1	Intr	$\operatorname{roduction}$:
	1.1	What motivated data mining? Why is it important?	
	1.2	So, what is data mining?	6
	1.3	Data mining — on what kind of data?	8
		1.3.1 Relational databases	ć
		1.3.2 Data warehouses	11
		1.3.3 Transactional databases	12
		1.3.4 Advanced database systems and advanced database applications	13
	1.4	Data mining functionalities — what kinds of patterns can be mined?	13
		1.4.1 Concept/class description: characterization and discrimination	13
		1.4.2 Association analysis	14
		1.4.3 Classification and prediction	15
		1.4.4 Clustering analysis	16
		1.4.5 Evolution and deviation analysis	16
	1.5	Are all of the patterns interesting?	17
	1.6	A classification of data mining systems	18
	1.7	Major issues in data mining	19
	1.8	Summary	2

2	Dat	a War	ehouse and OLAP Technology for Data Mining	3
	2.1	What	is a data warehouse?	•
	2.2	A mul	tidimensional data model	6
		2.2.1	From tables to data cubes	6
		2.2.2	Stars, snowflakes, and fact constellations: schemas for multidimensional databases	8
		2.2.3	Examples for defining star, snowflake, and fact constellation schemas	1.
		2.2.4	Measures: their categorization and computation	13
		2.2.5	Introducing concept hierarchies	14
		2.2.6	OLAP operations in the multidimensional data model	15
		2.2.7	A starnet query model for querying multidimensional databases	18
	2.3	Data	warehouse architecture	19
		2.3.1	Steps for the design and construction of data warehouses	19
		2.3.2	A three-tier data warehouse architecture	20
		2.3.3	OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP	22
		2.3.4	SQL extensions to support OLAP operations	24
	2.4	Data	warehouse implementation	24
		2.4.1	Efficient computation of data cubes	25
		2.4.2	Indexing OLAP data	30
		2.4.3	Efficient processing of OLAP queries	30
		2.4.4	Metadata repository	3.
		2.4.5	Data warehouse back-end tools and utilities	32
	2.5	$\operatorname{Furth}_{\epsilon}$	er development of data cube technology	32
		2.5.1	Discovery-driven exploration of data cubes	33
		2.5.2	Complex aggregation at multiple granularities: Multifeature cubes	36
	2.6	${\rm From}$	data warehousing to data mining	38
		2.6.1	Data warehouse usage	38
		2.6.2	From on-line analytical processing to on-line analytical mining	36
	2.7	Summ	ary	4.

3	Dat	a Prep	processing	3
	3.1	Why p	preprocess the data?	:
	3.2	Data	cleaning	Į.
		3.2.1	Missing values	
		3.2.2	Noisy data	e
		3.2.3	Inconsistent data	7
	3.3	Data i	ntegration and transformation	
		3.3.1	Data integration	
		3.3.2	Data transformation	8
	3.4	Data 1	reduction	10
		3.4.1	Data cube aggregation	10
		3.4.2	Dimensionality reduction	
		3.4.3	Data compression	
		3.4.4	Numerosity reduction	
	3.5	Discre	tization and concept hierarchy generation	19
		3.5.1	Discretization and concept hierarchy generation for numeric data	
		3.5.2	Concept hierarchy generation for categorical data	2:
	3.6	Summ	nary	

4	Pri	$\mathbf{mitives}$	s for Data Mining	3
	4.1	Data 1	mining primitives: what defines a data mining task?	3
		4.1.1	Task-relevant data	4
		4.1.2	The kind of knowledge to be mined	6
		4.1.3	Background knowledge: concept hierarchies	7
		4.1.4	Interestingness measures	10
		4.1.5	Presentation and visualization of discovered patterns	12
	4.2	A data	a mining query language	12
		4.2.1	Syntax for task-relevant data specification	15
		4.2.2	Syntax for specifying the kind of knowledge to be mined	15
		4.2.3	Syntax for concept hierarchy specification	18
		4.2.4	Syntax for interestingness measure specification	20
		4.2.5	Syntax for pattern presentation and visualization specification	20
		4.2.6	Putting it all together — an example of a DMQL query	21
	4.3	Design	ning graphical user interfaces based on a data mining query language	22
	4.4	Summ	narv	22

5	Con	icept I	Description: Characterization and Comparison	1
	5.1	\mathbf{W} hat	is concept description?	1
	5.2	Data ;	generalization and summarization-based characterization	2
		5.2.1	Data cube approach for data generalization	3
		5.2.2	Attribute-oriented induction	3
		5.2.3	Presentation of the derived generalization	7
	5.3	Efficie	ent implementation of attribute-oriented induction	10
		5.3.1	Basic attribute-oriented induction algorithm	10
		5.3.2	Data cube implementation of attribute-oriented induction	11
	5.4	Analy	tical characterization: Analysis of attribute relevance	12
		5.4.1	Why perform attribute relevance analysis?	12
		5.4.2	Methods of attribute relevance analysis	13
		5.4.3	Analytical characterization: An example	15
	5.5	Minin	g class comparisons: Discriminating between different classes	17
		5.5.1	Class comparison methods and implementations	17
		5.5.2	Presentation of class comparison descriptions	19
		5.5.3	Class description: Presentation of both characterization and comparison	20
	5.6	Minin	g descriptive statistical measures in large databases	22
		5.6.1	Measuring the central tendency	
		5.6.2	Measuring the dispersion of data	23
		5.6.3	Graph displays of basic statistical class descriptions	25
	5.7	Discus	ssion	28
		5.7.1	Concept description: A comparison with typical machine learning methods	28
		5.7.2	Incremental and parallel mining of concept description	30
		5.7.3	Interestingness measures for concept description	30
	5.8	Summ	19FV	3.1

6	Mir	$\mathbf{ning} \ \mathbf{As}$	ssociation Rules in Large Databases	3
	6.1	Associ	ation rule mining	3
		6.1.1	Market basket analysis: A motivating example for association rule mining	3
		6.1.2	Basic concepts	4
		6.1.3	Association rule mining: A road map	5
	6.2	Mining	g single-dimensional Boolean association rules from transactional databases	6
		6.2.1	The Apriori algorithm: Finding frequent itemsets	6
		6.2.2	Generating association rules from frequent itemsets	S
		6.2.3	Variations of the Apriori algorithm	10
	6.3	Mining	g multilevel association rules from transaction databases	
		6.3.1	Multilevel association rules	12
		6.3.2	Approaches to mining multilevel association rules	14
		6.3.3	Checking for redundant multilevel association rules	16
	6.4	Mining	g multidimensional association rules from relational databases and data warehouses	
		6.4.1	Multidimensional association rules	17
		6.4.2	Mining multidimensional association rules using static discretization of quantitative attributes	18
		6.4.3	Mining quantitative association rules	19
		6.4.4	Mining distance-based association rules	21
	6.5	From a	association mining to correlation analysis	23
		6.5.1	Strong rules are not necessarily interesting: An example	23
		6.5.2	From association analysis to correlation analysis	23
	6.6	Constr	caint-based association mining	
		6.6.1	Metarule-guided mining of association rules	
		6.6.2	Mining guided by additional rule constraints	26
	6.7	Summ	arv	29

Cla	ssificat	tion and Prediction	:
7.1	What	is classification? What is prediction?	:
7.2	Issues	regarding classification and prediction	Ę
7.3	Classi	fication by decision tree induction	(
	7.3.1	Decision tree induction	7
	7.3.2	Tree pruning	Ę
	7.3.3	Extracting classification rules from decision trees	10
	7.3.4	Enhancements to basic decision tree induction	1.
	7.3.5	Scalability and decision tree induction	12
	7.3.6	Integrating data warehousing techniques and decision tree induction	13
7.4	Bayes	ian classification	15
	7.4.1	Bayes theorem	15
	7.4.2	Naive Bayesian classification	16
	7.4.3	Bayesian belief networks	17
	7.4.4	Training Bayesian belief networks	19
7.5	Classi	fication by backpropagation	19
	7.5.1	A multilayer feed-forward neural network	20
	7.5.2	Defining a network topology	21
	7.5.3	Backpropagation	21
	7.5.4	Backpropagation and interpretability	24
7.6	Assoc	iation-based classification	25
7.7	Other	classification methods	27
	7.7.1	k-nearest neighbor classifiers	27
	7.7.2	Case-based reasoning	28
	7.7.3	Genetic algorithms	28
	7.7.4	Rough set theory	28
	7.7.5	Fuzzy set approaches	29
7.8	Predic	tion	30
	7.8.1	Linear and multiple regression	30
	7.8.2	Nonlinear regression	32
	7.8.3	Other regression models	32
7.9	Classi	fier accuracy	33
	7.9.1	Estimating classifier accuracy	33
	7.9.2	Increasing classifier accuracy	
	7.9.3		34
7.10	Sumn		35

8	Clus	ster A	nalysis	3
	8.1	What	is cluster analysis?	3
	8.2	Types	of data in clustering analysis	4
		8.2.1	Dissimilarities and similarities: Measuring the quality of clustering	5
		8.2.2	Interval-scaled variables	6
		8.2.3	Binary variables	7
		8.2.4	Nominal, ordinal, and ratio-scaled variables	S
		8.2.5	Variables of mixed types	10
	8.3	A cate	egorization of major clustering methods	11
	8.4	Partit	ioning methods	12
		8.4.1	Classical partitioning methods: k -means and k -medoids	12
		8.4.2	Partitioning methods in large databases: from k-medoids to CLARANS	
	8.5		chical methods	
		8.5.1	Agglomerative and divisive hierarchical clustering	
		8.5.2	BIRCH: Balanced Iterative Reducing and Clustering using Hierarchies	
		8.5.3	CURE: Clustering Using REpresentatives	
		8.5.4	CHAMELEON: A hierarchical clustering algorithm using dynamic modeling	
	8.6		ty-based clustering methods	
	0.0	8.6.1	DBSCAN: A density-based clustering method based on connected regions with sufficiently high	
		0.0.1	density	21
		8.6.2	OPTICS: Ordering Points To Identify the Clustering Structure	
		8.6.3	DENCLUE: Clustering based on density distribution functions	
	8.7		pased clustering methods	
		8.7.1	STING: A Statistical Information Grid Approach	
		8.7.2	WaveCluster: Clustering using wavelet transformation	
		8.7.3	CLIQUE: Clustering high-dimensional space	
	8.8		l-based clustering methods	
	8.9		er analysis	
	0.0	8.9.1	Statistical approach for outlier detection	
		8.9.2	Distance-based outlier detection	
		8.9.3	Deviation-based outlier detection	
	8 10		Deviation-based outlief detection	22

9	Min	ing Complex Types of Data	3
	9.1	Generalization and Multidimensional Analysis of Complex Data Objects	Objects
		9.1.1 Generalization on structured data	
		9.1.2 Aggregation and approximation in spatial and multimedia data generalization	a data generalization 4
		9.1.3 Generalization of object identifiers and class/subclass hierarchies	$\operatorname{tarchies}$ 5
		9.1.4 Generalization on inherited and derived properties	
		9.1.5 Generalization on class composition hierarchies	
		9.1.6 Class-based generalization and mining object data cubes	
	9.2	Mining Spatial Databases	
		9.2.1 Spatial data cube construction and spatial OLAP	
		9.2.2 Spatial characterization	
		9.2.3 Spatial association analysis	
		9.2.4 Spatial classification and prediction	
		9.2.5 Spatial clustering methods	
	9.3	Mining Time-Series Databases and Temporal Databases	
		9.3.1 Similarity search in time-series analysis	
		9.3.2 Trend analysis	
		9.3.3 Periodicity analysis	
		9.3.4 Sequential pattern mining	
		9.3.5 Plan mining by divide-and-conquer	
	9.4	Mining Text Databases	
		9.4.1 Text data analysis and information retrieval	
		9.4.2 Keyword-based association analysis	
		9.4.3 Document classification analysis	
		9.4.4 Automated extraction of structures in text documents	
	9.5	Mining Multimedia Databases	
		9.5.1 Similarity search in multimedia data	
		9.5.2 Multi-dimensional analysis of multimedia data	
		9.5.3 Mining associations in multimedia data	
	9.6	Mining the World-Wide-Web	
		9.6.1 Web mining and a classification of Web mining tasks	
		9.6.2 Web usage mining	
		9.6.3 Web structure mining	
		9.6.4 Web content mining	
	9.7	Summary	C

Data Mining Applications and Trends in Data Mining	3
10.1 Data Mining Applications	3
10.1.1 Customized Data Mining Tools for Domain-Specific Applications	3
10.1.2 Intelligent Query Answering with Data Mining Techniques	3
10.2 Other Themes on Data Mining	3
10.2.1 Visual and audio data mining	3
10.2.2 Scientific data mining	3
10.2.3 Commercial Data Mining Systems and Prototypes	3
10.3 Social Impacts of Data Mining	3
10.4 Trends and Research Issues in Data Mining	4
10.5 Summary	4