TdTp-3_cor

September 27, 2023

1 TP-TD n°3 : Complétude

1.1 Exercice 1

L'espace (\mathbb{R}, d) est-il complet si d est l'une des métriques suivantes ?

- 1. $d(x,y) = |x^3 y^3|$
- 2. $d(x,y) = |\exp(x) \exp(y)|$
- 3. $d(x,y) = \log(1 + |x y|)$

Correction de 1.

une suite de Cauchy

Soit (u_n) une suite de Cauchy pour d. Donc

$$\forall \varepsilon>0,\, \exists N\in\mathbb{N},\, \forall p,q\geq N,\, d(u_p,u_q)=|u_p^3-u_q^3|\leq \varepsilon$$

Donc la suite (u_n^3) est une suite de Cauchy pour la distance usuelle $|\cdot|$. Comme $(\mathbb{R},|\cdot|)$ est complet alors (u_n^3) converge pour la la valeur absolue, notons α la limite, nous avons $|u_n^3 - \alpha|$ qui tend vers 0. Donc pour $u = \alpha^{\frac{1}{3}}$, nous avons $d(u_n,u) = |u_n^3 - u^3| = |u_n^3 - \alpha|$ qui tend vers 0, donc $u_n \xrightarrow[n \to \infty]{d} u$. Donc \mathbb{R} est complet pour d.

Correction de 2.

une suite définie par $u_n = -n$

Montrons que d ne définit pas une distance complète. Soit (u_n) la suite définie par $u_n=-n, \ (n\in\mathbb{N})$. Alors $d(u_p,u_q)=|\exp(-p)-\exp(-q)|$. Donc pour $\varepsilon>0$ fixé, il existe $N\in\mathbb{N}$ tel que $\exp(-N)\leq\frac{\varepsilon}{2}$. Pour $\forall p,q\geq N$, on a $d(u_p,u_q)=|\exp(-p)-\exp(-q)|\leq \exp(-p)+\exp(-q)\leq 2\exp(-N)\leq \varepsilon$. Donc (u_n) est de Cauchy.

Supposons que (u_n) converge, notons $u \in \mathbb{R}$ sa limite. Alors $d(u_n,u) = |\exp(-n) - \exp(u)|$ tend vers 0 d'une part et vers $\exp(u)$ d'autre part. Donc $\exp(u) = 0$ ce qui est absurde pour $u \in \mathbb{R}$. Donc \mathbb{R} n'est pas complet pour d.

Correction de 3.

une suite de Cauchy

La fonction $\ln(1+u)$ est continue et ne s'annule qu'en u=0. Donc pour $\ln(1+u)$ suffisamment petit nous avons u suffisamment petit et donc nous avons

$$\frac{1}{2}u \le \ln(1+u) \le 2u$$

Donc pour (u_n) une suite de Cauchy pour d, la première inégalité prouve que (u_n) est une suite de Cauchy ce qui converge pour $|\cdot|$. La deuxième inégalité montre que (u_n) converge pour d. Donc d définit une distance complète.

2 Théorème du point fixe

2.1 Exercice 2

Soit $a_n>0$ tel que la série $\sum_{n=1}^{+\infty}a_n$ converge. Soit (E,d) un espace métrique complet et $f:E\to E$ une application pour laquelle $\forall (x,y)\in E^2$ et $n\in\mathbb{N}$

$$d(f^n(x),f^n(y)) \leq a_n \, d(x,y)$$

1. Montrer que, sous ces conditions, f possède un unique point fixe $p \in E$. 1. Montrer que pour tout point initial $x_0 \in E$, la suite des itérées $(x_n = f^n(x_0))_{n \geq 0}$ converge vers p. 1. Montrer que la vitesse de convergence d'une telle suite est contrôlée par

$$d(p,x_n) \leq \left(\sum_{k=n}^{+\infty} a_k\right) d(x_1,x_2)$$

Correction de 1.

Commençons par l'unicité, si x et y sont deux points fixes alors f(x) = x et f(y) = y donc la relation pour f s'écrit

$$d(x,y) \le a_n d(x,y), \, \forall n \in \mathbb{N}$$

Comme $\sum_{n=1}^{+\infty} a_n$ converge alors (a_n) tend vers 0, donc il existe N assez grand avec $a_N < 1$, la relation devient

$$d(x,y) \le a_N d(x,y) < d(x,y)$$

ce qui est contradictoire.

Correction de 2.

Soit $x_0 \in E$, notons $x_n = f^n(x_0)$. Alors

$$d(x_{n+1}, x_n) \leq a_n d(x_1, x_0), \forall n \in \mathbb{N}$$

On va montrer que (x_n) est une suite de Cauchy, c'est-à-dire

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \geq q \geq N, d(x_p, x_q) \leq \varepsilon$$

Pour N fixés, évaluons $d(x_n, x_n)$.

$$d(x_p,x_q) \leq \sum_{k=q}^{p-1} d(x_{k+1},x_k) \leq \sum_{k=q}^{p-1} a_k \, d(x_1,x_0) = d(x_1,x_0) \sum_{k=q}^{p-1} a_k$$

De plus la série $\sum_{n=1}^{+\infty} a_n$ converge donc la suite (S_n) définie par $S_n = \sum_{k=1}^n a_k$ est de Cauchy et donc il existe N tel que pour tout $p \leq q \leq N$ on a

$$\sum_{k=q}^{p-1}a_k=S_{p-1}-S_{q-1}\leq \varepsilon$$

Donc

$$d(x_p,x_q) \leq d(x_1,x_0)\varepsilon$$

Quitte à poser $\varepsilon_0 = d(x_1, x_0)\varepsilon$, ceci prouve que (x_n) est une suite de Cauchy. Comme l'espace est complet alors cette suite converge, notons α sa limite.

Pour tout $n \in \mathbb{N}$ nous avons

$$x_{n+1} = f(x_n)$$

À la limite, la suite (x_{n+1}) tend vers α , et comme f est continue (elle est M-lipschitziènne : $d(f(x), f(y)) \leq M \, d(x, y)$) alors $(f(x_n))$ converge vers $f(\alpha)$. Par unicité de la limite nous obtenons $\alpha = f(\alpha)$.

Donc f possède un point fixe, qui est unique et est obtenu en partant d'un point quelconque $x_0 \in E$ comme limite de $(f^n(x_0))$.

Correction de 3.

Il reste à estimer la vitesse de convergence, nous avons vu

$$d(x_p,x_q) \leq d(x_1,x_0) \sum_{k=q}^{p-1} a_k$$

On fait tendre p vers $+\infty$ dans cette inégalité alors

$$d(\alpha,x_q) \leq d(x_1,x_0) \sum_{k=q}^{+\infty} a_k$$

Ce qui était l'estimation recherchée.

2.2 Exercice 3

Soit (E,d) un espace métrique complet et (Λ,δ) un espace métrique et soit $f: E \times \Lambda \longrightarrow E$ une application continue telle qu'il existe $k \in [0,1[$

$$\forall (x,y) \in E^2, \ \forall \lambda \in \Lambda, \ d\left(f(x,\lambda),f(y,\lambda)\right) \leq k\, d(x,y)$$

1. Montrer que

$$\forall \lambda \in \Lambda, \ \exists ! x_{\lambda} \in E, \ f\left(x_{\lambda}, \lambda\right) = x_{\lambda}$$

1. Soit φ l'application définie sur Λ par

$$\forall \lambda \in \Lambda, \ \varphi(\lambda) = x_{\lambda}$$

montrer que φ est continue.

Correction de 1.

Soit $\lambda \in \Lambda$, l'application $f(\bullet, \lambda)$ est contractante. On peut donc appliquer le théorème du point fixe.

Correction de 2.

Soit $\lambda \in \Lambda$, en écrivant la continuité de f en (x_{λ}, λ) , on obtient pour tout $\varepsilon > 0$, l'existence d'un $\eta > 0$ tel que

$$\forall \mu \in \Lambda, \; \left[\delta(\lambda, \mu) \leq \eta \right] \implies \left[d\left(f\left(x_{\lambda}, \mu \right), f\left(x_{\lambda}, \lambda \right) \right) \leq \varepsilon \right]$$

En ce cas, pour μ vérifiant $\delta(\mu, \lambda) \leq \eta$, on obtient

$$d\left(\varphi(\mu),\varphi(\lambda)\right)=d\left(x_{\mu},x_{\lambda}\right)=d\left(f\left(x_{\mu},\mu\right),f\left(x_{\lambda},\lambda\right)\right)\leq d\left(f\left(x_{\mu},\mu\right),f\left(x_{\lambda},\mu\right)\right)+d\left(f\left(x_{\lambda},\mu\right),f\left(x_{\lambda},\lambda\right)\right)\leq k\,d\left(x_{\mu},x_{\lambda},\lambda\right)$$
 et, donc

$$d\left(\varphi(\mu),\varphi(\lambda)\right) = d\left(x_{\mu},x_{\lambda}\right) \leq \frac{\varepsilon}{1-k}$$

Ce qui montre la continuité de φ .

2.3 Exercice 4

On considère l'équation fonctionnelle d'inconnue $f \in \mathcal{C}^1([0,1], \mathbb{R})$

$$f(0) = \alpha \text{ et } \forall x \in [0, 1], \ f'(x) = 2 f(x^3)$$
 (*)

où $\alpha \in \mathbb{R}$.

On considère l'espace $E = \mathcal{C}^0([0,1],\mathbb{R})$, muni de la norme $(\beta > 0)$

$$\forall f \in E, \ \|f\|_{\beta} \stackrel{\mathrm{Def}}{=} \sup_{x \in [0,1]} \left(e^{-\beta x} \ |f(x)| \right)$$

1. Montrer que E est complet pour cette norme. 1. On considère l'application $\phi: E \longrightarrow E$ définie par

$$\forall f \in E, \ \phi(f) : x \longmapsto \alpha + \int_0^x 2f(t^3) \ dt$$

Montrer, en choisissant bien β que ϕ est contractante pour la norme $\| \|_{\beta}$. 1. Montrer que (*) admet une unique solution.

Correction de 1.

On a évidemment

$$\forall f \in E, \ e^{-\beta} \, \|f\|_{\infty,[-1,1]} \leq \|f\|_{\beta} \leq \|f\|_{\infty,[0,1]}$$

La norme β est équivalente à la norme $\|\cdot\|_{\infty,[0,1]}$ pour laquelle E est complet. Donc, E est aussi complet pour la norme $\|\cdot\|_{\beta}$.

Correction de 2.

Soit $(f,g) \in E^2$, on a alors, pour $x \in [0,1]$

$$\left|\phi(f)(x)-\phi(g)(x)\right|=2\left|\int_0^x\left(f\left(t^3\right)-g\left(t^3\right)\right)\;\mathrm{d}t\right|\leq 2\;\|f-g\|_\beta\;\int_0^xe^{\beta\,t^3}\;\mathrm{d}t\leq 2\,\|f-g\|_\beta\;\int_0^xe^{\beta\,t}\;\mathrm{d}t$$

car $\beta>0$ et pour tout $t\in[0,1],$ $t^3\leq t.$ Et, finalement

$$|\phi(f)(x) - \phi(g)(x)| \ e^{-\beta \, x} \leq 2 \, \|f - g\|_{\beta} \, \int_0^x e^{-\beta \, (x-t)} \ \mathrm{d}t = 2 \, \|f - g\|_{\beta} \, \left[\frac{1}{\beta} \, e^{-\beta \, (x-t)} \right]_{t=0}^{t=x} \leq \frac{2}{\beta} \, \left\| f - g \right\|_{\beta}$$

D'où, en passant à la borne supérieure dans le terme de gauche

$$\left\|\phi(f)-\phi(g)\right\|_{\beta}\leq\frac{2}{\beta}\,\left\|f-g\right\|_{\beta}$$

N'importe quel $\beta > 2$ convient.

Correction de 3.

En prenant $\beta > 2$, ϕ est contractante et E est complet, le théorème du point fixe nous assure de l'existence et de l'unicité d'un $\psi \in E$, tel que

$$\forall x \in [0,1], \ \psi(x) = \alpha + 2 \int_0^x \psi\left(t^3\right) \ \mathrm{d}t$$

Le théorème fondamental de l'analyse nous permet de dire que 1. ψ est de classe \mathscr{C}^1 ; 1. $\psi(0)=\alpha$; 1. et

$$\forall x \in [0, 1], \ \psi'(x) = 2 \, \psi(x^3)$$

C'est bien une solution de (*). Cette solution est unique, car toute solution de (*) sera un point fixe de ϕ .

3 Théorème de Baire

3.1 Exercice 5

Montrer qu'un fermé dénombrable non vide F de \mathbb{R} a au moins un point isolé. On pourra considérer $\Delta_x = F \setminus \{x\}$.

Correction.

Montrer que Δ_x est un ouvert dense.

Par l'absurde supposons que F n'a aucun point isolé. Comme $\{x\}$ est un fermé alors $\Delta_x = F \setminus \{x\}$ est un ouvert de F. De plus comme le point x n'est pas isolé alors Δ_x est dense dans F. Maintenant on peut appliquer le théorème de Baire à F qui est un fermé de l'espace complet $\mathbb R$. Donc une intersection dénombrable d'ouverts denses dans F est encore dense. Mais ici nous obtenons une contradiction car les Δ_x sont des ouverts denses, F est dénombrable mais

$$\bigcap_{x \in F} \Delta_x = \emptyset$$

Et l'ensemble vide n'est pas dense dans F.