Recall

- Linear classifier h
- 0-1 Loss $L(g,a) = \begin{cases} 0 \text{ if } g = a \\ 1 \text{ else} \end{cases}$

• Training error
$$\mathcal{E}_n(h) = \frac{1}{n} \sum_{i=1}^n L(h(x^{(i)}), y^{(i)})$$

A more-complete ML analysis

- 1. Establish a goal & find data
 - Example goal: diagnose whether people have heart disease based on their available information
- 2. Encode data in useful form for the ML algorithm
- 3. Run the ML algorithm & return a classifier
 - Example algorithms: (A) choose best classifier from a finite list; (B) perceptron; (C) averaged perceptron
- 4. Interpretation & evaluation

A machine learning (ML) analysis

- First, need goal & data. E.g. diagnose whether people have heart disease based on their available information
- Next, put data in useful form for learning algorithm

	has heart disease?	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	no	55	no	nurse	pain	40s	133000
2	no	71	no	admin	beta blockers, pain	20s	34000
3	yes	89	yes	nurse	beta blockers	50s	40000
4	no	67	no	doctor	none	50s	120000

Identify the labels and encode as real numbers

- Depending on your algorithm, might instead use {0,1}
- Save mapping to recover predictions of new points

- Identify the features and encode as real numbers
- Feature: any function of the data (except labels)
- Today, old features: x; new features: $\phi(x)$

	resting heart rate (bpm)	pain?	job	medicines	age	family income (USD)
1	55	0	nurse	pain	40s	133000
2	71	0	admin	beta blockers, pain	20s	34000
3	89	1	nurse	beta blockers	50s	40000
4	67	O	doctor	none	50s	120000

Idea: turn each category into a unique natural number

Idea: turn each category into a unique binary number

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}
nurse	0	0	0
admin	0	O	1
pharmacist	0	1	0
doctor	0	1	1
social worker	1	0	0

Idea: turn each category into own unique 0-1 feature

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}	ϕ_{d+d}
nurse	1	0	0	0	0
admin	0	1	0	0	0
pharmacist	0	0	1	0	0
doctor	0	0	0	1	0
social worker	0	0	0	0	1

• "one-hot encoding"

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	medicines	age	family income (USD)
1	55	0	1,0,0,0,0	pain	40s	133000
2	71	0	0,1,0,0,0	beta blockers, pain	20s	34000
3	89	1	1,0,0,0,0	beta blockers	50s	40000
4	67	0	0,0,0,1,0	none	50s	120000

Should we use one-hot encoding?

	ϕ_d	ϕ_{d+1}	ϕ_{d+2}	ϕ_{d+3}
pain	1	0	0	0
pain & beta blockers	0	1	0	0
beta blockers	0	0	1	0
no medications	0	0	0	1

Idea: factored encoding

	ϕ_d	ϕ_{d+1}
pain	1	0
pain & beta blockers	1	1
beta blockers	0	1
no medications	0	0

Using a representative # for a range

- Potential pitfall: level of detail might be treated as meaningful (by you or others using the data)
- A way to diagnose many problems: plot your data!

age

45

25

55

55

TECH MYSTERIES

How an internet mapping glitch turned a random Kansas farm into a digital hell

Kashmir Hill 4/10/16 10 AM

Identify the features and encode as real numbers

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	55	0	1,0,0,0,0	1,0	4	133000
2	71	0	0,1,0,0,0	1,1	2	34000
3	89	1	1,0,0,0,0	0,1	5	40000
4	67	0	0,0,0,1,0	0,0	5	120000

Encode ordinal data

 Numerical data: order on data values, and differences in value are meaningful

Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

• E.g. Likert scale:

Stron	ngly gree	Disagree	Neutral	Agre	е	Strongly agree
1		2	3	4		5

Encode ordinal data

- Numerical data: order on data values, and differences in value are meaningful
- Categorical data: no order on data values

Ordinal data: order on data values, but differences not

meaningful

• E.g. Likert scale:

Strongly disagree	Disagree	Neutral	Agree	Strongly agree
1,0,0,0,0	1,1,0,0,0	1,1,1,0,0	1,1,1,1,0	1,1,1,1,1

Encode numerical data

- A closer look at the output of a linear classifier
- Idea: standardize numerical data

Encode numerical data

- A closer look at the output of a linear classifier
- Idea: standardize numerical data

• For dth feature: $\phi_d^{(k)} = \frac{x_d^{(k)} - \text{mean}_d}{2}$

More benefits of plotting your data

And talking to experts

- Identify the features and encode as real numbers
- Standardize numerical features

	resting heart rate (bpm)	pain?	j1,j2,j3,j4,j5	m1, m2	decade	family income (USD)
1	-1.5	0	1,0,0,0,0	1,0	1	2.075
2	0.1	0	0,1,0,0,0	1,1	-1	-0.4
3	1.9	1	1,0,0,0,0	0,1	2	-0.25
4	-0.3	0	0,0,0,1,0	0,0	2	1.75

25

Nonlinear boundaries

 Idea: can approximate a smooth function with a kth order Taylor polynomial (e.g. around 0)

order (<i>k</i>)	terms when <i>d</i> =1	terms for general d
0	[1]	[1]
1	$[1, x_1]$	$[1, x_1, \ldots, x_d]$
2	$[1, x_1, x_1^2]$	$\begin{bmatrix} 1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2 \end{bmatrix}$
3	$[1, x_1, x_1^2, x_1^3]$	$ \begin{bmatrix} 1, x_1, \dots, x_d, \\ x_1^2, x_1 x_2, \dots, x_{d-1} x_d, x_d^2, \\ x_1^3, x_1^2 x_2, x_1 x_2 x_3, \dots, x_d^3 \end{bmatrix} $

Nonlinear boundaries

- How can we detect overfitting?
- How can we avoid overfitting?

Evaluation of a learning algorithm

 How good is our learning algorithm on data like ours?

 Idea: use full data for training and then report training error

Idea: reserve some data for testing

- More training data: closer to training on full data
- More testing data: less noisy estimate of performance
- Only one classifier might not be representative
- Good idea to shuffle order of data

Evaluation of a learning algorithm


```
Cross-validate (\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

train h_i on \mathcal{D}_n\backslash\mathcal{D}_{n,i} (i.e. except chunk i) compute "test" error \mathcal{E}(h_i,\mathcal{D}_{n,i}) of h_i on \mathcal{D}_{n,i}

Return \frac{1}{k}\sum_{i=1}^k \mathcal{E}(h_i,\mathcal{D}_{n,i})
```

Again, good idea to shuffle order of data first