Quantifier-elimination in algebraically closed fields

Introductory Model Theory

November 18–25, 2021

Recommended reading: Poizat's Course in Model Theory, Chapter 6.1.

Definition 1. A field is a structure $(K, +, \cdot, -, 0, 1)$ satisfying the axioms

$$\forall x, y, z \ \Big(x + y = y + x \ \land \ x \cdot y = y \cdot x \ \land \ x \cdot 1 = x \ \land \ x + 0 = x \ \land \ x + (-x) = 0$$

$$\land \ x + (y + z) = (x + y) + z \ \land \ x \cdot (y \cdot z) = (x \cdot y) \cdot z \ \land \ x \cdot (y + z) = (x \cdot y) + (x \cdot z) \Big)$$

$$0 \neq 1 \ \land \ \forall x \ (x \neq 0 \rightarrow \exists y \ (x \cdot y = 1)).$$

A ring is defined similarly, without the last line.

For example, \mathbb{R} , \mathbb{Q} , \mathbb{C} are fields, and \mathbb{Z} is a ring.

Fact 2. In a ring, $(x = 0 \lor y = 0) \to xy = 0$. In a field, $xy = 0 \to (x = 0 \lor y = 0)$.

1 Polynomials

If K is a field, a polynomial is a formal expression

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_0, \ldots, a_n \in K$. The degree of P is deg P = n (assuming $a_n \neq 0$). We say P is monic if $a_n = 1$. The ring of polynomials is written K[x].

Lemma 3 (Polynomial division). If $P(x) \in K[x]$ is monic and $A(x) \in K[x]$, then there are $Q(x), R(x) \in K[x]$ such that A(x) = Q(x)P(x) + R(x), and $\deg R < \deg P$.

Proof. By induction on deg A. If deg $A < \deg P$ take R = A and Q = 0. Otherwise, let $A = a_n x^n + \cdots$, where $n = \deg A \ge \deg P$. Let $P = x^m + p_{m-1} x^{m-1} + \cdots$, where $m = \deg P$. Then $A - a_n x^{n-m} P = (a_n x^n + \cdots) - (a_n x^n + a_n p_{m-1} x^{n-1} + \cdots)$, a polynomial of lower degree. By induction, there are Q' and R such that

$$A - a_n x^{n-m} P = Q'P + R$$

$$A = (a_n x^{n-m} + Q')P + R.$$

Lemma 4. Suppose $P(x) \in K[x]$ and P(a) = 0 for some $a \in K$. Then P(x) = (x - a)Q(x) for some $Q(x) \in K[x]$.

Proof. Apply the Division Lemma to write P(x) = (x - a)Q(x) + R(x) where $\deg R(x) < \deg(x - a) = 1$. Then R(x) = c for some $c \in K$. But

$$0 = P(a) = (a - a)Q(a) + R(a) = R(a) = c,$$

so R(x) = c = 0, and then P(x) = (x - a)Q(x).

The set of roots of P(x) is $\{a \in K : P(a) = 0\}$. Note that $roots(P \cdot Q) = roots(P) \cup roots(Q)$, by Fact 2.

Lemma 5. Let P(x) be a non-zero polynomial of degree n. Then P(x) has at most n roots in K.

Proof. If P(x) has no roots we are done. Otherwise P(a) = 0 for some a. Then P(x) = (x-a)Q(x). We have $\deg P = 1 + \deg Q$, so $\deg Q = n-1$. By induction, Q(x) has at most n-1 roots. The roots of P are a and the roots of Q, so P has at most n roots.

Theorem 6. The following are equivalent for a field K:

- 1. Every polynomial of degree n factors as $c \cdot \prod_{i=1}^{n} (x a_i)$.
- 2. Every polynomial of degree n > 0 has a root.

Proof. (1) \Longrightarrow (2): Given P(x) of degree n > 0, write $P(x) = c \cdot \prod_{i=1}^{n} (x - a_i)$. Then a_1 is a root of P(x).

(2) \Longrightarrow (1): Let P(x) have degree n. If n=0, then P(x) is a constant $c \in K$, so $P(x)=c\cdot 1$. If n>0, then P(x) has a root b, so P(x)=(x-b)Q(x). By induction on degree, $Q(x)=c\cdot \prod_{i=1}^{n-1}(x-a_i)$, so $P(x)=c\cdot (x-b)\cdot \prod_{i=1}^{n-1}(x-a_i)$.

Definition 7. A field K is algebraically closed if the equivalent conditions of Theorem 6 hold.

Fact 8 (Fundamental theorem of algebra). C is an algebraically closed field.

Algebraically closed fields are axiomatized by the field axioms plus the axiom schema

$$\forall y_0, \dots, y_n \ \left(y_n \neq 0 \to \exists x \ \sum_{i=0}^n y_i x^i = 0 \right)$$

for n > 0. This theory is denoted ACF. We will show ACF has quantifier elimination.

Lemma 9. If $K \models ACF$, then K is infinite.

Proof. If
$$K = \{a_1, \ldots, a_n\}$$
, then $P(x) = 1 + \prod_{i=1}^n (x - a_i)$ has no root in K .

2 Fields of fractions

Theorem 10. Let K be a field and R be a subring. Define $Frac(R) = \{a/b : a, b \in R, b \neq 0\}$. Then Frac(R) is a subfield of K.

Proof sketch. We must show Frac(R) is closed under addition, multiplication, subtraction, and division. This is straightforward. For example, Frac(R) is closed under addition because

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$

 $\operatorname{Frac}(R)$ is called the *field of fractions* of R, and is the subfield of K generated by R. As an example, $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$.

Theorem 11. Let K_1, K_2 be fields. Let R_1, R_2 be subrings, respectively. Let $f: R_1 \to R_2$ be an isomorphism. Then f extends to an isomorphism $g: \operatorname{Frac}(R_1) \to \operatorname{Frac}(R_2)$.

Proof sketch. Define by g(a/b) = f(a)/f(b). Then g is a well-defined isomorphism from F_1 to F_2 extending f. For example, g is well-defined because

$$a/b = c/d \implies ad = bc \implies f(a)f(d) = f(b)f(c) \implies f(a)/f(b) = f(c)/f(d).$$

The map g preserves addition because

$$g\left(\frac{a}{b} + \frac{c}{d}\right) = g\left(\frac{ad + bc}{bd}\right) = \frac{f(ad + bc)}{f(bd)} = \frac{f(a)f(d) + f(b)f(c)}{f(b)f(d)}$$
$$= \frac{f(a)}{f(b)} + \frac{f(c)}{f(d)} = g\left(\frac{a}{b}\right) + g\left(\frac{c}{d}\right).$$

3 Prime ideals

Definition 12. An *ideal* in a ring R is a subset $I \subseteq R$ such that

- $x, y \in I \implies x + y \in I$.
- $0 \in I$.
- $x \in I, y \in R \implies xy \in I$.

I is a prime ideal if $1 \notin I$ and for $x, y \in R$ we have $x, y \notin I \implies xy \notin I$.

Example. The even numbers $2\mathbb{Z}$ are a prime ideal in the ring \mathbb{Z} .

Theorem 13. Let R be a ring and K be a field and $f: R \to K$ be a map satisfying

$$f(x+y) = f(x) + f(y)$$
$$f(xy) = f(x)f(y)$$
$$f(1) = 1.$$

Let $I = \{x \in R : f(x) = 0\}$. Then I is a prime ideal.

Such a map is called a homomorphism and I is called the kernel.

Proof. Note that f(0) + 1 = f(0+1) = f(1) = 1 = 0+1. Add -1 to both sides, simplify, and see f(0) = 0. We verify the definition of a prime ideal.

- If f(x) = 0 and f(y) = 0, then f(x + y) = f(x) + f(y) = 0 + 0 = 0.
- f(0) = 0.
- If f(x) = 0 and $y \in R$, then $f(xy) = f(x)f(y) = 0 \cdot f(y) = 0$.
- $f(1) = 1 \neq 0$.
- Suppose $f(x) \neq 0$ and $f(y) \neq 0$. Then $f(xy) = f(x)f(y) \neq 0$.

Lemma 14 (Division). If n > 0 and $a \in \mathbb{Z}$, there are $q, r \in \mathbb{Z}$ such that a = qn + r, and $r \in \{0, \ldots, n-1\}$.

Proof. Let
$$q = \lfloor a/n \rfloor$$
, and $r = a - qn$. Then $r/n = a/n - q = a/n - \lfloor a/n \rfloor$, so $0 \le r/n < 1$, and $0 \le r < n$.

Theorem 15. Let I be an ideal in \mathbb{Z} .

- 1. $I = n\mathbb{Z} := \{nx : x \in \mathbb{Z}\} \text{ for some } n \geq 0.$
- 2. If I is a prime ideal, then n is 0 or a prime number.

Proof.

- 1. Note $\{0\} \subseteq I$. If $I = \{0\}$, take n = 0. Otherwise, take $n \in I \setminus \{0\}$ minimizing |n|. If n < 0, replace n with $-n = n \cdot (-1) \in I$. Then $n\mathbb{Z} \subseteq I$ because I is an ideal. We claim $n\mathbb{Z} = I$. Otherwise, take $a \in I \setminus n\mathbb{Z}$. Then a = qn + r for some $r \in \{0, \ldots, n-1\}$. But $r = a qn = a + n(-q) \in I$. This contradicts the choice of n unless r = 0, in which case $a = qn \in n\mathbb{Z}$, contradicting the choice of a.
- 2. If n = 1, then $1 \in n\mathbb{Z}$, and I is not prime. If n = ab where a, b > 1, then $a \notin n\mathbb{Z}$ and $b \notin n\mathbb{Z}$, but $ab = n \in n\mathbb{Z}$, and I is not prime.

Theorem 16. Let I be an ideal in K[x].

- 1. $I = P \cdot K[x]$ for some polynomial P that is monic or zero.
- 2. If I is a prime ideal, then P is 0 or an irreducible polynomial.

Proof. Similar to Theorem 15.

4 Algebraic and transcendental elements

Fix a field L and a subfield K.

Definition 17. An element $a \in L$ is algebraic over K if there is a non-zero polynomial $P(x) \in K[x]$ such that P(a) = 0. Otherwise, a is transcendental over K.

Example. $\sqrt{2}$ is algebraic over \mathbb{Q} because it's a root of $x^2 - 2 = 0$.

Fact 18 (Lindemann). π is transcendental over \mathbb{Q} .

Definition 19. $I_{a/K} = \{P(x) \in K[x] : P(a) = 0\}.$

Lemma 20. $I_{a/K}$ is a prime ideal in K[x].

Proof. $I_{a/K}$ is the kernel of the homomorphism

$$K[x] \to L$$

 $P(x) \mapsto P(a).$

Theorem 21. If a is transcendental over K, then $I_{a/K} = 0 \cdot K[x] = \{0\}$.

If a is algebraic over K, then $I_{a/K} = P(x) \cdot K[x] = \{P(x)Q(x) : Q(x) \in K[x]\}$ for some irreducible monic polynomial $P(x) \in K[x]$, called the minimal polynomial of a over K.

If $M \models ACF$ and K is a subfield, then K^{alg} denotes the set of $a \in M$ algebraic over K.

Remark 22. If $M \models ACF$ and K is a countable subfield, then K^{alg} is countable. (This uses Lemma 5.)

5 Quantifier elimination in ACF

Recall from November 11,

Fact 23. Suppose M, N are \mathcal{L} -structures. Suppose $\bar{a} \in M^n$ and $\bar{b} \in N^n$. If $\operatorname{qftp}^M(\bar{a}) = \operatorname{qftp}^N(\bar{b})$, then there is an isomorphism $f : \langle \bar{a} \rangle_M$ to $\langle \bar{b} \rangle_N$ such that $f(\bar{a}) = \bar{b}$.

Lemma 24. Suppose M, N are uncountable models of ACF. Suppose $\bar{a} \in M^n$ and $\bar{b} \in N^n$ and $qftp^M(\bar{a}) = qftp^N(\bar{b})$. Suppose $\alpha \in M$. Then there is $\beta \in N$ such that $qftp^M(\bar{a}, \alpha) = qftp^N(\bar{b}, \beta)$.

Proof. Let $A = \langle \bar{a} \rangle_M$ and $B = \langle \bar{b} \rangle_M$. There is an isomorphism $f : A \to B$ with $f(\bar{a}) = \bar{b}$. By Theorem 11 we can extend f to an isomorphism $f : \operatorname{Frac}(A) \to \operatorname{Frac}(B)$. Moving N by an isomorphism, we may assume $\operatorname{Frac}(A) = \operatorname{Frac}(B)$ and $f = \operatorname{id}_{\operatorname{Frac}(A)}$. (In particular, $\bar{a} = \bar{b}$.) Let $K = \operatorname{Frac}(A)$.

Claim. There is $\beta \in N$ with $I_{\alpha/K} = I_{\beta/K}$.

Proof. First suppose α is algebraic over K with minimal polynomial P(x). Take $\beta \in N$ with $P(\beta) = 0$. Let Q(x) be the minimal polynomial over β over K. Then $P(x) \in Q(x) \cdot K[x]$. But P(x) is irreducible, so P(x) = Q(x). Then $I_{\alpha/K} = P(x) \cdot K[x] = I_{\beta/K}$.

Next, suppose α is transcendental. By Remark 22, there is transcendental $\beta \in N$. Then $I_{\alpha/K} = \{0\} = I_{\beta/K}$.

Take such a β . Let $I = I_{\alpha/K} = I_{\beta/K}$.

- If $P(x) \in K[x]$, then $P(\alpha) = 0 \iff P(x) \in I \iff P(\beta) = 0$.
- If $P(x), Q(x) \in K[x]$, then $P(\alpha) = Q(\alpha) \iff (P Q)(\alpha) = 0 \iff (P Q)(\beta) = 0 \iff P(\beta) = Q(\beta)$.
- If $\varphi(x)$ is an atomic $\mathcal{L}(K)$ -formula, then $M \models \varphi(\alpha) \iff N \models \varphi(\beta)$.
- If $\varphi(x)$ is a quantifier-free $\mathcal{L}(K)$ -formula, then $M \models \varphi(\alpha) \iff N \models \varphi(\beta)$.

In particular, if $\psi(\bar{y}, x)$ is a quantifier-free \mathcal{L} -formula, then

$$M \models \psi(\bar{a}, \alpha) \iff N \models \psi(\bar{a}, \beta).$$

Lemma 25. Lemma 24 holds if we replace "uncountable" with " ω -saturated."

Proof. Take uncountable $M' \succeq M$ and $N' \succeq N$. (This is possible by upward Löwenheim-Skolem and Lemma 9.) By Lemma 24, there is $\beta_0 \in N'$ such that $\operatorname{qftp}(\bar{a}, \alpha) = \operatorname{qftp}(\bar{b}, \beta_0)$. By ω -saturation, we can find $\beta \in N$ such that $\operatorname{tp}(\beta/\bar{b}) = \operatorname{tp}(\beta_0/\bar{b})$. Then $\operatorname{tp}(\bar{b}, \beta) = \operatorname{tp}(\bar{b}, \beta_0)$, so

$$\operatorname{qftp}(\bar{b},\beta) = \operatorname{qftp}(\bar{b},\beta_0) = \operatorname{qftp}(\bar{a},\alpha).$$

Theorem 26. ACF has quantifier elimination.

6 Completions of ACF

If K is a field and $n \in \mathbb{Z}$, let n^K denote the interpretation of n in K, i.e.,

$$n^{K} = \begin{cases} \underbrace{1 + \dots + 1}_{n \text{ times}} & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ \underbrace{-(1 + \dots + 1)}_{-n \text{ times}} & \text{if } n < 0. \end{cases}$$

where the right-hand side is interpreted in K.

Fact 27. If $n, m \in \mathbb{Z}$, then

$$n^K + m^K = (n+m)^K$$

$$n^K \cdot m^K = (n \cdot m)^K$$

$$-(n^K) = (-n)^K.$$

For example, when n=2 and m=3, the first line is saying that

$$K \models (1+1) + (1+1+1) = 1+1+1+1+1.$$

Theorem 28. Let $I = \{n \in \mathbb{Z} : n^K = 0\}$. Then I is a prime ideal in \mathbb{Z} , so $I = p\mathbb{Z}$ for some $p \in \{0, 2, 3, 5, 7, 11, \ldots\}$.

The number p is called the *characteristic* of K, written char(K).

Example. In \mathbb{C} , $n^{\mathbb{C}} = n$, so $n^{\mathbb{C}} = 0 \iff n = 0$, and $I = \{0\} = 0\mathbb{Z}$. Therefore $\operatorname{char}(\mathbb{C}) = 0$.

Theorem 29. Suppose $M, N \models ACF$. Then $M \equiv N \iff char(M) = char(N)$.

Proof. The following are equivalent:

- $M \equiv N$.
- For every sentence φ , $M \models \varphi \iff N \models \varphi$.
- For every quantifier-free sentence φ , $M \models \varphi \iff N \models \varphi$.
- For every atomic sentence φ , $M \models \varphi \iff N \models \varphi$.
- For any terms $t_1, t_2, M \models t_1 = t_2 \iff N \models t_1 = t_2$.
- For any term $t, M \models t = 0 \iff N \models t = 0$.
- For any $n \in \mathbb{Z}$, $M \models n = 0 \iff N \models n = 0$.
- $\{n \in \mathbb{Z} : n^M = 0\} = \{n \in \mathbb{Z} : n^N = 0\}.$
- $\operatorname{char}(M) = \operatorname{char}(N)$.

For $p \in \{0, 2, 3, 5, 7, 11, \ldots\}$, we let ACF_p denote the theory of algebraically closed fields of characteristic p.

Corollary 30. ACF_p is a complete theory, for each p.

Corollary 31. The field \mathbb{C} is completely axiomatized by ACF_0 .

If you know Gödel's completeness theorem and recursion theory, this implies

Corollary 32. The set $\{\varphi \in L : \mathbb{C} \models \varphi\}$ is computable. There is an algorithm which takes as input a sentence φ in the language of rings, and outputs whether or not φ is true in \mathbb{C} .

Proof. Enumerate all statements provable from ACF_0 until we find a proof of φ or a proof of $\neg \varphi$. By completeness of ACF_0 , this algorithm is guaranteed to terminate.

7 The algebraic closure of a field

Recall if $K \subseteq M \models ACF$, then K^{alg} is the set of $a \in M$ algebraic over K. If $\varphi(x)$ is a formula, then $\varphi(M)$ denotes the set $\{a \in M : M \models \varphi(a)\}$.

Lemma 33. Let M be algebraically closed. Let K be a subfield. Let $\varphi(x)$ be an $\mathcal{L}(K)$ -formula in one variable. Let $D = \varphi(M)$. Then there is a finite subset $S \subseteq K^{alg}$ such that D = S or $D = M \setminus S$.

Proof. By quantifier elimination, we may assume φ is quantifier-free. Then φ is a boolean combination of atomic formulas.

Let $\mathcal{F} = \{S : S \subseteq_f K^{alg}\} \cup \{M \setminus S : S \subseteq_f K^{alg}\}$. Note \mathcal{F} is closed under boolean combinations. So we may assume φ is an atomic formula.

Then $\varphi(x)$ is (P(x) = 0) for some $P(x) \in K[x]$. If $P(x) \equiv 0$, then $\varphi(M) = M \in \mathcal{F}$. Otherwise, $\varphi(M) \subseteq_f K^{alg}$, so $\varphi(M) \in \mathcal{F}$.

Lemma 34. Suppose $M \leq N \models ACF$ and K is a subfield of M. Suppose $c \in N$ is algebraic over K. Then $c \in M$.

Proof. Let P(x) be the minimal polynomial of c over K. Let b_1, \ldots, b_n be the roots of P(x) in M. Then

$$M \models \forall x \left(P(x) = 0 \to \bigvee_{i=1}^{n} x = b_i \right),$$

so the same holds in N. Then $P(c) = 0 \implies c \in \{b_1, \dots, b_n\} \subseteq M$.

Theorem 35. If $M \models ACF$ and K is a subfield, then K^{alg} is a subfield of M and $(K^{alg})^{alg} = K^{alg}$.

Proof. Suppose $a, b \in K^{alg}$. We claim $a + b \in K^{alg}$. Let P(x) and Q(y) be the minimal polynomials of a, b over K. Let $\varphi(z)$ be the $\mathcal{L}(K)$ -formula

$$\exists x, y \ (P(x) = 0 \ \land \ Q(y) = 0 \ \land \ x + y = z).$$

Then $M \models \varphi(a+b)$, and $\varphi(M) = \{x+y : P(x) = 0 = Q(y)\}$ is finite. Thus $a+b \in \varphi(M) \subseteq K^{alg}$.

A similar argument shows K^{alg} is closed under the field operations, so K^{alg} is a subfield of M.

A similar but more complicated agument shows that if $c_0, \ldots, c_n \in K^{alg}$ with $c_n \neq 0$, and $\sum_{i=0}^n c_i a^i = 0$, then $a \in K^{alg}$. So $(K^{alg})^{alg} = K^{alg}$.

Theorem 36. Suppose $M \models ACF$ and K is a subfield. The following are equivalent:

- 1. $K = K^{alg}$.
- 2. $K \models ACF$.

3. $K \leq M$.

Proof. (1) \Longrightarrow (2): suppose $P(x) \in K[x]$ has degree > 0. Then there is $c \in M$ such that P(c) = 0. By definition, $c \in K^{alg} = K$.

 $(2) \Longrightarrow (3)$: Let $\varphi(\bar{x})$ be a formula and \bar{a} be a tuple in K. We need

$$K \models \varphi(\bar{a}) \iff M \models \varphi(\bar{a}). \tag{*}$$

By quantifier-elimination, we may assume $\varphi(\bar{x})$ is quanifier-free, in which case (*) is automatic.

$$(3) \Longrightarrow (1)$$
: Suppose $c \in K^{alg}$. Then $c \in K$ by Lemma 34.

Corollary 37. If $M \models ACF$ and K is a subfield, then $K^{alg} \models ACF$.

 K^{alg} is called the algebraic closure of K. It's independent of M:

Theorem 38. Let M, N be two algebraically closed fields extending K. Let $(K^{alg})_M$ and $(K^{alg})_N$ be K^{alg} in M and N, respectively. Then $(K^{alg})_M \cong (K^{alg})_N$.

Proof. There are a few cases:

- 1. $M \leq N$. Then $(K^{alg})_M = (K^{alg})_N$ by Lemma 34.
- 2. There is an $\mathcal{L}(K)$ -elementary embedding $M \to N$. Moving M by an isomorphism, reduce to case 1.
- 3. Suppose $M \equiv N$ as $\mathcal{L}(K)$ -structures. By elementary amalgamation, there is an $\mathcal{L}(K)$ -structure M' and $\mathcal{L}(K)$ -elementary embeddings $M \to M'$ and $N \to M'$. Then $(K^{alg})_M \cong (K^{alg})_{M'} \cong (K^{alg})_N$ by case 2.

In fact, case 3 always holds: if φ is an $\mathcal{L}(K)$ -sentence, then there is an equivalent quantifier-free $\mathcal{L}(K)$ -sentence ψ , and

$$M \models \varphi \iff M \models \psi \iff K \models \psi \iff N \models \psi \iff N \models \varphi.$$

So $M \equiv N$ as $\mathcal{L}(K)$ -structures.

Fact 39. If K is a field, then K is a subfield of an algebraically closed field.

So we can talk about "the" algebraic closure K^{alg} of an abstract field K.

8 Ordered fields and real closed fields

Definition 40. Let K be a field. A *field ordering* is a linear order \leq on K satisfying the following:

• If $x \leq y$, then $x + z \leq y + z$.

• If $x \leq y$ and $0 \leq z$, then $xz \leq yz$.

An ordered field is (K, \leq) where K is a field and \leq is a field ordering.

Example. \mathbb{R}, \mathbb{Q} are ordered fields.

Fact 41. \mathbb{C} does not admit a field ordering. If $\operatorname{char}(K) \neq 0$, then K does not admit a field ordering. Ordered fields have characteristic 0.

Definition 42. An ordered field K is *real closed* if the intermediate value theorem holds for polynomials: if $P(x) \in K[x]$ and P(a) < 0 < P(b), then P(c) = 0 for some c between a and b.

Example. \mathbb{R} is real closed, but \mathbb{Q} is not.

Example. Let $K = \mathbb{Q}^{alg} \cap \mathbb{R}$, the set of real algebraic numbers. Then K is real closed. If $P(x) \in K[x]$ and P(a) < 0 < P(b), then there is some $c \in \mathbb{R}$ such that P(c) = 0. But then $c \in K^{alg} = \mathbb{Q}^{alg}$, so $c \in \mathbb{Q}^{alg} \cap \mathbb{R} = K$.

The theory of real closed fields is denoted RCF.

Definition 43. Let K be a field and L be an extension. Then L is an algebraic extension of K if every element of L is algebraic over K.

Fact 44. Let K be an ordered field. Then there is an ordered field extension $L \supseteq K$ such that $L \models \text{RCF}$ and L is algebraic over K. The ordered field L is unique up to isomorphism.

We call L the real closure of K.

Example. The real closure of \mathbb{Q} is $\mathbb{Q}^{alg} \cap \mathbb{R}$.

Fact 45 (Tarski-Seidenberg). RCF has quantifier elimination.

See Section 6.6 of the textbook for a proof (which requires some algebra).

Corollary 46. $\mathbb{R} \cap \mathbb{Q}^{alg}$ is an elementary substructure of \mathbb{R} .

If $M \models RCF$, then the minimal substructure $\langle \varnothing \rangle_M$ is always isomorphic to \mathbb{Q} .

Corollary 47. RCF is complete. The structure \mathbb{R} is completely axiomatized by RCF. The theory of \mathbb{R} is decidable: there is an algorithm which take a sentence φ as input, and outputs whether or not $\mathbb{R} \models \varphi$.

Corollary 48. Let K be a real-closed field. Let $\varphi(x)$ be an $\mathcal{L}(K)$ -formula in one variable. Then the set $\varphi(K) = \{a \in K : K \models \varphi(a)\}$ is a finite union of points and intervals.

The proof is roughly like Lemma 33. This property is called "o-minimality," and turns out to have many very strong consequences. For more about o-minimality, see the book *Tame topology and o-minimal structures*, by Lou van den Dries.