

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Aussagenlogik: Normalformen

Disjunktive und Konjunktive Normalform

Definition

- ► Ein Literal ist ein Atom oder ein negiertes Atom
- Eine Formel ist in disjunktiver Normalform (DNF), wenn sie Disjunktion von Konjunktionen von Literalen ist.
- Eine Formel ist in konjunktiver Normalform (KNF), wenn sie Konjunktion von Disjunktionen von Literalen ist.

Fakten

- Zu jeder aussagenlogischen Formel A gibt es eine logisch äquivalente in disjunktiver Normalform und ebenso eine logisch äquivalente in konjunktiver Normalform.
- 2. Die Algorithmen zur Herstellung beider Normalformen ergeben sich unmittelbar aus elementaren Tautologien.
- Ist die Wahrheitstafel einer Formel gegeben, so lassen sich disjunktive und konjunktive Normalform aus dieser "direkt" ablesen.

Fakten (Fortsetzung)

- 1. Eine disjunktive Normalform $\bigvee_{K \in \mathcal{K}} K$ in der Signatur Σ heißt *vollständig* falls für jedes $P \in \Sigma$ in jeder Klausel $K \in \mathcal{K}$ eines der Literale P oder $\neg P$ in K vorkommt.
- 2. Vollständige Normalformen sind eindeutig bis auf Umordnung.
- 1. Eine disjunktive Normalform $D = \bigvee_{K \in \mathcal{K}} K$ heißt *minimal* falls jede *kürzere* Formel D' nicht äquvalent zu D ist. $D' = \bigvee_{K' \in \mathcal{K}'} K'$, heißt *kürzer* als D falls für alle $K' \in \mathcal{K}'$ ein $K \in \mathcal{K}$ existiert mit K' ist Teilformel von K.
- Minimale disjunktive und konjunktive Normalformen einer Formel sind <u>nicht</u> eindeutig.

Think!

Überlegen Sie:

Kann man die Erfüllbarkeit einer Formel in DNF effizient überprüfen? Wenn ja, wie?

- 1. Überlegen Sie ein paar Minuten für sich selbst.
- 2. Tauschen Sie sich mit Ihrer Sitznachbarin, Ihrem -nachbarn aus.
- 3. Ergebnisse!

Fakten (Fortsetzung)

- 1. Die Erfüllbarkeit einer Formel in DNF sowie
- 2. die Allgemeingültigkeit einer Formel in KNF

lassen sich in polynomieller Zeit überprüfen.

(Die "umgekehrten" Probleme, z.B. Erfüllbarkeit von KNF, sind viel schwerer!)

Beispiel zur exponentiellen Länge der KNF

Sei

$$A_n = (P_{1,1} \wedge P_{1,2}) \vee ... \vee (P_{n,1} \wedge P_{n,2})$$

Die konjunktive Normalform von A_n ist:

$$\bigwedge \{P_{1,f(1)} \vee \ldots \vee P_{n,f(n)} \mid f \colon \{1,\ldots,n\} \to \{1,2\}\}.$$

Fortsetzung des Beispiels

Für n = 3 ist das:

$$(P_{1,1} \lor P_{2,1} \lor P_{3,1}) \land (P_{1,1} \lor P_{2,1} \lor P_{3,2}) \land \\ (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \land (P_{1,1} \lor P_{2,2} \lor P_{3,2}) \land \\ (P_{1,2} \lor P_{2,1} \lor P_{3,1}) \land (P_{1,2} \lor P_{2,1} \lor P_{3,2}) \land \\ (P_{1,2} \lor P_{2,2} \lor P_{3,1}) \land (P_{1,2} \lor P_{2,2} \lor P_{3,2})$$

In A_n treten 2 * n Literale auf, in der KNF $n * 2^n$.

Kurze KNF

Ziel

Finde eine Konstruktion einer Formel in KNF, die *nicht* exponentiell wächst.

Diese KNF kann **nicht immer äquivalent** zur Ausgangsformel sein.

Aber sie ist äquivalent bezüglich einer wichtigen Eigenschaft. (später mehr)

Konstruktion der kurzen KNF

Allgemeines Verfahren

- 1. Führe für jede Teilformel, deren oberster Operator binär ist, ein Kürzel (neues Atom) ein.
- Für jedes dieser Kürzel stelle die Definition gemäß der entspr. Teilformel und unter Berücksichtigung "tieferer" Kürzel auf.
- 3. Löse die Äquivalenzen in den Definitionen auf.
- 4. Forme die Definitionen in KNF um.

Die Konjunktion der Definitionen mit dem Top-Level-Kürzel ist die kurze KNF.

Konstruktion der kurzen KNF

Beispiel

Berechne kKNF für die folgende Formel (äquivalent zu A_3)

$$\neg ((\neg P_{1,1} \lor \neg P_{1,2}) \land (\neg P_{2,1} \lor \neg P_{2,2}) \land (\neg P_{3,1} \lor \neg P_{3,2}))$$

$$Q_1 \leftrightarrow \neg P_{1,1} \vee \neg P_{1,2}$$

$$Q_2 \leftrightarrow \neg P_{2,1} \lor \neg P_{2,2}$$

$$Q_3 \leftrightarrow \neg P_{3,1} \lor \neg P_{3,2}$$

$$Q_4 \leftrightarrow Q_1 \wedge Q_2$$

$$Q_5 \leftrightarrow Q_4 \wedge Q_3$$

$$\neg Q_5$$

$$\neg Q_1 \vee \neg P_{1,1} \vee \neg P_{1,2}$$

$$Q_1 \vee (P_{1,1} \wedge P_{1,2})$$

$$\neg Q_2 \vee \neg P_{2,1} \vee \neg P_{2,2}$$

$$Q_2 \vee (P_{2,1} \wedge P_{2,2})$$

$$\neg Q_3 \lor \neg P_{3,1} \lor \neg P_{3,2}$$

$$Q_3\vee (P_{3,1}\wedge P_{3,2})$$

$$\neg Q_4 \lor (Q_1 \land Q_2)$$

$$Q_4 \vee \neg Q_1 \vee \neg Q_2$$

$$\neg Q_5 \lor (Q_4 \land Q_3)$$

$$Q_5 \vee \neg Q_4 \vee \neg Q_3$$

$$\neg Q_5$$

Konstruktion der kurzen KNF (Forts.)

3. Schritt:

$$\begin{array}{c} \neg Q_{1} \lor \neg P_{1,1} \lor \neg P_{1,2} \\ Q_{1} \lor (P_{1,1} \land P_{1,2}) \\ \neg Q_{2} \lor \neg P_{2,1} \lor \neg P_{2,2} \\ Q_{2} \lor (P_{2,1} \land P_{2,2}) \\ \neg Q_{3} \lor \neg P_{3,1} \lor \neg P_{3,2} \\ Q_{3} \lor (P_{3,1} \land P_{3,2}) \\ \neg Q_{4} \lor (Q_{1} \land Q_{2}) \\ Q_{4} \lor \neg Q_{1} \lor \neg Q_{2} \\ \neg Q_{5} \lor (Q_{4} \land Q_{3}) \\ Q_{5} \lor \neg Q_{4} \lor \neg Q_{3} \\ \neg Q_{5} \end{array}$$

4. Schritt:

$$\begin{array}{c} \neg Q_{1} \lor \neg P_{1,1} \lor \neg P_{1,2} \\ (Q_{1} \lor P_{1,1}) \land (Q_{1} \lor P_{1,2}) \\ \neg Q_{2} \lor \neg P_{2,1} \lor \neg P_{2,2} \\ (Q_{2} \lor P_{2,1}) \land (Q_{2} \lor P_{2,2}) \\ \neg Q_{3} \lor \neg P_{3,1} \lor \neg P_{3,2} \\ (Q_{3} \lor P_{3,1}) \land (Q_{3} \lor P_{3,2}) \\ (\neg Q_{4} \lor Q_{1}) \land (\neg Q_{4} \lor Q_{2}) \\ Q_{4} \lor \neg Q_{1} \lor \neg Q_{2} \\ (\neg Q_{5} \lor Q_{4}) \land (\neg Q_{5} \lor Q_{3}) \\ Q_{5} \lor \neg Q_{4} \lor \neg Q_{3} \\ \neg Q_{5} \end{array}$$

Konjunktion dieser Zeilen ist in KNF und erfüllbarkeitsäquivalent zu A_3

Satz

Theorem

Zu jeder aussagenlogischen Formel A mit n Literalvorkommen gibt es eine konjunktive Normalform A_{kknf} , so dass

- ► A ist erfüllbar gdw A_{kknf} erfüllbar ist,
- ► A_{kknf} enthält höchstens c * n Literalvorkommen für eine von n unabhängige Konstante c,
- ► A_{kknf} effektiv aus A in polynomieller (sogar linearer) Zeit konstruiert werden kann.