Lecture 4 – Binary Representation

Chapter 1

Representation of negative numbers

- In ordinary arithmetic, a negative number is indicated by a minus sign and a positive number by a plus sign
- Computers must represent everything with binary digits
- It is customary to represent the sign with a bit placed in the leftmost position of the number
- The convention is to make the sign bit 0 for positive and 1 for negative
- This can be done using:
 - 1. Signed magnitude representation
 - 2. Signed complement representation
 - 1. Signed 1's complement representation
 - 2. Signed 2's complement representation

Signed-magnitude representation

- In this notation, the number consists of a magnitude and a symbol (+ or) or a bit (0 or 1) indicating the sign
- This is similar to the representation of signed numbers used in ordinary arithmetic

- Eg: <u>0</u>1001 represents +9, and <u>1</u>1001 represents -9 in signed magnitude representation
 - -9 is obtained from +9 by changing only the sign bit from 0 to 1
- Weird: +0 is represented as 0000 and minus 0 is represented as 1000. So, two representations for zero – inefficient and may cause errors

Signed complement representation

- In digital hardware, it is more convenient to use *signed complement* system, for representing negative numbers
- In this system, a negative number is indicated by its complement
 - signed-complement system negates a number by taking its complement
- Since positive numbers always start with 0 (plus) in the leftmost position (in all representations), it follows that the complement will always start with a 1, indicating a negative number
- In signed-1's-complement, -9 is obtained by taking the 1's complement of all the bits of +9 (01001), including the sign bit, ie, 10110
- The signed-2's-complement representation of -9 is obtained by taking the 2's complement of +9, including the sign bit, ie 10111

Signed complement representation

• Find signed 2's complement representation in 4 bits:

```
• +3

+3 = 0011

• -7

(7)_{10} = 0111 => -7 = 1001

• 0

0 = 0000
```

- -39 in 8 bit:
 - 10100111 (signed magnitude)
 - 11011000 (signed 1's complement)
 - 11011001 (signed 2's complement)

Signed complement representation

Find the decimal numbers for the following signed 2's complement representation in 4 bits:

- (1100)₂
 - 1100 = -4
- (1111)₂
 - 1111 = -1
- (0000)₂
 - 0000 = 0
- (1000)₂
 - 1000 = -8

Interpretations for 4 bit binary numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

Signed addition

- If the numbers are represented in memory in 2's complement form, the sign of the sum takes care of itself! The result is also in 2's complement representation
- The sign bit is to be included in the addition. If there is a carry, it is discarded
- Examples in 4-bit signed 2's complement representation:

<u>+13</u>	00000110 00001101 00010011	<u>+13</u>	$\frac{11111010}{00001101}$ $\frac{00001101}{00000111}$
	00000110 11110011	_	11111010 11110011
	11111001	-19	11101101

Signed addition

 In order to obtain a correct answer, we must ensure that the result has a sufficient number of bits to accommodate the sum

• If we start with two n-bit numbers and the sum occupies n+1 bits, we say that an overflow occurs

Signed subtraction

- Subtraction of two signed binary numbers when negative numbers are in 2's-complement form is simple and can be stated as follows:
 - Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including the sign bit)
 - A carry out is discarded
- This works because: M N = M + (-N)
- Example : 8 3 = 8 + (-3)

```
00001000 \qquad \text{Minuend (+8)}
+ 11111101 \qquad \text{2's complement of subtrahend (-3)}
\frac{1 \ 00000101}{1 \ 00000101} \qquad \text{Difference (+5)}
```