High-Order Optimality Conditions II

Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

General Nonlinearly-Constrained Optimization

$$(NCO)$$
 \min $f(\mathbf{x})$ s.t. $\mathbf{h}(\mathbf{x}) = \mathbf{0} \in R^m,$ $\mathbf{c}(\mathbf{x}) \leq \mathbf{0} \in R^p.$

We dealt the case when the feasible region is convex and the objective is convex, then we handled the case when the objective is a general C^1 function.

We now study the case that the only assumption is that all functions are in C^1 , either convex or noncovex.

We again establish optimality conditions to qualify local optimizers. These conditions give us qualitative structures of (local) optimizers and lead to quantitative algorithms to find a numerical optimizer.

Hypersurface and Implicit Function Theorem

Consider the hypersurface:

$$\{\mathbf{x} \in R^n : \mathbf{h}(\mathbf{x}) = \mathbf{0} \in R^m, m \le n\}$$

When functions $h_i(\mathbf{x})$ s are C^1 functions, we say the surfacesmooth.

For a point \mathbf{x}^* on the surface, we call it a regular point if $\nabla \mathbf{h}(\mathbf{x}^*)$ have rank m or the rows are linearly independent. For example, $(0;\ 0)$ is not a regular point of $\{(x_1;\ x_2)\in R^2:\ x_1^2+(x_2-1)^2-1=0,\ x_1^2+(x_2+1)^2-1=0\}.$

Based on the Implicit Function Theorem, if \mathbf{x}^* is a regular point and m < n, then for every $\mathbf{d} \in \mathcal{T}^* = \{\mathbf{z} : \nabla \mathbf{h}(\mathbf{x}^*)\mathbf{z} = \mathbf{0}\}$ there exists a curve $\mathbf{x}(t)$ on the hypersurface, parametrized by a scalar t in a sufficiently small interval $\begin{bmatrix} -a & a \end{bmatrix}$, such that

$$h(x(t)) = 0, x(0) = x^*, \dot{x}(0) = d.$$

min
$$(x_1)^2 + (x_2)^2$$
 s.t. $(x_1)^2/4 + (x_2)^2 - 1 = 0$

Figure 1: FONC for Nonlinear Equality Constrained Minimization

First-Order Condition for Nonlinearly-Constrained Optimization I

Lemma 1 Let \mathbf{x}^* be a regular point of the hypersurface of

$$\{\mathbf{x}: \mathbf{h}(\mathbf{x}) = \mathbf{0}, c_i(\mathbf{x}) = 0, i \in \mathcal{C}^*\}$$

where active-constraint set $C^* = \{i : c_i(\mathbf{x}^*) = 0\}$. If \mathbf{x}^* is a (local) minimizer of (NCO), then $\mathbf{d} = \mathbf{0}$ must be a minimizer of the following linear program:

min
$$\nabla f(\mathbf{x}^*)\mathbf{d}$$

s.t. $\nabla \mathbf{h}(\mathbf{x}^*)\mathbf{d} = \mathbf{0} \in R^m$, $\nabla c_i(\mathbf{x}^*)\mathbf{d} \leq 0, i \in \mathcal{C}^*$.

First, we notice that $\mathbf{d}=\mathbf{0}$ is a feasible solution for the linear program. Thus, if $\mathbf{0}$ is not a minimizer, we must have a $\bar{\mathbf{d}}$ such that $\nabla f(\mathbf{x}^*)\bar{\mathbf{d}}<0$, that is, $\bar{\mathbf{d}}$ is a descent-direction vector for the objective function.

Denote the active-constraint set at $\bar{\mathbf{d}}$ of the linear program by \mathcal{C}' ($\subset \mathcal{C}^*$). Then, \mathbf{x}^* remains a regular point of hypersurface of

$$\{\mathbf{x}: \mathbf{h}(\mathbf{x}) = \mathbf{0}, c_i(\mathbf{x}) = 0, i \in \mathcal{C}'\}.$$

Thus, as it was showed earlier, there is a curve $\mathbf{x}(t)$ such that

$$\mathbf{h}(\mathbf{x}(t)) = \mathbf{0}, \quad c_i(\mathbf{x}(t)) = 0, \ i \in \mathcal{C}', \quad \mathbf{x}(0) = \mathbf{x}^*, \quad \dot{\mathbf{x}}(0) = \bar{\mathbf{d}},$$

for $t \in [-a \ a]$ of a sufficiently small positive constant a.

Also, $\nabla c_i(\mathbf{x}^*)\bar{\mathbf{d}} < 0$, $\forall i \notin \mathcal{C}'$ and $c_i(\mathbf{x}^*) < 0$, $\forall i \notin \mathcal{C}^*$. From Taylor's theorem, $c_i(\mathbf{x}(t)) < 0$ for all $i \notin \mathcal{C}'$ so that $\mathbf{x}(t)$ is a feasible curve to the original (NCO) problem for $t \in [-a \quad a]$. Thus, \mathbf{x}^* must be a local minimizer of

the curve $\mathbf{x}(t)$.

Let $\phi(t)=f(\mathbf{x}(t)).$ Then, t=0 must be a local minimizer of $\phi(t)$ for $-a\leq t\leq a$ so that

$$0 = \phi'(0) = \nabla f(\mathbf{x}(0))\dot{\mathbf{x}}(0) = \nabla f(\mathbf{x}^*)\bar{\mathbf{d}}$$

which results in a contradiction.

First-Order Condition for Nonlinearly-Constrained Optimization II

Therefore, the first-order or duality condition applies to the linear program, which leads to

Theorem 1 (First-Order or KKT Optimality Condition) Let \mathbf{x}^* be a (local) minimizer of (NCO) and it is a regular point of

$$\{ \mathbf{x} : \mathbf{h}(\mathbf{x}) = \mathbf{0}, \ c_i(\mathbf{x}) = 0, i \in \mathcal{C}^* \}$$
. Then,

$$\nabla_x L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) = \mathbf{0}$$

and

$$s_i^* c_i(\mathbf{x}^*) = 0, \ \forall i$$

for some multipliers $(\mathbf{y}^*, \mathbf{s}^* \geq \mathbf{0})$.

The first equality condition and $\mathbf{s}^* \geq \mathbf{0}$ is based on the linear programming duality where the pair of $(\mathbf{y}^*, \mathbf{s}^*)$ is a dual optimizer pair. The complementarity condition is from that $c_i(\mathbf{x}^*) = 0$ for all $i \in \mathcal{A}^*$, and for $i \notin \mathcal{A}^*$, we simply set $s_i^* = 0$.

Second-Order Necessary Conditions for NCO

Now in addition we assume all functions are twice continuously differentiable.

Again let

$$T^* := \{ \mathbf{z} : \nabla \mathbf{h}(\mathbf{x}^*) \mathbf{z} = \mathbf{0}, \ \nabla c_i(\mathbf{x}^*) \mathbf{z} = 0 \forall i \in \mathcal{C}^* \}.$$

 T^* is sometimes called the tangent linear space of the active constraints at x^* .

Theorem 2 Let \mathbf{x}^* be a (local) minimizer of (NCO) and a regular point of $\{\mathbf{x}: \mathbf{h}(\mathbf{x}) = \mathbf{0}, \, c_i(\mathbf{x}) = 0, i \in \mathcal{C}^*\}$, and let $\mathbf{y}^*, \mathbf{s}^*$ denote Lagrange multipliers such that $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*)$ satisfies the (first-order) KKT conditions of (NCO). Then, it is necessary to have

$$\mathbf{z}^T \nabla_{\mathbf{x}}^2 L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) \mathbf{z} \ge 0 \qquad \forall \mathbf{z} \in T^*.$$

Sketch of Proof

The proof is based on that fact that \mathbf{x}^* is a local minimizer of (NCO) and a regular point, so that it is a local minimizer of any twice differentiable curve $\mathbf{x}(t)$ in the feasible region passing through $\mathbf{x}^* = \mathbf{x}(0)$ with $\dot{\mathbf{x}}(0) = \mathbf{z}, \ \mathbf{z} \in T^*$. Thus, the Hessian of the Lagrangian function need to be positive semidefinite on the tangent space, since the second derivative of $f(\mathbf{x}(t))$ equals $\mathbf{z}^T \nabla^2_{\mathbf{x}} L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) \mathbf{z}$ for $\mathbf{z} \in T^*$.

Second-Order Sufficient Conditions for NCO

Theorem 3 Let \mathbf{x}^* be a regular point of (NCO) and let \mathbf{y}^* , \mathbf{s}^* be the Lagrange multipliers such that $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*)$ satisfies the (first-order) KKT conditions of (NCO). Then, if in addition

$$\mathbf{z}^T \nabla_{\mathbf{x}}^2 L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) \mathbf{z} > 0 \qquad \forall \mathbf{0} \neq \mathbf{z} \in T^*,$$

then x^* is a local minimizer of (NCO).

The proof can be found in Chapter 11.8 of LY.

min
$$(x_1)^2 + (x_2)^2$$
 s.t. $-(x_1)^2/4 - (x_2)^2 + 1 \le 0$

Figure 2: FONC for Nonlinear Inequality Constrained Minimization

$$L(x_1, x_2, y) = (x_1)^2 + (x_2)^2 + y(-(x_1)^2/4 - (x_2)^2 + 1),$$

$$\nabla_x L(x_1, x_2, y) = (2x_1(1 - y/4), 2x_2(1 - y)),$$

$$\nabla_x^2 L(x_1, x_2, y) = \begin{pmatrix} 2(1 - y/4) & 0 \\ 0 & 2(1 - y) \end{pmatrix}$$

$$T(\mathbf{x}) := \{(z_1, z_2) : (x_1/4)z_1 + x_2z_2 = 0\}.$$

We see that there are two possible values for y: either 4 or 1, which lead to total four KKT points:

$$\begin{pmatrix} x_1 \\ x_2 \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \text{ and } \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}.$$

Consider the first KKT point:

$$\nabla_x^2 L(2,0,4) = \begin{pmatrix} 0 & 0 \\ 0 & -6 \end{pmatrix}, T^* = \{ (z_1, z_2) : z_1 = 0 \}$$

Then the Hessian is not positive semidefinite on T^{*} since

$$\mathbf{z}^T \nabla_x^2 L(2, 0, 4) \mathbf{z} = -6z_2^2 \le 0.$$

Consider the third KKT point:

$$\nabla_x^2 L(0,1,1) = \begin{pmatrix} 3/2 & 0 \\ 0 & 0 \end{pmatrix}, T^* = \{(z_1, z_2) : z_2 = 0\}$$

Then the Hessian is positive definite on T^* since

$$\mathbf{z}^T \nabla_x^2 L(0, 0, 1) \mathbf{z} = (3/2) z_1^2 > 0, \ \forall \mathbf{0} \neq \mathbf{z} \in T^*.$$

Test positive semidefiniteness in a subspace

In the second-order test, we typically like to know whether or not

$$\mathbf{z}^T Q \mathbf{z} \geq 0, \ \forall \mathbf{z}, \ \text{s.t.} \ A \mathbf{z} = \mathbf{0}$$

for a given symmetric matrix Q and a rectangle matrix A. (In this case, the subspace is the null space of matrix A.) This test itself might be a nonconvex optimization problem.

But it is known that \mathbf{z} is in the null space of matrix A if and only if $\mathbf{z} = (I - A^T (AA^T)^{-1}A)\mathbf{u} = P_A\mathbf{u}$ for some vector $\mathbf{u} \in R^n$, where P_A is called the projection matrix of A. Thus, the test becomes whether or not

$$\mathbf{u}^T P_A Q P_A \mathbf{u} \ge 0, \ \forall \mathbf{u} \in \mathbb{R}^n,$$

that is, we just need to test positive semidefiniteness of $P_A Q P_a$ as usual.