

David López V1.1. Primavera 2021

Pressió per capacitat

<u>Usuaris:</u> (400.000 clients + 30.000 propietaris) x 6MB = 2.580.000 MB = 2.58 TB

Propietats: 3.000.000 propietats x 75 MB = 225.000.000 MB = 225 TB

Total= 2.58 TB + 225 TB= 227.58 TB

És molt, però fixeu-vos que no tenen els mateixos requeriments (SLA)

 Podem fer 2 tipus de cabines (per exemple RAID51 en usuaris i RAID 5 en propietats) USCENARI UXEMPLE

Tràfic

Entre servidors o servidors i exterior:

Atenció: en aquest cas només tenim amb l'exterior. No oblideu entre servidors si cal.

Tràfic= 9,484 Mbps

Entre servidors i disc: 253,705 Mbps

Tràfic total= 9,484 Mbps + 253,705 Mbps= 263,189 Mbps = 0,263189 Gbps

Tenim una xarxa de 1Gbps. Tenim de sobres

• Cal de faltar, podríem desviar el tràfic de disc per mitjà d'una SAN

Pressió per IOPS

Escriptures: Pràcticament nul·les -> 2KB de cada 584002KB: un 0,00036% (no sempre és així). Considerarem un 0% d'escriptures

$$\frac{Pressió:}{dia} \frac{5000\ peticions}{dia} \ X \ \frac{1\ dia}{86400\ segons} \ X \ \frac{548002\ KB}{petici\acute{o}} = 31713,07\ KBps$$

Els discos accedeixen en blocs de 4KB, per tant $\frac{31713,07 \text{ KB/s}}{4 \text{ KB/operació IO}}$ = 7928,26968 IOPS (arrodonint = 7930 IOPS)

Això és pressió mínima. Ara cal calcular quina arquitectura de disc utilitzo

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Prendre decisions

<u>Total=</u> 227.58

ESCENARI EXEMPLE

- <u>Usuaris</u>= 2.58 TB
- Propietats = 225 TB

IOPS= 7930 IOPS

- Si fem una cabina i volem alta seguretat és molta pressió (perquè m'interessa Enterprise i, per exemple RAID51)
 - Per sobre de 50000€ només els discos
- Però tenen diferents necessitats: Puc fer, per exemple, dues cabines, una per clients (RAID 51) i altra per propietats (RAID5)
 - Cal recalcular tràfic usuaris i propietats

NO HI HA UNA ÚNICA SOLUCIÓ (simplement solucions raonades)

12

Cabina clients

Cabina 2 (té 24 badies, sense suport SSD)

- 1 cabina és suficient
- 8 discos en RAID 51 (només 3 de dades)= capacitat real de 5.76TB
- Total per posar al full de càlcul= 1 cabina tipus 2 + 10 discos opció 8 (8 per configurar RAID51 + 2 spare)

Creixement

- IOPS: gairebé 4000x (sense problemes)
- Clients: tenim 5.76TB-2.58TB = 3.18TB
 - Cada client 6MB -> caben total 960.000 clients (530.000 clients més)
 - Tinc 430.000. Ocupo un 45% de l'espai (creixement de 123%)

17

ESCENARI EXEMPLE

ESCENARI EXEMPLE

Cabina propietats (225 TB)

Discosreguerits.xlsx

- 225 TB
- 6843 IOPS
- 0% escriptures

Les opcions 4-10 molt cares (més orientades a IOPS)

Opció 3 de disc en RAID 5 (capacitat= 10 TB - enterprise)

- Pressió: 10 discos per IOPS, 23 per Capacitat
- Volem créixer i és barat -> al menys dupliquem discos = 46 discos
- S'han de dividir en clústers (per exemple, de 5 discos + 1 de raid -> 50 discos de dades)
- 10 clústers de 6 discos (5 dades 1 RAID) = 60 discos

Cabina propietats (225 TB)

60 discos

Cabina 5 (té 36 badies, amb suport SSD)

- 36 badies, 30 discos per cabina
- Posarem 4 Spare Disc per cabina (augmenta fiabilitat)
- 2 cabines
- 60 discos -> IOPS= 710 IOPS/disc x 60 disc = 42600 IOPS
 - requerits= 6843, puc créixer un 623%
- 50 discos de dades -> capacitat= 500 TB
 - requerits = 225TB, puc créixer un 222%
- Total per posar al full de càlcul= 2 cabines tipus 5 + 68 discos opció 3

RSITAT POLITÈCNICA TALUNYA LONATECH

Més decisions

Posem una SAN?

- No. El tràfic total (extern + disc) és de 263.189 Mbps = 0,263189 Gbps. Tenim una xarxa d'1Gbps
- Podem créixer gairebé un 380% en necessitats de xarxa sense necessitar més

Posem Monitorització?

Sol ser sempre interessant, però si posem discos *spare disc* cal monitoritzar per saber quan canviar-los.

Posem un mirror? Quin tipus de backup?

Son decisions lligades. Influeix en seguretat i temps de recuperació

Backup

- Com tenim mirror només l'opció 1 o 2 Detalls:
- Poques modificacions i tenim mirror
- Plantejarem un backup cada 8 dies.
- Guardarem 14 còpies (les dues últimes i una per mes l'últim any)
- Bastant extrem aquest entorn sense gaires modificacions.

	OPCIÓ MIRRORING		
	Codi	Opció	Cost anual
	- 1	M-A	183.840,72 €
х	2	M S3	196.291,30 €
	3	Sense	0

OPCIÓ BACKUP		
Opció	Cost anual	
M-A amb	131.016,71 €	
M-A sense	224.466,75 €	
M S3 amb	108.570,04 €	
M S3 sense	212.403,41 €	
TTTAR	50.850,00 €	

Compte!

L'escenari exemple té un nobre d'escriptures molt petit

Les transparències d'aquí endavant no són necessàriament de l'escenari exemple, sinó diferents problemes per il·lustrar

Tràfic afegit per tenir mirror

Enviar les escriptures al proveïdor té un cost en la connexió externa

- · Imaginem que tenim un mirror
- · Cada escriptura al nostre disc s'ha d'enviar al mirror
- · Com es gestiona el mirror NO és de la nostra incumbència.

Imaginem que:

- Tinc una LAN de 1 Gbps
- Tinc un tràfic exterior / entre servidors de 150 Mbps
- Tinc un tràfic totes amb el disc de 500 Mbps (300 Mbps R, 200 Mbps W)

Estic ocupant 650 Mbps de 1 Gbps (puc créixer, no considero posar una SAN) PERO!

Si poso un mirror augmento el tràfic extern en 200 Mbps, passo a ocupar 850 Mbps de 1 Gbps -> hauria de considerar una SAN

2 -

ESCENARI EXEMPLE

ESCENARI EXEMPLE

UNIVERSITAT POLITÈCNICA

Quan costa recuperar el 100% de les dades?

Cas 2: RAID 51 (1)

Recuperem del mirror. Suposem:

- 1 cabina tipus 2 amb 20 discos tipus 10 (3.8TB) en RAID51
- Ocupació al 45% de dades
- 8 dels 20 discos de dades (RAID 51) capacitat= 8 discos x 3.8 TB x 0,45= 13.68 TB a recuperar

Els discos tipus 10 poden fer 511K R / 82K W IOPS (limiten les escriptures).

- RAID 51, cada operació escriptura son en realitat 4R+4W, podem fer 82K /4
 escriptures reals (W) per disc x 20 discos = 410.000 W/s x 4 KB/W =1.640.000
 KBps = 1640 MBps
- La comunicació augmenta en 1640 MBps x 8Mbps/1MBps = 13.120 Mbps
- Tinc que recuperar 13.680.000.000 KB i recupero 1.640.000 KBps, necessito 8342 segons (2h19') -> sempre i quan tingui una bona xarxa

UNIVERSITAT POLITÈCHE DE CATALUNYA BARCELONATECH

Quan costa recuperar el 100% de les dades?

Ouan costa recuperar el 100% de les dades?

Recuperem del mirror. Suposem:

• 1 cabina tipus 3 amb 24 discos tipus 3 (8TB) en RAID0

-> 192 TB x 0.48= 92.16 TB a recuperar

1,500,000 segons (més de 17 dies)

• Cabina ocupada al 100% de discos, però ocupació al 48% de dades

escriure en paral·lel 640 IOPS x 24 discos x 4 KB/IOPS =61440 KBps

• Tots els discos de dades (RAID 0), capacitat= 8TBx24= 192TB; ocupat al 48%

Els discos tipus 3 poden fer 640 IOPS. És RAID 0 i són 24 discos que poden

La comunicació augmenta en 61440 KBps x 8Kbps/1KBps = 419,52 Mbps
Tinc que recuperar 92.160.000.000 KB i recupero 61440 KBps, necessito

Cas 1: RAID 0 (barat)

Cas 2: RAID 51 (2)

Suposem que tinc una xarxa de 1 Gbps

- La comunicació ha augmentat en 13.120 Mbps
- Tinc que recuperar 13.680.000.000 KB i recupero COM A MOLT 1 Gbps 1GBps/8Gbps= 0,125GBps = 125.000 KBps, necessito 109440 segons (una mica més de 30h)

Recomanacions al client: potser ampliar la xarxa LAN (encara que no formi part del que podem escollir a l'escenari; l'important és <u>detectar febleses</u>)

Es resol de manera anàloga si es perd un 1% de les dades

Business Impact Analysis

Cau la xarxa (1)

- Segons les dades que tenim (apèndix 6), una línia cau 1 hora cada 18 mesos, entre 1 i 3 hores (o sigui, 2±1h) cada 3 anys (36 mesos) i entre 3 i 9 hores (6±3h) cada 6 anys (72 mesos)
- Per tant la probabilitat de caiguda mensual és de $1h/18m + (2h\pm1h)/36 + (6\pm3h)/72m = (4+4\pm2+6\pm3 h)/72m = 14\pm5 hores/72 mesos$
- Un mes té en mitja 365,25 / 12 dies de 24 hores (compto l'any de traspàs) = 730,5 hores;
- 72 mesos x 730,5 =52.596 hores
- Una línia està penjada entre 9 i 19 hores (14±5 hores) de cada 52.596, o sigui que la possibilitat de downtime es de entre 9/52596 (0,017%) i 19/52596 (0,036%).
- En cas de dues línies, la caiguda de les dues simultàniament és 1/(18x18) + 2±1/(36x36) + (6±3/72x72) = 20±7h de cada 5184 mesos, o sigui 20±7 hores de cada 3.786.912. Per dues línies, la probabilitat d'estar downtime està entre 0.00034% i 0.00071%

ESCENARI EXEMPLE

ESCENARI EXEMPLE

Business Impact Analysis

Cau la xarxa (2)

- Els números anteriors són generals i serveixen per qualsevol escenari, l'important són els números a continuació
- Una línia: probabilitat downtime entre 0,017% i 0,036%
- Dues línies: probabilitat downtime entre 0,00034% i 0,00071%

Si SLA = 1,5M€ per hora downtime

- 5 anys (43830 hores) tenim entre un 0,017% i 0,036% de possibilitats de downtime, o sigui entre 7.45 (8 hores) i 15.77 (16 hores). Per tant la penalització que pagarem als clients estarà entre 12 i 24 milions €
- En canvi, al tenir dues línies el màxim en 5 anys seria 1 hora de downtime, o sigui 1,5 milions d'euros.

Cau la línia elèctrica

• Estem hostatjats a MODOR? Segona línia elèctrica i SAI, garanteix 99.999% de uptime (menys de 30' en 5 anys)

Business Impact Analysis

Falla un disc

Tornem a l'escenari exemple.

Cabina de clients:

- Estem en RAID 51. Si falla un disc puc copiar-lo del mirror, no cal reconstruir.
 Si es pot predir la fallada per SMART (70%) es farà la còpia quan el clúster estigui inactiu.
- Tenim 8 discos (3 de dades i 5 per RAID). Disc SSD enterprise TLC(probabilitat de fallada 0,45% anual - veure apèndix 6).
- De les fallades, 30% requereixen reconstrucció, la resta SMART.
- 8 discos x 0,45% fallada x 30% fallades amb reconstrucció= 1,08% de probabilitat de fallar/ any, 5,4% probabilitat falli un disc en 5 anys.
- De totes formes, els IOPS estan sobredimensionats x4000. Per tant, si necessito copiar un disc en un altre és ràpid.

Business Impact Analysis

<u>Falla un disc</u>

Tornem a l'escenari exemple.

Cabina de propietats:

- El disc falla 2,84% anual (HDD Enterprise >=10000 rpm); 60 discos (30 per cabina més els spare). Fallen 60 x 0,0284 = 1,704 discos per any x 5 anys = 8.52 discos.
- El 70% fallades es poden predir per SMART, s'han de reconstruir el 30% => 8.52 x 0,3 = 2.556 discos en tots (posem 3)
- Cada cop que reconstrueixo un disc en RAID 5 triguem 4 hores per TB. Els discos són de 10TB = 40 hores de reconstrucció. Durant aquest temps els discos d'aquell clúster van a la meitat de velocitat. Tinc 10 clústers de 6 discos, 9 a tot funcionament i 1 a mig funcionament. Cada clúster té 6 discos a 710 IOPS = 4260 IOPS per clúster x 9,5 clústers en funcionament = 40470 IOPS, l'escenari demana 6843 IOPS, sense problemes

