海淀区高三年级第二学期期末练习数 学(理科)

2013.05

本试卷共 150 分, 考试时间 120 分钟

— .	选	择题:	本大题共 8	小题,每小题 5 分,	共 40 分.	在每小题	列出的四个选项中	1,选出符合题目要求的
	_	项						
	1.	集合	$A = \{x (x -$	$1)(x+2) \le 0\}, B$	$= \{x x < 0\}$	0},则 A∪	B 的值为 ()	
		A. (-	$+\infty,0]$	B. $(-\infty, 1]$	С.	[1,2]	D. $[1, \infty]$)]
	2.	已知数	数列 $\{a_n\}$ 是名	公比为 q 的等比数	列,且 a ₁ ·	$a_3 = 4, a_4$	$=8$,则 a_1+q 的	值为()
		A. 3		B. 2	С.	3 或 -2	D. 3 或	-3
	3.	如图:	1,在边长为 a	1 的正方形内有不	规则图形(2. 向正方	形内随机撒豆子, 君	吉撒在图形 Ω 内和正方
		形内的	的豆子数分别	为 m,n ,则图形 Ω	面积的估	计值为 ()	
		A. $\frac{m_0}{n}$	$\frac{a}{a}$	B. $\frac{na}{m}$	C.	$\frac{ma^2}{n}$	D. $\frac{na^2}{m}$	
								左视图
	4.	某空间	 可几何体的三	视图如图 2 所示,	则该几何何	本的表面积	以为()	
		A. 180		B. 240		276	D. 300	
	5.	在四边的(边形 ABCD)	中 ,"∃λ∈ℝ, 使得	$\overrightarrow{AB} = \lambda \overrightarrow{B}$	$\overrightarrow{DC}, \overrightarrow{AD} =$	$\lambda \overrightarrow{BC}$ "是"四边形	ABCD 为平行四边形
		A. 充:	分而不必要条	4件	В.	必要而不	充分条件	
		C. 充	分必要条件		D	既不充分	也不必要条件	
	6.		学 1,2,3,4,5 五位数的个数		字的五位数	7,且5不持	非在百位,2,4 都不	排在个位和万位,则这
		A. 32		B. 36	C.	42	D. 48	
	7.	双曲约	线 C 的左右角	焦点分别为 F_1, F_2	,且 F ₂ 恰	好为抛物线	$\xi y^2 = 4x$ 的焦点,	,设双曲线 C 与该抛物
		线的-	一个交点为 A	,若 $\triangle AF_1F_2$ 是じ	人 <i>AF</i> ₁ 为原	医边的等腰	三角形,则双曲线	C 的离心率为 ()

A. $\sqrt{2}$ B. $1 + \sqrt{2}$ C. $1 + \sqrt{3}$ D. $2 + \sqrt{3}$

8.	若数列 $\{a_n\}$ 满足:存在正整数 T ,对任意正整数 n 都有 $a_{n+T}=a_n$ 成立,则称数列 $\{a_n\}$ 为周期
	数列,周期为 T . 已知数列 $\{a_n\}$ 满足 $a_1 = m(m > 0), a_{n+1} = \begin{cases} a_n - 1, & a_n > 1, \\ \frac{1}{a}, & 0 < a_n \le 1. \end{cases}$
	则下列结论中错误的是 ()
	A. 若 $a_3 = 4$,则 m 可以取 3 个不同的值
	B. 若 $m = \sqrt{2}$,则数列 $\{a_n\}$ 是周期为 3 的数列
	C. $\forall T \in \mathbb{N}^*$ 且 $T \geq 2$, $\exists m > 1$, 使得 $\{a_n\}$ 是周期为 T 的数列
	D. $\exists m \in \mathbb{Q}$ 且 $m \geq 2$, 使得数列 $\{a_n\}$ 是周期数列
. 填	至题:本大题共 6 小题, 第小题 5 分, 共 30 分. 把答案填在题中横线上
9.	在极坐标系中,极点到直线 $ ho\cos\theta=2$ 的距离为
10.	已知 $a = \ln \frac{1}{2}, b = \sin \frac{1}{2}, c = 2^{-\frac{1}{2}}$,则 a, b, c 按从大到小排列为
11.	直线 l_1 过点 $(-2,0)$ 且倾斜角为 30° ,直线 l_2 过点 $(2,0)$ 且与直线 l_1 垂直,则直线 l_1 与 l_2 的交点
	坐标为
12.	在 $\triangle ABC$ 中, $\angle A=30^{\circ}$, $\angle B=45^{\circ}$, $a=\sqrt{2}$,则 $b=$
13.	在正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 1, 若动点 P 在线段 BD_1 上运动,则 $\overrightarrow{DC}\cdot\overrightarrow{AP}$ 的取值范
	围是
14.	在平面直角坐标系中, 动点 $P(x,y)$ 到两条坐标轴的距离之和等于它到点 $(1,1)$ 的距离, 记点 P 的
	轨迹为曲线 W .
	(I) 给出下列三个结论:
	① 曲线 W 关于原点对称;
	② 曲线 W 关于直线 $y = x$ 对称;
	③ 曲线 W 与 x 轴非负半轴, y 轴非负半轴围成的封闭图形的面积小于 $\frac{1}{2}$.
	其中,所有正确结论的序号是
	(II) 曲线 W 上的点到原点距离的最小值为
. 解	答题,本大题共 6 小题,共 80 分. 解答应写出文字说明,证明过程或演算步骤
15.	(本小题共 13 分)
	已知函数 $f(x) = 1 - \frac{\cos 2x}{\sqrt{2}\sin(x - \frac{\pi}{4})}$.

(I) 求函数 f(x) 的定义域;

Ξ

(II) 求函数数 f(x) 的单调递增区间.

16. (本小题共 13 分)

福利中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为 5 元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为 50%;(2)每张中奖彩票的中奖金有 5 元,50 元和 150 元三种;(3)顾客购买一张彩票获得 150 元奖金的概率为 p,获得 50 元奖金的概率为 2%.

- (I) 假设某顾客一次花 10 元购买两张彩票,求其至少有一张彩票中奖的概率;
- (II) 为了能够筹得资金资助福利事业,求p的取值范围.

17. (本小题共 14 分)

如图 3,在直角梯形 ABCD 中, $\angle ABC = \angle DAB = 90^{\circ}$, $\angle CAB = 30^{\circ}$,BC = 2,AD = 4. 把 $\triangle DAC$ 沿对角线 AC 折起到 $\triangle PAC$ 位置,如图 4 所示,使得点 P 落在平面 ABC 上的正投影 H 恰好落在线段 AC 上,连接 PB,点 E,F 分别为线段 PA,AB 的中点.

- (I) 求证:平面 *EFH* // 平面 *PBC*;
- (II) 求直线 HE 与平面 PHB 所成角的正弦值;
- (III) 在棱 PA 上是否存在一点 M, 使得 M 到 P, H, A, F 四点的距离相等?请说明理由.

18. (本小题共 13 分)

已知函数 $f(x) = e^x$, A(a,0) 为一定点. 直线 $x = t(t \neq a)$ 分别与函数 f(x) 的图象和 x 轴交于点 M, N, 记 $\triangle AMN$ 的面积为 S(t).

- (I) 当 a = 0 时,求函数 S(t) 的单调区间;
- (II) 当 a > 2 时,若 $\exists t_0 \in [0, 2]$,使得 $S(t_0) \ge e$,求 a 的取值范围.

19. (本小题共 14 分)

已知椭圆 $M: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的四个顶点恰好是一边长为 2,一个内角为 60° 的菱形的四个顶点.

- (I) 求椭圆 M 的方程;
- (II) 直线 l 与椭圆 M 交于 A,B 两点,且线段 AB 的垂直平分线经过点 $(0,-\frac{1}{2})$,求 $\triangle AOB$ (O 为原点) 面积的最大值.

20. (本小题共 13 分)

设 A 是由 $m \times n$ 个实数组成的 m 行 n 列的数表,如果某一行(或某一列)各数之和为负数,则改变(或该列)中所有数的符号,称为一次"操作".

(I) 数表 A 如表 1 所示,若经过两次"操作",使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次"操作"后所得到的数表(写出一种方法即可);

1	2	3	-7			
-2	1	0	1			
表 1						

(II) 数表 A 如表 2 所示,若必须经过两次"操作",才可使得到的数表每行的各数之和与每列各数之和均为非负整数,求整数 a 的所有可能值;

a	$a^2 - 1$	-a	$-a^2$			
2-a	$1 - a^2$	a-2	a^2			
表 2						

(III) 对由 $m \times n$ 个实数组成的 m 行 n 列的任意一个数表 A,能否经过有限次"操作"以后,使得到的数表每行各数之和与每列各数之和均为非负实数?请说明理由.