

Nom: Prénom: Groupe: Question

Durée: 15'

Documents, calculettes, téléphones et ordinateurs interdits15

1 Tests

Méthode:

Enoncé : Une grande surface propose un service de photocopies aux conditions suivantes : les 100 premières pages sont facturées $0.1 \in \text{la page}$, les 500 suivantes sont facturées $0.08 \in \text{la page}$ et au-delà, la page est facturée à $0.05 \in \text{Proposer}$ une instruction de type « alternative multiple » qui permettra de calculer le prix total des photocopies pour un document de n pages.

Résultat:	
Vérification :	

Nom:	Prénom:	GROUPE:	QUESTION:

Durée : 15'

Documents, calculettes, téléphones et ordinateurs interdits25

2 Boucles

Enoncé : Proposer une instruction de type « boucle » qui permettra de calculer l'intégrale $I=\int cos(x)dx$ sur l'intervalle $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ par la méthode des n rectangles.

$$I = \int_{-\frac{\pi}{4}}^{+\frac{\pi}{4}} \cos(x) dx \approx \frac{\pi}{2n} \cdot \sum_{k=0}^{n-1} \cos(-\frac{\pi}{4} + \frac{k\pi}{2n})$$

Methode:			

Résultat:	
Vérification :	

Nom:	Prénom :	GROUPE:	QUESTION:
------	----------	---------	-----------

Durée : 15'

Méthode:

Documents, calculettes, téléphones et ordinateurs interdits25

3 Boucles et tests

Enoncé : Ecrire un algorithme qui permettra de déterminer le zéro de cos(x) dans [1,2] selon une méthode par dichotomie.

Indications : Soient $[x_1,x_2]$ l'intervalle de recherche et $x_m=(x_1+x_2)/2$ le point milieu de cet intervalle. Si $f(x_1)\cdot f(x_m)<0$, le zéro recherché est dans $[x_1,x_m]$, sinon le zéro est dans $[x_m,x_2]$. On réitère le procédé sur le nouvel intervalle de recherche jusqu'à ce que la longueur de l'intervalle soit suffisamment petite. Le milieu de ce dernier intervalle sera le zéro recherché.

Résultat:	
Vérification :	

Nom:	Prénom :	GROUPE:	QUESTION:
------	----------	---------	-----------

Durée: 15'

Documents, calculettes, téléphones et ordinateurs interdits 15

4 Exécution d'une séquence d'instructions

Enoncé: On considère la séquence d'instructions suivantes:

```
n = 0
  while n <= k:</pre>
       j = 0
       while j <= n:
           num, den = 1, 1
           i = 1
6
           while i <= j:
                num = num * (n - i + 1)
                den = den * i
9
                i = i + 1
10
           c = num//den
                              # division entière
11
           print(c,end=' ')
12
           j = j + 1
13
       print()
       n = n + 1
```

Qu'affiche cette séquence pour k = 6?

Réponse : On n'attend pas ici une réponse concernant la méthode (M). En guise de vérification (V), on pourra proposer un nom à cet algorithme.

Méthode : Se mettre à la place de la machine pour exécuter scrupuleusement les instructions en inscrivant dans le tableau ci-dessous chaque affichage de la fonction print.

Résultat :

Verifi	icat	ion:	
Nom	$\mathbf{d}\mathbf{e}$	${\bf l'algorithme}$: