Λ + bB \rightarrow cC +

A,B- reaktanty

Naľavo sú **REAKTANTY=VÝCHODISKOVÉ LÁTKY**

C,D- produkty

Napravo sú **PRODUKTY**, látky, ktoré chemickou reakciou vznikli (1-viac)

a,b,c,d- stechiometrické koef.

Typy a delenie chemických reakcií:

1. Podľa počtu fáz:

s- označenie pre tuhé - solidus

a) Homogénne reakcie – všetky reaktanty (R) aj produkty (P) sú v rovnakej fáze = skupenstve

g – označenie pre plynné – gaseus I – označenie pre kvapalné – liquidus aq – označenie pre vodný roztok – aqua Príklad: 2 NO(g) + O₂(g) \rightarrow 2NO₂(g)

b) Heterogénne – obsahujú aspoň 2 fázy – skupenstvá, patria tu aj zrážacie reakcie

Príklad: Zn (s) + 2HCl (aq)
$$\rightarrow$$
 ZnCl₂ (aq) + H₂(g)

2. Podľa javového opisu:

a) Skladné = syntetické 2Na + Cl₂ → 2 NaCl b

b) Rozkladné = analytické

dD

Chemické zlučovanie- chem. reak. pri ktorej z dvoch alebo viacerých jednoduhších reaktantov vzniká zložitejší produkt. reaktant → produkt síra + železo→ sulfid železnatý

Chemický rozklad- chem. reak. pri ktorej z jedného zložitejšieho produktu vznikajú dva alebo viac jednoduhších produktov. rekatant → produkt+ produkt uhličitan vápenatý→ oxid vápenatý+ oxid uhličity

- a) <u>Vytesňovacie =substitučné</u> Fe + CuSO₄ → FeSO₄ + Cu
- b) Podvojné zámeny=konverzie Pb(NO₃)₂ + 2KI → PbI₂ + 2KNO₃

3. Podľa chemického deja:

a) Oxidačno-redukčné=redoxné Princíp: výmena e-,

Pr.Zn0 + 2HICl- → ZnII+Cl2- + H20

prijímanie alebo odovzdávanie

Redukcia= Znižovanie ox.č = Prijímanie e**oxidácia=** Zvyšovanie ox.č.= Odovzdávanie e-

b) Acidobázické=protolytické - Princíp: odovzdávanie alebo prijímanie protónov H⁺

Kyselina = látka schopná H+ odovzdávať – je donor =darca H+ **Zásada = látka schopná H+ prijímať** – je príjemca= akceptor H+

Reakcia K+Z sa nazýva neutralizácia – vzniká pri nej soľ (má časť z K a časť zo Z) a voda.

KOH + HCl → KCl + H2O

Zásada kyselina soľ (chlorid draselný) voda

Koordinačné=komplexotvorné – vznikajú komplexné zlúčeniny – komplexy

<u>Zrážacie – vznik zrazenín – označenie ↓ alebo X v krúžk</u>u _Ag⁺ + Cl⁻ ---> AgCl <u>↓</u> (biela zrazenina)

Zápis chemických rovníc:

a)stechiometrický – obsahuje iba chemické značky/vzorce R,P

b)stavový zápis – obsahuje skupenstvá látok v zátvorkách (g,l,s alebo aq)

pr. NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O(l)

c) iónový zápis:

- 1. Úplný obsahuje všetky ióny v reakčnej sústave
- 2. skrátený obsahuje iba ióny, ktoré spolu reagujú

Najpr si napíšeme stechiometrickú rovnicu reakcie a vyčíslime ju:

AgNO₃ + NaCl → AgCl↓ + NaNO₃

Následne rozpíšeme všetky zlúčeniny do iónového tvaru, okrem zrazeniny:

$$Ag^+ + NO_3^- + Na^+ + Cl^- \rightarrow AgCl\downarrow + Na^+ + NO_3^-$$

Ak vynecháme na oboch stranách rovnice ióny, ktoré sa opakujú (a nezúčastnňujú sa samotnej zrážacej reakcie), dostaneme skrátenú iónovú rovnicu:

Význam chemických reakcií a rovníc:

Pr. $CaCO_3$ (s) \rightarrow CaO (s) + CO₂ (g)

- 1. <u>Špecifikujú reaktanty a produkty chemickej reakcie, čo reaguje a čo po nej vzniká</u>
- 2. Vyjadrujú aj:
 - látkové množstvá
 - pomery látkových množstiev
 - hmotnosť látok (z molárnej hmotnosti M z tabuliek!!!!!!!
 - konkrétne vieme, že zo 100,09 g CaCO₃ (to je M(CaCO₃)) vznikne 56,08 g CaO a 44,01 g CO₂
 - vieme určiť aj objem CO₂ –ako <u>plynnej látky</u> keďže 1 mól akéhokoľvek plynu zaberá objem
 V=22,4 dm³ pri 0°C, p=101,325 kPa
 - Silné zásady:

NaOH- Hydroxid sodný KOH- Hydroxid draselný

- **CsOH-** Hydroxid **≥**ézny najsilnejšia zásada

- Slabé zásady:
- NH₃- Amoniak
- Silné kyseliny:

HCI- Kyselina soľná (chlorovodíková) H₂SO₄- Kyselina sírová HCIO₄- Kyselina

chloristá

- HI- Kyselina jodovodíková HNO₃- Kyselina dusičná

Slabé kyseliny:

H₂CO₃- Kyselina uhličitá
 H₂S- Kyselina sulfánová
 CH₃COOH-Kyselina octová

Stredne silné kyseliny:

H₃PO₄- Kyselina trihydrogenfosforečná HCOOH- Kyselina mravčia

- **HF**- Kyselina fluorovodíková

Chémia- Hydrolýza soli

Protolytická reakcia iónov rozpustnej soli s vodou.

Soľ= látka zložená z kationu kovu (alebo NH4+) a anionu kyseliny.

Kyslosť/zásaditosť vodných roztokov solí závisí od typu iónov, z ktorých je soľ zložená

KCL- soľ silnej zásady (KOH) a silnej kyseliny (HCL)

POZOR! Hydrolýze nepodliehajú kationy silných zásad a aniony silných kyselín

NaHCO₃ Hydrogenuhličitan sodný – NaOH Hydroxid sodný(silná zás.) H₂CO₃- Kyselina uhličitá(slabá kys.)

NaCl Chlorid sodný- NaOH Hydroxid sodný(silná zás.) HCl Kyselina chlorovodíková(silná kys)

NH₄Cl Chlorid amónny NaOH Hydroxid sodný(silná zás.) H₂CO₃ Kyselina uhličitá(slabá kys.)

KCL Chlorid draselný

K⁺ (draslík)+ Cl⁻ (chlorid) VODNÝ ROZTOK SILNEJ KYS A SILEJ ZAS. NEPODLIEHA

HYDROLÍZE pH= neutrálne

CH3COONH4 Octan amónny CH3COOH (Kyselina octová)+ NH₄+ (Amónny katión) VODNÝ ROZTOK SLABEJ

KYS A SLABEJ ZAS. NEPODLIEHA HYDROLÍZE pH= neutrálne

 NH_4NO_3 dusičnan amónny $\rightleftharpoons NH_4^+$ (Amónny katión) + NH_3 (Amoniak) VODNÝ ROZTOK SILNEJ KYS A SLABEJ ZAS. $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH3$

NO₃-+ H₂O

→ NEHYDLOLIZUJE pH= kyslé

Na₂CO₃ Uhličitan sodný ≈ 2Na⁺(sodík) 2CO₃-2 (Uhličitan) VODNÝ ROZTOK SLABEJ KYS A SLABEJ ZAS.

2CO₃-2 + H₂O

→ HCO₃-+OH- pH= zásadité

 $H_2O_2 \rightarrow H_2O + O_2 \text{chem.sh\'ema} \qquad N_2 + \ H_2 \rightarrow \ NH_3 \qquad \qquad H_2 + \ Cl_2 \rightarrow \ HCl \qquad O_2 + \ H_2 \rightarrow \ H_2O$

 $2H_2O_2 \ \longleftrightarrow \ 2H_2O \ + \ O_2 \\ \text{chem.rovnica} \\ N_2 \ + \ 3H_2 \ \longleftrightarrow \ 2NH_3 \\ H_2 + \ Cl_2 \ \longleftrightarrow \ 2HCl \\ O_2 + 2H_2 \\ \longleftrightarrow \ 2H_2O$