DIMETHOXYMETHANE IN DIESEL FUEL: Chemical Characterization of Toxicologically Relevant Compounds from Diesel Emissions

INTERIM REPORT TFLRF No. 358

by

Douglas M. Yost Janet Buckingham Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, TX 78238

Under Contract to

U.S. Army TARDEC Petroleum and Water Business Area Warren, MI 48397-5000

for

U. S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, SW Washington, D. C. 20585

and

Coordinating Research Council, Inc. 3650 Mansell Road, Ste. 140 Alpharetta, GA 30022-3068

TARDEC Contract Nos. DAAE-07-99-C-L053 (WD03 of SwRI Project No. 03-03227)

DAAK-70-92-C-0059 (WD69 of SwRI Project No. 03-05137)

CRC Contract No. CIDI-1 (SwRI Project No. 03-03143)

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

DIMETHOXYMETHANE IN DIESEL FUEL: Chemical Characterization of **Toxicologically Relevant Compounds** from Diesel Emissions

INTERIM REPORT TFLRF No. 358

by Douglas M. Yost Janet Buckingham Edwin A. Frame

U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI) Southwest Research Institute San Antonio, TX 78228

Under Contract to

U.S. Army TARDEC Petroleum and Water Business Area Warren, MI 48397-5000

for

U. S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, SW Washington, D. C. 20585

and

Coordinating Research Council, Inc. 3650 Mansell Road, Ste. 140 Alpharetta, Ga. 30022-3068

TARDEC Contract Nos. DAAE-07-99-C-L053 (WD03 of SwRI Project No. 03-3227) DAAK-70-92-C-0059 (WD69 of SwRI Project No. 03-5137) CRC No. CIDI-1 (SwRI Project No. 03-03143)

Approved by:

April 2001

Edwin C. Owens, Director

U.S. Army TARDEC Fuels and Lubricants

Research Facility (SwRI)

This report must be reproduced in full, unless SwRI approves a summary or abridgement.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarter Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE	2. REPORT DATE April 2001	3. REPORT TYPE AND DAT Interim, October 1999 - Augus			
4. TITILE AND SUBTITLE DIMETHOXYMETHANE IN DI Relevant Compounds from Di	5. FUNDING NUMBERS WD69 DAAK-70-92-C-0059				
6. AUTHOR(S) Yost, D. M. , Buckingham, J.,	6. AUTHOR(S) Yost, D. M., Buckingham, J., and Frame, Edwin A. WD03 DAAE07-99-C-L053				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI) Southwest Research Institute P.O. Drawer 28510 San Antonio, Texas 78228-0510 8. PERFORMING ORGANIZATION REPORT NUMBER IR TFLRF No. 358					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER U.S. Army TARDEC Petroleum and Water Business Area Warren, MI 48397-5000			MONITORING AGENCY		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY approved for public release; distribution unlimited			12b. DISTRIBUTION CODE		
1					

13. ABSTRACT (Maximum 200 words)

The objective of this study was to quantify engine-out emissions of potentially toxic compounds from a modern diesel engine operated with different fuels. Five diesel fuels were examined: a low-sulfur, low-aromatic hydrocracked fuel, the same low sulfur fuel containing 15% v/v dimethoxy methane, a Fischer-Tropsch fuel, a California reformulated fuel, and a EPA number 2 certification fuel. A DaimlerChrysler OM611 CIDI engine was controlled with a SwRI Rapid Prototyping Electronic Control system. The engine was operated over 5 speed-load modes. Each operating mode and fuel combination was run in triplicate. Thirty-three potentially toxic compounds were measured for each fuel and mode. An analysis of variance of the fuels showed that, in general, the 15% v/v dimethoxy methane fuel and the Fisher-Tropsch fuels had significantly lower emissions of measured compounds compared to the remaining fuels and were statistically indistinguishable from each other. The effect of pilot fuel injection on engine-out emissions was also determined. The pilot fuel injection was either turned off or turned on with engine control by either Location of Peak Pressure (LPP) of combustion or the original equipment manufacturer (OEM) calibration strategy. These three control strategies were compared over 2 speed-load modes run in triplicate. Thirty-three potentially toxic compounds were measured. In general, either pilot fuel injection strategy (LPP or OEM) produced higher emissions than with pilot injection turned off.

14. SUBJECT TERMS PAH Diesel Emissions CIDI engine Pilot Injection 15. NUMBER OF PAGE 176				
Toxic Compounds Clean A	3	ne Pilot Injection	16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT 18. SECURITY CLASSIFICATION OF THIS PAGE		19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT	

EXECUTIVE SUMMARY

Objectives:

- Investigate the role of dimethoxy methane as an oxygenated diesel fuel additive on the engine-out exhaust emissions of potentially toxicologically relevant compounds.
- Determine the polycyclic aromatic hydrocarbon (PAH) content of organic solvent extracts
 of exhaust particulate matter; gaseous exhaust PAH; other toxic air pollutants collected
 from a diesel engine using various fuel compositions and engine operating conditions.

Approach:

- A DaimlerChrysler OM611 CIDI engine was used to determine the effect of diesel fuel type on toxicologically relevant compounds from engine-out exhaust emissions.
- The engine was controlled by a SwRI Rapid Prototyping Electronic Control System (RPECS).
- The test matrix included 5 fuels (including one oxygenate blend) operated over 5 speed/load points.
- Each speed/load point was devised to hold Location of Peak Pressure (LPP) at 7°ATDC, while maintaining cylinder balance within 5 % of the Indicated Mean Effective Pressure (IMEP), with pilot fuel injection disabled.
- Two of the speed/load points were operated at two different pilot fuel injection strategies. One pilot strategy used the stock controller, while the other was to include pilot fuel injection while maintaining the Location of Peak Pressure at a constant.
- Four toxic air pollutant exhaust emissions were measured.
- Eleven gaseous PAH compounds were measured.
- Seventeen PAH compounds were determined from the soluble organic fraction of the exhaust particulate matter.

Accomplishments:

- All fuel tests were completed in triplicate for five modes, pilot injections off, LPP operation.
 Evaluation of pilot fuel injection effects for all fuels were completed in triplicate for two modes and two pilot fuel injection strategies.
- Statistically significant fuel effects on exhaust emissions were identified.
- Oxygenate-containing fuel and Fischer-Tropsch fuel produced the lowest overall toxic air pollutant and PAH exhaust emissions.

Future Directions:

In a follow-on phase, similar investigations will be conducted using an engine with exhaust emission control devices.

FOREWORD/ACKNOWLEDGMENTS

This work was performed for the Department of Energy Office of Transportation Technology (DOE/OTT), Mr. John Garbak, and the Coordinating Research Council (CRC) by the U.S. Army TARDEC Fuels and Lubricants Research Facility (TFLRF) located at Southwest Research Institute (SwRI), San Antonio, Texas, during the period October 1999 through August 2000 under Contract Nos. DAAK70-92-C-0059 and DAAE-07-99-C-L053 for the U.S. Army TARDEC, Petroleum and Water Business Area, Mr. Luis Villahermosa (COTR).

The CRC Industrial Leaders, Dr. James Ball of Ford and Dr. Charles Lapin, Consultant, are also offered thanks for their leadership of the project, along with Dr. Jim Wallace III, who provided strategic direction throughout the project execution.

The following SwRI staff are acknowledged for their contributions to this project:

Mr. Carroll Dase, Engine Control System

Dr. Joe Pan, PAH analysis

Ms. Shraddha Quarderer, PAH Analysis

Mr. Kenneth B. Jones, Toxic Air Pollutant Analysis

Messers Roger Huron, Charles Nance, and Thomas Aguilar for engine operation and emissions measurements.

The authors would like to acknowledge the assistance provided by Mr. Lothar Schmid, Mr. Uwe Knauke, and Mr. Horst Hanauer, all of DaimlerChrysler, Stuttgart, Germany, for supplying the engine.

TABLE OF CONTENTS

1.0	INTRODUCTION		
	1.1 Background	1	
2.0	OBJECTIVE	1	
3.0	TECHNICAL APPROACH	2	
	3.1 Test Engine	2	
	3.2 Engine Setup	3	
	3.3 Exhaust Emissions Measurement	5	
	3.4 Measured Quantities and Accuracy		
	3.5 Fuels	13	
	3.6 Engine Lubricant	14	
4.0	DESIGN OF EXPERIMENT	14	
	4.1 Steady-State Operating Conditions	14	
	4.2 Test Plan		
	4.3 Statistical Analysis Methodology	20	
5.0	FUEL IMPACT ON EMISSIONS – WEIGHTED LPP RESULTS	22	
	5.1 Fuel Impact on Regulated Brake Specific Mass Emissions	23	
	5.2 Fuel Impact on Four Clean Air Act Toxic Air Pollutants	30	
	5.3 Fuel Impact on Particulate Soluble Extract PAH Species		
	5.4 Fuel Impact on Gaseous PAH Species	48	
6.0	FUEL IMPACT ON EMISSIONS-MODAL LPP TESTS	57	
	6.1 Fuel Impact on Regulated Brake Specific Mass Emissions	57	
	6.2 Fuel Impact on Four Clean Air Act Toxic Air Pollutants	61	
	6.3 Fuel Impact on Particulate Soluble Extract PAH Species	65	
	6.4 Fuel Impact on Gaseous PAH Species	76	
7.0	FUEL IMPACT ON EMISSIONS-PILOT FUEL INJECTION STUDY	83	
	7.1 Fuel Impact on Regulated Brake Specific Mass Emissions	83	
	7.2 Fuel Impact on Four Toxic Air Pollutants		
	7.3 Fuel Impact on Particulate Soluble Extract PAH Species	104	
	7.4 Fuel Impact on Gaseous PAH Species	138	
8.0	FUEL IMPACT ON EMISSIONS - MODE 12 (IDLE) LPP OPERATION	159	
	8.1 Fuel Impact on Regulated Brake Specific Mass Emissions		
	8.2 Fuel Impact on Four Clean Air Act Toxic Air Pollutants	159	
	8.3 Fuel Impact on Particulate Soluble Extract PAH Species – Mode 12	162	
	8.4 Fuel Impact on Gaseous PAH Species	166	

TABLE OF CONTENTS (contd)

CONCLUSIONS		
0 RECOMMENDATIONS		
REFERENCES	173	
ENDICES		
A Toxic Air Pollutant Sample Procedure		
B Fuel Property Analysis		
C Pilot Fuel Injection Screening Study		
D ANOVA for Weighted Averages		
G ANOVA for Mode 12		
LIST OF TABLES		
	Page	
OM611 Engine Performance Characteristics	2	
RPECS Controlled Engine Parameters	4	
Analytical Instrumentation		
Gas Chromatographic Analysis Parameters		
Gaseous Phase PAH Backgrounds and Detection Limits		
Particulate Matter PAH Backgrounds and Detection Limits		
Measured Quantities 13		
Fuels Description	13	
Fuel Property Summary 14		
EPA Intake Air Conditions	14	
Steady-State Test Points	14	
Engine Operating Conditions	16	
Modal Intake Runner Valve Positions	18	
Timing Parameters for Pilot Fuel Injection Study - CA Fuel	20	
Weighting Factors for Engine Out Emissions	23	
Weighted Mass Emissions (g/kWh) ANOVA Summary for LPP Only Conditions		
Clean Air Act Toxic Air Pollutant Compounds Weighted Mass Emissions		
ANOVA Summary for LPP Operation	30	
Weighted Soluble PAH ANOVA Summary for LPP Only Conditions	34	
Weighted Gaseous PAH ANOVA Summary for LPP Only Conditions	48	
Mass Emissions for Modal LPP Operation Mass Emissions		
ANOVA Summary for LPP Mode Analysis	58	
	REFERENCES ENDICES A Toxic Air Pollutant Sample Procedure B Fuel Property Analysis C Pilot Fuel Injection Screening Study D ANOVA for Weighted Averages E ANOVA for Modal LPP F ANOVA for Pilot Condition G ANOVA for Mode 12 LIST OF TABLES OM611 Engine Performance Characteristics RPECS Controlled Engine Parameters Analytical Instrumentation Gas Chromatographic Analysis Parameters Gaseous Phase PAH Backgrounds and Detection Limits Particulate Matter PAH Backgrounds and Detection Limits Measured Quantities Fuels Description Fuel Property Summary EPA Intake Air Conditions Steady-State Test Points Engine Operating Conditions Timing Parameters for Pilot Fuel Injection Study - CA Fuel Weighted Mass Emissions (g/kWh) ANOVA Summary for LPP Only Conditions Clean Air Act Toxic Air Pollutant Compounds Weighted Mass Emissions ANOVA Summary for LPP Oper Only Conditions Weighted Gaseous PAH ANOVA Summary for LPP Only Conditions Weighted Gaseous PAH ANOVA Summary for LPP Only Conditions	

LIST OF TABLES (contd)

Table		Page
21.	Clean Air Act Toxic Air Pollutant Mass Emissions (mg/kWh)	
	ANOVA Summary for LPP Mode Analysis	63
22.	Soluble PAH Mass Emissions ANOVA Summary for LPP Mode Analysis	66
23.	Gaseous Phase PAH Mass Emissions ANOVA Summary for LPP Mode Analysis	
24.	Mass Emissions ANOVA Summary for Pilot Fuel Injection Study	
25.	Clean Air Act Toxic Compound Mass Emissions for Pilot Fuel Injection Study	
26.	Soluble Phase PAH Mass Emissions for Pilot Fuel Injection Study	
27.	Gaseous Phase PAH Mass Emissions for Control/Pilot Fuel Injection Study	
28.	Mode 12 Mass Emissions for LPP Operation	
29.	Clean Air Act Toxic Air Pollutant Mass Emissions for Mode 12, LPP Operation	
30.	Mode 12 Soluble Phase PAH emissions for LPP Operation	
31.	Mode 12 Gaseous Phase Mass Emissions for LPP Operation	
51.	17 Ouseous Frass Emissions for EFF operation	107
	LIST OF ILLUSTRATIONS	
Figure		Page
1	Dilution Tunnel for Particulate and Air Toxin Sampling	_
2	Gas Sampling Cart – Front	
3	Gas Sampling Cart Rear	8
4.	Sample Cartridges	9
5.	Speed/Load Points for Auto/Energy Fuels	
6.	Test Fuel Weighted Average Particulate Matter Mass Emissions (g/kWh)	
7.	Test Fuel Weighted Average NOx Mass Emissions (g/kWh)	
8.	Test Fuel Weighted Average Hydrocarbon Mass Emissions (g/kWh)	
9.	Test Fuel Weighted Average Carbon Monoxide Mass Emissions (g/kWh)	
10.	Test Fuel Weighted Average Carbon Dioxide Mass Emissions (g/kWh)	28
11.	Test Fuel Weighted Average Soluble Organic Fraction of Particulate	
	Mass Emissions (g/kWh)	
12.	Ratio of SOF to Total PM of Weighted Average Results for Test Fuels	
13.	Test Fuel Weighted Average Benzene Mass Emissions (mg/kWh)	
14.	Test Fuel Weighted Average 1,3-Butadiene Mass Emissions (mg/kWh)	
15.	Test Fuel Weighted Average Formaldehyde Mass Emissions (mg/kWh)	
16.	Test Fuel Weighted Average Acetaldehyde Mass Emissions (mg/kWh)	
17.	Test Fuel Weighted Average Particulate Phase Naphthalene Mass Emissions (µg/kWh	1) 37
18.	Test Fuel Weighted Average Particulate Phase Acenaphthylene	
	Mass Emissions (µg/kWh)	
19.	Test Fuel Weighted Average Particulate Phase Acenaphthene Mass Emissions (µg/kW	/h) 38
20.	Test Fuel Weighted Average Particulate Phase Fluorene	
	Mass Emissions (μg/kWh)	38
21.	Test Fuel Weighted Average Particulate Phase Phenanthrene	• -
	Mass Emissions (μg/kWh)	
22.	Test Fuel Weighted Average Particulate Phase Anthracene Mass Emissions (µg/kWh)	40

Figure	e F	age
23.	Test Fuel Weighted Average Particulate Phase Fluoranthene Mass Emissions (µg/kWh)	40
24.	Test Fuel Weighted Average Particulate Phase Pyrene Mass Emissions (µg/kWh)	42
25.	Test Fuel Weighted Average Particulate Phase Benzo[a]anthracene	
	Mass Emissions (μg/kWh)	42
26.	Test Fuel Weighted Average Particulate Chrysene Mass Emissions	43
27.	Test Fuel Weighted Average Particulate Phase Benzo[b]fluoranthene	
	Mass Emissions (µg/kWh)	43
28.	Test Fuel Weighted Average Particulate Phase Benzo[k]fluoranthene	
	Mass Emissions (μg/kWh)	45
29.	Test Fuel Weighted Average Particulate Phase Benzo(e)pyrene	
	Mass Emissions (μg/kWh)	45
30.	Test Fuel Weighted Average Particulate Phase Benzo[a]pyrene	
	Mass Emissions (µg/kWh)	46
31.	Test Fuel Weighted Average Particulate Phase Indeno(1,2,3-cd)pyrene	
	Mass Emissions (µg/kWh)	46
32.	Test Fuel Weighted Average Particulate Phase Benzo[ghi]perylene	
	Mass Emissions (µg/kWh)	
33.	Test Fuel Weighted Average Gaseous Phase Naphthalene Mass Emissions (µg/kWh)	50
34.	Test Fuel Weighted Average Gaseous Phase 2-Methylnaphthalene	
	Mass Emissions (µg/kWh)	51
35.	Test Fuel Weighted Average Gaseous Phase 1-Methylnaphthalene	
	Mass Emissions (µg/kWh)	51
36.	Test Fuel Weighted Average Gaseous Phase 2,6-Dimethylnaphthalene	
	Mass Emissions (µg/kWh)	
37.	Test Fuel Weighted Average Gaseous Phase Acenaphthylene Mass Emissions (µg/kWh)	
38.	Test Fuel Weighted Average Gaseous Phase Acenaphthene Mass Emissions (µg/kWh)	
39.	Test Fuel Weighted Average Gaseous Phase Fluorene Mass Emissions (μg/kWh)	
40.	Test Fuel Weighted Average Gaseous Phase Phenanthrene Mass Emissions (μg/kWh)	
41.	Test Fuel Weighted Average Gaseous Phase Anthracene Mass Emissions (μg/kWh)	
42.	Test Fuel Weighted Average Gaseous Phase Fluoranthene Mass Emissions (µg/kWh)	
43.	Test Fuel Weighted Average Gaseous Phase Pyrene Mass Emissions (μg/kWh)	57
44.	Test Fuel Average Total Particulate Mass Emissions for Pilot Conditions	0.0
4.5	and Modes (g/kWh)	
45.	Pilot Condition Average Total Particulate Mass Emissions for Fuels and Modes (g/kWh)	
46.	Test Fuel Average NO _x Mass Emissions for Pilot Conditions and Modes (g/kWh)	
47.	Pilot Condition Average NO _X Mass Emissions for Fuels and Modes (g/kWh)	87
48.	Test Fuel Average Hydrocarbon Mass Emissions for Pilot Conditions and Modes (g/kWh)	
49.	Pilot Condition Average Hydrocarbon Mass Emissions for Fuels and Modes (g/kWh)	89
50.	Test Fuel Average Carbon Monoxide Mass Emissions for	01
<i>5</i> 1	Pilot Conditions and Modes (g/kWh)	
51.	Pilot Condition Average Carbon Monoxide Mass Emissions for Fuels and Modes (g/kWh)	
52.	Test Fuel Average Carbon Dioxide Mass Emissions for Pilot Conditions and Modes (g/kW Pilot Condition Average Carbon Dioxide Mass Emissions for Fuels and Modes (g/kWh)	
53. 54.	Pilot Condition Average Carbon Dioxide Mass Emissions for Fuels and Modes (g/kWh) Test Fuel Average SOF of Particulate Mass Emissions for Pilot Conditions	92
J 4 .	and Modes (g/kWh)	04
	απα πλησιού (ξ/ κ.λ.λ.μ.)	ブサ

Figure		Page
55.	Pilot Condition Average SOF of Particulate Mass Emissions for Fuels and Modes (g/kV	Wh) 94
56.	Test Fuel Average SOF/PM Ratio for Pilot Conditions and Modes	96
57.	Pilot Condition Average SOF/PM Ratio for Test Fuels and Modes	96
58.	Pilot Condition Average SOF/PM and Exhaust Temperature for Test Fuels and Modes	97
59.	Test Fuel Average Benzene Mass Emissions for Pilot Conditions and Modes (mg/kWh)) 99
60.	Pilot Condition Average Benzene Mass Emissions for Test Fuels and Modes (mg/kWh)) 99
61.	Test Fuel Average 1,3-butadiene Mass Emissions for Pilot Conditions	
	and Modes (mg/kWh)	101
62.	Pilot Condition Average 1,3-butadiene Mass Emissions for Test Fuels	
	and Modes (mg/kWh)	101
63.	Test Fuel Average Formaldehyde Mass Emissions for Pilot Conditions	
	and Modes (mg/kWh)	103
64.	Pilot Condition Average Formaldehyde Mass Emissions for Test Fuels	
	and Modes (mg/kWh)	103
65.	Test Fuel Average Acetaldehyde Mass Emissions for Pilot Conditions	
	and Modes (mg/kWh)	105
66.	Pilot Condition Average Acetaldehyde Mass Emissions for Test Fuels	
	and Modes (mg/kWh)	105
67.	Test Fuel Average Particulate Phase Naphthalene Mass Emissions for	
	Pilot Conditions and Modes (μg/kWh)	110
68.	Pilot Condition Average Particulate Phase Naphthalene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	110
69.	Test Fuel Average Particulate Phase Acenaphthylene Mass Emissions for	
	Pilot Conditions and Modes (µg/kWh)	112
70.	Pilot Condition Average Particulate Phase Acenaphthylene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	112
71.	Test Fuel Average Particulate Phase Acenaphthene Mass Emissions	
	for Pilot Conditions and Modes (µg/kWh)	114
72.	Pilot Condition Average Particulate Phase Acenaphthene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	114
73.	Test Fuel Average Particulate Phase Fluorene Mass Emissions for Pilot Conditions	
,	and Modes (µg/kWh)	115
74.	Pilot Condition Average Particulate Phase Fluorene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	115
75.	Test Fuel Average Particulate Phase Phenanthrene Mass Emissions	
	for Pilot Conditions and Modes (µg/kWh)	117
76.	Pilot Condition Average Particulate Phase Phenanthrene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	117
77.	Test Fuel Average Particulate Phase Anthracene Mass Emissions	
	for Pilot Conditions and Modes (µg/kWh)	119
78.	Pilot Condition Average Particulate Phase Anthracene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	119
79.	Test Fuel Average Particulate Phase Fluoranthene Mass Emissions	
-	for Pilot Conditions and Modes (µg/kWh)	121
80.	Pilot Condition Average Particulate Phase Fluoranthene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	121

Figure		Page
81.	Test Fuel Average Particulate Phase Pyrene Mass Emissions for Pilot Conditions	
	and Modes (µg/kWh)	122
82.	Pilot Condition Average Particulate Phase Pyrene Mass Emissions for Test Fuels and Modes (µg/kWh)	122
83.	Test Fuel Average Particulate Phase Benzo[a]anthracene Mass Emissions	
	for Pilot Conditions and Modes (µg/kWh)	124
84.	Pilot Condition Average Particulate Phase Benzo[a]anthracene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	124
85.	Test Fuel Average Particulate Phase Chrysene Mass Emissions for Pilot Conditions	
	and Modes (µg/kWh)	126
86.	Pilot Condition Average Particulate Phase Chrysene Mass Emissions for Test Fuels	
	and Modes (µg/kWh)	126
87	Test Fuel Average Particulate Phase Benzo[b]fluoranthene Mass Emissions	
	for Pilot Conditions and Modes (µg/kWh)	127
88.	Pilot Condition Average Particulate Phase Benzo[b]fluoranthene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	127
89.	Test Fuel Average Particulate Phase Benzo[k]fluoranthene Mass Emissions	
	for Pilot Conditions and Modes (µg/kWh)	129
90.	Pilot Condition Average Particulate Phase Benzo[k]fluoranthene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	129
91.	Test Fuel Average Particulate Phase Benzo[e]pyrene Mass Emissions	
, .,	for Pilot Conditions and Modes (µg/kWh)	131
92.	Pilot Condition Average Particulate Phase Benzo[e]pyrene Mass Emissions	
·	for Test Fuels and Modes (µg/kWh)	131
93.	Test Fuel Average Particulate Phase Benzo[a]pyrene Mass Emissions	101
,	for Pilot Conditions and Modes (µg/kWh)	133
94.	Pilot Condition Average Particulate Phase Benzo[a]pyrene Mass Emissions	
<i>,</i>	for Test Fuels and Modes (µg/kWh)	133
95.	Test Fuel Average Particulate Phase Indeno(1,2,3-cd)pyrene Mass Emissions	100
,	for Pilot Conditions and Modes (µg/kWh)	135
96.	Pilot Condition Average Particulate Phase Indeno(1,2,3-cd)pyrene Mass Emissions	
,	for Test Fuels and Modes (µg/kWh)	135
97.	Test Fuel Average Particulate Phase Benzo[ghi]perylene Mass Emissions	
<i>,</i> , ,	for Pilot Conditions and Modes (µg/kWh)	
98.	Pilot Condition Average Particulate Phase Benzo[ghi]perylene Mass Emissions	10 /
,	for Test Fuels and Modes (µg/kWh)	137
99.	Test Fuel Average Gaseous Phase Naphthalene Mass Emissions for Pilot Conditions	10 /
	and Modes (µg/kWh)	141
100.	Pilot Condition Average Gaseous Phase Naphthalene Mass Emissions	1 11
100.	for Test Fuels and Modes (µg/kWh)	141
101.	Test Fuel Average Gaseous Phase 2-Methylnaphthalene Mass Emissions for	1 .1
101.	Pilot Conditions and Modes (µg/kWh)	143
102.	Pilot Condition Average Gaseous Phase 2-Methylnaphthalene Mass Emissions	1 10
102.	for Test Fuels and Modes (µg/kWh)	143
103.	Test Fuel Average Gaseous Phase 1-Methylnaphthalene Mass Emissions	1 10
105.	for Pilot Conditions and Modes (ug/kWh)	145

Figure		Page
104.	Pilot Condition Average Gaseous Phase 1-Methylnaphthalene Mass Emissions	1 4 5
105.	for Test Fuels and Modes (µg/kWh)	145
103.	Mass Emissions for Pilot Conditions and Modes (µg/kWh)	1/17
106.	Pilot Condition Average Gaseous Phase 2,6-Dimethylnaphthalene Mass Emissions	17/
100.	for Test Fuels and Modes (µg/kWh)	147
107.	Test Fuel Average Gaseous Phase Acenaphthylene Mass Emissions	1 17
	for Pilot Conditions and Modes (µg/kWh)	148
108.	Pilot Condition Average Gaseous Phase Acenaphthylene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	148
109.	Test Fuel Average Gaseous Phase Acenaphthene Mass Emissions for Pilot	
	Conditions and Modes (µg/kWh)	150
110.	Pilot Condition Average Gaseous Phase Acenaphthene Mass Emissions	
	for Test Fuels and Modes (µg/kWh)	150
111.	Test Fuel Average Gaseous Phase Fluorene Mass Emissions for	
	Pilot Conditions and Modes (μg/kWh)	152
112.	Pilot Condition Average Gaseous Phase Fluorene Mass Emissions for Test Fuels and Modes (µg/kWh)	152
113.	Test Fuel Average Gaseous Phase Phenanthrene Mass Emissions for Pilot Conditions	
	and Modes (µg/kWh)	153
114.	Pilot Condition Average Gaseous Phase Phenanthrene Mass Emissions for Test Fuels and Modes (µg/kWh)	153
115.	Test Fuel Average Gaseous Phase Anthracene Mass Emissions for Pilot Conditions	
	and Modes (µg/kWh)	155
116.	Pilot Condition Average Gaseous Phase Anthracene Mass Emissions for Test Fuels and Modes (µg/kWh)	155
117.	Test Fuel Average Gaseous Phase Fluoranthene Mass Emissions for Pilot Conditions	
	and Modes (µg/kWh)	156
118.	Pilot Condition Average Gaseous Phase Fluoranthene Mass Emissions for Test Fuels and Modes (µg/kWh)	156
119.	Test Fuel Average Gaseous Phase Pyrene Mass Emissions for Pilot Conditions	
	and Modes (µg/kWh)	158
120.	Pilot Condition Average Gaseous Phase Pyrene Mass Emissions for Test Fuels	
	and Modes (µg/kWh)	158
121.	OM611 Engine NOx-PM Emission Index Trade Off with Oxygenated	
	Low Sulfur Diesel Fuel	173

SYMBOLS AND ABBREVIATIONS

ADMM15 Blend of 15%v DMM in ALS fuel

ALS Alternative Low Sulfur ANOVA Analysis of Variance

ASTM American Society for Testing and Materials

ATDC After Top Dead Center bhp Brake Horse Power

BMEP Brake Mean Effective Pressure
BSFC Brake Specific Fuel Consumption

CARB California Reference Fuel

CIDI Compression Ignition, Direct Injection

CO Carbon Monoxide
CO, Carbon Dioxide

COTR Contracting Officer's Technical Representative

DF-2 EPA Certification Grade Diesel Fuel

DMM Dimethoxymethane
DNPH Dinitrophenylhydrazine
DOE Department of Energy
DPF Diesel Particulate Filter
EGR Exhaust Gas Recirculation
FT-100 Neat Fischer-Tropsch Fuel

HC Hydrocarbon

IMEP Indicated Mean Effective Pressure

LPP Location of Peak Pressure

NOx Nitrogen Oxides

PAH Polycyclic aromatic hydrocarbon

PM Particulate Matter

PNGV Partnership for a New Generation of Vehicles

RPECS SwRI Rapid Prototyping Electronic Control System

RPM Revolutions per Minute
SOF Soluble Organic Fraction

SwRI Southwest Research Institute

TARDEC Tank-Automotive Research Development and Engineering Center
TFLRF U.S. Army TARDEC Fuels and Lubricants Research Facility

1.0 INTRODUCTION

1.1 Background

This project exists as follow-on work to Phase I and Phase II emissions research utilizing a DaimlerChrysler OM611 diesel engine. The Phase I testing was designed to evaluate the potential benefits of several alternative diesel fuels without making any adjustments to the engine control system¹. The objective of the second phase of work was to optimize the OM611 engine for a subset of the seven fuels that were tested in Phase I, as well as the fuels recommended by the Auto/Energy Ad Hoc Diesel Fuels committee².

Optimization was necessary to obtain a detailed comparison of alternative fuels. Because the fuels under consideration have differing physical and chemical properties, a portion of any change in exhaust emissions measured in Phase I may be due to the response of the engine injection system to differences in the fuel physical properties. The optimization phase of this work involved recalibration of the engine operating parameters that influence engine emissions and fuel economy. These operating parameters include boost level, exhaust gas recirculation (EGR), fuel-injection timing, and pressure in the common rail injection system.

This program is part of an overall study that examines the effect of one oxygenated compound (dimethoxymethane) in diesel fuel on the emissions of particulate matter, oxides of nitrogen, and fuel economy. This program will focus on the chemical characterization of emissions of compounds with known or suspected toxicological properties. A body of work exists³⁻¹⁰ that suggests fuel property variations can influence the emissions of toxic compounds from diesel engine combustion. In a follow-on phase, the emissions of these compounds using an after-treatment device will be compared to the engine-out emissions to better understand the effects of after-treatment devices. Future research will examine other oxygenated compounds as possible alternatives to dimethoxymethane.

2.0 OBJECTIVE

The overall objective of this project is to better understand the role of fuels on the exhaust emissions of a subset of potentially toxicologically relevant compounds. The three objectives of this program are to measure the following pollutants collected from diesel engines under a matrix of engine and fuel conditions:

- 1. polycyclic aromatic hydrocarbon (PAH) content of organic solvent extracts of particulate matter
- 2. gas phase polycyclic aromatic hydrocarbons
- 3. other gaseous compounds such as formaldehyde, acetaldehyde, benzene and 1,3-butadiene

These measurements were made on engine out emissions. In future tests other potentially hazardous compounds may have to be measured depending on the technology used in after-treatment devices. For example, if urea were used as a reductant to lower NO_x levels, then compounds relevant to the use of this chemical would need to be measured including, but not limited to urea, ammonia, biuret, and cyanic acid.

3.0 TECHNICAL APPROACH

3.1 Test Engine

The engine used in this investigation was a DaimlerChrysler OM611. The OM611 engine is a 2.2L, direct-injection, compression-ignition, with a Bosch, high-pressure, common-rail, fuel-injection system. The OM611 engine is turbocharged with wastegate control and utilizes an intercooler. The engine design closely matches the specifications of the partnership for a new generation vehicle (PNGV) target compression-ignition direct-injection (CIDI) engine. Characteristics of the OM611 engine are presented in Table 1.

Table 1. OM611 Engine Performance Characteristics		
Displacement	2151 cm ³	
Maximum Power	92 kW at 4200 RPM	
Maximum Torque	300 N-m at 1800 - 2600 RPM	
Maximum BMEP	17.5 bar	
Compression Ratio	19:1	
Minimum Specific Fuel Consumption	203 g/kW-hr	

Besides the electronically controlled common rail fuel injection system, the OM611 engine has several other unique features that affect combustion. The engine has two intake ports, one helical for swirl, and one high flow port. The high flow port also contains an Intake Runner Valve (IRV), which is used to shut the port off at low speeds and light loads. This allows for variable swirl in the engine for improving light load exhaust emissions.

The OM611 engine also utilizes variable Exhaust Gas Recirculation (EGR). The EGR is controlled with pulse width modulation of an EGR valve and intake damper, and is referenced to the engine mass air-flow sensor. The high EGR region is from idle to approximately 50% speed and 50 % load. The hot EGR passes through a cooling passage integral with the cylinder head, then on to the intake manifold via he EGR valve.

A feature of the OM611 engine used for controlling both exhaust and noise emissions is the employment of pilot fuel injection. The pilot fuel injection results in a slower start of combustion, which reduces noise levels and may reduce Oxides of Nitrogen emissions. Pilot fuel injection is disabled when the engine is operating above 3000 RPM and 50 % load.

3.2 Engine Setup

3.2.1 Test Cell

The OM611 engine was installed in test cell supplied with conditioned air and attached to an eddy current absorption dynamometer. The engine load was monitored with an electronic load cell. The engine speed was monitored using a 60-tooth gear and a frequency to voltage converter. The fuel system included a constant level day tank, and a Micro-Motion mass flow sensor. Intake air mass flow was measured according to SAE J244 using a Merriam Laminar Flow Element.

The engine was fitted with a gaseous exhaust sample probe and a heated sample line to the emission bench. An exhaust particulate sampling probe was inserted into the exhaust and connected to a 203-mm diameter dilution tunnel. Exhaust dilution ratio was monitored using carbon dioxide tracer. Dilution tunnel sample zone temperature was maintained below 125°F by splitting the engine exhaust.

3.2.2 Electronic Engine Control

The stock engine control unit (ECU) was replaced with the SwRI developed Rapid Prototyping Electronic Control System (RPECS). The RPECS system is a PC-based tool (both hardware and software) that is used for real-time embedded powertrain control system development. The procedure for installing the RPECS hardware involved intercepting and mapping the signals from the stock engine controller. The engine calibration tables and control signals are then duplicated with the RPECS hardware/software in order to control the engine. The operating parameters of interest will be adjusted through changes to the calibration tables in RPECS.

The RPECS has been configured to allow control of the common rail fuel injection system, and intake manifold conditions. The items controllable by RPECS as presently configured are shown in Table 2.

Table 2. RPECS Controlled Engine Parameters							
	Commor	n Rail Fuel Injecti	ion				
Fuel Injection Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4							
Timing	Individual	Individual	Individual	Individual			
Duration	Individual	Individual	Individual	Individual			
ON/OFF	Individual	Individual	Individual	Individual			
Pilot ON/OFF			Global				
Pilot-to-Main Timing			Global				
Pilot Duration	Individual	Individual	Individual	Individual			
Pilot/Main Duration Ratio	Individual	Individual	Individual	Individual			
Rail Pressure			Global				
Intake Manifold							
Boost - PWM Variable							
Intake Runner Valve - ON/OFF							
EGR - PWM Variable, In	take Mass Air	Flow feedback, n	neasured by intake	exhaust CO ₂			

The RPECS uses pulse width modulation (PWM) for closed-loop control of EGR, manifold pressure, and the common rail fuel injection pressure. The feedback for the EGR control loop is the engine mass air flow sensor. The manifold pressure sensor provides feedback for RPECS, with the turbocharger wastegate utilized as the control element. The common rail fuel pressure is controlled with a PWM fuel pressure vent, with feedback from a 1500 bar rail pressure sensor.

The RPECS has an eight-channel timer board that synchronizes with the engine crankshaft and camshaft pulses for activation of the fuel injectors. Each cylinder of the engine utilizes two timer

channels, one for the pilot fuel injection event and one for the main fuel injection event. The fuel injectors are powered by peak-and-hold drivers, which allow variation of timing and duration of both pilot and main fuel injection. Additional fuel injection control features include individual cylinder control of pilot and main fuel injection events and pilot/main fuel injection ratio control.

One-dimensional tables, one for speed and one for load, were programmed into RPECS so engine operating conditions could be consistently repeated. The RPECS has the ability to operate in either closed-loop torque or closed-loop speed control. In closed-loop torque control RPECS adjusts fuel injection quantity to attain the set point torque value from the dynamometer electronic load cell feedback. In closed-loop torque mode the engine speed is controlled by an eddy-current dynamometer controller. Closed-loop torque control was used for four of the five operating conditions in this program.

In closed-loop speed control mode, RPECS calculated fuel quantity to maintain a steady engine speed using the crankshaft signal. In this program closed-loop speed control was used at the idle condition. At idle the torque was maintained by controlling dynamometer windage with the dynamometer cooling water flow.

3.2.3 Cylinder Pressure Transducers

Program modifications were made to the RPECS to allow individual cylinder fuel injection timing and quantity control. Pressure transducer adapters were machined to fit in the cylinder head via the glow-plug passages. Kistler 6052A transducers were mounted in the adapters. All cylinder pressure transducers were calibrated, and connected to a DSP Technologies high-speed data acquisition system for combustion analysis and cylinder balance. The DSP was clocked with a 720-pulse/revolution shaft encoder.

3.3 Exhaust Emissions Measurement

The OM611 engine was instrumented for the exhaust species shown in Table 3 and as diagramed in Figure 1. The gaseous emissions were drawn from the raw exhaust, with a sample probe located approximately three pipe diameters downstream of the turbocharger outlet. The gaseous exhaust sampling probe was located upstream of the back pressure regulating butterfly. The backpressure regulating butterfly was locked in the position that produced 11-in-Hg backpressure at rated speed and load. The gaseous emissions sampling was performed in accordance with the

guidelines outlined in 40 CFR Part 86, Subpart D. The OM611 engine exhaust was coupled to the house exhaust system and a Constant Volume Sampling (CVS) system. The CVS system consists of a 203-mm dilution tunnel, with a Variable speed Roots type blower. In order to attain a 125°F filter face temperature with the CVS system, the engine exhaust was split between the house exhaust and the dilution tunnel. The dilution tunnel sample zone temperatures were verified at each of the test modes. The blower speed setting was adjusted to maintain 120°F in the sample zone at Mode 5, the highest speed and load condition.

Table 3. Analytical Instrumentation				
Constituent	Analysis Method			
Total Hydrocarbon	Heated Flame Ionization Detector			
Carbon Monoxide	Non-Dispersive Infrared Analysis			
Carbon Dioxide	Non-Dispersive Infrared Analysis			
Oxides of Nitrogen	Chemiluminescent Analysis			
Particulate Matter	Gravimetric, CVS, CO ₂ tracer			
Soluble Organic Fraction of PM	Gravimetric, Soxhlet Extraction Toluene/Ethanol			
Benzene	Gas Chromatography			
1,3-Butadiene	Gas Chromatography			
Formaldehyde	DNPH Adsorbent/High Pressure Liquid Chromatography			
Acetaldehyde	DNPH Adsorbent/High Pressure Liquid Chromatography			
Polycyclic Aromatic Hydrocarbons	Gas Chromatography/Mass Spectroscopy/Selected Ion Monitoring			

Figure 1. Dilution Tunnel for Particulate and Air Toxin Sampling

A carbon dioxide tracer technique was utilized to determine the dilution ratio in the CVS system. The particulate matter sampling procedures were performed in accordance with the guidelines established in 40 CFR Part 86, Subpart N. A polyurethane foam and XAD-2 resin trap were utilized for sampling gas phase PAH compounds. Soluble phase PAH compounds were extracted from 90 mm filters. Benzene and 1,3-butadiene were collected in a sample bag from the dilution tunnel sample zone. Formaldehyde and acetaldehyde were trapped on a DNPH adsorbent cartridge from the dilution tunnel sample zone.

3.3.1 Gaseous Emissions Analyses

The following three groups of gaseous engine out exhaust emissions were determined for each test point, i.e. engine mode and fuel combination.

3.3.1.1 Typical Exhaust Gases

The following species concentrations were measured utilizing the instrumentation shown in Table3:

- hydrocarbons (HC)
- carbon monoxide (CO)
- carbon dioxide (CO₂)
- oxides of nitrogen (NO_x)
- oxygen (O_2)

3.3.1.2 Toxic Air Pollutants Cited in the Clean Air Act

A sample cart, as seen in Figures 2 and 3, was configured and placed in the test cell near the engine and exhaust dilution tunnel. This cart was arranged so that one technician could effectively collect bag samples and cartridge samples simultaneously. The cart was utilized for sampling the following four Clean Air Act toxic air pollutants:

- benzene
- 1,3-butadiene
- formaldehyde
- acetaldehyde

The front of the cart was used to control and monitor the cartridge sampling for formaldehyde and acetaldehyde while the back of the cart supported the pumps and metering valves for collecting the bag samples for benzene and 1,3-butadiene analyses.

Figure 2. Gas Sampling Cart – Front

Figure 3. Gas Sampling Cart Rear

3.3.1.2.1 Benzene and 1,3-Butadiene

Exhaust samples for benzene and 1,3-butadiene determination were taken in Tedlar7 bags via a diaphragm vacuum pump from a dilution tunnel through an unheated 1/4" Teflon tube. A corresponding background air sample was taken from the ambient air. The collected samples were transported to the SwRI Department of Emissions Research (DER) for analysis. These two toxic air pollutant compounds were analyzed using two different gas chromatographs (GC) as described in Table 4. The two GCs were configured and operated according to the CRC Auto-Oil Phase II Air Quality Improvement Research Program guidelines. (1) These instruments were calibrated with CRC/NIST gas mixtures according to DER Standard Operating Procedures. Detection limits for the GCs are on the order of 10 parts per billion.

Table 4. Gas Chromatographic Analysis Parameters						
	1,3-Butadiene	Benzene				
Gas Chromatograph	Hewlett- Packard 5890-II	Hewlett- Packard 6890				
Injector	10 port gas sampling valve w/ 5 mL sample loop	10 port gas sampling valve w/ 5 ml sample loop				
Detector	hydrogen flame ionization	hydrogen flame ionization				
Column/s	DB-Wax, 15 meter x 0.53mm, 1.0 film, J&W Scientific, Alumina	pre-column: 2 meter of 0.25 mm I.D. deactivated fused silica				
Column/s	PLOT/KCL, 50meter x 0.53mm, 10 µm film, Chrompack, International	Analytical column:30 m x 0.25 mm DB-5, 0.25 □m film thickness				

3.3.1.2.2 Formaldehyde and Acetaldehyde

To collect the aldehydes, a metered volume of the dilute exhaust was transferred with a diaphragm vacuum pump from the dilution tunnel through a heated sample transfer line and heated particulate filter, both maintained at 375°F and finally through a cartridge containing silica impregnated with 2,4-dinitrophenylhydrazine (DNPH), Figure 4. A metered volume of the background air was pulled through another cartridge. A Hastings model HFC-202D mass flow meter was used to measure the volume of gases sampled. Air temperature and barometric pressure were recorded by the engine control computer. Any aldehyde or ketone present in the sampled gas reacted quickly with the DNPH to form a stable derivative (R-CHO phenylhydrozone). These derivatives were extracted from the trap with ultra-pure acetonitrile. Analysis of the extracted samples and backgrounds were performed using a high performance liquid chromatograph (HPLC), pumping a ternary solvent gradient of water, methanol, and acetonitrile through an ultra-violet (UV) spectroscopic detector. The instrument was calibrated using purified aldehyde derivatives according to the DER Standard Operating Procedures. The detection limit for this instrument is on the order of 0.005-ppm aldehyde in dilute exhaust.

Figure 4. Sample Cartridges

The collection of optimum sample volumes during the engine test modes required precise timing of starting and stopping pumps and opening and closing valves by the cart operator. Appendix A describes the sequence of these events. Revision to the first sequence was determined necessary when HPLC analyses indicated overloading or breakthrough of the DNPH aldehyde cartridges. Background cartridge samples were a composite of one entire day of sampling.

3.3.1.3 Gaseous PAH compounds

The gaseous phase (PUF/XAD-2 trap) samples are Soxhlet extracted with methylene chloride for 18 hours. At the beginning of the extraction, a PAH surrogate spiking solution containing three deuterated PAH [benzo(b)fluoranthene-d12, benzo(a)anthracene-d12, and dibenz(a,h)anthracened14 at 100 nanograms each] is spiked into the sample. Sample extracts are then concentrated and solvent exchanged into hexane. A cleanup procedure that consists of an acid wash and liquid chromatography is then applied. The acid used is a diluted sulfuric acid. The chromatography is performed on a silica gel column that would separate fuel and oil from the PAHs. The sample extracts were in hexane, transferred onto the Si column, the column flushed with hexane (to remove the fuel and oil), and the PAHs were then eluted out of the column by using a DCM/pentane solvent system. The sample extracts, after the cleanup, were blown down to a final volume of 100 microliters (uL). An internal standard mixture containing deuterated PAH is added to these extracts prior to GC/MS/SIM (selected ion monitoring) analysis. Two or three characteristic ions of each PAH are monitored. A PAH calibration curve consisted of at least 5 points is obtained prior to the sample analysis. A solvent or lab blank is analyzed immediately after the last calibration standard analysis to ensure no significant carryover occurs on the instrument. The PAH are analyzed in the positive ion electron impact (PI/EI) mode. Separate GC/MS/SIM analyses are necessary to acquire the PAH data.

The estimated detection limits (DLs) are 1.0 nanogram (total) per PAH per sample. This is based on the lowest calibration standard of 0.01 ng/uL/PAH with a 100 uL final volume. Note, different target compounds behave differently on the instrument and, therefore, exert different final DLs. The DLs given here should be considered as estimated values. There are other factors such as massive interference, and/or split samples for other analyses that will inevitably increase the DLs. A PUF/XAD-2 filter blank was extracted with each set of engine PUF/XAD-2 filters. The PUF/XAD-2 blank was analyzed to determine the PAH background from the media. Additionally three PUF/XAD-2 tunnel blanks were analyzed to determine the PAH background from the test cell, dilution tunnel, and sample system. The tunnel blanks were drawn for one

hour; the background values that are reported in Table 5 have been adjusted to represent the 30-minute sample time that was used during engine testing. Included in Table 5 is the reported detection limits for each gaseous phase PAH compound. The gaseous phase PAH compounds were analyzed using a high-resolution gas chromatograph with a 1.0 atomic mass unit (AMU) low-resolution mass spectrographic detector. There was not any non-detects for gaseous phase PAH compounds during testing.

Table 5. Gaseous Phase PAH Backgrounds and Detection Limits								
COMPOUND	Average PUF/XAD- 2 Filter Blank	Average PUF/XAD-2 Tunnel Blank	PUF/XAD-2 Extract HRGC/LRMS(1 AMU) Detection Limit					
	ng/sample	ng/sample	ng/sample					
naphthalene	369	2227	10					
2-methylnaphthalene	181	945	10					
1-methylnaphthalene	132	572	10					
2,6-dimethylnaphthalene	105	618	10					
acenaphthylene	102	113	10					
acenaphthene	105	114	10					
fluorene	113	192	10					
phenanthrene	128	597	10					
anthracene	112	22	10					
fluoranthene	104	22	10					
pyrene	101	22	10					

3.3.2 Exhaust Particulate Matter Analyses

The soluble organic fraction of diesel exhaust particulate collected on 90 mm Pallflex filters was removed from the particulate using a Soxhlet extraction system. The extraction solvent was 30 percent toluene/ 70 percent ethanol by volume. One hundred microliters of a PAH surrogate spiking solution, containing three deuterated PAH (benzo(b)fluoranthene-d12, benzo(a)anthracene-d12, and dibenzo(a,h)anthracene-d14, at 100 nanograms each) was syringed onto each filter prior to solvent extraction to determine the PAH extraction efficiency. This Soxhlet extraction method is similar to washing the filter with approximately five gallons of solvent. The percent mass extracted from the diesel particulate on the filter is determined by weight loss, usually in milligram quantities, after solvent extraction and drying.

The exhaust particulate were analyzed for Soluble Organic Fractions (SOF) and specific PAH compounds following EPA Protocol 8100. The particulate (filter) samples are analyzed the same way as described above for the PUF/XAD-2 samples except the solvent used for the PM filter extraction is ethanol/toluene (30/70; v/v).

Three 90-mm Pallflex filter blanks were extracted and analyzed to determine the PAH background from the media. Additionally, three 90-mm Pallflex tunnel blanks were analyzed to determine the PAH background from the test cell, dilution tunnel, and sample system. The tunnel blanks were drawn for one hour; the background values that are reported in Table 6 have been adjusted to reflect the 30-minute sample time that was used during engine testing. Included in Table 6 is the reported detection limits for each gaseous phase PAH compound for two analytical instruments. Due to low levels of contamination, the filter and tunnel blanks had lower detection limits than the SOF extracts. The particulate matter PAH compounds were initially analyzed using a high-resolution gas chromatograph with a 1.0 atomic mass unit (AMU) low-resolution mass spectrographic detector. Depending on the engine-operating mode and test fuel utilized, there were non-detect values for several key PAH compounds. Primarily, the non-detects were reported due to interference from other organic compounds around the molecular weight of the compound of interest. For the higher molecular weight PAH compound shown in Table 6, a high-resolution gas chromatograph with a 0.01 atomic mass unit (AMU) high-resolution mass spectrographic detector was used for selected test runs.

Table 6. Particulate Matter PAH Backgrounds and Detection Limits							
COMPOUND	Paliflex 90	Average Average Pallflex 90mm Filter Blank Tunnel Blank		SOF Extract HRGC/LRMS(1AMU) Average Detection Limit	SOF Extract HRGC/HRMS(0.01AMU) Average Detection Limit		
	ng/sample	DL	ng/sample	DL	ng/sample	ng/sample	
Naphthalene	543	3	245	4	10		
Acenaphthylene	9	3	8	4	10		
Acenaphthene	74	3	37	4	10		
Fluorene	120	3	62	4	10		
Phenanthrene	665	3	370	4	10		
Anthracene	63	3	16	4	10		
Fluoranthene	89	3	85	4	10		
Pyrene	41	3	67	4	10		
Benzo[a]anthracene	1	3	2	4	10		
Chrysene	3	3	5	4	10		
Benzo[b]fluoranthene	1	3	6	4	10		
Benzo[k]fluoranthene	1	3	4	4	10		
Benzo[e]pyrene	1	3	3	4	10		
Benzo[a]pyrene	0.6	3	1	4	10	0.1	
Indeno(1,2,3-cd)pyrene	ND	3	2	4	10	0.1	
Dibenzo[a,h]anthracene	ND	3	1	4	10	0.25	
Benzo[ghi]perylene	0.9	3	3	4	10	0.1	

3.4 Measured Quantities and Accuracy

Table 7 shows the estimated accuracy of the engine and emission measurements.

Table 7. Measured Quantities						
Quantity	Description	Unit	Accuracy			
Engine Speed		rpm	+/- 4.2			
Engine Load		ft-lb	+/- 2.3			
Fuel Flow		lb/hr	+/- 5 %			
Temp. Coolant In		°F	+/- 4			
Temp. Coolant Out		°F	+/- 4			
Temp. Oil		°F	+/- 4			
Temp. Intake Air		°F	+/- 4			
Temp. Fuel		°F	+/- 4			
Temp. Exhaust		°F	+/- 25			
Temp. Intercooler In		°F	+/- 4			
Temp. Intercooler Out		°F	+/- 4			
Temp. Air Dewpoint		°F	+/- 4			
Pres. Ambient		"Hg	+/- 1%			
Pres. Exh. Restriction		"Hg	+/- 1%			
Pres. Boost Pre-Intercooler		"Hg	+/- 1%			
Pres. Boost Post-Intercooler		"Hg	+/- 1%			
Carbon Monoxide	CO	g/kW-hr	+/- 15 %			
Hydrocarbon	HC	g/kW-hr	+/- 20 %			
Nitric Oxides	NO _x	g/kW-hr	+/- 10 %			
Carbon Dioxide	CO ₂	g/kW-hr	+/- 10 %			
Particulate (Total)	PM	g/kW-hr	+/- 20 %			

3.5 Fuels

Five fuels were evaluated in this program and are described in Table 8.

Table 8. Fuels Descriptions						
Test Fuel	Fuel Description					
1	CA	California Reference Diesel				
2	ADMM15	Blend: 15% Dimethoxymethane (DMM) with 85% ALS Diesel				
3	FT-100	Neat Fischer-Tropsch Diesel				
4	ALS	Low Sulfur Diesel, Low Aromatics				
5	DF-2	EPA Certification Grade Diesel				

Fuel analyses are provided in Appendix B from previous work. Fuel properties of interest are shown in Table 9.

Table 9. Fuel Property Summary								
Fuel (Code)	H,wt%	C,wt%	O,wt%	Cetane Number	Sulfur, ppm	Aromatics, wt%		
California Reference Diesel Fuel (CA)	13.4	86.4	0.2	45	176	18.9		
Low Sulfur Diesel Fuel (ALS)	14.4	85.6	0.0	63	1	9.0		
Fischer-Tropsch Diesel (FT-100)	15.1	84.8	0.1	84	1	0.2		
Oxygenate Blend: 15% Dimethoxymethane in ALS (ADMM15)	13.7	81.6	4.7	59	1	8.2		
EPA 2D Certification Fuel (DF-2)	13.0	86.7	0.3	44	337	30.3		

3.6 Engine Lubricant

A synthetic lubricant, SAE 5W30 viscosity grade, was used in this project. A synthetic oil will have less volatile fractions than a petroleum-based lubricant, which will minimize oil contribution to exhaust particulates. Frequent oil changes were made to minimize the engine oil contaminant contribution to exhaust particulates.

4.0 DESIGN OF EXPERIMENT

4.1 Steady-State Operating Conditions

The engine was installed in a steady-state test cell. The engine was supplied with conditioned intake air, controlled to EPA intake conditions. EPA intake air conditions are shown in Table 10.

Table 10. EPA Intake Air Conditions						
Parameter Set Point Tolerance						
Intake Pressure	100 kPa	±1 kPa				
Intake Temperature	25 °C	±2 °C				
Intake Dew Point	15 °C	±1 °C				

4.1.1 Modes

Five modes of steady-state operation (speed/load points) were included in these investigations. Table 11 shows the engine steady-state test points while Figure 5 shows these five points in relation to the baseline torque curve.

Table 11. Steady-State Test Points						
Mode BMEP, bar RPM MB Equiv. Torque, ft-lb _f						
M12	0.10	900	1-2			
M11	2.62	1500	33.1			
M10	2.00	2000	25.3			
M6	4.20	2300	53.0			
M5	8.80	2600	111			

Figure 5. Speed/Load Points for Auto/Energy Fuels

4.1.2 Location of Peak Pressure (LPP)

The OM611 engine utilizes pilot injection. The pilot injection was turned off for the LPP phase of the toxicology study. The OM611 engine was operated at each of the test modes with EGR levels as prescribed by the Auto/Energy CIDI Ad Hoc fuels committee. The Location of Peak Pressure (LPP) was held as constant as feasible for each test mode and test fuel. The IMEP in each cylinder was matched within 5%. The engine was operated with the DaimlerChrysler calibrations for fuel injection rail pressure, boost, and intake runner valve position.

The LPP was established for the OM611 engine by determining MBT timing at a fixed rail pressure and fixed injection duration utilizing CARB fuel for each test mode. The procedure for each test mode was as follows:

- 1. Check motoring trace on each cylinder, find encoder offset.
- 2. Turn OFF pilot injection.
- 3. Establish proper IRV position.
- 4. Set fuel injection rail pressure.
- Set EGR level.

- 6. Fix injection duration that meets BMEP target.
- 7. Determine IMEP for cylinder balance; adjust individual cylinder injection duration.
- 8. Establish MBT, starting at 7°ATDC LPP, advance and retard timing.
- 9. Determine LPP at MBT, and determine base injection duration offsets for IMEP balance.
- 10. Update Controller tables for fuel injection timing and duration.

4.1.3 Cylinder Balance

The DaimlerChrysler OM611 engine will have a Kistler 6052A piezoelectric pressure transducer installed in each of the four cylinders via a glow plug adapter. The cylinder pressures were monitored with a DSP high-speed data acquisition system clocked at 0.5° crankshaft intervals. The DSP data system will be set up to monitor Location of Peak Pressure (LPP) and Indicated Mean Effective Pressure (IMEP) for each cylinder. The DSP was also used to calculate engine average IMEP and LPP for 50 consecutive combustion cycles. During testing, the RPECS control system was able to maintain IMEP within 5% cylinder-to-cylinder, and hold LPP within 2 crankangle degrees cylinder-to-cylinder for all modes.

During testing, the OM611 engine was operated at the conditions that follow in Table 12 with the pilot fuel injection turned off:

	Table 12. Engine Operating Conditions								
Mode	RPM	BMEP, bar	EGR, %	Rail Pressure, bar	Boost, bar g	LPP Timing, °ATDC	IMEP, cyl. To cyl. %	IRV Status	
12	900	0.2	40	Stock	Stock	7	±5	Closed	
11	1500	2.62	30	Stock	Stock	7	±5	Closed	
10	2000	2.0	30	Stock	Stock	7	±5	Closed	
6	2300	4.2	15	Stock	Stock	7	±5	Open	
5	2600	8.8	5	Stock	Stock	7	±5	Open	

The cylinder balance procedure was as follows:

- 1. Set Test Mode, RPECS will do closed loop torque control by dithering injection duration.
- 2. Set EGR level.
- 3. Make individual cylinder timing changes to meet LPP for MBT.
- 4. Average IMEP for all four cylinders.
- 5. Adjust individual injection duration offsets to set cylinder IMEP within ±5% of the average IMEP.

- 6. Iterate between timing changes and IMEP adjustments.
- 7. Update Controller tables for timing and duration offsets.
- 8. Stabilize engine at balanced IMEP and LPP.
- 9. Initiate particulate and gaseous emission sampling.
- 10. Spot Check IMEP and LPP during particulate sampling.

4.1.4 Pilot Fuel Injection

A brief pilot fuel injection evaluation was performed to determine if differences in exhaust emissions existed between modes operated with and without pilot fuel injection. The approach was to operate the engine at each of five test modes, utilizing three differing control strategies, and using CARB fuel. The control approaches consisted of locating peak pressure (LPP) without pilot injection, LPP with pilot injection (Pilot A), and the calibrated (Pilot B) engine strategy, which also uses pilot injection. The LPP and Pilot A strategies were performed using an RPECS controller. Under RPECS control, each cylinder was balanced within 5% of the engine average IMEP. The Pilot B strategy was performed with the OEM controller. The LPP was determined by fixing injection rail pressure, specified EGR, and setting the injector pulse width that meets the BMEP setting for the mode. The main start of injection timing was swept, and the LPP that produced the best torque was noted. When the location of peak pressure during Pilot A operation was determined, the pilot-to-main, injection-pulse-width ratio and the pilot-to-main timing gap remained as the calibrated settings for the mode.

The basic findings during the brief evaluation concerned the PM and Soluble Organic Fraction of the PM. The PM emissions increased when pilot injection was utilized. However, pilot injection results in a higher exhaust temperature that reduces the SOF level of the particulate.

The conclusions from the study were that the pilot fuel injection operation does affect emissions, noise, and BSFC. The heat release traces show early combustion, which could lead to variations in exhaust compounds. For the non-idle modes, pilot injection reduces noise and NOx, increases PM and BSFC, and reduces the SOF of the PM. Combustion heat release analysis reveals reactions that occur BTDC, with long in-cylinder residence time of the pilot injected fuel. Differences in combustion and emissions warrant investigation of pilot injection. For the idle mode, the results were variable. The higher EGR at idle, using the Pilot B (OEM) strategy, probably had more effect on emissions than the actual pilot injection event. Detailed results from the pilot fuel injection study are available in Appendix C.

The following recommendations were presented to DOE and the Auto/Energy CIDI Ad Hoc fuels committee following the brief pilot fuel injection evaluation:

- Complete tests as planned without pilot injection for all five fuels.
- Perform tests with pilot injection using LPP with addition of pilot fuel injection and using the OEM ECM strategies.
- Use OEM calibrated pilot-to-main gap of 1.8 ms.
- Use OEM calibrated pilot-to-main, pulse-width ratio for BMEP, for each fuel.
- Evaluate all five fuels using pilot fuel injection.
- Evaluate at two modes weighted highly by Ad Hoc fuels study:
 - mode 11: 1500 rpm/ 2.62 bar BMEP
 - mode 10: 2000 rpm/ 2.0 bar BMEP
- Perform experiments in triplicate.

4.1.5 Intake Runner Valve

The engine has an Intake Runner Valve (IRV) for increasing swirl at low-speeds, light-loads. The IRV works by closing off one of the two intake ports, forcing the entire intake charge down the other intake tract. The status of the IRV under Bosch ECM control is as shown in Table 13 for the five test modes.

Table 13. Modal Intake Runner Valve Positions							
Mode RPM BMEP, bar IRV Status							
12	900	0.2	Closed				
11	1500	2.62	Closed				
10	2000	2.0	Closed				
6 2300 4.2 Open							
5	2600	8.8	Open				

For the toxicology study, the IRV was utilized as calibrated by DaimlerChrysler. Changing the in-cylinder charge air motion by varying IRV status could alter combustion and impact the results for the OM611 engine.

4.2 Test Plan

4.2.1 LPP Tests

Best torque injection timing sweeps were performed at all modes to determine the LPP at the specified EGR. The engine was controlled with pilot injection off, specified EGR, and at the fixed injection pulse width to maintain the brake mean effective pressure operating target. The IMEP was monitored on each cylinder, along with LPP, to be maintained within the criteria discussed previously. Injection timing was swept until a change in brake torque was noted. For all modes, a LPP of 7°ATDC corresponded with the best torque timing.

The cylinder pressures were monitored and Location of Peak Pressure (LPP) and Indicated Mean Effective Pressure (IMEP) control were verified for each cylinder. The RPECS system was able to maintain IMEP within 5% cylinder-to-cylinder, and hold LPP within 2 crank angle degrees cylinder-to-cylinder for all modes.

All control parameters for the RPECS were verified for maintaining cylinder balance, constant LPP, and specified EGR. A tunnel blank was performed to evaluate sample system toxic air pollutants and PAH concentrations.

4.2.2 Pilot Fuel Injection Tests

To determine if pilot fuel injection on a direct-injected diesel engine with a Common-Rail fuel system exhibits impacts on engine gaseous, PM, toxic air pollutant, and PAH exhaust emissions, evaluations were performed at two modes (10 and 11) with three control strategies.

The control approaches consisted of Location of Peak Pressure (LPP) without pilot injection, LPP with Pilot Injection (Pilot A), and the calibrated OEM (Pilot B) engine strategy which also uses pilot injection. When Pilot A control was utilized, the pilot-to-main injection pulse width ratio, and the Pilot-to-Main timing gap was kept the same as the Pilot B settings for the mode.

The timings for the differing control strategies are outlined in Table 14 for each of the test modes. Note the LPP for the Pilot B strategy shown is for the CA fuel, the other test fuels would likely result in a different LPP using the OEM controller. With the OEM controller there was not any timing adjustments available to control LPP with each test fuel. Also note the higher EGR with the Pilot B strategy.

Table 14. Timing Parameters for Pilot Fuel Injection Study –CA Fuel								
Mode	Speed	BMEP, bar		Pilot A				
				LPP	PSOI†	MSOI	EGR, %	
11	1500	2.62		7	24	8	30	
10	2000	2		7	31	10	30	
LPP				Pilot B				
LPP*	MSOI‡	EGR, %		LPP	PSOI	MSOI	EGR, %	
7	9	30		12	18	2	36	
7	12	30		15	23	2	35	

^{*}LPP - Location of Peak Pressure, dATDC

4.3 Statistical Analysis Methodology

The goal of this study was to provide information on the PAH content of exhaust gas and exhaust particulates, some of which have been shown to cause tumors in animals. In addition to investigating PAH content, toxic air pollutants and mass emissions were also studied. The engine test results were used to compare the PAH levels of four modified diesel fuels and a baseline fuel to determine the effect of fuel modifications on the total emissions of these toxicologically important compounds. Additionally, the mode (speed and load) of engine operation and the pilot condition settings were also controlled to assess their effects on the PAH or emissions response.

Analysis of variance (ANOVA) statistical techniques¹¹ were used to investigate the factor effects of fuel, mode, and pilot condition using models on four different data segments. These four data segments included engine test results from the following scenarios:

- (1) LPP only condition for modes 5, 6, 10, and 11;
- (2) LPP only condition for mode 12;
- (3) LPP and pilot on conditions for modes 10 and 11; and
- (4) LPP only condition for weighted modes 5, 6, 10, and 11.

[‡]MSOI - Main Start of Injection, dBTDC

[†]PSOI – Pilot Start of Injection, dBTDC

Each of these four data segments included independent ANOVA models on the 38 measured responses which included: five typical gaseous emissions, four toxic air pollutant emissions, 11 gaseous PAH emissions, 17 specific PAH from SOF, and one SOF. Each fuel, mode, and pilot condition combination was run in triplicate. The ANOVA identified which factors were statistically significant with respect to the average response. For example, the ANOVA tested whether the average response of the five fuels was statistically different. It also determined if significant differences existed across the modes, and whether an interaction between the fuel and mode was significant. If significant differences existed, a Tukey's HSD post-hoc multiple comparison procedure¹² was conducted to discriminate between the response averages across the levels of the significant factor. All comparison tests were made at the 5% level of significance.

No mathematical transformations were made on any of the response variables (PAH content, toxic air pollutants and mass emissions). All analyses were conducted in the original response variable units. The units used for the PM and SOF emissions were g/kW-hr, toxic air pollutant emissions were mg/kW-hr, soluble PAH were micro-grams/kW-hr, and the gaseous PAH were micro-grams/kW-hr.

The ANOVA models used for each of the four data segments are described below.

<u>LPP</u> only condition for modes 5, 6, 10, and 11 - Using only the pilot off condition data, an ANOVA was performed using the 5 fuels and 4 modes (5, 6, 10, and 11). This ANOVA model contained a FUEL and MODE effect along with a FUEL by MODE interaction.

<u>LPP only condition for mode 12</u> - Using only the pilot off condition data, an ANOVA was performed using the 5 fuels and only Mode 12. Thus, there was not a MODE effect in the ANOVA but only a FUEL effect.

LPP and pilot on conditions for modes 10 and 11 - In comparing the responses across the 3 different pilot conditions, only modes 10 and 11 were used. Data from the 5 fuels, 2 modes and 3 pilot conditions were used in an ANOVA model that included the FUEL, MODE, and PILOT effects along with all 2-way interactions and a 3-way interaction.

<u>LPP</u> only condition for weighted modes 5, 6, 10, and 11 - The final analysis included a composite response that was computed by weighting 4 modes (5, 6, 10, and 11) according to the Ad Hoc Diesel Fuels Panel weighting criteria. The composite was computed as:

(25/1200)*response@Mode 5 + (200/1200)*response@Mode 6 + (375/1200)*response@Mode 10 + (600/1200)*response@Mode 11

A composite response was computed for each test mode set run with each fuel. Since each fuel, mode, and pilot condition combination was run in triplicate, a composite response was determined from the test results for modes 5, 6, 10, and 11 that were run nearest to one another. This usually occurred on the same test day. Therefore, three composite responses were computed for each PAH, toxic air pollutants and mass emissions. However, there were four soluble PAH responses that resulted in non-detects in one or two modes in the ALS, CA or DF-2 fuels. These responses were acenaphthylene, fluorene, benzo[b]fluoranthene, and benzo[e]pyrene. In each of these soluble PAH cases only one composite response could be computed. Therefore, the remaining two composite responses were calculated based on imputed values for the non-detects. The missing PAH values were replaced with either the lowest actual measurement for that mode and fuel or the lower detection limit for that mode and fuel. In situations where two of the three composite responses were computed, no imputed values were used to replace the one missing composite response.

Using only the pilot off condition data and the composite responses, an ANOVA was performed using the 5 fuels. Thus, there was not a MODE effect in the ANOVA - only a FUEL effect.

5.0 FUEL IMPACT ON EMISSIONS - WEIGHTED LPP RESULTS

Fuel comparisons utilizing the Ad Hoc Fuels Group Mode Weighting Factors shown in Table 15 were made for brake specific exhaust emissions with the engine operated under LPP control with pilot fuel injection turned off. Mode 12 was not included in the weighting scheme due to the combination of variability of the mode 12 data and the large mode 12 weight which masked the fuel effects on emissions. The ANOVA tables for the weighted averages can be found in Appendix C.

Table 15. Weighting Factors for Engine Out Emissions			
Mode	Mode Weights, seconds		
Mode 11	600		
Mode 10	375		
Mode 6	200		
Mode 5	25		
Total	1200		

5.1 Fuel Impact on Regulated Brake Specific Mass Emissions

Several statistically significant trends, at 95% confidence, were apparent from an ANOVA of the weighted average brake specific emissions data. Table 16 summarizes the general rank order for the regulated weighted average mass emissions during LPP engine operation with pilot fuel injection turned off. The table displays the fuels rank from highest response to lowest response for the Least-Square means of the weighted analysis. Statistically significant similar fuel groupings are also shown for each emission response in Table 16.

The discussions to follow are summaries of the ANOVA performed for each emission response for the weighted averages, and refer to the results in Table 16. The ANOVA tables for the weighted averages can be found in Appendix C.

5.1.1 Fuel Impact on Particulate

ANOVA revealed statistically significant differences in the average weighted particulate among the test fuels. The statistical groupings and relative levels of particulate matter emissions are shown in Figure 6 for the test fuels. Average particulate at fuels FT-100 and ADMM15 are not significantly different from one another, but are different than the other three fuels. The average particulate at Fuel ALS is significantly different than Fuel DF-2. The CA fuel is not significantly different than either the ALS or DF-2 fuel for particulate.

5.1.2 Fuel Impact on NOx

The ANOVA revealed statistically significant differences in the average weighted brake specific NO_X among the fuels. From Figure 7 the highest NOx emitter was DF-2, followed jointly by ADMM15, FT-100, and CA, with ALS being the lowest NOx emitting fuel. The average weighted $BSNO_X$ for the DF-2 fuel is significantly different from the remaining four fuels. Another significant finding is the average weighted $BSNO_X$ for the ADMM15 fuel blend is significantly different than the ALS fuel. ALS was the base fuel for the ADMM15 blend.

	/eighted Mass Emissions (g/kWh) ANOVA Summary for LPP Only Conditio LPP Only – Weighted Modes 5,6,10,11			
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	
•	DF-2	0.2888	A	
	CA	0.2627	AB	
BSPM	ALS	0.2249	В	
	ADMM15	0.1431	С	
	FT-100	0.1337	С	
	DF-2	4.331	A	
	ADMM15	3.719	В	
BSNO _X	FT-100	3.441	BC	
	CA	3.431	BC	
	ALS	3.145	С	
	DF-2	1.428	A	
	CA	1.221	A	
BSHC	ALS	0.7848	В	
	ADMM15	0.6766	В	
	FT-100	0.3935	С	
	DF-2	5.063	A	
	CA	4.931	A	
BSCO	ALS	3.236	В	
	ADMM15	3.095	В	
	FT-100	1.830	С	
	ADMM15	959.4	A	
	DF-2	948.0	AB	
BSCO ₂	CA	911.9	BC	
_	ALS	910.9	BC	
	FT-100	874.2	С	
	DF-2	0.2279	A	
	CA	0.2207	A	
BSSOF	ALS	0.1608	В	
	ADMM15	0.1237	С	
	FT-100	0.0723	D	

¹Fuels listed from highest to lowest least squares mean

²Letters designate groups of fuel means within which there are no statistically significant differences NS = no statistically significant differences in the mean response at the 5% level of significance

Figure 6. Test Fuel Weighted Average Particulate Matter Mass Emissions (g/kWh)

Figure 7. Test Fuel Weighted Average NOx Mass Emissions (g/kWh)

5.1.3 Fuel Impact on HC

A statistically significant difference in the average weighted BSHC among the test fuels was seen from the ANOVA. Figure 8 shows the relative levels of test fuel hydrocarbon emissions, with statistically similar groupings shown with horizontal bars. The average weighted BSHC for the FT-100 fuel is significantly different from the remaining four fuels. The other fuels can be divided into two distinct fuel groupings. The ADMM15 and ALS fuels are not significantly different from one another, but are different from the CA and DF-2 fuels. The CA and DF-2 fuels are not significantly different from one another.

5.1.4 Fuel Impact on CO

Figure 9 shows the ANOVA statistically significant differences in the average weighted BSCO among the fuels. The average weighted BSCO for the FT-100 fuel is significantly different from the remaining four fuels. The other fuels can be divided into two distinct fuel groupings. The ADMM15 and the ALS fuels are not significantly different from one another, but are different from the CA and DF-2 fuels. The CA and DF-2 fuels are not significantly different from one another. The CO and HC results show the same statistical trends, which is not unexpected considering both species are measures of combustion inefficiency.

5.1.5 Fuel Impact on CO₂

The ANOVA results for BSCO₂ reveal statistically significant differences in the average weighted response among the fuels. Figure 10 shows the statistical groupings for CO₂. The average weighted BSCO₂ for the ADMM15 fuel is significantly different than the ALS, CA, and FT-100 fuels. Also, the average weighted BSCO₂ for the FT-100 fuel is significantly different than the DF-2 fuel. CO₂ emissions are a measure of energy consumption, and in the case of the test fuels reflects the fuels heating value. ADMM15 has the lowest net heat of combustion of the test fuels, which results in the highest CO₂ emissions. FT-100 has the highest heating value, and correspondingly lowest CO₂ emissions.

5.1.6 Fuel Impact on SOF of PM

From the ANOVA statistically significant differences in the average weighted BSSOF among the fuels exists. The relative SOF levels of the particulate matter and their statistical groups are

represented in Figure 11. There are four distinct fuel groupings with respect to the average weighted BSSOF. The FT-100, ADMM15, and ALS fuels are significantly different from one another and the remaining two fuels. The CA and DF-2 fuels are not significantly different from one another, but are significantly different from the other three fuels.

The SOF represents the portion of the total particulate that includes unburned fuel, unburned lube oil, and byproducts of combustion of fuel and lube oil. Although ADMM15 and FT-100 have statistically similar total PM response, the SOF for the two fuels is statistically different. The oxygenated fuel, ADMM15, has a significantly higher soluble organic fraction than FT-100. Whilst FT-100 has a larger portion of insoluble particulate matter. Symkowicz³ saw a higher fraction of "dry" particulate with FT-100 as part of the Ad Hoc Diesel Fuels Group core program. The ratio of SOF to total particulate may be of interest for determining engine aftertreatment strategies, Figure 12. ADMM15 also has a greater ratio of SOF/PM than both FT-100 and its parent fuel ALS.

Figure 8. Test Fuel Weighted Average Hydrocarbon Mass Emissions (g/kWh)

Figure 9. Test Fuel Weighted Average Carbon Monoxide Mass Emissions (g/kWh)

Figure 10. Test Fuel Weighted Average Carbon Dioxide Mass Emissions (g/kWh)

Figure 11. Test Fuel Weighted Average Soluble Organic Fraction of Particulate Mass Emissions (g/kWh)

Figure 12. Ratio of SOF to Total PM of Weighted Average Results for Test Fuels

5.2 Fuel Impact on Four Clean Air Act Toxic Air Pollutants

Table 17 is the ranking of the test fuels from the ANOVA for the four EPA Clean Air Act toxic air pollutant compounds. For the EPA toxic air pollutants, ADMM15 and FT-100 were statistically similar emitting fuels, and always in the lowest grouping for the weighted average for LPP operation with pilot fuel injection turned off.

The discussions to follow are summaries of the ANOVA performed for each emission response for the weighted averages, and refer to the results in Table 17. The ANOVA tables for the weighted averages can be found in Appendix C.

Table 17. Clean Air Act Toxic Air Pollutant Compounds Weighted Mass Emissions (mg/kWh) ANOVA Summary for LPP Operation				
	LPP Only - Weighted Modes 5,6,10,11			
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	
	CA	7.297	A	
	DF-2	6.360	AB	
Benzene	ALS	5.017	В	
	FT-100	2.504	С	
	ADMM15	2.075	С	
	CA	6.108	A	
	DF-2	5.778	A	
1,3-Butadiene	ALS	4.817	AB	
	ADMM15	3.921	BC	
	FT-100	2.650	С	
	DF-2	484.2	A	
	ALS	366.8	AB	
Formaldehyde	CA	332.4	AB	
	ADMM15	267.1	В	
	FT-100	206.8	В	
	DF-2	177.0	A	
	ALS	148.8	AB	
Acetaldehyde	CA	126.0	ABC	
Transla Kata di Garanda	ADMM15	92.39	BC	
	FT-100	75.01	С	

¹Fuels listed from highest to lowest least squares mean

²Letters designate groups of fuel means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

5.2.1 Benzene

The ANOVA for the toxic air pollutant emission benzene revealed statistically significant differences in the average weighted benzene among the fuels. Figure 13 shows the ranking and statistically significant similar groupings (horizontal bars) for benzene emissions. Average weighted benzene at fuels ADMM15 and FT-100 are not significantly different from one another, but are different than the other three fuels. The average weighted benzene at fuel ALS is significantly different than fuel CA. The DF-2 fuel is not significantly different than either the ALS or CA fuel.

5.2.2 1,3-Butadiene

An ANOVA for 1,3-butadiene indicated statistically significant differences exist in the average weighted response among the fuels. For 1,3-butadiene the lowest emitting fuels were FT-100 and ADMM15, then ALS, with the highest emitting fuels being DF-2 and CA; the statistical groupings are shown in Figure 14. The average weighted 1,3-butadiene for the CA and DF-2 fuels are not significantly different from one another, but are significantly different than the ADMM15 and FT-100 fuels. The ADMM15 and FT-100 fuels are not significantly different from one another. Also, the average weighted 1,3-butadiene for the ALS fuel is significantly different than the FT-100 fuel.

5.2.3 Formaldehyde

Statistically significant differences exist in the average weighted formaldehyde emission among the test fuels based on the ANOVA. Figure 15 shows the relative levels and statistical groupings for Formaldehyde emissions. The average weighted formaldehyde for the DF-2 fuel is significantly different than the FT-100 and the ADMM15 fuels.

5.2.4 Acetaldehyde

From ANOVA, statistically significant differences in the average weighted acetaldehyde among the fuels exist. Corresponding groupings for acetaldehyde are shown in Figure 16. The average weighted acetaldehyde for the DF-2 fuel is significantly different than the FT-100 or ADMM15 fuels. The FT-100 and ADMM15 fuels are not significantly different from one another. Also, the average weighted acetaldehyde for the FT-100 fuel is significantly different than the ALS fuel.

Figure 13. Test Fuel Weighted Average Benzene Mass Emissions (mg/kWh)

Figure 14. Test Fuel Weighted Average 1,3-Butadiene Mass Emissions (mg/kWh)

Figure 15. Test Fuel Weighted Average Formaldehyde Mass Emissions (mg/kWh)

Figure 16. Test Fuel Weighted Average Acetaldehyde Mass Emissions (mg/kWh)

5.3 Fuel Impact on Particulate Soluble Extract PAH Species

The fuel rankings for 13 of the particulate bound soluble phase PAH compounds are shown in Table 18. Due to non-detects, four PAH compounds are being analyzed again with a higher resolution instrument. The four compounds reanalyzed were benzo[a]pyrene, indeno(123-cd)pyrene, dibenzo(a,h)anthracene, and benzo(ghi)perylene. For the majority of PAH compounds DF-2 fuel was statistically different from the other test fuels. The ADMM15 and FT-100 fuels were in the statistically equivalent (95% confidence) lowest grouping for particulate bound PAH compounds.

The discussions to follow are summaries of the ANOVA performed for each emission response for the weighted averages, and refer to the results in Table 18. The ANOVA tables for the weighted averages weighted averages can be found in Appendix C.

Response -	LPP Only - Weighted Modes 5,6,10,11			
	Fuel	LS Means ¹	Significant Fuel Groups ²	
	DF-2	48.71	A	
	CA	46.18	Α	
Naphthalene	FT-100	39.38	AB	
	ADMM15	28.43	AB	
	ALS	23.45	В	
	CA	0.9966	A	
	DF-2	0.8074	AB	
Acenaphthylene ³	FT-100	0.6035	AB	
	ADMM15	0.4807	В	
	ALS	0.4780	В	
	DF-2	6.564		
	CA	5.323		
Acenaphthene	FT-100	4.471	NS	
	ADMM15	4.333		
	ALS	2.314		
	DF-2	12.49	A	
	CA	9.226	AB	
Fluorene ³	ADMM15	7.173	В	
	FT-100	6.208	В	
	ALS	4.214	В	
	DF-2	103.0	A	
	CA	72.85	AB	
Phenanthrene	FT-100	43.01	В	
	ALS	36.00	В	
	ADMM15	29.81	В	
	DF-2	4.197	A	
	CA	4.161	A	
Anthracene	FT-100	2.920	AB	
Ī	ADMM15	2.287	BC	
	ALS	0.7376	С	

Table 18. Weighted Soluble PAH ANOVA Summary for LPP Only Conditions (contd)				
Response	LPP Only - Weighted Modes 5,6,10,11			
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	
	DF-2	51.19	A	
	ALS	19.54	В	
Fluoranthene	CA	17.78	В	
	FT-100	15.48	В	
	ADMM15	9.829	В	
	DF-2	83.53	Α	
	ALS	21.30	В	
Pyrene	CA	13.67	В	
	FT-100	12.71	В	
	ADMM15	9.984	В	
	DF-2	2.455	A	
	CA	1.063	В	
Benzo[a]anthracene	ALS	0.7125	BC	
	FT-100	0.2531	BC	
	ADMM15	0.1550	С	
	DF-2	7.735	Α	
	CA	2.391	В	
Chrysene	ALS	1.936	В	
·	FT-100	0.7735	В	
	ADMM15	0.5860	В	
	DF-2	1.538	A	
	ALS	1.253	A	
Benzo[b]fluoranthene ³	CA	1.190	A	
	ADMM15	0.3893	В	
	FT-100	0.3046	В	
	DF-2	2.291	A	
	CA	1.189	В	
Benzo[k]fluoranthene	ALS	0.6576	В	
· · · · · · · · · · · · · · · · · · ·	ADMM15	0.4236	В	
	FT-100	0.3539	В	
	DF-2	1.059	Α	
	CA	0.6799	AB	
Benzo[e]pyrene ³	ALS	0.6206	AB	
	FT-100	0.2671	В	
	ADMM15	0.2101	В	
	ALS	0.4346	Α	
	CA	0.3467	AB	
Benzo[a]pyrene	DF-2	0.2002	BC	
L- JN J	FT-100	0.0684	C	
	ADMM15	0.0548	C	
	DF-2	0.3978	A	
ndeno(1,2,3-cd)pyrene	ADMM15	0.0731	В	
	FT-100	0.0613	В	
	CA	0.7062	A	
_	DF-2	0.6439	A	
Benzo[ghi]perylene	ADMM15	0.2085	В	
 	FT-100	0.1541	В	

¹Fuels listed from highest to lowest least squares mean

²Letters designate groups of fuel means within which there are no statistically significant differences

³Some fuel data were imputed in the calculation of the weighted response because of non-detects

NS = no statistically significant differences in the mean response at the 5% level of significance

5.3.1 Naphthalene

The ANOVA revealed statistically significant differences in the average naphthalene among the fuels. Figure 17 shows the statistical groupings for the PAH naphthalene bound to the particulate matter. The average weighted naphthalene for the ALS fuel is significantly different from the CA and DF-2 fuels.

5.3.2 Acenaphthylene

The ANOVA for acenaphthylene revealed statistically significant differences in the average weighted acenaphthylene among the fuels. Some fuel data were imputed in the calculation of the weighted response because of non-detects for various modes and fuels. The data was imputed utilizing the detection limits. The weighted average acenaphthylene response, and the statistical groups are shown in Figure 18. The average weighted acenaphthylene for the CA fuel is significantly different from the ADMM15 and ALS fuels.

5.3.3 Acenaphthene

The weighted average acenaphthene response is shown in Figure 19. From ANOVA statistically significant differences did not exist in the average acenaphthene among the test fuels.

5.3.4 Fluorene

The ANOVA showed statistically significant differences in the average weighted fluorene among the fuels. Some ALS fuel data was imputed for repeat runs because of non-detects in modes 5 and 11. The average weighted fluorene for the DF-2 fuel is significantly different from the ADMM15, FT-100, and ALS fuels. Figure 20 shows the weighted average fluorene and the statistical groups.

5.3.5 Phenanthrene

A statistically significant difference in the average weighted phenanthrene response exists among the test fuels. The phenanthrene response is shown in Figure 21. The average weighted phenanthrene for the DF-2 fuel is significantly different than the ADMM15, ALS, and FT-100 fuels. The average weighted phenanthrene for the ADMM15, ALS, FT-100, and CA fuels are not significantly different from one another.

Figure 17. Test Fuel Weighted Average Particulate Phase Naphthalene Mass Emissions (µg/kWh)

Figure 18.Test Fuel Weighted Average Particulate Phase Acenaphthylene Mass Emissions (µg/kWh)

Particulate Acenaphthene Emissions

Figure 19. Test Fuel Weighted Average Particulate Phase Acenaphthene Mass Emissions (µg/kWh)

Figure 20. Test Fuel Weighted Average Particulate Phase Fluorene Mass Emissions (μg/kWh)

Figure 21. Test Fuel Weighted Average Particulate Phase Phenanthrene Mass Emissions (µg/kWh)

5.3.6 Anthracene

From ANOVA a statistically significant difference in the average weighted anthracene is revealed among the fuels. The weighted average results for anthracene are shown in Figure 22. The average weighted anthracene for the ALS fuel is significantly different from the CA, DF-2, and FT-100 fuels. Also, the ADMM15 fuel has a significantly different weighted anthracene than the CA and DF-2 fuels.

5.3.7 Fluoranthene

Statistically significant differences exist in the average weighted fluoranthene response among the fuels. The average weighted fluoranthene for the DF-2 fuel is significantly different from the remaining four fuels. The ADMM15, FT-100, CA, and ALS fuels are not significantly different from one another with respect to the average weighted fluoranthene, Figure 23.

Figure 22. Test Fuel Weighted Average Particulate Phase Anthracene Mass Emissions $(\mu g/kWh)$

Figure 23. Test Fuel Weighted Average Particulate Phase Fluoranthene Mass Emissions (µg/kWh)

5.3.8 Pyrene

The average weighted pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The pyrene results are shown in Figure 24. The ADMM15, FT-100, CA, and ALS fuels are not significantly different from one another with respect to the average weighted pyrene.

5.3.9 Benzo[a]anthracene

The ANOVA for benzo[a]anthracene, levels shown in Figure 25, indicated there were statistically significant differences in the average weighted benzo[a]anthracene among the fuels. The average weighted benzo[a]anthracene for the DF-2 fuel is significantly different than the remaining four fuels. Also, the average weighted benzo[a]anthracene for the CA fuel is significantly different than the ADMM15 fuel.

5.3.10 Chrysene

There were statistically significant differences in the average weighted chrysene for the test fuels. Figure 26 is the statistical groupings for the particulate phase PAH chrysene. The average weighted chrysene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another with respect to the average weighted chrysene.

5.3.11 Benzo[b]fluoranthene

The ANOVA for the PAH benzo[b]fluoranthene has shown statistically significant differences in the average weighted benzo[b]fluoranthene among the fuels. Some of the CA fuel data was imputed for the analysis due to non-detects in modes 5 and 11. The results are depicted in Figure 27. There are two distinct fuel groupings with respect to the average weighted benzo[b]fluoranthene. The ADMM15 and FT-100 fuels are not significantly different from one another, but are different from the remaining three fuels. The ALS, CA, and DF-2 fuels are not significantly different from one another.

Figure 24. Test Fuel Weighted Average Particulate Phase Pyrene Mass Emissions (μg/kWh)

Figure 25. Test Fuel Weighted Average Particulate Phase Benzo[a]anthracene Mass Emissions (µg/kWh)

Figure 26. Test Fuel Weighted Average Particulate Chrysene Mass Emissions

Figure 27. Test Fuel Weighted Average Particulate Phase Benzo[b]fluoranthene Mass Emissions (μ g/kWh)

5.3.12 Benzo[k]fluoranthene

Average weighted benzo[k]fluoranthene response had statistically significant differences among the fuels. The least-square means and groups are shown in Figure 28 for benzo[k]fluoranthene. The average weighted benzo[k]fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another with respect to the average weighted benzo[k]fluoranthene.

5.3.13 Benzo[e]pyrene

For the ANOVA for benzo[e]pyrene, statistically significant differences were seen in the average weighted benzo[e]pyrene among the fuels. Some DF-2 data was imputed for repeat runs because of non-detects in modes 5 and 6. The emissions of particulate bound PAH benzo[e]pyrene is shown in Figure 29, along with the statistical groupings. The average weighted benzo[e]pyrene for the DF-2 fuel is significantly different than the ADMM15 and FT-100 fuels.

5.3.14 Benzo[a]pyrene

Due to non-detects for benzo[a]pyrene using high-resolution GC/ low-resolution MS, the extracts were reanalyzed utilizing a high-resolution MS detector. The selection criteria for reanalysis was any non-idle modal LPP experiment that did not have a benzo[a]pyrene result with the low-resolution instrument. The ANOVA for benzo[a]pyrene revealed statistically significant differences in the average benzo[a]pyrene response among the fuels. The emissions of particulate bound PAH benzo[e]pyrene are shown in Figure 30, along with the statistical groupings. The average weighted benzo[a]pyrene for the ADMM15 and FT-100 fuels is significantly different than the CA and ALS fuels. Also, ALS fuel has a significantly different weighted benzo[a]pyrene than the DF-2 fuel.

5.3.15 Indeno(1,2,3-cd)pyrene

High-resolution analysis of the extracts were also performed for the PAH indeno(1,2,3-cd)pyrene. Statistically significant differences were seen in the average weighted indeno(1,2,3-cd)pyrene among the fuels, and the results are shown in Figure 31. Figure 31 does not have results for ALS or CA fuels due to the number of non-detects that made analysis meaningless. The average indeno(1,2,3-cd)pyrene for the ADMM15 and FT-100 fuels are not significantly different from one another, but both are significantly different from the DF-2 fuel.

Figure 28. Test Fuel Weighted Average Particulate Phase Benzo[k]fluoranthene Mass Emissions (µg/kWh)

Figure 29. Test Fuel Weighted Average Particulate Phase Benzo(e)pyrene Mass Emissions (μg/kWh)

Figure 30. Test Fuel Weighted Average Particulate Phase Benzo[a]pyrene Mass Emissions (µg/kWh)

Figure 31. Test Fuel Weighted Average Particulate Phase Indeno(1,2,3-cd)pyrene Mass Emissions (µg/kWh)

5.3.16 Dibenzo[a,h]anthracene

Although high-resolution analysis was attempted on this PAH species, sufficient non-detects existed such that the weighted averaging could not be performed in a meaningful manner.

5.3.17 Benzo[ghi]perylene

High-resolution analysis of the extracts were also performed for the PAH benzo[ghi]perylene. Statistically significant differences were seen in the average weighted benzo[ghi]perylene among the fuels, and the results are shown in Figure 32. The average benzo[ghi]perylene for the FT-100 and ADMM15 fuels are significantly different from the DF-2 and CA fuels, but not significantly different from one another. Also, the DF-2 and CA fuels are not significantly different from one another.

Figure 32. Test Fuel Weighted Average Particulate Phase Benzo[ghi]perylene Mass Emissions (µg/kWh)

5.4 Fuel Impact on Gaseous PAH Species

The gas phase PAH emissions rank the test fuels in the general order shown in Table 19. Included in Table 19 are the least-square means from the ANOVA, along with the statistically significant groupings for the weighted average mass emissions. The general trends were for DF-2 to have the highest gas phase PAH emissions, while ADMM15 and FT-100 always had the statistically lowest PAH emissions. The ANOVA for gas phase PAH species indicated the oxygenated diesel fuel, ADMM15, was statistically equivalent to FT-100.

The discussions to follow are summaries of the ANOVA performed for each emission response for the weighted averages, and refer to the results in Table 19. The ANOVA tables for the weighted averages can be found in Appendix C.

Table 19. Weighted Gaseous PAH ANOVA Summary for LPP Only Conditions			
	LPP Only - Weighted Modes 5,6,10,11		
Response	Fuel	LS Means ¹	Significant Fuel Groups ²
	CA	5436	A
	DF-2	3226	В
Naphthalene	ALS	1127	С
	ADMM15	467.1	С
	FT-100	252.5	С
	DF-2	4750	A
	CA	3065	В
2-Methylnaphthalene	ALS	737.3	С
	ADMM15	238.8	С
	FT-100	113.9	С
	DF-2	3268	A
	CA	1713	В
1-Methylnaphthalene	ALS	409.9	С
	ADMM15	111.1	С
	FT-100	65.72	С
	DF-2	3462	A
	CA	722.3	В
2,6-Dimethylnaphthalene	ALS	242.3	В
	ADMM15	48.81	В
	FT-100	44.71	В
	DF-2	324.8	A
	ALS	122.2	В
Acenaphthylene	CA	102.2	В
	ADMM15	46.44	В
	FT-100	45.21	В
	DF-2	517.5	A
	CA	75.37	В
Acenaphthene	ALS	37.61	В
	ADMM15	19.14	В
	FT-100	8.501	В

Table 19. Weighted Gaseous PAH ANOVA Summary for LPP Only Conditions (contd)				
	LPP Only - Weighted Modes 5,6,10,11			
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	
	DF-2	931.9	A	
	CA	108.6	В	
Fluorene	ALS	45.82	В	
	FT-100	15.91	В	
	ADMM15	15.54	В	
	DF-2	1586	A	
	CA	199.5	В	
Phenanthrene	ALS	120.1	В	
	FT-100	40.99	В	
	ADMM15	35.57	В	
	DF-2	51.59	A	
	CA	9.235	В	
Anthracene	ALS	5.364	В	
	ADMM15	1.954	В	
	FT-100	1.676	В	
	DF-2	13.22	A	
	CA	3.921	В	
Fluoranthene	ALS	3.295	В	
	FT-100	1.870	В	
	ADMM15	1.454	В	
	DF-2	17.54	A	
	CA	3.137	В	
Pyrene	ALS	2.838	В	
	FT-100	1.406	В	
	ADMM15	1.142	В	

¹Fuels listed from highest to lowest least squares mean

5.4.1 Naphthalene

Statistically significant differences were noted in the average weighted gas phase naphthalene among the fuels. The gas phase PAH naphthalene mass emissions are shown in Figure 33 along with the statistical groupings. There are three distinct fuel groupings with respect to the average weighted naphthalene. FT-100, ADMM15, and ALS fuels are not significantly different from one another, but they are significantly different from the other two fuels. The DF-2 and CA fuels are significantly different from one another and the remaining three fuels.

²Letters designate groups of fuel means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

Figure 33. Test Fuel Weighted Average Gaseous Phase Naphthalene Mass Emissions ($\mu g/kWh$)

5.4.2 2-Methylnaphthalene

Statistically significant differences in the average weighted 2-methylnaphthalene among the fuels are shown in Figure 34. There are three distinct fuel groupings with respect to the average weighted 2-methylnaphthalene. FT-100, ADMM15, and ALS fuels are not significantly different from one another, but they are significantly different from the other two fuels. The DF-2 and CA fuels are significantly different from one another and the remaining three fuels.

5.4.3 1-Methylnaphthalene

The ANOVA for 1-methylnaphthalene showed statistically significant differences in the average weighted 1-methylnaphthalene among the fuels. There are three distinct fuel groupings with respect to the average weighted 1-methylnaphthalene as shown in Figure 35. FT-100, ADMM15, and ALS fuels are not significantly different from one another, but they are significantly different from the other two fuels. The DF-2 and CA fuels are significantly different from one another and the remaining three fuels.

Figure 34. Test Fuel Weighted Average Gaseous Phase 2-Methylnaphthalene Mass Emissions (µg/kWh)

Figure 35. Test Fuel Weighted Average Gaseous Phase 1-Methylnaphthalene Mass Emissions (μg/kWh)

5.4.4 2,6-Dimethylnaphthalene

Statistically significant differences in the average weighted 2,6-dimethylnaphthalene are shown in Figure 36. The average weighted 2,6-dimethylnaphthalene for the DF-2 fuel is significantly different than the other four fuels. The average weighted 2,6-dimethylnaphthalene among the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

5.4.5 Acenaphthylene

Figure 37 shows the average weighted acenaphthylene for the DF-2 fuel is significantly different than the other four fuels. The average weighted acenaphthylene among the FT-100, ADMM15, CA, and ALS fuels are not significantly different from one another.

5.4.6 Acenaphthene

The average weighted acenaphthene for the DF-2 fuel is significantly different than the other four fuels. The average weighted acenaphthene among the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another. The relative response is shown in Figure 38 for the gas phase PAH acenaphthene.

5.4.7 Fluorene

The statistically significant differences in the average weighted fluorene among the fuels is shown in Figure 39. The average weighted fluorene for the DF-2 fuel is significantly different than the other four fuels. The average weighted fluorene among the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

5.4.8 Phenanthrene

Shown in Figure 40, the average weighted phenanthrene for the DF-2 fuel is significantly different than the other four fuels. The average weighted phenanthrene among the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Figure 36. Test Fuel Weighted Average Gaseous Phase 2,6-Dimethylnaphthalene Mass Emissions (μg/kWh)

Figure 37. Test Fuel Weighted Average Gaseous Phase Acenaphthylene Mass Emissions (μg/kWh)

Gaseous Acenaphthene Emissions

Figure 38. Test Fuel Weighted Average Gaseous Phase Acenaphthene Mass Emissions (µg/kWh)

Figure 39. Test Fuel Weighted Average Gaseous Phase Fluorene Mass Emissions (μg/kWh)

Figure 40. Test Fuel Weighted Average Gaseous Phase Phenanthrene Mass Emissions (μg/kWh)

5.4.9 Anthracene

The average weighted anthracene for the DF-2 fuel is significantly different than the other four fuels, Figure 41. The average weighted anthracene among the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

5.4.10 Fluoranthene

From Figure 42 the average weighted fluoranthene for the DF-2 fuel is seen to be significantly different than the other four fuels. The average weighted fluoranthene among the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

5.4.11 Pyrene

The average weighted pyrene for the DF-2 fuel is significantly different than the other four fuels. As seen in Figure 43, the average weighted pyrene for the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Figure 41. Test Fuel Weighted Average Gaseous Phase Anthracene Mass Emissions (µg/kWh)

Figure 42. Test Fuel Weighted Average Gaseous Phase Fluoranthene Mass Emissions ($\mu g/kWh$)

Figure 43. Test Fuel Weighted Average Gaseous Phase Pyrene Mass Emissions (µg/kWh)

6.0 FUEL IMPACT ON EMISSIONS-MODAL LPP TESTS

Fuel comparisons were made for the modal brake specific exhaust emissions with the engine operated under LPP control with the pilot fuel injection turned off. The multifactor ANOVA included fuel effects, mode effects, and fuel/mode interaction effects. The ANOVA tables for the modal LPP Operation (modes 5,6,10,11) can be found in Appendix E.

6.1 Fuel Impact on Regulated Brake Specific Mass Emissions

Several statistically significant trends, at 95% confidence, were apparent from an ANOVA of the modal brake specific emissions data. Table 20 summarizes the general rank order for the regulated modal mass emissions during LPP engine operation with pilot fuel injection turned off. The table displays the fuels rank from highest response to lowest response for the least-square means of the modal analysis. Statistically significant similar fuel groupings are also shown for each emission response in Table 20.

		Five Fuels, Modes 5, 6, 10 and 11										
Response			Significant	-		Significant	Significant					
·	Fuel	LS Means ¹	Significant Fuel Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Interaction					
	DF-2	0.2774	Α	10	0.2522	Α						
	CA	0.2471	AB	6	0.2273	Α						
BSPM	ALS	0.2177	В	11	0.1809	В	Fuel*Mode					
	ADMM15	0.1454	С	5	0.1614	В						
	FT-100	0.1397	С									
	DF-2	5.901	Α	5	9.658	Α						
	ADMM15	5.696	Α	6	5.560	В						
$BSNO_X$	FT-100	5.241	В	10	3.556	С	Fuel*Mode					
	CA	5.057	В	11	2.780	D						
	ALS	5.047	В									
	DF-2	1.031	Α	10	1.185	Α						
	CA	0.8661	В	11	0.9348	В						
BSHC	ALS	0.5625	С	6	0.3463	С	Fuel*Mode					
	ADMM15	0.5191	С	5	0.1589	D						
	FT-100	0.3026	D									
	DF-2	3.616	Α	10	5.052	Α						
	CA	3.467	Α	11	3.656	В						
BSCO	ALS	2.273	В	6	1.229	С	Fuel*Mode					
	ADMM15	2.218	В	5	0.4263	D						
	FT-100	1.381	С									
	ADMM15	884.1	Α	10	1056	Α						
	DF-2	874.4	Α	11	894.1	В						
BSCO ₂	CA	844.7	В	6	779.3	С	NS					
	ALS	844.0	В	5	678.4	D						
	FT-100	812.4	С									
	DF-2	0.2091	Α	10	0.2147	Α						
	CA	0.1906	Α	11	0.1377	В						
BSSOF	ALS	0.1510	В	6	0.1343	В	Fuel*Mode					
	ADMM15	0.1251	В	5	0.1189	В						
	FT-100	0.0812	С									

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

Table 20 includes the modal test severity for each regulated emission. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average mass emissions at each test mode. The general trend for mode severity depends on the species of interest. Fuel*Mode interactions are indicated in Table 20 for each toxic air pollutant.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the modal operation, and refer to the results in Table 20.

6.1.1 Fuel Impact on Particulate

Statistically significant differences were apparent in the average total particulates among the fuels, modes, and fuel*mode interaction. The average particulate at fuels FT-100 and ADMM15 are not significantly different from one another, but are different than the other 3 fuels. The average particulate at Fuel ALS is significantly different than Fuel DF-2. The CA fuel is not significantly different than either the ALS or DF-2 fuel.

The average particulate at Modes 5 and 11 are not significantly different from one another. Average particulate at Modes 6 and 10 are not significantly different from one another. Average particulate at modes 5 and 11 are significantly different than modes 6 and 10.

The CA and DF-2 fuels have significantly different average total particulate at Modes 5 and 11 than at modes 6 and 10. All other fuels do not demonstrate significant differences in the average total particulate among the four modes.

6.1.2 Fuel Impact on NOx

Statistically significant differences were apparent in the average BSNO_X among the fuels, modes, and fuel*mode interaction. There are two distinct fuel groupings with respect to the average BSNO_X. ADMM15 and DF-2 fuels are not significantly different from one another, but are different from the average BSNO_X for the ALS, CA, and FT-100 fuels. The ALS, CA, and FT-100 fuels are not significantly different from one another.

All four modes are significantly different from one another with respect to the average BSNO_x.

While the ADMM15, ALS, CA, and FT-100 fuels all have significant differences in the average BSNO_X between mode 6 and modes 10 and 11, the DF-2 fuel does not demonstrate this difference. The average BSNO_X among modes 6, 10, and 11 for the DF-2 are not significantly different from one another.

6.1.3 Fuel Impact on HC

Statistically significant differences were apparent in the average BSHC among the fuels, modes, and the fuel*mode interaction. There are four distinct fuel groupings with respect to the average BSHC. FT-100, CA, and DF-2 fuels are all significantly different from one another. Also, fuels ADMM15 and ALS are not significantly different from one another, but they are both significantly different from the other three fuels.

All four modes are significantly different from one another with respect to the average BSHC.

The ALS, CA, DF-2 fuels have significantly different average BSHC at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average BSHC among the four modes.

6.1.4 Fuel Impact on CO

Statistically significant differences were noted in the average BSCO among the fuels, modes, and fuel*mode interaction. There are three distinct fuel groupings with respect to the average BSCO. FT-100 is significantly different from the other four fuels. ADMM15 and ALS are not significantly different from one another. Fuels CA and DF-2 are not significantly different from one another, but are significantly different from the ADMM15 and ALS fuels.

All four modes are significantly different from one another with respect to the average BSCO.

The CA, DF-2, and FT-100 fuels have significantly different average BSCO at modes 10 and 11 than at modes 5 and 6.

6.1.5 Fuel Impact on CO₂

Statistically significant differences were apparent in the average BSCO₂ among the fuels and the modes. There are three distinct fuel groupings with respect to the average BSCO₂. FT-100 is significantly different from the other four fuels. ADMM15 and DF-2 fuels are not significantly different from one another. Fuels ALS and CA are not significantly different from one another, but are significantly different from the ADMM15 and DF-2 fuels.

All four modes are significantly different from one another with respect to the average BSCO₂.

No significant differences were observed among the fuel and mode combinations with respect to the average BSCO₂.

6.1.6 Fuel Impact on SOF of PM

Statistically significant differences were noted in the average BSSOF among the fuels, modes, and fuel*mode interaction. There are three distinct fuel groupings with respect to the average BSSOF. The FT-100 fuel is significantly different from the remaining four fuels. The DF-2 and CA fuels are not significantly different from one another, but are different from the other three fuels. Also, the ALS and ADMM15 fuels are not significantly different from one another, but are different from the other three fuels.

The average BSSOF for mode 10 is significantly different from the remaining three modes. The average BSSOF for modes 5, 6, and 11 are not significantly different from one another.

The trend in the average BSSOF across the fuels is different for mode 10 at the CA and DF-2 fuels. The trends in the average BSSOF across the fuels for modes 5, 6, and 11 do not appear to be different.

6.2 Fuel Impact on Four Clean Air Act Toxic Air Pollutants

Table 21 is the ranking of the test fuels from multifactor ANOVA for the four EPA Clean Air Act (CAA) toxic air pollutants. For the EPA toxic air pollutants, ADMM15 and FT-100 were statistically similar emitting fuels, and always in the lowest grouping for the modal average for LPP operation with pilot fuel injection turned off.

Table 21 includes the modal test severity for each CAA toxic air pollutant. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average mass emissions at each test mode. The general trends were for mode 10 and mode 11 to have the highest toxic emissions, while mode 5 and mode 6 had the statistically lowest toxic emissions. Fuel*Mode interactions are indicated in Table 21 for each toxic air pollutant.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the modal operation, and refer to the results in Table 21. The ANOVA tables for the modal LPP Operation (modes 5,6,10,11) can be found in Appendix E.

6.2.1 Benzene

Statistically significant differences were apparent in the average benzene among the fuels, modes, and fuel*mode interaction. The average benzene for the ADMM15 and FT-100 fuels are not significantly different from one another, but are significantly different from the remaining three fuels. The average benzene for the ALS fuel is significantly different than the average benzene for the CA fuel.

There are three distinct mode groupings with respect to the average benzene. Modes 10 and 11 are not significantly different from one another, but are significantly different than the other two modes. Modes 5 and 6 are significantly different from one another and the other two modes.

The ALS, CA, and DF-2 fuels have significantly different average benzene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average Benzene among the four modes.

6.2.2 1,3-Butadiene

Statistically significant differences exist in the average 1,3 butadiene among the fuels, modes, and fuel*mode interaction. There are three distinct fuel groupings with respect to the average 1,3-butadiene. The average 1,3-butadiene for the FT-100 fuel is significantly different than the remaining four fuels. The ADMM15 and ALS fuels are not significantly different from one another, but are significantly different than the other three fuels. Also, the DF-2 and CA fuels are not significantly different from one another, but are significantly different from the other three fuels.

Table 21. Clean Air Act Toxic Air Pollutant Mass Emissions (mg/k Wh) ANOVA Summary for LPP Mode Analysis										
	Five Fuels	Modes 5, 6	, 10 and 11	_						
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interaction			
	CA	5.0951	Α	10	5.8422	Α				
	DF-2	4.3477	AB	11	5.0279	Α				
Benzene	ALS	3.4599	В	6	1.7100	В	Fuel*Mode			
	FT-100	1.8114	С	5	0.3923	С				
	ADMM15	1.5014	С							
	CA	4.2291	Α	10	6.3958	Α				
	DF-2	3.9996	Α	11	4.8603	В				
1,3-Butadiene	ALS	3.1861	В	6	1.0916	С	Fuel*Mode			
	ADMM15	2.7986	В	5	0.5601	С				
	FT-100	1.9214	С							
	DF-2	343.9870	Α	10	476.8070	Α				
	CA	271.7800	AB	11	339.8470	В				
Formaldehyde	ALS	258.6100	В	6	107.7750	С	Fuel*Mode			
	ADMM15	195.5480	ВС	5	59.7879	С				
	FT-100	160.3470	С							
	DF-2	128.3360	Α	10	175.9990	Α				
	CA	105.5910	Α	11	127.3040	В				
Acetaldehyde	ALS	104.8070	Α	6	43.4665	С	Fuel*Mode			
	ADMM15	69.0340	В	5	26.3907	С				
	FT-100	58.6822	В							

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

There are three distinct mode groupings with respect to the average 1,3-butadiene. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another but are significantly different from the other two modes.

The DF-2 and CA fuels have significantly different average 1,3-butadiene at mode 10 than at the remaining three modes. All other fuels do not demonstrate significant differences in the average 1,3-butadiene among the four modes.

6.2.3 Formaldehyde

Statistically significant differences were noted in the average formaldehyde among the fuels, modes, and fuel*mode interaction. The average formaldehyde for the DF-2 fuel is not significantly different than the average formaldehyde for the CA fuel, but it is significantly different than the ADMM15, FT-100, and ALS fuels. The average formaldehyde at the FT-100 fuel is not significantly different than the ADMM15 fuel, but it is significantly different than the ALS, CA, and DF-2 fuels.

There are three distinct mode groupings with respect to the average formaldehyde. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another but are significantly different from the other two modes.

The ALS and DF-2 fuels have significantly different average formaldehyde at modes 10 and 11 than at the remaining two modes. All other fuels do not demonstrate this difference. However, the average formaldehyde for the CA fuel at mode 10 is significantly different than the other three modes.

6.2.4 Acetaldehyde

Statistically significant differences were apparent in the average acetaldehyde among the fuels, modes, and fuel*mode interaction. The average acetaldehyde for the FT-100 and ADMM15 fuels are not significantly different from one another. The average acetaldehyde for the ALS, CA, and

DF-2 fuels are not significantly different from one another, but are significantly different from the FT-100 and ADMM15 fuels.

There are three distinct mode groupings with respect to the average acetaldehyde. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another but are significantly different from the other two modes.

The ALS and DF-2 fuels have significantly different average acetaldehyde at modes 10 and 11 than at the remaining two modes. All other fuels do not demonstrate this difference. However, the average acetaldehyde for the CA fuel at mode 10 is significantly different than the other three modes.

6.3 Fuel Impact on Particulate Soluble Extract PAH Species

The fuel rankings for the particulate bound soluble phase PAH compounds are shown in Table 22. Due to non-detects, four PAH compounds were reanalyzed with a gas GC-high resolution mass spectrometer. The four compounds reanalyzed were benzo[a]pyrene, indeno(123-cd)pyrene, dibenzo(a,h)anthracene, and benzo(ghi)perylene. For the majority of PAH compounds DF-2 fuel was statistically different from the other test fuels. The ADMM15 and FT-100 fuels were in the statistically equivalent (95% confidence) lowest grouping for particulate bound PAH compounds.

The soluble extract PAH emissions rank the test modal severity as shown in Table 22. Included in Table 22 are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average mass emissions at each test mode. The general trends were for mode 10 to having the highest soluble extract PAH emissions, and mode 5 having the statistically lowest PAH emissions. Fuel*Mode interactions are indicated in Table 22 for each gaseous PAH species.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the modal operation. The ANOVA tables for the modal LPP Operation (modes 5,6,10,11) can be found in Appendix E.

Table 2	2. Soluble PAF	l Mass Emissi	ions (µg/kWh)			P Mode Analysis			
	Five Fuels, Modes 5, 6, 10 and 11								
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interaction		
	CA	45.50	Α	10	44.80	Α			
	DF-2	43.35	Α	6	38.08	AB			
Naphthalene	FT-100	36.76	AB	11	34.32	AB	NS		
	ADMM15	28.41	В	5	27.65	В			
	ALS	27.04	В						
	CA	0.9153	Α	10	0.7630				
	DF-2	0.7622	AB	6	0.6689	NS	NS		
Acenaphthylene	ALS	0.5971	AB	11	0.6559	INO			
	FT-100	0.5449	В	5	0.5493				
	ADMM15	0.4768	В						
	DF-2	6.393		10	5.638				
	CA	5.239		6	5.128	NS			
Acenaphthene	ADMM15	4.343	NS	11	4.441	INO	NS		
	FT-100	4.144		5	3.801				
	ALS	3.643							
	DF-2	11.35	Α	10	9.249				
	CA	9.128	AB	11	8.197	NS			
Fluorene	ALS	7.275	AB	6	7.834	INO	NS		
	ADMM15	7.043	AB	5	7.172				
	FT-100	5.769	В						
	DF-2	88.83	Α	6	64.4332	Α			
	CA	74.61	Α	10	61.7122	Α			
Phenanthrene	ALS	38.36	В	11	54.5710	AB	NS		
	FT-100	38.16	В	5	34.0794	В			
	ADMM15	28.54	В						
	CA	4.246	А	10	3.3277	А			
	DF-2	3.629	AB	6	3.1338	AB			
Anthracene	FT-100 2.661		В	11	2.7156	AB	NS		
	ADMM15	2.299	BC	5	2.0872	В			
	ALS	1.246	С						

Table 22	. Soluble PAH	Mass Emissi	ons (µg/kWh)	ANOVA Sui	mmary for LP	P Mode Analysis	(contd)			
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interaction			
	DF-2	40.77	Α	10	25.8812	Α				
	CA	20.35	В	6	24.5815	Α				
Fluoranthene	ALS	19.29	В	11	20.6494	AB	Fuel*Mode			
	FT-100	14.82	В	5	12.6339	В				
	ADMM15	9.455	В							
	DF-2	63.29	Α	10	31.1162	Α				
	ALS	19.18	В	11	28.2235	Α				
Pyrene	CA	16.05	В	6	24.5073	AB	Fuel*Mode			
-	FT-100	11.87	В	5	11.6778	В				
	ADMM15	9.020	В							
	DF-2	1.995	Α	10	1.1663	Α				
	CA	1.163	В	11	0.8571	AB				
Benzo[a]anthracene	ALS	0.7054	С	6	0.7489	В	Fuel*Mode			
	FT-100	0.2040	D	5	0.6127	В				
	ADMM15	0.1636	D							
	DF-2	6.774	Α	10	3.2797					
	CA	2.425	В	6	2.5967	NO				
Chrysene	ALS	2.250	BC	11	2.4567	NS	NS			
•	FT-100	0.8623	BC	5	2.1010					
	ADMM15	0.7316	С							
	CA	1.715	Α	5	1.3636					
	ALS	1.496	Α	10	1.1534	NC				
Benzo[b]fluoranthene	DF-2	1.377	Α	6	1.0215	NS	NS			
	ADMM15	0.4814	В	11	0.7956					
	FT-100	0.3485	В		•					
	DF-2	2.226	Α	10	1.4836	Α				
	CA	1.394	AB	5	1.1171	AB				
Benzo[k]fluoranthene	ALS	0.7976 BC		6	1.0296	AB	NS			
	ADMM15	0.5213	BC	11	0.6652	В				
	FT-100	0.4298	С		•					

Table 22.	Soluble PAF	l Mass Emissi				P Mode Analysis	(contd)				
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Modes (5, 6, 10 and 11 LS Means ¹	Significant Mode Groups ²	Significant Interaction				
	CA	1.106	A	10	0.7553						
	DF-2	0.9574	Α	5	0.6853	NC					
Benzo[e]pyrene	ALS	0.5997	AB	6	0.6049	NS	NS				
	FT-100	0.2621	В	11	0.4718						
	ADMM15	0.2215	В		•						
	ALS	0.3761	Α	10	0.3038	Α					
	CA	0.3388	Α	11	0.1864	В					
Benzo[a]pyrene	DF-2	0.1713	В	6	0.1703	В	Fuel*Mode				
	FT-100	0.0598	ВС	5	0.1404	В					
	ADMM15	0.0550	С		•						
	DF-2	0.3111	Α	10	0.2457	Α					
Indeno(1,2,3-cd)pyrene	ADMM15	0.0651	В	11	0.1649	AB	Fuel*Mode				
indeno(1,2,3-cd)pyrene	FT-100	0.0624	В	6	0.0947	В	ruei Mode				
				5	0.0794	В					
	DF-2	0.0818	Α	10	0.0546	Α					
Dibenzo[a,h]anthracene	FT-100	0.0156	В	11	0.0413	AB	NS				
Diberizo[a,rijantinacene	ADMM15	0.0122	В	6	0.0302	AB	INO				
				5	0.0200	В					
	CA	0.5739	Α	10	0.5886	Α	1				
Donzolahilnondono	DF-2	0.4977	Α	11	0.4190	В	Fuel*Mode				
Benzo[ghi]perylene	ADMM15	0.1747	В	6	0.2063	С	ruei iviode				
	FT-100	0.1475	В	5	0.1799	С					

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

6.3.1 Naphthalene

Statistically significant differences were apparent in the average naphthalene among the fuels and the modes. The average naphthalene for the CA and DF-2 fuels are significantly different from the ADMM15 and ALS fuels, but not significantly different from one another. The average naphthalene for the ADMM15 and ALS fuels are not significantly different from one another.

The average naphthalene for mode 10 is significantly different from mode 5.

There is no significant interaction in the average naphthalene among the fuel and mode combinations.

6.3.2 Acenaphthylene

Statistically significant differences exist in the average acenaphthylene among the fuels. The average acenaphthylene for the CA fuel is significantly different than the FT-100 and ADMM15 fuels.

No statistically significant differences exist in the average acenaphthylene among the modes.

There is no significant interaction in the average acenaphthylene among the fuel and mode combinations.

6.3.3 Acenaphthene

No statistically significant differences were apparent in the average acenaphthene among the fuels, modes or interaction. No statistically significant differences exist in the average acenaphthene among the fuels.

No statistically significant differences were apparent in the average acenaphthene among the modes.

There is no significant interaction in the average acenaphthene among the fuel and mode combinations.

6.3.4 Fluorene

Statistically significant differences were noted in the average fluorene among the fuels. The average fluorene for the DF-2 fuel is significantly different from the FT-100 fuel.

There is no significant difference in the average fluorene among the modes.

There is no significant interaction in the average fluorene among the fuel and mode combinations.

6.3.5 Phenanthrene

Statistically significant differences were apparent in the average phenanthrene among the fuels and modes. There are two distinct fuel groupings with respect to the average phenanthrene. The average phenanthrene for the DF-2 and CA fuels are not significantly different from one another, but are significantly different from the remaining three fuels. The average phenanthrene for the ALS, FT-100, and ADMM15 fuels are not significantly different from one another.

The average phenanthrene for mode 5 is significantly different from modes 6 and 10.

There is no significant interaction in the average phenanthrene among the fuel and mode combinations.

6.3.6 Anthracene

Statistically significant differences were apparent in the average anthracene among the fuels and modes. The average anthracene for the CA fuel is significantly different from the FT-100, ADMM15, and ALS fuels. The average anthracene for the ALS fuel is significantly different than the DF-2 and FT-100 fuels.

The average anthracene for mode 10 is significantly different than mode 5.

There is no significant interaction in the average anthracene among the fuel and mode combinations.

6.3.7 Fluoranthene

Statistically significant differences exist in the average fluoranthene among the fuels, modes and fuel*mode interaction. The average fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

The average fluoranthene for modes 6 and 10 are significantly different than mode 5, but not significantly different from one another.

The trend in the average fluoranthene across the modes for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average fluoranthene for the DF-2 fuel at modes 10 and 11 are significantly different than the other four fuels.

6.3.8 Pyrene

Statistically significant differences were noted in the average pyrene among the fuels, modes, and fuel*mode interaction. The average pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The average pyrene for the ALS, CA, FT-100, and ADMM15 fuels are not significantly different from one another.

The average pyrene for modes 10 and 11 are significantly different than mode 5. The average pyrene for mode 6 is not significantly different than the remaining three modes.

The trend in the average pyrene across the modes for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average pyrene at modes 10 and 11 for the DF-2 fuel are significantly different than the other four fuels.

6.3.9 Benzo[a]anthracene

Statistically significant differences were apparent in the average benzo[a]anthracene among the fuels, modes, and fuel*mode interaction. There are four distinct fuel groupings with respect to the average benzo[a]anthracene. Fuels DF-2, CA, and ALS are significantly different from one another and the remaining two fuels. The FT-100 and ADMM15 fuels are not significantly

different from one another, but are significantly different than the other three fuels.

The average benzo[a]anthracene for mode 10 is significantly different than modes 5 and 6. The average benzo[a]anthracene for mode 11 is not significantly different than the remaining three modes.

The trend in the average benzo[a]anthracene across the modes for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average benzo[a]anthracene at modes 10 and 11 for the DF-2 fuel are significantly different than the other four fuels.

6.3.10 Chrysene

Statistically significant differences exist in the average chrysene among the fuels. The average chrysene for the DF-2 fuel is significantly different than the remaining four fuels. Also, the average chrysene for the CA fuel is significantly different than the ADMM15 fuel.

There is no significant difference in the average chrysene among the modes.

There is no significant interaction in the average chrysene among the fuel and mode combinations.

6.3.11 Benzo[b]fluoranthene

Statistically significant differences were apparent in the average benzo[b]fluoranthene among the fuels. There are two distinct fuel groupings with respect to the average benzo[b]fluoranthene. The CA, ALS, and DF-2 fuels are not significantly different from one another, but are different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another.

There is not any significant difference in the average benzo[b]fluoranthene among the modes.

There is not any significant interaction in the average benzo[b]fluoranthene among the fuel and mode combinations.

6.3.12 Benzo[k]fluoranthene

Statistically significant differences were noted in the average benzo[k]fluoranthene among the fuels and modes. The average benzo[k]fluoranthene for the DF-2 fuel is significantly different than the ADMM15, ALS, and FT-100 fuels. The average benzo[k]fluoranthene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another. Also, the average benzo[k]fluoranthene for the CA fuel is significantly different than the FT-100 fuel.

The average benzo[k]fluoranthene for mode 10 is significantly different than mode 11.

There is no significant interaction in the average benzo[k]fluoranthene among the fuel and mode combinations.

6.3.13 Benzo[e]pyrene

Statistically significant differences were apparent in the average benzo[e]pyrene among the fuels. The average benzo[e]pyrene for the CA and DF-2 fuels are significantly different than the FT-100 and ADMM15 fuels, but not significantly different from one another. Also, the average benzo[e]pyrene for the ALS fuel was not significantly different from the remaining four fuels.

There is no significant difference in the average benzo[e]pyrene among the modes.

There is no significant interaction in the average benzo[e]pyrene among the fuel and mode combinations.

6.3.14 Benzo[a]pyrene

Due to non-detects for benzo[a]pyrene using low-resolution GC/MS, the extracts were reanalyzed utilizing a high-resolution mass spectrometer. The selection criteria for reanalysis was any non-idle modal experiment that did not have a benzo[a]pyrene result. The ALS fuel had benzo[a]pyrene detects with the low resolution instrument, so the majority of the ALS extracts were not reanalyzed for the higher molecular weight PAH species.

Statistically significant differences exist in the average benzo[a]pyrene among the fuels, modes, and fuel*mode interaction. The average benzo[a]pyrene for the CA and ALS fuels are significantly different from the remaining three fuels but not different from one another. The average benzo[a]pyrene for the ADMM15 fuel is significantly different from the DF-2 fuel, but not significantly different from the FT-100 fuel.

The average benzo[a]pyrene for mode 10 is significantly different from the remaining three modes.

The trend in the average benzo[a]pyrene across the modes for the ALS fuel is significantly different than the trends for the remaining four fuels. Also, the average benzo[a]pyrene for the CA fuel is significantly different than the other fuels at mode 6.

6.3.15 Indeno(1,2,3-cd)pyrene

High-resolution mass spectral analysis of the extracts were also performed for the PAH indeno(1,2,3-cd)pyrene. Sufficient non-detects existed for CA and ALS fuels such that the CA and ALS fuels were not included in the multifactor ANOVA for indeno(1,2,3-cd)pyrene.

Statistically significant differences were apparent in the average indeno(1,2,3-cd)pyrene among the fuels, modes, and fuel*mode interaction. The average indeno(1,2,3-cd)pyrene for the DF-2 fuel is significantly different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another with respect to the average indeno(1,2,3-cd)pyrene.

The average indeno(1,2,3-cd)pyrene for mode 10 is significantly different than modes 5 and 6. Mode 11 is not significantly different from the remaining three modes with respect to the average indeno(1,2,3-cd)pyrene.

The trend in the average indeno(1,2,3-cd)pyrene across the modes for the DF-2 fuel is significantly different than the trends in the remaining two fuels. The average indeno(1,2,3-cd)pyrene at modes 10 and 11 for the DF-2 fuel are significantly different than the ADMM15 and FT-100 fuels.

6.3.16 Dibenzo[a,h]anthracene

Although high-resolution mass spectral analysis was attempted on this PAH species, sufficient non-detects existed for CA and ALS fuels such that the multifactor ANOVA for dibenzo[a,h]anthracene was not be performed for the CA and ALS fuels.

Statistically significant differences were noted in the average dibenzo[a,h]anthracene among the fuels and modes analyzed. The average dibenzo[a,h]anthracene for the DF-2 fuel is significantly different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another.

The average dibenzo[a,h]anthracene for mode 10 is significantly different from mode 5. Modes 6 and 11 are not significantly different from one another or the other two modes.

There is no significant interaction in the average dibenzo[a,h]anthracene among the fuel and mode combinations.

6.3.17 Benzo[ghi]perylene

High-resolution mass spectral analysis of the extracts were also performed for the PAH benzo[ghi]perylene except for several ALS fuel runs. Because sufficient non-detects existed for the ALS fuels, that ALS was not included in the multifactor ANOVA for benzo[ghi]perylene.

Statistically significant differences were apparent in the average benzo[ghi]perylene among the fuels, modes and fuel*mode interaction. There are two distinct fuel groupings with respect to the average benzo[ghi]perylene. The CA and DF-2 fuels are not significantly different from one another, but are different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another.

There are three distinct mode groupings with respect to the average benzo[ghi]perylene. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another, but are significantly different than the other two modes.

The trend in the average benzo[ghi]perylene across the modes for the DF-2 and CA fuels is significantly different than the trends in the remaining two fuels. The average benzo[ghi]perylene at modes 10 and 11 for the DF-2 and CA fuels are significantly different than the ADMM15 and FT-100 fuels.

6.4 Fuel Impact on Gaseous PAH Species

The gas phase PAH emissions rank the test fuels in the general order shown in Table 23. Included in Table 23 are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the modal average mass emissions. The general trends were for DF-2 to have the highest gas phase PAH emissions, while ADMM15 and FT-100 always had the statistically lowest PAH emissions. The ANOVA for gas phase PAH species indicated the oxygenated diesel fuel, ADMM15, was statistically equivalent to FT-100.

The gas phase PAH emissions rank the test modal severity as shown in Table 23. Included in Table 23 are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average mass emissions at each test mode. The general trends were for mode 10 and mode 11 to have the highest gas phase PAH emissions, while mode 5 and mode 6 had the statistically lowest PAH emissions. Fuel*Mode interactions are indicated in Table 23 for each gaseous PAH species.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the modal operation. The ANOVA tables for the modal LPP Operation (modes 5,6,10,11) can be found in Appendix D.

6.4.1 Naphthalene

Statistically significant differences were noted in the average naphthalene among the fuels, modes, and fuel*mode interaction. There are four distinct fuel groupings with respect to the average naphthalene. ALS, DF-2, and CA fuels are all significantly different from one another. Also, fuels ADMM15 and FT-100 are not significantly different from one another, but they are both significantly different from the other three fuels.

Table 23. Ga	seous Phase	PAH Mass Er	missions (µ/kW	/h) ANOVA	Summary fo	r LPP Mode Anal	ysis			
	Five Fuels, Modes 5, 6, 10 and 11									
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interaction			
	CA	3881	Α	10	2727	Α				
	DF-2	2259	В	11	2191	В				
Naphthalene	ALS	950.0	С	6	883.5	С	Fuel*Mode			
·	ADMM15	352.7	D	5	323.1	D				
	FT-100	211.8	D							
	DF-2	3291	Α	10	2196	Α				
	CA	2174	В	11	1949	Α				
2-Methylnaphthalene	ALS	646.6	С	6	694.0	В	Fuel*Mode			
	ADMM15	183.3	С	5	282.9	В				
	FT-100	107.0	С							
	DF-2	2257	Α	10	1365	Α	-			
	CA	1213	В	11	1229	Α				
1-Methylnaphthalene	ALS	363.9	С	6	421.1	В	Fuel*Mode			
	ADMM15	86.50	С	5	170.7	В				
	FT-100	61.54	С							
	DF-2	2402	Α	10	1051	Α				
	CA	522.1	В	11	1030	Α				
2,6-Dimethylnaphthalene	ALS	227.6	В	6	355.7	В	Fuel*Mode			
	FT-100	43.52	В	5	152.3	В				
	ADMM15	41.35	В							
	DF-2	225.3	Α	11	139.5	Α				
	ALS	104.5	В	10	138.5	Α				
Acenaphthylene	CA	82.82	В	6	82.40	AB	Fuel*Mode			
	FT-100	40.01	В	5	30.83	В				
	ADMM15	36.39	В							
	DF-2	358.3	Α	11	158.7	А				
	CA	54.66	В	10	137.6	AB				
Acenaphthene	ALS 32.11 B 6 54.50		BC	Fuel*Mode						
-	ADMM15	15.50	В	5	24.22	С				
	FT-100	8.100	В							

i doio 20.	Gaseous Phase	711111111111111111111111111111111111111			5, 6, 10 and 1		, ,
			11101 40	io, modeo		·	
	DF-2	683.7	А	11	263.9	Α	
	CA	83.73	В	10	220.7	AB	1
Fluorene	ALS	42.39	В	6	130.2	AB	Fuel*Mode
	FT-100	15.23	В	5	56.42	В	
	ADMM15	13.96	В				
	DF-2	1343	Α	10	424.0		
	CA	179.9	В	11	412.7	NS	
Phenanthrene	ALS	139.7	В	6	342.6	INS	NS
	FT-100	42.22	В	5	211.5		
	ADMM15	33.45	В				
	DF-2	42.19	Α	10	15.20	Α	
	CA	8.300	В	11	14.41	AB	
Anthracene	ALS	5.542	В	6	11.31	AB	Fuel*Mode
	ADMM15	1.770	В	5	6.635	В	
	FT-100	1.646	В				
	DF-2	12.91	Α	6	5.462		
	CA	4.173	В	10	5.320	NS	
Fluoranthene	ALS	3.420	В	5	4.240	INO	NS
	FT-100	1.972	В	11	4.201		
	ADMM15	1.550	В				
	DF-2	16.84	Α	6	5.853		
	CA	3.323	В	10	5.518	NS	
Pyrene	ALS	3.008	В	11	4.894	INO	NS
	FT-100	1.462	В	5	4.380		
	ADMM15	1.173	В				

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

All four modes are significantly different from one another with respect to the average naphthalene.

The CA and DF-2 fuels have significantly different average naphthalene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average naphthalene among the four modes.

6.4.2 2-Methylnaphthalene

Statistically significant differences were apparent in the average 2-methylnaphthalene among the fuels, modes, and fuel*mode interaction. Average 2-methylnaphthalene at Modes 5 and 6 are not significantly different from one another, but significantly different from modes 10 and 11. Modes 10 and 11 are not significantly different from one another with respect to the average 2-methylnaphthalene.

Average 2-methylnaphthalene for fuels FT-100, ADMM15, and ALS are not significantly different from one another. The average 2-methylnaphthalene for fuels CA and DF-2 are significantly different from one another.

Modes 10 and 11 have significantly different average 2-methylnaphthalene for the CA and DF-2 fuels. All other fuels do not demonstrate differences in the average 2-methylnaphthalene among the four modes.

6.4.3 1-Methylnaphthalene

Statistically significant differences exist in the average 1-methylnaphthalene among the fuels, modes and fuel*mode interaction. There were three distinct fuel groupings with respect to the average 1-methylnaphthalene. CA and DF-2 fuels were significantly different from one another and the other three fuels. ADMM15, ALS, and FT-100 fuels were not significantly different from one another.

Average 1-methylnaphthalene at modes 5 and 6 are not significantly different from one another. Average 1-methylnaphthalene at modes 10 and 11 are not significantly different from one another, but are significantly different from modes 5 and 6.

The CA and DF-2 fuels have significantly different average 1-methylnaphthalene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average 1-methylnaphthalene among the four modes.

6.4.4 2,6-Dimethylnaphthalene

Statistically significant differences were noted in the average 2,6-Dimethylnaphthalene among the fuels, modes, and fuel*mode interaction. The average 2,6-dimethylnaphthalene for the DF-2 fuel is significantly different than the other four fuels. The average 2,6-dimethylnaphthalene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Average 2,6-dimethylnaphthalene at modes 5 and 6 are not significantly different from one another. Average 2,6-dimethylnaphthalene at modes 10 and 11 are not significantly different from one another, but are significantly different than modes 5 and 6.

The DF-2 fuel has significantly different average 2,6-dimethylnaphthalene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average 2,6-dimethylnaphthalene among the four modes.

6.4.5 Acenaphthylene

Statistically significant differences were apparent in the average acenaphthylene among the fuels, modes, and fuel*mode interaction. Average acenaphthylene is significantly different at fuel DF-2 compared to the other four fuels. Average acenaphthylene at fuels ADMM15, ALS, CA, and FT-100 are not significantly different from one another.

Average acenaphthylene at Mode 5 is significantly different from modes 10 and 11.

Modes 10 and 11 have significantly different average acenaphthylene for the DF-2 fuel. All other fuels do not demonstrate differences in the average acenaphthylene among the four modes.

6.4.6 Acenaphthene

Statistically significant differences exist in the average acenaphthene among the fuels, modes, and fuel*mode interaction. The average acenaphthene for the DF-2 fuel is significantly different than the average acenaphthene for the remaining four fuels.

The average acenaphthene for mode 5 is significantly different than the average acenaphthene for modes 10 and 11. The average acenaphthene for mode 6 is significantly different than the average acenaphthene for mode 11.

The average acenaphthene for the DF-2 fuel at modes 10 and 11 is significantly different than the average acenaphthene for modes 5 and 6. All the other fuels do not demonstrate differences in the average acenaphthene among the four modes.

6.4.7 Fluorene

Statistically significant differences were apparent in the average fluorene among the fuels, modes, and fuel*mode interaction. The average fluorene for the DF-2 fuel is significantly different than the average fluorene for the remaining four fuels.

The average fluorene for mode 5 is significantly different than the average fluorene for mode 11.

The average fluorene for the DF-2 fuel at modes 10 and 11 are significantly different than the average fluorene at mode 5. All the other fuels do not demonstrate differences in the average fluorene among the four modes.

6.4.8 Phenanthrene

Statistically significant differences were noted in the average phenanthrene among the fuels. The average phenanthrene for the DF-2 fuel is significantly different than the other four fuels. The average phenanthrene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

No significant differences exist in the average phenanthrene among the four modes.

No significant differences were observed among the fuel and mode combinations with respect to the average phenanthrene.

6.4.9 Anthracene

Statistically significant differences were apparent in the average anthracene among the fuels, modes, and fuel*mode interaction. The average anthracene for the DF-2 fuel is significantly different than the other four fuels. The average anthracene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

The average anthracene for mode 5 is significantly different than the average anthracene for mode 10.

The average anthracene for the DF-2 fuel at modes 6, 10, and 11 are significantly different than the anthracene for the other four fuels.

6.4.10 Fluoranthene

Statistically significant differences exist in the average fluoranthene among the fuels. The average fluoranthene for the DF-2 fuel is significantly different than the average fluoranthene for the remaining four fuels.

There is no significant difference in the average fluoranthene among the four modes.

There is no significant difference among the fuel and mode combinations with respect to the average fluoranthene.

6.4.11 Pyrene

Statistically significant differences were apparent in the average pyrene among the fuels. The average pyrene for the DF-2 fuel is significantly different than the average pyrene for the remaining four fuels.

There is no significant difference in the average pyrene among the modes.

There is no significant difference among the fuel and mode combinations with respect to the average pyrene.

7.0 FUEL IMPACT ON EMISSIONS-PILOT FUEL INJECTION STUDY

Fuel comparisons were made for the brake specific exhaust emissions with the engine operated utilizing three different control strategies. The control strategies were LPP(7°ATDC) control with the pilot fuel injection turned off, LPP control with the pilot fuel injection turned on (PilotA), and the OEM calibration strategy (PilotB). The multifactor ANOVA included fuel effects, pilot condition effects, mode effects, Fuel*Mode interaction effects, Fuel*Pilot interaction effects, Pilot*Mode interaction effects, and Fuel*Mode*Pilot interaction effects. The ANOVA tables for the pilot fuel injection evaluation can be found in Appendix F.

7.1 Fuel Impact on Regulated Brake Specific Mass Emissions

Several statistically significant trends, at 95% confidence, were apparent from an ANOVA of the pilot fuel injection condition emissions data. Table 24 summarizes the general rank order of the fuels for the regulated mass emissions across the three pilot control conditions and two modes. The table displays the fuels rank from highest response to lowest response for the Least-Square means of the pilot condition and modal analysis. Statistically significant similar fuel groupings are also shown for each emission response in Table 24.

Table 24 includes the pilot condition severity across fuels and modes for each regulated emission. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average mass emissions at each pilot condition. The general trend for pilot condition severity depends on the species of interest.

The mode severities across fuels and pilot condition for each regulated emission are also in Table 24. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average mass emissions at each mode. The general trend is mode 10 has significantly higher emissions than mode 11 across the fuels and pilot conditions. The Fuel*Mode, Fuel*Pilot, Pilot*Mode, and Fuel*Pilot*Mode interactions are indicated in Table 24 for each emission.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the pilot fuel injection study, and refer to the results in Table 24.

			Table 24. Mass			A Summary for Pile				
l [Five Fu	els, Three Pile	ot Conditions, Mo	odes 10 and	111		
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot Condition	LS Means ¹	Significant Pilot Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interactions
	DF-2	0.4513	Α	Pilot B	0.3876	Α	10	0.3126	Α	
1	CA	0.3424	В	Pilot A	0.2778	В	11	0.2754	В	D'1. (*E)
BSPM	ALS	0.2825	С	LPP	0.2166	С				Pilot*Fuel Pilot*Mode
i [FT-100	0.2094	D							1 liot wiode
	ADMM15	0.1843	D							
	DF-2	2.829	Α	LPP	3.168	Α	10	2.720	Α	
	CA	2.454	В	Pilot A	3.067	В	11	2.177	В	Pilot*Fuel
BSNOX	ADMM15	2.380	BC	Pilot B	1.112	С				Pilot*Mode
l l	ALS	2.322	С							Fuel*Mode
	FT-100	2.259	С							
i l	DF-2	2.110	Α	Pilot A	1.395	Α	10	1.487	Α	Pilot*Fuel
l [CA	1.691	В	Pilot B	1.327	Α	11	1.035	В	
BSHC	ADMM15	0.9714	С	LPP	1.060	В				Pilot*Mode
i [ALS	0.9651	С							Fuel*Mode
	FT-100	0.5656	D							
	DF-2	6.807	Α	Pilot A	6.081	Α	10	6.838	Α	D:1-4*El
i l	CA	6.302	В	Pilot B	5.313	В	11	3.661	В	Pilot*Fuel Pilot*Mode
BSCO	ADMM15	5.436	С	LPP	4.354	С				Fuel*Mode
i l	ALS	4.506	D							Pilot*Fuel*Mode
	FT-100	3.196	E							1 HOLT GOT WOOD
	ADMM15	1025	Α	Pilot B	989.1	Α	10	1064	Α	
i l	DF-2	1003	В	Pilot A	982.2	AB	11	900.6	В	
BSCO2	CA	988.3	В	LPP	975.0	В				Pilot*Fuel*Mode
i [ALS	959.4	С							
	FT-100	935.1	D							
	DF-2	0.3333	Α	Pilot A	0.1844	Α	10	0.1973	A B	Dilat*Cual
l [CA	0.1917	В	LPP	0.1762	AB	11	0.1503	В	Pilot*Fuel Pilot*Mode
BSSOF	ADMM15	0.1337	С	Pilot B	0.1609	В				Fuel*Mode
. [ALS	0.1327	С							Pilot*Fuel*Mode
1 	FT-100	0.0777	D							I liot i dei mode

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

7.1.1 Fuel Impact on Total Particulate

Statistically significant differences exist for the average total particulate among the fuels, modes, pilot conditions, and some of the two-way interactions. The average total particulate for the ALS, CA, and DF-2 fuels are significantly different from each other and the remaining two fuels as seen in Figure 44. The average total particulate for the ADMM15 and FT-100 fuels are not significantly different from one another.

The average total particulate at all three pilot conditions are significantly different from each other. Statistical groupings for engine control strategy, which includes pilot fuel injection effects, from the ANOVA for fuels and modes, are shown in Figure 45 for total particulate.

Modes 10 and 11 are significantly different from one another with respect to average total particulate.

The trend in the average total particulate across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average total particulate for the DF-2 at the Pilot B condition is significantly different than the other four fuels; however, there is not a significant difference at the LPP condition.

There is a significant interaction among the mode and pilot condition combinations. While the average total particulate at mode 11 is significantly different at the LPP and Pilot A conditions, there is not any significant difference at the Pilot B condition.

There is no significant interaction in the average total particulate among the fuel and mode combinations.

7.1.2 Fuel Impact on NO_X

Statistically significant differences exist for the average NO_X among the fuels, modes, pilot conditions, and two-way interactions. The average NO_X for the DF-2 fuel is significantly different than the remaining four fuels. The CA fuel has significantly different average NO_X than the ALS and FT-100 fuels. Also, the FT-100, CA, and ADMM15 fuels are not significantly different from one another. The fuels rankings across pilot conditions are shown in Figure 46.

All three pilot conditions are significantly different from one another with respect to the average NO_X . Statistical groupings for engine control strategy, which includes pilot fuel injection effects, from the ANOVA for fuels and modes, are shown in Figure 47 for NO_X .

Particulate Matter Emissions

Figure 44. Test Fuel Average Total Particulate Mass Emissions for Pilot Conditions and Modes (g/kWh)

Particulate Matter Emissions

Figure 45. Pilot Condition Average Total Particulate Mass Emissions for Fuels and Modes (g/kWh)

Figure 46. Test Fuel Average NO_X Mass Emissions for Pilot Conditions and Modes (g/kWh)

NOx Emissions

Figure 47. Pilot Condition Average NO_X Mass Emissions for Fuels and Modes (g/kWh)

Modes 10 and 11 are significantly different from one another with respect to the average NO_X.

The average NO_X for the DF-2 fuel is significantly different than the remaining four fuels at the LPP condition. This trend does not exist at the Pilot A or Pilot B conditions.

A significant interaction exists between the pilot condition and the modes. The difference in the average NO_X between modes 10 and 11 at the LPP condition is larger than the difference at the Pilot B condition.

A significant interaction exists between the mode and fuel levels. The difference in the average NO_X between modes 10 and 11 is the largest at the DF-2 fuel and the smallest at the FT-100 fuel.

7.1.3 Fuel Impact on HC

Statistically significant differences exist for the average BSHC among the fuels, modes, pilot conditions, and interactions. The average BSHC at the FT-100, CA, and DF-2 fuels are all significantly different from one another. The average BSHC for the ADMM15 and ALS fuels are not significantly different from one another, but are different from the other 3 fuels as shown in Figure 48.

Figure 49 shows the least-square means for the pilot conditions for hydrocarbon emissions. Average BSHC at the Pilot A and Pilot B conditions are not significantly different from one another, but both are different from the average BSHC at the LPP condition.

The average BSHC at modes 10 and 11 are significantly different from one another.

The CA and DF-2 fuels have significantly different trends in the average BSHC at the Pilot B condition than at the other two pilot conditions.

Mode 11 demonstrates a constant trend with respect to the average BSHC. However, mode 10 shows significantly different average BSHC at Pilot Conditions A and B than at the LPP condition.

Hydrocarbon Emissions

Figure 48. Test Fuel Average Hydrocarbon Mass Emissions for Pilot Conditions and Modes (g/kWh)

Hydrocarbon Emissions

Figure 49. Pilot Condition Average Hydrocarbon Mass Emissions for Fuels and Modes (g/kWh)

A significant interaction exists between the mode and fuel levels. The differences in the average BSHC between modes 10 and 11 are largest at the CA and DF-2 fuels and the smallest at the FT-100 fuel.

7.1.4 Fuel Impact on CO

Statistically significant differences were noted in the average BSCO among the fuels, pilot condition, modes, two-way interactions, and three-way interaction. In Figure 50 it can be seen all five fuels are significantly different from one another with respect to the average BSCO. Figure 51 shows all three pilot conditions are significantly different from one another with respect to the average BSCO.

Modes 10 and 11 are significantly different from one another with respect to the average BSCO.

The trend in the average BSCO for the ADMM15 fuel is significantly different across the pilot conditions than the trends for the remaining four fuels.

Mode 11 demonstrates a constant trend with respect to the average BSCO. However, mode 10 shows significantly different average BSCO at all three pilot conditions.

A significant interaction exists between the mode and fuel levels. The difference in the average BSCO between modes 10 and 11 is the largest at fuels CA and DF-2 and the smallest at the FT-100 fuel.

7.1.5 Fuel Impact on CO₂

Statistically significant differences were apparent in the average BSCO₂ among the fuels, modes, pilot conditions, and three-way interaction. The average BSCO₂ is shown in Figure 52. The average BSCO₂ for the FT-100, ALS, and ADMM15 fuels are significantly different from each other and the remaining two fuels. The average BSCO₂ for the CA and DF-2 fuels are not significantly different from one another.

The average BSCO₂ in Figure 53 show that the Pilot B condition is significantly different than the LPP condition.

Carbon Monoxide Emissions

Figure 50. Test Fuel Average Carbon Monoxide Mass Emissions for Pilot Conditions and Modes (g/kWh)

Carbon Monoxide Emissions

Figure 51. Pilot Condition Average Carbon Monoxide Mass Emissions for Fuels and Modes (g/kWh)

Carbon Dioxide Emissions

Figure 52. Test Fuel Average Carbon Dioxide Mass Emissions for Pilot Conditions and Modes (g/kWh)

Carbon Dioxide Emissions

Figure 53. Pilot Condition Average Carbon Dioxide Mass Emissions for Fuels and Modes (g/kWh)

Modes 10 and 11 are significantly different from one another with respect to the average BSCO₂.

No significant differences exist among the fuel and pilot condition combinations, the mode and pilot condition combinations, and the mode and fuel combinations with respect to the average BSCO₂.

7.1.6 Fuel Impact on SOF of Particulate

Statistically significant differences exist in the average BSSOF among the fuels, modes, pilot conditions, all two-factor interactions, and the three-factor interaction between the fuel*mode*pilot condition. The average BSSOF for the FT-100, CA, and DF-2 fuels are significantly different from one another and the remaining two fuels, as shown in Figure 54. The average BSSOF for the ADMM15 and ALS fuels are not significantly different from one another.

As seen in Figure 55 the average BSSOF for the Pilot A condition is significantly different from the Pilot B condition, but not different than the LPP condition.

The average BSSOF for modes 10 and 11 are statistically significant from one another.

The trend in the average BSSOF across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average BSSOF for the DF-2 fuel at the Pilot A and Pilot B conditions are significantly different than the other four fuels.

The average BSSOF at the LPP and Pilot A conditions for Mode 10 are significantly different than those at Mode 11. There is not a significant difference in the average BSSOF between the two modes at the Pilot B condition.

The trends in the average BSSOF across the two modes are different at fuels ADMM15 and CA. There does not appear to be differences in the average BSSOF for the two modes at the ALS, DF-2 or FT-100 fuels.

Figure 54. Test Fuel Average SOF of Particulate Mass Emissions for Pilot Conditions and Modes (g/kWh)

Soluble Organic Fraction of Particulate Emissions

Figure 55. Pilot Condition Average SOF of Particulate Mass Emissions for Fuels and Modes (g/kWh)

The ratio of SOF to total particulate averaged across the test modes and pilot conditions is shown in Figure 56 for the test fuels. Although ADMM15 and FT-100 have statistically similar total PM response, the SOF for the two fuels are statistically different across the pilot conditions. The oxygenated fuel, ADMM15, has a significantly higher soluble organic fraction. From Figure 56 it is also seen that FT-100 has a smaller portion of soluble particulate matter than the other fuels.

Figure 57 shows the effect of pilot condition on the ratio of SOF to total particulate. Of interest is as the total particulate changes for the pilot conditions, the ratio of SOF /PM changes inversely. Figure 58 shows the average SOF/PM ratio plotted with the average exhaust temperature for each pilot condition. The data suggests the SOF is related to the exhaust temperature. Injection timing, EGR levels, and combustion characteristics all contribute to variations in the exhaust temperature for a constant BMEP.

7.2 Fuel Impact on Four Toxic Air Pollutants

Several statistically significant trends, at 95% confidence, were apparent from an ANOVA of the pilot fuel injection condition emissions data. Table 25 summarizes the general rank order of the fuels for the CAA toxic air pollutant mass emissions across the three pilot control conditions and two modes. The table displays the fuels rank from highest response to lowest response for the Least-Square means of the analysis. Statistically significant similar fuel groupings are also shown for each emission response in Table 25.

Table 25 includes the pilot condition severity across fuels and modes for each toxic air pollutant. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average toxic emissions at each pilot condition. The general trend for pilot condition severity suggests LPP operation results in the lowest CAA toxic emissions.

The mode severity across fuels and pilot condition for each toxic air pollutant is also in Table 25. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average toxic emissions at each mode. The general trend is mode 10 has significantly higher emissions than mode 11 across the fuels and pilot conditions. The Fuel*Pilot, Fuel*Mode, Pilot*Mode, and Fuel*Pilot*Mode interactions are indicated in Table 25 for each toxic air pollutant.

Relationship of SOF/PM for Pilot Condition Results

Figure 56. Test Fuel Average SOF/PM Ratio for Pilot Conditions and Modes

Relationship of SOF/PM for Pilot Condition Results

Figure 57. Pilot Condition Average SOF/PM Ratio for Test Fuels and Modes

Figure 58. Pilot Condition Average SOF/PM and Exhaust Temperature for Test Fuels and Modes

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the pilot fuel injection study, and refer to the results in Table 25. The ANOVA tables for the pilot fuel injection evaluations can be found in Appendix F.

7.2.1 Benzene

Statistically significant differences were noted in the average benzene among the fuels, modes, pilot conditions, and the fuel*pilot condition interaction. The average benzene for the ALS, CA, and DF-2 fuels are significantly different from one another and the remaining two fuels, Figure 59. The average benzene for the ADMM15 and FT-100 fuels are not significantly different from one another.

The toxic air pollutant benzene response in Figure 60 indicates the two pilot conditions are statistically similar, but different from LPP operation with pilot turned off.

	Table 25. Clean Air Act Toxic Compound Mass Emissions (mg/kWh) for Pilot Fuel Injection Study Five Fuels, Three Pilot Conditions, Modes 10 and 11											
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot	LS Means ¹	Significant Pilot Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interactions		
	DF-2	11.73	Α	Pilot A	8.662	Α	10	8.068	Α			
	CA	9.671	В	Pilot B	7.977	Α	11	6.648	В			
Benzene	ALS	7.340	С	LPP	5.435	В				Pilot*Fuel		
	ADMM15	4.351	D									
	FT-100	3.700	D									
	DF-2	8.974	Α	Pilot B	7.474	Α	10	8.024	Α	Pilot*Fuel Pilot*Mode Fuel*Mode		
	CA	7.004	В	Pilot A	6.701	В	11	5.178	В			
1,3-Butadiene	ADMM15	6.294	BC	LPP	5.628	С		•				
	ALS	5.561	CD									
	FT-100	5.171	D									
	DF-2	655.5	Α	Pilot A	564.7	Α	10	619.2	Α	Pilot*Fuel		
	CA	478.3	В	Pilot B	493.1	В	11	358.2	В			
Formaldehyde	ALS	472.5	В	LPP	408.3	С				Pilot*Mode		
	ADMM15	458.3	В							Fuel*Mode		
	FT-100	379.0	С									
Acetaldehyde	DF-2	225.2	Α	Pilot A	196.3	Α	10	211.1	А			
	ALS	175.1	В	Pilot B	159.6	В	11	127.3	В	Dila4*E !		
	CA	169.8	В	LPP	151.7	В				Pilot*Fuel Pilot*Mode		
	FT-100	139.8	С							i ilot ivioue		
	ADMM15	136.0	С									

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

Figure 59. Test Fuel Average Benzene Mass Emissions for Pilot Conditions and Modes (mg/kWh)

Benzene Emissions

Figure 60. Pilot Condition Average Benzene Mass Emissions for Test Fuels and Modes (mg/kWh)

The average benzene for modes 10 and 11 are significantly different from one another.

The trend in the average benzene across the pilot conditions for the DF-2 and CA fuels is significantly different than the trends for the remaining three fuels. The average benzene for the DF-2 fuel at the Pilot B condition is significantly different than the other four fuels, but not at the LPP condition. Also, the Pilot A condition demonstrates that the average benzene for the DF-2 and CA fuels are not significantly different from one another.

There is no significant interaction in the average benzene among the mode and pilot condition combinations.

There is no significant interaction in the average benzene among the mode and fuel combinations.

7.2.2 1,3-butadiene

Statistically significant differences were apparent in the average 1,3-butadiene among the fuels, modes, pilot conditions, and two-way interactions. There are several distinct fuel groupings with respect to the average 1,3-butadiene. The average 1,3-butadiene in Figure 61 for the DF-2 fuel is significantly different than the remaining four fuels. The FT-100 fuel is significantly different than the ADMM15 and CA fuels, but not significantly different than the ALS fuel. Also, the average 1,3-butadiene for the CA fuel is significantly different than the ALS fuel.

All three pilot conditions shown in Figure 62 are significantly different from one another with respect to the average 1,3-butadiene.

The average 1,3-butadiene for mode 10 is significantly different than mode 11.

The trends in the average 1,3-butadiene across the pilot conditions for the DF-2 and FT-100 fuels appear similar. However, the ALS fuel demonstrates an almost constant average 1,3-butadiene across all three pilot conditions while the CA fuel shows a significant decrease from the Pilot A to Pilot B conditions.

1,3-butadiene Emissions

Figure 61. Test Fuel Average 1,3-butadiene Mass Emissions for Pilot Conditions and Modes (mg/kWh)

1,3-butadiene Emissions

Figure 62. Pilot Condition Average 1,3-butadiene Mass Emissions for Test Fuels and Modes (mg/kWh)

A significant interaction exists between the pilot condition and the modes. The difference in the average 1,3-butadiene between the two modes at the LPP condition is smaller than the differences at the Pilot A and Pilot B conditions.

A significant interaction exists between the mode and the fuel levels. The difference in the average 1,3-butadiene between modes 10 and 11 is the largest at the DF-2 fuel and the smallest at the ALS fuel.

7.2.3 Formaldehyde

Statistically significant differences exist in the average formaldehyde among the fuels, modes, pilot conditions, and two-way interactions. Figure 63 shows there are three distinct fuel groupings with respect to the average formaldehyde. Fuels FT-100 and DF-2 are significantly different from one another and the remaining three fuels. The ADMM15, ALS, and CA fuels are not significantly different from one another, but are significantly different than the other two fuels.

All three pilot conditions in Figure 64 are significantly different from one another with respect to the average formaldehyde.

The average formaldehyde for mode 10 is significantly different than mode 11.

The trends in the average formaldehyde across the pilot conditions for the CA and ALS fuels appear similar. However, the ADMM15 fuel demonstrates an increase in the average formaldehyde from the Pilot A to the Pilot B conditions, whereas the CA and ALS fuels showed a decrease.

A significant interaction exists between the pilot conditions and the modes. The difference in the average formaldehyde between the two modes at the LPP condition is smaller than the differences at the Pilot A and Pilot B conditions.

A significant interaction exists between the mode and the fuel levels. The difference in the average formaldehyde between modes 10 and 11 is the largest at the DF-2 fuel and the smallest at the ALS fuel.

Figure 63. Test Fuel Average Formaldehyde Mass Emissions for Pilot Conditions and Modes (mg/kWh)

Formaldehyde Emissions

Figure 64. Pilot Condition Average Formaldehyde Mass Emissions for Test Fuels and Modes (mg/kWh)

7.2.4 Acetaldehyde

Statistically significant differences were apparent in the average acetaldehyde among the fuels, modes, pilot conditions, and some two-way interactions. There are three distinct fuel groupings in Figure 65 with respect to the average acetaldehyde. The DF-2 fuel is significantly different from the remaining four fuels. The ADMM15 and FT-100 fuels are not significantly different from one another, but are different from the other fuels. Also, the CA and ALS fuels are not significantly different from one another, but are different from the other fuels.

The average acetaldehyde in Figure 66 for the LPP and Pilot B conditions are not significantly different from one another, but are different from the Pilot A condition.

The average acetaldehyde for mode 10 is significantly different than mode 11.

The trends in the average acetaldehyde across the pilot conditions for the CA and ALS fuels appear similar. While the ADMM15 fuel demonstrates an increase in the average acetaldehyde from the Pilot A to Pilot B conditions, the CA and ALS fuels showed a decrease.

A significant interaction exists between the pilot condition and the modes. The difference in the average acetaldehyde between the two modes at the LPP condition is smaller than the differences at the Pilot A and Pilot B conditions.

There is no significant interaction in the average acetaldehyde among the fuel and mode combinations.

7.3 Fuel Impact on Particulate Soluble Extract PAH Species

Table 26 summarizes the general rank order of the fuels for the particulate soluble extract PAH mass emissions across the three pilot control conditions and two modes. The table displays the fuels rank from highest response to lowest response for the least-square means for the analysis. In general, ADMM15 and FT-100 are in the lowest statistically significant emissions grouping. Statistically significant similar fuel groupings are also shown for each emission response in Table 26.

Figure 65. Test Fuel Average Acetaldehyde Mass Emissions for Pilot Conditions and Modes (mg/kWh)

Acetaldehyde Emissions

Figure 66. Pilot Condition Average Acetaldehyde Mass Emissions for Test Fuels and Modes (mg/kWh)

		Table 26.	Soluble Phase	PAH Mass	Emissions (ıg/kWh) for P	ilot Fuel I	njection Study	у						
		Five Fuels, Three Pilot Conditions, Modes 10 and 11													
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot Condition	LS Means ¹	Significant Pilot Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interactions					
	DF-2	262.9	Α	Pilot B	145.8	Α	10	106.3	NS						
	ALS	90.80	В	Pilot A	113.4	Α	11	105.3							
Phenanthrene	CA	75.94	В	LPP	58.14	В				Pilot*Fuel					
	FT-100	52.92	В												
	ADMM15	46.48	В												
	DF-2	8.800	Α	Pilot B	6.441	Α	10	4.811	NS						
	ALS	4.944	В	Pilot A	3.779	В	11	4.017		Pilot*Fuel					
Anthracene	CA	4.508	В	LPP	3.022	В				Fuel*Mode					
	FT-100	2.040	С							Pilot*Fuel*Mode					
	ADMM15	1.777	С												
	DF-2	53.34	Α	Pilot A	35.74	Α	10	34.73	Α	Pilot*Fuel Fuel*Mode					
	CA	33.73	В	Pilot B	33.62	Α	11	27.03	В						
Fluoranthene	ALS	29.76	В	LPP	23.27	В									
	FT-100	18.84	С							1 del Mode					
	ADMM15	18.71	С												
	DF-2	86.69	Α	Pilot A	42.34	Α	10	41.14	Α						
	CA	33.44	В	Pilot B	41.79	Α	11	34.73	В						
Pyrene	ALS	32.75	В	LPP	29.67	В				Pilot*Fuel					
	ADMM15	21.70	BC												
	FT-100	15.09	С												
	CA	52.04	Α	Pilot A	41.23	NS	10	44.49	Α						
	DF-2	42.12	AB	LPP	39.56		11	34.53	В						
Naphthalene	FT-100	37.11	В	Pilot B	37.73					NS					
	ALS	36.69	В												
	ADMM15	29.57	В												
	FT-100	1.402	Α	Pilot B	1.517	Α	11	1.116	NS	Pilot*Fuel					
Acenaphthylen	ALS	1.070	AB	Pilot A	0.9369	В	10	0.9928		Pilot*Mode					
e	DF-2	1.068	AB	LPP	0.7094	В				Fuel*Mode					
G	CA	1.038	AB							Pilot*Fuel*Mode					
ļ ,	ADMM15	0.6940	В							- Hot I doi Wode					

		Table 26.	Soluble Phase	PAH Mass	Emissions (ıg/kWh) for P	ilot Fuel li	njection Study	y (contd)	
					Three Pilot C		Modes 10		-	
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot Condition	LS Means ¹	Significant Pilot Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interactions
	CA	7.070	Α	Pilot A	6.322	Α	10	6.509	Α	
	ALS	6.209	AB	Pilot B	5.984	AB	11	5.055	В	
Acenaphthene	DF-2	5.473	AB	LPP	5.040	В				Pilot*Fuel
	ADMM15	5.159	В							
	FT-100	4.998	В							
	ALS	11.92	Α	Pilot B	10.53	NS	10	10.89	Α	
	DF-2	10.71	AB	Pilot A	10.22		11	8.758	В	
Fluorene	CA	10.66	AB	LPP	8.723					Pilot*Fuel
	ADMM15	8.466	BC							
	FT-100	7.376	С							
	DF-2	5.970	Α	Pilot A	2.664	Α	10	2.263	Α	Pilot*Fuel
Benzo[a]anthra	CA	2.610	В	Pilot B	2.489	Α	11	1.846	В	
cene	ALS	0.9662	С	LPP	1.012	В				
CONC	ADMM15	0.4249	С							
	FT-100	0.3019	С							
	DF-2	13.96	Α	Pilot A	6.189	Α	10	5.265	Α	
<u>_</u>	CA	5.796	В	Pilot B	5.531	Α	11	4.460	В	
Chrysene	ALS	2.273	С	LPP	2.868	В				Pilot*Fuel
	ADMM15	1.280	С							
	FT-100	1.008	С							
_	DF-2	4.220	Α	Pilot A	2.477	Α	10	2.043	Α	
Benzo[b]Fluora	CA	2.557	В	Pilot B	1.867	В	11	1.503	В	Pilot*Fuel
nthene	ALS	1.188	С	LPP	0.9745	С				Pilot*Mode
HUICHE	FT-100	0.4590	D							Pilot*Fuel*Mode
	ADMM15	0.4403	D							
	DF-2	3.605	Α	Pilot A	2.271	Α	10	1.933	Α	
Benzo[k]Fluora	CA	1.811	В	Pilot B	1.561	В	11	1.338	В	Pilot*Mode
nthene	ALS	1.418	ВС	LPP	1.074	С				Pilot*Fuel*Mode
HUIGHG	ADMM15	0.8179	CD							i ilot i dei Mode
	FT-100	0.5250	D							

	i abie 26.							y (contd)	
	1	F	Modes 10						
Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot Condition	LS Means ¹	Pilot	Mode	LS Means ¹	Mode	Significant Interactions
DF-2	2.576	Α	Pilot A	1.715	Α	10	1.414	Α	Pilot*Fuel
CA	1.736	В	Pilot B	1.336	В	11	1.029	В	Pilot*Mode
ALS	0.8744	С	LPP	0.6136	С				
ADMM15	0.5445	CD							
FT-100	0.3756	D							
DF-2	1.605	Α	Pilot A	1.174	Α	10	0.9299	Α	Pilot*Fuel
CA	1.272	В	Pilot B	0.9329	В	11	0.6380	В	Pilot*Mode Fuel*Mode Pilot*Fuel*Mode
ALS	0.6400	С	LPP	0.2451	С				
ADMM15	0.2424	D							
FT-100	0.1609	D							
DF-2	1.139	Α	Pilot A	0.6665	Α	10	0.5068	NS	Pilot*Fuel Pilot*Mode Pilot*Fuel*Mode
CA	0.5813	В	Pilot B	0.4817	В	11	0.4315		
ADMM15	0.1084	С	LPP	0.2592	С				
FT-100	0.0485	С							
DF-2	1.718	Α	Pilot A	1.072	Α	10	0.8596	Α	Pilot*Fuel
CA	1.054	В	Pilot B	0.8007	В	11	0.7248	В	Pilot*Mode Pilot*Fuel*Mode
ADMM15	0.2483	С	LPP	0.5038	С				
FT-100	0.1488	С							
	DF-2 CA ALS ADMM15 FT-100 DF-2 CA ALS ADMM15 FT-100 DF-2 CA ADMM15 FT-100 DF-2 CA ADMM15 FT-100 DF-2 CA ADMM15	Fuel LS Means ¹ DF-2 2.576 CA 1.736 ALS 0.8744 ADMM15 0.5445 FT-100 0.3756 DF-2 1.605 CA 1.272 ALS 0.6400 ADMM15 0.2424 FT-100 0.1609 DF-2 1.139 CA 0.5813 ADMM15 0.1084 FT-100 0.0485 DF-2 1.718 CA 1.054 ADMM15 0.2483	Fuel LS Means¹ Significant Fuel Groups² DF-2 2.576 A CA 1.736 B ALS 0.8744 C ADMM15 0.5445 CD FT-100 0.3756 D DF-2 1.605 A CA 1.272 B ALS 0.6400 C ADMM15 0.2424 D FT-100 0.1609 D DF-2 1.139 A CA 0.5813 B ADMM15 0.1084 C FT-100 0.0485 C DF-2 1.718 A CA 1.054 B ADMM15 0.2483 C	Fuel LS Means¹ Significant Fuel Groups² Pilot Condition DF-2 2.576 A Pilot A CA 1.736 B Pilot B ALS 0.8744 C LPP ADMM15 0.5445 CD CD FT-100 0.3756 D Pilot A CA 1.272 B Pilot B ALS 0.6400 C LPP ADMM15 0.2424 D D FT-100 0.1609 D D DF-2 1.139 A Pilot A CA 0.5813 B Pilot B ADMM15 0.1084 C LPP FT-100 0.0485 C LPP DF-2 1.718 A Pilot A CA 1.054 B Pilot B ADMM15 0.2483 C LPP	Fuel LS Means¹ Significant Fuel Groups² Pilot Condition LS Means¹ DF-2 2.576 A Pilot A 1.715 CA 1.736 B Pilot B 1.336 ALS 0.8744 C LPP 0.6136 ADMM15 0.5445 CD LPP 0.6136 FT-100 0.3756 D D D 1.174 CA 1.272 B Pilot A 1.174 CA 1.272 B Pilot B 0.9329 ALS 0.6400 C LPP 0.2451 ADMM15 0.2424 D D D D FT-100 0.1609 D D 0.6665 D CA 0.5813 B Pilot A 0.4817 ADMM15 0.1084 C LPP 0.2592 FT-100 0.0485 C LPP 0.2592 DF-2 1.718 A Pilot B 0.8007	Fuel LS Means¹ Significant Fuel Groups² Pilot Condition LS Means¹ Significant Pilot Groups² DF-2 2.576 A Pilot A 1.715 A CA 1.736 B Pilot B 1.336 B ALS 0.8744 C LPP 0.6136 C ADMM15 0.5445 CD C LPP 0.6136 C FT-100 0.3756 D D D D D B Pilot A 1.174 A A CA 1.272 B Pilot B 0.9329 B B B D	Five Fuels Three Pilot Conditions Modes 10	Five Fuels Three Pilot Conditions Modes 10 and 11	Five Fuels Three Pilot Conditions Modes 10 and 11

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

Table 26 includes the pilot condition severity across fuels and modes for each soluble extract PAH compound. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average PAH compound emissions at each pilot condition. The general trend for pilot condition severity suggests LPP operation results in the lowest PAH emissions.

The mode severity across fuels and pilot condition for each toxin is also in Table 26. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average soluble PAH emissions at each mode. The general trend is mode 10 has significantly higher emissions than mode 11 across the fuels and pilot conditions. The Fuel*Pilot, Fuel*Mode, Pilot*Mode, and Fuel*Pilot*Mode interactions are indicated in Table 26 for each compound.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the pilot fuel injection study, and refer to the results in Table 26. The ANOVA tables for the pilot fuel injection evaluations can be found in Appendix F.

7.3.1 Naphthalene

Statistically significant differences exist in the average naphthalene among the fuels and modes. The average naphthalene response for the CA fuel is significantly different from the ADMM15, ALS and FT-100 fuels, Figure 67. There are not any statistically significant differences in the average naphthalene response across the pilot conditions, Figure 68.

The average naphthalene for modes 10 and 11 are significantly different from one another.

There is no significant interaction in the average naphthalene among the fuel and pilot condition, the mode and pilot condition, the mode and fuel combinations.

Particulate Naphthalene Emissions

Figure 67. Test Fuel Average Particulate Phase Naphthalene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Naphthalene Emissions

Figure 68. Pilot Condition Average Particulate Phase Naphthalene Mass Emissions for Test Fuels and Modes (μg/kWh)

7.3.2 Acenaphthylene

Statistically significant differences exist in the average acenaphthylene among the pilot conditions, fuels, two-factor interactions, and the three-factor interaction fuel*mode*pilot condition. From Figure 69, the average acenaphthylene for the ADMM15 fuel is significantly different from the FT-100 fuel. The CA, DF-2, and ALS fuels are not significantly different from either the ADMM15 or the FT-100 fuels with respect to the average acenaphthylene.

The average acenaphthylene for the LPP and Pilot A conditions are not significantly different from one another, but are significantly different from the Pilot B condition as seen in Figure 70.

The average acenaphthylene for modes 10 and 11 are not significantly different from one another.

The trend in the average acenaphthylene across the pilot conditions for the FT-100 fuel is significantly different than the trends for the remaining four fuels. The average acenaphthylene for the FT-100 fuel at the Pilot B condition is significantly different than the other four fuels, but not at the LPP or the Pilot A condition.

The average acenaphthylene at the Pilot B condition for Mode 11 is significantly different than Mode 10. There is not any significant difference in the average acenaphthylene between the two modes at the LPP or Pilot A conditions.

The trend in the average acenaphthylene across the two modes is different at the FT-100 fuel. There does not appear to be differences in the average acenaphthylene for the two modes at the ADMM15, ALS, CA, or DF-2 fuels.

Particulate Acenaphthylene Emissions

Figure 69. Test Fuel Average Particulate Phase Acenaphthylene Mass Emissions for Pilot Conditions and Modes (μg/kWh)

Particulate Acenaphthylene Emissions

Figure 70. Pilot Condition Average Particulate Phase Acenaphthylene Mass Emissions for Test Fuels and Modes (μg/kWh)

7.3.3 Acenaphthene

Statistically significant differences were apparent in the average acenaphthene among the pilot conditions, fuels, modes, and pilot condition*fuel interaction. The average acenaphthene for the CA fuel is significantly different from the ADMM15 and the FT-100 fuels. Figure 71 shows the acenaphthene response for the test fuels averaged across the pilot conditions and modes.

The average acenaphthene responses for the pilot conditions are shown in Figure 72. The average acenaphthene for the LPP condition is significantly different than the Pilot A condition. The average acenaphthene for the Pilot B condition is not significantly different from with either the LPP or the Pilot A conditions.

The average acenaphthene for modes 10 and 11 are significantly different from one another.

The trends in the average acenaphthene for the ALS and CA fuels are significantly different than the DF-2 fuel between the LPP and Pilot A conditions.

There is no significant interaction in the average acenaphthene among the pilot condition and mode combinations

There is no significant interaction in the average acenaphthene among the fuel and mode combinations.

7.3.4 Fluorene

Statistically significant differences were noted in the average fluorene among the fuels, modes, and pilot condition*fuel interaction. The average fluorene for the ALS, CA, and DF-2 fuels are significantly different from the FT-100 fuel, but not significantly different from one another. Also, the average fluorene for the ALS fuel is significantly different from the ADMM15 fuel. The fluorene response for the test fuels is shown in Figure 73.

Figure 74 reveals that there were no significant differences in the average fluorene among the pilot conditions.

Particulate Acenaphthene Emissions

Figure 71. Test Fuel Average Particulate Phase Acenaphthene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Acenaphthene Emissions

Figure 72. Pilot Condition Average Particulate Phase Acenaphthene Mass Emissions for Test Fuels and Modes (µg/kWh)

Particulate Fluorene Emissions

Figure 73. Test Fuel Average Particulate Phase Fluorene Mass Emissions for Pilot Conditions and Modes (μg/kWh)

Particulate Fluorene Emissions

Figure 74. Pilot Condition Average Particulate Phase Fluorene Mass Emissions for Test Fuels and Modes (µg/kWh)

The average fluorene for modes 10 and 11 are significantly different from one another,

The trend in the average fluorene for the DF-2 fuel is significantly different than the ALS fuel between the LPP and Pilot A conditions. The CA, ADMM15, and FT-100 fuels demonstrate similar trends across the pilot conditions with respect to the average fluorene.

There is no significant interaction in the average fluorene among the pilot condition and mode combinations.

There is no significant interaction in the average fluorene among the fuel and mode combinations.

7.3.5 Phenanthrene

Statistically significant differences exist in the average phenanthrene among the pilot conditions, fuels, and pilot condition*fuel interaction. The average phenanthrene for the DF-2 fuel is significantly different than the remaining four fuels as shown in Figure 75. The average phenanthrene for the ADMM15, FT-100, Ca, and ALS fuels are not significantly different from one another.

The average phenanthrene, Figure 76, for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

There is no significant difference in the average phenanthrene among the two modes.

The trend in the average phenanthrene across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average phenanthrene for the DF-2 fuel at the Pilot A and Pilot B conditions are significantly different than the other four fuels.

There is no significant interaction in the average phenanthrene among the pilot condition and mode combinations.

Particulate Phenanthrene Emissions

Figure 75. Test Fuel Average Particulate Phase Phenanthrene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Phenanthrene Emissions

Figure 76. Pilot Condition Average Particulate Phase Phenanthrene Mass Emissions for Test Fuels and Modes (µg/kWh)

There is no significant interaction in the average phenanthrene among the fuel and mode combinations.

7.3.6 Anthracene

Statistically significant differences were noted in the average anthracene among the pilot conditions, fuels, pilot condition*fuel interaction, fuel*mode interaction, and the three-factor interaction. Figure 77 reveals there are three distinct fuel groupings with respect to the average anthracene. The average anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15 and FT-100 fuels are not significantly different from one another, but are significantly different than the remaining three fuels. Also, the CA and ALS fuels are not significantly different from one another, but are significantly different from the remaining fuels.

The average anthracene for the LPP and Pilot A conditions are not significantly different from one another, but are significantly different from the Pilot B condition as seen in Figure 78.

There is no significant difference in the average anthracene among the two modes.

The trends in the average anthracene across the pilot conditions for the DF-2 and ALS fuels are significantly different than the trends for the remaining three fuels. The average anthracene for the DF-2 fuel at the Pilot A and Pilot B conditions are significantly different than the CA, FT-100, and ADMM15 fuels.

There is no significant interaction in the average anthracene among the pilot condition and mode combinations.

The trends in the average anthracene for modes 10 and 11 are significantly different at the CA fuel. Otherwise, the average anthracene for the two modes are not significantly different across the remaining four fuels.

Particulate Anthracene Emissions

Figure 77. Test Fuel Average Particulate Phase Anthracene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Anthracene Emissions

Figure 78. Pilot Condition Average Particulate Phase Anthracene Mass Emissions for Test Fuels and Modes (µg/kWh)

7.3.7 Fluoranthene

Statistically significant differences were apparent in the average fluoranthene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, and fuel*mode interaction. There are three distinct fuel groupings with respect to the average fluoranthene shown in Figure 79. The average fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15 and FT-100 fuels are not significantly different from one another, but are significantly different than the remaining three fuels. Also, the CA and ALS fuels are not significantly different from one another, but are significantly different from the remaining fuels.

The average fluoranthene for the Pilot A and Pilot B conditions are not significantly different from one another, Figure 80, but are significantly different from the LPP condition.

The average fluoranthene for modes 10 and 11 are significantly different from one another.

The trend in the average fluoranthene across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average fluoranthene for the DF-2 fuel at the LPP condition is significantly different than the other four fuels.

There is no significant interaction in the average fluoranthene among the pilot condition and mode combinations.

The trends in the average fluoranthene for modes 10 and 11 are significantly different at the CA fuel. Otherwise, the average fluoranthene for the two modes are not significantly different across the remaining four fuels.

7.3.8 Pyrene

Statistically significant differences exist in the average pyrene among the pilot conditions, fuels, modes, and pilot condition*fuel interaction. From Figure 81, it is seen that there are several distinct fuel groupings with respect to the average pyrene. The average pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The FT-100 fuel is significantly different than the ALS and CA fuels, but not significantly different than the ADMM15 fuel. The average pyrene for modes 10 and 11 are significantly different from one another.

The average pyrene, shown in Figure 82, for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

Particulate Fluoranthene Emissions

Figure 79. Test Fuel Average Particulate Phase Fluoranthene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Fluoranthene Emissions

Figure 80. Pilot Condition Average Particulate Phase Fluoranthene Mass Emissions for Test Fuels and Modes (μg/kWh)

Particulate Pyrene Emissions

Figure 81. Test Fuel Average Particulate Phase Pyrene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Pyrene Emissions

Figure 82. Pilot Condition Average Particulate Phase Pyrene Mass Emissions for Test Fuels and Modes (μg/kWh)

The trend in the average pyrene across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels.

There is no significant interaction in the average pyrene among the pilot condition and mode combinations.

There is no significant interaction in the average pyrene among the fuel and mode combinations.

7.3.9 Benzo[a]anthracene

Statistically significant differences exist in the average benzo[a]anthracene among the pilot conditions, fuels, modes, and pilot condition*mode interaction. Figure 83 shows three distinct fuel groupings with respect to the average benzo[a]anthracene. Fuels DF-2 and CA are significantly different from one another and the remaining three fuels. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different than the other two fuels.

The average benzo[a]anthracene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition as seen in Figure 84.

The average benzo[a]anthracene for mode 10 is significantly different than mode 11.

The trends in the average benzo[a]anthracene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average benzo[a]anthracene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, ALS, and FT-100 fuels.

There is no significant interaction in the average benzo[a]anthracene among the pilot condition and mode combinations.

There is no significant interaction in the average benzo[a]anthracene among the fuel and mode combinations.

Particulate Benzo[a]anthracene Emissions

Figure 83. Test Fuel Average Particulate Phase Benzo[a]anthracene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Benzo[a]anthracene Emissions

Figure 84. Pilot Condition Average Particulate Phase Benzo[a]anthracene Mass Emissions for Test Fuels and Modes (μg/kWh)

7.3.10 Chrysene

Statistically significant differences were apparent in the average chrysene among the pilot conditions, fuels, modes, and pilot condition*fuel interaction. There are three distinct fuel groupings with respect to the average chrysene in Figure 85. Fuels DF-2 and CA are significantly different from one another and the remaining three fuels. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different than the other two fuels.

The particulate bound PAH Chrysene emissions in Figure 86 show the two pilot operation conditions to be different from LPP operation..

The average chrysene for mode 10 is significantly different than mode 11.

The trends in the average chrysene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average chrysene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

There is no significant interaction in the average chrysene among the pilot condition and mode combinations, or among the fuel and mode combinations.

7.3.11 Benzo[b]fluoranthene

Statistically significant differences were noted in the average benzo[b]fluoranthene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, pilot condition*mode interaction, and the three-factor interaction. The average benzo[b]fluoranthene for the ALS, CA, and DF-2 fuels are significantly different from one another and the remaining two fuels, Figure 87. The average benzo[b]fluoranthene for the ADMM15 and FT-100 fuels are not significantly different from one another.

The average benzo[b]fluoranthene for the three pilot conditions are all significantly different from one another, Figure 88.

Particulate Chrysene Emissions

Figure 85. Test Fuel Average Particulate Phase Chrysene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Chrysene Emissions

Figure 86. Pilot Condition Average Particulate Phase Chrysene Mass Emissions for Test Fuels and Modes (μg/kWh)

Particulate Benzo[b]fluoranthene Emissions

Figure 87 Test Fuel Average Particulate Phase Benzo[b]fluoranthene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Benzo[b]fluoranthene Emissions

Figure 88. Pilot Condition Average Particulate Phase Benzo[b]fluoranthene Mass Emissions for Test Fuels and Modes (μg/kWh)

The average benzo[b]fluoranthene for modes 10 and 11 are significantly different from one another.

The trends in the average benzo[b]fluoranthene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average benzo[b]fluoranthene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

The average benzo[b]fluoranthene at the Pilot A condition for Mode 10 is significantly different than Mode 11. There is not any significant difference in the average benzo[b]fluoranthene between the two modes at the LPP or Pilot B conditions.

There is no significant interaction in the average benzo[b]fluoranthene among the fuel and mode combinations.

7.3.12 Benzo[k]fluoranthene

Statistically significant differences exist in the average benzo[b]fluoranthene among the pilot conditions, fuels, modes, pilot condition*mode interaction, and the three-factor interaction. There are several distinct fuel groupings with respect to the average benzo[k]fluoranthene shown in Figure 89. The DF-2 fuel is significantly different from the remaining four fuels. The CA fuel is significantly different than the ADMM15 and the FT-100 fuels, but not significantly different than the ALS fuel. Also, the ALS fuel is significantly different than the FT-100 fuel.

In Figure 90, the average benzo[f]fluoranthene for the three pilot conditions are shown to be significantly different from one another.

The average benzo[k]fluoranthene for mode 10 is significantly different than mode 11.

There is no significant interaction in the average benzo[k]fluoranthene among the fuel and pilot condition combinations.

The average benzo[k]fluoranthene at the Pilot A condition for Mode 10 is significantly different than Mode 11. There is not any significant difference in the average benzo[k]fluoranthene between the two modes at the LPP or Pilot B conditions.

Particulate Benzo[k]fluoranthene Emissions

Figure 89. Test Fuel Average Particulate Phase Benzo[k]fluoranthene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Benzo[k]fluoranthene Emissions

Figure 90. Pilot Condition Average Particulate Phase Benzo[k]fluoranthene Mass Emissions for Test Fuels and Modes (µg/kWh)

There is no significant interaction in the average benzo[k]fluoranthene among the fuel and mode combinations.

7.3.13 Benzo[e]pyrene

Statistically significant differences were noted in the average benzo[e]pyrene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, and pilot condition*mode interaction. There are several distinct fuel groupings with respect to the average benzo[e]pyrene. The DF-2 and CA fuels are significantly different from the remaining three fuels. Also, the ALS fuel is significantly different than the FT-100 fuel, Figure 91.

The average benzo[e]pyrene for the three pilot conditions are significantly different from one another, Figure 92.

The average benzo[e]pyrene for mode 10 is significantly different than mode 11.

The trends in the average benzo[e]pyrene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average benzo[e]pyrene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

The average benzo[e]pyrene at the Pilot A condition for Mode 10 is significantly different than Mode 11. There is not any significant difference in the average benzo[e]pyrene between the two modes at the LPP or Pilot B conditions.

There is no significant interaction in the average benzo[e]pyrene among the fuel and mode combinations.

Particulate Benzo[e]pyrene Emissions

Figure 91. Test Fuel Average Particulate Phase Benzo[e]pyrene Mass Emissions for Pilot Conditions and Modes (μg/kWh)

Particulate Benzo[e]pyrene Emissions

Figure 92. Pilot Condition Average Particulate Phase Benzo[e]pyrene Mass Emissions for Test Fuels and Modes ($\mu g/kWh$)

7.3.14 Benzo[a]pyrene

Statistically significant differences were noted in the average benzo[a]pyrene among the pilot conditions, fuels, modes, two-factor interactions, and the three-factor interaction fuel*mode*pilot condition. Figure 93 shows the average benzo[a]pyrene for the DF-2, CA, and ALS fuels to be significantly different from one another and the remaining two fuels. The average benzo[a]pyrene for the ADMM15 and FT-100 fuels are not significantly different from one another.

From Figure 94 the average benzo[a]pyrene for the three pilot conditions is seen to be significantly different from each another.

The average benzo[a]pyrene for mode 10 is significantly different than mode 11.

The trends in the average benzo[a]pyrene across the pilot conditions for the CA and DF-2 fuels are significantly different than the trends for the remaining three fuels. The average benzo[a]pyrene for the CA and DF-2 fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

The average benzo[a]pyrene at the Pilot A condition for mode 10 is significantly different than mode 11. There is not any significant difference in the average benzo[a]pyrene between the two modes at the LPP or Pilot B conditions.

The average benzo[a]pyrene for the CA and DF-2 fuels for mode 10 is significantly different than mode 11. There is not any significant difference in the average benzo[a]pyrene between the modes for the ADMM15, ALS, or FT-100 fuels.

7.3.15 **Indeno(1,2,3-cd)pyrene**

For the PAH indeno(1,2,3-cd)pyrene, sufficient interference in the chromatograms from the ALS fuel extracts for the pilot conditions existed that there were numerous non-detects with the low-resolution mass spectrometer. The high-resolution instrument was only used on those extracts when the LPP control condition was utilized AND that did not have a benzo[a]pyrene response. The ALS fuel at the LPP control condition had low-resolution response for benzo[a]pyrene, but non-detects for indeno(1,2,3-cd)pyrene. There were also numerous non-detects at the conditions with pilot fuel injection enabled. Thus ALS was not included in the ANOVA for indeno(1,2,3-cd)pyrene.

Particulate Benzo[a]pyrene Emissions

Figure 93. Test Fuel Average Particulate Phase Benzo[a]pyrene Mass Emissions for Pilot Conditions and Modes (μg/kWh)

Particulate Benzo[a]pyrene Emissions

Figure 94. Pilot Condition Average Particulate Phase Benzo[a]pyrene Mass Emissions for Test Fuels and Modes (μg/kWh)

Statistically significant differences exist in the average indeno(1,2,3-cd)pyrene among the pilot conditions, fuels, pilot condition*fuel interaction, pilot condition*mode interaction, and the three-factor interaction pilot condition*fuel*mode. The average indeno(1,2,3-cd)pyrene for the DF-2 and CA fuels are significantly different from one another and the remaining two fuels, Figure 95. The average indeno(1,2,3-cd)pyrene for the FT-100 and ADMM15 fuels are not significantly different from one another.

The average indeno(1,2,3-cd)pyrene for the three pilot conditions are significantly different from one another, Figure 96.

There is no significant difference in the average indeno(1,2,3-cd)pyrene among the two modes.

The trends in the average indeno(1,2,3-cd)pyrene across the pilot conditions for the CA and DF-2 fuels are significantly different than the trends for the remaining two fuels. The average indeno(1,2,3-cd)pyrene for the CA and DF-2 fuels at the Pilot A condition are significantly different than the ADMM15 and FT-100 fuels.

The average indeno(1,2,3-cd)pyrene at the Pilot A condition for mode 10 is significantly different than mode 11.

There is no significant interaction in the average indeno(1,2,3-cd)pyrene among the fuel and mode combinations.

7.3.16 Dibenzo[a,h]anthracene

For the PAH dibenzo[a,h]anthracene there was interference in the chromatograms from all test fuel extracts. The high-resolution instrument was only used on those extracts when the LPP control condition was utilized. There were numerous non-detects for dibenzo[a,h]anthracene at the conditions with pilot fuel injection enabled for all test fuels. Thus insufficient data existed to perform the ANOVA for dibenzo[a,h]anthracene.

Particulate Indeno(1,2,3-cd)pyrene Emissions

Figure 95. Test Fuel Average Particulate Phase Indeno(1,2,3-cd)pyrene Mass Emissions for Pilot Conditions and Modes (μg/kWh)

Particulate Indeno(1,2,3-cd)pyrene Emissions

Figure 96. Pilot Condition Average Particulate Phase Indeno(1,2,3-cd)pyrene Mass Emissions for Test Fuels and Modes (µg/kWh)

7.3.17 Benzo[ghi]perylene

For the PAH benzo[ghi]perylene, sufficient interference in the chromatograms from the ALS fuel extracts for the pilot conditions existed that there were numerous non-detects with the low-resolution mass spectrometer. The high-resolution instrument was only used on those extracts when the LPP control condition was utilized AND that did not have a benzo[a]pyrene response. The ALS fuel at the LPP control condition had low-resolution response for benzo[a]pyrene, but non-detects for benzo[ghi]perylene. There were also numerous non-detects at the conditions with pilot fuel injection enabled. The ALS fuel was not included in the ANOVA for benzo[ghi]perylene.

Statistically significant differences were apparent in the average benzo[ghi]perylene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, pilot condition*mode interaction, and the three-factor interaction pilot condition*fuel*mode. The average benzo[ghi]perylene for the DF-2 and CA fuels are significantly different from one another and the remaining two fuels. The average benzo[ghi]perylene for the FT-100 and ADMM15 fuels are not significantly different from one another, Figure 97.

The average benzo[ghi]perylene for the three pilot conditions shown in Figure 98, are significantly different from one another.

The average benzo[ghi]perylene for mode 10 is significantly different than mode 11.

The trends in the average benzo[ghi]perylene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining two fuels. The average benzo[ghi]perylene for the CA and DF-2 fuels at the Pilot A condition are significantly different than the ADMM15 and FT-100 fuels.

The average benzo[ghi]perylene at the Pilot A condition for mode 10 is significantly different than mode 11.

There is no significant interaction in the average benzo[ghi]perylene among the fuel and mode combinations.

Particulate Benzo[ghi]perylene Emissions

Figure 97. Test Fuel Average Particulate Phase Benzo[ghi]perylene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Particulate Benzo[ghi]perylene Emissions

Figure 98. Pilot Condition Average Particulate Phase Benzo[ghi]perylene Mass Emissions for Test Fuels and Modes (μg/kWh)

7.4 Fuel Impact on Gaseous PAH Species

Table 27 summarizes the general rank order of the fuels for the gas phase PAH mass emissions across the three pilot control conditions and two modes. The table displays the fuels rank from highest response to lowest response for the Least-Square means for the analysis. In general, ADMM15 and FT-100 are in the lowest statistically significant emissions grouping. Statistically significant similar fuel groupings are shown for each emission response in Table 27.

Table 27 includes the pilot condition severity across fuels and modes for each gaseous PAH compound. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average gaseous PAH compound emissions at each pilot condition. The pilot condition severity for most compounds suggests LPP operation results in the lowest PAH emissions; however, the rankings differ for some compounds.

The mode severity across fuels and pilot condition for each toxin is also in Table 27. Included are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the average gaseous PAH emissions at each mode. The mode ranking depends on the compound. The Fuel*Pilot, Fuel*Mode, Pilot*Mode, and Fuel*Pilot*Mode interactions are indicated in Table 27 for each compound.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for the pilot fuel injection study, and refer to the results in Table 27. The ANOVA tables for the pilot fuel injection evaluations can be found in Appendix F.

7.4.1 Naphthalene

Statistically significant differences were noted in the average naphthalene among the fuels, modes, pilot conditions, the pilot condition*fuel interaction, and the fuel*mode interaction. The average naphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels. The ALS and FT-100 fuels demonstrate significantly different average naphthalene; however, neither one of these fuels was significantly different than the ADMM15 fuel.

The average naphthalene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition as shown in Figure 100.

	Table	e 27. Gaseoi		Mass Emission					ldy	
	Five Fuels, Three Pilot Conditions, Modes 10 and 11									
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot Condition	LS Means ¹	Significant Pilot Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interactions
	CA	7813	Α	Pilot A	3417	Α	10	3347	Α	Pilot*Fuel Fuel*Mode
	DF-2	5046	В	Pilot B	3350	Α	11	2804	В	
Naphthalene	ALS	1323	С	LPP	2459	В				
	ADMM15	872.0	CD							i dei Mode
	FT-100	323.9	D							
	DF-2	6870	Α	Pilot B	2929	Α	10	2687	NS	
2-	CA	4869	В	Pilot A	2800	Α	11	2514		Pilot*Fuel
Methylnaphthalen	ALS	802.9	С	LPP	2072	В				Fuel*Mode
е	ADMM15	376.4	С			·			ı	
	FT-100	84.62	С					1		
	DF-2	4869	Α	Pilot B	1922	Α	10	1723	NS	Pilot*Fuel Fuel*Mode
1-	CA	2868	В	Pilot A	1848	Α	11	1655		
Methylnaphthalen	ALS	468.0	С	LPP	1297	В				
е	ADMM15	185.7	С							
	FT-100	53.49	С							
	DF-2	4930	Α	Pilot B	1570	Α	11	1373	NS	1
2,6-	CA	1430	В	Pilot A	1404	AB	10	1304		
Dimethylnaphthal	ALS	237.6	С	LPP	1041	В				Pilot*Fuel
ene	ADMM15	61.71	С							
	FT-100	33.12	С			_			T	
	DF-2	606.1	Α	Pilot A	282.3	Α	10	227.6	NS	Pilot*Fuel
Acenaphthylene	CA	239.2	В	Pilot B	259.3	Α	11	226.2		
	ALS	147.4	BC	LPP	139.0	В				
	ADMM15	89.68	С			·				
	FT-100	52.04	С					1		
Acenaphthene	DF-2	723.2	Α	Pilot B	213.5	NS	11	200.4	NS	NS
	CA	137.5	В	Pilot A	203.4		10	176.3		
	ALS	48.29	BC	LPP	148.1					
	ADMM15	24.81	BC							
	FT-100	7.888	С							

	Tabl	e 27. Gaseou		Mass Emission					idy (cont	d)
	Five Fuels, Three Pilot Conditions, Modes 10 and 11									
Response	Fuel	LS Means ¹	Significant Fuel Groups ²	Pilot Condition	LS Means ¹	Significant Pilot Groups ²	Mode	LS Means ¹	Significant Mode Groups ²	Significant Interactions
	DF-2	1152	Α	Pilot B	323.5	NS	11	307.8	NS	
	CA	193.0	В	Pilot A	292.4		10	264.4		
Fluorene	ALS	50.08	В	LPP	242.3					NS
	ADMM15	21.51	В							
	FT-100	14.25	В							
	DF-2	1815	Α	Pilot A	604.4	NS	11	535.7	NS	
	CA	557.6	В	Pilot B	545.9		10	510.0		Pilot*Fuel
Phenanthrene	ALS	169.2	С	LPP	418.4			•		
	ADMM15	43.16	С							
	FT-100	29.23	С							
	DF-2	56.23	Α	Pilot B	18.05	NS	10	16.93	NS	Pilot*Fuel
	CA	17.39	В	Pilot A	16.37		11	15.89		
Anthracene	ALS	4.566	С	LPP	14.81					
	ADMM15	2.718	С							
	FT-100	1.144	С							
	DF-2	5.871	Α	LPP	4.760	Α	10	3.222	NS	
	CA	3.655	В	Pilot A	2.457	В	11	2.689		Pilot*Fuel
Fluoranthene	ALS	2.344	BC	Pilot B	1.649	В				
	FT-100	1.590	BC							
	ADMM15	1.318	С							
Pyrene	DF-2	7.599	Α	LPP	5.206	Α	10	3.213	NS	Pilot*Fuel
	CA	3.372	В	Pilot A	2.398	В	11	2.944		
	ALS	2.174	В	Pilot B	1.631	В				
	FT-100	1.165	В							
	ADMM15	1.081	В							

¹Factor levels listed from highest to lowest least squares mean

²Letters designate groups of factor means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

Gaseous Naphthalene Emissions

Figure 99. Test Fuel Average Gaseous Phase Naphthalene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Naphthalene Emissions

Figure 100. Pilot Condition Average Gaseous Phase Naphthalene Mass Emissions for Test Fuels and Modes (µg/kWh)

The average naphthalene for modes 10 and 11 are significantly different from one another.

The trend in the average naphthalene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trends for the CA and DF-2 fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels across the three pilot conditions are relatively constant, the CA and DF-2 fuels show an increase in the average naphthalene from the LPP to the Pilot A and Pilot B conditions.

There is no significant interaction in the average naphthalene among the mode and pilot condition combinations.

A significant interaction exists between the fuels and modes. The difference in the average naphthalene between the two modes is significant at the CA fuel. However, the remaining four fuels do not demonstrate a significant difference between the two modes with respect to the average naphthalene.

7.4.2 2-Methylnaphthalene

Statistically significant differences exist in the average 2-methylnaphthalene among the pilot conditions, fuels, pilot condition*fuel interaction, and the fuel*mode interaction. The average 2-methylnaphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels, Figure 101. The average 2-methylnaphthalene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

The average 2-methylnaphthalene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition, Figure 102.

The average 2-methylnaphthalene for modes 10 and 11 are not significantly different from one another

The trend in the average 2-methylnaphthalene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trends for the CA and DF-2 fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels across the three pilot conditions are relatively constant, the CA and DF-2 fuels show an increase in the average 2-methylnaphthalene from the LPP to the Pilot A and Pilot B conditions.

Gaseous 2-Methylnaphthalene Emissions

Figure 101. Test Fuel Average Gaseous Phase 2-Methylnaphthalene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous 2-Methylnaphthalene Emissions

Figure 102. Pilot Condition Average Gaseous Phase 2-Methylnaphthalene Mass Emissions for Test Fuels and Modes (μg/kWh)

There is not any significant interaction in the average 2-methylnaphthalene among the mode and pilot condition combinations.

A significant interaction exists between the fuels and modes. The difference in the average 2-methylnaphthalene between the two modes is significant at the CA fuel. However, the remaining four fuels do not demonstrate a significant difference between the two modes with respect to the average 2-methylnaphthalene.

7.4.3 1-Methylnaphthalene

Statistically significant differences were apparent in the average 1-methylnaphthalene among the pilot conditions, fuels, pilot condition*fuel interaction, and fuel*mode interaction. The average 1-methylnaphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels, Figure 103. The average 1-methylnaphthalene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

In Figure 104, the average 1-methylnaphthalene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

The average 1-methylnaphthalene for modes 10 and 11 is not significantly different from one another.

The trend in the average 1-methylnaphthalene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trends for the CA and DF-2 fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels across the three pilot conditions are relatively constant, the CA and DF-2 fuels show an increase in the average 1-methylnaphthalene from the LPP to the Pilot A and Pilot B conditions.

There is no significant interaction in the average 1-methylnapthalene among the mode and pilot condition combinations.

A significant interaction exists between the fuels and modes. The difference in the average 1-methylnaphthalene between the two modes is significant at the CA fuel. However, the remaining four fuels do not demonstrate a significant difference between the two modes with respect to the average 1-methylnaphthalene.

Gaseous 1-Methylnaphthalene Emissions

Figure 103. Test Fuel Average Gaseous Phase 1-Methylnaphthalene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous 1-Methylnaphthalene Emissions

Figure 104. Pilot Condition Average Gaseous Phase 1-Methylnaphthalene Mass Emissions for Test Fuels and Modes (μg/kWh)

7.4.4 2,6-Dimethylnaphthalene

Statistically significant differences were noted in the average 2,6-dimethylnaphthalene among the pilot conditions, fuels, and pilot condition*fuel interaction. The average 2,6-dimethylnaphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels. The average 2,6-dimethylnaphthalene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another, Figure 105.

In Figure 106, the average 2,6-dimethylnaphthalene for the Pilot B condition is significantly different than the LPP condition.

The average 2,6-dimethylnaphthalene for modes 10 and 11 are not significantly different from one another.

The trend in the average 2,6-dimethylnaphthalene across the pilot conditions for the ADMM16, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average 2,6-dimethylnaphthalene from the LPP to the Pilot A and Pilot B conditions.

There is no significant interaction in the average 2,6-dimethylnaphthalene among the pilot condition and mode combinations.

There is no significant interaction in the average 2,6-dimethylnaphthalene among the fuel and mode combinations.

7.4.5 Acenaphthylene

Statistically significant differences exist in the average acenaphthylene among the pilot conditions, fuels, and pilot condition*fuel interaction. There are several distinct fuel groupings with respect to the average acenaphthylene. The average acenaphthylene for the DF-2 fuel is significantly different from the remaining four fuels, Figure 107. The CA fuel is significantly different than the ADMM15 and FT-100 fuels, but not significantly different than the ALS fuel.

The average acenaphthylene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP conditions, Figure 108.

Gaseous 2,6-DimethyInaphthalene Emissions

Figure 105. Test Fuel Average Gaseous Phase 2,6-Dimethylnaphthalene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous 2,6-DimethyInaphthalene Emissions

Figure 106. Pilot Condition Average Gaseous Phase 2,6-Dimethylnaphthalene Mass Emissions for Test Fuels and Modes (μg/kWh)

Gaseous Acenaphthylene Emissions

Figure 107. Test Fuel Average Gaseous Phase Acenaphthylene Mass Emissions for Pilot Conditions and Modes (μg/kWh)

Gaseous Acenaphthylene Emissions

Figure 108. Pilot Condition Average Gaseous Phase Acenaphthylene Mass Emissions for Test Fuels and Modes (µg/kWh)

The average acenaphthylene for modes 10 and 11 are not significantly different from one another.

The trend in the average acenaphthylene across the pilot conditions for the ADMM15, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average acenaphthylene from the LPP to the Pilot A and Pilot B conditions.

There is no significant interaction in the average acenaphthylene among the pilot condition and mode combinations.

There is no significant interaction in the average acenaphthylene among the fuel and mode combinations.

7.4.6 Acenaphthene

Statistically significant differences were apparent in the average acenaphthene among the fuels. There are several distinct fuel groupings with respect to the average acenaphthene. The average acenaphthene for the DF-2 fuel is significantly different than the remaining four fuels. Also, the CA fuel is significantly different than the FT-100 fuel, but not significantly different than the ADMM15 or ALS fuels, Figure 109.

The average acenaphthene in Figure 110 for the three pilot conditions are not significantly different from one another.

The average acenaphthene for modes 10 and 11 are not significantly different from one another.

There is no significant interaction in the average acenaphthene among the fuel and pilot condition combinations, the mode and pilot condition combinations, and the fuel and mode combinations.

Gaseous Acenaphthene Emissions

Figure 109. Test Fuel Average Gaseous Phase Acenaphthene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Acenaphthene Emissions

Figure 110. Pilot Condition Average Gaseous Phase Acenaphthene Mass Emissions for Test Fuels and Modes (μg/kWh)

7.4.7 Fluorene

Statistically significant differences exist for the average fluorene among the fuels. The average fluorene for the DF-2 fuel is significantly different than the remaining four fuels, Figure 111.

From Figure 112, the average fluorene for the three pilot conditions are not significantly different from one another.

The average fluorene for modes 10 and 11 are not significantly different from one another.

There is no significant interaction in the average fluorene among the fuel and pilot condition combinations, the pilot condition and mode combinations, and the fuel and mode combinations.

7.4.8 Phenanthrene

Statistically significant differences were noted in the average phenanthrene among the fuels and pilot condition*fuel interaction. The average phenanthrene for the DF-2 and CA fuels is significantly different than the remaining three fuels shown in Figure 113. The average phenanthrene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

There is no significant difference in the average phenanthrene among the three pilot conditions as shown in Figure 114.

The average phenanthrene for modes 10 and 11 are not significantly different from one another.

The trend in the average phenanthrene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trend for the DF-2 and CA fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average phenanthrene from the LPP to the Pilot A and Pilot B conditions. Also, the CA fuel demonstrates an increase in the Pilot A condition.

There is no significant interaction in the average phenanthrene among the pilot conditions and mode combinations or among the fuel and mode combinations.

Gaseous Fluorene Emissions

Figure 111. Test Fuel Average Gaseous Phase Fluorene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Fluorene Emissions

Figure 112. Pilot Condition Average Gaseous Phase Fluorene Mass Emissions for Test Fuels and Modes ($\mu g/kWh$)

Gaseous Phenanthrene Emissions

Figure 113. Test Fuel Average Gaseous Phase Phenanthrene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Phenanthrene Emissions

Figure 114. Pilot Condition Average Gaseous Phase Phenanthrene Mass Emissions for Test Fuels and Modes (µg/kWh)

7.4.9 Anthracene

Statistically significant differences were apparent in the average anthracene among the fuels and pilot condition*fuel interaction. The average anthracene for the DF-2 and CA fuels is significantly different than the remaining three fuels shown in Figure 115. The average anthracene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

There are no significant differences in the average anthracene among the three pilot conditions as shown in Figure 116.

The average anthracene for modes 10 and 11 are not significantly different from one another.

The trend in the average anthracene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trend for the DF-2 and CA fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels are relatively constant, the DF-2 fuel demonstrates a slight increase from the LPP to the Pilot B condition. Also, the CA fuel shows an increase in the Pilot A condition.

There is no significant interaction in the average anthracene among the pilot condition and mode combinations or among the fuel and mode combinations.

7.4.10 Fluoranthene

Statistically significant differences exist in the average fluoranthene among the pilot conditions, fuels, and pilot condition*fuel interaction. There are several distinct fuel groupings with respect to the average fluoranthene as shown in Figure 117. The average fluoranthene for the DF-2 fuel is significantly different from the remaining four fuels. The CA fuel is significantly different than the ADMM15 fuel, but not significantly different than the ALS or FT-100 fuels.

The average fluoranthene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP conditions as seen in Figure 118.

Gaseous Anthracene Emissions

Figure 115. Test Fuel Average Gaseous Phase Anthracene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Anthracene Emissions

Figure 116. Pilot Condition Average Gaseous Phase Anthracene Mass Emissions for Test Fuels and Modes (µg/kWh)

Gaseous Fluoranthene Emissions

Figure 117. Test Fuel Average Gaseous Phase Fluoranthene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Fluoranthene Emissions

Figure 118. Pilot Condition Average Gaseous Phase Fluoranthene Mass Emissions for Test Fuels and Modes (µg/kWh)

The average fluoranthene for modes 10 and 11 are not significantly different from one another.

The trend in the average fluoranthene across the pilot conditions for the ADMM15, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average fluoranthene at the LPP condition.

There is no significant interaction in the average fluoranthene among the pilot condition and mode combinations or among the fuel and mode combinations.

7.4.11 Pyrene

Statistically significant differences were noted in the average pyrene among the pilot conditions, fuels, and pilot condition*fuel interaction. In Figure 119, the average pyrene for the DF-2 fuel is shown to be significantly different than the other four fuels. The average pyrene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

From Figure 120, the average pyrene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

The average pyrene for modes 10 and 11 are not significantly different from one another.

The trend in the average pyrene across the pilot conditions for the ADMM15, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average pyrene at the LPP condition.

There is no significant interaction in the average pyrene among the pilot condition and mode combinations or among the fuel and mode combinations.

Gaseous Pyrene Emissions

Figure 119. Test Fuel Average Gaseous Phase Pyrene Mass Emissions for Pilot Conditions and Modes (µg/kWh)

Gaseous Pyrene Emissions

Figure 120. Pilot Condition Average Gaseous Phase Pyrene Mass Emissions for Test Fuels and Modes (μ g/kWh)

8.0 FUEL IMPACT ON EMISSIONS - MODE 12 (IDLE) LPP OPERATION

Fuel comparisons were made for brake specific exhaust emissions with the engine operated under LPP control with pilot fuel injection turned off for the Mode 12 idle condition. Due to the variability of the Mode 12 data, primarily due to engine load control, the idle data was analyzed separately from the other modal data. The ANOVA tables for the Mode 12 averages can be found in Appendix G.

8.1 Fuel Impact on Regulated Brake Specific Mass Emissions

Statistically significant trends, at 95% confidence, were not apparent from an ANOVA of the Mode 12 brake specific emissions data. Table 28 summarizes the general rank order for the regulated Mode 12 mass emissions during LPP engine operation with pilot fuel injection turned off. The table displays the fuels rank from highest response to lowest response for the Least-Square means of the analysis.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for Mode 12, and refer to the results in Table 28. The ANOVA tables for the Mode 12 can be found in Appendix G.

8.1.1 Fuel Impact on Total Particulate, NO_x, HC, CO, CO₂, SOF of PM

At the 95% confidence level, no statistically significant differences were observed in the average regulated mass emissions among the test fuels at the idle condition.

8.2 Fuel Impact on Four Clean Air Act Toxic Air Pollutants

Table 29 is the ranking of the test fuels from multifactor ANOVA for the four EPA Clean Air Act toxic air pollutant compounds. For the EPA toxic air pollutants, ADMM15 and FT-100 were statistically similar emitting fuels.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response and refer to the results in Table 29. The ANOVA tables for the Mode 12 averages can be found in Appendix G.

Table 28.	Mode 12 Mass Emis	ssions (g/kWh)	for LPP Operation			
Response	LPP Only - Mode 12					
Response	Fuel	LS Means ¹	Significant Fuel Groups ²			
	ALS	8.860				
	DF-2	8.418				
BSPM	CA	6.765	NS			
	FT-100	3.546				
	ADMM15	2.903				
	ADMM15	20.85				
	DF-2	19.32				
BSNO _X	FT-100	18.78	NS			
	ALS	18.71				
	CA	17.30				
	ALS	54.08				
	DF-2	53.40				
BSHC	CA	36.86	NS			
	ADMM15	36.76				
	FT-100	28.17				
	DF-2	195.7				
	ALS	190.5				
BSCO	ADMM15	159.4	NS			
	CA	127.7				
	FT-100	106.0				
	ALS	7174				
	FT-100	6754				
BSCO ₂	ADMM15	6465	NS			
	DF-2	5665				
	CA	4960				
	ALS	8.602				
	DF-2	7.866				
BSSOF	CA	6.365	NS			
	FT-100	3.168				
	ADMM15	2.838				

¹Fuels listed from highest to lowest least squares mean

²Letters designate groups of fuel means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

Table 29. Clean Air Act Toxic Air Pollutant Mass Emissions (mg/kWh) for Mode 12, LPP Operation						
Doomonoo	LPP Only - Mode 12					
Response	Fuel LS Means ¹		Significant Fuel Groups ²			
	ALS	333.9				
	CA	249.6				
Benzene	DF-2	241.5	NS			
	ADMM15	178.2				
	FT-100	118.0				
	ALS	460.2				
	FT-100	282.9				
1,3-Butadiene	DF-2	229.3	NS			
	ADMM15	216.5				
	CA	196.9				
	ALS	32241.5				
	DF-2	30348.2				
Formaldehyde	ADMM15	29186.9	NS			
	FT-100	23723.0				
	CA	18177.0				
	DF-2	13400.4	Α			
	ADMM15	10477.5	AB			
Acetaldehyde	FT-100	8856.8	AB			
	ALS	5079.8	В			
	CA	2928.5	В			

¹Fuels listed from highest to lowest least squares mean

8.2.1 Benzene, 1,3-Butadiene, Formaldehyde

At the 95% confidence level, no statistically significant differences were apparent in the average benzene, 1,3-butadiene, or formaldehyde mass emissions among the fuels at the idle condition.

8.2.2 Acetaldehyde

The average acetaldehyde for the DF-2 fuel is significantly different than the ALS and CA fuels. The ADMM15 and FT100 fuels had statistically similar results for acetaldehyde.

²Letters designate groups of fuel means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

8.3 Fuel Impact on Particulate Soluble Extract PAH Species – Mode 12

The fuel rankings for thirteen of the particulate bound soluble phase PAH compounds are shown in Table 30. Due to non-detects, four PAH compounds had insufficient data for the ANOVA modeling. The four compounds were benzo[a]pyrene, indeno(123-cd)pyrene, dibenzo(a,h)anthracene, and benzo(ghi)perylene. For the majority of PAH compounds, DF-2 fuel was statistically different from the other test fuels. The ADMM15 and FT-100 fuels were in the statistically equivalent (95% confidence) lowest grouping for the particulate bound PAH compounds.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for Mode 12, and refer to the results in Table 30. The ANOVA tables for the Mode 12 averages can be found in Appendix G.

8.3.1 Naphthalene

No statistically significant differences were noted in the average naphthalene among the fuels.

8.3.2 Acenaphthylene

The average acenaphthylene for the DF-2 fuel is significantly different than the remaining four fuels. The average acenaphthylene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different.

8.3.3 Acenaphthene

No statistically significant differences exist in the average acenaphthene among the fuels.

8.3.4 Fluorene

The average fluorene for the DF-2 fuel is significantly different than the ALS fuel.

Doomonoo	LPP Only - Mode 12					
Response	Fuel	LS Means ¹	Significant Fuel Groups ²			
	FT-100	822.2				
	DF-2	732.5				
Naphthalene	ADMM15	553.7	NS			
	CA	541.6				
	ALS	192.2				
	DF-2	55.81	A			
	CA	23.13	В			
Acenaphthylene	ALS	11.38	В			
	FT-100	10.55	В			
	ADMM15	10.25	В			
	DF-2	120.1				
	FT-100	98.01				
Acenaphthene	CA	94.66	NS			
	ADMM15	78.07	-			
	ALS	29.89				
	DF-2	334.9	A			
	CA	219.8	AB			
Fluorene	FT-100	126.6	AB			
	ADMM15	118.4	AB			
	ALS	59.06	В			
	DF-2	11231	A			
	CA	2331	В			
Phenanthrene	ALS	736.5	В			
	FT-100	572.4	В			
	ADMM15	459.1	В			
	DF-2	313.0	A			
	CA	66.31	В			
Anthracene	FT-100	46.72	В			
	ADMM15	37.82	В			
	ALS	25.75	В			
	DF-2	1459.1	A			
	CA	375.5	В			
Fluoranthene	ALS	205.0	В			
	FT-100	144.6	В			
	ADMM15	98.22	В			
	DF-2	4002	A			
	CA	317.9	В			
Pyrene	ALS	307.0	В			
	ADMM15	122.3	В			
	FT-100	112.6	В			

	LPP Only - Mode 12					
Response	Fuel	LS Means ¹	Significant Fuel Groups ²			
	DF-2	111.5	A			
	CA	26.93	В			
Benzo[a]anthracene	ALS	11.47	В			
	FT-100	4.490	В			
	ADMM15	2.813	В			
	DF-2	310.1	A			
	CA	57.34	В			
Chrysene	ALS	25.55	В			
	FT-100	15.39	В			
	ADMM15	8.133	В			
	DF-2	49.24	A			
	CA	21.76	В			
Benzo[b]fluoranthene	ALS	16.87	В			
	FT-100	10.49	В			
	ADMM15	4.117	В			
	DF-2	35.45	Α			
	CA	15.26	В			
Benzo[k]fluoranthene	ALS	12.61	В			
	FT-100	8.636	В			
	ADMM15	5.015	В			
	DF-2	33.53	A			
	CA	14.12	В			
Benzo[e]pyrene	ALS	10.28	В			
	FT-100	9.774	В			
	ADMM15	3.537	В			

¹Fuels listed from highest to lowest least squares mean

8.3.5 Phenanthrene

The average phenanthrene for the DF-2 fuel is significantly different than the remaining four fuels. The average phenanthrene for the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

8.3.6 Anthracene

The average anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The average anthracene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

²Letters designate groups of fuel means within which there are no statistically significant differences NS = no statistically significant differences in the mean response at the 5% level of significance

8.3.7 Fluoranthene

The average fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.3.8 Pyrene

The average pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The average pyrene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.3.9 Benzo[a]anthracene

The average benzo[a]anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[a]anthracene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.3.10 Chrysene

The average chrysene for the DF-2 fuel is significantly different than the remaining four fuels. The average chrysene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.3.11 Benzo[b]fluoranthene

The average benzo[b]fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[b]fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.3.12 Benzo[k]fluoranthene

The average benzo[k]fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[k]fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.3.13 Benzo[e]pyrene

The average benzo[e]pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[e]pyrene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.4 Fuel Impact on Gaseous PAH Species

The gas phase PAH emissions rank the test fuels in the general order shown in Table 31. Included in Table 31 are the least-square means from multifactor ANOVA, along with the statistically significant groupings for the Mode 12 mass emissions. The general trends were for DF-2 to have the highest gas phase PAH emissions, while ADMM15 and FT-100 were always in the statistically lowest grouping. The ANOVA for gas phase PAH species indicated the oxygenated diesel fuel, ADMM15, was statistically equivalent to FT-100 at the Mode 12, idle operating condition.

The discussions to follow are summaries of the multifactor ANOVA performed for each emission response for Mode 12, and refer to the results in Table 31. The ANOVA tables for the Mode 12 analysis can be found in Appendix G.

8.4.1 Naphthalene

There are two distinct fuel groupings with respect to the average naphthalene. The DF-2 and CA fuels are not significantly different from one another but are significantly different from the remaining three fuels. The ALS, ADMM15, and FT-100 fuels are not significantly different from one another, but are significantly different from the remaining two fuels.

8.4.2 2-Methylnaphthalene

There are three distinct fuel groupings with respect to the average 2-methylnaphthalene. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different from the remaining two fuels. The CA and DF-2 fuels are significantly different from one another and the remaining three fuels.

Beenenee	LPP Only - Mode 12								
Response	Fuel	LS Means ¹	Significant Fuel Groups ²						
	CA	182116	Α						
	DF-2	130839	Α						
Naphthalene	ALS	56374	В						
	ADMM15	23713	В						
	FT-100	6058	В						
	DF-2	212921	Α						
	CA	106437	В						
2-Methylnaphthalene	ALS	40671	С						
	ADMM15	17201	С						
	FT-100	2256	С						
	DF-2	139827	A						
	CA	73642	В						
1-Methylnaphthalene	ALS	21018	С						
, ,	ADMM15	8078	С						
	FT-100	1429	С						
	DF-2	127567	Α						
	CA	26261	В						
,6-Dimethylnaphthalene	ALS	11261	В						
´ '	ADMM15	2048	В						
	FT-100	1362	В						
	DF-2	5591	Α						
	ALS	2638	В						
Acenaphthylene	CA	1926	В						
, ,	ADMM15	953.8	В						
	FT-100	888.2	В						
	DF-2	16107	Α						
	CA	2386	В						
Acenaphthene	ALS	1707	В						
	ADMM15	907.6	В						
	FT-100	195.8	В						
	DF-2	23660	Α						
	CA	2767	В						
Fluorene	ALS	939.1	В						
	FT-100	305.1	В						
	ADMM15	296.7	В						
	DF-2	25421	Α						
	CA	2267	В						
Phenanthrene	ALS	1891	В						
	FT-100	699.8	В						
_	ADMM15	457.2	В						

able 31. Mode 12 Gaseou	s Phase PAH Mass E	missions (µg/kWh	n) for LPP Operation (contd)						
Poononoo	LPP Only - Mode 12								
Response	Fuel LS Means ¹		Significant Fuel Groups ²						
	DF-2	533.1	A						
	CA	129.7	В						
Anthracene	ALS	54.22	В						
	FT-100	29.41	В						
	ADMM15	22.40	В						
	CA	40.41							
	ALS	39.96							
Fluoranthene	DF-2	29.95	NS						
	FT-100	27.46							
	ADMM15	14.04							
	DF-2	46.40	A						
	ALS	39.48	AB						
Pyrene	CA	CA 33.29							
	FT-100	21.80	AB						
	ADMM15	12.70	В						

¹Fuels listed from highest to lowest least squares mean

8.4.3 1-Methylnaphthalene

There are three distinct fuel groupings with respect to the average 1-methylnaphthalene. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different from the remaining two fuels. The CA and DF-2 fuels are significantly different from one another and the remaining three fuels.

8.4.4 2,6-Dimethylnaphthalene

The average 2,6-dimethylnaphthalene for the DF-2 fuel is significantly different than the remaining four fuels. The average 2,6-dimethylnaphthalene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.4.5 Acenaphthylene

The average acenaphthylene for the DF-2 fuel is significantly different than the remaining four fuels. The average acenaphthylene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

²Letters designate groups of fuel means within which there are no statistically significant differences

NS = no statistically significant differences in the mean response at the 5% level of significance

8.4.6 Acenaphthene

The average acenaphthene for the DF-2 fuel is significantly different than the remaining four fuels. The average acenaphthene for the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

8.4.7 Fluorene

The average fluorene for the DF-2 fuel is significantly different than the remaining four fuels. The average fluorene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.4.8 Phenanthrene

The average phenanthrene for the DF-2 fuel is significantly different than the remaining four fuels. The average phenanthrene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.4.9 Anthracene

The average anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The average anthracene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

8.4.10 Fluoranthene

No statistically significant differences were apparent for the average fluoranthene among the fuels.

8.4.11 Pyrene

The average pyrene for the DF-2 fuel is significantly different than the ADMM15 fuel.

9.0 CONCLUSIONS

The project plan was fully coordinated with DOE and Industry through the Auto/Energy CIDI Ad Hoc Fuels Group. The industrial leaders specified the cylinder balance approach, specified the EGR levels for each of the five speed load conditions, and determined the modal weighting factors for the weighted averages. All fuels were evaluated in triplicate for five modes, with pilot injection off, IMEP of cylinders balanced within 5%, and the Location of Peak Pressure of combustion controlled to 7°ATDC.

Statistically significant (95% confidence) fuel effects on weighted average exhaust emissions were identified for both regulated and unregulated species, including CAA toxic and PAH compounds. The low sulfur fuel containing 15%v/v of the oxygenate dimethoxy methane (ADMM15) or Fischer-Tropsch (FT-100) fuels had the lowest overall weighted average emission response of the test fuels. For unburned hydrocarbons and carbon monoxide, FT-100 had the lowest significant ranking, with ADMM15 and its parent fuel in the next highest rank. DF-2 and pseudo-CARB fuel had the highest regulated emission rankings. For NOx, ADMM15 and FT-100 were not the highest emitters, but were in the second highest significant grouping. The oxygenated low sulfur diesel fuel was statistically the same as Fischer-Tropsch fuel for toxic air pollutants, gaseous and soluble PAH, and PM emissions. Although ADMM15 and FT-100 have statistically similar total PM response, the SOF for the two fuels is statistically different. The ADMM15 fuel has a larger fraction of SOF than the FT-100 fuel, which has the statistically smallest SOF of all test fuels.

For the regulated mass emissions the fuel rank order for the Modal LPP tests (modes 5,6,10,11), with pilot fuel injection off, reflect the results seen for the weighted averages. For HC, CO, and CO₂, the Modal emissions are significantly inversely proportional to BMEP. For NOx, the Modal emissions the results are significantly proportional to BMEP. There are two significant mode groupings for PM, modes 10 and 6 in one group, and modes 11 and 5 in another. There are Fuel * Mode interactions with the regulated emissions. For the CAA toxic compounds, the modal fuel rankings align with the weighted results, with some significant mode groupings. The mode groupings appear inversely proportional to BMEP for the toxic compounds. There are significant Fuel*Mode interactions with each toxic compound. The general trend for the PAH compounds during modal operation reflects the results seen in the weighted average case for fuel rank order.

The general modal effect for both gaseous and soluble PAH emissions were compound specific, and to some effect dependent on BMEP and the molecular weight of the compound.

A pilot fuel injection effect evaluation for all fuels was completed in triplicate for two modes and two pilot fuel injection control strategies. An ANOVA was performed on the pilot fuel injection data along with the same modal data from the non-pilot LPP control strategy. The LPP control with pilot fuel injection turned off was statistically the lowest control strategy for the four toxic air pollutants. The same statistical conclusion could be made for the other particulate PAH compounds. The effect of pilot fuel injection on exhaust emissions, compared to the LPP operation with pilot off, can be summarized as follows:

- PM emissions increase with pilot fuel injection
- NOx emissions decrease with pilot fuel injection
- The ratio of SOF/PM changed with pilot fuel injection condition, and appeared to be a function of the exhaust temperature
- Toxic air pollutant levels increase
- Both soluble and gas phase PAH increase with pilot fuel injection.

The fuel rank order for exhaust emissions with pilot fuel injection operation can be summarized as follows:

- PM rank for ADMM15 and FT-100 lowest, with DF-2 highest
- NOx rank is FT100 lowest, ADMM15 middle, and DF-2 highest
- The SOF of the PM was statistically lowest for FT-100
- Toxic air pollutant rank is FT-100 and ADMM15 lowest, with DF-2 highest
- Both soluble and gas phase PAH rank is FT100 and ADMM15 statistically similar as lowest, with DF-2 the highest emitting fuel.
- Pilot fuel injection changes the magnitude of the emission response, but does not significantly alter the fuel rank order.

Due to the variability of the Mode 12 data, primarily due to engine load control, the idle data was analyzed separately from the other modal data. No statistically significant (95% confidence) fuel effects on exhaust emissions were identified for the regulated species. For the CAA toxic compounds acetaldehyde at mode 12, there were significant fuel effects, with DF-2, ADMM15

and FT-100 being in the highest emitting significant group. For both soluble and gaseous PAH compounds there was either no significant groups or two groups with DF-2 always being in the highest emitting group. The ADMM15 and FT-100 fuels were generally the lowest emitting fuels or were in the lowest emitting group for the PAH compounds at idle.

10.0 RECOMMENDATIONS

The demonstrated effect of the oxygenate compound blended into low sulfur diesel fuel on lowering both regulated and unregulated emissions warrants further investigation. Although the oxygenate utilized in this study, dimethoxy methane, has shown positive emissions benefits, it is a poor choice for commercialization due to volatility characteristics. A parallel oxygenates program¹⁴ has identified two suitable oxygen bearing compounds which warrant investigation as to oxygenate composition effects on toxic or PAH emissions.

There is evidence, Hilden¹⁵ and Figure 121, that suggests oxygen bearing diesel fuels would tolerate further EGR before a smoke limit is reached, thus being beneficial for lowering engine out NOx. The impact on toxic emissions with increased EGR with oxygen bearing fuels warrants investigation.

Another effect of oxygen is the tendency to increase the SOF content of the total particulate matter, which may be beneficial for PM control with an oxidation catalyst. The oxidation of SOF in a catalyst may crack higher molecular weight PAH compounds into smaller ringed components and increased levels of gaseous PAH or toxic emissions. It would be recommended to evaluate the effect of an oxidation catalyst on toxic and PAH emissions.

To meet Tier 2 emission levels, engine out NOx emissions will need to be reduced, which will result in an increase in PM emissions. Thus, the use of a Diesel Particulate Filter (DPF) to meet Tier 2 PM emission levels may be required. However, the DPF will act as a trap that will periodically need regeneration to lower engine backpressure. The DPF may act as a PAH sponge, trapping toxic compounds that could be subject to the effects of thermopherisis. The potential change in gaseous PAH levels due to the accumulation of PM on a DPF warrants investigation.

Figure 121. OM611 Engine NOx-PM Emission Index Trade Off with Oxygenated Low Sulfur Diesel Fuel

11.0 REFERENCES

- 1. Sirman, M.B., Owens, E.C., Whitney, K.A., "Emissions Comparison of Alternative Fuels in an Advanced Automotive Diesel Engine," SAE Paper 2000-01-2048 (2000).
- 2. Likos, W.E., "Evaluation of Advanced Petroleum-Based Fuels, Interim Report TFLRF No. 356, January 2001.
- Truax, T.J., and Norbeck, J.M., "Evaluation of Factors that Affect Diesel Exhaust Toxicity," Contract No. 94-312, California Air Resources Board, July 1998.
- 4. Schramm, J., Foldager, I., Olsen, N. and Gratz, L., "Emissions from a Diesel Vehicle Operated on Alternative Fuels in Copenhagen," SAE Technical Paper 1999-01-3603, 1999.

- 5. Westerholm, R., Christensen, A., de Serves, C., Almen, J., "Determination of Polycyclic Aromatic Hydrocarbons (PAH) in Size Fractionated Diesel Particles from a Light Duty Vehicle", SAE Technical Paper 1999-01-3533, 1999.
- Kuljukka, T., Savela, K., Peltonen, K., Mikkonen, S., Rantanen, L., "Effect of Fuel Reformulation on Diesel Particulate Emissions-Application of DNA Adduct Test," SAE Technical Paper 982650, 1998.
- Collier, A., Jemma, C., Wedekind, B., Hall, D., and Heinze, P., "Sampling and Analysis of Vapor-Phase and Particulate-Bound PAH from Vehicle Exhaust," SAE Technical Paper 982727, 1998.
- 8. Tanaka, S., Takizawa, H., Shimizu, T., and Sanse, K., "Effect of Fuel Compositions on PAH in Particulate Matter from DI Diesel Engine," SAE Technical Paper 982648, 1998.
- 9. Doel, R. C., "Fuel Property Effects on Polyaromatic Hydrocarbon Emissions from Modern Heavy-Duty Engines," SAE Technical Paper 964117, 1996.
- Andrews, G., Ishaq, R., Farrar-Khan, J., Shen. Y., and Williams, P., "The Influence of Speciated Diesel Fuel Composition on Speciated Particulate SOF Emissions," SAE Technical Paper 980527, 1998.
- 11. Mason, R.L., Gunst, R.F., and Hess, J.L., <u>Statistical Design and Analysis of Experiments with</u> Applications to Engineering and Science, John Wiley &Sons, Inc, 1989.
- 12. Milliken, G.A. and Johnson, D.E., <u>Analysis of Messy Data, Volume I: Designed Experiments</u>, Van Nostrand Reinhold, 1984.
- 13. Szymkowicz, P.G., French, D.T., and Crellin, C.C., "Effects of Advanced Fuels on the Particulate and NOx Emissions from an Optimized Light-Duty CIDI Engine," SAE Paper 2001-01-0148 (2001).

- 14. Naegeli, D.W., Moulton, S., Owens, E.C., and Frame, E.A., "Oxygenates for Advanced Petroleum-Based Diesel Fuels," Interim Report No. 357, February 2001.
- 15. Hilden, D.L., Eckstrom, J.C., and Wolf, L.R., "The Emissions Performance of Oxygenated Diesel Fuels in a Prototype DI Diesel Engine," SAE paper 2001-01-0650 (2001).

APPENDIX A

Toxic Air Pollutant Sample Procedure

COLLECTION OF ALDEHYDE ON SOLID PHASE DNPH CARTRIDGES AND GASEOUS HYDROCARBONS IN TEDLAR BAGS USING A GAS METERING CART

Leak Check

- Close sampling point valves on tunnel and dilution air box.
- Aldehyde Sampling Cart Attach the intake and suction lines together without a DNPH cartridge in line.
- Turn on the "Sampling" Switch and observe the digital flow meter. The flow should diminish to at least 0.20 L/min on the number 1 sample counter.
- Open sampling point valves (2 each) on tunnel and (1 each) on dilution air box. Attach 1 Tedlar sample bag each to the ASample≅ pump and the Abackground≅ air pump.
- Attach 1 each labeled DNPH aldehyde cartridge to the "Sample" side and the "background" side of the sampling cart. (Blue coded line for background(1) and Yellow coded line for sample(2)). Flows are regulated so that the sample flow rate is 5 times the background flow rate.

Start of Test:

- In concert with the start of particulate sampling, begin timing the tests (30 min) with a stop watch. At start of test move the "sample" toggle switch 2 clicks upward. Simultaneously turn on the power strip to supply power to the bag sampling pumps.
- (The technician operating the particulate cart will give a "Start" sign.)
- After two minutes turn off the power to the "background" bag sampling pump.
- Sample with the DNPH cartridge and gas "sample" bag for 30 minutes.
- At some time during the test, record the barometric pressure, the LFE intake air temperature, and the ambient air temperatures. (These are displayed on the computer monitor on the test cell console.)

End of Test:

- Move "sample" toggle switch to bottom position.
- Turn off power to the bag sampling pump.
- Record the numbers on both top and bottom digital flow meters.
- Disconnect Sample Bag from Pump.

- Return background pump line switch to the Aon≅ position.
- As soon as practical, deliver the ASample≅ bag to DER GC lab.
- Leave background bag attached until end of test day. (Two minutes for each test.)
- Remove DNPH Sample Cartridge from flow stream cap ends and verify correct label.
- At end of test session, place the aggregate of DNPH cartridges in a zip-lock bag and deliver to DER lab #2 small refrig., under lab bench near vent hood.

REVISION 1

COLLECTION OF ALDEHYDES ON SOLID PHASE DNPH CARTRIDGES AND GASEOUS HYDROCARBONS IN TEDLAR BAGS USING GAS METERING CART

Revision 3/09/00

Due to overloading of some of the aldehyde cartridges, (using up all of the DNPH reagent), the sampling regime was modified as follows:

Zero Time

- ♦ Start Aldehyde Cart pumps, (no cartridges installed)
- ♦ Start Bag pumps

At 2 minutes

- ♦ Stop background bag pump
- Stop Aldehyde cart pumps
- ♦ Install cartridges, (sample and background)
- (this 2 minutes purges the sample lines with current sample)

At 3 minutes

• Start aldehyde cart pumps

At 8 minutes

- ♦ Close toggle valve to aldehyde "sample" cartridge.
- ◆ Read flow totalizer for "sample"
- Remove "sample" cartridge from flow stream
- ♦ (5-minute "sample" collection)

At 30 minutes

- ♦ Stop aldehyde cartridge pumps
- ♦ Stop "sample" bag pump
- ♦ Read flow totalizer for Background
- Remove background cartridge from flow stream, (set aside to reinstall 2 minutes into next test)
- Remove "sample bag" and transport to the chem lab for analyses.

APPENDIX B

Fuel Property Analysis

DOE Fuels Analysis	FISCHER- TROPSCH (FT100)	FISCHER- TROPSCH (FT100)	California Reference (CA)	California Reference (CA)	ALTER LOW S (ALS)	ALTER LOW S (ALS)	DMM/ALS BLEND (ADMM15)	DMM/ALS BLEND (ADMM15)	2D CERT (2D)		
PROPERTY	UNITS	ASTM	SwRI	Core	SwRI	Core	SwRI	Core	SwRI	Core	SwRI
Density @ 15C	g/ml	D4052	0.7812		0.8378		0.8160		0.8201		0.8426
Distillation		D2887									
IBP	°C		145		145		140		58		
10%	°C		266		192		202		179		
50%	°C		302		251		280		273		
90%	°C		351		325		344		344		
95%	°C		359		339		362		360		
End point	°C		377		372		416		413		
Distillation		D86									
IBP	°C		215	233	189	192	207	210	42	40	183
10%	°C		258	256	215	214	232	232	73	61	216
50%	°C		289	287	255	253	276	275	264	261	260
90%	°C		325	323	309	308	322	321	319	312	309
95%	°C		332	330	321	321	334	334	332	325	325
End Point	°C		337	336	331	331	344	344	342	338	340
Cetane Number		D613	84	87	45	49	63	62	59		44
Cetane Index		D976	78		48		61		57		48
Kinematic Viscosity at 40°C	cSt	D445	3.2	3.1	2.4	2.3	2.9	2.9	1.9	1.7	2.4
Flash Point	°C	D93	98	99	72	70	87	87	<2(D56)	<24	71
Hydrogen	wt%	D5291	15.1		13.4		14.4		13.7		13.0
Carbon	wt%	D5291	84.8		86.4		85.6		81.6		86.7
Oxygen	wt%	difference	0.1		0.2		0.0		4.7		0.3
Nitrogen	μg/g	D4629	7.8		<1.0		<1		<1		60
Sulfur	ppm	D2622	1		176		1		1		337

DOE Fuels Analys	FISCHER- TROPSCH (FT100)	FISCHER- TROPSCH (FT100)	California Reference (CA)	California Reference (CA)	ALTER LOW S (ALS)	ALTER LOW S (ALS)	DMM/ALS BLEND (ADMM15)	DMM/ALS BLEND (ADMM15)	2D CERT (2D)		
PROPERTY	UNITS	ASTM	SwRI	Core	SwRI	Core	SwRI	Core	SwRI	Core	SwRI
Hydrocarbon Type:											
Total Aromatics	wt%	D5186	0.2	<0.1	18.9	18.6	9.0	9.1	8.2*	9	30.3
Mono	wt%	D5186	0.2		15.1		8.5		7.8*		21.4
Poly(Di+Tri)	wt%	D5186	<0.1		3.8		0.5		0.4*		8.9
Parafins	wt%	D2425	97.1		44.2		54.5		54.2*		42.8
Napthenes	wt%	D2425	2.9		37.8		36.9		31.9*		28.8
Water	ppm	D4928	45.0		105.0		77.0		368.0		98.0
Color		D1500	LO.5		L0.5		L0.5		L0.5		1.0
Clear and Bright		D4176	PASS		PASS		PASS		PASS		PASS
Particulates	mg/L	D6217	4.3		<0.01		0.8		0.7**		0.3
Copper Strip Corrosion		D130	1a		1a		1a(50C)		1a		1a
Cloud Point	°C	D2500	-1		-27		-4		-7		-18
Pour Point	°C	D976	-2		-32		-5		-9		-24
Carbon Residue	%	D524	0.071		0.220		0.080		0.038		0.240
Acid Number	mgKOH/g	D664	0.03		0.02		0.02		0.02		0.02
Oxidation Stability		D2274	0.20		0.20		<0.01		0.25***		<0.01
Net Heat of Combustion	MJ/kg	D240	43.9		42.7		43.3		40.8		42.5
Gross Heat of Combustion	MJ/kg	D241		47.2		46.0		46.8		42.0	
Lubricity	mm	D6079	0.59		0.27		0.57		0.49		0.57
BOCLE Scuff	grams	D6078	1900		4300		1600		1950		2850
Detergent	yes/no	unknown									
Sullfur by X-ray Spect	wt%	D4294				0.021					

^{*}The DMM is interfering with these results

^{**}DMM altered shape of filter and may be interfering with results

^{***}Vigorious boiling occurred as sample came to temperature.

APPENDIX C

Pilot Fuel Injection Screening Study

PM Analysis Project: Pilot Fuel Injection Study

Objective

To determine if pilot injection on a direct-injected diesel engine with a Common-Rail fuel system exhibits impacts on engine gaseous and PM exhaust emissions. Ascertain if those impacts may effect the toxicity of the diesel exhaust.

Approach

Operate engine at each of five test modes utilizing three differing control strategies, using CARB fuel. The control approaches consisted of Location of Peak Pressure (LPP) without pilot injection, LPP with Pilot Injection (PILOT A), and the calibrated (PILOT B) engine strategy which also uses pilot injection. The LPP and PILOT A strategies were performed using an RPECS controller. Under RPECS control each cylinder was balanced within 5% of the engine average IMEP. The PILOT B strategy was performed with the OEM controller. The LPP was determined by fixing injection rail pressure, specified EGR, and setting the injector pulse width which met the BMEP setting for the mode. The Main Start of Injection timing was swept and the LPP was noted which produced best torque. When the location of peak pressure during PILOT A operation was determined, the Pilot-to-Main injection pulse width ratio, and the Pilot-to-Main timing gap was kept the same as the Calibrated settings for the mode.

The timings for the differing control strategies are outlined in Table C1 for each of the five test modes. Also shown in Table C1 are the EGR settings for the differing control modes. For the LPP and PILOT A strategies EGR was controlled at levels specified by the Ad Hoc Diesel Fuels committee. The PILOT B strategy controlled to EGR levels mapped by the engine manufacturer. Increased EGR levels are expected to decrease NOx response and increase PM response.

Table C1. Timing Parameters for Pilot Injection Study													
				LPP PILOT B PILOT A									
		BMEP,			EGR,				EGR,				EGR,
Mode	Speed	bar	LPP*	MSOI‡	%	LPP	PSOI†	MSOI	%	LPP	PSOI	MSOI	%
12	900	.1	7	5	40	0	9	0	60	5	17	8	40
11	1500	2.62	7	9	30	12	18	2	36	7	24	8	30
10	2000	2	7	12	30	15	23	2	35	7	31	10	30
6	2300	4.2	7	14	15	10	28	4	19	7	38	13	15
5	2600	8.8	7	18	5	8	36	8	13	8	42	14	5

^{*}LPP - Location of Peak Pressure, dATDC

The gaseous and Particulate Matter (PM) emissions were obtained for each test condition. The PM was then analyzed for the percentage of SOF. The hypothesis being major variations in PM and SOF mass emission rates between the control strategies would also result in different PAH levels

Discussion

<u>Brake Specific Fuel Consumption</u> – The brake specific fuel consumption (BSFC) for the different control strategies for the non-idle modes are shown in Figure C1. The engine was controlled to the same approximate brake output. Fuel consumption variations should reflect relative energy conversion efficiencies. In general the PILOT B control strategy sacrificed fuel

[‡]MSOI - Main Start of Injection, dBTDC

[†]PSOI - Pilot Start of Injection, dBTDC

consumption with respect to either of the LPP control approaches. In general, the PILOT A has marginally higher BSFC, most likely due to an advanced initial burn caused by the advanced pilot injection. The idle BSFC shown in Figure C2 shows an improved BSFC for the PILOT B mode. Again the PILOT A has a slightly higher BSFC than the LPP mode. From Table A1, the idle mode (mode 12) has a slightly advanced pressure peak for best torque during PILOT A operation than the LPP mode. The peak pressure location for idle in the PILOT B mode appeared at TDC, however, there was a burn evident later in the cycle around 15° ATDC. For all modes during pilot, the location of peak pressure was not as steady, probably due to the variability of the ignition delay of the pilot injected fuel.

<u>Oxides of Nitrogen</u> — The Oxides of Nitrogen Emission Index (NOxEI) is shown in Figure C3. The NOxEI is the NOx mass emission rate as a percentage of the fuel flow for each mode and control strategy. From Figure C3, it is apparent that either LPP control approach results in higher NOxEI emissions than the PILOT B strategy. The PILOT B strategy appears to concentrate on lower NOxEI, at the expense of efficiency. Also apparent from Figure C3 is that the PILOT A approach reveals lower NOxEI levels than LPP control without pilot injection. The pilot operation has a reduced premixed burn, which may account for the lower NOxEI levels. The differences in EGR levels would also account for some of the NOxEI response seen between the PILOT B, LPP, and PILOT A control strategies. Higher EGR levels tend to result in a lower NOxEI.

<u>Particulate Matter</u> – The Particulate Matter Emission Index (PMEI) data are shown in Figure C4. The PMEI is the PM mass emission rate as a percentage of the fuel flow. As expected due to the NOxEI response, the PMEI levels are higher when pilot injection is utilized. The PILOT B strategy results in a the highest PMEI levels.

For the PM and the Soluble Organic Fraction (SOF) of the PM, specific mass emission rates are shown in Figures C5 and C6 respectively for the non-idle modes. The PM specific emissions are higher for the PILOT A and PILOT B mode of operation. The 2000 RPM/ 2 bar BMEP mode for PILOT B operation may have been influenced by a sample leak, the results do not follow the trends of the other modes. The SOF data in Figure C6 is plotted on the same scale as the PM results, thus relative SOF levels can be ascertained due to the mode of operation. Distinct SOF levels are apparent between the control strategies and each operating modes. Overall pilot injection appears to increase PM but reduce the level of SOF.

For the PM, and the Soluble Organic Fraction (SOF) of the PM, specific mass emission rates are shown in Figures C7 for the idle mode. The PM emission for the idle mode is higher for the PILOT B and PILOT A operation compared to LPP. The SOF is in similar proportions for the LPP and PILOT B modes of operation at idle.

<u>Combustion</u> – Cylinder pressure histories were recorded for each test mode and control strategy. Figure C8 is the cylinder pressure histories from cylinder #1 for Mode 11, 1500 RPM and 2.62 bar BMEP. From the pressure histories, it is evident the rate of pressure rise is lower when pilot operation is utilized. This is evident in the audible noise during engine operation.

The apparent heat release rates were calculated and are shown in Figure C9 for each control strategy. The relative timings of the pilot and main injection events are shown on the heat release curves. From the heat release traces the early burn is evident for the cases where pilot injection is utilized, PILOT B and PILOT A. Combustion occurs before TDC with pilot injection. Due to the very advanced injection in the PILOT A control mode, combustion appears to initiate around

8 degrees before TDC. Combustion initiates during PILOT B operation at around 6 degrees before TDC.

High initial combustion rates would be expected to correlate with NOx formation. The NOxEI data ranks the control strategies as would be expected from the burn rates. The magnitude of the tail of the burn curve would be expected to suggest relative PM levels. The PMEI data ranks with the relative magnitude of the tail of the burn curves for the three control strategies.

The shape and phasing of the burn curves suggest the timing of the pilot injection for the PILOT A control strategy may be to far advanced. The pilot-to-main injection gap utilized under PILOT B operation was maintained for the PILOT A operation. A timing sweep study was performed to evaluate the effect of the Pilot-toMain Gap (PMGap) on BSFC, NOx, and Bosch Smoke Number (BSN). The sweeps were performed at mode 11, 1500 RPM/2.62 bar BMEP. The typical PILOT B values for this mode are a PMGap of 1.8 ms with a MSOI of 2 DBTDC. The MSOI utilized for LPP control is 8 DBTDC. The PMGap and MSOI for the PILOT A strategy was 1.8 ms and 8 DBTDC respectively. The range of PMGap was chosen by fixing injection quantity, and looking for a change in the torque response at different PMGaps. PMGaps longer than 1.8 ms and shorter than 1.4 ms resulted in large torque decreases. The sweeps were performed with constant injection pulse widths.

The data in Figure C10 represents one reading for BSFC at each PMGap and MSOI timing. As seen in Figure C11, a PMGap of 1.6 ms resulted in the most efficient operation, at all MSOI timings.

The NOx response shown in Figure C11 indicate MSOI timing is more critical than PMGap. As MSOI timing is advanced, NOx increases. The PMGap at 1.6 ms had the highest NOx response at each MSOI timing. Considering the efficiency improvement seen at 1.6ms PMGap, the higher NOx response is not unexpected.

The variations in BSN for the timing sweeps shown in Figure C12 were not expected. The BSN decreases with advanced MSOI, which coincides with PM-NOx tradeoff, and the NOx response. What was not anticipated was the smoke number relationship with respect to PMGap. The PMGap for the highest efficiency has the highest smoke levels, and as seen from Figure C12 the highest NOx.

Figure C1. Brake Specific Fuel Consumption as a Function of Control Strategy

Figure C2. Idle Mode BSFC as a Function of Control Strategy

Figure C3. Oxides of Nitrogen Emission Index as a Function of Control Strategy

Figure C4. Particulate Matter Emission Index as a Function of Control Strategy

Figure C5. PM Specific Mass Emission Rates

Figure C6. Soluble Organic Fraction Specific Mass Emission Rates

Figure C7. Idle Mode PM Specific Mass Emission Rates

Figure C8. Cylinder Pressure Histories as a Function of Control Strategy

Figure C9. Heat Release Rates as a Function of Control Strategy

Figure C10. Brake Specific Fuel Consumption for Mode 11 Timing Sweeps

Figure C11. Oxides on Nitrogen for Mode 11 Timing Sweeps

Figure C12. Bosch Smoke Number for Mode 11 Timing Sweeps

APPENDIX D

ANOVA for Weighted Averages

TABLE OF CONTENTS

Total Particulates	D-3
BSNO _X	D-5
BSHC	D-7
BSCO	D-9
BSCO2	D-11
BSSOF	D-13
Benzene Toxic Gaseous Emissions	D-15
1,3 Butadiene Toxic Gaseous Emissions	D-17
Formaldehyde Toxic Gaseous Emissions	D-19
Acetaldehyde Toxic Gaseous Emissions	D-21
Naphthalene Gaseous PAH	D-23
2-Methylnaphthalene Gaseous PAH	D-25
1-Methylnaphthalene Gaseous PAH	D-27
2,6-Dimethylnaphthalene Gaseous PAH	D-29
Acenaphthylene Gaseous PAH	D-31
Acenaphthene Gaseous PAH	D-33
Fluorene Gaseous PAH	D-35
Phenanthrene Gaseous PAH	D-37
Anthracene Gaseous PAH	D-39
Fluoranthene Gaseous PAH	D-41
Pyrene Gaseous PAH	D-43
Naphthalene Soluble PAH	D-45
Acenaphthylene Soluble PAH	D-47
Acenaphthene Soluble PAH	D-49
Fluorene Soluble PAH	D-51
Phenanthrene Soluble PAH	D-53
Anthracene Soluble PAH	D-55
Fluoranthene Soluble PAH	D-57
Pyrene Soluble PAH	D-59
Benzo[a]anthracene	D-61
Chrysene	D-63
Benzo[b]fluoranthene	
Benzo[k]fluoranthene	D-67
Benzo[e]pyrene	D-69
Benzo[a]pyrene Soluble PAH	
Indeno(1,2,3-cd)pyrene Soluble PAH	D73
Benzo[ghi]perylene Soluble PAH	D75

Multifactor ANOVA - Total Particulates (g/kW-hr) LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wpm

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wpm - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	0.0584894	4	0.0146223	48.38	0.0000
RESIDUAL	0.00302259	10	0.000302259		
TOTAL (CORRECTED)	0.061512	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted particulates among the fuels.

CONCLUSION: Average particulate at fuels FT-100 and ADMM15 are not significantly different from one another, but are different than the other three fuels. The average particulate at Fuel ALS is significantly different than Fuel DF-2. The CA fuel is not significantly different than either the ALS or DF-2 fuel.

Multiple Range Tests for wpm by fuel

	95.0 percent Tu Count	-	Homogeneous (Groups
FT-100	3	0.133692	X	
ADMM15	3	0.143126	X	
ALS	3	0.224882	X	
CA	3	0.262719	XX	
DF-2	3	0.288757	X	
Contrast	:		Difference	+/- Limits
ADMM15 -	- ALS		*-0.0817558	0.0467219
ADMM15 -	- CA		*-0.119593	0.0467219
ADMM15 -	- DF-2		*-0.145631	0.0467219
ADMM15 -	- FT-100		0.00943372	0.0467219
ALS - CA	A		-0.0378373	0.0467219
ALS - DE	7-2		*-0.0638755	0.0467219
ALS - FI	7-100		*0.0911895	0.0467219
CA - DF-	-2		-0.0260382	0.0467219
CA - FT-	-100		*0.129027	0.0467219
DF-2 - F	T-100		*0.155065	0.0467219

^{*} denotes a statistically significant difference.

Multifactor ANOVA - BSNOX (g/Kw-hr) $\mbox{LPP Only} \mbox{ Weighted Modes 5, 6, 10, and 11}$

Analysis Summary

Dependent variable: wbsnox

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbsnox - Type III Sums of Squares

Fuel

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	2.42468	4	0.60617	27.97	0.0000
RESIDUAL	0.21674	10	0.021674		
TOTAL (CORRECTED)	2.64142	14			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average weighted ${\tt BSNOX}$ among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted BSNOX for the DF-2 fuel is significantly different from the remaining for fuels. The other finding is the average weighted BSNOX for the ADMM15 fuel is significantly different than the ALS fuel.

Multiple Range Tests for wbsnox by fuel

Method: 95.0 percent Tukey HSD

fuel Count LS Mean Homogeneous Groups

ALS	3	3.14535	X	
CA	3	3.43069	XX	
FT-100	3	3.4413	XX	
ADMM15	3	3.71901	X	
DF-2	3	4.33103	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			*0.573659	0.39564
ADMM15 - CA			0.28832	0.39564
ADMM15 - DF-2			*-0.612027	0.39564
ADMM15 - FT-10	0		0.277703	0.39564
ALS - CA			-0.28534	0.39564
ALS - DF-2			*-1.18569	0.39564
ALS - FT-100			-0.295956	0.39564
CA - DF-2			*-0.900347	0.39564
CA - FT-100			-0.0106164	0.39564
DF-2 - FT-100			*0.889731	0.39564

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: wbshc

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbshc - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	2.10344	4	0.52586	79.11	0.0000
RESIDUAL	0.0664694	10	0.00664694		
TOTAL (CORRECTED)	2.16991	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted BSHC among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted BSHC for the FT-100 fuel is significantly different from the remaining four fuels. The other fuels can be divided into two distinct fuel groupings. The ADMM15 and ALS fuels are not significantly different from one another, but are different from the CA and DF-2 fuels. The CA and DF-2 fuels are not significantly

different from one another.

Multiple Range Tests for wbshc by fuel

Method:	95.0 percent Tu	key HSD		
	-	-	Homogeneous Gr	roups
FT-100	3	0.39346	X	
ADMM15	3	0.676601	X	
ALS	3	0.784842	X	
CA	3	1.22085	X	
DF-2	3	1.42769	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-0.108241	0.2191
ADMM15 -	CA		*-0.54425	
ADMM15 -	DF-2		*-0.751084	0.2191
ADMM15 -	FT-100		*0.283142	0.2191
ALS - CA			*-0.436009	0.2191
ALS - DF	-2		*-0.642843	0.2191
ALS - FT	-100		*0.391383	0.2191
CA - DF-	2		-0.206834	0.2191
CA - FT-	100		*0.827392	0.2191
DF-2 - F	T-100		*1.03423	0.2191

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Multifactor ANOVA - BSCO (g/kW-hr) $\mbox{LPP Only} \mbox{ Weighted Modes 5, 6, 10, and 11}$

Analysis Summary

Dependent variable: wbsco

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbsco - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	22.2863	4	5.57158	116.78	0.0000
RESIDUAL	0.477119	10	0.0477119		
TOTAL (CORRECTED)	22.7635	14			

All F-ratios are based on the residual mean square error.

 $\hbox{{\tt CONCLUSION:}} \quad \hbox{{\tt Statistically significant differences in the average weighted BSCO} \\ \text{{\tt among the fuels.}} \quad$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted BSCO for the FT-100 fuel is significantly different from the remaining four fuels. The other fuels can be dividied into two distinct fuel groupings. The ADMM15 and the ALS fuels are not significantly different from one another,

but are different from the CA and DF-2 fuels. The CA and DF-2 fuels are not significantly

different from one another.

Multiple Range Tests for wbsco by fuel

Method:	95.0 percent Tu	ıkey HSD		
fuel	Count	LS Mean	Homogeneous Gr	oups
FT-100	3	1.82976	X	
ADMM15	3	3.0948	X	
ALS	3	3.23579	X	
CA	3	4.93057	X	
DF-2	3	5.06338	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-0.140994	0.587008
ADMM15 -	CA		*-1.83578	0.587008
ADMM15 -	DF-2		*-1.96858	0.587008
ADMM15 -	FT-100		*1.26504	0.587008
ALS - CA			*-1.69478	0.587008
ALS - DF	-2		*-1.82759	0.587008
ALS - FT	-100		*1.40603	0.587008
CA - DF-	2		-0.132808	0.587008
CA - FT-	100		*3.10082	0.587008
DF-2 - F	T-100		*3.23362	0.587008

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Multifactor ANOVA - BSCO2 (g/kW-hr) $\mbox{LPP Only} \mbox{ Weighted Modes 5, 6, 10, and 11}$

Analysis Summary

Dependent variable: wbsco2

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbsco2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	13720.5	4	3430.12	16.43	0.0002
RESIDUAL	2087.39	10	208.739		
TOTAL (CORRECTED)	15807.9	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted ${\tt BSCO2}\,$ among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted BSC02 for the ADMM15 fuel is significantly different than the ALS, CA, and FT-100 fuels. Also, the average weighted BSC02 for the FT-100 fuel is significantly different than the DF-2 fuel.

Multiple Range Tests for wbsco2 by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous Gr	oups
FT-100	3	874.221	X	
ALS	3	910.932	XX	
CA	3	911.941	XX	
DF-2	3	947.978	XX	
ADMM15	3	959.394	X	
Contrast			Difference	
ADMM15 -			*48.4621	
ADMM15 -	- CA		*47.4526	38.8269
ADMM15 -	DF-2		11.4164	38.8269
ADMM15 -	- FT-100		*85.1726	38.8269
ALS - CA	A		-1.00949	38.8269
ALS - DE	7-2		-37.0457	38.8269
ALS - FT	7-100		36.7105	38.8269
CA - DF-	-2		-36.0362	38.8269
CA - FT-	-100		37.72	38.8269
DF-2 - E	T-100		*73.7562	38.8269

^{*} denotes a statistically significant difference.

Multifactor ANOVA - BSSOF (g/kW-hr) $\mbox{LPP Only} \mbox{ Weighted Modes 5, 6, 10, and 11}$

Analysis Summary

Dependent variable: wbssof

Factors:

fuel

Number of complete cases: 14

Analysis of Variance for wbssof - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	0.0434396	4	0.0108599	65.70	0.0000
RESIDUAL	0.00148772	9	0.000165303		
TOTAL (CORRECTED)	0.0449273	13			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average weighted BSSOF among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are four distinct fuel groupings with respect to the average weighted BSSOF. The FT-100, ADMM15, and ALS fuels are significantly different from one another and the remaining two fuels. The CA and DF-2 fuels are not significantly different from one another, but are significantly different from the other three fuels.

Multiple Range Tests for wbssof by fuel

Method: 95.0 percent Tukey HSD

fuel	Count	LS Mean	Homogeneous Group	S
FT-100		0.0722652		
ADMM15		0.123734		
ALS		0.160837	X	
CA	3	0.220703	X	
DF-2	3	0.227858	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			*-0.0371037	0.0352706
ADMM15 - CA			*-0.096969	0.0352706
ADMM15 - DF-2			*-0.104124	0.0352706
ADMM15 - FT-10	0		*0.0514686	0.0394337
ALS - CA			*-0.0598653	0.0352706
ALS - DF-2			*-0.0670201	0.0352706
ALS - FT-100			*0.0885723	0.0394337
CA - DF-2			-0.00715478	0.0352706
CA - FT-100			*0.148438	0.0394337
DF-2 - FT-100			*0.155592	0.0394337

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Benzene (mg/kW-hr) Toxic Gaseous Emissions LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wbenz

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbenz - Type III Sums of Squares

-			-		
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	63.8974	4	15.9744	25.90	0.0000
RESIDUAL	6.16766	10	0.616766		
TOTAL (CORRECTED)	70.0651	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average weighted benzene among the fuels.

CONCLUSION: Average weighted benzene at fuels ADMM15 and FT-100 are not significantly different from one another, but are different than the other three fuels. The average weighted benzene at fuel ALS is significantly different than fuel CA. The DF-2 fuel is not significantly different than either the ALS or CA fuel.

Multiple Range Tests for wbenz by fuel

Method: 95.0 fuel	-	-	Homogeneous Gr	oups
ADMM15	3	2.07455	X	
FT-100	3	2.50431	X	
ALS	3	5.01701	X	
DF-2	3	6.35954	XX	
CA	3	7.29669	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS	3		*-2.94246	2.11053
ADMM15 - CA			*-5.22215	2.11053
ADMM15 - DF-	-2		*-4.28499	2.11053
ADMM15 - FT-	-100		-0.429765	2.11053
ALS - CA			*-2.27968	2.11053
ALS - DF-2			-1.34253	2.11053
ALS - FT-100)		*2.5127	2.11053
CA - DF-2			0.937154	2.11053
CA - FT-100			*4.79238	2.11053
DF-2 - FT-10	00		*3.85523	2.11053

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 1,3 Butadiene (mg/Kw-hr) Toxic Gaseous Emissions LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wbutad

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbutad - Type III Sums of Squares

Source	Squares		Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	23.8799	4	5.96997	23.71	0.0000
RESIDUAL	2.51827	10	0.251827		
TOTAL (CORRECTED)	 26.3981	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted 1,3 butadiene among the fuels.

CONCLUSION: The average weighted 1,3 butadiene for the CA and DF-2 fuels are not significantly different from one another, but are sigificantly different than the ADMM15 and FT-100 fuels. The ADMM15 and FT-100 fuels are not significantly different from one another. Also, the average weighted 1,3 butadiene for the ALS fuel is significantly different than the FT-100 fuel.

Multiple Range Tests for wbutad by fuel

Method: 9	5.0 percent T			
	-	-	Homogeneous Gr	coups
FT-100	3	2.64965	X	
ADMM15	3	3.921	XX	
ALS	3	4.81705	XX	
DF-2	3	5.77838	X	
CA	3	6.10812	X	
Contrast			Difference	+/- Limits
ADMM15 - 2			-0.896042	1.3486
ADMM15 -	CA		*-2.18711	1.3486
ADMM15 - 3	DF-2		*-1.85738	1.3486
ADMM15 -	FT-100		1.27135	1.3486
ALS - CA			-1.29107	1.3486
ALS - DF-	2		-0.961334	1.3486
ALS - FT-	100		*2.16739	1.3486
CA - DF-2			0.329738	1.3486
CA - FT-1	00		*3.45846	1.3486
DF-2 - FT	-100		*3.12873	1.3486

 $[\]mbox{*}$ denotes a statistically significant difference.

Multifactor ANOVA - Formaldehyde (mg/kW-hr) Toxic Gaseous Emissions LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wform

Factors:

fuel

Number of complete cases: 14

Analysis of Variance for wform - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	132754.0	4	33188.4	9.01	0.0033
RESIDUAL	33150.2	9	3683.35		
TOTAL (CORRECTED)	165904.0	13			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}~{\tt significant}~{\tt differences}~{\tt in}~{\tt the}~{\tt average}~{\tt weighted}~{\tt formaldehyde}~{\tt among}~{\tt the}~{\tt fuels.}$

CONCLUSION: The average weighted formaldehyde for the DF-2 fuel is significantly different than the FT-100 and the ADMM15 fuels.

Multiple Range Tests for wform by fuel

Method: 95.0 percent Tukey HSD

fuel Count LS Mean Homogeneous Groups

FT-100	3	206.837	X	
ADMM15	3	267.08	X	
CA	2	332.429	XX	
ALS	3	366.759	XX	
DF-2	3	484.198	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS	S		-99.6792	166.493
ADMM15 - CA			-65.3484	186.144
ADMM15 - DF	-2		*-217.118	166.493
ADMM15 - FT	-100		60.2428	166.493
ALS - CA			34.3309	186.144
ALS - DF-2			-117.439	166.493
ALS - FT-10	0		159.922	166.493
CA - DF-2			-151.77	186.144
CA - FT-100			125.591	186.144
DF-2 - FT-1	0 0		*277.361	166.493

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Acetaldehyde (mg/kW-hr) Toxic Gaseous Emissions LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wacet

Factors:

fuel

Number of complete cases: 14

Analysis of Variance for wacet - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	20482.6	4	5120.64	9.15	0.0031
RESIDUAL	5037.78	9	559.754		
TOTAL (CORRECTED)	25520.3	13			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average weighted acetaldehyde among the fuels.

CONCLUSION: The average weighted acetaldehyde for the DF-2 fuel is significantly different than the FT-100 or ADMM15 fuels. The FT-100 and ADMM15 fuels are not significantly different from one another. Also, the average weighted acetaldehyde for the FT-100 fuel is significantly different than the ALS fuel.

Multiple Range Tests for wacet by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous Gr	coups
FT-100	3	75.0123	X	
ADMM15	3	92.391	XX	
CA	2	126.023	XXX	
ALS	3	148.784	XX	
DF-2	3	177.029	X	
Contrast				+/- Limits
ADMM15 -			-56.3933	64.904
ADMM15 -	- CA		-33.6324	72.5649
ADMM15 -	- DF-2		*-84.6377	64.904
ADMM15 -	- FT-100		17.3787	64.904
ALS - CA	J		22.7609	72.5649
ALS - DE	7-2		-28.2445	64.904
ALS - FT	Γ-100		*73.772	64.904
CA - DF-	-2		-51.0053	72.5649
CA - FT-	-100		51.0111	72.5649
DF-2 - F	T-100		*102.016	64.904

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Multifactor ANOVA - Naphthalene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wgnap

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wgnap - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	5.82625E7	4	1.45656E7	63.89	0.0000
RESIDUAL	2.27967E6	10	227967.0		
TOTAL (CORRECTED)	6.05421E7	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average weighted naphthalene among the fuels.

CONCLUSION: There are three distinct fuel groupings with respect to the average weighted naphthalene. FT-100, ADMM15, and ALS fuels are not significantly different from one another, but they are significantly different from the other two fuels. The DF-2 and CA fuels are significantly different from one another and the remaining three fuels.

Multiple Range Tests for wgnap by fuel

Method: 9	5.0 percent Tu	ukey HSD		
fuel	Count	LS Mean	Homogeneous Gr	coups
FT-100	3	252.517	X	
ADMM15		467.144	X	
ALS	3	1126.8	X	
DF-2	3		X	
CA	3	5435.61	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-659.659	1283.12
ADMM15 -	CA		*-4968.46	1283.12
ADMM15 -	DF-2		*-2758.93	1283.12
ADMM15 -	FT-100		214.627	1283.12
ALS - CA			*-4308.8	1283.12
ALS - DF-	2		*-2099.27	1283.12
ALS - FT-	100		874.286	1283.12
CA - DF-2			*2209.53	1283.12
CA - FT-1	00		*5183.09	1283.12
DF-2 - FT	-100		*2973.56	1283.12

 $[\]mbox{*}$ denotes a statistically significant difference.

Multifactor ANOVA - 2-Methylnaphthalene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wmeth2

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wmeth2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	5.0131E7	4	1.25327E7	40.17	0.0000
RESIDUAL	3.12018E6	10	312018.0		
TOTAL (CORRECTED)	5.32512E7	14			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average weighted 2-Methylnaphthalene among the fuels.

CONCLUSION: There are three distinct fuel groupings with respect to the average weighted 2-Methylnaphthalene. FT-100, ADMM15, and ALS fuels are not significantly different from one another, but they are significantly different from the other two fuels. The DF-2 and CA fuels are significantly different from one another and the remaining three fuels.

Multiple Range Tests for wmeth2 by fuel

Method:	95.0 percent T	ukey HSD		
fuel	Count	LS Mean	Homogeneous Gr	oups
		113.904		
ADMM15		238.762	X	
ALS	3	737.313	X	
CA	3	3064.71	X	
DF-2	3	4750.08	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-498.551	1501.14
ADMM15 -	CA		*-2825.95	1501.14
ADMM15 -	DF-2		*-4511.32	1501.14
ADMM15 -	FT-100		124.858	1501.14
ALS - CA			*-2327.4	1501.14
ALS - DF	-2		*-4012.77	1501.14
ALS - FT	-100		623.409	1501.14
CA - DF-	2		*-1685.37	1501.14
CA - FT-	100		*2950.8	1501.14
DF-2 - F	T-100		*4636.18	1501.14

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 1-Methylnaphthalene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wmeth1

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wmeth1 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	2.27955E7	4	5.69887E6	40.86	0.0000
RESIDUAL	1.39457E6	10	139457.0		
TOTAL (CORRECTED)	2.419E7	14			

All F-ratios are based on the residual mean square error.

 $\hbox{CONCLUSION:} \quad \hbox{Statistically significant differences in the average weighted 1-Methylnapthalene among the fuels.}$

CONCLUSION: There are three distinct fuel groupings with respect to the average weighted 1-Methylnaphthalene. FT-100, ADMM15, and ALS fuels are not significantly different from one another, but they are significantly different from the other two fuels. The DF-2 and CA fuels are significantly different from one another and the remaining three fuels.

Multiple Range Tests for wmeth1 by fuel

Method:	95.0 percent Tu	ıkey HSD		
fuel	Count	LS Mean	Homogeneous Grou	ıps
FT-100	3	65.7216	X	
	3			
ALS		409.914		
CA		1712.61	X	
DF-2		3267.99	X	
Contrast			Difference	+/- Limits
ADMM15 -			-298.838	
ADMM15 -	· CA		*-1601.54	1003.58
ADMM15 -	DF-2		*-3156.91	1003.58
ADMM15 -	FT-100		45.3542	1003.58
ALS - CA	Δ		*-1302.7	1003.58
ALS - DE	7-2		*-2858.08	1003.58
ALS - FI	7-100		344.192	1003.58
CA - DF-	-2		*-1555.38	1003.58
CA - FT-	100		*1646.89	1003.58
DF-2 - F	T-100		*3202.27	1003.58

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 2,6-Dimethylnaphthalene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wdimeth

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wdimeth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	2.54445E7	4	6.36112E6	31.74	0.0000
RESIDUAL	2.00436E6	10	200436.0		
TOTAL (CORRECTED)	2.74488E7	14			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average weighted 2,6-Dimethylnaphthalene among the fuels.

CONCLUSION: The average weighted 2,6-Dimethylnaphthalene for the DF-2 fuel is significantly different than the other four fuels. The average weighted 2,6-Dimethylnaphthalene among the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wdimeth by fuel

fuel		LS Mean	Homogeneous Gr	oups
		44.7092		
ADMM15	3	48.8125	X	
ALS	3	242.317	X	
CA	3	722.341	X	
DF-2	3	3461.53	X	
Contrast			Difference	The state of the s
ADMM15 -			-193.504	
ADMM15 -	- CA		-673.529	1203.15
ADMM15 -	- DF-2		*-3412.71	1203.15
ADMM15 -	- FT-100		4.10334	1203.15
ALS - CA	A		-480.025	1203.15
ALS - DE	F-2		*-3219.21	1203.15
ALS - FT	Γ-100		197.607	1203.15
CA - DF-	-2		*-2739.19	1203.15
CA - FT-	-100		677.632	1203.15
DF-2 - F	FT-100		*3416.82	1203.15

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Multifactor ANOVA - Acenaphthylene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wgace

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wgace - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	158784.0	4	39696.0	11.47	0.0009
RESIDUAL	34611.0	10	3461.1		
TOTAL (CORRECTED)	193395.0	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted acenaphthylene among the fuels.

CONCLUSION: The average weighted acenaphthylene for the DF-2 fuel is significantly different than the other four fuels. The average weighted acenaphthylene among the FT-100, ADMM15, CA, and ALS fuels are not significantly different from one another.

Multiple Range Tests for wgace by fuel

Method: 95.0 percent Tukey HSD

fuel Count LS Mean Homogeneous Groups

FT-100	3	45.2115	X	
ADMM15	3	46.4444	X	
CA	3	102.196	X	
ALS	3	122.207	X	
DF-2	3	324.783	X	
Contrast			Difference	+/- Limits
ADMM15 - AL	 S		-75.7629	158.102
ADMM15 - CA			-55.7518	158.102
ADMM15 - DF	-2		*-278.339	158.102
ADMM15 - FT	-100		1.23286	158.102
ALS - CA			20.011	158.102
ALS - DF-2			*-202.576	158.102
ALS - FT-10	0		76.9957	158.102
CA - DF-2			*-222.587	158.102
CA - FT-100			56.9847	158.102
DF-2 - FT-1	00		*279.571	158.102

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Acenaphthene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wacen

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wacen - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	566067.0	4	141517.0	17.32	0.0002
RESIDUAL	81710.1	10	8171.01		
TOTAL (CORRECTED)	647777.0	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average weighted acenaphthene among the fuels.

CONCLUSION: The average weighted acenaphthene for the DF-2 fuel is significantly different than the other four fuels. The average weighted acenaphthene among the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wacen by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous Gr	oups
		0 5014		
	3			
ADMM15	3	19.1396	X	
ALS	3	37.6132	X	
CA	3	75.3734	X	
DF-2	3	517.467	X	
Contrast				+/- Limits
ADMM15 -	ALS		-18.4736	242.923
ADMM15 -	· CA		-56.2338	242.923
ADMM15 -	DF-2		*-498.327	242.923
ADMM15 -	FT-100		10.6382	242.923
ALS - CA	1		-37.7602	242.923
ALS - DE	7-2		*-479.854	242.923
ALS - FI	-100		29.1118	242.923
CA - DF-	-2		*-442.094	242.923
CA - FT-	100		66.872	242.923
DF-2 - F	T-100		*508.966	242.923

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Fluorene (micro g/kW-hr) Gaseous PAH Weighted Modes 5, 6, 10, and 11 LPP Only

Analysis Summary

Dependent variable: wgflue

Factors:

fuel

Number of complete cases: 15

Scatterplot by Level Code

Analysis of Variance for wgflue - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	1.89876E6	4	474690.0	11.55	0.0009
RESIDUAL	410827.0	10	41082.7		
TOTAL (CORRECTED)	2.30959E6	14			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average weighted fluorene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted fluorene for the DF-2 fuel is significantly different than the other four fuels. The average weighted fluorene among the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wgflue by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous Gro	oups
	3			
FT-100	3	15.9082	X	
ALS	3	45.8231	X	
CA	3	108.559	X	
DF-2	3	931.876	X	
Contrast	·		Difference	+/- Limits
ADMM15 -			-30.2864	544.704
ADMM15 -	- CA		-93.022	544.704
ADMM15 -	- DF-2		*-916.339	544.704
ADMM15 -	- FT-100		-0.371457	544.704
ALS - CA	A		-62.7356	544.704
ALS - DE	7-2		*-886.053	544.704
ALS - FI	7-100		29.9149	544.704
CA - DF-	-2		*-823.317	544.704
CA - FT-	-100		92.6505	544.704
DF-2 - F	T-100		*915.968	544.704

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Phenanthrene (micro g/Kw-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wgphe

Factors:

fue

Number of complete cases: 15

Analysis of Variance for wgphe - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	5.3621E6	4	1.34053E6	12.39	0.0007
RESIDUAL	1.082E6	10	108200.0		
TOTAL (CORRECTED)	6.4441E6	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}~{\tt significant}~{\tt differences}~{\tt in}~{\tt the}~{\tt average}~{\tt weighted}~{\tt phenanthrene}~{\tt among}~{\tt the}~{\tt fuels.}$

CONCLUSION: The average weighted phenanthrene for the DF-2 fuel is significantly different than the other four fuels. The average weighted phenanthrene among the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wgphe by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous Gr	roups
ADMM15	3	35.5657	X	
FT-100	3	40.9851	X	
ALS	3	120.072	X	
CA	3	199.485	X	
DF-2	3	1586.24	X	
Contrast			Difference	+/- Limits
				., =======
ADMM15 -	- ALS		-84.5058	883.985
ADMM15 -	- CA		-163.92	883.985
ADMM15 -	- DF-2		*-1550.67	883.985
ADMM15 -	- FT-100		-5.41939	883.985
ALS - CA	A		-79.4138	883.985
ALS - DE	7-2		*-1466.17	883.985
ALS - FT	Γ-100		79.0864	883.985
CA - DF-	-2		*-1386.75	883.985
CA - FT-	-100		158.5	883.985
DF-2 - E	FT-100		*1545.25	883.985

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Anthracene (micro g/Kw-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wgant

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wgant - Type III Sums of Squares

Source	Squares		Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	5422.74	4	1355.68	18.26	0.0001
RESIDUAL	742.275	10	74.2275		
TOTAL (CORRECTED)	 6165.01	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted anthracene among the fuels.

CONCLUSION: The average weighted anthracene for the DF-2 fuel is significantly different than the other four fuels. The average weighted anthracene among the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wgant by fuel

	95.0 percent T Count	-	Homogeneous	Groups
FT-100	3	1.67593	X	
ADMM15	3	1.95378	X	
ALS	3	5.36358	X	
CA	3	9.23519	X	
DF-2	3	51.5939	X	
Contrast			Difference	+/- Limits
ADMM15 -			-3.4098	
ADMM15 -	- CA		-7.28141	23.1533
ADMM15 -	- DF-2		*-49.6401	23.1533
ADMM15 -	- FT-100		0.277852	23.1533
ALS - CA	A		-3.87161	23.1533
ALS - DI	F-2		*-46.2303	23.1533
ALS - F	Γ-100		3.68765	23.1533
CA - DF	-2		*-42.3587	23.1533
CA - FT-	-100		7.55926	23.1533
DF-2 - I	FT-100		*49.9179	23.1533

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Fluoranthene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wgflua

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wgflua - Type III Sums of Squares

			_		
Source	Squares		Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	280.999	4	70.2498	8.50	0.0029
RESIDUAL	82.6177	10	8.26177		
TOTAL (CORRECTED)	363.617	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}~{\tt significant}~{\tt differences}~{\tt in}~{\tt the}~{\tt average}~{\tt weighted}~{\tt fluoranthene}~{\tt among}~{\tt the}~{\tt fuels.}$

CONCLUSION: The average weighted fluoranthene for the DF-2 fuel is significantly different than the other four fuels. The average weighted fluoranthene among the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wgflua by fuel

	95.0 percent Tu Count	-	Homogeneous G	roups
ADMM15	3	1.4535	X	
	3		X	
ALS		3.29502	X	
CA	3	3.92077	X	
DF-2	3	13.2175	X	
Contrast			Difference	+/- Limits
ADMM15 - ADMM15 - ADMM15 - ADMM15 - ALS - CA ALS - DF- ALS - FT- CA - DF-2 CA - FT-1	ALS CA DF-2 FT-100 2 100 2		-1.84153 -2.46727 *-11.764 -0.416153 -0.625743 *-9.92247 1.42538 *-9.29672 2.05112 *11.3478	7.72445 7.72445 7.72445 7.72445 7.72445 7.72445 7.72445 7.72445 7.72445 7.72445

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Pyrene (micro g/kW-hr) Gaseous PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wgpyr

Factors:

fuel

Number of complete cases: 15

Fuel

Analysis of Variance for wgpyr - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	579.075	4	144.769	10.09	0.0015
RESIDUAL	143.425	10	14.3425		
TOTAL (CORRECTED)	722.499	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}~{\tt significant}~{\tt differences}~{\tt in}~{\tt the}~{\tt average}~{\tt weighted}~{\tt pyrene}~{\tt among}~{\tt the}~{\tt fuels.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted pyrene for the DF-2 fuel is significantly different than the other four fuels. The average weighted pyrene for the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for wgpyr by fuel

Method: 95.0 percent Tukey HSD

ADMM15	3	1.14171	X	
FT-100	3	1.40629	X	
ALS	3	2.83773	X	
CA	3	3.13677	X	
DF-2	3	17.5421	X	
Contrast			Difference	+/- Limits
ADMM15 - AL	c		-1.69601	10.1775
ADMM15 - AD			-1.99505	10.1775
ADMM15 - DF	'-2		*-16.4003	10.1775
ADMM15 - FT	-100		-0.264572	10.1775
ALS - CA			-0.299041	10.1775
ALS - DF-2			*-14.7043	10.1775
ALS - FT-10	0		1.43144	10.1775
CA - DF-2			*-14.4053	10.1775
CA - FT-100)		1.73048	10.1775
DF-2 - FT-1	.00		*16.1358	10.1775

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Naphthalene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wnaphth

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wnaphth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	1451.85	4	362.963	5.31	0.0147
RESIDUAL	682.982	10	68.2982		
TOTAL (CORRECTED)	2134.84	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average naphthalene among the fuels.

CONCLUSION: The average weighted naphthalene for the ALS fuel is significantly different from the CA and DF-2 fuels.

Multiple Range Tests for wnaphth by fuel

fuel	Count	LS Mean	Homogeneous Group	s
ALS ADMM15 FT-100 CA DF-2	3 3 3			
Contrast			Difference	'
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		4.98395 -17.7476 -20.2822 -10.948 *-22.7315 *-25.2661 -15.9319 -2.53459 6.79963 9.33422	22.2093 22.2093 22.2093 22.2093 22.2093 22.2093 22.2093 22.2093 22.2093 22.2093 22.2093

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Acenaphthylene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

NOTE: ALS data was imputed for repeat runs #2 and #3 because of non-detects in mode 5.

Analysis Summary

Dependent variable: wacenap

Factors:

fuel

Number of complete cases: 14

Analysis of Variance for wacenap - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	0.588575	4	0.147144	4.65	0.0260
RESIDUAL	0.284701	9	0.0316334		
TOTAL (CORRECTED)	0.873276	13			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted acenaphthylene among the fuels.

CONCLUSION: The average weighted acenaphthylene for the CA fuel is significantly different from the ADMM15 and ALS fuels.

Multiple Range Tests for wacenap by fuel

Method:	95.0 percent Tu	ıkey HSD		
fuel	Count	LS Mean	Homogeneous Grou	ıps
ALS	3	0.47797	X	
ADMM15		0.480728		
FT-100		0.603505	XX	
DF-2	2	0.807415	XX	
CA	3	0.996603	X	
Contrast			Difference	•
ADMM15 -			0.00275813	
ADMM15 -	- CA		*-0.515875	0.487917
ADMM15 -	- DF-2		-0.326687	0.545508
ADMM15 -	- FT-100		-0.122777	0.487917
ALS - CA	A		*-0.518633	0.487917
ALS - DE	7-2		-0.329445	0.545508
ALS - FT	Γ-100		-0.125536	0.487917
CA - DF-	-2		0.189188	0.545508
CA - FT-	-100		0.393098	0.487917
DF-2 - E	FT-100		0.203909	0.545508

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Acenaphthene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wacenat

Factors:

fuel

Number of complete cases: 13

Analysis of Variance for wacenat - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	19.9901	4	4.99754	3.18	0.0767
RESIDUAL	12.5657	8	1.57072		
TOTAL (CORRECTED)	32.5559	12			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ No statistically significant differences in the average acenaphthene among the fuels.

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average acenaphthene among the fuels.

Multiple Range Tests for wacenat by fuel

Method: 95.0 percent Tukey HSD

ALS	2	2.31375	X	
ADMM15	3	4.33291	X	
FT-100	3	4.47144	X	
CA	3	5.32256	X	
DF-2	2	6.56407	X	
Contrast	;		Difference	+/- Limits
ADMM15 -	- ALS		2.01916	3.94549
ADMM15 -	- CA		-0.989647	3.52895
ADMM15 -	- DF-2		-2.23116	3.94549
ADMM15 -	- FT-100		-0.138534	3.52895
ALS - CA	Ā		-3.0088	3.94549
ALS - DI	7-2		-4.25032	4.32207
ALS - F	Γ-100		-2.15769	3.94549
CA - DF-	-2		-1.24151	3.94549
CA - FT-	-100		0.851114	3.52895
DF-2 - I	TT-100		2.09263	3.94549

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Fluorene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

NOTE: ALS data was imputed for repeat runs #3 and #3 because of non-detects in modes 5 and 11.

Analysis Summary

Dependent variable: wfluore

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wfluore - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	119.377	4	29.8442	8.09	0.0035
RESIDUAL	36.8724	10	3.68724		
TOTAL (CORRECTED)	156.249	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted fluorene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted fluorene for the DF-2 fuel is significantly different from the ADMM15, FT-100, and ALS fuels.

Multiple Range Tests for wfluore by fuel

Method:	95.0 percent Tul	key HSD		
fuel	Count	LS Mean	Homogeneous Group	S
ALS	3	4.21444	Х	
FT-100	3	6.20745	X	
ADMM15	3	7.17305	X	
CA	3	9.22614	XX	
DF-2	3	12.4896	X	
Contrast			Difference	
ADMM15 -			2.95861	
ADMM15 -	- CA		-2.05309	5.16038
ADMM15 -	- DF-2		*-5.31652	5.16038
ADMM15 -	- FT-100		0.965605	5.16038
ALS - CA	A		-5.01171	5.16038
ALS - DE	7-2		*-8.27514	5.16038
ALS - FI	Γ-100		-1.99301	5.16038
CA - DF-	-2		-3.26343	5.16038
CA - FT-	-100		3.0187	5.16038
DF-2 - F	FT-100		*6.28213	5.16038

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Phenanthrene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wphenant

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wphenant - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	11232.8	4	2808.19	8.58	0.0028
RESIDUAL	3271.32	10	327.132		
TOTAL (CORRECTED)	14504.1	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}~{\tt significant}~{\tt differences}~{\tt in}~{\tt the}~{\tt average}~{\tt weighted}~{\tt phenanthrene}~{\tt among}~{\tt the}~{\tt fuels.}$

CONCLUSION: The average weighted phenanthrene for the DF-2 fuel is significantly different than the ADMM15, ALS, and FT-100 fuels. The average weighted phenanthrene for the ADMM15, ALS, FT-100, and CA fuels are not significantly different from one another.

Multiple Range Tests for wphenant by fuel

fuel	Count	LS Mean	Homogeneous	Groups
ADMM15	3	29.8105	X	
ALS	3	36.0033	X	
FT-100	3	43.0115	X	
CA	3	72.8461	XX	
DF-2	3	103.015	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			-6.19275	48.6063
ADMM15 - CA			-43.0356	48.6063
ADMM15 - DF-2			*-73.2044	48.6063
ADMM15 - FT-1	00		-13.201	48.6063
ALS - CA			-36.8428	48.6063
ALS - DF-2			*-67.0116	48.6063
ALS - FT-100			-7.00828	48.6063
CA - DF-2			-30.1688	48.6063
CA - FT-100			29.8346	48.6063
DF-2 - FT-100			*60.0034	48.6063

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Anthracene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wanthr

Factors:

fuel

Number of complete cases: 14

Analysis of Variance for wanthr - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	20.1205	4	5.03012	18.78	0.0002
RESIDUAL	2.41047	9	0.26783		
TOTAL (CORRECTED)	22.531	13			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average weighted anthracene among the fuels.

CONCLUSION: The average weighted anthracene for the ALS fuel is significantly different from the CA, DF-2, and FT-100 fuels. Also, the ADMM15 fuel has a significantly different weighted anthracene than the CA and DF-2 fuels.

Multiple Range Tests for wanthr by fuel

Method: 95.0 percent Tukey HSD

ALS	2	0.737556	X	
ADMM15	3	2.28698	XX	
FT-100	3	2.91967	XX	
CA	3	4.16059	X	
DF-2	3	4.19718	X	
Contrast			Difference	+/- Limits
			1 54040	1 5050
ADMM15 - AI			1.54942	1.5873
ADMM15 - CA	7		*-1.87361	1.41972
ADMM15 - DF	7-2		*-1.91021	1.41972
ADMM15 - FT	-100		-0.632691	1.41972
ALS - CA			*-3.42303	1.5873
ALS - DF-2			*-3.45963	1.5873
ALS - FT-10	0		*-2.18211	1.5873
CA - DF-2			-0.0365957	1.41972
CA - FT-100)		1.24092	1.41972
DF-2 - FT-1	.00		1.27752	1.41972

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Fluoranthene (micro g/kW-hr) Soluble PAH LPP Only Weighted Mode 5, 6, 10, and 11

Analysis Summary

Dependent variable: wfluora

Factors: fuel

Number of complete cases: 15

Analysis of Variance for wfluora - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	3191.45	4	797.862	10.78	0.0012
RESIDUAL	739.933	10	73.9933		
TOTAL (CORRECTED)	3931.38	14			

All F-ratios are based on the residual mean square error.

 $\hbox{{\tt CONCLUSION:}} \quad \hbox{{\tt Statistically significant differences in the average weighted fluoranthene} \\ \text{{\tt among the fuels.}}$

CONCLUSION: The average weighted fluoranthene for the DF-2 fuel is significantly different from the remaining four fuels. The ADMM15, FT-100, CA, and ALS fuels are not significantly different from one another with respect to the average weighted fluoranthene.

Multiple Range Tests for wfluora by fuel

fuel	Count	LS Mean	Homogeneous Gro	ups
ADMM15	3	9.82889	X	
FT-100			X	
CA	3	17.7845	X	
ALS	3	19.5387	X	
DF-2	3	51.1942	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			-9.70982	23.1168
ADMM15 - CA			-7.95564	23.1168
ADMM15 - DF-2			*-41.3653	23.1168
ADMM15 - FT-10	0		-5.65329	23.1168
ALS - CA			1.75417	23.1168
ALS - DF-2			*-31.6555	23.1168
ALS - FT-100			4.05653	23.1168
CA - DF-2			*-33.4097	23.1168
CA - FT-100			2.30236	23.1168
DF-2 - FT-100			*35.712	23.1168

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Pyrene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wpyrene

Factors:

fue

Number of complete cases: 15

Analysis of Variance for wpyrene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	11677.2	4	2919.3	17.72	0.0002
RESIDUAL	1647.19	10	164.719		
TOTAL (CORRECTED)	13324.4	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}~{\tt significant}~{\tt differences}~{\tt in}~{\tt the}~{\tt average}~{\tt weighted}~{\tt pyrene}~{\tt among}~{\tt the}~{\tt fuels.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15, FT-100, CA, and ALS fuels are not significantly different from one another with respect to the weighted pyrene.

Multiple Range Tests for wpyrene by fuel

....

Method: 95.0 percent Tukey HSD fuel Count LS Mean

ADMM15	3	9.98398	X	
FT-100	3	12.7075	X	
CA	3	13.6715	X	
ALS	3	21.2961	X	
DF-2	3	83.5337	X	
Contrast			Difference	+/- Limits
ADMM15 - AI	.s		-11.3121	34.4908
ADMM15 - CA	1		-3.68749	34.4908
ADMM15 - DE	7-2		*-73.5497	34.4908
ADMM15 - FT	7-100		-2.7235	34.4908
ALS - CA			7.62463	34.4908
ALS - DF-2			*-62.2376	34.4908
ALS - FT-10	00		8.58862	34.4908
CA - DF-2			*-69.8622	34.4908
CA - FT-100)		0.963989	34.4908
DF-2 - FT-1	0.0		*70.8262	34.4908

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: wbenzoaa

Factors:

fuel

Number of complete cases: 13

Analysis of Variance for wbenzoaa - Type III Sums of Squares

_			_		
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	9.85566	4	2.46391	30.83	0.0001
RESIDUAL	0.639289	8	0.0799112		
TOTAL (CORRECTED)	10.4949	12			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average weighted benzo\,[a]\, anthracene among the fuels.}$

CONCLUSION: The average weighted benzo[a] anthracene for the DF-2 fuel is significantly different than the remaining four fuels. Also, the average weighted benzo[a] anthracene for the CA fuel is significantly different than the ADMM15 fuel.

Multiple Range Tests for wbenzoaa by fuel

fuel	Count	LS Mean	Homogeneous Group	S
ADMM15 FT-100 ALS CA DF-2	2 3 2	0.154966 0.253052 0.712476 1.06269 2.45533		
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		-0.55751 *-0.907724 *-2.30037 -0.0980866 -0.350214 *-1.74286 0.459424 *-1.39264 0.809638 *2.20228	0.88993 0.795977

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Chrysene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wchrysen

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wchrysen - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	102.637	4	25.6593	24.85	0.0000
RESIDUAL	10.3272	10	1.03272		
TOTAL (CORRECTED)	112.964	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average weighted chyrsene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average weighted chrysene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another with respect to the average weighted chrysene.

Multiple Range Tests for wchrysen by fuel

Method: 95.0 percent Tukey HSD fuel Count LS Mean Homogeneous Groups

ADMM15	3	0.585974	X	
FT-100	3	0.773542	X	
ALS	3	1.93602	X	
CA	3	2.39139	X	
DF-2	3	7.73531	X	
Contrast			Difference	+/- Limits
ADMM15 -	- ALS		-1.35005	2.73101
ADMM15 -	- CA		-1.80542	2.73101
ADMM15 -	- DF-2		*-7.14934	2.73101
ADMM15 -	- FT-100		-0.187568	2.73101
ALS - CA	Ā		-0.455369	2.73101
ALS - DE	7-2		*-5.79929	2.73101
ALS - FT	Γ-100		1.16248	2.73101
CA - DF-	-2		*-5.34392	2.73101
CA - FT-	-100		1.61785	2.73101
DF-2 - F	TT-100		*6.96177	2.73101

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Benzo[b]fluoranthene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

NOTE: CA data was imputed for repeat runs #1 and #2 because of non-detects in modes 5 and 11.

Analysis Summary

Dependent variable: wbenzobf

Factors:

fuel

Number of complete cases: 15

Analysis of Variance for wbenzobf - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	3.67553	4	0.918882	23.96	0.0000
RESIDUAL	0.383537	10	0.0383537		
TOTAL (CORRECTED)	4.05907	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average weighted benzo[b] fluoranthene among the fuels.}$

CONCLUSION: There are two distinct fuel groupings with respect to the average weighted benzo[b] fluoranthene. The ADMM15 and FT-100 fuels are not significantly different from one another, but are different from the remaining three fuels. The ALS, CA, and DF-2 fuels are not significantly different from one another.

Multiple Range Tests for wbenzobf by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous G	roups
FT-100	3	0.3046	X	
ADMM15	3	0.389343	X	
CA	3	1.18968	X	
ALS	3	1.25332	X	
DF-2	3	1.53819	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		*-0.863973	0.526302
ADMM15 -	CA		*-0.800341	0.526302
ADMM15 -	DF-2		*-1.14885	0.526302
ADMM15 -	FT-100		0.0847435	0.526302
ALS - CA			0.063632	0.526302
ALS - DF	-2		-0.284877	0.526302
ALS - FT	-100		*0.948716	0.526302
CA - DF-	2		-0.348509	0.526302
CA - FT-	100		*0.885084	0.526302
DF-2 - F	T-100		*1.23359	0.526302

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: wbenzokf

Factors:

fuel

Number of complete cases: 14

Analysis of Variance for wbenzokf - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	7.67509	4	1.91877	22.00	0.0001
RESIDUAL	0.784911	9	0.0872123		
TOTAL (CORRECTED)	8.46	13			

All F-ratios are based on the residual mean square error.

 $\hbox{CONCLUSION:} \quad \hbox{Statistically significant differences in the average benzo\,[k]\,fluoranthene among the fuels.}$

CONCLUSION: The average weighted benzo [k] fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another with respect to the average weighted benzo [k] fluoranthene.

Multiple Range Tests for wbenzokf by fuel

fuel	Count	LS Mean	Homogeneous Gro	ups
FT-100	3	0.353869	Х	
ADMM15	3	0.423556	X	
ALS	3	0.657605	X	
CA	2	1.18863	X	
DF-2	3	2.29314	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			-0.234049	0.810144
ADMM15 - CA			-0.765074	0.905768
ADMM15 - DF-	2		*-1.86958	0.810144
ADMM15 - FT-	100		0.0696864	0.810144
ALS - CA			-0.531025	0.905768
ALS - DF-2			*-1.63553	0.810144
ALS - FT-100			0.303735	0.810144
CA - DF-2			*-1.10451	0.905768
CA - FT-100			0.83476	0.905768
DF-2 - FT-10	0		*1.93927	0.810144

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Benzo[e]pyrene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

NOTE: DF-2 data was imputed for repeat runs #2 and #3 because of non-detects in modes 5 and 6.

Analysis Summary

Dependent variable: wbenzoep

Factors:

fuel

Number of complete cases: 12

Analysis of Variance for wbenzoep - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	1.17031	4	0.292577	8.63	0.0077
RESIDUAL	0.237445	7	0.0339207		
TOTAL (CORRECTED)	1.40775	11			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average weighted benzo[e]} \ pyrene \ {\tt among the fuels.}$

CONCLUSION: The average weighted benzo[e]pyrene for the DF-2 fuel is significantly different than the ADMM15 and FT-100 fuels.

Multiple Range Tests for wbenzoep by fuel

	95.0 percent Tul Count	-	Homogeneous	Groups
ADMM15	2	0.210091	X	
	2			
	3			
CA	2	0.679916	XX	
DF-2	3	1.05916	X	
Contrast			Difference	+/- Limits
ADMM15 -			-0.41052	
ADMM15 -	· CA		-0.469825	0.657148
ADMM15 -	DF-2		*-0.84907	0.599891
ADMM15 -	FT-100		-0.0569841	0.657148
ALS - CA	1		-0.0593047	0.599891
ALS - DE	7-2		-0.43855	0.536559
ALS - FI	-100		0.353536	0.599891
CA - DF-	-2		-0.379245	0.599891
CA - FT-	100		0.412841	0.657148
DF-2 - F	T-100		*0.792086	0.599891

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Benzo[a]pyrene (micro g/kW-hr) Soluble PAH LPP Only Weighted Modes 5, 6, 10, and 11

Analysis Summary

Dependent variable: wbenzoapy

Factors: fuel

Luc.

Number of complete cases: 15

Analysis of Variance for wbenzoapy - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	0.338272	4	0.084568	19.40	0.0001
RESIDUAL	0.0435972	10	0.00435972		
TOTAL (CORRECTED)	0.381869	14			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[a]pyrene among the fuels.

CONCLUSION: The average weighted benzo[a]pyrene for the ADMM15 and FT-100 fuels is significantly different than the CA and ALS fuels. Also, ALS fuel has a significantly different weighted benzo[a]pyrene than the DF-2 fuel.

Multiple Range Tests for wbenzoapy by fuel

Method:	95.0 percent Tuk	ey HSD		
fuel	Count	LS Mean	Homogeneous Group	os
ADMM15	3	0.05479	Х	
FT-100		0.06841	X	
DF-2		0.200233	XX	
CA	3	0.346693	XX	
ALS	3	0.434583	X	
Contrast			Difference	+/- Limits
ADMM15 -			*-0.379793	0.177444
ADMM15 -	- CA		*-0.291903	0.177444
ADMM15 -	- DF-2		-0.145443	0.177444
ADMM15 -	- FT-100		-0.01362	0.177444
ALS - CA	A		0.08789	0.177444
ALS - DE	7-2		*0.23435	0.177444
ALS - FT	Γ-100		*0.366173	0.177444
CA - DF-	-2		0.14646	0.177444
CA - FT-	-100		*0.278283	0.177444
DF-2 - F	FT-100		0.131823	0.177444

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: windeno

Factors:

fuel

Number of complete cases: 8

Analysis of Variance for windeno - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	0.206571	2	0.103285	26.79	0.0021
RESIDUAL	0.0192752	5	0.00385505		
TOTAL (CORRECTED)	0.225846	7			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average indeno(1,2,3-cd) pyrene among the fuels.

CONCLUSION: The average indeno(1,2,3-cd)pyrene for the ADMM15 and FT-100 fuels are not significantly different from one another, but both at significantly different from the DF-2 fuel.

Multiple Range Tests for windeno by fuel

Method: 95.0 p		key HSD LS Mean	Homogeneous Grou	ps
FT-100 ADMM15 DF-2	3 2 3	0.0612667 0.073095 0.397783	X X X	
Contrast			Difference	+/- Limits
ADMM15 - DF-2 ADMM15 - FT-10 DF-2 - FT-100	0		*-0.324688 0.0118283 *0.336517	0.184423 0.184423 0.164953

 $[\]mbox{*}$ denotes a statistically significant difference.

Multifactor ANOVA - Benzo[ghi]perylene (micro g/kW-hr) Soluble PAH LPP Only for Four Fuels Weighted Modes 5,6,10, and 11

Analysis Summary

Dependent variable: wbenzogpe

Factors:

fuel

Number of complete cases: 10

Analysis of Variance for wbenzogpe - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	0.615787	3	0.205262	35.64	0.0003
RESIDUAL	0.0345556	6	0.00575926		
TOTAL (CORRECTED)	0.650342	9			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzo[ghi]} perylene among the fuels.$

CONCLUSION: The average benzo[ghi]perylene for the FT-100 and ADMM15 fuels are significantly different from the DF-2 and CA fuels, but not significantly different from one another. Also, the DF-2 and CA fuels are not significantly different from one another.

Multiple Range Tests for wbenzogpe by fuel

Method: 95.0 p		ey HSD LS Mean	Homogeneous Groups	
FT-100 ADMM15 DF-2 CA	3 2 3 2	0.154067 0.208495 0.64388 0.70622	X X X X	
Contrast	00		*-0.497725 *-0.435385 0.0544283 0.06234 *0.552153 *0.489813	+/- Limits 0.261841 0.239027 0.239027 0.239027 0.239027 0.239027 0.213793

^{*} denotes a statistically significant difference.

APPENDIX E

ANOVA for Modal LPP

TABLE OF CONTENTS

Total Particulates	E-3
BSNOX	E-6
BSHC	E-9
BSCO	E-12
BSCO2	E-15
BSSOF	E-18
BENZENE Toxic Gaseous Emissions	E-21
1,3 Butadiene Toxic Gaseous Emissions	E-24
Formaldehyde Toxic Gaseous Emissions	E-27
Acetaldehyde Toxic Gaseous Emissions	E-30
Naphthalene Gaseous PAH	
2-Methylnaphthalene Gaseous PAH	
1-Methylnaphthalene Gaseous PAH	
2,6-Dimethylnaphthalene (µg/kW-hr) Gaseous PAH	E-42
Acenaphthylene (µg/kW-hr) Gaseous PAH	E-45
Acenaphthene (µg/kW-hr) Gaseous PAH	E-48
Fluorene (µg/kW-hr) Gaseous PAH	
Phenanthrene (µg/kW-hr) Gaseous PAH	E-54
Anthracene (µg/kW-hr) Gaseous PAH	
Fluoranthene (µg/kW-hr) Gaseous PAH	E-60
Pyrene (µg/kW-hr) Gaseous PAH	E-63
Naphthalene (µg/kW-hr) Soluble PAH	E-66
Acenaphthylene (µg/kW-hr) Soluble PAH	E-69
Acenaphthene (µg/kW-hr) Soluble PAH	E-72
Fluorene (µg/kW-hr) Soluble PAH	E-75
Phenanthrene (µg/kW-hr) Soluble PAH	E-78
Anthracene (µg/kW-hr) Soluble PAH	E-81
Fluoranthene (µg/kW-hr) Soluble PAH	E-84
Pyrene (µg/kW-hr) Soluble PAH	E-87
Benzo[a]anthracene (µg/kW-hr) Soluble PAH	E-90
Chrysene (µg/kW-hr) Soluble PAH	E-93
Benzo[b]fluoranthene (µg/kW-hr) Soluble PAH	E-96
Benzo[k]fluoranthene (µg/kW-hr) Soluble PAH	E-99
Benzo[e]pyrene (µg/kW-hr) Soluble PAH	E-102
Benzo[a]pyrene (µg/kW-hr) Soluble PAH	E-105
Indeno(1,2,3-cd)pyrene (µg/kW-hr) Soluble PAH	E-108
Dibenzo[a,h]anthracene (µg/kW-hr) Soluble PAH	
Benzo[ghi]perylene (µg/kW-hr) Soluble PAH	E-114

Analysis Summary

Dependent variable: PARTIC

Factors:

FUEL MODE

MODE

Selection variable: MODE < 12

Number of complete cases: 62

Analysis of Variance for PARTIC - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	0.180096	4	0.0450239	55.43	0.0000
B:MODE	0.0812661	3	0.0270887	33.35	0.0000
INTERACTIONS AB	0.0203674	12	0.00169728	2.09	0.0392
RESIDUAL	0.0341148	42	0.000812257		
TOTAL (CORRECTED)	0.31392	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \ \ \, {\tt Statistically significant differences in the average particulates} \\ among the fuels, modes, and fuel*mode interaction.$

CONCLUSION: Average particulate at Modes 5 and 11 are not significantly different from one another. Average particulate at Modes 6 and 10 are not significantly different from one another. Average particulate at modes 5 and 11 are significantly different than modes 6 and 10.

Means and 95% Tukey HSD Intervals

CONCLUSION: Average particulate at fuels FT-100 and ADMM15 are not significantly different

from one another, but are different than the other 3 fuels. The average particulate at Fuel ALS is significantly different than Fuel DF-2. The CA fuel is not significantly different than either the ALS or DF-2 fuel.

Multiple Range Tests for PARTIC by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	3
5	16	0.161392	Х	
11	15	0.180949	X	
6	15	0.227259	X	
10	16	0.252179	X	
Contrast			Difference	+/- Limits
5 - 6			*-0.0658665	0.0274018
5 - 10			*-0.0907872	0.0269563
5 - 11			-0.0195566	0.0274018
6 - 10			-0.0249207	0.0274018
6 - 11			*0.04631	0.0278403

* denotes a statistically significant difference.

Multiple Range Tests for PARTIC by FUEL

10 - 11

*0.0712306

0.0274018

	0 percent To	-	Homogeneous Gr	roups
	12	0.13969 0.145389 0.217693		
CA	12	0.247083 0.277368	XX	
Contrast			Difference	+/- Limits
ADMM15 - AI ADMM15 - CA ADMM15 - DF ADMM15 - FT ALS - CA ALS - DF-2 ALS - FT-10 CA - DF-2 CA - FT-100 DF-2 - FT-1	7-2 7-100		*-0.0723034 *-0.101694 *-0.131979 0.00569934 -0.0293907 *-0.0596755 *0.0780028 -0.0302847 *0.107394 *0.137678	0.0331604 0.0331604 0.0331604 0.0319542 0.0319542 0.0319542 0.0331604

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The CA and DF-2 fuels have significantly different average particulate at Modes 5 and 11 than at modes 6 and 10. All other fuels do not demonstrate significant differences in the average particulate among the four modes.

Analysis Summary

Dependent variable: BSNOX

Fuel

MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for BSNOX - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	7.45754	4	1.86438	16.79	0.0000
B:MODE	443.319	3	147.773	1330.52	0.0000
INTERACTIONS					
AB	6.14855	12	0.512379	4.61	0.0001
RESIDUAL	4.66468	42	0.111064		
TOTAL (CORRECTED)	464.749	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average BSNOX among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: There are two distinct fuel groupings with respect to the average BSNOX. ADMM15 and DF-2 fuels are not significantly different from one another, but are different from the average BSNOX for the ALS, CA, and FT-100 fuels. The ALS, CA, and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\,$ All four modes are significantly different from one another with respect to the average BSNOX.

Multiple Range Tests for BSNOX by FUEL

	0 percent To	-	Homogeneous Gr	coung
LOFF	Count	TO MESTI	Hollogeneous Gi	Oups
ALS	14	5.04671	X	
CA	12	5.05677	X	
FT-100		5.24116	X	
ADMM15	12	5.69599	X	
DF-2		5.9005	X	
Contrast			Difference	+/- Limits
ADMM15 - AL	.s		*0.649278	0.373652
ADMM15 - CA			*0.63922	
ADMM15 - DF	-2		-0.204506	0.387757
ADMM15 - FT	-100		*0.45483	0.387757
ALS - CA			-0.0100577	0.373652
ALS - DF-2			*-0.853784	0.373652
ALS - FT-10	0		-0.194448	0.373652
CA - DF-2			*-0.843726	0.387757
CA - FT-100			-0.184391	0.387757
DF-2 - FT-1	.00		*0.659336	0.387757

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for BSNOX by MODE}\\$

Method: 95.0 p		ey HSD LS Mean	Homogeneous Groups	
11 10 6 5	15 16 15 16	2.77949 3.55572 5.55988 9.65782	X X X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11		+ + +	*4.09794 *6.1021 *6.87832 *2.00416 *2.78039 *0.776228	0.32042 0.315209 0.32042 0.32042 0.325547 0.32042

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: While the ADMM15, ALS, CA, and FT-100 fuels all have significant differences in the average BSNOX between mode 6 and modes 10 and 11, the DF-2 fuel does not demonstrate this difference. The average BSNOX among modes 6, 10, and 11 for the DF-2 are not

significantly different from one another.

Multifactor ANOVA - BSHC (g/kW-hr)

LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: BSHC

Factors:

FUEL MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Analysis of Variance for BSHC - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	4.05731	4	1.01433	104.34	0.0000
B:MODE	10.9203	3	3.64011	374.43	0.0000
INTERACTIONS AB	2.4476	12	0.203967	20.98	0.0000
RESIDUAL	0.408308	42	0.00972163		
TOTAL (CORRECTED)	17.7211	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \ \ \, {\tt Statistically \ significant \ differences \ in \ the \ average \ BSHC \ among \ the \ fuels, \ modes, \ and \ the \ fuel*mode \ interaction.}$

CONCLUSION: There are four distinct fuel groupings with respect to the average BSHC. FT-100, CA, and DF-2 fuels are all significantly different from one another. Also, fuels ADMM15 and ALS are not significantly different from one another, but they are both significantly different from the other three fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: All four modes are significantly different from one another with respect to the average BSHC.

Multiple Range Tests for BSHC by FUEL

Method: 95.0				
	-	LS Mean	Homogeneous Gr	roups
FT-100	12	0.302624	Х	
ADMM15	12	0.519087	X	
ALS	14	0.562475	X	
CA	12	0.866077	X	
DF-2	12	1.03069	X	
Contrast				+/- Limits
ADMM15 - ALS			-0.0433876	0.110548
ADMM15 - CA			*-0.346989	0.114721
ADMM15 - DF-	2		*-0.5116	0.114721
ADMM15 - FT-	100		*0.216463	0.114721
370 03				0 110510

ADMM15 - CA	*-0.346989	0.114721
ADMM15 - DF-2	*-0.5116	0.114721
ADMM15 - FT-100	*0.216463	0.114721
ALS - CA	*-0.303602	0.110548
ALS - DF-2	*-0.468212	0.110548
ALS - FT-100	*0.259851	0.110548
CA - DF-2	*-0.16461	0.114721
CA - FT-100	*0.563453	0.114721
DF-2 - FT-100	*0.728063	0.114721

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSHC by MODE

Method: 95.0 p		-		
MODE	Count	LS Mean	Homogeneous Groups	3
5	16	0.158889	Х	
6	15	0.346341	X	
11	15	0.934782	X	
10	16	1.18475	X	
Contrast			Difference	+/- Limits
5 - 6			*-0.187453	0.0947987
5 - 10			*-1.02586	0.0932572
5 - 11			*-0.775893	0.0947987
6 - 10			*-0.838407	0.0947987
6 - 11			*-0.58844	0.0963156
10 - 11			*0.249966	0.0947987

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The ALS, CA, DF-2 fuels have significantly different average BSHC at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average BSHC among the four modes.

Multifactor ANOVA - BSCO (g/kW-hr)

LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: BSCO

Factors:

FUEL

MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for BSCO - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL B:MODE	42.4521 214.449	4 3	10.613 71.4832	178.05 1199.21	0.0000
INTERACTIONS AB	33.0659	12	2.7555	46.23	0.0000
RESIDUAL	2.50355	42	0.0596084		
TOTAL (CORRECTED)	290.354	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \ \ \, {\tt Statistically significant differences in the average BSCO among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: There are three distinct fuel groupings with respect to the average BSCO. FT-100 is significantly different from the other four fuels. ADMM15 and ALS are not significantly different from one another. Fuels CA and DF-2 are not significantly different from one another, but are significantly different from the ADMM15 and ALS fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}$ All four modes are significantly different from one another with respect to the average BSCO.

Multiple Range Tests for BSCO by FUEL

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups FT-100 12 1.38081 ADMM15 12 2.21783 ALS 2.27253 14 CA 12 3.46699 Χ DF-2 12 3.61618

Contrast	Difference	+/- Limits
ADMM15 - ALS	-0.0547025	0.273738
ADMM15 - CA	*-1.24916	0.284071
ADMM15 - DF-2	*-1.39835	0.284071
ADMM15 - FT-100	*0.837021	0.284071
ALS - CA ALS - DF-2	*-1.19446 *-1.34365	0.273738 0.273738
ALS - FT-100	*0.891724	0.273738
CA - DF-2	-0.149189	0.284071
CA - FT-100	*2.08618	0.284071
DF-2 - FT-100	*2.23537	0.284071

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSCO by MODE

Method: 95.0 p		ey HSD LS Mean	Homogeneous Groups								
5 6 11	16 15 15 16	0.426311 1.22936 3.65545 5.05234	X X X X								
Contrast			Difference	+/- Limits							
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			*-0.803049 *-4.62603 *-3.22914 *-3.82299 *-2.42609 *1.3969	0.23474 0.230923 0.23474 0.23474 0.238496 0.23474							

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The CA, DF-2, and FT-100 fuels have significantly different average BSCO at modes 10 and 11 than at modes 5 and 6.

Multifactor ANOVA - BSCO2 (g/kW-hr)

LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: BSCO2

Factors:

FUEL MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for BSCO2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL B:MODE	38712.5 1.23777E6	4 3	9678.13 412592.0	36.18 1542.24	0.0000
INTERACTIONS AB	4961.4	12	413.45	1.55	0.1463
RESIDUAL	11236.1	42	267.527		
TOTAL (CORRECTED)	1.30255E6	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average BSCO2 among the fuels and the modes.

CONCLUSION: There are three distinct fuel groupings with respect to the average BSC02. FT-100 is significantly different from the other four fuels. ADMM15 and DF-2 fuels are not significantly different from one another. Fuels ALS and CA are not significantly different from one another, but are significantly different from the ADMM15 and DF-2 fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt All}~{\tt four}~{\tt modes}~{\tt are}~{\tt significantly}~{\tt different}~{\tt from}~{\tt one}~{\tt another}~{\tt with}~{\tt respect}~{\tt to}~{\tt the}~{\tt average}~{\tt BSCO2.}$

Multiple Range Tests for BSCO2 by FUEL

Method: 95.0 FUEL	-	-	Homogeneous G	roups
ALS	14 12 12		X X X X	
Contrast			Difference	*
ADMM15 - ALS ADMM15 - DF- ADMM15 - DF- ADMM15 - FT- ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-110	3 -2 -100		*40.0882 *39.4037 9.64418 *71.6664 -0.68448 *-30.444 *31.5783 *-29.7595 *32.2628 *62.0223	

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSCO2 by MODE

Method: 95.	o percent Tu	ıkey HSD		
MODE	Count	LS Mean	Homogeneous Gro	oups
5	16	678.385	X	
6	15	779.339	X	
11	15	894.059	X	
10	16	1055.85	X	
Contrast			Difference	+/- Limits
5 - 6			*-100.954	15.7259
5 - 10			*-377.464	15.4702
5 - 11			*-215.674	15.7259
6 - 10			*-276.51	15.7259
6 - 11			*-114.72	15.9776
10 - 11			*161.79	15.7259

 $[\]star$ denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

Analysis Summary

Dependent variable: bssof

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 61

Analysis of Variance for bssof - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	0.119091	4	0.0297726	47.06	0.0000
B:mode	0.0867779	3	0.028926	45.73	0.0000
INTERACTIONS AB	0.0319369	12	0.0026614	4.21	0.0003
RESIDUAL	0.025936	41	0.000632586		
TOTAL (CORRECTED)	0.25938	60			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average BSSOF among the fuels, modes, and fuel*mode interaction.

CONCLUSION: There are three distinct fuel groupings with respect to the average

BSSOF. The FT-100 fuel is significantly different from the remaining four fuels. The DF-2 and CA fuels are not significantly different from one another, but are different from the other three fuels. Also, the ALS and ADMM15 fuels are not significantly different from one another, but are different from the other three fuels.

CONCLUSION: The average BSSOF for mode 10 is significantly different from the remaining three modes. The average BSSOF for modes 5, 6, and 11 are not significantly different from one another.

Multiple Range Tests for bssof by fuel

	.0 percent T	-		
fuel	Count	LS Mean	Homogeneous Gr	roups
FT-100	11	0.0812057	X	
ADMM15	12	0.125126	X	
			X	
CA	12	0.190591	X	
DF-2	12	0.209108	X	
Contrast				+/- Limits
ADMM15 - AI			-0.0259175	
ADMM15 - CA	A		*-0.0654649	0.0292956
ADMM15 - DE	F-2		*-0.0839822	0.0292956
ADMM15 - FI	Γ-100		*0.04392	0.029954
ALS - CA			*-0.0395474	0.0282299
ALS - DF-2			*-0.0580647	0.0282299
ALS - FT-10	00		*0.0698376	0.0289126
CA - DF-2			-0.0185173	0.0292956
CA - FT-100)		*0.109385	0.029954
DF-2 - FT-1	100		*0.127902	0.029954

^{*} denotes a statistically significant difference.

Multiple Range Tests for bssof by mode

Method: 95.0 percent Tukey HSD Count LS Mean mode Homogeneous Groups 16 0.118924 6 15 0.13431 Χ 0.137743 11 14 0.214683 10 16 Difference +/- Limits Contrast 5 - 6 -0.0153858 0.0242062 5 - 10 *-0.0957587 0.0238126

5 - 11	-0.0188186	0.0246484
6 - 10	*-0.0803729	0.0242062
6 - 11	-0.00343286	0.0250289
10 - 11	*0.0769401	0.0246484

^{*} denotes a statistically significant difference.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The trend in the average BSSOF across the fuels is different for mode 10 at the CA and DF-2 fuels. The trends in the average BSSOF across the fuels for modes 5, 6, and 11 do not appear to be different.

Analysis Summary

Dependent variable: BENZENE

Factors:

FUEL MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for BENZENE - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	117.444	4	29.361	36.42	0.0000
B:MODE	318.024	3	106.008	131.48	0.0000
INTERACTIONS AB	71.702	12	5.97517	7.41	0.0000
RESIDUAL	33.8638	42	0.806281		
TOTAL (CORRECTED)	545.5	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzene among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: The average benzene for the ADMM15 and FT-100 fuels are not significantly different from one another, but are significantly different from the remaining three fuels. The average benzene for the ALS fuel is significantly different than the average benzene for the CA fuel.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct mode groupings with respect to the average benzene. Modes 10 and 11 are not significantly different from one another, but are significantly different than the other two modes. Modes 5 and 6 are significantly different from one another and the other two modes.

Multiple Range Tests for BENZENE by FUEL

										 	_										
Mothod.	0 =	0 3	002	aon	+ -	Parle	017	ЦC	ח												

Method: 95.0) percent Ti	ıkey HSD		
FUEL	Count	LS Mean	Homogeneous Gr	coups
ADMM15	12	1.50136	X	
FT-100	12	1.81143	X	
ALS	14	3.45994	X	
DF-2	12	4.34774	XX	
CA	12	5.0951	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS	3		*-1.95858	1.00676
ADMM15 - CA			*-3.59373	1.04476
ADMM15 - DF-	-2		*-2.84638	1.04476
ADMM15 - FT-	-100		-0.310068	1.04476
ALS - CA			*-1.63515	1.00676
ALS - DF-2			-0.8878	1.00676

ALS - FT-100

DF-2 - FT-100

CA - DF-2 CA - FT-100 *1.64851

*3.28366

*2.53631

0.747355

1.00676

1.04476

1.04476

1.04476

^{*} denotes a statistically significant difference.

Multiple Range Tests for BENZENE by MODE

Method: 95. MODE	0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups
5	16	0.392344	Х	
6	15	1.70996	X	
11	15	5.02793	X	
10	16	5.84222	X	
Contrast			Difference	+/- Limits
5 - 6			*-1.31762	0.863329
5 - 10			*-5.44988	0.84929
5 - 11			*-4.63559	0.863329
6 - 10			*-4.13226	0.863329
6 - 11			*-3.31797	0.877143
10 - 11			0.814288	0.863329

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The ALS, CA, and DF-2 fuels have significantly different average benzene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average benzene among the four modes.

Multifactor ANOVA - 1,3 Butadiene (mg/kW-hr) Toxic Gaseous Emissions LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: BUTAD

Factors:

MODE FUEL

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for BUTAD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:MODE	379.258	3	126.419	304.67	0.0000
B:FUEL	41.8936	4	10.4734	25.24	0.0000
INTERACTIONS AB	36.8996	12	3.07497	7.41	0.0000
RESIDUAL	17.4272	42	0.414933		
TOTAL (CORRECTED)	475.499	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average 1,3 butadiene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: There are three distinct fuel groupings with respect to the average 1,3 butadiene.

The average 1,3 butadiene for the FT-100 fuel is significantly different than the remaining

four fuels. The ADMM15 and ALS fuels are not significantly different from one another,

are significantly different than the other three fuels. Also, the DF-2 and CA fuels are not significantly different from one another, but are significantly different from the other three fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct mode groupings with respect to the average 1,3 butadiene. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another but are significantly different from the other two modes.

Multiple Range Tests for BUTAD by FUEL

ALS - FT-100

Method: 95.0	percent Ti	ıkey HSD		
FUEL	Count	LS Mean	Homogeneous Gr	oups
FT-100	12	1.92136	X	
ADMM15	12	2.79864	X	
ALS	14	3.18606	X	
DF-2	12	3.99958	X	
CA	12	4.22908	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			-0.387414	0.722221
ADMM15 - CA			*-1.43044	0.749484
ADMM15 - DF-2	2		*-1.20094	0.749484
ADMM15 - FT-1	100		*0.877277	0.749484
ALS - CA			*-1.04303	0.722221
ALS - DF-2			*-0.813527	0.722221

*1.26469

0.722221

CA - DF-2	0.229499	0.749484
CA - FT-100	*2.30772	0.749484
DF-2 - FT-100	*2.07822	0.749484

^{*} denotes a statistically significant difference.

Multiple Range Tests for BUTAD by MODE

Method: 95.0 p	percent Tul Count	key HSD LS Mean	Homogeneous Group	s
5 6 11 10	16 15 15 16	0.560078 1.09161 4.86034 6.39576	X X X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-0.531529 *-5.83568 *-4.30026 *-5.30415 *-3.76873 *1.53542	0.61933 0.609259 0.61933 0.61933 0.62924 0.61933

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The DF-2 and CA fuels have significantly different average 1,3 butadiene at mode 10 than at the remaining three modes. All other fuels do not demonstrate significant differences in the average 1,3 butadiene among the four modes.

Multifactor ANOVA - Formaldehyde (mg/kW-hr) Toxic Gaseous Emissions LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: FORMALD

Factors: MODE

FUEL

Selection variable: MODE<12

Number of complete cases: 61

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for FORMALD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:MODE	1.78043E6	3	593477.0	140.26	0.0000
B:FUEL	243068.0	4	60766.9	14.36	0.0000
INTERACTIONS AB	226880.0	12	18906.7	4.47	0.0001
RESIDUAL	173482.0	41	4231.27		
TOTAL (CORRECTED)	2.44233E6	60			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average formal dehyde among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: The average formaldehyde for the DF-2 fuel is not significantly different than the average formaldehyde for the CA fuel, but it is significantly different than the ADMM15, FT-100, and ALS fuels. The average formaldehyde at the FT-100 fuel is not significantly different than the ADMM15 fuel, but it is significantly different than the ALS, CA, and DF-2 fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct mode groupings with respect to the average formaldehyde. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another but are significantly different from the other two modes.

Multiple Range Tests for FORMALD by FUEL

Method: 95.0 FUEL	-	-	Homogeneous Gr	roups
ADMM15 ALS CA	11	195.548 258.61	X XX X X XX XX	
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF- ADMM15 - FT- ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-10	2 100		-63.0621 -76.2323 *-148.439 35.2004 -13.1703 *-85.3773 *98.2624 -72.207 *111.433 *183.64	73.0105 77.4694 75.7666 75.7666 74.7761 73.0105 73.0105 77.4694 77.4694 75.7666

^{*} denotes a statistically significant difference.

Multiple Range Tests for FORMALD by MODE

Method: 95.0 p	percent Tuk Count	ey HSD LS Mean	Homogeneous Groups	3
5 6 11	16 14 15 16	59.7879 107.775 339.847 476.807	X X X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-47.9867 *-417.02 *-280.059 *-369.033 *-232.073 *136.96	63.7477 61.5861 62.6041 63.7477 64.7317 62.6041

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The ALS and DF-2 fuels have significantly different average formaldehyde at modes 10 and 11 than at the remaining two modes. All other fuels do not demonstrate this difference. However, the average formaldehyde for the CA fuel at mode 10 is significantly different than the other three modes.

Multifactor ANOVA - Acetaldehyde (mg/kW-hr) Toxic Gaseous Emissions LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: ACETALD

Factors:

MODE FUEL

Selection variable: MODE<12

Number of complete cases: 61

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for ACETALD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:MODE	229776.0	3	76591.9	117.33	0.0000
B:FUEL	39603.9	4	9900.99	15.17	0.0000
INTERACTIONS AB	30463.6	12	2538.64	3.89	0.0005
RESIDUAL	26765.0	41	652.805		
TOTAL (CORRECTED)	330272.0	60			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average acetal dehyde among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: The average acetaldehyde for the FT-100 and ADMM15 fuels are not significantly different from one another. The average acetaldehyde for the ALS, CA, and DF-2 fuels are not significantly different from one another, but are significantly different from the FT-100 and ADMM15 fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct mode groupings with respect to the average acetaldehyde. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another but are significantly different from the other two modes.

Multiple Range Tests for ACETALD by FUEL

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups _____ FT-100 12 58.6822 Χ ADMM15 12 69.034 104.807 ALS 14 CA 11 105.591 DF-2 12 128.336

Contrast	Difference	+/- Limits	
ADMM15 - ALS	*-35.773	28.6775	-
ADMM15 - CA	*-36.5574	30.4289	
ADMM15 - DF-2	*-59.3016	29.7601	
ADMM15 - FT-100	10.3518	29.7601	
ALS - CA	-0.784358	29.371	
ALS - DF-2	-23.5285	28.6775	
ALS - FT-100	*46.1248	28.6775	
CA - DF-2	-22.7442	30.4289	
CA - FT-100	*46.9092	30.4289	
DF-2 - FT-100	*69.6533	29.7601	
			_

^{*} denotes a statistically significant difference.

Multiple Range Tests for ACETALD by MODE

Method: 95.0	0 percent To Count	ıkey HSD LS Mean	Homogeneous Gro	oups	
5	16	26.3907	X		
6	14	43.4665	X		
11	15	127.304	X		
10	16	175.999	X		
Contrast			Difference	+/- Limits	
5 - 6			-17.0759	25.0392	
5 - 10			*-149.608	24.1902	
5 - 11			*-100.913	24.59	
6 - 10			*-132.532	25.0392	
6 - 11			*-83.8375	25.4257	
10 - 11			*48.6949	24.59	

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The ALS and DF-2 fuels have significantly different average acetaldehyde at modes 10 and 11 than at the remaining two modes. All other fuels do not demonstrate this difference. However, the average acetaldehyde for the CA fuel at mode 10 is significantly different than the other three modes.

Multifactor ANOVA - NAPHTHALENE (µg/kW-hr) Gaseous PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: GNAPHTH

Factors: FUEL

MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for GNAPHTH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	1.14822E8	4	2.87056E7	127.16	0.0000
B:MODE	5.84374E7	3	1.94791E7	86.29	0.0000
INTERACTIONS AB	6.52183E7	12	5.43486E6	24.08	0.0000
RESIDUAL	9.48109E6	42	225740.0		
TOTAL (CORRECTED)	2.44846E8	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average naphthalene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: There are four distinct fuel groupings with respect to the average naphthalene. ALS, DF-2, and CA fuels are all significantly different from one another. Also, fuels ADMM15 and FT-100 are not significantly different from one another, but they are both significantly different from the other three fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt All}~{\tt four}~{\tt modes}~{\tt are}~{\tt significantly}~{\tt different}~{\tt from}~{\tt one}~{\tt another}~{\tt with}~{\tt respect}~{\tt to}~{\tt the}~{\tt average}~{\tt naphthalene.}$

Multiple Range Tests for GNAPHTH by FUEL

Method: 95.0 percent Tukey HSD Homogeneous Groups Count LS Mean FT-100 211.807 12 ADMM15 12 352.674 Χ ALS 14 950.021 DF-2 12 2259.44 3881.48 Difference +/- Limits ADMM15 - ALS *-597.347 532.703 ADMM15 - CA *-3528.81 552.812 ADMM15 - DF-2 *-1906.76 552.812 ADMM15 - FT-100 140.867 552.812 *-2931.46 ALS - CA 532.703 ALS - DF-2 *-1309.41 532.703 ALS - FT-100 *738.214 532.703 CA - DF-2 *1622.05 552.812 CA - FT-100 *3669.67 552.812 DF-2 - FT-100 *2047.63 552.812

* denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GNAPHTH by MODE}\\$

Method: 95.0 percent Tukey HSD						
MODE	Count	LS Mean	Homogeneous Groups	3		
5	16	323.13	Х			
6	15	883.544	X			
11	15	2190.63	X			
10	16	2727.03	X			
Contrast			Difference	+/- Limits		
5 - 6			*-560.415	456.812		
5 - 10			*-2403.9	449.384		
5 - 11			*-1867.5	456.812		
6 - 10			*-1843.48	456.812		
6 - 11			*-1307.09	464.121		
10 - 11			*536.397	456.812		

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The CA and DF-2 fuels have significantly different average naphthalene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average naphthalene among the four modes.

Multifactor ANOVA - 2-Methylnaphthalene (µg/kW-hr) Gaseous PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: METHYL2

Factors: FUEL

MODE

Selection variable: MODE < 12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for METHYL2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: FUEL	9.45452E7	4	2.36363E7	89.10	0.0000
B:MODE	4.08008E7	3	1.36003E7	51.27	0.0000
INTERACTIONS					
AB	5.19123E7	12	4.32603E6	16.31	0.0000
RESIDUAL	1.11418E7	42	265281.0		
RESIDUAL	1.114106/	42	205201.0		
TOTAL (CORRECTED)	1.96183E8	61			

All F-ratios are based on the residual mean square error.

Conclusion: Statistically significant differences in the average 2-Methylnaphthalene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: Average 2-methylnaphthalene at Modes 5 and 6 are not significantly different from one another, but significantly different from modes 10 and 11. Modes 10 and 11 are not significantly different from one another with respect to the average 2-methylnaphthalene.

Means and 95% Tukey HSD Intervals

CONCLUSION: Average 2-methylnaphthalene for fuels FT-100, ADMM15, and ALS are not significantly different from one another. The average 2-methylnaphthalene for fuels CA and DF-2 are significantly different from one another.

Multiple Range Tests for METHYL2 by MODE

Method: 95	.0 percent Tu	ıkey HSD		
MODE	Count	LS Mean	Homogeneous Gr	coups
5	16	282.936	X	
6	15	693.966	X	
11	15	1948.64	X	
10	16	2195.93	X	
Contrast			Difference	+/- Limits
5 - 6			-411.03	495.207
5 - 10			*-1912.99	487.154
5 - 11			*-1665.7	495.207
6 - 10			*-1501.96	495.207
6 - 11			*-1254.67	503.13
10 - 11			247.288	495.207
			= - : - = 0 0	

* denotes a statistically significant difference.

Multiple Range Tests for METHYL2 by FUEL

	95.0 percent Tu Count	-	Homogeneous Gr	roups
ADMM15 ALS CA	12 14 12	107.033 183.294 646.591 2173.94	X X X	
Contras	 t	3290.98		+/- Limits
ADMM15 ADMM15 ADMM15	- CA - DF-2 - FT-100 A F-2 T-100 -2		-463.297 *-1990.65 *-3107.68 76.2607 *-1527.35 *-2644.38 539.557 *-1117.03 *2066.91 *3183.94	577.476 599.276 599.276 599.276 577.476 577.476 577.476 599.276 599.276

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: Modes 10 and 11 have significantly different average 2-methylnaphthalene for the CA and DF-2 fuels. All other fuels do not demonstrate differences in the average 2-methylnaphthalene among the four modes.

Multifactor ANOVA - 1-Methylnaphthalene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: METHYL1

Factors:

FUEL MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for METHYL1 - Type III Sums of Squares

MAIN EFFECTS A:FUEL 4.27538E7 4 1.06885E7 83.75 0.0000 B:MODE 1.61965E7 3 5.39884E6 42.30 0.0000 INTERACTIONS						
A:FUEL 4.27538E7 4 1.06885E7 83.75 0.0000 B:MODE 1.61965E7 3 5.39884E6 42.30 0.0000 INTERACTIONS AB 2.33649E7 12 1.94707E6 15.26 0.0000 RESIDUAL 5.36042E6 42 127629.0	Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
AB 2.33649E7 12 1.94707E6 15.26 0.0000 RESIDUAL 5.36042E6 42 127629.0	A:FUEL		_			0.0000
		2.33649E7	12	1.94707E6	15.26	0.0000
TOTAL (CORRECTED) 8.67884E7 61	RESIDUAL	5.36042E6	42	127629.0		
	TOTAL (CORRECTED)	8.67884E7	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average 1-methylnaphthalene among the fuels, modes and fuel*mode interaction.}$

CONCLUSION: There were three distinct fuel groupings with respect to the average 1-methylnaphthalene. CA and DF-2 fuels were significantly different from one another and the other three fuels. ADMM15, ALS, and FT-100 fuels were not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: Average 1-methylnaphthalene at modes 5 and 6 are not significantly different from one another. Average 1-methylnaphthalene at modes 10 and 11 are not significantly different from one another, but are significantly different from modes 5 and 6.

Multiple Range Tests for METHYL1 by FUEL

Method: 95 0 percent Tukey HSD

FUEL		LS Mean	Homogeneous Gr	coups
	12			
ADMM15	12	86.5013	X	
ALS	14	363.927	X	
CA	12	1212.87	X	
DF-2	12	2256.67	X	
Contrast			Difference	•
ADMM15 -				400.549
ADMM15 -	CA		*-1126.37	415.669
ADMM15 -	DF-2		*-2170.17	415.669
ADMM15 -	FT-100		24.9637	415.669
ALS - CA			*-848.947 400.549	
ALS - DF-	-2		*-1892.74	400.549
ALS - FT-	-100		302.389	400.549
CA - DF-2	2		*-1043.8	415.669
CA - FT-1	L00		*1151.34 415.669	
DF-2 - F7	Γ-100		*2195.13	415.669

 $\mbox{*}$ denotes a statistically significant difference.

Multiple Range Tests for METHYL1 by MODE

	.0 percent Tu	-		
MODE	Count	LS Mean	Homogeneous Gr	coups
5	16	170.726	X	
6	15	421.11	X	
11	15	1228.57	X	
10	16	1364.8	X	
Contrast			Difference	+/- Limits
5 - 6			-250.385	343.485
5 - 10			*-1194.07	337.899
5 - 11			*-1057.85	343.485
6 - 10			*-943.689	343.485
6 - 11			*-807.464	348.981
10 - 11			136.225	343.485

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The CA and DF-2 fuels have significantly different average 1-methylnaphthalene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average 1-methylnaphthalene among the four modes.

Multifactor ANOVA - 2,6-Dimethylnaphthalene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: DIMETHYL

Factors: FUEL

MODE

Selection variable: MODE<12

Number of complete cases: 62

Analysis of Variance for DIMETHYL - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	4.83445E7	4	1.20861E7	69.59	0.0000
B:MODE	9.92486E6	3	3.30829E6	19.05	0.0000
INTERACTIONS AB	2.31461E7	12	1.92884E6	11.11	0.0000
RESIDUAL	7.29431E6	42	173674.0		
TOTAL (CORRECTED)	8.81659E7	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average 2,6-Dimethylnaphthalene among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: The average 2,6-dimethylnaphthalene for the DF-2 fuel is significantly different than the other four fuels. The average 2,6-dimethylnaphthalene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

CONCLUSION: Average 2,6-dimethylnaphthalene at modes 5 and 6 are not significantly different from one another. Average 2,6-dimethylnaphthalene at modes 10 and 11 are not significantly different from one another, but are significantly different than modes 5 and 6.

Multiple Range Tests for DIMETHYL by FUEL

					_
Method: 95.	0 percent T	ukey HSD			
FUEL	Count	LS Mean	Homogeneous Gr	roups	
7.DWM1.E	10	41 2405			-
		41.3485			
	12		X		
	14		X		
		522.143			
DF-2	12	2402.48			
Contrast			Difference	+/- Limits	_
ADMM15 - AL			-186.238		-
ADMM15 - CA			-480.795		
ADMM15 - DF			*-2361.14	484.887	
ADMM15 - FT	-100		-2.16827	484.887	
ALS - CA			-294.556	467.249	
ALS - DF-2			*-2174.9	467.249	
ALS - FT-10	0		184.07	467.249	
CA - DF-2			*-1880.34	484.887	
CA - FT-100			478.626	484.887	
DF-2 - FT-1	00		*2358.97	484.887	
					_

^{*} denotes a statistically significant difference.

Multiple Range Tests for DIMETHYL by MODE

					_
Method: 95. MODE	0 percent To Count	ukey HSD LS Mean	Homogeneous Gr	coups	
5	16	152.253	X		_
6	15	355.65	X		
11	15	1030.29	X		
10	16	1051.47	X		
Contrast			Difference	+/- Limits	-
5 - 6			-203.396	400.683	
5 - 10			*-899.217	394.167	
5 - 11			*-878.036	400.683	
6 - 10			*-695.821	400.683	
6 - 11			*-674.64	407.094	
10 - 11			21.1803	400.683	

^{*} denotes a statistically significant difference.

CONCLUSION: The DF-2 fuel has significantly different average 2,6-dimethylnaphthalene at modes 10 and 11 than at modes 5 and 6. All other fuels do not demonstrate significant differences in the average 2,6-dimethylnaphthalene among the four modes.

Analysis Summary

Dependent variable: GACENAPH

Factors:

MODE

FUEL

Selection variable: MODE < 12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for GACENAPH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:MODE B:FUEL	126587.0 283597.0	3 4	42195.7 70899.2	10.52 17.68	0.0000
INTERACTIONS AB	165392.0	12	13782.6	3.44	0.0014
RESIDUAL	168412.0	42	4009.81		
TOTAL (CORRECTED)	739866.0	61			

All F-ratios are based on the residual mean square error. Multiple Range Tests for ${\tt GACENAPH}$ by ${\tt MODE}$

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average acenaphthylene among the fuels, modes, and fuel*mode interaction.}$

CONCLUSION: Average acenaphthylene at Mode 5 is significantly different from modes 10 and 11.

Means and 95% Tukey HSD Intervals

CONCLUSION: Average acenaphthylene is significantly different at fuel DF-2 compared to the other four fuels. Average acenaphthylene at fuels ADMM15, ALS, CA, and FT-100 are not significantly different from one another.

Multiple Range Tests for GACENAPH by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous G	roups	
5	16	30.8267	Х		-
6	15	82.4049	XX		
10	16	138.499	X		
11	15	139.484	X		
Contrast			Difference	+/- Limits	_
5 - 6			-51.5782	60.8828	-
5 - 10			*-107.672	59.8928	
5 - 11			*-108.657	60.8828	

 5 - 11
 *-108.657
 60.8828

 6 - 10
 -56.094
 60.8828

 6 - 11
 -57.0787
 61.857

 10 - 11
 -0.984737
 60.8828

* denotes a statistically significant difference.

Multiple Range Tests for GACENAPH by FUEL

Method: 95.0 percent Tukey HSD FUEL Count LS Mean

Homogeneous Groups

ADMM15	12	36.3934	X	
FT-100	12	40.0148	X	
CA	12	82.8226	X	
ALS	14	104.521	X	
DF-2	12	225.265	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS	3		-68.1281	70.9974
ADMM15 - CA			-46.4292	73.6775
ADMM15 - DF-	-2		*-188.872	73.6775
ADMM15 - FT-	-100		-3.62141	73.6775
ALS - CA			21.6988	70.9974
ALS - DF-2			*-120.744	70.9974
ALS - FT-100)		64.5067	70.9974
CA - DF-2			*-142.443	73.6775
CA - FT-100			42.8078	73.6775
DF-2 - FT-10	00		*185.25	73.6775

* denotes a statistically significant difference. Multifactor ANOVA - GACENAPH (MODE<12)

Interaction and 95% Tukey HSD Intervals

CONCLUSION: Modes 10 and 11 have significantly different average acenaphthylene for the DF-2 fuel. All other fuels do not demonstrate differences in the average acenaphthylene among the four modes.

Analysis Summary

Dependent variable: ACENAPTH

Factors: FUEL

MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for ACENAPTH - Type III Sums of $\operatorname{Squares}$

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	1.07169E6	4	267923.0	29.63	0.0000
B:MODE	192968.0	3	64322.8	7.11	0.0006
INTERACTIONS					
AB	471924.0	12	39327.0	4.35	0.0002
RESIDUAL	379788.0	42	9042.56		
TOTAL (CORRECTED)	2.10838E6	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average acenaphthene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: The average acenaphthene for the DF-2 fuel is significantly different than the average acenaphthene for the remaining four fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthene for mode 5 is significantly different than the average acenaphthene for modes 10 and 11. The average acenaphthene for mode 6 is significantly different than the average acenaphthene for mode 11.

Multiple Range Tests for ACENAPTH by FUEL

Method: 95	.0 percent Tu	ıkey HSD LS Mean	Homogeneous Groups
FT-100 ADMM15 ALS CA DF-2	12 12 14 12 12	8.10026 15.5047 32.1103 54.6557 358.314	X X X X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100	-16.6056 -39.151 *-342.809 7.40444 -22.5454 *-326.204 24.01 *-303.658 46.5554	106.617 110.642 110.642 110.642 106.617 106.617 106.617 110.642
DF-2 - FT-100	*350.214	110.642

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for ACENAPTH by MODE}\\$

Method: 95.0 MODE	-	ukey HSD LS Mean	Homogeneous Gr	oups
5 6 10	16 15 16 15	24.2191 54.4957 137.565 158.668	X XX XX XX X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-30.2766 *-113.346 *-134.449 -83.0696 *-104.172 -21.1024	91.4279 89.9412 91.4279 91.4279 92.8908 91.4279

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthene for the DF-2 fuel at modes 10 and 11 is is significantly different than the average acenaphthene for modes 5 and 6. All the other fuels do not demonstrate differences in the average acenaphthene among the four modes.

Analysis Summary

Dependent variable: GFLUOREN

Factors: FUEL

MODE

Selection variable: MODE<12

Number of complete cases: 62

ALS

ADMM15

Scatterplot by Level Code

CA

Fuel

DF-2

FT-100

Analysis of Variance for ${\tt GFLUOREN}$ - ${\tt Type}$ III ${\tt Sums}$ of ${\tt Squares}$

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:FUEL	4.05735E6	4	1.01434E6	25.79	0.0000
B:MODE	399950.0	3	133317.0	3.39	0.0266
INTERACTIONS AB	1.14654E6	12	95545.3	2.43	0.0169
RESIDUAL	1.65166E6	4.2	39325.3		
RESIDUAL	1.03100E0	42	39345.3		
TOTAL (CORRECTED)	7.23726E6	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average fluorene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: The average fluorene for the DF-2 fuel is significantly different than the average fluorene for the remaining four fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluorene for mode 5 is significantly different than the average fluorene for mode 11.

Multiple Range Tests for GFLUOREN by FUEL

Method: 95.0 percent Tukey HSD FUEL Count LS Mean Homogeneous Groups	
ADMM15 12 13.9645 X	
FT-100 12 15.2342 X	
ALS 14 42.389 X	
CA 12 83.7276 X	
DF-2 12 683.736 X	
Contrast Difference +/- Limits	
ADMM15 - ALS -28.4245 222.34	
ADMM15 - CA -69.7631 230.733	
ADMM15 - DF-2 *-669.772 230.733	
ADMM15 - FT-100 -1.26976 230.733	
ALS - CA -41.3386 222.34	
ALS - DF-2 *-641.347 222.34	
ALS - FT-100 27.1547 222.34	
CA - DF-2 *-600.009 230.733	
CA - FT-100 68.4933 230.733	
DF-2 - FT-100 *668.502 230.733	

* denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GFLUOREN by MODE}\\$

Method: 95.	0 percent Tu	ukey HSD		
MODE	Count	LS Mean	Homogeneous Gr	oups
5	16	56.4247	X	
6	15	130.158	XX	
10	16	220.709	XX	
11	15	263.949	X	
Contrast			Difference	+/- Limits
5 - 6			-73.7337	190.664
5 - 10			-164.284	187.564
5 - 11			*-207.525	190.664
6 - 10			-90.5503	190.664
6 - 11			-133.791	193.715
10 - 11			-43.2405	190.664

^{*} denotes a statistically significant difference.

Interaction and 95%Tukey HSD Intervals

CONCLUSION: The average fluorene for the DF-2 fuel at modes 10 and 11 are significantly different than the average fluorene at mode 5. All the other fuels do not demonstrate differences in the average fluorene among the four modes.

Analysis Summary

Dependent variable: GPHENANT

Factors:

MODE

FUEL

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for GPHENANT - Type III Sums of Squares

Source	Sum of Squares	Df			
MAIN EFFECTS A:MODE B:FUEL	448855.0 1.51272E7	3	149618.0 3.78179E6	1.58 39.81	0.2096
INTERACTIONS AB	1.2989E6	12	108242.0	1.14	0.3562
RESIDUAL	3.98957E6	42	94989.8		
TOTAL (CORRECTED)	2.08233E7	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average phenanthrene among the fuels.

 ${\tt CONCLUSION:}\ {\tt No}\ {\tt significant}\ {\tt differences}\ {\tt in}\ {\tt the}\ {\tt average}\ {\tt phenanthrene}\ {\tt among}\ {\tt the}\ {\tt four}\ {\tt modes.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average phenanthrene for the DF-2 fuel is significantly different than the other four fuels. The average phenanthrene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for GPHENANT by MODE

Method: MODE	95.0 percent Tu Count	key HSD LS Mean	Homogeneous Gr	oups
5	16	211.458	Х	
6	15	342.612	X	
11	15	412.734	X	
10	16	424.024	X	
Contrast			Difference	+/- Limits
COILLIASL			DITTELETICE	T/ - DIULTED

COILCLASC	Difference	+/- LIMICS	
5 - 6	-131.154	296.327	
5 - 10	-212.566	291.509	
5 - 11	-201.276	296.327	
6 - 10	-81.4119	296.327	
6 - 11	-70.1218	301.069	
10 - 11	11.29	296.327	

^{*} denotes a statistically significant difference.

Multiple Range Tests for GPHENANT by FUEL

Marked OF O manager makes 100

Method: 95.0 percent Tukey HSD
FUEL Count LS Mean Homogeneous Groups

ADMM15 FT-100 ALS CA DF-2	12	33.4535 42.2233 139.715 179.898 1343.24	X X X X	
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		-106.261 -146.445 *-1309.79 -8.76979 -40.1836 *-1203.53 97.4916 *-1163.35 137.675 *1301.02	345.557 358.601 358.601 345.557 345.557 345.557 358.601 358.601

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ significant differences among the fuel and mode combinations with respect to the average phenanthrene.

Analysis Summary

Dependent variable: GANTHR

Factors:

MODE FUEL

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code 100 80 Anthracene 60 40 Ē 20 \blacksquare 0 CA ADMM15 ALS DF-2 FT-100 Fuel

Analysis of Variance for GANTHR - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:MODE	709.29	3	236.43	3.54	0.0226
B:FUEL	14208.9	4	3552.23	53.11	0.0000
INTERACTIONS AB	1879.1	12	156.592	2.34	0.0210
RESIDUAL	2809.0	42	66.881		
TOTAL (CORRECTED)	19552.0	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average anthracene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: The average anthracene for the DF-2 fuel is significantly different than the other four fuels. The average anthracene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average anthracene for mode 5 is significantly different than the average anthracene for mode 10.

Multiple Range Tests for GANTHR by FUEL

Method: 95.0 percent FUEL Count	-	Homogeneous G	couns
FT-100 12	1.64574	X	
ADMM15 12	1.77037	X	
ALS 14	5.54145	X	
CA 12	8.30015	X	
DF-2 12	42.1875	X	
Contrast		Difference	+/- Limits
ADMM15 - ALS		-3.77108	9.16922
ADMM15 - CA		-6.52978	9.51535
ADMM15 - DF-2		*-40.4171	9.51535
ADMM15 - FT-100		0.124628	9.51535
ALS - CA		-2.7587	9.16922
			0 16000

* denotes a statistically significant difference.

Multiple Range Tests for GANTHR by MODE

ALS - DF-2

CA - DF-2

ALS - FT-100

CA - FT-100

DF-2 - FT-100

*-36.6461

3.89571

*-33.8874

6.6544

*40.5418

9.16922

9.16922

9.51535

9.51535

9.51535

Method: 95.0 MODE	Count	LS Mean	Homogeneous Gr	oups
5	16	6.63453	X	
6	15	11.311	XX	
11	15	14.414	XX	
10	16	15.1967	X	
Contrast			Difference	+/- Limits
5 - 6			-4.67649	7.86293
5 - 10			*-8.56213	7.73507
5 - 11			-7.77945	7.86293
6 - 10			-3.88563	7.86293
6 - 11			-3.10296	7.98875
10 - 11			0.782677	7.86293

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The average anthracene for the DF-2 fuel at modes 6, 10, and 11 are significantly different than the anthracene for the other four fuels.

Analysis Summary

Dependent variable: GFLUORAN

Factors:

FUEL MODE

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for GFLUORAN - Type III Sums of Squares

Source	Sum of Squares				
MAIN EFFECTS					
A:FUEL	1043.04	4	260.761	29.88	0.0000
B:MODE	21.1821	3	7.06069	0.81	0.4960
INTERACTIONS AB	46.5359	12	3.87799	0.44	0.9350
AD	40.5555	12	3.07799	0.44	0.9330
RESIDUAL	366.514	42	8.72654		
TOTAL (CORRECTED)	1474.87	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant difference in the average fluoranthene among the fuels.

CONCLUSION: The average fluoranthene for the DF-2 fuel is significantly different than the average fluoranthene for the remaining four fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ \ {\tt No}\ {\tt significant}\ {\tt differences}\ {\tt in}\ {\tt the}\ {\tt average}\ {\tt fluoranthene}\ {\tt among}\ {\tt the}\ {\tt four}\ {\tt modes.}$

Multiple Range Tests for GFLUORAN by FUEL

Method:	95.0	-	-			
FUEL		Count	LS	Mean	Homogeneous	Groups

LORD	Court	LS Mean	nomogeneous Groups
ADMM15	12	1.55023	X
FT-100	12	1.97221	X
ALS	14	3.42001	X
CA	12	4.17341	X
DF-2	12	12.9117	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100	-1.86978 -2.62318 *-11.3614 -0.421982 -0.753401 *-9.49167 1.4478	3.31209 3.43712 3.43712 3.43712 3.31209 3.31209 3.31209
CA - DF-2 CA - FT-100	*-8.73827 2.2012	3.43712 3.43712
DF-2 - FT-100	*10.9395	3.43712

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GFLUORAN by MODE}\\$

Method: 95.0	percent Tu	ıkev HSD		
	-	LS Mean	Homogeneous Gr	oups
11	15	4.20058	X	
5	16	4.2397	X	
10	16	5.32028	X	
6	15	5.46146	X	
Contrast			Difference	+/- Limits
5 - 6			-1.22176	2.84023
5 - 10			-1.08058	2.79405
5 - 11			0.0391235	2.84023
6 - 10			0.14118	2.84023
6 - 11			1.26088	2.88568
10 - 11			1.1197	2.84023

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ significant differences among the fuel and mode combinations with respect to the average fluoranthene.

Analysis Summary

Dependent variable: GPYRENE

Factors:

MODE FUEL

Selection variable: MODE<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for GPYRENE - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:MODE	19.8872	3	6.62908	0.46	0.7140
B:FUEL	2095.77	4	523.943	36.10	0.0000
INTERACTIONS AB	66.5375	12	5.54479	0.38	0.9628
RESIDUAL	609.636	42	14.5151		
TOTAL (CORRECTED)	2787.64	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}$ significant differences in the average pyrene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average pyrene for the DF-2 fuel is significantly different than the average pyrene for the remaining four fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:} \quad {\tt No \ significant \ differences \ in \ the \ average \ pyrene \ among \ the \ modes.}$

Multiple Range Tests for GPYRENE by FUEL

Method: 95	.0 percent T	ukey HSD		
FUEL	Count	LS Mean	Homogeneous G	roups
ADMM15	12	1.17274	X	
FT-100	12	1.46172	X	
ALS	14	3.00746	X	
CA	12	3.32296	X	
	12		X	
Contrast			Difference	+/- Limits
ADMM15 - A			-1.83472	
ADMM15 - C	!A		-2.15021	4.43286
ADMM15 - D	F-2		*-15.6672	4.43286
ADMM15 - F	T-100		-0.288977	4.43286
ALS - CA			-0.315494	4.27161
ALS - DF-2			*-13.8324	4.27161
ALS - FT-1	.00		1.54574	4.27161
CA - DF-2			*-13.5169	4.43286
CA - FT-10	0		1.86124	4.43286
DF-2 - FT-	100		*15.3782	4.43286

^{*} denotes a statistically significant difference.

Multiple Range Tests for GPYRENE by MODE

Method:	95.0 per	cent	Tukey HS	D					
MODE	_ C	ount	LS M	ean	Homogeneous	Gr	oups		

5 11 10 6	16 15 16 15	4.38002 4.89347 5.51762 5.85271	x x x x	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-1.47269 -1.1376 -0.513451 0.335096 0.959242 0.624146	3.66306 3.60349 3.66306 3.66306 3.72167 3.66306

^{*} denotes a statistically significant difference.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ significant differences among the fuel and mode combinations with respect to the average pyrene.

 ${\tt Multifactor\ ANOVA\ -\ Naphthalene\ (\mu g/kW-hr)} \qquad {\tt Soluble\ PAH}$ LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: naphth

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for naphth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	3529.36	4	882.34	2.92	0.0323
B:mode	2429.66	3	809.885	2.68	0.0592
INTERACTIONS AB	2205.48	12	183.79	0.61	0.8231
RESIDUAL	12698.1	42	302.335		
TOTAL (CORRECTED)	20659.1	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average naphthalene among the fuels and the modes.

CONCLUSION: The average naphthalene for the CA and DF-2 fuels are significantly different from the ADMM15 and ALS fuels, but not significantly different from one another. The average naphthalene for the ADMM15 and ALS fuels are not significantly different from one another.

Means and 95% Tukey Intervals

CONCLUSION: The average naphthalene for mode 10 is significantly different from mode $5. \,$

Multiple Range Tests for naphth by fuel

	95.0 percent To	-	Homogeneous Gr	oups	
ALS	14	27.0444	X		
ADMM15	12	28.4129	X		
FT-100	12	36.7585	XX		
DF-2	12	43.3494	X		
CA	12	45.5031	X		
Contrast	t		Difference	+/- Limits	
ADMM15	- ALS		1.36846	13.8043	-
ADMM15 -	- CA		*-17.0902	14.3254	
ADMM15 -	- DF-2		*-14.9365	14.3254	
ADMM15 -	- FT-100		-8.34559	14.3254	
ALS - CA	A		*-18.4587	13.8043	
ALS - DI	F-2		*-16.305	13.8043	
ALS - F	Γ-100		-9.71405	13.8043	
CA - DF	-2		2.15369	14.3254	
CA - FT-	-100		8.74463	14.3254	

* denotes a statistically significant difference.

Multiple Range Tests for naphth by mode

DF-2 - FT-100

6.59093

14.3254

Method: 95.0 p mode		ey HSD LS Mean	Homogeneous Groups	
5 11 6 10	15 15	27.6477 34.3223 38.0808 44.8038	X XX XX X	
Contrast		I	Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11		*.		16.7177 16.4459 16.7177 16.7177 16.9852 16.7177

^{*} denotes a statistically significant difference.

Interactions and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}$ There is no significant interaction in the average naphthalene among the fuel and mode combinations.

Analysis Summary

Dependent variable: acenaph

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 59

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for acenaph - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square		
MAIN EFFECTS A:fuel B:mode	1.49999 0.335426	4 3	0.374998 0.111809	4.66 1.39	0.0036
INTERACTIONS AB	1.32025	12	0.110021	1.37	0.2221
RESIDUAL	3.13513	39	0.0803879		
TOTAL (CORRECTED)	6.44463	58			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average acenaphthylene among the fuels.

CONCLUSION: The average acenaphthylene for the CA fuel is significantly different than the FT-100 and ADMM15 fuels.

Means and 95% Tukey Intervals

 $\hbox{{\tt CONCLUSION:}}\quad \hbox{{\tt No statistically significant differences in the average acenaphthylene} \\ \text{{\tt among the modes.}}$

Multiple Range Tests for acenaph by fuel

Method: fuel	95.0 percent Tu Count	key HSD LS Mean	Homogeneous G	roups
ADMM15	12	0.476752	X	
FT-100	12	0.544934	X	
ALS	12	0.597067	XX	
DF-2	11	0.762226	XX	
CA	12	0.915322	X	
Contrast	;		Difference	+/- Limits

CONCLASE	Difference	+/- LIMICS	
ADMM15 - ALS	-0.120315	0.331015	
ADMM15 - CA	*-0.43857	0.331015	
ADMM15 - DF-2	-0.285475	0.338455	
ADMM15 - FT-100	-0.0681826	0.331015	
ALS - CA	-0.318255	0.331015	
ALS - DF-2	-0.16516	0.338455	
ALS - FT-100	0.0521325	0.331015	
CA - DF-2	0.153096	0.338455	
CA - FT-100	*0.370388	0.331015	
DF-2 - FT-100	0.217292	0.338455	

 $[\]mbox{*}$ denotes a statistically significant difference.

Multiple Range Tests for acenaph by mode

Method: 95.0 pmode	•	ey HSD LS Mean	Homogeneous Groups	5
5 11 6 10	14 15 14 16	0.549292 0.65586 0.668896 0.762994	X X X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-0.119604 -0.213702 -0.106568 -0.0940977 0.0130359 0.107134	0.28759 0.278458 0.282757 0.278458 0.282757 0.273463

 $[\]mbox{*}$ denotes a statistically significant difference.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average acenaphthylene among the fuel and mode combinations.}$

Multifactor ANOVA - Acenaphthene (µg/kW-hr) Soluble PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: acenapth

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 60

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for acenapth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel B:mode	53.5982 29.3303	4 3	13.3995 9.77675	2.42 1.76	0.0646
INTERACTIONS AB	37.0561	12	3.088	0.56	0.8629
RESIDUAL	221.911	40	5.54777		
TOTAL (CORRECTED)	338.487	59			

All F-ratios are based on the residual mean square error.

CONCLUSION: No statistically significant differences in the average acenaphthene among the fuels, modes or interaction.

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average acenaphthene among the fuels.

Means and 95% Tukey Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average acenaphthene among the modes.

Multiple Range Tests for acenapth by fuel

Method: fuel	95.0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Groups
ALS	13	3.64246	Х
FT-100	12	4.14432	X
ADMM15	12	4.34272	X
CA	12	5.23877	X
DF-2	11	6.3927	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA	0.700254 -0.896057	2.69325
ADMM15 - DF-2	-2.04998	2.80832
ADMM15 - FT-100 ALS - CA	0.198397 -1.59631	2.74659 2.69325
ALS - DF-2 ALS - FT-100	-2.75023 -0.501857	2.75618 2.69325
CA - DF-2 CA - FT-100	-1.15392 1.09445	2.80832 2.74659
DF-2 - FT-100	2.24838	2.80832

 $[\]boldsymbol{\ast}$ denotes a statistically significant difference.

Multiple Range Tests for acenapth by mode

Method: 95.0 pmode	•	ey HSD LS Mean	Homogeneous Groups	
5 11 6 10	15 15 14 16	3.80127 4.44134 5.12813 5.63804	X X X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-1.32686 -1.83677 -0.640065 -0.509911 0.686793 1.1967	2.34637 2.26925 2.30556 2.3107 2.34637 2.26925

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average acenaphthene among the fuel and mode combinations.

Analysis Summary

Dependent variable: fluorene

Factors: fuel

mode

mode

Selection variable: mode<12

Number of complete cases: 59

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for fluorene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square		
MAIN EFFECTS					
A:fuel	224.986	4	56.2465	3.31	0.0198
B:mode	33.6482	3	11.2161	0.66	0.5811
INTERACTIONS					
AB	212.384	12	17.6986	1.04	0.4317
RESIDUAL	661.915	39	16.9722		
TOTAL (CORRECTED)	1158.59	58			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}$ significant differences in the average fluorene among the fuels.

CONCLUSION: The average fluorene for the DF-2 fuel is significantly different from the FT-100 fuel.

Means and 95% Tukey Intervals

 ${\tt CONCLUSION:}\$ There is no significant difference in the average fluorene among the modes.

Multiple Range Tests for fluorene by fuel

Method: 95 fuel	.0 percent Ti Count	ıkey HSD LS Mean	Homogeneous Groups
FT-100	12	5.76877	X
ADMM15	12	7.04309	XX
ALS	11	7.27518	XX
CA	12	9.12758	XX
DF-2	12	11.3521	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA	-0.232095 -2.08449	4.91784 4.80974
ADMM15 - DF-2	-4.30904	4.80974
ADMM15 - FT-100	1.27432	4.80974
ALS - CA	-1.8524	4.91784
ALS - DF-2	-4.07695	4.91784
ALS - FT-100	1.50641	4.91784
CA - DF-2	-2.22455	4.80974
CA - FT-100	3.35881	4.80974
DF-2 - FT-100	*5.58336	4.80974

^{*} denotes a statistically significant difference.

Multiple Range Tests for fluorene by mode

Method: 95.0 percent Tukey HSD

mode	Count	LS Mean	Homogeneous Groups	5
5 6 11	14 15 14 16	7.17223 7.83432 8.19741 9.24944	X X X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-0.662093 -2.07721 -1.02518 -1.41512 -0.363092 1.05203	4.10853 4.04607 4.17876 3.97349 4.10853 4.04607

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:}\ \ \, {\tt There}\ \, {\tt is}\ \, {\tt no}\ \, {\tt significant}\ \, {\tt interaction}\ \, {\tt in}\ \, {\tt the}\ \, {\tt average}\ \, {\tt fluorene}\ \, {\tt among}\ \, {\tt the}\ \, {\tt fuel}\ \, {\tt and}\ \, {\tt mode}\ \, {\tt combinations.}$

Analysis Summary

Dependent variable: phenanth

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for phenanth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	33757.8	4	8439.44	11.05	0.0000
B:mode	8830.11	3	2943.37	3.85	0.0159
INTERACTIONS AB	9241.53	12	770.128	1.01	0.4585
RESIDUAL	32075.1	42	763.693		
TOTAL (CORRECTED)	83646.1	61			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average phenanthrene among the fuels and modes.

CONCLUSION: There are two distinct fuel groupings with respect to the average phenanthrene. The average phenanthrene for the DF-2 and CA fuels are not significantly different from one another, but are significantly different from the remaining three fuels. The average phenanthrene for the ALS, FT-100, and ADMM15 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average phenanthrene for mode 5 is significantly different from modes 6 and $10\,.$

Multiple Range Tests for phenanth by fuel

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 12 ADMM15 28.5429 FT-100 12 38.1595 X ALS 14 38.3617 12 CA 74.605 DF-2 12 88.8256 +/- Limits Difference 30.9842 ADMM15 - ALS -9.8188 ADMM15 - CA *-46.0621 32.1538 ADMM15 - DF-2 *-60.2827 32.1538 ADMM15 - FT-100 -9.61664 ALS - CA *-36.2433 30.9842 ALS - DF-2 *-50.4639 30.9842 ALS - FT-100 0.202164 30.9842 CA - DF-2 -14.2206 32.1538 CA - FT-100 *36.4455 32.1538 DF-2 - FT-100 *50.6661 32.1538

^{*} denotes a statistically significant difference.

Multiple Range Tests for phenanth by mode

Method: 95	.0 percent T	 ukey HSD		
mode	Count	LS Mean	Homogeneous Gr	roups
5	16	34.0794	X	
11	15	54.571	XX	
10	16	61.7122	X	
6	15	64.4332	X	
Contrast			Difference	+/- Limits
5 - 6			*-30.3539	26.57
5 - 10			*-27.6329	26.138
5 - 11			-20.4916	26.57
6 - 10			2.72099	26.57
6 - 11			9.86225	26.9952
10 - 11			7.14126	26.57

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average phenanthrene among the fuel and mode combinations.

Analysis Summary

Dependent variable: anthr

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 61

Analysis of Variance for anthr - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square		P-Value
MAIN EFFECTS A:fuel B:mode	67.4897 13.7647	4 3	16.8724 4.58822	12.74 3.46	0.0000
INTERACTIONS AB	13.3777	12	1.11481	0.84	0.6090
RESIDUAL	54.3166	41	1.3248		
TOTAL (CORRECTED)	150.016	60			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average anthracene among the fuels and modes.

CONCLUSION: The average anthracene for the CA fuel is significantly different from the FT-100, ADMM15, and ALS fuels. The average anthracene for the ALS fuel is significantly different than the DF-2 and FT-100 fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average anthracene for mode 10 is significantly different than mode 5.

Multiple Range Tests for anthr by fuel

Method: fuel	95.0 percent Count	Tukey HSD LS Mean	Homogeneous Groups
ALS	13	1.2457	Х
ADMM15	12	2.29932	XX
FT-100	12	2.66069	X
DF-2	12	3.62913	XX
CA	12	4.24561	X

^{*} denotes a statistically significant difference.

Multiple Range Tests for anthr by mode

Method: 95.0 pmode	•	ey HSD LS Mean	Homogeneous Groups	3
5 11 6 10	15 15 15 16	2.08723 2.7156 3.13382 3.32771	X XX XX X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11		*	-1.0466 -1.24048 -0.628376 -0.193884 0.418221 0.612105	1.12548 1.10775 1.12548 1.10775 1.12548 1.10775

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average anthracene among the fuel and mode combinations.

Analysis Summary

Dependent variable: fluoran

Factors:

fuel mode

mode
Selection variable: mode<12

Number of complete cases: 62

CA

Fuel

DF-2

FT-100

ALS

ADMM15

Analysis of Variance for fluoran - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	6792.8	4	1698.2	14.46	0.0000
B:mode	1674.88	3	558.292	4.75	0.0061
INTERACTIONS AB	3754.7	12	312.892	2.66	0.0094
RESIDUAL	4933.61	42	117.467		
TOTAL (CORRECTED)	17092.2	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average fluoranthene among the fuels, modes and fuel*mode interaction.

CONCLUSION: The average fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluoranthene for modes 6 and 10 are significantly different than mode 5, but not significantly different from one another.

Multiple Range Tests for fluoran by fuel

Method: fuel	95.0 percent To	ıkey HSD LS Mean	Homogeneous Groups
ADMM15	12	9.4552	X
FT-100	12	14.8235	X
ALS	14	19.2862	X
CA	12	20.3461	X
DF-2	12	40.7715	X

Contrast	Difference	+/- Limits
ADMM15 - ALS	-9.83103	12.1517
ADMM15 - CA	-10.8909	12.6105
ADMM15 - DF-2	*-31.3163	12.6105
ADMM15 - FT-100	-5.36831	12.6105
ALS - CA	-1.0599	12.1517
ALS - DF-2	*-21.4853	12.1517
ALS - FT-100	4.46272	12.1517
CA - DF-2	*-20.4254	12.6105
CA - FT-100	5.52262	12.6105
DF-2 - FT-100	*25.948	12.6105

^{*} denotes a statistically significant difference.

Multiple Range Tests for fluoran by mode

Method: 95.0 mode	-	ey HSD LS Mean	Homogeneous Gr	oups
5 11 6 10	15	12.6339 20.6494 24.5815 25.8812	X XX X X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			*-11.9476 *-13.2473 -8.01553 -1.29968 3.93205 5.23173	10.4206 10.2511 10.4206 10.4206 10.5873 10.4206

 $[\]boldsymbol{\ast}$ denotes a statistically significant difference.

CONCLUSION: The trend in the average fluoranthene across the modes for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average fluoranthene for the DF-2 fuel at modes 10 and 11 are significantly different than the other four fuels.

Analysis Summary

Dependent variable: pyrene

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 62

CA

Fuel

DF-2

FT-100

ALS

ADMM15

Analysis of Variance for pyrene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	24058.4	4	6014.59	31.97	0.0000
B:mode	3466.4	3	1155.47	6.14	0.0015
INTERACTIONS					
AB	9336.65	12	778.054	4.14	0.0003
RESIDUAL	7901.13	42	188.122		
TOTAL (CORRECTED)	44659.6	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average pyrene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: The average pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The average pyrene for the ASL, CA, FT-100, and ADMM15 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average pyrene for modes 10 and 11 are significantly different than mode 5. The average pyrene for mode 6 is not significantly different than the remaining three modes.

Multiple Range Tests for pyrene by fuel

Method: 95.	0 percent To Count	ukey HSD LS Mean	Homogeneous Groups
ADMM15	12	9.0201	X
FT-100	12	11.872	X
CA	12	16.0453	X
ALS	14	19.177	X
DF-2	12	63.2917	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	-10.1569 -7.02516 *-54.2716 -2.85191 3.13175 *-44.1147 7.30501 *-47.2464 4.17325 *51.4197	15.378 15.9585 15.9585 15.9585 15.378 15.378 15.378 15.9585 15.9585

^{*} denotes a statistically significant difference.

Multiple Range Tests for pyrene by mode

Method: 95.0 mode	-	ukey HSD LS Mean	Homogeneous Gr	oups
5 6 11 10	15 15	11.6778 24.5073 28.2235 31.1162	X XX X X	
Contrast				+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-12.8295 *-19.4385 *-16.5458 -6.60898 -3.71629 2.8927	13.1872 12.9728 13.1872 13.1872 13.3982 13.1872

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average pyrene across the modes for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average pyrene at modes 10 and 11 for the DF-2 fuel are significantly different than the other four fuels.

Multifactor ANOVA - Benzo[a]anthracene (µg/kW-hr) Soluble PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: benzoaan

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 60

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for benzoaan - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square		P-Value
MAIN EFFECTS A:fuel B:mode	27.1788 2.53806	4 3	6.79471 0.84602	44.20 5.50	0.0000
INTERACTIONS AB	6.32452	12	0.527043	3.43	0.0016
RESIDUAL	6.14848	40	0.153712		
TOTAL (CORRECTED)	42.1988	59			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[a]anthracene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: There are four distinct fuel groupings with respect to the average benzo[a]anthracene. Fuels DF-2, CA, and ALS are significantly different from one another and the remaining two fuels. The FT-100 and ADMM15 fuels are not significantly different from one another, but are significantly different than the other three fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[a]anthracene for mode 10 is significantly different than modes 5 and 6. The average benzo[a]anthracene for mode 11 is not significantly different than the remaining three modes.

Multiple Range Tests for benzoaan by fuel

	0 percent Tu Count	-	Homogeneous G	roups
FT-100 ALS CA		1.16275		
Contrast			Difference	+/- Limits
ADMM15 - AL ADMM15 - CA ADMM15 - CA ADMM15 - FT ALS - CA ALS - DF-2 ALS - FT-10 CA - DF-2 CA - FT-100 DF-2 - FT-1	7-2 7-100		*-0.541735 *-0.999128 *-1.83181 -0.0404 *-0.457393 *-1.29007 *0.501335 *-0.832681 *0.958728 *1.79141	0.440551 0.467457 0.457182 0.467457 0.451205 0.440551 0.451205 0.467457 0.477511 0.467457

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzoaan by mode

					_
Method: 95. mode	.0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups	
5	15	0.612678	Х		_
6	15	0.748889	X		
11	14	0.857056	XX		
10	16	1.16633	X		
Contrast			Difference	+/- Limits	_
5 - 6			-0.136211	0.383771	
5 - 10			*-0.553656	0.377727	
5 - 11			-0.244377	0.390563	
6 - 10			*-0.417445	0.377727	
6 - 11			-0.108166	0.390563	
10 - 11			0.309279	0.384626	

^{*} denotes a statistically significant difference.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The trend in the average benzo[a]anthracene across the modes for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average benzo[a]anthracene at modes 10 and 11 for the DF-2 fuel are significantly different than the other four fuels.

 ${\tt Multifactor\ ANOVA\ -\ Chrysene\ (\mu g/kW-hr)} \qquad {\tt Soluble\ PAH}$ LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: chrysene

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 62

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for chrysene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	289.281	4	72.3202	34.50	0.0000
B:mode	11.5288	3	3.84294	1.83	0.1558
INTERACTIONS AB	36.6934	12	3.05779	1.46	0.1788
RESIDUAL	88.0472	42	2.09636		
TOTAL (CORRECTED)	424.358	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average chrysene among the fuels.

CONCLUSION: The average chrysene for the DF-2 fuel is significantly different than the remaining four fuels. Also, the average chrysene for the CA fuel is significantly different than the ADMM15 fuel.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant difference in the average chrysene among the modes.

Multiple Range Tests for chrysene by fuel

3D8845 10 0.031502 V	Method: fuel	95.0 percent Count	Tukey HSD LS Mean	Homogeneous Groups
7 D M 1 C				
ADMM15 12 0.731573 X	ADMM15	12	0.731573	X
FT-100 12 0.86227 XX	FT-100	12	0.86227	XX
ALS 14 2.24956 XX	ALS	14	2.24956	XX
CA 12 2.42491 X	CA	12	2.42491	X
DF-2 12 6.77433 X	DF-2	12	6.77433	X

D1 2	0.77133	21		
Contrast		Difference	+/- Limits	-
ADMM15 - ALS		-1.51799	1.62336	
ADMM15 - CA		*-1.69334	1.68464	
ADMM15 - DF-2		*-6.04276	1.68464	
ADMM15 - FT-100		-0.130697	1.68464	
ALS - CA		-0.175346	1.62336	
ALS - DF-2		*-4.52476	1.62336	
ALS - FT-100		1.38729	1.62336	
CA - DF-2		*-4.34942	1.68464	
CA - FT-100		1.56264	1.68464	
DF-2 - FT-100		*5.91206	1.68464	

^{*} denotes a statistically significant difference.

Multiple Range Tests for chrysene by mode

Method: 95.0	percent Tu	ukey HSD		
	Count	LS Mean	Homogeneous Gr	oups
5	16	2.10097	X	
11	15	2.45668	X	
6	15	2.59673	X	
10	16	3.27974	X	
Contrast			Difference	+/- Limits
5 - 6			-0.495764	1.39209
5 - 10			-1.17877	1.36945
5 - 11			-0.355715	1.39209
6 - 10			-0.683006	1.39209
6 - 11			0.140048	1.41436
10 - 11			0.823054	1.39209

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average chrysene among the fuel and mode combinations.}$

Analysis Summary

Dependent variable: benzobfl

Factors:

fuel mode

Selection variable: mode<12

Number of complete cases: 60

Analysis of Variance for benzobfl - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	18.0149	4	4.50373	8.36	0.0001
B:mode	2.38476	3	0.79492	1.47	0.2359
INTERACTIONS					
AB	6.23245	12	0.519371	0.96	0.4978
RESIDUAL	21.5616	40	0.53904		
TOTAL (CORRECTED)	48.7599	59			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzo[b] fluoranthene among the fuels.}$

CONCLUSION: There are two distinct fuel groupings with respect to the average benzo[b]fluoranthene. The CA, ALS, and DF-2 fuels are not significantly different from one another, but are different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: There is no significant difference in the average benzo[b]fluoranthene among the modes.

Multiple Range Tests for benzobfl by fuel

Method: 95.0 percent Tukey HSD fuel Count LS Mean Homogeneous Groups ______ 12 0.348473 12 0.48136 FT-100 ADMM15 X DF-2 12 1.37735 14 ALS 1.49583 X CA 10 1.71464 Difference +/- Limits 0.824998 ADMM15 - ALS *-1.01447 ADMM15 - CA *-1.23328 0.897928 ADMM15 - DF-2 *-0.895986 0.85614 ADMM15 - FT-100 0.132886 0.85614 ALS - CA -0.218812 0.868285 ALS - DF-2 0.118483 0.824998 ALS - FT-100 *1.14736 0.824998 CA - DF-2 0.337295 0.897928 CA - FT-100 *1.36617 0.897928

* denotes a statistically significant difference.

DF-2 - FT-100

*1.02887

0.85614

Multiple Range Tests for benzobfl by mode

Method: 95.0 mode	percent Tul Count	key HSD LS Mean	Homogeneous Group	s
11	14	0.795638	X	
6	15	1.02147	X	
10	16	1.15339	X	
5	15	1.36363	X	
Contrast			Difference	+/- Limits
5 - 6			0.342159	0.718667
5 - 10			0.210239	0.707349
5 - 11			0.567988	0.731388
6 - 10			-0.13192	0.707349
6 - 11			0.225829	0.731388
10 - 11			0.357749	0.72027

^{*} denotes a statistically significant difference.

 $\hbox{CONCLUSION:} \quad \hbox{There is no significant interaction in the average benzo[b] fluoranthene among the fuel and mode combinations. } \\$

Analysis Summary

Dependent variable: benzokfl

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 61

Analysis of Variance for benzokfl - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	26.7077	4	6.67693	10.92	0.0000
B:mode	4.97265	3	1.65755	2.71	0.0574
INTERACTIONS AB	7.48971	12	0.624142	1.02	0.4490
RESIDUAL	25.0787	41	0.611676		
TOTAL (CORRECTED)	64.3624	60			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzo[k] fluoranthene among the fuels and modes.}$

CONCLUSION: The average benzo[k]fluoranthene for the DF-2 fuel is significantly different than the ADMM15, ALS, and FT-100 fuels. The average benzo[k]fluoranthene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another. Also, the average benzo[k]fluoranthene for the CA fuel is significantly different than the FT-100 fuel.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo [k] fluoranthene for mode 10 is significantly different than mode 11.

 $\hbox{Multiple Range Tests for benzokfl by fuel}\\$

Method:	95.0 percent Tu	key HSD		
			Homogeneous Gr	oups
FT-100	12	0.429788	X	
ADMM15	12	0.521305	XX	
ALS	14	0.79762	XX	
CA	11	1.39424	XX	
DF-2	12	2.22632	X	
G			D! 66	
Contrast			Difference	
ADMM15 -			-0.276314	
ADMM15 -	CA		-0.872935	0.931441
ADMM15 -	DF-2		*-1.70502	0.910967
ADMM15 -	FT-100		0.0915172	0.910967
ALS - CA			-0.596621	0.899059
ALS - DF	-2		*-1.4287	0.87783
ALS - FT	-100		0.367832	0.87783
CA - DF-	2		-0.832082	0.931441
CA - FT-	100		*0.964452	0.931441
DF-2 - F	T-100		*1.79653	0.910967

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzokfl by mode

Method: 95.0 mode	percent Tu	ıkey HSD LS Mean	Homogeneous Gro	ups
11 6 5 10	14 15 16 16	0.665197 1.02958 1.11709 1.48356	X XX XX X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			0.0875137 -0.366465 0.451894 -0.453979 0.36438 *0.818359	0.75271 0.74047 0.76646 0.75271 0.778291 0.76646

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average benzo[k] fluoranthene among the fuel and mode combinations.}$

Analysis Summary

Dependent variable: benzoepy

Factors: fuel

mode

mode

Selection variable: mode<12

Number of complete cases: 57

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for benzoepy - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel B:mode	6.67906 0.67039	4 3	1.66977 0.223463	7.66 1.02	0.0001
INTERACTIONS AB	3.16355	12	0.26363	1.21	0.3137
RESIDUAL	8.07046	37	0.21812		
TOTAL (CORRECTED)	18.3948	56 			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzo[e] pyrene among the fuels.}$

CONCLUSION: The average benzo[e]pyrene for the CA and DF-2 fuels are significantly different than the FT-100 and ADMM15 fuels, but not significantly different from one another. Also, the average benzo[e]pyrene for the ALS fuel is not significantly different from the remaining four fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: There is no significant difference in the average benzo[e]pyrene among the modes.

Multiple Range Tests for benzoepy by fuel

Method: 95.0 fuel	-	-	Homogeneous G	roups
ADMM15 FT-100 ALS DF-2 CA	11 14 10	0.221489 0.262074 0.599731 0.957389 1.10608	X XX X	
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-1 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	2 L00		-0.378242 *-0.884591 *-0.7359 -0.0405851 -0.506349 -0.357658 0.337657 0.148691 *0.844006 *0.695315	0.539519 0.570973 0.585073 0.570973

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzoepy by mode

Method: 95.0 percent Tukey HSD					
mode	Count	LS Mean	Homogeneous Groups	i e	
11	15	0.471842	X		
6	12	0.60491	X		
5	14	0.68533	X		
10	16	0.755329	X		
Contrast			Difference	+/- Limits	
5 - 6			0.0804202	0.49425	
5 - 10			-0.0699989	0.459781	
5 - 11			0.213488	0.466878	
6 - 10			-0.150419	0.479781	
6 - 11			0.133068	0.486587	
10 - 11			0.283487	0.451533	

^{*} denotes a statistically significant difference.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average benzo[e] pyrene among the fuel and mode combinations.}$

Multifactor ANOVA - Benzo[a]pyrene (µg/kW-hr) Soluble PAH LPP Only Modes 5,6,10,11

Analysis Summary

Dependent variable: benzoapy

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 62

Scatterplot by Level Code

Analysis of Variance for benzoapy - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel B:mode	1.15306 0.242293	4	0.288266	31.27 8.76	0.0000
INTERACTIONS AB	0.242293	12	0.0311159	3.37	0.0001
RESIDUAL	0.387228	42	0.00921972		
TOTAL (CORRECTED)	2.27649	61			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[a]pyrene among the fuels, modes, and fuel*mode interaction.

CONCLUSION: The average benzo[a]pyrene for the CA and ALS fuels are significantly different from the remaining three fuels but not different from one another. The average benzo[a]pyrene for the ADMM15 fuel is significantly different from the DF-2 fuel, but not significantly different from the FT-100 fuel.

Means and 95% Tukey Intervals

CONCLUSION: The average benzo [a] pyrene for mode 10 is significantly different from the remaining three modes.

Multiple Range Tests for benzoapy by fuel

Method:	95.0 percent Tu Count	key HSD LS Mean	Homogeneous Groups
ADMM15	12	0.0549743	X
FT-100	12	0.0598222	XX
DF-2	12	0.171345	X
CA	12	0.338816	X
ALS	14	0.376119	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2	*-0.321145 *-0.283842 *-0.116371 -0.00484792 0.0373028 *0.204774	0.107656 0.11172 0.11172 0.11172 0.107656 0.107656
ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	*0.316297 *0.167471 *0.278994 0.111523	0.107656 0.11172 0.11172 0.11172

* denotes a statistically significant difference.

 $\label{eq:multiple_Range_Tests} \ \text{for benzoapy by mode}$

Method: 95.0 pmode	•	ey HSD LS Mean	Homogeneous Groups	5
				-
5	16	0.140402	X	
6	15	0.170284	X	
11	15	0.18635	X	
10	16	0.303826	X	
Contrast			Difference	+/- Limits
5 - 6			-0.029882	0.0923192
5 - 10			*-0.163424	0.0908179
5 - 11			-0.0459479	0.0923192
6 - 10			*-0.133542	0.0923192
6 - 11			-0.0160659	0.0937964
10 - 11			*0.117476	0.0923192

 $[\]ensuremath{\star}$ denotes a statistically significant difference.

CONCLUSION: The trend in the average benzo[a]pyrene across the modes for the ALS fuel is significantly different than the trends for the remaining four fuels. Also, the average benzo[a]pyrene for the CA fuel is significantly different than the other fuels at mode 6.

Multifactor ANOVA - Indeno(1,2,3-cd)pyrene (µg/kW-hr) Soluble PAH LPP and DF-2, FT-100, ADMM15 Fuels Only Modes 5,6,10,11

Analysis Summary

Dependent variable: indeno

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 35

Analysis of Variance for indeno - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	0.480412	2	0.240206	57.54	0.0000
B:mode	0.15027	3	0.0500901	12.00	0.0001
INTERACTIONS AB	0.151044	6	0.0251739	6.03	0.0007
RESIDUAL	0.0960184	23	0.00417471		
TOTAL (CORRECTED)	0.888817	34			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average indeno(1,2,3-cd)pyrene among the fuels, modes, and fuel*mode interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average indeno(1,2,3-cd)pyrene for the DF-2 fuel is significantly different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another with respect to the average indeno(1,2,3-cd)pyrene.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average indeno(1,2,3-cd)pyrene for mode 10 is significantly different than modes 5 and 6. Mode 11 is not significantly different from the remaining three modes with respect to the average indeno(1,2,3-cd)pyrene.

Multiple Range Tests for indeno by fuel

Method: 95	.0 percent T	ukey HSD		
fuel	Count	LS Mean	Homogeneous G	roups
FT-100	12	0.062351	X	
ADMM15	11	0.0651034	X	
DF-2	12	0.31108	X	
Contrast			Difference	+/- Limits
ΔDMM15 - D	 F-2		*-0 245977	0 0675663

ADMM15 - DF-2 *-0.245977 0.0675663 ADMM15 - FT-100 0.00275231 0.0675663 DF-2 - FT-100 *0.248729 0.0660811

* denotes a statistically significant difference.

Multiple Range Tests for indeno by mode

Method: 95.0 percent Tukev HSD

mode	Count	LS Mean	Homogeneous Groups
5	8	0.0794008	Х
6	9	0.0947125	X
11	9	0.164935	XX

10	9	0.245665	X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-0.0153117 *-0.166264 -0.085534 *-0.150952 -0.0702223 0.0807299	0.0869054 0.0869054 0.0869054 0.0843106 0.0843106 0.0843106

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average indeno(1,2,3-cd) pyrene across the modes for the DF-2 fuel is significantly different than the trends in the remaining two fuels. The average indeno(1,2,3-cd) pyrene at modes 10 and 11 for the DF-2 fuel are significantly different than the ADMM15 and FT-100 fuels.

Analysis Summary

Dependent variable: dibenzo

Factors: fuel

mode

Selection variable: mode<12

Number of complete cases: 31

Analysis of Variance for dibenzo - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	0.0316789	2	0.0158394	32.39	0.0000
B:mode	0.00516132	3	0.00172044	3.52	0.0351
INTERACTIONS AB	0.00710011	6	0.00118335	2.42	0.0658
RESIDUAL	0.00929022	19	0.000488959		
TOTAL (CORRECTED)	0.0581359	30			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average dibenzo[a,h] anthracene among the fuels and modes.$

CONCLUSION: The average dibenzo[a,h] anthracene for the DF-2 fuel is significantly different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average dibenzo[a,h] anthracene for mode 10 is significantly different from mode 5. Modes 6 and 11 are not significantly different from one another or the other two modes.

Multiple Range Tests for dibenzo by fuel

Method: 95.0 p		cey HSD LS Mean	Homogeneous Group	s
ADMM15 FT-100 DF-2	10 10 11	0.0121819 0.0155898 0.0817954	X X X	
Contrast			Difference	+/- Limits
ADMM15 - DF-2 ADMM15 - FT-10 DF-2 - FT-100	0		*-0.0696135 -0.00340796 *0.0662056	0.0245556 0.0251335 0.0245556

^{*} denotes a statistically significant difference.

Multiple Range Tests for dibenzo by mode

Method: mode	95.0 percent Tu Count	ikey HSD LS Mean	Homogeneous Groups
5	7	0.0199922	Х
6	7	0.0302323	XX
11	8	0.0412534	XX

10	9	0.0546116	X	
Contrast			Difference	+/- Limits
5 - 6 5 - 10 5 - 11 6 - 10 6 - 11 10 - 11			-0.0102401 *-0.0346194 -0.0212612 -0.0243793 -0.0110211 0.0133582	0.0332468 0.0313454 0.0321911 0.0313454 0.0321911 0.0302233

^{*} denotes a statistically significant difference.

 $\hbox{CONCLUSION:} \quad \hbox{There is no significant interaction in the average dibenzo\,[a,h]\, anthracene among the fuel and mode combinations. } \\$

 ${\tt Multifactor~ANOVA~-~Benzo[ghi]perylene~(\mu g/kW-hr)} \qquad {\tt Soluble~PAH}$ LPP and CA, DF-2, FT-100, ADMM15 Fuels Only Modes 5,6,10,11

Analysis Summary

Dependent variable: benzogpe

Factors:

fuel

mode

Selection variable: mode<12

Number of complete cases: 46

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for benzogpe - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:fuel	1.61627	3	0.538758	58.74	0.0000
B:mode	1.26649	3	0.422165	46.03	0.0000
INTERACTIONS					
AB	0.581746	9	0.0646384	7.05	0.0000
RESIDUAL	0.275134	30	0.00917113		
TOTAL (CORRECTED)	3.89934	45			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[ghi]perylene among the fuels, modes and fuel*mode interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are two distinct fuel groupings with respect to the average benzo[ghi]perylene. The CA and DF-2 fuels are not significantly different from one another, but are different from the remaining two fuels. The ADMM15 and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct mode groupings with respect to the average benzo[ghi]perylene. Modes 10 and 11 are significantly different from one another and the remaining two modes. Modes 5 and 6 are not significantly different from one another, but are significantly different than the other two modes.

Multiple Range Tests for benzogpe by fuel

Method: 95.0 percent Tukey HSD

fuel	Count	LS Mean	Homogeneous Gr	roups
FT-100	12	0.147474	X	
ADMM15	11	0.174669	X	
DF-2	12	0.497732	X	
CA	11	0.573893	X	
Contrast			Difference	+/- Limits
ADMM15 - CA			*-0.399224	0.111054
ADMM15 - DF-	2		*-0.323063	0.108716
ADMM15 - FT-	100		0.0271954	0.108716

* denotes a statistically significant difference.

Multiple Range Tests for benzogpe by mode

Method: 95.0 percent Tukey HSD

CA - DF-2

mode Count LS Mean Homogeneous Groups

0.0761614

0.108716

5	11	0.179922	X	
6	11	0.206259	X	
11	12	0.419015	X	
10	12	0.588573	X	
Contrast			Difference	+/- Limits
5 - 6			-0.0263369	0.111054
5 - 10			*-0.408651	0.108716
5 - 11			*-0.239093	0.108716
6 - 10			*-0.382314	0.108716
6 - 11			*-0.212756	0.108716
10 - 11			*0.169558	0.106326

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average benzo[ghi]perylene across the modes for the DF-2 and CA fuels is significantly different than the trends in the remaining two fuels. The average benzo[ghi]perylene at modes 10 and 11 for the DF-2 and CA fuels are significantly different than the ADMM15 and FT-100 fuels.

APPENDIX F ANOVA for Pilot Condition

TABLE OF CONTENTS

Total Particulates	F-3
BSNOX	F-7
BSHC	F-12
BSCO	F-17
BSCO2	F-21
BSSOF	F-25
BENZENE Toxic Gaseous Emissions	
1,3 Butadiene Toxic Gaseous Emissions	F-35
Formaldehyde Toxic Gaseous Emissions	F-40
Acetaldehyde Toxic Gaseous Emissions	F-44
NAPHTHALENE Gaseous PAH	F-49
2-Methylnaphthalene Gaseous PAH	
1-Methylnaphthalene Gaseous PAH	F-59
2,6-Dimethylnaphthalene Gaseous PAH	F-64
Acenaphthylene Gaseous PAH	F-69
Acenaphthene Gaseous PAH	F-74
Fluorene Gaseous PAH	F-78
Phenanthrene Gaseous PAH	F-82
Anthracene Gaseous PAH	F-86
Fluoranthene Gaseous PAH	F-91
Pyrene Gaseous PAH	
Naphthalene Soluble PAH	F-99
Acenaphthylene Soluble PAH	F-103
Acenaphthene Soluble PAH	F-108
Fluorene Soluble PAH	F-112
Phenanthrene Soluble PAH	F-116
Anthracene Soluble PAH	F-120
Fluoranthene Soluble PAH	F-125
Pyrene Soluble PAH	F-130
Benzo[a]anthracene Soluble PAH	F-134
Chrysene Soluble PAH	F-138
Benzo[b]fluoranthene Soluble PAH	F-142
Benzo[k]fluoranthene Soluble PAH	F-147
Benzo[e]pyrene Soluble PAH	F-151
Benzo[a]pyrene Soluble PAH	F-156
Indeno(1,2,3-cd)pyrene Soluble PAH	F-161
Multiple Range Tests for indeno by MODE	
Benzo[ghi]perylene Soluble PAH	F-166

Analysis Summary

Dependent variable: PARTIC

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for PARTIC - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: COND	0.455465	2	0.227733	114.53	0.0000
B:FUEL	0.835454	4	0.208864	105.04	0.0000
C:MODE	0.0313438	1	0.0313438	15.76	0.0002

INTERACTIONS					
AB	0.105563	8	0.0131954	6.64	0.0000
AC	0.0543366	2	0.0271683	13.66	0.0000
BC	0.0110984	4	0.0027746	1.40	0.2462
ABC	0.0140696	8	0.0017587	0.88	0.5349
RESIDUAL	0.121298	61	0.00198849		
TOTAL (CORRECTED)	1.62565	90			

All F-ratios are based on the residual mean square error.

CONCLUSIONS: Statistically significant differences in the average particulates among the fuels, modes, pilot conditions, and some two-way interactions.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ The average particulates at all three pilot conditions are significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average particulates for the ALS, CA, and DF-2 fuels are significantly different from each other and the remaining two fuels. The average particulates for the ADMM15 and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt Modes\ 10}$ and 11 are significantly different from one another with respect to the average particulates.

Multiple Range Tests for PARTIC by COND

Method: 95.0 COND	percent To	ukey HSD LS Mean	Homogeneous Gro	pups
LPP PilotA PilotB	31 30 30	0.216564 0.277749 0.387645	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - Pil			*-0.0611853 *-0.171081 *-0.109896	0.0274365 0.0274365 0.0276605

^{*} denotes a statistically significant difference.

Multiple Range Tests for PARTIC by FUEL

Method:	95.0 percent Tu	key HSD		
FUEL	Count	LS Mean	Homogeneous Gr	coups
		0.184316		
FT-100	18	0.209423	X	
ALS	19	0.28249	X	
CA	18	0.342372	X	
DF-2	18	0.451328	X	
Contrast	:		Difference	+/- Limits
ADMM15 -	· ALS		*-0.098174	0.041231
ADMM15 -	· CA		*-0.158056	0.0417844
ADMM15 -	DF-2		*-0.267012	0.0417844
ADMM15 -	FT-100		-0.0251069	0.0417844
ALS - CA	1		*-0.0598823	0.041231
ALS - DF	7-2		*-0.168838	
ALS - FI			*0.0730671	
CA - DF-			*-0.108956	
CA - FT-			*0.132949	
DF-2 - F			*0.241905	0.0417844
Dr-2 - F	1-100		^0.241905	0.041/844

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Multiple Range Tests for PARTIC by MODE

Method: 95.0) percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	coups
11 10	45 46	0.275402 0.31257	X X	
Contrast			Difference	+/- Limits
10 - 11			*0.0371679	0.0186959

 $[\]mbox{*}$ denotes a statistically significant difference.

CONCLUSION: The trend in the average particulates across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average particulates for the DF-2 at the Pilot B condition is significantly different than the other four fuels; however, there is not a significant difference at the LPP condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is a significant interaction among the mode and pilot condition combinations. While the average particulates at mode 11 is significantly different at the LPP and Pilot A conditions, there is no significant difference at the Pilot B condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average particulates among the fuel and mode combinations.

Analysis Summary

Dependent variable: BSNOX

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for BSNOX - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND B:FUEL C:MODE	80.9912 3.63542 6.69082	2 4 1	40.4956 0.908855 6.69082	2053.21 46.08 339.24	0.0000

INTERACTIONS					
AB	3.97541	8	0.496927	25.20	0.0000
AC	0.761949	2	0.380974	19.32	0.0000
BC	0.595608	4	0.148902	7.55	0.0001
ABC	0.264499	8	0.0330624	1.68	0.1226
RESIDUAL	1.2031	61	0.019723		
TOTAL (CORRECTED)	98.0747	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average BSNOX among the fuels, modes, pilot conditions, and two-way interactions.

Means and 95% Tukey HSD Intervals

 $\hbox{CONCLUSION:} \quad \hbox{All three pilot conditions are significantly different from one another with respect to the average BSNOX.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average BSNOX for the DF-2 fuel is significantly different than the remaining four fuels. The CA fuel has significantly different average BSNOX than the ALS and FT-100 fuels. Also, the FT-100, CA, and ADMM15 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

 $\tt CONCLUSION: Modes 10$ and 11 are significantly different from one another with respect to the average $\tt BSNOX.$

Multiple Range Tests for BSNOX by COND

Method: 95. COND	0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	coups
PilotB PilotA LPP	30 30 31	1.11171 3.06692 3.16761	x x x	
Contrast			Difference	+/- Limits
LPP - Pilot. LPP - Pilot. PilotA - Pi	В		*0.100688 *2.0559 *1.95521	0.0864081 0.0864081 0.0871135

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSNOX by FUEL

Method: 95.0 percent Tukey HSD

FUEL	Count	LS Mean	Homogeneous Groups	
FT-100	18	2.25888	Х	
ALS	19	2.32239	X	
ADMM15	18	2.37957	XX	
CA	18	2.45407	X	
DF-2	18	2.82881	X	

Contrast	Difference	+/- Limits
ADMM15 - ALS	0.0571797	0.129852
ADMM15 - CA	-0.0745012	0.131595
ADMM15 - DF-2	*-0.449242	0.131595
ADMM15 - FT-100	0.120692	0.131595
ALS - CA	*-0.131681	0.129852
ALS - DF-2	*-0.506422	0.129852
ALS - FT-100	0.0635123	0.129852
CA - DF-2	*-0.374741	0.131595
CA - FT-100	*0.195193	0.131595
DF-2 - FT-100	*0.569934	0.131595
ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100	*-0.131681 *-0.506422 0.0635123 *-0.374741 *0.195193	0.129852 0.129852 0.129852 0.131595 0.131595

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for BSNOX by MODE}\\$

Method: 99	5.0 percent Tu Count	key HSD LS Mean	Homogeneous G	roups
11 10	45 46	2.17722 2.72026	X	
Contrast			Difference	+/- Limits
10 - 11			*0.543039	0.0588805

^{*} denotes a statistically significant difference.

CONCLUSION: The average BSNOX for the DF-2 fuel is significantly different than the remaining four fuels at the LPP condition. This trend does not exist at the Pilot A or Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: A significant interaction exists between the pilot condition and the modes. The difference in the average BSNOX between modes 10 and 11 at the LPP condition is larger than the difference at the Pilot B condition.

CONCLUSION: A significant interaction exists between the mode and fuel levels. The difference in the average BSNOX between modes 10 and 11 is the largest at the DF-2 fuel and the smallest at the FT-100 fuel.

Analysis Summary

Dependent variable: BSHC

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for BSHC - Type III Sums of Squares

Source	Sum of	Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND		1.91308	2	0.956538	41.95	0.0000

B:FUEL	28.1562	4	7.03905	308.73	0.0000
C:MODE	4.6382	1	4.6382	203.43	0.0000
INTERACTIONS					
AB	1.41323	8	0.176654	7.75	0.0000
AC	0.53378	2	0.26689	11.71	0.0000
BC	0.647364	4	0.161841	7.10	0.0001
ABC	0.165542	8	0.0206928	0.91	0.5163
RESIDUAL	1.39082	61	0.0228003		
TOTAL (CORRECTED)	38.795	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average BSHC among the fuels, modes, pilot conditions, and interactions.

Means and 95% Tukey HSD Intervals

CONCLUSION: Average BSHC at the Pilot A and Pilot B conditions are not significantly different from one another, but both are different from the average BSHC at the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average BSHC at the FT-100, CA, and DF-2 fuels are all significantly different from one another. The average BSHC for the ADMM15 and ALS fuels are not significantly different from one another, but are different from the other 3 fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average BSHC at modes 10 and 11 are significantly different from one another.

Multiple Range Tests for BSHC by COND

Method: 95.0	-	ıkey HSD LS Mean	Homogeneous Gr	coups
LPP PilotB PilotA	31 30 30	1.05976 1.32712 1.39471	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotE PilotA - Pil	3		*-0.334943 *-0.267355 0.0675875	0.0929048 0.0929048 0.0936632

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSHC by FUEL

Method: 95.0	percent Tuk	tey HSD				
FUEL	Count	LS Mean	Homogeneous Gr	oups		
FT-100	18	0.565613	X			
ALS	19	0.965014	X			
ADMM15	18	0.971421	X			
CA	18	1.69051	X			
DF-2	18	2.1101	X			
Contrast			Difference	+/-	Limits	

Contrast	Difference	+/- Limits
ADMM15 - ALS	0.0064071	0.139615
ADMM15 - CA	*-0.719086	0.141489
ADMM15 - DF-2	*-1.13868	0.141489
ADMM15 - FT-100	*0.405808	0.141489
ALS - CA	*-0.725493	0.139615
ALS - DF-2	*-1.14508	0.139615
ALS - FT-100	*0.399401	0.139615
CA - DF-2	*-0.419591	0.141489
CA - FT-100	*1.12489	0.141489
DF-2 - FT-100	*1.54448	0.141489

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for BSHC by MODE}\\$

Method: 95.0 MODE	percent Tu Count	ıkey HSD LS Mean	Homogeneous G	roups
11 10	45 46	1.03446 1.4866	X X	
Contrast			Difference	+/- Limits
10 - 11	·	·	*0.452133	0.0633075

^{*} denotes a statistically significant difference.

CONCLUSION: The CA and DF-2 fuels have significantly different trends in the average BSHC at the Pilot B condition than at the other two pilot conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: Mode 11 demonstrates a constant trend with respect to the average BSHC. However, mode 10 shows significantly different average BSHC at Pilot Conditions A and B than at the LPP condition.

CONCLUSION: A significant interaction exists between the mode and fuel levels. The differences in the average BSHC between modes 10 and 11 are largest at the CA and DF-2 fuels and the smallest at the FT-100 fuel.

Multifactor ANOVA - BSCO (g/kW-hr)

Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: BSCO

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for BSCO - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND B:FUEL C:MODE	45.521	2	22.7605	256.44	0.0000
	150.552	4	37.6379	424.05	0.0000
	229.06	1	229.06	2580.74	0.0000

INTERACTIONS

AB	13.742	8	1.71774	19.35	0.0000
AC	43.4943	2	21.7471	245.02	0.0000
BC	15.4364	4	3.85911	43.48	0.0000
ABC	3.21386	8	0.401733	4.53	0.0002
RESIDUAL	5.4142	61	0.0887574		
TOTAL (CORRECTED)	504.085	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average BSCO among the fuels, pilot conditions, modes, two-way interactions, and three-way interaction.

 $\hbox{CONCLUSION:} \quad \hbox{All three pilot conditions are significantly different from one another with respect to the average BSCO.}$

CONCLUSION: All five fuels are significantly different from one another with respect to the average BSCO.

CONCLUSION: Modes 10 and 11 are significantly different from one another with respect to the average BSCO.

Multiple Range Tests for BSCO by COND

Method: 95.0 COND	percent To	ukey HSD LS Mean	Homogeneous	Groups	
LPP PilotB PilotA	31 30 30	4.3539 5.3134 6.08064	X X X		
Contrast			Difference	+/- Limits	
LPP - PilotA LPP - PilotB PilotA - Pil	3		*-1.72674 *-0.959501 *0.767243	0.183303 0.183303 0.1848	

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSCO by FUEL

Method: 95	.0 percent To	ukey HSD		
FUEL	Count	LS Mean	Homogeneous Gr	roups
FT-100	18	3.19551	X	
ALS	19	4.50613	X	
ADMM15	18	5.43576	X	
CA	18	6.30206	X	
	18		X	
Contrast			Difference	+/- Limits
ADMM15 - Al			*0.929626	
ADMM15 - C	A		*-0.8663	0.279161
ADMM15 - DI	F-2		*-1.37134	0.279161
ADMM15 - F	Γ-100		*2.24025	0.279161
ALS - CA			*-1.79593	0.275463
ALS - DF-2			*-2.30097	0.275463
ALS - FT-1	0.0		*1.31063	0.275463
CA - DF-2			*-0.505044	0.279161
CA - FT-10	0		*3.10655	0.279161
DF-2 - FT-3	100		*3.6116	0.279161

 $[\]ensuremath{^{\star}}$ denotes a statistically significant difference.

Multiple Range Tests for BSCO by MODE

Method: 9	95.0 percent Tu Count	key HSD LS Mean	Homogeneous Gr	roups
11 10	45 46	3.66063 6.83799	X X	
Contrast			Difference	+/- Limits
10 - 11			*3.17736	0.124907

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average BSCO for the ADMM15 fuel is significantly different across the pilot conditions than the trends for the remaining four fuels.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: Mode 11 demonstrates a constant trend with respect to the average BSCO. However, mode 10 shows significantly different average BSCO at all three pilot conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: A significant interaction exists between the mode and fuel levels. The difference in the average BSCO between modes 10 and 11 is the largest at fuels CA and DF-2 and the smallest at the FT-100 fuel.

Analysis Summary

Dependent variable: BSCO2

Factors:

COND FUEL MODE

Number of complete cases: 91

Scatterplot by Level Code

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for BSCO2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND B:FUEL C:MODE	3026.88	2	1513.44	4.93	0.0103
	90449.4	4	22612.3	73.73	0.0000
	601921.0	1	601921.0	1962.53	0.0000

INTERACTIONS					
AB	4505.4	8	563.175	1.84	0.0874
AC	24.0168	2	12.0084	0.04	0.9616
BC	1529.07	4	382.267	1.25	0.3009
ABC	5306.95	8	663.369	2.16	0.0430
RESIDUAL	18709.1	61	306.707		
TOTAL (CORRECTED)	722927.0	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average BSCO2 among the fuels, modes, pilot conditions, and three-way interaction.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~$ The average BSCO2 for the Pilot B condition is significantly different than the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average BSCO2 for the FT-100, ALS, and ADMM15 fuels are significantly different from each other and the remaining two fuels. The average BSCO2 for the CA and DF-2 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt Modes\ 10}$ and 11 are significantly different from one another with respect to the average BSCO2.

Multiple Range Tests for BSCO2 by COND

Method: 95.0 p	ercent Tuk Count	ey HSD LS Mean	Homogeneous Groups	S
LPP PilotA PilotB	31 30 30	974.954 982.223 989.066	X XX X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - Pilot	.В		-7.26834 *-14.112 -6.84368	10.7753 10.7753 10.8633

^{*} denotes a statistically significant difference.

Multiple Range Tests for BSCO2 by FUEL

Method: 95.0 percent Tukey HSD					
FUEL	Count	LS Mean	Homogeneous Gr	roups	
		935.124			
	19		X		
	18	300.231	X		
DF-2	18	1003.05	X		
ADMM15	18	1024.58	X		
Contrast			Difference	+/- Limits	
ADMM15 - AL	S		*65.1737	16.1928	
ADMM15 - CA			*36.3268	16.4102	
ADMM15 - DF	-2		*21.5309	16.4102	
ADMM15 - FT	-100		*89.4536	16.4102	
ALS - CA			*-28.8469	16.1928	
ALS - DF-2			*-43.6428	16.1928	
ALS - FT-10	0		*24.2799	16.1928	
CA - DF-2			-14.7959	16.4102	
CA - FT-100			*53.1268	16.4102	
DF-2 - FT-1	00		*67.9228	16.4102	

 $[\]ensuremath{^{\star}}$ denotes a statistically significant difference.

Multiple Range Tests for BSCO2 by MODE

Method: 95.0) percent Ti Count	ıkey HSD LS Mean	Homogeneous Gr	roups
11	45 46	900.642 1063.52	X X	
Contrast			Difference	+/- Limits
10 - 11			*162.878	7.34254

^{*} denotes a statistically significant difference.

CONCLUSION: No significant differences among the fuel and pilot condition combinations with respect to the average BSCO2.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ significant differences among the mode and pilot condition combinations with respect to the average BSCO2.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ significant differences among the mode and fuel combinations with respect to the average BSCO2.

Analysis Summary

Dependent variable: bssof

Factors:

A:COND

COND FUEL MODE

Number of complete cases: 90

0.00848506

Analysis of Variance for bssof - Type III Sums of Squares

Source Sum of Squares Df Mean Square F-Ratio P-Value

MAIN EFFECTS

0.00424253 4.23 0.0191

B:FUEL C:MODE	0.677894 0.0493254	4 1	0.169473 0.0493254	169.05 49.20	0.0000
INTERACTIONS					
AB	0.141082	8	0.0176353	17.59	0.0000
AC	0.0174835	2	0.00874174	8.72	0.0005
BC	0.0224319	4	0.00560796	5.59	0.0007
ABC	0.0221993	8	0.00277492	2.77	0.0113
RESIDUAL	0.0601491	60	0.00100248		
TOTAL (CORRECTED)	0.994981	89			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average BSSOF among the fuels, modes, pilot conditions, all two-factor interactions, and the three-factor interaction between the fuel*mode*pilot condition.

LPP

0.15

PilotA Pilot Condition

CONCLUSION: The average BSSOF for the Pilot A condition is significantly different from the Pilot B condition.

PilotB

CONCLUSION: The average BSSOF for the FT-100, CA, and DF-2 fuels are significantly different from one another and the remaining two fuels. The average BSSOF for the ADMM15 and ALS fuels are not significantly different from one another.

CONCLUSION: The average BSSOF for modes 10 and 11 are statistically significant from one another.

Multiple Range Tests for bssof by COND

Method: 95. COND	0 percent Tu Count	ukey HSD LS Mean	Homogeneous Gr	oups
PilotB LPP PilotA	30 30 30	0.160938 0.176213 0.18437	X XX X	
Contrast			Difference	+/- Limits
LPP - Pilot LPP - Pilot PilotA - Pi	В		-0.00815713 0.0152749 *0.023432	0.019648 0.019648 0.019648

^{*} denotes a statistically significant difference.

Multiple Range Tests for bssof by FUEL

Method: 95.0 FUEL	-	ıkey HSD LS Mean	Homogeneous Gr	ouns
FT-100	17	0.0776545	X	
ALS	19	0.132759	X	
ADMM15	18	0.133725	X	
CA	18	0.191733	X	
DF-2	18	0.333329	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			0.000965815	0.0292901
ADMM15 - CA			*-0.0580086	0.0296832
ADMM15 - DF-2	2		*-0.199604	0.0296832
ADMM15 - FT-1	100		*0.0560701	0.0301166
ALS - CA			*-0.0589745	0.0292901
ALS - DF-2			*-0.20057	0.0292901
ALS - FT-100			*0.0551043	0.0297292
CA - DF-2			*-0.141596	0.0296832
CA - FT-100			*0.114079	0.0301166
DF-2 - FT-100)		*0.255674	0.0301166

^{*} denotes a statistically significant difference.

Multiple Range Tests for bssof by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	\$
11 10	44 46	0.150332 0.197348	X X	
Contrast			Difference	+/- Limits
10 - 11		*	0.0470161	0.0133552

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average BSSOF across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average BSSOF for the DF-2 fuel at the Pilot A and Pilot B conditions are significantly different than the other four fuels.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The average BSSOF at the LPP and Pilot A conditions for Mode 10 are significantly different than those at Mode 11. There is not a significant difference in the average BSSOF between the two modes at the Pilot B condition.

CONCLUSION: The trends in the average BSSOF across the two modes are different at fuels ADMM15 and CA. There does not appear to be differences in the average BSSOF for the two modes at the ALS, DF-2 or FT-100 fuels.

Analysis Summary

Dependent variable: BENZENE

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for BENZENE - Type III Sums of Squares

Sum of Squares	Df	Mean Square	F-Ratio	P-Value
176.208	2	88.1042	40.24	0.0000
843.208	4	210.802	96.27	0.0000
	176.208	176.208 2	176.208 2 88.1042	176.208 2 88.1042 40.24

C:MODE	45.7314	1	45.7314	20.89	0.0000
INTERACTIONS					
AB	123.013	8	15.3766	7.02	0.0000
AC	4.81639	2	2.40819	1.10	0.3394
BC	10.8557	4	2.71392	1.24	0.3037
ABC	4.53938	8	0.567422	0.26	0.9765
RESIDUAL	133.569	61	2.18966		
TOTAL (CORRECTED)	1339.93	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzene among the fuels, modes, pilot conditions, and the fuel*pilot condition interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP conditions.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzene for the ALS, CA, and DF-2 fuels are significantly different from one another and the remaining two fuels. The average benzene for the ADMM15 and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average benzene for modes 10 and 11 are significantly different from one another.

Multiple Range Tests for BENZENE by COND

Method: 95.0 COND) percent Tu Count	lkey HSD LS Mean	Homogeneous Gro	oups
LPP PilotB PilotA	31 30 30	5.43508 7.97672 8.66153	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotA PilotA - Pil	3		*-3.22645 *-2.54164 0.684804	0.91045 0.91045 0.917883

^{*} denotes a statistically significant difference.

Multiple Range Tests for BENZENE by FUEL

Method: 95.0	percent T	ukey HSD	
FUEL	Count	LS Mean	Homogeneous Groups
FT-100	18	3.70071	X
ADMM15	18	4.35116	X
ALS	19	7.34001	X
CA	18	9.6714	X
DF-2	18	11.7256	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	*-2.98885 *-5.32024 *-7.37443 0.65045 *-2.33139 *-4.38558 *3.6393 *-2.05419 *5.97069 *8.02488	1.3682 1.38657 1.38657 1.38657 1.3682 1.3682 1.3682 1.3682 1.38657
D1 2 11 100	0.02400	1.30037

^{*} denotes a statistically significant difference.

 $\hbox{\tt Multiple Range Tests for BENZENE by MODE}\\$

n Homogeneous	Groups
= ==	
Difference	+/- Limits
*1.41971	0.620402
5	92 X 63 X Difference

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average benzene across the pilot conditions for the DF-2 and CA fuels is significantly different than the trends for the remaining three fuels. The average benzene for the DF-2 fuel at the Pilot B condition is significantly different than the other four fuels, but not at the LPP condition. Also, the Pilot A condition demonstrates that the average benzene for the DF-2 and CA fuels are not significantly different from one another.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average benzene among the mode and pilot condition combinations.

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average benzene among the mode and fuel combinations.

Analysis Summary

Dependent variable: BUTAD

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for BUTAD - Type III Sums of Squares

G	G	£ @	D.E.	Marana Garana		D 17-3
Source	Sum o	f Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS						
A: COND		52.2836	2	26.1418	35.11	0.0000
B:FUEL		163.144	4	40.7859	54.78	0.0000

C:MODE	183.857	1	183.857	246.94	0.0000
INTERACTIONS					
AB	100.982	8	12.6227	16.95	0.0000
AC	19.6903	2	9.84514	13.22	0.0000
BC	9.36558	4	2.3414	3.14	0.0204
ABC	9.57871	8	1.19734	1.61	0.1412
RESIDUAL	45.4168	61	0.744538		
TOTAL (CORRECTED)	580.649	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average 1,3 butadiene among the fuels, modes, pilot conditions, and two-way interactions.

Means and 95% Tukey HSD Intervals

CONCLUSION: All three pilot conditions are significantly different from one another with respect to the average 1,3 butadiene.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are several distinct fuel groupings with respect to the average 1,3 butadiene. The average 1,3 butadiene for the DF-2 fuel is significantly different than the remaining four fuels. The FT-100 fuel is significantly different than the ADMM15 and CA fuels, but not significantly different than the ALS fuel. Also, the average

1,3 butadiene for the CA fuel is significantly different than the ALS fuel.

CONCLUSION: The average 1,3 but adiene for mode 10 is significantly different than mode 11.

 $\hbox{Multiple Range Tests for BUTAD by COND}\\$

Method: 95.	0 percent To Count	ukey HSD LS Mean	Homogeneous Gr	coups
LPP PilotA PilotB	31 30 30	5.62805 6.70067 7.47402	X X X	
Contrast			Difference	+/- Limits
LPP - Pilot LPP - Pilot PilotA - Pi	В		*-1.07262 *-1.84597 *-0.773342	0.530898 0.530898 0.535232

^{*} denotes a statistically significant difference.

Multiple Range Tests for BUTAD by FUEL

Method: 95.0 percent Tukey HSD

FUEL	Count	LS Mean	Homogeneous Groups	
FT-100	18	5.17097	х	
ALS	19	5.56048	XX	
ADMM15	18	6.29433	XX	
CA	18	7.00454	X	
DF-2	18	8.97425	X	

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100	0.733847 -0.710209 *-2.67992 *1.12336 *-1.44406 *-3.41377 0.389514 *-1.96971 *1.83357	0.79782 0.80853 0.80853 0.80853 0.79782 0.79782 0.79782 0.79782 0.80853 0.80853
DF-2 - FT-100	*3.80328	0.80853

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for BUTAD by MODE}\\$

Method: 95. MODE	0 percent To	ukey HSD LS Mean	Homogeneous G	roups
11 10	45 46	5.17759 8.02423	X X	
Contrast			Difference	+/- Limits
10 - 11			*2.84664	0.361766

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average 1,3 butadiene across the pilot conditions for the DF-2 and FT-100 fuels appear similar. However, the ALS fuel demonstrates an almost constant average 1,3 butadiene across all three pilot conditions while the CA fuel shows a significant decrease from the Pilot A to Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: A significant interaction exists between the pilot condition and the modes. The difference in the average 1,3 butadiene between the two modes at the LPP condition is smaller than the differences at the Pilot A and Pilot B conditions.

CONCLUSION: A significant interaction exists between the mode and the fuel levels. The difference in the average 1,3 butadiene between modes 10 and 11 is the largest at the DF-2 fuel and the smallest at the ALS fuel.

Multifactor ANOVA - Formaldehyde (mg/W-hr) Three Pilot Conditions

Toxic Gaseous Emissions Modes 10 and 11

Analysis Summary

Dependent variable: FORMALD

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for FORMALD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: COND	372467.0	2	186234.0	28.61	0.0000
B:FUEL	740668.0	4	185167.0	28.44	0.0000
C:MODE	1.54489E6	1	1.54489E6	237.29	0.0000

INTERACTIONS					
AB	307919.0	8	38489.8	5.91	0.0000
AC	199851.0	2	99925.7	15.35	0.0000
BC	76005.8	4	19001.5	2.92	0.0283
ABC	55295.1	8	6911.89	1.06	0.4016
RESIDUAL	397136.0	61	6510.43		
TOTAL (CORRECTED)	3.67275E6	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average formaldehyde among the fuels, modes, pilot conditions, and two-way interactions.

Means and 95% Tukey HSD Intervals

CONCLUSION: All three pilot conditions are significantly different from one another with respect to the average formaldehyde.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct fuel groupings with respect to the average formaldehyde. Fuels FT-100 and DF-2 are significantly different from one another and the remaining three fuels. The ADMM15, ALS, and CA fuels are not significantly different from one another, but are significantly different than the other two fuels.

CONCLUSION: The average formaldehyde for mode 10 is significantly different than mode 11.

 $\hbox{Multiple Range Tests for FORMALD by COND}\\$

Method: 95.0 percent Tukey HSD COND Count LS Mean	Homogeneous Groups	
LPP 31 408.327 PilotB 30 493.116 PilotA 30 564.674	X X X	
Contrast	Difference +/- Limits	
LPP - PilotA LPP - PilotB PilotA - PilotB	*-156.347	

^{*} denotes a statistically significant difference.

Multiple Range Tests for FORMALD by FUEL

Method: 95.0 p	percent Tuk Count	ey HSD LS Mean	Homogeneous Groups	5
FT-100	18	378.998	Х	
ADMM15	18	458.316	X	
ALS	19	472.468	X	
CA	18	478.293	X	
DF-2	18	655.455	X	
Contrast		D	ifference	+/- Limits

Contrast	Difference	+/- Limits
ADMM15 - ALS	-14.1521	74.6048
ADMM15 - CA	-19.9768	75.6062
ADMM15 - DF-2	*-197.139	75.6062
ADMM15 - FT-100	*79.3182	75.6062
ALS - CA	-5.82469	74.6048
ALS - DF-2	*-182.987	74.6048
ALS - FT-100	*93.4703	74.6048
CA - DF-2	*-177.163	75.6062
CA - FT-100	*99.295	75.6062
DF-2 - FT-100	*276.458	75.6062

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for FORMALD by MODE}\\$

Method: 95.0 MODE) percent T Count	ukey HSD LS Mean	Homogeneous Gr	coups	
11 10	45 46	358.236 619.175	X X		-
Contrast			Difference	+/- Limits	. –
10 - 11			*260.939	33.829	

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average formaldehyde across the pilot conditions for the CA and ALS fuels appear similar. However, the ADMM15 fuel demonstrates an increase in the average formaldehyde from the Pilot A to the Pilot B conditions, whereas the CA and ALS fuels showed a decrease.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: A significant interaction exists between the pilot conditions and the modes. The difference in the average formaldehyde between the two modes at the LPP condition is smaller than the differences at the Pilot A and Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: A significant interaction exists between the mode and the fuel levels. The difference in the average formaldehyde between modes 10 and 11 is the largest at the DF-2 fuel and the smallest at the ALS fuel.

Analysis Summary

Dependent variable: ACETALD

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for ACETALD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	34346.8	2	17173.4	20.91	0.0000
B:FUEL	92632.3	4	23158.1	28.20	0.0000
C:MODE	159403.0	1	159403.0	194.11	0.0000

INTERACTION	S					
AB		37491.4	8	4686.43	5.71	0.0000
AC		16558.1	2	8279.06	10.08	0.0002
BC		5617.49	4	1404.37	1.71	0.1593
ABC		7258.13	8	907.266	1.10	0.3727
RESIDUAL		50093.8	61	821.209		
TOTAL (CORR	ECTED)	401292.0	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average acetaldehyde among the fuels, modes, pilot conditions, and some two-way interactions.

Means and 95% Tukey HSD Intervals 220 200 180 160 140 LPP PilotA PilotB

Pilot Condition

CONCLUSION: The average acetaldehyde for the LPP and Pilot B conditions are not significantly different from one another, but are different from the Pilot A condition.

CONCLUSION: There are three distinct fuel groupings with respect to the average acetaldehyde. The DF-2 fuel is significantly different from the remaining four fuels. The ADMM15 and FT-100 fuels are not significantly different from one another, but are different from the other fuels. Also, the CA and ALS fuels are not significantly different from one another, but are different from the other fuels.

CONCLUSION: The average acetaldehyde for mode 10 is significantly different than mode 11.

 $\hbox{Multiple Range Tests for ACETALD by COND}\\$

Method: 95.0	nercent T	ukaz UCD		
COND	Count	LS Mean	Homogeneous G	roups
LPP	31	151.651	X	
PilotB	30	159.56	X	
PilotA	30	196.333	X	
Contrast			Difference	+/- Limits
LPP - PilotA			*-44.6817	17.6317
LPP - PilotB	3		-7.9089	17.6317

^{17.7757} * denotes a statistically significant difference.

Multiple Range Tests for ACETALD by FUEL

PilotA - PilotB

*36.7728

Method: 95.0 p	percent Tuk Count	tey HSD LS Mean	Homogeneous	Groups
ADMM15 FT-100 CA ALS DF-2	18 18 18 19 18	135.992 139.76 169.815 175.105 225.236	X X X X X	

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100	*-39.1129 *-33.8224 *-89.2434 -3.76753 5.29049 *-50.1305 *35.3454 *-55.421 *30.0549	26.4965 26.8522 26.8522 26.8522 26.4965 26.4965 26.4965 26.4965 26.8522
DF-2 - FT-100	*85.4759	26.8522

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for ACETALD by MODE}\\$

Method: 9	95.0 percent Tu Count	key HSD LS Mean	Homogeneous G	roups
11 10	45 46	127.272 211.091	X X	
Contrast			Difference	+/- Limits
10 - 11			*83.8186	12.0147

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average acetaldehyde across the pilot conditions for the CA and ALS fuels appear similar. While the ADMM15 fuel demonstrates an increase in the aveerage acetaldehyde from the Pilot A to Pilot B conditions, the CA and ALS fuels showed a decrease.

CONCLUSION: A significant interaction exists between the pilot condition and the modes. The difference in the average acetaldehyde between the two modes at the LPP condition is smaller than the differences at the Pilot A and Pilot B conditions.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average acetal dehyde among the fuel and mode combinations.}$

Analysis Summary

Dependent variable: GNAPHTH

Factors:

COND FUEL MODE

Number of complete cases: 91

LPP

PilotA Pilot Condition

PilotB

Analysis of Variance for GNAPHTH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	1.74687E7	2	8.73433E6	14.33	0.0000
B:FUEL	7.55174E8	4	1.88793E8	309.67	0.0000
C:MODE	6.71152E6	1	6.71152E6	11.01	0.0015

INTERACTIONS					
AB	1.5257E7	8	1.90713E6	3.13	0.0050
AC	664459.0	2	332230.0	0.54	0.5827
BC	2.70728E7	4	6.76821E6	11.10	0.0000
ABC	6.49723E6	8	812154.0	1.33	0.2451
RESIDUAL	3.71891E7	61	609658.0		
TOTAL (CORRECTED)	8.66535E8	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average naphthalene among the fuels, modes, pilot conditions, the pilot condition*fuel interaction, and the fuel*mode interaction.

CONCLUSION: The average naphthalene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

CONCLUSION: The average naphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels. The ALS and FT-100 fuels demonstrate significantly different average naphthalene; however, neither one of these fuels was significantly different than the ADMM15 fuel.

CONCLUSION: The average naphthalene for modes 10 and 11 are significantly different from one another.

Multiple Range Tests for GNAPHTH by COND

Method: 95.0 percent Tukey HSD COND Count LS Mean Homogeneous Groups 2458.83 T.PP 31 PilotB 30 3350.27 PilotA 30 3417.32 Χ +/- Limits Difference Contrast _____

Multiple Range Tests for GNAPHTH by FUEL

Method: 95.0 percent Tukey HSD
FUEL Count LS Mean Homogeneous Groups

FT-100 18 323.888 X
ADMM15 18 872.03 XX
ALS 19 1322.76 X
DF-2 18 5046.16 X
CA 18 7812.53 X

Contrast	Difference	+/- Limits
ADMM15 - ALS	-450.729	721.946
ADMM15 - CA	*-6940.5	731.637
ADMM15 - DF-2	*-4174.13	731.637
ADMM15 - FT-100	548.142	731.637
ALS - CA	*-6489.77	721.946
ALS - DF-2	*-3723.4	721.946
ALS - FT-100	*998.871	721.946
CA - DF-2	*2766.36	731.637
CA - FT-100	*7488.64	731.637
DF-2 - FT-100	*4722.28	731.637

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GNAPHTH by MODE}\\$

^{*} denotes a statistically significant difference.

Method: 95.	0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups
11 10	45 46	2803.53 3347.41	X X	
Contrast			Difference	+/- Limits
10 - 11			*543.879	327.362

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average naphthalene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trends for the CA and DF-2 fuels. Whereas the trends in the ADMM15, ALS, and FT-100 fuels across the three pilot conditions are relatively constant, the CA and DF-2 fuels show an increase in the average naphthalene from the LPP to the Pilot A and Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}$ There is no significant interaction in the average naphthalene among the mode and pilot condition combinations.

CONCLUSION: A significant interaction exists between the fuels and modes. The difference in the average naphthalene between the two modes is significant at the CA fuel. However, the remaining four fuels do not demonstrate a significant difference between the two modes with respect to the average naphthalene.

Multifactor ANOVA - 2-Methylnaphthalene ($\mu g/kW$ -hr) Gaseous PAF Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: METHYL2

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for METHYL2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	1.30211E7	2	6.51055E6	6.11	0.0038
B:FUEL	6.84386E8	4	1.71097E8	160.63	0.0038
C:MODE	681627.0	1	681627.0	0.64	0.4268

INTERACTIONS					
AB	2.06216E7	8	2.5777E6	2.42	0.0243
AC	164595.0	2	82297.7	0.08	0.9257
BC	2.10818E7	4	5.27045E6	4.95	0.0016
ABC	8.59668E6	8	1.07459E6	1.01	0.4390
RESIDUAL	6.49747E7	61	1.06516E6		
TOTAL (CORRECTED)	8.13672E8	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average 2-methylnaphthalene among the pilot conditions, fuels, pilot condition*fuel interaction, and the fuel*mode interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average 2-methylnaphthalene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average 2-methylnaphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels. The average 2-methylnaphthalene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average 2-methylnaphthalene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for METHYL2 by COND

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 2072.28 30 PilotA 2799.98 X PilotB 30 2929.34 Difference LPP - PilotA *-727.694 635.002 LPP - PilotB *-857.061 635.002 PilotA - PilotB -129.367 640.186

* denotes a statistically significant difference.

Multiple Range Tests for METHYL2 by FUEL

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 84.6176 376.432 18 18 FT-100 ADMM15 19 802.859 ALS 18 18 CA 4868.56 DF-2 6870.21

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2	-426.427 *-4492.13 *-6493.78 291.815 *-4065.7 *-6067.35 718.242 *-2001.65	954.265 967.075 967.075 967.075 954.265 954.265 954.265 967.075
CA - FT-100 DF-2 - FT-100	*4783.94 *6785.59	967.075 967.075

^{*} denotes a statistically significant difference.

Multiple Range Tests for METHYL2 by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	
11 10	45 46	2513.87 2687.2	X X	
Contrast			Difference	+/- Limits
10 - 11			173.327	432.705

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average 2-methylnaphthalene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trends for the CA and DF-2 fuels. Whereas the trends in the ADMM15, ALS, and FT-100 fuels across the three pilot conditions are relatively constant, the CA and DF-2 fuels show an increase in the average 2-methylnaphthalene from the LPP to the Pilot A and Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average 2-methylnaphthalene among the mode and pilot condition combinations.

CONCLUSION: A significant interaction exists between the fuels and modes. The difference in the average 2-methylnaphthalene between the two modes is significant at the CA fuel. However, the remaining four fuels do not demonstrate a significant difference between the two modes with respect to the average 2-methylnaphthalene.

Multifactor ANOVA - 1-Methylnaphthalene ($\mu g/kW$ -hr) Gaseous PAF Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: METHYL1

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for METHYL1 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: COND	7.1201E6	2	3.56005E6	7.02	0.0018
B:FUEL	3.2382E8	4	8.0955E7	159.66	0.0000
C:MODE	104049.0	1	104049.0	0.21	0.6522

INTER	ACTIONS					
AB		1.10994E7	8	1.38742E6	2.74	0.0120
AC		87299.1	2	43649.5	0.09	0.9176
BC		7.60607E6	4	1.90152E6	3.75	0.0086
ABC		3.4431E6	8	430387.0	0.85	0.5640
RESID	UAL	3.09295E7	61	507040.0		
TOTAL	(CORRECTED)	3.8428E8	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average 1-methylnaphthalene among the pilot conditions, fuels, pilot condition*fuel interaction, and fuel*mode interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average 1-methylnaphthalene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average 1-methylnaphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels. The average 1-methylnaphthalene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average 1-methylnaphthalene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for METHYL1 by COND

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 1296.69 30 PilotA 1847.77 X PilotB 30 1922.05 Difference LPP - PilotA *-551.08 438.116 LPP - PilotB *-625.36 438.116 PilotA - PilotB -74.2805 441.692

Multiple Range Tests for METHYL1 by FUEL

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups _____ 18 18 53.4942 185.723 FT-100 ADMM15 19 468.028 ALS CA 18 2868.42 DF-2 18 4868.5

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - DF-2 ALS - FT-100 CA - DF-2	-282.306 *-2682.69 *-4682.78 132.229 *-2400.39 *-4400.47 414.534 *-2000.09	658.39 667.228 667.228 667.228 658.39 658.39 658.39 667.228
CA - FT-100 DF-2 - FT-100	*2814.92 *4815.01	667.228 667.228
Dr-Z - ri-100	4010.0T	007.220

^{*} denotes a statistically significant difference.

Multiple Range Tests for METHYL1 by MODE

^{*} denotes a statistically significant difference.

Method: 95 MODE	.0 percent Tu Count	key HSD LS Mean	Homogeneous Gr	oups
11 10	45 46	1654.97 1722.69	X X	
Contrast			Difference	+/- Limits
10 - 11			67.7191	298.542

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average 1-methylnaphthalene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trends for the CA and DF-2 fuels. Whereas the trends in the ADMM15, ALS, and FT-100 fuels across the three pilot conditions are relatively constant, the CA and DF-2 fuels show an increase in the average 1-methylnaphthalene from the LPP to the Pilot A and Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average 1-methylnapthalene among the mode and pilot condition combinations.

CONCLUSION: A significant interaction exists between the fuels and modes. The difference in the average 1-methylnaphthalene between the two modes is significant at the CA fuel. However, the remaining four fuels do not demonstrate a significant difference between the two modes with respect to the average 1-methylnaphthalene.

Multifactor ANOVA - 2,6-Dimethylnaphthalene ($\mu g/kW$ -hr) Gaseous PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: DIMETHYL

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for DIMETHYL - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:COND	4.46581E6	2	2.23291E6	3.83	0.0270
B:FUEL	3.15153E8	4	7.87882E7	135.30	0.0000

C:MODE	106897.0	1	106897.0	0.18	0.6698
INTERACTIONS					
AB	1.02244E7	8	1.27804E6	2.19	0.0401
AC	92309.3	2	46154.7	0.08	0.9239
BC	5.23499E6	4	1.30875E6	2.25	0.0743
ABC	1.90357E6	8	237947.0	0.41	0.9114
RESIDUAL	3.55226E7	61	582338.0		
TOTAL (CORRECTED)	3.72663E8	90			

All F-ratios are based on the residual mean square error.

 $\hbox{CONCLUSION:} \quad \hbox{Statistically significant differences in the average 2,6-dimethylnaphthalene among the pilot conditions, fuels, and pilot condition*fuel interaction. } \\$

CONCLUSION: The average 2,6-dimethylnaphthalene for the Pilot B condition is significantly different than the LPP condition.

CONCLUSION: The average 2,6-dimethylnaphthalene for the CA and DF-2 fuels are significantly different from one another and the remaining three fuels. The average 2,6-dimethylnaphthalene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average 2,6-dimethylnaphthalene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for DIMETHYL by COND

Method: 95.0) percent Tu Count	ikey HSD LS Mean	Homogeneous Gr	oups
LPP PilotA PilotB	31 30 30	1040.88 1404.39 1570.21	X XX X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotA PilotA - Pil	3		-363.515 *-529.328 -165.813	469.521 469.521 473.354

^{*} denotes a statistically significant difference.

Multiple Range Tests for DIMETHYL by FUEL

lethod: 95.0 percent Tukev HSD

Method:	95.0 percent	Tukey HSD		
FUEL	Count	LS Mean	Homogeneous Groups	
FT-100	18	33.1233	Х	
ADMM15	18	61.705	X	
ALS	19	237.558	X	
CA	18	1429.7	X	
DF-2	18	4930.39	X	

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100	-175.853 *-1367.99 *-4868.68 28.5817 *-1192.14 *-4692.83 204.435 *-3500.69 *1396.58	705.585 715.056 715.056 715.056 705.585 705.585 705.585 715.056 715.056
DF-2 - FT-100	*4897.26	715.056

^{*} denotes a statistically significant difference.

Multiple Range Tests for DIMETHYL by MODE

Method: 95 MODE	.0 percent Tu Count	key HSD LS Mean	Homogeneous G	roups
10 11	46 45	1304.17 1372.81	X X	
Contrast			Difference	+/- Limits
10 - 11			-68.6395	319.943

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average 2,6-dimethylnaphthalene across the pilot conditions for the ADMM16, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average 2,6-dimethylnaphthalene from the LPP to the Pilot A and Pilot B conditions.

CONCLUSION: There is no significant interaction in the average 2,6-dimethylnaphthalene among the pilot condition and mode combinations.

CONCLUSION: There is no significant interaction in the average 2,6-dimethylnaphthalene among the fuel and mode combinations.

Analysis Summary

Dependent variable: GACENAPH

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for GACENAPH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: COND	361412.0	2	180706.0	16.84	0.0000
B:FUEL	3.59924E6	4	899810.0	83.86	0.0000

C:MODE	45.4556	1	45.4556	0.00	0.9483
INTERACTIONS					
AB	381971.0	8	47746.4	4.45	0.0003
AC	973.496	2	486.748	0.05	0.9557
BC	41481.9	4	10370.5	0.97	0.4325
ABC	5332.37	8	666.546	0.06	0.9998
RESIDUAL	654523.0	61	10729.9		
TOTAL (CORRECTED)	5.04131E6	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average acenaphthylene among the pilot conditions, fuels, and pilot condition*fuel interaction.

CONCLUSION: The average acenaphthylene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP conditions.

CONCLUSION: There are several distinct fuel groupings with respect to the average acenaphthalene. The average acenaphthalene for the DF-2 fuel is significantly different from the remaining four fuels. The CA fuel is significantly different than the ADMM15 and FT-100 fuels, but not significantly different than the ALS fuel.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthalene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for GACENAPH by COND

	.0 percent To	-		
COND	Count	LS Mean	Homogeneous G	roups
LPP	31	138.991	X	
PilotB	30	259.347	X	
PilotA	30	282.307	X	
Contrast			Difference	+/- Limits
LPP - Pilo	tA		*-143.316	63.7331
LPP - Pilo	tB		*-120.355	63.7331
PilotA - P	ilotB		22.9605	64.2534

^{*} denotes a statistically significant difference.

Multiple Range Tests for GACENAPH by FUEL

Method: 9 FUEL	5.0 percent T Count	ukey HSD LS Mean	Homogeneous Groups
FT-100	18	52.0377	Х
ADMM15	18	89.6773	X
ALS	19	147.393	XX
CA	18	239.183	X
DF-2	18	606.118	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	-57.7156 *-149.505 *-516.441 37.6396 -91.7897 *-458.725 95.3552 *-366.935 *187.145 *554.08	95.7766 97.0622 97.0622 97.0622 95.7766 95.7766 95.7766 97.0622 97.0622
DI 2 11 100	331.00	37.0022

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GACENAPH by MODE}\\$

Method: 95. MODE	0 percent Tu Count	key HSD LS Mean	Homogeneous Gr	roups
11 10	45 46	226.174 227.589	X X	
Contrast			Difference	+/- Limits
10 - 11			1.41542	43.4292

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average acenaphthalene across the pilot conditions for the ADMM15, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average acenaphthalene from the LPP to the Pilot A and Pilot B conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average acenaphthalene among the pilot condition and mode combinations.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average acenaphthalene among the fuel and mode combinations.}$

Multifactor ANOVA - Acenaphthene ($\mu g/kW$ -hr) Gaseous PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: ACENAPTH

Factors:

COND FUEL MODE

Number of complete cases: 91

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for ACENAPTH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	75508.4	2	37754.2	2.40	0.0989
B:FUEL	6.6314E6	4	1.65785E6	105.57	0.0000
C:MODE	13127.1	1	13127.1	0.84	0.3642

INTERACTIONS					
AB	170019.0	8	21252.3	1.35	0.2353
AC	112.754	2	56.3768	0.00	0.9964
BC	133598.0	4	33399.5	2.13	0.0883
ABC	15184.1	8	1898.01	0.12	0.9982
RESIDUAL	957924.0	61	15703.7		
	0.0001086				
TOTAL (CORRECTED)	8.00012E6	90			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average acenaphthene among the fuels.

CONCLUSION: The average acenaphthene for the three pilot conditions are not significantly different from one another.

CONCLUSION: There are several distinct fuel groupings with respect to the average acenaphthene. The average acenaphthene for the DF-2 fuel is significantly different than the remaining four fuels. Also, the CA fuel is significantly different than the FT-100 fuel, but not significantly different than the ADMM15 or ALS fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for ACENAPTH by COND

Method: 95. COND	-	ukey HSD LS Mean	Homogeneous G	roups
LPP	31	148.117	X	
PilotA	30	203.4	X	
PilotB	30	213.462	X	
Contrast			Difference	+/- Limits
LPP - Pilot	A		-55.2838	77.1025
LPP - Pilot	В		-65.3452	77.1025
PilotA - Pi	lotB		-10.0614	77.7319

^{*} denotes a statistically significant difference.

Multiple Range Tests for ACENAPTH by FUEL

Method: 95.0 percent Tukey HSD

FUEL	Count Count	LS Mean	Homogeneous Groups
FT-100 ADMM15	18 18	7.88772 24.8077	X XX
ALS	19	48.2916	XX
CA	18	137.46	X
DF-2	18	723.184	X

Contrast	Difference	+/- Limits
ADMM15 - ALS	-23.4839	115.868
ADMM15 - CA	-112.653	117.423
ADMM15 - DF-2	*-698.376	117.423
ADMM15 - FT-100	16.9199	117.423
ALS - CA	-89.1687	115.868
ALS - DF-2	*-674.892	115.868
ALS - FT-100	40.4039	115.868
CA - DF-2	*-585.723	117.423
CA - FT-100	*129.573	117.423
DF-2 - FT-100	*715.296	117.423

^{*} denotes a statistically significant difference.

Multiple Range Tests for ACENAPTH by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	1
10 11	46 45	176.3 200.353	X X	
Contrast			Difference	+/- Limits
10 - 11			-24.0534	52.5394

^{*} denotes a statistically significant difference.

CONCLUSION: There is no significant interaction in the average acenaphthene among the fuel and pilot condition combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average acenaphthene among the mode and pilot condition combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average acenaphthene among the fuel and mode combinations.

Analysis Summary

Dependent variable: GFLUOREN

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for GFLUOREN - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: COND	102193.0	2	51096.4	1.06	0.3515
B:FUEL	1.72763E7	4	4.31907E6	89.92	0.0000
C:MODE	42733.1	1	42733.1	0.89	0.3493

INTERACTIONS					
AB	373258.0	8	46657.3	0.97	0.4668
AC	24.422	2	12.211	0.00	0.9997
BC	336153.0	4	84038.3	1.75	0.1508
ABC	18556.1	8	2319.51	0.05	0.9999
RESIDUAL	2.93008E6	61	48034.1		
TOTAL (CORRECTED)	2.10864E7	90			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}$ significant differences in the average fluorene among the fuels.

 ${\tt CONCLUSION:}\$ The average fluorene for the three pilot conditions are not significantly different from one another.

 ${\tt CONCLUSION:}\$ The average fluorene for the DF-2 fuel is significantly different than the remaining four fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluorene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for GFLUOREN by COND

Method: 95.	0 percent Ti Count	ıkey HSD LS Mean	Homogeneous Gr	coups
LPP PilotA PilotB	31 30 30	242.329 292.421 323.542	X X X	
Contrast			Difference	+/- Limits
LPP - Piloti LPP - Piloti PilotA - Pi	A B		-50.0916 -81.2126 -31.121	134.847 134.847 135.948

^{*} denotes a statistically significant difference.

Multiple Range Tests for GFLUOREN by FUEL

Method: 95	0.0 percent T	Cukey HSD LS Mean	Homogeneous Groups
FT-100	18	14.2477	X
ADMM15	18	21.5123	X
ALS	19	50.0833	X
CA	18	193.028	X
DF-2	18	1151.61	X

Contrast	Difference	+/- Limits
ADMM15 - ALS	-28.5711	202.645
ADMM15 - CA	-171.515	205.366
ADMM15 - DF-2	*-1130.1	205.366
ADMM15 - FT-100	7.26459	205.366
ALS - CA	-142.944	202.645
ALS - DF-2	*-1101.53	202.645
ALS - FT-100	35.8357	202.645
CA - DF-2	* -958.587	205.366
CA - FT-100	178.78	205.366
DF-2 - FT-100	*1137.37	205.366

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GFLUOREN by MODE}\\$

Method: 95.0 MODE) percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups
10	46 45	264.398 307.796	X X	
Contrast			Difference	+/- Limits
10 - 11			-43.3984	91.8882

^{*} denotes a statistically significant difference.

CONCLUSION: There is no significant interaction in the average fluorene among the fuel and pilot condition combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average fluorene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}$ There is no significant interaction in the average fluorene among the fuel and mode combinations.

 ${\tt Multifactor\ ANOVA\ -\ Phenanthrene\ (micro\ g/kW-hr)}$ Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: GPHENANT

Factors:

COND FUEL MODE

Number of complete cases: 91

LPP

PilotA Pilot Condition

PilotB

Scatterplot by Level Code

Analysis of Variance for GPHENANT - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	550944.0	2	275472.0	2.63	0.0801
B:FUEL	4.09606E7	4	1.02401E7	97.83	0.0000
C:MODE	15030.7	1	15030.7	0.14	0.7061

INTERACTIONS					
AB	1.77444E6	8	221804.0	2.12	0.0474
AC	22259.4	2	11129.7	0.11	0.8993
BC	828870.0	4	207218.0	1.98	0.1089
ABC	321701.0	8	40212.6	0.38	0.9250
RESIDUAL	6.38527E6	61	104676.0		
TOTAL (CORRECTED)	5.08462E7	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average phenanthrene among the fuels and pilot condition \star fuel interaction.

 ${\tt CONCLUSION:}\ {\tt No}$ significant differences in the average phenanthrene among the three pilot conditions.

CONCLUSION: The average phenanthrene for the DF-2 and CA fuels is significantly different than the remaining three fuels. The average phenanthrene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average phenanthrene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for GPHENANT by COND

Method: 95.0 COND	percent Tu Count	key HSD LS Mean	Homogeneous Gro	ups
LPP PilotB PilotA	31 30 30	418.379 545.882 604.351	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - Pil			-185.973 -127.503 58.4694	199.064 199.064 200.689

^{*} denotes a statistically significant difference.

Multiple Range Tests for GPHENANT by FUEL

Method: 95.0 percent	Tukey HSD		
FUEL Count		_	coups
FT-100 18	29.2336	X	
ADMM15 18	43.1629	X	
ALS 19	169.183	X	
CA 18	557.58	X	
DF-2 18	1815.19	X	
Contrast		Difference	•
ADMM15 - ALS		-126.02	
ADMM15 - CA		*-514.417	303.164
ADMM15 - DF-2		*-1772.03	303.164
ADMM15 - FT-100		13.9293	303.164
ALS - CA		*-388.397	299.148
ALS - DF-2		*-1646.01	299.148
ALS - FT-100		139.949	299.148
CA - DF-2		*-1257.61	303.164
CA - DF-2 CA - FT-100			
		*528.346	303.164
DF-2 - FT-100		*1785.96	303.164

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GPHENANT by MODE}\\$

Method: 95.0 p	percent Tuk Count	ey HSD LS Mean	Homogeneous Groups	· · · · · · · · · · · · · · · · · · ·
10	46 45	510.002 535.74	X X	
Contrast			Difference	+/- Limits
10 - 11			-25.7384	135.647

 $[\]ensuremath{^{\star}}$ denotes a statistically significant difference.

CONCLUSION: The trend in the average phenanthrene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trend for the DF-2 and CA fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average phenanthrene from the LPP to the Pilot A and Pilot B conditions. Also, the CA fuel demonstrates an increase in the Pilot A condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average phenanthrene among the pilot conditions and mode combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average phenanthrene among the fuel and mode combinations.

Analysis Summary

Dependent variable: GANTHR

Factors:

COND FUEL MODE

Number of complete cases: 91

Scatterplot by Level Code

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for ${\tt GANTHR}$ - ${\tt Type}$ III ${\tt Sums}$ of ${\tt Squares}$

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND B:FUEL C:MODE	160.338	2	80.1692	0.81	0.4497
	38760.6	4	9690.15	97.88	0.0000
	24.9234	1	24.9234	0.25	0.6176

INTERACTIONS

AB	1755.86	8	219.482	2.22	0.0382
AC	4.39302	2	2.19651	0.02	0.9781
BC	209.706	4	52.4265	0.53	0.7144
ABC	73.6331	8	9.20413	0.09	0.9993
RESIDUAL	6038.83	61	98.9973		
TOTAL (CORRECTED)	47005.4	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average anthracene among the fuels and pilot condition*fuel interaction.

Means and 95% Tukey HSD Intervals

23
21
19
19
17
15
13
LPP PilotA PilotB
Pilot Condition

 ${\tt CONCLUSION:}\ {\tt No}$ significant differences in the average anthracene among the three pilot conditions.

CONCLUSION: The average anthracene for the DF-2 and CA fuels is significantly different than the remaining three fuels. The average anthracene for the ADMM15, ALS, and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ The average anthracene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for GANTHR by COND

Method: 95.0 COND) percent Tu Count	key HSD LS Mean	Homogeneous Gro	ups
LPP PilotA PilotB	31 30 30	14.8053 16.3714 18.054	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotA PilotA - Pil	3		-1.56609 -3.24865 -1.68256	6.1218 6.1218 6.17178

^{*} denotes a statistically significant difference.

Multiple Range Tests for GANTHR by FUEL

Method: 9	95.0 percent Count	Tukey HSD LS Mean	Homogeneous Groups
FT-100 ADMM15 ALS CA	18 18 19 18	1.14399 2.71767 4.56641 17.3941	X X X
DF-2	18	56.229	X

Contrast	Difference	+/- Limits	
ADMM15 - ALS	-1.84874	9.19969	_
ADMM15 - CA	*-14.6765	9.32318	
ADMM15 - DF-2	*-53.5113	9.32318	
ADMM15 - FT-100	1.57367	9.32318	
ALS - CA	*-12.8277	9.19969	
ALS - DF-2	*-51.6626	9.19969	
ALS - FT-100	3.42241	9.19969	
CA - DF-2	*-38.8348	9.32318	
CA - FT-100	*16.2501	9.32318	
DF-2 - FT-100	*55.085	9.32318	

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for GANTHR by MODE}\\$

Method: 95. MODE	0 percent Tu Count	key HSD LS Mean	Homogeneous Gr	coups
11 10	45 46	15.8862 16.9343	X X	
Contrast			Difference	+/- Limits
10 - 11			1.04808	4.17154

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average anthracene across the pilot conditions for the ADMM15, ALS, and FT-100 fuels is significantly different than the trend for the DF-2 and CA fuels. Whereas, the trends in the ADMM15, ALS, and FT-100 fuels are relatively constant, the DF-2 fuel demonstrates a slight increase from the LPP to the Pilot B condition. Also, the CA fuel shows an increase in the Pilot A condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average anthracene among the pilot condition and mode combinations.

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average anthracene among the fuel and mode combinations.

Multifactor ANOVA - Fluoranthene ($\mu g/kW$ -hr) Gaseous PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: GFLUORAN

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for GFLUORAN - Type III Sums of Squares

Source	Sum of	Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND		158.876	2	79.438	15.84	0.0000

B:FUEL	250.699	4	62.6747	12.50	0.0000
C:MODE	6.45211	1	6.45211	1.29	0.2612
INTERACTIONS					
AB	332.067	8	41.5084	8.28	0.0000
AC	3.93472	2	1.96736	0.39	0.6772
BC	5.44184	4	1.36046	0.27	0.8954
ABC	6.66393	8	0.832991	0.17	0.9946
RESIDUAL	305.959	61	5.01572		
TOTAL (CORRECTED)	1071.07	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average fluoranthene among the pilot conditions, fuels, and pilot condition*fuel interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluoranthene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP conditions.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are several distinct fuel groupings with respect to the average fluoranthene. The average fluoranthene for the DF-2 fuel is significantly different from the remaining four fuels. The CA fuel is significantly different than the ADMM15 fuel, but not significantly different than the ALS or FT-100 fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluoranthene for modes 10 and 11 are not significantly different from one another.

 $\hbox{Multiple Range Tests for GFLUORAN by COND}\\$

Method: 95.0	percent To	ukey HSD LS Mean	Homogeneous Gi	coups
PilotB PilotA LPP	30 30 31	1.64916 2.45675 4.76043	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA			*2.30368	1.37795

Multiple Range Tests for GFLUORAN by FUEL

Method: 95.	0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups
ADMM15	18	1.31817	X	
FT-100	18	1.58958	XX	
ALS	19	2.34355	XX	
CA	18	3.65466	X	
DF-2	18	5.87127	X	
Contract			Difference	⊥/_ Limita

ADMM15 - ALS	Contrast	Difference	+/- Limits
ADMM15 - DF-2			
ALS - CA -1.31111 2.07075 ALS - DF-2 *-3.52771 2.07075 ALS - FT-100 0.753972 2.07075 CA - DF-2 *-2.21661 2.09855	ADMM15 - DF-2	*-4.55309	2.09855
ALS - FT-100 0.753972 2.07075 CA - DF-2 *-2.21661 2.09855			
	CA - DF-2 CA - FT-100	*-2.21661 2.06508	2.09855
DF-2 - FT-100 2.06506 2.06555 DF-2 - FT-100 *4.28169 2.09855			

^{*} denotes a statistically significant difference.

Multiple Range Tests for GFLUORAN by MODE

Method: 95.0 percent Tukey HSD

^{*} denotes a statistically significant difference.

MODE	Count	LS Mean	Homogeneous Groups	3
11	45	2.68881	X	
10	46	3.22208	X 	
Contrast			Difference	+/- Limits
10 - 11			0.533264	0.938969

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average fluoranthene across the pilot conditions for the ADMM15, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average fluoranthene at the LPP condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average fluoranthene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average fluoranthene among the fuel and mode combinations.

Multifactor ANOVA - Pyrene ($\mu g/kW$ -hr) Gaseous PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: GPYRENE

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for GPYRENE - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	215.921	2	107.961	12.83	0.0000
B:FUEL	522.511	4	130.628	15.52	0.0000
C:MODE	1.64188	1	1.64188	0.20	0.6603

INTERACTIONS					
AB	635.162	8	79.3952	9.43	0.0000
AC	1.44397	2	0.721987	0.09	0.9179
BC	7.72609	4	1.93152	0.23	0.9208
ABC	3.61495	8	0.451869	0.05	0.9999
RESIDUAL	513.495	61	8.41795		
TOTAL (CORRECTED)	1898.24	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average pyrene among the pilot conditions, fuels, and pilot condition*fuel interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average pyrene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average pyrene for the DF-2 fuel is significantly different than the other four fuels. The average pyrene among the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average pyrene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for GPYRENE by COND

Method: 95.0 COND	percent Tu Count	key HSD LS Mean	Homogeneous Gr	oups
PilotB PilotA LPP	30 30 31	1.6312 2.39782 5.20555	X X X	
Contrast			Difference	+/- Limits

Contrast	Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - PilotB	*2.80773 *3.57434 0.766618	1.78513 1.78513 1.79971

^{*} denotes a statistically significant difference.

Multiple Range Tests for GPYRENE by FUEL

Method: 95. FUEL	.0 percent To Count	ukey HSD LS Mean	Homogeneous Groups
ADMM15 FT-100 ALS CA DF-2	18 18 19 18	1.08101 1.1652 2.17365 3.37177 7.59931	X X X X X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2	-1.09263 -2.29075 *-6.51829 -0.0841837 -1.19812 *-5.42566	2.68265 2.71867 2.71867 2.71867 2.68265 2.68265
ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	1.00845 *-4.22754 2.20657 *6.43411	2.68265 2.71867 2.71867 2.71867

^{*} denotes a statistically significant difference.

Multiple Range Tests for GPYRENE by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	}
11 10	45 46	2.94368 3.21269	X X	
Contrast			Difference	+/- Limits
10 - 11			0.269006	1.21643

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average pyrene across the pilot conditions for the ADMM15, ALS, CA, and FT-100 fuels is significantly different than the trend for the DF-2 fuel. Whereas, the trends in the ADMM15, ALS, CA, and FT-100 fuels are relatively constant, the DF-2 fuel shows an increase in the average pyrene at the LPP condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average pyrene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average pyrene among the fuel and mode combinations.

Analysis Summary

Dependent variable: naphth

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for naphth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	183.888	2	91.944	0.49	0.6153
B:FUEL	4980.21	4	1245.05	6.63	0.0002
C:MODE	2252.95	1	2252.95	12.00	0.0010

INTERACTIONS					
AB	2923.31	8	365.414	1.95	0.0691
AC	180.828	2	90.4142	0.48	0.6202
BC	830.073	4	207.518	1.10	0.3625
ABC	1268.55	8	158.569	0.84	0.5678
RESIDUAL	11456.5	61	187.812		
TOTAL (CORRECTED)	24216.7	90			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average naphthalene among the fuels and modes.

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant difference in the average naphthalene across the pilot conditions.

CONCLUSION: The average naphthalene for the CA fuel is significantly different from the ADMM15, ALS and FT-100 fuels.

CONCLUSION: The average naphthalene for modes 10 and 11 are significantly different from one another.

Multiple Range Tests for naphth by COND

Method: 95.0 COND	percent Tu Count	ukey HSD LS Mean	Homogeneous Gro	oups
PilotB LPP PilotA	30 31 30	37.731 39.5631 41.231	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - Pil	-		-1.66798 1.83203 3.50001	8.43198 8.43198 8.50081

^{*} denotes a statistically significant difference.

Multiple Range Tests for naphth by FUEL

Method: 95.0 p	Method: 95.0 percent Tukey HSD							
FUEL	Count	LS Mean	Homogeneous Groups	1				
7 DMM1 5	10	00 584						
		29.574						
		36.6896						
FT-100	18	37.1125	X					
DF-2	18	42.1224	XX					
CA	18	52.0434	X					
Contrast			Difference	+/- Limits				
ADMM15 - ALS			-7.11555	12.6714				
ADMM15 - CA			*-22.4693	12.8415				
ADMM15 - DF-2			-12.5483	12.8415				
ADMM15 - FT-10	00		-7.53845	12.8415				
ALS - CA			*-15.3538	12.6714				
ALS - DF-2			-5.4328	12.6714				
ALS - FT-100			-0.422909	12.6714				
CA - DF-2			9.92098	12.8415				
CA - FT-100			*14.9309	12.8415				
DF-2 - FT-100			5.00989	12.8415				

 $[\]ensuremath{^{\star}}$ denotes a statistically significant difference.

Multiple Range Tests for naphth by MODE

Method: MODE	95.0 percent '	Tukey HSD LS Mean	Homogeneous (Groups
11 10	45 46	34.526 44.4908	X X	
Contrast			Difference	+/- Limits
10 - 11			*9.96478	5.74574

^{*} denotes a statistically significant difference.

CONCLUSION: There is no significant interaction in the average naphthalene among the fuel and pilot condition combinations.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average naphthalene among the mode and pilot condition combinations.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average naphthalene among the mode and fuel combinations.

Analysis Summary

Dependent variable: acenaph

Factors:

COND FUEL MODE

Number of complete cases: 91

Scatterplot by Level Code

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for acenaph - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND B:FUEL C:MODE	10.4983	2	5.24915	28.01	0.0000
	4.52142	4	1.13036	6.03	0.0004
	0.345356	1	0.345356	1.84	0.1796

INTERACTIONS					
AB	9.86361	8	1.23295	6.58	0.0000
AC	2.57901	2	1.2895	6.88	0.0020
BC	4.03223	4	1.00806	5.38	0.0009
ABC	4.73901	8	0.592376	3.16	0.0046
RESIDUAL	11.4328	61	0.187423		
TOTAL (CORRECTED)	48.2402	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average acenaphthylene among the pilot conditions, fuels, two-factor interactions, and the three-factor interaction fuel*mode*pilot condition.

CONCLUSION: The average acenaphthylene for the LPP and Pilot A conditions are not significantly different from one another, but are significantly different from the Pilot B condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthylene for the ADMM15 fuel is significantly different from the FT-100 fuel. The CA, DF-2, and ALS fuels are not significantly different from either the ADMM15 or the FT-100 fuels with respect to the average acenaphthylene.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthylene for modes 10 and 11 are not significantly different from one another.

Multiple Range Tests for acenaph by COND

Method: 95 COND	.0 percent To	ukey HSD LS Mean	Homogeneous G	roups
LPP	31	0.709427	X	
PilotA	30	0.936941	X	
PilotB	30	1.51712	X	
Contrast			Difference	+/- Limits
LPP - Pilo	tA		-0.227514	0.266366
LPP - Pilo	tB		*-0.807697	0.266366
PilotA - P	ilotB		*-0.580183	0.268541

^{*} denotes a statistically significant difference.

Multiple Range Tests for acenaph by FUEL

Method: 95.0 percent Tukey HSD

FUEL			Homogeneous Group	
ADMM15		0.693977		
CA		1.03841		
DF-2	18	1.06802	XX	
ALS	19	1.07044	XX	
FT-100	18	1.40164	X	
Contrast			Difference	
ADMM15 - ALS			-0.376466	
ADMM15 - CA			-0.344432	0.405662
ADMM15 - DF-2			-0.374041	0.405662
ADMM15 - FT-10	0		*-0.707664	0.405662
ALS - CA			0.0320337	0.400288
ALS - DF-2			0.00242547	0.400288
ALS - FT-100			-0.331198	0.400288
CA - DF-2			-0.0296082	0.405662
CA - FT-100			-0.363231	0.405662
DF-2 - FT-100			-0.333623	0.405662

^{*} denotes a statistically significant difference.

Method: 95.0 MODE) percent Tu Count	key HSD LS Mean	Homogeneous Gro	ups
10 11	46 45	0.99281 1.11618	X X	
Contrast			Difference	+/- Limits
10 - 11			-0.123374	0.181508

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average acenaphthylene across the pilot conditions for the FT-100 fuel is significantly different than the trends for the remaining four fuels. The average acenaphthylene for the FT-100 fuel at the Pilot B condition is significantly different than the other four fuels, but not at the LPP or the Pilot A condition.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthylene at the Pilot B condition for Mode 11 is significantly different than Mode 10. There is no significant difference in the average acenaphthylene between the two modes at the LPP or Pilot A conditions.

CONCLUSION: The trend in the average acenaphthylene across the two modes is different at the FT-100 fuel. There does not appear to be differences in the average acenaphthylene for the two modes at the ADMM15, ALS, CA, or DF-2 fuels.

Multifactor ANOVA - Acenaphthene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions Modees 10 and 11

Analysis Summary

Dependent variable: acenapth

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for acenapth - Type III Sums of Squares

S	ource	Sum of	Squares	Df	Mean Square	F-Ratio	P-Value
	AIN EFFECTS A:COND B:FUEL C:MODE		26.9198 53.0297 47.9888	2 4 1	13.4599 13.2574 47.9888	3.31 3.26 11.81	0.0431 0.0172 0.0011

89.368	8	11.171	2.75	0.0117
4.11053	2	2.05526	0.51	0.6056
15.9586	4	3.98965	0.98	0.4243
12.8542	8	1.60677	0.40	0.9189
0.45 0.05				
247.905	61	4.06401		
498.837	90			
	4.11053 15.9586 12.8542 247.905	4.11053 2 15.9586 4 12.8542 8 247.905 61	4.11053 2 2.05526 15.9586 4 3.98965 12.8542 8 1.60677 247.905 61 4.06401	4.11053 2 2.05526 0.51 15.9586 4 3.98965 0.98 12.8542 8 1.60677 0.40 247.905 61 4.06401

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average acenaphthene among the pilot conditions, fuels, modes, and pilot condition*fuel interaction.

CONCLUSION: The average acenaphthene for the LPP condition is significantly different than the Pilot A condition. The average acenaphthene for the Pilot B condition is not significantly different from with either the LPP or the Pilot A conditions.

CONCLUSION: The average acenaphthene for the CA fuel is significantly different from the ADMM15 and the FT-100 fuels.

CONCLUSION: The average acenaphthene for modes 10 and 11 are significantly

different from one another.

 $\hbox{Multiple Range Tests for acenapth by COND}\\$

Method: 95.0 COND	percent Tu Count	ıkey HSD LS Mean	Homogeneous Grou	ıps
LPP PilotB PilotA	31 30 30	5.03969 5.98379 6.32198	X XX X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - Pilo	otB		*-1.28229 -0.944107 0.338184	1.24035 1.24035 1.25048

^{*} denotes a statistically significant difference.

Multiple Range Tests for acenapth by FUEL

Method: 95.0 p	percent Tuk	ey HSD		
FUEL	Count	LS Mean	Homogeneous Group	S
FT-100	18	4.99828	X	
ADMM15	18	5.15909	X	
DF-2	18	5.47325	XX	
ALS	19	6.20856	XX	
CA	18	7.06992	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			-1.04948	1.86397
ADMM15 - CA			*-1.91083	1.88899
ADMM15 - DF-2			-0.314163	1.88899
ADMM15 - FT-10	0.0		0.160804	1.88899
ALS - CA			-0.86135	1.86397
ALS - DF-2			0.735315	1.86397
ALS - FT-100			1.21028	1.86397
CA - DF-2			1.59667	1.88899
CA - FT-100			*2.07163	1.88899
DF-2 - FT-100			0.474967	1.88899

^{*} denotes a statistically significant difference.

Multiple Range Tests for acenapth by MODE

Method: 95.0 MODE	percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups
11 10	45 46	5.05466 6.50898	X X	
Contrast			Difference	+/- Limits
10 - 11			*1.45433	0.845205

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average acenaphthene for the ALS and CA fuels are significantly different than the DF-2 fuel between the LPP and Pilot A conditions.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average acenaphthene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~$ There is no significant interaction in the average acenaphthene among the fuel and mode combinations.

Analysis Summary

Dependent variable: fluorene

Factors:

COND FUEL MODE

Number of complete cases: 90

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for fluorene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:COND	55.271	2	27.6355	2.62	0.0808
B:FUEL	243.792	4	60.9481	5.79	0.0005
C:MODE	101.916	1	101.916	9.68	0.0029

INTERACTIONS					
AB	244.985	8	30.6231	2.91	0.0083
AC	13.768	2	6.88402	0.65	0.5237
BC	43.3634	4	10.8409	1.03	0.3995
ABC	59.6242	8	7.45303	0.71	0.6834
RESIDUAL	631.743	60	10.5291		
TOTAL (CORRECTED)	1426.28	89			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average fluorene among the fuels, modes, and pilot condition*fuel interaction.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ \ {\tt No}\ {\tt significant}\ {\tt differences}\ {\tt in}\ {\tt the}\ {\tt average}\ {\tt fluorene}\ {\tt among}\ {\tt the}\ {\tt pilot}\ {\tt conditions.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluorene for the ALS, CA, and DF-2 fuels are significantly different from the FT-100 fuel, but not significantly different from one another. Also, the average fluorene for the ALS fuel is significantly different from the ADMM15 fuel.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluorene for modes 10 and 11 are significantly different from one another, $\,$

Multiple Range Tests for fluorene by COND

Method: 95.0 COND	percent T Count	ukey HSD LS Mean	Homogeneous Gr	oups	
LPP PilotA PilotB	30 30 30	8.72343 10.2222 10.5328	X X X		_
Contrast			Difference	+/- Limits	-
LPP - PilotA LPP - PilotB PilotA - Pil	3		-1.4988 -1.8094 -0.310597	2.01361 2.01361 2.01361	-

^{*} denotes a statistically significant difference.

Multiple Range Tests for fluorene by FUEL

Method: 95.0	nercent Ti	lkav UCD		
	Count	LS Mean	Homogeneous G	roups
ADMM15	18	7.3756 8.46579	X	
		10.7079 11.9224	XX X	
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF- ADMM15 - FT- ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-10	2 100		*-3.45656 -2.19339 -2.24208 1.09019 1.26317 1.21448 *4.54675 -0.0486894 *3.28358 *3.33227	

 $[\]ensuremath{^{\star}}$ denotes a statistically significant difference.

Multiple Range Tests for fluorene by MODE

Method: 9	95.0 percent Tu Count	key HSD LS Mean	Homogeneous Gr	oups
11 10	44 46	8.75759 10.8947	X X	
Contrast			Difference	+/- Limits
10 - 11			*2.13714	1.36869

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average fluorene for the DF-2 fuel is significantly different than the ALS fuel between the LPP and Pilot A conditions. The CA, ADMM15, and FT-100 fuels demonstrate similar trends across the pilot conditions with respect to the average fluorene.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average fluorene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average fluorene among the fuel and mode combinations.

Multifactor ANOVA - Phenanthrene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: phenanth

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for phenanth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	 F-Ratio	P-Value
MAIN EFFECTS A:COND	119680.0	2	59840.1	14.87	0.0000
B:FUEL	578014.0	4	144504.0	35.92	0.0000
C:MODE	20.9487	1	20.9487	0.01	0.9427

INTERACTIONS					
AB	162582.0	8	20322.8	5.05	0.0001
AC	3706.27	2	1853.13	0.46	0.6331
BC	10391.8	4	2597.96	0.65	0.6320
ABC	7932.45	8	991.556	0.25	0.9799
RESIDUAL	245398.0	61	4022.92		
TOTAL (CORRECTED)	1.13031E6	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average phenanthrene among the pilot conditions, fuels, and pilot condition*fuel interaction.

Means and 95% Tukey HSD Intervals

180
150
120
90
0

LPP PilotA PilotB
Pilot Condition

CONCLUSION: The average phenanthrene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

CONCLUSION: The average phenanthrene for the DF-2 fuel is significantly different than the remaining four fuels. The average phenanthrene for the ADMM15, FT-100, Ca, and ALS fuels are not significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: There is no significant difference in the average phenanthrene among the two modes.

Multiple Range Tests for phenanth by COND

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 31 58.1416 30 PilotA 113.44 X PilotB 30 145.824 Difference LPP - PilotA *-55.2985 39.0246 LPP - PilotB *-87.6821 39.0246 PilotA - PilotB -32.3835 39.3432

Multiple Range Tests for phenanth by FUEL

Method: 95.0 percent Tukey HSD
FUEL Count LS Mean Homogeneous Groups

ADMM15 18 46.4785 X
FT-100 18 52.9229 X
CA 18 75.9431 X
ALS 19 90.7957 X
DF-2 18 262.869 X

Contrast	Difference	+/- Limits
ADMM15 - ALS	-44.3172	58.6452
ADMM15 - CA	-29.4646	59.4324
ADMM15 - DF-2	*-216.39	59.4324
ADMM15 - FT-100	-6.44444	59.4324
ALS - CA	14.8526	58.6452
ALS - DF-2	*-172.073	58.6452
ALS - FT-100	37.8727	58.6452
CA - DF-2	*-186.926	59.4324
CA - FT-100	23.0202	59.4324
DF-2 - FT-100	*209.946	59.4324

^{*} denotes a statistically significant difference.

Multiple Range Tests for phenanth by MODE

Method: 95.0 percent Tukey HSD

^{*} denotes a statistically significant difference.

MODE	Count	LS Mean	Homogeneous Groups	
11 10	45 46	105.321 106.282	X X	
Contrast			Difference	+/- Limits
10 - 11			0.960882	26.5923

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average phenanthrene across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average phenanthrene for the DF-2 fuel at the Pilot A and Pilot B conditions are significantly different than the other four fuels.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average phenanthrene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average phenanthrene among the fuel and mode combinations.

Analysis Summary

Dependent variable: anthr

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for anthr - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	 F-Ratio	P-Value
MAIN EFFECTS A:COND	194.971	2	97.4855	18.66	0.0000
B:FUEL	578.264	4	144.566	27.67	0.0000
C:MODE	14.2719	1	14.2719	2.73	0.1035

INTERACTIONS					
AB	292.709	8	36.5887	7.00	0.0000
AC	2.55918	2	1.27959	0.24	0.7835
BC	89.3981	4	22.3495	4.28	0.0041
ABC	102.962	8	12.8702	2.46	0.0221
RESIDUAL	318.721	61	5.22494		
TOTAL (CORRECTED)	1599.78	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average anthracene among the pilot conditions, fuels, pilot condition*fuel interaction, fuel*mode interaction, and the three-factor interaction.

Means and 95% Tukey HSD Intervals 7.3 6.3 5.3 4.3 LPP PilotA PilotB PilotB PilotB

CONCLUSION: The average anthracene for the LPP and Pilot A conditions are not significantly different from one another, but are significantly different from the Pilot B condition.

CONCLUSION: There are three distinct fuel groupings with respect to the average anthracene. The average anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15 and FT-100 fuels are not significantly different from one another, but are significantly different than the remaining three fuels. Also, the CA and ALS fuels are not significantly different from one another, but are significantly different from the remaining fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant difference in the average anthracene among the two modes.

Multiple Range Tests for anthr by COND

Method: 95.0 COND	percent To	ukey HSD LS Mean	Homogeneous Gr	coups
LPP PilotA PilotB	31 30 30	3.02166 3.77928 6.44088	x x x	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotB PilotA - Pilo	otB		-0.75762 *-3.41923 *-2.66161	1.4064 1.4064 1.41788

^{*} denotes a statistically significant difference.

Multiple Range Tests for anthr by FUEL

Method: 95	.0 percent T	ukey HSD		
FUEL	Count	LS Mean	Homogeneous G	roups
	1.0	1.77706	X	
		2.04042		
CA	18	4.50814	X	
ALS	19	4.94414	X	
DF-2	18	8.79993	X	
Contrast			Difference	+/- Limits
ADMM15 - A			*-3.16708	
ADMM15 - C	A		*-2.73109	2.14187
ADMM15 - D	F-2		*-7.02287	2.14187
ADMM15 - F	T-100		-0.263363	2.14187
ALS - CA			0.435995	2.1135
ALS - DF-2			*-3.85579	2.1135
ALS - FT-1	00		*2.90372	2.1135
CA - DF-2			*-4.29179	2.14187
CA - FT-10	0		*2.46772	2.14187
DF-2 - FT-	100		*6.75951	2.14187

^{*} denotes a statistically significant difference.

Method:	95.0 percent	Tukev HSD	

MODE	Count	LS Mean	Homogeneous Group	os
11 10	45 46	4.01738 4.81049	X X	
Contrast			Difference	+/- Limits
10 - 11			0.793108	0.958353

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average anthracene across the pilot conditions for the DF-2 and ALS fuels are significantly different than the trends for the remaining three fuels. The average anthracene for the DF-2 fuel at the Pilot A and Pilot B conditions are significantly different than the CA, FT-100, and ADMM15 fuels.

Interaction and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\$ There is no significant interaction in the average anthracene among the pilot condition and mode combinations.

CONCLUSION: The trends in the average anthracene for modes 10 and 11 are significantly different at the CA fuel. Otherwise, the average anthracene for the two modes are not significantly different across the remaining four fuels.

Multifactor ANOVA - Fluoranthene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: fluoran

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for fluoran - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	2718.83	2	1359.41	14.62	0.0000
B:FUEL	14521.4	4	3630.35	39.05	0.0000
C:MODE	1346.19	1	1346.19	14.48	0.0003

INTERACTIONS					
AB	3221.95	8	402.744	4.33	0.0004
AC	296.078	2	148.039	1.59	0.2118
BC	1271.06	4	317.765	3.42	0.0138
ABC	1164.98	8	145.623	1.57	0.1539
RESIDUAL	5671.34	61	92.9727		
TOTAL (CORRECTED)	30240.5	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average fluoranthene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, and fuel*mode interaction.

Means and 95% Tukey HSD Intervals 40 36 32 28 LPP PilotA PilotB Pilot Condition

CONCLUSION: The average fluoranthene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

CONCLUSION: There are three distinct fuel groupings with respect to the average fluoranthene. The average fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The ADMM15 and FT-100 fuels are not significantly different from one another, but are significantly different than the remaining three fuels. Also, the CA and ALS fuels are not significantly different from one another, but are significantly different from the remaining fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluoranthene for modes 10 and 11 are significantly different from one another.

Multiple Range Tests for fluoran by COND

Method: 95.0 COND) percent Tu Count	key HSD LS Mean	Homogeneous Gr	oups
LPP PilotB PilotA	31 30 30	23.2653 33.6216 35.7437	X X X	
Contrast			Difference	+/- Limits
LPP - PilotA LPP - PilotE PilotA - Pil	3		*-12.4783 *-10.3563 2.12207	5.93261 5.93261 5.98104

^{*} denotes a statistically significant difference.

Multiple Range Tests for fluoran by FUEL

.....

Method: 95.0 p		-	Homogeneous Groups	3
7 DMM1 E	10	18.7128	X	
		18.8435		
ALS			X	
CA	18	33.7345	X	
DF-2	18	53.338	X	
Contrast			Difference	•
ADMM15 - ALS			*-11.0426	
ADMM15 - CA			*-15.0217	9.03505
ADMM15 - DF-2			*-34.6252	9.03505
ADMM15 - FT-10	00		-0.130752	9.03505
ALS - CA			-3.97909	8.91537
ALS - DF-2			*-23.5826	8.91537
ALS - FT-100			*10.9119	8.91537
CA - DF-2			*-19.6035	9.03505
CA - FT-100			*14.891	9.03505
DF-2 - FT-100			*34.4944	9.03505

^{*} denotes a statistically significant difference.

Method: 95.0 MODE	percent Tul Count	key HSD LS Mean	Homogeneous Group	os
11 10	45 46	27.0255 34.7282	X X	
Contrast			Difference	+/- Limits
10 - 11			*7.70273	4.04262

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average fluoranthene across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels. The average fluoranthene for the DF-2 fuel at the LPP condition is significantly different than the other four fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average fluoranthene among the pilot condition and mode combinations.

CONCLUSION: The trends in the average fluoranthene for modes 10 and 11 are significantly different at the CA fuel. Otherwise, the average fluoranthene for the two modes are not significantly different across the remaining four fuels.

Analysis Summary

Dependent variable: pyrene

Factors:

COND FUEL MODE

Number of complete cases: 91

Analysis of Variance for pyrene - Type III Sums of $\operatorname{Squares}$

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	3128.95	2	1564.47	8.88	0.0004
B:FUEL	57792.3	4	14448.1	82.01	0.0000
C:MODE	933.572	1	933.572	5.30	0.0248

INTERACTIONS					
AB	4706.65	8	588.331	3.34	0.0031
AC	375.603	2	187.802	1.07	0.3507
BC	1618.66	4	404.665	2.30	0.0692
ABC	951.124	8	118.89	0.67	0.7116
RESIDUAL	10746.4	61	176.171		
momat (GODDEGMED)	00200 5				
TOTAL (CORRECTED)	80392.5	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average pyrene among the pilot conditions, fuels, modes, and pilot condition*fuel interaction.

CONCLUSION: The average pyrene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

CONCLUSION: There are several distinct fuel groupings with respect to the average pyrene. The average pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The FT-100 fuel is significantly different than the ALS and CA fuels, but not significantly different than the ADMM15 fuel.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average pyrene for modes 10 and 11 are significantly different from one another.

Multiple Range Tests for pyrene by COND

Method: 95.	0 percent Tu Count	ıkey HSD LS Mean	Homogeneous Gr	oups
LPP PilotB PilotA	31 30 30	29.6699 41.7887 42.3395	X X X	
Contrast			Difference	+/- Limits
LPP - Pilot. LPP - Pilot. PilotA - Pi	В		*-12.6696 *-12.1188 0.550867	8.16647 8.16647 8.23314

^{*} denotes a statistically significant difference.

Multiple Range Tests for pyrene by FUEL

Method: 95.0 percent Tukey HSD
FUEL Count LS Mean Homogeneous Groups

1000	Court	пр псап	nomogeneous
FT-100	18	15.0864	X
ADMM15	18	21.6978	XX
ALS	19	32.749	X
CA	18	33.4433	X
DF-2	18	86.6869	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2	-11.0512 -11.7455 *-64.9892 6.61132 -0.694279 *-53.9379 *17.6626 *-53.2437	12.2724 12.4371 12.4371 12.4371 12.2724 12.2724 12.2724 12.2724
CA - FT-100	*18.3568	12.4371
DF-2 - FT-100	*71.6005	12.4371

^{*} denotes a statistically significant difference.

Multiple Range Tests for pyrene by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	}
11 10	45 46	34.7254 41.14	х х	
Contrast			Difference	+/- Limits
10 - 11		,	*6.41454	5.56482

^{*} denotes a statistically significant difference.

CONCLUSION: The trend in the average pyrene across the pilot conditions for the DF-2 fuel is significantly different than the trends for the remaining four fuels.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average pyrene among the pilot condition and mode combinations.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average pyrene among the fuel and mode combinations.

Analysis Summary

Dependent variable: benzoaan

Factors:

COND FUEL MODE

Number of complete cases: 90

LPP

Scatterplot by Level Code

PilotA

Pilot Condition

PilotB

Scatterplot by Level Code

Analysis of Variance for benzoaan - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A: COND	48.5995	2	24.2997	40.74	0.0000
B:FUEL	402.558	4	100.639	168.71	0.0000
C:MODE	3.88467	1	3.88467	6.51	0.0133

INTERAC	TIONS					
AB		67.7529	8	8.46911	14.20	0.0000
AC		2.79427	2	1.39713	2.34	0.1049
BC		4.41053	4	1.10263	1.85	0.1314
ABC		4.58466	8	0.573083	0.96	0.4750
RESIDUA	L 	35.7914	60	0.596523		
TOTAL (CORRECTED)	573.429	89			

All F-ratios are based on the residual mean square error.

 $\hbox{CONCLUSION:} \quad \hbox{Statistically significant differences in the average benzo[a] anthracene among the pilot conditions, fuels, modes, and pilot condition* mode interaction.$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[a]anthracene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct fuel groupings with respect to the average benzo[a]anthracene. Fuels DF-2 and CA are significantly different from one another and the remaining three fuels. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different than the other other two fuels.

CONCLUSION: The average benzo [a] anthracene for mode 10 is significantly different than mode 11.

Multiple Range Tests for benzoaan by COND

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 30 1.0117 30 PilotB 2.48863 X PilotA 30 2.66345 Difference LPP - PilotA *-1.65175 0.479284 LPP - PilotB *-1.47694 0.479284 PilotA - PilotB 0.479284 0.174814

* denotes a statistically significant difference.

Multiple Range Tests for benzoaan by FUEL

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 17 18 19 18 0.301925 0.424917 FT-100 Х ADMM15 X 0.966186 ALS CA 2.61 5.969 DF-2 5.96993

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100	-0.541269 *-2.18508 *-5.54501 0.122992 *-1.64381 *-5.00374 0.664261	0.714488 0.724079 0.724079 0.73465 0.714488 0.714488
CA - DF-2 CA - FT-100	*-3.35993 *2.30807	0.724079 0.73465
DF-2 - FT-100	*5.668	0.73465

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzoaan by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	}
11	44 46	1.84597 2.26321	X X	
Contrast			Difference	+/- Limits
10 - 11		· · · · · · · · · · · · · · · · · · ·	*0.417242	0.32578

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average benzo[a]anthracene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average benzo[a]anthracene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, ALS, and FT-100 fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average benzo[a] anthracene among the pilot condition and mode combinations.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average benzo[a]anthracene among the fuel and mode combinations.

Multifactor ANOVA - Chrysene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: chrysene

Factors:

COND FUEL MODE

Number of complete cases: 91

Scatterplot by Level Code 24 20 Chrysene 16 12 8 4 Ħ LPP PilotA

Scatterplot by Level Code

Pilot Condition

Scatterplot by Level Code

Analysis of Variance for chrysene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	 F-Ratio	P-Value
MAIN EFFECTS A:COND	188.566	2	94.2828	35.03	0.0000
B:FUEL	2128.88	4	532.22	197.75	0.0000
C:MODE	14.6927	1	14.6927	5.46	0.0228

INTERACTIONS					
AB	247.004	8	30.8756	11.47	0.0000
AC	14.0682	2	7.03408	2.61	0.0815
BC	18.4527	4	4.61319	1.71	0.1585
ABC	23.1032	8	2.8879	1.07	0.3938
RESIDUAL	164.177	61	2.69143		
TOTAL (CORRECTED)	2790.75	90			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average chrysene among the pilot conditions, fuels, modes, and pilot condition*fuel interaction.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average chrysene for the Pilot A and Pilot B conditions are not significantly different from one another, but are significantly different from the LPP condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are three distinct fuel groupings with respect to the average chrysene. Fuels DF-2 and CA are significantly different from one another and the remaining three fuels. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different than the other two fuels.

CONCLUSION: The average chrysene for mode 10 is significantly different than mode 11.

Multiple Range Tests for chrysene by COND

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 2.86821 30 PilotB 5.53075 X PilotA 30 6.18938 Difference LPP - PilotA *-3.32117 1.00939 LPP - PilotB *-2.66254 1.00939 PilotA - PilotB 0.658631 1.01763

* denotes a statistically significant difference.

Multiple Range Tests for chrysene by FUEL

Method: 95.0	percent T	ukey HSD	
FUEL	Count	LS Mean	Homogeneous Groups
FT-100	18	1.00794	X
ADMM15	18	1.27994	X
ALS	19	2.27269	X
CA	18	5.7963	X
DF-2	18	13.957	X

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100	-0.992748 *-4.51636 *-12.6771 0.272006 *-3.52361 *-11.6843 1.26475 *-8.16073 *4.78836	1.51689 1.53725 1.53725 1.53725 1.51689 1.51689 1.51689 1.53725
DF-2 - FT-100	*12.9491	1.53725

^{*} denotes a statistically significant difference.

Multiple Range Tests for chrysene by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	
11 10	45 46	4.46042 5.26514	X X	
Contrast			Difference	+/- Limits
10 - 11		*	0.804715	0.687822

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average chrysene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average chrysene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average chrysene among the pilot condition and mode combinations.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average chrysene among the fuel and mode combinations.

Multifactor ANOVA - Benzo[b]fluoranthene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions Modes 10 and 11

Analysis Summary

Dependent variable: benzobfl

Factors:

COND FUEL MODE

Number of complete cases: 90

Analysis of Variance for benzobfl - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND B:FUEL C:MODE	33.7923	2	16.8961	61.70	0.0000
	187.458	4	46.8646	171.14	0.0000
	6.52731	1	6.52731	23.84	0.0000

INTERACTIONS					
AB	56.3	8	7.0375	25.70	0.0000
AC	5.08814	2	2.54407	9.29	0.0003
BC	2.47311	4	0.618277	2.26	0.0734
ABC	5.72437	8	0.715547	2.61	0.0160
RESIDUAL	16.4299	60	0.273831		
TOTAL (CORRECTED)	314.118	89			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[b]fluoranthene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, pilot condition*mode interaction, and the three-factor interaction.

Means and 95% Tukey HSD Intervals

2.8

2.4

4

1.6

0.8

LPP PilotA PilotB

Pilot Condition

CONCLUSION: The average benzo [b] fluoranthene for the three pilot conditions are all significantly different from one another.

CONCLUSION: The average benzo[b]fluoranthene for the ALS, CA, and DF-2 fuels are significantly different from one another and the remaining two fuels. The average benzo[b]fluoranthene for the ADMM15 and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average benzo[b] fluoranthene for modes 10 and 11 are significantly different from one another.

Multiple Range Tests for benzobfl by COND

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 30 0.974513 30 PilotB 1.86744 X PilotA 30 2.47698 Difference LPP - PilotA *-1.50247 0.324729 LPP - PilotB *-0.892926 0.324729 PilotA - PilotB *0.60954 0.324729

* denotes a statistically significant difference.

Multiple Range Tests for benzobfl by FUEL

Method: 95.0 percent Tukey HSD Count LS Mean Homogeneous Groups ______ 18 0.440325 18 0.458957 ADMM15 Х FT-100 18 19 17 18 1.18837 ALS X CA 2.55696 DF-2 4.22027

Contrast	Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2	*-0.748046 *-2.11664 *-3.77994 -0.018632 *-1.36859 *-3.0319 *0.729414 *-1.6633	0.484086 0.497747 0.490584 0.490584 0.491343 0.484086 0.484086
CA - FT-100 DF-2 - FT-100	*2.09801 *3.76131	0.497747 0.490584

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzobfl by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	
11 10	44 46	1.50255 2.0434	X X	
Contrast			Difference	+/- Limits
10 - 11		*	0.540852	0.220726

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average benzo[b] fluoranthene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average benzo[b] fluoranthene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[b] fluoranthene at the Pilot A condition for Mode 10 is significantly different than Mode 11. There is no significant difference in the average benzo[b] fluoranthene between the two modes at the LPP or Pilot B conditions.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average benzo\,[b]\,fluoranthene among the fuel and mode combinations.}$

Analysis Summary

Dependent variable: benzokfl

Factors:

COND FUEL MODE

Number of complete cases: 90

Analysis of Variance for benzokfl - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	21.4951	2	10.7475	20.33	0.0000
B:FUEL	105.475	4	26.3688	49.89	0.0000
C:MODE	7.90494	1	7.90494	14.96	0.0003

8.67666	8	1.08458	2.05	0.0551
5.3645	2	2.68225	5.07	0.0092
2.33049	4	0.582623	1.10	0.3638
9.53079	8	1.19135	2.25	0.0354
31 7120	60	0 528547		
192.186	89			
	5.3645 2.33049 9.53079 31.7128	5.3645 2 2.33049 4 9.53079 8 31.7128 60	5.3645 2 2.68225 2.33049 4 0.582623 9.53079 8 1.19135 31.7128 60 0.528547	5.3645 2 2.68225 5.07 2.33049 4 0.582623 1.10 9.53079 8 1.19135 2.25 31.7128 60 0.528547

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[b] fluoranthene among the pilot conditions, fuels, modes, pilot condition*mode interaction, and the three-factor interaction.

Pilot Condition

CONCLUSION: The average benzo [f] fluoranthene for the three pilot conditions are significantly different from one another.

CONCLUSION: There are several distinct fuel groupings with respect to the average benzo [k] fluoranthene. The DF-2 fuel is significantly different from the remaining four fuels. The CA fuel is significantly different than the ADMM15 and the FT-100 fuels, but not significantly different than the ALS fuel. Also, the ALS fuel is significantly different than the FT-100 fuel.

CONCLUSION: The average benzo [k] fluoranthene for mode 10 is significantly different than mode 11.

 $\hbox{Multiple Range Tests for benzokfl by COND}\\$

Method: 95	.0 percent T	ukey HSD LS Mean	Homogeneous Gro	oups
LPP	30	1.07438	Х	
PilotB	30	1.56063	X	
PilotA	30	2.27093	X	
Contrast			Difference	+/- Limits
LPP - Pilot	 tA		*-1.19656	0.45115
LPP - Pilot	tB		*-0.486254	0.45115
PilotA - P:	ilotB		*0.710302	0.45115

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzokfl by FUEL

Method: 95.0 p		-	Homogeneous Group	s
FT-100	18	0.525045	Х	
ADMM15	18	0.817921	XX	
ALS	19	1.4175	XX	
CA	17	1.81074	X	
DF-2	18	3.60536		
Contrast			Difference	•
ADMM15 - ALS			-0.599576	
ADMM15 - CA			*-0.992818	0.691526
ADMM15 - DF-2			*-2.78744	0.681575
ADMM15 - FT-10	00		0.292877	0.681575
ALS - CA			-0.393242	0.68263
ALS - DF-2			*-2.18787	0.672548
ALS - FT-100			*0.892453	0.672548
CA - DF-2			*-1.79462	0.691526
CA - FT-100			*1.28569	0.691526
DF-2 - FT-100			*3.08032	0.681575

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzokfl by MODE

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	\$
11 10	44 46	1.33772 1.93291	х х	
Contrast			Difference	+/- Limits
10 - 11		,	*0.595196	0.306657

^{*} denotes a statistically significant difference.

CONCLUSION: There is no significant interaction in the average benzo[k] fluoranthene among the fuel and pilot condition combinations.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The average benzo [k] fluoranthene at the Pilot A condition for Mode 10 is significantly different than Mode 11. There is no significant difference in the average benzo [k] fluoranthene between the two modes at the LPP or Pilot B conditions.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average benzo[k] fluoranthene among the fuel and mode combinations.

Analysis Summary

Benzo[e]pyrene

Dependent variable: benzoepy

Factors:

COND FUEL MODE

Number of complete cases: 91

0 [

PilotB

PilotA Pilot Condition

LPP

Scatterplot by Level Code

Analysis of Variance for benzoepy - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	19.0613	2	9.53063	74 . 74	0.0000
B:FUEL	61.2053	4	15.3013	119.99	0.0000
C:MODE	3.35117	1	3.35117	26.28	0.0000

INTERACTIONS					
AB	15.5695	8	1.94619	15.26	0.0000
AC	1.70452	2	0.852262	6.68	0.0024
BC	1.17591	4	0.293977	2.31	0.0683
ABC	1.62589	8	0.203236	1.59	0.1455
RESIDUAL	7.7789	61	0.127523		
TOTAL (CORRECTED)	111.059	90			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[e]pyrene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, and pilot condition*mode interaction.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo [e] pyrene for the three pilot conditions are significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are several distinct fuel groupings with respect to the average benzo[e]pyrene. The DF-2 and CA fuels are significantly different from the remaining three fuels. Also, the ALS fuel is significantly different than the FT-100 fuel.

CONCLUSION: The average benzo[e]pyrene for mode 10 is significantly different than mode 11.

Multiple Range Tests for benzoepy by COND

Method: 95.0	0 percent Tu Count	lkey HSD LS Mean	Homogeneous Gro	ups
LPP PilotB PilotA	31 30 30	0.613585 1.3361 1.71474	X X X	
Contrast			Difference	+/- Limits
LPP - Piloti LPP - Piloti PilotA - Pil	В		*-1.10116 *-0.722515 *0.378641	0.219716 0.219716 0.22151

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzoepy by FUEL

Ashlad OF A compact Bullon VOD

Method: 9 FUEL	5.0 percent To Count	ıkey HSD LS Mean	Homogeneous Gr	oups
FT-100 ADMM15	18 18	0.375599 0.544484	X XX	
ALS	19	0.874367	X	
CA DF-2	18 18	1.73671 2.57622	X X	
Contrast			Difference	+/- Limits

Contrast	Difference	+/- Limits	
ADMM15 - ALS	-0.329883	0.330184	
ADMM15 - CA	*-1.19223	0.334616	
ADMM15 - DF-2	*-2.03173	0.334616	
ADMM15 - FT-100	0.168886	0.334616	
ALS - CA	*-0.862343	0.330184	
ALS - DF-2	*-1.70185	0.330184	
ALS - FT-100	*0.498769	0.330184	
CA - DF-2	*-0.839507	0.334616	
CA - FT-100	*1.36111	0.334616	
DF-2 - FT-100	*2.20062	0.334616	

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzoepy by MODE

Method: 95.0 percent Tukey HSD

Count	LS Mean	Homogeneous Groups	
45 46	1.02932 1.41363	Х Х	
		Difference	+/- Limits
	,	0.384317	0.14972
	45	45 1.02932 46 1.41363	45 1.02932 X

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average benzo[e]pyrene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining three fuels. The average benzo[e]pyrene for the DF-2 and CA fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[e]pyrene at the Pilot A condition for Mode 10 is significantly different than Mode 11. There is no significant difference in the average benzo[e]pyrene between the two modes at the LPP or Pilot B conditions.

 ${\tt CONCLUSION:} \quad {\tt There is no significant interaction in the average benzo[e] pyrene among the fuel and mode combinations.}$

Analysis Summary

Dependent variable: benzoapy

Factors:

COND FUEL MODE

Number of complete cases: 90

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for benzoapy - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:COND	13.9325	2	6.96627	70.55	0.0000
B:FUEL	28.6525	4	7.16311	72.54	0.0000

C:MODE	1.90042	1	1.90042	19.25	0.0000
INTERACTIONS					
AB	14.7907	8	1.84884	18.72	0.0000
AC	1.26211	2	0.631057	6.39	0.0030
BC	1.38381	4	0.345953	3.50	0.0123
ABC	1.8229	8	0.227863	2.31	0.0315
RESIDUAL	5.92448	60	0.0987413		
TOTAL (CORRECTED)	69.8823	89			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[a]pyrene among the pilot conditions, fuels, modes, two-factor interactions, and the three-factor interaction fuel*mode*pilot condition.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo [a] pyrene for the three pilot conditions are significantly different from one another.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[a]pyrene for the DF-2, CA, and ALS fuels are significantly different from one another and the remaining two fuels. The average benzo[a]pyrene for the ADMM15 and FT-100 fuels are not significantly different from one another.

CONCLUSION: The average benzo[a]pyrene for mode 10 is significantly different than mode 11.

Multiple Range Tests for benzoapy by COND

Method: 95.0 percent Tukey HSD COND Count LS Mean	Homogeneous Groups
LPP 31 0.245088 PilotB 30 0.932902 PilotA 29 1.17383	X X X
Contrast	Difference +/- Limits
LPP - PilotA LPP - PilotB PilotA - PilotB	*-0.92874 0.195106 *-0.687815 0.193419 *0.240925 0.196671

^{*} denotes a statistically significant difference.

Multiple Range Tests for benzoapy by FUEL

Method: 95.0 FUEL) percent To Count	ukey HSD LS Mean	Homogeneous Gr	oups		
FT-100 ADMM15 ALS CA DF-2	18 17 19 18	0.160939 0.242393 0.639999 1.27156 1.6048	X X X X X			
Contrast			Difference	+/-	Limits	

ADMM15 - ALS	*-0.397606	0.295048
ADMM15 - CA	*-1.02917	0.298893
ADMM15 - DF-2	*-1.36241	0.298893
ADMM15 - FT-100	0.0814542	0.298893
ALS - CA	*-0.631563	0.29069
ALS - DF-2	*-0.964804	0.29069
ALS - FT-100	*0.47906	0.29069
CA - DF-2	*-0.33324	0.294593
CA - FT-100	*1.11062	0.294593
DF-2 - FT-100	*1.44386	0.294593

^{*} denotes a statistically significant difference.

 $\hbox{Multiple Range Tests for benzoapy by MODE}\\$

Method: 95.0 percent Tukey HSD

MODE	Count	LS Mean	Homogeneous Groups	
11 10	44 46	0.638022 0.929856	X X	
Contrast			Difference	+/- Limits
10 - 11		*	0.291834	0.132544

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average benzo[a]pyrene across the pilot conditions for the CA and DF-2 fuels are significantly different than the trends for the remaining three fuels. The average benzo[a]pyrene for the CA and DF-2 fuels at the Pilot A and Pilot B conditions are significantly different than the ADMM15, FT-100, and ALS fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[a]pyrene at the Pilot A condition for mode 10 is significantly different than mode 11. There is no significant difference in the average benzo[a]pyrene between the two modes at the LPP or Pilot B conditions.

CONCLUSION: The average benzo[a]pyrene for the CA and DF-2 fuels for mode 10 is significantly different than mode 11. There is no significant difference in the average benzo[a]pyrene between the modes for the ADMM15, ALS, or FT-100 fuels.

Multifactor ANOVA - Indeno(1,2,3-cd)pyrene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions on Four Fuels Modes 10 and 11

Analysis Summary

Dependent variable: indeno

Factors:

COND FUEL MODE

Number of complete cases: 70

Analysis of Variance for indeno - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:COND	1.88837	2	0.944186	29.96	0.0000
B:FUEL	13.47	3	4.49	142.47	0.0000
C:MODE	0.0979782	1	0.0979782	3.11	0.0845

INTERACTIONS					
AB	3.30618	6	0.55103	17.48	0.0000
AC	0.496114	2	0.248057	7.87	0.0011
BC	0.0408507	3	0.0136169	0.43	0.7310
ABC	0.815885	6	0.135981	4.31	0.0016
RESIDUAL	1.44973	46	0.0315159		
TOTAL (CORRECTED)	21.8794	69			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average indeno(1,2,3-cd)pyrene among the pilot conditions, fuels, pilot condition*fuel interaction, pilot condition*mode interaction, and the three-factor interaction pilot condition*fuel*mode.

CONCLUSION: The average indeno(1,2,3-cd)pyrene for the three pilot conditions are significantly different from one another.

CONCLUSION: The average indeno(1,2,3-cd)pyrene for the DF-2 and CA fuels are significantly different from one another and the remaining two fuels. The average indeno(1,2,3-cd)pyrene for the FT-100 and ADMM15 fuels are not significantly different from one another.

CONCLUSION: There is no significant difference in the average indeno(1,2,3-cd) pyrene among the two modes.

Multiple Range Tests for indeno by COND

		1		
Method: 95.0 COND	Count	LS Mean	Homogeneous Gr	coups
LPP	24	0.259249	Х	
PilotB	24	0.481723	X	
PilotA	22	0.666534	X	
Contrast			Difference	+/- Limits
LPP - Pilot	A		*-0.407284	0.126918
LPP - Pilot	3		*-0.222473	0.124128
PilotA - Pil	lotB		*0.184811	0.126918

 $[\]mbox{*}$ denotes a statistically significant difference.

Multiple Range Tests for indeno by FUEL

Method: 95.0 p		ey HSD LS Mean	Homogeneous Groups	3
FT-100	18	0.0485468	Х	
ADMM15	16	0.10839	X	
CA	18	0.581265	X	
DF-2	18	1.13847	X	
Contrast			Difference	+/- Limits
ADMM15 - CA			*-0.472875	0.162599
ADMM15 - DF-2			*-1.03008	0.162599
ADMM15 - FT-10	0		0.0598431	0.162599
CA - DF-2			*-0.557207	0.157745
CA - FT-100			*0.532719	0.157745
DF-2 - FT-100			*1.08993	0.157745

^{*} denotes a statistically significant difference.

Markad OF O manager Mukay HOD

Method: 95.0	percent Tul Count	key HSD LS Mean	Homogeneous Groups	3
11 10	35 35	0.431519 0.506818	X X	
Contrast			Difference	+/- Limits
10 - 11			0.0752996	0.0854216

^{*} denotes a statistically significant difference.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The trends in the average indeno(1,2,3-cd) pyrene across the pilot conditions for the CA and DF-2 fuels are significantly different than the trends for the remaining two fuels. The average indeno(1,2,3-cd) pyrene for the CA and DF-2 fuels at the Pilot A condition are significantly different than the ADMM15 and FT-100 fuels.

Interactions and 95% Tukey HSD Intervals

CONCLUSION: The average indeno(1,2,3-cd)pyrene at the Pilot A condition for mode 10 is significantly different than mode 11.

CONCLUSION: There is no significant interaction in the average indeno(1,2,3-cd) pyrene among the fuel and mode combinations.

Multifactor ANOVA - Benzo[ghi]perylene ($\mu g/kW$ -hr) Soluble PAH Three Pilot Conditions on Four Fuels Modes 10 and 11

Analysis Summary

Dependent variable: benzogpe

Factors:

COND FUEL MODE

Number of complete cases: 71

Scatterplot by Level Code

Scatterplot by Level Code

Scatterplot by Level Code

Analysis of Variance for benzogpe - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS					
A:COND	3.76493	2	1.88247	28.05	0.0000
B:FUEL	29.0105	3	9.67015	144.11	0.0000
C:MODE	0.320197	1	0.320197	4.77	0.0340

INTERACTIONS					
AB	7.55969	6	1.25995	18.78	0.0000
AC	0.850042	2	0.425021	6.33	0.0037
BC	0.0839346	3	0.0279782	0.42	0.7416
ABC	1.9744	6	0.329066	4.90	0.0006
RESIDUAL	3.15374	47	0.0671009		
TOTAL (CORRECTED)	46.9949	70			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo[ghi]perylene among the pilot conditions, fuels, modes, pilot condition*fuel interaction, pilot condition*mode interaction, and the three-factor interaction pilot condition*fuel*mode.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:} \quad {\tt The \ average \ benzo[ghi]perylene \ for \ the \ three \ pilot \ conditions \ are \ significantly \ different \ from \ one \ another.}$

Means and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[ghi]perylene for the DF-2 and CA fuels are significantly different from one another and the remaining two fuels. The average benzo[ghi]perylene for the FT-100 and ADMM15 fuels are not significantly different from one another.

CONCLUSION: The average benzo[ghi] perylene for mode 10 is significantly different than mode 11.

 $\hbox{Multiple Range Tests for benzogpe by $\tt COND}\\$

______ Method: 95.0 percent Tukey HSD COND Count LS Mean Homogeneous Groups 24 0.503794 EB 24 0.800707 LPP PilotB X PilotA 23 1.07206 X +/- Limits Contrast Difference LPP - PilotA *-0.568266 0.18295 0.180993 LPP - PilotB *-0.296914

*0.271352

0.18295

* denotes a statistically significant difference.

Multiple Range Tests for benzogpe by FUEL

PilotA - PilotB

Method: 95.0 FUEL	-	ıkey HSD LS Mean	Homogeneous Gr	oups
FT-100 ADMM15 CA DF-2	18 17 18 18	0.148796 0.248311 1.0539 1.71774	X X X X Difference	
ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100			,	

^{*} denotes a statistically significant difference.

 ${\tt Multiple\ Range\ Tests\ for\ benzogpe\ by\ MODE}$

Method:	95.0 percent	Tukey HSD	Homogeneous Groups
MODE	Count	LS Mean	
11	35	0.724809	x
	36	0.859565	x

Contrast	Difference	+/- Limits
10 - 11	*0.134757	0.123703

^{*} denotes a statistically significant difference.

CONCLUSION: The trends in the average benzo[ghi]perylene across the pilot conditions for the DF-2 and CA fuels are significantly different than the trends for the remaining two fuels. The average benzo[ghi]perylene for the CA and DF-2 fuels at the Pilot A condition are significantly different than the ADMM15 and FT-100 fuels.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: The average benzo[ghi]perylene at the Pilot A condition for mode 10 is significantly different than mode 11.

Interaction and 95% Tukey HSD Intervals

CONCLUSION: There is no significant interaction in the average benzo[ghi]perylene among the fuel and mode combinations.

APPENDIX G
ANOVA for MODE 12

TABLE OF CONTENTS

Total Particulates	G-3
BSNO _X	G-5
BSHC	G-7
BSCO	G-9
BSCO2	G-11
BSSOF	G-13
Benzene Toxic Gaseous Emissions	G-15
1,3 Butadiene Toxic Gaseous Emissions	G-17
Formaldehyde Toxic Gaseous Emissions	G-19
Acetaldehyde Toxic Gaseous Emissions	G-21
Naphthalene Gaseous PAH	G-23
2-Methylnaphthalene Gaseous PAH	G-25
1-Methylnaphthalene Gaseous PAH	
2,6-Dimethylnaphthalene Gaseous PAH	G-29
Acenaphthylene Gaseous PAH	G-31
Acenaphthene Gaseous PAH	G-33
Fluorene Gaseous PAH	G-35
Phenanthrene Gaseous PAH	
Anthracene Gaseous PAH	
Fluoranthene Gaseous PAH	
Pyrene Gaseous PAH	G-43
Naphthalene Soluble PAH	G-45
Acenaphthylene Soluble PAH	G-47
Acenaphthene Soluble PAH	
Fluorene Soluble PAH	
Phenanthrene Soluble PAH	
Anthracene Soluble PAH	
Fluoranthene Soluble PAH	
Pyrene Soluble PAH	G-59
Benzo[a]anthracene	
Chrysene	G-63
Benzo[b]fluoranthene	G-65
Benzo[k]fluoranthene	
Benzo[e]pyrene	G-69

Analysis Summary

Dependent variable: PARTIC

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 17

Scatterplot by Level Code

Analysis of Variance for PARTIC - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	173.578	4	43.3945	1.50	0.2645
RESIDUAL	348.132	12	29.011		
TOTAL (CORRECTED)	521.71	16			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average particulates among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}$ No statistically significant differences in the average particulates among the fuels.

Multiple Range Tests for PARTIC by FUEL

Method: 95.0 percent Tukey HSD
FUEL Count LS Mean Homogeneous Groups

ADMM15 3 2.90331 X FT-100 3 3.54611 X

DF-2	3	8.41804	X	
ALS	4	8.86013	X	
CA	4	11.168	X	
Contrast			Difference	+/- Limits
ADMM15 - AI	LS		-5.95682	13.1343
ADMM15 - CA	Ą		-8.26472	13.1343
ADMM15 - DF	7-2		-5.51473	14.0411
ADMM15 - FI	Γ-100		-0.642796	14.0411
ALS - CA			-2.3079	12.16
ALS - DF-2			0.44209	13.1343
ALS - FT-10	00		5.31402	13.1343
CA - DF-2			2.74999	13.1343
CA - FT-100)		7.62192	13.1343
DF-2 - FT-1	L00		4.87193	14.0411

 $[\]boldsymbol{\ast}$ denotes a statistically significant difference.

Analysis Summary

Dependent variable: BSNOX

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 17

Scatterplot by Level Code

Analysis of Variance for BSNOX - Type III Sums of Squares

Source	Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	19.5585	4	4.88963	0.20	0.9353
RESIDUAL	298.211	12	24.8509		
TOTAL (CORRECTED)	 317.769	16			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average BSNOX among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average BSNOX among the fuels.

Multiple Range Tests for BSNOX by FUEL

W. 1. 1. 05. 0

Method: 95.0 percent Tukey HSD

FUEL Count LS Mean Homogeneous Groups

CA 4 17.5372 X

ALS	4	18.714	X		
FT-100	3	18.7832	X		
DF-2	3	19.3197	X		
ADMM15	3	20.8529	X		
Contrast			Difference	+/- Limits	
ADMM15 - AL	.S		2.13893	12.1561	
ADMM15 - CA	1		3.31568	12.1561	
ADMM15 - DF	7-2		1.53323	12.9955	
ADMM15 - FT	-100		2.06964	12.9955	
ALS - CA			1.17675	11.2544	
ALS - DF-2			-0.605695	12.1561	
ALS - FT-10	0		-0.0692861	12.1561	
CA - DF-2			-1.78244	12.1561	
CA - FT-100)		-1.24603	12.1561	
DF-2 - FT-1	.00		0.536409	12.9955	

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: BSHC

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 17

Analysis of Variance for BSHC - Type III Sums of $\operatorname{Squares}$

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	1799.42	4	449.854	0.99	0.4499
RESIDUAL	5456.05	12	454.671		
TOTAL (CORRECTED)	7255.47	16			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average BSHC among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average BSHC among the fuels.

Multiple Range Tests for BSHC by FUEL

Method: 95.0 percent Tukey HSD

FUEL Count LS Mean Homogeneous Groups

					_
FT-100	3	28.1695	X		
ADMM15	3	36.7632	X		
CA	4	52.4152	X		
DF-2	3	53.3986	X		
ALS	4	54.0764	X		
					-
Contrast			Difference	+/- Limits	
ADMM15 - AL			-17.3132	51.9964	-
ADMM15 - CA			-15.652	51.9964	
ADMM15 - DF	-2		-16.6354	55.5865	
ADMM15 - FT	-100		8.59372	55.5865	
ALS - CA			1.66119	48.1393	
ALS - DF-2			0.677775	51.9964	
ALS - FT-10	0		25.9069	51.9964	
CA - DF-2			-0.983416	51.9964	
CA - FT-100			24.2457	51.9964	
DF-2 - FT-1	00		25.2291	55.5865	
					_

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: BSCO

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 17

Analysis of Variance for BSCO - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	16190.3	4	4047.57	0.86	0.5157
RESIDUAL	56565.5	12	4713.8		
TOTAL (CORRECTED)	72755.8	16			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ No statistically significant differences in the average BSCO among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\,$ No statistically significant differences in the average BSCO among the fuels.

Multiple Range Tests for BSCO by FUEL

Method: 95.0 percent Tukey HSD

FUEL			Homogeneous Gro	ups
FT-100	3		X	
ADMM15	3	159.445	X	
CA	4	174.056	X	
ALS	4	190.488	X	
DF-2	3	195.655	X	
Contrast			Difference	•
ADMM15 - ALS			-31.0427	
ADMM15 - CA			-14.6106	167.421
ADMM15 - DF-2			-36.2097	178.98
ADMM15 - FT-1	00		53.4104	178.98
ALS - CA			16.4321	155.002
ALS - DF-2			-5.16696	167.421
ALS - FT-100			84.4531	167.421
CA - DF-2			-21.5991	167.421
CA - FT-100			68.021	167.421
DF-2 - FT-100			89.62	178.98

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: BSCO2

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 17

Scatterplot by Level Code

Analysis of Variance for BSCO2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	6.79414E6	4	1.69854E6	0.49	0.7406
RESIDUAL	4.12673E7	12	3.43894E6		
TOTAL (CORRECTED)	4.80614E7	16			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\ {\tt No}\ {\tt statistically}\ {\tt significant}\ {\tt differences}\ {\tt in}\ {\tt the}\ {\tt average}\ {\tt BSCO2}\ {\tt among}\ {\tt the}\ {\tt fuels.}$

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average ${\tt BSCO2}$ among the fuels.

Multiple Range Tests for BSCO2 by FUEL

....

Method: 95.0 percent Tukey HSD

FUEL Count LS Mean Homogeneous Groups

CA DF-2 ADMM15 FT-100 ALS	4 3 3 3 4	5618.38 5664.79 6464.75 6754.19 7174.0	x x x x x	
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		-709.244 846.375 799.964 -289.437 1555.62 1509.21 419.807 -46.4105 -1135.81 -1089.4	4522.06 4522.06 4834.29 4834.29 4186.62 4522.06 4522.06 4522.06 4522.06 4522.06

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: bssof

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for bssof - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	91.9437	4	22.9859	2.37	0.1165
RESIDUAL	106.826	11	9.71143		
TOTAL (CORRECTED)	198.769	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\ {\tt No}\ {\tt statistically}\ {\tt significant}\ {\tt differences}\ {\tt in}\ {\tt the}\ {\tt average}\ {\tt BSSOF}\ {\tt among}\ {\tt the}\ {\tt fuels.}$

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average BSSOF among the fuels.

Multiple Range Tests for bssof by fuel

Method: 95.0 percent Tukey HSD

fuel Count LS Mean Homogeneous Groups

ADMM15	3	2.83784	X	
FT-100	3	3.16754	X	
CA	3	6.36478	X	
DF-2	3	7.86606	X	
ALS	4	8.60195	X	
Contrast			Difference	+/- Limits
ADMM15 - AL	 S		-5.76411	7.70442
ADMM15 - CA			-3.52694	8.23638
ADMM15 - DF	-2		-5.02821	8.23638
ADMM15 - FT	-100		-0.329696	8.23638
ALS - CA			2.23717	7.70442
ALS - DF-2			0.735895	7.70442
ALS - FT-10	0		5.43441	7.70442
CA - DF-2			-1.50128	8.23638
CA - FT-100			3.19724	8.23638
DF-2 - FT-1	00		4.69852	8.23638

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: BENZENE

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Scatterplot by Level Code 500 400

Analysis of Variance for BENZENE - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	90429.9	4	22607.5	2.31	0.1230
RESIDUAL	107777.0	11	9797.87		
TOTAL (CORRECTED)	198206.0	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\ {\tt No}\ {\tt statistically}\ {\tt significant}\ {\tt differences}\ {\tt in}\ {\tt the}\ {\tt average}\ {\tt benzene}\ {\tt among}\ {\tt the}\ {\tt fuels.}$

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average benzene among the fuels.

Multiple Range Tests for BENZENE by FUEL

Method:	95.0 percent Tu	key HSD		
FUEL	Count	LS Mean	Homogeneous Gr	oups
FT-100	3	117.955	X	
ADMM15	3	178.153	X	
DF-2	3	241.471	X	
CA	3	249.61	X	
ALS	4	333.891	X	
Contrast				+/- Limits
ADMM15 -	ALS		-155.738	244.717
ADMM15 -	· CA		-71.4565	261.614
ADMM15 -	DF-2		-63.3182	261.614
ADMM15 -	FT-100		60.198	261.614
ALS - CA	Δ		84.2815	244.717
ALS - DE	7-2		92.4198	244.717
ALS - FI	7-100		215.936	244.717
CA - DF-	-2		8.13835	261.614
CA - FT-	100		131.654	261.614
DF-2 - F	T-100		123.516	261.614

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 1,3 Butadiene (mg/kW-hr) Toxic Gaseous Emissions LPP Only Mode 12

Analysis Summary

Dependent variable: BUTAD

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for BUTAD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	169229.0	4	42307.4	2.06	0.1547
RESIDUAL	225726.0	11	20520.5		
TOTAL (CORRECTED)	394955.0	15			

All F-ratios are based on the residual mean square error.

CONCLUSION: No statistically significant differences in the average 1,3 Butadiene among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}~{\tt No}$ statistically significant differences in the average 1,3 Butadiene among the fuels.

Multiple Range Tests for BUTAD by FUEL

Mathad Of		HGD		
	5.0 percent To Count	-	Homogeneous G	roups
CA		196.865		
ADMM15	3	216.494	X	
DF-2	3	229.33	X	
FT-100	3	282.903	X	
ALS	4	460.173	X	
Contrast				+/- Limits
ADMM15 - A			-243.679	354.155
ADMM15 - 0	CA		19.6288	378.607
ADMM15 - I	DF-2		-12.8365	378.607
ADMM15 - H	T-100		-66.4091	378.607
ALS - CA			263.308	354.155
ALS - DF-2	2		230.843	354.155
ALS - FT-1	100		177.27	354.155
CA - DF-2			-32.4653	378.607
CA - FT-10	00		-86.0379	378.607
DF-2 - FT-			-53.5726	378.607

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Analysis Summary

Dependent variable: FORMALD

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for FORMALD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	4.23523E8	4	1.05881E8	1.38	0.3020
RESIDUAL	8.41735E8	11	7.65213E7		
TOTAL (CORRECTED)	1.26526E9	15			

All F-ratios are based on the residual mean square error.

 $\hbox{{\tt CONCLUSION:}} \quad \hbox{No statistically significant differences in the average formal dehyde among the fuels.}$

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average formaldehyde among the fuels.

 $\hbox{Multiple Range Tests for FORMALD by FUEL}\\$

Method:	95.0 percent Tu	key HSD		
FUEL	Count	LS Mean	Homogeneous Gr	roups
CA	3	18177.0	X	
FT-100	3	23723.0	X	
ADMM15		29186.9		
DF-2	3	30348.2	X	
ALS	4	32241.5	X	
Contrast			Difference	+/- Limits
CONCLASE				+/ - DIMICS
ADMM15 -			-3054.63	21626.7
ADMM15 -			11009.9	23119.9
ADMM15 -			-1161.35	23119.9
ADMM15 -			5463.88	23119.9
ALS - CA			14064.5	21626.7
ALS - DF	-2		1893.28	21626.7
ALS - FT	-100		8518.5	21626.7
CA - DF-			-12171.2	23119.9
CA - FT-	100		-5545.99	23119.9
DF-2 - F	T-100		6625.22	23119.9

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: ACETALD

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for ACETALD - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	2.19352E8	4	5.48381E7	5.37	0.0121
RESIDUAL	1.12414E8	11	1.02195E7		
TOTAL (CORRECTED)	3.31766E8	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\$ Statistically significant differences in the average acetaldehyde among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acetaldehyde for the DF-2 fuel is significantly different than the ALS and CA fuels.

Multiple Range Tests for ACETALD by FUEL

	95.0 percent To	-	Homogeneous	Groung	
CA	3	2928.49	X		
ALS	4	5079.77	X		
FT-100	3	8856.78	XX		
ADMM15	3	10477.5	XX		
DF-2	3	13400.4	X		
Contrast			Difference	+/- Limits	
ADMM15 -			5397.77	7903.37	
ADMM15 -	· CA		7549.06	8449.06	
ADMM15 -	DF-2		-2922.88	8449.06	
ADMM15 -	FT-100		1620.77	8449.06	
ALS - CA	1		2151.28	7903.37	
ALS - DF	7-2		*-8320.65	7903.37	
ALS - FI	7-100		-3777.01	7903.37	
CA - DF-	2		*-10471.9	8449.06	
CA - FT-	100		-5928.29	8449.06	
DF-2 - F	T-100		4543.65	8449.06	

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: GNAPHTH

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for GNAPHTH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	6.71331E10	4	1.67833E10	25.16	0.0000
RESIDUAL	7.33698E9	11	6.66998E8		
TOTAL (CORRECTED)	7.44701E10	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average naphthalene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: There are two distinct fuel groupings with respect to the average naphthalene. The DF-2 and CA fuels are not significantly different from one another but are significantly different from the remaining three fuels. The ALS, ADMM15, and FT-100 fuels are not significantly different from one another, but are significantly different from the remaining two fuels.

Multiple Range Tests for GNAPHTH by FUEL

Method: 95.0 percent FUEL Count	-	Homogeneous G	roups
FT-100 3 ADMM15 3 ALS 4 DF-2 3 CA 3	23712.5 56373.7	X X	
Contrast		Difference -32661.2 *-158403.0 *-107126.0 17654.5 *-125742.0 *-74465.1 50315.7 51276.7 *176058.0 *124781.0	63850.0 68258.5 68258.5 68258.5

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 2-Methylnaphthalene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Mode 12

Analysis Summary

Dependent variable: METHYL2

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for METHYL2 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	9.06153E10	4	2.26538E10	35.30	0.0000
RESIDUAL	7.05945E9	11	6.41768E8		
TOTAL (CORRECTED)	9.76748E10	15			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistiaclly significant differences in the average 2-methylnaphthalene among the fuels.

CONCLUSION: There are three distinct fuel groupings with respect to the average 2-methylnaphthalene. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different from the remaining two fuels. The CA and DF-2 fuels are significantly different from one another and the remaining three fuels.

Multiple Range Tests for METHYL2 by FUEL

	95.0 percent T Count	-	Homogeneous G	roups
FT-100	3	2255.56	X	
ADMM15	3	17201.2	X	
ALS	4	40670.6	X	
CA	3	106437.0	X	
DF-2	3	212921.0	X	
Contrast			Difference	+/- Limits
ADMM15			-23469.4	
ADMM15 -	- CA		*-89235.8	66955.1
ADMM15 -	- DF-2		*-195719.0	66955.1
ADMM15 -	- FT-100		14945.6	66955.1
ALS - CA	A		*-65766.4	62630.8
ALS - DI	F-2		*-172250.0	62630.8
ALS - F	Γ-100		38415.1	62630.8
CA - DF	-2		*-106484.0	66955.1
CA - FT-	-100		*104181.0	66955.1
DF-2 - I	FT-100		*210665.0	66955.1

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 1-Methylnaphthalene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Mode 12

Analysis Summary

Dependent variable: METHYL1

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for METHYL1 - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	3.95519E10	4	9.88796E9	49.21	0.0000
RESIDUAL	2.21039E9	11	2.00944E8		
TOTAL (CORRECTED)	4.17622E10	15			

All F-ratios are based on the residual mean square error.

 $\hbox{\tt CONCLUSION:} \quad \hbox{\tt Statistically significant differences in the average 1-methylnaphthalene} \\ \text{\tt among the fuels.}$

CONCLUSION: There are three distinct fuel groupings with respect to the average 1-methylnaphthalene. The FT-100, ADMM15, and ALS fuels are not significantly different from one another, but are significantly different from the remaining two fuels. The CA and DF-2 fuels are significantly different from one another and the remaining three fuels.

Multiple Range Tests for METHYL1 by FUEL

	95.0 percent Tu Count	-	Homogeneous	Groups
	3			
	3			
ALS	4	21017.6	X	
CA	3	57939.9	X	
DF-2	3	139827.0	X	
Contrast			Difference	+/- Limits
ADMM15 -			-12939.5	
ADMM15 -	· CA		*-49861.8	37465.6
ADMM15 -	DF-2		*-131749.0	37465.6
ADMM15 -	FT-100		6649.44	37465.6
ALS - CA	1		*-36922.3	35045.8
ALS - DE	7-2		*-118809.0	35045.8
ALS - FI	7-100		19589.0	35045.8
CA - DF-2			*-81886.7	37465.6
CA - FT-100			*56511.3	37465.6
DF-2 - F	T-100		*138398.0	37465.6

^{*} denotes a statistically significant difference.

Multifactor ANOVA - 2,6-Dimethylnaphthalene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Mode 12

Analysis Summary

Dependent variable: DIMETHYL

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for DIMETHYL - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	3.47244E10	4	8.68109E9	82.28	0.0000
RESIDUAL	1.16051E9	11	1.05501E8		
TOTAL (CORRECTED)	3.58849E10	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically \ significant \ differences \ in \ the \ average \ 2,6-dimethylnaphthalene \ among \ the \ fuels.}$

CONCLUSION: The average 2,6-dimethylnaphthalene for the DF-2 fuel is significantly different than the remaining four fuels. The average 2,6-dimethylnaphthalene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for DIMETHYL by FUEL

	95.0 percent T Count	-	Homogeneous Gr	coups	
FT-100	3	1362.24	X		
ADMM15	3	2047.66	X		
ALS	4	11261.4	X		
CA	3	26261.0	X		
DF-2	3	127567.0	X		
Contrast			Difference	+/- Limits	
ADMM15 -			-9213.7		
ADMM15 -	· CA		-24213.3	27147.1	
ADMM15 -	DF-2		*-125519.0	27147.1	
ADMM15 -	FT-100		685.424	27147.1	
ALS - CA	1		-14999.6	25393.8	
ALS - DE	7-2		*-116306.0	25393.8	
ALS - FI	7-100		9899.13	25393.8	
CA - DF-	-2		*-101306.0	27147.1	
CA - FT-100			24898.8 27147.1		
DF-2 - F	T-100		*126205.0	27147.1	
DF-2 - F	T-100		*126205.0	27147.1	

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Acenaphthylene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Mode 12

Analysis Summary

Dependent variable: GACENAPH

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for GACENAPH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	4.45816E7	4	1.11454E7	18.31	0.0001
RESIDUAL	6.69741E6	11	608855.0		
TOTAL (CORRECTED)	5.1279E7	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average acenaphthylene among the fuels.

CONCLUSION: The average acenaphthylene for the DF-2 fuel is significantly different than the remaining four fuels. The average acenaphthylene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for GACENAPH by FUEL

Method:	95.0 percent Tu	key HSD			
FUEL	Count	LS Mean	Homogeneous Gr	oups	
FT-100	3	888.181	X		
ADMM15	3	953.779	X		
CA	3	1925.62	X		
ALS	4	2638.22	X		
DF-2	3	5591.2	X		
~					
Contrast			Difference	+/- Limits	
7 DMM1 F	7.T.C		1604 44	1000 1	
ADMM15 -			-1684.44		
ADMM15 -			-971.841	2062.3	
ADMM15 -	- DF-2		*-4637.42	2062.3	
ADMM15 -	- FT-100		65.5985	2062.3	
ALS - CA	A		712.6	1929.1	
ALS - DE	7-2		*-2952.98	1929.1	
ALS - FT-100			1750.04 1929.1		
CA - DF-2			*-3665.58 2062.3		
CA - FT-100			1037.44 2062.3		
DF-2 - E	FT-100		*4703.02	2062.3	

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Analysis Summary

Dependent variable: ACENAPTH

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for ACENAPTH - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	5.40536E8	4	1.35134E8	72.59	0.0000
RESIDUAL	2.04774E7	11	1.86158E6		
TOTAL (CORRECTED)	5.61013E8	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average acenaphthene among the fuels.

CONCLUSION: The average acenaphthene for the DF-2 fuel is significantly different than the remaining four fuels. The average acenaphthene for the FT-100, ADMM15, ALS, and CA fuels are not significantly different from one another.

 $\hbox{Multiple Range Tests for ACENAPTH by FUEL}\\$

	5.0 percent T	-	Homogeneous Gr	oups	
FT-100	3	195.774	X		
ADMM15	3	907.615	X		
ALS	4	1706.53	X		
CA	3	2385.88	X		
DF-2	3	16107.0	X		
Contrast			Difference	+/- Limits	
ADMM15 -			-798.92	3373.18	
ADMM15 -	CA		-1478.26	3606.08	
ADMM15 -	DF-2		*-15199.4	3606.08	
ADMM15 -	FT-100		711.84	3606.08	
ALS - CA			-679.344	3373.18	
ALS - DF-	2		*-14400.5	3373.18	
ALS - FT-	100		1510.76	3373.18	
CA - DF-2			*-13721.1	3606.08	
CA - FT-100			2190.1 3606.08		
DF-2 - FT	-100		*15911.2	3606.08	

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: GFLUOREN

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for GFLUOREN - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	1.25657E9	4	3.14143E8	194.31	0.0000
RESIDUAL	1.77834E7	11	1.61668E6		
TOTAL (CORRECTED)	1.27436E9	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}$ significant differences in the average fluorene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluorene for the DF-2 fuel is significantly different than the remaining four fuels. The average fluorene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for GFLUOREN by FUEL

			. – – – – – – – – – – – – – – – – – – –		
Method: 95	5.0 percent Tu	ıkey HSD			
FUEL	Count	LS Mean	Homogeneous Gr	roups	
ADMM15		296.702			
FT-100	3	305.082	X		
ALS	4	939.148	X		
CA	3	2767.23	X		
DF-2	3		X		
Contrast			Difference	+/- Limits	
ADMM15 - A			-642.446		
ADMM15 - 0	CA		-2470.53	3360.52	
ADMM15 - I	OF-2		*-23363.7	3360.52	
ADMM15 - H	T-100		-8.3802	3360.52	
ALS - CA			-1828.08	3143.48	
ALS - DF-2	2		*-22721.3	3143.48	
ALS - FT-100			634.066 3143.48		
CA - DF-2			*-20893.2 3360.52		
CA - FT-100			2462.15 3360.52		
DF-2 - FT-	-100		*23355.3	3360.52	

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Phenanthrene ($\mu g/kW$ -hr) Gaseous PAH LPP Only Mode 12

Analysis Summary

Dependent variable: GPHENANT

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for GPHENANT - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	1.41708E9	4	3.5427E8	168.73	0.0000
RESIDUAL	2.30963E7	11	2.09967E6		
TOTAL (CORRECTED)	1.44018E9	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average phenanthrene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average phenanthrene for the DF-2 fuel is significantly different than the remaining four fuels. The average phenanthrene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for GPHENANT by FUEL

Method: 9	5.0 percent Tu	ukey HSD		
FUEL	Count	LS Mean	Homogeneous Gr	roups
ADMM15	3	457.248	X	
FT-100	3	699.826	X	
ALS	4	1891.43	X	
CA	3	2267.23	X	
DF-2	3	25421.1	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-1434.18	3582.4
ADMM15 -	CA		-1809.99	3829.74
ADMM15 -	DF-2		*-24963.9	3829.74
ADMM15 -	FT-100		-242.578	3829.74
ALS - CA			-375.802	3582.4
ALS - DF-	2		*-23529.7	3582.4
ALS - FT-	100		1191.6	3582.4
CA - DF-2			*-23153.9	3829.74
CA - FT-1	00		1567.41	3829.74
DF-2 - FT	-100		*24721.3	3829.74

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Analysis Summary

Dependent variable: GANTHR

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for ${\tt GANTHR}$ - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	570491.0	4	142623.0	26.36	0.0000
RESIDUAL	59515.0	11	5410.46		
TOTAL (CORRECTED)	630006.0	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average anthracene among the fuels.

CONCLUSION: The average anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The average anthracene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

 $\hbox{Multiple Range Tests for GANTHR by FUEL}\\$

	5.0 percent T	-	Homogeneous Gr	oune
ADMM15	3	22.3976	X	
FT-100	3	29.4149	X	
ALS	4	54.2201	X	
CA	3	129.708	X	
DF-2	3	533.053	X	
Contrast			Difference	+/- Limits
ADMM15 -			-31.8225	181.851
ADMM15 -	CA		-107.311	194.407
ADMM15 -	DF-2		*-510.655	194.407
ADMM15 -	FT-100		-7.01737	194.407
ALS - CA			-75.4884	181.851
ALS - DF-	2		*-478.833	181.851
ALS - FT-	100		24.8052	181.851
CA - DF-2			*-403.344	194.407
CA - FT-1	00		100.294	194.407
DF-2 - FT	-100		*503.638	194.407

 $[\]mbox{*}$ denotes a statistically significant difference.

Analysis Summary

Dependent variable: GFLUORAN

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 15

Scatterplot by Level Code

Analysis of Variance for ${\tt GFLUORAN}$ - ${\tt Type}$ III ${\tt Sums}$ of ${\tt Squares}$

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	1489.76	4	372.439	2.57	0.1028
RESIDUAL	1447.56	10	144.756		
TOTAL (CORRECTED)	2937.32	14			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average fluoranthene among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}$ No statistically significant differences in the average fluoranthene among the fuels.

Multiple Range Tests for GFLUORAN by FUEL

FUEL	Count	LS Mean	Homogeneous Groups	3
ADMM15 FT-100 DF-2 ALS CA	3 2 4	14.0387 27.4609 29.9511 39.9585 40.4149	X X	
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		-25.9198 -26.3762 -15.9124 -13.4222 -0.45635 10.0074 12.4976 10.4638 12.9539 2.49016	30.245 32.3333 36.1497 32.3333 30.245 34.2946 30.245 36.1497 32.3333 36.1497

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: GPYRENE

Factors:

FUEL

Selection variable: MODE=12

Number of complete cases: 16

Analysis of Variance for GPYRENE - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:FUEL	2271.39	4	567.846	3.61	0.0409
RESIDUAL	1728.66	11	157.15		
TOTAL (CORRECTED)	4000.04	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average pyrene among the fuels.

CONCLUSION: The average pyrene for the DF-2 fuel is significantly different than the ADMM15 fuel.

Multiple Range Tests for GPYRENE by FUEL

Method:	95.0 percent T	ukey HSD		
FUEL	Count	LS Mean	Homogeneous Gr	oups
ADMM15	3	12.7041	Х	
	3		XX	
CA		33.2915	XX	
ALS			XX	
DF-2		46.4006	X	
Contrast				+/- Limits
ADMM15 -	- ALS		-26.7722	30.9925
ADMM15 -	- CA		-20.5875	33.1324
ADMM15 -	- DF-2		*-33.6965	33.1324
ADMM15 -	- FT-100		-9.09893	33.1324
ALS - CA	A		6.18478	30.9925
ALS - DE	7-2		-6.92426	30.9925
ALS - FT	7-100		17.6733	30.9925
CA - DF-	-2		-13.109	33.1324
CA - FT-	-100		11.4885	33.1324
DF-2 - F	T-100		24.5976	33.1324

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: naphth

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for naphth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	834111.0	4	208528.0	2.44	0.1094
RESIDUAL	941727.0	11	85611.6		
TOTAL (CORRECTED)	1.77584E6	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average naphthalene among the fuels.

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differnces in the average naphthalene among the fuels.

Multiple Range Tests for naphth by fuel

fuel	Count	LS Mean	Homogeneous Groups	3
ALS CA ADMM15 DF-2 FT-100	3	192.221 541.585 553.687 732.529 822.211	X X	
Contrast			Difference	+/- Limits
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		361.466 12.1018 -178.842 -268.524 -349.364 -540.308 -629.99 -190.943 -280.625 -89.682	723.377 773.323 773.323 773.323 723.377 723.377 723.377 773.323 773.323 773.323

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: acenaph

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Scatterplot by Level Code

Analysis of Variance for acenaph - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	4687.94	4	1171.98	11.34	0.0007
RESIDUAL	1136.45	11	103.314		
TOTAL (CORRECTED)	5824.39	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average acenaphthylene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average acenaphthylene for the DF-2 fuel is significantly different than the remaining four fuels. The average acenaphthylene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different.

Multiple Range Tests for acenaph by fuel

fuel	Count	LS Mean	Homogeneous G	roups
ADMM15	3	10.2537	X	
FT-100	3	10.5474	X	
ALS	4	11.3751	X	
CA	3	23.1257	X	
DF-2	3	55.8058	X	
Contrast			Difference	+/- Limits
ADMM15 - ALS			-1.12136	25.1292
ADMM15 - CA			-12.872	26.8642
ADMM15 - DF-2			*-45.5521	26.8642
ADMM15 - FT-1	00		-0.293675	26.8642
ALS - CA			-11.7506	25.1292
ALS - DF-2			*-44.4307	25.1292
ALS - FT-100			0.827684	25.1292
CA - DF-2			*-32.6801	26.8642
CA - FT-100			12.5783	26.8642
DF-2 - FT-100			*45.2584	26.8642

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: acenapth

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for acenapth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	16485.5	4	4121.37	2.36	0.1170
RESIDUAL	19189.6	11	1744.51		
TOTAL (CORRECTED)	35675.1	15			

All F-ratios are based on the residual mean square error.

 $\hbox{{\tt CONCLUSION:}} \quad \hbox{{\tt No statistically significant differences in the average acena phthene among the fuels.} \\$

Means and 95% Tukey HSD Intervals

 ${\tt CONCLUSION:}\ {\tt No}$ statistically significant differences in the average acenaphthene among the fuels.

Multiple Range Tests for acenapth by fuel

fuel	Count	LS Mean	Homogeneous Groups	3
ALS ADMM15 CA FT-100 DF-2	3 3 3	78.0651 94.6604 98.0092	X X X	
Contrast			Difference	•
ADMM15 - ALS ADMM15 - CA ADMM15 - DF-2 ADMM15 - FT-10 ALS - CA ALS - DF-2 ALS - FT-100 CA - DF-2 CA - FT-100 DF-2 - FT-100	0		48.1713 -16.5953 -42.0307 -19.9441 -64.7666 -90.2021 -68.1155 -25.4354 -3.34881 22.0866	103.261 110.39 110.39 110.39 103.261 103.261 103.261 110.39 110.39

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: fluorene

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for fluorene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	151451.0	4	37862.7	4.26	0.0254
RESIDUAL	97880.1	11	8898.19		
TOTAL (CORRECTED)	249331.0	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}~{\tt Statistically}$ signficant differences in the average fluorene among the fuels.

Fuel

CONCLUSION: The average fluorene for the DF-2 fuel is significantly different

Multiple Range Tests for fluorene by fuel

Method: 95.0 percent Tukey HSD

than the ALS fuel.

fuel		LS Mean	Homogeneous Gr	oups	
ALS	4	59.0582	X		
ADMM15	3	118.419	XX		
FT-100	3	126.625	XX		
CA	3	219.753	XX		
DF-2	3	334.938	X		
Contrast			Difference	+/- Limits	
ADMM15 - ALS			59.3603	233.211	
ADMM15 - CA			-101.334	249.313	
ADMM15 - DF-2			-216.519	249.313	
ADMM15 - FT-10	00		-8.20674	249.313	
ALS - CA			-160.695	233.211	
ALS - DF-2			*-275.879	233.211	
ALS - FT-100			-67.5671	233.211	
CA - DF-2			-115.185	249.313	
CA - FT-100			93.1275	249.313	
DF-2 - FT-100			208.312	249.313	
* denotes a statistically significant difference.					

Multifactor ANOVA - Phenanthrene ($\mu g/kW$ -hr) Soluble PAH LPP Only Mode 12

Analysis Summary

Dependent variable: phenanth

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for phenanth - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	2.62026E8	4	6.55064E7	44.22	0.0000
RESIDUAL	1.62965E7	11	1.4815E6		
TOTAL (CORRECTED)	2.78322E8	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average phenanthrene among the fuels.

Means and 95% Tukey HSD Intervals

CONCLUSION: The average phenanthrene for the DF-2 fuel is significantly different than the remaining four fuels. The average phenanthrene for the ADMM15, FT-100, ALS, and CA fuels are not significantly different from one another.

Multiple Range Tests for phenanth by fuel

Method:	95.0 percent Tu	key HSD		
fuel	Count	LS Mean	Homogeneous Gro	oups
ADMM15	3	459.058	X	
FT-100	3	572.378	X	
ALS	4	736.461	X	
CA	3	2331.39	X	
DF-2	3	11230.9	X	
Contrast			Difference	
CONCLASE				+/- DIMICS
ADMM15 -			-277.403	3009.19
ADMM15 -			-1872.33	
ADMM15 -				3216.96
ADMM15 -			-113.32	3216.96
ALS - CA			-1594.93	3009.19
ALS - DF			*-10494.4	3009.19
ALS - FT			164.083	3009.19
CA - DF-			*-8899.49	3216.96
CA - FT-			1759.01	3216.96
DF-2 - F				3216.96

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: anthr

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for anthr - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	180940.0	4	45234.9	30.26	0.0000
RESIDUAL	16443.1	11	1494.83		
TOTAL (CORRECTED)	197383.0	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}\,$ Statistically significant differences in the average anthracene among the fuels.

CONCLUSION: The average anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The average anthracene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for anthr by fuel

	95.0 percent Tu	-	Homogeneous Gr	oups
ALS	4	25.7452	Х	
ADMM15	3	37.8165	X	
FT-100	3	46.7152	X	
CA	3	66.3094	X	
DF-2	3	312.962	X	
Contrast	:		Difference	+/- Limits
ADMM15 -	ALS		12.0713	95.5861
ADMM15 -	CA		-28.493	102.186
ADMM15 -	DF-2		*-275.145	102.186
ADMM15 -	FT-100		-8.89873	102.186
ALS - CA	1		-40.5643	95.5861
ALS - DF	'-2		*-287.217	95.5861
ALS - FI	-100		-20.97	95.5861
CA - DF-	2		*-246.652	102.186
CA - FT-	100		19.5943	102.186
DF-2 - F	T-100		*266.247	102.186

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Fluoranthene (µg/kW-hr) Soluble PAH LPP Only Mode 12

Analysis Summary

Dependent variable: fluoran

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for fluoran - Type III Sums of Squares

Fuel

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	3.96106E6	4	990264.0	50.53	0.0000
RESIDUAL	215558.0	11	19596.2		
TOTAL (CORRECTED)	4.17661E6	15 			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average fluoranthene among the fuels.

1700

Means and 95% Tukey HSD Intervals

CONCLUSION: The average fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for fluoran by fuel

Method:	95.0 percent Tu	ıkey HSD		
fuel	Count	LS Mean	Homogeneous Gr	oups
ADMM15	3	98.2249	X	
FT-100	3	144.586	X	
ALS	4	205.029	X	
CA	3	375.497	X	
DF-2	3	1459.07	X	
Contrast			Difference	+/- Limits
ADMM15 -			-106.804	
ADMM15 -	- CA		-277.272	369.982
ADMM15 -	- DF-2		*-1360.84	369.982
ADMM15 -	- FT-100		-46.3612	369.982
ALS - CA	A		-170.468	346.086
ALS - DE	· - 2		*-1254.04	346.086
ALS - FT	Γ-100		60.4428	346.086
CA - DF-	-2		*-1083.57	369.982
CA - FT-	-100		230.911	369.982
DF-2 - E	T-100		*1314.48	369.982

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: pyrene

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for pyrene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	3.49509E7	4	8.73773E6	185.73	0.0000
RESIDUAL	517496.0	11	47045.1		
TOTAL (CORRECTED)	3.54684E7	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically significant differences in the average pyrene among the fuels.

CONCLUSION: The average pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The average pyrene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for pyrene by fuel

fuel		LS Mean	Homogeneous Gr	oups
	3			
ADMM15	3	122.261	X	
ALS	4	306.989	X	
CA	3	317.881	X	
DF-2	3	4002.05	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-184.728	536.236
ADMM15 -	CA		-195.62	573.26
ADMM15 -	DF-2		*-3879.79	573.26
ADMM15 -	FT-100		9.67186	573.26
ALS - CA			-10.8921	536.236
ALS - DF	'-2		*-3695.06	536.236
ALS - FT	-100		194.4	536.236
CA - DF-	2		*-3684.17	573.26
CA - FT-	100		205.292	573.26
DF-2 - F	T-100		*3889.46	573.26

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Multifactor ANOVA - Benzo[a]anthracene ($\mu g/kW$ -hr) Soluble PAH LPP Only Mode 12

Analysis Summary

Dependent variable: benzoaan

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Scatterplot by Level Code 150 Benzo[a]anthracene 120 90 60 30 0 ADMM15 ALS $\mathsf{C}\mathsf{A}$ DF-2 FT-100 Fuel

Analysis of Variance for benzoaan - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	25507.2	4	6376.8	35.98	0.0000
RESIDUAL	1949.28	11	177.207		
TOTAL (CORRECTED)	27456.5	15			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo $[\mathtt{a}]$ anthracene among the fuels.

CONCLUSION: The average benzo[a]anthracene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[a]anthracene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for benzoaan by fuel

fuel		LS Mean	Homogeneous (Groups
		2.81296		
FT-100	3	4.49021	X	
ALS	4	11.4693	X	
CA	3	26.9346	X	
DF-2	3	111.52	X	
Contrast	:		Difference	+/- Limits
ADMM15 -	- ALS		-8.65633	32.9109
ADMM15 -	- CA		-24.1216	35.1832
ADMM15 -	- DF-2		*-108.707	35.1832
ADMM15 -	- FT-100		-1.67725	35.1832
ALS - CA	A		-15.4653	32.9109
ALS - DE	7-2		*-100.05	32.9109
ALS - FT	Γ-100		6.97908	32.9109
CA - DF-	-2		*-84.5852	35.1832
CA - FT-	-100		22.4444	35.1832
DF-2 - F	FT-100		*107.03	35.1832

 $[\]boldsymbol{\star}$ denotes a statistically significant difference.

Analysis Summary

Dependent variable: chrysene

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for chrysene - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	200207.0	4	50051.8	70.98	0.0000
RESIDUAL	7756.57	11	705.143		
TOTAL (CORRECTED)	207964.0	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:}$ Statistically signficant differences in the average chrysene among the fuels.

CONCLUSION: The average chrysene for the DF-2 fuel is significantly different than the remaining four fuels. The average chrysene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for chrysene by fuel

Method:	95.0 percent Tu	ıkey HSD		
fuel	Count	LS Mean	Homogeneous Gr	roups
ADMM15	3	8.13341	X	
			==	
FT-100	3	15.3873	X	
ALS	4	25.5521	X	
CA	3	57.3427	X	
DF-2	3	310.066	X	
Contrast			Difference	+/- Limits
ADMM15 -	ALS		-17.4186	65.6504
ADMM15 -	CA		-49.2093	70.1832
ADMM15 -	DF-2		*-301.933	70.1832
ADMM15 -	FT-100		-7.25384	70.1832
ALS - CA			-31.7906	65.6504
ALS - DF	-2		*-284.514	65.6504
ALS - FT	-100		10.1648	65.6504
CA - DF-	2		*-252.724	70.1832
CA - FT-	100		41.9554	70.1832
DF-2 - F'	T-100		*294.679	70.1832

 $[\]mbox{*}$ denotes a statistically significant difference.

Multifactor ANOVA - Benzo[b]fluoranthene ($\mu g/kW$ -hr) Soluble PAH LPP Only Mode 12

Analysis Summary

Dependent variable: benzobfl

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for benzobfl - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	3639.5	4	909.874	9.84	0.0012
RESIDUAL	1017.54	11	92.5037		
TOTAL (CORRECTED)	4657.04	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzo[b] fluoranthene among the fuels.}$

CONCLUSION: The average benzo[b] fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[b] fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for benzobfl by fuel

	95.0 percent T Count	-	Homogeneous	Groups
ADMM15	3	4.11655	X	
FT-100	3	10.4925	X	
ALS	4	16.872	X	
CA	3	21.7637	X	
DF-2	3	49.2356	X	
Contrast	:		Difference	+/- Limits
ADMM15 -	- ALS		-12.7554	23.7781
ADMM15 -	- CA		-17.6472	25.4199
ADMM15 -	- DF-2		*-45.119	25.4199
ADMM15 -	- FT-100		-6.37593	25.4199
ALS - CA	A		-4.89179	23.7781
ALS - DE	7-2		*-32.3636	23.7781
ALS - FT	Γ-100		6.37947	23.7781
CA - DF-	-2		*-27.4718	25.4199
CA - FT-	-100		11.2713	25.4199
DF-2 - E	FT-100		*38.7431	25.4199

^{*} denotes a statistically significant difference.

Multifactor ANOVA - Benzo[k]fluoranthene ($\mu g/kW$ -hr) Soluble PAH LPP Only Mode 12

Analysis Summary

Dependent variable: benzokfl

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for benzokfl - Type III Sums of Squares

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	1697.42	4	424.355	12.26	0.0005
RESIDUAL	380.707	11	34.6097		
TOTAL (CORRECTED)	2078.13	15			

All F-ratios are based on the residual mean square error.

CONCLUSION: Statistically significant differences in the average benzo [k] fluoranthene among the fuels.

CONCLUSION: The average benzo [k] fluoranthene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo [k] fluoranthene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for benzokfl by fuel

	95.0 percent ' Count	-	Homogeneous Gr	oups
ADMM15	3	5.01499	X	
FT-100	3	8.63606	X	
ALS	4	12.614	X	
CA	3	15.2594	X	
DF-2	3	35.4502	X	
Contrast			Difference	
ADMM15 -			-7.59898	
ADMM15 -	- CA		-10.2444	15.5487
ADMM15 -	- DF-2		*-30.4352	15.5487
ADMM15 -	- FT-100		-3.62108	15.5487
ALS - CA	A		-2.6454	14.5445
ALS - DI	7-2		*-22.8362	14.5445
ALS - F	Γ-100		3.9779	14.5445
CA - DF-	-2		*-20.1908	15.5487
CA - FT-	-100		6.6233	15.5487
DF-2 - I	FT-100		*26.8141	15.5487

^{*} denotes a statistically significant difference.

Analysis Summary

Dependent variable: benzoepy

Factors:

fuel

Selection variable: mode=12

Number of complete cases: 16

Analysis of Variance for benzoepy - Type III Sums of Squares

Fuel

Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value
MAIN EFFECTS A:fuel	1581.98	4	395.494	14.93	0.0002
RESIDUAL	291.333	11	26.4848		
TOTAL (CORRECTED)	1873.31	15			

All F-ratios are based on the residual mean square error.

 ${\tt CONCLUSION:} \quad {\tt Statistically significant differences in the average benzo[e] pyrene among the fuels.}$

CONCLUSION: The average benzo[e]pyrene for the DF-2 fuel is significantly different than the remaining four fuels. The average benzo[e]pyrene for the ADMM15, ALS, CA, and FT-100 fuels are not significantly different from one another.

Multiple Range Tests for benzoepy by fuel

	95.0 percent Tu	-		
fuel	Count	LS Mean	Homogeneous G	roups
ADMM15	3	3.53663	Х	
	3			
ALS	4	10.2791	X	
CA	3	14.118	X	
DF-2	3	33.5322	X	
Contrast	 t		Difference	+/- Limits
ADMM15	- ALS		-6.74243	12.7232
ADMM15	- CA		-10.5813	13.6017
ADMM15	- DF-2		*-29.9956	13.6017
ADMM15	- FT-100		-6.23704	13.6017
ALS - C	A		-3.83891	12.7232
ALS - DI	F-2		*-23.2531	12.7232
ALS - F	Γ-100		0.505398	12.7232
CA - DF	-2		*-19.4142	13.6017
CA - FT	-100		4.34431	13.6017
DF-2 - 1	FT-100		*23.7585	13.6017

 $[\]mbox{*}$ denotes a statistically significant difference.