МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ

"КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ" ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра математических методов кибернетической безопасности

КУРСОВАЯ РАБОТА

Дисциплина: «Интеллектуальные методы обработки информации» Направление подготовки: 8.04030101 «Прикладная математика» Тема: «Интеллектуальные методы обработки информации»

Выполнил студент группы ФИ-51м
Кригин Валерий Михайлович
Проверила:
Бояринова Юлия Евгеньевна
(nodnucv)
Оценка:

ОГЛАВЛЕНИЕ

1 Закон Ципфа	. 3
1.1 Закон Ципфа	. 3
1.2 Задание	. 3
1.3 Фильтр	. 4
1.4 Частотный словарь	. 5
1.5 График	. 6
2 Закон Хипса	. 7
2.1 Закон Хипса	. 7
2.2 Задание	. 7
2.3 Фильтр	. 8
2.4 Частотный словарь	. 8
2.5 График	. 9
$3\ TF-IDF\ \dots$. 11
3.1 $TF - IDF$. 11
3.2 Задание	. 11
3.2.1 Основное задание	. 11
3.2.2 Стоп-слова (шумовые слова)	. 12
3.3 Фильтр	. 12
3.4 Счётчик $TF-IDF$. 13
2.5 Dodyn mem	16

1 ЗАКОН ЦИПФА

1.1 Закон Ципфа

Отношение ранга слова R, то есть его номер в списке слов, отсортированных по частоте в порядке убывания, к частоте слова f, является постоянным

$$Z = R \cdot f$$

где f — частота слова в тексте, а Z — коэффициент Ципфа. Значит,

$$f = \frac{Z}{R}.$$

1.2 Задание

Под понятием "отфильтровать текст" тут и далее будут подразумеваться следующие действия:

- 1) очистить текст от всех символов кроме букв и пробелов;
- 2) буквы привести в нижний регистр, между словами оставить по одному пробелу.
- 3) В лабораторной работе нужно
- 1) взять текст (желательно на русском языке) длиной более нескольких сотен килобайт;
- 2) отфильтровать текст;
- 3) составить частотный словарь слов каждому слову текста сопоставить количество его повторений в тексте;

- 4) отсортировать частоты в порядке убывания;
- 5) изобразить полученные значения на графике, выбрав логарифмический масштаб для оси ординат и абсцисс;
- 6) построить степенную линию тренда и убедиться, что график похож на прямую линию, за исключением, возможно, "хвостов" с обеих концов.

1.3 Фильтр

Ha Perl написан фильтр, который

- 1) делает заглавные буквы строчными;
- 2) убирает всё кроме пробелов, символов табуляций, переносов строк и т.п.;
- 3) превращает все символы, которе не являются буквами, в пробел, также предотвращает появление двух пробелов подряд.

Вход считывается из stdin, выход происходит в stdout.

Листинг 1.1 - filter.pl

```
1 #!/usr/bin/perl -w -CAS
2 use utf8;
3
4 $_ = lc join('', <>);
5
6 s/[^\p{L}\s]//g;
7 s/[\s]+/ /g;
8
9 print;
```

1.4 Частотный словарь

На Python написан скрипт, который составляет частотный словарь и выводит его в формате csv. Полученный результат можно открыть в программе для работы с электронными таблицами для построения графиков.

Вход считывается из stdin, выход происходит в stdout.

```
Листинг 1.2 — counter.py
```

```
1 \#!/usr/bin/python
2 \# -*- coding: utf-8 -*-
3
4 from sys import stdin
5 from os import linesep
6
7 words = ", '.join([l.strip() for l in stdin]).split(", ')
8
  counts = \{\}
   for key in set (words):
       counts[key] = 0
11
12
   for w in words:
13
       counts[w] += 1
14
   result = sorted(counts.iteritems(), key=lambda x: x[1],
15
                    reverse=True)
16
17
18 print linesep.join('%s,%d'%r for r in result)
```

1.5 График

Рисунок 1.1 — Результат

2 ЗАКОН ХИПСА

2.1 Закон Хипса

Объём словаря уникальных слов $\nu\left(n\right)$ для текста длиной n связан с длиной текста следующим соотношением

$$\nu\left(n\right) = \alpha \cdot n^{\beta},$$

где α и β — эмпирические константы, которые разнятся от языка к языку, и для европейских языков колеблятся в пределах от 10 до 100 и от 0.4 до 0.6 соответственно.

2.2 Задание

В лабораторной работе нужно

- 1) взять текст (желательно на русском языке) длиной более нескольких сотен килобайт;
- 2) отфильтровать текст;
- 3) построить зависимость количества уникальных слов в тексте от его размера; для этого достаточно использовать один и тот же текст, изымать из него всё больше и больше слов с каждой итерацией, и подсчитывать число уникальных слов на каждом шаге;
- 4) изобразить полученные значения на графике;
- 5) построить степенную линию тренда и убедиться, что полученные параметры α и β близки к теоретическим значениям.

2.3 Фильтр

Ha Perl написан фильтр, который

- 1) делает заглавные буквы строчными;
- 2) убирает всё кроме пробелов, символов табуляций, переносов строк и т.п.;
- 3) превращает все символы, которе не являются буквами, в пробел, также предотвращает появление двух пробелов подряд.

Вход считывается из stdin, выход происходит в stdout.

Листинг
$$2.1$$
 — filter.pl

```
1 #!/usr/bin/perl -w -CAS
2 use utf8;
3
4 $_ = lc join('', <>);
5
6 s/[^\p{L}\s]//g;
7 s/[\s]+/ /g;
8
9 print;
```

2.4 Частотный словарь

На Python написан скрипт, который считает зависимость между объёмом текста и объёмом словаря уникальных слов и выводит его в формате csv. Полученный результат можно открыть в программе для работы с электронными таблицами для построения графиков.

Листинг
$$2.2$$
 — counter.py

```
1 \ \#!/usr/bin/python
2 \# -*- coding: utf-8 -*-
3
   from sys import stdin
5
   words = ', '.join([l.strip() for l in stdin]).split(', ')
7
   found = []
8
9
   for i, w in enumerate(words):
        if w not in found:
11
12
            found.append(w)
        \mathbf{print} \ \ \text{'\%d,\%d'\%(i+1, len(found))}
13
```

2.5 График

Рисунок 2.1 — Результат

$$3 TF - IDF$$

3.1
$$TF - IDF$$

Для i слова (n-граммы) индексы TF и IDF считаются по следующим формулам, где D — множество документов, n_k — количество повторений k слова (n-граммы) в текущем документе

$$TF_i = \frac{n_i}{\sum_k n_k},$$

$$IDF_i = \log \frac{|D|}{|\{d \mid t_i \in d \in D\}|}.$$

Сам индекс TF-IDF является произведением индексов TF и IDF

$$TF - IDF_i = TF_i \cdot IDF_i$$

3.2 Задание

3.2.1 Основное задание

В лабораторной работе нужно

- 1) взять текст (желательно на русском языке) длиной более нескольких сотен килобайт;
- 2) отфильтровать текст;
- 3) подсчитать TF IDF для каждого слова;
- 4) изобразить полученные результаты в виде таблицы, отсортировав по значению TF-IDF в порядке убывания.

То же самое нужно проделать с биграммами и триадами слов. Например,

в тексте "мама мыла раму" биграммы следующие: "мама мыла" и "мыла раму".

3.2.2 Стоп-слова (шумовые слова)

Стоп-слова — те слова, которые не несут смысловую нагрузку. К ним относятся предлоги, частицы и прочее, если анализируемый документ не является учебником русского языка.

Список стоп-слов можно найти в интернете. Например, в разделе 12.9.4 Full-Text Stopwords документации к MySQL 5.5 находится список англоязычных шумовых слов.

Для увеличения скорости и уменьшения объёма обрабатываемых данных

- 1) при подсчёте TF IDF для слов можно выбросить из рассмотрения те, которые находятся в списке стоп-слов; например, слово "не" имеет мало смысла в сказке о царе Салтане, чего не скажешь о слове "лебедь";
- 2) при подсчёте TF IDF для биграмм следует исключать те биграммы, которые содержат в себе шумовые слова; например, биграмма "я пришёл" имеет мало смысловой нагрузки, но биграмма "пришёл домой" скажет больше;
- 3) при подсчёте TF IDF для триад следует исключать те элементы, которые оканчиваются или начинаются на шумовые слова; скажем, "и она решила" мало о чём говорит, триада "она решила пойти" скажет больше, но "решила пойти домой" несёт определённый смысл.

3.3 Фильтр

Ha Perl написан фильтр, который

1) делает заглавные буквы строчными;

- 2) убирает всё кроме пробелов, символов табуляций, переносов строк и т.п.;
- 3) превращает все символы, которе не являются буквами, в пробел, также предотвращает появление двух пробелов подряд.

Вход считывается из stdin, выход происходит в stdout.

Листинг
$$3.1 - \text{filter.pl}$$

```
1 #!/usr/bin/perl -w -CAS
2 use utf8;
3
4 $_ = lc join('', <>);
5
6 s/[^\p{L}\s]//g;
7 s/[\s]+/ /g;
8
9 print;
```

3.4 Счётчик TF - IDF

Полученный результат можно открыть в программе для работы с электронными таблицами для сортировки и фильтрации.

Листинг
$$3.2$$
 — counter.py

```
1 #!/usr/bin/python
2 # -*- coding: utf-8 -*-
3
4 from sys import stdin, argv
```

```
5 from os import linesep
 6 from math import log
   from stoplist import stop list
 8
 9
   def get_count(words):
10
        tfs = \{\}
11
        for key in set (words):
12
             tfs[key] = 0
13
14
        for w in words:
             tfs[w] += 1
15
16
        return tfs
17
   def group n grams (words, n):
18
19
        if n < 2:
20
             return [w for w in words if w not in stop_list]
        return [', ', ', join (w for w in words [i:i+n])
21
                  for i in range(len(words)-n)
22
                  if words[i+n-1] not in stop list
23
                      and words[i] not in stop_list]
24
25
   \mathbf{i}\,\mathbf{f} \quad \_\mathtt{name}\_\_ \ = \ `\_\mathtt{main}\_\_\,`:
26
27
        n \text{ grams length} = 1
28
        if len(argv) > 1:
29
             n_{grams_{length}} = int(argv[1])
30
31
```

```
32
       texts = ([l.strip().split(', ', ') for l in stdin])
       names = map(lambda text: text[0], texts)
33
       texts = map(lambda text: group n grams(text[1:]),
34
                                   n grams length), texts)
35
36
37
       tfs = map(get\_count, texts)
38
39
40
       idf = \{\}
41
       for word in set(sum(texts, [])):
42
            idf[word] = 0
43
44
45
46
       for tf in tfs:
            for word in tf:
47
                idf[word] += 1
48
49
50
       logN = log(len(texts))
51
       for word in idf:
52
            idf[word] = logN - log(idf[word])
53
54
55
       tf idfs = []
56
       for i, tf in enumerate(tfs):
57
            tf_idfs.append(\{\})
58
```

```
for word in tf:

tf_idfs[i][word] = tf[word] * idf[word] / len(tf)

result = [(names[i], word, tf_idf[word])

for i, tf_idf in enumerate(tf_idfs)

for word in tf_idf]

result = sorted(result, key=lambda x: x[2], reverse=True)

print linesep.join('%s,%s,%f'%(r) for r in result)
```

3.5 Результат

На рисунке 3.1 изображены первые 40 строк таблицы со значениями TF-IDF для слов из 144 документов автора Льва Николаевича Толстого, 27 документов Фёдора Михайловича Достоевского и 31 документа Александра Сергеевича Пушкина, отсортированных по значению TF-IDF в порядке убывания.

Объём документов Толстого 18МВ, Достоевского 7.6МВ, Пушкина — 2.8МВ. Фильтрация происходит соответственно 10.3, 3.2 и 2 секунды. Далее каждый документ имеет только один перенос строки, который говорит об окончании документа, и их можно объединить в один файл. Подсчёт TF-IDF происходит за 6.5 секунд, на выходе получается .csv файл объёмом 39МВ.

$\mathcal{N}_{ar{0}}$	Книга	Слово	TF-IDF
1	TolstoiVorobei	воробей	0.910196
2	TolstoiEchizayac	ёж	0.723855
3	TolstoiVorobei	лён	0.717333
4	TolstoiTelenoknaldu	телёнок	0.649992
5	TolstoiLetuchayamysh	летучая	0.645765
6	PushkinKamennyigost	гуан	0.625634
7	TolstoiVolgaiVazuza	волга	0.616940
8	TolstoiFilipok	филипок	0.603935
9	TolstoiShatiDon	шат	0.591983
10	TolstoiShakalyislon	слон	0.570469
11	TolstoiVolgaiVazuza	вазуза	0.570408
12	TolstoiPesnyaprosrachenienarekeChernoi	bis	0.523350
13	TolstoiZaicyilyagushki	зайцы	0.517134
14	TolstoiLetuchayamysh	МЫШЬ	0.507136
15	PushkinKamennyigost	дон	0.471297
16	TolstoiMyshi	кота	0.467739
17	TolstoiShatiDon	дон	0.454054
18	TolstoiSobakaieeten	собака	0.441651
19	TolstoiShakalyislon	шакал	0.419556
20	TolstoiZaicyilyagushki	лягушки	0.395571
21	TolstoiShakalyislon	шакалы	0.382696
22	TolstoiSobakaieeten	своё	0.356543

Pushkin_AleksandrKamennyi_gost	гуан	0.500417
Tolstoi_LevVorobei	воробей	0.420966
Tolstoi_LevEch_i_zayac	ёж	0.390793
Tolstoi_LevFilipok	филипок	0.38941
Tolstoi_LevVolga_i_Vazuza	волга	0.378673
Pushkin_AleksandrKamennyi_gost	дон	0.37697
Tolstoi_LevPesnya_pro_srachenie_na_reke_Chernoi	bis	0.375332
Tolstoi_LevTelenok_na_ldu	телёнок	0.366087
Tolstoi_LevVolga_i_Vazuza	вазуза	0.350113
Tolstoi_LevVorobei	лён	0.331767
Tolstoi_LevShat_i_Don	шат	0.313115
Tolstoi_LevLetuchaya_mysh	летучая	0.287007
Tolstoi_LevZaicy_i_lyagushki	зайцы	0.270501
Tolstoi_LevShakaly_i_slon	слон	0.270481
Pushkin_AleksandrMocart_i_Saleri	моцарт	0.253782
Tolstoi_LevProezchii_i_krestyanin	проезжий	0.251605
Tolstoi_LevKrestnik	крестник	0.249824
Tolstoi_LevGde_lubov_tam_i_bog	авдеич	0.24433
Tolstoi_LevBednye_ludi	жанна	0.241784
Tolstoi_LevShat_i_Don	дон	0.240161
Tolstoi_LevAssiriiskii_car_Asarhadon	лаилиэ	0.238039
Tolstoi_LevLetuchaya_mysh	мышь	0.225394
Tolstoi_LevKavkazskii_plennik	жилин	0.218334
Dostoevskii_FedorSlaboe_serdce	вася	0.217604
Tolstoi_LevMnogo_li_cheloveku_zemli_nuchno	пахом	0.217452
Tolstoi_LevRabotnik_Emelyan_i_pustoi_baraban	емельян	0.211203
Tolstoi_LevZaicy_i_lyagushki	лягушки	0.206914
Pushkin_Aleksandr_ Mocart_i Saleri	сальери	0.202256
Tolstoi_LevTri_starca	архиерей	0.200278
Tolstoi_LevShakaly_i_slon	шакал	0.198928
Tolstoi_LevProezchii_i_krestyanin	крестьянин	0.194574
Tolstoi Lev Myshi	кота	0.189198
Dostoevskii Fedor Dvoinik	голядкин	0.184289
Tolstoi Lev Tri vora	козу	0.184254
Tolstoi_LevShakaly_i_slon	шакалы	0.181451
Pushkin Aleksandr Skupoi rycar	альбер	0.18117
Pushkin_AleksandrKamennyi_gost	дона	0.177993
Tolstoi_LevEch_i_zayac	заяц	0.174024
Tolstoi_LevSobaka_i_ee_ten	собака	0.173506
Tolstoi_LevZerno_s_kurinoe_yaico	зерно	0.169045

Рисунок 3.1 — Результат для слов