

Mohammad Ali Jinnah University Chartered by Government of Sindh - Recognized by HEC

FINAL ASSIGNMENT

Name: Muhamad Fahad

Id: FA19-BSSE-0014

Subject:

Section: AM

Teacher: Awais Ahmed

Date: Saturday, January 23, 2021

FINAL ASSIGNMENT

Dear Students,

Take your own two examples (input size of $n \ge 8$) for each of the topics we covered and show proper working (dry run).

Take pictures and make a single pdf file

1.) Asymptotic Notation

Code:

inti;

for (intj=0; jri; j+1) {

for (intro; Leri; k+r) {

for (intro; Leri; k+r) {

 Kintig i-1;

 Kintig i-1;

 Kintig i-1;

 Xn(for the first inner Loop) xn (for

Last Loop))

 Nxn xn => n³

Best Case: n³

Avg case n³

Worst Case: n³

Example 2:

Code:

int i=n:

for (int a=i; acin; a++) {

while (a % d == 1) {

Output:

o first loop will 8 un n time

second while loop will 8 un's n/2 time

so,

nx(n/2) = n/2 => n2

Best cose; n times.

Worst Cose; n² times.

2.) Searching: A.) Linear Search:

Code: took ut indicount party feel top (in & Indifferent makes) ...) (

Example:1: Outob : { , 'A' 5 45 63 , 25 ' 25 ' 24 }

Key : 17

arrill Key condition talke False falle " Fahr falso Talks folk TAU.

Time Compel Best Cose: 0(1) Avg Case: 0(%) Wrong cose: O(n)

Example (author 2) The given areay . 7 + 27, 133, 52, 1, 82, 153 and the Keys 33

> i arrill Kay arriberty Combiton 7433 Falso 27 33 37::33 False 33 33 33:133 LINE

B) Binary Search: Time Complexity Best Case: 0(1) Avg Case: 0(%) Wrongst Case: O(n) Example 1: if array { 1,2,3,4,5,6,7,8} Key = 6 Start and mid arr [mid] Key con 0 7 3 4 6 fuls 4 7 5 6 6 tou Example 20 A= {37,52,72,78,79,80,80,80,80 Key = 37 Start and mid arranid) key cand 7 3 78 37 F 0 0 2 1 50 37 F 0 0 0 37 37 7

REPAIRING B) Binary Search: · SORTING: Time Complexity ·) Bubble Sort: Best Case: 0(1) Time Complexity: Avg Case: 0(%) Best cose: 01 Wrongst Case: O(n) Avg cose: 0(Example 1: Mrost Case: O(n3) if array { 1,2,3,4,5,6,7,8} Example 1: Key = 6 Start and mid arr [mid] key cond A= {+, 7+, 22, 52, 78, 5, 8, 13 Tubo 6 4 CAL[!] CAL[] CAL[] COTIF] G 6 tame ; True 77 Trus + 133 , Example 2: True 7153 7678 TYUR 8F A= {37,52,72,78,79,80,81,59 True 75 True A.8 Key = 37 folse .. 08 £1,77,85,68,66,56,877 Start and mid arrand) key cond 21. " (**) (*) 78 37 F 3 0 8f 0 f 50 37 F false TYF 2 78 (5 False 0 0 37 37 T 7868 Follse 7 3 . 78 52 +8(33 False 0 0 79153 78 75 78 False FF187 False 78 . 78 false £8, ff, SE, 66,8, f, 77, 787

2) Insertion Sort: Example 2: A= {1,8,32,4,55,58,78,973 Time Complexity Best Case: i g Key CAR[]] condition axx Avg Cose: 32 False {1,8,32} 21 5 Wrost Case: false { 1,8,32,32} 3 2 432 8 ·) Example #1:~ 92 4 8 false {1,8,8,30} A= {52,77,18,19,11,44,48},843 40 4 , false 51/8,8,33 ig Ken and [] congition and 5 4 55 32 false { 52 false (52,77) 10 77 6 5 58 55 False } True {52,77,77] 2 1 18 77 (52,52,77) 7 6 78 58 False & T 20 18 52 -- 1=2 {18,52,77} -- 8 7 94 78 fals { 2 19 72 7 (18,52,74,74) 1 19 52 T (18,52,52,73) 0 19 18 T (18,19,53) -- Eff, 63, e1, 81 6=1 --3/ 11 77 T (11,15,52,11711) T {18,10,52,53,79} 52 11 (18,19,50,527) 19 T 0 11 18 7 (18,18,18,53,71) -- · i= 4 {11,18,19,53,77 } --4 44. 77 T {11,10,10,53,77} 3 44 52 T (11,18,10,52,77) 1=5 {11,18,19,4452,77} --5 48 77 T (11,18,19,44,48,53,777) 4 48 52 7 [8F, FF, 62, 01, 20, 11] F=i - - -

(Duick	-sort:					
ند	Pivot (high)	condition (pivot)		Exycy (farrog to sing)			
lost -	71.19.1	(bivoc)	(
1	7	(7,4)	True	44,8,3,46,7]			
1	7	(7,8)	False	{4,8,3,1,6,7]			
2	7	(7,3)	Truc	24,3,8,1,6,7			
3	+	(7)1)	True	[4,3,1,8,6,7]			
4	7	(7,6)	True	{4,3,1,6,8,7}			
4	7	(7,7)	false	{4,3,1,6,7,8}			
		, , ,	sort of low:	:0, high = 3;			
0	1	(1,4)	false	[4,3,1,6,7,8]			
0	1	_(1)3)	False	[4,3,1,6,7,8]			
1	1	(1)	False	[1,3,4,6,7,8]			
And after that all the Value / sort function							
return / change the index of value not found a							
	/			<i>y</i>			

Example: Q1: Postfix is given abc*+def+g*+1 we have to find infin and prefin and proved by pulting contant 1 value.

1 and put	ting contant 1	Value.					
Input (Postfix)	Postfix	Infix	Fair P				
abc*+de*f+g*+	9	a	E. 10				
abc*+de*fig*+	9*+	ab					
4	3	a(pc)					
	g*+f	200					
•	g*.fed	a(6*c)					
,	g*.fed*.	a+(6*c)	d				
	U	a+(b*c)					
9	+ fed*+6	C+(6+c)					
, 8*.	+fed++cbc*	(a+(b*c))(d					
	fed++cba+						
		(a+(b*c))((a	1861419				
abe * + de * f + g * + +	a bc + reg d	((C+(P*C))+((Ax	2)+f))+g)				
Calculate:							
Put all the Value of the Vaxaible 1 such as							
: a=b=c=d=e=f=g=1;							
Infix Notation							
((a+(b+c))+((d+e)	(+f)*g) =) (6	(1 * (10 (141)) + (14(14				
ti.	1. 11. 11. 11. 11. 11. 11.	1.					
Postfix Notation:	oc*+de*f+g*	·+ ⇒ (1)(1)(1)*+(1)(1)*(1)+(1)*				
Prefix Notation: = 1	+		V/ VI				
	bc+*feg+	9					
	U						

Proved.

(A*B)*C*(D*E)+F SOLI-Fully partmetrize: (((a*b)*c)*((d+e)+f))

Input Po	stfix	Prefix
?*P)*C*(9+f)+t	\mathcal{H}	+
*b)*c*(d,E)+f	AB	t E
* (911)	AB*	FED+
U	#B*C*	FED+C
ø	JB CD	C= 0 0 0
a	HB*C*DE+	FED+CBA*++1
,+b)+c*(die)+f	AB*C*DE+++	

Jalculate:~

Infix: (((a*b)*c)*((a+e)+f)) => ((1x1)*1*1*[(1+1)+1))=> 5.

Postfix: ab*c*deff+ => 11*1*11+1+ => 5.

Prefix: **** ABC +DEF => ***** ABC+DEF => 5.

5.) Linklist:~

Single Lisked listin

- · Insertion:
- 1. Insert of start:

10) (1841) (10) (1841) (10)

2. Insert at mid.

head -> [10] -> [8] -> [15] -> [5] -> -> null

3. Insert at end

head > hu 1) 8 1) -> (2) /15 (-) > (51) -) null

· Deletion:

Same as insert just broke the link between two

(B) NCW

· Search:

is simple and linear search, time complexity is O(n) for

a size inputs.

Double Linked List:

o Insertion: same as fust linklist.

ODeletion: some as but just handle the prev point.

O Scarch: Same as this case just easy to travel the list.

Binory Search tree:~

Example 2:

Array = fall 13, 27, 45,67,46,523, del Search (46)

LOR rotation:

Search:

hit = 3hit.

index = Findex.

PERMINI

Example 2: Array = {12,6,8,15,18,32,61,1,2,43

InOrder: 1,2,4,6,8,12,15,18,32,61

PostOrder: 4,2,1,8,6,6\$,32,18,15,12

PreOrder: 12,6,1,8,4,8,15,18,32,61

7. Graph:

Representation:

Example 1:

Weffix:

Buove-0226-2172820

Example 2:

BFS:
14,32,94,38,9,55,6.

DFS:
14,32,38,94,6,9,55.

Example 3:

BFS: A, B, E, J, C, D, I, F, E. D + 8: A,B,C,D,J,I,F,E.