CUSTOMER SUPPORT TICKET CLASSIFICATION

Enhancing Efficiency in Customer Inquiry Management

AGENDA

TOPICS COVERED

- INTRODUCTION
- METHODOLOGY
- PROCESS STEPS
- RESULTS AND OBSERVATIONS
- CONCLUSION

"TRANSFORMING CUSTOMER SUPPORT WITH INTELLIGENT TICKET CLASSIFICATION FOR FASTER, MORE EFFICIENT RESPONSES."

METHODOLOGY

• TOOLS & TECHNOLOGIES:

Python, Pandas, NLTK, TensorFlow, Scikit-Learn, Seaborn, XGBoost

• DATA SOURCE:

CSV dataset containing customer support ticket information.

• APPROACH:

- 1. Data preprocessing: text cleaning, and augmentation with synonyms using WordNet.
- 2. Model selection: A neural network with embedding, convolutional layers, and dropout for classification.

PROCESS

DATA PREPROCESSING

- Removing special characters, converting text to lowercase, and encoding ticket types.
- Synonym replacement to increase data diversity for better generalization.

MODEL DEVELOPMENT

- Tokenization and padding, embedding layer,
 Conv1D for feature extraction, dropout layers,
 and dense layers.
- Early stopping to prevent overfitting and improve training efficiency.

OUTPUT - VISUALIZATIONS

PERFORMANCE METRICS

```
Epoch 2/20
                             27s 130ms/step - accuracy: 0.2040 - loss: 1.7562 - val accuracy: 0.2096 - val loss: 1.6145
212/212 -
Epoch 3/20
                           - 28s 130ms/step - accuracy: 0.2040 - loss: 1.6628 - val accuracy: 0.2113 - val loss: 1.6101
212/212 -
Epoch 4/20
                            29s 134ms/step - accuracy: 0.2232 - loss: 1.6185 - val accuracy: 0.2240 - val loss: 1.6023
212/212 -
Epoch 5/20
212/212 -
                             28s 130ms/step - accuracy: 0.2752 - loss: 1.5692 - val accuracy: 0.2668 - val loss: 1.5743
Epoch 6/20
212/212 -
                            27s 129ms/step - accuracy: 0.4032 - loss: 1.3690 - val accuracy: 0.3238 - val loss: 1.5449
Epoch 7/20
                            43s 138ms/step - accuracy: 0.5659 - loss: 1.0901 - val accuracy: 0.3870 - val loss: 1.5131
212/212 -
Epoch 8/20
                           - 46s 161ms/step - accuracy: 0.7109 - loss: 0.7897 - val accuracy: 0.4466 - val loss: 1.4886
212/212 -
Epoch 9/20
                            34s 130ms/step - accuracy: 0.8244 - loss: 0.5231 - val accuracy: 0.4696 - val loss: 1.5359
212/212 -
Epoch 10/20
212/212 -
                            27s 129ms/step - accuracy: 0.8828 - loss: 0.3660 - val accuracy: 0.5003 - val loss: 1.4642
Epoch 11/20
                            41s 130ms/step - accuracy: 0.9081 - loss: 0.2809 - val accuracy: 0.4979 - val loss: 1.5033
212/212 -
Epoch 12/20
212/212 -
                           - 27s 127ms/step - accuracy: 0.9209 - loss: 0.2365 - val accuracy: 0.5024 - val loss: 1.6913
Epoch 13/20
                             42s 132ms/step - accuracy: 0.9253 - loss: 0.2101 - val accuracy: 0.5018 - val loss: 1.6544
212/212 -
Epoch 14/20
212/212 -
                            40s 129ms/step - accuracy: 0.9379 - loss: 0.1862 - val accuracy: 0.4929 - val loss: 1.6660
```

Sample Ticket Classification: Refund request

CONCLUSION

SUMMARY

Summarize the project's significance and effectiveness in classifying tickets.

CHALLENGES

Managing class imbalance and optimizing model complexity.

FUTURE WORK

Experiment with transformer models and explore additional data augmentation techniques.