#1 Assignment - CMPT 405

Luiz Fernando Peres de Oliveira - 301288301 - lperesde@sfu.ca

September 20, 2018

#1 - Let C be the array containing all the possible coins $\{1, 5, 10, 25, 100, 200\}$. Let V be the total change value.

```
Algorithm:  \begin{split} & \textbf{Input:} \ \ C, \ V \\ & d \leftarrow \text{sort C such that } d_1 \geq d_2 \geq ... \geq d_n \\ & res \leftarrow \emptyset; \ i \leftarrow 1 \\ & \textbf{while } V > 0 \ \textbf{do} \\ & \textbf{if } V \geq d_i \ \textbf{then} \\ & n_{coins} \leftarrow \left\lfloor \frac{V}{d_i} \right\rfloor \\ & V \leftarrow V - (n_{coins} * d_i) \\ & res \leftarrow res \cup \{(d_i, n_{coins})\} \\ & \textbf{end if} \\ & i \leftarrow i + 1 \\ & \textbf{end while} \\ & \textbf{return } res \end{split}
```

Intuition: For all $d_i, d_j \in C$, $1 \le i < j \le n$, $d_i \ge 2 * d_j$, meaning that if I the algorithm chooses any d_j over any d_i , it will have to pick at least 2 times more coins for some value V that satisfies both d_i and d_j .

Proof. The only way to give more coins than the smallest possible number of coins for any change would be in a case where the algorithm chooses d_j over a d_i (see *Intuition*). Now, imagine that the algorithm chooses d_j over d_i , then we have two cases:

```
- Case 1. d_i > V:
```

If so, we are done because there are no possible ways of choosing d_i for value V.

```
- Case 2. d_i \leq V:
```

If that was the case (as a mean of contradiction), we would have an optimal set OPT such that $OPT_{i-1} \cup d_j \subseteq OPT$, which is not the case, once the iteration i will happen before the iteration j, causing the algorithm to choose d_i over d_j (and never the opposite) for any value V that satisfies both d_i and d_j .

#2 a)

Greedy approach to the fractional knapsack:

- n objects and a knapsack
- item i weighs $w_i > 0$ and has utility $u_i > 0$
- fill knapsack so as to $\mathbf{maximize}$ total utility/weight, not exceeding total capacity W

Algorithm approach:

- sort items in decreasing order of their utility-to-weight ratio u_i/w_i
- repeatedly add item with max ratio u_i/w_i . If not possible to add the whole object, add a fraction $\alpha \in (0,1)$ of it, if possible.

Proof. Let $K_{opt} \subseteq \{i_1, i_2, i_3, ..., i_n\}$ be the optimal set of items in a knapsack and let K_j be the chosen items after an iteration j, $0 \le j \le n$. Let K_j be considered "promising" if $K_j \subseteq K_{opt}$.

Base case: K_0 : K_0 is promising since the total number of chosen objects, in this case none, does not exceed total capacity W. Thus, there exists some optimal K_{opt} such that $K_0 \subseteq K_{opt} \subseteq K_0 \cup \{i_1, i_2, ..., i_n\}$.

Induction step: Assume K_{j-1} is promising for stage j-1, meaning that $K_{j-1} \subseteq K_{opt} \subseteq K_{j-1} \cup \{i_j, i_{j+1}, ..., i_n\}$. We want to show K_j . On a stage j we have two cases:

Case 1. i_j is rejected. Then $K_{j-1} \cup \{i_j\}$ or $K_{j-1} \cup \{i_j * \alpha\}$ (any fraction $\alpha \in (0,1)$ of i_j) exceed the capacity W; thus, $K_{j-1} = K_j$. Since $K_{j-1} \subseteq K_{opt}$ and K_{opt} does not exceed the total capacity W, $i_j \notin K_{opt}$. So $K_j \subseteq K_{opt} \subseteq K_j \cup \{i_{j+1}, i_{j+2}, ..., i_n\}$.

Case 2. i_j or $i_j * \alpha$ is added to K_{j-1} . Let item i_{chosen} be i_j or $i_j * \alpha$ (whichever was added to K_{j-1}). Then $K_{j-1} \cup \{i_{chosen}\}$ does not exceed the total capacity W and we have $K_{j-1} \cup \{i_{chosen}\} = K_j$.

Case 2.1. $i_{chosen} \in K_{opt}$. Then we have $K_j \subseteq K_{opt} \subseteq K_j \cup \{i_{j+1}, i_{j+2}, ..., i_n\}$.

Case 2.2. $i_{chosen} \notin K_{opt}$. We show that there is another maximum set of utility-to-weight items K'_{opt} that witnesses the fact that K_j is promising. For example, consider an item i_{chosen} added to K_{opt} . This will exceed the capacity W and the knapsack will contain at least one item of $\{i_{j+1}, i_{j+2}, ..., i_n\}$.

Proof of claim (Case 2.2): K_{opt} contains all elements of K_{j-1} and can be obtained from K_{j-1} by adding some items from the set $\{i_j, i_{j+1}, ..., i_n\}$. Adding i_j does not exceed capacity W, so the excess in $K_{opt} \cup \{i_{chosen}\}$ must contain some elements other items in $\{i_{j+1}, i_{j+2}, ..., i_n\}$.

#2 b)

π= υ,			
item	utility	weight	
1	2	1	W = 1000
2	1000	1000	

 $K_{opt} = \{i_2\}$ (utility = 1000), $K_{greedy} = \{i_1\}$ (utility = 2)

#3

The idea here is to use the greedy approach to check ahead and count the number of tiles a_{xy} , $1 \le i < x \le k$, $1 \le y \le n_x$ adjacent to a tile a_{ij} . Basically, if a tile a_{ij} touches the bounds of a tile a_{xy} , we say they are adjacent. The MAXnumber of adjacent tiles is then then minimum required number of colors for our solution. For example, if we have the tiles $a_{11} = 0.6$, $a_{12} = 0.4$ and $a_{21} = 0.35$, $a_{22} = 0.35$, $a_{23} = 0.3$, then a_{11} is adjacent to a_{21} and a_{22} and a_{12} is adjacent to a_{22} and a_{23} . The minimum number of colours required would then be 4 in this case.

Algorithm:

```
Input: wall, k
  for i from 1 to k do
      for j from 1 to n_i do
           wall_i \leftarrow \text{sort tiles such that } a_{ij} \geq a_{ij+1} \geq ... \geq a_{in_i}
      end for
  end for
  C \leftarrow 0
  for i from 1 to k-1 do
      c \leftarrow 0
      for j from 1 to n_i do
          x \leftarrow i+1
          for y from 1 to n_x do
               if a_{ij} adjacent to a_{xy} then
                   c \leftarrow c + 1
               else
                   break //not adjacent to a_{xy+1} through a_{xn_x} as well
               end if
          end for
      end for
      C \leftarrow MAX(C,c)
  end for
  return C
Counterexample:
```

```
Suppose:
col\ 1: a_{11} = 0.6, a_{12} = 0.4
col \ 2: a_{21} = 0.4, \ a_{22} = 0.4, \ a_{23} = 0.2
```

Our Greedy algorithm selects a_{11} as being adjacent to a_{21} and a_{22} . After that, it selects a_{12} as being adjacent to a_{22} and a_{23} , returning 4 as the minimal number of colours. The algorithm could not rearrange a_{22} and a_{23} so that a_{11} would be adjacent to a_{21} and a_{23} ; and a_{12} would be adjacent to a_{22} , returning 3, the optimal number of colors for this problem. Thus, the Greedy approach given is not optimal. See below:

```
W_{greedy} = \{(a_{11}, a_{21}), (a_{11}, a_{22}), (a_{12}, a_{22}), (a_{12}, a_{23})\}. min: 4 colors W_{opt} = \{(a_{11}, a_{21}), (a_{11}, a_{23}), (a_{12}, a_{22})\}. min: 3 colors
```

#4

Definition: For $0 \le i \le m$, $0 \le j \le n$, define M[i,j] as the optimal number of paths in the Cartesian plane from (0,0) to (i,j) that uses the combined number of steps of type U(up, M[i-1,j]), R(right, M[i,j-1]) and D(diagonal, M[i-1,j-1]). The optimal number of paths from (0,0) to (m,n) is then M[m,n].

Recurrence:

$$M[i,j] = \begin{cases} 1 & \text{if } i = 0 \text{ or } j = 0 \\ M[i-1,j] + M[i,j-1] + M[i-1,j-1] & \text{otherwise} \end{cases}$$

Algorithm:

```
Input: m, n

Make matrix M with dimensions m \times n

for i from 0 to m do

M[i,0] \leftarrow 1

end for

for j from 0 to n do

M[0,j] \leftarrow 1

end for

for i from 1 to m do

for j from 1 to m do

M[i,j] \leftarrow M[i-1,j] + M[i,j-1] + M[i-1,j-1]

end for
end for
return M[m,n]
```

Running time evaluation: All operations on M (inside the loops) are constant and therefore the running time of the algorithm is O(mn)

Expression:

For d steps of type D(diagonal), there must have m-d steps of type U and n-d steps of type R, in order to reach (m,n). It can then be represented by:

$$M(m,n) = \sum_{d=0}^{\min(m,n)} {m+n-d \choose m} {m \choose d}$$