A41 - Supponendo che la rete trifase mostrata in figura sia alimentata da una terna simmetrica diretta, determinare le correnti $i_1(t)$, $i_2(t)$ ed $i_3(t)$.

Dati: $v_{12}(t) = V_0 \cos(-t + -/4), \quad V_0 = 12 \sqrt[4]{6} \ V, = 300 \ rad/s, \quad R = 3$, $L = 30 \ mH.$

Risposta: le tre correnti di linea valgono

$$i_1(t) = 4 \cos\left(-t - \frac{5}{6}\right), \quad i_2(t) = 4 \cos\left(-t - \frac{5}{6}\right), \quad i_3(t) = -4 \sin(-t).$$

A42 - Supponendo che la rete trifase mostrata in figura sia alimentata da una terna simmetrica diretta, calcolare le correnti $\bar{I}_1, \ \bar{I}_2 \ \text{ed} \ \bar{I}_3.$

Dati:
$$\overline{V}_{12} = 200 \sqrt{3} V$$
, $R = 5$, $X_L = 2$, $X_C = 6$.

Risposta: le tre correnti valgono

$$\bar{I}_1 = \left[40, -\frac{1}{6}\right], \quad \bar{I}_2 = \left[40, -\frac{5}{6}\right], \quad \bar{I}_3 = 40 \text{ j}.$$

A43 - Calcolare l'indicazione fornita dal wattmetro, nella rete trifase simmetrica ed equilibrata mostrata in figura.

Dati:
$$i_2(t) = I_0 \sqrt{2} \text{ sen}(t)$$
, $I_0 = 20 \text{ A}$, $I_0 = 100 \text{ rad/s}$, $I_0 = 100$

Risposta:

indicazione del wattmetro = $-40\sqrt{3}$ W.

A44 - Supponendo di alimentare la rete trifase di figura con una terna simmetrica diretta di tensioni, determinare le tre correnti di linea.

Dati:
$$\overline{V}_{12} = 220 \sqrt{3} \text{ V}$$
, $P_M = 1.5 \text{ kW}$, $Q_M = 1.5 \text{ kVAr}$, $R = X_L = 10$.

Risposta: le correnti risultano pari a

$$\bar{I}_1 = \begin{bmatrix} \frac{146}{11} \sqrt{2} & -\frac{5}{12} \end{bmatrix}, \quad \bar{I}_2 = \begin{bmatrix} \frac{146}{11} \sqrt{2} & \frac{11}{12} \end{bmatrix}, \quad \bar{I}_3 = \begin{bmatrix} \frac{146}{11} \sqrt{2} & \frac{1}{4} \end{bmatrix}.$$

 ${\bf A45}$ - Calcolare la tensione concatenata $v_{12}(t)$ per la rete trifase simmetrica ed equilibrata mostrata in figura.

Dati:
$$v(t) = V_0 \text{ sen}(t-73), V_0 = 330 \sqrt{2} V, R_1 = X_L = 5, R_2 = X_C = 15$$

Risposta: la tensione richiesta vale

$$v_{12}(t) = 660 \text{ sen} \left(t + \frac{1}{6} \right).$$

A46 - Supponendo di alimentare la rete trifase di figura con una terna simmetrica diretta di tensioni, dopo aver calcolato le tre correnti di linea \bar{I}_k , con k=1,2,3, determinare l'indicazione del wattmetro.

Dati:
$$\overline{V}_{12} = 220 \ \sqrt{3} \ V$$
, $\dot{Z}_1 = 10 \ (1+j)$, $\dot{Z}_3 = 5 \ (1+j)$.

Risposta: il wattmetro fornisce l'indicazione 9680 $\sqrt{3}$ W.

A47 - Supponendo che le tensioni $e_1(t)$, $e_2(t)$, $e_3(t)$ costituiscano una terna simmetrica diretta, calcolare le tre correnti di linea $j_1(t)$, $j_2(t)$ e $j_3(t)$. Le potenze che definiscono il carico C, composto di soli resistori e condensatori, si intendono valutate alla frequenza di esercizio imposta dai generatori.

[Attenzione: si tratta di un esercizio veramente complicato in cui è necessario applicare la sovrapposizione degli effetti. Il generatore 'E' eroga una tensione continua, non alternata].

$$\begin{array}{lll} \mbox{Dati:} & E=50\ \mbox{V}, & e_1(t)=E_0\ \sqrt{2}\ \mbox{sen}(&t), & E_0=200\ \mbox{V}, & =1\ \mbox{krad/s}, & R=2 & , \\ L=1\ \mbox{mH}, & C=1\ \mbox{mF}, & P_C=12\ \mbox{kW}, & Q_C=-9\ \mbox{kVAr}. & \end{array}$$

Risposta:

in cui, per semplificare la notazione, abbiamo posto

$$_1 = \arctan \frac{3}{4}$$
 e $_2 = \arctan \left(4 + \sqrt{3}\right)$.

 $\mathbf{A48}$ - La rete di figura è alimentata da una terna simmetrica di tensioni concatenate. Determinare la corrente $i_2(t)$ che circola nella seconda linea.

Dati: $v_{12}(t) = V_0 \cos(-t)$, $V_0 = 200 \, \sqrt{6} \, V$, $= 500 \, rad/s$, $J = 10 \, A$, R = 5 , $L = 1 \, mH$, $C = 4 \, mF$.

Risposta: la corrente richiesta vale

$$i_2(t) = -10 + 40 \sqrt{2} \cos \left(500t - \frac{5}{6} \right).$$

A49 - Determinare la corrente i(t) per la rete trifase mostrata in figura, supponendo di alimentare la rete con un terna di tensioni simmetriche.

[Potreste anche provare ad applicare il teorema di Thévenin dai terminali F e G].

Dati: $v_{12}(t) = E_0 \sqrt{6}$ sen($t + \sqrt{6}$), $E_0 = 220$ V, = 1 krad/s, R = 2 , L = 1 mH, C = 1 mF.

Risposta: la corrente richiesta è pari a

$$i(t) = \frac{165}{2} \sqrt{2} (2 \sqrt{3} - 1) sen(1000t + \frac{1}{3}).$$

A50 - Supponendo che la rete trifase sia alimentata da una terna simmetrica diretta di tensioni concatenate, rifasare il sistema a cos = 0.9.

Dati:
$$R = X_L = 5$$
 , $V_{12} = V_0 = 380$ V, $f = 50$ Hz.

Risposta:

- » carico trifase e condensatori connessi a stella C_S 164.22 μF ;
- » carico trifase e condensatori connessi a triangolo C_T 54.7 μF .

Appendici

• Una piccola tavola di integrali

La maggior parte degli integrali proposti possono essere ottenuti integrando per parti oppure adoperando identità trigonometriche e sono, a nostro giudizio, quelli più frequenti nelle applicazioni. Ciascun integrale, come è ovvio, è dato a meno di una costante additiva.

$$\int x \exp(ax) dx = \frac{ax - 1}{a^2} \exp(ax) \qquad \int x^2 \exp(ax) dx = \frac{(ax)^2 - 2ax + 2}{a^3} \exp(ax)$$

$$\int x \sin(ax) dx = \frac{\sin(ax) - ax \cos(ax)}{a^2} \qquad \int x \cos(ax) dx = \frac{\cos(ax) + ax \sin(ax)}{a^2}$$

$$\int \exp(ax) \sin(bx) dx = \frac{a \sin(bx) - b \cos(bx)}{a^2 + b^2} \exp(ax)$$

$$\int \exp(ax) \cos(bx) dx = \frac{a \cos(bx) + b \sin(bx)}{a^2 + b^2} \exp(ax)$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}$$

$$\int \sin(ax) \sin(bx) dx = \frac{\sin[(a - b) x]}{2 (a - b)} - \frac{\sin[(a + b) x]}{2 (a + b)} \qquad [a^2 \quad b^2]$$

$$\int \cos(ax) \cos(bx) dx = \frac{\sin[(a - b) x]}{2 (a - b)} - \frac{\cos[(a + b) x]}{2 (a + b)} \qquad [a^2 \quad b^2]$$

$$\int \sin(ax) \cos(bx) dx = -\frac{\cos[(a - b) x]}{2 (a - b)} - \frac{\cos[(a + b) x]}{2 (a + b)} \qquad [a^2 \quad b^2]$$

$$\int \sin^{2}(ax) dx = \frac{x}{2} - \frac{\sin(2ax)}{4a} \qquad \int \cos^{2}(ax) dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$$

$$\int x^{2} \sin(ax) dx = \frac{2x}{a^{2}} \sin(ax) - \frac{a^{2} x^{2} - 2}{a^{3}} \cos(ax)$$

$$\int x^{2} \cos(ax) dx = \frac{2x}{a^{2}} \cos(ax) + \frac{a^{2} x^{2} - 2}{a^{3}} \sin(ax)$$

$$\int \exp(ax) \sin^{2}(bx) dx = \frac{\left[a \sin(bx) - 2 b \cos(bx)\right] \sin(bx) + \frac{2 b^{2}}{a}}{a^{2} + 4 b^{2}} \exp(ax)$$

$$\int \exp(ax) \cos^{2}(bx) dx = \frac{\left[a \cos(bx) + 2 b \sin(bx)\right] \cos(bx) + \frac{2 b^{2}}{a}}{a^{2} + 4 b^{2}} \exp(ax)$$

Qualche utile relazione trigonometrica

Presentiamo qui qualche utile relazione trigonometrica che potete adoperare sia per il calcolo di alcune primitive, sia per i calcoli di potenza che coinvolgono grandezze sinusoidali.

$$sen(a + b) = sen a cos b + cos a sen b$$

$$sen(a - b) = sen a cos b - cos a sen b$$

$$cos(a + b) = cos a cos b - sen a sen b$$

$$cos(a - b) = cos a cos b + sen a sen b$$

$$sen a + sen b = 2 sen \frac{a + b}{2} cos \frac{a - b}{2}$$

$$sen a - sen b = 2 sen \frac{a - b}{2} cos \frac{a + b}{2}$$

$$cos a - cos b = -2 sen \frac{a + b}{2} sen \frac{a - b}{2}$$

$$2 sen a sen b = cos(a - b) - cos(a + b)$$

$$2 cos a cos b = cos(a - b) + cos(a + b)$$

$$2 sen a cos b = sen(a + b) + sen(a - b)$$

$$sen(2a) = 2 sen a cos a$$

$$cos(2a) = cos^2 a - sen^2 a = 2 cos^2 a - 1 = 1 - 2 sen^2 a$$

$$\cos^{2} a = \frac{1}{2} + \frac{1}{2}\cos(2a) \qquad \qquad \sin^{2} a = \frac{1}{2} - \frac{1}{2}\cos(2a)$$

$$\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \qquad \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \qquad \tan(2a) = \frac{2 tg \ a}{1 - tg^{2} \ a}$$

• Piccolo dizionario tecnico

Proponiamo la traduzione inglese di alcune parole che possono essere utili a chi fra voi continuerà gli studi in una facoltà tecnica e si accinge a leggere un libro di Elettrotecnica o di Teoria dei Circuiti, appartenenti alla letteratura tecnica e scientifica inglese oppure americana.

Circuito	Circuit
Albero	Tree
Carico	Load
Corrente	Current
Tensione	Voltage
Corrente continua	Direct current (DC)
Generatore	Source
Dipendente	Dependent
Legge	Law
Maglia	Mesh (Loop)
Percorso chiuso	Closed path
Nodo	Node
Lato (ramo)	Branch
Resistenza	Resistance
Resistore	Resistor
Energia	Energy
Potenza	Power
Induttore	Inductor
Induttanza	Inductance
Condensatore	Capacitor
Capacità	Capacitance

Fasore	Phasor
Sorgente sinusoidale	Sinusoidal source
Angolo di fase (fase)	Phase angle (Phase)
Valore massimo	Amplitude
Valore medio	Average value
Valore efficace	Root mean square (r.m.s.) value
Potenza media	Average power
Potenza reattiva	Reactive power
Fattore di potenza	Power factor
Potenza complessa	Complex power
Triangolo - stella	Delta - Wye (- Y)
Trifase equilibrato	Balanced three-phase
Wattmetro	Wattmeter
Trasformatore lineare	Linear transformer
Mutua induttanza	Mutual inductance
Variabile di stato	State variable
Attenuato	Damped
Costante di tempo	Time constant
Risposta all'impulso	Pulse response
Gradino unitario	Unit step function
Transitorio	Transient
Interruttore	Switch
Evoluzione libera	Natural response
Risposta forzata	Forced response
Potenza istantanea	Instantaneous power
Radice caratteristica	Characteristic root
Segnale elettrico	Electric signal
Soluzione esponenziale	Exponential solution
Istante iniziale	Initial time
Trasformata	Transform
Frazione parziale	Partial fraction

Radice (zero)	Root (zero)
Polo	Pole
Valore iniziale	Initial value
Valore finale	Final value
Funzione di trasferimento	Transfer function
Integrale di convoluzione	Convolution integral
Sorgente impulsiva	Pulse source
Tempo - invariante	Time - invariant
Soluzione esponenziale	Exponential solution
Istante iniziale	Initial (start) time