DS&AI

Warehousing

Datawarehouse Schema, Measure, Data Smoothing

- Q1 Which of the following is the most commonly used schema in data warehousing?
 - (A) Star Schema
 - (B) Snowflake Schema
 - (C) Fact Constellation Schema
 - (D) Network Schema
- **Q2** A measure in the context of a data warehouse refers to:
 - (A) The physical storage of data
 - (B) The attributes of a fact table
 - (C) A numeric value that can be aggregated
 - (D) A key attribute in a dimension table
- Q3 In a snowflake schema, the dimension tables are:
 - (A) Denormalized
 - (B) Fully normalized
 - (C) Partially normalized
 - (D) None of the above
- **Q4** Which of the following is an example of a dimension table in a data warehouse?
 - (A) Sales Amount
- (B) Customer
- (C) Quantity Sold
- (D) Product Sales
- **Q5** What is the main advantage of using a star schema over a snowflake schema in a data warehouse?
 - (A) Better performance due to fewer joins
 - (B) Better data normalization
 - (C) More complex queries
 - (D) Better handling of time dimensions
- **Q6** Data smoothing in data analysis is used to:

- (A) Filter out noisy data
- (B) Convert unstructured data into structured data
- (C) Perform data aggregation
- (D) Identify trends in large datasets
- **Q7** In the context of a data warehouse, which of the following describes a "fact"?
 - (A) A column containing dimension keys
 - (B) A numeric measurement or transaction event
 - (C) A collection of descriptive information
 - (D) A dimension that helps to filter queries
- **Q8** Which of the following is a disadvantage of a snowflake schema compared to a star schema?
 - (A) Higher disk space requirements
 - (B) Fewer joins are needed for queries
 - (C) More complex queries due to more joins
 - (D) Simpler data representation
- Q9 Which of the following is an example of a smoothing technique used in time-series data?
 - (A) Moving average
 - (B) Data scaling
 - (C) Data clustering
 - (D) Data discretization
- Q10 In a data warehouse, which of the following is true about fact tables?
 - (A) They contain descriptive attributes
 - (B) They store primary keys for dimensions
 - (C) They store numeric data that can be aggregated
 - (D) They are usually denormalized

11/25/24, 6:58 PM GATE_DPP

GATE

Answer Key

Q1	(A)	Q6	(A)
Q2	(C)	Q6 Q7 Q8 Q9	(A)
Q3	(B)	Q8	(C)
Q4	(B)	Q9	(A)
Q5	(A)	Q10	(C)

11/25/24, 6:58 PM GATE_DPP

GATE

Hints & Solutions

Q1 Text Solution:

Α

Q2 Text Solution:

C

Q3 Text Solution:

В

Q4 Text Solution:

В

Q5 Text Solution:

А

Q6 Text Solution:

Α

Q7 Text Solution:

Α

Q8 Text Solution:

C

Q9 Text Solution:

Α

Q10 Text Solution:

C

