Compositional LDL_f-to-DFA

Marco Favorito
PhD Student

favorito@diag.uniroma1.it

DIAG - Sapienza University of Rome

Joint work with Giuseppe De Giacomo Accepted at ICAPS 2021

The problem

Given an LDL_f formula φ , compute a DFA \mathcal{A} such that:

$$\forall \pi.\pi \models \varphi \iff \pi \in \mathcal{L}(\mathcal{A})$$

Why care?

Basic building block of several techniques in AI and CS:

- Temporal Synthesis
- FOND Planning with temporal goals
- Non-Markovian Rewards Decision Processes
- Business Process Management

Related work

(De Giacomo and Moshe Y. Vardi, 2013):

(Zhu et al., 2017; Bansal et al., 2020):

Our work:

A new technique

- Fully compositional
 - Like (Bansal et al., 2020), but to the extreme
- Bottom-up approach
 - Against "top-down" approach of AFA-NFA-DFA
- NONELEMENTARY (instead of best theoretical bound of 2EXPTIME)
 - Yet, it works fairly well in practice
 - MONA too is NONELEMENTARY!

How it works, in a nutshell

- Mapping from LDL_f operators to DFA operations
- Inductively apply these mappings
- If we encounter LTL_f formulae, translate them in LDL_f

LDL_f syntax

We use the syntax that also works for empty traces (Brafman, De Giacomo, and Patrizi, 2018).

Given a set of propositional symbols \mathcal{P} , LDL_f formulae are built as follows:

$$\varphi ::= tt \mid ff \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \langle \rho \rangle \varphi \mid [\rho] \varphi
\rho ::= \phi \mid \varphi? \mid \rho_1 + \rho_2 \mid \rho_1; \rho_2 \mid \rho^*$$

Where ϕ is a propositional formula over \mathcal{P} .

LDL_f captures LTL_f

The function tr encodes LTL $_f$ into LDL $_f$:

$$tr(\phi) = \langle \phi \rangle tt \ (\phi \ \text{propositional})$$

$$tr(\neg \varphi) = \neg tr(\varphi)$$

$$tr(\varphi_1 \land \varphi_2) = tr(\varphi_1) \land tr(\varphi_2)$$

$$tr(\varphi_1 \lor \varphi_2) = tr(\varphi_1) \lor tr(\varphi_2)$$

$$tr(\Diamond \varphi) = \langle true \rangle (tr(\varphi) \land \neg end)$$

$$tr(\varphi_1 \ \mathcal{U} \ \varphi_2) = \langle (tr(\varphi_1)?; true)^* \rangle (tr(\varphi_2) \land \neg end)$$

Mappings from LDL_f to DFA

Mappings from LDL_f to DFA (cont.)

Mappings from LDL_f to DFA (cont.)

$$\begin{array}{cccc}
\varphi \wedge \psi & \longrightarrow & \mathcal{A}_{\varphi} \cap \mathcal{A}_{\psi} \\
\varphi \vee \psi & \longrightarrow & \mathcal{A}_{\varphi} \cup \mathcal{A}_{\psi} \\
\neg \varphi & \longrightarrow & \overline{\mathcal{A}_{\varphi}}
\end{array}$$

LDL_f equivalences

For other operators (except $\langle \rho^* \rangle \varphi$) we can exploit the following equivalences:

$$\langle \psi? \rangle \varphi \equiv \psi \wedge \varphi$$
$$[\psi?] \varphi \equiv \neg \psi \vee \varphi$$
$$\langle \rho_1; \rho_2 \rangle \varphi \equiv \langle \rho_1 \rangle \langle \rho_2 \rangle \varphi$$
$$[\rho_1; \rho_2] \varphi \equiv [\rho_1] [\rho_2] \varphi$$
$$\langle \rho_1 + \rho_2 \rangle \varphi \equiv \langle \rho_1 \rangle \vee \langle \rho_2 \rangle \varphi$$
$$[\rho_1 + \rho_2] \varphi \equiv [\rho_1] \wedge \langle \rho_2 \rangle \varphi$$
$$[\rho^*] \equiv \neg \langle \rho^* \rangle \neg \varphi$$

Translation of $\langle \rho^* \rangle \varphi$

For the transformation of $\langle \rho^* \rangle \varphi$, we distinguish two cases:

- ho is test-free;
- ightharpoonup
 ho is *not* test-free

If ρ is test-free, then $\rho \equiv \langle \rho \rangle$ end. To obtain $\mathcal{A}_{\langle \rho^* \rangle \varphi}$:

- Compute $A_{\langle \rho \rangle end}$
- Compute the Kleene closure of $\mathcal{A}_{\langle \rho \rangle end}$, \mathcal{A}_{ρ^*}
- lacksquare Compute \mathcal{A}_{φ}
- lacksquare Concatenate $\mathcal{A}_{
 ho^*}$ and \mathcal{A}_{arphi}

■ Compute $A_{\langle \rho \rangle end}$:

■ Compute A_{φ} :

■ Compute the Kleene closure of $A_{\langle \rho \rangle}$ end, A_{ρ^*} :

■ Concatenate A_{ρ^*} and A_{φ} :

Translation of $\langle \rho^* \rangle \varphi$ (ρ not test-free)

If ρ contains a test expression, we resort to the LDL_f-to-AFA transformation (De Giacomo and Moshe Y. Vardi, 2013; Brafman, De Giacomo, and Patrizi, 2018), with some changes:

- Pre-compute DFAs of tests ψ_1 ?, . . . , ψ_n ? and φ ;
- Instead of expanding states of the form ψ_i ? (or φ), concatenate the current state to the initial state of \mathcal{A}_{ψ_i} (or \mathcal{A}_{φ}).

Analysis

Theorem (Correctness)

The presented technique is correct, i.e. it outputs a DFA \mathcal{A}_{φ} s.t.

$$\forall \pi.\pi \models \varphi \iff \pi \in \mathcal{L}(\mathcal{A}_{\varphi})$$

Proof.

By structural induction on the formulae constructs φ , by structural induction on the regular expression constructs ρ , and by induction on the length of the trace π .

Time complexity is NONELEMENTARY, because of arbitrary nested star operators.

Implementation

Lydia

The technique has been implemented in a tool called **Lydia**:

- It relies on **MONA** (Henriksen et al., 1995) for DFA representation and operations;
- It is integrated with Syft+ for LTL_f/LDL_f synthesis;
- Uses CUDD to find minimal models;
- It is able to parse both LDL $_f$ and LTL $_f$ formulae using Flex/Bison.

The MONA DFA library

MONA is a tool for translating Weak monadic Second-order theory of 1 Successor (WS1S) to DFAs.

Lydia only uses the MONA DFA library.

The MONA DFA library (cont.)

DFAs in MONA are represented by shared, multi-terminal BDDs.

The representation is *explicit* in the state space, and *symbolic* in the transitions.

Alternation in MONA

Problem: the MONA DFA library cannot represent NFAs or AFAs directly

... but it provides the (existential) projection operation, EPROJECT(A, i):

- remove the *i*th track from the MBDD of A;
- determinize (as if it was a NFA)

Alternation in MONA

Problem: the MONA DFA library cannot represent NFAs or AFAs directly

... but it provides the (existential) projection operation, EPROJECT(A, i):

- remove the *i*th track from the MBDD of A;
- determinize (as if it was a NFA)

We also added the *universal* projection operation, UPROJECT(A, i):

- \blacksquare remove the *i*th track from the MBDD of \mathcal{A} (as above);
- determinize (as if it was an UFA (Universal Finite Automaton)).

 $L = \{0,001\}, \Sigma = \{0,1\} = 2^{\{b\}}$ (only one bit *b* needed) How to compute L^* ?

 $L = \{0,001\}, \Sigma = \{0,1\} = 2^{\{b\}}$ (only one bit *b* needed) How to compute L^* ?

- Add existential bit "e";
- Set it to false (i.e. \bar{e}) to existing transitions.

$$L=\{0,001\},\, \Sigma=\{0,1\}=2^{\{b\}}$$
 (only one bit b needed) How to compute L^* ?

Add closure transitions with bit e set to true

$$L = \{0,001\}, \Sigma = \{0,1\} = 2^{\{b\}}$$
 (only one bit *b* needed) How to compute L^* ?

Make initial state accepting

 $L = \{0,001\}, \Sigma = \{0,1\} = 2^{\{b\}}$ (only one bit *b* needed) How to compute L^* ?

■ EPROJECT(A, i_e) (project away bit e)

 $L = \{0,001\}, \Sigma = \{0,1\} = 2^{\{b\}}$ (only one bit *b* needed) How to compute L^* ?

■ EPROJECT(A, i_e) (project away bit e)

 $L=\{0,001\},\, \Sigma=\{0,1\}=2^{\{b\}}$ (only one bit b needed) How to compute L^* ?

■ EPROJECT(A, i_e) (determinize)

$$L = \{0,001\}, \Sigma = \{0,1\} = 2^{\{b\}}$$
 (only one bit *b* needed) How to compute L^* ?

Minimize

Concatenation using EPROJECT (Yu et al., 2008)

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

Concatenation using EPROJECT (Yu et al., 2008)

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

- Add existential bit "e";
- Set it to false (i.e. \bar{e}) to existing transitions.

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

Add concatenation transitions with bit *e* set to true.

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

■ EPROJECT(A, i_e) (project away bit e)

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

■ EPROJECT(A, i_e) (project away bit e)

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

■ EPROJECT(A, i_e) (determinize)

$$L_1 = \{00^*\}, L_2 = \{0 + 1\}$$

How to compute L_1L_2 ?

Minimize

Let
$$\varphi = \langle a + b \rangle \langle c; d \rangle tt$$
.

Transform it into:

$$\varphi' = \langle \mathbf{a} \rangle \langle \mathbf{c} \rangle \langle \mathbf{d} \rangle tt \vee \langle \mathbf{b} \rangle \langle \mathbf{c} \rangle \langle \mathbf{d} \rangle tt$$

Note that $\varphi \equiv \varphi'$.

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

$$\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt.$$

 $\varphi' = \langle a \rangle \langle c \rangle \langle d \rangle tt \vee \langle b \rangle \langle c \rangle \langle d \rangle tt$. (The same as before, but replacing *b* with *a*):

Finally, $\mathcal{A}_{\varphi'} = \mathcal{A}_{\langle a \rangle \langle c \rangle \langle d \rangle tt} \cup \mathcal{A}_{\langle b \rangle \langle c \rangle \langle d \rangle tt}.$

Let
$$\varphi = [a^*]\langle b \rangle tt$$

Let
$$\varphi = [a^*]\langle b \rangle tt$$

■ Compute A_{tt}

Let $\varphi = [a^*]\langle b \rangle tt$

■ Compute $A_{\langle b \rangle tt}$

Let $\varphi = [a^*]\langle b \rangle tt$ (remember: $[\rho]\varphi \equiv \neg \langle \rho \rangle \neg \varphi$)

■ Compute $\overline{\mathcal{A}_{\langle b \rangle tt}} = \mathcal{A}_{[b]ft}$

Let $\varphi = [a^*]\langle b \rangle tt$

■ Compute $A_{\langle a \rangle end}$

Let
$$\varphi = [a^*]\langle b \rangle tt$$

■ Compute Kleene closure of $A_{\langle a \rangle end}$, A_{a^*}

Let
$$\varphi = [a^*]\langle b \rangle tt$$

■ Concatenate A_{a^*} and $A_{[b]ff}$ (note: $\bar{e}a \wedge eb = \bot$)

Let
$$\varphi = [a^*]\langle b \rangle tt$$

lacktriangle Do EPROJECT $(\mathcal{A}_{\langle a^*
angle[b]ff}', i_e)$

Let
$$\varphi = [a^*]\langle b \rangle tt$$

$$lacksquare$$
 $\overline{\mathcal{A}_{\langle a^*
angle[b]ff}} = \mathcal{A}_{[a^*]\langle b
angle tt}$

Let $\varphi = \langle (\langle a; a \rangle tt?; true)^* \rangle \langle b \rangle tt$ (Note: $\langle a; a \rangle tt$ requires two steps to be verified.) We need to compute its AFA.

Let $\varphi = \langle (\langle a; a \rangle tt?; true)^* \rangle \langle b \rangle tt$

■ Precompute $A_{\langle a;a\rangle tt}$ and $\langle b\rangle tt$

Let
$$\varphi = \langle (\langle a; a \rangle tt?; true)^* \rangle \langle b \rangle tt$$

■ Start from $q_0 = \varphi$

Let
$$\varphi = \langle (\langle a; a \rangle tt?; true)^* \rangle \langle b \rangle tt$$

- Start from $q_0 = \varphi$
- "Expand" q_0 , without consuming symbols:

$$\tilde{\delta}(\varphi) = \text{````}\langle \textit{b}\rangle\textit{tt''''} \lor (\text{``}\langle\textit{a};\textit{a}\rangle\textit{tt?''} \land \text{``}\langle\textit{true}\rangle\textit{\textbf{\textit{F}}}_{\varphi}\text{''})$$

(Note: "" $\langle b \rangle tt$ "" is double-quoted)

Let
$$\varphi = \langle (\langle a; a \rangle tt?; true)^* \rangle \langle b \rangle tt$$

- Start from $q_0 = \varphi$
- "Expand" q_0 , without consuming symbols:

$$\tilde{\delta}(\varphi) = \text{```}\langle b\rangle \textit{tt'''} \lor (\text{``}\langle a; a\rangle \textit{tt?''} \land \text{``}\langle \textit{true}\rangle \textit{\textbf{\textit{F}}}_{\varphi}\text{''})$$

(Note: "" $\langle b \rangle tt$ " is double-quoted)

■ the above formula will determine the next transitions from the current state.

$$\tilde{\delta}(\varphi) = \text{````}\langle b\rangle \textit{tt''}\text{''} \vee (\text{``}\langle a; a\rangle \textit{tt?''} \wedge \text{``}\langle \textit{true}\rangle \textbf{\textit{F}}_{\varphi}\text{''})$$

$$\tilde{\delta}(\varphi) = \text{````}\langle b
angle tt$$
'''' \lor ('' $\langle a; a
angle tt$?'' \land '' $\langle \textit{true}
angle extbf{\emph{F}}_{arphi}$ '')

Compute minimal models of the above (propositional) formula:

- 1. $\{``\langle b\rangle tt""\}$
- 2. $\{ (a; a)tt?, (true)\mathbf{F}_{\varphi} \}$

$$\tilde{\delta}(\varphi) = \text{```}\langle b\rangle \textit{tt"''} \lor (\text{``}\langle a; a\rangle \textit{tt?''} \land \text{``}\langle \textit{true}\rangle \textit{\textbf{\textit{F}}}_{\varphi}\text{''})$$

Compute minimal models of the above (propositional) formula:

- 1. $\{``\langle b\rangle tt""\}$
- 2. $\{ (\langle a; a \rangle tt?)^{*}, (\langle true \rangle \mathbf{F}_{\varphi})^{*} \}$

Intuitively, it means:

- take initial transitions from $A_{(b)tt}$, **or**
- take initial transitions from $\mathcal{A}_{\langle a;a\rangle tt}$, **and**, go to $\boldsymbol{E}(\varphi)$ if you read *true* (Note, $\boldsymbol{E}(\varphi)$ is an AFA state)

Remark: Add as many bits as needed, existential e_i and universal u_i , to resolve all the alternations, i.e. to have only deterministic transitions.

In the example, we need one existential bit e and one universal bit u.

Remark: Add as many bits as needed, existential e_i and universal u_i , to resolve all the alternations, i.e. to have only deterministic transitions.

In the example, we need one existential bit e and one universal bit u.

$$\tilde{\delta}(\varphi) = (\text{````}\langle b \rangle tt \text{'``'} \wedge true \atop \underline{e}\underline{u}) \vee (\text{``}\langle a; \underline{a}\rangle tt ?'' \wedge \text{``}\langle true \rangle \mathbf{\textit{F}}_{\varphi}\text{''})$$

From q_0 (the current state in this iteration):

- \bullet $\bar{e}\bar{u}$: take *all* transitions from initial state of $\mathcal{A}_{\langle a;a\rangle tt}$;
- \blacksquare $\overline{e}u$: go to $\varphi = q_0$ (a self-loop)
- $e\bar{u}$: take *all* transitions from initial state of $A_{\langle b \rangle tt}$;
- eu: go to accepting sink (requires "rebalancing" of the DNF formula)

Iterate the above procedure until all AFA states have been explored.

To obtain the final DFA:

- 1. UPROJECT the universal bits;
- EPROJECT the existential bits.

The above DFA, minimized:

After UPROJECT:

After EPROJECT, the minimal DFA for $\varphi = \langle (\langle a; a \rangle tt?; true)^* \rangle \langle b \rangle tt$:

Experiments

Benchmark

Tools:

- Lydia/LydiaSyn
- MONA/Syft+
- Lisa (only explicit, only symbolic, hybrid) (Bansal et al., 2020)

Datasets:

- Random conjunctions, 400 formulae (Zhu et al., 2017)
- Single counters, 20 formulae (Tabajara and Moshe Y Vardi, 2019)
- Double counters, 10 formulae (Tabajara and Moshe Y Vardi, 2019)
- Nim game, 24 formulae (Tabajara and Moshe Y Vardi, 2019)

DFA Construction (single/double counters)

DFA Construction (Nim game)

Benchmark					
Name	Lydia	Mona-	Lisa-	Lisa-	Lisa
		based	explicit	symbolic	
nim_1_1	0.01	0.15	0.07	0.07	0.07
nim_1_2	0.02	_	0.15	0.16	0.16
nim_1_3	0.05	_	0.07	1.43	0.06
nim_1_4	0.09	_	0.14	267.23	0.13
nim_1_5	0.17	_	0.27	_	0.25
nim_1_6	0.30	_	0.63	_	0.54
nim_1_7	0.54	_	1.20	_	1.02
nim_1_8	0.82	_	1.87	_	1.83
nim_2_1	0.05	_	0.14	1.49	0.10
nim_2_2	0.20	_	0.84	_	0.81
nim_2_3	1.47	_	4.95	_	4.95
nim_2_4	7.00	_	26.07	_	24.33
nim_2_5	34.86	_	125.56	_	108.86
nim_2_6	114.87	_	_	_	_
nim_2_7	_	_	_	_	_
nim_3_1	0.40	_	3.15	_	2.67
nim_3_2	9.93	_	84.34	_	78.31
nim_3_3	142.16	_	_	_	_
nim_3_4	_	_	_	_	_
nim_4_1	8.97	_	110.10	_	109.79
nim_4_2	_	_	_	_	_
nim_5_1	243.62	_	_	_	_
nim_5_2	_	_	_	_	_

Table 1: Running time (in seconds) for DFA construction on the Nim benchmark set. In bold the minimum running time for a given benchmark. — means time/memout. Timeout at 300 sec.

DFA Construction, cactus plot

LTL_f Synthesis

Conclusions and Future works

- Better than end-to-end MONA
 - Working directly with the right formalism gives better performances
- Fully compositional is (often) better
 - Lisa decomposes only in the outermost conjunction
- Heuristics are crucial for a scalable implementation
 - Agressive minimization (as in MONA)
 - Smallest products first (as in (Bansal et al., 2020))

Future works:

- Direct translations from LTL_f
- Direct translations for Past formulae ($PLTL_f$ and $PLDL_f$)
- Use a hybrid approach

- Bansal, Suguman et al. "Hybrid compositional reasoning for reactive synthesis from finite-horizon specifications". In: AAAI. 2020, pp. 9766–9774.
- Brafman, Ronen, Giuseppe De Giacomo, and Fabio Patrizi. "LTLf/LDLf Non-Markovian Rewards". In: (2018), pp. 1771–1778.
- De Giacomo, Giuseppe and Moshe Y. Vardi. "Linear Temporal Logic and Linear Dynamic Logic on Finite Traces". In: *IJCAI*. 2013, pp. 854–860.
- Henriksen, Jesper G. et al. "Mona: Monadic second-order logic in practice". In: 1995, pp. 89–110.
- Tabajara, Lucas Martinelli and Moshe Y Vardi. "Partitioning Techniques in LTLf Synthesis.". In: *IJCAI*. 2019, pp. 5599–5606.
- Yu, Fang et al. "Symbolic string verification: An automata-based approach". In: SPIN. 2008, pp. 306–324.
- Zhu, Shufang et al. "A symbolic approach to safety LTL synthesis". In: HVC. 2017.