실력완성 | 고1

2-3-4.이차부등식과 연립이차부등식

수학 계산력 강화

(4)연립이차부등식

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2018-02-15

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 연립이차부등식

(1) 연립부등식 $\begin{cases} f(x)>0 \\ g(x)>0 \end{cases}$ 의 풀이

두 부등식 f(x) > 0, g(x) > 0의 해를 각각 구하여 공통부분을 구한다.

(2) 연립부등식 f(x) < g(x) < h(x)의 풀이

 $egin{array}{ll} \{f(x) < g(x) \ g(x) < h(x) \ \end{array}$ 의 꼴로 변형하여 해를 구한다.

☑ 다음 부등식을 풀어라.

$$\begin{cases} x^2 - x - 2 > 0 \\ x^2 - 5x + 4 \le 0 \end{cases}$$

2.
$$\begin{cases} 4x+10 \ge 6 \\ 2x^2-5x-3 \le 0 \end{cases}$$

3.
$$\begin{cases} 3x+5 < x-1 \\ x^2+6x-7 < 0 \end{cases}$$

4.
$$\begin{cases} 3x+4 \ge x+2 \\ x^2-6x+5 < 0 \end{cases}$$

$$\begin{cases} 3x + 4 < x + 5 \\ x^2 - x - 2 \ge 0 \end{cases}$$

6.
$$\begin{cases} 2x+5 > x+2 \\ x^2+4x-5 < 0 \end{cases}$$

7.
$$\begin{cases} 2x+3 > 6x-1 \\ 6-x \ge x^2 \end{cases}$$

8.
$$\begin{cases} x^2 - 3x + 2 \ge 0 \\ x^2 - x - 6 < 0 \end{cases}$$

$$\mathbf{9.} \quad \begin{cases}
-3x - 2 \le x^2 \\
x^2 \le -2x + 3
\end{cases}$$

10.
$$\begin{cases} x^2 + 2x - 15 \le 0 \\ x^2 - 7x + 10 > 0 \end{cases}$$

11.
$$\begin{cases} x^2 - 7x + 10 \le 0 \\ x^2 - 2x - 3 > 0 \end{cases}$$

12.
$$\begin{cases} 3x^2 - 8x - 16 < 0 \\ -2x^2 + 7x - 6 \le 0 \end{cases}$$

13.
$$\begin{cases} 2x^2 - 9x + 10 > 0 \\ 3x^2 - 10x + 3 < 0 \end{cases}$$

14.
$$\begin{cases} x^2 + x - 6 \ge 0 \\ x^2 - 2x - 8 > 0 \end{cases}$$

15.
$$\begin{cases} x^2 - 6x + 5 \le 0 \\ 2x^2 - 5x - 3 \le 0 \end{cases}$$

16.
$$\begin{cases} 2x - 7 \ge x - 5 \\ 4x^2 - 5x - 21 < 0 \end{cases}$$

17.
$$\begin{cases} x^2 - x - 2 \ge 0 \\ x^2 - x - 12 < 0 \end{cases}$$

18.
$$\begin{cases} x^2 - x \ge 0 \\ x^2 - x - 2 < 0 \end{cases}$$

19.
$$\begin{cases} 3x - 6 > 0 \\ x^2 - 6x + 5 \le 0 \end{cases}$$

20.
$$\begin{cases} x^2 - 3x - 10 < 0 \\ x^2 - 2x - 3 \ge 0 \end{cases}$$

21.
$$\begin{cases} -x-2 < 0 \\ x^2 + 2x - 15 \le 0 \end{cases}$$

22.
$$\begin{cases} x^2 - x - 6 < 0 \\ 4x^2 - 8x + 3 \ge 0 \end{cases}$$

23.
$$\begin{cases} 3x - 6 > 0 \\ x^2 - 6x + 5 \le 0 \end{cases}$$

24.
$$\begin{cases} x^2 + x - 6 \le 0 \\ x^2 - x \ge 0 \end{cases}$$

25.
$$2x+3 < x^2 \le 9x-20$$

26.
$$0 \le x^2 - 3x + 2 \le 2$$

27.
$$-5 \le x^2 + 5x - 1 \le 5$$

28.
$$5x-1 < x^2+5 < 6x$$

29.
$$3x-4 \le 3x^2+x-5 < x^2+1$$

30.
$$-1 < x^2 - 3x + 1 < 19$$

31.
$$x-1 \le x^2 + 3x - 4 < 0$$

32.
$$3x^2 - 4x \le x^2 < 1 - 3x^2$$

33.
$$3x+4 < x^2 \le 6x-5$$

해가 주어진 연립이차부등식의 미지수의 값의

- ① 연립부등식을 풀어 해를 수직선 위에 나타낸다.
- ② 주어진 해와 비교하여 미지수의 값의 범위를 구한다.
- ☑ 다음 연립부등식의 해가 ()와 같을 때, 실수 k의 값의 범위를 구하여라.

34.
$$\begin{cases} x^2 - 2x - 3 \le 0 \\ x^2 - (k+2)x + 2k < 0 \end{cases} \quad [2 < x \le 3]$$

35.
$$\begin{cases} x^2 - (1+k)x + k < 0 \\ x^2 - x - 2 < 0 \end{cases} \quad [1 < x < 2]$$

36.
$$\begin{cases} x^2 - 3x - 4 > 0 \\ x^2 - (k+5)x + 5k \le 0 \end{cases} \quad [4 < x \le 5]$$

☑ 다음 연립부등식을 만족시키는 정수가 ()안의 수 뿐일 때, 실수 a의 값의 범위를 구하여라.

37.
$$\begin{cases} x(x-5) \ge 0 \\ x^2 - (a+7)x + 7a < 0 \end{cases}$$
 [6]

38.
$$\begin{cases} 2x(x-3) > x^2 - 2x \\ x^2 - (a+1)x + a \le 0 \end{cases}$$
 [5]

39.
$$\begin{cases} x^2 - 4x - 12 \ge 0 \\ x^2 - (a+2)x + 2a < 0 \end{cases}$$
 [6]

☑ 다음 연립부등식을 만족시키는 해가 없을 때, 실수 k의 값의 범위를 구하여라.

40.
$$\begin{cases} x^2 - 3x - 4 < 0 \\ \{x - (k-3)\}\{x - (k+3)\} > 0 \end{cases}$$

41.
$$\begin{cases} x^2 - 4x - 5 \le 0 \\ \{x - (k+4)\}\{x - (k-4)\} > 0 \end{cases}$$

42.
$$\begin{cases} x^2 - x - 2 \le 0 \\ \{x - (k-2)\}\{x - (k+2)\} \ge 0 \end{cases}$$

☑ 다음을 만족시키는 실수 a의 값을 구하여라.

43.
$$\begin{cases} x^2 - 5x < 0 \\ x^2 - (a+1)x + a < 0 \end{cases}$$
 의 해가 $1 < x < 5$ 이다.

44.
$$\begin{cases} x^2+x-12<0 \\ x^2+2ax+a^2-16>0 \end{cases}$$
 의 해가 존재하지 않는다.

45.
$$\begin{cases} x^2-2x-3>0 \\ x^2-(a+2)x+2a<0 \end{cases}$$
 을 만족시키는 정수 x 가 4 뿐이다.

- ☑ 다음 연립부등식에 대하여 물음에 답하여라.
- **46.** 연립부등식 $\begin{cases} x^2-x-2>0 \ 2x^2+(5+2a)x+5a<0 \end{cases}$ 의 정수해 가 -2뿐일 때 정수 a의 최댓값 M, 최솟값 m에 대 하여 M+m의 값을 구하여라.
- 47. 연립부등식 $\begin{cases} x^2 9x + 8 \ge 0 \\ (x a)(x a^2) < 0 \end{cases}$ 의 해가 존재하 지 않을 때, 정수 a의 개수를 구하여라. (단, $a \neq 0$)

03 / 이차방정식의 근의 판별과 이차부등식

이차방정식 $ax^2 + bx + c = 0$ (a > 0)의 판별식을 D라고 할 때, 이차부등식의 해는 다음과 같다.

$ax^2 + bx + c = 0 \text{a}$	D > 0
<u>판별식 <i>D</i>의 부호</u>	
$y = ax^2 + bx + c(a > 0)$	
의 그래프	α β x
$ax^2+bx+c>0의$ 해	$x < \alpha$ 또는 $x > \beta$
$ax^2 + bx + c \ge 0$ 의 해	$x \le \alpha$ 또는 $x \ge \beta$
$ax^2 + bx + c < 0$ 의 해	$\alpha < x < \beta$
$ax^2 + bx + c \le 0$ 의 해	$\alpha \le x \le \beta$
$ax^2 + bx + c = 0 $	D=0
판별식 <i>D</i> 의 부호	D=0
	\ /
$y = ax^2 + bx + c(a > 0)$	\ /
의 그래프	$\frac{1}{\alpha}$
2 + 1 > 0 01 =1	$x \neq \alpha$ 인 모든 실수
$\frac{ax^2 + bx + c > 0}{ax^2 + bx + c \ge 0}$ 해	모든 실수
$ax^2 + bx + c < 0$ 의 해	### #################################
$ax^2 + bx + c \le 0$ 의 해	$x = \alpha$
$ax^2 + bx + c = 0 $	i c
·	D < 0
<u> 판별식 <i>D</i>의 부호</u>	\ /
$y = ax^2 + bx + c(a > 0)$	\ /
o a	
의 그래프	<u> </u>
$am^2 + bm + a > 0$	 모든 실수
$\frac{ax^2 + bx + c > 0}{ax^2 + bx + c \ge 0}$ 하	또는 결구 모든 실수
$ax + bx + c \ge 0$ 의 해 $ax^2 + bx + c < 0$ 의 해	## 전다. 하는 없다.
$ax^2 + bx + c \le 0$ 의 해	해는 없다.
$ux + vx + c \ge 0 \Rightarrow 0$	

ightharpoons 다음 그림은 이차함수 y=(x+1)(x-2)의 그래프이 다. 물음에 답하여라.

48. 이차함수 y = (x+1)(x-2)의 그래프가 x축보다 위쪽에 있는 부분의 x의 값의 범위를 구하여라.

- **49.** 이차부등식 (x+1)(x-2) > 0의 해를 구하여라.
- ightharpoonup 그림과 같은 이차함수 $y=x^2-4x+3$ 의 그래프를 이 용하여 다음을 구하여라.

- **50.** $x^2-4x+3=0$ 이 되는 x의 값
- **51.** $x^2-4x+3>0$ 이 되는 x의 값의 범위
- **52.** $x^2-4x+3<0$ 이 되는 x의 값의 범위
- ightharpoonup 그림과 같은 이차함수 y=(x+1)(x-2)의 그래프를 이용하여 다음을 구하여라.

53. (x+1)(x-2)=0이 되는 x의 값

54. (x+1)(x-2) > 0이 되는 x의 값의 범위

- **55.** (x+1)(x-2) < 0이 되는 x의 값의 범위
- Arr 다음 그림은 이차함수 $y=x^2+4x+3$ 의 그래프이다. 물음에 답하여라.

56. 이차함수 $y = x^2 + 4x + 3$ 의 그래프가 x축보다 아 래쪽에 있는 부분의 x의 값의 범위를 구하여라.

57. 이차부등식 $x^2 + 4x + 3 < 0$ 의 해를 구하여라.

 \blacksquare x^2 의 계수가 양수인 이차방정식 f(x)=0의 판별식 을 D, 이차함수 y = f(x)의 그래프의 축의 방정식을 x = k라 할 때, 다음 \square 안에 >, \geq , <, \leq 중 알맞 은 것을 써넣어라.

58. 두 근이 모두 -1보다 크다.

$$\Rightarrow D\square 0, f(-1)\square 0, k\square -1$$

59. 두 근이 모두 -1보다 작다.

$$\Rightarrow D \square 0, f(-1) \square 0, k \square - 1$$

60. 두 근 사이에 -1이 있다. $\Rightarrow f(-1)\square 0$

- ☑ 다음 이차방정식에 대하여 실수 k의 값의 범위를 구 하여라.
- **61.** 이차방정식 $x^2-4x+k-3=0$ 의 두 근이 모두 -2 **보다 크다**.
- **62.** 이차방정식 $x^2+(k^2+2)x-3k-13=0$ 의 두 근 사이에 1이 있다.

04 절댓값 기호를 포함한 이차부등식의 풀이

 $|A| = egin{cases} A & (A \geq 0) \\ -A & (A < 0) \end{cases}$ 임을 이용하여 절댓값 기호 안의 식을 0으로 만드는 미지수의 값을 기준으로 범위를 나누고, 절댓값 기호를 없앤 식으로 나타내어 푼다.

☑ 다음 이차부등식을 풀어라.

- **63.** $x^2 |x| < 12$
- **64.** $x^2 |x| 1 \le 1$
- **65.** $x^2 8 \le 2|x|$
- **66.** $x^2-2|x|-3<0$

☑ 다음 연립부등식을 풀어라.

- **67.** $\{|x+1| < 4\}$ $x^2 + 2x > -3x$
- **68.** $\begin{cases} |x-1| \le 3 \\ -x^2 + 4x + 5 > 0 \end{cases}$
- **69.** $\begin{cases} |x-2| > 6 \\ x^2 4x 45 \le 0 \end{cases}$
- **70.** $\begin{cases} |2x+1| < 7 \end{cases}$
- $\begin{cases} |x-4| \le 2 \\ x^2 + 15x \ge 8x \end{cases}$

05 / 연립이차부등식의 활용

문제의 뜻을 파악하여 구하려는 것을 x로 놓고, 주어진 조건에 맞게 연립부등식을 세워 해를 구한다. 이때 미지수의 범위에 주의한다.

☑ 다음을 읽고 물음에 답하여라.

- **72.** 세 변의 길이가 각각 x, x+2, x+4인 삼각형이 둔각삼각형이 되도록 하는 정수 x의 개수를 구하여
- **73.** 세 변의 길이가 각각 2x-1, x, 2x+1인 삼각형이 둔각삼각형이 되도록 하는 정수 x의 개수를 구하여
- **74.** 둘레의 길이가 48cm인 직사각형의 넓이가 $140cm^2$ 이상이 되도록 가로와 세로의 길이를 정할 때, 가로의 길이의 최댓값과 최솟값을 구하여라. (단, (가로의 길이) ≥ (세로의 길이))
- **75.** 둘레의 길이가 20cm인 직사각형의 넓이가 $24cm^2$ 이상이 되도록 가로와 세로의 길이를 정할 때, 가로의 길이의 최댓값과 최솟값을 구하여라. (단, (가로의 길이) ≥ (세로의 길이))

정답 및 해설

1) $2 < x \le 4$

 \Rightarrow (i) (x+1)(x-2) > 0에서 x < -1 또는 x > 2

(ii)
$$(x-1)(x-4) \le 0$$
에서 $1 \le x \le 4$

따라서 (i), (ii)에서 공통 범위를 구하면 $2 < x \le 4$

2)
$$-\frac{1}{2} \le x \le 3$$

$$\Rightarrow 4x+10 \ge 6$$
에서 $4x \ge -4$

$$\therefore x \ge -1 \cdots \bigcirc$$

$$2x^2 - 5x - 3 \le 0$$
 에서 $(2x+1)(x-3) \le 0$

$$\therefore -\frac{1}{2} \le x \le 3 \cdots \bigcirc$$

⊙, ⓒ의 공통부분을 구하면

$$\therefore -\frac{1}{2} \le x \le 3$$

3) -7 < x < -3

$$\implies 3x+5 < x-1 \text{ odd} \quad x < -3 \ \cdots \ \bigcirc$$

$$x^2 + 6x - 7 < 0$$
 에서

$$(x+7)(x-1) < 0$$
 : $-7 < x < 1$...

따라서 구하는 해는 \bigcirc , \bigcirc 을 동시에 만족하는 x의 값이므로

$$-7 < x < -3$$

4) 1 < x < 5

$$\Rightarrow 3x+4 \ge x+2 \text{ odd} \ x \ge -1 \ \cdots \ \text{odd}$$

$$x^2 - 6x + 5 < 0$$
에서

$$(x-5)(x-1) < 0$$
 : $1 < x < 5$...

따라서 구하는 해는 \bigcirc , \bigcirc 을 동시에 만족하는 x의 값이므로

1 < x < 5

5) $x \le -1$

$$\Rightarrow 3x+4 < x+5 에서 $x < \frac{1}{2} \cdots \bigcirc$$$

$$x^2 - x - 2 \ge 0$$
에서

$$(x-2)(x+1) \ge 0$$
 $\therefore x \le -1$ $\stackrel{\mathsf{L}}{=}$ $x \ge 2$ \cdots $\stackrel{\mathsf{L}}{=}$

따라서 구하는 해는 \bigcirc , \bigcirc 을 동시에 만족하는 x의 값이므로

$x \leq -1$

6) -3 < x < 1

$$\Rightarrow 2x+5>x+2$$
에서 $x>-3 \cdots \bigcirc$

$$x^2 + 4x - 5 < 0$$
에서

$$(x+5)(x-1) < 0 : -5 < x < 1 : 0$$

따라서 구하는 해는 \bigcirc , \bigcirc 을 동시에 만족하는 x의 값이므로 -3< x < 1

7) $-3 \le x < 1$

$$\Rightarrow 2x+3 > 6x-1 \text{ oil } 4x > -4$$

$$\therefore x < 1 \cdots \bigcirc$$

$$6-x \ge x^2$$
 에서 $x^2+x-6 \le 0$

$$(x+3)(x-2) \le 0$$
 $\therefore -3 \le x \le 2 \cdots \bigcirc$

①, ①의 공통부분을 구하면

 $-3 \le x < 1$

8) $-2 < x \le 1$ 또는 $2 \le x < 3$

$$\Rightarrow x^2 - 3x + 2 \ge 0$$
 에서

$$(x-1)(x-2) \ge 0$$
 $\therefore x \le 1$ $\Xi \succeq x \ge 2$ $\cdots \bigcirc$

$$x^2 - x - 6 < 0$$
에서

$$(x+2)(x-3) < 0$$

$$\therefore -2 < x < 3 \cdots \bigcirc$$

따라서 구하는 해는 🗇, 🔾을 동시에 만족하는 x의 값의 범위는 $-2 < x \le 1$ 또는 $2 \le x < 3$

9) $-3 \le x \le -2 \ \text{$\Xi_{\frac{1}{2}}$} \ -1 \le x \le 1$

$$\Rightarrow -3x-2 \leq x^2$$

$$x^2 + 3x + 2 \ge 0 \implies (x+2)(x+1) \ge 0$$

$$\therefore x \leq -2 \quad \text{Fig.} \quad x \geq -1 \quad \cdots \quad \text{?}$$

$$x^2 \le -2x + 3$$
에서

$$x^2 + 2x - 3 \le 0 \implies (x+3)(x-1) \le 0$$

$$\therefore -3 \le x \le 1 \cdots \bigcirc$$

따라서 \bigcirc , \bigcirc 을 동시에 만족하는 x의 값의 범위는 $-3 \le x \le -2 \ \text{$\underline{\Xi}$} \ -1 \le x \le 1$

10) $-5 \le x < 2$

$$\Rightarrow x^2 + 2x - 15 \le 0$$
 에서 $(x+5)(x-3) \le 0$

$$\therefore -5 \le x \le 3$$

$$x^2-7x+10>0$$
에서 $(x-2)(x-5)>0$

⊙, ⓒ의 공통부분을 구하면

$$-5 \le x < 2$$

- 11) $3 < x \le 5$
- $\Rightarrow x^2 7x + 10 \le 0$ 에서

$$(x-2)(x-5) \le 0$$
 $\therefore 2 \le x \le 5$ $\cdots \bigcirc$

 $x^2 - 2x - 3 > 0$ 에서

(x+1)(x-3) > 0 ∴ x < -1 또는 x > 3 … ©

 \bigcirc , \bigcirc 의 공통 범위를 구하면 $3 < x \le 5$

 $\Rightarrow 3x^2 - 8x - 16 < 0$ 에서

$$(x-4)(3x+4) < 0$$
 : $-\frac{4}{3} < x < 4$...

 $-2x^2+7x-6 \le 0$ 에서 $2x^2-7x+6 \ge 0$

$$(2x-3)(x-2) \ge 0$$
 $\therefore x \le \frac{3}{2} \, \stackrel{\leftarrow}{\leftarrow} \, x \ge 2 \, \cdots \bigcirc$

 \bigcirc , \bigcirc 의 공통 범위를 구하면 $-\frac{4}{3} < x \le \frac{3}{2}$ 또는

13)
$$\frac{1}{3} < x < 2$$
 또는 $\frac{5}{2} < x < 3$

$$\implies 2x^2 - 9x + 10 > 0 \text{ on } (x-2)(2x-5) > 0$$

$$\therefore x < 2$$
 또는 $x > \frac{5}{2}$

$$3x^2-10x+3<0$$
에서 $(3x-1)(x-3)<0$

$$\therefore \frac{1}{3} < x < 3$$

⊙, ⓒ의 공통부분을 구하면

$$\frac{1}{3} < x < 2$$
 또는 $\frac{5}{2} < x < 3$

- 14) $x \le -3 + x > 4$
- $\Rightarrow x^2 + x 6 \ge 0$ 에서

$$(x+3)(x-2) \ge 0$$
 $\therefore x \le -3$ 또는 $x \ge 2$ ··· ①

 $x^2 - 2x - 8 > 0$ 에서

(x+2)(x-4) > 0 : x < -2 또는 x > 4 ··· ©

 \bigcirc , \bigcirc 의 공통 범위를 구하면 $x \leq -3$ 또는 x > 4

15)
$$1 \le x \le 3$$

$$\Rightarrow x^2 - 6x + 5 \le 0$$
에서

$$(x-1)(x-5) \le 0$$
 $\therefore 1 \le x \le 5$ $\cdots \bigcirc$

 $2x^2 - 5x - 3 \le 0$ 에서

$$(x-3)(2x+1) \le 0$$
 $\therefore -\frac{1}{2} \le x \le 3$ $\cdots \bigcirc$

 \bigcirc , \bigcirc 의 공통 범위를 구하면 $1 \le x \le 3$

16) $2 \le x < 3$

$$\Rightarrow$$
 (i) $2x-7 \ge x-5$ 에서 $x \ge 2$

(ii)
$$4x^2 - 5x - 21 < 0$$
에서 $(4x+7)(x-3) < 0$
 $\therefore -\frac{7}{4} < x < 3$

(i), (ii)에서 부등식의 해는 2 ≤ x < 3

17)
$$-3 < x \le -1$$
 $\Xi \succeq 2 \le x < 4$

$$\Rightarrow (i) x^2 - x - 2 \ge 0 \text{ on } k! (x+1)(x-2) \ge 0$$

$$\therefore x \leq -1$$
 또는 $2 \leq x$

(ii)
$$x^2-x-12 < 0$$
 에서 $(x+3)(x-4) < 0$
 $\therefore -3 < x < 4$

(i), (ii)에서 부등식의 해는

$$-3 < x \le -1$$
 또는 $2 \le x < 4$

18)
$$-1 < x \le 0 \text{ or } 1 \le x < 2$$

$$\Rightarrow \begin{cases} x(x-1) \ge 0 & \cdots (1) \\ (x-2)(x+1) < 0 \cdots (2) \end{cases}$$

각각의

 $(1)x \le 0$ or $x \ge 1$, (2)-1 < x < 2이고 (1),(2)를 연

립하면 해는 $-1 < x \le 0 \text{ or } 1 \le x < 2 \text{ 이다.}$

19) $2 < x \le 5$

 \Rightarrow 연립부등식을 풀면 $\begin{cases} x > 2 \\ 1 < x < 5 \end{cases}$, $2 < x \le 5$

20) $-2 < x \le -1$ 또는 $3 \le x < 5$

$$\Rightarrow \begin{cases} x^2 - 3x - 10 < 0 & \cdots \bigcirc \\ x^2 - 2x - 3 \ge 0 & \cdots \bigcirc \end{cases}$$

i) ③을 풀면

(x-5)(x+2) < 0

 $\therefore -2 < x < 5$

ii) ①을 풀면

$$(x-3)(x+1) \ge 0$$

$$\therefore x \le -1 \quad 또는 \quad x \ge 3$$

따라서 i(i), i(i)에 의하여 연립이차부등식을 만족하는

값의 범위는 $-2 < x \le -1$ 또는 $3 \le x < 5$

$$\Rightarrow \begin{cases} -x-2 < 0 & \cdots \bigcirc \\ x^2 + 2x - 15 \le 0 & \cdots \bigcirc \end{cases}$$

 $\therefore x > -2$

€을 풀면

 $x^2 + 2x - 15 \le 0$

 $(x+5)(x-3) \le 0$

 $\therefore -5 \le x \le 3$

따라서 연립부등식을 만족하는 해의 범위는

 $\therefore -2 < x \le 3$

22)
$$-2 < x \le \frac{1}{2}$$
 or $\frac{3}{2} \le x < 3$

$$\Rightarrow x^2 - x - 6 < 0 \implies (x - 3)(x + 2) < 0 \implies -2 < x < 3$$
$$4x^2 - 8x + 3 \ge 0 \implies (2x - 1)(2x - 3) \ge 0$$
$$\implies x \le \frac{1}{2} \quad \text{or} \quad x \ge \frac{3}{2}$$

이므로 두 부등식의 해의 공통부분을 구하면 $-2 < x \le \frac{1}{2}$ or $\frac{3}{2} \le x < 3$ 이다.

23)
$$2 < x \le 5$$

$$\Rightarrow \begin{cases} 3x - 6 > 0 & \cdots \bigcirc \\ x^2 - 6x + 5 \le 0 & \cdots \bigcirc \end{cases}$$

①을 풀면

3x > 6

x > 2

(L)을 풀면

 $(x-1)(x-5) \le 0$

 $1 \le x \le 5$

따라서 주어진 연립부등식의 해는 $2 < x \le 5$ 이다.

24)
$$-3 \le x \le 0$$
 또는 $1 \le x \le 2$

$$\Rightarrow \begin{cases} x^2 + x - 6 \le 0 & \cdots \\ x^2 - x \ge 0 & \cdots \end{cases}$$

$$ii)$$
 일을 풀면
$$x(x-1) \ge 0$$

$$x \le 0 \text{ 또는 } x \ge 1$$

(i), (i)에 의하여 연립부등식을 만족하는 (x)의 범위는 $-3 \le x \le 0$ 또는 $1 \le x \le 2$

25)
$$4 \le x \le 5$$

$$\Rightarrow \begin{cases} 2x + 3 < x^2 & \cdots \\ x^2 \le 9x - 20 & \cdots \end{cases}$$

©에서
$$x^2 - 9x + 20 \le 0, (x-4)(x-5) \le 0$$

 $\therefore 4 \le x \le 5$

따라서 연립부등식의 해는 $4 \le x \le 5$

26) $0 \le x \le 1 + 2 \le x \le 3$

$$\Rightarrow x^2 - 3x + 2 \ge 0$$
 에서

$$(x-1)(x-2) \geq 0 \quad \therefore x \leq 1 \quad \text{Fig. } x \geq 2 \ \cdots \ \text{?}$$

 $x^2 - 3x + 2 \le 2$ 에서

$$x^2 - 3x \le 0, x(x - 3) \le 0 : 0 \le x \le 3 : \dots$$

따라서 \bigcirc , \bigcirc 을 동시에 만족하는 x의 값의 범위는 $0 \le x \le 1$ 또는 $2 \le x \le 3$

27)
$$-6 \le x \le -4$$
 $\pm \frac{1}{2}$ $-1 \le x \le 1$

$$\Rightarrow -5 \le x^2 + 5x - 1$$
에서

$$x^2 + 5x + 4 \ge 0$$
, $(x+4)(x+1) \ge 0$

$$\therefore x \leq -4 \quad \text{Fig.} \quad x \geq -1 \quad \cdots \quad \text{?}$$

$$x^2 + 5x - 1 \le 5$$
 에서 $x^2 + 5x - 6 \le 0$

$$(x+6)(x-1) \le 0$$
 $\therefore -6 \le x \le 1 \cdots \bigcirc$

$$-6 \le x \le -4$$
 또는 $-1 \le x \le 1$

28)
$$1 < x < 2$$
 또는 $3 < x < 5$

$$\Rightarrow 5x - 1 < x^2 + 5$$

$$x^2-5x+6>0$$
, $(x-2)(x-3)>0$

$$\therefore x < 2$$
 또는 $x > 3 \cdots$ ①

$$x^2 + 5 < 6x$$
 $||x|| x^2 - 6x + 5 < 0$

$$(x-1)(x-5) < 0$$
 : $1 < x < 5$...

1 < x < 2 또는 3 < x < 5

29)
$$-2 < x \le -\frac{1}{3}$$
 또는 $1 \le x < \frac{3}{2}$

$$\Rightarrow \begin{cases} 3x - 4 \le 3x^2 + x - 5 \cdots \bigcirc \\ 3x^2 + x - 5 < x^2 + 1 \cdots \bigcirc \end{cases}$$

$$\bigcirc 0$$
 $\land 3x^2 - 2x - 1 \ge 0, (3x + 1)(x - 1) \ge 0$

$$\therefore x \leq -\frac{1}{3} \ \text{ } \underline{\text{ }}\underline{\text{ }}\underline{\text{ }} \text{ } x \geq 1$$

©에서
$$2x^2 + x - 6 < 0, (2x - 3)(x + 2) < 0$$

$$\therefore -2 < x < \frac{3}{2}$$

따라서 연립부등식의 해는
$$-2 < x \le -\frac{1}{3}$$
 또는

$$1 \le x < \frac{3}{2}$$

30)
$$-3 < x < 1$$
 또는 $2 < x < 6$

$$\Rightarrow \begin{cases} -1 < x^2 - 3x + 1 \cdots \bigcirc \\ x^2 - 3x + 1 < 19 \cdots \bigcirc \end{cases}$$

$$\bigcirc$$
에서 $x^2-3x+2>0, (x-1)(x-2)>0$

 $\therefore x < 1$ 또는 x > 2

©에서
$$x^2 - 3x - 18 < 0, (x+3)(x-6) < 0$$

 $\therefore -3 < x < 6$

따라서 연립부등식의 해는 -3 < x < 1 또는 2 < x < 6

31) $-4 < x \le -3$

$$\Rightarrow \begin{cases} x-1 \leq x^2+3x-4\cdots \ \textcircled{1} \\ x^2+3x-4<0 \ \cdots \ \textcircled{L} \end{cases}$$

$$\bigcirc$$
에서 $x^2+2x-3 \ge 0, (x+3)(x-1) \ge 0$

$$\therefore x \leq -3 \quad \text{£} \stackrel{\leftarrow}{}_{1} \quad x \geq 1$$

©에서
$$(x+4)(x-1) < 0$$
 $\therefore -4 < x < 1$

따라서 연립부등식의 해는
$$-4 < x \le -3$$

32)
$$0 \le x < \frac{1}{2}$$

$$\Rightarrow \begin{cases} 3x^2 - 4x \le x^2 \cdots \bigcirc \\ x^2 < 1 - 3x^2 \cdots \bigcirc \end{cases}$$

(3) $|x| 2x^2 - 4x \le 0, 2x(x-2) \le 0$

 $\therefore 0 \leq x \leq 2$

©에서
$$4x^2-1<0\,,\,(2x+1)(2x-1)<0$$

$$\label{eq:condition} \therefore -\frac{1}{2} < x < \frac{1}{2}$$

따라서 연립부등식의 해는 $0 \le x < \frac{1}{2}$

33)
$$4 < x \le 5$$

$$\Rightarrow \begin{cases} 3x + 4 < x^2 & \cdots \\ x^2 \le 6x - 5 & \cdots \end{cases}$$

∴x<-1 또는 x>4

 \bigcirc $||x|| x^2 - 6x + 5 \le 0, (x-1)(x-5) \le 0$

 $\therefore 1 \le x \le 5$

따라서 연립부등식의 해는 $4 < x \le 5$

34) k > 3

 $\Rightarrow x^2 - 2x - 3 \le 0$ 에서

$$(x+1)(x-3) \le 0$$
 $\therefore -1 \le x \le 3 \cdots \bigcirc$

 $x^2 - (k+2)x + 2k < 0$ 에서 (x-2)(x-k) < 0 ...

 \bigcirc , \bigcirc 의 공통 범위가 $2 < x \le 3$ 이므로 다음 그림에

35) $k \ge 2$

$$\Rightarrow x^2 - (1+k)x + k < 0$$
에서

$$(x-1)(x-k) < 0 \cdots \bigcirc$$

 $x^2 - x - 2 < 0$ 에서

(x+1)(x-2) < 0 : -1 < x < 2 ...

 \bigcirc , \bigcirc 의 공통 범위가 1 < x < 2이므로

다음 그림에서 $k \geq 2$

36) $-1 \le k \le 4$

 $\Rightarrow x^2 - 3x - 4 > 0$ 에서

$$(x+1)(x-4) > 0$$
 $\therefore x < -1$ 또는 $x > 4$ ··· ①

 $x^2 - (k+5)x + 5k \le 0$ 에서 $(x-5)(x-k) \le 0$...

 \bigcirc , \bigcirc 의 공통 범위가 $4 < x \le 5$ 이므로 다음 그림에 서 $-1 \le k \le 4$

37) $5 \le a < 6$

$$\Rightarrow x(x-5) \ge 0$$
에서 $x \le 0$ 또는 $x \ge 5$ … \bigcirc

$$x^2 - (a+7)x + 7a < 0$$
 에서

$$(x-a)(x-7) < 0 \quad \cdots \bigcirc$$

①, ①의 공통 범위에 속하는 정수가 6뿐이므로 다음 그림에서

 $5 \le a < 6$

38) $5 \le a < 6$

$$\Rightarrow 2x(x-3) > x^2 - 2x$$
에서

$$x^2-4x>0$$
 $\therefore x<0$ $\Xi = x>4$ $\cdots \bigcirc$

$$x^2 - (a+1)x + a \le 0$$
에서

$$(x-1)(x-a) \leq 0$$

①, ②의 공통 범위에 속하는 정수가 5뿐이므로 다음 그림에서

 $5 \le a < 6$

39) $6 < a \le 7$

$$\Rightarrow x^2 - 4x - 12 \ge 0 \text{ odd}$$

$$(x+2)(x-6) \ge 0$$
 $\therefore x \le -2 \stackrel{\mathsf{L}}{\smile} x \ge 6 \cdots \bigcirc$

$$x^2 - (a+2)x + 2a < 0$$
에서

$$(x-2)(x-a) < 0$$

①, ②의 공통 범위에 속하는 정수가 6뿐이므로 다음 그림에서

 $6 < a \le 7$

40) $1 \le k \le 2$

$$\Rightarrow$$
 (i) $x^2 - 3x - 4 < 0$ 에서

$$(x+1)(x-4) < 0$$
 : $-1 < x < 4$...

(ii)
$$x < k-3$$
 또는 $x > k+3$ …©

(iii) ⊙, ⊙의 공통 범위에 속하는 해가 없으므로 다음 그림에서

 $k-3 \le -1, k+3 \ge 4$

 $k \le 2, k \ge 1$ $\therefore 1 \le k \le 2$

41) $1 \le k \le 3$

 $\Rightarrow x^2 - 4x - 5 \le 0$ 에서

$$(x+1)(x-5) \le 0 \quad \therefore -1 \le x \le 5 \quad \cdots \quad \bigcirc$$

$${x-(k+4)}{x-(k-4)}>0$$
에서

$$x < k-4$$
 또는 $x > k+4$

①, ©의 공통 범위에 속하는 해가 없으므로 다음 그 림에서

 $k-4 \le -1, k+4 \ge 5$ $k \le 3, k \ge 1$ $\therefore 1 \le k \le 3$

42) 0 < k < 1

 $\Rightarrow x^2 - x - 2 \le 0$ 에서 $(x+1)(x-2) \leq 0$ $\therefore -1 \leq x \leq 2 \cdots \bigcirc$ $\{x-(k-2)\}\{x-(k+2)\} \ge 0$ 에서

 $x \le k-2$ 또는 $x \ge k+2$

①, ①의 공통 범위에 속하는 해가 없으므로 다음 그 림에서

k-2 < -1, k+2 > 2k < 1, k > 0 : 0 < k < 1

43) $a \ge 5$

 $\Rightarrow x^2 - 5x < 0$ 에서 x(x-5) < 0 $\therefore 0 < x < 5 \cdots \bigcirc$ $x^2 - (a+1)x + a < 0$ 에서 $(x-1)(x-a) < 0 \cdots \bigcirc$

 \bigcirc , \bigcirc 의 공통 범위가 1 < x < 5이므로 다음 그림에서

 $a \ge 5$

44) $0 \le a \le 1$

 $\Rightarrow x^2 + x - 12 < 0$ 에서

$$(x+4)(x-3) < 0$$
 : $-4 < x < 3$...

 $x^2 + 2ax + a^2 - 16 > 0$ 에서

 $x^{2}+2ax+(a+4)(a-4)>0, (x+a+4)(x+a-4)>0$ x < -a - 4 또는 x > -a + 4

①, ①의 공통 범위에 속하는 해가 없으므로 다음 그 림에서

 $-a-4 \le -4, -a+4 \ge 3$ $a \ge 0, a \le 1$ $\therefore 0 \le a \le 1$

45) $4 < a \le 5$

 $\Rightarrow x^2 - 2x - 3 > 0$ 에서 (x+1)(x-3) > 0 $\therefore x < -1$ $\Xi = x > 3$ $\cdots \bigcirc$ $x^2 - (a+2)x + 2a < 0$ 에서

(x-2)(x-a) < 0

⊙, ⓒ의 공통 범위에 속하는 정수가 4뿐이므로 다음 그림에서

 $4 < a \le 5$

46) -2

 $\Rightarrow x^2-x-2>0$ 에서

$$(x+1)(x-2) > 0$$
 $\therefore x < -1 = x > 2 \cdots \bigcirc$

 $2x^2 + (5+2a)x + 5a < 0$ 에서

(2x+5)(x+a) < 0

⊙, ⊙의 공통 범위에 속하는 정수가 -2뿐이므로 다 음 그림에서

 $-2 < -a \le 3$: $-3 \le a < 2$ 따라서 M=1, m=-3이므로 M+m = -2

47) 2

 $\Rightarrow x^2 - 9x + 8 \ge 0$ 에서 $(x-1)(x-8) \ge 0$: $x \le 1$ 또는 $x \ge 8$ ··· ① $(x-a)(x-a^2) < 0$ 에서 $a < x < a^2 (\because a \neq 0) \cdots \bigcirc$

①, ①의 공통 범위에 속하는 해가 없으므로 다음 그 림에서

 $1 \le a, a^2 \le 8$

 $a^2 \le 8$ 에서 $a^2 - 8 \le 0$

 $(a+2\sqrt{2})(a-2\sqrt{2}) \le 0$ $\therefore -2\sqrt{2} \le a \le 2\sqrt{2}$ 따라서 연립부등식의 해가 존재하지 않을 a의 값의 범위는

 $1 \le a \le 2\sqrt{2}$ 이므로 정수 a의 개수는 1,2의 2개이 다.

- 48) x < -1 또는 x > 2
- 49) x < -1 또는 x > 2
- 50) x = 1 + x = 3
- 51) x < 1 + x > 3
- 52) 1 < x < 3
- 53) $x = -1 + \frac{1}{2} = x = 2$
- 54) x < -1 또는 x > 2
- 55) -1 < x < 2
- 56) -3 < x < -1

- 57) -3 < x < -1
- 58) \geq , >, >
- 59) \geq , >,<
- 60) <
- 61) $-9 < k \le 7$
- $f(x) = x^2 4x + k 3$ 이라 하면 이차방정식 f(x) = 0의 두 근이 모두 -2보다 크므로 이차함수 y = f(x)의 그래프는 다음 그림과 같아야 한다.

(i) 이차방정식 f(x)=0의 판별식을 D라 하면

$$\frac{D}{4} = (-2)^2 - (k-3) \ge 0$$

 $7-k \ge 0$ $\therefore k \le 7$

- (ii) f(-2) = 4 + 8 + k 3 > 0 : k > -9
- (iii) 이차함수 y = f(x)의 그래프의 축의 방정식은 x = 2이고 2 > -2이다.
- 이상에서 공통부분을 구하면 $-9 < k \le 7$
- 62) -2 < k < 5
- ⇒ $f(x) = x^2 + (k^2 + 2)x 3k 13$ 이라 하면 이차방정 식 f(x) = 0의 두 근 사이에 1이 있으므로 이차함 수 y = f(x)의 그래프는 다음 그림과 같아야 한다.

따라서 f(1) < 0이어야 하므로

 $1 + k^2 + 2 - 3k - 13 < 0, \ k^2 - 3k - 10 < 0$

(k+2)(k-5) < 0 : -2 < k < 5

- 63) -4 < x < 4
- \Rightarrow (i) x < 0일 때, $x^2 + x < 12$ 에서 $x^2 + x 12 < 0$ (x+4)(x-3) < 0 $\therefore -4 < x < 3$
- 이때, x < 0이므로 -4 < x < 0
- (ii) $x \ge 0$ 일 때, $x^2 x < 12$ 에서 $x^2 x 12 < 0$

(x+3)(x-4) < 0 : -3 < x < 4

- 이때, $x \ge 0$ 이므로 $0 \le x < 4$
- (i), (ii)에서 -4 < x < 4

[다른 풀이]

 $|x^2 - |x| < 12$ 에서 $|x|^2 - |x| - 12 < 0$

(|x|-4)(|x|+3)<0

이때, |x|+3>0이므로 |x|-4<0

|x| < 4 : -4 < x < 4

64) $-2 \le x \le 2$

- \Rightarrow (i) x < 0일 때, $x^2 + x 1 \le 1$ 에서 $x^2 + x 2 \le 0$ $(x+2)(x-1) \le 0$ $\therefore -2 \le x \le 1$
- 이때, x < 0이므로 $-2 \le x < 0$
- (ii) $x \ge 0$ 일 때,

 $x^2 - x - 1 \le 1$ 에서 $x^2 - x - 2 \le 0$

 $(x+1)(x-2) \le 0$: $-1 \le x \le 2$

이때, $x \geq 0$ 이므로 $0 \leq x \leq 2$

(i), (ii)에서 $-2 \le x \le 2$

- 65) $-4 \le x \le 4$
- \Rightarrow (i) x < 0일 때, $x^2 8 \le -2x$ 에서 $x^2 + 2x 8 \le 0$

 $(x+4)(x-2) \le 0 \quad \therefore -4 \le x \le 2$

이때, x < 0이므로 $-4 \le x < 0$

(ii) $x \ge 0$ 일 때,

 $x^2 - 8 \le 2x$ 에서 $x^2 - 2x - 8 \le 0$

 $(x+2)(x-4) \le 0$: $-2 \le x \le 4$

이때, $x \ge 0$ 이므로 $0 \le x \le 4$

(i), (ii)에서 $-4 \le x \le 4$

- 66) -3 < x < 3
- 당 (i) x < 0일 때, $x^2 + 2x 3 < 0$ 에서 (x+3)(x-1) < 0
 - $\therefore -3 < x < 1$

이때, x < 0이므로 -3 < x < 0

(ii) *x* ≥ 0일 때,

 $x^2-2x-3 < 0$ 에서 (x+1)(x-3) < 0

 $\therefore -1 < x < 3$

이때, $x \ge 0$ 이므로 $0 \le x < 3$

(i), (ii)에서 -3<x<3

- 67) 0 < x < 3
- $\Rightarrow |x+1| < 4에서$

 $-4 < x+1 < 4 : -5 < x < 3 \cdots$

 $x^2 + 2x > -3x$ 에서

 $x^2 + 5x > 0$, x(x+5) > 0

 $\therefore x < -5 \quad \Xi \stackrel{\vdash}{=} \quad x > 0 \cdots \bigcirc$

⊙, ⓒ의 공통 범위를 구하면

0 < x < 3

- 68) $-1 < x \le 4$
- $\Rightarrow |x-1| \leq 3$ 에서

 $-3 \le x - 1 \le 3$ $\therefore -2 \le x \le 4$ \cdots

 $-x^2+4x+5>0$ 에서

 $x^2 - 4x - 5 < 0, (x+1)(x-5) < 0$

 $\therefore -1 < x < 5 \cdots \bigcirc$

⊙, ⊙의 공통 범위를 구하면

 $-1 < x \le 4$

- 69) $-5 \le x < -4$ 또는 $8 < x \le 9$
- $\Rightarrow |x-2| > 6$ 에서

x-2 < -6 또는 x-2 > 6

 $\therefore x < -4$ 또는 x > 8 … ①

 $x^2 - 4x - 45 \le 0$ 에서

 $(x+5)(x-9) \le 0 \quad \therefore -5 \le x \le 9 \quad \cdots \bigcirc$

- ①, ②의 공통 범위를 구하면
- $-5 \le x < -4$ 또는 $8 < x \le 9$
- 70) $-2 \le x < 3$
- \Rightarrow |2x+1| < 7에서
- -7 < 2x + 1 < 7 : -4 < x < 3 ...

 $x^2 - 2x - 8 \le 0$ 에서

 $(x+2)(x-4) \le 0 : -2 \le x \le 4 \cdots \bigcirc$

⊙, ⊙의 공통 범위를 구하면

 $-2 \le x < 3$

- 71) $2 \le x \le 6$
- $\Rightarrow |x-4| \leq 2 \text{ M}$
- $-2 \leq x-4 \leq 2 \ \therefore 2 \leq x \leq 6 \ \cdots \bigcirc$

 $x^2 + 15x \ge 8x$ 에서

 $x^2 + 7x \ge 0, x(x+7) \ge 0$

⊙, ⓒ의 공통 범위를 구하면

 $2 \le x \le 6$

72) 3개

- \Rightarrow (i) x > 0이므로 삼각형의 결정조건에 의하여
- $x + (x+2) > x+4 \quad \therefore x > 2$
- (ii) 주어진 삼각형이 둔각삼각형이 되려면

 $(x+4)^2 > x^2 + (x+2)^2$

 $x^2-4x-12 < 0 \implies (x-6)(x+2) < 0$

 $\therefore -2 < x < 6$

따라서 (i), (ii)의 공통부분은 2 < x < 6이므로 정수 x는 3,4,5의 3개이다.

73) 5개

- $\Rightarrow x > 0$ 이므로 세 변 중 가장 긴 변의 길이는 2x + 1
- (i) 삼각형의 결정조건에 의하여

2x+1 < x+(2x-1) : x > 2

(ii) 둔각삼각형이려면

 $(2x+1)^2 > x^2 + (2x-1)^2$

 $x^2 - 8x < 0 \implies x(x-8) < 0 : 0 < x < 8$

따라서 (i), (ii)의 공통부분은 2 < x < 8이므로

정수 x는 3,4,5,6,7의 5개이다.

- 74) 최댓값은 14cm, 최솟값은 12cm
- Arr 가로의 길이를 xcm라고 하면, 세로의 길이는 (24-x)cm이다. 이때, 가로의 길이가 세로의 길이 보다 길거나 같으므로

 $x \ge 24 - x \implies x \ge 12 \cdots$

또, $x(24-x) \ge 140$ 이므로

 $x^2 - 24x + 140 \le 0 \implies (x - 10)(x - 14) \le 0$

 $\therefore 10 \le x \le 14 \ \cdots \bigcirc$

따라서 \bigcirc , \bigcirc 의 공통부분은 $12 \le x \le 14$ 이므로 가로 의 길이의 최댓값은 14cm, 최솟값은 12cm이다.

75) 최댓값은 6 cm, 최솟값은 5 cm

 \Rightarrow (i) 가로의 길이를 xcm라고 하면, 세로의 길이는 (10-x)cm이다.

가로의 길이가 세로의 길이보다 길거나 같으므로 $x \geq 10-x$ $\therefore x \geq 5$

(ii) 직사각형의 넓이가 $24cm^2$ 이상이 되려면 $x(10-x) \ge 24$

 $x^2 - 10x + 24 \le 0 \implies (x-4)(x-6) \le 0$

 $\therefore 4 \le x \le 6$

따라서 (i), (ii)의 공통부분은 $5 \le x \le 6$ 이므로 가로의 길이의 최댓값은 6 cm, 최솟값은 5 cm이다.