Deep Generative Models: Markov Models

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

Lecture Outline

- Stochastic Processes
 - Definition and Examples
- Markov Models and Markov Chains
 - Definition
 - Transition Matrix
 - Examples
- Inference via Matrix Multiplication
- Learning via Maximum Likelihood

Stochastic Process

- Definition: A stochastic process $(X_0, X_1, ..., X_T)$ is a sequence of random variables where each X_t takes values on the same sample space Ω (state space)
- Example (Bernoulli Process): X_t has 2 states and $\Omega \coloneqq \{0,1\}$

$$X_t \sim \text{Bernouli}(q), \qquad t = 0, ..., T$$

- How many states does X_t has? What is Ω ?
- Example (Categorical Process): X_t has K states and $\Omega \coloneqq \{1, ..., K\}$

$$X_t \sim \operatorname{Cat}(\pi), \qquad t = 0, \dots, T$$

• How many states does X_t has? What is Ω ?

Markov Property Revisited

• **Issue**: In the absence of any assumptions on \mathbb{P} , modeling the joint distribution $\mathbb{P}(X_0, X_1, ..., X_T)$ might require exponentially many parameters

Conditional Independence Assumption (Markov property):

• Consequence: We now only need linearly many parameters:

$$\mathbb{P}(x_0, ..., x_T) = \mathbb{P}(x_0) \mathbb{P}(x_1 \mid x_0) \mathbb{P}(x_2 \mid x_0, x_1) \cdots \mathbb{P}(x_T \mid x_0, ..., x_{T-2}, x_{T-1})
= \mathbb{P}(x_0) p(x_1 \mid x_0) \mathbb{P}(x_2 \mid x_1) \cdots \mathbb{P}(x_T \mid x_{T-1})$$

Markov Chains

• Definition: A (discrete time) Markov chain is a stochastic process (X_0, X_1, \dots, X_T) with the Markov property

$$\mathbb{P}(x_0, ..., x_T) = \mathbb{P}(x_0) \mathbb{P}(x_1 \mid x_0) \mathbb{P}(x_2 \mid x_1) \cdots \mathbb{P}(x_T \mid x_{T-1})$$

Without the Markov Property:

• With the Markov Property:

Parameters of Markov Chains

• Initial Probability: π_i is the probability that X_0 starts at state i

$$\pi_i := \mathbb{P}(X_0 = i) \qquad \forall i \in \Omega = \{1, \dots, K\}$$

• Transition Probability: a_{ij} is the probability that X_t transitions from state i to j

$$a_{ij} \coloneqq \mathbb{P}(X_{t+1} = j \mid X_t = i) \qquad \forall i, j \in \Omega = \{1, \dots, K\}$$

$$\forall i, j \in \Omega = \{1, \dots, K\}$$

Matrix and Vector Notations:

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

$$\pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

A Markov chain is fully specified by its parameters $\theta := (\pi, A)$

Example: Markov Sentence Model

- State space $\Omega = \{\text{all possible words}\}\$
 - The following are viewed as words and included in the state space
 - <s>: the start of the sentence
 - Digits
 - Punctuations
- Each sentence is a Markov chain where the words are random variables:

• Meaning of $\mathbb{P}(x_{t+1}|x_t)$: Given that the current word is x_t , what is the probability that the next word is x_{t+1} ?

Example: DNA Sequencing

- State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$
- Transition Matrix *A*:

Initial Probability Vector π :

 \mathcal{A} 0.25

 \mathcal{C} 0.25

0.25

0.25

- Question 1: Given C, what is the probability of getting DNA sequence \mathcal{CTGAC} ?
- Answer 1:

Example: DNA Sequencing

• State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$

- Question 2: What's the probability of $X_2 = \mathcal{A}$ given $X_0 = \mathcal{C}$?
- Answer 2: The state transition is $\mathcal{C} \to x_1 \to \mathcal{A}$ for all possible $x_1 \in \Omega$:

$$\mathbb{P}(X_2 = \mathcal{A} \mid X_0 = \mathcal{C}) = \sum_{x_1 \in \Omega} \mathbb{P}(X_2 = \mathcal{A} \mid X_1 = x_1) \cdot \mathbb{P}(X_1 = x_1 \mid X_0 = \mathcal{C})$$

$$= [0.384, 0.156, 0.023, 0.437] \begin{bmatrix} 0.359 \\ 0.384 \\ 0.306 \\ 0.284 \end{bmatrix}$$

- This is the inner product of the second row and first column of the transition matrix A
- This is the (2,1)-th entry of A^2

Example: DNA Sequencing

• State Space $\Omega = \{\mathcal{A}, \mathcal{C}, \mathcal{G}, \mathcal{T}\}$

- Question 3: What's the probability of $X_2 = \mathcal{A}$?
- Answer 3: The state transition is $x_0 \to x_1 \to \mathcal{A}$ for all possible $x_0, x_1 \in \Omega$:

$$\mathbb{P}(X_2 = \mathcal{A}) = \sum_{x_0 \in \Omega} \mathbb{P}(X_2 = \mathcal{A} | X_0 = x_0) \cdot \mathbb{P}(X_0 = x_0)$$
Question 2 Initial Probability

• This is the inner product of the vector π and the first column of A^2 : $\pi A^2 e_1$

Transition Matrix and Distribution of Future States

- State Space $\Omega = \{1, ..., K\}$
- $(A^S)_{ij}$: the (i,j)-th entry of A^S
- $(A^s)_{:j}$: the *j*-th column of A^s
- $(\cdot)_i$: the *j*-th entry of a vector

Transition Matrix A and initial probability distribution π :

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

- Claim 1: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)_{ij}$ $(\forall s, t, i, j)$
- Claim 2: $\mathbb{P}(X_S = j) = (\pi A^S)_i$
- Proof of Claim 2:

$$\mathbb{P}(X_S = j) = \sum_{i \in \Omega} \mathbb{P}(X_S = j | X_0 = i) \cdot \mathbb{P}(X_0 = i) = \sum_{i \in \Omega} (A^S)_{ij} \cdot \pi_i = \pi(A^S)_{:j} = (\pi A^S)_j$$
• Proof of Claim 1: By induction (next page)

Proof of Claim 1

- State Space $\Omega = \{1, \dots, K\}$
- $(A^S)_{ij}$: the (i,j)-th entry of A^S
- $(A^s)_{:j}$: the *j*-th column of A^s
- $(\cdot)_i$: the *j*-th entry of a vector

Transition Matrix A and initial probability distribution π :

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \cdots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}, \qquad \pi \coloneqq [\pi_1, \dots, \pi_K] \in \mathbb{R}^{1 \times K}$$

- Claim 1: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = (A^s)_{ij}$
- Proof of Claim 1 (Induction):
 - $\forall s, t$, it is easy to prove shift invariance: $\mathbb{P}(X_{t+s} = j \mid X_t = i) = \mathbb{P}(X_s = j \mid X_0 = i)$
 - Next we prove $\mathbb{P}(X_s = j \mid X_0 = i) = A_{ij}^s$ by induction on s:
 - The base case s=1 follows from the definition of A
 - Suppose we have $\mathbb{P}(X_{s-1} = j \mid X_0 = i) = A_{ij}^{s-1}$ then:

$$\mathbb{P}(X_{S} = j \mid X_{0} = i) = \sum_{k \in \Omega} \mathbb{P}(X_{S} = j \mid X_{S-1} = k) \cdot \mathbb{P}(X_{S-1} = k \mid X_{1} = i) = \sum_{k \in \Omega} a_{kj} \cdot (A^{S-1})_{ik} = (A^{S})_{ij}$$

Eigenvalues of Transition Matrix

$$A := \begin{bmatrix} a_{11} & \dots & a_{1K} \\ \vdots & \ddots & \vdots \\ a_{K1} & \dots & a_{KK} \end{bmatrix} \in \mathbb{R}^{K \times K}$$

• Proposition. Let $\lambda_1, \dots, \lambda_K$ be eigenvalues of A. Then

$$\max_{k=1,\dots,K} |\lambda_k| = 1 \qquad \text{and} \qquad A \begin{vmatrix} 1\\1\\1\\\vdots\\1 \end{vmatrix} = \begin{vmatrix} 1\\1\\1\\\vdots\\1 \end{vmatrix}$$

• Proof: Let (λ, u) be an eigen-pair, i.e., $Au = \lambda u$, $u = [u_1, ..., u_K]^{\mathsf{T}}$ and $||u||_2 = 1$. Let i^* be the index such that $|u_i|$ is maximized, i.e., $i^* = \operatorname{argmax}_i |u_i|$. Then, $Au = \lambda u$ implies $\sum_j a_{i^*j} u_j = \lambda u_{i^*}$, which furthermore gives

$$|\lambda| \le \left| \frac{\sum_{j} a_{i^*j} u_j}{u_{i^*}} \right| \le \sum_{j} |a_{i^*j}| \cdot \left| \frac{u_j}{u_{i^*}} \right| \le \sum_{j} |a_{i^*j}| = \sum_{j} a_{i^*j} = 1.$$

Finally, since $\sum_j a_{ij} = 1$ for all i = 1, ..., K, then A1 = 1, hence $\max_{k=1,...,K} |\lambda_k| = 1$.

Learning the Parameters heta from Data

• We have derived some results based on the transition matrix ...

• In practice, we are given data samples rather than the transition matrix

• We will assume the data are sampled from a Markov chain, and then compute the transition matrix from data via **Maximum Likelihood Estimation (MLE)**

MLE of Markov Chains

$$X_0 \longrightarrow X_1 \longrightarrow X_{T-1} \longrightarrow X_T$$

- Assume we have N i.i.d. samples $\left\{ {{m{x}}^{(n)}} \right\}_{n = 1}^N$ from distribution $p_{\theta}({m{x}})$
 - $\mathbf{x} \coloneqq (x_0, \dots, x_T)$

each x_t can take on K different values

- $\theta = (A, \pi)$: unknown transition matrix and initial probability distribution
- MLE:

Similar to

estimating

an exercise

 \hat{A}_{ML} , so left as

$$(\hat{A}_{ML}, \hat{\pi}_{ML}) = \operatorname{argmax}_{A,\pi} \prod_{n=1}^{N} p_{A,\pi}(\boldsymbol{x}^{(n)})$$

$$\operatorname{Markov Property}$$

$$(\hat{A}_{ML}, \hat{\pi}_{ML}) = \operatorname{argmax}_{A,\pi} \prod_{n=1}^{N} p_{\pi} \left(x_{0}^{(n)} \right) \prod_{t=1}^{T} p_{A} \left(x_{t}^{(n)} \mid x_{t-1}^{(n)} \right)$$

$$\operatorname{Variables are separable}$$

 $\widehat{\pi}_{ML} = \operatorname{argmax}_{\pi} \left| \quad p_{\pi} \left(x_0^{(n)} \right) \right|$

Our focus next \rightarrow $\hat{A}_{ML} = \operatorname{argmax}_A \left[\begin{array}{c|c} p_A \left(x_t^{(n)} \mid x_{t-1}^{(n)} \right) \end{array} \right]$

Simplifying The MLE

- indicator function $\bullet \ \mathbb{I}(\cdot)$:
- $\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{n=1}^{n} \prod_{t=1}^{n} p_{A} \left(x_{t}^{(n)} \mid x_{t-1}^{(n)} \right)$ • N_{ii} : the number of samples with transitions from state i to state j, i.e.,

$$N_{ij} := \sum_{n=1}^{N} \sum_{t=0}^{T} \mathbb{I}\left(x_t^{(n)} = j, x_{t-1}^{(n)} = i\right)$$

Then we have:

1.
$$p_A\left(x_t^{(n)} \mid x_{t-1}^{(n)}\right) = \prod_{i=1}^K \prod_{j=1}^K \left(a_{ij}\right)^{\mathbb{I}\left(x_t^{(n)} = j, x_{t-1}^{(n)} = i\right)}$$

2.
$$\prod_{n=1}^{N} \prod_{t=1}^{T} p_A \left(x_t^{(n)} \mid x_{t-1}^{(n)} \right) = \prod_{n=1}^{N} \prod_{t=1}^{T} \prod_{i=1}^{K} \prod_{j=1}^{K} \left(a_{ij} \right)^{\mathbb{I} \left(x_t^{(n)} = j, x_{t-1}^{(n)} = i \right)}$$
$$= \prod_{i=1}^{K} \prod_{j=1}^{K} \left(a_{ij} \right)^{N_{ij}}$$

This gives:

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}$$

Simplifying The MLE

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \prod_{i=1}^{K} \prod_{j=1}^{K} (a_{ij})^{N_{ij}}$$

• N_{ij} : the number of samples with transitions from state i to state j

Taking logarithm and adding constraints $\sum_i a_{ij} = 1$:

$$\hat{A}_{ML} = \operatorname{argmax}_{A} \sum_{i=1}^{K} \sum_{j=1}^{K} N_{ij} \log a_{ij}$$
 subject to $\sum_{j=1}^{K} a_{ij} = 1 \ (\forall i)$

Variables are separable

Solve the following for every i = 1, ..., K:

$$\widehat{a_{ij}}_{ML} = \operatorname{argmax}_{a_{ij}} \sum_{j=1}^{K} N_{ij} \log a_{ij}$$
 subject to $\sum_{j=1}^{K} a_{ij} = 1$

Remark: We have seen how to solve it using Lagrangian multipliers (recall *EM for Gaussian Mixture Models*)

$$\widehat{a_{ij}}_{ML} = \frac{N_{ij}}{\sum_{j=1}^{K} N_{ij}}$$

Remark: The optimal transition matrix can be found by simply counting and classifying the number of the transitions of the sample states!

Conclusion

- Markov chains have several applications
 - Modeling text sequences
 - Modeling gene sequences
- ullet The ML estimate $\widehat{a_{ij}}_{ML}$ of the transition matrix is given by

$$\widehat{a_{ij}}_{ML} = \frac{N_{ij}}{\sum_{j=1}^{K} N_{ij}}$$
 Number of transitions from state i to j

• Similarly, the ML estimate $\widehat{\pi_i}_{ML}$ of the initial probability is given as

$$\widehat{\pi_i}_{ML} = \frac{N_{i0}}{\sum_{j=1}^K N_{j0}}$$
 Number of times we start in state i