

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 3_1_2 »

С тудент группы	ИКБО-27-21	Осипов М.А.
Руководитель практики	Ассистент	Морозов В.А.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	6
Описание алгоритма	9
Блок-схема алгоритма	12
Код программы	15
Тестирование	18
ЗАКЛЮЧЕНИЕ	19
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	20

введение

Постановка задачи

Создать объект первого типа, у которого одно целочисленное свойство. Значение данного свойства определяется посредством параметризированного конструктора.

Создать объект второго типа, у которого две целочисленных свойства. Значение данных свойств определяется посредством метода объекта. Реализовать дружественную функцию, которая находит максимальное значение полей объекта первого типа и полей объекта второго типа.

Написать программу:

- 1. Вводит значение для поля объекта первого типа.
- 2. Создает объект первого типа.
- 3. Вводит значения полей для полей объекта второго типа.
- 4. Создает объект второго типа.
- 5. Определяет значения полей объекта второго типа.
- 6. Определяет максимальное значение полей, созданных двух объектов разного типа посредством дружественной функции.
- 7. Выводит полученный результат.

Описание входных данных

Первая строка:

«целое число в десятичном формате»

Вторая строка:

«целое число в десятичном формате» «целое число в десятичном формате»

Описание выходных данных

Первая строка, с первой позиции:

max = «целочисленное значение в десятеричном формате»

Метод решения

Для выполнения задачи потребуется:
-Объекты ввода/вывода - cin/cout потока данных;
-Тип данных integer;
-Условный оператор if;
-Модификаторы доступа public/private;
-Дружественная функция max типа integer;
-Объект а класса А;
-Объект b класса В;
Класс А:
-Поля:
Наименование: А;
Тип: int;
Мод. Доступа: private;
Функционал: Принимает значение для хранения;
-Функционал:
Наименование: A (int p);

Функционал: Конструктор класса;
Мод. Доступа: public;
Наименование: max;
Функционал:Нахождение максимума от двух объектов классов А и В;
Параметры: A a, B b;
Модификатор: friend
Класс В:
-Поля:
Наименование: b1;
Тип: int;
Мод. Доступа: private;
Функционал: Принимает значение для хранения;
Наименование: b2;
Тип: int;
Мод. Доступа: private;
Функционал: Принимает значение для хранения;
-Функционал:
Модификатор доступа public:

Наименование: set;

Параметры: int p1, p2;

Функционал: Задаёт значения переменным b1, b2;

Наименование: max;

Параметры: A a, B b;

Модификаторы: friend;

Функционал: Нахождение максимума от двух объектов классов А и В;

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Конструктор класса: А

Модификатор доступа: public

Функционал: Конструктор класса

Параметры: int p

Алгоритм конструктора представлен в таблице 1.

Таблица 1. Алгоритм конструктора класса А

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение переменной р значения переменной а	Ø	

Класс объекта: В

Модификатор доступа: public

Метод: set

Функционал: Устанавливает значения переменным b1, b2

Параметры: int p1, p2

Возвращаемое значение: void

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода set класса В

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение переменной p1 значения переменной b1	2	
2		Присвоение переменной p2 значения переменной b2	Ø	

Класс объекта: В

Модификатор доступа: public

Метод: тах

Функционал: Нахождение максимума от двух объектов классов А и В

Параметры: A a, B b

Возвращаемое значение: void

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода тах класса В

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инициализация переменной max_b типа integer	2	
2	b.b1 > b.b2		3	
2			4	
3		$max_b = b.b1$	5	
4		$max_b = b.b2$	5	
_	max_b > a.a		6	
5			7	
6		Возврат max_b	Ø	
7		Возврат а.а	Ø	

Функция: main

Функционал: Главная функция программы

Параметры: нет

Возвращаемое значение: integer, (Код возврата)

Алгоритм функции представлен в таблице 4.

Таблица 4. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инициализация переменных p1, p2 типа integer	2	
2		Ввод значения р1	3	
3		Инициализация объекта а класса А		
4		Инициализация объекта b класса В	5	
5		Ввод значения р1, р2	6	
6		b.set(p1, p2)	7	
7		Вывод "max = " max (a, b)	8	
8		Код возврата	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл А.срр

Файл A.h

```
#ifndef A_h
#define A_h

class B;

class A
{
  private:
    int a;
  friend int max( A a, B b);
  public:
    A( int p);
  };
#endif
```

Файл В.срр

```
#include "B.h"
#include "A.h"

void B::set(int p1, int p2)
{
          b1 = p1;
          b2 = p2;
}

int max(A a, B b)
{
          int max_b;
          if(b.b1 > b.b2)
```

Файл B.h

```
#ifndef B_h
#define B_h

class A;

class B
{
  private:
  int b1, b2;
  friend int max( A a, B b);
  public: void set( int p1, int p2);
  };
#endif
```

Файл main.cpp

```
#include <iostream>
#include "A.h"
#include "B.h"

using namespace std;
int main()
{
    int p1, p2;
    cin >> p1;
    A a(p1);
    B b;
```

```
cin >> p1 >> p2;
b.set(p1, p2);
cout << "max = " << max(a, b);
return(0);
}</pre>
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
111	max = 1	max = 1
1 2 3	max = 3	max = 3

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).