

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

Lecture 18a

Chapter 3. The Fundamentals

3.6 Applications of Integers Algorithms

- 1. What is the decimal expansion $(1AF)_{16}$?
- 2. What is the hexadecimal expansion of $(287)_{10}$?
- 3. What is the two's complement of -7?
- 4. Multiply $(100)_2$ and $(101)_2$ in binary system.

- Hints
 - $-16^2 = 256$

Applications

- Miscelaneous useful results
- Linear congruences
- Chinese Remainder Theorem
- Pseudoprimes
 - Fermat's Little Theorem
- Public Key Cryptography
 - The Rivest-Shamir-Adleman (RSA) cryptosystem

Miscelaneous Results

- Theorem 1:
 - $\forall a,b \in \mathbf{Z}^+$: $\exists s,t \in \mathbf{Z}$: $\gcd(a,b) = sa + tb$
- Lemma 1:
 - $\forall a,b,c \in \mathbf{Z}^+$: $\gcd(a,b)=1 \land a \mid bc \rightarrow a \mid c$
- Lemma 2:
 - If p is prime and $p|a_1a_2...a_n$ (integers a_i) then $\exists i$: $p|a_i$.
- Theorem 2:
 - If $ac \equiv bc \pmod{m}$ and gcd(c,m)=1, then $a \equiv b \pmod{m}$. $(m \in \mathbb{Z}^+, a,b,c \in \mathbb{Z})$

Theorem 1

Theorem 1:

 $\forall a,b \in \mathbb{Z}^+$: $\exists s,t \in \mathbb{Z}$ such that gcd(a,b) = sa + tb

Proof: By induction over the value of the larger argument a.

Example:

Express gcd(252, 198) = 18 as a linear combination of 252 and 198.

Proof of Theorem 1

Theorem 1: $\forall b, a \in \mathbb{Z}^+$: $\exists s, t \in \mathbb{Z}$: $\gcd(a,b) = sa + tb$

Proof: (By induction over the value of the larger argument *a*.)

- ByTheorem 0 gcd(a,b) = gcd(b,c) if $c = a \mod b$, i.e., a = kb + c for some integer k, and thus c = a kb.
- Now, since b < a and c < b, by inductive hypothesis, we can assume that $\exists u, v$: gcd(b, c) = ub + vc.
- Substituting for c, this is ub+v(a-kb), which we can regroup to get va + (u-vk)b.
- So now let s = v, and let t = u vk, and we're finished.
- The base case: s = 1 and t = 0. This works for gcd(a,0), or if a=b originally. ■

Theorem 1: Example

- Express gcd(252, 198) = 18 as a linear combination of 252 and 198.
 - $252 = 1 \cdot 198 + 54$ $198 = 3 \cdot 54 + 36$ $54 = 1 \cdot 36 + 18$ $36 = 2 \cdot 18$ Euclidean algorithm
 - $18 = 54 1 \cdot 36 = 54 1 \cdot (198 3 \cdot 54)$ = $4 \cdot 54 - 1 \cdot 198$ = $4 \cdot (252 - 1 \cdot 198) - 1 \cdot 198$ = $4 \cdot 252 - 5 \cdot 198$
 - Therefore, $gcd(252, 198) = 18 = 4 \cdot 252 5 \cdot 198$

Proof of Lemma 1

Lemma 1:

 $\forall a,b,c \in \mathbf{Z}^+$: $\gcd(a,b)=1 \land a|bc \rightarrow a|c$

Proof:

- Applying theorem 1, $\exists s, t : sa + tb = 1$.
- Multiplying through by c, we have that sac + tbc = c.
- Since a|bc is given, we know that a|tbc, and obviously a|sac.
- Thus (using the theorem on pp.202), it follows that a|(sac+tbc); in other words, that a|c.

Proof of Lemma 2

■ **Lemma 2:** If p is prime and $p|a_1a_2...a_n$ (integers a_i) then $p|a_i$ for some i.

Proof (by induction):

- If n=1, this is immediate since $p|a_0 \rightarrow p|a_0$. Suppose the lemma is true for all n < k and $p|a_1...a_k$.
- If p|m where $m=a_1...a_{k-1}$ then we have it inductively.
- Otherwise, we have p|ma_k but ¬(p|m).
 Since m is not a multiple of p, and p has no factors, m has no common factors with p, thus gcd(m,p)=1.
 So by applying Lemma 1, p|a_k.

Theorem 2

- Theorem 2: Let $m \in \mathbb{Z}^+$ and $a,b,c \in \mathbb{Z}$. If $ac \equiv bc \pmod{m}$ and gcd(c,m)=1, then $a \equiv b \pmod{m}$. Proof:
 - Since $ac \equiv bc \pmod{m}$, this means $m \mid ac-bc$.
 - Factoring the right side, we get m | c(a b).
 Since gcd(c,m)=1, lemma 1 implies that m | a-b, in other words, that a ≡ b (mod m).
- Examples
 - $20 \equiv 8 \pmod{3}$ i.e. $5 \cdot 4 \equiv 2 \cdot 4 \pmod{3}$ Since $gcd(4, 3) = 1, 5 \equiv 2 \pmod{3}$
 - $14 \equiv 8 \pmod{6}$ but $7 \not\equiv 4 \pmod{6}$ (as $gcd(2,6) \neq 1$)

Linear Congruences, Inverses

- A congruence of the form ax ≡ b (mod m) is called a *linear congruence*. (m∈Z⁺, a,b∈Z, and x: variable)
 - To solve the congruence is to find the x's that satisfy it.
- An *inverse of a, modulo m* is any integer a^{-1} such that $a^{-1}a \equiv 1 \pmod{m}$.
 - If we can find such an a^{-1} , notice that we can then solve $ax \equiv b \pmod{m}$ by multiplying through by it, giving $a^{-1}ax \equiv a^{-1}b \pmod{m}$, thus $1 \cdot x \equiv a^{-1}b \pmod{m}$.

Theorem 3: If gcd(a,m)=1 (i.e. a and m are relatively prime) and m > 1, then a has a inverse a⁻¹ unique modulo m.

Proof:

- By theorem 1, $\exists s,t$: sa + tm = 1, so $sa + tm \equiv 1 \pmod{m}$.
- Since $tm \equiv 0 \pmod{m}$, $sa \equiv 1 \pmod{m}$. Thus s is an inverse of $a \pmod{m}$.
- Theorem 2 guarantees that if ra ≡ sa ≡ 1 then r ≡ s, thus this inverse is unique modulo m.
 (All inverses of a are in the same congruence class as s.)

Example

- Find an inverse of 3 modulo 7
 - Since gcd(3, 7) = 1, by Theorem 3 there exists an inverse of 3 modulo 7.
 - 7 = 2.3 + 1
 - From the above equation, -2.3 + 1.7 = 1
 - Therefore, −2 is an inverse of 3 modulo 7
 - Note that every integer congruent to –2 modulo 7 is also an inverse of 3, such as 5, –9, 12, and so on.)

Example

- What are the solutions of the linear congruence $3x \equiv 4 \pmod{7}$?
 - –2 is an inverse of 3 modulo 7 (previous slide)
 - Multiply both side by -2: $-2 \cdot 3x \equiv -2 \cdot 4 \pmod{7}$
 - $-6 \cdot x \equiv x \equiv -8 \equiv 6 \pmod{7}$
 - Therefore, the solutions to the congruence are the integers x such that x ≡ 6 (mod 7), i.e. 6, 13, 20, 27,... and −1, −8, −15,...
 - e.g. $3.13 = 39 \equiv 4 \pmod{7}$

An Application of Primes!

- When you visit a secure web site (https:... address, indicated by padlock icon in IE, key icon in Netscape), the browser and web site may be using a technology called RSA encryption.
- This public-key cryptography scheme involves exchanging public keys containing the product pq of two random large primes p and q (a private key) which must be kept secret by a given party.
- So, the security of your day-to-day web transactions depends critically on the fact that all known factoring algorithms are intractable!

Public Key Cryptography

- In *private key cryptosystems*, the same secret "key" string is used to both encode and decode messages.
 - This raises the problem of how to securely communicate the key strings.
- In public key cryptosystems, there are two complementary keys instead.
 - One key decrypts the messages that the other one encrypts.
- This means that one key (the *public key*) can be made public, while the other (the *private key*) can be kept secret from everyone.
 - Messages to the owner can be encrypted by anyone using the public key, but can *only* be decrypted by the owner using the private key.
 - Like having a private lock-box with a slot for messages.
 - Or, the owner can encrypt a message with their private key, and then anyone can decrypt it, and know that only the owner could have encrypted it.
 - This is the basis of digital signature systems.
- The most famous public-key cryptosystem is RSA.
 - It is based entirely on number theory!

Rivest-Shamir-Adleman (RSA) (RSA)

- Choose a pair p, q of large random prime numbers with about the same number of bits
 - Let *n* = *pq*
- Choose exponent e that is relatively prime to (p-1)(q-1) and 1 < e < (p-1)(q-1)
- Compute d, the inverse of e modulo (p-1)(q-1).
- The public key consists of: n, and e.
- The private key consists of: n, and d.

RSA Encryption

- To encrypt a message encoded as an integer:
 - Translate each letter into an integer and group them to form larger integers, each representing a block of letters. Each block is encrypted using the mapping

$$C = M^e \mod n$$
.

- Example: RSA encryption of the message STOP with p = 43, q = 59, and e = 13
 - $n = 43 \times 59 = 2537$
 - $\gcd(e, (p-1)(q-1)) = \gcd(13, 42.58) = 1$
 - **STOP** -> 1819 1415
 - 1819¹³ mod 2537 = 2081; 1415¹³ mod 2537 = 2182
 - Encrypted message: 2081 2182

RSA Decryption

- To decrypt the encoded message C,
 - Compute $M = C^d \mod n$
 - Recall that d is an inverse of e modulo (p-1)(q-1).
- **Example**: RSA decryption of the message **0981 0461** encrypted with p = 43, q = 59, and e = 13
 - $n = 43 \times 59 = 2537$; d = 937
 - 0981⁹³⁷ mod 2537 = 0704
 - 0461⁹³⁷ mod 2537 = 1115
 - Decrypted message: 0704 1115
 - Translation back to English letters: HELP

Why RSA Works

Theorem (Correctness of RSA): $(M^e)^d \equiv M \pmod{n}$. Proof:

- By the definition of d, we know that $de \equiv 1 \pmod{(p-1)(q-1)}$.
 - Thus by the definition of modular congruence, $\exists k: de = 1 + k(p-1)(q-1)$.
 - So, the result of decryption is $C^d \equiv (M^e)^d = M^{de} = M^{1+k(p-1)(q-1)} \pmod{n}$
- Assuming that M is not divisible by either p or q,
 - Which is nearly always the case when p and q are very large,
 - Fermat's Little Theorem tells us that $M^{p-1}\equiv 1 \pmod{p}$ and $M^{q-1}\equiv 1 \pmod{q}$
- Thus, we have that the following two congruences hold:
 - First: $C^d \equiv M \cdot (M^{p-1})^{k(q-1)} \equiv M \cdot 1^{k(q-1)} \equiv M \pmod{p}$
 - Second: $C^d \equiv M \cdot (M^{q-1})^{k(p-1)} \equiv M \cdot 1^{k(p-1)} \equiv M \pmod{q}$
- And since gcd(p,q)=1, we can use the Chinese Remainder Theorem to show that therefore $C^d \equiv M \pmod{pq}$:
 - If C^d≡M (mod pq) then ∃s: C^d=spq+M, so C^d≡M (mod p) and (mod q). Thus M is a solution to these two congruences, so (by CRT) it's the only solution.

Uniqueness of Prime Factorizations

The "hard" part of proving the Fundamental Theorem of Arithmetic.

"The prime factorization of any positive integer *n* is unique."

Proof: Suppose that the positive integer n can be written as the product of two different ways, i.e. $n = p_1...p_s = q_1...q_t$ are equal products of two nondecreasing sequences of primes.

Assume (without loss of generality) that all primes in common have already been divided out, so that $\forall ij$: $p_i \neq q_j$. But since $p_1...p_s = q_1...q_t$, we have that $p_1|q_1...q_t$, since $p_1\cdot(p_2...p_s) = q_1...q_t$. Then applying lemma 2, $\exists j$: $p_1|q_j$. Since q_j is prime, it has no divisors other than itself and 1, so it must be that $p_i=q_j$. This contradicts the assumption $\forall ij$: $p_i \neq q_i$.

Consequently, the two lists must have been identical to begin with! ■

Chinese Remainder Theorem

■ **Theorem:** (Chinese remainder theorem.) Let $m_1,...,m_n > 0$ be pairwise relatively prime and $a_i,...,a_n$ arbitrary integers. Then the equations system $x \equiv a_i \pmod{m_i}$ (for i=1,...,n) has a unique solution modulo $m = m_1 m_2 \cdots m_n$.

Proof:

- Let $M_i = m/m_i$. (Thus $gcd(m_i, M_i)=1$.)
- So by Theorem 3, $\exists y_i = M_i$ such that $y_i M_i \equiv 1 \pmod{m_i}$.
- Now let $x = \sum_i a_i y_i M_i = a_1 y_1 M_1 + a_2 y_2 M_2 + \dots + a_n y_n M_n$.
- Since $m_i | M_k$ for $k \neq i$, $M_k \equiv 0 \pmod{m_i}$, so $x \equiv a_i y_i M_i \equiv a_i \pmod{m_i}$. Thus, the congruences hold. (Uniqueness is an exercise.) \square

Computer Arithmetic with Large Integers

- By Chinese Remainder Theorem, an integer a where 0≤a<m=∏m_i, gcd(m_i,m_{j≠i})=1, can be represented by a's residues mod m_i:
 - (a mod m_1 , a mod m_2 , ..., a mod m_n)
- To perform arithmetic with large integers represented in this way,
 - Simply perform operations on the separate residues!
 - Each of these might be done in a single machine operation.
 - The operations may be easily parallelized on a vector machine.
 - Works so long as m > the desired result.

Computer Arithmetic Example

For example, the following numbers are relatively prime:

$$m_1 = 2^{25} - 1 = 33,554,431 = 31 \cdot 601 \cdot 1,801$$

 $m_2 = 2^{27} - 1 = 134,217,727 = 7 \cdot 73 \cdot 262,657$
 $m_3 = 2^{28} - 1 = 268,435,455 = 3 \cdot 5 \cdot 29 \cdot 43 \cdot 113 \cdot 127$
 $m_4 = 2^{29} - 1 = 536,870,911 = 233 \cdot 1,103 \cdot 2,089$
 $m_5 = 2^{31} - 1 = 2,147,483,647$ (prime)

- Thus, we can uniquely represent all numbers up to $m = \prod m_i \approx 1.4 \times 10^{42} \approx 2^{139.5}$ by their residues r_i modulo these five m_i .
 - E.g., $10^{30} = (r_1 = 20,900,945; r_2 = 18,304,504; r_3 = 65,829,085; r_4 = 516,865,185; r_5 = 1,234,980,730)$
- To add two such numbers in this representation,
 - Just add the residues using machine-native 32-bit integers.
 - Take the result mod 2^k-1:
 - If result is ≥ the appropriate 2^k-1 value, subtract out 2^k-1
 - or just take the low k bits and add 1.
 - Note: No carries are needed between the different pieces!

- Ancient Chinese mathematicians noticed that whenever n is prime, 2ⁿ⁻¹≡1 (mod n).
 - Some also claimed that the converse was true.
- However, it turns out that the converse is not true!
 - If $2^{n-1}\equiv 1 \pmod{n}$, it doesn't follow that *n* is prime.
 - For example, $341=11\cdot31$, but $2^{340}\equiv1$ (mod 341).
- Composites n with this property are called pseudoprimes.
 - More generally, if $b^{n-1}\equiv 1\pmod{n}$ and n is composite, then n is called a *pseudoprime to the base b*.

Carmichael Numbers

- These are sort of the "ultimate pseudoprimes."
- A Carmichael number is a composite n such that $b^{n-1}\equiv 1 \pmod{n}$ for all b relatively prime to b.
- The smallest few are 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341.
- Well, so what? Who cares?
 - Exercise for the student: Do some research and find me a useful & interesting application of Carmichael numbers.

Fermat's Little Theorem

- Fermat generalized the ancient observation that $2^{p-1}\equiv 1 \pmod{p}$ for primes p to the following more general theorem:
- Theorem: (Fermat's Little Theorem.)
 - If p is prime and a is an integer not divisible by p, then $a^{p-1}\equiv 1\pmod{p}$.
 - Furthermore, for every integer a we have $a^p \equiv a \pmod{p}$.
- Example (Exponentiation MOD a Prime)
 - Find 2^{301} mod 5: By FLT, $2^4 \equiv 1 \pmod{5}$. Hence, $2^{300} = (2^4)^{75} \equiv 1 \pmod{5}$.

Therefore, $2^{301} = (2^{300}) \cdot 2 \equiv 1 \cdot 2 \pmod{5} \equiv 2 \pmod{5}$