```
In [1]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from scipy.stats import ttest ind
          import numpy as np
          from urllib.request import urlopen
          import json
          import plotly.express as px
In [2]:
          data = pd.read csv('data/election train.csv')
          demographics data = pd.read csv('data/demographics train.csv')
          state map = pd.read csv('data/state map.csv')
In [3]:
          data.head(20)
Out[3]:
             Year State
                                 County
                                            Office
                                                        Party
                                                               Votes
          0 2018
                     ΑZ
                          Apache County US Senator Democratic
                                                               16298
          1 2018
                          Apache County US Senator
                                                   Republican
                                                                7810
                     ΑZ
          2 2018
                     ΑZ
                          Cochise County US Senator Democratic
                                                               17383
          3 2018
                          Cochise County US Senator
                                                   Republican
                                                               26929
          4 2018
                     AZ Coconino County US Senator Democratic
                                                               34240
          5 2018
                     AZ Coconino County US Senator Republican
                                                               19249
          6 2018
                     ΑZ
                             Gila County US Senator Democratic
                                                                7643
          7 2018
                     ΑZ
                             Gila County US Senator
                                                   Republican
                                                               12180
          8 2018
                          Graham County US Senator Democratic
                     ΑZ
                                                                3368
          9 2018
                          Graham County US Senator
                                                   Republican
                                                                6870
                     ΑZ
                           La Paz County US Senator Democratic
         10 2018
                     ΑZ
                                                                1609
         11 2018
                     ΑZ
                           La Paz County US Senator
                                                   Republican
                                                                3265
```

AZ Maricopa County US Senator Democratic 732671

AZ Maricopa County US Senator Republican 672505

12 2018

13 2018

	Year	State	County	Office	Party	Votes
14	2018	AZ	Mohave County	US Senator	Democratic	19214
15	2018	AZ	Mohave County	US Senator	Republican	50209
16	2018	AZ	Navajo County	US Senator	Democratic	16624
17	2018	AZ	Navajo County	US Senator	Republican	18767
18	2018	AZ	Pima County	US Senator	Democratic	221242
19	2018	AZ	Pima County	US Senator	Republican	160550

In [4]:

demographics_data.head(20)

Out[4]:

	State	County	FIPS	Total Population	Citizen Voting- Age Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Percent Age 65 and Older	Me House Inc
0	Wisconsin	La Crosse	55063	117538	0	90.537528	1.214075	1.724549	2.976059	51.171536	43.241335	14.702479	5
1	Virginia	Alleghany	51005	15919	12705	91.940449	5.207614	1.432251	1.300333	51.077329	31.660280	23.902255	4
2	Indiana	Fountain	18045	16741	12750	95.705155	0.400215	2.359477	1.547100	49.770026	35.899887	18.941521	4
3	Ohio	Geauga	39055	94020	0	95.837056	1.256116	1.294405	2.578175	50.678579	36.281642	18.028079	7.
4	Wisconsin	Jackson	55053	20566	15835	86.662453	1.983857	3.082758	1.376058	46.649810	36.292911	17.587280	4:
5	Texas	Baylor	48023	3639	0	86.644683	1.841165	8.353943	2.473207	51.662545	30.090684	24.402308	34
6	Nebraska	Madison	31119	35125	24885	81.249822	1.155872	14.217794	6.784342	50.448399	41.432028	15.404982	4
7	Hawaii	Hawaii	15001	193680	0	30.401694	0.547811	12.405514	11.003717	50.143019	36.008881	17.580545	5.
8	Tennessee	Henry	47079	32291	25285	87.662197	8.599919	2.201852	1.560806	51.441578	33.238364	21.476572	3
9	Michigan	Oceana	26127	26152	18930	82.486999	1.131845	14.419547	5.578923	49.395840	36.643469	19.088406	4
10	Nebraska	Pierce	31139	7179	5385	96.893718	0.222872	1.587965	0.780053	49.658727	36.634629	18.540187	5.
11	Texas	Jack	48237	8866	6535	78.411911	4.376269	15.880893	5.549289	43.187458	38.732236	15.677871	50
12	Florida	Walton	12131	61528	47490	84.447731	4.950592	5.888376	5.759979	49.349889	33.165388	18.783318	4

	State	County	FIPS	Total Population	Citizen Voting- Age Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Percent Age 65 and Older	Me House Inc
13	Virginia	Washington	51191	54562	0	95.484037	1.268282	1.414904	1.611011	50.500348	32.005792	20.301675	4.
14	Florida	Escambia	12033	309574	0	65.219624	21.532816	5.389988	4.747492	50.299444	41.364585	15.774581	4
15	Texas	Wheeler	48483	5642	3785	68.397731	2.658632	26.462247	9.517901	49.202410	39.188231	17.795108	5
16	Arizona	Yavapai	4025	218586	0	81.159361	0.518331	14.054880	6.456955	51.092476	28.717301	28.272625	4
17	Nebraska	Loup	31115	542	435	97.970480	0.000000	0.000000	0.000000	52.398524	30.996310	24.538745	5
18	Michigan	Antrim	26009	23215	0	95.179841	0.323067	1.955632	2.015938	50.273530	29.450786	25.410295	4
19	Minnesota	Wabasha	27157	21327	16385	94.926619	0.150045	2.874291	1.355090	50.171145	34.594645	18.807146	5
4													•

In [5]: state_map.head()

 Out[5]:
 State
 Code

 0
 Alabama
 AL

 1
 Alaska
 AK

 2
 Arizona
 AZ

 3
 Arkansas
 AR

 4
 California
 CA

Task 1: Reshape dataset election_train from long format to wide format.

In [6]: election_data = pd.pivot_table(data, index=['State', 'Year', 'Office','County'], columns='Party', values='Votes').reset_i
In [7]: election_data
Out[7]: Party State Year Office County Democratic Republican

Party	State	Year	Office	County	Democratic	Republican
0	AZ	2018	US Senator	Apache County	16298.0	7810.0
1	AZ	2018	US Senator	Cochise County	17383.0	26929.0
2	AZ	2018	US Senator	Coconino County	34240.0	19249.0
3	AZ	2018	US Senator	Gila County	7643.0	12180.0
4	AZ	2018	US Senator	Graham County	3368.0	6870.0
•••						
1200	WY	2018	US Senator	Platte County	801.0	2850.0
1201	WY	2018	US Senator	Sublette County	668.0	2653.0
1202	WY	2018	US Senator	Sweetwater County	3943.0	8577.0
1203	WY	2018	US Senator	Uinta County	1371.0	4713.0
1204	WY	2018	US Senator	Washakie County	588.0	2423.0

1205 rows × 6 columns

Task 2: Merge reshaped dataset election_train with dataset demographics_train. Address all inconsistencies in the names of the states and the counties before merging

Out[8]:

	State	Year	Office	County	Democratic	Republican	FIPS	Total Population	Citizen Voting- Age Population	Percent White, not Hispanic or Latino	•••	Percent Hispanic or Latino	Percent Foreign Born	Pero Fen
0	Arizona	2018	US Senator	apache	16298.0	7810.0	4001	72346	0	18.571863		5.947806	1.719515	50.598
1	Arizona	2018	US Senator	cochise	17383.0	26929.0	4003	128177	92915	56.299492		34.403208	11.458374	49.069
2	Arizona	2018	US Senator	coconino	34240.0	19249.0	4005	138064	104265	54.619597		13.711033	4.825298	50.581
3	Arizona	2018	US Senator	gila	7643.0	12180.0	4007	53179	0	63.222325		18.548675	4.249798	50.296
4	Arizona	2018	US Senator	graham	3368.0	6870.0	4009	37529	0	51.461536		32.097844	4.385942	46.313
•••														
1195	Wyoming	2018	US Senator	platte	801.0	2850.0	56031	8740	6830	89.359268		7.814645	2.780320	47.711
1196	Wyoming	2018	US Senator	sublette	668.0	2653.0	56035	10032	0	91.646730		7.814992	2.053429	46.949
1197	Wyoming	2018	US Senator	sweetwater	3943.0	8577.0	56037	44812	30565	79.815674		15.859591	5.509685	47.824
1198	Wyoming	2018	US Senator	uinta	1371.0	4713.0	56041	20893	14355	87.718375		8.959939	3.986981	49.327
1199	Wyoming	2018	US Senator	washakie	588.0	2423.0	56043	8351	0	82.397318		13.962400	3.783978	51.359
1200	rows × 21 d	columr	าร											
4														•

Task 3: Explore the merge dataset.

In [9]: merge_dataframe.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1200 entries, 0 to 1199
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	State	1200 non-null	object
1	Year	1200 non-null	int64
2	Office	1200 non-null	object
3	County	1200 non-null	object
4	Democratic	1197 non-null	float64
5	Republican	1198 non-null	float64
6	FIPS	1200 non-null	int64
7	Total Population	1200 non-null	int64
8	Citizen Voting-Age Population	1200 non-null	int64
9	Percent White, not Hispanic or Latino	1200 non-null	float64
10	Percent Black, not Hispanic or Latino	1200 non-null	float64
11	Percent Hispanic or Latino	1200 non-null	float64
12	Percent Foreign Born	1200 non-null	float64
13	Percent Female	1200 non-null	float64
14	Percent Age 29 and Under	1200 non-null	float64
15	Percent Age 65 and Older	1200 non-null	float64
16	Median Household Income	1200 non-null	int64
17	Percent Unemployed	1200 non-null	float64
18	Percent Less than High School Degree	1200 non-null	float64
19	Percent Less than Bachelor's Degree	1200 non-null	float64
20	Percent Rural	1200 non-null	float64
d+vn	oc: $float64(12)$ $int64(5)$ object(2)		

dtypes: float64(13), int64(5), object(3)

memory usage: 206.2+ KB

In [10]: merge_dataframe[merge_dataframe['Citizen Voting-Age Population'] == 0]

Out[10]:

	State	Year	Office	County	Democratic	Republican	FIPS	Total Population	Citizen Voting- Age Population	Percent White, not Hispanic or Latino	•••	Percent Hispanic or Latino	Percent Foreign Born	Percei Fema
0	Arizona	2018	US Senator	apache	16298.0	7810.0	4001	72346	0	18.571863		5.947806	1.719515	50.59851
3	Arizona	2018	US Senator	gila	7643.0	12180.0	4007	53179	0	63.222325		18.548675	4.249798	50.29617
4	Arizona	2018	US Senator	graham	3368.0	6870.0	4009	37529	0	51.461536		32.097844	4.385942	46.31351

		State	Year	Office	County	Democratic	Republican	FIPS	Total Population	Citizen Voting- Age Population	Percent White, not Hispanic or Latino	•••	Percent Hispanic or Latino	Percent Foreign Born	Percei Fema
	7	Arizona	2018	US Senator	mohave	19214.0	50209.0	4015	203629	0	78.252606		15.708470	6.969047	49.67661
	9	Arizona	2018	US Senator	pima	221242.0	160550.0	4019	1003338	0	53.271579		36.105978	12.903428	50.80740
	•••														
1	188	Wyoming	2018	US Senator	converse	834.0	3959.0	56009	14223	0	88.849047		7.691767	2.706883	49.9332(
1	190	Wyoming	2018	US Senator	goshen	1020.0	3658.0	56015	13546	0	86.409272		10.519711	2.724051	47.09139
1	192	Wyoming	2018	US Senator	lincoln	1152.0	5846.0	56023	18543	0	92.600982		4.416761	2.151755	48.77312
1	196	Wyoming	2018	US Senator	sublette	668.0	2653.0	56035	10032	0	91.646730		7.814992	2.053429	46.94976
1	199	Wyoming	2018	US Senator	washakie	588.0	2423.0	56043	8351	0	82.397318		13.962400	3.783978	51.35911

680 rows × 21 columns

How mant variables does the dataset have?

The dataset has 21 variables.

What is the type of these variables?

The type of these variables are object, int64 and float64.

Are there any irrelevant or redundant variables?

Yes, there are irrelevant or redundant variables in the dataset.

Year has a value of only 2018, and no other value. Hence, this is an irrelevant/redundant variable.

Office has a value of only US Senator, hence Office is an irrelevant/redundant variable as well.

Citizen Voting-Age Population has more than 50% of the rows with a value of 0. With such a lack of data, this variable becomes irrelevant for data analysis as well.

How will you deal with these variables?

We should delete the Year, Office and Citizen Voting-Age Population column and insert the year 2018 and US Senator in the table header.

```
In [11]:
    merge_dataframe.drop(columns=['Citizen Voting-Age Population', 'Year', 'Office'],inplace=True)
```

Task 4: Search the merged dataset for missing values.

```
In [12]:
          merge dataframe.isnull().sum()
                                                   0
         State
Out[12]:
         County
         Democratic
         Republican
         FIPS
         Total Population
         Percent White, not Hispanic or Latino
         Percent Black, not Hispanic or Latino
                                                   0
         Percent Hispanic or Latino
         Percent Foreign Born
         Percent Female
         Percent Age 29 and Under
         Percent Age 65 and Older
         Median Household Income
         Percent Unemployed
         Percent Less than High School Degree
                                                   0
         Percent Less than Bachelor's Degree
         Percent Rural
                                                   0
         dtype: int64
```

Are there any missing values?

There are missing values in Democratic and Republican columns. Also, Citizen Voting-Age Population had values mentioned as 0.

How will you deal with these values?

We have already removed the Citizen Voting-Age Population since it has over 50% of data with the value 0. We will remove the 5 entries of Democratic and Republican since a small observation won't impact the data analysis.

```
# Dropping the null observations and storing the rest back in the merge_dataframe
merge_dataframe = merge_dataframe.dropna()
```

Task 5: Create a new variable named 'Party' that labels each county as Democratic or Republican.

Value should be 1 if there were more votes cast for the Democratic party and 0 if more votes were cast for the Republican Party

```
In [14]:
          def compare values(row):
              democratic = row[0]
              republican = row[1]
              # One of the rules
              if democratic > republican:
                  return 1
              else:
                  return 0
              return None
          merge dataframe["Party"] = merge dataframe[["Democratic", "Republican"]].apply(compare values, axis=1)
         <ipython-input-14-43fa2310f346>:13: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-v
         iew-versus-a-copy
           merge dataframe["Party"] = merge dataframe[["Democratic", "Republican"]].apply(compare values, axis=1)
In [15]:
          merge dataframe
Out[15]:
```

	State	County	Democratic	Republican	FIPS	Total Population	Percent White, not Hispanic or Latino	Percent Black, not Hispanic or Latino	Percent Hispanic or Latino	Percent Foreign Born	Percent Female	Percent Age 29 and Under	Pe A
0	Arizona	apache	16298.0	7810.0	4001	72346	18.571863	0.486551	5.947806	1.719515	50.598513	45.854643	13.32
1	Arizona	cochise	17383.0	26929.0	4003	128177	56.299492	3.714395	34.403208	11.458374	49.069646	37.902276	19.75
2	Arizona	coconino	34240.0	19249.0	4005	138064	54.619597	1.342855	13.711033	4.825298	50.581614	48.946141	10.87
3	Arizona	gila	7643.0	12180.0	4007	53179	63.222325	0.552850	18.548675	4.249798	50.296170	32.238290	26.39
4	Arizona	graham	3368.0	6870.0	4009	37529	51.461536	1.811932	32.097844	4.385942	46.313518	46.393456	12.3
•••													
1195	Wyoming	platte	801.0	2850.0	56031	8740	89.359268	0.057208	7.814645	2.780320	47.711670	32.700229	22.0
1196	Wyoming	sublette	668.0	2653.0	56035	10032	91.646730	0.000000	7.814992	2.053429	46.949761	36.393541	13.33
1197	Wyoming	sweetwater	3943.0	8577.0	56037	44812	79.815674	0.865840	15.859591	5.509685	47.824244	44.153352	9.4
1198	Wyoming	uinta	1371.0	4713.0	56041	20893	87.718375	0.186665	8.959939	3.986981	49.327526	43.205858	10.67
1199	Wyoming	washakie	588.0	2423.0	56043	8351	82.397318	0.790325	13.962400	3.783978	51.359119	34.774279	19.65
1195 r	ows × 19 c	columns											

Task 6.1: Compute the Median Household Income for Democratic and Republican counties.

```
In [16]: #mean of median household income from Democratic and Republican County
    democratic_household = merge_dataframe[merge_dataframe['Party'] == 1]
    democratic_household['Median Household Income'].mean()

Out[16]: 53798.732307692306

In [17]: republican_household = merge_dataframe[merge_dataframe['Party'] == 0]
    republican_household['Median Household Income'].mean()
```

Out[17]:

Compute the mean median household income for Democratic counties and Republican counties. Which one is higher?

Democratic Household Income is higher

Task 6.2: Perform a hypothesis test to determine whether this difference is statistically significant at the $\alpha = 0.05$ significance level.

```
ttest,pval = ttest_ind(democratic_household['Median Household Income'], republican_household['Median Household Income'],
    pval=pval/2
    print("p-value",pval)
p-value 3.5747186815913e-08
```

What conclusion do you make from this result?

Since p-value is less than the significance value we have sufficient evidence to reject the null hypothesis.

Task 7.1: Compute the mean population for Democratic and Republican Counties.

```
In [19]: #mean of population from Democratic and Republican County
    democratic_population = merge_dataframe[merge_dataframe['Party'] == 1]
    democratic_population['Total Population'].mean()

Out[19]: 300998.3169230769

In [20]: #mean of population from Democratic and Republican County
    republic_population = merge_dataframe[merge_dataframe['Party'] == 0]
    republic_population['Total Population'].mean()
Out[20]: 53864.6724137931
```

Compute the mean population for Democratic counties and Republican counties. Which one is higher?

The population mean is higher for Republican Counties.

Task 7.2: Perform a hypothesis test to determine whether this difference is statistically

significant at the $\alpha = 0.05$ significance level.

```
In [21]:
    ttest,pvall = ttest_ind(democratic_population['Total Population'], republic_population['Total Population'], equal_var=Fal
    pvall=pvall/2
    print("p-value",pvall)
p-value 1.0239358801486512e-14
```

What conclusion do you make from this result?

Since p-value less than the significance value we have sufficient evidence to reject the null hypothesis.

Task 8: Compare Democratic and Republican counties in terms of age, gender, race and ethnicity, and education by computing descriptive statistics and creating plots to visualize the results. Share conclusions for each variable from the descriptive statistics and the plots.

```
In [22]:
                             merge dataframe['Percent age 30 to 64'] = 100 - (merge dataframe['Percent Age 29 and Under'] + merge dataframe['Pe
                             merge dataframe.groupby(by=['Party'])['Percent Age 29 and Under','Percent age 30 to 64','Percent Age 65 and Older'].descr
                          <ipython-input-22-46de5057d7b1>:1: SettingWithCopyWarning:
                          A value is trying to be set on a copy of a slice from a DataFrame.
                          Try using .loc[row indexer,col indexer] = value instead
                          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-v
                          iew-versus-a-copy
                               merge dataframe['Percent age 30 to 64'] = 100 - (merge dataframe['Percent Age 29 and Under'] + merge dataframe['Percent
                          Age 65 and Older'l)
                          <ipython-input-22-46de5057d7b1>:2: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) w
                          ill be deprecated, use a list instead.
                               merge dataframe.groupby(by=['Party'])['Percent Age 29 and Under', 'Percent age 30 to 64', 'Percent Age 65 and Older'].des
                          cribe().T
Out[22]:
                                                                                         Party
                          Percent Age 29 and Under count 870.000000 325.000000
                                                                                                           36.005719
                                                                                                                                        38.726959
                                                                                         mean
                                                                                                              5.181522
                                                                                              std
                                                                                                                                          6.252786
                                                                                                           11.842105
                                                                                                                                   23.156452
                                                                                            min
```

34.488444

25%

32.983652

	Party	0	1
	50%	35.846532	38.074151
	75%	38.539787	42.161162
	max	58.749116	67.367823
Percent age 30 to 64	count	870.000000	325.000000
	mean	45.166015	45.078214
	std	2.910264	3.907598
	min	27.421759	18.433769
	25%	43.522522	43.741937
	50%	45.553295	45.817819
	75%	46.975771	47.448269
	max	63.157895	57.478906
Percent Age 65 and Older	count	870.000000	325.000000
	mean	18.828267	16.194826
	std	4.733155	4.282422
	min	6.954387	6.653188
	25%	15.784982	13.106233
	50%	18.377896	15.698087
	75%	21.112847	18.806426
	max	37.622759	31.642106

```
age_groups = ['Percent Age 29 and Under','Percent age 30 to 64','Percent Age 65 and Older']
fig, axes = plt.subplots(1, 3, figsize=(15, 10))
for index,group in enumerate(age_groups):
    sns.boxplot(ax=axes[index], x="Party", y=group, data=merge_dataframe)
```


Conclusion

Although there is not much of a difference. By seeing the descriptive statistics & plots we conclude that counties with 'Percent Age 29 and Under' are democratic and counties with 'Percent Age 65 and Older' are Republicans counties. We also see that counties under 'Percent age 30 to 64' are almost equally divided having the same mean.

```
merge dataframe['Percent Male'] = 100 - merge dataframe['Percent Female']
In [24]:
           merge dataframe.groupby(by=['Party'])['Percent Female','Percent Male'].describe().T
          <ipython-input-24-f7b2122eaeb9>:1: SettingWithCopyWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row indexer,col indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-v
          iew-versus-a-copy
            merge dataframe['Percent Male'] = 100 - merge dataframe['Percent Female']
          <ipython-input-24-f7b2122eaeb9>:2: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) w
          ill be deprecated, use a list instead.
            merge dataframe.groupby(by=['Party'])['Percent Female','Percent Male'].describe().T
Out[24]:
                         Party
                                                  1
          Percent Female
                        count 870.000000 325.000000
                                          50.385433
                         mean
                                49.630898
                                 2.429013
                                            2.149359
                           std
                                21.513413
                                          34.245291
                          min
                          25%
                                49.222905
                                          49.854280
                          50%
                                50.176792
                                          50.653830
                          75%
                                50.829770
                                          51.492075
                          max
                                55.885023
                                          56.418468
            Percent Male count 870.000000 325.000000
                                50.369102
                                          49.614567
                         mean
                           std
                                 2.429013
                                            2.149359
                                44.114977
                          min
                                          43.581532
                          25%
                                49.170230
                                          48.507925
                                49.823208
                          50%
                                          49.346170
                          75%
                                50.777095
                                          50.145720
                               78.486587
                                          65.754709
                          max
```

In [25]: gender groups = ['Percent Female','Percent Male']

```
fig, axes = plt.subplots(1, 2, figsize=(15, 10))
for index,group in enumerate(gender_groups):
    sns.boxplot(ax=axes[index], x="Party", y=group, data=merge_dataframe)
```


Conclusion

We can see that the mean of 'Percent female' & 'Percent male' voting are very close, although its more in the case of Democrats in 'Percent female' and republicans in case of 'Percent male'. We cannot conclude any county to be republican or democratic just on the basis of gender.

In [26]: merge dataframe.groupby(by=['Party'])['Percent White, not Hispanic or Latino','Percent Black, not Hispanic or Latino','Pe <ipython-input-26-a1e8bda2b265>:1: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) w ill be deprecated, use a list instead. merge_dataframe.groupby(by=['Party'])['Percent White, not Hispanic or Latino', 'Percent Black, not Hispanic or Latin o', 'Percent Hispanic or Latino', 'Percent Foreign Born'].describe().T Out[26]: **Party** 0 Percent White, not Hispanic or Latino count 870.000000 325.000000 82.656646 69.683766 mean 16.056122 24.981502 std min 18.758977 2.776702 25% 75.016397 53.271579 50% 77.786090 89.434849 94.466596 75% 90.300749 99.627329 98.063495 max Percent Black, not Hispanic or Latino count 870.000000 325.000000 4.189241 9.242649 mean 6.721695 13.351340 std 0.000000 min 0.000000 25% 0.460419 0.839103 50% 1.318311 3.485992 **75**% 11.058843 4.753831 63.953279 max 41.563041 870.000000 325.000000 Percent Hispanic or Latino count

mean

9.733094

12.587391

	Party	0	1
	std	14.049576	19.575030
	min	0.000000	0.193349
	25%	1.704539	2.531017
	50%	3.427435	5.039747
	75%	10.709696	11.857116
	max	78.397012	95.479801
Percent Foreign Born	count	870.000000	325.000000
	mean	3.990096	7.986330
	std	4.507786	8.330740
	min	0.000000	0.179769
	25%	1.320101	2.470508
	50%	2.326317	5.105490
	75%	5.149429	10.144555
	max	37.058317	52.229868

```
ethnicity_groups = ['Percent White, not Hispanic or Latino','Percent Black, not Hispanic or Latino','Percent Hispanic or fig, axes = plt.subplots(1, 4, figsize=(20, 16))
for index,group in enumerate(ethnicity_groups):
    sns.violinplot(ax=axes[index], x="Party", y=group, data=merge_dataframe)
```


Conclusion

In case of Percent white, not Hispanic or Latino we can see that the counties with a greater number of them are republican counties whereas in the case of all other three categories counties with higher number of other ethnicities are more inclined towards Democrats.

	Party	0	1
Percent Less than High School Degree	count	870.000000	325.000000
	mean	14.009112	11.883760
	std	6.303126	6.505613
	min	2.134454	3.215803
	25%	9.662491	7.893714
	50%	12.572435	10.370080
	75%	17.447168	13.637059
	max	47.812773	49.673777
Percent Less than Bachelor's Degree	count	870.000000	325.000000
	mean	81.095427	71.968225
	std	6.815537	11.192404
	min	43.419470	26.335440
	25%	78.108424	65.711800
	50%	82.406700	72.736143

Out[28]:

	Party	0	1
	75%	85.546272	79.903653
	max	97.014925	94.849957
Bacherlor's Degree and higher	count	870.000000	325.000000
	mean	18.904573	28.031775
	std	6.815537	11.192404
	min	2.985075	5.150043
	25%	14.453728	20.096347
	50%	17.593300	27.263857
	75%	21.891576	34.288200
	max	56.580530	73.664560

```
fig, axes = plt.subplots(1, 3, figsize=(15, 10))
for index,group in enumerate(ethnicity_groups):
    sns.violinplot(ax=axes[index], x="Party", y=group, data=merge_dataframe)
```


Conclusion

Counties with more percent of 'Percent Less than High School Degree' and 'Percent Less than Bachelor's Degree' people are inclined towards Republicans. Counties with more percent of people having 'Bacherlor's Degree and higher' are inclined towards Democrats.

Task 9: Based on your results for tasks 6-8, which variables in the dataset do you think are more important to determine whether a county is labeled as Democratic or Republican? Justify your answer.

Total population is one of the important variable to determine whether a county is Republican or Democratic because the mean population of democratic counties is a lot higher than the republican counties which means the higher total population counties are inclined towards Democrats.

Education level(Percent Less than High School Degree/Bachelors Degree or Bacherlor's Degree and higher) and Ethnicity(Percent White or Percent black, Percent hispanic/latino) are very important variables in determining a county is democratic or republican because according to the descriptive statistics and plots the mean of percent of these different variables vary significantly more in terms of democrats and republicans.

In []:		