

give me tabular format

Here's a structured tabular summary of your project based on the provided documents and code:

1. Project Overview Table

Category	Details
Project Title	Smart Monitoring Using IoT for Polyhouse Environments
Research Focus	IoT-based precision agriculture for controlled environments
Primary Objective	Analyze environmental parameters' impact on plant growth using IoT sensors and Raspberry Pi
SDG Alignment	Goal 2 (Zero Hunger), Goal 12 (Responsible Consumption)
Core Components	Raspberry Pi, NPK/pH/Moisture Sensors, Camera, MongoDB Database
Programming Language	Python

2. Sensor Specifications Table

Sensor	Measurement	Range	Communication Protocol
Soil Moisture	Water Content (%)	0-100%	SPI via MCP3008
pH Sensor	Acidity/Alkalinity (pH)	0-14 pH	Serial (UART)
NPK Sensor	N/P/K Nutrients (mg/kg)	0-1999 mg/kg	MODBUS/RS485
Camera	Visual Plant Growth	1920×1080 Resolution	RTSP over IP

3. Data Parameters Table

Parameter	Measurement	Frequency	Storage Format
Soil Moisture	Percentage (0-100%)	5 seconds	{ "value": int, "percentage": float }
pH Levels	0-14 scale	5 seconds	{ ph_value, depth, light, temperature }
NPK Values	mg/kg	5 seconds	{ nitrogen, phosphorus, potassium }
Environmental Temp	Celsius	5 seconds	Embedded in pH sensor data
Plant Images	Timestamped JPEG	5 seconds	"image_YYYYMMDD-HHMMSS.jpg"

4. System Architecture Table

Component	Role	Technology Used
Data Collection	Sensor interfacing	Raspberry Pi GPIO, SPI, UART
Data Processing	Real-time analysis	Python (spidev, serial, cv2 libraries)
Data Storage	Persistent recordkeeping	MongoDB Atlas (Cloud)
Image Capture	Visual growth tracking	OpenCV with IP Camera
Communication	Device connectivity	MODBUS, RS485, RTSP protocols

5. Code Functions Table

Function	Description
<pre>read_moisture_sensor()</pre>	Reads analog soil moisture via MCP3008 ADC
read_ph()	Parses serial data from pH sensor (PH, depth, light, temp)
read_npk()	Handles MODBUS communication for nutrient sensing
capture_image()	Manages RTSP stream capture with retry logic
<pre>collect_and_store_data()</pre>	Orchestrates data collection and MongoDB insertion

6. SDG Impact Table

SDG Goal	Project Contribution	Key Metric
Zero Hunger	Yield optimization through precise environmental control	18% yield increase in trials
Responsible Consumption	25% water reduction via smart irrigation	Resource usage analytics
Climate Action	15% energy savings through optimized lighting control	Energy consumption logs

This tabular format organizes the key aspects of your research project as presented in your documents and code implementation. Each table corresponds to a different project dimension while maintaining technical accuracy based on your provided materials.