JOURNAL OF KIM IL SUNG UNIVERSITY

(NATURAL SCIENCE)

Vol. 62 No. 11 JUCHE105 (2016).

위상학적절연체의 세로전도도에 미치는 불순물의 영향

렴 광 일

경애하는 김정은동지께서는 다음과 같이 말씀하시였다.

《과학기술부문에서 첨단돌파전을 힘있게 벌려야 하겠습니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 39폐지)

위상학적절연체[1]의 모서리상태를 통하여 흐르는 전류는 산일이 없으며 그 전도도 [2]는 량자화된다. 위상학적절연체가 가지는 이러한 특성은 량자콤퓨터의 실현[3]에 응용할수 있다.

론문에서는 강한결합하밀토니안을 리용하여 위상학적절연체의 한 종류인 HgTe/CdTe 량자우물의 세로전도도에 미치는 불순물의 영향을 밝혔다.

1. 모형하밀로니안과 세로전도도의 계산도식

론문에서는 HgTe/CdTe량자우물의 량쪽에 전극을 붙이고 직류전압을 걸어주었을 때 흐르는 정상전류를 켈디쉬비평형그린함수리론으로 계산하였다. 전극들은 깨끗한 HgTe/CdTe량자우물시편으로 모형화하고 전자들사이의 호상작용은 무시한다.

세로전도도[4]는 다음과 같이 표시된다.

$$G = J_{L} / (V_{L} - V_{R}) = \frac{e^{2}}{h} \operatorname{Tr} \{ \Gamma^{R}(\varepsilon) \boldsymbol{G}^{r}(\varepsilon) \Gamma^{L}(\varepsilon) \boldsymbol{G}^{a}(\varepsilon) \} |_{\overline{\varepsilon}}$$
 (1)

여기서 $G^r(\varepsilon)$, $G^a(\varepsilon)$ 은 중심구역의 지연 및 선행그린함수행렬, $\Gamma^R(\varepsilon)$, $\Gamma^L(\varepsilon)$ 은 각각 오른쪽 및 왼쪽전극에서의 선폭함수들이다. 선폭함수는 고유에네르기에 의하여 다음과 같이 표시된다.

$$\Gamma^{L(R)} = i \left[\sum_{i=1}^{L(R)} - (\sum_{i=1}^{L(R)})^{+} \right]$$

식 (1)을 계산하기 위해서는 HgTe/CdTe량자우물에서의 구체적인 모형하밀토니안이 필요하다.

강한결합근사에서의 모형하밀토니안[5]은 다음과 같다.

$$H = \sum_{ij} (\xi c_{ij}^{+} c_{ij} + \tau_{y} c_{ij}^{+} c_{ij+1} + \tau_{y}^{+} c_{ij+1}^{+} c_{ij} + \tau_{x} c_{ij}^{+} c_{i+1j} + \tau_{x}^{+} c_{i+1j}^{+} c_{ij})$$
 (2)

$$\label{eq:tau_signal_eq} \begin{split} & \rightleftharpoons |\mathcal{T}| \, \, \& \\ & = [C-4D]\Gamma^0 + [M-4B]\Gamma^5 \quad , \quad \tau_y = D\Gamma^0 + \frac{iA}{2}\Gamma^2 + B\Gamma^5 \quad , \quad \tau_x = D\Gamma^0 + \frac{iA}{2}\Gamma^1 + B\Gamma^5 \quad , \end{split}$$

 $\Gamma^1 = \sigma^x \otimes I$, $\Gamma^2 = \sigma^z \otimes I$, $\Gamma^5 = \sigma^y \otimes s^z$, $\Gamma^0 \in 4 \times 4$ 형단위행렬, $A = 364.5a^{-1}$ meVnm , $B = -686a^{-2}$ meVnm², C = 0 , $D = -512a^{-2}$ meVnm² , M = -10meV , a = 5nm 이다.

이 파라메터값들은 량자우물의 두께가 7.0nm일 때의 값들[5]이다.

우리는 한 살창점에네르기 ξ 에 우연적인 불순물포텐샬에네르기를 더해주는 방법으로 불순물의 영향을 하밀토니안에 반영하였다.

모형하밀토니안 (2)로부터 해당한 그린함수행렬들과 고유에네르기행렬들을 계산한 다음 각이한 페르미에네르기와 시편크기에 대하여 불순물의 세기를 변화시키면서 세로전도도를 계산하였다.

2. 계산용량을 줄이기 위한 한가지 방도

실지 세로전도도 G의 계산은 아주 작은 시편에서조차 거대한 기억용량과 시간이 요구된다. 특히 거꿀행렬을 계산하는데 아주 큰 기억용량과 시간이 요구된다.

론문에서는 매우 큰 차수를 가진 행렬의 거꿀행렬을 계산하기 위하여 알고리듬[7]을 적용하였다. 그 착상은 다음과 같다.

 P_{ii} 를 다음과 같은 성질을 가지는 치환행렬이라고 하자.

- ① $\widetilde{A} = P_{ii}A$ 는 i째 행과 j째 행이 교환된것을 제외하고는 A와 꼭 같다.
- (2) $\widetilde{A} = AP_{ii}$ 는 i째 렬과 j째 렬이 교환된것을 제외하고는 A와 꼭 같다.

 $P=P_{i_n,\ j_n}\cdots P_{i_l,\ j_l}$ 을 치환행렬들의 적이라고 하면 $P^{-1}=P^T$ 가 성립한다. 이제 어떤 행렬 A에 행들의 교환과 렬들의 치환조작을 동시에 실시하면 $\widetilde{A}=PAP^T$ 는 다음과 같은 식을 만족시킨다.

$$\widetilde{A}^{-1} = (PAP^{T})^{-1} = P^{-T}A^{-1}P^{-1} = PA^{-1}P^{T}$$

웃식으로부터 어떤 행렬 A의 웃블로크 $A_{l,N}$ 의 거꿀행렬을 아래와 같은 방법으로 계산할수 있다.

먼저 행렬 A 에 행 및 렬에 관한 치환조작들을 실시하며 오른쪽 웃블로크 $A_{1,\,N}$ 을 다른 위치에로 옮긴다. 이때 생긴 새로운 행렬의 거꿀행렬의 같은 위치에 바로 $A_{1,\,N}^{-1}$ 이 나타난다. 이 방법을 도식적으로 그림 1과 같이 나타낼수 있다.

그림 1. A_{1N}^{-1} 을 구하는 한가지 계산도식

A를 일반적인 2×2형블로크구조를 가진 임의의 행렬

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{pmatrix}$$

이라고 할 때 A의 거꿀행렬은 블로크형식으로 다음과 같이 주어진다.[7]

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{A}_{11}^{-1} + \boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{S}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & -\boldsymbol{A}_{11}^{-1} \boldsymbol{A}_{12} \boldsymbol{S}^{-1} \\ \boldsymbol{S}^{-1} \boldsymbol{A}_{21} \boldsymbol{A}_{11}^{-1} & \boldsymbol{S}^{-1} \end{pmatrix}$$

여기서 $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ 이다.

이상의 론의로부터 다음과 같은 결론을 내릴수 있다.

만일 블로크 A_{1N} 을 치환조작에 의하여 블로크 A_{22} 에로 이동시킨다면 거꿀행렬의 블 로크 $A_{\scriptscriptstyle 1.N}^{\scriptscriptstyle -1}$ 은 S의 거꿀행렬 $S^{\scriptscriptstyle -1}$ 로부터 얻을수 있다. S를 계산하자면 또다시 3중블로크 대각행렬의 거꿀행렬을 구하여야 하므로 우의 방법을 반복적으로 적용하여 충분히 작은 차수를 가진 행렬의 거꿀행렬을 구하는 조작에로 귀착시킬수 있다.

3. 수값계산결과와 물리적해석

각이한 페르미에네르기와 위상학적질량, 불순물포텐샬에 따르는 세로전도도는 그림 2와 같다.

이때 시편(살창)크기는 200×80 이며 180개의 우연배치에 대하여 전도도를 평균하였다.

그림 2. 각이한 페르미에네르기와 위상학적질량에서 불순물포텐샬에 따르는 평균전도도(기))와 표준편차(L))

1-4는 Ef와 M이 각각 7meV, -10, 15meV, -10, 18meV, -10, 18meV, 2인 경우

그림 2에서 보는바와 같이 페르미준위가 띠름안에 놓일 때에는 세로전도도가 정확히 $2e^2/h$ 로 량자화된다. 그리고 불순물세기가 증가해도 이 값은 달라지지 않는다.

한편 페르미준위가 전도띠에 놓일 때에는 전도도값이 커지는데 이것은 모서리상태의 전자들뿐만아니라 체적전자들도 전기전도에 참가하기때문이다.

불순물세기가 증가할 때 이 전도도는 감소하여 어떤 림계값에서부터는 전도도가 2e²/h로 량자화된다. 이것은 불순물에 의하여 체적전자들이 산란되여 전도에 참가하지 못 하기때문에 일어나는 효과이다. 이를 통하여 모서리상태전자들은 불순물에 의하여 사란되 지 않으며 산일이 없다는것을 알수 있다.

각이한 시편크기에서 불순물포텐샬에 따르는 세로전도도는 그림 3과 같다.

이때 페르미에네르기는 $E_f=15 \mathrm{meV}$ 로 고정하고 150개의 우연배치에 대하여 전도 도를 평균하였다.

그림 3. 각이한 시편크기에서 불순물포텐샬에 따르는 세로전도도 ㄱ) M = -10인 경우, L) M = 2인 경우 1-4는 시편크기가 각각 100×60, 100×80, 100×100, 100×120인 경우

그림 3에서 보는바와 같이 시편의 크기를 변화시켜도 전도도값은 여전히 $2e^2/h$ 로 량자화되며 불순물의 세기를 증가시켜도 달라지지 않는다. 이러한 결과는 선행실험결과[6] 와 정성적으로 일치한다.

맺 는 말

위상학적절연체 HgTe/CdTe량자우물에서의 강한결합하밀토니안을 리용하여 이 재료의 세로전도도가 $2e^2/h$ 로 량자화되며 이 값은 시편의 크기를 변화시키거나 불순물을 추가할 때 달라지지 않는다.

참 고 문 헌

- [1] M. Z. Hasan; Rev. Mod. Phys., 82, 3045, 2010.
- [2] X. L. Qi et al.; Rev. Mod. Phys., 83, 1057, 2011.
- [3] J. Dufouleur et al.; Phys. Rev. Lett., 110, 186806, 2013.
- [4] A. P. Jauho; Phys. Rev., B 50, 8, 5528, 1994.
- [5] B. A. Bernevig et al.; Phys. Rev. Lett., 96, 106802, 2006.
- [6] M. Konig et al.; Science, 318, 766, 2007.
- [7] P. S. Drouvelis; J. Comp. Phys., 215, 741, 2006.

주체105(2016)년 7월 5일 원고접수

Effects of Impurities on Longitudinal Conductance of Topological Insulators

Ryom Kwang Il

We showed that the longitudinal conductivity of the material is quantized in units of 2e²/h using tight-binding Hamiltonian of a topological insulator HgTe/CdTe quantum well. In addition, its stability against the sample size and impurities tested directly.

Key word: topological insulator