EE445M/EE360L.6 Embedded and Real-Time Systems/ Real-Time Operating Systems

Lecture 6: Input. Analog Fi

Analog Input, Analog Filters, Analog-to-Digital Conversion

Lecture 6 J. Valvano, A. Gerstlauer EE445M/EE380L.6

EE445M vs. CS372

THE DIFFERENCE:

COMPUTER SCIENTIST
THIS ALIEN COMPUTER HAS AN ARCHITECTURE ENTIRELY FOREIGN TO OURS, ME HANE MUCH TO LEARN FROM IT. AND WE MAY HAVE MUCH... TO FEAR.

BAM/ I COT DOOM: TO RUN ON THIS THING!

Lecture 6

Class Agenda

- Recap: RTOS Kernel
 - Multi-tasking, context switch, scheduling
 - Synchronization, communication, semaphores
- Outlook: Applications of RTOS
 - Lab 4: Digital scope & spectrum analyzer
 - · Analog input and filters
 - · Digital filter, FFT
 - Display amplitude vs. time/frequency on LCD

Reference book, Chapter 5

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Data Acquisition System (DAS)

- Quantitative (thermometer in EE445L)
 - Range (r_x)
 - Resolution (Δx)
 - Precision (n_x in alternatives)
 - Frequencies of interest (f_{min} to f_{max})
- Qualitative (sound recording in EE445M)
 - "sounds good"
 - "looks pretty"
 - "feels right"

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6 5

Data Acquisition System (DAS)

- Other qualitative DAS
 - Detection of events (baby apnea monitor)
 - true positive (TP): stop breathing & monitor alarm
 - false positive (TP): breathing OK, but monitor alarm
 - false negative (FN): stop breathing & no alarm
 - Prevalence = (TP + FN) / (TP + TN + FP + FN)
 - Sensitivity = TP / (TP + FN)
 - Specificity = TN / (TN + FP)
 - PPV = TP / (TP + FP)
 - NPV = TN / (TN + FN)

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Analog Signal Processing

- Analog circuit design with single supply
 - MAX494CPD/TLC2274ACN rail to rail op amp
- Instrumentation amps (EE445L)
 - INA122
- Noise measurements and reduction
- Analog sensors
 - Electret microphones (sound)
 - IR distance sensor

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6 7

Convert to Single Supply

- Vcc = 3.3V, start with design using +Vs -Vs
- Assume ADC range is 0 to Vmax (0 to 3V)
- Add an analog reference, Vref = ½ Vmax
- Map

-- Vs (-12) to digital ground

- Analog ground to Vref reference

- +Vs (+12) to Vcc supply

Reference EE345L book, Chapter 5

Lecture 6 J. Valvano, A. Gerstlauer EE445M/EE380L.6

Instrumentation Amp

- Necessary conditions (must be true)
 - Differential input (as in any op-amp)
- Motivation (at least one must be true)
 - Large gain
 - Large input impedance
 - Large common mode rejection ratio (CMMR)
 - Low noise
 - Small package

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Noise Reduction (1)

- 1. Reducing noise from the source
 - Shielding
 - Enclose noisy sources in a grounded metal box
 - Filter noisy signals
 - Limit the rise/fall times of noisy signals.
 - Limiting the dl/dt in the coil.

Noise Reduction (2)

- 2. Limiting the coupling between the noise source and instrument
 - Maximize the distance from source to instrument
 - Cables with noisy signals should be twisted together
 - Cables should also be shielded.
 - For high frequency signals, use coaxial
 - Reduce the length of a cable
 - Place the delicate electronics in a grounded case
 - Optical or transformer isolation circuits

Lecture 6 J. Valvano, A. Gerstlauer EE445M/EE380L.6

J. Valvano, A. Gerstlauer

Noise Reduction (3)

- 3. Reduce the noise at the receiver
 - Bandwidth should be as small as possible.
 - Add frequency-reject digital filters
 - Use power supply decoupling capacitors on each
 - Twisted wires then Id1 should equal Id2
 - V1-V2 = Rs1 ld1 Rs2 ld2

Henry Ott, <u>Noise Reduction Techniques in Electronic Systems</u>, Wiley, 1988 Ralph Morrison, <u>Grounding and Shielding Techniques</u>, Wiley, 1998.

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Sharp GP2Y0A21YK

- · Infrared distance sensor
 - You will need 5V to power IR sensor
 - Needs analog LPF
 - · Reduces noise
 - Analog input protection
 - Needs digital median filter
 - Needs 10 mF or larger +5V to Gnd cap for each sensor

Sampling

- Time & value quantizing
 - Precision $n_z = 2^n$
- Nyquist theory
 - If sampled at f_s, digital samples only contain frequency components from 0 to ½f_s
 - If analog signal contains frequency components larger than ½f_s, aliasing error
- System design
 - Choice of sampling rate: $f_s > 2 f_{max}$
 - Low pass analog filter to remove frequency components above 0.5f_s
 - · A digital filter can not be used to remove aliasing

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6 27

Continuous analog signal

Filter Types

- Analog
 - Low pass filter (LPF)
 - High pass filter (HPF)
 - Band pass filter (BPF)
- Digital
 - Extremely flexible
 - But only available after sampling

J. Valvano, A. Gerstlauer EE445M/EE380L.6

Analog Filters Prevent aliasing $|\mathbf{Z}_2|$ properly represented aliased - No signal > 0.5f_s ΔZ undetectable Band-pass filter frequency Ideal Gain G3 = H3(s) Pass $f_{min} \le f \le f_{max}$ Filter with no Min. error seen by ADC 0.707 f_c f_{min} f_{max} f_c 0.5 f_s Frequency Lecture 6 29

Butterworth Filters

- 2-pole Butterworth filter
 - 1. Select the cutoff frequency, f_c
 - 2. Divide the two capacitors by $2\pi f_c$

-
$$C_{1A}$$
 = 141.4 μ F/2 π f_c
- C_{2A} = 70.7 μ F/2 π f_c

3. Locate two standard value capacitors (with 2/1 ratio) in the same order of magnitude as the desired values

$$- C_{1B} = C_{1A}/x$$

 $- C_{2B} = C_{2A}/x$

4. Adjust the resistors to maintain the cutoff frequency

Lecture 6

J. Valvano, A. Gerstlauer EE445M/EE380L.6 lpf.xls TI FilterPro