Лабораторная работа № 6

Ансамбли моделей машинного обучения

Цель лабораторной работы: изучение ансамблей моделей машинного обучения.

Выполнил: Ханмурзин Тагир ИУ5-64

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите 1) одну из линейных моделей, 2) SVM и 3) дерево решений. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.
- In [3]: import numpy as np
 import pandas as pd
 from scipy import stats
 from sklearn.datasets import load_iris
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.model_selection import train_test_split, GridSearchCV
 from sklearn.preprocessing import *
 from sklearn.metrics import *
 from sklearn.linear_model import LinearRegression
 from sklearn.svm import SVR
 from sklearn.tree import DecisionTreeRegressor

 from sklearn.ensemble import BaggingRegressor, RandomForestRegressor

 %matplotlib inline

 import warnings
- In [4]: warnings.filterwarnings('ignore') # Отключаем предупреждения
- In [5]: df = load_iris()
 df = pd.DataFrame(data = np.c_[df['data'], df['target']], columns = df['feature_names'] + ['target'])
 df.head()
- Out[5]

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0

- In [9]: def statistics(test_Y, target):
 print("Средняя абсолютная ошибка:", mean_absolute_error(test_Y, target)) # Средняя абсолютная ошибка
 print("Средняя квадратичная ошибка:", mean_squared_error(test_Y, target)) # Средняя квадратичная ошибка
 print("Медианная абсолютная ошибка:", median_absolute_error(test_Y, target)) # Медианная абсолютная ошибка
- In [10]: base = LinearRegression()
 BR = BaggingRegressor(base_estimator = base)
 BR.fit(x_train, y_train)

 statistics(BR.predict(x_test), y_test)

Средняя абсолютная ошибка: 0.1880277790373699 Средняя квадратичная ошибка: 0.060225661096369947 Медианная абсолютная ошибка: 0.1662247532435397

> Средняя абсолютная ошибка: 0.05848531854497004 Средняя квадратичная ошибка: 0.032420871679692743 Медианная абсолютная ошибка: 0.0047994077994077955

In [12]: base = LinearRegression()
BR = BaggingRegressor(base_estimator = base)
BR_GV = GridSearchCV(BR, {'n_jobs':range(1,10)}, cv=3).fit(x_train, y_train).best_estimator_
statistics(BR_GV.predict(x_test), y_test)

Средняя абсолютная ошибка: 0.19000054190673615 Средняя квадратичная ошибка: 0.061001174521747116 Медианная абсолютная ошибка: 0.16024763196024516