A Model With Clean and Dirty Capital Stocks and and R&D in Green Innovation-

Assume there are two capital sectors, each with AK production technology $(Y_i = A_i K_i, i = d, g)$ and each with its own capital stock that evolves with quadratic adjustments costs and Brownian shocks as follows:

$$dK_d/K_d = \left[\alpha_d + i_d - \frac{\phi_d}{2}i_d^2\right]dt + \sigma_d dW$$
$$dK_g/K_g = \left[\alpha_g + i_g - \frac{\phi_g}{2}i_g^2\right]dt + \sigma_g dW$$

We also assume there is R&D investment that leads to an increased arrival rate of a one time jump in Sector 2 productivity. The arrival rate is denoted as t and evolves as follows

$$d\lambda_t/\lambda_t = (\varphi i_\lambda - \alpha_\lambda) dt + \sigma_\lambda dW$$

The key dierence between the sectors is that production from Sector 1 generates emissions. As a result, the evolution of atmospheric temperature is give by the Matthews Approximation, so that temperature Y_t and cumulative carbon emissions are given by

$$dY_t = E_t(\beta_f dt + \varsigma dW)$$

where β_f is the Matthews parameter and η is the scaling factor converting Sector d output A_dK_d into emissions such that

$$E_t = \eta A_d K_d$$

Output can be used in for consumption, investment in either capital stock, or for R&D into improving the productivity of Sector g :

$$C = A_d K_d - i_d K_d + A_g K_g - i_g K_g - i_\lambda \lambda$$

We assume exponential-quadratic damages to preferences so that our utility is augmented when accounting for climate damages. Flow utility is a log function over consumption, assuming perfect substitutability over output from the two sectors so that

$$U(C) = \delta \log(A_d K_d - i_d K_d + A_g K_g - i_g K_g - i_\lambda \lambda) - \delta \log N_t$$

where the $\log N_t$ follows from BBH2 as

$$\log N_t = \Gamma(Y)$$

$$\Gamma(y) = \gamma_1 y + \frac{\gamma_2}{2} y^2 + \frac{\gamma_3}{2} \mathbf{1}_{y \ge \bar{y}} (y - \bar{y})^2$$

Taking these pieces together we get the HJB equation

$$\begin{split} \delta V(K_d,K_g,\lambda,Y,\log N) &= \max_{i_g,i_d,i_\lambda} \delta \log (A_dK_d - i_dK_d + A_gK_g - i_gK_g - i_\lambda\lambda) - \delta \log N \\ &+ \{\alpha_d + i_d - \frac{\phi_d}{2}i_d^2\}V_dK_d + \{\alpha_g + i_g - \frac{\phi_g}{2}i_g^2\}V_gK_g + \frac{\sigma_d^2K_d^2}{2}V_{dd} + \frac{\sigma_g^2K_g^2}{2}V_{gg} \\ &+ \beta_fE_dV_Y + \frac{1}{2}\varsigma^2E_d^2V_{YY} + [\{\gamma_1 + \gamma_2Y_t\}\beta_fE_d + \frac{\gamma_2}{2}\varsigma^2E_d^2]V_{\log N} + \frac{\varsigma^2E_d^2}{2}V_{\log N\log N} \\ &+ (\varphi i_\lambda - \alpha_\lambda)\lambda V_\lambda + \frac{\sigma_\lambda^2}{2}V_{\lambda\lambda} + \lambda\left(V(K_d,K_g,\lambda,Y,\log N;A_g') - V(K_d,K_g,\lambda,Y,\log N;A_g)\right) \end{split}$$

The FOC for investment and R&D are given by

$$0 = -\delta (A_d K_d - i_d K_d + A_g K_g - i_g K_g - i_\lambda \lambda)^{-1} + (1 - \phi_d i_d) V_d$$

$$0 = -\delta (A_d K_d - i_d K_d + A_g K_g - i_g K_g - i_\lambda \lambda)^{-1} + (1 - \phi_d i_d) V_d$$

$$0 = -\delta (A_d K_d - i_d K_d + A_g K_g - i_g K_g - i_\lambda \lambda)^{-1} + \varphi V_\lambda$$

Using the fact that $\varphi V_{\lambda} = \delta (A_d K_d - i_d K_d + A_g K_g - i_g K_g - i_{\lambda} \lambda)^{-1}$, we can simplify to

$$\begin{split} i_d &= \frac{1}{\phi_d} - \frac{\varphi}{\phi_d} \frac{V_\lambda}{V_d} \\ i_g &= \frac{1}{\phi_g} - \frac{\varphi}{\phi_g} \frac{V_\lambda}{V_g} \\ i_\lambda &= \frac{1}{\lambda} \left((A_d - (\frac{1}{\phi_d} - \frac{\varphi}{\phi_d} \frac{V_\lambda}{V_d})) K_d + (A_g - (\frac{1}{\phi_g} - \frac{\varphi}{\phi_g} \frac{V_\lambda}{V_g})) K_g - \frac{\delta}{\varphi V_\lambda} \right) \end{split}$$

We can analytically simplify out $\log Nt$ to get a simplied HJB

$$\begin{split} \delta v(K_d,K_g,\lambda,Y) &= \max_{i_g,i_d,i_\lambda} \delta \log(A_dK_d - i_dK_d + A_gK_g - i_gK_g - i_\lambda\lambda) \\ &+ \{\alpha_d + i_d - \frac{\phi_d}{2}i_d^2\}v_dK_d + \{\alpha_g + i_g - \frac{\phi_g}{2}i_g^2\}v_gK_g + \frac{\sigma_d^2K_d^2}{2}v_{dd} + \frac{\sigma_g^2K_g^2}{2}v_{gg} \\ &+ \beta_fE_dv_Y + \frac{1}{2}\varsigma^2E_d^2v_{YY} - [\{\gamma_1 + \gamma_2Y_t\}\beta_fE_d + \frac{\gamma_2}{2}\varsigma^2E_d^2] \\ &+ (-\alpha_\lambda + \varphi i_\lambda)\lambda v_\lambda + \frac{\sigma_\lambda^2}{2}v_{\lambda\lambda} + \lambda\left(v(K_d,K_g,\lambda,Y;A_g') - v(K_d,K_g,\lambda,Y;A_g)\right) \end{split}$$

FOC

$$\begin{split} i_d &= \frac{1}{\phi_d} - \frac{\varphi}{\phi_d} \frac{v_\lambda}{v_d} \\ i_g &= \frac{1}{\phi_g} - \frac{\varphi}{\phi_g} \frac{v_\lambda}{v_g} \\ i_\lambda &= \frac{1}{\lambda} \left((A_d - (\frac{1}{\phi_d} - \frac{\varphi}{\phi_d} \frac{v_\lambda}{v_d})) K_d + (A_g - (\frac{1}{\phi_g} - \frac{\varphi}{\phi_g} \frac{v_\lambda}{v_g})) K_g - \frac{\delta}{\varphi v_\lambda} \right) \end{split}$$

From this we can layer on different forms of uncertainty.

1 Post jump

Replace E_d with $\eta A_d K_d$. We solve post jump HJB:

$$\begin{split} \delta v(K_d, K_g, Y; A_g') &= \max_{i_g, i_d} \delta \log(A_d K_d - i_d K_d + A_g' K_g - i_g K_g) \\ &+ \{\alpha_d + i_d - \frac{\phi_d}{2} i_d^2\} v_d K_d + \{\alpha_g + i_g - \frac{\phi_g}{2} i_g^2\} v_g K_g + \frac{\sigma_d^2 K_d^2}{2} v_{dd} + \frac{\sigma_g^2 K_g^2}{2} v_{gg} \\ &+ \beta_f (\eta A_d K_d) v_Y + \frac{1}{2} \varsigma^2 (\eta A_d K_d)^2 v_{YY} - [\{\gamma_1 + \gamma_2 Y_t\} \beta_f (\eta A_d K_d) + \frac{\gamma_2}{2} \varsigma^2 (\eta A_d K_d)^2] \end{split}$$

denote

$$mc = \delta(A_dK_d - i_dK_d + A'_gK_g - i_gK_g)^{-1}$$

FOC

$$i_d = \frac{1}{\phi_d} - \frac{mc}{\phi_d v_d}$$
$$i_g = \frac{1}{\phi_g} - \frac{mc}{\phi_g v_g}$$

2 Pre jump

A State variables

Capital:

$$K_d \in [0, 10, 000]$$

$$K_g \in [0, 10, 000]$$

$$\lambda \in [0, 0.1]$$

$$Y \in [0, 4]$$

B Parameters

Economy

Parameters	values
δ	0.01
$(\alpha_d, \phi_d, \sigma_d)$	(-0.02, 8, 0.016)
$(\alpha_g, \phi_g, \sigma_g)$	(-0.02, 8, 0.016)
$(\alpha_{\lambda}, \varphi, \sigma_{\lambda})$	(0, 0.1, 0.016)
A_d	0.12
(A_g, A'_g)	(0.10, 0.15)

Temperature and damage

Parameters	values
β_f	1.86 / 1000
ς	1.2 * 1.86 / 1000
γ_1	0.00017675
γ_2	2 * 0.0022
γ_3	0
\bar{y}	2

 η are determined as follows:

- Initial capital: $K_0 = 85/0.115 \approx 739$
- $K_{d,0} = K_0 \times \frac{2}{3} \approx 493$
- Choose η such that $10 = \eta \times 0.12 \times 493 \Rightarrow \eta \approx 0.17$