Pomiar Zawartości Radonu w Powietrzu

Kacper Kłos

8 kwietnia 2025

W niniejszym raporcie wyznaczyliśmy zawartość radonu na podstawie produktów jego rozpadu oraz zbadaliśmy zależność promieniowania od odległości. Najpierw umieszczaliśmy próbkę toru-232 nad scyntylatorem i rejestrowaliśmy jego odczyty podczas 2-minutowych interwałów, po czym zwiększaliśmy dystans między próbką a detektorem. Na podstawie dopasowania danych w skali log–log uzyskaliśmy, że liczba zarejestrowanych cząstek jest proporcjonalna do odwrotności odległości: $N \propto 1/r$.

Następnie wykorzystaliśmy metodę Markova, służącą do wyznaczania zawartości polonu w powietrzu, który powstaje w wyniku rozpadu radonu. Pomiar polegał na serii cykli pompowania powietrza przez filtr (ze zliczaniem objętości przepływającego gazu), a następnie dwóch pomiarach promieniowania rejestrowanego z tego filtra. Uzyskane wyniki wskazują, że koncentracja radonu w powietrzu: $(25\pm11)\,\mathrm{Bq}\,\mathrm{m}^{-3}$ występuje nad stertą skał,

 $(9\pm6)\,\mathrm{Bq}\,\mathrm{m}^{-3}$ w korytarzu przylegającym do pomieszczenia, w którym prowadzono pomiary, oraz $(10\pm9)\,\mathrm{Bq}\,\mathrm{m}^{-3}$ w próbkach świeżego powietrza z zewnątrz.

1 Wstęp

W niniejszym raporcie przedstawiamy zbadamy zawartości radonu w powietrzu pochodzącym z różnych otoczeń. Dodatkowo analizujemy, jak zmienia się zarejestrowane promieniowanie w funkcji odległości źródła od detektora cząstek.

2 Podstawy Teoretyczne

W naszych rozważaniach korzystamy głównie z prawa rozpadu promieniotwórczego, zgodnie z którym liczba jąder izotopu (np. radonu lub produktów jego rozpadu) maleje w czasie w tempie proporcjonalnym do bieżącej liczby jąder:

$$\frac{dN(t)}{dt} = -\lambda N(t),$$

gdzie λ jest dodatnią stałą rozpadu zależną od danego izotopu. Rozwiązaniem tego równania jest:

$$N(t) = N(0) e^{-\lambda t}. (1)$$

3 Układ Doświadczalny

Zarówno do pomiarów zależności natężenia promieniowania od odległości, jak i do określania zawartości radonu w powietrzu, wykorzystaliśmy ten sam detektor cząstek (jego dokładniejszy opis można znaleźć w [1]), który liczy rozpad w danym przedziale czasowym.

3.1 Pomiar zależności od odległości

Schemat układu przedstawiono na rys. 1. Próbkę promieniotwórczego toru-232 umieszczano na regulowanym stojaku nad detektorem, a następnie zmieniano odległość między próbką a detektorem i mierzono liczbę zarejestrowanych rozpadów w ustalonym czasie (2 minuty).

Rysunek 1: Układ pomiarowy do badania zależności promieniowania od odległości: 1 – miernik promieniowania, 2 – stojak z miarką, 3 – źródło promieniotwórcze.

3.2 Pomiar zawartości radonu w powietrzu (metoda Markova)

Do określania ilości polonu-218 (pochodnej radonu-222) w badanym powietrzu zastosowaliśmy metodę Markova [2]. Mierzone powietrze było przepompowywane przez filtr (na którym osadzały się produkty rozpadu), a później wykonywano dwa pomiary aktywności filtra, kładąc go bezpośrednio na detektor (rys. 1), w ściśle określonych odstępach czasowych. Schemat cyklu to:

- 5 minut pompowanie powietrza przez filtr,
- 1 minuta przerwa,
- 3 minuty pierwszy pomiar aktywności filtra,
- 3 minuty przerwa,
- 3 minuty drugi pomiar aktywności filtra.

Graficzne przedstawienie cyklu widnieje na rys. 2. Podczas pompowania monitorowano całkowitą objętość powietrza ν za pomocą gazomierzu, a pomiary promieniowania przeprowadzano detektorem umieszczonym w pobliżu filtra.

Rysunek 2: Schemat cyklu pomiarowego (źródło: [1]).

Poprzez prostą analizę z urzyciem wzoru (1) otrzymana koncentracja polonu (co za tym idzie radonu) w powietrzu C_A wyraża się w postaci:

$$C_A = \frac{7.3 \times 10^{-5} \left(N_1 - N_2 \right)}{\epsilon \, \nu \, \eta},$$

gdzie N_1 i N_2 są zarejestrowanymi rozpadami w pierwszym i drugim okresie pomiarowym, ν to objętość powietrza przepompowanego przez filtr w danym czasie, ϵ oznacza wydajność rejestracji cząstek przez detektor, a $\eta \approx 1$ jest efektywnością zatrzymywania produktów rozpadu na filtrze.

W naszej analizie przyjęliśmy $\eta=1$ oraz $\epsilon\approx 0.0875$. Kulczowe założenia jakie poczyniliśmy to że promieniowanie roznosi się po sferze, zatem tylko 50% kieruje się w strone detektora, przy czym tylko 45% do niego dociera, a zostaje wykrytych jedynie 35% cząstek. Nasze oszacowanie opieramy na publikacjach [3, 4] i daje wspomniany wynik $\epsilon\approx 0.0875$. Skutkiem tych oszacowań jest uproszczony wzór:

$$C_A = \frac{83,43 \times 10^{-5} \left(N_1 - N_2 \right)}{\nu}.$$
 (2)

4 Wyniki Pomiarów

4.1 Zależność promieniowania od odległości

W pierwszej serii umieściliśmy próbkę toru nad detektorem (rys. 1) i mierzyliśmy liczbę zarejestrowanych rozpadów (w ciągu $120 \,\mathrm{s}$) przy różnych odległościach d. Wyniki przedstawia tab. 1.

Nr	N [Bq]	d [cm]
1	36	1
2	22	2
3	12	3
4	10	4
5	6	5

Tablica 1: Pomiar natężenia promieniowania N (liczba zliczeń w 120 s) w funkcji odległości d próbki od detektora.

Niepewność statystyczną zarejestrowanej liczby rozpadów szacujemy jako $u(N)=\sqrt{N}$, a błąd odległości ustalamy na połowę podziałki $\delta d=0.05\,\mathrm{cm}$. Zależność N(d) pokazuje rys. 3.

Rysunek 3: Zależność zarejestrowanych rozpadów N od odległości d.

Aby zbadać typową formę prawa potęgowego, przedstawiamy dane w skali log-log (rys. 4) i dopasowujemy prostą: $\log(N) = a \log(d) + b$.

Rysunek 4: Wykres zależności log(N) od log(d).

Dopasowanie dało:

$$a = -1.0 \pm 0.1$$
, $b = 3.6 \pm 0.1$,

co odpowiada zależności $N \propto 1/d$. Warto jednak zaznaczyć, że w idealnym przypadku cząstki powinny rozchodzić się sferycznie $(1/r^2)$ i maleć wykładniczo z powodu interakcji

z powietrzem $(\exp(-r))$. Otrzymany wynik powinien być kombinacją tych przypadków, jednak uwzględniając duże błędy pomiarowe trudno jest dokładnie oszacować zależność.

4.2 Koncentracja radonu (metoda Markova)

Kolejno wykonaliśmy cykl opisany na rys. 2 w trzech różnych miejscach:

- 1. nad stertą kamieni (starsze próbki skalne),
- 2. w korytarzu tuż przed pomieszczeniem,
- 3. na zewnątrz (powietrze czerpane przez okno).

W tab. 2 zestawiono: N_1 , N_2 – rozpad w dwóch pomiarach po cyklu pompowania powietrza, a także objętości powietrza przed i po pomiarze ($V_{\rm przed}$, $V_{\rm po}$). Przyjmujemy błąd $\sqrt{N_i}$ dla zarejestrowanych rozpadów, $\delta V = 0.01~{\rm m}^3$ dla objętości oraz $\delta t = 1s$. Błąd na objętość (δV) oraz czas (δt) są znacznie poniżej 1%, dlatego pozwalmy sobie go zignorować w dalszej części, skupiając się na błędzie pochodzącym ilości zarejestrowanych rozpadów.

Środowisko	N_1	N_2	$V_{\rm przed} [{ m m}^3]$	$V_{\rm po}[{ m m}^3]$
Kamienie	132	95	2479,45	2483,13
Korytarz	49	35	2483,13	2486,95
Podwórze	91	76	2486,95	2490,87

Tablica 2: Rozpady w pierwszym (N_1) i drugim (N_2) okresie pomiarowym oraz objętość powietrza przed i po pompowaniu (metoda Markova).

Całkowita objętość przepompowanego powietrza ν stanowi różnicę $\nu=\frac{V_{\rm po}-V_{\rm przed}}{300s}$. Przy założeniach opisanych w 2 obliczamy koncentrację radonu C_A . Błąd $u(C_A)$ wynika głównie z niepewności $\sqrt{N_1+N_2}$, co prowadzi do:

$$u(C_A) = \frac{83,43 \times 10^{-5} \sqrt{N_1 + N_2}}{\nu}.$$

Wyniki podsumowano w tab. 3.

Środowisko	$C_A [\mathrm{Bq}\mathrm{m}^{-3}]$	$u(C_A)$ [Bq m ⁻³]
Kamienie	25	11
Korytarz	9	6
Podwórze	10	9

Tablica 3: Wyniki wyznaczonego stężenia radonu w powietrzu metodą Markova, wraz z niepewnościami.

5 Podsumowanie

W ramach przeprowadzonych badań wyznaczyliśmy zależność liczby zarejestrowanych rozpadów od odległości próbki toru-232 od detektora. Analiza w skali log–log zasugerowała zależność zbliżoną do 1/d, co odbiega od oczekiwanego wyniku. Jest to spowodowane ogromnymi niepewnościami w pomiarze rozpadów.

Następnie, stosując metodę Markova, oszacowaliśmy koncentrację radonu-222 (poprzez pomiar polonu-218) w powietrzu:

$$C_{A,\text{kamienie}} = (25 \pm 11) \,\text{Bq m}^{-3}, \quad C_{A,\text{korytarz}} = (9 \pm 6) \,\text{Bq m}^{-3}, \quad C_{A,\text{podwórze}} = (10 \pm 9) \,\text{Bq m}^{-3}.$$

Otrzymane wartości wskazują nieznacznie podwyższoną zawartość radonu przy stercie kamieni w porównaniu z korytarzem i otoczeniem zewnętrznym, co może być związane z większą obecnością minerałów zawierających tor czy uran.

Z literatury [5] wiadomo, że stężenia radonu w warunkach naturalnych mogą się znacznie różnić w zależności od geologii i wentylacji pomieszczeń. Nasze wyniki, choć obarczone znacznymi błędami (m.in. ze względu na ograniczoną wydajność detektora i przybliżenia co do zatrzymywania cząstek na filtrze), pokazują jednak pewną różnicę między miejscami z potencjalnie wyższym uwalnianiem radonu (skały) a miejscami mniej nim zanieczyszczonymi.

Literatura

- [1] Pomiar Zawartości Radonu w Powietrzu, Uniwersytet Warszawski.
- [2] K.P. Markov, N.W. Rijabov, K.N. Stas, Atomnaja Energia 12.
- [3] https://scintacor.com/wp-content/uploads/2021/09/ Comparisons-of-new-simple-methods-in-fabricating-ZnS-Ag-scintillatiors-for-detecting pdf, Comparison of New Simple Methods in Fabricating ZnS(Ag) Scintillators for Detecting Alpha Particles, S. K. Lee, S. Y. Kang, D. Y. Jang et al.
- [4] https://www.rad-proceedings.org/papers/RadProc.2018.25.pdf, M. Y. A. Mostafa, M. V. Zhukovsky, Alpha Self-Absorption Evaluation in Radiometric Filter Material for the Natural Range of Alpha Energy (5-9 MeV).
- [5] L. Dobrzyński i E. Droste, *Promieniotwórczość a życie: problem ryzyka związanego z promieniowaniem jonizującym*, Raport Nr 12, Dział Szkolenia IPJ, Warszawa 1999.