Упражнения: Изпитни задачи от минали издания на курса "Обучение за ИТ Кариера"

1. Хистограма

Четвърта задача от междинния изпит на 6 март 2016.

Дадени са **п цели числа** в интервала [1...**1000**]. От тях някакъв процент **p1** са под 200, друг процент **p2** са от 200 до 399, друг процент **p3** са от 400 до 599, друг процент **p4** са от 600 до 799 и останалите **p5** процента са от 800 нагоре. Да се напише програма, която изчислява и отпечатва процентите **p1**, **p2**, **p3**, **p4** и **p5**.

Пример: имаме n = **20** числа: 53, 7, 56, 180, 450, 920, 12, 7, 150, 250, 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Диапазон	Числа в диапазона	Брой числа	Процент
< 200	53, 7, 56, 180, 12, 7, 150, 2, 199, 46, 128, 65	12	p1 = 12 / 20 * 100 = 60.00 %
200 399	250, 200	2	p2 = 2 / 20 * 100 = 10.00 %
400 599	450	1	p3 = 1 / 20 * 100 = 5.00 %
600 799	680, 600, 799	3	p4 = 3 / 20 * 100 = 15.00 %
≥ 800	920, 800	2	p5 = 2 / 20 * 100 = 10.00 %

Вход

На първия ред от входа стои цялото число \mathbf{n} ($1 \le \mathbf{n} \le 1000$) — брой числа. На следващите \mathbf{n} реда стои \mathbf{n} 0 едно цяло число в интервала [1...1000] — числата върху които да бъде изчислена хистограмата.

Изход

Да се отпечата на конзолата **хистограмата** – **5 реда**, всеки от които съдържа число между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

Вход	Изход	Вход	Изход	Вход	Изход	Вход	Изход	Вход	Изход
3 1 2 999	66.67% 0.00% 0.00% 0.00% 33.33%	4 53 7 56 999	75.00% 0.00% 0.00% 0.00% 25.00%	7 800 801 250 199 399 599 799	14.29% 28.57% 14.29% 14.29% 28.57%	9 367 99 200 799 999 333 555 111 9	33.33% 33.33% 11.11% 11.11% 11.11%	14 53 7 56 180 450 920 12 7 150 250 680 2 600 200	57.14% 14.29% 7.14% 14.29% 7.14%

2. Деление без остатък

Четвърта задача от междинния изпит на 26 март 2016.

Дадени са **n-на брой цели числа** в интервала [**1**...**1000**]. От тях някакъв **процент р1 се делят без остатък на 2**, друг **процент р2** се **делят без остатък на 3**, друг **процент р3** се **делят без остатък на 4**. Да се напише програма, която изчислява и отпечатва процентите **p1**, **p2** и **p3**.

Пример: имаме n = **10** числа: 680, 2, 600, 200, 800, 799, 199, 46, 128, 65. Получаваме следното разпределение и визуализация:

Деление без остатък на:	Числа в диапазона	Брой числа	Процент
2	680, 2, 600, 200, 800, 46, 128	7	p1 = 7.0 / 10 * 100 = 70.00 %
3	600	1	p2 = 1 / 10 * 100 = 10.00 %
4	680, 600, 200, 800, 128	5	p3 = 5 / 10 * 100 = 50.00 %

Вход

На първия ред от входа стои цялото число \mathbf{n} ($1 \le \mathbf{n} \le 1000$) — брой числа. На следващите \mathbf{n} реда стои \mathbf{n} 0 едно цяло число в интервала [1...1000] — числата които да бъдат проверени на колко се делят.

Изход

Да се отпечатат на конзолата **3 реда**, всеки от които съдържа процент между 0% и 100%, с точност две цифри след десетичната точка, например 25.00%, 66.67%, 57.14%.

- На първият ред процентът на числата които се делят на 2
- На вторият ред процентът на числата които се делят на 3
- На третият ред процентът на числата които се делят на 4

Вход	Изход	Вход	Изход
10	70.00%	3	33.33%
680	10.00%	3	100.00%
2	50.00%	6	0.00%
600		9	
200			
800			
799			
199			
46			
128			
65			

3. Чертане на крепост

Пета задача от междинния изпит на 6 март 2016.

Да се напише програма, която прочита от конзолата **цяло число n**, въведено от потребителя, и чертае **крепост** с ширина $\mathbf{2} * \mathbf{n}$ **колони** и височина \mathbf{n} **реда** като в примерите по-долу. Лявата и дясната колона във вътрешността си са широки $\mathbf{n} / \mathbf{2}$.

Вход

Входът е цяло число n в интервала [3...1000].

Изход

Да се отпечатат на конзолата \mathbf{n} текстови реда, изобразяващи **крепостта**, точно както в примерите.

вход	изход
3	/^\/^\ _/_/

вход	изход
4	/^^\/^^\

вход	изход
5	/^^_/^^\

вход	изход
8	/^^^^\

4. Пеперуда

Пета задача от междинния изпит на 26 март 2016.

Да се напише програма, която прочита от конзолата **цяло число n**, въведено от потребителя, и чертае **пеперуда** с ширина **2 * n - 1 колони** и височина **2 * (n - 2) + 1 реда** като в примерите по-долу. **Лявата** и **дясната** ѝ **част** са **широки n - 1**.

Вход

Входът е цяло число n в интервала [3...1000].

Изход

Да се отпечатат на конзолата 2 * (n - 2) + 1 текстови реда, изобразяващи пеперудата.

вход	изход	вход	изход	вход	изход
3	*\ /* @ */ *	5	***\ /*** \ / ***\ /*** @ ***/ ***	7	*****\
			/ \ ***/ ***		*****/ ***** / \ *****/ **** / \ *****/ ****

5. Генератор за тъпи пароли

Шеста задача от междинния изпит на 6 март 2016

Да се напише програма, която чете две цели числа n и l, въведени от потребителя, и генерира по азбучен ред всички възможни "тъпи" пароли, които се състоят от следните 5 символа:

- Символ 1: цифра от **1** до **n**.
- Символ 2: цифра от **1** до **n**.
- Символ 3: малка буква измежду първите \boldsymbol{l} букви на латинската азбука.
- Символ 4: малка буква измежду първите \boldsymbol{l} букви на латинската азбука.
- Символ 5: цифра от 1 до **n**, по-голяма от първите 2 цифри.

Вход

Входът се чете от конзолата и се състои от две **цели числа n** и \boldsymbol{l} в интервала $[\mathbf{1}...\mathbf{9}]$, по едно на ред.

Изход

На конзолата трябва да се отпечатат всички "тъпи" пароли по азбучен ред, разделени с интервал.

вход		изход											
2 4	11aa2 11db2			11ad2	11ba2	11bb2	11bc2	11bd2	11ca2	11cb2	11cc2	11 cd2	11da2
3 1	11aa2	11 aa3	12aa3	21aa3	22aa3								
3 2	11aa2 21ab3							11bb3	12aa3	12ab3	12ba3	12bb3	21aa3
2	11aa2 12aa4 21ab3 22bb4 33aa4	12ab3 21ab4 23aa4	12ab4 21ba3 23ab4	12ba3 21ba4 23ba4	12ba4 21bb3	12bb3 21bb4	12bb4 22aa3	13aa4 22aa4	13ab4 22ab3	13ba4 22ab4	13bb4 22ba3	21aa3 22ba4	21aa4 22bb3

7. Магически числа

Шеста задача от междинния изпит на 26 март 2016.

Да се напише програма, която чете едно цяло **"магическо"** число, въведено от потребителя, и изкарва **всички** възможни **6-цифрени числа**, за които **произведението на неговите цифри** е **равно** на **"магическото" число.**

Пример: "Магическо число" -> 2

- 111112 -> 1 * 1 * 1 * 1 * 1 * 2 = 2
- 111121 -> 1 * 1 * 1 * 1 * 2 * 1 = 2
- 111211 -> 1 * 1 * 1 * 2 * 1 * 1 = 2
- 112111 -> 1 * 1 * 2 * 1 * 1 * 1 = 2
- 121111 -> 1 * 2 * 1 * 1 * 1 * 1 = 2
- 211111 -> 2 * 1 * 1 * 1 * 1 * 1 = 2

Вход

Входът се чете от конзолата и се състои от едно цяло число в интервала [1...600000].

Изход

На конзолата трябва да се отпечатат всички "магически" числа, разделени с интервал.

вход	изход										
2	111112	111121	111211	112111	121111	211111					
8	112122 121141 142111	112141 121212 181111	112212 121221 211114	112221 121411 211122		114112 122121 211212	114121 122211 211221	114211 124111 211411	118111 141112 212112		112114 121122 141211 212211 421111
531441	999999										