TD n°8

Questions de cours

• Rappeler le principe d'une méthode de Monte-Carlo.

Exercice 1

Soient (U_n) et (V_n) deux suites de variables aléatoires de loi uniforme sur l'intervalle [0,1]. On suppose que ces variables aléatoires sont indépendantes dans leur ensemble. On pose

$$orall n \geq 1, \quad egin{cases} X_n &=& 1 & ext{si U}_{2n} + V_{2n} \leq 1 \ & 0 & ext{sinon} \end{cases}$$

et
$$Z_n = 4(X_1 + \cdots + X_n)/n$$
.

```
n <- 1000
u <- runif(n)
v <- runif(n)
plot(u, v, col = 1 + (u^2 + v^2 > 1), pch = 19)
```

Question 1

- Déterminer la loi de la variable X_n .
- Calculer la variance de Z_n et montrer que la suite (Z_n) converge vers $\pi.$

Question 2

Soit $\alpha \in (0,1)$ et $\epsilon > 0$.

ullet A l'aide de l'inégalité de Chebishev, déterminer un entier n_0 tel que

$$\forall n \geq n_0, \quad \mathrm{P}(|Z_n - \pi| > \epsilon) \leq \alpha$$

• Ecrire un algorithme qui retourne une valeur approchée de π à 10^{-4} près, avec une probabilité supérieure à 0.95.

```
n <- 100000 #n'est pas la valeur demandée
u <- runif(n)
v <- runif(n)</pre>
```

```
4*mean(u^2 + v^2 < 1)
```

Question 3

On multiplie la variable Z_n par \sqrt{n} .

- Calculer la variance de la variable $\sqrt{n}(Z_n-\pi)$. Cette variance converge-t-elle vers 0 ? Vers une constante ?
- Quelle loi connue fournit une bonne approximation de la loi de $\sqrt{n}(Z_n-\pi)$?

```
rzn <- function(m=1, n=1000){
  zn <- NULL
  for (i in 1:m){
    u <- runif(n)
    v <- runif(n)
    zn <- c(zn, 4*mean(u^2 + v^2 < 1))
  }
  return(zn)
}

z <- sqrt(1000)*(rzn(10000) - pi)/sqrt(pi*(4-pi))
hist(z, prob = TRUE, col = "orange")</pre>
```

Exercice 2

On considère une suite (U_n) de variables aléatoires indépendantes de loi uniforme sur (0,1) et la fonction

$$orall u \in (0,1), \quad arphi(u) = \sqrt{(1-u)u^3}$$

Question 1

Pour tout $n \geq 1$, on pose

$$Y_n = rac{1}{n} \sum_{i=1}^n arphi(U_i)$$

ullet Montrer que la suite Y_n converge, au sens de la loi des grands nombres, vers la limite ${\mathcal I}$ définie ci-dessous

$${\cal I}=\int_{-10}arphi(u)du$$

On admettra que $\mathcal{I} = \frac{\pi}{16}$.

Question 2

- Calculer la variance de la variable aléatoire Y_n .
- Soit $\epsilon=10^{-3}$. A l'aide du théorème de Chebyshev, donner une estimation du rang n à partir duquel on peut considérer que

$$\mathrm{P}(|Y_n - \mathcal{I}| < \epsilon) \geq 0.95$$

Question 3

On considère la loi de densité f définie sur l'intervalle (0,1) de la manière suivante

$$\forall v \in (0,1), \quad f(v) = 6v(1-v)$$

Soit (V_n) une suite de variables aléatoires indépendantes, de loi de densité f. Pour tout $n \geq 1$, on pose

$$Z_n = rac{1}{n} \sum_{i=1}^n rac{arphi(V_i)}{f(V_i)}.$$

- Montrer que la suite Z_n converge vers \mathcal{I} .
- Comparer la variance de la variable aléatoire Z_n à celle de la variable Y_n .

Question 4

- Proposer deux algorithmes de calcul de l'intégrale ${\mathcal I}$ s'appuyant sur les questions précédentes.
- ullet Lequel vous semble le plus précis des deux pour n appels du générateur aléatoire ? Justifier.

```
phi <- function(u){ sqrt((1-u)*u^3)}

# Algorithme 1
n <- 1000000
mean(y <- phi(runif(n)))
pi/16
var(y)

# Algorithme 2
n <- 10000000
f <- function(v){dbeta(v,2,2)}</pre>
```

```
u <- rbeta(n, 2, 2)
mean(z <- phi(u)/f(u))
pi/16
var(z)</pre>
```

Question 5

Soit $1 \le \alpha \le 3$. On considère désormais que f appartient à la famille de densités f_α définies sur l'intervalle (0,1) de la manière suivante

$$orall v \in (0,1), \quad f_lpha(v) = c_lpha v^lpha(1-v)$$

Loi beta $(\alpha + 1, 2)$

- Montrer (ou admettre) que la constante c_{α} est égale à $(\alpha+2)(\alpha+1)$.
- A quel choix de lpha correspond l'algorithme de calcul de $\mathcal I$ le plus précis ?
- La précision est-elle supérieure à celle de l'algorithme s'appuyant sur la question 1?