CT 203: Signals and Systems Tutorial on Fourier Transform and Hilbert Transform

(Week of October 02, 2011)

- 1. Let $g(t) = Ae^{-bt}u(t)$. What are the range of frequencies that would contain x% of the total energy of g(t)?
- 2. Using the duality theorem compute the FT of z(t) = A Sinc(2Wt).
- 3. Denote x(t) and $\hat{x}(t)$ as the signal and its Hilbert transform (HT). With this notation prove the following properties of HT: (a) x(t) and $\hat{x}(t)$ have the same amplitude spectrum, (b) -x(t) is the Hilbert transform of $\hat{x}(t)$ and (c) x(t) and $\hat{x}(t)$ are orthogonal to each other.
- 4. Compute the Hilbert transform of the causal rectangular pulse $x(t) = A\Pi\left(\frac{t-\frac{\tau}{2}}{\tau}\right)$ (where as before $\Pi\left(\frac{t}{\tau}\right)$ denotes the rectangular pulse of duration τ seconds centered around zero).