

Quality assessment and read preprocessing

Sarai Varona

<u>BU-ISCIII</u> <u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

22 - 25 Noviembre 2021, 1ª Edición Programa Formación Continua, ISCIII

Step in the process

Raw output files format

.bcl .fastq

454 .sff

Nanopore .fast5 .fastq

PacBio RSII Bax.h5 fasta

FASTQ format

- Is a FASTA file with quality information
- Within HTS, FASTA contain genomes y FASTQ reads

Quality: must be 1 bit

FASTQ format

- Each base has an assigned quality score
 - Sequencing quality scores measure the probability that a base is called incorrectly
- How is it calculated?

Phred transforming

| '''*((((***+))%%++)(%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

- Light intensity is used to calculate the error probabilities
- Convert error probability into Phred score quality -Ewing B, Green P. (1998)

 Phred originated as an algorithmic approach that considered Sanger sequencing metrics, such as peak

resolution and shape

- Convert error probability into Phred score quality in real time on Illumina platforms
- Q scores are defined as a property that is logarithmically related to the base calling error probabilities (P)
- Phred quality range between 0-40 for Sanger and Illumina
 1.8+

$$Q = -10 \log_{10} P$$

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1,000	99.9%		
40	1 in 10,000	99.99%		
50	1 in 100,000	99.999%		

 Convert Phred quality score into ASCII, a compact form, which uses only 1 byte per quality value

ASC	II BASE=3	3 Illumina	, Io	n Torrent	, PacBio	and S	anger				
Q	Perror	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33	0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34	0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35	0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36	0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59;	37	0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38	0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39	0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40	0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41	0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42	0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

 Phred+33 (Sanger and current Illumina). 0 Phred quality correspond to decimal 33, which is the symbol!

Q	P error	ASCII									
0	1.00000	64 @	11	0.07943	75 K	22	0.00631	86 V	33	0.00050	97 a
1		65 A	12	0.06310	76 L	23	0.00501	87 W	34	0.00040	98 b
2	0.63096	66 B	13	0.05012	77 M	24	0.00398	88 X	35	0.00032	99 c
3	0.50119	67 C	14	0.03981	78 N	25	0.00316	89 Y	36	0.00025	100 d
4	0.39811	68 D	15	0.03162	79 0	26	0.00251	90 Z	37	0.00020	101 e
5	0.31623	69 E	16	0.02512	80 P	27	0.00200	91 [38	0.00016	102 f
6	0.25119	70 F	17	0.01995	81 Q	28	0.00158	92 \	39	0.00013	103 g
7	0.19953	71 G	18	0.01585	82 R	29	0.00126	93]	40	0.00010	104 h
8	0.15849	72 H	19	0.01259	83 S	30	0.00100	94 ^	41	0.00008	105 i
9	0.12589	73 I	20	0.01000	84 T	31	0.00079	95	42	0.00006	106 j
10	0.10000	74 J	21	0.00794	85 U	32	0.00063	96 -			

 Phred+64 (Solexa and Illumina 1.3-1.5)

Phred 33 example

@HWI-ST731_6:1:1101:1322:1938#1@0/1 NTGACAAAGGGCTAATATCCAGAATCTACAAAGAACTTAAACAAATGTATAAGAATAAAAGTATAGTGCTAACAAT + #1:BDDADFDFDD@F>BGFIIIB@CFHIHICAGBC9CBCBGGIGCFF??>GGHFHIGGEGI<FECGDE=FHCHEG=

$$Q=-10*log10(0.001)=30$$
 ASCIII 33+30 = 63

Clara Delahaye, Jacques Nicolas. Nanopore MinION long read sequencer: an overview of its error landscape. 2020. ffhal-03123133f

 Nanopore quality score (Q) does not follow Phred scores

To estimate error rate (E) (locally and at read level):
 E = 0.015Q2 - 1.15Q + 24

FASTQ format

Illumina read header

@HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name					
6	flowcell lane					
73	tile number within the flowcell lane					
941	'x'-coordinate of the cluster within the tile					
1973	'y'-coordinate of the cluster within the tile					
#0	index number for a multiplexed sample (0 for no indexing)					
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)					

@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:2458:1027 1:N:0:ACAGTG AGAAAAAACCTTGGANGGAAAAAATCAGACATTTTCTAGAGGTGGAAGGCAAACTGAACAAAGAAATAATTCACA DGGGEDHHHHGGGFE#CBACBCA<?HHHHBHHHHHHHHHHHHHEHEFEGGGGGG/GGDDDGHFHGFCHFHHEHEH8 HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3082:1029 1:N:0:ACAGTG GGTAATACAGACTGANATGATCAAAGGCATGCTGGAAACAAACCTATTAAAGATAAGCTTGGATCAAGCTTTCAT B:B:?BB/:=55177#55877<775EDD>E=B?BBBBGGGDDAG@G>GGGGGG@)EEEEBEG>GGGGGGAAA?<[@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3185:1033 1:N:0:ACAGTG CTGGGACATTGCTCNTGGCTGGGAGTCACCTGTCTGGGACATTGCTCAGGGCTGGGAGACACGTGTTGGAGGGA(@HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3268:1033 1:N:0:ACAGTG ATTCAAATTAGAAGANAGTTGATCGTTCTTCATGATGCCCAAAAATTTCACTGAGAAAACCCTTTTTTAAGCCCAC IIIIIIIIIIFFFFE#ABACFEEFFIIGIIIFIHE@BIIIIIIIIHHIIFIIF>HHIHIFGDIIIIIIGFHIEGH HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3400:1035 1:N:0:ACAGTG rcctgctttaggagantcctcatgctctgacaggatgctctctatgtgagttgagctggtcttctcacttttatag IIIIIHIHIIGGEGG#AACA@?=?BHHIIIIIHHIHIINIHIHHGIHIHGHGIGIHGEGGGGHG@EFGGCEFAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:3962:1033 1:N:0:ACAGTG CCACCAACACAGTCTNCACCTTCTGTTGCTGGTGATAGATTTTTGCACCTTTCCATCCTCCAGGTTTCAAAATAGC HHFHHDHDHH>C?CA#EEEE>?A?>HHDGHEGBGBCEEEEGHHF8HEHEEHECH,=>>==EAEE>BEBBAEAACAB @HWUSI-EAS1752R:21:FC64JUKAAXX:3:1:4491:1028 1:N:0:ACAGTG GADGGEGGEGBBB?B#@=@@72:64GGGFGB>GGGBDG<DBGB<DA??/?###############################

ASCII-coded (0-40):

- "!"#\$%" lowest quality
- "FGHI" highest quality

FASTQ format

Nanopore read header

@d76be4fb-11a9-47e7-90be-c4f15591e0d9 runid=ba02134f00f2059e7b2dc248113c02f76577b101 read=11 ch=142 start_time=2019-06-27T11:09:03Z flow_cell_id=FAH59799 protocol_group_id=k6963 sample_id=k6963

- @read identifier
- run-id
- read-id
- channel
- start_time
- flow_cell_id
- protocol_group_id
- sample id

```
b101 read=11 ch=142 start_time=2019-06-27T11:09:03Z flow_cell_id=FAH59799 protoc
ol_group_id=k6963 sample_id=k6963
CATTGTACTGATTCAGTTACAATATTGCTGCTTTTCATCAAGGAGAAAGTAATGACAGCGCATCGCAGTGAAAAGAGACT
TCGACCGAAAAAATGCAGAGGCAATGCCACGCCAGCATGACCAGGCAGCAGCGAAAGGGTGCTCGAGATCTCGGACTGTG
ACAACGGAAAAAAGCCAGGGCGATCGTCGCCGCCATGACGAAGTGCTGGCCGAAAGCACGCGCAGGAGTTCCCAGCTATC
TGGCAGACCGGCTCCAGCAAAAGCAATATGAGAATATGAACGAGGTGCTGGCCAGCCGCCTCAATGAACTGCTCGGCGGA
GAACGGGGATAGCGCGAAAATTAATAATGACGATGTAGATAAACCAGAAGCTCAAATGATGTATTCCC
##$&&"#%$$&$17)$#$%#%#'''**)*%"'3679*%*((70>->>B>;>'&,400+&''89?344.&'0=N61%+$33
*)1>;7/++))&##%%(38?;=@?8-?A>4432&(,35*+;6%%$###+'321%+%$)*+$#%')$((158;;%2/10..
8+>66A:9?>79-+*-$$%+,,.-/-*$**,1680('(+2('**,%%.))))600/(+.*)$#&'#2222,<==B:9,6+
-%%$.//*1B9<;)=@&20.--53729</99246##+5))/-;>:;7(*41$#+6&33*'%(*13-$8'9;8/'++*)46
8/)'+,+56%;2207#$(0.7;6:A2--('+-,".%%"%&%'',=<A74973/.'%&'()$$+)$*,;5'%#")5$()*+)
%*610&3>2++%((0366*&#&)$)8:=@2-20%&"$$)$-,1)=8/+&&9/D3C>446%%'&(*+1,
@6d14c02c-1950-46f3-804c-3391a8020324 runid=ba02134f00f2059e7b2dc248113c02f76577
b101 read=6 ch=451 start_time=2019-06-27T11:09:04Z flow_cell_id=FAH59799 protoco
l_group_id=k6963 sample_id=k6963
GGTATTACTTCGTTCAGTTACGTGTGCTCGCTTCGGTTTGATCGCCTGTTAAACGACGCGCGCCACCCGAGGTGATATCT
CCCTGCGCAGCGCGATTGCCAGAACCACCGGCGCAGCAGTAGTTCTGCATGAATAACCGAGCAGGCCAGTAGAAATCGGG
GCAATAAACAGGTACTTAATTTCACTTTTGTCACATCTCATGCAAAAAAATACTTAAAGCTCCGAAACAGGGACTTATAA
```

@d76be4fb-11a9-47e7-90be-c4f15591e0d9 runid=ba02134f00f2059e7b2dc248113c02f76577

Sequencing quality assessment

- To asses quality, software uses Phred per-base quality score is used
- Is the **first quality control step** after sequencing. There should be one after every step of the analysis
- After quality assessment user can know how reliable are their datasets
- QC will determine the next filtering step
- Filtering decisions will impact directly in further analysis
- Many other steps also use this quality as variable in their algorithms

Sequencing quality assessment: Artifacts

HTS methods are bounded by their technical and theoretical limitations and sequencing errors cannot be completely eliminated (Hadigol M, Khiabanian H. 2018)

- Artifacts in library preparation
 - Remaining adapters
 - High rate of duplicates
 - GC regions bias
 - Polymerase error rate
 - DNA damage during breakdown
- Artifacts during secuencing
 - Low quality in sequence ends(Phasing: cluster loose sync)
 - Complication in certain regions:
 - Repetitions
 - Homopolymers
 - High CG content

Sequencing quality assessment

FastQC, fastx-toolkit, sfftools, NGSQCToolkit, etc...

Sequencing quality assessment: fastp

Fastp

Sequencing quality assessment: FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FastQC: Per base sequence quality

- Overview of the range of quality values across all bases at each position in the FastQ file
- Median, inter-quartile range (25-75%), 10-90% points, mean quality

Per base sequence quality

Per base sequence quality

FastQC: Per sequence quality score

Number of sequences with the same mean quality

Per sequence quality scores Quality score distribution over all sequences Average Quality per read 40000 20000 10000

Mean Sequence Quality (Phred Score)

Per sequence quality scores

FastQC: Nucleotide related errors

- How expected nucleotide distribution deviates from expected
 - Per base sequence content
 - Per base GC content
 - Per sequence GC content
 - Per base N content

FastQC: Sequence related errors

- How expected nucleotide distribution deviates from expected
 - Sequence Length Distribution Fragments
 - Sequence Duplication Levels
 - Overrepresented sequences
 - Adapter Content

FastQC: Per base sequence quality

Nanopore

Per base sequence quality

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Sequencing quality assessment: NanoPlot

NanoPlot

NanoPlot report

Summary statistics

feature	
General summary	
Mean read length	537.5
Mean read quality	13.9
Median read length	516.0
Median read quality	14.0
Number of reads	3,000.0
Read length N50	517.0
Total bases	1,612,409.0
Number, percentage and megabases of reads above quality cutoffs	
>Q5	3000 (100.0%) 1.6Mb
>Q7	3000 (100.0%) 1.6Mb
>Q10	2865 (95.5%) 1.5Mb
>Q12	2461 (82.0%) 1.3Mb
>Q15	905 (30.2%) 0.5Mb
Top 5 highest mean basecall quality scores and their read lengths	
1	21.3 (504)
2	20.2 (517)
3	20.1 (509)
4	20.0 (526)
5	19.9 (530)
Top 5 longest reads and their mean basecall quality score	
1	1643 (13.5)
2	1641 (16.7)
3	1533 (12.5)
4	1427 (13.2)
5	1383 (15.0)

Per base sequence quality: Example

Miseq assymetry

Sequence filtering

- Remove residual adapters
 - Depending on used library

Filtering parameters

- Quality filtering
 - Overall mean quality
 - Local mean quality
 - Sequence end
 - Sliding window
- Size filtering
 - Overall sequence size
 - Remaining sequence size after filtering

Sequencing quality filtering

- Illumina:
 - Fastp
 - Trimmomatic
- Nanopore:
 - Nanofilt
 - ARTIC guppyplex

Sequencing quality filtering: fastp

Fastp

Sequencing quality filtering: trimmomatic

Example of quality filtering

Sequence filtering: stats with MultiQC

Sequence filtering: stats with MultiQC

Trimmomatic

Trimmomatic is a flexible read trimming tool for Illumina NGS data.

Questions?