Отчет Шуплецов, НФИбд01-22, Вариант 15, ИД3_1, 21.09.2024

1. Оценить линейное уравнение парной регрессии Y от X, проинтерпретировать коэффициенты регрессии.

Модель 1: МНК, использованы наблюдения 1-50 Зависимая переменная: у

	Коэффициен	Cm. oı	иибка	t-	р-значен	ue
	m			статистика		
const	-5,37828	0,724	4664	-7,422	< 0,000	1 ***
X	1,02438	0,065	2681	15,70	< 0,000	1 ***
Среднее завис. пер	ремен 5,64	-0000	Ct. o	откл. завис. пер	рем З	3,114679
Сумма кв. остатко	в 77,5	2177	Ст. с	ошибка модели	1 1	1,270841
R-квадрат	0,83	6920	Исп	рав. R-квадрат	(0,833522
F(1, 48)	246.	,3338	Р-зн	ачение (F)		1,56e-20
Лог. правдоподоби	-81,9	1032	Кри	т. Акаике	1	167,8206
Крит. Шварца	171,	,6447	Кри	т. Хеннана-Куг	инна 1	169,2769

$$Y = 1,02x - 5$$

$$Y = b1 * x + b0$$

При возрастании x на 1 ед. своего измерения у в среднем возрастает на 1,02 единиц своего измерения

95% доверительный интервал

$$t(48, 0.025) = 2.011$$

	коэффициен	т нижний	верхний
const	-5,37828	-6,83532	-3,92125
X	1,02438	0,893154	1,15562

При возрастании х на 1 ед. своего измерения у в среднем возрастает на величину заключенную в интервале с вер. (0,893154, 1,15562).

2. Проверить статистическую значимость уравнения в целом.

H0: b1=0 - уравнение незначимо в целом

H1: b1<>0 - уравнение значимо в целом

1.56e-20

Р-значение <0,01 – принимаем гипотезу Н1 с вер 99%

3. Рассчитать линейный коэффициент парной корреляции и его стандартную ошибку. Дать интерпретацию коэффициентов корреляции и детерминации.

corr(x, y) = 0.91483325

Коэффициент корреляции высокий, то есть с возрастанием х у тоже возрастает.

R-квадрат

0,836920

Вывод: у объясняется х на ~84%, то есть существуют еще факторы, влияющие на у.

4. Проверить значимость коэффициентов регрессии и корреляции на 1%, 5% и 10% уровне. На каком уровне достаточно провести проверку каждого из коэффициентов в вашем случае?

Р-значение (F)

1.56e-20

Наша Р-значение крайне мало, поэтому коэффициенты регрессии и уравнение значимы на уровнях значимости 1%, 5%, 10%, причем достаточно было проверить значимость на уровне 1%.

Принимаем Н1 с вероятностью 99%.

5. Рассчитать коэффициент эластичности и проинтерпретировать его.

Описателн	ная статист	ика, исполь	зованы набл	юдения 1 -	- 50
Переменная	Среднее	Медиана	ст. откл.	Мин.	Макс.
X	10,8	10,8	2,78	4,80	18,4
y	5,64	5,45	3,11	-0,500	11,9

$$\Im (Xi, Yi) = \beta 1 * (Xcp / Ycp) = 1,02438 * (10,8 / 5,64) \approx 1,96$$

Если независимая переменная X возрастет на 1%, то зависимая переменная у возрастает на ~1,96%.

Так как значение эластичности больше 1, в нашем случае эластичная зависимость.

6. Рассчитать среднюю ошибку аппроксимации и оценить по этому критерию качество модели.

Средняя ошибка (МЕ)

3,5261e-015

Корень из средней квадратичной ошибки (RMSE) 1,2452

Средняя абсолютная ошибка (МАЕ) 0,9806

Средняя процентная ошибка (МРЕ) -0,068354

Средняя абсолютная процентная ошибка (МАРЕ) 37,361 – плохое качество модели

U-статистика Тейла (Theil's U)	0,097784
Пропорция смещения, UM	0
Пропорция регрессии, UR	0
Пропорция возмущений, UD	1

7. Выполнить прогноз Y при прогнозном значении X - 107% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

$$Ypr=(-5,37828) +1,02438*11,556 \approx 6,46$$

Для 90% доверительных интервалов, t(48, 0.05) = 1.677

Набл.	У	прогнозиро	ст. ошибка	90% доверительный
		вание		интервал
51	не	6,45951	1,28455	(4,30503, 8,61398)
	определено			

Для 95% доверительных интервалов, t(48, 0.025) = 2.011

Набл.	y	прогнозиро	ст. ошибка	95% доверительный
		вание		интервал
51	не	6,45951	1,28455	(3,87675, 9,04226)
	определено			

Для 99% доверительных интервалов, t(48, 0.005) = 2.682

Набл.	У	прогнозиро	ст. ошибка	99% доверительный
		вание		интервал
51	не	6,45951	1,28455	(3,01409, 9,90493)
	определено			

Все три уровня доверия показывают, что прогноз у является достаточно надежным, учитывая стандартную ошибку 1,28455. Собранные данные и вычисленные интервалы подтверждают, что модель дает адекватный прогноз, и истинное значение переменной, скорее всего, находится в указанных интервалах.

8. Представить результат оценки регрессии графически.

Коробчатая диаграмма графика остатков:

График остатков по номеру наблюдения:

График остатков в зависимости от у:

График остатков в зависимости от х:

График наблюдаемых и расчетных значений по номеру наблюдений:

График наблюдаемых и расчетных значений в зависимости от х:

График наблюдаемые от расчетных:

Q-Q график остатков:

9. Проверить остатки на нормальность. Графически и по критериям.

Н0: остатки имеют нормальное распределение

Н1: распределение остатков отличается от нормального

По хи- квадрат – 0,9976 - принимаем Н0

Тест на нормальное распределение у:

Тест Дурника-Хансена (Doornik-Hansen) = 0,137709, p-значение 0,933463

Тест Шапиро-Уилка (Shapiro-Wilk W) = 0,980326, р-значение 0,565777

Тест Лиллифорса (Lilliefors) = 0.0566961, p-значение ~ 1

Тест Жарка-Бера (Jarque-Bera) = 0,594731, р-значение 0,742772

Все тесты показывают, что нам следует принять НО.

	Ст. откл.	Вариация	Асимметр	оия Эксце	cc
X	2,7816	0,25861	0,23902	-0,027511	
y	3,1147	0,55225	0,051111	-0,52443	

Асимметрия по модулю меньше 1, значит модель завышает у не сильно.

10. Проверить остатки на гетероскедастичность.

Тест Вайта (White) на гетероскедастичность

МНК, использованы наблюдения 1-50

Зависимая переменная: uhat^2

	коэффициен	т ст. ошибка	t-статист	тика р-значение
const	0,596707	3,33505	0,1789	0,8588
X	0,150635	0,611365	0,2464	0,8065
sq_x	-0,005406	69 0,0271774	-0,198	9 0,8432

Неисправленный R-квадрат = 0,002712

Тестовая статистика: $TR^2 = 0,135619$,

р-значение = P(Xи-квадрат(2) > 0,135619) = 0,934438

Тест Бройша-Пэгана (Breusch-Pagan) на гетероскедастичность

МНК, использованы наблюдения 1-50

Зависимая переменная: масштабированное uhat^2

	коэффициент	г ст. ошибка	t-статист	тика р-знач	нение
const	0,786550	0,734228	1,071	0,2894	
X	0,0198447	0,0661295	0,3001	0,7654	

Объясненная сумма квадратов = 0,149304

Тестовая статистика: LM = 0.074652,

р-значение = P(Xи-квадрат(1) > 0.074652) = 0.784680

Тест Бройша-Пэгана (Breusch-Pagan) на гетероскедастичность

МНК, использованы наблюдения 1-50

Зависимая переменная: масштабированное uhat^2 (робастный вариант Koenkepa (Koenker))

	коэффициент	ст. ошибка	t-статистик	ка р-значение
const	-0,330940	1,13837	-0,2907	0,7725
X	0,0307680	0,102530	0,3001),7654

Объясненная сумма квадратов = 0,358904

Тестовая статистика: LM = 0.093630, p-значение = P(Xи-квадрат(1) > 0.093630) = 0.759612

Во всех трех тестах на гетероскедастичность (тест Уайта, тест Бройша-Пагана и его коенкерский вариант) р-значения значительно превышают стандартные уровни значимости (обычно 0,01, 0,05 или 0,10). Это означает, что у нас нет оснований для отклонения нулевой гипотезы об отсутствии гетероскедастичности. Таким образом, по результатам проведенных тестов можно сделать вывод, что гетероскедастичность в остатках нашей модели не обнаружена. Модель, вероятно, обладает постоянной дисперсией ошибок, что подтверждает предположения классической линейной модели.