Confidentiality

Encryption

- plaintext ⇒ ciphertext
- lacksquare Under key $k_{\mathsf{E}} \in {\mathsf{K}}$

Decryption

- ciphertext ⇒ plaintext
- Under key $k_D \in K$

Symmetric cryptography: $k_{\rm E}=k_{\rm D}$ is the secret key.

Asymmetric cryptography: $k_{\rm E}$ is public and $k_{\rm D}$ is private.

3 / 57

Authenticity

Authentication

- message ⇒ (message, tag)
- Under key k_A ∈ K

Verification

- lacksquare (message, $lacktreamth{\mathsf{tag}}$) \Rightarrow {message, oxdot}
- Under key $k_V \in K$

The tag is called a message authentication code (MAC). Symmetric cryptography: $k_A = k_V$ is the secret key.

Asymmetric cryptography: k_A is private and k_V is public. The tag is called a signature.