MTH 442: Time Series Analysis Problem Set # 7

The spectral density of a real valued time series $\{X_t\}$ is defined on $[0,\pi]$ as

$$f(\lambda) = \begin{cases} 100, & \text{if } \pi/6 - 0.01 \le \lambda \le \pi/6 + 0.01 \\ 0, & \text{otherwise.} \end{cases}$$

and on $[-\pi, 0]$ by $f(\lambda) = f(-\lambda)$. Obtain $\gamma_X(0)$ and $\gamma_X(1)$.

- A stationary time series $\{X_t\}$ has a spectral density $f(\lambda) = \lambda^2, \lambda \in [-\pi, \pi]$; find the auto covariance
- [3] $\{X_t\}$ and $\{Y_t\}$ are two uncorrelated stationary time series processes with absolutely summable auto covariances $\gamma_X(.)$ and $\gamma_Y(.)$ respectively. Obtain the spectral density function of $Z_t = X_t + Y_t$ in terms of the spectral densities of $\{X_t\}$ and $\{Y_t\}$.

Let $\{X_t\}$ be a causal AR(1) process. Derive the spectral density function of the filtered process

$$Y_t = \frac{1}{3} (X_{t-1} + X_t + X_{t+1}).$$

. [5] Suppose $\{Z_t\}$ be WN(0,1) process. Define a new process $\{X_t\}$

$$X_t = \sum_{j=1}^4 \alpha_j Z_{t-j+1} Z_{t-j}; \ \alpha_1 = \frac{1}{8}, \alpha_2 = \frac{3}{4}, \alpha_3 = \frac{3}{2}, \alpha_4 = 1.$$

Find the spectral density function of $\{X_i\}$.

- [6] Obtain autocovariance sequence of an MA(q) process using its spectral density.
- Using the characterization of ACVF through the spectral density, check whether or not the following functions are auto covariance functions

$$\gamma(h) = \begin{cases}
1 & h = 0 \\
-0.5 & h = \pm 2 \\
-0.25 & h = \pm 3 \\
0 & \text{otherwise.}
\end{cases}$$
(a) $\gamma(h) = \begin{cases}
1 & |h| \le 1 \\
0 & |h| \ge 2.\end{cases}$
(b) $\gamma(h) = \begin{cases}
1 & |h| \le 1 \\
0 & |h| \ge 2.\end{cases}$
(c) The proof of the value of a for which $\gamma(h) = \begin{cases}
1, & h = 0 \\
a, & |h| = 1 \text{ is ACVF.} \\
0, & \text{otherwise.}
\end{cases}$
(b) $\gamma(h) = \begin{cases}
1 & |h| \le 1 \\
0 & |h| \ge 2.\end{cases}$

· [9] Let $\{Z_t\}$ be a stationary time series with spectral density

$$f_Z(\lambda) = 1, -\pi \le \lambda \le \pi$$

 $\{X_t\}$ is a time series obtained from $\{Z_t\}$ by applying a linear filter $g(B) = \sum_{j=-\infty}^{\infty} g_j B^j$. The ACVF of the

filtered process $\{X_t\}$ is $\gamma_X(h) = e^{-|h|}$. Obtain the spectral density of $\{Y_t\}$, the filtered process obtained by applying the same filter g(B) on $\{X_t\}$.

. [10] Let $\{X_t\}$ and $\{Y_t\}$ be 2 zero mean uncorrelated time series; $\{X_t\}$ having an invertible MA(1) model $X_t = \varepsilon_t + \theta \varepsilon_{t-1}, \ \varepsilon_t \sim WN(0,1) \text{ and } Y_t \sim WN(0,1).$

Define
$$Z_t = \sum_{j=-\infty}^{\infty} \psi_j X_{t-j} + \sum_{j=-\infty}^{\infty} \theta_j Y_{t-j}$$
; with
$$\psi_j = \begin{cases} 0.5, & \text{if } j = \pm 1 \\ 0, & \text{otherwise.} \end{cases}$$
 $\theta_j = \begin{cases} 1, & \text{if } j = 0, 2 \\ 0, & \text{otherwise.} \end{cases}$

Obtain the spectral density function of $\{Z_t\}$ and it's value at π .

[11] Let $\{X_t\}$ be a time series defined by

$$X_{t} = A\cos\left(\frac{\pi}{4}t\right) + B\sin\left(\frac{\pi}{4}t\right) + Y_{t}.$$

A and B are uncorrelated random variables with mean 0 and variance σ^2 ; $Y_t = 0.5 \,\varepsilon_t$, $\varepsilon_t \sim WN(0, \sigma_\varepsilon^2)$. Further, ε_t is uncorrelated with A and B for every t. Find the spectral distribution function of $\{X_t\}$.

[12] Let $X_t = \alpha_1 \cos(t) + \alpha_2 \sin(t) + Y_t$; where, $\alpha = (\alpha_1, \alpha_2)^T \sim N_2(0, diag(3, 3))$, $Y_t = \varepsilon_t - \varepsilon_{t-2}$, $\varepsilon_t \sim WN(0,3)$ and is independent of α . Find the spectral distribution function of $\{X_t\}$, derive the value of $\gamma_X(0)$.