This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(1) Publication number: 0 674 005 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 95301176.4

(51) Int. CI.⁶: C12N 15/52, C12N 9/90,

C12P 19/12

22 Date of filing: 23.02.95

30 Priority: 23.02.94 JP 47940/94

23.02.94 JP 47956/94 06.04.94 JP 90705/94 06.04.94 JP 90728/94

- (43) Date of publication of application : 27.09.95 Bulletin 95/39
- (84) Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC
 NL PT SE
- (1) Applicant: KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU KENKYUJO 2-3, 1-chome, Shimoishii Okayama-shi Okayama (JP)

72 Inventor : Kubota, Michio 12-6, Arujihara-cho Ibaraki-shi, Osaka (JP) Inventor : Tsusaki, Keiji 472, Koshinden, Hukuda-cho Kurashiki-shi, Okayama (JP) Inventor : Maruta, Kazuhiko 525-3-214, Kuwano Okayama-shi, Okayama (JP) Inventor : Sugimoto, Toshiyuki 695-44, Hlgashlune Okayama-shi, Okayama (JP)

- (4) Representative: Daniels, Jeffrey Nicholas et al Page White & Farrer 54 Doughty Street London WC1N 2LS (GB)
- (A) Non-reducing saccharide-forming enzyme, DNA encoding it, and their preparations and uses.
- 67 A DNA encoding an enzyme, which forms non-reducing saccharides having trehalose structure as an end unit from amylaceous saccharides having a degree of glucose polymerization of 3 or higher, enables an industrial-scale production of a recombinant enzyme with such enzyme activity. Non-reducing saccharides obtainable by the recombinant enzyme can be used in a variety of food products, cosmetics, pharmaceuticals and feeds because of their substantial non-reducibility, mild and high-quality sweetness, adequate viscosity, and moisture-retaining ability.

The present invention relates to a novel DNA encoding an enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher, and a recombinant DNA and enzyme containing the DNA as well as to a transformant. The present invention further relates to preparations and uses thereof.

Trehalose is a disaccharide which consists of 2 glucose molecules that are linked together with their reducing groups, and, naturally, it is present in fungi, algae, insects, etc., in an extremely small quantity. Having no reducing residue within the molecule, trehalose does not cause an unsatisfactory browning reaction even when heated in the presence of amino acids or the like, and because of this it can sweeten food products without fear of causing unsatisfiable coloration and deterioration. Trehalose, however, is far from being readily prepared in a desired amount by conventional production methods, and, actually, it has not scarcely been used for sweetening food products.

Conventional production methods are roughly classified into 2 groups, i.e. the one using cells of microorganisms and the other employing a multi-enzymatic system wherein enzymes are allowed to act on saccharides. The former, as disclosed in Japanese Patent Laid-Open No.154,485/75, is a method comprising growing microorganisms such as bacteria and yeasts in nutrient culture media, and collecting trehalose from the proliferated cells in the resultant cultures. The latter, as disclosed in Japanese Patent Laid-Open No.216,695/83, is a method comprising providing maltose as a substrate, allowing a multi-enzymatic system using maltose-and trehalose-phosphorylases to act on maltose, and recovering the formed trehalose from the reaction system. Although the former facilitates to grow microorganisms with a relative easiness, it requires sequential complicated steps for collecting trehalose from the microorganisms containing only 15 w/w % trehalose, on a dry solid basis (d.s.b.). While the latter enables to separate trehalose with a relative easiness, but it is theoretically difficult to increase the trehalose yield by allowing enzymes to act on substrates at a considerably-high concentration because the enzymatic reaction in itself is an equilibrium reaction of 2 different types of enzymes and the equilibrium point constantly inclines to the side of forming glucose phosphate.

In view of the foregoing, the present inventors energetically screened enzymes which form saccharides having trehalose structure from amylaceous saccharides, and found that microorganisms such as those of the spices *Rhizobium* sp. M-11 and *Arthrobacter* sp. Q36 produce a novel enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher. Before or after this finding, it was revealed that such a non-reducing saccharide is almost quantitatively hydrolyzed into trehalose and glucose and/or maltooligosaccharides by another enzyme produced by the same microorganisms as mentioned above. Since the combination use of the enzymes enables to form a desired amount of trehalose with a relative easiness, the aforementioned objects relating to trehalose would be completely overcome. Insufficient producibility of the novel enzyme by such a microorganism results in a drawback, i.e. a relatively-large scale culture thereof is inevitable to industrially produce trehalose and/or non-reducing saccharides having trehalose structure as an end unit.

Recombinant DNA technology has made a remarkable progress in recent years. At present, even an enzyme whose total amino acid sequence has not been revealed can be readily prepared in a desired amount, if a gene encoding the enzyme was once isolated and the base sequence was decoded, by preparing a recombinant DNA which contains a DNA encoding the enzyme, introducing the recombinant DNA into microorganisms or cells of plants and animals, and culturing the resultant transformants. Under the background, urgently required are to find a gene encoding the enzyme and to reveal a base sequence thereof.

It is an aim of the present invention to provide a DNA encoding an enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher.

It is a further aim of the present invention to provide a recombinant DNA which contains the DNA and a self-replicable vector.

It is yet another aim of the present invention to provide a recombinant enzyme, which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher, by means of recombinant DNA technology.

It is another aim of the present invention to provide a transformant obtainable by introducing the recombinant DNA into a suitable host.

It is a further aim of the present invention to provide a preparation of the recombinant enzyme.

55

It is yet another aim of the present invention to provide a method to convert reducing amylaceous saccharides by using the recombinant enzyme.

The present invention provides a DNA encoding an enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher.

The present invention further provides a replicable recombinant DNA which contains a self-replicable vec-

tor and a DNA which encodes a non-reducing saccharide-forming enzyme.

The present invention further provides a recombinant enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher.

The present invention further provides a transition mant into which a replicable recombinant DNA containing a self-replicable vector and a DNA encoding an enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher.

The present invention further provides a process for producing a recombinant enzyme, which contains a step of culturing a transformant capable of forming the recombinant enzyme, and collecting the enzyme from the resultant culture.

The present invention further provides a method for converting reducing amylaceous saccharides, which contains a step of allowing the recombinant enzyme to act on reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher to form from them non-reducing saccharides having trehalose structure as an end unit.

The invention will now be described in further detail, by way of example only, with reference to the accompanying drawings, in which:

- FIG. 1 shows the optimum temperature of enzyme M-11.
- FIG. 2 shows the optimum temperature of enzyme Q36.
- FIG. 3 shows the optimum pH of enzyme M-11.

20

25

- FIG. 4 shows the optimum pH of enzyme Q36.
- FIG. 5 shows the thermal stability of enzyme M-11.
- FIG. 6 shows the thermal stability of enzyme Q36.
- FIG. 7 shows the pH stability of enzyme M-11.
- FIG. 8 shows the pH stability of enzyme Q36.
- FIG. 9 is a restriction map of the recombinant DNA pBMT7 according to the present invention. In the figure, a bold-lined part shows a DNA encoding enzyme M-11.
- FIG. 10 is a restriction map of the recombinant DNA pBQT13 according to the present invention. In the figure, a bold-lined part shows a DNA encoding enzyme Q36.
- The DNA according to the present invention exerts the production of the non-reducing saccharide-forming enzyme encoded by the DNA in a manner that the DNA is inserted into an appropriate self-replicable vector to form a replicable recombinant DNA, followed by introducing the recombinant DNA into a host, which is incapable of producing the enzyme but readily replicable, to form a transformant.
- Although the recombinant DNA per se does not produce the enzyme, the production of the enzyme encoded by the DNA is induced by introducing the recombinant DNA into a host, which is incapable of producing the enzyme but replicable with a relative easiness, to form a transformant, and culturing the transformant to produce the enzyme.

The transformant according to the present invention produces the enzyme when cultured.

The recombinant enzyme according to the present invention acts on reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher to form non-reducing saccharides having trehalose structure as an end unit.

The culture of the transformant according to the present invention yields a desired amount of the enzyme with a relative easiness.

The conversion method according to the present invention converts reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher into non-reducing saccharides having trehalose structure as an end unit.

The present invention was made based on the finding of a novel enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher. The enzyme can be obtained from cultures of microorganisms of the species *Rhizobium* sp. M-11 and *Arthrobacter* sp. Q36 (the enzymes from *Rhizobium* sp. M-11 and *Arthrobacter* sp. Q36 are respectively designated as "enzyme M-11" and "enzyme Q36" hereinafter), and the present inventors isolated the enzyme by the combination use of conventional purification methods using column chromatography mainly, and examined the properties and features to reveal the reality, i.e. a polypeptide having the following physicochemical properties:

(1) Action

55

Forming non-reducing saccharides having trehalose structure as an end unit from reducing saccharides having a degree of glucose polymerization of 3 or higher;

(2) Molecular weight

About 76,000-87,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE);

(3) Isoelectric point

About 3.6-4.6 on isoelectrophoresis;

(4) Optimum temperature

Exhibiting an optimum temperature of around 35-40°C when incubated at pH 7.0 for 60 min;

(5) Optimum pH

Exhibiting an optimum pH of around 6.4-7.2 when incubated at 40°C for 60 min;

(6) Thermal stability

Stable up to a temperature of around 35-40°C when incubated at pH 7.0 for 60 min; and

(7) pH Stability

Stable up to a pH of around 5.5-11.0 when incubated at 25°C for 16 hours.

The experiments, which were conducted to reveal the aforesaid physicochemical properties, are explained in the below:

15 Experiment 1

Preparation of purified enzyme

Experiment 1-1

20

5

10

Preparation of enzyme derived from Rhizobium sp. M-11

In 500-ml Erlenmeyer flasks were placed 100 ml aliquots of a liquid culture medium (pH 7.0) containing 2.0 w/v % maltose, 0.5 w/v % peptone, 0.1 w/v % yeast extract, 0.1 w/v % disodium hydrogen phosphate, and 0.1 w/v % potassium dihydrogen phosphate, and the flasks were autoclaved at 120°C for 20 min to effect sterilization. After cooling the flasks a seed culture of *Rhizobium* sp. M-11 was inoculated into each liquid culture medium in each flask, followed by the incubation at 27°C for 24 hours under rotary-shaking conditions. Twenty L of a fresh preparation of the same liquid culture medium was put in a 30-L jar fermentor and sterilized, followed by inoculating one v/v % of the culture obtained in the above into the sterilized liquid culture medium in the jar fermentor, and incubating it at a pH of 6-8 and 30°C for 24 hours under aeration and agitation conditions.

Thereafter, about 18 L of the resultant culture was subjected to an ultra-high pressure cell disrupting apparatus to disrupt cells, and the resultant suspension was centrifuged to obtain a supernatant, and to about 16 L of which was added ammonium sulfate to give a 20 w/v % saturation, allowed to stand at 4°C for one hour, and centrifuged to remove sediment. To the resultant supernatant was added ammonium sulfate to give a 60 w/v % saturation, allowed to stand at 4°C for 24 hours, and centrifuged to collect sediment which was then dissolved in a minimum amount of 10 mM phosphate buffer (pH 7.0). The resultant solution was dialyzed against 10 mM phosphate buffer (pH 7.0) for 24 hours, and centrifuged to remove insoluble substances. The supernatant thus obtained was fed to a column packed with "DEAE-TOYOPEARL®", a product for ion-exchange chromatography commercialized by Tosoh Corporation, Tokyo, Japan, which had been previously equilibrated with 10 mM phosphate buffer (pH 7.0), followed by feeding to the column a linear gradient buffer of sodium chloride ranging from 0 M to 0.5 M in 10 mM phosphate buffer (pH 7.0). Fractions containing the objective enzyme were collected from the eluate, pooled, dialyzed for 10 hours against 50 mM phosphate buffer (pH 7.0) containing 2 M ammonium sulfate, and centrifuged to remove insoluble substances. Thereafter, the resultant supernatant was fed to a column, which had been packed with "BUTYL TOYOPEARL®", a gel for hydrophobic column chromatography commercialized by Tosoh Corporation, Tokyo, Japan, and equilibrated with 50 mM phosphate buffer (pH 7.0) containing 2 M ammonium sulfate, followed by feeding to the column a linear gradient buffer of ammonium sulfate ranging from 2 M to 0 M in 50 mM phosphate buffer (pH 7.0). Fractions containing the objective enzyme were collected from the eluate, pooled, fed to a column packed with "TOYOPEARL® HW-55", a product for gel filtration column chromatography commercialized by Tosoh Corporation, Tokyo, Japan, which had been previously equilibrated with 50 mM phosphate buffer (pH 7.0), followed by feeding to the column 50 mM phosphate buffer (pH 7.0) and collecting fractions containing the objective enzyme. The enzyme thus obtained had a specific activity of about 195 units/mg protein, and the yield was about 220 units per L of the culture.

Throughout the specification the enzyme activity is expressed by the value measured on the following assay: Place 4 ml of 50 mM phosphate buffer (pH 7.0) containing 1.25 w/v % maltopentaose in a test tube, add one ml of an enzyme solution to the tube, and incubate the resultant solution at 40°C for 60 min to effect enzymatic reaction. Thereafter, heat the resultant reaction mixture at 100°C for 10 min to suspend the enzymatic reaction. Dilute the resultant reaction mixture with distilled water by 10 times, and assay the reducing activity

on the Somogyi-Nelson's method. One unit activity of the enzyme is defined as the amount of enzyme which reduces the reducing power corresponding to one µmol maltopentaose per min under the same conditions as described above.

Experiment 1-2

Purification of enzyme Q36

Similarly as in Experiment 1-1, a seed culture of Arthrobacter sp.Q36 was cultured, and the resultant culture was treated to obtain a purified enzyme Q36 having a specific activity of about 200 units/mg protein in a yield of about 295 units per L of the culture.

Experiment 2

Physicochemical property of enzyme

Experiment 2-1

Action

To 50 mM phosphate buffer (pH 7.0) containing 20 w/v % of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose or maltoheptaose as a substrate was added 2 units/g substrate, d.s.b., of the purified enzyme M-11 or enzyme Q36 obtained in Experiment 1, and the mixture was enzymatically reacted at 40°C for 48 hours. The reaction mixture was desalted in usual manner, fed to "WB-T-330", a column for highperformance liquid chromatography (HPLC) commercialized by Tosoh Corporation, Tokyo, Japan, followed by feeding to the column distilled water at a flow rate of 0.5 ml/min at ambient temperature to separate saccharides contained in the reaction mixture while monitoring the saccharide concentration of the eluate with "MODEL RI-8012", a differential refractometer commercialized by Wako Pure Chemical Industries, Ltd., Tokyo, Japan. The saccharide composition of the reaction mixture was given in Table 1 or 2. In the table, the symbols "P1" to "P5" were named for the formed saccharides in the order from the smallest one to the largest one in terms of their degrees of glucose polymerization.

Table 1

35	Substrate	Saccharide in reaction mixture	Elution time (min)	Composition (%)
	Glucose	Glucose	33.4	100.0
	Maltose	Maltose	28.5	100.0
40	Maltotriose	P1	23.3	35.0
		+ Maltotriose	25.9	65.0
	Maltotetraose	P2	21.6	85.6
45		+ Maltotetraose	24.1	14.4
	Maltopentaose	P3	. 19.7	92.7
		+ Maltopentaose	22.6	7.3
50	Maltohexaose	p4	18.7	93.5
		+ Maltohexaose	21.4	6.5
	Maltoheptaose	P5	17.8	93.4
55		+ Maltoheptaose	21.0	6.7

Table 2

Substrate	Saccharide in reaction mixture	Elution time (min)	Composition (%)
Glucose	Glucose	33.4	100.0
Maltose	Maltose	28.5	100.0
Maltotriose	P1 + Maltotriose	23.3 25.9	35.5 64.5
Maltotetraose	P2 + Maltotetraose	21.6 24.1	85.8 14.2

(Continued)

10

15

20

25

30

Substrate	Saccharide in reaction mixture	Elution time (min)	Composition (%)
Maltopentaose	P3	19.7	92.9
	+ Maltopentaose	22.6	7.1
Maltohexaose	P4	18.7	93.2
	+ Maltohexaose	21.4	6.7
Maltoheptaose	P5	17.8	93.1
	+ Maltoheptaose	21.0	6.9

As is evident from the results in Table 1 and 2, the enzymes M-11 and Q36 newly formed saccharides from reducing saccharides having a degree of glucose polymerization of 3 or higher such as maltotriose, maltotetraose, maltopentaose, maltohexaose and maltohexaose, but not from those having a degree of glucose polymerization less than 3 such as glucose and maltose. In the enzymatic reaction, the newly formed saccharides were P1 to P5, and the total yield of the saccharides P2 to P5 was as high as 85 w/w % or more, d.s.b.

To separate the saccharides P1 to P5, 3 jacketed stainless steel columns, having an inner diameter of 2.0 cm and a length of one m, were packed with "XT-1016, Na^{+*}, a strong-acid cation exchange resin commercialized by Tokyo Organic Chemical Industries, Ltd., Tokyo, Japan, and cascaded in series. The reaction mixture containing any one of saccharides P1 to P5 was separatory applied to the columns at an inner column temperature of 55°C, followed by applying to the columns with 55°C distilled water at a flow rate of SV (space velocity) 0.13. After examining the saccharide composition of the resultant eluate, a fraction containing 97 w/w or more, d.s.b., of any one of saccharides P1 to P5 was recovered and pulverized in vacuo. No substantial reducing power was detected in the purified saccharides P1 to P5 on the Somogyi-Nelson's method.

To identify the saccharides P1 to P5, 50 mg one of which was weighed, dissolved in one ml of 50 mM acetate buffer (pH 4.5), and mixed with one unit of glucoamylase, followed by incubating the mixture at 40° C for 6 hours. High-performance liquid chromatography analysis on the resultant reaction mixture detected glucose and trehalose as shown in Tables 3 and 4. When the saccharides P1 to P5 were subjected to the action of β -amylase, the saccharides P1 and P2 were not hydrolyzed by β -amylase, but the saccharides P3, P4 and P5 were respectively hydrolyzed into one mole of maltose, P2 and one mole of maltose, and P1 and 2 moles of maltose.

Table 3

Substrate	Glucose (%)	Trehalose (%)	Molar ratio			
P1	36.2	63.8	1.07			
P2	52.0	48.0	2.06			
Р3	61.4	38.6	3.02			
P4	68.3	31.7	4.09			
P5	72.9	27.1	5.11			

Note: The molar ratios as indicated with the symbol "*" are values calculated as moles of glucose against one mole of trehalose.

.

20

25

45

Table 4

rate	Glucose (%)	Trehalose (%)	Molar ratio
	36.0	64.0	1.07
2	51.5	48.5	2.02
3	61.6	38.4	3.05
	68.1	31.9	4.06
5	72.5	27.5	5.01
	2 3 4	(%) 1 36.0 2 51.5 3 61.6 4 68.1	(%) (%) 1 36.0 64.0 2 51.5 48.5 3 61.6 38.4 4 68.1 31.9

Note: The molar ratios as indicated with the symbol "*" are values calculated as moles of glucose against one mole of trehalose.

The results in Tables 3 and 4 strongly show that the saccharides P1 to P5 consist of one mole of trehalose and 1 to 5 moles of glucose. From the facts that glucoamylase specifically hydrolyzes the α -1,4 and α -1,6 linkages in maltooligosaccharides and that β -amylase hydrolyzes the a-1,4 linkage in maltooligosaccharides from their end terminals by maltose units, it is estimated that the saccharides P1 to P5 have a structure consisting of glucose or maltooligosaccharide having a degree of glucose polymerization of 2 to 5, both of which have a trehalose residue at their end terminals.

The total judgement of the above results identifies the saccharides P1 to P5 as a-glucosyl trehalose, α -maltosyl trehalose, α -maltosyl trehalose, α -maltotriosyl trehalose, a-maltotetraosyl trehalose and α -maltopentaosyl trehalose respectively, and this evidences that the enzymes have an activity of forming non-reducing saccharides having trehalose structure as an end unit from reducing saccharides having a degree of glucose polymerization of 3 or higher.

Experiment 2-2

Molecular weight

In accordance with the method reported by U. K. Laemmli in *Nature*, Vol.227, pp.680-685 (1970), the purfied enzymes M-11 and Q36 in Experiment 1 were respectively electrophoresed on sodium dodecyl polyacrylamide gel electrophoresis to give a single protein band at a position corresponding to about 76,000-87,000 daltons. The marker proteins used in this experiment were myosin (MW=200,000 daltons), β-galactosidase (MW=116,250 daltons), phosphorylase B (MW=97,400 daltons), serum albumin (MW=66,200 daltons) and ovalbumin (MW=45,000 daltons).

Experiment 2-3

Isoelectric point

isociccine poi

15

20

25

The purified enzymes M-11 and Q36 obtained in Experiment 1 gave an isoelectric point of about 3.6-4.6 on isoelectrophoresis respectively.

Experiment 2-4

Optimum temperature

The optimum temperature of the purified enzymes M-11 and Q36 obtained in Experiment 1 was about 35-40°C as shown in FIG. 1 or 2 when incubated in usual manner in 50 mM phosphate buffer (pH 7.0) for 60 min.

Experiment 2-5

Optimum pH

The optimum pH of the purified enzymes M-11 and Q36 obtained in Experiment 1 was about 6.4-7.2 as shown in FIG. 3 or 4 when experimented in usual manner by incubating them at 40°C for 60 min in 50 mM acetate buffer, phosphate buffer or sodium carbonate-sodium hydrogen carbonate buffer having different pHs.

Experiment 2-6

35

Thermal stability

The purified enzymes M-11 and Q36 obtained in Experiment 1 were stable up to a temperature of about 35-40°C as shown in FIGs. 5 and 6 when experimented in usual manner by incubating them in 50 mM phosphate buffer (pH 7.0) for 60 min.

Experiment 2-7

pH Stability

45

The purified enzymes M-11 and Q36 obtained in Experiment 1 were stable up to a pH of about 5.5-11.0 as shown in FIGs. 7 and 8 when experimented in usual manner by incubating them at 25°C for 16 hours in 50 mM acetate buffer, phosphate buffer or sodium carbonate-sodium hydrogen carbonate buffer having different pHs.

Experiment 2-8

Amino acid sequence containing the N-terminal

The amino acid sequence containing the N-terminal of the purified enzyme M-11 obtained in Experiment 1 was analyzed on "MODEL 470 A", a gas-phase protein sequencer commercialized by Applied Biosystems, Inc., Foster City, USA, to reveal that enzyme M-11 has an amino acid sequence as shown in SEQ ID NO:12.

The amino acid sequence containing the N-terminal of the purified enzyme Q36 was analyzed similarly

as in enzyme M-11 to reveal that it has an amino ucid sequence as shown in SEQ ID NO:13.

Experiment 2-9

20

30

55

5 Partiel amino acid sequence

An adequate amount of the purified enzyme M-11 obtained in Experiment 1-1 was weighed, dialyzed against 10 mM Tris-HCl buffer (pH 9.0) at 4°C for 18 hours, and admixed with 10 mM Tris-HCl buffer (pH 9.0) to give a concentration of about one mg/ml of the enzyme. About one ml of the resultant solution was placed in a container, admixed with 10 µg lysyl endopeptidase, and incubated at 30°C for 22 hours to partially hydrolyze the enzyme. The resultant hydrolysate was applied to "CAPCELL-PAK C18", a column for reverse-phase high-performance liquid chromatography commercialized by Shiseido Co., Ltd., Tokyo, Japan, which had been previously equilibrated with 0.1 v/v % trifluoroacetate containing 16 v/v % aqueous acetonitrile, followed by feeding to the column 0.1 v/v % trifluoroacetate at a flow rate of 0.9 ml/min while increasing the concentration of acetonitrile from 16 to 64 v/v % to separatory collect fractions containing a peptide fragment about 28 min or 40 min after the initiation of feeding (the peptide fragments were respectively named "peptide fragment A" and "peptide fragment B"). Fractions containing the peptide fragment A or B were separatory pooled, dried *in vacuo*, and dissolved in 0.1 v/v % trifluoroacetate containing 50 v/v % aqueous acetonitrile. Similarly as in Experiment 2-8, the peptide fragments A and B were analyzed and revealed to have an amino acid sequence as shown in SEQ ID NO:15.

Similarly as in enzyme M-11, enzyme Q36 obtained in Experiment 1-2 was partially hydrolyzed, and the resultant was fed to "µBONDAPAK C18", a column for reverse-phase high-performance liquid chromatography commercialized by Japan Millipore Ltd., Tokyo, Japan, followed by feeding to the column 0.1 v/v % trifluoroacetate containing aqueous acetonitrile raging from a concentration of 24 v/v % to 44 v/v % at a flow rate of 0.9 ml/ml. Fractions containing a peptide fragment eluted about 22 min or about 40 min after the initiation of feeding (the fractions were respectively called "peptide fragment C" and "peptide fragment D" hereinafter) were respectively collected, pooled, dried *in vacuo*, and dissolved in 0.1 v/v % trifluoroacetate containing 50 v/v % aqueous acetonitrile. Analyses of the peptide fragments C and D conducted similarly as above revealed that they have amino acid sequences as shown in SEQ ID NOs:16 and 17, respectively.

No enzyme having these physicochemical properties has been known, and this concluded that it is a novel substance. Referring to *Rhizobium* sp. M-11, it is a microorganism which was isolated from a soil of Okayamacity, Okayama, Japan, deposited on December 24, 1992, in National Institute of Bioscience and Human-Technology Agency of Industrial Science and Technology, Tsukuba, Ibaraki, Japan, and accepted under the accession number of FERM BP-4130, and it has been maintained by the institute. *Arthrobacter* sp. Q36 is a microorganism which was isolated from a soil of Soja-city, Okayama, Japan, deposited on June 3, 1993, in the same institute, and accepted under the accession number of FERM BP-4316, and it has been maintained by the institute. Japanese Patent Application No.349,216/93 applied by the same applicant discloses the properties and features of the non-reducing saccharide-forming enzyme as well as the detailed bacteriological properties of these microorganisms.

The present inventors energetically screened a chromosomal DNA of *Rhizobium* sp. M-11 by using an oligonucleotide as a probe which had been chemically synthesized based on the partial amino acid sequence of enzyme M-11 as revealed in Experiment 2-9, and found a DNA fragment which consists of 2,316 base pairs having a base sequence as shown in the following SEQ ID NO:1 which initiates from the 5'-terminus. The decoding of the base sequence revealed that the enzyme consists of 772 amino acids as shown in SEQ ID NO:2.

Similarly as in enzyme M-11, a chromosomal DNA of enzyme Q36 was screened by using an oligonucleotide as a probe which had been chemically synthesized based on a partial amino acid sequence of enzyme Q36, and this yielded a DNA fragment having a base sequence consisting of 2,325 base pairs from the 5'-terminus as shown in SEQ ID NO:3. The base sequence was decoded to reveal that enzyme Q36 consists of 775 amino acids and has a partial amino acid sequence containing the N-terminal as shown in SEQ ID NO:4.

The sequential experimental steps used to reveal the base sequence and amino acid sequence as shown in SEQ ID NOs:1 to 4 are summarized as below:

- (1) The enzyme was isolated from a culture of a donor microorganism and highly purified. The purified enzyme was partially hydrolyzed with protease, and the resultant 2 different types of peptide fragments were isolated and determined their amino acid sequences;
- (2) Separately, a chromosomal DNA was isolated from a donor microorganism's cell, purified and partially digested by a restriction enzyme to obtain a DNA fragment consisting of about 3,000-7,000 base pairs. The DNA fragment was ligated by DNA ligase to a plasmid vector, which had been previously cut with a restriction enzyme, to obtain a recombinant DNA;

5

10

- (3) The recombinant DNA was introduced into Escherichia coli to obtain transformants, and from which an objective transformant containing a DNA encoding the enzyme was selected by the colony hybridization method using as a probe an oligonucleotide which had been chemically synthesized based on the aforesaid partial amino acid sequence; and
- (4) The recombinant DNA was obtained from the transformant and annealed with a primer, followed by allowing a DNA polymerase to act on the resultant to extend the primer, and determining the base sequence of the resultant complementary chain DNA by the dideoxy chain termination method. The comparison of an amino acid sequence estimable from the determined base sequence with the aforesaid amino acid sequence confirmed that the base sequence encodes the enzyme.

As is explained in the above, the enzyme, which forms non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher, is an enzyme which was found as a result of the present inventors' long-term research. The enzyme has distinct physicochemical properties from those of other conventional enzymes. The present invention is to produce the enzyme by applying recombinant DNA technology. The recombinant DNA, and its preparation and uses are explained in detail with reference to examples.

The recombinant enzyme as referred to in the invention means the whole enzymes which are preparable by recombinant DNA technology and capable of forming non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous sacchandes having a degree of glucose polymerization of 3 or higher. Generally, the recombinant enzyme according to the present invention has a revealed amino acid sequence, and, as an example, the amino acid sequence, which initiates from the N-terminal as shown in SEQ ID NO:2 or 4, and homologous ones to it can be mentioned. Variants having amino acid sequences homologous to the one as shown in SEQ ID NO:2 or 4 can be obtained by replacing one or more bases in SEQ ID NO:2 or 4 with other bases without substantially alternating the inherent action of the enzyme. Although even when used the same DNA and it also depends on hosts into which the DNA is introduced, ingredients and components of nutrient culture media for culturing transformants, and their cultivation temperature and pH, there may be produced modified enzymes which have amino acid sequences similar to that of SEQ ID NO:2 or 4 as well as having an enzymatic action of the enzyme encoded by the DNA but defecting one or more amino acids located nearness to the N-terminal of the amino acid sequence as shown in SEQ ID NO:2 or 4 and/or having one or more amino acids newly added after the DNA expression to the N-terminal by the modification of intracellular enzymes of hosts. The recombinant enzyme can be obtained from cultures of transformants containing a specific DNA. Examples of such a transformant used in the invention can be prepared by introducing into hosts a DNA having either the base sequence which initiates from the N-terminal or a homologous base sequence to it or a complementary base sequence to them. Such a base sequence may be prepared by replacing one or more bases thereof without alternating the amino acid sequence encoded thereby by using degeneracy of genetic code. Needless to say, one or more bases in the base sequence, which encodes the enzyme or their variants, can be readily replaced with other bases to allow the DNA to actually express the enzyme production in hosts.

The DNA usable in the present invention includes any one of those derived from natural resources and artificially synthesized ones as long as they have such an aforementioned base sequence. The natural resources for the DNA according to the present invention are, for example, microorganisms of the genera Rhizobium, Arthrobacter, Brevibacterium, Flavobacterium, Micrococcus, Curtobacterium, Mycobacterium and Terrabacter, i.e. Rhizobium sp. M-11 (FERM BP-4130), Arthrobacter sp. Q36 (FERM BP-4316), Brevibacterium helovolum (ATCC 11822), Flavobacterium aquatile (IFO 3772), Micrococcus luteus (IFO 3064), Micrococcus roseus (ATCC 186), Curtobacterium citreum (IFO 15231), Mycobacterium smegmatis (ATCC 19420) and Terrabacter tumescens (IFO 12960) from which genes containing the present DNA can be obtained. The aforementioned microorganisms can be inoculated in nutrient culture media and cultured for about 1-3 days under aerobic conditions, and the resultant cells were collected from the cultures and subjected to ultrasonication or treated with a cell-wall lysis enzyme such as lysozyme or β-glucanase to extract genes containing the present DNA. In this case, a proteolytic enzyme such as protease can be used along with the cell-wall lysis enzyme, and, in the case of treating the cells with an ultrasonic disintegrator, they may be treated in the presence of a surfactant such as sodium dodecyl sulfate (SDS) or may be treated with freezing and thawing. The objective DNA is obtainable by treating the resultant with phenol extraction, alcohol sedimentation, centrifugation, protease treatment and/or ribonuclease treatment used in general in this field. To artificially synthesize the present DNA, it can be chemically synthesized by using the base sequence as shown in SEQ ID NO:1 or 3, or can be obtained in a plasmid form by inserting a DNA which encodes the amino acid sequence as shown in SEQ ID NO:2 or 4 into an appropriate self-replicable vector to obtain a recombinant DNA, introducing the recombinant DNA into an appropriate host to obtain a transformant, culturing the transformant, separating the proliferated cells from the resultant culture, and collecting plasmids containing the DNA from the cells.

Such a recombinant DNA is generally introduced into hosts in a recombinant DNA form. Generally, the recombinant DNA contains the aforesaid DNA and a self-replicable vector, and it can be prepared with a relative easiness by recombinant DNA technology in general when the material DNA is in hand. Examples of such a vector are plasmid vectors such as pBR322, pUC18, Bluescript II SK(+), pUB110, pTZ4, pC194, pHV14, TRp7, TEp7, pBS7, etc.; and phage vectors such as λgt-λc, λgt-λβ, ρ11, φ1, φ105, etc. Among these plasmid- and phage-vectors, pBR322, pUC18, Bluescript II SK(+), λgt-λC and λgt-λβ are satisfactorily used when the present DNA needs to be expressed in *Escherichia coli*, while pUB110, pTZ4, pC194, ρ11, φ1 and φ105 are satisfactorily used to express the DNA in microorganisms of the genus *Bacillus*. The plasmid vectors pHV14, TRp7, TEp7 and pBS7 are advantageously used when the recombinant DNA is allowed to grow in 2 or more hosts.

The methods used to insert the present DNA into such a vector in the invention may be conventional ones in general in this field. A gene containing the present DNA and a self-replicable vector are first digested by a restriction enzyme and/or ultrasonic disintegrator, then the resultant DNA fragments and vector fragments are ligated. To digest DNAs and vectors, restriction enzymes which specifically act on nucleotides, particularly, type II restriction enzymes, more particularly Sau 3AI, Eco RI, Hind III, Bam HI, Sal I, Xba I, Sac I, Pst I, etc., facilitate the ligation of the DNA fragments and vector fragments. To ligate the DNA fragments with vector fragments, they are annealed if necessary, then subjected to the action of a DNA ligase in vivo or in vitro. The recombinant DNA thus obtained is replicable without substantial limitation by introducing it into appropriate hosts, and culturing the resultant transformants.

10

The recombinant DNA thus obtained can be introduced into appropriate host microorganisms including *Escherichia coli* and those of the genus *Bacillus* as well as actinomyces and yeasts. In the case of using *Escherichia coli* as a host, the DNA can be introduced thereinto by culturing the host in the presence of the recombinant DNA and calcium ion, while in the case of using a microorganism of the genus *Bacillus* as a host the competent cell method and the colony hybridization method can be employed. Desired transformants can be cloned by the colony hybridization method or by culturing a variety of transformants in nutrient culture media containing reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher, and selecting the objective transformants which form non-reducing amylaceous saccharides having trehalose structure as an end unit from the reducing amylaceous saccharides.

The transformants thus obtained extracellularly produce the objective enzyme when cultured in nutrient culture media. Generally, liquid culture media in general supplemented with carbon sources, nitrogen sources and minerals, and, if necessary, further supplemented with small amounts of amino acids and vitamins can be used in the invention. Examples of the carbon sources are saccharides such as starch, starch hydrolysate, glucose, fructose and sucrose. Examples of the nitrogen sources are organic- and inorganic-substances containing nitrogen such as ammonia, ammonium salts, urea, nitrate, peptone, yeast extract, defatted soy been. corn steep liquor, and beef extract. Cultures containing the objective enzyme can be prepared by inoculating the transformants into nutrient culture media, and incubating them at a temperature of 25-65°C and a pH of 2-8 for about 1-6 days under aerobic conditions by aeration and agitation. Such a culture can be used intact as an enzyme agent, and, usually, it may be disrupted prior to use with ultrasonic disintegrator and/or cell-wall lysis enzymes, followed by separating the enzyme from the intact cells and cell debris by filtration and/or centrifugation and purifying the enzyme. The methods to purify the enzyme include conventional ones in general. From cultures intact cells and cell debris are eliminated and subjected to one or more methods such as concentration, salting out, dialysis, separatory sedimentation, gel filtration chromatography, ionexchange chromatography, hydrophobic chromatography, affinity chromatography, gel electrophoresis and isoelectric point electrophoresis.

As is described above, the recombinant enzyme according to the present invention has a specific feature of forming non-reducing saccharides having trehalose structure as an end unit from reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher. The formed non-reducing saccharides have a satisfactorily mild and high-quality sweetness as well as an adequate viscosity and moisture-retaining ability, and, as a great advantageous feature, they can sweeten food products without fear of causing coloration and deterioration because they do not have a reducing residue within their molecule. By using these features a variety of amylaceous saccharides, which have been put aside because of their reducibilities, can be converted into saccharides having a satisfactory handleability and usefulness but having substantially no or extremely-reduced reducibility.

Now explaining the conversion method in more detail, reducing starch hydrolysates, which are obtainable by partially hydrolyzing amylaceous saccharides such as starch, amylopectin and amylose by acids and/or amylases, can be usually used as the substrate for the present recombinant enzyme. Such a starch hydrolysate can be obtained by conventional methods in general used in the art, and examples thereof include one or more maltooligosaccharides having a degree of glucose polymerization of 3 or higher such as maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose. As described in "Handbook of Amylases and Re-

lated Enzymes", 1st edition, edited by The Amylase Research Society of Japan, published by Pergamon Press plc, Oxford, England (1988), α -amylase, maltotetraose-forming amylase, maltopentaose-forming amylase and maltohexaose-forming amylase are especially useful to prepare the reducing amylaceous saccharides used in the invention, and, the use of any one of these amylases readily yields amylaceous saccharide mixtures rich in reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher in a considerably-high yield. If necessary, the combination use of the amylases and starch debranching enzymes such as pullulanase and isoamylase can increase the yield of the reducing amylaceous saccharides used as the substrate for the present recombinant enzyme.

In the conversion method according to the present invention, the present recombinant enzyme is allowed to coexist in an aqueous solution containing one or more of the aforesaid reducing amylaceous saccharides as a substrate, and allowing the solution to enzymatically react at a prescribed temperature and pH until a desired amount of the objective reducing amylaceous saccharides is formed. Although the enzymatic reaction proceeds even below a concentration of 0.1 w/v % of a substrate, a higher concentration of 2 w/v %, preferably, 5-50 w/v % of a substrate can be satisfactorily used to apply the present conversion method to an industrial-scale production. The temperature and pH used in the enzymatic reaction are set within the ranges of which do not inactivate the recombinant enzyme and allow the recombinant enzyme to effectively act on substrates, i.e. a temperature up to about 55°C, preferably, a temperature in the range of about 40-55°C, and a pH of 5-10, preferably, a pH in the range of about 6-8. The amount and reaction time of the present recombinant enzyme are chosen dependently on the enzymatic reaction condition. The enzymatic reaction relatively-highly reduces the reducing power of reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher, and, in the case of maltopentaose, the reducing powder is lowered to about 7% against the original level.

The reaction mixtures obtained by the present conversion reaction can be used intact, and, usually, they are purified prior to use: Insoluble substances are eliminated from the reaction mixtures by filtration and centrifugation, and the resultant solutions are decolored with an activated charcoal, desalted and purified on ion exchangers, and concentrated into syrupy products. Dependently on their use, the syrupy products are dried in vacuo and spray-dried into solid products. In order to obtain products which substantially consist of non-reducing saccharides, the aforesaid syrupy products are subjected to one or more methods such as chromatography using an ion exchanger, activated charcoal and silica gel for saccharide separation, separatory sedimentation using alcohol and/or acetone, membrane filtration, fermentation by yeasts, and removal and decomposition of reducing saccharides by alkalis. The methods to treat a large amount of reaction mixture are, for example, fixed bed- or pseudomoving bed-ion exchange column chromatography as disclosed in Japanese Patent Laid-Open Nos.23,799/83 and 72,598/83, and such a method produces non-reducing saccharide-rich products in an industrial scale and in a considerably-high yield.

The reducing saccharides thus obtained have a wide applicability to a variety of products which are apt to be readily damaged by the reducibility of saccharide sweeteners: For example, they can be satisfactorily used in food products, cosmetics and pharmaceuticals as a sweetener, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant. Since the non-reducing saccharides approximately qualitatively form trehalose when received an enzymatic action of a trehalose-releasing enzyme as disclosed in Japanese Patent Application No.340,343/93, they can be used as an intermediate for the production of trehalose which could not have been readily prepared.

The following examples explain the present invention in more detail, and the recombinant DNA technologies or techniques employed therein are in themselves conventional ones used in the art, for example, those described by J. Sumbruck et al. in "Molecular Cloning A Laboratory Manual", 2nd edition, published by Cold Spring Harbor Laboratory Press, USA (1989).

Example 1

45

Preparation of recombinant DNA containing DNA derived from enzyme M-11, and transformant

Example 1-1

Preparation of chromosomal DNA

A seed culture of *Rhizobium* sp. M-11 was inoculated into bacto nutrient broth medium (pH 7.0), and cultured at 27°C for 24 hours with a rotary shaker. The cells were separated from the resultant culture by centrifugation, suspended in TES buffer (pH 8.0), admixed with 0.05 w/v % lysozyme, and incubated at 37°C for 30 min. The resultant was freezed at -80°C for one hour, admixed with TSS buffer (pH 9.0), heated to 60°C, and admixed with a mixture solution of TES buffer and phenol, and the resultant solution was chilled with ice, fol-

lowed by centrifugally collecting the precipitated crude chromosomal DNA. To the supernatant was added 2 fold volumes of cold ethanol, and the precipitated crude chromosomal DNA was collected, suspended in SSC buffer (pH 7.1), admixed with 7.5 µg ribonuclease and 125 µg protease, and incubated at 37°C for one hour. Thereafter, a mixture sclution of chloroform and isoamyl alcohol was added to the reaction mixture to extract the objective chromosomal DNA, and admixed with cold ethanol, followed by collecting the formed sediment containing the chromosomal DNA. The purified chromosomal DNA thus obtained was dissolved in SSC buffer (pH 7.1) to give a concentration of about one mg/ml, and the solution was freezed at -80°C.

Example 1-2

10

Preparation of recombinant DNA pBMT7 and transformant BMT7

About one ml of the purified chromosomal DNA obtained in Example 1-1 was placed in a container, admixed with about 35 units of Sau 3Al, a restriction enzyme, and enzymatically reacted at 37°C for about 20 min to partially digest the chromosomal DNA, followed by recovering a DNA fragment consisting of about 3,000-7,000 base pairs by sucrose density-gradient ultracentrifugation. One µg of Bluescript II SK(+), a plasmid vector, was provided, subjected to the action of Bam HI, a restriction enzyme, to completely digest the plasmid vector, admixed with 10 µg of the DNA fragment and 2 units of T4 DNA ligase, and allowed to stand at 4°C overnight to ligate the DNA fragment to the vector fragment. To the resultant recombinant DNA was added 30 µl of "Epicurian Coli® XLI-Blue", competent cell commercialized by Toyobo Co., Ltd., Tokyo, Japan, allowed to stand under ice-chilled conditions for 30 min, heated to 42°C admixed with SOC broth, incubated at 37°C for one hour to introduce the recombinant DNA into Escherichia coli.

The resultant transformant was inoculated into agar plate (pH 7.0) containing 50 μ g/ml of 5-bromo-4-chloro-3-indolyl- β -galactoside, and cultured at 37°C for 18 hours, followed by placing a nylon film on the agar plate to fix thereon about 4,400 colonies formed on the agar plate. Based on the amino acid sequence of Pro-Glu-Trp-Glu-Lys located at positions from 17 to 21 in the amino acid sequence of the peptide fragment $\bf A$ as revealed in Experiment 2-9, the base sequence of probe 1 as shown in SEQ ID NO:5 was chemically synthesized, labelled with 32 P, and hybridized with the colonies of transformants fixed on the nylon film, followed by selecting 9 transformants which exhibited a strong hybridization.

The objective recombinant DNA was selected in usual manner from the 9 transformants, and, in accordance with the method described by E. M. Southern in *Journal of Molecular Biology*, Vol.98, pp.503-517 (1975), hybridized with probe 2 having the base sequence as shown in SEQ ID NO:6 which had been chemically synthesized based on the amino acid sequence of Thr-Glu-Phe-Trp-Asp located at positions from 16 to 20 in the amino acid sequence of the peptide fragment **B** as revealed in Experiment 2-9, followed by selecting a recombinant DNA which strongly hybridized with probe 2. The recombinant DNA and transformant thus selected were respectively named pBMT7 and BMT7.

The transformant BMT7 obtained in the above was inoculated into L-broth (pH 7.0) containing 100 µg/ml ampicillin, and cultured at 37°C for 24 hours with a rotary shaker. After completion of the culture, the cells were collected from the culture by centrifugation, and treated with the alkaline method in general to extracellularly extract a recombinant DNA. The resultant was in usual manner purified and analyzed to find that the recombinant DNA pBMT7 consists of about 9,300 base pairs and has a structure expressed by the restriction map as shown in FIG. 9. It was revealed that as shown in FIG. 9 the DNA consisting of 2,316 base pairs encoding enzyme M-11 is located in the downstream near to the digested site by *Pst* I, a restriction enzyme.

Example 1-3

Production of enzyme by transformant

A liquid medium consisting of 2.0 w/v % maltose, 0.5 w/v % peptone, 0.1 w/v % yeast extract, 0.1 w/v % disodium hydrogen phosphate and 0.1 w/v % potassium dihydrogen phosphate was adjusted to pH 7.0, admixed with 50 μ g/ml ampicillin, autoclaved at 120°C for 20 min, cooled and inoculated with a seed culture of transformant BMT7 obtained in Example 1-2, followed by culturing the transformant at 37°C for 24 hours with a rotary shaker. The resultant culture was treated with an ultrasonic disintegrator to disrupt cells, and the resultant suspension was centrifuged to remove insoluble substances. The supernatant thus obtained was assayed for the enzyme activity to find that one L of the culture yielded about 3,000 units of the enzyme.

As a control, a seed culture of *Escherichia coli* XLI-Blue or *Rhizobium* sp. M-11 was inoculated into a fresh preparation of the same liquid culture medium but free of ampicillin, and, in the case of the culture of *Rhizobium* sp. M-11, it was cultured and treated similarly as above except that the culturing temperature was set to 30°C.

Assaying the resultant activity, one L culture of *Rhizobium* sp. M-11 yielded about 1,500 units of the enzyme, and the yield was significantly lower than that of transformant BMT7. *Escherichia coli* XLI-Blue used as a host did not form the enzyme.

Thereafter, the enzyme produced by the transformant BMT7 purified similarly as in Experiment 1-1, and examined on the properties and characteristics. As a result, it was revealed that it has substantially the same physicochemical properties as that of Experiment 2 showing a molecular weight of about 76,000-87,000 daltons on SDS-PAGE and an isoelectric point of about 3.6-4.6 on isoelectrophoresis. The results indicate that the present enzyme can be prepared by recombinant DNA technology, and the yield is significantly increased thereby.

10

Example 2

Preparation of complementary DNA derived from enzyme M-11 and determination of its base sequence and amino acid sequence

15

25

Two μg of the recombinant DNA pBMT7 obtained by the method in Example 1-2 was weighed, admixed with 2 M aqueous sodium hydroxide solution to effect degeneration, and admixed with an adequate amount of cold ethanol, followed by collecting the resultant sediment containing a template DNA and drying the sediment in vacuo. To the template DNA were added 50 pmole/ml of a chemically synthesized primer 1 having the base sequence as shown in SEQ ID NO:7, and 10 μ l of 40 mM Tris-HCl buffer (pH 7.5) containing 20 mM magnesium chloride and 50 mM sodium chloride, and incubated at 65°C for 2 min to effect annealing, and the mixture was admixed with 2 μ l of an aqueous solution containing dATP, dGTP and dTTP in respective amounts of 7.5 μ M, 0.5 μ l of [α -32P]dCTP (2 mCi/ml), one μ l of 0.1 M dithiothreitol, and 2 μ l of 1.5 units/ml T7 DNA polymerase, followed by incubating the resultant mixture at 25°C for 5 min to extend the primer 1 from the 5'-terminus to the 3'-terminus. Thus, a complementary chain DNA was formed.

The reaction product containing the complementary chain DNA was divided into quarters, to each of which 2.5 μ I of 50 mM aqueous sodium chloride solution containing 80 μ M dNTP and 8 μ M ddATP, ddCTP, ddGTP or ddTTP was added, and the resultant mixture was incubated at 37°C for 5 min, followed by suspending the reaction by the addition of 4 μ I of 95 v/v % aqueous formamide solution containing 20 mM EDTA, 0.05 w/v % bromophenol blue and 0.05 w/v % xylene cyanol. The reaction mixture was placed in a container, heated in a boiling-water bath for 3 min, placed on a gel containing 6 w/v % polyacrylamide, and electrophoresed by energizing the gel with a constant voltage of about 2,000 volts to separate DNA fragments, followed by fixing the gel in usual manner, drying and subjecting the resultant gel to autoradiography.

Analyses of the DNA fragments separated on the radiogram revealed that the complementary chain DNA contains the base sequence consisting of 2,936 base pairs as shown in SEQ ID NO:10. An amino acid sequence estimable from the base sequence was as shown in SEQ ID NO:10, and it was compared with the amino acid sequence containing the N-terminal and the partial amino acid sequence of enzyme M-11 as shown in SEQ ID NO:12, 14 or 15, and found that the amino acid sequence containing the N-terminal of SEQ ID NO:12 corresponded to the amino acid sequence at positions from 1 to 20 of SEQ ID NO:10, and the partial amino acid sequence of SEQ ID NO:14 or 15 corresponded to the amino acid sequence at positions from 486 to 506 or at positions from 606 to 626 of SEQ ID NO:10. The results indicate that the enzyme produced from *Rhizobium* sp. M-11 has the amino acid sequence of SEQ ID NO:2, and the enzyme derived from the microorganism is encoded by the DNA having the base sequence as shown in SEQ ID NO:1.

Example 3

Preparation of recombinant DNA containing DNA derived from Arthrobacter sp. Q36 and transformant

Example 3-1

50

55

Preparation of chromosomal DNA

Similarly as in Example 1-1, a chromosomal DNA was solated from *Arthrobacter* sp. Q36, purified and dissolved in SSC buffer (pH 7.1) to give a concentration of about one mg/ml, and the resultant solution was freezed at -80°C.

Example 3-2

Preparation of recombinant DNA pBQT13 and transformant BQT13

The purified chromosomal DNA obtained in Example 3-1 was partially digested similarly as in Example 1-2, followed by recovering a DNA fragment consisting of about 3,000-6,000 base pairs by sucrose density gradient ultracentrifugation. The DNA fragment was ligated to a lysate of Bluescript II SK(+) which had been treated with *Bam* HI similarly as in Example 1-2, and the resultant recombinant DNA was introduced into *Escherichia coli* XLI-Blue. The transformants thus obtained were cultured similarly as in Example 1-2 in an agar plate containing 5-bromo-4-chloro-3-indolyl-β-D-galactoside, and the resultant about 4,500 colonies were fixed on a nylon film, while probe 3 having the base sequence as shown in SEQ ID NO:8 was chemically synthesized based on the amino acid sequence as expressed by Phe-Asp-Val-Asp-Trp-Asp, which are located at positions from 11 to 16 in the amino acid sequence of the peptide fragment D as shown in SEQ ID NO:17, labelled with ³²P, and hybridized with transformant colonies which had been fixed on the nylon film, followed by selecting 8 transformants which strongly hybridized with probe 3.

Similarly as in Example 1-2, the objective recombinant DNA was selected from the 8 transformants, and hybridized with probe 4 having the base sequence as shown in SEQ ID NO:9 which had been chemically synthesized based on the amino acid sequence located at positions from 16 to 20, i.e. Thr-Glu-Phe-Trp-Asp, in SEQ ID NO:16, followed by selecting a recombinant DNA which strongly hybridized with probe 4. The recombinant DNA and transformant thus selected were respectively named pBQT13 and BQT13.

The transformant BQT13 was inoculated into L-broth containing ampicillin, and cultured similarly as in Example 3-2, and the proliferated cells were collected from the resultant culture, and from which a recombinant DNA was extracted, purified and analyzed to reveal that the recombinant pBQT13 consists of about 7,200 base pairs and has a structure expressed by the restriction map as shown in FIG. 10. As shown in FIG. 3, it was reveal that the DNA, which consists of 2,325 base pairs and encodes the DNA of enzyme Q36, is located in the downstream near the cleavage site of *Xmn* I.

Example 3-3

Production of enzyme by transformant BQT13

A liquid culture medium consisting of 2.0 w/v % maltose, 0.5 w/v % peptone, 0.1 w/v % yeast extract, 0.1 w/v % disodium hydrogen phosphate and 0.1 w/v % potassium dihydrogen phosphate was adjusted to pH 7.0, admixed with 50 μ g/ml ampicillin, autoclaved at 120°C for 20 min, cooled and inoculated with a seed culture of the transformant BQT13 obtained in Example 3-2, followed by culturing the transformant at 37°C for 24 hours by a rotary shaker. The resultant culture was treated with an ultrasonic disintegrator to disrupt cells, and the resultant suspension was centrifuged to remove insoluble substances. The supernatant thus obtained was assayed for the enzyme activity to find that one L of the culture yielded about 2,450 units of the enzyme.

As a control, Escherichia coli XLI-Blue or Arthrobacter sp. Q36 was inoculated in a fresh preparation of the same liquid culture medium but free of ampicillin, and cultured and treated similarly as above except that the culturing temperature was set to 30°C. The assay of the activity of the resultants showed that one L of the culture of Arthrobacter sp. Q36 yielded about 1,200 units of the enzyme, and the level of which was significantly lower than that of the transformant BQT13. Escherichia coli XLI-Blue used as a host did not form the enzyme.

Thereafter, the enzyme produced by the transformant BMT7 was purified similarly as in Experiment 1-1, and examined on the properties and characteristics. As a result, it was revealed that it has substantially the same physicochemical properties as shown in Experiment 2 of a molecular weight of about 76,000-87,000 daltons on SDS-PAGE and an isoelectric point of about 3.6-4.6 on isoelectrophoresis.

The results indicate that the enzyme can be prepared by recombinant DNA technology, and the yield might be significantly increased thereby.

Example 4

50

Preparation of complementary chain DNA derived from Arthrobacter sp. Q36, and determination of its base sequence and amino acid sequence

The recombinant DNA pBQT13 obtained in Example 3-2 was similarly treated as in Example 2 to form a template DNA which was then annealed together with the primer 1, followed by allowing T7 DNA polymerase

to act on the resultant to extend the primer 1 from the 5'-terminus to 3'-terminus to obtain a complementary chain DNA. Similarly as in Example 2, the complementary chain DNA was subjected to the dideoxy chain terminator method to analyze DNA fragments isolated on a radiogram. The result revealed that the complementary chain DNA contained a base sequence consisting of 3,073 base pairs and an amino acid sequence estimable from the base sequence were as shown in SEQ ID NO:11. The amino acid sequence was compared with respect to the amino acid sequence containing the N-terminal and the partial amino acid sequence of SEQ ID NO:13, 16 or 17, and found that the amino acid sequence containing the N-terminal of SEQ ID NO:13 corresponded to that located at positions from 1 to 20 in SEQ ID NO:11, and the partial amino acid sequence of SEQ ID NO:16 and 17 corresponded to the amino acid sequence located at positions from 606 to 625 or from 10 to 129 in SEQ ID NO:11. The results indicate that enzyme Q36 has the amino acid sequence of SEQ ID NO:4, and it is encoded by the DNA having the base sequence as shown in SEQ ID NO:3.

Example 5

Preparation of recombinant enzyme

In 500-ml Erlenmeyer flasks were placed 100 ml aliquots of a liquid culture medium (pH 7.0) consisting of 2.0 w/v % maltose, 0.5 w/v % peptone, 0.1 w/v % yeast extract, 0.1 w/v % disodium hydrogen phosphate and 0.1 w/v % potassium dihydrogen phosphate, and to each flask was added 50 µg/ml ampicillin and autoclaved at 120°C for 20 min. Thereafter, the flasks were cooled and inoculated with the transformant BMT7 obtained in Example 1-2, followed by culturing the transformant at 27°C for 24 hours by a rotary shaker. Apart from this, 18 L of a fresh preparation of the same liquid culture medium was placed in an Erlenmeyer flask, admixed with 50 µg/ml ampicillin, sterilized at 120°C for 20 min, cooled and inoculated with one v/v % of the seed culture obtained in the above, followed by the culture at 37°C for 24 hours under aeration and agitation conditions. The resultant culture was treated with an ultrasonic disintegrator to disrupt cells, and the resultant suspension was centrifuged to remove insoluble substances. The supernatant thus obtained was assayed for the enzyme activity to show that one L of the culture yielded about 3,000 units of the enzyme. The supernatant was purified by the method in Experiment 1-1 to obtain an about 50 ml aqueous solution containing about 135 units/ml of a recombinant enzyme having a specific activity of about 200 units/mg protein.

Example 6

Preparation of recombinant enzyme

Recombinant BQT13 obtained by the method in Example 3-2 was cultured similarly as in Example 5, and the resultant culture was treated with an ultrasonic integrator to disrupt cells. The resultant suspension was centrifuged to remove insoluble substances, and the resultant supernatant was assayed for the enzyme activity to reveal an enzyme production of about 2,450 units per L of the culture. The supernatant was purified by the method in Experiment 1-1 to obtain an about 45 ml aqueous solution containing about 120 units/ml of a recombinant enzyme having a specific activity of about 200 units/mg protein.

Example 7

45

Conversion of starch hydrolysate by recombinant enzyme

A potato starch was suspended in water to give a 6 w/w % suspension which was then autoclaved at 120°C for 10 min to gelatinize the starch. The gelatinized starch was rapidly cooled to 50°C, adjusted to a pH of about 4.5, admixed with 2,500 units/g starch, d.s.b., of an isoamylase specimen commercialized by Hayashibara Biochemical Laboratories, Inc., Okayama, Japan, and enzymatically reacted at 50°C for 20 hours. The reaction mixture was adjusted to pH 6.0, autoclaved at 120°C for 10 min to inactivate the remaining enzyme, rapidly cooled to 45°C, admixed with 150 units/g starch, d.s.b., of "TERMAMYL 60L", an α-amylase specimen commercialized by Novo Nordisk Bioindustri A/S, Copenhagen, Denmark, and enzymatically reacted at 45°C for 24 hours to obtain a reaction mixture containing reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher such as maltotriose, maltotetraose and maltopentaose. The reaction mixture was autoclaved at 120°C for 20 min to inactivate the remaining enzyme, rapidly cooled to 45°C, admixed with one unit/g starch, d.s.b., of the recombinant enzyme obtained in Example 5, and enzymatically reacted at 45°C for 96 hours. The resultant reaction mixture was heated at 96°C for 10 min to inactivate the remaining enzyme, cooled and filtered, and the resultant filtrate was in usual manner decolored with an activated charcoal, de-

salted and purified by an ion exchanger and concentrated to obtain an about 70 w/w % syrup, d.s.b., in a yield of about 91%, d.s.b.

Analysis of the syrup conducted by the method of Experiment 2-1 revealed that it had a DE (dextrose equivalent) of 18.7 and contained as a main component, on a dry solid basis, 8.4 w/w % α-glucosyl trehalose, 5.6 w/w % α-maltosyl trehalose, 37.9 w/w % :-maltotriosyl trehalose, and that the greater part of the aforesaid reducing saccharides were converted into their corresponding non-reducing saccharides. The product, having a mild and moderate sweetness as well as an adequate viscosity and moisture-retaining ability, can be satisfactorily used in food products, cosmetics and pharmaceuticals as a sweetner, taste-improving agent, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant. The product contains non-reducing saccharides in a relatively-high content, so it can be also used as an intermediate for preparing tre-halose.

Example 8

Conversion of starch hydrolysate by recombinant enzyme

Potato starch was suspended in water to give a concentration of 33 w/w %, d.s.b., and the suspension was admixed with 0.1 w/w % calcium carbonate, d.s.b. The resultant suspension was admixed with 0.2 w/w % per g starch, d.s.b., of "TERMAMYL 60L", an α-amylase specimen commercialized by Novo Nordisk Bioindustri A/S, Copenhagen, Denmark, and enzymatically reacted at 95°C for 15 min. The reaction mixture was autoclaved at 120°C for 10 min to inactivate the remaining enzyme, rapidly cooled, admixed with 5 units/g starch, d.s.b., of a maltotetraose-forming amylase derived from Pseudomonas stutzeri as disclosed in Japanese Patent Laid-Open No. 240, 784/88, and enzymatically reacted at 55°C for 6 hours. Thereafter, the resultant reaction mixture was admixed with 30 units/g starch, d.s.b., of "α-amylase 2A", an α-amylase specimen commercialized by Ueda Chemical Co., Ltd., Osaka, Japan, and enzymatically reacted at 65°C for 4 hours to form about 50 w/w %, d.s.b., of reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher such as maltotriose, maltotetraose and maltopentaose. The resultant mixture was autoclaved at 120°C for 10 min to inactivate the remaining enzyme, rapidly cooled to 45°C, adjusted to pH 6.5, admixed with 2 units/g amylaceous saccharide, d.s.b., of the recombinant enzyme obtained in Example 5, and enzymatically reacted at 45°C for 64 hours. The reaction mixture thus obtained was heated at 95°C for 10 min to inactivate the remaining enzyme, cooled, filtered, decolored in usual manner with an activated charcoal, desalted and purified with an ion exchanger, and concentrated to obtain a syrupy product with a concentration of about 70 w/w %, d.s.b., in a yield of about 90% against the material starch, d.s.b.

Analysis of the syrupy product by the method in Experiment 2-1 revealed that it had a DE of 10.5 and contained as a main component 3.8 w/w % α -glucosyl trehalose, 43.8 w/w % a-maltoriosyl trehalose, and 1.2 w/w % α -maltoriosyl trehalose, d.s.b., and that most of the reducing amylaceous saccharides contained therein were converted into their corresponding non-reducing saccharides. The product, having a mild and moderate sweetness as well as an adequate viscosity and moisture-retaining ability, can be satisfactorily used in food products, cosmetics and pharmaceuticals as a sweetener, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant. The product contains non-reducing saccharides in a relatively-high content, so it can be also used as an intermediate for preparing trehalose.

Example 9

5 Conversion of maltopentaose by recombinant enzyme

A high-purity maltopentaose produced by Hayashibara Biochemical Laboratories, Inc., Okayama, Japan, was dissolved in water to give a concentration of 20 w/w %, d.s.b., and the solution was adjusted to pH 6.5, admixed with one unit/g maltopentaose, d.s.b., of a recombinant enzyme obtained by the method in Example 5, and enzymatically reacted at 45°C for 48 hours. The reaction mixture was heated at 95°C for 10 min to inactivate the remaining enzyme, cooled, filtered, concentrated and analyzed by the method in Experiment 2-1 to find that about 92 w/w %, d.s.b., of the material maltopentaose was converted into α-maltotriosyl trehalose.

Four jacketed-stainless steel columns, having a diameter of 5.4 cm and a length of 5 m each, were packed to homogeneity with "XT-1016 (Na*-form)", a strong-acid cation exchange resin commercialized by Tokyo Organic Chemical Industries, Ltd., Tokyo, Japan, and cascaded in series to give a total column length of 20 m. The reaction mixture obtained in the above was fed to the columns at a rate of about 5 v/v % against the resin at an inner column temperature of 55°C, and the columns were fed with 55°C hot water at an SV (space velocity) of 0.13 to elute saccharide components. Based on the saccharide composition analysis of the eluate,

fractions rich in non-reducing saccharides were collected, pooled, concentrated, dried in vacuo and pulverized to obtain a solid product in a yield of about 55%, d.s.b.

Analysis of the solid product by the method in Experiment 2-1 revealed that it had a DE less than about $0.2~\rm cmd$ contained 99.0 w/w % α -maltotriosy! trehalose, d.s.b. The product, having a relatively-low hygroscopicity, a significantly-low reducibility as well as a slight sweetness, can be satisfactorily used in food products, cosmetics and pharmaceuticals as a sweetener, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant. The product contains non-reducing saccharides in a relatively-high content, so it can be also used as an intermediate for preparing trehalose.

Example 10

25

40

Conversion of starch hydrolysate by recombinant enzyme

"PINE-DEX #4", a starch hydrolysate produced by Matsutani Chemical Ind., Co., Ltd., Kyoto, Japan, was dissolved in water to give a concentration of 40 w/w %, d.s.b., and the solution was heated to 45°C, adjusted to pH 6.5, admixed with one unit/g starch hydrolysate, d.s.b., of a recombinant enzyme obtained by the method in Example 5, and enzymatically reacted at for 96 hours to obtain a reaction mixture containing non-reducing saccharides having trehalose structure as an end unit. Thereafter, the reaction mixture was heated at 100°C for 10 min to inactivate the remaining enzyme, concentrated up to a 20 w/w % solution, d.s.b., cooled to 55°C, adjusted to pH 4.5, admixed with 10 units/g saccharide, d.s.b., of "GLUCOZYME", a glucoamylase specimen commercialized by Nagase Biochemicals, Ltd., Kyoto, Japan, and enzymatically reacted for 40 hours. The reaction mixture was heated at 100°C for 10 min to inactivate the remaining enzyme, cooled, decolored in usual manner with an activated charcoal, desalted and purified with an ion exchanger, and concentrated to obtain an about 60 w/w % syrupy product containing about 29.7 w/w % trehalose, d.s.b.

Similarly as in Example 9 except for using "CG6000 (Na⁺-form), the syrupy product was fractionated, followed by collecting fractions containing about 90 w/w % trehalose, d.s.b. The fractions were pooled, concentrated into an about 75 w/w % solution which was then transferred to a crystallizer, admixed with about 2 w/w % trehalose hydrate as a seed crystal against saccharides, d.s.b., and crystallized under gentle stirring conditions to obtain a massecuite with a crystallinity of about 45%. The massecuite was sprayed downward from a nozzle, equipped at the upper part of a spraying tower at a pressure of about 150 kg/cm² while about 85°C hot air was flowing downward from the upper part of the tower to accumulate a crystalline powder on a belt conveyer provided on the basement of the tower, followed by gradually transferring it out of the tower. Thereafter, the powder was transferred to an aging tower and aged for 10 hours to complete the crystallization and drying while an about 40°C hot air was blowing to the contents.

The product, having a substantial non-hygroscopicity and a mild and high-quality sweetness, can be satisfactorily used in food products, cosmetics, pharmaceuticals and feeds as a sweetener, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant.

Example 11

Conversion of starch hydrolysate by recombinant enzyme

Tapioca starch was suspended in water to give a concentration of 34 w/w % and admixed with 0.1 w/w % calcium carbonate. To the suspension was added 0.2 w/w % per g starch, d.s.b., of "TERMAMYL 60L", an α amylase specimen commercialized by Novo Nordisk Bioindustri A/S, Copenhagen, Denmark, and enzymatically reacted at 95°C for 15 min to liquefy the starch. The liquefied product was autoclaved at 120°C for 10 min to inactivate the remaining enzyme, rapidly cooled to 55°C, adjusted to pH 5.2, admixed with 10 units/g starch, d.s.b., of "α-amylase 2A", an α-amylase specimen commercialized by Ueda Chemical Co., Ltd., Osaka, Japan, and 500 units of an isoamylase specimen commercialized by Hayashibara Biochemical Laboratories, Inc., Okayama, Japan, and enzymatically reacted at 55°C for 20 hours to form a mixture with a DE of about 29, containing about 60 w/w %, d.s.b., of reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher such as maltotriose, maltotetraose, maltopentaose and maltohexaose. The mixture was autoclaved at 120°C for 10 min to inactivate the remaining enzyme, rapidly cooled to 45°C, adjusted to pH 6.5, admixed with 2 units/g amylaceous saccharide, d.s.b., of a recombinant enzyme obtained by the method in Example 6, and enzymatically reacted at 45°C for 64 hours. The reaction mixture thus obtained was heated at 95°C for 10 min to inactivate the remaining enzyme, cooled, filtered, decolored in usual manner with an activated charcoal, desalted and purified with an ion exchanger, and concentrated to obtain a syrupy product with a concentration of about 70 w/w %, d.s.b., in a yield of about 90% against the material starch, d.s.b.

Ānalysis of the syrupy product by the method in Experiment 2-1 revealed that it had a DE of 15.8 and contained as a main component 5.8 w/w % α-glucosyl trehalose, 8.5 w/w % α-maltosyl trehalose, 13.1 w/w % α-maltotriosyl trehalose, 18.9 w/w % α-maltotetraosyl trehalose and 3.6 w/w % α-maltopentaosyl trehalose. d.s.b., and that most of the reducing amylaceous saccharides contained therein were converted into their corresponding non-reducing saccharides. The product, having a mild and moderate sweetness as well as an adequate viscosity and moisture-retaining ability, can be satisfactorily used in food products, cosmetics and pharmaceuticals as a sweetener, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant. The product contains non-reducing saccharides in a relatively-high content, so it can be also used as an intermediate for preparing trehalose.

Example 12

10

15

25

35

Conversion of starch hydrolysate by recombinant enzyme

Similarly as in Example 8, a liquefied potato starch was successively subjected to the action of maltote-traose-forming amylase and α-amylase to form a mixture containing about 50 w/w %, d.s.b, of reducing amylaceous saccharides having a degree of glucose polymerization of 3 or higher such as maltotriose, maltote-traose and maltopentaose. The reaction mixture was autoclaved at 120°C for 10 min to inactivate the remaining enzyme, rapidly cooled to 45°C, adjusted to pH 6.5, admixed with 2 units/g amylaceous saccharide, d.s.b., of a recombinant enzyme obtained by the method in Example 6, and enzymatically reacted at 45°C for 64 hours. The reaction mixture thus obtained was heated at 95°C for 10 min to inactivate the remaining enzyme, cooled and filtered, and the filtrate was decolored in usual manner with an activated charcoal, desalted and purified with an ion exchanger, and concentrated to obtain an about 70 w/w % syrupy product in a yield of about 90 w/w % against the material starch, d.s.b.

Analysis of the syrupy product by the method in Experiment 2-1 revealed that it had a DE of 10.3 and contained as a main component 3.6 w/w % α -glucosyl trehalose, 44.0 w/w % α -maltosyl trehalose and 1.0 w/w % α -maltotriosyl trehalose, d.s.b., and that most of the reducing amylaceous saccharides contained in the syrupy product were converted into their corresponding non-reducing saccharides. The product, having a mild and moderate sweetness as well as an adequate viscosity and moisture-retaining ability, can be satisfactorily used in food products, cosmetics and pharmaceuticals as a sweetener, taste-improving agent, quality-improving agent, stabilizer, filler, excipient and adjuvant. The product contains non-reducing saccharides in a relatively-high content, so it can be also used as an intermediate for preparing trehalose.

As is described above, the present invention is based on the finding of a novel enzyme which forms non-reducing saccharides having trehalose structure as an end unit from reducing saccharides having a degree of glucose polymerization of 3 or higher. The present invention is to explore a way to produce such enzyme by recombinant DNA technology in a relatively-large scale and in a considerably-high yield. The conversion method using the present recombinant enzyme effectively converts reducing amylaceous saccharides into their corresponding non-reducing saccharides which have a mild and high-quality sweetness and an adequate viscosity and moisture-retaining ability, do not have a reducing residue within the molecules, and sweeten food products without fear of causing an unsatisfactory coloration and deterioration. In addition, the present recombinant enzyme is the one with a revealed total amino acid sequence, and because of this it can be used for the preparation of trehalose and non-reducing saccharides having trehalose structure as an end unit which are premised on being used in food products without fear of causing side effects.

Thus, the present invention is a significant invention which exerts the aforesaid outstanding action and effect as well as giving a great contribution to the field.

While there has been described what is at present considered to be the preferred embodiments of the invention, it will be understood the various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirits and scope of the invention.

50

SEQUENCE LISTING

	(1) GENERA	L INFORMATI	ON:				
40	(i) A		BUSHIKI KAI NKYUJO	SHA HAYASHI	BARA SEIBUT	SU KAGAKU	
10	(ii) T	TITLE OF INV	AND	ENCODING EN ENZYME, TRA ARATIONS AN	NSFORMANT,	BINANT DNA AND THEIR	
	(iii) N	UMBER OF SE	OUENCES:17				
15							
	(iv) A	DDRESS:	EE.VADHCHIV	ד צאדפווא ווא	YASHIBARA S	FIRITSII	
			KENKYUJO	I KAISHA HA	INJUIDAM D	B100100	
	•	(B) STREET:		R. SHIMOISH	II		
		(C) CITY:OK					
20		(E) COUNTRY	:JAPAN				
		(F) POSTAL	CODE (ZIP):	700			
	(v) CO	MPUTER READ	ABLE FORM:				
		(A) MEDIUM					
		(B) COMPUTE			-		•
25		(C) OPERATI	NG SYSTEM:P	C-DOS/MS-DO	5		
	(vii)	PRIOR APPLI	CATION DATA	:			
		(A1) APPLIC					
		(B1) FILING		•			
		(A2) APPLICA					
30		(B2) FILING (A3) APPLICA					
		(B3) FILING			1,,,,		
		(A4) APPLICA			1994		
		(B4) FILING	DATE:April	6, 1994			
35	(2) INFORMA	TION FOR SEC	ID NO:1:				
		QUENCE CHAR		:			
		(A) LENGTH: 2		irs			
		(B) TYPE: nucl					
		(D)TOPOLOGY: EQUENCE DESC		O TO NO.I.			
60	(1170)			2 15 110.1.			
						GCTGTTTGAT	
						CCTGTCGCCC	
						CGCCGTAGTG	
						GCCGCCGCAG	
45						CGTGGCGTTC	
						CAGCGACGAC	
						CCGCTTCCCG	
		TCGGCTGGCG				CCGGCAGCAC	540 600
		TCGCCGGCAT					660
50		GCTGGTTCCG					720
		ATCCCGAGGG					780
						CGAGTGCGAA	
		GCTACGACGC					900
		TGGACCGTCT					960
55						CGAGATCCTG CGCGGATGCG	
	COCCTIGCOM		JUNDAJOADJ	GOWWITCEC	プログノジジスト	COCOGNIGCO	7000

```
ATCGCGGAGA TCA./LGCGGC CTTCCCGGTC TACCGGTCCT ATCTTCCCGA GGGCGCGGAG 1140
ATCCTGAAGG AGGCCTGCGA CCTCGCCGCG CGGAGGCGTC CGGAACTGGG CCAGACCGTC 1200
       CAGCTGCTGC AGCCGCTGCT GCTGGATACC GACCTCGAGA TTTCCCGCAG GTTCCAGCAG 1260
ACCTCGGGAA TGGTCATGGC CAAAGGCGTG GAGGACACCG CGTTCTTCCG CTACAACCGG 1320
       CTGGGAACGC TCACCGAGGT GGGCGCCGAC CCCACCGAGT TCTCGCTGGA ACCGGAGGAG 1380
       TTTCACGTCC GGATGCCCG CCGGCAGGCC GAACTCCCGC TCTCCATGAC CACCCTGAGC 1440
       ACGCACGACA CCAAGCGCAG CGAGGACACC CGGGCCCGGA TCTCGGTGAT CGCCGAGGTC 1500
GCGCCTGAAT GGGAAAAGGC CCTGGACAGG CTGAACACCC TCGCTCCGCT GCCGGACGGC 1560
10
       CCGCTCTCCA CGCTGCTCTG GCAGGCGATT GCGGGGGCAT GGCCGGCCAG CCGGGAACGC 1620
       CTTCAGTCCT ACGCCCTGAA AGCGGCGCGC GAAGCCGGGA ACTCGACCAG CTGGACCGAT 1680
       CCGGACCCGG CATTCGAGGA GGCACTTTCC GCCGTCGTCG ACTCCGCCTT CGACAATCCG 1740
       GAGGTGCGTG CGGAACTTGA GGCCCTGGTG GGCCTCCTTG CGCCGCACGG TGCGTCCAAC 1800
       TCGCTCGCGG CAAAGCTTGT CCAGCTGACC ATGCCGGGCG TTCCGGACGT GTACCAGGGC 1860
       ACCGAGTTCT GGGACAGGTC GCTGACCGAT CCGGACAACC GGCGCCCCTT CAGCTTCGCC 1920
15
       GAACGGATTA GGGCCTTGGA CCAGTTGGAC GCCGGCCACC GTCCGGACTC CTTCCAGGAC 1980
       GAGGCGGTCA AGCTGCTGGT CACCTCGAGG GCGCTGCGGC TGCGGCGGAA CCGGCCCGAG 2040
       CTCTTCACCG GCTACCGCCC CGTGCATGCC AGGGGCCCCG CCGCCGGGCA CCTGGTGGCG 2100
       TTCGACCGCG GCGCCGGGGG AGTGCTGGCG CTTGCCACCC GGCTCCCCTA CGGGCTGGAA 2160
      CAGTCGGGCG GCTGGCGGGA CACCGCCGTC GAGCTTGAAG CCGCCATGAC GGACGAACTG 2220
       ACCGGCTCCA CTTTCGGGCC GGGACCGGCG GCGCTGTCAG AAGTCTTCCG GGCCTACCCG 2280
20
      GTGGCCTTGT TGGTCCCCGC GACAGGAGGC AAGTCA
```

(3) INFORMATION FOR SEQ ID NO:2:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 772

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly Val Asp
20 25 30 Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser Asp His Gly 35 40 45 50 Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg Gly Gly Pro Glu 35 55 60 65 Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly Ala Gly Met Gly Val Leu 70 85 Ile Asp Ile Val Pro Asn His Val Gly Val Ala Ser Pro Pro Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg Gly Ser Pro Tyr Ala Val Ala 105 115 40 Phe Asp Val Asp Trp Asp Leu Ala Gly Gly Arg Ile Arg Ile Pro Val Leu 120 135 Gly Ser Asp Asp Asp Leu Asp Gln Leu Glu Île Lys Asp Gly Glu Leu Arg 145 Tyr Tyr Asp His Arg Phe Pro Leu Ala Glu Gly Ser Tyr Arg Asp Gly Asp 155 160 165 170

Ser Pro Gln Asp Val His Gly Arg Gln His Tyr Glu Leu Ile Gly Trp Arg 175 180 185 45 Arg Ala Asp Asn Glu Leu Asn Tyr Arg Arg Phe Phe Ala Val Asn Thr Leu
190 195 200 Ala Gly Ile Arg Val Glu Val Pro Pro Val Phe Asp Glu Ala His Gln Glu 205 210 215 220 50 Val Val Arg Trp Phe Arg Ala Gly Leu Ala Asp Gly Leu Arg Ile Asp His 225 230 235 Pro Asp Gly Leu Ala Asp Pro Glu Gly Tyr Leu Lys Arg Leu Arg Glu Val
240 245 250 255

Thr Gly Gly Ala Tyr Leu Leu Ile Glu Lys Ile Leu Glu Pro Gly Glu Gln 265 55

```
Leu Pro Ala Ser Phe Glu Cys Glu Gly Thr Thr Gly Tyr Asp Ala Leu Ala
                                280
     Asp Val Asp Arg Val Phe Val Asp Pro Arg Gly Gln Val Pro Leu Asp Arg
                                           300
                     295
     Leu Asp Ala Arg Leu Arg Gly Gly Ala Pro Ala Asp Tyr Glu Asp Met Ile
                                                       320
                              315
     Arg Gly Thr Lys Arg Arg Ile Thr Asp Gly Ile Leu His Ser Glu Ile Leu
              310
     325 330 335 340
Arg Leu Ala Arg Leu Val Pro Glu Gln Thr Gly Ile Pro Gly Glu Ala Ala
10
                                  350
                                                            355
                 345
     Ala Asp Ala Ile Ala Glu Ile Ile Ala Ala Phe Pro Val Tyr Arg Ser Tyr
360 365 370
     Leu Pro Glu Gly Ala Glu Ile Leu Lys Glu Ala Cys Asp Leu Ala Ala Arg
375 380 385 390
     Arg Arg Pro Glu Leu Gly Gln Thr Val Gln Leu Leu Gln Pro Leu Leu
                                                     405
                             400
          395
     Asp Thr Asp Leu Glu Ile Ser Arg Arg Phe Gln Gln Thr Ser Gly Met Val
410
415
420
425
     Met Ala Lys Gly Val Glu Asp Thr Ala Phe Phe Arg Tyr Asn Arg Leu Gly
                430 435
     Thr Leu Thr Glu Val Gly Ala Asp Pro Thr Glu Phe Ser Leu Glu Pro Glu
20
                             450
                                                  455
           445
     Glu Phe His Val Arg Met Ala Arg Arg Gln Ala Glu Leu Pro Leu Ser Met 460 465 470 475
     Thr Thr Leu Ser Thr His Asp Thr Lys Arg Ser Glu Asp Thr Arg Ala Arg
480 485 490
              480
     Ile Ser Val Ile Ala Glu Val Ala Pro Glu Trp Glu Lys Ala Leu Asp Arg
                                       505
                         500
     Leu Asn Thr Leu Ala Pro Leu Pro Asp Gly Pro Leu Ser Thr Leu Leu Trp 515 520 525
     Gln Ala Ile Ala Gly Ala Trp Pro Ala Ser Arg Glu Arg Leu Gln Ser Tyr
                                                  540
                                535
         530
     Ala Leu Lys Ala Ala Arg Glu Ala Gly Asn Ser Thr Ser Trp Thr Asp Pro
30
                                         555
                       550
     Asp Pro Ala Phe Glu Glu Ala Leu Ser Ala Val Val Asp Ser Ala Phe Asp
                                                       575
              565
                                 570
     Asn Pro Glu Val Arg Ala Glu Leu Glu Ala Leu Val Gly Leu Leu Ala Pro
                                         590
                         585
     His Gly Ala Ser Asn Ser Leu Ala Ala Lys Leu Val Gln Leu Thr Met Pro
600 605 610
35
     Gly Val Pro Asp Val Tyr Gln Gly Thr Glu Phe Trp Asp Arg Ser Leu Thr 615 620 625
     Asp Pro Asp Asn Arg Arg Pro Phe Ser Phe Ala Glu Arg Ile Arg Ala Leu 630 645
     Asp Gln Leu Asp Ala Gly His Arg Pro Asp Ser Phe Gln Asp Glu Ala Val
                                   655
                                                      660
              650
     Lys Leu Leu Val Thr Ser Arg Ala Leu Arg Leu Arg Arg Asn Arg Pro Glu
                                             675
                         670
     Leu Phe Thr Gly Tyr Arg Pro Val His Ala Arg Gly Pro Ala Ala Gly His 685 690 695
     Leu Val Ala Phe Asp Arg Gly Ala Gly Gly Val Leu Ala Leu Ala Thr Arg
700 705 710
     Leu Pro Tyr Gly Leu Glu Gln Ser Gly Gly Trp Arg Asp Thr Ala Val Glu
715 720 725 730
                 720
     Leu Glu Ala Ala Met Thr Asp Glu Leu Thr Gly Ser Thr Phe Gly Pro Gly 735 740 745
     Pro Ala Ala Leu Ser Glu Val Phe Arg Ala Tyr Pro Val Ala Leu Leu Val
750 765 760 765
50
     Pro Ala Thr Gly Gly Lys Ser
```

55 (4) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2325 base pairs

```
(B) TYPE: nucleic acid
5
                        (D) TOPOLOGY: linear
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
        ATGAGAACGC CAGTCTCCAC GTACAGGCTG CAGATCAGGA AGGGATTCAC ACTCTTCGAC GCGGCCCAAAA CCGTTCCGTA CCTGCACTCG CTCGGCGTCG ACTGGGTCTA CCTTTCTCCG
                                                                                                                    60
                                                                                                                   120
        GTCCTGACTG CCGAGCAGGG CTCCGACCAC GGGTACGACG TCACCGATCC CTCCGCCGTC
                                                                                                                   180
        GACCCCGAAC GCGGCGGCC GGAGGGCCTC GCGGCGGTTT CCAAGGCGGC CCGCGCGCG
GGCATGGGCG TGCTGATCGA CATCGTGCCC AACCACGTGG GCGTCGCGAC GCCGGCGCAG
10
                                                                                                                   240
                                                                                                                   300
        AACCCCTGGT GGTGGTCGCT GCTCAAGGAG GGACGCCAGT CCCGTTACGC GGAGGCGTTC
                                                                                                                   360
        GACGTCGATT GGGACCTCGC CGGGGGACGC ATCCGGCTGC CGGTGCTCGG CAGCGACGAT GACCTCGACC AGCTCGAAAT CAGGGACGGG GAGCTGCGGT ACTACGACCA CCGATTCCCG CTCGCCGAGG GAACCTACGC CGAAGGCGAC GCCCCGCGGG ATGTCCACGC CCGGCAGCAC
                                                                                                                   420
                                                                                                                   480
                                                                                                                   540
        TACGAGCTCA TCGGCTGGCG CCGCGCGGAC AACGAGCTGA ACTACCGCCG CTTTTTCGCG
                                                                                                                   600
15
        GTGAACACGC TCGCCGGCGT CCGCGTGGAA ATCCCCGCCG TCTTCGACGA GGCACACCAG
                                                                                                                   660
        GAGGTGGTGC GCTGGTTCCG CGAGGACCTT GCGGACGGCC TGCGGATCGA CCACCCGGAC
GGCCTCGCTG ACCCCGAGGG GTACCTGAAG CGACTCCGGG AAGTCACCGG CGGCGCTTAC
                                                                                                                   720
                                                                                                                   780
       20
        CGGCTGGCCC GGCTGGTTCC GGGCGACGCC AACGTTTCAA TCGACGCCGG AGCCGACGCT 1080
CTCGCCGAAA TCATCGCCGC CTTCCCGGTC TACCGCACCT ACCTGCCGGA GGGCGCCGAG 1140
        GTCCTGAAGG AGGCGTGCGA GCTTGCCGCG CGTAGGCGGC CGGAACTCGA CCAGGCCATC 1200
CAGGCTCTGC AGCCGCTGCT GCTGGACACG GACCTCGAGC TTGCCCGGCG CTTCCAGCAG 1260
       ACCTCGGGCA TGGTCATGGC CAAGGGCGTG GAGCACCG CGTTCTCCGGCCG CTTCCAGCAG 1260
CTGGGCACCC TCACGGAAGT GGGCGCGAC CCCACCGAGT TCGCCGTGGA GCCGGACGAC 1320
CTGCACGCCC GGCTGGCAC CCGCCGACC TCCCCACGAGT TCGCCGTGGA GCCGGACGAC 1340
ACGCACGACA CCAAGCGCAC CGAGCACCC CGAGCAAGACC CGAGCAAGAC TTTCGGTCAT TCCGAGGTT 1500
GCGGTGACCT GGGAAAAGGC CTTGAACCGG CTGCGCGACC TGGCCCGCT GCCGGACGC 1560
CCGCTGTCCC CGCTGCTCT GCAGGCCATT GCCGGCGCT GCCGGACGC 1620
CTGCAGTACT ACGCCTGAA GGCCGCGCT GAAGCGGGA ACTCGACCAA CTGGACCGAT 1680
CCGCCCCCCC CGTTCGACGA GAACCCGCGCT GCCCGCGTC CGACAATCCC 1240
       GAGCGAGA AGTCGGTAC GACCTGGCC AGCGGGCCG CCGCCGGGCA CCTGCTCGCG 2100
CTGTTCACGG GCACCGCGGC GGCCCGGGT GCATTGACCC TCGCCACGCG GCTTCCCTAC 2160
GGGCTGGAAC AGTCGGGTGG ATGGCGGGAC ACCGCCGTCG AACTTAACAC CGCCATGAAA 2220
        GACGAACTGA CCGGTGCCGG CTTCGGACCG GGGGCAGTGA AGATCGCCGA CATCTTCCGG 2280
        TCGTTCCCCG TTGCGCTGCT GGTGCCGCAG ACAGGAGGAG AGTCA
40
        (5) INFORMATION FOR SEQ ID NO:4:
                (i) SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 775
                        (B) TYPE: amino acid
                        (D) TOPOLOGY: linear
45
                (ii) MOLECULE TYPE: peptide
                (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
        Met Arg Thr Pro Val Ser Thr Tyr Arg Leu Gln Ile Arg Lys Gly Phe Thr
                             5
                                                                10
        Leu Phe Asp Ala Ala Lys Thr Val Pro Tyr Leu His Ser Leu Gly Val Asp
20
25
Trp Val Tyr Leu Ser Pro Val Leu Thr Ala Glu Gln Gly Ser Asp His Gly
50
                      40 45
        Tyr Asp Val Thr Asp Pro Ser Ala Val Asp Pro Glu Arg Gly Gly Pro Glu
55 60 65
        Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Ala Ala Gly Met Gly Val Leu
                                                                              8.0
```

55

```
Ile Asp Ile Val Pro Asn His Val Gly Val Ala Thr Pro Ala Gln Asn Pro
                                         95
     Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg Gln Ser Arg Tyr Ala Glu Ala
                     90
                                                     115
                                110
     Phe Asp Val Asp Trp Asp Leu Ala Gly Gly Arg Ile Arg Leu Pro Val Leu
                                             130
                         125
     Gly Ser Asp Asp Leu Asp Gln Leu Glu Ile Arg Asp Gly Glu Leu Arg
140 145 150
     Tyr Tyr Asp His Arg Phe Pro Leu Ala Glu Gly Thr Tyr Ala Glu Gly Asp
155 160 165 170
10
     Ala Pro Arg Asp Val His Ala Arg Gln His Tyr Glu Leu Ile Gly Trp Arg
175 180 185
     Arg Ala Asp Asn Glu Leu Asn Tyr Arg Phe Phe Ala Val Asn Thr Leu
                              195
     Ala Gly Val Arg Val Glu Ile Pro Ala Val Phe Asp Glu Ala His Gln Glu
            190
15
                                            215
                       210
     Val Val Arg Trp Phe Arg Glu Asp Leu Ala Asp Gly Leu Arg Ile Asp His
                                                       235
                                    230
                 225
     Pro Asp Gly Leu Ala Asp Pro Glu Gly Tyr Leu Lys Arg Leu Arg Glu Val
                             245
       240
     Thr Gly Gly Ala Tyr Leu Leu Ile Glu Lys Ile Leu Glu Pro Gly Glu Gln 260 265
20
                   260
     Leu Pro Ala Ser Phe Glu Cys Glu Gly Thr Thr Gly Tyr Asp Ala Leu Ala
                                280
     Asp Val Asp Arg Val Leu Val Asp Pro Arg Gly Gln Glu Pro Leu Asp Arg
                                            300
                         295
     Leu Asp Ala Ser Leu Arg Gly Gly Glu Pro Ala Asp Tyr Gln Asp Met Ile
25
                                     315
      Arg Gly Thr Lys Arg Arg Ile Thr Asp Gly Ile Leu His Ser Glu Ile Leu 325
     Arg Leu Ala Arg Leu Val Pro Gly Asp Ala Asn Val Ser Ile Asp Ala Gly
                                    350
      Ala Asp Ala Leu Ala Glu Ile Ile Ala Ala Phe Pro Val Tyr Arg Thr Tyr
                     345
30
                                                    370
                               365
      Leu Pro Glu Gly Ala Glu Val Leu Lys Glu Ala Cys Glu Leu Ala Ala Arg
             360
                                            385
                         380
      Arg Arg Pro Glu Leu Asp Gln Ala Ile Gln Ala Leu Gln Pro Leu Leu
                                    400
      Asp Thr Asp Leu Glu Leu Ala Arg Arg Phe Gln Gln Thr Ser Gly Met Val
35
                                               420
                            415
      Met Ala Lys Gly Val Glu Asp Thr Ala Phe Phe Arg Tyr Asn Arg Leu Gly
                                       435
                     430
      Thr Leu Thr Glu Val Gly Ala Asp Pro Thr Glu Phe Ala Val Glu Pro Asp
                                                   455
                                 450
            445
      Glu Phe His Ala Arg Leu Ala Arg Arg Gln Ala Glu Leu Pro Leu Ser Met
                                           470'
                         465
      Thr Thr Leu Ser Thr His Asp Thr Lys Arg Ser Glu Asp Thr Arg Ala Arg
                480
                                    485
      Ile Ser Val Ile Ser Glu Val Ala Gly Asp Trp Glu Lys Ala Leu Asn Arg
495 500 505
      Leu Arg Asp Leu Ala Pro Leu Pro Asp Gly Pro Leu Ser Ala Leu Leu Trp
45
                                         520
                    515
      Gln Ala Ile Ala Gly Ala Trp Pro Ala Ser Arg Glu Arg Leu Gln Tyr Tyr
530 540
      Ala Leu Lys Ala Ala Arg Glu Ala Gly Asn Ser Thr Asn Trp Thr Asp Pro
      545 550 555 560 Ala Pro Ala Phe Glu Glu Lys Leu Lys Ala Ala Val Asp Ala Val Phe Asp
50
                  565
                                   570
      Asn Pro Ala Val Gln Ala Glu Val Glu Ala Leu Val Glu Leu Leu Glu Pro
                                                590
                             585
      Tyr Gly Ala Ser Asn Ser Leu Ala Ala Lys Leu Val Gln Leu Thr Met Pro
                                        605
                      600
      Gly Val Pro Asp Val Tyr Gln Gly Thr Glu Phe Trp Asp Arg Ser Leu Thr
55
                                  620
              615
```

	Asp 630	Pro	Asp	Asn	Arg	Arg 635	Pro	Phe	Ser	Phe	Asp 640	Asp	Arg	Arg	Ala	Ala 645	Le
5	Glu	Ģln	Leu	Asp 650	Ala		Asr	Leu	Pro 655	Ala	Ser	Phe	Thr	Asp 660	Glu	Arg	Th
		665		Val			670		Leu			675				Pro	686
					685					690					695	Gly	
10			700					705					710			Thr	
	715					720					725					Asp 730	
				735					740					745		Gly	
15		750					755				Phe	Arg 760	Ser	Phe	Pro	Val	Ala 765
	Leu	Leu	Val	Pro	Gln 770	Thr	Gly	Gly	Glu	Ser 775							
20																	
	(6)	INFO	RMAT	CION	FOR	SEQ	ID 1	NO : 5	:								
25	(i)	(B)	LEN TYI STI	IGTH : PE : nu RANDE	:14 h iclei EDNES	ase c ac	pair cid ingle	rs									
	(ii)				SY : ur (PE : c			cleid	e aci	.d							
10		(A)	pro	be													
					ESCRI	PTIC	ON: S	SEQ I	D NC):5:						•	
	CCNG	ARTG	GG P	RAA													14
15	(7)	INFO	RMAT	CION	FOR	SEQ	ID 1	NO : 6 :		٠							
ю	(i)	(B)	LEN TYP STR	IGTH : PE : nu LANDE	ARAC 14 b clei DNES Y:un	ase c ac S:si	pair id ingle	rs						٠			
-	(ii)	MOL		E TY				cleic	aci	.d							
15	(xi)	SEQ	UENC	E DE	SCRI	PTIC	ON: 5	SEQ I	D NC):6:							
	ACNG	ARTT	YT G	GGA													14
	(B)	INFO	RMAT	NOI	FOR	SEQ	ID N	10:7:									
50	(i)	(B)	LEN TYP STR	GTH: E:nu LANDE	IARAC 17 k iclei EDNES SY:ur	ase c ac S:si	pair cid ingle	cs									
5	(ii)		ECUL pri		/PE : c	ther	nuc	cleic	aci	.đ							

	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
5	GTAAAACGAC GGCCAGT	17
	(9) INFORMATION FOR SEQ ID NO:8:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH:17 base pairs (B) TYPE:nucleic acid (C) STRANDEDNESS:single (D) TOPOLOGY:unknown	
15	(ii) MOLECULE TYPE:other nucleic acid (A) probe	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	TTYGAYGTNG AYTGGGA	1.7
20	(10) INFORMATION FOR SEQ ID NO:9:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH:14 base pairs (B) TYPE:nucleic acid (C) STRANDEDNESS:single (D) TOPOLOGY:unknown	
	(ii) MOLECULE TYPE:other nucleic acid (A) probe	
30	(xi) SEQUENCE DESCRIPTION:SEQ ID NO:9:	
	ACNGARTTYT GGGA	14
35	(11) INFORMATION FOR SEQ ID NO:10: (i)SEQUENCE CHARACTERISTICS: (A)LENGTH:2936 base pairs (B)TYPE:nucleic acid (C)strandedness:double (D)TOPOLOGY:linear	
40	(ii) MOLECULE TYPE:genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM:Rhizobium sp. (B) INDIVIDUAL ISOLATE:M-11 (FERM BP-4130) (ix) FEATURE:	
45	(A) NAME/KEY:5'UTR (B) LOCATION:1564 (C) IDENTIFICATION METHOD:E (A) NAME/KEY:mat peptide (B) LOCATION:5652880 (C) IDENTIFICATION METHOD:S (A) NAME/KEY:3'UTR (B) LOCATION:28812936	
50	(C) IDENTIFICATION METHOD:E (xi) SEQUENCE DESCRIPTION:SEQ ID NO:10:	
	CGTGCTCTAC TTCAACGCGC ACGACGGCGA CGTCGTGTTC AAGCTCCCGT CGGATGAAT CGCCCCGGCC TGGGACGTCA TCATCGACAC CGCCGGCGC GGTGCCGATT CCGAACCCG CCAGGCTGGC GGCAAACTCA CCGTGGCAGC GAAATCCCTC GTGGTGCTCC GTGCCCACAC CGCCCCGGAG GAGGAACCGG ACCACTCGGT GGCCGCCTCC CTCGCAGCGC TGACGCAGAC	r 120 3 180 2 240
	MAGANAGAGA ANNO AGAGAGA GACTERAGAGA GACANAGAGTER CCCCNGCCGN CCNNGNCNCN	A 30

5	GAAG GAAG CGAG	GGCT(GCCG(GGCG(CAAG(CCC (GAA (GCG (CAG (GACGA GAGAA GCGAA GGCGG	AGGC(AGGC' AGCC(AGAC(GG CO TC CO CG CO GG GO	GGCG GGAC GGGG GTC	AAGC GAGG AAGG	C GG C GG C AG	AAGA CGGC CGGC	GGCT GAAG CAAA	GCT' CCG(ACG(rccg. Gaag. Gccg	ACG A AGG (GCA (AGGC CTGC GGCG	GGAAGA GGCGGC ITCCGA AGCGCC	420
	ATG Met 1	AGG Arg	ACA Thr	CCC Pro	GCC Ala 5	TCG Ser	ACC Thr	Tyr	Arg	Leu 10	Gln	Ile	Arg	Arg	Gly 15	Phe	612
10	ACG Thr	CTG Leu	TTT Phe	GAT Asp 20	GCC Ala	GCC Ala	GAG Glu	ACC Thr	GTG Val 25	CCC Pro	TAC Tyr	CTG Leu	AAG Lys	TCA Ser 30	CTC Leu	GGG Gly	660
				ATC			•										708
15			35	I·le				40					45				256
	GAC Asp	His	GGC	TAT Tyr	GAC Asp	GTC Val	ACC Thr 55	GAT Asp	Pro	GCC Ala	GTA Val	GTG Val 60	GAC Asp	Pro	GAG	Arg	756
	GGC	GGC	CCT	GAA Glu	GGG	CTG	GCC	GCG	GTG	TCC	AAG	GCG	GCC Ala	CGC	GGT	GCC Ala	804
20	65	_		GTG		70					75					80	. 852
	Gly	Met	Gly	Val	Leu 85	Ile	Asp	Ile	Val	Pro 90	Asn	His	Val	Gly	Val 95	Ala	. 002
25	Ser	Pro	Pro	CAG Gln 100	Asn	Pro	Trp	Trp	Trp 105	Ser	Leu	Leu	Lys	Glu 110	Gly	Arg	900
	GGG Gly	TCG Ser	CCC Pro 115	TAC Tyr	GCC Ala	GTG Val	GCG Ala	TTC Phe 120	GAC Asp	GTC Val	GAC Asp	TGG Trp	GAC Asp 125	CTG Leu	GCG Ala	GGG Gly	948
	GGC Gly	Arg	ATC	CGG Arg	ATC Ile	CCC Pro	Val	CTG	GGC Gly	AGC Ser	GAC Asp	GAC Asp 140	GAT Asp	CTG Leu	GAC Asp	CAG Gln	996
30	Leu	GAA Glu	ATC Ile	AAG Lys	GAC Asp	GGC Gly 150	135 GAG Glu	CTG Leu	CGG Arg	TAC Tyr	TAC Tyr 155	GAC	CAC His	CGC Arg	TTC Phe	CCG Pro 160	1044
	145 CTG Leu	GCC Ala	GAG Glu	GGC Gly	AGC Ser 165	TAC	CGG Arg	GAC Asp	Gly	GAC Asp	TCC	CCG Pro	CAG Gln	GAC Asp	GTC Val 175	CAC	1092
35	GGC Gly	CGG Arg	CAG Gln	CAC His 180	TAC	GAA Glu	CTC Leu	ATC Ile	GGC	TGG	CGG Arg	CGC Arg	GCC Ala	GAC Asp 190	AAT	GAA Glu	1140
	CTG Leu	AAC Asn	TAC Tyr 195	CGC Arg	CGG Arg	TTC Phe	TTC Phe	GCG Ala 200	GTG	AAC Asn	ACG Thr	CTC Leu	GCC Ala 205	GGC	ATC Ile	CGG Arg	1188
40	GTG Val	GAG Glu 210	GTG	CCG Pro	CCG Pro	GTC Val	TTC Phe 215	GAT	GAA Glu	GCG Ala	CAC His	CAG Gln 220	GAG	GTG Val	GTG Val	CGC Arg	1236
	TGG Trp 225	TTC	CGT Arg	GCG Ala	GGG Gly	CTC Leu 230	GCC	GAC Asp	GGG Gly	CTG Leu	CGG Arg 235	ATC	GAC Asp	CAC His	CCG Pro	GAC Asp 240	1284
45	GGC			GAT Asp		GAG					CGG					ACC	1332
	GGG Gly	GGC Gly	GCG Ala	TAC Tyr 260	CTG	CTC Leu	ATC Ile	GAA Glu	AAG Lys 265	ATC	CTC Leu	GAG Glu	CCG Pro	GGC Gly 270	GAA	CAG Gln	1380
50				AGC Ser					GGC					GAC			1428
		Asp	GTC	GAC Asp			Phe	GTG				Gly	CAG				1476
55	GAC	290 CGT	CTG	GAC	GCA	CGG	295 CTG	CGC	GGC	GGT	GCG	CCG	GÇC	GAC	TAC	GAG	1524

```
Asp Arg Leu Asp Ala Arg Leu Arg Gly Gly Ala Pro Ala Asp Tyr Glu
                                               315
                         310
     GAC ATG ATC CGC GGG ACC AAG CGC CGG ATC ACC GAC GGC ATC CTG CAC
                                                                          1572
     Asp Met Ile Arg Gly Thr Lys Arg Arg Ile Thr Asp Gly Ile Leu His
                      325
                                           330
     TCC GAG ATC CTG CGC CTT GCC AGG CTG GTG CCC GAG CAG ACC GGA ATT
     Ser Glu Ile Leu Arg Leu Ala Arg Leu Val Pro Glu Gln Thr Gly Ile
                                      345
                 340
     CCC GGG GAG GCC GCG GAT GCG ATC GCG GAG ATC ATC GCG GCC TTC
                                                                          1668
     Pro Gly Glu Ala Ala Ala Asp Ala Ile Ala Glu Ile Ile Ala Ala Phe
                                                       365
                                  360
     CCG GTC TAC CGG TCC TAT CTT CCC GAG GGC GCG GAG ATC CTG AAG GAG
     Pro Val Tyr Arg Ser Tyr Leu Pro Glu Gly Ala Glu Ile Leu Lys Glu
                                                   380
                              375
         370
     GCC TGC GAC CTC GCC GCG CGG AGG CGT CCG GAA CTG GGC CAG ACC GTC
     Ala Cys Asp Leu Ala Ala Arg Arg Arg Pro Glu Leu Gly Gln Thr Val
                                              395
                          390
     CAG CTG CTG CCG CTG CTG CTG GAT ACC GAC CTC GAG ATT TCC CGC
                                                                           1812
     Gln Leu Leu Gln Pro Leu Leu Leu Asp Thr Asp Leu Glu Ile Ser Arg
                                           410
                      405
     AGG TTC CAG CAG ACC TCG GGA ATG GTC ATG GCC AAA GGC GTG GAG GAC
                                                                          1860
     Arg Phe Gln Gln Thr Ser Gly Met Val Met Ala Lys Gly Val Glu Asp
                                                            430
                                      425
                 420
     ACC GCG TTC TTC CGC TAC AAC CGG CTG GGA ACG CTC ACC GAG GTG GGC
                                                                          1908
     Thr Ala Phe Phe Arg Tyr Asn Arg Leu Gly Thr Leu Thr Glu Val Gly
                                  440
             435
     GCC GAC CCC ACC GAG TTC TCG CTG GAA CCG GAG GAG TTT CAC GTC CGG
     Ala Asp Pro Thr Glu Phe Ser Leu Glu Pro Glu Glu Phe His Val Arg
                                                   460
                              455
     ATG GCC CGC CGG CAG GCC GAA CTC CCG CTC TCC ATG ACC ACC CTG AGC
     Met Ala Arg Arg Gln Ala Glu Leu Pro Leu Ser Met Thr Thr Leu Ser
                                                                    480
                          470
                                              475
     465
     ACG CAC GAC ACC AAG CGC AGC GAG GAC ACC CGG GCC CGG ATC TCG GTG
Thr His Asp Thr Lys Arg Ser Glu Asp Thr Arg Ala Arg Ile Ser Val
                                                                           2052
30
                                          490
     ATC GCC GAG GTC GCG CCT GAA TGG GAA AAG GCC CTG GAC AGG CTG AAC
                                                                           2100
     Ile Ala Glu Val Ala Pro Glu Trp Glu Lys Ala Leu Asp Arg Leu Asn
                                                           510
                                      505
                 500
     ACC CTC GCT CCG CTG CCG GAC GGC CCG CTC TCC ACG CTG CTC TGG CAG
                                                                           2148
35
     Thr Leu Ala Pro Leu Pro Asp Gly Pro Leu Ser Thr Leu Leu Trp Gln
                                                       525
                                   520.
              515
     GCG ATT GCG GGG GCA TGG CCG GCC AGC CGG GAA CGC CTT CAG TCC TAC
     Ala Ile Ala Gly Ala Trp Pro Ala Ser Arg Glu Arg Leu Gln Ser Tyr
                                                  540
                              535
        530
     GCC CTG AAA GCG GCG CGC GAA GCC GGG AAC TCG ACC AGC TGG ACC GAT
     Ala Leu Lys Ala Ala Arg Glu Ala Gly Asn Ser Thr Ser Trp Thr Asp
                                                                    560
                                              555
                          550
     545
     CCG GAC CCG GCA TTC GAG GAG GCA CTT TCC GCC GTC GTC GAC TCC GCC
                                                                           2292
     Pro Asp Pro Ala Phe Glu Glu Ala Leu Ser Ala Val Val Asp Ser Ala
                                           570
                      565
     TTC GAC AAT CCG GAG GTG CGT GCG GAA CTT GAG GCC CTG GTG GGC CTC
     Phe Asp Asn Pro Glu Val Arg Ala Glu Leu Glu Ala Leu Val Gly Leu
45
                                      585
                                                           590
                 580
     CTT GCG CCG CAC GGT GCG TCC AAC TCG CTC GCG GCA AAG CTT GTC CAG
                                                                           2388
     Leu Ala Pro His Gly Ala Ser Asn Ser Leu Ala Ala Lys Leu Val Gln
                                   600
              595
     CTG ACC ATG CCG GGC GTT CCG GAC GTG TAC CAG GGC ACC GAG TTC TGG Leu Thr Met Pro Gly Val Pro Asp Val Tyr Gln Gly Thr Glu Phe Trp
                                                   620
                              615
         610
     GAC AGG TCG CTG ACC GAT CCG GAC AAC CGG CGC CCC TTC AGC TTC GCC
                                                                           2484
     Asp Arg Ser Leu Thr Asp Pro Asp Asn Arg Arg Pro Phe Ser Phe Ala
                                               635
                           630
     GAA CGG ATT AGG GCC TTG GAC CAG TTG GAC GCC GGC CAC CGT CCG GAC
     Glu Arg Ile Arg Ala Leu Asp Gln Leu Asp Ala Gly His Arg Pro Asp
```

```
645
                                                550
      TCC TTC CAG GAC GAG GCG GTC AAG CTG CTG GTC ACC TCG AGG GCG CTG
                                                                                   2580
      Ser Phe Gln Asp Glu Ala Val Lys Leu Leu Val Thr Ser Arg Ala Leu
                                                                 670
                    660
                                          665
      CGG CTG CGG CGG AAC CGG CCC GAG CTC TTC ACC GGC TAC CGC CCC GTG
                                                                                  2628
      Arg Leu Arg Arg Asn Arg Pro Glu Leu Phe Thr Gly Tyr Arg Pro Val
                                     680
                                                             685
              675
      CAT GCC AGG GGC CCC GCC GCC GGG CAC CTG GTG GCG TTC GAC CGC GGC
                                                                                  2676
      His Ala Arg Gly Pro Ala Ala Gly His Leu Val Ala Phe Asp Arg Gly
                                 695
           690
      GCC GGG GGA GTG CTG GCG CTT GCC ACC CGG CTC CCC TAC GGG CTG GAA
                                                                                  2724
      Ala Gly Gly Val Leu Ala Leu Ala Thr Arg Leu Pro Tyr Gly Leu Glu
                                                    715
                             710
                                                                           720
      705
      CAG TCG GGC GGC TGG CGG GAC ACC GCC GTC GAG CTT GAA GCC GCC ATG Gln Ser Gly Gly Trp Arg Asp Thr Ala Val Glu Leu Glu Ala Ala Met
                                                                      735
                        725
                                               730
      ACG GAC GAA CTG ACC GGC TCC ACT TTC GGG CCG GGA CCG GCG GCG CTG
                                                                                  2820
      Thr Asp Glu Leu Thr Gly Ser Thr Phe Gly Pro Gly Pro Ala Ala Leu
                                           745
                                                                  750
                    740
      TCA GAA GTC TTC CGG GCC TAC CCG GTG GCC TTG TTG GTC CCC GCG ACA
                                                                                  2868
      Ser Glu Val Phe Arg Ala Tyr Pro Val Ala Leu Leu Val Pro Ala Thr
               755
                                      760
                                                                                  2880
      GGA GGC AAG TCA
      Gly Gly Lys Ser
          770
      TGACGCAGCC CAACGATGCG GCCAAGCCGG TGCAGGGAGC GGGGCGCTTC GATATC
25
      (12) INFORMATION FOR SEQ ID NO:11:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 3084 base pairs
                  (B) TYPE: nucleic acid
                  (C) strandedness: double
30
                  (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: genomic DNA
            (vi)ORIGINAL SOURCE:
                  (A) ORGANISM: Arthrobacter sp.
                  (B) INDIVIDUAL ISOLATE: Q36 (FERM BP-4316)
            (ix)FEATURE:
35
                 (A) NAME/KEY: 5'UTR
                  (B) LOCATION: 1..677
                  (C) IDENTIFICATION METHOD: E
                  (A) NAME/KEY: mat peptide
                  (B) LOCATION: 678..3002
                  (C) IDENTIFICATION METHOD:S
40
                  (A) NAME/KEY: 3'UTR
                  (B) LOCATION: 3003..3073
                  (C) IDENTIFICATION METHOD: E
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
     GATCCGGACG GCAACCTCAT GTCCCCGGAG GACTGGGACA GCGGCTTCGG CCGTTCGGTG
GGCATGTTCC TCAACGGCGA CGGCATCCAG GGCCACGATG ACCGCGGCCG CCGCATCACG
                                                                                   120
     GACGTGAACT TCCTGCTGTA CTTCAACGCC CACGACGGCG ACGTCGAGTT CACGCTGCCG
                                                                                   180
     CCGGACGAAT ACGCCCCGGC CTGGGACGTC ATCATCGACA CCGCCGGTGA AGGGGCCGAC
TCCAAGCCCG CGGACGCCGG AACCATCCTG TCCGTTGCGG CCAAGTCGCT GGTTGTGCTT
                                                                                   240
                                                                                   300
     CGCGCCCACA GCGCACCGGA GGAGGAGCCT GACCATTCCG TGGCTGCTTC CCTGGCTGCA
                                                                                   360
     CTGACGCAGA CCGCCACCGC CGAGACGGCG GCGCTCACAG CTCCTGCCGT TCCCGAGCCG
GCCAAGACGA AGAAGCCGGC CGCTGACCCG GTTGCTGAAC CGGCCGACCC GCCGGTTGCT
                                                                                   420
                                                                                   480
     GACCCGGCCG ACCCGGTTGC TGACCCGGTT GCTGACCCGG CGCCGGAACC GGCTGCGGAG
                                                                                   540
     CCTGCGAAAT CCGCAGCGGA ACCTGGTGCG GAGCCTGCGA AGGACCCGGA GGAGCAGCCG
                                                                                   600
     GCGGAAAAGC CGGCGCAA GCCTGCGGCA AAGCGCGGCG GCCACCTGAG GGCGGTCAAG
                                                                                   660
                                                                                   677
     CCCGCTGGGG AGGACGC
     ATG AGA ACG CCA GTC TCC ACG TAC AGG CTG CAG ATC AGG AAG GGA TTC
                                                                                   725
     Met Arg Thr Pro Val Ser Thr Tyr Arg Leu Gln Ile Arg Lys Gly Phe
```

```
ACA CTC TTC GAC GCG GCC AAA ACC GTT CCG TAC CTG CAC TCG CTC GGC
       Thr Leu Phe Asp Ala Ala Lys Thr Val Pro Tyr Leu His Ser Leu Gly
                                          25
                                                                     30
                     20
       GTC GAC TGG GTC TAC CTT TCT CCG GTC CTG ACT GCC GAG CAG GGC TCC Val Asp Trp Val Tyr Leu Ser Pro Val Leu Thr Ala Glu Gln Gly Ser
                                                                                        821
                                       · 40
       GAC CAC GGG TAC GAC GTC ACC GAT CCC TCC GCC GTC GAC CCC GAA CGC
                                                                                        869
       Asp His Gly Tyr Asp Val Thr Asp Pro Ser Ala Val Asp Pro Glu Arg
10
       GGC GGG CCG GAG GGC CTC GCG GCG GTT TCC AAG GCG GCC CGC GCC
                                                                                        917
       Gly Gly Pro Glu Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Ala Ala
       GGC ATG GGC GTG CTG ATC GAC ATC GTG CCC AAC CAC GTG GGC GTC GCG Gly Met Gly Val Leu Ile Asp Ile Val Pro Asn His Val Gly Val Ala
                                                                                        965
15
                          85
                                                  90
       ACG CCG GCG CAG AAC CCC TGG TGG TGG TCG CTC CTC AAG GAG GGA CGC
                                                                                       1013
       Thr Pro Ala Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg
       CAG TCC CGT TAC GCG GAG GCG TTC GAC GTC GAT TGG GAC CTC GCC GGG Gln Ser Arg Tyr Ala Glu Ala Phe Asp Val Asp Trp Asp Leu Ala Gly
                                                                                       1061
20
                                        120
                                                                125
       GGA CGC ATC CGG CTG CCG GTG CTC GGC AGC GAC GAT GAC CTC GAC CAG
       Gly Arg Ile Arg Leu Pro Val Leu Gly Ser Asp Asp Leu Asp Gln
130 135
       CTC GAA ATC AGG GAC GGG GAG CTG CGG TAC TAC GAC CAC CGA TTC CCG
                                                                                       1157
       Leu Glu Ile Arg Asp Gly Glu Leu Arg Tyr Tyr Asp His Arg Phe Pro
25
                                                      155
                               150
       145
       CTC GCC GAG GGA ACC TAC GCC GAA GGC GAC GCC CCG CGG GAT GTC CAC
Leu Ala Glu Gly Thr Tyr Ala Glu Gly Asp Ala Pro Arg Asp Val His
                                                                                       1205
                          165
                                                  170
       GCC CGG CAG CAC TAC GAG CTC ATC GGC TGG CGC CGC GCG GAC AAC GAG
                                                                                       1253
       Ala Arg Gln His Tyr Glu Leu Ile Gly Trp Arg Arg Ala Asp Asn Glu
180 185 190
30
       CTG AAC TAC CGC CGC TTT TTC GCG GTG AAC ACG CTC GCC GGC GTC CGC Leu Asn Tyr Arg Arg Phe Phe Ala Val Asn Thr Leu Ala Gly Val Arg
                                        200
                                                                205
       GTG GAA ATC CCC GCC GTC TTC GAC GAG GCA CAC CAG GAG GTG GTG CGC
       Val Glu Ile Pro Ala Val Phe Asp Glu Ala His Gln Glu Val Val Arg
                                                           220
                                   215
          210
       TGG TTC CGC GAG GAC CTT GCG GAC GGC CTG CGG ATC GAC CAC CCG GAC
                                                                                       1397
       Trp Phe Arg Glu Asp Leu Ala Asp Gly Leu Arg Ile Asp His Pro Asp
                                                      235
                               230
      GGC CTC GCT GAC CCC GAG GGG TAC CTG AAG CGA CTC CGG GAA GTC ACC Gly Leu Ala Asp Pro Glu Gly Tyr Leu Lys Arg Leu Arg Glu Val Thr
                                                                                       1445
                          245
                                                 250
       GGC GGC GCT TAC CTG CTG ATC GAA AAG ATC CTG GAG CCG GGG GAG CAG
                                                                                      1493
       Gly Gly Ala Tyr Leu Leu Ile Glu Lys Ile Leu Glu Pro Gly Glu Gln
                                            265
                                                                    270
                    260
      CTG CCC GCC AGC TTC GAG TGT GAA GGC ACC ACA GGC TAC GAC GCC CTC Leu Pro Ala Ser Phe Glu Cys Glu Gly Thr Thr Gly Tyr Asp Ala Leu
                                        280
                                                                285
       GCC GAC GTC GAC CGG GTT CTC GTG GAC CCG CGC GGC CAG GAA CCG CTG
                                                                                       1589
      Ala Asp Val Asp Arg Val Leu Val Asp Pro Arg Gly Gln Glu Pro Leu
290 295 300
       GAC CGG CTT GAC GCG TCC CTG CGT GGC GGC GAG CCC GCC GAC TAC CAG
                                                                                       1637
       Asp Arg Leu Asp Ala Ser Leu Arg Gly Gly Glu Pro Ala Asp Tyr Gln
                                                       315
       GAC ATG ATC CGC GGA ACC AAG CGC CGG ATC ACC GAC GGT ATC CTG CAC
                                                                                       1685
       Asp Met Ile Arg Gly Thr Lys Arg Arg Ile Thr Asp Gly Ile Leu His
                          325
                                                  330
       TCG GAG ATC CTG CGG CTG GCC CGG CTG GTT CCG GGC GAC GCC AAC GTT
       Ser Glu Ile Leu Arg Leu Ala Arg Leu Val Pro Gly Asp Ala Asn Val
```

30

```
TCA ATC GAC GCC GGA GCC GAC GCT CTC GCC GAA ATC ATC GCC GCC TTC
     Ser Ile Asp Ala Gly Ala Asp Ala Leu Ala Glu Ile Ile Ala Ala Phe
                                  360
                                                       365
             355
     CCG GTC TAC CGC ACC TAC CTG CCG GAG GGC GCC GAG GTC CTG AAG GAG
                                                                           1829
     Pro Val Tyr Arg Thr Tyr Leu Pro Glu Gly Ala Glu Val Leu Lys Glu
                              375
                                                   380
                                                                           1877
     GCG TGC GAG CTT GCC GCG CGT AGG CGG CCG GAA CTC GAC CAG GCC ATC
     Ala Cys Glu Leu Ala Ala Arg Arg Arg Pro Glu Leu Asp Gln Ala Ile
                                               395
                          390
     CAG GCT CTG CAG CCG CTG CTG GAC ACG GAC CTC GAG CTT GCC CGG
     Gln Ala Leu Gln Pro Leu Leu Leu Asp Thr Asp Leu Glu Leu Ala Arg
                                          410
                                                                415
     CGC TTC CAG CAC ACC TCG GGC ATG GTC ATG GCC AAG GGC GTG GAG GAC Arg Phe Gln Gln Thr Ser Gly Met Val Met Ala Lys Gly Val Glu Asp
15
                 420
                                       425
     ACC GCG TTC TTC CGC TAC AAC CGC CTG GGC ACC CTC ACG GAA GTG GGC Thr Ala Phe Phe Arg Tyr Asn Arg Leu Gly Thr Leu Thr Glu Val Gly
                                                                           2021
                                                       445
                                  440
     GCC GAC CCC ACC GAG TTC GCC GTG GAG CCG GAC GAG TTC CAC GCC CGG
                                                                           2069
     Ala Asp Pro Thr Glu Phe Ala Val Glu Pro Asp Glu Phe His Ala Arg
                                                   460
                              455
         450
     CTG GCA CGC CGG CAG GCC GAG CTT CCG CTG TCC ATG ACG ACG CTG AGC
     Leu Ala Arg Arg Gln Ala Glu Leu Pro Leu Ser Met Thr Thr Leu Ser
                                               475
                         470
     ACG CAC GAC ACC AAG CGC AGC GAG GAC ACC CGA GCA AGG ATT TCG GTC
                                                                           2165
     Thr His Asp Thr Lys Arg Ser Glu Asp Thr Arg Ala Arg Ile Ser Val
                                           490
     ATT TCC GAG GTT GCG GGT GAC TGG GAA AAG GCC TTG AAC CGG CTG CGC
                                                                           2213
     Ile Ser Glu Val Ala Gly Asp Trp Glu Lys Ala Leu Asn Arg Leu Arg
                                      505
                 500
     GAC CTG GCC CCG CTG CCG GAC GGC CCG CTG TCC GCG CTG CTC TGG CAG
    Asp Leu Ala Pro Leu Pro Asp Gly Pro Leu Ser Ala Leu Leu Trp Gln
                                                       525
             515
                                  520
     GCC ATT GCC GGC GCC TGG CCC GCC AGC CGG GAA CGC CTG CAG TAC TAC
    Ala Ile Ala Gly Ala Trp Pro Ala Ser Arg Glu Arg Leu Gln Tyr Tyr
                                                   540
                              535
     GCG CTG AAG GCC GCG CGT GAA GCG GGG AAC TCG ACC AAC TGG ACC GAT
                                                                           2357
     Ala Leu Lys Ala Ala Arg Glu Ala Gly Asn Ser Thr Asn Trp Thr Asp
                         55Õ
                                              555
     545
     CCG GCC CCC GCG TTC GAG GAG AAG CTG AAG GCC GCG GTC GAC GCC GTG
                                                                           2405
     Pro Ala Pro Ala Phe Glu Glu Lys Leu Lys Ala Ala Val Asp Ala Val
                     565
     TTC GAC AAT CCC GCC GTG CAG GCC GAG GTG GAA GCC CTC GTC GAG CTC
                                                                          2453
     Phe Asp Asn Pro Ala Val Gln Ala Glu Val Glu Ala Leu Val Glu Leu
                                      585
                 580
     CTG GAG CCG TAC GGA GCT TCG AAC TCC CTC GCC GCC AAG CTC GTG CAG
                                                                          2501
    Leu Glu Pro Tyr Gly Ala Ser Asn Ser Leu Ala Ala Lys Leu Val Gln
             595
                                  600
     CTG ACC ATG CCC GGC GTC CCG GAC GTC TAC CAG GGC ACG GAG TTC TGG
    Leu Thr Met Pro Gly Val Pro Asp Val Tyr Gln Gly Thr Glu Phe Trp
                              615
                                                  620
     GAC CGG TCG CTG ACG GAC CCG GAC AAC CGG CGG CCG TTC AGC TTC GAC
                                                                           2597
     Asp Arg Ser Leu Thr Asp Pro Asp Asn Arg Arg Pro Phe Ser Phe Asp
                         630
                                              635
                                                                           2645
     GAC CGC CGC GCC GCG CTG GAG CAG CTG GAT GCC GGC GAC CTT CCC GCG
     Asp Arg Arg Ala Ala Leu Glu Gln Leu Asp Ala Gly Asp Leu Pro Ala
                      645
                                           650
     TCA TTT ACC GAT GAG CGG ACG AAG CTG CTA GTG ACG TCG CGC GCG CTG
     Ser Phe Thr Asp Glu Arg Thr Lys Leu Leu Val Thr Ser Arg Ala Leu
                                      665
                                                           670
                 660
     CGG CTG CGC CGG GAC CGT CCG GAG CTG TTC ACG GGG TAC CGG CCG GTC
                                                                           2741
     Arg Leu Arg Arg Asp Arg Pro Glu Leu Phe Thr Gl; fyr Arg Pro Val
                                  680
                                                       685
     CTG GCC AGC GGG CCC GCC GGG CAC CTG CTC GCG TTC GAC CGC GGC
                                                                           2789
```

```
Leu Ala Ser Gly Pro Ala Ala Gly His Leu Leu Ala Phe Asp Arg Gly
                                  695
                                                         700
       ACC GCG GCG GCG CCG GGT GCA TTG ACC CTC GCC ACG CGG CTT CCC TAC
                                                                                   2837
       Thr Ala Ala Ala Pro Gly Ala Leu Thr Leu Ala Thr Arg Leu Pro Tyr
                                                    715
                              710
       GGG CTG GAA CAG TCG GGT GGA TGG CGG GAC ACC GCC GTC GAA CTT AAC Gly Leu Glu Gln Ser Gly Gly Trp Arg Asp Thr Ala Val Glu Leu Asn
                                                                                   2885
                        725
                                               730
                                                                       735
10
       ACC GCC ATG AAA GAC GAA CTG ACC GGT GCC GGC TTC GGA CCG GGG GCA
Thr Ala Met Lys Asp Glu Leu Thr Gly Ala Gly Phe Gly Pro Gly Ala
740 745 750
       GTG AAG ATC GCC GAC ATC TTC CGG TCG TTC CCC GTT GCG CTG CTG GTG
       Val Lys Ile Ala Asp Ile Phe Arg Ser Phe Pro Val Ala Leu Leu Val
755 760 765
15
       CCG CAG ACA GGA GGA GAG TCA
                                                                                   3002
       Pro Gln Thr Gly Gly Glu Ser
                                   775
       TGACGCACAC CTACCCGCGG GAAGCCGCGA AACCCGTCCT GGGCCCCGCA CGCTACGACG 3062
       TCTGGGCGCC C
20
       (13) INFORMATION FOR SEQ ID NO:12:
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 20
                   (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: peptide
25
             (v) FRAGMENT TYPE: N-terminal fragment
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
       Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr
                         5
                                                10
                                                                       15
       Leu Phe Asp
30
       (14) INFORMATION FOR SEQ ID NO:13:
            (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 20
35
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE:peptide
             (v) FRAGMENT TYPE: N-terminal fragment
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
      Met Arg Thr Pro Val Ser Thr Tyr Arg Leu Gln Ile Arg Lys Gly Phe Thr
                                               10
      Leu Phe Asp
               20
       (15) INFORMATION FOR SEQ ID NO:14:
            (i) SEQUENCE CHARACTERISTICS :
                  (A) LENGTH: 21
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE:peptide
             (v) FRAGMENT TYPE: internal fragment
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
      Arg Ser Glu Asp Thr Arg Ala Arg Ile Ser Val Ile Ala Glu Val Ala Pro
                                               10
      Glu Trp Glu Lys
               20
55
```

```
(16) INFORMATION FOR SEQ ID NO:15:
             (i) SEQUENCE CHARACTERISTICS:
5
                  (A) LENGTH: 21
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE:peptide
             (v) FRAGMENT TYPE: internal fragment
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
10
       Leu Val Gln Leu Thr Met Pro Gly Val Pro Asp Val Tyr Gln Gly Thr Glu
                                              10
                                                                    15
       Phe Trp Asp Arg
                20
15
       (17) INFORMATION FOR SEQ ID NO:16:
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 20
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
20
             (ii) MOLECULE TYPE: peptide
             (v) FRAGMENT TYPE: internal fragment
             (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
       Leu Val Gln Leu Thr Met Pro Gly Val Pro Asp Val Tyr Gln Gly Thr Glu
                        5
25
       Phe Trp Asp
               20
       (18) INFORMATION FOR SEQ ID NO:17:
            (i) SEQUENCE CHARACTERISTICS:
30
                  (A) LENGTH: 20
                  (B) TYPE: amino acid
                  (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE:peptide
            (v) FRAGMENT TYPE: internal fragment
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
35
      Glu Gly Arg Gln Ser Arg Tyr Ala Glu Ala Phe Asp Val Asp Trp Asp Leu
      Ala Gly Gly
40
```

45 Claims

55

- A DNA encoding an enzyme which forms a non-reducing saccharide having trehalose structure as an end
 unit from a reducing amylaceous saccharide having a degree of glucose polymerization of 3 or higher.
- 50 2. The DNA as claimed in claim 1, wherein said enzyme has the following physicochemical properties:
 - (1) Molecular weight

About 76,000-87,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PA-GE); and

- (2) Isoelectric point (pl)
- About 3.6-4.6 on isoelectrophoresis.
 - The DNA as claimed in claim 1, wherein said enzyme has an amino acid sequence selected from the group consisting of those as shown in the following SEQ ID NOs:2 and 4 that initiate from the N-terminal, and

homologous amino acid sequences to these amino acid sequences:

5	SEQ	ID 1	NO : 2														
	Met	Arg	Thr	Pro	Ala	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Arg	Gly	Phe	Thr
	1				5					10					15		
10	Leu	Phe	Asp	Ala	Ala	Glu	Thr	Val	Pro	Tyr	Leu	Lys	Ser	Leu	Gly	Val	Asp
			20					25					30				
	Trp	Ile	Tyr	Leu	Ser	Pro	Ile	Leu	Lys	Ala	Glu	Ser	Gly	Ser	Asp	His	Gly
15	35					40					45					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ala	Val	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
20	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg.	Gly	Ala	Gly	Met	Gly	Val	Leu
								٠									
25																	
25																	
30																	
		•															
35																	
				•													
40									٠								
												•					
45																	
50																	

55

25

5		70					75					80					85
	Tlo		Tle	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
	116	nap	110		90					95					100		
10	Trn	ሞተክ	Tro	Ser		Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
	115	112	105					110					115				
	Phe	Asp		Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
15	120			-		125					130					135	
		Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
	017			140					145					150			
20	Tvr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp
	-2-	155	-				160					165					170
	Ser		Gln	Asp	Val	His	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
25					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
30	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
· 35				225					230					235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
40		240					245					250					255
₩	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
					260					265					270		
45	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Тут	Asp	Ala	Leu	Ala
			275					280					285				
	Asp	Val	. Asp	Arg	Val	Phe	val	. Asp	Pro	Arg	g Gly	g Glr	val	l Pro	Leu		Arg
50	290					295					300					305	
	Lev	. Asp	Ala	Arg	, Leu	Arg	g Gly	/ G13	Ala	Pro	o Ala	a Asp	ту	c Glu	ı Ası	Met	; Ile
				310)				315	5				320	כ		

5	Arg	Gl _y	Thi	Lys	arg	Arg	, Ile	Thr	Asp	Gly	, Ile	Leu	His	Ser	Glu	ılle	Leu
		325	i .				330)				335	i				340
	Arg	Leu	Ala	Arg	, Leu	Va1	Pro	Glu	Glr	Thr	Gly	Ile	Pro	Gly	Glu	. Ala	Ala
10					345					350)				355	i	
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	: Ile	Ala	Ala	Phe	Pro	Val	Туг	Arg	Ser	Туг
45			360)				365					370)			
15	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
	375					380					385					390	
20	Arg	Arg	Pro	Glu	Leu	Gly	G1n	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
•	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
25		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Ąsp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
30	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
			445					450					455				
	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
35	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
ю	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
	•	495					500					505					510
	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
15					515					520					5 2 5		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
			530					535					540				
50		Leu	Lys	Ala	Ala	-	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	_	Pro
	545					550					555					560	
	Asp	Pro	Ala	Phe	Glu	GLu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp

5				565	5				570)				575	5		
	Asn	Pro	Gli	ı Val	L Arg	g Ala	Glı	ı Lev	ı Glu	·Ala	a Lev	val	Gl	, Leu	Leu	Ala	a Pro
		580)				585	5				590	ı				595
10	His	G13	Ala	a Ser	: Ası	n Ser	Let	ı Ala	a Ala	Lys	s Leu	Val	Glr	Leu	Thr	Met	Pro
					600)				605	5				610	1	
	Gly	Val	Pro) Asp	va]	Tyr	Glr	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
15			615	;				620)				625	i			
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
	630					635					640					645	
20	Ąsp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gl n	Asp	Glu	Ala	Val
				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
25		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
30	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
. -	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
35	715					720					725					730	
	Leu	Glu	Ala		Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
4 0				735					740					745			
••			Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					765
4 5	Pro	Ala	Thr	Gly		Lys	Ser			٠							
					770												
50																	
	SEQ	TD N	m · 4														
55				Dro	t/a 1	Sa~	mh∽	П	A = ~	t o	C1-	T1-	n	T ar =	C1	ńь.	mL →
	Met .	9	1111		va1	SET	THE	T X T.		Leu 10	GIII	116	wrg	гÃа	oră.	rne	mr

5	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Туг	Leu	His	Ser	Leu	Gly	Val	Asp
			20					25					30				
	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
10	35					40					45	•				50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
15	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
20					90					95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
			105					110					115				
25	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
30				.140					145					150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
35		155					160					165					170
33	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
40	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
	Ala	Gly	Val	Arg	Val	Glu .	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
45	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
50	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	G1u	Pro	Gly	Glu	Gln

5					260)				265	5				270)	
	Leu	ı Pro	Ala	a Ser	Phe	Glu	Cys	Glu	Gly	Thi	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275	5				280)				285	i			
10	Asp	val	. Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	GLy	Gln	Glu	Pro	Leu	Asp	Arg
	290)				295					300					305	
	Leu	ı Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	. Asp	Met	Ile
15				310					315					320	ı		
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
20	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
					345					350					355		
	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Туг
25			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
30	375					380					385					390	
30	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
35	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
40					430					435					440		
	Thr	Leu	Thr	Glu	Val	GLy	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
			445					450					455				
45	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460					465					470					475	
•	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
50				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
		495					500					505					510

5	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
0			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
	54 5					550					555					560	
5	Ala	Pro	Ala	Phe	Glu	Clu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
0		580					585					590					595
	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
e					600					605					610		
5	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
0	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
•	630					635					640					645	
	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
5				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
		665					670					675					680
9	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690			•		695		
	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
5			700					705					710				
	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
	715					720					725					730	
0	Ala	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
				735					740					745			
	Glÿ	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala

750 755 760 765

Leu Leu Val Pro Gln Thr Gly Gly Glu Ser

5 770 775

4. The DNA as claimed in claim 1, which has a base sequence selected from the group consisting of those as shown in the following SEQ ID NOs:1 and 3 that initiate from the 5'-terminus, homologous base sequences to the base sequences, and complementary base sequences to these base sequences:

15 SEQ ID NO:1

10

20

25

30

35

40

ATGAGGACAC CCGCCTCGAC CTACCGGCTG CAGATCAGGC GGGGTTTCAC GCTGTTTGAT 60 GCCGCCGAGA CCGTGCCCTA CCTGAAGTCA CTCGGGGTGG ACTGGATCTA CCTGTCGCCC 120 ATCCTGAAGG CAGAGAGCGG CTCCGACCAC GGCTATGACG TCACCGATCC CGCCGTAGTG 180 GACCCGGAGC GCGGCGGCCC TGAAGGGCTG GCCGCGGTGT CCAAGGCGGC CCGCGGTGCC 240 GGCATGGGCG TGCTGATCGA CATCGTGCCG AACCACGTGG GCGTGGCGTC GCCGCCGCAG 300 AACCCGTGGT GGTGGTCGCT GCTCAAGGAA GGGCGCGGGT CGCCCTACGC CGTGGCGTTC 360 GACGTCGACT GGGACCTGGC GGGGGCCGC ATCCGGATCC CCGTCCTGGG CAGCGACGAC 420 GATCTGGACC AGCTCGAAAT CAAGGACGGC GAGCTGCGGT ACTACGACCA CCGCTTCCCG 480 CTGGCCGAGG GCAGCTACCG GGACGGCGAC TCCCCGCAGG ACGTCCACGG CCGCCAGCAC 540 TACGAACTCA TCGGCTGGCG GCGCCCGAC AATGAACTGA ACTACCGCCG GTTCTTCGCG 600 GTGAACRCGC TCGCCGGCAT CCGGGTGGAG GTGCCGCCGG TCTTCGATGA AGCGCACCAG 660 GAGGTGGTGC GCTGGTTCCG TGCGGGGCTC GCCGACGGGC TGCGGATCGA CCACCCGGAC 720 GGCCTGGCCG ATCCCGAGGG GTATTTGAAG CGGCTCCGTG AGGTCACCGG GGGCGCGTAC 780 CTGCTCATCG AAAAGATCCT CGAGCCGGC GAACAGTTGC CGGCCAGCTT CGAGTGCGAA 840 GGCACCACCG GCTACGACGC CCTCGCGGAT GTCGACAGGG TCTTCGTGGA CCCGCGGGGA 900 CAGGTGCCGC TGGACCGTCT GGACGCACGG CTGCGCGGCG GTGCGCCGGC CGACTACGAG 960 GACATGATCC GCGGGACCAA GCGCCGGATC ACCGACGGCA TCCTGCACTC CGAGATCCTG 1020 CGCCTTGCCA GGCTGGTGCC CGAGCAGACC GGAATTCCCG GGGAGGCGGC CGCGGATGCG 1080 ATCGCGGAGA TCATCGCGGC CTTCCCGGTC TACCGGTCCT ATCTTCCCGA GGGCGCGGAG 1140 ATCCTGAAGG AGGCCTGCGA CCTCGCCGCG CGGAGGCGTC CGGAACTGGG CCAGACCGTC 1200

5	CAGCTGCTGC AGCCGCTGCT GCTGGATACC GA	CCTCGAGA TTTCCCGCAG GTTCCAGCAG	3 1260
Ū	ACCTCGGGAA TGGTCATGGC CAAAGGCGTG GA	GGACACCG CGTTCTTCCG CTACAACCG	1320
	CTGGGAACGC TCACCGAGGT GGGCGCCGAC CC	CACCGAGT TCTCGCTGGA ACCGGAGGAC	1380
10	TTTCACGTCC GGATGGCCCG CCGGCAGGCC GA	ACTCCCGC TCTCCATGAC CACCCTGAGC	1440
	ACGCACGACA CCAAGCGCAG CGAGGACACC CG	GGCCCGGA TCTCGGTGAT CGCCGAGGTC	1500
	GCGCCTGAAT GGGAAAAGGC CCTGGACAGG CT	GAACACCC TCGCTCCGCT GCCGGACGGC	1560
15	CCGCTCTCCA CGCTGCTCTG GCAGGCGATT GC	GGGGCAT GGCCGGCCAG CCGGGAACGC	1620
	CTTCAGTCCT ACGCCCTGAA AGCGGCGCGC GA	AGCCGGGA ACTCGACCAG CTGGACCGAT	1680
	CCGGACCCGG CATTCGAGGA GGCACTTTCC GCC	CGTCGTCG ACTCCGCCTT CGACAATCCG	1740
20	GAGGTGCGTG CGGAACTTGA GGCCCTGGTG GGC	CCTCCTTG CGCCGCACGG TGCGTCCAAC	1800
	TCGCTCGCGG CAAAGCTTGT CCAGCTGACC ATC	GCCGGGCG TTCCGGACGT GTACCAGGGC	1860
	ACCGAGTTCT GGGACAGGTC GCTGACCGAT CCC	GGACAACC GGCGCCCCTT CAGCTTCGCC	1920
25	GAACGGATTA GGGCCTTGGA CCAGTTGGAC GCC	EGGCCACC GTCCGGACTC CTTCCAGGAC	1980
	GAGGCGGTCA AGCTGCTGGT CACCTCGAGG GCG	SCTGCGGC TGCGGCGGAA CCGGCCCGAG	2040
	CTCTTCACCG GCTACCGCCC CGTGCATGCC AGG	GGCCCCG CCGCCGGGCA CCTGGTGGCG	2100
30	TTCGACCGCG GCGCCGGGG AGTGCTGGCG CTT	IGCCACCC GGCTCCCCTA CGGGCTGGAA	2160
	CAGTCGGGCG GCTGGCGGGA CACCGCCGTC GAG	CTTGAAG CCGCCATGAC GGACGAACTG	2220
	ACCGGCTCCA CTTTCGGGCC GGGACCGGCG GCG	ECTGTCAG AAGTCTTCCG GGCCTACCCG	2280
35	GTGGCCTTGT TGGTCCCCGC GACAGGAGGC AA	GTCA	2316

- w	
	•
, -	

SEQ ID NO:3

5	CTCGCCGAGG	GAACCTACGC	CGAAGGCGAC	: GCCCCGCGGG	ATGTCCACGO	CCGGCAGCAC	540
	TACGAGCTCA	TCGGCTGGCG	CCGCGCGGAC	AACGAGCTGA	ACTACCGCCC	CTTTTTCGCC	600
	GTGAACACGC	TCGCCGGCGT	CCGCGTGGAA	ATCCCCGCC	G TCTTCGACGA	GGCACACCAC	660
10	GAGGTGGTGC	GCTGGTTCCG	CGAGGACCTT	GCGGACGGC	TGCGGATCG	CCACCCGGAC	720
	GGCCTCGCTG	ACCCCGAGGG	GTACCTGAAG	CGACTCCGGG	AAGTCACCGG	GCCCCTTAC	780
	CTGCTGATCG	AAAAGATCCT	GGAGCCGGGG	GAGCAGCTGC	CCGCCAGCTT	CGAGTGTGAA	840
15	GGCACCACAG	GCTACGACGC	CCTCGCCGAC	GTCGACCGGG	TTCTCGTGGA	ccccccccc	900
	CAGGAACCGC	TGGACCGGCT	TGACGCGTCC	CTGCGTGGCG	GCGAGCCCGC	CGACTACCAG	960
	GACATGATCC	GCGGAACCAA	GCGCCGGATC	ACCGACGGTA	TCCTGCACTC	GGAGATCCTG	1020
20	CGGCTGGCCC	GGCTGGTTCC	GGGCGACGCC	AACGTTTCAA	TCGACGCCGG	AGCCGACGCT	1080
	CTCGCCGAAA	TCATCGCCGC	CTTCCCGGTC	TACCGCACCT	ACCTGCCGGA	GGGCGCCGAG	1140
	GTCCTGAAGG	AGGCGTGCGA	GCTTGCCGCG	CGTAGGCGGC	CGGAACTCGA	CCAGGCCATC	1200
25	CAGGCTCTGC	AGCCGCTGCT	GCTGGACACG	GACCTCGAGC	TTGCCCGGCG	CTTCCAGCAG	1260
	ACCTCGGGCA	TGGTCATGGC	CAAGGGCGTG	GAGGACACCG	CGTTCTTCCG	CTACAACCGC	1320
30	CTGGGCACCC	TCACGGAAGT	GGGCGCCGAC	CCCACCGAGT	TCGCCGTGGA	GCCGGACGAG	1380
30	TTCCACGCCC.	GGCTGGCACG	CCGGCAGGCC	GAGCTTCCGC	TGTCCATGAC	GACGCTGAGC	1440
	ACGCACGACA	CCAAGCGCAG	CGAGGACACC	CGAGCAAGGA	TTTCGGTCAT	TTCCGAGGTT	1500
35	GCGGGTGÄCT	GGGAAAAGGC	CTTGAACCGG	CTGCGCGACC	TGGCCCCGCT	GCCGGACGGC	1560
	CCGCTGTCCG	CGCTGCTCTG	GCAGGCCATT	GCCGGCGCCT	GGCCCGCCAG	CCGGGAACGC	1620
•	CTGCAGTACT	ACGCGCTGAA	GCCGCGCGT	GAAGCGGGGA	ACTCGACCAA	CTGGACCGAT	1680
40	CCGGCCCCCG	CGTTCGAGGA	GAAGCTGAAG	GCCGCGGTCG	ACGCCGTGTT	CGACAATCCC	1740
	GCCGTGCAGG	CCGAGGTGGA	AGCCCTCGTC	GAGCTCCTGG	AGCCGTACGG	AGCTTCGAAC	1800
	TCCCTCGCCG	CCAAGCTCGT	GCAGCTGACC	ATGCCCGGCG	TCCCGGACGT	CTACCAGGGC	1860
45	ACGGAGTTCT	GGGACCGGTC	GCTGACGGAC	CCGGACAACC	GGCGGCCGTT	CAGCTTCGAC	1920
	GACCGCCGCG	CCGCGCTGGA	GCAGCTGGAT	GCCGGCGACC	TTCCCGCGTC	ATTTACCGAT	1980
	GAGCGGACGA	AGCTGCTAGT	GACGTCGCGC	GCGCTGCGGC	TGCGCCGGGA	CCGTCCGGAG	2040
50	CTGTTCACGG	GGTACCGGCC	GGTCCTGGCC	AGCGGGCCCG	CCGCCGGGCA	CCTGCTCGCG	2100
	TTCGACCGCG	GCACCGCGGC	GGCGCCGGGT	GCATTGACCC	TCGCCACGCG	GCTTCCCTAC	2160
	GGGCTGGAAC	AGTCGGGTGG	ATGGCGGGAC	ACCGCCGTCG	AACTTAACAC	CGCCATGAAA	2220

GACGAACTGA CCGGTGCCGG CTTCGGACCG GGGGCAGTGA AGATCGCCGA CATCTTCCGG 2280

	TCC	TTCC	CCG	TTGC	GCTG	CT G	GTGC	CGCA	G AC	AGGA	GGAG	AGT	CA				2325
5	b		by me	ans of	dege	neracy											ed with other ce of the fol-
10											•						
	SEQ	ID	NO : 2														
15	Met	Arg	Thr	Pro	Ala	Ser	Thr	Tyr	Arg	Leu	. Gln	Ile	Arg	Arg	Gly	Phe	Thr
	1				5					10					15		
	Leu	Phe	Asp	Ala	Ala	Glu	Thr	Val	Pro	Туг	Leu	Lys	Ser	Leu	Gly	Val	Asp
20			20					25					30				
	Trp	Ile	Tyr	Leu	Ser	Pro	Ile	Leu	Lys	Ala	Glu	Ser	Gly	Ser	Asp	His	Gly
	35					40					45					50	
25	Tyr	Asp	Val	Thr	Asp	Pro	Ala	Val	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Gly	Ala	Gly	Met	Gly	Val	Leu
30		70					75 .					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
					90					95					100		
35	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
			105					110					115				
40	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
40	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
45				140					145				3	.50			
₩.	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp
		155					160					165					170
50	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	Gln	His	Тут	Glu	Leu	Ile	Gly	Trp	Arg
-					175					100					105		

5	Arg	, Ala	Asp	Asn	Glu	Leu	Asn	Туг	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190)				195					200				
	Ala	Gly	lle	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
10	205	;				210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225	•				230					235			
15	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Va1
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
20					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			27 5					280					285				
25	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg
	290					295					300					305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
30				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
35	٠.	325					330					335					340
,,,	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu-	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
					345					350					355		
10	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Tyr
			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
1 5	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
50	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly

5					430)				435	5				440)	
	Thi	r Lev	ı Thi	r Glu	ı Val	Gly	Ala	a Asp	Pro	Thr	Glu	Phe	Ser	Leu	ı Glu	Pro	Glu
			445	5				450)				455	5			
10	Glu	ı Phe	e His	s Val	. Arg	, Met	Ala	Arg	, Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460)				465					470	ı				475	
	Thr	Thr	Lev	ı Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
15				480	1				485					490	}		
	Ile	Ser	Val	. Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495	i				500	١				505					510
20	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
25			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555		_			560	
30	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
				565					570					575	•		
35	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
30		580					585					590					595
	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val.	Gln	Leu	Thr	Met	Pro
40					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	GLY	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
45	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
	630					635					640					645	
	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
50				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
		665					670					675					680

	Leu	Phe	Thr	Gly	Tyr	Arg.	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
5					685					690					695		
	Leu	Val	Ala	Phe	Asp	Arg	GLy	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
10	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
	715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
15				735					740					745			
	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					765
20	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
					770												
																	•
25																	
	CEO	TD b	4														
30			4: OV			•											
30				Pro	Val	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Lys		Phe	Thr
30	Met 1	Arg	Thr		5					10					15		
30 35	Met 1	Arg	Thr		5	Ser				10			Ser		15		
	Met 1 Leu	Arg Phe	Thr Asp 20	Ala	5 Ala	Lys	Thr	Val 25	Pro	10 Tyr	Leu	His	Ser 30	Leu	15 Gly	Val	Asp
	Met 1 Leu	Arg Phe	Thr Asp 20	Ala	5 Ala		Thr	Val 25	Pro	10 Tyr	Leu	His	Ser 30	Leu	15 Gly	Val	Asp
	Met 1 Leu Trp 35	Arg Phe Val	Thr Asp 20 Tyr	Ala	5 Ala Ser	Lys Pro 40	Thr Val	Val 25 Leu	Pro Thr	10 Tyr Ala	Leu Glu 45	H i s Gln	Ser 30 Gly	Leu Ser	15 Gly Asp	Val His 50	Asp Gly
35	Met 1 Leu Trp 35	Arg Phe Val	Thr Asp 20 Tyr	Ala	5 Ala Ser	Lys Pro	Thr Val	Val 25 Leu	Pro Thr	10 Tyr Ala	Leu Glu 45	H i s Gln	Ser 30 Gly	Leu Ser	15 Gly Asp	Val His 50	Asp Gly
35	Met 1 Leu Trp 35	Arg Phe Val	Thr Asp 20 Tyr	Ala	5 Ala Ser	Lys Pro 40	Thr Val	Val 25 Leu	Pro Thr	10 Tyr Ala	Leu Glu 45	H i s Gln	Ser 30 Gly	Leu Ser	15 Gly Asp	Val His 50	Asp Gly
35	Met 1 Leu Trp 35 Tyr	Arg Phe Val Asp	Thr Asp 20 Tyr Val	Ala Leu Thr	5 Ala Ser Asp	Lys Pro 40	Thr Val Ser	Val 25 Leu Ala	Pro Thr Val 60	10 Tyr Ala Asp	Leu Glu 45 Pro	His Gln Glu	Ser 30 Gly Arg	Leu Ser Gly 65	15 Gly Asp Gly	Val His 50 Pro	Asp Gly Glu
35 10	Met 1 Leu Trp 35 Tyr	Arg Phe Val Asp	Thr Asp 20 Tyr Val	Ala Leu Thr	5 Ala Ser Asp	Lys Pro 40 Pro	Thr Val Ser	Val 25 Leu Ala	Pro Thr Val 60	10 Tyr Ala Asp	Leu Glu 45 Pro	His Gln Glu	Ser 30 Gly Arg	Leu Ser Gly 65	15 Gly Asp Gly	Val His 50 Pro	Asp Gly Glu
35 10	Met 1 Leu Trp 35 Tyr	Arg Phe Val Asp Leu 70	Thr Asp 20 Tyr Val	Ala Leu Thr 55 Ala	5 Ala Ser Asp Val	Lys Pro 40 Pro	Thr Val Ser Lys 75	Val 25 Leu Ala	Pro Thr Val 60 Ala	10 Tyr Ala Asp	Leu Glu 45 Pro	His Gln Glu Ala 80	Ser 30 Gly Arg	Leu Ser Gly 65 Met	15 Gly Asp Gly	Val His 50 Pro Val	Asp Gly Glu Leu 85
35 10	Met 1 Leu Trp 35 Tyr	Arg Phe Val Asp Leu 70	Thr Asp 20 Tyr Val	Ala Leu Thr 55 Ala	5 Ala Ser Asp Val	Lys Pro 40 Pro Ser	Thr Val Ser Lys 75	Val 25 Leu Ala	Pro Thr Val 60 Ala	10 Tyr Ala Asp	Leu Glu 45 Pro	His Gln Glu Ala 80	Ser 30 Gly Arg	Leu Ser Gly 65 Met	15 Gly Asp Gly	Val His 50 Pro Val	Asp Gly Glu Leu 85
35 40	Met 1 Leu Trp 35 Tyr Gly	Phe Val Asp Leu 70 Asp	Thr Asp 20 Tyr Val Ala	Ala Leu Thr 55 Ala	5 Ala Ser Asp Val Pro	Lys Pro 40 Pro Ser	Thr Val Ser Lys 75	Val 25 Leu Ala Ala	Pro Thr Val 60 Ala	10 Tyr Ala Asp Arg Val	Leu Glu 45 Pro Ala	His Gln Glu Ala 80 Thr	Ser 30 Gly Arg Gly	Leu Ser Gly 65 Met	Gly Gly Gly Gln 100	Val His 50 Pro Val	Asp Gly Glu Leu 85 Pro
35 40	Met 1 Leu Trp 35 Tyr Gly	Phe Val Asp Leu 70 Asp	Thr Asp 20 Tyr Val Ala	Ala Leu Thr 55 Ala	5 Ala Ser Asp Val Pro	Lys Pro 40 Pro Ser	Thr Val Ser Lys 75	Val 25 Leu Ala Ala	Pro Thr Val 60 Ala	10 Tyr Ala Asp Arg Val	Leu Glu 45 Pro Ala	His Gln Glu Ala 80 Thr	Ser 30 Gly Arg Gly	Leu Ser Gly 65 Met	Gly Gly Gly Gln 100	Val His 50 Pro Val	Asp Gly Glu Leu 85 Pro

5	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
				140					145					150			
<u>i</u> 0	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
		155	•				160					165					170
	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
15					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
20	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
25				225					230				•	235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
30	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
					260				•	265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
35			275					280					285				
	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
4 0	290					295					300					305	
••	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Äsp	Met	Ile
				310					315				٠	320			
45	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
50					345					350					355		
	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Àrg	Thr	Tyr
			360					365					370		-		

5	Leu	Pro	Glu	G1y	Ala	Glu	Val	Leu	Lys	Glu	Ala	Суз	Glu	Leu	Ala	Ala	Arg
	375					380					385					390	
٠	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
10				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
15	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435			٠		440		
	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
20			445					450		•			455				
	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460					465					470					475	
25	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
••	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
30		495					500					505					510
	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
35					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
			530					535					540				
10	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
	545					550					555					560	
	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
45				565					570					575			
	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
		580					585					590					595
50	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr

3

_			615					620					625				
5	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
	630					635					640					645	
10	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
Ü				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
5		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685			•		690					695		
o	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
			700					705					710				
	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
5	715					720	_				725					730	
	Ala	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
				735					740					745			
0	Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala
		750					755					760					765
	Leu	Leu	Val	Pro	Gln	Thr	Gly	Gly	Glu	Ser							
5					770					775							

- 40 6. The DNA as claimed in claim 1, which has the base sequence as shown in the following SEQ ID NO:10 or 11:
- SEQ ID NO:10:

CGTGCTCTAC TTCAACGCGC ACGACGGCGA CGTCGTGTTC AAGCTCCCGT CGGATGAATA 60

CGCCCCGGCC TGGGACGTCA TCATCGACAC CGCCGGCGCG GGTGCCGATT CCGAACCCGT 120

50 GCAGGCTGGC GGCAAACTCA CCGTGGCAGC GAAATCGCTC GTGGTGCTCC GTGCCCACAG 180

CGCCCCGGAG GAGGAACCGG ACCACTCGGT GGCCGCCTCC CTCGCAGCGC TGACGCAGAC 240

TGCGACCGCC GAAACCGCGG CGCTCACCGC CCCCACCGTT CCGGAGCCGA GGAAGACCAA 300

55 GAAGGCAGCG CCGAAGCCGG AAGAGGAGGC TCCCGACGAG GCGGCGCCGA AGCCGGAAGA 360

GAAGGCTCCC GACGAGGCGG CGGCGAAGCC GGAAGAGGCT GCTTCCGACG AGGCGGCGGC

5	GAAGCCGGAA GAGAAGGCTC CCGACGAGGC GGCGCGAAG CCGGAAGAGG CTGCTTCCGA	480
	CGAGGCGGCG GCGAAGCCCG CGGGGAAGGC AGCGGCCAAA ACGGCCGGC	540
	AGGCAAGCAG GGCGGGACGG GCTC	564
10	ATG AGG ACA CCC GCC TCG ACC TAC CGG CTG CAG ATC AGG CGG GGT TTC	612
	Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe	
	1 5 10 15	
15	ACG CTG TTT GAT GCC GCC GAG ACC GTG CCC TAC CTG AAG TCA CTC GGG	660
	Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly	
	20 25 30	
20	GTG GAC TGG ATC TAC CTG TCG CCC ATC CTG AAG GCA GAG AGC GGC TCC	708
	Val Asp Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser	
	3 5 4 0 4 5	
25	GAC CAC GGC TAT GAC GTC ACC GAT CCC GCC GTA GTG GAC CCG GAG CGC	756
	Asp His Gly Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg	
	50 55 60	
30	GGC GGC CCT GAA GGG CTG GCC GCG GTG TCC AAG GCG GCC CGC GGT GCC	B04
	Gly Gly Pro Glu Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly Ala	
	65 70 75 80	
35	GGC ATG GGC GTG CTG ATC GAC ATC GTG CCG AAC CAC GTG GGC GTG GCG	852
	Gly Met Gly Val Leu Ile Asp Ile Val Pro Asn His Val Gly Val Ala	
10	85 90 95	
	TCG CCG CCG CAG AAC CCG TGG TGG TGG TCG CTC CTC AAG GAA GGG CGC	900
	Ser Pro Pro Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg	
15	100 105 110	
. •	GGG TCG CCC TAC GCC GTG GCG TTC GAC GTC GAC TGG GAC CTG GCG GGG	948
	Gly Ser Pro Tyr Ala Val Ala Phe Asp Val Asp Trp Asp Leu Ala Gly	
50	115 120 125	
•	GGC CGC ATC CGG ATC CCC GTC CTG GGC AGC GAC GAT CTG GAC CAG	996
	Gly Arg Ile Arg Ile Pro Val Leu Gly Ser Asp Asp Asp Leu Asp Gln	

5	,		130)				135	j				140	כ					
		CTC	GAA	ATC	AAG	GAC	GGC	GAG	CTG	CGG	TAC	TAC	GAC	CAC	CGC	TTC	cc	CG	1044
		Leu	Glu	Ile	Lys	a Asp	Gly	Glu	Lei	ı Arg	Туг	ту	. Ası	tH c	s Aı	g P	he	Pro	ı
10		145					150)				155	5					160	
		СТG	GCC	GAG	GGC	AGC	TAC	CGG	GAC	GGC	GAC	TCC	CCG	CAG	GAC	GTC	CA	C	1092
		Leu	Ala	Glu	Gly	Ser	Туг	Arg	Asp	Gly	Asp	Ser	Pro	G1	n As	sp V	'al	His	
15						165	i				170					1	75		
		GGC	CGG	CAG	CAC	TAC	GAA	CTC	ATC	GGC	TGG (CGG	CGC	GCC	GAC	AAT	GA	ı.A	1140
		Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	, Al	a As	p A	sn	G1u	
20					180)				185					19	0			
		CTG	AAC	TAC	CGC	CGG	TTC	TTC	GCG	GTG .	AAC A	ACG	CTC (GCC	GGC	ATC	CG	G	1188
		Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Al	a Gl	уI	le.	Arg	
25				195					200					20	5				
		GTG	GAG	GTG	CCG	CCG	GTC	TTC	GAT	GAA (GCG (CAC	CAG (GAG	GTG	GTG	CG	С	1236
20		Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Gl	u Va	1 V	al .	Arg	
30			210					215					220						
		TGG	TTC	CGT	GCG	GGG	CTC	GCC (GAC	GGG (CTG (CGG A	ATC (SAC	CAC	CCG	GA	C ·	1284
35		Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asj	p Hi	s P	ro i	Asp	
		225					230					235					:	240	
		GGC	CTG	GCC	GAT	ccc	GAG	GGG 1	TAT '	TTG A	AAG C	GG (CTC C	GT	GAG	GTC	AC	С	1332
10		Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	g Gl	u Va	al '	Thr	
						245					250					25	55		
		GGG	GGC	GCG	TAC	CTG	CTC .	ATC (GAA A	AAG A	ATC C	TC (GAG C	CG	GGC	GAA	CA	G -	1380
45	1	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gl;	y G	lu (Gln	•
					260					265					27	0			
	•	TTG	CCG	GCC	AGC	TTC	GAG '	TGC (GAA (GGC A	CC A	CC G	GC I	AC	GAC	GCC	CT	С	1428
50		Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Туз	c As	p Al	la 1	Leu	
				275					280					285	5				
	(GCG	GAT	GTC	GAC	AGG	GTC 1	TTC (STG (GAC C	CG C	GG G	GA C	AG (GTG	CCG	CT	G	1476

5	Ala	Asp	val	. Asp	Arg	, Val	Phe	. Val	. Asp	Pro	Arg	g Gly	y Glı	ı Va	l Pro	Leu	ı
		290)				295	į				300)				
	GAC	CGT	CTG	GAC	GCA	CGG	CTG	CGC	GGC	GGT	GCG	CCG	GCC (GAC '	TAC G	AG	1524
10	Asp	Arg	, Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	a Ası) Tyr	Glu	ı
	305					310					315	5				320	}
	GAC	ATG	ATC	CGC	GGG	ACC	AAG	CGC	CGG .	ATC	ACC	GAC	GGC A	ATC (CTG C	AC	1572
15	Asp	Met	: Ile	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gl _y	, Ile	e Leu	His	1
					325					330					335		
	TCC	GAG	ATC	CTG	CGC	СТТ	GCC	AGG (CTG (GTG (ccc (GAG (CAG A	ACC (GGA A	TT	1620
20	Ser	Glu	lle	Leu	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	
				340					345					350)		
	ccc	GGG	GAG	GCG	GCC	GCG	GAT	GCG 7	ATC (GCG (GAG A	ATC A	ATC (CG (CC T	TC	1668
25	Pro	Gly	Glu	Ala	Ala	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	
			355					360					365				
	CCG	GTC	TAC	CGG	TCC	TAT (CTT (ccc o	GAG (GC (CG (GAG A	ATC C	TG P	AG G	AG	1716
30	Pro	Val	Tyr	Arg	Ser	Tyr	Leu	Pro	Glu	Gly	Ala	GLu	Ile	Leu	Lys	Glu	
		370					375					380					
	GCC	TGC	GAC	CTC	GCC	GCG (CGG 2	AGG (GT C	CG G	AA (TG G	GC C	AG A	CC G	rc	1764
35	Ala	Cys	Asp	Leu	Ala	Ala	Arg	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	
	385					390					395					400	
10	CAG	CTG	CTG	CAG	CCG	CTG (CTG (CTG G	AT A	CC G	AC C	TC G	AG A	тт т	cc co	€C	1812
40	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	
					405					410					415		
45	AGG	TTC	CAG	CAG 2	ACC	TCG G	GA A	ATG G	TC A	TG G	CC A	AA G	GC G	TG G	AG GA	AC	1860
70	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val	Met	Ala	Lys	Gly	Val	Glu	Asp	
				420					425					430			
50	ACC (GCG	TTC	TTC (cec '	TAC A	AC C	CGG C	TG G	GA A	CG C	TC A	.cc G	AG G	TG GG	SC	1908
	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	Gly	
			435					440					445				

5	GCC	GAC	ccc	ACC	GAG	TTC	TCG	CTG	GAA	CCG	GAG (GAG 1	ידד (CAC	GTC C	GG	1956
	Ala	Asp	Pro) Thr	Glu	ı Phe	Se	r Lei	ı Glu	Pro	Glu	Glu	Phe	His	Val	Arg	ī
		450)				455	5				460					
10	ATG	GCC	CGC	CGG	CAG	GCC	GAA	СТС	CCG	CTC	TCC I	ATG A	ACC A	ACC C	CTG A	\GC	2004
	Met	Ala	Arg	Arg	Glr	n Ala	Glu	ı Lev	ı Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470)		•		475					480	ı
15	ACG	CAC	GAC	ACC	AAG	CGC	AGC	GAG	GAC	ACC (CGG (GCC C	GG A	ATC T	CG G	TG	2052
	Thr	His	Asp	Thr	Lys	arg	Ser	Glu	ı Asp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485	5				490					495	i i	
20	ATC	GCC	GAG	GTC	GCG	CCT	GAA	TGG	GAA .	AAG (GCC (CTG G	AC A	GG C	TG A	AC	2100
	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg	Leu	Asn	
				500					505					510			
25	ACC	CTC	GCT	CCG	CTG	CCG	GAC	GGC	CCG	CTC 1	rcc A	CG C	TG C	TC T	GG C	AG	2148
	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp	Gln	
			515					520					525				
30	GCG	ATT	GCG	GGG	GCA	TGG	CCG	GCC	AGC (CGG (GAA C	GC C	тт С	AG T	CC T	AC	2196
	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr	
35		530					535					540					
33	GCC	CTG	AAA	GCG	GCG	CGC	GAA	GCC	GGG A	AAC 1	CG A	CC A	GC T	GG A	CC G	AT	2244
	Ala	Leu	Lys	Ala	Ala	Arg	G1u	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	
40	545					550					555			_		560	
											CC G						2292
	Pro	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	
45					565					570					575		
											AG G						2340
	Phe	Asp	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	
50				580					585					590			
											CG G						2388
	Leu	Ala	Pro	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	

5	595		600	605	
	CTG ACC ATG	CCG GGC GTT CCG G	SAC GTG TAC CAG GGC	ACC GAG TTC TGG	243
	Leu Thr Met	Pro Gly Val Pro	Asp Val Tyr Gln G	ly Thr Glu Phe Trp	•
10	610	615	6:	20	
	GAC AGG TCG	CTG ACC GAT CCG G	AC AAC CGG CGC CCC	TTC AGC TTC GCC	2484
	Asp Arg Ser	Leu Thr Asp Pro	Asp Asn Arg Arg P	ro Phe Ser Phe Ala	ı
15	625	630	635	640)
	GAA CGG ATT	AGG GCC TTG GAC C	AG TTG GAC GCC GGC	CAC CGT CCG GAC	2532
	Glu Arg Ile	Arg Ala Leu Asp	Gln Leu Asp Ala G	ly His Arg Pro Asp)
20		645	650	655	
	TCC TTC CAG	GAC GAG GCG GTC A	AG CTG CTG GTC ACC	TCG AGG GCG CTG	2580
	Ser Phe Gln	Asp Glu Ala Val	Lys Leu Leu Val Th	or Ser Arg Ala Leu	
25		660	665	670	
	CGG CTG CGG C	CGG AAC CGG CCC GA	AG CTC TTC ACC GGC	TAC CGC CCC GTG	2628
30	Arg Leu Arg	Arg Asn Arg Pro (Glu Leu Phe Thr Gl	y Tyr Arg Pro Val	
	675	. 6	580	685	
	CAT GCC AGG G	SEC CCC GCC GCC GC	GG CAC CTG GTG GCG	TTC GAC CGC GGC	2676
35	His Ala Arg (Gly Pro Ala Ala G	Sly His Leu Val Al	a Phe Asp Arg Gly	
	690	695	70	0	
	GCC GGG GGA G	TG CTG GCG CTT GC	CC ACC CGG CTC CCC	TAC GGG CTG GAA	2724
ю	Ala Gly Gly V	Val Leu Ala Leu A	ala Thr Arg Leu Pr	o Tyr Gly Leu Glu	
	705	710	715	720	
	CAG TCG GGC G	GC TGG CGG GAC AC	CC GCC GTC GAG CTT	GAA GCC GCC ATG	2772
15	Gln Ser Gly G	Sly Trp Arg Asp T	hr Ala Val Glu Le	u Glu Ala Ala Met	
		725	730	735	
	ACG GAC GAA C	TG ACC GGC TCC AC	CT TTC GGG CCG GGA	CCG GCG GCG CTG	2820
i0	Thr Asp Glu I	Leu Thr Gly Ser T	hr Phe Gly Pro Gl	y Pro Ala Ala Leu	
		740	745	750	
	TCA GAA GTC T	TC CGG GCC TAC CC	G GTG GCC TTG TTG	GTC CCC GCG ACA	2868

	Ser Glu Va	1 Phe Arg Ala Ty	r Pro Va. Ala I	Leu Leu Val Pro Ala Th	ר
	75!	5	760	765	
5	GGA GGC AAC	G TCA			2880
	Gly Gly Lys	s Ser			
	770				
10	TGACGCAGCC	CAACGATGCG GCCAA	AGCCGG TGCAGGGA	GC GGGGCGCTTC GATATC	2936
15					
10					
20	SEQ ID NO:1				
				CA GCGGCTTCGG CCGTTCGGT	
				G ACCGCGGCCG CCGCATCAC	
25	·			G ACGTCGAGTT CACGCTGCC	
				A CCGCCGGTGA AGGGGCCGA	
				G CCAAGTCGCT GGTTGTGCT	
30				G TGGCTGCTTC CCTGGCTGC	
				G CTCCTGCCGT TCCCGAGCCC	
				C CGGCCGACCC GCCGGTTGC	
35				G CGCCGGAACC GGCTGCGGA	
				A AGGACCCGGA GGAGCAGCCC	
			GGCA AAGCGCGGC	G GCCACCTGAG GGCGGTCAAC	
40	CCCGCTGGGG		mac acc cmc cac	G ATC AGG AAG GGA TTC	677 725
	J			In Ile Arg Lys Gly Phe	
45	1	5	NGC CMM CCC MNC	15	773
				C CTG CAC TCG CTC GGC	
	Thi Leu Phe			yr Leu His Ser Leu Gly 20	
50	CMC CAC MCC	20	25	30	821
	_			r GCC GAG CAG GGC TCC	021
	val ASP TIP	Agi thi pen ser	AO	hr Ala Glu Gln Gly Ser	

5	GAC	CAC	GGG	TAC	GAC	GTC	ACC	GAT	ccc	TCC	GCC	GTC (GAC (ccc o	AA C	GC	869
	Asp	His	Gly	Туг	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	
		50					55					60					
10	GGC	GGG	CCG	GAG	GGC	CTC	GCG	GCG	GTT	TCC .	AAG (GCG (scc c	GC G	CC G	CG	917
	Gly	Gly	Pro	Glu	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	
	65					70					. 75					80	
15	GGC	ATG	GGC	GTG	CTG	ATC	GAC	ATC	GTG	CCC 2	AAC (CAC G	TG G	GC G	TC G	CG	965
	Gly	Met	Gly	Val	Leu	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	
					85					90					95		
20	ACG	CCG	GCG	CAG	AAC	CCC	TGG	TGG	TGG	TCG (CTG (CTC A	AG G	AG G	GA C	GC	1013
	Thr	Pro	Ala	Gln	Asn	Pro	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	
				100					105					110			
25	CAG	TCC	CGT	TAC	GCG	GAG	GCG	TTC (GAC (GTC (TAF	GG G	AC C	TC G	CC G	GG	1061
	Gln	Ser	Arg	туг	Ala	Glu	Ala	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	
••			115					120					125				
30	GGA	CGC	ATC	CGG	CTG	CCG	GTG (CTC	GC A	AGC G	SAC G	AT G	AC C	TC G	AC C	AG	1109
	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	
3 <i>5</i>		130					135					140					
	CTC	GAA	ATC	AGG	GAC	GGG (GAG (CTG (CGG 1	rac 1	'AC G	AC C	AC C	GA T	TC C	CG	1157
	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg	Tyr	Tyr	Asp	His	Arg	Phe	Pro	
40	145					150					155					160	
	CTC	GCC	GAG	GGA	ACC	TAC (GCC (GAA (GC (GAC G	CC C	CG C	GG G	AT G	rc c	AC	1205
	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp	Ala	Pro	Arg	Asp	Val	His	
4 5					165					170					175	•	
	GCC	CGG	CAG	CAC	TAC	GAG (CTC A	ATC (GC 7	rgg c	GC C	GC G	CG G	AC AZ	AC GA	AG	1253
	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	Ala	Asp	Asn	Glu	
50				180					185					190			
	CTG	AAC	TAC	CGC	CGC	TTT 7	TTC (GCG (STG A	AAC A	.cg c	TC G	CC G	GC G	rc co	GC	1301
	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Ala	Gly	Val	Arg	

5			195	.				200)				205	5			
	GTG	GAA	ATC	ccc	GCC	GTC	TTC	GAC	GAG	GCA (CAC (CAG (GAG (GTG C	TG (CGC	1349
	Val	Glu	Ile	Pro	Ala	ı Val	Phe	Asp	Glu	Ala	His	Gln	Glu	ı Val	. Va	l Arg	1
10		210					215					220	ı				
	TGG	TTC	CGC	GAG	GAC	CTT	GCG	GAC	GGC	CTG (CGG A	ATC (GAC (CAC C	CG (GAC	1397
	Trp	Phe	Arg	Glu	. Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His	Pro	o Asp	
15	225					230					235					240	
	GGC	CTC	GCT	GAC	ccc	GAG	GGG	TAC	CTG .	AAG (CGA (CTC C	CGG (GAA G	TC A	ACC	1445
	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Va]	l Thr	
20					245					250					255	5	
	GGC	GGC	GCT	TAC	CTG	CTG	ATC	GAA	aag 2	ATC C	CTG (GAG C	CG G	GG G	AG (CAG	1493
	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	ı Gln	
25				260					265					270			
	CTG	CCC	GCC	AGC	TTC	GAG	TGT	GAA	GGC 1	ACC A	CA C	GC I	'AC G	GAC G	cc c	CTC	1541
30	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	
30			275					280					285				
	GCC	GAC	GTC	GAC	CGG	GTT	CTC (GTG (GAC (ccg c	GC G	GC C	AG G	AA C	CG C	TG	1589
3 <i>5</i>	Ala	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	
		290					295					300					
	GAC	CGG	CTT	GAC	GCG	TCC (CTG (CGT (GGC G	GC G	AG C	CC G	CC G	AC T	AC C	AG	1637
40	Asp	Arg	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	
	305					310					315					320	
	GAC	ATG	ATC	CGC	GGA	ACC I	AAG (CGC (CGG A	ATC A	.CC G	AC G	GT A	TC C	TG C	AC	1685
45	Asp	Met	Ile	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	
					325					330					335		
	TCG	GAG	ATC	CTG	CGG	CTG (GCC (CGG (CTG G	тт с	CG G	GC G	AC G	CC A	AC G	TT	1733
50	Ser	Glu	Ile	Leu	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	
				340					345					350			
	TCA	ATC	GAC	GCC	GGA	GCC (GAC (CT (CTC G	CC G	AA A	TC A	TC G	CC G	CC T	TC	1781

5	Ser	Ile	Asp	Ala	Gly	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	
			355					360					365				
	CCG	GTC	TAC	CGC	ACC	TAC	CTG (ccs o	GAG G	GC G	CC G	AG G	TC C	TG A	AG G	\G	1829
10															Lys		
		370	-				375					380					
	ccc		OAO.	СТТ	GCC	GCG	CGT	AGG (CGG C	CG G	AA C	TC G	AC C	AG G	CC A	rc	1877
15															Ala		
		Cys	024	200		390	3		J		395					400	
	385	CCM	CmC	CAG	cce		СПС	CTG (SAC A	ACG G	AC C	TC G	GAG C	тт С	cc co	GG	1925
20															Ala		
	Gin	Ala	Leu	GIN		Leu	Dea	neu	nap	410			•		415	_	
					405	maa	000	8 M.C. (~m/~ x		ירר ז	AG G	ecc e	TG G		AC.	1973
25															AG GA		
	Arg	Phe	Gln		Thr	Ser	GIĀ	Met		мес	WIG	пуз	Gry	430	Glu	F	
				420					425						= 0.00		2021
30															TG G		2021
	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	GIY	
			435					440					445				
25	GCC	GAC	ccc	ACC	GAG	TTC	GCC	GTG (GAG (CC G	AC G	SAG 1	TC C	AC G	CC C	3G	2069
35	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp	Glu	Phe	His	Ala	Arg	
		450					455					460					
10	CTG	GCA	CGC	CGG	CAG	GCC	GAG	CTT (CCG C	CTG T	CC A	TG A	ACG A	CG C	TG A	GC	2117
40	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470					475					480	
	ACG	CAC	GAC	ACC	AAG	CGC	AGC	GAG (GAC ?	ACC C	GA C	CA A	AGG A	TT T	CG G	TC	2165
45	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485					490					495		
	ATT	TCC	GAG	GTT	GCG	GGT	GAC	TGG (GAA A	AAG C	SCC 1	rtg i	AAC C	GG C	TG C	GC	2213
50															Leu		
				500		-	-	•	505					510			

5	GAC CTG GCC CCG C	TG CCG GAC GGC	CCG CTG TCC GCG	G CTG CTC TGG CA	G 2261
	Asp Leu Ala Pro [eu Pro Asp Gly	Pro Leu Ser A	la Leu Leu Trp	Gln
10	515	520		5 25	
,,,	GCC ATT GCC GGC GG	CC TGG CCC GCC	AGC CGG GAA CGC	CTG CAG TAC TA	.C 2309
	Ala Ile Ala Gly A	la Trp Pro Ala	Ser Arg Glu Ar	g Leu Gln Tyr	Tyr
15	530	535	54		-
.5	GCG CTG AAG GCC GC	G CGT GAA GCG	GGG AAC TCG ACC	AAC TGG ACC GA	T 2357
	Ala Leu Lys Ala A				
20	545	550	555		560
20	CCG GCC CCC GCG TT	C GAG GAG AAG (TG AAG GCC GCG	GTC GAC GCC GTC	3 2405
	Pro Ala Pro Ala Pr				
25	56	•	570	575	
	TTC GAC AAT CCC GC	C GTG CAG GCC G	AG GTG GAA GCC	CTC GTC GAG CTC	2453
	Phe Asp Asn Pro Al	a Val Gln Ala	Glu Val Glu Ala	a Leu Val Glu L	eu
30	580		585	590	
	CTG GAG CCG TAC GGA	GCT TCG AAC TO	CC CTC GCC GCC	AAG CTC GTG CAG	2501
	Leu Glu Pro Tyr Gl	y Ala Ser Asn S	Ser Leu Ala Ala	Lys Leu Val G	ln
35	595	600		605	
	CTG ACC ATG CCC GGC	GTC CCG GAC GT	TC TAC CAG GGC A	ACG GAG TTC TGG	2549
	Leu Thr Met Pro Gly	Val Pro Asp V	al Tyr Gln Gly	Thr Glu Phe Ta	rp
40	610	615	620		
	GAC CGG TCG CTG ACG	GAC CCG GAC AA	C CGG CGG CCG T	TC AGC TTC GAC	2597
	Asp Arg Ser Leu Thr	Asp Pro Asp A	sn Arg Arg Pro	Phe Ser Phe As	p
4 5	625	630	635	64	10
	GAC CGC CGC GCC GCG	CTG GAG CAG CT	G GAT GCC GGC G	AC CTT CCC GCG	2645
	Asp Arg Arg Ala Ala	Leu Glu Gln L	eu Asp Ala Gly	Asp Leu Pro Al	a
50	645		650	655	
	TCA TTT ACC GAT GAG	CGG ACG AAG CTO	G CTA GTG ACG TO	CG CGC GCG CTG	2693
	Ser Phe Thr Asp Glu	Arg Thr Lys Le	eu Leu Val Thr	Ser Arg Ala Le	ų

5	660	•	665	670	
	CGG CTG CGC CGG	GAC CGT CCG GAG	CTG .TTC ACG GG	G TAC CGG CCG GTC	2741
	Arg Leu Arg Arg	Asp Arg Pro Glu	Leu Phe Thr (Gly Tyr Arg Pro Va	1
10	675	680)	685	
	CTG GCC AGC GGG	CCC GCC GCC GGG	CAC CTG CTC GC	G TTC GAC CGC GGC	2789
	Leu Ala Ser Gly	Pro Ala Ala Gly	His Leu Leu A	ala Phe Asp Arg Gl	У
15	690	695	7	700	
	ACC GCG GCG GCG	CCG GGT GCA TTG	ACC CTC GCC AC	G CGG CTT CCC TAC	2837
	Thr Ala Ala Ala	Pro Gly Ala Leu	Thr Leu Ala T	hr Arg Leu Pro Ty	r
20	705	710	715	72	0
	GGG CTG GAA CAG	TCG GGT GGA TGG	CGG GAC ACC GCC	C GTC GAA CTT AAC	2885
^ -	Gly Leu Glu Gln	Ser Gly Gly Trp	Arg Asp Thr A	la Val Glu Leu Ası	n.
25		725	730	735	
	ACC GCC ATG AAA	GAC GAA CTG ACC	GGT GCC GGC TTC	GGA CCG GGG GCA	2933
30	Thr Ala Met Lys	Asp Glu Leu Thr	Gly Ala Gly P	he Gly Pro Gly Ala	3
	740		745	750	
	GTG AAG ATC GCC G	SAC ATC TTC CGG	rcg ttc ccc gtt	GCG CTG CTG GTG	2981
35	Val Lys Ile Ala	Asp Ile Phe Arg	Ser Phe Pro Va	al Ala Leu Leu Val	
	755	760		765	
	CCG CAG ACA GGA G	GGA GAG TCA			3002
o	Pro Gln Thr Gly (Gly Glu Ser		· .	
	770	775			
	TGACGCACAC CTACCC	GCGG GAAGCCGCGA	AACCCGTCCT GGGG	CCCCGCA CGCTACGACG	3062
5	TCTGGGCGCC C				3073

- The DNA as claimed in claim 1, which is derived from a microorganism selected from the group consisting
 of those of the genera Rhizobium, Arthrobacter, Brevibacterium, Flavobacterium, Micrococcus, Curtobacterium, Mycobacterium and Terrabacter.
 - 8. A replicable recombinant DNA containing the DNA of claim 1 and a self-replicable vector.
 - 9. The replicable recombinant DNA as claimed in claim 8, wherein said DNA encodes an enzyme having the following physicochemical properties:
 - (1) Molecular weight

About 76,000-87,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PA-GE); and (2) Isoelectric point (pl)

About 3.6-4.6 on isoelectrophoresis.

10. The replicable recombinant DNA as claimed in claim 8, wherein said DNA encodes an enzyme having an amino acid sequence selected from the group consisting of those as shown in SEQ ID NOs:2 and 4 that initiate from the N-terminal, and homologous base sequences to these amino acid sequences:

SEQ ID NO:2

Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr

Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly Val Asp

Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser Asp His Gly

Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg Gly Gly Pro Glu

Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly Ala Gly Met Gly Val Leu

Ile Asp Ile Val Pro Asn His Val Gly Val Ala Ser Pro Pro Gln Asn Pro

5	Tı	T q	rp T	rp S	er L	eu L	eu L	ys G	lu G	ly Ai	rg Gl	y Se	r Pr	о Ту	r Al	a Va	l A	la
			1	05				1	10				11	5				
	Pł	ne A	sp Va	al A	sp T	rp A	sp Le	eu A	la Gl	Ly GI	ly Ar	g Il	e Ar	g Il	e Pr	o Va	1 Le	eu
10	12	20				12	25				13	0				13	5	
	G1	y Se	er As	sp As	sp As	sp Le	eu As	sp G	ln Le	u Gl	u Il	e Ly	s Asj	p G 1	y Gl	u Le	u Ar	rg
					10				14					150				
15	ту	т ту	r As	iH q	is Ar	g Pt	ne Pr	o Le	u Al	a Gl	u Gl	y Se	r Tyi	r. Ar	g As	p Gl	y As	p
		. 15	5				16	0				16	5				17	0
	Se	r Pr	o G1	n As	p Va	l Hi	s Gl	y Ar	g Gl	n Hi	s Ty	r Glı	ı Leu	ıIl	e Gl	y Tr	o Ar	g
20					17	5				18	0				18	5		
	Ar	g Al	a As	p As	n Gl	u Le	u As	n Ty	r Ar	g Ar	g Phe	e Phe	a Ala	Va.	l Ası	ı Thi	Le	u
			19	0				19	5				200	ı				
25	Ala	Gl	y Il	e Ar	g Va	1 G1	u Va	l Pro	o Pro	val	l Phe	Asp	Glu	Ala	a His	Glr	Gl	u
	205	5				21	o				215	i				220)	
	Val	. Va.	l Arg	g Tr	p Pho	a Arg	J Ala	a Gly	, Lei	ı Ala	a Asp	Gly	Leu	Arg	, Ile	. Asp	His	3
30				22	õ				230)				235	i			
	Pro	Asp	Gly	Let	ı Ala	a Asp	Pro	Glu	Gly	Туг	Leu	Lys	Arg	Leu	Arg	Glu	Val	L
		240)				245	j				250					255	;
35	Thr	Gly	Gly	Ala	Тут	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln	ì
					260)				265					270			
40	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala	
40			275					280					285					
	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg	
45	290					295					300					305		
+ 5	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile	
				310					315					320				
50	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu	
uv		325					330					335					340	
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	I '.a	Pro (Gly	Glu	Ala	Ala	

5					345	i				350)				355	i	-
	Ala	a Asp	Ala	Ile	Ala	Glu	ılle	lle	Ala	a Ala	Phe	Pro	Val	туг	Arg	Ser	Туг
			360)				365	;				370)			
10	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	: Asp	Leu	. Ala	Ala	Arg
	375	i				380)				385					390)
	Arg	Arg	Pro	Glu	Leu	GLy	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
15				395					400)				405	i		
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
20	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Тут	Asn	Arg	Leu	Gly
					430					435					440		
25	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
25	•		445					450					455				
	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
30	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
35	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495					500					505					510
	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
40					515					520					525		
	Gln	Ala		Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	_	Leu	Gln	Ser	Tyr
			530					535					540			_	
45		Leu	Lys	Ala		_	Glu	Ala	Gly			Thr	Ser	Trp	Thr		Pro
	545	_				550					555					560	
	Asp	Pro			Glu	Glu	Ala			Ala	Val	Val	Asp		Ala	Phe	Asp
50		_		565	_	_ •			570					575	_		_
	Asn		Glu	Val	Arg	Ala		Leu	Glu	Ala	Leu		Gly	Leu	Leu	Ala	
		580					5 8 5					590					595

5	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
3					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
10			615	ı				620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
	630	1				635					640					645	
15	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655				٠	660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
20		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
25	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
30	715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
				735					740					745			
35	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					765
	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
10					770												

	850	ID I	NO : 4														
5	Met	Arg	Thr	Pro	Val	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Lys	Gly	Phe	Thr
	1		÷		5					10					15		
	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His	Ser	Leu	Gly	Val	Asp
10			20					25					30				
	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
4.5																	
15																	
	٠																
20																	
															,		
25																	
30																	
٠																	
35																	

50 ·

5	35					40					45					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
10	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
15					90					95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
			105					110					115				
20	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
25				140					145					150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
10		155					160			•		165					170
	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
15	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
ю	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
5	Pro	Asp	Gly	Leu	Ala	Asp	Pro	G1u	Gly	Туг	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
50					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				

5	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
	290					295					300					305	
	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Asp	Met	Ile
10				310					315					320			
	Arg	Gly	Thr	ГЛЗ	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
15	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	GLy
•					345					350					355		
	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
20			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
	375					380					385					390	
25	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
30		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
35	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
			445					450					455				
40	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
•	460	·				465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
45				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
		495					500					505					510
50	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515				e	520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr

5			530			•	•	535					540)			
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
	545	i				550					555	i				560	
10	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565	,				570					575			
	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
15		580					.585					590					595
	Tyr	Cly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
20	Gly	Val	Pro	Asp	Val	Tyr	G1n	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
05	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
25	630					635					640					645	
	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
30	•			650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
		665					670					675		•			680
35	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
ю			700					705					710				
		Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	_	Thr
	715					720					725					730	
1 5	Ala	Val	Glu		Asn	Thr	Ala	Met	-	Asp	Glu	Leu	Thr	_	Ala	Gly	Phe
				735					740					745			
	Gly		Gly	Ala	Val	Lys		Ala	Asp	Ile	Phe		Ser	Phe	Pro	Val	
50		750					755					760					765
	Leu	Leu	Val	Pro	Gln	Thr	GLY	Gly									
					770					775							

11. The replicable recombinant DNA as claimed in claim 8, wherein said DNA has a base sequence selected from the group consisting of those as shown in the following SEQ ID NOs:1 and 3 that initiate from the 5'-terminus, homologous base sequences to the base sequences, and complementary base sequences to these base sequences:

5

10

15

20

25

30

SEQ ID NO:1

ATGAGGACAC CCGCCTCGAC CTACCGGCTG CAGATCAGGC GGGGTTTCAC GCTGTTTGAT 60 GCCGCCGAGA CCGTGCCCTA CCTGAAGTCA CTCGGGGTGG ACTGGATCTA CCTGTCGCCC 120 ATCCTGAAGG CAGAGAGCGG CTCCGACCAC GGCTATGACG TCACCGATCC CGCCGTAGTG 180 GACCCGGAGC GCGGCGGCCC TGAAGGGCTG GCCGCGGTGT CCAAGGCGGC CCGCGGTGCC 240 GGCATGGGCG TGCTGATCGA CATCGTGCCG AACCACGTGG GCGTGGCGTC GCCGCCGCAG 300 AACCCGTGGT GGTGGTCGCT GCTCAAGGAA GGGCGCGGGT CGCCCTACGC CGTGGCGTTC 360 GACGTCGACT GGGACCTGGC GGGGGGCCGC ATCCGGATCC CCGTCCTGGG CAGCGACGAC 420 GATCTGGACC AGCTCGAAAT CAAGGACGGC GAGCTGCGGT ACTACGACCA CCGCTTCCCG 480 CTGGCCGAGG GCAGCTACCG GGACGGCGAC TCCCCGCAGG ACGTCCACGG CCGGCAGCAC 540 TACGAACTCA TCGGCTGGCG GCGCGCCGAC AATGAACTGA ACTACCGCCG GTTCTTCGCG 600 GTGAACACGC TCGCCGGCAT CCGGGTGGAG GTGCCGCCGG TCTTCGATGA AGCGCACCAG 660 GAGGTGGTGC GCTGGTTCCG TGCGGGGCTC GCCGACGGGC TGCGGATCGA CCACCCGGAC 720 GGCCTGGCCG ATCCCGAGGG GTATTTGAAG CGGCTCCGTG AGGTCACCGG GGGCGCGTAC 780 CTGCTCATCG AAAAGATCCT CGAGCCGGC GAACAGTTGC CGGCCAGCTT CGAGTGCGAA 840 GGCACCACCG GCTACGACGC CCTCGCGGAT GTCGACAGGG TCTTCGTGGA CCCGCGGGGA 900 CAGGTGCCGC TGGACCGTCT GGACGCACGG CTGCGCGGCG GTGCGCCGGC CGACTACGAG 960 GACATGATCC GCGGGACCAA GCGCCGGATC ACCGACGGCA TCCTGCACTC CGAGATCCTG 1020 CGCCTTGCCA GGCTGGTGCC CGAGCAGACC GGAATTCCCG GGGAGGCGGC CGCGGATGCG 1080 ATCGCGGAGA TCATCGCGGC CTTCCCGGTC TACCGGTCCT ATCTTCCCGA GGGCGCGGAG 1140 ATCCTGAAGG AGGCCTGCGA CCTCGCCGCG CGGAGGCGTC CGGAACTGGG CCAGACCGTC 1200 CAGCTGCTGC AGCCGCTGCT GCTGGATACC GACCTCGAGA TTTCCCGCAG GTTCCAGCAG 1260 ACCTCGGGAA TGGTCATGGC CAAAGGCGTG GAGGACACCG CGTTCTTCCG CTACAACCGG 1320

50

CTGGGAACGC TCACCGAGGT GGGCGCCGAC CCCACCGAGT TCTCGCTGGA ACCGGAGGAG 1380 TTTCACGTCC GGATGGCCCG CCGCCAGGCC GAACTCCCGC TCTCCATGAC CACCCTGAGC 1440 ACGCACGACA CCAAGCGCAG CGAGGACACC CGGGCCCGGA TCTCGGTGAT CGCCGAGGTC 1500 GCGCCTGAAT GGGAAAAGGC CCTGGACAGG CTGAACACCC TCGCTCCGCT GCCGGACGGC 1560 CCGCTCTCCA CGCTGCTCTG GCAGGCGATT GCGGGGGCAT GGCCGGCCAG CCGGGAACGC 1620 CTTCAGTCCT ACGCCCTGAA AGCGGCGCGC GAAGCCGGGA ACTCGACCAG CTGGACCGAT 1680 CCGGACCGG CATTCGAGGA GGCACTTTCC GCCGTCGTCG ACTCCGCCTT CGACAATCCG 1740 GAGGTGCGTG CGGAACTTGA GGCCTGGTG GGCCTCCTTG CGCCGCACGG TGCGTCCAAC 1800 TCGCTCGCGG CAAAGCTTGT CCAGCTGACC ATGCCGGGCG TTCCGGACGT GTACCAGGGC 1860 ACCGAGTTCT GGGACAGGTC GCTGACCGAT CCGGACAACC GGCGCCCCTT CAGCTTCGCC 1920 GAACGGATTA GGGCCTTGGA CCAGTTGGAC GCCGGCCACC GTCCGGACTC CTTCCAGGAC 1980 GAGGCGGTCA AGCTGCTGGT CACCTCGAGG GCGCTGCGGC TGCGGCGGAA CCGGCCCGAG 2040 CTCTTCACCG GCTACCGCCC CGTGCATGCC AGGGGCCCCG CCGCCGGGCA CCTGGTGGCG 2100 TTCGACCGCG GCGCCGGGG AGTGCTGGCG CTTGCCACCC GGCTCCCCTA CGGGCTGGAA 2160 CAGTCGGCG GCTGGCGGGA CACCGCCGTC GAGCTTGAAG CCGCCATGAC GGACGAACTG 2220 ACCEGCTCCA CTTTCGGGCC GGGACCGGCG GCGCTGTCAG AAGTCTTCCG GGCCTACCCG 2280 2316 GTGGCCTTGT TGGTCCCCGC GACAGGAGGC AAGTCA

35

45

55

10

15

20

25

30

SEQ ID NO:3

5	GTGAACACGC TCGCCGGCGT CCGCGTGGAA ATCCCCGCCG TCTTCGACGA GGCACACCA	G 660
	GAGGTGGTGC GCTGGTTCCG CGAGGACCTT GCGGACGGCC TGCGGATCGA CCACCCGGA	C 720
	GGCCTCGCTG ACCCCGAGGG GTACCTGAAG CGACTCCGGG AAGTCACCGG CGGCGCTTA	C 780
10	CTGCTGATCG AAAAGATCCT GGAGCCGGGG GAGCAGCTGC CCGCCAGCTT CGAGTGTGA	A 840
	GGCACCACAG GCTACGACGC CCTCGCCGAC GTCGACCGGG TTCTCGTGGA CCCGCGCGG	C 900
	CAGGAACCGC TGGACCGGCT TGACGCGTCC CTGCGTGGCG GCGAGCCCGC CGACTACCA	G 960
15	GACATGATCC GCGGAACCAA GCGCCGGATC ACCGACGGTA TCCTGCACTC GGAGATCCT	G 1020
	CGGCTGGCCC GGCTGGTTCC GGGCGACGCC AACGTTTCAA TCGACGCCGG AGCCGACGC	т 1080
	CTCGCCGAAA TCATCGCCGC CTTCCCGGTC TACCGCACCT ACCTGCCGGA GGGCGCCGA	G 1140
20	GTCCTGAAGG AGGCGTGCGA GCTTGCCGCG CGTAGGCGGC CGGAACTCGA CCAGGCCAT	C 1200
	CAGGCTCTGC AGCCGCTGCT GCTGGACACG GACCTCGAGC TTGCCCGGCG CTTCCAGCA	G 1260
	ACCTCGGGCA TGGTCATGGC CAAGGGCGTG GAGGACACCG CGTTCTTCCG CTACAACCG	C 1320
25	CTGGGCACCC TCACGGAAGT GGGCGCCGAC CCCACCGAGT TCGCCGTGGA GCCGGACGA	3 1380
	TTCCACGCCC GGCTGCACG CCGGCAGGCC GAGCTTCCGC TGTCCATGAC GACGCTGAG	2 1440
	ACGCACGACA CCAAGCGCAG CGAGGACACC CGAGCAAGGA TTTCGGTCAT TTCCGAGGT	r 1500
30	GCGGGTGACT GGGAAAAGGC CTTGAACCGG CTGCGCGACC TGGCCCCGCT GCCGGACGG	1560
	CCGCTGTCCG CGCTGCTCTG GCAGGCCATT GCCGGCGCCT GGCCCGCCAG CCGGGAACGC	1620
	CTGCAGTACT ACGCGCTGAA GGCCGCGCGT GAAGCGGGGA ACTCGACCAA CTGGACCGAT	r 1680 ·
35	CCGCCCCCG CGTTCGAGGA GAAGCTGAAG GCCGCGGTCG ACGCCGTGTT CGACAATCC	1740
	GCCGTGCAGG CCGAGGTGGA AGCCCTCGTC GAGCTCCTGG AGCCGTACGG AGCTTCGAAC	1800
40	TCCCTCGCCG CCAAGCTCGT GCAGCTGACC ATGCCCGGCG TCCCGGACGT CTACCAGGGC	1860
40	ACGGAGTTCT GGGACCGGTC GCTGACGGAC CCGGACAACC GGCGGCCGTT CAGCTTCGAC	1920
	GACCGCCGCG CCGCGCTGGA GCAGCTGGAT GCCGGCGACC TTCCCGCGTC ATTTACCGAT	1980
45	GAGCGGACGA AGCTGCTAGT GACGTCGCGC GCGCTGCGGC TGCGCCGGGA CCGTCCGGAG	2040
40	CTGTTCACGG GGTACCGGCC GGTCCTGGCC AGCGGGCCCG CCGCCGGGCA CCTGCTCGCG	3 2100
	TTCGACCGCG GCACCGCGC GGCGCCGGGT GCATTGACCC TCGCCACGCG GCTTCCCTAC	2160
50	GGGCTGGAAC AGTCGGGTGG ATGGCGGGAC ACCGCCGTCG AACTTAACAC CGCCATGAAA	2220
30	GACGAACTGA CCGGTGCCGG CTTCGGACCG GGGGCAGTGA AGATCGCCGA CATCTTCCGG	2280
	TETTETECE TTEECTE CETTETE ACACEACE ACTEN	2225

12. The replicable recombinant DNA as claimed in claim 11, wherein one or more bases in SEQ ID NOs:1 and 3 are replaced with other bases by means of degeneracy of genetic code without alternating their corresponding amino acid sequences of the following SEQ ID NOs:2 and 4 in this order:

SEQ ID NO:2

Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly Val Asp Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser Asp His Gly Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg Gly Gly Pro Glu Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly Ala Gly Met Gly Val Leu Ile Asp Ile Val Pro Asn His Val Gly Val Ala Ser Pro Pro Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg Gly Ser Pro Tyr Ala Val Ala Phe Asp Val Asp Trp Asp Leu Ala Gly Gly Arg Ile Arg Ile Pro Val Leu Gly Ser Asp Asp Asp Leu Asp Gln Leu Glu Ile Lys Asp Gly Glu Leu Arg Tyr Tyr Asp His Arg Phe Pro Leu Ala Glu Gly Ser Tyr Arg Asp Gly Asp Ser Pro Gln Asp Val His Gly Arg Gln His Tyr Glu Leu Ile Gly Trp Arg Arg Ala Asp Asn Glu Leu Asn Tyr Arg Arg Phe Phe Ala Val Asn Thr Leu

5			190)				195					200)			
	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
10	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
15		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	GLu	Gln
					260				•	265					270		
20	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	G1n	Val	Pro	Leu	Asp	Arg
25	290			-		295					300					305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
30				310					315					320			
30	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
35	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Tyr
40			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Gl u	Ile	Leu	Lys	Glu	Ala	Cya	Asp	Leu	Ala	Ala	Arg
	375					380					385			,		390	
45	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
50		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		

~ <i>₹</i> ′	
٠	

5	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	:10	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
			445					450					455				
	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Aļa	Glu	Leu	Pro	Leu	Ser	Met
10	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
			•	480			÷		485					490			
15	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495					500					505					510
	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
20					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Glņ	Ser	Tyr
			530					535					540				
25	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555					560	
	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
30				565					570					575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
		580					585					590					595
35	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	ГÀе	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
40	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
40			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
45	630					635					640					645	
••	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
<i>~</i>				650					655					660			
₹ ? 50	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His

					685					690)				695		
5	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
J			700					705					710				
	Leu	Pro	Туг	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
10	.715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
				735					740					745			
15	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
	٠	750					755					760					765
	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
20					770												
25				•													
	OB0	TD :	TO - 4														
	_	ID E		Dwo	v. l	802	mb ×	m	A ra	T 011	Cin	Tlo	λrα	T vve	Clu	Phe	መኮታ
30	net 1	Arg	THE	PLO	5	Ser	1111	ıyı	Arg	10	GIII	116	Arg	nys	15	File	1111
		Pho	Aen	λla		T.ve	መኪድ	Va1	Pro		Len	Hie	Ser	Leu		Val	Agn
35	neu	rne	20	AIG	AIG	цуз	****	25	110	*1*	шец		30	DCu	017	*42	
	Tro	Val		Leu	Ser	Pro	Val		Thr	Ala	Glu	Gln		Ser	Asp	His	Gly
	35		-2-			40					45				-	50	
40	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
	-	-		55	_				60	_				65	_		
	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
45		70				•	75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
					90					95					100		
50	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
			105					110					115				
	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	λrg	Leu	Pro	Val	Leu
55	120					125					130					135	

5	Gly	Ser	Asp	Asy	Asp	Leu	Asp	Gln	L€ú	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
				140					145					150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
10		155					160					165					170
	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
				•	175					180					185		
15	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Тух	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190		,			195					200				
	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
20	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
25	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
30					260					265				,	270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
25			275					280					285				
35	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
	290					295					300					305	
40	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Asp	Met	Ile
				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
45		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
					345					350					355		
50	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg

5	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	ıle	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
10	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
	Met	Ala	Lys	Gly	V al	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
15					430					435					440		
	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
			445					450					455				
20	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
25				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
		495					500					505					510
30	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
35			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Ąsp	Pro
40	545					550					555					560	
10	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
15	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
ю		580					585					590					595
	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
50					600					605					610		
~	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				

_	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
5	630					635					640					645	
	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
10				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
		665					670					675					680
15	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Ĺeu	Thr	Leu
20			700					705					710			٠	
	Ala Thr Arg Leu Pro Ty						Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
	715					720					725					730	
25	Ala	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
				735					740					745			
	Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala
30		750					755					760					765
	Leu	Leu	Val	Pro	Gln	Thr	Gly	Gly	Glu	Ser							
					770					775							

35

13. The replicable recombinant DNA as claimed in claim 8, which has a base sequence selected from the group consisting of those as shown in SEQ ID NO:10 and 11:

SEQ ID NO:10:

CGTGCTCTAC TTCAACGCGC ACGACGGCGA CGTCGTGTTC AAGCTCCCGT CGGATGAATA 60

CGCCCCGGCC TGGGACGTCA TCATCGACAC CGCCGGCGCG GGTGCCGATT CCGAACCCGT 120

GCAGGCTGGC GGCAAACTCA CCGTGGCAGC GAAATCGCTC GTGGTGCTCC GTGCCCACAG 180

CGCCCCGGAG GAGGAACCGG ACCACTCGGT GGCCGCCTCC CTCGCAGCGC TGACGCAGAC 240

TGCGACCGCC GAAACCGCGG CGCTCACCGC CCCCACCGTT CCGGAGCCGA GGAAGACCAA 300

GAAGGCAGCG CCGAAGCCGG AAGAGGAGGC TCCCGACGAG GCGCGCCGA AGCCGGAAGA 360

GAAGGCTCCC GACGAGGCGG CGGCGAAGCC GGAAGAGGCT GCTTCCGACG AGGCGGCGC 420

5	GAAGCCGGAA GAGAAGGCTC CCGACGAGGC GGCGGCGAAG CCGGAAGAGG CTGCTTCC	GA 480
	CGAGGCGGCG GCGAAGCCCG CGGGGAAGGC AGCGGCCAAA ACGGCCGGC	CC 540
	AGGCAAGCAG GGCGGGACGG GCTC	564
10	ATG AGG ACA CCC GCC TCG ACC TAC CGG CTG CAG ATC AGG CGG GGT TTC	612
	Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly P	he
	1 5 10 15	
15	ACG CTG TTT GAT GCC GCC GAG ACC GTG CCC TAC CTG AAG TCA CTC GGG	660
	Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu G	ly
	20 25 30	
20	GTG GAC TGG ATC TAC CTG TCG CCC ATC CTG AAG GCA GAG AGC GGC TCC	708
	Val Asp Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly S	er
	35 40 45	
25	GAC CAC GGC TAT GAC GTC ACC GAT CCC GCC GTA GTG GAC CCG GAG CGC	756
	Asp His Gly Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu A	rg
	50 55 60	
30	GGC GGC CCT GAA GGG CTG GCC GCG GTG TCC AAG GCG GCC CGC GGT GCC	804
	Gly Gly Pro Glu Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly A	la
	65 70 75 8	0
35	GGC ATG GGC GTG CTG ATC GAC ATC GTG CCG AAC CAC GTG GGC GTG GCG	852
	Gly Met Gly Val Leu Ile Asp Ile Val Pro Asn His Val Gly Val A	la
10	85 90 95	
	TCG CCG CCG CAG AAC CCG TGG TGG TGG TCG CTG CTC AAG GAA GGG CGC	900
	Ser Pro Pro Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly A	rg
15	100 105 110	
_	GGG TCG CCC TAC GCC GTG GCG TTC GAC GTC GAC TGG GAC CTG GCG GGG	948
	Gly Ser Pro Tyr Ala Val Ala Phe Asp Val Asp Trp Asp Leu Ala G	ly
50	115 120 125	
	GGC CGC ATC CGG ATC CCC GTC CTG GGC AGC GAC GAT CTG GAC CAG	996
	Gly Arg Ile Arg Ile Pro Val Leu Gly Ser Asp Asp Asp Leu Asp G	ln

5		130					135					140					
	CTC	GAA	ATC	AAG	GAC	GGC	GAG	CTG	CGG	TAC '	TAC C	AC (CAC	CGC 1	rtc c	:CG	1044
	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg	Tyr	Tyr	Asp	His	Arg	y Phe	Pro	
10	145					150					155					160	
	CTG	GCC	GAG	GGC	AGC	TAC	CGG	GAC	GGC	GAC	TCC C	CCG (CAG (GAC (GTC (CAC	1092
	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp	Ser	Pro	Gln	Asp	Val	His	
15					165					170					175	i	
	GGC	CGG	CAG	CAC	TAC	GAA	CTC	ATC	GGC	TGG (CGG C	GC C	SCC (GAC A	AAT G	AA	1140
	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	Ala	Asp) Asn	Glu	
20				180					185					190)		
	CTG	AAC	TAC	CGC	CGG	TTC	TTC	GCG	GTG	AAC A	ACG C	TC G	CC C	GC 1	ATC C	GG	1188
	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Ala	Gly	, Ile	Arg	
25			195					200					205				
	GTG	GAG	GТG	CCG	CCG	GTC	TTC	GAT	GAA	GCG (CAC C	CAG G	GAG (STG (STG C	:GC	1236
20	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu	Val	. Val	Arg	
30		210		•			215					220					
	TGG	TTC	CGT	GCG.	GGG	CTC	GCC	GAC	GGG	CTG (CGG A	TC G	SAC C	AC C	CCG G	AC	1284
35	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His	Pro	Asp	
00	225					230					235					240	
	GGC	CTG	GCC	GAT	ccc	GAG	GGG	TAT '	TTG .	AAG (CGG C	TC C	GT G	AG G	STC A	.cc	1332
40	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val	Thr	
				٠	245					250					255		
	GGG	GGC	GCG	TAC	CTG	CTC .	ATC	GAA	AAG .	ATC (CTC G	AG C	CG G	GC G	AA C	AG	1380
45	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln	
				260					265	٠				270	•		
	TTG	CCG	GCC	AGC	TTC	GAG	TGC	GAA (GGC /	ACC A	ACC G	GC T	'AC G	SAC G	CC C	TC	1428
50	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	
			275					280					285				
	GCG	GAT	GTC	GAC	AGG	GTC '	TTC	GTG (GAC (CCG (CGG G	GA C	AG C	TG C	CG C	TG	1476

5	Ala	Asp	Val	Asp	Arg	_Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	
		290					295					300					
	GAC	CGT	CTG	GAC	GCA	CGG	CTG	CGC	GGC (GT (GCG C	CG G	CC G	AC T	AC G	AG	1524
10	Asp	Arg	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	
	305				•	310					315					320	
	GAC	ATG	ATC	CGC	GGG	ACC	AAG	CGC	CGG 2	ATC A	ACC G	AC G	GC A	TC C	TG C	AC	1572
15	Asp	Met	Ile	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	
					325					330					335		
	TCC	GAG	ATC	CTG	CGC	СТТ	GCC .	AGG (CTG (TG C	CC G	AG C	AG A	CC G	GA AT	T	1620
20	Ser	Glu	Ile	Leu	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	
				340					345					350			
	ccc	GGG	GAG	GCG	GCC	GCG	GAT (GCG A	ATC G	CG G	ag a	TC A	TC G	CG G	CC TI	rc	1668
25	Pro	Gly	Glu	Ala	Ala	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	
			355					360					365				
	CCG	GTC	TAC	CGG	TCC	TAT	CTT (ccc o	GAG C	GC G	CG G	AG A	TC C	TG A	AG GA	\G	1716
30	Pro	Va1	Tyr	Arg	Ser	Tyr	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	
		370					375					380					
35	GCC	TGC	GAC	CTC	GCC	GCG	CGG i	AGG (CGT C	CG G	AA C	TG G	GC C	AG AC	CC GT	'C	1764
JJ	Ala	Cys	Asp	Leu	Ala	Ala	Arg	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	
	385					390					395					400	
40	CAG	CTG	CTG	CAG	CCG	CTG (CTG (CTG G	SAT A	CC G	AC C'	TC G	AG A	T TO	CC CG	C	1812
	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	
					405					410					415		
45	AGG	TTC	CAG	CAG	ACC	TCG (GGA A	ATG G	STC A	TG G	CC A	AA G	GC G	rg ga	ig ga	.C	1860
	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val	Met	Ala	Lys	Gly	Val	Glu	Asp	
				420					425					4 30			
50	ACC	GCG	TTC	TTC	CGC	TAC I	AAC C	CGG C	TG G	GA A	CG C	TC A	CC G	AG G7	G GG	C	1908
	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	Gly	
			435					440					445				

5	GCC	GAC	CCC	ACC	GAG	TTC	TCG	CTG	GAA	CCG	GAG	GAG T	rtt (CAC G	тс с	GG	1956
	Ala	Asp	Pro	Thr	Glu	ı Phe	Ser	Leu	Glu	Pro	Glu	Glu	Phe	His	Val	Arg	•
		450					455	j				460					
10	ATG	GCC	CGC	CGG	CAG	GCC	GAA	CTC	CCG	CTC '	TCC .	ATG A	ACC P	rcc c	TG A	GC	2004
	Met	Ala	Arg	Arg	Glr	. Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470					475	į.				480	
15	ACG	CAC	GAC	ACC	AAG	CGC	AGC	GAG	GAC .	ACC (CGG (GCC C	GG A	TC T	CG G	T G	2052
	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485	j				490					495		
20	ATC	GCC	GAG	GTC	GCG	CCT	GAA	TGG	GAA A	AAG (GCC (CTG G	AC A	GG C	TG A	AC	2100
	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg	Leu	Asn	•
				500					505					510			
25	ACC	CTC	GCT	CCG	CTG	CCG	GAC	GGC (CCG (CTC 1	rcc A	ACG C	TG C	TC T	GG C	AG.	2148
	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp	Gln	
			515					520					525				
30	GCG	ATT	GCG	GGG	GCA	TGG	CCG	GCC 2	AGC (CGG C	SAA C	CGC C	TT C	AG T	CC TA	AC	2196
	Ala	Ile	Ala	Gly	λla	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr	
		530					535					540	• .				
35	GCC	CTG	AAA	GCG	GCG	CGC	GAA	GCC (GGG A	AC I	CG A	ACC A	GC T	GG A	CC GA	ΑT	2244
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	
	545					550					555					560	
40	CCG	GAC	CCG	GCA	TTC	GAG	GAG	GCA (стт т	cc G	CC G	TC G	TC G	AC TO	CC GC	C	2292
	Pro	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	
					56 5					570					575		
45	TTC	GAC	AAT	CCG	GAG	GTG	CGT (GCG (SAA C	TT G	AG G	CC C	TG G	TG G	C CI	.c	2340
	Phe	Asp	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	
				580					585					590			
50	СТТ	GCG	CCG	CAC	GGT	GCG	TCC.	AAC 1	CG C	TC G	CG G	CA A	AG C	TT G	rc ca	\G	2388

55

\$

5	59	5	600	605	
	CTG ACC ATC	G CCG GGC GTT (CCG GAC GTG TAC C	CAG GGC ACC GAG T	TC TGG 243
	Leu Thr Me	t Pro Gly Val	Pro Asp Val Tyr	Gln Gly Thr Glu	Phe Trp
10	610		615	620	
	GAC AGG TC	G CTG ACC GAT	CCG GAC AAC CGG C	CGC CCC TTC AGC T	rc GCC 2484
	Asp Arg Se	r Leu Thr Asp	Pro Asp Asn Arg	Arg Pro Phe Ser	Phe Ala
15	625	630	•	635	640
	GAA CGG ATT	r agg gcc ttg (GAC CAG TTG GAC G	CC GGC CAC CGT CG	CG GAC 2532
20	Glu Arg Ile	e Arg Ala Leu	Asp Gln Leu Asp	Ala Gly His Arg	Pro Asp
20		645	650		655
	TCC TTC CAG	GAC GAG GCG G	STC AAG CTG CTG G	TC ACC TCG AGG GO	CG CTG 2580
25	Ser Phe Gl	n Asp Glu Ala	Val Lys Leu Leu	Val Thr Ser Arg	Ala Leu
		660	665	670	
			•	CC GGC TAC CGC CC	
30				Thr Gly Tyr Arg	Pro Val
	675		680	685	
				TG GCG TTC GAC CG	
15	_	_	_	Val Ala Phe Asp	Arg Gly
	690		695	700	
				TC CCC TAC GGG CT	
О			_	Leu Pro Tyr Gly	720
	705	710		715 AG CTT GAA GCC GC	
				Glu Leu Glu Ala	
5	oin ser Giy	725	730		735
	ACC GAC GAA			CG GGA CCG GCG GC	
				Pro Gly Pro Ala	
60	TIM Nop oru	740	745	750 750	
	TCA GAA GTC			rg ttg gtc ccc gc	G ACA 2868
		11			

	Ser	Glu	Val	the	Ara	Ala	Tur	Pro	Va 1	Δla	ī.eu	Leu.	Val	DT0	Ala T	h
	-		755		9		-1-	760	V 4.2			200			nia i	
5								700					765			
			AAG													2880
	Gly	Gly	Lys	Ser												
10		770														
	TGAC	CGCA	CC C	AACG	ATGC	G GC	CAAG	CCGG	TGC	\GGG/	AGC G	GGGC	GCTI	C GA	TATC	2936
15																
10																
20																
													1			
25																
30																
35																
40																
									•							
45																
							٠									
50																
<i>5</i> 0																

5	SEQ ID NO:11	
	GATCCGGACG GCAACCTCAT GTCCCCGGAG GACTGGGACA GCGGCTTCGG CCGTTCGGTG	60
10	GGCATGTTCC TCAACGGCGA CGGCATCCAG GGCCACGATG ACCGCGGCCG CCGCATCACG	120
	GACGTGAACT TCCTGCTGTA CTTCAACGCC CACGACGGCG ACGTCGAGTT CACGCTGCCG	180
	CCGGACGAAT ACGCCCCGGC CTGGGACGTC ATCATCGACA CCGCCGGTGA AGGGGCCGAC	240
15	TCCAAGCCCG CGGACGCCGG AACCATCCTG TCCGTTGCGG CCAAGTCGCT GGTTGTGCTT	300
	CGCGCCCACA GCGCACCGGA GGAGGAGCCT GACCATTCCG TGGCTGCTTC CCTGGCTGCA	360
	CTGACGCAGA CCGCCACCGC CGAGACGGCG GCGCTCACAG CTCCTGCCGT TCCCGAGCCG	420
20	GCCAAGACGA AGAAGCCGGC CGCTGACCCG GTTGCTGAAC CGGCCGACCC GCCGGTTGCT	48 0
	GACCCGGCCG ACCCGGTTGC TGACCCGGTT GCTGACCCGG CGCCGGAACC GGCTGCGGAG	540
	CCTGCGAAAT CCGCAGCGGA ACCTGGTGCG GAGCCTGCGA AGGACCCGGA GGAGCAGCCG	600
25	GCGGAAAAGC CGGCGCGAA GCCTGCGGCA AAGCGCGGCG GCCACCTGAG GGCGGTCAAG	660
	CCCGCTGGGG AGGACGC	677
	ATG AGA ACG CCA GTC TCC ACG TAC AGG CTG CAG ATC AGG AAG GGA TTC	725
30	Met Arg Thr Pro Val Ser Thr Tyr Arg Leu Gln Ile Arg Lys Gly Phe	
	1 5 10 15	
	ACA CTC TTC GAC GCG GCC AAA ACC GTT CCG TAC CTG CAC TCG CTC GGC	773
35	Thr Leu Phe Asp Ala Ala Lys Thr Val Pro Tyr Leu His Ser Leu Gly	
	20 25 30	
	GTC GAC TGG GTC TAC CTT TCT CCG GTC CTG ACT GCC GAG CAG GGC TCC	321
40	Val Asp Trp Val Tyr Leu Ser Pro Val Leu Thr Ala Glu Gln Gly Ser	
	35 40 45	
45		

5	GAC	CAC	GGG	TAC	GAC	GTC	ACC	GAT	CCC	TCC (GCC (STC G	ac c	CC G	AA C	GC	869
	Asp	His	Gly	Туг	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	
		50					55					60					
10	GGC	GGG	CCG	GAG	GGC	CTC	GCG	GCG	GTT '	TCC A	AAG (GCG G	CC C	GC G	CC G	CG	917
	Gly	Gly	Pro	Glu	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	
•	65					70					75					80	
15	GGC	ATG	GGC	GTG	CTG	ATC	GAC	ATC	GTG (ccc i	AAC (CAC G	TG G	GC G	TC G	CG	965
	Gly	Met	Gly	Val	Leu	ılle	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	
					85					90					95		
20	ACG	CCG	GCG	CAG	AAC	CCC	TGG	TGG	TGG T	rcg (CTG C	CTC A	AG G	AG G	GA C	GC	1013
	Thr	Pro	Ala	Gln	Asn	Pro	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	
				100					105					110			
25	CAG	TCC	CGT	TAC	GCG	GAG	GCG	TTC	GAC (STC (AT T	GG G	AC C	TC G	CC G	GG	1061
	Gln	Ser	Arg	Tyr	Ala	Glu	Ala	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	
			115					120					125				
30	GGA	CGC	ATC	CGG	CTG	CCG	GTG	CTC (GGC A	AGC G	AC G	AT G	AC C	TC G	AC C	AG	1109
	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	
		130					135					140					
35	CTC	GAA	ATC	AGG	GAC	GGG	GAG	CTG (CGG 1	'AC T	'AC G	AC C	AC C	GA T	rc co	CG	1157
	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg	Tyr	Tyr	Asp	His	Arg	Phe	Pro	
	145					150					155					160	
40	CTC	GCC	GAG	GGA	ACC	TAC	GCC (GAA (GC G	CAC G	CC C	CG C	GG G	AT G	rc C	AC	1205
	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp	Ala	Pro	Arg	Asp	Val	His	
					165					170					175		
4 5	GCC	CGG	CAG	CAC	TAC	GAG	CTC A	ATC (GC I	GG C	GC C	GC G	CG G	AC A	AC GA	AG	1253
	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	Ala	Asp	Asn	Glu	
E0				180					185					190			
50	CTG	AAC	TAC	CGC	ccc	TTT	TTC (GCG (STG A	LAC A	cc c	TC G	CC G	GC G'	rc co	3C	1301
	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Ala	Gly	Val	Arg	

5			195					200					205	,				
	GTG	GAA	ATC	ccc	GCC	GTC	TTC	GAC	GAG (GCA C	CAC C	CAG G	AG C	STG	GTG	ÇG	С	1349
	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu	Va	1 V	al	Arg	
10		210					215					220						
	TGG	TTC	CGC	GAG	GAC	CTT	GCG	GAC	GGC (CTG C	CGG Z	ATC G	AC (CAC	CCG	GA	'C	1397
	Trp	Phe	Arg	G1u	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	ні	s P	ro	Asp	•
15	225					230					235						240	
	GGC	CTC	GCT	GAC	ccc	GAG	GGG	TAC	CTG .	AAG (CGA C	CTC C	GG (GAA	GTC	AC	:C	1445
	Gly	Leu	Ala	Asp	Pro	Glu	Gly	тух	Leu	Lys	Arg	Leu	Arg	Gl	u V	al	Thr	
20					245					250					2	55		
	GGC	GGC	GCT	TAC	CTG	CTG	ATC	GAA	AAG	ATC C	CTG C	AG C	cc c	GG	GAG	CA	G	1493
	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gl	y G	lu	Gln	
25				260					265					27	0			
	CTG	CCC	GCC	AGC	TTC	GAG	TGT	GAA	GGC .	ACC A	ACA C	GC I	AC C	GAC	GCC	CT	C	1541
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	As	p A	la	Leu	
30			275					280					285	i				
	GCC	GAC	GTC	GAC	CGG	GTT	CTC	GTG	GAC (ccg c	CGC G	GC C	AG C	GAA	CCG	CT	G	1589
	Ala	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Gl	u P	ro	Leu	
35		290					295					300						
	GAC	CGG	CTT	GAC	GCG	TCC	CTG	CGT	GGC (GGC G	AG C	CC G	CC C	SAC	TAC	CA	.G	1637
	Asp	Arg	Leu	Asp	Ala	Ser	Leu	Arg	GÌy	Gly	Glu	Pro	Ala	As ₁	рТ	/I	Gln	
40 -	305					310					315						320	
	GAC	ATG	ATC	CGC	GGA	ACC	AAG	CGC	CGG	ATC A	ACC C	SAC G	GT A	ATC	CTG	CA	.C	1685
45	Asp	Met	Ile	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	11	e L	eu	His	
10					325					330					33	35		
	TCG	GAG	ATC	CTG	CGG	CTG	GCC	CGG	CTG	GTT (CCG (GC G	AC (GCC	AAC	GT	т	1733
50	Ser	Glu	Ile	Leu	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Al	a A	sn	Val	
				340					345					35	0			
	TCA	ATC	GAC	GCC	GGA	GCC	GAC	GCT	CTC	GCC (SAA A	ATC A	TC (GCC	GCC	тт	C.	1781

5	Ser	Ile	Asp	Ala	Gly	Ala	Asr	Ala	Leu	Ala	Glu	ılle	Iļe	Ala	Ala	. Phe	
			355					360					365				
	CCG	GTC	TAC	CGC	ACC	TAC	CTG	CCG (GAG (GC G	сс	GAG (GTC C	CTG A	AG C	GAG	1829
10	Pro	Val	Tyr	Arg	Thr	Tyr	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	
		370					375					380)				
	GCG	TGC	GAG	CTT	GCC	GCG	CGT	AGG (CGG (CCG (AA.	CTC (GAC C	CAG G	CC A	ATC	1877
15	Ala	Cys	Glu	Leu	Ala	Ala	Arg	Arg	Arg	Pro	Glu	Lev	Asp	Gln	Ala	Ile	
	385					390					395	i				400	
	CAG	GCT	CTG	CAG	CCG	CTG	CTG	CTG (GAC A	ACG G	AC (CTC (GAG C	TT G	cc c	GG ·	1925
20	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	
					405					410					415	i	
	CGC	TTC	CAG	CAG	ACC	TCG	GGC	ATG (STC A	TG G	cc i	AAG (GC G	TG G	AG G	AC	1973
25	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val	Met	Ala	Lys	Gly	Val	Glu	Asp	
				420					425					430			
	ACC	GCG	TTC	TTC	CGC	TAC	AAC	ccc o	CTG (GC A	.cc	CTC A	CG G	AA G	TG G	GC	2021
30	Thr	λla	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	Gly	
			435					440					445				
25	GCC	GAC	ccc	ACC	GAG	TTC (GCC (GTG G	GAG C	CG G	AC (GAG 1	TC C	AC G	cc c	GG	2069
35	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp	Glu	Phe	His	Ala	Arg	
		450					45 5					460					
40	CTG	GCA	CGC	CGG	CAG	GCC (GAG (CTT C	cc c	тс т	CC A	ATG A	CG A	CG C	TG A	GC	2117
••	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470					475					480	
4 5	ACG	CAC	GAC	ACC .	AAG	CGC 2	AGC (GAG G	SAC A	.cc c	GA (GCA A	GG A	TT T	CG G	TC	2165
,,,	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485					490					495		
50	ATT	TCC	GAG	GTT (GCG	GGT (GAC 1	rgg g	AA A	AG G	CC 1	TG A	AC C	GG C	rg c	GC	2213
	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu.	Lys	Ala	Leu	Asn	Arg	Leu	Arg	
				500				•	505					510			

5	GAC	CTG	GCC	CCG	CTG	CCG	GAC	GGC	cce (CTG 1	rcc e	CG C	TG C	TC 1	GG C	AG	2261
	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp	Gln	
			515					520					525				
10	GCC	АТТ	GCC	GGC	GCC	TGG	ccc	GCC	AGC (CGG G	SAA C	CGC C	TG C	AG I	AC T	AC	2309
	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	G1u	Arg	Leu	Gln	Туг	Tyr	
		530					535	i				540					
15	GCG	CTG	AAG	GCC	GCG	CGT	GAA	GCG	GGG 1	AAC 1	CG A	ACC A	LAC T	GG A	CC G	AT	2357
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	
	545					550					555					560	
20	CCG	GCC	ccc	GCG	TTC	GAG	GAG	AAG	CTG /	AAG G	CC G	CG G	TC G	AC G	CC G	TG	2405
	Pro	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	
					565					570	•				575		
25	TTC	GAC	AAT	ccc	GCC	GTG	CAG	GCC	GAG (STG G	SAA G	cc c	TC G	TC G	AG C	TC	2453
	Phe	Asp	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	
				580					585					590			
30	CTG	GAG	CCG	TAC	GGA	GCT	TCG	AAC '	TCC (CTC G	CC G	CC A	AG C	TC G	TG C	AG	2501
	Leu	Glu	Pro	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	
			595					600					605				
35	CTG	ACC	ATG	CCC	GGC	GTC	CCG	GAC	GTC 1	rac c	AG G	GC A	CG G	AG T	TC T	GG	2549
	Leu	Thr	Met	Pro	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	
40		610		•			615					620					
40	GAC	CGG	TCG	CTG	ACG	GAC	CCG	GAC .	AAC (CGG C	GG C	CG T	TC A	GC T	TC G	AC	2597
	Asp	Arg	Ser	Leu	Thr	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	
45	625					630					635					640	
~	GAC	CGC	CGC	GCC	GCG	CTG	GAG	CAG	CTG (SAT C	CC G	GC G	AC C	TT C	CC G	CG	2645
	Asp	Arg	Arg	Ala	Ala	Leu	Glu	Gln	Leu	Asp	Ala	Gly	qeA	Leu	Pro	Ala	
50					645					650					655		
								AAG									2693
	Ser	Phe	Thr	Asp	Glu	Arg	Thr	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	

3

5				660					445					67	0		
J	CGG	СТG	CGC	CGG	GAC	CGT	CCG	GAG	CTG	TTC A	ACG (GGG !	rac o	CGG	CCG	GTC	2741
	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu	Leu	Phe	Thr	Gly	Тут	Ar	g Pr	o Val	-
10			675					680					685	i			
	CTG	GCC	AGC	GGG	CCC	GCC	GCC	GGG	CAC	CTG (CTC (GCG 1	rtc (GAC	CGC	GGC	2789
	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His	Leu	Leu	Ala	Phe	As	p Ar	g Gly	•
15		690					695					700	ı				
	ACC	GCG	GCG	GCG	CCG	GGT	GCA	TTG	ACC (CTC C	CC i	ACG (CGG (TT	CCC	TAC	2837
	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu	Ala	Thr	Arg	Le	u Pr	о Туг	•
20	705					710					715	i				720	1
	GGG	CTG	GAA	CAG	TCG	GGT	GGA	TGG	CGG (GAC A	CC (GCC (TC C	AA	CTT	AAC	2885
	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Gl	u Le	u Asn	٠.
25					725					730					73	5	
	ACC	GCC	ATG	AAA	GAC	GAA	CTG	ACC	GGT (GCC G	GC 1	PTC (GA C	CG	GGG	GCA	2933
	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe	Gly	Pro	o G1	y Ala	
30				740					745					750)		
	GTG	AAG	ATC	GCC	GAC	ATC	TTC	CGG '	rcg 7	rtc c	cc o	STT C	CG C	TG (CTG	GTG	2981
	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala	Lev	ı Le	u Val	
35			755				•	760					765				
	CCG	CAG	ACA	GGA	GGA	GAG	TCA										3002
	Pro	Gln	Thr	Gly	Gly	Glu	Ser										
ю		770					775										
	TGAC	GCAC	CAC C	TACC	CGCG	G GA	AGCC	GCGA	AACC	CCGTC	CT G	GGCC	CCGC	CA CO	SCTA	CGACG	3062
	TCTG	GGCG	ecc o	2													3073
-																	

45

- 14. The replicable recombinant DNA as claimed in claim 8, wherein said DNA is derived from a microorganism selected from the group consisting of those of the genera Rhizobium, Arthrobacter, Brevibacterium, Flavobacterium, Micrococcus, Curtobacterium, Mycobacterium and Terrabacter.
 - 15. The recombinant DNA as claimed in claim 8, wherein said self-replicable vector is a plasmid vector Bluescript II SK(+).
 - 16. A transformant obtainable by introducing into a suitable host a recombinant DNA containing the DNA of claim 1 and a self-replicable vector.

17. The transformant as claimed in claim 16, wherein said DNA encodes an enzyme having the following physicochemical properties: (1) Molecular weight About 76,000-87,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PA-GE); and 5 (2) Isoelectric point (pl) About 3.6-4.6 on isoelectrophoresis. 18. The transformant as claimed in claim 16, wherein said DNA encodes an amino acid sequence selected from the group consisting of those as shown in the following SEQ ID NOs:2 and 4 that initiate from the 10 N-terminal, and homologous amino acid sequences to these amino acid sequences: SEQ ID NO:2 15 Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly Val Asp 20 25 30 20 Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser Asp His Gly 25 40 45 35 Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg Gly Gly Pro Glu 60 65 55

5	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Gly	Ala	Gly	Met	Gly	Val	Leu
		70					75			•		80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
10					90	•				95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
			105					110					115				
15	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
	120					125				•	130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
20				140					145				:	150			
	Tyr	туг	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp
		155					160					165					170
25	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
30			190					195					200	÷			
	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
35	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
0		240					245					250					255
	Thr	Gly	Gly	Ala	Тут	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
· ·5					260		-			265					270		
9	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
50	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	.Pro	Leu	Asp	Arg
-	290					295					300		٠.			305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile

5				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
10	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Tyr
15			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
	375					380					385					390	
20	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
25		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	qeA	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
30	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
			445					450					455				
35	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
33	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
40				480					485					490			
	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	G1u	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495					500					505					510
45	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
50			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555					560	

5	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
5				565					570					575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
10		580					585					590					595
	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
•					600					605					610		
15	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
20	630		-			635					640					645	
	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655					660			
25	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
30					685			•		690					695		
	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
35	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
	715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
40				735					740					745			
	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					765
4 5	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
					770												

50

SEQ ID NO:4

Met Arg Thr Pro Val Ser Thr Tyr Arg Leu Gln Ile Arg Lys Gly Phe Thr

5	1				5					10					15		
	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His	Ser	Leu	Gly	Val	Asp
			20					25					30				
10	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
	35					40					45					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
15				55					60					65			
	Gly	Leu	Ala	Ala	Val	Ser	Lys	λla	Ala	Arg	Ala	Ala	Gly	Met	Gly	Vál	Leu
		70		•			75					80					85
20	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
			•		90 .					95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
25			105					110					115		٠		
	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
	120					125					130					135	
30	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
				140					145					150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
35		155					160					165					170
	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
40	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
45	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
50				225					230					235			
JU	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Gl u	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255

5	Th	r Gl	y Gl	y Al	а Ту	r Le	u Le	u Il	e Gl	u Ly	s Il	e Le	u Gl	u Pr	o Gl	y Gl	u Gl
					26	0				26	5				27	o c	
	Le	u Pr	o Al	a Se	r Ph	e Gl	u Cy	s Gl	u Gl	y Th	r Th	r Gl	у Ту:	r Ası	p Ala	a Le	ı Ala
10			27	5				28	0				28	5			
	As	p V a	l As	p Ar	g Va	l Le	u Va	l Ası	Pro	o Ar	g Gl	y Glr	ı Glı	ı Pro	Le	ı Ası	p Arg
	290	0				29	5				300	כ				305	5
15	Lei	ı As	p Ala	a Se	r Le	u Arg	g G1	y Gly	, Glt	ı Pro	o Ala	a Asp	Туг	Glr	a Asg	Met	: Ile
				310	0				315	5				320)		
20	Arg	Gly	y Thi	r Lys	s Arg	j Arg	, Ile	e Thi	Asp	Gly	, Ile	e Leu	His	Ser	Glu	Ile	Leu
20		325	5				330)				335					340
	Arg	Let	ı Ala	a Arg	J Lev	val	. Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
25					345					350					355		
	Ala	yat	Ala	Leu	ı Ala	Glu	Ile	lle	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
			360					365					370				
30			Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
	375					380					385					390	
	Arg	Arg	Pro			Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
35	_			395					400					405			
	Asp		Asp	Leu	Glu	Leu		Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410	_				415					420					425
ю	Met	Ala	Lys	Gly		Glu	Asp	Thr	Ala		Phe	Arg	Tyr	Asn	Arg	Leu	Gly
	/mb	.	m \.		430					435					440		
	THE	Leu		GLu	val	GIĀ	Ala		Pro	Thr	Glu	Phe		Val	Glu	Pro	Asp
15	C1	Dha	445	3 Ť =	3	• .		450					455				
	460	Pne	HIS	wra	Arg		Ата	Arg	Arg	Gln		Glu	Leu	Pro			Met
		mъ	• • • •	0	-	465	_				470					475	
50	Thr	THE	Leu		rnr	HIS	Asp			Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
	71.	e	U- T	480	C =	61			485					490			
	Ile	JE I	AgT	TTE	ser.	GIU	vai	ATA	GLY	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg

5		495					500					505					510
	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
10	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
15	545					550					555					560	
	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
20	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
		580					585					590					595
25	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
20					600					605		•			610		
•	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
30			615					620					625				
<i>50</i>	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
	630					635					640					645	
35	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
4 0		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
45	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
			700					705					710				
	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
50	715					720					725					730	
	Ala	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
				735					740					745			

Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	ıle	Phe	Arg	Ser	Phe	Pro	Val	Ala
	750					755					760					765

Leu Leu Val Pro Gln Thr Gly Gly Glu Ser

770 775

19. The transformant as claimed in claim 16, wherein said DNA has a base sequence selected from the group consisting of those as shown in the following SEQ ID NOs:1 and 3 that initiate from the 5'-terminus, homologous base sequences to the base sequences, and complementary base sequences to these base sequences:

15

20

25

30

35

SEQ ID NO:1

ATGAGGACAC CCGCCTCGAC CTACCGGCTG CAGATCAGGC GGGGTTTCAC GCTGTTTGAT 60 GCCGCCGAGA CCGTGCCCTA CCTGAAGTCA CTCGGGGTGG ACTGGATCTA CCTGTCGCCC 120 ATCCTGAAGG CAGAGAGCGG CTCCGACCAC GGCTATGACG TCACCGATCC CGCCGTAGTG 180 GACCCGGAGC GCGCCGCCC TGAAGGGCTG GCCGCGGTGT CCAAGGCGGC CCGCGGTGCC 240 GGCATGGGCG TGCTGATCGA CATCGTGCCG AACCACGTGG GCGTGGCGTC GCCGCCGCAG 300 AACCCGTGGT GGTGGTCGCT GCTCAAGGAA GGGCGCGGGT CGCCCTACGC CGTGGCGTTC 360 GACGTCGACT GGGACCTGGC GGGGGCCGC ATCCGGATCC CCGTCCTGGG CAGCGACGAC 420 GATCTGGACC AGCTCGAAAT CAAGGACGGC GAGCTGCGGT ACTACGACCA CCGCTTCCCG 480 CTGGCCGAGG GCAGCTACCG GGACGGCGAC TCCCCGCAGG ACGTCCACGG CCGGCAGCAC 540 TACGAACTCA TCGGCTGGCG GCGCGCCGAC AATGAACTGA ACTACCGCCG GTTCTTCGCG 600 GTGAACACGC TCGCCGGCAT CCGGGTGGAG GTGCCGCCGG TCTTCGATGA AGCGCACCAG 660 GAGGTGGTGC GCTGGTTCCG TGCGGGGCTC GCCGACGGGC TGCGGATCGA CCACCCGGAC 720 GGCCTGGCCG ATCCCGAGGG GTATTTGAAG CGGCTCCGTG AGGTCACCGG GGGCGCGTAC 780 CTGCTCATCG AAAAGATCCT CGAGCCGGGC GAACAGTTGC CGGCCAGCTT CGAGTGCGAA 840 GGCACCACCG GCTACGACGC CCTCGCGGAT GTCGACAGGG TCTTCGTGGA CCCGCGGGGA 900 CAGGTGCCGC TGGACCGTCT GGACGCACGG CTGCGCGGCG GTGCGCCGGC CGACTACGAG 960 GACATGATCC GCGGGACCAA GCGCCGGATC ACCGACGGCA TCCTGCACTC CGAGATCCTG 1020 CGCCTTGCCA GGCTGGTGCC CGAGCAGACC GGAATTCCCG GGGAGGCGGC CGCGGATGCG 1080

50

45

5	ATCGCGGAGA	TCATCGCGGC	CTTCCCGGTC	TACCGGTCCT	ATCTTCCCGA	GGGCGCGGAG	1140
	ATCCTGAAGG	AGGCCTGCGA	CCTCGCCGCG	CGGAGGCGTC	CGGAACTGGG	CCAGACCGTC	1200
	CAGCTGCTGC	AGCCGCTGCT	GCTGGATACC	GACCTCGAGA	TTTCCCGCAG	GTTCCAGCAG	1260
10	ACCTCGGGAA	TGGTCATGGC	CAAAGGCGTG	GAGGACACCG	CGTTCTTCCG	CTACAACCGG	1320
	CTGGGAACGC	TCACCGAGGT	GGGCGCCGAC	CCCACCGAGT	TCTCGCTGGA	ACCGGAGGAG	1380
	TTTCACGTCC	GGATGGCCCG	CCGGCAGGCC	GAACTCCCGC	TCTCCATGAC	CACCCTGAGC	1440
15	ACGCACGACA	CCAAGCGCAG	CGAGGÁCACC	CGGGCCCGGA	TCTCGGTGAT	CGCCGAGGTC	1500
	GCGCCTGAAT	GGGAAAAGGC	CCTGGACAGG	CTGAACACCC	TCGCTCCGCT	GCCGGACGGC	1560
	CCGCTCTCCA	CGCTGCTCTG	GCAGGCGATT	GCGGGGGCAT	GGCCGGCCAG	CCGGGAACGC	1620
20	CTTCAGTCCT	ACGCCCTGAA	AGCGGCGCGC	GAAGCCGGGA	ACTCGACCAG	CTGGACCGAT	1680
	CCGGACCCGG	CATTCGAGGA	GGCACTTTCC	GCCGTCGTCG	ACTCCGCCTT	CGACAATCCG	1740
	GAGGTGCGTG	CGGAACTTGA	GGCCCTGGTG	GGCCTCCTTG	CGCCGCACGG	TGCGTCCAAC	1800
25	TCGCTCGCGG	CAAAGCTTGT	CCAGCTGACC	ATGCCGGGCG	TTCCGGACGT	GTACCAGGGC	1860
	ACCGAGTTCT	GGGACAGGTC	GCTGACCGAT	CCGGACAACC	GGCGCCCCTT	CAGCTTCGCC	1920
	GAACGGATTA	GGGCCTTGGA	CCAGTTGGAC	GCCGGCCACC	GTCCGGACTC	CTTCCAGGAC	1980
30	GAGGCGGTCA	AGCTGCTGGT	CACCTCGAGG	GCGCTGCGGC	TGCGGCGGAA	CCGGCCCGAG	2040
	CTCTTCACCG	GCTACCGCCC	CGTGCATGCC	AGGGGCCCCG	CCGCCGGGCA	CCTGGTGGCG	2100
	TTCGACCGCG	GCGCCGGGG	AGTGCTGGCG	CTTGCCACCC	GGCTCCCCTA	CGGGCTGGAA	2160
35	CAGTCGGGCG	GCTGGCGGGA	CACCGCCGTC	GAGCTTGAAG	CCGCCATGAC	GGACGAACTG	2220
	ACCGGCTCCA	CTTTCGGGCC	GGGACCGGCG	GCGCTGTCAG	aagtcttccg	GGCCTACCCG	2280
		maamaaaaaa	CACACCACC	* * * CTC *			2316

	SEQ ID NO:	3					
5	ATGAGAACGC	CAGTCTCCAC	GTACAGGCTG	CAGATCAGGA	AGGGATTCAC	ACTCTTCGAC	60
	GCGGCCAAAA	CCGTTCCGTA	CCTGCACTCG	CTCGGCGTCG	ACTGGGTCTA	CCTTTCTCCG	120
	GTCCTGACTG	CCGAGCAGGG	CTCCGACCAC	GGGTACGACG	TCACCGATCC	CTCCGCCGTC	180
10	GACCCCGAAC	GCGGCGGGCC	GGAGGGCCTC	GCGGCGGTTT	CCAAGGCGGC	CCGCGCCGCG	240
	GGCATGGGCG	TGCTGATCGA	CATCGTGCCC	AACCACGTGG	GCGTCGCGAC	GCCGGCGCAG	300
	AACCCCTGGT	GGTGGTCGCT	GCTCAAGGAG	GGACGCCAGT	CCCGTTACGC	GGAGGCGTTC	360
15							
20							
05		•					
25							
30							
				•			
35							
40							
4 5							
50							
			·				

5	GACGTCGATT	GGGACCTCGC	CGGGGGACGC	ATCCGGCTGC	CGGTGCTCGG	CAGCGACGAT	420
	GACCTCGACC	AGCTCGAAAT	CAGGGACGGG	GAGCTGCGGT	ACTACGACCA	CCGATTCCCG	480
	CTCGCCGAGG	GAACCTACGC	CGAAGGCGAC	GCCCGCGGG	ATGTCCACGC	CCGGCAGCAC	540
10	TACGAGCTCA	TCGGCTGGCG	CCGCGCGGAC	AACGAGCTGA	ACTACCGCCG	CTTTTTCGCG	600
	GTGAACACGC	TCGCCGGCGT	CCGCGTGGAA	ATCCCCGCCG	TCTTCGACGA	GGCACACCAG	660
	GAGGTGGTGC	GCTGGTTCCG	CGAGGACCTT	GCGGACGGCC	TGCGGATCGA	CCACCCGGAC	720
15	GGCCTCGCTG	ACCCCGAGGG	GTACCTGAAG	CGACTCCGGG	AAGTCACCGG	CGGCGCTTAC	780
	CTGCTGATCG	AAAAGATCCT	GGAGCCGGGG	GAGCAGCTGC	CCGCCAGCTT	CGAGTGTGAA	840
	GGCACCACAG	GCTACGACGC	CCTCGCCGAC	GTCGACCGGG	TTCTCGTGGA	CCCGCGCGGC	900
20	CAGGAACCGC	TGGACCGGCT	TGACGCGTCC	CTGCGTGGCG	GCGAGCCCGC	CGACTACCAG	960
	GACATGATCC	GCGGAACCAA	GCGCCGGATC	ACCGACGGTA	TCCTGCACTC	GGAGATCCTG	1020
	CGGCTGGCCC	GGCTGGTTCC	GGGCGACGCC	AACGTTTCAA	TCGACGCCGG	AGCCGACGCT	1080
25	CTCGCCGAAA	TCATCGCCGC	CTTCCCGGTC	TACCGCACCT	ACCTGCCGGA	GGGCGCCGAG	1140
	GTCCTGAAGG	AGGCGTGCGA	GCTTGCCGCG	CGTAGGCGGC	CGGAACTCGA	CCAGGCCATC	1200
	CAGGCTCTGC	AGCCGCTGCT	GCTGGACACG	GACCTCGAGC	TTGCCCGGCG	CTTCCAGCAG	1260
30	ACCTCGGGCA	TGGTCATGGC	CAAGGGCGTG	GAGGACACCG	CGTTCTTCCG	CTACAACCGC	1320
	CTGGGCACCC	TCACGGAAGT	GGGCGCCGAC	CCCACCGAGT	TCGCCGTGGA	GCCGGACGAG	1380
	TTCCACGCCC	GGCTGGCACG	CCGGCAGGCC	GAGCTTCCGC	TGTCCATGAC	GACGCTGAGC	1440
15	ACGCACGACA	CCAAGCGCAG	CGAGGACACC	CGAGCAAGGA	TTTCGGTCAT	TTCCGAGGTT	1500
	GCGGGTGACT	GGGAAAAGGC	CTTGAACCGG	CTGCGCGACC	TGGCCCCGCT	GCCGGACGGC	1560
o	CCGCTGTCCG	CGCTGCTCTG	GCAGGCCATT	GCCGGCGCCT	GGCCCGCCAG	CCGGGAACGC	1620
v	CTGCAGTACT	ACGCGCTGAA	GCCCCCCCT	GAAGCGGGGA	ACTCGACCAA	CTGGACCGAT	1680
	ccecccccc	CGTTCGAGGA	GAAGCTGAAG	GCCGCGGTCG	ACGCCGTGTT	CGACAATCCC	1740
5	GCCGTGCAGG	CCGAGGTGGA	AGCCCTCGTC	GAGCTCCTGG	AGCCGTACGG	AGCTTCGAAC	1800
•	TCCCTCGCCG	CCAAGCTCGT	GCAGCTGACC	ATGCCCGGCG	TCCCGGACGT	CTACCAGGGC	1860
	ACGGAGTTCT	GGGACCGGTC	GCTGACGGAC	CCGGACAACC	GGCGGCCGTT	CAGCTTCGAC	1920
io	GACCGCCGCG	CCGCGCTGGA	GCAGCTGGAT	GCCGGCGACC	TTCCCGCGTC	ATTTACCGAT	1980
	GAGCGGACGA	AGCTGCTAGT	GACGTCGCGC	GCGCTGCGGC	TGCGCCGGGA	CCGTCCGGAG	2040
	0m0m #01 000	0003.000000	COMCOMOCOO	*CCCCCCCCC	coccocccc	ССТССТСССС	2100

TTCGACCGCG GCACCGCGGC GGCGCCGGGT GCATTGACCC TCGCCACGCG GCTTCCCTAC 2160 GGGCTGGAAC AGTCGGGTGG ATGGCGGGAC ACCGCCGTCG AACTTAACAC CGCCATGAAA 2220 GACGAACTGA CCGGTGCCGG CTTCGGACCG GGGGCAGTGA AGATCGCCGA CATCTTCCGG 2280 TCGTTCCCCG TTGCGCTGCT GGTGCCGCAG ACAGGAGGAG AGTCA

20. The transformant as claimed in claim 19, wherein one or more bases in SEQ ID NOs:1 and 3 are replaced with other bases by means of degeneracy of genetic code without alternating their corresponding amino acid sequences as shown in the following SEQ ID NOs:2 and 4:

SEQ ID NO:2

Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly Val Asp Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser Asp His Gly Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg Gly Gly Pro Glu Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly Ala Gly Met Gly Val Leu Ile Asp Ile Val Pro Asn His Val Gly Val Ala Ser Pro Pro Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg Gly Ser Pro Tyr Ala Val Ala Phe Asp Val Asp Trp Asp Leu Ala Gly Gly Arg Ile Arg Ile Pro Val Leu Gly Ser Asp Asp Asp Leu Asp Gln Leu Glu Ile Lys Asp Gly Glu Leu Arg Tyr Tyr Asp His Arg Phe Pro Leu Ala Glu Gly Ser Tyr Arg Asp Gly Asp

		•															
5	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
10			190					195					200				
	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
15	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
20	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Àrg	Glu	Val
20		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
25					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
30	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg
	290					295					300					305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
35				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
40	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly		Ala	Ala
					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro		Tyr	Arg	Ser	Tyr
45			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala		Arg
	375					380					385					390	
50	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val

5		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe _.	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
10	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
			445					450					455				
_	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
15	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
20				480					485					490			
20	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495					500					505					510
25	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
30			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555					560	
35	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
				565					570					575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
40		580					585					590					595
	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
45	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	qeA	Arg	Ser	Leu	Thr
			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
50	630					635					640					645	
	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655					660			

	Lys	Leu	Leu	Val	Thr	Ser	Arg	λla	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
5		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
10	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700		,			705					710				
	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
15	715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
				735					740					745			
20	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					765
	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
25					770												
30																	
30					•												
35																	
40																	
45																	
50																	

¥.

_	SEQ	ID I	NO : 4														
5	Met	Arg	Thr	Pro	Val	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Lys	Gly	Phe	Thr
	1				5					10					15		
	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His	Ser	Leu	Gly	Val	Asp
10			20					25					30				
	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
	35					40					45					50	
15	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
	•	-		55	_				60					65		•	
	Glw	T.011	λla		Val	Ser	Lvs	Ala		Ara	Ala	Ala	Gly	Met	Gly	Val	Leu
20	GLY	70	AIG		,	001	75			3		80	-		_		85
	71 -		T1 -	tta 1	D=0	Non.		17 = 1	Clv.	Val	Δľa	-	Pro	Ala	Gln	Asn	Pro
	TTE	Asp	116	vaı		ASII	nis	Val	GIY		VIG	1111	110	7.14	100		
25					90					95		_	_			01	210
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	GIn	Ser	Arg	Tyr	ATG	Glu	АТА
30																	
														·			
35																	
					•												
40																	

5

5			105					110					115				
	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
	120					125					130					135	
10	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	G1u	Leu	Arg
				140					145					150			
	Tyr	Тут	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
15		155					160					165					170
	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
20	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
25	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
30				225					230					235			
30	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
35	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
	290					295					300					305	
45	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Asp	Met	Ile
				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
50		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
					345					350					355		

\$

5	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
		•	360)				365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
10	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
				395	i				400					405			
15	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
20					430					435					440		•
	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
05			445					450					455				
25	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460					465					470					475	
30	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	qaA	Trp	Glu	Lys	Ala	Leu	Asn	Arg
35		49 5					500					505					510
	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
40	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
45	545					550 ·					555					560	
	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	ГÀЗ	Ala	Ala	Val	Ąsp	Ala	Val	Phe	Asp
				565					570					575			
50	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
		580					585					590					595
	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
55																	

					600					605					610		
5	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
10	630					635					640					645	
	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
15				650					655					660			
10	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
		665					670					675					680
20	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
•	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
25			700					705					710				
	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg		Thr
	715					720					725					730	
30	Ala	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr		Ala	Gly	Phe
				735				-	740					745	_		
	Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe		Ser	Phe	Pro	Val	
35		750					755					760					765
	Leu	Leu	Val	Pro	Gln	Thr	Gly	Gly	Glu								
					770					775							•

40

45

50

21. The transformant as claimed in claim 16, wherein said DNA has a base sequence selected from the group consisting of those as shown in the following SEQ ID NOs:10 and 11:

SEQ ID NO:10:

CGTGCTCTAC TTCAACGCGC ACGACGGCGA CGTCGTGTTC AAGCTCCCGT CGGATGAATA 60

CGCCCCGGCC TGGGACGTCA TCATCGACAC CGCCGGCGC GGTGCCGATT CCGAACCCGT 120

GCAGGCTGGC GGCAAACTCA CCGTGGCAGC GAAATCGCTC GTGGTGCTCC GTGCCCACAG 180

CGCCCCGGAG GAGGAACCGG ACCACTCGGT GGCCGCCTCC CTCGCAGCGC TGACGCAGAC 240

5	TGCGACCGCC GAAACCGCGG CGCTCACCGC CCCCACCGTT CCGGAGCCGA GGAAGACCAA	300
	GAAGGCAGCG CCGAAGCCGG AAGAGGAGGC TCCCGACGAG GCGGCGCCGA AGCCGGAAGA	
40	GAAGGCTCCC GACGAGGCGG CGGCGAAGCC GGAAGAGGCT GCTTCCGACG AGGCGGCGGC	
10	GAAGCCGGAA GAGAAGGCTC CCGACGAGGC GGCGGCGAAG CCGGAAGAGG CTGCTTCCGA	
	CGAGGCGGCG GCGAAGCCCG CGGGGAAGGC AGCGGCCAAA ACGGCCGGC	540
15	AGGCAAGCAG GGCGGGACGG GCTC	564
10	ATG AGG ACA CCC GCC TCG ACC TAC CGG CTG CAG ATC AGG CGG GGT TTC	612
	Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe	
20	1 5 10 15	
	ACG CTG TTT GAT GCC GCC GAG ACC GTG CCC TAC CTG AAG TCA CTC GGG	660
	Thr Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly	
25	20 25 30	
	GTG GAC TGG ATC TAC CTG TCG CCC ATC CTG AAG GCA GAG AGC GGC TCC	708
	Val Asp Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser	•
30	35 40 45	
	GAC CAC GGC TAT GAC GTC ACC GAT CCC GCC GTA GTG GAC CCG GAG CGC	756
	Asp His Gly Tyr Asp Val Thr Asp Pro Ala Val Val Asp Pro Glu Arg	
35	50 55 60	
	GGC GGC CCT GAA GGG CTG GCC GCG GTG TCC AAG GCG GCC CGC GGT GCC	804
	Gly Gly Pro Glu Gly Leu Ala Ala Val Ser Lys Ala Ala Arg Gly Ala	
40	65 70 75 80	852
	GGC ATG GGC GTG CTG ATC GAC ATC GTG CCG AAC CAC GTG GGC GTG GCG	032
	Gly Met Gly Val Leu Ile Asp Ile Val Pro Asn His Val Gly Val Ala	
45	85 90 95	900
	TCG CCG CCG CAG AAC CCG TGG TGG TGG TCG CTC CTC AAG GAA GGG CGC	300
	Ser Pro Pro Gln Asn Pro Trp Trp Trp Ser Leu Leu Lys Glu Gly Arg	
50	100	948
	GGG TCG CCC TAC GCC GTG GCG TTC GAC GTC GAC TGG GAC CTG GCG GGG	7=0
E E	Gly Ser Pro Tyr Ala Val Ala Phe Asp Val Asp Trp Asp Leu Ala Gly	
55		

5			115	5				120)				12	5				
	GGC	CGC	ATC	CGG	ATC	CCC	GTC	CTG	GGC	AGC	GAC (GAC	GAT	CTG	GAG	C C	AG	996
	Gly	Arg	Ile	Arg	g Ile	e Pro	Val	Leu	Gly	Ser	Asp	Asp	As;	p Le	eu A	sp	Gln	L
10		130)				135	i				140)					
	CTC	GAA	ATC	AAG	GAC	GGC	GAG	CTG	CGG	TAC	TAC (GAC	CAC	CGC	TTC	C	CG	1044
	Leu	Glu	Ile	Lys	s Ası	Gly	Glu	Leu	Arg	Tyr	Tyr	Asp	Hi:	s Az	g P	he	Pro	
15	145					150					155	ı					160	
	CTG	GCC	GAG	GGC	AGC	TAC	CGG	GAC	GGC	GAC '	TCC (CCG (CAG	GAC	GTC	CZ	AC.	1092
	Leu	Ala	Glu	Gly	, Ser	Tyr	Arg	Asp	Gly	Asp	Ser	Pro	Glı	n As	p V	al	His	
20			•		165	i				170					1	75		
	GGC	CGG	CAG	CAC	TAC	GAA	CTC	ATC (GGC '	TGG (CGG (CGC (GCC	GAC	AAT	G.	AA .	1140
25	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	Ala	a As	рA	sn	Glu	
20				180)				185					19	0			
	CTG	AAC	TAC	CGC	CGG	TTC	TTC (GCG (GTG A	AAC A	ACG C	CTC (GCC (GGC	ATC	CG	G	1188
30	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Ala	G1	y I	le	Arg	
			195					200					205	5				
	GTG	GAG	GTG	CCG	CCG	GTC	TTC (GAT (GAA (GCG C	CAC C	AG G	SAG (GTG	GTG	CG	C	1236
35	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu	ı Va	l Va	al	Arg	
		210					215					220						
	TGG	TTC	CGT	GCG	GGG	CTC (GCC (GAC G	GG C	CTG C	GG A	TC G	AC (CAC	CCG	GA	.C	1284
10	Trp	Phe	Arg	Ala	Gly	Leu	Ala.	Asp	Gly	Leu	Arg	Ile	Asp	H1:	5 P1	ro	Asp	
	225					230					235						240	
	GGC	CTG	GCC	GAT	CCC	GAG (GGG 1	rat 1	TG A	AG C	GG C	TC C	GT (SAG	GTC	AC	C	1332
45	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	-	Arg	Leu	Arg	Gl			Thr	
					245					250						55		
	GGG	GGC	GCG	TAC	CTG	CTC /	ATC C	GAA A	AG A	TC C	TC G	AG C	CG C	GC	GAA	CA	.G	1380
50	Gly	Gly	Ala	•	Leu	Leu	Ile	Glu	-	Ile	Leu	Glu	Pro		•	Lu	Gln	
				260					265					270				
	TTG	CCG	GCC .	AGC	TTC	GAG 1	rgc e	AA G	GC A	CC A	CC G	GC T	AC C	CAC	GCC	CT	C	1428

5	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	
	Dea		275				_	280					285				
	GCG	GAT		GAC	AGG	GTC	TTC	GTG (GAC (ccs c	:GG G	GA C	AG G	TG C	CG CT	rG	1476
10										Pro							
	n	290		•	,		295					300					
	GAC		CTG	GAC	GCA	CGG	CTG	CGC (GGC (GGT G	CG C	CG G	CC G	AC T	AC G	AG	1524
15										Gly							
	305	9				310					315					320	
		ATG	ATC	CGC	GGG			CGC	CGG 2	ATC A	CC G	AC G	GC A	TC C	TG C	AC	1572
20										Ile							
					325					330					335		
25	TCC	GAG	ATC	CTG	CGC	СТТ	GCC	AGG	CTG (GTG C	cc g	AG C	AG A	CC G	GA A	ГT	1620
25										Val							
				340	_				345					350			
30	ccc	GGG	GAG	GCG	GCC	GCG	GAT	GCG .	ATC (GCG G	GAG A	TC A	TC G	CG G	CC T	rc	1668
										Ala							
		_	355					360					365				
35	CCG	GTC	TAC	CGG	TCC	TAT	CTT	CCC	GAG (GC G	CG G	AG A	TC C	TG A	AG G	AG	1716
										Gly							
		370					375					380					
40	GCC	TGC	GAC	CTC	GCC	GCG	CGG	AGG	CGT (CCG G	AA C	TG G	GC C	AG A	CC G	TC	1764
	Ala	Cys	Asp	Leu	Ala	Ala	Arg	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	
	385					390					395					400	
45	CAG	CTG	CTG	CAG	CCG	CTG	CTG	CTG	GAT .	ACC (GAC C	TC G	AG A	T TT	CC C	GC	1812
	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	
					405	i				410					415		
50	AGG	TTC	CAG	CAG	ACC	TCG	GGA	ATG	GTC	ATG (GCC F	AAA (GC (etg G	ag g	AC	1860
•	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val	Met	Ala	Lys	Gly	Val	Glu	Asp	ı
				420)				425					430	ı		

5	ACC	GCG	TTC	TTC	CGC	TAC	AAC	CGG	CTG	GGA A	ACG (CTC A	ACC G	GAG C	TG G	GC	1908
	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	Gly	
			435					440					445				
10	GCC	GAC	ccc	ACC	GAG	TTC	TCG	CTG	GAA	CCG (GAG (GAG 1	TT C	CAC G	TC C	GG	1956
	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu	Glu	Phe	His	Val	Arg	
		450					455	;	•			460					
15	ATG	GCC	CGC	CGG	CAG	GCC	GAA	CTC	CCG	CTC 7	rcc <i>i</i>	ATG A	ACC A	cc c	TG A	GC	2004
	Met	Ala	Arg	Arg	Glr	Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470					475					480	
20	ACG	CAC	GAC	ACC	AAG	CGC	AGC	GAG (GAC .	ACC (CGG (CC C	GG A	TC T	CG G	TG	2052
	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Àsp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485	ı				490					495		
25	ATC	GCC	GAG	GTC	GCG	CCT	GAA	TGG (GAA .	AAG (scc c	TG G	AC A	.GG C	TG A	AC	2100
	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg	Leu	Asn	
				500					505					510			
30	ACC	CTC	GCT	CCG	CTG	CCG	GAC	GGC (CCG (CTC 1	CC A	CG C	TG C	тс т	GG C.	AG	2148
	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp	Gln	
.=			515					520					525				
35	GCG	ATT	GCG	GGG	GCA	TGG	CCG	GCC A	AGC (CGG G	GAA C	GC C	TT C	AG T	CC T	AC	2196
	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr	
40		530					535				,	540					
₩	GCC	CTG	AAA	GCG	GCG	CGC	GAA	GCC (GG Z	AAC I	CG A	CC A	GC T	GG A	CC G	AT	2244
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	
45	545					550					555					560	
	CCG	GAC	CCG	GCA	TTC	GAG	GAG (GCA (CTT !	rcc G	CC G	TC G	TC G	AC T	CC G	CC	2292
	Pro	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	
50					565					570					575		
	TTC	GAC	AAT	CCG	GAG	GTG	CGT	GCG (AA (CTT G	GAG G	cc c	TG G	TG G	GC C'	TC	2340
	Phe	Asp	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	

5				580					585					590			
	CTT	GCG	CCG	CAC	GGT	GCG	TCC	AAC	TCG (CTC G	GCG G	CA A	AG C	TT G	TC C	AG	2388
	Leu	Ala	Pro	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	
10			595					600	ı				605				
	CTG	ACC	ATG	CCG	GGC	GTT	CCG	GAC	GTG '	TAC (CAG G	GC A	.cc g	AG T	TC T	GG	2436
	Leu	Thr	Met	Pro	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	
15		610			•		615	i				620					
	GAC	AGG	TCG	CTG	ACC	GAT	CCG	GAC	AAC (CGG (CGC C	сс т	TC A	GC T	TC G	CC	2484
	Asp	Arg	Ser	Leu	Thr	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	
20	625					630					635					640	
	GAA	CGG	ATT	AGG	GCC	TTG	GAC	CAG	TTG (GAC (SCC G	GC C	AC C	GT C	CG G	AC	2532
					Ala												
25		_			645					650					655		
	TCC	ттс	CAG	GAC	GAG	GCG	GTC	AAG	CTG (CTG (STC A	CC T	CG A	GG G	CG C	rG	2580
					Glu												
30				660					665					670			
	CGG	CTG	CGG	CGG	AAC	CGG	ccc	GAG	CTC '	TTC A	ACC G	GC T	AC C	GC Ç	CC G	TG	2628
					Asn												
35			675	•		_		680					685				
	САТ	GCC		GGC	CCC	GCC	GCC	GGG	CAC (CTG G	TG G	CG T	TC G	AC C	GC G	GC.	2676
					Pro												
40		690	5	1			695					700					
	GCC.		GGA	GTG	CTG	GCG	CTT	GCC	ACC (CGG (CTC C	CC T	AC G	GG C	TG G	λA	2724
					Leu												
45	705	0.7	0-1			710				·	715					720	
		ሞርር	ככר	מכר	TGG			ACC	GCC (GTC (GAG C	тт с	AA G	CC G	CC A	TG	2772
					Trp												
50	GTII	Ser	GTÅ	GTÄ	725	y				730		– <u>-</u>			735		
	200	CAC	CAA	CTTC	ACC	ccc	ጥርር	АСТ	ጥጥር ፣		cce e	GA C	CG G	CG G		TG	2820
	ALL	GAL-	GWW	CIL	\sim	$\sigma\sigma$	1			\							

	Thr Asp Glu Leu Thr Gly Ser Thr Phe Gly Pro Gly Pro Ala Ala Leu	
	740 745 750	
5	TCA GAA GTC TTC CGG GCC TAC CCG GTG GCC TTG TTG GTC CCC GCG ACA	2868
	Ser Glu Val Phe Arg Ala Tyr Pro Val Ala Leu Leu Val Pro Ala Thr	
	755 760 765	
10	GGA GGC AAG TCA	2880
	Gly Gly Lys Ser	
	770	
15	TGACGCAGCC CAACGATGCG GCCAAGCCGG TGCAGGGAGC GGGGCGCTTC GATATC	2936
20		
	SEO ID NO:11	
25	GATCCGGACG GCAACCTCAT GTCCCCGGAG GACTGGGACA GCGGCTTCGG CCGTTCGGTG	60
	GGCATGTTCC TCAACGGCGA CGGCATCCAG GGCCACGATG ACCGCGGCCG CCGCATCACG	
	GACGTGAACT TCCTGCTGTA CTTCAACGCC CACGACGGCG ACGTCGAGTT CACGCTGCCG	
30	CCGGACGAAT ACGCCCCGGC CTGGGACGTC ATCATCGACA CCGCCGGTGA AGGGGCCGAC	
	TCCAAGCCCG CGGACGCCGG AACCATCCTG TCCGTTGCGG CCAAGTCGCT GGTTGTGCTT	
	CGCGCCCACA GCGCACCGGA GGAGGAGCCT GACCATTCCG TGGCTGCTTC CCTGGCTGCA	
35	CTGACGCAGA CCGCCACCGC CGAGACGGCG GCGCTCACAG CTCCTGCCGT TCCCGAGCCG	
	•	
	GCCAAGACGA AGAAGCCGGC CGCTGACCCG GTTGCTGAAC CGGCCGACCC GCCGGTTGCT	
40	GACCCGGCCG ACCCGGTTGC TGACCCGGTT GCTGACCCGG CGCCGGAACC GGCTGCGGAG	
	CCTGCGAAAT CCGCAGCGGA ACCTGGTGCG GAGCCTGCGA AGGACCCGGA GGAGCAGCCG	
	GCGGAAAAGC CGGCGCCAA GCCTGCGGCA AAGCGCGGCG GCCACCTGAG GGCGGTCAAG	
45	CCCGCTGGGG AGGACGC	677
	ATG AGA ACG CCA GTC TCC ACG TAC AGG CTG CAG ATC AGG AAG GGA TTC	725
	Met Arg Thr Pro Val Ser Thr Tyr Arg Leu Gln Ile Arg Lys Gly Phe	
50	1 5 10 15	
	ACA CTC TTC GAC GCG GCC AAA ACC GTT CCG TAC CTG CAC TCG CTC GGC	773
	Thr Leu Phe Asp Ala Ala Lys Thr Val Pro Tyr Leu His Ser Leu Gly	
55	20 25 30	

															•		
5	GTC	GAC	TGG	GTC	TAC	СТТ	TCT	CCG	GTC	CTG	ACT	GCC (GAG (CAG C	GC 1	cc	821
	Val	Asp	Trp	Val	Туг	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	,
	•		35					40					45			٠	
10	GAC	CAC	GGG	TAC	GAC	GTC	ACC	GAT	ccc	TCC	GCC	GTC (GAC (cc e	CAA C	GC	869
	Asp	His	Gly	Tyr	Asp	Val	Thr	. Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	
		50					55					60					
15	GGC	GGG	CCG	GAG	GGC	CTÇ	GCG	GCG	GTT	TCC .	AAG (GCG (CC C	GC G	CC G	CG	917
	Gly	Gly	Pro	Glu	Gly	Leu	Ala	Ala	Val	Ser	rys	Ala	Ala	Arg	Ala	Ala	
	65					70					75					80	
20	GGC	ATG	GGC	GTG	CTG	ATC	GAC	ATC	GTG	ccc .	AAC (CAC C	STG G	GC G	TC G	CG	965
	Gly	Met	Gly	Val	Leu	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	
					85					90					95		
25	ACG	CCG	GCG	CAG	AAC	CCC	TGG	TGG	TGG '	rcg (CTG (CTC A	AG G	AG G	GA C	GC	1013
	Thr	Pro	Ala	Gln	Asn	Pro	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	
				100					105					110			
30	CAG	TCC	CGT	TAC	GCG	GAG	GCG	TTC	GAC (GTC (GAT 1	rgg g	AC C	TC G	CC G	GG	1061
	Gln	Ser	Arg	Tyr	Ala	Glu	Ala	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	
_			115					120					125				
35	GGA	CGC	ATC	CGG	CTG	CCG	GTG	CTC (GGC 1	AGC (GAC (SAT G	AC C	TC G	AC C	AG	1109
	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	
10		130					135					140					
ю	CTC	GAA	ATC	AGG	GAC	GGG	GAG	CTG (CGG 1	rac 7	rac c	BAC C	AC C	GA T	TC C	CG	1157
	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg	Tyr	Tyr	Asp	His	Arg	Phe	Pro	
15	145					150					155					160	
~	CTC	GCC	GAG	GGA	ACC	TAC	GCC (GAA (GGC (FAC (SCC C	CG C	GG G	AT G	TC C	AC	1205
	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp	Ala	Pro	Arg	Asp	Val	His	
50					165					170	•				175		
	GCC	CGG	CAG	CAC	TAC	GAG	CTC .	ATC (GGC 1	rgg (CGC C	CGC G	CG G	AC A	AC G	AG	1253
	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	Ala	Asp	Asn	Glu	

5				180					185					190)		
	CTG	AAC	TAC	CGC	CGC	TTT	TTC	GCG	GTG .	AAC I	ACG (CTC (SCC (GC G	TC C	GC	1301
10	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Ala	Gly	Val	Arg	
10			195					200)				205	j.			
	GTG	GAA	ATC	ccc	GCC	GTC	TTC	GAC	GAG	GCA (CAC	CAG (GAG (STG G	STG C	GC	1349
15	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu	Val	Val	Arg	
10		210					215					220	ı				
	TGG	TTC	CGC	GAG	GAC	CTT	GCG	GAC	GGC	CTG (CGG 1	ATC (GAC (CAC C	CCG G	AC	1397
20	тгр	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His	Pro	Asp	
2.5	225					230					235					240	
	GGC	CTC	GCT	GAC	ccc	GAG	GGG	TAC	CTG .	AAG (CGA (CTC (CGG (GAA C	STC A	cc	1445
25	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val	Thr	
					245					250					255		
	GGC	GGC	GCT	TAC	CTG	CTG	ATC	GAA	AAG .	ATC (CTG (GAG (CCG (GGG G	GAG C	AG	1493
30	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln	
				260					265					270)		
	CTG	ccc	GCC	AGC	TTC	GAG	TGT	GAA	GGC .	ACC A	ACA (GGC 1	rac (GAC G	CC C	TC	1541
35	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	
			275					280)				285	i			
	GCC	GAC	GTC	GAC	CGG	GTT	CTC	GTG	GAC	CCG	CGC (GGC (CAG (GAA (CCG C	TG	1589
40	Ala	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Glr	Glu	Pro	Leu	
		290				•	295					300)				
	GAC	CGG	CTT	GAC	GCG	TCC	CTG	CGT	GGC	GGC (GAG (ccc (GCC (GAC 1	PAC C	AG	1637
45	Asp	Arg	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	
	305					310					315	;				320	
	GAC	ATG	ATC	CGC	GGA	ACC	AAG	CGC	CGG	ATC A	ACC (GAC (GGT A	ATC (CTG C	AC	1685
50	Asp	Met	Ile	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thi	Asp	Gly	, Ile	e Leu	His	
					325					330)				335	;	
	TCG	GAG	ATC	CTG	CGG	CTG	GCC	CGG	CTG	GTT	CCG	GGC	GAC	GCC A	AAC G	TT	1733

5	Ser	Glu	Ile	Leu	Arg	Leu	Ala	Arg	Leu	Val.	Pro	Gly	Asp	Ala	Asn	Val	
				340					345					350			
	TCA	ATC	GAC	GCC	GGA	GCC	GAC	GCT	CTC (GCC G	AA A	ATC A	TC G	CC G	CC T	TC	1781
10	Ser	Ile	Asp	Ala	Gly	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	
			355					360					365				
	CCG	GTC	TAC	CGC	ACC	TAC	CTG	CCG	GAG (GC G	ecc o	GAG (etc c	TG A	AG G	AG	1829
15	Pro	Val	Tyr	Arg	Thr	Tyr	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	
		370					375					380					
	GCG	TGC	GAG	CTT	GCC	GCG	CGT	AGG (CGG (CG G	AA C	CTC G	AC C	AG G	CC A	TC	1877
20						Ala											
	385	-				390					395					400	
	CAG	GCT	CTG	CAG	CCG	CTG	CTG (CTG (GAC A	CG G	AC C	CTC G	AG C	TT G	cc c	GG	1925
25	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	
					405					410					415		
	CGC	TTC	CAG	CAG	ACC	TCG	GGC I	ATG (STC A	TG G	CC A	AG G	GC G	TG G	AG G	AC	1973
30	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val	Met	Ala	Lys	Gly	Val	Glu	Asp	
				420					425					430			
	ACC	GCG	TTC	TTC	CGC	TAC	AAC (CGC (CTG G	GC A	.cc c	TC A	CG G	AA G'	rg go	GC	2021
35	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	Gly	
			435					440					445				
	GCC	GAC	CCC	ACC	GAG	TTC (GCC (GTG G	AG C	CG G	AC G	AG T	TĊ C	AC G	cc co	G G	2069
40	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp	Glu	Phe	His	Ala	Arg	
		450					455					460					
	CTG	GCA	CGC	CGG	CAG	GCC (GAG (CTT C	CG C	TG T	CC A	TG A	CG A	CG C'	IG A	GC	2117
45	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470					475					480	
50	ACG	CAC	GAC	ACC .	AAG	CGC I	AGC (GAG (SAC A	cc c	GA G	CA A	GG A	TT T	CG G	гC	2165
	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485					490					495		

5	ATT	TCC	GAG	GTT	GCG	GGT	GAC	TGG	GAA	AAG (GCC 1	rtg <i>f</i>	AC C	CGG C	CTG (CGC	2213
	Ile	Ser	Glu	val	Ala	a Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg	Let	ı Arg	
•				500)				505					510	•		
10	GAC	CTG	GCC	CCG	CTG	CCG	GAC	GGC	CCG	CTG 7	rcc (GCG C	TG C	CTC T	GG (CAG	2261
	Asp	Leu	Ala	Pro	Let	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp	Gln	
			515		·			520					525				
15	GCC	ATT	GCC	GGC	GCC	TGG	ccc	GCC	AGC (CGG (GAA (CGC C	TG C	AG I	'AC T	AC	2309
	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Gľu	Arg	Leu	Gln	Туг	Tyr	
		530	1				535		•			540					
20	GCG	CTG	AAG	GCC	GCG	CGT	GAA	GCG	GGG 2	AAC 1	rcg A	ACC A	AC I	GG A	.cc e	SAT	2357
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	
	54 5					550					555					560	
25	CCG	GCC	ccc	GCG	TTC	GAG	GAG	AAG (CTG A	AAG G	SCC G	CG G	TC G	AC G	CC G	TG	2405
	Pro	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	
					565					570					575		
30	TTC	GAC	AAT	ccc	GCC	GTG	CAG	GCC (GAG (STG G	AA G	cc c	TC G	TC G	AG C	TC	2453
	Phe	Ąsp	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	
25				580					585					590			
35	CTG	GAG	CCG	TAC	GGA	GCT	TCG A	AAC :	rcc c	TC G	CC G	CC A	AG C	TC G	TG C	AG	2501
	Leu	Glu	Pro	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	
40		•	595					600					605				
••	CTG	ACC	ATG	ccc	GGC	GTC (CCG	GAC (TC T	AC C	AG G	GC A	CG G	AG T	гс т	GG	2549
	Leu	Thr	Met	Pro	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	
45		610					615					620					
	GAC	CGG	TCG	CTG	ACG	GAC (CCG (GAC A	AC C	GG C	GG C	CG T	TC A	GC T	rc G	AC	2597
	Asp	Arg	Ser	Leu	Thr	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	
50	625					630					635					640	
	GAC	CGC	CGC	GCC	GCG	CTG (GAG (CAG C	TG G	AT G	CC G	GC G	AC C	TT C	CC G	CG	2645
•	Asp	Arg	Arg	Ala	Ala	Leu	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	

5		645	650	. 655	
	TCA TTT ACC	GAT GAG CGG ACG A	AG CTG CTA GTG ACG	TCG CGC GCG CTG	2693
	Ser Phe Thr	Asp Glu Arg Thr	Lys Leu Leu Val Th	or Ser Arg Ala Leu	
0		660	665	670	
	CGG CTG CGC	CGG GAC CGT CCG G	AG CTG TTC ACG GGG	TAC CGG CCG GTC	2741
	Arg Leu Arg	Arg Asp Arg Pro	Glu Leu Phe Thr Gl	y Tyr Arg Pro Val	
5	675		680	685	
	CTG GCC AGC	GGG CCC GCC GCC G	GG CAC CTG CTC GCG	TTC GAC CGC GGC	2789
	Leu Ala Ser	Gly Pro Ala Ala	Gly His Leu Leu Al	a Phe Asp Arg Gly	
0	690	695	70	0	
	ACC GCG GCG	GCG CCG GGT GCA T	TG ACC CTC GCC ACG	CGG CTT CCC TAC 2	2837
5	Thr Ala Ala	Ala Pro Gly Ala	Leu Thr Leu Ala Th	r Arg Leu Pro Tyr	
•	705	710	715	720	
	GGG CTG GAA	CAG TCG GGT GGA T	GG CGG GAC ACC GCC	GTC GAA CTT AAC 2	2885
9	Gly Leu Glu	Gln Ser Gly Gly	Trp Arg Asp Thr Al	a Val Glu Leu Asn	
		725	730	735	
	ACC GCC ATG	AAA GAC GAA CTG A	CC GGT GCC GGC TTC	GGA CCG GGG GCA 2	933
5	Thr Ala Met	Lys Asp Glu Leu 1	Thr Gly Ala Gly Pho	e Gly Pro Gly Ala	
		740	745	750	
	GTG AAG ATC	GCC GAC ATC TTC CO	GG TCG TTC CCC GTT	GCG CTG CTG GTG 2	981
)	Val Lys Ile	Ala Asp Ile Phe A	Arg Ser Phe Pro Val	l Ala Leu Leu Val	
	755	. 76	50	765	
	CCG CAG ACA	GGA GGA GAG TCA		. 3	002
5	Pro Gln Thr	Gly Gly Glu Ser		•	
	770	775			
	TGACGCACAC CT	PACCEGEG GAAGEEG	CGA AACCCGTCCT GGGC	CCCGCA CGCTACGACG 3	
)	TCTGGGCGCC C	•		3	073

^{22.} The transformant as claimed in claim 16, wherein said DNA is derived from a microorganism selected from the group consisting of the genera *Rhizobium*, *Arthrobacter*, *Brevibacterium*, *Flavobacterium*, *Micrococcus*, *Curtobacterium*, *Mycobacterium* and *Terrabacter*.

- 23. The transformant as claimed in claim 16, wherein said self-replicable vector is a plasmid vector Bluescript II SK(+).
- 24. The transformant as claimed in claim 16, wherein said host is a microorganism of the spices Escherichia coli.
 - 25. A recombinant enzyme which forms a non-reducing saccharide having trehalose structure as an end unit from a reducing amylaceous saccharide having a degree of glucose polymerization of 3 or higher.
- 10 26. The recombinant enzyme as claimed in claim 25, which has the following physicochemical properties:
 - (1) Molecular weight

About 76,000-87,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PA-GE); and

- (2) Isoelectric point (pl)
- About 3.6-4.6 on isoelectrophoresis.
 - 27. The recombinant enzyme as claimed in claim 25, which has an amino acid sequence selected from the group consisting of those as shown in the following SEQ ID NOs:2 and 4 that initiate from the N-terminal, and homologous amino acid sequences to these amino acid sequences:

SEQ ID NO:2

Met Arg Thr Pro Ala Ser Thr Tyr Arg Leu Gln Ile Arg Arg Gly Phe Thr

25 ₁ 5 10 15

Leu Phe Asp Ala Ala Glu Thr Val Pro Tyr Leu Lys Ser Leu Gly Val Asp

30

5

15

20

35

45

50

5			20					25					30				
				•	Com	Dec	r1a		Lvs	Ala	Glu	Ser	Gly	Ser	Asp	His	Gly
	Trp	Ile	Tyr	Leu	ser		116	Dea	2,2		45					50	
10	35					40						C1	Ara	Glv	Glv	Pro	Glu
	Tyr	Asp	Val	Thr	Asp	Pro	Ala	Val		Asp	PIO	GIU	nrg	65	2	Pro	
				.55					60						01	171	Ť au
15	Gly	Leu	Ala	Ala	Val	Ser	ГÀЗ	Ala	Ala	Arg	Gly	Ala	GIĀ	Met	GTÀ	Val	
		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
20					90					95					100		
20	Trp	Tro	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
		_	105					110					115				
	Pho	Acn		Aso	Tro	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
25		vab	,			125					130					135	
	120	C	Bon	a co	1en		Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
	GLY	ser	wsb	140	nap				145					150			
30			_			Dho	Pro	Leu		Glu	Glv	Ser	Tyr	Arg	Asp	Gly	Asp
	Tyr		Asp	HIS	Arg	Pne		Deu	7124	0	1	165	-				170
		155					160	_		,,, <u> </u>			Lau	716	Glv	Tro	Ara
35	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	GID		туг	GIU	Leu	116	185	Trp	3
					175					180				1		Mh-	T ON
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe			ASN	Thr	ьес
40			190					195					200				
	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
45	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
	Pro	·λer	. ភា	Leu	Αla	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Va:
	110	240			_	-	245					250					25
50				. R1~	, m	יים ד			Glu	Lvs	Ile	. Lei	ı Glu	Pro	Gly	Glu	G1
	Thr	GTĀ	GTÄ	WIG						265					270		
					260	,				200	•						

_																	
5	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
10	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg
10	290					295					300					305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
15				310		`			315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
20	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Tyr
25			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
	375					380					385					390	
30	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Ģln	Pro	Leu	Leu	Leu
		•		395					400					405			
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
35		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
40	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
			445					450					455				
	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu		Met
45	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
50	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	
		495					500					505					510
	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
55																	

5					515	•				520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Туз
			530					535					540				
10	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555					560	
	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asţ
15				565					570					575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
		580					585					590					595
20	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thi
25			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
	630					635					640					645	
30	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655					660			
35	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
50		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
ю					685					690					695		
	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
15	Leu	Pro	Tyr	Gly	Leu	Gl u	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
	715		ė			720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
50				735					740					745			
	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					765

Pro Ala Thr Gly Gly Lys Ser

5	SEQ	ID I	NO:4							٠							
	Met	Arg	Thr	Pro	Val	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Lys	Gly	Phe	Thr
40	1				5					10					15		
10	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His	Ser	Leu	Gly	Val	Asp
			20					25					30				
15	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
13	35					40					45					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Àsp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
20	•			55				•	60					65			
20	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
		70					75					80					85
25	Ile	Asp	Ile	Val	Pro	Asn	His	Val	GLŸ	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
					90					95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
30			105					110					115				
	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Àrg	Leu	Pro	Val	Leu
	120					125					130					135	
35	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
				140					145					150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
40		155					160					165					170
	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
45	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
	J		190					195	-				200				
	Ala	Gly		Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
		•	-	3													

5																	
	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
10				225					230					235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
15	Thr	Gły	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glü	Pro	Gly	Glu	Glr
					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Туг	Asp	Ala	Leu	Ala
20			275					280					285				
	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
	290					295					300					305	
25	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Asp	Met	Ile
				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
30		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
					345					350					355		
35	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Сув	Glu	Leu	Ala	Ala	Arg
40	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
45	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
50					430					435					440		
	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
			445					450					455	•			

_																	
5	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460		·			465					470					475	
10	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
15		495					500					505					510
10	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
20	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
			530		-			535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
25	545		*			550					555					560	
	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
30	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
		580		•			585					590					595
	туг	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
35					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
10	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala		Leu
	630					635					640					645	
	Glu	Gln	Leu	Asp	λla	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr		Glu	Arg	Thr
15				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu		Arg	Asp	Arg	Pro	
		665					670					675					680
50	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		
	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu

															•		
			700					705					710				
5	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
	715					720					725					730	
	Alà	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
10				735					740					745			
	Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala
		750					755					760					765
15	Leu	Leu	Val	Pro	Gln	Thr	Gly	Gly	Glu	Ser							
					770					775							
20 25	ing tu 29. Th	g the r re. ne proc opertic (1) Mo	ecomb cess as es: olecula	oinant s claim ar weiç	enzyn ned in : ght	ne of c	daim 2 28, wh	25, and	d colle	ecting (the red	combii enzym	nant ei	nzyme he foll	from	the re	ble of form- sultant cul- cochemical
30		GE); a (2) Iso About	oelecti	-		ctroph	oresis	•									
35	se	lected	from	the gr	oup c	onsisti	ing of	those	as sh	own ir	ı SEQ	ID N	Os:2 a		hat ini		sequence rom the N-
	_	ID N															•
	Met	Arg	Thr	Pro	Ala	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Arg	Gly	Phe	Thr
40	1				5					10					15		
								,									

5	Leu	Phe	Asp	Ala	Ala	Glu	Thr	Val	Pro	Tyr	Leu	Lys	Ser	Leu	Gly	Val	Asp
			20					25					30				
	тгр	Ile	Tyr	Leu	Ser	Pro	Ile	Leu	ГÄЗ	Ala	Glu	Ser	Gly	Ser	Asp	His	Gly
10	35					40					4 5					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ala	Val	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
15	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Gly	Ala	Gly	Met	Gly	Val	Leu
		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
20					90					95	,				100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
			105					110					115				
25	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
	120					125					130					135	
••	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
30				140					145				1	150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp
35		155					160					165					170
	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
40	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
45	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			
50	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Glr

5					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
10	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg
	290					295					300		•			305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
15				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
20	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Туг
25			360		•			365					370				
•	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
	375					380					385					390	
30	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
				395					400					405			
35	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
33		410					415					420					425
	Met	Ala	Ĺys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
40					430					435					440		
	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
			445					450					455				
45	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
50				480					485					490			
	Ile	Ser	Val.	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495					500					505					510

5 .	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
10			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555					560	
15	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
				565					570					575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
20		580					585					590					595
	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
25	Gly	Val	Рто	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
30	630					635					640					645	
	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655					660			
35	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
10					685		,			690					695		
	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
15	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
	715					720					725					730	
io :	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
				735		•			740					745			
	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val

		750					755	•	•				760				
	Pro	Ala	Thr	Gly	GLy	Lys	Ser										
5					770												
															•		
10																	
	_	ID 1						_	_	_			_		01	nt -	mb
15	Met	Arg	Thr	Pro		Ser	Thr	Туг	Arg		Gln	Ile	Arg	Lys		Pne	Thr
	1				5					10					15		
	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His		Leu	Gly	Val	Asp
20			20					25					30				
	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp		Gly
	35					40					45					50	
25	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
30		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
					90					95					100		
35	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
			105					110					115				
	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
40	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
45				140					145					150			
₩.	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
		155					160					165					170
50	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
- - .					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	val	Asn	Thr	Leu
			100					105					200				

5																	
J	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
10	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
10				225					230					235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
15		240					245					250		,			255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
					260					265					270		
20	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
25	290					295					300				-	305	
	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Asp	Met	Ile
				310					315					320			
30	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
35					345					350					355		
	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
			360					365					370				
40	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu ·	Leu
4 5				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
50	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430	•				435					440		
	Thr	Leu	Thr	G1u	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp

5			445					450					455				
	Glu	Phe	His	Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
	4 60					465					470					475	
10	Thr	Thr	Lėu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
15		495					500					505					510
	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
20	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Туг
			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
25	545					550					555					560	
	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
30	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
		580					585					590					595
25	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
35					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
40			615		•			620					625				
••	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
	630	•				635					640					645	
45	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
50		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					690					695		

	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
5			700					705					710				
	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
	715					720					725					730	
10	Ala	Val	Glu	Leu	Asn	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
				735					740					745			
	Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala
15		750					7 55					760					765
	Leu	Leu	Val	Pro	Gln	Thr	Gly	Gly	Glu	Ser							
					770					775							

20

- 31. The process as claimed in claim 28, wherein said transformant is obtained by introducing into a suitable host a recombinant DNA containing a self-replicable vector and a DNA encoding an enzyme which forms a non-reducing saccharide having trehalose structure as an end unit from a reducing amylaceous saccharide having a degree of glucose polymerization of 3 or higher.
- 32. The process as claimed in claim 28, wherein said DNA has a base sequence selected from the group consisting of those as shown in SEQ ID NOs:1 and 3 that initiate from the 5'-terminus, homologous base sequences to the base sequences, and complementary base sequence to these base sequences:

30

25

SEQ ID NO:1

ATGAGGACAC CCGCCTCGAC CTACCGGCTG CAGATCAGGC GGGGTTTCAC GCTGTTTGAT 60

GCCGCCGAGA CCGTGCCCTA CCTGAAGTCA CTCGGGGTGG ACTGGATCTA CCTGTCGCCC 120

ATCCTGAAGG CAGAGAGCGG CTCCGACCAC GGCTATGACG TCACCGATCC CGCCGTAGTG 180

GACCCGGAGC GCGGCGCCC TGAAGGGCTG GCCGCGGTGT CCAAGGCGGC CCGCGGTGCC 240

GGCATGGGCG TGCTGATCGA CATCGTGCCG AACCACGTGG GCGTGGCGTC GCCGCGCAG 300

AACCCGTGGT GGTGGTCGCT GCTCAAGGAA GGGCGCGGGT CGCCCTACGC CGTGGCGTTC 360

45

50

5	GACGTCGACT	GGGACCTGGC	GGGGGGCCGC	ATCCGGATCC	CCGTCCTGGG	CAGCGACGAC	420
	GATCTGGACC	AGCTCGAAAT	CAAGGACGGC	GAGCTGCGGT	ACTACGACCA	CCGCTTCCCG	480
	CTGGCCGAGG	GCAGCTACCG	GGACGGCGAC	TCCCCGCAGG	ACGTCCACGG	CCGGCAGCAC	540
0	TACGAACTCA	TCGGCTGGCG	GCGCGCCGAC	AATGAACTGA	ACTACCGCCG	GTTCTTCGCG	600
	GTGAACACGC	TCGCCGGCAT	CCGGGTGGAG	GTGCCGCCGG	TCTTCGATGA	AGCGCACCAG	660
	GAGGTGGTGC	GCTGGTTCCG	TGCGGGGCTC	GCCGACGGGC	TGCGGATCGA	CCACCCGGAC	720
5	GGCCTGGCCG	ATCCCGAGGG	GTATTTGAAG	CGGCTCCGTG	AGGTCACCGG	GGGCGCGTAC	780
	CTGCTCATCG	AAAAGATCCT	CGAGCCGGGC	GAACAGTTGC	CGGCCAGCTT	CGAGTGCGAA	840
	GGCACCACCG	GCTACGACGC	CCTCGCGGAT	GTCGACAGGG	TCTTCGTGGA	CCCGCGGGGA	900
0	CAGGTGCCGC	TGGACCGTCT	GGACGCACGG	CTGCGCGGCG	GTGCGCCGGC	CGACTACGAG	960
	GACATGATCC	GCGGGACCAA	GCGCCGGATC	ACCGACGGCA	TCCTGCACTC	CGAGATCCTG	1020
	CGCCTTGCCA	GGCTGGTGCC	CGAGCAGACC	GGAATTCCCG	GGGAGGCGGC	CGCGGATGCG	1080
5	ATCGCGGAGA	TCATCGCGGC	CTTCCCGGTC	TACCGGTCCT	ATCTTCCCGA	GGGCGCGGAG	1140
	ATCCTGAAGG	AGGCCTGCGA	CCTCGCCGCG	CGGAGGCGTC	CGGAACTGGG	CCAGACCGTC	1200
	CAGCTGCTGC	AGCCGCTGCT	GCTGGATACC	GACCTCGAGA	TTTCCCGCAG	GTTCCAGCAG	1260
0	ACCTCGGGAA	TGGTCATGGC	CAAAGGCGTG	GAGGACACCG	CGTTCTTCCG	CTACAACCGG	1320
	CTGGGAACGC	TCACCGAGGT	GGGCGCCGAC	CCCACCGAGT	TCTCGCTGGA	ACCGGAGGAG	1380
_	TTTCACGTCC	GGATGGCCCG	CCGGCAGGCC	GAACTCCCGC	TCTCCATGAC	CACCCTGAGC	1440
5	ACGCACGACA	CCAAGCGCAG	CGAGGACACC	CGGGCCCGGA	TCTCGGTGAT	CGCCGAGGTC	1500
	GCGCCTGAAT	GGGAAAAGGC	CCTGGACAGG	CTGAACACCC	TCGCTCCGCT	GCCGGACGGC	1560
0	CCGCTCTCCA	CGCTGCTCTG	GCAGGCGATT	GCGGGGGCAT	GGCCGGCCAG	CCGGGAACGC	1620
	CTTCAGTCCT	ACGCCCTGAA	AGCGGCGCGC	GAAGCCGGGA	ACTCGACCAG	CTGGACCGAT	1680
	CCGGACCCGG	CATTCGAGGA	GGCACTTTCC	GCCGTCGTCG	ACTCCGCCTT	CGACAATCCG	1740
5	GAGGTGCGTG	CGGAACTTGA	GGCCCTGGTĠ	GGCCTCCTTG	CGCCGCACGG	TGCGTCCAAC	1800
•	TCGCTCGCGG	CAAAGCTTGT	CCAGCTGACC	ATGCCGGGCG	TTCCGGACGT	GTACCAGGGC	1860
	ACCGAGTTCT	GGGACAGGTC	GCTGACCGAT	CCGGACAACC	GGCGCCCCTT	CAGCTTCGCC	1920
0	GAACGGATTA	GGGCCTTGGA	CCAGTTGGAC	GCCGGCCACC	GTCCGGACTC	CTTCCAGGAC	1980
	GAGGCGGTCA	AGCTGCTGGT	CACCTCGAGG	GCGCTGCGGC	TGCGGCGGAA	CCGGCCCGAG	2040
	CMCMMC & CCC	COMMERCE	COMOCAMOCO	*CCCCCCCC	CCGCCGGGCA	ССТССТСССС	2100

TTCGACCGCG GCGCCGGGG AGTGCTGGCG CTTGCCACCC GGCTCCCCTA CGGGCTGGAA 2160
CAGTCGGGCG GCTGGCGGGA CACCGC: GTC GAGCTTGAAG CCGCCATGAC GGACGAACTG 2220
ACCGGCTCCA CTTTCGGGCC GGGACCGGCG GCGCTGTCAG AAGTCTTCCG GGCCTACCCG 2280
GTGGCCTTGT TGGTCCCCGC GACAGGAGGC AAGTCA 2316

10

15

20

35

40

45

50

55

SEQ ID NO:3

ATGAGAACGC CAGTCTCCAC GTACAGGCTG CAGATCAGGA AGGGATTCAC ACTCTTCGAC 60 GCGGCCAAAA CCGTTCCGTA CCTGCACTCG CTCGGCGTCG ACTGGGTCTA CCTTTCTCCG 120 GTCCTGACTG CCGAGCAGGG CTCCGACCAC GGGTACGACG TCACCGATCC CTCCGCCGTC 180 GGCATGGGCG TGCTGATCGA CATCGTGCCC AACCACGTGG GCGTCGCGAC GCCGGCGCAG 300 AACCCCTGGT GGTGGTCGCT GCTCAAGGAG GGACGCCAGT CCCGTTACGC GGAGGCGTTC 360 GACGTCGATT GGGACCTCGC CGGGGGACGC ATCCGGCTGC CGGTGCTCGG CAGCGACGAT 420 GACCTCGACC AGCTCGAAAT CAGGGACGGG GAGCTGCGGT ACTACGACCA CCGATTCCCG 480 CTCGCCGAGG GAACCTACGC CGAAGGCGAC GCCCCGCGGG ATGTCCACGC CCGGCAGCAC 540 TACGAGCTCA TCGGCTGGCG CCGCGCGGAC AACGAGCTGA ACTACCGCCG CTTTTTCGCG 600 GTGAACACGC TCGCCGGCGT CCGCGTGGAA ATCCCCGCCG TCTTCGACGA GGCACACCAG 660 GAGGTGGTGC GCTGGTTCCG CGAGGACCTT GCGGACGGCC TGCGGATCGA CCACCCGGAC 720 GGCCTCGCTG ACCCCGAGGG GTACCTGAAG CGACTCCGGG AAGTCACCGG CGGCGCTTAC 780 CTGCTGATCG AAAAGATCCT GGAGCCGGGG GAGCAGCTGC CCGCCAGCTT CGAGTGTGAA 840 GGCACCACAG GCTACGACGC CCTCGCCGAC GTCGACCGGG TTCTCGTGGA CCCGCGCGGC 900 CAGGAACCGC TGGACCGGCT TGACGCGTCC CTGCGTGGCG GCGAGCCCGC CGACTACCAG 960 GACATGATCC GCGGAACCAA GCGCCGGATC ACCGACGGTA TCCTGCACTC GGAGATCCTG 1020 CGGCTGGCCC GGCTGGTTCC GGGCGACGCC AACGTTTCAA TCGACGCCGG AGCCGACGCT 1080 CTCGCCGAAA TCATCGCCGC CTTCCCGGTC TACCGCACCT ACCTGCCGGA GGGCGCCGAG 1140 GTCCTGAAGG AGGCGTGCGA GCTTGCCGCG CGTAGGCGGC CGGAACTCGA CCAGGCCATC 1200 CAGGCTCTGC AGCCGCTGCT GCTGGACACG GACCTCGAGC TTGCCCGGCG CTTCCAGCAG 1260 ACCTCGGGCA TGGTCATGGC CAAGGGCGTG GAGGACACCG CGTTCTTCCG CTACAACCGC 1320 CTGGGCACCC TCACGGAAGT GGGCGCCGAC CCCACCGAGT TCGCCGTGGA GCCGGACGAG 1380

	TTCCACGCCC	GGCTGGCACG	CCGCCAGGCC	GAGCTTCCGC	TGTCCATGAC	GACGCTGAGC	1440
5	ACGCACGACA	CCAAGCGCAG	CGAGGACACC	CGAGCAAGGA	TTTCGGTCAT	TTCCGAGGTT	1500
	GCGGGTGACT	GGGAAAAGGC	CTTGAACCGG	CTGCGCGACC	TGGCCCCGCT	GCCGGACGGC	1560
	CCGCTGTCCG	CGCTGCTCTG	GCAGGCCATT	GCCGGCGCCT	GGCCCGCCAG	CCGGGAACGC	1620
0	CTGCAGTACT	ACGCGCTGAA	GGCCGCGCGT	GAAGCGGGGA	ACTCGACCAA	CTGGACCGAT	1680
	CCGGCCCCCG	CGTTCGAGGA	GAAGCTGAAG	GCCGCGGTCG	ACGCCGTGTT	CGACAATCCC	1740
	GCCGTGCAGG	CCGAGGTGGA	AGCCCTCGTC	GAGCTCCTGG	AGCCGTACGG	AGCTTCGAAC	1800
5	TCCCTCGCCG	CCAAGCTCGT	GCAGCTGACC	ATGCCCGGCG	TCCCGGACGT	CTACCAGGGC	1860
	ACGGAGTTCT	GGGACCGGTC	GCTGACGGAC	CCGGACAACC	GGCGGCCGTT	CAGCTTCGAC	1920
	GACCGCCGCG	CCGCGCTGGA	GCAGCTGGAT	GCCGGCGACC	TTCCCGCGTC	ATTTACCGAT	1980
0	GAGCGGACGA	AGCTGCTAGT	GACGTCGCGC	GCGCTGCGGC	TGCGCCGGGA	CCGTCCGGAG	2040
	CTGTTCACGG	GGTACCGGCC	GGTCCTGGCC	AGCGGGCCCG	CCGCCGGGCA	CCTGCTCGCG	2100
	TTCGACCGCG	GCACCGCGGC	GCCCCCGGGT	GCATTGACCC	TCGCCACGCG	GCTTCCCTAC	2160
9	GGGCTGGAAC	AGTCGGGTGG	ATGGCGGGAC	ACCGCCGTCG	AACTTAACAC	CGCCATGAAA	2220
	GACGAACTGA	CCGGTGCCGG	CTTCGGACCG	GGGGCAGTGA	AGATCGCCGA	CATCTTCCGG	2280
	TCGTTCCCCG	TTGCGCTGCT	GGTGCCGCAG	ACAGGAGGAG	GAGTCA	•	2325

33. The process as claimed in claim 32, wherein said DNA has a base sequence selected from the group consisting of those as shown in SEQ ID NOs:1 and 3 wherein one or more bases are replaced with other bases by means of degeneracy of genetic code without alternating their corresponding amino acid sequences as shown in the following SEQ ID NOs:2 and 4:

5	Tyr	Asp	Val	Thr	Asp	Pro	Ala	Val	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55			*		60					65	•		
	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	GLy	Ala	Gly	Met	Gly	Val	Leu
10		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
					90					95					100		
15	Trp	тгр	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
			105					110					115				
	Phe	Asp	Val	Asp	ттр	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
20	120					125		•			130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
				140					145				1	L50			
25	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp
		155					160					165					170
	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
30					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
35	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
40	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
40				225					230					235			
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
45		240			•		245					250					255
**	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
					260					265	4				270		
50	Leu	Pro	Ála	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
J.			275					280					285	,			
	Asp	val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg

5	290		•			295					300					305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
				310					315					320			
10	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
15					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Туг
			360					365					370				
20	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
25				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
20		410					415					420					425
30	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
35	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
••			445					450					4 55				
	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
40	460					465					470					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	GLu	Asp	Thr	Arg	Ala	Arg
				480					48 5					490			
4 5	Ile	Ser	Val	Ile	Ala	G1u	Val	Ala	Pro	Glu	Trp	Glu	råa	Ala	Leu	Asp	Arg
		495					500					505					510
	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
50					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
			530					535					540				

5	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545					550					555					560	
•	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
10 .				565					570				,	575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
		580					585			٠		590					595
15	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
20			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
	630					635					640					645	
25	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655					660			
	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
30		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Ġly	His
0.5					685					690					695		
35	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
40	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
10	715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	GLy	Ser	Thr	Phe	Gly	Pro	Gly
45				735					740					745			
	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750		•			755					760					765
50	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
					770												

5	SEQ	ID	NO : 4														
	Met	Arg	Thr	Pro	Val	Ser	Thr	Туг	Arg	Leu	Gln	Ile	Arg	Lys	Gly	Phe	Thr
	1				5					10					15		
10	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His	Ser	Leu	Gly	Val	Asp
			20					,25					30				
	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
15	35					40					45					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
20	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
25					90					95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
			105					110					115				
30	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
35				140					145					150			
	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
		155					160					165					170
40	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
45			190					195					200				
	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gl n	Glu
	205					210					215					220	
50	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					220					235			

5	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Туг	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
10					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
15	Asp	Val	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
	290					295					300					305	
	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	туг	Gln	Asp	Met	Ile
20				310					315					320			
	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
25	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
					345					350					355		
	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
30			360					365					370				
	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
	375					380					385					390	
35	Arg	Arg	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
				395					400				٠	405			
	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
ю		410					415					420					425
	Met	λla	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
			_		430					435					440		
15	Thr	Leu	Thr	Glu	Val	Gly	Ala	qeA	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
			445					450					455				
	Glu	Phe		Ala	Arg	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
50	460				9	465		-	•		470					475	
		Thr	Leu	Ser	Thr		Asp	Thr	Lvs	Ara		Glu	Asp	Thr	Arg	Ala	Arg
				~						3			~				_

5				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
		495					500					505					510
10	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
15			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
	545					550					555					560	
20	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
25		580					585					590					595
	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600	•				605					610		
30	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625				
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
35	630					635					640					645	
	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	Glu	Arg	Thr
				650					655					660			
40	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
		665					670					675					680
46	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
45					685					690					695		
	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
50			700					705					710				
	Ala	Thr	Arg	Leu	Pro	туr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
	715					720					725					730	

	Ala	Val	Glu	Leu	Asn	Thr	A.la	Met	Lys	Asp	Glu	Leu	Thr	Gly	Ala	Gly	Phe
5				735					740					745			
5	Gly	Pro	Gly	Ala	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg	Ser	Phe	Pro	Val	Ala
		750					755					760					765
10	Leu	Leu	Val	Pro	Gln	Thr	Gly	Gly	Glu	Ser							
					770					775							
15							•		said D EQ ID				quenc	e seled	cted fr	om the	group c
20	SEQ	ID P	10:10):													
	CGT	CTCI	AC T	TCAA	CGCG	C AC	GACG	GCGA	CGT	GTGT	TTC A	AGCT	CCCG	T CG	GATG	AATA	60
	CGCC	CCGG	CC T	GGGA	CGTC	A TC	ÁTCG	ACAC	CGCC	GGCG	CG G	GTGC	CGAT	T CC	GAAC	CCGT	120
25	GCAG	GCTG	GC G	GCAA	ACTC	A CC	GTGG(CAGC	GAAA	TCGC	TC G	TGGT	GCTC	C GT	GCCC	ACAG	180
	CGCC	CCGG	AG G	AGGA	ACCG	G AC	CACTO	CGGT	GGCC	GCCT	CC C	TCGC	AGCG	C TG	ACGC	AGAC	240
	TGCG	ACCG	CC G	AAAC	CGCG	G CG(CTCAC	CCGC	cccc	ACCG	TT C	CGGA	GCCG	A GG	AAGA	CCAA	300
30	GAAG	GCAG	CG C	CGAA	GCCG	G AAC	GAGG!	AGGC	TCCC	GACG	AG G	CGGC	GCCG	A AG	CCGG	AAGA	360
	GAAG	GCTC	CC G	ACGA	GCG	G CGC	GCGA/	AGCC	GGAA	GAGG	CT G	CTTC	CGAC	G AGO	GCGG	CGGC	420
	GAAG	CCGG	AA G	AGAA	GCT(c ccc	BACG	AGGC	GGCG	GCGA	AG C	CGGA	AGAG	G CT	CTT(CCGA	480
35	CGAG	GCGG	CG G	CGAAC	3CCC	G CGC	GGA <i>I</i>	AGGC	AGCG	GCCA	AA A	CGGC	CGGC	A GG(CGAG	CGCC	540
	AGGC	AAGC	AG G	GCGG	GACG	G GC	TC										564
	ATG .	AGG A	ACA (CCC G	CC 1	CG A	CC T	AC C	GG C	TG C	AG A	rc a	GG C	GG GG	TT T	C	612
40	Met	Arg	Thr	Pro A	Ala	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Arg	Gly	Phe	
	1			;	5					10					15		
	ACG	CTG '	rtt (AT G	CC G	CC G	AG A	CC G	TG C	CC TA	AC C	rg A	AG TO	CA CI	C GO	G.	660
45	Thr	Leu	Phe .	Asp A	Ala .	Ala	Glu	Thr	Val	Pro '	Tyr	Leu	Lys	Ser	Leu	Gly	
			;	20					25					30			
	GTG (GAC '	rgg A	ATC T	AC C	TG T	CG C	CC A	TC C	TG A	AG GO	CA GA	AG AG	GC GG	C TC	C	708

Val Asp Trp Ile Tyr Leu Ser Pro Ile Leu Lys Ala Glu Ser Gly Ser

5	GAC	CAC	GGC	TAT	GAC	GTC	ACC	GAT	ccc	GCC	GTA (GTG (SAC (CCG C	GAG C	CGC	756
	Asp	His	Gly	Туг	Ası	val	Thr	Asp	Pro	Ala	Val	Val	Asp	Pro	Glu	Arg	ſ
		50					55					60					
10	GGC	GGC	CCT	GAA	GGG	CTG	GCC	GCG	GTG	TCC	AAG (GCG (SCC (CGC C	GT G	SCC	804
	Gly	Gly	Pro	Glu	Gly	, Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Gly	Ala	L
	65					70					75					80	
15	GGC	ATG	GGC	GTG	CTG	ATC	GAC	ATC	GTG	CCG .	AAC (CAC G	TG G	GC G	TG G	CG	852
	Gly	Met	Gly	Val	Leu	ı Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	
					85					90					95		
20	TCG	CCG	CCG	CAG	AAC	CCG	TGG	TGG	TGG	TCG (CTG (CTC A	AG G	AA G	GG C	GC	900
	Ser	Pro	Pro	Gln	Asn	Pro	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	
				100					105					110			
25	GGG	TCG	CCC	TAC	GCC	GTG	GCG	TTC	GAC (GTC (GAC 7	rGG G	AC C	TG G	CG G	GG	948
	Gly	Ser	Pro	Tyr	Ala	Val	Ala	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	
••			115					120					125				
30	GGC	CGC	ATC	CGG	ATC	ccc	GTC	CTG	GGC 2	AGC (GAC G	AC G	AT C	TG G	AC C	AG	996
	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	
35		130					135					140					
30	CTC	GAA.	ATC	AAG	GAC	GGC	GAG	CTG (CGG 1	rac 1	rac G	AC C	AC C	GC T	TC C	CG	1044
	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg	Tyr	Tyr	Asp	His	Arg	Phe	Pro	
40	145					150					155					160	
	CTG	GCC	GAG	GGC	AGC	TAC	CGG	GAC (GGC (SAC T	CC C	CG C	AG G	AC G	TC C	AC	1092
	Leu	Ala	Glu	Gly	Ser	Туг	Arg	Asp	Gly	Asp	Ser	Pro	Gln	Asp	Val	His	
45					165				:	170					175		
	GGC	CGG	CAG	CAC	TAC	GAA	CTC .	ATC (GGC 7	rGG C	GG C	GC G	CC G	AC A	AT G	AA	1140
	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg	Arg	Ala	Asp	Asn	Glu	
50				180					185					190			
	CTG	AAC	TAC	CGC	CGG	TTC	TTC	GCG (GTG F	AAC A	CG C	TC G	CC G	GC A	TC C	GG	1188
	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu	Ala	Gly	Ile	Arg	

\$

5	195	200	205	
	GTG GAG GTG CCG CCG	GTC TTC GAT GAA GCG (CAC CAG GAG GTG GTG CGC	1236
	Val Glu Val Pro Pro	Val Phe Asp Glu Ala	His Gln Glu Val Val A	rq
10	210	215	220	_
		CTC GCC GAC GGG CTG (CGG ATC GAC CAC CCG GAC	1284
	Trp Phe Arg Ala Gly	Leu Ala Asp Gly Leu	Arg Ile Asp His Pro As	gp
15	225	230	235 24	10
	GGC CTG GCC GAT CCC	GAG GGG TAT TTG AAG C	CGG CTC CGT GAG GTC ACC	1332
	Gly Leu Ala Asp Pro	Glu Gly Tyr Leu Lys	Arg Leu Arg Glu Val Th	ır
20	245	250	255	
	GGG GGC GCG TAC CTG	CTC ATC GAA AAG ATC C	TC GAG CCG GGC GAA CAG	1380
	Gly Gly Ala Tyr Leu	Leu Ile Glu Lys Ile	Leu Glu Pro Gly Glu Gl	.n
25	260	265	270	
	TTG CCG GCC AGC TTC	GAG TGC GAA GGC ACC A	CC GGC TAC GAC GCC CTC	1428
	Leu Pro Ala Ser Phe	Glu Cys Glu Gly Thr	Thr Gly Tyr Asp Ala Le	u
30	275	280	285	
	GCG GAT GTC GAC AGG	STC TTC GTG GAC CCG C	GG GGA CAG GTG CCG CTG	1476
35	Ala Asp Val Asp Arg	Val Phe Val Asp Pro	Arg Gly Gln Val Pro Le	u
33	290	295	300	
	GAC CGT CTG GAC GCA C	CGG CTG CGC GGC GGT GG	CG CCG GCC GAC TAC GAG	1524
40	Asp Arg Leu Asp Ala	Arg Leu Arg Gly Gly	Ala Pro Ala Asp Tyr Gl	u
	305	310	315 32	0
	GAC ATG ATC CGC GGG A	CC AAG CGC CGG ATC AG	CC GAC GGC ATC CTG CAC	1572
45	Asp Met Ile Arg Gly	Thr Lys Arg Arg Ile	Thr Asp Gly Ile Leu Hi	s
	325	330	335	
	TCC GAG ATC CTG CGC C	TT GCC AGG CTG GTG CC	CC GAG CAG ACC GGA ATT	1620
50	Ser Glu Ile Leu Arg	Leu Ala Arg Leu Val	Pro Glu Gln Thr Gly Il	е
	340	. 345	350	
	CCC GCG GAG GCG GCC G	CG GAT GCG ATC GCG GA	AG ATC ATC GCG GCC TTC	1668
55				

										•							
5	Pro	Gly	Glu	a Ala	Ala	a Ala	Asp) Ala	Ile	. Ala	Glu	ıIle	Ile	a Ala	a Ala	Phe	!
			355	5				360	;				365	5			
	CEG	GTC	TAC	CGG	TCC	TAT	CTT	ccc	GAG	GGC (GCG	GAG A	ATC (CTG A	AAG G	AG	1716
10	Pro	Val	Tyr	Arg	Ser	Tyr	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	ŀ
		370)				375	i				380	ı		-		
	GCC	TGC	GAC	CTC	GCC	GCG	CGG	AGG	CGT	CCG (GAA :	CTG (GC (CAG A	ACC G	TC	1764
15	Ala	Cys	Asp	Leu	Ala	Ala	Arg	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	
	385					390		•			395	i				400	
	CAG	CTG	CTG	CAG	CCG	CTG	CTG	CTG	GAT .	ACC (GAC (CTC C	GAG A	ATT I	cc c	GC	1812
20	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	
					405	i				410					415		
	AGG	TTC	CAG	CAG	ACC	TCG	GGA	ATG (GTC 2	ATG G	CĊ A	AAA G	GC G	etg g	AG G	AC	1860
25	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val	Met	Ala	Lys	Gly	Val	Glu	Asp	
				420					425					430			
	ACC	GCG	TTC	TTC	CGC	TAC	AAC	CGG (CTG (GGA A	CG (CTC A	CC G	SAG G	TG G	GC	1908
30	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	Val	Gly	
			435					440					445				
	GCC	GAC	ccc	ACC	GAG	TTC	TCG	CTG (GAA (CCG G	AG (GAG T	тт С	AC G	TC C	GG	1956
35	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu	Glu	Phe	His	Val	Arg	
		450					455					460					•
	ATG	GCC	CGC	CGG	CAG	GCC (GAA (CTC (CCG (стс т	CC .	ATG A	.CC A	cc c	TG A	GC	2004
40	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Leu	Ser	
	465					470					475					480	
	ACG	CAC	GAC	ACC	AAG	CGC I	AGC (GAG (GAC A	ACC C	GG C	CC C	GG A	тс т	CG G	TG	2052
45	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg	Ile	Ser	Val	
					485					490					495		
50	ATC	GCC	GAG	GTC	GCG	CCT (GAA '	TGG (SAA A	AAG G	cc c	CTG G	AC A	.GG C	TG A	AC	2100
<i>50</i>	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ála	Leu	Asp	Arg	Leu	Asn	
				500					505					510			

5	ACC	CTC	GCT	CCG	CTG	CCG	GAC	GGC	CCG	CTC 1	TCC A	ACG C	CTG C	TC T	GG C	AG	2148
	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp	Gln	
	-		515					520					525				
10	GCG	ATT	GCG	GGG	GCA	TGG	CCG	GCC	AGC	CGG (GAA (CGC C	тт с	AG I	CC T	'AC	2196
	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr	
		530					535	i				540					
15	GCC	CTG	AAA	GCG	GCG	CGC	GAA	GCC	GGG .	AAC :	rcg A	ACC A	GC I	GG A	CC G	AT	2244
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	
	545					550					555					560	
20	CCG	GAC	CCG	GCA	TTC	GAG	GAG	GCA	CTT	TCC (GCC G	TC G	TC G	AC T	CC G	CC	2292
	Pro	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	
					565					570					575		
25	TTC	GAC	AAT	CCG	GAG	GTG	CGT	GCG	GAA (CTT G	GAG G	cc c	TG G	TG G	GC C	TC	2340
	Phe	Asp	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	
				580					585					590			
30	CTT	GCG	CCG	CAC	GGT	GCG	TCC	AAC '	rcg (CTC G	SCG G	CA A	AG C	TT G	TC C	AG	2388
	Leu	Ala	Pro	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	
25			595					600					605				
35	CTG	ACC	ATG	CCG	GGC	GTT	CCG	GAC (STG ?	PAC C	AG G	GC A	CC G	AG T	TC T	GG	2436
	Leu	Thr	Met	Pro	Gly	Val	Pro	Asp	Val	Tyr	Gln	GlŸ	Thr	Glu	Phe	Trp	
40		610					615					620					
4 0	GAC	AGG	TCG	CTG	ACC	GAT	CCG	GAC A	AAC (CGG C	GC C	CC T	TC A	GC T	TC G	CC	2484
	Asp	Arg	Ser	Leu	Thr	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	
45	625					630					635					640	
	GAA	CGG	ATT	AGG	GCC	TTG	GAC	CAG 7	rtg (GAC G	CC G	GC C	AC C	GT C	CG G	AC	2532
	Glu	Arg	Ile	Arg	Ala	Leu	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	
50					645					650			-		655		
	TCC	TTC	CAG	GAC	GAG	GCG	GTC .	AAG (CTG (CTG G	TC A	CC T	CG A	GG G	CG C	ľG	2580
	Ser	Phe	Gln	Asp	Glu	Ala	Val	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	

5				660					665					670			
	CGG	CTG	CGG	CGG	AAC	CGG	ccc	GAG (CTC 1	TTC ?	cc c	GC I	AC C	GC C	CC G	TG	2628
	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	
10			675					680					685				
	CAT	GCC	AGG	GGC	ccc	GCC	GCC	GGG (CAC (CTG C	STG (CG T	TC G	AC C	GC G	GC	2676
	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His	Leu	Val	Ala	Phe	Asp	Arg	Gly	
15		690					695					700					
	GCC	GGG	GGA	GTG	CTG	GCG	CTT	GCC A	ACC C	CGG C	TC C	CC T	AC G	GG C	TG G	AA	2724
	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	
20	705					710					715					720	
	CAG	TCG	GGC	GGC	TGG	CGG	GAC .	ACC (GCC G	STC G	AG C	TT G	AA G	CC G	CC A	TG	2772
	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu	Leu	Glu	Ala	Ala	Met	
25					725					730					735		
	ACG	GAC	GAA	CTG	ACC	GGC '	TCC A	ACT 1	rTC G	GG C	CG G	GA C	CG G	CG G	cg c	TG	2820
	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly	Pro	Ala	Ala	Leu	
30				740					745					750			
	TCA	GAA	GTC	TTC	CGG	GCC '	rac (CCG G	STG G	CC T	TG T	TG G	TC C	CC G	CG A	CA	2868
	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val	Pro	Ala	Thr	
35			755					760					765				
	GGA	G G C	AAG	TCA													2880
	Gly	Gly	Lys	Ser													
40		770															
	TGAC	GCAG	cc c	AACG	ATGO	G GC	CAAG	CCGG	TGC	AGGG	AGC (GGGG	CGCT	rc ga	TATO	2	2936

	OO2 10						
5	GATCCGGACG	GCAACCTCAT	GTCCCCGGAG	GACTGGGACA	GCGGCTTCGG	CCGTTCGGTG	60
	GGCATGTTCC	TCAACGGCGA	CGGCATCCAG	GGCCACGATG	ACCGCGGCCG	CCGCATCACG	120
	GACGTGAACT	TCCTGCTGTA	CTTCAACGCC	CACGACGGCG	ACGTCGAGTT	CACGCTGCCG	180
10	CCGGACGAAT	ACGCCCCGGC	CTGGGACGTC	ATCATCGACA	CCGCCGGTGA	AGGGGCCGAC	240
						•	
15							
20							
25							
			4 · 1				
		•	•				
30							
							-
35						·	
					• .		
ю							
•							
15							
50		•					

5	TCCAAGC	CCG CGGA	CGCCGG AAC	CATCCTG TO	CCGTTGCGG	CCAAGTCGCT	r gettetect	T 300
	CGCGCCC	ACA GCGC	ACCGGA GGA	GGAGCCT G	CCATTCCG	TGGCTGCTT	CCTGGCTGC	A 360
	CTGACGC	AGA CCGC	CACCGC CGA	GACGGCG G	GCTCACAG	CTCCTGCCGT	T TCCCGAGCC	G 420
10	GCCAAGA	CGA AGAA	eccesc cec	TGACCCG G	TGCTGAAC	CGGCCGACCC	CGCCGGTTGC	т 480
	GACCCGG	CCG ACCC	GGTTGC TGA	CCCGGTT GO	TGACCCGG	CGCCGGAACC	C GGCTGCGGA	G 540
	CCTGCGA	AAT CCGC	AGCGGA ACC	TGGTGCG G	GCCTGCGA	AGGACCCGGA	GGAGCAGCC	G 600
15	GCGGAAA	AGC CGGC	GCGCAA GCC	TGCGGCA AF	GCGCGGCG	GCCACCTGAG	GGCGGTCAA	.G 660
	сссстс	GGG AGGA	.cgc					677
	ATG AGA	ACG CCA	GTC TCC A	CG TAC AGG	CTG CAG	ATC AGG AA	G GGA TTC	725
20	Met Arg	Thr Pro	Val Ser	Thr Tyr Ar	g Leu Gln	Ile Arg I	Lys Gly Ph	е
	1		5		10		15	
	ACA CTC	TTC GAC	GCG GCC A	AA ACC GTT	CCG TAC	CTG CAC TC	G CTC GGC	773
25	Thr Leu	Phe Asp	Ala Ala I	ys Thr Va	l Pro Tyr	Leu His S	Ser Leu Gly	7
		20		25		3	30	
	GTC GAC	TGG GTC	TAC CTT TO	CT CCG GTC	CTG ACT	GCC GAG CA	G GGC TCC	821
30	Val Asp	Trp Val	Tyr Leu S	Ser Pro Va	l Leu Thr	Ala Glu G	Sln Gly Se	=
		35		40		45		
	GAC CAC	GGG TAC	GAC GTC AC	CC GAT CCC	TCC GCC G	STC GAC CC	C GAA CGC	869
35	Asp His	Gly Tyr	Asp Val T	hr Asp Pr	o Ser Ala	Val Asp P	ro Glu Arg	j
	50		5	5		60		
40	GGC GGG	CCG GAG	GGC CTC GO	CG GCG GTT	TCC AAG	ece ecc ce	c GCC GCG	917
#U	Gly Gly	Pro Glu	Gly Leu A	la Ala Va	l Ser Lys	Ala Ala A	arg Ala Ala	1
	65		70	•	75		80	
45	GGC ATG	GGC GTG	CTG ATC GA	AC ATC GTG	CCC AAC C	AC GTG GGG	C GTC GCG	965
	Gly Met	Gly Val	Leu Ile A	sp Ile Va	l Pro Asn	His Val G	ly Val Ala	1
			85		90		95	
50	ACG CCG	GCG CAG	AAC CCC TO	G TGG TGG	TCG CTG C	TC AAG GAG	G GGA CGC	1013
	Thr Pro	Ala Gln	Asn Pro T	rp Trp Tr	Ser Leu	Leu Lys G	lu Gly Arg	ī
		100		10	5	1	.10	

5	CAG TCC CGT TA	AC GCG GAG GCG	TTC GAC GTC GAT T	GG GAC CTC GCC GGG	1061
	Gln Ser Arg T	yr Ala Glu Ala	Phe Asp Val Asp	Trp Asp Leu Ala Gl	Y
	115		120 ·	125	
10	GGA CGC ATC CG	G CTG CCG GTG	CTC GGC AGC GAC G	AT GAC CTC GAC CAG	1109
	Gly Arg Ile A	rg Leu Pro Val	Leu Gly Ser Asp	Asp Asp Leu Asp Gl	n
	130	135		140	
15	CTC GAA ATC AG	G GAC GGG GAG	CTG CGG TAC TAC G	AC CAC CGA TTC CCG	1157
	Leu Glu Ile Ar	rg Asp Gly Glu	Leu Arg Tyr Tyr	Asp His Arg Phe Pr	0
00	145	150	155	16	0
20	CTC GCC GAG GG	A ACC TAC GCC	GAA GGC GAC GCC C	CG CGG GAT GTC CAC	1205
	Leu Ala Glu Gl	ly Thr Tyr Ala	Glu Gly Asp Ala	Pro Arg Asp Val Hi	s
25		165	170	175	
	GCC CGG CAG CA	C TAC GAG CTC	ATC GGC TGG CGC CG	GC GCG GAC AAC GAG	1253
	Ala Arg Gln Hi	s Tyr Glu Leu	Ile Gly Trp Arg	Arg Ala Asp Asn Gl	u
30	18	10	185	190	
	CTG AAC TAC CG	C CGC TTT TTC 6	SCG GTG AAC ACG CT	TC GCC GGC GTC CGC	1301
	Leu Asn Tyr Ar	g Arg Phe Phe	Ala Val Asn Thr	Leu Ala Gly Val Arg	J
35	195		200	205	
	GTG GAA ATC CC	C GCC GTC TTC G	SAC GAG GCA CAC CA	AG GAG GTG GTG CGC	1349
	Val Glu Ile Pr	o Ala Val Phe	Asp Glu Ala His	Gln Glu Val Val Arg	3
ю	210	215		220	
	TGG TTC CGC GAG	G GAC CTT GCG G	AC GGC CTG CGG AT	TC GAC CAC CCG GAC	1397
	Trp Phe Arg Gl	u Asp Leu Ala	Asp Gly Leu Arg	Ile Asp His Pro Asp	Þ
15	225	230	235	240	כ
	GGC CTC GCT GAC	C CCC GAG GGG T	AC CTG AAG CGA CT	TC CGG GAA GTC ACC	1445
	Gly Leu Ala As	p Pro Glu Gly	Tyr Leu Lys Arg	Leu Arg Glu Val Th	r
50		245	250	255	
	GGC GGC GCT TAC	C CTG CTG ATC G	AA AAG ATC CTG GA	AG CCG GGG GAG CAG	1493
	Gly Gly Ala Ty	r Leu Leu Ile	Glu Lys Ile Leu	Glu Pro Gly Glu Gl	n

5				260)				265					270			
	CTG	CCC	GCC	AGC	TTC	GAG	TGT	GAA	GGC	ACC A	ACA (GC 1	TAC G	AC G	cc c	TC	1541
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	
10			275					280)				285				
	GCC	GAC	GTC	GAC	CGG	GTT	CTC	GTG	GAC	CCG	CGC (GC (CAG G	AA C	CG C	TG	1589
	Ala	Asp	Val	Asp	Arg	۷al	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	
15		290					295	;				300					
	GAC	CGG	CTT	GAC	GCG	TCC	CTG	CGT	GGC	GGC (AG C	CC G	CC G	AC T	AC C	AG	1637
	Asp	Arg	Leu	Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	
20	305					310					315					320	
	GAC	ATG	ATC	CGC	GGA	ACC	AAG	CGC	CGG .	ATC A	ACC G	AC G	GT A	TC C	TG C	AC	1685
	Asp	Met	Ile	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	
25					325					330					335		
	TCG	GAG	ATC	CTG	CGG	CTG	GCC	CGG	CTG (GTT (CCG G	GC G	AC G	CC A	AC G'	ГT	1733
20	Ser	Glu	Ile	Leu	Arg	Leu	Ala	Arg	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	
30				340					345					350	•		
	TCA	ATC	GAC	GCC	GGA	GCC	GAC	GCT	CTC (GCC G	AA A	TC A	TC G	CC G	CC T	rc	1781
35	Ser	Ile	Asp	Ala	Gly	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	
			355					360					365				
	CCG	GTC	TAC	CGC	ACC	TAC	CTG	CCG (GAG (GGC G	CC G	AG G	TC C	TG A	AG G	AG	1829
ю	Pro	Val	Tyr	Arg	Thr	Tyr	Leu	Pro	Glu	Gly	Ala	Glu	Val	Leu	Lys	Glu	
		370					375					380					
	GCG	TGC	GAG	CTT	GCC	GCG	CGT .	AGG (CGG (CCG G	AA C	TC G	AC C	AG G	CC AT	rc	1877
15	Ala	Cys	Glu	Leu	Ala	Ala	Arg	Arg	Arg	Pro	GLu	Leu	Asp	Gln	Ala	Ile	
	385					390					395					400	
	CAG	GCT	CTG	CAG	CCG	CTG	CTG	CTG (GAC A	ACG G	AC C	TC G	AG C	TT G	CC CC	€G	1925
50	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	
					405					410					415		
	CGC	TTC	CAG	CAG	ACC	TCG	GGC .	ATG (GTC #	ATG G	CC A	AG G	GC G	TG G	AG G	AC	1973

.5	Arg	Phe	Gln	Glr	1 Thr	Ser	Gly	Met	: Val	Met	Ala	Lys	Gly	va:	l Gl	u Asp	,
				420)				425					430	0		
	ACC	GCG	TTC	TTC	CGC	TAC	AAC	CGC	CTG (GGC 2	ACC (CTC A	ACG C	GAA (GTG	GGC	202
10	Thr	Ala	Phe	Ph€	Arg	Tyr	Asn	Arg	Leu	Gly	Thr	Leu	Thr	Glu	ı Va	l Gly	,
			435				•	440)				445				
	GCC	GAC	ccc	ACC	GAG	TTC	GCC	GTG	GAG (CCG (GAC (GAG 1	TC C	CAC	GCC (CGG	2069
15	Ala	Ąsp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp	G1u	Phe	His	s Ala	a Arg	}
		450					455	;				460					
	CTG	GCA	CGC	CGG	CAG	GCC	GAG	CTT	cce (CTG 1	rcc z	ATG A	CG A	CG (CTG A	AGC	2117
20	Leu	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met	Thr	Thr	Lei	. Ser	
	465					470					475					480	ı
	ACG	CAC	GAC	ACC	AAG	CGC	AGC	GAG	GAC A	ACC C	GA (GCA A	.GG A	TT 1	rcg (FTC	2165
25	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg	Ile	Ser	· Val	
					485					490					495	;	
	ATT	TCC	GAG	GTT	GCG	GGT	GAC	TGG	GAA A	AAG G	CC 1	TG A	AC C	GG C	CTG (:GC	2213
30	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg	Lev	Arg	
				500					505					510)		
	GAC	CTG	GCC	CCG	CTG	CCG	GAC	GGC (CCG C	TG T	CC G	CG C	TG C	TC I	rgg (AG	2261
35	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp	Gln	
			515					520					525				
40	GCC	ATT	GCC	GGC	GCC	TGG (ccc	GCC 2	AGC C	:GG G	AA C	GC C	TG C	AG T	'AC I	!AC	2309
40	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Туг	Tyr	
		530					535					540					
45	GCG	CTG	AAG	GCC	GCG	CGT (GAA	GCG (GGG A	AC T	CG A	CC A	AC T	GG A	CC G	AT	2357
10	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	
•	545					550					555					560	
50	CCG	GCC	CCC	GCG	TTC	GAG (GAG .	AAG (CTG A	AG G	CC G	CG G	TC G	AC G	CC G	TG	2405
	Pro	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	·Val	Asp	Ala	Val	
					565					570					575	j	

5	TTC	GAC	AAT	CCC	GCC	GTG	CAG	GCC	GAG	GTG (GAA (GCC (CTC C	STC (GAG C	TC	2453
•	Phe	Asp	Asn	Pro	Ala	Val	G1n	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	
				580)				585					590	•		
10	CTG	GAG	CCG	TAC	GGA	GCT	TCG	AAC	TCC	CTC (GCC (GCC A	AG C	CTC C	TG C	AG	2501
	Leu	Glu	Pro	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	
			595					600					605	i			
15	CTG	ACC	ATG	CCC	GGC	GTC	CCG	GAC (GTC '	TAC (CAG (GGC A	CG G	SAG T	TC T	GG	2549
	Leu	Thr	Met	Pro	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	
		610					615					620					
20	GAC	CGG	TCG	CTG	ACG	GAC	CCG	GAC A	AAC (CGG (CGG (CCG 1	TC A	GC I	TC G	AC	2597
	Asp	Arg	Ser	Leu	Thr	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	
	625					630					635					640	
25	GAC	CGC	CGC	GCC	GCG	CTG	GAG	CAG (CTG (GAT C	CC C	GC G	AC C	TT C	CC G	CG	2645
	Asp	Arg	Arg	Ala	Ala	Leu	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	
					645					650					655		
30	TCA	TTT	ACC	GAT	GAG	CGG	ACG .	AAG (CTG (CTA G	TG A	CG T	CG C	GC G	CG C	TG	2693
	Ser	Phe	Thr	Asp	Glu	Arg	Thr	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	
•				660					665					670			
35	CGG	CTG	CGC	CGG	GAC	CGT	CCG	GAG (CTG T	TTC A	CG G	GG T	AC C	GG C	CG G	TC .	2741
	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	
40			675					680					685				
4 0	CTG	GCC	AGC	GGG	ccc	GCC	GCC	GGG (CAC C	TG C	TC G	CG T	TC G	AC C	GC G	GC	2789
	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His	Leu	Leu	Ala	Phe	Asp	Arg	Gly	
45		690					695					700					
₩.	ACC	GCG	GCG	GCG	CCG	GGT	GCA '	TTG A	cc c	CTC G	CC A	CG C	GG C	TT C	CC T	AC '	2837
	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu	Ala	Thr	Arg	Leu	Pro	Tyr	
50	705					710					715					720	
	GGG	CTG	GAA	CAG	TCG	GGT	GGA '	TGG C	CGG C	SAC A	CC G	CC G	TC G	AA C	TT A	AC	2885
	Gly	Leu	Glu	Gl n	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu	Leu	Asn	

					725				730		7	35	
5	ACC	GCC	ATG	AAA	GAC	GAA	CTG A	CC GGT	GCC GGC	TTC GGA	CCG GGG	GCA	2933
	Thr	Ala	Met	Lys	Asp	Glu	Leu	Thr Gly	Ala Gl	y Phe Gl	y Pro G	ly Ala	
				740				745			750		
10	GTG	AAG	ATC	GCC	GAC	ATC	TTC C	GG TCG	гтс ссс	GTT GCG	CTG CTG	GTG	2981
	Val	Lys	Ile	Ala	Asp	Ile	Phe	Arg Ser	Phe Pro	o Val Al	a Leu L	eu Val	
			755				7	60		765			
15	CCG	CAG	ACA	GGA	GGA	GAG	TCA						3002
	Pro	Gln	Thr	Gly	Gly	Glu	Ser						
		770					775						
20	TGAC	GCA	CAC C	TACC	CGCG	G GA	AGCCG	CGA AAC	CCGTCCT	GGCCCCC	CA CGCT	ACGACG	3062
	TCTC	GGC	CC C	C									3073
25	cc	onsisti	ng of t	the ge	nera F	Rhizob		rthrobacter,					m the group ccus, Curto-

- 36. The process as claimed in claim 28, wherein said host is a microorganism of the spices Escherichia coli.
 - 37. The process as claimed in claim 28, wherein said self-replicable vector is plasmid vector Bluescript II SK(+).
- 38. The process as claimed in claim 28, wherein said transformant is inoculated into a liquid culture medium having a pH of 2-8, and cultured at a temperature of 25-65°C for 1-6 days.
 - 39. The process as claimed in claim 28, wherein said recombinant enzyme in the culture is collected by one or more methods selected from the group consisting of centrifugation, filtration, concentration, salting out, dialysis, ion-exchange chromatography, gel filtration chromatography, hydrophobic chromatography, affinity chromatography, gel electrophoresis and isoelectrophoresis.
 - 40. A method to convert a reducing amylaceous saccharide, which contains a step of allowing the recombinant enzyme of claim 25 to act on a reducing amylaceous saccharide having a degree of glucose polymerization of 3 or higher to form a non-reducing saccharide having trehalose structure as an end unit from the amylaceous saccharide.
 - 41. The method as claimed in claim 40, wherein said recombinant enzyme has the following physicochemical properties:
 - (1) Molecular weight

40

45

50

55

About 76,000-87,000 daltons on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PA-GE); and

- (2) Isoelectric point (pl)
- About 3.6-4.6 on isoelectrophoresis.

42. The method as claimed in claim 40, wherein said recombinant enzyme has an amino acid sequence selected from the group consisting of those as shown in the following SEQ ID NOs:2 and 4 that initiate from the N-terminal, and homologous amino acid sequences to these amino acid sequences:

	SEQ	ID I	10:2														
	Met	Arg	Thr	Pro	Ala	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Arg	Gly	Phe	Thr
5	1				5					10					15		
	Leu	Phe	Asp	Ala	Ala	Glu	Thr	Val	Pro	Tyr	Leu	Lys	Ser	Leu	Gly	Val	Asp
			20					25					30				
10	Trp	Ile	Tyr	Leu	Ser	Pro	Ile	Leu	Lys	Ala	Glu	Ser	Gly	Ser	Asp	His	Gly
	35				•	40	·				4 5	•				50	
		•															
15																	
20	·					٠											
																•	
25	•																
20																	
										-							
30																	
35																	
40																	
45																	

5	Tyr	Asp	Val	Thr	Asp	Pro	Ala	Val	Val	Asp	Pro	Glu	Arg	GLY	Gly	Pro	Glu
				55					60					65			
	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Gly	Ala	Gly	Met	Gly	Val	Leu
10		70 -					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Ser	Pro	Pro	Gln	Asn	Pro
					90					95					100		
15	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gly	Ser	Pro	Tyr	Ala	Val	Ala
			105					110					115				
	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Ile	Pro	Val	Leu
20	120					125					130				•	135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Lys	Asp	Gly	Glu	Leu	Arg
	_			140					145]	L 50			
25	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Ser	Tyr	Arg	Asp	Gly	Asp
	-	155					160					165					170
	Ser	Pro	Gln	Asp	Val	His	Gly	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
30					175					180					185		•
	Arg	Ala	Asp	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Leu
			190					195					200				
35	Ala	Gly	Ile	Arg	Val	Glu	Val	Pro	Pro	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Ala	Gly	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
40				225					230					235	,		
	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					25 5
45	Thr	Gly	GLy	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
					260					265					270		
	Leu	Pro	Ala	Ser	Phe	Glu	Суз	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
50			275					280					285				
	Asp	Val	Asp	Arg	Val	Phe	Val	Asp	Pro	Arg	Gly	Gln	Val	Pro	Leu	Asp	Arg

5	290					295					300					305	
	Leu	Asp	Ala	Arg	Leu	Arg	Gly	Gly	Ala	Pro	Ala	Asp	Tyr	Glu	Asp	Met	Ile
				310					315					320			
10	Arg	Gly	Thr	Lys	Arg	Arg	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325					330					335					340
	Arg	Leu	Ala	Arg	Leu	Val	Pro	Glu	Gln	Thr	Gly	Ile	Pro	Gly	Glu	Ala	Ala
15					345					350					355		
	Ala	Asp	Ala	Ile	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Ser	Tyr
			360					365					370				
20	Leu	Pro	Glu	Gly	Ala	Glu	Ile	Leu	Lys	Glu	Ala	Cys	Asp	Leu	Ala	Ala	Arg
	375					380					385					390	
	Arg	Arg	Pro	Glu	Leu	Gly	Gln	Thr	Val	Gln	Leu	Leu	Gln	Pro	Leu	Leu	Leu
25				395					400					405			
	Asp	Thr	Asp	Leu	Glu	Ile	Ser	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
		410					415					420					425
30	Met	Ala	Lys	Gly	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
					430					435					440		
35	Thr	Leu	Thr	Glu	Val	Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ser	Leu	Glu	Pro	Glu
35			445					450					455				
	Glu	Phe	His	Val	Arg	Met	Ala	Arg	Arg	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
40	460					465					4 70					475	
	Thr	Thr	Leu	Ser	Thr	His	Asp	Thr	Lys	Arg	Ser	Glu	Asp	Thr	Arg	Ala	Arg
				480					485					490			
45	Ile	Ser	Val	Ile	Ala	Glu	Val	Ala	Pro	Glu	Trp	Glu	Lys	Ala	Leu	Asp	Arg
		495					500			-		505					510
	Leu	Asn	Thr	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Thr	Leu	Leu	Trp
50					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Ser	Tyr
			530					535					540				

EP 0 6; 4 005 A2

5	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Ser	Trp	Thr	Asp	Pro
	545				•	550					5,55					560	
	Asp	Pro	Ala	Phe	Glu	Glu	Ala	Leu	Ser	Ala	Val	Val	Asp	Ser	Ala	Phe	Asp
10				565					570					575			
	Asn	Pro	Glu	Val	Arg	Ala	Glu	Leu	Glu	Ala	Leu	Val	Gly	Leu	Leu	Ala	Pro
		580					585					590					595
15	His	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
20			615					620					625		•		
	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Ala	Glu	Arg	Ile	Arg	Ala	Leu
	630					635					640					645	
25	Asp	Gln	Leu	Asp	Ala	Gly	His	Arg	Pro	Asp	Ser	Phe	Gln	Asp	Glu	Ala	Val
				650					655					660			
••	Lys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asn	Arg	Pro	Glu
30		665					670					675					680
	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	His	Ala	Arg	Gly	Pro	Ala	Ala	Gly	His
35					685			•		690					695		
	Leu	Val	Ala	Phe	Asp	Arg	Gly	Ala	Gly	Gly	Val	Leu	Ala	Leu	Ala	Thr	Arg
			700					705					710				
4 0	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr	Ala	Val	Glu
	715					720					725					730	
	Leu	Glu	Ala	Ala	Met	Thr	Asp	Glu	Leu	Thr	Gly	Ser	Thr	Phe	Gly	Pro	Gly
45				735					740					745			
	Pro	Ala	Ala	Leu	Ser	Glu	Val	Phe	Arg	Ala	Tyr	Pro	Val	Ala	Leu	Leu	Val
		750					755					760					76 5
50	Pro	Ala	Thr	Gly	Gly	Lys	Ser										
					770												

5	SEQ	ID :	NO : 4														
	Met	Arg	Thr	Pro	Val	Ser	Thr	Tyr	Arg	Leu	Gln	Ile	Arg	Lys	Gly	Phe	Thr
	1				5					10					15		
10	Leu	Phe	Asp	Ala	Ala	Lys	Thr	Val	Pro	Tyr	Leu	His	Ser	Leu	Gly	Val	Asp
			20					25					30				
	Trp	Val	Tyr	Leu	Ser	Pro	Val	Leu	Thr	Ala	Glu	Gln	Gly	Ser	Asp	His	Gly
15	35					40					45					50	
	Tyr	Asp	Val	Thr	Asp	Pro	Ser	Ala	Val	Asp	Pro	Glu	Arg	Gly	Gly	Pro	Glu
				55					60					65			
20	Gly	Leu	Ala	Ala	Val	Ser	Lys	Ala	Ala	Arg	Ala	Ala	Gly	Met	Gly	Val	Leu
		70					75					80					85
	Ile	Asp	Ile	Val	Pro	Asn	His	Val	Gly	Val	Ala	Thr	Pro	Ala	Gln	Asn	Pro
25					90				,	95					100		
	Trp	Trp	Trp	Ser	Leu	Leu	Lys	Glu	Gly	Arg	Gln	Ser	Arg	Tyr	Ala	Glu	Ala
			105					110					115				
30	Phe	Asp	Val	Asp	Trp	Asp	Leu	Ala	Gly	Gly	Arg	Ile	Arg	Leu	Pro	Val	Leu
	120					125					130					135	
	Gly	Ser	Asp	Asp	Asp	Leu	Asp	Gln	Leu	Glu	Ile	Arg	Asp	Gly	Glu	Leu	Arg
35				140					145					150			
•	Tyr	Tyr	Asp	His	Arg	Phe	Pro	Leu	Ala	Glu	Gly	Thr	Tyr	Ala	Glu	Gly	Asp
		155					160					165					170
40	Ala	Pro	Arg	Asp	Val	His	Ala	Arg	Gln	His	Tyr	Glu	Leu	Ile	Gly	Trp	Arg
					175					180					185		
	Arg	Ala	qeA	Asn	Glu	Leu	Asn	Tyr	Arg	Arg	Phe	Phe	Ala	Val	Asn	Thr	Lėu
45			190					195					200				
	Ala	Gly	Val	Arg	Val	Glu	Ile	Pro	Ala	Val	Phe	Asp	Glu	Ala	His	Gln	Glu
50	205					210					215					220	
	Val	Val	Arg	Trp	Phe	Arg	Glu	Asp	Leu	Ala	Asp	Gly	Leu	Arg	Ile	Asp	His
				225					230					235			

\$

5	Pro	Asp	Gly	Leu	Ala	Asp	Pro	Glu	Gly	Tyr	Leu	Lys	Arg	Leu	Arg	Glu	Val
		240					245					250					255
	Thr	Gly	Gly	Ala	Tyr	Leu	Leu	Ile	Glu	Lys	Ile	Leu	Glu	Pro	Gly	Glu	Gln
10					260					265					270		•
	Leu	Pro	Ala	Ser	Phe	Glu	Cys	Glu	Gly	Thr	Thr	Gly	Tyr	Asp	Ala	Leu	Ala
			275					280					285				
15	Aso	۷al	Asp	Arg	Val	Leu	Val	Asp	Pro	Arg	Gly	Gln	Glu	Pro	Leu	Asp	Arg
	290		•	_		295					300					305	
		Asp	Ala	Ser	Leu	Arg	Gly	Gly	Glu	Pro	Ala	Asp	Tyr	Gln	Asp	Met	Ile
20				310		Ī	_		315					320			•
÷	Ara	Glv	Thr		Arq	Arq	Ile	Thr	Asp	Gly	Ile	Leu	His	Ser	Glu	Ile	Leu
		325		-2-			330					335					340
25	Ara		Ala	Ara	Leu	Val	Pro	Gly	Asp	Ala	Asn	Val	Ser	Ile	Asp	Ala	Gly
	9				345					350					355		
	Ala	Asp	Ala	Leu	Ala	Glu	Ile	Ile	Ala	Ala	Phe	Pro	Val	Tyr	Arg	Thr	Tyr
30			360					365					370				
	Leu	Pro			Ala	Glu	Val	Leu	Lys	Glu	Ala	Cys	Glu	Leu	Ala	Ala	Arg
	375			-		380					385	•				390	
35		Ara	Pro	Glu	Leu	Asp	Gln	Ala	Ile	Gln	Ala	Leu	Gln	Pro	Leu	Leu	Leu
	· 9	5		395		_			400					405			
40	Asp	Thr	Asp	Leu	Glu	Leu	Ala	Arg	Arg	Phe	Gln	Gln	Thr	Ser	Gly	Met	Val
40		410	-				415					420					425
	Met		Lvs	Glv	Val	Glu	Asp	Thr	Ala	Phe	Phe	Arg	Tyr	Asn	Arg	Leu	Gly
45			-2-		430		-			435					440		
45	Thr	Len	Thr	Glu		Gly	Ala	Asp	Pro	Thr	Glu	Phe	Ala	Val	Glu	Pro	Asp
	****	LCG	445					450					455				
	Clu	Pho		Δla	Ara	Leu	Ala		Ara	Gln	Ala	Glu	Leu	Pro	Leu	Ser	Met
50	460	FILE	1113	ALU	9	465		3	3		470					475	
		(()	Lou	Ser	Thr		Aen	Thr	Lvs	Ara	•	Glu	Asp	Thr	Arg	Ala	Arg
	THE	inr	Leu	Ser	TILL		r.sp		~, 3	9			- 2		,		

5				480					485					490			
	Ile	Ser	Val	Ile	Ser	Glu	Val	Ala	Gly	Asp	Trp	Glu	Lys	Ala	Leu	Asn	Arg
		495					500					505					510
10	Leu	Arg	Asp	Leu	Ala	Pro	Leu	Pro	Asp	Gly	Pro	Leu	Ser	Ala	Leu	Leu	Trp
					515					520					525		
	Gln	Ala	Ile	Ala	Gly	Ala	Trp	Pro	Ala	Ser	Arg	Glu	Arg	Leu	Gln	Tyr	Tyr
15			530					535					540				
	Ala	Leu	Lys	Ala	Ala	Arg	Glu	Ala	Gly	Asn	Ser	Thr	Asn	Trp	Thr	Asp	Pro
••	545					550					555					560	
20	Ala	Pro	Ala	Phe	Glu	Glu	Lys	Leu	Lys	Ala	Ala	Val	Asp	Ala	Val	Phe	Asp
				565					570					575			
25	Asn	Pro	Ala	Val	Gln	Ala	Glu	Val	Glu	Ala	Leu	Val	Glu	Leu	Leu	Glu	Pro
		580					585					590					595
	Tyr	Gly	Ala	Ser	Asn	Ser	Leu	Ala	Ala	Lys	Leu	Val	Gln	Leu	Thr	Met	Pro
30					600					605					610		
	Gly	Val	Pro	Asp	Val	Tyr	Gln	Gly	Thr	Glu	Phe	Trp	Asp	Arg	Ser	Leu	Thr
			615					620					625		•		
35	Asp	Pro	Asp	Asn	Arg	Arg	Pro	Phe	Ser	Phe	Asp	Asp	Arg	Arg	Ala	Ala	Leu
	630					635					640					645	
	Glu	Gln	Leu	Asp	Ala	Gly	Asp	Leu	Pro	Ala	Ser	Phe	Thr	Asp	GLu	Arg	Thr
40				650					655					660			
	Ĺys	Leu	Leu	Val	Thr	Ser	Arg	Ala	Leu	Arg	Leu	Arg	Arg	Asp	Arg	Pro	Glu
		665					670					675					680
45	Leu	Phe	Thr	Gly	Tyr	Arg	Pro	Val	Leu	Ala	Ser	Gly	Pro	Ala	Ala	Gly	His
					685					6 9 0					695		
	Leu	Leu	Ala	Phe	Asp	Arg	Gly	Thr	Ala	Ala	Ala	Pro	Gly	Ala	Leu	Thr	Leu
50			700					705			•		710				
	Ala	Thr	Arg	Leu	Pro	Tyr	Gly	Leu	Glu	Gln	Ser	Gly	Gly	Trp	Arg	Asp	Thr
	715					720					725					730	

Ala Val Glu Leu Asn Thr Ala Met Lys Asp Glu Leu Thr Gly Ala Gly Phe 740 745 735 Gly Pro Gly Ala Val Lys Ile Ala Asp Ile Phe Arg Ser Phe Pro Val Ala 760 765 755 750 Leu Leu Val Pro Gln Thr Gly Gly Glu Ser 10 770

- 43. The method as claimed in claim 40, wherein said reducing amylaceous saccharide is a member selected from the group consisting of starch hydrolysate and amylaceous substance which has been treated with acid together with or without amylase.
 - 44. The method as claimed in claim 40, wherein said reducing amylaceous saccharide is a member selected from the group consisting of maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose and mixtures thereof.
 - 45. The method as claimed in claim 40, wherein the reducing amylaceous saccharide is in a solution form with a concentration of 50 w/v % or lower, and the step is carried out at a temperature of 40-55°C and a pH of 5-10.
 - 46. The method as claimed in claim 40, wherein said non-reducing saccharide is a member selected from the group of consisting of α -glucosyl trehalose, α -maltosyl trehalose, α -maltotriosyl trehalose, α -maltotetraosyl trehalose, α -maltopentaosyl trehalose, and mixtures thereof.

30

20

25

5

35

50

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10