Capítulo 2

Cardinalidad

2.1. Definiciones

2.1.1. Función inyectiva

Decimos que $f: X \to Y$ es inyectiva si: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ o bien $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

2.1.2. Función sobreyectiva

Decimos que $f: X \to Y$ es sobreyectiva si: $\forall y \in Y \ \exists x \in X/f(x) = y$.

2.1.3. Función biyectiva

Decimos que $f: X \to Y$ es biyectiva si es inyectiva y sobreyectiva.

2.1.4. Conjuntos equipotentes

Dos conjuntos A y B tienen la misma cardinalidad (son equipotentes) si existe una función biyectiva de A en B y lo notaremos: #A = #B, $A \sim B$.

2.1.5. Cardinalidad precedente

La cardinalidad de un conjunto A es anterior a la de un conjunto B si existe una función inyectiva f de A en B y lo notaremos $\#A \preceq \#B$. Si ademas ninguna de las funciones inyectivas de A en B es sobreyectiva entonces: $\#A \prec \#B$.

2.1.6. Conjuntos finitos

Un conjunto es finito cuando es vacío o equipotente a $\{1, 2, ..., n\}$ para algún $n \in \mathbb{N}$. En caso contrario se dice infinito.

2.1.7. Conjuntos numerables

Diremos que un conjunto A es numerable si es finito, o bien resulta que $A \sim \mathbb{N}$ en cuyo caso se dice que A es infinito numerable. Si nada de lo anterior aplica se dice que A no es numerable.

2.1.8. Familia de conjuntos

Un conjunto F se dice una familia de conjuntos si sus elementos son conjuntos. Diremos que F es una familia indexada de conjunto indice I (no vacío) si existe una función con dominio I y recorrido F. Llamando S_{α} (con $\alpha \in I$) a los elementos de la familia F, podemos entonces decir que $F = \{S_{\alpha}/\alpha \in I\}$.

2.1.9. Conjunto de partes

Dado un conjunto S, el conjunto de partes de S denotado por $\mathcal{P}(S)$ es el conjunto de todos los subconjuntos de S.

2.2. Teoremas

2.2.1. Teorema de Cantor-Schroder-Bernstein

Enunciado Si $\#A \leq \#B$ y $\#B \leq \#A$ entonces $A \sim B$. En otras palabras: si existe una función inyectiva de A en B y otra de B en A entonces existe una función biyectiva de A a B.

Demostración Consultar «Daniel J. Velleman. How to Prove It.» y «Richard Hammack. Book of Proof.» paginas 322 y 232.

2.2.2. Cardinalidad de $\mathbb{N} \times \mathbb{N}$

Enunciado El producto cartesiano $\mathbb{N} \times \mathbb{N}$ es infinito numerable.

Demostración Sea $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ dada por f(n) = (n,1). Esta función es trivialmente inyectiva. Sea $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ dada por $g(a,b) = 2^a 3^b$. El teorema fundamental de la aritmética nos permite asegurar que esta función es inyectiva. Luego por el teorema de Cantor-Schroder-Bernstein concluimos que $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.

Observación La función $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ dada por $f[(i,j)] = \frac{1}{2}(i+j-1)(i+j-2) + i$ es una biyeccion:

f[(i,j)]	1	2	3	4	5	6
1	1	2	4	7	11	<u>/</u>
2	3	5		12	/	
3	6	9	13	/		
4	10	14	<			
5	15	/				
6	/					

2.2.3. Corolario

Enunciado $\mathbb{N}^d \sim \mathbb{N}$.

Demostración Lo demostraremos por inducción: Para d=1 vale trivialmente. Veamos ahora que si $\mathbb{N}^d \sim \mathbb{N} \Rightarrow \mathbb{N}^{d+1} \sim \mathbb{N}$. Escribamos $\mathbb{N}^{d+1} = \mathbb{N}^d \times \mathbb{N}$. Como \mathbb{N}^d es numerable (por hipótesis inductiva) podemos listar a sus elementos: $\mathbb{N}^d = \{a_1, a_2, a_3, \ldots\}$. Sea $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}^{d+1}$ dada por $f(i, j) = (a_i, j)$ resulta $\mathbb{N}^{d+1} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.

2.2.4. Unión numerable de conjuntos numerables

Enunciado Sean S_{α} conjuntos numerables (finitos o infinitos) y un conjunto indice I también numerable (finito o infinito) entonces la unión de los elementos de la familia $F = \{S_{\alpha} : \alpha \in I\}$, es decir $S = \bigcup_{\alpha \in I} S_{\alpha}$ sera también numerable.

Demostración Nos pondremos en el peor caso posible: supondremos que tanto los conjuntos S_{α} como el conjunto indice I son infinito numerables. Dado que el conjunto indice I es infinito numerable, sin perder generalidad podemos considerar de aquí en mas que $I = \mathbb{N}$. Luego podemos escribir entonces $F = \{S_{\alpha} : \alpha \in I\} = \{S_i : i \in \mathbb{N}\}$. Dado que S_i es infinito numerable, podemos escribir $S_i = \{a_{ij}/j \in \mathbb{N}\} = \{a_{i1}, a_{i2}, a_{i3}, \ldots\}$. Observemos que podemos organizar los elementos de la unión de acuerdo a la siguiente tabla:

Luego la función $f: S \to \mathbb{N} \times \mathbb{N}$ dada por $f(a_{ij}) = (i, j)$ es inyectiva y como $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$ resulta que S es numerable.

2.2.5. Cardinalidad infinita mas pequeña

Enunciado Para todo conjunto infinito A, resulta: $\#\mathbb{N} = \aleph_0 \leq \#A$.

Demostración Sea A un conjunto infinito:

- Como A es infinito resulta $A \neq \emptyset \Rightarrow \exists x_1 \in A$.
- Como A es infinito resulta $A \neq \{x_1\} \Rightarrow \exists x_2 \in A/x_2 \neq x_1$.
- Como A es infinito resulta $A \neq \{x_1, x_2\} \Rightarrow \exists x_3 \in A/x_3 \neq x_1, x_2.$
- \blacksquare Como Aes infinito resulta $A\neq \{x_1,x_2,x_3\} \Rightarrow \exists x_4\in A/x_4\neq x_1,x_2,x_3.$

De esta forma se puede construir una sucesión $(x_n)_{n\geq 1}$ de elementos de A tales que $x_i \neq x_j$ si $i \neq j$. Definimos $f: \mathbb{N} \to A$ dada por $f(i) = x_i$ para todo $i \in \mathbb{N}$. Como f es inyectiva resulta que $\aleph_0 \leq \#A$.

2.2.6. Cardinalidad del conjunto de partes

Enunciado Para todo conjunto S, resulta: $\#S \prec \#\mathcal{P}(S)$.

Demostración La función $f(x) = \{x\}$ es inyectiva de S en $\mathcal{P}(S)$ por lo que $\#S \preceq \#\mathcal{P}(S)$. Veamos ahora que no existe función sobreyectiva de S en $\mathcal{P}(S)$. Supongamos existe $g: S \to \mathcal{P}(S)$ sobreyectiva y definamos $B = \{x \in S/x \notin g(x)\} \subseteq S$ el conjunto de los elementos de S que no pertenecen a su imagen a través de g. Como g es sobreyectiva y $g \in \mathcal{P}(S)$ sabemos que $\exists x \in S/g(x) = B$.

- Si $x \in B$: por definición de B resulta $x \notin g(x) = B$. Contradicción.
- Si $x \notin B$: por definición de B resulta $x \in g(x) = B$. Contradicción.

Por lo tanto q no es sobrevectiva.

2.2.7. Innumerabilidad del continuo

Enunciado El conjunto de los números reales no es numerable.

Demostración Alcanza con probar que el intervalo (0,1) no es numerable pues $(0,1) \sim \mathbb{R}$. En efecto $f(x) = \tan\left(x\pi - \frac{\pi}{2}\right)$ o bien $g(x) = \ln\left(\frac{1}{x} - 1\right)$ demuestran este hecho. Representemos los elementos de (0,1) por su expansión decimal infinita, por ejemplo $0,229384112598\ldots$ Supongamos que (0,1) es numerable, habrá entonces un primer elemento, segundo, etc. Listemoslos del siguiente modo:

```
0, a_{11}
           a_{12}
                   a_{13}
                           a_{14}
0, a_{21}
          a_{22} a_{23}
                           a_{24}
                                    a_{25} ...
0, a_{31}
           a_{32} a_{33}
                           a_{34}
0, a_{41}
           a_{42}
                   a_{43}
                           a_{44}
                                  a_{45}
0, a_{51}
                   a_{53}
                           a_{54}
          a_{52}
                                  a_{55}
```

Consideremos ahora el numero $b=0,b_1b_2b_3b_4b_5...$ donde cada dígito b_i puede ser cualquier dígito excepto a_{ii} (es decir los números en negrita ubicados en la diagonal). Es claro que $b \in (0,1)$ pero es distinto a todos los números del listado ya que difiere de cada numero en por lo menos un dígito. Esto constituye una contradicción, luego el intervalo $(0,1) \sim \mathbb{R}$ no es numerable.

6

2.3. Ejemplos

2.3.1. Cardinalidad de \mathbb{Z}

Puesto que $f: \mathbb{N} \to \mathbb{Z}$ definida por f(n) = n/2 (si n es par) y f(n) = (1-n)/2 (si n es impar) es biyectiva, resulta $\mathbb{Z} \sim \mathbb{N}$. En forma alternativa $\mathbb{Z} = \{\ldots, -2, -1\} \cup \{0\} \cup \{1, 2, \ldots\}$ es u. n. c. n.

2.3.2. Cadinalidad de \mathbb{Q}

Podemos escribir a \mathbb{Q} como una u. n. c. n.: $\mathbb{Q} = \bigcup_{k \in \mathbb{N}} A_k \operatorname{con} A_k = \{\dots, -\frac{2}{k}, -\frac{1}{k}, \frac{0}{k}, \frac{1}{k}, \frac{2}{k}, \dots\}.$