Конспекты по матанализу

Владимир Милосердов, Владимир Шабанов 3 октября 2015 г.

Оглавление

1	Пре	Предел последовательности			
	1.1	Определение			
	1.2	Теорема о подпоследовательности сходящей последовательности			
	1.3	Т. о влож. отрезках			
	1.4	Т. Больцано			
2	Предел функции				
	$2.\bar{1}$	Определение по Гейне			
	2.2	Определение по Коши			
	2.3	Теорема о двух миллиционерах			
	2.4	Док-во равенства определений			
		2.4.1 От Гейне к Коши			
		2.4.2 От Коши к Гейне			

ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ

Глава 1

Предел последовательности

1.1 Определение

Пусть имеется последовательность a_n . Тогда если начиная с некоторго элемента под индексом N каждый следующий элемент a_n , где n > N будет входить в ε -окрестность некоторой точки A, то говорят, что последовательность имеет предел и он равен A. $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N(n \in \mathbb{N}), \ a_n \in U_{\varepsilon}(A)$

Пример Возъмём
$$\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0$$

Тут $A = 0$, $a_n = \frac{(-1)^n}{n}$

Tym
$$A = 0$$
, $a_n = \frac{(-1)^n}{n}$

Подставим значения в определение:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N(n \in \mathbb{N}), \ \frac{(-1)^n}{n} \in \mathring{U}_{\varepsilon}(0)$$

 $\frac{(-1)^n}{n}\in \mathring{U_{\varepsilon}}(0)\equiv |\frac{(-1)^n}{n}-0|<arepsilon,$ т.к. последовательность a_n , принадлежащая arepsilon-окрестности в точке A=0 тоже самое, что расстояние между рассматриваемыми членами a_n и

A=0 меньше ε . Упростим: $|\frac{(-1)^n}{n}-0|<\varepsilon\Rightarrow |\frac{(-1)^n}{n}|<\varepsilon\Rightarrow \frac{1}{n}<\varepsilon\Rightarrow n>\frac{1}{\varepsilon}$. 1)Возьмём $\varepsilon=\frac{1}{2}\Rightarrow n>2$. Подставим в формулу наименьшее удовлетворяющее условию n>2 число: $|\frac{-1^3}{3}-0|=\frac{1}{3}$. Получается, что $\frac{1}{3}<\frac{1}{2}$ и $\forall n>2: |\frac{(-1)^n}{n}-0|<\varepsilon\Rightarrow все$ условия из определения соблюдены.

Определение Последовательность – сходящеяся, если она имеет предел.

Определение Последовательность - расходящеяся, если у нее нет предела

Определение Последовательность называется ограниченной, если все её члены по модулю не превосходят некоторого числа.

1.2Теорема о подпоследовательности сходящей последовательности

Теорема Если последовательность стремится κ A, то любая её подпоследовательность тоже стремится κ A.

$$\lim_{x \to +\infty} a_n = A \Rightarrow \forall a_{n_k} \lim_{k \to +\infty} a_{n_k} = A$$

По определению предела найдётся такой номер, что все члены с бо́льшими номерами принадлежат ε -окрестности. $\forall \varepsilon > 0 \; \exists N: \; \forall n > N \; |a_n - A| < \varepsilon$

Тогда $\forall k > N : \forall n_k > N, |a_{n_k} - A| < \varepsilon.$

Значит a_{n_k} стремится к A по определению предела для последовательности, что и требовалось доказать.

1.3 Теорема Коши-Кантора о вложенных отрезках

Теорема Для всякой системы бесконечного числа вложенных отрезков существует хотя бы одна точка, принадлежащая всем отрезкам системы.

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = c$$

Если длины отрезков стремятся к нулю, то такая точка **единственна**.

Обозначим за $\{a_n\}$ множество левых концов отрезков, а за $\{b_m\}$ – множество правых концов. Заметим, что $\forall n, m: a_n \leq b_m$. Из *аксиомы непрерывности* заключаем существование точки c, лежащей между любыми двумя левым и правым концами:

 $\forall n, m \; \exists \; c: \quad a_n \leq c \leq b_m$

В частности (когда n=m): $a_n \le c \le b_n$

Последнее выражение означает существование точки между концами самого маленького отрезка. Эта точка – объединение всей системы, что и требовалось доказать.

Докажем единственность этой точки при стремлении длин отрезков к нулю.

Пусть это не так и существуют точки $c_0, c_1, c_0 \neq c_1$. Тогда из рассуждений предыдущего доказательства следует:

- (1) $\forall n: c_0, c_1 \in [a_n, b_n]$ и $|c_1 c_0| \leq b_n a_n$. Т.к. длины отрезков стремятся к нулю:
- (2) $\forall \varepsilon > 0$: $\exists N : \forall n > N : b_n a_n < \varepsilon$ (по определению предела).

Но если взять $\varepsilon = \frac{1}{2}|c_1 - c_0|$, то из (1) и (2) получим противоречие: $|c_1 - c_0| < \frac{1}{2}|c_1 - c_0|$. Таким образом точка c единственна в случае стремления длин отрезков к нулю, что и требовалось доказать.

1.4 Теорема Больцано — Вейерштрасса

Теорема На любой ограниченной последовательности $x_n, n \in \mathbb{N}$ можно выделить сходящююся подпоследовательность $x_{n_k}, k \in \mathbb{N}$

Если последовательность x_n ограниченна, то всё её бесконечное множество членов принадлежит некоторому промежутку, обозначим его $-[a_0,b_0]$. Разделим этот промежуток на два равных отрезка, тогда хотя бы один из них будет содержать бесконечное число членов последовательности x_n , обозначим этот отрезок, как $[a_1,b_1]$. Продолжая процесс получим последовательность вложенных отрезков.

$$[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset\ldots$$

В которой каждый отрезок $[a_{k+1}, b_{k+1}]$ является половиной отрезка $[a_k, b_k]$ и содержит бесконечное число членов последовательности x_n . Т.к. размер отрезка под номером k

равен $S_k = \frac{|b_0 - a_0|}{2^k}$, то при $k \to +\infty$, $S_k \to 0$. А по лемме о вложенных отрезках, существует единственная точка ν , принадлежащая всем отрезкам. Тогда выберем подпоследовательность $x_{n_k} \in [a_k, b_k]$. Новая последовательность x_{n_k} будет сходится к точке ν потому, что и ν , и x_{n_k} принадлежат отрезку $[a_k, b_k]$, размеры которого стремятся к 0 при $k \to +\infty$. Т.е. $|x_{n_k} - \nu| \le |b_k - a_k| \to 0$. Таким образом, в ограниченной последовательности x_n мы выделили сходящююся подпоследовательность x_{n_k} .

<u>1.4.</u>	Т. БОЛЬЦАНО	ГЛАВА 1.	ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

Глава 2

Предел функции

2.1 Определение по Гейне

Пределом функции f(x) в точке a называется точка A, если для любой сходящейся в точке a последовательности x_n множество соответсвующих значений $y_n = f(x_n)$, при $n \neq 0$ стремится к A.

$$\forall n \in \mathbb{N}, \lim_{n \to x_0} x_n = a$$
$$\lim_{n \to a} f(x_n) = A$$

2.2 Определение по Коши

Пределом функции f(x) в точке a называется точка A, если для любого $\varepsilon>0$ найдется $\delta>0$ такое, что для любого аргуманта x такого, что $0<|x-a|<\delta$ выполняется неравенство $|f(x)-A|<\varepsilon$

$$\lim_{x \to a} f(x) = A \iff \forall \varepsilon > 0: \ \exists \delta > 0: \ \forall x: \ 0 < |x - a| < \delta \implies |f(x) - A| < \varepsilon$$

2.3 Теорема о двух миллиционерах

Функция, "зажатая" между двумя функциями, имеющими одиннаковый предел имеет такой же предел.

$$\begin{cases} \varphi(x) \le f(x) \le \psi(x), \forall x \\ \lim_{x \to a} \varphi(x) = A \\ \lim_{x \to a} \psi(x) = A \end{cases} \implies \lim_{x \to a} f(x) = A$$

Доказательство:

Прибавим к каждой части неравенства $\varphi(x) \leq f(x) \leq \psi$ по -A: $\varphi(x) - A \leq f(x) - A \leq \psi(x) - A$. Из предыдущего неравенства и рисунка

очевидно, что для любых допустимых взаимных расположений точек $A, \varphi(x), \psi(x), f(x)$ верно следующее неравенство:

(1) $|f(x) - A| \le \max(|\varphi(x) - A|, |\psi(x) - a|)$

Т.к. $\lim_{x\to a} \varphi(x) = \lim_{x\to a} \psi(x) = A$, то $\forall \varepsilon > 0$ существует ε -окрестность U_a и $\varphi(x) \in U_{\varepsilon}(a)$ и $\psi(x) \in U_{\varepsilon}(a)$. Т.е. $|\varphi(x) - A| < \varepsilon$ и $|\psi(x) - A| < \varepsilon$.

Тогда из (1) следует: $|f(x) - A| < \varepsilon$ из чего согласно определению предела по Коши следует, что $\lim f(x) = A$, что и требовалось доказать.

Доказательство эквивалентности определений по 2.4Коши и по Гейне

От Гейне к Коши 2.4.1

Докажем от противного. Пусть $A = \lim_{x \to a} f(x)$ (по Гейне) и он не равен пределу по Коши. Т.е. (из определения по Коши):

 $\exists \varepsilon > 0: \ \forall \delta > 0: \ \exists x_{\delta}: \ 0 < |x_{\delta} - a| < \delta \ и \ |f(x_{\delta}) - A| \ge \varepsilon$

Рассмотрим $\delta = \frac{1}{n}$, где $n \in \mathbb{N}$, обозначим последовательность значений в точке δ через

 $0<|x_n-a|<\frac{1}{n}$, где $0\to 0$ и $\frac{1}{n}\to 0$. Из строгости неравенства следует $x_n\neq a$, а по теореме о трёх миллиционерах имеем:

 $|x_n-a|\to 0 \Rightarrow x_n\to a$, поэтому из определения по Гейне $f(x_n)\to A$, но по построению (T.K. $|f(x_{\delta}) - A| > \varepsilon$) $f(x_n) \not\to A$

Получили противоречие, значит если функция имеет предел по Гейне, то его можно определить и по Коши.

От Коши к Гейне 2.4.2

Пусть $A=\lim_{x\to a}f(x)$ по Коши. Т.е. $\forall \varepsilon>0:\ \exists \delta>0:\ \forall x:\ 0<|x-a|<\delta\ \Rightarrow\ |f(x)-A|<\varepsilon$

Выберем произвольную последовательность x_n такую, что $\lim_{n\to +\infty} x_n = a$. Т.к. x_n стремится к a, то для любого $\delta > 0$ найдется такой номер (обозначим его n_{δ}), начиная с которго $\forall n > n_{\delta}$ будет выполнятся неравенство $|f(x_n) - A| < \varepsilon$, что по Коши равносильно $\lim_{n \to +\infty} f(x_n) = A$