

Developing an IoT Based Water Pollution Monitoring System

Md. Mazharul Islam, Mohammad Shamsul Arefin, Sumi Khatun, Miftahul Jannat Mokarrama and Atqiya Munawara Mahi

PID: ICIPCN055

May 06-07, 2020

Presented by Md. Mazharul Islam

Contents

- → Introduction
- → Related Works
- Objectives
- → Methodology
- → Implementation
- → Results
- → Advantages
- → Limitation
- → Future Work
- → Conclusion
- → References

Introduction

- → Water is a special kind of ecological resource which is a foundation to support the ecosystem on earth.
- → It is used in various activities, such as consumption, agriculture and industry, which may affect water quality.
- → About 13,700 people die each day from polluted water diseases.
- → By making use of the full potential of IoT, It would be possible to prevent individuals from drinking polluted water.

Related Works

→ The Design of Multi-Parameter Online Monitoring System of Water Quality Based on GPRS. (Quio Tie-Zhn, 2010)

> Work Done:

- Used multi-parameter for water's pollution monitoring system.
 - i.e. pH, Temperature, COD and TOC.
 - Used GPRS for data transmission.

> <u>Limitation:</u>

- Used PC instead of microcontroller only for sensors.
- Used 2G technology, i.e. GPRS (56 up to 114 Kbps).

Related Works (Contd.)

→ Web Based Water Quality Monitoring with Sensor Network: Employing ZigBee and WiMax Technologies. (Kamal Alameh, 2011)

> Work Done:

- Developed WSN was comprehensively tested in practical area.

> <u>Limitation:</u>

- Used ZigBee (maximum speed is just 250kbps) and WiMax both, instead of Wi-Fi.

Related Works (Contd.)

→ Real-time environmental sensor data: An application to water quality using web services (Branko Kerkez, 2016)

> Work Done:

- Used 'NeoMote', a programmable system on chip for field deployment.
- Used 'Antelope', an integrated collection of programs for data collection.

> <u>Limitation:</u>

- Measures only depth and conductivity of water.

Objectives

→ To develop an IoT system and a data server for monitoring water pollution in real time.

→ To develop an inexpensive as well as economically affordable device for common people.

→ To build an android app for real time data visualization.

Methodology

- → The overall system is subdivided into three phase. These are:
 - 1. Physical Phase: Consist of Sensors, Data Analysis & Communication Module.
 - 2. Service Phase: Stores data and Provides tools for analyzing data.
 - 3. Presentation Phase: Visualizes the Information to the User and allows user to interact with the system.

→ Physical Phase:

Figure 1: Water Source & Data Collection Module.

→ Physical Phase:

Figure 2: Data Analysis & Communication module.

→ Service Phase:

Figure 3: Data Storing Module.

→ Presentation Phase:

Figure 4: Data visualization module.

Figure 5: Flowchart representation of data analysis & communication module.

Implementation

→ Hardware:

a) Arduino Leonardo

b) Esp8266 NodeMcu

SL	Max	Min	Comment
1.	9.0	6.5	Natural Water
2.	6.5	4.5	Slightly Acid
3.	4.5	<4.5	Very Acid
4.	11.5	9.0	Slightly Alkaline
5.	>11.5	11.5	Very Alkaline

Figure 7: pH Sensor

Figure 8: pH Sensor calibration.

SL	Max	Min	Comment
1.	400	<400	Excellent
2.	600	400	Good
3.	900	600	Fair
4.	1200	900	Poor
5.	>1200	1200	Unacceptable

Figure 9: TDS Sensor

Figure 10: Top View of this Device

Implementation

→ Software:

Figure 11: NodeMcu Coding in Arduino.cc IDE.

Figure 12: MySql database for the proposed system.

Figure 13: Google-Firebase for real-time data update.

Results

a) testing tap water pH, TDS and temperature value

b) data logger for the system.

Figure 14: Testing the tap water quality.

Results (Contd.)

	(oT Blaned Water Quality Monitoring System									
ID OI	Temperature	Type of Temperature	pH	Type of pH	TOS	Type of TDS	Type of Water	Date & Tim		
2421	27.00	normal	8.45	natural_water	12.45	excellent	drinkable_water	2019-07-09 16:02:13		
2420	29,00	normal	8.45	natural_water	12.45	excellent	drinkable_water	2019-07-09 16:02:08		
2419	21.00	normal	8,47	natural_water	12.45	excellent	drinkable_water	2019-07-09 16:02:03		
2418	29.00	normal	8.47	natural_water	12.45	excellent	drinkable_water	2019-07-09 16:01:57		
2417	24.00	normal	8.46	natural_water	12.45	excellent	drinkable_water	2019-07-09 16:01:62		
2067	23,00	normal	12.45	very_alkaline	22.00	excelent	not_drinkable	2019-07-09 15:19:48		
1956	30.00	normal	8,32	natural_water	1160.88	poor	not_drinkable	2019-07-08 14:27:27		
1955	23.00	normal	8.31	natural_water	1165.42	poor	not_drinkable	2019-07-08 14:27:21		
1954	21.00	normal	8.29	natural_water	1165.42	poor	not_drinkable	2019-07-08 14:27:15		
1953	24.00	normal	8.30	natural_water	1165.42	poor	not_drinkable	2019-07-08 14:27:10		

Figure 15: Real-time datasheet for Sensor Value and Decision Parameter.

Results (Contd.)

→ Accuracy:

Advantages

→ Advantages

- ✓ Due to automation it will reduce the time to measure the parameters.
- This is economically affordable for common people.
- Low maintenance.
- Prevention of water diseases.

Limitation

→ Limitations

- > Based on only three parameters: Temperature, pH, TDS.
- > Type of water pollution could not be determined,
 - i.e. Chemical water pollution, suspended matter, microbiological water pollution etc.
- Works over high-speed WiFi only.

Future Work

- → Turbidity, electronic conductivity and Oxidation-Reduction Potential (ORP) can be quantified for more accuracy.
- → Arsenic contamination can be identified using Machine learn -ing.

Conclusion

- → IoT based water pollution monitoring system has significant application scenarios in the context of smart cities.
- → It ensures the reduced amount of time and energy required to provide analytical services.
- → As developing countries have deficiency for socio-economic environment, So, In this project I have concentrated my thou -ght on developing a low cost IoT device, that will ensure proper analysis of polluted water with the minimum amount of resources being available.

References

- → [1] What is IoT? Definitions from Industry Experts [Online].
 - Available: https://blog.getkisi.com/what-is-iot
- → [2] Internet of Things (April 2016) [Online].
 - Available: https://en.wikipedia.org/wiki/Internet_of_Things
- → [3] Internet of Things (IoT)(April 2016) [Online].
 - Available: http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
- → [4] Amy Nordrum, "Popular Internet of Things Forecast of 50 Billion Devices by 2020 Is Outdated". [Online]
 - Available: https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
- → [5] Understanding Internet of Things. [Online].
 - Available: http://internetofthingswiki.com/internet-of-things-definition

References (Contd.)

- → [6] Smart Water Sensors to monitor water quality in rivers, lakes and the sea. [Online]
 - Available: http://www.libelium.com/smart-water-sensors-to-monitor-water-quality-in-rivers-lakes-and-the-sea
- → [7] S. Kartakis, E. Abraham, and J. A. McCann, "Waterbox: A testbed for monitoring and controlling smart water networks," *Proceedings of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks*. ACM, 2015, p. 8.
- → [8] B. P. Wong and B. Kerkez, "Real-time environmental sensor data: An application to water quality using web services," *Environmental Modelling & Software*, vol. 84, pp. 505–517, 2016.
- → [9] Tun L Dinh, Wen Hu, PavanSikka, Peter Corke, L. Overs, Stephen Brosman, "Design and Deployment of a Remote Robust Sensor Network: Experiences from Outdoor Water", *32nd IEEE Conf. on Local Computers*, pp 799-806, Feb., 2007.

References (Contd.)

- → [10] Quio Tie-Zhn, Song Le, "The Design of Multiparameter On line Monitoring System of Water Quality based on GPRS", *Report: Advanced Transducers and intelligent Control System Lab, Taiyuan Technical University, Taiyuan, China*, 2010.
- → [11] Steven Silva, Hoang N Ghia Nguyen, Valentina, Tiporlini, Kamal Alameh, "Web based water Quality Monitoring with Sensor Network: Employing ZigBee and WiMAX Technology", 36th IEEE Conf. on Local Computer Networks, 2011.
- → [12] Donge He, Li-Xin Zhang, "The Water Quality Monitoring System based on Wireless Sensor Network" *Report: Mechanical and Electronic Information Institute, China University of GeoScience, Wu Hen, China*, 2012.
- → [13] Pavlos Papageorgiou, "Literature Survey on Wireless Sensor Networks", *Report: University of Maryland*, 16 July 2003.

The End

Thank You

