Lógica

Mauro Polenta Mora

Ejercicio 3

Consigna

Sean φ , ψ fórmulas de FORM. Construya derivaciones que demuestren:

1.
$$\forall x (\varphi \to \psi) \vdash (\forall x \ \varphi \to \forall x \ \psi)$$

2.
$$\forall x \varphi \vdash \neg \forall x(\neg \varphi)$$

3.
$$\forall x \varphi \vdash \forall z \varphi[z/x]$$
 (donde z no ocurre en φ)

4.
$$\forall x \forall y \varphi \vdash \forall y \forall x \varphi$$

5.
$$\forall x \forall y \ \varphi \vdash \forall x \ \varphi[x/y], \ \text{con} \ x \notin BV(\varphi)$$

6.
$$\forall x(\varphi \land \psi) \vdash \exists x \varphi \land \exists x \psi$$

7.
$$\exists x \ \varphi, \ \forall x(\varphi \to \psi) \vdash \exists x \ \psi$$

Resolución

Parte 2

$$\frac{ \left[\forall x (\neg \varphi) \right]^{1}}{\neg \varphi} E \forall (*_{1}) \qquad \frac{\forall x \varphi}{\varphi} E \forall (*_{2})$$

$$\frac{\bot}{\neg \forall x (\neg \varphi)} I^{\neg (1)}$$

Figure 1: Figura 1

Donde:

1. $(*_1)$ es correcto pues xestá libre para x en $\neg \varphi$

2. $(*_2)$ es correcto pues x está libre para x en φ

Parte 3

$$\frac{\frac{\forall x \varphi}{\varphi[z/x]} E \forall (*_2)}{\forall z \varphi[z/x]} I \forall (*_1)$$

Figure 2: Figure 2

Donde:

- 1. $(*_1)$ es correcto pues $z \notin FV(\forall x\varphi)$ que es la hipótesis abierta en este momento.
- 2. $(*_2)$ es correcto pues z está libre para x en φ (pues por hipótesis z no ocurre en φ)

Parte 5

$$\frac{\frac{\forall x \forall y \varphi}{\forall y \varphi} E \forall (*_3)}{\varphi[x/y]} E \forall (*_2)$$
$$\frac{\varphi[x/y]}{\forall x \varphi[x/y]} I \forall (*_1)$$

Figure 3: Figura 3

Donde:

- 1. $(*_1)$ es correcto pues $x \notin FV(\forall x \forall y \varphi)$ que es la hipótesis abierta en este momento.
- 2. $(*_2)$ es correcto pues x está libre para y en φ por la hipótesis de que $x \notin BV(\varphi)$ que significa que no aparece $(\forall x)$ en φ
- 3. $(*_3)$ es correcto pues x está libre para x en $\forall y\varphi$

Parte 6

Donde:

- 1. $(*_1)$ es correcto pues x está libre para x en φ
- 2. $(*_2)$ es correcto pues x está libre para x en ψ
- 3. $(*_3)$ es correcto pues x está libre para x en $(\varphi \wedge \psi)$
- 4. $(*_4)$ es correcto pues x está libre para x en $(\varphi \wedge \psi)$

$$\frac{\forall x(\varphi \wedge \psi)}{\varphi \wedge \psi} E \forall (*_3) \qquad \frac{\forall x(\varphi \wedge \psi)}{\varphi \wedge \psi} E \forall (*_4)$$

$$\frac{\varphi \wedge \psi}{\exists x \varphi} I \exists (*_1) \qquad \frac{\psi}{\exists x \psi} I \exists (*_2)$$

$$\exists x \varphi \wedge \exists x \psi$$

Figure 4: Figura 4