Japanese Patent Laid-open Publication JP-A 2002-068538

WEB WINDING METHOD

Laid open to public:

8 March 2002

Appl. No.

2000-257119

Filed:

5

28 August 2000

Applicant(s):

Fuji Photo Film Co. Ltd.

Inventor(s):

Y. Narukawa and D. Fujikura

See the patent abstract attached hereto.

10 <u>Partial translation</u>

Page 2, left column, lines 15-18

[Claim 3] A web winding method as set forth in claim 1 or 2, wherein said web is wound while a lay-on roll presses an outer surface of a web winding roll, said lay-on roll not pressing an outer portion outside a knurling-provided inner edge in a range over (x/t) 500 mm.

Page 3, right column, lines 22-32

It is also preferable to use a lay-on roll (also called a touch roll or the like) in the winding method of the present invention. A form of the lay-on roll is not specifically limited, and may be a straight type or crown type. The lay-on roll can be disposed so that a distance L of its lateral end depicted in Fig. 4 being distant from a knurling-provided inner edge satisfies a condition of being equal to or more than (knurling thickness / web thickness) 100 mm, preferably in a range from (x/t) 300 mm to (x/t) 1,200 mm, and particularly preferably in a range from (x/t) 500 mm to (x/t) 1,000 mm. This lay-on roll is positioned downstream from the knurling providing section.

Relation of claims 1, 17 and 21 of the application to the document

The document discloses the use of a lay-on roll.

However, there is no suggestion of volume resistivity of
the lay-on roll, rubber for the lay-on roll, or hardness of
the rubber.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-068538

(43)Date of publication of application: 08.03.2002

(51)Int.CI.

B65H 18/00

(21)Application number : 2000-257119

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

28.08.2000

(72)Inventor: NARUKAWA YOSHIAKI

FUJIKURA DAISUKE

(54) WEB WINDING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a web winding method causing no problem of winding dislocation, depression of a bulk roll surface and elongation of a selvage by deciding the optimal knurling thickness according to a core diameter, a bulk roll outer diameter. and the web thickness.

SOLUTION: The purpose is attained by this web winding method characterized by setting the knurling thickness to 0.01t/(0.99-r/R) < x < 0.3t/(0.7-r/R) [here, x = the knurling thickness, t = the web thickness, r = a core diameter and R = a winding bulk roll outer diameter] in the method for winding a web on a core after knurling the side end part.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-68538 (P2002-68538A)

(43)公開日 平成14年3月8日(2002.3.8)

(51) Int.Cl.7

B65H 18/00

識別記号

FΙ

B65H 18/00

テーマコード(参考)

3F055

審査請求 未請求 請求項の数4 OL (全4 頁)

(21)出願番号

特願2000-257119(P2000-257119)

(22)出顧日

平成12年8月28日(2000.8.28)

(71)出願人 000005201

富士写真フイルム株式会社

神奈川県南足柄市中沼210番地

(72)発明者 成川 義亮

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(72)発明者 藤倉 大介

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(74)代理人 100085109

弁理士 田中 政浩

Fターム(参考) 3F055 AA05 BA00 FA15

(54) 【発明の名称】 ウェブの巻取方法

(57)【要約】

【課題】 巻芯径、バルクロール外径及びウェブ厚みに応じて最適なナーリング厚みを定め、それによって、巻きズレ、バルクロール表面の陥没、耳伸び等の問題の生じないウェブの巻取方法を提供する。

【解決手段】 上記課題は、ウェブをその側端部にナーリングを付与したのち巻芯に巻き取る方法において、該ナーリング厚みを、

0.01 t/(0.99-r/R) < x < 0.3 t/(0.7-r/R)

但し、x=ナーリング厚み

t=ウェブ厚み

r=巻芯径

R=巻取バルクロール外径

とすることを特徴とするウェブの巻取方法によって解決される。

11)

【特許請求の範囲】

【請求項1】 ウェブをその側端部にナーリングを付与したのち巻芯に巻き取る方法において、該ナーリング厚みを、

0.01 t/(0.99-r/R) < x < 0.3 t/(0.7 -r/R)

但し、x=ナーリング厚み

t=ウェブ厚み

r=巻芯径

R=巻取バルクロール外径

とすることを特徴とするウェブの巻取方法

【請求項2】 ウェブの巻取長(1)と巻芯径(r)の 比1/rが 4×10^4 より小さくなるようにする請求項 1記載のウェブの巻取方法

【請求項3】 ナーリング内縁から(x/t)×500 mmより外側はプレスしないレイオンロールでウェブ巻取ロールの外周面をプレスしながら巻き取る請求項1又は2記載のウェブの巻取方法

【請求項4】 ウェブの幅をw、ウェブを巻き取ったときの巻き取りバルクロール外径をRとしたとき、0.3 w<R<0.7 wとすることを特徴とする請求項1.2 又は3記載のウェブの巻き取り方法

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ウェブの側縁部に ナーリング(微小な凹凸であり、エンボス、ローレット 加工等とも称されている。)を付与して巻芯に巻き取る 方法に関するものである。

[0002]

【従来の技術】ウェブの巻き取りに於いて、ウェブに一 定の厚みのナーリングを付与することによって巻きズレ や巻き緩みを防げることは知られている。例えば、特開 平4-85248号には、幅方向両側にエンボス部を有 する連続ウェブを、タッチロールを巻芯側に押圧しなが ら巻き取る装置が開示されている。特開平8-2441 13号公報には、ウェブの両端にローレット加工を施す 装置が開示されている。特公平5-19452号公報に は、ナーリングの好ましい厚みはウェブ厚みの5%以 上、50%以下とすることが好ましいことが示されてい る。特開平8-262621号公報には、タッチロール よりも下流側でナーリングを付与する方法が開示されて いる。特開平9-319029号公報には、エンボスの 高さを5~40μmとすることが開示されている。特開 平8-244035号公報には、ローレットの先取りを することが示されている。特開平11-262950号 公報には、ローレットローラの歯の形状を角錐状にする ことが示されている。

[0003]

【発明が解決しようとする課題】ナーリング厚みが小さ いと巻きズレや巻き緩みを防ぐ効果は小さく、またナー リング厚みが大きいと巻き取ったバルクロールの表面が 陥没したり、クリープ変形によって耳伸びが生じる。今 までウェブの厚みに対してナーリング厚みを規定すると いう方法が用いられているが、巻取ウェブの長さが長く なると陥没や耳伸びが生じやすくなるという問題があ る。そこで、ナーリング厚みを規定する方法として巻取 バルクロール径や巻芯径を考慮した式を考える必要があ る。

【0004】巻取長と巻芯径に関する規定も今までない。巻芯径が大きくなると、巻芯部圧力が下がり、故障も減るが巻芯コスト、輸送、貯蔵コストが上がる。巻取長を長くすると巻きズレのだめに巻取テンションを上げざるを得ず、圧力アップにつながり故障も増える。また、巻取径を上げると外周が陥没して耳伸びが発生する。

【0005】ウェブを巻き取る際にレイオンロールを使用することが一般的だが、レイオンロールの面長に関する規定は今までない。面長が最適でないとエア排除効果が減り、耳折れや耳伸びが強くなる。

【0006】上述のように、バルクロールの巻取径によって巻きズレ易さが異なるため、それに伴ってナーリング厚みを変える必要がある。そこで、本発明の目的は、巻芯径、バルクロール外径及びウェブ厚みに応じて最適なナーリング厚みを定め、それによって、巻きズレ、バルクロール表面の陥没、耳伸び等の問題の生じないウェブの巻取方法を提供することにある。

【0007】また、さらにそのための最適な巻取長を巻芯径との比と最適なレイオンロール押し幅を提供することにある。

[0008]

【課題を解決するための手段】本発明は、上記課題を解決したウェブの巻取方法を提供するものであり、ウェブをその側端部にナーリングを付与したのち巻芯に巻き取る方法において、該ナーリング厚みを、

0.01 t/(0.99-r/R) < x < 0.3 t/(0.7 -r/R)

但し、x=ナーリング厚み

t=ウェブ厚み

r =巻芯径

R=巻取バルクロール外径(最大径)

とすることを特徴とするウェブの巻取方法によってかかる目的を達成したものである。

【0009】これは、バルクロールのナーリングのない ところ (中央部) の外径をR' としたとき、

【数1】

$$\alpha < \frac{R'}{R} < b$$

とし、これから

【数2】

$$\frac{1-b}{b-\frac{r}{R}} t < x < \frac{1-a}{a-\frac{r}{R}} t$$

を導き出した。そして、上記式において a = 0.7、b = 0.99としたのが上記の式である。

【0010】また、そのために、ウェブの巻取長(1) と巻芯径(r)の比1/rは 4×10^4 より小さくするのがよく、さらに、ウェブの幅(w)と巻き取り径の比R/wは0.3<R/w<0.7とし、レイオンロールの押し幅はナーリング内縁から(x/t) \times 500mmまでの範囲はプレスしないことが望ましい。

[0011]

【発明の実施の形態】本発明が適用されるウェブの材質は問わないが、例示すれば、セルローストリアセテート等のセルロースアセテート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル等のプラスチックフィルムなどである。バルクロールとなるこのウェブは、幅が600~3500mm程度、通常100~1600mm程度、厚みが25~250 μ m程度、通常30~100 μ m程度、そして、巻取長が500~10000m程度、通常2000~6000m程度である。

【0012】ウェブに付与されるナーリングの形状も特に限定されないが、例えば角錐台形、円錐台形、円丘形、波形、格子形、不定形等の集合体である。上記各形状は突起、凹陥のいずれであってもよく、ナーリングは、図1に示すようにウェブの片面でも、あるいは図2に示すように両面に形成されていてもよい。各突起又は凹陥の直径は $50\sim1000$ μm程度、通常 $100\sim300$ μm程度である。また、その密度は $20\sim1000$ 個/cm 2 程度、通常 $50\sim200$ 個/cm 2 程度である。ナーリングの厚み(高低差、バラツキがあるときは平均値)は図1、2にx で示す。図2に示すように両面に設ける場合にはそのままの厚みである。このナーリング厚みは $1\sim100$ μm程度、通常 $3\sim30$ μm程度である。

【0013】ウェブ厚み(t)に対するナーリング厚み(x)の比では $x/t=0.01\sim0.5$ 程度、好ましくは $0.08\sim0.3$ 程度である。

【0014】ウェブに付与されるナーリングの幅は1本 (片側) 当りウェブ幅の $0.2\sim1.5\%$ 程度、通常 $0.4\sim1.0\%$ 程度である。ナーリングは内縁がウェブ耳端から30mm以内、特に15mm以内とすることが好ましい

【0015】図3にrで示される巻芯径は巻芯の外径であり、50~500mm程度、通常100~300mm程度である。

【0016】図3にRで示される巻取バルクロール外径 (設計された最終径)は250~1500mm程度、通 常400~1000mm程度である。 【0017】本発明においては、前記ナーリング厚みを 【数3】

$$\frac{0.01t}{0.99 - \frac{r}{R}} < x < \frac{0.3t}{0.7 - \frac{r}{R}}$$

但し、x=ナーリング厚み(両面のときは各厚みの和) t=ウェブ厚み

r=巻芯径

R=巻取バルクロール径 とするところに特徴がある。

【0018】好ましくは、

【数4】

$$\frac{0.01t}{0.96 - \frac{r}{R}} < x < \frac{0.3t}{0.8 - \frac{r}{R}}$$

である。

【0019】また、ウェブの巻取長(1)は巻芯径(r)に対する比(1/r)で4×104より小さくなるよう、好ましくは3000~3000程度とするのがよい。その際のナーリング厚み/ウェブ厚みは0.01~0.5程度である。

【〇〇20】本発明の巻取方法においてもレイオンロール(タッチロール等ともいう。)を使用することが好ましい。レイオンロールの形状は特に限定されず、ストレートタイプ、クラウンタイプのいずれでもよい。このレイオンロールは、図4に示されるその側端とナーリング内縁との距離しが(ナーリング厚み/ウェブ厚み)×100mm以上、好ましくは(x/t)×300mm~(x/t)×1200mm程度、特に好ましくは(x/t)×500mm~(x/t)×1000mm程度離して設けるのがよい。このレイオンロールはナーリング付与部より下流側に設ける。

[0021]

【実施例】実施例1

ウェブ厚み(x) 80μ m、幅1400mmのセルローストリアセテートフィルムの両端に各々幅10mmのナーリングを内縁と耳端との距離が15mmになるように設けた。このナーリングは、高さ(ナーリング厚みt) 8μ m、一辺 250μ mの角錐台を85個/cm 2 の割合で設けてなるものである。このウェブを幅1250mmのレイオンロールを用いて巻芯径6インチの巻芯に巻いていったところ、巻取長7000m(巻取バルクロール径880mm)以上で巻芯部映り故障と外周部の耳伸び及び陥没を生じた。この陥没は図5に、耳伸びは図6に示す。

【0022】次に、上記ウェブを巻芯径300mmの巻芯に巻いたところ閾値が12000mになった。

【0023】巻芯径168mmの巻芯を用いてナーリング厚みを $1\mu m$, $15\mu m$, $35\mu m$ と変化させ巻き長4500mで巻き取りを行ったところ、 $1\mu m$ では巻き

ズレが発生したが、 15μ mでは良好であった。 35μ mでは20mmの陥没を生じた。

【0024】上記の実験においてレイオンロールの幅を 1450mmにしたところ、巻取テンションを増加させ ない場合には巻ズレやしわが発生した。一方、巻取テン ションを増加させると面圧が上昇して映り故障が発生し た。レイオンロールの幅を1350mmにすると耳伸び が発生した。

【0025】実施例2

ウェブ厚み(x)90 μ m、幅1400 μ mのポリエチレンナフタレートフィルムの両側に、実施例1と同様のナーリングを設けて巻取試験を行った。ナーリング厚みは1 μ m、12 μ m、45 μ mと変化させ、巻き長を5000 μ mと巻芯径300 μ mの巻芯に巻き付けた。その結果、ナーリング厚み1 μ mでは巻きズレが発生したが、12 μ mでは良好であった。45 μ mでは20 μ mの陥没を生じた。

【0026】実施例3

ウェブ厚み(x)100 μ m、幅1400 μ mのポリエチレンテレフタレートフィルムの両端に実施例1と同様のナーリングを設けて巻取試験を行った。ナーリング厚

Aは 1μ m, 20μ m, 50μ mと変化させ、巻き長さ 4000mとし巻芯径300mmの巻芯に巻き付けた。その結果、ナーリング厚み 1μ mでは巻きズレが発生したが、 20μ mでは良好であった。 50μ mでは15mmの陥没を生じた。

[0027]

【発明の効果】本発明により、ウェブを巻きズレ、バルクロール表面の陥没、耳伸び等を起こさずに良好に巻き取ることができる。

【図面の簡単な説明】

【図1】 ウェブにナーリングを付与した状態を示すウェブ1側端部の断面図である。

【図2】 ウェブにナーリングを付与した状態を示すウェブ1側端部の断面図である。

【図3】 巻取バルクロールの斜視図である。

【図4】 ナーリングを付与されたウェブをレイオンロールで押し付けている状態を示す部分図である。

【図5】 巻取バルクロール表面の陥没を説明する斜視 図である。

【図6】 耳伸びを説明する部分断面図である。

