PhD Mini-Task

Ryan Lucas

January 2023

Introduction: SurVITE

- SurVITE (Curth, Lee, van der Schaar, 2021) is a new framework for estimating Heterogenous Treatment Effects (HTEs) in time-to-event (TTE) data.
- HTEs measure variability in a treatment response for individuals within a population.
- ▶ **TTE** data records, among other things, the length of time until the occurrence of a particular end-point of interest (e.g. death in a medical study).

A primer on regular HTE estimation

 For HTE estimation in standard observational data, not dependent on time, the goal is often to measure the conditional average treatment effect (CATE).

$$\mathsf{HTE}_{\mathsf{CATE}}(x) = \mathbb{E}\left[Y^{(1)} - Y^{(0)} \mid X = x\right]$$

Knowing the patient's characteristics, should we prescribe treatment a = 1 or treatment a = 0? Importantly, the CATE depends on the unique patient covariates X = x:

HTE estimation in TTE data

In a TTE setting, we are instead interested in several time-dependent HTEs, for example the difference in expected survival probability under treatment a = 1 and a = 0:

HTE_{surv}
$$(\tau \mid x) = S^{(1)}(\tau \mid x) - S^{(0)}(\tau \mid x)$$

▶ Here $S^{(a)}$ is computable using the treatment-specific hazard function:

$$\lambda^{(a)}(\tau \mid x) = \mathbb{P}(T = \tau \mid T \geq \tau, do(A = a, C \geq \tau), X = x)$$
hazard function for treatment group a

Probability event occurs at time τ given still at-risk & patient characteristics

$$\implies S^{(a)}(\tau \mid x) = \prod_{t < \tau} (1 - \lambda^{(a)}(t \mid x))$$

For this reason, $\lambda^{(a)}(\tau \mid x)$ is the main quantity we seek to estimate.

Isn't that just a standard classification problem?

- Notice that we want to make this prediction of the hazard $\hat{\lambda}^{(a)}(\tau \mid x)$ at baseline (the outset).
- When a new patient comes along, we can then easily compute $\hat{S}^{(1)}(\tau \mid x) \hat{S}^{(0)}(\tau \mid x)$ and make a decision to administer a = 1 or a = 0 based on the difference in survival probability.
- ▶ To find $\hat{\lambda}^{(a)}(\tau \mid x)$, we would like to solve the target problem:

$$\hat{\lambda}^{(a)}(\tau \mid x) \in \underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \, \mathbb{E}_{X,Y(\tau) \sim \mathbb{P}_0(X,Y(\tau)),} \left[\ell\left(Y(\tau),h(X)\right)\right]$$
Target Problem

which would be a standard classification problem with $Y(\tau) = \mathbb{I}[T = \tau]$ as the target and $\mathbb{P}_0(\cdot)$ the joint distribution of patients at baseline. Think of $\mathbb{P}_0(\cdot)$ as the overall population distribution. ¹

1

If in addition the assigned treatment are independent of the covariates, i.e. $\mathbb{P}(A=1 \mid X=x) = \mathbb{P}(A=0 \mid X=x)$, then this target problem would be correctly specified.

What makes HTE estimation in TTE data special?

- ▶ However, due to the nature of TTE data, certain patients drop out of the at-risk population over time (recall that $\hat{\lambda}^{(a)}(\cdot)$ estimates the hazard *conditional* on $T, C \ge \tau$).
- Hence we must instead solve the observational problem:

$$\hat{\lambda}^{(a)}(\tau \mid x) = \underset{h_{a,\tau} \in \mathcal{H}}{\min} \mathbb{E}_{X,Y(\tau) \sim \mathbb{P}_{a,\tau}(\cdot)} \left[\ell\left(Y(\tau), h_{a,\tau}(X)\right) \right]$$
Observational Problem

where $\mathbb{P}_{a,\tau}(\cdot)$ is the joint distribution of patients who are still at-risk.

▶ This would closely approximate the target problem when $\mathbb{P}_0(\cdot) \approx \mathbb{P}_{a,\tau}(\cdot)$. However, this is often not the case.

Why is $\mathbb{P}_0 \neq \mathbb{P}_{a,\tau}$? Covariate shift

- ▶ If the treatment assigned depends on the covariates, then $\mathbb{P}_{a=1,\tau=0}(X) \neq \mathbb{P}_{a=0,\tau=0}(X)$ at the outset $\Longrightarrow \mathbb{P}_{a,\tau}(X) \neq \mathbb{P}_0(X)$.
- The event itself or censoring (T or C) can be dependent on the covariates. If only 'healthy' individuals survive to be at-risk past a certain time $\tau' > 0$, then clearly these patients have a different covariate distribution than individuals at baseline:

$$\mathbb{P}_{a,\tau=0}(X)\neq\mathbb{P}_{a,\tau'}(X)\implies\mathbb{P}_{a,\tau'}(X)\neq\mathbb{P}_{0}(X).$$

Figure: (Left): A classic problem in observational studies arises in the difference between populations across treatment arms. These differences are present upon the assignment of treatments. (Right): In TTE studies, new issues arise due to censoring and event realizations that take place over time.

Balancing \mathbb{P}_0 and $\mathbb{P}_{a,\tau}$ over time

- SurVITE proposes a resolution to the unique sources of covariate shift that arise in TTE data, using representation learning to balance the target and observational distributions.
- ▶ For fixed a and τ , the goal is to learn a representation $\Phi: \mathcal{X} \to \mathcal{R}$ outputting a set of latent features that are similar between the baseline distribution \mathbb{P}_0^{Φ} and the at-risk distribution $\mathbb{P}_{a,\tau}^{\Phi,w}$.
- ► The distance between them can be approximated using the Integrated Probability Metric:

$$\mathsf{IPM}\left(\mathbb{P}_0^{\Phi}, \mathbb{P}_{\mathsf{a},\tau}^{\mathsf{w},\Phi}\right) = \sup_{\mathsf{h} \in \mathcal{H}} \left| \int h(\phi) (\mathbb{P}_0^{\Phi}(\phi) - \mathbb{P}_{\mathsf{a},\tau}^{\mathsf{w},\Phi}(\phi)) d\phi \right|$$

where
$$\phi = \Phi(X = x)$$

SurVITE bound

(Curth, Lee, van der Schaar, 2021) provide a bound on the target risk, summing (i) the observational risk, (ii) the distance between the latent baseline and observational distributions and (iii) the information lost in the representation.

$$\underbrace{\mathbb{E}_{X \sim \mathbb{P}_0} \left[\ell_{h,\mathbb{P}}(X; a, \tau) \right]}_{\text{Target Risk}} \leq \underbrace{\mathbb{E}_{X \sim \mathbb{P}_{a,\tau}} \left[w_{a,\tau}(X) \ell_{h,\mathbb{P}}(X; a, \tau) \right]}_{\text{Weighted observational risk}} + C_{\Phi} \underbrace{\mathsf{IPM}_{\mathcal{H}} \left(\mathbb{P}_0^{\Phi}, \mathbb{P}_{a,\tau}^{w,\Phi} \right)}_{\text{Distance in } \Phi\text{-space}} + \underbrace{\eta_{\Phi}^{\ell}(h)}_{\text{Info loss}}$$

Since the info loss is included, this bound does not rely on the invertibility of Φ! Many others in the literature do.

Empirical SurVITE risk

An empirical analogue of the SurVITE bound is then proposed. This estimator parameterizes Φ with θ_{ϕ} and h with $\theta_{h_{a,\tau}}$, implemented as fully-connected neural networks. The goal is to minimize the following approximator of the target risk:

$$\mathcal{L}_{\mathsf{target}}(\theta_{\phi}, \theta_{\mathsf{a}, \tau}) = \mathcal{L}_{\mathsf{risk}}(\theta_{\phi}, \theta_{\mathsf{h}}) + \beta \mathcal{L}_{\mathsf{IPM}}(\theta_{\phi})$$
 where
$$\mathcal{L}_{\mathsf{risk}} \; (\theta_{\phi}, \theta_{\mathsf{h}}) = \frac{1}{t_{\mathsf{max}}} \sum_{t=1}^{t_{\mathsf{max}}} \sum_{i: \tilde{\tau}_i \geq t} \underbrace{(n_{1,t}^{-1} a_i \ell \left(y_i(t), h_{1,t} \left(\Phi \left(x_i \right) \right) \right)}_{\mathsf{ERM} \; \mathsf{for patient sub-group} \; \mathsf{a} = 1} \\ + \underbrace{n_{0,t}^{-1} \left(1 - a_i \right) \ell \left(y_i(t), h_{0,t} \left(\Phi \left(x_i \right) \right) \right)}_{\mathsf{ERM} \; \mathsf{for patient sub-group} \; \mathsf{a} = 0}$$

$$\mathcal{L}_{\mathsf{IPM}} \; (\theta_{\phi}) = \sum_{\mathsf{a} \in \{0,1\}} \sum_{t=1}^{t_{\mathsf{max}}} \underbrace{\mathsf{Wass}}_{\mathsf{t=1}} \left\{ \left\{ \Phi \left(x_i \right) \right\}_{i=1}^n, \left\{ \Phi \left(x_i \right) \right\}_{i:\tilde{\tau}_i \geq t, a_i = a} \right\}}_{\mathsf{finite-sample} \; \mathsf{Wasserstein} \; \mathsf{distance}}$$

My contribution: investigating SurVITE assumptions

- While the info loss $\eta_{\Phi}^{\ell}(h)$ serves an important purpose in the bound, it is notably absent in the empirical risk!
- Similarly, the importance weightings present in the bound ares assumed equal to one for all X.
- ▶ Taken together, these assumptions imply that:
 - ightharpoonup The information lost in estimating Φ is not excessive.
 - ▶ True importance weights $w_{a,\tau}^*(x) = \frac{\mathbb{P}_0(x)}{\mathbb{P}_{a,\tau}(x)}$ can be replaced by the learned representation Φ .
- ▶ These assumptions interact in a pernicious way: by assuming that importance weights can be replaced by a learned representation, we start with more imbalance and necessitate the need for a more aggressive (hence lossy) representation.

My contribution: proposed resolutions

- ▶ Reintroduce importance weightings $\hat{\boldsymbol{w}}_i = \{\hat{w}_{a,\tau}(x_i)\}_{a \in A, \tau \in \mathcal{T}}$.
- $\hat{w}_{a,\tau}(x) = \frac{\hat{\rho}_{\tau,a}}{\hat{e}_a(x)\hat{r}^a(x,\tau)}, \text{ where } \hat{e}_a(x) = \mathbb{P}(A=a|X=x),$ $\hat{\rho}_{\tau,a} = \mathbb{P}(\tilde{T} \geq \tau|A=a), \text{ and } \hat{r}^{(a)}(x,\tau) = \mathbb{P}(\tilde{T} \geq \tau|A=a,X=x).$
- $\hat{p}_{\tau,a} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left[\tilde{\tau}_i \geq \tau \right] \times \mathbb{1} \left[a = a_i \right]$ can be estimated explicitly, while I estimate $\hat{e}_a(x)$ in advance of any network fitting via a logistic regression.

However $\hat{r}^{(a)}(x,\tau)$ depends on $\lambda^{(a)}(\cdot)$ and must be learned end-to-end! The weighted loss becomes $\mathcal{L}_{risk}(\theta_{\phi},\theta_{h},\hat{\boldsymbol{W}})$.

My contribution: regularizing against information loss

Mutual Information (MI) can be used to quantify the information lost in the representation:

$$\mathsf{MI}_{\mathsf{a},\tau}(\Phi;X) = \int_{\mathcal{X}} \int_{\mathcal{R}} \mathbb{P}_{\mathsf{a},\tau}^{\Phi,X}(x,\phi) \log \left(\frac{\mathbb{P}_{\mathsf{a},\tau}^{\Phi,X}(x,\phi)}{\mathbb{P}_{\mathsf{a},\tau}^{X}(x)\mathbb{P}_{\mathsf{a},\tau}^{\Phi}(\phi)} \right) d\phi \ dx$$

Here the goal is to punish the information lost when converting from the at-risk covariates to the at-risk latent distribution.

MI can be viewed in terms of information theory:

$$\mathsf{MI}_{a,\tau}(\Phi;X) = H_{a,\tau}(\Phi) - H_{a,\tau}(\Phi|X) = \mathsf{KL}(\mathbb{P}^{\Phi,X}_{a,\tau}||\mathbb{P}^{\Phi}_{a,\tau}\otimes\mathbb{P}^{X}_{a,\tau})$$

Figure: MI expressed in terms of information gain.

My contribution: regularizing against information loss

▶ While it is difficult to compute $\mathsf{KL}(\mathbb{P}^{\Phi,X}_{a,\tau}||\mathbb{P}^{\Phi}_{a,\tau}\otimes\mathbb{P}^{X}_{a,\tau})$, we can obtain its lower bound via the Donsker-Varadhan (DV) reformulation of KL-divergence:

$$\begin{split} \mathsf{KL}(\mathbb{P}^{\Phi,X}_{a,\tau} || \mathbb{P}^{\Phi}_{a,\tau} \otimes \mathbb{P}^{X}_{a,\tau}) &= \sup_{f \in \mathcal{F}} \mathbb{E}_{\mathbb{P}^{\Phi,X}_{a,\tau}} [f(x,\phi)] - \log \mathbb{E}_{\mathbb{P}^{X}_{a,\tau} \otimes \mathbb{P}^{\Phi}_{a,\tau}} \left[e^{f(x,\phi)} \right] \\ &\geq \mathbb{E}_{\mathbb{P}^{\Phi,X}_{a,\tau}} [f(x,\phi)] - \log \mathbb{E}_{\mathbb{P}^{X}_{a,\tau} \otimes \mathbb{P}^{\Phi}_{a,\tau}} \left[e^{f(x,\phi)} \right] \end{split}$$

 MINE (Belghazi et. al) conveniently provides a neural network approximation and algorithm for DV lower-bound minimization with generic R.Vs.

$$\mathcal{L}_{\mathsf{MI}}(\theta_f) = \frac{1}{n} \sum_{i=1}^{n} f(y_i, z_i) - \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{f(y_i, \tilde{z}_i)} \right)$$

where \tilde{z}_i is permuted relative to z_i so as to be a draw from the marginal distribution \mathbb{P}_Z .

My contribution: regularizing against information loss

I adapt MINE for use in the context of HTE estimation and in particular to TTE data.

$$\mathsf{MI}(\theta_{f_{1},t}) = n_{1,t}^{-1} \sum_{i:\tilde{\tau}_{i} \geq t} a_{i} \left(f_{1,t} \left(x_{i}, \phi_{i} \right) \right) - \log \left(n_{1,t}^{-1} \sum_{i:\tilde{\tau}_{i} \geq t} a_{i} e^{f_{1,t} \left(x_{i}, \tilde{\phi}_{i} \right)} \right)$$

$$\mathsf{MI}_{0,t}(\theta_{f_{0},t}) = n_{0,t}^{-1} \sum_{i:\tilde{\tau}_{i} \geq t} (1 - a_{i}) \left(f_{0,t} \left(x_{i}, \phi_{i} \right) \right) - \log \left(n_{0,t}^{-1} \sum_{i:\tilde{\tau}_{i} \geq t} (1 - a_{i}) e^{f_{0,t} \left(x_{i}, \tilde{\phi}_{i} \right)} \right)$$

$$C_{0}(0, x) = \frac{1}{n_{0,t}} \sum_{i:\tilde{\tau}_{i} \geq t} (1 - a_{i}) e^{f_{0,t} \left(x_{i}, \tilde{\phi}_{i} \right)} \left(x_{i} + x_{i} \right) e^{f_{0,t} \left(x_{i}, \tilde{\phi}_{i} \right)} \left(x_{i} + x_{i} \right) e^{f_{0,t} \left(x_{i}, \tilde{\phi}_{i} \right)} \right)$$

$$\mathcal{L}_{\mathsf{MI}}(\theta_{f_{a,t}}) = \frac{1}{t_{\mathsf{max}}} \sum_{t=1}^{t_{\mathsf{max}}} - \left(\mathsf{MI}_{1,t}(\theta_{f_{1,t}}) + \mathsf{MI}_{0,t}(\theta_{f_{0,t}}) \right)$$

- ▶ What we're left with is a computable loss function penalizing the information lost in the representation.
- ▶ Why is that useful for learning better representations?...

My contribution: Modifying the SurVITE risk function

- Estimating $\hat{\boldsymbol{W}}$ is 'cheap' w.r.t. info loss. We don't lose valuable information in the covariates. The same is not true of Φ .
- We would like to learn Φ and \hat{W} together end-to-end, forcing the model to only estimate lossy representations when the same effect cannot be achieved by importance weighting. \Longrightarrow weighting information loss by $\alpha\mathcal{L}_{\text{MI}}$
- At the same time estimating $\hat{\boldsymbol{W}}$ is prone to outlying weights that cause high-variance in the estimator. We want to penalize the weights for deviating from 1.
 - \implies weighting deviation from 1 by $\lambda_w ||\hat{\boldsymbol{W}} 1||_2$
- With α , λ_w arbitrarily large, we recover the SurVITE estimator!

My contribution: Modifying the SurVITE risk function

My modified SurVITE estimator achieving these properties is:

$$\mathcal{L}_{\mathsf{target}}(\theta_{\phi}, \theta_{\textit{h}_{\textit{a},\tau}}, \hat{\boldsymbol{W}}, \theta_{\textit{f}_{\textit{a},t}}) = \mathcal{L}_{\mathsf{risk}}(\theta_{\phi}, \theta_{\textit{h}}, \hat{\boldsymbol{W}}, \lambda_{\textit{w}}) + \beta \mathcal{L}_{\mathsf{IPM}}(\theta_{\phi}) + \alpha \mathcal{L}_{\mathsf{MI}}(\theta_{\textit{f}_{\textit{a},t}})$$

 β controls our sensitivity to covariate shift, while α controls our sensitivity to information loss.

Applications and Extensions

- ► I created a prototype of my MI network and hosted it here: SurVITE-MI •
- With more time I would have liked to:
 - Investigate other proxies for information loss. Is there a more principled proxy based on excess targeted information loss?
 - Conduct experiments evaluating my estimator against SurVITE on semi-synthetic data!
- ► Thank you! ©

Appendix: Integral Probability Metric

Given a class \mathcal{H} of functions $h: \mathcal{X} \to \mathbb{R}$, $X \sim \mathbb{P}$ and $Y \sim \mathbb{Q}$:

$$\mathsf{IPM}_{\mathcal{H}}\left(\mathbb{P},\mathbb{Q}\right) = \sup_{h \in \mathcal{H}} \left| \underset{X \sim \mathbb{P}}{\mathbb{E}} [h(X)] - \underset{Y \sim \mathbb{Q}}{\mathbb{E}} [h(Y)] \right|$$

The class of functions determines the finite-sample distance:

- When *H* = {*h* : *h* is 1-Lipschitz }, the IPM distance is Wasserstein, used here!
- ▶ When $\mathcal{H} = \{h : ||h||_{\infty} \le 1\}$, we get the total variation distance.
- + Others!

Appendix: Do operator

Interventions and counterfactuals are defined through a mathematical operator called do(x), which simulates physical interventions by deleting certain functions from the model, replacing them with a constant X = x, while keeping the rest of the model unchanged.