

# 目录

- □引言
- □ Newton-Cotes公式
- □ Romberg算法
- □ Gauss公式
- □ 数值微分



# Gauss公式

□形如下式的机械求积公式

$$\int_{a}^{b} f(x) dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$
 (4.4.1)

- 含有2n + 2个待定参数  $x_k, A_k$  (k = 0, 1, ..., n)
- ☐ Gauss公式
  - 适当选择 $x_k$ ,  $A_k$ ,使求积公式具有2n + 1次代数精度
- 口 定义4.3 如果求积公式(4.4.1)具有2n + 1次代数精度,则称节点 $x_k(k = 0, 1, ..., n)$ 是Gauss点



# Gauss公式的构造

- □ 插值型求积公式
  - 求积系数 $A_k$ 通过插值基函数 $l_k(x)$ 积分得出

$$A_k = \int_a^b l_k(x) \, \mathrm{d}x$$

□ 定理4.4 对于插值型求积公式(4.4.1),其节点 $x_k$  ( $k = 0,1, \dots, n$ )是Gauss点的充分必要条件,是以这些点为零点的多项式 $\omega(x) = \prod_{k=0}^{n} (x - x_k)$ 与任意次数不超过n的多项式P(x)均正交,即

$$\int_a^b P(x)\omega(x) \, \mathrm{d}x = 0 \tag{4.4.2}$$



# 定理4.4证明

#### □必要性

- 设P(x)是任意次数不超过n的多项式,则  $P(x)\omega(x)$ 的次数不超过2n+1
- 如果 $x_0, x_1, ..., x_n$ 是Gauss点,则求积公式对于 $P(x)\omega(x)$ 能准确成立,即有

$$\int_{a}^{b} P(x)\omega(x) dx = \sum_{k=0}^{n} A_{k}P(x_{k})\omega(x_{k})$$

■ 但 $\omega(x_k) = 0 (k = 0, 1, ..., n)$ ,故下式成立

$$\int_a^b P(x)\omega(x) \, \mathrm{d}x = 0 \tag{4.4.2}$$

$$\int_{a}^{b} P(x)\omega(x) dx = 0$$
(4.4.2)



# 定理4.4证明(续)

#### □ 充分性

■ 对于任意给定次数不超过2n + 1的多项式f(x),用 $\omega(x)$ 除f(x),记商为P(x),余式为Q(x),P(x)与Q(x)都是次数不超过n的多项式:

$$f(x) = P(x)\omega(x) + Q(x)$$

■ 利用式(4.4.2),可得

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} Q(x) \, \mathrm{d}x \tag{4.4.3}$$

■ 由于所给求积公式是插值型的,它对于*Q(x)*能准确成立(定理4.1)



# 定理4.4证明(续) $f(x) = P(x)\omega(x) + Q(x)$

$$\int_{a}^{b} Q(x) dx = \sum_{k=0}^{n} A_k Q(x_k)$$

- 注意到 $\omega(x_k)=0$ ,因此  $Q(x_k) = P(x_k)\omega(x_k) + Q(x_k) = f(x_k)$
- 从而有  $\int_{a}^{b} Q(x) dx = \sum_{k=0}^{n} A_{k} f(x_{k})$
- 结合(4.4.3),得到  $\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{k=0}^{n} A_{k} f(x_{k})$
- 知式(4.4.1)对次数不超过2n+1的多项式均成立



# Gauss-Legendre公式

□ a = -1, b = 1,考察区间[-1,1]的Gauss公式

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx \sum_{k=0}^{n} A_k f(x_k) \tag{4.4.4}$$

- □ Legendre多项式
  - 当区间为[-1,1]、权函数 $\rho(x) \equiv 1$ 时,由  $\{1, x, x^2, ..., x^n\}$ 正交化得到的多项式

$$P_0(x) = 1$$
  $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$   $(n = 1, 2, \dots)$ 

- $P_{n+1}(x)$ 与任一次数不超过n的多项式正交
- $P_{n+1}(x)$ 在区间(-1,1)内有n+1个不同实零点



# Gauss-Legendre公式(续)

- □ Legendre多项式 $P_{n+1}(x)$ 的零点就是求积公式 (4.4.4)的Gauss点
  - 被称为Gauss-Legendre公式
- - 令上式对f(x) = 1准确成立,即可定出 $A_0 = 2$
  - 得到中矩形公式

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx 2f(0)$$



# Gauss-Legendre公式(续)

- □ 再取 $P_2(x) = \frac{1}{2}(3x^2 1)$ 的两个零点± $\frac{1}{\sqrt{3}}$ 构造 求积公式  $\int_{-1}^1 f(x) dx \approx A_0 f\left(-\frac{1}{\sqrt{3}}\right) + A_1 f\left(\frac{1}{\sqrt{3}}\right)$ 
  - 令上式对 f(x) = 1, x 准确成立,有  $\begin{cases} A_0 + A_1 = 2 \\ A_0 \left( -\frac{1}{\sqrt{3}} \right) + A_1 \left( \frac{1}{\sqrt{3}} \right) = 0 \end{cases}$
  - 解出 $A_0 = A_1 = 1$ ,得到两点Gauss-Legendre 公式  $\int_{-1}^1 f(x) dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$



# Gauss-Legendre公式(续)

□ 继续推导,得到三点Gauss-Legendre公式

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx \frac{5}{9} f\left(-\frac{\sqrt{15}}{5}\right) + \frac{8}{9} f(0) + \frac{5}{9} f\left(\frac{\sqrt{15}}{5}\right)$$

- □ 四点、五点Gauss-Legendre公式见表4.5
- □ 拓展到任意求积区间[a,b]
  - 通过变换 $x = \frac{b-a}{2}t + \frac{a+b}{2}$ 可以化到区间[-1,1]

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}t + \frac{a+b}{2}\right) dt$$



# Gauss公式的余项

□ 定理4.5 对于Gauss公式 (4.4.1), 其余项

$$R(x) = \int_{a}^{b} f(x) dx - \sum_{k=0}^{n} A_{k} f(x_{k}) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} \omega^{2}(x) dx$$

这里
$$\omega(x) = (x - x_0)(x - x_1) \dots (x - x_n)$$

■ 以 $x_0, x_1, ..., x_n$ 为节点构造次数不大于2n + 1的多项式H(x),使其满足条件

$$H(x_i) = f(x_i)$$
  $H'(x_i) = f'(x_i)$   $(i = 0, 1, ...)$  这里的 $H(x)$ 称为Hermite插值多项式

■ 由于Gauss公式具有2n + 1次代数精度,它对于 H(x)能准确成立



# Gauss公式的余项(续)

$$\int_{a}^{b} H(x) dx = \sum_{k=0}^{n} A_{k} H(x_{k}) = \sum_{k=0}^{n} A_{k} f(x_{k})$$

■ 因此余项

$$R(x) = \int_{a}^{b} f(x) dx - \sum_{k=0}^{n} A_{k} f(x_{k})$$

$$= \int_{a}^{b} f(x) dx - \int_{a}^{b} H(x) dx = \int_{a}^{b} [f(x) - H(x)] dx$$

■ Hermite插值余项

$$R(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \omega_{n+1}^2(x)$$
 (2.6.6)



# Gauss公式的余项(续)

■ 因此

$$R(x) = \int_{a}^{b} \frac{f^{(2n+2)}(\eta)}{(2n+2)!} \omega^{2}(x) dx$$

■ 由于 $\omega^2(x)$ 在[a,b]上保号,再次使用加权积分中值定理可得

$$R(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} \omega^{2}(x) dx$$



# Gauss公式的稳定性

- □ Newton-Cotes公式不稳定
  - $\exists n \geq 8$ 时,Cotes系数有正有负
- □ Gauss公式不但是高精度的,而且数值稳定
  - 求积系数具有非负性
- 口 定理**4.6** Gauss公式(4.4.1) 求积系数  $A_k(k = 0,1,...,n)$ 全是正的

$$\int_{a}^{b} f(x) dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$
 (4.4.1)



# 定理4.6证明

□考察

$$l_k(x) = \prod_{j=0 (j \neq k)}^n \frac{(x - x_j)}{(x_k - x_j)}$$

- 它是n次多项式,因而 $l_k^2(x)$ 是2n次多项式
- $\square$  Gauss公式对于 $l_k^2(x)$ 能准确成立,即有

$$0 < \int_{a}^{b} l_{k}^{2}(x) dx = \sum_{i=0}^{n} A_{i} l_{k}^{2}(x_{i}) = A_{k}$$



# Gauss公式稳定的原因

□求积公式

$$I_n = \sum_{k=0}^n A_k f(x_k)$$

□ 实际计算时,通常不一定能提供准确的数据  $f_k = f(x_k)$ ,而只是给出含有误差(例如舍入误差)的数据 $f_k^*$ ,故实际求得的积分值为

$$I_n^* = \sum_{k=0}^n A_k f_k^*$$

 $\square$   $I_n$ 和 $I_n^*$ 之间的差异有多大?



# Gauss公式稳定的原因(续)

$$|I_n^* - I_n| = \left| \sum_{k=0}^n A_k (f_k^* - f_k) \right| \le \sum_{k=0}^n |A_k (f_k^* - f_k)|$$

□ 由于Gauss公式的求积系数具有非负性

$$|I_n^* - I_n| \le \sum_{k=0}^n A_k |f_k^* - f_k| \le \left(\sum_{k=0}^n A_k\right) \max_{0 \le k \le n} |f_k^* - f_k|$$

□ 根据式(4.1.4),可得

$$\sum_{k=0}^{n} A_k = b - a \quad \Rightarrow |I_n^* - I_n| \le (b - a) \max_{0 \le k \le n} |f_k^* - f_k|$$



# 带权的Gauss公式

□考察积分

$$I = \int_{a}^{b} \rho(x) f(x) \, \mathrm{d}x$$

- $\rho(x) \ge 0$ 为权函数,当 $\rho(x) = 1$ 时即为普通积分
- □ 仿照普通积分的处理方式,考察求积公式

$$\int_{a}^{b} \rho(x)f(x) dx \approx \sum_{k=0}^{n} A_{k}f(x_{k})$$

- 如果它对于任意次数不超过 2n+1 的多项式均能准确地成立,则称之为Gauss型的
- 上述Gauss公式的求积节点 $x_k$ 仍称为Gauss点



# 带权Gauss公式的构造

- $\square x_k(k = 0, 1, ..., n) 是Gauss点的充要条件,下$  $式是区间[a, b]上关于权函数<math>\rho(x)$ 的正交多项 式  $\omega(x) = \prod (x - x_k)$

则所建立的Gauss公式为

$$\int_{a}^{b} \frac{f(x)}{\sqrt{1 - x^2}} dx \approx \sum_{k=0}^{n} A_k f(x_k)$$
 (4.4.6)

■ 称为Gauss-Chebyshev公式



# 带权Gauss公式的构造(续)

□ 区间[-1,1]上关于权函数 $\frac{1}{\sqrt{1-x^2}}$ 的正交多项式是Chebyshev多项式

$$T_n(x) = \cos(n \arccos x), |x| \le 1$$

■ 求积公式的Gauss点是n + 1次Chebyshev多项式的零点,即

$$x_k = \cos\left(\frac{2k+1}{2n+2}\pi\right) \quad (k = 0, 1, ..., n)$$

- □运用正交多项式的零点构造Gauss求积公式
  - ,只是针对某些特殊的权函数才有效
  - 一般权函数的正交化很复杂



# 带权Gauss公式的构造(续)

- □ 一般方法,借鉴4.1.2节的待定系数法
  - 欲使求积公式(4.1.3)具有m次代数精度,只要令它对于 $f(x) = 1, x, x^2, ..., x^m$ 都能成立

$$\begin{cases} \sum A_k = b - a \\ \sum A_k x_k = \frac{1}{2} (b^2 - a^2) \\ \vdots \\ \sum A_k x_k^m = \frac{1}{m+1} (b^{m+1} - a^{m+1}) \end{cases}$$
(4.1.4)

■ 是一个确定参数 $x_k$ 和 $A_k$ 的代数问题

# 举例



#### □ 设要构造下列形式的Gauss公式

$$\int_0^1 \sqrt{x} f(x) \, \mathrm{d}x \approx A_0 f(x_0) + A_1 f(x_1) \tag{4.4.7}$$

■ 令它对于  $f(x) = 1, x, x^2, x^3$  准确成立,得

$$\begin{cases} A_0 + A_1 = \frac{2}{3} \\ A_0 x_0 + A_1 x_1 = \frac{2}{5} \\ A_0 x_0^2 + A_1 x_1^2 = \frac{2}{7} \\ A_0 x_0^3 + A_1 x_1^3 = \frac{2}{9} \end{cases}$$

$$(4.4.8)$$



# 举例(续)

■ 经过一系列解方程步骤,可得

$$x_0 = 0.821162$$
  $x_1 = 0.289949$ 

$$A_0 = 0.389111$$
  $A_1 = 0.277556$ 

■ 因此

$$\int_0^1 \sqrt{x} f(x) \, \mathrm{d}x$$

 $\approx 0.389111f(0.821162) + 0.277556f(0.289949)$ 



# 目录

- □引言
- □ Newton-Cotes公式
- □ Romberg算法
- ☐ Gauss公式
- □ 数值微分



# 中点方法

□ 按照数学分析的定义,导数是差商的极限

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

□ 如果精度要求不高,则可以取差商作为倒数 的近似值,即

$$f'(a) \approx \frac{f(a+h) - f(a)}{h}$$
 $\exists x \quad f'(a) \approx \frac{f(a) - f(a-h)}{h}$ 

□ 中点方法(两者取平均)

$$f'(a) \approx \frac{f(a+h) - f(a-h)}{2h}$$



# 中点方法(续)

- □三种导数的近似值对应于向前差商、向后差商
  - 、中心差商
  - 分别分表示弦AB、AC 和BC的斜率
  - $\blacksquare$  BC的斜率更接近切线 AT的斜率
  - 中点方法更为可取



#### □ 机械求导方法

■ 将导数的计算归结为计算f在若干节点上的函数值



# 误差分析

□ 要利用中点公式

$$G(h) = \frac{f(a+h) - f(a-h)}{2h}$$

计算导数f'(a)的近似值,需要选择合适的步长,为此需要进行误差分析

□ 分别将 $f(a \pm h)$ 在x = a处作Taylor展开

$$f(a \pm h) = f(a) \pm hf'(a) + \frac{h^2}{2!}f''(a) \pm \frac{h^3}{3!}f'''(a) + \frac{h^4}{4!}f^{(4)}(a) \pm \frac{h^5}{5!}f^{(5)}(a) + \cdots$$



# 误差分析(续)

□ 代入中点公式, 化简

$$G(h) = f'(a) + \frac{h^2}{3!}f'''(a) + \frac{h^4}{5!}f^{(5)}(a) + \cdots$$

- 从截断误差的角度看,步长越小,计算结果越 准确
- □ 再考察舍入误差,当h很小时,因f(a+h)与f(a-h)很接近,直接相减会造成有效数字的严重损失
  - 从舍入误差的角度看,步长不宜太小



# 举例

### □ 中点公式求 $f(x) = \sqrt{x} \, \text{在} x = 2$ 处的一阶导数

$$G(h) = \frac{\sqrt{2+h} - \sqrt{2-h}}{2h}$$

■ 取四位数字计算,结果如下表所示

| h   | G(h)   | h     | G(h)   | h      | G(h)   |
|-----|--------|-------|--------|--------|--------|
| 1   | 0.3660 | 0.05  | 0.3530 | 0.001  | 0.3500 |
| 0.5 | 0.3564 | 0.01  | 0.3500 | 0.0005 | 0.3000 |
| 0.1 | 0.3535 | 0.005 | 0.3500 | 0.0001 | 0.3000 |

- 导数的准确值 f'(2) = 0.353553
- h = 0.1的逼近效果最好,如果进一步缩小步长
  - ,则逼近效果会越来越差



# 插值型的求导公式

- $\square$  对于列表函数y = f(x),运用插值原理,可以建立插值多项式  $y = P_n(x)$ 作为它的近似
- 口 由于多项式的求导比较容易,取 $P'_n(x)$ 的值作为f'(x)的近似值,即

$$f'(x) \approx P'_n(x) \tag{4.5.1}$$

- 统称为插值型的求导公式
- □ 即使 f(x)与 $P_n(x)$ 的相差不多,导数的近似值 $P'_n(x)$ 与导数的真值 f'(x)仍然可能差别很大,因而在使用求导公式(4.5.1)时应特别注意误差的分析



# 误差分析

#### □差值余项

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$
 (2.2.14)

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$
 (2.2.12)

#### □ 求导公式(4.5.1)的余项

$$f'(x) - P'_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x) + \frac{\omega_{n+1}(x)}{(n+1)!} \frac{d}{dx} f^{(n+1)}(\xi)$$

- $\blacksquare$   $\xi$ 是x的未知函数,无法对第二项进一步化简
- 对于随意给出的点x,误差 $f'(x) P'_n(x)$ 是无法 预估的



# 误差分析(续)

$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n)$$
 (2.2.12)

□ 如果限定求某个节点 $x_k$  的导数值,那么上面第二项因 $\omega_{n+1}(x_k) = 0$ 而变为零,这时余项公式为

$$f'(x_k) - P'_n(x_k) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x_k)$$
 (4.5.2)

- □下面仅仅考察节点处的导数值
  - 为简化讨论,假定所给的节点是等距的



# 两点公式

 $\square$  已给出两个节点 $x_0, x_1$ 上的函数值 $f(x_0), f(x_1)$ ,作线性插值公式

$$P_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

□ 上式两端求导,记 $x_1 - x_0 = h$ ,有

$$P_1'(x) = \frac{1}{h} \left[ -f(x_0) + f(x_1) \right]$$

□ 于是有下列求导公式

$$P_1'(x_0) = \frac{1}{h} \left[ -f(x_0) + f(x_1) \right] \quad P_1'(x_1) = \frac{1}{h} \left[ -f(x_0) + f(x_1) \right]$$



# 两点公式(续)

#### □ 利用余项公式

$$f'(x_k) - P'_n(x_k) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x_k)$$
 (4.5.2)

#### □ 带余项的两点公式

$$f'(x_0) = \frac{1}{h} \left[ -f(x_0) + f(x_1) \right] - \frac{h}{2} f''(\xi)$$

$$f'(x_1) = \frac{1}{h} \left[ -f(x_0) + f(x_1) \right] + \frac{h}{2} f''(\xi)$$



# 三点公式

□ 设已给出三个节点 $x_0$ ,  $x_1 = x_0 + h$ ,  $x_2 = x_0 + 2h$ 上的函数值,作二次插值

$$P_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_2)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

 $\Box$  令 $x = x_0 + th$ ,上式可表示为

$$P_2(x_0 + th) = \frac{1}{2}(t-1)(t-2)f(x_0) - t(t-2)f(x_1) + \frac{1}{2}t(t-1)f(x_2)$$



# 三点公式(续)

□ 两端对t求导,可以推导出

$$P_2'(x_0 + th)$$

(4.5.3)

$$= \frac{1}{2h} [(2t-3)f(x_0) - (4t-4)f(x_1) + (2t-1)f(x_2)]$$

- 这里撇号表示对变量x求导数
- $\square$  分别取t=0,1,2,得到以下三种三点公式

$$P_2'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_1) + f(x_2)]$$

$$P_2'(x_1) = \frac{1}{2h} [-f(x_0) + f(x_2)]$$

$$P_2'(x_2) = \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)]$$



# 三点公式(续)

#### □ 利用余项公式

$$f'(x_k) - P'_n(x_k) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega'_{n+1}(x_k)$$
 (4.5.2)

□带余项的三点求导公式

$$f'(x_0) = \frac{1}{2h} \left[ -3f(x_0) + 4f(x_1) + f(x_2) \right] + \frac{h^2}{3} f'''(\xi)$$

$$f'(x_1) = \frac{1}{2h} \left[ -f(x_0) + f(x_2) \right] - \frac{h^2}{6} f'''(\xi)$$

$$f'(x_2) = \frac{1}{2h} \left[ f(x_0) - 4f(x_1) + 3f(x_2) \right] + \frac{h^2}{3} f'''(\xi)$$
(4.5.4)

■ 式(4.5.4)是中点公式,它少用了一个函数值



# 高阶数值微分公式

□ 用插值多项式 $P_n(x)$ 作为f(x)的近似函数

$$f^{(k)}(x) \approx P_n^{(k)}(x)$$
  $(k = 0, 1, ...)$ 

□ 将式(4.5.3)再对t求导一次,可以推导出

$$P_2'(x_0 + th)$$

$$= \frac{1}{2h} [(2t - 3)f(x_0) - (4t - 4)f(x_1) + (2t - 1)f(x_2)]$$
得到

$$P_2''(x_0 + th) = \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)]$$



# 高阶数值微分公式(续)

#### □二阶三点公式

$$P_2''(x_1) = \frac{1}{h^2} [f(x_1 - h) - 2f(x_1) + f(x_1 + h)]$$

□带余项的二阶三点公式

$$f''(x_1) = \frac{1}{h^2} [f(x_1 - h) - 2f(x_1) + f(x_1 + h)] - \frac{h^2}{12} f^{(4)}(\xi)$$
(4.5.5)



# 五点公式

□ 设已给出五个节点 $x_i = x_0 + ih$ , i = 0,1,2,3,4 上的函数值,重复同样的手续,得到

$$m_0 = \frac{1}{12h} \left[ -25f(x_0) + 48f(x_1) - 36f(x_2) + 16f(x_3) - 3f(x_4) \right]$$

$$m_1 = \frac{1}{12h} \left[ -3f(x_0) - 10f(x_1) + 18f(x_2) - 6f(x_3) + f(x_4) \right]$$

$$m_2 = \frac{1}{12h} \left[ f(x_0) - 8f(x_1) + 8f(x_3) - f(x_4) \right]$$

$$m_3 = \frac{1}{12h} \left[ -f(x_0) + 6f(x_1) - 18f(x_2) + 10f(x_3) + 3f(x_4) \right]$$

$$m_4 = \frac{1}{12h} \left[ 3f(x_0) - 16f(x_1) + 36f(x_2) - 48f(x_3) + 25f(x_4) \right]$$

■  $m_i$ 代表一阶导数 $f'(x_i)$ 的近似值



# 五点公式(续)

#### □二阶五点公式如下

$$\begin{split} M_0 &= \frac{1}{12h^2} [35f(x_0) - 104f(x_1) + 114f(x_2) - 56f(x_3) + 11f(x_4)] \\ M_1 &= \frac{1}{12h^2} [11f(x_0) - 20f(x_1) + 6f(x_2) + 4f(x_3) - f(x_4)] \\ M_2 &= \frac{1}{12h^2} [-f(x_0) + 16f(x_1) - 30f(x_2) + 16f(x_3) - f(x_4)] \\ M_3 &= \frac{1}{12h^2} [-f(x_0) + 4f(x_1) + 6f(x_2) - 20f(x_3) + 11f(x_4)] \\ M_4 &= \frac{1}{12h^2} [11f(x_0) - 56f(x_1) + 114f(x_2) - 104f(x_3) + 35f(x_4)] \end{split}$$

■  $M_i$ 表示二阶导数 $f''(x_i)$ 的近似值



# 五点公式(续)

□ 对于给定的一张数据表,用五点公式求节点 上的导数值往往可以获得满意的结果

□ 五个相邻节点的选择原则,一般是在所考察 的节点的两侧各取两个邻近的节点

□ 如果一侧的节点数不足两个(即一侧只有一个节点或没有节点),则用另一侧的节点补足



# 举例

□ 利用 $f(x) = \sqrt{x}$  的一张数据表,按五点公式 求节点上的导数值 $m_i, M_i$ ,并与准确值比较

| $x_i$ | $f(x_i)$  | $m_i$                  | $f'(x_i)$ | $M_i/\times 10^3$ | $f''(x_i) /\times 10^3$ |
|-------|-----------|------------------------|-----------|-------------------|-------------------------|
| 100   | 10.000000 | 0.050000               | 0.050000  | -0.24758          | -0.25000                |
| 101   | 10.049875 | 0.04975 <mark>1</mark> | 0.049752  | -0.24591          | -0.24630                |
| 102   | 10.099504 | 0.049507               | 0.049507  | -0.24191          | -0.24268                |
| 103   | 10.148891 | 0.049267               | 0.049266  | -0.23958          | -0.23916                |
| 104   | 10.198039 | 0.049029               | 0.049029  | -0.23691          | -0.23572                |
| 105   | 10.246950 | 0.048795               | 0.048795  | -0.23666          | -0.23236                |



# 样条求导

- □ 样条函数*S*(*x*)作为*f*(*x*)的近似函数,不但彼此的函数值很接近,导数值也很接近
  - 对于三次样条 $S_3(x)$ ,有

$$\left| f^{(a)}(x) - S_3^{(a)}(x) \right| = O(h^{4-a})$$
  $(a = 0, 1, 2, 3)$ 

- 用样条函数建立数值微分公式是很自然的,即  $f^{(a)}(x) \approx S_3^{(a)}(x)$  (a = 0,1,2,3) (4.5.6)
- □ 与前述插值型微分公式(4.5.1)不同,样条微分公式(4.5.6)可以用来计算插值范围内任何一点x(不仅是节点 $x_k$ )上的导数值

$$\lambda_j m_{j-1} + 2m_j + \mu_j m_{j+1} = g_j \ (j = 1, 2, \dots, n-1) \ (2.8.9)$$



# 样条求导(续)

#### □对于等距划分

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$
  $x_{k+1} - x_k = h$ 

□ 三次样条 $S_3(x)$ 在节点上的导数值 $S'_3(x_k) = m_k$ 满足下列连续性方程

$$m_{k-1} + 4m_k + m_{k+1} = 3(y_{k+1} - y_{k-1})/h$$

$$(k = 0, 1, ..., n - 1)$$
(4.5.7)

- 与公式(2.8.9)一致
- 设已给出端点处一阶导数值 $m_0 = y_0', m_n = y_n'$ ,则求解方程组(4.5.7)得出的 $m_k$ 即可作为导数  $f'(x_k)$ 的近似值



# 总结

- □引言
  - 积分中值定理、梯形公式、矩形公式
  - 机械求积、代数精度、插值型求积公式
- □ Newton-Cotes公式
  - 定义、Cotes系数、Newton-Cotes公式的稳定性
  - 偶阶求积公式的代数精度、低阶求积公式的余项
  - 复化求积法、误差的渐近性
- □ Romberg算法
  - 梯形法的递推化、误差的事后估计法
  - Romberg公式、Richardson外推加速法



# 总结

#### □ Gauss公式

- 定义、Gauss点、充分必要条件
- Gauss-Legendre公式
- Gauss公式的余项和稳定性、带权的Gauss公式
- 构造加权Gauss公式的一般方法

#### □ 数值微分

- 中点方法、机械求导方法
- 插值型的求导公式、误差分析、样条求导