8.47, s.21	Crivet Solt
m. ~ V2	m ₁ =60 kg a) Sluthastighed has m ₁ & m ₂ m ₂ = 120 kg b) friktionskralten under glidningsfasen
m, V _o	Vo=40 s c) Cylidtid
1 1 00 a	uk= 0.40 d) APm & APm2 e) Ax under glidning
	f) Hur långt raller vosnen under glidningsfosen 9) Glidning På vagnen
	h) ΔK_{m_1} 4 ΔK_{m_2}
Losning	
a) Inga externa kra	Over. Friltion finns men ar includerat i systemet.
$P_i = m_i V_0$ $P_f = (m_1 + m_2)V \Rightarrow V = V$	$\frac{m_1}{m_1+m_2}$ $V_0 = 1.38 \frac{m_2}{5}$
b) F= uk·N = uk·m	
C) Konst retardation. $a = \frac{f}{m} = \frac{235}{60}$	Eller kongrace av vagnen.
△V = Q·△t <=> 133-	$40 = \frac{-235}{60} \Delta t \iff \Delta t = 0.685$
d) APm = (V-Vo)m = -10 APm = (V-O)m = 16	60 <u>ksm</u>
	50 S
e) v _f · v _i = 2 a s = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Vf=133	$\frac{V_0^2 - V_1^2}{2\Omega} = 1.81 \text{ m}$
$Q = \frac{-235}{60} \frac{\text{m}}{\text{s}^2}$	
f) Vf Vi = 2 CLS	
$V_{f} = 1.33$ $V_{i} = 0$ $\Delta x = ($	O 45 m
$A = \frac{235}{120}$)
9) Hur muchet langue	fram an vagnen har vi glidit?
△×2°=1.81-0.45=1.36	
e) $\triangle K_{m_1} = \frac{1}{2} M_1 V f^2 - \frac{1}{2} M$	nV ² =-4267 J De återstående Joulen?
$\triangle K m_2 = \frac{1}{2} M_2 V f^2 - \frac{1}{2} M_2$	$V_i^2 = \frac{1}{2} M_2 V_f^2 = 1067 J$ Arbete som friktionen utratiar? $f \cdot \Delta x' = 320 N$
	1. W. J. J. W. IN

