Cálculo I - agr. 4 2021/22

Resolução - Questão 1 no exame final

a) Sabemos que temos

$$\begin{aligned} & \sin &: & \mathbb{R} \to [-1,1], \\ & \arccos &: & [-1,1] \to [0,\pi] \end{aligned}$$

tal como o facto de que $1-x^2$ representa um polinómio. Assim, a única restrição para o domínio da composição destas funções é que $-1 \le 1-x^2 \le 2$. Esta condição dá-nos $0 \le x^2 \le 2$. A primeira desigualdade é universal enquanto a segunda resulta em $-\sqrt{2} \le x \le \sqrt{2}$.

Assim,

$$D_f = [-\sqrt{2}, \sqrt{2}].$$

b) A continuidade de f no intervalo fechado de $[-\sqrt{2}, \sqrt{2}]$ assegura a existência de extremos absolutos no intervalo. Para a derivada de f temos

$$f'(x) = \frac{2x(1-x^2)}{\sqrt{2x^2-x^4}}$$
 para $x \in]-\sqrt{2}, \sqrt{2}[\setminus\{0\},$

sendo que os zeros da derivada são x = -1 e x = +1.

Assim, o conjunto dos pontos a estudar é $\{-\sqrt{2}, -1, 0, 1, \sqrt{2}\}$.

Verificando estes pontos obtemos que o máximo absoluto de f é atingido nos pontos x=-1 e x=1 (com f(1)=f(-1)=1) enquanto o mínimo absoluto é atingido nos pontos $x=-\sqrt{2}$, x=0 e $x=\sqrt{2}$, com $f(0)=f(\sqrt{2})=f(-\sqrt{2})=0$. Não existem outros extremos além destes.