Сверточные сети большой глубины для распознавания изображений

Диц Даниил Денисович

НТУ Сириус

24 марта 2025 г.

Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition //arXiv preprint arXiv:1409.1556. – 2014.

Введение

- Разработана в 2014 году Карен Симонян и Эндрю Зиссерманом
- Названа в честь Группы визуальной геометрии (VGG)
 Оксфордского университета
- Значительное улучшение по сравнению с предыдущими моделями в ILSVRC 2014
- Ключевые особенности:
 - Продемонстрировала преимущества очень глубоких сетей
 - Установила простые, единообразные архитектурные принципы
 - Достигла ошибки top-5 7.3% на ImageNet

Архитектура сети VGG

Основные характеристики

 Вход: 224×224 RGB изображения

• Свертка: ядра 3×3

• Макс-пулинг: окна 2×2

• Прогрессия каналов:

 $\begin{array}{c} \bullet \ 64 \rightarrow 128 \rightarrow 256 \rightarrow 512 \rightarrow \\ 512 \end{array}$

Рис.: Структура сети VGG

Варианты VGG

Тип слоя	VGG-16	VGG-19
Сверточные	13	16
Полносвязные	3	3
Всего слоев	16	19
Параметры	138M	144M

Таблица: Сравнение архитектур VGG

- Все конфигурации используют:
 - Активацию ReLU
 - Макс-пулинг 2×2
 - 3 полносвязных слоя

Ключевые инновации

Важность глубины

- Гораздо глубже предыдущих моделей (AlexNet: 8 слоев)
- Продемонстрировала преимущества увеличения глубины с малыми фильтрами

Малые рецептивные поля

- Стек сверток 3×3 вместо больших фильтров
- Преимущества:
 - Меньше параметров
 - Больше нелинейностей (ReLU)
 - Лучшее обучение признакам

Метод обучения

• Мультимасштабное обучение:

- Случайное масштабирование изображений
- Улучшает инвариантность к масштабу

• Аугментация данных:

- Горизонтальное отражение
- Случайное кадрирование
- Изменение RGB

• Регуляризация:

- Dropout (p=0.5) в FC слоях
- L2 регуляризация

Рис.: Аугментация

Пример реализации на PyTorch

Сравнение производительности

Модель	Ошибка Тор-1	Ошибка Тор-5
AlexNet (2012)	37.5%	17.0%
VGG-16 (2014)	28.5%	9.9%
VGG-19 (2014)	28.7%	9.9%

Таблица: Ошибки классификации на ImageNet

Ключевые преимущества

- Проще архитектура, чем у конкурентов
- Лучшая обобщающая способность
- Легче модифицировать и расширять

Наследие и влияние

- Повлияла на последующие архитектуры (ResNet и др.)
- Широко используется как экстрактор признаков
- Доказала эффективность глубоких сетей
- Установила стандарт сверток 3×3

Ограничения

- Высокие вычислительные затраты
- Большие требования к памяти
- Позже превзойдена остаточными сетями

Заключение

- VGG продемонстрировала важность глубины в CNN
- Простая, единообразная архитектура достигла state-of-the-art результатов
- Установленные принципы проектирования актуальны до сих пор
- Основа для современных архитектур глубокого обучения

CosineAnnealingLR: адаптивный learning rate

Основная идея

Learning rate изменяется по косинусоидальному закону:

$$\eta_t = \eta_{\textit{min}} + \frac{1}{2} (\eta_{\textit{max}} - \eta_{\textit{min}}) \left(1 + \cos \left(\frac{T_{\textit{cur}}}{T_{\textit{max}}} \pi \right) \right)$$

- \bullet η_{max} начальный LR
- \bullet η_{min} минимальный LR
- Т_{сиг} текущая эпоха
- Т_{тах} общее число эпох

Реализация в PyTorch

train (...)

scheduler.step()

```
from torch.optim.lr scheduler import CosineAnnealingLR
optimizer = torch.optim.SGD(
model.parameters(), lr = 0.1)
scheduler = CosineAnnealingLR(
optimizer, T max=100, eta min=0.001)
for epoch in range (100):
```