ICT and Future Productivity <u>Evidence and Theory of a GPT</u>

Marco Brianti and Laura Gáti

Boston College

June 2018

Motivation

- Point of departure: medium-run business cycle models à la Comin & Gertler (2006).
- Key prediction: BC fluctuations of a particular kind of investment (research & development (R&D) → adoption) lead total factor productivity (TFP).
- Fernald et al. (2017): the Great Recession 2008 casts doubt on whether this is all of the story.

This paper

- Stick aggregate ICT investment (ICT-I) in a VAR and explore how an identified shock to this affects TFP.
 - ICT shock = a shock to the productivity of the ICT sector today
 - → A shock to ICT leads to substantial TFP increases over the medium-run.
- ② Draw on the conclusions of the ICT literature to build a structural model to interpret the results.
 - \rightarrow ICT literature: ICT is a general-purpose technology (GPT).
 - ⇒ Estimate a two-sector endogenous growth model to ask whether aggregate data supports this interpretation.

Related literature

- Medium-run business cycles
 - Comin & Gertler (2006), Bianchi et al. (2014), Moran & Queralto (2017), Guerron & Jinnai (2015)
- ICT and productivity
 - Jorgenson & Stiroh (1999), Oliner & Stichel (2000), Brynjolffson & Lorin (2000), Stiroh (2002)
- Identification of news shocks in SVARs
 - Beaudry & Portier (2006), Barsky & Sims (2011)
- Multi-sector growth models
 - Greenwood, Hercowitz & Krusell (1997), Oulton (2007), Fisher (2006), Whelan (2003)

Roadmap

SVAR Analysis

Structural Mode

1. SVAR analysis

We run a SVAR using aggregate, quarterly US data. The data vector is:

$$\mathbf{X_{t}} = \begin{bmatrix} TFP_{t} \\ ICTI_{t} \\ GDP_{t} \\ C_{t} \\ RP_{t} \end{bmatrix}$$
 (1)

- $RP = \pi^{IT}/\pi^{CPI}$.
- All variables are real (except price indexes) and in log levels (except for RP, which is in growth rates).
- The dataset ranges from 1989:q1 2017:q2.

Baseline identification: Cholesky

The ICT shock is assumed to have

- no impact effect on TFP;
- maximal impact effect on ICT-I.

Why this identification?

- ICT value added is less than 5% of GDP (BEA, April 2018).
 - → ICT-I increases shouldn't affect TFP on impact.

- Prediction of multisector models (GHK): sectoral productivity increase leads to sectoral output becoming cheaper.
 - → ICT-I should rise after ICT productivity shock.

Results

Results II

Results III

	h = 1	h = 4	h = 8	h = 16	h = 24	h = 40
TFP	0	0.0023	0.0194	0.1088	0.2273	0.3382
ICT-I	0.9997	0.9038	0.7964	0.6320	0.5310	0.4371
Real GDP	0.2620	0.3061	0.3486	0.3936	0.4046	0.3881
Real C	0.1952	0.2638	0.3219	0.3931	0.4188	0.4064
Relative Prices	0.0618	0.0967	0.1276	0.1511	0.1516	0.1467

Robustness checks

• Main critique: reverse causality from news about future TFP.

→ Alternative specification filters out news to recover an alternative ICT shock series.

Alternative specification

The two recovered ICT shock series

Series of ICT shocks for different specifications

Interpretation of results

 ICT-shock leads to significant and persistent TFP increases in the medium run.

• ICT literature: it's a general purpose technology (GPT)!

 $\rightarrow\,$ embed in a structural model and estimate whether data favors the GPT-interpretation.

Roadmap

SVAR Analysis

Structural Model

2. Model - in a nutshell

Belongs to the class of Greenwood, Hercowitz & Krusell (GHK) models.

(We use isomorphic formulation of Oulton (2007).)

- Key: two sectors with identical production functions
- \rightarrow with an externality capturing the GPT-nature of ICT-capital.

• Rest of model perfectly standard.

Two sectors

Consumption-good sector

$$y_t^c(j) = A_t^c (k_t^c(j))^a (k_t^i(j))^b (I_t(j))^{1-a-b}, \quad 0 < a, b < 1$$
 (2)

ICT-good sector

$$y_t^i(q) = A_t^i \left(k_t^c(q) \right)^a \left(k_t^i(q) \right)^b \left(l_t(q) \right)^{1-a-b}, \quad 0 < a, b < 1$$
 (3)

with

$$A_t^c = \eta_t \; \theta_t^c \; (k_t^i)^{\gamma}$$

$$A_t^i = \eta_t \; \theta_t^i \; (k_t^i)^{\gamma}$$

Uses of outputs

Consumption-good sector

$$y_t^c = c_t + i_t^c$$

ICT-good sector

$$y_t^i = i_t^i$$

TFP in the model

Impulse-response matching - does data support $\gamma > 0$?

Estimate three parameters: $\Omega = (\gamma, \sigma_{\iota}^2, \rho_{\iota})$ with

- $\sigma_{\iota}^2 =$ the variance of an ICT technology shock
- $\rho_{\iota} =$ the persistence of the same shock
- $oldsymbol{\circ} \gamma =$ the size of the spillover effect of ICT capital on TFP

and calibrate the rest. Calibration

We estimate
$$\Omega$$
 as

$$\min_{\Omega} \left[\hat{\Psi} - \Psi(\Omega) \right]' \Lambda \left[\hat{\Psi} - \Psi(\Omega) \right] \tag{4}$$

- ullet $\Psi(\Omega)=$ mapping from Ω to the theoretical impulse responses
- $\hat{\Psi}=$ the empirical impulse responses of an ICT shock to TFP, ICTI, C and RP

IR-matching results I

Symbol	Economic Interpretation	Estimated Value
σ_{ι}^{2}	Variance of ICT technological shock	0.01
$ ho_\iota$	Persistence of ICT technological shock	0.9
γ	Size of spillover of ICT capital on TFP	0.5881

IR-matching results II

Conclusion

- SVAR analysis uncovered interesting pattern between ICT productivity and TFP.
 - ightarrow An ICT shock leads to delayed but persistent TFP increases.

- Two-sector structural model with a spillover from ICT-capital can rationalize results.
 - ightarrow Estimation of the model suggests that data supports the GPT-interpretation of ICT.

THANK YOU!

Wrong timing

Fernald et al. (2017): "R&D and adoption can't be the whole story".

Notation in detail

The reduced-form VAR is

$$y_t = B(L)y_{t-1} + i_t$$

Mapping between innovations i_t to structural shocks s_t

$$A_0s_t=i_t$$

 \rightarrow structural-form VAR is

$$A_0^{-1}y_t = C(L)y_{t-1} + s_t$$

where $C(L) = A_0^{-1}B(L)$ and $s_t = A_0^{-1}i_t$, and the impact matrix A_0 satisfies $\Sigma = A_0A_0'$.

For any arbitrary orthogonalization $\tilde{A}_0: \Sigma = \tilde{A}_0 \tilde{A}_0'$, a rotation using an orthogonal matrix D (DD' = I) allows us to back out impact matrix as $A_0 = \tilde{A}_0 D$.

 \rightarrow The matrix of impact responses to all shocks is:

$$\Pi(0) = \tilde{A}_0 D$$

Specifically, denoting the responses of variable i to shock j, it is

$$\Pi_{i,j}(0)=e_i'\tilde{A}_0De_j$$

where e_k is a selector column vector.

Denote $\gamma_j := De_j$, a specific column of D.

 $ightarrow ilde{\mathcal{A}}_0 \gamma_j =$ the vector of impact responses of all variables to shock j.

IRFs for a larger-scale VAR I (2 lags)

IRFs for a larger-scale VAR II (2 lags)

Controlling for news

Step 1 - Identification of $\gamma_{\textit{news}}$

$$\max_{\gamma_{news}} \Omega_{1,news}(h) = \frac{\sum_{t=0}^{h} e_1' B^t \tilde{\mathcal{A}}_0 \gamma_{news} \gamma_{news}' \tilde{\mathcal{A}}_0' B'^t e_1}{e_1' (\sum_{\tau=0}^{H} B^t \Sigma B'^t) e_1}$$

subject to

$$\begin{split} \Pi_{1,news}(0)&=0,\\ \Pi_{6,news}(0)&=\Pi_{6,news}(1)=\Pi_{6,news}(2)=0, \ \ \text{and}\\ \gamma_{news}\gamma_{news}'&=1. \end{split}$$

Controlling for news

Step 2 - Identification of γ_{ICT}

$$\max_{\gamma_{ICT}} \Pi_{2,ICT}(0) = e_2' \tilde{A}_0 \gamma_{ICT}$$

subject to

$$\Pi_{1,ICT}(0)=0,$$

$$\gamma_{news}\gamma_{ICT}'=0, \ \ \text{and} \ \ \gamma_{ICT}\gamma_{ICT}'=1.$$

Robustness checks for the news specification

- Different variables
 - Add the Michigan index of consumer confidence (expected business conditions 5 years ahead)
 - Replace IT prices with capital prices (following Comin & Gertler)
 - Replace CPI inflation with PCE inflation
- Different horizons at which we impose the restriction on relative prices for the news shock
 - \rightarrow ran 6, 8, 10, 12 and 16 quarters.
- Increase the number of lags (2)
- Check whether VAR is information-sufficient to identify the news shock (Forni-Gambetti test) (p-val of 12%)

TFP in the model

Can be computed 2 ways:

1)
$$TFP_t = (1 - w)TFP_t^c + wTFP_t^i$$

2)
$$g_{TFP} = g_{GDP} - ag_{k^c} - bg_l - (1 - a - b)g_{k^i}$$

where for a variable X, $g_X := \ln \left(\frac{X_t}{X_{t-1}} \right)$.

In the model, the latter is equivalent to

$$g_{TFP} = g_{\eta} + wg_{\theta^c} + (1 - w)g_{\theta^i} + \gamma g_{k^i}$$
 (5)

GDP and relative prices in the model

GDP is

$$GDP_t = (1 - w)y_t^c + wy_t^i$$
 where $w = \frac{p_t y_t^i}{y_t^c + p_t y_t^i}$

with

$$p_t = rac{p_t^i}{p_t^c}$$
 where we normalize $p_t^c = 1$

∢ Return

Calibration

	Economic Interpretation	Value	Reference
β	Discount factor of households	$0.97^{\frac{1}{4}}$	Match 3M-T-bill return
δ^c	Depreciation of hard capital	0.0206	BEA
δ^i	Depreciation of ICT capital	0.0398	BEA
a	Hard capital share	0.3	Standard value
Ь	ICT capital share	0.031	Oulton (2012)
Γ^c	Steady state growth rate of hard capital	1.0034	See below
Γ^i	Steady state growth rate of ICT capital	1.0160	See below
χ	Frisch elasticity	1	Standard value

Get (Γ^c, Γ^i) by solving the following model-implied steady state system

$$\begin{cases} \frac{p_t}{p_{t-1}} = \frac{\Gamma^c}{\Gamma^i} \\ \frac{c_t}{c_{t-1}} = (\Gamma^c)^{\frac{1-b-\gamma}{1-a-b-\gamma}} (\Gamma^i)^{\frac{b+\gamma}{1-a-b-\gamma}} \end{cases}$$
 (6)

