Wulfram Gerstner

EPFL, Lausanne, Switzerland

The brain: Cortical Areas

motor cortex

visual cortex

to muscles

frontal cortex

The brain: Cortical Areas

The Brain: zooming in

1mm

10 000 neurons 3 km of wire

Ramon y Cajal

The brain: a network of neurons

1mm

Ramon y Cajal

Signal: Potentiel d'action (impulsion)

The brain: signal transmission

plus que mille entrées

The brain: neurons sum their inputs

Summary: the brain is a large network of neurons

Active neuron

Learning in the brain: changes between connections

learning = change of connection

Wulfram Gerstner
EPFL, Lausanne, Switzerland

- 1. The brain
- 2. Artificial Neural Networks

Modeling: artificial neurons

- -responses are added
- -pulses created at threshold
- -transmitted to other

Mathematical description

Modeling: artificial neurons

forget spikes: continuous activity x forget time: discrete updates

Learning of connections in biology

Where do the connection weights come from?

Hebbian Learning

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j's efficiency as one of the cells firing i is increased

Hebb, 1949

- local rule
- simultaneously active neurons

Hebbian Learning of Associations

Hebbian Learning of Associations

item memorized by change of synaptic weights

Hebbian Learning: Associative Recall

Recall:
Partial info

item recalled

Neurons and Synapses form a big network

Brain

10 000 neurons 3 km of wire

10 billions neurons

10 000 connexions/neurons

memory in the connections

Distributed Architecture

No separation of processing and memory

Quiz: biological neural networks

[] Neurons in the brain have a threshold.
[] Learning means a change in the threshold.
[] Learning means a change of the connection weights
[] The total input to a neuron is the weighted sum of individual inputs
[] The neuronal network in the brain has no recurrent connections and no feedback connections

Artificial Neural Networks for classification

car output • • • • • input

Artificial Neural Networks for classification

dog

car

output • • • • • Aim of learning: Adjust connections such that output is correct input (for each input)

Wulfram Gerstner
EPFL, Lausanne, Switzerland

- 1. The brain
- 2. Artificial Neural Networks
 - for classification
 - for action learning

Artificial Neural Networks for action learning

Coactivation of 2 neurones:

- Connections strengthened
- Facilitates to repeat same action

Even the mistakes?

Missing:

Value of action

- 'goodie' for do
- 'success'
- 'compliment'

Modeling – the role of reward

success

Three factors for changing a connection

- activity of neuron j
- activity of neurone i
- success

Barto 1985, Schultz et al. 1997; Waelti et al., 2001; Reynolds and Wickens 2002; Lisman et al. 2011

Deep reinforcement learning

Chess

Go

Artificial neural network (*AlphaZero*) discovers different strategies by playing against itself.

In Go, it beats Lee Sedol

Deep reinforcement learning

Network for choosing action

2^e output for value of action: action: Advance king probability to win output 1 + 1 + learning:

input

change connections

aim:

- Predict value of position
- Choose next action to win

Deep reinforcement learning (alpha zero)

Silver et al. (2017), Deep Mind

output: 4672 actions

advance king

Training 44Mio games (9 hours)

Planning:
potential sequences
(during 1s before playing next action)

input: 64x6x8x2 neuronss (about 10 000)

Deep reinforcement learning (alpha zero)

19%

12%

Chess:

-discovers classic openings

-beats best human players

-bets best classic Al algorithms

19%

12%

Self-driving cars

https://selfdrivingcars.mit.edu/

Lex Friedman, MIT

advance and accerate

Value: security, duration of travel

Road Overlay:

Safety System \$

Wulfram Gerstner
EPFL, Lausanne, Switzerland

- 1. The brain
- 2. Artificial Neural Networks
 - for classification
 - for action learning
 - for sequences (music, translation, speech)

Deep networks with recurrent connections 'a man sitting on a couch with a dog'

Network desribes the image with the words:

'a man sitting on a couch with a dog'

(Fang et al. 2015)

Quiz: Classification versus Reinforcement Learning

- [] Classification is based on rewards
- [] Reinforcement learning is based on rewards
- [] Reinforcement learning aims at optimal action choices
- [] Classification aims at predicting the correct category such as 'car' or 'dog'

Wulfram Gerstner
EPFL, Lausanne, Switzerland

- 1. The brain
- 2. Artificial Neural Networks
 - for classification
 - for action learning
 - for sequences
- 3. Overview of class

Wulfram Gerstner

EPFL, Lausanne, Switzerland

- 1. Simple perceptrons for classification
- 2. Backprop and multilayer perceptron
- 3. Statistical Classification by deep networks
- 4. Deep learning: regularization and tricks of the trade
- 5. Complements to deep learning
- 6. Sequence predictions and LSTMs
- 7. Convolutional networks
- 8. Reinforcement learning1: TD learning
- 9. Reinforcement learning2: SARSA
- 10. Reinforcement learning3: Policy Gradient
- 11. Deep Reinforcement learning
- 12. Applications

Wulfram Gerstner

miniproject2

- 1. Simple perceptrons for classification EPFL, Lausanne, Switzerland
- 2. Backprop and multilayer perceptron
- 3. Statistical Classification by deep networks miniproject1
- 4. Deep learning: regularization and tricks of the trade
- 5. Complements to deep learning
- 6. Sequence predictions and LSTMs
- 7. Convolutional networks
- 8. Reinforcement learning1: TD learning
- 9. Reinforcement learning2: SARSA
- 10. Reinforcement learning3: Policy Gradient —— miniproject3
- 11. Deep Reinforcement learning
- 12. Applications

Miniprojects (MPs): we use software package 'Keras'

- hand in 2 (or 3) out of 3 projects
- graded on a scale of 1-6
- average grade of MPs counts 1/3 toward final grade
- we do fraud detection interviews
- you get three weeks for each MP
- MP can be done alone or in group of two students
- interview for final MP is in first week after end of classes

plan ahead!!

Written exam:

- counts 2/3 toward final grade
- no tools allowed (no calculator, no cell phone, no paper, no book)
- 'mathy'

Exercise sessions as follows:

- hand-out of exercise sheet *n* Friday of week *n*
- You work on it until Thursday of week n+1
- Solutions posted at noon, Thursday *n*+1
- Friday week *n*+1 by 10:00 am: you vote for the one exercise that you want to be explained
- Friday week *n*+1 at 12:00 am. This exercise is explained on the blackboard + Q&A
 - + Q&A for miniprojects

TA's: - Dr. Johanni Brea

- Dane Corneil
- Florian Colombo
- Teo Stocco

EPFL, Lausanne, Switzerland

- The math is developed on the blackboard
- There are no written course notes!!
- All of the contents are standard textbook material

Choose a textbook that you like:

For first half of class:

- Pattern Recognition and Machine Learning, C.M Bishop, 2006
- Neural Networks for Pattern Recognition, C.M. Bishop, 1995
- Deep Learning, Ian Goodfellow et al., 2017 (also online)

For second half of class:

- Reinforcement learning, R. Sutton+ A. Barto (2nd ed, online)

Artificial Neural Networks

Prerequisits:

CS433, Pattern Classification and Machine Learning (Profs Jaggi+Urbanke)

Rules:

If you have taken this class: please ask many questions

If you have not taken this class: please do not complain

Artificial Neural Networks

Learning outcomes:

- apply learning in deep networks to real data
- assess/evaluate performance of learning algorithms
- Elaborate relations between different mathematical concepts of learning
- judge limitations of learning algorithms
- propose models for learning in deep networks

Transversal skills:

Access and evaluate appropriate sources of information Manage priorities work through difficulties, write a technical report

Artificial Neural Networks

Work load:

4 credit course \rightarrow 6 hours per week for 18 weeks

(1 ECTS = 27 hours of work)

Questions?

... before we start

TA's this year:

- Dr. Johanni Brea
- Dane Corneil
- Florian Colombo
- Teo Stocco

Artificial Neural Networks: Lecture 1 Simple Perceptrons for Classification

Wulfram Gerstner
EPFL, Lausanne, Switzerland

Objectives for today:

- understand classification as a geometrical problem
- discriminant function of classification
- linear versus nonlinear discriminant function
- perceptron algorithm
- gradient descent for simple perceptrons

1. The problem of Classification

car (yes or no)

output

the classifier

input

1. The problem of Classification

Blackboard 1: from images to vector

car (yes or no)

output

input

Blackboard 1: from images to vector

1. The problem of Classification

+1 yes (or 0 for no) output the classifier f(x) input vector **x**

1. Classification as a geometric problem

Blackboard 2: from vectors to classification

1. Classification as a geometric problem

Task of Classification

- = find a separating surface in the high-dimensional input space
- Classification by discriminant function d(x)
- \rightarrow $d(\mathbf{x})=0$ on this surface; $d(\mathbf{x})>0$ for all positive examples \mathbf{x} $d(\mathbf{x})<0$ for all counter examples \mathbf{x}

 $P \ \text{data points} \qquad \{ \ \ (\textbf{x}^{\mu}, t^{\mu}) \ , \qquad 1 \leq \mu \leq P \ \ \};$ input target output

$$t^{\mu} = 1$$
 car =yes
 $t^{\mu} = 0$ car =no

$$P \ \text{data points} \qquad \{ \quad (x^{\mu}, t^{\mu}) \quad , \quad 1 \leq \mu \leq P \quad \};$$

$$\qquad \qquad | \quad | \quad | \quad |$$
 input target output

for each data point x^{μ} , the classifier gives an output y^{μ}

 \rightarrow use errors $\hat{y}^{\mu} \neq t^{\mu}$ for optimization of classifier

Remark: for multi-class problems y and t are vectors

3. Single-Layer networks: simple perceptron

Blackboard 3: hyperplane

vector x

Blackboard 3: hyperplane

3. Single-Layer networks: simple perceptron

$$\hat{y}^{\mu} = 0.5[1 + sgn(\sum_{k} w_{k} x_{k} - \vartheta)]$$
 output
$$\hat{y}^{\mu} = g\left(\sum_{k} w_{k} x_{k}\right)$$

$$g(a') = \begin{cases} 1 & \text{if } a' > \vartheta \\ 0.5 & \text{if } a' = \vartheta \\ 0 & \text{if } a' > \vartheta \end{cases}$$

input vector x

3. Single-Layer networks: simple perceptron

$$\hat{y} = 0.5[1 + sgn(\sum_k w_k x_k - \vartheta)]$$

$$d(\mathbf{x}) = \sum_{k} w_k \, x_k - \vartheta = 0$$

3. remove threshold: add a constant input

3. Single-Layer networks: simple perceptron

a simple perceptron

- can only solve linearly separable problems
- imposes a separating hyperplane
- for $\vartheta = 0$ hyperplane goes through origin
- threshold parameter ϑ can be removed by adding an input dimension
- → in N+1 dimensions hyperplane always goes through origin
- We can adapt the weight vector to the problem

4. Perceptron algorithm: turn weight vector (in N+1 dim.)

hyperplane:
$$d(\mathbf{x}) = \sum_{k=1}^{N+1} w_k x_k = \mathbf{w}^T \mathbf{x} = 0$$

4. Perceptron algorithm: turn weight vector

Blackboard 4: geometry of perceptron algo

$\Delta w \sim x^{\mu}$

Perceptron algo (in N+1 dimensions):

- set $\mu = 1$
- (1) cycle many times through patterns
- choose pattern μ
- calculate output

$$\hat{y}^{\mu} = 0.5[1 + sgn(\mathbf{w}^T \mathbf{x}^{\mu})]$$

- update by

$$\Delta \boldsymbol{w} = \gamma [t^{\mu} - \hat{\boldsymbol{y}}^{\mu}] \boldsymbol{x}^{\mu}$$

- iterate $\mu \leftarrow (\mu + 1) mod P$, back to (1)
- (2) stop if no changes for all P patterns

Blackboard 4: geometry of the perc. algo

4. Perceptron algorithm: theoreom

If the problem is linearly separable, the perceptron algorithm converges in a finite number of steps.

Proof: in many books, e.g., Bishop, 1995, Neural Networks for Pattern Recognition

Quiz: Perceptron algorithm

5. Sigmoidal output unit

$$\hat{y}^{\mu} = g(\mathbf{w}^{T} \mathbf{x}^{\mu}) = g(\sum_{k=1}^{N+1} w_{k} x_{k}^{\mu})$$

$$g(a) = \frac{\exp(a)}{1 + \exp(a)}$$

$$a$$

$$w_{iN+1} = \theta$$

$$\mathbf{x} \in \mathbb{R}^{N+1}$$

5. Supervised learning with sigmoidal output

5. Supervised learning with sigmoidal output

define error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{\mu=1}^{P} \left[t^{\mu} - \widehat{y}^{\mu} \right]^{2}$$

gradient descent

$$E = -\gamma \frac{\alpha E}{dw_k}$$

$$E = -\gamma \frac{\omega E}{dw_k}$$

$$\hat{y}^{\mu} = g(\mathbf{w}^T \mathbf{x}^{\mu})$$

$$\in R^{N+1}$$

$$w_{N+1} = \theta$$

$$\chi_{N+1} = -$$

6. gradient descent

Quadratic error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{\mu=1}^{P} \left[t^{\mu} - \hat{y}^{\mu} \right]^{2}$$

gradient descent

$$E \bigvee_{k} = -\gamma \frac{1}{dw_{k}}$$

$$W_{k} = -\gamma \frac{1}{dw_{k}}$$

Exercise 1.1 now:

- calculate gradient (1 pattern)
- geometrical interpretation?

$$\hat{y}^{\mu} = g(\mathbf{w}^T \mathbf{x}^{\mu})$$

$$w_{N+1} = \theta$$

Exercise 1.1 now:

- calculate gradient (1 pattern)
- geometrical interpretation?

6. Gradient descent algorithm

$$\Delta \mathbf{w} = \gamma \delta(\mu) \mathbf{x}^{\mu}$$

- stepsize depends on (signed) output mismatch $\delta(\mu)$ for this data point
- change implemented even if 'correctly classified
- compare with perceptron algorithm

Summary for today:

- understand classification as a geometrical problem
- discriminant function of classification
- linear versus nonlinear discriminant function
- perceptron algorithm
- gradient descent for simple perceptrons

Reading for this week:

Bishop, Ch. 4.1.7 of

Pattern recognition and Machine Learning

or

Bishop, Ch. 3.1-3.5 of

Neural networks for pattern recognition

Motivational background reading:

Silver et al. 2017, Archive Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Goodfellow et al., Ch. 1 of

Deep Learning

