Fundamental Algorithmic Techniques.

October 18, 2025

Outline

The greedy algorithm paradigm

Characteristics of greedy algorithms

The greedy algorithm paradigm

Best possible (greedy) choice right now, for immediate best outcome!

Requirements:

- 1 greedy-choice property: globally optimal solution ⇔ local optimal (greedy) choices
- 2 optimal substructure

Examples where Greedy Algorithm is suboptimal

- life!?
- road...
- 0-1 knapsack problem

Examples with Greedy: Courses Allocation

Course allocation:

For starting time T:

- lacksquare Select out courses with starting < T
- Choose remaining course *C* with lowest start time *T*_{end}
- Update $T \leftarrow C_{T_{end}}$

Examples with Greedy: Cache Memory Management

On request for block b_i :

- **Hit:** b_i is in cache \rightarrow no change.
- \blacksquare Miss, cache not full: add b_i .
- Miss, cache full: evicts one block, add b_i .

Greedy Strategy for cache allocation removing less used cache blocks

Huffman Encoding Example

Char	Freq	Code		
space	7	111		
a	4	010		
e	4	000		
f	3	1101		
h	2	1010		
i	2	1000		
m	2	0111		
n	2	0010		
S	2	1011		
t	2	0110		
1	1	11001		
0	1	00110		
р	1	10011		
r	1	11000		
u	1	00111		
×	1	10010		

Huffman Code: Numerical Example

Input (A, W)	Symbol (a_i)					1
	a	b	С	d	е	Sum
Weights (w _i)	0.10	0.15	0.30	0.16	0.29	= 1
Output C	Codewords (c_i)					
	010	011	11	00	10	
Codeword length (ℓ_i)	3	3	2	2	2	
$\ell_i w_i$	0.30	0.45	0.60	0.32	0.58	L(C) = 2.25
Optimality	Probability budget $(2^{-\ell_i})$					
	1/8	1/8	1/4	1/4	1/4	= 1.00
Info. content $(-\log_2 w_i)$	3.32	2.74	1.74	2.64	1.79	
$-w_i \log_2 w_i$	0.332	0.411	0.521	0.423	0.518	H(A) = 2.205

Huffman coding approximates the optimal lossless compression bound!

- The Huffman code minimizes the expected length: $L(C) = \sum_{i} w_i \, \ell_i$
- The (Shannon) entropy of the source is: $H(A) = -\sum_i w_i \log_2 w_i$
- Huffman coding is near-optimal: $H(A) \le L(C) < H(A) + 1$

Characteristics of greedy algorithms

Greedy stays ahead!

- $A = \{a_0, a_1, \dots, a_n\}$ algo. sequence and $O = \{o_0, o_1, \dots, o_n\}$ optimal sequence
- \blacksquare choose a measure $\mu(\dot{)}$
- show stay ahead: $\mu(a_0, a_1, \dots, a_n) \leq \mu(o_0, o_1, \dots, o_n)$ by induction!
- Prove optimality: use greedy stays ahead to generate contradiction