Análisis de Algoritmos 2021/2022

Práctica 2

Hugo Torres y Luis Rodríguez, Grupo 1261.

Código	Gráficas	Memoria	Total

1. Introducción.

En esta práctica trataremos los fundamentos de otros algoritmos de ordenación, en específico los algoritmos de ordenación recursivos. Como el Merge Sort o el Quick Sort en lenguaje C.

2. Objetivos

Aquí indicáis el trabajo que vais a realizar en cada apartado.

2.1 Algoritmo Merge Sort apartado 1

Implementamos en Sorting.c el primer algoritmo de esta práctica. El Merge Sort.

Se implementan dos funciones nuevas que se necesitan para que funcione el Merge Sort; estas son: int mergesort(int* tabla, int ip, int iu) y la función de combinación int merge(int* tabla, int ip, int iu, int imedio).

También modificamos el ejercicio 4 para comprobar el algoritmo nuevo creado.

2.2 Algoritmo Merge Sort Apartado 2

Modificamos el Ejercicio 5 de la práctica anterior pero esta vez usando el algoritmo MergeSort para obtener una tabla de tiempos correspondiente con tiempos medios, mejores y peores dentro de este algoritmo. Los representamos y mostramos a continuación lo que nos da en el ejercicio de las tablas. Dichos valores serán también comparados con los valores teóricos que sean necesarios para ese algoritmo.

2.3 Algoritmo Quick Sort apartado 1

En este apartado haremos el algoritmo de ordenación Quick Sort. Los valores que devuelve son o ERR o el número de veces que se ejecuta la OB del algoritmo. Contiene otras rutinas de apoyo para el correcto funcionamiento como son las funciones de *partition* y *median*.

Luego se ha de modificar el ejercicio 4 para comprobar el correcto funcionamiento de este algoritmo.

2.4 Algoritmo Quick Sort apartado 2

En este ejercicio el objetivo es la modificación del ejercicio 5. para obtener la tabla de tiempo promedio de ejecución, máximo, mínimo y promedio de operaciones básicas del algoritmo QuickSort en función del tamaño de la permutación.

2.5 Algoritmo Quick Sort apartado 3

En este ejercicio hay que modificar la recursión de cola de este algoritmo para ver si se elimina la sobrecarga creada por el alto número de veces que se llama a esa función. Creando la rutina de QuickSort_src .

3. Herramientas y metodología

Aquí ponéis qué entorno de desarrollo (Windows, Linux, MacOS) y herramientas habéis utilizado (Netbeans, Eclipse, gcc, Valgrind, Gnuplot, Sort, uniq, etc) y qué metodologías de desarrollo y soluciones al problema planteado habéis empleado en cada apartado. Así como las pruebas que habéis realizado a los programas desarrollados.

3.1 Apartado 1

Hugo - Linux, Visual Studio Code, Gcc, valgrind, make, Sort, Gnuplot, uniq. Luis - Unix, Visual Studio Code, Gcc, make, Gnuplot, uniq, Sort.

En este primer ejercicio no nos encontramos con ningún problema que no supiesemos resolver. La parte más compleja fue entender el algoritmo a la perfección para poder pasarlo a código bien.

3.2 Apartado 2

Hugo - Linux, Visual Studio Code, Gcc, valgrind, make, Sort, Gnuplot, uniq. Luis - Unix, Visual Studio Code, Gcc, make, Gnuplot, uniq, Sort

No fue complejo modificar el ejercicio 5. Las tablas que salieron están adjuntas en esta memoria en el apartado 5 de resultados y gráficas.

3.3 Apartado 3

Hugo - Linux, Visual Studio Code, Gcc, valgrind, make, Sort, Gnuplot, uniq. Luis - Unix, Visual Studio Code, Gcc, make, Gnuplot, uniq, Sort

En este ejercicio lo que mas nos costo fue entender el hecho del pivote y la forma de devolverlo y encontrarlo en el algoritmo.

3.4 Apartado 4

Hugo - Linux, Visual Studio Code, Gcc, valgrind, make, Sort, Gnuplot, uniq. Luis - Unix, Visual Studio Code, Gcc, make, Gnuplot, uniq, Sort

No fue complicado la modificación del ejercicio 5 para obtener los tiempos.

3.5 Apartado 5

Hugo - Linux, Visual Studio Code, Gcc, valgrind, make, Sort, Gnuplot, uniq. Luis - Unix, Visual Studio Code, Gcc, make, Gnuplot, uniq, Sort

En este ejercicio tuvimos la complicación de entender como quitar la recursión de este algoritmo. Una vez entendido eso conseguimos crear el nuevo algoritmo y comparar los tiempos con el que si tiene recursión de cola.

4. Código fuente

Aquí ponéis el código fuente exclusivamente de las rutinas que habéis desarrollado vosotros en cada apartado.

4.1 Apartado 1

```
int MergeSort(int* tabla, int ip, int iu){
int m, ob;
assert(ip>=0||iu>=0||ip<iu);
m = (ip+iu)/2;
ob=0;
 ob+=MergeSort(tabla,ip,m);
ob+=MergeSort(tabla,m+1,iu);
 ob+= merge(tabla,ip,iu,m);
void copy(int* aux, int* t, int p, int u) {
int i=p;
aux-=p;
  t[i]=aux[i];
int merge(int* tabla, int ip, int iu, int imedio){
 assert(ip>=0||iu>=0||ip<iu||imedio>=0);
 i = ip;
 tablaaux=(int*)malloc((iu-ip+1)*sizeof(int));
```

```
while(i<=imedio && j<=iu) {</pre>
 if(tabla[i]<tabla[j]){</pre>
    tablaaux[k]=tabla[i];
  tablaaux[k]=tabla[j];
 while(j<=iu){
    tablaaux[k]=tabla[j];
else if(j>iu){
 while(i<=imedio) {</pre>
copy(tablaaux, tabla, ip, iu);
free(tablaaux);
```

4.3 Apartado 3

```
int quicksort(int* tabla, int ip, int iu){
 int M, pos, ob=0;
 assert(ip>=0||iu>=0);
  M = partition(tabla, ip, iu, &pos);
  ob+=M;
  if(ip<pos-1){</pre>
    M = quicksort(tabla, ip, pos-1);
    ob+=M;
  if(pos+1<iu){</pre>
    M = quicksort(tabla, pos+1, iu);
    ob+=M;
int partition(int* tabla, int ip, int iu, int *pos){
assert(ip \ge 0 \mid |iu \ge 0);
M= median(tabla, ip, iu, pos);
ob+=M;
k = tabla[*pos];
 swap(&tabla[ip], &tabla[*pos]);
 *pos = ip;
 for(i=ip+1; i<=iu; i++){
  ob++;
  if(tabla[i]<k){
    (*pos)++;
    swap(&tabla[i], &tabla[*pos]);
 swap(&tabla[ip], &tabla[*pos]);
```

```
int median(int *tabla, int ip, int iu,int *pos){
  assert(ip>=0||iu>=0);

  *pos=(ip+iu)/2;
  return 0;
}
```

4.5 Apartado 5

```
int quicksort_src(int* tabla, int ip, int iu){
int* p=NULL;
int pos, a, ob;
pos = 0;
assert(ip>=0||iu>=0||ip<iu);
p = (int*) malloc((iu+2)*sizeof(int));
if(p==NULL) return ERR;
p[a]=ip;
p[a]=iu;
  iu=p[a];
  ip=p[a];
  ob+=partition(tabla,ip,iu,&pos);
  if(ip<pos-1){</pre>
    p[a]=ip;
    a++;
    p[a]=pos-1;
  if(pos+1<iu){</pre>
    p[a]=pos+1;
    p[a]=iu;
 free(p);
```

5. Resultados, Gráficas

Aquí ponéis los resultados obtenidos en cada apartado, incluyendo las posibles gráficas.

5.1 Apartado 1

```
exercise4_test:
    @echo Running exercise4
    @./exercise4 -size 15
```

```
Running exercise4
Practice number 2, section 4
Done by: Hugo Torres y Luis Rodríguez
Group: 1261
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

5.2 Apartado 2

Gráfica con el tiempo medio de reloj para MergeSort. Se puede ver que el tiempo medio de Merge Sort es casi igual a el peor y mejor. Aquí se ve bien representado el hecho de que el algoritmo Merge Sort es mucho más eficiente que el Quick Sort.

5.3 Apartado 3

```
exercise4_test:
    @echo Running exercise4
    @./exercise4 -size 10
```

```
Running exercise4
Practice number 2, section 4
Done by: Hugo Torres y Luis Rodríguez
Group: 1261
1 2 3 4 5 6 7 8 9 10
```

5.4 Apartado 4

Gráfica con el tiempo medio de reloj para QuickSort.

Gráfica comparando las OBs ,mejor peor y medio en OBs para QuickSort.

Gráfica comparando las OBs medias con la función teórica del algoritmo.

5.5 Apartado 5

Gráfica con el tiempo medio de reloj comparando las versiones de Quicksort con y sin recursión de cola.

5. Respuesta a las preguntas teóricas.

Aquí respondéis a las preguntas teóricas que se os han planteado en la práctica.

5.1 Pregunta 1: Compara el rendimiento empírico de los algoritmos con el caso medio teórico en cada caso. Si las trazas de las gráficas del rendimiento son muy picudas razonad por qué ocurre esto.

El rendimiento que hemos tenido nosotros en el caso medio de Merge Sort es de 1.6*NLog(N) el rendimiento es equivalente a el de el caso medio teórico ya que es O(NLog(N)). Como hemos visto en clase, estos dos son equivalentes por lo que consideramos que está bien hecho el ejercicio.

Nuestro rendimiento en el caso de QuickSort es de 2NLog(N) + (-2.8)N. Que este también es equivalente a el caso teorico de el caso medio en quicksort dado en clase el cual es: 2NLog(N) + O(N). Estos dos son equivalentes.

5.2 Razonad el resultado obtenido al comparar las versiones de quicksort con quicksort src tanto si se obtienen diferencias apreciables como si no.

100 0.0	900004	646.953333	519 9	46		100	0.000006	647.740000	523	945	
150 0.0	000007	1087.323333	916	1645		150	0.000008	1088.236667	896	151	l 6
	000010	1564.585000	1321	2294		200	0.000011	1564.375000	130	4 21	L78
250 0.0	000013	2065.754333	1707	2830		250	0.000014	2066.043000	173	4 29	991
300 0.0	000017	2583.873000	2195	3649		300	0.000017	2582.455000	215	2 38	374
350 0.0	000020	3116.658333	2633	4173		350	0.000021	3115.773000	266	0 41	157
400 0.0	000024	3668.477333	3161	4868		400	0.000024	3664.987000	311	3 52	225
	000026	4231.105667	3624	5686		450	0.000028	4242.273667	359	7 56	660
500 0.0	000030	4804.503667	4132	6432		500	0.000031	4806.158000	409	2 65	65
550 0.0	000034	5399.419333	4649	7245		550	0.000035	5376.993000	459	3 73	350
600 0.0	000037	5986.330667	5212	8066		600	0.000038	5996.687333	516	8 79	942
650 0.0	000041	6577.127333	5688	9042		650	0.000043	6585.593333	568	2 85	519
700 0.0	000045	7188.231333	6256	1033	0	700	0.000046	7189.741667	619	4 94	116
750 0.0	000048	7815.436333	6742	1013	2	750	0.000050	7807.070667	682	1 10	0079
800 0.0	000051	8442.300000	7326	1076	8	800	0.000054	8430.302000	733	5 10	9853
850 0.0	000055	9080.693667	7852	1192	9	850	0.000057	9043.969333	784	7 1	l622
900 0.0	000059	9710.878667	8448	1333	8	900	0.000061	9711.092667	848	3 12	2675
950 0.0	000062	10332.862000	8906	129	000	950	0.000065	10325.88100	00 90	73 :	l3711
1000 0	.000066	10983.88600	0 960	3 14	132	1000	0.000069	10981.8430	000 9	653	15419
1050 0	.000070	11639.40933	3 102	224 1	.4816	1050	0.000073	11626.0206	67 1	0074	14796
1100 0	.000074	12310.32633	3 107	74 1	.6734	1100	0.000077	12306.2726	000 1	0576	15503
1150 0	.000078	12973.92466	7 112	80 1	.6408	1150	0.000081	12947.9636	67 1	1366	17332
1200 0	.000081	13612.25600	0 118	356 1	7079	1200	0.000085	13620.8293	333 1	1850	17251
1250 0	.000086	14267.83300	0 122	247 1	.9234	1250	0.000089	14258.1066		2741	18034
1300 0	.000089	14924.67266	7 132	237 1	.8933	1300	0.000093	14949.9096		3195	19341
	.000107	15640.57433	3 135		.9759	1350	0.000097	15635.1700		3617	20384
1400 0	.000106	16281.54866	7 141	.12 2	1693	1400	0.000101	16318.8803		4144	20325
1450 0	.000114	17014.19500	0 148	38 2	3355	1450	0.000105	16955.6220		4972	21818
	.000126	17689.34333			3749	1500	0.000109	17697.9996		5327	22208
	.000111	18363.12933			3819	1550	0.000113	18349.2236		6311	24357
	.000116	19058.06000			5797	1600	0.000117	19057.5096		6811	24568
	.000128	19745.29800			5069	1650	0.000122	19733.9773		7398	25187
	.000143	20447.29900			6855	1700	0.000126	20455.3243		8032	27305
	.000130	21153.35933			6424	1750	0.000130	21158.1266		8730	27037
	.000131	21910.40833			1351	1800	0.000134	21880.3673		9391	27307
	.000141	22564.06333			7674	1850	0.000138	22573.1616		9882	27708
	.000143	23299.81733			9206	1900	0.000143	23303.5423		0570	30254
	.000155	24011.55933			9863	1950	0.000147	24029.3663		1549	30208
2000 0	.000171	24721.86633	3 219	64 3	1685	2000	0.000151	24716.1786	67 2	2015	31272

QUICKSORT

QUICKSORT SRC

5.3 Pregunta 3: ¿Cuáles son los casos mejor y peor para cada uno de los algoritmos? ¿Qué habrá que modificar en la práctica para calcular estrictamente cada uno de los casos (también el caso medio)?

El caso mejor de Merge Sort es (1/2)Nlog(N) y el peor es NLog(N) + O(N).

En el caso de QuickSort se puede aproximar el mejor caso a 2NLog(N) + O(N) y el peor caso es $(N^2 / 2) - (N/2)$.

5.4 Pregunta 4: ¿Cuál de los dos algoritmos estudiados es más eficiente empíricamente? Compara este resultado con la predicción teórica. ¿Cuál(es) de los algoritmos es/son más eficientes desde el punto de vista de la gestión de memoria? Razona este resultado.

De manera empírica se puede observar que MergeSort es más eficiente que el Quick Sort. Pero en lo que es manejo de memoria el QuickSort es mucho mejor ya que no necesita ninguna memoria extra y el Merge Sort necesita mucha memoria dinámica.

6. Conclusiones finales.

Como conclusión de estos ejercicios hemos aprendido dos algoritmos de ordenación nuevos (QuickSort y MergeSort) y visto el método divide y vencerás. También formas de ordenación de tipo recursivo como en el caso del algoritmo QuickSort.

Comparando los dos algoritmos vemos que hay puntos en los que cada uno es peor que el otro, como en el caso de la memoria que lo hace mucho mejor el QuickSort, o en el peor caso del QuickSort el cual es cuadrático por lo que es mucho peor que el de MergeSort que es logarítmico. Por lo que cada uno tiene su punto fuerte y punto débil.

Pero en comparación con las prácticas pasadas se puede confirmar que la eficiencia de estos algoritmos de tipo divide y vencerás es mucho mejor que cualquier otro algoritmo visto previamente en esta asignatura.