Average Speed

Velocity

velocity

Definition. Average speed is defined to be change in distance divided by change in time.

$$\frac{f(t_{in}) - f(t_i)}{t_{in} - t_i} = \frac{d_{in} - d_i}{t_{in} - t_i}$$

Derived Table of Speeds and Accelerations

[t, t+0.1]

velocity

		V C	
time (s)	distance (m)	speed (m/s)	acc (m/s/s)
0.10	0.049	1.470000	9.800000
0.20	0.196	2.450000	9.800000
0.30	0.441	3.430000	9.800000
0.40	0.784	4.410000	9.800000
0.50	1.225	5.390000	9.800000
0.60	1.764	6.370000	9.800000
0.70	2.401	7.350000	9.800000
0.80	3.136	8.330000	9.800000
0.90	3.969	9.310000	9.800000
1.00	4.900	10.290000	9.800000

The Meaning of Constant Acceleration

Suppose the speed of a falling object is given by the function v(t). Then the average acceleration over the interval [t, t+h] is given by the quotient

e quotient
$$\frac{v(t+h)-v(t)}{h}$$
. — regular time steps We call this quotient the difference quotient.

Slope =
$$\frac{v(t+h) - v(t)}{h}$$

$$(t+h) - v(t)$$

$$(t+h) - v(t)$$

$$(t+h) - v(t)$$

rise:
$$V(t+h)-V(t)$$
 = slope
run: $(t+h)-t$

Defn F(+)

The difference gootient of f(t) over a time interval h is

f(+h) - f(+)

f(++h) - (++h)

et was the exp for which has slope 1 @ t=0.