Duração: 1 hora 50 minutos

G2 de Álgebra Linear I – 2006.2

Data: 16 de outubro de 2006.

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	0.5		
1d	1.0		
2a	1.5		
2b	1.0		
2c	0.5		
3a	1.5		
3b	1.0		
4	1.5		
Total	10.5		

1)

(a) Considere a base β de \mathbb{R}^3

$$\beta = \{(1, 2, 1); (a, 0, 1); (0, b, c)\}, \quad a, b, c \in \mathbb{R}.$$

Sabendo que as coordenadas do vetor u=(3,4,3) na base β são

$$(u)_{\beta} = (1, 1, 1),$$

determine $a, b \in c$.

(b) Seja $\alpha = \{u_1, u_2, u_3\}$ uma base de \mathbb{R}^3 . Considere a nova base de \mathbb{R}^3

$$\delta = \{u_1 + u_3, u_1 + u_2, u_2 + u_3\}$$

Sabendo que as coordenadas do vetor w na base α são

$$(w)_{\alpha} = (1, 1, 1),$$

determine as coordenadas $(w)_{\delta}$ de w na base δ .

(c) Determine a equação cartesiana do sub-espaço vetorial W gerado pelos vetores

$$\{(1,2,1);(1,0,1);(1,6,1);(4,4,4);(5,5,5);(6,6,6)\}.$$

(d) Considere o plano ρ de equação cartesina

$$\rho: x - 2y + z = 0$$

e sua base

$$\gamma = \{(1, 0, -1); (1, 1, 1)\}.$$

Determine as coordenadas do vetor $\ell = (2, 3, 4)$ na base γ .

2) Considere os vetores (1,0,2) e (-2,1,1) e a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \quad T(v) = (-2, 1, 1) \times (v \times (1, 0, 2)).$$

- (a) Determine a matriz [T] da transformação linear T na base canônica.
- (b) Determine a equação cartesiana da imagem de T (denotada $\operatorname{im}(T)$). Lembre que

$$\operatorname{im}(T) = \{u \in \mathbb{R}^3 \text{ tal que existe } w \in \mathbb{R}^3 \text{ tal que } T(w) = u\}.$$

(c) Determine explicitamente dois vetores não nulos e u e w de \mathbb{R}^3 tais que $u \neq w$ e verificam

$$T(u) = T(w) = (-2, 0, -4).$$

(3)

a) Considere as retas

$$r_1 = (t, 0, 2t), \quad r_2 = (t, t, t), \quad r_3 = (t, t, 0),$$

e as retas

$$s_1 = (0, 3t, 8t), \quad s_2 = (0, 3t, 6t), \quad s_3 = (t, 2t, 3t).$$

Determine a matriz de uma transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

que verifica, simultaneamente,

$$T(r_1) = s_1, \quad T(r_2) = s_2, \quad e \quad T(r_3) = s_3.$$

b) Considere as retas (paralelas às consideradas anteriormente)

$$r'_1 = (1+t, 1, 1+2t), \quad r'_2 = (1+t, 1+t, 1+t), \quad r'_3 = (1+t, 1+t, 1),$$

e as retas

$$s'_1 = (0, 1+3t, 2+8t), \quad s'_2 = (0, 1+3t, 2+6t), \quad s'_3 = (t, 1+2t, 2+3t).$$

Determine a forma matricial de uma transformação afim

$$S \colon \mathbb{R}^3 \to \mathbb{R}^3$$

que verifica, simultaneamente,

$$S(r'_1) = s'_1$$
, $S(r'_2) = s'_2$, e $S(r'_3) = s'_3$.

 $\boldsymbol{4})$ Determine a inversa da matriz

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 1 \end{array}\right).$$

Critério de correção: um erro nota 0.5; dois ou mais erros nota 0.