Основы матричных вычислений, Экзамен (Теория)

Версия от 27.06.2021 12:03

Содержание

Связь прямой и обратной ошибок через число обусловленности.	2
Критерий сходимости ряда Неймана.	3
Существование и единственность LU и LDL. разложений.	4
Теорема о сходимости градиентного спуска для линейной системы с симметричной положительно определенной матрицей.	5
Оценка сходимости метода сопряженных градиентов для линейной системы с произвольной симметричной положительно определенной матрицей. Случай $\lambda_1 >> \lambda_2$.	6
Сходимость степенного метода для диагонализуемых матриц.	8
Вывод двух основных свойств QR алгоритма.	9
Теорема Леви-Деспланка и первая теорема Гершгорина.	10

Связь прямой	и обратной	ошибок	через	число	обусловл	енности.

Критерий сходимости ряда Неймана.

Существование и единственность LU и LDL. разложений.

Теорема о сходимости градиентного спуска для линейной системы с симметричной положительно определенной матрицей.

Оценка сходимости метода сопряженных градиентов для линейной системы с произвольной симметричной положительно определенной матрицей. Случай $\lambda_1 >> \lambda_2$.

Предложение. Для $A = A^{\top} > 0$ и любого многочлена $h(\lambda) : h(0) = 1$ степени k верно:

$$||e_k||_A \le \max_i |h(\lambda_i)|||e_0||_A$$

В общем случае мы использовали многочлен вида:

$$t_k(\lambda) = \frac{T_k \left(\frac{\lambda_1 + \lambda_n - 2\lambda}{\lambda_1 - \lambda_n}\right)}{T_k \left(\frac{\lambda_1 + \lambda_n}{\lambda_1 - \lambda_n}\right)}$$

Где T_k - многочлен Чебышева. Такой t_k меньше всего отклоняется от 0 на отрезке $[\lambda_n, \lambda_1]$, однако чем больше отрезок тем больше мы отклоняемся. Вообще говоря нас интересует отклонение только в точках $\lambda \in \{\lambda_1, \lambda_2, \dots, \lambda_n\}$. Давайте рассмотрим другой многочлен:

$$p_k(\lambda) = \frac{T_{k-1} \left(\frac{\lambda_2 + \lambda_n - 2\lambda}{\lambda_2 - \lambda_n}\right)}{T_{k-1} \left(\frac{\lambda_2 + \lambda_n}{\lambda_2 - \lambda_n}\right)} \left(1 - \frac{\lambda}{\lambda_1}\right)$$

(Заметка: на лекции путаница с знаком знаменателя аргумента T_i)

Тоесть мы уменьшили отрезок, а также пожертвовав степенью многочлена Чебышева, мы добавили множитель который обращается в 0 при $\lambda=\lambda_1$

Нам нужно оценить $\max |p_k(\lambda_i)|$, заметим, что:

$$\max_{i} |p_k(\lambda_i)| \le \max_{\lambda \in [\lambda_n, \lambda_2] \cup \{\lambda_1\}} |p_k(\lambda)| = \max_{\lambda \in [\lambda_n, \lambda_2]} |p_k(\lambda)|$$

Предложение. С лекции 14 нам известно:

$$\frac{T_k \left(\frac{a+b-2\lambda}{a-b}\right)}{T_k \left(\frac{a+b}{a-b}\right)} \le 2 \left(\frac{\sqrt{\frac{a}{b}}-1}{\sqrt{\frac{a}{b}}+1}\right)^k$$

Теперь оценим p_k на множестве $[\lambda_n, \lambda_2]$:

$$p_k(\lambda) = \frac{T_{k-1}\left(\frac{\lambda_2 + \lambda_n - 2\lambda}{\lambda_2 - \lambda_n}\right)}{T_{k-1}\left(\frac{\lambda_2 + \lambda_n}{\lambda_2 - \lambda_n}\right)} \left(1 - \frac{\lambda}{\lambda_1}\right) \le 2\left(1 - \frac{\lambda}{\lambda_1}\right) \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1} \le 2\left(1 - \frac{\lambda_n}{\lambda_1}\right) \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1}$$

Осталось заметить, что $1 - \frac{\lambda_n}{\lambda_1} \le 1$, тогда:

$$p_k(\lambda) \le 2\left(1 - \frac{\lambda_n}{\lambda_1}\right) \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1} \le 2\left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1}$$

Используя первое предложение можно сделать вывод:

$$||e_k||_A \le 2 \left(\frac{\sqrt{\frac{\lambda_2}{\lambda_n}} - 1}{\sqrt{\frac{\lambda_2}{\lambda_n}} + 1}\right)^{k-1} ||e_0||_A$$

Сходимость	степенного	метода	для	диагонализуемых	матриц.

Вывод двух основных свойств QR алгоритма.

Теорема Леви-Деспланка и первая теорема Гершгорина.