4-6 EL.NAPÄTIE, EL. ODPOR, OHMOV ZÁKON PRE ČASŤ ELEKTRICKÉHO OBVODU

1. Akú prácu vykoná elektrická sila pri prenesení náboja 3 C medzi dvoma miestami, medzi ktorými je napätie 12 V ?

Zápis: Riešenie:
$$U = 3 C$$

$$U = 12 V$$

$$W = ?$$

$$W = U \times Q$$

$$W = 12 \times 3$$

$$W = 32 J$$

2. Aké je napätie medzi dvoma rovnobežnými vodivými doskami vzdialenými od seba 5 mm, ak na časticu s nábojom 10 nC pôsobí medzi doskami sila veľkosti 2.10⁻³ N?

Zápis: Riešenie:
$$d = 5 \text{ mm} = 5.10^{-3} \text{ m}$$

$$Q = 10 \text{ nC} = 10.10^{-9} \text{ C}$$

$$U = \frac{W}{Q}$$

$$U = \frac{F_e \times d}{Q}$$

$$U = \frac{(2 \times 10^{-3}) \times (5 \times 10^{-3})}{10 \times 10^{-9}}$$

$$U = 1000 \text{ } V = 1 \text{ } kV$$

3. Dve rovnobežné kovové dosky sú vzdialené 2 mm a medzi nimi je homogénne elektrické pole s intenzitou 3.10⁵ Vm⁻¹. Aké je napätie medzi doskami?

Zápis: Riešenie:
$$U = E \times d$$
 $U = (3 \times 10^5) \times (2 \times 10^{-3})$ $U = 600 V$

- 4. Častica s nábojom 5.10⁻⁹ C sa pohybuje medzi dvoma bodmi v homogénnom elektrickom poli. Napätie je 400 kV a Elektrická sila je 0,1 mN. Aká je vzdialenosť medzi týmito dvoma bodmi? Vypočítajte aj prácu, ktorú elektrická sila vykoná pri tomto presune. [d = 20 m, W = 2 mJ]
- 5. Medzi dvoma rovnobežnými platňami vzdialenými 12 cm sa nameralo napätie 600 V. Určte veľkosť intenzity poľa medzi platňami. [E = 5000 Vm⁻¹]

- 6. Elektrický odpor žiarovky je 240 Ω a prúd pretekajúci obvodom je 0,5 A. Aké napätie je pripojené na žiarovku? [U = 120 V]
- 7. Priamym vodičom dĺžky 60 cm a elektrickým odporom 1,2 kΩ prechádza konštantný prúd 60 mA. Vypočítajte veľkosť intenzity elektrického poľa v tomto vodiči.[120 Vm⁻¹]
- 8. Telegrafný kábel z medi (ρ = 0,017.10⁻⁶ Ω .m) medzi Sninou a Humenným mal prierez 8mm² a rezistenciu 46,75 Ω . Akú mal dĺžku? [22 km]
- 9. Vodič s dĺžkou 10m a s prierezom 0,2 mm² je vyrobený z olova s merným odporom $20.10^{-8} \Omega$ m. Vypočítaj jeho odpor. [R = 10,5 Ω]
- 10. Medzi dvoma bodmi vodiča je elektrické napätie 12 V. Ak elektrický prúd pretekajúci vodičom má veľkosť 2 A, akú prácu vykoná elektrické pole za 5 sekúnd? [W = 120 J]
- 11. Medzi svorkami rezistora je pripojené napätie 24 V. Rezistor má odpor 8 Ω.
 - a) Vypočítaj prúd pretekajúci rezistorom. [I = 3 A]
 - b) Akú elektrickú energiu spotrebuje rezistor za 10 minút? [43 200 J]
 - c) Aký výkon má tento rezistor? [P = 72 W]
- 12. Nikelínový drôt má dĺžku 1,25 m. Akú dĺžku by mal konštantánový drôt s rovnakým odporom a obsahom prierezu? Merný elektrický odpor nikelínu je 0,40 $\mu\Omega$.m. [I = 1,0 m]
- 13. Vláknom volfrámovej žiarovky s teplotou 28 °C prechádza pri napätí 10 V prúd 300 mA. Určte teplotu vlákna svietiacej žiarovky, ak vláknom prechádza prúd 0,5 A a napätie na koncoch vlákna je 220 V. Predpokladajte lineárnu závislosť odporu od teploty. [t = 2570 °C]
- 14. Drôt z medi ($\rho 1 = 0.02.10^{-6} \, \Omega \text{m}$) s priemerom d₁ = 4mm je potrebné nahradiť hliníkovým drôtom ($\rho_2 = 0.03.10^{-6} \, \Omega \text{m}$) rovnakej dĺžky. Aký hrubý musí byť hliníkový drôt, aby sa odpor nezmenil?[d₂ = 4,9mm]
- 15. Dva rezistory R_1 , R_2 pri sériovom zapojení majú výsledný odpor 5 Ω , pri paralelnom 1,2 Ω . Aké odpory majú jednotlivé rezistory? [R_1 = 2 Ω a R_2 = 3 Ω , alebo R_1 = 3 Ω a R_2 = 2 Ω]
- 16. Vláknom volfrámovej žiarovky s teplotou 0° C prechádza pri napätí 10 V prúd 0,3A., pri napätí 220 V prúd 0,5A, pri čom sa vlákno zohreje na 2976°C. Určite teplotný súčiniteľ odporu volfrámu. [α = 4,1.10⁻³K⁻¹]

- 17. Platinový odporový teplomer (α = 3,9.10⁻³K⁻¹) má pri teplote 20 0 C odpor 500 Ω . Odpor teplomera v rozpálenej peci je 2500 Ω . Aká je teplota pece? [t = 1046 0 C]
- 18. Na žiarovke sú uvedené údaje 6,3 V / 0,3 A, ktoré sa vzťahujú na jej vlákno, keď žiarovka svieti. Teplota vlákna žiarovky za daného stavu je 2800 °C. Určte elektrický odpor vlákna žiarovky, keď žiarovka svieti. $[R = 21 \ \Omega]$
- 19. Pri napätí 3,6 V na koncoch lineárneho vodiča prechádza ním prúd 72 mA. Aké napätie je na koncoch, ak týmto vodičom prechádza prúd 1 A? Aký elektrický odpor má vodič? $[U = 50 \text{ V}, R = 50 \Omega]$
- 20. V elektrickom obvode sú zapojené tri rezistory, R_1 = 4 Ω a R_2 = 6 Ω sú zapojené paralelne, k tejto paralelnej kombinácii je sériovo pripojený rezistor R_3 = 5 Ω . Na celý obvod je pripojené napätie U = 24 V.
 - a) Vypočítajte výsledný odpor celého obvodu [R = 7,4 Ω]
 - b) Celkový prúd zdroja [I = 3,24 A]
 - c) Prúd pretekajúci každým rezistorom $[I_1 = 1,945 \text{ A}, I_2 = 1,297, I_3 = 3,24 \text{ A}]$