Prediction Challenge 3

Valerie Le

First, I tried to look for a pattern using plot()

There are some relationship between **GPA and Earnings**. There are certain visible lines, but overall it is not so strong...

Using plot() to find relationships

There are some correlations
between, but it is not strong enough.
Specifically, the quadratic line
(curved line) is interesting; there
might be some relationship between
Earnings and Professional
Connections

Using plot() to find relationships

There are no identifiable relationship between the two variables

Earnings ~ Major

There is clearly a separation between major and earnings, which means that there is a correlation between earnings and major since the means of income based on major is vastly different

Buisness Humanities 10002.139 10249.852 STEM Vocational 9748.774 13249.261 Other Professional 5844.701 11748.952

Tried to use different type of machine learning before Im()

- I tried different ML tools that is introduced in the active textbook, such as SVM and randomForest
- So far, randomforest gives the best result. Its mse is around 24402.06, which
 is still fairly large compared to the 'excellent' benchmark (<200)
- I also tried creating new attributes for rpart, but it doesn't really do anything either (MSE is much HIGHER than using randomForest)

```
> tree1 <- randomForest::randomForest(Earnings~., data=
train)
> predict2 <- predict(tree1, newdata= train)
> mean((predict2-train$Earnings)^2) #MSE = 25914.06
[1] 24402.26
```

```
#Creating new attributes
train$gross <- train$Earnings - train$Number_Of_Parking_Tickets
tree <- rpart(Earnings~.,data=train)
rpart.plot::rpart.plot(tree)
predict1 <- predict(tree, newdata = train)
predict1
mean((predict1-train$Earnings)^2)#MSE = 118933.2; adding attributes doesn't help</pre>
```

Creating new subsets

- After trying different machine learning techniques, it is clear that Im() is the only thing that might lower the MSE
- First, I will start dividing data to smaller subsets

```
#Random subsetting based on Major
unique(train$Major)
business <- subset(train[train$Major== 'Buisness',])
stem <- subset(train[train$Major== 'STEM',])
human <- subset(train[train$Major=='Humanities',])
voca <- subset(train[train$Major=='Vocational',])
prof <- subset(train[train$Major== 'Professional',])
other <- subset(train[train$Major=='Other',])</pre>
```

Regression for *Business* major

- Interestingly, this is there are two distinct strong relationships
- After using rpart to analyze this, it seems like this is due to the year of graduating (evens and odds)
- After subsetting the data again and plot, we have two distinct strong correlations

businesseven <- train[train\$Graduation_Year %% 2 == 0 & train\$Major == 'Buisness',]
businessodd <-train[train\$Graduation_Year %% 2 != 0 & train\$Major == 'Buisness',]</pre>

Regression for *Humanities* and *Professional* major

- Strong, positive relationship between GPA and Earnings with Humanities major
- Strong negative relationship with Professional major

Regression for *Vocational* and *Other* major

- Strong, positive relationship between GPA and Earnings with Humanities major
- Strong positive quadratic relationship with Professional connections and earnings

Creating prediction functions using Im() and previous findings

```
b1 <- lm(Earnings ~ GPA, data = businesseven)
b2 <- lm(Earnings ~ GPA, data = businessodd)
h1 <- lm(Earnings~GPA, data = human)
pp2 <- lm(Earnings~GPA + num1, data = prof)
s1 <- lm(Earnings~GPA, data = stem)
v2 <- lm(Earnings~GPA + num1, data = voca)
o10 <- lm(Earnings~Number_Of_Professional_Connections + num1 + num2 + num3 +num10, data = other)
```

Final Model

```
business <- subset(train[train$Major== 'Business',])</pre>
stem <- subset(train[train$Major== 'STEM',])</pre>
human <- subset(train[train$Major=='Humanities',])</pre>
voca <- subset(train[train[Major=='Vocational',])</pre>
voca$num1 <- voca$GPA^2
prof <- subset(train[train$Major== 'Professional',])</pre>
prof$num1 <- prof$GPA^2</pre>
other <- subset(train[train Major == 'Other',])
other$num1 <- other$Number_Of_Professional_Connections^2
other$num2 <- other$Number_Of_Professional_Connections^3
other num3 <- other Number Of Professional Connections 4
other$num10 <- other$Number_Of_Professional_Connections^10
businesseven <- train[train$Graduation_Year \%% 2 == 0 & train$Major == 'Buisness',]
businessodd <-train[train$Graduation_Year %% 2 != 0 & train$Major == 'Buisness',]</pre>
```

```
b1 <- lm(Earnings ~ GPA, data = businesseven)
b2 <- lm(Earnings ~ GPA, data = businessodd)
h1 <- lm(Earnings~GPA, data = human)
pp2 <- lm(Earnings~GPA + num1, data = prof)
s1 <- lm(Earnings~GPA, data = stem)
v2 \leftarrow lm(Earnings \sim GPA + num1, data = voca)
olo <- lm(Earnings~Number Of Professional_Connections + num1 + num2 + num3 +num10, data = other)
#Prediction Challenge
test <- read.csv("C:/Users/lpnhu/Downloads/Earnings_Numeric_Test_2023-students.csv")
business1 <- subset(test[test$Major== 'Buisness',])</pre>
businesseven1 <- test[test$Graduation_Year %% 2 == 0 & test$Major == 'Buisness',]
businessodd1 <-test[test$Graduation_Year %% 2 != 0 & test$Major =='Buisness',]</pre>
stem1 <- subset(test[test$Major== 'STEM'.])</pre>
human1 <- subset(test[test$Major=='Humanities',])</pre>
voca1 <- subset(test[test$Major=='Vocational',])</pre>
voca1\sum1 <- voca\sqra{\text{GPA}^2}
prof1 <- subset(test[test$Major== 'Professional'.])</pre>
prof1\sum1 <- prof\sqra{GPA^2
other1 <- subset(test[test$Major=='Other',])
other1\snum1 <- other\snumber Of Professional Connections^2
other1\snum2 <- other\snumber_Of_Professional_Connections^3
other1\snum3 <- other\snumber_Of_Professional_Connections^4
other1$num10 <- other$Number Of Professional Connections^10
```

Final thoughts

- The final product has a pretty low MSE level
- I wasted one of my attempts because I forgot to change the df to test_df, but once I fix it, it gives me a decent result!


```
p1 <- predict(b1, newdata = businesseven1)
p2 <- predict(b2, newdata = businessodd1)</pre>
p3 <- predict(h1, newdata = human1)
p4 <- predict(pp2, newdata = prof1)
p5 <- predict(s1, newdata = stem1)
p66 <- predict(v2, newdata = voca1)
p7777 <- predict(o10, newdata = other1)
decision <- rep(0,nrow(test))
decision[test$Major == 'Buisness'& test$Graduation_Year %% 2 == 0] <- p1
decision[test$Major == 'Buisness'& test$Graduation_Year %% 2 !=0] <- p2</pre>
decision[test$Major == 'Humanities'] <- p3</pre>
decision[test$Major == 'Professional'] <- p4
decision[test$Major == 'STEM'] <-p5</pre>
decision[test$Major == 'Vocational'] <- p66
decision[test$Major == 'Other'] <- p7777</pre>
submission <- read.csv("C:/Users/lpnhu/Downloads/submission.csv")</pre>
submission$Predicted <- decision
write.csv(submission,file = "submissionprediction5.csv", row.names = FALSE)
```

Cross-validation before turning in the product

```
#Cross-validation
 v <- sample(1:nrow(train))</pre>
 v[1:5]
  trainScrambled <- train[v, ]</pre>
 n <- 1000
  trainSample <- trainScrambled[nrow(trainScrambled)-10:nrow(trainScrambled),]
  testSample <- trainScrambled[1:n.]
  #Training data
  business <- subset(trainSample[trainSample$Major== 'Business',])</pre>
 stem <- subset(trainSample[trainSample$Major== 'STEM',])</pre>
 human <- subset(trainSample[trainSample$Major=='Humanities',])</pre>
 voca <- subset(trainSample[trainSample$Major=='Vocational',])</pre>
 voca$num1 <- voca$GPA^2
 prof <- subset(trainSample[trainSample$Major== 'Professional',])</pre>
 prof$num1 <- prof$GPA^2</pre>
```

```
other <- subset(trainSample[trainSample$Major=='0ther',])
other$num1 <- other$Number Of Professional Connections^2
other$num2 <- other$Number_Of_Professional_Connections^3
other$num3 <- other$Number Of Professional Connections^4
other num10 <- other Number Of Professional Connections 10
businesseven <- trainSample[trainSample$Graduation_Year %% 2 == 0 & trainSample$Major == 'Buisness',]</pre>
businessodd <-trainSample[trainSamplesGraduation_Year %% 2 != 0 & trainSamplesMajor == 'Buisness',]</pre>
b1 <- lm(Earnings ~ GPA, data = businesseven)
b2 <- lm(Earnings ~ GPA, data = businessodd)
h1 <- lm(Earnings~GPA, data = human)
pp2 <- lm(Earnings~GPA + num1, data = prof)
s1 <- lm(Earnings~GPA, data = stem)
v2 \leftarrow lm(Earnings \sim GPA + num1, data = voca)
o10 <- lm(Earnings~Number_Of_Professional_Connections + num1 + num2 + num3 + num10, data = other)
business <- subset(testSample[testSample Major== 'Business'.])</pre>
stem <- subset(testSample[testSample$Major== 'STEM',])</pre>
human <- subset(testSample[testSample$Major=='Humanities',])</pre>
voca <- subset(testSample[testSample$Major=='Vocational',])</pre>
voca$num1 <- voca$GPA^2
```

```
prof <- subset(testSample[testSample$Major== 'Professional',])</pre>
prof\snum1 <- prof\sqraaA2
other <- subset(testSample[testSample$Major=='0ther',])
other$num1 <- other$Number Of Professional Connections^2
other num2 <- other Number Of Professional Connections ^3
other num3 <- other Number Of Professional Connections 4
other$num10 <- other$Number Of Professional Connections^10
businesseven <- trainSample[trainSample$Graduation_Year \% 2 == 0 & trainSample$Major == 'Buisness',]
businessodd <-trainSample[trainSample$Graduation_Year %% 2 != 0 & trainSample$Major == 'Buisness',]</pre>
p1 <- predict(b1. newdata = businesseven)</pre>
p2 <- predict(b2, newdata = businessodd)</pre>
p3 <- predict(h1, newdata = human)
p4 <- predict(pp2, newdata = prof)
p5 <- predict(s1. newdata = stem)
p66 <- predict(v2, newdata = voca)
p7777 <- predict(o10, newdata = other)
decision <- rep(0,nrow(testSample))
decision[testSample$Major == 'Buisness'& testSample$Graduation_Year %% 2 == 0] <- pl
decision[testSample$Major == 'Buisness'& testSample$Graduation_Year \% 2 !=0] <- p2</pre>
decision[testSample$Major == 'Humanities'] <- p3</pre>
decision[testSample$Major == 'Professional'] <- p4
decision[testSample$Major == 'STEM'] <-p5
  decision|testSample$Major == 'Vocational'| <- p66
  decision[testSample$Major == 'Other'] <- p7777
  MSE <- mean((decision-testSample$Earnings)^2)</pre>
print(MSE)
```