Expressions regulars

Josep M. Miret Grup de Recerca en Criptografia i Grafs

> Escola Politècnica Superior Universitat de Lleida

Index

- Expressions regulars
 - Llenguatge associat a una expressió regular
 - Equivalència entre llenguatges regulars i expressions regulars
- Pas ER a AF
 - Construcció d'un AFN amb λ -transicions
 - Mètode de Thompson
- Pas AF a ER
 - Equacions amb llenguatges
 - Mètode d'Arden

Expressions regulars

Els llenguatges regulars (aquells que són acceptats per autòmats finits) es poden descriure per expressions regulars

Expressions regulars

S'anomena expressió regular sobre un alfabet Σ a tota expressió que satisfà la definició recursiva següent:

- ∅ i λ són expressions regulars
- a és una expressió regular, $\forall a \in \Sigma$
- Si E_1 i E_2 són expressions regulars, $E_1 + E_2$ i $E_1 \cdot E_2$ també ho són
- Si E és una expressió regular, E⁺ i E* també ho són
- No hi ha més expressions regulars que les que s'obtenen aplicant aquestes regles

Llenguatge associat a una expressió regular

Llenguatge associat

S'anomena llenguatge associat a una expressió regular E al llenguatge L(E), que també denotarem per E, definit per:

- $L(\emptyset) = \emptyset$ i $L(\lambda) = \{\lambda\}$
- $L(a) = \{a\}, \forall a \in \Sigma$
- $L(E_1 + E_2) = L(E_1) \cup L(E_2)$
- $L(E_1 \cdot E_2) = L(E_1) \cdot L(E_2)$
- $L(E^+) = L(E)^+$
- $L(E^*) = L(E)^*$

Exemples

Exemples d'expressions regulars sobre $\Sigma = \{a, b\}$

$$(a+b)^*$$
, $(b+ba)^*$, $(a+b)^*aa(a+b)^*$

Exemples

Els llenguatges associats són:

- $(a + b)^* = \{a, b\}^*$: Ilenguatge universal $L((a + b)^*) = L(a + b)^* = (L(a) \cup L(b))^* = (\{a\} \cup \{b\})^* = \{a, b\}^*$
- $(b + ba)^* = \{b, ba\}^*$: paraules que comencen amb b i no tenen dos a's consecutives $L((b + ba)^*) = L(b + ba)^* = (L(b) \cup L(ba))^* =$

$$L((b + ba)^*) = L(b + ba)^* = (L(b) \cup L(ba))^* = (L(b) \cup L(b) \cdot L(a))^* = (bb) \cup (ba)^* = (b, ba)^*$$

• $(a+b)^*aa(a+b)^*$: paraules que tenen dos a's consecutives

Equivalència entre expressions regulars i autòmats finits

Donat que els llenguatges regulars són els acceptats per autòmats finits, veurem l'equivalència entre:

- Llenguatge acceptat per un Autòmat Finit (AF)
- Llenguatge associat a una Expressió Regular (ER)

Ho farem en dos passos:

- Pas ER a AF (mètode de Thompson)
- Pas AF a ER (mètode d'Arden)

Mètode de Thompson

Aquest mètode, donada una expressió regular E construeix un AFN amb λ -transicions associat a E:

- Construcció d'un AFN per a les parts d'E més simples:
- $E = \lambda$

$$\rightarrow q_0 \rightarrow q_f$$

 \bullet E = a

Mètode de Thompson

- Aplicació mètode per als operadors d'E:
- $E = E_1 + E_2$

 $\bullet \ E = E_1 \cdot E_2$

$$\xrightarrow{\qquad \qquad } \underbrace{q'_0} \xrightarrow{M(E')} \underbrace{q'_f} \xrightarrow{\qquad \qquad } \underbrace{q''_0} \xrightarrow{M(E'')} \underbrace{q''_f} |$$

Mètode de Thompson

- Aplicació mètode per als operadors d'E:
- $E = (E')^*$

Exercici

Dissenyeu un AFN amb λ -transicions que reconegui el llenguatge

$$L = (a + ba)^*b$$

Equacions amb llenguatges

Veurem un mètode, que donat un AF M construeix una ER E tal que L(E) = L(M) basat en un sistema d'equacions lineals amb llenguatges

• Donada una equació

$$X = AX + B$$

on A i B són llenguatges sobre un alfabet Σ , un llenguatge L és una solució de l'equació si satisfà:

$$L = AL \cup B$$
.

Exemple

Sobre l'alfabet $\Sigma = \{a, b\}$ considerem l'equació

$$L = (a+b)L + \lambda$$

El llenguatge

$$L = (a + b)^*$$

és solució de l'equació

Mètode d'Arden

Lema d'Arden. El llenguatge A*B és una solució de

$$L = AL + B$$

Per trobar l'Expressió Regular seguirem els passos:

• Establir, donat un AF, $M = (Q, \Sigma, \delta, q_0, F)$, un sistema d'equacions lineals amb els llenguatges

$$L_i = \{ \omega \in \Sigma^* \mid (q_i, \omega) \stackrel{*}{\vdash} (q, \lambda), \ q \in F \}$$

 Resoldre el sistema mitjançant el lema d'Arden fins obtenir una expressió regular per al lleguatge

$$L_0 = L(M)$$

Exemple 1

Autòmat finit M:

Exemple 1

Autòmat finit M:

• Sistema d'equacions:

$$L_0 = aL_0 + bL_1$$

 $L_1 = (a+b)^*$

Exemples 2 i 3

Autòmat finit M_2 :

Autòmat finit M_3 :

