

Design, simulation and analysis (dc and small signal) of Common-Source Amplifier for transconductance (g_m) of 20 mS.

Submitted By
KUNAL KAUSHIK
21307R020
M.Tech. SSD

OBJECTIVE

The objective of this assignment is to design the common source amplifier for transconductance (g_m) of 20 mS and analyse the circuit with dc analysis and small signal analysis.

The analysis is done in two parts:

1. DC ANALYSIS:

This analysis is done with different plots of following DC parameters.

- log₁₀(I_D) Vs. V_{GS}
- $log_{10}(I_D/W) Vs. g_m/I_D$
- $log_{10}(f_T) Vs. g_m/I_D$

2. AC ANALYSIS

- By fixing V_{GS} and W, varying I_D
- By fixing W and I_D, varying V_{GS}
- By fixing I_D and V_{GS}, varying W

<u>INTRODUCTION TO COMMON SOURCE AMPLIFIER</u>

The most used MOS-small signal amplifier that we have is the common source (CS) amplifier.

> DC ANALYSIS

Plot for log₁₀(I_D) Vs. V_{GS}

$$I_D = \left\{ \begin{array}{l} 0 & \forall \ \ \textit{V}_\textit{GS} \leq \textit{V}_\textit{T} \\ \\ \mu_\textit{n} \textit{C}_\textit{ox} \frac{\textit{W}}{\textit{L}} [(\textit{V}_\textit{GS} - \textit{V}_\textit{T}) \textit{V}_\textit{Dmin} - \frac{\textit{V}_\textit{Dmin}^2}{2}] (1 + \lambda \textit{V}_\textit{DS}) & \forall \ \ \textit{V}_\textit{GS} > \textit{V}_\textit{T} \\ \end{array} \right.$$
 where $\textit{V}_\textit{Dmin} = \text{minimum of } \{\textit{V}_\textit{DS}, \, (\textit{V}_\textit{GS} - \textit{V}_\textit{T}), \, \textit{V}_\textit{Dvsat} \}.$

• Above expression is valid for linear, saturation and velocity saturation regions.

> SMALL SIGNAL ANALYSIS

• The gain of the amplifier is defined as

$$Gain = g_m r_0$$

The transconductance (g_m) is defined as

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

$$= (2I_D \mu_n C_{ox} \frac{W}{L})^{1/2}$$

$$= (2I_D) / (V_{GS} - V_{TH})$$

• The Bandwidth is defined as

$$BW = 1/(2\pi r_0 C_L)$$

The variation of I_D , W and V_{GS} is governed by the equation,

$$g_m r_0 = \frac{1}{\lambda} \frac{gm}{ID} = \frac{2}{VGS - VTH}$$
&
$$GBW = \frac{gm}{2\pi C0}$$

OBSERVATIONS AND CALCULATIONS

• DC ANALYSIS

1. For
$$V_{GS}$$
 = 1.8V and V_{DS} = 1.8V
W = **0.5** μ m and L = 4.2 μ m

Weak Inversion starts from V_{GS} = 0.18 V to V_{GS} = 0.684 V Strong Inversion starts from V_{GS} = 0.684 V

2. For $V_{GS} = 1.8V$ and $V_{DS} = 1.8V$ **W** = **0.18** μ m and L = 4.2 μ m

Weak Inversion starts from V_{GS} = 0.144 V to V_{GS} = 0.612 V Strong Inversion starts from V_{GS} = 0.612 V to V_{GS} = 1.296 V Velocity Saturation starts from V_{GS} = 1.296 V

• SMALL SIGNAL ANALYSIS

1. For V_{GS} = 0.640 V and W = 23 x 4.2 μ m = 96.6 μ m By varying I_D , we get

At
$$g_m$$
 = 20 mS,
$$I_D = 1.90717 \text{ mA and}$$

$$\frac{gm}{ID} = 10.5$$

a. GAIN

For I_D = 1.90717 mA and v_{in} =5 mV (Small signal sinusoidal)

$$Gain = g_m r_0 = 21.8965 dB$$

= 12.44

b. BANDWIDTH

BW = 48.7616 MHz (After Simulation)

$$r_0 = \frac{Gain}{gm} = 622.2 \,\Omega$$

Calculated BW = $1/(2\pi r_0 C_L)$ = 51.175 MHz

c. POWER

Power =
$$I_D^2 r_0$$

=(1.90717mA)² (622.2 Ω)
=2.263 mW

d. AREA

Area = WL
=(96.6
$$\mu$$
m)(4.2 μ m)
= 405.72 x 10⁻¹² m²

e. LINEARITY

The magnitude of first and third harmonics in DFT analysis for 50 KHz is observed in the following plot:

Harmonic distortion due to third harmonic component is given by

$$HD_{3} = \frac{Third\ Harmonic\ Component}{First\ Harmonic\ Component}$$
$$= \frac{1.948659}{13.81216} = 0.14108 = 14.108\ \%$$

f. NOISE

Input and output Noise is simulated in the following plot

2. For I_D = 2 mA and W = 23 x 4.2 μ m = 96.6 μ m By varying V_{GS} , we get

At
$$g_m = 20$$
 mS, $V_{GS} = 0.64983$ V and $\frac{gm}{ID} = 10$

a. GAIN

For $V_{GS} = 0.64983 \text{ V}$ and $v_{in} = 5 \text{ mV}$ (Small signal sinusoidal)

Gain =
$$g_m r_0 = 19.1071 dB$$

= 9.023

b. BANDWIDTH

BW = 67.192 MHz (After Simulation)

$$r_0 = \frac{Gain}{gm} = 451.15 \,\Omega$$

Calculated BW = $1/(2\pi r_0 C_L)$ = 70.554 MHz

c. POWER

Power =
$$I_D^2 r_0$$

= $(2 \text{ mA})^2 (451.15 \Omega)$
= 1.8046 mW

d. AREA

Area = WL
=
$$(96.6 \mu m)(4.2 \mu m)$$

= $405.72 \times 10^{-12} m^2$

e. LINEARITY

The magnitude of first and third harmonics in DFT analysis for 50 KHz is observed in the following plot:

Harmonic distortion due to third harmonic component is given by

$$\begin{aligned} &HD_{3} = \frac{\textit{Third Harmonic Component}}{\textit{First Harmonic Component}} \\ &= \frac{1.841607}{13.85241} = 0.132944 = 13.29 \,\% \end{aligned}$$

f. NOISE

Input and output Noise is simulated in the following plot

3. For $I_D = 2$ mA and $V_{GS} = 0.625$ V By varying W, we get

At
$$g_m$$
 = 20 mS,
$$W = (16.9301 - 17) \times (4.2 \ \mu m) = 71.4 \ \mu m, \text{ and}$$

$$\frac{g_m}{ID} = 10.01$$

a. GAIN

For V_{GS} = 0.64983 V and v_{in} =5 mV (Small signal sinusoidal)

$$Gain = g_m r_0 = 32.8557 dB$$

= 43.932

b. BANDWIDTH

BW = 13.8409 MHz (After Simulation)

$$r_0 = \frac{Gain}{gm} = 2196.6 \ \Omega = 2.1966 \ K\Omega$$

Calculated BW = $1/(2\pi r_0 C_L) = 14.491 \text{ MHz}$

c. POWER

Power =
$$I_D^2 r_0$$

= $(2 \text{ mA})^2 (2196.6 \Omega)$
= 8.786 mW

d. AREA

Area = WL
=
$$(71.4 \mu m)(4.2 \mu m)$$

= $299.8 \times 10^{-12} m^2$

e. LINEARITY

The magnitude of first and third harmonics in DFT analysis for 50 KHz is observed in the following plot:

Harmonic distortion due to third harmonic component is given by

$$HD_3 = \frac{Third\ Harmonic\ Component}{First\ Harmonic\ Component}$$

$$= \frac{2.226343}{14.65688} = 0.151897 = 15.18\%$$

f. NOISE

Input and output Noise is simulated in the following plot

CONCLUSIONS

For $g_m = 20 \text{ mS}$	GAIN	BANDWIDTH	<u>POWER</u>	<u>AREA</u>	<u>LINEARITY</u>
By varying I _D ,	21.8965	48.7616	2.262 mW	405.72 x	HD ₃ = 14.108 %
$I_D = 1.90717 \text{mA}$	dB =	MHz		10 ⁻¹² m ²	
	12.44				
By varying V _{GS} ,	19.1071	67.192 MHz	1.804 mW	405.72 x	HD ₃ = 13.294 %
$V_{GS} = 0.64983 \text{ V}$	dB =			10 ⁻¹² m ²	
	9.023				
By varying W,	32.8557	13.8409	8.76 mW	299.8 x	HD₃ =15.1897 %
W = 17	dB =	MHz		10 ⁻¹² m ²	

- 1. For a fixed g_m , increment in the no. of fingers and thus, the width of the MOSFET will decrease the r_0 and that will decrease the gain while decrease in the no. of fingers will reduce the Bandwidth but increase the gain.
- 2. $\frac{gm}{ID}$, gain and V_{GS} have a straight inter-dependency with each other for a given Gain-Bandwidth Product.
- 3. The circuit will work as an amplifier only for specific a range of V_{GS} as well as C_L .
- 4. The difference between Weak Inversion V_{GS} and strong Inversion V_{GS} is purely technology dependant and is same for a given nm-technology.