

Agenda

Image Segmentation

Region Segmentation

Mathematical Morphology

What is Segmentation

How do we do it?

Remember the Gestalt Principles and the class on Visual Perception

What is Segmentation a subjective task

Very hard to translate into algorithms

What is the right segmentation?

Segmentation

Two overall approaches:

Top-down Segmentation:

Pixels grouped because they come from the same object

Bottom-up Segmentation:

Group pixels that are similar (luminance, colour, position, texture, depth, ...)

Thresholding

Threshold

Divide histogram in two by defining a threshold value

Threshold

Otsu's method

Determine threshold level that maximizes inter-class variance

By Lucas(CA) - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=67144384

Region Growing

Flood Fill

Establish a seed

Propagate region based on a criterion

- pixel has same color as seed,
- pixel colour is within interval of seed color

Termination criteria

How to perform the propagation?

Flood Fill

Depth first search

Flood Fill

Breath first search

k-Means

k-means

Looking for **k** segments in an image

- Take image and map it to feature space
- In feature space, find k clusters
- Find the clusters by finding the mean of their elements

k-means steps

- 1. Choose the **number of clusters** K
- 2.Select **K points, at random**: the centroids (may not belong to data set)
- 3.Assign each point to the closest centroid -> yields k clusters
- 4.Compute new centroid for each cluster
- **5.Reassign each point** to the new closest centroid. If any point changed, go to step 4
- 6.If not, k-means done!

k-means steps

k-means in action

k-means feature space

k-means feature space

proper choice of the feature space can improve outcomes

k-means

k-means image segmentation

Simple to understand and implement

Needs picking the number of clusters (how do we do this?)

Sensitive to initial points and outliers

Mean-Shift

Solves problem of having to choose number of clusters

Solves initialization problem

Uses peaks of normalized density as modes (i.e., the centroids of clusters)

mean-shift determining modes

- 1. Choose data point
- 2. Compute mean for window centred on that point
- 3. Shift to computed mean
- 4. Repeat until no change

Mathematical Morphology

Mathematical Morphology

Mathematical morphology operations treat images as sets of points

They modify in a controlled way the structure / morphology of an image

They can be easily applied to binary images (but also grayscale or colour too)

Encompass a set of methods used in image analysis for:

- Filtering
- Segmentation

Fundamental Ideas

Fundamental Ideas

Structuring Element

base concept in Math. Morph.

Similar to the concept of kernel in filtering

A shape mask used for morphological operations

Have a defined origin

Dilation

Used for:

Growing features

Filling holes and gaps

Dilation

Replicate the SE at each original image foreground pixel

In general, it yields an **expanded** version of the foreground

Small holes and intrusions are filled

Place the origin of the SE at each foreground (1) pixel of image *I* and **copy** all SE 1 pixels to the corresponding pixels in the result image

https://www.youtube.com/watch?v=xO3ED27rMHs&ab_channel=SmarTE-learning

Slide SE over image and set center to maximum found pixel

Dilation

Greyscale Dilation

Corresponds to selecting the maximum intensity inside neighborhood (structuring element)

Erosion

Used for:

Shrinking features

Removing bridges, branches, protrusions

Erosion

Keep as I each pixel for which SE is replicated

In general, the eroded object is **shrunk**

Holes are enlarged and small extrusions are removed

Place origin of SE at each foreground (1) pixel of image *I* and set to 1 the corresponding pixel in the result image, whenever the SE pattern exists in the original image

https://www.youtube.com/watch?v=fmyE7DiaIYQ&list=PLHLtQZu3roXhE4JrGjalsoerwkZlFjERH&index=1&ab_channel=SmarTE-learning

Slide SE over image and set center to minimum found pixel

Erosion

Greyscale Erosion

For greyscale, erosion corresponds to selecting the minimum intensity inside neighborhood (structuring element)

Opening and Closing

Opening Erosion followed by dilation

Idempotent

Union of all SEs that fit inside the object

Opening with a circular SE tends to:

- smooth contours
- break narrow bridges
- remove small extrusions

The SE is applied to the whole object, but no 1 pixel of the SE can appear outside the object

É				
0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

Original image

*				
0	1	1	0	0
0	1	1	0	0
0	1	0	0	0
0	1	1	1	0
0	0	1	1	0

0	1	1	0	0
0	1	1	0	0
0	0	0	0	0
0	1	1	1	0
0	0	1	1	0

 $I \cap X$

Opening

Opening

Remove lines...

opening with disk-shaped structuring element

diameter larger than line width, smaller than circles'

Closing Dilation followed by erosion

Dual of opening

Idempotent

The SE is slided along the border and regions where it does not fit are filled

0	1	1	0	0
0	1	1	0	0
0	1	0	1	0
0	1	1	1	0
0	0	1	1	0

Original image

*	- v			
C	1	1	1	0
C	1	1	1	0
C	1	1	1	1
C	1	1	1	1
C	0	1	1	1

	700000000		50000000	
0	1	1	0	0
0	1	1	0	0
0	1	1	1	0
0	1	1	1	0
0	0	1	1	0

Closing

Closing

Remove small holes, keep large holes

closing with disk-shaped structuring element

bigger that small holes, smaller than big holes

All together now

Bibliography

 W. Burger, M. J. Burge, Principles of Digital Image Processing, Vol.1, Springer, 2009

For more complex image processing methods, out of the scope of this introductory course, such as filtering in frequency space, the interested reader is forwarded to:

 W. Burger, M. J. Burge, Principles of Digital Image Processing, Vol.2, chapter 8, Springer, 2009