CS 310 - Winter 2000 - Sample Final Exam 2

Last Name:	
First Name:	

1. (Logic) For each of the following statements find a model and a countermodel:

- 1. $\exists x \exists y \exists z [(x \neq y) \land (y \neq z) \land (x \neq z)].$
- 2. $\exists x \exists y \forall z [(x = z) \lor (y = z)].$
- 3. $\forall x \exists y (x = y^2)$.
- 4. $\forall x (y = z + x^2)$.
- **2.** (Sets) Let A, B, C be the following sets: $A = \{(x, y) \in \mathbb{Z}^2 \mid 4x = 3y\}, B = \{(x, y) \in \mathbb{Z}^2 \mid y = 0\}, C = \{(x, y) \in \mathbb{Z}^2 \mid x^2 + y^2 = 25\}.$ Find $A \cap B, A \cap C, B \cap C, (A \cap B) \cup (A \cap C) \cup (B \cap C).$
- **3.** (Functions) Find the largest subset $D \subseteq \mathbb{R}$ that can be the domain of a function $f: D \to R$ defined in the following way:

$$f(x) = \frac{1}{2 - \sqrt{x}}.$$

- **4.** (Operations) We define the set $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. What kind of structure (group, ring, field) is $(\mathbb{Q}[\sqrt{2}], +, \cdot)$?
- **5.** (Relations) For each of the following subsets of \mathbb{R} determine (if they exist) its least element, greatest element, glb and lub: $A = [3,7), B = \{1/n \mid n = 1,2,3...\}, C = \{2n \mid n \in \mathbb{Z}\}, D = \{x \in \mathbb{Q} \mid x^2 \leq 2\}.$
- **6.** (Counting) In how many ways can we go from point (0,0) to point (4,5) (given in Cartesian coordinates) if the only moves allowed are: R = "go right 1 unit to the right", and U = "go up by 1 unit"?
- 7. (Induction) Prove the following by induction:

$$\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^n} = \frac{1}{2} - \frac{1}{2 \cdot 3^n}$$
 for every $n \ge 1$.

8. (Congruences) Solve the following system of congruences:

$$\begin{cases} x \equiv 2 \pmod{5} \\ x \equiv -2 \pmod{7} \end{cases}$$

1

- **9.** (Graphs) In each of the following cases draw a connected loop-free planar graph (not a multigraph) with the given characteristics, or prove that none exists:
 - 1. 4 vertices all of degree 3, 4 regions.
 - 2. 4 vertices, 6 edges, 5 regions.
 - 3. 4 vertices all of degree 4.
 - 4. 6 vertices all of degree 3, 5 regions.
- 10. (Trees) How many edges does $K_{3,5}$ have? Draw a spanning tree for $K_{3,5}$. How many edges does the spanning tree have?