

Grado en Ingeniería Informática Tecnología de Computadores. 2º prueba parcial Grupos 84,85. Diciembre de 2008

Problema 1

Con motivo de la campaña de Navidad, una empresa de juguetes quiere diseñar un nuevo juego basado en un dado electrónico binario que puede tomar los valores '0' y '1'. I representa el valor por el que apuesta el jugador y D el valor que se obtiene al tirar el dado.

En este juego, un jugador (3) apuesta por que va a salir un valor del dado (D) y consigue un punto cuando acierta el valor obtenido en dos tiradas consecutivas con el dado binario. Es decir, obtiene un punto cuando I = D dos veces segundas y 0 puntos en el resto de casos.

Entradas al sistema:

- Reloj: (CLK).
- Reset: activo a nivel bajo (/R)
- J: valor por el que apuesta el jugador (J) antes de tirar el dado.
- D; valor obtenido ai tirar el dado (D).

Salidas

P: Puntuación, si el jugador ha acortado el valor de las dos últimas tiradas vale "1" y
"0" en el resto de casos.

Tudas las señales mencionadas son activas por nivel alto-

- 1) Dibuje el diagrama de estados según el modelo de Mealy del erretito que asigna la puntuación a un jugador. ¿Cuántos estados son necesarios? ¿Cuántos biestables se necesitan?
- Implemente el circuito utilizando biestables D, especificando claramente la asignación de estados y la tabla de transiciones.

TECNOLOGÍA DE COMPUTADORES 6-II PRUEBA MARCIAL Z DICIEMBRE 2008 6-24/85

PROBLEMA 1

1) Diagrama de estados de Mealy

Se mæsitan 2 estados y 1 biestable

2) Implementación con biestables D Asignauen de estados Acierto e C

Fallo : 11'

Tabla de lianscuares							
	(t		$-(t)I\rangle$ $>$ $>$ $>$				
	(🕸	Ľ	DI	<u>& 1</u>	DFF	<u> </u>	╧
	0	c	-ō1	Ø	0	1	ļ
Accepto	0	0	1	1	1	Ď_	L
J=D	V	4	0	-1	_1	C	
0	0	4	1.	0	U	1	
	1	0	0	0	0	0	
Fallo	1	c	1	4	1	0_	
J‡P İ	1	1	0	1	1	0	
.4	la l	1	1		L_{Δ}	0 1	

Dir = D del biestable

DEE JA	1 11 10
4 000	1 11 10
0 0 14	10 /4
11 0 11	1 0 (1/
) ² - 10 10	+10 = JED
2ff 3"	

(P) JP				
S (00)	01	11	10	Ĺ
~°0\Y	0	(0)	0_	_
10	0	0	0_	_
P= 1	ā (:]D+	10):	= Œ(JED)

Grado en Ingenieria Informática Tecnología de Computadores, 2ª prueba parcial Grupos 84,85, Diciembre de 2008

Nombre:	Сгиро:
Apellidos:	

Cuestión 1

Dado el circuito de la figura:

- a) Determinar las ecuaciones de estado y las de salida, suponiendo que S es la única señal de salida.
- b) Rellenar el cronograma adjunto utilizando las variables intermedias que scan precisas.

oi A partir de la simulación, determine el período y la frecuencia de reloj. $f = \frac{1}{T} = \frac{\lambda}{50 \text{ns}} = 20 \text{HAZ}$ d) Explique la funcionalidad del circuito

Detector de flanco de bajada. Cuando E pasa de 1 a 0, la salida da un pulso de un cido de seloj. Puede considerarse un detector de la securai ("10".