Question 3

You are given a simple directed weighted graph with n vertices and m edges. The edge weights may be negative, but there are no cycles whose sum of edge weights is negative.

3.1 [10 marks] An edge e is said to be useful if there is some pair of vertices u and v such that e belongs to at least one shortest path from u to v.

Design an algorithm which runs in $O(n^3)$ and determines the set of useful edges.

Answer:

Suppose u, v, k is the index of vertices, u is the start index of vertices, v is the end index of vertices, k is the possible passing index of vertices, n is the total number of vertices. Suppose w, w' is $n \times n$ two-dimensional array which record the weight of edge to edge. w[u][v] means the weight of weight from u to v, w' record the original weight between two vertices, w record the changing after finding the best way.

Traversing both w and w' arrays, if exist an edge from u to v, record the weight into w[u][v]andw'[u][v], if not or u=v record $w[u][v], w'[u][v]=\infty$. This part need to travel all of the $n \times n$ arrays, the time complexity is $O(n^2)$

Set u, v, k = 1.

Set a three-layer nested loop, use Floyd-Warshall algorithm method:

- the outermost layer loop k from 1 to n ($1 \le k \le n$):
- the second layer loop u from 1 to n $(1 \le v \le n)$, if u = k, jump over:
- the input layer loop v from 1 to n $(1 \le v \le n)$, if $u = v \operatorname{OR} v = k$, jump over:
 - If w[u][v] greater than w[u][k] + w[k][v], set w[u][v] = w[u][k] + w[k][v].

This part have three-layer nested loop and both of them need to travel size of n, the time complexity is $O(n^3)$ After that, compare array w and w'

- if $w[u][v] \neq w'[u][v]$, it means the original edge is not being chosen by the shortest path, there are not useful path.
- if w[u][v] = w'[u][v] AND $w[u][v] \neq \infty$, the path is useful.

This part need to travel all of the $n \times n$ arrays, the time complexity is $O(n^2)$.

The time complexity is $O(n^3)$.

3.2 [10 marks] An edge is said to be very useful if there is some pair of vertices u and v such that e belongs to every shortest path from u to v.

Design an algorithm which runs in $O(n^3)$ and determines the set of very useful edges.

Answer:			