09. Linear Programming Formulations CPSC 535 ∼ Spring 2019

Kevin A. Wortman

November 4, 2019

Linear Programming Formulations

Many problems reduce to linear programming (LP):

- generalize standard form to be more flexible
 - allow minimization, negative variables, = constraints, > constraints
- business logic
- problems that don't resemble LP: shortest paths, max flow
- (similar situation to max-flow formulations)

Standard Form versus General Form

general form LP: a "real" LP, more flexible than standard form (last week)

Standard Form	General Form
maximize objective function	maximize or minimize obj. func.
all variables are non-negative	no restriction (may be negative)
every constraint is \leq r.h.s.	constraint may be $=$ or \geq r.h.s.

Standard Form Example

maximize
$$2x_1 + x_2 - \frac{1}{3}x_3$$
 subject to

$$x_1 + x_2 \le 10$$

 $-x_3 \le -2$
 $x_1, x_2, x_3 \ge 0$

General Form Example

minimize
$$x_1 - x_2 + \ldots + c_n x_n$$
 subject to

$$x_1 \le 100$$
 $x_2 \ge 2$
 $x_1 + x_2 = 10$
 $x_2 \ge 0$

Note

- minimizing objective function
- \blacktriangleright mix of \leq , =, \geq constraints
- ▶ not all variables have $x_i \ge 0$ non-negativity constraint (x_1 is missing)

Formulating General LP as Standard LP

- pre-processing: convert general LP to standard LP
- need to get rid of any non-standard feature
- want insignificant overhead
 - n = #variables, m = # constraints
 - ▶ space complexity of general LP is $\Theta(nm)$
 - want size of resulting standard LP, and time overhead, to both be O(nm)
- three features to deal with
 - minimization
 - negative variables
 - =, > constraints

Converting "minimize" to Standard Form

- ▶ minimize $f(x) \equiv \text{maximize } -f(x)$
- ▶ so if general LP says

minimize
$$c_1x_1 + c_2x_2 + \ldots + c_nx_n$$

replace that with

maximize
$$-c_1x_1-c_2x_2-\ldots-c_nx_n$$

- ▶ size of *LP* unchanged
- \triangleright O(n) time to negate coefficients

Converting Negative Variables to Standard Form

- ▶ if x_j does not have a non-negativity constraint $x_j \ge 0$, call x_j a negative variable
- handle each negative variable one at a time
- ▶ negative variable x_j becomes two non-negative variables x_i', x_i''

 - represent negative x_j by $x'_j = 0, x''_j$ positive
- ▶ add non-negativity constraints $x_i' \ge 0, x_i'' \ge 0$
- ightharpoonup substitute $(x_i' x_i'') = x_i$
 - ightharpoonup obj. func: $c_j x_j \Rightarrow c_j (x'_i x''_i) = c_j x'_i c_j x''_i$
 - ightharpoonup constraints: $a_{i,j}x_j \Rightarrow a_{i,j}(x_j^j x_j'') = a_{i,j}x_j'' a_{i,j}x_j''$
- ▶ after solving standard LP, to complete general LP evaluate $x_j = x'_i x''_i$
- ▶ n, m at most double \Rightarrow still $\Theta(nm)$ space
- \triangleright O(nm) time with care (do all substitutions in one pass)

Converting = Constraints to Inequalities

- ▶ this step converts any = constraint to \leq , \geq constraints
- $ightharpoonup a = b \iff a \le b \text{ and } a \ge b$
- ► replace each = constraint

$$a_{i,1}x_1 + a_{i,2}x_2 + \ldots + a_{i,n}x_n = b_n$$

with two constraints

$$a_{i,1}x_1 + a_{i,2}x_2 + \ldots + a_{i,n}x_n \ge b_n$$

 $a_{i,1}x_1 + a_{i,2}x_2 + \ldots + a_{i,n}x_n \le b_n$

- ▶ *n* unchanged, *m* at most doubles \Rightarrow still $\Theta(nm)$ space
- ► O(nm) time

Converting \geq Constraints to \leq

- $ightharpoonup a \ge b \Longleftrightarrow -a \le -b$
- ▶ replace each ≥ constraint

$$a_{i,1}x_1 + a_{i,2}x_2 + \ldots + a_{i,n}x_n \ge b_n$$

with

$$-a_{i,1}x_1 - a_{i,2}x_2 - \ldots - a_{i,n}x_n \le -b_n$$

- ▶ n, m unchanged so still $\Theta(nm)$ space
- \triangleright O(nm) time

General LP Problem

general-form linear programming problem input:

- ▶ Boolean for whether *f* is maximized/minimized
- ightharpoonup vector $c \in \mathbb{R}^n$
- ▶ vector $b \in \mathbb{R}^m$
- ▶ vector $o \in \{\leq, =, \geq\}^m$
- ightharpoonup m imes n matrix A of real numbers

output: one of

- 1. "unbounded";
- 2. "infeasible"; or
- 3. "solution" with a vector $x \in \mathbb{R}^n$ maximizing the objective function

Time Complexity

- ightharpoonup converting a general-form LP to standard-form takes $\Theta(nm)$ time
- so time to solve general LP is

O(nm + time to solve standard LP)

- ightharpoonup standard-LP solver needs to spend at least $\Omega(nm)$ time just to read in the input
- ▶ ⇒ time to solve general LP = O(time to solve standard LP)(w/ worse constant factors)
- ▶ from now on we will formulate general LPs

Formulating General LPs

Need to define

- 1. the variables, what they represent
- 2. the objective function, whether it is maximize or minimize
- 3. the constraints, what they represent
- 4. the entire LP in general form
- 5. how to interpret
 - infeasible result
 - unbounded result
 - solution result; how to interpret solution vector x in terms of business logic

- business scenario is a "word problem" that defines business-logic rules, resource limits, what needs to be optimized
- you need to figure out how to model all these in parts of an LP
 - variables
 - objective function
 - constraints
- only works when the objective is a linear function (not squared, exponential, etc.)

Suppose Orange County has the following options for disposing of plastic waste:

Method	Carbon/ton	Dollars/ton
Local incinerator	2.9	800
Overseas incinerator	3.2	600
Thermal recycling	.5	1200
Landfill	.3	1400

December is expected to produce 700 tons of plastic and is required by law to emit no more than 1400 tons of carbon. The landfill can accommodate up to 100 tons per month and the other methods are effectively unlimited. The County Supervisors want you to minimize the cost of plastic disposal.

1. **Variables:** create a variable to represent how much of each method to use,

 $I \equiv \text{tons incinerated locally}$

 $O \equiv \text{tons incinerated overseas}$

 $R \equiv \text{tons recycled}$

 $L \equiv \text{tons sent to landfill}$

2. Objective function:

"County Supervisors want you to minimize the cost"

minimize 800I + 600O + 1200R + 1400L

3. Constraints:

- re-read the word problem and pick out rules
- "produce 700 tons of plastic":

$$I + O + R + L = 700$$

"no more than 1400 tons of carbon":

$$2.9I + 3.2O + .5R + .3L \le 1400$$

"landfill can accommodate up to 100 tons":

$$L \leq 100$$

 also, use critical thinking, common sense to model implicit rules

4. general-form LP:

maximize
$$800I + 600O + 1200R + 1400L$$
 subject to

$$\begin{array}{rcl} I + O + R + L & = & 700 \\ 2.9I + 3.2O + .5R + .3L & \leq & 1400 \\ L & \leq & 100 \\ I, O, R, L & \geq & 0 \end{array}$$

5. Interpret results:

- infeasible: never happens because there exists at least one feasible solution, I = O = R = L = 0
- ▶ unbounded: never happens because the $2.9I + 3.2O + .5R + .3L \le 1400$ constraint upper-bounds the objective function
- Solution: Tell the Supervisors to incinerate I tons locally, incinerate O tons overseas, recycle R tons, and landfill L tons.

Single-Source Shortest Paths

single-source single-sink shortest paths (1S1SSP) problem input: weighted undirected graph G = (V, E), source vertex $s \in V$, sink vertex $t \in V$ output: the shortest path $s \rightsquigarrow t$ in G

- ▶ Bellman-Ford algorithm solves this in $\Theta(|V| \cdot |E|)$ time
- ▶ when every weight $w(e) \ge 0$, Dijkstra's algorithm solves this in $\Theta(|E| + |V| \log |V|)$ time

Formulating Single-Source Shortest Paths

1. Variables: for each vertex $v \in V$, create an LP variable

 $d_v \equiv$ total weight of shortest path $s \rightsquigarrow v$ in G

- 2. **Objective function:** hold that thought
- 3. Constraints:
 - Recall that in Bellman-Ford and Dijkstra, we compute

$$d_{v} = \min_{x \in V, \{x,v\} \in E} d_{x} + w(x,v)$$

▶ LP can't express "min" but we can say $d_v \le$ every candidate:

$$d_v \le d_x + w(\lbrace x, v \rbrace) \qquad \forall x \in V, \lbrace x, v \rbrace \in E$$

 $d_s = 0$ because it is the source

Formulating Single-Source Shortest Paths

- 2. **Objective function:** for sink t, maximize d_t
 - not minimize d_t
 - ▶ that would allow LP to just set every $d_v = 0$; no notion of edges adding to path weights
 - maximizing d_t forces LP to set each d_v to the $d_x + w(\{x, v\})$ that is the minimum
 - now, when you use an edge, you add its weight
- 4. **General-form LP:** given G = (V, E), source s, sink t create variable $d_v \ \forall v \in V$ maximize d_t subject to

$$d_v \le d_x + w(x, v) \quad \forall \{x, v\} \in E$$

 $d_s = 0$

4. Interpreting result:

- infeasible: never happens because setting every $d_v = 0$ is always feasible
- unbounded: $d_t = \infty$ means that t is unreachable from s
- solution:
 - ▶ need to identify path (list of vertices) $s \rightsquigarrow t$
 - \triangleright i.e. identify edges definining the shortest path and d_t
 - find the constraints where

$$d_{v} = d_{x} + w(x, v)$$

(not \leq); these vertices x, v are part of the shortest path

maximum flow problem

input: a flow network G = (V, E)output: a flow f of maximum value |f|

- ▶ source $s \in V$, sink $t \in V$
- ightharpoonup c(u,v) is capacity, f(u,v) is flow rate of conn. vertices u,v
- **capacity constraint:** $0 \le f(u, v) \le c(u, v)$
- ▶ flow conservation: $\forall u \in V \{s, t\},\$

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$$

▶ value |f| is net flow into sink:

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

1. Variables: for each directed edge $(u, v) \in E$, create variable

$$f_{u,v} \equiv \text{flow from } u \text{ to } v$$

- 2. Objective function:
 - ▶ want to maximize |f|
 - so maximize

$$\sum_{v \in V} f_{s,v} - \sum_{v,s} f_{v,s}$$

3. Constraints:

- still need to model the capacity constraint and flow conservation rules of max-flow
- capacity constraints:

$$f_{u,v} \ge 0$$
 $\forall u, v \in V$ $f_{u,v} \le c(u,v)$ $\forall (u,v) \in E$

flow conservation:

$$\sum_{v \in V} f_{v,u} - \sum_{v \in V} f_{u,v} = 0 \qquad \forall u \in V - \{s,t\}$$

4. **General-form LP:** given flow network G = (V, E), source s, sink t

create variables $f_{u,v}$ $\forall u,v \in V$

maximize $\sum_{v \in V} f_{s,v} - \sum_{v,s} f_{v,s}$ subject to

$$f_{u,v} \geq 0 \quad \forall u, v \in V$$

$$f_{u,v} \leq c(u,v) \quad \forall (u,v) \in E$$

$$\sum_{v \in V} f_{v,u} - \sum_{v \in V} f_{u,v} = 0 \quad \forall u \in V - \{s,t\}$$

5. Interpreting result:

- infeasible: never happens because setting each $f_{u,v} = 0$ is a feasible solution
- unbounded: never happens because the objective function is

$$\sum_{v \in V} f_{s,v} - \sum_{v,s} f_{v,s},$$

every $f_{s,v} \leq c(s,v)$ which is finite, and every $f_{v,s} \geq 0$

solution: define flow function

$$f(u,v) = \begin{cases} f_{u,v} & (u,v) \in E \\ 0 & (u,v) \notin E \end{cases}$$