A New Perspective on Pool-Based Active Classification and False Discovery Control

Lalit Jain, Kevin Jamieson
Paul G. Allen Department of Computer Science and Engineering
University of Washington

Contributions

 Revisiting Classification and TPR maximization subject to FDR-control in a combinatorial setting.

 A common framework for classification and pure exploration for combinatorial bandits

• State of the art action elimination algorithms for both.

Formalities

[n]: a finite item space

$$y_i \in \{0,1\}$$
: label for $i \in [n]$

$$\mathcal{H}_0 = \{i \in [n] : y_i = 0\}, \mathcal{H}_1 = [n] \setminus \mathcal{H}_1$$

Policies:

 $\Pi \subset 2^{[n]}$: hypothesis class

Identify each $\pi \in \Pi$ with a labeler:

$$\pi \in \Pi$$
: $\pi(x) = 1 \iff x \in \pi$

Metrics:
$$R(\pi) := \frac{|\pi \cap \mathcal{H}_0| + |\pi^c \cap \mathcal{H}_1|}{n}$$

$$FDR(\pi) := \frac{|\pi \cap \mathcal{H}_0|}{|\pi|}, \quad TPR(\pi) := \frac{|\pi \cap \mathcal{H}_1|}{|\mathcal{H}_1|}$$

Metrics

Policies:

 $\Pi \subset 2^{[n]}$: hypothesis class

Identify each $\pi \in \Pi$ with a labeler:

$$\pi \in \Pi$$
: $\pi(x) = 1 \iff x \in \pi$

$$R(\pi) := \frac{|\pi \cap \mathcal{H}_0| + |\pi^c \cap \mathcal{H}_1|}{n}$$

Metrics:
$$R(\pi) := \frac{|\pi \cap \mathcal{H}_0| + |\pi^c \cap \mathcal{H}_1|}{n}$$

$$FDR(\pi) := \frac{|\pi \cap \mathcal{H}_0|}{|\pi|}, \quad TPR(\pi) := \frac{|\pi \cap \mathcal{H}_1|}{|\mathcal{H}_1|}$$

Classification Problem:

FDR Control Problem:

Revisiting Classification Loss

Re-parametrize:
$$\mu_x=2y_x-1=\begin{cases} 1 & y_x=1\\ -1 & y=0 \end{cases}$$

Define:

$$\mu_{\pi} := \sum_{x \in \pi} \mu_x$$

$$R(\pi) = \frac{|\pi \cap \mathcal{H}_0| + |\pi^c \cap \mathcal{H}_1|}{n}$$

$$= \frac{1}{n} \sum_{x \in \pi} \mathbf{1} \{ y_x = 0 \} + \frac{1}{n} \sum_{x \in \pi^c} \mathbf{1} \{ y_x = 1 \}$$

$$= \frac{1}{n} \sum_{x \in \pi} (1 - y_x) + \frac{1}{n} \sum_{x \in \pi^c} y_x$$

$$= \frac{|\mathcal{H}_1|}{n} + \sum_{x \in \pi} (1 - 2y_x)$$

$$= \frac{|\mathcal{H}_1| + |\pi|}{n} - \frac{1}{n} \sum_{x \in \pi} \mu_x$$

Key Takeaway:

$$\pi^* = \underset{\pi \in \Pi}{\operatorname{argmin}} \ R(\pi) = \underset{\pi \in \Pi}{\operatorname{argmax}} \ \mu_{\pi}$$

A combinatorial interpretation of classification!

Detour: Pure Exploration Combinatorial Bandits

Input:

$$u_i, \mathbb{E}[\nu_i] = \mu_i, i \in [n] \text{ arm distributions}$$

 $\Pi \subset 2^{\mathcal{X}}$ collection of subsets

$$\mu_{\pi} := \sum_{x \in \pi} \mu_x$$

Protocol:

In round t choose I_t and receive reward $R_{I_t,t} \sim \nu_{I_t}$

Return:

Identify
$$\pi^* = \operatorname*{argmax}_{\pi \in \Pi} \sum_{x \in \pi} \mu_x$$

Examples:

- $\Pi = \{\{i\} : i \in [n]\}$. Best-Arm identification.
- $\Pi = \binom{[n]}{k}$. Top-k.
- $\Pi = \{ \text{trees in a weighted graph} \}$. Minimal Spanning Tree
- Classification (stochastic or persistent labels).

Amazingly we can transform classification to a combinatorial bandit problem!

Action Elimination:

Input: δ, Π

for: $t = 1, 2, \dots,$

1. **Sample** I_t uniformly at random from [n] (with or without replacement).

- 2. If $I_s \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe μ_{I_t}
- 3. For each π, π' , update $\widehat{\mu}(\pi', \pi)$
- 4. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \exists \pi', \widehat{\mu}(\pi', \pi) C(\pi', \pi, t) > 0\}$

Return π^*

Carefully designed to avoid union bounds

 π_5 knocks out π_1

Action Elimination:

Input: δ, Π

for: $t = 1, 2, \cdots,$

1. **Sample** I_t uniformly at random from [n] (with or without replacement).

- 2. If $I_s \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe μ_{I_t}
- 3. For each π, π' , update $\widehat{\mu}(\pi', \pi)$
- 4. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \exists \pi', \widehat{\mu}(\pi', \pi) C(\pi', \pi, t) > 0\}$

Return π^*

Carefully designed to avoid union bounds

 π_2 knocks out π_5

Action Elimination:

Input: δ, Π

for: $t = 1, 2, \cdots,$

1. **Sample** I_t uniformly at random from [n] (with or without replacement).

- 2. If $I_s \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe μ_{I_t}
- 3. For each π, π' , update $\widehat{\mu}(\pi', \pi)$

4. Eliminate
$$\mathcal{A} = \mathcal{A} \setminus \{\pi : \exists \pi', \widehat{\mu}(\pi', \pi) - C(\pi', \pi, t) > 0\}$$

Return π^*

Carefully designed to avoid union bounds

 π_2 knocks out π_3

Action Elimination:

Input: δ, Π

for: $t = 1, 2, \cdots,$

1. **Sample** I_t uniformly at random from [n] (with or without replacement).

- 2. If $I_s \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe μ_{I_t}
- 3. For each π, π' , update $\widehat{\mu}(\pi', \pi)$
- 4. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \exists \pi', \widehat{\mu}(\pi', \pi) C(\pi', \pi, t) > 0\}$

Return π^*

Carefully designed to avoid union bounds

 π_2 knocks out π_4

Action Elimination:

Input: δ, Π

for: $t = 1, 2, \cdots,$

1. **Sample** I_t uniformly at random from [n] (with or without replacement).

- 2. If $I_s \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe μ_{I_t}
- 3. For each π, π' , update $\widehat{\mu}(\pi', \pi)$
- 4. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \exists \pi', \widehat{\mu}(\pi', \pi) C(\pi', \pi, t) > 0\}$

Return π^*

Carefully designed to avoid union bounds

Guarantees for Action Elimination

Theorem (J., Jamieson 2019) Let $\pi^* = \underset{\pi \in \Pi}{\operatorname{argmin}} R(\pi)$,

$$\tilde{\Delta}_{\pi} = \frac{|\mu_{\pi^*} - \mu_{\pi}|}{|\pi^* \Delta \pi|}, \text{ and } B(k, \pi^*) = \{\pi : |\pi \Delta \pi^*| = k\}$$

$$\tau_{\pi} = \frac{VC(B(|\pi^*\Delta\pi|,\pi^*))}{|\pi^*\Delta\pi|} \frac{\log(n\log(\tilde{\Delta}_{\pi}^{-2})/\delta)}{\tilde{\Delta}_{\pi}^2}$$

Then with probability greater than $1-\delta$ the Action Elimination algorithm terminates after a number of samples no more than

$$\sum_{1 \leq i \leq n} \max_{\pi: i \in \pi^* \Delta \pi} \tau_{\pi}$$

Interpretation: we can stop sampling i after π^* has knocked out any set $i \in \pi^* \Delta \pi$.

Implications: Classification

An active classification complexity that is fundamentally not disagreement coefficient based! Contrasts with the standard DHM algorithm:

- Like DHM we sample in the symmetric difference. Unlike DHM, we can characterize the contribution of each arm.
- For Best-Arm, DHM analysis gives the passive rate $n\Delta_2^2$.
- For 1-d thresholds under Tsybakov noise get the minimax rates (Castro and Nowak 2008):

if
$$\alpha = 0$$
, $\log(n) \log(\log(n)/\delta)/h^2$ if $\alpha > 0$, $n^{2\alpha} \log(\log(n)/\delta)/h^2$

passive rates:

$$n^{2\alpha+1}\log(\log(n)/\delta)/h^2$$

Remarks

- An active classification complexity that is fundamentally not disagreement coefficient based!
- Can quantify the contribution of each arm to the sample complexity
- For 1-d thresholds under Tsybakov noise get the minimax rates (Castro and Nowak 2008):
- An agnostic algorithm that matches the rates of previous binary classification!
- No need to pull each arm once.

What about active FDR-control?

Where to sample: FDR

$$FDR(\pi) = \frac{|\pi \cap \mathcal{H}_0|}{|\pi|}$$
 $TPR(\pi) = \frac{|\pi \cap \mathcal{H}_1|}{|\mathcal{H}_1|}$ Find: $\pi_{\alpha}^* = \underset{FDR(\alpha) \leq \alpha}{\operatorname{argmax}} TPR(\alpha)$

Instead of considering the TPR, can instead consider

$$TP(\pi) = |\pi \cap \mathcal{H}_1| = \sum_{x \in \pi} y_x$$

Union $\pi_{\mathbf{5}}$ (XI) Symmetric $\pi_{\mathbf{5}}$ Difference

Action Elimination:

Input: δ, Π

Maintain: A active sets, C FDR controlled sets

for: $t = 1, 2, \cdots,$

- 1. **Sample** I_t, J_t uniformly at random from [n] (with or without replacement).
- 2. If $I_t \in \bigcup_{\pi \in \mathcal{A} \setminus \mathcal{C}} \pi$, observe y_{I_t}
- 3. If $J_t \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe y_{I_t}
- 4. **Update** C with any new FDR-controlled sets.
- 5. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \widehat{FDR}(\pi) + C(\pi, t) < \alpha\}$
- 6. Eliminate $\mathcal{A}=\mathcal{A}\setminus\{\pi:\widehat{TP}(\pi')-\widehat{TP}(\pi)< C(\pi',\pi,t),\pi'\in\mathcal{C}\}$

π_1 Union $\pi_{\mathbf{5}}$ $\pi_{\mathbf{1}}$ **Symmetric** $\pi_{\mathbf{5}}$ **Difference**

 π_1 not FDR δ -controlled

Action Elimination:

Input: δ, Π

Maintain: A active sets, C FDR controlled sets

for: $t = 1, 2, \dots,$

- 1. **Sample** I_t, J_t uniformly at random from [n] (with or without replacement).
- 2. If $I_t \in \bigcup_{\pi \in \mathcal{A} \setminus \mathcal{C}} \pi$, observe y_{I_t}
- 3. If $J_t \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe y_{I_t}
- 4. **Update** C with any new FDR-controlled sets.
- 5. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \widehat{FDR}(\pi) + C(\pi, t) < \alpha\}$
- 6. Eliminate $\mathcal{A}=\mathcal{A}\setminus\{\pi:\widehat{TP}(\pi')-\widehat{TP}(\pi)< C(\pi',\pi,t),\pi'\in\mathcal{C}\}$

Union $\pi_{\mathbf{5}}$ Symmetric $\pi_{\mathbf{5}}$ Difference

 π_2 FDR δ -controlled

Action Elimination:

Input: δ, Π

Maintain: A active sets, C FDR controlled sets

for: $t = 1, 2, \dots,$

- 1. **Sample** I_t, J_t uniformly at random from [n] (with or without replacement).
- 2. If $I_t \in \bigcup_{\pi \in \mathcal{A} \setminus \mathcal{C}} \pi$, observe y_{I_t}
- 3. If $J_t \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe y_{I_t}
- 4. **Update** C with any new FDR-controlled sets.
- 5. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \widehat{FDR}(\pi) + C(\pi, t) < \alpha\}$
- 6. Eliminate $\mathcal{A}=\mathcal{A}\setminus\{\pi:\widehat{TP}(\pi')-\widehat{TP}(\pi)< C(\pi',\pi,t),\pi'\in\mathcal{C}\}$

Union

Symmetric Difference

 π_2 eliminates π_3

Action Elimination:

Input: δ, Π

Maintain: A active sets, C FDR controlled sets

for: $t = 1, 2, \cdots,$

- 1. **Sample** I_t, J_t uniformly at random from [n] (with or without replacement).
- 2. If $I_t \in \bigcup_{\pi \in \mathcal{A} \setminus \mathcal{C}} \pi$, observe y_{I_t}
- 3. If $J_t \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe y_{I_t}
- 4. **Update** C with any new FDR-controlled sets.
- 5. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \widehat{FDR}(\pi) + C(\pi, t) < \alpha\}$
- 6. Eliminate $\mathcal{A}=\mathcal{A}\setminus\{\pi:\widehat{TP}(\pi')-\widehat{TP}(\pi)< C(\pi',\pi,t),\pi'\in\mathcal{C}\}$

Union Symmetric $\pi_{\mathbf{5}}$ Difference

 π_2 eliminates π_4 since $\pi_4 \subset \pi_3$

Action Elimination:

Input: δ, Π

Maintain: A active sets, C FDR controlled sets

for: $t = 1, 2, \dots,$

- 1. **Sample** I_t, J_t uniformly at random from [n] (with or without replacement).
- 2. If $I_t \in \bigcup_{\pi \in \mathcal{A} \setminus \mathcal{C}} \pi$, observe y_{I_t}
- 3. If $J_t \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe y_{I_t}
- 4. **Update** C with any new FDR-controlled sets.
- 5. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \widehat{FDR}(\pi) + C(\pi, t) < \alpha\}$
- 6. Eliminate $\mathcal{A}=\mathcal{A}\setminus\{\pi:\widehat{TP}(\pi')-\widehat{TP}(\pi)< C(\pi',\pi,t),\pi'\in\mathcal{C}\}$

Symmetric Difference

Action Elimination:

Input: δ, Π

Maintain: A active sets, C FDR controlled sets

for: $t = 1, 2, \dots,$

- 1. **Sample** I_t, J_t uniformly at random from [n] (with or without replacement).
- 2. If $I_t \in \bigcup_{\pi \in \mathcal{A} \setminus \mathcal{C}} \pi$, observe y_{I_t}
- 3. If $J_t \in \bigcup_{\pi \in \mathcal{A}} \pi \bigcap_{\pi \in \mathcal{A}} \pi$, observe y_{I_t}
- 4. **Update** C with any new FDR-controlled sets.
- 5. Eliminate $\mathcal{A} = \mathcal{A} \setminus \{\pi : \widehat{FDR}(\pi) + C(\pi, t) < \alpha\}$
- 6. Eliminate $\mathcal{A}=\mathcal{A}\setminus\{\pi:\widehat{TP}(\pi')-\widehat{TP}(\pi)< C(\pi',\pi,t),\pi'\in\mathcal{C}\}$

Guarantees

How long does it take to knock out a set? Define

$$\tilde{\Delta}_{\pi} = \frac{|TP(\pi_{\alpha}^*) - TP(\pi)|}{|\pi_{\alpha}^* \Delta \pi|}, \quad \Delta_{\pi,\alpha} = |FDR(\pi) - \alpha|,$$

and

$$s_{\pi}^{FDR} = \frac{VC(B(|\pi|)}{|\pi|} \frac{\log(n\log(\tilde{\Delta}_{\pi,\alpha}^{-2})/\delta)}{\tilde{\Delta}_{\pi,\alpha}^2}, s_{\pi}^{TP} = \frac{VC(B(|\pi_{\alpha}^*\Delta\pi|, \pi_{\alpha}^*)}{|\pi_{\alpha}^*\Delta\pi|} \frac{\log(n\log(\tilde{\Delta}_{\pi}^{-2})/\delta)}{\tilde{\Delta}_{\pi}^2}$$

If π is not FDR-controlled:

$$\min\{s_{\pi}^{FDR}, \max\{s_{\pi^*}^{FDR}, s_{\pi}^{TPR}\}\}$$

If π is FDR-controlled:

$$\mathsf{max}\{s^{FDR}_{\pi^*}, s^{TPR}_{\pi}\}$$

Guarantees

Theorem (J., Jamieson 2019) Let With probability greater than $1-\delta$ the FDR Action Elimination algorithm terminates after a number of samples no more than

$$\sum_{1 < i \leq n} \max_{\pi: i \in \pi} \min\{s_{\pi}^{FDR}, \max\{s_{\pi^*}^{FDR}, s_{\pi}^{TPR}\}\} + \max_{\pi: i \in \pi_{\alpha}^* \Delta \pi} \max\{s_{\pi^*}^{FDR}, s_{\pi}^{TPR}\}\}$$

The sample complexity is at the time it takes to verify $FDR(\pi^*) \leq \alpha$

Contrasting Sampling Strategies

Moral: If you want FDR-control, it might not make sense to sample using active classification!