Tema 5. Fundamentos de electrónica digital

5.1. Parámetros característicos de una familia lógica

5.2. Puertas lógicas con MOSFET's

5.1. Características de las familias lógicas

5.2.1. Características de transferencia estáticas

Símbolo del Inversor lógico digital:

 Para un inversor ideal: la transición desde el estado alto al bajo es abrupta, V_{OH} representa el 1 lógico y V_{OI} el 0 lógico.

Característica de transferencia de un inversor real

Márgenes de ruido:

Margen de ruido alto: $NM_H = V_{OH} - V_{IH}$

Margen de ruido bajo: NM_L= V_{IL} -V_{OL}

■ Es necesario que V_{oL} < V_{IL} y V_{IH} < V_{OH} para asegurar que el nivel de salida de una puerta lógica es un nivel de entrada apropiado para una segunda puerta

Característica de entrada: FAN IN

- Número máximo de puertas que se pueden conectar a la entrada sin estropear el funcionamiento.
- Si se excede este valor la puerta lógica producirá una salida es un estado indeterminado o incorrecto.
- La señal de entrada puede resultar deteriorada por la carga excesiva.

Característica de salida: FAN OUT

 Numero máximo de puertas que se pueden conectar a la salida de la puerta.

Características de transferencia dinámicas

- Debido a la no idealidad del inversor básico, las transiciones entre los estados alto y bajo, cuando la señal de entrada es un pulso, no son instantáneas, sino graduales debido a las capacidades parásitas de los dispositivos.
- Se pueden definir algunos tiempos característicos para cuantificar el retardo producido por dichas capacidades:
 - tiempo de caída t_f variación del 90% al 10% de la salida
 - tiempo de subida t_r variación del 10% al 90% de la salida
 - tiempo de propagación alto bajo t_{PLH}
 - tiempo de propagación bajo alto t_{PHL}
 - tiempo de propagación de la puerta t_P=0.5 (t_{PHL} + t_{PLH})

5.2 Tecnologías MOS y CMOS

Lógica MOS

Inversor MOS

Puertas NOR y NAND

Lógica CMOS

Inversor CMOS

Puertas NOR y NAND

Lógica MOS

- Es una de las cuatro tecnologías más utilizadas para hacer circuitos digitales.
- Permite implementar con una mayor densidad:
 - Cada transistor NMOS utilizado ocupa un espacio inferior al de los bipolares.
 - Simplicidad de la topología.
- Para entender el funcionamiento de esta lógica conviene ver el NMOS como interruptor.

Inversor NMOS

■ El NMOS driver funciona como interruptor:

$$V_i = V_{GS}, \quad V_o = V_{DS}$$

- La carga puede ser:
 - Resistencia
 - NMOS en deplexión
 - NMOS en enriquecimiento

1) Si
$$V_i = \emptyset$$
 lógico $\Rightarrow V_{GS} < V_t \Rightarrow I_D \approx 0 \Rightarrow V_o = 1$ lógico

Interruptor abierto

2) Si
$$V_i = 1$$
 lógico $\Rightarrow V_{GS} > V_t \Rightarrow$

$$I_D \neq 0 \Rightarrow V_o = \emptyset \text{ lógico} \quad \text{Interruptor cerrado}$$

$$\begin{split} \text{Si } V_{DS} < V_{GS} - V_t & \text{ lineal } \Rightarrow I_D = k \bigg[\big(V_{GS} - V_t \big) V_{DS} - \frac{1}{2} V_{DS}^2 \bigg] \\ \text{Si } V_{DS} > V_{GS} - V_t & \text{sat. } \Rightarrow I_D = \frac{k}{2} \big(V_{GS} - V_t \big)^2 \end{split}$$

Inversor NMOS con resistencia de carga

$$V_i = V_{GS}, \quad V_o = V_{DS}$$

Análisis del inversor

1) Si
$$V_i = V_{GS} < V_t \Rightarrow \text{NMOS OFF} \Rightarrow$$

$$I_D \approx 0 \Rightarrow V_o = V_{DD} = V_{OH}$$

2) Si
$$V_i = V_{GS} > V_t$$

- 2.a) NMOS en Saturación
- 2.b) NMOS en Lineal

2.a) Si $V_i = V_{GS} > V_t$ (sólo un poco mayor y suponiendo que inicialmente $V_o = V_{DD}$)

$$\Rightarrow$$
 NMOS ON $\Rightarrow \begin{cases} V_o > V_i - V_t \\ V_{DS} > V_{GS} - V_t \end{cases} \Rightarrow$ NMOS Sat.

$$I_D = \frac{k}{2} (V_{GS} - V_t)^2 = \frac{V_{DD} - V_o}{R_D} \Rightarrow V_o = V_{DD} - \frac{k \cdot R_D}{2} (V_i - V_t)^2$$

- 2.b) Si V_i aumenta $\Rightarrow V_o$ disminuye hasta que $V_o = V_i V_t$
 - \Rightarrow en este instante NMOS Lineal $\left\{ egin{aligned} V_o < V_i V_t \ V_{DS} < V_{GS} V_t \end{aligned}
 ight\}$

Calculo de la tensión V_{OL}

Igualamos la corriente que pasa por la resistencia con la corriente que pasa por el NMOS

$$I_{D} = k \left[(V_{GS} - V_{t}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right] = \frac{V_{DD} - V_{o}}{R_{D}}$$

$$V_o = \frac{1 + k \cdot R_D (V_i - V_t)}{k \cdot R_D} - \frac{\sqrt{1 + k \cdot R_D (V_i - V_t)^2 - 2 \cdot k \cdot R_D \cdot V_{DD}}}{k \cdot R_D}$$

$$V_{OL} = V_o \left(V_i = V_{OH} = V_{DD} \right)$$

Para R_D grande V_{OL} pequeño

Nos interesa un V_{OL} pequeño

Con R_D grandes: \Rightarrow potencias disipadas pequeñas

⇒ problema de integración

Función de transferencia NMOS con resistencia de carga

□ Inversor NMOS con carga de enriquecimiento

 M_1 : $V_{GS} = V_{DS} \implies V_{DS} > V_{GS} - V_t$ Si conduce siempre lo hace en saturación :

$$I_{D1} = \frac{k_1}{2} (V_{GS} - V_{t1})^2 =$$

$$= \frac{k_1}{2} (V_{DD} - V_o - V_{t1})^2$$

M2:
$$V_{DS} = V_o \implies V_{GS} = V_i$$

Función de transferencia NMOS con carga en enriquecimiento

Comparamos con inversor con R_D: - Ventaja: ocupa menos área.

- Inconveniente: V_{OH} es menor

□ Inversor NMOS con carga en deplexión

$$M_1: V_{GS} = 0 > V_{t1} \Rightarrow M_1 \text{ siempre ON}$$
 $-\text{Si } V_{DS} > -V_{t1} \Rightarrow \text{Saturación}$

$$I_{D1} = \frac{k_1}{2} \left(-V_{t1} \right)^2$$

 $-\text{Si }V_{DS}<-V_{t1}\Rightarrow \text{Lineal}$:

$$I_{D1} = \left[(-V_{t1})(V_{DD} - V_o) - \frac{1}{2}(V_{DD} - V_o)^2 \right]$$

M2:
$$V_{DS} = V_{t2} \implies V_{DS} = V_{o}$$

Análisis del inversor

I) Si
$$V_i < V_{t2} \implies M_2$$
 OFF $\implies I_{D2} = 0 \implies I_{D1} = 0$
Si M_1 saturado $I_{D1} = \frac{k_1}{2} (-V_{t1})^2 \neq 0 \implies M_1$ lineal $I_D = k_1 \left[-V_{t1} (V_{DD} - v_O) - \frac{(V_{DD} - v_O)^2}{2} \right] = 0$

para que se cumpla
$$I_D = 0 \implies V_o = V_{DD}$$

II) III) y IV) Si
$$V_i > V_{t2} \implies M_2$$
 ON

- primero M₂ en saturación,
- -luego si V_i aumenta, V_o disminuye y M_2 lineal

Función de transferencia NMOS con carga en deplexión

Problema lógicas NMOS: Consumo potencia estática

Puertas NOR y NAND

 Sabiendo la filosofía del interruptor es muy fácil analizar y construir cualquier función lógica con NMOS

Puerta NAND

- La salida será 0 sólo cuando ambas entradas estén a 1.
- Tabla de verdad:

Α	В	V _o
0	0	1
0	1	1
1	0	1
1	1	0

Puertas NOR

- La salida será 0 sólo cuando ambas entradas estén a 0.
- Tabla de verdad:

A	В	Vo
0	0	1
0	1	0
1	0	0
1	1	0

■ **REGLA**: Vemos cuando queremos la salida a 0 y se coloca la red NMOS adecuada teniendo en cuenta que multiplicar es colocar transistores en serie y sumar es colocarlos en paralelo.

Lógica CMOS

Lógica con transistores NMOS y PMOS

Con esta construcción se pretende que el consumo de potencia sea reducido.

Esto se consigue gracias a que cuando el transistor NMOS conduce, el PMOS está en corte y viceversa.

Ventajas: Consumo de potencia estática nulo

Gran FAN OUT

Grandes Márgenes de Ruido V_{OH}=V_{DD} y V_{OL}=0

Desventaja: mayor numero de transistores

Inversor CMOS

$$M_2$$
:

$$\begin{aligned} & V_{GS} = V_{i} - V_{DD} \\ & V_{DS} = V_{o} - V_{DD} \end{aligned} \Rightarrow \\ & \Rightarrow \begin{cases} \mathbf{M}_{2} \text{ OFF si } V_{GS} > V_{tp} \Rightarrow V_{i} - V_{DD} > V_{tp} \Rightarrow V_{i} > V_{DD} + V_{tp} \\ & \mathbf{M}_{2} \text{ ON si } V_{i} \leq V_{DD} + V_{tp} \end{cases}$$

$$\begin{aligned} \text{M}_2 \text{ Lineal si } V_{DS} > V_{GS} - V_{tp} \Longrightarrow V_o - V_{DD} > V_i - V_{DD} - V_{tp} \implies \\ \Longrightarrow V_i < V_o + V_{tp} \end{aligned}$$

$$I_{D} = k_{p} \left[(V_{i} - V_{DD} - V_{tp})(V_{o} - V_{DD}) - \frac{1}{2} (V_{o} - V_{DD})^{2} \right]$$

 M_2 Saturación si $V_{DS} \le V_{GS} - V_{tp} \implies V_i \ge V_o + V_{tp}$

$$I_{D} = \frac{k_{p}}{2} \left(V_{i} - V_{DD} - V_{tp} \right)^{2}$$

 M_1 :

$$M_1$$
 Lineal si $V_{DS} < V_{GS} - V_{tn} \implies V_o < V_i - V_{tn} \implies V_i > V_o + V_{tn}$

$$I_D = k_n \left[\left(V_i - V_{tn} \right) V_o - \frac{1}{2} V_o^2 \right]$$

$$M_2$$
 Saturación si $V_{DS} \ge V_{GS} - V_{tn} \implies V_o \ge V_i - V_{tn} \implies V_i \le V_o + V_{tn}$

$$I_D = \frac{k_n}{2} (V_i - V_{tn})^2$$

Función de transferencia CMOS

Tensión umbral del inversor CMOS

Igualando las corrientes del NMOS y PMOS, los dos están en saturación:

$$V_{th} = \frac{V_{DD} + V_{tp} + V_{tn} \sqrt{\frac{k_n}{k_p}}}{1 + \sqrt{\frac{k_n}{k_p}}}$$

CMOS simétrico $V_{th}=V_{DD}/2$ Cuando $V_{tn}=|V_{tp}|$ y $k_n=k_p$

7.2.2. Puertas NAND y NOR

- La idea es similar a la de la lógica NMOS.
- Cuando queremos sintetizar una función:
 - vemos los 0 que tiene e implementamos con la red de NMOS la NOT de la función que queremos,
 - colocar una red de transistores PMOS en la carga con una topología complementaria a la de los NMOS:

Red NMOS: x: NMOS en serie +: NMOS en paralelo

Red PMOS: x: PMOS en paralelo +: PMOS en serie

- Cuando queremos obtener la función lógica que implementa un circuito:
 - ver los NMOS y los PMOS como interruptores,
 - para cada combinación de entradas se ve si hay un camino hasta tierra o si es hacia la fuente, sabiendo que por la topología de esta lógica siempre va a sólo uno de los dos.

Puerta NAND

Puerta NOR

