

SPIN: Sparsifying and Integrating Internal Neurons in Large Language Models for Text Classification

Difan Jiao^{♣†} Yilun Liu^{♠†}
Zhenwei Tang[♣] Daniel Matter[♠] Jürgen Pfeffer[♠] Ashton Anderson[♣]

University of Toronto, Canada
Technical University of Munich, Germany

https://github.com/difanj0713/SPIN https://liuyilun2000.github.io/spin-visualization tequal contribution. difanjiao@cs.toronto.edu yilun.liu@tum.de

Contributions

- 1. SPIN: lightweight, model-agnostic framework using sparsified and integrated internal LLM neurons for text classification, moving beyond conventional reliance on terminal hidden states.
- 2. SPIN improves performance, training and inference efficiency, and interpretability in text classification.

Methodology

- 1. Sparsification: Internal neurons are useful, but not all of them.
 - Extract layer-wise internal representations from LLMs with mean-, max-pooling and single token embeddings
- Train **layer-wise liner probes** with \mathcal{L}^1 -regularized Logistic Regression for label over neuron activations
- Select salient neurons with highest weights of linear probes until meeting the cumulative contribution threshold η
- 2. Integration: Gathering multi-grained features for classification.
 - Concatenate selected salient neurons across layers
 - Train with model classification head

Benchmarked Performance

	IMDb (Acc.)			SST-2 (Acc.)			EDOS (Macro F1)		
	Base	SPIN	%impr.	Base	SPIN	%impr.	Base	SPIN	%impr.
DistilBERT	86.95	89.78	+3.25	81.88	83.94	+2.52	65.09	75.79	+16.44
RoBERTa	89.67	93.61	+4.39	84.06	90.59	+7.77	68.81	73.50	+6.82
GPT2	87.72	91.94	+4.81	85.89	87.73	+2.14	68.57	76.08	+10.95
GPT2-M	88.59	93.92	+6.02	86.12	90.25	+4.80	71.17	75.74	+6.42
GPT2-XL	91.86	94.92	+3.33	90.02	93.23	+3.57	72.56	76.79	+5.83
Flan-T5-S	84.08	91.15	+8.41	77.17	88.99	+15.32	59.62	74.51	+24.97
Flan-T5	90.01	94.14	+4.59	78.26	92.32	+17.97	66.64	78.04	+17.11
Flan-T5-XL	90.50	96.12	+6.21	84.75	95.64	+12.85	70.08	81.48	+16.27
SoTA		96.21			97.50			82.35	

For different transformer variants, SPIN working on **pretrained** LLMs consistently outperforms baseline across all benchmark datasets, with performance even approaching fine-tuned SoTA.

	IMDb		SST-2		EDOS	
	Base	SPIN	Base	SPIN	Base	SPIN
DistilBERT	92.80	92.88	91.05	91.19	78.74	81.12
RoBERTa	94.67	95.68	94.03	94.38	80.48	80.88
GPT2	94.06	94.50	91.51	92.32		

Introducing SPIN to already **fine-tuned** LLMs can further boost their performance.

Training Efficiency

SPIN only introduces marginal training cost in floating point operations and trainable parameters.

Inference Efficiency

	20%	40%	60%	80%	100%
DistilBERT	85.20	84.73	87.45	88.67	89.78
RoBERTa	87.06	89.72	93.13	93.50	93.61
GPT2	87.51	89.00	91.10	91.88	91.94
GPT2-M	88.52	91.36	93.36	93.92	93.92
GPT2-XL	89.66	93.15	94.73	94.92	94.92
Flan-T5-S	82.88	87.74	90.93	91.32	91.32
Flan-T5	84.58	92.55	94.14	94.14	94.14
Flan-T5-XL	89.21	95.28	96.12	96.12	96.12

SPIN inherently supports **early-exit** by off-ramping at different percentages of LLM layers used. Averagely, 60% of layers can maintain 99% performance, reducing inference time by 40%.

Post-hoc Interpretability

After sentence-level training, SPIN can be seamlessly transferred to token-level classification, providing a detailed breakdown of cumulative results within a single forward pass.