MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSACN-2010)

NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA

MATEMÁTICA

- 1) Seja ABC um triângulo com lados AB = 15, AC = 12 e BC = 18. Seja P um ponto sobre o lado AC, tal que PC=3AP. Tomando Q sobre BC, entre B e C, tal que a área do quadrilátero APQB seja igual a área do triângulo PQC, qual será o valor de BQ?
 - (A) 3,5
 - (B) 5
 - (C) 6
 - (D) 8
 - (E) 8,5
- Sejam $p(x) = 2x^{2010} 5x^2 13x + 7 e$ $q(x) = x^2 + x + 1$. Tomando r(x) como sendo o resto na divisão de p(x) por q(x), o valor de r(2) será
 - (A) -8
 - (B) -6
 - (C) -4
 - (D) -3
 - (E) -2
- Tem-se o quadrado de vértices ABCD com lados medindo 'k'cm. Sobre AB marca-se M, de modo que $AM = \frac{BM}{3}$. Sendo N o simétrico de B em relação ao lado CD, verifica-se que MN corta a diagonal AC em P. Em relação à área ABCD, a área do triângulo PBC equivale a:
 - (A) 18%
 - (B) 24%
 - (C) 27%
 - (D) 30%
 - (E) 36%

Prova : Amarela Concurso : PSACN/10

- 4) No conjunto dos inteiros positivos sabe-se que 'a' é primo com 'b' quando mdc(a,b)=1.
 Em relação a este conjunto, analise as afirmativas a seguir.
 - I A fatoração em números primos é única.
 - II Existem 8 números primos com 24 e menores que 24.
 - III- Se $(a+b)^2 = (a+c)^2$ então b=c
 - IV Se a < b, então a.c < b.c</pre>

Quantas das afirmativas acima são verdadeiras?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4
- 5) Estudando os quadrados dos números naturais, um aluno conseguiu determinar corretamente o número de soluções inteiras e positivas da equação $5x^2 + 11y^2 = 876543$. Qual foi o número de soluções que este aluno obteve?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (E) 4
- 6) ABCD é um quadrado de lado L. Sejam K a semicircunferência, traçada internamente ao quadrado, com diâmetro CD, e T a semicircunferência tangente ao lado AB em A e tangente à K. Nessas condições, o raio da semicircunferência T será
 - (A) $\frac{5L}{6}$
 - (B) $\frac{4L}{5}$
 - (C) $\frac{2L}{3}$
 - (D) $\frac{3L}{5}$
 - (E) $\frac{L}{3}$

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

Concurso : PSACN/10

- 7) Considere o conjunto de todos os triângulos retângulos. Sendo 'h' a altura relativa à hipotenusa, quantos elementos, nesse conjunto, tem altura igual a $\frac{\sqrt{15}}{4}$ h²?
 - (A) Infinitos.
 - (B) Mais de dezesseis e menos de trinta.
 - (C) Mais de quatro e menos de quinze.
 - (D) Apenas um.
 - (E) Nenhum.
- Seja 'x' um número real. Define-se [x] como sendo o maior inteiro menor do que 'x', ou igual a 'x'. Por exemplo, [2,7]; [-3,6]; [5] são, respectivamente, igual a 2; -4 e 5. A solução da igualdade [x]+[2x]=6 é o intervalo [a; b). O valor de a + b é
 - (A) $\frac{15}{4}$
 - (B) $\frac{9}{2}$
 - (C) $\frac{11}{2}$
 - (D) $\frac{13}{3}$
 - (E) $\frac{17}{5}$

Prova : Amarela

Profissão: PROVA DE MATEMÁTICA

Concurso : PSACN/10

- 9) ABC é um triângulo equilátero. Seja P um ponto do plano de ABC e exterior ao triângulo de tal forma que PB intersecta AC em Q (Q está entre A e C) . Sabendo que o ângulo APB é igual a 60° , que PA = 6 e PC = 8, a medida de PQ será
 - $(A) \quad \frac{24}{7}$
 - (B) $\frac{23}{5}$
 - (C) $\frac{19}{6}$
 - $(D) \quad \frac{33}{14}$
 - (E) $\frac{11}{4}$
- 10) A diferença entre um desconto de 50% e dois descontos sucessivos de 30% e 20% sobre o valor de R\$ 40.000 é um valor inteiro:
 - (A) múltiplo de 7.
 - (B) múltiplo de 9.
 - (C) múltiplo de 12.
 - (D) impar.
 - (E) zero, pois os descontos são iguais.
- 11) Sejam A, B e C conjuntos tais que: $A = \{1, \{1,2\}, \{3\}\}, B = \{1, \{2\}, 3\} e C = \{\{1\}, 2, 3\}.$ Sendo X a união dos conjuntos (A-C) e (A-B), qual será o total de elementos de X?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
 - (E) 5

Prova : Amarela Concurso : PSACN/10

- 12) No conjunto dos números reais, o conjunto solução da equação $\sqrt[4]{(2x+1)^4} = 3x + 2$
 - (A) é vazio.
 - (B) é unitário.
 - (C) possui dois elementos.
 - (D) possui três elementos.
 - (E) possui quatro elementos.
- Sabe-se que $p(x) = acx^4 + b(a+c)x^3 + (a^2+b^2+c^2)x^2 + b(a+c)x + ac$ é um produto de dois polinômios do 2^{0} grau e que os números a, b, c são reais não nulos com $(b^2 4ac)$ positivo. Nessas condições, é correto afirmar que
 - (A) há apenas um valor de x tal que p(x)=0
 - (B) há apenas dois valores de x tais que p(x)=0
 - (C) há apenas três valores de x tais que p(x)=0
 - (D) há quatro valores de x tais que p(x)=0
 - (E) não há valores de x tais que p(x)=0
- 14) Em um triângulo acutângulo não equilátero, os três pontos notáveis (ortocentro, circuncentro e baricentro) estão alinhados. Dado que a distância entre o ortocentro e o circuncentro é 'k', pode-se concluir que a distância entre o circuncentro e o baricentro será
 - (A) $\frac{5k}{2}$
 - (B) $\frac{4k}{3}$
 - (C) $\frac{4k}{5}$
 - (D) $\frac{k}{2}$
 - (E) $\frac{k}{3}$

Prova : Amarela Concurso : PSACN/10

15) Dois números reais não simétricos são tais que a soma de seus quadrados é 10 e o quadrado de seu produto é 18. De acordo com essas informações, a única opção que contém pelo menos um desses dois números é:

$$(A) \quad \{x \in \Re \mid -1 \le x \le 1\}$$

(B)
$$\{x \in \Re \mid 1 \le x \le 3\}$$

(C)
$$\{x \in \Re \mid 3 \le x \le 5\}$$

(D)
$$\{x \in \Re \mid 5 \le x \le 7\}$$

$$(E) \quad \{x \in \Re \mid 7 \le x \le 9\}$$

No sistema $\begin{cases} 3x-y.\sqrt{3}=0\\ x^2.\ y^{-2}=\frac{1}{3} \end{cases} \text{, a quantidade de soluções inteiras}$

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) infinita.
- 17) No conjunto dos números reais, qual será o conjunto solução da inequação $\frac{88}{\sqrt{121}} \frac{1}{x} \le 0.25^{\frac{1}{2}}$?

(A)
$$\left\{ x \in \Re / \frac{2}{15} < x < \frac{15}{2} \right\}$$

(B)
$$\left\{ x \in \Re / 0 < x \le \frac{2}{15} \right\}$$

(C)
$$\left\{ x \in \Re / -\frac{2}{15} < x < 0 \right\}$$

(D)
$$\left\{ x \in \Re / - \frac{15}{2} \le x < - \frac{2}{15} \right\}$$

(E)
$$\left\{ x \in \Re / x < -\frac{15}{2} \right\}$$

Prova : Amarela

Profissão : PROVA DE MATEMÁTICA

Concurso : PSACN/10

18) Considere o sistema abaixo nas variáveis reais x e y, sendo a e b reais.

$$\begin{cases} 375y^2x - 125y^3 - 375yx^2 + 125x^3 = 125b \\ y^2 + x^2 + 2yx = a^2 \end{cases}$$

Nessas condições, qual será o valor de $(x^2-y^2)^6$?

- (A) a^3b^6
- (B) a^8b^6
- (C) a^6b^2
- (D) a^3b^6
- (E) a^4b^6
- Sejam p e q números reais positivos tais que $\frac{1}{p}+\frac{1}{q}=\frac{1}{\sqrt{2010}}$. Qual o valor mínimo do produto pq?
 - (A) 8040
 - (B) 4020
 - (C) 2010
 - (D) 1005
 - (E) 105
- 20) No conjunto 'R' dos números reais, qual será o conjunto solução da equação $\frac{\sqrt{3}}{x^2-1}=\frac{\sqrt{3}}{2x-2}-\frac{\sqrt{3}}{2x+2}$?
 - (A) R
 - (B) R (-1;1)
 - (C) R [-1;1]
 - (D) $R \{-1; +1\}$
 - (E) R [-1;1)

Prova : Amarela Concurso : PSACN/10

DIRETORIA DE ENSINO DA MARINHA

Processo Seletivo de Admissão ao Colégio Naval (PSACN/2010).

MATEMÁTICA			
PROVA AMARELA		PROVA AZUL	
01	С	01	С
02	E	02	A
03	D	03	A
04	E	04	В
05	A	05	A
06	E	06	D
07	Anulada	07	E
80	В	08	В
09	A	09	С
10	С	10	D
11	С	11	E
12	В	12	E
13	Anulada	13	В
14	E	14	С
15	В	15	Anulada
16	A	16	В
17	В	17	С
18	С	18	A
19	A	19	E
20	D	20	Anulada