Database Management

Discovering Computers 2012

Your Interactive Guide to the Digital World

Objectives Overview

Related terms: data integrity, value, field, record, and table

Database maintenance: adding, modifying, deleting

Database Management
System: query, form,
report, privilege,
backup and recovery

Database models: hierarchical, network, relational, objectoriented

Databases Management

Databases Management, Reasons?

Databases Management, Reasons?

Database

 Collection of data organized in a manner that allows access, retrieval, and share that data

Data

- Collection of unprocessed items
 - Text
 - Numbers
 - Images
 - Audio
 - Video

Information

- Processed data
 - Documents
 - Audio
 - Images
 - Video

 Database software, often called a database management system (DBMS), allows users to:

Create a computerized database

Add, modify, and delete data

Sort and retrieve data

Create forms and reports from the data

 Database software, often called a database management system (DBMS), allows users to:

Data integrity

- identifies the quality of the data
- data are intact and unchanged when being stored or transmitted.

- Data is organized in layers
 - Tables, records, fields, values

- A value is one data cell
 - Numbers, letters, space, punctuation marks, or other symbols
- A field is a combination of one or more related values
 - Field name
 - Field size
 - Data type

Common data types include:

- A record is a group of related fields
 - A primary key uniquely identifies each record
- A data table is a collection of related records

Address	City	State	Postal Code	E-mail Address	Date Admitted	Major	Photo
54 Lucy Court	Charlestown	IN	46176		6/10/2010	EE	mbrewer.jpg
33 Timmons Place	Bonner	IN	45208	lou@world.com	8/9/2010	BIO	ldrake.jpg
99 Tenth Street	Sheldon	IN	46033		10/8/2010	CT	aruiz.jpg
2204 Elm Court	Rowley	IN	46167	tu@indi.net	11/6/2010	GEN	btu.jpg
1	^	1	*	1	1	1	1
		=		fields —			

 Database manipulation refers to the actions that take affect to current data

Adding records

Modifying records

Deleting records

 Users add new records to a table when they obtain new data

 Users modify a record to correct inaccurate data or update old data

 When a record no longer is needed, a user deletes it from a table

 Validation compares data with a set of rules or values to find out if the data is correct

Flat File Versus Databases

Flat File system

- Put all information in "one large table"
- OK for small database.
- Used for many years
- Have data redundancy
- Isolate data

Database approach

- Programs and users share data
- Reduce data redundancy
- Improve data integrity
- Share data
- Allows easier access
- Reduces development time
- Can be more vulnerable

File Processing Versus Databases

Most popular DBMS in 2016 by db-engines.com

Rank Aug 2016	Sep 2015	DBMS	Database Model
1.	1.	Oracle	Relational DBMS
2.	2.	MySQL 🗄	Relational DBMS
3.	3.	Microsoft SQL Server	Relational DBMS
↑ 5.	↑ 5.	PostgreSQL	Relational DBMS
4 .	4 .	MongoDB 🔠	Document store
6.	6.	DB2	Relational DBMS
7.	1 8.	Cassandra 🗄	Wide column store
8.	4 7.	Microsoft Access	Relational DBMS
9.	9.	SQLite	Relational DBMS
10.	10.	Redis	Key-value store

Some DBMS over 3 years by db-engines.com

 A data dictionary is a collection of descriptions of the data objects in a database.

 A DBMS provides several tools that allow users and programs to retrieve and maintain data in the

database

- A query language consists of simple, English-like statements that allow users to specify the data to display, print, or store
- Query by example (QBE) provides a GUI to assist users with retrieving data

 Structured Query Language (SQL) is a query language that allows users to manage, update, and retrieve data

```
SELECT CLASS_TITLE, CLASS_CODE, MAXIMUM_ENROLLMENT -
CURRENT_ENROLLMENT AS SEATS_REMAINING
FROM SCHEDULE_OF_CLASSES, CLASS_CATALOG
WHERE SCHEDULE_OF_CLASSES.CLASS_CODE =
CLASS_CATALOG.CLASS_CODE
ORDER BY CLASS_TITLE
```

Class Title ▼	Class Section 🔻	Seats Remaining 🔻
Algebra 1	51	14
Art Appreciation	52	19
English Composition 1	02	5
Introduction to Sociology	01	14

 A form is a window on the screen that provides areas for entering or modifying data in a database

 A report generator allows users to design a report on the screen, retrieve data into the report design, and then display or print the report

Major Last Name	Student ID	First Name	Address	City	Date Admitte
віо					
Drak e	3876	Louella	33 Timmons Place	Bonner	8/9/2010
СТ	'				
Ruiz	3928	Adelbert	99 Tenth Street	Sheldon	10/8/2010
GEN					
Tu	2928	Benjamin	2204 Elm Cour t	Rowley	9/4/2010
soc					
Brewer	2295	Milton	54 Lucy Co urt	Ch arlest own	6/10/2010
Gu pta	4872	Elena	76 Ash Street	Rowley	9/3/2011

A DBMS provides means to ensure that only authorized users access data at permitted times

- Access privileges
- Principle of least privilege

 A DMBS provides a variety of techniques to restore the database to a usable form in case it is damaged or destroyed

Backup Log

Recovery utility Continuous backup

 A database model consists of rules and standards that define how the database organizes data

- A relational database stores data in tables that consist of rows and columns
 - Each row has a primary key
 - Each column has a unique name
- A relationship is a link within the data

- An object-oriented database (OODB) stores data in objects
- Examples of applications appropriate for an object-oriented database include:

Multimedia database

Computeraided design database

Hypertext database

Relational vs. Object-Oriented Databases

- A multidimensional database can store data in more than two dimensions of data
 - Sometimes known as a hypercube
 - Can consolidate data much faster than a relational database
- A data warehouse is a central repository for all or significant parts of the data that an enterprise's various business systems collect.

Web Databases

Databases on the Web allow you to:

Shop for products or services

Buy or sell stocks

Search for a job

Register for college classes

Check semester grades

Database Administration

It is important to have a carefully designed database

Database Design Guidelines

- 1. Determine the purpose of the database.
- 2. Design the tables or files.
 - Design tables or files on paper first.
 - Each table or file should contain data about one subject. The Student table, for example, contains data about students.
- 3. Design the records and fields for each table or file.
 - Be sure every record has a unique primary key.
 - Use separate fields for logically distinct items. For example, a name could be stored in six fields: Title (Mr., Mrs., Dr., etc.), First Name, Middle Name, Last Name, Suffix (Jr., Sr., etc.), and Nickname.
 - Do not create fields for information that can be derived from entries in other fields. For example, do not include a field for Age. Instead, store the birth date and compute the age.
 - Allow enough space for each field.
 - Set default values for frequently entered data.
- 4. Determine the relationships among the tables or files.

Database Management

Discovering Computers 2012

Your Interactive Guide to the Digital World

Chapter 10 Complete

