```
In [30]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [32]: data=pd.read_csv(r"C:\Users\DELL E5490\Downloads\Advertising (1).csv")
 df

Out[32]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [33]: data.head()

Out[33]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [34]: data.tail()

Out[34]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

In [35]: plt.figure(figsize = (10, 10))
sns.heatmap(data.corr(), annot = True)

Out[35]: <Axes: >

Ridge and Lasso Regression

```
In [36]: data.drop(columns = ["Radio", "Newspaper"], inplace = True)
#pairplot
sns.pairplot(data)
data.Sales = np.log(data.Sales)
```



```
In [37]: features = data.columns[0:2]
    target = data.columns[-1]
    #X and y values
    X = data[features].values
    y = data[target].values
    #splot
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, randout print("The dimension of X_train is {}".format(X_train.shape))
    print("The dimension of X_test is {}".format(X_test.shape))
    #Scale features
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

The dimension of X_train is (140, 2) The dimension of X_test is (60, 2)

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

```
In [39]: #Ridge Regression Model
    ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(X_train,y_train)
    #train and test scorefor ridge regression
    train_score_ridge = ridgeReg.score(X_train, y_train)
    test_score_ridge = ridgeReg.score(X_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.990287139194161 The test score for ridge model is 0.9844266285141221


```
In [41]: #Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(X_train,y_train)
train_score_ls =lasso.score(X_train,y_train)
test_score_ls =lasso.score(X_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.0
The test score for ls model is -0.0042092253233847465

In [42]: pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "b.
Out[42]: pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "b.

Out[42]: <Axes: >


```
In [43]: #Using the linear CV model
    from sklearn.linear_model import LassoCV
    #Lasso Cross validation
    lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0)
    #score
    print(lasso_cv.score(X_train, y_train))
    print(lasso_cv.score(X_test, y_test))
```

0.9999999343798134
0.9999999152638072

```
In [44]: #plot size
plt.figure(figsize = (10, 10))
#add plot for ridge regression
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',marker
#add plot for lasso regression
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,co
#add plot for linear model
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7
#rotate axis
plt.xticks(rotation = 90)
plt.legend()
plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
plt.show()
```



```
In [46]: #Using the linear CV model
from sklearn.linear_model import RidgeCV
#Ridge Cross validation
ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 1, 10]).fit(X_train, y_
#score
print("The train score for ridge model is {}".format(ridge_cv.score(X_train, y_
print("The train score for ridge model is {}".format(ridge_cv.score(X_test, y_
))
```

The train score for ridge model is 0.99999999997627 The train score for ridge model is 0.999999999962467

Elastic Net Regression

Mean Squared Error on test set 220.6853437443477