

Cost reduction and performance increase of PEM electrolysers

NOVEL: New materials & components

MEGASTACK: Manufacturing and upscale

Programme Review Days 2016
Brussels, 21-22 November

NOVEL Novel materials and system designs for low cost, efficient and durable PEM electrolysers

Magnus Thomassen SINTEF

www.novelhydrogen.eu magnus.s.thomassen@sintef.no

Programme Review Days 2016
Brussels, 21-22 November

PROJECT OVERVIEW

	Project Information
Call topic	SP1-JTI-FCH.2011.2.7 - Innovative Materials and Components for PEM electrolysers
Grant agreement number	303484
Application area (FP7) or Pillar (Horizon 2020)	Hydrogen production and distribution
Start date	01/09/2012
End date	30/11/2016
Total budget (€)	5 743 445
FCH JU contribution (€)	2 663 445
Other contribution	310 683 (Norwegian Research Council)
Stage of implementation	100% project months elapsed vs total project duration, at date of November 1, 2016
Partners	SINTEF, Fraunhofer ISE, CEA Liten, AREVA H2Gen, Johnson Matthey Fuel Cells, Teer Coatings, PSI

PROJECT SUMMARY - Objectives

Develop and demonstrate a PEM water electrolyser using beyond state of the art materials.

75% Efficiency (LHV), electrolyser stack cost < €2,500 / Nm³h⁻¹, target lifetime of 40,000 h (< 15 μVh⁻¹)

PROJECT SUMMARY - Partners

New Materials Development (Electrocatalysts & Membranes)

Component development and testing

Stack and system design

Innovation in Motion

(Teer Coatings Ltd)

PROJECT SUMMARY - Main achievements

Highly active supported electrocatalysts

Membranes with lower cost and H₂ crossover

Advanced CCMs with higher performance

Non-noble metal coatings for bipolar plates

Low-cost stack design

Degradation mechanisms and AST protocols

PROJECT PROGRESS/ACTIONS - Cost

Aspect Parameter (VDI)		Unit	SoA	FCH JU Targets		
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Cost	CAPEX (stack only)	€/Nm³h ⁻¹	8700	2500	4000	2100
Cost	H ₂ Cost	€/kg	5-13	-	5-11	5-9

- Further tests of stacks and novel materials to evaluate long term stability and causes for performance degradation.
- Improve manufacturability of new components

PROJECT PROGRESS/ACTIONS - Cost

2000€/N

 m^3h^{-1}

5 €/kg

PROJECT PROGRESS/ACTIONS - Efficiency

Aspect	Parameter (KPI)	Unit	SoA	FCH .	CH JU Targets	
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Tffi ai a n a v	Efficiency (HHV)	%	68	88	71	7 5
Efficiency	Energy use	kWh/kg	57	44	55	52

- Further tests of stacks and novel materials to evaluate long term stability and causes for performance degradation.
- Improve manufacturability of new components

PROJECT PROGRESS/ACTIONS - Efficiency

PROJECT PROGRESS/ACTIONS - Durability

Aspect			SoA	FCH	JU Targets	
addressed			2016	Call topic	2017	2020
Dunahilitu	Lifetime	h		40000 h	-	-
Durability	Degradation rate	μV/h		< 15	< 4	< 3

- Further tests of stacks and novel materials to evaluate long term stability and causes for performance degradation.
- Improve manufacturability of new components

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interact	ions with projects funded under EU programmes
NEXPEL	The NOVEL project is building upon the results generated in the FCH-JU NEXPEL project. Further development of the most promising technical solutions and introducing more novel materials and degradation mitigation strategies
SMARTCAT	Complementary activities on the fundamental understanding of electron mobility in oxides and methods for increasing the electronic conductivity of such materials
MEGASTACK	Collaboration on development of testing protocols for components and cells. AST development and dissemination events.
Interactions wit	h national and international-level projects and initiatives
Moxilayer	Development of oxide supported electrocatalysts for PEM electrolysers
IEA-ANNEX 30	Collaboration on development of standardized testing protocols for PEM electrolysers and cost reduction strategies.

DISSEMINATION ACTIVITIES

Public deliverables

- D6.2: condensed findings and conclusions from the organised international workshops on PEM electrolysis
- D6.3 Annual public progress reports

Conferences/Workshops

- 2 organised by the project
- >15 (with >20 presentations) in which the project has participated

Social media

Publications: 5

- M. Chandesris; Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density, Int.J. Hydrogen Energy, 1353-1366 (40) 2015
- A. Albert, A. Barnett, M.Thomassen, T. J. Schmidt, L. Gubler; Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties. ACS Appl. Mater. Interfaces, 22203 (7) 2015

Patents:

MEGASTACK Stack design for a megawatt scale PEM electrolyser

Magnus Thomassen SINTEF

www.megastack.eu magnus.s.thomassen@sintef.no

Programme Review Days 2016 Brussels, 21-22 November

PROJECT OVERVIEW

	Project Information
Call topic	SP1-JTI-FCH.2013.2.3 - Large capacity PEM electrolyser stack design
Grant agreement number	621233
Application area (FP7) or Pillar (Horizon 2020)	Hydrogen production and distribution
Start date	01/10/2014
End date	30/09/2017
Total budget (€)	3 451 654
FCH JU contribution (€)	2 168 543
Other contribution	363 375 (Norwegian Research Council)
Stage of implementation	70% project months elapsed vs total project duration, at date of November 1, 2016
Partners	SINTEF, Fraunhofer ISE, CEA Liten, ITM Power

PROJECT SUMMARY - Partners

PROJECT SUMMARY - Objectives

Megastack main objectives:

Develop a cost efficient stack design for MW-sized PEM electrolysers.

Construct and demonstrate a prototype stack
75% Efficiency (LHV) @ 1.2
Acm⁻²;
stack cost < €2,500 / Nm³h⁻¹
target lifetime of 40,000 h (
< 15 µVh⁻¹)

PROJECT SUMMARY - Approach

- Go large & smart
 - Increase active area and current density, reduce waste (square design)
 - Reduce part count and improve manufacturability/assembly

Develop new and more more cost efficient, large volume supply chains

0.5MW

1MW

PROJECT SUMMARY - Approach

- Multiscale/multiphysics design tools
 - Improved understanding of fundamental transport processes in PEM electrolyser components
 - Two phase flow model for optimisation of cell designs
 - Multiphysics stack model for stack design and control

PROJECT PROGRESS/ACTIONS - Cost

Achievement to-date
% stage of implement.

Aspect	Darameter (KDI)	Unit	SoA	FCH	JU Targets	
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Cook	CAPEX	Nm ³ h ⁻¹	8700	2500	4000	2200
Cost	H ₂ Cost	€/kg	5-13	-	5-11	5-9

- Construct "short stack" demonstration unit
- Perform HAZOP study, complete documentation and ensure safe reliable operation
- Demonstrate electrolyser capabilities

PROJECT PROGRESS/ACTIONS - Efficiency

Aspect	Parameter (KPI)	Unit	SoA	FCH .	H JU Targets	
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Ltt: -:	Efficiency	%	68	88	71	75
Efficiency	Energy use	kWh/kg	57	42	55	52

- Further improvement of stack design by use of advanced modelling tools developed in the project
- Improved manufacturability, optimised components, higher current densities

PROJECT PROGRESS/ACTIONS - Durability

Aspect	· Donomotor (VI)		SoA	FCH	JU Targets	
addressed			2016	Call topic	2017	2020
Durability	Lifetime	h		40000 h	N/A	N/A
	Degradation rate	μV/h		< 15	< 4	< 3

- Evaluate long term durability of demonstrator stack
- Investigate possibility for increased current densities and alternative lower cost components without impact on durability

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interact	ions with projects funded under EU programmes			
NOVEL	Collaboration on development of testing protocols for components and cells. AST development and dissemination events.			
PHAEDRUS	Megastack design based on elements from Phaedrus stack design			
ELECTROHYPEM	Test protocols for evaluation of CCM durability			
Interactions wit	h national and international-level projects and initiatives			
IEA-ANNEX 30 Collaboration on development of standardized testing protocol for PEM electrolysers and cost reduction strategies.				
JRC	Harmonisation of testing protocols and hardware for PEM electrolysers			

DISSEMINATION ACTIVITIES

Public deliverables

- D1.1: Cost benefit analysis and cost and performance target for large scale PEM electrolyser stack
- D2.1: Cost benefit analysis and cost and performance target for large scale PEM electrolyser stack
- D3.2 Large scale MEA manufacture options and suppliers - testing of large scale MEAS

Conferences/Workshops

- 1 organised by the project
- 3 in which the project has participated

Social media

Publications: 0

 Publications on two phase flow modelling and transport processes in porous media in preparation

Patents: 0

-Megastack design based on existing ITM patents

Thank You!

Coordinator: magnus.s.thomassen@sintef.no