Exam Solutions Chapter 8.2-DeBroglie Answer 1 2014:2:18

(13 marks)

A hydrogen atom, in an excited energy level, undergoes relaxation by emitting a photon. The energy values are given by $E_n = -\frac{13.6}{n^2}$ eV. The initial state of the electron is in energy level n = 4 and the final state after relaxation is ground state (n = 1).

(a) Does the average radius of the electron orbital remain the same, increase or decrease in value during this transition? Circle the correct answer. (1 mark)

remains the same

increases

decreases

Description		Marks
decreases		1
	Total	1

(b) Use the formula $E_n = -\frac{13.6}{n^2}$ eV to complete the energy level diagram below. The diagram is **not** drawn to scale. (2 marks)

n=4	 E ₄ =		eV
n=3	$E_3 =$	-1.51	eV
n=2	E,=	-3.40	eV

Description	Marks
$E_4 = -(13.6/4^2) = -0.85 \text{ eV}$	1
$E_1 = -(13.6/1^2) = -13.6 \text{ eV}$	1
Total	2

(c) On the diagram above, draw in all the possible transitions when an electron undergoes relaxation from n = 4 to the ground state. (3 marks)

Description	Marks
There are 6: 4-1, 4-2, 4-3, 3-1, 3-2 and 2-1 (1 mark if at least 4-1, 4-2 and 4-3 are drawn)	1–2
Transitions are drawn downwards	1
Total	3

Chapter 8.2 - De Broglie Answer 1 continued

Calculate the wavelength of the photon emitted from the E₃ to E₂ transition. Show all workings.

Description	Marks
E = 3.40 - 1.51 = 1.89 eV	1
$E = hf = \frac{hc}{\lambda}$ $\lambda = \frac{hc}{E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.89 \times 1.6 \times 10^{-19}}$ $\lambda = 6.58 \times 10^{-7} \text{m}$	1–3
Total	4

The transitions of $\mathsf{E_4}$ to $\mathsf{E_2}$ and $\mathsf{E_3}$ to $\mathsf{E_2}$ produce red and green photons. Explain (ii) which transition produces which colour.

Description	Marks
Transitions E_4 to E_2 has more energy so will produce the photon with the shorter wavelength, green.	1–2
E ₃ to E ₂ will produce red	1
Total	3