Analysis Based on TMDB 5000 Movie Dataset

I. Introduction

In this project, I will explore a dataset from Kaggle (https://www.kaggle.com/tmdb/tmdb-movie-metadata). And dealing with the following questions with python:

- 1. Compute the total number of shots in each movie category, plot the number of the five types of movies with the most shots over time, and calculate the total average score of these five genres.
- 2. Calculate the total output of films produced by Universal Pictures, Columbia Pictures, Warner Bros., and Paramount Pictures, and compare the profits of their based on novel films and those are not based on.

II. Method

i. Preparing Data

There are two csv files in this Kaggle project, so the first thing I did was to join them together, then I got a dataframe with 4803 rows and 23 columns.

Data	columns (total 23 col	· ·			
#	Column	Non-Null Count	Dtype		
0	id	4803 non-null	int64		
1	title_x	4803 non-null	object		
2	cast	4803 non-null	object		
3	crew	4803 non-null	object		
4	budget	4803 non-null	int64		
5	genres	4803 non-null	object		
6	homepage	1712 non-null	object		
7	keywords	4803 non-null	object		
8	original_language	4803 non-null	object		
9	original_title	4803 non-null	object		
10	overview	4800 non-null	object		
11	popularity	4803 non-null	float64		
12	production_companies	4803 non-null	object		
13	production_countries	4803 non-null	object		
14	release_date	4802 non-null	object		
15	revenue	4803 non-null	int64		
16	runtime	4801 non-null	float64		
17	spoken_languages	4803 non-null	object		
18	status	4803 non-null	object		
19	tagline	3959 non-null	object		
20	title_y	4803 non-null	object		
21	vote_average	4803 non-null	float64		
22	vote_count	4803 non-null	int64		
dtypes: float64(3), int64(4), object(16)					

Figure 1. overview of the origin dataframe

The next step was data preprocessing, and I decided to begin with removing the duplicate columns and the columns which were not related to the questions I need to handle. With observation, I dropped the columns 'original title', 'title x', 'id', 'cast', 'crew', 'homepage',

'original_language', 'spoken_languages','overview', and 'tagline', and renamed the column 'title y' as 'title'.

Figure 2. overview of the dataframe in this step

And the following step is dealing with null values in column 'release_date', and my solution was dropping the line with null value under 'release_date'. When further observing the data, I found the data type of some columns need to be changed: data in columns 'genres', 'keywords', 'production_companies', and 'production_countries' are in json format, and data under 'release date' need to be changed into datetime.

Figure 3. overview of the final version dataframe

ii. Modeling

Question 1:

To answer this question, I only need to focus on columns 'year', 'genres', and 'vote_average', so I build a new dataframe only contains these three columns.

	year	genres	vote_average
0	2009	Action,Adventure,Fantasy,Science Fiction	7.2
1	2007	Adventure,Fantasy,Action	6.9
2	2015	Action, Adventure, Crime	6.3
3	2012	Action, Crime, Drama, Thriller	7.6
4	2012	Action, Adventure, Science Fiction	6.1

Figure 4. dataframe for this question

In order to do the statistics, I need to extract all the genres from the 'genres' column.

Data columns (total 23 columns):					
#	Column	Non-Null Count	Dtype		
0	year	4802 non-null	int64		
1	genres	4802 non-null	object		
2	vote_average	4802 non-null	float64		
3	History	4802 non-null	int64		
4	Western	4802 non-null	int64		
5	TV Movie	4802 non-null	int64		
6	Adventure	4802 non-null	int64		
7	Thriller	4802 non-null	int64		
8	Science Fiction	4802 non-null	int64		
9	Mystery	4802 non-null	int64		
10	Crime	4802 non-null	int64		
11	War	4802 non-null	int64		
12	Animation	4802 non-null	int64		
13	Fantasy	4802 non-null	int64		
14	Horror	4802 non-null	int64		
15	Documentary	4802 non-null	int64		
16	Drama	4802 non-null	int64		
17	Foreign	4802 non-null	int64		
18	Family	4802 non-null	int64		
19	Romance	4802 non-null	int64		
20	Comedy	4802 non-null	int64		
21	Music	4802 non-null	int64		
22	Action	4802 non-null	int64		
<pre>dtypes: float64(1), int64(21), object(1)</pre>					

Figure 5. overview of the dataframe in this step

After that, I perform a sum() function to compute the total number of each genres, and find 'Drama', 'Comedy', 'Thriller', 'Action', and 'Romance' are the top five. So, I will focus on these five genres to do the further exploration.

Drama	2297
Comedy	1722
Thriller	1274
Action	1154
Romance	894
Adventure	790
Crime	696
Science Fiction	535
Horror	519
Family	513
Fantasy	424
Mystery	348
Animation	234
History	197
Music	185
War	144
Documentary	110
Western	82
Foreign	34
TV Movie	8

Figure 6. genres sorted by number of shots

Question 2:

As for this question, I only need to use columns 'production_companies', 'keywords', 'budget', and 'revenue'. Like the previous question, I need to extract the word I need from columns 'production companies' and 'keywords'. After finishing that, I can do the further mining.

	budget	revenue	based on novel	Universal Pictures	Columbia Pictures	Warner Bros.	Paramount Pictures
(237000000	2787965087	0	0	0	0	0
	300000000	961000000	0	0	0	0	0
	2 245000000	880674609	1	0	1	0	0
	3 250000000	1084939099	0	0	0	1	0
	1 260000000	284139100	1	0	0	0	0

Figure 7. dataframe in this step

III. Results & Conclusion

Question 1:

To find the annual trend of 'Drama', 'Comedy', 'Thriller', 'Action', and 'Romance', I firstly called groupby() function to group them by year, then used lineplot() function in seaborn to draw the plot.

Figure 8. annual trend of the top5 genres

As the plot shown, the number of movies surged after 1980. Drama film reached its peak between 2000 and 2010, while other films reached their peak around 2010. The number of Romance and Comedy generally went down after their peak, and the number of Drama movies went through several big fluctuations, but the number of Thriller and Action seems more stable. It reflects that the market for Thriller movies and Action movies is more stable than its 3 types of movies.

And the next part of this question is to divide total vote by total number to calculate the average vote of these five genres.

Drama	6.388594
Comedy	5.945587
Thriller	6.010989
Action	5.989515
Romance	6.207718

Figure 9. average vote of top 5 genres

Which shows that people are more likely to give a high score to Drama movies and it also reflects the good quality of such movies at the same time.

Question 2:

In order to find the total output of films produced by Universal Pictures, Columbia Pictures, Warner Bros., and Paramount Pictures, I firstly call the sum() function, then used barplot() function in seaborn to draw the plot.

Figure 10.1. bar plot of each company's film production

Universal Pictures 314
Columbia Pictures 299
Warner Bros. 334
Paramount Pictures 285

Figure 10.2. total movies production of each company

As the plot and the calculate output shown, the total film production of these four companies is not much different, and Warner Bros.has the most movies production among them.

And the next part of this question is to compare the profits (profit = revenue - budget) of their based on novel films and those were not based on.

Table 1. comparison of each company

campany	profit of 'based on novel'	number of 'based on novel'	profit of 'not based on novel'	number of 'not based on novel'
Universal Pictures	920423828	9	28069924768	305
Columbia Pictures	2223450867	15	20559873778	284
Warner Bros.	1110535922	17	32052201795	317
Paramount Pictures	1325626259	13	26243283899	272

Junfan Chen IST652 MiniProject1

According to the table above, each company produces more 'not based on novel' movies than 'based on novel' movies, which is why the total profit of based on novel films are less than those are not based on.