デジタル信号処理 (K3) 第4回 フーリエ変換1

2022年5月2日

立命館大学 情報理工学部

画像・音メディアコース

櫛田 貴弘 tkushida@fc.ritsumei.ac.jp

フーリエ級数からフーリエ変換へ

- フーリエ級数展開は周期関数に対する 解析手段として利用できる
- 一方,画像・音などの信号を周期関数として モデル化することは必ずしも適切でない

フーリ工変換は非周期関数に対する解析手段であり, 非周期関数を周期が無限大の関数と見なすことで導 出される

周期関数と非周期関数

前回まで考えてきた周期信号

ı

 $T \to \infty$

周期的な三角関数の足し合わせ (フーリエ級数展開)

現実世界の(音・画像などの)信号

明るさを プロット

 周波数解析 (フーリエ変換)

(復習) フーリエ級数展開

• 周期 2Tの関数 f(t)の(複素)フーリエ級数展開は直交関数系 $\left\{e^{i\frac{k\pi}{T}t}\right\}_{k=-\infty}^{\infty}$ による展開であり、

$$f(t) \sim \sum_{k=-\infty}^{\infty} c_k e^{i \frac{k\pi}{T} t}$$
 と表される.

ここで,フーリエ係数 c_k は以下の式で計算される:

$$c_k = \frac{1}{2T} \int_{-T}^{T} f(\tau) e^{-i\frac{k\pi}{T}\tau} d\tau \qquad (k = 0, \pm 1, \pm 2, \ldots)$$

(注: 次ページの式展開のために、積分変数を τ に変更した)

フーリエ級数展開からフーリエ積分へ 1/2

- 周期を無限大にする, すなわち $T \to \infty$ とするときに フーリエ級数展開がどうなるかを考える
- まず, フーリエ係数を級数展開の式に代入して整理する.

$$\begin{split} f(t) &\sim \sum_{k=-\infty}^{\infty} \frac{1}{2T} \left\{ \int_{-T}^{T} f(\tau) e^{-i\frac{k\pi}{T}\tau} d\tau \right\} e^{i\frac{k\pi}{T}t} \\ &= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \frac{\pi}{T} \left\{ \int_{-T}^{T} f(\tau) e^{-ik\frac{\pi}{T}\tau} d\tau \right\} e^{ik\frac{\pi}{T}t} \qquad \Delta\omega = \frac{\pi}{T} \\ &= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \Delta\omega \left\{ \int_{-T}^{T} f(\tau) e^{-ik\Delta\omega\tau} d\tau \right\} e^{ik\Delta\omega\tau} \\ &= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \left\{ \int_{T}^{T} f(\tau) e^{-ik\Delta\omega} d\tau \right\} e^{-ik\Delta\omega} \Delta\omega \end{split}$$

フーリエ級数展開からフーリエ積分へ 2/2

• 前ページ最後の式で, $T \to \infty$ のとき $\Delta \omega = \pi/T \to 0$ であることに注意すると, 定積分の定義から,

$$f(t) \sim \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \left\{ \int_{T}^{T} f(\tau) e^{-i\mathbf{k}\Delta\omega} d\tau \right\} e^{-i\mathbf{k}\Delta\omega} \Delta\omega \qquad (\Delta\omega \to 0)$$

$$\rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right\} e^{i\omega t} d\omega \qquad (T \rightarrow \infty)$$

この式はフーリエ(重)積分と呼ばれる

(注: $k\Delta\omega$ が ω に, $\Delta\omega$ が $d\omega$ に置き換わっている)

• なお,この導出はやや直観的な議論であり,フーリ工積分が収束するかどうか,また,元の関数 f(t) と一致するかどうかについては別途検証する必要があるが、ここでは省略する

補足:区分求積(定積分の基礎)

• 定積分(面積)を求めることを考える。

$$S = \int_0^1 f(x) dx$$

• まず、n個の区間に区切って、その長方形の和を求める(区分求積)

$$S \approx \sum_{k=1}^{n} \frac{f(\frac{k}{n}) \frac{1}{n}}{k$$
番目の長方形の面積

• 分割数を無限 (*n* → ∞) にすると、

$$S = \lim_{n \to \infty} \sum_{k=1}^{\infty} f(\frac{k}{n}) \frac{1}{n} = \int_0^1 f(x) dx$$

• $\Delta x = \frac{1}{n}$ としても同様の式となる。

$$S = \lim_{\Delta x \to 0} \sum_{k=1}^{\infty} f(k\Delta x) \Delta x = \int_{0}^{1} f(x) dx$$

フーリエ積分公式とフーリエ変換

• フーリエ級数展開の周期を無限大にすることで,

$$f(t) \sim \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right\} e^{i\omega t} d\omega$$

が得られた. この式はフーリエ積分公式と呼ばれる.

• フーリエ積分に含まれる青下線部分を取り出した,

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

(注: 積分変数をtに変更している)

を f(t) のフーリエ変換と呼ぶ。(この式のように、フーリエ変換後の関数を元の関数の大文字で表すことが多い)

• $F(\omega)$ を用いると、フーリエ積分公式は

$$f(t) \sim \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$
 と書ける

例題を解いてみよう!

• 関数 $f(t) = \begin{cases} 1, & |t| \leq 1; \\ 0, & |t| > 1. \end{cases}$ のフーリエ変換を求めよ.

フーリエ級数展開とフーリエ積分公式の比較

• フーリエ級数展開 $f(t) \sim \sum_{k=-\infty}^{\infty} c_k e^{i\frac{k\pi}{T}t}$ は,

離散的に存在する関数系 $\left\{e^{i\frac{k\pi}{T}t}\right\}_{k=-\infty}^{\infty}$ を

 c_k で重み付けした和で周期関数が近似できることを意味

• 一方, フーリエ積分公式 $f(t) \sim \int_{-\infty}^{\infty} \frac{1}{2\pi} F(\omega) e^{i\omega t} d\omega$ は,

連続的に存在する関数系 $\left\{ \left. e^{i\omega t} \right| - \infty < \omega < \infty \right\}$ を

 $\frac{1}{2\pi}F(\omega)$ で重み付けした積分(\approx 和)で非周期関数を含む

一般の関数が近似できることを意味

フーリエ変換 $F(\omega)$ はフーリエ係数 c_k に対応

フーリエの積分定理

• 関数f(t)が以下の2条件を満たすとする.

条件1:
$$f(t)$$
 が $-\infty < t < \infty$ で絶対可積分: $\int_{-\infty}^{\infty} |f(t)| dt < \infty$

条件2: 実直線上 $-\infty < t < \infty$ で, f(t) と

その1階微分 f'(t) が区分的に連続

(有限個であれば微分不可能な点があってもよい)

• このとき、任意の点 $t \in (-\infty, \infty)$ で

$$\frac{f(t-0) + f(t+0)}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right\} e^{i\omega t} d\omega$$

が成立する. これをフーリエの積分定理と呼ぶ.

フーリエの積分定理:図解

フーリエの積分定理に関する注意

• もし t で f が連続ならば,左極限 f(t-0) と右極限 f(t+0) は f(t) に一致する.すなわち,フーリエの積分定理は f の連続点においては

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(\tau) e^{-i\omega\tau} d\tau \right\} e^{i\omega t} d\omega$$

となる. すなわち,

連続点ではフーリエ積分は元の関数値と一致する.

フーリエ変換とフーリエ逆変換

- 今後は, 簡単のため, f(t) の不連続点においては, 関数値を $f(t) = \frac{f(t-0) + f(t+0)}{2}$ と再定義 していることにする.
- このとき, フーリエ変換 $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$ を

フーリエ積分に代入すれば, フーリエの積分公式から

$$f(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$
 が成立する.

この式を $F(\omega)$ のフーリエ逆変換と呼ぶ

• つまり, f(t) をフーリエ変換した $F(\omega)$ をフーリエ逆変換すると元の関数 f(t) に戻る.

フーリエ変換・逆変換:図解

とある時間 *t* に、どれくらいの 強さの信号があるかが分かる

全区間において、 とある周波数 ω の成分が どのように含まれているかが分かる

次に, フーリエ変換の意味を より詳しく考えてみよう!

正弦波の振幅と位相

- $A\cos(\omega t + \theta)$ や $Ae^{i(\omega t + \theta)}$ は,時間 t に関する (実 or 複素)の正弦波を表している ($A \ge 0$ として一般性を失わない)
- ここで, A は振幅, ω は(角)周波数, θ は(初期)位相と呼ばれ, それぞれ振動の強度, 速さ, t=0 での位置に対応する.

実は,フーリエ変換は振幅と位相の情報を持っている。
このことを調べていこう。

(補足) 複素数の極形式

- 複素数 z = x + iy は、複素平面の点として表せる
- よって、右図のように r, θ を定めると、

$$z = r \cos \theta + ir \sin \theta$$
$$= r(\cos \theta + i \sin \theta) = re^{i\theta}$$

となる。(最後の変形はオイラーの公式による)

(注: 数式で表すと, $r=\sqrt{x^2+y^2}$. また, θ は $\cos\theta=x/r,\sin\theta=y/r$ を満たす角度で 2π の整数倍の任意性が含まれる)

• この $z = re^{i\theta}$ が複素数の極形式である.

なお, r=|z|である. また, θ を z の偏角と呼び, $\theta=\arg z$ と書く.

複素フーリエ係数の意味

• 複素フーリエ係数を $c_k = A_k e^{i\theta_k}$ $(A_k = |c_k|, \theta_k = \arg c_k)$ と極形式で表して級数展開の式に代入すると,

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{i\frac{k\pi}{T}t} = \sum_{k=-\infty}^{\infty} A_k e^{i\theta_k} e^{i\frac{k\pi}{T}t}$$
$$= \sum_{k=-\infty}^{\infty} A_k e^{i\left(\frac{k\pi}{T}t + \theta_k\right)}$$
 となる.

- 最後の式から,フーリエ級数展開では,周波数 $k\pi/T$ の正弦波の振幅を A_k ,位相を θ_k として, $k=-\infty,\ldots,\infty$ の範囲で足し合わせていることが分かる
- このことから,複素フーリエ係数の<u>絶対値 $|c_k| = A_k$ を振幅</u>,偏角 $\frac{\arg c_k = \theta_k}{}$ を位相と呼ぶ

フーリエ変換の意味 1/2

- フーリエ変換では, $F(\omega)$ の絶対値と偏角が 周波数 ω の正弦波の振幅と位相に対応する
- $F(\omega) = A(\omega)e^{i\theta(\omega)}$ $(A(\omega) = |F(\omega)|, \theta(\omega) = \arg F(\omega))$ と極形式で表現して逆変換の式に代入すると,

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A(\omega) e^{i\theta(\omega)} e^{i\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} A(\omega) e^{i(\omega t + \theta(\omega))} d\omega$$
 となる.

• 最後の式から,フーリエ逆変換では,周波数 ω の正弦波の振幅を $A(\omega)$,位相を $\theta(\omega)$ として, ω に関する積分で連続的に足し合わせていることが分かる

フーリエ変換の意味 2/2

- フーリエ変換 $F(\omega)$ により,元の関数 f(t)に含まれる 周波数 ω ごとの波の強度・位相が分かる
- フーリエ級数が離散的な周波数成分を調べるのに対し、 フーリエ変換は連続的な周波数成分を調べる
- $F(\omega)$ をスペクトルと呼ぶこともある。(分光器との類似性から)特に, $F(\omega) = A(\omega)e^{i\theta(\omega)}$ としたときの $A(\omega)$ を振幅スペクトル, $\theta(\omega)$ を位相スペクトルと呼ぶ。

周波数ごとの振幅を表示

周波数ごとの位相を表示

単純な例

• フーリエ変換すると、 元の信号には 15 Hz と 20 Hz の成分が含まれていることが分かる

理解度確認テスト

manaba +R にログインして、理解度確認小テストを行います。 制限時間は 10分間 です。

関連科目:音響情報処理1

応用例: スペクトログラム

関連科目:音響情報処理1

応用例:スペクトログラム

通常は、正の周波数だけを表示することが多い

関連科目:画像情報処理1

応用例:画像

入力画像 (時間領域)

振幅スペクトル (周波数領域)

高周波成分が多い=くっきりしている or ノイズが多い

関連科目:画像情報処理1

応用例:画像

入力画像 (時間領域)

振幅スペクトル(周波数領域)

どっち方向に、どのような周波数の成分が分布しているかわかる

周波数解析の例

時間領域信号

右の信号の方が、高周波成分が少ないことが分かる

フーリエ変換

フーリエ逆変換

フーリエ変換

フーリエ逆変換

周波数領域

今回のまとめ

• 非周期関数にも適用可能なフーリエ変換

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

とそのフーリエ逆変換

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$
 を導入した.

• フーリエ変換 $F(\omega)$ の絶対値と偏角は、元の関数 f(t) に 含まれる周波数ωの波の振幅と位相の情報を反映する!

今回の宿題

- ・以下の関数について
 - 1. グラフにプロットせよ。(横軸がt、縦軸がf(t))
 - 2. フーリエ変換を求めよ。

1.
$$f(t) = \begin{cases} 1 & (|t| \le \frac{1}{a}) \\ 0 & (|t| > \frac{1}{a}) \end{cases}$$
 ただし、 $a > 0$

2.
$$f(t) = \begin{cases} 1 - t^2 & (|t| \le 1) \\ 0 & (|t| > 1) \end{cases}$$

3.
$$f(t) = e^{-\beta|t|}$$
 ただし $\beta > 0$

宿題の注意事項

- Overleaf や Word, Powerpoint などのソフトを用いて数式展開を詳細に書き、Manaba+R のレポート機能からPDF形式で提出せよ。手書きのノートの写真などを PDF にしたものは不可とする。
- 答えのみは不可。導出過程が重要である。
- グラフは、Excel や プログラムを用いてプロットすることを期待するが、要点が記載されていれば、略図でもよい。
 - もし、 α や β の具体的な値が必要な場合は、適当な正の実数を自分で決めよ。