juin 2015

Numéro d'anonymat :	
---------------------	--

Examen de langages et automates (deuxième session)

Seuls, les documents papiers (et traducteurs) sont autorisés.

Interdiction de communiquer un document.

Durée: 2 heures

REMPLIR LES CADRES ET RENDRE CE DOCUMENT AINSI COMPLÉTÉ UN EXCÈS DE REPONSES FAUSSES SERA SANCTIONNÉ PAR DES POINTS NÉGATIFS

-	4
HVORCICO	
Exercice	•

a) Soit l'automate $A = (\sum, E, I, F, \delta)$ où $\sum = \{4, 5\}$. $E = \{0, 1, 2, 3\}$, $I = \{0, 1\}$, $F = \{1, 2\}$ et δ défini par :

 $\forall i \in E, \forall j \in \Sigma, \delta(i, j) = (i + j) \mod 4$ où « n mod p » est le reste de la division de n par p

Donner la valeur des expressions suivantes :

 $\delta(0,4)$:

 $\{0, 1\}$ $\delta(I,4)$:

 $\delta^*(F, 5.5)$: $\{0,3\}$ 5.5 est la concaténation des deux lettres 5

 $\delta^*(\{0,3\},5.5) \cap F \neq \emptyset$: vrai

Exercice 2:

a) Montrer que les deux expressions rationnelles a(ba)* et (ab)*a sont égales, dans le sens où l'ensemble des mots du langage associé à chacune des deux expressions rationnelles est le même.

 $m \in L(a(ba)^*)$ \Leftrightarrow m=a.m' avec $m' \in L((ba)^*)$ $\Leftrightarrow \exists n \in \mathbb{N}, m = a.(ba)^n$ $\exists n \in \mathbb{N}, m = a(ba)...(ba)$ fois $\Leftrightarrow \exists n \in \mathbb{N}, m = ab(ab)...(ab)a$ $\Leftrightarrow \exists n \in \mathbb{N}, m = (ab)^n a$ $\Leftrightarrow m \in L((ab)^n.a)$

b) Soit l'automate $A_1 = (\Sigma = \{a,b\}, E_1, I_1, F_1, \delta_1)$ représenté par le diagramme suivant :

Soit l'automate A₂ représenté par le diagramme suivant :

Montrer, qu'en appliquant la méthode de variation des états d'entrée, on peut associer à l'automate A_1 l'une des deux expressions rationnelles de la question a) précédente.

Montrer, qu'en appliquant la méthode de variation des états de sortie, on peut associer à l'automate A_2 l'une des deux expressions de la question a) précédente.

```
Méthode de variation des états d'entrée pour A1 : R1 = aR2 R2 = bR3 + \varepsilon R3=aR2

On recherche R1 : R2 = bR3 + \varepsilon = baR2 + \varepsilon ==> R2 = (ba)* ==> R1 = a (ba)<sup>a</sup>

Méthode de variation des états de sortie pour A2 : R4 = R6 b + \varepsilon R5 = R4 a R6 = R4 a

On recherche R5 : R4 = R6b + \varepsilon ==> R4 = (ab)* ==> R5 = (ab)*a
```

c) Que peut-on en déduire sur le lien entre ces deux automates.

Que les deux automates reconnaissent le même langage. Il sont équivalent.

d) Soit l'automate $A_{12} = (\Sigma = \{a,b\}, E_1 \cup E_2, I_1 \cup I_2, F_1 \cup F_2, \delta_1 \cup \delta_2 \}$. Appliquer en l'expliquant la méthode vue en cours pour déterminiser l'automate A_{12} .

L'automate A₁₂ est :

Il n'est pas déterministe puisqu'il a deux états initiaux. Sa déterminisation donne :

état initial $i = \{1,4\}$

L'automate déterminisé est :

On remarquera que l'o obtient l'automate A1, ce qui n'est pas surprenant puisque A1 et A2 sont équivalent et que A1 est déterministe.

Exercice 3: Soit la grammaire G_p , définies sur l'alphabet $\Sigma = \{a,b\}$, ayant S_p comme axiome et ayant comme productions:

$$S_P \, \rightarrow \, a \, S_P \, a \, \mid \, b \, S_P \, b \, \mid \, \epsilon$$

a) Prouver que $\forall m \in \Sigma^*$, $S_p \stackrel{*}{\rightarrow} m \Rightarrow |m|_a$ est pair et $|m|_b$ est pair

```
Soit \Pi(n) = S_p \stackrel{\leq n}{\to} m \Rightarrow |m|_a = |m|_b

\Pi(1) est vrai car S_p \stackrel{\leq 1}{\to} m \Rightarrow m = \epsilon \Rightarrow |m|_a = |m|_b

Hypothèse: \Pi(n) vrai et n \geq 1. Montrons que \Pi(n+1) est vrai : S_p \stackrel{n+1}{\to} m \Rightarrow S_p \rightarrow \alpha S_p \alpha \stackrel{n}{\to} m \text{ (avec } \alpha = a \text{ ou } \alpha = b) \text{ } (S_p \rightarrow \epsilon \stackrel{n}{\to} m \text{ impossible)}

\Rightarrow m = \alpha m' \alpha \text{ et } |m'|_a \text{ est pair ainsi que } |m'|_b \text{ par (H.R.)}

\Rightarrow m = \alpha m' \alpha \text{ et } |m'|_a \text{ est pair ainsi que } |m|_b = |m'|_b

\Rightarrow i \alpha = a \text{ alors } |m|_a = |m|_a + 2 \text{ est pair ainsi que } |m|_b = |m'|_b + 2

\Rightarrow |m|_a \text{ est pair et } |m|_b \text{ est pair}
```

b) En déduire que $\forall m \in \Sigma^*$, $S_p \stackrel{*}{\rightarrow} m \Rightarrow |m|$ est un nombre pair

 $|m| = |m|_a + |m|_b$ qui sont tous les deux des nombres pairs. Donc |m| est un nombre pair. c) L'image miroir d'un mot $\alpha_1 \alpha_2 \alpha_3 \cdots \alpha_n$ constitué des lettres α_i est le mot $\alpha_n \alpha_{n-1} \alpha_{n-2} \cdots \alpha_1$. On notera \overline{m} l'image miroir de m. Formellement, l'image miroir est définie par :

 $\forall m \in \Sigma^*, \ \forall \alpha \in \Sigma, \ \overline{\alpha.m} = \overline{m}.\overline{\alpha} \ \text{et} \ \forall \alpha \in \Sigma \cup \{\epsilon\}, \ \overline{\alpha} = \alpha$

On admettra que l'on a aussi $\forall m \in \Sigma^*$, $\forall \alpha \in \Sigma$, $\overline{m \cdot \alpha} = \overline{\alpha} \overline{m}$

Définition : un mot m est un palindrome si $\exists m_1 \in \Sigma^*$, $\exists \omega \in \Sigma \cup \{\varepsilon\}$, tel que $m = m_1 \omega \overline{m_1}$

Prouver que $\forall m \in \Sigma^*$, $S_p \stackrel{*}{\rightarrow} m \Rightarrow m$ est un palindrome

```
Soit \Pi(n) = S_p \stackrel{\leq n}{\to} m \Rightarrow m \text{ est un palindrome}
\Pi(1) \text{ est vrai car } S_p \stackrel{\leq 1}{\to} m \Rightarrow m = \epsilon \Rightarrow m \text{ est un palindrome}
Hypothèse: \Pi(n) vrai et n \geq 1 . Montrons que \Pi(n+1) est vrai: S_p \stackrel{n+1}{\to} m \Rightarrow S_p \Rightarrow \alpha S_p \alpha \stackrel{n}{\to} m \text{ (avec } \alpha = a \text{ ou } \alpha = b) \text{ } (S_p \Rightarrow \epsilon \stackrel{n}{\to} m \text{ impossible)}
\Rightarrow m = \alpha m' \alpha \text{ et } S_p \Rightarrow m' \text{ (Lemme fondamental)}
\Rightarrow m = \alpha m' \alpha \text{ et } m' \text{ est un palindrome} \text{ par (H.R.)}
\Rightarrow m = \alpha m' \alpha \text{ et } m' = m_1 \omega \overline{m_1}, \quad \omega \in \Sigma \cup \{\epsilon\}
\Rightarrow m = \alpha m_1 \omega \overline{m_1} \alpha, \quad \omega \in \Sigma \cup \{\epsilon\}
\Rightarrow m = \alpha m_1 \omega \overline{m_1}, \quad \omega \in \Sigma \cup \{\epsilon\}
\Rightarrow m \text{ est un palindrome}
```

d) Prouver que : $\forall m \in \Sigma^*$, m est un palindrome et |m| est pair $\Rightarrow S_P \stackrel{*}{\Rightarrow} m$

Soit $\Pi(n) = m$ est un palindrome et |m| est pair et $|m| \le n \Rightarrow S_p \xrightarrow{*} m$ $\Pi(0)$ est vrai car, si m vérifie $|m| \le 0$ alors $m = \epsilon$ et donc $S_p \xrightarrow{*} \epsilon = m$ est vrai.

Hypothèse : $\Pi(n)$ vrai et $n \ge 0$. Montrons que $\Pi(n+1)$ est vrai :

Soit m tel que |m|=n+1 . Alors $\exists m_1 \in \Sigma^*$, $\exists \omega \in \Sigma \cup \{\varepsilon\}$, tel que $m=m_1 \omega \overline{m_1}$ Si m_1 est le mot vide ε , alors il en est de même de $\overline{m_1}$ et donc |m| est impair ce qui est impossible Donc on peut décomposer $m_1=\alpha m'_1$ où α est une lettre de l'alphabet (a ou b). On a alors :

 $S_p \stackrel{1}{\to} \alpha S_p \alpha \stackrel{*}{\to} \alpha m'_1 \omega \overline{m'_1} \alpha$ en appliquant l'Hyp. Réc. Pour le palindrome $m'_1 \omega \overline{m'_1}$ qui a au plus n lettres .

D'où:

$$S_P \rightarrow \alpha m'_1 \omega \overline{\alpha m'_1} = m_1 \omega \overline{m_1} = m$$