Solution-1:

Suppose we have m rounds and a vertex v has not reached value $\log n$. Consider that we have tossed $H = H_a + H_b$ heads, and we change the vertex of observation H_a times. We change the vertex v of observation when the current vertex does not increment despite getting a head, then we shift to the vertex in the neighbourhood of v that has count less than count(v) - b.

Index	Vertex	Counter	Coin
m	v	k	Н
m-1	v	k-1	Н
m-2	v'	k - b - 2	T
m-3	v''	k - 2b - 3	Н
	•••		•••
1		$k - H_a(b+1) - H_b$	T

The probability of a delay-sequence of length m and H heads: $P(H heads) = p^{H}(1-p)^{m-H}$ The number of such a delay-sequences with H heads is:

$$\text{\# of delay sequences with H heads} = \binom{m}{H} \sum_{\forall possible \ H_a} \binom{H}{H_a} d^{H_a} \leq \binom{m}{H} \sum_{H_a=0}^H \binom{H}{H_a} d^{H_a} = \binom{m}{H} (d+1)^H$$

Probability of the delay sequence of length m where H heads occur (for any given node):

 $P(delay\ sequence\ with\ H\ heads) \le (\#\ of\ sequences\ with\ H\ heads) \cdot P(H\ heads)$

$$\leq {m \choose H} (d+1)^H p^H (1-p)^{m-H} \leq {m \choose H} (d+1)^H \alpha^m; \ \alpha = \max(p, 1-p)$$

$$\Rightarrow P(\text{delay sequence with } H \text{ heads}) \leq {m \choose H} (d+1)^H \alpha^m$$

To account for the probability of occurrence of a delay sequence starting at a particular node, we need only sum over all possible H. This summation automatically accounts for all possible k, since in # of sequences with H heads we have already accounted for all possible H_a .

$$\therefore P(delay \ sequence \ occurs \ at \ node) = \sum_{\forall possible \ H} P(delay \ sequence \ with \ H \ heads)$$

Also, since
$$k - H_a(b+1) - H_b \ge 0 \Rightarrow k \ge bH_a + H \Rightarrow H \le k < \log n. \Rightarrow H < \log n$$

Therefore, the probability of a delay sequence occurring would be (using union bound):

 $P(\text{atleast one delay sequence}) \leq (\text{number of nodes}) \times \sum_{\forall possible \ H} P(\text{delay sequence with H heads})$ $\leq n \sum_{H=0}^{\log n} P(\text{delay sequence with H heads}) \leq n \sum_{H=0}^{\log n} {m \choose H} (d+1)^H \alpha^M$ $\leq n \log n \binom{m}{\log n} (d+1)^{\log n} \alpha^M \leq n \log n \left(\frac{me}{\log n}\right)^{\log n} (d+1)^{\log n} \alpha^M$

$$\leq n \sum_{H=0}^{\infty} P(\text{delay sequence with } H \text{ heads}) \leq n \sum_{H=0}^{\infty} {m \choose H} (d+1)^H \alpha^m$$

$$\leq n \log n \binom{m}{\log n} (d+1)^{\log n} \alpha^m \leq n \log n \left(\frac{me}{\log n}\right)^{\log n} (d+1)^{\log n} \alpha^m$$

Choose $m = C \log n$, then:

 $P(\text{atleast one delay sequence}) \leq n \log n (Ce(d+1)\alpha^C)^{\log n}$

We can find such a
$$C > 1$$
, such that $(Ce(d+1)\alpha^C) < e^{-3}$:
$$Ce(d+1)\alpha^C < e^{-3}$$
$$\Rightarrow \log C + C\log \alpha < \log \frac{e^{-4}}{d+1}$$
$$\Rightarrow C\log \frac{1}{\alpha} > \log \left(\frac{d+1}{e^{-4}}\right) + \log C$$

$$\Rightarrow C > \frac{\log C}{\log 1/\alpha} + \frac{\log \left(\frac{d+1}{e^{-4}}\right)}{\log 1/\alpha} = k_1 \log C + k_2; \quad for \ some \ k_1, k_2 > 0$$

Since $x > O(\log x)$, we can find such a C. Suppose C_1 is as such and let $m = C_1 \log n$. Then, $P(at least one delay sequence) \le n \log n \ (C_1 e(d+1)\alpha^{C_1})^{\log n} < n \log n \ (e^{-3})^{\log n} < \frac{n \log n}{n^3} < \frac{\log n}{n^2}$

Hence, $P(atleast\ one\ delay\ sequence) < \frac{\log n}{n^2}$, this is very small for large n. Thus, with high probability no delay sequence occurs for $m = C_1 \log n$. And C_1 is a function of b, d, p ($\because \alpha = \max(p, 1-p)$).

Thus within $O(\log n)$ rounds, all counters will reach value $\log n$ with high probability.

Solution-2:

1. The algorithm, chosen Heads for all neighbours to make analysis easier. One can also have a complementary choice with p' = 1 - p and the algorithm would still be the same.

Algorithm-1: A distributed algorithm to compute independent set

- 1. Each node i tosses a coin which gives heads with probability p;
- 2. Each node *i* sends the outcome of its coin toss to its neighbours and, in turn, receives their outcome as well;
- 3. Each node *i* adds itself to set *S* if ... it got Tails and all its neighbours got Heads;
- 2. Consider a set *S* obtained from Algorithm-1.

Clearly, for any $v \in S$, we know that $v \in V$. $\Rightarrow S \subset V$

We shall prove by contradiction that S is an independent set:

Let $i, j \in S$ be two vertices.

 \Rightarrow i & j got Tails and all neighbours of both i and j got Heads

Now, assume that there is an edge from i to j, $(i, j) \in E$.

 \Rightarrow j is a neighbour of i, and j got Tails

 \Rightarrow One of the neighbours of i got Tails

 \Rightarrow i must not be in S

We have arrived at a contradiction.

Our assumption that there exists an edge from i to j (or an edge from j to i) must be wrong. Hence for any two arbitrary vertices $i, j \in S$, $(i, j) \notin E$.

Therefore, $S \subset V$ and for $i, j \in S$, $(i, j) \notin E \Rightarrow S$ is an independent set.

3. Expected size of set S:

Define:

$$X_i = \begin{cases} 1, & node \ i \ adds \ self \ to \ S \\ 0, & otherwise \end{cases}$$

$$X = \sum_{i \in V} X_i$$

Clearly, X = |S|. Now, $P(X_i = 1) = P(all\ neighbours\ get\ Heads) * P(i\ gets\ Tails)$. $\Rightarrow P(X_i = 1) = p^d(1-p)$ $\Rightarrow \mathbf{E}[X_i] = p^d(1-p)$

By linearity of expectation,

$$\mathbf{E}[X] = \sum_{i \in V} \mathbf{E}[X_i] = np^d (1 - p)$$

$$\Rightarrow \mathbf{E}[|S|] = np^d (1 - p)$$

4. The value of p maximizing $\mathbf{E}[|S|]$:

We first compute the derivatives:

$$\frac{\partial \mathbf{E}[|S|]}{\partial p} = ndp^{d-1} - n(d+1)p^d$$

$$\frac{\partial^2 \mathbf{E}[|S|]}{\partial^2 p} = ndp^{d-2} ((d-1) - (d+1)p)$$

For maxima, $\partial \mathbf{E}[|S|]/\delta p = 0$ and $\partial^2 \mathbf{E}[|S|]/\partial^2 p < 0$:

$$\Rightarrow dp^{d-1} - n(d+1)p^{d} = 0 \Rightarrow p = \frac{d}{d+1}$$

$$\frac{\partial^{2} \mathbf{E}[|S|]}{\partial^{2} p} \Big|_{p = \frac{d}{d+1}} = nd \left(\frac{d}{d+1}\right)^{d-2} \left((d-1) - \frac{(d+1)d}{d+1}\right) < 0$$

Thus, for $p = \frac{d}{d+1}$, the expected size of |S| is maximized.

$$\mathbf{E}[|S|] = n\left(\frac{d}{d+1}\right)^{d} \left(1 - \frac{d}{d+1}\right) = \frac{nd^{d}}{(d+1)^{d+1}} = \left(\frac{d}{d+1}\right)^{d} \cdot \frac{n}{d+1}$$

$$\Rightarrow \mathbf{E}[|S|] = \frac{1}{\left(1 + \frac{1}{d}\right)^{d}} \frac{n}{d+1} \cong \frac{1}{e} \cdot \frac{n}{d+1} \text{ for large enough } d$$

Solution-3:

1. The following deterministic algorithm would be to keep k+1 alive links. But since we have no prior knowledge of k, we will assume the worst and choose to keep n/2+1 alive links.

Algorithm-2: A deterministic algorithm to ensure that v remains connected to at least one slave vertex

Repeat for each day:

Successfully connect to slave vertices until n/2 + 1 active links

Since the number of links breaking among the n/2+1 can be at most n/2. There will always be at least one slave vertex connected the next day. Clearly, the deterministic algorithm always keeps $\frac{n}{2}+1$ alive links, and scales linearly with n.

2. Randomized algorithm:

Algorithm-3: A randomized algorithm to ensure that ν remains connected to at least one slave vertex

Repeat for each day:

The Algorithm-3 fails if all of the connected links break on the next day. Say there are a active links in the previous day (i.e., $(i-1)^{th}$ day) and k_i be the number of links that are failing today (i^{th} day). Then,

$$E_i = event \ that \ the \ algorithm \ fails \ on \ the \ i^{th} \ day$$

$$P(E_i) = P(no \ slave \ vertex \ linked) = \left(\frac{k_i}{n}\right)^a \leq \frac{1}{n^4} \ for \ a \geq \left[4\log_{\frac{n}{k_i}} n\right]$$

Since we have no prior knowledge of k_i , except $k_i \le n/2$. We have,

$$\left| 4 \log_{\frac{n}{k_i}} n \right| \le \lceil 4 \log_2 n \rceil$$

$$\Rightarrow P(E_i) \le \frac{1}{n^4} \text{ for } a = \lceil 4 \log_2 n \rceil$$

Using the union bound:

$$P(fails\ within\ n^2\ days) = P\left(\bigcup_{i=1}^{n^2} E_i\right) \le n^2 P(E_i) \le \frac{n^2}{n^4} = \frac{1}{n^2} \quad [union\ bound]$$

$$P(success) = 1 - P(fails\ within\ n^2\ days) \ge 1 - \frac{1}{n^2}$$

Thus, for $a = \lceil 4 \log_2 n \rceil$ this randomized algorithm succeeds with high probability. This randomized algorithm keeps $\lceil 4 \log_2 n \rceil$ active links.