Claims

What is claimed is:

10

20

25

30

1. A method for etching a feature in an integrated circuit wafer, the wafer incorporating at least one low-k dielectric layer, the method comprising:

disposing the wafer within a reaction chamber;

introducing a flow of fluorocarbon-containing etchant gas into the reaction chamber;

forming a plasma from the etchant gas within the reaction chamber; and etching the feature in at least a portion of the low-k dielectric layer.

- 2. The method, as recited in claim 1, wherein the low-k dielectric layer is an organic low-k dielectric layer.
- 3. The method, as recited in claim 2, wherein the fluorocarbon is selected from a group consisting of CH₃F, CH₂F₂, and CHF₃.
 - 4. The method, as recited in claim 3, wherein the fluorocarbon-containing etchant gas further contains additives selected from the group consisting of oxygen, hydrogen, nitrogen, and ammonia.
 - 5. The method, as recited in claim 4, wherein the organic dielectric layer is made of SiLK.
 - 6. The method, as recited in claim 5, wherein the fluorocarbon has a flow rate, wherein the flow rate of the fluorocarbon is between 0.5 sccm and 50 sccm.
 - 7. The method, as recited in claim 2, wherein the organic dielectric layer is made of SiLK.
 - 8. The method, as recited in claim 7, wherein the fluorocarbon-containing etchant gas comprises CH₃F gas, H₂ gas, and N₂ gas.
- 9. The method, as recited in claim 7, wherein the fluorocarbon-containing etchant gas comprises CH₃F gas and NH₃ gas.
 - 10. The method, as recited in claim 7, wherein the fluorocarbon-containing etchant gas comprises CH_3F gas, O_2 gas, and N_2 gas.

5

10

20

25

- 11. The method, as recited in claim 5, wherein the fluorocarbon has a flow rate, wherein the flow rate of the fluorocarbon is between 0.5 sccm and 50 sccm.
- 12. The method, as recited in claim 2, wherein the fluorocarbon-containing etchant gas comprises CH₃F gas, H₂ gas, and N₂ gas.
- 13. The method, as recited in claim 2, wherein the fluorocarbon-containing etchant gas comprises CH₃F gas and NH₃ gas.
- 14. The method, as recited in claim 2, wherein the fluorocarbon-containing etchant gas comprises CH₃F gas, O₂ gas, and N₂ gas.
- 15. An integrated circuit on a wafer, wherein the integrated circuit has a feature formed in at least one low-k dielectric layer, wherein the feature is etched by the method, comprising:

disposing the wafer within a reaction chamber;

striking a plasma within the reaction chamber;

introducing a flow of fluorocarbon-containing etchant gas into the reaction chamber; and

with the plasma and the etchant gas in operative combination, etching the feature in at least a portion of the low-k dielectric layer.

- 16. The integrated circuit, as recited in claim 15, wherein the low-k dielectric layer is an organic low-k dielectric layer.
 - 17. The integrated circuit, as recited in claim 16, wherein the fluorocarbon is selected from a group consisting of CH₃F, CH₂F₂, and CHF₃.
- 18. The integrated circuit, as recited in claim 17, wherein the fluorocarbon-containing etchant gas further contains additives selected from the group consisting of oxygen, hydrogen, nitrogen, and ammonia.