Optimization for Engineers

4. Lab Exercise

25.06.2018 Summer Term 2018 Dr. Johannes Hild Department Mathematik Friedrich-Alexander-Universität Erlangen-Nürnberg

Assignment 1: Projection, Active Index Set - 5 Credits

Complete the function projectIntoBox.m, which projects a point $x \in \mathbb{R}^n$ into a set of box constraints Ω_{\square} defined by lower bounds a and upper bounds b:

- a) Input: $x \in \mathbb{R}^n$, lower and upper bounds $a, b \in \mathbb{R}^n$ and $\varepsilon >= 0$.
- b) Initialize $P \leftarrow x$ and $A \leftarrow \{\}$ and start a loop over i = 1, ..., n:
 - i) Set $P(x)_i \leftarrow \begin{cases} a_i & \text{if } x_i \leq a_i \\ x_i & \text{if } a_i < x_i < b_i \text{ for } i = 1, \dots, n \\ b_i & \text{if } x_i \geq b_i \end{cases}$
 - ii) Set $A(x) \leftarrow \{i \in \{1, \dots, n\} | x_i \le a_i + \varepsilon \text{ or } x_i \ge b_i \varepsilon\}.$
- c) Output: Projected point $P(x) \in \Omega_{\square}$ and ε -active set A(x).

Hints:

- a) Use A=[] to initialize an empty index set and A=[A i] to append index i to the index set.
- b) Test the algorithm with the command **sheet04Script(1)**;

Assignment 2: Projected Newton's Method - 5 Credits

Complete the projected Newton's method in the template projected Newton.m, for minimizing $f: \mathbb{R}^n \to \mathbb{R}$ with projection P into box constraints:

- a) Input: $f \in \mathcal{C}^2$; $x_0 \in \mathbb{R}^n$; $P : \mathbb{R}^n \to \Omega_{\square}$; $\varepsilon > 0$.
- b) Set $x_k \leftarrow P(x_0)$.

- c) While $||x_k P(x_k \nabla f(x_k))|| > \varepsilon$ do:
 - i) Compute active index set $\mathcal{A}(x_k)$
 - ii) Set $B_k = \nabla^2 f(x_k)$.
 - iii) For $i = \mathcal{A}(x_k)$ overwrite column i and row i of B_k with column i and row i of the unit matrix.
 - iv) Solve $B_k d_k = -\nabla f(x_k)$ for d_k with conjugate gradient.
 - v) If d_k is not a descent direction set d_k to the steepest descent direction.
 - vi) Compute t_k by calling **projectedBacktracking.m** for f at x_k along d_k respecting the projection P.
 - vii) Set $x_k \leftarrow P(x_k + t_k d_k)$.
- d) Return $x_s \leftarrow x_k$.

Hints:

- a) Use **getProjectedPoint(P_handle,x_k)** to get $P(x_k)$.
- b) Use **getActiveIndexSet(P_handle,x_k)** to get $A(x_k)$.
- c) The syntax for i = A directly generates a loop over all indexes found in an index set (or row vector) A.
- d) The syntax $\mathbf{B}(:,i) = \mathbf{E}(:,j)$ overwrites column i of \mathbf{B} with column j of \mathbf{E} .
- e) The syntax B(i,:)=E(j,:) overwrites row i of B with row j of E.
- f) Test the algorithm with the command **sheet04Script(2)**;

Evaluation and Upload

Hand in the following files (unzipped) to StudOn using the Exercises object:

- a) projectIntoBox.m
- b) projectedNewton.m