

Exploring Resolution and Degradation Clues as Self-supervised Signal for Low Quality Object Detection

Ziteng Cui¹, Yingying Zhu², Lin Gu^{3,1*}, Guo-Jun Qi⁴, Xiaoxiao Li⁵, Renrui Zhang⁶, Zenghui Zhang⁷, Tatsuya Harada^{1,3}

1. The University of Tokyo 2. University of Texas at Arlington 3. RIKEN AIP 4. Laboratory for Machine Perception and Learning 5. The University of British Columbia 6. Shanghai Al Laboratory 7. Shanghai Jiao Tong University

metric AP AP AP AP

Swin-IR [33] (×2) 25.4 7.6 27.0 42.4

AERIS

Motivation & Contribution:

Degradation Conditions:

- 1. Noise, Blur, Low-Resolution Always Affect Vision Tasks.
- 2. Restoration methods may not such effectiveness.
- 3. Scale GAP in Object Detection Task.

Our Contributions:

- 1. Take the degradation types as self-supervised signals.
- 2. Combine super-resolution and object detection, we additionally design a ARRD decoder on detectors for self-supervised learning.
- 3. AERIS get *SOTA* performance, even with lower input resolution.

Multi-degradation condition, blue background means higher resolution

Experiment Results (Best Results on both single and multi degradation):

σ (5, 50) 15 25 5

Restormer [59] 23.8 27.6 25.1 18.9

22.8 | 26.8 23.8 15.4 IRCNN [62] | 22.6 | 26.8 24.2 16.8

Test Set	Pre-process	Training Strategy	Cent	erNet	(Res	Net-18)	Cent	erNe	t (Sw	in-T)
			AP	APs	$\mathrm{AP_{m}}$	AP_1	AP	AP_{s}	$\mathrm{AP_{m}}$	AP_1
COCO		- Detection	30.1	10.6	33.2	47.2	36.9	17.9	41.8	52.9
coco-a			14.5	1.2	10.4	38.6	19.9	2.7	16.9	46.2
	bicubic (×2)		16.2	4.1	15.3	31.1	18.6	4.0	17.8	39.7
	bicubic (×4)		8.0	4.6	10.5	10.1	10.6	5.7	12.8	16.7
	SRGAN [31] (×2)		14.8	2.6	14.3	27.9	16.6	3.0	16.5	33.4
	DBPN [20] (×2)		15.0	3.5	14.3	27.4	16.7	3.4	16.1	32.0
	Real-SR [4] (×2)		14.2	2.6	12.4	29.5	17.3	3.6	17.0	34.1
	BSRGAN [60] (×2)		16.8	4.2	15.8	36.9	20.2	4.8	18.1	40.5
	BM3D		10.4	0.8	6.8	27.9	10.9	0.7	8.8	35.1
	Restormer [59]		11.4	1.2	7.2	34.8	11.9	1.4	8.9	33.4
		Deg t	17.6	2.3	15.4	41.9	20.9	3.1	20.3	47.6
		Deg t + N	17.9	2.5	15.9	42.5	21.0	3.0	20.4	48.2
	-	D_r + Detection	17.7	4.8	15.8	41.0	21.4	5.6	19.6	46.3
		AERIS	18.4	2.7	16.4	42.5	21.6	3.2	20.4	49.0

J.P.Morean	Thi battering	JeMorron	J.P.Morroin	J.P.Morean	
AR	AIR	A	AH		
7		7			

IRCNN [62] 26.7 26.9 24.1 22.8

Deg t + N | 288 | 27 5 27 6 27 8

AERIS 29.3 28.6 28.0 28.2

(a). Original Image b) Low-Resolution Degraded Imag (c)/(d)/(e): Restoration Methods background is outputs of ARRD

ARRD: residual bilinear

 $\begin{array}{c|cccc} D_r + \text{Detection} & 15.1 & 1.8 & 12.7 & 40.1 \\ \textbf{AERIS} & 13.0 & 0.8 & 10.2 & \textbf{42.6} \\ \textbf{AERIS} & (\times 2) & \textbf{15.8} & \textbf{2.0} & \textbf{13.2} & 40.9 \\ \end{array}$

Single-degradation condition noise/ blur/ low-resolution

Proposed Method (AERIS, Auto-Encoding Resolution In Self-supervision):

1. x ----> t(x): Base on the image degradation functior $t(x) = (x \circledast k) \downarrow_s +n$,

Blur Kernel k:

isotropic Gaussian kernels k... anisotropic Gaussian kernels kaniso

Noise n:

Zero-mean additive white Gaussian noise $n \sim N(0, \sigma)$ $\sigma \sim U(0, 25/255)$ (e.g. 13.2/255) Resolution s: Random from 1~4 Type: Bicubic/ Bilinear/ Nearest

Implement on the detector (CenterNet for example):

Restoration loss:

$$l_d = |\hat{x} - x|_1 = |D_r(E(t(x))) - x|_1.$$
 $l_{total} = l_{obj} + \lambda \cdot l_d,$

object detection loss **Total loss:**

$$l_{total} = l_{obj} + \lambda \cdot l_d,$$