

IDŐSORELEMZÉS?

Időben megvalósuló folyamatok

Mintakeresés/-tanulás + előrejelzés

MÓDSZEREK

• SOK!

Modellfeltételek vs. valós szituációk

• Itt: ARIMA, ETS, NNETAR, hybridForecast

ADATOK

AirPassangers

```
airpass <- AirPassangers

plot(airpass,
    main = "Monthly Airline Passanger
    Numbers 1949-1960",
    ylab = "Number of passangers")
```

Monthly Airline Passenger Numbers 1949-1960

ELŐKÉSZÍTÉS

Az eredmények reprodukálhatósága érdekében:

set.seed(12345)

Training- és tesztadatok szétválasztása:

train <- airpass[1:132]

test <- airpass[133:144]

ARIMA

- "Autoregressive integrated moving average"
 - Egymástól adott távolságokra lévő időpontok közötti kapcsolat
 - Becslési hibák közti kapcsolat
 - És egy kis integrálás. ©

ARIMA R-BEN: AUTO.ARIMA

library(forecast)

#Training – a paraméterezést az R végzi el helyettünk:

model_arima <- auto.arima(train)</pre>

model_arima

#Előrejelzés:

predict_arima <- forecast(model_arima, h = length(test))</pre>

plot(predict_arima)

EREDMÉNYEK – AUTO.ARIMA

EXPONENCIÁLIS SIMÍTÁS

 Feltételezés: a kérdéses időponthoz időben közelebbi adatok jobb prediktorok.

De mennyivel? Hogyan súlyozzuk őket?

EXPONENCIÁLIS SIMÍTÁS R-BEN: ETS

```
library(forecast)
#Training - model = "ZZZ" esetén itt is az R feladata a paraméterezés:
model ets <- ets(train, model = "ZZZ")
model ets
#Előrejelzés:
predict_ets <- forecast.ets(model_ets, h = length(test))</pre>
plot(predict_ets)
```

EREDMÉNYEK - ETS

AUTOREGRESSZIÓ NEURÁLIS HÁLÓVAL

Hagyományos módszer korszerű alkalmazása

• 1 db. rejtett réteggel rendelkező neurális háló

• Kedvenc ©

AUTOREGRESSZIÓ NEURÁLIS HÁLÓVAL R-BEN: NNETAR

```
library(forecast)
```

#Training:

model_nnetar <- nnetar(train)</pre>

model_nnetar

#Előrejelzés:

predict_nnetar <- forecast(model_nnetar, h = length(test))</pre>

plot(predict_nnetar)

EREDMÉNYEK - NNETAR

HIBRID MODELLEZÉS

 Más módszerek egyesítése és az eredmények súlyozott felhasználása

• Módszerek (az R-es megvalósításban): auto.arima, ets, thetam, stlm, nnetar, tbats

HIBRID MODELLEZÉS R-BEN: HYBRIDMODEL

library(forecastHybrid)

#Training:

model_hybrid <- hybridModel(train)</pre>

model_hybrid

#Előrejelzés:

predict_hybrid <- forecast(model_hybrid, length(test))</pre>

plot(predict_hybrid, main = "Forecasts from hybridModel")

EREDMÉNYEK - HYBRIDMODEL

TOVÁBBI MÓDSZEREK

Gyűjtemény: https://cran.r-

 project.org/web/views/TimeSeries.html

 Ajánlom: rnn, keras (deep learning algoritmusok idősorokra is)

ÉRDEMES ELOLVASNI

Robert Hyndman - George Athanasopoulos: Forecasting: principles and practice (https://www.otexts.org/book/fpp)

KÖSZÖNÖM A FIGYELMET, SZÉP NAPOT!