Selection vs. Social Influence

Monday, January 10, 2022

4:26 PM

Overarching theme: real networks exhibit homophily; individuals "look like" their friends. Why?

One possibility is "Selection": factors conspire to put similar people together

- Schelling segregation is our key example of this
- Also more pedestrian things like club membership

Another possibility is "social influence." For example:

- I look like my friends because I adopt their ideas over time, and they adopt mine.
- I look like my friends because as a group, we differentiate ourselves from "other" groups.

In this section of the class,

- we'll take an overview of how these processes could be modeled
- Discover some power tools from linear algebra that make this easy to think about
- We'll end with epidemiological models.

Common feature of all these models: they are all "spreading" processes on networks.

- Spreading opinions/ideas
- Spreading diseases
- Spreading customs/culture

A simple starter model Wednesday, February 23, 2022 10:03 AM
het's look at directed graphs.
Graph is G=(V, E)
- Nodes are individuals/agents
- An edge (i, j) means that
node i <u>listens</u> to node j.
- Each node if V has an opinion X; E[0,1]
note: "opinion" is on a continuum.
So if tapic is "capitalism is good,"
Co.5 [Ayn Rand Marx Biden
Berrie Sarders
Q: how do opinions spread?
Along listering lines!
Assumption: society is civil.

Networks where opinions don't converge

Wednesday, February 23, 2022

t = time step- t { 0, 1, --- } XI(E) = node i's opinion @ time t.

Idea: if I'm listening to a node, I adapt its opinion in the next time step.

$$\times_{3}(0)=0$$

$$X_{3}(1)=0$$
 $X_{2}(1)=1$

$$t 0 1 2$$

 $Y_{i}(t) 1 0 0$

$$X_3(t)$$
 0 0 1 t

Keeps on cycling forever.

Q: can this model ever settle down?

Concept: Convergence.

Informal: do opinions eventually settle donn? Not yet! something ast model or network or initial condition caused nonconvergence.

Convergence due to initial cond. and graph structure

Wednesday, February 23, 2022

10:03 AM

Q: what could yield convergence?
- Initial condition?

If $X_i(0) = X_j(0)$ for all i, j, then convergence is trivial.

- Graph structure?

0.5

I dea: The 0.5 will eventually spread to all other nodes.

But what is X, (t=1)?

Our model implicitly requires each node to have exactly one outgoing edge!

Fix: self-loop! 0-2 0.1

Interpret:
node | simply
refains its
opinion
each fine
top

What if I listen to 2 people?

Wednesday, February 23, 2022

Model issue: each node can only listen to 1 makes no sense!

What should happen in a graph like:

lignores everyone

2 listens to 1

3 listens to both I and 2.

Simple idea: if I have multiple outgoing edges, I average those nodes' ofinions to create nine.

 $50: \times_3(t+1) = \frac{\times_2(t) + \times_1(t)}{2}.$

t	0		2	3	
\times , (ϵ)		Y	1	1	
$X_2(\epsilon)$	0	1	((
$\times_{\flat}(t)$	0	1/2	1	1	

converged. to what? opinion of node 1.

opinions of nodes 2, 3 were eventually.

Q: why? no paths leaving node 1.

Strong Connectivity Wednesday, February 23, 2022 10:03 AM Q: When can nodes' apinions be exased? A: when some node(s) have no paths leaving. Def: A directed graph is called stronglyconnected if there is a directed path from every node to every other node. 1 2 0 -> 0 4 0 -> 0³ 0----- 0 40 -3 Not strongly not strongly Strongly Com. Conn. (no path from (no path from 3 → l) [- * 3) Fact: if a graph is strongly-connected, then no node's opinion is exased by these averaging opinion dynamics. 0 1 2 3 ×2 1/2 1 0 1/2 ---- \times_3 1/2 1 0

Periodicity

Wednesday, February 23, 2022 10:03

But strong connectivity clearly not enough for convergence.

Why no convergence?

Idea: the previous graph is periodic; all cycles have length 3.

(that's by the opinions repeat every 3 time steps).

How could we break this periodicity?

$$X_{1}(t+1) = \frac{X_{1}(t) + X_{3}(t)}{2}$$

note: 3 2 cycles: length - 1 length - 3

to same ofinion.

t	0	1	2_	3	— <i>(</i>	9/	21/		
\sim	1	1/2	1/2	3/4	5/8	1/16	7/32		5/8
X	1/2	1	1/2	1/2	3/4	5/8	9/16		5/8
X ₃	0	1/2	[1/2	1/2	3/4	5/8		5/8 5/8 5/8
	Co.	nverge	erce!	. Eve	enfual	/y, al	Il node	es ce	owerge

Aperiodicity

Wednesday, February 23, 2022 10:03 A

Def: A graph is periodic if there is an integer 6>1 that divides the length of every cycle. If a graph is not periodic, it is called aperiodic.

Oxto

Coxto

periodic

aperiodic

cycle lengths

1, 2

periodic k=3 of the of the operiodic cycle len:
3,4.

Fact: If a graph is strongly connected and aperiodic, then the averaging opinion dynamics converge to a common opinion that is a function of every node's initial opinion.