ExaMath Groups	Mathematics Exam Class: LS	Prepared by: Georges H. Maamari Edited by: Hassan Ahmad
Number of questions: 3	Sample 01 – year 2023 Duration: 1½ hours	Name: Nº:

- إن هذا النموذج أعد بشكل تطوعى من المؤلف دون أي مقابل بهدف تأمين مادة هدفها تدريبي فقط.
- حقوق التأليف محفوظة للمؤلف ويستطيع الزملاء الأعزاء والأحباء التلامذة الإستفادة منه فنيا وتعليميا بأي طريقة ممكنة مع حفظ الحقوق تقديرا للجهد المبذول في التأليف.
 - يمنع منعا باتا مقاربة هذا النموذج بشكل مادي بأي طريقة من الطرق فهو نموذج مجاني بالمطلق و هدفه الخدمة العامة فقط.
- لا توجد صفة رسمية لمضمون النموذج فهو اُجتهاد شخصي للمؤلف ولا علاقة له بأي شكل من الأشكال بأي لجان رسمية وغيرها، ومستوى النموذج مستقل كليا عن مستوى الإمتحان الرسمي المفترض ، فهدف النموذج تدريبي محض.
- This exam consists of three issues on two pages.
- The use of a non-programmable calculator is allowed.

I- (5 points)

In the table below, only one of the proposed answers is correct. Choose the correct answer and justify your choice.

Nº	Question	Proposed answers		
11		A	В	C
1)	The solution set of the equation: $\ln(x+2) + \ln(x-2) = \ln 3 + \ln 4$ is:	$S = \left\{ \sqrt{11}; -\sqrt{11} \right\}$	$S = \left\{4; -4\right\}$	$S = \{4\}$
2)	$\lim_{\substack{x \to 0 \\ x > 0}} x \ln\left(\frac{1}{x}\right) =$	2	0	+∞
3)	Let g be the function defined over $I = \begin{bmatrix} 1 \ ; e^2 \end{bmatrix}$ by $g(x) = (\ln x)^2 - 2 \ln x$. The image of the interval I by g is $g(I) = (\ln x)^2 - 2 \ln x$.	[-1; 0]	[0;1]	[-1; 1]
4)	A company manufactures microchips. Each item may have two defects: <i>A</i> and <i>B</i> . We know that 2,8% of items have the defect <i>A</i> , 2,2% have the defect <i>B</i> and 95,4% have no defect. The probability that an item has both defects is:	0.005	0.004	0.046
5)	Below is the curve $(C_{f''})$ representing the second derivative function f'' of a function f defined over the interval $[-3.5;6]$.	f is convex over [-3; 3]	The representative curve of f has three inflection points	The derivative function f' of f is decreasing over $[0; 2]$

II- (6 points)

In this exercise, the results of the requested probabilities will, if necessary, be rounded to the thousandth. Feline leukosis is a disease affecting cats; It is caused by a virus.

In a large veterinary center, it is estimated that 40% of cats carry the disease.

Cats present in this veterinary centre are tested for the disease.

This test has the following characteristics:

- When the cat is a carrier of the disease, its test is positive in 90% of cases.
- When the cat is not a carrier of the disease, its test is negative in 85% of cases.

A cat is randomly selected from the veterinary center and we consider the following events:

M: "The cat is a carrier of the disease";

T: "The cat's test is positive";

 \overline{M} and \overline{T} denote the contrary events of the events M and T respectively.

- 1) a) Translate the situation into a weighted tree.
 - b) Calculate the probability that the cat is a carrier of the disease and that its test is positive.
 - c) Show that the probability of the cat's test being positive is 0.45.
 - d) A cat is chosen from among those who test positive. Calculate the probability that it is a carrier of the disease.
- 2) A sample of 20 cats is chosen at random from the veterinary center, including 15 females (event F). It is accepted that this choice can be assimilated to a draw with replacement.

We recall that M: "The cat is a carrier of the disease" and that p(M) = 0.4.

a) Complete the table below:

	F	\overline{F}	Total
M	6		8
$ar{M}$			
Total	15		20

- b) Calculate the probability that the chosen cat is a female who carries the disease.
- 3) Among the 15 females, 3 cats are chosen simultaneously and randomly.
 - a) What is the probability that at least one of these three is a carrier of the disease?
 - b) What is the probability that exactly two of the three cats chosen have the disease?

III- (9 points)

Part A

In the plane referred to an orthonormal system, given the curve (C') representing the derivative function f' of a function f differentiable over \mathbb{R} .

- 1) Using the curve (C'), determine with justification:
 - a) The sense of variations of the function f over \mathbb{R} .
 - **b)** The convexity of the function f over \mathbb{R} .
- 2) Suppose that the function f is defined over \mathbb{R} by $f(x) = (x+a)e^{-x}$ where a is a real number.
 - a) Express f'(x), the derivative function of f over \mathbb{R} as a function of a.
 - **b)** Determine graphically f'(0) and then deduce the value of a.

Part B

In this part we take a = 2 then $f(x) = (x+2)e^{-x}$.

Denote by (C) the representative curve of f in an orthonormal system $(O; \vec{i}; \vec{j})$.

- 1) a) Calculate $\lim_{x \to +\infty} f(x)$. Deduce an asymptote to (C).
 - **b)** Calculate $\lim_{x \to -\infty} f(x)$.
- 2) a) Show that, for every real number x, $f'(x) = (-x-1)e^{-x}$.
 - **b)** Set up the table of variations of the function f.
 - c) Show that the equation f(x) = 2 admits a unique solution α on the interval [-1.6; -1.5].
- 3) a) Determine, for every real number x, the expression of f''(x) and study the convexity of the function f. What does its point A of abscissa 0 represent for the curve (C)?
 - **b)** Write the equation of the tangent (T) to (C) at the point A.
- 4) Draw (C) and (T) in the same system.

QI	Answers	5 pts	
	Condition of existence: $\begin{cases} x+2>0 \\ x-2>0 \end{cases}, \begin{cases} x>-2 \\ x>2 \end{cases}, x \in]2; +\infty[.$		
1)	The equation is equivalent to $\ln(x^2-4) = \ln 12$; $x^2 = 16$ therefore $(x=4)$	1	
	\in]2; $+\infty$ [accepted) or ($x = -2 \notin$]2; $+\infty$ [rejected).		
	The correct answer is c .		
2)	$\lim_{\substack{x \to 0 \\ x > 0}} x \ln\left(\frac{1}{x}\right) = \lim_{\substack{x \to 0 \\ x > 0}} x \left[\ln 1 - \ln x\right] = -\lim_{\substack{x \to 0 \\ x > 0}} (x \ln x) = 0.$	1	
	The correct answer is b .		
	Table of variations of g over $I = [1; e^2]$:		
	$\begin{array}{c ccccc} x & 1 & e & e^2 \\ \hline e'(x) & - & 0 & + \end{array}$		
	g'(x) - 0 +		
3)	g(x) 0 0	1	
	So $g(I) = g([1; e]) \cup g([e; e^2]) = [-1; 0] \cup [-1; 0] = [-1; 0].$		
	The correct answer is a .		
4)	$P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{2.8}{100} + \frac{2.2}{100} - \left(\frac{100}{100} - \frac{95.4}{100}\right) = \frac{0.4}{100} = 0.004.$	1	
	The correct answer is b .		
	In $[-3,5;6]$, $f''(x)$ is equal to 0 three times and change sign each time, so the		
5)	representative curve of f admits three inflection points.		
	The correct answer is b .		

QII		Ansv	wers		5 pts
1) a)	0.4 M — M	0.9 T 0.1			1
1) b)	$P(M \cap T) = P(M) \times P(T/M) = 0.4 \times 0.9 = 0.36$.			1/2	
1) c)	$P(T) = P(M \cap T) + P(\overline{M} \cap T) = 0.36 + 0.6 \times 0.15 = 0.45$.			1/2	
(1) (d)	(d) $P(M/T) = \frac{P(M \cap T)}{P(T)} = 0.8$.				1/2
		$oldsymbol{F}$	$ar{F}$	Total	
2) a)	M	6	2	8	1
2) a)	$ar{M}$	9	3	12	
	Total	15	5	20	
2) b)	$P(F \cap M) = \frac{6}{20} = 0.$	3.			1/2

3) a)	$P(\text{ at least one of the three cats is a carrier of the disease}) = 1 - P(\text{ no cat is a carrier of the disease}) = 1 - \frac{C_9^3}{C_{15}^3} = 0.815$.	1/2
3) b)	$p = \frac{C_6^2 \times C_9^1}{C_{15}^3} = 0.297.$	1/2

QIII	Answers	10 pts	
	• The function f' is positive on $]-\infty$; 1], then the function f is increasing on this		
A.1.a	interval;	3/4	
71.1.4	• The function f' is negative on $[-1; +\infty[$, so the function f is decreasing on this interval.	74	
	• The function f' is decreasing on $]-\infty$; $0[$, so $f''(x) < 0$ on this interval, so the		
	function f is concave on $]-\infty$; $0[$;		
A.1.b	• The function f' is increasing on $]0$; $+\infty[$, so $f''(x)>0$ on this interval, so the	3/4	
	function f is convex on $]0$; $+\infty[$.		
A.2.a.	$f'(x) = e^{-x} - (x+a)e^{-x} = (1-x-a)e^{-x}$.	1/2	
A.2.b.	f'(0) = -1; 1-a = -1; a = 2.	1/2	
A.2.U.		72	
B.1.a.	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x+2}{e^x} = 0$, so the line $(x'x)$: $y = 0$ is a horizontal asymptote to		
	(C) at $+\infty$.		
B.1.b.	$\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} (x+2)e^{-x} = -\infty \times (+\infty) = -\infty.$	1/4	
B.2.a.	According to Part A $f'(x) = (1-x-a)e^{-x} = (1-x-2)e^{-x} = (-x-1)e^{-x}$.	1/2	
	$x -\infty$ -1 $+\infty$		
	f'(x) + 0 -		
B.2.b.	T e	1	
	f(x)		
	$-\infty$		
	On the interval $[-1.6; -1.5]$, the function f is continuous and strictly increasing.		
B.2.c.	$f(-1.6) < 2$ and $f(-1.5) > 2$ therefore, according to the corollary of the intermediate value theorem, the equation $f(x) = 2$ admits a unique solution α on the interval	3/4	
	[-1.6; -1.5].		
	$f''(x) = (-1) \times e^{-x} + (-x-1) \times (-1) e^{-x} = (-1+x+1) e^{-x} = x e^{-x};$		
	$e^{-x} > 0$ for all x, so $f''(x)$ has the sign of x.		
B.3.a.	• Over $]-\infty$; $0[f''(x) < 0$ so the function f is concave.	11/2	
	• Over $]0; +\infty[$, $f''(x) > 0$ so the function f is convex.		
	• In $x = 0$, the second derivative is equal to 0 and changes sign so the point A of abscissa 0 of (C) is the inflection point of this curve.		
D C I	$y_A = f(0) = 2$	2 /	
B.3.b.	(T): $y = f'(x_A)(x - x_A) + y_A = -1(x - 0) + 2$ so (T): $y = -x + 2$.	3/4	

