Scilab Textbook Companion for Water and Wastewater Engineering by G. M. Fair, J. C. Geyer and D. A. Okun¹

Created by
Siva Naik
M.Tech
Civil Engineering
IIT BOMBAY
College Teacher
None
Cross-Checked by
Chaya Ravindra

June 23, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Water and Wastewater Engineering

Author: G. M. Fair, J. C. Geyer and D. A. Okun

Publisher: John Wiley, NewYork

Edition: 11

Year: 1966

ISBN: 9780471251309

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
2	Water system	8
3	Wastewater systems	14
4	Information analysis	19
5	Water and wastewater volume	22
6	Elements of hydrology	27
7	Rainfall and runoff	30
8	Storage and runoff control	32
9	Groundwater flow	35
10	Groundwater collection	40
11	Surface water collections	42
12	Water transmission	46
13	Water distribution	49
14	Wastewater flows	52
15	Wastewater collection	60

List of Scilab Codes

Exa 2.1	Example 1				 								8
Exa 2.2	Example 2				 								8
Exa 2.3	Example 3				 								9
Exa 2.4	Example 4				 								10
Exa 2.5	Example 5				 								11
Exa 2.6	Example 6				 								12
Exa 2.7	Example 7				 								12
Exa 3.1	Example 1				 								14
Exa 3.2	Example 2				 								14
Exa 3.3	Example 3				 								15
Exa 3.4	Example 4				 								16
Exa 3.5	Example 5				 								17
Exa 3.6	Example 6				 								17
Exa 3.7	Example 7				 								18
Exa 4.1	Example 1				 								19
Exa 4.3	Example 2				 								19
Exa 4.5	Example 3				 								20
Exa 4.7	Example 4				 								20
Exa 4.8	Example 5				 								21
Exa 4.9	Example 6				 								21
Exa 5.1	Example 1				 								22
Exa 5.2	Example 2				 								23
Exa 5.4	Example 3				 								23
Exa 5.6	Example 4				 								24
Exa 5.7	Example 5				 								25
Exa 5.8	Example 6				 								25
Exa 6.1	Example 1				 								27
Exa 6.2	Example 2				 								27

Exa 6.3	Example 3																	28
Exa 7.5	Example 1																	30
Exa 7.6	Example 2																	30
Exa 7.8	Example 3																	31
Exa 8.2	Example 1																	32
Exa 8.3	Example 2																	33
Exa 8.4	Example 3																	33
Exa 8.6	Example 4																	34
Exa 9.1	Example 1																	35
Exa 9.2	Example 2																	35
Exa 9.3	Example 3																	36
Exa 9.4	Example 4																	37
Exa 9.5	Example 5																	37
Exa 9.6	Example 6																	38
Exa 10.1	Example 1																	40
Exa 10.3	Example 2																	41
Exa 11.1	Example 1																	42
Exa 11.2	Example 2																	43
Exa 11.3	Example 3																	43
Exa 11.4	Example 4																	44
Exa 12.1	Example 1																	46
Exa 12.2	Example 2																	46
Exa 12.3	Example 3																	47
Exa 12.4	Example 4																	47
Exa 12.5	Example 5																	48
Exa 13.2	Example 1																	49
Exa 13.3	Example 2																	50
Exa 13.6	Example 3																	50
Exa 13.8	Example 4																	51
Exa 14.1	Example 1																	52
Exa 14.2	Example 2																	52
Exa 14.3	Example 3																	53
Exa 14.4	Example 4																	54
Exa 14.5	Example 5																	55
Exa 14.6	Example 6																	56
Exa 14.7	Example 7																	57
Exa 14.8	Example 8																	57
Exa 14 9	Example 9	 •	•	·	٠	•	-	·	•	•	 •	•	-	-	•	-	•	58

Exa 14.10	Example 10													58
Exa 14.11	Example 11													59
Exa 15.1	Example 1													60
Exa 15.2	Example 2													61
Exa 15.3	Example 3													61
Exa 15.4	Example 4													62
Exa 16.2	Example 1													64

Water system

Scilab code Exa 2.1 Example 1

```
1 clc
2 //initialisation of variables
3 w=3000//sq ft
4 w1=2000//sq ft
5 w2=1000//sq ft
6 r=15//in
7 a=12//in
8 h=7.5//in
9 //CALCULATIONS
10 G=w*(r/a)*h//gal
11 g=w1*(r/a)*h//gal
12 g1=w2*(r/a)*h//gal
13 //RESULTS
14 printf('the normally be stored to tide the supply over dry spells=% f gal',G)
```

Scilab code Exa 2.2 Example 2

```
1 clc
2 //initialisation of variables
3 \text{ m} = 17.378 / \text{mg}
4 h=20//in/sq mile
5 d=365//in
6 \text{ s=0.75//percent}
7 \text{ a=100//sq miles}
8 p=750000//gpd per sq mile
9 t = 180 / / in
10 c = 150 //gpcd
11 n=64699 //gpd per sq mile
12 //CALCULATIONS
13 R=h*m/mg
14 \text{ A=R/d/mgd}
15 S=s*a*t//billion gal
16 Q=a*p/c/gpd
17 P=a*n/c//people against
18 //RESULTS
19 printf ('the surface water sheds and storage
      requirements=% f mg',R)
20 printf('the well watered sections of north america=%
       f billion gal',S)
21 printf ('the average consumptiion populations=% f gpd
      ',Q)
22 printf('the presence of proper storage=% f people
      against',P)
```

Scilab code Exa 2.3 Example 3

```
1 clc
2 //initialisation of variables
3 w=20//ft
4 r=3//ft a day
5 g=500//ft
6 g1=1000//ft
```

```
7 h=7.5/1440//ft
8 p=7.5/1000000//ft
9 r1=2//ft a day
10 //CALCULATIONS
11 W1=w*g1*r*h//gpm
12 W2=w*g1*r1*r*p//mgd
13 //RESULTS
14 printf('the ground water laterally =% f gpm', W1)
15 printf('the water from both sides=% f mgd', W2)
```

Scilab code Exa 2.4 Example 4

```
1 clc
2 //initialisation of variables
3 p1 = 10 //mgd
4 p2 = 6940 //gpm
5 w=67000/people
6 d=2/min
7 v=d*p2/d//gal
8 \text{ v1} = 98.2 //\text{cu} \text{ ft each}
9 q = 30 // min
10 q1 = q * p2/d // gal
11 q2 = 13900 / cu ft
12 a=1390/sq ft
13 s = 2 / / hr
14 \text{ s1=}120*\text{p2/d}//\text{gal}
15 \text{ s2} = 55700 //\text{cu} \text{ ft}
16 \text{ s3=s2/8//sq ft}
17 r=3//gpm/sq ft
18 \text{ r1=6}//\text{rapid}
19 //CALCULATIONS
20 D = sqrt(v1*4/\%pi) // ft
21 \text{ S=p2/s3//gpm/sq ft}
22 A=p2/(r1*r)/sq ft
23 //RESULTS
```

24 **printf** ('the capacity of the components of a rapid sand filtration plant=% f sq ft', A)

Scilab code Exa 2.5 Example 5

```
1 clc
2 //initialisation of variables
3 r = 10000 / / ft
4 1 = 400000 / people
5 q = 1000000 / mgd
6 \text{ w} = 100 // \text{gpcd}
7 \text{ w1} = 150 // \text{gpcd}
8 m=50//percent
9 \text{ g=1.5}//\text{ft}
10 h1 = 2.32 / cfs
11 h2=139/cfs
12 d=12//ft
13 c = 100 / / ft
14 1 = 10.8 / / ft
15 \quad 12 = 0.85 / / ft
16 \ 11 = 1000 // ft
17 //CALCULATIONS
18 \quad a=r*w/q//mgd
19 b=1*w1/q//mgd
20 \quad a1=a*g//mgd
21 b1=b*g//mgd
22 D=d*sqrt(h1/\%pi)//in
23 D1=d*sqrt(h2/%pi)//in
24 L=1/11//ft
25 L1=12/11//ft
26 //RESULTS
27 printf('the higher loss of head in small conduits at
        equal velocity=% f ft',L1)
```

Scilab code Exa 2.6 Example 6

```
1 clc
 2 //initialisation of variables
 3 a=12//in
4 b = 24 / / in
 5 r = 500 //gpm
 6 d = 200 //gpcd
7 d1 = 150 //gpcd
8 p1=113//sq in
 9 p2=425//sq in
10 \text{ v1=3}//\text{fps}
11 v2 = 2.35 / cfs
12 v3 = 9.42 / cfs
13 h = 646000 //gpd
14 \text{ w} = 720000 //\text{gpd}
15 //CALCULATIONS
16 \quad D1 = v2 * h //gpd
17 D2=v3*h//gpd
18 W1 = D1 - w //gpd
19 W2 = D2 - w / / gpd
20 R1=D1/d//people
21 R2=D2/d/people
22 \text{ S=W1/d1//people}
23 S1=W2/d1//people
24 //RESULTS
25 printf ('the absence of fire service for a maximum
       draft=\% f gpd',D2)
26 printf ('The residential fire flow requirements=% f
      gpd', W2)
```

```
1 clc
2 //initialisation of variables
3 \text{ w} = 100000 / / \text{ft}
4 c=250//per capita
5 p1=0.3//percent
6 p2=0.1/percent
7 p3=0.60//percent
8 \text{ w1} = 15 //\text{mgd}
9 //CALCULATIONS
10 T = c * w / / $
11 W = p1 * T // $
12 W1 = p2 * T // $
13 W2=p3*T//$
14 W3=((w1)^2/3)*T//^3
15 //RESULTS
16 printf('the replacement cost of the water of a city=
      \% f \$, w3)
```

Wastewater systems

Scilab code Exa 3.1 Example 1

```
1 clc
2 //initialisation of variables
3 v = 2.5 / fps
4 c=0.013//gpd
5 p = 300 //gpd
6 d=50//per care
7 m=5.20 // ft
8 a = 1000 / / ft
9 //CALCULATIONS
10 C = [(\%pi*64)/(4*144)]*v*646000//gpd
11 M=m/a//ft
12 P=C/p
13 A=P/d//acres
14 //RESULTS
15 printf('the acres will it drain if the population
      density=% f acres', A)
```

Scilab code Exa 3.2 Example 2

```
1 clc
2 //initialisation of variables
3 = 37.4 / acres
4 r = 2 / / in
5 p = 30 // min
6 \text{ v=} 3 \text{//fps}
7 \text{ r1=0.6}//\text{in}
8 h=1.0/cfs
9 p1=50//percent
10 q = 646000 //gpd
11 //CALCULATIONS
12 R=r*r1*a//cfs
13 A=R/v/sq ft
14 D=12*sqrt(4*A/\%pi)//in
15 P=r*r1*q/p1//gpcd
16 //RESULTS
17 printf ('the per capita storm runoff for a population
       density=% f gpcd',P)
```

Scilab code Exa 3.3 Example 3

```
1 clc
2 //initialisation of variables
3 w=1.0//cfs
4 w1=3.0//cfs
5 w2=45.0//cfs
6 v=3.0//fps
7 h=144//ft
8 D=12*sqrt(4*w/(%pi*w1))//in
9 d1=1.95//cfs
10 D1=12*sqrt(4*d1)/(%pi*v)//in
11 d2=41.6//cfs
12 D2=12*sqrt(4*d2)/(%pi*w1)//ins
13 //CALCULATIONS
14 C=%pi*(D)^2*3/(4*h)//cfs
```

Scilab code Exa 3.4 Example 4

```
1 clc
2 //initialisation of variables
3 t = 0.8 / mgd
4 d=8000 // people
5 a=2//hr
6 v = 800000 / / ft
7 h = 10 / / ft
8 \ a1=4//in
9 d1=1//sq ft per capita
10 \quad a3=3//mgad
11 //CALCULATIONS
12 V = v * (a/24) / a / / gal
13 S=V/h//sq ft
14 S1=(v/h)/S//gpd per sq ft
15 V1=a*d/h//cu ft
16 D=d/S//ft
17 E=d1*d/a1//sq ft
18 A=t/a3//acre
19 //RESULTS
20 printf ('the capacity of the components of a small
      trickling-filter = f acre', A)
```

Scilab code Exa 3.5 Example 5

```
1 clc
2 //initialisation of variables
3 \text{ w} = 2000 //\text{sq miles}
4 r = 0.1 // cfs
5 d=80000 // ft
6 p = 100 //gpd
7 p1 = 80 // ft
8 p2=340//percent
9 h = 646000 // ft
10 //CALCULATIONS
11 L=r*w//cfs
12 R=6*p1/1.4//cfs
13 P=p1*(p2-L)/p2//percent
14 D=(d*p)//gpd
15 D1=(L*h)//gpd
16 //RESULTS
17 printf('the percent of removal of pollutional load
      needed=% f percent',P)
```

Scilab code Exa 3.6 Example 6

```
1 clc
2 //initialisation of variables
3 p=10000//people
4 p1=4//ft
5 w=10//in
6 s=80//gpcd
7 h=43560//ft
8 p2=20//ft
9 //CALCULATIONS
10 R=[(w/12)*7.5*h]/365//gpad
11 A=p*s/R//acres
12 A1=1.7//sq miles
```

```
13  P=p/500//acres
14  D=p2*h*4*7.48/(p*s)//days
15  //RESULTS
16  printf('the detention period in ponds =% f days',D)
```

Scilab code Exa 3.7 Example 7

```
1 clc
2 //initialisation of variables
3 p=100000//people
4 a=75//$
5 a2=47//in
6 b=10//in
7 //CALCULATIONS
8 P=a*p//people
9 S=((a)*(b^5))/(b)^1/4//$
10 //RESULTS
11 printf('the money is inversed in the sanitary sewerage system=% f $',S)
```

Information analysis

Scilab code Exa 4.1 Example 1

```
1 clc
2 //initialisation of variables
3 y=19.5//in
4 x=396.8//in
5 n=6//in
6 y1=2.20//in
7 x1=51.14//in
8 p=5.64//in
9 //CALCULATIONS
10 Beta=(x-n*(y)*(y1))/(x1-n*(y1)^2)
11 X=p+Beta//minimum
12 //RESULTS
13 printf('the method of leate squares =% f minimum', X)
```

Scilab code Exa 4.3 Example 2

```
1 clc
2 //initialisation of variables
```

```
3 a=12//in
4 h=121//in
5 p=11//in
6 s=220//in
7 //CALCULATIONS
8 B={a/[p*(h-1)]}*s//per unit
9 //RESULTS
10 printf('the interval of time a noted before=% f per unit',B)
```

Scilab code Exa 4.5 Example 3

```
1 clc
2 //initialisation of variables
3 a=4404//ft
4 q=9//ft
5 mu=12//ft
6 //CALCULATIONS
7 F=sqrt(a/q)//ft
8 CF=F/mu*100//percent
9 //RESULTS
10 printf('the coefficient of fluctuation is =% f percent', CF)
```

Scilab code Exa 4.7 Example 4

```
1 clc
2 //initialisation of variables
3 h2=5//in
4 x=3.72//in
5 x1=1.28//in
6 //CALCULATIONS
7 H=h2*x1/x//in
```

Scilab code Exa 4.8 Example 5

```
1 clc
2 //initialisation of variables
3 p=80//in
4 q=20//in
5 //CALCULATIONS
6 K=p+q//ft
7 //RESULTS
8 printf('the moments of the arithmetically normal frequency curve=% f ft',K)
```

Scilab code Exa 4.9 Example 6

```
1 clc
2 //initialisation of variables
3 g=3.2541//in
4 g1=3.46//in
5 m=0.5390//ft
6 h=2/99//ft
7 p=1.52//ft
8 //CALCULATIONS
9 L=sqrt(g*h)//in
10 mu=g1*p//in
11 M=g1/p//percent
12 //RESULTS
13 printf('the points necessary to plot the straigt line of fit on log probability=% f percent', M)
```

Water and wastewater volume

Scilab code Exa 5.1 Example 1

```
1 clc
 2 //initialisation of variables
3 t1=5.25//yr
4 t2=10.00//yr
 5 \text{ yi} = 171000 // in
 6 \text{ ye} = 111000 // in
 7 \text{ yt} = 5.23300 // in
8 \text{ yl} = 5.04532 // in
9 \text{ yn} = 31500 // in
10 ym = 0.09853 / / in
11 tm = 9.25 / yr
12 \, \text{tn} = 10.00 // \text{yr}
13 //CALCULATIONS
14 T=t1/t2//yr
15 T1=tm/tn//yr
16 Y=yi-ye//in
17 Yt = yt - y1 // in
18 //RESULTS
19 printf('the fifth intercensal year = f yr',T)
20 printf ('the ninth postcensal year = f yr', T1)
```

Scilab code Exa 5.2 Example 2

```
1 clc
2 //initialisation of variables
3 y0 = 30000 / / in
4 y1 = 172000 / / in
5 y2 = 292000 / / in
6 a = 172 // ft
7 p = 30 / / ft
8 y = 292 // ft
9 q = 322000 // ft
10 g = 313 / ft
11 n = 0.05 //ft
12 d = -2.442 // ft
13 //CALCULATIONS
14 L=[2*p*a*y2-(a)^2*q]/[p*y-(a)^2]/moreover
15 m = (g-p)/p//ft
16 N=n*d//in
17 Y=g/[1+m*(N)]//in
18 //RESULTS
19 printf ('the saturation populations=% f moreover', L)
20 printf ('the coefficients=% f in', N)
21 printf('the equation of a logistic curve=% f in',Y)
```

Scilab code Exa 5.4 Example 3

```
1 clc
2 //initialisation of variables
3 p=100000//in
4 d=150//in
5 h=1000000//in
6 a1=2.0//draft
```

```
7 \ a2=3.0 // draft
8 a3=1.6//draft
9 m = 1.5 // in
10 q=2.5//in
11 v = 1020 // in
12 w = 100 / / in
13 t=0.01//in
14 \text{ v1} = 13.2 //\text{mgd}
15 //CALCULATIONS
16 \quad A = d * p/h // mgd
17 M=m*A//mgd
18 M1 = q *A //mgd
19 V=v*sqrt(w)*(1-t*sqrt(w))//gpm
20 D=M+v1/mgd
21 L=a1*A/mgd
22 L1 = (4/3) * M / / max
23 H=a2*A/mgd
24 H1 = (4/3) * M1 / max
25 F=a3*A/mgd
26 F1 = (4/3) * M / / max
27 //RESULTS
28 printf('the resulting capacities of the four system
      =\% f max', F1)
```

Scilab code Exa 5.6 Example 4

```
1 clc
2 //initialisation of variables
3 r=48//in
4 A=450//gpd/acre
5 B=8000//gpd/mile
6 S=5280/350//manholes/mile
7 //CALCULATIONS
8 C=(B-S*100)/12//gpd/mile
9 //RESULTS
```

Scilab code Exa 5.7 Example 5

```
1 clc
2 //initialisation of variables
3 p1=20//ft
4 p2=30//ft
5 w=5//person
6 s=17800//in
7 h=1200//in
8 q=100//in
9 i=1//in
10 //CALCULATIONS
11 S=p1*p2*i*s/(h*w)//gpcd
12 P=(q*p1*p2/S)//percent
13 //RESULTS
14 printf('the degree of separation of stormwater=% f percent',P)
```

Scilab code Exa 5.8 Example 6

```
1 clc
2 //initialisation of variables
3 s=105//gpcd
4 m=315//gpcd
5 m1=35//gpcd
6 Q1=360//gpcd
7 Q2=30//gpcd
8 p1=20//pecent
9 p2=15//persons/acer
10 D=21//persons/acre
```

```
11 I=2000//gpd/acre
12 //CALCULATIONS
13 A=D*(s+Q2)+I//gpd/acre
14 R=D*(m+Q2)+I//gpd/acre
15 L=D*(m1+Q2)+I//gpd/acre
16 //RESULTS
17 printf('the average peak and low rates of flow =% f gpd/acre',L)
```

Elements of hydrology

Scilab code Exa 6.1 Example 1

```
1 clc
2 //initialisation of variables
3 H=1360//ft
4 t=60//f
5 a=(10^3)*5.5*(10^-3)//f
6 q=(1.36*10^3)*5.5*(10^-3)//f
7 s=(4-1.36)*(10^3)*(3.2*10^-3)//f
8 //CALCULATIONS
9 T=t-q-s//F
10 T1=T+3*a//F
11 //RESULTS
12 printf('the temperature at the mountain top=% f F',T
)
13 printf('the temperature on the plain beyond the mountain=% f F',T1)
```

Scilab code Exa 6.2 Example 2

```
1 clc
2 //initialisation of variables
3 t = 60 / / f
4 v = 0.52 // in
5 \text{ t1=80}/\text{F}
6 p=40/percent
7 v1=1.03*0.40 //in
8 \text{ w=8//mph}
9 pa=29.0//in
10 p1 = 0.497 // ft
11 q=1.32*10^-2/ft
12 r = 0.268 / / ft
13 //CALCULATIONS
14 E=p1*(1-q*pa)*(1+r*w)*(v-v1)//in
15 //RESULTS
16 printf('the evaporation for the a day during=% f in'
      ,E)
```

Scilab code Exa 6.3 Example 3

```
1 clc
2 //initialisation of variables
3 t=47//f
4 q=8000//ft
5 a=100//ft
6 d=0.10//in
7 d1=7//degree days
8 s1=14000//ft
9 s2=7000//ft
10 s=1000//ft
11 g=32//ft
12 h=17.37//ft
13 h1=1.547//ft
14 //CALCULATIONS
15 T=q+s*(t-g)/3//ft
```

```
16 T1=t-3*1//F
17 T2=(T1+g)/2//F
18 T3=d1*d*a//sq mile in
19 M=h*T3//mgd
20 M1=M*h1//cfs
21 //RESULTS
22 printf('the upper boundary of the melting zone and temperature at the snow line=% f F',T1)
23 printf('The average temperature of =% f cfs',M1)
```

Rainfall and runoff

Scilab code Exa 7.5 Example 1

```
1 clc
2 //initialisation of variables
3 n=20//ft
4 s=sqrt(12676/19)//ft
5 c=45.5//ft
6 q=551400//ft
7 q1=12700//ft
8 h=8.5//ft
9 w=s/c//ft
10 //CALCULATIONS
11 D=q/(2*s*q1)//cfs
12 D1=D*(1+h/n)//cfs
13 //RESULTS
14 printf('the record runoff of a stream draining=% f cfs',D1)
```

Scilab code Exa 7.6 Example 2

```
1 clc
2 //initialisation of variables
3 i=16/(62)^0.66//in hr
4 q=(16*10^0.31)/(62)^0.66//in hr
5 c=1.0//max
6 C1=c*(0.01)^0.31//in
7 C2=c*(0.1)^0.31//in
8 x1=640//cfs
9 //CALCULATIONS
10 Y1=C1*i*c*x1//cfs
11 Y2=C2*q*c*x1//cfs
12 //RESULTS
13 printf('the time of concentration=% f cfs', Y2)
```

Scilab code Exa 7.8 Example 3

```
1 clc
2 //initialisation of variables
3 d=163*48.5//cfs
4 a = 48.5 //ft
5 q = 100 / cfs
6 Q=45.5*a//cfs
7 c = 0.57 / cfs
8 v = 1.8 / cfs
9 p=0.45 //ft
10 //CALCULATIONS
11 P=d/(q*sqrt(a))/percent
12 C=Q/(a^0.8*(1+2*a^-0.3))/cfs
13 d1 = 2.6 / cfs
14 T = (1-p*c+v*c*2) // cfs
15 //RESULTS
16 printf('the meyers rating = f percent', P)
17 printf ('the magnitude of the maximum peak flood = f
       cfs',T)
```

Storage and runoff control

Scilab code Exa 8.2 Example 1

```
1 clc
2 //initialisation of variables
3 a=0.75 // ft
4 p = 123 / mg
5 v = 100 // ft
6 s = 33 / mg
7 \text{ s1} = 67 //\text{mg}
8 d=26.6/mgd
9 d1 = 0.0477 / mgd
10 q=0.750//gpd/sq mile
11 d2 = 365 / / days
12 //CALCULATIONS
13 S=p/a//mg per sq mile
14 Cv=v*s/s1//percent
15 M=d*d1//mgd per sq mile
16 \text{ D=v*q/M}/\text{MAF}
17 D1=(v*p)/(M*d2)//MAF
18 R=p/q//days
19 //RESULTS
20 printf ('the use monthly averages rather then daily
      stream flow=% f days',R)
```

Scilab code Exa 8.3 Example 2

```
1 clc
2 //initialisation of variables
3 d=750000//gpd per sq mile
4 v=0.22//ft
5 a=1.27//ft
6 q=0.30//ft
7 d1=365//days
8 p=0.25//ft
9 //CALCULATIONS
10 Q=q*a*d1//mg/sq mile
11 H=p*a*d1//mg/sq mile
12 //RESULTS
13 printf('the results obtained by normal analytical procedures and by Hazen s=% f mg/sq mile',H)
```

Scilab code Exa 8.4 Example 3

```
1 clc
2 //initialisation of variables
3 d=30.0//mgd
4 a=40.0//sq miles
5 a1=1500//acres
6 r1=47.0//in
7 r2=27.0//in
8 q=0.9//in
9 k=640//in
10 h=0.052//gpd/sq mile
11 //CALCULATIONS
12 Q=r2-(r2+a-r1)*q*a1/(k*a)//in
```

```
13 D=d+a*h//mgd
14 A=a-(q*a1/k)*[1-(r1-a)/(r2)]//sq miles
15 R=r2+a-r1//in
16 S=R*q//in
17 //RESULTS
18 printf('the revised mean annual runoff=% f in',Q)
19 printf('the equivalent mean draft=% f mgd',D)
20 printf('the equivalent land area=% f sq miles',A)
21 printf('the adjusted flowline=% f in',S)
```

Scilab code Exa 8.6 Example 4

Groundwater flow

Scilab code Exa 9.1 Example 1

```
1 clc
2 //initialisation of variables
3 t=10//C
4 s=74.2//days
5 c=0.01//mm
6 d=245//mm
7 //CALCULATIONS
8 h=s/(d*c)//cm
9 //RESULTS
10 printf('the high will water at a temperature =% f cm',h)
```

Scilab code Exa 9.2 Example 2

```
1 clc
2 //initialisation of variables
3 p1=1000//ft
4 p2=50//ft
```

```
5 \text{ g=20}//\text{ft/mile}
6 v = 5280 // ft
7 q=7.5*10^-6//ft
8 t = 60 / F
9 k = 2835 / ft / days
10 p=7.5/ft
11 //CALCULATIONS
12 S=g/v/ft
13 W=k*(g/v)//ft/day
14 Q = W * p1 * p2 * q / / mgd
15 P=k*p//ft
16 \text{ P1=P*p2//mgd}
17 //RESULTS
18 printf('the velocity of flow =% f mgd',Q)
19 printf ('the standard coefficient pf permeability=% f
       mgd', P1)
```

Scilab code Exa 9.3 Example 3

```
1 clc
2 //initialisation of variables
3 p = 40 / ft
4 d=56//ft
5 d1 = 140 // ft
6 p1 = 30 / / ft
7 \text{ w=3.28*10}^-4//\text{fps}
8 //CALCULATIONS
9 Q=w*(p/d1)*2*d*p//cfs
10 q=Q/p/cfs
11 K=w*(p/d1)//fps
12 x0=q/(2*\%pi*K)//ft
13 Z=2*\%pi*x0//ft
14 //RESULTS
15 printf ('the yield of the well if the coefficient of
      permeability=% f ft',x0)
```

```
16 printf('the distance of the point of stagnation =% f
    ft',Z)
```

Scilab code Exa 9.4 Example 4

```
1 clc
2 //initialisation of variables
3 p=5*10^6 // ft
4 Q = 350 //gpm
5 x = 225 // ft
6 u=10^-2//ft
7 g=1.87 // ft
8 p2=7*10^2 // ft
9 p3=10.9//ft
10 w=4.0 // ft
11 t = 114.6 / / ft
12 d=10 // ft
13 p1=5//ft
14 w1=3.2*10^4/ft
15 W = 21.75 //ft
16 //CALCULATIONS
17 T=t*Q*4/p1//gpd/ft
18 S=u*(w1)/[g*(p)]//ft
19 U=g*[(S)/(T)]*(x^2/d)//ft
20 P=t*(p2)*p3/(T)//ft
21 U1=g*[(S)/(T)]*(1/d)//ft
22 P1=t*(p2)*W/(T)//ft
23 //RESULTS
24 printf ('the type curve as if a transparency of the
      observed data had moved into place over the type=
     % f ft',P1)
```

Scilab code Exa 9.5 Example 5

```
1 clc
2 //initialisation of variables
3 Q = 350 //gpm
4 x = 225 / / ft
5 t=1//\min
6 p=1.6/ft
7 t2=10 //min
8 p2=4.5/ft
9 p3 = 700 / gpm
10 T=3.2*10^4/gpd/ft
11 t0=0.3//\min
12 u=1.15*10^-5
13 //CALCULATIONS
14 S=t0*(T)*t0/[(x)^2*1440]//ft
15 P = [(114.6*p3)/(T)]*(-0.5772*2.3*log(u))//ft
16 //RESULTS
17 printf ('A straight line being drawn through the
      ppints for the higher=% f ft',P)
```

Scilab code Exa 9.6 Example 6

```
1 clc
2 //initialisation of variables
3 h=4.8/ft
4 m=13.4//ft
5 k=10^-1//cm/sec
6 k1=3.28*10^-3//fps
7 n=7//ft
8 n1=11//ft
9 q=1.0*10^-2
10 //CALCULATIONS
11 Q=k1*h*n/n1//cfs/ft
12 Q1=2*q*10^2//cfs
13 //RESULTS
14 printf('A satisfactory orthogonal system the flow of
```

Groundwater collection

Scilab code Exa 10.1 Example 1

```
1 clc
2 //initialisation of variables
3 \text{ w1} = 1000 // \text{ft}
4 w2 = 2000 / / ft
5 r = 700 / gpm
6 d=10//days
7 q=2//ft
8 u=1.87*[(3.4*10^-5)/(3.2*10^4)]*(d^6/d)//ft
9 W = 7.94 //ft
10 p=114.6*(7*10^2)*W/(3.2*10^4)/ft
11 U=1.87*[(3.4*10^-5)/(3.2*10^4)]*(4*d^6/d)//ft
12 Wu = 6.55 / / ft
13 P=114.6*(7*10^2)*Wu/(3.2*10^4)/ft
14 R = 54 / / ft
15 //CALCULATIONS
16 W1 = R + p + P / / ft
17 D=R+q*p//ft
18 //RESULTS
19 printf ('the expected drawndown the first well is
      pumped at a rate=% f ft', W1)
20 printf('the drawdown in each well all the three are
```

Scilab code Exa 10.3 Example 2

```
1 clc
2 //initialisation of variables
3 g=20//ft
4 k=10^-1//cm/sec
5 g1=3.28*10^-3//fps
6 w=2//ft
7 w1=30//ft
8 //CALCULATIONS
9 Q=(1/2)*(g1)*[(g^2)-(2^2)]/(w1)//cfs
10 //RESULTS
11 printf('the flow into a foot of gallery=% f cfs',Q)
```

Surface water collections

Scilab code Exa 11.1 Example 1

```
1 clc
 2 //initialisation of variables
3 \text{ s} = 20 //\text{mph}
4 t = 90 / min
5 \text{ w=1.31}//\text{ft}
6 h=7.5//miles
7 h1=0.22 // ft
8 t1 = 1100 //min
9 t2=6.0/min
10 p=32.2//ft
11 1=5.12//length
12 11=2.8//length
13 p1 = 1400 // ft
14 d=73/depth
15 h3=2.06//ft
16 \text{ e} = 173.0 // \text{ft}
17 hi = 0.2 / / ft
18 //CALCULATIONS
19 W = s * w //mph
20 hs=h1*[(W)^2/p]^0.53*h^0.47//ft
21 Ts=t2*(W/p)^0.44*(h/p)^0.28//sec
```

```
22 Td=t1*h/(p*Ts)//min
23 Ls=11/(1*(Ts)^2)//ft
24 D=d/(1*(Ts)^2)/ft
25 H=(W)^2*[h*(1/(p1*d))]//ft
26 \text{ hr}=\text{h3}*11//\text{ft}
27 \text{ M=e+hi+hr}//\text{ft}
28 //RESULTS
29 printf('the overwater wind speed=% f mph', W)
30 printf ('the significant wave height=\% f ft', hs)
31 printf('the significant wave period=% f sec', Ts)
32 printf ('the minimum wind duration required to reach
      the significant wave height=% f min', Td)
33 printf('the significant wave length adm steepness=\%
      f ft', Ls)
34 printf('the reservoir depth ratio=% f ft',D)
35 printf('the wind tide or set up=% f ft',H)
36 printf ('the run up = \% f ft', hr)
37 printf ('the maximum elevation reached by the waves=\%
       f ft', M)
```

Scilab code Exa 11.2 Example 2

```
1 clc
2 //initialisation of variables
3 g=264//quartz
4 p=0.39//percent
5 //CALCULATIONS
6 S=(1-p)*(g-1)//in
7 //RESULTS
8 printf('the hydralic gradient and seepage velocity=% f in',S)
```

Scilab code Exa 11.3 Example 3

```
1 clc
2 //initialisation of variables
3 w = 40 / ft
4 \text{ k} = 2 * 10^{-3} / \text{cm} / \text{sec}
5 p=3.28*10^{-3}/cfs
6 h=6.47*10^5/gpd
7 p1=0.433 // ft
8 m = 9 / / ft
9 delh=w/(18*9)//in
10 k1 = 4.94 * 10^{-4} / cm / sec
11 //CALCULATIONS
12 Q=k*p*w*(9/18)//cfs
13 Q1=Q*h/gpd/ft width
14 P = (1-8/18) *w*p1//Psig
15 \text{ H=k1/k//in}
16 //RESULTS
17 printf ('the seepage through each foot width of the
      foundation=% f gpd/ft/ width',Q1)
18 printf ('the excess hydrostatic pressure on the
      upstream
                side of the bottom of the sheet pilling
      =% f Psig',P)
19 printf ('the maximum hydraulic gradient and its
      relations to the coefficent=% f in',H)
```

Scilab code Exa 11.4 Example 4

```
1 clc
2 //initialisation of variables
3 d=120//ft
4 w=16//ft
5 d1=120/0.8//ft
6 p=60*0.8//ft
7 h=2//ft
8 v=18.74*0.8//ft
9 s=95.23//ft
```

```
10 s1=0.8//ft
11 //CALCULATIONS
12 W=d-h*p//ft
13 S=s*s1//ft
14 //RESULTS
15 printf('in succession from the intersection of the upstream slop=% f ft',S)
```

Water transmission

Scilab code Exa 12.1 Example 1

```
1 clc
2 //initialisation of variables
3 c=100//in
4 a=10//in
5 Q=0.976//ft
6 //CALCULATIONS
7 G=a*Q//ft
8 //RESULTS
9 printf('the graphical basic =% f ft',G)
```

Scilab code Exa 12.2 Example 2

```
1 clc
2 //initialisation of variables
3 a=27.6//sq ft
4 h=1.37//ft
5 d=1.53*(27.9)^0.38*(1.36)^0.24//ft
6 //CALCULATIONS
```

```
7 R=d/4//ft
8 A=(%pi*d^2)/4//sq ft
9 //RESULTS
10 printf('The diameter hydraulics radius and area of the hydraulically equivalent circular conduit=% f sq ft', A)
```

Scilab code Exa 12.3 Example 3

```
1 clc
2 //initialisation of variables
3 h1=13.5//ft
4 h2=19.0//ft
5 h3=27.5//ft
6 c1=2.0*10^4//ft
7 c2=2.1*10^4//ft
8 c3=2.2*10^4//ft
9 //CALCULATIONS
10 H=h1+h2+h3//ft
11 C=c1+c2+c3//ft
12 //RESULTS
13 printf('the most economical distributions of the available head=% f ft',C)
```

Scilab code Exa 12.4 Example 4

```
1 clc
2 //initialisation of variables
3 p=60//in
4 h=20//percent
5 a=1000//ft
6 h1=40//percent
7 c=0.5//ft
```

```
8 p1=14.3//ft
9 p2=6.1//ft
10 d=11.7*10^-2//ft
11 //CALCULATIONS
12 P=p2/p1//ft
13 D=d*p//ft
14 //RESULTS
15 printf('the air valve with a discharge the change in slop=% f ft',D)
```

Scilab code Exa 12.5 Example 5

```
1 clc
2 //initialisation of variables
3 p = 90 / deg
4 h = 48 / / in
5 p1 = 100 // psig
6 P=(1/2*\%pi)*h^2*p1*0.7071//lb
7 r = 3000/54 - 31//ft
8 s = 9000 // psi
9 1 = 170 // in
10 b=6.5*10^-6//ft
11 \quad w = 46 / / ft
12 \text{ w1} = 1000 / / \text{ft}
13 //CALCULATIONS
14 D=(1/4*\%pi)*h^2*p1//lb
15 P=[r]*h^2//lb
16 T = \pi * h * (1/4) * s // lb
17 T1 = (1/2) * 1 / tons
18 Del=b*w*w1//ft per
19 //RESULTS
20 printf('the accorance with unless otherwise stated=%
        f ft per', Del)
```

Water distribution

Scilab code Exa 13.2 Example 1

```
1 clc
2 //initialisation of variables
3 p1=7.8//ft
4 p2=6.0/ft
5 p3=7.4//ft
6 p4=6.5 // ft
7 p=7.6 // ft
8 h=1.0/ft
9 h1=6.7/ft
10 p5=3.3//ft
11 //CALCULATIONS
12 D = p1 - p2 / mgd
13 D1=p1-p3//mgd
14 D2 = p - p4 / / mgd
15 \quad D3=p4+h/mgd
16 D4 = h1 - p5 / mgd
17 //RESULTS
18 printf('the demand is taken = f mgd', D3)
```

Scilab code Exa 13.3 Example 2

```
1 clc
2 //initialisation of variables
3 w = 500 / / ft
4 p = 20 // p sig
5 h=40//psig
6 \text{ h1} = 1000 // \text{in}
7 q = 1250 // ft
8 g=2.308/0.75//ft
9 g1=2.308/1.00//ft
10 \text{ s} = 5200 //\text{gpm}
11 a = 250 //gpm
12 //CALCULATIONS
13 H = [h1 - (1/2) * (w)] // ft
14 H1=(h-p)*g/percent
15 Q = [q - (1/2) * (w)] // ft
16 Q1=(h-p)*g1//percent
17 S=s/a//gpm
18 //RESULTS
19 printf('the number of standard fire streams=% f gpm'
```

Scilab code Exa 13.6 Example 3

```
1 clc
2 //initialisation of variables
3 h1=2.1*3//ft
4 h2=2.1//ft
5 h=8.4//ft
6 p=1000//ft
7 h3=5.7//ft
8 h4=4.2*3//ft
9 q=4.2//ft
10 s=1.68//ft
```

```
11 q1=1.33//ft
12 //CALCULATIONS
13 A=p*h/h2//ft
14 B=p*(h3+h4)/q//ft
15 C=p*(h1+h2)/s//ft
16 //RESULTS
17 printf('the equilent pipe for the Hazen willians coefficent=% f ft', A)
18 printf('the equilent pipe for the Hazen willians coefficent=% f ft', B)
19 printf('the equilent pipe for the Hazen willians coefficent=% f ft', C)
```

Scilab code Exa 13.8 Example 4

```
1 clc
2 //initialisation of variables
3 d=10//hr
4 p=50000//in
5 a=7.5//mgd
6 w=0.75//mg
7 s=5.03//mg
8 //CALCULATIONS
9 S=s/w//mg
10 P=S-s//mg
11 //RESULTS
12 printf('a steady gravity supply equal to maximum daily=% f mg',P)
```

Wastewater flows

Scilab code Exa 14.1 Example 1

```
1 clc
2 //initialisation of variables
3 n=0.013//ft
4 s=4.90//ft
5 v=0.590//ft
6 d=0.463//ft
7 w=3.9*10^-2//ft
8 p=1.696//ft
9 //CALCULATIONS
10 V=s*v//fps
11 Q=s*d//cfs
12 N=(w*p)^2*1000//percent
13 //RESULTS
14 printf('the velocity of flow and rate of discharge=% f percent', N)
```

Scilab code Exa 14.2 Example 2

```
1 clc
 2 //initialisation of variables
3 v = 1.34 // fps
4 \text{ s=3.7*10}^{-3} / \text{fps}
 5 \text{ k=0.8}//\text{ft}
 6 r = 20 / / ft
 7 \text{ k1=0.04}//\text{ft}
8 v = 3.0 // fps
9 \text{ v1=5.0}//\text{fps}
10 d=10^--1//ft
11 d1=1.34//ft
12 //CALCULATIONS
13 K=r*k1//ft
14 V = sqrt(r) / times
15 D=d*(v/d1)^2/cm
16 D1=d*(v1/d1)^2//cm
17 //RESULTS
18 printf ('the minimum velocity and the gradient at the
        which coarse quartz=% f cm',D1)
```

Scilab code Exa 14.3 Example 3

```
1
2
3 clc
4 //initialisation of variables
5 v=2.5//fps
6 q=0.873//cfs
7 s=5.20//percent
8 a=0.252//ft
9 r=0.684//ft
10 r1=1.46//ft
11 v1=0.776//ft
12 q1=0.196//ft
13 n=0.78//ft
```

```
14 R=0.939//ft
15 //CALCULATIONS
16 V=v1*v//fps
17 Q=q1*q//cfs
18 R1=r1*s//percent
19 Vs=R*v//ft
20 N=n*Vs//fps
21 Qs=a*R*q//cfs
22 N1=n*Qs//cfs
23 //RESULTS
24 printf('the required grades and associated velocity and rates=% f cfs',V)
25 printf('the depth and a grade=% f cfs',Q)
26 printf('the self cleaning flow=% f cfs',N1)
```

Scilab code Exa 14.4 Example 4

```
1 clc
2 //initialisation of variables
3 Q = 0.873 / cfs
4 \text{ s=5.20//percent}
5 d=0.161//cfs
6 q1=0.185//ft
7 d2=2.5//ft
8 v = 0.91 / ft
9 \text{ s1=1.70}//\text{ft}
10 s3=1.46//ft
11 w = 0.185 // ft
12 d1 = 0.30 // ft
13 \text{ v1} = 0.732 // \text{ft}
14 //CALCULATIONS
15 q=d/Q//cfs
16 \text{ Vs=v*d2//fps}
17 Ss=s1*s/percent
18 Va = v1 * d2 / / fps
```

```
19 Ss1=s3*s//percent
20 //RESULTS
21 printf('the depth and velocity of flow and the required slop=% f percent', Ss1)
```

Scilab code Exa 14.5 Example 5

```
2 //initialisation of variables
 3 d1 = 0.67 // ft
4 h1=2.00//ft
5 h2=4.04//ft
 6 \text{ hv1} = 0.062 // \text{ft}
7 \text{ hv}2=0.254 // ft
 8 d=0.19 // ft
9 h=0.2//ft
10 h1=0.04 // ft
11 q = 0.644 // ft
12 q1=0.65 // ft
13 v = 0.92 / / ft
14 d2=6.5//ft
15 \text{ v1} = 3.69 // \text{ft}
16 d3 = 0.542 // ft
17 hv3=0.21//ft
18 delv = 0.15 // ft
19 d4=0.02//ft
20 //CALCULATIONS
21 H = d1 + hv1 // ft
22 \text{ H1} = \text{d1} + \text{hv2} / / \text{ft}
23 he=h*d/ft
24 \text{ hi=d+h1}//\text{ft}
25 \text{ H2} = d3 + hv3 // ft
26 \text{ hel=h*delv}//\text{ft}
27 \text{ S} = d4 + h1 / / ft
28 //RESULTS
```

```
29 printf('the required slope=% f ft',hi)
30 printf('the lower sewer and the invert drop in the transition=% f ft',S)
```

Scilab code Exa 14.6 Example 6

```
1 clc
2 //initialisation of variables
3 q = 60 / cfs
4 D=4 //ft
5 w = 0.177 // ft
6 s = 0.59 //ft
7 h=4.0 // ft
8 d1=1.0//ft
9 v = 0.90 // ft
10 d1 = 0.42 // ft
11 h1=6.0//ft
12 h2=1.5//ft
13 dl=1.3//ft
14 p=0.41//ft
15 u=0.8 // ft
16 \text{ u1} = 3.2 // \text{ft}
17 y=0.45 //ft
18 //CALCULATIONS
19 H=s*D//ft
20 d2 = d1 * D / / ft
21 V = v * D / / f t
22 P=p*D//ft
23 D1=y*D//ft
24 //RESULTS
25 printf('the critical depth=% f ft',H)
26 printf ('the alternate stages for an energy =\% f ft',
      V)
27 printf('the alternate stages for an energy head=% f
      ft',P)
```

28 printf('the lower alternate stage with upper alternate stage=% f ft',D1)

Scilab code Exa 14.7 Example 7

```
1 clc
2 //initialisation of variables
3 d=106//cfs
4 q=400//cfs
5 d1=0.40//cfs
6 w=10//ft
7 //CALCULATIONS
8 D=d/q//cfs
9 D1=d1*w//cfs
10 //RESULTS
11 printf('the water level in this well rises=% f cfs', D1)
```

Scilab code Exa 14.8 Example 8

```
1 clc
2 //initialisation of variables
3 Q=8.07*10^-2//ft
4 N=0.012//ft
5 d=0.47//ft
6 q=10//ft
7 //CALCULATIONS
8 D=d*q//ft
9 //RESULTS
10 printf('teh water surface in the sewer when it is flowing at maximum capacity=% f ft',D)
```

Scilab code Exa 14.9 Example 9

```
1 clc
2 //initialisation of variable
3 g=sqrt(3)//ft
4 d=5.67//ft
5 //CALCULATIONS
6 C=g*d//ft
7 //RESULTS
8 printf('The rate of propagation of a discontinuous surge=% f ft',C)
```

Scilab code Exa 14.10 Example 10

```
1 clc
2 //initialisation of variables
3 Q1 = 30 / cfs
4 Q2=16 // cfs
5 a=32//sq ft
6 r=1.6//ft
7 i=10^-4/ft
8 n=1.25*10^-2/ft
9 h2=0.50 //ft
10 c=3.33//ft
11 h1=5.20 // ft
12 1 = 72 // ft
13 s = 12320 // ft
14 //CALCULATIONS
15 L=s-1//ft
16 //RESULTS
17 printf('the forchheimer s methos = f ft',L)
```

Scilab code Exa 14.11 Example 11

```
1 clc
2 //initialisation of variables
3 q=1.0/cfs
4 \text{ g=} 2.0 // \text{percent}
5 g1=5.6//percent
6 r = 0.015 / cfs
7 w=90//percent
8 Q=10*0.9*q//ft
9 p = 0.10 / ft
10 h = (3.48 * g1^1/3) // ft
11 d=p^2/3*100//ft
12 //CALCULATIONS
13 D=h*d//in
14 //RESULTS
15 printf('The maximum depth of flow in the gutter=% f
      in',D)
```

Wastewater collection

Scilab code Exa 15.1 Example 1

```
1 clc
 2 //initialisation of variables
 3 q=0.25//in
 4 Q = 0.34 / / in
5 r = 0.76 / / in
 6 v = 0.83 / / in
 7 n = 0.78 / / in
 8 \text{ r1=0.84}//\text{in}
9 \text{ v1} = 0.70 / / in
10 w = 2 / / in
11 q1=0.056//in
12 d=0.16//in
13 v2=0.53//in
14 n1 = 0.80 / / in
15 d1 = 0.18 / / in
16 \text{ n} 2 = 0.46 / / i \text{ n}
17 //CALCULATIONS
18 V = v * w // fps
19 N = v1 * w / / fps
20 \text{ V1} = \text{v2} * \text{w} / / \text{fps}
21 \quad V2=n2*w//fps
```

Scilab code Exa 15.2 Example 2

```
1 clc
2 //initialisation of variables
3 v = 2.5 // fps
4 N=0.015 // fps
5 a = (40+27) // in
6 b=(40*27+27*19)/a
7 c = 0.440 / cfs
8 \text{ w} = 49*0.09/100//\text{cfs}
9 \text{ g=0.008//percent}
10 Q = 0.82 / cfs
11 r = 0.795 / cfs
12 t=2.35*1.16//fps
13 d1=113.20-113.03//ft
14 d2=12//ft
15 //CALCULATIONS
16 R=r/Q//cfs
17 D=g*r//in
18 D2=d1*d2//in
19 //RESULTS
20 printf ('The required capacity and find the slope
      size and hydraulic characteristics of the system=
      % f in',D2)
```

Scilab code Exa 15.3 Example 3

```
1 clc
```

```
2 //initialisation of variables
3 p = 20 // min
4 N=0.012//in
5 \text{ k} = 2.19 // \text{min}
6 l=k+1.97/min
7 q=340/(60*3.94)/min
8 r=2.56*0.508//min
9 del=0.42//min
10 j = 84.28 //min
11 w1 = 0.92 //min
12 //CALCULATIONS
13 r1=r*k//cfs
14 \text{ w=p+q//min}
15 G=j-del//min
16 S = (G - w1) / min
17 //RESULTS
18 printf ('The required capacity and find the slop size
       and hydraulic=% f min',S)
```

Scilab code Exa 15.4 Example 4

```
1 clc
2 //initialisation of variables
3 a=42//in
4 d=45//mgd
5 d1=0.75//in
6 s=60//ft
7 p1=9//in
8 p2=8.4//in
9 p3=9//in
10 c1=13*63.6//sq in
11 c2=9*55.4//sq in
12 c3=9.21//sq ft
13 M=d*1.547//cfs
14 v=M/c3//fps
```

Machinery and equipment

Scilab code Exa 16.2 Example 1

```
1 clc
2 //initialisation of variables
3 p=500//ft
4 p1=6//in
5 t=500//cfm
6 p2=7//psig
7 P=p2+14.7//psia
8 T=520*(P/14.7)^0.283//F
9 f=0.048*p1^0.027/(t)^0.148//in
10 //CALCULATIONS
11 delP=20*10^-3*p*T*(t)^2/(38*10^3*P*p1^5)//psia
12 //RESULTS
13 printf('the pressure drop=% f psia',delP)
```