Abstract

The nature of CP violation in the lepton sector is one of the biggest open questions in particle physics. Long-baseline accelerator neutrino experiments have the opportunity to determine if CP is violated in the mass matrix. I will look at the most recent NOvA and T2K data which show a slight and very interesting tension. While this tension possibly indicates a flipping in the mass ordering, it is better fit by new physics such as non-standard neutrino interactions (NSI) with an additional source of CP violation. The strength of this NSI can be easily estimated analytically and I will present a numerical analysis of the preferred regions which are generally consistent with other constraints.

CP Violation at Long-Baseline Neutrino Experiments

Peter B. Denton

Mitchell Conference

May 27, 2022

2006.09384 (JHEP)
with Rebekah Pestes
2008.01110 (PRL)
with Julia Gehrlein and Rebekah Pestes

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

 θ_{23} octant

Complex phase

Absolute mass scale

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

 θ_{23} octant

See J. Gehrlein's talk yesterday

Complex phase

Absolute mass scale

Overview

- \triangleright δ vs. CPV
- ▶ Different parameterizations lead to different conclusions
- ▶ NOvA and T2K slightly disagree
- ▶ New physics can resolve this

δ and CP violation

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) conserved

$$\frac{\bar{\theta}}{2\pi} < 10^{-11}$$

J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

$$\frac{|J_{\rm CKM}|}{J_{\rm max}} = 3 \times 10^{-4}$$

CKMfitter 1501.05013

3. Lepton mass matrix: ?

$$\frac{|J_{\rm PMNS}|}{J_{\rm max}} < 0.34$$

PBD, J. Gehrlein, R. Pestes 2008.01110

$$J_{\text{max}} = \frac{1}{6\sqrt{3}} \approx 0.096$$

δ : what is it really?

 δ : what is it not?

$$\delta \not\Rightarrow$$
 Baryogenesis

The amount of leptogenesis is a function of:

- 1. the heavy mass scale
- $2. \delta$
- 3. α , β (Majorana phases)
- 4. CP phases in the RH neutrinos
- 5. ...

C. Hagedorn, et al 1711.02866

K. Moffat, et al 1809.08251

$$\begin{array}{lll} \text{Measuring } \delta = 0, \pi & \not \Rightarrow & \text{no leptogenesis} \\ \text{Measuring } \delta \neq 0, \pi & \not \Rightarrow & \text{leptogenesis} \end{array}$$

δ , J: current status

Maximal CP violation is already ruled out:

- 1. $\theta_{12} \neq 45^{\circ}$ at $\sim 15\sigma$
- 2. $\theta_{13} \neq \tan^{-1} \frac{1}{\sqrt{2}} \approx 35^{\circ} \text{ at many (100) } \sigma$
- 3. $\theta_{23} = 45^{\circ}$ allowed at $\sim 1\sigma$
- 4. $|\sin \delta| = 1$ allowed

Parameterization of the PMNS matrix

A matrix takes us from mass states to flavor states and back

- 1. $3 \times 3 \mathbb{C}$: 18 dof
- 2. +Unitary: n^2 constraints: 9 dof
- 3. +Charged lepton rephasing: 6 dof
- 4. +Neutrino rephasing: 4 dof

Focused on oscillations not $0\nu\beta\beta$

Parameterization of the PMNS matrix

Many possible parameterizations in the literature

- 1. Product of three rotations and a complex phase on one rotation
 - ▶ Possibly including the same axis twice

H. Fritzsch, Z.-z. Xing hep-ph/0103242

2. Gell-Mann matrices

K. Merfeld, D. Latimer 1412.2728

D. Boriero, D. Schwarz, H. Velten 1704.06139

A. Davydova, K. Zhukovsky PAN 82, 281 (2019)

3. Four complex phases

R. Aleksan, B. Kayser, D. London hep-ph/9403341

4. Perturbative

L. Wolfenstein PRL 51 1945 (1983)

5.

Sequence of rotations

$$U_1 \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \qquad U_2 \equiv \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \qquad U_3 \equiv \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Location of $e^{i\delta}$ on $\pm s_{ij}$ has no impact*

Standard parameterization is $U_{PDG} \equiv U_{123} = U_1 U_2 U_3$.

$$U_{\text{PDG}} \equiv U_{123} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

Sequence of rotations

$$U_1 \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \qquad U_2 \equiv \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \qquad U_3 \equiv \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Location of $e^{i\delta}$ on $\pm s_{ij}$ has no impact*

Standard parameterization is $U_{PDG} \equiv U_{123} = U_1 U_2 U_3$.

$$U_{\text{PDG}} \equiv U_{123} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

What about other orders?

$$U_{123}$$
, U_{132} , U_{213} , U_{231} , U_{312} , U_{321}

What about repeated rotations?

$$U_{121},\,U_{131},\,U_{212},\,U_{232},\,U_{313},\,U_{323}$$

Complex phase in different parameterizations

- ► Can relate the complex phase in one parameterization to that in another
- $ightharpoonup U_{132}$ and U_{213} similar to U_{123}
- \bullet ocnstrained to $\sim [150^{\circ}, 210^{\circ}]$ in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- "50% of possible values of δ "
 - \Rightarrow parameterization dependent

Repeated rotations in backups

Quark mixing

From the PDG, V_{CKM} in the V_{123} parameterization is

$$\theta_{12} = 13.09^{\circ}$$
 $\theta_{13} = 0.2068^{\circ}$ $\theta_{23} = 2.323^{\circ}$ $\delta_{PDG} = 68.53^{\circ}$

Looks like "large" CPV:

$$\sin \delta_{\rm PDG} = 0.93 \sim 1$$

yet $J_{CKM}/J_{max} = 3 \times 10^{-4}$.

Switch to V_{212} parameterization, $\Rightarrow \delta' = 1^{\circ}$ and $\sin \delta' = 0.02$.

One caveat in support of δ

If the goal is **CP violation** the Jarlskog should be used

however

If the goal is **measuring the parameters** one must use δ

Given θ_{12} , θ_{13} , θ_{23} , and J, I can't determine the sign of $\cos \delta$ which is physical e.g. $P(\nu_{\mu} \to \nu_{\mu})$ depends on $\cos \delta$ a tiny bit

- ightharpoonup T2K/HK are mostly sensitivity to $\sin \delta$; they should focus on J
- ▶ NOvA/DUNE has modest $\cos \delta$ sensitivity; both J and δ should be reported

The importance of $\cos \delta$

- ▶ If only $\sin \delta$ is measured \Rightarrow sign degeneracy: $\cos \delta = \pm \sqrt{1 \sin^2 \delta}$
- ightharpoonup Most models predict $\cos \delta$

J. Gehrlein, et al 2203.06219

L. Everett, et al 1912.10139

CP violation at NOvA and T2K?

Excitement at Neutrino2020!

A. Himmel for NOvA 10.5281/zenodo.3959581

New physics

If this is new physics what could lead to this kind of effect?

► Steriles?

S. Chatterjee, A. Palazzo 2005.10338

- ► Decay?
- ▶ Decoherence?
- ▶ Dark matter interaction?
- ► LIV/CPT?

U. Rahaman 2103.04576

▶ Unitary violation?

D. Forero, et al. 2103.01998

- ▶ NSI with complex CP violating phases
 - 1. Different matter effects \Rightarrow different NSI effect
 - 2. New phases partially degenerate with standard phase
 - 3. T2K is closer to vacuum so they measure the vacuum parameters
 - 4. NOvA measures "vacuum" + "NSI"

See also S. Chatterjee, A. Palazzo 2008.04161

NSI review

$$\mathcal{L}_{\mathrm{NSI}} = -2\sqrt{2}G_F \sum_{\alpha,\beta,f,P} \epsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta})(\bar{f}\gamma_{\mu}f)$$

Models with large NSIs consistent with CLFV:

Y. Farzan, I. Shoemaker 1512.09147
 Y. Farzan, J. Heeck 1607.07616
 D. Forero and W. Huang 1608.04719
 K. Babu, A. Friedland, P. Machado, I. Mocioiu 1705.01822
 PBD, Y. Farzan, I. Shoemaker 1804.03660
 U. Dey, N. Nath, S. Sadhukhan 1804.05808
 Y. Farzan 1912.09408

Affects oscillations via new matter effect

$$H = \frac{1}{2E} \left[UM^2 U^{\dagger} + a \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix} \right]$$

Matter potential $a \propto G_F \rho E$

B. Dev, K. Babu, PBD, P. Machado, et al. 1907.00991

Estimate size of effect: magnitude

$$|\epsilon_{e\beta}| \approx \frac{s_{12}c_{12}c_{23}\pi\Delta m_{21}^2}{2s_{23}w_{\beta}} \left| \frac{\sin\delta_{\text{T2K}} - \sin\delta_{\text{NOvA}}}{a_{\text{NOvA}} - a_{\text{T2K}}} \right| \approx \begin{cases} 0.22 & \text{for } \beta = \mu \\ 0.24 & \text{for } \beta = \tau \end{cases}$$

$$a \propto \rho E$$

$$w_{\beta} = s_{23}, c_{23} \text{ for } \beta = \mu, \tau$$

Consistency checks:

- $ightharpoonup \sin \delta_{\text{NOvA}} = \sin \delta_{\text{T2K}} \Rightarrow |\epsilon| = 0$
- \blacktriangleright sin $\delta_{\text{NOvA}} \neq \sin \delta_{\text{T2K}}$ and $a_{\text{NOvA}} = a_{\text{T2K}} \Rightarrow |\epsilon| \rightarrow \infty$
- ► Octant:
 - 1. LBL is governed by ν_3
 - 2. Upper octant $\Rightarrow \nu_3$ is more ν_{μ}
 - 3. More $\nu_{\mu} \Rightarrow$ need less new physics coupling to ν_{μ} to produce a given effect

Assumed upper octant $\theta_{23} > 45^{\circ}$

Approximate the experiments

Appearance:

$$n(\nu_e) = xP(\nu_\mu \to \nu_e) + yP(\bar{\nu}_\mu \to \bar{\nu}_e) + z$$

Fit to all points on bievent plots for ν , $\bar{\nu}$, NOvA, T2K

Wrong sign leptons are non-zero at high significance

Disappearance:

NOvA:

$$|\Delta m_{32}^2| = (2.41 \pm 0.07) \times 10^{-3} \text{ eV}^2 \text{ and } 4|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) = 0.99 \pm 0.02$$

K. Kelly, et al. 2007.08526

T2K: Δm_{32}^2 and θ_{23} likelihoods

Assume that $P_{\mu\mu} \approx \bar{P}_{\mu\mu}$ and that most info comes from disappearance

NOvA: $E \sim 1.9$ GeV, $\rho = 2.84$ g/cc, L = 810 km

T2K: $E \sim 0.6 \text{ GeV}, \ \rho = 2.60 \text{ g/cc}, \ L = 295 \text{ km}$

Completing the fit

Appearance measurements depend on all six parameters Can NOT use input from global fits

T2K affects θ_{13}

Use other vacuum experiments to constrain other parameters independent of NSI:

- ▶ Daya Bay: Constrains θ_{13} and Δm_{32}^2 for each atmospheric mass ordering
 - Daya Bay 1809.02261

▶ KamLAND: Constrains θ_{12} and $|\Delta m_{21}^2|$

KamLAND 1303.4667

SNO tells us $\Delta m_{21}^2 > 0$

or $\theta_{12} < 45^{\circ}$ depending on definition, see PBD 2003.04319

This depends on NSI but LBL parameters don't cancel

NSI parameters

Orange is preferred over SM at integer values of $\Delta \chi^2$, dark gray is disfavored at 4.61

T. Ehrhardt, IceCube PPNT (2019)

 $\epsilon_{\mu\tau}$, IO in backups

Other CP violating NSI constraints

NSI effects grow with energy, density, and distance Best probes:

- $ightharpoonup \epsilon_{\mu\tau}$: atmospheric
- $ightharpoonup \epsilon_{e\mu}$, $\epsilon_{e\tau}$: LBL appearance, atmospheric
- ► IceCube
 - Constraint is at LBL best fit with 3 yrs

 10 yrs of data in the bank
 - ▶ Prefers non-zero $|\epsilon_{e\mu}|$ at $\sim 1\sigma$
- ► Super-K
 - Only consider real NSI
 - ► Comparable sensitivity as IceCube
- ► COHERENT
 - Only applies to NSI models with $M_{Z'} \gtrsim 10 \text{ MeV}$
 - \triangleright NSI u, d, e configuration matters
 - ► Comparable constraints

T. Ehrhardt, IceCube PPNT (2019)

Super-K 1109.1889

COHERENT 1708,01294

Summary

- ▶ Care is required in choice of parameterizations
- ▶ Jarlskog invariant is best for CP violation
- \triangleright NOvA and T2K tension can be mitigated by NO \rightarrow IO
- ▶ Tension can be fully resolved by NSI
- ► Easy to approximate magnitude and phase of NSI
- ▶ NSI introduces more CP violation
- Consistent with, and soon tested by, other experiments

Rice & Texas A&M:

https://aggypedia.com/aggypedia/aggy-embarrassments/sammy-the-owl/

Backups

References

SK hep-ex/9807003

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

The importance of $\cos \delta$

In these parameterizations $\cos \delta \lesssim -0.8$

$|U_{e3}|$ is small

Given θ_{12} , θ_{13} , θ_{23} :

$$|U| = \begin{pmatrix} 0.822 & 0.550 & 0.150 \\ \sqrt{0.138 + 0.068\cos(\delta_{\text{PDG}})} & \sqrt{0.293 - 0.068\cos(\delta_{\text{PDG}})} & 0.754 \\ \sqrt{0.186 - 0.068\cos(\delta_{\text{PDG}})} & \sqrt{0.405 + 0.068\cos(\delta_{\text{PDG}})} & 0.640 \end{pmatrix}$$

$$|U_{\alpha i}| > 0.23$$
 except $|U_{e3}| = 0.15$

In U_{231} , U_{312} , U_{321} :

$$|U_{e3}| = \sqrt{A + B\cos(\delta')}$$

A, B > 0

Requires a partial cancellation $\Rightarrow \cos(\delta') \sim -1$

Terms with sums or differences are "complicated"

Terms without are "simple"

Quick approximation

Can easily related $\delta_{PDG} \to \delta'$:

- $ightharpoonup \delta' \approx \delta_{\rm PDG}$ in U_{132} and U_{213}
- $ightharpoonup \sin(\delta') \approx d_{ijk} \sin(\delta_{PDG})$

$$d_{231} \approx s_{13} \frac{1 - s_{12}^2 c_{23}^2}{s_{12} c_{12} s_{23} c_{23}} \approx 0.57$$

$$d_{312} \approx s_{13} \frac{1 - c_{12}^2 s_{23}^2}{s_{12} c_{12} s_{23} c_{23}} \approx 0.39$$

$$d_{321} \approx s_{13} \frac{1 - s_{12}^2 s_{23}^2}{s_{12} c_{12} s_{23} c_{23}} \approx 0.54$$

 $\theta_{23} > 45^{\circ}$ plotted

Precision on δ

"For instance, the CKM angle γ , which is a very close analog of δ in the neutrino sector, is determined to $70.4^{+4.3}_{-4.4}$ and thus, a precision target for δ of roughly 5° would follow."

"A 3σ distinction between models translates into a target precision for δ of 5° ."

A. de Gouvea, et al. Snowmass 2013 Neutrino Working Group 1310.4340

Precision on δ is parameterization dependent

CP violation in oscillations

In vacuum at first maximum:

$$P_{\mu e} - \bar{P}_{\mu e} \approx 8\pi J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}$$
$$J \equiv s_{12} c_{12} s_{13} c_{12}^2 s_{23} c_{23} \sin \delta$$

C. Jarlskog PRL 55, 1039 (1985)

- \triangleright Extracting δ from data requires every other oscillation parameter
- ▶ J requires only Δm_{21}^2 (up to matter effects)

Matter effects are easily accounted for

$$\hat{J} \simeq \frac{J}{\sqrt{(c_{212} - c_{13}^2 a/\Delta m_{21}^2)^2 + s_{212}^2} \sqrt{(c_{213} - a/\Delta m_{ee}^2)^2 + s_{213}^2}}$$

PBD, S. Parke 1902.07185

PBD, H. Minakata, S. Parke 1604.08167

Optimal Parameterization

Want to be able to write

$$P \approx \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

- 1. Solar/long-baseline reactor: U_{e2}
- 2. Medium-baseline reactor: U_{e3}
- 3. Atmospheric/long-baseline accelerator disappearance: $U_{\mu 3}$

Want these "simple" not the sum/difference of trig functions

	U_{123}	U_{132}	U_{213}	U_{231}	U_{312}	U_{321}
$ U_{e2} $	1	1	X	X	1	X
$ U_{e3} $	1	1	1	X	X	X
$ U_{\mu 3} $	1	X	1	1	X	X

Other priorities (theoretical, computational, ...) may prefer different parameterizations

Optimal Parameterization

Location of the phase?

Conventional:

$$U_{23}(\theta_{23})U_{13}(\theta_{13},\delta)U_{12}(\theta_{12})$$

Sometimes useful when dealing with matter effect:

$$U_{23}(\theta_{23}, \delta)U_{13}(\theta_{13})U_{12}(\theta_{12})$$

 δ is the same (up to \pm) in each case

Optimal Parameterization

Location of the phase?

Conventional:

$$U_{23}(\theta_{23})U_{13}(\theta_{13},\delta)U_{12}(\theta_{12})$$

Sometimes useful when dealing with matter effect:

$$U_{23}(\theta_{23}, \delta)U_{13}(\theta_{13})U_{12}(\theta_{12})$$

 δ is the same (up to \pm) in each case

Repeated rotations

	U_{121}	U_{131}	U_{212}	U_{232}	U_{313}	U_{323}
$ U_{e2} $	1	1	1	1	X	X
$ U_{e3} $	1	1	X	X	1	1
$ U_{e2} $ $ U_{e3} $ $ U_{\mu 3} $	X	X	1	✓	✓	1

Note that $e^{i\delta}$ must be on first or third rotation

Mass ordering?

Measuring the mass ordering is important in of itself Phenomenological implications:

- ► Affects cosmology
- \blacktriangleright Affects $0\nu\beta\beta$
- ► Affects end point measurements
- ightharpoonup Affects $C\nu B$

Mass ordering?

Measuring the mass ordering is important in of itself Phenomenological implications:

- ► Affects cosmology
- ightharpoonup Affects $0\nu\beta\beta$
- ► Affects end point measurements
- \triangleright Affects $C\nu B$

The NOvA+T2K issue is *slightly* resolved by swapping the mass ordering

- 1. NOvA and T2K both prefer NO over IO
- 2. NOvA+T2K prefers IO over NO
- 3. SK still prefers NO over IO
- 4. NOvA+T2K+SK still prefers NO over IO
- 5. Daya Bay & RENO provide some information

K. Kelly, et al. 2007.08526I. Esteban, et al. 2007.14792

PBD, J. Gehrlein, R. Pestes 2008.01110

Is the mass ordering robust?

In the presence of new physics such as NSI we have:

$$[NO] + [\epsilon = 0] \equiv [IO] + [\epsilon_{ee} = -2]$$

$$[IO] + [\epsilon = 0] \equiv [NO] + [\epsilon_{ee} = -2]$$

Equivalences hold even if all oscillation probabilities are perfectly measured

P. Bakhti, Y. Farzan 1403.0744

P. Coloma, T. Schwetz 1604.05772

PBD, S. Parke 2106.12436

This is known as the LMA-Dark solution

A. de Gouvêa, A. Friedland, H. Murayama hep-ph/0002064

Is the mass ordering robust?

Need **scattering** to break

CHARM and NuTeV for $M_{Z'} \gtrsim 10 \text{ GeV}$

 $\overline{PBD},\, \text{et al } 1701.04828$

COHERENT for $M_{Z'} \gtrsim 50$ MeV and cosmology for $M_{Z'} \lesssim 5$ MeV

PBD, Y. Farzan, I. Shoemaker 1804.03660

Dresden-II for any mediator mass

PBD, J. Gehrlein 2204.09060

Can still evade with $\epsilon_{\mu\mu} = \epsilon_{\tau\tau} = 2$ or certain u / d combinations

NSI parameters

Many parameters:

- Neutrino flavor: 3 diagonal $+3 \times 2$ flavor changing
- Matter fermion: u, d, e: 3
- ▶ V vs. A (or L vs. R): 2 54

If SPVAT then 135

Generally leads to $\nu\nu$ interactions in SNe and early universe: $\times 2 \rightarrow 270$

9

- \blacktriangleright For oscillations u, d, e doesn't matter (much)
- ► Focus on V for propagation effects
- ► Since we want CP violation, focus on flavor changing

6 parameters:
$$|\epsilon_{e\mu}|e^{i\phi_{e\mu}}$$
 $|\epsilon_{e\tau}|e^{i\phi_{e\tau}}$ $|\epsilon_{\mu\tau}|e^{i\phi_{\mu\tau}}$

Take one of these three at a time

Relate NSI to vacuum parameters

There is a mapping between vacuum parameters with and without NSI that depends on ρ , E:

$$\begin{array}{c} UM^2U^\dagger + A + N = \widetilde{U}\widetilde{M}^2\widetilde{U}^\dagger + A \\ \text{Vacuum} \quad & \text{SM NSI apparent SM} \\ \text{matter matter vacuum matter} \end{array}$$

Works for off-axis experiments

Estimate size of effect

Ansatz:

- ► The data is well described by NSI
- NSI mainly modifies δ :

$$\begin{split} P(\epsilon, \delta_{\text{true}}) &\approx P(\epsilon = 0, \delta_{\text{meas}}) \\ \bar{P}(\epsilon, \delta_{\text{true}}) &\approx \bar{P}(\epsilon = 0, \delta_{\text{meas}}) \end{split}$$

Leverage approximate expressions for NSI in LBL

T. Kikuchi, H. Minakata, S. Uchinami 0809.3312

Estimate size of effect: NSI phase

Under the ansatz, if $\delta_{\text{NOvA}} \neq \delta_{\text{T2K}}$

$$\sin(\delta_{\rm true} + \phi_{e\beta}) \approx 0$$

Since $a_{\rm NOvA} > a_{\rm T2K}$ and the data suggests $\sin \delta_{\rm T2K} \lesssim \sin \delta_{\rm NOvA}$:

$$\cos(\delta_{\text{true}} + \phi_{e\beta}) \approx -1$$

$$\delta_{\rm true} \approx \delta_{\rm T2K} \qquad \Rightarrow \qquad \phi_{e\beta} \approx \frac{3}{2}\pi$$

Estimate size of effect: measured phases

$$\sin \delta_{\rm true} \approx \frac{\sin \delta_{\rm NOvA} a_{\rm T2K} - \sin \delta_{\rm T2K} a_{\rm NOvA}}{a_{\rm T2K} - a_{\rm NOvA}}$$

Since $\sin \delta_{\rm T2K} \sim -1$ this suggests $\sin \delta_{\rm true} < -1$

Alleviated by:

- ► Statistical fluctuations
- ▶ Relaxing the ansatz that only δ matters

Standard oscillation parameters

Can see that the combination doesn't like the NO while it does like the IO IO preferred over NO at $\Delta \chi^2 = 2.3$

NSI parameters

Analytic estimations:

$$|\epsilon_{e\mu}| \approx 0.22$$

$$|\epsilon_{e\tau}| \approx 0.24$$

$$\phi_{e\beta}/\pi \approx 1.5$$

$$\delta/\pi \approx 1.5$$

Numerical fit:

MO	NSI	$ \epsilon_{lphaeta} $	$\phi_{lphaeta}/\pi$	δ/π	$\Delta \chi^2$
	$\epsilon_{e\mu}$	0.19	1.50	1.46	4.44
NO	$\epsilon_{e au}$	0.28	1.60	1.46	3.65
	$\epsilon_{\mu au}$	0.35	0.60	1.83	0.90
	$\epsilon_{e\mu}$	0.04	1.50	1.52	0.23
IO	$\epsilon_{e au}$	0.15	1.46	1.59	0.69
	$\mid \epsilon_{\mu au} \mid$	0.17	0.14	1.51	1.03

$$\Delta\chi^2=\chi^2_{\rm SM}-\chi^2_{\rm NSI}$$
 For the SM: $\chi^2_{\rm NO}-\chi^2_{\rm IO}=2.3$

NSI parameters: IO

NSI parameters: $\epsilon_{\mu\tau}$

