ALY6010

R-PRACTICE MODULE 6

Name: Shreyansh Bhalodiya

NUID: 002664707

Instructor name: Mohsen Soltanifar

Dataset

• We have a dataset with 8 columns. Looking at the columns we can see that it's about the treatment a person has gone through with different features like smoker, time, wbc, hrt_months age and outcome.

• Cleaning data from null values.

A tibble: 6 × 8									
id	time	treatment	smoker	hrt_months	wbc	age	outcome		
<dbl></dbl>	<dbl></dbl>	<chr>></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		
165	0	Gabapentin	1	3	5.7	61.4	14.6		
165	1	Gabapentin	1	3	5.7	61.4	8.7		
165	2	Gabapentin	1	3	5.7	61.4	8.3		
165	3	Gabapentin	1	3	5.7	61.4	6.9		
165	4	Gabapentin	1	3	5.7	61.4	6.4		
166	0	Placebo	0	4	7.8	55.2	20.6		

```
df <- na.omit(df)
sum(is.na(df$age))
### https://sparkbyexamples.com/r-programming/remove-rows-with-na-in-r/</pre>
```

PART 1

Creating Dummy variables for the treatment column.

```
unique(df$treatment)
'Gabapentin' 'Placebo'

## creating dummy variable for each of the unique values in column treatment.
df$treatment_gabapentin <- ifelse(df$treatment == "Gabapentin", 1, 0)
df$gender_Placebo <- ifelse(df$treatment == "Placebo", 1, 0)</pre>
```

id	time	treatment	smoker	hrt_months	wbc	age	outcome	treatment_gabapentin	gender_Placebo	treament_Placebo	treatment_Placebo
<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
165	0	Gabapentin	1	3	5.7	61.4	14.6	1	0	0	0
165	1	Gabapentin	1	3	5.7	61.4	8.7	1	0	0	0
165	2	Gabapentin	1	3	5.7	61.4	8.3	1	0	0	0
165	3	Gabapentin	1	3	5.7	61.4	6.9	1	0	0	0
165	4	Gabapentin	1	3	5.7	61.4	6.4	1	0	0	0
166	0	Placebo	0	4	7.8	55.2	20.6	0	1	1	1

- We have only two unique values in the treatment column that is gabapentin and placebo hence we will
 create dummy variables for only these two values. We have treament_gabapentin and treatment_placebo.
- Let's rerun the two separate regression lines one without dummy variables and other with dummy variables.

```
library(jtools) # Load jtools
# Telling R we want to use this data
fit <- lm(wbc ~ time + age + smoker + hrt_months+ outcome + treatment_gabapentin + treatment_Placebo, data = df)
summ(fit)</pre>
```

```
library(jtools) # Load jtools
# Telling R we want to use this data
fit <- lm(wbc ~ time + age + smoker + hrt_months+ outcome, data = df)
summ(fit)</pre>
```

PART 2

Results

```
MODEL INFO:
Observations: 956
Dependent Variable: wbc
Type: OLS linear regression
MODEL FIT:
F(6,949) = 11.32, p = 0.00
R^2 = 0.07
Adj. R^2 = 0.06
Standard errors: OLS
                     Est. S.E. t val.
.....
(Intercept)
                     5.01 0.64 7.84 0.00
                    -0.02 0.04 -0.49 0.63
time
                    0.02 0.01 1.88 0.06
age
                     1.00 0.17 5.82 0.00
smoker
hrt months
                    0.01 0.00 4.75 0.00
                    -0.01 0.00 -1.36 0.18
outcome
treatment_gabapentin 0.29 0.11 2.77 0.01
treatment Placebo
```

MODEL INFO: Observations: 956 Dependent Variable: wbc Type: OLS linear regression									
MODEL FIT: F(5,950) = 11.96, $p = 0.00R^2 = 0.06Adj. R^2 = 0.05$									
Standard errors: OLS									
			t val.	р					
(Intercept) time age smoker hrt_months	5.22 -0.02 0.02 1.01 0.01	0.64 0.04 0.01 0.17 0.00	8.20 -0.54 1.81 5.90 4.40 -1.60	0.59 0.07 0.00 0.00					

- On the left we have linear regression results with dummy variables and on the right we have results without dummy variables we can clearly see that the R-square value drops down by almost 10% points.
- Also we can see similar trends for adjusted R-square values.
- Hence we can clearly conclude that creating dummy variables out of categorical columns can boost our models evaluation scores.

Separate Linear Regression Lines for each subset

```
plt <- ggplot(df, aes(x=df$wbc,y=df$outcome)) + geom_point(color="black")+theme_bw()

plt2 <- plt + geom_smooth(method = lm, color="red",se=FALSE)

plt3 <- plt + geom_smooth(method = lm , color = "red", fill="green",se= TRUE)
plt3</pre>
```


- Using the ggplot library we have plotted linear regression linear for outcome and wbc columns.
- First we plotted only scatter plot then scatter plot with regression line further regression line with green fill.

```
fit <- lm(df$wbc ~ df$time + df$age + df$smoker + df$hrt_months+ df$outcome)
summary(fit)
Call:
lm(formula = df$wbc ~ df$time + df$age + df$smoker + df$hrt months +
     df$outcome)
Residuals:
     Min
                 1Q Median
                                        30
                                                   Max
-7.5175 -1.0575 0.0001 0.8483 7.1641
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                    (Intercept)
df$time
df$age
df$smoker
                   -0.020252
                                                              0.0699

      df$age
      0.021698
      0.011956
      1.815
      0.0699
      .

      df$smoker
      1.014084
      0.172018
      5.895
      5.19e-09
      ***

      df$hrt_months
      0.005631
      0.001280
      4.398
      1.21e-05
      ***

      df$outcome
      -0.007043
      0.004411
      -1.597
      0.1107

Signif. codes: 0 (***, 0.001 (**, 0.01 (*) 0.05 (., 0.1 (), 1
Residual standard error: 1.621 on 950 degrees of freedom
Multiple R-squared:
                            0.05921,
                                             Adjusted R-squared:
F-statistic: 11.96 on 5 and 950 DF, p-value: 3.034e-11
```

• We have fitted multiple columns and checking the fit summary we got multiple R-squared values as 0.059 and Adjusted R-squared values as 0.05423.

References

GeeksforGeeks. (2020, August 5). *Dummy Variables in R Programming*. https://www.geeksforgeeks.org/dummy-variables-in-r-programming/