a \bullet a+b

Natural Deduction

Definition: Logical Calculus

$$C = \langle \Sigma, L_{\Sigma}, A, R \rangle$$

 $\Sigma \quad : \quad \mathsf{Alphabet}$

 $L_{\Sigma}~$: Formal Language over Σ

A : Axioms

R : Inference Rules

Definition: Logical Calculus

$$C = \langle \Sigma, L_{\Sigma}, A, R \rangle$$

```
\begin{array}{lll} \Sigma & : & \{P,Q,R,\ldots,\wedge,\vee,\neg,\Longrightarrow,\exists,\forall,\ldots\} \\ L_{\Sigma} & : & \{P\wedge Q,P\vee Q\Longrightarrow R,\ldots\} \\ A & : & \{\vdash \top,P\vdash P,\ldots\} \\ R & : & \{P\wedge Q\vdash Q,\textit{Modus Ponens},\ldots\} \end{array}
```

Definition: Logical Calculus

$$C = \langle \Sigma, L_{\Sigma}, A, R \rangle$$

```
\begin{array}{lll} \Sigma & : & \{P,Q,R,\ldots,\wedge,\vee,\neg,\Rightarrow,\exists,\forall,\vdash,(,),\ldots\} \\ L_{\Sigma} & : & \{P\wedge Q,P\vee Q \Longrightarrow R,\ldots\} \\ A & : & \{\vdash \top,P\vdash P,\ldots\} \\ R & : & \{P\wedge Q\vdash Q,\textit{Modus Ponens},\ldots\} \end{array}
```

Note: Different Calculi can be based on same logical language

Definition: Predicate Logic — Syntax

- Let \mathcal{V} denote a set of *variable* symbols
- lackbox Let ${\mathcal F}$ denote set of *function* symbols including
- Let \mathcal{P} denote a set of *predicate* symbols.

Definition: Predicate Logic — Syntax

- Let V denote a set of *variable* symbols
- Let $\mathcal F$ denote set of *function* symbols including
- Let \mathcal{P} denote a set of *predicate* symbols.
- ▶ Let t be a term, then $t \in \mathcal{V}$ or $t \in \mathcal{F}$, where the arity of t is zero.

Definition: Predicate Logic — Syntax

- Let \mathcal{V} denote a set of *variable* symbols
- Let $\mathcal F$ denote set of *function* symbols including
- Let \mathcal{P} denote a set of *predicate* symbols.
- Let t be a term, then $t \in \mathcal{V}$ or $t \in \mathcal{F}$, where the arity of t is zero.
- Let f be a formula, then either $f \in \mathcal{P}$, where the arity of f is zero, or $f \equiv P(t_1, \ldots, t_n)$ where $P \in \mathcal{P}$ or $f \equiv t_1 = t_2$ where t_i are terms or $f \equiv \neg P$, $P \land Q$, $P \lor Q$, $P \Rightarrow Q$, $\forall x.P$, $\exists x.P$, (P) where $x \in \mathcal{V}$.

Definition: Predicate Logic — Semantics

A given formula is evaluated by applying an interpretation function $[\![]\!]$ to it.

$$\mathbb{D}: \mathcal{V} \to \mathcal{U}
\mathcal{F}^n \to \mathcal{U}^n \to \mathcal{U}
\mathcal{P}^n \to \mathcal{U}^n \to \{\top, \bot\}$$

where \mathcal{U} is a set of semantic units, the semantics of which further depend on their implementation (e.g. $3 \xrightarrow{i} \overline{3} \xrightarrow{\text{impl}} s(s(s(0)))$) and \mathcal{F}^n and \mathcal{P}^n denote functions and predicates of arity n.

where A,B are formulas

 $\llbracket \forall x.A \rrbracket \mapsto \begin{cases} \top & \forall x \in \mathcal{U}. \llbracket A \rrbracket \\ \bot & \mathsf{else} \end{cases}$ where A is a formula

where A is a formula

 $\llbracket \exists x.A \rrbracket \mapsto \begin{cases} \top & \exists x \in \mathcal{U}. \llbracket A \rrbracket \\ \bot & \text{else} \end{cases}$

Note: Neither axioms nor inference rules — no logical calculus

Note: Neither axioms nor inference rules — no logical calculus (yet).

Definition: Natural Deduction

Natural deduction builds upon a given logical language and adds to it structural axioms and inference rules.

$ \begin{array}{c} $	$ \begin{array}{c} $
$ \begin{array}{c c} & & \\ \hline P & Q \\ \hline \hline Q \wedge P \\ \end{array} $	$ \begin{array}{c} $

 $P_{[a/x]}$

Given: $\exists x. P(x)$. Prove for some unspecified a that $P(a) \vdash C$. But then certainly if P(x) is true for some x, then also P(x) is a proof of C, as every x is also an unspecified a.

 \boldsymbol{a} does not occur in premises, undischarged assumptions and \boldsymbol{Q}

$$\begin{array}{c} \Rightarrow_{\mathsf{I}} \\ [P] \\ \hline Q \\ \hline P \to Q \end{array}$$

$$\begin{array}{ccc}
\Rightarrow_{\mathsf{E}} \\
P & P \Rightarrow Q \\
\hline
Q
\end{array}$$

Laws: Idempotence of Conjunction

$$\begin{array}{c|cccc}
1 & P \\
2 & P & R, 1 \\
3 & P \wedge P & \wedge_{I} 1, 2
\end{array}$$

Laws: Commutativity of Conjunction

Laws: Associativity of Conjunction

$$Q \wedge (P \wedge R)$$

$$\vdash (P \wedge R) \wedge Q$$

$$\vdash R \wedge (P \wedge Q)$$

$$\vdash (P \wedge Q) \wedge R$$

Commutativity of Conjunction Associativity of Conjunction Commutativity of Conjunction

Laws: Law of Excluded Middle

1	$\neg (P \lor \neg P)$	Assumption for Indirect Proof
2	\square P	Assumption for Indirect Proof
3	$P \lor \neg P$	V₁ 2
4	$\neg P$	¬ ₁ 2, 3
5	$P \lor \neg P$	∨ ₁ 4
6	$\neg \neg (P \lor \neg P)$	¬ _I 1, 5
7	$\neg (P \lor \neg P)$	¬¬E 6

Laws: Double Negation

$$\begin{array}{c|cccc} 1 & & P \\ 2 & & & -P \\ 3 & & P \land \neg P & \land_{\mathsf{I}} 1, 2 \\ 4 & & \neg \neg P & \neg_{\mathsf{I}} 1, 2 \\ \end{array}$$

Laws: Double Negation

$$\begin{array}{c|cccc} 1 & & \neg \neg P \\ 2 & & & \neg P \\ \hline 3 & & P \lor \neg P & \mathsf{Law of Excluded Middle} \\ 4 & & \dots \end{array}$$

Laws: Conjunction Distributes over Disjunction

$$\begin{array}{c|cccc} 1 & P \wedge (R \vee Q) \\ \hline 2 & R \vee Q & \wedge_{\mathsf{E}} 1 \\ \hline 3 & P & \wedge_{\mathsf{E}} 1 \\ \hline 4 & Q & \mathsf{Assumption} \\ \hline 5 & P \wedge Q & \wedge_{\mathsf{I}} 3, 4 \\ \hline 6 & (P \wedge Q) \vee (P \wedge R) & \vee_{\mathsf{I}} 5 \\ \hline \end{array}$$

Laws: Conjunction Distributes over Disjunction

1	$P \wedge (R \vee Q)$	
2	$R \lor Q$	^ _E 1
3	P	^ _E 1
4		Assumption
5	$P \wedge Q$	∧ _I 3, 4
6	$ (P \wedge Q) \vee (P \wedge R) $	∨ _I 5
7		Assumption
8	$P \wedge R$	∧ _I 3, 7
9	$ (P \wedge Q) \vee (P \wedge R) $	∨ _I 8
10	$(P \land Q) \lor (P \land R)$	∨ _E 2, 4-6, 7-9

$$1 \qquad P \lor (Q \land R)$$

1	$P \lor (Q \land R)$	
2	\bigcap P	Assumption
3	$P \lor Q$	V₁ 2
4	$P \lor R$	V₁ 2
5		

1	$P \lor (Q \land R)$	
2	\square P	Assumption
3	$P \lor Q$	V₁ 2
4	$P \lor R$	∨ _I 2
5	$(P \vee Q) \wedge (P \vee R)$	∧3, 4
6		

1	$P \vee (Q \wedge R)$	
2	\bigcap P	Assumption
3	$P \lor Q$	∨ ₁ 2
4	$P \lor R$	∨ ₁ 2
5	$(P \lor Q) \land (P \lor R)$	∧3, 4
6	$Q \wedge R$	Assumption
7	· <u>—</u>	

1	$P \vee (Q \wedge R)$	
2	\square P	Assumption
3	$P \lor Q$	∨ _I 2
4	$P \lor R$	∨ _I 2
5	$ (P \lor Q) \land (P \lor R) $	∧3, 4
6	$Q \wedge R$	Assumption
7	Q	^E 6
8	$P \lor Q$	∨ ₁ 7
9		

1	$P \vee (Q \wedge R)$	
2	\bigcap P	Assumption
3	$P \lor Q$	∨ ₁ 2
4	$P \lor R$	∨ ₁ 2
5	$ (P \lor Q) \land (P \lor R) $	∧3, 4
6	$Q \wedge R$	Assumption
7		^E 6
8	$P \lor Q$	∨ ₁ 7
9	R	^ _E 6
10		

1	$P \vee (Q \wedge R)$	
2	\square P	Assumption
3	$P \lor Q$	V₁ 2
4	$P \lor R$	V₁ 2
5	$(P \vee Q) \wedge (P \vee R)$	∧3, 4
6	$Q \wedge R$	Assumption
7		^E 6
8	$P \lor Q$	V₁ 7
9	R	^ _E 6
10	$P \lor R$	∨ _I 9
11		

1	$P \vee (Q \wedge R)$	
2	P	Assumption
3	$P \lor Q$	V₁ 2
4	$P \lor R$	V₁ 2
5	$ (P \lor Q) \land (P \lor R) $	∧3, 4
6	$Q \wedge R$	Assumption
7	Q	^E 6
8	$P \lor Q$	\vee_{I} 7
9	R	^ _E 6
10	$P \lor R$	∨ ₁ 9
11	$(P \vee Q) \wedge (P \vee R)$	∧ _I 8, 10
12		

1	$P \lor (Q \land R)$	
2	\bigcap P	Assumption
3	$P \lor Q$	∨ ₁ 2
4	$P \lor R$	∨ ₁ 2
5	$ (P \lor Q) \land (P \lor R) $	∧3, 4
6	$Q \wedge R$	Assumption
7	Q	^ _E 6
8	$P \lor Q$	∨ ₁ 7
9	R	^ _E 6
10	$P \lor R$	∨ ₁ 9
11	$ (P \lor Q) \land (P \lor R) $	∧ _I 8, 10
12	$(P \vee Q) \wedge (P \vee R)$	∨ _E 1, 2-5, 6-11

Laws: De Morgan

