1 Review of useful concepts and Introduction	4.1 Gaussian Process Regression	5.2 Variationa Inverence	6 Bayesian Neural Nets
1.1 Usefull math	$f \sim GP(\mu, k)$ then: $f y_{1:n}, x_{1:n} \sim GP(\tilde{\mu}, \tilde{k})$	$\hat{q} = \arg\min_{q \in Q} KL(q p(\cdot y))$	Likelihood: $p(y x;\theta) = \mathcal{N}(f_1(x,\theta), \exp(f_2(x,\theta)))$
φ is convex $\Rightarrow \varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$	$\tilde{\mu}(x) = \mu(x) + K_{A,x}^{T} (K_{AA} + \epsilon I_n)^{-1} (y_A - \mu_A)$	$\hat{q} = \arg \max_{q \in Q} ELBO$ Evidence Lower Bound	Prior: $p(\theta) = \mathcal{N}(0, \sigma_p^2)$
Hoeffding: $Z_1, \dots iid, Z_i \in [0, C], \mathbb{E}[Z_i] = \mu$	$\tilde{k}(x, x') = k(x, x') - K_{A,x}^T (K_{AA} + \epsilon I_n)^{-1} K_{A,x'}$	$ELBO \doteq \mathbb{E}_{\theta \sim q} [\log p(y \theta)] - KL(q p(\cdot)) \le \log p(y)$	$\theta_{MAP} = \arg\max(p(y, \theta))$
$\Rightarrow P\left(\left \mu - \frac{1}{n}\sum_{i=1}^{n} Z_{i}\right > \epsilon\right) \le 2\exp(-2n\frac{\epsilon^{2}}{C}) \le \delta$	Where: $K_{A,x} = [k(x_1, x)k(x_n, x)]^T$	5.3 Markov Chain Monte Carlo Idea : All we need is sampling from postirior	6.1 Variation inference:
$\Rightarrow n \ge \frac{C}{2\epsilon^2} \log \frac{2}{\delta}$	$[K_{AA}]_{ij} = k(x_i, x_j) \text{ and } \mu_A = [\mu(x_1 \dots x_n)]^T$	Ergodic Markov Chain:	Usually we use $Q = Set$ of Gaussians
Robbins Monro $\alpha_t \xrightarrow{RM} 0$: $\sum \alpha_t = \infty$, $\sum \alpha_t^2 < \infty$,	$\exists t \text{ s.t. } \mathbb{P}(i \to j \text{ in t steps}) > 0 \ \forall i, j \Rightarrow$	$\hat{q} = \arg\max_{i} ELBO$ Reparameterization trick
1.2 Multivariate Gaussian	4.2 Kernels $k(x,y)$ is a kernel if it's symmetric semidefinite	$\exists ! \pi = \lim_{N \to \infty} \mathbb{P}(X_n = x) \text{ Limit distribution}$	q approx. the posterior but how to predict?
$f(x) = \frac{1}{2\pi\sqrt{ \Sigma }}e^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$	positive:	Ergodic Theorem : if $(X_i)_{i \in \mathbb{N}}$ is ergodic:	$p(y^* x^*, \mathcal{D}) \simeq \frac{1}{m} \sum_{j=1}^m p(y^* x^*, \theta^{(i)}), \ \theta \sim \hat{q}(\theta)$ Gaussian Mixture distribution: $\mathbb{V}(y^* x^*, \mathcal{D}) \simeq$
Suppose we have a Gaussian random vector	$\forall \{x_1,, x_n\}$ then for the Gram Matrix	$\lim_{N\to\infty} \frac{1}{n} \sum_{i=1}^{N} f(X_i) = \mathbb{E}_{x\sim\pi} [f(x)]$	
$\begin{bmatrix} X_A \\ X_B \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix}, \begin{bmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{bmatrix}\right) \Rightarrow X_A X_B = x_B \sim$	$[K]_{ij} = k(x_i, x_j) \text{ holds } c^T K c \ge 0 \forall c$	Detailed Blanced Equation:	$\simeq \frac{1}{m} \sum_{j=1}^{m} \sigma^{2}(x^{*}, \theta^{(i)}) + \frac{1}{m} \sum_{j=1}^{m} \left(\mu(x^{*}, \theta^{(j)} - \overline{\mu}(x^{*})) \right)$ $\rightarrow \text{Aletoric,} \rightarrow \text{Epistemic}$
	Some Kernels: (h is the bandwidth hyperp.)	P(x x') is the transition model of a MC:	→Aletoric, →Epistemic
$\mathcal{N}\left(\mu_A + \Sigma_{AB}\Sigma_{BB}^{-1}(x_B - \mu_B), \Sigma_{AA} - \Sigma_{AB}\Sigma_{BB}^{-1}\Sigma_{BA}\right)$	Gaussian (rbf): $k(x,y) = \exp(-\frac{ x-y ^2}{h^2})$	if $R(x)P(x' x) = R(x')P(x x')$ then R is the limit	Dropouts Regularization: Random ignore no-
1.3 Information Theory elements:	Exponential: $k(x, y) = \exp(-\frac{\ x - y\ }{h})$	distribution of the MC	des in SGD iteration: Equavalent to VI with
Entropy: $H(X) \doteq -\mathbb{E}_{x \sim p_X} [\log p_X(x)]$	Linear kernel: $k(x, y) = x^T y$ (here $K_{AA} = XX^T$)	Metropolis Hastings Algo: Sample from a MC	$Q = \left\{ q(\cdot \lambda) = \prod_{j} q_{j}(\theta_{j} \lambda), \ \lambda \in \mathbb{R}^{d} \right\}$
$H(X Y) \doteq -\mathbb{E}_{(x,y) \sim p_{(X,Y)}} \left[\log p_{Y X}(y x) \right]$	4.3 Optimization of Kernel Parameters	which has $P(x) = \frac{Q(x)}{Z}$ as limit dist.	where $q_j(\theta_j \lambda) = p\delta_0(\theta_j) + (1-p)\delta_{\lambda_j}(\theta_j)$
if $X \sim \mathcal{N}(\mu, \Sigma) \Rightarrow H(X) = \frac{1}{2} \log \left[(2\pi e)^d \det(\Sigma) \right]$	Given a dataset A , a kernel function $k(x, y; \theta)$.	Result: $\{X_i\}_{i\in\mathbb{N}}$ sampled from the MC	This allows to do Dropouts also in prediction
Chain Rule: $H(X, Y) = H(Y X) + H(X)$	$y \sim N(0, K_v(\theta))$ where $K_v(\theta) = K_{AA}(\theta) + \sigma_n^2 I$	init: $R(x x')$	6.2 MCMC:
Mutual Info: $I(X,Y) \doteq KL(p_{(X,Y)} p_Xp_Y)$	$\hat{\theta} = \arg\max_{\theta} \log p(y X;\theta)$	/* Good R choice \rightarrow fast convergence */ init: $X_0 = x_0$	MCMC but cannot store all the $\theta^{(i)}$:
I(X, Y) = H(X) - H(X Y) if $X \sim \mathcal{N}(\mu, \Sigma)$, $Y = X + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$:	In GP: $\hat{\theta} = \arg\min_{\theta} y^T K_v^{-1}(\theta) y + \log K_v(\theta) $	for $t \leftarrow 1, 2, \dots$ do	1) Subsampling: Only store a subset of the $\theta^{(i)}$ 2) Gaussian Aproximation: We only keep:
e e e e e e e e e e e e e e e e e e e	We can from here $\nabla \downarrow$:	$x' \sim R(\cdot, x_{t-1})$	(A)
then $I(X, Y) = \frac{1}{2} \log \left[\det \left(I + \frac{1}{\sigma^2} \Sigma \right) \right]$	$\nabla_{\theta} \log p(y X;\theta) = \frac{1}{2} tr((\alpha \alpha^{T} - K^{-1}) \frac{\partial K}{\partial \theta}), \alpha = K^{-1} y$	$\alpha = \min \left\{ 1; \frac{Q(x')R(x_{t-1} x')}{Q(x_{t-1})R(x' x_{t-1})} \right\}$	$\mu_i = \frac{1}{T} \sum_{j=1}^{T} \theta_i^{(j)}$ and $\sigma_i = \frac{1}{T} \sum_{j=1}^{T} (\theta_i^{(j)} - \mu_i)^2$ And updete them online.
1.4 Kullback-Leiber divergence	Or we could also be baysian about θ	with probability α do	•
$KL(p q) = \mathbb{E}_p \left[\log \frac{p(x)}{q(x)} \right]$	4.4 Aproximation Techniques Local method: $k(x_1, x_2) = 0$ if $ x_1 - x_2 \gg 1$	$X_t = x';$	Predictive Esnable NNs: Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1:n}$ be our dataset.
if $p_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$, $p_1 \sim \mathcal{N}(\mu_1, \Sigma_1) \Rightarrow KL(p_0 p_1)$		$ begin{tabular}{l} c c c c c c c c c c c c c c c c c c c$	Train θ_i^{MAP} on \mathcal{D}_i with $i = 1,, m$
$= \frac{1}{2} \left(tr \left(\Sigma_1^{-1} \Sigma_0 \right) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) - k + \log \frac{ \Sigma_1 }{ \Sigma_0 } \right)$	Random Fourier Features: if $k(x,y) = \kappa(x-y)$	Metropolis Adj. Langevin Algo (MALA):	\mathcal{D}_i is a Bootstrap of \mathcal{D} of same size
$\hat{q} = \arg\min_{q} KL(p q) \Rightarrow \text{overconservative}$	$p(w) = \mathcal{F} \{\kappa(\cdot), w\}$. Then $p(w)$ can be normalized to be a density.	Energy function: $P(x) = \frac{Q(x)}{Z} = \frac{1}{Z} \exp(-f(x))$	and $p(y^* x^*, D) \simeq \frac{1}{m} \sum_{j=1}^{m} p(y^* x^*, \theta_i^{MAP})$
$\hat{q} = \arg\min_{q} KL(q p) \Rightarrow \text{overconfident}$	$\kappa(x-y) = \mathbb{E}_{p(w)} \left[\exp \left\{ i w^T (x-y) \right\} \right]$ antitransform	We chose: $R(x x') = \mathcal{N}(x' - \tau \nabla f(x), 2\tau I)$	6.3 Model calibration
2 Bayesian Regression	$\kappa(x-y) = \mathbb{E}_{b\sim\mathcal{U}([0,2\pi]),w\sim p(w)}[z_{w,b}(x)z_{w,b}(y)]$	Stoch. Grad. Langevin Dynamics (SGLD): We use SGD to Approximate ∇f . Converges	Train \hat{q} on \mathcal{D}_{train}
$w \sim N(0, \sigma_p^2 I), \ \epsilon \sim N(0, \sigma_n^2 I), \ y = Xw + \epsilon$	where $z_{w,b}(x) = \sqrt{2}cos(w^{T}x + b)$. I can MC	also without acceptance step	Evaluate \hat{q} on $\mathcal{D}_{val} = \{(y', x')\}_{i=1:m}$
$y w \sim N(X^r w, \sigma_n^2 I)$	extract features z. If # features is \ll n then this	Hamilton MC: SGD performance improoved	Held-Out-Likelihood $\doteq \log p(y'_{1:m} x'_{1:m}, \mathcal{D}_{train})$
$w y \sim N((X^TX + \lambda I)^{-1}X^Ty, (X^TX + \lambda I)^{-1}\sigma_n^2)$	is faster $(X^T X \text{ vs } XX^T)$	by adding momentum (consider last step ∇f)	$\geq \mathbb{E}_{\theta \sim \hat{q}} \left[\sum_{i=1}^{m} \log p(y_i' x_i', \theta) \right] $ (Jensen)
3 Kalman Filter	Inducing points: We a vector of inducing	Used when $P(X_{1:n})$ is hard but $P(X_i X_{-i})$ is easy.	$\simeq \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{m} \log p(y_i' x_i', \theta^{(j)}), \ \theta^{(j)} \sim \hat{q}$
$\begin{cases} X_{t+1} = FX_t + \epsilon_t & \epsilon_t \sim N(0, \Sigma_x) \\ Y_t = HX_t + \eta_t & \eta_t \sim N(0, \Sigma_y) \end{cases} X_1 \sim N(\mu_p, \Sigma_p)$	variables <i>u</i>	init: $x_0 \in \mathbb{R}^n$; $(x_0^{(B)} = x^{(B)})$ B is our data	Evaluate predicted accuracy: We divide \mathcal{D}_{val}
$Y_t = HX_t + \eta_t \qquad \eta_t \sim N(0, \Sigma_y)^{\Lambda_1 \sim IV(\mu_p, \Sigma_p)}$	$f_A _u \sim N(K_{Au}K_uu^{-1}u, K_{AA} - K_{Au}K_uu^{-1}K_{uA})$	for $t = 1, 2,$ do	into bins according to predicted confidence va-
	$f_* _u \sim N(K_{*u}K_uu^{-1}u, K_{**} - K_{*u}K_uu^{-1}K_{u*})$	$\begin{array}{c} x_t = x_{t-1} \\ \text{with } i \sim \mathcal{U}(\{1:n\} \setminus B) * \mathbf{do} \end{array}$	lues. In each bin we compare accuracy with
$\mu_{t+1} = F \mu_t + K_{t+1} (y_{t+1} - HF \mu_t)$ $\Sigma_{t+1} = (I - K_{t+1} H) (F \Sigma_t F^T + \Sigma_x)$	Subset of Regressors (SoR): $\blacksquare \to 0$		confidence
$\mathcal{L}_{t+1} = (I - \mathbf{K}_{t+1} H)(F \mathcal{L}_t F + \mathcal{L}_x)$ $K_{t+1} = (F \mathcal{L}_t F^T + \mathcal{L}_x) H^T (H(F \mathcal{L}_t F^T + \mathcal{L}_x) H^T + \mathcal{L}_y)^{-1}$	FITC: ■ → its diagonal		7 Active Learning
4 Gaussian Processes	5 Approximate inference5.1 Laplace Approximation	* if we do it $\forall i \notin B$ no DBE but more practical	Let \mathcal{D} be the set of observable points.
$f \sim GP(\mu, k) \Rightarrow \forall \{x_1, \dots, x_n\} \ \forall n < \infty$	$\hat{\theta} = \arg \max_{\theta} p(\theta y)$	5.4 Variable elimination for MPE (most pro-	We can observe $S \subseteq \mathcal{D}$, $ S \le R$ Information Gain: $\hat{S} = \arg \max_{S} F(S) = I(f, y_S)$
$[f(x_1)f(x_n)] \sim N([\mu(x_1)\mu(x_n)], K)$	$\Lambda = -\nabla_{\theta} \nabla_{\theta} \log p(\theta y) _{\theta = \hat{\theta}}$	bable explanation): With loopy graphs RP is often overconfi-	- 1 - 1 - 1 - 1
where $K_{ij} = k(x_i, x_j)$	$p(\theta y) \simeq q(\theta) = N(\hat{\theta}, \Lambda^{-1})$	With loopy graphs, BP is often overconfident/oscillates .	This is NP Hard, \Rightarrow Greedy Algo:
	I (- W) - I(*) - · (*))		

init: $S^* = \emptyset$ for $t = 1 : R$ do	9.4.1 Policy iteration	10.1.3 R_{max} algorithm (On-Policy) We add a fairy state x^*	11.2 Parametric Q-learining $\delta(\theta, \theta_{old}) = (Q(x, a; \theta) - r - \gamma \max_{a'} Q(x', a'; \theta_{old})$
$\begin{cases} x_t = \arg\max_{x \in \mathcal{D}} F(\mathcal{S}^* \cup \{x\}) \\ (x_t = \arg\max_{x \in \mathcal{D}} \sigma_x^2 \mathcal{S} \text{ for GPs}) \end{cases}$	while <i>no more changes</i> do $\pi \leftarrow \pi_{\mathcal{G}}^{V}$ (Update the Policy)	init: $r(x,a) = R_{max} \ \forall x \in \mathcal{X} \cup \{x^*\}, a \in \mathcal{A}$ init: $p(x^* x,a) = 1 \ \forall x \in \mathcal{X}, a \in \mathcal{A}$	We don't differiantiate with regard to θ_{old} The SGD step is: $\theta \leftarrow \theta - \alpha_t \delta(\theta, \theta) \nabla_{\theta} Q(x, a; \theta)$
$\left(x_t = \arg\max_{x \in \mathcal{D}} \frac{\sigma_{f S}^2(x)}{\sigma_n^2(x)} \text{ for heter. GPs}\right)$	$V \leftarrow (I - \gamma T^{\pi})^{-1} r^{\pi}$) (Update the value)	init: π = optimal policy w.r.t. p , r repeat Execute π and get x_{t+1} and r_t	Deep Q Networks (DQN): Version of Q-learning where we update Q only each batch: $L(\theta) = \sum_{(x,a,r,x') \in \mathcal{D}} (r + \gamma \max_{a'} Q(x',a';\theta_{old}) - Q(x,a;\theta))^2$
	9.4.2 Value iteration	Update belief of $r(x_t, \pi(x_t))$ and $p(x_{t+1} x_t, \pi(x_t))$	Double DQN (better): $L(\theta) = \sum_{(x,a,r,x') \in \mathcal{D}} (r + \gamma Q(x',a^*(\theta);\theta_{old}) - Q(x,a;\theta))^2$
that: $F(A \cup \{x\}) - F(A) \ge F(B \cup \{x\}) - F(B)$	while $ V_t - V_{t-1} \le \epsilon$ do	If obeserved 'enough' in (x,a) recompute π using the updated	where: $a^*(\theta) \doteq \arg \max_{a'} Q(x', a'; \theta)$ 11.3 Policy-Search method
F is Submodular $\Rightarrow F(S^*) \ge \left(1 - \frac{1}{e}\right)F(\hat{S})$ 8 Bayesian Optimization	foreach $x \in \mathcal{X}$, $a \in \mathcal{A}$ do $Q_t(x,a) \leftarrow r(x,a) +$	belief only in (x, a) until;	$\pi(x) = \pi(x;\theta); \ r(\tau) = \sum_{t=0}^{T} \gamma^t r(x_t, a_t)$
Like Active Learning but we only want to find		'Enough'? See Hoeffding's inequality	$J(\theta) \doteq J(\pi(\cdot; \theta)) = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau)] \simeq \frac{1}{m} \sum_{i=1}^{m} r(\tau^{(i)})$
the optima. We pick $x_1, x_2,$ from \mathcal{D} and observe $y_i = f(x_t) + \epsilon_t$.	foreach $x \in \mathcal{X}$ do $V_t(x) \leftarrow \max_a Q_t(x, a)$	$(\hat{p} \in [0,1], \hat{r} \in [0, R_{max}]).$ PAC bound: With probability $1 - \delta$, R_{max} will	with $\pi_{\theta}(\tau) := p(x_0) \prod_{t=1}^{T} \pi(a_t x_t;\theta) p(x_{t+1} x_t,a_t)$ $\hat{\theta} = \arg\max_{\theta} J(\theta) \Rightarrow SGD$
Comulative regret: $R_T = \sum_{t=0}^{T} \left(\max_{x \in \mathcal{D}f(x) - f(x_t)} \right)$	$\hat{\pi} = \pi_G^{V_T}$; where V_T last found Value	reach an ϵ -optimal policy in a number of steps that is polynomial in $ X $, $ A $, T , $1/\epsilon$ and $log(1/\delta)$.	11.3.1 Theory results:
$\mathbf{Oss:}^{R_T}_{\overline{T}} \to 0 \Rightarrow \max_t f(x_t) \to \max_{x \in \mathcal{D}} f(x)$	-	Memory $O(X ^2 A)$.	$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau)] = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau)] =: \bullet$ $\bullet = \mathbb{E}_{\tau \sim \pi_{\theta}} [r(\tau) \sum_{t=0}^{T} \nabla_{\theta} \log \pi(a_{t} x_{t}; \theta)]$
8.1 Upper Confidence Sampling	9.5 Partialy Observable MDP (POMDP)	10.2 Model-free RL Learn π^* only via V^* or Q^{V^*}	
With GP $x_t = \arg\max_{x \in \mathcal{D}} \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x)$ Chosing the correct β_t we get: $\frac{R_T}{T} = \mathcal{O}\left(\sqrt{\frac{\gamma_T}{T}}\right)$.	POMDP can be seen as MDP where: 1) \mathcal{X}_{POMDP} are prob. distribution over \mathcal{X}_{MDP}	10.2.1 TD-learning (On-Policy)	11.3.2 REINFORCE
Where $\gamma_t = \max_{ \mathcal{S} < T} I(f; y_{\mathcal{S}})$. On d dims:	2) the actions are the same 3) $r_{POMDP}(b, a) = \mathbb{E}_{x \sim b}[r_{MDP}(x, a)]$	Given a policy π we want to learn V^{π} $V^{\pi}(x) = \mathbb{E}_{R \sim r(x, \pi(x)), X' \sim p(\cdot x, \pi(x))} [R + \gamma V^{\pi}(X')]$	$b(\tau_{0:t-1}) = \sum_{\tau'=0}^{t-1} \gamma^{t'} r_{t'}; \ r(\tau) - b(\tau_{0:t-1}) = \gamma^t G_t$
Linear: $\gamma_T = \mathcal{O}(d \log T)$ RBF: $\gamma_T = \mathcal{O}((l \log T)^{d+1})$	4) Trans. model: $b_{t+1}(x) = \mathbb{P}(X_{t+1} = x y_{1:t+1}, a_t)$	After seeing $(x_{t+1}, r_t x_t, \pi(x_t))$ we update: $V_{t+1}(x_t) \leftarrow (1 - \alpha_t) V_t(x_t) + \alpha_t (r_t + \gamma V_t^{\pi}(x_{t+1}))$	Let $G_t = \sum_{t'=t}^T \gamma^{t'-t} r_{t'} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$ $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \gamma^t G_t \nabla_{\theta} \log \pi(a_t x_t; \theta) \right]$
Optimal $\beta_t = \mathcal{O}(\ f\ _K^2 + \gamma_t \log^3 T)$ Oss: $\beta \uparrow =$ more exploration	$b_{t+1}(x) = \frac{1}{Z}p(y_{t+1} X_{t+1} = x)\sum_{x' \in \mathcal{X}_{MDP}} p(x x', a_t)b_t(x')$ How to solve? Discretize \mathcal{X}_{POMDP} and treat	Where α_t is a regulizer term (only 1 samlple)	SGD: $\theta \leftarrow \theta + \eta_t \gamma^t G_t \nabla_{\theta} \pi(a_t x_t; \theta) \ \forall t = 1 : T$
8.2 Thompson Samling	it as a MDP or Policy gradient techniques	Th: If $\alpha_t \xrightarrow{RM} 0$ then $V \xrightarrow{a.s.} V^{\pi}$ 10.2.2 Q-learning (Off Policy)	Oss: $G_t \leftarrow G_t - \frac{1}{T} \sum_{t'=0}^{T-1} G_t' \Rightarrow \text{Less Variance}$ 11.4 Actor Critic
$x_t = \arg\max_{x \in \mathcal{D}} \tilde{f}(x), \ \ \tilde{f} \sim p(f x_{1:n}, y_{1:n})$ 9 Markov Decision Process (MDP)	10 Non Parametric RL	Given experience we want to learn $Q^* = Q^{V^*}$	After seeing (x, a, r, x') :
9.1 Definitions	It is an MDP with unknown $p(x' x, a)$ and $r(x, a)$	$Q^{*}(x,a) = \mathbb{E}_{\substack{R \sim r(x,\pi(x)) \\ X' \sim p(\cdot x,\pi(x))}} [R + \gamma \max_{a'} Q^{*}(X',a')]$	$\theta_{\pi} \leftarrow \theta_{\pi} + \eta_{t} Q(x, a, \theta_{Q}) \nabla_{\theta_{\pi}} \log \pi(a x; \theta_{\pi})$ $\theta_{Q} \leftarrow \theta_{Q} - \eta_{t} \delta \nabla_{\theta_{Q}} Q(x, a; \theta_{Q})$
$\mathcal{X} = \{1,, n\}$ states; $\mathcal{A} = \{1,, m\}$ actions; $p(x' x, a)$ transition probability;	10.1 Model-based RL	After seeing $(x_{t+1}, r_t x_t, a_t)$ we update: $Q(x_t, a_t) \leftarrow (1 - \alpha_t)Q(x_t, a_t) + \alpha_t(r_t + \gamma \max_{a'} Q(x_{t+1}, a'))$	$\delta = Q(x, a; \theta_Q) - r - \gamma Q(x', \pi(x', \theta_\pi), \theta_Q)$
$r(x,a)$ reward (can be random); $\pi: \mathcal{X} \to \mathcal{A}$ policy;	From all steps X_{t+1} , $R_t X_t$, A_t we can learn:	Th: If $\alpha_t \xrightarrow{RM} 0$ then $Q \xrightarrow{a.s.} Q^*$	11.4.1 Theory justification: $\mathbb{E}_{\tau_{t+1:\infty} \sim \pi_{\theta}} [G_t a_t, x_t] = Q^{\pi_{\theta}} (x_t, a_t)$
$T^{\pi} \in \mathbb{R}^{n \times n}$, $T_{ij}^{\pi} = p(j i, \pi(i))$ Transition Matrix: $J(\pi) = \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} r(X_{i}, \pi(X_{i}))\right]$ Expected value:	$p(x' x,a) \simeq \hat{p}_{x' x,a} = \frac{Count(X_{t+1}=x', X_t=x, A_t=a)}{Count(X_t=x, A_t=a)}$	Optimistic Q learning: Initialize: $Q(x, a) = \frac{R_{max}}{1-\gamma} \prod_{t=1}^{T_{init}} (1 - \alpha_t)^{-1}$	$\nabla_{\theta_{\pi}} J(\theta_{\pi}) = \mathbb{E}_{\tau \sim \pi_{\theta_{\pi}}} \left[\sum_{t=0}^{T} \gamma^{t} \nabla_{\theta_{\pi}} \log \pi(a_{t} x_{t}; \theta_{\pi}) Q(x_{t}, a_{t}) \right]$
$V^{\pi}: \mathcal{X} \to \mathbb{R}, \ x \mapsto J(\pi X_0 = x)$ Value function;	$r(x,a) \simeq \hat{r}_{x,a} = \frac{1}{Count(X_t=x, A_t=a)} \sum_{t X_t=x, A_t=a} R_t$ How to chose a_t ?	Same convergence time as with R_{max} . Memory	$\nabla_{\theta_{\pi}} J(\theta_{\pi}) = \mathbb{E}_{\tau \sim \pi_{\theta_{\pi}}, x \sim \rho(\cdot)} \Big[\nabla_{\theta_{\pi}} \log \pi(a_t x_t; \theta_{\pi}) Q(x_t, a_t) \Big]$ where $\rho(x) = \sum_{t=0}^{\infty} \gamma^t p(x_t = x)$.
$Q^{V}(x, a) = r(x, a) + \gamma \sum_{x \in \mathcal{X}} p(x' x, a)V(x) Q$ func; $\pi_{G}^{V}(x) = \arg\max_{a} Q^{V}(x, a)$ greedy policy w.r.t. V;	10.1.1 ϵ -greedy (On-Policy)	O(X A). Comp: $O(A)$. 11 Parametric RL	11.4.2 Advantage Function Baseline We can us $V(x; \theta_V)$ as baseline for $Q(x, a; \theta_O)$
9.2 Value function Theorem	With probability ϵ , pick random action.	11.1 Parametric TD-learning	$A^{\pi}(x,a) \doteq Q^{\pi}(x,a) - V^{\pi}(x)$
$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{x' \in \mathcal{X}} p(x' x, \pi(x)) V^{\pi}(x')$ Matrix formulation: $(I - \gamma T^{\pi}) V^{\pi} = r^{\pi}$	With probability $1 - \epsilon$, pick $a = \arg \max Q(x, a)$. Oss: Q is calculated from (\hat{p}, \hat{r})	11.1.1 TD-learinging as SGD TD-learing = 1 sample $(x', r x, \pi(x))$ SGD on:	Oss: $\forall \pi \forall x \max_a A^{\pi}(x, a) \ge 0$ Oss: π optimal $\forall x A^{\pi}(x, \pi(x)) \le 0$.
9.3 Bellman Theorem	Th: If $\epsilon_t \stackrel{RM}{\longrightarrow} 0$ then $(\hat{r}, \hat{p}) \stackrel{a.s.}{\longrightarrow} (r, p)$	$\bar{l}_2(V;x,r) = \frac{1}{2} \left(V - r - \gamma \mathbb{E}_{x' \sim p(\cdot x,\pi(x))} \left[\hat{V}^{\pi}(x') \right] \right)^2$	11.4.3 Off policy variation $\hat{\theta}_{\pi} = \arg \max J(\theta); J(\theta) = \mathbb{E}_{x \sim \mu} \left[Q(x, \pi(x; \theta); \theta_Q) \right]$
1) π^* , V^* are optimal policy and it's value func. 2) $\pi^* = \pi_G^{V^*}$	10.1.2 Softmax (On-Policy)	1 sample estimate of $\nabla_V \bar{l}_2 = \delta = V - r - \gamma \hat{V}^{\pi}(x')$ $\Rightarrow V \leftarrow V - \alpha_t \delta$ where $V = \hat{V}^{\pi}(x)$	where μ visits all states. SGD can now be done
3) $V^*(x) = max_a [r(x, a) + \gamma \sum_{x \in \mathcal{X}} p(x' x, a)V^*(x)]$		11.1.2 TD-parametric	in Batches and Off-policy also for θ_{π} : $\theta_{\pi} \leftarrow \theta_{\pi} + \eta \nabla_{\theta_{\pi}} \frac{1}{ B } \sum_{(x,a,r,x') \in B} Q(x,\pi(x,\theta_{\pi});\theta_{Q})$
1) ⇔ 2) ⇔ 3) 9.4 Algorithms	Draw $a \sim q(a x) = \operatorname{softmax} \frac{Q(x,a)}{\tau}$ If $\tau \uparrow$ it means I trust less Q	If $\hat{V}^{\pi}(x) = V(x, \theta)$ then: $\delta = [V(x; \theta) - r - \gamma V(x'; \theta_{old})] \nabla_{\theta} V(x, \theta)$	If π is randomized we can usa the reparametrization trick.

