1 Definitions

Definition 1.1 (Prorelation). A pre-ordered set of relations $X \to Y$, which is down-directed and an upper set. i.e A set, $P \subseteq \mathcal{P}(X \times Y)$ such that

- (i) A pre-order defined to be containment as relations, $r \subseteq s$ only if $\forall (x,y) \in X \times Y, (x,y) \in r \implies (x,y) \in s$
- (ii) (Down-directed), $\forall r, s \in P, \exists t \in P \text{ such that } t \subseteq r \text{ and } t \subseteq s$
- (iii) (Up-set) for any relation $u: X \to Y$, if $\exists p \in P$ such that $p \leq u$ then $u \in P$

Definition 1.2 (Composition of prorelations). Prorelations can be composed by taking all compositions of their elements as relations: for prorelations $P: X \to Y$ and $Q: Y \to Z$,

$$Q.P := \{q \circ p : p \in P \text{ and } q \in Q\}$$

Definiton 1.3 (Comparison of Prorelations). Two prorelations with same domain, co-domain are comparable as

for
$$P,Q:X\to Y$$
 , $P\le Q$ if $\forall q\in Q, \exists p\in P$ such that $p\subseteq q$

Definition 1.4 (Quasi-uniformity). A prorelation on a set $X, P : X \to X$ is a quasi-uniformity if it follows:

i
$$\,\forall p\in P$$
 , for any $x\in X,\, (x,x)\in p$ i.e. xpx

ii
$$\forall p \in P, \exists p' \in P \text{ such that } p' \circ p' \subseteq p$$

And in this case, (X, A) is called a quasi-uniform space.

Definition 1.5 (Uniformly Continuous function). A function, $f: X \to Y$ is called a uniformly continuous function,

$$f: (X,A) \to (Y,B) \text{ if, } \forall b \in B, \exists a \in A \text{ such that } f \circ a \subseteq b \circ f. \text{ meaning that } f.A \leq B.f \text{ or } A \downarrow \qquad \leq \qquad \downarrow_B.$$

$$X \xrightarrow{f} Y$$

$$X \xrightarrow{f} Y$$

Definition 1.6 (Promodule). A prorelation, $\phi: X \to Y$ is called a promodule $\phi: (X,A) \to (Y,B)$ if it obeys: $\phi.A \le \phi$ and $B.\phi \le \phi$

Hereon, work in progress

Definiton 1.7 (Composition of Promodules).

Definition 1.8 (Comparison of Promodules).

Definition 1.9 ($(-)_* : \mathrm{QUnif} \to \mathrm{ProMod}$).

Definiton 1.10 $((-)^* : \operatorname{QUnif}^{op} \to \operatorname{ProMod})$.

Definiton 1.11 (Fully Faithful).

Definiton 1.12 (Fully Dense).

Definiton 1.13 (Topologically Dense).

2 Propositions

Proposition 2.1 (Promodule Category).

Proposition 2.2 $((-)_*$ is a Functor).

Proposition 2.3 $((-)^*$ is a Functor).

Proposition 2.4 (Proposition 1). Fix a uniformly continuous map, $f:(X,A)\to (Y,B)$

- (a) f is fully faithful $\iff A = f^o.B.f$
- (b) f is fully dense $\iff \forall b \in B, \exists b' \in B \text{ such that}$