Ebenentransformationen

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Normierung

Die Matrizen der Ebenentransformationen (siehe auch Abbildung 1)

$$\underline{G}(a,b,c) = \frac{1}{a+b+c} \begin{pmatrix} b+c & c \\ a & a+b \end{pmatrix}$$
 (1)

haben für $\lambda \neq 0$ die Eigenschaft: $\underline{G}(\lambda a, \lambda b, \lambda c) = \underline{G}(a, b, c)$ (Skaleninvarianz). Es ist durch entsprechende Wahl von λ stets möglich, die Normierung a+b+c=1 zu erreichen. Man erhält die äquivalente Darstellung der Ebenentransformationsmatrizen

$$\underline{g}(a',c') = \begin{pmatrix} 1-a' & c' \\ a' & 1-c' \end{pmatrix}, \tag{2}$$

die nur noch von 2 Parametern abhängig ist. Durch die Ersetzungen $a'\mapsto a$, $1-(a'+c')\mapsto b$ und $c'\mapsto c$ in Gleichung (2) erhält man wieder die entnormierte Ebenentransformation $\underline{G}(a,b,c)$.

Im folgenden schreibe ich wegen der einfacheren Schreibweise a, c anstatt a', c'.

Symmetrie

Die Matrizen (1) und (2) besitzen die Eigenschaft, dass die Summe ihrer Zeilenelemente gleich 1 ist — der physikalische Grund dafür ist der Erhaltungssatz der Kraft, wie aus der Beziehung

$$\left(\begin{array}{c} B_1 \\ B_2 \end{array} \right) = \underline{g}(a,c) \cdot \left(\begin{array}{c} A_1 \\ A_2 \end{array} \right) = \left(\begin{array}{c} 1-a \\ a \end{array} \right) A_1 + \left(\begin{array}{c} c \\ 1-c \end{array} \right) A_2 \qquad (3)$$

deutlich wird: es folgt nämlich aus (3) die Kräftebilanzgleichung $B_1 + B_2 = A_1 + A_2$.

Abbildung 1: Zur Definition der Ebenentransformationen nach Gleichung (1)

Die Eigenschaft der 1-Zeilensummen bleibt auch bei der Hintereinanderausführung zweier Ebenentransformationen erhalten — sie bilden, bezogen auf die Matrizenmultiplikation, eine Gruppe.

Dies ist ein hübsches kleines Beispiel dafür, wie sich physikalische Erhaltungssätze in mathematische Symmetrien abbilden.

Definition der Gruppe ET(2)

Die Gruppe der Ebenentransformationen $ET(2) := (G^{\pm}, \cdot)^1$ wird wie folgt definiert:

Menge	$G^{\pm} := \{(g_{ij}) := \underline{g}(a,c) \in \mathbb{R}^{2 \times 2}, \det(\underline{g}) \neq 0, \sum_{i} g_{ij} = 1\}$
${\rm Multiplikation} \cdot $	$ \begin{array}{c} \cdot \colon \overrightarrow{G^{\pm}} \times G^{\pm} \longmapsto G^{\pm} \\ \underline{g}(A,C) := \underline{g}\left(a,c\right) \cdot \underline{g}\left(a^{'},c^{'}\right) \\ \\ \text{mit:} \\ A = a(1-a^{'}) + (1-c)a^{'} \\ C = (1-a)c^{'} + c(1-c^{'}) \\ \\ \text{Assoziativgesetz}\left(\underline{r},\underline{s},\underline{t} \in G^{\pm}\right) : \\ \underline{(\underline{r} \cdot \underline{s}) \cdot \underline{t}} = \underline{r} \cdot (\underline{s} \cdot \underline{t}) \end{array} $
Neutrales Element	$\underline{e} := \underline{g}\left(0,0\right)$
Inverses Element	$\underline{g}^{-1}(a,c) := \underline{g}\left(\frac{-a}{1-(a+c)}, \frac{-c}{1-(a+c)}\right)$

Grundmenge der Gruppe ET(2)

Die Grundmenge G^{\pm} der Gruppe ET(2) ist eine Teilmenge des Vektorraumes $V:=span(\underline{e}_1,\underline{e}_2,\underline{e}_3)$ mit der Basis²

$$\underline{e}_1 = \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right), \ \underline{e}_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \ \underline{e}_3 = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right),$$

d.h. alle $\underline{g} \in G^{\pm}$ lassen sich durch ihre Komponenten $\alpha, \beta, \gamma \in R$ darstellen: $\underline{g} = \alpha \underline{e}_1 + \beta \underline{e}_2 + \gamma \underline{e}_3$. Durch Vergleich erhält man für die Komponenten

$$\alpha = a
\beta = 1 - (a+c)
\gamma = c,$$

d.h. es gilt $\alpha+\beta+\gamma=1$. Eine Skizze eines Teiles der Menge zeigt Abbildung 2. Für die Determinante eines Gruppenelementes gilt der Zusammenhang

$$\det \underline{g} = 1 - (a+c).$$

$$\underline{e}_4 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$$

erhält man eine Basis des Raumes der reellen 2×2 -Matrizen.

 $^{^1\}mathrm{Der}$ Name "ET" steht dabei für "Ebenentransformation" , die "2" ist die Dimensionskennzeichnung. Die Matrizen- und Vektormultiplikation wird in dieser Arbeit mit \cdot bezeichnet.

²Durch Ergänzung dieser Basis um das Element

Abbildung 2: Skizze der Menge G^\pm für den Komponentenbereich $\alpha,\beta,\gamma>0$

Aus der Forderung $\det(\underline{g}) \neq 0$ folgt $\beta \neq 0$, sodass G^{\pm} in zwei Zusammenhangskomponenten (jeweils eine für $\beta < 0$: G^{-} und eine für $\beta > 0$: G^{+}) zerfällt. Die zur Teilmenge G^{+} gehörende einfach zusammenhängende Untergruppe von ET(2) wird mit $ET^{+}(2)$ bezeichnet - G^{+} ist die Zusammenhangskomponente des neutralen Elementes von ET(2).

Lie-Gruppe $ET^+(2)$ und Lie-Algebra et(2)

Die Gruppen ET(2) und $ET^+(2)$ sind Lie-Gruppen. Beide besitzen die gleiche Lie-Algebra et(2), deren Grundmenge LG der Tangentialraum des gemeinsamen neutralen Elementes \underline{e} ist. Man erhält für die Lie-Algebra et(2)

Menge	$LG := \{(h_{ij}) \in R^{2 \times 2}, \ \sum_{i} h_{ij} = 0\}$
	$[\cdot,\cdot]:\ LG imes LG\longmapsto LG \ [\underline{h}_1,\underline{h}_2]:=\underline{h}_1\cdot\underline{h}_2-\underline{h}_2\cdot\underline{h}_1$
	$[\underline{n}_1,\underline{n}_2] := \underline{n}_1 \cdot \underline{n}_2 - \underline{n}_2 \cdot \underline{n}_1$
Multiplikation $[\cdot, \cdot]$, (Lie-Klammer)	mit:
	$[\underline{h}_1,\underline{h}_2] = -[\underline{h}_2,\underline{h}_1]$
	$[\alpha \underline{h}_1 + \beta \underline{h}_2, \underline{h}_3] = \alpha [\underline{h}_1, \underline{h}_3] + \beta [\underline{h}_2, \underline{h}_3]$
	$[\underline{h}_1, [\underline{h}_2, \underline{h}_3]] + [\underline{h}_2, [\underline{h}_3, \underline{h}_1]] + [\underline{h}_3, [\underline{h}_1, \underline{h}_2]] = \underline{0}$
Lie-Gruppendarstellung	$\exp(\underline{h}) \in G, \forall \underline{h} \in LG$

Für die Matrizen-Multiplikation \cdot in LG gilt für alle $\underline{v} \in G^+$ oder $\underline{v} \in LG$ und alle $\underline{w} \in LG$:

•
$$\underline{v} \cdot \underline{w} = (\sum_{j} v_{ij})\underline{w} \in LG$$

Weitere Eigenschaften der Lie-Klammer und der Lie-Algebra:

- Eine Basis von LG ist durch $\underline{e}_1^* = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$, $\underline{e}_2^* = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$ gegeben.
- Die Strukturkonstanten c_{ij}^k einer Lie-Algebra sind definiert durch $[\underline{e}_i^*,\underline{e}_j^*]=c_{ij}^k\,\underline{e}_k^*.$

Abbildung 3: Durch verschieden
e $\underline{v}_i \in LG$ erzeugte Untergruppen von G^+

Die nichtredundanten Strukturkonstanten von et(2) ergeben sich zu $c_{12}^1=-1$ und $c_{12}^2=1$.

- \bullet Es gilt $[\underline{h}_1,\underline{h}_2]=\underline{0}$ genau dann, falls \underline{h}_1 und \underline{h}_2 linear abhängig sind.
- Jedes Element $\underline{v} \in LG$ der Lie-Algebra liefert eine einparametrige Untergruppe $G^v = \{\exp(t\underline{v})\}$ von G^+ .

Beweis:

Sei $\underline{v} \in LG$ beliebig aber fest.

- 1. Das neutrale Element \underline{e} erhält man aus $\{\exp(t\underline{v})\}$ für t=0.
- 2. Das zu $\exp(t\underline{v})$ inverse Element ist durch $\exp(-t\underline{v})$ gegeben.
- 3. Für

$$g_1 = \exp(t_1 v) \in G^+, \quad g_2 = \exp(t_2 v) \in G^+$$

gilt

$$\underline{g}_1 \cdot \underline{g}_2 = \exp(t_1 \underline{v}) \cdot \exp(t_2 \underline{v}) = \exp((t_1 + t_2)\underline{v}) \in G^+, \tag{4}$$

da wegen der linearen Abhängigkeit von $t_1\underline{v}$ und $t_2\underline{v}$

$$[t_1\underline{v}, t_2\underline{v}] = \underline{0}$$

gilt. Daraus folgt dann das zweite Gleichheitszeichen in Gleichung (4).

• Unter Benutzung von

$$(\alpha \underline{e}_1^* + \beta \underline{e}_2^*)^n = \begin{cases} (\alpha + \beta)^{n-1} (\alpha \underline{e}_1^* + \beta \underline{e}_2^*), & \alpha \neq -\beta \\ \underline{0} & \alpha = -\beta \end{cases} \qquad n = 2, 3, 4, \dots$$

erhält man die Elemente von G^v für ein beliebiges Element $\underline{v}=\alpha\underline{e}_1^*+\beta\underline{e}_2^*\in LG$ explizit durch die Beziehung

$$\exp(t\underline{v}) = \begin{cases} \underline{Id} + \frac{1}{\alpha+\beta} (\exp((\alpha+\beta)t) - 1)\underline{v}, & \alpha \neq -\beta \\ \underline{Id} + t\underline{v}, & \alpha = -\beta, \end{cases}$$

Abbildung 4: Linien gleicher Determinante

und als Trajektorien in der Gruppe G^+ erhält man (siehe auch Abbildung 3)

$$a(\underline{v},t) = \begin{cases} \frac{\alpha}{\alpha+\beta} (1 - \exp((\alpha+\beta)t)), & \alpha \neq -\beta \\ -t\alpha & \alpha = -\beta. \end{cases}$$
 (5)

$$c(\underline{v},t) = \begin{cases} \frac{\beta}{\alpha+\beta} (1 - \exp((\alpha+\beta)t)), & \alpha \neq -\beta \\ -t\beta & \alpha = -\beta. \end{cases}$$
 (6)

• Jedes $\underline{g} \in G^+$ lässt sich darstellen durch $\underline{g} = \underline{e} + \underline{v}$ mit einem $\underline{v} \in LG$.

Rechts- und Linkstranslation

Die Rechtstranslation auf $ET^+(2)$ ist für alle $\underline{g}, \underline{h} \in ET^+(2)$ gegeben durch $R_h\underline{g} := g \cdot \underline{h}$.

Definiert man in Kartenkoordinaten

$$R_h g: \quad g(A_R, C_R) = g(a, c) \cdot \underline{h}(a', c'),$$

so erhält man

$$\left(\begin{array}{c} A_{R} \\ C_{R} \end{array}\right) = \left(\begin{array}{c} a \\ c \end{array}\right) + \det \underline{g} \left(\begin{array}{c} a^{'} \\ c^{'} \end{array}\right).$$

Die Rechtstranslationen bedeuten also auch in lokalen Koordinaten eine Translation von g um den mit dem Faktor deg g gewichteten Kartenpunkt von \underline{h} .

Für die Linkstranslation $L_h\underline{g}:=\underline{h}\cdot\underline{g}$ erhält man analog

$$\begin{pmatrix} A_{L} \\ C_{L} \end{pmatrix} = \begin{pmatrix} a' \\ c' \end{pmatrix} + \det \underline{h} \begin{pmatrix} a \\ c \end{pmatrix}.$$

Zur Veranschaulichung sind die Linien gleicher Determinante in Abbildung 4 dargestellt.

Allgemeines

Im folgenden gelte

$$M := R^2, \qquad G := ET^+(2), \qquad LG := et(2).$$

Transformationsgruppe

Durch

$$\begin{array}{ccc} \varphi : & G \longmapsto & Diff(M) \\ \varphi(\underline{g}) & := & D_g \end{array}$$

mit

$$D_g(\underline{m}) := g \cdot \underline{m} \quad \forall g \in G, \quad \forall \underline{m} \in M$$

wird eine Transformationsgruppe auf M definiert.

Beweis:

- 1. Für jedes $D_g \in Diff(M)$ existiert ein D_g^{-1} mit $D_g^{-1}(\underline{m}) = \underline{g}^{-1} \cdot \underline{m}$, da det $\underline{g} \neq 0$ gilt.
- 2. Es gilt $D_q D_h = D_{q \cdot h}$

${\bf Fixpunktgruppe}$

Dies sind alle Transformationsgruppenelemente \underline{h} , die einen gegebenen Punkt $\underline{m}_0 \in M$ invariant lassen.

Satz: Die Fixpunktgruppe $H\subset G$ mit $D_h(\underline{m}_0)=\underline{m}_0$ für alle $\underline{h}\in H$ bildet eine Untergruppe von G.

Beweis:

- 1. Wegen $D_e(\underline{m}_0) = \underline{Id}(\underline{m}_0) = \underline{m}_0$ gilt $\underline{e} \in H$.
- 2. Sei $\underline{h} \in H$, und somit auch $\underline{h} \in G$. Es existiert also zu \underline{h} eine Inverse $\underline{h}^{-1} \in G$. Wegen

$$\underline{m}_0 = D_e(\underline{m}_0) = D_{h^{-1} \cdot h}(\underline{m}_0) = D_{h^{-1}}(D_h(\underline{m}_0)) = D_{h^{-1}}(\underline{m}_0)$$

gilt also $h^{-1} \in H$.

3. Sei $\underline{h}_1, \underline{h}_2 \in H$. Wegen

$$D_{h_1}(\underline{m}_0) = \underline{m}_0, \quad D_{h_2}(\underline{m}_0) = \underline{m}_0$$

folgt

$$D_{h_1 \cdot h_2}(\underline{m}_0) = \underline{m}_0, \quad D_{h_2 \cdot h_1}(\underline{m}_0) = \underline{m}_0.$$

Es gilt somit $\underline{h}_1 \cdot \underline{h}_2 \in H$ und $\underline{h}_2 \cdot \underline{h}_1 \in H$.

Die Fixpunktgruppen zur Transformationsgruppe φ bestehen nur aus dem Einselement.

Abbildung 5: Orbit eines Punktes \underline{m} der Mannigfaltigkeit $M{=}R^2$

Orbit

Der Orbit von $\underline{m}=(A,B)^T\in M$ bezogen auf die Transformationsgruppe φ ist definiert durch (siehe auch Abbildung 5)

$$O_x = \{D_q(\underline{m}), g \in G\}.$$

Wirkung

Die Gruppe G wirkt auf M effektiv und frei, aber nicht transitiv.

Lievektorfelder

Jedes $\underline{v} \in LG$ erzeugt eine einparametrige Untergruppe (mit dem Parameter t) G^v von G

$$G^v = \{ \exp(t\underline{v}), \ \underline{v} \in LG, \ t \in R \}.$$

Durch

$$F_t^v(\underline{x}) := D_{g^v(t)}(\underline{x})$$

wird auf M ein Fluss definiert. Explizit gilt

$$F_t^v(\underline{x}) = \left(\begin{array}{cc} 1 - a(\underline{v},t) & c(\underline{v},t) \\ a(\underline{v},t) & 1 - c(\underline{v},t) \end{array} \right) \underline{x},$$

mit $a(\underline{v},t)$ und $c(\underline{v},t)$ nach den Gleichungen (5) und (6).

Das Lie-Vektorfeld ist definiert durch

$$\underline{w}(\underline{x}) := \frac{dF_t^v(\underline{x})}{dt} \mid_{t=0}.$$

Man erhält nach kurzer Rechnung für jedes $\underline{v}=\alpha\underline{e}_1^*+\beta\underline{e}_2^*\in LG$ und $\underline{x}\in M$ das zugehörige Lie-Vektorfeld auf M

$$\underline{w}(\underline{x}) = (\underline{e} + \underline{v}) \underline{x}.$$

Einschub: Norm und Skalarprodukt im Raum \mathbb{C}^2

Es gelte
$$\underline{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \in C^2$$
.

$$\|\underline{x}\| = |x_1|^2 + |x_2|^2$$

$$\langle \underline{x}, \underline{y} \rangle = \frac{1}{4} (\|\underline{x} + \underline{y}\|^2 - \|\underline{x} - \underline{y}\|^2)$$

Topologisches

Die physikalisch sinnvollen Parameterwerte der Ebenentransformationen sind Elemente der folgenden Teilmenge D des \mathbb{R}^3 (Konfigurationsraum):

$$D := \left\{ \underline{x} = (x_1, x_2, x_3)^T \in R^3 \mid x_1 + x_2 + x_3 > 0, x_2 > 0 \right\}$$
 (7)

Diese Parameterwerte werden durch die Abbildung \underline{G} auf die Ebenentransformationsmatrizen

$$G^{+} := \left\{ \underline{g} = (g_{ij}) \in R^{2 \times 2} \mid \det(\underline{g}) > 0, \sum_{i} g_{ij} = 1 \right\}$$
 (8)

abgebildet, dabei gilt

$$\underline{G}: D \mapsto G^+$$

$$\underline{G}(\underline{x}) := \frac{1}{x_1 + x_2 + x_3} \begin{pmatrix} x_2 + x_3 & x_3 \\ x_1 & x_1 + x_2 \end{pmatrix}.$$

Satz 1

Die Abbildung $\underline{G}: D \mapsto G^+$ ist surjektiv.

Beweis:

Zu beweisen ist: $G(D) = G^+$.

1. $G(D) \subset G^+$

Dies ist erfüllt, da für alle $\underline{x} \in D$ die Zeilensumme von $\underline{G}(\underline{x})$ gleich 1 ist und die Determinante grösser 0 ist.

2. $\underline{G}(D) \supset G^+$

Für ein beliebiges Element von G^+ gilt die Darstellung

$$\underline{g} = \left(\begin{array}{cc} \beta & \gamma \\ \alpha & \delta \end{array} \right), \alpha + \beta = 1, \gamma + \delta = 1, \det \underline{g} > 0$$

oder auch

$$\underline{g} = \left(\begin{array}{cc} 1 - \alpha & \gamma \\ \alpha & 1 - \gamma \end{array} \right), \det \underline{g} > 0.$$

Durch

$$x_1 = \alpha$$

$$x_2 = 1 - (\alpha + \gamma)$$

$$x_3 = \gamma$$

lässt sich für jedes $\underline{g} \in G^2$ ein $\underline{G}(\underline{x})$ hinzubestimmen. Wegen det $\underline{g} = 1 - (\alpha + \gamma) > 0$ gilt $x_2 > 0$ und ausserdem gilt $x_1 + x_2 + x_3 > 0$. Daraus folgt $\underline{x} \in D$.

Satz 2

Die Abbildung $\underline{G}:D\mapsto G^+$ ist nicht injektiv.

Beweis:

Es sei $\underline{x}=(x_1,x_2,x_3)^T\in D$ und $\underline{y}=\lambda\underline{x},\lambda>0$. Es gilt also $\underline{y}\in D$ und $\underline{y}\neq\underline{x}$. Durch Einsetzen sieht man sofort $\underline{G}(\underline{x})\neq\underline{G}(\underline{y})$.

Äquivalenzrelation

Im folgenden werden alle $\underline{x} \in D$ als äquivalent angesehen, die sich nur um einen positiven Faktor ungleich 0 unterscheiden, also

$$\underline{x} \sim y \Leftrightarrow \underline{x} = \lambda y, \lambda > 0.$$

Die entstehenden Äquivalenzklassen $[\underline{x}]$ werden aber im folgenden vereinfacht als \underline{x} und der entstehende Faktorraum D/\sim als D bezeichnet.

Anhang

Gegenüberstellung der Gruppen $\mathrm{ET}(2)$ und $\mathbb C$

	ET(2)	\mathbb{C}
Darstellung von g	$\begin{pmatrix} a \\ b \end{pmatrix}$	$\begin{pmatrix} a \\ b \end{pmatrix}$
Multiplikation $g \cdot g^{'}$	$ \left(\begin{array}{c} a(1-a^{'}) + (1-c)a^{'} \\ (1-a)c^{'} + c(1-c^{'}) \end{array} \right) $	$\left(egin{array}{c} aa^{'}-bb^{'} \ ab^{'}+ba^{'} \end{array} ight)$
Inverse g^{-1}	$-\frac{1}{1-(a+b)}\left(\begin{array}{c}a\\b\end{array}\right)$	$\frac{1}{a^2+b^2} \left(\begin{array}{c} a \\ -b \end{array} \right)$
Einselement e	$\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
$\boxed{ \text{Kommutator } \left[g,g^{'}\right] }$	$\frac{1}{ac'-ca'}\begin{pmatrix} 1\\-1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$