See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264294007

Diphosphonylation of Aromatic Diazaheterocycles and Theoretical Rationalization of Product Yields

ARTICLE in EUROPEAN JOURNAL OF ORGANIC CHEMISTRY · DECEMBER 2013

Impact Factor: 3.07 · DOI: 10.1002/ejoc.201301546

CITATIONS READS
4 25

9 AUTHORS, INCLUDING:

Wouter Debrouwer

Ghent University

10 PUBLICATIONS 29 CITATIONS

SEE PROFILE

Toon Verstraelen

Ghent University

58 PUBLICATIONS **591** CITATIONS

SEE PROFILE

Christian V Stevens

Ghent University

280 PUBLICATIONS 4,233 CITATIONS

SEE PROFILE

DOI: 10.1002/ejoc.201301546

Diphosphonylation of Aromatic Diazaheterocycles and Theoretical Rationalization of Product Yields

Ann De Blieck,^[a] Saron Catak,^[b] Wouter Debrouwer,^[a] Józef Drabowicz,^[c] Karen Hemelsoet,^[b] Toon Verstraelen,^[b] Michel Waroquier,^[b] Veronique Van Speybroeck,*^[b] and Christian V. Stevens*^[a]

Keywords: Phosphonylation / Nitrogen heterocycles / Nucleophilic addition / Density functional calculations

In the original article,^[1] compounds **5a–c** in Figure 2 (p. 1059) and in Table 1 (p. 1060) each lack a bond in the phenanthroline core. The correct Figure 2 and Table 1 are depicted below.

The Authors

Figure 2. Diphosphonylated 1,5-naphthyridine **4** and phenanthrolines **5a**–**c**.

[[]a] Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium E-mail: Chris.Stevens@UGent.be www.SynBioC.UGent.be

[[]b] Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium, Member of the QCMM Alliance Ghent-Brussels E-mail: Veronique. Vanspeybroeck@UGent.be molmod.UGent.be

[[]c] Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, 90-363 Łódź, Sienkiewicza 112, Poland E-mail: draj@bilbo.cbmm.lodz.pl

Table 1. Reaction of different phenanthrolines 5 with dimethyl trimethylsilyl phosphite (DMPTMS) in acidic medium. [a]

Entry	Product 5	Equiv. DMPTMS	Equiv. H ₂ SO ₄	Time		Conversion [%]		Isolated yield [%]		Ratio M/m
				Δ [d]	MW [h]	Δ	MW	Δ	MW	
1	1,10-	2.05	0.5	5	_	1	_	_	_	_
2	1,7-	2.05	0.5	3	_	0	_	_	_	_
3	4,7-	2.05	0.5	6	_	14	_	_	_	_
4	4,7	4	1	1	_	1	_	_	_	_
5	1,10-	6	1	_	2	_	95	_	88	93:7
6	1,10-	3	0.5	_	3	_	86	_	75	92:8
7	1,10-	3.5	0.5	_	5	_	100	_	96	94:6
8	1,10-	3×1	0.5	_	5	_	62	_	48	95:5
9	1,10-	3×2	3×0.4	_	5	_	26	_	_	_
10	1,7-	3	0.5	_	5	_	67	_	25	>99:1
11	1,7-	3×1	1	_	5	_	35	_	12	98:2
12	1,7-	3×2	3×0.4	_	5	_	20	_	_	_
13	4,7-	6	1	_	3	_	36	_	12	91:9
14	4,7-	3×2	1	_	5	_	22	_	8	90:10
15	4,7-	3×2	3×0.4	_	5	_	15	_	_	_

[a] Δ = reflux, batch; MW = microwave heating (45 °C, 200 W), m = minor diastereomeric pair; M = major diastereomeric pair.

Received: October 11, 2013 Published Online: October 29, 2013

A. De Blieck, S. Catak, W. Debrouwer, J. Drabowicz, K. Hemelsoet, T. Verstraelen, M. Waroquier, V. Van Speybroeck, C. V. Stevens, *Eur. J. Org. Chem.* 2013, 1058–1067