Solutions for Homework 8 Foundations of Computational Math 2 Spring 2012

Problem 8.1

This is not a programming assignment and you need not turn in any code. This problem considers the used of discrete least squares for approximation by a polynomial. Recall, the distinct points $x_0 < x_1 < \cdots < x_m$ are given and the metric

$$\sum_{i=0}^{m} \omega_i (f(x_i) - p_n(x_i))^2$$

with $\omega_i > 0$ is used to determine the polynomial, $p_n^*(x)$, of degree n that achieves the minimal value. We will assume $\omega_i = 1$ for this exercise. Typically, $m \gg n$. If m = n then the unique interpolating polynomial is the solution.

If we let

$$p_n(x) = \sum_{j=0}^{n} \phi_j(x) \gamma_j$$

then the conditions are

$$\begin{pmatrix} \rho_0 \\ \rho_1 \\ \vdots \\ \rho_m \end{pmatrix} = \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_m) \end{pmatrix} - \begin{pmatrix} \phi_0(x_0) & \dots & \phi_n(x_0) \\ \phi_0(x_1) & \dots & \phi_n(x_1) \\ \vdots & & \vdots \\ \phi_0(x_m) & \dots & \phi_n(x_m) \end{pmatrix} \begin{pmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_n \end{pmatrix}$$

$$r = (b - Aq)$$

Use the Chebyshev polynomials to form an orthonormal basis, i.e.,

$$\phi_i(x) = \alpha_i T_i(x)$$

and the roots of $T_{m+1}(x)$ as the x_i .

- 1. Consider the *i*-th row of A. Show that row i can be determined by solving an $n+1\times n+1$ system of linear equations. Also show that the matrix that determines this system has structure such that the system can be solved in O(n) computations.
- 2. Use your solution to implement a code that assembles the least squares problem and make sure to exploit the algebraic properties of the matrix A to have an efficient solution.
- 3. Apply your code to several f(x) choices and use multiple n and m values to explore the accuracy of the approximation. Approximate $||f p_n^*||_{\infty}$ by sampling the difference between f and the polynomial at a large number of points in the interval and taking the maximum magnitude.

Solution:

The matrix

$$\tilde{A} = \begin{pmatrix} T_0(x_0) & \dots & T_n(x_0) \\ T_0(x_1) & \dots & T_n(x_1) \\ \vdots & & \vdots \\ T_0(x_m) & \dots & T_n(x_m) \end{pmatrix}$$

has all 1's in its first column since $T_0(x) = 1$. Since $T_1(x) = x$ it has as its second column $(x_0, \ldots, x_m)^T$ where $T_{m+1}(x_i) = 0$, $0 \le i \le m$. Elements $3 \le k \le n+1$ in row i can then be evaluated via the recurrence

$$T_{k+1}(x_i) = 2x_i T_k(x_i) - T_{k-1}(x_i).$$

Evaluating the linear recurrence is equivalent to solving a linear system defined by a lower triangular matrix with a single nonzero subdiagonal and a nonzero main diagonal. The complexity is clearly O(n) per row.

The columns of the matrix \tilde{A} do not have norm 1. They can be normalized by dividing the first column by $\sqrt{m+1}$ and the remaining columns by $\sqrt{m+1}/2$. These discrete vector norms are known analytically and therefore need not be evaluated.

Once b is computed by evaluating $f(x_i)$ at the roots x_i the least squares problem is solved trivially via

$$g = A^T b$$

As an example consider

$$f(x) = \frac{1}{1 + 5x^2}$$

with m = 20 and n = 9. The least squares polynomial $p_9^*(x)$, f(x) and the Chebyshev points are plotted in the figure. The error is

$$||f - p_9^*||_{\infty} \approx 0.018$$

Problem 8.2

Consider the two quadrature formulas

$$I_2(f) = \frac{2}{3} \left[2f(-1/2) - f(0) + 2f(1/2) \right]$$

$$I_4(f) = \frac{1}{4} \left[f(-1) + 3f(-1/3) + 3f(1/3) + f(1) \right]$$

- What is the degree of exactness when $I_2(f)$ is used to approximate I(f) on [-1,1]?
- What is the degree of exactness when $I_2(f)$ is used to approximate I(f) on [-1/2, 1/2]?
- What is the degree of exactness when $I_4(f)$ is used to approximate I(f) on [-1,1]?

Solution:

We have

$$I = \int_{-1}^{1} x^{k} dx = \begin{cases} 0 \text{ if } k \text{ is odd} \\ \frac{2}{k+1} \text{ if } k \text{ is even} \end{cases}$$

$$I_{2}(f) = \begin{cases} \frac{4}{3} \left[(-1/2)^{k} - 1 + (1/2)^{k} \right] = 2 \text{ if } k = 0 \\ \frac{4}{3} \left[(-1/2)^{k} + (1/2)^{k} \right] \text{ if } k \ge 1 \end{cases}$$

So clearly $I = I_2(f) = 0$ if $k \ge 1$ is odd. For $k \ge 2$ and even we must have

$$3 \times 2^k = 4(k+1)$$

which is equal for k = 2 and not equal for k = 4. Therefore the degree of exactness for $i_2(f)$ on [-1, 1] is p = 3.

We have

$$I = \int_{-1/2}^{1/2} x^k dx = \begin{cases} 0 \text{ if } k \text{ is odd} \\ \frac{1}{(k+1)2^k} \text{ if } k \text{ is even} \end{cases}$$

On the other hand, for k = 0 we have $I_2 = 2$ and I = 1 therefore, $I_2(f)$ is useful as an open formula on [-1, 1] with degree of exactness 3.

For $I_4(f)$ on [-1,1] we have

$$\begin{array}{c|cccc} k & I_4 & I \\ \hline 0 & 2 & 2 \\ 1 & 0 & 0 \\ 2 & \frac{2}{3} & \frac{2}{3} \\ 3 & 0 & 0 \\ 4 & \frac{4}{27} & \frac{2}{5} \end{array}$$

 $I_2(f)$ is a closed formula on [-1,1] with degree of exactness 3.

Problem 8.3

Consider the quadrature formula

$$I_0(f) = (b-a)f(a) \approx \int_a^b f(x)dx$$

- What is the degree of exactness?
- What is the order of infinitesimal?

Solution:

Expanding f(x) and integrating we have

$$\int_{a}^{b} (f(a) + (x - a)f'(\xi(x)))dx = I_{0} + \int_{a}^{b} (x - a)f'(\xi(x))dx$$

$$= I_{0} + f'(\eta) \int_{a}^{b} (x - a)dx \text{ since } (x - a) \ge 0$$

$$\therefore |I - I_{0}| = f'(\eta) \frac{(b - a)^{2}}{2} = O(h^{2})$$

So the degree of exactness is 0 and the order of infinitesimal is 2.

Problem 8.4

Consider

$$\int_{a}^{b} \omega(x) f(x) dx \approx \alpha f(x_0)$$

where $\omega(x) = \sqrt{x}$.

Determine α and x_0 such that the degree of exactness is maximized.

Solution:

We assume $0 \le a < b$ to keep the weight real. First set $f(x) = x^0 \equiv 1$ and require the quadrature to be exact. Second, set $f(x) = x \equiv 1$ and require the quadrature to be exact. This yields the following

$$f(x) = 1 \to \int_{a}^{b} x^{1/2} dx = \frac{2}{3} \left[x^{3/2} \right]_{a}^{b}$$

$$= \frac{2}{3} \left[b^{3/2} - a^{3/2} \right] = \alpha f(x_0) = \alpha$$

$$f(x) = x \to \int_{a}^{b} x^{3/2} dx = \frac{2}{5} \left[x^{5/2} \right]_{a}^{b}$$

$$= \frac{2}{5} \left[b^{5/2} - a^{5/2} \right] = \alpha f(x_0) = \alpha x_0$$

$$\therefore x_0 = \frac{3}{5} \left[\frac{(b^{5/2} - a^{5/2})}{(b^{3/2} - a^{3/2})} \right]$$

We have no other parameters so the maximum degree of exactness is 1.

Note that if a = 0 then $\forall b$, $x_0 = (3/5)b$. Also note that

$$0 \le a \le \frac{3}{5} \left[\frac{(b^{5/2} - a^{5/2})}{(b^{3/2} - a^{3/2})} \right] \le b$$

i.e., $a \le x_0 \le b$, is easily shown.