Cel

Rozważmy funkcję $y(x)=\frac{1}{1+10x^2}$, zadaną na przedziale $x\epsilon[-1,1]$. Wygeneruj zbiór punktów (x_i,y_i) , gdzie $x_i=-1+2\frac{i}{n}$, (i=0,...,n) jest jednorodną siatką punktów, a $y_i\equiv y(x_i)$. Dla tych danych wygeneruj:

- (a) wielomian interpolacyjny stopnia $\leq n$,
- (b) funkcję sklejaną stopnia trzeciego, s(x), spełniającą warunki $s^{''}(x_0) = s^{''}(x_n) = 0$.

Wyniki porównaj z zaproponowaną funkcją y(x) na wykresie, dla różnej ilości punktów n. W szczególności interesujące są różnice y(x)-Wn(x) oraz y(x)-s(x) pomiędzy węzłami interpolacji. Przeprowadź również podobną analizę dla innych funkcji. Czy nasuwają się jakieś wnioski?

Wstęp teoretyczny

Wielomian interpolacyjny stopnia $\leq n$

Rozpatrzmy wielomian:

$$Wn(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

Znając wartości funkcji w punktach x_i możemy je kolejno podstawiać do wielomianu w celu wyliczenia jego współczynników a_i .

Otrzymamy wtedy następujący układ równań:

$$\begin{pmatrix} x_1^{n-1} & x_1^{n-2} & \dots & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \dots & x_2 & 1 \\ \dots & \dots & \dots & \dots & \dots \\ x_n^{n-1} & x_n^{n-2} & \dots & x_n & 1 \end{pmatrix} \cdot \begin{pmatrix} a_{n-1} \\ a_{n-2} \\ \dots \\ a_0 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

Rozwiązaniem układu równań są współczynniki wielomianu. Macierz X układu nosi nazwę macierzy Vandermonde'a. Ponieważ jej wiersze i kolumny są liniowo niezależne, (żadne węzły interpolacji się nie pokrywają), macierz ta ma wyznacznik różny od zera.

Wzór interpolacyjny Lagrange'a

Zamiast szukać rozwiązania tego równania, postulujemy, że poszukiwany wzór interpolacyjny ma postać:

$$y(x) = \sum_{j=1}^{n} l_j(x)y_j + E(x)$$

gdzie

Zuzanna Bożek

$$l_{j}(x) = \frac{(x - x_{1})...(x - x_{j-1})(x - x_{j+1})...(x - x_{n})}{(x - x_{1})...(x_{j} - x_{j-1})(x_{j} - x_{j+1})...(x_{j} - x_{n})}$$
$$l_{j}(x_{k}) = \delta_{jk}$$

E(x) jest nazwywane resztą lub błędem interpolacji, znika tożsamościowo jeżeli f(x) jest wielomianem stopnia co najwyżej n-1.

Interpolacja funkcją sklejaną stopnia trzeciego

W każdym przedziale $[x_j, x_j + 1], j \in [1, 2, ..., n - 1]$, konstruujemy wielomian trzeciego stopnia: (wielkosci ξ_i będą drugimi pochodnymi wyrażenia interpolacyjnego w węzłach).

$$s_j(x) = Ay_j + By_{j+1} + C\xi_j + D\xi_{j+1}$$

gdzie:

$$A = \frac{x_{j+1} - x_j}{x_{j+1} - x_j}$$

$$B = \frac{x - x_j}{x_{j+1} - x_j}$$

$$C = \frac{1}{6} (A^3 - A)(x_{j+1} - x_j)^2$$

$$D = \frac{1}{6} (B^3 - B)(x_{j+1} - x_j)^2$$

Jezeli węzły interpolacji są równoodległe $(x_{j+1}-x_j=h)$, a $s^{''}(x_0)=s^{''}(x_n)=0$, kolejne wartości ξ_i możemy wyznaczyć jako:

$$\begin{pmatrix} 4 & 1 & \dots & & \\ 1 & 4 & 1 & \dots & & \\ \dots & \dots & \dots & \dots & \dots & \dots \\ & & & \dots & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} \xi_2 \\ \xi_3 \\ \dots \\ \xi_{n-1} \end{pmatrix} = \frac{6}{h^2} \begin{pmatrix} y_1 - 2y_2 + y_3 \\ y_2 - 2y_3 + y_4 \\ \dots \\ y_{n-2} - 2y_{n-1} + y_n \end{pmatrix}$$

Do rozwiązania tego układu równań można posłużyć się faktoryzacją Cholesky'ego.

Interpolacja wielomianowa za pomocą programu

Za pomocą funkcji polynomial (n) znajdującej się w pliku wielomian.py wyznaczono wielomian interpolacyjny dla zadanego zbioru punktów.

Zuzanna Bożek 2024-12-17

węzłów interpolacja pomiędzy węzłami najsłabiej oddaje faktyczną funkcję. Dla większej liczby węzłów interpolacja wykazuje dobrą zgodność z funkcją w obrębie węzłów. Jednakże w miarę zwiększania liczby węzłów, pojawia się problem oscylacji pomiędzy węzłami, co prowadzi do zniekształcenia wykresu w innych częściach przedziału.

Dla 5

Dla tej funkcji wielomian Lagrange'a ma trudności z dokładnym odwzorowaniem jej kształtu, szczególnie w okolicach punktu x=0, gdzie funkcja jest nieciągła. Zwiększanie liczby węzłów poprawia dopasowanie, ale nadal występują oscylacje na brzegach.

Interpolacja splajnami kubicznymi

Za pomocą programu znajdującego się w pliku splajn.py przeprowadzono interpolację tej funkcji za pomocą splajnów kubicznych.

Interpolacja za pomocą splajnów kubicznych wykazuje znacznie lepsze rezultaty niż interpolacja wielomianowa. Dla 5 punktów skuteczność jest co prawda wciąż niska, ale dla 10 i 15 przybliżenie jest bardzo dobre. Splajny zapewniają gładkość pierwszej i drugiej pochodnej,

co sprawia, że interpolacja jest bardziej stabilna i nie wykazuje oscylacji.

Błędy w interpolacji splajnami kubicznymi są mniejsze i mniej wrażliwe na liczbę węzłów, w porównaniu do interpolacji wielomianowej, co czyni tę metodę bardziej odpowiednią do interpolacji funkcji, które mają zmienną krzywiznę. Błąd rośnie w miarę oddalania się od węzła, i maleje w miarę przybliżania się do kolejnego.

Ponownie dokładność dopasowania rosła zgodnie z liczbą węzłów

Zuzanna Bożek 2024-12-17

Największe błędy wystąpiły w obszarze nieciągłości x = 0.

Wnioski

Interpolacja splajnami kubicznymi jest preferowaną metodą w przypadkach, gdzie dokładność i stabilność interpolacji są kluczowe, zwłaszcza dla funkcji nieliniowych o zmiennych krzywiznach. Pozwala na obliczenia z wykorzystaniem większej liczby węzłów. Interpolacja wielomianowa jest bardziej podatna na błędy numeryczne, zwłaszcza przy dużych liczbach węzłów, i może prowadzić do niepożądanych oscylacji Rungego w przypadku funkcji o bardziej złożonych kształtach.