Contents

1	Introduction 1					
	1.1	Introd	duction to Cryptography	1		
		1.1.1	Secret-Key Cryptography	1		
		1.1.2	Public-Key Cryptography	1		
	1.2	Secure	e Hardware and Embedded Cryptography	1		
		1.2.1	The Example of the Smart Card	1		
		1.2.2	Certification of a Secure Hardware	1		
		1.2.3	Modern More Complex Devices to Certify	1		
		1.2.4	Embedded Cryptography Vulnerabilities	1		
2	Introduction to Side-Channel Attacks					
	2.1	Introd	duction to Side-Channel Attacks	4		
		2.1.1	Historical Overview	4		
		2.1.2	Terminology and Generalities	4		
			Target and Leakage Model	4		
			Points of Interest	4		
			Simple vs Advanced SCAs	4		
			Vertical vs Horizontal SCAs	4		
			Profiled vs Non-Profiled SCAs	4		
			Side-Channel Algebraic Attacks	4		
			Distinguishers	4		
			SCA Metrics	4		
		2.1.3	Side-Channel Attacks vs Machine Learning	4		
			Distinguishers vs Classifiers	4		
	2.2	Main	Side-Channel Countermeasures	4		
		2.2.1	Masking	4		
		2.2.2	Shuffling	4		
		2.2.3	Random Delays and Jitter	4		
	2.3	Higher-Order Attacks		4		
		2.3.1	Higher-Order Moments Analysis and Combining Functions	4		
		2.3.2	Profiling Higher-Order Attacks	4		
			Profiling with Masks Knowledge	4		
			Profiling without Masks Knowledge	4		
	2.4	Thesis	s Contribution and Organization	4		
		2.4.1	Foreword of this Thesis: Research of Points of Interest	4		
		2.4.2	Dimensionality Reduction Approach	4		
			Linear Methods for First-Order Attacks	4		
			Kernel Methods for Higher-Order Attacks	4		
		2.4.3	Neural Network Approach	4		
			Toward Getting Rid of Information-Loosing Preprocessing	4		

3	Points of Interest and Dimensionality Reduction 5								
	3.1	Motivations	5						
		3.1.1 The Curse of Dimensionality	5						
	3.2	Selection on Points of Interest: Classical Statistics	5						
	3.3	Related Issues: Leakage Detection and Leakage Assessment	5						
	3.4	Observations Leading to Take a Dimensionality Reduction Approach .	5						
4	Line	Linear Dimensionality Reduction 7							
	4.1		7						
		4.1.1 Principal Component Analysis	7						
		4.1.2 Linear Discriminant Analysis	7						
		4.1.3 Projection Pursuits	7						
	4.2	Principal Component Analysis	7						
		4.2.1 Statistical Point of View	7						
		4.2.2 Geometrical Point of View	7						
	4.3	Application of PCA in SCAs	7						
		4.3.1 Original vs Class-Oriented PCA	7						
		4.3.2 The Choice of the Principal Components	7						
	4.4	Linear Discriminant Analysis	7						
		4.4.1 Statistical Point of View	7						
		4.4.2 Geometrical Point of View	7						
	4.5	Application of LDA in SCAs	7						
		4.5.1 The Small Sample Size problem	7						
5	Ker	nel Dimensionality Reduction	9						
	5.1	Motivation	9						
		5.1.1 Higher-Order Attacks	9						
		Higher-Order Version of Projection Pursuits	9						
	5.2	Kernel Function and Kernel Trick	9						
		5.2.1 Local Kernel Functions as Similarity Metrics	9						
	5.3	Kernel Discriminant Analysis	9						
	5.4	Experiments over Atmega328P	9						
		5.4.1 The Regularization Problem	9						
		5.4.2 The Multi-Class Trade-Off	9						
		5.4.3 Multi-Class vs 2-class Approach	9						
		5.4.4 Asymmetric Preprocessing/Attack Approach	9						
		Comparison with Projection Pursuits	9						
6	Machine Learning Approach								
	6.1	Motivation	11						
	6.2	Introduction to Machine Learning	11						
		6.2.1 The Task, the Experience and the Performance	11						
		6.2.2 Supervised, Semi-Supervised, Unsupervised Learning	11						
			11						
			11						
			11						
		<u> </u>	11						
	6.3		11						
		0 11	11						
			11						
			11						

6.4	Artificial Neural Networks	
6.5	Simulated Experiment for Profiled HO-Attacks	11
0.0	6.5.1 The Simulations	11
	6.5.2 Comparison between KDA and MLP	11
6.6	Real-Case Experiments over ARM Cortex-M4	11
7 Cor	nvolutional Neural Networks against Jitter-Based Countermeasures	13
7.1	Misalignment of Side-Channel Traces	13
	7.1.1 The Necessity and the Risks of Applying Realignment Tech-	
	niques	13
	7.1.2 Analogy with Image Recognition Issues	13
7.2	Convolutional Layers to Impose Shift-Invariance	13
7.3	Data Augmentation for Misaligned Side-Channel Traces	13
7.4	Experiments against Software Countermeasures	13
7.5	Experiments against Artificial Hardware Countermeasures	13
7.6	Experiments against Real-Case Hardware Countermeasures	13
8 Net	ural Networks: Back to Dimensionality Reduction	15
8.1	Motivation	15
8.2	Stacked Auto-Encoders	15
	8.2.1 The Same Issues of Classic PCA	15
8.3	Siamese Neural Networks	15
	8.3.1 Distances and Loss Functions	15
	8.3.2 Relation with Kernel Machines	15
8.4	A Experimental comparison between KDA and Siamese NNs	15
8.5	Collision Attacks with Siamese NNs	15
	8.5.1 Experimental Results	15
9 Cor	nclusions and Perspectives	17
9.1	Summary	17
9.2	Strengthen Embedded Security: the Main Challenge for Machine Learn-	
	ing Applications	17