Recuperatorio PARCIAL 2: Aproximación, TDF, Convolución

Dada la función discreta $g(t_n)$ de R en R, definida por los pares ordenados $(t_n, g(t_n))$ con n=1: N, tales que:

 t_n : son N abscisas de números reales, que **inician con el valor cero**, y se incrementan con magnitudes Δt

 $g(t_n)$: son las N ordenadas de la función discreta que se encuentran como dato en el archivo adjunto denominado "registro-13-nov.txt"

Generación de la función discreta dato

Es de interés **representar en un gráfico** la función discreta $g(t_n)$ y **evaluar** su norma cuadrática, dada por

$$Norma_2 = \sum_{n=1}^{N} (g(t_n))^2$$

Con Δt= 0.083776, y N=	(entero),
resulta que la <i>Norma</i> _2_g es igual a:	(con 2 decimales).
Analizar las siguientes gráficas y se	leccionar las opciones correctas:
○ -La Figura 10 Si es correcta ○ -L	a Figura 10 NO es correcta
○ -La Figura 11 Si es correcta ○ -La	a Figura 11 NO es correcta

Transformada Discreta de Fourier (TDF)

Es de interés calcular la función de variable compleja G(k) que es la TDF de la función discreta $g(t_n)$, siendo k cada múltiplo entero de la frecuencia $\Delta \omega$. Además, es necesario representar en un gráfico mod_G , módulo de la función de variable compleja G(k) y evaluar

$$Norma_2_G = \sum_{n=1}^{N} (mod_G)^2$$

Resulta Δω=	(con 4 decimales),
y la Norma_2_G es igual a:	(con 4 decimales).
Analizar las siguientes gráfi	cas y seleccionar las opciones correctas:
O -La Figura 20 Si es correc	ta
 -La Figura 20 NO es corre 	cta

Convolución

Buscar la versión discreta de la función h(t), respuesta a impulso unitario de una EDO de segundo orden, dada por

$$h(t) = A_1 t e^{-p t}$$

con los mismos valores de t_n que son abscisas de la función discreta $g(t_n)$, y $p=k_c \ \Delta \omega$.

Calcular la función discreta $con(t_n)$, que resulta de hacer la convolución entre $h(t_n)$ y $g(t_n)$, y representarla gráficamente en el rango n=1:N

Con kc=8 A1=1/2 analizar las siguientes gráficas y seleccionar las opciones correctas:

- -La Figura 30 Si es correcta
- -La Figura 30 NO es correcta

- -La Figura 40 Si es correcta-La Figura 40 NO es correcta
- O -La Figura 41 Si es correctaO -La Figura 41 NO es correcta

