ECN-203: Signals & Systems (CSE) Assignment 3

Due date: Tuesday 29 September 2020

Dheeraj Kumar dheeraj.kumar@ece.iitr.ac.in

September 20, 2020

- 1. For each of the following input-output relationships, determine whether the corresponding system is linear, time invariant or both. Justify your answer. (Marks: 4*2.5=10)
 - (a) $y(t) = t^2 x(t-1)$
 - (b) $y[n] = (x[n-2])^2$
 - (c) y[n] = x[n+1] x[n-1]
 - (d) $y(t) = \mathbb{EV}(x(t))$
- 2. Consider an LTI system whose response to the signal $x_1(t)$ is the signal $y_1(t)$ shown below

Determine and sketch the response of this system to the inputs $x_2(t)$ and $x_3(t)$ shown below. (Marks: 5+5=10)

- 3. Consider an input x[n] and a unit impulse response h[n] given by: $x[n] = (\frac{1}{2})^n u[n-2]$; and h[n] = u[n+2]Determine and plot the output y[n]. (Marks: 5)
- 4. Let x(t) = u(t-2) u(t-6) and $h(t) = e^{-2t}u(t)$
 - (a) Compute y(t) = x(t) * h(t). (Marks: 4)
 - (b) Compute $g(t) = (\frac{d}{dt}x(t)) * h(t)$. (Marks: 4)
 - (c) How is g(t) related to y(t)? (Marks: 2)
- 5. Plot y(t) for following x(t) and h(t). (Marks: 3*10=30)

Note that x(t) extends from $-\infty$ to ∞ for cases (b) and (c), but is just one time period for (a).