Question Number	Answer		Mark
14(a)	Resolves velocity into horizontal and vertical components.	(1)	
	Use of $s = u t$ for horizontal displacement	(1)	
	Use of $s = u t + \frac{1}{2} a t^2$ with $a = g$ for vertical displacement	(1)	
	Height after 30 m = 0.91 m Or decrease in height = 1.99 m	(1)	
	Comparison and conclusion consistent with student's calculation.	(1)	
	A method that calculates horizontal displacement in time taken to fall 2.9 m can score full marks. <i>e.g.</i>		
	Resolves velocity into horizontal and vertical components.	(1)	
	Use of <i>suvat</i> equations to calculate total time in flight	(1)	
	Use of $s = u t$ for horizontal displacement	(1)	
	Total distance = 32.7 m	(1)	
	Comparison and conclusion consistent with student's calculation.	(1)	5
	Example calculation $v_{\rm H} = 25 \text{ m s}^{-1} \times \cos 10^{\circ} = 24.6 \text{ m s}^{-1}$ $v_{\rm V} = 25 \text{ m s}^{-1} \times \sin 10^{\circ} = 4.34 \text{ m s}^{-1}$ $30 \text{ m} = 24.61 \text{ m s}^{-1} \times t$ $\rightarrow t = 30 \text{ m} \div 24.6 \text{ m s}^{-1} = 1.22 \text{ s}$ $s = 4.34 \text{ m s}^{-1} \times 1.22 \text{ s} - 0.5 \times 9.81 \times 1.22^2 = -1.99 \text{ m}$ Height = 2.9 m - 1.99 m = 0.91 m 0.91 m > 0.00 m : success		
14(b)	Either		
	Use of $E_{\rm K} = \frac{1}{2} m v^2$	(1)	
	Use of $\Delta W = F \Delta s$	(1)	
	$F = 3.88 \times 10^2 \mathrm{N}$	(1)	
	Or		
	Use of $v^2 = u^2 + 2as$ or combination of <i>suvat</i> equations to find deceleration.	(1)	
	Use of $F = m a$	(1)	
	$F = 3.88 \times 10^2 \mathrm{N}$	(1)	3
	Example of calculation $E_{\rm K} = \frac{1}{2} \times 63 \times 23^2 = 1.67 \times 10^4 \text{J}$ $1.67 \times 10^4 \text{J} = F \times 43$ $F = 1.67 \times 10^4 \text{J} / 43 = 3.88 \times 10^2 \text{N}$		

8

Total for question 14