Combinatoria

Ejercicio 1. Una apuesta de la Lotería Primitiva consiste en marcar seis números entre 1 y 49. El sorteo se realiza extrayendo 6 de los 49 números, y un séptimo número llamado complementario.

- 1. ¿Cuántas apuestas distintas pueden realizarse?.
- 2. ¿De cuántas maneras pueden acertarse los seis números de la combinación ganadora?.
- 3. ¿De cuántas maneras pueden acertarse cinco números más el complementario de la combinación ganadora?.
- 4. ¿De cuántas maneras pueden acertarse cinco números de la combinación ganadora (sin el complementario)?.
- 5. ¿De cuántas maneras pueden acertarse cuatro números de la combinación ganadora?.
- 6. ¿De cuántas maneras pueden acertarse tres números de la combinación ganadora?.
- 7. ¿De cuántas maneras pueden acertarse dos números de la combinación ganadora?.
- 8. ¿De cuántas maneras puede acertarse un número de la combinación ganadora?.
- 9. ¿De cuántas maneras puede no acertarse ningún número de la combinación ganadora?.

Ejercicio 2. Sea p un número primo. Prueba que si $a, b \in \mathbb{Z}_p$ entonces $(a+b)^p = a^p + b^p$. Comprueba que si m no es primo, entonces $(a+b)^m$ y $a^m + b^m$ son generalmente distintos en \mathbb{Z}_m .

Ejercicio 3. Ocho miembros de un equipo de baloncesto deben alojarse en un hotel. El hotel dispone de una habitacion triple, dos dobles y una individual. ¿De cuántas formas pueden repartirse en las distintas habitaciones?.

Supongamos además que de los ocho miembros hay dos que son hermanos y se alojan siempre juntos. ¿De cuántas formas pueden entonces repartirse?.

Ejercicio 4. Demuestra que si elegimos 501 números del conjunto $\{1, 2, 3, \dots, 1000\}$, debe haber al menos dos que sean primos relativos.

Ejercicio 5. Se eligen 10 números distintos del conjunto $\{1, 2, \cdots, 100\}$. Comprueba que existen al menos 2 tales que $|\sqrt{x} - \sqrt{y}| \le 1$.

Ejercicio 6. Tenemos tres cajas, y 24 bolas, 10 de las cuales son rojas, 8 son azules y 6 verdes. ¿De cuántas formas diferentes podemos repartir las bolas en las cajas?.

Ejercicio 7. ¿Cuántos números binarios de 6 cifras no contienen la secuencia 101?

Ejercicio 8. Comprueba las siguientes identidades con números combinatorios:

1.
$$\sum_{k=0}^{n} {n \choose k} = 2^n$$

2.
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

3.
$$\sum_{k=0}^{\left[\frac{n}{2}\right]} {n \choose 2k} = \sum_{k=0}^{\left[\frac{n-1}{2}\right]} {n \choose 2k+1} = 2^{n-1}$$

4.
$$\sum_{k=0}^{n} 2^{k} \binom{n}{k} = 3^{n}$$

5.
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

6.
$$\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i}$$
 (Indicación: $(1+x)^n (1+x)^m = (1+x)^{n+m}$).

Demuestra que dado un conjunto con n elementos, entonces tiene el mismo número de subconjuntos con cardinal par que subconjuntos con cardinal impar.

Ejercicio 9. Se lanzan tres dados indistinguibles. ¿Cuántos posibles resultados pueden salir?. ¿Y si se lanzan n dados?.

Ejercicio 10. En una bocadillería, cada bocadillo debe incluir al menos uno de los siguientes ingredientes: jamón, queso, tomate, lomo, lechuga y salmón. ¿Cuántos bocadillos distintos podemos elegir?.

Ejercicio 11. Calcula cuantos números con tres cifras significativas:

- 1. no son divisibles por 3,7 ni 11.
- 2. son divisibles por 3 y 7.
- 3. son divisibles por 3 y 11.
- 4. son divisibles por 7 y 11.
- 5. son divisibles por 3, 7 y 11.

Ejercicio 12. ¿De cuántas formas se pueden ordenar las letras de la palabra CANCAN? ¿Y si no queremos que haya dos letras iguales consecutivas?.

Ejercicio 13. ¿De cuántas formas podemos agrupar a 20 personas en parejas?. Y si esas 20 personas son 10 hombres y 10 mujeres, ¿de cuántas formas podemos agruparos en parejas *hombre-mujer*?

Ejercicio 14. Sean $X = \{1, 2, 3, 4, 5\}$, $Y = \{1, 2, 3, 4, 5, 6, 7\}$ y $Z = \{1, 2\}$. ¿Cuántas aplicaciones hay de X en Y? ¿Cuántas de esas son inyectivas? ¿Cuántas hay de X en Z? ¿Cuántas son sobreyectivas?

Ejercicio 15. ¿Cuántos números menores que 10000 hay cuyas cifras sumen 9?. ¿Y cuyas cifras sumen 15?. ¿Y cuyas cifras sumen 25?.

Ejercicio 16. ¿De cuántas formas podemos ordenar los números del 1 al 10 de forma que ninguno aparezca en su posición natural?

Ejercicio 17. Sea X un conjunto de 17 números naturales (mayores que uno), ninguno de los cuales es divisible por un número primo mayor que 10. Demuestra que hay al menos dos elementos $x, y \in X$ tales que $x \cdot y$ es un cuadrado perfecto.

Ejercicio 18. Calcula el número de soluciones enteras de la ecuación x + y + z + t = 25 si:

1.
$$x \ge 0, y \ge 0, z \ge 0, t \ge 0$$
.

- 2. $x \ge 2, y \ge 3, z \ge 4, t > 3$.
- 3. $x \ge -2$, $y \ge -4$, $z \ge 1$, $t \ge -1$.
- 4. $1 \le x \le 7, y \ge 2, z \ge 1, t \ge 0$.
- 5. $2 \le x \le 7, -1 \le y \le 5, z \le 0, t \ge 1.$
- 6. $2 \le x \le 8, 0 \le y \le 6, -2 \le z \le 7$.

Ejercicio 19. Sea s(n, k) el número de subconjuntos del conjunto $\{1, 2, \dots, n\}$ que tienen cardinal k y que no contienen dos números consecutivos. Demuestra que:

- 1. s(n, k) = s(n-2, k-1) + s(n-1, k)
- 2. $s(n, k) = \binom{n-k+1}{k}$.

Ejercicio 20. ¿Cuántos números positivos hay con las cifras en orden estrictamente decreciente?.

Ejercicio 21. Si queremos hacer un dominó que vaya desde 0 hasta n, ¿cuántas fichas necesitaremos?.

Ejercicio 22. Queremos formar un comité de 12 personas a escoger entre 10 hombres y 10 mujeres.

- 1. ¿De cuántas formas podemos hacerlo?
- 2. ¿Y si queremos que haya igual número de hombres que de mujeres?.
- 3. ¿Y si queremos que haya un número par de hombres?
- 4. ¿Y si queremos que haya más mujeres que hombres?.

Ejercicio 23. ¿Cuántos números de cinco dígitos (en base 10) empiezan por 4, terminan en 5 y sus cifras suman 18?

Ejercicio 24. Considerando los números que escritos en base 3 tienen seis dígitos ¿Cuántos de ellos tienen exactamente dos dígitos iguales a 0?

Ejercicio 25. Consideramos las letras de la palabra SOCIOLOGIA

- 1. ¿De cuántas formas distintas podemos ordenarlas?
- 2. ¿En cuántas ordenaciones aparecen la "A" y la "G" juntos (bien de la forma AG, bien de la forma GA)?
- 3. ¿En cuántas ordenaciones aparecen las tres letras "O" juntas?
- 4. ¿Cuántas ordenaciones hay en las que las dos letras "I" no estén juntas?.
- 5. ¿En cuántas ordenaciones están todas las vocales juntas?
- 6. ¿En cuántas aparecen juntas una "I" y una "A"?
- 7. Y de estas últimas, ¿cuántas tienen además las tres letras "O" juntas?

Ejercicio 26. Disponemos de una partida de 100 discos compactos, entre los que hay 5 defectuosos. ¿De cuantas formas pueden elegirse cuatro de forma que haya más defectuosos que no defectuosos?.

Ejercicio 27. Las formas distintas en las que 12 bolas iguales pueden repartirse entre tres cajas numeradas son

a)
$$\binom{12}{3}$$
 b) $\binom{14}{2}$ c) $\binom{12}{3} \cdot 3!$ d) $\binom{15}{3}$

Ejercicio 28. ¿Cuántos números en base 3 tienen exactamente cinco cifras?

a) 3^4 b) 3^5 c) $2 \cdot 3^4$ d) $5 \cdot 3$

Ejercicio 29. Disponemos de 6 bolas azules, 6 bolas rojas y 6 bolas blancas. ¿De cuántas formas es posible elegir 9 bolas? ¿Y 12?

Ejercicio 30. En todos los apartados de este ejercicio se supone que todos los objetos mencionados caben en cualquiera de las cajas mencionadas.

- 1. ¿De cuántas formas podemos colocar 20 objetos idénticos en 10 cajas distintas, si permitimos que algunas cajas puedan quedar vacías?
- 2. ¿De cuántas formas podemos colocar 20 objetos idénticos en 10 cajas idénticas, si permitimos que algunas cajas puedan quedar vacías?
- 3. ¿De cuántas formas podemos colocar 20 objetos idénticos en 10 cajas idénticas, si no permitimos que queden cajas vacías?
- 4. ¿De cuántas formas podemos colocar 20 objetos idénticos en 10 cajas distintas, si no permitimos que queden cajas vacías?
- 5. ¿De cuántas formas podemos colocar 20 objetos distintos en 10 cajas idénticas, si ninguna caja puede quedar vacía?
- 6. ¿De cuántas formas podemos colocar 20 objetos distintos en 10 cajas idénticas, si permitimos que algunas cajas puedan quedar vacías?
- 7. ¿De cuántas formas podemos colocar 20 objetos distintos en 10 cajas distintas, si permitimos que algunas cajas puedan quedar vacías?
- 8. ¿De cuántas formas podemos colocar 20 objetos distintos en 10 cajas distintas, si ninguna caja puede quedar vacía?