Appendix

% every case must be assigned to one referee { assign(CID, RID) : referee(RID, _, _, _, _) } = 1 :- case(CID, _, _, _, _, _).

% HARD CONSTRAINTS

% The maximum number of working minutes of a referee must not be exc% every case must be assigned to one referee

{ $assign(CID, RID) : referee(RID, _, _, _, _) } = 1 :- case(CID, _, _, _, _).$

% HARD CONSTRAINTS

- % The maximum number of working minutes of a referee must not be exceeded by
- % the actual workload, where the actual workload is the sum of the efforts of all
- % cases assigned to this referee.
- :- assign(CID, RID), case(CID, _, EFFORT, _, _, _), referee(RID, _, MAX_WORKLOAD, PREV_WORKLOAD, _), #sum {X, C : C==CID, case(C, _, X, _, _, _) } > MAX_WORKLOAD.
- % A case must not be assigned to a referee who is not in charge of the region at all
- % (i.e., who has preference 0; see below).
- :- assign(CID, RID), case(CID, _, _, _, POSTC, _), referee(RID, _, _, _, _), prefRegion(RID, POSTC, 0).
- % A case must not be assigned to a referee who is not in charge of the type of the
- % case at all (i.e., who has preference 0; see below).
- :- assign(CID, RID), case(CID, CASET, _, _, _, _), referee(RID, _, _, _, _), prefType(RID, CASET, 0).
- % Cases with an amount of damage that exceeds a certain threshold can only be
- % assigned to internal referees.
- :- assign(CID, RID), case(CID, _, _, DAMAGE, _, _), referee(RID, e, _, _, _), externalMaxDamage(THRESHOLD), DAMAGE > THRESHOLD.

% WEAK CONSTRAINTS

- % Internal referees are preferred in order to minimize the costs of external ones.
- :~ assign(CID, RID), case(CID, _, _, _, _, _), referee(RID, e, _, _, _). [1@5]
- % The assignment of cases to external referees should be fair in the sense that
- % their overall payment should be balanced (i.e., they should all have the chance to
- % handle cases such that their overall payments are similar).

```
 \begin{array}{l} total\_payment(RID,\ TOTAL) :-\ referee(RID,\ \_,\ \_,\ \_,\ \_), \\ \#sum\ \{\ P,\ C,\ R:\ assign(C,\ R),\ case(C,\ \_,\ \_,\ \_,\ _,\ P),\ referee(RID,\ e,\ \_,\ \_,\ \_),\ R==RID\ \} = TOTAL. \\ :\sim assign(CID,\ RID),\ case(CID,\ \_,\ \_,\ \_,\ \_,\ \_),\ referee(RID,\ e,\ \_,\ \_,\ TOTAL\_PAY),\ total\_payment(RID,\ TOTAL),\ N=TOTAL\ +\ TOTAL\_PAY.\ [N@4] \\ \end{array}
```

% The assignment of cases to (internal and external) referees should be fair in the

% sense that their overall workload should be balanced. total_workload(RID, TOTAL) :- referee(RID, _, _, _, _), #sum { H, C, R: assign(C, R), case(C, _, H, _, _, _), referee(R, _, _, _, _), R==RID } = TOTAL. :- assign(CID, RID), case(CID, _, _, _, _, _), referee(RID, _, _, PREV_WORKLOAD, _), total_workload(RID, TOTAL), N = TOTAL + PREV_WORKLOAD. [N@3]

% Referees should handle types of cases with higher preference.

:~ assign(CID, RID), case(CID, CASET, _, _, _, _), referee(RID, _, _, _, _), prefType(RID, CASET, PREF). [-PREF@2]

% Referees should handle cases in regions with higher preference.

:~ assign(CID, RID), case(CID, _, _, _, POSTC, _), referee(RID, _, _, _, _), prefRegion(RID, POSTC ,PREF). [-PREF@1]

#show assign/2.

eeded by

% the actual workload, where the actual workload is the sum of the efforts of all

% cases assigned to this referee.

- :- assign(CID, RID), case(CID, _, EFFORT, _, _, _), referee(RID, _, MAX_WORKLOAD, PREV_WORKLOAD, _), #sum {X, C : C==CID, case(C, _, X, _, _, _) } > MAX_WORKLOAD.
- % A case must not be assigned to a referee who is not in charge of the region at all

% (i.e., who has preference 0; see below).

- :- assign(CID, RID), case(CID, _, _, _, POSTC, _), referee(RID, _, _, _, _), prefRegion(RID, POSTC, 0).
- % A case must not be assigned to a referee who is not in charge of the type of the

% case at all (i.e., who has preference 0; see below).
:- assign(CID, RID), case(CID, CASET, _, _, _, _), refer-

ee(RID, _, _, _, _), prefType(RID, CASET, 0).

% Cases with an amount of damage that exceeds a certain threshold can only be

% assigned to internal referees.

:- assign(CID, RID), case(CID, _, _, DAMAGE, _, _), referee(RID, e, _, _, _), externalMaxDamage(THRESHOLD), DAMAGE > THRESHOLD. % WEAK CONSTRAINTS % Internal referees are preferred in order to minimize the costs of external ones. :~ assign(CID, RID), case(CID, _, _, _, _, _), referee(RID, e, _, _, _). [1@5] % The assignment of cases to external referees should be fair in the sense that % their overall payment should be balanced (i.e., they should all have the chance to % handle cases such that their overall payments are similar). total_payment(RID, TOTAL) :- referee(RID, _, _, _, _), #sum { P, C, R: assign(C, R), case(C, _, _, _, _, P), refer $ee(R, _, _, _, _), R == RID \} = TOTAL.$:~ assign(CID, RID), case(CID, _, _, _, _, _), referee(RID, e, _, _, TOTAL_PAY), total_payment(RID, TOTAL), N = TOTAL + TOTAL_PAY. [N@4] % The assignment of cases to (internal and external) referees should be fair in the % sense that their overall workload should be balanced. total_workload(RID, TOTAL) :- referee(RID, _, _, _, _), #sum { H, C, R: assign(C, R), case(C, _, H, _, _, _), referee(R, _, _, _, _), R==RID } = TOTAL. :~ assign(CID, RID), case(CID, _, _, _, _, _), referee(RID, _, _, PREV_WORKLOAD, _), total_workload(RID, TO-TAL), $N = TOTAL + PREV_WORKLOAD$. [N@3] % Referees should handle types of cases with higher preference. :~ assign(CID, RID), case(CID, CASET, _, _, _, _), referee(RID, _, _, _, _), prefType(RID, CASET, PREF). [-PREF@2]

% Referees should handle cases in regions with higher preference.

:~ assign(CID, RID), case(CID, _, _, _, POSTC, _), referee(RID, _, _, _, _), prefRegion(RID, POSTC ,PREF). [-PREF@1]

#show assign/2.