

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

Факультет прикладної математики Кафедра програмного забезпечення комп'ютерних систем

Лабораторна робота № 4

з дисципліни " Математичне моделювання систем та процесів " тема " Моделювання в *MatLab & Simulink* "

υπκυπαι			з мовно зараховано		
студент VI курсу		· · ·	" · · · · · · · · · · · · · · · · · · ·	" 20 p.	
групи КВ-64М				викладачем	
Подольський Сергій Валентинович (прізвище, ім'я, по батькові)		C	Онай Микола Володимирович (прізвище, ім'я, по батькові)		
варіант № 12					
Штрафні бали: Нарахова		раховані ба.	ли:	Сумарний бал:	
Термін Оформлення здачі звіту	Корект. виконання завд. (3 бала)	Відп. на теор. питання (4 бала)	Відп. на прогр. питання (2 бала)		

різвище, ініціали, номер групи)

Постановка задачі за варіантом

1. Побудувати *Simulink*-модель траєкторії руху каменя, знехтувавши опором повітря. У якості початкових значень координат каменя у площині його руху використати

$$x_0 = 1 \text{ M}$$

$$y_0 = 5 \text{ M}$$

У якості початкової швидкості каменя обрати значення

$$v_0 = 20 \frac{M}{c}$$

2. Побудувати *Simulink*-модель траєкторії руху каменя із врахуванням опору повітря. У якості значення маси каменя використати

$$m=1$$
 кг

(прізвище, ініціали, номер групи)

Математичне підгрунтя для виконання даної лабораторної роботи

Рух тіла, кинутого із швидкістю V_0 під кутом α до горизонту описується рівняннями

$$V_X = V_{OX} = V_O \cos \alpha \tag{1}$$

$$x = V_{OXt} = V_O \cos\alpha \times t \tag{2}$$

$$V_Y = V_{OY} - gt = V_O \sin \alpha - gt \tag{3}$$

$$y = V_{OY_t} - (gt^2)/2 = V_O t \sin \alpha - (gt^2)/2$$
(4)

де V_x — горизонтальна, а V_y — вертикальна складові швидкості. Траєкторія руху тіла — парабола: оскільки в найвищій точці траєкторії $V_y = 0$, то рівняння (3) матиме вигляд $0 = V_o \sin \alpha - gt$. Отже, час піднімання тіла до найвищої точки його перебування становить:

$$t_1 = V_0 \sin \alpha / g$$

Підставивши значення t_1 у рівняння (4), одержимо максимальну висоту тіла H:

$$H = (V_0^2 \sin^2 \alpha)/2g.$$

Якщо задана початкова швидкість V_0 , то максимальне значення буде при $\alpha = 90^\circ$:

$$H_{\text{max}} = H_{90} = V^2 / 2g$$
.

Через те, що в точці піднімання y = 0, рівняння (4) матиме вигляд:

$$V_O t \sin \alpha - (gt^2)/2 = 0$$

Звідси можна визначити час польоту тіла t_2 :

$$t_2 = (2V_0 \sin \alpha)/g.$$

Дальність польоту тіла дорівнює:

$$l = V_{OX}t_2 = (2V_0^2 \sin \alpha \cos \alpha)/g.$$

Оскільки $t_2=2t_1$, то неважко помітити, що найбільшої висоти тіло досягне при x=l/2. Дальність польоту l залежить від добутку $\sin\alpha\cos\alpha$. При сталій швидкості V_0 із збільшенням кута значення синуса збільшується, а значення косинуса зменшується.

Simulink-модель руху каменя без врахування опору повітря

Рис. 1. Модель Simulink руху каменя без врахування опору повітря

Simulink-модель руху каменя із врахуванням опору повітря

Рис. 2. Модель Simulink руху каменя із врахуванням опору повітря

Графік траєкторії руху каменя без врахування опору повітря

Рис. 3. Траєкторія руху каменя без врахування опору повітря

Графік траєкторії руху каменя із врахуванням опору повітря

Рис. 4. Траєкторія руху каменя із врахуванням опору повітря

(прізвище, ініціали, номер групи)

Висновки

Пакет SimuLink дозволяє здійснювати дослідження (моделювання у часі) поводження динамічних нелінійних систем. Утворення чисельної моделі досліджуваної системи здійснюється шляхом графічного складання у спеціальному вікні схеми з'єднань елементарних візуальних блоків, що містяться в бібліотеках SimuLink. Кожний блок фактично являє собою математичну програму. Лінії з'єднання блоків перетворюються на зв'язки між цими програмами, які дозволяють визначити послідовність виклику програм і пересилання інформації. У результаті такого складання утворюється програмна модель, яку надалі називатимемо S-моделлю і яка зберігається у файлі з розширенням .mdl. Такий процес утворення обчислювальних програм прийнято називати візуальним програмуванням.

Створення моделей у пакеті SimuLink грунтується на використанні технології Drag-and-Drop (Перетягни й Залиш). Як "цеглинки" при побудові S-моделі використовуються модулі (блоки), що зберігаються в бібліотеці SimuLink. S-модель може мати ієрархічну структуру, тобто складатися з моделей більш низького рівня, причому кількість рівнів ієрархії є практично необмеженою. Протягом моделювання є можливість спостерігати за процесами, що відбуваються в системі. Для цього використовуються спеціальні блоки "оглядові вікна", що входять до складу бібліотеки SimuLink. Склад бібліотеки SimuLink може бути поповнений користувачем за рахунок розробки власних блоків.

Використання *SimuLink* є особливо зручним при моделюванні систем, які складаються із з'єднаних певним чином окремих функціональних пристроїв, поведінка яких описується відомими залежностями. Тоді схема з'єднань візуальних блоків у вікні блок-схеми S-моделі збігається з реальними зв'язками між цими пристроями. Ця обставина суттєво спрощує програмний аналіз і синтез систем автоматичного керування.