

AMIRA REZK
INFORMATION SYSTEM DEPARTMENT

The Basics

Market Basket
Analysis
Frequent Itemsets
Association Rules

Frequent Itemset Mining Methods

Apriori Algorithm

Generating Association Rules from Frequent Itemsets

FP-Growth

Pattern Evaluation Methods

The Basics

Market Basket
Analysis
Frequent Itemsets
Association Rules

Frequent Itemset Mining Methods

Apriori Algorithm

Generating Association Rules from Frequent Itemsets

FP-Growth

Pattern Evaluation Methods

THE BASICS WHAT IS FREQUENT PATTERN ANALYSIS?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining

THE BASICS

THE BASICS

- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web
 log (click stream) analysis, and DNA sequence analysis

THE BASICS

- Frequent Pattern are itemsets that appear frequently in a data set (e.g. Transaction record)
- Items that are frequently associated (e.g purchased) together can be represented as association rules

Computer → antivirus_SW [Support = 2%, Confidence =60%]

- Support and Confidence are measures of <u>rule interestingness</u>
- 2% Support means 2% of Transactions Show that computers and antivirus_SW are bought Together
- 60% Confidence means 60 % of customers who bought a computer also bought antivirus_SW

THE BASICS FREQUENT ITEM-SETS

- Itemset $X = \{x \mid 1, ..., xk\}$
- ex: $X = \{A, B, C, D, E, F\}$
- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - lacktriangle support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

$$support X \to Y = P(X \cup Y) = \frac{n(X \cup Y)}{N}$$

confidence
$$(X \to Y) = P(Y|X) = \frac{n(X \cup Y)}{n(X)}$$

THE BASICS ASSOCIATION RULES

Ex: Let min_Sup. = 50%, min_conf. = 50%

Frequent Patterns:

{*A:3, B:3, D:4, E:3, AD:3*}

Association rules:

$$A \to D$$
 (60%, 100%)

$$D \to A (60\%, 75\%)$$

$$conf (A \to D) = \frac{3}{3} = 100 \%$$

$$conf (D \to A) = \frac{3}{4} = 75 \%$$

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

THE BASICS ASSOCIATION RULES

- If frequency of itemset I satisfies min_support count then I is a frequent itemset
- If a rule satisfies min_support and min_confidence thresholds, it is said to be strong
 - problem of mining association rules reduced to mining frequent itemsets
- Association rules mining becomes a two-step process:
 - Find all frequent itemsets that occur at least as frequently as a predetermined min_support count
 - Generate strong association rules from the frequent itemsets that satisfy min_support and min_confidence

The Basics

Market Basket Analysis

Frequent Itemsets

Association Rules

Frequent Itemset Mining Methods

Apriori Algorithm

Generating Association Rules from Frequent Itemsets

FP-Growth

Pattern Evaluation Methods

- Goes as follows:
 - Find frequent 1-itemsets → LI
 - Use L1 to find frequent 2-itemsets → L2
 - ... until no more frequent k-itemsets can be found
- Each Lk itemset requires a full dataset scan
- To improve efficiency, use the Apriori property:
 - "All nonempty subsets of a frequent itemset must also be frequent" if a set cannot pass a test, all of its supersets will fail the same test as well if $P(I) < \min_{support then P(I \cup A)} < \min_{support}$

Transactional data example N=10, min_supp count=2

List of items
11, 12, 15
12, 14
12,13
11, 12, 14
11,13
12,13
11,13
11, 12, 13, 15
11, 12, 13
11,12

Scan dataset for count of each candidate

 $\boldsymbol{C_1}$

Itemset	Support count
{II}	7
{I2}	8
{I3 }	6
{I4}	2
{I5 }	2

Compare candidate support with min_support

 L_1

Itemset	Support Count
{II}	7
{I2}	8
{I3 }	6
{I4 }	2
{I5 }	2

		C_2	Itemset
			{11,12}
Itemset	Support		{11,13}
	Count		{11,14}
{II}	7		{11,15}
{I2}	8		{12, 13}
{I3 }	6		{I2, I4}
{I4 }	2		{I2, I5}
{I5 }	2		{I3, I4}
			{13, 15}
			{I4, I5}

Itemset **Support count** 5 **{II, I2} {II, I3}** {11,14} {11,15} {12, 13} {I2, I4} {12, 15} **{I3, I4}** {13, 15} {14, 15} 0

 Itemset
 Support count

 {II, I2}
 5

 {II, I3}
 4

 {II, I5}
 3

 {I2, I3}
 4

 {I2, I4}
 2

 {I2, I5}
 2

Compare candidate support with min_supp

Generate C_2 candidates from L_1 by joining $L_1 \triangleright \triangleleft L_1$

Scan dataset for count of each candidate

 $C_3 = L2 \triangleright \triangleleft L2 = \{\{I1, I2, I3\}, \{I1, I2, I5\}, \{I1, I3, I5\}, \{I2, I3, I4\}, \{I2, I3, I5\}, \{I2, I4, I5\}\}\}$

Not all subsets are frequent → **Prune** (Apriori property)

Itemset	Support count
{11,12}	5
{11,13}	4
{11,15}	3
{12, 13}	4
{12, 14}	2
{12, 15}	2

C ₃			
Itemset	Support		
	count		
{11,12,13}	2		
{11,12,15}	2		

Scan dataset for count.

of each candidate

Compare candidate

Generate C_3 candidates from L_2 by joining $L_2 \triangleright \triangleleft L_2$

Two joining (lexicographically ordered) k-itemsets must share first k-1 items \rightarrow {I1, I2} is not joined with {I2, I4}

Itemset	Support count
{11, 12, 13}	2
{11, 12, 15}	2

Itemset

 $\{11, 12, 13, 15\}$

Not all subsets are frequent → **Pruning**

$$C_4 = \phi \rightarrow \text{Terminate}$$

APRIORI ALGORITHM

 $L_1 = \text{find_frequent_1-itemsets(D)};$ for $(k = 2; L_{k-1} \neq \phi; k++)$ { $C_k = apriori_gen(L_{k-1});$ for each transaction $t \in D \{ // \text{ scan } D \text{ for counts } \}$ $C_t = \text{subset}(C_k, t)$; // get the subsets of t that are candidates Generate C_k using L_{k-1} to find L_k for each candidate $c \in C_t$ c.count++;
$$\label{eq:local_local_local} \begin{split} L_k &= \{c \in C_k | c.count \geq min_sup\} \end{split}$$
return $L = \bigcup_k L_k$; procedure apriori_gen(L_{k-1} :frequent (k-1)-itemsets) for each itemset $l_1 \in L_{k-1}$ for each itemset $l_2 \in L_{k-1}$ if $(l_1[1] = l_2[1]) \land (l_1[2] = l_2[2])$ $\land ... \land (l_1[k-2] = l_2[k-2])$ $\wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1])$ then { $c = l_1 \bowtie l_2$; // join step: generate candidates if has_infrequent_subset(c, L_{k-1}) then delete c; // prune step: remove unfruitful candidate else add c to C_k ; return Ck; procedure has_infrequent_subset(c: candidate k-itemset; L_{k-1} : frequent (k-1)-itemsets); // use prior knowledge for each (k-1)-subset s of c (2)if $s \notin L_{k-1}$ then (3) return TRUE; return FALSE;

on candidate generation.

D, a database of transactions;

Output: L, frequent itemsets in D.

min_sup, the minimum support count threshold.

Input:

Method:

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based

MINING FREQUENT ITEMSETS GENERATING ASSOCIATION RULES FROM FREQUENT ITEMSETS

Association rules van be generated using the confidence equation, as follows"

$$confidence (A \Rightarrow B) = P(B|A) = \frac{support_count(A \cup B)}{support_count(A)}$$

- For each frequent itemset L, generate all nonempty subset of L
- For every nonempty subset S of L, out put rule: S → L-S
- $\frac{Support_{count}(L)}{Support_{count}(S)} \ge \min_{support_{count}(S)} \ge \min_{support_{count}(S)}$

where min_conf is the minimum confidence threshold.

MINING FREQUENT ITEMSETS GENERATING ASSOCIATION RULES FROM FREQUENT ITEMSETS

		,	Nonempty
Itemset	Support count		subsets {II, I2}
{11,12,13}	2	,	{11,15}
{11,12,15}	2	K	{I2, I5}
			{II }
			{I2 }
			{I5 }

Association Rules $\{11, 12\} \rightarrow 15$ $\{11, 15\} \rightarrow 12$ $\{12, 15\} \rightarrow 11$ $11 \rightarrow \{12, 15\}$ $12 \rightarrow \{11, 15\}$ $15 \rightarrow \{11, 12\}$

Confidence 2/5 = 40% 2/2 = 100% 2/2 = 100% 2/7 = 28% 2/8 = 25% 2/2 = 100%

MINING FREQUENT ITEMSETS FP-GROWTH

- To avoid costly candidate generation
- Divide-and-conquer strategy:
- Compress database representing frequent items into a frequent pattern tree (FP-tree) 2 passes over dataset
- Divide compressed database (FP-tree) into conditional databases, then mine each for frequent itemsets – traverse through the FP-tree

MINING FREQUENT ITEMSETS FP-GROWTH

Transactional data example N=10, min_supp count=2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

Scan dataset for count of each candidate

 $\boldsymbol{C_1}$

Itemset	Support
	count
{II}	7
{I2}	8
{I3 }	6
{I4 }	2
{I5 }	2

Compare candidate support with min_supp

Itemset	Support count
{I2}	8
{II}	7
{I3}	6
{I4}	2
{I5 }	2

Itemset	Support count
{I2}	8
{II}	7
{I3 }	6
{I4}	2
{I5}	2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

L₁ - Reordered

Itemset	Support count
{I2}	8
{II}	7
{I3 }	6
{I4 }	2
{I5 }	2

Order of items is kept throughout path construction, with common prefixes shared whenever applicable

TID	List of items
T100	11, 12, 15
T200	12,14
T300	12,13
T400	11, 12, 14
T500	11,13
T600	12,13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2
11000	11, 14

Itemset	Support count
{I2}	8
{II}	7
{I3 }	6
{I4 }	2
{I5 }	2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

Itemset	Support count
{I2}	8
{II }	7
{I3 }	6
{I4 }	2
{I5 }	2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

Itemset	Support count
{I2}	8
{II }	7
{I3 }	6
{I4 }	2
{I5}	2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

Itemset	Support count
{I2}	8
{II }	7
{I3 }	6
{I4 }	2
{I5 }	2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12,13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

MINING FREQUENT ITEMSETS FP-GROWTH – FREQUENT PATTERNS MINING

Bottom-up algorithm – start	
from leaves and go up to root	

FP-tree

TID	List of items
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	11,13
T600	12, 13
T700	11,13
T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

For I5

L₁ - Reordered

Itemset	Support count	Linked link
{I2}	8	
{II}	7	
{I3 }	6	
{I4 }	2	
{I5 }	2	

FP-tree

null { }

Eliminate I5

TID	List of items
T100	11, 12, 15
T200	12,14
-T300	12,13
T400	11, 12, 14
T500	H, 1 3
T600	12,13
T700	i i , i 3
T800	11, 12, 13,15
T900	11, 12, 13
T1000	I1, I2

TID	List of items
T100	11, 12, 15
T200	12,14
T300	12, 13
T400	11, 12, 14
T500	11,13
-T600 -	12,13
T700	11,13
T800	11, 12, 13,15
T900	11, 12, 13
T1000	I1, I2

TID	List of items
T100	11, 12, 15
T200	12,14
-T300 -	12,13
T400	11, 12, 14
T500	H, 1 3
T600	12,13
T700	ii,i3
T800	11, 12, 13,15
T900	11, 12, 13
T1000	I1, I2

TID	List of items
T100	11, 12, 15
T200	12, 🆊
T300	12,13
T400	11, 12, 🎢
T500	II, I3
T600	12,13
T700	ii,i3
- T800	11, 12, 13, 15
T900	11, 12, 13
T1000	I1, I2

For I3

L₁ - Reordered

Itemset	Support count	Linked link
{I2}	8	
{II}	7	
{I3 }	6	
{I4}	2	
{I5 }	2	

FP-tree

Eliminate I3

TID	List of items
T100	11, 12, 15
T200	12,14
T300	12, 13'
T400	11, 12, 14
T500	11,1%
T600	I2, J3′
T700	11,13
T800	11, 12, 12, 15
T900	11, 12, 13
T1000	I1, I2

For I1

L₁ - Reordered

ltemset	Support count	Linked link
{I2}	8	
{II}	7	
{I3 }	6	
{I4 }	2	
{I5 }	2	

FP-tree

null { }

Eliminate I1

TID	List of items
T100	// , I2, I5
T200	12,14
T300	12, 13
T400	J / , 12, 14
T500	⊮ 1,13
T600	12, 13
T700	J /,13
T800	J , 12, 13, 15
T900	Jr , 12, 13
T1000	V , I2

MINING FREQUENT ITEMSETS FP-GROWTH

Item	Conditional Pattern Base	Conditional FP-	Frequent Patterns
		tree	Generated
15	{{12,11:1}, {12,11,13:1}}	<12:2,11:2>	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
14	{{I2, I1: I}, {I2: I}}	< 2:2>	{12, 14: 2}
13	{{12, 11: 2}, {12: 2}, {11: 2}}	< 2:4, :2>,< :2>	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
П	/ {{I2: 5}}	<i2:5></i2:5>	{12,11:5}

Paths ending with item

The Basics

Market Basket
Analysis
Frequent Itemsets
Association Rules

Frequent Itemset Mining Methods

Apriori Algorithm

Generating Association Rules from Frequent Itemsets

FP-Growth

Pattern Evaluation Methods

PATTERN EVALUATION METHODS

- Not all association rules are interesting
 - Buys(X,"Computer games" → buys(X,"Videos") [40%, 66%]
 - P("videos") is 75% > 66%
 - The two items are negatively associated means buying one decreases the likelihood of buying the other
 - We need to measure "real strength" of rule
- Correlation analysis
 - A → B [support, confidence, correlation]

PATTERN EVALUATION METHODS

I. Lift =
$$\frac{P(A \cup B)}{P(A)P(B)}$$

- A and B are independent if $P(A \cup B) = P(A)P(B)$
- Otherwise, dependent and correlated occurrence
- If lift < I, A is Negatively correlated with B
- If lift > I, A is Positively correlated with B A's occurrence "lifts" the occurrence of B
- 2. $\chi 2 \rightarrow$ already discussed in previous lecture

QUESTIONS?

NEXT ...

