R PROGRAMMING Part 2

ผู้ช่วยศาสตราจารย์ ดร. อัชฌาณัท รัตนเลิศนุสรณ์

สาขาสถิติประยุกต์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

สารบัญ

Contents

- การสร้างกราฟด้วยคำสัง plot
- การสร้างตัวเลขสุ่มและการสุ่มตัวอย่าง
- การหาความน่าจะเป็นของตัวแปรสุ่ม
- การหาความน่าจะเป็นสะสมของตัวแปรสุ่ม
- การหาตำแหน่งของตัวแปรสุ่มเมื่อทราบความน่าจะเป็นสะสม
- การหาฟังก์ชันความน่าจะเป็นของตัวแปรสุ่ม
- การจำลองค่าทางสถิติ

ฟังก์ชัน plot() สามารถใช้สร้างกราฟดังนี้

ฟังก์ชัน plot() สามารถใช้สร้างกราฟดังนี้

• ฟังก์ชัน par () ใช้สำหรับกำหนดค่าพารามิเตอร์ของรูปกราฟ ตัวอย่างการใช้ฟังก์ชัน

> par(mfrow=c(2,2))

กำหนดให้แสดงรูปกราฟจำนวน 4 รูป

• ตัวอย่างการใช้ฟังก์ชัน par() และ plot()

```
> par(mfrow=c(2,2))
>plot(x.sort,dnorm(x.sort),type='l',xlab='z',
ylab='f(z)',main='z is N(0,1)')
>plot(x.sort,dnorm(x.sort),type='p',xlab='z',
ylab='f(z)',main='z is N(0,1)')
>plot(x.sort,dnorm(x.sort),type='s',xlab='z',
ylab='f(z)',main='z is N(0,1)')
>plot(x.sort,dnorm(x.sort),type='h',xlab='z',
ylab='f(z)',main='z is N(0,1)')
```


- เมื่อต้องการใช้ค่าพารามิเตอร์ของรูปกราฟที่โปรแกรม R กำหนดให้
 คือวาดรูปกราฟได้ 1 รูป ให้ใช้คำสั่งดังนี้
- > par()
- # ให้แสดงรูปกราฟ 1 รูปตามที่โปรแกรม R กำหนดมาให้

โปรแกรม R มีการแจกแจงความน่าจะเป็นพื้นฐานดังนี้

Distribution		Functions			
Beta	pbeta	qbeta	dbeta	rbeta	
Binomial	pbinom	qbinom	dbinom	rbinom	
Cauchy	pcauchy	qcauchy	dcauchy	rcauchy	
Chi-Square	pchisq	qchisq	dchisq	rchisq	
Exponential	pexp	qexp	dexp	rexp	
F	pf	qf	df	rf	
Gamma	pgamma	qgamma	dgamma	rgamma	
Geometric	pgeom	qgeom	dgeom	rgeom	
Hypergeometric	phyper	qhyper	dhyper	rhyper	
Logistic	plogis	qlogis	dlogis	rlogis	
Log Normal	plnorm	qlnorm	dlnorm	rlnorm	
Negative Binomial	pnbinom	qnbinom	dnbinom	rnbinom	
Normal	pnorm	qnorm	dnorm	rnorm	
Poisson	ppois	qpois	dpois	rpois	
Student t	pt	qt	dt	rt	
Studentized Range	ptukey	qtukey	dtukey	rtukey	
Uniform	punif	qunif	dunif	runif	
Weibull	pweibull	qweibull	dweibull	rweibull	
Wilcoxon Rank Sum Statistic	pwilcox	qwilcox	dwilcox	rwilcox	
Wilcoxon Signed Rank Statisti	c psignrank	qsignrank	dsignrank	rsignrank	

- ทุกการแจกแจงจะมี prefix นำหน้าดังนี้
- р สำหรับหาความน่าจะเป็น และความน่าจะเป็นสะสม
- q สำหรับหาตำแหน่งที่ตรงกับความน่าจะเป็นสะสม
- d สำหรับหาฟังก์ชันมวลความน่าจะเป็น (p.m.f) หรือฟังก์ชันความหนาแน่น (p. d. f.)
- r สำหรับสร้างตัวเลขสุ่มที่มีการแจกแจงความน่าจะเป็นตามที่ระบุ
 ตัวอย่างการแจกแจงปกติ(Normal distribution: norm)
 เราสามารถใช้ฟังก์ชัน pnorm(), qnorm(),dnorm() และ rnorm()

 การสร้างตัวเลขสุ่มซึ่งมาจากการแจกแจงปกติมาตรฐาน ทำได้ดังนี้

```
> set.seed(13579) #กำหนดค่า seed number สำหรับสร้างตัวเลขสุ่ม
                  #สร้างตัวเลขสุ่ม 50 ค่าจากการแจกแจงปกติมาตรฐาน
> x<-rnorm(50)</pre>
> x
[1] -1.23471549 -1.25283387 -0.25477803 -1.52664663
                                                       1.09711469
                                                                     2.48874422
                  0.18837501 - 1.02644594 - 0.25670760
                                                        0.74605016
                                                                     0.47122077
      0.77948026
    -0.76666991 -0.43728978 -0.47155099 -0.56138418 -1.21516541
                                                                     0.24681796
[19] -0.86169804   0.65991091 -0.03684157 -0.95252445 -1.69970971
                                                                     0.89985099
                                                        0.23834234 -0.09482171
      0.72111984 - 0.16349925 - 0.76652896 1.81144293
      0.90522523
                  0.03273290 0.24664125 -1.24344864 -1.47698088 -0.84283895
[31]
[37]
     1.54991801 1.04955308 1.35743691 1.33925300
                                                       0.77756672
                                                                    0.39454066
      0.15138266 - 0.38780454
                               0.46815376 1.67414620 -1.47819242 -1.63289605
[49] -0.97490915 -0.76499014
```

ถ้า<u>ไม่ใช้</u>คำสั่ง set.seed(13579) ตัวเลขสุ่มที่สร้างขึ้นจะเปลี่ยนไปทุกครั้ง

```
> set.seed(13579)
               > x<-rnorm(50)
               > x
                [1] -1.23471549 -1.25283387 -0.25477803 -1.52664663 1.09711469 2.48874422
                                 0.18837501 -1.02644594 -0.25670760 0.74605016 0.47122077
                     0.77948026
               [13] -0.76666991 -0.43728978 -0.47155099 -0.56138418 -1.21516541
                                                                                 0.24681796
                                 0.65991091 -0.03684157 -0.95252445 -1.69970971
ตัวเลา
               [25]
                     0.72111984 -0.16349925 -0.76652896
                                                        1.81144293
                                                                     0.23834234 -0.09482171
               [31]
                     0.90522523
                                 0.03273290
                                             0.24664125 -1.24344864 -1.47698088 -0.84283895
               [37]
                     1.54991801 1.04955308
                                            1.35743691 1.33925300
                                                                    0.77756672
               F431
                     0.15138266 -0.38780454
                                            0.46815376 1.67414620 -1.47819242 -1.63289605
               [49] -0.97490915 -0.76499014
แต่ละ
               > set.seed(13579)
               > x<-rnorm(50)
ครั้งจะ
               > x
                [1] -1.23471549 -1.25283387 -0.25477803 -1.52664663 1.09711469 2.48874422
                [7]
                                 0.18837501 -1.02644594 -0.25670760 0.74605016 0.47122077
เหมือน
                   -0.76666991 -0.43728978 -0.47155099 -0.56138418 -1.21516541
               [13]
                                                                                 0.24681796
               [19] -0.86169804
                                 0.65991091 -0.03684157 -0.95252445 -1.69970971
               [25]
                     0.72111984 -0.16349925 -0.76652896
                                                        1.81144293
                                                                     0.23834234 -0.09482171
  กัน
               [31]
                     0.90522523
                                 0.03273290
                                            0.24664125 -1.24344864 -1.47698088 -0.84283895
               [37]
                     1.54991801
                                1.04955308
                                            1.35743691 1.33925300
                                                                     0.77756672
               [43]
                     0.15138266 -0.38780454
                                            0.46815376 1.67414620 -1.47819242 -1.63289605
               [49] -0.97490915 -0.76499014
               >
               4
```



```
R Console
                                                                        - - X
 > x<-rnorm(50)
> x
  [1]
                   0.83720459 -0.76507999 -1.33710296 0.67734515
       0.17173553 -0.41383270 -1.35033709 2.31043656 -0.05148653 -0.49715707
                  1.07269558
                               0.24449772 -0.45434493
                                                      0.78932293
                   0.95224360 -0.37142803 -1.85265198 -0.67365112
[25]
       1.09859148 -0.94668767
                               0.43521283 -0.24918222
                                                       0.33325341 -1.58470676
                                                      1.36997865
                   0.28699072
                               1.31212469 -1.27254580
 [37] -0.35454729 -1.12620100 -0.67639614 -0.81877628 -0.70365591 -0.89596182
 [43] -0.17585945 -0.82183502 -0.26703823 -0.88387729 -0.05398451
 [49] -2.01581210
                 0.34718645
 > x<-rnorm(50)
> x
  [1] -0.13764099
                 1.09241173
                               0.43113405 0.79425202
                                                     1.26068511 -1.37422825
       0.79276804 -0.52904247 -1.24438360 -0.15015589
                                                      0.94465655 -1.04213054
                  0.48184018
                               0.31009487
                                          1.14992348 -0.74946209 -0.37528074
 [13] -0.27244232
                  1.04420633
                               2.27650082
                                           0.55522111 -2.36337470
 [25] -0.28146206 -0.26838092
                               0.26701486 -1.82985560
                                                       0.84319147
 [31] -1.05297273 -0.30523659 1.42338064 -0.41706923 -0.08694590 -0.39963520
 [37] -1.88808285 -0.61910253 0.91990615
                                         1.09220967
                                                       0.05430448
 [43] 0.54374982 -0.01587695
                               0.57361550 0.53439017 -0.83432596 -1.27939038
 [49] -0.72256106 0.42767339
 > x<-rnorm(50)
 > x
  [1] -1.17500082
                 0.15427902 -0.17487836 -0.10676279 1.36739079
                                                                   0.30324650
  [7] -1.02133004 0.59874733
                               0.05747929 0.34912963
                                                     0.19976471
 [13] 1.11905222 -0.52886082
                               0.55465798 0.34788752 -1.64783270 -0.08899103
 [19] -1.00427935 -0.36835576 -0.23169142
                                          1.59137178 -0.61786402
 [25] -0.22361784
                  1.08749341
                               0.89918594 -1.13198514 -1.17993792
 [31] -0.17371948 -0.75563239 -0.63359278 -1.96457351 -0.33491473 -1.59771944
                  1.21634750 -0.64809421 -1.65856242
       0.12948233 -0.77359322 -0.20411979 1.15464631 -0.05999662 1.08372938
 [49] -0.92415065 -0.93112504
 >
```

ตัวเลข สุ่มที่ได้ แต่ละ ครั้งจะ ไม่ซ้ำ

• การสร้างประชากรของตัวเลขสุ่ม และการสุ่มตัวอย่าง

```
> set.seed(2468) #กำหนดค่า seed number สำหรับสร้างตัวเลขสุ่ม
> x<-rnorm(1000) #สร้างตัวเลขสุ่ม 1000 ค่าจากการแจกแจงปกติมาตรฐาน
           #แสดงค่าในตัวแปร {f x} ค่าที่ {f x}[1] ถึง {f x}[50] จากทั้งหมด 1000 ค่า
> x[1:50]
[1] -0.09395560 -0.31919244 -0.75563464 0.45898188 0.70171265 -1.62431161
[7] -1.14884439 -1.74360972 -0.74711849 -0.74462565 -0.54400272 -1.10078367
[13] -0.58245788 1.80760280 -0.93897607 -1.17734832 -1.72956190 -0.20133922
[19] 0.51832385 -1.03687173 0.01705797 1.13115293 0.24080185 0.99965895
[25] -0.43234243 1.44652241 1.69692793 -0.93354111 1.07762234 -0.43344772
[311 - 0.73239837 - 0.37598091 0.98957785 - 1.37770913 1.02991511 - 0.25660521
[37] 0.29537741 -0.04973895 1.50391988 -0.75560704 -0.99590324 -0.16765170
[43] 0.06547842 -0.79418678 -1.17924156 0.22089260 0.53382259 1.06754656
[49] 0.67298018 -0.62562458
> x.samp<-sample(x,size=25) #สุ่มค่าจากตัวแปร x จำนวน 25 ค่า มาเก็บที่ตัวแปร x.samp
                            #แสดงค่าในตัวแปร x.samp
> x.samp
    0.67298018 0.91312443 1.56640655 -0.46609980 1.61159727 -1.01259553
[7] -0.03132962 -2.68698078 1.28057434 0.16678177 0.06077329 0.07951142
[13] -0.14906921 -0.40838009 -0.75629301 0.30550037 0.05706630 -0.55805311
     1.23389352 0.34069837 -1.09602144 1.30199218 1.80760280 -0.22051550
[25]
      0.04752172
```


ตัวแปรสุ่ม

- ตัวแปรสุ่ม(random variable) แบ่งออกได้ 2 ชนิด
 - ตัวแปรสุ่มไม่ต่อเนื่อง (discrete random variable)
 - ตัวแปรสุ่มต่อเนื่อง (continuous random variable)
- ตัวแปรสุ่มไม่ต่อเนื่อง คือ ตัวแปรสุ่มที่ให้ค่าเป็นจำนวนนับ อาทิ จำนวนรถยนต์ จำนวนนักศึกษา จำนวนผู้ใช้งาน อินเทอร์เน็ตของมหาวิทยาลัยฯ เป็นต้น
- ตัวแปรสุ่มต่อเนื่อง คือ ตัวแปรสุ่มที่ให้ค่าเป็นจำนวนจริงใน ช่วงที่ระบุเฉพาะ อาทิ ความดันโลหิต เวลา อุณหภูมิ น้ำหนัก ส่วนสูง เป็นต้น

สัญญลักษณ์ที่เกี่ยวข้องกับตัวแปรสุ่ม

- ullet ชื่อตัวแปรสุ่ม อาทิ X , Y , Z , ...
- ullet ค่าของตัวแปรสุ่ม อาทิ x , y , z , ...
- ullet ฟังก์ชันความน่าจะเป็น f(x) = P(X = x)
- ullet ฟังก์ชันความน่าจะเป็นสะสม $F(x)=P(X\leq x)$

ตัวแปรสุ่มที่มีการแจกแจงแบบปกติ $X \sim N(\mu, \sigma^2)$

 ตัวแปรสุ่มที่มีการแจกแจงแบบปกติ มีฟังก์ชันความน่าจะเป็น ดังนี้

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\},\,$$

$$-\infty \le x \le \infty$$
, $-\infty \le \mu \le \infty$ และ $\sigma > 0$.

• ตัวแปรสุ่มแบบปกติ มีฟังก์ชันความน่าจะเป็นสะสมดังนี้

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(x) \, \mathrm{d} x$$

กราฟแสดงการแจกแจงแบบปกติ

Normal distribution

การหาความน่าจะเป็นของตัวแปรสุ่ม

- การหาความน่าจะเป็นของตัวแปรสุ่มแบบปกติมาตรฐาน
- ตัวแปรสุ่มแบบปกติมาตรฐาน มีฟังก์ชันความหนาแน่นดังนี้

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}z^2)$$

 ตัวแปรสุ่มแบบปกติมาตรฐาน มีฟังก์ชันความน่าจะเป็นสะสม ดังนี้

$$F_Z(z) = P(Z \le z) = \int_{-\infty}^{z} f(z) dz$$

กราฟแสดงการแจกแจงแบบปกติมาตรฐาน

การหาความน่าจะเป็นของตัวแปรสุ่ม

• รูปแบบการใช้ฟังก์ชัน pnorm()

```
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE,
    log.p = FALSE)
```

• ตัวอย่างการหาความน่าจะเป็นของตัวแปรสุ่มแบบปกติมาตรฐาน

```
#ความน่าจะเป็นสะสมถึงตำแหน่ง 1.96
> pnorm(1.96)
[1] 0.9750021
#ความน่าจะเป็นสะสมตั้งแต่ตำแหน่ง 1.96 ขึ้นไป
> pnorm(1.96,lower.tail=FALSE)
[1] 0.0249979
#ความน่าจะเป็นจาก 0 ถึง 1.96
> pnorm(1.96)-pnorm(0.00)
[1] 0.4750021
```


การหาตำแหน่งของตัวแปรสุ่มเมื่อทราบความน่าจะเป็น

• รูปแบบการใช้ฟังก์ชัน qnorm()

```
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE,
    log.p = FALSE)
```

• ตัวอย่างการหาตำแหน่งของตัวแปรสุ่มแบบปกติมาตรฐาน

```
> qnorm(0.975)
[1] 1.959964
> qnorm(0.975,lower.tail=FALSE)
[1] -1.959964
```


การหาฟังก์ชันความน่าจะเป็นของตัวแปรสุ่ม

• รูปแบบการใช้ฟังก์ชัน dnorm()

```
dnorm(x, mean = 0, sd = 1, log = FALSE)
```

 ตัวอย่างการหาฟังก์ชั่นความน่าจะเป็นของตัวแปรสุ่มแบบปกติ มาตรฐาน

```
> x
[1] 1.0026529 0.3245132 0.2836438 1.4798500 0.3665132 -0.1947419 2.0266552
[8] 0.2346057 -0.2767158 0.7069725
> fx<-dnorm(x)
> fx
[1] 0.24132879 0.37847966 0.38321257 0.13346492 0.37302700 0.39144872 0.05116988
[8] 0.38811311 0.38395714 0.31072606
```

แบบฝึกหัดข้อที่ 1

กำหนดให้ $X{\sim}N(\mu=5,\sigma=1)$ จงหาค่าดังต่อไปนี้ด้วย โปรแกรมอาร์

1)
$$P(X \le 6) = \dots ? \dots$$

2)
$$P(X \le 6) = \dots ? \dots$$

3)
$$P(4 \le X \le 6) = \dots ? \dots$$

4)
$$P(X \le ...) = 0.95$$

5)
$$P(X > . ? .) = 0.95$$

6)
$$P(X = 5), P(X = 6), P(X = 7)$$

7) สร้างตัวเลขสุ่ม 10 ค่าจากการแจกแจงของตัวแปรสุ่ม X

แบบฝึกหัดข้อที่ 2

กำหนดให้ $Z{\sim}N(\mu=0,\sigma=1)$ จงหาค่าดังต่อไปนี้ด้วย โปรแกรมอาร์

1)
$$P(Z \le 1.96) = \dots ? \dots$$

2)
$$P(Z > 1.96) = \dots ? \dots$$

3)
$$P(-1.96 \le Z \le 1.96) = \dots ? \dots$$

4)
$$P(Z \le ...) = 0.975$$

5)
$$P(Z > ...) = 0.975$$

6)
$$P(Z = -1), P(Z = 0), P(Z = 2)$$

7) สร้างตัวเลขสุ่ม 10 ค่าจากการแจกแจงของตัวแปรสุ่ม $oldsymbol{Z}$

แบบทดสอบการจำลองค่าทางสถิติ

- การจำลองค่าทางสถิติ (Statistical Simulation)
- งานที่มอบหมายให้นักศึกษาทำการทดลองดังนี้
- 1. สร้างตัวแปรสุ่ม x จากการแจกแจงปกติ ที่มีค่าเฉลี่ยเท่ากับ 10 ความแปรปรวนเท่ากับ 2 จำนวน 1000 ค่า
- สุ่มตัวอย่างค่าตัวแปรสุ่ม x มาจำนวน 15, 25, 35, 45, 60, 75,
 105, 120, 135 และ 150
- 3. หาค่าเฉลี่ยของตัวอย่างสุ่มแต่ละขนาดตัวอย่าง
- 4. สังเกตผลว่า ค่าเฉลี่ยของตัวอย่างสุ่มว่ามีแนวใน้มอย่างไร
- 5. อภิปรายผล