CHƯƠNG 3. CÁC THUẬT TOÁN TÌM KIẾM & SẮP XẾP SẮP XẾP TRỘN (MERGE SORT)

ThS. Nguyễn Chí Hiếu

2021

NỘI DUNG

- 1. Thuật toán sắp xếp trộn (MergeSort)
- 2. Đánh giá độ phức tạp

NỘI DUNG

1. Thuật toán sắp xếp trộn (MergeSort)

2. Dánh giá độ phức tạp

Nguyễn Chí Hiếu

Cấu trúc dữ liệu và Giải thuật

3/33

Thuật toán sắp xếp trộn (MergeSort)

Ý tưởng

- Trong giải thuật sắp xếp trộn (MergeSort), mỗi dãy $a_0, a_2, \cdots, a_{n-1}$ bất kỳ đều có thể coi như là một tập hợp các dãy con liên tiếp mà mỗi dãy con đều đã có thứ tư.
- Các dãy con này trộn với nhau sẽ tạo thành dãy có thứ tự.

Ví dụ 1

Cho dãy số 12, 2, 8, 5, 1, 6, 4, 15 gồm 5 dãy con có thứ tự:

$$\{12\}, \{2, 8\}, \{5\}, \{1, 6\}, \{4, 15\}$$

Trộn các dãy con tạo thành dãy có thứ tự.

1, 2, 4, 5, 8, 6, 12, 15

Nguyễn Chí Hiếu

Cấu trúc dữ liêu và Giải thuật

Thuật toán sắp xếp trộn (MergeSort)

Áp dụng phương pháp chia để trị

- ► Chia: chia dãy a gồm n phần tử thành hai dãy con có kích thước khoảng $\frac{n}{2}$.
- Trị: nếu dãy con chứa từ hai phần tử trở lên thì gọi đệ quy giải thuật MergeSort đối với dãy con đang xét.
- Tổng hợp: trộn hai dãy con với nhau thành một dãy có thứ tự.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 5/33

Thuật toán sắp xếp trộn (MergeSort) Nguyễn Chí Hiếu Cấu trúc dữ liêu và Giải thuật 6/33

Thuật toán sắp xếp trộn (MergeSort)

```
Thuật toán 1: MergeSort(a[], left, right)
- Đầu vào: mảng a, left và right tương ứng vị trí bắt đầu và kết thúc của mảng đang xét.
```

- Đầu ra: mảng a có thứ tự tăng dần.

```
1 if left < right
2 --- middle ← (left + right) / 2 ---
3 MergeSort(a, left, middle)
4 MergeSort(a, middle + 1, right)
5 --- Merge(a, left, middle, right) ---
```

- Dòng 1: nếu mảng nhiều hơn một phần tử thì chia thành 2 mảng con bên trái và bên phải tại phần tử giữa.
- Dòng 3, 4: gọi đệ quy giải thuật với mảng con bên trái và bên phải.
- Dòng 5: kết hợp 2 mảng con thành mảng có thứ tự.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 7/33

Thuật toán sắp xếp trộn (MergeSort)

```
Thuật toán 2: Merge(a[], left, middle, right)
    - Đầu vào: mảng a, vị trí left, middle, right.
    - Đầu ra: mảng a sau khi được trộn.
 1
       array b[left..right]
 2
       k \leftarrow left, i \leftarrow left, j \leftarrow middle + 1
 3
       while i \le middle or j \le right
 4
          if a[i] \leq a[j]
 5
             b[k++] \leftarrow a[i++]
 6
          else
 7
             b[k++] \leftarrow a[j++]
 8
       while i < middle
 9
          b[k++] \leftarrow a[i++]
10
       while j \le right
11
          b[k++] \leftarrow a[j++]
       for k \leftarrow left to right
12
          a[k] \leftarrow b[k]
     Nguyễn Chí Hiếu
                                              Cấu trúc dữ liêu và Giải thuật
```

Thuật toán sắp xếp trộn (MergeSort)

Giải thích

- Dòng 1: khai báo b là mảng tạm.
- ightharpoonup Dòng 3 ightharpoonup 7: trường hợp hai mảng con bên trái và bên phải đều khác rỗng.
 - Dòng 4, 5: chép mảng bên trái vào b.
 - Dòng 6, 7: chép mảng bên phải vào b.
- Dòng 8, 9: chép phần còn lại của mảng bên trái vào b.
- Dòng 10, 11: chép phần còn lại của mảng bên phải vào b.
- Dòng 12, 13: chép mảng b vào mảng a. Kết thúc thuật toán.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 9/33

Ví dụ

Cho dãy số a gồm 7 phần tử: 8,5,7,1,9,10,27. Áp dụng giải thuật MergeSort sắp dãy a theo thứ tự tăng dần.

Nguyễn Chí Hiếu

Cấu trúc dữ liêu và Giải thuật

10/33

rgeSort) Cấu trúc dữ liệu và Giải thuật

Dánh giá độ phức tạp Trường hợp xấu nhất/tốt nhất Hàm MergeSort: nếu dãy có hơn một phần tử thì mỗi lần thực hiện sẽ chia thành 2 dãy con có $\frac{n}{2}$ phần tử. Thời gian thực hiện của dãy con là $T\left(\frac{n}{2}\right)$. Hàm Merge: thời gian thực hiện là $O\left(n\right)$.

Cấu trúc dữ liệu và Giải thuật

28/33

Nguyễn Chí Hiếu

Đánh giá độ phức tạp

Trường hợp xấu nhất/tốt nhất

Thời gian thực hiện thuật toán

$$T(n) = \begin{cases} 1 &, n = 1 \\ T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n &, n > 1 \end{cases}$$

Nếu n là lũy thừa của 2 (trộn 2 dãy/2-way) thì

$$T(n) = \begin{cases} 1 &, n = 1 \\ 2T\left(\frac{n}{2}\right) + n &, n > 1 \end{cases}$$

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 29/33

Đánh giá độ phức tạp

Trường hợp xấu nhất/tốt nhất

Chứng minh

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 4T\left(\frac{n}{4}\right) + n + n$$

$$= 8T\left(\frac{n}{8}\right) + n + n + n$$
...
$$= nT\left(\frac{n}{2^k}\right) + k \cdot n \qquad , n \ge 2^k$$

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 30/33

Đánh giá độ phức tạp

Trường hợp xấu nhất/tốt nhất

Chứng minh

ightharpoonup Giả sử $n=2^k$, thuật toán dừng đệ quy.

$$T(n) = 2^{k} \cdot T(1) + k \cdot 2^{k}$$
$$= 2^{k} + k \cdot 2^{k}$$
$$= n + n \log n$$

Do đó,

$$T(n) = O(n \log n)$$
.

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 31/33

Bài tập

1. Áp dụng giải thuật MergeSort sắp dãy sau theo thứ tự tăng dần

2. Xây dựng giải thuật MergeSort trộn 3-dãy (3-way). Áp dụng giải thuật sắp dãy sau theo thứ tự tăng dần

Nguyễn Chí Hiếu Cấu trúc dữ liệu và Giải thuật 32/33

Tài liệu tham khảo		
Donald E. Knuth. The Art of Computer Progra Addison-Wesley, 1998.	amming, Volume 3.	
Dương Anh Đức, Trần Hạnh	Nhi.	
– – – – Nhập môn Cấu trúc dữ liệu Đại học Khoa học tự nhiên		
Niklaus Wirth. Algorithms + Data Structur Prentice-Hall, 1976.	es = Programs.	
Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990		
Nguyễn Chí Hiếu	Cấu trúc dữ liệu và Giải thuật	33/33