

Actividad Evaluativa #2 Grupo 5

Facultad de Ingeniería

Martín Fernández Tomás Moya Wesly Ocampo Alan Toyar

Universidad Andrés Bello Ingeniería Civil Informática Ingeniería Civil Industrial

Octubre 2022

• Regresión Lineal Múltiple.

Figure 1: Introducción.

Variable Dependiente y Variables Independientes

Variable Dependiente:

"Rented_Bike_Count"

Variables Independientes:

- Temperature
- Humidity
- Windspeed
- Visibility
- Dew point temperature

- Solar_Radiation
- Rainfall
- Snowfall
- Seasons
- Holiday

Variables Categóricas eliminadas:

Date, Seasons, Holiday, Functioning_Day

Análisis Componentes Principales

Figure 2: Porcentaje explicado por la variabilidad de los datos.

Análisis Componentes Principales

Variables - PCA

Figure 3: Contribución de cada Variable.

Primer Modelo y Tabla Resumen

Variables	Estimación	Std.Error	t.value	P-valor
(Intercept)	862.4099	143.6747	6.0025	0.0000
Hour	39.2709	1.2170	32.2676	0.0000
Temperature	16.4810	5.6428	2.9207	0.0035
Humidity	-12.2193	1.5749	-7.7589	0.0000
Windspeed	23.5517	8.8547	2.6598	0.0078
Visibility	0.0026	0.0160	0.1602	0.8727
Dew_point_temperature	6.0702	5.8036	1.0459	0.2956
Solar_Radiation	-108.8511	11.4394	-9.5154	0.0000
Rainfall	-55.8156	6.0754	-9.1871	0.0000
Snowfall	-2.4772	24.7934	-0.0999	0.9204

Figure 4: Modelo 1.

Primer Modelo y Tabla Resumen

Shapiro-Wilk normality test

• W = 0.97948, p-value < 2.2e-16

Figure 5: Q-Q plot Modelo 1.

Segundo Modelo y Tabla Resumen

Variables	Estimación	Std.Error	t.value	P-valor
(Intercept)	733.1224	41.6961	17.5825	0.0000
Hour	39.1753	1.2099	32.3783	0.0000
Temperature	22.3565	1.0302	21.7011	0.0000
Humidity	-10.7600	0.4994	-21.5448	0.0000
Windspeed	23.1447	8.8366	2.6192	0.0088
Solar_Radiation	-112.1144	10.8111	-10.3703	0.0000
Rainfall	-56.6710	6.0099	-9.4296	0.0000

Figure 6: Modelo 2.

Evaluación de Desempeño

Medidas	Modelo_1	Modelo_2
R2.ajustado	41.1240119	41.1471163
COR	0.6281043	0.6283681
BIAS	-1.3120417	-1.4906354
RMSE	532.9735992	532.8188512

Figure 7: Comparación de los Modelos.

Evaluación de Desempeño

Figure 8: Comparación de los Modelos.

Concluyendo la presentación llegamos a los siguientes puntos importantes.

- No existe Normalidad en ninguno de los modelos.
- En el Modelo 2 logramos que todas las variables sean significativas.
- La Variabilidad de nuestro mejor modelo es entre regular y baja.
- Modelo 2 es mejor que el primer modelo por unas pocas décimas.