

# Learning Search Heuristics by Graph Convolutional Networks

Pedro Ballester



- Searching is computationally expensive





- We try to solve this with heuristics

$$f(x) = g(x) + h(x)$$



- Finding a good heuristic can be quite demanding
- Tradeoff (inefficient x uninformative)



- Off-the-shelf
- Domain Specific



- Off-the-shelf





### - Domain Specific





### **Problem**

- How to find good and domain-specific heuristics without human knowledge?



#### **Possible Solution**

- Induce graph-based models with Deep Learning (GCN)
- The graph should output the heuristic value for an expanded frontier





## **Proposed Method**























$$h_{n,g}^* = |plan(n)|, \forall n \in g, \forall g \in G$$



#### Na prática:

1 task → múltiplos subgrafos



$$h_{n,q}^* = |plan(n)|, \forall n \in g, \forall g \in G$$









Minimize Loss

$$L_h = \sum_{i=1}^{N} (-h_i^*||_2)$$

$$L_h(g) = \sum_{i=1}^{N} ||\hat{h}_{i,g} - h_{i,g}^*||_2 + \lambda ||\Theta||_2$$





























Problema: Input é um subgrafo.





#### Solução:

Expandir o nó para os seus vizinhos; Vantagem do resultado servir para todos os nós expandidos.



- Encode state information without exploding vector size;
- Classify the heuristic in planning definitions (Safe, Goal-aware, ...)
- Understand heuristic generalization (becoming an off-the-shelf heuristic)



- Encode state information without exploding vector size;
- Classify the heuristic in planning definitions (Safe, Goal-aware, ...)
- Understand heuristic generalization (becoming an off-the-shelf heuristic)



- Encode state information without exploding vector size;
- Classify the heuristic in planning definitions (Safe, Goal-aware, ...)
- Understand heuristic generalization (becoming an off-the-shelf heuristic)



- Encode state information without exploding vector size;
- Classify the heuristic in planning definitions (Safe, Goal-aware, ...)
- Understand heuristic generalization (becoming an off-the-shelf heuristic)



#### Results

- Number of nodes expanded by the heuristic;
- Poor implementation would lead to incorrect computational time comparison.



#### Results - Overall





### Results - Epochs





#### Results - Data Points





#### Results - Data Points





### Results - Sokoban

|      | GCN                 | Blind               | Lmcut           |
|------|---------------------|---------------------|-----------------|
| size |                     |                     |                 |
| 5    | $33.13 \pm 5.72$    | $208.85 \pm 81.96$  | $9.9 \pm 1.5$   |
| 6    | $864.57 \pm 111.09$ | $429.33 \pm 208.83$ | $12.4 \pm 2.34$ |