Задача А. Компоненты связности

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности и вывести их.

Формат входных данных

Во входном файле записано два числа N и M (0 < $N \le 100000, 0 \le M \le 100000$). В следующих M строках записаны по два числа i и j (1 $\le i, j \le N$), которые означают, что вершины i и j соединены ребром.

Формат выходных данных

В первой строчке выходного файла выведите количество компонент связности. Далее выведите сами компоненты связности в следующем формате: в первой строке количество вершин в компоненте, во второй - сами вершины в отсортированном порядке.

стандартный вывод
3
3
1 2 3
2
4 5
1
6

Задача В. Есть ли цикл?

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан ориентированный граф. Требуется определить, есть ли в нем цикл. Обратите внимание на третий тест и подумайте, почему в нем нет цикла.

Формат входных данных

В первой строке вводится число n - количество вершин и m - количество ребер. $(1 \le n, m \le 10^5)$. Далее в m строках следует по 2 числа u, v - вершины графа, соединенные ребром.

Формат выходных данных

Выведите 0, если в заданном графе нет цикла, и 1, если он есть.

стандартный ввод	стандартный вывод
4 4	1
1 2	
2 3	
3 4	
4 1	
3 2	0
1 2	
1 3	
3 3	0
1 2	
2 3	
1 3	

Задача С. Топологическая сортировка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Задан ориентированный ациклический граф с n вершинами и m ребрами. Также задана перестановка вершин графа. Необходимо проверить, является ли данная перестановка топологической сортировкой.

Формат входных данных

В первой строке даны два числа n и m – количество вершин и ребер в графе соответственно $(2 \le n, m \le 10^5)$. В следующих m строках заданы пары чисел u_i, v_i , означающие, что в графе есть ребро из вершины u_i в вершину v_i . В последней строке задана перестановка из n элементов.

Формат выходных данных

Выведите «YES» (без кавычек), если данная перестановка является топологической сортировкой, и «NO» в противном случае.

стандартный ввод	стандартный вывод
3 3	NO
2 3	
1 3	
1 2	
2 1 3	
3 3	YES
3 2	
1 2	
3 1	
3 1 2	

Задача D. Один голодный конь

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На шахматной доске $N \times N$ в клетке (x_1, y_1) стоит голодный шахматный конь. Он хочет попасть в клетку (x_2, y_2) , где растет вкусная шахматная трава. Какое наименьшее количество ходов он должен для этого сделать?

Формат входных данных

На вход программы поступает пять чисел: $N, x_1, y_1, x_2, y_2 \ (5 \leqslant N \leqslant 20, 1 \leqslant x_1, y_1, x_2, y_2 \leqslant N)$. Левая верхняя клетка доски имеет координаты (1,1), правая нижняя -(N,N).

Формат выходных данных

В первой строке выведите единственное число K — наименьшее необходимое число ходов коня. В каждой из следующих K+1 строк должно быть записано 2 числа — координаты очередной клетки в пути коня.

стандартный вывод
1
1 1
3 2

Задача Е. Теория чисел

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Найдите минимальную возможную сумму цифр в десятичной записи числа такого, которое делится на K.

Формат входных данных

В первой строке входных данных содержится целое число K ($2 \le K \le 10^5$)

Формат выходных данных

В единственной строке выходных данных выведите ответ на задачу.

стандартный ввод	стандартный вывод
6	3
41	5
79992	36

Задача F. Алхимия

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Алхимики средневековья владели знаниями о превращении различных химических веществ друг в друга. Это подтверждают и недавние исследования археологов.

В ходе археологических раскопок было обнаружено m глиняных табличек, каждая из которых была покрыта непонятными на первый взгляд символами. В результате расшифровки выяснилось, что каждая из табличек описывает одну алхимическую реакцию, которую умели проводить алхимики.

Результатом алхимической реакции является превращение одного вещества в другое. Задан набор алхимических реакций, описанных на найденных глиняных табличках, исходное вещество и требуемое вещество. Необходимо выяснить: возможно ли преобразовать исходное вещество в требуемое с помощью этого набора реакций, а в случае положительного ответа на этот вопрос — найти минимальное количество реакций, необходимое для осуществления такого преобразования.

Формат входных данных

Первая строка входного файла содержит целое число m ($0 \le m \le 1000$) — количество записей в книге. Каждая из последующих m строк описывает одну алхимическую реакцию и имеет формат «вещество1 — вещество2», где вещество1 — название исходного вещества, вещество2 — название продукта алхимической реакции. (m+2)-я строка входного файла содержит название вещества, которое имеется исходно, (m+3)-я — название вещества, которое требуется получить.

Во входном файле упоминается не более 100 различных веществ. Название каждого из веществ состоит из строчных и заглавных английских букв и имеет длину не более 20 символов. Строчные и заглавные буквы различаются.

Формат выходных данных

В выходной файл выведите минимальное количество алхимических реакций, которое требуется для получения требуемого вещества из исходного, или -1, если требуемое вещество невозможно получить.

стандартный ввод	стандартный вывод
5	2
Aqua -> AquaVita	
AquaVita -> PhilosopherStone	
AquaVita -> Argentum	
Argentum -> Aurum	
AquaVita -> Aurum	
Aqua	
Aurum	
5	-1
Aqua -> AquaVita	
AquaVita -> PhilosopherStone	
AquaVita -> Argentum	
Argentum -> Aurum	
AquaVita -> Aurum	
Aqua	
Osmium	

Задача G. Offline-семинар

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Преподаватели курса по алгоритмам и структурам данных для студентов от Тинькофф задумались о том, чтобы наконец-то провести семинар в оффлайн-формате. Причем собраться всем преподавателям и студентам вместе. В одном городе. Идея звучит сомнительно, но окэй преподаватели на всякий случай решили найти такой город, чтобы максимальное расстояние, которое придется проехать студентам, было минимально.

Так как преподаватели заняты написанием условия к этой задаче, то решить её придется вам!

Формат входных данных

В первой строке входного файла находится число N – количество городов, в которых живут студенты $(2 \leqslant N \leqslant 100)$, и число M – количество дорог между городами $(1 \leqslant M \leqslant \frac{N(N-1)}{2})$.

Далее в M строках находится описание i-й дороги: числа u_i, v_i, w_i – города, между которыми расположена дорога, и длина дороги ($1 \le u_i, v_i \le N, 1 \le w_i \le 100$). Дороги двунаправленные. Гарантируется, что из любого города можно доехать до любого другого.

Формат выходных данных

В выходной файл выведите одно число – номер искомого города, в котором стоит собраться студентам и преподавателям. Если есть несколько городов, удовлетворяющих поставленным критериям, выберите среди них город с наименьшим номером.

стандартный ввод	стандартный вывод
3 2	2
1 2 1	
2 3 2	
6 6	2
1 3 1	
2 4 4	
2 5 2	
3 4 1	
4 6 6	
5 6 4	