SE 481 Introduction to Information Retrieval

Module #4 — Spell Collections

Passakorn Phannachitta, D.Eng.

passakorn.p@cmu.ac.th

College of Arts, Media and Technology

Chiang Mai University, Chiangmai, Thailand

Agenda

Spelling correction

Spelling correction

A.K.A. Auto collection

Ref: https://techalook.com/how-to/turn-on-off-auto-correct-samsung/

Rate of spelling errors

- Of course, it depends on environments and the application
- In general, error rate is around 1% 20%
- Higher in some environments phone-sized keyboard
- Higher in some applications web queries
- Higher in some language vowels and tone marks exceptionally increase error rate for Thai language

Tasks

- Spelling error detection
- Spelling error correction
 - Auto correct
 (replace an unknown word with the known one without notice)
 - Suggest a correction
 (suggest a known word when an unknown word is detected)
 - Suggest list of possible corrected words
 (show a list of known words with the k-highest probability)

Type and difficulties

- Non-word errors
 - sofware -> software
- Real word errors
 - Typographical errors three -> there
 - Cognitive errors (i.e., homophones)
 too -> two
- The main difference is the context sensitivities

Non-word spelling errors

- Principle words not in a predefined dictionary is an error
- The larger the dictionary the better (assume we have an unlimited computing resources)
- Noisy sources are not considered as a good dictionary

- Approach Generate the list of word candidates and choose the most comprehensible one
 - Candidate generation
 - Scoring and ranking

Real word & non-word spelling errors

- For each word w, generate candidate set:
 - Find candidate words with similar pronunciations and/or
 - Find candidate words with similar spellings and/or
 - Also Include w in candidate set

- Choose best candidate
 - Noisy Channel view of spell errors
 - Consider whether the surrounding words makes any sense
 - Flying form CNX to BKK -> Flying from CNX to BKK

Noisy channel model of spelling

Assume terms are independent

Ref: https://slideplayer.com/slide/4848544/

Ref: https://www.researchgate.net/figure/Figure-1-Communication-over-Noisy-Channel-Error-correcting-codes-harnesses-the-coding_fig1_318468338

Unit

- Character bigrams (commonly referred to as k-grams)
 - e.g., good morning \$g go oo od d\$ \$m mo or rn ni in ng g\$
 - \$ is a word break notation.
- Word bigrams (commonly referred to as n-grams)
 - e.g., MongoDB is a non-relational database —
 MongoDB is | is a | a non-relational | non-relational database

Noisy channel and Bayes' rule

- We see an observation x of a misspelled word
- ullet Find the correct word w'

$$w' = \mathop{argmax}_{w \in V} P(w|x)$$
 Bayes
$$= \mathop{argmax}_{w \in V} \frac{P(x|w)P(x)}{P(x)}$$

$$= \mathop{argmax}_{w \in V} P(x|w)P(w)$$
 Noisy channel model prior

Non-word spelling error example — e.g.,

defet

Candidate generation

- Words with similar spelling
 - Small **edit distance** to error

- Words with similar pronunciation
 - Small distance of pronunciation to error

Candidate testing

- Damerau-Levenshtein edit distance Minimal edit distance between two string, where edits are:
 - Inserting
 - Deletion
 - Substitution
 - Transposition of two adjacent letters
- https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

Word within distance = 1 of defet

Error	Candidate correction	Correct letter	Error letter	Type
defet	defeat	а	-	deletion
defet	decet	С	f	substitution
defet	defect	С	_	deletion
defet	deft	_	е	Insertion
defet	defer	r	t	substitution
defet	Deeft	ef	fe	transposition

Candidate generation

- Observation
 - 80% of errors are within edit distance = 1
 - \sim 100% of errors are within edit distance = 2
 - The first letter is rarely a typo
- Insertion also includes space or hyphen
 - thismethod -> this method
- Deletion also includes space
 - data base -> database

Candidate generation — procedure

- 1. Run through the dictionary and calculate the edit distance between the query and the dictionary word
- 2. List all those within the edit distance ≤ 2

How to rank this resultant list —> use IR

Candidate generation — procedure

$$w' = \underset{w \in V}{\operatorname{argmax}} P(w|x)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x|w)P(x)}{P(x)}$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x|w)P(w)$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x|w)P(w)$$

We need to know P(w)

Language model

• We can estimate P(w) if we have access to a very large supply of words, i.e., corpus, that can represent the **context**

$$P(w) = \frac{C(w)}{T}$$

• *C(w)* is the number of occurrence of *w in the* corpus, *and T* is the total number of terms in the corpora

Counting!

Example

- Let's try the Corpus of Contemporary English (COCA — https://www.english-corpora.org/coca/) as the corpus
- At of the end of 2019, $T \sim 1,000,000,000$

$$P(w) = \frac{C(w)}{T}$$

20

Word	Frequency	P(w)	Rank
defeat	21,947	0.000021947	1
decet	6	0.00000006	5
defect	3,973	0.000003976	2
deft	1,240	0.00001240	4
defer	2,239	0.000002239	3
Deeft	0	0	6


```
COCA = pd.DataFrame([['defeat',21947],['decet',6],['defect',3973],['deft',1240],['defer',22
['Deeft', 0]], columns=['word', 'frequency'])
    COCA pop = 1e9
    COCA['P(w)'] = COCA['frequency']/COCA pop
    COCA['rank'] = COCA['frequency'].rank(ascending=False).astype(int)
```

Example

- Let's change the corpus to Wikipedia (https://www.english-corpora.org/wiki/)
- $T \sim 1,900,000,000$

P(w)	 C(w)
I(w)	 \overline{T}

Word	Frequency	P(w)	Rank
defeat	121,408	0.00006389894737	1
decet	81	0.00000004263157	5
defect	7,793	0.00000410157894	2
deft	814	0.00000042842105	4
defer	1,416	0.00000074526315	3
Deeft	0	0	6

WIKI['rank'] = WIKI['frequency'].rank(ascending=False).astype(int)

WIKI = pd.DataFrame([['defeat',121408],['decet',81],['defect',7793],['deft',814],['defer',1416], ['Deeft',0]],columns=['word','frequency']) WIKI pop = 1.9e9WIKI['P(w)'] = WIKI['frequency']/WIKI_pop

Example

If we change the corpus to IULA Spanish-English Technical Corpus (https://repositori.upf.edu/handle/10230/20052) $P(w) = \frac{C(w)}{T}$

 $T \sim 2,100,000$

Word	Frequency	P(w)	Rank
defeat	11	0.0000052	2
decet	0	0	4
defect	180	0.0000857	1
deft	0	0 Cor	pus does ma
defer	11	0.0000052	2
Deeft	0	0	4

['Deeft', 0]], columns=['word', 'frequency']) IULA pop = 2.1e6IULA['P(w)'] = IULA['frequency']/IULA pop IULA['rank'] = IULA['frequency'].rank(ascending=False).astype(int)

IULA = pd.DataFrame([['defeat',11],['decet',0],['defect',180],['deft',0],['defer',11],

- P(x|w) = probability of the edit
 - deletion | insertion | substitution | transposition
- Misspelled word $x = x_1, x_2, x_3, ..., x_m$
- Correct word $w = w_1, w_2, w_3, ..., w_m$

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{del(w_{i-1}, w_i)}{count(w_{i-1}, x_i)}, & \text{if deletion} \\ \frac{ins(w_{i-1}, x_i)}{count(w_{i-1})}, & \text{if insertion} \\ \frac{sub(x_i, w_i)}{count(w_i)}, & \text{if substitution} \\ \frac{trans(w_i, w_{i+1})}{count(w_i, w_{i+1})}, & \text{if transposition} \end{cases}$$

- Consult the collected list of errors, e.g., Peter Norvig's collections http://norvig.com/ngrams/
- Note we cannot model unseen errors
- count_1edit.txt

```
norvig = pd.read csv('http://norvig.com/ngrams/count_ledit.txt',sep='\t',encoding =
"ISO-8859-1", header=None)
   norvig.columns = ['term', 'edit']
                                                                                    edit
3 norvig = norvig.set_index('term')
                                                                              term
   print(norvig.head())
                                                                              eli
                                                                                     917
                                                                              ale
                                                                                     856
                                                                              ile
                                                                                     771
                                                                              ela
                                                                                     749
                                                                              ali
                                                                                     559
```


Then the correction notes

count_big.txt

P(x|w)

Candidate correction	Correct letter	Error letter	x w	P(x w)	
defeat	а	-	e ea	354 / 27,583	0.012833
decet	С	f	f c	4 / 144,964	0.000028
defect	С	-	e ec	47 / 14,686	0.003167
deft	-	е	e _	2 / 116,374	0.000003
defer	r	t	t r	11 / 444,459	0.000036
Deeft	ef	fe	fe ef	21 / 9,689	0.003311

P(x|w)

```
01 with mp.Pool(processes=8) as pool:
       freq list = pool.map(functools.partial(get count, norvig orig=norvig orig), character set)
02
03
   freq df = pd.DataFrame([character set, freq list], index=['char', 'freq']).T
   freq df = freq df.set index('char')
05
06
07
   COCA['P(x|w)'] = [(norvig.loc['e|ea'].values / freq df.loc['ea'].values)[0],
        (norvig.loc['f|c'].values / freq df.loc['c'].values)[0],
08
        (norvig.loc['e|ec'].values / freq df.loc['ec'].values)[0],
09
        (norvig.loc['e| '].values / freq df.loc['e'].values)[0],
10
        (norvig.loc['t|r'].values / freq_df.loc['r'].values)[0],
11
        (norvig.loc['fe|ef'].values / freq df.loc['ef'].values)[0]]
12
```


P(x|w)P(w) — Using COCA

Candidate correction	P(w) COCA	P(x w)	10 ⁹ P(x w)P(w)
defeat	0.000021947	0.012833	281.6676
decet	0.000000006	0.000028	0.0001
defect	0.000003976	0.003167	12.5821
deft	0.000001240	0.000003	0.0039
defer	0.000002239	0.000036	0.0795
Deeft	0	0.003311	0.0000

COCA['109 P(x|w)P(w)'] = 1e9 * COCA['P(w)'] * COCA['P(x|w)']

P(x|w)P(w) — Using IULA

Candidate correction	P(w) IULA	P(x w)	10 ⁹ P(x w)P(w)
defeat	0.0000052	0.012833	67.2256
decet	0	0.000028	0.0000
defect	0.0000857	0.003167	271.4487
deft	0	0.000003	0.0000
defer	0.0000052	0.000036	0.1861
Deeft	0	0.003311	0.0000

¹ IULA['P(x|w)'] = COCA['P(x|w)']

² IULA['109 P(x|w)P(w)'] = 1e9 * IULA['P(w)'] * IULA['P(x|w)']

Executed in parallel

```
01 COCA, WIKI, IULA = gen_table()
02 norvig, norvig orig = read norvig()
03 character set = list(map(''.join, itertools.product(ascii lowercase, repeat=1))) +
list(map(''.join, itertools.product(ascii_lowercase, repeat=2)))
04
   with mp.Pool(processes=8) as pool:
05
06
       freq list = pool.map(functools.partial(get count, norvig orig=norvig orig), character set)
07
   freq df = pd.DataFrame([character set, freq list], index=['char', 'freq']).T
80
   freq df = freq df.set index('char')
09
10
   COCA['P(x|w)'] = [(norvig.loc['e|ea'].values / freq df.loc['ea'].values)[0],
11
        (norvig.loc['f|c'].values / freq df.loc['c'].values)[0],
12
        (norvig.loc['e|ec'].values / freq df.loc['ec'].values)[0],
13
14
        (norvig.loc['e'].values / freq df.loc['e'].values)[0],
15
        (norvig.loc['t|r'].values / freq df.loc['r'].values)[0],
        (norvig.loc['fe|ef'].values / freq df.loc['ef'].values)[0]]
16
17
   COCA['109 P(x|w)P(w)'] = 1e9 * COCA['P(w)'] * COCA['P(x|w)']
18
19
20
   IULA['P(x|w)'] = COCA['P(x|w)']
   IULA['109 P(x|w)P(w)'] = 1e9 * IULA['P(w)'] * IULA['P(x|w)']
```


What we did?

 Corpus — tells the estimated appearance probability for each word.

Misspelt statistics — tell the estimated misspelt frequency

 Multiplication of the two components tells which known words are more likely the correction of the misspelt word.

Other source for the Misspelt statistics

- http://en.wikipedia.org/wiki/
 Wikipedia:Lists_of_common_misspellings/For_machines
- http://aspell.net/test/
- http://www.ota.ox.ac.uk/headers/0643.xml

Context-sensitive spelling correction

- Nowadays, Event driven programming has become a domnant programming paradigm.
- Anything taht can go wrong will go wrong.
- Modern commodity computers are equipped with multicore
 CPUs.
- It is difficult to make a defet-free software product.

Researches say 25% - 40% of spelling errors are real words

Approach

- For each word in sentence (phrase, query ...)
 - Generate the candidate set
 - The word itself
 - All known words with edit distance = 1
 - All known words that are homophones
 - Choose best candidates with the Noisy channel model

The Noisy channel model is somewhat modified.

Noisy channel for real-word spell correction

- Given a sentence $x_1, x_2, x_3, ..., x_n$
- Generate a set of candidates for each word x_i

Candidate
$$(x_1) = \{x_1, w_1, w_1', w_1'', ...\}$$

Candidate $(x_2) = \{x_2, w_2, w_2', w_2'', ...\}$
Candidate $(x_3) = \{x_3, w_3, w_3', w_3'', ...\}$

• Choose the sequence W that maximize $P(W|x_1,x_2,...,x_n)$

$$w' = \underset{w \in V}{\operatorname{argmax}} \ P(x|w)P(w)$$

Incorporating context

- If we do not have access to the preferred context-specific corpus,
 - Determining whether defeat or defect is more appropriate will require looking at the context words
- There are better language models, simplest ones are such as
 bigram language model look back just one previous word

$$P(w_1...w_n) = P(w_1)P(w_2|w_1)...P(w_n|w_{n-1})$$

Counting the co-occurrences divided by occurrences

Using a bigram language model

- "It is difficult to make a defet-free software product."
- Let's just use the COCA

$P(w_k w_{k-1})$	$C(w_{k-1} w_k) / C(w_{k-1})$	Evaluate	<u> </u>
P(defeat a)	C(a defeat) / C(defeat)	607 / 21,947	0.02765
P(defect a)	C(a defect) / C(defect)	453 / 3,976	0.11393
P(free defeat)	C(defeat free) / C(free)	1 / 256,258	0.000004
P(free defect)	C(defect free) / C(free)	5 / 256,258	0.000020

- $P("a defeat free") = 0.02765 \times 0.000004 = 0.0000001$
- P("a defect free") = 0.11393×0.00002 = 0.0000022

Incorporating context

• Choice of corpora generates less affect when contexts are considered.

Improved the edit distance component

- The basic unit is extended pronunciation to words
- In assumed noise-free channel, simply compute a distance function that can represent sound and find the word with minimum distances

Noteworthy algorithm — Soundex

function Soundex(name) returns soundex form

- 1. Keep the first letter of name
- 2. Drop all occurrences of non-initial a, e, h, i, o, u, w, y.
- 3. Replace the remaining letters with the following numbers:

```
\begin{array}{l} b,\,f,\,p,\,v\rightarrow 1\\ c,\,g,\,j,\,k,\,q,\,s,\,x,\,z\rightarrow 2\\ d,\,t\rightarrow 3\\ l\rightarrow 4\\ m,\,n\rightarrow 5\\ r\rightarrow 6 \end{array}
```

- 4. Replace any sequences of identical numbers, only if they derive from two or more letters that were *adjacent* in the original name, with a single number (e.g., $666 \rightarrow 6$).
- 5. Convert to the form Letter Digit Digit Digit by dropping digits past the third (if necessary) or padding with trailing zeros (if necessary).

Check — http://sites.rootsweb.com/~nedodge/transfer/soundexlist.htm

Noteworthy algorithm — Soundex

Check — http://sites.rootsweb.com/~nedodge/transfer/soundexlist.htm

Applied to noisy channel

- Do everything the same as simple noisy channel discussed earlier, but
 - Calculate the edit distance over the pronunciation string instead
 - Then, select those with distance = 1 and continue
- Nowadays, a numerous number of distance metric exists,
 - Check https://pypi.org/project/abydos/
 - One of the most highly recommended is Jaro-Winkler

Time for questions

