Figure 1

Allosteric Effector	Structure or Name	
PCHA-DPG	Penta-cyclohexylammonium 2,3-	
	diphosphoglyceric acid	
5Na-DPG	Penta-sodium 2,3-diphosphoglyceric	
	acid	
IHP	Inositol hexaphosphate	
СНА	Cyclohexylammonium	
СНА-ІНР	Cyclohexylamine added to IHP to give a	
	solution with a pH = $7.1-7.4$	

Ē

And the state of t

Figure 2

Effector	P ₅₀ CONTROL WB mmHg	P ₅₀ EFF: WB mmHg	CONC. EFF mM	CONC EFF:WB mM	OSMOL. EFF mOsM	pH EFF.	pH EFF:WB or EFF:fHb	Volume Ratio EFF:WB
HBS+					310		7.22	
fHb in HBS+							7.22	
PCHA-DPG								
WB	37	55.5	30	22	205		7.42	1:0.375
WB	25	36	30	22	221	7.8	7.33	1:0.375
WB	37	37	30	22	313		7.12	1:0.375
WB	37	37	30	12	317		7.02	1:1.5
WB in Bis-Tris	37	38.2	30	22	341		7.1	1:0.375
WB	37	36	30	12	310		6.8	1:1.5
5Na-DPG								
WB	37	38.2	30	22	163		7.4	1:0.375
WB	37	39.5	30	22	321		7.1	1:0.375
IHP								
WB	37	38.2	30	22	185		7.3	1:0.375
<i>f</i> Hb	16	40.5					7.19	0.25 μM EFF
СНА								
WB	26.8	28.5	30	22	220		6.23	1:0.375
WB	26.8	26.8	30	22	245		6.75	1:0.375
СНА-ІНР								
WB	26.8	42	30	22	220		6.36	1:0.375
WB	24.7	58.2	25	14.3	171		6.93	1:0.35
<i>f</i> Hb	16	53					7.17	0.25 μM EFF

fHb = free hemoglobin; WB = whole blood; EFF = effector.

Figure 3

Sample	Observed O ₂ P ₅₀ (torr)
Human whole blood	9.3 (pH 7.47)
Washed Goldfish blood cells	20.0 (pH 7.52)
Human <i>f</i> Hb	4.7 (pH 7.1)
Goldfish <i>f</i> Hb	8.5 (pH 7.1)
Goldfish fHb + 0.25 μmol IHP	15.0 (pH 7.1)
Goldfish <i>f</i> Hb + 0.5 μmol PCHA-DPG	10.3 (pH 7.1)
Goldfish fHb + 0.5 μmol ATP	21.0 (pH 7.08)
Goldfish fHb + 0.5 μmol GTP	23.0 (pH 7.11)

The data presented in this figure was acquired at 25 C in Bis-Tris buffer at pH 7.2-7.4.

ţ

Figure 4

A: Human whole blood pH 7.47 $P_{50} = 9.3$ B: washed goldFish blood pH 7.52 $P_{50} = 20.0$

All experiments were in Bis-Tris buffer and 25 °C.

Collection methods for blood from up to 20 goldfish requires higher amounts of anticoagulant than from a single human source. From published protocols, a special washing at 4 °C and additional steps to remove nucleic acids from lysed red cells are required.

Obviously the O_2 dissociation for Fish hemoglobin entrapped within a red cell is optimal at a lower temperature than Human .

Figure 5

The experiment an figure q were recorded at a pH optimal for humans. The pH for fish studies is generally lower, pH 7.1 versus 7.4. Previously we have reproduced data showing the strong pH dependence for human free hemoglobin at different pH. These experiments (fig. 10 and 1\are at pH 7.1. Because of variations with isolating fish red cells and the temperature coefficient on pH illustrate these effects. Previously I had acquired some familiarity with HEPES Buffered and adjusting for its temperature coefficient, they did not translate to Bis-Tris buffers.

A:	human free hemoglobin	pH 7.1	$P_{50} = 4.7$
B:	goldfish free hemoglobin	pH 7.1	$P_{50} = 8.5$
C:	sample B +0.25 μmol IHP	pH 7.1	$P_{50} = 15.0$

All experiments were in Bis-Tris buffer and 25 °C.

Figure 6

A:	goldfish free hemoglobin	pH unk*	$P_{50} = 4.0$
B:	sample A +0.5 μmol PCHA•DPG	pH 7.1	$P_{50} = 10.3$
Č:	goldfish free hemoglobin + 0.5µmol ATP	pH 6.84**	$P_{50} = 43.0$
D:	goldfish free hemoglobin + 0.5µmol GTP	pH 7.11	$P_{50} = 23.0$
**E:	goldfish free hemoglobin + 0.5µmol ATP	pH 7.08	$P_{50} = 21.0$

All experiments were in Bis-Tris buffer and 25 °C.

- * pH measured after the addition of PCHA•IHP in ccuveve A. All other samples began with a new aliquot of free fish hemoglobin prior to the addition of the allosteric EFFector.
- ** After adding the ATP the pH of the sample (Run C) was too low. The pH of the ATP was adjusted to yield an appropreiate PH after addition to the sample, Run E

Fig 7 Oxygen Dissociation Curves of Whole Blood treated with a solution of pentacyclohexylammonium-2,3 diphosphogliceric acid (PCHA-DPG) and Sodium salt of DPG (PNa-DPG).

 $P_{50} = 37.0$

C: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM PCHA-DPG. After incubation the system was washed 4X and 15μL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

 $P_{50} = 50.5$

E: 75μ L Whole Blood incubated (2-5 min) with 200 μ L 30mM PNa-DPG. $P_{50} = 38.2$

Fig Oxygen Dissociation Curves of Whole Blood treated with a solution of pentacyclohexylammonium-2,3 diphosphogliceric acid (PCHA-DPG)

 $P_{50} = 25.5$

F: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM PCHA-DPG. After incubation the system was washed 4X and 15μL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

$$P_{50} = 47.3$$

Fig? Oxygen Dissociation Curves of Whole Blood treated with a solution of pentacyclohexylammonium-2,3 diphosphogliceric acid (PCHA-DPG)

 $P_{50} = 25.0$

B: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM PCHA-DPG. After incubation the system was washed 4X and 15μL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

 $P_{50} = 36.0$

G: 75 μ L Whole Blood incubated (2-5 min) with 200 μ L 30mM PCHA-DPG.. $P_{50} = 40.0$

Fig/O Oxygen Dissociation Curves of Whole Blood treated with a solution of Sodium Salts of DPG and IHP.

 $P_{50} = 37.0$

C: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM PNa-DPG.

After incubation the system was washed 4X and 15μL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

Hypotonic. Osm: 163mOsM

 $P_{50} = 37.5$

D: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM PNa-DPG. Isotonic. Osm: 321 mOsM

 $P_{50} = 39.6$

E: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM Na-IHP Hypotonic. Osm: 185mOsM

 $P_{50} = 37.5$

Fig (Oxygen Dissociation Curves of Whole Blood treated with a solution of Cyclohexylammonium (CHA) and CHA salt of IHP

 $P_{50} = 26.8$

B: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM CHA-IHP.

After incubation the system was washed 4X and 15μL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

 $P_{50} = 42.0$

C: 75µL Whole Blood incubated (2-5 min) with 200µL 30mM CHA.

 $P_{50} = 28.5$

D: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM CHA.

 $P_{50} = 26.8$

Fig 12 Oxygen Dissociation Curves of Whole Blood treated with a solution of Cyclohexylammonium-Inositol Hexaphosphate (CHA-IHP)

 $P_{50} = 24.7$

C: 75µL Whole Blood incubated (2-5 min) with 200µL 30mM CHA-IHP.

After incubation the system was washed 4X and 15µL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

 $P_{50} = 58.2$

Fig/3 Oxygen Dissociation Curves of Whole Blood treated with a solution of Cyclohexylammonium-Inositol Hexaphosphate (CHA-IHP)

 $P_{50} = 23.5$

C: 75µL Whole Blood incubated (2-5 min) with 200µL 30mM CHA-IHP.

After incubation the system was washed 4X. Whole Blood Cell Pellet was stored for 48 hrs at 4-8°C and 15µL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

 $P_{50} = 50.5$

Fig | Oxygen Dissociation Curves of Whole Blood treated with a solution of Cyclohexylammonium-Inositol Hexaphosphate (CHA-IHP)

 $P_{50} = 24.8$

C: 75μL Whole Blood incubated (2-5 min) with 200μL 30mM CHA-IHP.

After incubation the system was washed 4X and 15μL RBC were used for measurement of the Hb-O₂ dissociation curve at 37°C.

$$P_{50} = 32.8$$