Geometry - Online Quiz

Following quiz provides Multiple Choice Questions (MCQs) related to **Geometry**. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using **Show Answer** button. You can use **Next Quiz** button to check new set of questions in the quiz.

Q 1 - The sum of all angles around a point is

A - 0°

B - 90°

C - 180°

D - 360°

Q 3 - In the given figure , AB || CD, \angle BAE =110 $^{\circ}$, \angle ECD = 120 $^{\circ}$ and \angle AEC =x $^{\circ}$. Then, x=?

A - 130°

B - 65°

C - 75°

D - 110°

Answer: A

Explanation

Draw FEG|| AB ||CD.

AB∥ EG and AE is the transversal.

∴ ∠BAE +∠AEG = 180°

 \Rightarrow 110° + \angle AEG =180° \Rightarrow \angle AEG =70°

Again, EG∥ CD and EC is transcersal.

 \therefore ∠GEC + ∠ ECD = 180° \Rightarrow ∠GEC +120° =180° \Rightarrow ∠GEC= 60°

∴ X= 70+60 =130

Q 4 - In the given figure , AB II CD, \angle ABE =120°, \angle DCE = 100° and \angle BEC =x°. Then, x=?

A - 60°

B - 50°

C - 40°

D - 70°

Answer: C

Explanation

Through E draw GEH | AB ||CD

AB∥ EG and BE is the transversal.

 \angle ABE + \angle GEB = 180° \Rightarrow 120° + \angle GEB =180° \Rightarrow \angle GEB = 60°

CD ||EH and CE is the transversal.

 \therefore ∠DCE +∠CEH = 180° \Rightarrow 100° + ∠CEH =180° \Rightarrow CEH = 80°

NOW \angle GEB+ \angle BEC + \angle CEH = 180° \Rightarrow 60+x+80 =180 \Rightarrow x = 40

Hide Answer

Q 5 - In A \triangle ABC , \angle A- \angle B=33° and \angle B - \angle C = 18° . Then \angle B =?

A - 35°

B - 55°

C - 45°

D - 57 °

Answer: B

Explanation

```
\angle A- \angleB = 33° and \angleB -\angleC =18°

\Rightarrow A= 33+ B and C=B -18

= (33+B) + B + (B-18) =180

\Rightarrow 3B =165 \Rightarrow B 55.

\therefore \angleB =55°.
```

Q 6 - A ladder is placed in such a way that its foot is 15m away from a wall and its top reaches a window 20m above the ground. The length of the ladder is:

A - 35m

B - 17.5m

C - 25 m

D - 18 m

Answer: C

Explanation

Let BC be the wall and AB be the ladder. Then , BC = 20 m and AC =15m \therefore AB²= BC² +AC² = (20)² + (15)² = (400 + 225) = 625 \Rightarrow AB = $\sqrt{625}$ = 25m.

Q 7 - The radius of a circle is 13cm and AB is a chord which is at a distance of 12cm from the center. The length of the ladder is:

A - 35 cm

B - 17.5 cm

C - 25 cm

D - 10 cm

Answer: D

Explanation

Let 0 be the $\,$ center of the circle and AB be the chord . Form $\,$ 0, draw OL \perp AB. join OA.

Then, oA = 13 cm and OL = 12cm.

$$\therefore AL^2 = 0A^2 - 0L^2 = (13)^2 - (12)^2 = (169-144) = 25.$$

=.> AL=
$$\sqrt{25}$$
 =5 cm
 \Rightarrow AB = 2 * AL =(2*5) cm = 10 cm.

Q 8 - In the given figure , POQ is a diameter and PQRS is a cyclic quadrilateral. If \angle PSR =130 $^{\circ}$, Then \angle RPQ =?

- A 40°
- B 50°
- C 60°
- D 70°

Answer: A

Explanation

```
PQRS is a cyclic quadrilateral. 
 \anglePSR + \anglePQR = 180° \Rightarrow 130° + \anglePQR =180° \Rightarrow \angle PQR=50°. 
 Also PRQ = 90° (angle in a semi- circle) 
 In PQR we have 
 \anglePQR + \anglePRQ + \angleRPQ = 180° \Rightarrow 50° +90°+\angleRPQ =180° \Rightarrow \angleRPQ = 40°.
```

Hide Answer

Q 9 - In the given figure, AOB is a diameter of the circle and CD || AB. If ∠DAB = 25°, Then ∠CAD=?

A - 45°

B - 40°

C - 65°

D - 115°

Answer: B

Explanation

```
AB DC and AC is a transversal.

\therefore \angle ACD = \angle CAB = 25^{\circ} \text{ (alt. s )}
\angle ACB = 90^{\circ} \text{ (angle in a semicircle)}
\therefore \angle BCD = \angle ACB + \angle ACD = (90^{\circ} + 25^{\circ}) = 115^{\circ}.
\angle BAD + \angle BCD = 180^{\circ} \Rightarrow \angle BAC + \angle CAD + \angle BCD = 180^{\circ}
\Rightarrow 25^{\circ} + \angle CAD + 115^{\circ} = 180^{\circ} \Rightarrow \angle CAD = 40^{\circ}
```

Show Answer

Q 10 - The lengths of the diagonals of a rhombus are 24cm and 18cm respectively. The length of each side of the rhombus is

A - 12 cm

B - 9 cm

C - 15 cm

D - 8 cm

Answer: C

Explanation

Let ABCD be a rhombus in which diagonal AC=24 cm and diagonal BD =18 cm . We know that the diagonal of a rho

$$\therefore$$
 OA = 1/2 AC =(1/2 *24) cm =12cm

$$OB = 1/2 BD = (1/2 *18) cm = 9cm$$

$$AB^2 = OA^2 + OB^2 = (12)^2 + 9^2 = (144 + 81) = 225$$

$$\Rightarrow$$
 AB = $\sqrt{225}$ = 15 cm.

∴ Each side of the rhombus is 15 cm.

Hide Answer