

Fach: Informatik
Kurs: E1
Datum: _____

Name(n):

Arbeitsblatt 5.2

Thema: Programmieren mit MOPS — Mittel (Kontrollstrukturen & Rechnen)

Bearbeitungshinweise

- Arbeitsform: Gruppenarbeit (2–3 Personen) für die Aufgaben 1–4; Einzelarbeit/Hausaufgabe für die Aufgaben 5–9.
- **Abgabe:** Gruppen: kurzer Code-Screenshot oder Datei des MOPS-Programms mit 1–2 Stichpunkten zur Idee. Hausaufgaben: bis zur nächsten Stunde.
- Testen: Nutzt die angegebenen Testfälle und ergänzt 1–2 eigene Randfälle.
- MOPS-Kurzreferenz: in, out, ld, st, add, sub, mul, div, mod, cmp, jmp, jlt, jeq, jgt, end. Eine Anweisung je Zeile; Sprungmarken nach dem Befehl definieren.

Ziel

Ihr übt Kontrollstrukturen und arithmetische Verfahren im MOPS-Befehlssatz (Schleifen, Verzweigungen, Invarianten) und achtet auf korrekte Abbruchbedingungen.

Gruppenauftrag

Aufgabe 1: Potenzieren durch wiederholte Multiplikation.

[10BE]

I/O: Lies Basis a und Exponent b (nichtnegativ) und gib a^b aus.

Idee: Akkumulator mit 1 starten; solange i < b: Akkumulator \leftarrow Akkumulator $\cdot a$.

Tests: $(a, b) = (2, 0) \to 1 \quad (2, 5) \to 32 \quad (5, 3) \to 125.$

Aufgabe 2: Ganzzahl-Division per wiederholter Subtraktion.

[10BE]

I/O: Lies Dividend D und Divisor d und gib Quotient q und Rest r aus.

Idee: Solange $D \ge d$: $D \leftarrow D - d$, $q \leftarrow q + 1$; am Ende r = D. Sonderfall: $d = 0 \Rightarrow \text{gib}$ q = 0, r = 0 aus.

Tests: $(10,3) \to q = 3, r = 1$: $(7,7) \to q = 1, r = 0$: $(5,0) \to q = 0, r = 0$.

Aufgabe 3: Digitsumme (Quersumme).

[8BE]

I/O: Lies eine **nichtnegative** Zahl n und gib die Summe ihrer Dezimalziffern aus.

Idee: Wiederholt $n \mod 10$ aufsummieren und $n \div 10$ durchführen, bis n = 0.

Tests: $0 \rightarrow 0$ · $7 \rightarrow 7$ · $12345 \rightarrow 15$ · $1002 \rightarrow 3$.

Aufgabe 4: Ziffernumkehr (Reverse).

[8BE]

I/O: Lies eine **nichtnegative** Zahl n und gib die umgedrehte Zahl aus.

Idee: $rev \leftarrow rev \cdot 10 + (n \mod 10)$; danach $n \leftarrow n \div 10$; Schleife bis n = 0.

Tests: $123 \rightarrow 321$ · $1200 \rightarrow 21$ · $0 \rightarrow 0$.

Hausaufgaben / Vertiefung

Aufgabe 1: Palindrom (Zahl).

[8BE]

I/O: Lies n und gib 1 aus, falls n ein Palindrom ist, sonst 0.

Idee: Nutze die Logik aus der Ziffernumkehr: bilde rev und vergleiche rev mit n.

Tests: $121 \rightarrow 1$ · $123 \rightarrow 0$ · $0 \rightarrow 1$.

Aufgabe 2: Maximum aus drei Zahlen.

[8BE]

I/O: Lies a, b, c und gib die **größte** der drei Zahlen aus.

Idee: Starte mit $mx \leftarrow a$; vergleiche nacheinander b und c mit mx und aktualisiere.

Erweiterung (*): Gib zusätzlich das **Minimum** aus.

Tests: $(3,9,7) \to 9 \quad (5,5,1) \to 5 \quad (-2,-1,-5) \to -1.$

Aufgabe 3: Median von drei.

[10BE]

I/O: Lies a, b, c und gib die **mittlere** der drei Zahlen aus.

Idee: Kaskadierte Vergleiche mit jlt/jgt/jeq (z. B. Fälle $a \le b \le c, a \le c \le b, ...$).

Tests: $(3, 9, 7) \to 7$: $(5, 5, 1) \to 5$: $(2, 8, 8) \to 8$.

Aufgabe 4: Sortieren von drei Zahlen (aufsteigend).

 $[10\,BE]$

I/O: Lies a, b, c und gib sie **aufsteigend** aus.

Idee: Tauschlogik (swap) mit Hilfszelle: vergleiche Paare und tausche, bis $a \leq b \leq c$ gilt.

Erweiterung (*): Sortiere vier Zahlen. Tests: $(9,3,7) \rightarrow 3,7,9 \quad (5,5,1) \rightarrow 1,5,5$.

Aufgabe 5: Countdown mit Schrittweite.

[6BE]

I/O: Lies start, step (step>0) und gib start, start-step, … aus, solange der Wert ≥ 0 ist.

Idee: Schleife: jeweils sub step, dann prüfen und ausgeben/beenden.

Tests: $(start, step) = (10, 3) \rightarrow 10, 7, 4, 1 \quad (5, 2) \rightarrow 5, 3, 1.$