Worksheet 18: Orthogonal Transformations (§5.3)

Definition: A linear transformation $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is **orthogonal** if it preserves dot products—that is, if $\vec{x} \cdot \vec{y} = T(\vec{x}) \cdot T(\vec{y})$ for all vectors \vec{x} and \vec{y} in \mathbb{R}^n .

Theorem A: Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ be a linear transformation. Then T is orthogonal if and only if it preserves the length of every vector—that is, $||T(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in \mathbb{R}^n$.

Problem 1. Which of the following maps are orthogonal transformations? Short, geometric justifications are preferred, where possible.

- (a) The identity map $\mathbb{R}^3 \to \mathbb{R}^3$.
- (b) Rotation counterclockwise through θ in \mathbb{R}^2 .
- (c) The reflection $\mathbb{R}^3 \to \mathbb{R}^3$ over a plane (though the origin).
- (d) The projection $\mathbb{R}^3 \to \mathbb{R}^3$ onto a subspace V of dimension 2.
- (e) Dilation $\mathbb{R}^3 \to \mathbb{R}^3$ by a factor of 3.
- (f) Multiplication by $\begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$.

Solution:

- (a) Yes, dot product is obviously the same before or after doing nothing.
- (b) Yes, rotation obviously preserves the LENGTH of every vector, so by the theorem, this means rotation is an orthogonal transformation.
- (c) Yes, reflection obviously preserves the LENGTH of every vector, so by the theorem, this means reflection is an orthogonal transformation.
- (d) No, projection will typically shorten the length of vectors.
- (e) No, dilation by three obviously takes each vector to a vector of length 3 times as long.
- (f) No. The vector \vec{e}_1 is sent to $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$, which has length $\sqrt{1}3$, not 1 like \vec{e}_1 .

Problem 2. Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ be an orthogonal transformation.

- (a) Prove that T is **injective.** [Hint: consider the kernel.]
- (b) Prove that T is an isomorphism. [Hint: Note that the source and target here have the same dimension.]
- (c) Prove that the matrix of T (in standard coordinates) has columns that are orthonormal.
- (d) Prove the composition of orthogonal transformations is orthogonal. [HINT: Use the Theorem!]

Solution:

- (a) Let $\vec{v} \in \ker T$. We want to show that $\vec{v} = 0$. We know that $T(\vec{v}) = 0$, so $||T(\vec{v})|| = 0$. Since T is orthogonal, it preserves lengths (by the theorem), so also $||\vec{v}|| = 0$. This means $\vec{v} = 0$ since no other vector has length 0. So the kernel of T is trivial and T is injective.
- (b) We already know T is injective, so we just need to check it is surjective. By rank-nullity, $n = \dim \ker T + \operatorname{rank} T$. So by (1), we have $\operatorname{rank} T = n$, so T is surjective. Thus T is a bijective linear transformation, that is, an isomorphism.
- (c) Let A be the standard matrix of T. The columns of A are $T(\vec{e}_1), \ldots, T(\vec{e}_n)$ by our old friend the Key Theorem. We need to show these are orthonormal. Compute for each i: $T(\vec{e_i}) \cdot T(\vec{e_i}) = \vec{e_i} \cdot \vec{e_i} = 1$ (where we have used the fact that T preserves dot product). Also compute for each pair $i \neq j$: $T(\vec{e_i}) \cdot T(\vec{e_j}) = \vec{e_i} \cdot \vec{e_j} = 0$. This means that $T(\vec{e_1}), \dots, T(\vec{e_n})$ are orthonormal.
- (d) Yes! Assume T and S are orthonormal transformations with source and target \mathbb{R}^n . To show that $S \circ T$ is orthogonal, we can show it preserves LENGTHS, by the theorem. Take any vector $\vec{x} \in \mathbb{R}^n$. Then $||\vec{x}|| = ||T(\vec{x})||$ since T is orthogonal (by the Theorem, or by the book definition). So also $||T(\vec{x})|| = ||S(T(\vec{x}))||$ since S is orthogonal. Putting these together we have $||\vec{x}|| = ||S(T(\vec{x}))||$. Since \vec{x} was arbitrary, we see that $S \circ T$ preserves every length. QED.

Definition: An $n \times n$ matrix A is **orthogonal** if $A^{\top}A = I_n$ —i.e., if its transpose is its inverse.

Problem 3. Which of the following matrices are orthogonal?

(ii)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$(iii) \ \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
.

Solution: Yes, yes, no, no.

Problem 4. Suppose that $A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$ is a 3×3 matrix with columns $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$.

(a) Recalling that $A^{\top} = \begin{vmatrix} \vec{v}_1^{\top} \\ \vec{v}_2^{\top} \\ \vec{v}_1^{\top} \end{vmatrix}$, show that

$$A^{\top} A = \begin{bmatrix} \vec{v}_1 \cdot \vec{v}_1 & \vec{v}_1 \cdot \vec{v}_2 & \vec{v}_1 \cdot \vec{v}_3 \\ \vec{v}_2 \cdot \vec{v}_1 & \vec{v}_2 \cdot \vec{v}_2 & \vec{v}_2 \cdot \vec{v}_3 \\ \vec{v}_3 \cdot \vec{v}_1 & \vec{v}_3 \cdot \vec{v}_2 & \vec{v}_3 \cdot \vec{v}_3 \end{bmatrix}.$$

- (b) Does the argument work for any size square matrix?
- (c) Use (a)/(b) to prove a square matrix is orthogonal if and only if its columns are orthonormal.

(d) Is $B = \begin{bmatrix} 3/5 & 4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ orthogonal? Find B^{-1} . [Be clever! There are easy ways and hard ways!]

Solution:

- (a) Multiply $A^{\top}A = \begin{bmatrix} \vec{v}_1^{\top} \\ \vec{v}_2^{\top} \\ \vec{v}_3^{\top} \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} = \begin{bmatrix} \vec{v}_1^{\top}\vec{v}_1 & \vec{v}_1^{\top}\vec{v}_2 & \vec{v}_1^{\top}\vec{v}_3 \\ \vec{v}_2^{\top}\vec{v}_1 & \vec{v}_2^{\top}\vec{v}_2 & \vec{v}_2^{\top}\vec{v}_3 \\ \vec{v}_3^{\top}\vec{v}_1 & \vec{v}_3^{\top}\vec{v}_2 & \vec{v}_3^{\top}\vec{v}_3 \end{bmatrix}$, which produces the desired matrix since for any $n \times 1$ matrices (column vectors) \vec{w} and \vec{v} , the matrix product $\vec{w}^{\top}\vec{v}$ is the same as the dot product $\vec{w} \cdot \vec{v}$.
- (b) Yes! Let A have columns $\vec{v}_1, \ldots, \vec{v}_n$. Then the ij-th entry of $A^{\top}A$ is $\vec{v}_i^{\top}\vec{v}_j = \vec{v}_i \cdot \vec{v}_j$. So the columns are orthonormal if and only if $A^{\top}A$ is the identity matrix.
- (c) For a square matrix $A = [\vec{v}_1 \quad \cdots \quad \vec{v}_n]$, the ij-th entry of A^{\top} A is $\vec{v}_i \cdot \vec{v}_j$ by (b). So the columns are orthonormal if and only if A^{\top} $A = I_n$.
- (d) Yes–it's easy to check its columns are orthonormal. The inverse is the transpose, which is $\begin{bmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Problem 5. Show that if A and B are orthogonal $n \times n$ matrices, then the matrices A^{\top} , A^{-1} , and AB are also orthogonal.

Solution: Since A is orthogonal, $A^{-1} = A^{\top}$, so it's enough to show that A^{\top} is orthogonal. We check: $(A^{\top})^{\top}A^{\top} = A$ $A^{\top} = I_n$ because a matrix always commutes with its inverse. For AB, we check: $(AB)^{\top}(AB) = (B^{\top}A^{\top})(AB)$, and now using $A^{-1} = A^{\top}$, this collapses to $B^{\top}B$, which is I_n , since B is orthogonal.

Theorem B: Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is orthogonal if and only if A is orthogonal.

Problem 6. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation.

- (a) Prove Theorem B just above. [Hint: Use Problems 2 and 4.]
- (b) If \mathcal{B} is an arbitrary basis, is it still true that T is orthogonal if and if $[T]_{\mathcal{B}}$ is orthogonal? What about if \mathcal{B} is an orthonormal basis?

Solution: For (a), we need to show two things:

- 1). If T is orthogonal, then A is orthogonal. For this is suffices to show A has orthonormal columns. This was shown in 2c.
- 2). If A has orthonormal columns, T is orthogonal. By the Theorem on page 1, it suffices to show that for any $\vec{x} \in \mathbb{R}^n$, $||T(\vec{x})|| = ||\vec{x}||$. Since the length is always a non-negative number,

it suffices to show $||T(\vec{x})||^2 = ||\vec{x}||^2$. That is, it suffices to show $T(\vec{x}) \cdot T(\vec{x}) = \vec{x} \cdot \vec{x}$. For, this we take an arbitrary \vec{x} and write it in the basis $\{\vec{e}_1, \ldots, \vec{e}_n\}$. Note that

$$\vec{x} \cdot \vec{x} = (x_1 \vec{e}_1 + \dots + x_n \vec{e}_n) \cdot (x_1 \vec{e}_1 + \dots + x_n \vec{e}_n) = \sum_{ij} (x_i \vec{e}_i) \cdot (x_j \vec{e}_j) = x_1^2 + \dots + x_n^2.$$

Here the third equality is using some basic properties of dot product (like "foil"), and the third equality is using the fact that the $\vec{e_i}$ are orthonormal so that $(x_i\vec{e_i})\cdot(x_j\vec{e_j})=0$ if $i\neq j$. On the other hand, we also have

$$T(\vec{x}) \cdot T(\vec{x}) = T(x_1 \vec{e}_1 + \dots + x_n \vec{e}_n) \cdot T(x_1 \vec{e}_1 + \dots + x_n \vec{e}_n)$$

$$= \sum_{ij} (x_i T(\vec{e}_i)) \cdot (x_j T(\vec{e}_j))$$

$$= \sum_{ij} x_i x_j T(\vec{e}_i) \cdot T(\vec{e}_j) = x_1^2 + \dots + x_n^2$$

with the last equality coming from the fact that the $T(\vec{e_i})$'s are the columns of A and hence orthonormal. QED.

For (b), the same proof works for any orthonormal basis—we really only used the fact that $\vec{e}_i \cdot \vec{e}_j$ is zero or one (if i=j), so that so is $T(\vec{e}_i) \cdot T(\vec{e}_j)$. Alternatively, we can deduce it from Theorem B as follows: Suppose $T: \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation, so the standard matrix $[T]_{\mathcal{E}}$ of T is orthogonal by Theorem B. Let $\mathcal{U} = (\vec{u}_1, \dots, \vec{u}_n)$ be an orthonormal basis of \mathbb{R}^n , and write $Q = [\vec{u}_1 \cdots \vec{u}_n]$, so that Q is an orthogonal matrix and thus so is the matrix $Q^{-1} = Q^{\top}$ by Problem 1. Then

$$[T]_{\mathcal{U}} = S_{\mathcal{E} \to \mathcal{U}}[T]_{\mathcal{E}}S_{\mathcal{U} \to \mathcal{E}} = Q^{\top}[T]_{\mathcal{E}}Q$$

is also orthogonal, since products of orthogonal matrices are orthogonal (again by Problem 5). For an arbitrary basis \mathcal{B} is false! For example, let T be rotation by 90° in \mathbb{R}^2 . let $\mathcal{B} = (\vec{e}_1, \vec{e}_1 + \vec{e}_2)$. The \mathcal{B} -matrix of T is $\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}$, which is clearly not orthogonal as its columns do not have dot product zero. For an arbitrary basis, this fails.

Problem 7. Prove Theorem A from page 1. [HINT: For the harder direction, consider $T(\vec{x} + \vec{y})$.]

Solution: First assume that T is orthogonal. Take arbitrary $\vec{x} \in \mathbb{R}^n$. We want to show $||\vec{x}|| = ||T(\vec{x})||$. By definition $||\vec{x}|| = (\vec{x} \cdot \vec{x})^{1/2}$ and $||T(\vec{x})|| = (T(\vec{x}) \cdot T(\vec{x}))^{1/2}$. Since T is orthogonal, we know that $\vec{x} \cdot \vec{x} = T(\vec{x}) \cdot T(\vec{x})$, so the result follows.

For the converse, assume T preserves lengths. Take arbitrary $\vec{x}, \vec{y} \in \mathbb{R}^n$. We need to show that $T(\vec{x}) \cdot T(\vec{y}) = \vec{x} \cdot \vec{y}$. By assumption $||T(\vec{x} + \vec{y})|| = ||(\vec{x} + \vec{y})||$. This is the same as $T(\vec{x} + \vec{y}) \cdot T(\vec{x} + \vec{y}) = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y})$. By linearity, this is the same as $(T(\vec{x}) + T(\vec{y})) \cdot (T(\vec{x}) + T(\vec{y})) = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y})$. Expanding out using the rules of dot product, we get

$$T(\vec{x}) \cdot T(\vec{x}) + 2T(\vec{x}) \cdot T(\vec{y}) + T(\vec{y}) \cdot T(\vec{y}) = \vec{x} \cdot \vec{x} + 2\vec{x} \cdot \vec{y} + \vec{y}\vec{y}).$$

Now, we know that $T(\vec{x}) \cdot T(\vec{x}) = ||T(\vec{x})||^2 = ||\vec{x}||^2 = (\vec{x} \cdot \vec{x})$ and similarly for \vec{y} , so this cancels down to

$$2T(\vec{x}) \cdot T(\vec{y}) = 2\vec{x} \cdot \vec{y}$$

and so $T(\vec{x}) \cdot T(\vec{y}) = \vec{x} \cdot \vec{y}$, as needed.

Problem 8. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, and let A be the standard matrix of T. Which of following are equivalent?

- (a) T preserves length, i.e., ||T(v)|| = ||v|| for all $v \in \mathbb{R}^n$.
- (b) T preserves distance, i.e., ||T(v) T(w)|| = ||v w|| for all $v, w \in \mathbb{R}^n$.
- (c) T is an orthogonal transformation, i.e., T preserves the dot product.
- (d) T maps any orthonormal basis of \mathbb{R}^n to an orthonormal basis of \mathbb{R}^n .
- (e) T maps the standard basis of \mathbb{R}^n to an orthonormal basis of \mathbb{R}^n .
- (f) The columns of A form an orthonormal basis of \mathbb{R}^n .
- (g) $A^{\top}A = I_n$.
- (h) $AA^{\top} = I_n$.
- (i) A is an orthogonal matrix.
- (j) The rows of A form an orthonormal basis of \mathbb{R}^n .

Solution: These are all equivalent, and we've bassically shown them above. Here are some direct proofs again.

(a) \Leftrightarrow (b): If T is linear and preserves lengths, then for all $v, w \in \mathbb{R}^n$, ||T(v) - T(w)|| =||T(v-w)|| = ||v-w||. Conversely, if T is linear and preserves distances, then for all $v \in \mathbb{R}^n$, ||T(v)|| = ||T(v) - 0|| = ||T(v) - T(0)|| = ||v - 0|| = ||v||.

 $(a \wedge b) \Rightarrow (c)$: Let $v, w \in \mathbb{R}^n$. Expanding each side of ||T(v-w)|| = ||v-w|| in terms of the dot product and using the facts that ||T(v)|| = ||v|| and ||T(w)|| = ||w|| to simplify, we find that $T(v) \cdot T(w) = v \cdot w.$

- $(c) \Rightarrow (d)$: Assuming (c), if $u_i \cdot u_j = \delta_{ij}$ for each i, j, then also $T(u_i) \cdot T(u_j) = \delta_{ij}$ for each i, j.
- $(d) \Rightarrow (e)$: Immediate, since the standard basis of \mathbb{R}^n is orthonormal.
- $(e) \Rightarrow (f)$: Follows from the fact that $A = [T(\vec{e}_1) \cdots T(\vec{e}_n)]$.
- $(f) \Leftrightarrow (g)$: If we write $A = [\vec{u}_1 \cdots \vec{u}_n]$, the (i,j)-entry of $A^{\top}A$ is $\vec{u}_i \cdot \vec{u}_j$.
- $(g) \Leftrightarrow (h)$: Follows from Theorem 2.4.8 in the text.
- $(h) \Leftrightarrow (i)$: Definition of orthogonal.

 $(h) \Leftrightarrow (j): \text{ If we write } A = \begin{bmatrix} - & \vec{u}_1^\top & - \\ & \vdots & \\ - & \vec{u}_n^\top & - \end{bmatrix}, \text{ the } (i,j)\text{-entry of } AA^\top \text{ is } \vec{u}_i \cdot \vec{u}_j.$

 $(g) \Rightarrow (c)$: If $A^{\top}A = I_n$, then $T(v) \cdot T(w) = Av \cdot Aw = v^{\top}A^{\top}Aw = v^{\top}w = v \cdot w$. $(c) \Rightarrow (a)$: If T preserves the dot product, then for all v, $||T(v)||^2 = T(v) \cdot T(v) = v \cdot v = ||v||^2$.

Problem 9. Let $A \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{d \times p}$. Prove that $(AB)^{\top} = B^{\top}A^{\top}$ using the ideas from Problem 4. [Note: You already proved this in the homework, most likely, a clumsier way!]

Solution: Let $\vec{\alpha}_i^{\top}$ denote the *i*-th row of A. So $A = \begin{bmatrix} \vec{\alpha}_1^{\top} \\ \vdots \\ \vec{\alpha}_n^{\top} \end{bmatrix} = \begin{bmatrix} \vec{\alpha}_1 & \cdots & \vec{\alpha}_d \end{bmatrix}^{\top}$. Let $\vec{\beta}_j$ denote

the j-th column of B, so that $B = \begin{bmatrix} \vec{\beta}_1 & \cdots & \vec{\beta}_p \end{bmatrix}$. Then

$$AB = \begin{bmatrix} \vec{\alpha}_1^\top \\ \vdots \\ \vec{\alpha}_n^\top \end{bmatrix} \begin{bmatrix} \vec{\beta}_1 & \cdots & \vec{\beta}_p \end{bmatrix} = [\vec{\alpha}_i^\top \vec{\beta}_j] = [\vec{\alpha}_i \cdot \vec{\beta}_j],$$

so the ij-entry of $(AB)^{\top}$ is $\vec{\alpha}_j\cdot\vec{\beta}_i.$ And

$$B^{\top}A^{\top} = \begin{bmatrix} \vec{\beta}_1^{\top} \\ \vdots \\ \vec{\beta}_p^{\top} \end{bmatrix} \begin{bmatrix} \vec{\alpha}_1 & \cdots & \vec{\alpha}_d \end{bmatrix} = [\vec{\beta}_i^{\top}\vec{\alpha}_j] = [\vec{\beta}_i \cdot \vec{\alpha}_j],$$

when is the same, since dot product is symmetric.