AD-A009 139

A MODEL FOR TARGET SCINTILLATION

D. J. Reifer

Aerospace Corporation

Prepared for:

Space and Missile Systems Organization

20 December 1974

DISTRIBUTED BY:

MOESEICK	W	
ATIB -	White Section	
106	Buff Section	
MANNOUN	ED	
JUSTIFICAT	10H	•••••
	TION/AVAILABILITY COI	
	TION/AVAILABRITY COI	

Approved

R. O. Bock, Group Director
Guidance and Computer Group
Directorate
Technology Division

. ublication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Section and the second

UNCLASSITIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
SAMSO-TR-75-107		AD-4009139		
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED		
		Interim Report		
A MODEL FOR TARGET SCINT	ILLATION	6. PERFORMING ORG. REPORT NUMBER		
		TR-0075(5112)-1		
7. AUTHOR(s)		8. CONTRACT OR GRANT HUMBER(#)		
1				
D. J. Reifer		F04701-74-C-0075		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK		
		AREA & WORK UNIT HUMBERS		
The Aerospace Corporation El Segundo, California 90245				
El Segundo, Camorina 70243				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Space and Missile Systems Orga	nization	20 December 1974		
Air Force Systems Command		13. NUMBER OF PAGES 24		
Los Angeles Air Force Station. 14. MONITORING AGENCY NAME & ADDRESS(If differen	CA 90045	15. SECURITY CLASS. (of this report)		
	•			
		UNCLASSIFIED		
	,	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; dis	tribution unlimit	ed.		
inpproved for public resource, and		,		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, il different fro	m Report)		
		וחובסוביווועבח		
		U) 444 8 4075 III		
18. SUPPLEMENTARY NOTES		U) WM G ISIS		
Reprodu N.A.T	IONAL TECHNICAL			
	RMATION SERVICE			
US	5 Department of Commerce Springfield, VA 22151	D		
19. KEY WORDS (Continue on reverse side if necessary an	nd Identify by block number)			
radar scintillation				
target scintillation				
target scintillation simulation				
target scintillation algorithm target strength estimates				
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)			
		algorithm used to simulate		
This report discusses the implementation of an algorithm used to simulate target scintillation. The algorithm takes uniform random noise and modi-				
fies it using a simulated low-pas	ss filter to produ	ce estimates of target		
strength. The actual implementation statistics are compared with the				
theoretical distribution to ascer	tain the usefulne	ss of the approach.		

CONTENTS

1.	INTRODU	CTION	3
2.	ALGORIT	нм	3
3.	STATISTI	CS OF THE ALGORITHM	6
4.	THEORET	FICAL MODEL	8
5.	COMPARI	SON OF MODELS	9
APPI	ENDIX A.	STATISTICS OF NOISE GENERATOR	13
APPI	ENDIX B.	STATISTICS OF SCINTILLATION SEQUENCES	15
APPI	ENDIX C.	STATISTICS OF THEORETICAL DISTRIBUTION	21
REFI	ERENCES		25

FIGURES

i.	Filter Model	•
2.	Actual versus Theoretical Distribution of Scintillation	10
3.	Distributions at Input to Produce Actual or Theoretically Correct Scintillation	1
4.	Transformation for Samples from p(x) to Samples from p(y)	12

1. INTRODUCTION

Target scintillation is the variation of angular location of the apparent source of the echo signal and is dependent upon relative phase and amplitude of the component echo signals and their apparent angular locations. The motion of the target causes the apparent source to wander back and forth about the physical center of the target. This wander is called angle noise or scintillation [Ref. 1]. Since the noise is random, it is usually calculated using experimental observation data. Few articles have appeared to propose models of the phenomenon.

Recently, we implemented a simulation of target scintillation. The objective of this report is to document this implementation and to define its theoretical basis. These objectives are realized by answering the following questions:

- 1. What algorithm was actually implemented.
- 2. What are the statistical characteristics of simulated scintillation?
- 3. What are the theoretical statistical characteristics of our model?

2. ALGORITHM

The scintillation implementation is based on the model illustrated in Figure 1. Random noise is generated by the algorithm derived in Appendix A. The noise is passed through a filter to simulate the correlation of scintillation. The filtered noise then exponentially modifies the nominal target strength which is our output. This arrangement allows for simulation of virtually all types of scintillation because it allows control of both the statistics of the noise and the characteristics of the filter.

Figure 1. Filter Model

Pseudo-random noise is generated by the algorithm:

$$R_{1(n)} = 65539 R_{1(n-1)} \text{ (modulo 2}^{31}\text{)}$$
 (1)

$$R_{1(0)} = 12345$$

$$R_n = 2(R_{1(n)} - (0.5x2^{31}))$$
 (2)

This noise, magnified by a scale factor K, is filtered by a digital one-pole filter:

$$X_n = C_2 X_{n-1} + C_1 KR_n$$
 (3)

where:

$$C_{1} = 1 - e^{-\frac{\Delta t}{\tau}} \sim \frac{\Delta t}{\tau}$$

$$C_2 = e^{-\frac{\Delta t}{\tau}} \sim 1 - \frac{\Delta t}{\tau}$$

Thus:

$$X_{n} = (1 - \frac{\Delta t}{\tau}) \cdot X_{n-1} + \frac{\Delta t}{\tau} \cdot K \cdot R_{n}$$
 (4)

The values selected for implementation were

 $\tau = 1.024$ second

Δt = 8 milliseconds

 $\Delta t/\tau = 2/256$

K = 128

Therefore:

$$X_{n} = \frac{254}{256} X_{n-1} + R_{n}$$
 (5)

The value of both X_n and the eclipsing constant are added to the exponent of the normal target strength. The range for this exponent is limited to 0 through +63.

3. STATISTICS OF THE ALGORITHM

The random numbers generated in equations (1) and (2) have the following uniform distribution with mean of 0 and variance equal to 1/3.

$$p(R_n) = 1/2 \text{ for } -1 \le R_n < +1$$

where $p(\cdot)$ is the probability of (\cdot) .

mean =
$$\mu_R = \int_{-\infty}^{+\infty} R \cdot p(R) dR = 0$$

variance =
$$\sigma_R^2 = \int_{-\infty}^{+\infty} (R - \mu_R)^2 p(R) dR = 1/3$$

After passing through the filter, the mean, variance, and autocorrelation functions of any one sequence $[X_0, X_1, \dots, X_n]$ as derived in Appendix B are as follows:

$$\mu_{\mathbf{X}} = \mu_{\mathbf{R}} = 0 \tag{6}$$

$$\sigma_{X}^{2} = \frac{K^{2}C_{1}^{2}}{1 - C_{2}^{2}} \sigma_{R}^{2} = \frac{K^{2}C_{1}}{2 + C_{1}} \sigma_{R}^{2} = \frac{K^{2}C_{1}}{2 + C_{1}} \cdot \frac{1}{3}$$
 (7)

$$\rho(k) = \frac{E(X_n, X_{n-k})}{\sigma_n \cdot \sigma_{n-k}} = C_2^k$$
 (8)

Substituting values:

$$\frac{\mu_{X}}{\sigma_{X}^{2}} = 21.4$$

$$p(k) = (0.9921875)^{k}$$
 (9)

Time = $k \cdot \Delta t = 8 \cdot k$ milliseconds

where

k = number of samples

The amplitude distribution of X is Gaussian with the above mean and variance. These perturbations are applied to the exponent of target strength so that, in effect, the logarithm of strength is varied. Applying an inverse log transformation, we find:

$$p(X) = \frac{1}{\sqrt{2\pi} \sigma_X} e^{-\frac{X^2}{2\sigma_X^2}}$$
 (10)

$$p(S) = \frac{1}{\sqrt{2\pi} \cdot \sigma_{X} \cdot S} e^{-\frac{(\ln S - \ln \overline{S})^{2}}{2\sigma_{X}^{2}}}$$
for $-\infty < S < +\infty$ (11)

where S = target strength

 \overline{S} = mean of S or nominal target strength

This is a log-normal distribution whose

mean =
$$\bar{S} e^{\frac{\sigma_X^2}{2}} = \bar{S} e^{\frac{K^2 C_1^2}{1 - C_2^2} \frac{\sigma_R^2}{2}}$$
 (12)

and variance =
$$\overline{S}^2 \cdot e^{\sigma X} \begin{pmatrix} \sigma & 2 \\ e^{\sigma X} & -1 \end{pmatrix}$$
 (13)

Note that the average target strength changes from its nominal value \overline{S} .

Qualitatively, this can be understood by examining a case where the exponent of target strength is alternately changed by +1 and -1. The average value for the exponent for this case is unchanged. But when one inspects the corresponding strengths, they become 1-1/4 rather than 1.

4. THEORETICAL MODEL

Radar scintillation discussions invariably refer back to Swerling's classic paper [Ref. 2]. For his cases I or II, which apply to aircraft, the distribution of reflected energy is:

$$p(S, \overline{S}) = \frac{S}{\overline{S}} e^{-\frac{S}{\overline{S}}} \text{ for } x \ge 0$$
 (14)

= 0 elsewhere

where S = input signal-to-noise ratio (target cross-section)

 \overline{S} = average of S over all fluctuations

We must therefore generate a distribution which, when applied to the logarithm of target strength, will result in Eq. (14). If p(x) is this distribution, then

$$x = \ln S \text{ or } S = e^{X}$$

$$dx = \frac{dS}{S} = e^{-x} dS$$

$$p(x) = \frac{p(S)}{\left|\frac{dx}{dS}\right|} = \frac{\frac{1}{\overline{S}} e^{\frac{S}{\overline{S}}}}{\frac{1}{S}} = \frac{S}{\overline{S}} e^{-\frac{S}{\overline{S}}}$$

$$p(x) = \frac{e^{x}}{e^{x}} e^{x} \text{ for } -\infty < x < +\infty$$
 (15)

The mean and variance of this distribution p(x) as derived in Appendix C are:

mean =
$$\mu_{\mathbf{x}} = \overline{\mathbf{x}} - \mathbf{C} = \ln \overline{\mathbf{S}} - \mathbf{C}$$

where C = Euler's constant

variance =
$$\sigma_{\mathbf{x}}^2 = \frac{\pi}{6}$$

5. COMPARISON OF MODELS

A plot of the theoretical versus the implemented distribution is included as Figure 2. Figure 3 illustrates the input distribution used to generate the distribution in Figure 2. Figure 4 illustrates the transform used to convert theoretically correct noise from the available Gaussian noise. The algorithm closely realizes theoretical scintillation for values greater than 0.6.

Figure 2. Actual versus Theoretical Distribution of Scintillation

Figure 3. Distributions at Input to Produce Actual or Theoretically Correct Scintillation

Figure 4. Transformation for Samples from p(x) to Samples from p(y)

APPENDIX A

STATISTICS OF NOISE GENERATOR

The basic random number generator is the same one used in the XDS standard FORTRAN Numerical Subroutine Package. It generates pseudorandom numbers uniformly distributed between 1 and positive full scale (X'7FFFFFFF'). Only odd numbers are generated. Treating the generated sequence R_1 as numbers scaled over 2^{31}

$$R_1 = 1$$
 for $0 \le R_1 < +1$
= 0 elsewhere (A1-1)

By equation (2), these are converted to a uniform distribution in the region -1 to +1:

$$R = \frac{1}{2} \qquad \text{for } -1 \le R < +1$$

$$= 0 \qquad \text{elsewhere}$$
(A1-2)

Hence the mean is:

$$\mu_{R} = \int_{-\infty}^{+\infty} Rp(R) dR = \int_{-\infty}^{+\infty} \frac{1}{2} \cdot R dR = \left[\frac{R^{2}}{4}\right]_{-1}^{+1} = 0$$
 (A1-3)

and the variance:

$$\sigma_{R}^{2} = \int_{-\infty}^{+\infty} p(R)(R-\mu_{R})^{2} dR = \int_{-\infty}^{+\infty} \frac{1}{2} \cdot R^{2} dR = \frac{1}{2} \cdot \left[\frac{R^{3}}{3}\right]_{-1}^{+1} = \frac{1}{3}$$

APPENDIX B

STATISTICS OF SCINTILLATION SEQUENCES

Each sequence of scintillation factors is generated by the recursion relation of Eq.(3). Expanding this equation:

$$X_{0,j} = C_1 KR_{0,j}$$

$$X_{1,j} = C_1 KR_{1,j} + C_1 C_2 KR_{0,j}$$

$$X_{2,j} = C_1 KR_{2,j} + C_1 C_2 KR_{1,j} + C_1 C_2^2 KR_{0,j}$$

$$X_{3,j} = C_1 KR_{3,j} + C_1 C_2 KR_{2,j} + C_1 C_2^2 KR_{i,j} + C_1 C_2^3 KR_{0,j}$$

$$\vdots$$

$$X_{n,j} = C_1 KR_{n,j} + C_1 C_2 KR_{n-1,j} + \cdots + C_1 C_2^n KR_{0,j}$$

or

$$X_{n, j} = C_1 K \sum_{i=0}^{n} C_2^{n-i} R_{i, j}$$

The mean of the jth sequence is obtained by summing all terms in the sequence:

$$\mu_{j} = \frac{1}{n} C_{1} K \left[\left(C_{2}^{0} + C_{2}^{1} + C_{2}^{2} + \cdots C_{2}^{n} \right) R_{0, j} + \left(C_{2}^{0} + C_{2}^{1} + C_{2}^{2} + \cdots C_{2}^{n} \right) R_{1, j} + \cdots \right]$$

$$\mu_{j} = \frac{1}{n} C_{1} K \left[C_{2}^{0} + C_{2}^{1} + \cdots C_{2}^{n} \right] \left[R_{0, j} + R_{1, j} + R_{2, j} + \cdots R_{n, j} \right]$$

Preceding page blank

The mean of all sequences is obtained by summing across all j:

$$\mu = \frac{1}{n} C_1 K \left[C_2^0 + C_2^1 + C_2^2 + \cdots C_2^n \right] \left[\frac{1}{j} \sum_{j=0}^{j} R_{0,m} + \frac{1}{j} \sum_{j=0}^{j} R_{1,m} + \cdots + \frac{1}{j} \sum_{j=0}^{j} R_{n,m} \right]$$

$$j \to \infty$$

But

$$\mu = \frac{1}{j} \sum_{\substack{j \to \infty \\ n \to \infty}}^{j} R_{n,m} = \mu_{R} \text{ (the mean or, the random numbers)}$$

and

$$C_2^0 + C_2^1 + \cdots + C_2^n = \frac{1}{1 - C_2}$$

Thus

$$\mu_{X} = \frac{C_{1}K}{1 - C_{2}} \mu_{R}$$

However, since μ_R is zero,

$$\mu_{\mathbf{X}} = 0$$

Similarly, we can find the variance:

$$\sigma_{\mathbf{X}}^{2} = E[(X_{n} - \mu_{\mathbf{X}})^{2}] = E(X_{n}^{2}) = \frac{1}{n} \sum_{n \to \infty}^{n} X_{i}^{2}$$

If we expand a typical term, say $X_{3,j}^2$:

$$\begin{split} \mathbf{X}_{3,j}^{2} &= \left(\mathbf{C}_{1} \mathbf{K} \mathbf{R}_{3,j} + \mathbf{C}_{1} \mathbf{K} \mathbf{C}_{2} \mathbf{R}_{2,j} + \mathbf{C}_{1} \mathbf{K} \mathbf{C}_{2}^{2} \mathbf{R}_{1,j} + \mathbf{C}_{1} \mathbf{K} \mathbf{C}_{2}^{3} \mathbf{R}_{0,j} \right)^{2} \\ &= \mathbf{C}_{1}^{2} \mathbf{K}^{2} \left[\mathbf{C}_{2}^{6} \left(\mathbf{R}_{0}^{2}, \mathbf{j} \right) \right. \\ &+ \mathbf{C}_{2}^{5} \left(\mathbf{R}_{1}, \mathbf{j} \mathbf{R}_{0}, \mathbf{j} + \mathbf{R}_{0}, \mathbf{j} \mathbf{R}_{1}, \mathbf{j} \right) \\ &+ \mathbf{C}_{2}^{4} \left(\mathbf{R}_{2}, \mathbf{j} \mathbf{R}_{0}, \mathbf{j} + \mathbf{R}_{1}^{2}, \mathbf{j} + \mathbf{R}_{0}, \mathbf{j} \cdot \mathbf{R}_{2}, \mathbf{j} \right) \\ &+ \mathbf{C}_{2}^{3} \left(\mathbf{R}_{3}, \mathbf{j} \cdot \mathbf{R}_{0}, \mathbf{j} + \mathbf{R}_{2}, \mathbf{j} \cdot \mathbf{R}_{1}, \mathbf{j} + \mathbf{R}_{1}, \mathbf{j} \cdot \mathbf{R}_{2}, \mathbf{j} + \mathbf{R}_{0}, \mathbf{j} \cdot \mathbf{R}_{3}, \mathbf{j} \right) \\ &+ \mathbf{C}_{2}^{2} \left(\mathbf{R}_{3}, \mathbf{j} \cdot \mathbf{R}_{1}, \mathbf{j} + \mathbf{R}_{2}, \mathbf{j} + \mathbf{R}_{1}, \mathbf{j} \cdot \mathbf{R}_{3}, \mathbf{j} \right) \\ &+ \mathbf{C}_{2}^{1} \left(\mathbf{R}_{3}, \mathbf{j} \cdot \mathbf{R}_{2}, \mathbf{j} + \mathbf{R}_{2}, \mathbf{j} \cdot \mathbf{R}_{3}, \mathbf{j} \right) \\ &+ \mathbf{C}_{2}^{0} \left(\mathbf{R}_{3}^{2}, \mathbf{j} \right) \right] \end{split}$$

Summing across all j and recognizing that:

$$E(R_{i,j} \cdot R_{m,j}) = \sigma_x^2 \qquad i = m$$

$$= 0 \qquad i \neq m$$

and that:

$$C_2^0 + C_2^2 + C_2^4 + \cdots \rightarrow \frac{1}{1 - C_2^2}$$

We find:

$$\sigma_{\mathbf{X}}^2 = \frac{C_1^2 \kappa^2}{1 - C_2^2} \sigma_{\mathbf{X}}^2$$

In an analogous manner we can find the expected value of displaced samples:

$$E(X_n \cdot X_{n-m}) = \frac{C_1^2 K^2 C_2^m}{1 - C_2^2} \sigma_R^2$$

where m is the displacement.

By definition, the correlation coefficient, ρ , is:

$$\rho(m) = \frac{E(X_n \cdot X_{n-m})}{\sigma_{X_n} \cdot \sigma_{X_{n-m}}} = \frac{E(X_n \cdot X_{n-m})}{\sigma_{X}^2}$$

which, in this case is:

$$\rho(m) = C_2^m$$

The mean and variance of he transformed sequences may be computed from Eq. (11), which is derived in the following manner. Gaussian pertubations characterized by $\mu_{X'}$ and σ_{X}^{2} :

$$p(X) = \frac{1}{\sqrt{2\pi} \sigma_X} e^{-\frac{(X-\mu_X)^2}{2\sigma_X^2}}$$

are transformed by an inverse log transformation:

$$S = e^{X}$$
 or $X = \ln S$

$$\frac{dS}{dX} = e^X = \frac{1}{S}$$

where

S = transformed target strength

X = log strengtn = contents of target files

$$p(S) = \frac{p(X)}{\left|\frac{dS}{dX}\right|} |_{X=\ln S} = \frac{\frac{1}{\sqrt{2\pi\sigma_X}} \frac{1}{5}}{18} = \frac{\frac{(X-\mu_X)^2}{2\sigma_X^2}}{18}$$

$$p(S) = \frac{1}{\sqrt{2\pi} \sigma_{X}} \cdot \frac{1}{S} \cdot e^{\frac{-(\ln S - \ln \overline{S})^{2}}{2\sigma_{X}^{2}}}$$

note:

$$\overline{S} = e^{\mu X}$$
 or $\mu_X = \ln S$

The mean a distribution are given in Reference 3, Section 10.14.2:

mean (S) =
$$\mu_S = e^{\ln \overline{S}} \cdot e^{\frac{Z}{2}} = \overline{S} e^{\frac{Z}{2}}$$

variance of
$$S = \sigma_S^2 = e^{2\ln \overline{S}} \cdot e^{\sigma X} \begin{pmatrix} e^{\sigma X} \\ e^{\sigma X} - 1 \end{pmatrix}$$
$$= \overline{S}^2 \cdot e^{\sigma X} \begin{pmatrix} e^{\sigma X} \\ e^{\sigma X} - 1 \end{pmatrix}$$

APPENDIX C

STATISTICS OF THEORETICAL DISTRIBUTION

The distribution of the sequence, which, when added to the exponent of target strength will generate theoretically correct scintillation, as derived in Section 4, is:

$$p(x) = \frac{e^{x}}{e^{x}} e^{-\frac{e^{x}}{e^{x}}}$$
(4-3)

for
$$-\infty < x < +\infty$$

The mean, μ_x , and mean square, μ_2 , of this distribution are:

$$\mu_{x} = \int_{-\infty}^{+\infty} x \frac{e^{x}}{e^{x}} e^{\frac{-e^{x}}{e^{x}}} dx \qquad (A3-1)$$

$$\mu_2 = \int_{-\infty}^{+\infty} x^2 \frac{e^x}{e^{\overline{x}}} e^{\frac{e^x}{e^{\overline{x}}}} dx \qquad (A3-2)$$

To integrate these, we make the substitutions

$$y = e^{x} \text{ for } 0 \le y < +\infty$$
 (A3-3)

which implies:

$$dy = de^{X} = e^{X} dx (A3-4)$$

and

$$x = \ln y \tag{A3-5}$$

Preceding page blank

Substituting into (A3-2) and (A3-3)

$$\mu_{x} = \frac{1}{e^{\overline{x}}} \int_{0}^{\infty} e^{-\frac{y}{e^{\overline{x}}}} \ln y \, dy \qquad (A3-6)$$

$$\mu_2 = \frac{1}{e^{\frac{1}{X}}} \int_0^\infty e^{-\frac{y}{e^{\frac{x}{X}}}} (\ln x)^2 dy$$
 (A3-7)

The standard forms of these integrals are [from Ref. 4]:

$$\int_{0}^{\infty} e^{-px} \ln x \, dx = -\frac{1}{p} (C + \ln p) \qquad (3.711, Ref. 3)$$

$$\int_{0}^{\infty} e^{-px} (\ln x)^{2} dx = C^{2} + \frac{\pi^{2}}{6}$$
 (3.714, Ref. 3)

where C = Euler's constant = 0.577

Using these and:

$$p = \frac{1}{e^{\overline{X}}}$$

it can be shown that:

$$\mu_{\mathbf{x}} = \left(\frac{1}{e^{\overline{\mathbf{x}}}}\right) \left(-e^{\overline{\mathbf{x}}}\right) \left(C + \ln \frac{1}{e^{\overline{\mathbf{x}}}}\right) \tag{A3-8}$$

$$= -(C - \ln e^{\overline{X}}) = \overline{X} - C \qquad (A3-9)$$

and

$$\mu_{2} = \bar{x}^{2} - 2\bar{x}C + C^{2} + \frac{\pi}{6}$$

$$= (\bar{x} - C)^{2} + \frac{\pi}{6}$$
(A3-10)

The variance is therefore:

$$\sigma_{x}^{2} = \mu_{2} - \mu_{x}^{2}$$

$$= (\bar{x} - C)^{2} + \frac{\pi}{6} - (\bar{x} - C)^{2}$$

$$= \frac{\pi}{6}$$
(A3-11)

In other words, to generate random variations of target strength for Swerling's Case I or Case II distributions, we apply random perturbations to the exponent of target strength with the distribution of (15), mean of (A3-8), and variance of (A3-11).

REFERENCES

- 1. S. Skolnik, Radar Handbook, McGraw-Hill, New York (1970).
- 2. P. W. Swerling, <u>Probability of Detection for Fluctuating Targets</u>,
 RAND Report RM-1217 (March 1954).
- 3. Ryshik and Gradstein, Summen, Produkt und Integral Tafeln, (1963).
- 4. Burington and May, <u>Handbook of Probability and Statistics with Tables</u>, Second Edition (1971).

Preceding page blank