W6. Check List — Junyi

- ▼ What do we do with the created KG?
 - ▼ retrieve information → Query languages
 - lacktriangledown conclude new facts from the knowledge graph that are not explicitly present in it \rightarrow inference algorithm
- ▼ two classes of inference algorithms
 - ▼ graph algorithms
 - ▼ path finding
 - ▼ shortest path
 - ▼ single source shortest path
 - ▼ minimum spanning tree
 - ▼ centrality detection
 - ▼ function
 - understanding the importance of a node most important nodes, bridges in a network
 - ▼ types
 - ▼ degree centrality
 - ▼ betweenness centrality
 - ▼ closeness centrality
 - ▼ page rank
 - ▼ community detection
 - ▼ algorithms
 - ▼ standard graph algorithms
 - ▼ connected components
 - ▼ strongly connected components
 - ▼ bottom up algorithms
 - ▼ label propagation

- assign each node to be a different community
- examine all nodes in a fixed order → update the community of a node that is shred by most of its neighbors, break ties in a random order
- terminate when each node is in a community shared by most of its neighbors

▼ unfolding

▼ phase 1

- Assign each node into a separate community
- Examine each node and its neighbors to test if there will be an overall gain in modularity by placing it in the same community as a neighbor

▼ phase 2

- Create a new graph in which each node represents a community from Phase I
- If there are edges between nodes in a community, represent it as a self-loop

▼ repeat

▼ ontology-based algorithms

- · Associates classes with nodes
- · Defines semantic properties of relationships
- · Two major categories of inference
 - ▼ Class-based Inference or Taxonomic Reasoning → primarily relies on the hierarchy of classes and instances and inheritance of values across the hierarchy
 - Application conditions
 - ▼ applicable when it is useful to organize knowledge into classes
 - ▼ both property graph and RDF data models support classes

▼ class

- ▼ hierarchy
- ▼ disjoint
- ▼ definition
 - ▼ necessary properties
 - ▼ have instance-of in the body of the rule
 - ▼ sufficient properties
 - ▼ have instance-of in the head of the rule
- ▼ value restriction
 - ▼ domian
 - ▼ range
 - ▼ cardinality
- ▼ inheritance
- ▼ Rule-based inference → involve general logical rules
 - ▼ Why it is needed
 - ▼ existential rules are needed whenever we need to create new objects in our knowledge graph. Relationship reification is an obvious such situation.
 - ▼ Approaches
 - ▼ bottom up / chase
 - ▼ we apply all the rules against the knowledge graph, and add new facts to it until we can no longer derive new facts
 - ightharpoonup the reasoning can proceed using traditional query processing methods.
 - ▼ top-down
 - ▼ a tighter interaction between the query engine of the knowledge graph with the rule evaluation. → we begin from the query to be answered, and apply the rules on as needed basis
 - ightharpoonup use lot less space as compared to the bottom up reasoning strategy.

▼ Comparison

Boundary between taxonomic inference and rule-based inference is not sharp

- It is generally a matter of the implementation approach
- Taxonomic inferences can be usually implemented using rules