Homework Problem Set #5

Harvey Mudd College January 2020

Let R be a ring with identity $1 \neq 0$, let F be a field, and let x be an indeterminate over F.

13.1.3 Show that $x^3 + x + 1$ is irreducible over F_2 and let θ be a root. Compute the powers of θ in $F_2(\theta)$.

13.1.5 Suppose α is a rational root of a monic polynomial in $\mathbf{Z}[x]$. Prove that α is an integer.

13.2.3 Determine the minimal polynomial over \mathbf{Q} for the element 1+i.

13.2.4 Determine the degree over \mathbf{Q} of $2 + \sqrt{3}$ and of $1 + \sqrt[3]{2} + \sqrt[3]{4}$.

13.2.12 Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

13.2.14 Prove that if $[F(\alpha):F]$ is odd then $F(\alpha)=F(\alpha^2)$.