

Especificação Técnica e Funcional

Enterprise Challenge - Sprint 1 - Reply

Introdução

Este documento tem como objetivo, definir a solução e permitir a validação antes da sua execução, evitando retrabalhos e frustrações com o resultado.

Integrantes

Integrante	RM	
Vinícius Pereira Santana	RM564940	
Vitor Augusto Prado Guisso	RM562317	
Ryan Carlos Sousa Alves Cunha	RM561677	
Thyago Batista de Amorim de Paiva	RM 562049	

Histórico de Tarefas

Data	Versão	Descrição	Autor / RM
01/05/2025	01	Elaboração da Especificação Técnica e Funcional	Vinícius Santana RM: 564940
05/05/2025	02	Elaboração do diagrama da arquitetura do Projeto	Vitor Guisso RM: 562317

A Solicitação do Cliente

Necessidades

O cliente busca obter uma economia no consumo de energia excessivo causado pelos **motores trifásicos de grande porte**, especialmente durante horários de pico, e evitar multas por ultrapassagem da demanda contratada, o que tem ocasionado em perdas financeiras diretas. Com isso o cliente gostaria de obter visibilidade em tempo real e previsibilidade do desligamento dos motores em horários de pico

Solução

Desenvolver uma solução digital baseada em IA e IoT que:

- Monitore em tempo real o consumo elétrico de motores industriais.
- Detecte padrões de consumo excessivo e anomalias.
- Preveja picos de demanda com base no histórico e contexto.
- Sugira redistribuição de carga ou desligamento programado de equipamentos.
- Gere alertas automáticos e dashboards interativos para tomada de decisão.

Projeto	Solução
IA, IoT e OdooERP	Sistema Inteligente de Monitoramento e Otimização de Consumo Energético em Motores Industriais

Arquitetura do projeto

As imagens a seguir possuem caráter ilustrativo e foram desenvolvidas a partir de softwares de edição de imagem, seu objetivo é exemplificar funcionalidades e destacar soluções e tecnologias impressas no projeto.

Diagrama da arquitetura do Projeto

🐧 1. Coleta de Dados via IoT

- Sensores IoT (como PZEM-004T ou sensores industriais Modbus) acoplados aos motores para captar:
 - Corrente (A)
 - o Tensão (V)
 - o Fator de potência
 - o Potência ativa (kW)
 - o Frequência
- Comunicação via MQTT para um broker central.

■ 2. Armazenamento

- Dados coletados s\u00e3o armazenados no Oracle Database (pode ser o Oracle Autonomous Database hospedado na AWS via Oracle Cloud Infrastructure interconnect com AWS ou diretamente na AWS RDS for Oracle).
- Organização dos dados em tabelas otimizadas para séries temporais e análises históricas.

3. Modelos de IA

- Modelo preditivo de consumo com:
 - o Séries temporais (Prophet ou LSTM) para prever picos de demanda.
 - o Anomaly Detection (Isolation Forest) para detectar comportamentos fora do padrão.
- Recomendação de ações preventivas com base em regras de negócio e IA supervisionada.

ш 4. Dashboards e Alertas

Usar o Odoo Studio ou Dashboards para:

- Visualizar consumo por motor/equipamento.
- Ver alertas gerados e status de manutenção.
- Acompanhar indicadores como horas de operação, ocorrências críticas, economia estimada.

Tecnologias Utilizadas:

Componentes	Tecnologia Sugerida
Coleta de Dados	Sensores IoT e MQTT
Backend/API	Python (FastAPI)
Armazenamento	Oracle Database (AWS RDS ou OCI interconnect)
IA/ML	Prophet, scikit-learn, TensorFlow
Dashboard	OdooERP / Manutenção
Alertas	Odoo Mensagens internas / Email

Integração da Solução com o Odoo:

1. Integração dos Dados

- Criar uma API Python (usando FastAPI ou Flask) que:
 - o Recebe dados dos sensores (corrente, tensão, potência).
 - o Processa os dados com IA/ML.
 - Envia resultados (risco de pico, consumo anômalo) para o **Odoo** via XML-RPC ou JSON-RPC.

2. Uso do Módulo de Manutenção

- Cada motor trifásico pode ser cadastrado como um equipamento no módulo.
- Criar manutenções preventivas automaticamente quando o modelo de IA prever consumo anormal ou risco de falha.
- Personalizar o formulário para incluir:
 - o Dados de energia (consumo atual, pico previsto).
 - Logs de alertas do sistema.

3. Dashboards no Odoo

- Usar o Odoo Studio ou Dashboards para:
 - Visualizar consumo por motor/equipamento.
 - Ver alertas gerados e status de manutenção.
 - Acompanhar indicadores como horas de operação, ocorrências críticas, economia estimada.

4. Alertas Automatizados

- Odoo pode:
 - o Enviar **emails ou notificações internas** para equipe de manutenção.
 - o Criar tarefas automáticas vinculadas à previsão de anomalias.
 - Usar regras agendadas para gerar ações com base nos dados.

Benefícios Esperados

- Redução de até 20–30% nos custos com energia.
- Evita multas por ultrapassagem de demanda contratada.
- Maior visibilidade e controle dos ativos energéticos críticos.
- Infraestrutura escalável, segura e com alta disponibilidade na AWS.

Indicadores de Sucesso (KPIs)

- Redução do consumo médio em horário de pico.
- Queda nas ultrapassagens da demanda contratada.
- Quantidade de alertas preditivos entregues corretamente.
- Tempo de resposta médio após o disparo de alerta.

Matriz de Responsabilidades

Integrante	RM	Função Principal	Descrição
Vinícius Pereira Santana	RM564940	Líder Técnico e	Responsável pela
		Documentação	organização geral do
			projeto, versionamento no
			GitHub, README,
			integração entre os
			módulos e entrega final.
Vitor Augusto Prado Guisso	RM562317	Desenvolvedor Backend /	Desenvolverá a API em
		API	Python (FastAPI) para
			recepção e envio de dados
			dos sensores, além de
			auxiliar na comunicação
			com o Odoo.
Ryan Carlos Sousa Alves	RM561677	Especialista IoT e Coleta de	Simulação e definição da
Cunha		Dados	coleta de dados via
			sensores (PZEM-004T,
			Modbus), incluindo
			comunicação via MQTT.
Thyago Batista de Amorim	RM562049	Machine Learning e	Desenvolvimento dos
de Paiva		Dashboards	modelos preditivos
			(Prophet, TensorFlow) e
			criação de visualizações no
			Odoo (ou Streamlit para
			prototipagem e validação
			inicial).