

Instituto Federal Farroupilha

Disciplina: Química

Professora: Vanize Caldeira da Costa

Estudo de casos particulares dos cálculos estequiométricos (grau de pureza e rendimento de reações)

REAÇÕES QUÍMICAS COM SUBSTÂNCIAS IMPURAS

Quando for preciso calcular a massa de produto obtido a partir de uma amostra impura, devemos inicialmente calcular a parte pura dessa amostra e efetuar os cálculos com o valor obtido.

Exemplo:

Uma amostra de <u>120 g de magnésio com 80% de pureza</u> reage com oxigênio, produzindo óxido de magnésio. <u>Determine a massa de óxido de magnésio produzida</u>. (massas molares: Mg = 24 g/mol; MgO = 40 g/mol)

RENDIMENTO DE UMA REAÇÃO QUÍMICA

Na prática, ao se realizar uma reação química, mesmo utilizando quantidades estequiométricas dos reagentes, nem sempre é obtida a quantidade máxima possível dos produtos. Assim, é comum que a reação ocorra com um rendimento real menor que o rendimento teórico (100%).

Quando o rendimento de uma reação for inferior à 100%, é necessário considerar o percentual de rendimento da reação para a estimativa da quantidade de produto que será formada.

Exemplo:

(UC-PE) Qual a <u>massa de gás carbônico (CO₂)</u> obtida na decomposição térmica do CaCO₃, sabendo-se que <u>90,9 g desse composto (CaCO₃)</u> sofreram reação com um <u>rendimento de 80%?</u> (massas molares: CaCO₃ = 100 g/mol, CO₂ = 44 g/mol)

Instituto Federal Farroupilha

Disciplina: Química

Professora: Vanize Caldeira da Costa

De acordo com os coeficientes estequiométricos:

Interpretação: 1 mol de CaCO₃ _____ 1 mol de CO₂

CaCO₃ CO₂

100 g

Adequação: 100 g de CaCO₃ _____ 44 g de CO₂

Então: 90,9 g de CaCO₃ _____ X

 $X = (90,9 \times 44)/100 = 40 g de CO₂ (se a reação ocorresse totalmente - 100%)$

Quantidade de produto formada considerando o percentual de rendimento da reação:

40 g de CO₂ _____ 100%

X _____80%

 $X = (40 \times 80)/100 = 32 g de CO_2$

Referência bibliográfica:

USBERCO, J.; SALVADOR, E. Química. São Paulo: Saraiva, 2002.