Lecture-14

Functional Dependencies-Finding Minimal Cover

CS211 - Introduction to Database

Good practices in Relational Database Design

- We should find a "good" collection of relation schemas. A bad design may lead to:
 - Repetition of Information.
 - Inability to represent certain information.
- Design Goals:
 - Avoid redundant data
 - Avoid insert, update, and delete anomalies.

Redundancy and Anomalies

Student Relation

Sid is the Primary Key

Sid	Name	Credits	Dept	Building	Room_no	HOD	••••••	Redundant Storage
							•	Storage
1	John	5	CS	B1	101 _	_		Update
2	Adam	8	CS	B1	101 —	-		Anomaly
3	Jiya	9	DS	B2	201	-		Deletion
4	Salim	9	DS	B2	201	-		Anomaly
5	Xi	7	Civil	B1	110	-		
6	Chen	6	EC	B2	115	- /		
7	Rahul	8	Civil	B1	120	/-		
8	Allan	9	CS	B1	101	-		- Insertion Anomaly
NULL	NULL	NULL	ME	B2	120	-		3

Decomposition of Relation Schema

- The process of breaking up of a relation into smaller sub-relations is called Decomposition.
- Decomposition **converts a relation into specific normal form** which reduces redundancy, anomalies, and inconsistency in the relation.
- Database normalization is the process of organizing the data into tables in such a
 way as to remove anomalies and redundancy.
- Decomposition should preserve the following three properties:
 - 1. Lossless decomposition
 - 2. Dependency Preservation
 - 3. Remove redundant functional dependency

Properties of Decomposition

1. Lossless decomposition:

- No information is lost from the original relation during decomposition.
- When the sub-relations are joined back, the same relation is obtained that was decomposed.
- Every decomposition must always be lossless.

2. Dependency preservation:

- None of the functional dependencies that holds on the original relation are lost.
- The sub-relations still hold or satisfy all the functional dependencies of the original relation.

3. Remove redundant functional dependency:

All the direct and indirect redundant functional dependencies must be removed.

Lossless decomposition

Difference Between Lossless and Lossy Join Decomposition

Lossless	Lossy
The decompositions R1, R2, R2Rn for a relation schema R are said to be Lossless if there natural join results the original relation R.	The decompositions R1, R2, R2Rn for a relation schema R are said to be lossy if there natural join results into addition of extraneous tuples with the original relation R.

Difference Between Lossless and Lossy Join Decomposition

Lossless	Lossy	
The decompositions R1, R2, R2Rn for a relation schema R are said to be Lossless if there natural join results the original relation R.	The decompositions R1, R2, R2Rn for a relation schema R are said to be lossy if there natural join results into addition of extraneous tuples with the original relation R.	
Formally, Let R be a relation and R1, R2, R3 Rn be it's decomposition, the decomposition is lossless if $-$ R = R1 \bowtie R2 \bowtie R3 \bowtie Rn	Formally, Let R be a relation and R1, R2, R3 Rn be it's decomposition, the decomposition is lossy if − R ⊂ R1 ⋈ R2 ⋈ R3 ⋈ Rn	

Difference Between Lossless and Lossy Join Decomposition

Lossless	Lossy	
The decompositions R1, R2, R2Rn for a relation schema R are said to be Lossless if there natural join results the original relation R.	The decompositions R1, R2, R2Rn for a relation schema R are said to be lossy if there natural join results into addition of extraneous tuples with the original relation R.	
Formally, Let R be a relation and R1, R2, R3 Rn be it's decomposition, the decomposition is lossless if $-$ R = R1 \bowtie R2 \bowtie R3 \bowtie Rn	Formally, Let R be a relation and R1, R2, R3 Rn be it's decomposition, the decomposition is lossy if − R ⊂ R1 ⋈ R2 ⋈ R3 ⋈ Rn	
The common attribute of the sub relations is a super-key of any one of the relation.	The common attribute of the sub relation is not a super-key of any of the sub relation.	

Lossy Join Decomposition

- Let there be a relational schema R(A, B, C).
- R1(A, C) and R2(B, C) be it's decompositions.

R

A	В	С
1	2	1
2	5	3
3	3	3

R

R1

Α	С
1	1
2	3
3	3

M

R2

В	С
2	1
5	3
3	3

Α	В	С
1	2	1
2	5	3
2	3	3
3	5	3
3	3	3

Lossless Join Decomposition

- Let there be a relational schema R(A, B, C).
- R1(A, B) and R2(B, C) be it's decompositions.

R

A	В	C
1	2	1
2	5	3
3	3	3

R1

A	В
1	2
2	5
3	3

M

R2

В	С
2	1
5	3
3	3

R_{j}				
A	В	С		
1	2	1		
2	5	3		
3	3	3		

 $R = R_{j}$

Properties of a Lossless Join Decomposition

1.	attr(R1)	∪ attr(R2)	= attr(R)
	acci (Iti)	o acci (Ita)	acci (It

- 2. $attr(R1) \cap attr(R2) \neq \phi$
- 3. $attr(R1) \cap attr(R2) \rightarrow attr(R1)$

OR

4. $attr(R1) \cap attr(R2) \rightarrow attr(R2)$

R1

A	В
1	2
2	5
3	3

M

R2

В	С
2	1
5	3
3	3

$$R = R_j$$

Dependency Preservation

Armstrong's Axioms (A set of inference rules used to infer all the functional dependencies on a relational database)

- A1 Reflexivity rule: $X \rightarrow Y$ if $Y \subseteq X$
- A2 Augmentation rule: if $X \rightarrow Y$, then $XZ \rightarrow YZ$
- A3 Transitivity rule: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Armstrong's Lemmas (Intermediate theorems: It is possible to use Armstrong's axioms to prove that these rules are sound)

- Union rule: if $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Pseudo Transitivity: if $X \rightarrow Y$ and $YW \rightarrow Z$, then $XW \rightarrow Z$
- Decomposition rule: if $X \rightarrow Y$ and $Z \subseteq Y$, then $X \rightarrow Z$

Regular FD & Closure of FD

• Let F be the set of FDs we have collected.

• A functional dependency $X \rightarrow Y$ is regular if Y contains only a single attribute.

• The closure of F, denoted as F^+ , is the set of all regular FDs that can be derived from F.

Inferring functional dependencies

- Given FDs: $X_1 \rightarrow a_1, X_2 \rightarrow a_2, \dots$
- Does some FD $Y \rightarrow B$ (not given in the above FDs) also hold?

Example:

Consider the dependencies $A \rightarrow B$ and $B \rightarrow C$

Intuitively, $A \rightarrow C(inferred)$ also holds (A3: transitivity rule)

Computing F^+ using Armstrong's axioms

• Given 4 attributes A, B, C, D, and $F = \{A \rightarrow B, B \rightarrow C\}$. Compute F^+ :

$$\square |LHS| = 1: A \rightarrow A, A \rightarrow B, A \rightarrow C, B \rightarrow B, B \rightarrow C, C \rightarrow C, D \rightarrow D$$

- □|LHS|=2: $AB \rightarrow A$, $AB \rightarrow B$, $AB \rightarrow C$ as $(AB \rightarrow B \text{ and } B \rightarrow C)$, $AC \rightarrow A$, $AC \rightarrow B$, $AC \rightarrow C$, $AD \rightarrow A$, $AD \rightarrow B$, $AD \rightarrow C$, $AD \rightarrow D$, $BC \rightarrow B$, $BC \rightarrow C$, $BD \rightarrow B$, $BD \rightarrow C$, $BD \rightarrow D$, $CD \rightarrow C$, $CD \rightarrow D$
- $\square | LHS | = 3: ABC \rightarrow A, ABC \rightarrow B, ABC \rightarrow C, ABD \rightarrow A, ABD \rightarrow B, ABD \rightarrow C, ABD \rightarrow D, BCD \rightarrow B, BCD \rightarrow C, BCD \rightarrow D$
- $\square |LHS| = 4: ABCD \rightarrow A, ABCD \rightarrow B, ABCD \rightarrow C, ABCD \rightarrow D$

Computing F^+ using Attribute closure α^+

• Given 4 attributes A, B, C, D, and $F = \{A \rightarrow B, B \rightarrow C\}$.

Compute F^+ :

$$\square |LHS| = 1: A^+ = ABC, B^+ = BC, C^+ = C, D^+ = D$$

$$\square |LHS| = 2: AB^+ = ABC, AC^+ = ABC, AD^+ = ABCD, BC^+ = BC, BD^+ = BCD, CD^+ = CD$$

$$\square|LHS|=3: ABC^+ = ABC, ABD^+ = ABCD, BCD^+ = BCD$$

$$ABD \rightarrow A, ABD \rightarrow B, ABD \rightarrow C \text{ as } (ABD \rightarrow B \text{ and } B \rightarrow C), ABD \rightarrow D$$

$$\square$$
 |LHS|=4: $ABCD^+$ = $ABCD$

Computing F^+ using Attribute closure α^+

• Given 3 attributes A, B, C and $F = \{A \rightarrow B, B \rightarrow C\}$.

Compute F^+ :

$$\square |LHS| = 1: A^+ = ABC, B^+ = BC, C^+ = C, D^+ = D$$

$$\square|LHS|=2:AB^+=ABC,AC^+=ABC,AD^+=ABCD,BC^+=BC,BD^+=BCD,$$

$$CD^+=CD$$

$$\square|LHS|=3: ABC^+ = ABC, ABD^+ = ABCD, BCD^+ = BCD$$

$$ABD \rightarrow A, ABD \rightarrow B, ABD \rightarrow C \text{ as } (ABD \rightarrow B \text{ and } B \rightarrow C), ABD \rightarrow D$$

Generate F⁺

algorithm (F)

```
/* F is the set of FDs */
```

- 1. $F^+ = \emptyset$
- 2. for each possible attribute set α
- 3. compute the closure of lpha wrt. \emph{F} , i.e. $lpha^+$
- 4. for each attribute $Z \in \alpha^+$
- 5. add the FD: $\alpha \rightarrow Z$ to F^+
- 6. return F^+

Example:

```
if A<sup>+</sup> = ABC
then
F<sup>+</sup> = {A->A, A->B, A->C}
```

Closure test

$$F: \{AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B\}$$

- 1. Is $AB \rightarrow E$ in F^+ ? • $AB^+ = ABCDE$ So, $AB \rightarrow E$
- 2. Is $D \rightarrow C$ in F^+ ? • $D^+ = DE$ So, $D \rightarrow E$ not true

Example for finding F^+

$$R = (A, B, C, G, H, I)$$

$$F = \{ A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H \}$$

- some members of F⁺
 - $\blacksquare A \rightarrow H$
 - by **transitivity** from $A \rightarrow B$ and $B \rightarrow H$
 - $\blacksquare AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $CG \rightarrow HI$
 - by union rule, $CG \rightarrow H$ and $CG \rightarrow I$ then $CG \rightarrow HI$

- Let F be a set of functional dependencies on a schema R, and let R_1 , R_2 ,..., R_n be a decomposition of R.
- The restriction of F to R_i is the set F_i of all functional dependencies in F * that include only attributes of R_i .

Dependency is preserved

- Let F be a set of functional dependencies on a schema R, and let R_1 , R_2 ,..., R_n be a decomposition of R.
- The restriction of F to R_i is the set F_i of all functional dependencies in F * that include only attributes of R_i .

 $F^+ = \{A->B, A->C, A->E, C->E, D->E,\}$

Dependency is not preserved

```
compute F^+;
for each schema R_i in D do
   begin
       F_i: = the restriction of F^+ to R_i;
   end
F' := \emptyset
for each restriction F_i do
   begin
       F' = F' \cup F_i
   end
compute F'^+;
if (F'^+ = F^+) then return (true)
               else return (false);
```

```
R(A,B,C,D) and F = \{ A -> B, A -> C, D -> E \}
```

Relation R is decomposed into following sub-relations with FDs defined on them:

$$R_1 = (A, B, C)$$
 with FDs $F_1 = \{A->A, A->B, A->C, B->B, C->C\}$

$$R_2 = (D, E)$$
 with FDs $F_2 = \{ D->D, D->E, E->E \}$

Dependency is preserved

```
compute F^+;
for each schema R_i in D do
   begin
       F_i: = the restriction of F^+ to R_i;
   end
F' := \emptyset
for each restriction F_i do
   begin
       F' = F' \cup F_i
   end
compute F'^+;
if (F'^+ = F^+) then return (true)
               else return (false);
```

```
R(A,B,C,D) and F = \{ A -> B, A -> C, C->E, D -> E \}
```

Relation R is decomposed into following sub-relations with FDs defined on them:

$$R_1 = (A, B, C)$$
 with FDs $F_1 = \{A->A, A->B, A->C, B->B, C->C\}$

$$R_2 = (D, E)$$
 with FDs $F_2 = \{ D->D, D->E, E->E \}$

Dependency is not preserved

Dependency preservation test

- Let a relation R(A,B,C,D) and F = { A -> B , A -> C , C -> D}.
- Relation R is decomposed into following sub-relations with FDs defined on them:
 - 1. $R_1 = (A, B)$ with FDs $F_1 = \{A -> B\}$
 - 2. $R_2 = (C, D)$ with FDs $F_2 = \{C \rightarrow D\}$

Let
$$F' = F_1 \cup F_2$$

= {A -> B, C -> D}
so, $F' \neq F$
so, $F'^+ \neq F^+$

Whenever $F'^+ \neq F^+$, the original FDs are not preserved

Dependency preservation test

- Let a relation R(A,B,C,D) and F = { A -> B , A -> C , C -> D}.
- Relation R is decomposed into following sub-relations with FDs defined on them:
 - 1. $R_1 = (A, B, C)$ with FDs $F_1 = \{A \rightarrow B, A \rightarrow C\}$
 - 2. $R_2 = (C, D)$ with FDs $F_2 = \{C \rightarrow D\}$

Let
$$F' = F_1 \cup F_2$$

= {A -> B, A -> C, C -> D}
so, $F' = F$
so, $F'^+ = F^+$

Whenever $F'^+ = F^+$, all the original FDs are preserved

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

Testing for superkey:

• To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.

Testing functional dependencies:

- To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
- That is, we compute α^+ by using attribute closure, and then check if it contains β .

Computing closure of F:

• For each possible attribute set α , we find the closure α^+ , and for each $S \subseteq \alpha^+$, we output a functional dependency $\alpha \to S$.

Canonical Cover (To remove redundant FDs)

Canonical Cover F_c

- Suppose that we have a set of functional dependencies **F** on a relation schema.
- Whenever a user **performs an update on the relation**, the database system must ensure that the update **does not violate any functional dependencies**.
- If an update violates any functional dependencies in the set F, the system must roll back the update.
- We can reduce the effort spent in checking for violations by testing a simplified set of functional dependencies that has the same closure as the given set F.
- This simplified set is termed the Canonical cover.

Extraneous Attribute

- To define canonical cover we must first define Extraneous attributes.
 - Assume a set of functional dependencies F, and the closure of set of functional dependencies F⁺.
 - Also, assume that we remove an attribute from any of the FDs under F and find the closure of new set of functional dependencies as F1⁺.

If $F1^+ = F^+$ then the attribute which has been removed is called as Extraneous Attribute

Example:

- In $F=\{AB\rightarrow C, A\rightarrow C\}$, **B** is extraneous in *LHS* $AB\rightarrow C$.
 - \circ When A can determine C alone, what is the use of extra attribute of B in AB \rightarrow C???
- In $F=\{A \rightarrow BC, B \rightarrow C\}$, C is extraneous in RHS $A \rightarrow BC$.
 - When A can determine C from the transitive rule, what is the use of extra attribute of C in A \rightarrow BC ???

Finding Extraneous attributes

Let R be a relation schema and let F be a set of functional dependencies that hold on R. Consider an attribute in the functional dependency $\alpha \to \beta$.

1. To test if attribute $E \in \alpha$ is extraneous in α

- Let $\gamma = \alpha \{E\}$. Check if $\gamma \to \beta$ can be inferred from *F*. To do so,
 - a) Compute γ^+ using the dependencies in F
 - b) If γ^+ includes all attributes in β then , E is extraneous in α

$$R = (A, B, C)$$
 $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$

A is extraneous in $AB \rightarrow C$

C is extraneous in $A \rightarrow BC$

New
$$F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B\}$$

Finding Extraneous attributes

- 2. To test if attribute $E \in \beta$ is extraneous in β
 - Consider the set:

$$\mathsf{F'} = (\mathsf{F} - \{\alpha \to \beta\}) \cup \{\alpha \to (\beta - \mathsf{E})\}\$$

• Compute α^+ under F'. If α^+ contains E, then E is extraneous in β

$$R = (A, B, C)$$
 $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$

A is extraneous in $AB \rightarrow C$

C is extraneous in $A \rightarrow BC$

New
$$F = \{B \rightarrow C, A \rightarrow B\}$$

Definition of Canonical Cover F_c

- A canonical cover for F is a set of dependencies F_c such that:
 - F logically implies all dependencies in F_c , and
 - F_c logically implies all dependencies in F_c and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is *unique*. That is, there are no two dependencies in F_c :
 - $\circ \ \alpha_1 \rightarrow \beta_1 \text{ and } \alpha_2 \rightarrow \beta_2 \text{ such that } \alpha_1 = \alpha_2$
 - \circ In such case, combine the dependencies into $\alpha_1 \to \beta_1 \beta_2$

Algorithm for computing Canonical Cover F_c

$F_C = F$

Repeat

- 1. Use the union rule to replace any dependencies in F_c of the form $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1$ β_2
- 2. Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β

/* Note: test for extraneous attributes done using F_{c} not F */

3. If an extraneous attribute is found, delete it from $\alpha \to \beta$ until (F_c not change)

/* Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied */

Example for computing Canonical Cover F_c

$$R = (A, B, C)$$
 and $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$

- $F_c = F$
- Combine $A \rightarrow BC$ and $A \rightarrow B$ into $A \rightarrow BC$
 - New F_c is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - $B \rightarrow C$ is already present!
 - New F_c is now $\{A \rightarrow BC, B \rightarrow C\}$

Note: F logically implies all dependencies in F_c .

- C is extraneous in $A \rightarrow BC$
 - New F_c is now $\{A \rightarrow B, B \rightarrow C\}$
- The canonical cover F_c is: $A \rightarrow B$ $B \rightarrow C$

Note: F_c logically implies all dependencies in F_c

- 1. A->B
- 2. B->C
- 3. A->B \rightarrow AB->BB \rightarrow AB->B and B->C = \rightarrow AB->C

Minimal cover / Irreducible set of FD

Minimal Cover

Cover

- F covers another set of functional dependencies G, if every functional dependency in G can be inferred from F.
- More formally, F covers G if $G^+ \subseteq F^+$.
- Given a set of FDs F, its **minimal cover** F' is the **smallest** set of functional dependencies that covers F.

Properties of a minimal cover F'

- All FD in F' are regular FD (A functional dependency $X \to Y$ is regular if Y contains only a single attribute).
- If any FD is removed from F', F' is no longer a minimal cover.
- If, for any FD in F' we remove one or more attributes from the LHS of F, the result is no longer a minimal cover.

A canonical cover is "allowed" to have more than one attribute on the right hand side. A minimal cover cannot. As an example, the canonical cover may be "A -> BC" where the minimal cover would be "A -> B, A -> C". That is the only difference.

Quick manual method for finding Minimal cover F_C if all FDs contain only single attributes in both LHS & RHS

Procedure:

Given :
$$F = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A, B \rightarrow C\}$$

- 1. For the first FD $A \rightarrow B$ find A^+ by **hiding** the FD $A \rightarrow B$. We get $A^+ = AC$ which does not include B in it. **Hence**, $A \rightarrow B$ is not redundant.
- 2. For the second FD $B \rightarrow A$ find B^+ by hiding the FD $B \rightarrow A$. We get $B^+ = ABC$ which includes A in it. Hence, $B \rightarrow A$ is redundant. We have to remove it immediately.
 - Now with the removal of $B \rightarrow A$, our F_C becomes:

$$F_c = \{ A \rightarrow B, A \rightarrow C, C \rightarrow A, B \rightarrow C \}$$

Procedure:

$$F = \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A, B \rightarrow C\}, F_C = \{A \rightarrow B, A \rightarrow C, C \rightarrow A, B \rightarrow C\}$$

- 3. For the third FD $A \rightarrow C$, find A^+ by hiding $A \rightarrow C$. We get $A^+ = ABC$ which includes C. Hence $A \rightarrow C$ is redundant and remove it immediately from F.
 - After removal of $A \rightarrow C$, our F_C becomes:

$$F_C = \{ A \rightarrow B, C \rightarrow A, B \rightarrow C \}$$

- 4. For the forth FD $C \to A$, find C⁺ by hiding $C \to A$. We get $C^+ = C$ and this does not include A in the result. Hence, $C \to A$ is not redundant.
- 5. For the last FD $B \rightarrow C$, find find B^+ by hiding $B \rightarrow C$. We get $B^+ = B$. Hence, $B \rightarrow C$ is not redundant.

Our final set of functional dependencies are minimal after the removal of FDs $B \rightarrow A$ and $A \rightarrow C$. Hence, the minimal cover of F is $F_c = \{A \rightarrow B, C \rightarrow A, B \rightarrow C\}$

Practice-1

• Relation R(A, B, C)

•
$$F = \{A \rightarrow B, B \rightarrow A, B \rightarrow C, A \rightarrow C, C \rightarrow A\}$$

• The minimal cover of F is $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$

Practice-2

• Relation R(A, B, C, D)

•
$$F = \{A \rightarrow AC, B \rightarrow ABC, D \rightarrow ABC\}$$

• The minimal cover of F is $\{A \rightarrow C, B \rightarrow A, D \rightarrow B\}$