Class 5

Shikhar Saxena

January 17, 2023

Contents

Markov Chain as recursions	1
Markov Reward Process	2
Standard Optimization	3

Markov Chain as recursions

Theorem 1. Consider recursion $X_{n+1} = f(X_n, U_n), \ n \geq 0$ where $f: \mathcal{S} \times [0, 1] \to \mathcal{S}$ and $\{U_n, n \geq 0\}$ is an iid sequence of random variables. Then $\{X_n, n \geq 0\}$ defines a Markov chain with tpm

$$P_{ij} = P(f(i, U) = j)$$

Conversely, every Markov Chain can be represented by such a recursion for some f and $\{U_n, n \geq 0\}$

 U_n adds randomness to the deterministic Markov chain $X_{n+1}=f(X_n)$ for example.

Proof. The forward part is trivial. Converse follows from inverse transform method (simulation).

For the converse, we have CDF over the state space. So for $i \in \mathcal{S}$, we have $F_i(x)$: CDF of the i^{th} row in the tpm P.

Now, we simulate X_{n+1} using inverse transform method (given $X_n = i$):

$$X_{n+1} = f(i, U_n) = F_i^{-1}(U_n)$$

When F_i is discrete we have $F_i^{-1}(y) := \min\{x : F_i(x) \ge y\}$

$$X_{n+1} = f(X_n, U_n) = F_{X_n}^{-1}(U_n)$$

Remark. U can be transformed to any distribution G. So this theorem applies for any general distribution.

Markov Reward Process

Consider a Markov Chain $\{X_n, n \geq 0\}$ on \mathcal{X} with $|\mathcal{X}| = M$.

- $\circ r(X_t) := \text{Reward obtained when in state } X_t \text{ at time } t$
- $\circ \beta \in (0,1) := discount factor$
- \circ cumulative expected discounted reward (conditioned on starting in state x):

$$V(x) = \mathbb{E}_x \left[\sum_{t=0}^\infty \beta^t r(X_t) \right]$$

 $\circ \mathbb{E}_x$: Conditional Expectation of starting in x

Lemma 1. V(x) is a unique solution to:

$$V(x) = \beta(PV)(x) + r(x)$$

for $x \in \mathcal{X}$.

Proof is as follows:¹

Proof.

$$\begin{split} V(x) &= \mathbb{E}_x \left[\sum_{t=0}^\infty \beta^t r(X_t) \right] \\ &= r(x) + \beta \mathbb{E}_x \left[\sum_{t=1}^\infty \beta^{t-1} r(X_t) \right] \\ &= r(x) + \beta \mathbb{E}_x \mathbb{E} \left[\sum_{t=1}^\infty \beta^{t-1} r(X_t) \middle| X_1 \right] \\ &= r(x) + \beta \mathbb{E}_x \mathbb{E}_{X_1} \left[\sum_{t=1}^\infty \beta^{t-1} r(X_t) \middle| X_1 \right] \\ &= r(x) + \beta \mathbb{E}_x V(X_1) \\ &= r(x) + \beta \sum_{x_1} P_{xx_1} V(X_1) \\ &= r(x) + \beta (PV)(x) \end{split}$$

Therefore, we obtain $V = (I - \beta P)^{-1}r$ but this might only help when n is very small and finite since inverse is difficult to compute. This is $O(M^3)$ operation.

• What if inverse doesn't exist or continuous time? Death.

¹Refer Neil Walton's notes for proof of uniqueness.

Standard Optimization

- Optimization Problem $\min_{a \in \mathcal{A}} c(a)$
- $\circ \ a^* = \arg \min_{a \in \mathcal{A}} c(a)$
- When $c(\cdot)$ is convex, then $a^* = \left\{ a : \frac{dc(a)}{da} = 0 \right\}$

Stochastic Optimization

- \circ Consider objective function of form c(a, W) where W is a random variable (typically noise).
- But c(a, W) itself is a random variable.
- So objective function:

$$\min_{a \in \mathcal{A}} E[c(a, W)]$$

* But this is still deterministic where V(a) = E[c(a, W)].

Now, we consider E[c(S, a, W)] where S is the state observed before choosing the action a. This provokes the need for policy.

 $\pi: S \to \mathcal{A}$: Decision Rule or **Policy**

: Optimization Problem is now defined as:

$$\min_{\pi} E[c(S, \pi(S), W)] \tag{1}$$

Remark. Here expectation is over W or S (over the sources of randomness). Note, policy is fixed.

Another way to view this,

Define Q(s,a) := E[c(s,a,W)|S=s]. Then minimize Q(s,a) for every s and store these actions in policy π^* .

$$\min_{a \in \mathcal{A}} Q(s, a) \text{ and } \pi^*(s) = \arg\min_{a \in \mathcal{A}} Q(s, a)$$
 (2)

Problem 1 is functional optimization while 2 is parameter optimization (which are generally easier to solve).