

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

CIRCUITOS TRIFÁSICOS DESEQUILIBRADOS

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Novembro / 2019

Sumário

1	1 Objetivos								
2	Introdução teórica	2							
3	Preparação								
	3.1 Materiais e ferramentas	2							
	3.2 Montagem	2							
	3.3 Carga em estrela com neutro conectado	2							
4	Dados Experimentais	3							
	4.1 Carga em estrela com neutro conectado	3							
5	Análise teórica do circuito								
6	Análise sobre segurança								
7	Cálculos, análise dos resultados e questões								
8	Simulação computacional								
9	Conclusões	5							

1 Objetivos

2 Introdução teórica

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 Amperímetro analógico AC: Instrumento utilizado para acompanhar visualmente o aumento da corrente.
- 6 **Reatores de 160 mH:** Foram utilizados 3, para compor a carga do circuito trifásico. Sendo L=160mH e $R_L=3,8\Omega$.
- 7 **Resistores de** 50Ω : Foram utilizados 3, para compor a carga do circuito trifásico.
- 8 Capacitores de 45,9 μF : Foram utilizados 3, para compor a carga do circuito trifásico. Sendo $C=45,9\mu F$.

3.2 Montagem

3.3 Carga em estrela com neutro conectado

A montagem utilizada observa-se na Figura 1. Pretende-se com este circuito investigar-se acerca do efeito do neutro em circuitos trifásicos desequilibrados.

Figura 1

4 Dados Experimentais

4.1 Carga em estrela com neutro conectado

Tabela 1: Dados experimentais referentes à primeira montagem: carga em estrela com neutro conectado.

	V_L (V)	V_F (V)	I_L (A)	P (W)	Q (VAr)	S (VA)	fp	A_N (A)	$V_{N'N}$ (V)
A	96,10	55,89	1,13	63,84	0,30	64,16	1		
В	10,07	56,57	0,62	22,12	27,68	35,58	0,625	0,21	0
С	99,69	58,82	0,76	29,54	33,44	44,50	0,659		

5 Análise teórica do circuito

6 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [4]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer

dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

7 Cálculos, análise dos resultados e questões

- 8 Simulação computacional
- 9 Conclusões

Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Equilibrados", 2018.
- [2] J. D. Irwin, "Análise de Circuitos Em Engenharia", Pearson, 4^a Ed., 2000.
- [3] R. L. Boylestad, "Introdução À Análise de Circuitos", Pearson, 10^a Ed., 2004.
- [4] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.