sgRNA counting pipeline I

First things first, sharing is an excellent way to tap everyone's potential by lowering the barriers.

Authors: Haitao Wang, Jimmy Zeng, Lakhansing Pardeshi

Step one: Software installation

Description:

cutadapt for cutting barcode or adaptor in .fastq or .fq file

mageck for counting activtion/inhibition/knowout sgRNA reads

```
# Before install cutadapt you should install Conda, Conda can help you install bio
software automatically, to make life easy.
# Conda installation
https://conda.io/docs/user-guide/install/macos.html#install-macos-silent
wget http://repo.continuum.io/miniconda/Miniconda3-3.7.0-Linux-x86_64.sh -0
~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"
conda config --add channels bioconda
# Cutadapt installation
conda install -c bioconda cutadapt
# MAGeCK installation
conda install -c bioconda mageck
# test whether installed or not
cutadapt -h # help info to check useage
mageck -h # help info to check useage
```

Step two: Demultipex

Description:

based on **index** or **barcodes** to deconstruct from a mix fastq file

```
demultiplex.pl this tool created by Lakhansing Pardeshi from Chris lab
```

Usage

```
perl demultiplex.pl --barcodes barcodes.txt --1 R1.fq --2 R2.fq --suffix <suffix to add>
```

```
# prepare barcodes.txt look like this
TAAGTAGAG HK112
ATACACGATC HK113
GATCGCGCGGT HK114
CGATCATGATCG HK115
TCGATCGTTACCA HK116
ATCGATTCCTTGGT HK117
```

Step three trimme each fastq file for future sg counting

Description:

LentiCRISPRv2 All plasmids have the same overhangs after BsmBI digestion and the same oligos can be used for cloning into lentiCRISPRv2, lentiGuide-Puro or lentiCRISPRv1.

```
5' arm: ......GGACGAAACACCG 20bp-sg-sequence GTTTTAGAGCTAG...... 3' arm
```

Target Guide Sequence Cloning Protocol

In order to clone the target sequence into the lentiCRISPRv2 or lentiGuide-Puro backbone, synthesize two oligos of the following form. All plasmids have the same overhangs after *BsmBI* digestion and the same oligos can be used for cloning into lentiCRISPRv2, lentiGuide-Puro or lentiCRISPRv1.

Trimming seq CRISPR-Cas9 knockout screening (**usually we only use R1 in sg sequencing data**)

(compare R1 and R2, R1 have more target info than R2.)

Before Trimmed

@E00492:222:HC73FCCXY:1:1101:16133:1977 1:N:0:CTCTACTT

+

 ${\tt TCTTGTGGAAA} \\ \underline{{\tt GGACGAAACCACC}} \\ \underline{{\tt GAGTCAAACCACTTCCCGATG}} \\ \underline{{\tt GTTTTAGAGCTAG}} \\ \underline{{\tt AAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTG}} \\ \underline{{\tt FGTTGTGGAAAGGAAACAACCACCTTCCCGATG}} \\ \underline{{\tt GTTTTAGAGCTAG}} \\ \underline{{\tt GAAATAGCAAGTTAAAAATAAGGCTAGTCCGTTATCAACTTG}} \\ \underline{{\tt GTTTTAGAGCTAG}} \\ \underline{{\tt GAAATAGCAAGTTAAAAATAAGGCTAGTCCGTTATCAACTTG}} \\ \underline{{\tt GTTTTAGAGCTAG}} \\ \underline{{\tt GAAATAGCAAGTTAAAAATAAGGCTAGTCCGTTATCAACTTG}} \\ \underline{{\tt GTTTTAGAGCTAG}} \\ \underline{{\tt GTTTAGAGCTAG}} \\ \underline{{\tt GTTTGTGGAAACCACCTTCCCGATG}} \\ \underline{{\tt GTTTTAGAGCTAG}} \\ \underline{{\tt GTTTAGAGCTAG}} \\ \underline{{\tt GTTTGTGGAAATAGCAAGTTAAAAATAAGGCTAGTCCGTTATCAACTTG}} \\ \underline{{\tt GTTTGTGGAAACCACCTTGG}} \\ \underline{{\tt GTTTGTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACTTGGAAACCACTTGGAAACCACCTTGGAAACCACCTTGGAAACCACTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACCTTGGAAACCACTTGGAAACCACCTTGGAAACCACCTTGGAAACCACTTGGAAACCACCTTGGAAACCACTTGGAAACCACTTGGAAACCACTTGGAAACCACTTGGAAACCACTTGGAAACCACTTGGAAACCACCTTGGAAACCACTTGGAAACCACTTGGAAACCACTTGGAA$

After Trimmed

@E00492;222;HC73FCCXY:1:1101:16133:1977 1:N:0:CTCTACTT GTCCTTGTAAGGTTCCCGTTT

__

JJ-AJJFFJF-<JJJJJJFFJ

@E00492:222:HC73FCCXY:1:1101:7202:2047 1:N:0:CTCTACTT

GAGTCAAACCACTTCCCGATG

_

JJJJJJJJ7FJJ7FJ<AJ

@E00492:222:HC73FCCXY:1:1101:7172:2065 1:N:0:CTCTACTT

GCGCCAAGAATTCAATTGAAA

+

```
# Trimming seq CRISPR-Cas9 knockout screening
### CRISPR-Cas9 knockout system (All plasmids have the same overhangs after BsmBI
digestion and the same oligos can be used for cloning into lentiCRISPRv2,
lentiGuide-Puro or lentiCRISPRv1)
### fq.R1 TCTTGTGGAAAGGACGAAACACCG - xxxxxxxxxxxx -
GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAAGTGGCACCGAGTCGGTGCTTTTTT
GAATTCGCTAGCTAG
### fq.R2
CTAGCTAGCGAATTCAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTAT
TTCTAGCTCTAAAAC - xxxxxxxxxxxxx - CGGTGTTTCGTCCTTTCCACAAGA
# cutadapt to cut and trimme the data from 5'(only R1)
cd /PATH/
cutadapt -f fastq -q 10 \
-g GGACGAAACACC \
-o sample_1_trimmed.fastq.gz \
/PATH/sample_R1.fastq # only R1
# cutadapt to cut and trimme the data from 3' (only R1)
cutadapt -f fastq -q 10 \
-a GTTTTAGAGCTAG \
-o /PATH/sample 2 trimmed.fastq.gz \
/PATH/sample_1_trimmed.fastq.gz
cat /PATH/sample_2_trimmed.fastq.gz > /PATH/sample_trimmed.fastq.gz
rm /PATH/sample_1_trimmed.fastq.gz
rm /PATH/sample_2_trimmed.fastq.gz
```

Step four: sg counting

Method I:

1. Raw Count sgRNA

```
fastqgz_to_counts.py this tool created by mhorlbeck
```

Usage (note: under python2.7; have to put required input files order like: 1. library; 2. output-path, 3. fastq files)

```
python fastqgz_to_counts.py --trim_start 1 --trim_end 21 library.fasta> <output/path>
<all/sg.fastq.gz>
```

library

```
>0610007P14Rik_TCCTGAATGTGTTACGAAGC
tcctgaatgtgttacgaagc
>0610007P14Rik_GGTCGGGCTCCGGTACCTAG
ggtcgggctccggtacctag
>0610007P14Rik_GCCAGCTTCGTAACACATTC
gccagcttcgtaacacattc
>0610009B22Rik_TCATCATGCTGCATGACGTG
tcatcatgctgcatgacgtg
>0610009B22Rik_ATTCAATGAGTGGTTCGTCT
attcaatgagtggttcgtct
>0610009B22Rik_TCGTCACGGCTGGGCACATG
tcgtcacggctgggcacatg
>0610009D07Rik_TACACTCTGATTTGACGAAT
tacactctgatttgacgaat
```

Run

```
# count sgRNA python fastqgz_to_counts.py library-fasta output-path sg-fastq
python fastqgz_to_counts.py -p 16 \
--trim_start 1 --trim_end 21 \
GeckoV2_MGLib_A.fasta \
/output \
*trimmed.fastq.gz
```

Output

```
# count file have two columns, symbol and count
0610009020Rik_CTGTGCCAAGAGCGTTCAGC  0
0610009020Rik_TGGGTTTGGGCGTTATCCCA  0
0610010B08Rik_CGTGCATGTGAACTTCACTC  22
0610010B08Rik_GACTTCTAGAAGTTTGAAAA  6
0610010B08Rik_TATAGCTGTGAGATTCTTAT  0
```

2. Raw Count merge to table

```
merged_table.pl this tool created by <u>Jimmy</u> and <u>haitao</u>
```

Usage (note: can only merge files which include same row names and numbers)

```
perl merged_table.pl <file1> <file2> <file3>...
```

```
# merge selected files
perl merged_table.pl <file1> <file2> <file3>
# or All files
perl merged_table.pl /output/*
```

Output

3. Normalize counts table (by total counts - size factor)

```
# add one more column named 'gene' for annotation
# sgRNA Gene sample1 sample2 ...
mageck count \
-k merged.txt \
-n /output/merged \
--norm-method total
```

Output

```
# Normalized count file by size factor
sgRNA
      Gene CC1-F01 CC1-F02 CC1-F03 CC1-F04 CC1-F05
MGLibA 57638 Usp50 13.88454104 5.200697141 893.8208094 9.225439438
8.905259711
MGLibA_02481 Ablim1 46.28180348 31.20418285 18.24124101 11.07052733
13.35788957
MGLibA_18840
              Foxo6 64.79452487 62.40836569 87.55795684 60.27287099
71.24207769
MGLibA 20534
              Gm13040 4.628180348 1313.176028 10.9447446 4.305205071
4.452629855
               Prame 4.628180348 0 7.296496403 3.075146479 0
MGLibA_42555
MGLibA 10739 Clec3b 83.30724627 1614.816462 116.7439425 75.0335741
84.59996725
MGLibA 36174
              Olfr127 41.65362313 41.60557713 40.13073022 37.51678705
51.20524334
MGLibA_58314
              Vmn1r238 46.28180348 15.60209142 21.88948921 42.43702141
51.20524334
MGLibA_24769 Hp1bp3 9.256360696 13.00174285 18.24124101 11.68555662
6.678944783
```

Method II:

Using mageck one step count function to count, merge and normalize data

Usage

```
mageck count -1 library.txt -n <output> --sample-label name1,name2,name3 -fastq
01_trimmed.fastq 02_trimmed.fastq 03_trimmed.fastq
```

Library

```
# MGLibA.txt mouse library A looks like:

MGLibA_00001 TCCTGAATGTGTTACGAAGC 0610007P14Rik

MGLibA_00002 GGTCGGGCTCCGGTACCTAG 0610007P14Rik

MGLibA_00003 GCCAGCTTCGTAACACATTC 0610007P14Rik

MGLibA_00004 TCATCATGCTGCATGACGTG 0610009B22Rik

MGLibA_00005 ATTCAATGAGTGGTTCGTCT 0610009B22Rik
```

Run

```
mageck count -1 MGLibA.txt \
-n /Users/haitao/Desktop/sgRNA/fq \
--sample-label CC1-F01,CC1-F02,CC1-F03 \
--fastq CC1-F01_trimmed.fastq CC1-F02_trimmed.fastq CC1-F03_trimmed.fastq
```

```
# Normalized count file by size factor
sgRNA Gene CC1-F01 CC1-F02 CC1-F03 CC1-F04 CC1-F05
MGLibA_57638 Usp50 13.88454104 5.200697141 893.8208094 9.225439438
8.905259711
MGLibA_02481 Ablim1 46.28180348 31.20418285 18.24124101 11.07052733
13.35788957
MGLibA_18840 Foxo6 64.79452487 62.40836569 87.55795684 60.27287099
71.24207769
MGLibA_20534 Gm13040 4.628180348 1313.176028 10.9447446 4.305205071
4.452629855
MGLibA_42555 Prame 4.628180348 0 7.296496403 3.075146479 0
MGLibA_10739 Clec3b 83.30724627 1614.816462 116.7439425 75.0335741
84.59996725
51.20524334
MGLibA_58314 Vmn1r238 46.28180348 15.60209142 21.88948921 42.43702141
51.20524334
MGLibA_24769 Hp1bp3 9.256360696 13.00174285 18.24124101 11.68555662
6.678944783
```

Step five: group sample comparison

Description:

Comparison between samples

MAGeCK has different commands:

test (if you already have count tables)

count (if you want to generate count tables from fastq files)

run (combine both test and count)

pathway (if you want to do the pathway test)

count file: sample.txt

sgRNA	sgRNA Gene		initial1		initial2		final2
U	2595977		213	274	883	175	
A1CF_m5	2596017	A1CF	294	412	1554	1891	
AAAS_m5	3714382	AAAS	704	671	799	1426	
AAAS_m5	3715169	AAAS	651	627	797	1690	
AAAS_m5	3715176	AAAS	545	89	392	664	
AAK1_m6	9870049	AAK1	364	465	693	2006	
AATF_m3	5306444	AATF	449	456	1396	1402	
AATF_m3	5306475	AATF	493	612	1102	537	

```
mageck test \
# Raw Count tables
-k sample.txt \
# Treatment sample labels
-t final1,final2 \
# Control sample labels
-c initial1,initial2 \
-n Output # Output labels
```

Output

id	num	neg score	neg p-value	neg fdr	neg rank	neg goodsgr	neg lfc	pos score	pos p-value	pos fdr	pos rank	pos goodsgr	pos lfc
ACRC	10	0.15729	0.38703	0.999736	31	2	0.20117	0.0026435	0.015115	0.544989	1	5	0.20117
AGAP3	10	0.95257	0.97204	0.999736	93	1	0.37513	0.0027042	0.015364	0.544989	2	8	0.37513
AGTPBP1	10	0.98731	0.98765	0.999736	98	1	0.043765	0.0049937	0.026891	0.544989	3	3	0.043765
ADCK3	10	0.99029	0.99048	0.999736	99	0	0.33152	0.0089759	0.043518	0.544989	4	7	0.33152
ABCB8	10	0.50055	0.75373	0.999736	62	3	0.3059	0.0090408	0.043797	0.544989	5	6	0.3059
ADNP	10	0.91389	0.95979	0.999736	91	2	0.35375	0.0093506	0.045005	0.544989	6	7	0.35375
ADCK1	10	0.98031	0.98274	0.999736	95	1	0.33547	0.009402	0.045324	0.544989	7	6	0.33547
ADRBK1	10	0.69259	0.86267	0.999736	76	3	0.37279	0.0095426	0.045803	0.544989	8	7	0.37279
ADCK4	10	0.57765	0.79975	0.999736	68	1	0.23437	0.013825	0.062171	0.544989	9	7	0.23437
ADRA1A	10	0.709	0.87176	0.999736	78	3	-0.11629	0.014914	0.066532	0.544989	10	3	-0.11629
ADK	10	0.5259	0.77255	0.999736	66	2	0.51714	0.016258	0.071692	0.544989	11	6	0.51714
ACTR1A	10	0.035637	0.13577	0.754297	18	5	-0.022494	0.018581	0.080384	0.544989	12	4	-0.022494
AFF4	10	0.7106	0.87272	0.999736	79	2	0.30394	0.020531	0.08733	0.544989	13	7	0.30394
ACTN4	10	0.61935	0.82197	0.999736	70	3	0.21851	0.020886	0.088568	0.544989	14	7	0.21851
AHRR	9	0.52123	0.74707	0.999736	65	3	-0.1102	0.022298	0.089306	0.544989	15	3	-0.1102
ADCK5	10	0.5362	0.77792	0.999736	67	3	0.03666	0.023019	0.096203	0.544989	16	4	0.03666
ACVR1C	10	0.99967	0.99974	0.999736	100	0	0.28521	0.023123	0.096612	0.544989	17	7	0.28521
ADARB2	10	0.91741	0.96162	0.999736	92	1	0.3507	0.024715	0.10195	0.544989	18	6	0.3507
ADRBK2	10	0.85038	0.93177	0.999736	86	2	0.28103	0.025124	0.10355	0.544989	19	7	0.28103
AAK1	10	0.23886	0.50492	0.999736	43	3	-0.025982	0.031147	0.12419	0.61874	20	3	-0.025982
AEN	10	0.039603	0.14659	0.771536	19	6	-0.31182	0.034488	0.13275	0.61874	21	1	-0.31182
AHNAK2	10	0.69378	0.86322	0.999736	77	2	0.3327	0.035849	0.13612	0.61874	22	6	0.3327
AHNAK	10	0.48698	0.74267	0.999736	61	2	0.31618	0.043452	0.15664	0.657013	23	5	0.31618
A1CF	10	0.32599	0.60137	0.999736	50	4	0.066869	0.044143	0.15841	0.657013	24	4	0.066869
AATK	10	0.6441	0.83545	0.999736	73	2	0.27164	0.047202	0.16645	0.657013	25	6	0.27164
ACVR1	10	0.98608	0.98657	0.999736	97	1	0.1924	0.049024	0.17082	0.657013	26	5	0.1924
ACSS2	10	0.88811	0.94737	0.999736	89	1	0.18848	0.051892	0.17813	0.659736	27	6	0.18848

Step Six: sg downstream analysis**

coming soon