Формули по ЛААГ - Геометрия

1. Афинни операции с вектори.

1.1 Умножение на вектор с число:

За $\lambda \in \Re$ векторът $\vec{b} = \lambda \cdot \vec{a}$ има дължина $|\vec{b}| = |\lambda| \cdot |\vec{a}|$ и посока $\vec{b} \uparrow \uparrow \vec{a}$ за $\lambda > 0$ и противоположна посока $\vec{b} \uparrow \downarrow \vec{a}$ за $\lambda < 0$.

За $\lambda = -1$ получаваме противоположния вектор

$$\vec{a} = \overrightarrow{AB}, \quad -\vec{a} = -\overrightarrow{AB} = \overrightarrow{BA}$$

1.2 Събиране на вектори:

1.3 Изваждане на вектори:

$$\overrightarrow{a} - \overrightarrow{c} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$$

2. Координати на вектори и точки.

$$A(x_1, y_1, z_1), B(x_2, y_2, z_2) \Rightarrow \overrightarrow{AB}(x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$M\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2},rac{z_1+z_2}{2}
ight)$$
 е среда на отс. AB $G\left(rac{x_1+x_2+x_3}{3},rac{y_1+y_2+y_3}{3},rac{z_1+z_2+z_3}{3}
ight)$ е медицентър на $\triangle ABC$.

3.Скаларно произведение.Разстояние между две точки.

Скаларното произведение на два вектора \vec{a} и \vec{b} е числото $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}, \vec{b})$.

Дължина на вектор: $|\vec{a}| = \sqrt{\vec{a}.\vec{a}}$

Векторите са ортгонални $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a}.\vec{b} = 0$

Ъгъл между вектори: $\cos\angle(\vec{a}, \vec{b}) = \frac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|}$

Нека $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3)$ са декартовите координати на векторите $\Rightarrow \vec{a}.\vec{b}=a_1.b_1+a_2.b_2+a_3.b_3$ и $|\vec{a}|=\sqrt{a_1^2+a_2^2+a_3^2}$

Разстоянието между точките $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$ е равно на $|\overrightarrow{AB}|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

4. Векторно произведение на два вектора. Лице на успоредник и триъгълник.

Векторното произведение на два вектора \vec{a} и \vec{b} е вектор $\vec{c} = \vec{a} \times \vec{b}$ такъв, че $\vec{c} \bot \vec{a}, \vec{b}$ и $\vec{a}, \vec{b}, \vec{c}$ е положително ориентирана тройка вектори. Дължината на $|\vec{a} \times \vec{b}| = |\vec{a}|.|\vec{b}|.\sin \angle (\vec{a}, \vec{b})$

Нека $\vec{a}=(a_1,a_2,a_3),\ \vec{b}=(b_1,b_2,b_3)$ са декатовите координати на векторите \Rightarrow

координати на векторите \Rightarrow $\vec{a} \times \vec{b} = \left(\left| \begin{array}{cc|c} a_2 & a_3 \\ b_2 & b_3 \end{array} \right|, \left| \begin{array}{cc|c} a_3 & a_1 \\ b_3 & b_1 \end{array} \right|, \left| \begin{array}{cc|c} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right).$

 $S_{ABCD} = |\overrightarrow{AB} \times \overrightarrow{AD}|$ е лице на успоредник ABCD $S_{\triangle ABC} = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|}{2}$ е лице на триъгълник $\triangle ABC$

5. Смесено произведение на три вектора. Обем на призма и тетраедър.

Смесеното произведение на три вектора е число равно

на
$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b}).\vec{c} = \vec{a}.(\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Обема на призмата определена от векторите $\vec{a}, \vec{b}, \vec{c}$ е равен на $V_{pr} = |\vec{a}\vec{b}\vec{c}|$, а обема на тетраедъра определен от същите вектори е равен на $V_t = \frac{|\vec{a}\vec{b}\vec{c}|}{6}$.

6. Уравнения на права в равнината.

Ако правата g минава през точка $M(x_0,y_0)$ и е колинеарна с вектор $\vec{p}(a,b)$, то параметричните уравнения на g са $\begin{cases} x=x_0+\lambda.a \\ y=y_0+\lambda.b \end{cases}$, където λ е произв. реално число.

$$g: \frac{x-x_0}{a} = \frac{y-y_0}{b}$$
 е общото уравнение на правата

g: y = k.x + b е декартовото уравнение, където $k = \tan \varphi$ е вгловия коефициент на правата

 $g: rac{x}{a} + rac{y}{b} = 1$ е *отрезовото уравнение* на правата Ако g: Ax + By + C = 0 е общото уравнение на правата, то векторът $ec{p}(-B,A) \| \ g$ е колинеарен с нея ,

 $g: \frac{Ax+By+C}{-signC.\sqrt{A^2+B^2}}=0$ е нормалното уравнение на правата

 $d(M,g) = \left| rac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}}
ight|$ е $\mathit{pascmoshuemo}$ от точка $M(x_0,y_0)$ до g.

7. Уравнения на права и равнина в пространството.

Параметричните уравнения на равнина α която минава през точка $M(x_0,y_0,z_0)$ и е компланарна с векторите $\vec{p_1}(a_1,b_1,c_1),\ \vec{p_2}(a_2,b_2,c_2)$ са

$$\alpha: \left\{ egin{array}{l} x = x_0 + \lambda.a_1 + \mu.a_2 \\ y = y_0 + \lambda.b_1 + \mu.b_2 \\ z = z_0 + \lambda.c_1 + \mu.c_2 \end{array} \right.,$$
 където $\lambda, \mu \in \Re$

а общото и уравнение се получава от детерминантата

$$\alpha: \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

Ако правата g минава през точка $M(x_0, y_0, z_0)$ и е колинеарна с вектор $\vec{p}(a, b, c)$, то параметричните

уравнения на
$$g$$
 са $\begin{cases} x=x_0+\lambda.a \\ y=y_0+\lambda.b \end{cases}$, където $\lambda\in\Re$ $z=z_0+\lambda.c$

Общото уравнение на равнина $\alpha: \left\{ \begin{array}{l} \ni M(x_0,y_0,z_0) \\ \bot \vec{N}(A,B,C) \end{array} \right.$ е $\alpha: A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$

 $lpha: rac{Ax+By+Cz+D}{-signD.\sqrt{A^2+B^2+C^2}}=0$ е нормалното и́ уравнение $d(M,lpha)=\left|rac{Ax_0+By_0+Cz_0+D}{\sqrt{A^2+B^2+C^2}}\right|$ е разстоянието от точка $M(x_0,y_0,z_0)$ до lpha.

8. Окръжност.

Кривата k с уравнение $x^2 + y^2 - 2ax - 2by + n = 0$ е окръжност $\Leftrightarrow a^2 + b^2 - n > 0$. Центъра и́ има координати P(a,b), а радиусът и́ е $r = \sqrt{a^2 + b^2 - n}$. $k: (x-a)^2 + (y-b)^2 = r^2$ е каноничното и уравнение. Правата t: ux + vy + w = 0 се допира до окръжността $\Leftrightarrow r = d(P,t) = \left| \frac{ua + vb + w}{\sqrt{u^2 + v^2}} \right|$.

9. Елипса.

6: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, като a > b > 0 е канонично уравнение на елипса, с полуоси a и b, върхове $A_{1,2}(\mp a,0)$ и $B_{1,2}(0,\pm b)$, фокуси $F_{1,2}(\mp c,0)$ където $c = \sqrt{a^2 - b^2}$, директриси $d_{1,2}: x = \mp \frac{a^2}{c}$ и ексцентрицитет $e = \frac{c}{a}$. Когато b > a, x и y си разменят местата. Правата t: ux + vy + w = 0 се допира до елипсата $\Leftrightarrow a^2u^2 + b^2v^2 - w^2 = 0$

10. Хипербола.

 $\chi: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, като a,b>0 е канонично уравнение на хипербола, с реална полуос a и имагинерна полуос b, върхове $A_{1,2}(\mp a,0)$, фокуси $F_{1,2}(\mp c,0)$ където $c=\sqrt{a^2+b^2}$, асимптоти $g_{1,2}:y=\pm \frac{b}{a}x$, директриси $d_{1,2}:x=\mp \frac{a^2}{c}$ и ексцентрицитет $e=\frac{c}{a}$. Правата t:ux+vy+w=0 се допира до хиперболата $\Leftrightarrow a^2u^2-b^2v^2-w^2=0$

11. Парабола.

 $\pi: y^2 = 2p \, x$ е канонично уравнение на парабола с параметър p>0, фокус $F(\frac{p}{2},0)$ и директриса $d: x=-\frac{p}{2}$. Правата t:y=kx+n се допира до параболата $\Leftrightarrow p=2kn$.

12. Сфера.

Повърхнината $S: x^2+y^2+z^2-2ax-2by-2cz+n=0$ е сфера $\Leftrightarrow a^2+b^2+c^2-n>0$. Центъра й има координати P(a,b,c), а радиусът й е $R=\sqrt{a^2+b^2+c^2-n}$. $S: (x-a)^2+(y-b)^2+(z-c)^2=R^2$ е каноничното й уравнение.

Равнината $\alpha: Ax + By + Cz + D = 0$ се допира до сферата $\Leftrightarrow R = d(P, \alpha) = \left| \frac{Aa + Bb + Cc}{\sqrt{A^2 + B^2 + C^2}} \right|$.