

AD-A011 258

METALLURGICAL COMPARISON OF 5 INCH/54 NAVAL TUBES
FIRED WITH NACO AND PYRO PROPELLANT

Richard Griffin

Watervliet Arsenal
Watervliet, New York

April 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

ADA011258

183016

WVT-TR-75017

AD

METALLURGICAL COMPARISON OF 5 INCH/54 NAVAL TUBES
FIRED WITH NACO AND PYRO PROPELLANT

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22191

BENET WEAPONS LABORATORY
WATERVLIET ARSENAL
WATERVLIET, N.Y. 12189

APRIL 1975

TECHNICAL REPORT

AMCMS No. 611102.11.85100.01

DA Project No. 1T161102B11A

Pron No. A1-4-51701-(01)-M1-M7

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER WVT-TR-75017	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) METALLURGICAL COMPARISON OF 5 INCH/54 NAVAL TUBES FIRED WITH NACO AND PYRO PROPELLANT		5. TYPE OF REPORT & PERIOD COVERED
7. AUTHOR(s) Richard Griffin		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Benet Weapons Laboratory Watervliet Arsenal, Watervliet, NY 12189 SARWV-RDT		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AMCMS No. 611102.11.85100.01 DA Proj. No. 1T161102B11A Prnr No. A1-4-51701-(01)-M3-1
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Command Rock Island, IL 61201		12. REPORT DATE April 1975
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. OF THIS REPORT Unclassified
16. DISTRIBUTION STATEMENT (of this Report)		15a. DECLASSIFICATION/DETERMINATION SCHEDULE 13
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Propellants Microscopic Examination Erosion		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The effects of two different types of propellant on the surface damage introduced in the 5 inch/54 cannon tube are compared. Based on metallurgical and hardness examination, it is shown that the depth of the damage zone is greater with the Pyro as compared to the Naco propellant. This is related to the higher flame temperature of the former. The type of damage observed is described and discussed.		

WVT-TR-75017

AD

METALLURGICAL COMPARISON OF 5 INCH/54 NAVAL TUBES
FIRED WITH NACO AND PYRO PROPELLANT

R. GRIFFIN

BENET WEAPONS LABORATORY
WATERVLIET ARSENAL
WATERVLIET, N.Y. 12189

APRIL 1975
TECHNICAL REPORT

AMCMS No. 611102.11.85100.01

DA Project No. 1T161102B11A

Pron No. A1-4-51701-(01)-M1-M7

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

ia

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) in this report does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
21	22	23	24
25	26	27	28
29	30	31	32
33	34	35	36
37	38	39	40
41	42	43	44
45	46	47	48
49	50	51	52
53	54	55	56
57	58	59	60
61	62	63	64
65	66	67	68
69	70	71	72
73	74	75	76
77	78	79	80
81	82	83	84
85	86	87	88
89	90	91	92
93	94	95	96
97	98	99	100
101	102	103	104
105	106	107	108
109	110	111	112
113	114	115	116
117	118	119	120
121	122	123	124
125	126	127	128
129	130	131	132
133	134	135	136
137	138	139	140
141	142	143	144
145	146	147	148
149	150	151	152
153	154	155	156
157	158	159	160
161	162	163	164
165	166	167	168
169	170	171	172
173	174	175	176
177	178	179	180
181	182	183	184
185	186	187	188
189	190	191	192
193	194	195	196
197	198	199	200
201	202	203	204
205	206	207	208
209	210	211	212
213	214	215	216
217	218	219	220
221	222	223	224
225	226	227	228
229	230	231	232
233	234	235	236
237	238	239	240
241	242	243	244
245	246	247	248
249	250	251	252
253	254	255	256
257	258	259	260
261	262	263	264
265	266	267	268
269	270	271	272
273	274	275	276
277	278	279	280
281	282	283	284
285	286	287	288
289	290	291	292
293	294	295	296
297	298	299	300
301	302	303	304
305	306	307	308
309	310	311	312
313	314	315	316
317	318	319	320
321	322	323	324
325	326	327	328
329	330	331	332
333	334	335	336
337	338	339	340
341	342	343	344
345	346	347	348
349	350	351	352
353	354	355	356
357	358	359	360
361	362	363	364
365	366	367	368
369	370	371	372
373	374	375	376
377	378	379	380
381	382	383	384
385	386	387	388
389	390	391	392
393	394	395	396
397	398	399	400
401	402	403	404
405	406	407	408
409	410	411	412
413	414	415	416
417	418	419	420
421	422	423	424
425	426	427	428
429	430	431	432
433	434	435	436
437	438	439	440
441	442	443	444
445	446	447	448
449	450	451	452
453	454	455	456
457	458	459	460
461	462	463	464
465	466	467	468
469	470	471	472
473	474	475	476
477	478	479	480
481	482	483	484
485	486	487	488
489	490	491	492
493	494	495	496
497	498	499	500
501	502	503	504
505	506	507	508
509	510	511	512
513	514	515	516
517	518	519	520
521	522	523	524
525	526	527	528
529	530	531	532
533	534	535	536
537	538	539	540
541	542	543	544
545	546	547	548
549	550	551	552
553	554	555	556
557	558	559	560
561	562	563	564
565	566	567	568
569	570	571	572
573	574	575	576
577	578	579	580
581	582	583	584
585	586	587	588
589	590	591	592
593	594	595	596
597	598	599	600
601	602	603	604
605	606	607	608
609	610	611	612
613	614	615	616
617	618	619	620
621	622	623	624
625	626	627	628
629	630	631	632
633	634	635	636
637	638	639	640
641	642	643	644
645	646	647	648
649	650	651	652
653	654	655	656
657	658	659	660
661	662	663	664
665	666	667	668
669	670	671	672
673	674	675	676
677	678	679	680
681	682	683	684
685	686	687	688
689	690	691	692
693	694	695	696
697	698	699	700
701	702	703	704
705	706	707	708
709	710	711	712
713	714	715	716
717	718	719	720
721	722	723	724
725	726	727	728
729	730	731	732
733	734	735	736
737	738	739	740
741	742	743	744
745	746	747	748
749	750	751	752
753	754	755	756
757	758	759	760
761	762	763	764
765	766	767	768
769	770	771	772
773	774	775	776
777	778	779	780
781	782	783	784
785	786	787	788
789	790	791	792
793	794	795	796
797	798	799	800
801	802	803	804
805	806	807	808
809	810	811	812
813	814	815	816
817	818	819	820
821	822	823	824
825	826	827	828
829	830	831	832
833	834	835	836
837	838	839	840
841	842	843	844
845	846	847	848
849	850	851	852
853	854	855	856
857	858	859	860
861	862	863	864
865	866	867	868
869	870	871	872
873	874	875	876
877	878	879	880
881	882	883	884
885	886	887	888
889	890	891	892
893	894	895	896
897	898	899	900
901	902	903	904
905	906	907	908
909	910	911	912
913	914	915	916
917	918	919	920
921	922	923	924
925	926	927	928
929	930	931	932
933	934	935	936
937	938	939	940
941	942	943	944
945	946	947	948
949	950	951	952
953	954	955	956
957	958	959	960
961	962	963	964
965	966	967	968
969	970	971	972
973	974	975	976
977	978	979	980
981	982	983	984
985	986	987	988
989	990	991	992
993	994	995	996
997	998	999	1000

TABLE OF CONTENTS

	Page
DD Form 1473 - Report Documentation Page	
Introduction	1
Procedures	2
Results and Discussion	2
Macroscopic Comparison of the Tubes	2
Microscopic Comparison of the Tubes	3
Hardness of the Layers	4
Conclusions	8

Figures

1. Schematic drawing of the tube and how it was sectioned	1
2. 15X Macrophotographs taken at the origin of rifling	2
3. 200X Micrographs showing representative microstructures for the tubes	4
4. The change in hardness as a function of the distance below the bore surface	5
5a. Tube fired with Pyro, 1500 rounds. Hardness variation across the thermally altered layer. 10g load, KHN indenter, etchant 2% nital.	6
5b. Tube fired with Naco, 1590 rounds. Hardness variation across the thermally altered layer. 10g load, KHN indenter, etchant 2% Nital.	7

INTRODUCTION

Two tubes were examined metallographically as part of the fatigue testing program being conducted at the Watervliet Arsenal for the Naval Weapons Lab (NWL), Dahlgren, VA. One tube, No. 52, was fired 1590 rounds with Naco, while the other tube, No. 7, was fired 1500 rounds with Pyro as the propellant. Naco, which is a propellant designed to reduce the wear rate, has a flame temperature of 2150K as compared to 2650K for the Pyro. Summarized herein are the results of a metallographic examination into the surface and near surface relative damage introduced by the two types of propellant.

Figure 1. Schematic drawing of the tube and how it was sectioned.

PROCEDURE

The tubes were sectioned so they could be examined in the origin of rifling region, the portion known to exhibit the maximum erosion and structural damage¹. Figure 1 is a schematic drawing representing the areas from which the specimens were cut. The area examined in this study was the region covering approximately \pm 3 inches about the origin of rifling. Samples were polished, etched, and examined optically. Hardness readings were made with a Leitz microhardness tester using a 10 gram load.

Figure 2. 15X Macrophotographs taken at the origin of rifling.
a. Tube No. 52 used Naco Propellant
b. Tube No. 7 used Pyro propellant

RESULTS AND DISCUSSION

MACROSCOPIC COMPARISON OF THE TUBES

The macrophotographs, shown in figure 2 were taken from the origin of rifling region and illustrate the marked difference in appearance of

1. Hypervelocity Guns and the Control of Gun Erosion, NDRC, Rpt, Div 1, Vol 1, 1946.

the tubes. With the Naco propellant as shown in figure 2a, the rifling is clearly seen, the heat checking pattern not well defined, and the surface is dark in appearance. However, with Pyro (figure 2b), it is difficult to see where the origin of rifling region begins, the surface shows an extensive heat checking pattern, and it has a shiny pebbled appearance. Both tubes were initially chrome plated; the Naco fired tube having most of the chrome remaining on the surface while it was virtually eliminated in the area examined on the tube fired with Pyro. These differences apparently result from the higher flame temperature of the Pyro as compared to the Naco propellant².

MICROSCOPIC COMPARISON OF THE TUBES

Microscopically there are also differences that show up between the two propellants. When the chrome plating stays intact as it generally did in the Naco fired tube, little structural change occurs in the base metal. Figure 3a shows a typical micrograph for a sample sectioned from area 1, 2, and 3 on tube 52, where the chrome was removed. The sample shown in figure 3b for tube 7 was representative of the entire surface examined. Where the total thicknesses of transformed metal can be compared, it is readily apparent the tube fired with the Pyro propellant shows more heat-affected material. The thickest region measured with the Naco propellant was approximately 0.127mm while for the Pyro, it was 0.26mm, or better than twice as thick. In comparing the thickness of the various layers within the heat affected zone, it appears that the tube fired with Naco has an inner white layer that is thicker than the layer produced in the tube fired with Pyro. There were only a few areas available for comparison, so the above statement is very qualitative.

2. C. W. Morris, "Bore Surface Temperature Phenomena in 5 inch/54 Guns", NWLTR-2829, Sep 1973.

Figure 3. 200X Micrographs showing representative microstructures for the tubes.

- a. Tube No. 52, about 2 in. ahead of the origin of rifling
- b. Tube No. 7 chamber section

HARDNESS OF THE LAYERS

Figure 4 plots the hardnesses at various depths below the bore surface for the two tubes and figure 5 shows the location of the hardness readings throughout the heat affected zone. Referring to figure 4, the circles represent the tube fired with Naco. We see a low initial value rapidly rising in the first 0.002cm to 800 KHN and then tailing off to the hardness of the unaffected quenched and tempered martensite. Likewise, the tube fired with Pyro showed a low initial value associated with the inner white layer and a rapid rise to about 700 KHN units where it remained relatively constant from 0.002 to 0.006cm. The hardness increased to 800 KHN units, and finally at about 0.016 or 0.017 cm, it began to decrease to the hardness of the quenched and tempered martensite.

○ NACO 1590 RDS
 □ PYRO 1590 RDS

KHN HARDNESS 10g LOAD

Figure 4. The change in hardness as a function of the distance below the bore surface.

Figure 5a. Tube fired with Pyro, 1500 rounds. Hardness variation across the thermally altered layer. 10g load, KHN indenter, etchant 2% nital.

Figure 5b. Tube fired with Naco, 1590 rounds. Hardness variation across the thermally altered layer. 10g load, KHN indenter, etchant 2% Nital.

The larger extent of the heat affected zone of the tube fired with Pyro, shown in figure 5a is immediately apparent when compared with figure 5b. Also, figure 5a shows grain growth near the bore surface as well as a low hardness value near the surface. This was representative of all the areas examined for the tube fired with Pyro. A possible reason for this may be related to the fact that the Pyro propellant produces a peak temperature in the origin of rifling region of about 1200C, compared to about 870C for the Naco Propellant².

CONCLUSIONS

Two 5"/54 Navy weapons were examined metallurgically. One tube was fired with Pyro while the other was fired with Naco propellant.

1. Macroscopically, the Pyro fired tube appeared much more worn than did the Naco tube.
2. The chrome plate was predominately intact for the Naco tubes, while this was not true for the Pyro fired tubes.
3. The depth of metallurgically affected material was about twice as great with the Pyro as with the Naco.
4. The Pyro fired tube showed grain growth just below the inner white layer.

2. C. W. Morris, "Bore Surface Temperature Phenomena in 5 inch/54 Guns", NWLTR-2829, Sep 1973.