Algorithm Assignement 3

Harry CHICHEPORTICHE , Theo DE MORAIS ${\it April~2,~2025}$

1 Exercise 1 — Basic Graph

1.a — Adjacency Matrix to List and Graph

Given adjacency matrix:

$$Adj = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Adjacency list (nodes 1 to 6, in numerical/alphabetical order):

- 1: 2
- 2: 2, 3, 4
- 3: 1, 2, 5
- 4: 5, 6
- 5: 3, 4
- 6: 4

Graphical representation:

Adjacency list from Figure 1 (nodes A to J, alphabetical order):

- A: B
- B: C, D
- C: E, F
- D: E, F
- E: G, F, J
- F: B, G, H, J
- G:
- H: I
- I:
- J: I

1.b — DFS and BFS from vertex A

DFS Traversal (alphabetical order):

- Start at A. Visit: A
- A \rightarrow B. Visit: B
- B \rightarrow C. Visit: C
- $C \to E$. Visit: E
- $E \to F$. Visit: F
- $F \to G$. Visit: G
- F \rightarrow H. Visit: H
- $H \rightarrow I$. Visit: I
- $F \rightarrow J$. Visit: J
- B \rightarrow D. Visit: D

DFS Order: A, B, C, E, F, G, H, I, J, D

DFS Timestamps (start/finish):

Node	Start	Finish
A	1	20
В	2	19
С	3	16
\mathbf{E}	4	15
F	5	14
G	6	7
Н	8	11
I	9	10
J	12	13
D	17	18

Breadth-First Search (BFS):

Starting from vertex A, visiting neighbors in alphabetical order.

- Start at $A \to Queue: [B]$
- Visit $B \to Enqueue: C, D$
- Visit $C \to \text{Enqueue}$: E, F
- Visit $D \to (E, F \text{ already visited})$
- Visit $E \to Enqueue$: G, J
- Visit $F \to Enqueue$: H
- Visit $G \rightarrow -$
- Visit $J \to \text{Enqueue}$: I
- Visit $H \rightarrow -$
- Visit $I \rightarrow -$

BFS Order: A, B, C, D, E, F, G, J, H, I

1.c — Remove one edge to make the graph a DAG and perform topological sort

To transform the graph into a DAG, we must remove an edge that creates a cycle. From our DFS, we observe that the graph contains cycles such as:

$$F \to B \to C \to E \to F$$

This is a cycle: $F \to B \to C \to E \to F$

To break this cycle, we can remove the edge:

$$\mathbf{F} \to \mathbf{B}$$

Once this edge is removed, the graph becomes acyclic.

We then perform a **topological sort** using the finish times from the corrected DFS (reversed order of finish):

- A (20)
- B (19)
- D (18)
- C (16)
- E (15)
- F (14)
- J (13)
- H (11)
- I (10)
- G (7)

Topological order (sorted by decreasing finish time):

(Note: B is still present since we removed the back edge to prevent re-visiting it)

1.d — Transform any directed graph into a DAG

We propose the following generic algorithm to remove cycles and convert any directed graph G = (V, E) into a DAG:

Cycle Removal Algorithm

- 1. Run DFS on the graph and track the recursion stack.
- 2. During traversal, if a node is revisited while it is still in the recursion stack \rightarrow cycle detected.
- 3. Identify and remove one of the back edges responsible for the cycle.
- 4. Repeat this process until all back edges are removed and no cycles remain.

Application to Figure 1 with two new edges:

- \bullet $I \to C$
- \bullet $C \to A$

These additions create the following cycles:

- 1. $F \to B \to C \to E \to F$
- 2. $C \to A \to B \to C$
- 3. $J \rightarrow I \rightarrow C \rightarrow A \rightarrow B \rightarrow C$

To resolve all cycles: remove the following edges:

- $F \rightarrow B$
- \bullet $C \to A$
- \bullet $I \to C$

Once these are removed, the graph becomes acyclic and topological sorting is possible.

2 Exercise 2 — Cable Network

2.a — Can we connect all nodes within budget b = 30?

We aim to connect all the nodes with minimum total cost. This is a classic **Minimum Spanning Tree (MST)** problem.

We use **Kruskal's algorithm**, which adds edges in increasing order of weight while avoiding cycles.

Edges sorted by weight:

- (A, D) = 1
- (C, D) = 2
- (D, E) = 2
- (D, F) = 4
- (B, D) = 4
- (A, B) = 5
- (C, G) = 6
- (F, H) = 7
- (B, H) = 8
- (E, H) = 8
- (F, G) = 9

MST construction:

- Add (A, D) = 1
- Add (C, D) = 2
- Add (D, E) = 2
- Add (D, F) = 4
- Add (B, D) = 4
- Add (C, G) = 6
- Add (F, H) = 7

Total cost: $1+2+2+4+4+6+7=26 \le 30$

Conclusion: Yes, it is possible to connect all neighborhoods within the budget.

2.b — D is restricted to maximum 3 edges

Let's count the number of edges connected to node D in the previous MST:

- (A, D)
- (C, D)
- (D, E)
- (D, F)
- (B, D)

 \rightarrow That's 5 edges! Not allowed.

We now rerun Kruskal's algorithm **while ensuring D gets at most 3 edges**.

New MST with constraint on D:

- (A, D) = 1
- (C, D) = 2
- (D, E) = $2 \rightarrow D$ has now 3 edges
- Avoid (B, D) and (D, F)
- Add (A, B) = 5
- Add (C, G) = 6
- Add (F, H) = 7
- Add (E, H) = 8

Total cost: 1+2+2+5+6+7+8=31>30

Conclusion: No, we cannot connect all nodes under the budget if D is restricted to 3 edges. Also: this solution is not globally optimal — local constraints on degree break Kruskal's global optimality.

2.c — Edge replacement to meet stricter budget b' = 25

We now try to adjust the graph by swapping a single edge.

Suggested swap: replace (F, H) = 7 with $(B, H) = 8 \rightarrow$ That's worse. Let's try: Replace (C, G) = 6 with a cheaper connection — but no cheaper edge connects G. Let's test a **cheaper MST overall**:

Alternative MST:

- (A, D) = 1
- (C, D) = 2
- (D, E) = 2
- (D, F) = 4

- (B, D) = 4
- (E, H) = 8
- (C, G) = 6

Total: 1+2+2+4+4+8+6=27>25

Try removing $(C, G) = 6 \rightarrow \text{now } G \text{ unconnected.}$

No matter how we tweak the edges, **we can't get an MST under $b' = 25^{**}$.

Conclusion: No, it is not possible to connect all nodes with a single edge swap if b' = 25.

3 Exercise 3 — Finding Champion

3.a — Algorithm to Identify Champions in a Directed Graph

A node u is called a **champion** if it can reach every other node in the directed graph G = (V, E) through a path (direct or indirect).

Goal: Propose an algorithm that identifies and lists all such champions.

Observation: A node u is a champion if and only if a DFS (or BFS) starting from u visits all the nodes in V.

Algorithm:

Champion-Finder Algorithm

- 1. Let champions $\leftarrow \emptyset$
- 2. For each node u in V:
 - (a) Run DFS (or BFS) from u
 - (b) If the number of visited nodes equals |V|, then u is a champion
 - (c) Add u to champions
- 3. Return the set *champions*

Time Complexity: $\mathcal{O}(V \cdot (V + E))$ (We run DFS from each node, and each DFS takes $\mathcal{O}(V + E)$)

Application to the given graph:

- Nodes = $\{A, B, C, D, E, F, G\}$
- \bullet Edges =
 - $-A \rightarrow B, D$
 - $-B \rightarrow A, C$
 - $-D \rightarrow B, C$
 - $C \rightarrow E, F$

- $F \rightarrow E$
- $E \rightarrow G$
- $G \rightarrow F$
- Run DFS from each node:
 - DFS(A) visits all nodes
 - DFS(B) visits all nodes
 - DFS(D) visits all nodes
 - DFS(C), DFS(E), DFS(F), DFS(G) do not reach A or B

Output:

3.b — Grouping Nodes by Mutual Reachability (SCC Detection)

Goal: Partition the nodes of a directed graph G = (V, E) into groups where each node in a group can reach every other node in the same group (either directly or indirectly).

These groups are called Strongly Connected Components (SCCs).

Solution: Kosaraju's Algorithm

Kosaraju's Algorithm for SCCs

- 1. Run a DFS on G and record the finishing times of each node.
- 2. Compute the transpose of the graph G^T (reverse all edges).
- 3. Run DFS on G^T , in the order of decreasing finishing times from step 1.
- 4. Each DFS tree in step 3 forms one strongly connected component.

Time complexity: $\mathcal{O}(V+E)$ (Only two passes of DFS and one reversal of edges)

Application to the given graph: Edges:

$$A \to B, D$$

$$B \to A, C$$

$$D \to B, C$$

$$C \to E, F$$

$$F \to E$$

$$E \to G$$

$$G \to F$$

SCCs detected:

- {A, B, D}
- {C}

• {E, F, G}

Conclusion: The graph can be partitioned into the following mutually reachable groups:

 $\{\{A,B,D\}, \{C\}, \{E,F,G\}\}$

4 Exercise 4 - Shortest Path Problem

Problem Statement

We consider a directed graph G = (V, E) where each edge (u, v) is assigned a weight that can be positive, zero, or negative. The objective is to demonstrate an example where Dijkstra's algorithm fails to correctly compute the shortest path distances from a source vertex s.

Graph Example

Consider the following graph with the given weights:

Expected Result and Dijkstra's Failure

The correct shortest distances from s should be:

- d(s, A) = -1 (via $s \to C \to A$)
- -d(s,B) = 2
- -d(s,C)=2
- $d(s, D) = 2 \text{ (via } s \to C \to D)$

However, Dijkstra's algorithm, based on a greedy update strategy, assumes that already computed partial distances are optimal, which is not the case with negative weights. It will incorrectly identify d(s, A) = 4, which is incorrect.

Solution: Bellman-Ford Algorithm

To resolve this issue, we can use the Bellman-Ford algorithm, which supports negative weights and detects negative-weight cycles. It runs in O(VE) and ensures correct distance calculations.

9

Conclusion

Dijkstra's algorithm fails in the presence of negative-weight edges because it does not revisit nodes after their relaxation. Bellman-Ford is a better approach for handling such graphs.

5 Exercise 5 - Maximum Flow

Problem Statement

Given the flow network G shown in Figure 1, we solve the following:

- 1. Resolve the antiparallel edge issue in G.
- 2. Walk through the Ford-Fulkerson algorithm by hand.
- 3. Identify the bottleneck using cuts.
- 4. Analyze the running time and suggest improvements.

Figure 1: Flow Network G

Resolving the Antiparallel Edge Issue

The antiparallel edges between v_1 and v_3 are resolved by introducing an intermediate node w such that:

- $v_1 \to w$ with capacity 3.
- $w \to v_3$ with capacity 3.
- $v_3 \to w$ with capacity 6.
- $w \to v_1$ with capacity 6.

This removes direct bidirectional edges while maintaining flow constraints.

Applying the Ford-Fulkerson Algorithm

We apply the algorithm to compute the maximum flow:

- 1. Initial augmenting path: $s \to v_2 \to v_5 \to t$ with flow 7.
- 2. Next path: $s \to v_1 \to v_4 \to t$ with flow 14.
- 3. Next path: $s \to v_2 \to v_3 \to v_5 \to t$ with flow 8.
- 4. Next path: $s \to v_1 \to v_3 \to v_5 \to t$ with flow 3.
- 5. No more augmenting paths exist.

Total maximum flow: 7 + 14 + 8 + 3 = 32.

Identifying the Minimum Cut

A valid minimum cut is $S = \{s, v_1, v_2, v_3\}$ and $T = \{v_4, v_5, t\}$, with cut capacity:

$$c(S,T) = c(v_1, v_4) + c(v_2, v_5) + c(v_3, v_5)$$

= 21 + 7 + 4 = 32.

This confirms the maximum flow found using Ford-Fulkerson.

Running Time and Improvements

Ford-Fulkerson runs in $O(E \cdot f_{max})$. Using BFS (Edmonds-Karp) improves the complexity to $O(VE^2)$, which is better for large graphs.