1.	Let A	be	a n	\times	n	symmetric	matrix.

(a) <i>A</i> is <i>c</i>	liagonalizable and	the eigenvalues of A a	are
--------------------------	--------------------	--------------------------	-----

(b) A can be decomposed as ______.

2. Equivalent conditions for positive definite (semi-positive definite.)

Problems

1. Is the set of positive definite $n \times n$ matrices a vector space?

- 2. Let A be a 2×2 symmetric matrix with two different eigenvalues λ_1 and λ_2 . The corresponding eigenvectors are u_1 and u_2 .
 - (a) Prove that u_1 and u_2 are perpendicular to each other.

(b) If $\lambda_1 = 0$, $\lambda_2 = 1$, interpret Ab using projection of a vector b.

(c) If $\Lambda_1 = 1$, $\lambda_2 = -1$, interpret Ab geometrically.

3. Given an invertible matrix A, can $A^T A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$? How about $A^T A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$?