On considère les nombres réels $\alpha = \sqrt[3]{2 + \sqrt{5}}$ et $\beta = \sqrt[3]{2 - \sqrt{5}}$. On rappelle que pour tout réel y on note $\sqrt[3]{y}$ l'unique solution de l'équation $x^3 = y$ d'inconnue x.

Le but de l'exercice est de donner des expressions simplifiées de α et β .

- 1. Ecrire un script Python qui permet d'afficher une valeur approchée de α .
- 2. (a) Calculer $\alpha\beta$ et $\alpha^3 + \beta^3$.
 - (b) Vérifier que $\forall (a,b) \in \mathbb{R}^2$, $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.
 - (c) En déduire que $(\alpha + \beta)^3 = 4 3(\alpha + \beta)$
- 3. On pose $u = \alpha + \beta$ et on considère la fonction polynomiale $P: x \mapsto x^3 + 3x 4$.
 - (a) A l'aide de la question précédente montrer que u est une racine de P c'est-à-dire que P(u) = 0.
 - (b) Trouver une autre racine « évidente » de P.
 - (c) Trouver trois nombres réels a, b, et c tels que $\forall x \in \mathbb{R}, P(x) = (x-1)(ax^2 + bx + c)$
 - (d) Résoudre l'équation P(x) = 0 pour $x \in \mathbb{R}$.
 - (e) En déduire la valeur de u.
- 4. On considère la fonction polynomiale $Q: x \mapsto Q(x) = (x \alpha)(x \beta)$
 - (a) A l'aide des questions précédentes, développer et simplifier Q(x) pour tout nombre réel x.
 - (b) En déduire des expressions plus simples de α et β .