

1/5

180		100	100		
	580			SERVICE SERVICE	١
	26.00			SOLEMAN !	

Nove	Ρηάνους	Chaven
Nom:	Prénom:	GROUPE:

Durée : 90'

DOCUMENTS, CALCULETTES, TÉLÉPHONES ET ORDINATEURS INTERDITS

1 Calcul de π (1)

Définir une fonction qui calcule π à l'ordre n selon la formule :

$$\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} - \dots + \frac{1}{n^2} = \sum_{k=1}^{n} \frac{1}{k^2}$$

2 Conversion base $b \to d\acute{e}cimal$

Définir une fonction qui calcule la valeur décimale n d'un entier positif t codé en base b.

Exemples: b = 2 $t = [0, 0, 0, 1, 0, 1, 1, 1] \rightarrow n = 23$ b = 5 t = [0, 0, 4, 3] $\rightarrow n = 23$ b = 21 t = [1, 2] $\rightarrow n = 23$ b = 25 t = [0, 0, 0, 0, 0, 23] $\rightarrow n = 23$

3 Courbes fractales

On considère la procédure p ci-contre :

- 1. On considère l'appel p(1,300) et le crayon initialement en (0,0) avec une direction de -90 (vers le bas). Dessiner le résultat de cet appel.
- 2. On considère l'appel p(3,300) et le crayon initialement en (0,0) avec une direction de -90 (vers le bas). Dessiner le résultat de cet appel.

```
def p(n,d):
    assert type(n) is int
    assert n >= 0
    if n == 0: forward(d)
    else:
        p(n-1,d/3.)
        right(60)
        p(n-1,d/3.)
        left(120)
        p(n-1,d/3.)
        right(60)
        p(n-1,d/3.)
        right(60)
        return
```

def g(x):

4 Portée des variables

def f(x):

On considère les fonctions ${\tt f}, {\tt g}$ et ${\tt h}$ suivantes :

```
x = 3*x
                                   x = 3*f(x)
     print('f', x)
                                   print('g', x)
     return x
                                   return x
Qu'affichent les appels suivants?
  1. >>> x = 2
     >>> print(x)
     >>> y = f(x)
     >>> print(x)
     >>> z = g(x)
     >>> print(x)
     >>> t = h(x)
     >>> print(x)
```

x = 3*g(f(x))	
<pre>print('h', x)</pre>	
return x	
1. >>> $x = 2$	
>>> print(x)	

>>> x = f(x) >>> print(x)	
>>> princ(x)	
>> x = g(x)	
>>> print(x)	
•	
>>> x = h(x)	
>>> print(x)	

def h(x):

5 Calcul de π (2)

On considère la fonction g ci-contre :

- 1. Calculer toutes les valeurs possibles de g(n, m) pour $n \in [0, 6]$.
- 2. Vérifier que 12.*g(5,5)/g(6,6) est une bonne approximation de π .

m=0	m=1	m=2	m = 3	m = 4	m = 5	m = 6
	m=0	m=0 $m=1$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	m = 0 $m = 1$ $m = 2$ $m = 3$	$oxed{m=0 \; m=1 \; m=2 \; m=3 \; m=4}$	$oxed{m=0} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

$$12 \cdot \frac{g(5,5)}{g(6,6)} = 12 \cdot ---- =$$