

AR and MA Models

AR and MA Models

```
> x <- arima.sim(list(order = c(1, 0, 0), ar = -.7), n = 200)
> y <- arima.sim(list(order = c(0, 0, 1), ma = -.7), n = 200)

> par(mfrow = c(1, 2))
> plot(x, main = "AR(1)")
> plot(y, main = "MA(1)")
```


ACF and PACF

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

ACF and PACF

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

Estimation

- Estimation for time series is similar to using least squares for regression
- Estimates are obtained numerically using ideas of Gauss and Newton

Estimation with astsa

• AR(2) with mean 50:

$$X_t = 50 + 1.5(X_{t-1} - 50) - .75(X_{t-2} - 50) + W_t$$

Estimation with astsa

MA(1) with mean o:

$$X_t = W_t - .7W_{t-1}$$

Let's practice!

ARand MA Together

AR and MA Together: ARMA

$$X_{t} = \phi X_{t-1} + W_{t} + \theta W_{t-1}$$

auto-regression with correlated errors

ACF and PACF of ARMA Models

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

$$X_t = .9X_{t-1} + W_t - .4W_{t-1}$$

20

Estimation

$$X_t = .9X_{t-1} + W_t - .4W_{t-1}$$

Let's practice!

Model Choice and Residual Analysis

AIC and BIC

- AIC and BIC measure the error and penalize (differently) for adding parameters
- For example, AIC has k = 2 and BIC has k = log(n)
- Goal: find the model with the smallest AIC or BIC

Model Choice: AR(1) vs. MA(2)

Residual Analysis

sarima() includes residual analysis graphic showing:

- 1. Standardized residuals
- 2. Sample ACF of residuals
- 3. Normal Q-Q plot
- 4. Q-statistic p-values

Standardized Residuals

Bad Residuals

>< Pattern in the residuals

X ACF has large values

 Q-Q plot suggests normality

Q-statistic - all points below line

Let's practice!