

DINÂMICA DE UM ARACNÍDEO IMPLEMENTADA EM UM ROBÔ

Turíbio José dos Santos¹, Paulo Marcos Silva², Kledermon Garcia³, Luis Filipe Wiltgen Barbosa⁴

1,2,4LRA/FEAU/UNIVAP – São José dos Campos – SP turíbio@bol.com.br, ²paul_inho@ibest.com.br e ⁴wiltgen@univap.br ³IAE/CTA – São José dos Campos – SP ³kleder@iae.cta.br

Resumo - Este artigo tem por objetivo, ampliar o conhecimento de forma básica sobre a construção de robôs autônomos e com pernas. Nesta primeira versão serão utilizados três servo-motores em cada "*perna*", que serão responsáveis pela locomoção e flexão do conjunto, no qual cada conjunto completo é formado por seis pernas. A estrutura será confeccionada com alumínio com características de um aracnídeo. O projeto tem um caráter multidisciplinar, visando inclusive o estudo da dinâmica de uma aranha andando a fim de que o robô possa ser programado para se deslocar de forma similar a este inseto.

Palavras-chave: Robô, robótica, microcontroladores, dinâmica de aracnídeos, sensores. **Área do Conhecimento:** III Engenharias

Introdução

Há muito tempo máquinas chamadas de robôs vem sendo construídas pelo homem. Utilizadas nas mais diversas aplicações, que vão desde apoio a atividades humanas, como, por exemplo, recuperar os martelos arremessados pelos atletas nas olimpíadas de Pequim na China em 2008. Assim como, retirar e desarmar artefatos bélicos explosivos, como no caso dos robôs utilizados pelas policias na Europa e Estados Unidos da América, ou seja, toda vez que o ser humano precisa fazer algo de difícil acesso, ou que ponha em risco a vida humana, os robôs são a melhor escolha para a substituição do homem (GROOVER, 1988).

Estes aparelhos podem ser classificados pelos modos de operação em três categorias: autônomos, semi-autonômos e teleoperados.

Destas categorias a mais comum é a dos robôs teleoperados no qual é fundamental a presença do humano para controlar os movimentos. Entretanto, espera-se que no futuro a grande maioria de robôs seja autônoma, no qual o robô pode operar sem intervenção humana, para isso os robôs devem possuir a capacidade de verificar o ambiente a sua volta, e interagir de forma a executar tarefas préprogramadas, ou absorver informações conforme seu tempo de funcionamento.

Neste artigo será apresentado o desenvolvimento de uma das máquinas mais complexas desenvolvidas no Laboratório de Robótica & Automação (LRA) da Engenharia Elétrica da Faculdade de Engenharias, Arquitetura e Urbanismo (FEAU/UNIVAP). Este robô possui muitas formas de implementar os

movimentos de deslocamento, dado a grande quantidade de motores que permite que cada perna tenha três graus de liberdade. Isto faz com que o robô possa ser programado com muitas características dinâmicas similares as dos aracnídeos.

Metodologia

No desenvolvimento do sistema robótico as peças foram confeccionadas conforme as definições do projeto simulado digitalmente. Neste projeto foi definido que o material a ser utilizado seria o alumínio, dado sua facilidade de usinagem na confecção das peças. Este material ainda tem a grande vantagem de ser leve suficiente para a manter a rigidez mecânica necessária para a construção das peças do robô.

Os motores utilizados nesta máquina são do tipo *CS-12, HOBBICO*[®], pois seu tamanho, torque e velocidade, são essenciais para a agilidade necessária para os movimentos esperados para este aparelho.

O sistema de controle utiliza um *PIC 16F877A MICROCHIP*® (SOUZA, 2003), devido aos periféricos disponíveis neste microcontrolador atendendo todas as necessidades do projeto.

Um dos principais parâmetros é a quantidade de portas de entrada/saída e capacidade de memória, que possibilita e facilita escrever todo o programa de controle (firmware) na linguagem *Basic PICBASIC PRÓ*® (HELLEBUYCK, 2003).

Para a gravação do microcontrolador *PIC16F877A*, foi utilizado o programa *IC-PROG*® e o gravador do microcontrolador, que foi confeccionado no laboratório, via utilização de um

projeto de baixo custo, conforme dica obtida no tutorial de utilização de microcontroladores PIC (EDUTEC Bauru, 2007).

O projeto estrutural do robô foi à primeira parte desenvolvida na máquina. Dado sua grande complexidade exigiu muita dedicação e trabalho durante todo seu desenvolvimento e confecção.

A base do robô protótipo foi confeccionada com duas chapas de alumio, com 3 mm de espessura, recortes idênticos e formas bem trabalhadas.

Primeiramente desenhou-se as peças no software e depois de finalizá-las, as mesmas tiveram-se os aspectos físicos que podem ser visualizados na Figura 1.

Figura 1 – Desenho da base de sustentação do robô

A Tabela 1 contém as dimensões que foram utilizadas para a construção da base desta estrutura do robô.

Tabela 1 – Características gerais da base

Parâmetros	Medidas
Comprimento	300 mm
Altura	180 mm
Largura	150 mm
Peso	0,515 kg

A parte superior da perna foi projetada utilizando-se placas de alumínio colocadas paralelamente, formando uma composição no qual o motor fica alojado entre as duas placas, o que facilitou muito a fixação do servomotor (Figura 2).

Figura 2 – Parte superior da perna do robô

A parte inferior seguiu a mesma tendência de trabalhar com chapas paralelas e design arrojado, o que proporcional uma boa estética.

A parte mais extrema da pata do robô, que fica em contato com o solo não possui motor, mas está diretamente ligada na estrutura anterior da pata que possui o robô responsável pelo movimento, assim como pode ser verificada na Figura 3.

Figura 3 – Extremidade da perna do robô

Para os testes práticos foi montada uma das pernas do robô, a qual pode ser verificada na fotografia do conjunto completo, como pode ser visto na Figura 4.

Figura 4 – Fotografia com o conjunto da perna montado (parte superior e parte inferior)

Na Tabela 2 estão as dimensões que foram utilizadas para a construção do conjunto das pernas.

Tabela 2 – Características gerais dos conjuntos de pernas.

Parâmetros	Medidas
Comprimento	180 mm
Largura máxima	40 mm
Peso	0,140 kg

Após a conclusão dos desenhos de todas as peças, pode-se utilizar um recurso do programa utilizado (*Solid Edge* (UNIMEP, 2008)) para o projeto do robô, que permite verificar visualmente a montagem completa do conjunto, formando uma estrutura virtual simulada do robô, conforme pode ser visualizado na Figura 5.

Figura 5 – Simulação e desenhos para os testes e fabricação das peças do robô

Na Figura 6, é possível observar as partes estruturais, após a confecção e montagem das partes mecânicas que compõem o robô.

Figura 6 – Fotografia do primeiro protótipo do robô montado para testes

Na Tabela 3 são apresentadas as medidas finais referentes às dimensões do protótipo desta máquina.

Tabela 3 – Características gerais do protótipo montado.

Parâmetros	Medidas
Comprimento	300 mm
Largura máxima	480 mm
Numero de motores	18 unidades
Altura	180 mm
Peso	1,35 kg

Resultados

Durante os primeiros testes, o projeto não funcionou conforme o esperado e alguns ajustes foram necessários principalmente na programação. Depois do robô se movimentar, algumas melhorias poderiam ser implantadas, aumentando a estabilidade e velocidade no movimento, proporcionando uma melhor semelhança ao movimento típico de uma aranha.

O movimento das pernas que simulam um passo completo do robô aranha está demorando cerca de 2 segundos, porém este tempo pode ser variado de acordo com os parâmetros de tempo utilizados na parte de programação.

Foi adaptado no protótipo uma chave que simula o efeito de um sonar e durante os testes foi observado que os movimentos "para frente e para trás", já estão funcionando corretamente.

Durante os teste foi utilizado uma fonte externa de 5V e 1A, porém ficou caracterizado que a capacidade de corrente da bateria que será utilizada na autonomia ao robô deve ser tem maior, uma vez o consumo de cada servomotor pode chegar até 300 mA.

Este robô utiliza 18 servomotores. Entretanto, a cada deslocamento serão exigidos o funcionamento de apenas nove servomotores, ou seja, o funcionamento de três pernas. No início do funcionamento do robô, será exigida uma corrente elétrica de 3.600 mA, pois 12 servomotores estarão fazendo o movimento de erguer a base do robô para iniciar o seu deslocamento.

Discussão

Em relação às pernas, todas tem o mesmo movimento, só que cada uma terá o seu tempo de acionamento diferente, pois ao serem acionadas isoladamente possam representar o movimento típico de uma aranha.

Outro problema esta no sincronismo dos movimentos das pernas, o que causava colisões. Entrtanto, algumas adaptações na lógica da

programação possibilitou o acionamento como esperado.

Outro inconveniente foi o fato de alguns motores apresentarem defeito no conjunto das engrenagens de redução, uma vez que o motor especificado deveria suportar o peso mínimo de 2,5 kg/cm².

Após a verificação da fragilidade dos servomotores utilizados, foi acrescentado um ponto de apoio entre a estrutura de suporte, no qual fica localizado o servomotor, e a parte inferior da pata (como pode ser visto na Figura 2) que fica ligada a base estrutural.

Conclusão

Para o desenvolvimento desta máquina tevese que buscar novos conhecimentos, principalmente nas partes referentes à programação e desenho técnico assistido por computador.

A construção e testes finais devem ser realizados em breve possibilitando inclusive testar mais de uma forma de controlar as pernas do robô.

A idéia principal é obter um aparelho que possa se deslocar de forma rápida e com características visuais de um ser biológico. Possibilitando o estudo deste tipo de robô para funcionamento em ambientes de difícil deslocamento, como o que ocorre em florestas e escombros de construção civil.

O primeiro protótipo está construído, e em testes. Problemas com motores foram identificados e solucionados conforme as possibilidades de mudança na estrutura mecânica existente.

Existe também, a possibilidade de construir o novo protótipo ainda este ano, utilizando peças rígidas usinadas diretamente em uma chapa de 10 mm de espessura, utilizando peças fresadas. Isto possibilitará ajustar de forma melhor a fixação dos motores nas patas do robô, tornando-os mais resistentes e menos susceptíveis ao cisalhamento nas engrenagens internas.

Agradecimentos

Os autores agradecem a empresa Novelis do Brasil Ltda pelo apoio ao *Laboratório de Robótica* & *Automação* da *FEAU/UNIVAP* com o fornecimento de alumínio para a construção desta linha de robôs experimentais.

Referências

http://www.edutecbauru.com.br/cursopic/aula11.htm_Acesso em 17 Nov. 2007.

http://www.hobbico.com. Acesso em 28 Abr. 2007.

http://www.ic-prog.com. Acesso em 20 Out. 2007.

http://www.microchip.com. Acesso em 21 Jul. 2007.

http://www.picbasic.com. Acesso em 26 Jan. 2008.

http://www.unimep.br/feau/scpm/Cursos/SolidEdg e_v17/Modulo_6.pdf. Acesso em 15 Dez. 2007

GROOVER, M. P., et. al. **Robótica: Tecnologia** e **Programação**. São Paulo: McGraw-Hill, 1988. 401p.

SOUZA, D. J. **Desbravando o PIC**. 5. ed. São Paulo: Érica, 2002. 197p.

HELLEBUYCK, C. Programming PIC Microcontrollers with PICBASIC, Newnes, 2003.

MACHADO, R.S.; SANTOS, S.V.; BARBOSA, L.F.W.; **Desenvolvimento de um Robô Bípede controlado pela porta USB**. In: X Encontro Latino Americano de Iniciação Científica, 2007, São José dos Campos, SP. Anais. São José dos Campos: UNIVAP, 2007. 1 CD-ROM.

FREIRE, M.L.; PEREIRA, R.F.O.; BARBOSA, L.F.W.; **Desenvolvimento de um Robô Bípede Capaz de Fazer Curva**. In: X Encontro Latino Americano de Iniciação Científica, 2007, São José dos Campos, SP. Anais. São José dos Campos: UNIVAP, 2007. 1 CD-ROM.

GARCIA, K.; PAIVA., L.L.; BARBOSA, L.F.W.; **Desenvolvimento de um robô multi-tarefas.** In: X Encontro Latino Americano de Iniciação Científica, 10, 2007, São José dos Campos, SP. Anais. São José dos Campos: UNIVAP, 2007. 1 CD-ROM.