Vorlesungsskript

Elektrodynamik

Elektrodynamik Konrad Rösler

Inhaltsverzeichnis

1.	Worum geht es in der Elektrodynamik?	1
	1.1. Plan der Vorlesung	2
2.	Wiederholung: Vektoranalysis im \mathbb{R}^3	3

ELEKTRODYNAMIK Konrad Rösler

1. Worum geht es in der Elektrodynamik?

In der klassischen Mechanik:

fundamentale Konzepte: Länge, Zeit, Masse

→ Trägheit + Gravitation

Newtonsche Bew. gl.:
$$\vec{F} = m \cdot \vec{a}$$
, $\vec{F} = G \cdot \frac{M \cdot m}{r^2} \vec{e}_r$ wobei \vec{r} (t) $\Longrightarrow \vec{a} = \frac{d^2 \vec{r}}{dt^2} = \ddot{\vec{r}}$

comment(Zeichung 2D system mit massepunkt, e eingezeichnet)

Lagrange-Funktion:

→ Wirkung

$$S = \int dt L(\vec{r}, \dot{\vec{r}})$$

N Teilchen $\vec{r}_i(t), i = 1, ..., N$

$$L\!\left(\vec{r}_i, \dot{\vec{r}}_i\right) = \sum_{i=1}^N \frac{1}{2} m_i \big|\dot{\vec{r}}_i\big|^2 - V(\vec{r}_i)$$

$$V(\vec{r}_i) = -\frac{G}{2} \sum_{\substack{i,j=1\\i\neq j}}^N \frac{m_i m_j}{\left|\vec{r}_i - \vec{r}_j\right|}$$

Neue fundamentale Größe:

- elektrische Ladung q (positiv oder negativ)
- gequantelt mit $\underline{\text{Elementarladung }}e$

$$\begin{split} q &= n \cdot e, n \in \mathbb{Z} \\ q &> 0 \ (\text{Proton, Positron}, n = +1) \\ q &< 0 \ (\text{Elektron}, n = -1) \end{split}$$

Coulomb-Gesetz: Kraft zwischen elektrisch geladenen Teilchen

$$\vec{F}_1 = k \cdot q_1 q_2 \frac{\vec{r}_1 - \vec{r}_2}{\left|\vec{r}_1 - \vec{r}_2\right|^3} = -\vec{F}_2$$

comment (Zeichung zweier Punktteilchen, Coloumbgesetz geometrisch $q_1q_2>0$ (Ladungen haben dasselbe Vorzeichen) \Longrightarrow abstoßend $q_1q_2<0$ (Ladungen haben verschiedene Vorzeichen) \Longrightarrow anziehend Was ist k? (Einheitensysteme)

- 1) Gausssche System: k = 1
- 2) SI System: $k = \frac{1}{4\pi\varepsilon_0}$
- 3) Heavyside-Lorentz-System: $k = \frac{1}{4\pi}$

Umrechnen: SI \rightarrow Gauss: $e_0 = \frac{1}{4\pi}$, SI \rightarrow Heavyside: $\varepsilon_0 = 1$

Zusätzliche Realität:

magenetische Felder, elektromagnetische Wellen

→ Feldtheorie (Maxwell's Theorie, erstes Beispiel)

 $\vec{x}_i(t), \quad i=1,...,N$ diskrete Zahl an freiheitsgrade = 3N

 \longrightarrow Elektrondynamik $\vec{E}(t, \vec{x}), \vec{B}(t, \vec{x})$

Betrachte ein Kraftfeld, erzeugt durch N Punktladungen $q_i, 1=1,...,N$ wirkend auf eine Testladung $|q| \ll |q_i|$

$$\Longrightarrow \vec{F} = q\vec{E}(\vec{x}), \quad \vec{E}(\vec{x}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^N q_i \frac{\vec{x} - \vec{x}_i}{\left|\vec{x} - \vec{x}_i\right|^3}$$

das Elektrische Feld

eine fixierte Ladung an \vec{x}_1

$$\vec{E}(\vec{x}, t) = \frac{1}{4\pi\varepsilon_0} q_1 \frac{\vec{x} - \vec{x}_1(t)}{|\vec{x} - \vec{x}_1(t)|^3}$$

comment(Zeichung Punktteilchen, Ladung)

Diese (naive) Zeitabhängigkeit ist empirisch falsch und im Widerspruch zur (speziellen) Relativitätstheorie (SR)

→ Maxwell's Theorie, kompatibel mit SR

1.1. Plan der Vorlesung

- 1. Wiederholung
 - Euklidische Geometrie im \mathbb{R}^3 , Vektoranalysis (Differentialformen)
- 2. Spezielle Relativitätstheorie
 - (Psuedo-) Euklidische Geometrie des Minkowski-Raum $\mathbb{R}^{3,1}$
- 3. Maxwell's Theorie
- 4. Anwendungen
 - 1. Elektrostatik
 - 2. Magnetostatik
 - 3. Elektro- und Magnetostatik in Materie

ELEKTRODYNAMIK Konrad Rösler

2. Wiederholung: Vektoranalysis im \mathbb{R}^3

Der euklidische \mathbb{R}^3 : $\vec{x} = \vec{r} = (x^1, x^2, x^3) = (x^i), \quad i = 1, 2, 3$

Metrik:

$$\langle \vec{x}_1 - \vec{x}_2, \vec{x}_1 - \vec{x}_2 \rangle = \left| \vec{x}_1 - \vec{x}_2 \right|^2 = \sum_{i=1}^3 (x_1^i - x_2^i) (x_1^i - x_2^i)$$

Geometrie invariant unter Rotationen

$$x^{i} \longrightarrow {x'}^{i} = \sum_{j=1}^{3} R^{i}_{j} x^{j} \underbrace{=}_{\text{Einstein Konvention}} R^{i}_{j} x^{j}$$

$$|\vec{x}|^2 = \delta_{ij} x^i x^j$$
 wobei $\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

$$\begin{split} \left|\vec{x}'\right|^2 &= \delta_{ij} {x'}^i {x'}^j = \delta_{ij} R_k^i x^k R_l^j x^l \\ &= \left(\delta_{ij} R_k^i R_l^j\right) x^k x^l = \left|\vec{x}\right|^2 = \delta_{kl} x^k x^l \\ \Longrightarrow \delta_{ij} R_k^i R_l^j = \delta_{kl} \end{split}$$

Matrix-Notation: $R = (R_j^i), \mathbb{1} = (\delta_{ij})$

$$\begin{split} \delta_{kl} &= R_k^i \delta_{ij} R_l^j \Longrightarrow \mathbb{1} = R^T R \\ &\Longrightarrow \det(R) = \pm 1 \end{split}$$

Rotationsgruppe: SO(3) : det(R) = +1

_

Im \mathbb{R}^3 hat man das **Kreuz-Produkt**

Epsilon-Tensor / Levi-Civita-Symbol

$$\varepsilon^{ijk}, \varepsilon_{ijk}: \quad \varepsilon^{123} = -\varepsilon^{213} = \varepsilon^{231} = 1$$

total antisymmetrisch, da $\varepsilon^{112}=0=-\varepsilon^{112}$

 \implies invariant unter Rotation / SO(3)

$$\varepsilon^{ijk} \longrightarrow R_m^i R_n^j R_l^K \varepsilon^{mnl} \underset{\det(R)=1}{\overset{}{=}} \varepsilon^{ijk}$$

Im euklidischen \mathbb{R}^3 darf man nur folgende Objekte benutzen:

$$\delta_{ij}, \delta^{ij}, \varepsilon^{ijk}, \varepsilon_{ijk}$$

Skalarprodukt: $\langle \vec{x}, \vec{y} \rangle = \delta_{ij} x^i y^j$

<u>Kreuzprodukt:</u> $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}, (\vec{u} \times \vec{v})^i := \delta^{il} \varepsilon_{lik} u^j v^k$

Skalare/Funktionen auf \mathbb{R}^3 : $F = F(\vec{x}) \in \mathbb{R}$

Vektorfeld auf RR^3: $\vec{V} = \vec{V}(\vec{x})$

<u>Gradient:</u> $\partial_i := \frac{\partial}{\partial x^i}$, Skalar \longrightarrow Vektor

$$\vec{\nabla} = \operatorname{grad} F, \quad (\operatorname{grad} F)^i = \delta^{ij} \partial_j F = \left(\frac{\partial F}{\partial x^1}, \frac{\partial F}{\partial x^2}, \frac{\partial F}{\partial x^3} \right)$$

<u>Divergenz</u>: Vektor → Skalar

$$\begin{split} div \Big(\vec{V} \Big) &= \vec{\nabla} \cdot \vec{V} = \partial_i V^i \\ &= \frac{\partial V^1}{\partial x^1} + \frac{\partial V^2}{\partial x^2} + \frac{\partial V^3}{\partial x^3} \end{split}$$

<u>Rotation</u>: Vektor → Vektor

$$rot \Big(\vec{V} \Big) = \vec{\nabla} \times \vec{V} \Longrightarrow (rot V)^i = \varepsilon^{ijk} \partial_j V_k$$

Skalare \xrightarrow{grad} Vektoren \xrightarrow{rot} Vektoren \xrightarrow{div} Skalare

Identitäten (Kettenkomplex):

$$rot \circ qrad = 0$$

$$div \circ rot = 0$$

Differential formen im \mathbb{R}^3 :

• 0-Formen: Skalar

• 1-Formen: "dual" zu Vektoren, $A_i(\vec{x})$

[Im Euklidischen:
$$V_i(\vec{x}) = \delta_{ij}V^j(\vec{x})$$
]

• 2-Formen: Antisymmetrischer Tensor

$$B_{ij}(\vec{x}) = -B_{ij}(\vec{x})$$

• 3-Formen: $C_{ijk}(\vec{x}) = -C_{ikj}(\vec{x}) = \dots$ (wie Levi-Civita)

Effiziente indexfreie Notation: Basis-Elemente dx^i

• 1-Form: $A = A_i dx^i$

• 2-Form: $B=\frac{1}{2}B_{ij}dx^i\wedge dx^j$ • 3-Form: $C=\frac{1}{3!}C_{ijk}dx^i\wedge dx^j\wedge dx^k$

wobei $dx^i \wedge dx^j = -dx^j \wedge dx^i$

Wedge Product:

$$A\wedge B = \left(A_i dx^i\right) \wedge \left(\frac{1}{2} B_{jk} dx^j \wedge dx^k\right) = \frac{1}{2} A_i B_{jk} dx^i \wedge dx^j \wedge dx^k \ (\text{3-Form})$$

p-Form A, q-Form B

$$\implies A \wedge B(p+q) - \text{Form}$$

$$A \wedge B = (-1)^{pq} B \wedge A \text{ (gradiert Kommutativ)}$$

$$(A \wedge B) \wedge C = A \wedge (B \wedge C) \text{ (assoziativ)}$$

deRham Differntial:

$$d := \partial_i dx^i \wedge$$

Beispiel:

$$\begin{split} dA &= d \big(A_j dx^j \big) \\ &= \partial_i dx^i \wedge \big(A_j dx^j \big) \\ &= \partial_i A_j dx^i \wedge dx^j \\ &= \frac{1}{2} \big(\partial_i A_j - \partial_j A_i \big) \underbrace{dx^i \wedge dx^j}_{-dx^j \wedge dx^i} \end{split}$$

 $\Omega^p: p\text{-}\mathsf{Formen},\, d:\Omega^p \longrightarrow \Omega^{p+1},\, d^2=0$ (Übungsaufgabe)

Hodge Operator:

$$\star: \Omega^p \longleftrightarrow \Omega^{3-p}$$
$$\star: \Omega^1 \longleftrightarrow \Omega^2$$
$$\star: \Omega^3 \longleftrightarrow \Omega^0$$

A ist 1-Form, B ist 2-Form, C ist 3-Form

$$\star A = \frac{1}{2} \varepsilon_{ij}^k A_k dx^i \wedge dx^j$$

$$\star B = \frac{1}{2} \varepsilon_i^{jk} B_{jk} dx^i$$

$$\star C = \frac{1}{3!} \varepsilon^{ijk} C_{ijk}$$

Wir erweitern das Diagramm von vorher:

Dieses Diagramm kommutiert. (Alle Pfade, die zwei Punkte verbinden, sind äquivalent.)

$$d^2 = 0 \Longleftrightarrow rot \circ grad = 0, div \circ rot = 0$$