

What is Sensor Fusion?

Ira A. Fulton Schools of Engineering
Arizona State University

- Process of combining sensor data or data derived from disparate sources
- For e.g. cameras and lidars have both pros and cons
- With sensor fusion, resulting information has less uncertainty

"Pedestrian 11.6 meters ahead"

Sensor Fusion in Autonomy – Crucial for Control

Applications

Ira A. Fulton Schools of Engineering
Arizona State University

- Autonomous Vehicles: Combining data from cameras, LiDAR, and radar to accurately perceive obstacles and navigate safely.
- **Robotics**: Using a combination of cameras, ultrasonic sensors, and inertial measurement units (IMUs) to navigate in complex environments and avoid collisions.
- Wearable Devices: Combining accelerometer, gyroscope, and GPS data to accurately track movement and location.
- Industrial Monitoring: Using multiple sensors to monitor equipment health and predict potential failures.

Types of Sensor Fusion

When?

Other types based on Algorithm – Where?

Types of Sensor Fusion – Low-level Example 1

Low-Level Fusion (Data-Level Fusion)

- Raw data from multiple sensors are combined before any processing.
- Happens early in the pipeline
- Ex: Merging accelerometer, magnetometers & gyroscope in (IMUs).
 - Accelerometer:
 - Linear accelerations
 - Effected by gravity
 - Magnetometer
 - Accurate yaw
 - Takes measurements over long time to converge
 - Gyro
 - Gives angular velocities
 - Drifts over time due to integration under noise, bias

IMU-based Sensing [1]

Types of Sensor Fusion – Low-level Example 2

Combining LiDAR point clouds and camera pixel data for enhanced perception

- Project the 3D PCL into 2D projection using geometric principles
- Use YOLO to detect objects from the camera image
- Region Of Interest (ROI) Identification
 - For each bounding box, the camera gives us the classification
 - For each LiDAR projected point, we have a very accurate distance.
 - Can use clustering / thresholding
- Feature Extractions Extract edge, color information,
- Data Fusion Combine using feature concatenation

Fusing PCL data with camera image [2]

Other Low-Level Fusion Techniques

Weighted Averaging:

- Combines raw data by assigning weights based on sensor confidence.
- Example: Fusing temperature readings from multiple sensors.

Bayesian Networks:

- Probabilistic models that combine raw data with prior knowledge.
- Example: Fusing radar and LiDAR point clouds for obstacle detection.

Direct Concatenation:

 Combines raw data vectors directly (e.g., concatenating LiDAR point clouds with camera RGB data).

Wavelet Transform:

- Used for combining sensor signals by decomposing them into frequency bands.
- Example: Fusing audio signals with vibration sensor data.

Types of Sensor Fusion – Mid-level

Mid-Level Fusion (Feature-Level Fusion)

- Extracted features from each sensor (e.g., edges in an image or clusters in LiDAR data) are combined.
- Fusion occurs at the level of processed data representations.
- Examples:
 - Combining object detections from cameras and depth information from LiDAR to classify and localize objects.
 - Using radar speed readings and image-based tracking for better object trajectory prediction.
- Pros:
 - Reduces data size compared to low-level fusion.
 - Easier to handle than raw data.
- Cons:
 - Loss of detailed information.
 - Requires effective feature extraction techniques.

Fusing PCL data with camera image [2]

Types of Sensor Fusion – Example Mid-level

Combining 3D Bounding boxes from LiDAR point clouds and camera pixel data

- 3D bounding boxes in LIDAR
 - Unsupervised 3D machine learning
 - Deep learning
- 3D obstacle detection via camera
 - Camera calibration
 - Depth map
- Intersection over Union (IoU) Matching
 - If the bounding boxes from camera and LiDAR overlap, in 2D or 3D, we consider that obstacle to be the same

Fusing PCL data with camera image [2]

Other Mid-Level Fusion Techniques

- Kalman Filters:
 - Recursive estimation for fusing features like position & velocity
- Particle filters:
 - Non-linear non-Gaussian approach for tracking and estimation
 - Example: fusing radar and visual features for object tracking
- Principal Component Analysis:
 - Reduces dimensionality of fused features while preserving variance
 - Example: Fusing multiple-camera views for 3D reconstruction
- Neural Networks:
 - CNNs for images, LSTMs for temporal features
 - Example: fusing image and LIDAR features for object detection

Sensors: Measurement, Process and Noise

Goal: You are a robot

- 1. Need to know your own position, velocity etc. state (6D pose)
- 2. Need to know your surroundings, e.g other cars state

Position, velocity and uncertainty!

Sensors: Measurement, Process and Noise

Have a sensor:

- 1. Raw data is available, or some kind of filter has been applied
- 2. You want accuracy

Have multiple sensors:

- 1. One sensor gives one kind of information only for example, radar give speed
- 2. Want additional information fused to get a full estimate

Sensors: Measurement, Process and Noise

Have problems:

- 1. Less information
- 2. Sensor inefficient

That's why Kalman Filters!

Position, velocity and uncertainty!

Discussion: Kalman Filters

Discussion: Kalman Filters

Discussion: Kalman Filters (Gaussian Noise)

Discussion: Kalman Filters

- Linear system model: The system dynamics (how the state evolves over time) and the measurement model (how the state is observed) must be represented by linear equations with matrices F (state transition), H (observation), and B (control input).
- Gaussian noise assumptions: Both the process noise (system uncertainty) and measurement noise (sensor uncertainty) must be assumed to be white Gaussian noise with known covariance matrices (Q and R respectively).
- Known initial conditions: The initial state estimate (\hat{x}) and its corresponding error covariance matrix (P) must be provided to start the filtering process.

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}u_k + \mathbf{w}_k$$

 $\mathbf{x}_k = [x_k; \dot{x}_k]$: State vector at time k (position and velocity).

A: State transition matrix.

B: Control input matrix.

 u_k : Control input (constant here).

 $\mathbf{w}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$: Process noise with covariance \mathbf{Q} .

$$\mathbf{z}_k = \mathbf{H}\mathbf{x}_k + \mathbf{v}_k$$

 $\mathbf{z}_k = [z_{k,1}; z_{k,2}]$: Measurement vector (noisy position and velocity).

H: Measurement matrix.

 $\mathbf{v}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$: Measurement noise with covariance \mathbf{R} .


```
% state equations, discrete system
muQ = 0;
Q = [0.01 0; 0 0.03]; % we need to know this: noise covariance of state
A = [1.0000 \ 0.0010; \ 0 \ 1.0000];
B = 1.0e-03 * [0.0005; 1.0000];
wk = normrnd(muQ,Q);
% output equations
H = [1 \ 0; 0 \ 1];
muR = 0;
R = [0.5 0;0 0.5]; % we need to know this: noise covariance of output
vk = normrnd(muR, R);
% simulation parameters:
t0 = 0;
dt = 0.001;
tend = 10;
x = [0 \ 0]'; % initial state
z = x; % initial measurement;
len = length(t0:dt:tend);
xfs = zeros(len, length(x));
xfs(1,:) = x';
zfs(1,:) = z';
u = 1;
% apriori x
xhat minus = [00]';
xhat = [0 0]';
xhatfs = xfs;
P = [0.1 \ 0.2; \ 0.3 \ 0.1];
```



```
% state equations, discrete system
muQ = 0;
Q = [0.01 0; 0 0.03]; % we need to know this: noise covariance of state
A = [1.0000 \ 0.0010; \ 0 \ 1.0000];
B = 1.0e-03 * [0.0005; 1.0000];
wk = normrnd(muQ,Q);
% output equations
H = [1 \ 0; 0 \ 1];
muR = 0;
R = [0.5 0;0 0.5]; % we need to know this: noise covariance of output
vk = normrnd(muR, R);
% simulation parameters:
t0 = 0;
dt = 0.001;
tend = 10;
x = [0 \ 0]'; % initial state
z = x; % initial measurement;
len = length(t0:dt:tend);
xfs = zeros(len, length(x));
xfs(1,:) = x';
zfs(1,:) = z';
u = 1;
% apriori x
xhat minus = [00]';
xhat = [0 \ 0]';
xhatfs = xfs;
P = [0.1 \ 0.2; \ 0.3 \ 0.1];
```


Sliding Window State Estimation using Optimization

State estimation can also be formulated as a simple linear/quadratic optimization problem! Here, we know the system dynamics, so we try to find the best state estimate that the minimizes some error metric over a window.

$$y = \underbrace{x_1 \sin(t) + x_2 \sin(2t) + x_3 \sin(3t) + x_4 + \sin(4t) + x_5 \sin(5t) + x_6 \sin(6t)}_{l.e,y} + \underbrace{noise}_{l.e,y} +$$

Depending on the nature of the objective function i.e, whether it is L1, L2 or L ∞ norm on x, we can use LP, QP or LP respectively.

Implementing KFs in Python and ROS2


```
import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32, Float32MultiArray
import numpy as np
from filterpy.kalman import KalmanFilter
```

```
class KalmanFilterNode(Node):
   def init (self):
       super(). init ('kalman filter node')
       # Subscriber for measurements
       self.subscription = self.create subscription(
           Float32, 'measurement', self.measurement callback, 10)
       # Publisher for estimated state
       self.state publisher = self.create publisher(Float32MultiArray, 'estimated state', 10)
       # Kalman filter initialization
       dt = 0.1 # Time step
       self.kf = KalmanFilter(dim x=2, dim z=1)
       self.kf.x = np.array([0, 0]) # Initial state: [position, velocity]
       self.kf.F = np.array([[1, dt], [0, 1]]) # State transition matrix
       self.kf.H = np.array([[1, 0]]) # Measurement matrix
       self.kf.P = np.eye(2) * 500 # Covariance matrix (large initial uncertainty)
       self.kf.R = 1 # Measurement noise covariance
       self.kf.Q = np.array([[0.1, 0], [0, 0.1]]) # Process noise covariance
```

Radars, Cameras and Lidars Creating Synthetic Data in MATLAB

^[3] Codes available at https://github.com/karishmapatnaik/sensor-fusion/tree/main

Creating Synthetic Data in MATLAB Visualization and Fusing

