VERMES MIKLÓS Fizikaverseny 2015. március 9. I. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fízika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I. feladat

 a.) Egy zsebtükör felületéhez érintett ceruzahegy saját tükörképétől 2 <i>mm</i>-re látszik. Milyen vastag a tükör üvege, ha az üveg törésmutatója n = 1,5. b.) Egy 20 <i>mm</i> külső átmérőjű üvegcsőben higany van. Oldalról nézve a higanyoszlop 18 <i>mm</i> vastagnak látszik. Mennyi az üvegcső vastagsága, ha az üveg törésmutatója 1,5? c.) Felvétel közben egy légy száll a fényképezőgép objektívjére. Észrevehetőek-e a fényképen a lég körvonalai? Milyen hatással van a képre? Igazoljuk állításunk! 	2 p 6 p 8 y 2 p
II. feladat	
Közös optikai tengelyen, egymástól 50 cm távolságra helyezzük el az L_1 10 cm -es és L_2 20 cm gyújtótávolságú, azonos átmérőjű gyűjtőlencséket. Az optikai tengelyen, az L_1 lencse előtt, 20 cm -re tőle pontszerű fényforrás található.	n-es
a.) Az L ₂ lencsétől mekkora távolságra keletkezik a fényforrás képe?	2 p
b.) Mekkora nagyítással képezne le a két lencséből álló centrált rendszer egy, az optikai tengelyre merőleges kicsiny tárgyat?	1 p
 c.) Hova kellene elhelyezni és mekkora kell legyen a gyújtótávolsága az L1 és L2 lencséknél nagyobb átmérőjű L3 lencsének, hogy a pontszerű fényforrás képének megvilágítása erős legyen? d.) Az L2 lencse után, tőle 20 cm-re 3 cm vastag 1,5 törésmutatójú síkpárhuzamos lemezt helyezű merőlegesen az optikai tengelyre. Hol keletkezik most a fényforrás képe? 	sebb 3 p
e.) Az L_1 , L_2 és L_3 lencséket összeragasztjuk. Mekkora az így kialakított rendszer törőképessége?	2 p

III. feladat

1.) Tornaórán a gyerekek *l* hosszúságú libasorban szaladnak állandó *v* sebességgel a tornatanár felé. A tanár velük szemben halad, állandó *u* sebességgel. Amikor a tornasorból a diákok rendre odaérnek a tanárhoz, azonnal megfordulnak és visszafelé szaladnak ugyanavval a *v* sebességgel. Mekkora a tornasor hossza, amikor az utolsó diák is odaér a tanárhoz?

a.) v > u	4 p
$\mathbf{h} \cdot \mathbf{v} = \mathbf{u}$	2 n

c.) v < u 2 p

2.) Egy folyón két csónak halad ellentétes irányba, a folyóhoz mérve különböző sebességgel.

Mozgásuk közben egyszerre haladnak el egy vízben sodródó farönk mellett, majd egy idő után (időveszteség nélkül) egyszerre visszafordulnak. Melyik ér vissza hamarabb a farönkhöz?

Igazoljuk állításunk!