Department of Electrical EngineeringUniversity of Arkansas UNIVERSITY OF ARKANSAS

ELEG5693 Wireless Communications Propagation and Noise Part II

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

FADING: WHAT IS FADING?

- Path loss and shadowing is caused by large objects that are distant from MS.
 - Even the MS is moving, the change in the relative position between MS and those distant large objects is small.
 - Therefore, the impairments caused by those large distant objects change very slow with respect to (w.r.t.) time and position.
 - Shadowing is also referred to as large scale fading.
- Small scale fading is caused by the effects of objects that are close to MS.
 - The movement of MS w.r.t. nearby small objects will dramatically change the reflection or diffractions of propagated signals.
 - The signal at receiver (sum of the signals from all multiple paths) will change rapidly with the movement of MS.

Small scale fading: rapid fluctuation of the received signals over short distance.

FADING: WHAT IS FADING?

Random # of multipath components

- The amplitude, phase, and frequency of each component change w.r.t. the movement of MS.
- The signal at the receiver is the summation of all the multipath components → the amplitude, phase, and frequency of the received signal at receiver change w.r.t. the movement of MS.
- The movement of surrounding objects (e.g. vehicles) will also cause the time variation of the signals.

FADING: AN EXAMPLE

• The rate of variation depends on two factors:

- Relative movement speed between Tx and Rx
- Speed of surrounding objects

What is Doppler?

- The whistle of the train coming from opposite direction sounds different with the train passing by.
 - The pitch of the sound (determined by sound frequency) is changing.
- Rx signal frequency will change if the Rx is moving w.r.t. Tx.
- Signal frequency change due to the relative movement between Tx and Rx is called Doppler effects.

- Consider Tx sends out a sinusoid with frequency 1Hz
 - If Rx moves toward Tx, the signal observed by Rx will have a shorter period → frequency increased
 - If Rx moves away from Tx, the signal observed by Rx will have a longer period → frequency decreased
- The amount of frequency change is called Doppler shift
 - Doppler shift depends on
 - Relative speed between Tx and Rx
 - The frequency of the original signal

Relationship between speed and Doppler shift

$$\Delta f = \frac{v}{\lambda} \cos \theta$$

V: relative speed λ : wavelength

Maximum Doppler shift:

$$f_D = \frac{v}{\lambda}$$

• Example: find the maximum Doppler shift of 900MHz system with mobile speed 120km/Hr

- At given frequency
 - $-v \uparrow \rightarrow f_D \uparrow \rightarrow$ channel changes more rapidly

$$f_D = 0$$
Hz

$$f_D = 100 \text{ Hz}$$

$$f_D = 1000 \text{ Hz}$$

FADING: IMPULSE RESPONSE

The impulse response of fading is time-varying!

- $-f_c$: system operating frequency (e.g. 900MHz, 1.8GHz)
- t: the time variation (both amplitude and phase changes with respect to time)
- $-\tau$: relative delay between multipath components
- $-\varphi_n(t)$: depends on path distance and Doppler shift $(2\pi f_D t)$

FADING: IMPULSE RESPONSE

Complex baseband representation

$$c(t,\tau) = \sum_{n=1}^{N} \alpha_n(t) \operatorname{Re} \left[e^{j2\pi f_c t + \varphi_n(t)} \right] \times \delta(\tau - \tau_n)$$

$$= \operatorname{Re} \left\{ e^{j2\pi f_c t} \left[\sum_{n=1}^{N} \alpha_n(t) e^{j\varphi_n(t)} \times \delta(\tau - \tau_n) \right] \right\}$$

$$h(t,\tau) = \sum_{n=1}^{N} \alpha_n(t) e^{j\varphi_n(t)} \times \delta(\tau - \tau_n)$$

- Maximum delay spread
 - The time interval between the first multipath and the last multipath

$$\tau_{\rm max} = \tau_N - \tau_1$$

FADING: FLAT FADING

Flat fading

- Maximum delay spread $\tau_{\text{max}} <<$ system symbol period Ts
- Relative to the symbol period, all the multipath components arrive at almost the same time → Doesn't need to consider the delay variable τ

$$h(t) = \sum_{n=1}^{N} \alpha_n(t) e^{j\varphi_n(t)} = \sum_{n=1}^{N} \alpha_n(t) \cos[\varphi_n(t)] + j \cdot \sum_{n=1}^{N} \alpha_n(t) \sin[\varphi_n(t)]$$

Inphase component

$$h_I(t) = \sum_{n=1}^{N} \alpha_n(t) \cos[\varphi_n(t)]$$

Quadrature component

$$h_{Q}(t) = \sum_{n=1}^{N} \alpha_{n}(t) \sin[\varphi_{n}(t)]$$

FADING: FLAT FADING

$$h(t) = h_I(t) + j \cdot h_Q(t)$$

- Both $h_I(t)$ and $h_Q(t)$ are the sum of many multipath components
 - Each multipath component is a random process
 - $h_I(t)$ and $h_Q(t)$ are random processes
- Central limit theorem
 - The sum of *N* independent and identically distributed (i.i.d.) random variables tends to Gaussian distribution when *N* is large enough.
- Based on central limit theorem, at time time t, both $h_I(t)$ and $h_Q(t)$ are Gaussian distributed!

FLAT FADING: RAYLEIGH FADING

- If there is no LOS between Tx and Rx
 - $h_l(t)$ and $h_l(t)$ are zero-mean Gaussian distributed ~ $N(0, \sigma^2)$
 - The amplitude (or envelope) of h(t)

$$|h(t)| = \sqrt{h_I^2(t) + h_Q^2(t)}$$

- The fading envelope |h(t)| follows Rayleigh distribution

$$f_{|h(t)|}(z) = \frac{z}{\sigma^2} \exp\left(-\frac{z^2}{2\sigma^2}\right)$$

Average power of fading

$$E[h(t)]^{2} = E[h_{I}^{2}(t)] + E[h_{Q}^{2}(t)] = 2\sigma^{2}$$

FLAT FADING: RICIAN FADING

- If there is LOS component
 - $h_l(t)$ and $h_l(t)$ are non-zero-mean Gaussian distributed ~ $N(s, \sigma^2)$
 - The fading envelope

$$|h(t)| = \sqrt{h_I^2(t) + h_Q^2(t)}$$

follows Rician distribution

FLAT FADING: TIME DOMAIN CORRELATION

• The time domain correlation of h(t) is

$$R_h(\alpha) = E[h(t+\alpha)h^*(t)] = P_h \cdot J_0(2\pi f_D \alpha)$$

- $J_0(x)$: zero-order Bessel function of the first kind

Fd = 10Hz

Fd = 50Hz

- Generally speaking, for given time interval α
 - Larger speed $v \rightarrow \text{larger } f_D \rightarrow \text{smaller} |R_h(\alpha)|$.

FLAT FADING: POWER SPECTRAL DENSITY

 Power spectral density is the Fourier transform of auto-correlation function.

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

SIMULATOR

- Flat Rayleigh fading is a random process
 - At any time instant t, $|h(t)| = \sqrt{h_I^2(t) + h_Q^2(t)}$ is Rayleigh distributed.
 - Both the real part $h_I(t)$ and the imaginary part $h_Q(t)$ are zero mean Gaussian distributed.
 - The auto-correlation function must satisfy

$$R(\tau) = E[h(t+\tau)h^*(t)] = J_0(2\pi f_D \tau)$$

SIMULATOR

- How to generate flat Rayleigh fading with computer program?
 - Method 1: Filtered Gaussian noise
 - Rely on low-pass filter to introduce the time-domain correlation among symbols

The low-pass filter is hard to design.

SIMULATOR

Method 2: Sum-of-sinusoid

$$h_I(nT_s) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \cos \left\{ 2\pi f_D \cos \left[\frac{(2m-1)\pi + \theta}{4M} \right] \cdot nT_s + \alpha_m \right\}$$

$$h_Q(nT_s) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \sin \left\{ 2\pi f_D \cos \left[\frac{(2m-1)\pi + \theta}{4M} \right] \cdot nT_s + \beta_m \right\}$$

$$h(nT_s) = h_I(nT_s) + j \cdot h_Q(nT_s)$$

 $\theta, \alpha_m, \beta_m$: uniformly distributed in $[0,2\pi]$

M: a constant. The larger, the more accurate. Usually 8 or 16.

 T_s : time duration between samples.

$$\mathbf{h} = [h(0T_s), h(1Ts), h(2Ts), \dots, h((N-1)Ts)]$$

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

CLASSIFICATION

- Fading
 - Amplitude and phase distortions of transmitted signal

Classification criterions

- Scale
 - Large scale fading, small scale fading
- Small scale fading
 - Flat fading v.s. frequency selective fading
 - Fast fading v.s. slow fading
 - Rayleigh fading v.s. Rician fading

CLASSIFICATION: SCALE

Large scale fading

- Path loss (signal power loss as a function of distance)
 - Due to distance between Tx and Rx, reflection of large objects
- Shadowing
 - Obstruction from large objects

Small scale fading

- Amplitude and phase distortions from local objects → highly sensitive to locations of MS
- Due to the superposition of multiple electromagnetic waveforms
- Caused by two independent propagation mechanisms
 - (1) time dispersion (delay spread)
 - Determines frequency selective or flat
 - (2) frequency dispersion (Doppler spread)
 - Determines fast or slow

CLASSIFICATION: FAST FADING V.S. SLOW FADING

- The time domain variation of fading is determined by maximum Doppler spread f_D
 - Doppler shift: signal frequency change due to relative movement between Tx and Rx.
 - Larger speed $v \rightarrow \text{larger } f_D \rightarrow \text{channel varies faster.}$
- Coherence time *T_c*
 - The time period over which the channel is strongly correlated (didn't change too much)
 - Inverse proportional to f_D

CLASSIFICATION: FAST FADING V.S. SLOW FADING

System symbol period v.s. signal bandwidth

- Fast fading
 - If Ts > Tc, or $Bs < f_D$
 - Ts > Tc: channel changes within one symbol period \rightarrow fast fluctuation
- Slow fading
 - If $Ts \ll Tc$, or $Bs \gg f_D$
 - $Ts \ll Tc$: channel keeps constant during several symbol periods \Rightarrow slow amplitude fluctutation.

(Coherence time Tc, Doppler spread fD) is related to fast fading or slow fading

CLASSIFICATION: FAST FADING V.S. SLOW FADING

- Example: A cell phone user is in a vehicle moves at a speed of 120km/hr. The carrier frequency is 1800MHz.
 - (a) What is the maximum Doppler spread?
 - (b) What is the coherence time of the channel?
 - (c) The symbol period of a system is 3ms. Is the system experiencing fast fading or slow fading?
 - (d) The symbol rate of IS-136 system is 24.3ksym/s. Is the system experiencing fast fading or slow fading?

CLASSIFICATION: FLAT V.S. FREQUENCY SELECTIVE

- Maximum delay spread
 - The time interval between the first multipath and the last multipath

$$\tau_{\text{max}} = \tau_N - \tau_1$$

Mean delay spread

$$\bar{\tau} = \sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot \tau_n$$

 $\overline{\tau} = \sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot \tau_n$ $P_n : \text{the average power of the } n \text{th multipath}$ $P_{total} = \sum_{n=1}^{N} P_n : \text{ the total power of the all multipath}$

Root mean square (rms) delay spread

$$\tau_{rms} = \sqrt{\sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot (\tau_n - \overline{\tau})^2} = \sqrt{\sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot \tau_n^2 - \overline{\tau}^2}$$

CLASSIFICATION: FLAT V.S. FREQUENCY SELECTIVE

Coherence bandwidth Bc

- The bandwidth over which the channel is strongly correlated (didn't change too much)
 - The spectrum over coherence bandwidth is almost "flat"
- Inverse proportional to rms delay spread

(Coherence bandwidth Bc, rms delay spread τ_{rms}) is related to fast fading or slow fading

CLASSIFICATION: FLAT V.S. FREQUENCY SELECTIVE

Flat fading

- If $Bs \ll Bc$, or $Ts \gg \tau_{rms}$
- Bs << Bc: signal bandwidth << channel bandwidth
- $Ts >> \tau_{rms}$: relative arrival time between multipath components is negligible
 - Doesn't need to consider delay variable $h(t,\tau) \rightarrow h(t)$

• Frequency selective fading f_c

- If Bs >> Bc, or $Ts << \tau_{rms}$
- Bs >> Bc: signal bandwidth >> channel bandwidth
 - Signal spectrum will be seriously distorted by channel!
- Ts << τ_{rms} : symbol period smaller than rms delay spread
 - The relative arrival time between the multipath components is no longer negligible!

Frequency selective fading

- rms delay spread $\tau_{rms} >>$ system symbol period Ts
 - The relative arrival time between the multipath components is no longer negligible!
- The N multipath components are divided into L clusters
 - Within each cluster, there are still many multipath components
 - Multipath components belonging to the *l*th cluster arrives at approximately the same time τ_l .

$$h(t,\tau) = \sum_{l=1}^{L} h_l(t) \times \delta(\tau - \tau_l) = \sum_{l=1}^{L} \left[h_{ll}(t) + j h_{Ql}(t) \right] \times \delta(\tau - \tau_l)$$

- $-h_l(t)$ is the sum of all the multipath components within the same cluster
 - Resolvable multipath component
- The inphase and quadrature components of $h_i(t)$ are Gaussian distributed.
- The frequency selective fading can be viewed as the combination of multiple flat fading
 - Each branch (cluster) $h_l(t)$ can be viewed as flat fading

- Each branch of frequency selective fading can be viewed as a flat fading
 - All the properties discussed for flat fading can be directly applied to each branch of frequency selective fading
 - E.g. Inphase and quadrature components are Gaussian distributed.
 - fading envelope: Rayleigh v.s. Rician

Power delay profile

- The average power of each resolvable multipath component, w.r.t. the relative

delay

Relative delay (ms)	0	0.2	0.5	1.6	2.3	5.0
Average power	0.1897	0.3785	0.2388	0.0951	0.0600	0.0379

Example:

- (a) Find the maximum delay spread, mean delay spread, and rms delay spread of the following power delay profile.
- (b) What is the coherence bandwidth of the channel?
- (c) For a system with symbol rate 0.5KHz, is this a flat fading or frequency selective fading?
- (d) For a system with symbol rate 1000KHz, is this a flat fading or frequency selective fading?

Relative delay (ms)	0	1
Average power	0.4	0.6

CLASSIFICATION: RAYLEIGH V.S. RICIAN

Fading envelope

$$|h(t)| = \sqrt{h_I^2(t) + h_Q^2(t)}$$

Rayleigh fading

- Fading envelope |h(t)| follows Rayleigh distribution
- Non LOS (no dominant multipath components)

Rician fading

- Fading envelope |h(t)| follows Rician distribution
- One dominant component (LOS) along with weaker multipath signals

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

NOISE

Noise and interference

- Unwanted electrical signals interfering with the desired signal
- Arises from outside natural or artificial sources
 - Artificial source: noise from automobile ignition, signal from other communication system, etc.
 - Natural source: thermal noise, atmospheric disturbances.

Noise v.s. fading

- Noise arises from outside sources
 - fading arises from the signal propagation itself
- Noise is added to the desired signal → the desired signal is buried by noise (noise only has negative effects on signal).
 - Fading results in signal power fluctuation \rightarrow signal power may become larger or become smaller (fading might benefit system performance).
- Noise is present in all communication systems.
 - Fading is unique to wireless communications.

NOISE: SIGNAL TO NOISE RATIO

Signal to noise ratio (SNR):

- the ratio of the signal power to the noise power at the receiver.
- SNR = S/N, with S being the signal power, and N being the noise power observed by the receiver.
- High SNR → Signal is strong, and noise is weak → Better communication quality.
- Improve SNR → Improve Tx power → More power consumption

High SNR

Low SNR

NOISE: THERMAL NOISE

Thermal noise

- At the temperature above 0K (absolute temperature, =-273 centigrade), the electrons inside the conductor will move randomly.
- This random movement of electrons will cause random voltage fluctuations of the transmitted signals.
- Temperature increase → electrons movement becomes stronger → noise power increase

NOISE: THERMAL NOISE

Thermal noise is a random process

- At any time instant, the random voltage due to thermal noise follows Gaussian distribution with zero mean.
 - The random voltage is caused by the sum of the motions of a large number of electrons (central limit theorem).
- The noise samples at any two different time instants are uncorrelated. Autocorrelation function

$$R_{x}(\tau) = E\left[n(t)n^{*}(t-\tau)\right] = \frac{N_{0}}{2}\delta(\tau)$$

NOISE: THERMAL NOISE

- Power spectral density
 - Fourier transform of autocorrelation function

Additive White Gaussian Noise (AWGN)

NOISE: COCHANNEL INTERFERENCE

Cochannel interference (CCI)

- Due to frequency reuse, cells using the same frequency range will generate interference with each other.
- Unique to cellular system.

