Assignment

September 20, 2015

Problem 1. Find the mass of the 3D region B given by $x^2 + y^2 + z^2 \le 4$, $x \ge 0, y \ge 0, z \ge 0$, if the density is equal to xyz.

Problem 2. Sketch the region B whose volume is given by the triple integral

$$\int\limits_{0}^{4} \int\limits_{0}^{(4-x)/2} \int\limits_{0}^{(12-3x-6y)/4} 1\,dz\,dy\,dx$$

Rewrite and evaluate the triple integral using the order of integration dV = dy dx dz.

Problem 3. Evaluate the following integrals

a)
$$\int_{0}^{2} \int_{0}^{1} \int_{y}^{1} \sinh(z^{2}) dz dy dx$$

b)
$$\int_{0}^{2} \int_{0}^{4} \int_{z}^{2} yze^{x^{3}} dz dy dx$$

Problem 4. Find the coordinates of the center of gravity of the solid S with indicated mass density $\delta = \delta(x,y,z)$. $S: x^2 + y^2 \le a^2, \frac{b}{a} \sqrt{x^2 + y^2} \le z \le b$ for constants b > 0, a > 0 and $\delta = x^2 + y^2 + z^2$.

Problem 5. Evaluate
$$\iint_D \frac{z}{(x^2+y^2+z^2)^{3/2}} dV$$
, $D = (x, y, z) : x^2 + y^2 + z^2 \le 4a^2, z \ge a$

Problem 6. Find the volume of the region bounded above by the sphere $x^2 + y^2 + z^2 = 10$ and bounded below by the cone $z^2 = x^2 + y^2$.

Problem 7. Evaluate

$$\iiint\limits_{D} \log \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz$$

where D is the region in \mathbb{R}^3 which lies between $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$ and above xy-plane.

Problem 8. Evaluate

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} x^2 \, dz \, dy \, dx$$

HINTS: Problem 1:

Problem 2:

$$0 \leq z \leq \frac{12-3x-6y}{4}, R: 0 \leq y \leq \frac{4-x}{2} 0 \leq x \leq 4$$

Problem 3:

The region indicated by the integral is bounded by z = y, y = 0, z = 1, x = 0, and x = 2 which is indicated by the figure above. The difficulty with integrating the original triple integral is that to easily integrate $\sinh(z^2)$, we need a zdz rather than just dz. Note that if we switch the dz and dy, we might get a z where we need it.

The region described by the integral is bounded by y = 0, y = 4, z = 0, z = x, and x = 2. A picture of the region is indicated above. In the original integral, if we try to integrate $e^{x^3}dx$ we have a problems. We can easily integrate $x^2e^{x^3}$, so this suggests switching dx and dz.

Figure 1: Left to right 3(a) and 3(b)

Problem 4:

 $tan\phi = \frac{a}{h}$, so $\phi = arctan(\frac{a}{h})$; also $z = \rho cos\phi = h$ gives $\rho = \frac{h}{cos\phi}$.

Problem 5:

Problem 6:

Figure 2: Region R bounded below by the upper half of the cone $z^2=x^2+y^2$ and bounded above by the sphere $x^2+y^2+z^2=8$

Problem 8:

Convert to cylindrical co-ordinates.