STAT 528 - Advanced Regression Analysis II

Exponential family theory (part 3)

Daniel J. Eck Department of Statistics University of Illinois

Last time

- mean value parameters
- maximum likelihood estimation (MLE)
- asymptotics of MLE
- ▶ finite sample concentration of MLE

Learning Objectives Today

- generalized linear models (GLMs)
- different parameterizations
- motivation of logistic regression
- inference

Canonical linear submodels: intro to GLMs

We now motivate generalized linear models (GLMs) within the context of exponential theory.

A canonical affine submodel of an exponential family is a submodel having parameterization

$$\theta = a + M\beta$$

where:

- $m{\theta} \in \mathbb{R}^n$ is the canonical parameter vector
- lacktriangleright $eta \in \mathbb{R}^p$ is the canonical parameter vector for the submodel
- $ightharpoonup a \in \mathbb{R}^n$ is a known offset vector
- $M \in \mathbb{R}^{n \times p}$ is a known model matrix.

In most applications the offset vector is not used giving parameterization

$$\theta = M\beta$$
,

in which case we say the submodel is a canonical linear submodel.

We will restrict attention to the canonical linear submodel in this class.

The canonical linear submodel log likelihood is given by

$$I(\theta) = \langle y, \theta \rangle - c(\theta)$$

$$= \langle y, M\beta \rangle - c(M\beta)$$

$$= \langle M'y, \beta \rangle - c_{\beta}(\beta),$$
(1)

and we see that we again have an exponential family with

- canonical statistic M'y
- ▶ cumulant function $\beta \mapsto c_{\beta}(\beta) = c(M\beta)$
- \triangleright submodel canonical parameter vector β

Stepping back a bit

In practice n denotes the sample size.

 $\theta \in \mathbb{R}^n$ is an arbitrary unrestricted vector specifying one parameter for individual. This is a saturated model.

For a model to be useful, we need dimension reduction

$$\theta = M\beta$$
.

In other words, $\theta \in \text{span}(M)$.

Full regular submodels

If the originally given full canonical parameter space was Θ , then the full submodel canonical parameter space is

$$B = \{\beta : M\beta \in \Theta\}.$$

Thus a canonical linear submodel gives us a new exponential family, with lower-dimensional canonical parameter and statistic.

The submodel exponential family is full regular if the original exponential family was full regular.

Parameterizations

Now we have four parameters:

- \blacktriangleright the saturated model canonical and mean value parameters θ and μ
- the canonical linear submodel canonical and mean value parameters β and $\tau = M^T \mu$.

The observed equals expected property for the submodel is

$$\hat{\tau} = M^T \hat{\mu} = M^T y. \tag{2}$$

A depiction of the transformations necessary to change between parameterizations.

Note: $\mu \to M^T \mu$ is usually not one-to-one (when n > p and M is full column rank).

Hence we cannot determine $\hat{\theta}$ and $\hat{\beta}$ from them either.

The only way to determine the MLEs is to maximize the log likelihood (1) to obtain $\hat{\beta}$ and then

- $\triangleright \hat{\theta} = M\hat{\beta}$
- $\hat{\mu} = \nabla c(\hat{\theta})$
- $\hat{\tau} = M^T \hat{\mu}.$

GLMs and link functions

Recall that the saturated model canonical parameter vector θ is *linked* to the saturated model mean value parameter vector through the change-of-parameter mappings $g(\theta)$.

We can reparameterize $\theta = M\beta$ and write

$$\mu = \mathsf{E}_{\theta}(Y) = g(M\beta)$$

which implies that we can write

$$g^{-1}(\mathsf{E}_{\theta}(Y)) = M\beta.$$

Therefore, a linear function of the canonical submodel parameter vector is linked to the mean of the exponential family through the inverse change-of-parameter mapping g^{-1} .

This is the basis of exponential family generalized linear models with link function g^{-1} .

Note that most treatments of GLMs will present g^{-1} as the link function. Instead we motivated a change of parameters mapping from canonical to mean value parameters.

Example: logistic regression

Logistic regression is a different form of regression with binary outcomes.

Data is observed in independent pairs (y_i, x_i') , i = 1,...,n where the covariates are assumed to be known.

The idea is the probability of success changes with covariates in the following manner

$$p_i = P(Y_i|x_i) = f(x_i'\beta)$$

where $f: \mathbb{R} \to (0,1)$ is continuous and monotone.

We will study linear regression using f = g. Other choices of f will be considered later.

Let M have rows x'_i , i = 1, ..., n.

Then $\theta_i = x_i' \beta$,

$$g(x_i'\beta) = \left(\frac{\exp(x_i'\beta)}{1 + \exp(x_i'\beta)}\right) = p_i,$$

and

$$g^{-1}(p_i) = \log\left(\frac{p_i}{1 - p_i}\right) = x_i'\beta.$$

We can write the log likelihood in canonical form in the saturated model parameterization starting from the log likelihood of independent Bernoulli trials:

$$\sum_{i=1}^n \left[y_i \log(p_i) - (1-y_i) \log(1-p_i) \right] = \langle y, \theta \rangle - c(\theta).$$

Alternatively, we can write the log likelihood in canonical form in the submodel parameterization starting from the log likelihood of independent Bernoulli trials:

$$\sum_{i=1}^{n} \left[y_i \log(p_i) - (1-y_i) \log(p_i) \right] = \langle M'y, \beta \rangle - c_{\beta}(\beta)$$

Difference in symmantics

$$\nabla_{\beta}c(\theta) = \nabla_{\beta}c(M\beta) = M^{T}\left[\nabla_{\theta}c(\theta)|_{\theta=M\beta}\right]$$

VS

$$\nabla_{\beta} c_{\beta}(\beta) = M^{T} \left[\nabla_{\theta} c(\theta) |_{\theta = M\beta} \right].$$

Inference

We have a regular full exponential family submodel with log likelihood written in canonical form

$$I(\beta) = \langle M^T y, \beta \rangle - c(M\beta)$$

From here, we have that the asymptotic distribution of the MLE $\hat{\beta}$ takes the form

$$\sqrt{n}\left(\hat{\beta}-\beta\right)\overset{d}{\to}N(0,\Sigma^{-1})$$

where $\Sigma = \mathsf{E}\left(-\nabla_{\beta}^2 I(\beta)\right)$ is the Fisher information matrix corresponding to the canonical linear submodel.

Wald inference for β

Let $\widehat{\Sigma}$ be estimated Σ using the MLE $\widehat{\beta}$ in place of β . In particular, the jth element $\widehat{\beta}_j$ of $\widehat{\beta}$ is asymptotically normal with asymptotic variance

$$\widehat{\mathsf{Var}}(\hat{eta}_j) = \mathit{jth} \; \mathsf{diagonal} \; \mathsf{element} \; \mathsf{of} \; \widehat{\Sigma}.$$

The Wald Z statistic for testing H_o : $\beta_j = \beta_{jo}$ is

$$z_W = rac{\hat{eta}_j - eta_{jo}}{\operatorname{se}(\hat{eta}_j)} \quad \stackrel{H_o}{\sim} \quad N(0,1)$$

where
$$se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)}$$
.

We can construct $(1-\alpha) \times 100\%$ Wald based confidence intervals of the form

$$\hat{eta}_j \pm z_{lpha/2} {\sf se}(\hat{eta}_j)$$

for some error tolerance $0 < \alpha < 1$.

Inference for mean value parameters

One could consider a function $f:\beta\to\mu$ and then estimate the variance of $\hat{\mu}$ via the Delta method. One could then use Wald inference.

Alternatively, we could use the change of parameters map and plug-in:

$$\left[g(\hat{\beta}-z_{lpha/2}\mathrm{se}(\hat{eta}),g(\hat{eta}+z_{lpha/2}\mathrm{se}(\hat{eta})
ight]$$

- ▶ The former has the advantage that it is derived from principles.
- ► The latter has the advantage that it will always return valid values for mean value parameters.

Deviance, goodness of fit, and likelihood inference

To motivate the deviance of a statistical model we will rewrite the log likelihood as $I(\mu; y)$.

The unrestricted MLE of μ is y. Now consider a canonical submodel (GLM) of the form $\theta = M\beta$.

Let $\hat{\mu}$ be the MLE of μ restricted to an identifiable canonical submodel ($\hat{\mu} = \nabla c(\hat{\theta})$ where $\hat{\theta} = M\hat{\beta}$). It follows that

$$I(y;y) \geq I(\hat{\mu};y).$$

The deviance of the GLM is

$$D(y; \hat{\mu}) = -2 (I(\hat{\mu}; y) - I(y; y)).$$

The deviance statistic has approximate distribution

$$D(y; \hat{\mu}) \stackrel{H_o}{\sim} \chi_{\mathsf{df}}^2$$

where H_o is that the canonical submodel is correct and the alternative test is that the canonical submodel is incorrect but the saturated model is correct where

- ightharpoonup df = n p
- n is the sample size
- p is the number of parameters in the canonical submodel.

We reject correctness of the canonical submodel when

$$D(y; \hat{\mu}) > \chi^2_{df}(\alpha).$$

(Note that the χ^2 approximation can be poor.)

Wait, isn't this backwards?

A brief look at sufficiency

Lemma

The canonical statistic vector of an exponential family is a sufficient statistic.

In other words, if $\theta = M\beta$ yields

$$D(y; \hat{\mu}) < \chi^2_{\mathsf{df}}(\alpha),$$

then we have sufficient dimension reduction from n to p.

Deviance testing for nested submodels

Let \mathcal{M}_0 and \mathcal{M}_1 both be canonical submodels.

We say that \mathcal{M}_0 is *nested* within \mathcal{M}_1 when every distribution in \mathcal{M}_0 is also in \mathcal{M}_1 but not vice-versa.

That is, μ is more restricted under \mathcal{M}_0 than under \mathcal{M}_1 . Another way to look at it is that

$$M_1 = [M_0, A],$$

where

- $ightharpoonup M_0$ is the model matrix for model \mathcal{M}_0
- $lacktriangleq M_1$ is the model matrix for model \mathcal{M}_1
- ► A represents additional covariates collected for all individuals

Let

- $ightharpoonup \hat{\mu}_0$ be the MLE of μ under \mathcal{M}_0
- $ightharpoonup \hat{\mu}_1$ be the MLE of μ under \mathcal{M}_1 .

We can use this framework for testing

$$H_0: \mathcal{M}_0$$
 true $H_a: \mathcal{M}_1$ true, but not \mathcal{M}_0

using the likelihood ratio χ^2 statistic given by

$$-2[I(\hat{\mu}_0;y)-I(\hat{\mu}_1;y)]\approx \chi_{df}^2,$$

where

- ▶ $df = p_1 p_0$
- $ightharpoonup p_1$ is the number of parameters in \mathcal{M}_1
- ▶ p_0 is the number of parameters in \mathcal{M}_0 .

(Note that the χ^2 approximation is often adequate here even it isn't adequate for the saturated model provided that \mathcal{M}_1 is not too close to saturated.)