# R Notes for Multivariate Analysis

Yongfu, Liao 2018-04-06

# Contents

4 CONTENTS

## About

This is a very simplified book about Multivariate Analysis in R. It is written as a note to facilitate my learning of Multivariate Analysis at NTU, Spring, 2018.

Feel free to share, modify, and reshare the work. For more information, see the License section below.

## License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

6 CONTENTS

## Chapter 1

# Multivariate Normal Distribution & Covariance Matrix

### 1.1 Bivariate Normal Contour Map

#### 1.1.1 ellipse function

```
ellipse(x, scale, centre, level, npoints = 1000)
```

- x: a single number, correlation of the two variables.
- scale: vector, standard deviation of the two variables.
- centre: vector, center of the ellipse, i.e. the mean vector of the bivariate normal distribution.
- level: a single number, the contour probability.
- npoints: number of points used to draw the contour.

ellipse returns a matrix with dimension (npoints  $\times$  2), which can be used to plot contour.

#### 1.1.2 Data Generation

The for loop below is used to generate a data frame with 3 columns(variables):

- Column 1: First variable of bivariate normal function  $(x_1)$
- Column 2: Second variable of bivariate normal function  $(x_2)$
- Column 3: The contour that  $x_1 \& x_2$  on the same row belongs to.

```
library(ellipse)
All_contours <- c(NA, NA, NA)
    ## Set empty start for appending ##
for (i in 1:5) {
    level <- 0.1*i
        ## Set Contour prob., prob. of obs within contour ##
    ell_data <-ellipse(-0.8, c(sqrt(2), 1), centre = c(1, 3), level = level, npoints = 800+(i-1)^3)
        ## npoints: bigger contours with more points ##
    class <- rep(paste(level*100, "% Contour", sep=""), nrow(ell_data))</pre>
        ## Assign contour class ##
    ell_data <- as.data.frame(ell_data)</pre>
        ## Change to data.frame BEFORE cbind, ##
        ## or coersion happens ##
    ell_data <- cbind(ell_data, class)</pre>
    All_contours <- rbind(All_contours, ell_data)
}
All_contours <- All_contours[-1,]
    ## Remove the empty start ##
```

#### 1.1.3 Plotting



#### 1.2 Multivariate Normal Functions

#### 1.2.1 Generate density f(x)

#### [1] 1.562995e-05

- x: Vector x in f(x), all variables of the multivariate normal distribution.
- mean: Mean vector(center of ellipse) of the multivariate normal distribution.
- sigma: Covariance matrix of the multivariate normal distribution.

dmvnorm(x = data[4, 1:2], mean = mu, sigma = Sigma)[[1]]

dmvnorm returns f(x), the range of the multivariate normal function. For example, dmvnorm(x = c(2, 5), mean = mu, sigma = Sigma) returns the value  $f(x_1 = 2, x_2 = 5)$  of the multivariate normal distribution specified by mean vector, mu, and covariance matrix, Sigma.

#### 1.2.1.1 Example: Densities of a Contour

```
data <- All_contours %>%
    filter(class == "50% Contour")

dmvnorm(x = data[1, 1:2], mean = mu, sigma = Sigma)[[1]]

[1] 0.09378295
```

#### [1] 0.09378295

The retured values are the same (very close), since they are on the same contour. See the section above for more details.

#### 1.2.2 Covariance Matrix

Generater covariance and correlation Matricies:

```
library(mat2tex)
cov.mt <- cov(iris[,1:4]) ## Cov Matrix of variable 1~4
cor.mt <- cor(iris[,1:4]) ## Cor Matrix of variable 1~4</pre>
```