Catégories Dérivées en Cohomologie ℓ -adique

par

Jean-Pierre JOUANOLOU

THÈSE DE DOCTORAT D'ÉTAT ès SCIENCES MATHÉMATIQUES

présentée

A LA FACULTÉ DES SCIENCES DE PARIS

par

M. JOUANOLOU Jean-Pierre

pour obtenir le grade Docteur ès-Sciences

Sujet de thèse : Catégories Dérivées en Cohomologie ℓ -adique

soutenue le : 3 Juillet 1969 devant la Commission d'examen

MM. SAMUEL Président

GROTHENDIECK

VERDIER

Examinateurs

DIXMIER

PREFACE

Description

Special thanks to Fan Xuanrui to provide us with a copy of the thesis.

TABLE DE MATIÈRES

I. Catégorie des faisceaux sur un idéotope	6
1. Généralités	6
2. Cas où l'objet final de X est quasicompact	9
3. A-faisceaux de type constant, strict ou J-adique	10
4. Opérations externes	10
5. Produit tensoriel	10
6. Foncteurs associés aux homomorphismes	10
7. Catégories dérivées	10
8. Changement d'anneau	10
II. Conditions de finitude	11
1. Catégorie des A-faisceaux constructibles	11
2. Conditions de finitude dans les catégories dérivées	14
III. Applications aux schémas	18
1. Opérations externes	18
2. Dualité	22
3. Formalisme des fonctions L	22

§ I. — CATÉGORIES DES FAISCEAUX SUR UN IDÉOTOPE

1. Généralités.

Définition 1.1. — On appelle idéotope untriple (x,a,j) formé d'un topos X, d'un anneau commutatif unifière A et d'un idéal propre J de A.

On suppose donné dans la suite du paragraphe un idéotope (X,A,J). On note $A-\operatorname{Mod}_X$ la catégorie des faisceaux de A_X -Modules et

$$\underline{\mathsf{Hom}}(\mathbf{N}^{\circ},\!A\!-\!\mathsf{Mod}_X)$$

la catégorie abélienne des systèmes projectifs indexés par ${\bf N}$ de A_X -Modules.

Définition 1.2. — On appelle (A,J)-faisceau sur X, ou s'il n'y a pas de confusion possible A-faisceau sur X, un système projectif

$$F = (\mathbf{F}_n, u_{m,n})_{(m,n) \in \mathbf{N} \times \mathbf{N}, m \ge n}$$

de A_X-Modules, vérifiant

$$J^{n+1}F_n = 0$$

pour tout entier $n \geq 0$. On note $\mathbf{E}(X,J)$ la sous-catégorie, abélienne, pleine de $\underline{\mathrm{Hom}}(\mathbf{N}^{\circ},A-\mathrm{Mod}_X)$ engendrée par les A-faisceaux.

Pour des raisons qui apparaîtront par la suite, la catégorie E(X,J) ne mérite pas le nom de catégorie des A-faisceaux sur X; c'est seulement une catégorie quotient de la précédente que nous baptiserons ainsi. Aussi, pour éviter le risque de

confusion, nous arrivera-t-il, étant donnés deux A-faisceaux E et F, de noter

$$\text{Hom}_{a}(E,F)$$

(a pour anodin) l'ensemble des E(X, J)-morphismes de E dans F.

Notons pour tout objet T de X par T, ou même T s'il n'y a pas de confusion possible, le topos X/T. Le foncteur restriction pour les faisceaux de A-Modules induit de façon évidente un foncteur restriction

$$E(X,J) \longrightarrow E(T,J)$$
$$E \mapsto E|T.$$

Proposition-définition 1.4. — Soit $E = (E_n)_{n \in \mathbb{N}}$ un A-faisceau sur X:

1) On dit que E est essentiellement nul s'il est nul en tant que pro-objet, ce qui revient à dire que pour tout entier $n \ge 0$, il existe un entier $p \ge 0$ tel que le morphisme de transition

$$E_{n+p} \longrightarrow E_n$$

soit nul.

- 2) On dit que E est négligeable s'il vérifie l'une des reltions équivalentes suivantes:
 - (i) Il existe un recouvrement $(T_i \longrightarrow e_X)_{i \in I}$ de l'objet final e_X de X tel que les A-faisceaux $E \mid T_i$ soient essentiellement nuls.
 - (ii) Idem, mais en supposant de plus que les T_i sont des ouverts de X.

Preuve: Pour voir l'équivalence de (i) et (ii), il suffit d'observer que pour tout $i \in I$, le faisceau image U_i de T_i par le morphisme canonique $T_i \longrightarrow e_X$ est tel que le morphisme restriction

$$\mathbf{U}_i \longrightarrow \mathbf{T}_i$$

soit fidèle.

Il est clair que lorsque l'objet final de X est quasicompact (SGA4 VI 1.1), il revient au même pour un A-faisceau de dire qu'il est essentiellement nul ou qu'il est négligeable. Il est par ailleurs immédiat que la sous-catégorie pleine

(1.4.1)
$$N(X,J)$$
 ou plus simplement N_X

de E(X, J) engendré par les A-faisceaux négligeables est épaisse dans E(X, J).

Définition 1.5. — Soit (X,A,J) un idéotope. On appelle catégorie des (A,J)faisceaux (ou A-faisceaux s'il n'y a pas de confusion possible) sur X et on note

$$(A,J) - \operatorname{fsc}(X)$$
 (ou plus simplement $A - \operatorname{fsc}(X)$)

la catégorie abélienne quotient (thèse Gabriel III.1)

$$\mathbf{E}(X,J)/N_X$$
.

1.6. Soit T un objet de X. Il est clair que le foncteur restriction (1.3) est exact et envoie N_X dans N_T , d'où par passage au quotient un foncteur exact, appelé encore restriction,

$$(1.6.1) r_{T,X}: A - fsc(X) \longrightarrow A - fsc(T).$$

Soient maintenant T et T' deux objets de X et $f: T \longrightarrow T'$ un morphisme. Se plaçant dans le topos T', on déduit de (1.6.1) un foncteur exact

$$(1.6.2) f^*: A - fsc(T') \longrightarrow A - fsc(T),$$

vérifiant les propriétés de transitivité habituelles.

Ces remarques étant faites, nous utiliserons dans la suite sans plus d'explications le langage local pour les A-faisceaux.

Proposition 1.7. — Les propriétés suivantes sont de nature locale pour la topologie de X.

- (i) La propriété pour un A-faisceau d'être nul, i.e. isomorphe au système projectif nul.
- (ii) La propriété pour une suite

$$E' \xrightarrow{u} E \xrightarrow{v} E''$$

de Afaisceaux d'être exacte.

- (iii) La propriété pour un morphisme $u: E \longrightarrow F$ de A-faisceaux d'être un monomorphisme (resp. un épimorphisme, resp. un isomorphisme).
- (iv) La propriété pour deux morphismes $u, v : E \Rightarrow F$ d'être égaux.

Preuve: L'assertion (i) est immédiate. On en déduit (ii) en l'appliquant successivement à $\text{Im}(v \circ u)$ et à Ker(v)/Im(u). L'assertion (iii) est un cas particulier de (ii). Enfin (iv) s'obtient en appliquant (i) à Im(v-u).

Corollaire 1.7.1. — Soient T et T' deux objets de X et $f: T \longrightarrow T'$ un épimorphisme. Le foncteur

$$f^*: A - \operatorname{fsc}(T') \longrightarrow A - \operatorname{fsc}(T)$$

est fidèle.

Preuve: Appliquer 1.7 (i) au topos T'.

Corollaire 1.7.1. — Soient E et F deux A-faisceaux sur X. Lorsque T parcourt les objets de X, le préfaisceau

$$T \mapsto \text{Hom}(E|T, F|T)$$

est séparé.

Preuve: Simple traduction de 1.7 (iv).

Remarque 1.7.3. En général, le préfaisceau précédent n'est pas un faisceau. Nous verrons toutefois qu'il en est ainsi lorsque le topos X est noethérien (SGA4 VI 2.11), ou lorsque E est de type J-adique.

2. Cas où l'objet final de X est quasicompact.

On se propose maintenant de donner un certain nombre de catégories équivalentes à $A-\operatorname{fsc}(X)$, lorsque l'objet final de X est quasicompact. Nous aurons besoin cela d'un certain nombre de lemmes techniques, dont la plupart n'utilisent pas cette hypothèse.

2.1.

- 3. A-faisceaux de type constant, strict ou J-adique.
- 4. Opérations externes.
- 5. Produit tensoriel.
- 6. Foncteurs associés aux homomorphismes.
- **6.1**. Soient $E = (E_n)_{n \in \mathbb{N}}$ et $F = (F_n)_{n \in \mathbb{N}}$ deux A-faisceaux sur un topos X. Pour tout entier $i \in \mathbb{Z}$, on définit comme suit un nouveau A-faisceau, noté

$$\underline{\operatorname{Ext}}_{A}^{i}(E,F)$$
,

la mention de l'anneau A pouvant être éventuellement supprimée s'il n'y a pas de confusion possible. Soient $m' \ge m \ge n$ trois entiers ≥ 0 .

- 7. Catégories dérivées.
- 8. Changement d'anneau.

§ II. — CONDITIONS DE FINITUDE

Dans tout ce chapitre, on fixe un anneau commutatif unifère *noethérien A* et un idéal *J* de *A*. Sauf mention expresse du contraire, tous les topos considérés seront supposés *localement noethériens* (SGA 4 VI 2.11.).

1. Catégorie des A-faisceaux constructibles.

Soit X un topos localement noethérien.

Définition 1.1. — On dit qu'un A-faisceau $F = (F_n)_{n \in \mathbb{N}}$ est J-adique constructible s'il est J-adique (I 3.8.) et si pour tout $n \in \mathbb{N}$, le A_n -Module F_n est constructible. On dit que F est un A-faisceau constructible s'il est isomorphe dans A-fsc(X) à un A-faisceau J-adique constructible. On appelle catégorie des A-faisceaux constructibles et on note

$$A - fscn(X)$$
 ("n" pour "noethérien")

la sous-catégorie pleine de $A-{
m fsc}(X)$ engendrée par les A-faisceaux constructibles.

Proposition 1.2. — Soit $F = (F_n)_{n \in \mathbb{N}}$ un A-faisceau sur X. Les assertions suivantes sont équivalentes.

- (i) F est un A-faisceau constructible.
- (ii) F est de type strict (I 3.2.) et, notant F' le A-faisceau strict associé à F (I 3.3.), il existe localement une application croissante $\gamma \geq \operatorname{id}$ telle que $\chi_{\gamma}(F')$ (I 2.2) soit J-adique constructible.

(iii) Pour tout entier $r \ge 0$, le A-faisceau $F \otimes_A A_r$ est de type constant (I 3.6.) associé à un A_r -Module constructible.
	Preuve:
	Corollaire 1.3. —
	Preuve:
	Corollaire 1.4. —
	Proposition 1.5. —
	Preuve:
	Lemme 1.6 . —
	Corollaire 1.6. —
	Proposition 1.7. —
	Preuve:
	Lemme 1.8. —
	Lemme 1.9. —
	Lemme 1.10. —
	Proposition 1.11. —
	Preuve:
	1.12.
	Proposition 1.12.4. —
	Preuve:

1.13.

Définition 1.14. —

Proposition 1.15. —

Preuve:

Proposition 1.17. —

Preuve:

Corollaire 1.18. —

Proposition 1.19. —

Preuve:

1.20. Nous allons maintenant expliciter la structure de la catégorie $A-\operatorname{fsc}(X)$, lorsque le topos X est connexe. Rappelons tout d'abord quelques faits concernant le pro-groupe fondamental d'un topos. Étant donné un pro-groupe strict

$$G = (G_i)_{i \in I},$$

on définit comme suit un topos, noté

$$\mathbf{B}_G$$

et appelé topos classifiant de G. Un objet de B_G , appelé encore G-ensemble, est un ensemble M muni d'une application

$$p: M \longrightarrow \varinjlim_{i} \operatorname{Hom}(G_{i}, M)$$

$$m \mapsto (g_{i} \mapsto g_{i} m \text{ pour } i \text{ "assez grand"})$$

telle que l'on ait

$$g_i(g_i'm) = (g_i g_i')m$$
 pour *i* "assez grand".

Autrement dit, M admet une filtration par des G_i -ensembles $(i \in I)$, avec compatibilité des diverses opérations. Un morphisme de G-ensembles $M \longrightarrow N$ est une application $u: M \longrightarrow N$ qui rend le diagramme

Proposition 1.20.4. —
Preuve:
Corollaire 1.20.5. —
Preuve:
Proposition 1.21. —
Preuve:
Proposition 1.22. —
Proposition 1.23. —
Preuve:
Proposition 1.24. —
Preuve:
Proposition 1.25. —
Preuve:
Proposition 1.26. —
Preuve:
Exemple 1.27.
Exemple 1.27. Proposition 1.28. —
Proposition 1.28. —

2. Conditions de finitude dans les catégories dérivées.

Soit X un topos localement noethérien.

Définition 2.1. — On dit qu'un complexe E de A-faisceaux sur X est à cohomologie constructible (resp. constante tordue constructible) si tous ses objets de cohomologie sont des A-faisceaux constructibles (resp. constants tordus constructibles).

Définition 2.2. —
Proposition 2.3. —
Preuve:
Proposition 2.4. —
Preuve:
Proposition 2.5. —
Preuve:
Proposition 2.6. —
Preuve:
Proposition 2.7. —
Preuve:
Corollaire 2.8. —
2.9.
Proposition 2.9.2. —
Preuve:
2.10.
Proposition 2.10.2. —
Preuve:
Proposition 2.10.3. —

	Preuve:
	Proposition 2.10.5. —
	Preuve:
	2.11. Trace et cup-produit.
	Proposition 2.11.3. —
	Preuve:
	2.12.
	Proposition 2.12.1. —
	Preuve:
	Proposition 2.12.2. —
	Preuve:
	Proposition 2.12.3. —
	Preuve:
res	2.13. Changement d'anneau . Soient X un topos localement noethérien, A B deux anneaux commutatifs unifères noethériens, J et K deux idéaux de A et B spectivement et $u:A\longrightarrow B$ un morphisme d'anneaux unifères, tel que $u(J)\subset K$ n utilise par ailleurs libreent les notations de (I 8.1).
	Proposition 2.13.1. —
	Preuve:
	Théorème 2.13.2 . —
	Preuve:
	Lemme 2.13.3 . —
	Lemme 2.13.4. —

Lemme **2.13.5**. —

Lemme **2.13.6**. —

Remarques 2.13.7.

Proposition 2.13.9. —

Preuve:

Remarques 2.13.10.

Proposition 2.14. —

Preuve:

Remarques 2.15. Comme pour (2.13.2), l'hypothèse (i) a servi uniquement pour assurer que le complexe $\operatorname{R}\underline{\operatorname{Hom}}_A(E,F)$ est à cohomologie constructible. Elle est donc inutile en particulier dans la cas où $E\in \operatorname{D}_t^-(X,A)$.

§ III. – APPLICATIONS AUX SCHÉMAS

Le texte qui suit ayant un caractère essentiellement provisoire (cf. l'appendice basé sur une construction de *Deligne*), nous ferons toutes les hypothèses simplificatrices qui nous paraîtront nécessaires pour la clarté de l'exposé.

Soit ℓ un nombre premier. On fixe comme précédemment un anneau noethérien A et un idéal propre J de A. On suppose de plus que A est une \mathbf{Z}_{ℓ} -algèbre et que J contient ℓA . Pour simplifier (cf. supra), tous les schémas considérés sont noethériens.

1. Opérations externes.

1.1. Soient X et Y deux schémas noethériens, et $f: X \longrightarrow Y$ un morphisme séparé de type fini. On définit comme suit un foncteur exact

$$(1.1.1) Rf_!: D(X,A) \longrightarrow D(Y,A),$$

appelé image directe à supports propres. D'après Nagata et Mumford il existe une factorisation

$$X \xrightarrow{i} Z$$

$$Y \xrightarrow{g} Z$$

où i est une immersion ouverte et q un morphisme propre. On pose alors

$$Rf_! = Rq_* \circ Ri_!.$$

on vérifie, grâce à la technique de factorisation de *Lichtenbaum* (SGA4 XVIII), que le résultat ne dépend pas, à isomorphisme près, de la factorisation choisie.

La même technique de factorisation montre que si $g:Y\longrightarrow Z$ est un autre morphisme séparé de type fini, on a un isomorphisme

$$(1.1.2) R(g \circ f)_! \xrightarrow{\sim} Rg_! \circ Rf_!,$$

avec la condition de cocycles habituelle pour un triple de morphismes.

Définition 1.1.3. — Si E est un A-faisceau sur X (resp. un objet de D(X,A)), on pose pour tout $p \in \mathbb{Z}$

$$R^{p} f_{!}(E) = H^{p}(Rf_{!}(E)).$$

On obtient ainsi un foncteur cohomologique qui n'est pas en général (sauf bien sûr si le morphisme f est propre) le foncteur cohomologique dérivé de $R^{\circ} f_{1}$.

1.1.4. Il est clair que si $F = (F_n)_{n \in \mathbb{N}}$ est un A-faisceau, on a pour tout $p \in \mathbb{Z}$

$$R^{p} f_{!}(F) = (R^{p} f_{!}(F_{n}))_{n \in \mathbb{N}}.$$

Proposition 1.1.5. — Soit

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

un carré cartésien de schéma noethériens.

(i) (Théorème de changement de base propre) Si f (donc f') est séparé de type fini, on a pour tout $E \in D^+(X,A)$ un isomorphisme canonique fonctoriel

$$g^*Rf_!(E) \xrightarrow{\sim} Rf_!'(g')^*(E).$$

(ii) (Théorème de changement de base lisse) Si ℓ est premier aux caractéristiques résiduelles de Y et g est lisse, on a pour tout $E \in D^+(X,A)$ un isomorphisme canonique fonctoriel

$$g^*Rf_*(E) \xrightarrow{\sim} R(f')_*(g')^*(E).$$

Preuve:

Proposition 1.1.7. —

Preuve:

Lemme 1.1.8. — Si d est un entier majorant la dimension des fibres de f, on a pour tout A-faisceau M sur X

$$R^{i} f(M) = 0 \quad (i > 2d).$$

(Résulte immédiatement de l'assertion analogue pour les composants de M).

Proposition 1.1.10. —

Preuve:

Proposition 1.1.11. —

Preuve:

1.2.

Proposition 1.2.3. —

Preuve:

Proposition 1.2.5. —

Preuve:

1.3. Soient $u:A \longrightarrow B$ une A-algèbre et K un idéal de B tel que $u(J) \subset K$. On utilise dans l'énoncé suivant les notations de (I 8).

Proposition 1.3.1. — Soit $f: X \longrightarrow Y$ un morphisme séparé de type fini entre schémas noethériens.

1) Soit $E \in D(X,A)$. On a un isomorphisme canonique

$$Lu^*Rf_!(E) \xrightarrow{\sim} Rf_!Lu^*(E),$$

lorsque $E \in D^-(X, A)$, ou lorsque A est local régulier et J est son idéal maximal.

2) Plaçons-nous maintenant dans le cas où Y admet un Module inversible ample. On suppose de plus que ℓ est premier aux caractéristiques résiduelles de Y, que l'anneau A est local régulier et que J est son idéal maximal. Alors pour tout $F \in D^+(Y,A)$, on a un morphisme canonique fonctoriel

$$Lu^*Rf^!(F) \xrightarrow{\sim} Rf^!Lu^*(F),$$

qui est un isomorphisme lorsque B est une A-algèbre finie et K = JB.

Preuve: Montrons 1), et définissons d'abord un morphisme

$$(1.3.1.1) Lu^*Rf_1(E) \longrightarrow Rf_1Ru^*(E).$$

D'après (I. 8.1.6), il suffit dans chacun des cas considérés de définir un morphisme

$$(1.3.1.2) Rf_!(E) \longrightarrow u_*Rf_!Lu^*(E).$$

Mais il est immédiat que $u_*Rf_! \simeq Rf_!u_*$, de sorte que l'on définit (1.3.1.2) en appliquant le foncteur $Rf_!$ au morphisme d'adjonction (I 8.1.7)

$$E \longrightarrow u_* L u^*(E)$$
.

Pour voir que (1.3.1.1) est un isomorphisme, on se ramène, par le way-out functor lemma, au cas où $E \in D^-(X,A)$. Alors, grâce à la conservativité du foncteur u_* , il s'agit de montrer que le morphisme canonique

$$B \otimes_A \mathbf{R} f_!(E) \longrightarrow \mathbf{R} f_!(B \otimes_A E)$$

est un isomorphisme, ce qui résulte de (1.1.7). Montrons 2). Pour définir un morphisme

$$(1.3.1.3) Lu^*Rf^!(F) \longrightarrow Rf^!Lu^*(F),$$

on se ramène encore, grâce à (I 8.1.6), à définir un morphisme

$$(1.3.1.4) Rf'(F) \longrightarrow u_*Rf'Lu^*(F).$$

On a évidemment $u_*Rf^! \simeq Rf^!u_*$; on prend pour (1.3.1.4) l'image par $Rf^!$ du morphisme d'adjonction (I 8.1.7). Pour voir que (1.3.1.3) est un isomorphisme, on se ramène, après avoir choisi une "lissification" (1.2.2), à le faire successivement pour une immersion fermée et un morphisme lisse équidimensionnel. Dans le premier cas, ce n'est autre que (I 8.1.16 (iii)). Dans le second, on se ramène aussitôt à (I 8.1.16 (i)).

2. Dualité.

Dans tout ce paragraphe, tous les schémas considérés sont de caractéristique résiduelles premières à ℓ .

2.1. Soient X et Y deux schémas noethériens et $f: X \longrightarrow Y$ un morphisme quasiprojectif. On suppose que Y admet un Module inversible ample et on se propose de définir un morphisme "trace"

$$(2.1.1) \operatorname{Tr}_{f}: \mathbf{R}f_{!}\mathbf{R}f^{!} \longrightarrow \mathrm{id}$$

3. Formalisme des fonctions *L*.

Soit p un nombre premier $\neq \ell$. On note f l'élément de Frobenius $u \mapsto u^p$ ($u \in \overline{F}_p$), qui est un générateur topologique du groupe de Galois $Gal(\overline{F}_p/F_p)$.

Étant donné un schéma X de type fini sur \mathbf{F}_p , on note X° l'ensemble des points fermés de X, et, pour tout $x \in X^\circ$, on désigne par d(x) le degré résiduel de x. Choisissant pour tout $x \in X^\circ$ un point géométrique \overline{x} au-dessus de x, on rappelle (SGA 5 XV 3) que la fonction L d'un \mathbf{Q}_ℓ -faisceau constructible F sur X est définie par la formule

(3.0)
$$L_F(f) = \prod_{x \in X^{\circ}} (1/\det(1 - f_{F_{\overline{x}}}^{-d(x)} t^{d(x)})).$$

Grâce à la propriété de multiplicativité de (SGA 5 XV 3.1 a)), on peut prolonger cette définition à $D_c^b(X, \mathbf{Q}_\ell)$, en posant pour tout $E \in D_c^b(X, \mathbf{Q}_\ell)$

(3.1)
$$L_E(f) = \prod_{i \in \mathbb{Z}} (L_{H^i(E)}(t))^{(-1)^i}.$$

Proposition 3.2. — Soit X un schéma de type fini sur F_p.

a) Pour tout triangle exact

de
$$D_c^b(X, \mathbf{Q}_\ell)$$
, on a

$$L_E(t) = L_{E'}(t)L_{E''}(t).$$

En particulier, pour tout $m \in \mathbb{Z}$, on a

$$L_{E[m]}(t) = (L_E(t))^{(-1)^m}.$$

b) Soient Y un sous-schéma fermé de X, et U = X - Y l'ouvert complémentaire. On a

$$L_E = L_{E|U} L_{E|Y},$$

pour tout $E \in \mathcal{D}_c^b(X, \mathbf{Q}_\ell)$.

c) Soit $h: X \longrightarrow S$ un morphisme de schémas de type fini sur \mathbf{F}_p . Pour tout $E \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$, on a

$$L_E = \prod_{s \in S^{\circ}} L_{E|X_s}.$$

Preuve : Immédiat à partir des assertions analogues pour les objets de cohomologie (SGA5 XV 3.1).

Proposition 3.3. — Soient X un schéma de type fini sur \mathbf{F}_p , $g: X \longrightarrow \mathbf{F}_p$ le morphisme structural et $E \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$. Alors

$$L_E = L_{R g_!(E)}.$$

En particulier, L_E est une fraction rationnelle.

Preuve : On peut supposer que E est un \mathbb{Q}_{ℓ} -faisceau constructible, et alors l'assertion n'est autre que (SGA5 XV 3.2).

Corollaire 3.4. — Soit $h: X \longrightarrow S$ un morphisme de schémas de type fini sur \mathbf{F}_p . Pour tout $E \in \mathcal{D}^b_c(X, \mathbf{Q}_\ell)$, on a

$$L_E = L_{R h_!(E)}.$$

Nous allons maintenant déduire de (3.3) une équation fonctionnelle pou les fonctions L, du moins si X est projectif sur \mathbf{F}_p .

Définition 3.5. — Soient $g: X \longrightarrow \mathbf{F}_p$ un schéma de type fini sur \mathbf{F}_p , et $\overline{X} = X \times_{\mathbf{F}_p} \overline{\mathbf{F}}_p$ - Pour tout $E \in \mathrm{D}^b_c(X, \mathbf{Q}_\ell)$, on pose

$$\chi(E) = \operatorname{rang}(\mathbf{R} \, \mathbf{g}_! E) = \sum_{i \in \mathbf{Z}} (-1)^i [\mathbf{H}_c^i(\overline{X}, \overline{E}) : \mathbf{Q}_\ell],$$

$$\delta(E) = \det(\mathbf{R} \, \mathbf{g}_{!}(E)) = \prod_{i \in \mathbf{Z}} (\det f_{\mathbf{H}_{c}^{i}(\overline{\mathbf{X}}, \overline{E})})^{(-1)^{i}},$$

où \overline{E} désigne l'image inverse de E au-dessus de \overline{X} .

D'après les propriétés d'additivité et de multiplicativité respectives de la trace et du déterminant dans la catégorie des \mathbf{Q}_{ℓ} -espaces vectoriels de dimension finie, il es clair que pour tout triangle exact

on a

(3.5.2)
$$\delta(E) = \delta(E')\delta(E'').$$

En particulier, pour tout $m \in \mathbb{Z}$ et tout $E \in \mathcal{D}_c^b(X, \mathbb{Q}_\ell)$,

$$\chi(E\lceil m \rceil) = (-1)^m \chi(E)$$
 et $\delta(E\lceil m \rceil) = (\delta(E))^{(-1)^m}$.

Proposition 3.6. — Soit $g: X \longrightarrow \mathbf{F}_p$ un schéma projectif sur \mathbf{F}_p . On pose $K_X = \operatorname{R} g^!(\mathbf{Q}_\ell)$, et $\operatorname{D}_X = \operatorname{R} \operatorname{\underline{Hom}}_{\mathbf{Q}_\ell}(.,K_X)$. Alors, pour tout $E \in \operatorname{D}_c^b(X,\mathbf{Q}_\ell)$, on a l'identité

$$L_{\mathbf{D}_{X}(E)}(t) = (-t)^{-\chi(E)} \delta(E) L_{E}(t^{-1}).$$

Preuve: Le second membre a un sens d'après (3.3). Posons S = Spec et $D_S = R \underline{\text{Hom}}_{O_{\ell}}(., \mathbf{Q}_{\ell})$. D'après (2.3.2 a)), on a

$$R g_*(D_X E) \xrightarrow{\sim} D_S R g_*(E),$$

donc (3.3)

$$L_{D_X}(E) = L_{D_S(R g_*(E))}.$$

Comme $L_E = L_{R_{g_*}(E)}$ (3.3), l'assertion résultera du lemme suivant

Lemme 3.7. — $Si F \in \mathcal{D}^b_c(S, \mathbf{Q}_\ell)$, on a :

$$L_{{\rm D}_{\varsigma}(F)}(t) = (-t)^{\chi(F)} \delta(F) L_F(t^{-1}).$$

D'après les propriétés d'additivité et demultiplicativité (3.5.1) et (3.5.2), on peut supposer que $F \in \mathbb{Q}_{\ell}$ — $\mathrm{fscn}(S)$. Alors F correspond (SGA5 VII 1.4.2) à un \mathbb{Q}_{ℓ} -espace vectoriel de dimension fini V muni d'une opération continue f_V du Frobenius, et le \mathbb{Q}_{ℓ} -faisceau $\mathbb{D}_S(F) = \underline{\mathrm{Hom}}_{\mathbb{Q}_{\ell}}(F,\mathbb{Q}_{\ell})$ correspond (II 1.26) au \mathbb{Q}_{ℓ} -espace vectoriel V^{ν} muni de l'opération continue $(f_V^{\nu})^{-1}$ du Frobenius. Il suffit alors de montrer que, étant donnés un corps K, un K-espace vectoriel de dimension finie V et un automorphisme u de V, on a l'identité

(3.8)
$$1/\det(1-u^{-1}t) = (-t)^{-\dim(V)}\det(u)/\det(1-ut^{-1})$$

dans K(t). On peut pour cela supposer K algébriquement clos, donc u triangulable, puis, grâce aux propriétés de multiplicativité du déterminant, que dim(V) = 1. Alors u est l'homothétie définie par un scalaire non nul λ , et (3.8) est l'identité évidente

$$1/(1-(t/\lambda)) = (-\lambda/t)/(1-(\lambda/t)).$$

Bien entendu, la formule (3.6) ne présente d'intérêt en pratique que si l'on dispose d'une expression simple pour $D_X(E)$. Nous allons maintenant donner des cas où il en est ainsi.

Proposition 3.9. — On suppose X quasiprojectif, lisse et purement de dimension n sur \mathbf{F}_p . Posant pour tout $E \in \mathcal{D}_c^b(S, \mathbf{Q}_\ell)$

$$E^V = \underline{\operatorname{Hom}}_{\mathbf{Q}_{\ell}}(E, \mathbf{Q}_{\ell}),$$

on a un isomorphisme

$$D_X(E) \simeq E^V(n)[2n]$$

dans chacun des cas suivants

- (i) $E \in \mathcal{D}_t^b(X, \mathbf{Q}_\ell)$
- (ii) X est une courbe, et E est un \mathbf{Q}_{ℓ} -faisceau constructible de la forme $i_*(M)$, où $i:U\hookrightarrow X$ est l'inclusion d'un ouvert dense de X et $M\in \mathbf{Q}_{\ell}$ —fsct(U).

Preuve : Comme $D_X(E) = R \underline{Hom}_{\mathbb{Q}_\ell}(E, \mathbb{Q}_\ell(n))[2n]$, le cas (i) résulte du lemme suivant.

Lemme 3.9.1. — Étant donnés un schéma noethérien $X, F \in \mathbf{Q}_{\ell}$ — $\mathrm{fsct}(X)$ et $G \in \mathbf{Q}_{\ell}$ — $\mathrm{fscn}(U)$, on a:

$$\underline{\mathrm{Ext}}_{\mathbf{Q}_{\ell}}^{j}(F,G) = 0 \quad (j \ge 1).$$

Il s'agit de voir que si $F \in \mathbf{Z}_{\ell} - \mathrm{fsct}(X)$ et $G \in \mathbf{Z}_{\ell} - \mathrm{fscn}(X)$, les \mathbf{Z}_{ℓ} -faisceaux $\mathrm{Ext}_{\mathbf{Z}_{\ell}}^{j}(F,G)$ $(j \geq 1)$ sont annulés par une puissance de ℓ . D'après (I 6.4.2) et (II 1.2.1), on peut, quitte à se restreindre à des parties localement fermées convenables de X, supposer que $G \in \mathbf{Z}_{\ell} - \mathrm{fsct}(X)$. Alors, compte tenu de (II 1.26), l'assertion résulte de l'assertion analogue, bien connue, pour les \mathbf{Z}_{ℓ} -modules de type fini. Montrons (ii).

Il s'agit de voir que

$$P^{j} = \underline{\operatorname{Ext}}_{\mathbf{Q}_{\ell}}^{j}(E, \mathbf{Q}_{\ell}(1)) = 0 \quad (j \ge 1).$$

Comme M est constante tordu constructible, il résulte du cas (i) que $P^j | U = 0$. Il nous suffit donc de voir que pour tout point fermé x de Y = X - U et tout point géométrique \overline{x} au-dessus de x, on a $P_x^j = 0$. Le pendant pour les \mathbb{Q}_ℓ -faisceaux de la variante (SGA5 I 4.6.2) du théorème de dualité locale fournit un accouplement parfait

$$(3.9.2) \qquad \underline{\operatorname{Ext}}_{\mathbf{Q}_{\ell}}^{j}(E, \mathbf{Q}_{\ell}(1)) \times \underline{\mathbf{H}_{\overline{x}}^{2-j}}(E) \longrightarrow \mathbf{Q}_{\ell'}$$

avec (SGA5 I 4.5.1)

$$\underline{\mathbf{H}}_{\overline{x}}^{2-j} = (\underline{\mathbf{H}}_{x}^{2-j}(E))_{\overline{x}}.$$

Comme le morphisme d'adjonction canonique

$$E \longrightarrow i_* i^*(E)$$

est un isomorphisme, il résulte de la première suite exacte de (SGA4 V 4.5) que

$$\underline{\mathbf{H}}_{r}^{0}(E) = \underline{\mathbf{H}}_{r}^{1}(E) = \mathbf{0},$$

d'où aussitôt le résultat annoncé.

Ceci dit, lorsque X est projectif sur \mathbf{F}_{ℓ} , la formule (3.6) prend la forme

(3.10)
$$L_{F\nu}(p^{-n}t) = (-1)^{-\chi(E)} \delta(E) L_F(t^{-1}),$$

dans chacun des cas de (3.9). Compte tenu de (3.2 a)), cela résulte du lemme suivant.

Lemme **3.11**. — Soient X un schéma de type fini sur \mathbf{F}_{ℓ} , et $F \in \mathrm{D}^b_c(X, \mathbf{Q}_{\ell})$. Posant $F(j) = F \otimes \mathbf{Q}_{\ell}(j)$ $(j \in \mathbf{Z})$, on a la relation

$$L_{F(j)}(t) = L_F(p^{-j}t).$$

D'après les propriétés de multiplicativité (3.2 a)), on peut pour le voir supposer que F est un \mathbb{Q}_{ℓ} -faisceau constructible; alors, comme le Frobenius opère sur $\mathbb{Q}_{\ell}(j) \simeq \mathbb{Q}_{\ell}$ (non canoniquement) par l'homothétie de rapport p^{-j} , l'assertion est immédiate sur la définition (3.0).

Supposons maintenant qu'on ait de plus un isomorphisme

$$E^{\nu} \xrightarrow{\sim} E(\rho)$$
 pour un $\rho \in \mathbb{Z}$.

Alors la formule (3.10) prend la forme

$$L_E(p^{-n-\rho}t) = (-t)^{-\chi(E)}\delta(E)L_E(t^{-1}),$$

ou encore, après avoir posé $q=n+\rho$ et fait le changement de variable $t\mapsto t^{-1}$,

(3.12)
$$L_{F}(1/qt) = (-t)^{\chi E} \delta(E) L_{F}(t).$$

Remarque 3.13. Sous les hypothèses de (3.9), l'existence d'un tel entier p est assurée dans les cas suivants

cas (i)
$$E \xrightarrow{\sim} \mathbf{Q}_{\ell}(m)$$
 pour un $m \in \mathbf{Z}$, et alors $p = -2m$.

cas (ii) $M \xrightarrow{\sim} \mathbf{Q}_{\ell}(m)$ pour un $m \in \mathbf{Z}$, et alors p = -2m.

(Pour ce dernier cas, il est immédiat que

$$i_{\downarrow}(M^{\vee}) \simeq (i_{\downarrow}(M))^{\vee}.$$

Explicitons enfin une relation importante entre les entiers $\chi(E)$ et $\delta(E)$.

Proposition 3.14. — Soient X un schéma projectif et lisse purement de dimension n sur \mathbb{Z}_p et $E \in \mathcal{D}^b_c(X, \mathbb{Q}_\ell)$. On suppose qu'il existe un entier m tel que

$$D_X(E) \xrightarrow{\sim} E(m),$$

et on pose $q = p^m$. Alors, on a, l'égalité

$$\delta(E)^2 = q^{\chi(E)}.$$

Preuve: La substitution $t \mapsto 1/qt$ dans (3.12) fournit l'équation fonctionnelle

(3.12 bis)
$$L_E(t) = (-1/qt)^{\chi(E)} \delta(E) L_E(1/qt).$$

Multipliant (3.12) et (3.12 bis) membre à membre, on obtient l'identité

$$L_{E}(t)L_{E}(1/qt) = q^{-\chi(E)}(\delta(E))^{2}L_{E}(t)L_{E}(1/qt),$$

d'où aussitôt la relation désirée, compte tenu du fait que L_E n'est pas identiquement nulle, comme il est clair sur sa définition (3.0).