Sabbir Ahmed

DATE: April 9, 2018 **MATH 407:** HW 08

3.4 • Show that \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not

The elements in each of the groups

$$\{[1], [2], [3], [4]\} \in \mathbb{Z}_5^{\times}$$

$$\{[1],[3],[5],[7]\} \in \mathbb{Z}_8^{\times}$$

For \mathbb{Z}_5^{\times}

$$[5]^2 = [1]$$

Therefore, o()

- **7** Let G be a group. Show that the group (G,*) defined in Exercise 3 of Section 3. 1 is isomorphic to G.
- 11 Let G be the set of all matrices in $GL_2(\mathbb{Z}_3)$ of the form $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$. That is, $m,b\in\mathbb{Z}_3$ and $m\neq [0]_3$. Show that G is a subgroup of $GL_2(\mathbb{Z}_3)$ that is isomorphic to S_3 .
- 14 Let $G=\{x\in\mathbb{R}\mid x>0 \text{ and } x\neq 1\}$, and define * on G by $a*b=a^{\ln b}$. Show that G is isomorphic to the multiplicative group \mathbb{R}^{\times} . (See Exercise 9 of Section 3.1.)
- 17 Let $\phi:G_1\to G_2$ be a group isomorphism. Prove that if H is a subgroup of G_1 , then $\phi(H)=\{y\in G_2\mid y=\phi(h) \text{ for some } h\in H\}$ is a subgroup of G_2 .

Since $\phi:G_1\to G_2$ is a group isomorphism, $\phi(e_1)=e_2$ Since H is a subgroup,

$$e_1 \in H$$

 $\Rightarrow e_2 \in \phi(H)$

A non-empty set G is a subgroup if $xy^{-1}\in G$, $\forall~x,y\in G$ Let $x,y\in\phi(H)$

Then, there exists $h_1, h_2 \in H$, such that

$$\phi(h_1) = x$$
$$\phi(h_2) = y$$

Also, since ϕ is homomorphic,

$$\phi(h_2^{-1}) = (\phi(h_2))^{-1}$$

$$= y^{-1}$$

$$\phi(h_1 h_2^{-1}) = \phi(h_1)\phi(h_2^{-1})$$

$$= xy^{-1}$$

Since H is a subgroup, $h_1h_2^{-1}\in H$, $\forall \ h_1,h_2\in H$ Therefore,

$$\phi(h_1 h_2^{-1}) = xy^{-1}$$
$$\in \phi(H)$$

That is,
$$\phi(h_1h_2^{-1}) \in \phi(H)$$
, $\forall \ x,y \in \phi(H)$

24 Let $G = \mathbb{R} - -1$. Define * on G by a*b = a+b+ab. Show that G is isomorphic to the multiplicative group \mathbb{R}^{\times} . (See Exercise 13 of Section 3.1.)

Hint: Remember that an isomorphism maps identity to identity. Use this fact to help find the necessary mapping.

26 Let G_1 and G_2 be groups. A function from G_2 into G_2 that preserves products but is not necessarily a one-to-one correspondence will be called a group homomorphism,

from the Greek word *homos* meaning same. Show that $\phi: \operatorname{GL}_2(\mathbb{R}) \to \mathbb{R}^{\times}$ defined by $\phi(A) = \det(A)$ for all matrices $A \in \operatorname{GL}_2(\mathbb{R})$ is a group homomorphism.

- **3.5 2** Let G be a group and let $a \in G$ be an element of order 30. List the powers of a that have order 2, order 3 or order 5.
 - **3** Give the subgroup diagrams of the following groups.
 - a \mathbb{Z}_{24}
 - $\mathbf{b} \ \mathbb{Z}_{36}$
 - 10 Find all cyclic subgroups of $\mathbb{Z}_6 \times \mathbb{Z}_3$
 - 12 Let a,b be positive integers, and let $d=\gcd(a,b)$ and $m=\mathsf{lcm}(a,b)$. Use Proposition 3.5.5 to prove that $\mathbb{Z}_a\times\mathbb{Z}_b\cong\mathbb{Z}_d\times\mathbb{Z}_m$
 - 13 Show that in a finite cyclic group of order n, the equation $x^m = e$ has exactly m solutions, for each positive integer m that is a divisor of n.
 - 17 Let G be the set of all 3×3 matrices of the form $\begin{bmatrix} 1 & b & c \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}.$
 - **a** Show that if $a,b,c\in\mathbb{Z}_3$, the G is a group with exponent 3.

b Show that if $a,b,c\in\mathbb{Z}_2$, the G is a group with exponent 4.

19 Let $n=2^k$ for k>2. Prove that \mathbb{Z}_n^{\times} is not cyclic.

Hint: Show that ± 1 satisfy the equation $x^2=1$, and that this is impossible in any cyclic group.

4