Contrôle Continu N⁰ 3

Responsable: H LI

Consignes

- Les documents et le téléphone ne sont pas autorisés.
- La durée de l'épreuve : 120 minutes

Conseils

- Inscrivez dans la grille en haut à droite le numéro d'anonymat avant de coder chacun de ses caractère dans la colonne qu'il surplombe.
- Effectuez vos calcul avec une précision de **4 décimales**, même si vous ne les reportez pas toutes sur la fiche de lecture optique.
- Inscrivez uniquement les valeurs absolues du résultats numériques. Il n'y a pas de place pour le signe négatif.
- Pour chaque question, vous devez noircir (au stylo à bille noir) au maximum trois cases sur la ligne correspondante, ne cochez pas plus d'une case par colonne.

3

- Exemples:
 - pour reporter la valeur 3, noircir les cases
 - pour reporter la valeur 75, noircir les cases 70 5
 - pour reporter la valeur 305, noircir les cases 300 00 5
- Pour chaque réponse, il y a une deuxième ligne qui sert à la rectification.

Exercice 1

Selon l'INSEE, 14,2 % (noté p_0) des ménages en 2015 vivaient dans la pauvreté. Le maire d'une grande agglomération a affirmé que la proportion de pauvreté p chez lui était bien inférieure à ce chiffre, en s'appuyant sur le résultat d'un échantillon (x_1,\ldots,x_n) de taille n=1650 (ménages) avec seulement $\sum_{i=1}^n x_i = 220$ vivant dans la pauvreté en 2015 puisque $\overline{x} = 220/1650 \approx 0.1333 < 0.142$.

Un bureau d'étude souhaite vérifier l'affirmation du maire par un test statistique.

1. Pour pouvoir appuyer l'affirmation du maire, avec un risque majoré, le bureau doit effectuer :

- 1. un test bilatéral $\mathbf{H_0}: \overline{x} = 0.142$ contre $\mathbf{H_1}: \overline{x} \neq 0.142$
- 2. un test bilatéral $\mathbf{H_0}: p = 0.142$ contre $\mathbf{H_1}: p \neq 0.142$
- 3. un test bilatéral $\mathbf{H_0}: p \neq 0.142$ contre $\mathbf{H_1}: p = 0.142$
- 4. un test unilatéral à droite $\mathbf{H_0}: p < 0.142$ contre $\mathbf{H_1}: p \geq 0.142$
- 5. un test unilatéral à droite $\mathbf{H_0}: \overline{x} \leq 0.142$ contre $\mathbf{H_1}: \overline{x} > 0.142$
- 6. un test unilatéral à droite $\mathbf{H_0}: p \leq 0.142$ contre $\mathbf{H_1}: p > 0.142$
- 7. un test unilatéral à gauche $\mathbf{H_0}: \overline{x} \geq 0.142$ contre $\mathbf{H_1}: \overline{x} < 0.142$
- 8. un test unilatéral à gauche $\mathbf{H_0}: p \geq 0.142$ contre $\mathbf{H_1}: p < 0.142$
- 9. un test unilatéral à gauche $\mathbf{H_0}: p > 0.142$ contre $\mathbf{H_1}: p \leq 0.142$

Si vous choisissez la réponse 2, inscrivez 2 (ou $000 \,\, 00 \,\, 2)$ pour cette question No 1.

2. La statistique du test utilisée est donnée par :

1.
$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{S_c}$$
; 5. $\frac{\overline{X} - \overline{Y}}{\sqrt{S_{x,c}^2/n_1 + S_{y,c}^2/n_2}}$;

2.
$$\frac{(n-1)S_c^2}{\sigma_0^2}$$
; 6. $\frac{\sqrt{n}(\overline{X}-p_0)}{\sqrt{p_0(1-p_0)}}$;

3.
$$\frac{S_{x,c}^2}{S_{y,c}^2}$$
; 7. $\frac{(\overline{X} - \overline{Y})}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$;

4.
$$\frac{\overline{X} - \overline{Y}}{S_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

Si vous choisissez la réponse 1, inscrivez 1 (ou 000 00 1) pour cette question No 2.

3. La statistique utilisée en question 2, lorsque $p = p_0$, suit

1.une loi de Student 5.une loi normale

2.une loi de Khi-deux 6.une loi approximativement normale

3.une loi de Bernoulli 7.une loi de Ficher 4.une loi binomiale 8.une loi de Poisson

4. La forme de la zone de rejet est

1.
$$[0, C_1[\cup]C_2, \infty[$$
 5. $] - C, C[$

2.
$$]C_1, C_2[$$
 6. $]C, \infty[$

6.
$$]C,\infty[$$

3.
$$[0, C[$$

3.
$$[0, C[$$
 7. $]-\infty, -C[$

4.]
$$-\infty, -C[\cup]C, \infty[\quad$$
 8. aucune des formes précédentes ne convient

5. Pour répondre à la question 1 au seuil de $\alpha = 0.01$, choisissez la valeur critique C

1.qnorm((0.995)=2.575829	6qnorm((0.995)= -2.575829
2.qnorm((0.99)=2.326348	7qnorm((0.99)= -2.326348
3.qt(0.995,df=n-1) = 2.578814	8qt(0.995,df=n-1) = -2.578814
4.qt(0.99,df=n-1) = 2.328611	9qt(0.99,df=n-1) = -2.328611
5 achisa(0.995 df=n-1) = 1800.68	10 - achisa(0.995 df=n-1) = -1800.68

- 6. Calculez la valeur de la statistique utilisée en Question 2 arrondie à deux chiffres après la virgule.

 Multipliez cette valeur arrondie par 100, puis reportez la valeur absolue du résultat sur la fiche de lecture optique.
- 7. Pour formuler la décision du test, choisissez parmi les arguments ci-dessous :
 - 1. on conserve $\mathbf{H_0}$ car p-valeur ≥ 0.99
 - 2. on conserve $\mathbf{H_0}$ car p-valeur < 0.01
 - 3. on conserve $\mathbf{H_0}$ car la valeur de la statistique du test n'appartient pas à la zone de rejet
 - 4. on conserve $\mathbf{H_0}$ car la valeur de la statistique du test appartient à la zone de rejet
 - 5. on rejette $\mathbf{H_0}$ car la valeur de la statistique du test n'appartient pas à la zone de rejet
 - 6. on rejette $\mathbf{H_0}$ car la valeur de la statistique du test appartient à la zone de rejet
 - 7. on rejette $\mathbf{H_0}$ car p-valeur ≤ 0.99
 - 8. on rejette $\mathbf{H_0}$ car p-valeur ≥ 0.01
 - 9. on rejette $\mathbf{H_0}$ car p-valeur appartient à la zone de rejet
 - 10. on rejette $\mathbf{H_0}$ car la valeur de la statistique du test < 0.01

8. En conclusion:

- 1. on conserve $\mathbf{H_0}$ avec une erreur majoré par 0.01
- 2. on conserve $\mathbf{H_0}$ avec un risque d'erreur majoré par 0.01
- 3. on conserve $\mathbf{H_0}$ avec une risque non majoré
- 4. on conserve $\mathbf{H_0}$ avec une erreur de première espèce
- 5. on conserve $\mathbf{H_0}$ avec un risque de première espèce
- 6. on rejette $\mathbf{H_0}$ avec une erreur de deuxième espèce
- 7. on rejette $\mathbf{H_0}$ avec un risque de deuxième espèce
- 8. on rejette $\mathbf{H_0}$ avec une erreur de première espèce
- 9. on rejette $\mathbf{H_0}$ avec un risque de première espèce
- 9. (Plus difficile) Si la valeur de $\bar{x} = 220/1650$ reste inchangée quelle que soit la taille n, déterminez le plus petit entier n_0 pour lequel le bureau approuve l'affirmation du maire avec un risque de se tromper majoré par 0.01. Arrondissez $n_0/10$ à un entier, puis le reportez sur la fiche de lecture optique.

Exercice 2:

Un sociologue effectue une étude sur les enfants vivant avec une personne adulte autre que leurs parents biologiques. Il souhaite notamment comparer les deux proportions p_1 et p_2 de deux régions pour voir s'il y a une différence significative au seuil de $\alpha = 0.05$. Pour ce faire, il prélève un échantillon dans chacune de deux régions, constate que

l'échantillon	la taille	dont le nombre enfants vivant	
		avec une autre personne adulte	
(X_1,\ldots,X_{n_1})	$n_1 = 5759$	236	
(Y_1,\ldots,Y_{n_2})	$n_2 = 6839$	243	

10. Le sociologue doit effectuer :

- 1. un test bilatéral $\mathbf{H_0}: p_1 \neq p_2$ contre $\mathbf{H_1}: p_1 = p_2$
- 2. un test bilatéral $\mathbf{H_0}: p_1 = p_2$ contre $\mathbf{H_1}: p_1 \neq p_2$
- 3. un test bilatéral $\mathbf{H_0}: \overline{x} \neq \overline{y}$ contre $\mathbf{H_1}: \overline{x} = \overline{y}$
- 4. un test bilatéral $\mathbf{H_0}: \overline{x} = \overline{y}$ contre $\mathbf{H_1}: \overline{x} \neq \overline{y}$
- 5. un test unilatéral à droite $\mathbf{H_0}: p_1 \leq p_2$ contre $\mathbf{H_1}: p_1 > p_2$
- 6. un test unilatéral à droite $\mathbf{H_0}: p_1 < p_2 \text{ contre } \mathbf{H_1}: p_1 \geq p_2$
- 7. un test unilatéral à droite $\mathbf{H_0}: \overline{x} \leq \overline{y}$ contre $\mathbf{H_1}: \overline{x} > \overline{y}$
- 8. un test unilatéral à gauche $\mathbf{H_0}: p_1 \geq p_2$ contre $\mathbf{H_1}: p_1 < p_2$
- 9. un test unilatéral à gauche $\mathbf{H_0}: p_1 > p_2$ contre $\mathbf{H_1}: p_1 \leq p_2$
- 10. un test unilatéral à gauche $\mathbf{H_0}: \overline{x} \geq \overline{y}$ contre $\mathbf{H_1}: \overline{x} < \overline{y}$

11. La statistique du test est donnée par

1.
$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{S_c}$$
; 5. $\frac{\overline{X} - \overline{Y}}{\sqrt{S_{x,c}^2/n_1 + S_{y,c}^2/n_2}}$;

2.
$$\frac{(n-1)S_c^2}{\sigma_0^2}$$
; 6. $\frac{\sqrt{n}(\overline{X}-p_0)}{\sqrt{p_0(1-p_0)}}$;

3.
$$\frac{S_{x,c}^2}{S_{y,c}^2}$$
; 7. $\frac{(\overline{X} - \overline{Y})}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$;

$$4. \quad \frac{\overline{X} - \overline{Y}}{S_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

12. La statistique utilisée en question 11, lorsque $p_1 = p_2$, suit

- 1.une loi de Student 5.une loi normale
- 2. une loi de Khi-deux 6. une loi approximativement normale
- 7.une loi de Ficher 3.une loi de Bernoulli
- 4.une loi binomiale 8.une loi de Poisson

13. Si on choisit le test unilatéral à droite (uniquement pour cette question, indépendamment de la réponse à question 10), la forme de la zone de rejet sera

1.
$$[0, C_1[\cup]C_2, \infty[$$
 5. $] - C, C[$

5.
$$] - C, C$$

2.
$$]C_1, C_2[$$

6.
$$]C,\infty[$$

3.
$$[0, C[$$

7.]
$$-\infty, -C[$$

4.]
$$-\infty, -C[\cup]C, \infty[$$
 8. aucune des formes précédentes ne convient

- 14. Choisissez (indépendamment de la réponse à la question 13), la valeur critique C
 - 1. qnorm((0.975) = 1.959964
 - 2. qnorm((0.95) = 1.644854
 - 3. qt(0.975, df=n-1) = 1.960376
 - 4. qt(0.95, df=n-1) = 1.645118
 - 5. qchisq(0.95,df=n-1) = 5936.659
 - 6. -qnorm((0.975)=-1.959964)
 - 7. -qnorm((0.95) = 1.644854
 - 8. -qt(0.975,df=n-1)=-1.960376
 - 9. -qt(0.95, df=n-1) = -1.645118
 - 10. -qchisq(0.995, df=n-1)= 5936.659
- 15. Pour obtenir la valeur de la statistique utilisée en Question 11 avec précision, déterminez d'abord la valeur de son **numérateur** à **quatre** chiffres après la virgule avant de diviser la valeur de son **dénominateur qui vaut** 0.00342. Arrondissez la valeur de la statistique à deux chiffres après la virgule. Multipliez cette valeur arrondie par **100**, puis reportez la valeur absolue du résultat sur la fiche de lecture optique.
- 16. Pour formuler la décision du test, choisissez (indépendamment de la réponse à la question 13) parmi les arguments ci-dessous :
 - 1. on conserve $\mathbf{H_0}$ car p-valeur ≥ 0.95
 - 2. on conserve $\mathbf{H_0}$ car p-valeur ≥ 0.05
 - 3. on conserve $\mathbf{H_0}$ car p-valeur n'appartient pas à la zone de rejet
 - 4. on conserve $\mathbf{H_0}$ car la valeur de la statistique du test appartient à la zone de rejet
 - 5. on rejette $\mathbf{H_0}$ car p-valeur < 0.95
 - 6. on rejette $\mathbf{H_0}$ car p-valeur < 0.05
 - 7. on rejette $\mathbf{H_0}$ car p-valeur appartient à la zone de rejet
 - 8. on rejette $\mathbf{H_0}$ car p-valeur n'appartient pas à la zone de rejet
 - 9. on rejette $\mathbf{H_0}$ car la valeur de la statistique du test < 0.05.
- 17. En conclusion:
 - 1. on conserve $\mathbf{H_0}$ avec une erreur majoré par 0.05
 - 2. on conserve $\mathbf{H_0}$ avec un risque d'erreur non majoré
 - 3. on conserve $\mathbf{H_0}$ avec une erreur de première espèce
 - 4. on conserve $\mathbf{H_0}$ avec un risque de première espèce
 - 5. on rejette $\mathbf{H_0}$ avec une erreur de première espèce
 - 6. on rejette $\mathbf{H_0}$ avec un risque de première espèce
 - 7. on rejette $\mathbf{H_0}$ avec une erreur de deuxième espèce
 - 8. on rejette \mathbf{H}_0 avec un risque de deuxième espèce
 - 9. on rejette $\mathbf{H_0}$ avec un risque non majoré

Exercice 3:

Pour étudier l'effet du sport sur la fréquence cardiaque au repos, une scientifique prélève un échantillon (X_1, \ldots, X_{n_1}) de taille n_1 parmi les jeunes qui pratique au moins un sport régulièrement dont l'espérance de la fréquence cardiaque est notée μ_1 et un autre échantillon (Y_1, \ldots, Y_{n_2}) de taille n_2 parmi les jeunes de mêmes âges mais ne pratique aucun sport dont l'espérance de la fréquence cardiaque est notée μ_2 . Voici les résumés :

catégorie	la taille de l'échantillon	la moyenne	l'écart-type
sportifs	$n_1 = 78$	$\overline{x} = 63$	$s_{x,c} = 13.5$
non sportifs	$n_2 = 126$	$\overline{y} = 71$	$s_{y,c} = 17.2$

La scientifique tente à démontrer que la pratique régulière fait baisser la fréquence cardiaque au repos, c'est-à-dire que $\mu_1 < \mu_2$ au seuil de $\alpha = 0.05$.

18. Pour pouvoir majorer le risque de se tromper, la scientifique doit effectuer :

- 1. un test unilatéral à droite $\mathbf{H_0}: \overline{x} = \overline{y}$ contre $\mathbf{H_1}: \overline{x} \neq \overline{y}$
- 2. un test bilatéral $\mathbf{H_0}: \mu_1 \neq \mu_2$ contre $\mathbf{H_1}: \mu_1 = \mu_2$
- 3. un test bilatéral $\mathbf{H_0}: \mu_1 = \mu_2$ contre $\mathbf{H_1}: \mu_1 \neq \mu_2$
- 4. un test unilatéral à droite $\mathbf{H_0}: \overline{x} \leq \overline{y}$ contre $\mathbf{H_1}: \overline{x} > \overline{y}$
- 5. un test unilatéral à gauche $\mathbf{H_0}: \overline{x} \geq \overline{y}$ contre $\mathbf{H_1}: \overline{x} < \overline{y}$
- 6. un test unilatéral à droite $\mathbf{H_0}: \mu_1 < \mu_2$ contre $\mathbf{H_1}: \mu_1 \geq \mu_2$.
- 7. un test unilatéral à droite $\mathbf{H_0}: \overline{x} \leq \overline{y}$ contre $\mathbf{H_1}: \overline{x} > \overline{y}$
- 8. un test unilatéral à gauche $\mathbf{H_0}: \overline{x} \geq \overline{y}$ contre $\mathbf{H_1}: \overline{x} < \overline{y}$
- 9. un test unilatéral à gauche $\mathbf{H_0} \ : \mu_1 > \mu_2$ contre $\mathbf{H_1} \ : \mu_1 \leq \mu_2$
- 10. un test unilatéral à gauche $\mathbf{H_0}: \mu_1 \geq \mu_2$ contre $\mathbf{H_1}: \mu_1 < \mu_2$

19. <u>Voici le résultat de la commande</u> shapiro.test(x)

W = 0.9818, p-value = 0.3295

En ce qui concerne la décision sur l'hypothèse $\mathbf{H_{0,x}^n}$ de la normalité des X_i au seuil de 0.10,

- 1. on conserve $\mathbf{H_{0,\mathbf{x}}^n}$ avec une erreur majoré par 0.10
- 2. on conserve $\mathbf{H_{0,\mathbf{x}}^n}$ avec un risque d'erreur non majoré
- 3. on conserve $\mathbf{H_{0,\mathbf{x}}^n}$ avec une erreur de première espèce
- 4. on conserve $\mathbf{H_{0,x}^n}$ avec une erreur de deuxième espèce
- 5. on rejette $\mathbf{H_{0,\mathbf{x}}^n}$ avec une erreur de première espèce
- 6. on rejette $\mathbf{H}_{\mathbf{0},\mathbf{x}}^{\mathbf{n}}$ avec une erreur de deuxième espèce
- 7. on rejette $\mathbf{H_{0,\mathbf{x}}^n}$ avec un risque de première espèce
- 8. on rejette $\mathbf{H_{0,\mathbf{x}}^n}$ avec un risque de deuxième espèce
- 9. on rejette $\mathbf{H_{0,\mathbf{x}}^n}$ avec un risque non majoré

20. Voici le résultat de la commande shapiro.test(v)

W = 0.98955, p-value = 0.4582

En ce qui concerne la décision sur l'hypothèse $\mathbf{H_{0,y}^n}$ de la normalité des Y_j au seuil de 0.10,

- 1. on conserve $\mathbf{H_{0.v}^n}$ avec une erreur majoré par 0.10
- 2. on conserve $\mathbf{H_{0,v}^n}$ avec un risque d'erreur non majoré
- 3. on conserve $\mathbf{H_{0.v}^n}$ avec une erreur de première espèce
- 4. on conserve $\mathbf{H_{0,v}^n}$ avec une erreur de deuxième espèce
- 5. on rejette $\mathbf{H_{0,v}^n}$ avec une erreur de première espèce
- 6. on rejette $\mathbf{H}_{\mathbf{0},\mathbf{v}}^{\mathbf{n}}$ avec une erreur de deuxième espèce
- 7. on rejette $\mathbf{H_{0,v}^n}$ avec un risque de première espèce
- 8. on rejette $\mathbf{H_{0,\mathbf{v}}^n}$ avec un risque de deuxième espèce
- 9. on rejette $\mathbf{H_{0,y}^n}$ avec un risque non majoré

21. Pour tester $\mathbf{H_0^v}$: $\sigma_1^2 = \sigma_2^2$ contre $\mathbf{H_1^v}$: $\sigma_1^2 \neq \sigma_2^2$, on utilise la statistique

1.
$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{S_c}$$
; 5. $\frac{\overline{X} - \overline{Y}}{\sqrt{S_{x,c}^2/n_1 + S_{y,c}^2/n_2}}$;

2.
$$\frac{(n-1)S_c^2}{\sigma_0^2}$$
; 6. $\frac{\sqrt{n}(\overline{X}-p_0)}{\sqrt{p_0(1-p_0)}}$;

3.
$$\frac{S_{x,c}^2}{S_{y,c}^2}$$
; 7. $\frac{(\overline{X} - \overline{Y})}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$;

4.
$$\frac{\overline{X} - \overline{Y}}{S_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

22. La statistique utilisée en question 21 suit

1.une loi de Student 5.une loi normale

2. une loi de Khi-deux 6. une loi approximativement normale

3.une loi de Bernoulli 7.une loi de Ficher 4.une loi binomiale 8.une loi de Poisson

23. La forme de sa zone de rejet (question 21) est

1.
$$[0, C_1[\cup]C_2, \infty[$$
 5. $] - C, C[$

5.
$$] - C, C|$$

2.
$$]C_1, C_2[$$
 6. $]C, \infty[$

6.
$$]C,\infty[$$

3.
$$[0, C[$$

7.]
$$-\infty, -C[$$

4.]
$$-\infty, -C[\cup]C, \infty[$$
 8. aucune des formes précédentes ne convient

- 24. Choisissez la valeur critique C_1 (pour le test en question 21) au seuil de $\alpha = 0.05$,
 - 1. qnorm((0.975) = 1.959964
 - 2. qnorm((0.95) = 1.644854
 - 3. qt(0.95, df=n-1) = 1.645118
 - 4. qf(0.025,77,125) = 0.6610864
 - 5. qf(0.05,77,125) = 0.7070556
 - 6. -qnorm((0.975) = -1.959964
 - 7. -qnorm((0.95) = -1.644854
 - 8. -qt(0.95, df=n-1) = -1.645118
 - 9. qf(0.95,77,125) = 1.392169
 - 10. qf(0.975,77, 125) = 1.483271
- 25. Choisissez la valeur critique C_2 (pour le test en question 21) au seuil de $\alpha = 0.05$,
 - 1. qnorm((0.975) = 1.959964
 - 2. qnorm((0.95) = 1.644854
 - 3. qt(0.95, df=n-1) = 1.645118
 - 4. qf(0.025,77,125) = 0.6610864
 - 5. qf(0.05,77,125) = 0.7070556
 - 6. -qnorm((0.975) = -1.959964
 - 7. -qnorm((0.95) = -1.644854
 - 8. -qt(0.95, df=n-1) = -1.645118
 - 9. qf(0.95,77,125) = 1.392169
 - 10. qf(0.975,77, 125) = 1.483271
- 26. Calculez la valeur de la statistique utilisée en Question 21 arrondie à deux chiffres après la virgule. Multipliez cette valeur arrondi par 100 avant de reporter sur la fiche de lecture optique.
- 27. En ce qui concerne la décision sur l'hypothèse $\mathbf{H_0^v}$ de l'égalité de deux variances théoriques au seuil de 0.05,

- 1. on conserve $\mathbf{H_0^v}$ avec une erreur majoré par 0.05
- 2. on conserve $\mathbf{H_0^v}$ avec un risque non majoré
- 3. on conserve $\mathbf{H}^{\mathbf{v}}_{\mathbf{0}}$ avec une erreur de deuxième espèce
- 4. on conserve $\mathbf{H}_{\mathbf{0}}^{\mathbf{v}}$ avec une erreur de première espèce
- 5. on rejette $\mathbf{H_0^v}$ avec une erreur de première espèce
- 6. on rejette $\mathbf{H_0^v}$ avec une erreur de deuxième espèce
- 7. on rejette $\mathbf{H_0^v}$ avec un risque de première espèce
- 8. on rejette $\mathbf{H_0^v}$ avec un risque de deuxième espèce
- 9. on rejette $\mathbf{H_0^v}$ avec un risque non majoré

28. La statistique du test pour la question 18 est donnée par

1.
$$\frac{\sqrt{n}(\overline{X} - \mu_0)}{S_c}$$
; 5. $\frac{\overline{X} - \overline{Y}}{\sqrt{S_{x,c}^2/n_1 + S_{y,c}^2/n_2}}$;

2.
$$\frac{(n-1)S_c^2}{\sigma_0^2}$$
; 6. $\frac{\sqrt{n}(\overline{X}-p_0)}{\sqrt{p_0(1-p_0)}}$;

3.
$$\frac{S_{x,c}^2}{S_{y,c}^2}$$
; 7. $\frac{(\overline{X} - \overline{Y})}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}$;

$$4. \quad \frac{\overline{X} - \overline{Y}}{S_c \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}};$$

29. La statistique utilisée en question 18, lorsque $\sigma_1^2 \neq \sigma_2^2$, suit

1.approx. une loi de Student 5.une loi normale

2.une loi de Khi-deux 6.une loi approximativement normale

3. une loi de Bernoulli
4. une loi binomiale
7. une loi de Ficher
8. une loi de Poisson

30. La forme de sa zone de rejet est

1.
$$[0, C_1[\cup]C_2, \infty[$$
 5. $] - C, C[$

2.
$$]C_1, C_2[$$
 6. $]C, \infty[$

3.
$$[0, C[$$
 7. $]-\infty, C[$

4.] $-\infty, -C[\cup]C, \infty[\quad$ 8. aucune des formes précédentes ne convient

On admet que ses degrés de libertés vaut ddl = 191.

- 31. Choisissez la valeur critique C pour un seuil de 0.05.
 - 1. qnorm(0.95) = 1.959964
 - 2. qt(0.975,df=191-1)=1.972528
 - 3. qt(0.95, df=191-1) = 1.652913
 - 4. qt(0.975, df=191)=1.972462
 - 5. qt(0.95, df=191) = 1.652871
 - 6. -qnorm((0.975)=-1.959964)
 - 7. -qt(0.975,df=191-1)=-1.972528
 - 8. -qt(0.95,df=191-1) = -1.652913
 - 9. -qt(0.975, df=191) = -1.972462
 - 10. -qt(0.95, df=191) = -1.652871
- 32. Calculez la valeur de la statistique utilisée en Question 18 arrondie à deux chiffres après la virgule.

 Multipliez cette valeur arrondie par -100, puis reportez le résultat sur la fiche de lecture optique.
- 33. Pour formuler la décision du test, choisissez parmi les arguments ci-dessous :
 - 1. on conserve $\mathbf{H_0}$ car p-valeur ≥ 0.95
 - 2. on conserve $\mathbf{H_0}$ car p-valeur < 0.05
 - 3. on conserve $\mathbf{H_0}$ car la valeur de la statistique du test appartient à la zone de rejet
 - 4. on conserve $\mathbf{H_0}$ car la valeur de la statistique du test n'appartient pas à la zone de rejet
 - 5. on rejette $\mathbf{H_0}$ car la valeur de la statistique du test appartient à la zone de rejet
 - 6. on rejette $\mathbf{H_0}$ car p-valeur ≤ 0.95
 - 7. on rejette $\mathbf{H_0}$ car p-valeur ≥ 0.05
 - 8. on rejette $\mathbf{H_0}$ car p-valeur appartient à la zone de rejet
 - 9. on rejette $\mathbf{H_0}$ car la valeur de la statistique du test < 0.05
- 34. En conclusion :
 - 1. on conserve $\mathbf{H_0}$ avec un risque majoré par 0.05
 - 2. on conserve $\mathbf{H_0}$ avec un risque d'erreur non majoré
 - 3. on conserve $\mathbf{H_0}$ avec une erreur de première espèce
 - 4. on conserve $\mathbf{H_0}$ avec une erreur de deuxième espèce
 - 5. on rejette $\mathbf{H_0}$ avec une erreur de première espèce
 - 6. on rejette $\mathbf{H_0}$ avec une erreur de deuxième espèce
 - 7. on rejette $\mathbf{H_0}$ avec un risque majoré
 - 8. on rejette $\mathbf{H_0}$ avec un risque non majoré
 - 9. on rejette $\mathbf{H_0}$ avec un risque de deuxième espèce