Nom:	Prénom :	G	roupe :	
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS				
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2014/2015		Note / 18	
École d'ingénieurs POLYTECH NICE-SOPHIA	Epreuve N°3 Electronique Numérique	-	/20	

Jeudi 23 Avril 2015

Durée: 45 mn

- Cours et documents NON autorisés.
- Calculatrice NON autorisée.
- Vous répondrez directement sur cette feuille.
- Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre TOTALEMENT votre téléphone portable.

TOUTE FRAUDE ou TENTATIVE DE FRAUDE SERA SANCTIONNEE

L'étudiant ayant triché ET l'étudiant ayant aidé (le cas échéant) seront traduits devant la commission disciplinaire de l'université.

Supplément sans contrepartie de note (pour ceux qui auront terminé plus tôt):

Traduisez la date 23 / 04 / 2015 dans le système hexadécimal ©(ou binaire si vous préférez)

BRAVO à tous ceux qui se sont amusés à cette traduction et qui l'ont réussi (la plupart d'ailleurs)

17/04/7DF

ou

10111 / 100 / 111111011111 ou en octal (2 parmi vous l'ont fait : 27 / 4 / 3737)

(2015 est un nombre binaire bien symétrique)

Nb: conversion binaire ↔ hexa en regroupant par paquet de 4 bits en commençant par les bits de poids faibles conversion binaire ↔ octal en regroupant par paquet de 3 bits en commençant par les bits de poids faibles

EXERCICE I: Retour sur Karnaugh

Dans chaque cas, donnez les équations logiques simplifiées (vous veillerez à représenter en couleur si possible, les regroupements JUDICIEUX donc OPTIMAUX que vous choisissez).

EXERCICE II: Hasards logiques

Déterminez l'expression de la sortie S du circuit ci-dessous en fonction de E.

Complétez le chronogramme suivant de ce circuit. On considère que toutes les portes logiques mises en jeu ont un même temps de réponse Δt .

1pts

Il détecte les fronts montants du signal E.

EXERCICE III : Expression de la sortie d'un circuit.

Déterminez l'expression de la sortie S de ce circuit, en fonction de E. Si cela est possible donnez sa valeur (des détails entre autre via les expressions de S₁ et S₂ sont demandés).

2pts
$$S_1 = \overline{E+0} = E.0 + \overline{E}.\overline{0} = \overline{E}$$

$$S_2 = \overline{S_1} = \overline{E}$$

$$S = \overline{E + S_2} = \overline{E + \overline{E}} = E, E + \overline{E}, \overline{E} = E + \overline{E} = 1$$

(faites simple et par étape)

EXERCICE IV : Ecriture de la table de vérité à partir de l'expression de la fonction.

1pts

Soit l'expression suivante :

$$S = A.B + A.\bar{C} + A.\bar{B}.C$$

Remplissez la table de vérité à partir de l'expression de la fonction logique cidessous.

$$S = A.B.(C + \overline{C}) + A.\overline{C}.(B + \overline{B}) + A.\overline{B}.C$$

$$S = A.B.C + A.B.\overline{C} + A.\overline{B}.\overline{C} + A.\overline{B}.C$$

A	В	C	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

EXERCICE V : Le multiplexeur $4\rightarrow 1$

1pts

Que permet de faire ce circuit ? (en une phrase courte)

Grâce à deux entrées de commande, il permet de sélectionner une entrée parmi 4 et d'envoyer sa valeur sur la sortie.

1pts

A	В	S
0	0	$\mathbf{E_0}$
0	1	$\mathbf{E_1}$
1	0	$\mathbf{E_2}$
1	1	$\mathbf{E_3}$

1pts

A partir de la table de vérité, donnez l'expression de l'équation logique de sortie S.

$$S = \overline{A}. \overline{B}. E_0 + \overline{A}. B. E_1 + A. \overline{B}. E_2 + A. B. E_3$$

EXERCICE V : Application du multiplexeur 4→1

Soit une fonction booléenne des variables A, B, C. Cette fonction doit être vraie s'il y a un nombre pair de « 0 » parmi les 3 variables.

1pts

Remplissez la table de vérité de cette fonction.

Ecrivez l'équation logique de F.

1pts

$\mathbf{F} = \overline{\mathbf{A}}$.	$\overline{\mathbf{B}}$. C +	Ā. B. C	+ A. B. C
--	-------------------------------	---------	-----------

A	В	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

1pts

Montrez que l'on peut réaliser cette fonction avec un multiplexeur $4 \rightarrow 1$.

On identifie F et S trouvée dans l'exercice précédent : A et B seront les variables de commande et les entrées seront mises respectivement à :

$$E_0 = C$$
 $E_1 = E_2 = \overline{C}$ $E_3 = 0$ (masse)

1pts

Faites le schéma du circuit logique correspondant.

