RECOMMENDED PRACTICE PROBLEMS:

Problems (From ENEL 419 text book: Yates and Goodman):

3.4.1, 3.4.2, 3.4.3, 3.5.3, 3.5.5, 3.5.7, 3.5.8, 3.5.13, 3.6.1, 3.6.3, 3.6.5, 3.6.7, 3.8.1, 3.8.3. Students' solution manual (odd numbered problems) at Author's website: http://www.winlab.rutgers.edu/~ryates/student3e/studentsolns3.pdf

ADDITIONAL PROBLEMS:

Problem 1:

A section of an electrical circuit has two relays, numbered 1 and 2 operating in parallel. Let the random variable X, denote the number of relays that close properly, with a probability distribution (PMF) given by

$$P[X = 0] = 0.04$$

 $P[X = 1] = 0.32$
 $P[X = 2] = 0.64$

Find and sketch the CDF for X.

Solution:

The intervals to be considered are intervals: x < 0, $0 \le x < 1$, $1 \le x < 2$, and $x \ge 2$.

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 0.04, & 0 \le x < 1 \\ 0.36, & 1 \le x < 2 \\ 1, & x > 2 \end{cases}$$

Problem 2:

A large university uses some of the student fees to offer free use of its health centre to all students. Let X, represent the number of times that a randomly selected student visits the health centre during a semester. Based on historical data, the CDF of X is given by

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 0.6, & 0 \le x < 1 \\ 0.8, & 1 \le x < 2 \\ 0.95, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

- (a) Graph $F_X(x)$, (b) Verify that $F_X(x)$ is a CDF function, and (c) Find the PMF associated with $F_X(x)$.
- **(b)** To verify that $F_X(x)$ is a CDF, we must confirm it satisfies four conditions:
 - $\bullet \quad \lim_{x \to -\infty} F_X(x) = 0$
 - $\lim_{x \to +\infty} F_X(x) = 1$,
 - $F_X(x)$ is non-decreasing,
 - $F_X(x)$ is discontinuous at four points: 0, 1, 2, and 3. At each point $F_X(x)$ is right-hand continuous.

 $F_{X}(x)$ satisfies all four conditions, therefore, $F_{X}(x)$ is a CDF function.

(c) The points of positive probability occur at the points of discontinuity: 0, 1, 2, and 3. The probability is the height of the "jump" at each of these points. This gives the PMF as follows:

х	$p_{X}(x)$		
0	0.6 - 0 = 0.6		
1	0.8 - 0.6 = 0.2		
2	0.95 - 0.8 = 0.15		
3	1 - 0.95 = 0.05		

Problem 3:

Determine the value of $\it c$ so that each of the following functions can serve as a PMF of random variable $\it X$:

(a)
$$p_X(x) = c(x^2 + 4)$$
, $x = 0,1,2,3$.

(b)
$$p_X(x) = c \binom{2}{x} \binom{3}{3-x}, x = 0,1,2.$$

Problem 4:

A shipment of 7 TV sets contains 2 defective sets. A hotel makes a random purchase of 3 sets. Suppose random variable X is the number of defective sets purchased by the hotel.

- (a) Find the expression for the PMF of X.
- (b) Express the results in tabular form and graphically as a probability histogram.

x	0	1	2
$p_{X}(x)$	2	4	1
	$\frac{\overline{7}}{7}$	$\frac{\overline{7}}{7}$	$\frac{\overline{7}}{7}$

Problem 5:

The probability distribution of random variable X, of imperfections per 10 meters of a synthetic fabric in continuous rolls of uniform width, is given in the table below.

х	0	1	2	3	4
$p_X(x)$	0.41	0.37	0.16	0.05	0.01

Construct the cumulative distribution function.

Problem 6:

Find the CDF of random variable X representing the number of defective TVs in Problem 4. Then using the CDF $F_X(x)$, find

(a) P[X=1] (Answer: 4/7)

(b) $P[0 < X \le 2]$ (Answer: 5/7)

Problem 9: From a box containing 4 dimes and 2 nickels, 3 coins are selected at random without replacement. Find the PMF for the total value, *T*, of the 3 coins selected. Express the PMF in table form and graphically as a probability histogram.

Solution: T: total of 3 coins, D: dime, N: nickel. Sample space: $\{T = t = 20, 25, 30\}$

There are three ways we can pick. We can pick 2 nickels + 1dime (20 cents), 1 nickel + 2 dimes (25 cents) or 3 dimes (30 cents).

$$P[T=20] = \frac{\binom{2}{2}\binom{4}{1}}{\binom{6}{3}}; \ P[T=25] = \frac{\binom{2}{1}\binom{4}{2}}{\binom{6}{3}}; \ P[T=30] = \frac{\binom{2}{0}\binom{4}{3}}{\binom{6}{3}}$$