T: Odwrotna notacja polska.

- 1. Wyrażenia arytmetyczne można przedstawiać w różnej postaci:
- a) **notacja infiksowa** zapis konwencjonalny, w którym **operatory umieszczane są pomiędzy argumentami (operandami)**, dopuszcza używanie nawiasów, na przykład

$$x + y$$

- b) **notacja prefiksowa operatory umieszczane są przed argumentami**, na przykład
- + x y
- c) notacja postfiksowa, zwana odwrotną notacją polską ONP (ang. Reverse Polish Notation,

RPN) — operatory umieszczane są po argumentach, na przykład

x y +

ONP przedstawiona została w 1920 roku przez polskiego matematyka Jana Łukasiewicza. Pozwala na całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa kolejność wykonywanych działań.

2. Zarówno algorytm konwersji notacji konwencjonalnej (infiksowej) na odwrotną notację polską (postfiksową), jak i algorytm obliczania wartości wyrażenia danego w ONP są bardzo proste i wykorzystują **stos**.

3. Przykłady:

Wyrażenia arytmetyczne	Zapis wyrażenia wpostaci ONP:
4+8	4 8 +
(2+3)·5	2 3 + 5 ·
(7-3)/2	7 3 - 2/
2·(5-2)	2 5 2 - ·
(4-2)·(1+3)	4 2 - 1 3 + ·
((8-2)/3+(1+4)·2)/6	8 2 - 3 / 1 4 + 2 · + 6 /
((2+7)/3+(14-3)·4)/2	2 7 + 3 / 14 3 - 4 · + 2 /

4. Dokładnie rozpisany przykład:

$$((8-2)/3+(1+4)\cdot 2)/6$$
 8 2 - 3 / 1 4 + 2 · + 6 /

Symbol pobrany z wyrażenia ONP	Wykonane czynności	Aktuala zawartość stosu
8	Odłożenie liczby 8 na stos	8
2	Odłożenie liczby 2 na stos	28

-	Pobranie dwóch wartości ze stosu:2 i 8, wykonanie działania 8 - 2 i odłożenie wyniku:6 na stoa	6
3	Odłożenie liczby 3 na stos	3 6
/	Pobranie dwóch wartości ze stosu: 3 i 6, wykonanie działania 6/3 i odłożenie wyniku: 2 na stos	2
1	Odłożenie liczby 1 na stos	1 2
4	Odłożenie liczby 4 na stos	412
+	Pobranie dwóch wartości ze stosu: 4 i 1, wykonanie działanie 1+4 i odłożenie wyniku: 5 na stos	5 2
2	Odłożenie liczby 2 na stos	2 5 2
•	Pobranie dwóch wartości ze stosu: 2 i 5, wykonanie działania 5 · 2 i odłożenie wyniku: 10 na stos	10 2
+	Pobranie dwóch wartości ze stosu: 10 i 2, wykonanie działania 2+ 10 i odłożenie wyniku: 12 na stos	12
6	Odłożenie liczby 6 na stos	6 12
/	Pobranie dwóch wartości ze stosu: 6 i 12 i odłożenie wyniu: 2 na stos	2

5. Ćwiczenia:

Zadanie 3.2. (1 pkt)

Poniżej zapisano wyrażenia w odwrotnej notacji polskiej (ONP). Wartościami tych wyrażeń są:

	Wyrażenie ONP	Wartość wyrażenia		
1.	7 3-2/	2	P	F
2.	4 3 - 1 3 + *	8	P	F
3.	3 5 1-*	12	P	F
4.	8 2 + 2 /	10	P	F

Zadanie. 2.76 ze str. 187 (z podręcznika)

6. Algorytm w postaci listy kroków wyznaczający wartość wyrażenia opisanego w odwrotnej notacji polskiej:

Specyfikacja:

Dane: Łańcuch znaków: *s* (wyrażenie arytmetyczne zapisane w ONP).

Wynik: Wartość wyrażenia zapisanego w ONP: wynik.

Lista kroków:

Krok 0. Wczytaj s.

Krok 1. Przypisz n = liczba symboli w s.

Krok 2. Wyzeruj stos.

Krok 3. Dla kolejnych wartości *i:* 0, 1, ..., *n-1*, wykonuj krok 4., a następnie przejdź 4 do kroku 9.

Krok 4. Jeśli s[i] jest liczbą, odłóż s[i] na stos i przejdź do kroku 3., w przeciwnym wypadku przejdź do kroku 5.

Krok 5. Jeśli *s[i]* jest operatorem, wykonaj kroki 6. - 8., a następnie przejdź do kroku 3.

Krok 6. Zdejmij ze stosu jeden element *x*.

Krok 7. Zdejmij ze stosu kolejny element - y.

Krok 8. Odłóż na stos wartość wyrażenia y s[i] x, gdzie s[i] jest operatorem wykonywanego działania.

Krok 9. Zdejmij ze stosu i wypisz liczbę, która jest wartością obliczanego wyrażenia.

Zakończ algorytm.

W DOMU

Napisz program wyzanczający wartość wyrażenia zapisanego w ONP (możesz wykorzystać podaną na lekcji listę kroków). W wyrażenie wprowadzoanym z klawiatury należy uwzględnić tylko nieujemne liczby jednocyfrowe. Możesz wykorzystać dynamiczne struktury do reprezentacji stosu lub adapter stosu z biblioteki standardowej.