055

065

066

067

068

069

106

049

050

051

052

053

Real and Fake Face Detection

1. Abstract

In this project, our primary aim is to compile a comprehensive dataset consisting of genuine and altered human facial images. Subsequently, we seek to develop a convolutional neural network (CNN) capable of discerning fabricated images within this dataset. Our focus extends to evaluating the performance of our CNN model against established benchmarks, including the simple and improved CNN model, pre-trained MobileNetV2, and GramNet (with Gram Block). Through meticulous data collection and model development processes, we aim to provide insights into the efficacy of various CNN architectures for detecting manipulated images. Throughout model development, we experiment with various CNN architectures, exploring differences in depth, layer types, and regularization methods. We benchmark our CNN model against different models using different datasets.

2. Introduction

In the era of advanced digital manipulation technologies, the proliferation of fake images, particularly of human faces, has become a prevalent concern, demanding robust detection methods capable of discerning between genuine and altered facial images. Our project responds to this challenge by compiling a comprehensive dataset comprising both authentic and manipulated human facial images. leveraging which we aim to develop a convolutional neural network (CNN) capable of accurately identifying fabricated images. With our primary focus on the development of a CNN tailored for fake face detection, we explore various architectures including ResNet, MobileNetV2, and Gram-Net with Gram Block, to discern their efficacy in detecting manipulated images. Through systematic experimentation, we delve into architectural differences such as depth, layer types, and regularization methods, with the goal of optimizing model performance.

Dataset Compilation: To construct our dataset, we draw upon the "Real and Fake Face Detection" dataset sourced from Kaggle. This dataset offers a diverse collection of genuine and altered facial images, providing a suitable foundation for training and evaluation purposes. By meticulously curating and augmenting this dataset, we ensure a broad representation of facial variations and manipulation techniques, facilitating robust model training.

Benchmarking Against Established Models: To assess the effectiveness of our CNN model, we benchmark its performance against established baselines, including ResNet and MobileNetV2, renowned for their accuracy and efficiency in image classification tasks. Furthermore, we compare our model against GramNet with Gram Block, a stateof-the-art approach noted for its robustness and general applicability in fake face detection. By conducting rigorous evaluations using identical test datasets, we provide insights into the relative strengths and weaknesses of different CNN architectures for detecting manipulated images.

2.1. Sample 062 Sample 063

3. Related Work

4. Method

4.1. GramNet Architecture

070 [?] introduces a sophisticated deep neural network archi-071 tecture designed to enhance the capture of global features,072 which is specifically tailored for the detection of counterfeit₀₇₃ facial representations. We have implemented modifications074 and simplifications to the original architecture. In the Gram-075 Net architecture, Gram Blocks (Figure 1) are integrated at 076 the input image stage and before each downsampling layer 177 to encapsulate global image texture information across var-078 ious semantic levels (Figure 2). Each Gram Block is com-079 posed of several layers: an initial convolution layer adjusts 080 the feature dimensions from diverse levels, followed by a081 Gram matrix calculation layer that captures the global im-082 age texture features. This setup is then refined through twools consecutive layers—each a combination of a convolution,084 a batch normalization, and a ReLU activation. Finally, a085 global pooling layer is employed to synchronize the gram-086 style features with the main ResNet like framework. [?] in-087 troduces ResNet, which is a residual learning framework to 088 ease the training of networks that are substantially deeper089 than those used previously. In this study, we leverage the 090 robust capabilities of the ResNet architecture to facilitate091 the training process of our GramNet model, enhancing its092 efficiency and effectiveness.

In designing this model, there are three primary reasons094 for its architectural choices:

Enhanced Capture of Global Texture Features:096
Unlike traditional models that predominantly focus on097
local features extracted from feature maps, this model098
is designed to capture more global texture features. By099
integrating Gram Blocks within the ResNet architecture,100
the model effectively incorporates global information at101
various semantic levels. This approach is particularly102
beneficial for tasks like distinguishing real from fake faces,103
where understanding the overall texture and coherence of104
the image is crucial.

Increased Accuracy and Robustness: The addition107

Figure 1. Gram Blocks are added to the GramNet architecture on the input image and before every downsampling layer, incorporating global image texture information in different semantic levels. In the Gram Block, there are three convolutional layers, and for each convolutional layer, we apply Batch Normalization and Relu active function to it. In the end, we use the downsampling layer.

of Gram Blocks aims to enhance the model's accuracy and robustness. By enriching the feature set with both local and global descriptors, the model gains a more comprehensive understanding of the image content, which leads to improved performance on complex image recognition tasks.

Increased Computational Demand: The introduction of Gram Blocks, especially the computation of the Gram matrix and subsequent layers, adds substantial computational overhead. This increase in complexity means that more time and resources are required for training the model, which could be a limiting factor depending on the available computational power and the efficiency requirements of the application.

5. Experiments

5.1. Datasets

- Dataset 1: Real-and-fake-detection image dataset Source: https://www.kaggle.com/datasets/ciplab/real-and-fake-face-detection?resource=download
 For this dataset used in real and fake image detection, the training set comprises 1,081 real images and 960 fake images.
- Dataset 2: Deepfake-and-real image dataset
 Source: https://www.kaggle.com/datasets/manjilkarki/
 deepfake-and-real-images/discussion
 This dataset, designed for the evaluation of real and
 fake image detection algorithms, is comprehensive
 and well-structured. It encompasses distinct subsets

for training, validation, and testing, featuring both real and fake images. Each image within the dataset is a 256x256 pixel JPEG depicting a human face categorized as either authentic or counterfeit. Overall the dataset comprises a substantial total of 190,000 human face images.	164 165
• Glimpse of our dataset: As it shows in Figure 3, we could the sample fake and real faces from our datase 1.	e ¹⁶⁹ t ¹⁷⁰ 171
5.2. Details in Experiment	172173
-	174
5.2.1 Model training and evaluation	175
• Simple CNN	176 177
	178
• Improved CNN	179
	180
	181
GramNet Training and validating an dataset 1	182
1. Training and validating on dataset 1 In the case of Dataset 1, as shown in Figure 4, which	183 184
is characterized by its limited size, the GramNe	
architecture fails to demonstrate its effectiveness	
The constrained volume of training data appear	s187
to significantly hinder the model's performance	
resulting in notably poor outcomes on this dataset	
This observation underscores the potential limitation of GramNet when applied to smaller datasets, when	
insufficient training examples may not adequately	
support the complex feature extraction capabilitie	
designed to harness global image texture information	194
	195
2. Training and validating on dataset 2	196
Conversely, when applied to Dataset 2, as shown in Figure 5, the GramNet architecture exhibits markedly	
improved performance compared to Dataset 1. Thi	
enhancement is primarily attributed to the large	r200
volume of data incorporated into the model fo	
training. The increased dataset size provides a mor	
robust foundation for the GramNet to effectively	
leverage its sophisticated mechanisms for globa feature extraction, thus resulting in superior outcomes	
This contrast highlights the importance of adequat	
training data in realizing the full potential of advance	
neural network architectures like GramNet.	208
	209
3. Training and validating on cross-dataset	210
Subsequently, we implemented cross-dataset training and validation to enhance the generalization capa	
bilities and robustness of our model, as shown in	
Figure 6. This approach involved training the mode	

on one dataset and validating it on another, aiming to215

Figure 2. In the GramNet architecture, Gram Blocks are strategically integrated to enhance the capture of global features.

Figure 3. Glimpse of the dataset

ascertain its performance across different data distributions. The results were highly encouraging, as the model achieved significant accuracy and minimal loss, surpassing the performance observed when trained solely on a single dataset. These findings underscore the efficacy of cross-dataset training in bolstering the adaptability and overall performance of the model.

• MobileNetV2

[?] introduces a class of efficient models called MobileNets for mobile and embedded vision applications. Because of the efficiency and mobility of MobileNets, so we implement this model to compare with our GramNet model.

Regarding the application of the pre-trained Mo-313 bileNetV2, the model was trained and validated across314 both Dataset 1 and Dataset 2, as well as in cross-dataset315 scenarios. It became evident that MobileNetV2 pos-316 sesses robust generalization capabilities, as shown in317 Figure 7 particularly in the detection of facial features.318 In cross-dataset evaluations, MobileNetV2 achieved319 an accuracy rate of 0.98, which marginally surpasses320 that of GramNet51. Additionally, it is noteworthy that321 MobileNetV2 has fewer trainable parameters, which322 contributes to its efficiency and effectiveness in gener-323

alization compared to more complex models.

6. Findings

Impact of Dataset Quality on Model Performance:

The quality and characteristics of the dataset significantly influence the efficacy of predictive models. This is exemplified in our research, where Dataset 2 outperforms Dataset 1 due to its larger size and greater complexity. Such attributes contribute to enhanced learning opportunities and model performance.

Enhancing Model Generalization through Cross-Dataset Training: We employed cross-dataset training and validation techniques to bolster the generalization capabilities of our model. This method proved to be exceptionally effective in enhancing model performance across varied data sources, demonstrating its utility in creating robust machine learning models.

Efficacy of Gram Block Design: The incorporation of Gram Blocks for capturing more global facial features was validated in our experimental results. This architectural innovation contributed to a noticeable improvement in accuracy, underscoring the value of integrating global feature recognition capabilities in neural network designs.

7. Conclusion

In conclusion, we implemented and evaluated GramNet alongside conventional CNN models, including a comparison with the pre-trained MobileNetV2, across two distinct datasets and through cross-dataset experiments. Our findings reveal that employing cross-dataset training significantly enhances the generalization capabilities of our models, demonstrating their robustness across diverse data sources. Furthermore, the GramBlock architecture, designed to capture global facial features, has proven to be highly effective, substantially elevating the accuracy of our models.

Looking forward, we are excited about the prospects of leveraging Generative AI models, such as StyleGAN[?], to develop more robust datasets. Specifically, we aim to generate advanced synthetic datasets based on high-resolution sources like CelebA-HQ and FFHQ. This approach will not only enrich our training data but also provide deeper insights into the dynamics of facial feature recognition and the overall scalability of our current models in more complex and varied scenarios.

Make sure to update the paper title and paper ID in the appropriate place in the tex file.

All text must be in a two-column format. The total allowable width of the text area is $6\frac{7}{8}$ inches (17.5 cm) wide by $8\frac{7}{8}$

inches (22.54 cm) high. Columns are to be $3\frac{1}{4}$ inches (8.25³⁷⁸ cm) wide, with a $\frac{5}{16}$ inch (0.8 cm) space between them. The top margin should begin 1.0 inch (2.54 cm) from the top edge of the page. The bottom margin should be 1-1/8 inches (2.86 cm) from the bottom edge of the page for 8.5×11 -382 inch paper; for A4 paper, approximately 1-5/8 inches (4.13³⁸³ cm) from the bottom edge of the page.

Please number all of your sections and any displayed 385 equations. It is important for readers to be able to refer to 387 any particular equation.

Wherever Times is specified, Times Roman may also be ³⁸⁸ used. Main text should be in 10-point Times, single-spaced. ³⁸⁹ Section headings should be in 10 or 12 point Times. All ³⁹⁰ paragraphs should be indented 1 pica (approx. 1/6 inch or ³⁹¹ 0.422 cm). Figure and table captions should be 9-point Roman type as in Figure 8.

List and number all bibliographical references in 9-point ³⁹⁴
Times, single-spaced, at the end of your response. When ³⁹⁵
referenced in the text, enclose the citation number in square ³⁹⁶
brackets, for example [?]. Where appropriate, include the ³⁹⁷
name(s) of editors of referenced books.

7.1. Illustrations, graphs, and photographs

All graphics should be centered. Please ensure that any 402 point you wish to make is resolvable in a printed copy of 403 the response. Resize fonts in figures to match the font in the 404 body text, and choose line widths which render effectively 405 in print. Many readers (and reviewers), even of an electronic copy, will choose to print your response in order to read it. 407 You cannot insist that they do otherwise, and therefore must 408 not assume that they can zoom in to see tiny details on a graphic.

When placing figures in LaTeX, it's almost always best to 411 use \includegraphics, and to specify the figure width 412 as a multiple of the line width as in the example below 413

References

511

512

525

538

539

Figure 4. Training and validating for GramNet51 on dataset 1

Figure 5. Training and validating for GramNet51 on dataset 2

Figure 6. Training and validating for GramNet51 on cross-datasets

Figure 7. Training and validating for MobileNetV2 on cross-datasets

Figure 8. Example of caption. It is set in Roman so that mathematics (always set in Roman: $B\sin A = A\sin B$) may be included without an ugly clash.