Freeform Search

Database:	US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index IBM Technical Disclosure Bulletins			
Term:	L9 and (methyl or alkyloxy or aryl)			
Display:	Documents in Display Format: - Starting with Number 1			
Generate: C Hit List © Hit Count C Side by Side C Image				
Search Clear Interrupt				
Search History				

DATE: Wednesday, April 21, 2004 Printable Copy Create Case

Set Name side by side	Query	Hit Count	Set Name result set
DB = 0	USPT,EPAB,JPAB,DWPI; PLUR=YES; OP=ADJ		
<u>L10</u>	L9 and (methyl or alkyloxy or aryl)	6	<u>L10</u>
<u>L9</u>	(primer\$1 or oligonucleotide\$1) near5 no\$1 complementary near5 modif\$7	10	<u>L9</u>
<u>L8</u>	L7 and 2 end and 3 end	5	<u>L8</u>
<u>L7</u>	L6 and DNA polymerase\$1	38	<u>L7</u>
<u>L6</u>	L5 and (alkyl or alkyloxy or alkylamino or aryl or aryloxy)	44	<u>L6</u>
<u>L5</u>	L4 and modif\$7 nucleotide\$1	134	<u>L5</u>
<u>L4</u>	(primer\$1 or oligonucleotide\$1 or probe\$1) near5 no\$1 complementary	1079	<u>L4</u>
<u>L3</u>	11 and ((no\$1 or less) near5 exten\$5)	6	<u>L3</u>
<u>L2</u>	L1 and exten\$5	6	<u>L2</u>
<u>L1</u>	(primer\$1 or oligonucleotide\$1 or probe\$1 or nucleic acid sequence\$1) near5 no\$1 complementary near5 modif\$3 near5 nucleotide\$1	6	<u>L1</u>

END OF SEARCH HISTORY

10026952

* * * * * * * * * * * * * * * * STN Columbus

FILE 'HOME' ENTERED AT 12:32:24 ON 21 APR 2004

=> file medline caplus biosis embase
COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

FILE 'MEDLINE' ENTERED AT 12:32:39 ON 21 APR 2004

FILE 'CAPLUS' ENTERED AT 12:32:39 ON 21 APR 2004 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 12:32:39 ON 21 APR 2004 COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC.(R)

FILE 'EMBASE' ENTERED AT 12:32:39 ON 21 APR 2004 COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

=> s (primer1 or oligonucleotide1)(10a)no# complementary(10a)modif7 nucleotide1 1 IS NOT A RECOGNIZED COMMAND

The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter "HELP COMMANDS" at an arrow prompt (=>).

- => s (primer# or oligonucleotide#)(10a)no# complementary(10a)modif###### nucleotide#
- L1 0 (PRIMER# OR OLIGONUCLEOTIDE#)(10A) NO# COMPLEMENTARY(10A) MODIF#
 ###### NUCLEOTIDE#
- => s (primer# or oligonucleotide#)(P)no# complementary(P)modif###### nucleotide#
 L2 1 (PRIMER# OR OLIGONUCLEOTIDE#)(P) NO# COMPLEMENTARY(P) MODIF#####
 ## NUCLEOTIDE#
- => d l2 bib ab kwic
- L2 ANSWER 1 OF 1 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
- AN 1976:212966 BIOSIS
- DN PREV197662042966; BA62:42966
- TI STUDIES OF THE COMPLEX BETWEEN TRANSFER RNA WITH COMPLEMENTARY ANTI CODONS PART 1 ORIGINS OF ENHANCED AFFINITY BETWEEN COMPLEMENTARY TRIPLETS.
- AU GROSJEAN H; SOLL D G; CROTHERS D M
- SO Journal of Molecular Biology, (1976) Vol. 103, No. 3, pp. 499-519. CODEN: JMOBAK. ISSN: 0022-2836.
- DT Article
- FS BA
- LA Unavailable
- The temperature-jump method was used to study the complex between yeast tRNAPhe and Escherichia coli tRNAGlu, which have the complementary anticodons GmAA and s2UUC, respectively. The binding constant (3.6 + 105 M-1 at 25° C) is about 6 orders of magnitude larger than expected for 2 complementary trinucleotides. The association rate constant (3 + 106 M-1 at 25° C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA · tRNA complex is due entirely to a much slower dissociation than expected for a 3 base-pair helix. An association enthalpy of -25 kcal/mol, nearly twice as large as expected for 2 stacking interactions in a 3 base-pair helix was found. The association entropy (-58 cal/deg per mol) is close to the expected value. The reaction occurs with a single relaxation and therefore does not involve any slow reorganization of the tRNA molecule. Structural variations were studied to investigate the

origin of affinity enhancement. The following general factors are important. The loop constraint, or closure of the 2 anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. Dangling ends, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity.

Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor of 7. These observations can be understood in terms of a model in which the short 3 base-pair helix is sandwiched between stacked bases and hence stabilized. The potential importance of loop-loop interactions and stacking effects for codon-anticodon bonding is emphasized. A possible simple physical basis may exist for the evolutionary choice of a triplet coding system.

AB. . . complementary trinucleotides. The association rate constant (3 + 106 M-1 at 25° C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA . tRNA complex is due entirely to a much slower dissociation than expected. . . of the 2 anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. Dangling ends, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity. Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor of 7.. .

=> s (primer# or oligonucleotide#)(P)(no# complementary or no#
hybridiz#######)(p)modif###### nucleotide#

1 (PRIMER# OR OLIGONUCLEOTIDE#)(P)(NO# COMPLEMENTARY OR NO# HYBRID IZ#######)(P) MODIF###### NUCLEOTIDE#

=> d l3 bib ab kwic

- L3 ANSWER 1 OF 1 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
- AN 1976:212966 BIOSIS
- DN PREV197662042966; BA62:42966
- TI STUDIES OF THE COMPLEX BETWEEN TRANSFER RNA WITH COMPLEMENTARY ANTI CODONS PART 1 ORIGINS OF ENHANCED AFFINITY BETWEEN COMPLEMENTARY TRIPLETS.
- AU GROSJEAN H; SOLL D G; CROTHERS D M
- SO Journal of Molecular Biology, (1976) Vol. 103, No. 3, pp. 499-519. CODEN: JMOBAK. ISSN: 0022-2836.
- DT Article
- FS BA
- LA Unavailable
- AB The temperature-jump method was used to study the complex between yeast tRNAPhe and Escherichia coli tRNAGlu, which have the complementary anticodons GmAA and s2UUC, respectively. The binding constant (3.6 + 105 M-1 at 25° C) is about 6 orders of magnitude larger than expected for 2 complementary trinucleotides. The association rate constant (3 + 106 M-1 at 25° C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA · tRNA complex is due entirely to a much slower dissociation than expected for a 3 base-pair helix. An association enthalpy of -25 kcal/mol, nearly twice as large as expected for 2 stacking interactions in a 3 base-pair helix was found. The association entropy (-58 cal/deg per mol) is close to the expected value. The reaction occurs with a single relaxation and therefore does not involve any slow reorganization of the tRNA molecule. Structural variations were studied to investigate the origin of affinity enhancement. The following general factors are important. The loop constraint, or closure of the 2 anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. Dangling ends, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity. Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor of 7. These observations can be understood in terms of a model in which the short 3

base-pair helix is sandwiched between stacked bases and hence stabilized. The potential importance of loop-loop interactions and stacking effects for codon-anticodon bonding is emphasized. A possible simple physical basis may exist for the evolutionary choice of a triplet coding system. AB. . . complementary trinucleotides. The association rate constant (3 + 106 M-1 at 25° C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA · tRNA complex is due entirely to a much slower dissociation than expected. . . of the 2 anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. Dangling ends, or noncomplementary nucleotides at the end of the double helix contribute strongly to the affinity. Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor of 7.. . => s (primer# or oligonucleotide#) (p) modif###### nucleotide# 444 (PRIMER# OR OLIGONUCLEOTIDE#) (P) MODIF###### NUCLEOTIDE# => s 14 and (no# complementary or no# hybridiz######) L5 5 L4 AND (NO# COMPLEMENTARY OR NO# HYBRIDIZ######) => dup rem 15 PROCESSING COMPLETED FOR L5 2 DUP REM L5 (3 DUPLICATES REMOVED) => d 16 1-2 bib ab kwic ANSWER 1 OF 2 MEDLINE on STN DUPLICATE 1 96428850 MEDLINE DNPubMed ID: 8831952 Recognition of the primers containing different modified nucleotide units by the Klenow fragment of DNA polymerase I from E Kolocheva T I; Levina A S; Nevinsky G A Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Russia. Biochimie, (1996) 78 (3) 201-3. Journal code: 1264604. ISSN: 0300-9084. DTJournal; Article; (JOURNAL ARTICLE) LA English FS Priority Journals EM199612 Entered STN: 19970128 Last Updated on STN: 19970128 Entered Medline: 19961203 A comparison of Km values and maximal rates of extension (Vmax) for primers containing different modified bases or mismatches, and fully complementary primers of the same length catalyzed by the Klenow fragment of E coli DNA polymerase I was carried out. Base modifications include T-T dimers and apurinic sites. In the case of mismatch, the number of complementary bases from the 3'-terminus to the noncomplementary nucleotide determines the efficiency of substrate incorporation, which is a measure of degree of interaction of the enzyme with its primer template. Differently, removal of one base in any position from the 3'-terminus of the primer is equivalent to shortening of the primer by one nucleotide unit, and decreases the affinity to the enzyme by 1.8-fold. Since apurinic sites fail to interfere with the efficiency of DNA synthesis, we suppose that the Klenow fragment of E coli DNA polymerase I does not participate in the correction of DNAs containing apurinic nucleotides units. Finally, the efficiency of elongation of the d(p primer was shown to decrease with an increase in T-T dimers in the

primer. When the d(pT)10m primer contains about 2.6 T-T dimers per

L6

AN

TΙ

ΑU

SO

CY

AΒ

- molecule, the efficiency of its elongation decreases by a factor of 8-18. TI Recognition of the **primers** containing different **modified nucleotide** units by the Klenow fragment of DNA polymerase I from E coli.
- AB . . . T-T dimers and apurinic sites. In the case of mismatch, the number of complementary bases from the 3'-terminus to the non-complementary nucleotide determines the efficiency of substrate incorporation, which is a measure of degree of interaction of the enzyme with its. . .
- L6 ANSWER 2 OF 2 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
- AN 1976:212966 BIOSIS
- DN PREV197662042966; BA62:42966
- TI STUDIES OF THE COMPLEX BETWEEN TRANSFER RNA WITH COMPLEMENTARY ANTI CODONS PART 1 ORIGINS OF ENHANCED AFFINITY BETWEEN COMPLEMENTARY TRIPLETS.
- AU GROSJEAN H; SOLL D G; CROTHERS D M
- SO Journal of Molecular Biology, (1976) Vol. 103, No. 3, pp. 499-519. CODEN: JMOBAK. ISSN: 0022-2836.
- DT Article
- FS BA
- LA Unavailable
- AΒ The temperature-jump method was used to study the complex between yeast tRNAPhe and Escherichia coli tRNAGlu, which have the complementary anticodons GmAA and s2UUC, respectively. The binding constant (3.6 + 105 M-1 at 25° C) is about 6 orders of magnitude larger than expected for 2 complementary trinucleotides. The association rate constant (3 + 106 M-1 at 25° C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the $tRNA \cdot tRNA$ complex is due entirely to a much slower dissociation than expected for a 3 base-pair helix. An association enthalpy of -25 kcal/mol, nearly twice as large as expected for 2 stacking interactions in a 3 base-pair helix was found. The association entropy (-58 cal/deg per mol) is close to the expected value. The reaction occurs with a single relaxation and therefore does not involve any slow reorganization of the tRNA molecule. Structural variations were studied to investigate the origin of affinity enhancement. The following general factors are important. The loop constraint, or closure of the 2 anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. Dangling ends, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity. Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor of 7. These observations can be understood in terms of a model in which the short 3 base-pair helix is sandwiched between stacked bases and hence stabilized. The potential importance of loop-loop interactions and stacking effects for codon-anticodon bonding is emphasized. A possible simple physical basis may exist for the evolutionary choice of a triplet coding system.

 . complementary trinucleotides. The association rate constant (3)
- AB. . . complementary trinucleotides. The association rate constant (3 + 106 M-1 at 25° C) is similar to typical values observed for oligonucleotides, so the enhanced affinity in the tRNA · tRNA complex is due entirely to a much slower dissociation than expected. . . of the 2 anticodon sequences into hairpin loops, accounts for about a factor 50 in the affinity. Dangling ends, or non-complementary nucleotides at the end of the double helix contribute strongly to the affinity. Modified nucleotides, like the Y base, in the dangling ends can contribute a special stabilization of up to a factor of 7.. .