Systémy odolné proti poruchám Ochrana pamětí Flash

Martin Havlík

Flash memory cells – NAND flash

- modified MOSFET (most commonly), trapped electric charge changes V_T
- {Single, Multi (2)...} Level Cell SLC, MLC, TLC...
- threshold voltage windows, prob. dens. hills between read ref. volts
- FG insulated \rightarrow non-volatile
- Channel Hot Electron (CHE) injection & Fowler-Nordheim Tunneling (FNT) – quantum mechanics

String-like structures of cells sharing contacts (vs NOR flash) – higher density \rightarrow cheaper but less reliable and more error-prone

SSD memory hierarchy organization

E.g. 4-16 chips, up to 16 dies per chip, 1-4 planes, 100s-1000s blocks, 2D array 100s rows of flash cells. Super- across chips & planes (same ID).

SSD = a group of chips connected via channels to a controller (ECC engine, scrambler, compression, DRAM manager & buffers etc.)

Program-erase cycles

- 1 Program-erase (P/E, PE)
 - ullet program (write) only 1 o 0 with page granularity, smallest R/W unit
 - erase $0 \rightarrow 1$ only block granularity (made of pages)
 - disparity ⇒ garbage collection
 - ullet degrades individual cells trapped electrons ightarrow cycling noise
 - leads to raw bit errors needing to be corrected with ECC
 - ullet up to an uncorrectable state o limited lifetime!
- Example stats
 - older SLC NAND 150 000 P/E, 5x-nm MLC around 10 000
 - newer 1x-nm MLC NAND circa 3000, TLC only around 1000

Threshold voltage distribution between reference voltages

MSB

Threshold Voltage (V,,,)

SSD Controller I.

- 1 Flash Translation Layer (FTL)
 - LA \rightarrow PA transparent mapping, GC (fewest valid pages)
 - wear leveling reduce heterogeneity of block wearout
- Plash Reliability Management
 - refresh (in-place, remapping-based), hot data
 - read-retry to mitigate voltage shifts, latency!
- 3 Compression
 - e.g. LZ77/LZ78, optional (can be already compressed/encrypted)
- 4 Data Scrambling and Encryption
 - ullet errors data dependent o randomly distributed 1s & 0s
 - LSFR seeded with LA \oplus data = scrambled data
 - self-encrypting drive (SED) typically using AES
- **5** Bad Block Management
 - process variation, uneven wearout, few blocks high raw bit error rate (RBER) → avoid usage
 - original & growth bad blocks (OBBs & GBBs), reserved blocks
 - expected less than 2% OBBs

Page smallest R/W unit, smallest erase by blocks!

SSD Controller II.

- 6 Data Path Protection
 - parity checks for SRAM (HFIFO) & DRAM (MPECC)
 - weaker ECC than (BCH & LDPC) for NAND (↓ expected error rate)
 - host → flash, flash → host, firmware metadata

memory protection ECC, host FIFO, DRAM buffers before writing, check & discard MPECC, encode into ECC, generate CRC, write to NAND FIFO, CRC check & NAND write. DRAM buffering + metadata (mapping table etc.) – uses MPECC too

SSD Controller III.

- Superpage-Level Parity
 - protect from ECC failures within chip/plane
 - ullet \oplus all pages in plane 0, write to plane 0 parity die
 - OS accesses with logical block (LB) granularity, typ. 4kB
 - hidden GBB or ECC failure
 - LB read failure, \oplus LBs from all other dies in superpage (those must read correctly!)

Write amplification (WA) & over-provisioning (OP)

Granularity mismatch between program (page) and erase (block)

- writing to a block needs it erased! (can only write $1 \rightarrow 0$)
- garbage collecting moves valid pages to free up block for erasing
- results in additional flash writes = write amplification

Over-provisioning (inaccessible extra capacity) decreases WA – trade-off

 \bullet ECC strength requires more space \to less for OP – another trade-off! More ECC more power consumption!

Error Correction Configuration	Overprovisioning Factor
ECC-1 (0.93), no superpage-level parity	11.6%
ECC-1 (0.93), with superpage-level parity	8.1%
ECC-2 (0.90), no superpage-level parity	8.0%
ECC-2 (0.90), with superpage-level parity	4.6%

Assume 20% extra phys space over advertised (2TB \rightarrow 2.4TB) (coding rate) – % non-ECC data \rightarrow lower = higher redundancy factor – amount of SSD space left for overprovisioning

Error characterization and mitigation

- Cell-to-cell program interference and shadow program sequencing
 - programming adjacent wordlines interference \rightarrow 2 (+) step zig-zag LSB (CSB) MSB program \Rightarrow minimize interference on fully programmed wordline
- Neighbor cell Assisted error Correction (NAC)
 - V_T shift correlated to values in adjacent wordlines \rightarrow know thy neighbor and adjust reference for reading
- 8 Refreshing
 - retention & read disturbances, long term accumulating raw bit errors → remap, in-place x fixed intervals, adaptive (wearout, temperature)
 - worse with increasing PE cycles
- 4 Read-retry
 - on ECC failure to correct, retry reading with slightly different ref. voltage

Adaptive error mitigation

- Multi-rate ECC
 - initial weaker ECC, more for OP, less WA
 - PE interval based, measure Raw Bit Error Rate (RBER), threshold, switch to stronger ECC (decode with 1, encode with 2)

| User data | OP space <-|-> ECC |

- Dynamic Cell Levels (block granularity)
 - voltage distribution hills widen over time, overlap
 - downgrade e.g. TLC to MLC ↑ margins
 - read-hot data in special downgraded blocks to minimize read disturb
- 3 Slower program erase operations
 - when write request throughput is low
 - slower more precise programming \rightarrow reduce oxide degradation
 - higher latency can perform during GC (SSD already idle)

BCH & LDPC ECC I.

- RBER overview
 - BCH & LDPC, able to correct around 10⁻³ RBFR
 - data to host with post-correction error rate target 10⁻¹⁵ (JEDEC standard)
- BCH decode
 - BCH decode → read-retry, max attempts → NAC, max attempts → superpage parity (most time expensive!) → uncorrectable
- 3 LDPC decode more levels more latency!
 - no read-retry, do soft decoding instead
 - soft information: prob. the cell contains 0/1 from multiple reads w/ diff. ref. voltages
 - log likelihood ratio (LLR)
 - each level adds new info about cell (vs hard which replaces information) → increases strength of error correction

$$LLR = log \frac{P(x = 0|V_{th})}{P(x = 1|V_{th})}, LLR_{level}^{Rj}$$

BCH & LDPC ECC II.

- Computing LLR (estimation)
 - model a cell as a communication channel → expected signal & additive noise due to errors
 - $V_{th} \sim_{model}$ Gaussian distribution
 - PE cycling noise \sim_{model} additive white Gaussian noise (AWGN)
 - LLR estimation either during runtime or precomputed in tables by SSD manufacturer
 - online & offline empiric training based on PE cycle count, retention time, read disturb
- Number of soft decoding levels
 - latency!
 - e.g. 5-level up to 480 μs
 - trade-off, helps to reduce triggering expensive superpage-level parity recovery
 - diminishing returns

Value Read From	LLR
NAND Flash	
0	+4
1	-4

Now assume our Re-Read strategy consists of one additional read. Our construction might look something like as shown in Table 3.

Value Read From NAND Flash		LLR
1st Read	2nd Read	
0	0	+7
0	1	+1
1	0	-1
1	1	-7

Example source:

https://www.eetimes.com/soft-decoding-in-ldpc-based-ssd-controllers/

BCH & LDPC III.

- 1 Error correction strength comparison
 - coding rates: 0.935 BCH, 0.936 LDPC
 - hard decoding very similar, no benefit of LDPC
 - assume UBER target 10^{-16} , then BCH can correct up to RBER 1.0×10^{-3} , soft LDPC up to 5.0×10^{-3} (latency!)
 - as SSD wears out, RBER increases, upon some threshold, e.g. 2.0×10^{-3} we can switch to soft LDPC decoding to further maintain low UBER
 - lifetime vs read latency trade-off
- Retention Failure Recovery (RFR)
 - pre-ECC for end-of-lifetime SSD reads
 - read fails (uncorrectable), read-retry, record magnitude of V_{th} shift, determine susceptible vs resistant
 - susceptible likely Y, resistant likely X
 - \bullet can reduce RBER of failed pages by up to 50%

Main literature source

[1] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, "Error characterization, mitigation, and recovery in flash-memory-based solid-state drives," Proceedings of the IEEE, vol. 105, no. 9, pp. 1666–1704, 2017. DOI: 10.1109/JPROC.2017.2713127.

Other related topics...

- Differential ECC for 3D NAND¹
 - 2nd LDPC with lower code rate (stronger ECC) for read-hot data
 - trade-off, stronger ECC less read retry, energy cost, parity space cost
 - identification, re-coding, extra info & book-keeping overhead
- FTRM: A Cache-Based Fault Tolerant Recovery Mechanism²
 - Cache Mapping Table (CMT) for FTL, reconstruction on recovery
 - Out Of Bounds (OOB) page area validity flag, access counter
- 6 ECC Caching³
 - adaptively increase ECC protection level, minimize induced WA
 - overlong ECC across pages boundary ightarrow 2 r/w ops per 1 r/w request
 - extra check bits (ECB) in \$ CAM[PPN] (content-addressable mem.)

¹https://doi.org/10.1145/3566097.3567853

²https://doi.org/10.3390/electronics9101581

³https://doi.org/10.1007/s10836-023-06075-6