Vektorerna och punkterna i dessa exempel är tre dimensioner (R^3) . Men formlerna fungerar på liknande sätt för en godtycklig dimension (R^n) .

Formel 1 (vektoraddition)

 $Tv\mathring{a}$ vektorer $\vec{u} = (u_1, u_2, u_3)$ och $\vec{v} = (v_1, v_2, v_3)$ adderas såhär:

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

Kom ihåg att $\vec{u} - \vec{v} = \vec{u} + (-1) \cdot \vec{v}$

Formel 2 (vektormultiplikation med ett tal)

Ett tal t och en vektor $\vec{u} = (u_1, u_2, u_3)$ multipliceras såhär:

$$t \cdot \vec{u} = (t \cdot u_1, t \cdot u_2, t \cdot u_3)$$

Formel 3 Längden $|\vec{v}|$ av en vektor $\vec{v} = (x, y, z)$ fås genom:

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$$

Formel 4 En enhetsvektor $\vec{e}_{\vec{v}}$ i samma riktning som en vektor \vec{v} fås genom:

$$\vec{e}_{\vec{v}} = \frac{1}{|\vec{v}|} \cdot \vec{v}$$

Man skalar alltså om vektorn så att den får längd ett.

Formel 5 (skalärprodukt) Skalärprodukten av två vektorer $\vec{u} = (u_1, u_2, u_3)$ och $\vec{v} = (v_1, v_2, v_3)$ är:

$$\vec{u} \cdot \vec{v} = u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3$$

En annan formel som kan användas är:

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| sin(\alpha)$$

Där α är vinkeln mellan vektorerna \vec{u} och \vec{v} . Denna formel är särskilt användbar om man vill räkna ut vinkeln mellan två vektorer.

Skalärprodukten av två vektorer är ett tal.

Formel 6 (kryssprodukt) Kryssprodukten av två vektorer $\vec{u}=(u_1,u_2,u_3)$ och $\vec{v}=(v_1,v_2,v_3)$ är

$$\vec{u} \times \vec{v} = (u_2 \cdot v_3 - u_3 \cdot v_2, u_2 \cdot v_3 - u_3 \cdot v_2, u_2 \cdot v_3 - u_3 \cdot v_2)$$

En annan formel som kan användas för att beräkna kryssprodukten är

$$\vec{u} \times \vec{v} = |\vec{u}||\vec{v}|sin(\alpha)$$

 $D\ddot{a}r \alpha \ddot{a}r \ vinkeln \ mellan \ \vec{u} \ och \ \vec{v}.$

En viktig egenskap kryssprodukten $\vec{u} \times \vec{v}$ är att den <u>är en vektor</u> som är ortogonal mot båda vektorerna \vec{u} och \vec{v} .

Formel 7 Storleken av kryssprodukten av två vektorer \vec{u} och \vec{v} är

$$|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|sin(\alpha)$$

 $D\ddot{a}r \ \alpha \ \ddot{a}r \ vinkeln \ mellan \ \vec{u} \ och \ \vec{v}.$

Formel 8 En linje kan beskrivas med en parameterframställning om man har en punkt $P = (p_1, p_2, p_3)$ och en vektor $\vec{v} = (v_1, v_2, v_3)$ som pekar i linjens riktning (som man skalar om med ett tal $t \in R$ för att kunna komma till alla punkter på linjen)

$$L = P + t \cdot \vec{v} = (p_1, p_2, p_3) + t \cdot (v_1, v_2, v_3)$$