Advanced Algorithms Analysis and Design

Lecture 9
Master Theorem
Dr. Shamila Nasreen

Previous Lectures

- Iterative Algorithms: Analyzing Loops
- > Few Analysis Examples
- Analysis of Control Structure
- Recursive calls
- While and Repeat Loop
- Recurrence Relation

Today's Lectures

- Master Theorem
- Master Theorem three cases
- **≻** Examples
- **≻** Limitations

Master Theorem

 A powerful tool for analyzing the time complexity of divide-and-conquer algorithms in the field of Design and Analysis of Algorithms.

 The Master Theorem simplifies the process of solving recurrence relations, which describe the runtime of recursive algorithms.

Why the Master Theorem

In algorithm design, many algorithms (e.g., merge sort, binary search) use a **divide-and-conquer** strategy:

- **1. Divide**: Split the problem into smaller subproblems.
- **2. Conquer**: Solve the subproblems recursively.
- **3. Combine**: Merge the solutions to solve the original problem.
- The runtime of such algorithms is often expressed as a **recurrence relation**, which can be complex to solve.
- The Master Theorem provides a straightforward way to determine the time complexity without unrolling the recurrence or building a recursion tree, saving time and effort.
- Master's theorem can only be applied on decreasing and dividing recurring functions.
- If the relation is not decreasing or dividing, master's theorem must not be applied.

Master Theorem: Divide and Conquer

Masters Theorem for Dividing Functions

Consider a relation of type -

$$T(n) = aT(n/b) + f(n)$$

where, $\mathbf{a} >= \mathbf{1}$ and $\mathbf{b} > \mathbf{1}$,

n – size of the problem

a - number of sub-problems in the recursion

 $\mathbf{n/b}$ – size of the sub problems based on the assumption that all sub-problems are of the same size.

f(n) – represents the cost of work done outside the recursion -> (nk logn p) ,where k >= 0 and p is a real number;

If the recurrence relation is in the above given form, then there are three cases in the master theorem to determine the asymptotic notations —

Master Theorem: Three Cases

lacktriangle Case 1: $f(n) = O(n^{\log_b a - arepsilon})$ for some arepsilon > 0

(i.e., f(n) grows slower than $n^{\log_b a}$)

Case 1

- Condition: $a > b^k$
- Result:

$$T(n) = \Theta(n^{\log_b a})$$

lacktriangle Case 2: $f(n) = \Theta(n^{\log_b a} \log^p n)$ for some $p \geq -1$

Case 2

(i.e., f(n) matches $n^{\log_b a}$ up to a polylog factor)

- Condition: $a = b^k$
- Result:
 - $\bullet \quad \text{If } p>-1\text{:}\ T(n)=\Theta(n^{\log_b a}\log^{p+1} n)$
 - If p = -1: $T(n) = \Theta(n^{\log_b a} \log \log n)$
 - If p < -1: $T(n) = \Theta(n^{\log_b a})$
- lacktriangle Case 3: $f(n) = \Omega(n^{\log_b a + arepsilon})$ and regularity condition holds

Case 3

(i.e., f(n) grows faster than $n^{\log_b a}$)

- Condition: $a < b^k$
- Result:
 - If $p \geq 0$: $T(n) = \Theta(n^k \log^p n)$
 - If p < 0: $T(n) = \Theta(n^k)$

Master Theorem: Three Cases

```
If a > b^k, then T(n) = (n^{\log b \cdot a}) [\log_b a = \log a / \log b \cdot a]

If a = b^k

Case 2

If a > b^k, then T(n) = (n^{\log b \cdot a} \log^{p+1} n)

If a > b^k, then T(n) = (n^{\log b \cdot a} \log^{p+1} n)

If a > b^k, then T(n) = (n^{\log b \cdot a} \log^{p+1} n)

If a < b^k, Case 3
```

■ If p < 0, then T(n) = (n^k)

$$T(n) = 8T(n/2) + n^2$$

We will solve it using the Master Theorem.

Step 1: Match to Master Theorem Format

General form:

$$T(n) = aT\left(rac{n}{b}
ight) + f(n)$$

Compare:

•
$$a = 8$$

•
$$b = 2$$

•
$$f(n) = n^2$$

 \bigcirc Step 2: Compute $\log_b a$

$$\log_b a = \log_2 8 = 3$$

$$igotimes$$
 Step 3: Compare $f(n)$ to $n^{\log_b a} = n^3$

We have:

•
$$f(n) = n^2$$

$$ullet n^2 = O(n^{3-arepsilon}) ext{ for } arepsilon = 1$$

This matches Case 1 of the Master Theorem: If $f(n)=O(n^{\log_b a-arepsilon})$, then Final Answer: $T(n)=\Theta(n^{\log_b a})$

$$T(n) = \Theta(n^3)$$

Consider a recurrence relation given as $T(n) = 4T(n/2) + n^2$

Step 1: Match with Master Theorem Form

General form of the Master Theorem:

$$T(n) = aT\left(rac{n}{b}
ight) + f(n)$$

Step 3: Apply Master Theorem Case 2

If:

From the given recurrence:

•
$$a = 4$$

•
$$b = 2$$

•
$$f(n) = n^2$$

Then:

$$T(n) = \Theta(n^{\log_b a} \log^{p+1} n) = \Theta(n^2 \log n)$$

 $f(n) = \Theta(n^{\log_b a} \log^p n)$ with p = 0

$$f(n) = \Theta(n^2 \cdot \log^0 n)$$

Since $\log^0 n = 1$, this means:

 \bigcirc Step 2: Compute $\log_b a$

$$\log_b a = \log_2 4 = 2$$

p = 0

Now compare:

•
$$f(n) = n^2$$

•
$$n^{\log_b a} = n^2$$

Final Answer:

$$T(n) = \Theta(n^2 \log n)$$

Since:

$$f(n) = \Theta(n^{\log_b a})$$

Consider a recurrence relation given as $T(n) = 2T(n/2) + n^2$

From the recurrence:

- a=?
- b=?
- f(n)=?
- •Compute log_ba
- •Which case is it?

Consider a recurrence relation given as T(n) = 16T(n/4) + n

From the recurrence:

- a=?
- b=?
- f(n)=?
- •Compute log_ba
- •Which case is it?

Consider a recurrence relation given as T(n) = 16T(n/4) + n

For the recurrence

$$T(n) = 16 T(\frac{n}{4}) + n,$$

we identify:

- a = 16
- b = 4
- f(n) = n

3. Master Theorem Case

This is Case 1 of the Master Theorem: a>b

If
$$f(n) = Oig(n^{\log_b a - arepsilon}ig)$$
 for some $arepsilon > 0$, then

$$T(n) = \Thetaig(n^{\log_b a}ig).$$

Here $\log_b a = 2$, so:

$$T(n) = \Theta(n^2).$$

1. Compute $\log_b a$

$$\log_b a = \log_4 16 = 2$$
 (because $4^2 = 16$).

So $n^{\log_b a} = n^2$.

2. Compare f(n) to $n^{\log_b a}$

We have f(n) = n. Since

$$n = O(n^{2-arepsilon})$$

with arepsilon=1 (because $n=n^{2-1}$), f(n) grows strictly slower than n^2 .

Consider a recurrence relation given as $T(n) = 2T(n/2) + n\log n$

We solve

$$T(n) = 2T(\frac{n}{2}) + n\log n$$

by the Master Theorem.

- 1. Identify parameters
 - a=2
 - b = 2
 - $f(n) = n \log n$
- 2. Compute $\log_b a$:

$$lacktriangle$$
 Case 2: $f(n) = \Theta(n^{\log_b a} \log^p n)$ for some $p \geq -1$

(i.e., f(n) matches $n^{\log_b a}$ up to a polylog factor)

- Condition: $a = b^k$
- Result:
 - If p > -1: $T(n) = \Theta(n^{\log_b a} \log^{p+1} n)$
 - * If p=-1: $T(n)=\Theta(n^{\log_b a}\log\log n)$
 - If p < -1: $T(n) = \Theta(n^{\log_b a})$

$$\log_2 2 = 1$$
,

so
$$n^{\log_b a} = n^1 = n$$
.

3. Match f(n) against $n^{\log_b a}$ We have

$$f(n) = n \log n = \Theta ig(n^{\log_b a} \log^1 n ig),$$

Consider a recurrence relation given as $T(n) = 2T(n/2) + n\log n$

lacktriangle Case 2: $f(n) = \Theta(n^{\log_b a} \log^p n)$ for some $p \geq -1$

(i.e., f(n) matches $n^{\log_b a}$ up to a polylog factor)

- Condition: $a = b^k$
- Result:
 - $\qquad \qquad \text{if } p > -1 \text{: } T(n) = \Theta(n^{\log_b a} \log^{p+1} n) \\$
 - If p = -1: $T(n) = \Theta(n^{\log_b a} \log \log n)$
 - If p < -1: $T(n) = \Theta(n^{\log_b a})$

4. Apply Case 2

If $f(n) = \Theta ig(n^{\log_b a} \log^p n ig)$, then

 $T(n) = \Thetaig(n^{\log_b a}\,\log^{p+1} nig) = \Thetaig(n\log^2 nig).$

✓ Final Answer

$$T(n) = \Theta(n \log^2 n).$$

Consider a recurrence relation given as $T(n) = 3T(n/4) + n\log n$

lacktriangle Case 3: $f(n) = \Omega(n^{\log_b a + arepsilon})$ and regularity condition holds

(i.e., f(n) grows faster than $n^{\log_b a}$)

- Condition: $a < b^k$
- Result:
 - If $p \ge 0$: $T(n) = \Theta(n^k \log^p n)$
 - If p < 0: $T(n) = \Theta(n^k)$