Advanced Data Analysis Centre

Table of Contents

NIPA	
Code availability	
hypergeometric tests	
User input to change	2
Required Packages	
User options	2
Output	3
Gene Ontology (Enrichment using GOstats)	
Output Tables	
Enriched GO figures	
GO Directed acyclic graph	4
Pathways (KEGG)	
NIPA.report.txt:	

NIPA

Code availability

https://github.com/ADAC-UoN/NIPA

Code to determine enriched Gene Ontology and Pathways using KEGG using hypergeometric tests.

hypergeometric tests

using phyper

phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)

x, q vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

if

pop size: 5260 # total number of entrez gene in all pathways

sample size: 131 # total goi

Number of items in the pop that are classified as successes: 1998 # entrez in a particular pathway

Number of items in the sample that are classified as successes : 62 # goi in a particular pathway

e.g pathway 100 genes 10 are in goi list of size 400 universe = 20,000

phyper(1,100,20000-100,400, lower.tail=FALSE) = 0.597 = probability of finding this many or greater goi in pathway

phyper(80,100,20000-100,400, lower.tail=FALSE) = 4.603708e-122 = probability of finding this many or greater goi in pathway

User input to change

Required Packages

See Bioconductor for instructions to install.

library(biomaRt)

library(pathview)

library(gage)

library(gageData)

library(ggplot2)

library(stringr)

library(dplyr)

library(RamiGO)

User options

The code in lines 25-65 will need editing

```
## Input Variables -- USER TO CHANGE [START]
## Check all or may fail.
                   # if results are from analysis and are a column of a larger table give input column else will assume is column 1 or a single column as # "yes" or "no" if header on file
goi.column = 2
goi.header = "yes"
keggFC = "yes"
keggFC.col = 5
id.type = "Entrez"
                           # one of
# "ENSG" (ensembl gene),
# "ENST" (ensembl trasncript),
# "ENSP" (ensembl peptide),
# "Entrez"
                           # "Uniprot" (UniProt/SwissProt Accession)
                           # "Refseq_mrna" (RefSeq mRNA [e.g. NM_001195597])
# "Refseq_mpride" (RefSeq Protein ID [e.g. NP_001005353])
# "hgnc" (HGNC ID [e.g. LIS1])
# set variables for hypergeometric cutoff enrichment qval less than this and with greater or equal to minimum number of genes in pathway or GO term will be drawn kegg.qval.cutoff = 0.05

GO.cutoff = 0.05 # qvalue cutoff
min.genes.cutoff = 2
Run hypergeometric test to find enriched GO terms in BP, MF and CC category
Run hypergeometric test to find and plot enriched KEGG pathways and visualise using PathView
## Input Variables -- USER TO CHANGE [END]
```

Options

Options	
goi.column	number of column with gene identifier in starts form 1. If a
	simple list, keep as $= 1$.
goi.header = "yes"	# "yes" or "no" if header on file
species = "mouse"	#currently one of "mouse", "human", "rat", "pig", "zebrafish,
	cow, fly, sheep",
outfile.prefix <-	prefix attached to output files. Change to user requirements.
"ADAC.test"	
keggFC = "yes"	yes or no. If yes will colour enriched KEGG pathways by FC
	data [specify column below]

keggFC.col = 5	if keggFC = yes specify column of input table with FC values assumes tab delimited	
id.type = "Entrez"	change to correct accepted identifier type	
kegg.qval.cutoff = 0.05	qvalue cutoff for KEGG enrichment analysis	
GO.cutoff = 0.05	qvalue cutoff for GO enrichment analysis	
min.genes.cutoff = 2	Miniumum number of genes in category to be reported	
doGO = "yes"	# yes or no. Run hypergeometric test to find enriched GO	
	terms in BP, MF and CC category	
doKEGG = "yes"	# yes or no. Run hypergeometric test to find and plot	
	enriched KEGG pathways and visualise using PathView	

Output

Gene Ontology (Enrichment using GOstats)

Output Tables

GO enriched terms GO.BP.table, GO.CC.table, GO.MF.table for "Biological Process", "Cellular Component" and "Molecular Function" respectively. e.g. for Biological Process Columns are

GO ID,

All_gene_count (number of genes in GO term)

GOI_gene_count (number of genes in GO term also in user input "genes of interest" list)

Pval (p value from hypergeometric test)

Qval (Benjamini-Hochberg corrected pvalue)

This is a tab-delimited text file that can open in excel or similar.

Enriched GO figures

GO.BP.Significant.enrichment.plot.pdf, GO.MF.Significant.enrichment.plot.pdf and GO.CC.Significant.enrichment.plot.pdf

Example below

x axis = Enrichment (-log10 pvalue)

The number of genes in each term are shown by size circle (bigger circles reflect more GOI in the GO terms).

GO Directed acyclic graph

The relationships of enriched GO terms are shown in the directed acyclic graph in svg format e.g. GO.BP.top.DAG.svg.

Figures are generated using getAmigoTree see

https://www.rdocumentation.org/packages/RamiGO/versions/1.18.0/topics/getAmigoTree

Pathways (KEGG)

(KEGG.enrichment.analysis.results.table) pathview output e.g mmu03010.pathview.png: red shows entities in user input list which are present in enriched pathway

If no fold change values are given to NIPA (option keggFC = no)- Those genes enriched in your dataset are shown in red

If fold change values are given to NIPA (option keggFC = yes)- Fold change values for those genes enriched in your dataset are shown in in colour scale of green-red [-ve to +ve fold change].

NIPA.report.txt:

Any errors will appear here.