Matematika Diskrit 1

Poset dan Lattice

Dr. Ahmad Sabri

Universitas Gunadarma

Himpunan terurut

Misalkan ${\cal R}$ adalah sebuah relasi pada himpunan ${\cal S}$ dan memenuhi ketiga sifat berikut ini:

- Refleksif (untuk sebarang $a \in S$, berlaku $(a, a) \in R$);
- Antisimetrik (jika $(a,b),(b,a) \in R$, maka a=b;
- Transitif (jika $(a,b),(b,c) \in R$, maka $(a,c) \in R$;

mala R disebut sebagai sebuah $pengurutan\ parsial$, atau singkatnya $relasi\ urut$. Dalam hal ini R dikatakan sebagai $pengurutan\ parsial$ dari S.

Himpunan terurut parsial

Definisi

Sebuah himpunan terurut parsial (partially ordered set/POSET) adalah sebuah himpunan di mana elemen-elemennya terurut berdasarkan sebuah relasi urut.

Simbol relasi urut

- Relasi urut yang berlaku pada bilangan riil: ≤, <.
- Simbol umum: \lesssim (dibaca: mendahului), \prec (tepat mendahului).

Relasi urut semu (quasi order)

Definisi

Misalkan \prec adalah relasi pada himpunan S dengan dua sifat berikut:

- Irefleksif (untuk sebarang $a \in S$, berlaku $a \not\prec a$).
- Transitif.

Dalam hal ini, \prec disebut sebagai *relasi urut semu* pada S.

Komparabilitas

Definisi

Misalkan a dan b adalah elemen pada poset S. Maka, a dan b dikatakan dapat dibandingkan (comparable) jika

$$a \lesssim b$$
 atau $b \lesssim a$.

Dalam hal lain, a dan b dikatakan *tidak dapat dibandingkan* (noncomparable), dan dinotasikan sebagai a||b.

Himpunan terurut total

Sebuah himpunan S dikatakan $terurut\ total$ atau $terurut\ linier$ ($totally\ ordered/linearly\ ordered$) jika sebarang dua elemen pada S dapat dibandingkan. Dalam hal lain, dikatakan S terurut parsial.

Q1: Apakah subhimpunan dari himpunan terurut parsial dimungkinkan untuk terurut total?

Q2: Apakah subhimpunan dari himpunan terurut total dimungkinkan untuk terurut parsial?

Himpunan terurut total

Sebuah himpunan S dikatakan terurut total atau terurut linier (totally ordered/linearly ordered) jika sebarang dua elemen pada S dapat dibandingkan. Dalam hal lain, dikatakan S terurut parsial.

Q1: Apakah subhimpunan dari himpunan terurut parsial dimungkinkan untuk terurut total?

Q2: Apakah subhimpunan dari himpunan terurut total dimungkinkan untuk terurut parsial?

Pengurutan himpunan hasil kali

Dua cara di antaranya:

- Urutan hasil kali (product order): $(a,b) \lesssim (a',b')$ jika $a \leq a'$ and $b \leq b'$.
- Urutan leksikografis (urutan kamus/alfabetis): $(a,b) \prec (a',b')$ jika a < a atau jika a = a' dan b < b'.

Aturan pengurutan ini dapat diperluas untuk n-tupel.

Pengurutan himpunan hasil kali

Dua cara di antaranya:

- Urutan hasil kali (product order): $(a,b) \lesssim (a',b')$ jika $a \leq a'$ and $b \leq b'$.
- Urutan leksikografis (urutan kamus/alfabetis): $(a,b) \prec (a',b')$ jika a < a atau jika a = a' dan b < b'.

Aturan pengurutan ini dapat diperluas untuk *n*-tupel.

Penutup Kleene

Definisi

Diberikan A himpunan alfabet terurut linier. A^* disebut *penutup Kleene* dari A, jika A^* terdiri dari semua untai w pada A.

Relasi urut pada penutup Kleene

Relasi urut pada A^* :

- Urutan leksikografis:
 - I Jika $\lambda =$, maka $\lambda < w$ untuk sebarang w tidak-kosong.
 - 2 Misalkan u=au' dan v=bc' adalah dua untai tidak-kosong, di mana $a,b\in A$ dan $u',v'\in A^*$. Maka $u\prec v$ jika a< b atau jika a=b namun u'< v'.
- Urutan *short-lex*: A^* terlebih dahulu diurutkan menurut panjangnya, kemudian secara leksikografis. Secara formal, jika $u,v\in A^*$, $u\neq v$, maka berlaku: $u\prec v$ jika |u|<|v| atau jika |u|=|v| dan $u\prec v$.

Relasi urut pada penutup Kleene

Relasi urut pada A^* :

- Urutan leksikografis:
 - **1** Jika $\lambda =$, maka $\lambda < w$ untuk sebarang w tidak-kosong.
 - 2 Misalkan u=au' dan v=bc' adalah dua untai tidak-kosong, di mana $a,b\in A$ dan $u',v'\in A^*$. Maka $u\prec v$ jika a< b atau jika a=b namun u'< v'.
- Urutan short-lex: A^* terlebih dahulu diurutkan menurut panjangnya, kemudian secara leksikografis. Secara formal, jika $u,v\in A*$, $u\neq v$, maka berlaku: $u\prec v$ jika |u|<|v| atau jika |u|=|v| dan $u\prec v$.

Pendahulu dan penerus terdekat

Definisi

Diberikan poset S dan $a,b\in S$ di mana a< b. Jika tidak terdapat $c\in s$ ehingga a< c< b, maka, a dikatakan sebagai pendahulu terdekat (immediate predecessor) dari b, atau b adalah penerus terdekat (immediate successor) dari a, atau b adalah penerus dan dinotasikan sebagai $a\ll b$.

Relasi urut pada S terdefinisi jika kita mengetahui semua pasangan elemen $a,b\in S$ di mana $a\ll b$.

Diagram Hasse

Diagram Hasse dari poset berhingga S adalah graf berarah di mana simpulnya adalah elemen dari S dan busurnya menghubungkan simpul a dan b jika $a \ll b$.

Secara alternatif, diagram Hasse dapat digambarkan secara vertikal, di mana simpul a digambarkan di bawah simpul b jika a < b, dan kedua simpul tersebut terhubung langsung oleh ruas garis jika $a \ll b$.

Diagram Hasse

 $\begin{array}{l} \textit{Diagram Hasse} \ \text{dari poset berhingga} \ S \ \text{adalah graf berarah di } \\ \text{mana simpulnya adalah elemen dari } S \ \text{dan busurnya} \\ \text{menghubungkan simpul } a \ \text{dan } b \ \text{jika} \ a \ll b. \end{array}$

Secara alternatif, diagram Hasse dapat digambarkan secara vertikal, di mana simpul a digambarkan di bawah simpul b jika a < b, dan kedua simpul tersebut terhubung langsung oleh ruas garis jika $a \ll b$.

Elemen maksimum dan minimum

Definisi

Diberikan poset S. Sebuah elemen $a \in S$ disebut elemenminimum [maksimum] jika tidak ada elemen lain dengan urutan sebelum [sesudah] a.

Poset hingga memiliki elemen minimum dan maksimum. Sedangkan poset tak-hingga mungkin tidak memiliki elemer maksimum, minimum, atau tidak keduanya.

Elemen minimum dan maksimum dimungkinkan lebih dari satu. Jika hanya terdapat satu elemen minimum [maksimum], maka elemen ini disebut juga elemen *pertama* [terakhir].

Elemen maksimum dan minimum

Definisi

Diberikan poset S. Sebuah elemen $a \in S$ disebut elemenminimum [maksimum] jika tidak ada elemen lain dengan urutan sebelum [sesudah] a.

Poset hingga memiliki elemen minimum dan maksimum. Sedangkan poset tak-hingga mungkin tidak memiliki elemen maksimum, minimum, atau tidak keduanya.

Elemen minimum dan maksimum dimungkinkan lebih dari satu. Jika hanya terdapat satu elemen minimum [maksimum], maka elemen ini disebut juga elemen *pertama* [terakhir].

Elemen maksimum dan minimum

Definisi

Diberikan poset S. Sebuah elemen $a \in S$ disebut elemenminimum [maksimum] jika tidak ada elemen lain dengan urutan sebelum [sesudah] a.

Poset hingga memiliki elemen minimum dan maksimum. Sedangkan poset tak-hingga mungkin tidak memiliki elemen maksimum, minimum, atau tidak keduanya.

Elemen minimum dan maksimum dimungkinkan lebih dari satu. Jika hanya terdapat satu elemen minimum [maksimum], maka elemen ini disebut juga elemen *pertama* [terakhir].

Enumerasi konsisten

Definisi

Diberikan poset S. Enumerasi konsisten adalah sebuah fungsi $f:S \to N$ di mana f(a) < f(b) untuk semua $a,b \in S$ di mana a < b.

Teorema

Terdapat enumerasi konsisten untuk sebarang poset hingga S.

Enumerasi konsisten

Definisi

Diberikan poset S. Enumerasi konsisten adalah sebuah fungsi $f:S \to N$ di mana f(a) < f(b) untuk semua $a,b \in S$ di mana a < b.

Teorema

Terdapat enumerasi konsisten untuk sebarang poset hingga S.

Supremum

Definisi

Diberikan A subhimpunan dari poset S. Sebuah elemen $M \in S$ disebut batas atas (upper bound) dari A jika untuk semua $x \in A$ berlaku $x \precsim M$. Lebih lanjut, jika sebuah batas atas dari A mendahului batas atas A lainnya, maka batas atas ini disebut supremum dari A, dan dinotasikan sebagai sup(A).

Istilah lain supremum: batas atas terkecil.

Infimum

Definisi

Diberikan A subhimpunan dari poset S. Sebuah elemen $m \in S$ disebut $batas\ bawah\ (lower\ bound)$ dari A jika untuk semua $x \in A$ berlaku $m \precsim x$. Lebih lanjut, jika sebuah batas bawah dari A mendahului batas bawah A lainnya, maka batas bawah ini disebut $infimum\ dari\ A$, dan dinotasikan sebagai inf(A).

Istilah lain infimum: batas atas terbesar.

Relasi-relasi urut yang isomorfis

Diberikan poset X dan Y. Sebuah fungsi injektif (satu-satu) $f:X\to Y$ disebut pemetaan keserupaan (similarity mapping) dari X ke Y jika f mempertahankan relasi urut, yaitu dengan terpenuhinya dua kondisi berikut:

- **11** Jika $a \lesssim a'$ maka $f(a) \lesssim f(a')$.
- 2 Jika a||a', maka f(a)||f(a').

Latis (Lattice)

Definisi

Sebuah latis (kisi) L adalah sebuah poset di mana $\inf(a,b)$ dan $\sup(a,b)$ ada untuk sebarang $a,b\in L$.

Dalam konteks latis, infimum disebut *meet*, dan supremum disebut *join*.

Diberikan L sebuah himpunan tidak kosong dan tertutup terhadap operasi \land (meet) dan \lor (join). Maka, L adalah sebuah latis jika, untuk $(a,b,c\in L)$, ketiga aksioma berikut terpenuhi:

- $(a \wedge b) \wedge c = a \wedge (b \wedge c)$, dan $(a \vee b) \vee c = a \vee (b \vee c)$ (asosiatif)

Jika latis L juga memenuhi aksioma hukum distributif

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \operatorname{dan} a \vee (b \vee c) = (a \vee b) \wedge (a \vee c)$$

maka L disebut latis distributif

Diberikan L sebuah himpunan tidak kosong dan tertutup terhadap operasi \land (meet) dan \lor (join). Maka, L adalah sebuah latis jika, untuk $(a,b,c\in L)$, ketiga aksioma berikut terpenuhi:

- 1 $a \wedge b = b \wedge a$, dan $a \vee b = b \vee a$ (komutatif)
- $(a \land b) \land c = a \land (b \land c)$, dan $(a \lor b) \lor c = a \lor (b \lor c)$ (asosiatif)

Jika latis L juga memenuhi aksioma hukum distributif

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \operatorname{dan} a \vee (b \vee c) = (a \vee b) \wedge (a \vee c)$$

maka L disebut latis distributif

Diberikan L sebuah himpunan tidak kosong dan tertutup terhadap operasi \land (meet) dan \lor (join). Maka, L adalah sebuah latis jika, untuk $(a,b,c\in L)$, ketiga aksioma berikut terpenuhi:

- 1 $a \wedge b = b \wedge a$, dan $a \vee b = b \vee a$ (komutatif)
- $(a \land b) \land c = a \land (b \land c)$, dan $(a \lor b) \lor c = a \lor (b \lor c)$ (asosiatif)
- $a \wedge (a \vee b) = a \text{ dan } a \vee (a \wedge b) = a \text{ (absorpsi)}$

Jika latis L juga memenuhi aksioma hukum distributif

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \operatorname{dan} a \vee (b \vee c) = (a \vee b) \wedge (a \vee c)$$

maka L disebut latis distributif

Diberikan L sebuah himpunan tidak kosong dan tertutup terhadap operasi \land (meet) dan \lor (join). Maka, L adalah sebuah latis jika, untuk $(a,b,c\in L)$, ketiga aksioma berikut terpenuhi:

- 1 $a \wedge b = b \wedge a$, dan $a \vee b = b \vee a$ (komutatif)
- $(a \land b) \land c = a \land (b \land c)$, dan $(a \lor b) \lor c = a \lor (b \lor c)$ (asosiatif)
- $a \wedge (a \vee b) = a \text{ dan } a \vee (a \wedge b) = a \text{ (absorpsi)}$

Jika latis L juga memenuhi aksioma hukum distributif

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \operatorname{dan} a \vee (b \vee c) = (a \vee b) \wedge (a \vee c)$$

maka L disebut latis distributif.

Relasi urut pada latis

Diberikan latis L, urut parsial pada L didefinisikan sebagai:

$$a \preceq b$$
 jika $a \land b = a$

analog dengan

$$a \precsim b$$
jika $a \vee b = b$

Sublatis

Definisi

Misalkan M adalah subhimpunan tidak kosong dari latis L. Maka, M adalah sublatis dari L jika M adalah latis.

Definis

Dua latis L dan L' dikatakan *isomorfis* jika terdapat korespondensi satu-satu $f:L\to L'$ sedemikian sehingga

$$f(a \wedge b) = f(a) \wedge f(b) \operatorname{dan} f(a \vee b) = f(a) \vee f(b)$$

untuk sebarang $a,b \in L$

Sublatis

Definisi

Misalkan M adalah subhimpunan tidak kosong dari latis L. Maka, M adalah sublatis dari L jika M adalah latis.

Definisi

Dua latis L dan L' dikatakan isomorfis jika terdapat korespondensi satu-satu $f:L\to L'$ sedemikian sehingga

$$f(a \wedge b) = f(a) \wedge f(b) \operatorname{dan} f(a \vee b) = f(a) \vee f(b)$$

untuk sebarang $a, b \in L$.

Komplemen

Definisi

Diberikan L latis berbatas dengan batas bawah 0 dan batas atas I, dan $a \in L$. Sebuah elemen $x \in L$ dikatakan komplemen dari a jika

$$a \lor x = I \text{ dan } a \land x = 0.$$

Teorema

Diberikan L latis distributif berbatas. Komplemen dari setiap elemen di L, jika ada, adalah unik.

Komplemen

Definisi

Diberikan L latis berbatas dengan batas bawah 0 dan batas atas I, dan $a \in L$. Sebuah elemen $x \in L$ dikatakan komplemen dari a jika

$$a \lor x = I \text{ dan } a \land x = 0.$$

Teorema

Diberikan L latis distributif berbatas. Komplemen dari setiap elemen di L , jika ada, adalah unik.

Latis komplemen

Sebuah latis L dikatakan memiliki komplemen jika L berbatas dan setiap elemen di L memiliki komplemen