1.

Inductor = 0.0038H Capacitor = 171nF

2.

Cut off frequency = 4.4kHz

3.

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	Ton/Toff
2181	HIN/LIN	no	none	COM	180/220 ns
21814				VSS/COM	
2183	HIN/LIN	yes	Internal 500ns	COM	180/220 ns
21834			Program 0.4 ~ 5 us	VSS/COM	
2184	IN/SD	yes	Internal 500ns	COM	680/270 ns
21844			Program 0.4 ~ 5 us	VSS/COM	

0.5uS

Figure 8C. Deadtime vs. Rot

5kohm estimated

4.

Dead time is the delay between the transistors in series in order to not cause a short to ground. This delay is caused by a resistor of an estimated 5k ohm from the 500nS dead time.

5.

We could use an integrator that smooths the signal out at the output to mitigate the varying input voltage.

6.

Even though the oscilloscope gives a reading of 250ns, if the position was altered in the way that centres the dead time it would provide a reading of 500s. The mosfets created a step down from 30V (yellow reads 50V but we believe it's just due to the spike) to 14V (blue).

7.

Main losses happen around 0.05A. It reaches steady-state at around 0.25A.

8.

The function of a bootstrap circuit is to alter the input impedance of a circuit. In most cases it uses positive feedback in 2 stages like the grounded transistor of this lab.

Appendix

For question 2; the duty cycle was calculated as vout/vin