Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $4 \ / \ 3 \ / \ 1$

Выполнил: студент 103 группы Михеев Б. М.

Преподаватели: Дудина И. А. Кузьменкова Е. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	9
Структура программы и спецификация функций	10
Сборка программы (Маке-файл)	13
Отладка программы, тестирование функций	14
Программа на Си и на Ассемблере	16
Анализ допущенных ошибок	17
Список цитируемой литературы	18

Постановка задачи

Требуется вычислить с заданной точностью $\varepsilon=10^{-3}$ площадь плоской фигуры, ограниченной тремя кривыми, заданными уравнениями:

$$f_1(x) = e^x + 2$$

 $f_2(x) = \frac{-1}{x}$
 $f_3(x) = \frac{-2(x+1)}{3}$

Вычислить абсциссы точек пересечения кривых требуется с некоторой точностью ε_1 . Точки пересечения кривых $f_i(x)$ и $f_j(x), 1 \le i, j \le 3$ находятся путем приближенного решения уравнения $F(x) = f_i(x) - f_j(x) = 0$ методом касательных (Ньютона). Площадь искомой фигуры требуется представить в виде алгебраической суммы определенных интегралов на соответствующих отрезках и вычислить их с точностью ε_2 по квадратурной формуле прямоугольников. Отрезки, на которых будет производиться поиск точек пересечения графиков, погрешности ε_1 и ε_2 и условия применимости методов касательных и прямоугольников требуется определить вручную. Поиск точек пересечения кривых и вычисление определенного интеграла производится отдельными функциями root и integral соответственно.

Математическое обоснование

Рассмотрим графики функций $f_1(x) = e^x + 2$, $f_2(x) = \frac{-1}{x}$, $f_3(x) = \frac{-2(x+1)}{3}$ (рис.1). Они ограничивают область на плоскости, площадь которой требуется вычислить. Обозначим ее как S.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Пусть x_1 – абсцисса точки пересечения $f_1(x)$ и $f_3(x)$, x_2 – абсцисса точки пересечения $f_2(x)$ и $f_3(x)$, x_3 – абсцисса точки пересечения $f_1(x)$ и $f_2(x)$. По рис.1 видно, что $x_1 \leq x_2 \leq x_3$. Тогда площадь рассматриваемой области S можно вычислить как сумму площадей двух ее частей S_1 и S_2 на отрезках $[x_1, x_2]$ и $[x_2, x_3]$ соответственно. Так как с геометрической точки зрения определенный интеграл от функции на сегменте [a, b] выражает площадь криволинейной трапеции, ограниченной графиком функции, осью OX и прямыми x = a, x = b, то площадь S_1 можно найти как разность площади под графиком функции $f_1(x)$ на отрезке $[x_1, x_2]$ и площади под графиком $f_3(x)$ на том же отрезке, т. е. как разность соответствующих определенных интегралов. Аналогично, площадь S_2 можно найти как разность площади под графиком $f_1(x)$ и площади под графиком $f_2(x)$ на сегменте $[x_2, x_3]$ при помощи вычисления соответсвующих определенных интегралов.

Перейдем к вычислению абсцисс точек пересечения графиков функций. В искомых точках должно выполняться условие $f_i(x) = f_j(x) \Leftrightarrow f_i(x) - f_j(x) = 0$, $1 \leq i, j \leq 3$. Обозначим $F_k(x) = f_i(x) - f_j(x)$, $1 \leq k \leq 3$. Получим следующие уравнения:

$$F_1(x) = f_1(x) - f_3(x) = e^x + 2 + \frac{2(x+1)}{3} = e^x + \frac{2x}{3} + \frac{8}{3} = 0$$

$$F_2(x) = f_2(x) - f_3(x) = \frac{-1}{x} + \frac{2(x+1)}{3} = \frac{-1}{x} + \frac{2x}{3} + \frac{2}{3} = 0$$

$$F_3(x) = f_1(x) - f_2(x) = e^x + 2 + \frac{1}{x} = 0$$

Для нахождения корней данных уравнений применим **метод** касательных [1] к каждой из функций F_k . Условиями применимости данного метода для функции F(x) на сегменте [a,b] являются непрерывность F(x) на нем, монотонность и сохранение знака первой производной F'(x) на этом же сегменте, и неравенство знаков F(x) на концах отрезка, т. е. условие F(a)F(b) < 0. Рассмотрим каждое уравнение и найдем отрезки, на которых к соответствующим функциям будет применим метод касательных.

Рис. 2: Функции $F_1(x)$ и $F'_1(x)$

Рассмотрим $F_1(x)$, $F_1'(x)$ и их графики. $F_1(x)=e^x+\frac{2x}{3}+\frac{8}{3}$ $F_1(-5)=\frac{1}{e^5}-\frac{2}{3}<0$ $F_1(-4)=\frac{1}{e^4}>0$

 $F_1'(x) = e^x + \frac{2}{3} > 0 \ \forall x$, монотонно возрастает в силу свойств функции e^x . Таким образом, для функции $F_1(x)$ метод применим на отрезке [-5, -4], и на нем локализован искомый корень x_1 .

Рис. 3: Функции $F_2(x)$ и $F_2^\prime(x)$

$$F_2(x) = -\frac{1}{x} + \frac{2x}{3} + \frac{2}{3}$$

$$F_2(-2) = -\frac{1}{6} < 0$$

$$F_2(-1) = 1 > 0$$

Рассмотрим $F_2(x)$, $F_2'(x)$ и их графики. $F_2(x) = -\frac{1}{x} + \frac{2x}{3} + \frac{2}{3}$ $F_2(-2) = -\frac{1}{6} < 0$ $F_2(-1) = 1 > 0$ $F_2(x) = \frac{1}{x^2} + \frac{2}{3} > 0 \ \forall x$, монотонно возрастает на $(-\infty, 0)$. Таким образом, к функции $F_2(x)$ метод применим на отрезке [-2, -1], на нем располагается искомый корень x_2 .

Рис. 4: Функции $F_3(x)$ и $F_3'(x)$

$$F_3(x) = e^x + 2 + \frac{1}{x}$$

$$F_3(-1) = \frac{1}{e} + 1 > 0$$

$$F_3(-0.25) = \frac{1}{1} - 2 < 0$$

Рассмотрим $F_3(x)$, $F_3'(x)$ и их графики. $F_3(x) = e^x + 2 + \frac{1}{x}$ $F_3(-1) = \frac{1}{e} + 1 > 0$ $F_3(-0.25) = \frac{1}{e^{\frac{1}{4}}} - 2 < 0$ $F_3'(x) = e^x - \frac{1}{x^2} < 0 \ \forall x \in (-\infty, 0], \ \text{т. к. при } x \in (-1, 0) \ e^x \in (\frac{1}{e}, 1), \ \frac{1}{x^2} > 1 \Rightarrow e^x - \frac{1}{x^2} < 0; \ \text{при } x \in (-\infty, 1], \ \frac{1}{e^{|x|}} < \frac{1}{x^2} \ \text{в силу большего роста } e^x \ \text{при } |x| \to +\infty$ $\Rightarrow e^x - \frac{1}{x^2} < 0. \ \text{Также } F_3'(x) \ \text{монотонно убывает на } (-\infty, 0).$

Таким образом, к функции $F_3(x)$ метод касательных применим на отрезке [-1, -0.25], где локализован корень x_3 .

В методе касательных выделяются два начальных случая. В первом знаки первой и второй производной функции различны, т. е. F'(x)F''(x) < 0. Тогда в качестве первого приближения берется левая граница отрезка [a,b], на котором ищется корень, и в точке (a, F(a)) проводится касательная. Во втором знаки производных совпадают, т. е. F'(x)F''(x) > 0. В таком случае в качестве начальной точки берется правая граница отрезка, и касательная проводится через точку (b, F(b)). Далее строится итерационная последовательность $x_{n+1} = x_n - \frac{F(x_n)}{F'(x_n)}$, где x_n – значение предыдущего приближения, x_{n+1} – значение нового приближения, абсцисса точки пересечения касательной, проведенной к кривой в точке $(x_n, F(x_n))$ с осью OX. Далее касательная проводится в точке $(x_{n+1}, F(x_{n+1}))$ и процедура повторяется. Процесс будет продолжаться до тех пор, пока значения функции в точках x_n и $x_n \pm \varepsilon_1$ не станут разных знаков, т. е. $F(x_{n+1})F(x_{n+1}\pm\varepsilon_1)\leq 0$. Данное условие означает, что в ходе метода мы достаточно близко подошли к искомому корню с учетом погрешности ε_1 . Таким образом будет происходить приближение и корню слева или справа в зависимости от начального случая.

Так как метод применяется к функциям, для которых соблюдены условия применимости, т. е. они непрерывны на отрезке, имеют монотонную и сохраняющую знак производную на нем, а значит, являются также монотонными, и принимают на границах отрезка значения противоположных знаков, то для выяснения знака первой производной при определении начального случая достаточно рассмотреть значение функции в левой границе отрезка. Если оно отрицательно, то производная положительна на отрезке, если положительно — то отрицательна. Для определения знака второй производной требуется выяснить расположение графика функции F(x) на рассматриваемом отрезке [a,b] и хорды, соединяющей точки (a,F(a)) и (b,F(b)). Для этого достаточно сравнить значение $F(\frac{a+b}{2})$ функции в середине отрезка (т. е. ординату точки на кривой) и значение $\frac{F(a)+F(b)}{2}$ (т. е. ординату точки на хорде с той же абсциссой). Если $F(\frac{a+b}{2}) < \frac{F(a)+F(b)}{2}$, то график F целиком лежит под хордой на отрезке [a,b], т. е. вторая производная F''(x) > 0. В противном случае график функции располагается над хордой, т. е. F''(x) < 0.

Из графиков функций $F_1(x)$, $F_2(x)$, $F_3(x)$ и их производных на выбранных отрезках следует, что для каждой из них имеет место случай F'(x)F''(x) > 0, т. е. для каждой функции приближение корня будет происходить справа.

Перейдем к вычислению определенных интегралов методом прямоугольников [1]. Метод состоит в следующем. На начальном шаге отрезок интегрирования разбивается на n равных частей длиной $\frac{b-a}{n}$, далее вычисляются и суммируются площади прямоугольников со сторонами $\frac{b-a}{n}$, $f(a+(i+\frac{1}{2})\frac{b-a}{n})$, $1 \le i \le n-1$, т. е. площадь криволинейной трапеции приближается площадями прямоугольников. Таким образом, получаем первое приближение интеграла I_n . Далее число разбиений n удваивается, и аналогичным образом вычисляется следующее приближение I_{2n} . Для сравнения текущего и предыдущего приближений и оценки погрешности вычисления интеграла используется n равило n Рунге: n0 n1 в случае метода прямоугольников. В итоге процесс вычисления приближений будет продолжаться до тех пор, пока не получим n1 n2 n3 в случае метода прямоугольников. В итоге процесс вычисления приближений будет продолжаться до тех пор, пока не получим n3 n4 n5 n6 г. е. пока не вычислим значение интеграла с погрешностью, удовлетворяющей заданной ошибке n6.

Оценим погрешности нахождения корней уравнений ε_1 и вычисления определенных интегралов ε_2 с учетом соблюдения общей точности $\varepsilon=10^{-3}$.

Точки пересечения кривых, т. е. корни уравнений $F_i(x) = 0, 1 \le i \le 3,$ находятся с точностью ε_1 . Пусть x_1 , x_2 , x_3 – истинные значения корней для $F_1(x), F_2(x), F_3(x)$ соответсвенно. Так как приближение к корням для каждой из функций производится справа, то приближенные решения, полученные в ходе метода касательных, будут находиться на интервалах $(x_1, x_1+\varepsilon_1), (x_2, x_2+\varepsilon_1),$ $(x_3,x_3+arepsilon_1)$ соответственно. Оценим вклад ошибки $arepsilon_1$ в вычисление площади. Искомая площадь S вычисляется как сумма площадей S_1 и S_2 , каждая из них находится как разность интегралов от соответствующих функций. Каждый из интегралов вычисляется с погрешностью $arepsilon_2$ на отрезке вида [a,b], где $a,\ b$ – найденные с погрешностью ε_1 точки пересечения графиков. Тогда вклад ε_1 в значение интеграла выразится в подсчете лишней или же избыточной площади на концах отрезка интегрирования. Для каждой из функций ее можно ограничить сверху прямоугольником со сторонами ε_1 и $max|f_i(x)|$, где $max|f_i(x)|$ - наибольшее по модулю значение функции на отрезке локализации соответствующей точки. В качестве такого отрезка можно взять отрезок, на котором расположены все точки x_1, x_2, x_3 . С учетом выбранных сегментов, на которых будет применяться метод касательных для каждой из функций, можно взять отрезок [-5, -0.25]. Функции $f_1(x), f_2(x)$ монотонно возрастают на нем, принимают максимальное по модулю значение на правом конце отрезка, $f_3(x)$ монотонно убывает на этом сегменте, принимает максимальное по модулю значение на левом конце отрезка. Получим:

$$\max|f_1(x)| = |f_1(-0.25)| = e^{-0.25} + 2, \max|f_2(x)| = |f_2(-0.25)| = 4, \max|f_3(x)| = |f_3(-5)| = \frac{8}{3}.$$

В итоге погрешность вычисления интеграла функции $f_i(x)$ не превысит величины $\varepsilon_2 + 2\varepsilon_1 max |f_i(x)|$, так как оба конца отрезка интегрирования вычислены с погрешностью ε_1 . Тогда максимальная погрешность вычисления S_1 составит $2\varepsilon_2 + 2\varepsilon_1(e^{-0.25} + \frac{14}{3})$, погрешность вычисления S_2 не превысит $2\varepsilon_2 + 2\varepsilon_1(e^{-0.25} + 6)$. По условию суммарная ошибка при вычислениях должна составлять $\varepsilon = 10^{-3} \Rightarrow 4\varepsilon_2 + 2\varepsilon_1(2e^{-0.25} + \frac{32}{3}) \le \varepsilon = 10^{-3}$

Таким образом, можем взять: $\varepsilon_1=10^{-5},\ \varepsilon_2=1.5\cdot 10^{-4},$ так как $6\cdot 10^{-4}+2(2e^{-0.25}+\frac{32}{3})\cdot 10^{-5}<10^{-3}.$

Результаты экспериментов

В Таблице 1 приведены результаты работы функции root, вычисляющей абсциссы точек пересечения графиков заданных функций $f_1(x)$, $f_2(x)$ и $f_3(x)$, и число итераций, за которое данное решение было получено.

Кривые	x	y	Число итераций
$f_1(x)$ и $f_3(x)$	-4.026739	2.017832	1
$f_2(x)$ и $f_3(x)$	-1.822876	0.548584	4
$f_1(x)$ и $f_2(x)$	-0.371819	2.689479	4

Таблица 1: Координаты точек пересечения и число итераций

Вычисленная программой площадь искомой области составляет 3, 564. При уменьшении ε_1 и ε_2 не происходит изменений в 6 разрядах результата после запятой, что свидетельствует о соблюдении установленной точности $\varepsilon = 10^{-3}$.

Рис. 5: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из следующих модулей:

- main.c основной модуль программы, содержащий функции root и integral вычисления точек пересечения графиков и определенных интегралов, а также функции help и обработку флагов командной строки.
- test.c вспомогательный модуль, содержит функцию test тестирования функций root и integral и обработку соответствующих аргументов командной строки.
- funclist.c модуль, содержащий реализации математических функций для тестирования функций root и integral и функцию funclist, выводящую в консоль список доступных функций и указания по использованию функции test.
- functions.asm модуль, содержащий реализации функций $f_1(x)$, $f_2(x)$ и $f_3(x)$ из условий задания и их производных, требующихся в методе касательных.

В программе используются следующие глобальные переменные:

- int flags[4] массив, хранящий информацию о введенных флагах. Значение 0 в соответсвующей ячейке означает, что флаг не был указан, значение 1 флаг был введен. Элементы данного массива отвечают следующим флагам:
 - flags[0] соответствует флагу -test, запускающему функцию test с соответствующими параметрами.
 - flags[1] соответствует флагу -iter, указывающему выводить на экран число итераций, за которое были найдены координаты точек пересечения определенных функций в ходе работы функции root.
 - flags[2] соответствует флагу -isect, указывающему вывести на экран координаты точек пересечений, найденных в ходе работы функпии root.
 - flags[3] соответствует флагу -debug, указывающему запустить программу в режиме отладки, т. е. с выводом всех промежуточных данных (текущие значения приближений корней уравнений или значений интегралов, число итераций и разбиений, номер текущей итерации, с какой стороны идет приближение корня и т. д.), получаемых в ходе работы программы.
- eps1 точность приближенного вычисления абсцисс точек пересечения кривых методом касательных, вычислена аналитически.
- eps2 точность приближенного вычисления интегралов методом прямоугольников, вычислена аналитически.

Программа использует следующие файлы:

- library.h содержит объявления функций из модуля functions.asm
- help.txt содержит описание возможностей программы, список доступных опций запуска, их функциональность и формат их использования. Выводится в консоль функцией help при указании ключа -help.
- funclist.txt содержит список функций, доступных для тестирования функций root и integral функцией test, и указание формата аргументов функции test. Выводится в консоль функцией funclist при указании ключа -funclist.

Программа содержит следующие функции:

- int main(int argc, char **argv) основная функция, принимает на вход argc параметров командной строки argv и запускает соответствующие функции в зависимости от ввода, его корректности и указанных ключей, формирует значения элементов массива flags.
- double root(double (*f)(double), double (*g)(double), double (*df)(double), double (*dg)(double), double a, double b, double eps) функция вычисления корня уравнения f(x)-g(x)=0 методом касательных с заданной точностью eps. Принимает на вход указатели на функции f и g, их производные df и dg, границы отрезка локализации корня a и b и точность eps. Возвращает значение абсциссы искомой точки пересечения функций f и g.
- double integral(double (*f)(double), double a, double b, double eps) функция вычисления определенного интеграла от функции f на отрезке [a,b] с заданной точностью eps методом прямоугольников. Принимает на вход указатель на функцию f, границы отрезка интегрирования a и b, точность eps. Возвращает значение соответствующего определенного интеграла.
- void test(int argc, char **argv) функция тестирования функций root и integral. Принимает на вход содержимое командной строки. При указании флага root запускает тестирование root со следующими аргументами:
 - ./program -test root fno1 fno2 a b eps

где fno1, fno2 — номера функций из списка доступных для тестирования (из файла funclist.c), a, b — границы отрезка локализации корня, eps — точность вычисления.

При указании флага integral запускает тестирование integral со следующими аргументами:

./program -test integral fno a b eps

где fno — номер функции из funclist.c, a, b — границы отрезка интегрирования, eps — точность вычисления.

Также опционально может принимать флаги -iter, -debug, -isect.

- void funclist(void) выводит в консоль содержимое файла funclist.txt со списком доступных к тестированию функций и форматом входных данных.
- void help(void) выводит в консоль содержимое файла help.txt со списком доступных опций работы программы и описанием их функционала.
- double f_i (double x), где $i \in [1,7]$ функции из funclist.c для тестирования root и integral. Принимают вещественное число x, возвращают значение соответсвующей функции от x.
- double df_i (double x), где $i \in [1,7]$ производные функций из funclist.c. Принимают вещественное число x, возвращают значение соответсвующей функции от x.
- F1, F2, F3 функции из functions.asm из условия задания. Принимают на вход вещественное число. Возращают значение соответствующей функции от принятого аргумента.
- DF1, DF2, DF3 производные функций из functions.asm из условия задания. Принимают на вход вещественное число. Возращают значение соответствующей функции от принятого аргумента.

Сборка программы (Make-файл)

На рис. 6 изображено строение программы и зависимости между ее модулями.

Рис. 6: Структура программы и зависимости между модулями

В модуле main.c присутсвуют объявления функции test, определенной в модуле test.c, и функции funclist, определенной в модуле funclist.c. Также к модулю main.c подключен заголовочный файл library.h, в котором присутствуют объявления функций F1, F2, F3, DF1, DF2, DF3, определенных в модуле functions.asm.

B модуле test.c присутствуют объявления массива flags, переменных eps1 и eps2 и функций root и integral, определенных в модуле main.c.

Сборка программы осуществляется при помощи утилиты make. Содержимое Makefile-a, список соответсвующих целей и зависимостей представлен ниже.

```
all: program

program: main.o functions.o test.o

gcc -m32 -o program main.o functions.o test.o -lm

main.o: main.c library.h

gcc -m32 -c -o main.o main.c

functions.o: functions.asm

nasm -f elf32 -o functions.o functions.asm

funclist.o: funclist.c

gcc -m32 -c -o funclist.o funclist.c

test.o:

gcc -m32 -c -o test.o test.c

clean:

rm -f main.o functions.o funclist.o test.o
```

Отладка программы, тестирование функций

Tестирование функции root проводилось на следующих функциях из модуля funclist.c:

1. $f_1(x) = \sqrt{5-x}$, $f_2(x) = x+1$, отрезок: [0, 2], точность: 0.01.

Поиск точки сводится к нахождению корня уравнения $F(x) = f_1(x) - f_2(x) = \sqrt{5-x} - x - 1 = 0$. На отрезке [0,2]:

1.
$$F(0) = \sqrt{5} - 1 > 0$$

2.
$$F(2) = \sqrt{3} - 3 < 0$$

3.
$$F'(x) = -\frac{1}{2\sqrt{5-x}} - 1 < 0 \ \forall x \in [0, 2]$$

4.
$$F''(x) = -\frac{1}{4(5-x)^{\frac{3}{2}}} < 0 \ \forall x \in [0,2]$$

Таким образом, к функции F(x) будет применим метод касательных на указанном отрезке, приближение корня будет производиться справа, т. к. $F'(x)F''(x) > 0 \ \forall x \in [0,2].$

Найденный функцией корень: 1.004132.

2. $f_1(x) = -x^2 + 4$, $f_2(x) = e^x$, отрезок: [-2, -1], точность: 0.001.

Поиск точки сводится к решению уравнения $F(x) = f_1(x) - f_2(x) = -x^2 + 4 - e^x = 0$. На отрезке [-2, -1]:

1.
$$F(-2) = -4 + 4 - e^{-2} < 0$$

2.
$$F(-1) = -1 + 4 - \frac{1}{e} > 0$$

3.
$$F'(x) = -2x - e^x > 0 \ \forall x \in [-2, -1]$$

4.
$$F''(x) = -e^x - 2 < 0 \ \forall x \in [-2, -1]$$

Таким образом, к функции F(x) будет применим метод касательных на указанном отрезке, приближение корня будет производиться слева, т. к. $F'(x)F''(x) < 0 \ \forall x \in [-2, -1].$

Найденный функцией корень: -1.964981

3. $f_1(x) = x^3$, $f_2(x) = \frac{x^2}{2} + 3x$, отрезок: [1.5, 3], точность: 0.0001.

Поиск точки сводится к решению уравнения $F(x) = f_1(x) - f_2(x) = x^3 - \frac{x^2}{2} - 3x = 0$. На отрезке [1.5, 3]:

1.
$$F(1.5) = \frac{27}{8} - \frac{9}{8} - \frac{9}{2} < 0$$

2.
$$F(3) = 27 - \frac{9}{2} - 9 > 0$$

3.
$$F'(x) = 3x^2 - x - 3 > 0 \ \forall x \in [1.5, 3].$$

4.
$$F''(x) = 6x - 1 > 0 \ \forall x \in [1.5, 3].$$

Таким образом, к функции F(x) будет применим метод касательных на указанном отрезке, приближение корня будет производиться справа, т. к. $F'(x)F''(x) > 0 \ \forall x \in [1.5, 3].$

Найденный функцией корень: 2.000010

Tестирование функций integral проводилось на следующих функциях из модуля funclist.c:

- 1. $f(x) = \sqrt{x+3}$, отрезок: [-2.75, 11], точность: 0.0001. Вычисленное функцией значение интеграла: 34.838869.
- 2. $f(x) = e^x$, отрезок: [-2,2], точность: 0.001. Вычисленное функцией значение интеграла: 7.252965.
- 3. $f(x)=x^3$, отрезок: [3, 21], точность: 0.01. Вычисленное функцией значение интеграла: 48599.997330.

Стоит отметить, что при вычислении абсцисс точек пересечения и при вычислении интегралов была соблюдена задаваемая точность.

Программа на Си и на Ассемблере

 Φ айлы с исходным кодом программы находятся в одном архиве вместе с данным отчетом. Модули main.c, funclist.c, test.c написаны на языке Си, модуль functions.asm — на языке ассемблера NASM.

Анализ допущенных ошибок

В ходе написания программы были допущены описки в коде, приведшие к некорректным результатам для определенных входных данных. Также первоначально присутсвовали недочеты при аналитическом вычислении погрешностей ε_1 и ε_2 .

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 — Москва: Наука, 1985.