Raport

Zarządzanie pamięcią, biblioteki, pomiar czasu

Zadanie 1. Kompilator, optymalizacja, pomiar czasu

Programy można skompilować za pomocą "make test", a uruchomić "./run-all.sh"

1. fibonacci.c - Ciag Fibonacciego iteracyjnie

Flaga	Czas wykonania (s)
(brak)	4.407471
-01	0.545492
-02	0.000001
-03	0.000001

Widzimy znaczne różnice w czasie wykonania - kompilator od –O2 w górę całkowicie pomija obliczenia, prawdopodobnie z racji tego że wynik nie jest nigdzie wykorzystywany), co można sprawdzić w disassembly (cała główna pętla programu pominięta).

2. sito.c - Sito Erastotenesa

Flaga	Czas wykonania (s)
(brak)	1.294993
-01	1.162374
-02	1.150555
-03	1.179913

Zauważamy niewielki spadek od flagi –O1, później nie widać wielkiej różnicy.

3. fibonacci_rec.c - Ciąg fibonacciego rekurencyjnie

Flaga	Czas wykonania (s)
(brak)	segfault
-01	0.004316
-02	0.000652
-03	0.000592

Program napisano z rekurencją ogonową. Dla N=2e5 program bez optymalizacji kończy się segfaultem. W kolejnych krokach widać regularne spadki.

4. bubblesort.c - Sortowanie babelkowe

Flaga	Czas wykonania (s)
(brak)	42.513327
-01	8.118990
-02	19.155112
-03	11.287449

Zauważamy wyraźny spadek przy –O1, później czas natomiast rośnie – możliwe ograniczenia termiczne.