Chapter 15 Groupe symétrique

Exercice 15.1 *Exemples dans* S_7 Soient

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 5 & 2 & 7 & 4 \end{pmatrix} \quad \text{ et } \quad \sigma' = \begin{pmatrix} 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 6 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 6 \end{pmatrix}$$

deux permutations de $\{1, \dots, 7\}$.

- **1.** Déterminer σ^{-1} et $(\sigma')^{-1}$.
- 2. Écrire σ comme un produit de cycles à supports disjoints et écrire σ' sous la forme

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \sigma'(1) & \sigma'(2) & \sigma'(3) & \sigma'(4) & \sigma'(5) & \sigma'(6) & \sigma'(7) \end{pmatrix}.$$

- 3. Écrire σ et σ' comme produit de transpositions.
- **4.** Déterminer la signature de σ , σ' , $\sigma\sigma'$ et $\sigma^{-1}\sigma'\sigma$.
- 5. Déterminer $\sigma \sigma'$ et $\sigma' \sigma$.

Solution 15.1 *Exemples dans* S_7

Exercice 15.2 Calculer la puissance 38-ème de $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 7 & 3 & 2 & 6 & 4 & 5 \end{pmatrix}$. Solution 15.2

Dans \mathcal{S}_n , on considère une permutation σ et un cycle de longueur p

$$c = \begin{pmatrix} a_1 & a_2 & \cdots & a_p \end{pmatrix}.$$

Observer que la permutation $\sigma \circ c \circ \sigma^{-1}$ est un cycle de longueur p que l'on précisera. **Solution 15.3**

Soit V_4 la partie de \mathcal{S}_4 donnée par

$$V_4 = \{ 1, (1 \ 2) (3 \ 4), (1 \ 3) (2 \ 4), (1 \ 4) (2 \ 3) \}$$

Montrer que V_4 est un sous-groupe de S_4 , puis que V_4 est isomorphe au groupe produit $\{-1,1\}^2$. **Solution 15.4**

Soit p et n deux entiers tels que $2 \le p \le n$. Combien y-a-t-il de cycles de longueur p dans \mathcal{S}_n ?

Solution 15.5

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Pour $\sigma \in \mathcal{S}_n$, on note

$$P(\sigma) = \left(\delta_{i,\sigma(j)}\right)_{\substack{i=1...n\\j=1...n}} \in \mathcal{M}_n(\mathbb{R})$$

appelée matrice de permutation associée à σ .

- $\textbf{1.} \ \ \text{Montrer que l'ensemble} \ E = \left\{ \ P(\sigma) \ \middle| \ \sigma \in \mathcal{S}_n \ \right\} \ \text{est un sous-groupe de } \left(\mathbf{GL}_n(\mathbb{R}), \cdot \right), \ \text{isomorphe à } \left(\mathcal{S}_n, \circ \right).$
- 2. Vérifier

$$\forall \sigma \in \mathcal{S}_n, P\left(\sigma^{-1}\right) = \left(P(\sigma)\right)^T.$$

3. Quel est le commutant de E dans $\mathcal{M}_n(\mathbb{R})$? C'est-à-dire

$$C(E) = \left\{ X \in \mathcal{M}_n(\mathbb{R}) \mid \forall A \in E, AX = XA \right\}.$$

Solution 15.6