2017학년도 6월 고1 전국연합학력평가 정답 및 해설

• 수학 영역 •

정 답

1	2	2	3	3	3	4	1	5	4
6	2	7	1	8	1	9	3	10	3
11	4	12	(5)	13	4	14	2	15	5
16	4	17	3	18	(5)	19	(5)	20	2
21	1	22	9	23	17	24	3	25	24
26	46	27	50	28	32	29	16	30	27

해 설

1. [출제의도] 복소수 계산하기

-2i+(2+3i)=2+(-2+3)i=2+i

2. [출제의도] 다항식 계산하기

 $(2x-y)(x+2y+3) = 2x^2 - 2y^2 + 3xy + 6x - 3y$ 이므로 xy항의 계수는 3이다.

3. [출제의도] 나머지정리를 이용하여 나머지 계산하기

 $P(x)=x^3+3x^2+a$ 라 하자. $P(x) \stackrel{=}{=} x-1$ 로 나는 나머지는 P(1)=1+3+a=a+4이다. P(1)=7이므로 a+4=7이고 따라서 a=3이다.

4. [출제의도] 이차부등식 이해하기

$$\begin{split} x^2-7x+12 &\geq 0\\ (x-3)(x-4) &\geq 0\\ x &\leq 3$$
 또는 $x \geq 4$ 이므로 $\alpha=3,\,\beta=4$ 이다. 따라서 $\beta-\alpha=1$ 이다.

5. [출제의도] 조립제법 이해하기

조립제법에 의하여

a =-1, b=3, c=1이므로 abc=-3이다.

6. [출제의도] 인수분해 이해하기

7. [출제의도] 고차다항식 인수분해 이해하기

다항식
$$x^4 + 7x^2 + 16$$
을 인수분해하면
$$x^4 + 7x^2 + 16 = (x^4 + 8x^2 + 16) - x^2$$
$$= (x^2 + 4)^2 - x^2$$
$$= (x^2 + x + 4)(x^2 - x + 4)$$
이므로 $a = 1, b = 4$ 이다.
따라서 $a + b = 5$ 이다.

8. [출제의도] 절댓값을 포함한 일차부등식 이해하기

9. [출제의도] 삼차방정식 이해하기

조립제법에 의하여

$$x^3 - 2x^2 - 5x + 6 = (x - 1)(x - 3)(x + 2) = 0$$

이므로

$$\alpha=-2,\,\beta=1,\,\gamma=3$$
 이다. 따라서
$$\alpha+\beta+2\gamma=-2+1+2\times 3=5$$
 이다

10. [출제의도] 이차함수의 그래프와 직선의 위치 관계 를 이용하여 문제 해결하기

이차함수 $y=-2x^2+5x$ 의 그래프와 직선 y=2x+k가 적어도 한 점에서 만나기 위해 방정식 $-2x^2+5x=2x+k$

$$2x^2-3x+k=0$$
의 판별식 D 가 $D \ge 0$ 이어야 한다.

의 판별적 D/r $D \ge 0$ 이어야 한다 $D = (-3)^2 - 4 \times 2 \times k \ge 0$

$$k \leq \frac{9}{8}$$

이므로 실수 k의 최댓값은 $\frac{9}{8}$ 이다.

11. [출제의도] 연립방정식 이해하기

$$x=y+2$$
 등
$$x^2-xy-y^2=5$$
 에 대입하면
$$(y+2)^2-y(y+2)-y^2=5$$

$$y^2-2y+1=0$$

$$(y-1)^2=0$$
 이므로 $y=1$, $x=3$, 즉 $\alpha=3$, $\beta=1$ 이다. 따라서 $\alpha+\beta=3+1=4$ 이다.

12. [출제의도] 곱셈 공식을 이용하여 도형 문제 해결 하기

두 정사각형의 넓이의 합은 $a^2 + (2b)^2$ 이고 직사각형 의 넓이는 ab이므로

$$a^2+4b^2=5ab$$

이 다. $ab=4$ 이 고. $(a+2b)^2=a^2+4b^2+4ab$ 이 프로
$$(a+2b)^2=9ab=36$$

13. [출제의도] 사차방정식 이해하기

주어진 사차방정식의 한 근이 -2이므로 x=-2를 대입하면 4a+28=0

a=-7 조립제법에 의하여

이다

$$x^4 - x^3 - 7x^2 + x + 6 = (x+2)(x+1)(x-1)(x-3) = 0$$

$$x = -2, -1, 1, 3$$

이다. 따라서 a=-7, b=3이므로 a+b=-4이다.

14. [출제의도] 복소수 연산을 통해 식의 값 문제 해결 하기

$$\alpha = \frac{1+i}{2i} \; \text{and} \; k \text{d}$$

$$\alpha^2 = \frac{2i}{-4} = -\frac{i}{2}$$

이코,
$$\beta = \frac{1-i}{2i}$$
 에서

$$\beta^2 = \frac{-2i}{-4} = \frac{i}{2}$$

이므로 $2\alpha^2 = -i$, $2\beta^2 = i$ 이다. 따라서

$$(2\alpha^2+3)(2\beta^2+3)=(3-i)(3+i)=10$$
 th

이다.

[다른 풀이]
$$\alpha+\beta=\frac{2}{2i}=\frac{1}{i}=-i, \ \alpha\beta=\frac{2}{-4}=-\frac{1}{2}$$
이고

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 0 \circ \square \exists \exists$$

$$(2\alpha^2 + 3)(2\beta^2 + 3) = 4(\alpha\beta)^2 + 6(\alpha^2 + \beta^2) + 9$$
$$= 4 \times \frac{1}{4} + 6 \times 0 + 9 = 10$$

ما دا

15. [출제의도] 실수의 성질을 이용하여 이차방정식 문 제 해결하기

이차함수 $y=-x^2+ax+b$ 의 그래프와 이차함수 $y=x^2-3x+1$ 의 그래프의 교점의 x좌표는 이차방정

$$-x^{2} + ax + b = x^{2} - 3x + 1$$
$$2x^{2} - (3+a)x + 1 - b = 0$$

의 두 실근이다. a, b는 유리수이므로 한 근이 $1-\sqrt{2}$ 이면 나머지 한 근은 $1+\sqrt{2}$ 이다.

따라서 $2x^2 - (3+a)x + 1 - b = 0$ 의 두 근을 α , β 라 하면 근과 계수의 관계에 의해

$$\alpha + \beta = \frac{3+a}{2} = 2$$
, $\alpha \beta = \frac{1-b}{2} = -1$

이다. a=1, b=3이므로 a+3b=10이다.

16. [출제의도] 이차함수의 그래프를 이용하여 최대 최소 문제 해결하기

점 P(a, b)는 직선 $y = -\frac{1}{4}x + 1$ 위의 점이므로

$$b = -\frac{1}{4}a + 1$$

 $b = -\frac{1}{4}a + 1$ 을 주어진 식에 대입하면

$$\begin{aligned} a^2 + 8b &= a^2 + 8 \biggl(-\frac{1}{4}a + 1 \biggr) \\ &= a^2 - 2a + 8 \\ &= (a - 1)^2 + 7 \end{aligned}$$

이다. 그런데 A(0,1), B(4,0)이므로 $0 \le a \le 4$ 이다. 따라서 a=1일 때, a^2+8b 의 최솟값은 7이다.

[다른 풀이]

a = -4b + 4를 주어진 식에 대입하면

$$\begin{aligned} a^2 + 8b &= (-4b + 4)^2 + 8b \\ &= 16b^2 - 32b + 16 + 8b \\ &= 16b^2 - 24b + 16 \\ &= 16\left(b^2 - \frac{3}{2}b + \frac{9}{16}\right) + 7 \\ &= 16\left(b - \frac{3}{4}\right)^2 + 7 \end{aligned}$$

이다. 그런데 A(0,1), B(4,0)이므로 $0 \le b \le 1$ 이다. 따라서 $b = \frac{3}{4}$ 일 때, $a^2 + 8b$ 의 최솟값은 7이다.

17. [출제의도] 다항식을 이용하여 통합 교과적 문제 해결하기

별 A의 반지름의 길이를 R_{Λ} , 별 B의 반지름의 길이를 $R_{\rm B}$, 별 A의 표면 온도를 T_{Λ} , 별 B의 표면 온도를 $T_{\rm B}$ 라 하자.

별 A의 반지름의 길이는 별 B의 반지름의 길이의 12배이므로

$$R_{\Lambda} = 12R_{\rm p}$$
,

별 A의 표면 온도는 별 B의 표면 온도의 $\frac{1}{2}$ 배이므로

$$T_{\rm A} = \frac{1}{2} \, T_{\rm B}$$

이다.

$$\begin{split} \frac{L_{\rm A}}{L_{\rm B}} &= \frac{4\pi R_{\rm A}^{~2} \times \sigma \, T_{\rm A}^{~4}}{4\pi R_{\rm B}^{~2} \times \sigma \, T_{\rm B}^{~4}} \\ &= \frac{4\pi (12 R_{\rm B})^2 \times \sigma \Big(\frac{1}{2} \, T_{\rm B}\Big)^4}{4\pi R_{\rm B}^{~2} \times \sigma \, T_{\rm B}^{~4}} \\ &= 144 \times \frac{1}{16} \\ &= 9 \end{split}$$

따라서 $\frac{L_{\text{A}}}{L_{\text{b}}} = 9$ 이다.

18. [출제의도] 복소수의 성질 추론하기

z=a+bi에 대하여 iz=i(a+bi)=-b+ai, $\overline{z}=a-bi$ 인 데 $iz=\overline{z}$ 이므로 a=-b이다. 따라서

$$z = a - ai$$

이다.

ㄱ. $z+\overline{z}=(a-ai)+(a+ai)=2a=-2b$ 이다. (참)

ㄴ. $iz = \overline{z}$ 의 양변에 i를 곱하면 $i\overline{z} = -z$ 이다. (참)

 $= \overline{z}$ 이므로 $\frac{\overline{z}}{z} = i$ 이고 $i\overline{z} = -z$ 이므로 $\frac{z}{\overline{z}} = -i$

이다. 따라서 $\frac{\overline{z}}{z} + \frac{z}{\overline{z}} = 0$ 이다. (참)

그러므로 ㄱ, ㄴ, ㄷ이 모두 옳다.

[다른 풀이 1]

 $\sqsubseteq. \ \ i\overline{z} = i(a+ai) = ai-a = -\left(a-ai\right) = -z$

$$\Box \, . \, \, \, \frac{\overset{-}{z}}{z} + \frac{z}{\overset{-}{z}} = \frac{a + ai}{a - ai} + \frac{a - ai}{a + ai} = \frac{(a + ai)^2 + (a - ai)^2}{(a - ai)(a + ai)} = 0$$

[다른 풀이 2]

 \Box . $iz = \overline{z}$ 의 양변을 제곱하면 $z^2 + (\overline{z})^2 = 0$ 이고 $z \overline{z} = 2a^2 \neq 0$ 이므로 $\frac{\overline{z}}{z} + \frac{z}{\overline{z}} = \frac{z^2 + (\overline{z})^2}{z\overline{z}} = 0$ 이다.

19. [출제의도] 근과 계수의 관계를 이용하여 이차방정 식 문제 해결하기

근과 계수의 관계에 따라 $\alpha+\beta=4$, $\alpha\beta=2$ 이다. 직각삼각형에 내접하는 정사각형의 한 변의 길이를 k라 하면

 $\alpha: \beta = \alpha - k: k$

이다. 따라서 정사각형의 넓이 $k^2=\frac{1}{4}$ 과 둘레의 길 이 4k=2를 두 근으로 하는 이차방정식은

$$4(x-2)(x-\frac{1}{4})=4x^2-9x+2=0$$

이다. 따라서 m+n=-9+2=-7이다.

[다른 풀이]

정사각형의 넓이 $k^2=\frac{1}{4}$ 과 둘레의 길이 4k=2를 두 근으로 하는 이차방정식은 근과 계수의 관계에 의해 두 근의 합이 $\frac{9}{4}$ 이고 곱이 $\frac{1}{9}$ 이므로

$$x^2 - \frac{9}{4}x + \frac{1}{2} =$$

$$4x^2 - 9x + 2 = 0$$

따라서 m+n=-9+2=-7이다.

20. [출제의도] 이차함수와 도형의 관계 추론하기

그림과 같이 두 현 AP, BP의 중점을 각각 Q, R라하고 선분 AB의 중점을 C라 하면 사각형 PQCR는 직사각형이다. $\overline{PQ}=a$, $\overline{PR}=b$ 라 하면 $a^2+b^2=25$ 이다. 원 O_1 의 반지름의 길이를 r_1 , 원 O_2 의 반지름의 길이를 r_2 , 원 O의 반지름의 길이를 r_3 하면

$$\overline{\operatorname{CQ}} = 5 - 2r_1, \ \overline{\operatorname{CR}} = 5 - 2r_2 \, {}^{\diamond} | \, \overline{\operatorname{CR}}.$$

이때 $\overline{CQ} = \overline{PR}$, $\overline{CR} = \overline{PQ}$ 이므로

 $b=5-2r_1,\ a=5-2r_2$ 이고, $r_1=\frac{5-b}{2},\ r_2=\frac{5-a}{2}$ 이다. 한편, 원 밖의 한 점에서 그 원에 그은 두 접선의 길이는 같으므로 (2a-r)+(2b-r)=10=2 imes5이다. 따라서

$$r = a + b - \boxed{5}$$

이다. 그러므로 세 원 O_1, O_2, O 의 넓이의 합은

$$\begin{array}{l} \pi \left(r_1^2 + r_2^2 + r^2 \right) \\ = \pi \left\{ \left(\frac{5-b}{2} \right)^2 + \left(\frac{5-a}{2} \right)^2 + \left(a + b - \left[\frac{5}{2} \right] \right)^2 \right\} \cdots \oplus \end{array}$$

이다. a+b=t $(5 < t \le 5\sqrt{2})$ 라 하면 식 ①은

$$\pi \left(t - \boxed{\frac{25}{4}} \right)^2 + \frac{75}{16} \tau$$

이므로 세 원 $O_1,\,O_2,\,O$ 의 넓이의 합의 최솟값은 $rac{75}{16}\pi$ 이다.

따라서
$$\alpha = 25$$
, $\beta = 5$, $\gamma = \frac{25}{4}$ 이므로

$$(\alpha - \beta) \times \gamma = 125$$

이다

21. [출제의도] 연립부등식의 해 추론하기

 $x^2 - a^2x = x(x - a^2) \ge 0$

에서 $x \le 0$ 또는 $x \ge a^2$ 이고

 $x^2-4ax+4a^2-1=(x-(2a-1))(x-(2a+1))<0$ of left 2a-1< x<2a+1 of Lf.

i) 0<a<12일 때

연립부등식의 해는

 $-1 < 2a - 1 < x \le 0$ 또는 $a^2 \le x < 2a + 1 < 2$

인데 $0 < a^2 < \frac{1}{4}$ 이고 1 < 2a + 1 < 2이므로

x=0,1의 2개 정수해가 존재한다.

ii) $a = \frac{1}{2}$ 일 때

연립부등식의 해는

$$\frac{1}{4} = a^2 \le x < 2a + 1 = 2$$

이므로 x=1의 1개 정수해가 존재한다.

iii) $\frac{1}{2} < a < 1$ 일 때

연립부등식의 해는

$$a^2 < x < 2a + 1$$

인데 $\frac{1}{4} < a^2 < 1$ 이고 2 < 2a + 1 < 3이므로

x=1,2의 2개 정수해가 존재한다.

iv) a=1일 때

연립부등식의 해는

 $1 = a^2 = 2a - 1 < x < 2a + 1 = 3$

이므로 x=2의 1개 정수해가 존재한다.

v) $1 < a < \sqrt{2}$ 일 때

연립부등식의 해는

인테 $1 < a^2 < 2$ 이고 $3 < 2a + 1 < 1 + 2\sqrt{2} < 4$ 이므로 x = 2, 3의 2개 정수해가 존재한다.

그러므로 i) ~ v)에 의해

 $a=\frac{1}{2}$ 또는 a=1일 때, 1개 정수해가 존재한다.

따라서 모든 실수 a의 값의 합은 $\frac{3}{2}$ 이다.

22. [출제의도] 복소수 계산하기

두 복소수가 서로 같을 조건에 의해

(a+1) + 3i = 7 + bi

 $a+1=7\;,\;\; 3=b$

이다. 따라서 a=6, b=3이고 a+b=9이다.

23. [출제의도] 다항식 계산하기

$$(x-y)^2 = (x+y)^2 - 4xy$$

= $5^2 - 4 \times 2$

따라서 $(x-y)^2 = 17$ 이다.

24. [출제의도] 연립부등식 이해하기

부등식 2x+1 < x-3의 해는 x < -4이고 $x^2 + 6x - 7 = (x-1)(x+7) < 0$ 의 해는

-7 < x < 1이므로 연립부등식의 해는 -7 < x < -4이다. 따라서 $\alpha = -7$, $\beta = -4$ 이므로 $\beta - \alpha = -4 - (-7) = 3$

25. [출제의도] 이차방정식의 해를 이용하여 문제 해결하기

이차방정식 $x^2+4x-3=0$ 의 두 근이 α , β 이므로 $\alpha^2+4\alpha-3=0$ $\beta^2+4\beta-3=0$ 이 성립한다. 따라서 $\alpha^2+4\alpha-4=-1$ $\beta^2+4\beta-4=-1$ 이므로 $\frac{6\beta}{\alpha^2+4\alpha-4}+\frac{6\alpha}{\beta^2+4\beta-4}=-6(\beta+\alpha)$ 이다. 근과 계수의 관계에 따라 $\alpha+\beta=-4$ 이므로

 $\frac{6\beta}{\alpha^2 + 4\alpha - 4} + \frac{6\alpha}{\beta^2 + 4\beta - 4} = -6(\alpha + \beta) = 24$

이다.

26. [출제의도] 나머지정리를 이용하여 다항식의 나눗 셈 문제 해결하기

다항식의 나눗셈에 의해

$$\begin{split} P(x) &= \left(x^2 - x - 1\right)(ax + b) + 2 \cdots \text{ } \textcircled{1} \\ P(x + 1) &= \left(x^2 - 4\right)Q(x) - 3 \\ &= \left(x - 2\right)(x + 2)Q(x) - 3 \cdots \text{ } \textcircled{2} \end{split}$$

x=2를 ②에 대입하면

$$P(3) = -3$$

x =- 2를 ②에 대입하면

$$P(-1) = -$$

이 된다. ①의 식에 $x=3,\ x=-1$ 을 대입하여 정리 하면 $3a+b=-1,\ -a+b=-5$ 이고

$$a = 1$$
, $b = -4$

이다. 따라서

50a + b = 50 - 4 = 46

이다.

27. [출제의도] 이차함수의 성질 추론하기

이차함수 y=f(x)의 그래프와 직선 y=4ax-10의 교점의 x좌표가 1, 5이므로

이차방정식 f(x) = 4ax - 10의 두 실근은 1,5이다. f(x)의 이차항의 계수가 a이므로 이차방정식의 근과 계수의 관계에 의해

 $f(x)-4ax+10=a(x^2-6x+5)$ 로 둘 수 있다. 따라서

$$f(x) = ax^{2} - 6ax + 5a + 4ax - 10$$
$$= ax^{2} - 2ax + 5a - 10$$

$$= a(x-1)^2 + 4a - 10$$

이다. 한편, a>0이고 $1\leq x\leq 5$ 에서 f(x)의 최솟값 이 -8이므로 f(1)=-8이다.

f(1) = 4a - 10 = -8에서 $a = \frac{1}{2}$ 이다.

따라서 100a=50이다.

28. [출제의도] 미지수가 3개인 연립일차방정식을 이용 하여 실생활 문제 해결하기

a<b<c이므로 두 변의 길이의 차의 최댓값은

이다. 그러므로 (가)에 의해

c - a = 16

이다. 또한 (나)에 의해

b-a=2 또는 c-b=2

이다.

i) b-a=2 인 경우

b-a=2이고 c-a=16이므로 두 식을 더하면

 $-2a+b+c=18\cdots$

철사의 총 길이가 60cm이므로

 $a+b+c=60\cdots$

이다. ②-①을 하면 3a=42이다.

따라서

a = 14, b = 16, c = 30

이다. 그러나 c=a+b이므로 삼각형의 결정조건에 위 배되다

ii) c-b=2인 경우

c-b=2이고 c-a=16이므로 두 식을 더하면

 $-a-b+2c=18 \cdot \cdot \cdot \cdot \cdot (3)$

철사의 총 길이가 60cm이므로

 $a+b+c=60\cdots$

이다. 3+4를 하면 3c=78이다.

라서

a = 10, b = 24, c = 26

이고

 $c^2 = a^2 + b^2$

이므로 이 삼각형은 직각삼각형이다.

그러므로

3a-b+c=30-24+26=32

이다.

29. [출제의도] 곱셈 공식을 이용하여 도형 문제 해결하기

 $\overline{AQ} = x$, $\overline{QB} = y$ 라 하자.

$$S_1 = \frac{\pi}{2} \bigg(\frac{x+y}{2} \bigg)^2 - \frac{\pi}{2} \bigg(\frac{x}{2} \bigg)^2 - \frac{\pi}{2} \bigg(\frac{y}{2} \bigg)^2 = \frac{\pi}{4} \, xy$$

이다.

△AQP ∽ △PQB 이므로

$$\overline{AQ} : \overline{PQ} = \overline{PQ} : \overline{BQ}$$

이다. 따라서

$$\overline{\operatorname{PQ}}^{\;2} = \overline{\operatorname{AQ}} \times \overline{\operatorname{BQ}} = xy$$

이다. 그러므로
$$S_2=\frac{\pi}{2}\bigg(rac{\overline{\mathrm{PQ}}}{2}\bigg)^2=\frac{\pi}{8}\,xy$$
이다.

 $S_1 - S_2 = \frac{\pi}{2} xy = 2\pi \text{ of } \lambda^2$

$$xy = 16$$

이고
$$\overline{AQ} - \overline{QB} = 8\sqrt{3}$$
 에서

$$x - y = 8\sqrt{3}$$

이므로

$$(\overline{AB})^2 = (\overline{AQ} + \overline{QB})^2$$

= $(x + y)^2$
= $(x - y)^2 + 4xy$
= $192 + 64 = 256$

이다. 따라서 $\overline{AB} = 16$ 이다.

[다른 풀이]

∠APB=90°이므로

$$\overline{AP}^2 + \overline{BP}^2 = (x+y)^2 \cdot \cdots \cdot \mathbb{O}$$

$$\overline{\operatorname{PQ}}^{\,2} = \overline{\operatorname{AP}}^{\,2} - x^{\,2} = \overline{\operatorname{BP}}^{\,2} - y^{\,2} \cdot \cdots \cdot \mathbb{Q}$$

①을 ②에 대입하면 $2\overline{BP}^2 = (x+y)^2 + y$

 $2\overline{\mathrm{BP}}^{\;2} = (x+y)^2 + y^2 - x^2 = 2xy + 2y^2$

이므로

 $\overline{BP}^2 = xy + y^2 \cdots \cdots 3$ ③을 ②에 대입하면 $\overline{PQ}^2 = xy$ 이다.

30. [출제의도] 나머지정리를 이용하여 이차다항식 추론하기

i) P(1)=0, P(2)=0 인 경우

P(x)는 이차다항식이므로 조건 (나)에 의해

P(0) = 3, P(3) = 3

이다. 따라서

$$P(x) = \frac{3}{2}(x-1)(x-2)$$

이다.

ii) P(1)=0, P(2)≠0 인 경우

P(x)는 이차다항식이므로 조건 (나)에 의해 아래와 같이 세 가지 경우만 생각하면 된다.

① P(0) = 0, P(3) = 3 일 때,

P(1) = 0, P(0) = 0, P(3) = 3

이다. 따라서

$$P(x) = \frac{1}{2}x(x-1)$$

이다.

② P(0)=3, P(3)=0일 때,

P(1) = 0, P(0) = 3, P(3) = 0

이다. 따라서

$$P(x) = (x-1)(x-3)$$

이다.

③ P(0)=3, P(3)=3일 때,

P(1) = 0, P(0) = 3, P(3) = 3

이다. 따라서

$$P(x) = \frac{3}{2}(x-1)(x-2)$$

이다. 그런데 *P*(2)=0이므로 모순이다.

iii) P(1)≠0, P(2)=0인 경우

III) P(1)≠0, P(2)=0인 경우P(x)는 이차다항식이므로 조건 (나)에 의해 아래와

같이 세 가지 경우만 생각하면 된다. ① P(0) = 0, P(3) = 3일 때,

P(0) = 0, P(3) = 3 = 3P(2) = 0, P(0) = 0, P(3) = 3

P(2)-0, 이다. 따라서

$$P(x) = x(x-2)$$

റില

② P(0)=3, P(3)=0일 때,

P(2) = 0, P(0) = 3, P(3) = 0

이다. 따라서

$$P(x) = \frac{1}{2}(x-2)(x-3)$$

이다

이나. ③ P(0) = 3, P(3) = 3일 때,

 $P(0) = 3, P(3) = 3 \equiv 10,$ P(2) = 0, P(0) = 3, P(3) = 3

P(2) : 이다. 따라서

Q(4) = 27이다.

$$P(x) = \frac{3}{2}(x-1)(x-2)$$

이다. 그런데 P(1)=0이므로 모순이다. 그러므로 i), ii), iii)에 의해

$$Q(x) = \frac{3}{2}(x-1)(x-2) + \frac{1}{2}x(x-1)$$

$$+ (x-1)(x-3) + x(x-2)$$

 $+\frac{1}{2}(x-2)(x-3)$ 이다. 따라서 Q(x)를 x-4로 나눈 나머지는