Linguagens Regulares

Introdução

Hierarquia de Chomsky

Introdução

- Conjuntos e expressões regulares são notações alternativas utilizadas para representar essa classe de linguagens
- A classe mais restrita dentro da Hierarquia de Chomsky

Definição

 Conjuntos regulares sobre um alfabeto finito Σ são linguagens definidas recursivamente da seguinte forma:

- − \varnothing é um conjunto regular sobre Σ ;
- { σ }, \forall σ ∈ Σ, é um conjunto regular sobre Σ.

Definição

• Se X e Y são conjuntos regulares sobre Σ , então também são conjuntos regulares sobre Σ :

```
- X U Y;
```

- X · Y, também denotado XY;
- X*

- Seja L = $\{0^m \ 1^n \ | \ m \ge 0, \ n \ge 0\}$ sobre $\Sigma = \{0, \ 1\}$
 - concatenação de um número arbitrário de símbolos "0" (incluindo nenhum) com um número também arbitrário de símbolos "1" (incluindo nenhum)
 - $-L = \{ \epsilon, 0, 1, 00, 01, 11, ... \}$

Linguagem é regular?

Considerem-se as linguagens sobre o mesmo

```
- L1 = \{0\}

- L2 = \{1\}

- L3 = \{0^i \mid i \ge 0\}

- L4 = \{1^i \mid i \ge 0\}

- L5 = \{0^p \mid 1^q \mid p \ge 0, q \ge 0\}
```

- L1 e L2 são conjuntos regulares sobre Σ, por definição
- L3 e L4 são obtidos a partir de L1 e L2
 - L3 = L1*
 - L4 = L2*
- L5 = L pode ser expresso pela concatenação dos conjuntos L3 e L4

- A linguagem N formada pelos números naturais decimais é um conjunto regular sobre o alfabeto dos algarismos arábicos
- Seja D = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- então

$$M = DD^*$$

Expressões regulares

- Visa obter maior concisão e facilidade de manipulação
 - Desenvolvido por Kleene na década 1950
 - eliminação do uso dos símbolos "{" e "}", bem como a substituição do símbolo de união ("U") por um símbolo "+" ou "|"

Precedência	Operador	Representação
Mais alta	Fechamento	x^*
Intermediária	Concatenação	$x \cdot y$ ou xy
Mais baixa	União	$x \mid y \text{ ou } x + y$

Expressões Regulares

Exemplos

```
- (ab | c^*) = ((ab) | c^*) = ((ab) | (c^*))
```

- representa o conjunto {ab, ε, c, cc, ccc...}
- a(b | c)*
 - representa o conjunto {a, ab, ac, abc, abb, acc, ...}
- (ab | c)*
 - representa o conjunto { ε , ab, c, abc, cab, abab, cc, ...}

Expressões Regulares

- Abreviação
 - Uma abreviação muito comum consiste na substituição da expressão regular xx* por x*
- L = $\{0^m 1^n \mid m \ge 0, n \ge 0\}$ pode ser reescrita como ((0)* (1)*), ou simplesmente, 0*1*
- Para $m \ge 0$ e $n \ge 1$, a expressão seria 0*11*
- 0*11* = 0*1*1 = 0*1*

Exercícios

 Obter expressões regulares que representam as linguagens cujas sentenças estão descritas a seguir

Exercícios

- 1. Começam com aa;
- 2. Não começam com aa;
- 3. Terminam com bbb;
- 4. Não terminam com bbb;
- 5. Contém a subcadeia aabbb;
- 6. Possuem comprimento maior ou igual a 3;
- 7. Possuem comprimento menor ou igual a 3;
- 8. Possuem comprimento par;
- 9. Possuem comprimento ímpar;
- 10. Possuem quantidade par de símbolos a;
- 11. Possuem quantidade ímpar de símbolos b.