1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embeddin to capture the full range of variation and meaning in those words.	ng vectors could be 10000 dimensional, so as	1/1 point
	○ True		
	False		
	∠ ⁷ Expand		
	Correct The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 1000.		
2.	True/False: t-SNE is a non-linear dimensionality reduction technique.		1 / 1 point
	True		
	○ False		
	∠ [™] Expand		
	 Correct t-SNE is a non-linear dimensionality reduction technique. 		
3.	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.		1/1 point
	x (input text)	y (happy?)	
	I'm feeling wonderful today!	1	
	I'm bummed my cat is ill.	0	
	Really enjoying this!	1	

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm

ecstatic" as deserving a label y=1.

True

	○ False	
	∠ ⁷ Expand	
	Correct Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".	
W	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1 / 1 point
	$ ightharpoonup e_{man} - e_{woman} pprox e_{king} - e_{queen}$	
	✓ Correct The order of words is correct in this analogy.	
	$oxed{igsquare} e_{man} - e_{king} pprox e_{queen} - e_{woman}$	
	$ ightharpoonup e_{man} - e_{king} pprox e_{woman} - e_{queen}$	
	✓ Correct The order of words is correct in this analogy.	
	Typesetting math: 100% $e_{queen}-e_{king}$	
	∠ ⁷ Expand	
	✓ CorrectGreat, you got all the right answers.	
	et E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, vhy don't we call $E*o_{1234}$ in Python?	1/1 point
	This doesn't handle unknown words (<unk>).</unk>	
	It is computationally wasteful.	
	\bigcirc The correct formula is E^T*o_{1234}	
	None of the above: calling the Python snippet as described above is fine.	
	∠ ⁷ Expand	
	 Correct Yes, the element-wise multiplication will be extremely inefficient. 	

4.

5.

u.	when tearning word embeddings, we create an artificial task of estimating 1 (our got corrected). It is okay if we do poorty on this
	artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

1 / 1 point

False

True

⊘ Correct

7. In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.

1/1 point

- $\bigcirc \ c$ is a sequence of several words immediately before t
- \bigcirc c and \$\$t\$\$ are chosen to be nearby words.
- \$\$c\$\$ is the one word that comes immediately before \$\$t\$\$
- \$\$c\$\$ is the sequence of all the words in the sentence before \$\$t\$\$ Typesetting math: 100%

⊘ Correct

8. Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function:

1/1 point

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

True/False: After training, we should expect θ_t to be very close to e_c when t and c are the same word.

- True
- False

∠⁷ Expand

✓ Correct

To review this concept watch the Word2Vec lecture.

9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$
True/False: X_{ij} is the number of times word j appears in the context of word i.
○ False
True
∠ ⁷ Expand
Correct \$\$X_{ij}\$\$ is the number of times word j appears in the context of word i.
You have trained word embeddings using a text dataset of ma, words. You are considering using these word embeddings for a language.

10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?

1/1 point

∠ Z Expand
Typesetting math: 100%
\bigcirc $m_1 >> m_2$
$m_1 \ll m_2$

⊘ Correct