BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-190030

(43) Date of publication of application: 23.07.1996

(51) Int. CI.

G02B 6/255 G02B 6/14

(21) Application number: 07-018389

(71) Applicant : FURUKAWA ELECTRIC CO LTD: THE

(22)Date of filing:

11.01.1995

(72) Inventor : SUGIZAKI RYUICḤI

AKASAKA YOICHI OGURA KUNIO

(54) CONNECTING STRUCTURE AND CONNECTING METHOD OF DISPERSION COMPENSATION OPTICAL FIBER

(57) Abstract:

PURPOSE: To make it possible to connect a dispersion compensation optical fiber having a clad consisting of pure silica to an ordinary single mode optical fiber having a clad consisting of pure silica with low loss.

CONSTITUTION: The dispersion compensation optical fiber 1 having the clad 1b consisting of the pure

fiber 1 having the clad 1b consisting of the pure silica and the single mode optical fiber 2 having the clad 2b consisting of the pure silica are fusion-spliced by interposing an intermediate optical fiber 3 having the same mode field diameter as the mode field diameter of the dispersion compensation optical fiber 1 and having the clad 3b consisting of fluorine doped silica and the core 3a consisting of GeO2-doped silica between both optical fibers 1 and 2 in the case of connecting both optical fibers 1, 2. The mode field diameter of the intermediate optical fiber 3 is expanded so as to meet the mode field diameter

of the single mode optical fiber 2 by heating the juncture 5 of the intermediate optical fiber 3 and the single mode optical fiber 2.

LEGAL STATUS

[Date of request for examination]

18, 02, 1997

[Date of sending the examiner's decision

of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

2951562

[Date of registration]

09.07.1999

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-190030

(43)公開日 平成8年(1996)7月23日

(51) Int.CL ⁶	- 1000	織別紅号	庁内整理番号	PI		-	乜	術表示	體所
G 0 2 B	6/255 6/14			G02B	6/ 24	301			
				審查請求	永韶 求	商求項の数4	FD	(全 6	(闽
(21)出職番号		特顯平7-18399		(71) 出願人	000005290 古河電気工業株式会社				
(22)出顯日		平成7年(1995)1月11日		(72)発明者	京京都 彩▲衛 東京都	千代田区丸の内	2丁目(
				(72) 発明者	赤板 東京都		2丁目	6番1等	多古
				(72) 発明者	小倉 東京都		2丁目	6巻1 ⁻	写 古
				(74)代理人		岩林 広志			

(54) [発明の名称] 分散補償光ファイバの接続構造および接続方法

(57)【要約】

「構成」 クラッド18が絶シリカの分散消儀光ファイバ1と、クラッド28が絶シリカの単一モード光ファイバ2とを接続する場合に、両光ファイバ1、2間に、モードフィールド径が分散構(成光ファイバ1と同じで、クラッド3りがフッ素ドーブシリカ、コア38がGe〇、ドープシリカの中間光ファイバ3を介在させ、融着接続する。中間光ファイバ3と単一モード光ファイバ2の接続部5を加熱して、中間光ファイバ3のモードフィールド径を単一モード光ファイバ2のモードフィールド径を単一モード光ファイバ2のモードフィールド径に合うように拡大する。

【効果】 クラッドが絶シリカからなる分散結億光ファイバを、クラッドが絶シリカからなる通常の単一モード 光ファイバと、低損失で接続できる。

(2)

特闘平8-190030

【特許請求の範囲】

【詰求項1】クラッドが実置的に絶シリカからなる分散 **結償光ファイバと、クラッドが実質的に純シリカからな** る通常の単一モード光ファイバとの接続格造であって、 前記分散結償光ファイバと単一モード光ファイバの間 に、モードフィールド径が前記分散補償光ファイバのモ ードフィールド径と実質的に同じで、クラッドがフッ素 ドープシリカからなり、コアが屈折率を高めるドーパン トを含むシリカからなる中間光ファイバを介在させ、中 続すると共に、中間光ファイバの他端を前記単一モード 光ファイバと融着接続し、中間光ファイバと単一モード 光ファイバとの接続部における中間光ファイバのモード フィールド径を単一モード光ファイバのモードフィール 下径に合うように拡大したことを特徴とする分散補償光 ファイバの接続構造。

【請求項2】中間光ファイバは、クラッドの、単一モー ド光ファイバのモードフィールド径に相当する径より内 側の層にファ素がドープされ、それより外側の層にはフ ッ素が実質的にドープされていないものであることを特 20 徹とする請求項1記載の分散箱債光ファイバの接続機 造。

【請求項3】クラッドが実質的に絶シリカからなる分散 **着償光ファイバと、クラッドが実質的に純シリカからな** る道常の単一モード光ファイバとの接続方法であって、 前記分散結僕光ファイバと単一モード光ファイバの間 に、モードフィールド径が前記分散補償光ファイバのモ ードフィールド径と実質的に同じで、クラッドがフッ素 ドープシリカからなり、コアが屈折率を高めるドーパン トを含むシリカからなる中間光ファイバを介在させ、中 間光ファイバの一端を前記分散結傼光ファイバと融者接 続すると共に、中間光ファイバの他端を前記単一モード 光ファイバと融着接続した後、中間光ファイバと単一モ ード光ファイバとの接続部を加熱して、その接続部にお ける中間光ファイバのモードフィールド径を単一モード 光ファイバのモードフィールド径に合うように拡大する ことを特徴とする分散稿億光ファイバの接続方法。

【請求項4】中間光ファイバとして、クラッドの、単一 モード光ファイバのモードフィールド径に相当する径よ り内側の層にフッ素がドープされ、それより外側の層に 46 貸光ファイバと道常の単一モード光ファイバ(リード はブッ素が実質的にドープされていない光ファイバを用 いることを特徴とする請求項3記載の分散籍實光ファイ バの接続方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、分散補償光ファイバと 通常の単一モード光ファイバとの接続構造および接続方 法に関するものである。

存の任送路を用いて1550nmの高速通信を行うこと が検討されている。しかしながら現在ひろく布設されて いる1300nm容分散光ファイバは1550nm付近 でのモード分散が18ps/n m/k m程度あるため、 100kmでは1800ps/nmに達し、高遠通信を 行う場合には何らかの分散補償手段が必要になる。

[0003]分散結僕手段として現在もっとも実用的な 方法と考えられているのが、伝送路の途中に負の高分散 特性をもつ分散補償光ファイバを挿入してモード分散を 間光ファイバの一端を前記分散結僕光ファイバと融着接 10 相殺する方法である。具体的には分散補償光ファイバを 小さなパッケージにして、伝送装置に組み込むことが検 討されている。

【0004】負の高分散特性をもつ分散領債光ファイバ は、△(比屈折率差)が3%前後と高く、コア径が2~ 3 μm と通常の単一モード光ファイバに比べて極端に小 さい構造である。したがって分散稿憶光ファイバの15 5 0 n m でのモードフィールド径は4 . 5~5 . 5 u m 程度となる。

[0005]とれに対し、1300nm零分散光ファイ - バの1550mmでのモードフィールド径は9~11μ mであるから、この光ファイバと分散補償光ファイバを コネクタ接続すると、大きな接続損失が生じる。そこ で、これを防ぐために、バッケージ内で分散領償光ファ イバと通常の単一モード光ファイバとを融着接続して、 パッケージから引き出されるリードは通常の単一モード 光ファイバとし、1300零分散光ファイバとのコネク タ接続を可能にしている。

【0006】との場合、分散綿償光ファイバと通常の単 一モード光ファイバとの融着接続部は、接続後に加熱し 30 てコア内のGeを拡散させる処理(TEC法)を能すこ とにより、分散補償光ファイバのモードフィールド径を 拡大し、単一を一下光ファイバのモードフィールド径に 台わせるようにしている。これにより融者接続部の接続 損失は大幅に低減でき、最終的なコネクタ入力からコネ クタ出力までのトータル損失は、分散補償光ファイバに 単にコネクタ付けしたものより格段に低減される。

【0007】ところで分散補償光ファイバは、△を大き くする必要から、コアにGeO。を、クラッドにフッ素 をそれぞれ高遠度でドープしている。このような分散箱 用)とを融着接続して、その接続部を加熱した場合、分 散補償光ファイバのフゥ素ドープガラスの部分は軟化温 度が低く、ガラス構造がルーズなため、GeO』の拡散 が違く、モードフィールド径の拡大が短時間に進む。こ れに対し、通常の単一モード光ファイバはクラッドが絶 シリカで構成されているため、クラッドの軟化温度が高 く、GeO、の鉱散が進みにくい。 したがって接続部を 一定時間加熱した場合、単一モード光ファイバのモード フィールド径は拡大されずに、分散補償光ファイバのモ 【従来技術】光通信システムの大容量化を図るため、既 50 ードフィールド径だけが拡大される。その結果、融着接

特闘平8-190030

統部の接続損失を小さくすることが可能となるわけであ る。これが従来、分散徧儀光ファイバとリード用の単一 モード光ファイバとの融着接続部で、接続損失を小さく できる理由である。

3

[0008]

【発明が解決しようとする課題】ところが最近、分散箱 僕光ファイバとして、分散特性改善のため、コアがG e O₂ 高濃度ドープのセンターコアとファ素ドープのサイ ドコアからなり、クラッドが続シリカからなる、W型と 呼ばれる複雑な構造の光ファイバを使用することが検討 10 ープしたコア3aの外園に、フッ素をドープしたクラッ されている。とのような分散結構光ファイバは、ファ素 をドープしたサイドコアの外径が5μμ程度であり、ク ラッドが絶シリカであるから、通常の単一モード光ファ イバと融者接続した後、接続部を加熱しても、センター コアのG e O。 はフッ素をドープしたサイドコアまでし か鉱散しない。もし GeO_z をクラッドまで拡散させよ うとして加熱時間を長くすれば、リード用の単一モード 光ファイバでも同様なGeO。の拡散が生じ、単一モー ド光ファイバのモードフィールド径も同様に拡大してし まろ。

【①①①9】したがってクラッドが纏シリカからなる分 散補償光ファイバでは、クラッドが纏シリカからなる通 **食の単一モード光ファイバとの融着接続部で、分散領債** 光ファイバだけ適択的にモードフィールド径を拡大する ことができず、接続損失を十分に低くすることができな い、という問題があった。

【0010】本発明の目的は、クラッドが実質的に終シ リカからなる分散結底光ファイバを、クラッドが実質的 に純シリカからなる通常の単一モード光ファイバと、低 損失で接続する手段を提供することにある。

[0011]

【課題を解決するための手段】この目的を達成するため 本発明では、グラッドが実質的に絶シリカからなる分散 **績儀光ファイバと、クラッドが実質的に絶シリカからな** る道常の単一モード光ファイバとを接続する場合に、前 記分散循係光ファイバと単一モード光ファイバの間に、 モードフィールド径が前記分散結傼光ファイバのモード フィールド径と実質的に同じで、クラッドがフッ素ドー プシリカかわなり、コアが屈折率を高めるドーパント 介在させる。そして中間光ファイバの一端を前記分散箱 **償光ファイバと融者接続すると共に、中間光ファイバの** 他端を前記単一モード光ファイバと融着接続する。さら に中間光ファイバと単一モード光ファイバとの接続部に おける単一モード光ファイバのモードフィールド径を単 ―モード光ファイバのモードフィールド径に合うように 拡大する。このモードフィールド径の拡大は、融着接続 後、その接続部を加熱することにより行う。

【① ① 12】本発明の接続構造を概念的に図示すると図 1のようになる。符号 1は分散結底光ファイバで、Ge=50 GeO、ドープシリカ、クラッドが維シリカ。 $\triangle=0$.

 O_2 等を高速度にドープしたコア(又は $G \in O_2$ 等を高 濃度にドープしたセンターコアとフッ素ドープしたサイ ドコアからなるコア) 1 a の外国に、確シリカからなる クラッド1りを設けたものである。2は通常の単一モー ド光ファイバで、GeO。等をドープしたコア2 aの外 園に、絶シリカからなるクラッド2 b を設けたものであ る。分散消儀光ファイバ1のモードフィールド径は単一 モード光ファイバ2のモードフィールド径より格段に小 さい。3は中間光ファイバで、Ge〇、等を高濃度に下 F3Dを設けたものである。

【0013】また符号4は分散箱償光ファイバ1と中間 光ファイバ3との融者接続部、5は中間光ファイバ3と 単一モード光ファイバ2との融者接続部、6は中間光フ ァイバ3と単一モード光ファイバ2との接続部5で中間 光ファイバ3のモードフィールド径を単一モード光ファ イバ2のモードフィールド径に合うように拡大した部分

[0014]

【作用】分散補償光ファイバ』と中間光ファイバ3はモ ードフィールド径が実質的に同じであるから、この両者 を通常の融着接続で0.1dB以下の低損失で接続する ことは容易である。

【① ① 1 5 】一方、中間光ファイバ3 と通常の単一モー ド光ファイバ2はモードフィールド径が異なるが。中間 光ファイバ3は、クラッドにフッ素がドープされ、コア に屈折率を高めるドーパント (GeOz等) が含まれて いるため、加熱されると、単一モード光ファイバ2より 速く、コアのドーパントがクラッドに拡散し、モードフ 30 ィールド径が拡大する。したがって中間光ファイバ3と 単一モード光ファイバ2との融者接続部5を加熱するこ とにより、中間光ファイバ3のモードフィールド径を拡 大し、単一モード光ファイバ2のモードフィールド径に 台わせることができる。モードフィールド径を合わせた 状態での接続損失は①、2dB以下にすることが可能で ある。したがって融者接続部が2箇所になってもトータ ルの接続損失はほぼり、3 d B以下にとどめることが可

【0016】分散循償光ファイバと通常の単一モード光 (GeO, 等)を含むシリカからなる中間光ファイバを 49 ファイバとを直接融者接続した場合の接続損失はり. 8 d B以上であるから、これに比較すると本発明は、接続 損失を大幅に低減できる。

[0017]

【実能例】

【実能例1】次のような光ファイバを用意した。

- ⑦ 分散結構光ファイバ:コアがGeO,高濃度ドープ シリカ、クラッドが絶シリカ。 △=3%、モードフィー ルド径= 5. 0 μm。
- ② 道常の単一を一下光ファイバ(リード用):コアが

特闘平8-190030

4%。モードフィールド径=10μm。

- ② 中間光ファイバ:
- a. コアがGeO, 高濃度ドープシリカ [△(+)=
- 2. 9]、クラッドがフッ素ドープシリカ〔△(-)=
- 11。Δ=3%、モードフィールド径=5. 0 μ
- b. コアがGeO, 高濃度ドープシリカ (△(+)=
- 2. 7]、クラッドがフッ素ドープシリカ〔△(-)=
- 0. 31。Δ=3%、モードフィールド径=5. 0μ
- c. コアがGeO, 高濃度ドープシリカ (Δ(+)=
- 2. 5]、クラッドがフッ素ドープシリカ〔△(-)=
- 5)。△=3%、モードフィールド径=5.0 µ m.
- 通常の単一モード光ファイバ(伝送路用): △= 3%、モードフィールド径=10μm。
- [0018] これらの光ファイバから次のようなサンプ ルを作製した。

サンプルA: ①の分散箱億光ファイバの両端に③-aの 中間光ファイバを融着接続し、さらに中間光ファイバの 20 外端に〇の単一モード光ファイバを融着接続し、中間光 ファイバと単一モード光ファイバの融着接続部を加熱し て、中間光ファイバのモードフィールド径を拡大し、単 一モード光ファイバのモードフィールド径に合わせたも*

* Ø.

サンブルB: Oの分散綿筒光ファイバの両端にO-bの 中間光ファイバを融着接続し、さらに中間光ファイバの 外端に〇の単一モード光ファイバを融着接続し、中間光 ファイバと単一モード光ファイバの融着接続部を加熱し て、中間光ファイバのモードフィールド径を拡大し、単 一モード光ファイバのモードフィールド径に合わせたも Ø.

サンブル〇: 〇の分散稿億光ファイバの両端に〇-cの 10 中間光ファイバを融着接続し、さらに中間光ファイバの 外端に〇の単一モード光ファイバを融着接続し、中間光 ファイバと単一モード光ファイバの融着接続部を加熱し て、中間光ファイバのモードフィールド径を拡大し、単 一モード光ファイバのモードフィールド径に合わせたも

【0019】各サンブルの融者接続部の接続損失を測定 した結果は表1のとおりであった。この結果によれば、 中間光ファイバのクラッドへのフッ素ドーブ登は、微置 でも接続損失の低減効果がある(サンブルA)が、 Δ (-)=().3%以上(サンブルB.C)になると、接 続損失の低減効果が良好なレベルで安定することが分か る。

[0020]

【表】】

	①と③同の接続損失	③と②間の接続損失	合計機競損失	
サンプルA		0.35dB	0. 45dB	
サンプルB		0.15	0. 28	
サンプルC		0.15	0. 25	

【① ①21】また各サンプルの両端にコネクタを取り付 け、②の単一モード光ファイバとコネクタ接続した結 県 分散結復光ファイバの片側におけるコネクタを含む 台計接続損失は0.65~0.45 d B であった。この 結果は、次の比較例1、2に比べ、接続損失がほぼ半分 以下という良好なものである。

【① ① 22】 〔比較例 1 〕実施例 1 の〇の分散補償光フ ァイバの両端にコネクタを取り付け、 ②の単一モード光 ファイバとコネクタ接続を行ったところ、接続損失は片 40 側で1.2dBと大きな値を示した。

【① ① 2 3 】 〔比較例2〕実施例1の①の分散補信光フ ァイバの両端に、②のリード用単一モード光ファイバを 融着接続したところ、接続損失は片側で1.20Bと大 きな値を示した。また融着接続部を加熱したところ、1 分程度の加熱で接続損失は1.0 d Bまで低下したが、 さらに加熱を続けると接続損失は逆に増加した。これ は、単一モード光ファイバのコアのG e O。 がクラッド へ大きく拡散して△が低下し、光の漏れが大きくなった ためである。したがってこの方法では接続損失を1dB 50 サンブルD:8の分散箱債光ファイバの両端に8-8の

以下にすることができなかった。

【① ①24】また、実施例1の①の分散結構光ファイバ の両端に、〇のリード用単一モード光ファイバを融着接 続し、融者接続部を加熱して接続損失を1. () () Bとし たサンブルの両端にコネクタを取り付けて、〇の単一モ ード光ファイバとコネクタ接続したところ、分散補償光 ファイバの片側におけるコネクタを含む合計接続損失は 最小で1.2dBであった。

- 【① ①25】〔実施例2〕実施例1の①の分散補償光フ ァイバの代わりに次の分散補償光ファイバを用意した。
 - ⑤ 分散結償光ファイバ:センターコアがGeO₂高濃 度ドープシリカ〔△(+)=3%〕、サイドコアがフッ 素ドープシリカ〔△(ー)=0.3%〕、クラッドが純 シリカのW型。モードフィールド径=5. ()μα。
 - このほかに実施例1の②、③、④の光ファイバを用意し
 - 【0026】とれらの光ファイバから次のようなサンプ ルを作製した。

特闘平8-190030

中間光ファイバを融着接続し、さらに中間光ファイバの 外端にΦの単一モード光ファイバを融着接続し、中間光 ファイバと単一モード光ファイバの融着接続部を加熱し て、中間光ファイバのモードフィールド径を拡大し、単 一モード光ファイバのモードフィールド径に合わせたも

サンブルE:60の分散箱億光ファイバの両端に60-10の 中間光ファイバを融者接続し、さらに中間光ファイバの 外端に〇の単一モード光ファイバを融着接続し、中間光 ファイバと単一モード光ファイバの融着接続部を加熱し て、中間光ファイバのモードフィールド径を拡大し、単 一モード光ファイバのモードフィールド径に合わせたも

サンブルド: ⑤の分散結構光ファイバの両端に⑤ - cの 中間光ファイバを融着接続し、さらに中間光ファイバの*

* 外端に〇の単一モード光ファイバを融着接続し、中間光 ファイバと単一モード光ファイバの融着接続部を加熱し て、中間光ファイバのモードフィールド径を拡大し、単 ―モード光ファイバのモードフィールド径に合わせたも

【①①27】 各サンブルの融着接続部の接続損失を測定 した結果は衰2のとおりであった。この結果からも、中 間光ファイバのクラッドへのフッ素ドープ置は、微置で も接続損失の低減効果がある(サンブルD)が、 Δ

(-)=(). 3%以上(サンブルE. F) になると接続 損失の低減効果が良好なレベルで安定することが分か

[0028]

【表2】

Brefit O. Co.	 ③と②間の接続損失	合計機競損失		
サンプルD	0.35dB	0. 45dB		
サンプルE	0.15	0. 26		
サンプルド	0.15	0. 28		

【①①29】また各サンプルの両端にコネクタを取り付 け、実施例1の400単一モード光ファイバとコネクタ接 続した結果、分散箱優光ファイバの片側におけるコネク タを含む合計接続損失は(). 65~(). 42 d B であっ た。この結果は、次の比較例3、4に比べ、接続損失が ほぼ半分以下という良好なものである。

【0030】 (比較例3) 実施例2の⑤の分散補償光フ ァイバの両端にコネクタを取り付け、実施例1の@の単 39 ―モード光ファイバとコネクタ接続を行ったところ、接 続損失は片端で1.3 d B と大きな値を示した。

【0031】 〔比較例4〕実施例2の日の分散補償光フ ァイバの両端に、実施例1の2のリード用単一モード光 ファイバを融着接続したところ、接続損失は片端で1. 1 d B と大きな値を示した。また融着接続部を触熱して も接続損失は低下せず、加熱を続けると、単一モード光 ファイバのコアのGeO』の拡散により接続損失が1. 3dB以上になってしまった。

【① ① 32】また、実施例2の⑤の分散結構光ファイバ 46 1:分散結構光ファイバ の両端に、実施例1の♥のリード用単一モード光ファイ バを融音接続したサンプルの両端にコネクタを取り付け て、実施例1の個の単一モード光ファイバとコネクタ接 続したところ。分散結蹊光ファイバの片側におけるコネ クタを含む台計接続損失は最小で 1.3 d B であった。 【①①33】なお以上の実施例では、中間光ファイバと してクラッド全体にフッ素をドープした光ファイバを使 用したが、中間光ファイバとしては、 クラッドの、単一 モード光ファイバのモードフィールド径に相当する径よ り内側の層にフッ素がドープされ、それより外側の層に 50 6:モードフィールド径拡大部

はフッ素が実質的にドープされていない光ファイバを使 用することが望ましい。このようにすると単一モード光 ファイバとの融着接続部を加熱した際に、中間光ファイ バのコアのドーバントがクラッドに拡散する範囲が制限 され、中間光ファイバのモードフィールド径を、単一モ ード光ファイバのモードフィールド径に合わせることが 容易になる。

[0034]

【発明の効果】以上説明したように本発明によれば、ク ラッドが実質的に終シリカからなる分散結復光ファイバ を、クラッドが実質的に純シリカからなる通常の単一モ ード光ファイバと接続する場合に、低損失で接続できる という効果がある。

【図面の簡単な説明】

【図1】 本発明による分散結底光ファイバの接続措造 を示す説明図。

【符号の説明】

1 b: クラッド

2: 道鴬の単一モード光ファイバ

2a: 27

2b:クラッド

3:中間光ファイバ

3a:27

3 b:クラッド

4. 5:融者接続部

(6)

特闘平8-190030

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.