計算論A 中間試験

(解答時間:80分)

- 1. $\Sigma = \{0,1\}$ とする. Σ 上の次の各言語を、正則表現で表しなさい. (20点)
- (1) 000 を含む語すべてからなる言語
- (2) 000 を含まない語すべてからなる言語
- 2. L を $\Sigma = \{0,1\}$ 上の任意の正則言語とする. Even(L) を, L に属する偶数長の語すべてからなる言語とする. つまり, Even(L) = $\{x \mid x \in L, h \to |x| \}$ が偶数}とする. このとき, Even(L) が正則言語であることを証明しなさい. ただし, 0 も偶数とする. (15 点)
- 3. 下図の非決定性有限オートマトンと同じ言語を認識する決定性有限オートマトンをサブセット構成法で求め、その状態遷移図を示しなさい. ただし、導出過程が分かるように解答すること. (20 点)

非決定性有限オートマトン

♥. 次の状態遷移表で表された決定性有限オートマトン M₀ について、以下の問に答えなさい. (25点)

	入力	
	0	1
→A	ΔE	θВ
*B	C	ΔD
С	0 F	С
D	△ D	() F
Е	ΔE	F
*F	G	ΔD
G	- O B	С
Н	ΔE	G

- (1) M_0 と同じ言語を認識する状態数最小の決定性有限オートマトン M_1 を求め、その状態遷移図を示しなさい、ただし、 M_1 の導出過程が分かるように解答すること.
- (2) M₀ が認識する言語を正則表現で表しなさい.

- 5. 以下の問に答えなさい. (20点)
- (1) 言語 $L_1 = \{0^{2n}1^{3n} \mid n > 0\}$ が正則言語ではないことを証明しなさい.
- (2) 言語 $L_2 = \{0^{2m}1^{3n} \mid m>0, n>0\}$ が正則言語か否かを判定しなさい. 正則言語であれば L_2 を受理する決定性有限オートマトンを示し、そうでなければその証明を示しなさい.