UNCLASSIFIED

AD 4 3 7 9 6 5

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, rurnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

437965

VON KARMAN CENTER

STRUCTURAL MATERIALS DIVISION

STRESS-CORROSION CRACKING OF HIGH-STRENGTH ALLOYS

A Report To

FRANKFORD ARSENAL

Contract DA-04-495-ORD-3069

Report No. 0414-02-3 (Quarterly) / April 1964 / Copy No.

STRESS-CORROSION CRACKING OF HIGH-STRENGTH ALLOYS

a report to

FRANKFORD ARSENAL

Contract DA-04-495-ORD-3069

Report No. 0414-02-3 (Quarterly)

April 1964

A EROJET - GENERAL CORPORATION A SUBSCINETAL TIRE & RUBBER COMPANY

Report No. 0414-02-3

This is the twelfth in a series of quarterly progress reports submitted in partial fulfillment of Contract DA-O4-495-ORD-3069. It constitutes the third quarterly progress report for the second 1-year continuation of the original 2-year program.

This report covers the period 1 January through 31 March 1964. It was written by R. B. Setterlund who was supervised by A. Rubin.

AEROJET-GENERAL CORPORATION

Dr. S. Brelant, Manager

Materials Engineering Department Structural Materials Division

Report No. 0424-02-5

. 642 4. 44

GOLD TO

	· ·	be:
	I. OBJECTIVE	1
	II. BACKSROOM	I
	III. TEST PROCEDURES	2
Į.	A. Bent Beam Test	2
٢.	B. U-Bend Test	2
U	C. Center Notch Test	2
S	D. Test Environments	3
	IV. PROGRAM STATUS	3
	A. Compositional Variation	3
T.	B. Environmental Temperature	4
	C. Electropotential Changes	
Î	D. Protective Coatings	5
		Table
	Mill Certified Chemical Analysis of Program Materials	1
n	Mechanical Properties of Program Materials	2
Ų	Bent Beam Test Results	3
S:	U-Bend Test Results	4
ا. ح	Coatings Evaluation Test Results	
		Figure
n	Bent-Beam Test Fixture and Specimens	1
U	Beam Length-Stress Relationship	2
1	Center-Notch Specimen Configuration	3
U	Fracture Toughness Values, Center-Notched Specimens	4
		Page iii

Report No. 0414-02-3

CONTENTS (cont.)

	Figure
Grain Size Variations Encountered in 18% Nickel Maraging Steels	5
Aerated Distilled Water - Bent-Beam Tests	6
Effect of Temperature in Distilled Water, U-Bend Tests	7
Typical Crack in 18%-Nickel Maraging Steels	8
Typical Cracks in Conventional High-Strength Steels	9
Stress-Corrosion Potential Measuring Apparatus	10
Effect of Stress Field Parameter, K, on Crack-Tip Corrosion Potential	11
(a) Experimental Test for the Determination of Applied Potential on Stress Corrosion Cracking, and (b) Test Cell Showing Specimen and Auxiliary Platinum Electrode	12

I. OBJECTIVE

The objectives of the program are outlined below.

- A. To study the stress-corrosion characteristics of 18%-nickel maraging steel with respect to compositional variation.
- B. To study the effect of environmental temperature on the rate of stress-corrosion cracking in three alloys: 18%-nickel maraging steel, a low-alloy martensitic steel, and a hot-worked die steel.
- C. To study the electropotential changes occurring in 18%-nickel maraging steel during stress-corrosion exposure and the effect of applied potential.
- D. To evaluate the effectiveness and applicability of surface protection on 18%-nickel maraging steel in preventing stress-corrosion cracking.

II. BACKGROUND

The present program is the second 1-year extension of the original 2-year program on stress-corrosion cracking of high-strength alloys. During the first 2-year study, six alloys were evaluated: Ladish D6AC steel; Type 300M steel; Vascojet 1000 steel; AM 355 cold-worked PH steel; precipitation-hardening 15-7Mo stainless steel; and B120VCA titanium. Significant failures were found to occur with the D6AC, 300M, and Vascojet 1000 steels in tap, distilled, and salt water, as well as in high-humidity environments; the time to failure for each of the three steels was found to decrease with increasing strength.

During the first 1-year continuation program, attention was focused on three new high-strength steels plus one high-strength titanium alloy. These alloys are: 20%-nickel maraging steel; 18%-nickel maraging steel; 9Ni-4Co vacuum melted steel; and 6Al-4V titanium. The titanium alloy showed complete immunity to stress-corrosion failure under all test conditions. Limited susceptibility was

noted for the 9Ni-4Co alloy. High susceptibility was noted with both the 20%-and 18%-nickel maraging steels. Since the original study of maraging steels was started, the 18%-nickel grade has received increased attention in the aerospace industry, and is now of primary interest. The present program is therefore directed to the study of the stress-corrosion behavior of this one alloy, with emphasis on compositional variation, effect of environmental temperature, and study of electropotential changes. It is intended to: first, determine the extent of the stress-corrosion problem in 18%-nickel maraging steel by testing four additional heats; second, compare the susceptibility of maraging steel with conventional ultra-high-strength steels; and third, to investigate further, by electropotential methods, the cause of failure of 18%-nickel maraging steel.

III. TEST PROCEDURES

A. BENT BEAM TEST

The bent-beam test is the primary test method used in the program. Figure 1 shows an insulated bent-beam fixture with test samples mounted. Polycarbonate blocks 7.000 ± 0.001 in. apart, attached to a stainless-steel holder, support the test specimen and insulate it from the holder. Specimens are cut to exact length to give a maximum outer-fiber stress of 75% of the 0.2% offset yield strength. The length-stress relationship is shown in Figure 2.

B. U-BEND TEST

In addition to the bent beam testing, U-bend samples are used to show the effect of elastic stresses combined with plastic deformation. Samples are bent in a special 1 in. radius fixture after heat treatment and cleaning. Samples which were known to have a low ductility were warmed to 100 to 175°F prior to bending.

C. CENTER NOTCH TEST

Figure 3 shows the test specimen configuration used in the accelerated center-notch test. This consists of a 1-3/4 by 8-in. tensile specimen containing a central notch. The notch is produced by a two-step process. First, a 0.06- by 0.57-in. slot is Elox-machined and extended at each end by very narrow Elox-machined notches of 0.001-in. root radii. Second, an extension of these notches is produced by tension-fatigue cycling to obtain fatigue cracks of controlled dimensions.

These center-notched specimens are tested in Baldwin creep-test machines. The desired loads are obtained by dead weight loading applied to a 20-to-1 lever arm. The test environment is applied by cementing a polyethylene cup to the specimen in the area of the notch. These specimens are well adapted to stress-corrosion studies in that crack growth rate, corrosion potential, or corrosion current can be conveniently measured.

D. TEST ENVIRONMENTS

The test environments in this program include those that the results of the previous year's program indicated were the cause of the most rapid failure of maraging steel; these are: continuous immersion in aerated distilled water, continuous immersion in aerated distilled water containing 3% by weight chemically pure sodium chloride and water-saturated air at $140^{\circ}F$. In addition, two new environments are being employed; distilled water at a thermostatically regulated temperature of $120 \pm 0.1^{\circ}F$, and distilled water thermostatically regulated to $160 \pm 0.1^{\circ}F$. All baths are changed every 10 to 14 days.

IV. PROGRAM STATUS

A. COMPOSITIONAL VARIATION

The first objective of the program, the study of compositional variation on stress corrosion susceptibility of 18%-nickel maraging steels, is being fulfilled by the testing of four additional commercial heats in environments known to produce the most rapid failures. The compositional variation of these four heats are shown in Table 1, Group (b). The only element showing wide variation is titanium, which varies from 0.23 to 0.55%. These heats in conjunction with the five listed in Table 1, Group (a), encompass the compositional variations of present day commercial heats of 18% nickel maraging steel. Mechnical properties of the nine heats are shown in Table 2.

Fracture toughness values were determined using the specimen shown in Figure 3. Fracture toughness results show a very definite relationship between critical crack growth energy, $G_c^{\ *}$, and yield strength for the nine heats of 18%

The G_c values tabulated in this report are somewhat higher than shown in previous reports due to the incorporation of the Irwin plastic zone-size correction.

nickel maraging steel tested (Figure 4). These heats show a much greater toughness than low alloy steel, die steel, or 20% nickel maraging steel. Extremes were noted in austenite grain size, Figure 5, but these were found to have little, if any, effect on mechanical properties.

Replicate bent-beam and U-bend specimens of these four heats along with specimens of low-alloy steel and die steel, have been tested in the following environments: an environment containing distilled water and an environment of 3% NaCl in distilled water. The distilled water was found generally to be more severe. These data are tabulated in Tables 3 and 4. The bent beam results in distilled water are shown plotted in Figure 6. While great variations in resistance to stress corrosion cracking exist between the nine heats of 18%-nickel maraging steel, the time to failure generally decreases as the strength increases. Also, 18%-nickel maraging steel is more resistant than the low alloy or hot worked die steels when compared at the same strength level.

B. ENVIRONMENTAL TEMPERATURE

The second objective of the program is the study of the effect of environmental temperature on the rate of stress corrosion cracking in three alloys: 18%-nickel maraging steel, a low-alloy steel, and a hot-worked die steel. To accomplish this we are conducting bent beam and U-bend stress corrosion tests in three environments: distilled water at 120°F, water saturated air at 140°F, and distilled water at 160°F. The results are shown in Tables 3 and 4. Figure 7 shows the effect of temperature on the time-to-failure of U-bend specimens. Temperature has a much greater effect on the failure time of 18%-nickel maraging steel than either the hot-worked die steel or the low alloy steel.

Figure 8 shows a typical stress-corrosion crack in 18%-nickel maraging steel after exposure to 160°F distilled water. Figure 9 shows typical stress-corrosion cracks in the two conventional steels. In all three cases, the cracks were intergranular.

C. ELECTROPOTENTIAL CHANGES

The third objective of the program is to measure the electrochemical changes occurring in 18% nickel maraging steel during stress corrosion exposure and

to determine the effect of applied potential on failure time. An experiment has been conducted on a center-notched specimen of heat 3960502. The test setup is shown in Figure 10. Using this method, the applied stress vs crack potential relationship of Figure 11 was obtained. As the stresses at the crack tip, K, increase as a result of incremental loading of the metal, a potential shift toward the cathodic is noted. A second test of this type will be conducted where the stress, K, will be held constant and the potential recorded during stress corrosion exposure until failure results.

Tests have begun on the effect of applied potential on the stress corrosion cracking of 18%-nickel maraging steel. Figure 12 shows the test setup for this portion of the program. A Duffers potentiostat is utilized to control the potential of a U-bend specimen to a preset value. Two runs on U-bend samples of heat 07868 in 3% NaCl solution have been conducted to date, with the following results:

Potential to Saturated Calomel Cell, v	Current Density, ma/in.2	Corrosion	Stress Corrosion
-1. 50	-80 (cathedic)	Not noted	Many cracks after 1 hour
-0.40	None	Mild	Failed after 15 days
+0.50	+123 (anodic)	Severe	Many surface fissures in 2 hours

These runs were intended to produce metallographic specimens of 18%-nickel maraging steel that had failed under anodic and cathodic polarization. The actual mechanism study will involve U-bend specimens of 20%-nickel maraging steel and low alloy steel tempered at 600°F. These specimens had failure times in salt water without applied current of 2.4 and 1.0 hours respectively. These tests will be described in more detail in subsequent reports.

D. PROTECTIVE COATINGS

The fourth objective of the present program is to evaluate the effectiveness and applicability of surface protection in preventing stress-corrosion cracking in 18%-nickel maraging steel. Three coating systems, which

IV Program Status, D (cont.)

Report No. 0414-02-3

have shown some degree of effectiveness in preventing stress corrosion cracking of H-ll steel are being evaluated on maraging steel. Each of the three coatings offers a different means of protection. The polyurethane coating forms a dense barrier between the environment and the metal. The inorganic zinc coating serves to provide cathodic protection to the metal, while the inhibited epoxy coating protects the metal both by forming a barrier and by the inhibitory action of chromate compounds within the coating. As shown in Table 5 the inhibited epoxy coating is the most effective of the three coatings under our test conditions.

1 27476

The second second

MILL-CERTIFIED CHEMICAL ANALYSIS OF PROGRAM MATERIALS

									Comp	Composition, \$	•						ĺ
	Supplier	Heat No. C Mn P S St Hi Co	o	星	4	8	18	蓝	ဒ	오	↲	占	23	Ħ	1	7 8 14 72 75 W	-
.(a) Maraging	*(a) Maraging Steel from Previous Progras	Progress															
	Republic Steel	3960502	0.05	90.0	0.007	90.00	0.08 0.007 0.006 0.15	18.48 7.00 4.84 0.21	4.8	₽ .		o.1c	0.035 0.50	8	•	0.00 %	•
	Allegheny-Ludlus	877	0.029	0.005	0.00 1	90.0	600.0	0.029 0.002 0.004 0.008 0.009 18.51 8.48 4.92 0.089	8.48	8.	0.0			o. %	,	•	
	Allegheny-Ludlum	W-24178	0.012		0.01 0.003	0.00	0.00 500.0	18.69	8.8	€.92 0.029	0.029		0.003	9.0	9.00	0.005	
	Allegheny-Ludlum	¥76	0.05	90.0	900.0 80.0	0.005	0.005 0.014	18.60	9.05	8.	9.078			8.1		•	
	Allegheny-Ludlum	4-24254	0.00	60.0	0.005	0.00 500.0	90.0	20.41	•		0.29		0.005	3.	0.002 1.40 0.004 0.005	0.003	
(b) Maraging	(b) Maraging Steel for Present Progress	Progress															
	Republic Steel	3960523	0.029	9.06	0.005	0.029 0.06 0.005 0.006 0.05	0.05	17.79 8.50 5.48 0.15	8.8	3.48	0.13			0.23		•	
	Venedius Alloys	07868	0.02	0.09	9.00	0.005	a.	17.75 7.60	3.6	8.	90.0		0.017	8	0.05	0.00	
	Latrobe Steel	c\$6858	₽.0 3	0.03	0.00	0.03 0.004 0.008	9.05	18.34 8.00 4.75 0.11	8.00	4.75	n.º		0.03	0.19	•	9.00	•
	Vanadium Alloys	07268	0.03	0.05	0.00 400.0	9000	5. 0	18.5t	9.0	¥.88	60.0		0.088	0.55	8.0	0.003	
(c) Conventi	(c) Conventional High-Strength Steels	Steels															
	Vanadium Alloys	41670	о Ж	র:	0.00	0.21 0.010 0.008	8,			1.33		£.73		•	•	•	٠. د
	Allegheny-Ludlus	W-23217	0.195	8	0.00	0.62 0.009 0.003 0.20	0.30	0.51		₹ .	•	8.		•	•	•	9.0

Some material from previous program will be used to obtain supplementary data.

MECHANICAL PROPERTIES OF PROGRAM MATERIALS TABLE 2

Prior Condition Temp. R Hold, hours ksi Annealed 850 4 291.3	Note that Note Note	0.2% Offset Yield Strength ksi 291.3		솀	Ultimate Tensile Strength 502.2	Elongation \$	Reduction in Area	R Bardness 54		5 # ™
504 CB 322.0	-		298.3		327.1 308.8	3 2-1/2	សភ	55-1/2 55		
Welded 850 4 50% CR 900 3	-3 F		245.0 278.0		252.0 280.7	1-1/2 2	vœ	51-1/2		
Amealed 50% CR			249.9 302.5		254.7	- 1 -1	κ%	50-1/2		
Welded			236.6		242.0	· cu	18	1		
Annealed			255.4		265.9	5	σ,	22.5		
Annealed **			283.0		20.40	8	-œ <u></u>	53-1/2		
50¢ CR ×	- →		323.8		328.4	1-1/2	189	; ; ;		
Autreat.ed. 500 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ĸ		354.4		354.9	6-1/2 1	1-1/2	ደଝ		
Annealed	m-		181.5		190.7	(7) ±	ξţ	313	•	1020
			269.7		275.7	+ I/\.	' _ቋ ኢ'	51-1/2		
Annealed 900 3	ĸ		279.1		288.1	at t	18	25		
1 hr, 1850 Pr, 00 1 1075 4 + 4	1 + 1		219.2		7.152	! —	#	64	٠	
1025	_	•	232.6		8.48	9	Q.	52-1/2	٠	
→ 5179 → 5	→	•	223.5		580.6	6-1/2	¥.	15	•	9.9
1 hr, 1050 F, 04 925 4 + 4	# + #		222.2		292.4	-	⊋	3 5	•	33.5
20 C C C C C C C C C C C C C C C C C C C	•		ş		9	:	}	:		•
006	v —	200.10	20 1. 6		286.4	7-1/2	43-1/2	# #	• •	€ 3
214.5 \$ 800 ↓ 214.5 \$ 22.4.5 \$ 400 \$ 22.4.5	→ °	214.5	214.5 34.5		241.2	٧-	ዊ የ	45-1/2	•	# <u>.</u>
	.	*:1/2	:		C-TO2	•	0	2/7-76	•	¥

MOTES: "CR - Cold reduced at mill ***
*** Received cold reduced, annealed 1 hour at 1500°F, air cooled.
*** Qq = 031 Quenched.

TABLE 3

					Failure 1	*ailure Ratio and Fai	Failure Time,	Hours, in	in Various Environments	froments		
Table 2 Code No.	Beat Mo.	0.2% Offset Yield Strength	Aerated Wa Ratio	Water Water Trime	Aerated 3% Solutio	erated 3% NaCl Solution tio Time	1200F Wa	1200F Distilled Water Time	1400F Seturet Retio	1400F Water- Saturated Air Ratio Time	1600F Netio	160°F Distilled Mater atio Time
				(a) Mar	aging Steel (1) Mil	Maraging Steel from Previous (1) Mill annealed	Program					
119	4-24-24 3960502 448	291.3 249.9 255.4		10.5 70 NF 3600		7.8 140 88 3600	%% %%	164	***** *****	8 .558	2%	78 E
111	W-24178 476	283.0 323.3	3/5	\$4	2/3	36 6.5	2/2	158 158	3/5	21.5 72	% % %	% .
					(5)	Welded						
# # H	W-24254 3960502	245.0 236.6	3/3	147 360	3/5	0.8	2/2	54 148	3/3	41 6£1	2/2 5/2	1.5 31
H-2	W-24254 btt	321.0	\$\1	MF 2900	(S */0 */0	347 2900 347 2900 347 3500	2/2 0/0	810	3/2	5800 9800	2/2	138
121	3960502	302.5	, <u>, , , , , , , , , , , , , , , , , , </u>	1780 NF 3600	1/20	3200 MF 3600	% % 7,8	256 NF 1000	355	8 8 8	:85 :25	88
F-1 1-9	W-24178 476	323.0	#\# 3/3	236 1460	3/3	258 8	2/2	, 173 305 405	55 255	88	7,5%	# # #
				(b) Mer	uging Steel	Marsging Steel from Present Program	Program					
X PI X	3960523 07868 056858	181.5 248.2 269.7	5.5.5 5.5.5.5	1032 1032 117 2520	\$\$. \$\$.	NF 5880 NF 5170 1940	3/2	724 724 724 724	55.5 55.5	1560 578 188	****	582
x	o7268	279.1	3/3	510 (e) ©	3/3 noventional B	5/5 119 5/5 Conventional High Strength Steels	3/3 Steels	\$\$	3/3	332	ç,	<u>ş</u>
4.5	07914 	219.2 232.6	2/5	1745 544	s/s s/s	853 416	2/5 2/5	\$ 86	0/2 1/2	1680 548	2/2 2/3	\$ }
A-2 A-1	♦ 07914	223.5 222.2	2/2 3/3	£35	2/2 3/3	179 18	2/2 7/4	8 ⁷ 8	2/2 3/3	95 95 95 95	2/2	ያ ኤ
11	W-25217	203.1 204.6	2/3	MF 2800 2300	0/2 0/3	NF 2800	0/2 2/3	III 2800 2825	\$\$ \$\$	2800 308	0/s 5/2	861 ₩ 800 005
4 5	₩- 25217	214.5 237.4	2 25	1200 720	5/1 5/1	MF 2800	55 25	700 213	325	8 4	2/2 5/2	8 5 5
NOTES: AL	specimens str	pecimens stressed to 75% of yield strength	eld strengt	ė	1							

All specimens stressed to 75% of yield strength.
Ratio of samples failed to samples tested.
Median failure times, in bours, for three specimens, average

Table 3

U-BEND STRESS-CORROSIDN TEST RESULTS TABLE 4

Pack						Failure	Failure Ratio* and Failure Time, Hours, ** in Various Environments	llure Time,	Hours, ** in 1	arious Envin	oments		
Heat Bot Strength Heat Heat	Pable 2		0.2% Offset	Aersted Di	stilled Water	Aerated 35	Macl Solution	120°F Dis	tilled Water	140°F Water	-Saturated Air	160°F Dis	1110d Water
4.24624 291.3 2/2 2.4 3/3 194 0/0 3/3 366562 249.9 2/2 3.4 2/2 2.4 3/3 194 0/0 3/3 366562 249.9 2/2 825 0/0 2/2 133 2/2 167 3/3 36658 249.9 3/3 2140 1/3 NF 4150 3/3 4/4 240 3/3 77668 248.2 3/3 1240 1/3 187 187 187 187 187 187 3/3 187	9 2		Strength	Ratio	Time	Ratio	Тіпе	Ratio		Patio	Time	Retto	Time.
49-24654 39.1.3 2/2 3.4 2/2 1.4 3/3 194 0/0 3/3 3960502 249,9 2/2 825 0/0 2/2 133 2/2 167 3/3 3960523 181.5 2/3 2140 1/3 NF 4150 3/3 191 2/0 1/3 1/3 3/3 1/4 2/0 3/3 1/4 3/3 3/3 1/4 3/3 1/4 2/0 3/3 1/4 3/3 1/4 2/0 3/3 1/4 3/3 2/3 1/4 3/3 1/4 3/3 1/4 2/0 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 3/3 1/4 1/4 2/0 3/3 1/4 3/3 1/4 3/3 1/4 3/3						(a) Maragin	g Steel from Pa	revious Pro	gram				
996052 181.5 5/2 825 0/0 2/2 133 5/2 167 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	H-1	W-24254	291.3	2/2		2/2	4.5	3/3	194	0/0	1	\$/\$	79
181.5 3/5 2140 1/3 NF 41.50 3/3 333 4/4 240 3/3 3/	1-1	3960505	6-642	2/2		%	:	2/2	133	2/2	167	3/2	83
996023 181.5 5/5 2140 1/5 NF 4150 5/5 333 $4/4$ 240 $5/5$ 07668 246.2 3/5 680 3/5 1 γ 1 γ 191 3/5 167 3/5 075685 269.7 3/5 450 3/5 1174 3/5 410 3/5 167 3/5 077568 269.7 3/5 480 3/5 417 670 $7/5$ <						(b) Maragin	g Steel from Pa	resent Prog	Ten				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×	3960523	181.5	3/3		1/3	NF 4150	3/3	333	1/1	240	3/3	130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ם	07868	248.2	3/3		3/3	1776	3/3	161	3/3	167	3/3	9
OT268 $2T9.1$ $2/3$ 1823 $1/3$ NP 4440 $3/3$ 410 $3/3$ 470 $2/2$ OT914 219.2 $2/2$ 510 $2/2$ $3/2$ 470 $2/2$ $3/2$ $4/2$ $3/2$ $4/2$ $3/2$ <	×	c56858	269.7	3/3	O£4	3/3	1174	3/3	237	3/3	22	3/3	8
(c) Conventional High Strength Steels origit 219.2 2/2 510 2/2 267 2/2 280 2/2 500 2/2 232.6 2/2 174 2/2 232 2/2 172 2/2 172 2/2 170 v-332.7 203.1 0/2 NF 3000 0/2 NF 3000 0/2 NF 3000 0/1 204.5 2/2 1470 0/2 NF 3000 0/2 NF 3000 0/2 NF 3000 0/1 v-332.7 203.1 0/2 NF 3000 0/2 NF 3000 0/2 NF 3000 0/1 v-332.7 203.1 0/2 NF 3000 0/2 NF 3000 0/2 NF 3000 0/1 v-332.7 204.5 2/2 1470 0/2 NF 3000 2/2 5/7 2/2 1/1 v-332.7 274.5 2/2 1440 2/2 2600 2/2 5/7 2/2 2/1 1/1 v-332.7 274.5 2/2 1440 2/2 1.0 2/2 2.4 2/2 2/1 1/1	×	07268	279.1	2/3	1823	1/3	MF 4440	3/3	014	3/3	OL _¶	2/2	33
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						(c) Conven	tional High Sto	rength Stee	18				
232.6 2/2 174 2/2 232 2/2 172 2/2 30 1/1 223.5 2/2 200 2/2 143 2/2 139 2/2 70 2/2 07934 222.2 2/2 82 2/2 24 2/2 70 2/2 24 2/2 0.4-23217 203.1 0/2 NF 3000 0/2 NF 3000 0/2 NF 3000 0/2 0.4-23217 204.5 2/2 1470 0/2 NF 3000 2/2 377 2/2 0.4-23217 231.4 2/2 2/2 144 2/2 2/2 2.4 2/2 2/4 2/2 1/1 0.4-23217 271.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 2/1 1/1 0.4-23217 271.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 2/1 1/1 0.4-23217 271.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 2/1 1/1 0.4-23217 271.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 2/1 1/1 0.4-23217 271.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 2/4 1/1 0.4-23217 271.4 2/2 2.4 2/2 2.4 2/2 2/4 2/2 1/1 0.4-23217 271.4 2/2 2.4 2/2 2.4 2/2 2/4 2/2 1/1 0.4-23217 271.4 2/2 2.4 2/2 2.4 2/2 2/4 2/2 2/4 2/2	4-4	41640	219.2	2/2	510	2/2	267	2/2	280	2/2	8	2/2	88
	A-3		232.6	2/5	174	2/2	232	2/2	172	5/ 5	ደ	\$	236
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-2	→	223.5	2/2	300	2/2	143	2/2	611	2/2	٤	2/5	141
w-23217 203.1 0/2 NR 3000 2/2 974 2/2 377 1/1 V 214.5 2/2 144 2/2 360 2/2 537 2/2 217 1/1 W-29217 237.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 4.1 1/1	A-1	41610	222.2	2/2	&	2/2	5 †	2/2	٩	2/2	₹.	2/5	ĸ
204.6 2/2 1470 0/2 NB 3000 2/2 974 2/2 3772 1/1 214.5 2/2 144 2/2 3600 2/2 537 2/2 217 1/1 N-29217 237.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 <1 1/1	9-p	W-23217	205.1	0/5	MF 3000	0/5	NF 3000	0/5	MF 3000	2/0	3000	ζ	3000
V 214.5 2/2 144 2/2 8600 2/2 537 2/2 217 1/1 1/1 1/2 2/2 2.4 2/2 <1 1/1 1/1	B-3	_	204.6	2/2	1470	c/5	MF 3000	2/2	₄ ,16	2/2	372	1 /1	620
W-29217 237.4 2/2 4.9 2/2 1.0 2/2 2.4 2/2 <1 1/1	7	->	214.5	2/2	147	2/2	2600	2/2	537	2/2	21.7	\$	8
	B-1	W-23217	237.4	2/2	6.4	2/2	1.0	2/2	2.4	2/2	1	ζ,	7

Fotes: All apecimens stressed beyond yield strength.

* Ratio of samples failed to samples tested.

* Median failure times for three specimens, average for two specimens.

Table 4

TABLE 5

BENT BEAM STRESS CORROSION TESTS FOR COATINGS EVALUATION

		Aerated 3%	Aerated 3% NaCl Solution	140°F Wate	140°F Water-Saturated Air
Rase Metal	Coating	Failure Ratio*	Median Failure Time hours	Failure Ratio*	Median Failure Time hours
H-11 Steel	None	4/4	1.5	2/2	49
	Polyurethane	3/3	1380	9/9	3500
>	Inorganic zinc	2/2	687	2/2	821
W H-11 Steel	Inhibited epoxy	2/0	NF 3100	3/3	2720
18% Ni Maraging Steel	None	3/3	119	3/3	535
	Polyurethane	6/9	NF 3880	3/3	1560
	Inorganic zinc	3/3	288	3/3	140
V 18% Ni Maraging Steel	Inhibited epoxy	6/0	NF 3880	2/3	1870

* Ratio of samples failed to samples exposed.

Bent-Beam Test Fixture and Specimens

Figure 1

Beam Length-Stress Relationship

Center-Notch Specimen Configuration

Grain Size Variations Encountered in 18% Nickel Maraging Steels
(Top) Heat 476 (Bottom) Heat 3960523

Etchant: 5% chromic acid, electrolytic

Magnification: 500X

Typical Crack in 18% Nickel Maraging Steels

Heat 3960523

Etchant: Dilute marbles

Magnification: 1400X

Typical Cracks in Conventional High-Strength Steels

(Top) Low alloy steel Heat W-23217

(Bottom) Hot worked die steel Heat 07914

Etchant: Hcl picral

Magnification: 500X

(Top) Experimental Test for the Determination of Applied Potential on Stress-Corrosion Cracking

(Bottom) Test Cell Showing Specimen and Auxiliary Platinum Electrode