预备知识

* 二进制

* 补码

* ASCII码

帕斯卡的加法机

1642年,19岁的帕斯卡设计制造了一架机械式计算装置—使用齿轮进行加减运算的计算机。这台加法机中有一组轮子,每个轮子上刻着从0到9的10个数字。某一位的小轮转动了10个数字后,使下一个小轮转动一个数字。计算所得的结果在加法机面板上的读数窗上显示,计算完毕要把轮子逐个恢复到零位。

这台加法机在技术上有两个创新:

- 自动产生进位;
- 用补码表示负数。

1971年瑞士人沃斯把自己发明的高级语言命名为Pascal,以表达对帕斯卡的敬意,使帕斯卡的英名长留在电脑时代。

莱布尼兹的乘法机

1673年,德国数学家莱布尼兹发明乘法机,这是第一台可以运行完整的四则运算的计算机。在进行乘法运算时采用了移位-加(shift-add)的办法,并用二进制代替十进制。这些方法也被现代的电子计算机所采用。

莱布尼兹认为,中国的八卦是最早的二进制计数法。在八卦图的 启迪下,莱布尼兹系统地提出了二进制运算法则。

莱布尼兹因独立发明微积分而与牛顿齐名,并被《不列颠百科全书》 列为"西方文明最伟大的人之一"。

莱布尼兹非常向往和崇尚中国的古代文明,他把自己研制的乘法机的复制品赠送给中国皇帝康熙,以表达他对中国的敬意。

内部资料请勿外供

预备知识

$$2^{2}=4$$
 $2^{4}=16$ $2^{8}=256$ $2^{10}=1024$ $2^{16}=65536$ $2^{20}=1048576$

```
1K=2^{10}=1024 (Kilo)

1M=1024K=2^{20} (Mega)

1G=1024M=2^{30} (Giga)

1T=1024G=2^{40} (Tera)
```

1个二进制位: bit (比特位) (最小的存储单位)

8个二进制位: Byte (字节) 1Byte=8bit

(基本存储单位)

1. 数制

- **十进制**: 基数为10, 逢十进一 12.34 = 1×10¹ + 2×10⁰ + 3×10⁻¹ + 4×10⁻²
- 二进制:基数为2,逢二进一
 1101₂ = 1 × 2³ + 1 × 2² + 1 × 2⁰ = 13₁₀
- 十六进制:基数为16,逢十六进一
 1001,0001,1000,0111
 9 1 8 7
 = 9×16³+1×16²+8×16¹+7×16⁰
- 八进制:基数为8,逢八进一

数制	基数	数码		
二进制 Binary	2	0,1		
八进制 Octal	8	0,1,2,3,4,5,6,7		
十进制 Decimal	10	0,1,2,3,4,5,6,7,8,9		
十六进制 Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,		
		A,B,C,D,E,F		

任意进制数的表示(2)

* 不同进位计数制的各种数码

十进制数	二进制数	八进制数	十六进制数	
0	0000	00	0	
1	0001	01	1	
2	0010	02	2	
3	0011	03	3	
4	0100	04	4	
5	0101	05	5	
6	0110	06	6	
7	0111 07		7	
8	1000	10	8	
9	9 1001		9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	С	
13	.3 1101 15		D	
14	1110 16		E	
15	1111	17	F	

二进制数和十进制数的转换(1)

- * 二进制数转换成十进制数
 - *方法:将二进制数写成按权展开式,并将式中各乘积项的积算出来,然后各项相加,即可得到与该二进制数相对应的十进制数。

二进制数和十进制数的转换(1)

- * 二进制数转换成十进制数
 - * 例子:

$$(11010.101)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

= $16 + 8 + 2 + 0.5 + 0.125$
= $(26.625)_{10}$

二进制数和十进制数的转换(2)

* 十进制数转换成二进制数(短除法)

2 357	1
2 178	0
2 89	1
2 44	0
2 22	0
2 11	1
2 5	1
2 1 2	0
2 1	1
0	

低

整数部分转化

高

 $(357)_{10} = (101100101)_2$

小数部分转化

		Ο.	385×2
(高位)	0		77×2
	1		54×2
	1		08×2
	0		16×2
	0		32×2
	0		64×2
(低位)	1		28

则: $(0.385)_{10} = (0.0110001)_2$ 存在一定的转化误差

练习

- * 十进制数 189 转化为二进制数?
- * 二进制数 11011011 转为十进制数?
- * 十进制 10.625转化为二进制数?
- * 二进制 1110.11 转为十进制数?

10111101

219

1010.101

14.75

八进制数、十六进制数与二进制数的转换

- * 八进制数的基数是8(8=2³),十六进制数的基数是16 (16=2⁴)。二进制数、八进制数和十六进制数有2的 整指数倍的关系,因而可以直接转换。
- * 二进制数转八进制数或十六进制数:从小数开始,分别向左、右3或4位分组,最后不满3或4位的,需加0。将每组以对应的八进制数或十六进制数代替,即为等值的八进制数或十六进制数。
- * 例子: 八进制 2 5 7 . 0 5 5 4 二进制 010 101 111 . 000 101 101 100 十六进制 A F . 1 6 C

则: $(257.0554)_8$ = $(10101111.0001011011)_2$ = $(AF.16C)_{16}$

windows的"计算器"工具来进行进制转换 查看菜单->"程序员"

练习

- * 十六进制数 A3 转化为二进制数?
- * 二进制数 1101 1111 0010 转为十六进制数?
- * 八进制 17.25转化为二进制数?
- * 二进制 110.11 转为十六进制数?

1010 0011 DF2 1111.010101 6.C

3. 运算

• 算术运算

二进制

加法规则	乘法规则
0+0=0	0×0=0
0+1=1	0×1=0
1+0=1	1×0=0
1+1=0 (进位1)	1×1=1

4. 数和字符的表示

• 数(机器数)的表示:

计算机中的数用二进制表示,数的符号也用二进制表示。 数的存储空间:一般是字节的整数倍(8位、16位、32位等)

真值和机器数

🥶 真值:

符号 (+/-) + 尾数 (绝对值)

$$(+5)_{10} = (+101)_2$$

$$(-7)_{10} = (-111)_2$$

■ 机器数:

将符号(+/-)数码化 用最高位做符号位

● 数的符号在计算机中的表示:

原码、反码、补码: 0表示正数, 1表示负数

- * 原码、反码和补码的转换规则:
- * 最高位为符号位, O正1负
- * 正数的原码、反码和补码是一样的
- * 负数

原码:最高位为1

反码:最高位为1,其余取反(1变0,0变1)

补码:在反码的基础上在最低位加1

用8位二进制数表示+12 -12的原、反、补码

* 原 反 补 +12 00001100 00001100

-12 10001100 11110011 11110100

常用表示法 —— 原码 反码 补码

原码表示法: 符号+绝对值

例: n=8bit

 $[+3]_{\bar{R}^{2}} = 0\ 000,0011$

 $[-3]_{\bar{R}\bar{Q}} = 1000,0011$

 $[+0]_{\bar{R}} = 0.000,0000$

 $[-0]_{\bar{R}^{\bar{Q}}} = 1000,0000$

: 0的表示不唯一

反码表示法: 正数的反码同原码, 负数的反码数值位与原码相反

例: n=8bit

 $[+5]_{\bar{p}} = 0.000,0101$

 $[-5]_{\bar{p}_{\bar{q}_{\bar{q}}}} = 1 \ 111,1010$

 $[+0]_{\bar{p}} = 0 000,0000$

 $[-0]_{\bar{p}_{\bar{q}_{\bar{q}}}} = 1 \ 111,1111$

: 0的表示不唯一

补码表示法

正数的补码: 同原码

$$[+1]_{\text{A} \rightarrow \text{A}} = 0000\ 0001$$

$$[+127]_{\text{NA}} = 01111111$$

$$[+0]_{\text{A}} = 0000\ 0000$$

0的表示是唯一的

- 负数的补码: (1) 写出与该负数相对应的正数的补(原)码
 - (2) 按位求反
 - (3) 末位加一

例: 机器字长8位, [-46]_{补码} = ?

$$[-0]_{ih}$$
 = 0000 0000 $[-1]_{ih}$ = 1111 1111 $[-127]_{ih}$ = 1000 0001 $[-128]_{ih}$ = 1000 0000

补码表示最小的数(单字节)

n位补码的表数范围: $-2^{n-1} \le N \le 2^{n-1}-1$

n=8 $-128 \le N \le 127$

 $n=16 -32768 \le N \le 32767$

无符号整数:即最高位不表示符号,表示数值

表示数范围 0 ≤ N ≤ 2ⁿ-1

 $n=8 \quad 0 \le N \le 255$

n位原码的表示范围: $-2^{n-1} < N \le 2^{n-1} - 1$

n位反码的表示范围: - 2ⁿ⁻¹ < N ≤ 2ⁿ⁻¹ - 1

n位补码的表示范围: $-2^{n-1} \le N \le 2^{n-1} - 1$

n位**无符号数**的表示范围: $0 \le N \le 2^{n}-1$

以n=8为例:

原码: -127 ≤ N ≤ 127

反码: -127 ≤ N ≤ 127

补码: -128 ≤ N ≤ 127

无符号数: 0≤N≤255

思考:为什么原码、反码无法表示-128?

用补码如何表示-128?

"正""反"转换的过程都要熟练掌握

真值→──原码、反码、补码

* 练习:写出90,-90的8位二进制数原码、反码和补码

原码 反码 补码 +90 01011010 01011010 01011010 -90 11011010 10100101 10100110 * 练习:下列数的8位二进制补码为 00110001 10011010 求这两个数的真值。

49、-102

字符的表示

ASCII码:

全称: American Standard Coad for Information Interchange 用一个字节来表示一个字符,低7位为字符的ASCII值,最高位一般用作校验位。

美国信息交换标准代码是一种用于信息交换的标准代码,代表标准美国键盘上的字符或符号。通过将这些字符使用的值标准化,ASCII允许计算机和计算机程序交换信息,为了使用相同的编码规则,美国有关的标准化组织就出台了ASCII编码,统一规定了键盘上常用符号用哪个二进制数来表示。

字符的表示

熟悉常用字符的ASCII(参见附录B)

```
例: 'A' 十进制: 65 二进制: 01000001
```

'a' 十进制: 97 二进制: 01100001

'0' 十进制: 48

换行 十进制: 10

回车 十进制: 13

空格 十进制: 32

思考:大写字母与小写字母ASCII码的关系?

字符编码 (ASCII码)

LH	0000	0001	0010	0011	0100	0101	0110	0111
0000	NUL	DLE	SP	0	@	P	4	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	С	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN)	8	Н	X	h	X
1001	HT	EM	(9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	1	k	{
1100	FF	FS	,	<	\mathbf{L}	\	1	
1101	CR	GS	-	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	/	?	0		0	DEL

小结

* 几种常用进制(二进制、十进制和十六进制)的表示方法和相互转化方法

*数(特别是负数)的补码表示

* ASCII码

作业

- 1. 从下载 "CodeBlocks" (选做), 仿照课本例题,编写、运行一个输出自己姓名,学号,班级,籍贯的程序。(然后把程序写到纸上)
- 2. 求十进制数2.125的二进制。
- 3. 求下列十进制数的8位二进制补码。 112, 0, -0, -128, -78
- 4.有两个数, 其8位二进制补码为10110110, 01101101, 其真值分别为多少?
- 5. 写出下列字符在计算机中存储的二进制形式 'O' 'o' 'O', 'A', 'c' 零 小写o 大写o
- 6、预习课本第二章内容,尤其是"求闰年""求素数"的过程以及对应的流程图

上讲总结

- * 进制的转换
 - 二 <----> 十 (整数部分、小数部分)
 - 二 <----> 八、十六 (整数部分)

* 整数原码、反码、补码表示方法

* ASCII码 (常见字符的ASCII码)

练习

- * 将十进制数 56.125 转化为二进制数
- * 写出-67、127的8位二进制补码表示
- * 8位二进制补码表示的最小的数是什么?真值
- * 8位二进制无符号数所能表示范围?
- * 'a' 'A' '0' '(空格)的ASCII码?

```
111000.001
10111101 01111111
```

10000000 -128

0到255 97 65 48 32

补码的表示

- *正数的补码同原码;符号位:O正1负
- *对负数,二进制原码,从右往左数,遇到 第一个1时,右边的数(含这个1)不变, 左边的数全部取反。
- * 例如: -102

$$(102)_{10} = (1100110)_2$$
 0011010

补码: 10011010 (加上符号位)