Rappels de base (vecteurs, matrices, distances). Notations. Codage de caractéristiques.

Remarque: les exercices de cette feuille sont à faire par écrit, sans ordinateur.

Exercice 1 Rappels: vecteurs, distances,...

On considère une base d'apprentissage \mathbf{X} contenant n exemples décrits par d attributs (ou variables), et soit \mathbf{x}_1 et \mathbf{x}_2 deux exemples de \mathbf{X} . Dans cet exercice, on considère que les d attributs sont tous numériques (ie. à valeurs dans \mathbb{R}). Avec les notations vues en cours, on note $\mathbf{x}_1 = (x_{1,1}, x_{1,2}, \dots, x_{1,d})$ et $\mathbf{x}_2 = (x_{2,1}, x_{2,2}, \dots, x_{2,d})$.

Question 1. Donner l'expression analytique complète de X sous la forme d'une matrice.

Question 2. Donner l'expression analytique du produit scalaire $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle$ (parfois noté $K(\mathbf{x}_1, \mathbf{x}_2)$) entre \mathbf{x}_1 et \mathbf{x}_2 . Représenter ce produit scalaire sous la forme d'un produit de matrices.

Question 3. Donner l'expression analytique de la distance euclidienne $d_E(\mathbf{x}_1, \mathbf{x}_2)$ entre \mathbf{x}_1 et \mathbf{x}_2 .

Question 4. Soit $f: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$ une mesure. Rappeler les propriétés que doit vérifier f pour être une distance.

Question 5. Donner l'expression analytique de la norme euclidienne $||\mathbf{x}_1||$ (aussi appelée norme 2 et notée $||\mathbf{x}_1||_2$) de \mathbf{x}_1 .

Exercice 2 Droites et vecteurs (1)

Dans cet exercice, on se place dans un repère orthonormé en 2 dimensions $\mathbb{R} \times \mathbb{R}$ comme indiqué dans la figure 1.

FIGURE 1 – Droite et points

Question 1. Déterminer l'équation de la droite d.

Question 2. Déterminer l'équation de la droite d_A , parallèle à la droite d et passant par le point A.

Question 3. Donner un vecteur directeur de la droite d.

Question 4. Déterminer l'équation de la droite d_B , perpendiculaire à la droite d et passant par le point B.

Exercice 3 Droites et vecteurs (2)

Dans cet exercice, on se place dans un repère orthonormé en 2 dimensions $\mathbb{R} \times \mathbb{R}$. On note $\mathbf{x} = (x_1, x_2)$ un point de $\mathbb{R} \times \mathbb{R}$.

Soit d_w la droite d'équation $w_1x_1 + w_2x_2 + c = 0$ avec w_1 , w_2 et c à valeurs dans \mathbb{R} tels que $(w_1, w_2) \neq (0, 0)$.

Question 1. Donner l'expression de v_d un vecteur directeur de la droite d_w , puis en déduire l'ensemble de tous les vecteurs directeurs de d_w , ie. l'ensemble des vecteurs colinéaires à v_d .

Question 2. Montrer que le vecteur $\mathbf{w} = (w_1, w_2)$ est normal à la droite d_w .

Question 3. On se place dans le cas où c=0. Représenter graphiquement une droite d'équation $w_1x_1 + w_2x_2 = 0$ ainsi que le vecteur \mathbf{w} correspondant (on prendra le point O=(0,0) comme origine).

Question 4. Toujours avec c=0, exprimer l'équation de d_w sous la forme d'un produit scalaire. En déduire que si 2 points \mathbf{x}_1 et \mathbf{x}_2 sont tels que $\langle \mathbf{w}, \mathbf{x}_1 \rangle$ et $\langle \mathbf{w}, \mathbf{x}_2 \rangle$ ont le même signe, alors ils se trouvent du même côté de la droite d_w (ie. dans le même sous-espace délimité par d_w).

Astuce: utiliser les angles.

Question 5. Généraliser le résultat précédent pour le cas général où $c \neq 0$ (on fait l'hypothèse que w_2 est non nul. Vérifier en prenant les valeurs numériques de l'exercice 2 (droite, et points).