

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

«Технологии разведочного анализа и обработки данных»

по курсу «Технологии машинного обучения» Лабораторная работа №1 Вариант 5

> Выполнил: студент группы ИУ5 – 62Б Гринин О.Е. подпись, дата

Проверил: преподаватель кафедры ИУ5 Гапанюк Ю.Е. подпись, дата

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
In [3]:
data = pd.read_csv('data/heart.csv', sep=",")
In [4]:
data.head()
Out[4]:
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
C	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
2	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [5]:

```
data.shape
```

Out[5]:

(303, 14)

In [14]:

data.columns

Out[14]:

```
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
    'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
    dtype='object')
In [16]:
```

data.corr()

Out[16]:

	age	sex	ср	trestb ps	chol	fbs	restec g	thalac h	exang	oldpe ak	slope	ca	thal	target
age	1.000 000	- 0.098 447	- 0.068 653	0.279 351	0.213 678	0.121 308	- 0.116 211	- 0.398 522	0.096 801	0.210 013	- 0.168 814	0.276 326	0.068 001	- 0.225 439
sex	- 0.098 447	1.000 000	- 0.049 353	- 0.056 769	- 0.197 912	0.045 032	- 0.058 196	- 0.044 020	0.141 664	0.096 093	- 0.030 711	0.118 261	0.210 041	- 0.280 937
ср	- 0.068 653	- 0.049 353	1.000 000	0.047 608	- 0.076 904	0.094 444	0.044 421	0.295 762	- 0.394 280	- 0.149 230	0.119 717	- 0.181 053	- 0.161 736	0.433 798
trestb ps	0.279 351	- 0.056 769	0.047 608	1.000 000	0.123 174	0.177 531	- 0.114 103	- 0.046 698	0.067 616	0.193 216	- 0.121 475	0.101 389	0.062 210	- 0.144 931
chol	0.213 678	- 0.197 912	- 0.076 904	0.123 174	1.000 000	0.013 294	- 0.151 040	- 0.009 940	0.067 023	0.053 952	- 0.004 038	0.070 511	0.098 803	- 0.085 239
fbs	0.121 308	0.045 032	0.094 444	0.177 531	0.013 294	1.000 000	- 0.084 189	- 0.008 567	0.025 665	0.005 747	- 0.059 894	0.137 979	- 0.032 019	- 0.028 046
reste cg	- 0.116 211	- 0.058 196	0.044 421	- 0.114 103	- 0.151 040	- 0.084 189	1.000 000	0.044 123	- 0.070 733	- 0.058 770	0.093 045	- 0.072 042	- 0.011 981	0.137 230
ich.		- 0.044 020	0.295 762			- 0.008 567	0.044 123	1.000 000		- 0.344 187	0.386 784	- 0.213 177	- 0.096 439	0.421 741
exang	0.096 801	0.141 664	- 0.394 280	0.067 616	0.067 023	0.025 665	- 0.070 733	- 0.378 812	1.000 000	0.288 223	- 0.257 748	0.115 739	0.206 754	- 0.436 757
	0.210 013	0.096 093	- 0.149 230	0.193 216	0.053 952	0.005 747	- 0.058 770	- 0.344 187	0.288 223	1.000 000	- 0.577 537	0.222 682	0.210 244	- 0.430 696
	- 0.168 814	- 0.030 711	0.119 717	- 0.121 475	- 0.004 038	- 0.059 894	0.093 045	0.386 784	- 0.257 748	- 0.577 537	1.000 000	- 0.080 155	- 0.104 764	0.345 877
ca		0.118 261	- 0.181 053		0.070 511	0.137 979	- 0.072 042	- 0.213 177	0.115 739	0.222 682	- 0.080 155	1.000 000	0.151 832	- 0.391 724
thal	0.068 001	0.210 041	- 0.161 736	0.062 210	0.098 803	- 0.032 019	- 0.011 981	- 0.096 439	0.206 754	0.210 244	- 0.104 764	0.151 832	1.000 000	- 0.344 029

	age	sex	ср	trestb ps	chol	fbs	restec g		exang	oldpe ak	slope	ca	thal	target
targe t	0.225	0.280	798		- 0.085 239	- 0.028 046		0.421 741	- 0.436 757	0.430	0.345 877		0.344	1.000 000

In [9]:

data.isnull().sum()

Out[9]:

age 0

sex 0

cp 0

trestbps 0

chol 0

fbs 0

restecg 0

thalach 0

exang 0

oldpeak 0

slope 0

ca 0

thal 0

target 0

dtype: int64

Проверили пустые значения

In [15]:

data.corr()

Out[15]:

	age	sex	ср	trestb ps	chol	fbs	restec g	thalac h	exang	oldpe ak	slope	ca	thal	target
age	O(O(C)		0.068	_		0.121 308	- 0.116 211	0.398		013	0.168		001	- 0.225 439
sex	- 0.098 447	1.000 000			0.197	0.045 032		0.044		0.096 093	- 0.030 711		041	- 0.280 937

	age	sex	ср	trestb ps	chol	fbs	restec g	thalac h	exang	oldpe ak	slope	ca	thal	target
ср	- 0.068 653	- 0.049 353	1.000 000	0.047 608	- 0.076 904	0.094 444	0.044 421	0.295 762	- 0.394 280	- 0.149 230	0.119 717	- 0.181 053	- 0.161 736	0.433 798
trestb ps	0.279 351	- 0.056 769	0.047 608	1.000 000	0.123 174	0.177 531	- 0.114 103	- 0.046 698	0.067 616	0.193 216	- 0.121 475	0.101 389	0.062 210	- 0.144 931
chol	0.213 678	- 0.197 912	- 0.076 904	0.123 174	1.000 000	0.013 294	- 0.151 040	- 0.009 940	0.067 023	0.053 952	- 0.004 038	0.070 511	0.098 803	- 0.085 239
fbs		0.045 032	0.094 444	0.177 531	0.013 294	1.000 000	- 0.084 189	- 0.008 567	0.025 665	0.005 747	- 0.059 894	0.137 979	- 0.032 019	- 0.028 046
reste cg	- 0.116 211	- 0.058 196	0.044 421	- 0.114 103	- 0.151 040	- 0.084 189	1.000 000	0.044 123	- 0.070 733	- 0.058 770	0.093 045	- 0.072 042	- 0.011 981	0.137 230
thala ch	- 0.398 522	- 0.044 020	0.295 762	- 0.046 698	- 0.009 940	- 0.008 567	0.044 123	1.000 000	- 0.378 812	- 0.344 187	0.386 784	- 0.213 177	- 0.096 439	0.421 741
exang	0.096 801	0.141 664	- 0.394 280	0.067 616	0.067 023	0.025 665	- 0.070 733	- 0.378 812	1.000 000	0.288 223	- 0.257 748	0.115 739	0.206 754	- 0.436 757
	0.210 013	0.096 093	- 0.149 230	0.193 216	0.053 952	0.005 747		- 0.344 187	0.288 223	1.000 000	- 0.577 537	0.222 682	0.210 244	- 0.430 696
	- 0.168 814	- 0.030 711	0.119 717	- 0.121 475	- 0.004 038	- 0.059 894	0.093 045	0.386 784	- 0.257 748	- 0.577 537	1.000 000	- 0.080 155	- 0.104 764	0.345 877
ca		0.118 261	- 0.181 053	0.101 389	0.070 511	0.137 979	- 0.072 042	- 0.213 177	0.115 739	0.222 682	- 0.080 155	1.000 000	0.151 832	- 0.391 724
thal		0.210 041	- 0.161 736	0.062 210	0.098 803	- 0.032 019	- 0.011 981	- 0.096 439	0.206 754	0.210 244	- 0.104 764	0.151 832	1.000 000	- 0.344 029
lt		- 0.280 937	0.433 798	- 0.144 931	- 0.085 239	- 0.028 046	0.137 230	0.421 741	- 0.436 757	- 0.430 696	0.345 877	- 0.391 724	- 0.344 029	1.000 000

In [12]:

del data['B']

In [22]:

sns.heatmap(data.corr(), annot=True, fmt='.3f')

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x261d2c4a188>

In [14]:

del data['DIS']

In [15]:

del data['CHAS']

In [16]:

data.corr()

Out[16]:

	CRIM	ZN	INDUS	NOX	RM	TAX	PTRATIO	LSTAT	MEDV
CRIM	1.000000	-0.200469	0.406583	0.420972	-0.219247	0.582764	0.289946	0.455621	-0.388305
ZN	-0.200469	1.000000	-0.533828	-0.516604	0.311991	-0.314563	-0.391679	-0.412995	0.360445
INDUS	0.406583	-0.533828	1.000000	0.763651	-0.391676	0.720760	0.383248	0.603800	-0.483725
NOX	0.420972	-0.516604	0.763651	1.000000	-0.302188	0.668023	0.188933	0.590879	-0.427321
RM	-0.219247	0.311991	-0.391676	-0.302188	1.000000	-0.292048	-0.355501	-0.613808	0.695360
TAX	0.582764	-0.314563	0.720760	0.668023	-0.292048	1.000000	0.460853	0.543993	-0.468536
PTRATIO	0.289946	-0.391679	0.383248	0.188933	-0.355501	0.460853	1.000000	0.374044	-0.507787

	CRIM	ZN	INDUS	NOX	RM	TAX	PTRATIO	LSTAT	MEDV
LSTAT	0.455621	-0.412995	0.603800	0.590879	-0.613808	0.543993	0.374044	1.000000	-0.737663
MEDV	-0.388305	0.360445	-0.483725	-0.427321	0.695360	-0.468536	-0.507787	-0.737663	1.000000

In [19]:

fig, ax = plt.subplots(figsize = (10, 10))

sns.scatterplot(ax = ax, x = 'MEDV', y = 'INDUS', data = data)

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x2b30641f808>

In [20]:

sns.pairplot(data)

Out[20]:

<seaborn.axisgrid.PairGrid at 0x2b30647d348>

In []: