10. Reflection seismic

M. Ravasi ERSE 210 Seismology

Seismic acquisition

Seismic propagation movie

Seismic recordings

Seismic recordings

Seismic sources - marine

Seismic sources - land

Vibroseis

Seismic receivers

Geophones

Streamer

Ocean bottom cables or nodes

Seismic receivers - land

Moving-coil Geophones (velocity)

Piezoelectric (acceleration)

MEMS (acceleration)

Seismic receivers - land

Seismic sources - signature

Dynamite

Easy to handle, almost ideal (spike)

Aiguns

One main peak followed by reverberations (bubbles), due to how energy is released. Several methods to estimate and remove bubbles and spike the main peak:

- Data-driven / statistical
- Near-field hydrophonesFar-field signature modelling

Decon or shaping to remove: d(t) = s(t) * r(t)

$$d_{shaped}(t) = F^{-1} \left(\frac{F(d(t)) \cdot S^*(\omega)}{|S(\omega)|^2} \right)$$

Vibroseis

Correlation to turn chirp into spike: $d_{shaped}(t) = d(t) * s(-t) \approx r(t)$

Seismic Data Arrangements

Seismic marine geometries

Simultaneous shooting

Survey 'identification': 2 teams of 3 people

Sensor deployment: 2 teams of 3 people (will rotate...)

Initialisation device

Shooting: 1 team of 3 people (will rotate...)

2:48

Timestamp

Seismic processing in KAUST

Create shot records

Seismic processing in KAUST

This repository contains all the routines that our group has created to manipulate and visualize SEG-Y data produced by STRYDE SeismicQC software.

Moreover, all the notebooks created to perform basic analysis of the data acquired over time are also available for others to get started with the associated data.

https://github.com/DIG-Kaust/StrydeProjects

A sneak peek from our first experiment

Receivers:

2 lines of 41 planted receivers each, equally spaced by 5m for a total lenght of 200m (lines separated by 20m).

1 line of 7 burid receivers spaced 30m apart

Shots:

5 Shots placed in between 2 lines at Point 2041, 2028, 2019, 2011, 2001 in order of shooting.

10 shots per source starting at time:

2041: 10:45 2028: 10:51 2019: 10:56 2011: 11:00 2001: 11:06

Raw shot gather

All analysis is done here on shot 2019

Stacked shot gather

Data analysis

Use shot at 2011 as aliasing is more visible (easier to explain