Interpretable Machine Learning

Counterfactual Explanations

Learning goals

- Understand the motivation behind CEs
- See the mathematical foundation of CEs

EXAMPLE: CREDIT RISK APPLICATION

- x: customer and credit information
- y: grant or reject credit

Questions:

- Why was the credit rejected?
- Is it a fair decision?
- How should x be changed so that the credit is accepted?

EXAMPLE: CREDIT RISK APPLICATION

Counterfactual Explanations provide answers in the form of "What-If"-scenarios.

"If the person was more skilled and the credit amount had been reduced to \$8.000, the credit would have been granted."

• Counterfactual explanations == counterfactuals == CEs

- Counterfactual explanations == counterfactuals == CEs
- Explain particular predictions of an ML model by presenting an alternative input whose prediction equals a desired outcome

- Counterfactual explanations == counterfactuals == CEs
- Explain particular predictions of an ML model by presenting an alternative input whose prediction equals a desired outcome
- Represent close neighbors of a data point we are interested in, but belonging to the desired outcome

- Counterfactual explanations == counterfactuals == CEs
- Explain particular predictions of an ML model by presenting an alternative input whose prediction equals a desired outcome
- Represent close neighbors of a data point we are interested in, but belonging to the desired outcome
- Reveal which minimal changes to the input are sufficient to receive a different outcome
 Useful if there is a chance to change the input features (e.g., by changing behaviour)

- Counterfactual explanations == counterfactuals == CEs
- Explain particular predictions of an ML model by presenting an alternative input whose prediction equals a desired outcome
- Represent close neighbors of a data point we are interested in, but belonging to the desired outcome
- Reveal which minimal changes to the input are sufficient to receive a different outcome
 → Useful if there is a chance to change the input features (e.g., by changing behaviour)
- The targeted audience of CEs are often end-users

CEs can serve various purposes, the user can decide what to learn from them. For example:

"If the person had been **one year older** and the **credit amount had been increased** to \$12.000, the credit would have been granted."

CEs can serve various purposes, the user can decide what to learn from them. For example:

"If the person had been **one year older** and the **credit amount had been increased** to \$12.000, the credit would have been granted."

• Guidance for future actions:

Ok, I will apply again next year for the higher amount.

CEs can serve various purposes, the user can decide what to learn from them. For example:

"If the person had been **one year older** and the **credit amount had been increased** to \$12.000, the credit would have been granted."

• Guidance for future actions:

Ok, I will apply again next year for the higher amount.

Provide reasons:

Interesting, I did not know that age plays a role in loan applications.

CEs can serve various purposes, the user can decide what to learn from them. For example:

"If the person had been **one year older** and the **credit amount had been increased** to \$12.000, the credit would have been granted."

• Guidance for future actions:

Ok, I will apply again next year for the higher amount.

Provide reasons:

Interesting, I did not know that age plays a role in loan applications.

Provide grounds to contest the decision:

How dare you, I do not want to be discriminated for my age in an application.

CEs can serve various purposes, the user can decide what to learn from them. For example:

"If the person had been **one year older** and the **credit amount had been increased** to \$12.000, the credit would have been granted."

• Guidance for future actions:

Ok, I will apply again next year for the higher amount.

Provide reasons:

Interesting, I did not know that age plays a role in loan applications.

Provide grounds to contest the decision:

How dare you, I do not want to be discriminated for my age in an application.

Detect model biases:

There is a bug, an increase in amount should not increase approval rates.

Counterfactuals have a long-standing tradition in analytic philosophy

→ According to Lewis (1973), a counterfactual conditional is a statement of the form:

Counterfactuals have a long-standing tradition in analytic philosophy

→ According to Lewis (1973), a counterfactual conditional is a statement of the form:

- S is an event that must relate to a past event that didn't occur
 - → counterfactuals run contrary to the facts

Counterfactuals have a long-standing tradition in analytic philosophy

→ According to Lewis (1973), a counterfactual conditional is a statement of the form:

- S is an event that must relate to a past event that didn't occur
 counterfactuals run contrary to the facts
- Above statement is true, if in all possible worlds most similar to the actual world where S had been the case, Q would have been the case

Counterfactuals have a long-standing tradition in analytic philosophy

→ According to Lewis (1973), a counterfactual conditional is a statement of the form:

- Above statement is true, if in all possible worlds most similar to the actual world where S had been the case, Q would have been the case
- A world is similar to another if laws are maximally preserved between the worlds and only a few facts are changed

• Counterfactuals have largely been studied to explain causal dependence

- Counterfactuals have largely been studied to explain causal dependence
- ◆ Causal dependence underlies the explanatory power
 → good CEs point to critical causal factors that drove the algorithmic decision

- Counterfactuals have largely been studied to explain causal dependence
- Causal dependence underlies the explanatory power
 good CEs point to critical causal factors that drove the algorithmic decision

- Counterfactuals have largely been studied to explain causal dependence
- Causal dependence underlies the explanatory power
 good CEs point to critical causal factors that drove the algorithmic decision
- If maximal closeness is relaxed, causally irrelevant factors can become part of the explanation
 ~ e.g., decreasing loan amount by \$20.000 and being one year older is recommended by the
 explainer although only loan amount might be causally relevant

MATHEMATICAL PERSPECTIVE

Terminology:

- x: original/factual datapoint whose prediction we want to explain
- $y' \subset \mathbb{R}^g$: desired prediction (y' = 1000 or y' = "grant credit") or interval ($y' = [1000, \infty[)$

MATHEMATICAL PERSPECTIVE

Terminology:

- x: original/factual datapoint whose prediction we want to explain
- $y' \subset \mathbb{R}^g$: desired prediction (y' = 1000 or y' = ``grant credit'') or interval ($y' = [1000, \infty[)$

A **valid** counterfactual \mathbf{x}' is a datapoint:

- whose prediction $\hat{f}(\mathbf{x}')$ is equal to the desired prediction \mathbf{y}'
- that is maximally close to the original datapoint x

MATHEMATICAL PERSPECTIVE

Terminology:

- x: original/factual datapoint whose prediction we want to explain
- $y' \subset \mathbb{R}^g$: desired prediction (y' = 1000 or y' = ``grant credit'') or interval ($y' = [1000, \infty[)$

A **valid** counterfactual \mathbf{x}' is a datapoint:

- whose prediction $\hat{f}(\mathbf{x}')$ is equal to the desired prediction y'
- that is maximally close to the original datapoint x

Reformulate these two objectives (denoted by o_1 and o_2) as optimization problem:

$$\operatorname{\mathsf{arg}} \operatorname{\mathsf{min}}_{\mathbf{x}'} \lambda_1 o_p(\hat{f}(\mathbf{x}'), y') + \lambda_2 o_f(\mathbf{x}', \mathbf{x})$$

- λ_1 and λ_2 balance the two objectives
- Choice of o_p (distance on prediction space) and of o_f (distance on feature space) is crucial

MATHEMATICAL PERSPECTIVE Dandl et al. (2020)

- Regression: o_p could be the L₁-distance $o_p(\hat{f}(\mathbf{x}'), y') = |\hat{f}(\mathbf{x}') y'|$
- Classification: L₁-distance for scores and 0-1 Loss for labels, e.g., $o_p(\hat{f}(\mathbf{x}'), y') = \mathcal{I}_{\{\hat{f}(\mathbf{x}') \neq y'\}}$

MATHEMATICAL PERSPECTIVE Dandl et al. (2020)

- Regression: o_p could be the L₁-distance $o_p(\hat{f}(\mathbf{x}'), y') = |\hat{f}(\mathbf{x}') y'|$
- Classification: L₁-distance for scores and 0-1 Loss for labels, e.g., $o_p(\hat{f}(\mathbf{x}'), y') = \mathcal{I}_{\{\hat{f}(\mathbf{x}') \neq y'\}}$
- *o_f* could be the Gower distance (suitable for mixed feature space):

$$o_f(\mathbf{x}',\mathbf{x}) = d_G(\mathbf{x}',\mathbf{x}) = \frac{1}{\rho} \sum_{j=1}^{\rho} \delta_G(x_j',x_j) \in [0,1]$$

The value of δ_G depends on the feature type (numerical or categorical):

$$\delta_G(x_j', x_j) = egin{cases} rac{1}{\widehat{R}_j} |x_j' - x_j| & ext{if } x_j ext{ is numerical} \\ \mathcal{I}_{\{x_j'
eq x_j\}} & ext{if } x_j ext{ is categorical} \end{cases}$$

with \widehat{R}_j as the value range of feature j in the training dataset (to ensure that $\delta_G(x_j',x_j) \in [0,1]$)

Additional constraints can improve the explanation quality of the corresponding CEs \leadsto popular constraints include sparsity and plausibility

Sparsity:

- End-users often prefer short over long explanations
 - \leadsto counterfactuals should be sparse

Additional constraints can improve the explanation quality of the corresponding CEs \leadsto popular constraints include sparsity and plausibility

Sparsity:

- End-users often prefer short over long explanations
- Objective of can take the number of changed features into account (but does not have to)
 - \rightsquigarrow e.g., the L₀- and the L₁-norm (similar to LASSO) can do this

Additional constraints can improve the explanation quality of the corresponding CEs \leadsto popular constraints include sparsity and plausibility

Sparsity:

- End-users often prefer short over long explanations
 → counterfactuals should be sparse
- Objective o_f can take the number of changed features into account (but does not have to)
 → e.g., the L₀- and the L₁-norm (similar to LASSO) can do this
- Independently from o_f , sparsity in the changes can be additionally considered by another objective that counts the number of changed features via the L0-norm:

$$o_s(\mathbf{x}',\mathbf{x}) = \sum_{j=1}^p \mathcal{I}_{\{x_j' \neq x_j\}}$$

Plausibility:

- CEs should suggest plausible alternatives
 - --- e.g., not plausible to suggest to raise your income and get unemployed at the same time

Plausibility:

- CEs should suggest plausible alternatives
 - → e.g., not plausible to suggest to raise your income and get unemployed at the same time
- ullet CEs should be realistic and adhere to data manifold or originate from distribution of ${\mathcal X}$
 - → avoid unrealistic combinations of feature values

Plausibility:

- CEs should suggest plausible alternatives
 - --- e.g., not plausible to suggest to raise your income and get unemployed at the same time
- Estimating joint distribution of training data is complex, especially for mixed feature spaces
 → Proxy: ensure that x' is close to training data X

Plausibility:

- ◆ CEs should suggest plausible alternatives
 → e.g., not plausible to suggest to raise your income and get unemployed at the same time
- CEs should be realistic and adhere to data manifold or originate from distribution of \mathcal{X} \rightsquigarrow avoid unrealistic combinations of feature values
- Estimating joint distribution of training data is complex, especially for mixed feature spaces
 → Proxy: ensure that x' is close to training data X

Example from Verma et al. (2020)

- Two possible paths for x, originally classified to ⊙
- Two valid CEs in class ⊕: CF1 and CF2
- Path A for CF1 is shorter
- Path B for CF2 is longer but adheres to data manifold

To ensure plausibility, o_4 could, e.g., be the Gower distance of \mathbf{x}' to its nearest data point of the training dataset which we denote $\mathbf{x}^{[1]}$:

$$o_4(\mathbf{x}',\mathbf{X}) = d_G(\mathbf{x}',\mathbf{x}^{[1]}) = \frac{1}{\rho} \sum_{i=1}^{\rho} \delta_G(x_j',x_j^{[1]})$$

We can extend the previous optimization problem by adding o_s (for sparsity) and o_4 (for plausibility):

$$\arg\min_{\mathbf{x}'} \lambda_1 o_p(\hat{f}(\mathbf{x}'), y') + \lambda_2 o_f(\mathbf{x}', \mathbf{x}) + \lambda_3 o_s(\mathbf{x}', \mathbf{x}) + \lambda_4 o_4(\mathbf{x}', \mathbf{X})$$

REMARKS: THE RASHOMON EFFECT

Issue (Rashomon effect):

- Solution to the optimization problem might not be unique
- Many equally close CE might exist that obtain the desired prediction
 Many different equally good explanations for the same decision exist

REMARKS: THE RASHOMON EFFECT

Issue (Rashomon effect):

- Solution to the optimization problem might not be unique
- Many equally close CE might exist that obtain the desired prediction
 Many different equally good explanations for the same decision exist

Possible solutions:

- Present all CEs for a given x (but: time and human processing capacity is limited)
- Focus on one or few CEs (but: by which criterion should they be selected?)

REMARKS: THE RASHOMON EFFECT

Issue (Rashomon effect):

- Solution to the optimization problem might not be unique
- Many equally close CE might exist that obtain the desired prediction
 ⇒ Many different equally good explanations for the same decision exist

Possible solutions:

- Present all CEs for a given **x** (but: time and human processing capacity is limited)
- Focus on one or few CEs (but: by which criterion should they be selected?)

Note:

- As the model is generally non-linear, inconsistent and diverse CEs can arise
 e.g. suggesting either an increase or decrease in credit duration (confuses the explainee)
- How to deal with the Rashomon effect is considered an open problem in IML

- Most CEs provide explanations of model predictions, but CEs might appear to explain the real-world for end-users
 - → Transfer of model explanations to explain real-world is generally not permitted

- Most CEs provide explanations of model predictions, but CEs might appear to explain the real-world for end-users
 - → Transfer of model explanations to explain real-world is generally not permitted
- Consider a CE that proposes to increase the feature age by 5 to obtain the loan
 - → a loan applicant takes this information and applies 5 years later for the loan

- Most CEs provide explanations of model predictions, but CEs might appear to explain the real-world for end-users
 - → Transfer of model explanations to explain real-world is generally not permitted.
- Consider a CE that proposes to increase the feature age by 5 to obtain the loan

 ⇒ a loan applicant takes this information and applies 5 years later for the loan
- However, by then, many other feature values might have changed
 - → not only age, also other causally dependent features e.g. job status might have changed
 - → Karimi et al. (2020) avoid this by considering causal dependencies between features

- Most CEs provide explanations of model predictions, but CEs might appear to explain the real-world for end-users
 - → Transfer of model explanations to explain real-world is generally not permitted.
- Consider a CE that proposes to increase the feature age by 5 to obtain the loan

 ⇒ a loan applicant takes this information and applies 5 years later for the loan
- However, by then, many other feature values might have changed

 → not only age, also other causally dependent features e.g. job status might have changed

 → Karimi et al. (2020) avoid this by considering causal dependencies between features
- Also, the bank's algorithm might change and previous CEs are not applicable anymore