Tópicos de Matemática Discreta

_____ 1.º teste — 2 de novembro de 2018 — _____ duração: 2 horas _____

- 1. Sejam p_1 , p_2 e p_3 variáveis proposicionais. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) A fórmula $((p_1 \to (p_2 \lor p_3)) \land (\neg p_3)) \to (\neg p_1)$ é uma tautologia.
 - (b) O argumento representado por

é um argumento válido.

2. Considere que A é um subconjunto de $\mathbb Z$ e que p representa a proposição

$$\forall_{x \in A} (x < 4 \rightarrow \exists_{y \in A} (y \le x \rightarrow y^2 < 16)).$$

- (a) Dê exemplo, justificando, de um conjunto A não vazio onde:
 - (i) p seja verdadeira;
 - (ii) p seja falsa.
- (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. Mostre que, para quaisquer inteiros m e n, se mn e m+n são pares, então m e n são ambos pares.
- 4. Considere os conjuntos

$$A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x^2 \in B \land y = x + 3\}, \quad B = \{0, 4, \{9\}\}\}$$
$$C = (\mathbb{Z} \setminus \{1\}) \times (\mathbb{Z} \setminus \{3\}), \quad D = \{1, \{1\}, \{1, \{1\}\}\}\}.$$

Justificando, determine

- (a) $A \cap C$.
- (b) $D \cap \mathcal{P}(D)$.
- 5. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira para quaisquer conjuntos $A,\,B$ e C.
 - (a) $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C)$.
 - (b) Se $B \cap C \subseteq A$, então $(B \setminus A) \cap (C \setminus A) = \emptyset$.
 - (c) $\mathcal{P}(A) \setminus \mathcal{P}(B) \subset \mathcal{P}(A \setminus B)$.
- 6. Sejam A e B conjuntos. Mostre que $(A \times B) \setminus (B \times B) = (A \setminus B) \times B$.
- 7. Prove, por indução nos naturais, que

$$2 \times 2 + 3 \times 2^{2} + 4 \times 2^{3} + \ldots + (n+1) \times 2^{n} = n \times 2^{n+1}$$

para todo o natural n.

Cotações	1.	2.	3.	4.	5.	6.	7.
	1,75+1,5	1,25+1,25+1,5	2,0	1,5+1,5	1,25+1,25+1,25	1,5	2,5