Exercises 1. Vectors

- 1. Create the vectors:
 - (a) $(1, 2, 3, \dots, 19, 20)$
 - **(b)** $(20, 19, \ldots, 2, 1)$
 - (c) $(1, 2, 3, \dots, 19, 20, 19, 18, \dots, 2, 1)$
 - (d) (4,6,3) and assign it to the name tmp.

For parts (e), (f) and (g) look at the help for the function rep.

- (e) $(4, 6, 3, 4, 6, 3, \dots, 4, 6, 3)$ where there are 10 occurrences of 4.
- (f) $(4,6,3,4,6,3,\ldots,4,6,3,4)$ where there are 11 occurrences of 4, 10 occurrences of 6 and 10 occurrences of 3.
- (g) $(4,4,\ldots,4,6,6,\ldots,6,3,3,\ldots,3)$ where there are 10 occurrences of 4, 20 occurrences of 6 and 30 occurrences of 3.
- 2. Create a vector of the values of $e^x \cos(x)$ at $x = 3, 3.1, 3.2, \dots, 6$. Make a plot of the multiplicands and the product.
- **3.** Create the following vectors:

(a)
$$(0.1^30.2^1, 0.1^60.2^4, \dots, 0.1^{36}0.2^{34})$$

(b)
$$\left(2, \frac{2^2}{2}, \frac{2^3}{3}, \dots, \frac{2^{25}}{25}\right)$$

4. Calculate the following:

(a)
$$\sum_{i=10}^{100} (i^3 + 4i^2)$$

(a)
$$\sum_{i=10}^{100} (i^3 + 4i^2)$$
. (b) $\sum_{i=1}^{25} \left(\frac{2^i}{i} + \frac{3^i}{i^2}\right)$

- 5. Use the function paste to create the following character vectors of length 30:
 - (a) ("label 1", "label 2",, "label 30"). Note that there is a single space between label and the number following.
 - (b) ("fn1", "fn2", ..., "fn30"). In this case, there is no space between fn and the number following.
- 6. Execute the following lines which create two vectors of random integers which are chosen with replacement from the integers 0, 1, ..., 999. Both vectors have length 250.

```
set.seed(50)
xVec <- sample(0:999, 250, replace=T)
yVec <- sample(0:999, 250, replace=T)</pre>
```

Suppose $\mathbf{x} = (x_1, x_2, \dots, x_n)$ denotes the vector xVec and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ denotes the vector yVec.

- (a) Create the vector $(y_2 x_1, \dots, y_n x_{n-1})$. Plot the vector.
- **(b)** Create the vector $\left(\frac{\sin(y_1)}{\cos(x_2)}, \frac{\sin(y_2)}{\cos(x_3)}, \dots, \frac{\sin(y_{n-1})}{\cos(x_n)}\right)$. Plot the vector.
- (c) Create the vector $(x_1 + 2x_2 x_3, x_2 + 2x_3 x_4, \dots, x_{n-2} + 2x_{n-1} x_n)$.
- (d) Calculate $\sum_{i=1}^{n-1} \frac{e^{-x_{i+1}}}{x_i + 10}$.

Make a chart that show the data with the values > 600 clearly presented in a contrasting color.

- 7. This question uses the vectors xVec and yVec created in the previous question and the functions sort, order, mean, sqrt, sum and abs.
 - (a) Pick out the values in yVec which are > 600. Make a chart that shows the data points with values > 600 as a subset.
 - (b) What are the index positions in yVec of the values which are > 600?

- (c) What are the values in xVec which correspond to the values in yVec which are > 600? (By correspond, we mean at the same index positions.)
- (d) Create the vector $(|x_1 \bar{\mathbf{x}}|^{1/2}, |x_2 \bar{\mathbf{x}}|^{1/2}, \dots, |x_n \bar{\mathbf{x}}|^{1/2})$ where $\bar{\mathbf{x}}$ denotes the mean of the vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Make a chart that shows the xVec and the vector you created.
- (e) How many values in yVec are within 200 of the maximum value of the terms in yVec?
- (f) How many numbers in xVec are divisible by 2? (Note that the modulo operator is denoted \%%.)
- (g) Sort the numbers in the vector xVec in the order of increasing values in yVec. Make a chart.
- (h) Pick out the elements in yVec at index positions 1, 4, 7, 10, 13, Make a chart.
- 8. By using the function cumprod or otherwise, calculate

$$1 + \frac{2}{3} + \left(\frac{2}{3}, \frac{4}{5}\right) + \left(\frac{2}{3}, \frac{4}{5}, \frac{6}{7}\right) + \dots + \left(\frac{2}{3}, \frac{4}{5}, \dots, \frac{38}{39}\right)$$