UT13.1: Administración de Linux: Gestión de procesos y servicios

Un **proceso** en Linux es una instancia de un programa que está en ejecución en memoria y que se identifican mediante un **PID**.

El **PID** (*Process Identificator*) es un número único que se asigna a un proceso cuando se inicia. Son números crecientes y los procesos que se terminan y luego se vuelven a iniciar van a tener un **PID** diferente.

El **PID** número 1 se asigna al primer proceso que inicia el sistema operativo al ser arrancado (que suele ser systemd).

Todo proceso en Linux tiene un Proceso Padre o *Parent ID* (**PPID**), generando un <u>árbol jerárquico de procesos</u> y estos a su vez siempre tendrán de padre al proceso 1.

JULIA EVANS @bork

SIGNAL

WORKING DIRECTORY

Relative paths (./blah) are relative to the working directory & chdir changes it.

COMMAND LINE ARGUMENTS

\$ env A=val ./program

see them in /proc/PID/cmdline

MEMORY

heap! stack! \equiv shared libraries! the program's binary! mmaped files!

THREADS

sometimes one Sometimes LOTS

En Linux existen principalmente dos tipos de procesos:

 Procesos del sistema. Son los procesos que actúan sin que el usuario los solicite. También reciben el nombre de demonios (daemon). Hay de dos tipos:

Procesos permanentes o de larga duración. Se crean cuando se arranca el sistema y permanecen activos hasta que se desconecta. Su función es soportar las actividades del sistema.

Procesos transitorios. Nacen y mueren cuando el sistema efectúa tareas propias, independientes de los usuarios.

 Procesos de usuario. Son los procesos asociados a cada usuario como consecuencia de la interpretación de sus órdenes.

A cada proceso en el momento de su creación se le asocia un <u>número único</u> (**PID**) que lo identifica. Además a un proceso están asociadas otras informaciones como:

- Un identificador o identificadores (USER, PID, UID, GID, PPID)
- La <u>hora</u> de inicio en que comenzó.
- Un estado; running, sleep, zombie, stopped, que veremos a continuación.
- Tanto por cierto % de uso de memoria y CPU
- Una prioridad relativa que indica la facilidad del proceso para acceder a la CPU:
 Oscila entre -20 y 19, donde -20 es la mayor prioridad.
- La terminal asociada (*TTY*) desde donde fue invocado (en el caso que esté asociado a una terminal)

Estados de un proceso

Estado de los procesos en Linux

Estados de un proceso

Los **estados** en los que puede estar un proceso en Linux son los siguientes:

Estado	Descripción del estado
D	Espera ininterrupible (sleep). Generalmente el proceso se encuentra esperando una operación de entrada/salida con algún dispositivo. El proceso no se puede interrumpir.
R	Proceso ejecutándose (running), corriendo en el procesador.
S	Espera interrumpible , el proceso está ejecutándose pero en espera de que se planifique para su ejecución en la CPU.
Т	Proceso esperando (<i>stopped</i>) mediante el envío de alguna señal.
Z	Zombie . Proceso terminado, pero cuyo padre aún sigue «vivo» y no ha capturado el estado de terminación del proceso hijo, y por tanto no lo ha eliminado de la tabla de procesos del sistema.
X	Proceso terminado esperando eliminarse de la tabla de procesos

El comando habitual para mostrar los procesos del sistema es ps

```
pavier@javier-VirtualBox: ~

javier@javier-VirtualBox: ~

PID TTY TIME CMD

2641 pts/17 00:00:00 bash

2737 pts/17 00:00:00 ps

javier@javier-VirtualBox:~$
```

Para mostrar todos los procesos se utiliza el parámetro: ps -aux

javier@jav	/ier-\	irtua	alBox:	~\$ ps -	aux		
USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT START TIME COMMAND
root	1	1.0	0.2	120080	6276	?	Ss 17:36 0:01/sbin
root	2	0.0	0.0	0	0	?	S 17:36 0:00 [kthr
root	3	0.0	0.0	0	0	?	S 17:36 0:00 [kwor
root	4	0.0	0.0	0	0	?	S< 17:36 0:00 [kwor
root	5	0.0	0.0	0	0	?	S 17:36 0:00 [kwor
root	6	0.0	0.0	0	0	?	S< 17:36 0:00 [mm_p
root	7	0.0	0.0	0	0	?	S 17:36 0:00 [ksof
root	8	0.0	0.0	0	0	?	S 17:36 0:00 [rcu_
root	9	0.0	0.0	0	0	?	S 17:36 0:00 [rcu_
root	10	0.0	0.0	0	0	?	S 17:36 0:00 [migr
root	11	0.0	0.0	0	0	?	S 17:36 0:00 [watc
root	12	0.0	0.0	0	0	?	S 17:36 0:00 [cpuh
root	13	0.0	0.0	0	0	?	S 17:36 0:00 [cpuh
root	14	0.0	0.0	0	0	?	S 17:36 0:00 [watc
root	15	0.0	0.0	0	0	?	S 17:36 0:00 [migr
root	16	0.0	0.0	0	0	?	S 17:36 0:00 [ksof
root	17	0.0	0.0	0	0	?	S 17:36 0:00 [kwor

Para mostrar todos los procesos y su prioridad, que veremos a continuación, podemos utilizar el parámetro: ps -e1

```
TIME CMD
                                              00:00:05 systemd
                                              00:00:00 kthreadd
                                              00:00:00 kworker/0:0H
                                              00:00:00 mm percpu wq
                                              00:00:01 ksoftirgd/0
                                              00:00:02 rcu_sched
                                              00:00:00 rcu bh
                                              00:00:00 migration/0
                                              00:00:00 watchdog/0
                                              00:00:00 cpuhp/0
                                              00:00:00 kdevtmpfs
                                              00:00:00 netns
                                              00:00:00 rcu tasks kthre
                                              00:00:00 kauditd
17
                                              00:00:00 khungtaskd
                                              00:00:00 oom reaper
                                              00:00:00 writeback
                                              00:00:00 kcompactd0
                                              00:00:00 ksmd
                                              00:00:00 khuqepaged
```

Para conocer el PID de un proceso en concreto usaremos el comando pidof

```
javi@javi-VirtualBox:~$ pidof bash
5362
```


Para mostrar el árbol de procesos (con sus dependencias) utilizaremos pstree

```
root@ubuntu-VirtualBox:/home/ubuntu# pstree
systemd ModemManager (gdbus)
                           {gmain}
                            -dhclient
          -NetworkManager-
                             {NetworkManager}
                             [gdbus}
                             {qmain}
          -accounts-daemon──{gdbus}
                             -{gmain}
           agetty
          -apache2—6*[apache2]
          -avahi-daemon——avahi-daemon
          -cgmanager
          -clamd---{clamd}
          -colord<del>---</del>{gdbus}
                    -{gmain}
          -cups-browsed---{gdbus}
          -cupsd
          -dbus-daemon
          -gnome-keyring-d----{gmain}
          -irqbalance
          -kerneloops
          —lightdm—;—Xorg——2*[{Xorg}]
                     -lightdm---upstart---at-spi-bus-laun---dbus-daemon
                                                               qdbus}
                                                               gmain}
                                          -at-spi2-registr---{gdbus}
                                          -bamfdaemon-
                                                        -{dconf worker}
                                                         [gdbus]
                                          -compiz---2*[{compiz}]
                                                    {dconf worker}
```


ps

JULIA EVANS @bork

ps

ps shows which processes are running

I usually run ps like this:

u means include together show all process

(ps-ef works too)

W

is for wide. ps auxwww will show all the command line args for each process

e

is for <u>environment</u>. ps auxe will show the environment vars!

wchan

you can choose which columns to show with ps (ps -eo ...)
One cool column is 'wchan' which tells you the name of the kernel function if the process is sleeping try it:

ps -eo user, pid, wchan, cmd

* process state *

Here's what the letters in ps's STATE column mean:

R: running S/D: asleep Z: zombie

1: multithreaded t: in the foreground

f

will show you an ASCII art process tree !

a process tree too

ps has 3 different sets
of command line arguments **

1. UNIX (1 dash)
2. BSD (no dash)
3. GNU (2 dashes)

you can write monstrosities like:

\$ ps f -f
forest(BSD)

full format
(UNIX)

Acciones sobre procesos

<u>Acciones</u> posibles sobre los procesos en Linux:

- **Detener Proceso**: Parar la ejecución de un proceso sin eliminarlo (es posible reanudar su ejecución con continuar). Comando **pkill**
- Finalizar o Matar proceso: Elimina este proceso. Se usa Kill. (killall para subprocesos)
- Cambiar la prioridad: A valores entre -20 y 19. Los valores negativos sólo los puede ejecutar el administrador. Se utiliza el comando nice o renice

```
ps -u usuario ; ps -fu usuario; ps -aux
pkill 23534  #detiene el proceso con ese PID
pstree  #muestra las relaciones de padres y procesos hijos
top  #muestra procesos en tiempo real. Se sale con 'q'
ps -feL  #-L muestra los hilos o hijos de cada proceso
kill 20258  #'mata' el proceso con ese PID
killall nautilus  #'mata' el proceso y subprocesos dependientes
```


Información sobre procesos

El comando **top** se utiliza para conocer los procesos de ejecución del sistema en tiempo real y es una de las herramientas más importantes para un administrador.

Muestra una interfaz en modo texto que se va a ir actualizando cada 3 segundos por defecto. Muestra un resumen del estado de nuestro sistema y la lista de procesos que se están ejecutando.

⊗ ⊝ (😣 🖨 📵 javier@usr-client01: ~								
	top - 21:28:17 up 27 min, 1 user, load average: 0,42, 0,44, 0,38								
	Tareas: 167 total, 1 ejecutar, 129 hibernar, 0 detener, 0 zombie %Cpu(s): 13,7 usuario, 2,7 sist, 0,0 adecuado, 83,6 inact, 0,0 en espera, 0,0 hardw int, 0,0								
	KiB Mem : 2041296 total, 497116 free, 581880 used, 962300 buff/cache								
									1262772 avail Mem
	USUARIO	PR	NI		RES	SHR S			
	javier	20		1237120		81216 S			
	root	20	0		82424	30760 S			
	javier	20	0	670004	37000	29348 S	0,7	1,8	
2685	javier	20	0	499312	31972	26804 S	0,7	1,6	0:01.48 notify-osd
2878	javier	20	0	48948	3776	3228 R	0,7	0,2	0:00.21 top
2335	javier	20	0	730836	42168	32668 S	0,3	2,1	0:01.46 nautilus
1	root	20	0	119604	5692	3944 S	0,0	0,3	0:07.46 systemd
2	root	20	0	0	0	0 S	0,0	0,0	0:00.00 kthreadd
4	root	0	-20	0	0	0 I	0,0	0,0	0:00.00 kworker/0:0H
6	root	0	-20	0	0	0 I	0,0	0,0	0:00.00 mm percpu wg
7	root	20	0	0	0	0 S	0.0	0.0	0:00.12 ksoftirgd/0
8	root	20	0	0	0	0 I	0,0	0,0	0:00.76 rcu sched
9	root	20	0	0	0		0,0		—
10	root	rt	0	0	0		0,0		0:00.00 migration/0
11	root	rt	0	0	0		0,0		
12	root	20	0	0	0	0 S	0,0	0,0	

Información sobre procesos

Las diferentes columnas que nos encontramos al ejecutar el comando top son:

```
PID USUARIO PR NI VIRT RES SHR S %CPU %MEM HORA+ ORDEN 4436 mario 20 0 982792 154512 91896 S 3,0 0,9 0:56.36 spotify
```

PID: es el identificador de proceso. Cada proceso tiene un identificador único.

USER (USUARIO): usuario propietario del proceso.

PR: prioridad del proceso (20 por defecto). RT significa que se ejecuta en tiempo real.

NI: asigna la prioridad relativa. Si tiene un valor bajo (hasta -20) quiere decir que tiene más prioridad que otro con valor alto (hasta 19).

VIRT: cantidad de memoria virtual utilizada por el proceso.

RES: cantidad de memoria RAM física que utiliza el proceso.

SHR: memoria compartida.

S (ESTADO): estado del proceso.

%CPU: porcentaje de CPU utilizado desde la última actualización.

%MEM: porcentaje de memoria física utilizada por el proceso.

TIME+ (HORA+) : tiempo de vida del proceso.

Información sobre procesos

El comando htop es un comando interactivo que supone una mejora de la interfaz de top:

Carga de cada núcleo, estado memoria y paginación

Columnas de información

Acciones

top

SULIA EVANS @bork

a live-updating summary of the top users of your system's resources

let's explain some numbers in top!

load average

3 numbers that roughly reflect demand for your CPUs on the system (1, 5, 15 minutes)

if it's higher than the *
of (PUs you have, that's
often bad

memory

4 numbers:

total /free/used / cached
One perhaps unexpected thing:
total is not free + used!

total = free + used + cached filesystem cache

this column is given as % of a single core. If you have 4 cores, this can go up to 400 % !

RES

this column is the "resident set size" aka how much memory your process is using.

SHR is how much of the RES is shared with other processes

htop

a prettier version of top *

1	<i>[]///////</i>	"		10%]
2	[Juin	111111111		20%]
3	UM	,		5%]
	UM	Used	cached	5%]
		minnin	unnum noumenn	4176]
SWP	Dullill			2/56

Procesos en primer y segundo plano

Linux es un SO operativo multiusuario y la consola no es una excepción. Ello implica que aún dentro de ella no hace falta lanzar comandos y esperar a sus resultado en primer plano, ya que siempre podremos lanzarlos en <u>segundo plano</u>.

Para ello se ejecuta el comando correspondiente seguido del símbolo &: comando &

Ejecución del comando en primer plano: hay que esperar hasta que termine el programa o proceso abierto.

Ejecución del comando en segundo plano: se recupera el control de la línea de comandos mientras se ejecuta el programa o proceso.

Con el comando bg se pueden ver los procesos en segundo plano.

Con fg ejecuto en primer plano los procesos que se encuentran en background.

JULIA EVANS @bork

CPU scheduling

the "scheduler"

Linux's scheduling
algorithm is called the
"Completely Fair
Scheduler"

this system is called

Prioridad de procesos

Podemos cambiar la **prioridad relativa** de cualquier proceso que vayamos a lanzar a través del comando **nice**.

Su sintaxis:

nice -n <pri>prioridad> comando

El rango de asignación de **prioridad** disponible es de **-20** (mayor) a **19** (menor)

Para procesos que ya están corriendo en el sistema se utiliza el comando **renice**, con la siguiente sintaxis:

```
renice prioridad [[-p] pid ...] [[-g] pgrp ...] [[-u] usuario ...]
```

```
root@ubuntu-VirtualBox:/home/ubuntu# pidof -s sleep
23487
root@ubuntu-VirtualBox:/home/ubuntu# nice -n 19 sleep 30 &
[2] 23511
root@ubuntu-VirtualBox:/home/ubuntu# renice -n 19 23511
23511 (ID de proceso) prioridad antigua 19, prioridad nueva 19
[1]- Hecho sleep 30
```

Dentro del comando **ps** se visualiza en la columna NI:

PID USUARIO	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	HORA+	ORDEN
2059 javier	20	0	1229908	161232	82300 S	4,3	7,9	21:27.67	compiz
1067 root	20	0	394800	80564	32940 S	1,3	3,9	3:09.66	Xorg
4942 javier	20	0	48948	3800	3168 R	1,0	0,2	0:00.34	top
T									

Prioridad de procesos

Veamos, como ejecutar el comando yes > /dev/null & con una prioridad baja de +10:

Si ahora necesitamos volver aumentar su prioridad en 5 habrá que utilizar renice indicando el PID de dicho proceso ya creado:

```
renice -5 24487
```


La <u>comunicación entre procesos</u> en Linux se lleva a cabo mediante el **envío de señales**. Las señales son notificaciones que un proceso le envía a otro.

El proceso receptor puede realizar varias tareas con una señal que recibe:

- Ignorar la señal, el proceso no hará nada con la señal que reciba. Algunas señales como la 9 (SIGKILL) no pueden ser ignoradas.
- Realizar la acción por defecto en el sistema, es decir, las acciones predeterminadas que el sistema le otorga a cada señal.
- Realizar una acción particular, programada por el programador del programa que dio origen al proceso.

Para poder ver la lista de señales que un proceso puede enviarle a otro, se utiliza el comando **kill** de la siguiente forma: kill -1

```
javier@javier-VirtualBox:~$ kill -l
                SIGINT
                                SIGQUIT
                                                4) SIGILL
                7) SIGBUS
                                8) SIGFPE
                                                9) SIGKILL
               12) SIGUSR2
                               13) SIGPIPE
16) SIGSTKFLT
               17) SIGCHLD
                               18) SIGCONT
                                               19) SIGSTOP
21) SIGTTIN
               22) SIGTTOU
                               23) SIGURG
                                               24) SIGXCPU
26) SIGVTALRM
              27) SIGPROF
                                               29) SIGIO
31) SIGSYS
                               35) SIGRTMIN+1 36) SIGRTMIN+2 37)
   SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6
              44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47)
```


Las **señales** más comunes del sistema Linux son las siguientes:

Valor	Nombre	Descripción
1	SIGHUP	Cuelga el proceso.
2	SIGINT	Interrupción de un proceso (interrupción procedente del teclado)
3	SIGQUIT	El proceso sale o se detiene (terminación procedente del teclado)
9	SIGKILL	Terminación de un proceso inmediatamente.
15	SIGTERM	Terminación del proceso.
17	SIGSTOP	El proceso se detiene sin terminar.
18	SIGTSTP	El proceso se detiene o se pausa sin terminar.
19	SIGCONT	El proceso continúa después de terminar.

Las señales SIGKILL y SIGSTOP no pueden ser capturadas, bloqueadas o ignoradas.

http://manpages.ubuntu.com/manpages/xenial/es/man7/signal.7.html

Las señales más conocidas se lanzan con kill y killall

```
root@ubuntu-VirtualBox:/home/ubuntu/Downloads# kill 21509
bash: kill: (21509) - No existe el proceso
[1]+ Hecho
                            sleep 60
root@ubuntu-VirtualBox:/home/ubuntu/Downloads# ps
 PID TTY
                 TIME CMD
 1962 pts/7
           00:00:00 sudo
 1963 pts/7 00:00:00 su
1964 pts/7 00:00:00 bash
21574 pts/7 00:00:00 ps
root@ubuntu-VirtualBox:/home/ubuntu# killall sleep
sleep: proceso no encontrado
                           sleep 30
[1]- Hecho
                           sleep 30
[2]+ Hecho
root@ubuntu-VirtualBox:/home/ubuntu# ps
 PID TTY TIME CMD
21714 pts/7 00:00:00 sudo
21715 pts/7 00:00:00 su
21716 pts/7 00:00:00 bash
21793 pts/7 00:00:00 ps
javi@javi-VirtualBox:~$ pidof less
3834
javi@javi-VirtualBox:~$ kill -9 3834
javi@javi-VirtualBox:~$
```


Cuando se necesita pausar o retrasar la ejecución de un comando dentro de un script bash se suele utilizar la herramienta **sleep**, la cual por defecto toma un parámetro que representa la cantidad de segundos a "dormir".

```
sleep NUMERO [SUFIJO]...
```

Los sufijos disponibles son:

- s Segundos
- m Minutos
- h Horas
- d Días

Servicios (demonios)

En **Linux** el comando **systemctl** se utiliza para controlar y administrar **servicios o demonios** en el sistema, durante el <u>arranque</u> o durante la <u>sesión</u> actual.

El comando systemctl admite los siguientes parámetros de uso:

Acción	systemd
Listar todas las unidades de servicios y sus estados	systemctl list-unit-files
Arrancar un servicio	systemctl start foo
Detener un servicio	systemctl stop foo
Reiniciar un servicio	systemctl restart foo
Mostrar estado de un servicio	systemctl status foo
Activar un servicio para que sea ejecutado durante el arranque	systemctl enable foo
Desactivar un servicio para que no sea ejecutado durante el arranque	systemctl disable foo

Servicios (demonios)

Estado servicios

El estado de los diferentes servicios según systematl list-unit-files:

- **Enabled**: El servicio está habilitado, se está usando. También indica que se iniciará de forma automática cuando iniciemos el equipo.
- **Disabled**: El servicio está deshabilitado en este momento. No se inicia de forma automática al reinicio.
- **Masked**: El servicio está completamente deshabilitado y <u>no se puede iniciar de ningún</u> <u>modo</u> sin previamente desenmascararlo.
- **Static**: Servicios que únicamente se usarán en el caso que otro servicio o unidad lo precise. Estos servicios pueden estar activos o inactivos, pero siempre están disponibles para cuando se necesite usarlos. Estos servicios no se pueden activar ni desactivar, pero se pueden enmascarar.

Servicios (demonios)

Estado servicios

Estatus	Descripción
Enabled	Auto-inicio habilitado
Disabled	Auto-inicio deshabilitado
Static	Arranca solo si es necesario por otro servicio o unidad

```
# systemctl list-unit-files --type=service
UNIT FILE
                                            STATE
arp-ethers.service
                                            disabled
atd.service
                                            enabled
                                            enabled
auditd.service
                                            disabled
autovt@.service
avahi-daemon.service
                                            enabled
blk-availability.service
                                            disabled
chrony-wait.service
                                            disabled
                                            enabled
chronyd.service
console-getty.service
                                            disabled
console-shell.service
                                            disabled
crond.service
                                            enabled
                                            enabled
dbus-org.fedoraproject.FirewallD1.service
                                            enabled
dbus-org.freedesktop.Avahi.service
dbus-org.freedesktop.hostname1.service
                                            static
dbus-org.freedesktop.locale1.service
                                            static
dbus-org.freedesktop.login1.service
                                            static
dbus-org.freedesktop.NetworkManager.service enabled
dbus-org.freedesktop.timedate1.service
                                            static
dbus.service
                                            static
...snip...
```


Comando	Acción	Ejemplo
ps	mostrar procesos	ps -aux
top	monitoreo en tiempo real de procesos	top
htop	interfaz de monitorio basada en top	htop
kill	matar un proceso	kill 11428
pkill	detener un proceso	pkill 11428
pidof	conocer el PID de un proceso	pidof bash
nice	prioridad para lanzar programa	nice -n-10 script.sh
renice	cambiar prioridad proceso corriendo	renice +19 890
pstree	mostrar el árbol de procesos	pstree
sleep	retrasar la ejecución	sleep 1m 2
systemctl	Comando de gestión de servicios	systemctl stop foo