NATIONAL UNIVERSITY OF COMPUTER AND EMERGING SCIENCE OPERATING SYSTEM OUIZ(A)

	ENT ROLL NO: SECTION: ALLOWED: 20 MINUTES				
QUESTION # 1 (IDENTIFY WHETHER THE GIVEN STATEMENTS ARE TRUE OR FALSE. WRITE DOWN THE CORRECT STATEMENT AGAINST EACH FALSE STATEMENT)					
1)	(T/F) Cyclic dependency always leads towards deadlock?(F) It depends upon the number of resource instances.				
2)	(T/F) Memory mapped technique is efficient to be used for huge sequential file?(F) Memory space utilization may be a problem				
3)	(T/F) Page fault rate will be high if you observe fast clock tick rate in clock based second chance algorithm? (T) Refer lecture slide				
4)	(T/F) LRU takes benefits from spatial locality. (F) Temporal locality				
5)	(T/F) A blocking kernel-scheduled thread blocks all threads in the process.(F) Because kernel level threads are managed by operating system				
6)	(T/F) Threads are cheaper to context switch than processes.(T) Threads share the address space of process.				
7)	(T/F) The optimal page replacement algorithm is the best choice in practice.(F) It is hard to predict future.				

QUESTION # 2

```
Consider a page is stored in column major order. How many page faults will each data structure incur? a) i, j; int[18][18] data:
```

```
int[18][18] data;
for (j = 0; j < 18; j++)
for (i = 0; i < 18; i++)
```

data[i][j] = 0;

18

```
b) int i, j; int[18][18] data; for (i = 0; i < 18; i++) for (j = 0; j < 18; j++) data[i][j] = 0;
```

18x18

OUESTION #3

Consider the given code for reader writer problem that we discussed in class. Answer the questions given below.

```
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0
WRITER
do {
 wait (wrt) ;
   //
        writing is performed
 signal (wrt);
     } while (TRUE);
READER
   do {
                       wait (mutex) ;
                       readcount ++ ;
                         wait (wrt);
                       signal (mutex)
                               // reading is performed
                        wait (mutex) ;
                        readcount - - ;
                           signal (wrt);
                        signal (mutex);
              } while (TRUE)
```

1. How many readers are allowed to enter in the critical region for above code fragment?

Only one

2. Above code fragment satisfy mutual exclusion criteria(T/F)? T

QUESTION #4

Consider the snapshot of a safe system.

	Allocation	Max	Available
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

Can we immediately grant the request to process P1(1,1,1) . If yes, then provide a safe state (Assume processes are executed sequentially).

REFER BOOK

QUESTION #5

Calculate number of page faults for the given string using FIFO(3 page frames)? A B C D A B E A B C D E B A B