

2008级大学物理2期末试题(信二学习部整理)

有关数据: 真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$.

真空的磁导率 $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$.

普朗克常量 h=6.63×10⁻³⁴ J·s.

电子静止质量 me=9.11×10-31 kg.

一、选择题 (共15分,每题3分) 请将答案写在试卷上指定方括号[]内。

1. 一带电大导体平板,平板二个表面的电荷面密度的代数和为 σ ,置于电场强度为 \bar{E}_o 的均匀外电场中,且使板面垂直于 \bar{E}_o 的方向。设外电场分

布不因带电平板的引入而改变,则板的附近左、右两侧的合场 强为:

(A)
$$E_0 - \frac{\sigma}{2\varepsilon_0}$$
, $E_0 + \frac{\sigma}{2\varepsilon_0}$ (B) $E_0 + \frac{\sigma}{2\varepsilon_0}$, $E_0 + \frac{\sigma}{2\varepsilon_0}$

(B)
$$E_0 + \frac{\sigma}{2\varepsilon_0}$$
, $E_0 + \frac{\sigma}{2\varepsilon_0}$

(C)
$$E_0 + \frac{\sigma}{2\varepsilon_0}$$
, $E_0 - \frac{\sigma}{2\varepsilon_0}$

(C)
$$E_0 + \frac{\sigma}{2\epsilon_0}$$
, $E_0 - \frac{\sigma}{2\epsilon_0}$ (D) $E_0 - \frac{\sigma}{2\epsilon_0}$, $E_0 - \frac{\sigma}{2\epsilon_0}$

2. 如图,在点电荷 q 的电场中,选取以 q 为中心、R 为半径的球面上一点 P 处作电 势零点,则与点电荷 q 距离为 r 的 P'点的电势为

$$(A)\frac{q}{4\pi\varepsilon_0 r}$$

(B)
$$\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R} \right)$$

(C)
$$\frac{q}{4\pi\varepsilon_0(r-R)}$$

(C)
$$\frac{q}{4\pi\varepsilon_0(r-R)}$$
 (D) $\frac{q}{4\pi\varepsilon_0}\left(\frac{1}{R}-\frac{1}{r}\right)$

3.面积为S和2S的两圆线圈1、2如图放置,通有相同 的电流 1. 线圈 1 的电流所产生的通过线圈 2 的磁通用 Ф1表示,线圈2的电流所产生的通过线圈1的磁通用 ϕ_{12} 表示,则 ϕ_{11} 和 ϕ_{12} 的大小关系为:

(A)
$$\Phi_{21} = 2\Phi_{12}$$
. (B) $\Phi_{21} > \Phi_{12}$. (C) $\Phi_{21} = \Phi_{12}$. (D) $\Phi_{21} = \frac{1}{2} \Phi_{12}$.

		10
4. 在圆柱形空间内有一磁感应强度为 B	的均匀磁场,如图所示. B	的大小以速率
dB/dr变化. 在磁场中有 A、B 两点, 其	间可放直导线 AB 和弯曲	的导线 AB,则
(A) 电动势只在 AB 导线中产生.		(XX)
(B) 电动势只在 AB 导线中产生.		(×°×)
(C) 电动势在AB和AB中都产生,且	L两者大小相等.	A X B
(D) AB 导线中的电动势小于 AB 导线	中的电动势.	[]
5.硫化镉(CdS)晶体的禁带宽度为 2.42 e 晶体上的光的波长不能大于	V,要使这种晶体产生本	征光电导,入射到
(A) 650 nm. $(1 \text{ nm} = 10^{-9} \text{ m})$	(B) 628 nm.	
(C) 550 nm.	(D) 514 nm.	[]
二 填空题(共 50 分) 请将答案写在	E指定横线上。	
6. (4 分) 一均匀带电直线长为 d, 电		中点 O 为球心, R
为半径(R>d)作一球面,如图所示,则	通过该球面的电场强度	
通量为。带电直	[线的延长线与球面交点	2
P 处的电场强度的大小为	<u>L</u> .	(-
7. (4 分) 两个半径都为 R 的平行直导	线,相距为 d, 且	
d>>R,该系统单位长度的电容为		
8. (4 分)载流的圆形线圈(半径 a ₁)与ii	F方形线圈(边长 as)	107 0 0
通有相同电流 1. 若两个线圈的中心 0	/	a)
	1	01 01
大小相同,则半径 a ₁ 与边长 a ₂ 之比 a ₁ :	a ₂ //	<i>—</i>
9. (4 分) 一平面试验线圈的磁矩大小	Pm 为 1×10-8 A·m², 把	巴它放入待测磁场中
的 A 处,试验线圈如此之小,以致可	以认为它所占据的空间内	场是均匀的. 当此
线圈的 P. 与 z 轴平行时,所受磁力矩	大小为 M = 5×10 ⁻⁹ N • n	m,方向沿 x 轴负方
向: 当此线圈的 P _a 与 y 轴平行时, 所受	磁力矩为零. 则空间 A 点	E处的磁感应强度 B
的大小为,方向	为	· .
10. (4分)无限长载流直导线,通以电流	瓶 I _I ,旁边有一段长为 a,	1
电流为 12 的直导线,与之共面。其左第	端距无限长直导线的距离	I ₁ I ₂
为 a, 则 12 受到的安培力的大小为	•	* a * * a *

11. (4分) —螺线管横截面半径为 2.0cm, 长为 30.0cm, 其上均匀密绕 1200 匝线
圈,线圈内为空气。若该螺线管中电流以3.0×10°A/s的速率改变,则线圈中的自感
电动势为V.
12. (4 分)真空中两根很长的相距为 2a 的平行直导线与电源组成
闭合回路如图. 已知导线中的电流强度为 1,则在两导线正中间某 1
点 P 处的磁能密度为
13. (4分)充了电的由半径为 r 的两块圆板组成的平行板电容器, 在放电时两板间
的电场强度的大小为 $E=E_0e^{-t/RC}$,式中 t 为时间, E_0 、 R 、 C 均为常数,则两板间
的位移电流的大小为,其方向与场强方向
14. (3分)牛郎星距离地球约16光年,如果宇宙飞船以0.97c的速率匀速飞向牛郎
星,那么用飞船上的钟测量,需要年抵达牛郎星.
15.(3分)设某微观粒子的总能量是它的静止能量的 K倍,则其运动速度的大小
为 c(c表示真空中的光速).
16.(3 分)匀质细棒静止时的质量为 m ₀ , 长度为 l ₀ , 当它沿棒长方向作高速的匀速直
线运动时,测得它的长为 1 . 那么,该棒的运动速度 $v=$,该
棒所具有的动能 $E_K =$
17. (3 分)在均匀磁场 B 内放置一极薄的金属片, 其红限波长为 λ_0 . 今用单色光照
射,发现有电子放出,有些放出的电子(质量为 m ,电荷的绝对值为 e)在垂直于磁
场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是
18.(3 分)电子显微镜中的电子从静止开始通过电势差为 U 的静电场加速后,其德布
罗意波长是 0.4 Å, 则 U 为
19. (3 分)原子的限度为 10 ⁻¹⁰ m, 根据不确定关系可以估算出原子中电子的速度不确
定量为

三 计算题 (共 35 分)

20. (10 分)如图所示,两个同心薄金属球壳的内、外半径分别为 R_1 和 R_2 。两球壳间充满两层均匀电介质,它们的相对介电常数分别为 ε_{c1} 和 ε_{c2} : 这两层电介质分界面的半径 R。设内球壳带电量为 Q。

- (1) 求电位移矢量 D 和电场强度 E 的空间分布:
- (2) 若 $R_1 = 0.02$ m 、 $R_2 = 0.06$ m 、 $\varepsilon_{r1} = 6$ 、 $\varepsilon_{r2} = 3$ 、 R = 0.04m 、 $Q = -6 \times 10^{-8}$ C 、求內外球売间的电势差 $U = \varphi_h \varphi_h$ 的值。

21. (10 分) 如图所示, 载流长直导线中的稳恒电流为 I。一矩形线圈与该长直导线共面, 且以速度 v 向右匀速平动。已知线圈的长度为 I. 宽为 a. 匝数为 N。求当线圈左侧距导线距离为 d 时, 线圈中的感应电动势。

22. (10 分) 质量为 m 的电子处于宽为 a 的一维无限深势阱中,其能量取值和波函数如下

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}, \qquad \psi_n(x) = \begin{cases} \sqrt{\frac{2}{a}} \sin \frac{n\pi}{a} x, & 0 < x < a \\ 0, & x \le 0, & x \ge a \end{cases}$$
 $n = 1,2,3,...$

该电子吸收 $\Delta E = \frac{3\pi^2\hbar^2}{2ma^2}$ 能量后在不同能级间发生跃迁。分别求跃迁前、后在 0 < x < a/4 区间内发现电子的概率。

- 23. (5分) 边长为 a 的立方体金属可看成三维无限深方势阱。
- (1) 三个方向的德布罗意波长之, 2、2 应满足什么条件?
- (2) 推导系统电子能量公式。
- (3) 若系统包含 9 个电子, 试求费米能量(用公式表示)。