Álgebra Linear

Fco. Leonardo Bezerra M. 2019.1

(leonardobluesummers@gmail.com)

Aulas 10, 11, 12, 13, 14 e 15

Espaço Vetorial

Vetores no Plano

Considerando um plano cartesiano, fixada uma unidade de comprimento, **um ponto** *P* **do plano** pode ser identificado por suas **coordenadas** (*a*, *b*).

- \triangleright Dados dois pontos P e Q do plano, podemos considerar dois segmentos de reta orientados:
 - O segmento *PQ*.
 - O segmento *QP*.
- Dois segmentos orientados são ditos **equivalentes** se tiverem o **mesmo comprimento, direção e sentido**.

Para qualquer segmento orientado no plano, existe outro equivalente a este cujo ponto inicial é a **origem**.

Aos segmentos orientados com **ponto inicial na origem** denominamos de *vetores no plano*.

- Vetores no plano são denominados apenas por seu ponto final.
- Para cada ponto do plano P(a, b), está associado um único vetor $\mathbf{v} = \mathbf{OP}$.
 - Da mesma forma, dado um vetor, associamos a este um único ponto do plano, o seu ponto final.

- Podemos então representar um vetor $\mathbf{v} = \mathbf{OP}$ em função de seu ponto final P(a, b) como:
 - Matriz: linha $\mathbf{v} = |a, b|$ ou coluna $\mathbf{v} = \begin{vmatrix} a \\ b \end{vmatrix}$.
 - Coordenadas: $\mathbf{v} = (a, b)$.
- > O ponto inicial associado a cada vetor no plano, a origem, é chamado de **vetor nulo**, representado por (0, 0).
- \triangleright O oposto de um vetor $\mathbf{v} = OP$ é o vetor $\mathbf{v} = PO$, de mesmo comprimento e direção, mas sentidos opostos.
 - Em coordenadas, se $\mathbf{v} = (a, b)$, então sua oposta é $\mathbf{w} = -\mathbf{v} = (-a, -b)$.

Operações com Vetores no Plano

1. Multiplicação por um escalar:

- Para k > 0, multiplicar um vetor **v** por k resulta num novo vetor $\mathbf{w} = k\mathbf{v}$, de **mesma direção** e **mesmo sentido** de **v**.
- Para k < 0, multiplicar um vetor **v** por k resulta num novo vetor $\mathbf{w} = k\mathbf{v}$, de **mesma direção** e **sentido oposto** de **v**.
- Para k = 0, multiplicar um vetor **v** por k resulta no **vetor nulo**.
- Em coordenadas, consiste em multiplicar a matriz linha (ou coluna) por k. Assim, se $\mathbf{v} = |a, b|$, então $\mathbf{w} = k\mathbf{v} = |ka, kb|$.

2. Adição de dois (ou mais) vetores:

- Dados dois vetores $\mathbf{v} = OP$ e $\mathbf{w} = OQ$, o vetor resultante da adição de \mathbf{v} e \mathbf{w} será um novo vetor $\mathbf{x} = OS$, de **direção** e **sentido** intermediários a \mathbf{v} e \mathbf{w} .
- Em coordenadas, se $\mathbf{v} = |a, b|$ e $\mathbf{w} = |c, d|$, então o vetorsoma, será $\mathbf{x} = \mathbf{v} + \mathbf{w} = |a + c, b + d|$.
- A subtração entre dois vetores $\mathbf{v} = |a, b|$ e $\mathbf{w} = |c, d|$ corresponde à soma de \mathbf{v} e $-\mathbf{w}$ (oposto de \mathbf{w} , $\mathbf{w} = |-c, -d|$), e seria dada por $\mathbf{z} = \mathbf{v} \mathbf{w} = \mathbf{v} + (-\mathbf{w}) = |a c, b d|$.
- A soma de um vetor com o seu oposto é o vetor nulo.

Vetores no Espaço

Assim como no plano, podemos considerar *vetores* no espaço.

- Aqui, como antes, os vetores são dados por segmentos orientados, com **ponto inicial na origem** e **associação única entre** cada **vetor** OP e seu **ponto final** P(a, b, c).
 - Onde podemos representar o vetor $\mathbf{v} = \mathbf{OP}$ em função de seu ponto final P(a, b, c) como $\mathbf{v} = |a, b, c|$.

Propriedades

1.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$$

2.
$$u + v = v + u$$
;

3.
$$u + 0 = u$$
;

4.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
;

5.
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$
;

6.
$$(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$
;

7.
$$(ab)\mathbf{v} = a(b\mathbf{v});$$

8.
$$1u = u$$
;

Espaço Vetorial

Definição: Um *espaço vetorial real* é um conjunto V, não vazio, com duas operações: **soma** e **multiplicação por escalar**, tais que, para quaisquer $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ e $a, b \in \mathbb{R}$, as propriedades 1 a 8 sejam satisfeitas.

- Um elemento de um espaço vetorial é referido como *vetor*.
 - Exemplo: Num espaço vetorial V = M(2, 2), os *vetores* são matrizes 2x2.

Propriedades

1.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$$

2.
$$u + v = v + u$$
;

3.
$$u + 0 = u$$
;

4.
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$
;

5.
$$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$$
;

6.
$$(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$$
;

7.
$$(ab)\mathbf{v} = a(b\mathbf{v});$$

8.
$$1u = u$$
;

Testes

- Resumindo, sempre realizaremos 3 testes:
 - 1. O vetor nulo está presente no espaço? $VN \in V?$;
 - 2. Dados dois elementos quaisquer do espaço, a soma destes está presente no espaço? Para $\mathbf{u}, \mathbf{w} \in V$, $(\mathbf{u} + \mathbf{w}) \in V$?;
 - 3. Dado um elemento qualquer do espaço, a multiplicação deste por um escalar qualquer está presente no espaço? Para $\mathbf{u} \in V \in a \in \mathbb{R}$, $a\mathbf{u} \in V$?;

- São espaços vetoriais:
 - 1. $V = \mathbb{R}^3 = \{(x_1, x_2, x_3), x_i \in \mathbb{R}\};$
 - 2. $V = M(2, 2) = \{|a \ b; c \ d|, a, b, c \ e \ d \in \mathbb{R}\};$
- > Não são espaços vetoriais:
 - 1. $V = \{(x_1, x_2) \in \mathbb{R}^2, x_i \ge 0\};$
 - 2. $V = Meses do ano = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\};$

Sub-espaços Vetoriais

- ➤ **Definição:** Dado um espaço vetorial *V*, um subconjunto *W*, não vazio, será um *sub-espaço* vetorial de *V* se:
 - Para quaisquer $\mathbf{u}, \mathbf{v} \in W$ tivermos $\mathbf{u} + \mathbf{v} \in W$.
 - Para qualquer $a \in \mathbb{R}$, $\mathbf{u} \in W$ tivermos a $\mathbf{u} \in W$.
- ✓ W é por si só um espaço vetorial e as propriedades 1 a 8 se aplicam;
- \checkmark W deve sempre conter o vetor nulo;
- ✓ Todo espaço vetorial admite pelo menos dois subespaços: o vetor nulo e ele mesmo (sub-espaços triviais).

- \triangleright Sub-espaços de $V = \mathbb{R}^2 = \{(x_1, x_2), x_i \in \mathbb{R}\}:$
 - 1. $V = \{0, 0\};$
 - 2. $V = \mathbb{R}^2 = \{(x_1, x_2), x_i \in \mathbb{R}\};$
 - 3. Quaisquer retas que passem pela origem:
 - $V = \{(x, ax), a, x \in \mathbb{R}\};$
- \triangleright Sub-espaços de $V = \mathbb{R}^3 = \{(x_1, x_2, x_3), x_i \in \mathbb{R}\}$:
 - 1. $V = \{0, 0, 0\};$
 - 2. $V = \mathbb{R}^3 = \{(x_1, x_2, x_3), x_i \in \mathbb{R}\};$
 - 3. Quaisquer planos que passem pela origem;

- Verifique se é um sub-espaço vetorial:
 - 1. $V = \mathbb{R}^2 \text{ e } W = \{(x_1, x_2), x_i \in \mathbb{R} / x_2 = 7x_1\}; \text{ Sim.}$
 - 2. $V = \mathbb{R}^2$ e $W = \{(x_1, x_2), x_i \in \mathbb{R} / x_2 = 8 3x_1\}$; Não.
 - 3. $V = \mathbb{R}^2$ e $W = \{(x_1, x_2), x_i \in \mathbb{R} / x_2 = /x_1/\}$; Não.
 - 4. $V = \mathbb{R}^3$ e $W = \{(x_1, x_2, 0), x_i \in \mathbb{R}\}$; Sim.
 - 5. $V = M(2, 2) = \{|a \ b; c \ d|, a, b, c \ e \ d \in \mathbb{R}\}\ e \ W = \{|a \ 0; c \ 0|, a \ e \ c \in \mathbb{R}\}; \text{Sim.}$
 - 6. $V = \mathbb{R}^4$ e $W = \{(x_1, x_2, x_3, x_4), x_i \in \mathbb{R} / x_1 x_2 = 0, x_3 x_4 = 0\}$; Sim.

- **Teorema:** Dados W_1 e W_2 , sub-espaços de um espaço vetorial V, a interseção $W_1 \cap W_2$ ainda é um sub-espaço de V.
- **Teorema:** Sejam W_1 e W_2 , sub-espaços de um espaço vetorial V. Então, o conjunto $W_1 + W_2$ é sub-espaço de V.
- Quando $W_1 \cap W_2 = \{0\}$, então $W_1 + W_2$ é chamado soma direta de W_1 e W_2 .

Combinação Linear

Definição: Seja *V* espaço vetorial, $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ ∈ *V* e $a_1, a_2, ..., a_n$ ∈ \mathbb{R} . Então, o vetor

$$\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$$

é um elemento de V ao que chamamos de combinação linear de $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$.

Sub-espaço Gerado - SG

- Uma vez fixados vetores $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ em V, o conjunto W de todos os vetores de V que são combinação linear desses é um sub-espaço vetorial, chamado *sub-espaço gerado*, de notação:
 - $W = [\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}], \text{ ou}$
 - $W = SG\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}.$

- Determine o sub-espaço gerado por:
 - 1. $V = \mathbb{R}^2 \text{ e } \mathbf{v} = |1, 2|;$
 - SG = $a\mathbf{v} = a|1, 2| = |a, 2a|$.
 - 2. $V = \mathbb{R}^2 \text{ e } \mathbf{v}_1 = |0, 2| \text{ e } \mathbf{v}_2 = |4, 0|;$
 - SG = $a\mathbf{v}_1 + b\mathbf{v}_2 = a|0, 2| + b|4, 0| = |4b, 2a| = \mathbb{R}^2$.
 - 3. $V = \mathbb{R}^3 \text{ e } \mathbf{v} \in V, \mathbf{v} \neq 0;$
 - $SG = \{a\mathbf{v}, a \in \mathbb{R}\}.$
 - 4. $V = \mathbb{R}^2 \text{ e } \mathbf{v_1} = (1, 0) \text{ e } \mathbf{v_2} = (0, 1);$
 - $SG = \{a\mathbf{v}_1 + b\mathbf{v}_2, a, b \in \mathbb{R}\}.$

Dependência e Independência Linear

Definição: Seja V espaço vetorial e $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \in V$. Dizemos que o conjunto $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ é linearmente independente (LI), ou que os vetores \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n são LI, se a equação

$$a_1\mathbf{v_1} + a_2\mathbf{v_2} + \dots + a_n\mathbf{v_n} = 0$$

implica que $a_1 + a_2 + ... + a_n = 0$.

No caso em que exista algum $a_i \neq 0$ dizemos que $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ é linearmente dependente (LD), ou que os vetores $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$ são LD.

❖ Determine se os vetores são LD ou LI:

1.
$$V = \mathbb{R}^2 \text{ e } \mathbf{v}_1 = |1, 0| \text{ e } \mathbf{v}_2 = |0, 1|; \text{ LI}$$

2.
$$V = \mathbb{R}^2 \text{ e } \mathbf{v}_1 = |1, -1| \text{ e } \mathbf{v}_2 = |3, -3|; \text{ LD}$$

3.
$$V = \mathbb{R}^2 \text{ e } \mathbf{v}_1 = |1, 1| \text{ e } \mathbf{v}_2 = |0, 1|; \text{ LI}$$

4.
$$V = \mathbb{R}^3$$
 e $\mathbf{v}_1 = |1, 0, 0|$, $\mathbf{v}_2 = |0, 1, 0|$ e $\mathbf{v}_3 = |0, 0, 1|$; LI

5.
$$V = \mathbb{R}^2$$
 e $\mathbf{v}_1 = |1, -1|$, $\mathbf{v}_2 = |1, 0|$ e $\mathbf{v}_3 = |1, 1|$; LD

6.
$$V = \mathbb{R}^3$$
 e $\mathbf{v}_1 = [2, 1, -1]$, $\mathbf{v}_2 = [1, -1, 0]$ e $\mathbf{v}_3 = [1, 2, -1]$; LD

Base de um Espaço Vetorial

- **Definição:** Um conjunto $\{v_1, v_2, ..., v_n\}$ de vetores será uma base de V se:
 - a) $\{v_1, v_2, ..., v_n\}$ é LI;
 - b) $SG\{v_1, v_2, ..., v_n\} = V$.

• Queremos determinar os "alicerces" de nosso espaço, ou seja, um conjunto finito de vetores tais que qualquer outro vetor de V seja uma combinação linear destes.

Ou Seja:

- Queremos encontrar o menor número de vetores linearmente independentes cujo sub-espaço gerado seja V.
 - a) a_1 **v**₁ + a_2 **v**₂ + ... + a_n **v**_n = 0, apenas para a_1 + a_2 + ... + a_n = 0;
 - b) $V = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n};$
- Encontrados esses vetores, todo e qualquer outro vetor do EV pode ser escrito como uma combinação linear dos vetores da base.

- Verifique se $\mathbf{v}_1 = |0, 1|$ e $\mathbf{v}_2 = |1, 1|$ são bases de $V = \mathbb{R}^2$
 - $|\mathbf{x}_1, \mathbf{x}_2| = a|0, 1| + b|1, 1| = |b, a + b|;$
 - $|b, a + b| = |\mathbf{x}_1, \mathbf{x}_2|;$
 - $b = x_1, a = x_2 x_1;$
 - $|\mathbf{x}_1, \mathbf{x}_2| = |\mathbf{x}_1, \mathbf{x}_2 \mathbf{x}_1 + \mathbf{x}_1| = |\mathbf{x}_1, \mathbf{x}_2|;$

- \diamond Determine se os vetores são bases de V:
 - 1. $V = \mathbb{R}^2$ e $\mathbf{v}_1 = |1, 0|$ e $\mathbf{v}_2 = |0, 1|$; Sim
 - 2. $V = \mathbb{R}^2$ e $\mathbf{v}_1 = [0, -1]$ e $\mathbf{v}_2 = [0, 5]$; Não
 - 3. $V = \mathbb{R}^3$ e $\mathbf{v}_1 = |1, 0, 0|$ e $\mathbf{v}_2 = |0, 1, 0|$; Não
 - 4. $V = \mathbb{R}^3$ e $\mathbf{v}_1 = [1, 0, 0]$, $\mathbf{v}_2 = [0, 1, 0]$ e $\mathbf{v}_3 = [0, 0, 1]$; Sim
 - 5. $V = \mathbb{R}^3$ e $\mathbf{v}_1 = |1, 0, 0|$, $\mathbf{v}_2 = |3, 2, 0|$, $\mathbf{v}_3 = |0, 0, 1|$ e $\mathbf{v}_4 = |-2, 0, 0|$; Não
 - 6. V = M(2, 2) e $\mathbf{v}_1 = |1\ 0; 0\ 0|$, $\mathbf{v}_2 = |0\ 1; 0\ 0|$, $\mathbf{v}_3 = |0\ 0; 1\ 0|$ e $\mathbf{v}_4 = |0\ 0; 0\ 1|$; Sim

- Teorema: Sejam $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ vetores não nulos que geram um espaço vetorial V. Então, dentre estes vetores podemos extrair uma base de V.
- **Teorema:** Seja um espaço vetorial V gerado por um conjunto finito de vetores $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$. Então, qualquer conjunto com mais de n vetores é necessariamente LD (e, portanto, qualquer conjunto LI tem no máximo n vetores).
- Corolário: Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, denotado dim V.

- ➤ **Teorema:** Qualquer conjunto de vetores LI de um espaço vetorial de dimensão finita pode ser completado de modo a formar uma base de *V*.
- \triangleright Corolário: Se dim V = n, qualquer conjunto de n vetores LI formará uma base de V.
- **Teorema:** Se U e W são sub-espaços de um espaço vetorial V que tem dimensão finita, então $dim\ U \le dim\ V$ e $dim\ W \le dim\ V$. Além disso, $dim\ U + W = dim\ U + dim\ W dim\ (U \cap W)$.

Teorema: Dada uma base $\beta = \{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}\}$ de V, cada vetor de V é escrito de maneira única como combinação linear de $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}$.

Pesos/Coordenadas

- **Definição:** Seja $β = {\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_n}}$ uma base de V e $\mathbf{v} ∈ V$, onde $\mathbf{v} = a_1\mathbf{v_1} + a_2\mathbf{v_2} + ... + a_n\mathbf{v_n}$. Chamamos estes números $a_1, a_2, ..., a_n$ de pesos (ou coordenadas) de V em relação à base β.
- **Exemplo**: Seja $V = \mathbb{R}^2$, e $\beta = \{|1, 0|, |0, 1|\}$. Para v = |2, 5|, temos:
 - |2, 5| = a*|1, 0| + b*|0, 1|;
 - a = 2 e b = 5.

- Determine os pesos para:
 - 1. $V = \mathbb{R}^2 e \beta = \{|1, 1|, |0, 1|\};$
 - /x, y/ = a/1, 1/ + b/0, 1/; a = x, b = y x.
 - 2. $V = \mathbb{R}^2 \text{ e } \beta = \{|0, 1|, |1, 0|\};$
 - /x, y/ = a/0, 1/ + b/1, 0/; a = y, b = x.
 - 3. $V = \mathbb{R}^3 \text{ e } \beta = \{|1, 0, 0|, |0, 1, 0|, |0, 0, 1|\};$
 - /x, y, z/=a/1, 0, 0/+b/0, 1, 0/+c/0, 0, 1/; a=x, b=y e c=z.
 - 4. V = M(2, 2) e $\beta = \{|1\ 0; 0\ 0|, |0\ 1; 0\ 0|, |0\ 0; 1\ 0|, |0\ 0; 0\ 1|\};$
 - $|x \ y; z \ w| = a|1 \ 0; \ 0 \ 0| + b|0 \ 1; \ 0 \ 0| + c|0 \ 0; \ 1 \ 0| + d|0 \ 0; \ 0 \ 1|; \ a = x, \ b = y, \ c = z \ e \ d = w.$
 - 5. V = M(2, 2) e $\beta = \{|0 -3; 0 0|, |1/2 0; 0 0|, |0 0; 7 0|, |0 0; 0 1/7|\};$
 - $|x \ y; \ z \ w| = a|0 -3; \ 0 \ 0| + b|1/2 \ 0; \ 0 \ 0| + c|0 \ 0; \ 7 \ 0| + d|0 \ 0; \ 0 -1/7|; \ a = -y/3, \ b = 2x, \ c = z/7 \ e \ d = -7w.$

- Determine o sub-espaço gerado por:
 - 1. $\mathbf{v_1} = |1, 2| \text{ e } \mathbf{v_2} = |2, 4|;$
 - $SG = \{|x, 2x|, x \in \mathbb{R}\}.$
 - 2. $\mathbf{v}_1 = |0, 2| \text{ e } \mathbf{v}_2 = |4, 0|, \mathbf{v}_3 = |-1, 2|;$
 - $SG = \{|x, y|, x, y \in \mathbb{R}\} = \mathbb{R}^2.$
 - 3. $\mathbf{v}_1 = [0, 0, -1] \text{ e } \mathbf{v}_2 = [4, 1, 0] \text{ e } \mathbf{v}_3 = [-1, 0, -2];$
 - $SG = \{|x, y, z|, x, y, z \in \mathbb{R}\} = \mathbb{R}^3.$
 - 4. $\mathbf{v}_1 = |0, 0, -1| \text{ e } \mathbf{v}_2 = |0, 1, 0|, \mathbf{v}_3 = |0, 0, -2| \text{ e } \mathbf{v}_4 = |-1, 1, -1|;$
 - 5. $\mathbf{v}_1 = |1 \ 1; \ 0 \ 0|, \ \mathbf{v}_2 = |0 \ 1; \ 0 \ 0|, \ \mathbf{v}_3 = |0 \ 0; \ 1 \ 1|, \ \mathbf{v}_4 = |0 \ 0; \ 0 \ 1|\};$

- Determine a base a partir do sub-espaço dado:
 - 1. $W = \mathbb{R}^2$:
 - $\beta = \{|1, 0|, |0, 1|\}.$
 - 2. $W = \mathbb{R}^3$:
 - $\beta = \{|1, 0, 0|, |0, 1, 0|, |0, 0, 1|\}.$
 - 3. $W = \{(x, y, z) \in \mathbb{R}^3, x + y z = 0\}$:
 - $\beta = \{|1, 0, 1|, |0, 1, 1|\}.$
 - 4. $W = \{(x, y, z) \in \mathbb{R}^3, x = y\}$:
 - $\beta = \{|1, 1, 0|, |0, 0, 1|\}.$
 - 5. $W = \{(x, y, z) \in \mathbb{R}^3, x + 2y 3z = 0\}$:
 - $\beta = \{ |-2, 1, 0|, |3, 0, 1| \}.$
 - 6. $W = \{(x, y, z, t) \in \mathbb{R}^4, x + 2y + 2z = 0 \text{ e } t 2z = 0\}$:
 - $\beta = \{ |-2, 1, 0, 0|, |-2, 0, 1, 2| \}.$

- Determine outras bases a partir da base dada:
 - 1. $V = \mathbb{R}^2$, $\beta = \{|1, 0|, |0, 1|\}$.
 - 2. $V = \mathbb{R}^3$, $\beta = \{|1, 0, 0|, |0, 1, 0|, |0, 0, 1|\}$.
 - 3. $V = M(2, 2), \beta = \{|1\ 0; 0\ 0|, |0\ 1; 0\ 0|, |0\ 0; 1\ 0|, |0\ 0; 0\ 1|\}$

Mudança de Base

Definição: Sejam $\beta_1 = \{\mathbf{u_1}, \mathbf{u_2}, ..., \mathbf{u_n}\}\$ e $\beta_2 = \{\mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_n}\}\$ duas bases ordenadas de um mesmo espaço vetorial V. Dado um vetor $\mathbf{v} \in V$, podemos escrevê-lo como:

$$\mathbf{v} = x_1 \mathbf{u_1} + x_2 \mathbf{u_2} + \dots + x_n \mathbf{u_n}$$

$$\mathbf{v} = y_1 \mathbf{w_1} + y_2 \mathbf{w_2} + \dots + y_n \mathbf{w_n}$$

 \triangleright Onde podemos relacionar as coordenadas de \mathbf{v} em relação à base β_1 com as de \mathbf{v} em relação à base β_2 .

Já que $\{u_1, ..., u_n\}$ é base de V, podemos escrever os vetores w_i como combinação linear dos u_i , isto é,

$$\begin{cases} \mathbf{w}_{1} = a_{11}\mathbf{u}_{1} + a_{21}\mathbf{u}_{2} + \dots + a_{n1}\mathbf{u}_{n} \\ \mathbf{w}_{2} = a_{12}\mathbf{u}_{1} + a_{22}\mathbf{u}_{2} + \dots + a_{n2}\mathbf{u}_{n} \\ \vdots & \vdots & \vdots \\ \mathbf{w}_{n} = a_{1n}\mathbf{u}_{1} + a_{2n}\mathbf{u}_{2} + \dots + a_{nn}\mathbf{u}_{n} \end{cases}$$

Substituindo:

$$\mathbf{v} = y_1 \mathbf{w}_1 + \dots + y_n \mathbf{w}_n$$

= $y_1(a_{11}\mathbf{u}_1 + \dots + a_{n1}\mathbf{u}_n) + \dots + y_n(a_{1n}\mathbf{u}_1 + \dots + a_{nn}\mathbf{u}_n)$
= $(a_{11}y_1 + \dots + a_{1n}y_n)\mathbf{u}_1 + \dots + (a_{n1}y_1 + \dots + a_{nn}y_n)\mathbf{u}_n$

> Assim:

$$x_{1} = a_{11}y_{1} + a_{12}y_{2} + \dots + a_{1n}y_{n}$$

$$x_{2} = a_{21}y_{1} + a_{22}y_{2} + \dots + a_{2n}y_{n}$$

$$\dots$$

$$x_{n} = a_{n1}y_{1} + a_{n2}y_{2} + \dots + a_{nn}y_{n}$$

- \triangleright Onde a matriz dos coeficientes (A) desse sistema é chamada de *matriz de mudança de base* de β_2 para β_1 .
- A matriz inversa (A⁻¹) é então a *matriz de mudança* de base de β_1 para β_2 .

- Determine as matrizes de mudança de base para:
 - 1. $\beta_1 = \{|2, -1|, |3, 4|\} \text{ e } \beta_2 = \{|1, 0|, |0, 1|\}.$
 - |4/11 1/11; -3/11 2/11|.
 - |2 3; -1 4|.

EXERCÍCIOS PROPOSTOS

Páginas 129 a 130, exercícios 2 a 11, 15, 18, 19, 29, 30 e 33.

BIBLIOGRAFIA

BOLDRINI, José Luiz et al. **Álgebra linear**. Harper & Row, 1980.