topology for Hodge decompositions

M = get Rein rolld. (no body).

 $2(M; M) = \Re(d_M) \oplus (N(d_M) \cap N(S_M)) \oplus \Re(S_M).$

=: H(M). finite dim.

Det (de Rhom) de Shomology spaces for M

H(M) = + H"(M).

fr(M) = . { FEP (M; MM): dMF=0, SMF=0 }.

Betti runkers Br (M) := din H"(M).

Lemah Br (M) are topological. The random in metric does not alter Br (M), em hugh H(M) will change.

And If p: M, ->M, is a diffeomorphism, the.

Bu (M) = Bu (M2) VK.

1

Pt. N(SM)= R(dm) so AM) = N(dm)/R(dm). Rull back N (dm.) Pro > N(dm2). grus i kanophisms. R(dn.) = = R(dn.). Mireun, Hr (M) (M2), hy Some injunit and remain to k-find (white we. quetient by (k-1). In me moder d NCSM = RN-1 (8m). This is the Ance

topological feel in the serve of algebraic top).

Poincoré Mouven:

ander don't P(B) CM wh B= mail hall in IR" and that the ext. derivative.

delle 6 y de 6

operator in L2 (p(B): NB).

the If The Fec' (B, KR) nih. KZI. Ven, F= VM where M(n) = xid = [F(tx) tk-1 dt. who x(n)=. Z; niei. (Cheating a little b/c we) Inve a bonders in Variable. Tein (eil Stantude + * 1 () In: F(tn) the dt.). = Ii ein (ea) I' f(ful the of X D ((2x.F) (en) hat) = h } F(tx) l'db + E(x,ei) (Dnif) (tx) the dt. - [2] (ling) (dnif) (tr) th dt).

ni fo (Init) (tn) the dt = for dt f(tn) that t

[3]

De, do, Finke = I de f(+n), to de + k I Flenthold F(n)-0, base poin p=0 md Note: . By mying the m L2-hdd my F -> M. awaying, we (98.7). k=1,2, ..., n. · Bu(B)=0 denly. (71°(M) = N(dm) (R(SON) = {contr }). βo (B) = 1. Cech Chomology. Am. I finite algorithm of calculating Bu(M).

for a given namifold M. Poohlers: din H4(M) = din N(dn/nn) 2 din [!] Algebraic machinery . I finite coming. of M by open Substitute. M= D, U --- UDn.

A k-fold intersection. $D_{S=2}$ D_{S_1} $N - - - N D_{S_{1K}}$.

Whereof by $S \subset N = S_1, - - - N S$.

(H)

· (Mr-) Sheafs.
F(O) = collection of anon spaces, me
fr. each Ds, SCN
Condition: (a) White with wern of the maps!!
Ex: f(0) = R. (freach intuscolon, = on R-number)
F(D) = N(d) C12, R. Ds, L2 milivents fields
And we closed.
F(0) = D(0).
F(D) = Z = { 1 i} (nutiplicationly) =
F(D) = Z2 = { + i} (nutiplicationly) ~ needed for. Spiner.
the (ech te-cochains of is a cullete of reachs we in each \$(Ds) fr each Ds with 181=k+1. multi vector potation: $\langle f, e_g \rangle \in F(D_S) := value of fat Ds.$
$g_{K}: C^{h}(P, F). \longrightarrow C^{h+1}(D, F).$ $g_{K}: cochains g.$
(dut, es):= Zit, eiles so only possible. 151=k12. Sillsisis ies.

Charmy "hote check at for "Cech." - Inchream. Claim: Inti Du =0. duf, es> = \(\int, \(e_i \tes> \)_s. = \(\(\(\) \(\ If Cech cohomology spaces. $\mathcal{H}^{k}(\underline{D},f) = N(\partial_{u})/R(\partial_{u_{q_{1}}}).$ M= Vi=1 Di, epct, nd arpore. all intersections. the com { Dit is good - i.e., are diffeoraphic to balls. Then Bu(M)= dim (H1/(M)) = dim H1/(D, 12). Indep of dm, Sm. indep of the good corr Note: Blyon him is leporithm is Ird equality, and N(Du), D(Du-1) are.

Livite din for a greed come and muse the Sheat.

is R. Ie, finitely computable!

A main	ingredient	in the	moof;	or	Paincer	fgrethn.
Lemma.	Consider th	e Shenf	-			
Thon,	F(Ds) = & 1+" (D,F)	$= \mathcal{O}, \mathcal{C}$	f x71	- ·		
Defore	some $f \in C$ $p.o.n.$ $y \in C^{k-1}$	(D, F) o	nd Du	f=0 /iCD		Wi)
	$\langle 9, e_t \rangle := \sum_{k=1}^{\infty} \left(k + k \right)$	(1; < f, +			extral eno	h, cineis.) Le of Di
	Ju-19 ====================================		(9, e; 1	e,>.		
				(f,e; n	iles = l; -l	einls).
	t ann	Z: M:	(R, es)	Ds (5 M; (5;	(fie, aleines)

Duf=0 >> \(\frac{7}{1}\left(\frac{1}{2}\left(\frac{1}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}\left(\frac{1}2\left(\frac{1}2\left(\frac{1}\left(\frac{1}2\left(\frac{1}2\left(\frac{1}2\left(\frac{1}2\left(\frac{1}2\left(\ Note 1(D,F) = 203 k > 1, But Hr(P, R). I Sob some it is the. Retti unhers. So, shak is differer? We und Mi to set ut off med extend y z chi (D, F) to all of Ds. by 6. But if him was a for real number, we cannot do Anis. F(D5) - "a fixe sheaf, i.g., immand moler smoth outoffer Bx are the ke-dim top obstructions,

8