

同构式下的函数体系

▶ 秒条秘籍 / 关于同构式下的"亲戚函数"

陈永清老师对同构式的评价及总结:

同构解题,观察第一 同构新天地,单调大舞台.

明确提示要同构, 五脏俱全立同构, 无中生有再同构, 放缩有方可同构!

秒 1 中我们介绍了同构"母函数"以及同构的一些技巧,在这里我们继续欣赏同构对称之美,领略同构波 澜壮阔之势.

同构式下我们分为两条主线

- 1. 顺反同构: 顺即为平移拉伸后的同构函数, 反即为乘除导致的凹凸反转同构函数.
- 2. 同位同构:
- ①加减同构,在同构的过程中"加减配凑",从而完成同构;
- ②局部同构即在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的 亲戚函数即可;
- ③差一同构, 指对跨阶, 指数幂和对数真数差1往往可用同构秒杀之.

关于 $f(x) = x \cdot e^x$ 的亲戚函数

如图 1: 根据求导后可知: $f(x) = x \cdot e^x$ 在区间 $(-\infty, -1)$, 在区间 $(-1, +\infty)$, $f(x)_{\min} = f(-1) = -\frac{1}{x}$.

一 平移和拉伸得到的同构函数

如图 2: $(x-1) \cdot e^x = e \cdot (x-1) \cdot e^{x-1} = ef(x-1)$, 即将 f(x)向右平移 1 个单位, 再将纵坐标扩大 e 倍, 故可得 $y = (x-1) \cdot e^x$ 在区间 $(-\infty,0) \downarrow$, 在区间 $(0,+\infty) \uparrow$, 当 x = 0 时, $y_{\min} = -1$.

如图 3: $(x-2)\cdot e^x = e^2\cdot (x-2)\cdot e^{x-2} = e^2f(x-2)$, 即将 f(x)向右平移 2 个单位,再将纵坐标扩大 e^2 倍,故 可得 $y = (x-2) \cdot e^x$ 在区间 $(-\infty,1) \downarrow$,在区间 $(1,+\infty) \uparrow$,当 x=1 时, $y_{\min} = -e$.

如图 4: $(x+1) \cdot e^x = e^{-1} \cdot (x+1) \cdot e^{x+1} = e^{-1} f(x+1)$, 即将 f(x) 向左平移 1 个单位,再将纵坐标缩小 $\frac{1}{2}$ 倍,故可 得 $y = (x+1) \cdot e^x$ 在区间 $(-\infty, -2) \downarrow$,在区间 $(-2, +\infty) \uparrow$,当 x = -2 时, $y_{\min} = -\frac{1}{2^2}$.

二 乘除导致凹凸反转同构函数

如图 5: $y = \frac{x}{e^x} = x \cdot e^{-x} = -f(-x)$, 即将 f(x) 关于原点对称后得到 $y = \frac{x}{e^x}$, 故可得 $y = \frac{x}{e^x}$ 在区间 $(-\infty,1)$,

在区间 $(1,+\infty)$, 当x=1时, $y_{\text{max}}=\frac{1}{2}$.

如图 6: $y = \frac{x-1}{e^x} = \frac{1}{e}(x-1) \cdot e^{-(x-1)} = -\frac{1}{e}f(-(x-1))$,即将 f(x) 关于原点对称后,向右移一个单位,再将纵坐

标缩小 $\frac{1}{\rho}$ 倍,得到 $y = \frac{x-1}{\rho^x}$,故可得 $y = \frac{x-1}{\rho^x}$ 在区间 $(-\infty,2)$ 个,在区间 $(2,+\infty)$ ↓,当x = 2时, $y_{\text{max}} = \frac{1}{\rho^2}$.

如图 7: $y = \frac{e^x}{x} = -\frac{1}{-x \cdot e^{-x}} = -\frac{1}{f(-x)}$,属于分式函数,将 $\frac{1}{f(x)}$ 关于原点对称后得到,故可得 $y = \frac{e^x}{x}$ 在区间

(0,1) , 在区间 $(1,+\infty)$, 当x=1时, $y_{\min}=e$.

如图 8: $y = \frac{e^x}{x+1} = -\frac{1}{e} \frac{1}{(-x-1) \cdot e^{-x-1}} = -\frac{1}{e} \frac{1}{f(-(x+1))}$, 属于分式函数,将 $\frac{1}{f(x)}$ 关于原点对称后,左移一个

单位,再将纵坐标缩小 $\frac{1}{e}$ 倍,故可得 $y=\frac{e^x}{x+1}$ 在区间 $\left(-1,0\right)\downarrow$,在区间 $\left(0,+\infty\right)\uparrow$,当 x=0 时, $y_{\min}=1$.

三 顺反同构函数

如图 9: $x \ln x = e^{\ln x} \cdot \ln x = f(\ln x)$, 当 $\ln x \in (-\infty, -1)$, 即 $x \in (0, \frac{1}{e})$ ↓,当 $\ln x \in (-1, +\infty)$,即 $x \in (\frac{1}{e}, +\infty)$ ↑,

 $y_{\min} = -\frac{1}{e}$.

如图 10: $\frac{\ln x}{x} = -\ln x^{-1} \cdot x^{-1} = -f(-\ln x)$, 实现了凹凸反转,原来最小值变成了最大值,当 $-\ln x \in (-\infty, -1)$,

即 $x \in (e, +\infty)$ ↓, 当 $-\ln x \in (-1, +\infty)$,即 $x \in (0, e)$ ↑, $y_{\text{max}} = \frac{1}{e}$.

如图 $11: \frac{\ln x + 1}{r} = e^{\frac{\ln ex}{er}} = -ef(-\ln ex)$,当 $-\ln ex \in (-\infty, -1)$,即 $x \in (1, +\infty)$,当 $-\ln ex \in (-1, +\infty)$,即 $x \in (0, 1)$,

如图 12: $\frac{\ln x}{x^2} = \frac{1}{2} \frac{\ln x^2}{x^2} = -\frac{1}{2} f(-\ln x^2)$, 当 $-\ln x^2 \in (-\infty, -1)$, 即 $x \in (\sqrt{e}, +\infty)$ ↓,当 $-\ln x^2 \in (-1, +\infty)$,即

 $x \in (0, \sqrt{e}) \uparrow$, $y_{\text{max}} = \frac{1}{2e}$.

【例 1】(2019•凌源市一模)若函数 $f(x) = e^x - ax^2$ 在区间 $(0, +\infty)$ 上有两个极值点 x_1 , $x_2(0 < x_1 < x_2)$,则实 数a的取值范围是(

A. $a \leqslant \frac{e}{2}$

B. a > e

C. *a*≤*e*

D. $a > \frac{e}{2}$

【解析】由题意得: $f'(x) = e^x - 2ax = 0$ 有两个实根, 即 $y = 2a = g(x) = \frac{e^x}{x}$ 有两个交点, 如图 7 所示, $y = \frac{e^x}{x}$ 在区间(0,1) \downarrow , 在区间 $(1,+\infty)$ \uparrow , 当 x=1 时, $y_{\min}=e$; $\therefore 2a \in (e,+\infty)$, 选 D.

【例 2】(2019•广州一模) 已知函数 $f(x) = e^{|x|} - ax^2$,对任意 $x_1 < 0$, $x_2 < 0$,都有 $(x_2 - x_1)(f(x_2) - f(x_1)) < 0$,

则实数 a 的取值范围是 (

A.
$$(-\infty, \frac{e}{2}]$$

A.
$$(-\infty, \frac{e}{2}]$$
 B. $(-\infty, -\frac{e}{2}]$ C. $[0, \frac{e}{2}]$

C.
$$[0, \frac{e}{2}]$$

D.
$$[-\frac{e}{2},0]$$

【解析】由题意可知函数 f(x) 是 $(-\infty,0)$ 上的单调递减函数,且 f(x) 为偶函数,则 f(x) 在区间 $(0,+\infty)$ 单调 递增, 当 x > 0 时, $f(x) = e^x - ax^2$, $f'(x) = e^x - 2ax \ge 0$ 对 $x \in (0,+\infty)$ 恒成立, 即 $2a \le (\frac{e^x}{r})_{\min} = e$, $\therefore a \le \frac{e}{2}$, 选 A.

【例 3】(2019•荆州期末)函数 $f(x) = \frac{1}{x} + \frac{\ln x}{x}$ 的单调增区间为()

A.
$$(-\infty,1)$$

C.
$$(0,e)$$

D.
$$(1,+\infty)$$

【解析】 $f(x) = \frac{1 + \ln x}{x} = e \cdot \frac{\ln ex}{ex}$, 由于函数 $\frac{\ln x}{x}$ 在区间 $(0,e) \uparrow$, $(e,+\infty) \downarrow$, 则 $f(x) = e \cdot \frac{\ln ex}{ex}$, 当 $ex \in (0,e)$,

即 $x \in (0,1)$ 时, f(x)↑, 故选 B.

【例 4】(2019•广州期末)函数 $f(x) = x \ln x - mx^2$ 有两个极值点,则实数 m 的取值范围是(

A.
$$(0,\frac{1}{2})$$

B.
$$(-\infty,0)$$

C.
$$(0,1)$$

D.
$$(0,+\infty)$$

【解析】 $f'(x) = \ln x + 1 - 2mx = 0$ 有两个根,则 $2m = e \frac{\ln ex}{r}$,由于函数 $\frac{\ln x}{r}$ 在区间 (0,e) 个, $(e,+\infty)$ ↓,最大 值为 $\frac{1}{e}$, 参考图 10, 故 $2m = e \frac{\ln ex}{ex} \Rightarrow \frac{2m}{e} = \frac{\ln ex}{ex}$ 有两根时满足 $0 < \frac{2m}{e} < \frac{1}{e}$, 即 $0 < m < \frac{1}{2}$, 选 A.

【例 5】(2019•深圳月考)已知函数 $f(x) = \frac{\ln x}{x} - kx$ 在区间 $[e^{\frac{1}{4}}, e]$ 上有两个不同的零点,则实数 k 的取值范 围为(

A.
$$[\frac{1}{4\sqrt{e}}, \frac{1}{2e}]$$
 B. $(\frac{1}{4\sqrt{e}}, \frac{1}{2e})$ C. $[\frac{1}{e^2}, \frac{1}{4\sqrt{e}}]$ D. $[\frac{1}{e^2}, \frac{1}{e}]$

B.
$$(\frac{1}{4\sqrt{e}}, \frac{1}{2e})$$

C.
$$[\frac{1}{e^2}, \frac{1}{4\sqrt{e}}]$$

D.
$$[\frac{1}{e^2}, \frac{1}{e}]$$

【解析】 $f(x) = \frac{\ln x}{x} - kx = 0 \Rightarrow k = \frac{\ln x}{x^2} = \frac{1}{2} \frac{\ln x^2}{x^2}$,当 $x \in [e^{\frac{1}{4}}, e]$ 时, $x^2 \in [e^{\frac{1}{2}}, e^2]$,由于函数 $\frac{\ln x}{x}$ 在区间 (0, e) 个,

 $(e,+\infty)$ \downarrow , 则当 $x^2 \in [e^{\frac{1}{2}},e]$ 时, $\frac{\ln x^2}{x^2} \in [\frac{1}{2\sqrt{e}},\frac{1}{e}]$,当 $x^2 \in [e,e^2]$ 时, $\frac{\ln x^2}{x^2} \in [\frac{2}{e^2},\frac{1}{e}]$,由于 $\frac{1}{2\sqrt{e}} > \frac{2}{e^2}$,故当

 $k = \frac{1}{2} \frac{\ln x^2}{r^2} \in \left[\frac{1}{4\sqrt{r}}, \frac{1}{2e}\right]$ 时, $f(x) = \frac{\ln x}{r} - kx$ 有两个不同零点, 故选 A.

【例 6】(2019•陕西一模) 已知函数 $f(x) = \frac{e^x}{x} + k(\ln x - x)$, 若 x = 1 是函数 f(x) 的唯一极值点,则实数 k 的

取值范围是(

A.
$$(-\infty, e]$$

B.
$$(-\infty, e)$$

C.
$$(-e, +\infty)$$
 D. $[-e, +\infty)$

D.
$$[-e, +\infty)$$

【解析】:: 函数
$$f(x) = \frac{e^x}{x} + k(\ln x - x)$$
 的定义域是 $(0, +\infty)$, $f'(x) = \frac{e^x(x-1)}{x^2} + \frac{k(1-x)}{x} = \frac{(e^x - kx)(x-1)}{x^2}$.

x=1 是函数 f(x) 的唯一一个极值点: x=1 是导函数 f'(x)=0 的唯一根. $: e^x - kx = 0$ 在 $(0,+\infty)$ 无变号零点,

则
$$k = \frac{e^x}{x} = -\frac{1}{(-x) \cdot e^{-x}} \in [e, +\infty)$$
,故 $k \le e$ 时满足题意,选 A.

【例 7】(2019•保山一模) 若函数 $f(x) = e^x + ax \ln x$ 有两个极值点,则 a 的取值范围是 (

- A. $(-\infty, -e)$
- B. $(-\infty, -2e)$
- C. $(e, +\infty)$
- D. $(2e, +\infty)$

【解析】由 $f'(x) = e^x + a \ln x + a = 0$, 得 $e^x = -a(\ln x + 1)$. 当 a > 0 时, 易知, 有且仅有一个极值点,

当 a=0 时,无极值点; a<0 时,:方程 $e^x=-a(\ln x+1)$ 有两解,故存在 x>0,使 $e^x<-a(\ln x+1)$,

即
$$-\frac{1}{a} < \frac{lnx+1}{e^x}$$
, $\Rightarrow g(x) = \frac{lnx+1}{e^x}$, 则 $g'(x) = \frac{\frac{1}{x} - lnx - 1}{e^x}$, 再 $\Rightarrow h(x) = \frac{1}{x} - lnx - 1 \frac{\frac{1}{x} - lnx - 1}{e^x}$,

则
$$h(x) = \frac{1}{x} - \ln x - 1$$
在 $(0, +\infty)$ 上递减,又 $h(1) = 0$,所以 $g(x)_{max} = g(1) = \frac{1}{e}$,

$$\therefore -\frac{1}{a} < \frac{1}{e}$$
, 解得 $a < -e$, 故选: A .

【注意】关于 $y=x\ln x$ 与 $y=\frac{\ln x}{x}$ 均可以成为模型函数,也可以作为模板来进行同构,本专题之所以这样设计是让读者思考这一系列函数的同构效用,达到举一反三的目的。例题中我们会以 $y=\frac{\ln x}{x}$ 为模板进行求最值讨论.

常用的几个以 $f(x) = x \cdot e^x$ 为母函数的"亲戚函数"!

1.
$$y = \frac{\ln x}{x} = -\ln x^{-1} \cdot x^{-1} = -e^{\ln x^{-1}} \cdot \ln x^{-1} = -f(-\ln x)$$

2.
$$y = \frac{x}{\ln x} = -\frac{1}{\frac{1}{x} \cdot \ln \frac{1}{x}} = -\frac{1}{e^{\ln \frac{1}{x}} \cdot \ln \frac{1}{x}} = -\frac{1}{f(\ln \frac{1}{x})}$$

3.
$$y = \frac{e^x}{x} = -\frac{1}{-x \cdot e^{-x}} = -\frac{1}{f(-x)}$$

4.
$$y = \frac{x}{e^x} = x \cdot e^{-x} = -(-x \cdot e^{-x}) = -f(-x)$$

需要订秒杀+仙姐微信13038625569