Chapter 5 - Financial Forwards and Futures

Tyler J. Brough

February 1, 2017

Section 5.1 Alternative Ways to Buy a Stock

Introduction

- ► Financial futures and forwards
 - ► On stocks and indexes
 - On currencies
 - ► On interest rates
- ► How are they used?
- ► How are they priced?
- ► How are they hedged?

Alternative Ways to Buy a Stock

- ► Four different payment and receipt timing combinations
 - ► Outright purchase: ordinary transaction
 - ► Fully leveraged purchase: investor borrows the full amount
 - Prepaid forward contract: pay today, receive the share later
 - ► Forward contract: agree on price now, pay/receive later
- ► Payments, receipts, and their timing

T 4	DIE	-	
IΑ	BLE	5.	

Four different ways to buy a share of stock that has price S_0 at time 0. At time 0 you agree to a price, which is paid either today or at time T. The shares are received either at 0 or T. The interest rate is r.

Description	Pay at Time	Receive Security at Time	Payment
Outright purchase	0	0	S_0 at time 0
Fully leveraged purchase	T	0	$S_0 e^{rT}$ at time T
Prepaid forward contract	0	T	?
Forward contract	T	T	$? \times e^{rT}$

Pricing Prepaid Forwards

▶ If we can price the *prepaid* forward (F^P) , then we can calculate the price for a forward contract

$$F =$$
Future Value of F^P

- ► Three possible methods to price prepaid forwards
 - ► Pricing by analogy
 - ► Pricing by discounted cash flows
 - Pricing by arbitrage
- ▶ For now, assume that there are no dividends

- Pricing by analogy
 - ▶ In the absence of dividends, the timing of delivery is irrelevant
 - Price of the prepaid forward contract same as current stock price
 - ► $F^P = S_0$ (where the asset is bought at t = 0, delivered at t = T)
- ▶ Pricing by discounted present value (α : risk-adjusted discount rate)
 - ▶ If expected t = T stock price at t = 0 is $E_0(S_T)$, then $F^P = E_0(S_T)e^{-\alpha T}$
 - ► Since t = 0 expected value of price at t = T is $E_0(S_T) = S_0 e^{\alpha T}$
 - ► Combining the two, $F_{0,T}^P = S_0 e^{\alpha T} = S_0$

- ► Pricing by arbitrage
 - ► **Arbitrage**: a situation in which one can generate positive cash flow by simultaneously buying and selling related assets, with no net investment and with no risk. Free money!
 - ▶ If at time t=0, the prepaid forward price somehow exceeded the stock price, i.e., $F_{0,T}^P > S_0$, an arbitrageur could do the following

ABLE 5.2	Cash flows and transactions to undertake arbitrage when the prepaid forward price, $F_{0,T}^{P}$, exceeds the stock price			
		Cash Flows		
Transaction		Time 0	Time T (expiration)	
Buy stock @ S ₀		$-S_0$	$+S_T$	
Sell prepaid forward @ $F_{0,T}^{P}$		$+F_{0,T}^{P}$	$-S_T$	
Total		$F_{0,T}^{P} - S_{0}$	0	

The price mechanism will ensure that these sort of arbitrage opportunities cannot persist, at equilibrium we can expect:
F^P_{0,T} = S₀

- ▶ What if there are dividends? Is $F_{0.T}^P = S_0$ still valid?
 - ▶ No, because the holder of the forward will not receive dividends that will be paid to the holder of the stock, $F_{0.T}^P > S_0$
 - $F_{0,T}^P = S_0$ PV(all dividends paid from t = 0 to t = T)
- ▶ For discrete dividends D_{t_i} at times t_i , i = 1, ..., n
 - ▶ The prepaid forward price: $F_{0,T}^P = S_0 \sum_{i=1}^n PV_0(D_{t_i})$
 - For continuous dividends with an annualized yield δ , the prepaid forward price is $F_{0,T}^P = S_0 e^{-\delta T}$

- ► Example 5.1
 - ► XYZ stock costs \$100 today and is expected to pay a quarterly dividend of \$1.25. If the risk-free rate is 10% compounded continuously, how much does a 1-year prepaid forward cost?
 - $F_{0,1}^P = \$100 \sum_{i=1}^{4} \$1.25e^{-0.025i} = \$95.30$

- ► Example 5.2
 - ► The index is \$125 and the dividend yield is 3% continously compounded. How much does a 1-year prepaid forward cost?
 - $F_{0.1}^P = $125e^{-0.03} = 121.31

Section 5.3 Forward Contracts on Stock

Pricing Forwards on Stock

- ► Forward price is the future value of the *prepaid* forward price
 - ► No dividends
 - $ightharpoonup F_{0,T} = FV(F_{0,T}^P) = FV(S_0) = S_0 e^{rT}$
 - ► Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

Section 5.4 Futures Contracts

Section 5.5 Uses of Index Futures

Section 5.6 Currency Contracts

Section 5.7 Eurodollar Futures