Teorema de Thevenin e Norton

$$V_{th} = V_{AB}$$

 $R_{\it th} = R_{\it eq}$ (fonte de tensão em curto e fonte de corrente circuito aberto)

$$I_{N} = \frac{V_{th}}{R_{th}}$$

$$I_{N} = I_{AB}$$

$$R_{N} = R_{TH}$$

Mili: E-3 Micro: E-6 Nano: E-9 Pico: E-12

	t=0s	t= ∞
capacitor (C)	curto circuito	circuito aberto
indutor (L)	circuito aberto	curto circuito

Divisor de tensão: $V_S = V_{CC}$. $\frac{R1}{R1+R2}$

	descarga	carga	
С	$V(t) = V_i \cdot e^{\frac{-t}{RC}}$ i(t)= I ₀ .e^(-t/RC)	$vc(t) = V_i + (V_0 - V_i) (1 - e^{\frac{-t}{RC}})$ i(t)= I ₀ .e^(-t/RC)	
L	$V_L(t) = V_L(0).e^{\frac{-R}{L}t}$ sendo: $V_L(0) = R.i_i$ $i(t) = i_t. e^{(-R/L).t}$	$V(t) = V_L(0).e^{\frac{-R}{L}t} \text{ sendo: } V_L(0) = V_0 - Ri$ $i(t) = i_i + (i_0 - i_i)(1 - e^{\frac{-R}{L}t}) = \text{sendo: } i_0 = \frac{V_0}{R}$	

 $\tau = RC$ tempo carga/descarga: 5τ

	resistor	indutor	capacitor
tensão	v(t) = Ri(t)	$v(t)=L \frac{di(t)}{dt}$	$v(t) = \frac{1}{C} \int i(t)dt$
corrente	$i(t) = \frac{v(t)}{R}$	$i(t) = \frac{1}{L} \int v(t)Dt$	$i(t) = C \frac{dv(t)}{dt}$
série	$R_{eq} = \sum_{1}^{n} R_{n}$	$L_{eq} = \sum_{1}^{n} L_{n}$	$\frac{1}{C_{eq}} = \sum_{1}^{n} \frac{1}{C_n}$
paralelo	$\frac{1}{R_{eq}} = \sum_{1}^{n} \frac{1}{R_n}$	$\frac{1}{L_{eq}} = \sum_{1}^{n} \frac{1}{L_{n}}$	$C_{eq} = \sum_{1}^{n} C_{n}$