Supplement for Estimated Judge Reliabilities for Weighted Bradley-Terry-Luce Are Not Reliable

Andrew F. Dreher University of Texas at Austin Austin, Texas, USA afdreher@utexas.edu Etienne Vogua University of Texas at Austin Austin, Texas, USA vouga@cs.utexas.edu Donald S. Fussell University of Texas at Austin Austin, Texas, USA fussell@cs.utexas.edu

The following are additional data for the paper *Estimated Judge Reliabilities for Weighted Bradley-Terry-Luce Are Not Reliable* to provide transparency.

1 BROKEN SYMMETRY

In this section, we show results for all 20, $n^2 - n$, inversions for the example described in section 4.3 where every judge has an inversion from the s^* order at a single location based on their index, but one judge has two inversions such that they now agree with another judge in the set. As previously mentioned, since this scenario creates a pattern where the majority always agrees, the standard Bradley-Terry-Luce method of eq. (1) finds the s^* order, shown in table 1.

We show results both with, $\lambda=1$, and without, $\lambda=0$, Mease's penalty. We caution that the results here are merely examples of what could happen; different solutions based on different starting positions are possible. The starting conditions, parameters, and tolerances are neither optimized nor cherry-picked.

Tables 1 and 2 show the results for the BTL method. Note that when $\lambda = 1$, s^* is no longer reliably recovered.

Tables 3 and 4 show the results for Crowd-BT. An important observation here is that the least reliable judge is often in \mathcal{D} : 85% of the time when $\lambda=0$ and 100% of the time when $\lambda=1$.

Tables 5 and 6 show the results for O'Donovan *et al.*'s method. With the $\lambda=0$, the least reliable judge is a member of $\mathcal D$ in 40% of the trials, but this increases to 100% when $\lambda=1$. Since the least reliable judge is always in $\mathcal D$ for $\lambda=1$, the judge who shares that inversion, often is part of $\mathcal D$ too. Interestingly, there is always some setting for which the least reliable judge can be elevated into $\mathcal D$.

2 FONTS

In section 4.3 we discussed the results from repeating O'Donovan *et al.*'s result along with a variation where the attributes were treated as independent scales. Here, we provide the full tables of Pearson correlation coefficients for both Crowd-BT, table 7, and O'Donovan *et al.*'s method, table 8, along with histograms fig. 1 and fig. 2. Our intention is to release these tables as CSV files with other supplemental materials since their reproduction is difficult to read.

3 SIMULATION DATA

Using the procedure we explained in section 6 and appendix A.3, we generated fig. 5. Tables 9 and 10 show $\omega = \{0.02, 0.1\}$, respectively, for 8 judges per pair, which closely approximate several of the Fonts attributes. In the tables, we provide the mean value of τ , μ_{τ} , as well as the standard deviation, σ_{τ} . In each, we highlight the 800 pair

Figure 1: Distribution of ρ values for independently estimated scales using Crowd-BT. Tabular data is in table 7.

Figure 2: Distribution of ρ values for independently estimated scales using O'Donovan *et al.*'s method. Tabular data is in table 8.

line, since this represents data that are the same size as the Fonts dataset.

In tables 11 and 12, we provide a statistical comparison between the two experimental methods, Chen *et al.*'s Crowd-BT and O'Donovan *et al.*'s method, against the unweighted BTL order on a matched pair basis for the simulated data with 8 judges per pair, $\omega = \{0.02, 0.1\}$, and $\lambda = 0$. For each, we use a Bayesian Paired Samples T-Test, computed using JASP 0.16 [1]. We use Student-T where $H_a: \tau_{\text{experimental}} \neq \tau_{\text{BTL}}$ and the prior is Cauchy with scale 0.707. Values of log (BF₁₀) are traditionally interpreted using the scale provided by Jeffreys [2].

We note that many of the values show strong evidence of being different from the BTL result; however, most are very slight underperformances. When $\omega=0.02$, both methods underperform in all instances except when the pair count is 200. For $\omega=0.1$, both methods perform much better than BTL when the pair count is 200, and still perform slightly better for a little while longer. However, by the time we reach the size of Fonts (pair count of 800), both methods underperform BTL very slightly. This trend of underperformance continues through the rest of the table, but is often quite small

Judge	"error"	<i>S</i> 1	<i>S</i> 2	<i>Ç</i> 3	<i>S</i> 4	<i>Ç</i> 5	<i>Ş</i> 6	$\hat{s} = s^*$
	$s_2 > s_3$	-2.368	-0.982	-0.576	0.810	2.197	3.583	Yes
	$s_3 > s_4$	-2.531	-1.145	0.242	0.647	2.033	3.420	Yes
u_1	$s_4 > s_5$	-2.694	-1.308	0.078	1.464	1.870	3.256	Yes
	$s_5 > s_6$	-2.858	-1.472	-0.086	1.301	2.687	3.092	Yes
	$s_1 > s_2$	-2.204	-1.799	-0.412	0.974	2.360	3.746	Yes
	$s_3 > s_4$	-2.531	-1.145	0.242	0.647	2.033	3.420	Yes
u_2	$s_4 > s_5$	-2.694	-1.308	0.078	1.464	1.870	3.256	Yes
	$s_5 > s_6$	-2.858	-1.472	-0.086	1.301	2.687	3.092	Yes
	$s_1 > s_2$	-2.204	-1.799	-0.412	0.974	2.360	3.746	Yes
	$s_2 > s_3$	-2.368	-0.982	-0.576	0.810	2.197	3.583	Yes
u_3	$s_4 > s_5$	-2.694	-1.308	0.078	1.464	1.870	3.256	Yes
	$s_5 > s_6$	-2.858	-1.472	-0.086	1.301	2.687	3.092	Yes
	$s_1 > s_2$	-2.204	-1.799	-0.412	0.974	2.360	3.746	Yes
	$s_2 > s_3$	-2.368	-0.982	-0.576	0.810	2.197	3.583	Yes
u_4	$s_3 > s_4$	-2.531	-1.145	0.242	0.647	2.033	3.420	Yes
	$s_5 > s_6$	-2.858	-1.472	-0.086	1.301	2.687	3.092	Yes
	$s_1 > s_2$	-2.204	-1.799	-0.412	0.974	2.360	3.746	Yes
11-	$s_2 > s_3$	-2.368	-0.982	-0.576	0.810	2.197	3.583	Yes
u_5	$s_3 > s_4$	-2.531	-1.145	0.242	0.647	2.033	3.420	Yes
	$s_4 > s_5$	-2.694	-1.308	0.078	1.464	1.870	3.256	Yes

Table 1: Full results from adding an additional error to various judges solved using BTL with $\lambda=0$.

Judge	"error"	<i>S</i> 1	<i>S</i> 2	<i>Ç</i> 3	<i>S</i> 4	<i>Ç</i> 5	<i>S</i> 6	$\hat{s} = s^*$
	$s_2 > s_3$	-1.142	-0.310	-0.446	0.052	0.572	1.340	No
	$s_3 > s_4$	-1.269	-0.479	0.099	-0.099	0.479	1.269	No
u_1	$s_4 > s_5$	-1.340	-0.572	-0.052	0.446	0.310	1.142	No
	$s_5 > s_6$	-1.381	-0.626	-0.138	0.293	0.847	0.907	Yes
	$s_1 > s_2$	-0.907	-0.847	-0.293	0.138	0.626	1.381	Yes
	$s_3 > s_4$	-1.269	-0.479	0.099	-0.099	0.479	1.269	No
u_2	$s_4 > s_5$	-1.340	-0.572	-0.052	0.446	0.310	1.142	No
	$s_5 > s_6$	-1.381	-0.626	-0.138	0.293	0.847	0.907	Yes
	$s_1 > s_2$	-0.907	-0.847	-0.293	0.138	0.626	1.381	Yes
	$s_2 > s_3$	-1.142	-0.310	-0.446	0.052	0.572	1.340	No
u_3	$s_4 > s_5$	-1.340	-0.572	-0.052	0.446	0.310	1.142	No
	$s_5 > s_6$	-1.381	-0.626	-0.138	0.293	0.847	0.907	Yes
	$s_1 > s_2$	-0.907	-0.847	-0.293	0.138	0.626	1.381	Yes
11	$s_2 > s_3$	-1.142	-0.310	-0.446	0.052	0.572	1.340	No
u_4	$s_3 > s_4$	-1.269	-0.479	0.099	-0.099	0.479	1.269	No
	$s_5 > s_6$	-1.381	-0.626	-0.138	0.293	0.847	0.907	Yes
	$s_1 > s_2$	-0.907	-0.847	-0.293	0.138	0.626	1.381	Yes
11-	$s_2 > s_3$	-1.142	-0.310	-0.446	0.052	0.572	1.340	No
u_5	$s_3 > s_4$	-1.269	-0.479	0.099	-0.099	0.479	1.269	No
	$s_4 > s_5$	-1.340	-0.572	-0.052	0.446	0.310	1.142	No

Table 2: Full results from adding an additional error to various judges solved using BTL with $\lambda = 1$.

and not statistically interesting. Regardless, of the two methods, Crowd-BT tends to behave more similar to BTL than O'Donovan $\it et al.$'s method.

These results suggest that, at least for reliable judges, one would only want to use the weighted methods for very low number of pairs (a very low data density). Future work remains as to whether some

	Judge Weights							Stimuli Positions						
Judge	"error"	μ_1	μ_2	μ_3	μ_4	μ_5	$ \mathcal{D} $	<i>S</i> 1	<i>S</i> 2	<i>Ç</i> 3	<i>S</i> 4	<i>Ç</i> 5	<i>S</i> 6	$\hat{s} = s^*$
	$s_2 > s_3$	0.000	0.500	1.000	1.000	1.000	4	-23.738	-7.492	8.116	8.116	8.116	8.116	No
	$s_3 > s_4$	0.500	1.000	1.000	1.000	1.000	4	-14.777	0.819	1.917	3.016	4.115	5.213	Yes
u_1	$s_4 > s_5$	1.000	0.500	0.500	1.000	0.500	2	-15.843	-15.843	0.495	16.866	-1.690	15.923	No
	$s_5 > s_6$	0.500	1.000	1.000	1.000	1.000	4	-14.697	0.802	1.901	2.999	4.098	5.196	Yes
	$s_1 > s_2$	0.500	0.000	1.000	1.000	1.000	4	-23.559	-7.828	8.148	8.148	8.148	8.148	No
11-	$s_3 > s_4$	0.500	1.000	1.000	0.500	0.500	2	-13.422	3.247	3.247	-13.722	2.399	18.137	No
u_2	$s_4 > s_5$	1.000	0.609	1.000	1.000	0.723	3	-17.209	-16.167	2.859	3.901	4.688	21.783	Yes
	$s_5 > s_6$	1.000	0.000	1.000	1.000	0.500	4	-13.138	-13.138	2.462	2.462	2.462	18.674	No
	$s_1 > s_2$	1.000	0.500	1.000	0.500	0.500	2	-4.718	-23.270	-5.580	-5.580	10.745	27.431	No
	$s_2 > s_3$	0.500	1.000	1.000	0.500	0.500	2	-11.161	6.716	-11.418	-11.418	4.576	21.994	No
u_3	$s_4 > s_5$	0.500	0.500	1.000	1.000	0.500	2	-19.988	-3.174	12.729	12.729	-10.457	8.624	No
	$s_5 > s_6$	0.500	0.500	1.000	0.500	1.000	2	-26.631	-10.464	5.420	5.420	21.958	5.279	No
	$s_1 > s_2$	1.000	0.500	0.500	1.000	0.500	2	-7.858	-24.247	-7.594	7.772	7.772	24.169	No
11.	$s_2 > s_3$	0.500	1.000	0.500	1.000	0.500	2	-13.343	3.307	-13.125	2.557	2.557	17.887	No
u_4	$s_3 > s_4$	0.500	0.500	1.000	1.000	0.500	2	-18.763	-1.859	13.943	-3.007	-3.007	12.890	No
	$s_5 > s_6$	0.500	0.500	0.500	1.000	1.000	2	-30.911	-12.578	3.523	20.646	20.646	0.288	No
•	$s_1 > s_2$	0.500	1.000	1.000	1.000	0.000	4	-16.310	-0.121	-0.121	-0.121	-0.121	16.757	No
11-	$s_2 > s_3$	0.500	1.000	0.500	0.500	1.000	2	-15.456	1.664	-16.193	-0.373	15.227	15.227	No
u_5	$s_3 > s_4$	0.500	0.500	1.000	0.500	1.000	2	-19.623	-4.329	10.991	-5.733	9.595	9.595	No
	$s_4 > s_5$	0.500	0.500	0.500	1.000	1.000	2	-27.338	-10.022	6.134	22.825	4.702	4.702	No

Table 3: Full results from adding an additional error to various judges solved using Chen et al.'s Crowd-BT with $\lambda=0$. The italic entries represent the judges we expect to be in $\mathcal D$ because the new "error" agrees with their position; bold entries are judges in $\mathcal D$. The cells with the red background highlight the least reliable judge.

			Juo	lge Weig	hts					Stimuli l	Positions			
Judge	"error"	μ_1	μ_2	μ_3	μ_4	μ_5	$ \mathcal{D} $	<i>S</i> 1	<i>S</i> 2	<i>Ç</i> 3	<i>S</i> 4	<i>Ç</i> 5	<i>S</i> 6	$\hat{s} = s^*$
	$s_2 > s_3$	1.000	1.000	0.000	0.477	0.291	3	0.699	0.203	-1.787	-0.013	0.027	0.552	No
	$s_3 > s_4$	1.000	0.000	1.000	0.303	0.410	3	0.216	-0.640	1.326	-0.883	-0.145	0.219	No
u_1	$s_4 > s_5$	1.000	0.388	0.322	1.000	0.000	3	0.344	-0.433	0.076	0.809	-1.405	0.463	No
	$s_5 > s_6$	0.000	1.000	1.000	1.000	0.146	4	-0.848	0.551	0.119	-0.259	-0.754	1.270	No
	$s_1 > s_2$	1.000	1.000	1.000	1.000	0.000	5	-0.058	-0.488	-0.302	-0.236	-0.264	1.608	No
	$s_3 > s_4$	0.289	1.000	1.000	0.000	0.541	3	-0.131	0.743	0.265	-1.692	0.214	0.324	No
u_2	$s_4 > s_5$	0.429	1.000	0.242	1.000	0.258	2	-0.350	0.387	-0.443	1.158	-1.138	0.390	No
	$s_5 > s_6$	0.000	1.000	0.000	0.000	1.000	5	0.131	0.592	-0.400	0.137	0.733	-1.309	No
	$s_1 > s_2$	1.000	0.000	1.000	0.312	0.332	3	0.852	-1.338	0.507	-0.469	-0.023	0.356	No
	$s_2 > s_3$	0.000	1.000	1.000	0.377	0.493	3	-0.515	1.642	-0.303	-0.769	-0.075	0.264	No
u_3	$s_4 > s_5$	0.493	0.377	1.000	1.000	0.000	3	-0.264	0.075	0.769	0.303	-1.642	0.515	No
	$s_5 > s_6$	0.332	0.312	1.000	0.000	1.000	3	-0.356	0.023	0.469	-0.507	1.338	-0.852	No
	$s_1 > s_2$	1.000	0.000	0.000	1.000	0.000	5	1.309	-0.733	-0.137	0.400	-0.592	-0.131	No
	$s_2 > s_3$	0.258	1.000	0.242	1.000	0.429	2	-0.390	1.138	-1.158	0.443	-0.387	0.350	No
u_4	$s_3 > s_4$	0.541	0.000	1.000	1.000	0.289	3	-0.324	-0.214	1.692	-0.265	-0.743	0.131	No
	$s_5 > s_6$	0.000	1.000	1.000	1.000	1.000	5	-1.608	0.264	0.236	0.302	0.488	0.058	No
	$s_1 > s_2$	0.146	1.000	1.000	1.000	0.000	4	-1.270	0.754	0.259	-0.119	-0.551	0.848	No
44	$s_2 > s_3$	0.000	1.000	0.322	0.388	1.000	3	-0.463	1.405	-0.809	-0.076	0.433	-0.344	No
u_5	$s_3 > s_4$	0.410	0.303	1.000	0.000	1.000	3	-0.219	0.145	0.883	-1.326	0.640	-0.216	No
	$s_4 > s_5$	0.000	1.000	1.000	1.000	1.000	5	-1.569	0.322	0.325	0.458	-0.039	0.260	No

Table 4: Full results from adding an additional error to various judges solved using Chen et al.'s Crowd-BT with $\lambda=1$. The italic entries represent the judges we expect to be in $\mathcal D$ because the new "error" agrees with their position; bold entries are judges in $\mathcal D$. The cells with the red background highlight the least reliable judge.

			Ju	dge Weigh	ıts					Stimuli F	ositions			
Judge	"error"	μ_1	μ_2	μ_3	μ_4	μ_5	$ \mathcal{D} $	<i>S</i> 1	ς_2	<i>S</i> 3	<i>S</i> 4	<i>Ç</i> 5	<i>S</i> 6	$\hat{s} = s^*$
	$s_2 > s_3$	-0.235	0.016	10.000	0.238	0.238	1	-100.000	81.526	99.554	99.132	99.566	100.000	No
	$s_3 > s_4$	1.039	-0.022	10.000	0.023	0.023	1	-100.000	-99.722	95.926	91.673	95.836	100.000	No
u_1	$s_4 > s_5$	10.000	-0.022	-0.022	1.009	-0.022	1	91.638	91.352	95.676	100.000	-100.000	-95.676	No
	$s_5 > s_6$	-0.235	0.238	10.000	0.238	0.016	1	-100.000	81.526	81.960	81.538	81.972	100.000	No
	$s_1 > s_2$	0.016	-0.235	10.000	0.238	0.238	1	-100.000	-81.972	99.554	99.132	99.566	100.000	No
41-	$s_3 > s_4$	0.023	1.039	10.000	0.023	-0.022	1	-100.000	-95.836	-95.558	-99.811	-95.648	100.000	No
u_2	$s_4 > s_5$	0.032	10.000	0.032	10.000	-0.032	2	-100.000	-99.290	-99.290	-98.580	-99.292	99.999	No
	$s_5 > s_6$	-0.022	10.000	-0.022	-0.022	1.009	1	87.314	91.638	91.352	95.676	100.000	-100.000	No
	$s_1 > s_2$	10.000	0.032	10.000	0.032	-0.032	2	-99.289	-100.000	-99.290	-99.290	-98.581	100.000	No
	$s_2 > s_3$	0.023	10.000	1.040	0.023	-0.022	1	-100.000	-95.794	-100.000	-99.722	-95.560	100.000	No
u_3	$s_4 > s_5$	0.032	0.032	10.000	10.000	-0.032	2	-100.000	-99.290	-98.580	-98.580	-99.292	100.000	No
	$s_5 > s_6$	-0.022	-0.022	10.000	-0.022	1.009	1	87.314	91.638	95.962	95.676	100.000	-100.000	No
	$s_1 > s_2$	10.000	0.023	0.023	1.063	-0.023	1	-95.909	-100.000	-95.926	-91.853	-91.577	100.000	No
	$s_2 > s_3$	-0.022	1.009	-0.022	10.000	-0.022	1	95.676	100.000	-100.000	-95.676	-95.962	-91.638	No
u_4	$s_3 > s_4$	0.023	0.023	10.000	1.039	-0.022	1	-100.000	-95.836	-91.673	-95.926	-95.648	100.000	No
	$s_5 > s_6$	-0.023	0.023	0.023	1.063	10.000	1	-100.000	91.577	95.651	99.724	100.000	95.909	No
	$s_1 > s_2$	0.016	0.238	0.238	10.000	-0.235	1	-100.000	-81.972	-81.538	-81.104	-81.526	100.000	No
	$s_2 > s_3$	-0.022	1.009	-0.022	-0.022	10.000	1	95.676	100.000	-100.000	-95.676	-91.352	-91.638	No
u_5	$s_3 > s_4$	0.023	0.023	10.000	-0.022	1.039	1	-100.000	-95.836	-91.673	-95.926	99.722	100.000	No
	$s_4 > s_5$	-0.023	0.023	0.023	10.000	1.062	1	-100.000	91.843	95.922	100.000	95.904	96.180	No

Table 5: Full results from adding an additional error to various judges solved using O'Donovan et al.'s method with $\lambda=0$. The italic entries represent the judges we expect to be in $\mathcal D$ because the new "error" agrees with their position; bold entries are judges in $\mathcal D$. The cells with the red background highlight the least reliable judge.

			Jud	dge Weigh	ts					Stimuli l	Positions			
Judge	"error"	μ_1	μ_2	μ_3	μ_4	μ_5	$ \mathcal{D} $	<i>S</i> 1	<i>S</i> 2	<i>Ç</i> 3	54	<i>Ç</i> 5	<i>S</i> 6	$\hat{s} = s^*$
	$s_2 > s_3$	10.000	10.000	-1.277	-1.153	-1.125	2	0.617	0.588	-0.782	-0.441	-0.141	0.150	No
4,	$s_3 > s_4$	10.000	-1.157	10.000	-1.118	-1.017	2	0.303	0.274	0.635	-0.743	-0.396	-0.086	No
u_1	$s_4 > s_5$	10.000	-1.058	-1.147	10.000	-1.132	2	0.069	0.036	0.348	0.694	-0.748	-0.408	No
	$s_5 > s_6$	-10.000	2.327	2.325	2.384	-1.002	1	-0.587	0.195	0.006	-0.182	-0.380	1.004	No
	$s_1 > s_2$	-1.112	10.000	10.000	-1.218	-1.084	2	0.227	0.547	0.520	-0.776	-0.422	-0.113	No
11-	$s_3 > s_4$	-1.025	10.000	-1.177	10.000	-1.128	2	-0.006	0.297	0.267	0.626	-0.773	-0.431	No
u_2	$s_4 > s_5$	-1.025	10.000	-1.177	10.000	-1.128	2	-0.006	0.297	0.267	0.626	-0.773	-0.431	No
	$s_5 > s_6$	-1.101	10.000	-1.122	-1.197	10.000	2	-0.215	0.079	0.044	0.346	0.677	-0.974	No
	$s_1 > s_2$	10.000	-1.241	10.000	-1.112	-1.109	2	1.003	-0.614	-0.276	-0.310	-0.019	0.271	No
110	$s_2 > s_3$	-1.242	10.000	10.000	-1.151	-1.099	2	0.464	0.808	-0.523	-0.550	-0.236	0.061	No
u_3	$s_4 > s_5$	0.974	1.001	10.000	10.000	-1.352	2	-0.511	-0.233	0.033	0.032	-0.370	1.143	No
	$s_5 > s_6$	-1.109	-1.112	10.000	-1.241	10.000	2	-0.271	0.019	0.310	0.276	0.614	-1.003	No
	$s_1 > s_2$	10.000	-1.197	-1.122	10.000	-1.101	2	0.974	-0.677	-0.346	-0.044	-0.079	0.215	No
11.	$s_2 > s_3$	-1.128	10.000	-1.177	10.000	-1.025	2	0.431	0.773	-0.626	-0.267	-0.297	0.006	No
u_4	$s_3 > s_4$	1.034	1.057	10.000	10.000	-1.321	2	-0.455	-0.175	0.096	-0.274	-0.275	1.196	No
	$s_5 > s_6$	-1.198	-1.193	-1.241	10.000	10.000	2	-0.317	-0.031	0.253	0.553	0.521	-1.039	No
	$s_1 > s_2$	10.000	-1.215	-1.133	-1.116	10.000	2	0.943	-0.727	-0.403	-0.108	0.180	0.144	No
11-	$s_2 > s_3$	-1.132	10.000	-1.147	-1.058	10.000	2	0.408	0.748	-0.694	-0.348	-0.036	-0.069	No
u_5	$s_3 > s_4$	-1.017	-1.118	10.000	-1.157	10.000	2	0.086	0.396	0.743	-0.635	-0.274	-0.303	No
	$s_4 > s_5$	-1.125	-1.153	-1.277	10.000	10.000	2	-0.150	0.141	0.441	0.782	-0.588	-0.617	No

Table 6: Full results from adding an additional error to various judges solved using O'Donovan et al.'s method with $\lambda=1$. The italic entries represent the judges we expect to be in $\mathcal D$ because the new "error" agrees with their position; bold entries are judges in $\mathcal D$. The cells with the red background highlight the least reliable judge.

i	المصادرة المصادرة
9biw	0.055 0.0023 0.0023 0.0023 0.0023 0.0023 0.0020 0.0020 0.0020 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030
warm	0.0251 0.028 0.028 0.039
nidt	0.008 0.009 0.0193 0.0133 0.033 0.033 0.044 0.005 0.013 0.013 0.013 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003
technical	0.0063 0.0105 0.0115 0.0116 0.017 0.020 0.
strong	0.076 0.0138 0.0138 0.093 0.093 0.093 0.098 0.00
flos	0.039 0.008 0.002 0.002 0.002 0.015 0.015 0.018
лddols	0.0092 0.0045 0.0046 0.0046 0.0059 0.0093 0.0093 0.0094 0.005 0.00
dreus	0.146 0.0181 0.0088 0.0078 0.0078 0.0079 0.0079 0.0079 0.0079 0.0079 0.0071 0.0071 0.0071 0.0071 0.0071
pretentious	0.0150 0.0150 0.0482 0.078 0.078 0.040 0.040 0.001 0.001 0.010 0.0
playful	0.0143 0.0159 0.027 0.027 0.027 0.037 0.01788 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.017
шорош	0.016 0.069 0.047 0.059 0.056 0.056 0.056 0.049 0.049 0.049 0.040 0.049 0.049 0.049 0.049 0.049 0.049 0.049
əldigəl	0.075 0.075 0.086 0.086 0.010 0.010 0.022 0.022 0.023 0.023 0.024 0.024 0.024 0.027
уарру	0.005 0.005 0.018 0.005
graceful	0.0021 0.0087 0.0087 0.0087 0.0037 0.0034
gentle	0.0115-0.1059-0.0089-0.0089-0.0089-0.0089-0.0099-0.0099-0.0099-0.0097-0.0097-0.0098-0.
Ylbnəirì	0.046 0.061 0.061 0.072 0.090 0.011 0.001 0.001 0.005
fresh	0.052 0.012 0.013 0.015 0.014 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005
lsmrot	0.00460.00560.00560.00500.00500.00500.00500.00500.00770.00500.00710.0050
dramatic	0.105 (0.
disorderly	0.007
delicate	0.010 0.020 0.038 0.038 0.016 0.027 0.027 0.038
complex	0.005 - 0.0074 - 0.0074 - 0.0079 - 0.0079 - 0.0079 - 0.0079 - 0.0072 - 0.0072 - 0.0074 - 0.0079 - 0.0079 - 0.0079 - 0.0079 - 0.0074 - 0.0079 - 0.00
cjnwaλ	0.0070 0.0060 0.0081 0.0095 0.
Snimasho	0.0082 (0.0882 (0.0882
сярш	0.003
gnirod	0.0128 (
peq	- 100031 - 10004 - 00050 - 00050
attractive	0.0076 0.0
attention-grabbing	- 10.00
artistic	00049
	angular artistic attention-grabbing anttractive bad boring calm chursy complex delicate disorderly dramatic formal fresh friendly gentle graceful happy legible modern playfull pretentious sharp soft strong technical thin warm warm

Table 7: Full correlation data for the attributes in Fonts using Crowd-BT. The maximum correlation is between *clumsy* and *pretentious*, shown in bold. Histogram of this data is shown in fig. 1

İ	
əbiw	0.079 0.112 0.112 0.106 0.106 0.068 0.068 0.079 0.079 0.079 0.079 0.094
warm	0.0052 0.0062 0.0043 0.0043 0.0043 0.0043 0.0043 0.0043 0.0044 0.0040 0.0040 0.0060
nirt	0.017 0.017 0.037 0.035 0.035 0.035 0.031 0.053 0.053
feoindoet	0.0054 0.0064 0.0048 0.0019 0.0019 0.0019 0.0019 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018
Зиолз	0.008 0.008 0.009 0.009 0.009 0.009 0.002 0.002 0.003 0.001 0.
ilos	0.062 0.039 0.018 0.018 0.005 0.007 0.032 0.032 0.032 0.017 0.017 0.017 0.018
sjobby	0.034 0.035 0.037 0.092 0.009 0.000 0.039 0.039 0.018 0.018 0.018 0.008
drank	0.049 0.020 0.046 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.046
bretentious	0.003 0.002 0.002 0.003 0.003 0.005 0.007 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.008 0.009 0.
playful	0.008 0.008 0.012 0.012 0.016 0.016 0.016 0.016 0.017 0.042 0.042 0.010
торош	0.005 0.078 0.078 0.012 0.010 0.000
əldigəl	0.041 0.070 0.040 0.018 0.018 0.012 0.010
рарру	0.047 0.069 0.024 0.079 0.048 0.015 0.054 0.024
graceful	0.005 0.003 0.001 0.017 0.007 0.007 0.007 0.050 0.050 0.009
gentle	0.079 -0.107 -0.036 -0.037 -0.037 -0.041 -0.041 -0.040 -0.040 -0.040 -0.050
friendly	0.009 0.055 0.056 0.056 0.057 0.057 0.055 0.056
fresh	0.0061 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
fermal	0.016 0.021 0.0326 0.0926 0.042 0.012 0.012 0.020 0.030 0.030 0.030
dramatic	0.090 0.043 0.061 0.002 0.070 0.070 0.012 0.012 0.012 0.012 0.012 0.012 0.012
disorderly	0.000 0.000 0.158 0.019 0.036 0.115 0.044 0.044 0.044 0.044
delicate	0.058 0.0102 0.0121 0.001 0.001 0.007 0.049
complex	0.011 0.057 0.065 0.062 0.062 0.0103 0.004 0.096
c _j nwsλ	0.010 0.013 0.095 0.095 0.051 0.053 0.051
charming	0.069 0.010 0.023 0.047 0.023
сэрш	-0.071 -0.087 -0.041 -0.108 -0.100
Sarinod	0.007 0.047 0.013 0.017
peq	0.025 0.025 0.027 0.027
attractive	0.021
attention-grabbing	1200-0-0-0-0-1
artistic	0.152
	angular artistic attention-grabbing attractive bad boring calm charming clumsy complex delicate disorderly dramatic formal fresh friendly gentle graceful happy legible modern playful pretentious sharp sloppy soft strong technical thin warm

Table 8: Full correlation data for the attributes in Fonts using O'Donovan *et al.*'s method. The maximum correlation is between *complex* and *wide*, shown in bold.. Histogram of this data is shown in fig. 2

number of indifferent or adversarial judges changes that decision point.

REFERENCES

- [1] JASP Team. 2021. JASP (Version 0.16)[Computer software]. https://jasp-stats.org/
 [2] Sir Harold Jeffreys. 1961. The Theory of Probability. https://books-google-com.ezproxy.lib.utexas.edu/books/about/The_Theory_of_Probability.html?id= vh9Act9rtzQC

				1.00	O'Donovan		
		BTL	Cr	owd-BT	01	Oonovan ———	
Pair Count	$\mu_{ au}$	$\sigma_{ au}$	$\mu_{ au}$	$\sigma_{ au}$	$\mu_{ au}$	$\sigma_{ au}$	
200	0.159	6.388e - 2	0.402	6.738e - 2	0.326	4.386e-2	
300	0.618	3.152e-2	0.630	2.386e-2	0.592	3.982e-2	
400	0.712	2.189e - 2	0.684	3.075e-2	0.699	2.416e-2	
500	0.756	1.682e-2	0.735	3.000e-2	0.750	1.817e-2	
600	0.786	1.714e-2	0.795	2.644e - 2	0.782	1.746e - 2	
700	0.809	1.234e-2	0.838	1.766e-2	0.805	1.261e-2	
800	0.822	1.071e-2	0.870	1.397e-2	0.819	1.147e-2	
900	0.838	9.585e-3	0.887	1.640e-2	0.835	9.458e-3	
1000	0.845	1.032e-2	0.904	1.553e-2	0.843	1.152e-2	
1500	0.876	5.108e - 3	0.941	6.072e - 3	0.875	5.897e-3	
2000	0.897	5.554e - 3	0.954	4.039e - 3	0.896	5.649e - 3	
2500	0.907	5.853e-3	0.962	3.220e - 3	0.906	5.728e-3	
3000	0.915	5.695e - 3	0.968	2.432e - 3	0.914	6.206e - 3	
3500	0.922	3.628e-3	0.970	1.555e-3	0.922	3.708e-3	
4000	0.929	4.014e - 3	0.973	2.040e - 3	0.928	4.288e - 3	
4500	0.933	3.970e-3	0.976	2.003e - 3	0.933	3.996e-3	
5000	0.937	4.250e-3	0.977	1.628e - 3	0.936	4.467e - 3	
5500	0.939	3.941e-3	0.979	1.286e-3	0.939	3.883e-3	
6000	0.942	3.622e-3	0.980	1.447e - 3	0.942	3.605e-3	
6500	0.945	3.604e - 3	0.981	1.268e-3	0.944	3.800e - 3	
7000	0.947	4.153e-3	0.982	1.226e-3	0.947	3.987e-3	
7500	0.950	3.717e-3	0.983	1.432e - 3	0.949	3.381e-3	
8000	0.951	3.153e-3	0.984	1.229e-3	0.950	3.214e - 3	
8500	0.952	2.894e - 3	0.984	1.124e - 3	0.951	2.890e - 3	
9000	0.955	2.621e-3	0.985	1.201e-3	0.954	2.763e - 3	
9500	0.956	3.200e - 3	0.986	1.308e - 3	0.955	3.240e - 3	
10000	0.957	2.699e-3	0.986	1.156e-3	0.957	2.574e - 3	
10500	0.958	1.959e-3	0.986	9.190e - 4	0.958	2.110e-3	
11000	0.958	3.148e-3	0.987	1.362e - 3	0.957	2.964e-3	
11500	0.960	2.672e-3	0.987	1.126e - 3	0.960	2.619e-3	
12000	0.961	2.428e - 3	0.988	1.164e - 3	0.960	2.653e-3	
12500	0.961	1.848e - 3	0.988	1.200e - 3	0.960	1.873e-3	
13000	0.962	2.817e-3	0.988	1.141e - 3	0.962	2.986e-3	
13500	0.964	2.251e - 3	0.989	8.040e - 4	0.963	2.193e - 3	
14000	0.964	1.980e-3	0.989	9.820e - 4	0.963	1.904e-3	
14500	0.964	1.805e - 3	0.989	7.530e - 4	0.964	1.918e - 3	
15000	0.966	1.915e-3	0.990	9.960e - 4	0.965	1.999e-3	
15500	0.966	1.680e - 3	0.989	9.980e - 4	0.966	1.758e - 3	
16000	0.967	1.998e-3	0.990	1.126e - 3	0.966	2.124e - 3	
16500	0.967	2.682e - 3	0.990	8.210e - 4	0.966	2.692e - 3	
17000	0.967	2.318e-3	0.991	7.880e - 4	0.967	2.306e-3	
17500	0.968	2.357e-3	0.991	1.009e - 3	0.968	2.391e-3	
18000	0.969	2.356e-3	0.991	1.000e-3	0.968	2.238e-3	
18500	0.969	2.739e-3	0.991	7.680e-4	0.969	2.808e-3	
19000	0.970	1.829e-3	0.991	1.104e - 3	0.969	1.894e-3	
19500	0.971	1.995e-3	0.991	9.350e-4	0.970	1.906e-3	
19900	0.971	2.037e - 3	0.991	9.620e-4	0.970	2.207e - 3	
		0 .1					

Table 9: Mean τ , μ_{τ} , and standard deviation, σ_{τ} , for the simulated data with 8 judges per pair, $\omega=0.02$, and $\lambda=0$.

		BTL	Cro	owd-BT	O'Donovan		
				5 W W D I		70110 vaii	
Pair Count	$\mu_{ au}$	$\sigma_{ au}$	$\mu_{ au}$	$\sigma_{ au}$	$\mu_{ au}$	$\sigma_{ au}$	
200	0.282	6.349e-2	0.402	6.738e-2	0.606	2.404e-2	
300	0.626	2.331e-2	0.630	2.386e-2	0.681	2.446e-2	
400	0.681	2.946e-2	0.684	3.075e-2	0.727	2.403e-2	
500	0.741	2.870e - 2	0.735	3.000e-2	0.765	1.850e-2	
600	0.802	2.443e-2	0.795	2.644e - 2	0.808	1.618e-2	
700	0.843	1.761e-2	0.838	1.766e-2	0.842	1.732e-2	
800	0.873	1.406e-2	0.870	1.397e-2	0.870	1.386e-2	
900	0.890	1.510e-2	0.887	1.640e-2	0.889	1.358e-2	
1000	0.907	1.367e-2	0.904	1.553e-2	0.905	1.343e-2	
1500	0.942	6.226e - 3	0.941	6.072e - 3	0.940	6.366e-3	
2000	0.954	3.868e-3	0.954	4.039e - 3	0.953	3.996e-3	
2500	0.962	3.301e-3	0.962	3.220e-3	0.961	3.522e-3	
3000	0.968	2.553e-3	0.968	2.432e-3	0.967	2.297e-3	
3500	0.970	1.604e-3	0.970	1.555e-3	0.970	1.908e-3	
4000	0.973	2.049e-3	0.973	2.040e-3	0.972	2.349e-3	
4500	0.976	2.032e-3	0.976	2.003e-3	0.975	1.936e-3	
5000	0.977	1.625e-3	0.977	1.628e-3	0.976	1.365e-3	
5500	0.979	1.261e-3	0.979	1.286e-3	0.978	1.568e-3	
6000	0.980	1.486e-3	0.980	1.447e-3	0.979	1.630e-3	
6500	0.981	1.258e-3	0.981	1.268e-3	0.980	1.302e-3	
7000	0.982	1.176e-3	0.982	1.226e-3	0.981	1.400e-3	
7500	0.983	1.383e-3	0.983	1.432e-3	0.982	1.226e-3	
8000	0.984	1.277e-3	0.984	1.229e-3	0.983	1.286e-3	
8500	0.984	1.211e-3	0.984	1.124e-3	0.984	1.156e-3	
9000	0.985	1.255e-3	0.985	1.201e-3	0.985	1.101e-3	
9500	0.986	1.284e-3	0.986	1.308e-3	0.985	1.225e-3	
10000	0.986	1.124e-3	0.986	1.156e-3	0.986	1.075e-3	
10500	0.986	9.010e-4	0.986	9.190e-4	0.986	9.450e-4	
11000	0.987	1.346e-3	0.987	1.362e-3	0.986	1.245e-3	
11500	0.987	1.104e-3	0.987	1.126e-3	0.987	1.168e-3	
12000	0.988	1.201e-3	0.988	1.164e-3	0.988	1.171e-3	
12500	0.988	1.248e-3	0.988	1.200e-3	0.988	1.175e-3	
13000	0.988	1.060e-3	0.988	1.141e-3	0.988	1.291e-3	
13500	0.989	8.260e-4	0.989	8.040e-4	0.988	1.037e-3	
14000	0.989	9.140e-4	0.989	9.820e-4	0.988	1.022e-3	
14500	0.989	7.530e-4	0.989	7.530e-4	0.989	9.090e-4	
15000	0.990	9.540e-4	0.990	9.960e-4	0.989	8.090e-4	
15500	0.990	9.980e-4	0.989	9.980e-4	0.989	9.160e-4	
16000	0.990	1.079e-3	0.990	1.126e-3	0.990	1.005e-3	
16500	0.990	7.200e-4	0.990	8.210e-4	0.990	9.230e-4	
17000	0.991	8.070e-4	0.991	7.880e-4	0.990	8.530e-4	
17500	0.991	9.970e-4	0.991	1.009e-3	0.990	8.880e-4	
18000	0.991	1.000e-3	0.991	1.000e-3	0.990	9.200e-4	
18500	0.991	8.640e-4	0.991	7.680e-4	0.991	7.240e-4	
19000	0.991	9.870e-4	0.991	1.104e-3	0.991	1.257e-3	
19500	0.991	9.400e-4	0.991	9.350e-4	0.991	8.430e-4	
19900	0.991	9.840e-4	0.991	9.620e-4	0.991	9.850e-4	
				1 . 1 1			

Table 10: Mean τ , μ_{τ} , and standard deviation, σ_{τ} , for the simulated data with 8 judges per pair, $\omega = 0.1$, and $\lambda = 0$.

		Cre	owd-BT - BT	L	O'D	onovan - B	TL
Pair	Count	$\mu_{ au}$	$\sigma_{ au}$	$log\left(BF_{10}\right)$	$\mu_{ au}$	$\sigma_{ au}$	$log\left(BF_{10}\right)$
	200	5.664e-2	5.745e-2	7.823	1.671e-1	0.068458	25.437
	300	-3.695e-2	2.123e-2	17.792	-2.567e-2	0.022218	10.178
	400	-2.775e-2	2.007e-2	13.264	-1.348e-2	0.014034	7.464
	500	-1.403e-2	1.426e - 2	7.792	-6.184e - 3	0.005163	10.761
	600	-7.377e-3	6.312e-3	10.362	-4.134e-3	0.003772	9.353
	700	-5.236e-3	3.542e-3	14.512	-3.568e-3	0.003370	8.834
	800	-3.869e-3	3.730e-3	8.537	-3.307e-3	0.003269	8.179
	900	-3.598e-3	3.638e-3	7.865	-3.022e-3	0.003212	7.194
	1000	-3.447e-3	3.118e-3	9.487	-1.933e-3	0.003129	2.863
	1500	-1.534e-3	2.472e-3	2.898	-1.558e-3	0.002241	3.849
	2000	-1.588e-3	1.280e-3	11.353	-1.702e-3	0.001675	8.239
	2500	-1.146e-3	1.475e-3	4.937	-1.102e-3	0.001742	3.051
	3000	-7.600e-4	1.342e-3	2.240	-9.410e-4	0.001692	2.115
	3500	-4.590e-4	1.227e-3	0.186	-6.260e-4	0.001114	2.189
	4000	-5.960e-4	1.034e-3	2.357	-5.860e-4	0.001362	0.729
	4500	-6.570e-4	1.100e-3	2.604	-5.660e-4	0.001164	1.318
	5000	-7.810e-4	1.252e-3	2.933	-5.860e-4	0.001199	1.349
	5500	-1.340e-4	8.270e-4	-1.277	-6.630e-4	0.000971	3.697
	6000	-5.530e-4	1.145e-3	1.279	-5.800e-4	0.001073	1.926
	6500	-5.090e-4	9.390e-4	1.953	-1.092e-3	0.001075	9.232
	7000	-6.430e-4	1.079e-3	2.593	-6.230e-4	0.001003	3.149
	7500	-2.510e-4	1.070e 3	-0.832	-5.090e-4	0.000773	0.474
	8000	-3.920e-4	8.940e-4	0.810	-6.670e-4	0.000964	3.806
	8500	-4.360e-4	8.620e-4	1.525	-5.190e-4	0.000704	1.444
	9000	-6.200e-4	7.800e-4	5.179	-9.250e-4	0.001045	8.316
	9500	-1.070e-4	9.220e-4	-1.451	-5.160e-4	0.000703	1.103
	10000	-4.190e-4	7.510e-4	2.129	-3.520e-4	0.001100	0.548
	10500	-3.920e-4	1.051e-3	0.175	-6.100e-4	0.000833	2.986
	11000	-3.580e-4	8.270e-4	0.173	-4.960e-4	0.000772	3.325
	11500	-3.580e-4	5.690e-4	3.016	-5.460e-4	0.000738	2.613
	12000	-2.910e-4	8.060e-4	0.072	-6.030e-4	0.000314	1.689
	12500	-2.910e-4 $-3.690e-4$	8.140e-4	0.072	-7.470e-4	0.001101	7.182
	13000	-3.090e-4 -2.980e-4	6.910e-4	0.739	-5.700e-4	0.000793	1.983
	13500	-2.750e-4	7.670e-4	0.739	-5.860e-4	0.001043	6.002
	14000	-2.730e-4 -1.570e-4	7.870e-4 7.370e-4	-1.017	-6.130e-4	0.000788	4.959
	14500	-1.370e-4 -2.950e-4	6.710e-4	0.817	-8.780e-4	0.000788	8.467
	15000	-2.930e-4 -1.680e-4	7.190e-4	-0.902	-6.760e-4 -4.020e-4		1.834
	15500	-1.680e-4 -1.410e-4	7.190e-4 7.090e-4	-0.902	-4.020e-4 -3.580e-4	0.000755 0.000760	1.157
	16000 16500	-3.520e-4 -5.400e-5	7.670e-4 8.290e-4	1.019 -1.580	-7.970e-4 -4.090e-4	0.000813 0.000949	7.741 0.729
	17000	-2.000e-5	5.760e-4	-1.621	-3.180e-4	0.000654	1.321
	17500	-1.980e-4	5.680e-4	-0.044	-3.220e-4	0.000834	0.294
	18000	-3.220e-4	8.510e-4	0.219	-6.730e-4	0.000770	6.280
	18500	-2.550e-4 -2.580e-4	7.450e-4	-0.098	-5.590e-4	0.000825	3.627
		- / DXUE-4	6.070e - 4	0.674	-6.030e-4	0.000731	5.591
	19000						
:	19000 19500 19900	-2.080e-4 -3.950e-4	5.980e-4 6.700e-4	-0.054 2.523	-4.760e-4 -6.300e-4	0.000931 0.000557	1.590 9.827

Table 11: Statistical comparison between the two experimental methods, Crowd-BT and O'Donovan *et al.*'s method, and the unweighted BTL order on a matched pair basis for the simulated data with 8 judges per pair, $\omega=0.02$, and $\lambda=0$. A positive value of μ_{τ} indicates that the experimental method is *better*. We show the mean and standard deviation along with a Bayesian Paired Samples T-Test, computed using JASP 0.16 [1]. We use Student-T where $H_a: \tau_{\text{experimental}} \neq \tau_{\text{BTL}}$ and the prior is Cauchy with scale 0.707. Values of $\log{(\text{BF}_{10})}$ are traditionally interpreted using the scale provided by Jeffreys [2]; we highlight values above 1.5 in bold, which are generally regarded as having strong evidence.

	Cro	wd-BT - BT	L	O'Donovan - BTL				
Pair Count	$\mu_{ au}$	$\sigma_{ au}$	log (BF ₁₀)	$\mu_{ au}$	$\sigma_{ au}$	log (BF ₁₀)		
200	1.202e-1	8.178e-2	14.405	3.240e-1	6.826e-2	42.488		
300	4.429e-3	8.860e-3	1.467	5.543e-2	3.383e-2	16.550		
400	2.593e-3	1.875e-2	-1.374	4.566e-2	3.443e-2	12.505		
500	-5.853e-3	1.776e-2	-0.202	2.461e-2	2.906e-2	5.894		
600	-6.697e-3	1.608e-2	0.588	6.533e-3	1.610e-2	0.483		
700	-5.079e-3	6.025e-3	5.839	-7.140e-4	7.468e-3	-1.511		
800	-2.945e-3	3.559e-3	5.624	-2.228e-3	4.498e-3	1.416		
900	-3.712e-3	3.830e-3	7.587	-1.648e-3	4.042e-3	0.504		
1000	-2.647e-3	4.127e-3	3.159	-2.054e-3	3.699e-3	2.102		
1500	-6.767e-4	1.070e-3	3.046	-1.776e-3	1.707e-3	8.577		
2000	-3.451e-4	8.680e-4	0.405	-1.236e-3	1.246e-3	7.909		
2500	-2.044e-4	6.220e-4	-0.211	-9.580e-4	1.136e-3	5.847		
3000	-9.045e-5	4.900e-4	-1.171	-9.310e-4	1.202e-3	4.913		
3500	-8.710e-5	4.810e-4	-1.189	-4.760e-4	9.970e-4	1.218		
4000	-1.709e-4	4.690e-4	0.100	-9.950e-4	1.081e-3	6.910		
4500	4.020e-5	3.290e-4	-1.432	-8.210e-4	8.190e-4	8.054		
5000	-1.005e-4	4.030e-4	-0.797	-7.770e-4	8.490e-4	6.845		
5500	1.480e-17	4.180e-4	-1.638	-7.840e-4	6.790e-4	10.171		
6000	-1.206e-4	2.800e-4	0.734	-8.740e-4	7.270e-4	10.171		
6500	-1.575e-4	3.050e-4	1.648	-8.140e-4	7.640e-4	8.927		
7000	-1.240e-4	3.370e-4	0.132	-7.600e-4	6.590e-4	10.155		
7500	-2.680e-5	3.390e-4	-1.551	-3.250e-4	7.120e-4	0.993		
8000	3.685e-5	2.320e-4	-1.292	-5.260e-4	7.120c-4 7.830e-4	3.544		
8500	-1.273e-4	2.520e-4 2.530e-4	1.503	-6.060e-4	6.720e-4	6.665		
9000	1.005e-5	3.090e-4	-1.623	-3.820e-4	6.880e-4	2.097		
9500	-3.015e-5	2.820e-4	-1.480	-4.590e-4	5.920e-4	4.910		
10000	-1.005e-4	2.990e-4	-0.144	-5.830e-4	5.590e-4	8.617		
10500	-6.030e-5	3.150e-4	-1.137	-6.700e-4	5.680e-4	10.526		
11000	1.110e-17	2.790e-4	-1.137	-6.760e-4	7.090e-4	3.535		
11500	-9.380e-5	2.790e-4 2.990e-4	-0.327	-2.910e-4	6.490e-4	0.921		
12000	6.700e-6	2.470e-4	-0.527	-2.910e-4 -2.040e-4	5.730e-4	0.921		
12500	-1.005e-4	2.420e-4	0.579	-2.040e-4 -4.790e-4	6.710e-4	4.102		
13000	-1.003e-4 -1.206e-4	2.420e-4 2.660e-4	0.379	-4.790e-4 -6.400e-4	6.230e-4	8.391		
13500	-1.206e-4 -6.365e-5	2.890e-4	-0.976	-6.400e-4 -4.150e-4	6.270e-4	3.426		
	-0.303e-3 -4.020e-5	2.850e-4 2.850e-4	-1.363	-4.130e-4 -3.220e-4	5.760e-4			
14000 14500	-4.020e-5 -7.401e-18	2.850e-4 2.090e-4	-1.638	-5.560e-4	6.020e-4	2.139 6.950		
15000 15500	9.380e-5 -1.005e-4	2.790e-4 2.490e-4	-0.149	-4.050e-4 -4.660e-4	3.710e-4 5.730e-4	9.312		
			0.463			5.422		
16000	2.345e-5	2.140e-4	-1.471	-4.190e-4	5.320e-4	5.079		
16500	-2.680e-5	2.400e-4	-1.466	-4.860e-4	5.080e-4	7.396		
17000	2.680e-5	2.360e-4	-1.459	-3.350e-4	6.890e-4	1.317		
17500	6.700e-5	3.040e-4	-0.976	-4.050e-4	5.060e-4	5.267		
18000	-4.355e-5	2.340e-4	-1.164	-4.860e-4	4.930e-4	7.809		
18500	2.345e-5	2.970e-4	-1.551	-2.610e-4	4.370e-4	2.625		
19000	-3.350e-5	2.980e-4	-1.463	-4.720e-4	5.080e-4	7.045		
19500	-6.030e-5	2.260e-4	-0.684	-2.480e-4	3.880e-4	3.135		
19900	1.005e-5	2.660e-4	-1.618	-3.790e-4	5.460e-4	3.820		

Table 12: Statistical comparison between the two experimental methods, Crowd-BT and O'Donovan *et al.*'s method, and the unweighted BTL order on a matched pair basis for the simulated data with 8 judges per pair, $\omega=0.1$, and $\lambda=0$. A positive value of μ_{τ} indicates that the experimental method is *better*. We show the mean, the standard deviation, and a Bayesian Paired Samples T-Test, computed using JASP 0.16 [1]. We use Student-T where $H_a: \tau_{\text{experimental}} \neq \tau_{\text{BTL}}$ and the prior is Cauchy with scale 0.707. Values of $\log{(\text{BF}_{10})}$ are traditionally interpreted using the scale provided by Jeffreys [2]; we highlight values above 1.5 in bold, which are generally regarded as having strong evidence.