

- ★ Super Low Gate Charge
- ★ Green Device Available
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID		
100V	9.9mΩ	75A		

Description

The XR75N10H is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR75N10H meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO252-3L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _G s	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	75	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	45	А
I _{DM}	Pulsed Drain Current ²	300	Α
EAS	Single Pulse Avalanche Energy ³	272	mJ
las	Avalanche Current	33	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	125	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹			°C/W
Rejc	Thermal Resistance Junction-Case ¹		1	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA				V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
Б	Otatia Dania Carra On Daniatana 2	V _{GS} =10V , I _D =30A		9.9	12.8	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =4.5V , I _D =30A				
V _{GS(th)}	Gate Threshold Voltage	\/ -\/ -2504	2.4	2.8	3.6	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$				mV/°C
	Drain Source Leakage Current	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =100V, V _{GS} =0V , T _J =100°C				uA
I _{GSS}	Gate-Source Leakage Current $V_{GS} = \pm 20V$, $V_{DS} = 0V$				±100	nA
gfs	Forward Transconductance V _{DS} =10V , I _D =25A					S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz				Ω
Q _g	Total Gate Charge			128		
Q _{gs}	Gate-Source Charge	V _{DS} =50V , V _{GS} =10V , I _D =25A		30		nC
Q _{gd}	Gate-Drain Charge			38		
T _{d(on)}	Turn-On Delay Time			30		
Tr	Rise Time	V _{GS} =10V, V _{DD} =50V,		48		
T _{d(off)}	Turn-Off Delay Time	$I_D=25A$, $R_{GEN}=5\Omega$		80		ns
T _f	Fall Time			50		
C _{iss}	Input Capacitance			7355		
Coss	Output Capacitance V _{DS} =25V , V _{GS} =0V , f=1MHz Reverse Transfer Capacitance			320		pF
C _{rss}				252		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			75	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =25A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=25A , di/dt=100A/μs ,		69		nS
Q _{rr}	Reverse Recovery Charge	T _J =250		210		nC

Notes:1.Repetitive Rating: Pulse width limited by maximum junction temperature.

Notes 2.EAS condition: TJ=25 °C, $V_{DD}=50$ V, $V_{G}=10$ V, $R_{g}=25$ Ω, L=0.5mH. $I_{AS}=33$ A

Notes 3.Pulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms

Package Mechanical Data TO252-3L

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.10		2.50	0.083		0.098	
A2	0		0.10	0		0.004	
В	0.66		0.86	0.026		0.034	
B2	5.18		5.48	0.202		0.216	
С	0.40		0.60	0.016		0.024	
C2	0.44		0.58	0.017		0.023	
D	5.90		6.30	0.232		0.248	
D1		5.30REF			0.209REF		
E	6.40		6.80	0.252		0.268	
E1	4.63			0.182			
G	4.47		4.67	0.176		0.184	
Н	9.50		10.70	0.374		0.421	
L	1.09		1.21	0.043		0.048	
L2	1.35		1.65	0.053		0.065	
V1		7°			7°		
V2	0°		6°	0°		6°	

Reel Spectification-TO252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
W	15.90	16.00	16.10	0.626	0.630	0.634
Е	1.65	1.75	1.85	0.065	0.069	0.073
F	7.40	7.50	7.60	0.291	0.295	0.299
D0	1.40	1.50	1.60	0.055	0.059	0.063
D1	1.40	1.50	1.60	0.055	0.059	0.063
P0	3.90	4.00	4.10	0.154	0.157	0.161
P1	7.90	8.00	8.10	0.311	0.315	0.319
P2	1.90	2.00	2.10	0.075	0.079	0.083
A0	6.85	6.90	7.00	0.270	0.271	0.276
В0	10.45	10.50	10.60	0.411	0.413	0.417
K0	2.68	2.78	2.88	0.105	0.109	0.113
Т	0.24		0.27	0.009		0.011
t1	0.10			0.004		
10P0	39.80	40.00	40.20	1.567	1.575	1.583