Practice Midterm 1

Nathan Solomon

March 4, 2024

1

There is a subgraph of $K_{4,4}$ that is isomorphic to K_4 . True or False?

False, because K_4 contains an 3-cycle, and $K_{4,4}$ doesn't.

2

There are exactly two (nonempty) nonisomorphic regular trees. True or False? (A graph is regular if every vertex has the same degree.)

True, they'e the isolated vertex P_0 and the graph P_1 . Since every tree has at least one leaf, this implies all vertices are leaves.

A more elegant method is to use the handshaking lemma, which gives 2(n-1) = dn, where d is the degree of each vertex and n is the number of vertices. Then the only valid solutions are (n, d) = (2, 1) and (n, d) = (1, 0).

3

The relation $x \leq y$ if $|x| \leq |y|$ is an ordering on the set

$$\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$$
.

True or False?

False. $1 \leq -1$ and $-1 \leq 1$, but $1 \neq -1$. Since the relation is not antisymmetric, it's not an ordering.

4

Suppose that there exist two connected graphs G and H and a bijection from $f:V(G)\to V(H)$ such that $d_G(u,v)=d_H(f(u),f(v))$ for every two vertices u and v of G. Then, G and H are isomorphic. True or False?

True. This means u and v are distance 1 apart iff f(u) and f(v) are distance 1 apart. Being distance 1 apart is the same as sharing an edge, so this is equivalent to the definition of a graph isomorphism.

5

Let G = (V, E) be a graph with |V| = n. If for every two nonadjacent vertices u and v of G,

$$\deg_G(u) + \deg_G(v) \ge n - 1,$$

then show that any two vertices are connected by a path of length ≤ 2 .

If u and v are adjacent, we're done. Otherwise, consider the set of vertices adjacent to u and the set of vertices adjacent to v. The sum of the size of those two sets is at least n-1, but there are only n-2 vertices in G which aren't either u or v. By pigeonhole, those sets have a nonempty union, and any of the vertices in that union will share an edge with both u and v, so there is a path of length 2 from u to v.

6

The *complement* of a graph G = (V, E) is the graph $\overline{G} = (V, {V \choose 2} - E)$. Find all trees T such that \overline{T} is also a tree. *Hint:* How many vertices can T have?

T and \overline{T} are both trees with |V| vertices, so they must both have |V|-1 edges, so $\binom{V}{2}=2|V|-2$. Therefore |V| is either 1 or 4. Now we just gotta go through all cases, which I'm not gonna do here.

7

How many compositions of n into k parts of size 1 and 2 are there?

There must be n-k parts of size 2 and 2k-n parts of size 1, so the answer is $\binom{n}{n-k}$.

8

Let G = (V, E) be a connected graph. An edge $e \in E$ is a *cut-edge* if G - e is disconnected. Show that if G is Eulerian, then there exist no cut-edges in G.

Every vertex in G has even degree, so every vertex in G-e except for exactly two have even degree. That means G has an Eulerian walk, so G-e is connected, meaning no edge e is a cut-edge.