$_{ m QCM}^{ m ALGO}$

2	1. Un graphe peut être? (a) Orienté (b) Non orienté (c) A moitié orienté (d) Désorienté
7	 2. Un graphe partiel G' de G=<s,a> est défini par?</s,a> (a) <s,a'> avec A' ⊆ A</s,a'> (b) <s',a> avec S' ⊆ S</s',a> (c) <a',s'> avec A' ⊆ S et S' ⊆ A</a',s'>
1	 3. Dans un graphe non orienté, s'il existe une chaîne reliant x et y pour tout couple de sommet {x, y} le graphe est? (a) complet (b) partiel (c) parfait (d) connexe
2	 4. Deux arêtes d'un graphe non orienté sont dits adjacentes si? (a) il existe deux arêtes les joignant (b) le graphe est incomplet (c) le graphe est valorisé (d) elles ont au moins une extrémité commune
5	5. Dans un graphe orienté, toute chemin d'un sommet vers lui-même est? (a) non élémentaire (b) élémentaire (c) Un circuit (d) Un cycle (e) Une chaîne
2	 6. Dans un graphe orienté, le sommet x est adjacent au sommet y si? (a) Il existe un arc (x,y) (b) Il existe un arc (y,x) (c) Il existe un chemin (x,,y) (d) Il existe un chemin (y,,x)

- 7. Dans un graphe non orienté G, un graphe partiel G' de G est une composante connexe du graphe G?
 - (a) Vrai
- (b) Faux
- 8. Un graphe G défini par le triplet G=<S,A,C> est?
- (a) etiqueté
- (b) valué
 - (c) valorisé
 - (d) numéroté
- 9. Un sous-graphe G' de G=<S,A> est défini par?
 - (\underline{a}) <S,A'> avec A' \subseteq A
 - (b) <S',A> avec S' \subseteq S
 - (c) $\langle A', S' \rangle$ avec $A' \subseteq S$ et $S' \subseteq A$
- 10. Un graphe G non orienté connexe est un graphe complet?
 - (a) oui
 - (b) non

QCM N°5

lundi 20 novembre 2017

Question 11

Soit $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$. Alors le polynôme caractéristique de A est

6.
$$(1-X)(X+1)^2$$

b.
$$-(2-X)^2(X+1)$$

$$(X-1)^2(X+1)$$

(d.) $-(X+1)^3$

$$(d.)-(X+1)^3$$

e. rien de ce qui précède

Question 12

Soit
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$
. Alors

$$\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$
 est un vecteur propre associé à la valeur propre -1

$$\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
 est un vecteur propre associé à la valeur propre -1$$

c.
$$\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
 est un vecteur propre associé à la valeur propre -1

d.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 est un vecteur propre associé à la valeur propre -1

e. rien de ce qui précède

Question 13

 $A \in \mathscr{M}_n(\mathbb{R})$ est diagonalisable dans $\mathscr{M}_n(\mathbb{R})$ ssi

 P_A est scindé dans $\mathbb R$ et pour chaque valeur propre réelle λ de A, dim $(E_\lambda) = m(\lambda)$ où $m(\lambda)$ est la multiplicité de la valeur propre λ

b. A admet n valeurs propres distinctes

(c.)il existe $P \in \mathcal{M}_n(\mathbb{R})$ inversible telle que $P^{-1}AP$ est diagonale

d. rien de ce qui précède

Question 14

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et λ une valeur propre réelle de A de multiplicité égale à 1. Alors $\dim(E_\lambda) = 1$

a.) vrai b. faux

Question 15

 $X^2 + X + 1$ est scindé dans \mathbb{R} .

C. $(X^2-4)^2(X+5)$ est scindé dans \mathbb{R} .

d. rien de ce qui précède

Question 16

Soient f et g deux endomorphismes d'un \mathbb{R} -ev E. Alors

(a.) f + g est un endomorphisme de E

6. fg est un endomorphisme de E

d. rien de ce qui précède

Question 17

Soient E un \mathbb{R} -ev de dimension finie, F et G deux sev de E. Alors

a. $\dim(F+G) = \dim(F) + \dim(G)$

b. $\dim(F+G) = \dim(F)\dim(G)$

 $(\widehat{c}.)\dim(F+G)=\dim(F)+\dim(G)-\dim(F\cap G)$

d. Si F et G sont en somme directe, alors $\dim(F+G) = \dim(F) + \dim(G)$

e. rien de ce qui précède

Question 18

Soient E, F deux \mathbb{R} -ev et $u \in \mathcal{L}(E, F)$. Alors

(7a. Ker(u) est un sev de E

b. Im(u) est un sev de F

c. E = Ker(u) + Im(u)

d. $E = \operatorname{Ker}(u) \oplus \operatorname{Im}(u)$

e. rien de ce qui précède

Question 19

Soient E un \mathbb{R} -ev de dimension finie $n \in \mathbb{N}^*$ et B une famille de vecteurs de E.

(a) Si B est libre et contient n vecteurs, alors B est une base de E

b.)Si B engendre E et contient n vecteurs, alors B est une base de E

c. Si B est libre et engendre E, alors B est une base de E

d. rien de ce qui précède

Question 20

Soient F et G deux sev supplémentaires dans un \mathbb{R} -ev E. Alors

$$E = F + G \text{ et } F \cap G = \{0\}$$

b.
$$E = F + G$$
 et $F \cap G = \emptyset$

c.
$$E = F \cup F$$
 et $F \cap G = \emptyset$

Tout vecteur de E se décompose d'une unique façon comme la somme d'un vecteur de F et d'un vecteur de G

e. rien de ce qui précède

Q.C.M n°5 de Physique

41- l'opérateur gradient s'applique à

- a une fonction scalaire et le résultat est un vecteur
 - b) un vecteur et le résultat est une fonction scalaire
 - c) une fonction scalaire et le résultat est une fonction scalaire
- 42- On montre qu'un élément infinitésimal situé en P d'un fil de charge linéique λ crée un champ électrique en un point M extérieur au fil $dE_x(x) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$ où α est tel qu'indiqué ci-dessous.

Le champ électrique créé par un fil infini vaut :

(a)
$$E(x) = \frac{2k\lambda}{x}$$
 b) $E(x) = \frac{k\lambda}{x}$ c) $E(x) = \frac{k\lambda}{x^2}$

b)
$$E(x) = \frac{k\lambda}{x}$$

c)
$$E(x) = \frac{k\lambda}{r^2}$$

43- En utilisant la formule donnée dans la question (42), on peut exprimer le champ électrique créé par un fil fini de longueur 2a, en un point M de sa médiatrice par :

a)
$$E(x) = \frac{2k\lambda}{a}$$

a)
$$E(x) = \frac{2k\lambda}{a}$$
 b) $E(x) = \frac{2k\lambda a}{x\sqrt{x^2+a^2}}$ c) $E(x) = \frac{k\lambda}{x}\sin(\alpha)$

c)
$$E(x) = \frac{k\lambda}{x} \sin(\alpha)$$

44- Le potentiel élémentaire créé au point M d'un axe (Oz) d'un anneau de rayon R et uniformément chargé est : $dV(M) = \frac{k\lambda Rd\theta}{PM}$ (P : point quelconque de l'anneau). Le potentiel total créé par l'anneau au point M est

a)
$$V(z) = \frac{k\lambda R.\pi}{\sqrt{z^2 + R^2}}$$

b)
$$V(z) = \frac{2k\lambda R.\pi.z}{\sqrt{z^2 + R^2}}$$

a)
$$V(z) = \frac{k\lambda R.\pi}{\sqrt{z^2 + R^2}}$$
 b) $V(z) = \frac{2k\lambda R.\pi.z}{\sqrt{z^2 + R^2}}$ c) $V(z) = \frac{2k\lambda R.\pi}{\sqrt{z^2 + R^2}}$ d) $V(z) = \frac{2k\lambda R.\pi}{z^2 + R^2}$

$$\mathrm{d})V(z) = \frac{2k\lambda R.\pi}{z^2 + R^2}$$

45- La charge élémentaire dQ d'un disque chargé en surface avec une densité σ s'écrit :

a)
$$dQ = \sigma . dr d\theta$$

a)
$$dQ = \sigma . dr d\theta$$
 b) $dQ = \sigma . r^2 dr d\theta$ c) $dQ = \sigma . r dr d\theta$

$$(c)dQ = \sigma.rdrd\theta$$

46- Un disque de rayon R d'axe (Oz) chargé uniformément avec une densité σ crée en un point M (z > 0) un champ électrique $E(M) = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{(R^2 + z^2)^{\frac{1}{2}}}\right)$. À partir de cette expression on retrouve le champ électrique créé par le plan (xOy) infini chargé, donné par

a)
$$\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{z}{(R^2 + z^2)^{\frac{1}{2}}} \right) \overrightarrow{u_z}$$
 b) $\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \overrightarrow{u_z}$ c) $\vec{E}(M) = \frac{\sigma}{2\varepsilon_0} \overrightarrow{u_r}$

47- La règle de symétrie montre que le vecteur champ électrique $\vec{E}(M)$ créé par un fil infini uniformément chargé, s'écrit :

a)
$$\vec{E} = E_r \vec{u}_r + E_\theta \cdot \vec{u}_\theta$$
 b) $\vec{E} = E_\theta \cdot \vec{u}_\theta$ c) $\vec{E} = E_z \cdot \vec{u}_z$ d) $\vec{E} = E_r \cdot \vec{u}_r$

- 48- Pour un champ électrique radial divergent et une surface de Gauss S_g cylindrique, le flux de \vec{E} est :
 - (a) maximal à travers la surface latérale de S_g
 - b) maximal à travers la surface de base de S_g
 - c) maximal à travers la surface de coupe de S_g
- 49- Dans le théorème de Gauss, le vecteur élément de surface \overrightarrow{dS} doit être
 - a) perpendiculaire à la surface de Gauss et orienté vers l'intérieur de cette surface

b) incliné par rapport à la normale de la surface de Gauss.

- perpendiculaire à la surface de Gauss et orienté vers l'extérieur de cette surface
- 50- Dans le théorème de Gauss apparaît la charge Q_{int} . Où se situe cette charge ?
 - a) dans n'importe quel volume

b) sur la surface de Gauss

c) dans l'espace intérieur délimité par la surface de Gauss

Soit le circuit ci-contre : (Q9&Q10)

Q9. On suppose que la tension de seuil inverse de la diode Zéner est de 6V. La diode Zéner est :

- Polarisée en inverse
 - b- Polarisée en directe
 - c- Bloquée
- (d-) Passante

Q10. La diode classique est :

- a- Polarisée en inverse
- b Polarisée en directe

- c- Bloquée
- Passante

QCM 5

Architecture des ordinateurs

Lundi 20 novembre 2017

- 11. Soit l'instruction suivante : MOVE.L (A0)+,D0
 - A. A0 ne change pas.
 - B. A0 est incrémenté de 2.
 - C. A0 est incrémenté de 1.
 - D A0 est incrémenté de 4.
- 12. Soit l'instruction suivante : MOVE.L -4(A0), D0
 - A. A0 est décrémenté de 1.
 - B. A0 est décrémenté de 4.
 - C. A0 est décrémenté de 2.
 - D. A0 ne change pas.
- 13. Soient les deux instructions suivantes :

CMP.L D1,D2

BLO NEXT

L'instruction BLO effectue le branchement si :

- A. D1 < D2 (comparaison signée)
- B. D2 < D1 (comparaison signée)
- C. D2 < D1 (comparaison non signée)
- D. D1 < D2 (comparaison non signée)
- 14. Si D0 = \$000056AB et D1=\$00006A55, quelles sont les valeurs des flags après l'instruction suivante ? ADD.W D0,D1

A.
$$N = 1, Z = 0, V = 0, C = 1$$

(B)
$$N = 1, Z = 0, V = 1, C = 0$$

C.
$$N = 0, Z = 0, V = 1, C = 0$$

D.
$$N = 1, Z = 0, V = 1, C = 1$$

15. Soient les cinq instructions suivantes :

Elles sont équivalentes à (une ou plusieurs réponses sont possibles) :

- (A) MOVEM.L (A7)+,A5/A4/D3/D2/D4
- B MOVEM.L (A7)+,D2-D4/A4/A5
- © MOVEM.L (A7)+,D4/D2/D3/A4/A5
- D. MOVEM.L D2/D3/D4/A4/A5,(A7)+
- 16. Après l'exécution d'une instruction RTS, le pointeur de pile est :
 - A. Décrémenté de deux.
 - B. Décrémenté de quatre.
 - C. Incrémenté de deux.
 - D. Incrémenté de quatre.
- 17. L'instruction RTS:
 - A Est une instruction de saut.
 - B. Empile une adresse de retour.
 - C. Ne modifie pas la pile.
 - D. Restaure les registres.
- 18. Les étapes pour empiler une donnée sont :
 - A. Écrire la donnée dans (A7) puis décrémenter A7.
 - B. Lire la donnée dans (A7) puis incrémenter A7.
 - C. Incrémenter A7 puis lire la donnée dans (A7).
 - D. Décrémenter A7 puis écrire la donnée dans (A7).
- 19. Soit l'instruction suivante : MOVE.W \$5C48, DO. Que représente la valeur \$5C48?
 - A. Une adresse sur 16 bits.
 - B. Une donnée immédiate sur 16 bits.
 - C. Une adresse sur 32 bits.
 - D. Une donnée immédiate sur 32 bits.
- 20. Soit l'instruction suivante : MOVE.L #\$5C48, DO. Que représente la valeur \$5C48?
 - A. Une adresse sur 16 bits.
 - B. Une donnée immédiate sur 16 bits.
 - C. Une adresse sur 32 bits.
 - D Une donnée immédiate sur 32 bits.