Geometric SMOTENC

A geometrically enhanced drop-in replacement for SMOTENC

Joao Fonseca^{1*}, Georgios Douzas¹, Fernando Bacao¹
¹NOVA Information Management School, Universidade Nova de Lisboa
*Corresponding Author

Postal Address: NOVA Information Management School, Campus de Campolide, 1070–312 Lisboa, Portugal Telephone: +351 21 382 8610

This is an abstract.

1. Introduction

This is text [1].

Table 1: Description of the datasets collected after data preprocessing. The sampling strategy is similar across datasets. Legend: (IR) Imbalance Ratio

Dataset	Metric	Non-Metric	Obs.	Min. Obs.	Maj. Obs.	IR	Classes
Abalone	1	7	4139	15	689	45.93	18
Adult	8	6	5000	1268	3732	2.94	2
Adult (10)	8	6	5000	451	4549	10.09	2
Annealing	4	6	790	34	608	17.88	4
Census	24	7	5000	337	4663	13.84	2
Contraceptive	4	5	1473	333	629	1.89	3
Contraceptive (10)	4	5	1036	62	629	10.15	3
Contraceptive (20)	4	5	990	31	629	20.29	3
Contraceptive (31)	4	5	973	20	629	31.45	3
Contraceptive (41)	4	5	966	15	629	41.93	3
Covertype	2	10	5000	20	2449	122.45	7
Credit Approval	9	6	653	296	357	1.21	2
German Credit	13	7	1000	300	700	2.33	2
German Credit (10)	13	7	770	70	700	10.00	2
German Credit (20)	13	7	735	35	700	20.00	2
German Credit (30)	13	7	723	23	700	30.43	2
German Credit (41)	13	7	717	17	700	41.18	2
Heart Disease	5	5	740	22	357	16.23	5
Heart Disease (21)	5	5	735	17	357	21.00	5
Thyroid	22	6	5000	1376	3624	2.63	2

Table 1: Description of the datasets collected after data preprocessing. The sampling strategy is similar across datasets. Legend: (IR) Imbalance Ratio

Dataset	Metric	Non-Metric	Obs.	Min. Obs.	Maj. Obs.	IR	Classes
Thyroid (10)	22	6	4584	416	4168	10.02	2
Thyroid (20)	22	6	4376	208	4168	20.04	2
Thyroid (30)	22	6	4306	138	4168	30.20	2
Thyroid (40)	22	6	4272	104	4168	40.08	2
Thyroid (50)	22	6	4251	83	4168	50.22	2
Thyroid (60)	22	6	4237	69	4168	60.41	2
Thyroid (70)	22	6	4227	59	4168	70.64	2
Thyroid (80)	22	6	4220	52	4168	80.15	2
Thyroid (90)	22	6	4214	46	4168	90.61	2
Thyroid (101)	22	6	4209	41	4168	101.66	2

Table 2: Mean rankings over the different datasets, folds and runs used in the experiment.

Classifier	Metric	G-SMOTE	NONE	ROS	RUS	SMOTENC
DT	OA	1.90 ± 0.17	$\textbf{1.50}\pm\textbf{0.38}$	4.10 ± 0.17	4.20 ± 0.31	3.30 ± 0.28
DT	F-Score	$\textbf{1.20}\pm\textbf{0.13}$	3.20 ± 0.49	3.80 ± 0.24	4.20 ± 0.31	2.60 ± 0.21
DT	G-Mean	$\textbf{1.30}\pm\textbf{0.20}$	4.90 ± 0.09	3.10 ± 0.22	3.40 ± 0.35	2.30 ± 0.25
KNN	OA	2.35 ± 0.17	$\textbf{1.60}\pm\textbf{0.40}$	3.05 ± 0.40	4.50 ± 0.29	3.50 ± 0.25
KNN	F-Score	$\boldsymbol{1.60\pm0.25}$	3.50 ± 0.38	2.90 ± 0.43	4.40 ± 0.29	2.60 ± 0.29
KNN	G-Mean	$\textbf{1.70}\pm\textbf{0.25}$	4.80 ± 0.19	2.90 ± 0.41	2.90 ± 0.43	2.70 ± 0.20
LR	OA	2.40 ± 0.22	$\textbf{1.60}\pm\textbf{0.40}$	3.25 ± 0.36	4.50 ± 0.29	3.25 ± 0.31
LR	F-Score	$\textbf{2.10}\pm\textbf{0.33}$	4.00 ± 0.40	2.40 ± 0.40	3.80 ± 0.37	2.70 ± 0.38
LR	G-Mean	$\boldsymbol{1.75\pm0.28}$	5.00 ± 0.00	2.20 ± 0.24	2.90 ± 0.43	3.15 ± 0.22
RF	OA	1.80 ± 0.13	$\textbf{1.60}\pm\textbf{0.38}$	3.55 ± 0.30	4.85 ± 0.10	3.20 ± 0.13
RF	F-Score	$\textbf{1.50}\pm\textbf{0.21}$	4.00 ± 0.42	2.50 ± 0.38	4.20 ± 0.19	2.80 ± 0.31
RF	G-Mean	$\boldsymbol{1.70\pm0.32}$	4.70 ± 0.28	2.20 ± 0.39	3.50 ± 0.25	2.90 ± 0.22

References

[1] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Oversampling Technique," *Journal of Artificial Intelligence Research*, vol. 16, pp. 321–357, jun 2002.

A. Appendix

Table 3: Wide optimal results

Dataset	Classifier	Metric	G-SMOTE	NONE	ROS	RUS	SMOTENC
Abalone	DT	OA	0.221	0.256	0.203	0.207	0.190
Abalone	DT	F-Score	0.168	0.170	0.154	0.132	0.156
Abalone	DT	G-Mean	0.460	0.413	0.457	0.421	0.445

Table 3: Wide optimal results

			wide optima				
Dataset	Classifier	Metric	G-SMOTE	NONE	ROS	RUS	SMOTENC
Abalone	KNN	OA	0.215	0.237	0.197	0.188	0.186
Abalone	KNN	F-Score	$\boldsymbol{0.167}$	0.157	0.151	0.140	0.150
Abalone	KNN	G-Mean	0.429	0.391	0.397	0.421	0.409
Abalone	LR	OA	0.235	0.272	0.229	0.195	0.228
Abalone	LR	F-Score	0.189	0.180	0.179	0.166	0.186
Abalone	LR	G-Mean	0.473	0.415	0.456	0.441	0.466
Abalone	RF	OA	0.237	0.276	0.224	0.197	0.221
Abalone	RF	F-Score	0.194	0.174	0.184	0.162	0.180
Abalone	RF	G-Mean	0.486	0.416	0.465	0.448	0.461
Adult	DT	OA	0.830	0.835	0.800	0.785	0.785
Adult	DT	F-Score	0.767	0.763	0.755	0.744	0.754
Adult	DT	G-Mean	0.809	0.747	0.806	0.801	0.808
Adult	KNN	OA	0.786	0.805	0.763	0.761	0.781
Adult	KNN	F-Score	0.738	0.732	0.718	0.728	0.735
Adult	KNN	G-Mean	0.766	0.724	0.757	0.780	0.762
Adult	LR	OA	0.803	0.839	0.804	0.801	0.803
Adult	LR	F-Score	0.768	0.773	0.771	0.769	0.767
Adult	LR	G-Mean	0.813	0.758	0.815	0.815	0.805
Adult	RF	OA	0.820	0.832	0.755	0.753	0.757
Adult	RF	F-Score	0.769	0.739	0.729	0.728	0.727
Adult	RF	G-Mean	0.796	0.711	0.797	0.797	0.787
Annealing	DT	OA	0.828	0.843	0.742	0.676	0.742
Annealing	DT	F-Score	0.741	0.643	0.731	0.665	0.732
Annealing	DT	G-Mean	0.915	0.738	0.905	0.874	0.909
Annealing	KNN	OA	0.849	0.848	0.856	0.477	0.829
Annealing	KNN	F-Score	0.778	0.726	0.785	0.453	0.747
Annealing	KNN	G-Mean	0.899	0.783	0.909	0.797	0.867
Annealing	LR	OA	0.576	0.814	0.570	0.489	0.573
Annealing	LR	F-Score	0.618	0.540	0.623	0.481	0.617
Annealing	LR	G-Mean	0.850	0.663	0.848	0.810	0.843
Annealing	RF	OA	0.870	0.868	0.716	0.633	0.737
Annealing	RF	F-Score	0.796	0.644	0.723	0.637	0.732
Annealing	RF	G-Mean	0.914	0.727	0.906	0.881	0.906
Census	DT	OA	0.942	0.943	0.844	0.795	0.894
Census	DT	F-Score	0.733	0.731	0.652	0.617	0.693
Census	DT	G-Mean	0.813	0.698	0.814	0.817	0.800
Census	KNN	OA	0.874	0.933	0.878	0.731	0.867
Census	KNN	F-Score	0.652	0.648	0.640	0.567	$\boldsymbol{0.655}$
Census	KNN	G-Mean	0.767	0.620	0.733	0.794	0.768
Census	LR	OA	0.940	0.949	0.940	0.815	0.938
Census	LR	F-Score	0.760	0.743	0.762	0.639	0.760
Census	LR	G-Mean	0.807	0.707	0.801	0.837	0.782
Census	RF	OA	0.876	0.933	0.740	0.714	0.819
Census	RF	F-Score	$\boldsymbol{0.679}$	0.483	0.580	0.562	0.636
Census	RF	G-Mean	$\boldsymbol{0.827}$	0.500	0.822	0.814	0.818
Contraceptive	DT	OA	0.563	0.538	0.512	0.525	0.537
Contraceptive	DT	F-Score	0.549	0.518	0.507	0.520	0.529
Contraceptive	DT	G-Mean	0.661	0.630	0.630	0.641	0.646

Table 3: Wide optimal results

		Table 0.	wide optimal	· ICDUITOD			
Dataset	Classifier	Metric	G-SMOTE	NONE	ROS	RUS	SMOTENC
Contraceptive	KNN	OA	0.465	0.478	0.435	0.468	0.455
Contraceptive	KNN	F-Score	0.460	0.462	0.432	0.461	0.450
Contraceptive	KNN	G-Mean	0.588	0.580	0.566	0.590	0.579
Contraceptive	LR	OA	0.515	0.514	0.510	0.510	0.514
Contraceptive	LR	F-Score	0.512	0.492	0.505	0.506	0.509
Contraceptive	LR	G-Mean	0.635	0.604	0.628	0.627	0.631
Contraceptive	RF	OA	0.553	0.557	0.534	0.526	0.540
Contraceptive	RF	F-Score	0.545	0.524	0.529	0.522	0.535
Contraceptive	RF	G-Mean	0.659	0.634	0.649	0.643	0.653
Covertype	DT	OA	0.580	0.705	0.567	0.450	0.587
Covertype	DT	F-Score	0.484	0.490	0.475	0.361	0.481
Covertype	DT	G-Mean	0.769	0.671	0.758	0.700	0.758
Covertype	KNN	OA	0.690	0.700	0.699	0.454	0.683
Covertype	KNN	F-Score	0.532	0.457	0.561	0.367	0.535
Covertype	KNN	G-Mean	0.745	0.642	0.763	0.691	0.753
Covertype	LR	OA	0.637	0.721	0.611	0.472	0.640
Covertype	LR	F-Score	0.516	0.507	0.492	0.353	0.526
Covertype	LR	G-Mean	0.792	0.678	0.790	0.697	0.786
Covertype	RF	OA	0.598	0.704	0.587	0.485	0.583
Covertype	RF	F-Score	0.517	0.360	0.519	0.394	0.507
Covertype	RF	G-Mean	0.800	0.572	0.804	0.737	0.799
Credit Approval	$\overline{\mathrm{DT}}$	OA	0.867	0.847	0.861	0.865	0.862
Credit Approval	$\overline{\mathrm{DT}}$	F-Score	0.867	0.845	0.861	0.865	0.862
Credit Approval	$\overline{\mathrm{DT}}$	G-Mean	0.874	0.848	0.867	0.872	0.869
Credit Approval	KNN	OA	0.870	0.865	0.870	0.865	0.868
Credit Approval	KNN	F-Score	0.869	0.864	0.869	0.864	0.867
Credit Approval	KNN	G-Mean	0.871	0.865	0.871	0.866	0.868
Credit Approval	LR	OA	0.873	0.868	0.874	0.873	0.871
Credit Approval	LR	F-Score	0.873	0.868	0.874	0.873	0.871
Credit Approval	LR	G-Mean	0.877	0.873	0.879	0.878	0.877
Credit Approval	RF	OA	0.876	0.877	0.868	0.868	0.871
Credit Approval	$\overline{\mathrm{RF}}$	F-Score	0.876	0.877	0.868	0.868	0.871
Credit Approval	RF	G-Mean	0.879	0.879	0.872	0.873	0.876
German Credit	$\overline{\mathrm{DT}}$	OA	0.704	0.713	0.660	0.644	0.702
German Credit	$\overline{\mathrm{DT}}$	F-Score	0.662	0.608	0.633	0.623	0.654
German Credit	$\overline{\mathrm{DT}}$	G-Mean	0.681	0.608	0.663	0.660	0.667
German Credit	KNN	OA	0.681	0.718	0.670	0.641	0.682
German Credit	KNN	F-Score	$\boldsymbol{0.653}$	0.628	0.636	0.616	0.650
German Credit	KNN	G-Mean	$\boldsymbol{0.675}$	0.621	0.656	0.642	0.668
German Credit	LR	OA	0.727	0.751	0.724	0.712	0.729
German Credit	LR	F-Score	0.695	0.681	0.697	0.686	0.697
German Credit	LR	G-Mean	0.722	0.672	0.720	0.713	0.713
German Credit	RF	OA	0.760	0.741	0.737	0.700	0.739
German Credit	RF	F-Score	0.701	0.580	0.709	0.680	0.702
German Credit	RF	G-Mean	0.715	0.588	0.730	0.719	0.716
Heart Disease	$\overline{\mathrm{DT}}$	OA	0.532	0.566	0.473	0.430	0.509
Heart Disease	$\overline{\mathrm{DT}}$	F-Score	0.371	0.322	0.331	0.295	0.342
Heart Disease	$\overline{\mathrm{DT}}$	G-Mean	0.588	0.534	0.545	0.515	0.563
		J. 2.10011					on next page

Table 3: Wide optimal results

Dataset	Classifier	Metric	G-SMOTE	NONE	ROS	RUS	SMOTENC
Heart Disease	KNN	OA	0.538	0.564	0.534	0.504	0.535
Heart Disease	KNN	F-Score	0.363	0.287	0.352	0.341	0.360
Heart Disease	KNN	G-Mean	0.571	0.509	0.560	0.557	0.571
Heart Disease	LR	OA	0.558	0.584	0.536	0.480	0.557
Heart Disease	LR	F-Score	0.397	0.329	0.374	0.333	0.395
Heart Disease	LR	G-Mean	0.601	0.539	0.603	0.567	0.601
Heart Disease	RF	OA	0.553	0.601	0.539	0.480	0.546
Heart Disease	RF	F-Score	0.385	0.314	0.360	0.326	0.366
Heart Disease	RF	G-Mean	0.600	0.531	0.569	0.566	0.580
Thyroid	DT	OA	0.952	0.953	0.946	0.948	0.952
Thyroid	DT	F-Score	0.942	0.941	0.935	0.936	0.941
Thyroid	DT	G-Mean	0.953	0.940	0.948	0.950	0.955
Thyroid	KNN	OA	0.836	0.840	0.830	0.810	0.831
Thyroid	KNN	F-Score	0.791	0.778	0.790	0.769	0.785
Thyroid	KNN	G-Mean	$\boldsymbol{0.795}$	0.755	0.794	0.776	0.781
Thyroid	$_{ m LR}$	OA	0.776	0.818	0.775	0.775	0.771
Thyroid	$_{ m LR}$	F-Score	0.733	0.721	0.732	0.733	0.728
Thyroid	$_{ m LR}$	G-Mean	0.748	0.693	0.747	0.749	0.742
Thyroid	RF	OA	0.942	0.925	0.944	0.939	0.939
Thyroid	RF	F-Score	0.928	0.902	0.931	0.925	0.925
Thyroid	RF	G-Mean	0.936	0.886	0.938	0.934	0.932