

NASA WG3 MMOD Protection Summary

33rd Interagency Space Debris Coordination Committee (IADC)
March-April 2015

NASA JSC-KX/Eric L. Christiansen NASA JSC-ES/Kornel Nagy NASA JSC/Jim Hyde

Summary of MMOD Protection Activities

International Space Station (ISS):

- Assessed risk change to ISS hardware & EVA suits from ORDEM 3.0 (charts 3-5)
- Identified MMOD damage in on-orbit photos of ISS radiators and solar arrays (charts 6-9)
- Continue planning on-orbit inspection of visiting vehicle thermal protection systems prior to undock
- Continue damage detection & repair work (joint international working group)

Multipurpose Crew Vehicle (Orion), Commercial Crew & Resupply Vehicles:

- Performed post-flight MMOD damage inspections of SpaceX Dragon cargo vehicle after ISS resupply missions, and Orion vehicle after exploration flight test 1 (charts 10-15)
- Performed risk assessments and hypervelocity impact tests to verify compliance to MMOD requirements

Material Distributions - ISS

ORDEM Populations for 2013 ISS Flux as a Function of Debris Size

National Aeronautics and Space Administration

Past Environment vs. Future Risk; > 3 mm ISS altitude (400 km)

- Predicted spatial density in the future is somewhat higher than pre-2007 measured values even though the contribution from the two collisions has dropped to very low levels.
- Part of the increase is due to averaging 120 different future "realities."
 - Each future Monte Carlo environment has 0, 1, 2, or more future collisions or explosions at "random" times.
- The future level is an accurate representation of the risk to ISS.

Note: Public release version will not produce data prior to 2010

ISS MMOD penetration risks with ORDEM 3.0 debris model (Bumper code results)

- Addition of steel particles in ORDEM 3.0 debris flux increases overall risk to ISS compared to results using previous debris model (ORDEM 2000)
 - Overall trend is for lightly shielded items to have higher risk and better protected items have lower risk

Risk of penetration over 10-years 1/2015 – 12/2024 (penetration = hole in crew module pressure shell, failure of external pressurized tanks & CMGs)								
	ORDEM 3.0 + MEM	ORDEM 2000 + MEM						
ISS Risk	34%	25%						
ISS PNP (PNP=1-Risk)	0.662	0.751						

Note: ORDEM = orbital debris model, MEM = meteoroid model PNP = probability of no penetration

MMOD damage on ISS photovoltaic (PV) radiator

- Indication found on 30 June 2014 (Port 4 truss PV radiator)
- Exit hole shown below measures 5" x 3.9" (13 cm x 10 cm)
- Entry hole on opposite side is 0.7" x 0.5" (1.8 cm x 1.3 cm)
- Initial estimated MMOD particle size causing damage: 4 mm to 5 mm dia.

National Aeronautics and Space Administration

Ground hypervelocity impact test MMOD damage compared to P4 photovoltaic radiator damage

 Exit hole damage from 4.5 mm diameter aluminum spherical projectile at 7.08 km/s and 50 deg impact angle (angle from target normal) compares fairly well with actual damage

ISS Solar Array Damage Solar array 3A, panel 58

ISS Solar Array Damage Solar array 2A, panel 66

Current Status

- Inspection performed on back shell panels, base heat shield, crew module windows and docking hatch
- 6 damages identified on back shell TPS that are potentially from MMOD
 - Removed tiles with 5 of these 6 damages for non-destructive evaluation (NDE) and scanning electron microscopy (SEM)
- 41 pits identified on crew module and docking hatch windows

Forward Work

- NDE characterization of selected MMOD damage sites
- Scanning Electron Microscopy of MMOD damage sites
- Final disposition of damage sites and comparisons to impact predictions
- Documentation

Surface	ROI	Capsule	Feature Size (mm)			Preliminary		
Type	#	Region	Material	Length	Width	Depth	Sample	Disposition
TPS	4	Panel A, Tile 33	AETB-8	0.51	0.50	0.50	intact extraction of tile	possible MMOD
TPS	7	Panel C, Tile 73	AETB-8	1.29	1.10	0.05	intact extraction of tile	possible MMOD
TPS	20	Panel H, Tile 144	AETB-8	0.63	0.56	0.54	intact extraction of tile	possible MMOD
TPS	23	Panel I, Tile 45	AETB-8	1.18	1.15	0.60	TBD	possible MMOD
TPS	24	Panel F, Tile 45	AETB-8	1.06	1.02	1.02	intact extraction of tile	possible MMOD
TPS	25	Panel A, Tile 8	AETB-8	1.88	1.27	0.70	intact extraction of tile	possible MMOD

Panel A, Tile 33
Feature Size = 0.51 x 0.50 mm
Depth= 0.50 mm

Panel C, Tile 73
Feature Size = 1.29 x 1.10 mm
Depth= 0.05 mm

Panel H, Tile 144
Feature Size = 0.63 x 0.56 mm
Depth= 0.54 mm

Panel I, Tile 45
Feature Size = 1.18 x 1.15 mm
Depth= 0.60 mm

Panel F, Tile 45
Feature Size = 1.06 x 1.02 mm
Depth= 1.02 mm

Panel A, Tile 8
Feature Size = 1.88 x 1.27 mm
Depth= 0.70 mm

Panel A, Tile 33
Feature Size = 0.51 x 0.50 mm
Depth= 0.50 mm

Panel C, Tile 73
Feature Size = 1.29 x 1.10 mm
Depth= 0.05 mm

Panel H, Tile 144
Feature Size = 0.63 x 0.56 mm
Depth= 0.54 mm

<u>Panel I, Tile 45</u> Feature Size = 1.18 x 1.15 mm Depth= 0.60 mm

Panel F, Tile 45
Feature Size = 1.06 x 1.02 mm
Depth= 1.02 mm

Panel A, Tile 8
Feature Size = 1.88 x 1.27 mm
Depth= 0.70 mm

Backshell Tile Damage Predictions compared to Observations

EFT-1 Post Flight MMOD Inspection Window impact

Internal Fracture ≈ 0.51 x 0.41 mm Crater ≈ 0.32 x 0.30 mm

°#19

Depth= TBD mm

Backup Charts

ISS Bumper finite element model

after addition of MLM, Russian Node, and BEAM modules, and after PMM relocation

Each color represents a different MMOD shield configuration (~500 different shields protect ISS modules and external pressure vessels)