Hypergraphon estimation error

Chanwoo Lee February 22, 2021

1 Theoretical guarantee of the estimation

We consider an undirected m-uniform hypergraph. The connectivity can be encoded by an adjacency tensor $\{\mathcal{A}_{i_1,\dots,i_m}\}$ taking values in $(\{0,1\}^n)^{\otimes m}$. The model is $\mathcal{A}_{i_1,\dots,i_m}=\mathcal{A}_{i_{\sigma(1)},\dots,i_{\sigma(m)}}\sim \mathrm{Bernoulli}(\Theta_{i_1,\dots,i_m})$ for any permutation σ for $1 \leq i_l \leq n, l \in [m]$, where

$$\Theta_{i_1,\ldots,i_m}=f(\xi_{i_1},\ldots,\xi_{i_m}).$$
 f: graphon.

Theta: discrete version of graphon The sequence $\{\xi_i\}$ are random variables from Unif[0,1]. The function f assume to be symmetric such that $f(x_1,\ldots,x_m)=f(x_{\sigma(1)},\ldots,x_{\sigma(m)})$ for any permutation σ . Since f is symmetric, it is enough to consider the domain only $\mathcal{D} = \{x = (x_1, \dots, x_m) \in [0, 1]^m : x_1 \ge \dots \ge x_m\}$. Define the derivative operator by Q: why do we need to introduce alpha-holder smoothness with alpha \in (0,\infty)?

can we just restrict ourselves to Lipschitz condition with alpha in (0,1)?, (0,1)

and the Hölder norm is defined as

$$||f||_{\mathcal{H}_{\alpha}} = \max_{i_1 + \dots + i_m \leq \lfloor \alpha \rfloor} \sup_{\boldsymbol{x} \in \mathcal{D}} |\nabla_{i_1, \dots, i_m} f(\boldsymbol{x})| + \max_{i_1 + \dots + i_m = \lfloor \alpha \rfloor} \sup_{\boldsymbol{x} \neq \boldsymbol{y} \in \mathcal{D}} \frac{|\nabla_{i_1, \dots, i_m} f(\boldsymbol{x}) - \nabla_{i_1, \dots, i_m} f(\boldsymbol{y})|}{(||\boldsymbol{x} - \boldsymbol{y}||_1)^{\alpha - \lfloor \alpha \rfloor}}.$$

The Hölder class is defined by

$$w = (i_1, ..., i_m)$$

$$\mathcal{H}_{\alpha}(M) = \{ \|f\|_{\mathcal{H}_{\alpha}} \leq M \colon f \text{ is symmetric} \},$$

where $\alpha > 0$ is the smoothness parameter and XH(0,0) is the size of the class. Notice that a function $f \in \mathcal{H}_{\alpha}(M)$, satisfies the Lipschitz condition y=(1,1)Do we require alpha < = 1 here?

$$alpha < = 1$$

$$|f(\mathbf{x}) - f(\mu)| \le M(||\mathbf{x} - \mathbf{y}||_1)^{\alpha},$$

 $|f(x) - f(\mu)| \le M(\|x - y\|_1)^{\alpha}$, Otherwise, the function f is a constant.

for any $x, y \in \mathcal{D}$. We assume that the hypergraphon f belongs to the function class:

$$\mathcal{F}_{\alpha}(M) = \{ 0 \le f \le 1 \colon f \in \mathcal{H}_{\alpha}(M) \}.$$

For a given membership function $z:[n] \to [k]$, define the membership number function as $h:[k]^m \to [n]^k$ such that $h(a_1, \ldots, a_m) = (h_1, \ldots, h_m)$ where h_i is the number of *i*-th membership from $(a_1, \ldots, a_m) \in [k]^m$ for $i \in [m]$. Given a tensor $\Theta \in (\mathbb{R}^n)^{\otimes m}$, we define a block average on the set $z^{-1}(a_1) \times \cdots \times z^{-1}(a_m)$ for $a_i \in [k], i \in [m]$ as any way to simplify the notation?

$$\bar{\Theta}_{a_1,...,a_m}(z) = \frac{1}{\prod_{a \in \{a_1,...,a_m\}} |z^{-1}(a)||z^{-1}(a) - 1| \cdots |z^{-1}(a) - h_a + 1|} \sum_{\substack{(i_1,...,i_m) \colon i_\ell \in z^{-1}(a_\ell), \ell \in [m]}} \Theta_{i_1,...,i_m}.$$

\bar Theta(\omega) = {1\over constant} sum_{\omega} Theta(\omega) 1(\omega and \omega are in the same We show that any hypergraphons in $\mathcal{F}_{\alpha}(M)$ can be approximated by the averaged block tensor. block)

Lemma 1. There exists $z^* : [n] \to [k]$, satisfying

$$\frac{1}{n^m}\sum_{\substack{a_1,\ldots,a_m\in[k]}}^{\text{(approximation error)}}\sum_{\substack{i_\ell\in(z^*)^{-1}(a_\ell),\ell\in[m]\\|\{i_1,\ldots,i_m\}|=m}}^{\text{($\Theta_{i_1,\ldots,i_m}-\bar{\Theta}_{a_1,\ldots,a_m}(z^*)$)}^2\leq CM^2\left(\frac{m^2}{k^2}\right)^\alpha.$$

\bar Theta: smooth version of Theta given block allocation.

Proof. Define $z^* : [n] \to [k]$ by

$$(z^*)^{-1}(a) = \left\{ i \in [n] : \xi_i \in \left[\frac{a-1}{k}, \frac{a}{k} \right] \right\}, \quad \text{for each } a \in [k].$$

Define $Z_{a_1,...,a_m}^* = \{(u_1,\ldots,u_m) : z^*(u_i) = a_i \text{ for all } i \in [m]\}$. By the construction of z^* for $\xi_{i_\ell} \in [(a_{\ell-1} - 1)/k, a_\ell/k]$, when $|\{a_1,\ldots a_m\}| = m$,

$$|f(\xi_{i_1}, \dots, \xi_{i_m}) - \bar{\Theta}_{a_1, \dots, a_m}(z^*)| = \left| f(\xi_{i_1}, \dots, \xi_{i_m}) - \frac{1}{\prod_{\ell=1}^m |(z^*)^{-1}(a_{\ell})|} \sum_{(u_1, \dots, u_m) \in Z_{a_1, \dots, a_m}^*} f(\xi_{u_1}, \dots, \xi_{u_m}) \right|$$

$$\leq \frac{1}{\prod_{\ell=1}^m |(z^*)^{-1}(a_{\ell})|} \sum_{(u_1, \dots, u_m) \in Z_{a_1, \dots, a_m}^*} |f(\xi_{i_1}, \dots, \xi_{i_m}) - f(\xi_{u_1}, \dots, \xi_{u_m})|$$

$$\leq \frac{1}{\prod_{\ell=1}^m |(z^*)^{-1}(a_{\ell})|} \sum_{(u_1, \dots, u_m) \in Z_{a_1, \dots, a_m}^*} M \|(\xi_{i_1}, \dots, \xi_{i_m}) - (\xi_{u_1}, \dots, \xi_{u_m})\|_1^{\alpha}$$

$$\leq CM \left(\frac{m}{k}\right)^{\alpha}.$$

Similar results hold for the cases $|\{a_1, \ldots, a_m\}| < m$.

We estimate the hypergraphon $\Theta_{i_1,...,i_m} = f(\xi_{i_1},\ldots,\xi_{i_m})$ by

$$\hat{\Theta} = \underset{\Theta \in \mathcal{P}_k}{\arg \min} \| \mathcal{A} - \Theta \|_F^2, \tag{1}$$

where

$$\mathcal{P}_k = \{ \Theta \in ([0,1]^n)^{\otimes m} \colon \Theta = \mathcal{C} \times_2 \mathbf{M} \times_2 \cdots \times_m \mathbf{M}, \text{ with a}$$
membership matrix \mathbf{M} and a core tensor $\mathcal{C} \in ([0,1]^k)^{\otimes m} \}.$

Then we obtain the convergence rate for hypergraphon estimation with respect to the least square er-

Theorem 1.1. Let $\hat{\Theta}$ be the least square estimator from (1). Then, There exist two constants $C_1, C_2 > 0$ such that,

$$\frac{1}{n^m} \|\hat{\Theta} - \Theta\|_F^2 \le C_1 \left(n^{\frac{-2m\alpha}{m+2\alpha}} + \frac{\log n}{n^{m-1}} \right),$$

with probability at least $1 - \exp\left(-C_2\left(n\log n + n^{\frac{m^2}{m+2\alpha}}\right)\right)$ uniformly over $f \in \mathcal{F}_{\alpha}(M)$.

Proof. First, we can find a block tensor Θ^* close to true Θ by Lemma 1. By triangular inequality,

$$\|\hat{\Theta} - \Theta\|_F^2 \leq \underbrace{\|\hat{\Theta} - \Theta^*\|_F^2}_{(\mathrm{i})} + \underbrace{\|\Theta^* - \Theta\|_F^2}_{(\mathrm{ii})}.$$

Since we have already shown the error bound of (ii) in Lemma 1, we bound the error from (i). From the definition of $\hat{\Theta}$ in (1), we have

Next question:
$$\|\hat{\Theta} - \mathcal{A}\|_F^2 \le \|\Theta^* - \mathcal{A}\|_F^2$$
. (2)
1. current results are conditional on xi.

- 2. integrated error, that takes into account of both randomness in xi and y
- E_{X} , data involved in \hat \} I\hat $f(X) f(X)I^2$

Combining (2) with the fact

$$\begin{split} \|\hat{\Theta} - \mathcal{A}\|_F^2 &= \|\hat{\Theta} - \Theta^* + \Theta^* - \mathcal{A}\|_F^2 \\ &= \|\hat{\Theta} - \Theta^*\|_F^2 + \|\Theta^* - \mathcal{A}\|_F + 2\langle \hat{\Theta} - \Theta^*, \Theta^* - \mathcal{A} \rangle, \end{split}$$

yields

$$\begin{split} \|\hat{\Theta} - \Theta^*\|_F^2 &\leq 2\langle \hat{\Theta} - \Theta^*, \mathcal{A} - \Theta^* \rangle \\ &= 2\left(\langle \hat{\Theta} - \Theta^*, \mathcal{A} - \Theta \rangle + \langle \hat{\Theta} - \Theta^*, \Theta - \Theta^* \rangle\right) \\ &\leq 2\|\hat{\Theta} - \Theta^*\|_F \left(\left\langle \frac{\hat{\Theta} - \Theta^*}{\|\hat{\Theta} - \Theta^*\|_F}, \mathcal{A} - \Theta \right\rangle + \|\Theta - \Theta^*\|_F\right). \end{split}$$

Let $\mathcal{M} = \{M : M \text{ is the collection of membership matrices}\}$. Then,

$$\left\langle \frac{\hat{\Theta} - \Theta^*}{\|\hat{\Theta} - \Theta^*\|_F}, \mathcal{A} - \Theta \right\rangle \leq \sup_{\Theta' \in \mathcal{P}_k} \sup_{\Theta'' \in \mathcal{P}_k} \left\langle \frac{\Theta' - \Theta''}{\|\Theta' - \Theta''\|_F}, \mathcal{A} - \Theta \right\rangle
\leq \sup_{\mathbf{M}, \mathbf{M}' \in \mathcal{M}} \sup_{\mathcal{C}, \mathcal{C}' \in ([0,1]^n) \otimes m} \left\langle \frac{\Theta(\mathbf{M}, \mathcal{C}) - \Theta(\mathbf{M}', \mathcal{C}')}{\|\Theta(\mathbf{M}, \mathcal{C}) - \Theta(\mathbf{M}', \mathcal{C}')\|_F}, \mathcal{A} - \Theta \right\rangle.$$

Notice that $A - \Theta$ is sub-Gaussian with proxy parameter $\sigma^2 = 1/4$. By union bound and the property of sub-Gaussian, we have, for any t > 0.

$$\mathbb{P}\left(\|\hat{\Theta} - \Theta\|_{F} > t\right) \leq \mathbb{P}\left(\sup_{\boldsymbol{M}, \boldsymbol{M}' \in \mathcal{M}} \sup_{\boldsymbol{C}, \boldsymbol{C}' \in ([0,1]^{n}) \otimes m} \left| \left\langle \frac{\Theta(\boldsymbol{M}, \mathcal{C}) - \Theta(\boldsymbol{M}', \mathcal{C}')}{\|\Theta(\boldsymbol{M}, \mathcal{C}) - \Theta(\boldsymbol{M}', \mathcal{C}')\|_{F}}, \mathcal{A} - \Theta \right\rangle \right| + \|\Theta - \Theta^{*}\|_{F} \geq \frac{t}{2}\right)$$

$$\leq \sum_{\boldsymbol{M}, \boldsymbol{M}' \in \mathcal{M}} \mathbb{P}\left(\sup_{\boldsymbol{C}, \boldsymbol{C}' \in ([0,1]^{n}) \otimes m} \left| \left\langle \frac{\Theta(\boldsymbol{M}, \mathcal{C}) - \Theta(\boldsymbol{M}', \mathcal{C}')}{\|\Theta(\boldsymbol{M}, \mathcal{C}) - \Theta(\boldsymbol{M}', \mathcal{C}')\|_{F}}, \mathcal{A} - \Theta \right\rangle \right| + Cn^{m/2} M \left(\frac{m}{k}\right)^{\alpha} \geq \frac{t}{2}\right)$$

$$\leq |\mathcal{M}|^{2} C_{1}^{k^{m}} \exp\left(-C_{2}\left(t - n^{m/2} M\left(\frac{m}{k}\right)^{\alpha}\right)^{2}\right)$$

$$= \exp\left(2n \log k + C_{1} k^{m} - C_{2}\left(t - n^{m/2} M\left(\frac{m}{k}\right)^{\alpha}\right)^{2}\right)$$

For two universal constants $C_1, C_2 > 0$. The third line follows from Phillippe Rigollet [2015] and the fact that $\Theta = \Theta(\mathbf{M}, \cdot)$ lies in a linear space of dimension k^m . Choosing $t = n^{m/2} M(m/k)^{\alpha} + C \sqrt{n \log k + k^m}$ yields

$$\frac{1}{n^m} \|\hat{\Theta} - \Theta\|_F \le C_1 \left(\left(\frac{m}{k} \right)^{2\alpha} + \left(\frac{k}{n} \right)^m + \frac{\log k}{n^{m-1}} \right), \tag{3}$$

with probability at least $1 - \exp(-C_2(n \log k + k^m))$. Setting $k = \lceil n^{\frac{m}{m+2\alpha}} \rceil$ to balance (3), completes the theorem.

2 Discussion

Currently I am looking for the paper that guarantee the similar representation of exchangeable hypergraph. For exchangeable array such that $\mathcal{A}_{i_1...,i_m} = \mathcal{A}_{i_{\sigma(1)},...,i_{\sigma(m)}}$, It is known that there exists $f : [0,1] \times [0,1]^n \times [0,1]^n$

$$[0,1]^{\binom{n}{2}}\times\cdots\times[0,1]^{\binom{n}{n-1}}\times[0,1]\to[0,1]$$
 such that

$$\mathcal{A}_{i_1,\ldots,i_m} \sim \text{Bernoulli}(\Theta_{i_1,\ldots,i_m}), \quad \Theta_{i_1,\ldots,i_m} = f(\alpha,\xi_{i_1},\ldots,\xi_{i_m},\xi_{i_1i_2},\ldots,\xi_{i_1i_2\ldots i_m}).$$

[Austin et al., 2008]. I need to do more research for justification of modeling hypergraphon as

$$\Theta_{i_1,\ldots,i_m} = f(\xi_{i_1},\ldots,\xi_{i_m}).$$

References

Tim Austin et al. On exchangeable random variables and the statistics of large graphs and hypergraphs. *Probability Surveys*, 5:80–145, 2008.

Jan-Christian Hitter Phillippe Rigollet. High dimensional statistics. Lecture notes for course 18S997, 2015.