UCSan Diego JACOBS SCHOOL OF ENGINEERING

Navigation on PYNQ

"The Navericks": Patrick Hanrahan, Frank Chang, Benjamin Hobbs

WES237C Hackathon December 7, 2018

- Overview Ben
- System Diagram Pat
- Sensor Interface Frank
- HLS IP Core Frank
- Vivado Build Pat
- Graphical Display Ben
- Lessons Learned

Overview

- Using Python:
 - Poll XYZ acclerometer (ACC) and magnetometer (MAG) data from the PMOD NAV unit over SPI.
 - Determine the offset error on each axis of the magnetometer device.
- Using HLS:
 - Compute heading, pitch and roll (HPR).
- Back to Python:
 - Display the tilt compensated heading info.

NAV

System Block Diagram

Base Overlay & Custom Overlay

- Use base overlay to interface with PMODA over SPI.
- Use custom IP core to post process sensor data in Programmable Logic

Sensor Interface: NAV PMOD

- Used MicroBlaze PMODA to interface with NAV unit over SPI.
- NAV unit uses the LSM9DS1.
- The NAV unit has several devices in one package:
 - Gyroscope Angular (not used)
 - Accelerometer Earth's gravity (used)
 - Magnetometer Earth's mag field (used)
- Steps involved to get data:
 - Configure control registers.
 - Sample from ACC (16bit, +/-2g).
 - Sample from MAG (16bit, +/-4Gauss).

Quick calibration:

- Adjust offset of MAG by performing
 6-axis mean calibration.
 - Flip on each side and take the mean for each axis.
 - The mean is your offset.
- No offset calibration done on ACC.
- Re-align ACC and MAG axis to be North-East-Down (NED) for ACC and MAG.

MAG data with offset.

Sensor Data Processing: HLS IP Core

Nav Data Processing: Vivado Build & Bitstream Generation

- Two DMA input interfaces: MAG and ACC X,Y,Z axis data
- One DMA output interface: Heading, Pitch, and Roll data

Display Data

- Calculate cos() and sin() of data.
- Plot using Polar coordinates, initialized with 0 degrees at 'N'
- Used Dynamic plotting to constantly clear and update.

Lessons Learned

- Communicating between GPS and PYNQ more time consuming than imagined.
- HLS could be further optimized using cordic and fixed point arithmetic.
- Creating custom overlay with SPI, UART difficult to implement.
- Plotting on Python Dynamically

Lessons Learned: PYNQ UART

- UART not supported on PMOD
- Microblaze ARDUINO IO
 Processor may be configured for UART using io switch (only 9600 BAUD)

UC San Diego JACOBS SCHOOL OF ENGINEERING

PYNQ Z2

ACC DATA

HPR Calculation

Display Data

HPR DATA

