Report Author: Amirreza Zaman (amirrezazaman@gmail.com)

Project Overview

This project involves **commissioning an Automated Bottling Plant** for a beverage manufacturer. The plant includes **PLC-controlled filling, capping, and labelling machines integrated into a single production line**. The system is monitored and controlled via SCADA for real-time data visualization and remote control.

Figure 1. An illustration of an automated bottling plant

1. Pre-Commissioning Phase

1.1 Hardware Setup & Installation

- Install Siemens S7-1500 PLC as the main controller.
- Connect HMI Comfort Panel for operator interaction.
- Configure Profinet communication for distributed I/O devices.
- Install sensors:
 - Flow meters for liquid dispensing.
 - Proximity sensors for bottle detection.

- Load cells for weight verification.
- Barcode scanners for product tracking.
- Wire VFDs (Variable Frequency Drives) to control conveyor speeds.

1.2 Software Configuration

- TIA Portal setup:
 - Create PLC program with ladder logic and function blocks.
 - Implement interlocks to prevent machine damage.
 - Configure PID loops for precise liquid dispensing.
 - Set up fault handling and safety logic.
- SCADA System (WinCC Professional)
 - o Design dashboards for real-time monitoring.
 - o Configure alarms for equipment failures.
 - Enable historical data logging for analysis.
- Communication Setup
 - o Establish OPC UA connection for cloud data transfer.
 - o Implement Modbus TCP for third-party device integration.

2. Commissioning Phase

2.1 System Testing

- Power-On Testing:
 - Verify correct voltage and wiring.
 - Check network connections (Profinet, OPC UA).
- I/O Testing:
 - o Test sensors, actuators, and VFDs using TIA Portal's online mode.
 - o Ensure accurate bottle detection and rejection mechanism.
- Functional Testing:
 - Run manual mode to test each machine separately.
 - Validate automatic operation with real bottles.
 - Monitor system responses to simulated faults.
- PID Tuning:

- o Adjust flow control to maintain consistent fill levels.
- o Optimize VFD speeds for smooth production flow.

3. Performance Validation

3.1 Production Run

- Conduct an initial test batch and record performance.
- Measure key KPIs:
 - Cycle time per bottle
 - Liquid fill accuracy
 - Downtime incidents
- Compare results with expected values and adjust as needed.

3.2 Safety & Compliance Checks

- Conduct emergency stop tests.
- Ensure compliance with ISO 13849-1 (Safety of Machinery).
- Validate food-grade sanitary requirements for beverage production.

4. Final Documentation & Handover

4.1 Operator & Maintenance Training

- Train plant staff on PLC operation and troubleshooting.
- Provide manuals for:
 - HMI operation
 - SCADA data analysis
 - Preventive maintenance procedures

4.2 Project Documentation

- Final PLC Program & Code Documentation
- I/O Mapping Sheet
- Network Configuration & IP Address List
- Alarm & Error Handling Guide
- Maintenance & Spare Parts List

5. Post-Commissioning Support

- Remote monitoring setup for performance tracking.
- Scheduled follow-up visits to fine-tune operations.
- Technical support for software updates and system modifications.

Outcome:

The commissioning of the Automated Bottling Plant ensures seamless production, reducing errors, improving efficiency, and enabling predictive maintenance through SCADA and cloud connectivity.