

EMULATING A GRAVITY MODEL TO INFER THE SPATIOTEMPORAL DYNAMICS OF AN INFECTIOUS DISEASE

Roman Jandarov, Murali Haran*, Ottar Bjørnstad and Bryan Grenfell

PENNSTATE

1 8 5 5

BILL MELINDA

GATES foundation

CIDD CENTER FOR INFECTIOUS DISEASE DYNAMICS

Department of Statistics, The Pennsylvania State University; Department of Entomology and Center for Infectious Disease Dynamics, The Pennsylvania State University; Ecology and Evolutionary Biology, Princeton University.

OVERVIEW

- Our goal is to fit a gravity model (the Gravity T-SIR model) that describes the space-time dynamics of measles.
- Challenges:
 - Likelihood evaluations are expensive so computationally challenging.
 - Likelihood-based fitted model does not match biologically important characteristics of the data.
- Idea: Why not fit the model by trying to directly match the important characteristics of the data?
- Contributions:
 - General simulation-based approximate approach for inference using Gaussian processes
 - Avoids having to write down/evaluate the likelihood function
 - Only requires a relatively small number of simulations from the model

GRAVITY TIME SERIES SIR MODEL

- SIR = Susceptible-Infected-Recovered.
- Gravity Time Series SIR Model = SIR model for local dynamics + explicit formulation for the spatial transmission between different host communities. (Xia et al., 2004)
- Number of incidents (I):

 $I_{k(t+1)} = \text{Poisson}(\lambda_{t+1})$, where $\lambda_{t+1} = \beta_t S_{kt} (I_{kt} + L_{kt})^{\alpha}$

• Number of susceptibles (S):

$$S_{k(t+1)} = S_{kt} + B_{kt} - I_{k(t+1)}$$

• Unobserved number of infected immigrants (L):

$$L_{kt} = \text{Gamma}(m_{kt}, 1),$$

where $m_{kt} = \theta N_{kt}^{\tau_1} \sum_{j=1, j \neq k}^{K} \frac{(Ijt)^{\tau_2}}{d_{kj}^{\rho}}$.

LIKELIHOOD - BASED APPROACH

- Discretize part of the parameter space
- Instead of assuming that $L_{kt} \sim \text{Gamma}(m_{kt}, 1)$, we fix $L_{kt} \equiv m_{kt}$ to avoid integration.
- Select a grid on the range of possible values for τ_2 and ρ . For each point of the grid, we calculate and save matrices $\{M_{tk}\}$, where $M_{tk} = \sum_{j=1, j \neq k}^{K} \frac{(Ijt)^{\tau_2}}{d_{kj}^{\rho}}$.
- When calculating the likelihood, $L(\theta, \tau_1, \tau_2, \rho)$, assume that θ and τ_1 are real numbers, and τ_2 and ρ are from the selected discrete grid.
- Use pre-calculated matrices $\{M_{tk}\}$.

PROBLEM STATEMENT

Goal: infer the unknown gravity parameters θ, τ_1, τ_2 and ρ

Data: 952 cities in England and Wales.

CHALLENGES

- Computational challenge: data dimensions are $546x952 = 519,792 \Rightarrow$ expensive likelihood evaluations.
- Poor inference/model fit: Even if computational problem solved, likelihood-based inference results in biases in parameter estimates, model that fits data poorly.
- Want to avoid heavy simulations: Simulations take time making it inconvenient to use approximate Bayesian computation (ABC) methods.
- Parameter identifiability issues: cannot learn about all the parameters from the data.

GP-EMULATOR APPROACH

- Idea: construct a **new likelihood function** using summary statistics that capture important biological characteristics of the disease dynamics.
- **STAGE 1:** Find approximate model using model simulations of summary statistics (e.g. proportions of zeros) for a pre-selected grid of parameters. Use Gaussian processes to approximate the model.
- **STAGE 2:** Fit approximate model to observations/data using Bayesian methods
- Detail: have a "discrepancy" term to capture model inadequacies.

RESULTS

Simulation using $\theta = 0.71$, $\tau_1 = 0.3$, $\tau_2 = 0.7$, $\rho = 1$ **Figure 1 (a)** inference (marginal) for (τ_2, ρ) . **Figure 1 (b)** inference for (τ_2, ρ) given $\theta = 0.71$.

Figure 1 (c) inference for (τ_2, ρ) conditioned on $\theta = 0.71$), $\tau_1 = 0.3$

Figure 1 (d) inference for (τ_2, ρ) conditioned on $\theta = 1$, $\tau_1 = 1$

Figure 2 (a) posterior estimates using likelihood-based method is biased

Figure 2 (b) our method corrects the bias and produces better parameter inference

Figure 4 our method results in a fitted model that captures key features ("signature") of the disease

SUMMARY

- (i) The data have some information about the gravity parameters, but it is only possible to learn about two parameters. Overparameterized model
- (ii) There is no statistically significant change in these parameters during the periods of holidays vs non-holidays. No holiday/non-holiday effect on dynamics
- (iii) The gravity parameters do not seem to change from years 1944-55 to 1956-1966. **No vaccination effect on dynamics**
- (iv) Can estimate movement for different cities
- (v) **GENERAL**: The GP-based approach is computationally efficient and results in a better fitted model than standard likelihood-based methods

REFERENCES

- [1] R. Jandarov, M. Haran, O. Bjørnstad, B. Grenfell (2014) Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease *Journal of the Royal Statistical Society, Series C*
- [2] Y. Xia, O. Bjørnstad, B. Grenfell (2004) Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics In *American Naturalist*

ACKNOWLEDGMENT

This work was supported in part by the Bill and Melinda Gates Foundation.