Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação MÉTODOS DA ENGENHARIA ELÉTRICA Professor Anésio dos Santos Júnior

PROVA 01

OUESTÕES EXPOSITIVAS

Questão 1 - Considere um campo escalar definido pela seguinte função $w = 4 x^2 + 9 y^2 + z^2$.

a-Estabeleça a região na qual w = 204 (constante) e os pontos nos quais essa região intercepta os eixos coordenados;

b-O ponto $(3, 4, 2\sqrt[3]{6})$ pertence à *região* estabelecida em a)?, explique;

c-Calcule o *gradiente* do campo escalar w no ponto $(3, 4, 2\sqrt[3]{6})$;

d-Calcule a derivada direcional de w no ponto $(3,4,2\sqrt[3]{6})$ e na direção e sentido de $\hat{a}_{s} = \frac{1}{5} (3 \hat{a}_{x} + 4 \hat{a}_{y});$

e-Obtenha o ângulo entre $\hat{a}_s = \frac{1}{5} (3 \hat{a}_x + 4 \hat{a}_y)$ e a direção normal à *região* estabelecida em a).

Questão 2 - Considere os *campos* definidos pelas funções $w = r^2 z \cos 2\varphi$ $\vec{A} = 10 e^{-2 z} (r \hat{a}_r + \hat{a}_z)$

a-Estabeleça o campo vetorial descrito pelo gradiente do escalar w;

b-Obtenha a derivada direcional de w no ponto $(1;\pi/8;1)$ e na direção do vetor $\vec{v} = \hat{a}_r + \hat{a}_z$;

c-Calcule o divergente do campo \vec{A} ;

d-Obtenha o fluxo saindo através da superfície externa (fechada) S do cilíndro definido por r = 1 e $0 \le z \le 1$ através da integral de superfície $\oint_{C} \vec{A} \cdot d\vec{S}$;

e-Obtenha a expressão mais simples para o *divergente* do *gradiente* do campo $w = r^2 z \cos 2\phi$.