ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

TRÍ TUỆ NHÂN TẠO Heuristic và A* Search cho Sokoban

GVHD: Lương Ngọc Hoàng Lớp: CS106.O21

Tên: Lê Minh Nhựt

MSSV: 22521060

1. Hàm heuristics

Hàm heuristics trong Sokoban dùng để ước lượng khoảng cách còn lại để hoàn thành mục tiêu dựa vào các yếu tố như vị trí của các hộp và mục tiêu nhằm đánh giá mức độ "tốt" khi chuyển sang 1 trạng thái khác.

- Heuristics có sẵn trong code mẫu dùng khoảng cách Manhattan để tính tổng khoảng cách giữa các hộp và các ô mục tiêu:
 - Đầu tiên, nó xác định các ô mục tiêu đã chứa hộp.
 - Sau đó, nó tạo danh sách vị trí của các hộp chưa được đặt vào ô mục tiêu và vị trí của các ô mục tiêu chưa có hộp đặt vào.
 - Với mỗi hộp chưa được đặt vào ô mục tiêu, nó tính khoảng cách Manhattan giữa vị trí của hộp và ô mục tiêu tương ứng.
 - Cuối cùng, nó tính tổng khoảng cách Manhattan này cho tất các các cặp hộp và
 ô mục tiêu còn trống. Tổng này chính là giá trị của hàm heuristics.
- => Hàm heuristics trên sẽ ưu tiên cho các trạng thái mà các hộp càng gần vị trí đích của chúng.
- Hàm heuristic của em cũng tận dụng cách hoạt động tương tự nhưng thay bước tính bằng khoảng cách Euclide giữa các hộp và ô mục tiêu.

2. So sánh các hàm heuristics Bảng so sánh 2 hàm heuristics dùng khoảng cách Manhattan và Euclide

	Thời gian chạy		Số nút		Số bước đi	
	Manhatta n	Euclide	Manhatt an	Euclid e	Manhattan	Euclide
1	0.01	0.02	208	367	13	12
2	0.00	0.00	81	81	9	9
3	0.01	0.01	99	91	15	15
4	0.00	0.00	52	52	7	7
5	0.09	0.07	873	478	22	20
6	0.01	0.01	473	505	19	19
7	0.06	0.11	1224	1904	21	21
8	0.23	0.25	5128	5170	97	97
9	0.00	0.01	61	61	8	8
10	0.02	0.02	458	458	33	33
11	0.02	0.02	627	627	34	34
12	0.04	0.06	1253	1368	23	23
13	0.14	0.17	3923	4233	31	31
14	0.92	1.35	16748	20896	23	23
15	0.27	0.31	5366	5546	105	105
16	0.28	0.46	2693	3858	42	36
17	25.68	27.74	169158	169158	No solution	No

						sulution
18	X	X	X	X	X	X

Bảng đánh giá độ tối ưu đường đi của thuật toán \mathbf{A}^*

		Manhattan heuristics		Euclide heuristics		
Màn	Đường đi tối ưu của bài toán	Số bước đi	Tối ưu	Số bước đi	Tối ưu	
1	12	13	Không	12	Có	
2	9	9	Có	9	Có	
3	15	15	Có	15	Có	
4	7	7	Có	7	Có	
5	20	22	Không	20	Có	
6	19	19	Có	19	Có	
7	21	21	Có	21	Có	
8	97	97	Có	97	Có	
9	8	8	Có	8	Có	
10	33	33	Có	33	Có	
11	34	34	Có	34	Có	
12	23	23	Có	23	Có	
13	31	31	Có	31	Có	
14	23	23	Có	23	Có	

15	105	105	Có	105	Có	
16	34	42	Không	36	Không	
17	No solution					
18	X	X	X	X	X	

Nhận xét:

- Về thời gian nhìn chung cả 2 đều cho lời giải rất nhanh nhưng Manhattan heuristics lại có phần nhỉnh hơn Euclide ở hầu hết các màn.
- Về số nút mở ra thì ta có thể thấy rõ Manhattan có số nút cần mở ra ít hơn Euclide,
 cũng vì vậy nên Manhattan mới cho tốc độ tốt hơn.
- Về số bước đi Euclide có phần tối ưu hơn Manhattan khi cho lời giải tối ưu ở gần như tất cả màn trừ màn 16, trong khi Manhattan vẫn còn các màn 1, 5, 16 chưa được tối ưu.
- => 2 thuật toán đều có những ưu nhược điểm khác nhau, nếu cần một lời giải có tốc độ tốt hơn ta có thể cân nhắc chọn Manhattan, còn nếu cần 1 lời giải tối ưu hơn và chấp nhận chậm hơn đôi chút ta có thể chọn Euclide.

3. So sánh UCS và A*

Bảng so sánh thời gian chạy và số nút của thuật toán UCS và A* dùng Euclide heuristics ở từng màn.

	Thời gian chạy		Số nút		
Màn	UCS	A*	UCS	A*	
1	0.06	0.02	1280	367	
2	0.01	0.00	131	81	
3	0.07	0.01	792	91	
4	0.00	0.00	96	52	
5	69.81	0.07	562460	478	
6	0.01	0.01	587	505	
7	0.50	0.11	13640	1904	
8	0.21	0.25	5254	5170	
9	0.01	0.01	107	61	
10	0.01	0.02	499	458	
11	0.02	0.02	649	627	
12	0.08	0.06	2806	1368	
13	0.17	0.17	582	4233	
14	2.81	1.35	65683	20896	
15	0.29	0.31	6283	5546	
16	15.73	0.46	108391	3858	
17	24.51	27.74	169158	169158	
18	X	X	X	X	

Nhận xét:

- Nhìn vào thống kê ta có thể thấy UCS cần phải mở toàn bộ các nút để tìm được lời giải, trong khi A* chỉ cần mở ra số nút ít hơn rất nhiều lần nhờ vào hoạt động của hàm heuristics tốt. Điều này cũng là lí do A* nhanh hơn UCS về mặt thời gian, giúp tiết kiệm bộ nhớ hơn, đặc biệt là ở các màn phức tạp có thể cho tốc độ gấp hơn mấy chục lần UCS.
- Lời giải của A* có thể không phải lời giải tối ưu vì nó không duyệt qua tất cả
 các nút nhưng lời giải này là một lời giải ở mức tốt (không quá chênh lệch so
 với lời giải tối ưu) và chấp nhận được so với những ưu điểm mà nó mang lại.

File code: <u>BT2 22521060.zip</u>