<u>Lecture 5 – Image Segmentation (图像分割)</u>

This lecture will cover:

- Morphological Image Processing (形态学图像处理)
 - Morphological operation
 - Morphological algorithm
- Image Segmentation(图像分割)
 - Point, Line and Edge Detection (点、线和边缘检测)
 - Thresholding (阈值处理)
 - Segmentation using Morphological Watersheds(形态学分水岭分割)

Basic Morphologic Algorithms

- ➤ Boundary Extraction (边界提取)
- ➤ Hole Filling (孔洞填充)
- ➤ Extraction of Connected components (连通分量提取)
- ➤ Convex Hull (凸壳)
- ➤ Thinning (细化)
- ➤ Thickening (粗化)
- ➤ Skeleton (骨架)
- ➤ Pruning (裁剪)

Boundary Extraction (边界提取)

Morphological algorithm: $\beta(A) = A - (A \ominus B)$

Hole Filling (孔洞填充)

Morphological algorithm: $X_k = (X_{k-1} \oplus B) \cap A^c$

Extraction of Connected components (连通分量提取)

Morphological algorithm: $X_k = (X_{k-1} \oplus B) \cap A$

Extraction of Connected components

Connected component	No. of pixels in connected comp
01	11
02	9
03	9
04	39
05	133
06	1
07	1
08	743
09	7
10	11
11	11
12	9
13	9
14	674
15	85

Convex Hull (凸壳)

Morphological algorithm:

$$C(A) = \bigcup_{i=1}^4 D^i$$

Where

 B^{i} : structuring elements

$$X_0^i = A$$

$$X_k^i = \left(X_{k-1}^i \circledast B^i\right) \cup A$$

$$D^i = X^i_k$$
 when $X^i_k = X^i_{k-1}$

Thinning (细化)

Morphological algorithm:

$$A \otimes B = A - (A \circledast B)$$
$$= A \cap (A \circledast B)^{c}$$

Let
$$B = \{B^1, B^2, B^3 \cdots, B^n\}$$

$$A \otimes \{B\} = ((\cdots ((A \otimes B^1) \otimes B^2) \cdots) \otimes B^n)$$

Thickening (粗化)

Morphological algorithm:

$$A \odot B = A \cup (A \circledast B)$$

Let
$$B = \{B^1, B^2, B^3 \cdots, B^n\}$$

$$A \odot \{B\} = ((\cdots ((A \odot B^1) \odot B^2) \cdots) \odot B^n)$$

Skeleton (骨架)

Morphological algorithm:

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

Where

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$
$$(A \ominus kB) = ((\cdots ((A \ominus B) \ominus B) \cdots) \ominus B)$$
$$K = \max\{k | A \ominus kB \neq \emptyset\}$$

A can be reconstructed by

$$A = \bigcup_{k=0}^{K} (S_k(A) \oplus kB)$$

Where $(A \oplus kB) = ((\cdots ((A \oplus B) \oplus B) \cdots) \oplus B)$

Pruning (裁剪)

Morphological algorithm:

- 1. Thinning: $X_1 = A \otimes \{B\}$
- 2. Finding endpoints: $X_2 = \bigcup_{k=1}^8 (X_1 \circledast B^k)$
- 3. Dilating from endpoints: $X_3 = (X_2 \oplus H) \cap A$
- 4. $P = X_3 \cup X_1$

Function for Morphological Algorithms

Operation	Description
bothat	"Bottom-hat" operation using a 3 × 3 structuring element; use imbothat (see Section 9.6.2) for other structuring elements.
bridge	Connect pixels separated by single-pixel gaps.
clean	Remove isolated foreground pixels.
close	Closing using a 3×3 structuring element of 1s; use imclose for other structuring elements.
diag	Fill in around diagonally-connected foreground pixels.
dilate	Dilation using a 3×3 structuring element of 1s; use imdilate for other structuring elements.
erode	Erosion using a 3×3 structuring element of 1s; use imerode for other structuring elements.
fill	Fill in single-pixel "holes" (background pixels surrounded by fore- ground pixels); use imfill (see Section 10.1.2) to fill in larger holes.
hbreak	Remove H-connected foreground pixels.
majority	Make pixel p a foreground pixel if at least five pixels in $N_8(p)$ (see Section 9.4) are foreground pixels; otherwise make p a background pixel.
open	Opening using a 3×3 structuring element of 1s; use function imopen for other structuring elements.
remove	Remove "interior" pixels (foreground pixels that have no back- ground neighbors).
shrink	Shrink objects with no holes to points; shrink objects with holes to rings.
skel	Skeletonize an image.
spur	Remove spur pixels.
thicken	Thicken objects without joining disconnected 1s.
thin	Thin objects without holes to minimally-connected strokes; thin objects with holes to rings.
tophat	"Top-hat" operation using a 3×3 structuring element of 1s; use imtophat (see Section 9.6.2) for other structuring elements.

> Matlab Function:

BW2 = bwmorph(BW,operation,n)

Example (Thinning)

```
>> g1 = bwmorph(f, 'thin', 1);
>> g2 = bwmorph(f, 'thin', 2);
>> ginf = bwmorph(f, 'thin', Inf);
```


Example (Skeleton)

>> fs = bwmorph(f, 'skel', Inf);

Summary

Summary

		Comments
Operation	Equation	(The Roman numerals refer to the structuring elements in Fig. 9.33.)
Translation	$(B)_z = \{w w = b + z, $ for $b \in B\}$	Translates the origin of B to point z .
Reflection	$\hat{B} = \{w w = -b, \text{ for } b \in B\}$	Reflects all elements of <i>B</i> about the origin of this set.
Complement	$A^c = \{w w \notin A\}$	Set of points not in A.
Difference	$A - B = \{w w \in A, w \notin B\}$ $= A \cap B^{c}$	Set of points that belong to A but not to B .
Dilation	$A \oplus B = \left\{ z (\hat{B}_z) \cap A \neq \emptyset \right\}$	"Expands" the boundary of A . (I)
Erosion	$A\ominus B=\big\{z (B)_z\subseteq A\big\}$	"Contracts" the boundary of A. (I)
Opening	$A \circ B = (A \ominus B) \oplus B$	Smoothes contours, breaks narrow isthmuses, and eliminates small islands and sharp peaks. (I)

(Continued)

		Comments
Operation	Equation	(The Roman numerals refer to the structuring elements in Fig. 9.33.)
Closing	$A \bullet B = (A \oplus B) \ominus B$	Smoothes contours, fuses narrow breaks and long thin gulfs, and eliminates small holes. (I)
Hit-or-miss transform	$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$ $= (A \ominus B_1) - (A \oplus \hat{B}_2)$	The set of points (coordinates) at which, simultaneously, B_1 found a match ("hit") in A and B_2 found a match in A^c
Boundary extraction	$\beta(A) = A - (A \ominus B)$	Set of points on the boundary of set A . (I)
Hole filling	$X_k = (X_{k-1} \oplus B) \cap A^c;$ $k = 1, 2, 3, \dots$	Fills holes in A ; $X_0 = \text{array of } 0$ s with a 1 in each hole. (II)
Connected components	$X_k = (X_{k-1} \oplus B) \cap A;$ $k = 1, 2, 3, \dots$	Finds connected components in A ; X_0 = array of 0s with a 1 in each connected component. (I)
Convex hull	$X_{k}^{i} = (X_{k-1}^{i} \circledast B^{i}) \cup A;$ i = 1, 2, 3, 4; $k = 1, 2, 3, \dots;$ $X_{0}^{i} = A;$ and $D^{i} = X_{\text{conv}}^{i}$	Finds the convex hull $C(A)$ of set A , where "conv" indicates convergence in the sense that $X_k^i = X_{k-1}^i$. (III)
Thinning	$A \otimes B = A - (A \circledast B)$ $= A \cap (A \circledast B)^{c}$ $A \otimes \{B\} =$ $((\dots((A \otimes B^{1}) \otimes B^{2}) \dots) \otimes B^{n})$ $\{B\} = \{B^{1}, B^{2}, B^{3}, \dots, B^{n}\}$	Thins set A. The first two equations give the basic definition of thinning. The last equations denote thinning by a sequence of structuring elements. This method is normally used in practice. (IV)
Thickening	$A \odot B = A \cup (A \otimes B)$ $A \odot \{B\} =$ $((\dots(A \odot B^1) \odot B^2 \dots) \odot B^n)$	Thickens set A. (See preceding comments on sequences of structuring elements.) Uses IV with 0s and 1s reversed.
Skeletons	$S(A) = \bigcup_{k=0}^{K} S_k(A)$ $S_k(A) = \bigcup_{k=0}^{K} \{ (A \ominus kB) - [(A \ominus kB) \circ B] \}$ Reconstruction of A : $A = \bigcup_{k=0}^{K} (S_k(A) \oplus kB)$	Finds the skeleton $S(A)$ of set A . The last equation indicates that A can be reconstructed from its skeleton subsets $S_k(A)$. In all three equations, K is the value of the iterative step after which the set A erodes to the empty set. The notation $(A \ominus kB)$ denotes the k th iteration of successive erosions of A by B . (I)

		Comments (The Roman numerals refer to the
Operation	Equation	structuring elements in Fig. 9.33.)
Pruning	$X_1 = A \otimes \{B\}$ $X_2 = \bigcup_{k=1}^{8} (X_1 \circledast B^k)$ $X_3 = (X_2 \oplus H) \cap A$ $X_4 = X_1 \cup X_3$	X_4 is the result of pruning set A . The number of times that the first equation is applied to obtain X_1 must be specified. Structuring elements V are used for the first two equations. In the third equation H denotes structuring element V .
Geodesic dilation of size 1	$D_G^{(1)}(F) = (F \oplus B) \cap G$	F and G are called the <i>marker</i> and <i>mask</i> images, respectively.
Geodesic dilation of size <i>n</i>	$D_G^{(n)}(F) = D_G^{(1)}[D_G^{(n-1)}(F)];$ $D_G^{(0)}(F) = F$	
Geodesic erosion of size 1	$E_G^{(1)}(F) = (F \ominus B) \cup G$	
Geodesic erosion of size n	$E_G^{(n)}(F) = E_G^{(1)}[E_G^{(n-1)}(F)];$ $E_G^{(0)}(F) = F$	
Morphological reconstruction by dilation		k is such that $D_G^{(k)}(F) = D_G^{(k+1)}(F)$
Morphological reconstruction by erosion	$R_G^E(F) = E_G^{(k)}(F)$	k is such that $E_G^{(k)}(F) = E_G^{(k+1)}(F)$
Opening by reconstruction Closing by	$O_R^{(n)}(F) = R_F^D[(F \ominus nB)]$	$(F \ominus nB)$ indicates n erosions of F by B .
	$C_R^{(n)}(F) = R_F^E[(F \oplus nB)]$	$(F \oplus nB)$ indicates n dilations of F by B .
Hole filling	$H = \left[R_F^D(F) \right]^c$	H is equal to the input image I , but with all holes filled. See Eq. (9.5-28) for the definition of the marker image F .
Border clearing	$X = I - R_I^D(F)$	X is equal to the input image I , but with all objects that touch (are connected to) the boundary removed. See Eq. $(9.5-30)$ for the definition of the marker image F .

