BLG435E Artificial Intelligence

Dr. Sanem Sariel

About the Course

Instructor: Dr. Sanem Sariel

- Office: 4326

- Phone: 212 285 67 05

— e-mail: sariel@itu.edu.tr

Office hours: TBD, by appt.

Assistant: Çağatay Koç

Course information and the documents are avaliable at:
 Ninova

Text Book & Readings

- S. Russell and P. Norvig, "Artificial Intelligence A Modern Approach", 3/e, Prentice Hall, 2010
 - Rezerved at the library (3/e)

Additional Readings

Grading

70% attendance is required

Midterm – 30%

- Final exam 40%
 - Prerequisite
 - midterm grade > 20
 - Each assignment grade > 20 (for at least 2 assignments)
- 3 Assignments 30%
 - 2 Quizzes

Course Objectives

Introductory knowledge of AI

Key to advanced topics in Al

Present state-of-the-art AI techniques

Course Overview and Content

- Introduction and Brief History
- Intelligent Agents
- Problem Solving
- Knowledge and Reasoning
- Planning
- Learning
- Robotics

BLG435E Artificial Intelligence

Lecture 1: Introduction

Outline

What is Al

A brief history

• The state of the art

What is intelligence?

Defining intelligence by the properties it exhibits:

- The ability
 - to solve problems
 - to answer questions
 - to devise plans
 - to deal with new situations, and so on..

What is Artificial Intelligence?

- The scientific understanding of the mechanisms underlying thought and intelligent behavior; and their embodiment in machines.
 - The Association for the Advancement of Artificial Intelligence (AAAI)

 Artificial Intelligence is the study of systems that act in a way that to any observer would appear to be intelligent.

Why study AI?

Build intelligent systems

- Understand the nature of intelligence
- Make computers more effective
- Make computers easier for humans to work with
- Explore interesting intellectual questions
- Make money

Why study AI?

What is Artificial Intelligence? Different school of thoughts

Systems that act like humans

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)

Systems that think rationally

"The study of mental faculties through the use of computational models" (Charniak et al. 1985)

Systems that **think** like **humans**

"The exciting new effort to make computers thinks
... machine with minds, in the full and literal
sense"
(Haugeland 1985)

Systems that act rationally

"Computational Intelligence is the study of the design of intelligent agents"

(Poole et al., 1998)

Acting humanly: The Turing Test

- Turing (1950) "Computing machinery and intelligence"
- Can machines think?

The Turing Test

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Suggested major components of AI: knowledge representation, reasoning, language understanding, learning
- Total Turing Test components: computer vision, robotics to manipulate objects

 not reproducible, constructive, or amenable to mathematical analysis

Conversation with a bot

- Rose
- Alice
- Poncho
- Melody

A. L. I. C. E. The Artificial L ×

← → C alice.pandorabots.com

A. L. I. C. E. Artificial Intelligence Foundation

Promoting the development and adoption of ALICE and AIML Free Software

C.L.A.U.D.I.O Personality Test GET SITEPAL AVATARS

Get your own free chat bot: Be Your Own Botmaster, 2nd ed.

Say

Get ALICE Showcase Edition with talking Sitepal avatar.

English Tutor

CallMom ALICE 2.0 Android app

English Tutor app

Dave ESL Bot

Fake Captian Kirk

CLAUDIO Personality Test

Santa Bot

SitePal

A.L.I.C.E. and judge

You said: Good bye

A.L.I.C.E.: Thanks for the compliment.. Sayonara.

You say:

Create your own chat bot.

Conversation Log:

judge: so what is the answer to my question?

ALICE: It depends on how you phrase the question. judge: come on. I've already asked it!

ALICE: I'm just kidding around, mostly asked question...

judge: you are trying to be funny?

ALICE: Thanks for telling me that I am trying to be funny.

judge: You still didn't answer to my question. ALICE: Please help me improve my communication skills. What would have been an

appropriate response?

judge: You communicate with may people. I asked what is the most frequently asked question

ALICE: Do you mind if I tell other people. I think it is a tie.

judge: you mean

ALICE: Sometimes I say mean things.

judge: you cannot tell me the answer?

ALICE: Can you tell you the answer?

judge: I'm the person asking the question.

ALICE: Who made you the person asking the guestion ?

judge: OK. Thank you Alice.

ALICE: Yikes! Don't mention it.

judge: It was a nice experience to talk to an AI bot

ALICE: Oh I get it. Very interesting.

judge: But, I believe you still need to improve yourself.

ALICE: Easier said than done.

iudae: Good bye

ALICE: Thanks for the compliment., Savonara,

The Chinese Room Argument

John Searle, 1980

- - IF input is c1 followed by c2 followed by c3
 - THEN output is c2 followed by c4
- where the c's are Chinese characters

The Chinese Room Argument

 Running a computer program that behaves in an intelligent way does not necessarily produce understanding, conciousness, or real intelligence

Thinking humanly: Cognitive Science

- Requires scientific theories of internal activities of the brain
 - What level of abstraction? "Knowledge" or "circuits"?
 - How to validate? Requires
 - Predicting and testing behavior of human subjects (top-down)
 - Direct identification from neurological data (bottom-up)

Thinking humanly: Cognitive Science

- A human-centered approach involves
 - hypothesis and experimental confirmation
- A rationalist approach involves
 - a combination of mathematics and engineering
- Both approaches (roughly, Cognitive Science and Cognitive Neuroscience) are now distinct from Al

- Both share with AI the following characteristic:
 - the available theories do not explain (or engender) anything resembling human-level general intelligence

Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

- Aristotle (~ 450 B.C.) attempted to codify "right thinking":
 - what are correct arguments/thought processes?
 - e.g., "Socrates is a man, all men are mortal; therefore Socrates is mortal"

Thinking rationally: Laws of Thought

- Several Greek schools developed various forms of logic:
 - notation and rules of derivation for thoughts; may or may not have proceeded to the idea of mechanization
 - Direct line through mathematics and philosophy to modern AI

Thinking rationally: Laws of Thought

Problems:

- Uncertainty:
 - not all intelligent behavior is mediated by logical deliberation
 - It is not easy to take informal knowledge and state it in the formal terms (logical notation)
- Solving a problem in principle and doing so in practice

Acting rationally

Rational behavior: Doing the right thing!

The right thing: That which is expected to maximize the expected return

- Provides the most general view of AI because it includes:
 - Correct inference ("Laws of thought")
 - Handling uncertainty
 - Resource limitation considerations (e.g., reflex vs. deliberation)

Rational Agents

 Abstractly, an agent is a function from percept histories to actions:

$$f: \mathcal{P}^* \to \mathcal{A}$$

- perceives and acts autonomously, adapts to changes to achieve the best (expected) outcome
 - computational limitations make perfect rationality unachievable

History of Al

1943	McCulloch & Pitts: Boolean circuit model of brain
1950	Turing's "Computing Machinery and Intelligence"
1952–69	Look, Ma, no hands!
1950s	Early AI programs, including Samuel's checkers program,
	Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
1956	Dartmouth meeting: "Artificial Intelligence" adopted Celebrating AAAI's 25th
1965	Robinson's complete algorithm for logical reasoning
1966–74	Al discovers computational complexity
	Neural network research almost disappears
1969–79	Early development of knowledge-based systems
1980–88	Expert systems industry booms
1988–93	Expert systems industry busts: "Al Winter"
1985–95	Neural networks return to popularity
1988–	Resurgence of probability; general increase in technical depth
	"Nouvelle AI": ALife, GAs, soft computing
1995-	Agents, agents, everywhere
2003-	Human-level AI back on the agenda

The State of the Art

Which of the following can be done at present?

- Play a decent game of table tennis
- Drive safely along a curving mountain road
- Drive safely along Taksim Square
- Buy a week's worth of groceries on the web
- Buy a week's worth of groceries at a supermarket
- Play a decent game of bridge
- Discover and prove a new mathematical theorem
- Design and execute a research program in molecular biology
- Write an intentionally funny story
- Give competent legal advice in a specialized area of law
- Translate spoken English into spoken Swedish in real time
- Converse successfully with another person for an hour
- Perform a complex surgical operation
- Unload any dishwasher and put everything away

Al journals, Conferences, Societies

- http://aaai.org/AITopics/
- Biennial International Joint Conference on AI (IJCAI)
- National Conference on AI (AAAI)
- Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)
- International Conference on Automated Planning and Scheduling (ICAPS)
- Artificial Intelligence (Journal)
- Journal of Artificial Intelligence Research (Journal)
- Computational Intelligence (Journal)
- IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (Journal)
- IEEE Intelligent Systems (Journal)
- Autonomous Agents and Multi-Agent Systems (Journal)
- Al Magazine
- AAAI-Association for the Advancement of Artificial Intelligence (Formerly American Association for Artificial Intelligence)
- SIGART -ACM Special Interest Group in Al

