Model Specification

We assume that for each observation i, we observe y_i (possibly censored) and an indicator Δ_i where:

$$\Delta_i = \begin{cases} 1, & \text{if } y_i \text{ is observed (uncensored);} \\ 0, & \text{if } y_i \text{ is censored.} \end{cases}$$

We work on the log-scale by defining a latent variable

 $\tilde{y}_i = \log(y_i)$ (or an adjusted value for censored observations).

The regression model is

$$\tilde{y}_i = X_i \beta + r_{c(i)} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2),$$

where:

- X_i is the row vector of covariates for observation i.
- β is the vector of fixed effects.
- $r_{c(i)}$ is the random effect associated with the cluster c(i) that observation i belongs to.
- σ^2 is the error variance.

The random effects for each cluster $j=1,\ldots,I$ have a spatial structure through a weight matrix W. Let $D_j=\sum_{k=1}^I W_{jk}$ be the degree (row sum) for cluster j. A spatial prior is imposed by further introducing:

- τ^2 : spatial variance.
- ρ : spatial correlation parameter satisfying $\rho \in [\rho_{\text{lower}}, \rho_{\text{upper}}]$.

Gibbs Sampler Steps

Step 1: Imputation of Latent Variables

For each observation i, if $\Delta_i = 0$, \tilde{y}_i is missing (censored) and is imputed from a truncated normal distribution:

$$\tilde{y}_i \sim TN\left(a = \log(y_i), b = \infty; \mu_i, \sigma^2\right),$$

with

$$\mu_i = X_i \beta + r_{c(i)}.$$

For uncensored observations ($\Delta_i = 1$), we set

$$\tilde{y}_i = \log(y_i).$$

Step 2: Update of β (Fixed Effects)

Define an adjusted outcome

$$y_i^* = \tilde{y}_i - r_{c(i)}.$$

Assuming a conjugate normal prior for β , that is,

$$\beta \sim N(0, V_{\beta})$$
 with $V_{\beta} = \operatorname{diag}(\beta)$

the posterior for β is

$$\beta \mid \tilde{y}, r, \sigma^2 \sim N\left(\mu_{\beta}, V_{\beta}^{\text{post}}\right),$$

where

$$V_{\beta}^{\text{post}} = \left(\frac{X^T X}{\sigma^2} + V_{\beta}^{-1}\right)^{-1}, \quad \mu_{\beta} = V_{\beta}^{\text{post}} \left(\frac{X^T y^*}{\sigma^2}\right).$$

Step 3: Update of Random Effects r for Each Cluster

For each cluster j, let C_j be the set of observation indices belonging to cluster j, and let $n_j = |C_j|$. The full conditional for the random effect r_j is:

$$r_j \mid \cdot \sim N\left(m_j, v_j\right),$$

with

$$v_j = \left(\frac{n_j}{\sigma^2} + \frac{D_j}{\tau^2}\right)^{-1}, \quad m_j = v_j \left(\frac{1}{\sigma^2} \sum_{i \in C_j} (\tilde{y}_i - X_i \beta) + \frac{\rho}{\tau^2} \sum_{k=1}^I W_{jk} r_k\right).$$

Step 4: Update of σ^2 (Error Variance)

The residual for each observation is given by

$$e_i = \tilde{y}_i - X_i \beta - r_{c(i)}.$$

An inverse-gamma prior is assumed for σ^2 . The posterior distribution is

$$\sigma^2 \sim \text{Inv-Gamma}\left(a_{\sigma} + \frac{n}{2}, \ b_{\sigma} + \frac{1}{2}\sum_{i=1}^n e_i^2\right).$$

Step 5: Update of τ^2 (Spatial Variance)

Define a quadratic form involving the random effects:

$$Q = \sum_{j=1}^{I} D_j r_j^2 - \rho \mathbf{r}^T W \mathbf{r}.$$

Then, with an inverse-gamma prior for τ^2 , the full conditional is

$$\tau^2 \sim \text{Inv-Gamma}\left(a_{\tau} + \frac{I}{2}, \ b_{\tau} + \frac{Q}{2}\right).$$

Step 6: Update of ρ (Spatial Correlation Parameter)

A Metropolis–Hastings step is used for ρ . A proposal ρ_{prop} is drawn from:

$$\rho_{\text{prop}} \sim N(\rho, \, \sigma_{\text{proposal}}^2),$$

with $\sigma_{\text{proposal}} = 0.1$. If ρ_{prop} is outside the allowable range $[\rho_{\text{lower}}, \rho_{\text{upper}}]$, then the proposal is rejected. Otherwise, compute the quadratic forms:

$$Q(\rho) = \sum_{j=1}^{I} D_j r_j^2 - \rho \mathbf{r}^T W \mathbf{r},$$

and

$$Q(\rho_{\text{prop}}) = \sum_{j=1}^{I} D_j r_j^2 - \rho_{\text{prop}} \mathbf{r}^T W \mathbf{r}.$$

The log acceptance ratio is then given by:

$$\log \alpha = -\frac{1}{2\tau^2} \left[Q(\rho_{\text{prop}}) - Q(\rho) \right].$$

Accept ρ_{prop} with probability $\min(1, \exp(\log \alpha))$, otherwise retain the current ρ .

Summary

At each iteration, the sampler:

- 1. Imputes latent values \tilde{y}_i for censored observations.
- 2. Updates the fixed effects β via a conjugate normal posterior.
- 3. Updates the cluster-level random effects r_j based on the observed data and the spatial structure.
- 4. Updates σ^2 and τ^2 using inverse-gamma full conditionals.
- 5. Updates ρ using a Metropolis–Hastings step.

Posterior samples for all these parameters are stored for later inference.