Loop control structure

Week 10 Session 1

Flow chart symbol

Symbol	Name	Function
	Process	Indicates any type of internal operation inside the Processor or Memory
	input/output	Used for any Input / Output (I/O) operation. Indicates that the computer is to obtain data or output results
	Decision	Used to ask a question that can be answered in a binary format (Yes/No, True/False)
	Connector	Allows the flowchart to be drawn without intersecting lines or without a reverse flow.
	Predefined Process	Used to invoke a subroutine or an Interrupt program.
	Terminal	Indicates the starting or ending of the program, process, or interrupt program
↑ ←	Flow Lines	Shows direction of flow.

If-then-else

FOR Loops

WHILE Loops

Network Of Distribution

Relationships among common distributions. Solve lines represent transformations and special cases, dashed lines represent limits. Acapted from Leonis (1986).

Bernoulli-Binomial-Poisson-Geometry

Domain

- (0,1) → Bernoulli(p) ← ONE Object
- $(0,1,2,...,N) \rightarrow$ Binomial $(N,p) \leftarrow$ more than one object
- (0,1,2,...) \rightarrow Poisson(λ) \leftarrow more than one object
- $(1,2,3,...N) \rightarrow$ Geometry(p) \leftarrow ONE Object

Bernoulli-Binomial-Poisson-Geometry

- Process 1
 - Binomial ← Cumulative of N Bernoulli
 - Poisson(λ) \leftarrow Cumulative of N \sim ∞ Bernoulli
 - Geometry(p) ONE Object is repeated for N times Bernoulli

Bernoulli-Binomial-Poisson-Geometry

- Process 2
 - Bernoulli(p) → IF THEN Statement
 - Binomial ← IF THEN Statement inside FOR LOOP
 - Poisson(λ) ← IF THEN Statement inside WHILE LOOP
 - Geometry(p) ← IF THEN Statement inside FOR LOOP for a repeated one object experiment
 - Geometry(p) ← DO-WHILE Statement

* * ****** ****** *** *** ***** ****** **** **** ***** ***** ***** ***** **** **** ***** ****** *** *** ***** ****** * *

*

¥

		1
		121
		12321
1	12345654321	1234321
121	123454321	123454321
12321	1234321	12345654321
1234321	12321	123454321
123454321	121	1234321
12345654321	1	12321
12343034321		121
		1

Binomial Table Bin(n,c|p)

		.05	.10	.20	.30	.40
	с					
n = 4	0	.815	.656	.410	.240	.130
	1	.986	.948	.819	.652	.475
	2	1.000	.996	.973	.916	.821
	3	1.000	1.000	.998	.992	.974
	4	1.000	1.000	1.000	1.000	1.000
n = 5	0	.774	.590	.328	.168	.078
	1	.977	.919	.737	.528	.337
	2	.999	.991	.942	.837	.683
	3	1.000	1.000	.993	.969	.913
	4	1.000	1.000	1.000	.998	.990
	5	1.000	1.000	1.000	1.000	1.000
n = 6	0	.735	.531	.262	.118	.047
	1	.967	.886	.655	.420	.233
	2	.998	.984	.901	.744	.544
	3	1.000	.999	.983	.930	.821
	4	1.000	1.000	.998	.989	.959
	5	1.000	1.000	1.000	.999	.996
	6	1.000	1.000	1.000	1.000	1.000

t	pdf(t lambda)
0	
0.01	0.990049834
0.02	0.980198673
0.03	0.970445534
0.04	0.960789439
0.05	0.951229425
0.06	0.941764534
0.07	0.93239382
0.08	0.923116346
0.09	0.913931185
0.1	0.904837418
0.11	0.895834135
0.12	0.886920437
0.13	0.878095431
0.14	0.869358235
0.15	0.860707976
0.16	0.852143789
0.17	0.843664817
0.18	0.835270211
0.19	0.826959134
0.2	0.818730753
0.21	0.810584246
0.21	3.31030 ⁴ 240

Pdf of Exponential(λ) and Normal (0,1)