

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /1º Semestre ANÁLISE MATEMÁTICA I

Teste 2

31-jan-2013 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efectuados.

1. Justificando convenientemente as suas respostas, determine o valor lógico das seguintes afirmações:

- a. $\sum_{n=2}^{\infty} \frac{1}{n^2 + n 2}$ é uma série de Mengoli convergente e a sua <u>soma</u> é igual a $\frac{11}{18}$;
- b. $\sum_{n=2}^{\infty} \left(\frac{3}{2}\right)^{1-n}$ é uma série geométrica divergente;
- c. É possível concluir que a $\sum_{n=2}^{\infty} \left(\frac{3}{n^2 + n 2} + \left(\frac{2}{3} \right)^n \right)$ é convergente e o valor da sua $\underline{\text{soma}}$ é $\frac{19}{6}$;
- d. As séries $\sum_{n=2}^{\infty} \frac{4}{\sqrt[3]{n^5}}$ e $\sum_{n=2}^{\infty} \frac{3n^2+1}{1-5n^2}$ são convergentes.
- 2. Determine a primitiva $\int \frac{e^{2x} + e^{x+1}}{e^{2x} + 4} dx$ aplicando a técnica da decomposição e a primitivação imediata.
- 3. Resolva a primitiva $\int \frac{\sqrt{\cos(x)-\cos^3(x)}}{\cos^2(x)} dx, x \in \left[0,\frac{\pi}{2}\right]$, utilizando uma técnica apropriada para funções trigonométricas.
- 4. Considere a função $F(x) = e^{-x^2} \left(\frac{x^2 + 1}{2} \right)$.
 - a. Recorrendo à definição de primitiva, determine qual das funções f(x) tem F(x) por primitiva:

i.
$$f(x) = -2xe^{-x^2}$$
 ii. $f(x) = -x^3e^{-x^2}$ iii. $f(x) = -x^2e^{-x^2}$

b. Confirme o resultado anterior aplicando a técnica de primitivação por partes.

5. Usando a primitivação por substituição determine
$$\int \frac{e^{3x} + 2e^x}{e^{2x} + 4} dx$$
.

6. Identifique em cada uma das seguintes primitivas a(s) expressão(ões) em falta marcadas com []por forma a que possam ser aplicadas as regras da primitivação imediata, justificando convenientemente a sua escolha:

i.
$$\int \frac{\left[\int sen[\right]}{\cos^3(\sqrt{x}+1)} dx$$
 ii. $\int \frac{\left[\int\right]}{\cos(\ln(x))+1} dx$ iii. $\int \frac{\left[\int\right]}{\sqrt{4-e^{2sen(x)}}} dx$

7. Calcule as seguintes primitivas:

a.
$$\int \frac{\sqrt[4]{x} + \sqrt{x}}{\sqrt[3]{x}} dx$$
 b. $\int \frac{x^2 + 4x - 5}{(x - 1)(x^2 + x - 2)} dx$ c. $\int \ln^2(-x) dx$

Cotação

1a	1b	1c	1d	2	3	4a	4b	5	6	7a	7b	7c
1	1	1	1	1,5	1,5	1,5	1,5	1,5	2,5	2	2	2