WikipediA

Gordan's lemma

Gordan's lemma is a lemma in <u>convex geometry</u> and <u>algebraic geometry</u>. It can be stated in several ways.

- Let A be a matrix of integers. Let M be the set of non-negative integer solutions of $A \cdot x = 0$. Then there exists a finite subset of vectors M, such that every element of M is a linear combination of these vectors with non-negative integer coefficients. [1]
- The semigroup of integral points in a rational convex polyhedral cone is finitely generated. [2]
- An affine toric variety is an algebraic variety (this follows from the fact that the prime spectrum of the semigroup algebra of such a semigroup is, by definition, an affine toric variety).

The lemma is named after the mathematician <u>Paul Gordan</u> (1837–1912). Some authors have misspelled it as "Gordon's lemma".

Contents

Proofs

Topological proof
Algebraic proof

Applications

See also

References

See also

Proofs

There are topological and algebraic proofs.

Topological proof

Let σ be the <u>dual cone</u> of the given rational polyhedral cone. Let u_1, \ldots, u_r be integral vectors so that $\sigma = \{x \mid \langle u_i, x \rangle \geq 0, 1 \leq i \leq r\}$. Then the u_i 's generate the dual cone σ^{\vee} ; indeed, writing C for the cone generated by u_i 's, we have: $\sigma \subset C^{\vee}$, which must be the equality. Now, if x is in the semigroup

$$S_{\sigma} = \sigma^{ee} \cap \mathbb{Z}^d,$$

then it can be written as

$$x = \sum_i n_i u_i + \sum_i r_i u_i,$$

where n_i are nonnegative integers and $0 \le r_i \le 1$. But since x and the first sum on the right-hand side are integral, the second sum is a lattice point in a bounded region, and so there are only finitely many possibilities for the second sum (the topological reason). Hence, S_{σ} is finitely generated.

Algebraic proof

The proof^[3] is based on a fact that a semigroup S is finitely generated if and only if its semigroup algebra $\mathbb{C}[S]$ is a finitely generated algebra over \mathbb{C} . To prove Gordan's lemma, by induction (cf. the proof above), it is enough to prove the following statement: for any unital subsemigroup S of \mathbb{Z}^d ,

If S is finitely generated, then $S^+=S\cap\{x\mid \langle x,v\rangle\geq 0\}$, v an integral vector, is finitely generated.

Put $A = \mathbb{C}[S]$, which has a basis χ^a , $a \in S$. It has \mathbb{Z} -grading given by

$$A_n = \operatorname{span}\{\chi^a \mid a \in S, \langle a,v
angle = n\}.$$

By assumption, A is finitely generated and thus is Noetherian. It follows from the algebraic lemma below that $\mathbb{C}[S^+] = \bigoplus_0^\infty A_n$ is a finitely generated algebra over A_0 . Now, the semigroup $S_0 = S \cap \{x \mid \langle x,v \rangle = 0\}$ is the image of S under a linear projection, thus finitely generated and so $A_0 = \mathbb{C}[S_0]$ is finitely generated. Hence, S^+ is finitely generated then.

Lemma: Let A be a \mathbb{Z} -graded ring. If A is a Noetherian ring, then $A^+ = \bigoplus_{n=0}^{\infty} A_n$ is a finitely generated A_0 -algebra.

Proof: Let I be the ideal of A generated by all homogeneous elements of A of positive degree. Since A is Noetherian, I is actually generated by finitely many $f_i's$, homogeneous of positive degree. If f is homogeneous of positive degree, then we can write $f = \sum_i g_i f_i$ with g_i homogeneous. If f has sufficiently large degree, then each g_i has degree positive and strictly less than that of f. Also, each degree piece A_n is a finitely generated A_0 -module. (Proof: Let N_i be an increasing chain of finitely generated submodules of A_n with union A_n . Then the chain of the ideals N_iA stabilizes in finite steps; so does the chain $N_i = N_iA \cap A_n$.) Thus, by induction on degree, we see A^+ is a finitely generated A_0 -algebra.

Applications

A multi-hypergraph over a certain set V is a $\underline{multiset}$ of subsets of V (it is called "multi-hypergraph" since each hyperedge may appear more than once). A $\underline{multi-hypergraph}$ is called $\underline{regular}$ if all vertices have the same \underline{degree} . It is called $\underline{decomposable}$ if it has a proper nonempty subset that is regular too. For any integer n, let D(n) be the maximum degree of an indecomposable $\underline{multi-hypergraph}$ on n vertices. Gordan's lemma implies that D(n) is finite. \underline{n} \underline{n}

$$\sum_{S
i v} x_S - d = 0 ext{ for all } v\in V$$

Every solution (\mathbf{x},d) denotes a regular multi-hypergraphs on V, where \mathbf{x} defines the hyperedges and d is the degree. By Gordan's lemma, the set of solutions is generated by a finite set of solutions, i.e., there is a finite set M of multi-hypergraphs, such that each regular multi-hypergraph is a linear combination of some elements of M. Every non-decomposable multi-hypergraph must be in M (since by definition, it cannot be generated by other multi-hypergraph). Hence, the set of non-decomposable multi-hypergraphs is finite.

See also

Birkhoff algorithm is an algorithm that, given a bistochastic matrix (a matrix which solves a
particular set of equations), finds a decomposition of it into integral matrices. It is related to
Gordan's lemma in that it shows that the set of these matrices is generated by a finite set of
integral matrices.

References

- Alon, N; Berman, K.A (1986-09-01). "Regular hypergraphs, Gordon's lemma, Steinitz' lemma and invariant theory" (https://dx.doi.org/10.1016/0097-3165(86)90026-9). *Journal of Combinatorial Theory, Series A.* 43 (1): 91–97. doi:10.1016/0097-3165(86)90026-9 (https://doi.org/10.1016%2F0 097-3165%2886%2990026-9). ISSN 0097-3165 (https://www.worldcat.org/issn/0097-3165).
- 2. David A. Cox, Lectures on toric varieties (https://dacox.people.amherst.edu/lectures/coxcimpa.pdf). Lecture 1. Proposition 1.11.
- Bruns, Winfried; Gubeladze, Joseph (2009). Polytopes, rings, and K-theory. Springer Monographs in Mathematics. Springer. doi:10.1007/b105283 (https://doi.org/10.1007%2Fb105283)., Lemma 4.12.

See also

Dickson's lemma

Retrieved from "https://en.wikipedia.org/w/index.php?title=Gordan%27s_lemma&oldid=1036832693"

This page was last edited on 2 August 2021, at 23:56 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.