Basi di Dati - Esame del 29 Maggio 2023

Cognome	Nome	Matricola

Esercizio A. Si vuole costruire una base di dati per la gestione di una pizzeria. La pizzeria ha dei tavoli che sono identificati da un numero e possono essere liberi (ancora nessuno è seduto), occupati o in attesa del conto. Ad ogni tavolo è assegnato un solo cameriere che prende l'ordinazione. L'ordinazione deve avere come informazioni: un numero, una data, il tavolo e il cameriere che l'ha compilata. In ogni ordinazione c'è la lista delle pietanze che i clienti del tavolo hanno ordinato. Le pietanze sono suddivise in piatti e bevende. I piatti e le bevande possono appartenere a una categoria (antipasti, pizze, pizze speciali, analcolici, birre, vini etc.), hanno un nome, una descrizione e un prezzo. Ogni elemento dell'ordinazione ha anche la quantità del piatto o della bevanda corrispondente (ad esempio, due pizze margherite, tre birre etc.). Ciascun piatto è composto da alcuni ingredienti e ogni ingrediente ha un nome, la specifica se fresco o surgelato. Delle bevande interessa la gradazione alcolica. Dei camerieri si vuole memorizzare il nome, il cognome, l'età, l'anno di assunzione e più numeri di telefono per rintracciarlo. Si tenga conto che a un tavolo si possono susseguire vari clienti.

Si dia uno schema grafico a oggetti (secondo la notazione del libro di testo) della base di dati e si trasformi nello schema relazionale mostrandone la rappresentazione grafica (anche questa secondo la notazione del libro di testo, indicando la chiave primaria ed eventuali chiavi esterne). Sia per lo schema a oggetti che per lo schema relazionale si devono specificare, rispettivamente, i nomi e i tipi degli attributi di ciascuna classe e relazione.

Esercizio B. Si considerino i seguenti schemi di relazione (le chiavi primarie sono sottolineate, le chiavi esterne sono date esplicitamente):

- Aereoporti(Citta, Nazione, NumPiste)
- Voli(<u>codVolo</u>, <u>GiornoSett</u>, CittaPart*, OraPart, CittaArr*, OraArr, TipoAereo*)
 CittaPart FK(Aereoporti)
 CittaArr FK(Aereoporti)
 TipoAereo FK(Aerei)
- Aerei(TipoAereo, NumPasseggeri, QtaMerci)
- (i) Scrivere in SQL le seguenti interrogazioni:
 - 1. trovare il numero di voli internazionali che partono il giovedì da Napoli.
 - 2. Cancellare gli aereoporti di cui non si conosce il numero delle piste e i voli che hanno come partenza o arrivo tali aereoporti.
 - 3. Restituire le città francesi da cui partono più di venti voli alla settimana diretti in Italia.
 - 4. Restituire gli aereoporti italiani che hanno solo voli interni. Risolvere questa query in due modi diversi: (i) utilizzando operatori insiemistici (ii) con una sottoselect.
 - 5. Per ogni aereoporto per cui c'è un volo, trovare il giorno della settimana da cui partono il massimo numero di voli e restituire anche il numero di passeggeri complessivi.
- (ii) scrivere in Algebra relazionale la prima interrogazione.

Esercizio C. Si consideri uno schema di relazione R con cinque attributi A, B, C, D, E ed il seguente insieme di dipendenze funzionali:

$$F = \{AB \rightarrow D, A \rightarrow C, C \rightarrow AB, BD \rightarrow E, C \rightarrow E\}$$

Viene richiesto di:

- 1. trovare una copertura canonica di F
- 2. trovare tutte le chiavi di *R*
- 3. dimostrare che lo schema non è in 3NF
- 4. convertire lo schema in 3NF

Esercizio D. Si considerino i seguenti vincoli di integrità, facendo riferimento allo schema relazionale dell'Esercizio B:

- 1. Non ci sono aereoporti italiani con meno di due piste.
- 2. Non è possibile che un volo parta ed arrivi nella stessa città, nè che esso arrivi meno di un'ora dopo della partenza.
- 3. La durata media dei voli internazionali non deve superare le otto ore.
- 4. Solo gli aerei con meno di cento passeggeri possono effettuare più di un volo nello stesso giorno.
- 5. La quantità totale di merci trasportata verso un aeroporto con una sola pista nello stesso giorno non deve superare le 1000 unità.

Per ciascuno di tali vincoli determinare se esso è esprimibile **in Postgres** tramite un CHECK constraint oppure se è necessario utilizzare dei trigger, motivando la risposta. Fornire poi l'implementazione dei rispettivi CHECK constraint o trigger, commentando opportunamente la risposta ed eventuali assunzioni effettuate. Nella soluzione si assuma che:

- L'ora sia rappresentata con un numero intero compreso fra 0 e 23;
- Il numero di piste degli aeroporti possa essere modificato a causa di lavori di costruzione e manutenzione;
- Gli orari dei voli e l'aereo utilizzato per un certo volo possano essere modificati a causa di ritardi ed altri contrattempi;
- Il numero di passeggeri e merci trasportabili da ciascun aereo non sia modificabile.

Esercizio E. Si spieghi cos'è un Object Relational Mapper (ORM) e si descrivano i principali vantaggi e svantaggi rispetto alla programmazione tradizionale in cui l'applicativo si interfaccia con la base di dati tramite query SQL letterali. Utilizzare esempi in pseudo-codice che evidenzino diverse funzionalità (lettura, aggiornamento, cancellazione) per supportare la spiegazione.