EVE: An Efficient Implementation of Homomorphic Encryption on Integer Vectors

Angel Yu Wai Lok Lai James Payor

May 6, 2015

Introduction to Homomorphic Encryption

Figure: Most common usage of homomorphic encryption schemes

Figure: EVE, the homomorphic encryption scheme considered in our project

Overview of EVE: Supported Operations

Fundamental Operations:

- Encrypt: $\mathbf{c} = E_S(\mathbf{x})$
- Decrypt: $\mathbf{x} = D_S(\mathbf{c})$
- Switching secret keys from S to S'

Supported Operations on Integer Vectors:

- Addition of two vectors: $\mathbf{x}_1 + \mathbf{x}_2$
- Linear transformation: Gx
- Weighted inner product of two vectors: $\mathbf{x}_1^T H \mathbf{x}_2$

Can compose these operations to support arbitrary integer polynomials

Details of Fundamental Operations

Encrypt \mathbf{x} with secret key S:

• Choose **c** such that $S\mathbf{c} = w\mathbf{x} + \mathbf{e}$

Decrypt **c** with *S*:

•
$$\mathbf{x} = \left\lceil \frac{S\mathbf{c}}{w} \right\rfloor$$

Key switching from S to S' = [I, T]:

- Want $S'\mathbf{c}' = S\mathbf{c}$
- Want key-switch matrix M such that S'M = S + E
- $M = \begin{pmatrix} -TA + S + E \\ A \end{pmatrix}$ for random matrix A, random noise matrix E
- Then $\mathbf{c}' = M\mathbf{c}$

Details of the Three Supported Operations

Addition:
$$\mathbf{x}' = \mathbf{x}_1 + \mathbf{x}_2$$
:

- Let $c' = c_1 + c_2$
- So $Sc' = w(x_1 + x_2) + (e_1 + e_2)$

Linear Transformation: $\mathbf{x}' = G\mathbf{x}$

- Note GSc = wGx + Ge
- Hence $E_S(\mathbf{x}) = E_{GS}(G\mathbf{x})$
- So $\mathbf{c}' = \mathbf{c}$ and decrypt with S' = GS

Details of the Three Supported Operations (con'd)

Weighted Inner Product: $\mathbf{x}' = \mathbf{x}_1^T H \mathbf{x}_2$

- Let $S' = \text{vec}(S^T H S)^T$
- Let $\mathbf{c}' = \left\lceil \frac{\text{vec}(\mathbf{c}_1 \mathbf{c}_2^T)}{w} \right
 floor$
- Note $(S\mathbf{c}_1)^T H(S\mathbf{c}_2) = w^2(\mathbf{x}_1^T H \mathbf{x}_2) + (w\mathbf{x}_1^T H \mathbf{e}_2 + w\mathbf{e}_1^T H \mathbf{x}_2 + \mathbf{e}_1^T H \mathbf{e}_2)$
- So $S'\mathbf{c}' = w(\mathbf{x}_1^T H \mathbf{x}_2) + \mathbf{e}'$

Secrecy in the Scheme

- Clients (Party B) calculate key-switch matrices based on operation f
- Server (Party A) performs the operation without knowing f
- Relies on key-switch matrices being indistinguishable from random

Learning with Error Problem (LWE)

Given S and M, solving S'M = S + E to find S' is hard

Applications

- In each application, we have:
 - Server with data (can be encrypted with S, known to the client)
 - Client that wants to learn a function of the data
- Effective when server has a lot of data, and results are small

Applications

- Search
 - Server has (encrypted) feature vectors for our data
 - Client wants to score each item to rank them
- Classification
 - Can run any polynomial classifier on the server's data (e.g. naive bayes, SVMs with polynomial kernels)
- Feature extraction
 - We can generalize classification to give a low-dimensional representation of data vectors, which will conserve bandwidth over simply querying all the files.

Demo

- We implemented the scheme, and two applications:
 - Private search on encrypted data (using TF-IDF relevance on common words)
 - Spam classification (using a naive-bayes model)
- Server has encrypted word counts of 3500 common words for 200 Enron emails
- Server cannot learn our queries, or even distinguish between each type.

Live Demo!

Conclusions

- In our demo, the scheme is slow due mainly to our lack of optimization.
- No overhead in addition, and multiplicative overhead in linear transformations and inner products equal to the number of bits involved.
 - (Note as given, inner products is slow, but we can combine this with a linear transformation step to reduce the work.)
- This scheme compares well to fully homomorphic encryption by limiting scope of computation.
 - ▶ Benchmarks give that HElib achieves 500 multiplications per second for small integers, orders of magnitude worse than our slowdown.