Introdução aos modelos DSGE

Modelo Clássico de política monetária

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

Política Monetária

Como introduzir a condução da política monetária nos modelos DSGE?

 Tomemos como base o modelo desenvolvido o capítulo 2 de Galí (2008).

- Tomemos como base o modelo desenvolvido o capítulo 2 de Galí (2008).
- O modelo pode ser visto como um caso limite do modelo Novo-Keynesianoc

- Tomemos como base o modelo desenvolvido o capítulo 2 de Galí (2008).
- O modelo pode ser visto como um caso limite do modelo Novo-Keynesianocquando há competição perfeita em todos os mercados

- Tomemos como base o modelo desenvolvido o capítulo 2 de Galí (2008).
- O modelo pode ser visto como um caso limite do modelo Novo-Keynesianocquando há competição perfeita em todos os mercados e preços flexíveis.

- Tomemos como base o modelo desenvolvido o capítulo 2 de Galí (2008).
- O modelo pode ser visto como um caso limite do modelo Novo-Keynesianocquando há competição perfeita em todos os mercados e preços flexíveis.
- Trabalharemos com a versão do autor no modelo sem capital.

Trabalharemos com três tipos de **agentes representativos**:

Trabalharemos com três tipos de agentes representativos:

Famílias

Trabalharemos com três tipos de **agentes representativos**:

- Famílias
 - Ofertam trabalho.

Trabalharemos com três tipos de **agentes representativos**:

- Famílias
 - Ofertam trabalho.
 - Detêm o capital financeiro.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital financeiro.
- Compram os bens e serviços.

Trabalharemos com três tipos de **agentes representativos**:

- Famílias
 - Ofertam trabalho.
 - Detêm o capital financeiro.
 - Compram os bens e serviços.
- Empresas

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital financeiro.
- Compram os bens e serviços.

Empresas

Recrutam trabalhadores.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital financeiro.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Vendem os bens e serviços.

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital financeiro.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Vendem os bens e serviços.

Governo

Trabalharemos com três tipos de **agentes representativos**:

Famílias

- Ofertam trabalho.
- Detêm o capital financeiro.
- Compram os bens e serviços.

Empresas

- Recrutam trabalhadores.
- Vendem os bens e serviços.

Governo

Controla a taxa de juros nominal.

Famílias

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_t, h_t, b_t\}} U = \sum_{s=t}^{\infty} E_t \left[\beta^{s-t} u \left(c_s, h_s \right) \right], \tag{1}$$

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_t, h_t, b_t\}} U = \sum_{s=t}^{\infty} E_t \left[\beta^{s-t} u \left(c_s, h_s \right) \right], \tag{1}$$

s.a.

$$p_t c_t + q_t b_t = w_t h_t + b_{t-1} + d_t, (2)$$

onde b_t representa a quantidade de títulos no período t com preço q e d_t são os dividendos recebidos pelas famílias.

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_t, h_t, b_t\}} U = \sum_{s=t}^{\infty} E_t \left[\beta^{s-t} u \left(c_s, h_s \right) \right], \tag{1}$$

s.a.

$$p_t c_t + q_t b_t = w_t h_t + b_{t-1} + d_t, (2)$$

onde b_t representa a quantidade de títulos no período t com preço q e d_t são os dividendos recebidos pelas famílias. Assumimos b_0 como dado.

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{\{c_t, h_t, b_t\}} U = \sum_{s=t}^{\infty} E_t \left[\beta^{s-t} u \left(c_s, h_s \right) \right], \tag{1}$$

s.a.

$$p_t c_t + q_t b_t = w_t h_t + b_{t-1} + d_t, (2)$$

onde b_t representa a quantidade de títulos no período t com preço q e d_t são os dividendos recebidos pelas famílias. Assumimos b_0 como dado. Em t+1, os títulos pagam uma unidade aos seus detentores.

Lagrangiano

A partir das equações (1), (2) e (3), temos:

$$\mathcal{L} = \sum_{s=t}^{\infty} \beta^{s-t} E_t \left[u(c_s, h_s) + \lambda_s (w_s h_s + b_{s-1} + d_s - p_s c_s - q_s b_s) \right].$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff \lambda_t P_t = u_{c,t},\tag{3}$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff \lambda_t P_t = u_{c,t},\tag{3}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff \lambda_t w_t = -u_{h,t},\tag{4}$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff \lambda_t P_t = u_{c,t},\tag{3}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff \lambda_t w_t = -u_{h,t},\tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial b_s} = 0 \iff \lambda_t q_t = \beta E_t \left[\lambda_{t+1} \right]. \tag{5}$$

À partir das equações (3) e (4), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

À partir das equações (3) e (4), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (6)$$

À partir das equações (3) e (4), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (6)$$

E a **equação de Euler** pode ser obtida ao combinarmos as equações (3) e (5):

À partir das equações (3) e (4), temos que a taxa marginal de substituição entre trabalho e consumo é igual ao salário real:

$$-u_{h,t} = u_{c,t}w_t. (6)$$

E a **equação de Euler** pode ser obtida ao combinarmos as equações (3) e (5):

$$q_t = \beta E_t \left[\frac{u_{c,t+1}}{u_{c,t}} \frac{p_t}{p_{t+1}} \right] \tag{7}$$

Condição de transversalidade

Além das C.P.O., precisamos também da condição de transversalidade, que pode ser representada por:

$$\lim_{t \to \infty} \beta^t E_t \left[\lambda_t b_t \right] = 0. \tag{8}$$

Títulos:

Por definição, o preço de um título é dado por:

Títulos:

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{9}$$

onde i é a taxa de juros do título.

Títulos:

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{9}$$

onde i é a taxa de juros do título. Defina

$$\Pi_t = \frac{\rho_t}{\rho_{t-1}} = 1 + \pi_t,\tag{10}$$

Títulos:

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{9}$$

onde i é a taxa de juros do título. Defina

$$\Pi_t = \frac{p_t}{p_{t-1}} = 1 + \pi_t,\tag{10}$$

então temos, pela equação de Fisher, que:

Títulos:

Por definição, o preço de um título é dado por:

$$q_t = \frac{1}{1 + i_t},\tag{9}$$

onde i é a taxa de juros do título. Defina

$$\Pi_t = \frac{\rho_t}{\rho_{t-1}} = 1 + \pi_t,\tag{10}$$

então temos, pela equação de Fisher, que:

$$1 + r_t = \frac{1 + i_t}{E_t \left[\Pi_{t+1} \right]} = \frac{1 + i_t}{1 + E_t \left[\pi_{t+1} \right]}.$$
 (11)

Equação de Euler

Assim, podemos reescrever a equação de Euler da seguinte forma:

Equação de Euler

Assim, podemos reescrever a equação de Euler da seguinte forma:

$$u_{c,t} = \beta E_t \left[u_{c,t+1} \left(1 + r_t \right) \right]$$
 (12)

Empresas

Problema de maximização

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$y_t = A_t h_t^{1-\alpha}. (13)$$

Problema de maximização

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$y_t = A_t h_t^{1-\alpha}. (13)$$

As empresas maximizam os seus lucros escolhendo a quantidade de insumos e tomando os preços como dados:

Problema de maximização

Em um ambiente de **concorrência perfeita**, as empresas possuem a seguinte tecnologia de produção:

$$y_t = A_t h_t^{1-\alpha}. (13)$$

As empresas maximizam os seus lucros escolhendo a quantidade de insumos e tomando os preços como dados:

$$\max_{h_t} p_t y_t - w_t h_t \tag{14}$$

C.P.O.:

Na concorrência perfeita, p_t é dado. Portanto,

$$\frac{w_t}{\rho_t} = (1 - \alpha) A_t h_t^{-\alpha} \tag{15}$$

Vamos assumir que a política monetária responda apenas à taxa de inflação:

Vamos assumir que a política monetária responda apenas à taxa de inflação:

$$R_t = \frac{1}{\beta} \Pi^{\phi_{\pi}} e^{\epsilon_t^m}; \tag{16}$$

Vamos assumir que a política monetária responda apenas à taxa de inflação:

$$R_t = \frac{1}{\beta} \Pi^{\phi_{\pi}} e^{\epsilon_t^m}; \tag{16}$$

A taxa de crescimento da moeda (anualizada), m_t , é dada por (a partir da primeira equação da seção 2.4.3 de Galí (2008)):

Vamos assumir que a política monetária responda apenas à taxa de inflação:

$$R_t = \frac{1}{\beta} \Pi^{\phi_{\pi}} e^{\epsilon_t^m}; \tag{16}$$

A taxa de crescimento da moeda (anualizada), m_t , é dada por (a partir da primeira equação da seção 2.4.3 de Galí (2008)):

$$m_t = 4 \left((\ln y_t - \ln y_{t-1}) - \eta * (\ln R_t - \ln R_{t-1}) + \ln \Pi_t \right) \quad (17)$$

Dinâmica da Produtividade

$$\ln A_t = (1 - \rho_A) \ln \overline{A} + \rho_A \ln A_{t-1} + \varepsilon_t, \tag{18}$$

onde \bar{A} representa o valor da variável no equilíbrio estacionário e ε é um choque exógeno com média zero e variância σ_{ε}^2 .

A restrição de recursos

A restrição de recursos

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

A restrição de recursos

Da equação (2), temos que a restrição orçamentária das famílias é dada por:

$$p_t c_t + q_t b_t = w_t h_t + b_{t-1} + d_t, (2)$$

e, com os resultados do problemas das empresas (equação 15), da condição de transversalidade que implica $b_t=0$, temos que

$$c_t = y_t. (19)$$

Formas funcionais

Utilizemos uma função utilidade CRRA ($Constant\ Relative\ Risk\ Aversion$), separável em c_t e h_t , para representar as preferências das famílias:

Formas funcionais

Utilizemos uma função utilidade CRRA (*Constant Relative Risk Aversion*), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (20)

Formas funcionais

Utilizemos uma função utilidade CRRA (Constant Relative Risk Aversion), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (20)

Então, temos que $u_c = c_t^{-\sigma}$ e $u_h = -\psi h_t^{\varphi}$.

Famílias

Famílias

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$$

Famílias

- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas
 - $y_t = A_t h_t^{1-\alpha}$

Famílias

- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- $\frac{w_t}{p_t} = \psi c_t^{\sigma} h_t^{\varphi}$

Empresas

- $y_t = A_t h_t^{1-\alpha}$
- $\bullet \quad \frac{w_t}{p_t} = (1 \alpha) A_t h_t^{-\alpha}$

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas
 - $y_t = A_t h_t^{1-\alpha}$
 - $\bullet \quad \frac{w_t}{p_t} = (1 \alpha) A_t h_t^{-\alpha}$
- Restrição de recursos
 - $y_t = c_t$

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas
 - $y_t = A_t h_t^{1-\alpha}$
 - $\bullet \quad \frac{w_t}{p_t} = (1 \alpha) A_t h_t^{-\alpha}$
- Restrição de recursos
 - $y_t = c_t$
- Lei de movimento da produtividade

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas
 - $y_t = A_t h_t^{1-\alpha}$
 - $\bullet \quad \frac{w_t}{p_t} = (1 \alpha) A_t h_t^{-\alpha}$
- Restrição de recursos
 - $v_t = c_t$
- Lei de movimento da produtividade
 - $\ln A_t = (1 \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas
 - $y_t = A_t h_t^{1-\alpha}$
 - $\bullet \quad \frac{w_t}{p_t} = (1 \alpha) A_t h_t^{-\alpha}$
- Restrição de recursos
 - $v_t = c_t$
- Lei de movimento da produtividade
 - $\ln A_t = (1 \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$
- Política monetária
 - $R_t = \frac{1}{\beta}\Pi^{\phi_{\pi}} + \epsilon_t^m$

- Famílias
 - $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_t \right) \right]$
- Empresas
 - $y_t = A_t h_t^{1-\alpha}$
 - $\bullet \quad \frac{w_t}{p_t} = (1 \alpha) A_t h_t^{-\alpha}$
- Restrição de recursos
 - $v_t = c_t$
- Lei de movimento da produtividade
 - $\ln A_t = (1 \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$
- Política monetária
 - $R_t = \frac{1}{\beta} \Pi^{\phi_{\pi}} + \epsilon_t^m$
 - $m_t = 4 (\ln Y_t \ln Y_{t-1}) \eta * (\ln R_t \ln R_{t-1}) + \ln \Pi_t$

Equilíbrio estacionário

$$ar{A}=1$$

$$ar{y}=ar{h}^{1-lpha}$$
 $ar{r}=rac{1}{eta}-1=
ho$ onde ho é a taxa de desconto: $eta=rac{1}{1+
ho}$

 $\frac{\bar{w}}{\bar{p}} = \bar{y}^{\sigma} \bar{h}^{\varphi}$

 $\frac{\bar{w}}{\bar{p}} = (1 - \alpha)\bar{h}^{-\alpha}$

(25)

(21)

(22)

(23)

Equilíbrio estacionário

$$\bar{h} = (1 - \alpha)^{\frac{1}{\varphi + \alpha + \sigma(1 - \alpha)}} \tag{26}$$

$$\bar{y} = (1 - \alpha)^{\frac{1 - \alpha}{\varphi + \alpha + \sigma(1 - \alpha)}} \tag{27}$$

Parâmetros do modelo

α	0.44
β	0.97
ρ	0.90
η	4.00
σ	2.00
ϕ_{π}	1.5
φ	1.00
ψ	2.29
_	

Simulação

Dinâmica - Choque negativo na produtividade

Dinâmica - Choque positivo na produtividade

Dinâmica - Choque monetário positivo

Política monetária no modelo Clássico

- Dicotomia Clássica
 - Variáveis reais respondem à choques reais.
 - Variáveis nominais respondem à política monetária.
- Evidência empírica
 - Variáveis reais respondem à choque monetários (ao menos no curto prazo).

Referências i

Galí, Jordi. 2008. *Monetary Policy, Inflation, and the Business Cycle*. Princeton University Press.