Engenharia de Reatores Químicos — IQD0048 Semestre 2023/2 — Turma T01 — Prof. Alexandre Umpierre

Exercícios Propostos

1) Uma reação com $k c_0^{n-1} = 0,1 \text{ min}^{-1}$ (em que c_0 é a concentração correspondente à conversão nula, k é a constante cinética e n é a ordem de reação) é conduzida em um reator tubular. Estimar a conversão esperada para n = 1, n = 2 e n = 2,8, usando o modelo de tanques em série e compare os resultados com as conversões esperadas para um reator de tanque agitado ideal e para um reator tubular ideal. O ensaio com um pulso de traçador é representado pela tabela abaixo.

Tabela 1.

t (mim)	c (mg/L)
0	0
1	1
2	5
3	8
4	10
5	8
6	6
7	4
8	3
9	2,2
10	1,5
12	0,6
14	0

2) Uma reação de segunda ordem é conduzida em um reator tubular de 1000 L. A alimentação tem 25 L/min com 8 mol/L e a constante cinética é 0,01 (mol/L)⁻¹min⁻¹. Estimar a conversão esperada assumindo as conversões esperadas usando os modelos de segregação e mistura completa. A tabela abaixo apresenta os dados do ensaio com traçador.

Tabela 2.

t (mim) c (mg/L)0 112 5 95,8 10 82,2 15 70,6 20 60,9 30 45,6 40 34,5 26,3 50

15,7

7,67

2,55

0,90

70

100

150

200