Topic VOF

Relative Performance

Readings: (Section 1.6)

Understanding Performance

Algorithm

Determines number of operations executed

Programming language, compiler, architecture

Determine number of machine instructions executed per operation

Processor and memory system

Determine how fast instructions are executed

I/O system (including OS)

Determines how fast I/O operations are executed

Defining Performance

Which airplane has the best performance?

Boeing 777

Bac/Sud Concorde

Boeing 747

Douglas DC-8-50

Defining Performance

Which airplane has the best performance?

Response Time and Throughput

Response time

How long it takes to do a task

Throughput

Total work done per unit of time

e.g., tasks/transactions/... per hour

Latency (Response Time) × Throughput

What matters is latency:

What matters is throughput:

Response Time and Throughput

RISC-V FU540(1.5 GHz)

Faster Processor

Response Time? Lower

Throughput?

Higher

Multiple processors of the same kind.

Response Time?

Same

Throughput?

Higher

Relative Performance

100 km/h

Time: 180 minutes

200 km/h

Time: 90 minutes

Performance =
$$\frac{\text{Distance}}{\text{Execution Time}}$$

Performance_{yellow} =
$$\frac{300 \text{ km}}{180 \text{ min}}$$

$$Performance_{red} = \frac{300 \, km}{90 \, min}$$

$$Performance_{yellow} = \frac{1 \text{ trip to calgary}}{180 \text{ min}}$$

$$Performance_{red} = \frac{1 \text{ trip to calgary}}{90 \text{ min}}$$

Which car is faster and by how much?

100 km/h

Time: 180 minutes

200 km/h

Time: 90 minutes

Task

Execution Time

$$Performance_{yellow} = \frac{1 \text{ trip to calgary}}{180 \text{ min}}$$

$$Performance_{red} = \frac{1 \text{ trip to calgary}}{90 \text{ min}}$$

$$\frac{\text{Performance}_{\text{red}}}{\text{Performance}_{\text{yellow}}} = \frac{\frac{1 \text{ trip to calgary}}{90 \text{ min}}}{\frac{1 \text{ trip to calgary}}{180 \text{ min}}} = \frac{180 \text{ min}}{90 \text{ min}} = 2.0$$

Red car is 2 times faster than yellow car

Performance =

Iris Pro P580

Time: 180 minutes

GEFORCE GTX

Time: 90 minutes

Task

Execution Time

$$Performance_{Iris} = \frac{1 \text{ explosion}}{180 \text{ min}}$$

$$Performance_{GTX} = \frac{1 \text{ explosion}}{90 \text{ min}}$$

$$\frac{\text{Performance}_{\text{GTX}}}{\text{Performance}_{\text{Iris}}} = \frac{\frac{1 \text{ explosion}}{90 \text{ min}}}{\frac{1 \text{ explosion}}{180 \text{ min}}} = \frac{180 \text{ min}}{90 \text{ min}} = 2.0$$

GEFORCE GTX is 2 times faster than Iris Pro P580

Performance =

Relative Performance

$$\frac{\text{Performance}}{\text{Performance}_{\text{red}}} = \frac{1}{\text{Execution Time}}$$

$$\frac{\text{Performance}_{\text{red}}}{\text{Performance}_{\text{yellow}}} = \frac{1}{\text{Execution Time}_{\text{yellow}}}$$

$$\frac{\text{Performance}_{\text{red}}}{\text{Performance}_{\text{yellow}}} = \frac{1}{\text{Execution Time}_{\text{red}}}$$

"Red is n times faster than yellow."

Measuring Time

```
Air studentTable]$ time antlr4 bibEntries.g4
          0m1.743s
real
                                In a machine with multiple cores
          0m2.329s
user
                                the CPU time can be longer than
          0m0.167s
sys
                                the real time.
Air studentTable]$
                       Elapsed Time: processing + I/O + system + idle
                     CPU Time: processing
                   System Time: system
```


Performance =
$$\frac{1}{\text{Execution Time}}$$

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution Time}_{Y}}{\text{Execution Time}_{X}} = n$$

