Transformasi Geometri II & 3 Dimensi

Pertemuan 8

Universitas Trunojoyo Madura

Bahasan

- Pokok: Transformasi Geometri II & 3 dimensi
- Sub:
 - Rotasi pada sembarang titik
 - Current Transformation Matrix
 - Inverse Transformasi
 - glLoadIdentity
 - glPushMatrix & glPopMatrix
 - 3 dimensi: canvas vs viewing volume
 - 4 setting openGL untuk 3 dimensi
 - glutWire*
 - glutSolid*

Bahasan

- Pokok: Transformasi Geometri II & 3 dimensi
- Sub:
 - Bangun bervolume
 - Kubus manual

Latihan

Rotasi pada titik sembarang

- Transformasi Rotasi dan Scale bergantung pada sumbu koordinat.
- Jika ingin merotasi atau men-scale obyek terhadap sembarang titik, maka yang perlu dilakukan adalah:
 - Mentranslasikan obyek ke sumbu koordinat
 - Melakukan rotasi/scale
 - Mentranslasikan obyek balik ke posisinya semula

Rotasi pada titik sembarang

$$\mathbf{M} = \mathbf{T}(\mathbf{p}_{\mathbf{f}}) \mathbf{R}(\mathbf{\theta}) \mathbf{T}(-\mathbf{p}_{\mathbf{f}})$$

Latihan

Current Transformation Matrix

- Matrik yang menyimpan nilai transformasi dan diterapkan untuk semua vertex
- OpenGL punya cara untuk memanipulasi nilai
 CTM secara langsung
- Tapi yang diajarkan di kelas ini: untuk memanipulasi CTM, gunakan transformasi

Implementasi pada pipeline

Inverse Transformasi

- Tiap transformasi, nilai CTM berubah
- Perubahan ini berpengaruh ke semua vertex di bawahnya
- Untuk mengembalikan nilai CTM ke nilai sebelumnya: balik transformasinya
 - Translate + → Translate –
 - Translate → Translate +
 - Rotate + \rightarrow Rotate -
 - Rotate → Rotate +
 - Scale $m \rightarrow Scale 1/m$

Latihan

glLoadIdentity

 Jika kita hendak menetralkan efek transformasi (memberi nilai identitas pada CTM), maka kita dapat menggunakan perintah glLoadIdentity

Latihan

CTM Stack

- OpenGL menyimpan CTM dalam bentuk stack
- Ukuran stack untuk GL_MODELVIEW minimum 32 elemen, bergantung pada implementasi hardware
- glPushMatrix: untuk menduplikasi elemen teratas stack, dan meletakkannya pada top elemen
- glPopMatrix: menghapus elemen top,
 menjadikan elemen dibawahnya menjadi elemen top

Latihan

3 Dimensi

Canvas/viewing rectangle vs box/viewing volume

3 Dimensi

Canvas/viewing rectangle vs box/viewing volume

OpenGL Orthogonal Viewing

glOrtho(left,right,bottom,top,near,far)

3 Dimensi

- Hal-hal yang harus disiapkan:
 - Gunakan glOrtho, bukan gluOrtho2D
 - Gunakan glenable (GL_DEPTH_TEST)
 - Gunakan glutInitDisplayMode (GLUT_RGB |
 GLUT DEPTH);
 - Gunakan glClear(GL_COLOR_BUFFER_BIT |
 GL DEPTH BUFFER BIT);
 - Pada beberapa kasus diperlukan juga glShadeModel (GL_FLAT);

3 Dimensi

Obyek 3 dimensi bawaan glut

- Wireframe:
 - glutWireTeapot(GLdouble size);
 - glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
 - glutWireCone(GLdouble base, GLdouble height, GLint slices, GLint stacks);
 - glutWireTetrahedron(void);
 - glutWireOctahedron(void);

Obyek wireframe

Obyek 3 dimensi bawaan glut

- Obyek solid 3 dimensi:
 - glutSolidCube(GLdouble size);
 - glutSolidTeapot(GLdouble size);
 - glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
 - glutSolidCone(GLdouble base, GLdouble height, GLint slices, GLint stacks)
 - glutSolidTetrahedron(void)
 - glutSolidOctahedron(void)

Obyek solid

Bangun 3 dimensi manual

- Sekalipun glut memiliki banyak obyek 3 dimensi bawaan, kadang kita perlu obyek 3 dimensi yang berbentuk khusus. Contoh: kubus warna tanpa shading
- Perlu tahu cara membuat obyek 3 dimensi secara manual

Bangun bervolume

 Dibuat dari kumpulan bangun datar yang menjadi pembatas sisi-sisi luarnya

Song Ho Ahn, OpenGL Vertex Array, http://www.songho.ca/opengl/gl_vertexarray.html

3 Dimensi

- \neg glVertex2f(x,y) \rightarrow glVertex3f(x,y,z)
- Transformasi selalu dilakukan dalam format 3 dimensi

Kubus warna

Latihan

Demo 3

Rangkuman

- Rotasi pada sembarang titik dapat dilakukan dengan bantuan transformasi jamak
- Mengembalikan nilai CTM setelah transformasi dapat dilakukan dengan inverse transformasi, glLoadIdentity, dan Push/PopMatrix
- Perpindahan ke 3 dimensi memerlukan beberapa perubahan setting program
- glut memiliki beberapa obyek 3 dimensi bawaan siap pakai

Referensi

- Song Ho Ahn, OpenGL Vertex Array,
 http://www.songho.ca/opengl/gl_vertexarray.h
 tml
- Edward Angel, "Interactive Computer Graphics Sixth Edition", Pearson, 2012, ch2, p 98 – 106
- Edward Angel, "Interactive Computer Graphics Sixth Edition", Pearson, 2012, ch 3, p 115 194
- F. S. Hill, Jr Jr., Stephen M. Kelley, "Computer Graphics Using OpenGL Third Edition", Prentice Hall, 2007, ch 5, p 190 263