10/573502 1179 Rec'd PCHPTO 27 MAR 2006

WO 2005/040837

明細書

1

磁気ブリッジ型電力センサー

技術分野

[0001] 本発明は、電流と電圧とを検出して相互に乗算する電力計測において、電流と電 圧とを一つのセンサーで同時に検出し、センサー自身で物理的に乗算する電力セン サーに関する。

背景技術

- [0002] 電力は、負荷両端の電圧とそこを流れる電流から求めることができる。具体的には 負荷に流れる負荷電流と当該負荷に印加している負荷電圧との積で求まる。しかし、 交流電源を用いる場合の電力測定は、エネルギーとして消費される有効電力と、そう ではない無効電力があるため、単純に求めることはできない。
- [0003] 従来公知の一般的な電力検出は、電流検出用トランス(CT)で負荷電流値を求め 、電圧検出トランス(PT)で負荷電圧値を求め、前記原理に基づいて電流値と電圧 値との乗算を電子回路やマイクロコンピュータにより行う方法がとられている。しかしこ の方法では交流電力は求められるが、直流電力はトランスの特性上計測できない。 一方、直流電力と交流電力の両方が計測でき、さらに電力を直接検出する方法としては次のようなものが知られている。

即ち、初期の電力計として、指針による指示電気計器であって、電流力計形電力 計といわれる電流コイルと電圧コイル間に働くトルクを利用して指針を動かし、目盛り を読む電力計が知られている。この電力計は、人間が目視することにより計測してい るので、昨今要求される自動化機器への組み込みや、デジタル信号処理との連動は 困難であり、実際的にもそのような用途には使用できない。

[0004] また、負荷電流の磁界によりファラディー効果光学素子の偏光面を回転させ、当該ファラディー効果光学素子に負荷電圧に比例した光を通すことによって負荷電流と負荷電圧とに相関特性を持つ光を得て、光電変換により電力と相関性のある電気信号を得る電力センサー技術(例えば、特許文献1参照)がある。この先行技術では、電光変換と光電変換をすることにより誤差が累積するので高精度は得られない。また

PCT/JP2004/014263

、光学系を利用するために、高価な光学素子を必要とするだけでなく、その調整にも 手間が掛かるため、得られる精度の割には高いコストが掛かるという問題がある。

- [0005] 次に、負荷電圧に比例した電流をホール索子の入力端子に流し、負荷電流による 磁束をホール素子に印加することにより、ホール素子の出力から負荷電流と負荷電 圧と両方に比例関係を持つ電圧を得る電力メータ技術(例えば、特許文献2参照)が ある。この先行技術ではホール素子を用いているために負荷電流に対する感度が悪 い一方、温度に対する変動が大きく、加えて、ホール素子は個体差も大きいために 低感度で低精度しか得られないという問題がある。
- さらに、負荷電圧に比例した電流による磁界と負荷電流による磁界とを同一のコア [0006] に印加してその磁束を磁気センサーにより検出するセンサーを二組設け、当該一方 のセンサーでは負荷電圧相当信号と負荷電流相当信号との差分を求め、他方のセ ンサーでは負荷電圧相当信号と負荷電流相当信号との和分を求め、且つ当該両者 の2乗差演算を電子回路により行い電力を求める技術(例えば、特許文献3参照)が ある。これは、コアとコイルを組み合わせた変流器を二組用いなければならない点に おいては、電流検出用トランス(CT)と電圧検出トランス(PT)とを用いて検出する方 法と同じ数の変流器が必要である。また、この技術では変流器の磁束の検出手段と して、磁気センサーを用いたフラックスゲート方式を採用しているが、変流器を二組 用いるために当該フラックスゲート回路も2回路必要となり、そのほかの演算回路など も含めると大規模な回路を不可欠とする問題がある。

特許文献1:特開平1-162165号公報

特許文献2:特開平11-108971号公報

特許文献3:特膜平8-304481号公報

発明の開示

発明が解決しようとする課題

[0007] 本発明は、以上の先行技術に鑑み、磁気センサーを一切用いることなく、一組のセ ンサーにより直流電力と交流電力の双方の電力を計測でき、且つ電力値信号を直接 出力する高感度で高精度な電力センサーを提供することを課題とする。

課題を解決するための手段

2006.03.24 (金)

PCT/JP2004/014263

3

[0008] 上記課題を解決することを目的としてなされた本発明電力センサーの第一の構成は、両端を持つ1つの磁気回路1と、該磁気回路1の一方の端に各々の一方の端を接続した両端を持つ磁気回路21a, 21bと、前記磁気回路1の他方の端に各々の一方の端を接続し且つ他方の端を前記磁気回路21a, 21bに各々接続した両端を持つ磁気回路22b, 22aと、前記磁気回路21aと22bとの接続点と前記磁気回路21bと22aとの接続点とにそれぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路21bと2aとの接続点とにそれぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路2に磁東を発生できるように配設した励磁コイル3と、前記磁気回路1の磁束を検出できるように配設した磁東検出コイル4を備えた磁気ブリッジにおいて、前記励磁コイル3に被測定交流電力線5の電圧を印加して該電圧に比例した電流を流し、且つ、被検出電流導体5aに前記被測定交流電力線5の電流を流し、前記検出コイル4の出力を前記被測定交流電力線5の電圧位相と同期した2倍の周波数の信号で同期検波するように形成したことを特徴とするものである。

[0009] また、本発明電力センサーの第二の構成は、両端を持つ1つの磁気回路1と、該磁気回路1の一方の端に各々の一方の端を接続した両端を持つ磁気回路21a,21bと、前記磁気回路1の他方の端に各々の一方の端を接続し且つ他方の端を前記磁気回路21a,21bに各々接続した両端を持つ磁気回路22b,22aと、前記磁気回路21aと22bとの接続点と前記磁気回路21bと22aとの接続点とにそれぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路2に磁束を発生できるように配設した励磁コイル3と、前記磁気回路1の磁束を検出できるように配設した磁束検出コイル4を備えた磁気ブリッジにおいて、前記励磁コイル3に被測定電力線5の電圧に比例した電流に断続または反転の少なくともいずれか一つの処理を施した電流を流し、且つ、被検出電流導体5aに前記被測定電力線5の電流を流し、前記検出コイル4の出力を前記断続または反転の周期と同期した2倍の周波数の信号で同期検波するように形成したことを特徴とするものである。

発明の効果

[0010] 従来の交流用電力計測は、負荷電圧と負荷電流とを別々のトランス(PTとCT)でそれぞれ検出し、その後電子回路によって電圧と電流とを乗算する方法であったが、 本発明では1個の磁気ブリッジを用いたセンサーによる検出部が1個で済み、かつ電

the contract of the same state of the contract of the contract

PCT/JP2004/014263

圧と電流との乗算を前記1個の検出部において物理的に行うため、部品点数の削減と小型化が可能になるほか、検出部はコイルとコアのみで構成されているためコストも低くできる。さらに、従来のトランス(PTとCT)が低周波で動作していたのに比較して、本発明はその1000倍以上の高い周波数で動作できるためさらなる小型化が可能になる。

- [0011] また、上記の交流用電力計測方法では直流電力は計測できなかったが、本発明(請求項2)では直流電力の計測も可能である。即ち、従来の直流電力の計測では非 接触で微弱な直流電流を検出することができなかったために、直流の電力を非接触 で計測することは困難であったが、本発明の電流検出能力は本発明者が先に特許 出願している磁気ブリッジを用いた非接触タイプの電流センサーでも証明されている 磁気ブリッジを用いているので高感度であり、従って、交流電力は無論のこと、微弱 な電流の直流電力をも非接触で計測することができる。
- [0012] 本発明電力センサーの検出部は、図1に例示したコアにコイルを巻いて形成した磁気プリッジMBを用いる。この磁気プリッジMBは、図1に示すように、両端を持つ1つの磁気回路1と、該磁気回路1の一方の端に各々の一方の端を接続した両端を持つ磁気回路21a, 21bと、前記磁気回路1の他方の端に各々の一方の端を接続し且つ他方の端を前記磁気回路21a, 21bに各々接続した両端を持つ磁気回路22b, 22aと、前配磁気回路21aと22bとの接続点と前記磁気回路21bと22aとの接続点とにそれぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路2に磁束を発生できるように配設した励磁コイル3と、前配磁気回路1の磁束を検出できるように配設した磁束検出コイル4を備えて磁気プリッジに形成されている。
- [0013] 本発明電力センサーでは、上記磁気ブリッジMBの励磁コイル3に流す励磁電流を 規定し、被計測電力の負荷電圧に比例した電流を流すようにした。

上記の励磁コイル3に流す励磁電流の生成形態は2つある。

(i) 一つは、被針測電力が交流である場合においてのみ可能な方法で、被計測電力の負荷電圧でそのまま励磁コイル3に励磁電流を流す方法である。このとき負荷電圧に比例した電流を形成する方法としては、励磁コイル3に直列に抵抗を入れて電流制限をする方法があり、この方法が最も簡素かつ確実な方法である。しかし、この

- A compared to the second sec

18:09

PCT/JP2004/014263

方法では直流電力は計測できない。(以下、この形態を「直接励磁」という)

5

(ii) 二つめは、前配のようにして得られる電流を、(a)別途発生させたパルス信号で スイッチを制御し、励磁コイル3に流す励磁電流をON/OFF(通電/遮断)すること により交番成分破界を発生させる方法、(b) 同様に別途発生させたパルス信号でスイ ッチを制御して、励磁コイル3の接続を反転させて励磁電流を反転さることにより交番 磁界を発生させる方法である。(以下、この形態を「変觸励磁」という)

この形態の励磁電流によれば直流電力,交流電力の何れも計測できる。また、この とき利用するパルス信号の周波数は被計測電力の周波数より充分大きくすることが 望ましい。この周波数に制限はないが、被計測電力の少なくとも数倍より大きいことが 好ましい。パルス信号の周波数と被計測電力の周波数との比率が小さくなると、計測 誤差が大きくなるからである。

[0014] 次に、本発明電力センサーの動作原理について説明する。

図1の磁気ブリッジMBでは、励磁コイル3に流す励磁電流による磁束が被検出導 線5aの電流により検出コイル4側に流出して、その結果検出コイル4に起電力が発生 する。この磁気プリッジMBでは、当然ながら、検出コイル4に発生する起電力(以下「 検出信号」という)は被検出導線5aの電流に比例する。

ここで、図1の磁気ブリッジMBの検出コイル4に起電力を発生する磁束の発生源は 、励磁コイル3の励磁電流である。いま、被検出電流が一定であると、前配励磁コイ ル3の励磁電流を増減すれば検出信号も増減する、つまり比例する。

このことから、被検出電流をある値(x)から2倍にすると、検出信号も2倍(x×2)に なることが判る。一方、前記の状態において励磁電流を3倍にしたとすると、検出信号 も3倍(x×2×3)になり、結局6倍になる。

このことから判ることは、上記磁気ブリッジMBの検出コイル4に発生する検出信号 が被検出電流と励磁電流の相乗値になるということである。従って、被検出電流を負 荷電流とし、励磁電流を負荷電圧に比例するように設定すれば、検出コイル4の検出 信号は負荷電流と負荷電圧との相乗値となり、被計測電力線の電力に比例した信号 が得られることになる。

上記の動作原理を請求項1の本発明電力センサーと請求項2の本発明電力センサ [0015]

PCT/JP2004/014263

一について、それぞれに説明する。

請求項1の本発明電力センサーでは励磁電流の形成が先に述べた直接励磁によりなされる。この請求項1の本発明電力センサーの基本的構成は、図2に例示した通りである。図2において、5は被計測交流電力線、51,52は送電端子、5a,5bは電力線5の電流導体、Rは受電側に接続した負荷である。この電力センサーは、被測定電流導体5aに磁気ブリッジMBを用いた検出器PSをセットし、その励磁コイル3に電圧/電流変換回路35aを経由した励磁電流を流し、検出器PSの検出コイル4に得られる検出信号を同期検出回路35bが作用する検波回路42で検波して電力信号出力Wsを得る構成である。このセンサーでは、励磁コイル3に流す励磁電流を被測定交流電力線5の電圧に比例させることが重要であり、また、励磁電流は交流電流であることが必要である。

そして負荷電圧が交流である場合には、その電圧に比例した電流は交流電流になるので、この電流を励磁コイル3に流し、被検出電流として負荷電流を前記被測定交流電力線5に流すことにより検出コイル4の検出信号に電力に比例した信号Wsが得られる。

ただし、この検出では被検出電流が交流であるため、検出コイル4の検出信号にこの被検出電流が直接に誘導する信号も含まれる。しかし乍ら、電力信号は負荷電圧の2倍の周波数であり、負荷電流の2倍でもあるから、前記検出信号を電子回路的手段(デジタル信号処理を含む)により処理して、当該2倍の周波数成分の信号を抽出することにより計測したい電力信号を得ることが出来る。なお、請求項1の発明では負荷電圧が直流の場合は計測できない。

因みに、負荷電流は歪むことが多く、このため前記2倍の周波数成分の信号だけを 計測したのでは正確な電力値は計測できない。また、歪んだ負荷電流(被検出電流) には2倍周波数成分も含まれがちであるので、これも計測誤差の要因になる。

しかし、負荷電流が歪まない場合もあるので、そのような電流による電力を計測する 用途には請求項1の本発明電力センサーであっても十分である。このような問題を解 消した上で、さらに直流電力も計測できるセンサーが後に説明する請求項2の本発 明電力センサーである。 2006. 03. 24 (金)

WO 2005/040837

PCT/JP2004/014263

7

[0016] 次に、請求項1の本発明電力センサーの原理的動作を、図3に模式的に示した波 形図により説明する。

図3に示した各波形において、「負荷電圧波形」は図2に示した被計測電力の負荷 Rに印加されている電圧の波形である。図3の「負荷電流波形」は同様に被計測電力 の負荷Rに流れている電流である。さらに、図3の「電力信号波形」は検出コイル4の 検出信号の中から検波回路42により負荷電圧の2倍の周波数成分だけを抽出した 信号の波形である。

上記の電力信号Wsには電力情報が含まれているが、その内容は次の通りである。 まず、皮相電力は電力信号の振幅に比例している。次に、有効電力は「負荷電圧波 形」が丁度OVになった瞬間の電力信号の値に比例している。また、有効電力は次の ようにしても求めることができる。即ち、「負荷電圧波形」が丁度OVになった瞬間の電 力信号の値を0として、「負荷電圧波形」あるいは「負荷電流波形」の1周期の間電力 信号を積分あるいは平均するのである。そうすると得られる値は有効電力に比例した 値になる。波形にひずみがある場合などは後者の方が、計測精度が高まる。

[0017] 次に、請求項2の本発明電力センサーの動作について説明する。

請求項2の本発明電力センサーに適用する励磁電流の生成(形成)形態は、前述 した変調励磁による。このため、図4に基本構成を示した請求項2の電力センサーは 、図2のセンサーの電圧-電流変換回路35aに代え、被計測電流の変調回路31,3 2(図6により後で詳述する)を設けると共に、同期検出回路35bに代え前記変調回路 の切換周波数のため発振器33を備えている。

従って、請求項2の電流センサーでは励磁電流の周波数を電源周波数に依存せ ずに、発振器33に設定した周波数に基づいて駆動される励磁回路から所定の周波 数で励磁する。このとき励磁電流の大きさを負荷電圧に比例した電流にする。つまり 、励磁コイル3は、所定の周波数の信号を負荷電圧で振幅変調した信号で励磁され ることになる。

上記所定の周波数は被計測電流の少なくとも2倍以上は必要であり、出来るだけ高 いほうが精度が良くなる。実用的には少なくとも100倍以上にしたほうが望ましいが、 それより低くても使えないわけではない。

2006. 03. 24 (金)

WO 2005/040837

PCT/JP2004/014263

8

請求項2の本発明電流センサーでは変調励磁の手段として先に2つ挙げた(一つ は電流のON/OFF、他の一つは方向を反転)が、ここでは反転させる例について 説明する。なお、励磁電流の入り切り用(ON/OFF)スイッチや、電流反転用スイッ チは、実用的には半導体スイッチを用いることが望ましいが、これに限られるものでは ない。

- [0018] 図4の本発明電流センサーを詳しく衰した図6において、スイッチSW1とスイッチSW2とは同期して動くと共に、スイッチSW1が下側に接続しているときは、スイッチSW2は上側に接続するように設定する。そして、スイッチSW1とSW2は、駆動回路32に形成される励磁信号で制御され、当該信号に同期して同時に反転するように設定する。
- [0019] 図5は請求項2の本発明電力センサーの変調励磁方式における各部の波形を模式的に示したもので、この波形を参照して以下に請求項2の本発明電力センサーの 動作を説明する。

まず、波形の説明をする。図5において、波形1は負荷電圧波形、波形2は励磁信 号、波形3は励磁電流波形であって、励磁信号(波形2)を負荷電圧(波形1)で振幅 変調したものである。

波形4は負荷電流波形で、この図では負荷電圧(波形1)より区間Aで示す時間だけ位相が遅れている。波形5は検出コイルから得られる検出信号、波形6は電力信号で、検出信号(波形5)を位相検波(復開)して得られる。

[0020] 次に図5の波形を参照しつつ、請求項2の本発明電力センサーの動作原理を詳細に説明する。

電力は負荷電圧と負荷電流とを乗算して得られる。図5における計測電力は、負荷 電圧(波形1)と負荷電流(波形4)を乗算したものであり、その結果は電力信号(波形 6)となる。

図5では、負荷電流(波形4)は負荷電圧(波形1)より位相が遅れている。通常、電力が負荷に供給される場合、負荷のインピーダンスが純粋な抵抗である場合は負荷電圧と負荷電流とに位相ずれは起こらないが、一般的にはリアクタンスを含むことが多いので、位相ずれが起る。リアクタンスには容量性リアクタンスと誘導性リアクタンス

- 1944 - La Alanda Sanda Carrette Carre

المتعددا القار مستاهاته فالمارات

P. 19

c

ì

WO 2005/040837

18:11

PCT/JP2004/014263

9

があるが、容量性リアクタンスを持つ容量性負荷の場合は、負荷電流は負荷電圧より 位相が進み、また、誘導性リアクタンスを持つ誘導性負荷の場合は、負荷電流は負 荷電圧より位相が遅れる。従って、図5に例示した波形は誘導性負荷の場合の一例 である。

[0021] 電力には、有効電力と無効電力と皮相電力とがあり、負荷においてエネルギーとして利用できるのは有効電力である。電気的には、有効電力は純粋な抵抗成分によって消費される電力である。無効電力はリアクタンスによってエネルギーのやり取りが行われる電力で、エネルギーの消費はない。

一方、上記の有効電力を2乗した値と無効電力を2乗した値とを加算し、さらにその 平方根を得ると、その値が皮相電力である。そして、前記有効電力を皮相電力で除 算した値を「力率」といい負荷の評価に用いられる。

- [0022] このように交流電力の場合は、負荷の力率を考慮しなければ正確な電力計測ができたとはいえない。そこで、この説明においては、位相ずれがある場合の波形を例に挙げたのである。なお、直流電力の場合は以上の説明のうちの有効電力のみであるから、力率を考慮しなくてもよい。
- [0023] 図5において、波形1は負荷電圧であるが、この負荷電圧は図4、図6の電圧端子5 1と電圧端子52とに印加される。波形2の励磁信号は図6に示した電流反転用スイッ チ(SW1・SW2)の入り切りを制御する。図6に示した状態はスイッチSW1が下に閉 じ、スイッチSW2が上に閉じている。この状態を仮に励磁信号(波形2)の高レベルの 場合とすると、当該信号(波形2)が低レベルの場合はスイッチSW1が上に閉じスイッ チSW2が下に閉じた状態になる。この電流反転用スイッチが閉じている方向と負荷 電圧の位相がどの状態にあるかによって励磁コイル3に流れる電流の方向は変わる
- [0024] 図5の区間AとBでは負荷電圧(波形1)が負になっていて、励磁信号(波形2)と励磁電流(波形3)とは位相が反転して逆相になっているが、区間CとDでは負荷電圧が正になり励磁信号と励磁電流とは同相になっている。励磁コイルに流れる電流はこの波形3で示す励磁電流である。
- [0025] このような励磁電流を流した状態で、被検出導線に波形4で示す負荷電流を流すと

10

WO 2005/040837

PCT/JP2004/014263

、検出コイル4に現れる検出信号は励磁電流の2倍の周波数になる。またこの検出信 号は、負荷電流が正方向のときと逆方向のときとでは位相が反転する。

- [0026] 図5において区間BとCでは、負荷電流(波形4)が負になっているので、検出信号(波形5)は励磁電流(波形3)に対して逆相になる。また、区間DとAでは負荷電流が 正になっているので、検出信号(波形5)は励磁電流(波形3)に対して同相になる。
- [0027] ここで、励磁信号(波形2)に対して検出信号(波形5)の位相がどのようになってい るか、さらに位相検波した電力信号の極性はどうなるか整理すると次の通りである。 まず、区間Aでは、

励磁信号の位相:基準

励磁電流: 反転して逆相(負荷電圧が負であるために反転している)

検出信号:励磁電流に対して同相=励磁信号に対して逆相

電力信号:負(励磁信号に対して逆相であるため位相検波すると負になる) 区間Bでは、

励磁信号の位相:基準

励磁電流:反転して逆相(負荷電圧が負であるために反転している)

1

検出信号: 励磁電流に対して逆相(負荷電流が負であるために反転) = 励磁信 号に対して同相(反転の反転=同相)

1

電力信号:正

区間Cでは、

励磁信号の位相:基準

1

励磁電流:同相

11

PCT/JP2004/014263

検出信号:励磁電流に対して逆相(負荷電流が負であるために反転)=励磁信号に対して逆

1

電力信号:負

区間Dでは、

励磁信号の位相:基準

1

励磁電流:同相

1

検出信号:励磁電流に対して同相=励磁信号に対して同相

1

電力信号:正

- [0028] 以上をまとめると、区間AとCで電力信号は負になり、区間BとDては正になり、電力 信号は波形6のようになる。このように検出信号(波形5)を位相検波(復調)した電力 信号は、負荷電圧と負荷電流を乗算した波形と同じ信号を得ることができる。
- [0029] この電力信号(波形6)において、その振幅は皮相電力に比例し、平均値は有効電力に比例する。このように皮相電力と有効電力を計測できるので、無効電力は皮相電力の二乗から有効電力の二乗を引いて、その平方根として得られる。また、力率は有効電力を皮相電力で除することによって求められる。さらに負荷電圧に対する負荷電流の位相角(進みまたは遅れ)は、力率の逆正接関数として求められる。
- [0030] 図5の電力信号の波形は各時刻の瞬時電力を描いたものであるが、区間Aと区間 Cでは消費電力が負になっている。消費電力が負ということは電力を消費せずに供 給していることを意味する。これは、リアクタンス(コンデンサー(キャパシタンス)やコイル(インダクタンス))に一時蓄えられたエネルギーが放出されるためである。

よって、電力供給をしている波形の負の部分と同じ分だけ波形の上の部分を相殺すると全体の平均値は全振幅の中央になる。これは請求項1の本発明電力センサーで参照した図3により述べたことと同ことを示している。

والمعالية والمستعلقة والمستعلق والماسية والماسية

12

PCT/JP2004/014263

発明を実施するための最良の形態

[0031] 次に、図6により、変調励磁電流に反転方式を採った本発明電力センサーについて説明する。

図6において、5は被測定電力線であり、磁気ブリッジMBを用いた検出器PSがセットされる被検出電流導体5aと6bを備え受電端に負荷Rが接続されている。なお、51,52は電力線5の送電端子である。3は前配検出器PSのコアに設けられた励磁コイルで、この励磁コイル3には、前配電力線5の電流をスイッチ部31により反転処理した電流が流れる。スイッチ部31は、一例として図示したフォトモススイッチSW1,SW2のような半導体スイッチを用いているが、他の型式のスイッチも用いることができる。接続される電力線5とスイッチSW1,SW2の間には、電圧-電流変換作用をする電流制限抵抗31Rが挿入されている。

- [0032] 前配スイッチ部31には、その反転動作をさせるため駆動回路32が接続されているが、この駆動回路32には発振器33から一例としてf=10KHz程度の矩形波が供給されて、前記スイッチ部31における両スイッチSW1とSW2の反転周波数を規定するようにスイッチ部31の各スイッチSW1, SW2を切換駆動する。
- [0033] 一方、上記検出器PSにおける検出コイル4にはオペアンブ41による初期増幅回路が接続され、このアンブ41の出力が、一例としてアナログスイッチとオペアンプで構成した同期検波部42において検波されることにより、電力信号Wsに形成される。前記同期検波部42には、発振器33から駆動回路32に与えられるスイッチ部31の駆動周波数fの2倍の周波数2fの矩形波が同期検波のための参照信号として与えられる
- [0034] 同期検波部42に得られる電力信号Wsは、平滑化(又は平均化)回路6において、その直流成分を求める作用により平滑化(平均化)され有効電力の測定値として出力される。また、前記電力信号Wsは整流回路7において整流され、実効値を求めて皮相電力として出力される。なお、図6の本発明電力センサーの被測定電流は交流、直流のいずれであってもよい。
- [0035] 以上に説明した本発明電力センサーに用いた図1の磁気ブリッジMBによる検出器 PSにおいて、当該検出器PSに用いることができる磁気ブリッジMBは、図1のものに

والمستقليس البراق بالشابة بالمستراميات المراج المراج المراج

18:12

2006.03.24 (金)

13

PCT/JP2004/014263

限られない。即ち、図1の磁気ブリッジMBの等価回路は、図7に示す通りであるが、 この回路は、図8や図9に示す回路と等価であるから、このような回路形態を採る磁気 プリッジMBも本発明電力センサーの検出器PSとして用いることができる。 図7ー図9 において、Rma, Rma1, Rma2, Rmb, Rmb1, Rmb2は磁気抵抗であり、各磁気 抵抗は、Rma=Rma1+Rma2、Rmb=Rmb1+Rmb2であり、Rma1=Rma2、R ma1=Rmb1、Rma2=Rmb2の関係を持つものである。

3 0334310848

産業上の利用可能性

本発明電力センサーは上述の通りであって、電力センサーに、両端を持つ1つの [0036] 磁気回路1と、該磁気回路1の一方の端に各々の一方の端を接続した両端を持つ磁 気回路21a, 21bと、前記磁気回路1の他方の端に各々の一方の端を接続し且つ他 方の端を前記磁気回路21a, 21bに各々接続した両端を持つ磁気回路22b, 22aと 、前記磁気回路21aと22bとの接続点と前記磁気回路21bと22aとの接続点とにそれ ぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路2に磁束を発生できるよ うに配設した励磁コイル3と、前記磁気回路1の磁束を検出できるように配設した磁束 検出コイル4を備えた磁気プリッジを用い、この磁気プリッジを被測定交流電力線に セットし、前記励磁コイル3に被測定交流電力線5の電圧を印加して該電圧に比例し た電流を流し、且つ、被検出電流導体5aに前記被測定交流電力線5の電流を流し、 前記検出コイル4の出力を前記被測定交流電力線5の電圧位相と同期した2倍の周 波数の信号で同期検波するか、又は、前記磁気ブリッジMBを被測定電力線5にセッ トレ、励磁コイル3に被測定電力線5の電圧に比例した電流に断続または反転の少な くともいずれか一つの処理を施した電流を流し、且つ、被検出電流導体5aに前記被 測定電力線5の電流を流し、前記検出コイル4の出力を前記断続または反転の周期 と同期した2倍の周波数の信号で同期検波するようにしたので、電流と電圧とを一つ の検出器により検出することができ、また、前配検出値を、この本発明センサーで物 理的に乗算処理して電力測定値を得ることができるので、小型で簡易な構造の電力 センサーを提供することができる。

図面の簡単な説明

[0037] [図1]本発明電力センサーの検出器に用いる磁気ブリッジの一例の斜視図。

PCT/JP2004/014263

14

[図2]本発明電力センサーの一例の基本構成を示すプロック図。

[図3]図2の電力センサーにおける各部の波形を示す波形図。

[図4]本発明電力センサーの他の例の基本構成を示すプロック図。

[図5]図4の電力センサーにおける各部の波形を示す波形図。

[図6]図4の本発明電力センサーをより具体的に示したプロック図。

[図7]図1の磁気ブリッジの等価回路。

[図8]図7の磁気ブリッジの等価回路。

[図9]図7又は図8の磁気ブリッジの等価回路。

符号の説明

磁気ブリッジ [0038] MB

> 1, 2 磁気回路

21a, 22a、21b, 22b 磁気回路

励磁コイル

SW1, SW2 スイッチ

スイッチ部 31

取動回路 32

4 検出コイル

オペアンプ 41

同期検出部 42

被測定交流電力線又は被測定電力線 5

被検出電流導体 5a, 5b

平滑化(平均化)回路 6

7 整流回路

PS 検出器 [1]

WO 2005/040837

PCT/JP2004/014263

15

請求の範囲

両端を持つ1つの磁気回路1と、該磁気回路1の一方の端に各々の一方の端を接続した両端を持つ磁気回路21a, 21bと、前記磁気回路1の他方の端に各々の一方の端を接続し且つ他方の端を前記磁気回路21a, 21bに各々接続した両端を持つ磁気回路22b, 22aと、前記磁気回路21aと22bとの接続点と前記磁気回路21bと22aとの接続点とにそれぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路21c磁束を発生できるように配設した励磁コイル3と、前記磁気回路1の磁束を検出できるように配設した磁束検出コイル4を備えた磁気ブリッジにおいて、前配励磁コイル3に被測定交流電力線5の電圧を印加して該電圧に比例した電流を流し、且つ、被検出電流導体5aに前記被測定交流電力線5の電流を流し、前記検出コイル4の出力を前記被測定交流電力線5の電圧位相と同期した2倍の周波数の信号で同期検波するように形成したことを特徴とする磁気ブリッジ型電力センサー。

[2] 両端を持つ1つの磁気回路1と、該磁気回路1の一方の端に各々の一方の端を接続した両端を持つ磁気回路21a, 21bと、前記磁気回路1の他方の端に各々の一方の端を接続し上の他方の端を前記磁気回路21a, 21bに各々接続した両端を持つ磁気回路22b, 22aと、前記磁気回路21aと22bとの接続点と前記磁気回路21bと22aとの接続点とにそれぞれ接続した両端を持つ1つの磁気回路2と、当該磁気回路2に磁束を発生できるように配設した励磁コイル3と、前記磁気回路1の磁束を検出できるように配設した磁束検出コイル4を備えた磁気プリッジにおいて、前記励磁コイル3に被測定電力線5の電圧に比例した電流に断続または反転の少なくともいずれか一つの処理を施した電流を流し、且つ、被検出電流導体5aに前記被測定電力線5の電流を流し、前記検出コイル4の出力を前配断続または反転の周期と同期した2倍の周波数の信号で同期検波するように形成したことを特徴とする磁気ブリッジ型電力センサー。

PCT/JP2004/014263

1/5

2/5

PCT/JP2004/014263

[図3]

請求項1の本発明電力センサーの動作説明波形

電力信号放形は、検出コイルの出力のうち、電圧の2倍の周弦数成分のみを抽出し たもの。この抽出は具体的にはフィルターなどで行う。

[図4]

and a second second second second second second

PCT/JP2004/014263

3/5

[図5]

請求項2の本発明電力センサーの動作説明被形

4/5

PCT/JP2004/014263

≩Ranb2

Rma2

5/5

PCT/JP2004/014263

[図8]

[図9]

18:14

International application No. INTERNATIONAL SEARCH REPORT PCT/JP2004/014263 CLASSIFICATION OF SUBJECT MATTER Int.C17 G01R21/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SBARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁷ G01R21/08, G06G7/162 Documentation scarched other than minimum documentation to the extent that such documents are included in the fields scarched 1922-1996 Jitsuyo Shinan Toroku Koho 1971-2004 Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Koho Kokai Jitsuyo Shinan Koho Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* 1,2 JP. 2001-159646 A (Osaki Denki Kogyo Kabushiki Ā Kaisha), 12 June, 2001 (12.06.01), Full text; all drawings (Family: none) 1,2 JP 2000-329801 A (Osaki Denki Kogyo Kabushiki A Kaisha), 30 November, 2000 (30.11.00), Full text; all drawings (Family: none) See patent family annex. Further documents are listed in the continuation of Box C. later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance ٩A۴ document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone cariler application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disolosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of mailing of the international search report 11 January, 2005 (11.01.05) Date of the actual completion of the international search 17 December, 2004 (17.12.04) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telaphone No. Fresimile No.