Calibration for probabilistic classification Nick Normandin

The problem

some classifiers produce well-calibrated probabilities

- discriminant analysis
- ▶ logistic regression

others don't

- naive bayes
- SVMs
- anything with boosting
- tree methods
- sometimes neural networks

1. people with asymmetric misclassification costs

Common methods

- 2. people who are going to use the scores in post-processing
- 3. people who want to compare model outputs on a fair basis

Definitions: "classification"

in general, a classifier is a mapping function f such that

$$f: \vec{x} \mapsto c$$

where $\vec{x} \in \mathbb{R}^P$, but we're mostly interested in the intermediate step in where the function produces some membership score s_i for each instance \vec{x}_i

Definitions: "well-calibrated"

- for a model f and score s_i to be well-calibrated for class c_i , the empirical probability of a correct classification $P(c_i|f(c_i|x_i)=s_i)$ must converge to $f(c_i|x_i)=s_i$
- **example**: when $s_i = 0.9$, the probability of a correct classification should converge to $P(c_i|s_i = 0.9) = 0.9$. Otherwise, this isn't *really* a 'probability.'

Definitions: "calibration"

the calibration process is a separate mapping such that

$$g: s_i \mapsto P(c_i|s_i)$$

it's really important to note that we're fitting another model on top of our model output, where your feature matrix is just the vector of probability scores \vec{s} and the target variable is the vector of true class labels $\vec{y} \in \{0,1\}$

Visualizing calibration

Visualizing calibration

Overview

plotting the model class score s_i vs the true label y_i . Is this a useful representation?

Reliability plots

(1) Bin predictions by s_i (x-axis), (2) calculate $p(c_i)$ by bin (y-axis)

Common methods

Platt scaling

pass s_i through the sigmoid

$$P(c_i|s_i) = \frac{1}{1 + \exp(As_i + B)}$$

where A and B are the solution to

$$\underset{A,B}{\operatorname{argmax}} - \sum_{i} y_{i} \log(p_{i}) + (1 - y_{i}) \log(1 - p_{i})$$

Platt scaling

applied to the Pima Indian Diabetes scores

a strictly-nondecreasing piecewise linear function m, where

$$y_i = m(s_i) + \epsilon$$

fit such that

$$\hat{m} = \operatorname{argmin}_{z} \sum_{i} (y_{i} - z(s_{i}))^{2}$$

Isotonic regression

linear and isotonic regression fit to random noise with drift

Isotonic regression

applied to the Pima Indian Diabetes scores

- ▶ it's really easy to overfit
 - calibration partition
 - cross-validation
- isotonic regression is generally more flexible (and can closely approximate sigmoid)
- best technique is dependent on the family of model used to generate s_i

Bootstrap aggregated isotonic regression

make it smoother by aggregating and averaging over 1000 resampled isotonic regression fits

Extensions to k > 2

- if we view the task of probabilistic classification as a vector-valued function, we can visualize the co-domain of this task as assigning the location of a prediction in a regular (unit) simplex. Δ^{K-1}
- why is this hard when K > 2?

Probabilistic classification as a simplex

trivial with Δ^1 because we're only concerned with one unknown value and its complement. With $\Delta^{K>2}$ the simplex becomes a triangle, tetrahedron, five-cell, etc.

Multi-class probability estimation

Figure 1: classification problem with k = 4

Strategy: decompose into separate binary classification problems

- one vs. all
- all pairs

One vs. all

Figure 2: one vs. all reduces to k-1 calibrations

All pairs

Figure 3: all pairs reduces to $\binom{K}{2}$ calibrations

Combining multi-class probability estimates

- ▶ least squares: minimize squared error loss w/ non-negativity
- coupling (only all pairs): minimize log loss w/ non-negativity
- normalization (only one vs all): divide by sum of probabilities estimates

Experimental results

effect of calibration set size

from Niculescu-Mizil and Caruana, 2005

Overview

effect of multi-class combination method

from Zadrozny and Elkan, 2002

Method	MSE	Error Rate
NB Normalization	0.0326	0.1672
NB Least-Squares	0.0319	0.1672
NB Coupling	0.0304	0.1715
PAV NB Normalization	0.0241	0.1498
PAV NB Least-Squares	0.0260	0.1498
PAV NB Coupling	0.0260	0.1512
BNB Normalization	0.0163	0.0963
BNB Least-Squares	0.0164	0.0958
BNB Coupling	0.0160	0.1023
PAV BNB Normalization	0.0150	0.0946
PAV BNB Least-Squares	0.0150	0.0946
PAV BNB Coupling	0.0149	0.0935

boosting causes calibration issues

from Niculescu-Mizil and Caruana, 2005

Figure 6: combination

Conclusion

References

- Multivariate calibration of classifier scores into the probability space by Martin Gebel
- Transforming Classifier Scores into Accurate Multiclass
 Probability Estimates by Zadrozny and Elkan
- ▶ Obtaining Calibrated Probabilities from Boosting by Niculescu-Mizil and Caruana
- Predicting Good Probabilities With Supervised Learning by Niculescu-Mizil and Caruana