

NCERT Solutions For Class 7 Maths Symmetry Exercise 14.3

Q1 . Name any two figures that have both line symmetry and rotational symmetry.

Ans: Equilateral triangle and regular hexagon have both line of symmetry and rotational symmetry.

- Q2. Draw, wherever possible, a rough sketch of
- (i) a triangle with both line and rotational symmetries of order more than 1.
- (ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
- (iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Ans:

(i) Equilateral triangle has 3 lines of symmetry and rotational symmetry of order 3.

(ii) Isosceles triangle has only 1 line of symmetry and no rotational symmetry of order more than 1.

(iii) A parallelogram is a quadrilateral which has no line of symmetry but a rotational symmetry of order 2.

(iv)A kite is a quadrilateral which has only 1 line of symmetry and no rotational symmetry of order more than 1.

Q3 . If a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

Ans: Yes. If a figure has two or more lines of symmetry, then it will definitely have its rotational symmetry of order more than 1.

Q4. Fill in the blanks:

Shape	Centre of Rotation	Order of Rotation	Angle of Rotation
Square	ı	1	ı
Rectangle	ı	1	-
Rhombus	-	-	-
Equilateral Triangle	-	-	-
Regular Hexagon	-	-	-
Circle	-	_	-
Semi-circle		-	-

Ans: The given table can be completed as follows.

Shape	Centre of Rotation	Order of Rotatio n	Angle of Rotatio n
Square	Intersectio n point of diagonals	4	90 º
Rectangle	Intersectio n point of diagonals	2	180 °
Rhombus	Intersectio n point of diagonals	2	180 °
Equilateral Triangle	Intersectio n point of medians	3	120 º
Regular Hexagon	Intersectio n point of diagonals	6	60 º
Circle	Centre	Infinite	Any angle
Semi-circle	Centre	1	360°

Q5. Name the quadrilaterals which have both line and rotational symmetry of order more than 1.

Ans:

Square, rectangle, and rhombus are the quadrilaterals which have both line and rotational symmetry of order more than 1. A square has 4 lines of symmetry and rotational symmetry of order 4. A rectangle has 2 lines of symmetry and rotational symmetry of order 2. A rhombus has 2 lines of symmetry and rotational symmetry of order 2.

Q6. After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

Ans: It can be observed that if a figure looks symmetrical on rotating by 60°, then it will also look symmetrical on rotating by 120°, 180°, 240°, 300°, and 360° i.e., further multiples of 60°.

- **Q7**. Can we have a rotational symmetry of order more than 1 whose angle of rotation is
- (i) 45°?
- (ii) 17°?

Ans: It can be observed that if the angle of rotation of a figure is a factor of 360°, then it will have a rotational symmetry of order more than 1.

It can be checked that 45° is a factor of 360° but 17° is not. Therefore, the figure having its angle of rotation as 45° will have its rotational symmetry of order more than 1. However, the figure having its angle of rotation as 17° will not be having its rotational symmetry of order more than 1.

********* END *******