

Daniel Moghimi

Ph.D. Student Worcester Polytechnic Institute @danielmgmi

MemJam: A False Dependency Attack against Constant-Time Crypto Implementations in SGX

Ahmad "Daniel" Moghimi
Thomas Eisenbarth
Berk Sunar

April 17, 2018 CT-RSA 2018 - San Francisco, CA

Data Dependency

- Instruction Fetch
- Instruction Decode
- EX Execute
- WB Write Back

- Instruction Fetch
- **ID** Instruction Decode
- EX Execute
- WB Write Back

• Data dependency: Instruction \rightarrow Data of a preceding instruction

Write Back

Data dependency: Instruction → Data of a preceding instruction

WB

Data False Dependency

- Pipeline stalls without true dependency.
- Reasons:
 - Register Reuse
 - Limited Address Space

Data False Dependency – Register Renaming

- Pipeline stalls without true dependency.
- Reasons:
 - Register Reuse
 - Limited Address Space

Memory False Dependency – 4K Aliasing

- Memory loads/stores are executed out of order and speculatively.
- The dependency is verified after the execution!

- 4K Aliasing: Addresses that are 4K apart are assumed dependent.
- Re-execute the **load** and corresponding instructions due to false dependency.
- Virtual-to-physical address translation → Memory disambiguation

- Intra-cache line Leakage (4-byte granularity)
- Higher time correlates

 Memory accesses with the same bit 3 to 12
- 4 bits of intra-cache level leakage

Constant time AES – Safe2Encrypt_RIJ128

- Scatter-gather implementation of AES
 - 256 S-Box 4 Cache Line
 - Cache independent access pattern
- Implemented and distributed as part of Intel products
 - Intel SGX Linux Software Development Kit (SDK)
 - Intel IPP Cryptography Library

Constant time AES — Safe2Encrypt_RIJ128

- Scatter-gather implementation of AES
 - 256 S-Box 4 Cache Line
 - Cache independent access pattern
- Implemented and distributed as part of Intel products
 - Intel SGX Linux Software Development Kit (SDK)
 - Intel IPP Cryptography Library

Constant time AES – Safe2Encrypt_RIJ128

- Scatter-gather implementation of AES
 - 256 S-Box 4 Cache Line
 - Cache independent access pattern
- Implemented and distributed as part of Intel products
 - Intel SGX Linux Software Development Kit (SDK)
 - Intel IPP Cryptography Library

MemJam Attack on AES

MemJam Attack on AES

MemJam Attack on AES

MemJam Attack on AES

$$index = S^{-1}(c \oplus k)$$

MemJam Attack on AES

$$index = S^{-1}(c \oplus k) \longrightarrow index < 4.$$

AES Key Recovery

AES Key Recovery

Observations

SM4 Block cipher – cpSMS4_Cipher

- Standard Cipher support by Intel
 - Chinese National Standard for Wireless LAN WAPI
- S-Box + Unbalanced Feistel Structure
- Protected by Cache State Normalization

Recursive attack

Full key recovery with 40K observations

MemJaming Intel SGX Secure Enclave

Intel SGX – AES Key Recovery

Observations

Conclusion

- New Side-Channel Attack Applicable to all Intel Processors
 - Intel SGX extensions
- Bypass of Constant-Time Implementations Techniques
 - Scatter-Gather
 - Cache State Normalization
- Agnostic to other Cache Attack Defense Mechanism
- Intel Trilogy
 - Intel Hardware
 - Intel Trusted Execution Environment
 - Intel Hardened Crypto Implementation

Responsible Disclosure

Date	Progress
08/02/2017	Reported
08/04/2017	Acknowledged
11/07/2017	Safe2Encrypt_RIJ128 got removed from SGX SDK.
11/17/2017	CVE-2017-5737 Assigned
work-in-progress	Patch

Questions?!

Vernam Group

v.wpi.edu

@VernamGroup@danielmgmi

Implementation Technique	Function Name	19 n0 y8 k0 e9	m7 mx	n8	Linux SGX SDK
AES-NI	Encrypt_RIJ128_AES_NI		×	×	(pre-built)
AES Bitsliced	SafeEncrypt_RIJ128		×		(pre-built)
AES Constant- Time	Safe2Encrypt_RIJ128	×	~	×	(source)
SM4 Bitsliced using AES-NI	cpSMS4_ECB_aesni	-	×	×	N/A
SM4 Cache Normalization	cpSMS4_Cipher	~	~	~	N/A

Release	Family	Cache Bank Conflicts	4K Aliasing
2006	Core	~	~
2008	Nehalem	×	~
2011	Sandy bridge	~	~
2013	Silvermont, Haswell, Broadwell	×	~
2015	Skylake	×	~
2016	KabyLake	×	~