

SYMBIOSIS INSTITUTE OF TECHNOLOGY, PUNE

Symbiosis International (Deemed University)

(Established under section 3 of the UGC Act, 1956)

Re-accredited by NAAC with 'A' grade (3.58/4) | Awarded Category - I by UGC

Founder: Prof. Dr. S. B. Mujumdar, M. Sc., Ph. D. (Awarded Padma Bhushan and Padma Shri by President of India)

Assignment No. 01						
Subject: Data Science Lab						
Name of Student	Achyut Shukla					
PRN No.	20070122005					
Branch	CS					
Class	A1					
	2023-24 _ 7th semester					
Academic Year & Semester						
Date	31 st July					
Title of Lab Assignment	R AS CALCULATOR APPLICATION					

Theory:

In this lab, we explore the utilization of R as a calculator application. We begin by examining basic arithmetic operations, both with and without the use of R objects, demonstrating the ease of conducting calculations in R. Furthermore, we delve into the application of mathematical functions to perform more complex calculations. The lab concludes with the creation of an R script, showcasing how to define R objects to store calculation results and subsequently save those results to a designated location on the disk. These foundational skills provide an essential understanding of using R for basic computations and lay the groundwork for more advanced data analysis and statistical tasks.

```
Code:

rows <- 10 cols <- 10

for (i in 1:rows) { for (j in 1:cols) { result <- i * j

cat(result, "\t") } cat("\n") }
```

Output:

Program to find factorial of a number

```
factorial <- function(n) {
  if (n <= 1) { return(1)
  } else { return(n * factorial(n - 1))
  }
}</pre>
```

```
num <- as.integer(readline("Enter a number: "))

if (num < 0) {
   cat("Factorial is not defined for negative numbers.\n")
} else { result <- factorial(num) cat("Factorial of", num, "is", result, "\n")
}</pre>
```


Program to check Armstrong Number

```
num_digits <- function(n) {
  count <- 0 while (n > 0) {
    n <- n %/% 10
    count <- count + 1
}</pre>
```

```
return(count)
}

is_armstrong <- function(n) { num <- n
    num_digits <- num_digits(n) sum <- 0

while (n > 0) {
    digit <- n %% 10 sum <- sum + digit ^ num_digits n <- n %/% 10
}

return(sum == num)
}

num <- as.integer(readline("Enter a number: "))

if (is_armstrong(num)) {
    cat(num, "is an Armstrong number.\n")
} else { cat(num, "is not an Armstrong number.\n")
}
```


R Program to check prime number

Program:

```
is_prime <- function(n) {
    if (n <= 1) {
        return(FALSE)
    }

    if (n <= 3) {
        return(TRUE)
    }

    if (n %% 2 == 0 || n %% 3 == 0) { return(FALSE)
    }

    i <- 5 while (i * i <= n) { if (n %% i == 0 || n %% (i + 2) == 0) { return(FALSE)
    }
}</pre>
```

```
i <- i + 6
}

return(TRUE)
}

num <- as.integer(readline("Enter a number: "))

if (is_prime(num)) {
    cat(num, "is a prime number.\n")
} else { cat(num, "is not a prime number.\n")
}</pre>
```


Conclusion: The objective of the study was to examine the influence of various financial approaches and operational conditions on the profitability of startup companies. Using linear regression, we assessed the correlation between profits and expenditures in various departments. Descriptive statistics were used to gain an understanding of the overall profit distribution among the startups, while the RMSE served as a measure of the model's performance.