基本不等式与对勾函数

一、基本不等式

前提条件是: a > 0, b > 0

取 "="的条件是: a = b > 0, 必须验证.

例 1 已知 $x, y \in \mathbb{R}$,且 x + y = 2,则 $2^x + 2^y$ 的最小值为_____

练习 2 若 $\log_3 m + \log_3 n = 2$,则 m + n 的最小值为_____

例 2 若
$$x, y \in (0,1)$$
,且 $xy = \frac{1}{9}$,则 $\log_{\frac{1}{3}} x \cdot \log_{\frac{1}{3}} y$ 的最大值为_____

例 3 设 x, y 为正,且 2x + 5y = 20,则 1gx + 1gy 的最大值为_____

例 4 已知
$$x > 1$$
,则 $x + \frac{1}{x-1}$ 的最小值为_____

练习 3: 已知关于x的不等式 $2x + \frac{2}{x-a} \ge 7$ 在 $x \in (a,+\infty)$ 上恒成立,求a 的取值范围

练习 4 函数
$$f(x) = \sqrt{x^2 + 9} + \frac{1}{\sqrt{x^2 + 9}}$$
 的最小值为_____

例 5 函数
$$f(x) = \frac{x}{x^2 + 9}$$
 的最大值为_____

例 6 函数
$$f(x) = \sqrt{x-1} + \frac{1}{\sqrt{x-1}}$$
 的最小值为_____

例 7 若正数 a,b 满足 ab = a+b+3, 求: ① ab 的取值范围② a+b 的取值范围

例 8 已知
$$x > 0$$
, $y > 0$, 且 $x + 2y = 1$, 求 $\frac{1}{x} + \frac{1}{y}$ 的最小值

练习 5. 已知
$$a > 0, b > 0$$
,且 $2a + b = 3$,则 $\frac{1}{2a} + \frac{1}{b}$ 的最小值为______

练习 6. 已知正数 x, y 满足 x + y = 4 ,则使不等式 $4x + y \ge mxy$ 恒成立,求 m 的取值范围

练习 7 已知不等式(x+y)($\frac{1}{x}+\frac{a}{y}$) \geqslant 9 对任意正实数 x,y 恒成立,则正实数 a 的最小值为

例 9 若
$$0 < x < 1$$
,则 $\frac{1}{x} + \frac{1}{1-x}$ 的最小值为_____

练习 8. 若
$$0 < x < \frac{2}{3}$$
 , 则 $\frac{3}{x} + \frac{1}{2-3x}$ 的最小值为_____

练习 9. 若
$$1 < x < 2$$
,则 $\frac{1}{x-1} + \frac{1}{2-x}$ 的最小值为______

例 10. 已知
$$0 < x < 2$$
,则 $x(2-x)$ 的最大值为_____

练习 10: 已知
$$a,b>0$$
, $a^2+\frac{b^2}{2}=1$,则 $a\sqrt{1+b^2}$ 的最大值为_____

二、对勾函数
$$y = ax + \frac{b}{x}$$
 $(a > 0, b > 0)$ 的图像与性质

性质:

- 1. 定义域: (-∞,0)∪(0,+∞)
- 2. 值域: $(-\infty, -2\sqrt{ab}] \cup [2\sqrt{ab}, +\infty)$
- 3. 奇偶性: 奇函数,函数图像整体呈两个"对勾"的形状,且函数图像关于原点呈中心对称,即 f(x) + f(-x) = 0
- 4. 图像在一、三象限

当
$$x > 0$$
时,由基本不等式知 $y = ax + \frac{b}{x} \ge 2\sqrt{ab}$ (当且仅当 $x = \sqrt{\frac{b}{a}}$ 取等号),

即
$$f(x)$$
 在 $\mathbf{x} = \sqrt{\frac{b}{a}}$ 时,取最小值 $2\sqrt{ab}$

由奇函数性质知:

当 x<0 时,
$$f(x)$$
 在 x= $-\sqrt{\frac{b}{a}}$ 时,取最大值 $-2\sqrt{ab}$

5. 单调性: 增区间为
$$(\sqrt{\frac{b}{a}}, +\infty)$$
, $(-\infty, -\sqrt{\frac{b}{a}})$

减区间是 (0,
$$\sqrt{\frac{b}{a}}$$
), $(-\sqrt{\frac{b}{a}},0)$

三、对勾函数的变形形式

类型一: 函数 $y = ax + \frac{b}{x}$ (a < 0, b < 0) 的图像与性质

此函数与对勾函数 $y = (-a)x + \frac{(-b)}{x}$ 关于 y 轴对称, 故函数图像为

性质:

类型二: 斜勾函数 $y = ax + \frac{b}{x}$ (ab < 0)

①a > 0, b < 0作图如下

性质:

②a < 0, b > 0作图如下:

类型三: 函数
$$f(x) = \frac{ax^2 + bx + c}{x} (ac > 0)$$

此类函数可变形为 $f(x) = ax + \frac{c}{x} + b$,则 f(x) 可由对勾函数 $y = ax + \frac{c}{x}$ 上下平移得到

例1作函数
$$f(x) = \frac{x^2 + x + 1}{x}$$
 的草图

解:
$$f(x) = \frac{x^2 + x + 1}{x}$$
 $\Rightarrow f(x) = x + \frac{1}{x} + 1$ 作图如下:

类型四: 函数
$$f(x) = x + \frac{a}{x+k} (a > 0, k \neq 0)$$

此类函数可变形为 $f(x)=(x+k+\frac{a}{x+k})-k$,则 f(x) 可由对勾函数 $y=x+\frac{a}{x}$ 左右平移,上下平移得到

例 2 作函数 $f(x) = x + \frac{1}{x-2}$ 的草图

解:
$$f(x) = x + \frac{1}{x-2} \Rightarrow f(x) = x - 2 + \frac{1}{x-2} + 2$$
 作图如下:

例 3 作函数
$$f(x) = \frac{x+3}{x+2} + x$$
 的作图:

$$\Re : f(x) = \frac{x+3}{x+2} + x \Rightarrow f(x) = \frac{x+2+1}{x+2} + x = 1 + \frac{1}{x+2} + x = x+2 + \frac{1}{x+2} - 1$$

练习: 1. 求函数
$$f(x) = x + \frac{1}{2x - 4}$$
 在 $(2, +\infty)$ 上的最低点坐标

2. 求函数 $f(x) = x + \frac{x}{x-1}$ 的单调区间及对称中心

类型五: 函数
$$f(x) = \frac{ax}{x^2 + b} (a \neq 0, b > 0)$$

此类函数定义域为
$$R$$
 ,且可变形为 $f(x) = \frac{a}{\frac{x^2 + b}{x}} = \frac{a}{x + \frac{b}{x}}$

a. 若 a > 0 ,则 f(x) 的单调性和对勾函数 $y = x + \frac{b}{x}$ 的单调性相反,图像如下:

性质:

- 1. 定义域: (-∞,+∞)
- 2. 值域: $[-a \cdot \frac{1}{2\sqrt{b}}, a \cdot \frac{1}{2\sqrt{b}}]$
- 3. 奇偶性: 奇函数,函数图像整体呈两个倒着的"对勾"的形状,且函数图像关于原点呈中心对称,即 f(x) + f(-x) = 0
- 4. 图像在一、三象限

当
$$x>0$$
 时,由基本不等式知 $f(x) \le \frac{a}{2\sqrt{x \cdot \frac{b}{x}}} = \frac{a}{2\sqrt{b}}$ (当且仅当 $x=\sqrt{b}$ 取等号),

即
$$f(x)$$
 在 $x = \sqrt{b}$ 时,取最大值 $\frac{a}{2\sqrt{b}}$

由奇函数性质知:

当 x<0 时,
$$f(x)$$
 在 x= $-\sqrt{b}$ 时,取最小值 $-\frac{a}{2\sqrt{b}}$

5. 单调性: 減区间为 (\sqrt{b} , $+\infty$), ($-\infty$, $-\sqrt{b}$)

增区间是
$$[-\sqrt{b},\sqrt{b}]$$

例4作函数
$$f(x) = \frac{x}{x^2 + 1}$$
 的草图

例 5 作函数
$$f(x) = -\frac{2x}{x^2 + 4}$$
 的草图

类型六: 函数
$$f(x) = \frac{ax^2 + bx + c}{x + m} (a \neq 0)$$

此类函数可变形为
$$f(x) = \frac{a(x+m)^2 + s(x+m) + t}{x+m} = a(x+m) + \frac{t}{x+m} + s(at > 0)$$
,

则 f(x) 可由对勾函数 $y = ax + \frac{t}{x}$ 左右平移, 上下平移得到

例 6 说明函数
$$f(x) = \frac{x^2 + x + 1}{x + 1}$$
 由对勾函数 $y = x + \frac{1}{x}$ 如何变换而来

解:
$$f(x) = \frac{(x+1)^2 - (x+1) + 1}{x+1} = x+1+\frac{1}{x+1}-1$$

故 此函数 f(x) 可由对勾函数 $y = x + \frac{1}{x}$ 向_____(填"左"、"右") 平移_____单位,向____(填"上"、"下") 平移_____单位. 草图如下:

练习: 1. 已知
$$x > -1$$
 , 求函数 $f(x) = \frac{x^2 + 7x + 10}{x + 1}$ 的最小值

2. 已知
$$x < 1$$
 , 求函数 $f(x) = \frac{x^2 + 9x - 9}{x - 1}$ 的最大值

类型七: 函数
$$f(x) = \frac{x+m}{ax^2+bx+c} (a \neq 0)$$

例7 求函数
$$f(x) = \frac{x-1}{x^2+x+2}$$
 在区间 (1,+∞) 上的最大值

解: 当
$$x = 1$$
时, $f(1) = 0$

问: 若区间改为 $[4,+\infty)$ 则 f(x)的最大值为_____

练习: 1. 求函数
$$f(x) = \frac{x^2 + 2x + 3}{x^2 + x + 2}$$
 在区间 $[0, +\infty)$ 上的最大値

类型八: 函数
$$f(x) = \frac{x+b}{\sqrt{x+a}}$$

此类函数可变形为标准形式:
$$f(x) = \frac{x+a+b-a}{\sqrt{x+a}} = \sqrt{x+a} + \frac{b-a}{\sqrt{x+a}} (b-a>0)$$

例 8 求函数
$$f(x) = \frac{x+3}{\sqrt{x-1}}$$
 的最小值

$$\widetilde{R}: \quad f(x) = \frac{x-1+4}{\sqrt{x-1}} = \sqrt{x-1} + \frac{4}{\sqrt{x-1}}$$

练习: 1. 求函数
$$f(x) = \frac{x+5}{\sqrt{x+1}}$$
 的值域

2. 求函数
$$f(x) = \frac{\sqrt{x+2}}{x+3}$$
 的值域

类型九: 函数
$$f(x) = \frac{x^2 + b}{\sqrt{x^2 + a}} (a > 0)$$

此类函数可变形为标准形式:

$$f(x) = \frac{(\sqrt{x^2 + a})^2 + b - a}{\sqrt{x^2 + a}} = \sqrt{x^2 + a} + \frac{b - a}{\sqrt{x^2 + a}}(b - a > o)$$

例 9 求函数
$$f(x) = \frac{x^2 + 5}{\sqrt{x^2 + 4}}$$
 的最小值

$$\widehat{\mathbb{H}}\colon f(x) = \frac{x^2 + 5}{\sqrt{x^2 + 4}} \Rightarrow f(x) = \frac{x^2 + 4 + 1}{\sqrt{x^2 + 4}} = \sqrt{x^2 + 4} + \frac{1}{\sqrt{x^2 + 4}}$$

练习: 1. 求函数
$$f(x) = \frac{\sqrt{x^2 + 1}}{x^2 + 17}$$
 的值域

例 10 已知
$$a > 0$$
,求函数 $y = \frac{x^2 + a + 1}{\sqrt{x^2 + a}}$ 的最小值。

$$\text{MP}: y = \frac{x^2 + a + 1}{\sqrt{x^2 + a}} = \sqrt{x^2 + a} + \frac{1}{\sqrt{x^2 + a}}$$

$$\diamondsuit$$
 t= $\sqrt{x^2 + a}$ (t ≥ \sqrt{a}), $y=t+\frac{1}{t}$

当
$$\sqrt{a} \ge 1$$
即 $a \ge 1$ 时, $y_{min} = \sqrt{a} + \frac{1}{\sqrt{a}}$

当
$$\sqrt{a}$$
<1即0< a <1时, y_{min} =2