First results of GLOBUS-M2 ASCOT5 modelling Bakharev N.N.

Motivation

Tests and benchmarks for future use in

 Modeling of FI distribution in the NBI-heated experiments -calc. of P_{abs}, losses, neutron rate, NPA signals, CD etc. (CX required)

 Modeling of the TAE-induced losses/redistribution. (MHD required)

Globus-M2

- New machine (first campaign 2019)
- R [cm]/a [cm]= 36/24 = 1.5
- $B_T = 1T$, $I_p = 500 \text{ kA}$
- Extreme P_{heat} /V = 6 MW/m³
- Diverse diagnostics, heating and CD systems, including 2 x 1 MW NBI, ICRH, LHCD, plasma gun

Globus-M2

Modelling overwiev

- 18 keV H (#32994-98)and () (#32952-57) NBI is considered.
- MHD-stable, neutron and NPA measurements exist (CX needed).
- Comparison with NUBEAM and homegrown GO simulations – fast in tracking algorithm(FITA).

Orbit modelling

✓ Sanity check of Magnetic eq. and marker inputs

Comparison with NUBEAM

NUBEAM

- uses GC approx. + Finite Larmor radius adjustment
- Slightly different options

NUBEAM markers -> ASCOT

Problems:

- Represented in GC approximation
- Not completely compatible with ASCOT:
- e. g. first order GCTRANS on leads to mu < 0 error and other errors (\sim 3% of markers)
- NUBEAM uses irregular grid and increased central statistics.
- Not very precise σ_{CX} for such low energies.

Comparison with NUBEAM

We will consider monoenergetic 18 keV beam

- ✓ Almost similar slowing-down.
- ✓ Density, predicted by NYBEAM is shifted inwards.
- ? Density, predicted by NYBEAM is lower.
- ? Different FI acceleration near E_{NBI}

Comparison with NUBEAM

The difference near LCFS is even higher -> GC approx. plays the main role

Comparison with NUBEAM distributions

3-component beam

Same features.

CX losses

 CX and increase in E_{beam} will result in even higher differences with NUBEAM which fails to reproduce the experiments.

FI losess

Losses	ASCOT (NO n0)	FITA	NUBEAM (NO n0)
Shine-through, %	-	8	6
wall	5% of markers	-	6% of P
CX, %	-	-	
FO(rho > 1), %	13(NUBEAM markers) 12 (FITA markers)	16	15

FO losses in ASCOT are a bit lower than in other codes

GC approximation in ASCOT

Good opportunity to compare GO and GC, implemented in one code

Not all orbits are easy to describe with GC

GC approximation in ASCOT

Good opportunity to compare GO and GC, implemented in one code

- ✓ Higher FI density with GC approximation.
- ✓ NUBEAM is somewhere between ASCOT's GO and GC.

SUMMARY

- Comparison with NUBEAM and FITA was performed.
- Modelling shows reasonable results, however some peculiarities are unclear
 - -> "smoke" test of input scripts is needed.
- After that we are ready for the real-world simulations:
 - -FI distribution (CX is needed)
 - -TAE or other MHD(MHD is needed)
- Consultations are needed.

ASCOT user-experience:

```
Great design – transparent (almost a "white-box") and flexible. :3 No backward compatibility. (^{J} \circ \Box \circ) ^{J} (^{\bot} \Box \bot)
```

Thanks to the ASCOT team and especially Konsta for his time

