

planetmath.org

Math for the people, by the people.

functor category

Canonical name FunctorCategory
Date of creation 2013-03-22 18:25:40
Last modified on 2013-03-22 18:25:40

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification ${\rm msc}\ 18\text{-}00$ Classification msc 18A25Classification msc 18A05 Related topic SmallCategory ConcreteCategory Related topic Related topic Supercategories3 Defines category of functors Let \mathcal{C}, \mathcal{D} be categories. Consider the class O of all covariant functors $T: \mathcal{C} \to \mathcal{D}$, and the class M of all natural transformations $\tau: S \to T$ for every pair $S, T: \mathcal{C} \to \mathcal{D}$ of functors. Write $\mathcal{D}^{\mathcal{C}}$ for the pair (O, M).

For each pair of functors $S,T:\mathcal{C}\to\mathcal{D}$, write $\hom(S,T)$ the class of all natural transformations from S to T. If τ is in both $\hom(S,T)$ and $\hom(U,V)$, then S=U and T=V.

Using the composition of natural transformations, we have a mapping

• :
$$hom(R, S) \times hom(S, T) \rightarrow hom(R, T)$$
,

for every triple $R, S, T : \mathcal{C} \to \mathcal{D}$. Since composition of natural transformations is associative, the associativity of \bullet applies.

In addition, for each $S: \mathcal{C} \to \mathcal{D}$, we have the identity natural transformation $1_S \in \text{hom}(S, S)$. For every $\tau \in \text{hom}(S, T)$ and every $\eta \in \text{hom}(T, S)$, we have $\tau \bullet 1_S = \tau$ and $1_S \bullet \eta = \eta$.

From the discussion above, we are ready to call $\mathcal{D}^{\mathcal{C}}$ a category. However, unless hom(S,T) is a set for every pair of functors in O, $\mathcal{D}^{\mathcal{C}}$ is not a category. When $\mathcal{D}^{\mathcal{C}}$ is a category, we call it the *category of functors* from \mathcal{C} to \mathcal{D} , or simply a functor category.

That $\mathcal{D}^{\mathcal{C}}$ is a functor category depends on various restrictions being placed on the "sizes" of \mathcal{C} and \mathcal{D} :

Proposition 1. If C is http://planetmath.org/SmallCategoryU-small, then D^C is a category.

Proof. Suppose \mathcal{C} is \mathcal{U} -small. Consider the class $\hom(S,T)$. Each $\tau \in \hom(S,T)$ is determined by the collection of morphisms $S(A) \to T(A)$ for each object A in \mathcal{C} . This means that, for each A in \mathcal{C} , $\hom(S(A),T(A))$ contains the image of every $\tau \in \hom(S,T)$ under A. So the class of all these natural transformations is a subclass of the product

$$\prod_{A \in Ob(\mathcal{C})} \hom(S(A), T(A)) \tag{1}$$

Since $\mathrm{Ob}(\mathcal{C})$, as well as each $\mathrm{hom}(S(A), T(A))$ is a set, so is the product (1). Hence $\mathrm{hom}(S, T)$, being a subclass of (1), is a set, or that $\mathcal{D}^{\mathcal{C}}$ is a category.

Proposition 2. If in addition \mathcal{D} is a http://planetmath.org/SmallCategory \mathcal{U} -category, then so is $\mathcal{D}^{\mathcal{C}}$.

Proof. \mathcal{D} being a \mathcal{U} -category means that hom(S(A), T(A)) is \mathcal{U} -small, for every object A in \mathcal{C} . Since $Ob(\mathcal{C})$ is also \mathcal{U} -small (assumption in Proposition 1), the product (1) above is \mathcal{U} -small. Consequently, hom(S, T), being a subclass of (1), is \mathcal{U} -small. This shows that $\mathcal{D}^{\mathcal{C}}$ is a \mathcal{U} -category. \square

Proposition 3. If \mathcal{D} is furthermore \mathcal{U} -small, so is $\mathcal{D}^{\mathcal{C}}$.

Proof. We want to show that the class \mathcal{M} of all functors from \mathcal{C} to \mathcal{D} is \mathcal{U} -small. A functor $S: \mathcal{C} \to \mathcal{D}$ can be broken up into two components: a function $S_1: \mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$, and a function $S_2: \mathrm{Mor}(\mathcal{C}) \to \mathrm{Mor}(\mathcal{D})$, so that $S_2(A \to B) = S_1(A) \to S_1(B)$.

Define a binary relation \sim on \mathcal{M} so that $S \sim T$ iff they have the same first component: $S_1 = T_1$. It is easy to see that \sim is an equivalence relation on \mathcal{M} . Let [S] be the equivalence class containing the functor S. For every morphism $A \to B$, its image under the second component of every functor in [S] lies in $\text{hom}(S_1(A), S_1(B))$. So the size of [S] can not exceed the size of

$$\prod_{A,B\in \mathrm{Ob}(\mathcal{C})} \mathrm{hom}(S_1(A), S_1(B))$$

Since $Ob(\mathcal{C})$ is \mathcal{U} -small (assumption in Prop 1), so is $Ob(\mathcal{C}) \times Ob(\mathcal{C})$. Furthermore, since each $hom(S_1(A), S_1(B))$ is \mathcal{U} -small (assumption in Prop 2), [S] is \mathcal{U} -small as well.

Next, let us estimate the size of the class \mathcal{M}/\sim of equivalence classes in \mathcal{M} . First, note that for every functor $S:\mathcal{C}\to\mathcal{D}$, its first component is a function from the set $\mathrm{Ob}(\mathcal{C})$ to the set $\mathrm{Ob}(\mathcal{D})$ by assumption. As $[S]\neq [T]$ iff $S_1\neq T_1$, the size can not exceed

$$|\operatorname{Ob}(\mathcal{D})^{\operatorname{Ob}(\mathcal{C})}|$$

the cardinality of the set of all functions from $\mathrm{Ob}(\mathcal{C})$ to $\mathrm{Ob}(\mathcal{D})$. By assumption, $\mathrm{Ob}(\mathcal{D})$ is \mathcal{U} -small, so is $\mathrm{Ob}(\mathcal{D})^{\mathrm{Ob}(\mathcal{C})}$. As a result, \mathcal{M}/\sim is \mathcal{U} -small. Together with the fact that [S] is \mathcal{U} -small for each functor S, we have that \mathcal{M} itself must be \mathcal{U} -small, which completes the proof.