[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre de 2020

Recta de Carga

¿ Que es la recta de carga?

- \longrightarrow La caja negra tiene una relación $(V_X \, , I_X)$ desconocida
- → La resistencia impone ciertas condiciones de tensión/corriente al circuito.

¿ Que es la recta de carga?

- \longrightarrow La caja negra tiene una relación (V_X, I_X) desconocida
- → La resistencia impone ciertas condiciones de tensión/corriente al circuito.
- Recorremos la malla para obtener:

$$V_{DD} - I_X R_L - V_X = 0$$

¿ Que es la recta de carga?

- \longrightarrow La caja negra tiene una relación (V_X, I_X) desconocida
- → La resistencia impone ciertas condiciones de tensión/corriente al circuito.
- Recorremos la malla para obtener:

$$V_{DD} - I_X R_L - V_X = 0$$

→ Despejando:

$$I_X = -\frac{1}{R_L} V_X + \frac{V_{DD}}{R_L}$$
 Ecuación de la recta de carga.
$$y = m * x + b \rightarrow m = -1/RL , b = VDD/RL$$

La impone únicamente R_L . No depende del dispositivo que pongamos.

Grafiquemos en un plano I_X vs. V_X ...

Agregarmos la característica $(V_X; I_X)$

Reemplazando por un transistor NMOS....

Grafiquemos en un plano I_D vs. V_{DS} ...

Si dibujamos la curva de salida del transistor...

La recta de carga nos ayuda a pensar como cambia el punto de trabajo al variar parámetros como R_L y V_{DD} .

→ ¿Cómo se ve modificada la recta de carga al variar estos valores?

Herramienta para jugar: https://www.desmos.com/calculator/b74ene4slr

Dado el siguiente circuito donde:

• $\mu_n C'_{OX} = 100 \frac{\mu A}{V^2}$

• $\frac{W}{L} = 20$

- $\begin{array}{lll} \bullet & V_T = 1 & & \bullet & \lambda \simeq 0 \\ \bullet & R_D = 1 \; k\Omega & & \end{array}$
- Hallar la polarización. Graficar la recta de carga
- Encontrar los valores de $R_D \in [R_{D_{MIN}}$, $R_{D_{MAX}}]$ tal que el dispositivo de mantenga en saturación.
- ¿Qué sucede cuando $R_D = 10 \cdot R_{D_{MAX}}$? Estimar I_D .

Como $I_G = 0$ \rightarrow En el gate tengo un divisor resistivo

$$V_G = V_{GS} = V_{GG} \frac{R_{G2}}{R_{G1} + R_{G2}} = 5 V \frac{30k\Omega}{20 k\Omega + 30 k\Omega} = 3 V$$

Como $I_G = 0$ \rightarrow En el gate tengo un divisor resistivo

$$V_G = V_{GS} = V_{GG} \frac{R_{G2}}{R_{G1} + R_{G2}} = 5 V \frac{30k\Omega}{20 k\Omega + 30 k\Omega} = 3 V$$

Suponemos que estamos en saturación:

Saturación:
$$\begin{cases} V_{GS} > V_T \\ V_{DS} > V_{DSSAT} \end{cases} \rightarrow I_D = \frac{\mu_n \, c_{OX}' \, W}{2} \, \left(V_{GS} - V_T \right)^2 \, \left[1 + \lambda \, \left(\ldots \right) \right]$$

Reemplazando con los datos y $V_{GS} = 3 V$ obtenemos: $I_D = 4 mA$

- b) Encontrar los valores de $R_D \in [R_{D_{MIN}}, R_{D_{MAX}}]$ tal que el dispositivo de mantenga en saturación.
- \longrightarrow Comencemos pensando en el valor mínimo... Si $R_D=0 \rightarrow V_{DS}=V_{DD}=8~V>V_{DSSAT}=2$
- \longrightarrow Como se ve la recta de carga? En este caso $\frac{1}{R_D} = "\infty" \dots$

- b) Encontrar los valores de $R_D \in [R_{D_{MIN}}$, $R_{D_{MAX}}]$ tal que el dispositivo de mantenga en saturación.
- \longrightarrow Comencemos pensando en el valor mínimo... Si $R_D=0 \rightarrow V_{DS}=V_{DD}=8~V>V_{DSSAT}$.
- \longrightarrow Como se ve la recta de carga? En este caso $\frac{1}{R_D} = "\infty" \dots$

 \longrightarrow Para hallar $R_{D_{MAX}}$ observemos como seria su recta de carga...

c) ¿Qué sucede cuando $R_D=10\cdot R_{DMAX}$? Estimar I_D .

c) ¿Qué sucede cuando $R_D = 10 \cdot R_{DMAX}$? Estimar I_D .

c) ¿Qué sucede cuando $R_D=10\cdot R_{DMAX}$? Estimar I_D .

→ Haciendo zoom cerca del punto Q en el grafico....

→ Haciendo zoom cerca del punto Q en el grafico....

→ Haciendo zoom cerca del punto Q en el grafico....

$$\rightarrow I_{DQ} \simeq 533 \,\mu\text{A}$$

Resumen

- Obtuvimos la ecuación de la recta de carga.
- Analizamos como cambia cuando varían los valores de los elementos del circuito (R_L, V_{DD} , etc.).
- La usamos para encontrar el rango de resistencias posibles que mantienen a un NMOS en un régimen deseado.
- La usamos para estimar la corriente en tríodo.

Bonus round:

Bonus round ++:

- ¿Cómo la plantearían la recta de carga para un diodo? <----
- ¿Qué otras formas se les ocurren de estimar la corriente en tríodo usando la recta de carga?
- Ejercicio 24 Guía 5: Recta de carga pero con una fuente de corriente-.