372
Doors	662.3187	98.089	6.752	0.000	469.906	854.732

 Omnibus:
 448.494
 Durbin-Watson:
 0.291

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1297.612

 Skew:
 1.602
 Prob(JB):
 1.69e-282

 Kurtosis:
 6.382
 Cond. No.
 9.09e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Model validation Techniques

two techniques - 1. collinearity check

In [108]:

```
# 1) Collinearity Problem Check
# Calculate VIF = 1/(1-Rsquare) for all independent variables
rsq age=smf.ols('Age~KM+HP+CC+Doors+Gears+QT+Weight',data=cars).fit().rsquared
vif_age=1/(1-rsq_age)
rsq_KM=smf.ols('KM~Age+HP+CC+Doors+Gears+QT+Weight',data=cars).fit().rsquared
vif_KM=1/(1-rsq_KM)
rsq HP=smf.ols('HP~Age+KM+CC+Doors+Gears+QT+Weight',data=cars).fit().rsquared
vif_HP=1/(1-rsq_HP)
rsq_CC=smf.ols('CC~Age+KM+HP+Doors+Gears+QT+Weight',data=cars).fit().rsquared
vif_CC=1/(1-rsq_CC)
rsq DR=smf.ols('Doors~Age+KM+HP+CC+Gears+OT+Weight',data=cars).fit().rsquared
vif_DR=1/(1-rsq_DR)
rsq_GR=smf.ols('Gears~Age+KM+HP+CC+Doors+QT+Weight',data=cars).fit().rsquared
vif_GR=1/(1-rsq_GR)
rsq_QT=smf.ols('QT~Age+KM+HP+CC+Doors+Gears+Weight',data=cars).fit().rsquared
vif QT=1/(1-rsq QT)
rsq_WT=smf.ols('Weight~Age+KM+HP+CC+Doors+Gears+QT',data=cars).fit().rsquared
vif_WT=1/(1-rsq_WT)
# Putting the values in Dataframe format
d1={'Variables':['Age','KM','HP','CC','Doors','Gears','QT','Weight'],
    'Vif':[vif_age,vif_KM,vif_HP,vif_CC,vif_DR,vif_GR,vif_QT,vif_WT]}
Vif_df=pd.DataFrame(d1)
Vif_df
```

Out[108]:

	Variables	Vif
0	Age	1.876236
1	KM	1.757178
2	HP	1.419180
3	CC	1.163470
4	Doors	1.155890
5	Gears	1.098843
6	QT	2.295375
7	Weight	2.487180

In [109]:

None variable has VIF>20, No Collinearity, so consider all varaibles in Regression

2. Residual Test

Test for normality of residuals(Q-Q plot)

In [110]:

```
qqplot =sm.qqplot(model.resid,line='q')
plt.title('Normal Q-Q plot of residuals') # line = 45 to draw the diagnoal line
plt.show()
```


In [111]:

```
list(np.where(model.resid>6000)) #outlier detection from above QQ plot of residuals.
```

Out[111]:

```
[array([109, 146, 522], dtype=int64)]
```

In [112]:

```
list(np.where(model.resid<-6000))
```

Out[112]:

[array([220, 600, 959], dtype=int64)]

Test for homoscedasticity or Heteroscedasticity

In [113]:

```
def standard_values ( vals ):
    return(vals - vals.mean())/vals.std()
```

In [114]:

```
plt.scatter(standard_values(model.fittedvalues), standard_values(model.resid))
plt.title('Residual Plot')
plt.xlabel('standardized fitted values')
plt.ylabel('standardized residual values')
plt.show()
```


Residual Vs Regressors

In [115]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "Age", fig=fig)
plt.show()
```


In [116]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "KM", fig=fig)
plt.show()
```


In [117]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "HP",fig=fig)
plt.show()
```


In [118]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "CC",fig=fig)
plt.show()
```


In [119]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "Doors",fig=fig)
plt.show()
```


In [120]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "Gears",fig=fig)
plt.show()
```


In [121]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "QT",fig=fig)
plt.show()
```


In [122]:

```
fig = plt.figure(figsize=(14,10))
fig = sm.graphics.plot_regress_exog(model, "Weight",fig=fig)
plt.show()
```


Model Deletion Diagnostics

Two Techniques:- 1. Cook's Distance

In [124]:

```
model_influence = model.get_influence()
(c, _)= model_influence.cooks_distance
```

In [126]:

```
#plot the influencers value using stem plot
fig = plt.figure(figsize=(18,5))
plt.stem(np.arange(len(cars)),np.round(c, 3))
plt.xlabel('Row Index')
plt.ylabel('cooks Distance')
plt.show()
```


In [127]:

```
# index and value of influencers where c is more than .5
(np.argmax(c),np.max(c))
```

Out[127]:

(80, 78.7295058224916)

2. Leverage value

In [128]:

2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff value are i
influence_plot(model)
plt.show()


```
In [129]:
```

```
cars.shape
```

Out[129]:

(1435, 9)

In [131]:

```
k =cars.shape[1]
n = cars.shape[0]
leverage_cutoff = 3*((k+1)/n)
leverage_cutoff
```

Out[131]:

0.020905923344947737

In [132]:

```
cars[cars.index.isin([80])]
```

Out[132]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
80	18950	25	20019	110	16000	5	5	100	1180

Improving the model

In [133]:

```
# Creating a copy of data so that original dataset is not affected
data = cars.copy()
data
```

Out[133]:

Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
13500	23	46986	90	2000	3	5	210	1165
13750	23	72937	90	2000	3	5	210	1165
13950	24	41711	90	2000	3	5	210	1165
14950	26	48000	90	2000	3	5	210	1165
13750	30	38500	90	2000	3	5	210	1170
7500	69	20544	86	1300	3	5	69	1025
10845	72	19000	86	1300	3	5	69	1015
8500	71	17016	86	1300	3	5	69	1015
7250	70	16916	86	1300	3	5	69	1015
6950	76	1	110	1600	5	5	19	1114
	13500 13750 13950 14950 13750 7500 10845 8500 7250	13500 23 13750 23 13950 24 14950 26 13750 30 7500 69 10845 72 8500 71 7250 70	13500 23 46986 13750 23 72937 13950 24 41711 14950 26 48000 13750 30 38500 7500 69 20544 10845 72 19000 8500 71 17016 7250 70 16916	13500 23 46986 90 13750 23 72937 90 13950 24 41711 90 14950 26 48000 90 13750 30 38500 90 7500 69 20544 86 10845 72 19000 86 8500 71 17016 86 7250 70 16916 86	13500 23 46986 90 2000 13750 23 72937 90 2000 13950 24 41711 90 2000 14950 26 48000 90 2000 13750 30 38500 90 2000 7500 69 20544 86 1300 10845 72 19000 86 1300 8500 71 17016 86 1300 7250 70 16916 86 1300	13500 23 46986 90 2000 3 13750 23 72937 90 2000 3 13950 24 41711 90 2000 3 14950 26 48000 90 2000 3 13750 30 38500 90 2000 3 7500 69 20544 86 1300 3 10845 72 19000 86 1300 3 8500 71 17016 86 1300 3 7250 70 16916 86 1300 3	13500 23 46986 90 2000 3 5 13750 23 72937 90 2000 3 5 13950 24 41711 90 2000 3 5 14950 26 48000 90 2000 3 5 13750 30 38500 90 2000 3 5 7500 69 20544 86 1300 3 5 8500 71 17016 86 1300 3 5 7250 70 16916 86 1300 3 5	13500 23 46986 90 2000 3 5 210 13750 23 72937 90 2000 3 5 210 13950 24 41711 90 2000 3 5 210 14950 26 48000 90 2000 3 5 210 13750 30 38500 90 2000 3 5 210 7500 69 20544 86 1300 3 5 69 8500 71 17016 86 1300 3 5 69 7250 70 16916 86 1300 3 5 69

1435 rows × 9 columns

In [134]:

data2=data.drop(data.index[[80]],axis=0).reset_index(drop=True)
data2

Out[134]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1429	7500	69	20544	86	1300	3	5	69	1025
1430	10845	72	19000	86	1300	3	5	69	1015
1431	8500	71	17016	86	1300	3	5	69	1015
1432	7250	70	16916	86	1300	3	5	69	1015
1433	6950	76	1	110	1600	5	5	19	1114

1434 rows × 9 columns

In [135]:

```
final_data =smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=data2).fit()
final_data.summary()
```

Out[135]:

OLS Regression Results

Covariance Type:

Dep. Variable:	Price	R-squared:	0.868
Model:	OLS	Adj. R-squared:	0.867
Method:	Least Squares	F-statistic:	1172.
Date:	Wed, 23 Feb 2022	Prob (F-statistic):	0.00
Time:	03:00:33	Log-Likelihood:	-12326.
No. Observations:	1434	AIC:	2.467e+04
Df Residuals:	1425	BIC:	2.472e+04
Df Model:	8		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-6197.9334	1383.989	-4.478	0.000	-8912.808	-3483.059
Age	-120.5074	2.561	-47.048	0.000	-125.532	-115.483
KM	-0.0178	0.001	-13.931	0.000	-0.020	-0.015
HP	39.2245	2.912	13.470	0.000	33.512	44.937
СС	-2.5088	0.307	-8.162	0.000	-3.112	-1.906
Doors	-26.5129	39.235	-0.676	0.499	-103.478	50.452
Gears	527.1292	192.832	2.734	0.006	148.864	905.395
QT	8.9414	1.427	6.268	0.000	6.143	11.740
Weight	20.0627	1.118	17.944	0.000	17.869	22.256

 Omnibus:
 242.181
 Durbin-Watson:
 1.595

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 2635.168

 Skew:
 -0.427
 Prob(JB):
 0.00

 Kurtosis:
 9.586
 Cond. No.
 3.14e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.14e+06. This might indicate that there are strong multicollinearity or other numerical problems.

Predicting for new Data

In [138]:

```
# say New data for prediction is
new_data=pd.DataFrame({'Age':12,"KM":40000,"HP":80,"CC":1300,"Doors":4,"Gears":5,"QT":69,"W
new_data
```

Out[138]:

	Age	KM	HP	СС	Doors	Gears	QT	Weight
(12	40000	80	1300	4	5	69	1012

In [140]:

```
# Manual Prediction of Price
final_data.predict(new_data)
```

Out[140]:

0 14970.556739 dtype: float64

In [141]:

```
pred_y=final_data.predict(data2)
pred_y
```

Out[141]:

```
16513.565909
1
        16051.656226
2
        16486.949796
3
        16133.995128
4
        15921.372341
1429
         8970.611964
1430
         8435.944671
1431
         8591.765915
1432
         8714.053275
1433
         9966.948423
Length: 1434, dtype: float64
```

In [139]:

```
#Table containing R^2 value for each prepared model
```

In [137]:

```
d2={'Prep_Models':['Model','Final_Model'],'Rsquared':[model.rsquared,final_data.rsquared]}
table=pd.DataFrame(d2)
table
```

Out[137]:

	Prep_Models	Rsquared	
0	Model	0.862520	
1	Final_Model	0.868116	

In []:			