[2]

Printed Pages: 4

322554(22)

BE (5th Semester) Examination, Nov.-Dec., 2018

(New Scheme)

Theory of Computation

Time Allowed: 3 hours

http://www.csvtuonline.com

Maximum Marks: 80

Minimum Pass Marks: 28

Note: (i) Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d).

The figures in the right-hand margin indicate marks.

Unit-l

(a) Define Mealy and Moore machine.

(Turn Over)

TC-165

(b) Construct a DFA equivalent to the NDFA M where transition diagram is given by figure.

(c) Construct a Moore machine equivalent to the Mealy machine M defined by the table :

	a = 0		a = 1	
	State	Output	State	Output
$\begin{array}{c} \rightarrow q_1 \\ q_2 \\ q_3 \\ q_4 \end{array}$	$\begin{array}{c}q_1\\q_4\\q_2\\q_3\end{array}$	1 1 0	$\begin{array}{c}q_2\\q_4\\q_3\\q_1\end{array}$	0 - 1 1 1

Define Myhill Nerode theorem. Explain the properties of FSM. [7]

Unit-II

Write the statement of Arden's theorem.

Construct finite automata equivalent to the regular expression

$$(0 + 1)^* (00 + 11) (0 + 1)^*$$
 [7]

(Continued)

http://www.csvtuonline.com

131

- (c) Construct a regular grammar generating the regular set represented by
 - P = a*b(a+b)*
 - $P = a(a+b)*_{ab}$

[7]

(d) Find the regular expression for the following automation.

[7]

http://www.csvtuonline.com

Unit-III

Define derivation and language.

http://www.csvtuonline.com

TC-165

- [2]
- Let $G = (\{S, C\}, \{a, b\}, P, S)$ (b) (i) where P consists of $S \rightarrow a$ Ca $C \rightarrow a \ Ca \mid b. \ \mathsf{Find} \ L(G).$
 - [4]

If G is $S \to aS \mid bS \mid a \mid b$, find L(G). [3]

(Turn Over)

http://www.csvtuonline.com

141

(c) Construct a reduced grammar equivalent to the grammar

$$S \to aAa, A \to Sb|bCC|DaA$$

 $C \to abb|DD, E \to aC, D \to aDA$ [7]

(d) Construct a grammar like Greibach normal form

$$S \rightarrow AA \mid a, A \rightarrow SS \mid b$$
 [7]

Unit-IV

- Define Npda and Dpda. [2]
 - [7] Explain the acceptance by pda.
 - Construct a pda A accepting the set of all strings over $\{a, b\}$ with equal number of a's and b's.
 - Design a TM that accepts

$$\{0^n \ 1^n | \ n \ge 1\} \tag{7}$$

Unit-V

- [2] Define initial function. 5.
 - Construct a TM that can construct the zero. [7] function Z.
 - [7] Write short notes on:
 - (*i*) Computability
 - A Turing Model for computation
 - (d) Show that f(x, y) = x*y and $f(x, y) = x^y$ is [7] primitive recursive function.

TC-165

[7]

http://www.csvtuonline.com