Types and λ -calculus

Problem Sheet 2

- * 1. Write these terms using the minimum number of parentheses and λ , according to our conventions.
 - (a) $(\lambda y. ((y y)(zz)))$
 - (b) $(\lambda y. (((y y) y) y))$
 - (c) $((SZ)(\lambda y.(\lambda z.(z(Sy)))))$
- * 2. Write the term $(\lambda xyz. xy(xz))(\lambda xy. x)$ with all the parentheses and λ that we will usually omit tediously put back in.
- * 3. Perform the following substitutions:
 - (a) $(\lambda x. (\lambda y. xz)z)[(\lambda z. z)/z]$
 - (b) $(\lambda x. yx)[yz/x]$
 - (c) $(\lambda y. xy)[yx/x]$
- * 4. Perform one step of reduction for each of the following terms:
 - (a) const pred pred
 - (b) sub const
 - (c) $(\lambda x. xx)(\lambda x. xx)$
 - (d) const (pred pred)

* 5. Let us define the Booleans as follows:

$$\underline{\mathsf{false}} = \underline{\mathsf{0}}$$

$$\underline{\mathsf{true}} = \underline{1}$$

Define Boolean conjunction as a term \underline{and} , disjunction as a term \underline{or} and negation as a term not.

* 6. Define terms curry and uncurry with the following behaviour:

$$\underline{\operatorname{curry}}\,M\,N\,P\,\,\rhd\,\,\cdots\,\,\rhd\,\,M\,(N\,P)$$

$$\frac{}{\mathsf{uncurry}\,M}(N,P) \, \rhd \, \cdots \, \rhd \, M\,N\,P$$

** 7.

(a) For all terms *M* and *N*, define a local definition term:

let
$$x = N$$
 in M

(*M* and *N* will occur inside your answer), with the following behaviour:

let
$$x = N$$
 in $M > M[N/x]$

In other words, <u>let</u> x = N <u>in</u> M behaves like M but where we have defined x locally to be N.

- (b) Define a family of local definition forms that are specialised to functions of a certain number of arguments, i.e. a family of terms $\underline{\text{let }} f \ x_1 \cdots x_n = N \ \underline{\text{in }} M$, that behave like M but where we have defined f to be the function that takes arguments x_1, \ldots, x_n and returns N.
- ** 8. Complete the following partial proof of the following statement, by filling out (a), (b) (c) and (d). This proof is a particularly good test of how carefully you are keeping track of the proof state.

Suppose *P* and *Q* are terms, *x* and *y* are variables. If $x \neq y$ and $x \notin FV(Q)$ then for all terms *M*:

$$M[P/x][Q/y] = M[Q/y][P[Q/y]/x]$$

(which tells us how to reorder substitutions in general).

Proof. Suppose *P* and *Q* are terms. Suppose *x* and *y* are variables. The rest of the proof is by induction on $M \in \Lambda$.

• In case M is some variable z, we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Our goal is to show:

$$z[P/x][Q/y] = z[Q/y][P[Q/y]/x]$$

Now, either z = x, z = y or z is neither x nor y. We proceed by a case analysis on this fact:

- Suppose z = x. By our assumption, it follows that $z \neq y$. Then, by definition of substitution, $z \lceil P/x \rceil \lceil Q/y \rceil = P \lceil Q/y \rceil$ and

$$z[Q/y][P[Q/y]/x] = z[P[Q/y]/x] = P[Q/y]$$

Hence, the desired equality follows.

- Suppose z = y. (a)
- Suppose $z \neq x$ and $z \neq y$. Then z[P/x][Q/y] = z on the left side of the goal and also z[Q/y][P[Q/y]/x] = z on the right side, so the result follows.
- (b)
- In case M is some application N_1N_2 we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Additionally, assume the induction hypothesis:

(IH1) if
$$x \neq y$$
 and $x \neq FV(Q)$ then $N_1[P/x][Q/y] = N_1[Q/y][P[Q/y]/x]$

(IH2) if
$$x \neq y$$
 and $x \neq FV(Q)$ then $N_2[P/x][Q/y] = N_2[Q/y][P[Q/y]/x]$

Our goal is to show that:

$$(N_1N_2)[P/x][Q/y] = (N_1N_2)[Q/y][P[Q/y]/x]$$

(c)

• In case M is of shape λz . N, we argue as follows. We can assume by the bound variable convention that z is different from any variable in scope, so $z \neq x$ and $z \neq y$ and $z \notin FV(P)$ and $z \notin FV(Q)$. (d)