Tempo Limite: 2 segundos

Garrafas

Nick tem **n** garrafas de refrigerante que sobraram após sua festa de aniversário. Cada garrafa é descrita por dois valores: a sua quantidade de refrigerante restante a_i e o volume total da garrafa b_i ($a_i \le b_i$).

Nick decidiu pegar toda a quantidade de refrigerante restante e colocá-la no menor número de garrafas possível, porém, ele quer fazer isso tão rápido quanto possível. Nick gasta \mathbf{x} segundos para encher \mathbf{x} unidades de refrigerante de uma garrafa para outra.

Nick pediu sua ajuda para determinar \mathbf{k} – o mínimo número de garrafas para armazenar toda a quantidade de refrigerante restante – e \mathbf{t} – a menor quantidade de tempo que ele levará para colocar o refrigerante restante nas \mathbf{k} garrafas. Uma garrafa não pode armazenar mais do que o seu volume. Todo o refrigerante restante deve ser colocado nas \mathbf{k} garrafas.

ENTRADA

A primeira linha contém um inteiro positivo n ($1 \le n \le 100$) — o número de garrafas.

A segunda linha contém ${\bf n}$ inteiros positivos a_1 , a_2 , ..., a_n (1 $\leq a_i \leq$ 100), onde a_i é a quantidade de refrigerante restante na ${\it i}$ -ésima garrafa.

A terceira linha contém ${\bf n}$ inteiros positivos b_1 , b_2 , ..., b_n (${\bf 1} \le b_i \le {\bf 100}$), onde b_i é o volume da ${\bf i}$ -ésima garrafa. É garantido que $a_i \le b_i$, para qualquer ${\bf i}$.

SAÍDA

A saída deve ser composta por dois inteiros \mathbf{k} e \mathbf{t} , onde \mathbf{k} é a menor quantidade de garrafas que podem armazenar todo o refrigerante e \mathbf{t} é a menor quantidade de tempo necessário para colocar o refrigerante nas \mathbf{k} garrafas.

EXEMPLOS

ENTRADA	SAÍDA
4	26
3 3 4 3	
3 3 4 3 4 7 6 5	

ENTRADA	SAÍDA
2	11
11	
100 100	

ENTRADA	SAÍDA
5	3 11
10 30 5 6 24	
10 41 7 8 24	