36. Dávkové zpracování dat – MapReduce (princip, fáze mapování a redukování). Apache Hadoop- popis, důvod vzniku, ekosystém, komponenty a jejich význam (HDFS, YARN, MapReduce).

Dávkové zpracování dat – MapReduce (princip, fáze mapování a redukování).

MapReduce

Mapování

- prvním krokem je mapováním
 - transformace surových dat na key-value páry
 - nad klíčem bude prováděna agregace hodnot
 - každý vstupní řádek je převeden na odpovídající pár
 - stejný klíč se může objevit vícekrát
 - klíčem bude v tomto příkladu user_id
 - hodnotou budou filmy, které budou agregované

USER ID MOVIE ID RATING TIMESTAMP			
196	242	3	881250949
186	302	3	891717742
196	377	1	878887116
244	51	2	880606923
166	346	1	886397596
186	474	4	884182806
186	265	2	881171488

- > cílem je tedy extrakce a organizace dat, která jsou zajímavá
- výstupem jsou páry key-value
- v příkladu user_id-movie_id

196:242 186:302 196:377 244:51 166:346 186:274 186:265

Mezikrok - shuffle and sort

- mezikrokem je řazení a shlukování
 - shuffle & sort
 - automatické, není potřeba psát žádný kód
 - shlukuje všechny hodnoty pro každý unikátní klíč
 - klíč list hodnot
 - klíče také setřídí

```
196:242 186:302 196:377 244:51 166:346 186:274 186:265
```

Redukování

- druhým krokem je redukování
 - skript zpracovávající výstupy z shuffle & sort
 - volán pro každý unikátní klíč
 - možnost paralelního zpracování klíčů
 - poskytuje finální výsledek

otázka: kolik filmů viděl každý uživatel?

```
USER ID|MOVIE ID|RATING|TIMESTAMP

196 242 3 881250949

186 302 3 891717742

196 377 1 878887116

244 51 2 880606923

166 346 1 886397596

186 474 4 884182806

186 265 2 881171488

MAPPER

MAPPER

SHUFFLE AND SORT

166:346 186:302,274,265 196:242,377 244:51

REDUCER

166:1 186:3 196:2 244:1
```

Apache Hadoop – popis, důvod vzniku, ekosystém, komponenty a jejich význam (HDFS, YARN, MapReduce)

open-source softwarová platforma určená pro distribuované ukládání a distribuované zpracování velkých datových sad na počítačových clusterech postavených z komoditního hardware

Hortonworks

HADOOP EKOSYSTÉM

- obrovské množství různých technologií…
- 3 základní skupiny
 - core Hadoop ekosystém externí datová úložiště dotazovací enginy
 - existuje ale i mnoho jiných kategorizací

1. Dotazovací enginy

DOTAZOVACÍ ENGINY

- posazené na vrcholu Hadoop clusteru
 - patří sem i Hive, ale je více integrovaný do core ekosystému
- umožňují interaktivní dotazování a extrakci výsledků z clusteru
 - např. pomocí SQL dotazů
- nevyžadují psaní speciálních programů

2.Externí uložiště

EXTERNÍ DATOVÁ ÚLOŽIŠTĚ

- data bývají zpřístupněna a ukládána i na dalších místech
- MySQL a další SQL databáze
 - data je možné i exportovat do SQL databází
 - ukládání dat do centrální databáze
- Cassandra
 - sloupcové úložiště (NoSQL databáze)
 - vhodný způsob pro zpřístupnění dat pro real-time aplikace
- **MongoDB**
 - dokumentová NoSQL databáze
 - podobné použití jako Cassandra

3. Core Hadoop ekosystém

- růžové bloky jsou přímo součástí Hadoop
- oranžové bloky jsou doplňující projekty, které je možné integrovat
 - řeší specifické problémy

Komponenty hadoop ekosystému

CORE HADOOP EKOSYSTÉM

- Hadoop Distributed File System (HDFS)
 - distribuovaný souborový systém Hadoop
 - umožňuje distribuci úložišť velkých dat na clusteru
 - všechny disky v clusteru se jeví jako jeden velký souborový systém
 - udržuje i duplicitní kopie dat
 - dokáže se automaticky obnovit z výpadku stroje

- Yet Another Resource Negotiator (YARN)
 - místo, kde začíná zpracování dat
 - systém, který spravuje prostředky clusteru rozhoduje, co, kdy a kde poběží
 - které uzly jsou a které nejsou volné pro práci
 - umožňuje nad sebou stavbu aplikací

CORE HADOOP EKOSYSTÉM

MapReduce

- programovací model umožňující zpracování dat na clusteru
- skládá se ze skriptů pro mapování a redukování
- mapování
 - efektivní paralelní transformace dat na clusteru
- redukování
 - agregace mapovaných dat do finální podoby
- původně spojený s YARN
 - k rozdělení došlo nedávno
- rozdělení umožnilo vznik nových aplikací postavených nad YARN
 - řešících stejný problém jako MapReduce
 - ale efektivnějším způsobem

1.HDFS

- distribuovaný souborový systém Hadoop
 - HDFS Hadoop Distributed File System
- umožňuje distribuované ukládání velkých dat na celém clusteru
 - aplikace mohou k datům spolehlivě a rychle přistupovat
 - aplikace mohou data také snadno analyzovat
 - správa velkých souborů
 - speciální optimalizace pro velké soubory, ale poradí si i s těmi menšími
 - velké soubory jsou rozdělovány na bloky
 - v základu 128 MB na blok
 - umožňuje ukládání větších souborů, než je kapacita disku
 - také umožňuje distribuovat zpracování velkého souboru
 - paralelní zpracování částí velkého souboru na různých strojích

- bloky jsou ukládány na různých komoditních strojích
 - ukládáno je také více kopií bloků a na různých strojích
 - pro případy obnovení dat při výpadku stroje
 - nejsou potřeba žádné speciální stroje

existuje právě jeden name node

- udržuje přehled o umístění jednotlivých bloků
 - tabulka jmen souborů (v adresářové struktuře) s umístěním všech kopií bloků souborů
- udržuje také edit log
 - záznamy o vytvoření, editaci a přesunutí dat
 - umožňuje udržování kompletního přehledu
- sám nevlastní žádná data

data jsou uložená na data nodes

ukládají jednotlivé bloky souborů

- v závěru právě s nimi komunikuje klient
 - jakmile name node vyřeší umístění potřebných bloků
- uzly spolu komunikují z důvodů správy kopií a replikace bloků

ČTENÍ SOUBORU

- klientský uzel (aplikace) potřebuje přistoupit k datům na HDFS
- klientský uzel osloví name node a požádá o vybraný soubor
- name node odpoví umístění jednotlivých bloků souboru
- klientský uzel osloví konkrétní datové uzly a požádá o dané bloky
- o proces se stará klientská knihovna pro HDFS
 - ne přímo aplikace

ZÁPIS SOUBORU

- klientský uzel (aplikace) chce vytvořit nový soubor na HDFS
- klientský uzel prvně osloví name node s novým souborem
- name node vytvoří nový záznam a povolí vytvoření na data nodes
 - vybere data nodes
- klientský uzel osloví vybrané data nodes a předá soubor
- data nodes spolu komunikují a replikují bloky souboru
- data nodes potvrdí vytvoření klientskému uzlu
- klientský uzel předá potvrzení zpět na name node
- name node zaznamená úspěšné vytvoření souboru
 - umožní budoucí obsluhu čtení daného souboru

JEN JEDEN NAME NODE?

- nejedná se o jeden bod selhání?
 - v danou chvíli musí být jen jeden name node
- existuje více řešení
 - konstantní záloha metadat
 - name node zapisuje edit log na lokální disk a také na NFS mount, který předává zálohu dál
 - v případě selhání name node lze použít NFS zálohu na bootstrap nového name node
 - lag mezi zápisy může způsobit částečnou ztrátu informací
 - i tak způsobí downtime
 - sekundární name node
 - udržuje sloučenou kopii edit logu primárního name node určenou k obnově
 - aktuálnější edit log

2.. MapReduce

- jedna ze základních komponent Hadoop
- vestavěný způsob distribuce zpracování dat na clusteru
 - rozděluje data na části (partitions), které je možné zpracovávat paralelně
 - stará se o provedení zpracování a řešení případných selhání

skládá se ze dvou základních úloh

- mapování dat a redukování dat
- mapování se stará o transformaci dat extrahuje informace z jednotlivých dat a organizuje je do smysluplné struktury
 - pro jeden vstupní řádek generuje jeden výstupní řádek
- redukování se stará o agregaci dat
 - slučuje transformovaná data na základě klíče (smysluplné struktury) do výsledku
- jedná se o vlastní funkce napsané v libovolném jazyce

co se ale děje při spuštění MapReduce na Hadoop clusteru?

- zpracování velkého datasetu je distribuováno mezi více úloh / strojů
 - závisí na velikosti dat, složitosti práce, ...
- např. kolik filmů viděl každý uživatel?
 - vstupní data jsou rozdělena na části (partitions)
 - každá část je poslána na jiný uzel určí počet mapperů, např. 3
 - mapování probíhá paralelně
 - mappery o sobě nepotřebují vědět
 - Hadoop jen sleduje dokončení
 - shuffle & sort komplikovanější
 - informace pro stejný klíč na více uzlech
 - musí být zgrupovány (merge sort) efektivně zautomatizované
 - redukování probíhá paralelně
 - reducery o sobě nepotřebují vědět
 - každý zodpovědný za rozsah klíčů

anatomie MapReduce úlohy

- úlohu začíná klientský uzel na stroji v clusteru
- prvně komunikuje s YARN
 - oznámí žádost o spuštění úlohy MapReduce
- zároveň také kopíruje potřebná data na HDFS
- v dalším kroku je spuštěn MapReduce Application Master
 - běží pod správcem uzlu (Node Manager)
 - každý uzel podílející se na MapReduce má svého správce uzlu
 - monitoruie stav
- Application Master má na starosti jednotlivé map a reduce úlohy
 - spolupracuje s YARN na distribuci těchto úloh na cluster

- výpočetní paradigma MapReduce
 - vestavěný způsob distribuce zpracování dat na Hadoop clusteru
 - rozděluje data na části (partitions), které je možné zpracovávat paralelně
 - stará se o provedení zpracování a řešení případných selhání
 - skládá se ze dvou základních úloh
 - mapování dat a redukování dat
 - mapování se stará o transformaci dat
 - extrahuje informaci z jednotlivých dat a organizuje ji do smysluplné struktury
 - pro jeden vstupní řádek generuje jeden výstupní řádek
 - redukování se stará o agregaci dat
 slučuje transformovaná data na základě klíče (smysluplné struktury) do výsledku
 - jedná se o vlastní funkce napsané v libovolném jazyce

https://www.udemy.com/course/the-ultimate-hands-on-hadoop-tame-your-big-data

3. YARN

YET ANOTHER RESOURCE NEGOTIATOR

- jedna z hlavních komponent Hadoop
 - YARN Yet Another Resource Negotiator
- systém spravující prostředky clusteru

- představený v Hadoop 2
- odděluje správu prostředků clusteru od MapReduce
- umožňuje vývoj alternativ k MapReduce postavených právě na YARN
 - Spark, Tez
- běží pod kapotou
- tvoří výpočetní vrstvu clusteru
 - rozděluje výpočty na clusteru
 - integrace s HDFS
 - YARN bere v potaz umístění dat

YARN zobecňuje diagram fungování MapReduce

MapReduce je jen nahrazeno libovolnou aplikací

- aplikace komunikuje s YARN kvůli distribuci práce na clusteru
 - YARN nastartuje Application Master
 - Application Master spolupracuje s YARN a dalšími aplikačními uzly
- možnost specifikovat umístění dat
 - požadované HDFS bloky na zpracování
 - YARN se pokusí spustit proces na stejném uzlu, kde jsou dané HDFS bloky
- možnost specifikovat různý rozvrh (scheduler) pro aplikace
 - umožňuje běh více aplikací najednou na clusteru
 - FIFO fronta, provádění prací v sekvenci
 - Capacity umožňuje paralelní běh aplikací, pokud je dostatečná kapacita
 - Fair umožňuje zasáhnout do větší běžící práce pro spuštění malé

Závěr

- Hadoop ztratil svůj status jediného řešení velkých dat
 - jeho přílišná komplexnost může být i na obtíž
 - dnes již existuje mnoho technologií řešících menší problémy lépe
 aplikace přímo cílené na konkrétní problémy
 - komplikací je také stále vyšší popularita cloudových technologií
- Hadoop poskytuje tři základní (překonané) koncepty
 - datovou vrstvu, správce prostředků a výpočetní paradigma
 - HDFS, YARN a MapReduce
 - HDFS může být nahrazeno cloudovým Amazon S3
 - MapReduce nahrazeno díky Apache Spark / Apache Flink / Apache Beam
 nepotřebují Hadoop cluster
 - YARN nahrazen pomocí Kubernetes

kubernetes

amazon

JE HADOOP MRTVÝ?

- Hadoop ale není úplně mrtvý
 - velké podniky s vlastními datovými centry i nadále Hadoop používají
 - spousta technologií je stále aktuálních
 - i Hadoop směřuje ke cloudu…

