

HEЙPOCETЬ

мощный инструмент моделирования сложных процессов, основанный на принципах работы человеческого мозга

Узлы (нейроны) получают сигналы, обрабатывают их и передают дальше, создавая сложную сеть взаимосвязей

Нейросети, появившись в середине XX века, стремительно развиваются в наши дни благодаря новым технологиям и большим данным

Архитектура нейросети как многослойный пирог - данные идут на входной слой, обрабатываются в скрытых и выдаются на выходном

AAHHDIE NOCTUNAKT

на входной слой, проходят через скрытые слои, обрабатываются, и выходят на выходной слой в виде результата. Связи между нейронами характеризуются весами, определяющими значимость каждого сигнала

Важной частью архитектуры нейро сетей являются функции активации — они как "переключатели", решающие, передавать ли сигнал дальше по сети

ФЧНКЦИИ АКТИВАЦИИ	KAK PAEOTAЮT	ПЛЮСЫ	МИНЧСЫ
Сигмоида	Преобразует входные данные в диапазон от 0 до 1	Полезна для задач класси- фикации (например, "да/нет")	Медленная и склонна к "затух анию" сигнала
ReLU (Rectified Linear Unit)	Если вход положительны — передаёт его дальше, иначе — блокирует	Быстрая и эффективная, используется в большинстве современных нейросетей	Может "умереть" (перестатьп ередавать сигналы), если вхо ды всегда отрицательные)
Tanh	Преобразует входные данные в диапазон от -1 до 1	Полезна для задач, где важ- ны отрицательные значения	Медленнее, чем ReLU

Обучение нейронной сети основано на многократном прохождении данных через сеть и корректировке её параметров

C YYNTEAEM

Нейросеть получает набор данных с известными правильными ответами, сравнивает свои прогнозы с этими ответами и корректируя свои параметры. Этот метод широко используется в задачах классификации и регрессии.

BE3 YYNTEA9

Обучение без учителя применяется, когда правильные ответы неизвестны.

В этом случае сеть должна самостоятельно находить закономерности в данных. Этот подход часто используется для задач поиска аномалий

Основными алгоритмами обучения нейросетей являются градиентный спуск и обратное распространение ошибки

ГРАДИЕНТНЫЙ СПЧСК

ОБРАТНОЕ РАСПР.ОШИБКИ

Стоит отметить, что при обучении нейронных сетей возникают две основные проблемы - переобучение и не дообучение

Переобучение происходит, когда сеть становится слишком специализированной на тренировочных данных и плохо обобщает новые

ПЕРЕОБУЧЕНИЕ

HE GOOBYYEHVE

Обучение нейросети требует огромных вычислительных ресурсов и для этого используются различные типы оборудования

- ГРАФИЧЕСКИЕ
 ПРОЦЕССОРЫ

 NVIDIA Tesla или A100
- ТЕНЗОРНЫЕ ПРОЦЕССОРЫ Coзданы Google для нейросетей
- Тысячи вместе работающих серверов

Применение нейросетей охватывает разнообразные сферы — от повседневных задач до передовых технологий, меняющих привычный уклад жизни

Несмотря на впечатляющие достижения нейросетей, их массовое внедрение сопряжено с рядом серьезных вызовов и проблем

CEKPETHOCTS AAHHЫX ПРЕДВЗЯТОСТЬ АЛГОРИТМОВ TEXHUYECKUE OFPAHUYEHUSC Будущее нейросетей обещает грандиозные перемены благодаря интеграции новейших технологий оказывая влияния на наше общество и качество жизни

