

University of Applied Sciences

FACHBEREICH
INGENIEUR- UND
NATURWISSENSCHAFTEN

Organische Chemie I

Skriptaufzeichnungen

im WiSe 2019

vorgelegt von

Roman-Luca Zank

3. Semester Chemie- und Umwelttechnik

E-Mail: romanzank@mail.de

Matrikelnummer: 25240

Adresse: Platz der Bausoldaten 2, Zimmer 224

Ort: 06217 Merseburg

Professor: Rödel

Merseburg, 18. Dezember 2019

Inhaltsverzeichnis

1	Stereoisomerie			
	1.1	Enantiomere		•
			Begriffe der Enantiomere	
		1.1.2	Unterscheidung der Enantiomere	•

1 Stereoisomerie

Abbildung 1.1: Übersicht der Isomerien

Abbildung 1.2: Übersicht der Isomerien

1.1 Enantiomere

1.1.1 Begriffe der Enantiomere

Chiralität: (griech. Händigkeit)

- = jedes Objekt, das mit seinem Spiegelbild **nicht** zur Deckung gebracht werden kann ist chiral (nur das Molekül!)
- \rightarrow chirale Moleküle besitzen asymetrisch substituierte C-Atome als Stereozentrum

Abbildung 1.3: Beispielreaktion für Stereoisomere

Enantiomere:

- = Moleküle verhalten sich wie Bild und Spiegelbild (aber nicht im Molekül selbst \to sind chiral und besitzen keine molekulare Spiegelebene)
- \rightarrow achirale Moleküle können keine Enantiomere sei, das sich Bild und Spiegelbild decken

Racemat:

- = 50:50 Gemisch von Enantiomeren (L-/D-Moleküle, +/-)
- \rightarrow sind optisch inaktiv

1.1.2 Unterscheidung der Enantiomere

- 1. Röntgengrafische Kristallstrukturanalyse ("Foto")
- 2. Polarimeter: optische Rotation der Ebene des linear polarisierten Lichts

Abbildung 1.4: optische Aktivität von chiralen Molekülen

- (+)- Enantiomer dreht sich im Uhrzeigersinn (dextrorotatorisch)
- (-)- Enantiomer dreht sich gegen Uhrzeigersinn (levorotatorisch)

Die Schwingungsebene des linear polarisierten Lichtes wird durch die optisch aktive Substanz am asymmetrisch substituierten C-Atom gedreht.

Je nachdem ob der Analysator mit oder gegen den Uhrzeigersinn dreht um das polarisierte Licht wahrzunehmen, erhält der Stoff die Bezeichnung (+/d) oder (-/l)

Wichtig: $(+/d) \neq D$ und $(-/l) \neq L$

Spezifische Drehung:

$$[\alpha]_{\lambda}^{\delta} = \frac{\alpha}{l \cdot c} \tag{1.1}$$

- $[\alpha]$... spezifische Drehung
- δ ... Temperatur in °C
- \bullet $\lambda...$ Wellenlänge des einfallenden Lichtes
- l... Länge (in dm) der Messzelle (Küvette)
- c... Konzentration in $\frac{g}{mL}$
- α ... gemessene Rotation

1.1.3 CIP- Sequenzregel

Fischerprojektion: