# LP1 Assignment AI&R 2

Date: 2<sup>nd</sup> November, 2020

Title: Expert System

## **Problem Definition:**

Implement an Expert System for Medical Diagnosis of diseases based on adequate symptoms.

## **Learning Objectives:**

• To learn and implement an expert system

### **Learning Outcomes:**

• I will be able to learn and implement Expert System for Medical Diagnosis

### S/W & H/W Packages:

• Operating System: 64-bit Ubuntu 18.04

• Programming Language: Python 3

• Jupyter Notebook Environment: Google Colaboratory

• Python3 Library: experta

### **Related Mathematics:**

S = {s; e; X; Y; Fme; Ff; DD; NDD}

s = start state

• s = Set of Symptoms for a set of diseases each

e = end state

• e = Final diagnosis

 $X = \{X1\}$ 

- $X1 = \{Di \mid 0 <= i\}$
- Di is the set of symptoms for ith Disease

 $Y = \{Y1\}$ 

• Y1 = {Final Diagnosis}

Fme = {function to perform Fact based classification}

 $Ff = \{f1, f2, f3\} \text{ where }$ 

- f1 = function to find input symptoms
- f2 = function to find states
- f3 = function to display diagnosis

DD = Set of Symptoms for a set of diseases each

NDD = No non deterministic data

## **Concepts Related to Theory:**

### **Expert Systems:**

- Diagnostic expert-based systems are computer systems that seek to emulate the diagnostic decision-making ability of human experts.
- Medical expert systems generally include two components:
- a. Knowledge Base (KB) It encapsulates the evidence-based medical knowledge that is curated by experts
- b. Rule-based inference engine It is devised by the expert, which operates on the knowledge base to generate a differential diagnosis.
- Diagnostic knowledge bases generally consist of diseases, findings (i.e. symptoms, signs, history, or lab results), and their relationships.
- In many cases, they explicitly lay out the relationships between a set of findings and the things that cause them (diseases).
- For example, a KB might include influenza and show its relationships with fever, coughing, and congestion.

#### **Inference Engine:**

The inference engine is based on forward and backward chaining, examining the knowledge base (disease symptoms) for information that matches the user's query (kind of disease).

#### **Knowledge Base Design:**

The knowledge domain was got from facts of a collection of data about the types of symptoms and diseases to be isolated and identified, the identification methods, the expected results.

Data elicited for the isolation, identification of symptoms and possible recommendations on susceptibility patterns makes the knowledge base which was modeled into frames at the different levels of the decision trees and using the "IF—THEN" production rules , quick deductions are made.



# Perception

## Representing Diseases and Symptoms

| Label | Disease         | Label | Symptom        |  |  |
|-------|-----------------|-------|----------------|--|--|
| x1    | Jaundice        | s1    | Headache       |  |  |
| x2    | Alzheimers      | s2    | Back pain      |  |  |
| х3    | Arthritis       | s3    | Chest pain     |  |  |
| x4    | Tuberculosis    | s4    | Cough          |  |  |
| x5    | Asthma          | s5    | Fainting       |  |  |
| х6    | Sinusitis       | s6    | Sore throat    |  |  |
| x7    | Epilepsy        | s7    | Fatigue        |  |  |
| x8    | Heart Disease   | s8    | Restlessness   |  |  |
| x9    | Diabetes        | s9    | Low body temp  |  |  |
| x10   | Glaucoma        | s10   | Fever          |  |  |
| x11   | Hyperthyroidism | s11   | Sunken eyes    |  |  |
| x12   | Heat Stroke     | s12   | Nausea         |  |  |
| x13   | Hypothermia     | s13   | Blurred vision |  |  |

## **Truth Table**

|     | s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8 | s9 | s10 | s11 | s12 | s13 |
|-----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| x1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1   | 0   | 1   | 0   |
| x2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0   | 0   | 0   | 0   |
| хЗ  | 0  | 1  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 0   | 0   | 0   |
| x4  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 1   | 0   | 0   | 0   |
| x5  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0   | 0   | 0   | 0   |
| x6  | 1  | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1   | 0   | 0   | 0   |
| x7  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 0   | 0   | 0   |
| x8  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 0   |
| x9  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 0   | 1   | 1   |
| x10 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0   | 1   | 1   |
| x11 | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0   | 0   | 1   | 0   |
| x12 | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1   | 0   | 1   | 0   |
| x13 | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 0   | 0   | 0   | 0   |

#### Cognition

### Example of Rule in Knowledge Base:

Disease (Patient, Jaundice): Symptom (Patient, Fatigue), Symptom (Patient, Fever), Symptom (Patient, Nausea)

- s1  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  ~x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  x7  $\land$  ~x8  $\land$  ~x9  $\land$  x10  $\land$  ~x11  $\land$  x12  $\land$  ~x13
- s2  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  ~x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  ~x7  $\land$  x8  $\land$  ~x9  $\land$  ~x10  $\land$  ~x11  $\land$  ~x12  $\land$  ~x13
- s3  $\rightarrow$  ~x1  $\land$  x2  $\land$  ~x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  x7  $\land$  ~x8  $\land$  ~x9  $\land$  ~x10  $\land$  ~x11  $\land$  ~x12  $\land$  ~x13
- s4  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  x3  $\land$  x4  $\land$  ~x5  $\land$  ~x6  $\land$  ~x7  $\land$  ~x8  $\land$  ~x9  $\land$  x10  $\land$  ~x11  $\land$  ~x12  $\land$  ~x13
- s5  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  x3  $\land$  x4  $\land$  ~x5  $\land$  ~x6  $\land$  ~x7  $\land$  x8  $\land$  ~x9  $\land$  ~x10  $\land$  ~x11  $\land$  ~x12  $\land$  ~x13
- s6  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  ~x3  $\land$  x4  $\land$  ~x5  $\land$  x6  $\land$  ~x7  $\land$  ~x8  $\land$  ~x9  $\land$  x10  $\land$  ~x11  $\land$  ~x12  $\land$  ~x13
- s7  $\rightarrow$   $\sim$ x1  $\wedge$   $\sim$ x2  $\wedge$   $\sim$ x3  $\wedge$   $\sim$ x4  $\wedge$   $\sim$ x5  $\wedge$   $\sim$ x6  $\wedge$  x7  $\wedge$   $\sim$ x8  $\wedge$   $\sim$ x9  $\wedge$   $\sim$ x10  $\wedge$   $\sim$ x11  $\wedge$   $\sim$ x12  $\wedge$   $\sim$ x13
- s8  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  ~x7  $\land$  ~x8  $\land$  ~x9  $\land$  ~x10  $\land$  ~x11  $\land$  x12  $\land$  ~x13
- s9  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  ~x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  x7  $\land$  ~x8  $\land$  ~x9  $\land$  ~x10  $\land$  ~x11  $\land$  x12  $\land$  x13
- s10  $\rightarrow$  x1  $\land$   $^{\sim}$ x2  $\land$   $^{\sim}$ x3  $\land$   $^{\sim}$ x4  $\land$   $^{\sim}$ x5  $\land$   $^{\sim}$ x6  $\land$   $^{\sim}$ x7  $\land$   $^{\sim}$ x8  $\land$   $^{\sim}$ x9  $\land$   $^{\sim}$ x10  $\land$   $^{\sim}$ x11  $\land$  x12  $\land$  x13
- s11  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  ~x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  x7  $\land$  ~x8  $\land$  ~x9  $\land$  ~x10  $\land$  ~x11  $\land$  x12  $\land$  ~x13
- s12  $\rightarrow$  x1  $\land$  ~x2  $\land$  ~x3  $\land$  ~x4  $\land$  ~x5  $\land$  ~x6  $\land$  ~x7  $\land$  ~x8  $\land$  ~x9  $\land$  x10  $\land$  ~x11  $\land$  x12  $\land$  ~x13

s13  $\rightarrow$  ~x1  $\land$  ~x2  $\land$  ~x3  $\land$  ~x4  $\land$  x5  $\land$  ~x6  $\land$  ~x7  $\land$  ~x8  $\land$  x9  $\land$  ~x10  $\land$  ~x11  $\land$  ~x12  $\land$  ~x13

#### **Action**

Fire Rule to Display Disease iff a Fact of Disease has been asserted in Cognition Otherwise Fire Rule to display the most probable disease.

#### **Goal State**

Display Name of the disease or Display no disease along with most probable disease

### **Output:**







## Notebook Link:

https://colab.research.google.com/drive/1ZFe 8s5FWXUhEbddAoNxtoBMxiVp1B X7?usp=sharing

## **Conclusion:**

I have successfully designed and implemented an Expert System for Medical System