STAT 510 Homework 2

Due Date: 11:00 A.M., Wednesday, January 30

- 1. The main purpose of this problem is to derive several results about orthogonal-projection matrices stated near the beginning of slide set 2.
 - (a) Use the definition of generalized inverse and the result of problem 7 on Homework 1 to prove that

$$X(X'X)^-X'X = X$$

for any $(X'X)^-$ a generalized inverse of X'X.

- (b) Prove that if A is any symmetric matrix and G is any generalized inverse of A, then it must be true that G' is also a generalized inverse of A.
- (c) Use the results of problems (a) and (b) to prove that

$$X'X(X'X)^{-}X' = X'$$

for any $(X'X)^-$ a generalized inverse of X'X.

- (d) Show that idempotency of P_X (i.e., $P_X P_X = P_X$) follows from the result of part (a) and, alternatively, from the result of part (c).
- (e) Use parts (a) and (c) to prove that

$$XG_1X' = XG_2X'$$

for any two generalized inverses of X'X denoted by G_1 and G_2 . (This says that P_X is the same matrix no matter which generalized inverse of X'X is used to compute it.)

- (f) Use (b) and (e) to prove that P_X is symmetric (i.e., $P_X' = P_X$).
- 2. Suppose X is an $n \times p$ matrix and y is an $n \times 1$ vector. Suppose $z \in C(X)$ and $z \neq P_X y$. Prove that $||y z|| > ||y P_X y||$. Hint: Note that for any vector a and any vector $b \neq 0$ such that a'b = 0

$$||a + b||^{2} = (a + b)'(a + b) = (a' + b')(a + b)$$

$$= a'a + a'b + b'a + b'b = a'a + 2a'b + b'b$$

$$= ||a||^{2} + ||b||^{2} + 2a'b$$

$$= ||a||^{2} + ||b||^{2} \text{ (because } a'b = 0).}$$

$$> ||a||^{2} \text{ (because } b \neq 0).$$

Now note that

$$\|y - z\|^2 = \|y - P_X y + P_X y - z\|^2 = \dots$$

- 3. Suppose X is an $n \times p$ matrix. Prove that $C(X) = C(P_X)$.
- 4. Prove that $(X'X)^{-}X'y$ is a solution for **b** in the Normal Equations: X'Xb = X'y.
- 5. Suppose the Gauss-Markov model with normal errors (GMMNE) holds.
 - (a) Suppose $C\beta$ is estimable. Derive the distribution of $C\hat{\beta}$, the OLSE of $C\beta$.
 - (b) Now suppose $C\beta$ is NOT estimable. Provide a fully simplified expression for $\text{Var}(C(X'X)^-X'y)$.
 - (c) Now suppose $H_0: C\beta = d$ is testable and that C has only one row and d has only one element so that they may be written as c' and d, respectively. Prove the result on slide 23 of slide set 2.