EE671: VLSI Design Assignment 1 CMOS Inverter Design using Sky130 PDK

Anuj Yadav Roll No. 22B3950

17 August 2025

Introduction

In this assignment, a CMOS inverter is designed and simulated using the SkyWater 130nm (Sky130A) PDK in NGSpice. The design objective is to obtain a minimum-size inverter with equal rise and fall times, and then extract its static and dynamic characteristics. The inverter is loaded with another identical inverter to capture realistic behavior.

Q1: Minimum Size CMOS Inverter (INVX1)

Design Parameters

The minimum channel length (L_{min}) is fixed at $0.15 \,\mu\text{m}$. NMOS width is restricted to $0.42 \,\mu\text{m}$, while PMOS width is chosen to balance rise and fall times.

Inverter Design Parameter	Value
PMOS Width (μm)	1.26
PMOS Length (μm)	0.15
NMOS Width (μm)	0.42
NMOS Length (μm)	0.15

Dynamic Characteristics

The input was a rail-to-rail pulse with rise/fall time of 20 ps. The inverter was loaded with another INVX1. The measured rise time, fall time, and propagation delay are:

• Rise time (t_r) : Defined as the time taken for the output voltage to rise from 20% to 80% of V_{DD} .

$$t_r = t_{80\% \ V_{DD}} - t_{20\% \ V_{DD}}$$

• Fall time (t_f) : Defined as the time taken for the output voltage to fall from 80% to 20% of V_{DD} .

$$t_f = t_{80\% \ V_{DD}} - t_{20\% \ V_{DD}}$$

• Propagation delay (t_p) : Calculated as the average of low-to-high and high-to-low propagation delays:

$$t_p = \frac{t_{PHL} + t_{PLH}}{2}$$

where

$$t_{PHL} = t_{50\% \ V_{in, \ rising}} - t_{50\% \ V_{out, \ falling}}, \quad t_{PLH} = t_{50\% \ V_{in, \ falling}} - t_{50\% \ V_{out, \ rising}}$$

$$t_{PHL} = 22.8 \text{ ps}, \quad t_{PLH} = 17.4 \text{ ps}$$

Final $t_p = 20.1 \text{ ps}$

Value
18.5
18.5 20.1

```
Q1a.cir
                                                    × Q1b.cir
                                                                                                              Q2a.cir
*Vout and Vin with time for INVX1 is loaded with INVX1
.lib ~/.local/share/pdk/sky130A/libs.tech/ngspice/sky130.lib.spice tt
.param Lmin = 0.15
.param wp = 1.26
.param wn = 0.42
.param ap = 2*wp*Lmin
.param pp = 2*(wp + 2*Lmin)
.param an = 2*wn*Lmin
.param pn = 2*(wn+ 2*Lmin)
* The voltage sources:
Vdd vdd gnd DC 1.8
Vi in gnd pulse(0 1.8 0p 20p 10p 1n 2n)
Xnot1 in vdd gnd p not1
Xnot2 p vdd gnd out not1
.subckt not1 a vdd vss z
.subck note: a vdd vdd sky13<u>0</u> fd_pr__pfet_01v8 l=0.15 w={wp} as={ap} ad={ap} ps={pp} pd={pp} xm02 z a vss vss sky13<u>0</u> fd_pr__nfet_01v8 l=0.15 w={wn} as={an} ad={an} ps={pn} pd={pn}
.ends
* Simulation command:
tran 1ps 10ns
.measure tran tr TRIG v(p) VAL=0.36 RISE=2 TARG v(p) VAL=1.44 RISE=2
.measure tran tf TRIG v(p) VAL=1.44 FALL=2 TARG v(p) VAL=0.36 FALL=2
.measure tran tph1 TRIG v(in) VAL=0.9 RISE=2 TARG v(p) VAL=0.9 FALL=2
.measure tran tph1 TRIG v(in) VAL=0.9 FALL=2 TARG v(p) VAL=0.9 RISE=2
wrdata /mnt/c/Users/anujy/IITB_COURSES/7th_SEMESTER_AUGUST_2025/EE671/Assignment_1/Q1a|.txt in p
plot in p
```

Figure 1: Code snippet for Dynamic Characteristics INVX1

Figure 2: Inversion of the input signal by INVX1.

Figure 3: Dynamic Transfer Characteristic of INVX1.

Static Characteristics

Using a DC sweep on the input, the Voltage Transfer Characteristic (VTC) was obtained and parameters were extracted:

• Switching Threshold (V_M) : The input voltage at which $V_{in} = V_{out}$.

$$V_M = V_{in}$$

Measured value: 0.89 V

• Noise Margins: The noise margins are calculated using:

$$N_{ML} = V_{IL} - V_{OL}, \quad N_{MH} = V_{OH} - V_{IH}$$

where $V_{OL} \approx 0$ and $V_{OH} \approx V_{DD}$.

– V_{IL} : Maximum input voltage recognized as logic '0', obtained from the VTC where $\frac{dV_{out}}{dV_{in}} = -1$ (lower transition point). Measured $V_{IL} = 0.77$ V

– V_{IH} : Minimum input voltage recognized as logic '1', obtained from the VTC where $\frac{dV_{out}}{dV_{in}}=-1$ (upper transition point). Measured $V_{IH}=1.01~{\rm V}$

Static Characteristic	Value
V_{IH} (V)	1.01
V_{IL} (V)	0.77
N_{MH} (V)	0.79
N_{ML} (V)	0.77
Switching Voltage V_M (V)	0.89

Figure 4: Code snippet for Static Characteristics INVX1

Figure 5: Static Transfer Characteristic of INVX1 with unity slope line and extracted parameters.

Q2: Strength-2 Inverter (INVX2)

The transistor widths were doubled to obtain INVX2. The inverter was loaded with INVX1 and the same set of measurements were repeated.

Design Parameters

Inverter Design Parameter	Value
PMOS Width (μm)	2.58
PMOS Length (μm)	0.15
NMOS Width (μm)	0.84
NMOS Length (μm)	0.15

Dynamic Characteristics

These are the dynamic characteristics calculated with the target of making the rise time equal to the fall time

Dynamic Characteristic	Value
Rise time, t_r (ps)	17.3
Fall time, t_f (ps)	17.3
Propagation delay, t_p (ps)	15.3

Figure 6: Code snippet for Dynamic Characteristics INVX2

Figure 7: Inversion of the input signal by INVX2

Figure 8: Dynamic Transfer Characteristic of INVX2

Static Characteristics

Using a DC sweep on the input, the Voltage Transfer Characteristics was obtained and parameters extracted:

Static Characteristic	Value
	1.00
V_{IH} (V)	1.02
V_{IL} (V)	0.77
N_{MH} (V)	0.78
N_{ML} (V)	0.77
Switching Voltage V_M (V)	0.90

```
File Edit View

.param ap1 = 2*wp1*Lmin1
.param pp1 = 2*(wp1 + 2*Lmin1)
.param pp1 = 2*(wp1 + 2*Lmin1)
.param pp1 = 2*(wp2 + 2*Lmin1)
.param ap1 = 2*wp1*Lmin2
.param ap2 = 2*wp2*Lmin2
.param pp2 = 2*(wp2 + 2*Lmin2)

* The voltage sources:
Vdd vdd gnd Dc 1.8

Xnot1 in vdd gnd p not2
Xnot2 p vdd gnd out not1

.subckt not1 a vdd vss z
xm01 z a vdd vdd sky130_fd_pr__pfet_01v8 l={Lmin1} w=(wp1) as={ap1} ad={ap1} ps={pp1} pd={pp1}
xm02 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin1} w=(wn1) as={an1} ad={an1} ps={pn1} pd={pn1}
.ends

.subckt not2 a vdd vss z
xm03 z a vdd vdd sky130_fd_pr__pfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm03 z a vdd vdd sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w=(wp2) as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w={wp2} as={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w={wp2} as={ap2} ad={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w={wp2} as={ap2} ad={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={Lmin2} w={wp2} as={ap2} ad={ap2} ad={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={ap2} ps={pp2} pd={pp2}
xm04 z a vss vss sky130_fd_pr__nfet_01v8 l={ap2} ps={pp2} pd={pp2}
x
```

Figure 9: Code snippet for Static Characteristics INVX2

Figure 10: Static Transfer Characteristic of INVX2 with unity slope line and extracted parameters.

Results and Comparison

Parameter	INVX1	INVX2
$t_r \text{ (ps)}$	18.5	17.3
t_f (ps)	18.5	17.3
t_p (ps)	20.1	15.3
V_M (V)	0.89	0.90
N_{MH} (V)	0.79	0.78
N_{ML} (V)	0.77	0.77

Observation

INVX2 shows improved drive strength compared to INVX1, leading to reduced rise/fall times and propagation delay. The switching voltage V_M remains approximately unchanged, but dynamic performance improves.