Bài 8. Tích phân đường

I. Trường véc tơ

• Nếu tại mỗi điểm $(x, y) \in D \subset R^2$ có một quy tắc xác định véc tơ $\overrightarrow{F}(x, y)$ nào đó thì ta nói trên D xác định một trường véc tơ và viết:

$$\vec{F}(x,y) = M(x,y)\vec{i} + N(x,y)\vec{j}$$

• Nếu tại mỗi điểm $(x, y, z) \in D \subset R^3$ có một quy tắc xác định véc tơ $\overrightarrow{F}(x, y, z)$ thì ta nói trên D xác định một trường véc tơ và viết:

$$\vec{F}(x,y,z) = M(x,y,z)\vec{i} + N(x,y,z)\vec{j} + P(x,y,z)\vec{k}$$

II. Bài toán dẫn đến tích phân đường

• Công sinh ra do lực \vec{F} không đổi làm chất điểm dịch chuyển dọc theo đường thẳng từ A đến B là:

$$W = \overrightarrow{F}.\overrightarrow{AB}$$

•Bài toán:

Tính công sinh ra do lực $\vec{F} = M(x, y)\vec{i} + N(x, y)\vec{j}$ làm chất điểm dịch chuyển dọc theo đường cong C từ điểm A đến điểm B.

• Ý tưởng giải quyết

- Chia cung AB thành n cung nhỏ bởi các điểm chia $P_0 \equiv A, P_1, P_2, ..., P_n \equiv B$.
- Gọi $\overrightarrow{\Delta R_k} = \overrightarrow{P_{k-1}P_k} = \Delta x_k \cdot \overrightarrow{i} + \Delta y_k \cdot \overrightarrow{j}$, k = 1, 2, ..., n
- Lấy điểm M_k bất kỳ trên cung $P_{k-1}P_k$ và gọi $\overrightarrow{F_k}$ là giá trị của hàm véc tơ \overrightarrow{F} tại M_k .
- Cung $P_{k-1}P_k$ nhỏ nên xếp xỉ đoạn thẳng $P_{k-1}P_k$ và trên đó lực \overrightarrow{F} không đổi và có giá trị $\overrightarrow{F}_k = \overrightarrow{F}(M_k)$.
- Công sinh ra do chất điểm chuyển động từ P_{k-1} đến P_k là: $\overrightarrow{F_k}.\overrightarrow{\Delta R_k}$.
- Công sinh ra dọc theo C từ A đến B dưới tác dụng của lực \overrightarrow{F} xấp xỉ: $\sum_{k=0}^{n} \overrightarrow{F_k}.\overrightarrow{\Delta R_k}$
- Nếu tổng tiến đến ghhh thì giá trị đó là giá trị công sinh ra và đgl tích phân đường của \overrightarrow{F} trên C

$$\int_{C} \overrightarrow{F}.\overrightarrow{dR} = \lim_{n \to +\infty} \sum_{k=0}^{n} \overrightarrow{F_k}.\overrightarrow{\Delta R_k}$$

- Do $\overrightarrow{dR} = dx.\overrightarrow{i} + dy.\overrightarrow{j}$ nên:

$$\int_{C} \overrightarrow{F} \cdot \overrightarrow{dR} = \int_{C} M(x, y) dx + N(x, y) dy$$

 Chú ý: Nếu C là đường cong kín định hướng dương thì ta ký hiệu:

$$\oint_C \overrightarrow{F}.\overrightarrow{dR} = \oint_C M(x,y)dx + N(x,y)dy$$

III. Tính chất của tích phân đường

1.
$$\int_{AB} M(x,y)dx + N(x,y)dy = -\int_{BA} M(x,y)dx + N(x,y)dy$$

2. Nếu $C = C_1 \cup C_2$ thì:

$$\int_{C} M(x,y)dx + N(x,y)dy = \int_{C_{1}} M(x,y)dx + N(x,y)dy + \int_{C_{2}} M(x,y)dx + N(x,y)dy$$

IV. Cách tính tích phân đường

$$\int_{C} \overrightarrow{F}.\overrightarrow{dR} = \int_{C} M(x, y) dx + N(x, y) dy$$

• Nếu đường cong C có phương trình y = f(x)với $x: a \rightarrow b$ thì:

$$\int_{C} M(x,y)dx + N(x,y)dy = \int_{a}^{b} \left[M(x,f(x)) + N(x,f(x)).f'(x) \right] dx$$

• Nếu đường cong C có phương trình x = g(y)và $y: c \rightarrow d$ thì:

$$\int_{C} M(x,y)dx + N(x,y)dy = \int_{c}^{d} \left[M(g(y),y).g'(y) + N(g(y),y) \right] dy$$

• Nếu đường C có phương trình $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ và $t: t_1 \to t_2 \text{ thì:}$

$$\int_{C} M(x,y) dx + N(x,y) dy = \int_{t_{1}}^{t_{2}} \left[M(x(t),y(t)).x'(t) + N(x(t),y(t)).y'(t) \right] dt$$

Chú ý: Ta thường tham số hóa đường cong khi nó là đường tròn, ellip,..

•
$$x^2 + y^2 = a^2 \Rightarrow \begin{cases} x = a \cos t \\ y = a \sin t \end{cases}$$

•
$$(x - x_0)^2 + (y - y_0)^2 = R^2 \Rightarrow \begin{cases} x = x_0 + Rt \\ y = y_0 + Rt \end{cases}$$

$$\bullet \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Longrightarrow \begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$$

VD. Tính
$$I = \int_{C} (x^{2} - 2xy) dx + (2xy - y^{2}) dy$$

trong đó C là phần parabol $y = x^2$ từ điểm A(1;1) đến điểm B(0;0).

VD. Tính $I = \int_C (x + y^2) dx + 2xy dy$, trong đó C là đường gấp khúc đi từ điểm O(0;0) đến A(2;0) đến B(2;2).

VD. Tính
$$I = \int_C (x^2 + y^2) dy - 2xy dx$$
, C là phần

đường tròn $x^2 + y^2 = 4$ nằm trong góc phần tư thứ nhất được định hướng theo chiều kim đồng hồ.

V. Định lý Green

1. Một số định nghĩa

- Đường cong đóng là đường cong mà mỗi điểm thuộc nó vừa là điểm đầu vừa là điểm cuối.
- Đường cong đơn là đường cong không tự cắt.
- Đường cong đóng, đơn, định hướng dương là đường cong đóng, đơn và đi dọc theo đường cong thì miền bị chặn bởi nó nằm phía tay trái.

2. Định lý Green

Nếu C là đường cong đóng, đơn, định hướng dương bao quanh miền D và M(x, y), N(x, y) cùng các đạo hàm riêng của nó liên tục C \cup D thì

$$\oint_{C} M(x,y)dx + N(x,y)dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA$$

VD. Tính
$$I = \oint_C (xy+1)dx + (x^2 + y^2)dy$$
 bằng 2

cách biết C là biên của miền D bị chặn bởi: $y = x^2$, y = x.

VD. Tính
$$I = \oint_C (x^2 + x + y) dx + (xy + x - y) dy$$

với C là đường tròn $x^2 + y^2 = 2x$.

3. Hệ quả

Nếu C là đường cong đóng, đơn, định hướng dương, bao quanh miền D thì diện tích của miền D xác định bởi:

$$S_D = \frac{1}{2} \oint_C -y dx + x dy$$

VD. Sử dụng tích phân đường tính diện tích miền phẳng bị chặn bởi các đường $y = x^2$, $x = y^2$.

VI. Sự không phụ thuộc vào quỹ đạo

1. Trường bảo toàn

Định nghĩa 1. Trường \overrightarrow{F} đgl trường bảo toàn nếu tồn tại hàm f sao cho $\overrightarrow{F} = \nabla f$. Hàm f đgl hàm thế vị của \overrightarrow{F} .

VD. $f(x, y) = xy^3$ là hàm thế vị của $\vec{F} = y^3 \vec{i} + 3xy^2 \vec{j}$ hay trường $\vec{F} = y^3 \vec{i} + 3xy^2 \vec{j}$ là trường bảo toàn.

VD. Chứng minh $\vec{F} = (x + y^2)\vec{i} + (2xy + y^2)\vec{j}$ là trường bảo toàn.

Định nghĩa 2. Miền D được gọi là miền đơn liên nếu mọi đường cong C nằm trong D đều bao quanh một miền nằm trọn trong D.

Định lý: Giả sử trường $\overrightarrow{F} = M(x,y)\overrightarrow{i} + N(x,y)\overrightarrow{j}$ xác định trên miền đơn liên D. Khi đó \overrightarrow{F} bảo toàn khi và chỉ khi $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, $\forall (x,y) \in D$.

2. Phương pháp tìm hàm thế vị

Giả sử trường $\vec{F} = M(x, y)\vec{i} + N(x, y)\vec{j}$ là bảo toàn. Tìm hàm thế vị f(x, y).

• f(x, y) là hàm thế vị của $\vec{F} = M(x, y)\vec{i} + N(x, y)\vec{j}$ nên: $\vec{F} = \nabla f$.

•
$$\nabla f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j}$$
 nên
$$\begin{cases} f_x = M(x, y) \\ f_y = N(x, y) \end{cases}$$

•
$$f_x = M(x, y) \Rightarrow f(x, y) = \int M(x, y) dx + g(y)$$

- Từ bước $3 \Rightarrow f_y$ kết hợp $f_y = N(x, y)$ $\Rightarrow g'(y) \Rightarrow g(y)$
- Thay g(y) vào bước $2 \Rightarrow f(x, y)$.

VD. Chứng minh trường $\vec{F} = e^y \cos x \vec{i} + e^y \sin x \vec{j}$ là trường bảo toàn.

- 3. Điều kiện để trường véc tơ bảo toàn
- 4. Sự không phụ thuộc vào quỹ đạo lấy tích phân

Định lý: Cho C là đường cong trơn (trơn từng khúc) định hướng từ A đến B. Nếu \overrightarrow{F} là trường bảo toàn, tức là $\overrightarrow{F} = \nabla f$ thì:

$$\int_{C} \overrightarrow{F}.\overrightarrow{dR} = \int_{A}^{B} \overrightarrow{F}.\overrightarrow{dR} = f(B) - f(A).$$

VD. Tính tích phân đường $I = \int_C y dx + (x+2y) dy$ dọc theo đường cong C đi từ A(1;0) đến B(0;1).

Nhận xét: Nếu \overrightarrow{F} là trường bảo toàn thì $\int_C \overrightarrow{F} \cdot \overrightarrow{dR}$

không phụ thuộc vào quỹ đạo lấy tích phân mà chỉ phụ thuộc vào điểm đầu và điểm cuối.

VD. CMR tích phân đường $I = \int_{(-2;1)}^{(1;4)} 2xydx + x^2dy$ độc lập với quỹ đạo lấy tích phân. Tính tích phân.

VII. Định lý bốn mệnh đề tương đương

Giả sử C là đường cong đóng, đơn, định hướng dương bao quanh miền D và M(x, y), N(x, y) cùng các đạo hàm riêng của nó liên tục dọc theo C và trên D. Khi đó 4 mệnh đề sau tương đương:

i.
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}, \ \forall (x, y) \in D.$$

ii. Trường véc tơ $\vec{F} = M(x, y).\vec{i} + N(x, y).\vec{j}$ bảo toàn.

iii.
$$\int_{AB} M(x,y)dx + N(x,y)dy = f(B) - f(A),$$

f là hàm thế vị của trường véc tơ \vec{F} , AB là cung bất kỳ nằm trong D.

iv.
$$\oint_C M(x, y) dx + N(x, y) dy = 0.$$

Bài 9. Tích phân mặt

I. Một số định nghĩa

1. Toán tử vi phân

Gradient của hàm f(x, y, z) là véc tơ:

$$gradf = \nabla f = \frac{\partial f}{\partial x} \cdot \vec{i} + \frac{\partial f}{\partial y} \cdot \vec{j} + \frac{\partial f}{\partial z} \cdot \vec{k}$$

Ta gọi $\nabla = \frac{\partial}{\partial x} \cdot \vec{i} + \frac{\partial}{\partial y} \cdot \vec{j} + \frac{\partial}{\partial z} \cdot \vec{k}$ là **toán tử vi phân** theo 3 biến x, y, z.

2. Độ phân nhánh – Véc tơ xoáy

Cho hàm véc tơ

$$\mathbf{F} = L(x, y, z)\vec{i} + M(x, y, z)\vec{j} + N(x, y, z)\vec{k}$$

• Độ phân nhánh của hàm véc tơ F là một số được xác định như sau:

$$div \mathbf{F} = \nabla . \mathbf{F} = \frac{\partial L}{\partial x} + \frac{\partial M}{\partial y} + \frac{\partial N}{\partial z}$$

• Véc tơ xoáy của hàm véc tơ F xác định bởi:

$$curl \mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial z}\right) \vec{i} + \left(\frac{\partial L}{\partial z} - \frac{\partial N}{\partial x}\right) \vec{j} + \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}\right) \vec{k}$$

VD. Tính độ phân nhánh và véc tơ xoáy của trường véc tơ: $\mathbf{F} = xz.\vec{i} + yz.\vec{j} - y^2.\vec{k}$

3. Thông lượng

Thông lượng của 1 trường véc tơ xuyên qua 1 mặt là đại lượng chỉ lượng chất lỏng (khí) chảy qua bề mặt vuông góc với hướng chảy trong một đơn vị thời gian.

II. Tích phân mặt

1. Định nghĩa

- Cho mặt cong S: z = z(x, y) và hàm f(x, y, z) liên tục trên S.
- Chia mặt S ra thành n mảnh nhỏ có diện tích ΔS_1 , ΔS_2 , ..., ΔS_n .
- Lấy điểm (x_i, y_i, z_i) bất kỳ trên mảnh thứ i.
- Lập tổng $\sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta S_i$
- Nếu tổng trên tiến đến một giới hạn hữu hạn khi $n \to \infty$ thì ta nói giá trị giới hạn đó là tích phân mặt của hàm f(x, y, z) trên mặt S

$$\iint_{S} f(x, y, z) dS = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}, y_{i}, z_{i}) \Delta S_{i}$$

2. Tính chất

•
$$\iint_{S} [\alpha f + \beta g] dS = \alpha \iint_{S} f dS + \beta \iint_{S} g dS$$

• Nếu $S = S_1 \cup S_2$ thì:

$$\iint_{S} f(x, y, z) dS = \iint_{S_{1}} f(x, y, z) dS + \iint_{S_{2}} f(x, y, z) dS$$

3. Cách tính

Định lý:

Giả sử mặt cong S có pt: z = z(x, y). Khi đó:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, z) \cdot \sqrt{1 + z_{x}^{2} + z_{y}^{2}} dxdy$$

D là hình chiếu của S trên 0xy.

Hệ quả: Diện tích của mặt cong S:

$$dt(S) = \iint_{S} dS = \iint_{D} \sqrt{1 + z_x^2 + z_y^2} dxdy$$

D là hình chiếu của S trên 0xy.

VD. Tính tích phân mặt: $I = \iint_S (x^2 + y^2) dS$, S là phần mặt phẳng z = x nằm trong trụ $x^2 + y^2 = 1$ VD. Tính diện tích của phần mặt paraboloid tròn xoay $z = x^2 + y^2$ bị cắt bởi mặt phẳng z = 1.

4. Mặt cong định hướng

- Đối với mặt cong kín: Hướng dướng là hướng của vtpt ra phía ngoài miền bị chặn bởi mặt đó Xét mặt cong kín (S): f(x, y, z) = 0 có:
 - $gradf = (f_x; f_y; f_z)$
 - Lấy điểm $M_0(x_0; y_0; z_0)$ nằm trong miền bị chặn bởi mặt (S).
 - Tại điểm M(x, y, z) bất kì thuộc (S): Đặt $A = gradf(M).\overline{M_0M}$
 - + Nếu A \geq 0 với mọi M thì vtpt định hướng dương là: $\vec{n} = gradf$
 - + Nếu A \leq 0 với mọi M thì vtpt định hướng dương là: $\vec{n} = -gradf$

VD: Xác định hướng dương của mặt:

$$(S): x^2 + y^2 + z^2 = 1$$

• Đối với mặt cong hở: Hướng dướng là hướng vtpt theo tia 0z.

VD: Xác định hướng dương của mặt:

$$x + 2y - z = 1$$

5. Ứng dụng tích phân mặt

Định lý: Giả sử S là mặt kín và n là véc tơ pháp tuyến đơn vị định hướng dương. Khi đó thông lượng của trường véc tơ F xuyên qua mặt S được tính bởi: ∬F.ndS

VD. Tính thông lượng của trường véc tơ

 $\mathbf{F} = x.\mathbf{i} + y.\mathbf{j} + z.\mathbf{k}$ xuyên qua hình trụ $x^2 + y^2 = a^2$ có hai đáy là z = 0 và z = 1.

6. Liên hệ tích phân mặt và tích phân bội ba Định lý Gauss (Định lý phân nhánh)

Giả sử S là mặt đóng, R là miền giới hạn bởi S và **n** là véc tơ pháp tuyến đơn vị định hướng dương.

Khi đó thông lượng của trường véc tơ **F** xuyên qua mặt S bằng tích phân bội ba của div**F** trên R:

$$\iint_{S} F.ndS = \iiint_{R} divFdV$$

VD. Tính thông lượng của $\mathbf{F} = x^3 \cdot \vec{i} + y^3 \cdot \vec{j} + z^3 \cdot \vec{k}$ xuyên qua phía ngoài mặt S là biên của miền giới hạn bởi $z^2 = x^2 + y^2$ và z = 1.

VD. Kiểm tra định lý phân nhánh cho trường véc tơ $\mathbf{F} = 2z.\vec{i} + (x - y).\vec{j} + (2xy + z).\vec{k}$ xuyên qua các mặt của hình hộp chữ nhật giới hạn bởi:

$$x = 0$$
, $x = 1$, $y = 0$, $y = 2$, $z = 0$, $z = 3$.

7. Tích phân đường trong không gian

a. Định nghĩa

• Cho đường cong C và trường véc tơ:

$$\mathbf{F} = L(x, y, z)\vec{i} + M(x, y, z)\vec{j} + N(x, y, z)\vec{k}$$

Tích phân đường của F dọc theo đường cong C định nghĩa bởi:

$$\int_{C} F.dR = \int_{C} Ldx + Mdy + Ndz$$

• Nếu C là đường cong kín, định hướng dương thì tích phân đường được viết là:

$$\oint_C F.dR = \oint_C Ldx + Mdy + Ndz$$

 Tích phân này đo thông lượng của trường véc to F doc theo đường cong C.

b. Cách tính

Giả sử C có phương trình $\begin{cases} x = x(t) \\ y = y(t) \text{ và } t: t_1 \to t_2. \\ z = z(t) \end{cases}$

$$\int_{C} F.dR = \int_{C} Ldx + Mdy + Ndz$$

$$= \int_{t_{1}}^{t_{2}} \left[L(t)x'(t) + M(t)y'(t) + N(t).z'(t) \right] dt$$

VD. Tính tích phân đường:

$$I = \int_{C} x dx + y dy + (x + y) dz$$

C là đoạn thẳng nối từ A(1;1;1) đến B(2;3;4).

8. Liên hệ giữa tích phân đường trong không gian và tích phân mặt

Định lý: (Định lý Stoke)

Nếu S là mặt hở với biên là đường cong kín C được định hướng dương và n là véc tơ pháp tuyến đơn vị theo chiều tăng của z. Khi đó thông lượng của trường véc tơ **F** dọc theo đường cong C bằng tích phân mặt của hàm *curl* F.n trên mặt S:

$$\oint_C F.dR = \iint_S curl F.ndS$$

VD. Tính thông lượng của trường véc tơ:

$$\mathbf{F} = y(x-z)\vec{i} + (2x^2 + z^2)\vec{j} + y^3 \cos xz\vec{k}$$

dọc theo đường cong C là biên của hình vuông:

$$0 \le x \le 1, \ 0 \le y \le 1, \ z = 2.$$

VD. Tính thông lượng của trường véc tơ

$$\mathbf{F} = y \cdot \vec{i} + (x + y) \cdot \vec{j} + (x + y + z) \cdot \vec{k}$$
 dọc theo đường cong C là biên của miền tạo thành khi mặt $z = x$ giao với trụ $x^2 + y^2 = 1$.