

 $r_{\!_{\!V}}$ Rate response to visual stimulus $r_{\!_{\!V\!+\!O}}$ Rate response to visual AND optogenetic stimulus $r_{\!_{\!V\!+\!O}}$ Optogenetic response

- However, typical opto responses are
- \circ Much larger than mean opto response: $(\operatorname{Std}\left[\Delta r\right]\gg\operatorname{E}\left[\Delta r\right])$
- \circ Comparable to typical visual responses: $(\operatorname{Std}[\Delta r] \approx \operatorname{Std}[r_V])$

Strong Reshuffling

- Opto stim to E causes no net excitation: $(\mathbb{E}\left[\Delta r\right]\approx 0)$
- Does not change firing rate distribution
- However, typical opto responses are
- \circ Comparable to typical visual responses: (Std [Δr] pprox Std [r_V])

Weak Coupling

Positive correlation between

and opto response Δr

visual response r_V

Moderate Coupling

Strong Coupling

visual response r_V

and opto response Δr

Strong coupling produces strong reshuffling. This strong coupling can be more biologically plausible (weaker) with structured connectivity than with random connectivity

visual response r_V

and opto response Δr