Differential Geometry

Hoyan Mok

August 13, 2022

Contents

C	onte	nts	i	
1	Manifolds			
2	Scalar and Vector Fields			
	§ 1	Scalar Fields	2	
	$\S 2$	Vector Fields	2	
	§ 3	Covariant and Contravariant	3	
	§ 4	Flows	4	
3	Differential Forms			
	§ 5	1-forms	5	
bi	bliog	graphy	7	
Sy	mbo	ol List	8	
In	dex		q	

Chapter 1

Manifolds

Chapter 2

Scalar and Vector Fields

§1 Scalar Fields

Definition 1.1 (Scalar Field). Let M be a smooth manifold, $f \in C^{(\infty)}(M)$ is called a *scalar field*.

The scalar field over a manifold, form an algebra.

§2 Vector Fields

Definition 2.1 (vector field). A *vector field* v over manifold M is a $C^{(\infty)}(M) \to C^{(\infty)}(M)$ map that satisfies

- (a) $\forall f, g \in C^{(\infty)}(M), \ \forall \lambda, \mu \in \mathbb{R}, \ v(\lambda f + \mu g) = \lambda v(f) + \mu v(g)$ (linearity).
- (b) $\forall f, g \in C^{(\infty)}(M), v(fg) = v(f)g + fv(g)$

The space of all vector fields on M is denoted by Vect(M)

Definition 2.2 (tangent vector). Let v be a vector field over M, p be a point on M. The tangent vector v_p at p is defined as a $C^{(\infty)}(M) \to C^{(\infty)}(M)$ map that satisfies

$$v_p(f) = v(f)(p). \tag{2-1}$$

The collection of tangent vectors at p is called the **tangent space** at p, denoted by T_pM .

The derivative of a path $\gamma \colon [0,1] \to M$ (or $\mathbb{R} \to M$) in a smooth manifold is defined as:

$$\gamma'(t) \colon C^{(\infty)}(M) \to \mathbb{R};$$

$$\gamma'(t)(f) = \frac{\mathrm{d}}{\mathrm{d}t} f \circ \gamma(t)$$
(2-2)

We can see that $\gamma'(t) \in T_{\gamma(t)}M$.

§3 Covariant and Contravariant

Definition 3.1 (pullback). Let f be a scalar field over $M, \varphi \in C^{(\infty)}(M, N)$. Then the **pullback** of f by φ is defined as

$$\varphi^* f = f \circ \varphi \in C^{(\infty)}(N). \tag{3-1}$$

Fields that are pullbacked are *covariant* fields.

Definition 3.2 (pushforward). Let v_p be a tangent vector of M at $p, \varphi \in C^{(\infty)}(M, N), q = \varphi(p)$. Then the **pushforward** of v_p by φ is defined as

$$(\varphi_* v)_q(f) = v_p(\varphi^* f). \tag{3-2}$$

Note that the pushforward of a vector field can only be obtained when φ is a diffeomorphism.

Fields that are pushforwarded are *contravariant* fields.

Mathematicians and physicists might have disagreement on whether a tangent vector is covariant or contravariant. This is because of that physicists might consider the coordinates (v^{μ}) of a tangent vector as a vector field, instead of linear combination of bases ∂_{μ} .

§4 Flows

Let a path γ : \mathbb{R} follows a vector field (a velocity field), that is

$$\gamma'(t) = v_{\gamma(t)},\tag{4-1}$$

then we call γ the *integral curve* through p := gamma(0) of the vector field v.

Definition 4.1. Suppose v is an integrable vector field. Let $\varphi_t(p)$ be the point at time t on the integral curve through p.

$$\varphi_t \colon M \to M$$
 (4-2)

is then called a flow generated by v.

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t(p) = v_{\varphi_t(p)}. \tag{4-3}$$

Chapter 3

Differential Forms

§5 1-forms

Definition 5.1 (1-form). A **1-form** ω on M is a $\mathrm{Vect}(M) \to C^{(\infty)}(M)$ which satisfies that

(a)
$$\forall v, w \in \text{Vect}(M), \forall f, g \in C^{(\infty)}(M),$$

$$\omega(fv + gw) = f\omega(v) + g\omega(w). \tag{5-1}$$

The space of all 1-forms on M is denoted as $\Omega^1(M)$.

The operator d, when given a $C^{(\infty)}(M)$ function (which is called a **0-form**), would give a 1-form:

$$(\mathrm{d}f)(v) = v(f). \tag{5-2}$$

This is called the *exterior derivative* or *differential* of f.

The $cotangent\ vector$ or covector is similar as the tangent vector:

$$\omega_p(v_p) = \omega(v)(p). \tag{5-3}$$

The space of cotangent vectors at p on M is denoted by T_p^*M .

1-forms are contravariant, that is, if $\varphi \colon M \to N$, then

$$(\varphi^* \omega_q)(v_p) = \omega_q(\varphi_* v_p), \tag{5-4}$$

where $\varphi(p) = q$.

bibliography

[1] Javier P. Muniain John C. Baez. Gauge Fields, Knots and Gravity (Series on Knots and Everything). Series on Knots and Everything. World Scientific Publishing Company, 1994. ISBN: 9789810217297,9810217293,9810220340.

Symbol List

Here listed the important symbols used in these notes

$$\Omega^1(M)$$
, 5 T_pM , 3 $\operatorname{Vect}(M)$, 2

Index

0-form, 5	flow, 4	
1-form, 5	integral curve, 4	
contravariant, 3 cotangent vector, 5 covariant, 3	pullback, 3 pushforward, 3	
covector, 5	scalar field, $\frac{2}{}$	
differential, 5	tangent space, $\frac{3}{3}$	
exterior derivative, 5	vector field, $\frac{2}{}$	