

IN THE CLAIMS:

Please amend claims 11 and 18 as follows:

11. The optical signal monitoring method of claim 9, wherein the non-linear compensation formula is expressed as:

$$\lambda = x + (x - X_1)(x - X_2) \sum_{m=0}^M \sum_{n=0}^N c_{m,n} x^m t^n Ax + (x - X_1)(x - X_2) P_{MN}(x, t). \dots \quad (10)$$

A1 where λ is the non-linear compensated wavelength, x is the linear approximated wavelength, X_1 is a first predetermined wavelength, X_2 is a second predetermined wavelength, M is an arbitrary integer, N is an arbitrary integer, $c_{m,n}$ is an $(m, n)^{\text{th}}$ -order non-linear coefficient, and t is the product of the driving voltage related with x and the operation temperature of the filter.

18. The optical signal monitoring apparatus of claim 16, wherein the non-linear compensation formula is expressed as:

$$\lambda = x + (x - X_1)(x - X_2) \sum_{m=0}^M \sum_{n=0}^N c_{m,n} x^m t^n Ax + (x - X_1)(x - X_2) P_{MN}(x, t). \dots \quad (13)$$

A2
Cont'd.
where λ is the non-linear compensated wavelength, x is the linear approximated wavelength, X_1 is a first predetermined wavelength, X_2 is a second predetermined wavelength, M is an arbitrary integer, N is an arbitrary integer, $c_{m,n}$ is an $(m, n)^{\text{th}}$ -order non-