

Recovery controller for ANYmal on various terrains

Kyoungyeon Choi

15 credits project Supervisor: Joonho Lee, Takahiro Miki

Intro: Motivation

Backflipping MIT Mini Cheetah https://www.youtube.com/watch?v=xNeZWP5Mx9s

ETH zürich

Intro: Approach & Contributions

1. Recovery controller

2. Terrain normal estimation

3. Standing up controller

4. Finite state machine

Method: Recovery Controller

I: inertial frame
B: Body frame

 $_{B}n: terrain\ normal\ vector\ expressed\ in\ B$

 $_{B}\hat{n}$: normal vector observation expressed in B

Task Objective:

Recover from arbitrary falling configurations and sit with a stable position. (on flat and slope(0~36deg) terrains)

Method: Recovery Controller

MDP observation space O_t :

$$\langle e_g, {}_Bv_{IB}, {}_B\omega_{IB}, \psi, \dot{\psi}_{t_k}, \dot{\psi}_{t_k-0.01}, \dot{\psi}_{t_k-0.02}, a_{k-1} \rangle \in \mathbb{R}^{69}$$
 $\psi_d = \psi_t + k a_t \ (k = 0.1), \ a_t \in \mathbb{R}^{12}$

$$[1,2]$$

Gravity vector : $e_q \in \mathbb{R}^3$

Linear velocity : $_{R}v_{IB} \in R^{3}$

Angular velocity : $_{R}\omega_{IR} \in R^{3}$

Joint positions : $\psi \in \mathbb{R}^{12}$

Joint velocity history : $\dot{\psi}_{t_k}$, $\dot{\psi}_{t_k-0.01}$, $\dot{\psi}_{t_k-0.02} \in \mathbb{R}^{36}$

Previous action: $a_{k-1} \in \mathbb{R}^{12}$

MDP action space a_t :

$$\psi_d = \psi_t + k a_t \ (k = 0.1), \ a_t \in R^{12}$$

Current joint positions : $\psi_t \in \mathbb{R}^{12}$ Desired joint positions : $\psi_d \in R^{12}$

Cost terms:

Orientation, Joint position, Self collision, Joint acceleration, Joint velocity, Torque

Orientation Cost : $({}_{B}\hat{n} \cdot {}_{B}e_{z} - 1)^{2}$

Terrain normal vector exp in body frame: $_{R}\hat{n} \in \mathbb{R}^{3}$

Body z axis exp in body frame: $_{R}e_{z} \in R^{3}$

Method: Normal Estimator

Method: Normal Estimator

Input observations:

$$< e_g$$
 , $\psi > \in R^{15}$

Gravity vector : $e_g \in R^3$ Joint positions : $\psi \in R^{12}$

Output representation:

$$<\cos_B \theta_n$$
 , $\sin_B \theta_n$, $\cos_B \varphi_n$, $\sin_B \varphi_n$ $> \in R^4$ [3]

Spherical representation of ${}_B\hat{n}:{}_B\hat{\varphi}_{\hat{n}}$, ${}_B\hat{\theta}_{\hat{n}}$

Network architecture:

Size: 128×128×128

Activation: ReLu

Method: Standing up Controller

Task Objective:

Stand up from near sitting configuration and balance with a stable position. (on flat and slope(0~36deg) terrains)

Method: Standing up Controller

MDP observation space O_t :

$$< e_g$$
, $_Bv_{IB}$, $_B\omega_{IB}$, ψ , $\dot{\psi}_{t_k}$, $\dot{\psi}_{t_k-0.01}$, $\dot{\psi}_{t_k-0.02}$, $a_{k-1} >$ [1,2]

Gravity vector : $e_g \in \mathbb{R}^3$

Linear velocity : $_{R}v_{IB} \in R^{3}$

Angular velocity : $_{R}\omega_{IB} \in R^{3}$

Joint positions : $\psi \in \mathbb{R}^{12}$

Joint velocity history : $\dot{\psi}_{t_{\nu}}$, $\dot{\psi}_{t_{\nu}-0.01}$, $\dot{\psi}_{t_{\nu}-0.02} \in R^{36}$

Previous action: $a_{k-1} \in \mathbb{R}^{12}$

MDP action space a_t :

$$\psi_d = \psi_t + k \, a_t \, (k = 0.1), \, a_t \in R^{12}$$

Current joint positions : $\psi_t \in R^{12}$ Desired joint positions : $\psi_d \in R^{12}$

Cost terms:

Joint position, Height, Slip, Orientation, Self collision, Joint acceleration, Joint velocity, Torque

Method: Finite state machine

Results: Recovery Controller simulation results (flat terrain)

Results: Recovery Controller simulation results (slope terrain)

Results: Normal estimator error

1) No history

Input : Gravity vector $e_g \in \mathbb{R}^3$, Joint position $\psi \in \mathbb{R}^{12}$

Output : $\cos_B \theta_n$, $\sin_B \theta_n$, $\cos_B \varphi_n$, $\sin_B \varphi_n$

Hidden layer size : $128 \times 128 \times 128$

Activation: ReLu

2) History input

Input: $(o_{k-4}, a_{k-4}, o_{k-3}, a_{k-3}, \dots, o_k, a_k), o_k = (e_g, \psi)$

Output : $\cos_B \theta_n$, $\sin_B \theta_n$, $\cos_B \varphi_n$, $\sin_B \varphi_n$

Hidden layer size : $128 \times 128 \times 128$

Activation: ReLu

	Mean(deg)	Std(deg)	
No history	6.806	8.17	
History input	7.544	8.69	

Table 1. Model validation L1 loss (1600000 time steps)

Results: Policy comparison

		Observation		
		No normal	Normal(truth)	Normal(estimate)
Env	flat_without_normal (fwn)	Train(flat)/Test(slope)		
	slope_without_normal (swn)	Train(slope)/Test(slope)		
	slope_normal(Explicit) (snE)		Train(slope)/Test(slope)	
	slope_normal_Predicted (snP)		Train(slope)	Test(slope)
	slope_normal(Implicit) (snl)	Test(slope)	Train(slope)	

Table 2. Policies trained with different observations

Results: Joint position error

1000 test episodes per slope (0, 6, 12, ..., 36deg)

Last time step observation : Joint positions $\psi \in R^{12}$ Desired position (sit) : $\psi_{des} \in R^{12}$

Joint position error : $|\psi_{des} - \psi|$

Results: Joint velocity error

Last time step observation : Joint velocities $\dot{\psi} \in R^1$ Desired velocity : $\psi_{des} \in R^{12}$, $\dot{\psi}_{des} = 0$

Joint velocity error : $|\dot{\psi}_{des} - \dot{\psi}|$

 $_{I}e_{z}$

Results: Body orientation error

Last time step observation : Base z axis $_Be_z \in R^3$ Desired orientation : $_Be_{des} = _Bn$

Body orientation error : $\cos^{-1}({}_Bn \cdot {}_Be_z)$

Results: Success rate

Success definition:
Joint position error < 0.5(rad)

Joint velocity error < 0.1(rad/s)

Body orientation error < 1.0(rad)

Results: Different behaviors on slope

Results: Standing up Controller simulation results

Results: Finite state machine simulation results

Results: Real-world experiments(flat terrain)

Results: Real-world experiments(slope terrain)

Problem: Linear velocity, Height drift State drift leads to abnormal behaviors

Solution: Exclude states that have drift issues

Results: Real-world experiments(finite state machine)

Results: Real-world experiments(finite state machine)

Problem: Normal estimation noise

Policy trained only with ground truth normal

Solution: Train policy with normal estimator

		Observation		
		No normal	Normal(truth)	Normal(estimate)
Env	Train(slope)			✓
	Test(slope)			✓

ETH zürich

Results: Simulation results(trained with estimator)

Thank you

References

- 1. J. Lee, J. Hwangbo, and M. Hutter, "Robust recovery controller for a quadrupedal robot using deep reinforcement learning," arXiv preprint arXiv:1901.07517, 2019.
- 2. Hwangbo, Jemin et al. "Learning Agile and Dynamic Motor Skills for Legged Robots." Science Robotics 4.26 (2019)
- 3. Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representations in neural networks. arXiv preprint arXiv:1812.07035, 2018.

Q&A

Slope: 36 degrees

Normal estimation

Normal estimation

$$l_1^2 = L_1^2 + a^2 - 2aL_1 \cos\theta_{LH}$$

$$sin\beta = \frac{L_1 sin\theta_{LH}}{l_1}$$

$$l_2^2 = L_2^2 + l_1^2 - 2L_2 l_1 \cos(\theta_{RH} - \beta)$$

$$sin\alpha = \frac{l_1 sin(\theta_{RH} - \beta)}{l_2}$$

Policy without normal observation

Estimation error comparison

