

Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра)

Хомутов Андрей, Б06-903 Рыбкина Елизавета, Б06-903 ФБМФ, 2021

Цель работы:

Исследовать энергетическую зависимость вероятности рассеяния электронов атомами ксенона, определить энергии электронов, при которых наблюдается "просветление" ксенона, оценить размер его внешней электронной оболочки.

1 Теоретическая часть

Эффективное сечение реакции — это величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определенное конечное состояние. Сечение σ это отношение числа таких переходов N в единицу времени к плотности потока nv рассеиваемых частиц, падающих на мишень, т.е. к числу частиц, падающих в единицу времени на единичную площадку, перпендикулярно к их скорости.

$$\sigma = \frac{N}{nv} \tag{1}$$

Эффект Рамзауэра нельзя объяснить с позиции классической теории. С квантовой же точки зрения картина рассеяния выглядит следующим образом: внутри атома потенциальная энергия падающего электрона отлична от нуля, скорость электрона меняется, становясь равной v' в соответствии с законом сохранения энергии

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U$$

а значит, изменяется и длина его волны де-Бройля. Таким образом, по отношению к электронной волне атом ведет себя как преломляющая среда с относительным показателем преломления

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}} \tag{2}$$

Решение задачи о рассеянии электрона на сферическом потенциале достаточно громоздко. Поэтому рассматривают более простое одномерное приближение: электрон рассеивается на потенциальной яме конечной глубины. После решения соответствующего уравнения Шрёдингера получается выражение для коэффициента прохождения:

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2l)}$$
(3)

где
$$k_1^2 = \frac{2mE}{\hbar^2}, k_2^2 = \frac{2m(E+U_0)}{\hbar^2}.$$

Как легко видно, это периодическое выражение с максимумами при

$$k_2 l = \pi n = \sqrt{\frac{2m(E + U_0)}{\hbar^2}} l \tag{4}$$

Это же условие можно получить, рассматривая интерференцию двух волн — прошедшей через атом и отраженной от границ атомного потенциала. Тогда получаются следующие выражения

для эффективного размера атома l:

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{5}$$

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} \tag{6}$$

Где E_1, E_2 — энергии, соответствующие максимуму и минимуму прохождения электронов соответственно. Исключая U_0 можно найти

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{7}$$

А исключая l можно найти эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{8}$$

Так же можно вывести теоретически формулу, связывающую зависимость вероятности рассеяния электрона от его энергии:

$$w(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{9}$$

С помощью неё, имея ВАХ тиратрона, можно построить график w(V).

Схема установки

Лампа-тиратрон $T\Gamma 301/1.3$ Б, заполненная инертным газом, расположена непосредственно на корпусе блока источников питания (БИП). Напряжение к электродам лампы подаются от источников питания, находящиеся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП.

Рис. 1: Блок-схема экспериментальной установки

2 Практическая часть

2.1 Измерения в динамическом режиме

Таблица 1: Результаты измерения в динамическом режиме

U, B	E_1 , эВ	δ_{E_1} , эВ	E_2 , эВ	δ_{E_2} , эВ	V	$\delta_{V_{ m npo6}}$
2,6	1,6	0,4	6,4	0,4	11,2	0,8
2,4	1,6	0,4	6,8	0,4	12,8	0,8

С помощью формул (7) и (8) рассчитаем глубину потенциальной ямы и эффиктивный размер атома:

$$U_0 = 2.4 \pm 0.34 \text{ sB}$$

$$l=307\pm28$$
 пм

Также если принять $U_0=2.5$ эВ, с помощью форсул (5) и (6) можно получить:

$$l_1 = 303 \pm 19 \; \text{пм}$$

$$l_2 = 305 \pm 9$$
 пм

Пробой происходит в среднем при $V=12,0\pm0,4$ Вб поэтому можно предположить что исследуемый газ - ксенон (потенциал ионизации составляет $12.1~\mathrm{pB}$).

2.2 Измерения в статическом режиме

Построим полученный ВАХ на графике (рис.2). Проводя аналогичные расчеты:

$$U_0 = 1.78 \pm 0.06 \text{ } \text{9B}$$

$$l=316\pm 5$$
 пм

Из формулы (4) получим что слудющие максимумы соотвествуют напряжениям $E_2\simeq 20$ эВ, $E_3\simeq 48$ эВ. Но при данном потенциале ионизации их невозможно увидеть.

Также с помощью формулы (9) построим график вероятности рассеяния w(V) (рис. 3).

Рис. 2: BAX тиратрона в статическом режиме

Рис. 3: Зависимость вероятности рассеяния от напряжения

3 Выводы

В этой лабораторной работы мы могли пронаблюдать ВАХ тиратрона в динамическом и статическом режимах измерения. Путем снятия точек в статическом режиме был построен график, согласующийся с теорией, по которому можно было определить максимум и минимум тока и соответствующие им напряжения. Для динамического режима измерения напряжения были сняты по осцилограмме. С помощью этих величин было возможно определить глубину потенциальной ямы U_0 , при этом расчет по данным динамического измерения, дал лучший результат и был довольно близок к справочным 2,5 В. Оба метода хорошо себя зарекомендовали в определении размера электронной оболочки l, давая приблизительно одинаковые результаты около 300 пм (справочные данные для ковалентного радиуса ксенона 140 пм). Наконец, был построен график w(V), соответствующий ожидаемому виду.

4 Приложения

Таблица 2: Результаты измерения в статическом режиме

	Напряжение накала							
	2,	4 B	2,6 B					
No॒	V, B	I, MKA	V, B	I, MKA				
1	0,004	0,8	0,004	1,1				
2	0,52	1	0,595	3,1				
3	1,023	76,7	1,063	220				
4	1,345	530	1,79	1570				
5	1,59	983	1,75	1530				
6	1,665	1073	2,026	1610				
7	1,725	1110	2,16	1540				
8	1,86	1160	2,209	1510				
9	1,977	1200	2,533	1280				
10	2,15	1060	2,915	1020				
11	2,16	940	3,393	790				
12	2,45	730	4,374	530				
13	2,926	490	5,73	400				
14	3,348	370	6,677	390				
15	4,202	260	6,773	400				
16	5,19	190	6,921	410				
17	5,78	177	7,187	420				
18	6,23	170	7,815	425				
19	6,715	171	8,36	450				
20	7	170	9,092	540				
21	7,63	173,7	9,42	520				
22	8,648	194	10,812	720				
23	9,696	242	11,475	880				
24	10	262						
25	11,15	317						

$$\begin{split} n_{j} &= \sum_{i=1}^{N} I(seq_{i}(date) \in dates_interval_{j}) \\ n_{prot_muts_{j}} &= \frac{\sum_{i=1}^{N} seq_{i}(q_prot_muts)I(seq_{i}(date) \in dates_interval_{j})}{\sum_{i=1}^{N} I(seq_{i}(date) \in dates_interval_{j})} \\ n_{prot_muts_{j}} &= \frac{\sum_{i=1}^{N} seq_{i}(q_prot_muts)I(seq_{i}(clade) = clade_{j})}{\sum_{i=1}^{N} I(seq_{i}(clade) = clade_{j})} \\ std_{j} &= \frac{\sum_{i=1}^{N} seq_{i}(prot_{k_loc_std})I(seq_{i}(clade) = clade_{j})}{\sum_{i=1}^{N} I(seq_{i}(clade) = clade_{j})} \end{split}$$

Рис. 4: ВАХ тиратрона в статическом режиме

$$std_k = \frac{\sum_{i=1}^{N} seq_i(prot_k_loc_std)I(seq_i(clade) = GRA)I(seq_i(date) \in Jul2022)}{\sum_{i=1}^{N} I(seq_i(clade) = GRA)I(seq_i(date) \in Jul2022)}$$

$$std_k_norm = \frac{\sum_{i=1}^{N} \frac{seq_i(prot_k_loc_std)}{len(prot_k)}I(seq_i(clade) = GRA)I(seq_i(date) \in Jul2022)}{\sum_{i=1}^{N} I(seq_i(clade) = GRA)I(seq_i(date) \in Jul2022)}$$

Рис. 5: Зависимость вероятности рассеяния от напряжения