causality 03

February 10, 2025

6532142421 Pupipat Singkhorn

Conclusion for every questions (detail are provided below).

• Q1

QUESTION 1: Using PATH method, what is the expected causal effect of X on Y?

Answer-Q1: -0.42

Causal path: $X \rightarrow Z \rightarrow Y$

Total effect of $X \rightarrow Y = Effect$ of $X \rightarrow Z * Effect$ of $Z \rightarrow Y$

$$= (-0.6) * (0.7) = -0.42$$

• Q2

QUESTION 2: What can you identify from this result in combination with the graph above

Answer:

equation: Y = 0.6589Z + 0.1159X + 0.4421

both X and Z have a statistically significant(p-value $< 0.001(lookup-table\ t-dist))$ impact on Y, but the estimated effect of X (=0.1159) is biased due to confoundin(U) and conditioning on the mediator Z.

From the causal graph, X affects Y only through Z, and using the Path Method (Q1), the true causal effect of X on Y = -0.42.

The discrepancy arises because OLS fails to account for the unobserved confounder U, which influences both X and Y, leading to an incorrect estimation of the direct effect of X.

• Q3

QUESTION 3: Does this match your expection in Q1?

Answer: Yes

the estimated causal effect (-0.42) using the DoWhy frontdoor criterion with two-stage regression closely matches the expected causal effect (-0.42) calculated using the Path Method in Q1.

This confirms that the frontdoor adjustment method correctly accounts for the mediation effect of Z while handling the confounding from U.

The result validates that our previous theoretical expectation aligns with the causal estimation performed using DoWhy, reinforcing that the true causal effect of X on Y is indeed **-0.42**.

• Q4

QUESTION 4: How are the difference between OLS No Backdoor, OLS Backdoor, and DoWhy Backdoor

Answer:

OLS Backdoor and DoWhys Backdoor method produce similar results ($\beta_X = -0.3947$), correcting for confounding and aligning with theoretical expectations.

OLS No Backdoor control underestimates ($\beta_X = -0.3322$) the causal effect because it ignores confounding (only X as a predictor of Y without adjusting for any confounders).

```
[]: | # !pip install dowhy econml
```

```
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

import networkx as nx
import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import statsmodels.api as sm

import dowhy
from dowhy import CausalModel
```

```
[2]: SAMPLES_SIZE = 1000
```

```
[]: # TODO: plot
plt.figure(figsize=(5, 5))
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=3000, node_color='pink',
font_size=20, font_color='black', font_weight='bold')
plt.show()
```


QUESTION 1: Using PATH method, what is the expected causal effect of X on Y?

Answer-Q1: -0.42

Causal path: $X \rightarrow Z \rightarrow Y$

Total effect of X -> Y = Effect of X -> Z * Effect of Z -> Y

$$= (-0.6) * (0.7) = -0.42$$

```
[5]: # Try regular OLS
data = pd.DataFrame({'X': X, 'Z': Z})
data = sm.add_constant(data, prepend=True)
model = sm.OLS(Y, data) # Ordinary Linear Regression
results = model.fit()
results.summary()

# QUESTION 2
# What can you identify from this result in combination with the graph above
```

[5]:

Dep. Variable:	у	R-squared:	0.379
Model:	OLS	Adj. R-squared:	0.378
Method:	Least Squares	F-statistic:	304.7
Date:	Mon, 10 Feb 2025	Prob (F-statistic):	5.49e-104
Time:	14:22:23	Log-Likelihood:	-2107.0
No. Observations:	1000	AIC:	4220.
Df Residuals:	997	BIC:	4235.
Df Model:	2		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	0.5094	0.081	6.293	0.000	0.351	0.668
\mathbf{X}	0.1445	0.031	4.686	0.000	0.084	0.205
${f Z}$	0.6857	0.032	21.745	0.000	0.624	0.748
Omni	bus:	0.14	1 Du	rbin-Wa	tson:	1.902
Prob(Omnibu	is): 0.93	2 Jar	que-Ber	a (JB):	0.135
Skew:	}	-0.02	28 Pro	b(JB):		0.935
Kurto	osis:	2.99	3 Cor	nd. No.		5.45

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

QUESTION 2: What can you identify from this result in combination with the graph above

Answer:

```
equation: Y = 0.6589Z + 0.1159X + 0.4421
```

both X and Z have a statistically significant(p-value $< 0.001(lookup-table\ t-dist))$ impact on Y, but the estimated effect of X (=0.1159) is biased due to confoundin(U) and conditioning on the mediator Z.

From the causal graph, X affects Y only through Z, and using the Path Method (Q1), the true causal effect of X on Y = -0.42.

The discrepancy arises because OLS fails to account for the unobserved confounder U, which influences both X and Y, leading to an incorrect estimation of the direct effect of X.

```
[6]: # Use DoWhy Model
model = CausalModel(
    data=pd.DataFrame({'X': X, 'Y': Y, 'Z': Z}),
```

```
treatment='X',
outcome='Y',
graph="\n".join(nx.generate_gml(G))
)
```

/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-packages/dowhy/causal_model.py:583: UserWarning: 1 variables are assumed unobserved because they are not in the dataset. Configure the logging level to `logging.WARNING` or higher for additional details.

warnings.warn(

[7]: model.view_model()

[8]: estimand = model.identify_effect()
print(estimand)

Estimand type: EstimandType.NONPARAMETRIC_ATE

Estimand : 1

Estimand name: backdoor
No such variable(s) found!

```
### Estimand : 2
Estimand name: iv
No such variable(s) found!
### Estimand : 3
Estimand name: frontdoor
Estimand expression:
  d
            d
          ([Z])
    (Y)
F.
 d[Z]
           d[X]
Estimand assumption 1, Full-mediation: Z intercepts (blocks) all directed paths
from X to Y.
Estimand assumption 2, First-stage-unconfoundedness: If U \rightarrow \{X\} and U \rightarrow \{Z\} then
P(Z|X,U) = P(Z|X)
Estimand assumption 3, Second-stage-unconfoundedness: If U \rightarrow \{Z\} and U \rightarrow Y then
P(Y|Z, X, U) = P(Y|Z, X)
```

```
[9]: estimate = model.estimate_effect(
    identified_estimand=estimand,
    method_name='frontdoor.two_stage_regression')

print(f'Estimate of causal effect (linear regression): {estimate.value}')

# Question 3: Does this match your expection in Q1?
```

Estimate of causal effect (linear regression): -0.42377304720809506

QUESTION 3: Does this match your expection in Q1?

Answer: Yes

the estimated causal effect (-0.42) using the DoWhy frontdoor criterion with two-stage regression closely matches the expected causal effect (-0.42) calculated using the Path Method in Q1.

This confirms that the frontdoor adjustment method correctly accounts for the mediation effect of Z while handling the confounding from U.

The result validates that our previous theoretical expectation aligns with the causal estimation performed using DoWhy, reinforcing that the true causal effect of X on Y is indeed **-0.42**.

[11]: print(refute_subset)

Refute: Use a subset of data

```
New effect: -0.4232292075982626
     [12]: refute_placebo = model.refute_estimate(
         estimand=estimand,
          estimate=estimate,
         method_name="placebo_treatment_refuter")
[13]: print(refute_placebo)
     Refute: Use a Placebo Treatment
     Estimated effect: -0.42377304720809506
     New effect: -0.423773047208095
     p value:0.0
[14]: # Another Data Set
     G = nx.DiGraph()
     G.add_edges_from([
          ('U', 'X'),
         ('U', 'Y'),
          ('X', 'Z'),
          ('Z', 'Y'),
          ('I', 'X')
     ])
     U = stats.truncnorm(0, np.infty, scale=4).rvs(SAMPLES_SIZE)
     I = stats.norm(scale=10).rvs(SAMPLES_SIZE)
     X = 0.7*U + 0.3*I + stats.norm(scale=2).rvs(SAMPLES_SIZE)
     Z = -0.6*X + stats.norm(scale=2).rvs(SAMPLES_SIZE)
     Y = 0.7*Z + 0.25*U + stats.norm(scale=2).rvs(SAMPLES_SIZE)
[15]: # Use DoWhy Model
     model = CausalModel(
         data=pd.DataFrame({'X': X, 'Y': Y, 'Z': Z, 'U': U, 'I': I}),
         treatment='X',
         outcome='Y',
         graph="\n".join(nx.generate_gml(G))
```

Estimated effect:-0.42377304720809506

[16]: model.view_model()


```
[17]: estimand = model.identify_effect()
      print(estimand)
     Estimand type: EstimandType.NONPARAMETRIC_ATE
     ### Estimand : 1
     Estimand name: backdoor
     Estimand expression:
      d
        (E[Y|U])
     d[X]
     Estimand assumption 1, Unconfoundedness: If U \rightarrow \{X\} and U \rightarrow Y then P(Y | X, U, U) =
     P(Y|X,U)
     ### Estimand : 2
     Estimand name: iv
     Estimand expression:
                            -1
                  d
        d
                 ([X])
         (Y)
       d[I]
                 d[I]
```

Estimand assumption 1, As-if-random: If $U \rightarrow Y$ then $\neg(U \rightarrow \{I\})$ Estimand assumption 2, Exclusion: If we remove $\{I\} \rightarrow \{X\}$, then $\neg(\{I\} \rightarrow Y)$

Estimand : 3

Estimand name: frontdoor

Estimand expression:

d d E (Y) ([Z]) d[Z] d[X]

Estimand assumption 1, Full-mediation: Z intercepts (blocks) all directed paths from X to Y.

Estimand assumption 2, First-stage-unconfoundedness: If $U \rightarrow \{X\}$ and $U \rightarrow \{Z\}$ then P(Z|X,U) = P(Z|X)

Estimand assumption 3, Second-stage-unconfoundedness: If $U \rightarrow \{Z\}$ and $U \rightarrow Y$ then P(Y|Z, X, U) = P(Y|Z, X)

[18]: # No backdoor

data = pd.DataFrame({'X': X})

data = sm.add_constant(data, prepend=True)

model_ols_no_backdoor = sm.OLS(Y, data) # Ordinary Linear Regression

results = model_ols_no_backdoor.fit()

results.summary()

[18]:

Dep. Variable:	y	R-squared:	0.232
Model:	OLS	Adj. R-squared:	0.231
Method:	Least Squares	F-statistic:	301.3
Date:	Mon, 10 Feb 2025	Prob (F-statistic):	3.49e-59
Time:	14:25:57	Log-Likelihood:	-2321.2
No. Observations:	1000	AIC:	4646.
Df Residuals:	998	BIC:	4656.
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	${f t}$	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const X	0.7676 -0.3322	$0.087 \\ 0.019$	8.778 -17.358	$0.000 \\ 0.000$	0.596 -0.370	0.939 -0.295
Omn	ibus:	1.13	5 Dur	bin-Wat	son:	2.097
Prob	(Omnibu	ıs): 0.56	7 Jaro	que-Bera	(JB):	1.017
\mathbf{Skew}	:	-0.02	24 Pro	b(JB):		0.601
Kurt	osis:	3.14	9 Con	d. No.		5.17

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 \therefore OLS No Backdoor: $\beta_X = -0.3322$

```
[19]: # Homegrown backdoor
data = pd.DataFrame({'X': X, 'U': U})
data = sm.add_constant(data, prepend=True)
model_ols_backdoor = sm.OLS(Y, data) # Ordinary Linear Regression
results = model_ols_backdoor.fit()
results.summary()
```

[19]:

Dep. Variable:	y	R-squared:	0.273
Model:	OLS	Adj. R-squared:	0.271
Method:	Least Squares	F-statistic:	186.8
Date:	Mon, 10 Feb 2025	Prob (F-statistic):	1.21e-69
Time:	14:25:58	Log-Likelihood:	-2294.0
No. Observations:	1000	AIC:	4594.
Df Residuals:	997	BIC:	4609.
Df Model:	2		
Covariance Type:	nonrobust		

_	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]
const	0.0922	0.124	0.742	0.458	-0.151	0.336
${f X}$	-0.3947	0.020	-19.325	0.000	-0.435	-0.355
\mathbf{U}	0.2451	0.033	7.473	0.000	0.181	0.309
Omn	ibus:	0.63	7 Dur	bin-Wat	son:	2.090
Prob	(Omnibu	is): 0.72	7 Jaro	que-Bera	(JB):	0.512
\mathbf{Skew}	:	-0.02	8 Pro	b(JB):		0.774
\mathbf{Kurt}	osis:	3.09	6 Con	d. No.		9.22

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- \therefore OLS Backdoor: $\beta_X = -0.3947, \beta_U = 0.2451$

Estimate of causal effect via backdoor (linear regression): -0.3947006164963863 \because DoWhy Backdoor: $\beta_X=-0.3947$

QUESTION 4: How are the difference between OLS No Backdoor, OLS Backdoor, and DoWhy Backdoor

Answer:

OLS Backdoor and DoWhys Backdoor method produce similar results ($\beta_X = -0.3947$), correcting

for confounding and aligning with theoretical expectations.

OLS No Backdoor control underestimates ($\beta_X = -0.3322$) the causal effect because it ignores confounding (only X as a predictor of Y without adjusting for any confounders).

```
[21]: refute_placebo = model.refute_estimate(
          estimand=estimand,
          estimate=estimate backdoor,
          method_name="placebo_treatment_refuter")
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
```

zero encountered in scalar divide

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
  return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
 return np.sqrt(eigvals[0]/eigvals[-1])
/Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
zero encountered in scalar divide
```

```
return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
     /Users/pupipatsingkhorn/miniconda3/envs/datascience/lib/python3.11/site-
     packages/statsmodels/regression/linear_model.py:1966: RuntimeWarning: divide by
     zero encountered in scalar divide
       return np.sqrt(eigvals[0]/eigvals[-1])
[22]: print(refute placebo)
     Refute: Use a Placebo Treatment
     Estimated effect:-0.3947006164963863
     New effect:0.0
     p value:1.0
[23]: estimate_iv = model.estimate_effect(
          identified_estimand=estimand,
          method_name='iv.instrumental_variable')
      print(f'Estimate of causal effect via IV: {estimate_iv.value}')
     Estimate of causal effect via IV: -0.3912598668999661
[24]: from sklearn.linear model import LassoCV
      from sklearn.ensemble import GradientBoostingRegressor
      estimate = model.estimate_effect(
          identified estimand=estimand,
          method_name='backdoor.econml.dml.DML',
```

```
method_params={
    'init_params': {
        'model_y': GradientBoostingRegressor(),
        'model_t': GradientBoostingRegressor(),
        'model_final': LassoCV(fit_intercept=False),
    },
    'fit_params': {}}
)
print(f'Estimate of causal effect (DML): {estimate.value}')
```

Estimate of causal effect (DML): -0.3579060638957235

A column-vector y was passed when a 1d array was expected. Please change the shape of y to $(n_{samples},)$, for example using ravel().

A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().