Definition

Given:

- ightharpoonup a manifold \mathcal{M} :
- a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values:

the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}(\sim)$$

 $\mathcal{R}(f) = \mathcal{M}(x)$ $x \sim y \text{ if they belong to the}$ The segmentation map is the quotient map same connected component of $\Phi \colon \mathcal{M} \longrightarrow \mathcal{R}(f).$

$$\Phi \colon \mathcal{M} \longrightarrow \mathcal{R}(f).$$

Desired algorithm

Input:

- ightharpoonup a PL manifold $\mathcal M$
 - \rightsquigarrow a triangulated mesh \mathcal{M} ;
- ightharpoonup a non-degenerate PL scalar field f on ${\cal M}$
- \rightsquigarrow a scalar value f(v) for each vertex v of \mathcal{M} .

Output:

pairwise different, in order to ensure non-degeneracy; this

 \triangleright the augmented Reeb graph $\mathcal{R}(f)$.

→ graph + segmentation map

Time complexity:

 $ightharpoonup O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

#vertices + #edges + #triangles

Parallelizable.

Geometry of critical points

There are three kinds of critical points:

- ► (local) maximums ~ Link⁺ empty:
- saddles
 - → Link⁻ or Link⁺ disconnected.

How to detect them on a PL manifold?

Given a vertex v, the **star** of v is the union of all simplices containing v.

The **link** of v is the boundary of its star.

$$Link^+(v) = \{x \in Link(v) : f(x) > f(v)\}\$$

 $Link^-(v) = \{x \in Link(v) : f(x) < f(v)\}\$

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maximums and minimums
 - → nodes of valence 1 (leaves).
- Saddles
 - \rightsquigarrow nodes of valence ≥ 2 .
 - ▶ Join saddles: multiple components below. non-mutually exclusive
 - ▶ **Split saddles**: multiple components above. in dimension ≥ 3

Sequential algorithm

Informal description

- \triangleright Process the vertices of the mesh by **increasing** value of f.
- ▶ Construct the Reeb graph $\mathcal{R}(f)$ incrementally.
- While sweeping upwards, keep:
 - the partial Reeb graph constructed so far;
 - ▶ the current **level set** $f^{-1}(r)$.
- When processing a vertex update the level set and the Reeb graph accordingly.

 corresponds to an open edge of the partial Reeb graph

Sequential algorithm

The preimage graph

The level set $f^{-1}(r)$ can be represented by an abstract **graph** G_r :

- **nodes** \rightsquigarrow edges of the mesh \mathcal{M} ;
- ▶ edges \rightsquigarrow triangles of \mathcal{M} intersecting $f^{-1}(r)$.

Updating G_r

 \rightarrow a triangle connects its two sides intersecting $f^{-1}(r)$

- **Trigger**: update when r = f(v) for some vertex v.
- ▶ **Action**: process each triangle \mathcal{T}_{+} of Star(v) separately.
 - 1. v is the lower vertex of \mathcal{T} .
 - 2. v is the middle vertex of \mathcal{T} .
 - 3. v is the upper vertex of \mathcal{T} .