情報数学 III — 演習問題(ベクトル) 解答

(担当:佐藤 弘康)

問題 1.1.

問題 1.2.

(1)
$$\mathbf{u} = -\mathbf{a} + \mathbf{b} = (-2, -1) + (1, -2) = (-1, -3)$$
. $\|\mathbf{u}\| = \sqrt{1+9} = \sqrt{10}$.

(2)
$$\mathbf{u} = \mathbf{b} + 3\mathbf{a} = (1, -2) + (6, 3) = (7, 1)$$
. $\|\mathbf{u}\| = \sqrt{49 + 1} = \sqrt{50}$.

(3)
$$\mathbf{u} = 2\mathbf{a} - \mathbf{b} = (4, 2) + (-1, 2) = \overline{(3, 4)}. \quad \|\mathbf{u}\| = \sqrt{9 + 16} = \sqrt{25} = \underline{5}.$$

問題 1.3. ベクトル a と実数 c に対し、 $\|c a\| = \|c\| \cdot |a|$ が成り立つ。例えば、平面ベクトル $a = (a_1, a_2)$ に対しては、以下のように確かめられる;

$$||c \mathbf{a}|| = |(ca_1, ca_2)| = \sqrt{c^2 a_1^2 + c^2 a_2^2} = |c| \sqrt{a_1^2 + a_2^2} = |c| \cdot ||\mathbf{a}||.$$

ここで,|c| は実数の絶対値を表し,|a| はベクトルの長さを表すことに注意せよ.したがって, $\|ca\|=1$ となるためには $c=\pm \frac{1}{\|a\|}$ とすればよい.

(1)
$$\|a\| = \sqrt{9+25} = \sqrt{34}$$
. したがって, $c = \pm \frac{1}{\sqrt{34}}$.

(2)
$$\|a\| = \sqrt{1+1} = \sqrt{2}$$
. したがって, $c = \pm \frac{1}{\sqrt{2}}$.

$$(3) \ \| \boldsymbol{a} \| = \sqrt{\frac{1}{4} + 4} = \sqrt{\frac{17}{4}} = \frac{\sqrt{17}}{2}. \ \ \textit{したがって,} \ \ c = \pm \frac{2}{\sqrt{17}}.$$

(4)
$$\|\boldsymbol{a}\| = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3}$$
. したがって, $c = \pm \frac{1}{2\sqrt{3}}$.

問題 1.4. (iii) $\cos \theta$ の値は内積の定義(性質) $(a,b) = \|a\| \|b\| \cos \theta$ を用いて求める.

情報数学 III — 演習問題(ベクトル) 解答

(担当:佐藤 弘康)

- (1) (i) $\|\boldsymbol{u}\| = \sqrt{1+3} = 2$, $\|\boldsymbol{v}\| = \sqrt{4+12} = 4$, (ii) $(\boldsymbol{u}, \boldsymbol{v}) = -2+6=4$, (iii) $\cos \theta = \frac{4}{2 \cdot 4} = \frac{1}{2}$ ($\theta = \frac{\pi}{3}$ である).
- (2) $\boldsymbol{u} = (5,3) + (-4,0) = (1,3), \ \boldsymbol{v} = (-5,-3) + (14,0) = (9,-3).$ (i) $\|\boldsymbol{u}\| = \sqrt{1+9} = \sqrt{10}, \|\boldsymbol{v}\| = \sqrt{81+9} = \sqrt{90} = 3\sqrt{10},$ (ii) $(\boldsymbol{u},\boldsymbol{v}) = 9-9 = 4,$ (iii) $\cos\theta = \frac{0}{\sqrt{10}\cdot3\sqrt{10}} = 0$ (\boldsymbol{u} と \boldsymbol{v} は直交する).
- (3) $\boldsymbol{u} = (4,0,2) + (-1,1,-3) = (3,1-1), \ \boldsymbol{v} = (-4,0,-2) + (-1,1,-3) = (-5,1-5).$ (i) $\|\boldsymbol{u}\| = \sqrt{9+1+1} = \sqrt{11}, \|\boldsymbol{v}\| = \sqrt{25+1+25} = \sqrt{51},$ (ii) $(\boldsymbol{u},\boldsymbol{v}) = -15+1+5=-11,$ (iii) $\cos\theta = \frac{-11}{\sqrt{11}\cdot\sqrt{51}} = -\frac{11}{\sqrt{561}}$ ($\cos\theta < 0$ より、 θ は鈍角であるこがわかる).

問題 1.5. $a \cdot b = 0$ を満たす c を求める。 $a \cdot b = 3 - 2c - c = 3 - 3c$ より、c = 1.

問題 1.6. 内積 $(a \times b, a)$ および $(a \times b, b)$ は共に 0 である.

- (1) $\mathbf{a} \times \mathbf{b} = (1, -5, -2)$
- (2) $\mathbf{a} \times \mathbf{b} = (-3, -3, 1)$

問題 1.7. 空間ベクトルの外積は一般に結合法則を満たさないので (1) と (2) の計算結果は異なる. しかし、一般に $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a}, \mathbf{c})\mathbf{b} - (\mathbf{a}, \mathbf{b})\mathbf{c}$ が成り立つ.

- (1) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (5, 5, -5)$
- (2) $(a \times b) \times c = (-11, -2, 5)$
- (3) (a, c)b (a, b)c = (5, 5, -5)

問題 1.8. 外積 $a \times b$ は $a \times b$ の両方に直交する。したがって、求めるベクトルは $a \times b$ に平行な単位ベクトルである(問題 1.3 を参照)。

- (1) $\mathbf{a} \times \mathbf{b} = (1,2,-3)$, $\|\mathbf{a} \times \mathbf{b}\| = \sqrt{1+4+9} = \sqrt{14}$. したがって、求めるベクトル は $\pm (\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}})$.
- (2) $\mathbf{a} \times \mathbf{b} = (-2, -5, 6)$, $\|\mathbf{a} \times \mathbf{b}\| = \sqrt{4 + 25 + 36} = \sqrt{65}$. したがって、求めるベクトルは $\pm (\frac{2}{\sqrt{65}}, \frac{5}{\sqrt{65}}, -\frac{6}{\sqrt{65}})$.

問題 1.9. $a = \overrightarrow{OA}, b = \overrightarrow{OB}$ とする. このとき, 三角形 OAB の面積 S は

$$S = \frac{1}{2} \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \theta$$

情報数学 III — 演習問題(ベクトル) 解答

(担当:佐藤 弘康)

と書ける(ただし、 $\theta=\angle AOB, 0\leq \theta\leq \pi$)。 $\sin\theta\geq 0$ であるから、 $\sin\theta=\sqrt{1-\cos^2\theta}$ と書きなおすと

$$\begin{split} S = & \frac{1}{2} \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sqrt{1 - \cos^2 \theta} \\ = & \frac{1}{2} \sqrt{\|\boldsymbol{a}\|^2 \|\boldsymbol{b}\|^2 - \|\boldsymbol{a}\|^2 \|\boldsymbol{b}\|^2 \cos^2 \theta} \end{split}$$

となる.内積の定義 $(a,b)=\|a\|\|b\|\cos\theta$ を代入することにより, $S=rac{1}{2}\sqrt{\|a\|^2\,\|b\|^2-(a,b)^2}$ を得る.

問題 1.10. 問題 1.9 より、a と b を 2 辺とする平行四辺形の面積は $\sqrt{\|\boldsymbol{a}\|^2 \|\boldsymbol{b}\|^2 - (\boldsymbol{a}, \boldsymbol{b})^2}$ に等しい (三角形の面積の 2 倍). $\boldsymbol{a} = (a_1, a_2, a_3), \ \boldsymbol{b} = (b_1, b_2, b_3)$ と成分表示し、 $\|\boldsymbol{a} \times \boldsymbol{b}\|^2$ と $\|\boldsymbol{a}\|^2 \|\boldsymbol{b}\|^2 - (\boldsymbol{a}, \boldsymbol{b})^2$ を計算し、等しくなることを示せばよい(計算の詳細は省略).