2.7.9

stalin-ai25btech11037

September 20, 2025

Question

Find the area of the triangle whose vertices are P(1,0), Q(2,2) and R(3,1).

Theoretical Solution

Let us solve the given equation theoretically and then verify the solution computationally

According to the question,

Given three points

$$\mathbf{P} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \mathbf{Q} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \ \mathbf{R} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{1}$$

$$\mathbf{Q} - \mathbf{P} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{2}$$

$$\mathbf{R} - \mathbf{P} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{3}$$

$$ar(PQR) = \frac{1}{2} \| (\mathbf{Q} - \mathbf{P}) \times (\mathbf{R} - \mathbf{P}) \|$$
 (4)

Theoretical Solution

$$ar(PQR) = \frac{1}{2} \| (\mathbf{Q} - \mathbf{P}) \times (\mathbf{R} - \mathbf{P}) \| = \frac{3}{2}$$
 (5)

```
#include <stdio.h>
#include <stdlib.h>
int main() {
   // Coordinates of the triangle
    int x1 = 1, y1 = 0;
    int x2 = 2, y2 = 2;
    int x3 = 3, y3 = 1;
   // Applying formula
    int determinant = x1*(y2 - y3) + x2*(y3 - y1) + x3*(y1 - y2);
   float area = 0.5 * abs(determinant);
   printf("Area of the triangle = %.2f\n", area);
   return 0;
```

python code

```
import matplotlib.pyplot as plt
import numpy as np
# Vertices
P = np.array([1, 0])
Q = np.array([2, 2])
R = np.array([3, 1])
# Function to compute area using determinant formula
def triangle_area(A, B, C):
    return 0.5 * abs(A[0]*(B[1]-C[1]) + B[0]*(C[1]-A[1]) + C[0]*(
        A[1]-B[1])
# Compute area
area = triangle_area(P, Q, R)
print("Area of triangle:", area)
```

```
# Plotting
x = [P[0], Q[0], R[0], P[0]] # closing the triangle
 y = [P[1], Q[1], R[1], P[1]]
plt.figure(figsize=(6,6))
 plt.plot(x, y, 'b-o', linewidth=2) # triangle edges
plt.fill(x, y, 'skyblue', alpha=0.5) # fill triangle
 # Mark vertices
 plt.text(P[0], P[1]-0.2, "P(1,0)", fontsize=12, ha="center")
 |plt.text(Q[0], Q[1]+0.2, "Q(2,2)", fontsize=12, ha="center")
 |plt.text(R[0], R[1]-0.2, "R(3,1)", fontsize=12, ha="center")
```

python code

```
# Display area on plot
plt.title(f"Triangle PQR, Area = {area}")
plt.axis("equal")
plt.grid(True)

# Save figure
plt.savefig("triangle_area.png", dpi=300)
plt.show()
```

Plot

figs/triangle_area.png