

OV9665 Color CMOS SXGA (1.3 Megapixel) CAMERACHIP™ Sensor with OmniPixel2™ Technology

General Description

The OV9665 CAMERACHIP™ image sensor is a low voltage CMOS device that provides the full functionality of a single-chip SXGA (1280x1024) camera and image processor in a small footprint package. The OV9665 provides full-frame, sub-sampled, scaled or windowed 8-bit/10-bit images in a wide range of formats, controlled through the Serial Camera Control Bus (SCCB) interface.

This product has an image array capable of operating at up to 15 frames per second (fps) in SXGA resolution with complete user control over image quality, formatting and output data transfer. All required image processing functions, including exposure control, gamma, white balance, color saturation, hue control, defect pixel canceling, noise canceling, and more, are also programmable through the SCCB interface. In addition, OmniVision sensors use proprietary sensor technology to improve image quality by reducing or eliminating common lighting/electrical sources of image contamination, such as fixed pattern noise, smearing, etc., to produce a clean, fully stable color image.

Note: The OV9665 uses a lead-free package.

Features

- High sensitivity for low-light operation
- Low operating voltage for embedded portable applications
- Standard SCCB interface
- Supports image sizes: SXGA, VGA, CIF, scaled down and windowed outputs with Raw RGB, RGB565/555/444, YUV (4:2:2) and YCbCr (4:2:2) formats
- VarioPixel® method for sub-sampling
- Automatic image control functions including Automatic Exposure Control (AEC), Automatic Gain Control (AGC), Automatic White Balance (AWB), and Automatic Black-Level Calibration (ABLC)
- Image quality controls including color saturation, hue, gamma, sharpness (edge enhancement), lens correction, defect pixel canceling, noise canceling, and 50/60 Hz luminance detection

Ordering Information

Product	Package
OV09665-V26A (Color, lead-free)	26-pin CSP2

Applications

- Cellular and Picture Phones
- Toys
- PC Multimedia
- Digital Still Cameras

Key Specifications

	Active Array Size	1304 x 1036
Power Supply	Analog	2.45 to 3.0VDC
	1/0	1.71V to 3.0V
Power	Active	80 mW typical (15fps)
Requirements	Standby	15 μA typical
Temperature	Operation	-30°C to 70°C
Range	Stable Image	0°C to 50°C
7 \ 7		YUV/YCbCr 4:2:2
Ou	itput Formats (8-bit)	
		 Raw RGB Data
	Lens Size	
	Chief Ray Angle	25° non-linear
Maximum	SXGA	15 fps
Image	VGA and down	
Transfer Rate	scaling	
		450 mV/(Lux • sec)
	S/N Ratio	
	Dynamic Range	55 dB
	Scan Mode	Progressive
Maximu	m Exposure Interval	1052 x t _{ROW}
	Gamma Correction	Programmable
		2.0 μm x 2.0 μm
		3 mV/sec @ 60°C
	Well Capacity	13 Ke
	Fixed Pattern Noise	1% of V _{PEAK-TO-PEAK}
	Image Area	2608 µm x 2072 µm
P	ackage Dimensions	4485 um x 4985 um

Figure 1 OV9665 Pin Diagram (Top View)¹

¹ OV9665 pin diagram © 2008 OmniVision Technologies, Inc.

Functional Description

Figure 2 shows the functional block diagram of the OV9665 image sensor. The OV9665 includes:

- Image Sensor Array (1304 x 1036 active image array)
- Analog Signal Processor
- A/D Converters
- Digital Signal Processor (DSP)
- Output Formatter
- Timing Generator
- SCCB Interface
- Digital Video Port

Figure 2 Functional Block Diagram

note 1 DSP* (lens shading correction, de-noise, defect pixel correction, auto white balance, etc.)

9665CSP_DS_002

Image Sensor Array

The OV9665 sensor has an active image array of 1304 columns by 1036 rows (1,350,944 pixels). Figure 3 shows a cross-section of the image sensor array.

Figure 3 Image Sensor Array

9665CSP_DS_003

Timing Generator

In general, the timing generator controls the following functions:

- Array control and frame generation
- Internal timing signal generation and distribution
- Frame rate timing
- Automatic Exposure Control (AEC)
- External timing outputs (VSYNC, HREF/HSYNC, and PCLK)

Analog Signal Processor

This block performs Automatic Gain Control (AGC).

A/D Converters

After the Analog Processing block, the bayer pattern Raw signal is fed to two 10-bit analog-to-digital (A/D) converters, one for the G channel and one shared by the BR channels. These A/D converters operate at speeds up to 27 MHz and are fully synchronous to the pixel rate (actual conversion rate is related to the frame rate).

In addition to the A/D conversion, this block also has the following functions:

- Digital Black-Level Calibration (BLC)
- · Optional U/V channel delay
- Additional A/D range controls

In general, the combination of the A/D Range Multiplier and A/D Range Control sets the A/D range and maximum value to allow the user to adjust the final image brightness as a function of the individual application.

Digital Signal Processor (DSP)

This block controls the interpolation from Raw data to RGB and some image quality control.

- Automatic White Balance (AWB)
- Edge enhancement (a two-dimensional high pass filter)
- Color space converter (can change Raw data to RGB or YUV/YCbCr)
- RGB matrix to eliminate color cross talk
- Hue and saturation control
- Programmable gamma control
- Transfer 10-bit data to 8-bit
- Defect pixel canceling
- De-noise

Output Formatter

This block controls all output and data formatting required prior to sending the image out.

Strobe Mode

The OV9665 has a Strobe mode that allows it to work with an external flash and LED.

Digital Video Port

Register bits COM2[1:0] increase I_{OL}/I_{OH} drive current and can be adjusted as a function of the customer's loading.

SCCB Interface

The Serial Camera Control Bus (SCCB) interface controls the CAMERACHIP sensor operation. Refer to *OmniVision Technologies Serial Camera Control Bus (SCCB) Specification* for detailed usage of the serial control port.

Pin Description¹

Table 1 Pin Description

Pin Location	Name	Pin Type	Function/Description
A1	VREFH	Reference	Internal analog voltage reference - connect to analog ground through a 0.1µF capacitor
A2	VREFN	Reference	Internal analog voltage reference - connect to analog ground through a 0.1µF capacitor
А3	D8	Output	Video output bit[8]
A4	D6	Output	Video output bit[6]
A5	D7	Output	Video output bit[7]
B1	AGND	Power	Ground for analog circuit
B2	AVDD	Power	Power for analog circuit
B4	D4	Output	Video output bit[4]
B5	D5	Output	Video output bit[5]
C1	PWDN	Input	Power down function (active high) with internal pull-down resistor
C2	RESETB	Input	Reset function (active low) with internal pull-up resistor
C4	D2	Output	Video output bit[2]
C5	D3	Output	Video output bit[3]
D1	SIO_C	Input	SCCB serial interface clock input without internal pull-up/pull-down resistor
D2	SIO_D	1/0	SCCB serial interface data I/O
D4	D0/STROBE	Output	Video output bit[0] when in 10-bit output mode or Strobe output when in 8-bit output mode.
D5	D1	Output	Video output bit[1]
E1	XVCLK	Input	System clock input without internal pull-up/pull-down resistor
E2	D9	Output	Video output bit[9]
E4	VREFD	Reference	Digital reference - connect to digital ground through a 0.1µF capacitor and connect with pin F3
E5	VSYNC	Output	Vertical sync output
F 1	DOGND	Power	Ground for digital / video port
F2	DOVDD	Power	Power for digital / video port
F3	VREFD	Reference	Digital reference - connect to digital ground through a 0.1µF capacitor and connect to pin E4
F4	PCLK	Output	Pixel clock output
F5	HREF	Output	Horizontal reference output

NOTE:

D[9:2] for 8-bit YUV or RGB565/RGB555 (D[9] MSB, D[2] LSB)

D[9:0] for 10-bit Raw RGB data (D[9] MSB, D[0] LSB)

 $^{^{\}rm 1}$ OV9665 pin description list © 2008 OmniVision Technologies, Inc.

Electrical Characteristics

Table 2 Absolute Maximum Ratings

Ambient Storage Temperature	-40°C to +95°C	
Supply Voltages (with respect to Ground)	V _{DD-A}	4.5 V
Supply voltages (with respect to Ground)	V _{DD-IO}	4.5 V
All Input/Output Voltages (with respect to Ground)	-0.3V to V _{DD-IO} +0.5V	
Lead-free Temperature, Surface-mount process		245°C

NOTE: Exceeding the Absolute Maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent device damage.

Table 3 DC Characteristics (-30°C < T_A < 70°C)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{DD-A}	DC supply voltage – analog	-	2.45	2.8	3.0	V
V _{DD-IO}	DC supply voltage – I/O	- (/	1.71	1.8	3.0	V
	Active (enerating) surrent	See Note ^a		17 + 18 ^b	50	mA
I _{DDA}	Active (operating) current	See Note ^c	,	22 + 24 ^d	60	mA
I _{DDS-SCCB}	Standby current	See Note ^e		1	2	mA
	Standby current	See Note ^e		15	30	μΑ
I _{DDS-PWDN}	Standby current	See Note ^f		23	45	μΑ
V _{IH}	Input voltage HIGH	CMOS	0.7 x V _{DD-IO}			V
V _{IL}	Input voltage LOW	,			0.3 x V _{DD-IO}	V
V _{OH}	Output voltage HIGH	CMOS	0.9 x V _{DD-IO}			V
V _{OL}	Output voltage LOW				0.1 x V _{DD-IO}	V

- a. At 25°C, $V_{DD-A} = 2.8V$, $V_{DD-IO} = 1.8V$ $I_{DDA} = \sum \{I_{DD-A} + I_{DD-IO}\}$, $f_{CLK} = 24MHz$ at 15 fps YCbCr output with typical loading
- b. $I_{DD-IO} = 17\text{mA}$, $I_{DD-A} = 18\text{mA}$, with typical loading
- c. At 25°C, $V_{DD-A} = 2.8V$, $V_{DD-IO} = 2.8V$ $I_{DDA} = \sum \{I_{DD-A} + I_{DD-IO}\}$, $f_{CLK} = 24MHz$ at 15 fps YCbCr output with typical loading
- d. $I_{DD-IO} = 22\text{mA}$, $I_{DD-A} = 24\text{mA}$, with typical loading
- e. At 25°C, V_{DD-A} = 2.8V, V_{DD-IO} = 1.8V I_{DDS-SCCB} refers to a SCCB-initiated Standby, while I_{DDS-PWDN} refers to a PWDN pin-initiated Standby
- f. At 25°C, $V_{DD-A} = 2.8V$, $V_{DD-IO} = 2.8V$ $I_{DDS-SCCB}$ refers to a SCCB-initiated Standby, while $I_{DDS-PWDN}$ refers to a PWDN pin-initiated Standby

Table 4 Functional and AC Characteristics (-30°C < T_A < 70°C)

Symbol	Parameter	Min	Тур	Max	Unit		
Functional C	haracteristics						
	A/D Differential non-linearity		<u>+</u> 1/2		LSB		
	A/D Integral non-linearity			<u>+</u> 1		LSB	
Inputs (PWD	N, XVCLK and RESETB)						
	land tale of fragues as	With PLL	10	24	27	MHz	
f _{CLK}	Input clock frequency	Without PLL	10	24	54	MHz	
t _{CLK:DC}	Clock duty cycle		45	50	55	%	
t _{S:RESETB}	Setting time after software/hardware	reset			1	ms	
t _{S:REG}	Settling time for register change			/	300	ms	
SCCB Timing	g (see Figure 4)						
f _{SIO_C}	Clock frequency				400	KHz	
t _{LOW}	Clock low period		1.3			μs	
t _{HIGH}	Clock high period	7	600			ns	
t _{AA}	SIO_C low to data out valid		100		900	ns	
t _{BUF}	Bus free time before new START		1.3			μs	
t _{HD:STA}	START condition hold time		600			ns	
t _{SU:STA}	START condition setup time		600			ns	
t _{HD:DAT}	Data in hold time	,	0			μs	
t _{SU:DAT}	Data in setup time		100			ns	
t _{SU:STO}	STOP condition setup time		600			ns	
t _{R,} t _F	SCCB rise/fall times				300	ns	
t _{DH}	Data out hold time		50			ns	
Outputs (VS)	YNC, HREF, PCLK, and D[9:0] (see F	igure 5, Figure 6, a	nd Figure 7)				
t _{PDV}	PCLK[↓] to data out valid				5	ns	
t _{SU}	D[9:0] setup time		15			ns	
t _{HD}	D[9:0] hold time		8			ns	
t _{PHH}	PCLK[↓] to HREF[↑]		0		5	ns	
t _{PHL}	PCLK[↓] to HREF[↓]		0		5	ns	
AC Conditions:	 V_{DD}: V_{DD-A} = 2.8V, V_{DD-IO} = 1.8V Rise/Fall Times: I/O: 5ns, Maximum SCCB: 300ns, Maximum 						

Timing Specifications

Note: Timing may vary depending on register settings.

Figure 4 SCCB Timing Diagram

Figure 5 Horizontal Timing

Figure 6 SXGA Frame Timing

note1 for raw data, t_P = internal pixel clock

note2 for YUV/RGB, $t_p = 2 \times internal pixel clock$

note3 this timing diagram is for reference only; different settings will result in different timing values

9665CSP_DS_006

Figure 7 VGA 30 Frame Timing

P0 - P639

note1 for raw data, t_P = internal pixel clock

note2 for YUV/RGB, $t_p = 2 x$ internal pixel clock

note3 this timing diagram is for reference only; different settings will result in different timing values

9665CSP_DS_007

Figure 8 RGB 565 Output Timing Diagram

Figure 9 RGB 555 Output Timing Diagram

Figure 10 RGB 444 Output Timing Diagram

Register Table

Table 5 provides a list and description of the Device Control registers contained in the OV9665. For all register Enable/Disable bits, ENABLE = 1 and DISABLE = 0. The device slave addresses are 0x60 for write and 0x61 for read.

Note: Reserved registers or register bits may be non-functional, special function or sensitive to the sensor. Please refer to OmniVision's recommended register settings.

Table 5 Device Control Register List (Sheet 1 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
00	GAIN	00	RW	AGC Gain Control Bit[7:0]: Gain setting • Range: 1x to 32x Gain = (Bit[7]+1) x (Bit[6]+1) x (Bit[5]+1) x (Bit[4]+1) x (1+Bit[3:0])/16) NOTE: Set COM8[2] = 0 to disable AGC.
01	BLUE	40	RW	Blue Gain Control
02	RED	40	RW	Blue Gain Control
03	COM1	03	RW	Common Control 1 Bit[7:6]: Dummy frame control - effective when register bit COM6[3] = 1 (0x0F) (night mode enable) 00: Not used 01: Allow 1 dummy frame 10: Allow 3 dummy frames 11: Allow 7 dummy frames Bit[5:4]: Reserved Bit[3:2]: Vertical window end line control 2 LSBs (see register VEND for 8 MSBs) Bit[1:0]: Vertical window start line control 2 LSBs (see register VSTRT for 8 MSBs)
04	REG04	28	RW	Register 04 Bit[7]: Horizontal mirror (effective when register bit REG33[3] = 1 (0x33) Bit[6]: Vertical flip Bit[5:2]: Reserved Bit[1:0]: AEC low 2 LSBs – AEC[1:0] (see register AEC for AEC[9:2] and register REG45[5:0] for AEC[15:10])
05	REG05	00	RW	Register 05 Bit[7:3]: Reserved Bit[2:0]: UV adjust slope[5:3] between gain threshold 1 and gain threshold 2. For others, refer to registers COM1[5:4] (0x03) and REG60[2:0] (0x60).

Table 5 Device Control Register List (Sheet 2 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
06	REG06	10	RW	Register 06 Bit[7:6]: Dummy line insertion beginning gain 00: 2x 01: 4x 10: 8x 11: 8x Bit[5:0]: Reserved
07	REG07	A4	RW	Register 07 Bit[7]: Reserved Bit[6:4]: VS start point Bit[3]: Reserved Bit[2:0]: VS width
08	RSVD	XX	_	Reserved
09	COM2	00	RW	Common Control 2 Bit[7:5]: Always precharge Bit[4]: Sleep mode enable (SCCB standby enable) 0: Normal mode 1: Sleep mode Bit[3]: Pin D0 output control 0: D0 1: STROBE Bit[2]: Reserved Bit[1:0]: Output drive current select 00: Weakest 01: Double capability 10: Double capability 11: Triple drive current
0A	PID	96	R	Product ID Number MSB (Read only)
0B	VER	63	R	Product ID Number LSB (Read only)
0C	сомз	38	RW	Common Control 3 Bit[7:3]: Reserved Bit[2]: Manually set banding 0: 60 Hz 1: 50 Hz Bit[1]: Auto set banding Bit[0]: Snapshot option 0: Enable live video output after snapshot sequence 1: Output single frame only
0D	REG0D	80	RW	Register 0D Bit[7:5]: Reserved Bit[4]: DSP clock selection 0: For SXGA mode 1: For VGA 30 mode Bit[3:0]: Reserved

Table 5 Device Control Register List (Sheet 3 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
0E	RSVD	XX	_	Reserved
0F	COM6	46	RW	Common Control 6 Bit[7:4]: Reserved Bit[3]: Night mode enable 0: Disable 1: Enable Bit[2:0]: Reserved
10	AEC	00	RW	Automatic Exposure Control - AEC[9:2] (see register REG45[5:0] for AEC[15:10] and register REG04 for AEC[1:0]) AEC[15:0]: Exposure time TEX = tLINE x AEC[15:0] NOTE: The maximum exposure time is 1 frame period even if TEX is longer than 1 frame period
11	CLKRC	80	RW	Clock Rate Control Bit[7:6]: Reserved Bit[5:0]: Clock divider for frame rate adjustment CLK = XVCLK / (decimal value of CLKRC[5:0] + 1)
12	COM7	00	RW	Common Control 7 Bit[7]: SRST 1: Initiates soft reset. All registers are set to factory default values after which the chip resumes normal operation Bit[6:5]: Resolution selection 00: SXGA (full size) mode 01: Not used 10: VGA mode 11: Not used Bit[4:3]: Reserved Bit[2]: Zoom mode Bit[1:0]: Reserved

Table 5 Device Control Register List (Sheet 4 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
13	COM8	E7	RW	Common Control 8 Bit[7]: Reserved Bit[6]: AEC step size limit Bit[5]: Banding filter selection 0: OFF 1: ON, set minimum exposure to 1/120s or 1/100s Bit[4:3]: Reserved Bit[2]: AGC auto/manual control selection 0: Manual 1: Auto Bit[1]: AWB auto/manual control selection 0: Manual 1: Auto Bit[0]: Exposure control 0: Manual 1: Auto
14	СОМ9	40	RW	Common Control 9 Bit[7:5]: AGC gain ceiling 000: 2x 001: 4x 010: 8x 011: 16x 100: 32x 101: Not used 110: Not used Sit[4]: Reserved Bit[3]: Exposure time can be less than limitation of banding filter (1/120s or 1/100s) when light is too strong Bit[2]: Data output format - VSYNC drop option 0: VSYNC always exists 1: VSYNC will drop when frame data drops Bit[1]: Enable drop frame when AEC step is larger than the exposure gap Bit[0]: Reserved
15	COM10	00	RW	Common Control 10 Bit[7:6]: Reserved Bit[5]: PCLK output selection (works on row data output) 0: PCLK always output 1: PCLK output qualified by HREF Bit[4:2]: Reserved Bit[1]: VSYNC polarity 0: Positive 1: Negative Bit[0]: Reserved
16	GREEN	40	RW	Green Gain Control

Table 5 Device Control Register List (Sheet 5 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
17	HREFST	0D	RW	Horizontal Window Start 8 MSBs (3 LSBs in register REG32[2:0]) Bit[10:0]: Select beginning of horizontal window, each LSB represents two pixels
18	HREFEND	5D	RW	Horizontal Window End 8 MSBs (3 LSBs in register REG32[5:3]) Bit[10:0]: Select end of horizontal window, each LSB represents two pixels
19	VSTRT	01	RW	Vertical Window Line Start 8 MSBs (2 LSBs are in register COM1[1:0]) Bit[9:0]: Select start of vertical window, each LSB represents two scan lines
1A	VEND	82	RW	Vertical Window Line End 8 MSBs (2 LSBs are in register COM1[3:2]) Bit[9:0]: Select end of vertical window, each LSB represents two scan lines
1B	RSVD	XX	-	Reserved
1C	MIDH	7F	R	Manufacturer ID Byte – High (Read only = 0x7F)
1D	MIDL	A2	R	Manufacturer ID Byte – Low (Read only = 0xA2)
1E	REG1E	F9	RW	Register 1E Bit[7]: White defect pixel correction 0: Disable 1: Enable Bit[6]: Black defect pixel correction 0: Disable 1: Enable Bit[5:0]: Reserved
1F-23	RSVD	XX		Reserved
24	AEW	78	RW	Luminance Signal High Range for AEC/AGC Operation AEC/AGC value decreases in auto mode when average luminance is greater than AEW[7:0]
25	AEB	68	RW	Luminance Signal Low Range for AEC/AGC Operation AEC/AGC value increases in auto mode when average luminance is less than AEB[7:0]
26	VV	D4	RW	Fast Mode Large Step Range Thresholds (effective only in AEC/AGC fast mode) Bit[7:4]: High threshold Bit[3:0]: Low threshold AEC/AGC may change in larger steps when luminance average is greater than VV[7:4] or less than VV[3:0]
27-29	RSVD	XX	-	Reserved

Table 5 Device Control Register List (Sheet 6 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
2A	REG2A	00	RW	Common Control 2A Bit[7:4]: Line interval adjustment value 4 MSBs (see register REG2B[7:0] for 8 MSBs) Bit[3:2]: HSYNC timing end point adjustment 2 MSBs (see register HEDY for 8 LSBs) Bit[1:0]: HSYNC timing start point adjustment 2 MSBs (see register HSDY for 8 LSBs)
2B	REG2B	00	RW	Common Control 2B Bit[7:0]: Line interval adjustment value 8 LSBs (see register REG2A[7:4] for 4 MSBs) The frame rate will be adjusted by changing the line interval. Each LSB will add 1/1520 Tframe in SXGA and 1/760 Tframe in VGA mode to the frame period.
2C	RSVD	XX	_	Reserved
2D	ADDVSL	00	RW	VSYNC Pulse Width 8 LSBs Bit[7:0]: Line periods added to VSYNC width. Default VSYNC output width is 4 x tline. Each LSB count will add 1 x tline to the VSYNC active period.
2E	ADDVSH	00	RW	VSYNC Pulse Width 8 MSBs Bit[7:0]: Line periods added to VSYNC width. Default VSYNC output width is 4 x tline. Each MSB count will add 256 x tline to the VSYNC active period.
2F	YAVG	00	R	Luminance Average (this register will auto update)
30	HSDY	08	RW	HSYNC Position and Width Start 8 LSBs This register and register REG2A[1:0] define the HSYNC start position. Each LSB will shift the HSYNC starting point by a 2 pixel period.
31	HEDY	20	RW	HSYNC Position and Width End 8 LSBs This register and register REG2A[3:2] define the HSYNC end position. Each LSB will shift the HSYNC starting point by a 2 pixel period.
32	REG32	24	RW	Common Control 32 Bit[7:6]: Pixel clock divide option 00: No effect on PCLK 01: No effect on PCLK 10: PCLK frequency divide by 2 11: PCLK frequency divide by 4 Bit[5:3]: Horizontal window end position 3 LSBs (8 LSBs in register HREFEND) Bit[2:0]: Horizontal window start position 3 LSBs (8 LSBs in register HREFST)
33	REG33	C0	RW	Register 33 Bit[7:4]: Reserved Bit[3]: Mirror function (used with register bit REG04[7] (0x04)) Bit[2:0]: Reserved
34-35	RSVD	XX	_	Reserved

Table 5 Device Control Register List (Sheet 7 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
36	REG36	94	RW	Register 36 Bit[7:6]: Reserved Bit[5]: Auto de-noise divider value 0: 128 1: 64 Bit[4:0]: Reserved
37-3A	RSVD	XX	_	Reserved
3В	REG3B	00	RW	Power Control 3B Bit[7:4]: Reserved Bit[3]: Bypass internal regulator 0: Use internal regulator to generate V _{DD-D} power 1: Bypass internal regulator (V _{DD-D} power needs to be provided by an external source) Bit[2:0]: Reserved
3C	RSVD	XX	_	Reserved
3D	REG3D	3C	RW	Common Control 3D Bit[7:6]: Reserved Bit[5:0]: PLL divider f _{CLK} = XCLK × (0x40 – REG3D[5:0]) / 8 / (CLKRC[5:0] + 1)
3E	REG3E	50	RW	Register 3E Bit[7]: PLL bypass option 0: Enable PLL 1: Bypass PLL Bit[6:0]: Reserved
3F-40	RSVD	XX	7	Reserved
41	REG41	00	RW	Register 41 Bit[7:5]: UV adjust offset value[5:3] between gain threshold 1 and gain threshold 2. For others, refer to register REG5B[4:2] (0x5B). Bit[4:0]: Reserved
42	RSVD	XX	_	Reserved
43	REG43	00	RW	Register 43 Bit[7]: 9-zone average AEC option 0: Full size and VGA30 1: Other size Bit[6:0]: Reserved

Table 5 Device Control Register List (Sheet 8 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description		
44	REG44	00	RW	Register 44 Bit[7]: Reserved Bit[6]: Vertical line divider - works in scaling mode 0: No divider 1: Divider Bit[5:4]: Reserved Bit[3]: Vertical line divider number - works in scaling mode 0: Divide vertical line by 2 1: Divide vertical line by 4 Bit[2:0]: Reserved		
45	REG45	00	RW	Register 45 Bit[7:6]: AGC[9:8], AGC highest gain control Bit[5:0]: AEC[15:10], AEC 6 MSBs (see register AEC for AEC[9:2] and register REG04 for AEC[1:0]).		
46	FLL	00	RW	Frame Length Adjustment 8 LSBs Each bit will add 1 horizontal line timing in frame		
47	FLH	00	RW	Frame Length Adjustment 8 MSBs Each bit will add 256 horizontal lines timing in frame		
48-4A	RSVD	XX	-	Reserved		
4B	COM22	00	RW	Common Control 22 Bit[7:0]: Flash light control		
4C-4D	RSVD	XX	1	Reserved		
4E	COM25	05	RW	Common Control 25 Bit[7:6]: 50 Hz banding AEC 2 MSBs Bit[5:4]: 60 Hz banding AEC 2 MSBs Bit[3:0]: Reserved		
4F	BD50	9E	RW	50 Hz Banding AEC 8 LSBs (see register COM25[7:6] for 2 MSBs)		
50	BD60	84	RW	60 Hz Banding AEC 8 LSBs (see register COM25[5:4] for 2 MSBs)		
51-59	RSVD	XX	_	Reserved		
5A	REG5A	57	RW	Register 5A Bit[7:4]: 50 Hz banding maximum AEC step Bit[3:0]: 60 Hz banding maximum AEC step		
5B	REG5B	20	RW	Register 5B Bit[7:5]: Reserved Bit[4:2]: UV adjust offset value[5:3] between gain threshold 1 and gain threshold 2. For others, refer to register REG41[7:5] (0x41). Bit[1:0]: Reserved		

Table 5 Device Control Register List (Sheet 9 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
5C	REG5C	00	RW	Register 5C Bit[7]: Average AEC option 0: 9-zone average AEC 1: Full average AEC Bit[6:0]: Reserved
5D	REG5D	55	RW	9-zone Average Weight Option - AVGsel[7:0]
5E	REG5E	55	RW	9-zone Average Weight Option - AVGsel[15:8]
5F	REG5F	21	RW	Register 5F Bit[7:2]: Reserved Bit[1:0]: 9-zone average weight option - AVGsel[17:16]
60	REG60	80	RW	Register 60 Bit[7:3]: Reserved Bit[2:0]: UV adjust slope[2:0] between gain threshold 1 and gain threshold 2. For others, refer to registers COM1[5:4] (0x03) and REG05[2:0] (0x05).
61	HISTO_LOW	80	RW	Histogram Algorithm Low Level Bit[7:0]: Histogram algorithm low level
62	HISTO_HIGH	90	RW	Histogram Algorithm High Level Bit[7:0]: Histogram algorithm high level
63	REG63	01	RW	Register 63 Bit[7:6]: Reserved Bit[5]: Raw data output format (valid when register REG07[1:0] is 2'b11) 0: DSP function (AWB and Gamma) works on Raw output data 1: DSP functions do not work on Raw output data Bit[4:0]: Reserved
64	REG64	20	RW	Register 64 Bit[7]: BLC line select 0: SXGA 1: Other resolution Bit[6:0]: Reserved
65	REG65	10	RW	Register 65 Bit[7:2]: Reserved Bit[1:0]: UV adjustment gain threshold 2 value[4:3]
66	REG66	00	RW	Register 66 Bit[7:5]: UV adjustment gain threshold 2 value[2:0] Bit[4:0]: Reserved
67-69	RSVD	XX	_	Reserved

Table 5 Device Control Register List (Sheet 10 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
6A	REG6A	24	RW	Register 6A Bit[7:5]: Reserved Bit[4]: FIFO manual option (works with scaling function) 0: Auto mode 1: Manual mode Bit[3:0]: Reserved	
6B-74	RSVD	XX	1	Reserved	
75	REG75	D0	RW	Histogram-based AEC Lower Limit of Probability - LPH	
76	REG76	D0	RW	Histogram-based AEC Upper Limit of Probability - UPL	
77	REG77	F0	RW	Histogram-based AEC Probability Threshold for LRL - TPL	
78	REG78	90	RW	Histogram-based AEC Probability Threshold for HRL - TPH	
79	REG79	E5	RW	Register 79 Bit[7:2]: High nibble of luminance thrreshold for AEC/AGC speed control Bit[3:0]: Low nibble of luminance threshold for AEC/AGC speed control	
7A-7B	RSVD	XX	4	Reserved	
7C	REG7C	05	RW	Register 7C Bit[7]: AEC option 0: Average-based AEC 1: Histogram-based AEC Bit[6:0]: Reserved	
7D	REG7D	00	RW	Lens Correction Center Coordinates X Bit[7]: Sign bit Bit[6:0]: X-coordinate for lens correction center	
7E	REG7E	00	RW	Lens Correction Center Coordinates Y Bit[7]: Sign bit Bit[6:0]: Y-coordinate for lens correction center	
7F	REG7F	18	RW	Radius of the Circular Section Where Lens Correction Is Not Needed	
80	REG80	04	RW	Lens Correction Blue Gain Parameter - this register is valid when register LC7[2] (0x83) = 1	
81	REG81	04	RW	Lens Correction Red Gain Parameter - this register is valid when register LC7[2] (0x83) = 1	
82	REG82	04	RW	Lens correction Green Gain Parameter	

Table 5 Device Control Register List (Sheet 11 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
83	LC7	06	RW	Bit[7:3]: Reserved Bit[2]: Lens correction control select 0: Use register REG82 (0x82) for gain parameter for R, G, and B channels 1: Use register REG82 (0x82) for green gain parameter, register REG80 (0x80) for blue gain parameter, and register REG81 (0x81) for red gain parameter Bit[1]: Reserved Bit[0]: Lens correction enable switch 0: Disable 1: Enable	
84	REG84	86	RW	De-noise Level	
85	REG85	E7	RW	Register 85 Bit[7:5]: Reserved Bit[4]: RAW/YUV (only works when register bits REGD7[1:0] (0xD7) = 0'b10) Bit[3]: FIFO enable (works with scaling function) Bit[2]: Gamma enable option 0: Disable 1: Enable Bit[1]: AWB gain Bit[0]: AWB	
86-87	RSVD	XX	_	Reserved	
88	REG08	A2	RW	Register 88 Bit[7:5]: AWB option 0: Advanced AWB 1: Simple AWB Bit[6:0]: Reserved	
89-9A	RSVD	XX	-	Reserved	
9B	GAM1	04	RW	Gamma Curve Segment 1 End Point	
9C	GAM2	07	RW	Gamma Curve Segment 2 End Point	
9D	GAM3	10	RW	Gamma Curve Segment 3 End Point	
9E	GAM4	28	RW	Gamma Curve Segment 4 End Point	
9F	GAM5	36	RW	Gamma Curve Segment 5 End Point	
A0	GAM6	44	RW	Gamma Curve Segment 6 End Point	
A1	GAM7	52	RW	Gamma Curve Segment 7 End Point	
A2	GAM8	60	RW	Gamma Curve Segment 8 End Point	
A3	GAM9	6C	RW	Gamma Curve Segment 9 End Point	
A4	GAM10	78	RW	Gamma Curve Segment 10 End Point	
A5	GAM11	8C	RW	Gamma Curve Segment 11 End Point	

Table 5 Device Control Register List (Sheet 12 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description		
A6	GAM12	9E	RW	Gamma Curve Segment 12 End Point		
A7	GAM13	BB	RW	Gamma Curve Segment 13 End Point		
A8	GAM14	D2	RW	Gamma Curve Segment 14 End Point		
A9	GAM15	E5	RW	Gamma Curve Segment 15 End Point		
AA	SLOP	24	RW	Gamma Curve Segment 15 Slope		
AB	REGAB	E7	RW	Register AB Bit[7:4]: Reserved Bit[3]: Scaling enable option 0: Disable 1: Enable Bit[2]: Sharpness enable option 0: Disable 1: Enable Bit[1]: De-noise enable option 0: Disable 1: Enable Bit[0]: Reserved		
AC	REGAC	02	RW	De-noise Offset Limit in Auto De-noise Mode		
AD	REGAD	25	RW	Register AD Bit[7:5]: Reserved Bit[4:0]: Sharpness value when GAIN < 2x		
AE	REGAE	20	RW	Register AE Bit[7:3]: Reserved Bit[2]: Sharpness threshold double Bit[1:0]: Reserved		
AF	RSVD	XX	-	Reserved		
В0	REGB0	43	RW	Register B0 Bit[7]: Manual de-noise mode enable 0: Auto de-noise mode 1: Manual de-noise Bit[6:0]: Reserved		
B1-B6	RSVD	XX	-	Reserved		
В7	REGB7	00	RW	Register B7 Bit[7]: Scaling mode vertical output size bit[0] (11 bits total). For others, refer to registers REGB8[7:6] and REGBC Bit[6:4]: Scaling mode horizontal output size bit[2:1] (11 bits total). For others, refer to register REGBB Bit[3:0]: Reserved		

Table 5 Device Control Register List (Sheet 13 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W		Description
B8	REGB8	00	RW	For others, ro Bit[5:3]: Scaling mod For others, ro Bit[2:0]: Scaling mode	e vertical output size bit[2:1] (11 bits total). efer to registers REGB7[7] and REGBC e vertical input size bit[2:0] (11 bits total). efer to register REGBA e horizontal input size bit[2:0] (11 bits total). efer to register REGB9
В9	REGB9	A0	RW	Scaling Mode Horizontal In refer to register REGB8[2:0	put Size bit[10:3] (11 bits total). For others,
ВА	REGBA	80	RW	Scaling Mode Vertical Inpure refer to register REGB8[5:3	t Size bit[10:3] (11 bits total). For others,
ВВ	REGBB	A0	RW	Scaling Mode Horizontal O refer to registers REGB8[7]	utput Size[10:3] (11 bits total). For others, :6] and REGB7[6:4]
ВС	REGBC	80	RW	Scaling Mode Vertical Output Size[10:3] (11 bits total). For others re to registers REGB7[7] and REGB8[7:6]	
BD	CMX1	05	RW	Color Matrix Parameter 1	
BE	CMX2	16	RW	Color Matrix Parameter 2	$Y = \frac{(CMX1 \times R + CMX2 \times G + CMX3 \times B)}{32}$
BF	CMX3	05	RW	Color Matrix Parameter 3	
C0	CMX4	07	RW	Color Matrix Parameter 4	
C1	CMX5	18	RW	Color Matrix Parameter 5	$U = \frac{(CMX4 \times R + CMX5 \times G + CMX6 \times B)}{32}$
C2	CMX6	1F	RW	Color Matrix Parameter 6	
C3	CMX7	2B	RW	Color Matrix Parameter 7	
C4	CMX8	2B	RW	Color Matrix Parameter 8	$V = \frac{(CMX7 \times R + CMX8 \times G + CMX9 \times B)}{32}$
C5	CMX9	00	RW	Color Matrix Parameter 9	,
C6	CMX10	98	RW	Color Matrix Control 1 Bit[7]: Sign bit of C Bit[6]: Sign bit of C Bit[5]: Sign bit of C Bit[4]: Sign bit of C Bit[3]: Sign bit of C Bit[2]: Sign bit of C Bit[1]: Sign bit of C Bit[1]: Sign bit of C Bit[0]: Sign bit of C	MX7 MX6 MX5 MX4 MX3 MX2

Table 5 Device Control Register List (Sheet 14 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description		
C7	CMX11	10	RW	Color Matrix Control 2 Bit[7]: Sign bit of CMX9 Bit[6]: Reserved Bit[5]: Auto UV adjustment enable 0: Disable 1: Enable Bit[4]: Special Digital Effects (SDE) enable 0: Disable 1: Enable Bit[3:0]: Reserved		
C8	REGC8	02	RW	Register C8 Bit[7]: Fixed Y output value 0: Disable 1: Enable Bit[6]: Negative output 0: Disable 1: Enable Bit[5]: Gray scale output 0: Disable 1: Enable Bit[4]: Fixed V output value 0: Disable 1: Enable Bit[3]: Fixed U output value 0: Disable 1: Enable Bit[2]: Contrast function enable 0: Disable 1: Enable Bit[1]: Color saturation function enable 0: Disable 1: Enable Bit[0]: Hue adjustment enable 0: Disable 1: Enable Bit[0]: Hue adjustment enable 0: Disable 1: Enable		
C9	REGC9	80	RW	Hue Adjustment Cosine Parameter		
CA	REGCA	00	RW	Hue Adjustment Sine Parameter		
СВ	REGCB	40	RW	Saturation U Gain Value		
CC	REGCC	40	RW	Saturation V Gain Value		
CD	REGCD	80	RW	Fixed U Output Value		
CE	REGCE	80	RW	Fixed V Output Value		

Table 5 Device Control Register List (Sheet 15 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
CF	REGCF	00	RW	Y Offset Value
D0	REGD0	20	RW	Y Gain Value Y' = [(Y + Yoffset) × Ygain] + Ybrightness when enabling contrast function
D1	REGD1	00	RW	Y Brightness Value
D2	REGD2	00	RW	Register D2 Bit[7]: Auto UV adjustment enable Bit[6:5]: Reserved Bit[4:0]: UV adjust offset value after gain threshold 2
D3	REGD3	00	RW	FIFO Delay Timing Configuration (works with scaling function)
D4	RSVD	XX	_	Reserved
D5	REGD5	00	RW	IO Pad Direction Control Bit[7]: D7 direction control 0: Input 1: Output Bit[6]: D6 direction control 0: Input 1: Output Bit[5]: D5 direction control 0: Input 1: Output Bit[4]: D4 direction control 0: Input 1: Output Bit[3]: D3 direction control 0: Input 1: Output Bit[2]: D2 direction control 0: Input 1: Output Bit[1]: D1 direction control 0: Input 1: Output Bit[1]: D1 direction control 0: Input 1: Output Bit[1]: D1 direction control 0: Input 1: Output Bit[0]: D0 direction control 0: Input 1: Output Bit[0]: D0 direction control 0: Input 1: Output
D6	REGD6	00	RW	Register D6 Bit[7:2]: Reserved Bit[1]: D9 direction control 0: Input 1: Output Bit[0]: D8 direction control 0: Input 1: Output

Table 5 Device Control Register List (Sheet 16 of 16)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
D7	REGD7	10	RW	Register D7 Bit[7:5]: Reserved Bit[4]: YU swap function 0: U Y V Y 1: Y U Y V Bit[3]: Data pins swap function (changes MSB to D0 and LSB to D9) - works in YUV mode 0: Disable 1: Enable Bit[2]: HREF to HSYNC 0: Output HREF signal 1: Output HSYNC signal Bit[1:0]: Data output format selection 00: YUV output 01: RGB output 10: ISP RAW output 11: RAW output
D8	REGD8	C4	RW	Register D8 Bit[7:6]: Reserved Bit[5]: HREF/HSYNC negative output 0: Positive output 1: Negative output Bit[4]: Reserved Bit[3]: CCIR656 output selection 0: Disable 1: Enable Bit[2]: Reserved Bit[1:0]: RGB data output format selection (effective when register bits REGD7[1:0] = 01) 00: Not used 01: RGB565 10: RGB555 11: RGB444
D9	REGD9	64	RW	Register D9 Bit[7:4]: Sharpness value when 4x < GAIN < 8x Bit[3:0]: Sharpness value when 2x < GAIN < 4x
DA	REGDA	86	RW	Register DA Bit[7:4]: Sharpness value when 16x < GAIN Bit[3:0]: Sharpness value when 8x < GAIN < 16x
DB-DE	RSVD	XX	_	Reserved Please contact OmniVision Technologies for reference register settings

Package Specifications

The OV9665 uses a 26-pin Chip Scale Package 2 (CSP2). Refer to Figure 11 for package information, Table 6 for package dimensions and Figure 12 for the array center on the chip.

Note: For OVT devices that are lead-free, all part marking letters are lower case. Underlining the last digit of the lot number indicates CSP2 is used.

Figure 11 OV9665 Package Specifications

Table 6 CSP Package Dimensions

Parameter	Symbol	Min	Nominal	Max	Unit
Package body dimension X	А	4460	4485	4510	μm
Package body dimension Y	В	4960	4985	5010	μm
Package height	С	845	905	965	μm
Ball height	C1	150	180	210	μm
Package body thickness	C2	680	725	770	μm
Cover glass thickness	C3	375	400	425	μm
Airgap between cover glass and sensor	C4	30	45	60	μm
Ball diameter	D	320	350	380	μm
Total pin count	N		26		
Pin count X-axis	N1		5		
Pin count Y-axis	N2		6		
Pins pitch X-axis	J1		660		μm
Pins pitch Y-axis	J2		660		μm
Edge-to-pin center distance analog X	S1	893	923	953	μm
Edge-to-pin center distance analog Y	S2	813	843	873	μm

Sensor Array Center

Figure 12 OV9665 Sensor Array Center

note1 this drawing is not to scale and is for reference only.

note2 as most optical assemblies invert and mirror the image, the chip is typically mounted with pin A1 oriented down on the PCB.

9665CSP_DS_012

Chief Ray Angle

Figure 13 OV9665 Chief Ray Angle

IR Reflow Ramp Rate Requirements

OV9665 Lead-Free Packaged Devices

Note: For OVT devices that are lead-free, all part marking letters are lower case.

Figure 14 IR Reflow Ramp Rate Requirements

Table 7 Reflow Conditions

Condition	Exposure
Average ramp-up rate (30°C to 217°C)	Less than 3°C per second
> 100°C	Between 330 - 600 seconds
> 150°C	At least 210 seconds
> 217°C	At least 30 seconds (30 ~ 120 seconds)
Peak temperature	245°C
Cool-down rate (peak to 50°C)	Less than 6°C per second
Time from 30°C to 245°C	No greater than 390 seconds

Note:

- All information shown herein is current as of the revision and publication date. Please refer to the OmniVision web site (http://www.ovt.com) to obtain the current versions of all documentation.
- OmniVision Technologies, Inc. reserves the right to make changes to their products or to discontinue any product or service without further notice (It is advisable to obtain current product documentation prior to placing orders).
- Reproduction of information in OmniVision product documentation and specifications is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. In such cases, OmniVision is not responsible or liable for any information reproduced.
- This document is provided with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Furthermore, OmniVision Technologies, Inc. disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.
- 'OmniVision', 'VarioPixel' and the OmniVision logo are registered trademarks of OmniVision Technologies, Inc. 'OmniPixel2' and 'CameraChip' are trademarks of OmniVision Technologies, Inc. All other trade, product or service names referenced in this release may be trademarks or registered trademarks of their respective holders. Third-party brands, names, and trademarks are the property of their respective owners.

For further information, please feel free to contact OmniVision at <u>info@ovt.com</u>.

OmniVision Technologies, Inc. 4275 Burton Drive Santa Clara, CA 95054 USA (408) 567-3000

Document Title: OV9665 (CSP2) Datasheet **Version:** 1.0

DESCRIPTION OF CHANGES

• Initial release

Document Title: OV9665 (CSP2) Datasheet **Version:** 1.1

DESCRIPTION OF CHANGES

The following changes were made to version 1.0:

- In Figure 6 on page 7, changed timing between falling edge of HREF and rising edge of VSYNC from 13716 tp to 15223 tp
- In Figure 7 on page 7, changed timing between falling edge of HREF and rising edge of VSYNC from 13679 tp to 13697 tp
- In Table 5 on page 12, changed Register Name, Default value, and R/W type of register 0x0D from "RSVD", "XX", and "—" to "REG0D", "80", and "RW", respectively
- In Table 5 on page 12, changed description of register 0x0D from "Reserved" to: Register 0D

Bit[7:5]: Reserved

Bit[4]: DSP clock selection

0: For SXGA mode

1: For VGA 30 mode

Bit[3:0]: Reserved

Document Title: OV9665 (CSP2) Datasheet **Version:** 1.2

DESCRIPTION OF CHANGES

The following changes were made to version 1.1:

 Under Ordering Information on page 1, changed Ordering Part Number from OV09665-VL9A to OV09665-V26A

Document Title: OV9665 (CSP2) Datasheet **Version:** 1.3

DESCRIPTION OF CHANGES

The following changes were made to version 1.2:

- In Table 3 on page 5, added row for I_{DDA} (See Note^c condition) with Typ spec of "22+24^d" and Max spec of "60", added footnote c, "At 25°C, $V_{DD-A} = 2.8V$, $V_{DD-IO} = 2.8V$, $I_{DDA} = \sum \{I_{DD-A} + I_{DD-IO}\}$, $f_{CLK} = 24$ MHz at 15 fps YCbCr output with typical loading" and footnote d, " $I_{DD-IO} = 22$ mA, $I_{DD-A} = 24$ mA, with typical loading"
- In Table 3 on page 5, added row for I_{DDS-PWDN} (See Note^f condition) with Typ spec of "23" and Max spec of "45", added footnote f, "At 25°C, V_{DD-A} = 2.8V, V_{DD-IO} = 2.8V, I_{DDS-SCCB} refers to a SCCB-initiated Standby, while I_{DDS-PWDN} refers to a PWDN pin initiated Standby"