

ULN2003A

新型七路高耐压、大电流达林顿晶体管阵列

特性

- 500mA 集电极输出电流(单路)
- 耐高压(50V、40V两个版本)
- 输入兼容 TTL/CMOS 逻辑信号
- 广泛应用于继电器驱动

典型应用

- 继电器驱动
- 指示灯驱动
- 显示屏驱动

描述

ULN2003A 是单片集成高耐压、大电流达林顿管阵列,电路内部包含七路独立的达林顿管驱动电路。电路内部设计有续流二极管,可用于驱动继电器、步进电机等电感性负载。单路达林顿管集电极可输出 500mA 电流。将达林顿管并联可实现更高的输出电流能力。该电路可广泛应用于继电器驱动、照明驱动、显示屏驱动(LED)、步进电机驱动和逻辑缓冲器。

ULN2003A 的每一路达林顿管串联一个 2.7K 的基极电阻,在 5V 的工作电压下可直接与 TTL/CMOS 电路连接,可直接处理原先需要标准逻辑缓冲器来处理的数据

电路原理图(单路达林顿)

图 1、ULN2003A 单路驱动电路原理图

系统逻辑图

图 2、ULN2003A 内部系统逻辑图

引脚定义

脚位	引脚名称	类型	功能描述
1	1B	1	1 通道输入管脚
2	2B	1	2 通道输入管脚
3	3B	1	3 通道输入管脚
4	4B	1	4 通道输入管脚
5	5B	1	5 通道输入管脚
6	6B	1	6 通道输入管脚
7	7B	1	7 通道输入管脚
8	E	-	接地
9	COM	=	钳位二极管公共端
10	7C	0	7 通道输出管脚
11	6C	0	6 通道输出管脚
12	5C	0	5 通道输出管脚
13	4C	0	4 通道输出管脚
14	3C	0	3 通道输出管脚
15	2C	0	2 通道输出管脚
16	1C	0	1 通道输出管脚

3

绝对最大额定值

(T_A=25℃, 除另有规定外)

参数		符号	最小值	最大值	单位	
作中权 - 分别 - 四、 (10×16 m)	50V 版本	V	-0.5	50	.,	
集电极-发射极电压(10~16 脚)	40V 版本	V _{CE}	-0.5	40	V	
COM 端电压 (9 脚)	50V 版本	V		50	V	
COM响电压(9 脚)	40V 版本	V _{COM}		40	V	
输入电压(1~7 脚)		V _I	-0.5	30	V	
集电极峰值电流	I _{CP}		500	mA/ch		
输出钳位二极管正向峰值电流		I _{OK}		500	mA	
总发射极最大峰值电流		I _{ET}		-2.5	Α	
封装热阻⑴	SOP16 封装	Δ	6	63		
到教然阻的	DIP16 封装	θ _{JA}	50		°C/W	
最高工作结温(2)		TJ		150	$^{\circ}$ C	
焊接温度				260	℃ ,10 s	
储存温度范围		T _{stg}	-60	+150	$^{\circ}$ C	
功耗⑴⑵	SOP16封装		1.25(3)			
	DIP16封装	P_D	1.	47	W	

- 注: 1、最大功耗可按照下述关系计算
 - $P_D = \left(T_j T_A\right) / \theta_{JA}$
 - 2、T_j(max)为 150℃,T_A表示电路工作的环境温度;
 - 3、在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

推荐工作条件

(T_A=25℃, 除另有规定外)

参数	符号	条件	最小值	最大值	单位
	13.2	X11			7-12
集电极-发射极电压 50V 版本	V _{CE}		0	50	٧
40V 版本	V CE		0	40	
最高工作结温	T _J			125	$^{\circ}$
控制信号输入电压	V _{IN}		0	24	V
输入电压(输出开启)	V _{IN(ON)}	I _{out} =400mA, h _{FE} =800	2.8	24	V
输入电压(输出关断)	V _{IN(OFF)}		0	0.7	V
钳位二极管正向峰值电流	I _F			350	mA
功耗	P _D	T _A = +85℃		0.325	W

注: 在玻璃环氧树脂 PCB 板上(30×30×1.6mm 铜 50%)。

电参数特性表

T_A=25 ℃

	参数	测试图		测试条件	最小	典型	最大	单位
				I _C =200mA			2.4	
V _{I(ON)}	导通状态输入电压	图 14	V _{CE} =2V	I _C =250mA			2.7	V
				I _C =300mA			3	
VOH	开关后输出高电平	图 17	VS=50V,	50V 版本	VS-50			mV
VOI	7 大加棚山同电1	图 17	I ₀ =300mA	40V 版本	VS-40			IIIV
			I _I =250μΑ,	I _C =100mA		0.9	1.1	
$V_{CE(SAT)}$	集电极-发射极饱和压降	图 13	I _I =350μΑ,	I _C =200mA		1.0	1.3	V
			I _I =500μΑ,	I _C =350mA		1.4	1.6	
I _{CEX}	集电极关断漏电流	图 10	V _{CE} =50V, I	I _I =0			50	μΑ
V_F	钳位二极管正向压降	图 16	I _F =350mA			1.7	2	V
I _I (off)	关断输入电流	图 11	V _{CE} =50V, I _C	=500μΑ	50	65		uA
I _I	输入电流	图 12	V _I =3.85V			0.93	1.35	mA
h _{FE}	直流正向电流增益	图 13	$V_{CE}=2V$, $I_{C}=$	350mA	1000			
I_R	钳位二极管反向电流	图 15	V _R =50V				50	μΑ
Cı	输入电容		V _i =0, f=1M	Hz		15	25	pF
t _{PLH}	传输延迟 低-高	图 17				0.25	1	μs
$t_{\mathtt{PHL}}$	传输延迟 高-低	图 17				0.25	1	μs

T_A =-40 $^{\circ}$ C $^{\sim}$ +105 $^{\circ}$ C

	参数	测试图		测试条件	最小	典型	最大	单位	
				I _C =200mA			2.7		
$V_{I(ON)}$	导通状态输入电压	图 14	V _{CE} =2V	I _C =250mA			2.9	V	
				I _C =300mA			3		
VOH	 开关后输出高电平	图 17	VS=50V,	50V 版本	VS-50			mV	
VUH	7 大加棚山同电1	图 17	I ₀ =300mA	40V 版本	VS-40			IIIV	
			I _I =250μA,	I _C =100mA		0.9	1.2		
$V_{\text{CE(SAT)}}$	集电极-发射极饱和压降	图 13	I _I =350μA,	I _C =200mA		1	1.4	V	
			I _I =500μΑ,	I _C =350mA		1.2	1.7		
I _{CEX}	集电极关断漏电流	图 10	V _{CE} =50V, I	I _I =0			100	μΑ	
V_F	钳位二极管正向压降	图 16	I _F =350mA			1.7	2.2	V	
I _I (off)	关断输入电流	图 11	$V_{CE}=50V$, I_{C}	=500μΑ	30	65		uA	
l ₁	输入电流	图 12	V _I =3.85V			0.93	1.35	mA	
I_R	钳位二极管反向电流	图 15	V _R =50V				100	μΑ	
Cı	输入电容		V _i =0, f=1M	Hz		15	25	pF	
t _{PLH}	传输延迟 低-高	图 17		·		1	10	μs	
t _{PHL}	传输延迟 高-低	图 17		_		1	10	μs	

典型电参数特性曲线

图 3、饱和压降 VS 集电极电流

图 4、2 路并联饱和压降 VS 集电极电流

图 6、最大集电极电流 VS 占空比

图 7、输入电流 VS 输入电压

图 8、饱和压降 VS 集电极电流

图 9、集电极电流 VS 输入电流

参数测试原理图

图10、 Icex测试电路

图11、 II (off)测试电路

图10、 Icex测试电路

图 12、 II测试电路

6

图 17、传输延时波形图

备注:图 17 中电容负载为示波器探头寄生电容

典型应用

图 18 ULN2003A 应用示意图

应用说明

考虑到目前有些应用采用了带上拉电阻的单片机,在上电时单片机输出状态不定,此时 ULN2003A 输入级会受单片机上拉电阻影响而将负载打开,为了避免负载的误动作建议存在 此种应用问题的客户在输入级接 1 个 4K 的对地的下拉电阻,如上图所示。

订购信息

订货编码	封装 类型	MSL 等级	包装 方式	温度范围	耐压	应用领域 代码	应用领域
ULN2003AG-SOP161PBA1	SOP16	1级	盘装	-40~+125℃	50V	1	汽车
ULN2003A-SOP163PCA2	SOP16	3 级	盘装	-40~+105°C	50V	2	工业
ULN2003A-SOP163PDA3	SOP16	3 级	盘装	-40~+85℃	50V	3	白电及家电
ULN2003A-SOP163GDA3	SOP16	3 级	管装	-40~+85℃	50V	3	白电及家电
ULN2003A-DIP163GDA3	DIP16	3 级	管装	-40~+85℃	50V	3	白电及家电
ULN2003A-SOP163PDB3	SOP16	3 级	盘装	-40~+85℃	40V	3	白电及家电
ULN2003A-SOP163GDB3	SOP16	3 级	管装	-40~+85℃	40V	3	白电及家电
ULN2003A-DIP163GDB3	DIP16	3级	管装	-40~+85℃	40V	3	白电及家电
ULN2003A-SOP163PDB4	SOP16	3 级	盘装	-40~+85℃	40V	4	普通应用
ULN2003A-SOP163GDB4	SOP16	3 级	管装	-40~+85℃	40V	4	普通应用
ULN2003A-DIP163GDB4	DIP16	3 级	管装	-40~+85°C	40V	4	普通应用

封装外形尺寸图

SOP16:

CVAADOL	MILLMETER					
SYMBOL	MIN	NOM	MAX			
Α	-	-	1.77			
A1	0.08	0.18	0.28			
A2	1.20	1.40	1.60			
A3	0.55	0.65	0.75			
b	0.39	-	0.48			
b1	0.38	0.41	0.43			
С	0.21	-	0.26			
c1	0.19	0.20	0.21			
D	9.70	9.90	10.10			
E	5.80	6.00	6.20			
E1	3.70	3.90	4.10			
е	1.27BSC					
L	0.5	0.65	0.80			
L1	1.05BSC					
θ	0°	-	8°			

DIP16:

CVMADOL		MILLIMETER				
SYMBOL	MIN	NOM	MAX			
Α	3.60	3.80	4.00			
A1	0.51	_	_			
A2	3.10	3.30	3.50			
A3	1.42	1.52	1.62			
b	0.44	_	0.53			
b1	0.43	0.46	0.48			
B1	1.52BSC					
С	0.25	_	0.31			
c1	0.24	0.25	0.26			
D	18.90	19.10	19.30			
E1	6.15	6.35	6.55			
е	2.54BSC					
eA	7.62BSC					
еВ	7.62	_	9.50			
eC	0	_	0.94			
L	3.00	_	_			

重要通知和免责声明

以上资料版权归重庆芯亿达电子有限公司所有,禁止复制和展示。本文件中的信息如有更改,恕不另 行通知。

版本历史

版本号	时间	说明
V3.0	2020-10	更改产品订购信,并将 40V、50V 版本统一到一个规格书
V3.1	2021-03	补充参数"直流正向电流增益"