

Exercise

07

TUM Department of Informatics

Supervised by Prof. Dr. Stephan Günnemann

Informatics 3 - Professorship of Data Mining and Analytics

Submitted by Marcel Bruckner (03674122)

Julian Hohenadel (03673879)

Kevin Bein (03707775)

Submission date Munich, November 29, 2019

Constrained Optimization

Problem 1:

Constraints:

$$\theta_1 + \theta_2 \le 12 \implies \theta_2 \le 12 - \theta_1 \tag{1}$$

$$-\theta_1 + 2\theta_2 \ge -3 \implies \theta_2 \ge \frac{\theta_1 - 3}{2} \tag{2}$$

$$-5\theta_1 + 3\theta_2 \le -4 \implies \theta_2 \le \frac{1}{3}(5\theta_1 - 4) \tag{3}$$

$$\theta_2 \ge 2 \tag{4}$$

$$\theta_1 \ge 2 \tag{5}$$

Plot: Axis along x-dimension: θ_1 , Axis along y-dimension: θ_2 , simply plot the functions (1) up to (5):

 $f(\theta)=2\theta_1-3\theta_2$ Minimizer and maximizer both need to be a corner vertex of the domain.

Simple testing against (2,2), (7,2), (9,3) and (5,7) shows the solution:

Minimizer
$$\theta_{min} = (5,7) f(\theta_{min}) = -11$$

Maximizer
$$\theta_{max} = (9,3) f(\theta_{max}) = 9$$

Problem 2:

a)

Constraints:

$$\theta_1 + \theta_2 \le 4 \tag{1}$$

$$0 \le \theta_1 \le 3 \tag{2}$$

$$0 \le \theta_2 \le 2.5 \tag{3}$$

Plot: Axis along x-dimension: θ_1 , Axis along y-dimension: θ_2 , simply plot the functions (1) up to (3):

Domain corner vertices: (0,0), (3,0), (3,1), (1.5,2.5), (0,2.5)

Domain regions: Domain (inside), box, line, (3,1), (1.5,2.5)

$$\pi_{\mathcal{X}}(p) = p \text{ if } p \in \text{ Domain (inside)}$$

$$\pi_{\mathcal{X}}(p)=(3,1) \text{ if } p \in \text{ Region (3,1)}$$

$$\pi_{\mathcal{X}}(p) = (1.5, 2.5) \text{ if } p \in \text{ Region (1.5,2.5)}$$

$$\pi_{\mathcal{X}}(p) = \pi_{line} \text{ if } p \in \text{ Region line}$$

$$\pi_{\mathcal{X}}(p) = \pi_{box} \text{ if } p \in \text{ Region box }$$

$$\begin{array}{l} p \in \ \, \text{Domain (inside)} = \{p|p \in \mathcal{X}\} \\ \\ p \in \ \, \text{Region (3,1)} = \{p|p_2 \geq 1 \land -p_1 + p_2 \leq -2\} \\ \\ p \in \ \, \text{Region (1.5,2.5)} = \{p|p_1 \geq 1.5 \land -p_1 + p_2 \geq 1\} \\ \\ p \in \ \, \text{Region line} = \{p|p_1 + p_2 > 4 \land -2 < -p_1 + p_2 < 1\} \\ \\ p \in \ \, \text{Region box} = \{p|p \notin \mathcal{X} \land (p_1 < 1.5 \lor p_2 < 1)\} \end{array}$$

Let a be (4,0) and let b be (0,4):

$$\pi_{line}(p) = a + \frac{(p-a)^T (b-a)}{||b-a||_2^2} (b-a)$$

$$= \binom{4}{0} + \frac{(p_1 - 4, p_2) \binom{-4}{4}}{32} \binom{-4}{4}$$

$$= \binom{4}{0} + \frac{16 - 4p_1 + 4p_2}{32} \binom{-4}{4}$$

$$= \binom{4}{0} + \left(2 - \frac{1}{2}p_1 + \frac{1}{2}p_2\right) \binom{-1}{1}$$

$$= \binom{2 + \frac{1}{2}p_1 - \frac{1}{2}p_2}{2 - \frac{1}{2}p_1 + \frac{1}{2}p_2}$$

Formula taken from the lecture:

$$\pi_{box}(p) = \begin{pmatrix} max(0, min(3, p_1)) \\ max(0, min(2.5, p_2)) \end{pmatrix}$$

Problem 3:

Problem 4:

Appendix
We confirm that the submitted solution is original work and was written by us without further assistance.
Appropriate credit has been given where reference has been made to the work of others.
Munich, November 29, 2019, Signature Marcel Bruckner (03674122)
Munich, November 29, 2019, Signature Julian Hohenadel (03673879)
Munich, November 29, 2019, Signature Kevin Bein (03707775)