Условное математическое ожидание. Задача 1

Ильичёв А.С., 693

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

1. Вывод формулы.

По условию orall s < t величина $N_t - N_s \sim Pois(\lambda(t-s))$ и независима с N_s . Получим формулу для $E(N_t|N_s)$:

$$E(N_t|N_s) = E(N_t - N_s|N_s) + E(N_s|N_s) = E(N_t - N_s) + N_s = N_s + \lambda(t-s).$$

Здесь мы воспользовались свойствами УМО (независимость в первом слагаемом, N_s -измеримость во втором).

2. Предобработка данных.

```
df = pd.read_csv('6.csv', names=['t'])
df.head(5)
```

	t
0	lambda = 105
1	t_0 = 500
2	t = 110000
3	198.4406
4	460.8092

В первых трех строчках файла лежат значения параметров. Сохраним их и уберем из датафрейма.

```
lam = 105
t0 = 500
t_fin = 110000
df = df.drop(df.index[[0,1,2]]).reset_index(drop=True).astype(float)
df.head()
```

	t
0	198.4406
1	460.8092
2	494.1672
3	517.8483
4	560.4000

Проверим, какой параметр нам задан. Как известно, матожидание $Exp(\lambda)$ равно $\frac{1}{\lambda}$, а по 3БЧ $\overline{\xi} \to E\xi_1$. Посмотрим на среднее по выборке ξ_i . Так как датасет, по сути, является кумулятивной суммой выборки, можно получить среднее, разделив последний элемент на число элементов.

```
mean = df['t'].iloc[-1] / len(df)
mean
```

```
102.2805151
```

Среднее близко к параметру из таблицы, значит, нам дан параметр $\frac{1}{\lambda}$.

3. Напишем программу для пересчета предсказаний.

Считаем $E(N_t|N_{kt_0}),\,k\in\mathbb{N}.$

```
from time import sleep
```

Будем брать задержку $t_0/500$, а то $t_0/100=5$ секунд долго ждать.

Выведем график предсказаний в зависимости от t.

```
ts = np.arange(t0, df['t'].iloc[-1] + 1, t0)
preds = calc_pred(sleep_time=0, printing=False)
plt.figure(figsize=(10, 5))
plt.plot(ts, preds)
plt.xlabel(r'$t$')
plt.ylabel(r'$N^*$')
plt.show()
```


Построим еще схематично график среднего временного интервала между соседними поломками (это $\overline{\xi}$)

```
plt.figure(figsize=(10, 5))
plt.plot(df['t'], [df['t'].iloc[i] / (i + 1) for i in range(0, len(df))])
plt.ylim(95, 110)
plt.show()
```


Теперь запустим "честный" подсчет.

```
calc_pred()
```

```
1045
1045
1046
1046
1045
1045
1041
1043
1045
1045
1042
1047
1046
1044
1047
1046
1050
1049
1048
1044
1043
1041
KeyboardInterrupt
                                         Traceback (most recent call last)
<ipython-input-11-023beccc2a6b> in <module>()
----> 1 calc_pred()
<ipython-input-6-lad50a7cf964> in calc_pred(t0, t_fin, lam, df, sleep_time,
printing)
     12
              t += t0
preds.append(num)
---> 14 sleen(sleen)
          return preds
     15
KeyboardInterrupt:
```

Не будем дожидаться конца работы программы с задержками.

Вывод:

Видно, что предсказание, подсчитанное на основе УМО, действительно учитывает состояние выборки в выбранный момент времени. В период времени, когда поломки учащаются (спад на втором графике), предсказание количества поломок в момент t_{fin} увеличивается, что соответствует здравому смыслу. При это предсказания в первые моменты времени, когда нам известно мало данных о поломках, не слишком сильно отличаются от предсказаний в конце, когда известны почти все данные, то есть метод можно применять и на небольших выборках.