Deep learning Episode 1

Basic neural networks

Recap: logistic regression

Gradient descent

$$y_{pred}(\bar{x}) = \sigma(\bar{w} \cdot \bar{x} + b)$$

$$L(y, y_{pred}) = -(y \cdot \log y_{pred} + (1 - y) \cdot \log(1 - y_{pred}))$$

Repeat until convergence

$$\theta_{j} := \theta_{j} - \alpha \cdot \frac{\partial L(y, y_{pred})}{\partial \theta_{j}}$$

$$\Theta \sim \{W,b\}$$

Nonlinear dependencies

How to get that?

Feature extraction

Loss, for example:

$$L(y, y_{pred}) = -(y \cdot \log y_{pred} + (1 - y) \cdot \log(1 - y_{pred}))$$

Model:

Training:

$$argmin_{\theta} L(y, y_{pred}(X, \theta))$$

Feature extraction

Loss, for example:

$$L(y, y_{pred}) = -(y \cdot \log y_{pred} + (1 - y) \cdot \log(1 - y_{pred}))$$

Model:

Gradient:

$$\frac{\delta L(y, y_{pred}(X, \theta 1))}{\delta \theta 1}$$

Features would tune to your problem automatically!

What do we want, exactly?

Loss, for example:

$$L(y, y_{pred}) = -(y \cdot \log y_{pred} + (1 - y) \cdot \log(1 - y_{pred}))$$

Model:

Training:

 $\mathbf{?} \qquad \operatorname{argmin}_{\theta_1} L(y, y_{\operatorname{pred}}(X, \theta_{1,}, \theta_2))$

What do we want, exactly?

Loss, for example:

$$L(y, y_{pred}) = -(y \cdot \log y_{pred} + (1 - y) \cdot \log(1 - y_{pred}))$$

Model:

Gradients:

$$\frac{\delta L(y, y_{pred}(X, \theta_{1}, \theta_{2}))}{\delta \theta_{2}} \qquad \frac{\delta L(y, y_{pred}(X, \theta_{1}, \theta_{2}))}{\delta \theta_{1}}$$

Model:

$$y_{pred} = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

$$y_{pred} = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

$$w'_{i} = \sum_{j} w_{j}^{o} w_{ij}^{h}$$
 $b' = \sum_{j} w_{j}^{o} b_{j}^{h} + b^{o}$

$$y_{pred} = \sigma(\sum_{i} w'_{i} x_{i} + b')$$

Model:

$$y_{pred} = \sigma(\sum_{j} w_{j}^{o}(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

Is it any better than logistic regression?

Output:
$$y_{pred} = \sigma(\sum_{i} w_{ij}^{o} \sigma(\sum_{i} w_{ij}^{h} x_{i} + b_{j}^{h}) + b^{o})$$

•
$$f(a) = 1/(1+e^a)$$

•
$$f(a) = tanh(a)$$

$$\bullet f(a) = \max(0,a)$$

•
$$f(a) = log(1+e^x)$$

Initialization, symmetry problem

- Initialize with zeros
 W ← 0
- What will the first step look like?

Initialization, symmetry problem

- Break the symmetry!
- Initialize with random numbers!

$$W \leftarrow N(0,0.01)?$$

 $W \leftarrow U(0,0.1)?$

 Can get a bit better for deep NNs

19

Biological inspiration

Biological inspiration

Biological inspiration

Not actual neurons:)

- Neurons react in "spikes", not real numbers
- Neurons maintain/change their states over time
- No one knows for sure how they "train"
- Neuroglial cells are important But noone knows, why

Oligodendrocyte

Microglia

Ependymal cells

Neuroglial Cells of the CNS

Connectionist phrasebook

- Layer a building block for NNs :
 - "Dense layer": f(x) = Wx+b
 - "Nonlinearity layer": $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we gonna cover later
- Activation layer output
 - i.e. some intermediate signal in the NN
- Backpropagation a fancy word for "chain rule"

Connectionist phrasebook

"Train it via backprop!"

Connectionist phrasebook

How do we train it?

Potential caveats?

Discrete Choices

:

Layer 2 Features

Layer 1 Features

Original Data

Potential caveats?

Hardcore overfitting

No "golden standard" for architecture

Computationally heavy

Regularization

L1, L2, as usual

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Computation

Is backprop the only choice?

Nuff

Let's code some neural networks!