OR

ASSIGNMENT - 1

Title: The transportation Problem.

Problem Statement

Milk in a milk wheel area is collected on 3

router A, B, C. There are 4 chilling centers

P, Q, R, S where milk is kept before transporting it to a milk center. reach howered

suites of milk per day. The supply of milk

on noutes A, B, C are 150, 100, 90 thousand

litter resp. The cost of transporting thousand

sitter of milk from each noute to each

chilling conters differs according to dict

chilling conters differs according to dict

chilling conters differs according to dict

Cost in Re is shown in table below.

Raites

P Q B S.

B 17 19 14 13 C 32 11 15 10.

Minimize the total transportation cost

Objective:
To understand the implementation of various transportation problem methods like North-West corner, reast cost, loggel's Apprex.

SIW and How requirements. Visual Studio Code

2GB RAM, 500GB HDD, Windows OS, is processor.

After completion of this assignment of will be able to methods the students will be able to calculate the minimum tu ansportation con North-West Counci Method. en for an plage are allo This is a method achipted to compute the initial cost of feasible solution of the initial cost of feasible solution of the name is given transportation problem. The name is given to this method because the basis. variables are selected from extreme left Alacuthin Code: det north west conner (supply, demand):

supply copy = supply copy ()

demand copy = demand copy ()

j = 0 while len (bis) (leng (supply) + len (demand) -!

s = supply-copy [i]

d = demand-copy [j]

v: min (s,d) supply copy [i]== v. demand copy[]] -= V. bes appendictions)

	: 10 C
	is supply-copy (i) == 0 and i < sen (supply)
	14=1
	e lif demand-copy (j)==0 and j < len(demand)-1;
	return bis:
1.1.1	
	least Cost Method
	HI COLD WIGHT IS CHOOK IS
	a allain the witter second
	to die
	10 2000 0014
	all as a more the branch cost cost
	the objective to have the least cost of
,	transportation
	Manspiral.
	Diagree Hom:
<u> </u>	Algorithm:
	Step 1: Solect the cell having minimum unit
	cost cij and allocate as much as pessible
*	ie min (si, dj)
	1e. mil (SI, eg)
	Step 2: a. subtract this minimum value
	from supply si and demand di
• • •	b. It the supply si 180, then cross that
	now and it the demand of is O then
	cross the column
	c. It min unit cost cell is not unique, then
	select the cell where maximum allecation
	Select The certain where morning was a series
	con be possible.

Page No				
Date			1	
	_	_	1	

Step 3: Repeat this steps for all uncrossed nous and columns until out supply and clemand values are zero

Vagel's Approximation Method

UAM is an iterative procedure calculate
to find out the initial fearible solution
of the transportation problem like least col
Method, here also the shipping cost is
taken into consideration, but in relative
sense:

Algorithm: The third and

Step1: Find the cell having smallest and next to smallest cost in each now and write the difference along the side of the table in now penalty

step 2: Find the Cells having smallest cost in each column and write the diff along the side of the table in each column penalty.

Step 3: Salect the sions on column with the maximum porally and find cell that has least cost in selected some or column Allecate as much as possible in this cell.

cross-out the supply and demand and cross-out the salistied now on column

_	
	Step 5! Repeat this steps unit all supply
	Step 5! Repeat this steps unit all supply and demand values are 0.
	Conclusion:
	us stilled and implemented the north-
	and the same of th
	approximation nethed for calculating the
	approximation method for calculating the stansportation cost. Where VAM gave the seast cost among the 3 costs for
	least cost among the 3 costs for
	Starsportation.
	\
_	
_	
_	
-	
_	

Code:

Northwest-corner Method

```
class NorthWestCornerMethod
  public static void main(String args[])
     int [][]arr = \{\{16,18,21,12\},\{17,19,14,13\},\{32,11,15,10\},\};
     int []supply = \{150,160,90\};
     int \lceil \text{demand} = \{140, 120, 90, 50\};
     int [][]allocation = new int[3][4];
     int row = 3;
     int col = 4;
     System.out.println("Input matrix is ");
     for(int i=0; i<3; i++)
     {
       for(int j=0; j<4; j++)
          System.out.print(arr[i][j]+" ");
       System.out.println();
     int i_idx=0, j_idx=0;
     for(int j=0; j<4; j++)
       while(demand[j]!=0)
        {
          for(int i=0;i<3;i++)
             if(supply[i]>0 && demand[j]>0)
               i_idx = i;
               i_idx = i;
               break;
          if(demand[i_idx] > supply[i_idx])
             demand[j_idx] = demand[j_idx] - supply[i_idx];
             allocation[i_idx][j_idx] = supply[i_idx];
             supply[i_idx] = 0;
          else if(supply[i_idx] > demand[j_idx])
```

```
supply[i_idx] = supply[i_idx] - demand[j_idx];
       allocation[i_idx][j_idx] = demand[j_idx];
       demand[j_idx] = 0;
     else if(supply[i_idx] == demand[j_idx])
       allocation[i_idx][j_idx] = supply[i_idx];
       supply[i_idx] = 0;
       demand[j_idx] = 0;
  }
}
System.out.println("Output matrix is ");
for(int i=0; i<3; i++)
  for(int j=0; j<4; j++)
     System.out.print(allocation[i][j]+" ");
  System.out.println();
}
int cost = 0;
int value = 0;
for(int i=0;i< row;i++)
  for(int j=0; j< col; j++)
     if(allocation[i][j] > 0)
       value = arr[i][j]*allocation[i][j];
       cost += value;
  }
}
System.out.println("Transportation cost is " + cost);
```

}

```
Output:
```

```
Input matrix is
17 19 14 13
32 11 15 10
Output matrix is
140 10 0 0
0 110 50 0
0 0 40 50
Transportation cost is 6310
Least Cost Method:
import static java.util.Arrays.stream;
class LeastCostMethod
  public static void main(String args[])
     int [][]arr = \{\{16,18,21,12\},\{17,19,14,13\},\{32,11,15,10\},\};
     int []supply = \{150,160,90\};
     int []demand = \{140,120,90,50\};
     int [][]allocation = new int[3][4];
     int row = 3;
     int col = 4;
     boolean []DoneRow = {false,false,false};
     boolean []DoneCol = {false,false,false,false};
     System.out.println("Input matrix is ");
     for(int i=0; i<3; i++)
       for(int j=0; j<4; j++)
          System.out.print(arr[i][j]+" ");
       System.out.println();
     }
     int [][]arrcopy = new int[arr.length][];
     for(int i=0;i<arrcopy.length;i++)
     {
       arrcopy[i] = new int[arr[i].length];
       for(int j=0;j<arrcopy[i].length;j++)
          arrcopy[i][j] = arr[i][j];
        }
```

```
/*System.out.println("Copied array is:");
for(int i=0;i<3;i++)
  for(int j=0; j<4; j++)
     System.out.print(arrcopy[i][j]+" ");
  System.out.println();
}*/
int i_idx=0;
int j_idx=0;
int supplyLeft = stream(supply).sum();
//System.out.println("Supply Left:"+supplyLeft);
while(supplyLeft>0)
{
  int value = 100;
  for(int i=0; i< row; i++)
     for(int j=0;j<col;j++)
       if(value>arrcopy[i][j])
          value = arrcopy[i][j];
          //System.out.println(value);
          i_idx = i;
          j_idx = j;
     }
  /*System.out.println("Lowest Value : "+arrcopy[i_idx][j_idx]);
  arrcopy[i_idx][j_idx]=100;
  System.out.println("Copied array is:");
  for(int i=0; i<3; i++)
     for(int j=0; j<4; j++)
       System.out.print(arrcopy[i][j]+" ");
     System.out.println();
```

```
if(demand[i_idx] > supply[i_idx])
  demand[j_idx] = demand[j_idx] - supply[i_idx];
  allocation[i_idx][j_idx] = supply[i_idx];
  supplyLeft = supplyLeft - supply[i_idx];
  supply[i_idx] = 0;
else if(supply[i_idx] > demand[i_idx])
  supply[i_idx] = supply[i_idx] - demand[j_idx];
  allocation[i_idx][j_idx] = demand[j_idx];
  supplyLeft = supplyLeft - demand[j_idx];
  demand[j_idx] = 0;
}
else if(supply[i_idx] == demand[i_idx])
  allocation[i_idx][j_idx] = supply[i_idx];
  supplyLeft = supplyLeft - supply[i_idx];
  supply[i_idx] = 0;
  demand[i_idx] = 0;
}
/*System.out.println("Output matrix is ");
for(int i=0; i<3; i++)
{
  for(int j=0; j<4; j++)
     System.out.print(allocation[i][j]+" ");
  System.out.println();
System.out.println("Supply Left:"+supplyLeft);
System.out.println("Supply :");
for(int i=0; i < row; i++)
  System.out.print(supply[i]+ " ");
System.out.println("Demand :");
for(int i=0; i < col; i++)
  System.out.print(demand[i]+ " ");
}*/
int to Remove Row = 5;
//System.out.println("Supply:");
```

```
for(int i=0;i<row;i++)</pre>
    if(DoneRow[i] == false && supply[i]==0)
       toRemoveRow = i;
       DoneRow[i]=true;
  if(toRemoveRow != 5)
    for(int i=0;i< col;i++)
       arrcopy[toRemoveRow][i] = 100;
  }
  int to Remove Col = 5;
  //System.out.println("Demand:");
  for(int i=0;i<col;i++)
    if(DoneCol[i] == false && demand[i]==0)
       toRemoveCol = i;
       DoneCol[i] = true;
  if(toRemoveCol != 5)
    for(int i=0;i<row;i++)
       arrcopy[i][toRemoveCol] = 100;
}
/*for(int i=0;i<row;i++)
  System.out.println(supply[i]);
for(int i=0;i<col;i++)
```

```
}*/
     System.out.println("Output matrix is ");
     for(int i=0;i<3;i++)
       for(int j=0; j<4; j++)
          System.out.print(allocation[i][j]+"");\\
       System.out.println();
     }
     int cost = 0;
     int value 1 = 0;
     for(int i=0;i<row;i++)</pre>
       for(int j=0;j<col;j++)
          if(allocation[i][j] > 0)
             value1 = arr[i][j]*allocation[i][j];
             cost += value1;
        }
     }
     System.out.println("Transportation cost is " + cost);
  }
Output:
Input matrix is
16 18 21 12
17 19 14 13
32 11 15 10
Output matrix is
140 10 0 0
070900
0 40 0 50
Transportation cost is 5950
```

System.out.println(demand[i]);

Vogel's Approximation Method:

```
#include<iostream>
#include<stdio.h>
#include<conio.h>
#include<iomanip>
#include<stdlib.h>
#define MAX 5
using namespace std;
enum boolean{FALSE,TRUE};
class voggelsmethod{
  int data[MAX][MAX];
  int requered[MAX];
  int capacity[MAX];
  int allocation[MAX][MAX];
  int no_of_rows,no_of_columns,no_of_allocation;
  public:
    lcmethod(){
       for(int i=0;i<MAX;i++){
         capacity[i]=0;
         requered[i]=0;
         for(int j=0;j<MAX;j++){
            data[i][j]=0;
            allocation[i][j]=0;
         }
       no_of_rows=no_of_columns=no_of_allocation=0;
    void setColumn(int no){no_of_columns=no;};
    void setRow(int no){no_of_rows=no;}
    void getData();
    void getCapacity();
    void getRequiredValue();
    void makeAllocation();
    boolean checkValue(int [],int);
    int getMinVal(int [],int);
    int getTotalMinVal(int [],int,int);
    int getMinValsPos(int,int [],int);
    void display();
    int getPanalty(int [],int);
int voggelsmethod::getPanalty(int array[],int no){
  int i, i, temp;
  for(i=0;i< no;i++)
    for(j=i+1;j< no;j++)
```

```
if(array[i]>array[j]){
          temp=array[i];
          array[i]=array[j];
          array[j]=temp;
  return array[1]-array[0];
int voggelsmethod::getMinVal(int array[],int no){
  int min=array[0];
  for(int i=0;i< no;i++)
     if(array[i]<min)
       min=array[i];
  return min;
int voggelsmethod::getMinValsPos(int value,int temp_data[],int no){
  int k=0;
  for(int i=0;i< no;i++)
     if(temp_data[i]==value)
       return i;
  return -1;
}
int voggelsmethod::getTotalMinVal(int array[],int n,int value){
  int no=0;
  for(int i=0;i< n;i++)
     if(array[i]==value)
          no++;
  return no;
boolean voggelsmethod::checkValue(int arr[],int no){
  for(int i=0;i< no;i++)
     if(arr[i]!=0)
       return FALSE;
  return TRUE:
void arrayCopy(int start,int end,int array1[],int start1,int array2[]){
  for(int i=start,j=start1;i<end;i++,j++)
     array2[j]=array1[i];
int getTotal(int array[],int no){
  int sum=0;
  for(int i=0;i< no;i++)
     sum+=array[i];
  return sum;
void copy2DArray(int startRow,int startCol,int endRow,int endCol,int
```

```
array[][MAX],int start1Row,int start1Col,int ans[][MAX]){
  for(int i=startRow,k=start1Row;i<endRow;i++,k++)
    for(int j=startCol,l=start1Col;j<endCol;j++,l++)
       ans[k][l]=array[i][j];
int getMaxVal(int array[MAX],int no){
  int max=0:
  for(int i=0;i< no;i++)
    if(array[i]>max)
       max=array[i];
  return max;
}
int getMaxValPos(int array[MAX],int no,int value){
  for(int i=0;i< no;i++)
    if(value==array[i])
       return i;
  return -1;
void voggelsmethod::makeAllocation(){
  int i=0,j=0,min,total_min;
  int temp_requered[MAX]={0};
  int temp_capacity[MAX]={0};
  int temp_data[MAX][MAX]={0};
  int position[MAX]=\{0\};
  int dataPos[MAX] = \{0\};
  int sum_of_cap,sum_of_req;
  sum_of_cap=getTotal(capacity,no_of_rows);
  sum_of_req=getTotal(requered,no_of_columns);
  if(sum_of_cap!=sum_of_req){
    if(sum_of_cap>sum_of_req){
       for(j=0;j< no\_of\_rows;j++)
         data[j][no_of_columns]=0;
       requered[no_of_columns]=sum_of_cap-sum_of_req;
       no_of_columns++;
    }
    else{
       for(j=0;j<no_of_columns;j++)
         data[no_of_rows][j]=0;
       capacity[no_of_rows]=sum_of_req-sum_of_cap;
       no_of_rows++;
    }
  i=j=0;
  arrayCopy(0,no_of_rows,capacity,0,temp_capacity);
  arrayCopy(0,no_of_columns,requered,0,temp_requered);
```

```
copy2DArray(0,0,no_of_rows,no_of_columns,data,0,0,temp_data);
  int rowPanalty[MAX]={0};
  int colPanalty[MAX]={0};
  int panaltyData[MAX]={0},n=0;
  while(!checkValue(temp_capacity,no_of_rows) ||
!checkValue(temp_requered,no_of_columns)){
    for(i=0;i< no\_of\_rows;i++)
      arrayCopy(0,no_of_columns,temp_data[i],0,panaltyData);
      if(temp_capacity[i]!=0)
         rowPanalty[i]=getPanalty(panaltyData,no_of_columns);
      else
        rowPanalty[i]=0;
    for(i=0;i< no\_of\_columns;i++){
      for(j=0;j< no\_of\_rows;j++)
         panaltyData[j]=temp_data[j][i];
      if(requered[i]!=0)
         colPanalty[i]=getPanalty(panaltyData,no_of_rows);
      else
        colPanalty[i]=0;
    }
    int maxRowPanalty=getMaxVal(rowPanalty,no_of_rows);
    int maxColPanalty=getMaxVal(colPanalty,no_of_columns);
    int maxPanRow[MAX]={0};
    int maxPanCol[MAX]=\{0\};
    if(maxRowPanalty>maxColPanalty){
      i=getMaxValPos(rowPanalty,no_of_rows,maxRowPanalty);
      for(j=0;j<no_of_columns;j++)
         maxPanRow[j]=temp_data[i][j];
      min=getMinVal(maxPanRow,no_of_columns);
      j=getMinValsPos(min,maxPanRow,no_of_columns);
    }
    else{
      j=getMaxValPos(colPanalty,no_of_columns,maxColPanalty);
      for(i=0;i< no_of_rows;i++)
         maxPanCol[i]=temp_data[i][j];
      min=getMinVal(maxPanCol,no_of_rows);
      i=getMinValsPos(min,maxPanCol,no_of_rows);
    }
    if(temp_capacity[i]>temp_requered[j]){
      allocation[i][j]=temp_requered[j];
      for(int k=0;k<no_of_rows;k++)</pre>
         temp_data[k][j]=9999;
```

```
temp_capacity[i]-=temp_requered[j];
       temp_requered[i]=0;
     }
    else if(temp_capacity[i]<temp_requered[j]){
       allocation[i][j]=temp_capacity[i];
       for(int k=0;k<no_of_columns;k++)
          temp_data[i][k]=9999;
       temp_requered[j]-=temp_capacity[i];
       temp_capacity[i]=0;
     }
    else{
       int k;
       allocation[i][j]=temp_capacity[i];
       for(k=0;k< no\_of\_rows;k++)
          temp_data[k][j]=9999;
       for(k=0;k<no_of_columns;k++)
         temp_data[i][k]=9999;
       temp_requered[j]=temp_capacity[i]=0;
     }
    n++;
  }
  no_of_allocation=n;
void voggelsmethod::getCapacity(){
  cout<<"enter capacity for each source : \n";
  for(int i=0;i < no_of_rows;i++)
    cout << "s" << i+1 << ":";
    cin>>capacity[i];
  }
void voggelsmethod::getRequiredValue(){
  cout<<"enter required unit value for each destination : \n";
  for(int i=0;i<no_of_columns;i++){
    cout << "d" << i+1 << ":";
    cin>>requered[i];
  }
void voggelsmethod::display(){
  int i;
  cout<<"\ngiven data :\n";
  cout << setw(9);
  for(i=0;i<no_of_columns;i++)
    cout << "D" << i+1 << setw(4);
  cout << setw(5) << "cap" << endl << setw(0);
```

```
for(i=0;i< no\_of\_rows;i++){
     cout < setw(3) < "S" < i+1;
    for(int j=0;j<no_of_columns;j++)
       cout << setw(5) << data[i][i];
    cout << setw(5) << capacity[i] << endl;
  }
  cout << setw(4) << "req";
  for(i=0;i<no_of_columns;i++)
    cout << setw(5) << requered[i];
  cout << "\n\n after allocation :\n";
  for(i=0;i< no\_of\_rows;i++){
    for(int j=0;j<no_of_columns;j++){
       if(allocation[i][j]<200)
         cout << setw(5) << data[i][i] << "*" << setw(2) << allocation[i][j];
       else
         cout << setw(8) << data[i][j];
     }
    cout<<endl;
  int k=0, sum=0;
  for(i=0;i< no_of_rows;i++)
    for(int j=0;j<no_of_columns;j++){
       if(allocation[i][j]<200 && allocation[i][j]>0){
          cout<<"("<<data[i][j]<<" * "<<allocation[i][j]<<")";
         if(k<no_of_allocation-1){
            cout<<"+";
            k++;
         sum+=data[i][j]*allocation[i][j];
     }
  cout << "\nanswer : " << sum;
  if((no_of_rows+no_of_columns-1)==no_of_allocation){
     cout<<"\nhere "<<no_of_rows<<"+"<<no_of_columns<<"-1
="<<no_of_allocation<<" no. of allocations";
    cout<<"\n so this problem is non-degenerated solution";
  }
  else{
    cout<<"\nhere "<<no of rows<<"+"<<no of columns<<"-1
!="<<no_of_allocation<<"no of allocations";
    cout<<"\n so this problem is degenarated solution";
  }
}
```

```
void voggelsmethod::getData(){
  cout<<"enter source to destination data:"<<endl;
  for(int i=0;i < no_of_rows;i++)
     cout << "enter " << i << "th row : ";
     for(int j=0;j<no_of_columns;j++){</pre>
       cin>>data[i][j];
     }
  }
int main(){
  voggelsmethod v;
  int r,c;
  cout<<"enter no of Rows : ";</pre>
  cin>>r;
  cout<<"enter no of columns : ";</pre>
  cin>>c;
  v.setColumn(c);
  v.setRow(r);
  v.getData();
  v.getCapacity();
  v.getRequiredValue();
  v.makeAllocation();
  v.display();
  return 0;
}
Output:
enter no of Rows: 3
enter no of columns: 4
enter source to destination data:
enter 0th row: 16
18
21
12
enter 1th row: 17
19
14
13
enter 2th row: 32
11
```

```
15
10
enter capacity for each source:
s1:150
s2:160
s3:90
enter required unit value for each destination:
d1:140
d2:120
d3:90
d4:50
given data:
    D1 D2 D3 D4 cap
 S1 16 18 21 12 150
 S2 17 19 14 13 160
 S3 32 11 15 10 90
req 140 120 90 50
after allocation:
 16*100
           18
                21 12*50
 17*40 19*30 14*90
                        13
   32 11*90
                15
                      10
(16*100)+(12*50)+(17*40)+(19*30)+(14*90)+(11*90)
answer: 5700
here 3+4-1=6 no. of allocations
so this problem is non-degenarated solution.
```