

Attorney Docket No. P2610US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Tanaka et al.

Group Art Unit: Unassigned

Application No. Unassigned (U.S. National Phase of PCT/JP2004/018108)

Examiner: Unassigned

Filed: March 21, 2006

NOVEL TARGET PROTEIN OF ANTICANCER AGENT AND

NOVEL ANTICANCER AGENT (SPNAL) CORRESPONDING

THERETO

SUBMISSION OF SEQUENCE LISTING

Mail Stop PCT Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir or Madam:

In accordance with the requirements of 37 CFR 1.821-1.825, a sequence listing is being submitted as part of the patent application. The sequence listing is in the form of both a paper copy and a computer readable copy on a computer diskette. The undersigned hereby verifies that the content of the paper copy and the computer readable copy, as concurrently being submitted, are the same and do not introduce new matter.

Respectfully submitted,

Carol Larcher , Reg. No. 35,243 CARDNER CARTON & DOUGLAS LLP

191 N. Wacker Drive, Suite 3700 Chicago, Illinois 60606-1698

(312) 569-1000 telephone (312) 569-3000 facsimile

Customer No.: 08968

Date: March 21, 2006

CH02/22442147.1

P2610US_SEQUENCE LISTING 2006

<110>	Tanaka, Akito Yamazaki, Akira Tsutsumi, Takeshi Terada, Tomohiro Haramura, Masayuki												
<120>	NOVEL TARGET PROTEIN OF ANTICANCER AGENT AND NOVEL ANTICANCER AGENT (SPNAL) CORRESPONDING THERETO												
<130>	P2610US												
<150> <151>	JP 2003-401132 2003-12-01												
<150> <151>	PCT/JP2004/018108 2004-11-30												
<160>	3												
<170>	PatentIn version 3.3												
<210>	1												
<211>	3009												
<212>	DNA												
<213>	Homo sapiens												
<220>													
<221>	CDS												
<222>	(94)(2229)												
<223>													
<400> tgtgga	1 gcga agccttgttc ccgcgttgag ccgccgccgc cgccgccgcc tcctcagctt	60											
cagcct		.14											
	Met Ser Asp Tyr Ser Thr Gly 1 5												
gga cc Gly Pr	c ccg ccc ggg ccg ccg ccc gcc ggc ggg ggc ggg gga gcc 1 o Pro Pro Gly Pro Pro Pro Ala Gly Gly Gly Gly Ala 10 15 20	.62											
gga gg Gly Gl 25	y Ala Gly Gly Gly Pro Pro Pro Gly Pro Pro Gly Ala Gly Asp	10											
	c ggc ggc ggt ccc tgc ggc ggc ggc ccg ggc ggg ggg	58											
ggg gg Gly Gl	y Pro Ser Gln Pro Pro Gly Gly Gly Pro Gly Ile Arg Lys 60 65 70	06											
	Page 1												

gac Asp	gct Ala	ttc Phe	gcc Ala 75	gac Asp	gcc Ala	gtg Val	cag Gln	cgg Arg 80	gcc Ala	cgc Arg	cag Gln	att Ile	gca Ala 85	gcc Ala	aaa Lys	354
att Ile	gga Gly	ggc Gly 90	gat Asp	gct Ala	gcc Ala	acg Thr	aca Thr 95	gtg Val	aat Asn	aac Asn	agc Ser	act Thr 100	cct Pro	gat Asp	ttt Phe	402
ggt Gly	ttt Phe 105	ggg Gly	ggc Gly	caa Gln	aag Lys	aga Arg 110	cag Gln	ttg Leu	gaa Glu	gat Asp	gga Gly 115	gat Asp	caa Gln	ccg Pro	gag Glu	450
agc Ser 120	aag Lys	aag Lys	ctg Leu	gct Ala	tcc Ser 125	cag Gln	gga Gly	gac Asp	tca Ser	atc Ile 130	agt Ser	tct Ser	caa Gln	ctt Leu	gga Gly 135	498
ccc Pro	atc Ile	cat His	cct Pro	ccc Pro 140	cca Pro	agg Arg	act Thr	tca Ser	atg Met 145	aca Thr	gaa Glu	gag Glu	tac Tyr	agg Arg 150	gtc Val	546
cca Pro	gac Asp	ggc Gly	atg Met 155	gtg Val	ggc Gly	ctg Leu	atc Ile	att Ile 160	ggc Gly	aga Arg	gga Gly	ggt Gly	gaa Glu 165	caa Gln	att Ile	594
aac Asn	aaa Lys	atc Ile 170	caa Gln	cag Gln	gat Asp	tca Ser	ggc Gly 175	tgc Cys	aaa Lys	gta Val	cag Gln	att Ile 180	tct Ser	cca Pro	gac Asp	642
agc Ser	ggt Gly 185	ggc Gly	cta Leu	ccc Pro	gag Glu	cgc Arg 190	agt Ser	gtg Val	tcc Ser	ttg Leu	aca Thr 195	gga Gly	gcc Ala	cca Pro	gaa Glu	690
						atg Met										738
						cag Gln										786
aac Asn	ggc Gly	acc Thr	gtg Val 235	cag Gln	gag Glu	atc Ile	atg Met	atc Ile 240	ccc Pro	gcg Ala	ggc Gly	aag Lys	gcc Ala 245	ggc Gly	ctg Leu	834
						gag Glu										882
gga Gly	gtg Val 265	aag Lys	atg Met	atc Ile	tta Leu	att Ile 270	cag Gln	gac Asp	gga Gly	tct Ser	cag Gln 275	aat Asn	acg Thr	aat Asn	gtg Val	930
gac Asp 280	aaa Lys	cct Pro	ctc Leu	cgc Arg	atc Ile 285	att Ile	ggg Gly	gat Asp	cct Pro	tac Tyr 290	aaa Lys	gtg Val	cag Gln	caa Gln	gcc Ala 295	978
						atc Ile										1026
ggg Gly	gac Asp	cgg Arg	aat Asn 315	gag Glu	tac Tyr	gga Gly	tct Ser	cgg Arg 320	att Ile	ggc Gly	gga Gly	ggc Gly	atc Ile 325	gat Asp	gtg val	1074
cca Pro	gtg Val	ccc Pro	agg Arg	cat His	tct Ser	gtt Val	ggc Gly	gtg Val	val	att Ile ige 2	Gly	cgg Arg	agt Ser	gga Gly	gag Glu	1122

atg Met	atc Ile 345	aag Lys	aag Lys	atc Ile	cag Gln	aat Asn 350	gat Asp	gct Ala	ggc Gly	gtg val	cgg Arg 355	ata Ile	cag Gln	ttc Phe	aag Lys	1170
caa Gln 360	gat Asp	gac Asp	ggg Gly	aca Thr	ggg Gly 365	ccc Pro	gag Glu	aag Lys	att Ile	gct Ala 370	cat His	ata Ile	atg Met	ggg Gly	ccc Pro 375	1218
cca Pro	gac Asp	agg Arg	tgc Cys	gag Glu 380	cac His	gca Ala	gcc Ala	cgg Arg	atc Ile 385	atc Ile	aac Asn	gac Asp	ctc Leu	ctc Leu 390	cag Gln	1266
agc Ser	ctc Leu	agg Arg	agt Ser 395	ggt Gly	ccc Pro	cca Pro	ggt Gly	cct Pro 400	cca Pro	ggg Gly	ggt Gly	cca Pro	ggc Gly 405	atg Met	ccc Pro	1314
ccg Pro	ggg Gly	ggc Gly 410	cga Arg	ggc Gly	cga Arg	gga Gly	aga Arg 415	ggc Gly	caa Gln	ggc Gly	aat Asn	tgg Trp 420	ggt Gly	ccc Pro	cct Pro	1362
ggc Gly	ggg Gly 425	gag Glu	atg Met	acc Thr	ttc Phe	tcc Ser 430	atc Ile	ccc Pro	act Thr	cac His	aag Lys 435	tgt Cys	ggg Gly	ctg Leu	gtc Val	1410
atc Ile 440	ggc Gly	cga Arg	ggt Gly	ggc Gly	gag Glu 445	aat Asn	gtg Val	aaa Lys	gcc Ala	ata Ile 450	aac Asn	cag Gln	cag Gln	acg T h r	gga Gly 455	1458
gcc Ala	ttc Phe	gta Val	gag Glu	atc Ile 460	tcc Ser	cgg Arg	cag Gln	ctg Leu	cca Pro 465	ccc Pro	aac Asn	ggg Gly	gac Asp	ccc Pro 470	aac Asn	1506
ttc Phe	aag Lys	ttg Leu	ttc Phe 475	atc Ile	atc Ile	cgg Arg	ggt Gly	tca Ser 480	ccc Pro	cag Gln	cag Gln	att Ile	gac Asp 485	cac His	gcc Ala	1554
aag Lys	cag Gln	ctt Leu 490	atc Ile	gag Glu	gaa Glu	aag Lys	atc Ile 495	gag Glu	ggt Gly	cct Pro	ctc Leu	tgc Cys 500	cca Pro	gtt Val	gga Gly	1602
cca Pro	ggc Gly 505	cca Pro	ggt Gly	ggc Gly	cca Pro	ggc Gly 510	cct Pro	gct Ala	ggc Gly	cca Pro	atg Met 515	ggg Gly	ccc Pro	ttc Phe	aat Asn	1650
cct Pro 520	ggg Gly	ccc Pro	ttc Phe	aac Asn	cag Gln 525	ggg Gly	cca Pro	ccc Pro	ggg Gly	gct Ala 530	ccc Pro	cca Pro	cat His	gcc Ala	ggg Gly 535	1698
ggg Gly	ccc Pro	cct Pro	cct Pro	cac His 540	cag Gln	tac Tyr	cca Pro	ccc Pro	cag Gln 545	ggc Gly	tgg Trp	ggc Gly	aat Asn	acc Thr 550	tac Tyr	1746
ccc Pro	cag Gln	tgg Trp	cag Gln 555	ccg Pro	cct Pro	gct Ala	cct Pro	cat His 560	gac Asp	cca Pro	agc Ser	aaa Lys	gca Ala 565	gct Ala	gca Ala	1794
gcg Ala	gcc Ala	gcg Ala 570	gac Asp	ccc Pro	aac Asn	gcc Ala	gcg Ala 575	tgg Trp	gcc Ala	gcc Ala	tac Tyr	tac Tyr 580	tca Ser	cac His	tac Tyr	1842
										ccc Pro						1890
gcc	cca	ccg	gct	cag	ggt	gag	ccc	cct	_	ccc ge 3		ccc	acc	ggc	cag	1938

P261 Ala Pro Pro Ala Gln Gly Glu Pro Pro	10US_SEQ ST25.txt	
600 605	610 615	
tcg gac tac act aag gcc tgg gaa gag Ser Asp Tyr Thr Lys Ala Trp Glu Glu 620		1986
cag ccc cag cag ccc gga gcg ccc ccc Gln Pro Gln Gln Pro Gly Ala Pro Pro 635 640	o Glň Glň Ásp Tyr Thr Lyš Ála	2034
tgg gag gag tac tac aag aag caa gcg Trp Glu Glu Tyr Tyr Lys Lys Gln Ala 650 655		2082
cca gga gct ccc cca ggc tcc cag cca Pro Gly Ala Pro Pro Gly Ser Gln Pro 665 670		2130
gaa tat tac aga cag cag gcc gct tac Glu Tyr Tyr Arg Gln Gln Ala Ala Tyr 680 685		2178
ggc ggc ccc cag ccg ccg ccc acg cag Gly Gly Pro Gln Pro Pro Pro Thr Glr 700	g cag gga cag cag gct caa 2 n Gln Gly Gln Gln Ala Gln 705 710	2226
tga atcgaatgaa tgtgaacttc ttcatctgt	tg aaaaatcttt tttttttcca 2	279
ttttgttctg tttgggggct tctgttttgt tt	tggcgagag agcgatggtg ccgtggggag 2	2339
tactggggag ccctcgcggc aagcagggtg gg	gggggactt gggggcatgc cgggccctca 2	399
ctctctcgcc tgttctgtgt ctcacatgct tt	tttctttca aaattgggat ccttccatgt 2	2459
tgagccagcc agagaagata gcgagatcta aa	atctctgcc aaaaaaaaaa aaaacttaaa 2	2519
aattaaaaac acaaagagca aagcagaact ta	ataaaatta tatatatata tattaaaaag 2	579
tctctattct tcaccccca gccttcctga ac	cctgcctct ctgaggataa agcaattcat 2	639
tttctcccac cctcggccct cttgtttta aa	aataaactt ttaaaaagga aaaaaaaaag 2	699
tcactcttgc tatttctttt ttttagttag ag	ggtggaaca ttccttggac caggtgttgt 2	759
attgcaggac cccttccccc agcagccaag co	ccctcttc tctccctccc gccctggctc 2	819
agctcccgcg gccccgcccg tccccctcc ca	aggactggt ctgttgtctt ttcatctgtt 2	879
caagaggaga ttgaaactga aaacaaatg ag	gaacaacaa aaaaaattgt atggcagttt 2	939
ttacttttta tcgctcgttt ttaacttcac aa	aataaatga taacaaaacc tcaaaaaaaa 2	999
aaaaaaaaa	3	009

<210> 2

<211> 711

<212> PRT

<213> Homo sapiens

Met Ser Asp Tyr Ser Thr Gly Gly Pro Pro Pro Gly Pro Pro Pro 10 15Ala Gly Gly Gly Gly Ala Gly Gly Ala Gly Gly Gly Pro Pro Pro 25 30 Gly Pro Pro Gly Ala Gly Asp Arg Gly Gly Gly Gly Pro Cys Gly Gly 35 40 45 Gly Pro Gly Gly Ser Ala Gly Gly Pro Ser Gln Pro Pro Gly Gly 50 55 60 Gly Gly Pro Gly Ile Arg Lys Asp Ala Phe Ala Asp Ala Val Gln Arg 65 70 75 80 Ala Arg Gln Ile Ala Ala Lys Ile Gly Gly Asp Ala Ala Thr Thr Val 85 90 95 Asn Asn Ser Thr Pro Asp Phe Gly Phe Gly Gly Gln Lys Arg Gln Leu 100 105 110 Glu Asp Gly Asp Gln Pro Glu Ser Lys Lys Leu Ala Ser Gln Gly Asp 115 120 125 Ser Ile Ser Ser Gln Leu Gly Pro Ile His Pro Pro Pro Arg Thr Ser 130 135 140 Met Thr Glu Glu Tyr Arg Val Pro Asp Gly Met Val Gly Leu Ile Ile 145 150 155 160 Gly Arg Gly Glu Gln Ile Asn Lys Ile Gln Gln Asp Ser Gly Cys 165 170 175 Lys Val Gln Ile Ser Pro Asp Ser Gly Gly Leu Pro Glu Arg Ser Val 180 185 190 Ser Leu Thr Gly Ala Pro Glu Ser Val Gln Lys Ala Lys Met Met Leu 195 200 205 Asp Asp Ile Val Ser Arg Gly Arg Gly Gly Pro Pro Gly Gln Phe His 210 215 220 Asp Asn Ala Asn Gly Gly Gln Asn Gly Thr Val Gln Glu Ile Met Ile 225 230 235 240 Pro Ala Gly Lys Ala Gly Leu Val Ile Gly Lys Gly Glu Thr Ile 245 250 255 Lys Gln Leu Gln Glu Arg Ala Gly Val Lys Met Ile Leu Ile Gln Asp 260 265 270 Page 5

Gly Ser Gln Asn Thr Asn Val Asp Lys Pro Leu Arg Ile Ile Gly Asp 275 280 285 Pro Tyr Lys Val Gln Gln Ala Cys Glu Met Val Met Asp Ile Leu Arg 290 295 300 Glu Arg Asp Gln Gly Gly Phe Gly Asp Arg Asn Glu Tyr Gly Ser Arg 305 310 315 320 Ile Gly Gly Gly Ile Asp Val Pro Val Pro Arg His Ser Val Gly Val 325 330 335 Val Ile Gly Arg Ser Gly Glu Met Ile Lys Lys Ile Gln Asn Asp Ala 340 345 350 Gly Val Arg Ile Gln Phe Lys Gln Asp Asp Gly Thr Gly Pro Glu Lys 355 360 365 Ile Ala His Ile Met Gly Pro Pro Asp Arg Cys Glu His Ala Ala Arg 370 375 380 Ile Ile Asn Asp Leu Leu Gln Ser Leu Arg Ser Gly Pro Pro Gly Pro 385 390 395 400 Pro Gly Gly Pro Gly Met Pro Pro Gly Gly Arg Gly Arg Gly 405 410 415 Gln Gly Asn Trp Gly Pro Pro Gly Gly Glu Met Thr Phe Ser Ile Pro 420 425 430 Thr His Lys Cys Gly Leu Val Ile Gly Arg Gly Glu Asn Val Lys 435 440 445 Ala Ile Asn Gln Gln Thr Gly Ala Phe Val Glu Ile Ser Arg Gln Leu 450 460 Pro Pro Asn Gly Asp Pro Asn Phe Lys Leu Phe Ile Ile Arg Gly Ser 465 470 480 Pro Gln Gln Ile Asp His Ala Lys Gln Leu Ile Glu Glu Lys Ile Glu 485 490 495 Gly Pro Leu Cys Pro Val Gly Pro Gly Pro Gly Pro Gly Pro Ala 500 505 510 Gly Pro Met Gly Pro Phe Asn Pro Gly Pro Phe Asn Gln Gly Pro Pro 515 520 525 Gly Ala Pro Pro His Ala Gly Gly Pro Pro Pro His Gln Tyr Pro Pro Page 6

530

Gln Gly Trp Gly Asn Thr Tyr Pro Gln Trp Gln Pro Pro Ala Pro His 545 550 560

535

Asp Pro Ser Lys Ala Ala Ala Ala Ala Asp Pro Asn Ala Ala Trp 565 570 575

Ala Ala Tyr Tyr Ser His Tyr Tyr Gln Gln Pro Pro Gly Pro Val Pro 580 585 590

Gly Pro Ala Pro Ala Pro Ala Ala Pro Pro Ala Gln Gly Glu Pro Pro 595 600 605

Gln Pro Pro Pro Thr Gly Gln Ser Asp Tyr Thr Lys Ala Trp Glu Glu 610 620

Tyr Tyr Lys Lys Ile Gly Gln Gln Pro Gln Gln Pro Gly Ala Pro Pro 625 630 635 640

Gln Gln Asp Tyr Thr Lys Ala Trp Glu Glu Tyr Tyr Lys Lys Gln Ala 645 650 655

Gln Val Ala Thr Gly Gly Gly Pro Gly Ala Pro Pro^Gly Ser Gln Pro 660 665 670

Asp Tyr Ser Ala Ala Trp Ala Glu Tyr Tyr Arg Gln Gln Ala Ala Tyr 675 680 685

Tyr Gly Gln Thr Pro Gly Pro Gly Gly Pro Gln Pro Pro Pro Thr Gln 690 695 700

Gln Gly Gln Gln Gln Ala Gln 705 710

<210> 3

<211> 585

<212> PRT

<213> Homo sapiens

<400> 3

Gly Asp Ser Ile Ser Ser Gln Leu Gly Pro Ile His Pro Pro Arg
5 10 15

Thr Ser Met Thr Glu Glu Tyr Arg Val Pro Asp Gly Met Val Gly Leu 20 25 30

P2610US_SEQ ST25.txt
Ile Ile Gly Arg Gly Glu Gln Ile Asn Lys Ile Gln Gln Asp Ser
35 40 45 Gly Cys Lys Val Gln Ile Ser Pro Asp Ser Gly Gly Leu Pro Glu Arg 50 55 60 Ser Val Ser Leu Thr Gly Ala Pro Glu Ser Val Gln Lys Ala Lys Met 65 70 75 80 Met Leu Asp Asp Ile Val Ser Arg Gly Arg Gly Gly Pro Pro Gly Gln 85 90 95 Phe His Asp Asn Ala Asn Gly Gln Asn Gly Thr Val Gln Glu Ile 100 105 110 Met Ile Pro Ala Gly Lys Ala Gly Leu Val Ile Gly Lys Gly Glu 115 120 125 Thr Ile Lys Gln Leu Gln Glu Arg Ala Gly Val Lys Met Ile Leu Ile 130 140 Gln Asp Gly Ser Gln Asn Thr Asn Val Asp Lys Pro Leu Arg Ile Ile 145 150 155 160 Gly Asp Pro Tyr Lys Val Gln Gln Ala Cys Glu Met Val Met Asp Ile 165 170 175 Leu Arg Glu Arg Asp Gln Gly Gly Phe Gly Asp Arg Asn Glu Tyr Gly 180 185 Ser Arg Ile Gly Gly Ile Asp Val Pro Val Pro Arg His Ser Val 195 200 205 Gly Val Val Ile Gly Arg Ser Gly Glu Met Ile Lys Lys Ile Gln Asn 210 215 220 Asp Ala Gly Val Arg Ile Gln Phe Lys Gln Asp Asp Gly Thr Gly Pro 225 230 240 Glu Lys Ile Ala His Ile Met Gly Pro Pro Asp Arg Cys Glu His Ala 245 250 255 Ala Arg Ile Ile Asn Asp Leu Leu Gln Ser Leu Arg Ser Gly Pro Pro 260 265 270 Gly Pro Pro Gly Gly Pro Gly Met Pro Pro Gly Gly Arg Gly 275 280 285 Arg Gly Gln Gly Asn Trp Gly Pro Pro Gly Glu Met Thr Phe Ser 290 295 300

Ile Pro Thr His Lys Cys Gly Leu Val Ile Gly Arg Gly Gly Glu Asn 305 310 315 Val Lys Ala Ile Asn Gln Gln Thr Gly Ala Phe Val Glu Ile Ser Arg 325 330 335 Gln Leu Pro Pro Asn Gly Asp Pro Asn Phe Lys Leu Phe Ile Ile Arg 340 345 350Gly Ser Pro Gln Gln Ile Asp His Ala Lys Gln Leu Ile Glu Glu Lys 355 360 365 Ile Glu Gly Pro Leu Cys Pro Val Gly Pro Gly Pro Gly 370 375 380 Pro Ala Gly Pro Met Gly Pro Phe Asn Pro Gly Pro Phe Asn Gln Gly 385 390 395 400 Pro Pro Gly Ala Pro Pro His Ala Gly Gly Pro Pro Pro His Gln Tyr 405 410 415 Pro Pro Gln Gly Trp Gly Asn Thr Tyr Pro Gln Trp Gln Pro Pro Ala 420 425 430 Pro His Asp Pro Ser Lys Ala Ala Ala Ala Ala Ala Asp Pro Asn Ala 435 440 445 Ala Trp Ala Ala Tyr Tyr Ser His Tyr Tyr Gln Gln Pro Pro Gly Pro
450 455 460 Val Pro Gly Pro Ala Pro Ala Pro Ala Ala Pro Pro Ala Gln Gly Glu 465 470 475 480 Pro Pro Gln Pro Pro Pro Thr Gly Gln Ser Asp Tyr Thr Lys Ala Trp 485 490 495 Glu Glu Tyr Tyr Lys Lys Ile Gly Gln Gln Pro Gln Gln Pro Gly Ala 500 505 510 Pro Pro Gln Gln Asp Tyr Thr Lys Ala Trp Glu Glu Tyr Tyr Lys Lys 515 520 525 Gln Ala Gln Val Ala Thr Gly Gly Gly Pro Gly Ala Pro Pro Gly Ser 530 535 540 Gln Pro Asp Tyr Ser Ala Ala Trp Ala Glu Tyr Tyr Arg Gln Gln Ala 545 550 560 Ala Tyr Tyr Gly Gln Thr Pro Gly Pro Gly Gly Pro Gln Pro Pro 565 570 575 Page 9

Thr Gln Gln Gln Gln Gln Ala Gln 580 585