Informed State Space Search

14/01/2025

Koustav Rudra

The notion of heuristics

• Heuristics use domain specific knowledge to estimate the quality or potential of partial solutions

The notion of heuristics

- Examples:
 - Manhattan distance heuristic for 8 puzzle

5	6	7
4	1	8
3	9	

1	2	3
4	5	6
7	8	

$$2 + 0 + 4$$

The notion of heuristics

- Examples:
 - Minimum spanning tree heuristic for TSP

$$C_S < C^* < 2C_S$$

The informed search problem

- Given: [S,s,O,G,h] where
 - S is the (implicitly specified) set of states
 - s is the start state
 - O is the set of state transition operators each having some cost
 - G is the set of Goal states
 - h() is a heuristic function estimating the distance to a goal
- To find:
 - A minimum cost sequence of transitions to a goal state

- Initialize: Set OPEN= $\{s\}$, CLOSED = $\{\}$, g(s)=0, f(s)=h(s)
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select the minimum cost state, n, from OPEN and save in CLOSED

- Terminate:
 - If n∈G, terminate with success

- Expand:
 - For each successor, m, of n:
 - If m∉[OPEN∪CLOSED]
 - Set g(m) = g(n) + C(n, m)
 - Set f(m) = g(m) + h(m)
 - Insert m in OPEN

 - If $m \in [OPENUCLOSED]$ Set $g(m) = min \begin{cases} g(m) \\ g(n) + C(n, m) \end{cases}$
 - Set f(m) = g(m) + h(m)
 - If f(m) has decreased and $m \in CLOSED$
 - Move m to OPEN

- Loop:
 - Go to step 2

- How can a promising path become non-promising?
 - When moving from n to m, we may find a path with less heuristic cost

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
[1(12)]	1(12)	N	[2(12),5(13)]	[1(12)]
[2(12),5(13)]	2(12)	N	[5(13),3(19),6(12)]	[1(12),2(12)]
[5(13),3(19),6(12)]	6(12)	N	[5(13),3(19),7(17),10(13)]	[1(12),2(12),6(12)]
[5(13),3(19),7(17),10(1 3)]	5(13)	N	[3(19),7(17),10(13),9(14)]	[1(12),2(12),6(12),5(13)]
[3(19),7(17),10(13),9(1 4)]	10(13)	N	[3(19),7(17),9(14),11(13)]	[1(12),2(12),6(12),5(13), 10(13)]

OPEN SET	SELECT	GOAL	EXPANDED	CLOSED
[3(19),7(17),10(13),9(14)]	10(13)	N	[3(19),7(17),9(14),11(13)]	[1(12),2(12),6(12),5(13),10(13)]
[3(19),7(17),9(14),11(13)]	11(13)	N	[3(19),7(17),9(14),12(13)]	[1(12),2(12),6(12),5(13),10(13),11(13)]
[3(19),7(17),9(14),12(13)]	12(13)	Υ		

Algorithm A*: Benefit

• Reduces number of expanded nodes

• Performs the lookahead and tells us promising paths

• What about optimality?

Uniform Cost Search

- Claim: If $C(n) < C^*$ (optimal cost) then n must be expanded
- Let algorithm A does not expand n
- For the class of algorithms without any heuristics
 - All states that have cost < C* will have to be expanded
 - Always expands the minimum cost node in your frontier
 - When we find the goal
 - All the states that we have in the frontier have cost higher than the goal state

Algorithm A*: Benefit

- Claim: $f(n) < C^*$ then n must be expanded
- The heuristic function underestimates
 - $h(n) \leq f^*(n)$
 - Cost of reaching goal from n
 - All costs are +ve
- If we do not expand n, we can't find the goal
- If we have a state whose cost is less than C*
 - Then every algorithm which guarantees finding optimal solution have to expand it

- Initialize: Set OPEN= $\{s\}$, CLOSED = $\{\}$, g(s)=0, f(s)=h(s)
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select the minimum cost state, n, from OPEN and save in CLOSED

- Terminate:
 - If $n \in G$, terminate with success

How to break the tie?

Thank You