Disciplina: Fundamentos Teóricos da Computação

PUC Minas Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

Exercícios Extra (1ª AVALIAÇÃO - 2º Sem/ 2011)

Nome:

Construa a GR que gere a seguinte linguagem: $\{00 \cup 1\}^* \{0 \cup 11\}^* (05 \text{ pontos})$

Obtenha um AFD equivalente ao seguinte autômato: (05 pontos)

Mostre que a linguagem abaixo não regular: (05 pontos)

 $\mathbf{L} = \{ xy \in \{ \mathbf{a}, \mathbf{b} \}^* | |x| = |y|, n_a(x) \ge n_b(y) \}$, em que $n_s(w)$ é o número de símbolos s na palavra w

Seja $L_1 = \{0^n \mid n \text{ \'e n\'umero primo}\}\ e\ L_2 = \{0\}^k \{0\}^*,\ em que o k \text{ \'e uma constante. Sabendo que } L_1 \text{ não \'e}$ uma linguagem regular e que L2 é uma linguagem regular, mostre para cada linguagem abaixo se ela é ou não linguagem regular:

a)
$$L_1 - L_2$$
 (01 ponto)

b)
$$L_1 \cap L_2(02 \text{ pontos})$$

c) $L_1 \cup L_2$ (02 pontos)

a) Seja
$$L_{3} = L_{1} - L_{2}$$

 $L_{2} = \{0^{n} | n < k\}$

a) Seja
$$L_{g} = L_{1} - L_{2}$$
 b) Seja $L_{q} = L_{1} \cap L_{2}$
$$L_{3} = \{0^{n} \mid n < k\}$$

$$L_{q} = \{0^{n} \mid n \geq k \text{ e } n \text{ e' primo}\}$$

Suponha que Ly é linguagen regular.

Ly U L, deve ser regular, sú que a unido de duas linguagens regulares sempre garci uma

lingvagum regular. Como Ly U L, =

1) Construa a GR que gere a seguinte linguagem: $\{00 \cup 1\}^* \{0 \cup 11\}^* (05 \text{ pontos})$

{ 9}

(F)

{A,B,C,F,H,I}

{A,B,C,F,H,I}

{A,B,C,F,H,I}

V

E

F

G

Н

[E]

Ø

Ø

G

Ø

Ø

{G}

Ø

ø

2) Obtenha um AFD equivalente ao seguinte autômato: (05 pontos)

	AFN-λ							
	б	0	1	_ λ				
	A	{c]	ø	{ \$}				
-	В	ø	[0]	Ø				
	С	ø	{ A }	[0]				
	I	{ B}	ø	ø				

$\delta'(A,0) = \frac{1}{3}\lambda(\delta(A,0)) \cup \frac{1}{3}\lambda(\delta(B,0)) = \frac{1}{3}\lambda(\{c\}) \cup \frac{1}{3}\lambda(B) = \frac{1}{3}\lambda(B)$
$\delta'(A,1) = \pm \lambda(\delta(A,1)) \cup \pm \lambda(\delta(B,1)) = \pm \lambda(\xi \emptyset) \cup \pm \lambda(\xi \emptyset) = \{9\}$
$\delta'(\theta,0) = \pm \lambda(\delta(\theta,0)) = \pm \lambda(\emptyset) = \{\emptyset\}$
$\delta'(b,1) = f\lambda(\delta(b,1)) = f\lambda(5) = f\beta$ $\delta'(c,0) = f\lambda(\delta(c,0)) \cup f\lambda(\delta(3,0)) = f\lambda(b) \cup f\lambda(f\beta) = f\beta$
$\rho_{\lambda}(C^{(1)}) = \frac{1}{\lambda} \left(\varrho(C^{(1)}) \cap \frac{1}{\lambda} (\varrho(2^{(1)}) = \frac{1}{\lambda} (\varrho(2^{(1)}) \cap \frac$
$\delta'(9,0) = \frac{1}{4}\lambda(\delta(9,0)) = \frac{1}{4}\lambda(6) = \frac{1}{4}\lambda(6)$
A CALLA TALLET I

AFN		AFD			
δ	0	<u> </u>	_8	0	<u> </u>
<u>_A</u>	{c,0}	{9}	£A J	£ 403	{ 9}
в	Ø	{9}	{c,v}	{ B}	{A,B}
С	{B}	{AB}	{ D}	{ B}	Ø
Ŋ	{B}	Ø	{A,B]	{c, ə}	{ DJ
	,		{B}	ø	[9]
			Ø	ø	ø

