Many Particle Systems - Practice Problem Set 5

These problems are not for assessment. However, it is recommended that you attempt them as practice for the test and exam.

- 1. A system consists of two identical particles, each of which can occupy two single particle quantum states with energies ϵ and 2ϵ respectively. Suppose the system of two particles is in contact with a heat reservoir at temperature T. Give an expression for the canonical partition function if:
 - (a) the particles are distinguishable;
 - (b) the particles are indistinguishable and we approximate using modified Maxwell-Boltzmann statistics;
 - (c) the particles are indistinguishable and obey Bose-Einstein statistics;
 - (d) the particles are indistinguishable and obey Fermi-Dirac statistics.
 - (e) Compute the mean energy of the system in cases (c) and (d) above.
 - (f) Compute the entropy of the system in case (d) above.
 - (g) Provide a physical interpretation for the result in (f).
- 2. (a) Consider a system which has two energy eigenstates with energies ϵ_1 and ϵ_2 , with $\epsilon_2 > \epsilon_1$. Suppose the system is placed in contact with a heat reservoir at temperature T. Give an expression for the mean energy of the system.
 - (b) Explain why we can consider the case $\frac{(\epsilon_2 \epsilon_1)}{k_B T} \ll 1$ to be a "high temperature" limit, and the case $\frac{(\epsilon_2 \epsilon_1)}{k_B T} \gg 1$ a "low temperature limit".
 - (c) Determine the high and low temperature limits of the mean energy. Note: $e^x \approx 1 + x$ for |x| << 1.
 - (d) Give an explanation for the results you obtain in (c).