1 Основные понятия

Пусть $\{a_n\}$ — произвольная числовая последовательность. Запись этой последовательности в виде

$$a_1 + a_2 + \ldots + a_n + \ldots$$
 или $\sum_{k=1}^{\infty} a_k$ (1)

называют числовым рядом.

Сумма нескольких последовательных членов ряда $S_n = a_1 + \ldots + a_n$ называется **частичной суммой** этого ряда. Частичные суммы S_n образуют последовательность, называемую **последовательностью частичных сумм**. Предел последовательности частичных сумм, если он существует, называют **суммой ряда**. Таким образом, под суммой S ряда (1) понимается предел

$$S = \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_k \right).$$

Если указанный предел частичных сумм ряда существует, то говорят, что **ряд сходится**. В противном случае говорят, что **ряд расходится**.

Между последовательностями и рядами существует тесная связь. Каждый ряд $\sum a_k$ генерирует специальную последовательность — последовательность своих частичных сумм $\{S_n\}$. В то же время любая числовая последовательность $\{S_n\}$ является последовательностью частичных сумм некоторого ряда, именно, достаточно положить $a_1 = S_1$, $a_n = S_n - S_{n-1}$.

Пример 1.

$$\sum_{n=1}^{\infty} rac{1}{n}$$
 — гармонический ряд.

Пример 2.

$$\sum_{n=0}^{\infty} a \cdot q^n - \text{геометрическая прогрессия.}$$

$$S_n = \sum_{i=0}^n a \cdot q^i = a \cdot \frac{q^{n+1} - 1}{q - 1}.$$

 $\Pi pu \ n \to \infty$ имеем два случая:

1.
$$|q| < 1$$
, $\lim_{n \to \infty} q^n = 0$, $S_n \to \frac{a}{q-1}$;

2.
$$|q| > 1$$
, $\lim_{n \to \infty} q^{n+1}$ не существует.

Итого: $\sum_{n=0}^{\infty} a \cdot q^n$ сходится при |q| < 1, расходится при |q| > 1.

Теорема 1.