<u>Notes</u>

Discussion

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u>

☆ Course / Unit 2: Geometry of Derivatives / Lecture 7: Directional derivatives

(1)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

Previous

<u>Progress</u>

43:52:33

☐ Bookmark this page

Lecture due Aug 18, 2021 20:30 IST Completed

Explore

Directional derivatives

Start of transcript. Skip to the end.

PROFESSOR: Directional derivatives-

OK, so let's say that we have a function of two

variables, x and y.

Well, we know how to compute partial value of partial w over partial x or the partial w of a

partial y, which measure

0:00 / 0:00

▶ 2.0x X CC

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

We have seen that the partial derivative $m{f_x}$ is the rate of change of $m{f}$ in the positive $m{x}$ -direction. In other words, f_x is the rate of change of f in the direction of the vector $\langle 1,0
angle$. Similarly, f_y is the rate of change of f in the positive y-direction, or in the direction of the vector $\langle 0,1 \rangle$.

Now we are going to see how to find the rate of change of $m{f}$ in the direction of an arbitrary unit vector $\hat{u}=\langle u_1,u_2
angle.$

Note: We say $\hat{\pmb{u}}$ is a unit vector if $|\hat{\pmb{u}}|=1$.

We will denote by $D_{\hat{u}}f(x,y)$ the directional derivative of f in the direction of \hat{u} at the point (x,y). This can be interpreted as the rate of change of f in the direction of the vector $\hat{\pmb{u}}$.

Directional derivative notation 1

1/1 point (graded)

Using the notation above, which of the following is equivalent to $f_x(x,y)$?

 $D_{\left\langle 0,1
ight
angle }f\left(x,y
ight)$

 $\bigcirc \ D_{\langle 1,0\rangle}f\left(x,y\right)$

 $\bigcirc \ \ D_{\langle 1,1 \rangle} f \left(x,y
ight)$

 $\bigcirc \ D_{\langle -1,-1 \rangle} f(x,y)$

■ Calculator

Solution:

Recall that f_x is the rate of change of f in the positive x-direction, which is the same as the rate of change of fin the direction of $\langle 1,0 \rangle$. The notation for this is therefore

$$f_x\left(x,y\right) = D_{\langle 1,0\rangle} f\left(x,y\right). \tag{3.96}$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Directional derivative notation 2

1/1 point (graded)

Using the notation above, which of the following is equivalent to $f_y\left(x,y
ight)$?

Solution:

Recall that f_y is the rate of change of f in the positive y-direction, which is the same as the rate of change of fin the direction of (0,1). The notation for this is therefore

$$f_{y}\left(x,y\right) = D_{\left\langle 0,1\right\rangle} f\left(x,y\right). \tag{3.97}$$

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

2. What are directional derivatives?

Hide Discussion

Topic: Unit 2: Geometry of Derivatives / 2. What are directional derivatives?

Add a Post

Show all posts by recent activity 🗸 [Staff] Copy-and-Paste Error 2

Previous Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>