

Section Summary

- Predicates
- Variables
- Quantifiers
 - Universal Quantifier (全称量词)
 - Existential Quantifier (存在量词)
- Negating Quantifiers
 - De Morgan's Laws for Quantifiers
- Translating English to Logic
- Logic Programming (optional)

Propositional Logic Not Enough

- If we have:
 - "All men are mortal."
 - "Socrates is a man."
- Does it follow that "Socrates is mortal?"
- Can't be represented in propositional logic. Need a language that talks about objects, their properties, and their relations.
- Later we'll see how to draw inferences.

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: *x*, *y*, *z*
 - Predicates: P(x), M(x)
 - Quantifiers (to be covered in a few slides):
- Propositional functions are a generalization of propositions.
 - They contain variables and a predicate, e.g., P(x)
 - Variables can be replaced by elements from their *domain*.

Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the *domain* (or *bound* by a quantifier, as we will see later).
- The statement P(x) is said to be the value of the propositional function P at x.
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:

P(-3) is false.

P(0) is false.

P(3) is true.

 Often the domain is denoted by *U*. So in this example *U* is the integers.

Examples of Propositional Functions

Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers. Find these truth values:

R(2,-1,5)

Solution: F

R(3,4,7)

Solution: T

R(x, 3, z)

Solution: Not a Proposition

Now let "x - y = z" be denoted by Q(x, y, z), with U as the integers. Find these truth values:

Q(2,-1,3)

Solution: T

Q(3,4,7)

Solution: F

Q(x, 3, z)

Solution: Not a Proposition

Compound Expressions

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:

```
\begin{array}{ll} P(3) \vee P(-1) & \textbf{Solution: T} \\ P(3) \wedge P(-1) & \textbf{Solution: F} \\ P(3) \rightarrow P(-1) & \textbf{Solution: F} \\ P(-1) \rightarrow P(3) & \textbf{Solution: T} \end{array}
```

• Expressions with variables are not propositions and therefore do not have truth values. For example,

```
P(3) \land P(y)

P(x) \rightarrow P(y)
```

 When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifiers

Charles Peirce (1839-1914)

- We need *quantifiers* to express the meaning of English words including *all* and *some*:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:
 - *Universal Quantifier,* "For all," symbol: ∀
 - *Existential Quantifier*, "There exists," symbol: ∃
- We write as in $\forall x P(x)$ and $\exists x P(x)$.
- $\forall x P(x)$ asserts P(x) is true for every x in the domain.
- $\exists x P(x)$ asserts P(x) is true for some x in the domain.
- The quantifiers are said to bind the variable *x* in these expressions.

Universal Quantifier

- $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)" **Examples**:
 - If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
 - If P(x) denotes "x > 0" and U is the positive integers, then $\forall x \ P(x)$ is true.
 - If P(x) denotes "x is even" and U is the integers, then $\forall x P(x)$ is false.

Domain (domain of discourse / universe of discourse): range of the possible values of the variable *x*

- An element for which P(x) is false is called a counterexample (反例) of $\forall x P(x)$
- Example:

Let P(x) be the statement "x<2." In the domain of all real numbers, x=3 is a counterexample for $\forall x P(x)$.

- Many ways to express universal quantification:
 - For all
 - For every
 - All of
 - For each
 - Given any
 - For arbitrary
 - For any

11

- Examples:
- 3. What is the truth value of $\forall x P(x)$, where P(x) is the statement "x < 3" and the domain is $\{1,2,3\}$?

Solution:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

Because P(3), which is the statement "3<3," is false, it follows that $\forall x P(x)$ is false.

• Remark: Given the domain as $\{x_1, x_2, \dots, x_n\}$,

$$\forall x P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$$

Existential Quantifier

• $\exists x \ P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\exists x \ P(x)$ is true. It is also true if U is the positive integers.
- If P(x) denotes "x < 0" and U is the positive integers, then $\exists x \ P(x)$ is false.
- If P(x) denotes "x is even" and U is the integers, then $\exists x P(x)$ is true.

【 Definition 】 A existential quantification of P(x), denoted by $\exists x P(x)$, is the statement "There exists an element x in the domain such that P(x)."

- ∃ : existential quantifier
- Other expressions:

For some x P(x)

There is an x such that P(x)

There is at least one x such that P(x)

• Examples:

2. What is the truth value of $\exists x P(x)$, where P(x) is the statement "x < 3" and the domain is $\{1,2,3\}$?

Solution:

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

Because P(1), which is the statement "1<3," is true, it follows that $\exists x P(x)$ is true.

• Remark: Given the domain as $\{x_1, x_2, \dots, x_n\}$,

$$\exists x P(x) \equiv P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n)$$

15

Uniqueness Quantifier (唯一性量词)

- $\exists ! x P(x)$ means that P(x) is true for <u>one and only one</u> x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
 - "There is a unique x such that P(x)."
 - "There is one and only one *x* such that *P*(*x*)"
- Examples:
 - 1. If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists ! x P(x)$ is true.
 - But if P(x) denotes "x > 0," then $\exists ! x P(x)$ is false.
- The uniqueness quantifier is not really needed as the restriction that there is a unique x such that P(x) can be expressed as:

$$\exists x \ (P(x) \land \forall y \ (P(y) \rightarrow y = x))$$

Thinking about Quantifiers

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is true, then $\forall x P(x)$ is true.
 - If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is true, then $\exists x \ P(x)$ is true and the loop terminates.
 - If the loop ends without finding an x for which P(x) is true, then $\exists x P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Properties of Quantifiers

- The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain U.
- Examples:
 - 1. If *U* is the positive integers and P(x) is the statement "x < 2", then $\exists x P(x)$ is true, but $\forall x P(x)$ is false.
 - 2. If *U* is the negative integers and P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true.
 - 3. If *U* consists of 3, 4, and 5, and P(x) is the statement "x > 2", then both $\exists x P(x)$ and $\forall x P(x)$ are true. But if P(x) is the statement "x < 2", then both $\exists x P(x)$ and $\forall x P(x)$ are false.

Precedence of Quantifiers

- The quantifiers ∀ and ∃ have higher precedence than all the logical operators.
- For example, $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\forall x (P(x) \lor Q(x))$ means something different.
- Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Binding Variables

- Bound variable: a variable is bound if it is known or quantified.
- Free variable: a variable neither quantified nor specified with a value
- All the variables in a propositional function must be quantified or set equal to a particular value to turn it into a proposition.
- Scope (作用域) of a quantifier: the part of a logical expression to which the quantifier is applied
- Examples

$$\exists x (x+y)=1$$

$$\exists x (P(x) \land Q(x)) \lor \forall x R(x)$$

Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as $\forall x J(x)$.

Solution 2: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as $\forall x (S(x) \rightarrow J(x))$.

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, translate as $\exists x J(x)$

Solution 1: But if *U* is all people, then translate as $\exists x (S(x) \land J(x))$

 $\exists x (S(x) \rightarrow J(x))$ is not correct. What does it mean?

Returning to the Socrates Example

• Introduce the propositional functions Man(x) denoting "x is a man" and Mortal(x) denoting "x is mortal." Specify the domain as all people.

• The two premises are: $\forall x (Man(x) \rightarrow Mortal(x))$

Man(Socrates)

• The conclusion is: Mortal(Socrates)

• Later we will show how to prove that the conclusion follows from the premises.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are *logically equivalent* if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$

Logical Equivalences Involving Quantifiers

x is not occurring in A.

- (1) $\forall x P(x) \lor A \equiv \forall x (P(x) \lor A)$
- (2) $\forall x P(x) \land A \equiv \forall x (P(x) \land A)$
- $(3) \qquad \exists x P(x) \lor A \qquad \equiv \qquad \exists x (P(x) \lor A)$
- $(4) \exists x P(x) \land A \equiv \exists x (P(x) \land A)$
- $(5) \qquad \forall x (A \to P(x)) \qquad \equiv \qquad A \to \forall x P(x)$
- (6) $\exists x (A \rightarrow P(x)) \equiv A \rightarrow \exists x P(x)$
- (7) $\forall x (P(x) \rightarrow A) \equiv \exists x P(x) \rightarrow A$
- (8) $\exists x (P(x) \to A) \equiv \forall x P(x) \to A$

2

Logical Equivalences Involving Quantifiers

x is not occurring in A.

- (1) $\forall x P(x) \lor A \equiv \forall x (P(x) \lor A)$
- (2) $\forall x P(x) \land A \equiv \forall x (P(x) \land A)$
- $(3) \qquad \exists x P(x) \lor A \qquad \equiv \qquad \exists x (P(x) \lor A)$
- $(4) \qquad \exists x P(x) \land A \qquad \equiv \qquad \exists x (P(x) \land A)$
- $(5) \qquad \forall x (A \to P(x)) \equiv A \to \forall x P(x)$

Proof:

$$\forall x (A \to P(x)) \equiv \forall x (\neg A \lor P(x))$$
$$\equiv \neg A \lor \forall x P(x)$$
$$\equiv A \to \forall x P(x)$$

Thinking about Quantifiers as Conjunctions

- If the domain is finite, a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers.
- If *U* consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

 Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long.

Negating Quantified Expressions

- Consider $\forall x J(x)$
 - "Every student in your class has taken a course in Java." Here J(x) is "x has taken a course in Java" and the domain is students in your class.
- Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken Java."

Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (continued)

• Now Consider $\exists x J(x)$

"There is a student in this class who has taken a course in Java."

Where J(x) is "x has taken a course in Java."

 Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java"

Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

• The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

• The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

• These are important. You will use these.

Translating from English into Logical Expressions

- Goal: To produce a logical expression that is simple and can be easily used in subsequent reasoning.
- Steps:
 - Clearly identify the appropriate quantifier(s)
 - Introduce variable(s) and predicate(s)
 - Translate using quantifiers, predicates, and logical operators

There can be many ways to translate a particular sentence.

31

Translation from English to Logic

Examples:

1. "Some student in this class has visited Mexico."

Solution: Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x \ (S(x) \land M(x))$$

"Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada." $\forall x (S(x) \rightarrow (M(x) \lor C(x)))$

Example

- C(x): x is a CS student, E(x): x is a Math student, S(x): x is a smart student, and the domain consists of all students in our class
 - 1) Everyone is a CS student.

$$\forall x C(x)$$

- 2) Nobody is a Math student. $\forall x \neg E(x)$ or $\neg \exists x E(x)$
- 3) All CS students are smart students. $\forall x (C(x) \rightarrow S(x))$
- 4) Some CS students are smart students. $\exists x \ (C(x) \land S(x))$

Example

- C(x): x is a CS student, E(x): x is an Math student, S(x): x is a smart student, and the domain consists of all students in our class
 - 5) No CS student is an Math student.
 - If *x* is a CS student, then that student is not a Math student.

$$\forall x \ (C(x) \to \neg \ E(x))$$

• There does not exist a CS student who is also a Math student.

$$\neg \exists x [C(x) \land E(x)]$$

6) If any Math student is a smart student then he is also

a CS student.

$$\forall x ((E(x) \land S(x)) \to C(x))$$

Some Fun with Translating from English into Logical Expressions

• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

Translate "Everything is a fleegle"

Solution: $\forall x F(x)$

Translation (cont)

• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

"Nothing is a snurd."

Solution: $\neg \exists x \, S(x)$ What is this equivalent to?

Solution: $\forall x \neg S(x)$

Translation (cont)

• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

"All fleegles are snurds."

Solution: $\forall x (F(x) \rightarrow S(x))$

Translation (cont)

• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

"Some fleegles are thingamabobs."

Solution: $\exists x (F(x) \land T(x))$

Translation (cont)

• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

"No snurd is a thingamabob."

Solution: $\neg \exists x (S(x) \land T(x))$ What is this equivalent

to?

Solution: $\forall x (\neg S(x) \lor \neg T(x))$

Translation (cont)

• U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

"If any fleegle is a snurd then it is also a thingamabob."

Solution: $\forall x ((F(x) \land S(x)) \rightarrow T(x))$

System Specification Example

- Predicate logic is used for specifying properties that systems must satisfy.
- For example, translate into predicate logic:
 - "Every mail message larger than one megabyte will be compressed."
 - "If a user is active, at least one network link will be available."
- Decide on predicates and domains (left implicit here) for the variables:
 - Let L(m, y) be "Mail message m is larger than y megabytes."
 - Let *C*(*m*) denote "Mail message *m* will be compressed."
 - Let A(u) represent "User u is active."
 - Let S(n, x) represent "Network link n is state x".
- Now we have: $\forall m(L(m,1) \to C(m))$ $\exists u \ A(u) \to \exists n \ S(n,available)$

Lewis Carroll Example

Charles Lutwidge Dodgson (AKA Lewis Caroll) (1832-1808)

- The first two are called *premises* and the third is called the *conclusion*.
 - 1. "All lions are fierce."
 - 2. "Some lions do not drink coffee."
 - 3. "Some fierce creatures do not drink coffee."
- Here is one way to translate these statements to predicate logic.
 Let P(x), Q(x), and R(x) be the propositional functions "x is a lion," "x is fierce," and "x drinks coffee," respectively.
 - 1. $\forall x (P(x) \rightarrow Q(x))$
 - 2. $\exists x (P(x) \land \neg R(x))$
 - 3. $\exists x (Q(x) \land \neg R(x))$
- Later we will see how to prove that the conclusion follows from the premises.

Some Predicate Calculus Definitions (optional)

- An assertion involving predicates and quantifiers is valid if it is true
 - · for all domains
 - every propositional function substituted for the predicates in the assertion.

Example: $\forall x \neg S(x) \leftrightarrow \neg \exists x S(x)$

- An assertion involving predicates is *satisfiable* if it is true
 - · for some domains
 - some propositional functions that can be substituted for the predicates in the assertion.

Otherwise it is *unsatisfiable*.

Example: $\forall x(F(x) \leftrightarrow T(x))$ not valid but satisfiable

Example: $\forall x(F(x) \land \neg F(x))$ unsatisfiable

More Predicate Calculus Definitions (optional)

• The *scope* of a quantifier is the part of an assertion in which variables are bound by the quantifier.

Example: $\forall x (F(x) \lor S(x))$ *x* has wide scope

Example: $\forall x(F(x)) \lor \forall y(S(y))$ *x* has narrow scope

Logic Programming (optional)

- Prolog (from *Programming in Logic*) is a programming language developed in the 1970s by researchers in artificial intelligence (AI).
- Prolog programs include Prolog facts and Prolog rules.
- As an example of a set of Prolog facts consider the following:

```
instructor(chan, math273).
instructor(patel, ee222).
instructor(grossman, cs301).
enrolled(kevin, math273).
enrolled(juna, ee222).
enrolled(juna, cs301).
enrolled(kiko, math273).
enrolled(kiko, cs301).
```

• Here the predicates *instructor*(*p*,*c*) and *enrolled*(*s*,*c*) represent that professor *p* is the instructor of course *c* and that student *s* is enrolled in course *c*.

Logic Programming (cont)

- In Prolog, names beginning with an uppercase letter are variables.
- If we have apredicate teaches(p,s) representing "professor p teaches student s," we can write the rule: teaches(P,S) :- instructor(P,C), enrolled(S,C).
- This Prolog rule can be viewed as equivalent to the following statement in logic (using our conventions for logical statements).

```
\forall p \ \forall c \ \forall s(I(p,c) \land E(s,c)) \rightarrow T(p,s))
```

Logic Programming (cont)

- Prolog programs are loaded into a *Prolog interpreter*. The interpreter receives *queries* and returns answers using the Prolog program.
- For example, using our program, the following query may be given:

?enrolled(kevin, math273).

Prolog produces the response:

ves

 Note that the ? is the prompt given by the Prolog interpreter indicating that it is ready to receive a query.

Logic Programming (cont)

• The query:

?enrolled(X,math273).

produces the response:

X = kevin; X = kiko; no

• The query:

?teaches(X, juana).

produces the response:

X = patel; X = grossman; The Prolog interpreter tries to find an instantiation for X. It does so and returns X = kevin. Then the user types the; indicating a request for another answer. When Prolog is unable to find another answer it returns no.

Logic Programming (cont)

• The query: ?teaches(chan,X).

produces the response:

```
X = kevin;
X = kiko;
no
```

- A number of very good Prolog texts are available. *Learn Prolog Now!* is one such text with a free online version at http://www.learnprolognow.org/
- There is much more to Prolog and to the entire field of logic programming.

Homework

• 第8版: Section 1.4 6(c,d,e,f), 9(b,d), 20(e), 24(b,d), 36, 42(b), 46, 51(a)