Convex Sets

Goran Banjac

Large-Scale Convex Optimization ETH Zurich

February 25, 2020

Affine set

• line through $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$:

• a set $V \subseteq \mathbb{R}^n$ is **affine** if it contains the line through any two distinct points in the set, *i.e.*, for every $x,y \in V$ and $\theta \in \mathbb{R}$:

$$\theta x + (1 - \theta)y \in V$$

• example: solution set of linear equations $\{x \in \mathbb{R}^n \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

• line segment between $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$:

$$\{\theta x + (1 - \theta)y \mid \theta \in [0, 1]\}$$

• a set $\mathcal{C} \subseteq \mathbb{R}^n$ is **convex** if it contains the line segment through any two distinct points in the set, *i.e.*, for every $x,y\in\mathcal{C}$ and $\theta\in[0,1]$:

$$\theta x + (1 - \theta)y \in \mathcal{C}$$

examples:

we will assume that all sets are nonempty and closed

Convex combination and convex hull

• convex combination of x_1, \ldots, x_k are all points of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k$$

where $\theta_1 + \ldots + \theta_k = 1$ and $\theta_i \geq 0$

- convex hull $(\text{conv }\mathcal{S})$ is the set of all convex combinations of points in $\mathcal{S}\subseteq\mathbb{R}^n$
- examples:

Hyperplanes and halfspaces

- hyperplane is a set of the form $\{x \in \mathbb{R}^n \mid a^Tx = b\} \ (a \neq 0)$
- halfspace is a set of the form $\{x \in \mathbb{R}^n \mid a^Tx \leq b\} \ (a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex
- dimension of hyperplane in \mathbb{R}^n is n-1 (conversely, every affine set in \mathbb{R}^n of dimension n-1 is a hyperplane)

Euclidean balls and ellipsoids

• (Euclidean) ball with center $x_c \in \mathbb{R}^n$ and radius r > 0:

$$B(x_c, r) = \{x \in \mathbb{R}^n \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

• ellipsoid:

$$\{x \in \mathbb{R}^n \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbb{S}^n_{++}$ (i.e., P symmetric positive definite)

• other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$

Intersection and Cartesian product

- intersection of (any number of) convex sets is convex
- union of convex sets need not be convex

- Cartesian product of convex sets is convex
- example: $C = [-1, 1] \times [0, 1]$

Image and inverse image of set

• let $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ be an affine map:

$$f(x) = Ax + b$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

the image of a convex set under f is convex

$$\mathcal{S} \subseteq \mathbb{R}^n$$
 convex $\implies f(\mathcal{S}) = \{f(x) \mid x \in \mathcal{S}\}$ convex

ullet the inverse image of a convex set under f is convex

$$\mathcal{C} \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(\mathcal{C}) = \{x \in \mathbb{R}^n \mid f(x) \in \mathcal{C}\} \text{ convex}$$

- examples:
 - scaling, translation, rotation, projection
 - ellipsoid is the image of a ball under an affine map

Polyhedra

solution set of finitely many inequalities and equalities:

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax \le b, \ Cx = d \}$$

 $(A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \leq \text{is componentwise inequality})$

 polyhedron is intersection of finite number of halfspaces and hyperplanes

Cones

• a set $\mathcal{K} \subseteq \mathbb{R}^n$ is a **cone** if it contains the full ray through any point in the set, *i.e.*, for every $x \in \mathcal{K}$ and $\theta \geq 0$:

• which of the following figures are cones? which are convex cones?

Norm balls and norm cones

- **norm** is a function || ⋅ || that satisfies
 - $-\|x\| \ge 0$; $\|x\| = 0$ if and only if x = 0
 - ||tx|| = |t| ||x|| for $t \in \mathbb{R}$
 - $\ \|x + y\| \le \|x\| + \|y\|$
- **norm ball** with center $x_c \in \mathbb{R}^n$ and radius r > 0:

$$\{x \in \mathbb{R}^n \mid ||x - x_c|| \le r\}$$

- norm cone: $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$
- norm balls and norm cones are convex
- Euclidean norm cone is called second-order cone

Dual and polar cones

• **dual cone** of a cone $\mathcal{K} \subseteq \mathbb{R}^n$:

$$\mathcal{K}^* = \{ y \in \mathbb{R}^n \mid y^T x \ge 0 \text{ for all } x \in \mathcal{K} \}$$

- if \mathcal{K} is convex, then $\mathcal{K}^{**} = \mathcal{K}$
- a cone is **self-dual** if $\mathcal{K} = \mathcal{K}^*$
- **polar cone** of a convex cone $\mathcal{K} \subseteq \mathbb{R}^n$:

$$\mathcal{K}^{\circ} = \{ y \in \mathbb{R}^n \mid y^T x \le 0 \text{ for all } x \in \mathcal{K} \} = -\mathcal{K}^*$$

Moreau decomposition

- let $\Pi_{\mathcal{C}}$ denote the (Euclidean) projection of $x \in \mathbb{R}^n$ onto a set \mathcal{C}
- Moreau decomposition: given a convex cone $\mathcal{K}\subseteq\mathbb{R}^n$, we can decompose any $x\in\mathbb{R}^n$ as:

$$x = \Pi_{\mathcal{K}}(x) + \Pi_{\mathcal{K}^{\circ}}(x)$$

where $\Pi_{\mathcal{K}}(x) \perp \Pi_{\mathcal{K}^{\circ}}(x)$

 \bullet Moreau decomposition generalizes orthogonal decomposition induced by a subspace L

Separating hyperplane

- suppose that $\mathcal{R}, \mathcal{S} \subseteq \mathbb{R}^n$ are two non-intersecting convex sets
- then there exists $s \neq 0$ and r such that

$$s^T x \le r$$
 for all $x \in \mathcal{R}$
 $s^T x > r$ for all $x \in \mathcal{S}$

• the hyperplane $\{x \in \mathbb{R}^n \mid s^Tx = r\}$ is called **separating hyperplane**

Strictly separating hyperplane

- suppose that $\mathcal{R}, \mathcal{S} \subseteq \mathbb{R}^n$ are two non-intersecting convex sets and that one of them is bounded
- then there exists $s \neq 0$ and r such that

$$s^T x < r$$
 for all $x \in \mathcal{R}$ $s^T x > r$ for all $x \in \mathcal{S}$

$$\mathcal{R} = \{(x, y) \mid x > 0, \ y \ge 1/x\}$$

$$\mathcal{S} = \{(x, y) \mid y \le 0\}$$

counterexample $(\mathcal{R}, \mathcal{S} \text{ not bounded})$

Supporting hyperplane theorem

• the hyperplane $\{x\in\mathbb{R}^n\mid s^Tx=r\}$ supports $\mathcal{C}\subseteq\mathbb{R}^n$ at boundary point x_0 if

$$s^T x < r$$
 for all $x \in \mathcal{C}$ and $s^T x_0 = r$

- such hyperplane is called supporting hyperplane
- if $\mathcal C$ is convex, then there exists a supporting hyperplane at every boundary point of $\mathcal C$

Normal cone operator

• the normal cone operator to a set $\mathcal{C} \subseteq \mathbb{R}^n$:

$$N_{\mathcal{C}}(x) = \{ s \in \mathbb{R}^n \mid s^T(y - x) \le 0 \text{ for all } y \in \mathcal{C} \}$$

(the operator is defined on C)

- each element in $N_{\mathcal{C}}(x)$ defines a supporting hyperplane to \mathcal{C} at x
- the polar cone of a normal cone is called the tangent cone

Recession cone

- a vector $y \in \mathbb{R}^n$ is a **direction of recession** of a set $\mathcal{C} \subseteq \mathbb{R}^n$ if \mathcal{C} includes all rays in the direction y that start at any $x \in \mathcal{C}$
- recession cone of a set $C \subseteq \mathbb{R}^n$ is the set of all directions of recession, *i.e.*,

$$\mathcal{C}^{\infty} = \{ y \in \mathbb{R}^n \mid x + \theta y \in \mathcal{C} \text{ for all } x \in \mathcal{C} \text{ and } \theta \ge 0 \}$$

- recession cone of a convex set is a convex cone
- the polar cone of a recession cone is called the barrier cone

Generalized inequalities

- a convex cone $\mathcal{K} \subseteq \mathbb{R}^n$ is a **proper cone** if it is
 - solid (has nonempty interior)
 - pointed (contains no line)
- **generalized inequality** defined by a proper cone \mathcal{K} :
 - $x \leq_{\mathcal{K}} y$ means that $y x \in \mathcal{K}$
 - $x <_{\mathcal{K}} y$ means that $y x \in \operatorname{int} \mathcal{K}$
- many properties of $\leq_{\mathcal{K}}$ are similar to \leq on \mathbb{R} , e.g.,

$$x \leq_{\mathcal{K}} y, \quad u \leq_{\mathcal{K}} v \quad \Longrightarrow \quad x + u \leq_{\mathcal{K}} y + v$$

- ≤_K is not in general a linear ordering
 - we can have $x \nleq_{\mathcal{K}} y$ and $y \nleq_{\mathcal{K}} x$

References

- these lecture notes are based to a large extent on the following material:
 - Stanford EE364a class developed by Stephen Boyd
 - Lund course on Large-Scale Convex Optimization developed by Pontus Giselsson
- the original slides can be downloaded from

https://web.stanford.edu/class/ee364a/lectures.html https://archive.control.lth.se/ls-convex-2015/