Proofs of correctness:	
- Q = our post-condition what the algo should	d do
· Sequential algo:	code:
· Sequential algo: First A, then B, then C	1: A 2: B
equit "proof" would look	3: C 4: D
something like	(no recur
A = 7 B = 7 C = 7 P = = 7 P	no gotos)

- 100P/recursion town, use invariants L Lux this in description.
 - 1) Start off on the right toot
 Initialization: P=7L
 precondition Twu. vacuously
 true.
 - 2) Continue to be on the right path.

 Maintenance: Li 16 = 7 Litt
 - 3) When it ends, we accomplished the gow. End: Ling 7 Q
 - (T) Termination: the loop ends (or 16 becomes true eventually) Decrementing Function.

P.g., Bubble Sort 7 8 0.5 26 6 8 7 13 26 95 A tor j=1 ... IA for i = 1 ... | A | - | | compare Ai with Ait + swap end for end for The outer For loop. After 1 Heration, we obtain: 6 7 8 13 0.5 26 1 this is sorted! Ama to An i.e., the set of size(1) at the end of 11 the array Loop invariant! the last is elements are sorted + in their final places where ij = 0 before the loop begins.

Challenge: Prove (1), (2), (3), +(7)

on a computer:
1) Adjacence Matrix vertius vertius vertius vertius vertius vertius vertius vertius
· good if have many edges compared to vertices. · Sparse matrix could be good otherwise. (e.g., in mattab) · might care about eigenvalues 2 Edge List Mark or Prod Node List

Brainstorm Ways to Represent a Graph

3 Dictionary: Key=id of node value=id of nodes connected to A.

Note: A tree is a graph.

We can do better? lets take 2 and do some improvements: FIRST: Always relabel the smaller tree O: What is the cost of M union/Find operations now? treeB

Depth moxim is at most logn with First improvement!

Second: Path compression.

Relabel all nodes you see to have hen not node.