

Probability and Statistics for Business and Data

PART 1 - DATA

Introduction

• Statistics is the mathematical science behind the problem "what can I know about a population if I'm unable to reach every member?"

- If we could measure the height of every resident of Australia, then we could make a statement about the average height of Australians at the time we took our measurement.
- This is where random sampling comes in.

- If we take a reasonably sized random sample of Australians and measure their heights, we can form a **statistical inference** about the population of Australia.
- Probability helps us know how sure we are of our conclusions!

Data

- Data = the collected observations we have about something.
- Data can be continuous:
 "What is the stock price?"
- or categorical:
 "What car has the best repair history?"

Helps us understand things as they are:

"What relationships if any exist between two events?"

"Do people who eat an apple a day enjoy fewer doctor's visits than those who don't?"

 Helps us predict future behavior to guide business decisions:

"Based on a user's click history which ad is more likely to bring them to our site?"

Compare a table:

Flights

	Α	В	С	D E	F	G F	1	J	K	L M	N	0
1	year	month	passengers									
2	1950	January	115	1952	July	230	1955	January	242	1957	July	465
3	1950	February	126	1952	August	242	1955	February	233	1957	August	467
4	1950	March	141	1952	September	209	1955	March	267	1957	September	404
5	1950	April	135	1952	October	191	1955	April	269	1957	October	347
6	1950	May	125	1952	November	172	1955	May	270	1957	November	305
7	1950	June	149	1952	December	194	1955	June	315	1957	December	336
8	1950	July	170	1953	January	196	1955	July	364	1958	January	340
9	1950	August	170	1953	February	196	1955	August	347	1958	February	318
10	1950	September	158	1953	March	236	1955	September	312	1958	March	362
11	1950	October	133	1953	April	235	1955	October	274	1958	April	348
12	1950	November	114	1953	May	229	1955	November	237	1958	May	363
13	1950	December	140	1953	June	243	1955	December	278	1958	June	435
14	1951	January	145	1953	July	264	1956	January	284	1958	July	491
15	1951	February	150	1953	August	272	1956	February	277	1958	August	505
16	1951	March	178	1953	September	237	1956	March	317	1958	September	404
17	1951	April	163	1953	October	211	1956	April	313	1958	October	359
12	1051	May	177	1052	November	190	1056	May	210	1059	November	210

Not much can be gained by reading it.

to a graph:

The graph uncovers two distinct trends - an increase in passengers flying over the years and a greater number of passengers flying in the summer months.

Analyze Visualizations Critically!

Graphs can be misleading:

Measuring Data

Nominal

- Predetermined categories
- Can't be sorted

Animal classification (mammal fish reptile)

Political party (republican democrat independent)

Ordinal

- Can be sorted
- Lacks scale

Survey responses

Interval

- Provides scale
- Lacks a "zero" point

Temperature

Ratio

Values have a true zero point

Age, weight, salary

Population vs. Sample

- Population = every member of a group
- Sample = a subset of members that time and resources allow you to measure

Mathematical Symbols & Syntax

Symbol/Expression	Spoken as	Description
x^2	x squared	x raised to the second power $x^2 = x \times x$
x_i	x-sub-i	a subscripted variable (the subscript acts as a label)
x!	x factorial	$4! = 4 \times 3 \times 2 \times 1$
$ar{x}$	x bar	symbol for the sample mean
μ	"mew"	symbol for the population mean (Greek lowercase letter mu)
${\it \Sigma}$	sigma	syntax for writing sums (Greek capital letter sigma)

$$x^{5} = x \times x \times x \times x \times x \times x$$

1 2 3 4 5

EXAMPLE: $3^{4} = 3 \times 3 \times 3 \times 3 = 81$

Exponents - special cases

$$x^{-3} = \frac{1}{x \times x \times x}$$

EXAMPLE:
$$2^{-3} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8} = 0.125$$

$$\chi^{\left(\frac{1}{n}\right)} = \sqrt[n]{\chi}$$

EXAMPLE:
$$8^{(\frac{1}{3})} = \sqrt[3]{8} = 2$$

$$x! = x \times (x-1) \times (x-2) \times \cdots \times 1$$

EXAMPLE:
$$6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$$

EXAMPLE:
$$\frac{5!}{3!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} = 5 \times 4 = 20$$

$$\sum_{x=1}^{n} x = 1 + 2 + 3 + \dots + n$$

EXAMPLE:
$$\sum_{x=1}^{4} x = 1 + 2 + 3 + 4 = 10$$

EXAMPLE:
$$\sum_{x=1}^{4} x^2 = 1 + 4 + 9 + 16 = 30$$

Series Sums

$$\sum_{i=1}^{n} x_{i} = x_{1} + x_{2} + x_{3} + \dots + x_{n}$$
EXAMPLE: $x = \{5,3,2,8\}$

$$n = \# \ elements \ in \ x = 4$$

$$\sum_{i=1}^{4} x_{i} = 5 + 3 + 2 + 8 = 18$$

Equation Example

Formula for calculating a sample mean:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Read out loud:

"x bar (the symbol for the sample mean) is equal to the sum (indicated by the Greek letter sigma) of all the x-sub-i values in the series as i goes from 1 to the number n items in the series divided by n."

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

1. Start with a series of values:

2. Assign placeholders to each item

3. These become x_1 x_2 etc.

$$x_1 = 7$$
 $x_2 = 8$ $x_3 = 9$ $x_4 = 10$

Equation Example

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

4. Plug these into the equation:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + x_3 + x_4 \dots + x_n}{n}$$

$$= \frac{7+8+9+10}{4} = \frac{34}{4} = 8.5$$

Measurement Types Central Tendency

"What was the average return?"
 Measures of Central Tendency

 "How far from the average did individual values stray?"
 Measures of Dispersion

Measures of Central Tendency (mean, median, mode)

- Describe the "location" of the data
- Fail to describe the "shape" of the data

```
mean = "calculated average"
```

median = "middle value"

mode = "most occurring value"

Mean s

Shows "location" but not "how spread out"

Median - odd number of values

Median - even number of values

Mean vs. Median

- The mean can be influenced by outliers.
- The mean of {2,3,2,3,2,12} is 4
- The median is 2.5
- The median is much closer to most of the values in the series!

10 10 11 13 15 16 16 16 21 23 28 30 33 34 36 44

= 16

Measurement Types Dispersion

Measures of Dispersion (range, variance, standard deviation)

9 10 11 13 15 16 19 19 21 23 28 30 33 34 36 39

- In this sample the mean is 22.25
- How do we describe how "spread out" the sample is?

910 11 13 15 16 19 19 21 23 28 30 33 34 36 39

$$Range = max - min$$
$$= 39 - 9$$
$$= 30$$

- Calculated as the sum of square distances from each point to the mean
- There's a difference between the SAMPLE variance and the POPULATION variance
- subject to Bessel's correction (n-1)

SAMPLE VARIANCE:

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1}$$

POPULATION VARIANCE: $\sigma^2 = \frac{\Sigma(X-\mu)^2}{N}$

$$\sigma^2 = \frac{\Sigma (X-\mu)^2}{N}$$

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1}$$

4 7 9 8 11
$$\bar{x} = \frac{4+7+9+8+11}{5} = \frac{39}{5} = 7.8$$
 sample mean

$$s^{2} = \frac{(4-7.8)^{2} + (7-7.8)^{2} + (9-7.8)^{2} + (8-7.8)^{2} + (11-7.8)^{2}}{5-1}$$

= 6.7 sample variance

- square root of the variance
- benefit: same units as the sample
- meaningful to talk about

"values that lie within one standard deviation of the mean"

Sample Standard Deviation $s = \sqrt{\frac{\Sigma(x-\bar{x})^2}{n-1}}$

$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}}$$

Sample:
$$\bar{x} = \frac{4+7+9+8+11}{5} = \frac{39}{5} = 7.8$$
 sample mean

$$s = \sqrt{\frac{(4-7.8)^2 + (7-7.8)^2 + (9-7.8)^2 + (8-7.8)^2 + (11-7.8)^2}{5-1}}$$

$$=\sqrt{6.7}=2.59$$
 sample standard deviation

Population Standard Deviation

$$\sigma = \sqrt{\frac{\Sigma (X - \mu)^2}{N}}$$

Population:

$$\mu = \frac{4+7+9+8+11}{5} = \frac{39}{5} = 7.8$$
 population mean

$$\sigma = \sqrt{\frac{(4-7.8)^2 + (7-7.8)^2 + (9-7.8)^2 + (8-7.8)^2 + (11-7.8)^2}{5}}$$

$$=\sqrt{5.36}=2.32$$
 population standard deviation

Measurement Types Quartiles

- Another way to describe data is through quartiles and the interquartile range (IQR)
- Has the advantage that every data point is considered, not aggregated!

Consider the following series of 20 values:

9 10 10 11 13 15 16 19 19 21 23 28 30 33 34 36 44 45 47 60

1st quartile

2nd quartile

3rd quartile

or median

- 1. Divide the series
- 2. Divide each subseries
- 3. These become quartiles

Quartiles and IQR

Consider the following series of 20 values:

9 10 10 11 13 15 16 19 19 21 23 28 30 33 34 36 44 45 47 60

1st quartile 2nd quartile 3rd quartile or median

1st quartile = 14

 2^{nd} quartile = 22

 3^{rd} quartile = 35

9 10 10 11 13 15 16 19 19 21 23 28 30 33 34 36 44 45 47 60

Quartile ranges are seldom the same size!

Fences & Outliers

- What is considered an "outlier"?
- A common practice is to set a "fence" that is 1.5 times the width of the IQR
- Anything outside the fence is an outlier
- This is determined by the data, not an arbitrary percentage!

In this set, 60 is *not* an outlier, but 70 would be

9 10 10 11 13 15 16 19 19 21 23 28 30 33 34 36 44 45 47 70

When drawing box plots, the whiskers are brought inward

to the outermost values inside the fence.

Bivariate Data

- Compares two variables
- By convention, the x-axis is set to the independent variable
- The y-axis is set to the dependent variable, or that which is being measured relative to x.

- Scatter plots may uncover a correlation between two variables
- They can't show causality!

- Correlation between two variables
- Doesn't prove causality!

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

- More statistical analysis is needed to determine causality!
- For example: "Does increasing number of police officers decrease crime?"
- We would look at correlation, and do further analysis to understand causality.

Positive correlation

Negative or Inverse correlation

- A common way to compare two variables is to compare their variances – how far from each item's mean do typical values fall?
- The first challenge is to match scale.
 Comparing height in inches to weight in pounds isn't meaningful unless we develop a standard score to normalize the data.

 For simplicity, we'll consider the population covariance:

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

Consider the following two tables:

x	у	
1	4	
2	6	
3	5	
4	7	
5	9	
6	8	

X	у
1	5
2	9
3	7
4	4
5	8
6	6

• Plot them:

X	у
1	4
2	6
3	5
4	7
5	9
6	8

x	у
1	5
2	9
3	7
4	4
5	8
6	6

 \bar{x} = 3.5, \bar{y} = 6.5

Calculate mean values:

X	У

1 4

2 6

3 5

4 7

5 9

6 8

$$\bar{x} = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\bar{y} = \frac{4+6+5+7+9+8}{6} = 6.5$$

1 5

2 9

3

4 4

5 8

6 6

$$\bar{x} = \frac{1+2+3+4+5+6}{6} = 3.5$$

$$\bar{y} = \frac{5+9+7+4+8+6}{6} = 6.5$$

 \bar{x} = 3.5, \bar{y} = 6.5

• Calculate $(x - \overline{x})$ and $(y - \overline{y})$:

x	у	(x - x)	(y - y)
1	4	-2.5	-2.5
2	6	-1.5	-0.5
3	5	-0.5	-1.5
4	7	0.5	0.5
5	9	1.5	2.5
6	8	2.5	1.5

X	у	(x - x)	(y - y)
1	5	-2.5	-1.5
2	9	-1.5	2.5
3	7	-0.5	0.5
4	4	0.5	-2.5
5	8	1.5	1.5
6	6	2.5	-0.5

 \bar{x} = 3.5, \bar{y} = 6.5

• Calculate $(x - \overline{x})(y - \overline{y})$:

X	у	(x - x)	(y - y)	$(x - x\overline{)}(y - y\overline{)}$
1	4	-2.5	-2.5	6.25
2	6	-1.5	-0.5	0.75
3	5	-0.5	-1.5	0.75
4	7	0.5	0.5	0.25
5	9	1.5	2.5	3.75
6	8	2.5	1.5	3.75

X	у	(x - x)	(y - y)	$(x - x\overline{)}(y - y\overline{)}$
1	5	-2.5	-1.5	3.75
2	9	-1.5	2.5	-3.75
3	7	-0.5	0.5	-0.25
4	4	0.5	-2.5	-1.25
5	8	1.5	1.5	2.25
6	6	2.5	-0.5	-1.25

 \bar{x} = 3.5, \bar{y} = 6.5

Calculate sums:

x	у	(x - x)	(y - y)	$(x - x\overline{)}(y - y\overline{)}$
1	4	-2.5	-2.5	6.25
2	6	-1.5	-0.5	0.75
3	5	-0.5	-1.5	0.75
4	7	0.5	0.5	0.25
5	9	1.5	2.5	3.75
6	8	2.5	1.5	3.75
			Σ	15.5

X	у	(x - x)	(y - y)	$(x - x\overline{)}(y - y\overline{)}$
1	5	-2.5	-1.5	3.75
2	9	-1.5	2.5	-3.75
3	7	-0.5	0.5	-0.25
4	4	0.5	-2.5	-1.25
5	8	1.5	1.5	2.25
6	6	2.5	-0.5	-1.25
			Σ	-0.5

 \bar{x} = 3.5, \bar{y} = 6.5

Calculate covariance:

X	V

3

8

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$
 x y
$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$=\frac{15.5}{6}=2.583$$

6

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$=\frac{-0.5}{6}=-0.083$$

15.5

-0.5

Compare covariances:

6

Pearson Correlation Coefficient

Pearson Correlation Coefficient

 In order to normalize values coming from two different distributions, we use:

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\frac{1}{n} \sum (x - \bar{x})(y - \bar{y})}{\sqrt{\frac{\sum (x - \bar{x})^2}{n}} \sqrt{\frac{\sum (y - \bar{y})^2}{n}}} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$ho =$$
 Greek letter "rho" $\sigma =$ standard deviation $cov =$ covariance $\bar{x} =$ mean of X

- Values fall between +1 and -1, where
 - 1 = total positive linear correlation
 - 0 = no linear correlation
 - -1 = total negative linear correlation

Pearson Correlation Coefficient

 Several sets of (x, y) points, with the correlation coefficient for each set:

- A company decides to test sales of a new product in five separate markets, to determine the best price point.
- They set a different price in each market and record sales volume over the same 30 day period.

- These are the results
- Plot the results

Price (USD)	Units Sold (thousands)
10	55
11	57
15	49
19	48
22	39

 There appears to be a strong correlation, but how strong?

Price (USD)	Units Sold (thousands)
10	55
11	57
15	49
19	48
22	39

1. Recall the simplified $\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum (x-\bar{x})(y-\bar{y})}{\sqrt{\sum (x-\bar{x})^2} \sqrt{\sum (y-\bar{y})^2}}$

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

Price (USD)	Units Sold (thousands)				
10	55				
11	57				
15	49				
19	48				
22	39				

2. Find the mean of x and y:

$$\bar{x} = \frac{10 + 11 + 15 + 19 + 22}{5} = 15.4$$

$$\bar{y} = \frac{55 + 57 + 49 + 48 + 39}{5} = 49.6$$

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\bar{x} = 15.4 \quad \bar{y} = 49.6$$

3. Calculate $(x - \bar{x})$ and $(y - \bar{y})$:

Price (USD)	Units Sold (thousands)	$(x-\bar{x})$	$(y-\bar{y})$
10	55	-5.4	5.4
11	57	-4.4	7.4
15	49	-0.4	-0.6
19	48	3.6	-1.6
22	39	6.6	-10.6

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\bar{x} = 15.4 \quad \bar{y} = 49.6$$

4. Calculate $(x - \bar{x})(y - \bar{y})$:

Price (USD)	Units Sold (thousands)	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$
10	55	-5.4	5.4	-29.16
11	57	-4.4	7.4	-32.56
15	49	-0.4	-0.6	0.24
19	48	3.6	-1.6	-5.76
22	39	6.6	-10.6	-69.96

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\bar{x} = 15.4 \quad \bar{y} = 49.6$$

5. Calculate $(x - \bar{x})^2$ and $(y - \bar{y})^2$:

Price (USD)	Units Sold (thousands)	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^2$	$(y-\bar{y})^2$
10	55	-5.4	5.4	-29.16	29.16	29.16
11	57	-4.4	7.4	-32.56	19.36	54.76
15	49	-0.4	-0.6	0.24	0.16	0.36
19	48	3.6	-1.6	-5.76	12.96	2.56
22	39	6.6	-10.6	-69.96	43.56	112.36

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\bar{x} = 15.4 \quad \bar{y} = 49.6$$

6. Compute the sums:

Price (USD)	Units Sold (thousands)	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^2$	$(y-\bar{y})^2$
10	55	-5.4	5.4	-29.16	29.16	29.16
11	57	-4.4	7.4	-32.56	19.36	54.76
15	49	-0.4	-0.6	0.24	0.16	0.36
19	48	3.6	-1.6	-5.76	12.96	2.56
22	39	6.6	-10.6	-69.96	43.56	112.36
			Σ	-137.2	105.2	199.2

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\bar{x} = 15.4 \quad \bar{y} = 49.6$$

7. Plug these into the original formula:

Price (USD)	Units Sold (thousands)	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^2$	$(y-\bar{y})^2$
10	55	-5.4	5.4	-29.16	29.16	29.16
11	57	-4.4	7.4	-32.56	19.36	54.76
15	49	-0.4	-0.6	0.24	0.16	0.36
19	48	3.6	-1.6	-5.76	12.96	2.56
22	39	6.6	-10.6	-69.96	43.56	112.36
			Σ	-137.2	105.2	199.2

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}}$$

$$\bar{x} = 15.4 \quad \bar{y} = 49.6$$

7. Plug these into the original formula:

$$\rho_{X,Y} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2} \sqrt{\sum (y - \bar{y})^2}} = \frac{-137.2}{\sqrt{105.2} \sqrt{199.2}}$$
$$= \frac{-137.2}{10.26 \times 14.11} = \frac{-137.2}{144.8} = -0.948$$

• $\rho_{X,Y} = -0.948$ shows a *very* strong negative correlation!

