Machine Learning Student Symposium 2025

Group 92

ChestGAN: Auxiliary Classifier GAN-based data augmentation for improved Chest Cancer Type Detection

Problem Statement

- Chest cancer type detection requires a substantial amount of labeled datasets for training deep learning models due to diversity in cancerous lesions. Limited availability of positive chest CT-Scan images restricts training efficiency.
- False negatives in cancer diagnosis pose serious risks.
- We propose to utilize Auxiliary Classifier Generative Adversarial Network (ACGAN) to generate synthetic CT-Scan images, enhancing CNN performance on an augmented dataset.

Data

Chest CT-Scan images dataset is used.

The dataset contains CT-Scan images of 3 chest cancer types:

 Adenocarcinoma (C1), Large Cell Carcinoma (C2), Squamous Cell Carcinoma (C3) and normal chest images (C4)

Baseline

- The CNN extracts features from RGBA images using convolution and pooling layers, then classifies them through fully connected layers.
- Training: Trained over 20 epochs using SGD (Ir=0.001), batch size 10, and ReLU activation.
- Performance: Weighted Recall of 0.4172

Linear-7

• Key Insight: Strong on "Normal", but low recall for "Adeno" and "Large-Cell" Carcinoma

Network Architecture Output Shape Param # Layer (type) Conv2d-1 [-1, 6, 108, 108] MaxPool2d-2 [-1, 6, 54, 54] [-1, 16, 50, 50] Conv2d-3 2,416 MaxPool2d-4 [-1, 16, 25, 25] 1,200,120 [-1, 120] Linear-5 [-1, 84] 10,164 Linear-6

Total params: 1,213,496 Trainable params: 1,213,496

Class-wise Metrics								
	Accuracy	Precision	Recall	F1-score				
Adenocarcinoma	0.3833	0.3651	0.3833	0.3740				
Large Cell Carcinoma	0.1569	0.5714	0.1569	0.2462				
Squamous Cell Carcinoma	0.4444	0.3077	0.4444	0.3636				
Normal	0.7805	1.0000	0.7805	0.8767				

	Overall Model Performance										
Accuracy	Macro Precision	Macro Recall	Macro F1-score	Weighted Precision	Weighted Recall	Weighted F1-score					
0.4172	0.5611	0.4413	0.4651	0.4690	0.4172	0.4176					

Baseline Hyperparameters

t-SNE

Parameter	Value
Epochs	20
Batch Size	10
Loss Function	Cross-entropy loss
Optimizer	SGD
Learning Rate	0.001
Activation Function	ReLU

Confusion metrics

Naimur Rahman Chowdhury, Vasuki Garg, Md Ashfaqur Arefin Department of Industrial and Systems Engineering, North Carolina State University

Network Architecture

- **ACGAN** takes noise and class labels to generate synthetic images, while its discriminator learns to distinguish real vs. fake and predict image classes.
- The generator produces class-conditioned synthetic images, which are combined with real data to enrich the training dataset by **Data Augmentation**.
- **CNN** is trained on this augmented dataset to perform multi-class classification, benefiting from improved diversity and quantity of training samples.

Evaluation Plan and Results

AC-GAN Model

- Accuracy improved steadily, reaching around 91%.
- Discriminator and generator losses decreased overall.
- Training shows stable adversarial learning behavior.
- Model effectively learns class distinctions over time.

ACGAN generated synthetic images

90.		1.2							Optu	na Hyper-P	arameter Optimizatio	n
80		1				М			Parameter	Туре	Search Space / Range	Best Value
70									ngf	Categorical	[32, 64, 128]	32
Class 70 Accuracy	Source	0.8			1	11			ndf	Categorical	[32, 64, 128]	32
60	loss			W	MI	W	MIL	/	lambda_class	Float	[0.5, 3.0]	1.30555015
		0.6				Y			label_smooth_real	Float	[0.7, 1.0]	0.93780963
50		0.4	__\!		TA III.	1			nz	Categorical	[64, 100, 128, 256]	100
40		0.0	4/			ľ			batch_size	Categorical	[16, 32, 64]	32
	0 500 1,000 1,500 2,000 2,500 3,000 3,500 Batches	00	0 500		500 2,00 Batches		500 3,000	3582 × 4				

Class-wise Metrics Comparison

Overall Recall Metrics Comparison

Adeno

Metric	Baseline Model (CNN)	CNN with aug data (unbal)	CNN with aug data (bal)
Macro Recall	0.4413	0.5627	0.5426
Weighted Recall	0.4172	0.5099	0.4669

0.5099			
			Adeno
Large Cell	Normal	Squamous	Large Cell
111	108	149	Squamous
161	158	199	Normal
189	189	189	-

Class	Ва	Baseline Model			Baseline Mo N with Au ta (Unbala	gmented	ACGAN with Augmented data (balanced)		
	Recall	Prec	F1	Recall	Prec	F1	Recall	Prec	F1
Adeno	0.3833	0.3651	0.3740	0.3167	0.5429	0.4000	0.2417	0.5273	0.3314
Large Cell	0.1569	0.5714	0.2462	0.2941	0.3125	0.3030	0.3529	0.2647	0.3025
Squamous	0.4444	0.3077	0.3636	0.6889	0.43666	0.9398	0.6000	0.6000	0.5243
Normal	0.7805	1.0000	0.8767	0.9512	0.9286	0.5345	0.9756	0.9756	0.7692

Main References

Original (Baseline)

After Aug (unbal = 50)

After Aug (bal)

- [1] Hany, M. (2020). Chest CT-Scan images Dataset. Kaggle.com. https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images/data
- [2] Odena, A., Olah, C., & Shlens, J. (2016). Conditional image synthesis with auxiliary classifier GANs. arXiv. https://arxiv.org/abs/1610.09585