Semester-V

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned					
Code		${f L}$	T	P	О	E	L	T	P	Total	
		3	0	0	6	9	3	0	0	3	
(PC)	Theory of	Examination Scheme									
, ,		Component			ISE		MSE ES		SE	Total	
CS301/IT301	Computation	Theory			75		75		150	300	
		Labor	Laboratory								

Pre-requi	site Course Codes, if any.	CS201/IT201: Discrete Structures and Graph Theory					
Course O	Course Objective: To give an overview of the theoretical foundations of computer science from the						
perspectiv	perspective of formal languages which provides the mathematical foundation of formal models of						
computati	on, and fundamentals of forma	al grammars and languages that is used in most areas of computer					
science.							
Course O	utcomes (CO): At the end of	the course students will be able to					
CS301.1	S301.1 Design finite automaton for a regular expressions and languages.						
CS301.2	Apply the properties of regul	ar languages.					
CS301.3	S301.3 Construct the grammar for a language and convert it into normal forms.						
CS301.4	Design and Evaluate Pushdown Automata and Turing Machine for a language.						

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Sets, Relations and Languages	1,5	3
	1.1	Relations and functions		
	1.2	Alphabets and languages		
	1.3	Types of proof		
2	Title	Finite Automata	1,3,5	7
	2.1	Regular languages and regular expressions		
	2.2	Finite Automata, Nondeterministic Finite Automata,		
		Nondeterministic Finite Automata with ϵ -transitions		
	2.3	Kleene's theorem		
	2.4	NFA to DFA Conversion		
	2.5	Finite Automata with output (Moore and Mealy Machine)		
3	Title	Regular Languages	1,4	6
	3.1	The pumping lemma for regular languages, Applications of the pumping lemma		
	3.2	Closure properties for regular languages		
	3.3	Equivalence and minimization of automata: Testing equivalence of states, Minimization of DFA's		
4	Title	Context-Free Grammars and Languages	1,5	5

		Total (* Not inc	luded)	42
	·	NP-Completeness, Cook's Theorem		
	Study	Intractable Problems: P and NP, Polynomial-Time Reductions and		-
	Self	Tractable and Intractable Problems: Tractable and Possibly	3	5*
	8.3	Context sensitive languages and the Chomsky hierarchy		
	8.2	Enumerating a language		-
	8.1	Recursively Enumerable and recursive	-	4
8	Title	Recursively Enumerable Languages	3	
	7.4	Church-Turing hypothesis		
	7.3	Variants of Turing machines: Multitape Turing Machines		
	7.2	Halting Problem, Post Correspondence Problem (PCP)		
	7.1	Turing machines: Formal definition of a Turing machine, Examples of Turing machines		
7	Title	Introduction to Turing Machines	1,2,	6
	6.2	The Pumping lemma for context free languages: Applications of the pumping lemma for CFL's		
	62	reachable symbols, Chomsky normal form, Greibach normal form The Dynamica learner for context free languages. Applications of		
	6.1	Eliminating useless symbols, Computing the generating and		
6	Title	Properties of Context-Free Languages	1,2,3	5
	5.4	Deterministic pushdown automata: Definition of a deterministic PDA, Regular languages and deterministic PDA's, DPDA's and context free languages		
	5.3	Equivalence of PDA's and CFG's: From grammars to pushdown automata, From PDA's to Grammar		
	5.2	The languages of a PDA: Acceptance by final state, Acceptance by empty stack, From empty stack to final state, From final state to empty stack		
		pushdown automata, A graphical notation for PDA's, Instantaneous descriptions of a PDA		
	5.1	Definition of the pushdown automaton: The formal definition of		
5	Title	Pushdown Automata	1,2	6
	4.3	Ambiguity in grammars and languages: Ambiguous grammars, Removing ambiguity from grammars		
		From trees to derivations, From derivations to recursive inferences		
	4.2	Sentential forms Parse trees: Constructing parse trees, From inferences to trees,		
	4.1	Context free grammars: Definition of context free grammars, Derivations using a grammar, The language of a grammar,		

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Automata Theory, Languages, and Computation	Third	John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman	Pearson	2008

2	Introduction to the Theory of	Third	Michael Sipser	Cengage	2013
	computation				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
3	Introduction to Languages and the Theory of Computation	Fourth	John C. Martin	McGraw-Hill	2010
4	Elements of the Theory of Computation	Second	Harry R. Lewis, Christos H. Papadimitriou	Pearson	2015
5	Automata and Computability		Dexter C. Kozen	Springer	1997

Course (Category)	Course Name	Teaching Scheme (Hrs/week) Credits Assigned					Assigned				
Code		L	T	P	0	E	L	T	P	Total	
	Software	3	0	2	5	10	3	0	1	4	
(PC)			Examin					ination Scheme			
, ,		Component			ISE		MSE		ESE	Total	
CS302/IT302	Engineering	The	Theory		50		50	1	100	200	
		Labo	Laboratory		50				50	100	

Pre-requisite Cou	rse Codes, if any.	Object-oriented programming language -CS102, DBMS- IT/CS204					
Course Objective:	Course Objective: To understand the best practices in software engineering and gain knowledge to analyze,						
design, implement	design, implement and test software project.						
Course Outcomes	(CO): At the End	of the course students will be able to					
CS302.1/IT302.1	Analyze software requirements.						
CS302.2/IT302.2	Apply UML mode	Apply UML models for a project.					
CS302.3/IT302.3	Evaluate system and planning.	Evaluate system architecture and develop detailed task schedule from the overall estimates					
CC202 4/TT202 4	1 0						
CS302.4/IT302.4	Illustrate different	Illustrate different coding principles with unit test process.					
CS302.5/IT302.5	Understand the ne	ed for DevOps.					

Mo dule No.	Unit No.	Topics		Hr s.
1		Introduction		06
	1.1	Software Development Challenges, Software Scope, The Human Side of Software Development	1,2	

	1.2	Software Methodologies and Related Process Models with applications, Traditional Life Cycle Models, Waterfall, Incremental, Iterative models, Agile Software Engineering Process Models, SCRUM, Extreme Programming	1,2	
2		Requirements Management and Project Planning		10
	2.1	Requirements Development Methodology, Specifying Requirements, Eliciting Accurate Requirements, Documenting Business Requirements, SRS, Defining User Requirements, Validating Requirements, Achieving Requirements Traceability, Managing Changing Requirements, Agile Requirements Engineering	1,2	
	2.2	Scheduling, Work Breakdown Structure, Gantt Chart, Pert Chart, Critical Path, Earned Value Analysis, Schedule & Cost slippage, Estimation, Decomposition techniques, Empirical estimation models, Software Risk Management: Risk Identification, Risk Projection, Risk Refinement, RMMM Plan	1,2	
3		Software Analysis		08
	3.1	Difference between Structured & Object-Oriented analysis, Structured Analysis, Data Flow Diagrams	4,5	
	3.2	Object Oriented Analysis, Uses Case, Class diagram, Interaction diagrams, Activity diagram, State Chart diagram, Component & Deployment diagram	4,5	
4		Software Design & Development		08
	4.1	Software Architecture, Architectural and Pattern-Based Design, Model Driven Architectures	1,2	
	4.2	Software Development, Component Infrastructures, Refactoring, Test Driven Development (TDD)	1,2	
	4.3	DevOps, Continuous Integration, Continuous Deployment, System Provisioning and Configuration Management	3	
	4.4	Software Change Management, Change Control, Version Control	1,2	
5	5.1	Software Quality & Testing Software Quality Concepts, Quality Assurance, Quality Control, Formal Technical Reviews	1,2	10
	5.2	Software Metrics, Product Metrics – McCall's Quality Factor, Metrics for Analysis Model and Design Model, Project Metrics, Process Metrics, Metrics for Source Code	1,2	
	5.3	Software Testing, Unit Testing, Integration Testing, System Testing	1,2	
6	Self Study	Advance Topic in software Engineering		05*
		o Design Pattern		
		Total(* Not inc	luded)	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Gather requirements and write a project proposal for case study. Prepare SRS document. (Use IEEE template)
2	Design UML diagram -Use Case, Class diagram
3	Design UML diagram -Interaction diagrams
4	Design Data flow diagram (level 0 and 1) for the case study.

5	Create work breakdown structure and schedule the activities
6	Develop Risk Mitigation, Monitoring and Management Plan for the case study.
7	Create versions of software using version control tool.
8	Implement any one Module from chosen case study.
9	Prepare test cases and perform Unit Testing (test scenario, test cases, test data)
10	Study on continuous Integration using DevOp

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Software Engineering: A	Ninth	Roger S.	McGraw-	2019
	Practitioner's Approach	Edition	Pressman and	Hill	
	2 -		Bruce Maxim		
2	Fundamentals of	Fifth	Rajib Mall	PHI	2018
	Software Engineering	Edition		Learning	

Reference Books

CS303.2/IT303.2 Develop FFT flow-graph

CS303.3/IT303.3 Implement Fast Linear filtering algorithms

Sr. No	Title	Edition	Authors	Publisher	Year
3	The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations		Gene Kin, Patrick Debois, John Willis, Jez Humble, and John Allspaw	IT Revolution Press	2016
4	UML for Java Programmers		Robert C. Martin	Pearson	2006
5	UML Distilled: A Brief Guide to the Standard Object Modeling Language	Third Edition	Martin Fowler	Addition Wesley	2003

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
	Foundation of Signal Processing	3	0	2	5	10	3	0	1	4
(PC)		Examination Scheme								
		Component			ISE		MSE	E	SE	Total
CS303/IT303		Theory			50		50	1	100	200
		Laboratory			50				50	100

Pre-requisite Course Codes, if any. Introduction to Signals and Systems) or equivalent								
Course Objective: Foundations of Digital Signal Processing! The study of digital signal processing explores								
how we transform data into new representations to better understand, compress, and leverage it. The course								
begins with a rigor	ous review	of tools from	Signals and Systems: sampling, convolution, Fourier	er				
representations and	d flow graph	n, fast linear fi	iltering algorithms. It also comoares DSP Processor	and General-				
Purpose Processor.	i							
Course Outcomes (CO): At the End of the course students will be able to								
CS303.1/IT303.1	Interpret	DT signal ar	nd perform signal manipulation in Time Domain	and Frequency				
	Domain							

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.			
1	Title	Discrete-Time Signal	1, 2	12			
	1.1	Introduction: Signals, Systems, and Signal, Continuous Time signal, Discrete - Time signal and representation, Digital signal, The Sampling theorem, Some elementary discrete time signals, Classification of Discrete - Time Signals, Modifications of Discrete - Time Signals.	1, 2				
	1.2	Operations on Discrete - Time Signals: Linear Convolution, Circular Convolution, Matrix Representation of Circular Convolution, Linear Convolution using Circular Convolution, Auto and Cross Correlation.	1, 2				
	1.3	Discrete - Time systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non causal. Representation of system using impulse response, Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) system, Response of the FIR system using convolution.	1, 2				
2	Title	Discrete Fourier Transform	1, 2				
	2.1	Introduction to DTFT, Relation between DFT and DTFT, DFT of DT signal, Inverse DFT.	1, 2	00			
	2.2	Properties of the DFT: Scaling and Linearity, Symmetry for real valued signal, Periodicity, Time Shift and Frequency Shift, Time Reversal, Convolution Property and Parsevals Energy Theorem.	1, 2	08			
3	Title	Fast Fourier Transform	1, 2				
	3.1	Fast Fourier Transform: Need of FFT, Radix-2 DIT-FFT algorithm	1, 2	0.0			
	3.2	Flow graph for N=4 and 8 using Radix-2 DIT-FFT, Inverse FFT algorithm, Comparison of complex and real, multiplication and additions of DFT and FFT	1, 2	08			
4	Title	DSP Algorithms	1, 2				
	4.1	Fast Circular Convolution Algorithm, Fast Linear Convolution Algorithm.	1, 2	08			
	4.2	Linear FIR filtering using Overlap Add Algorithm and Overlap Save Algorithm and implementation using FFT.	1, 2				
5	Title	DSP Processors and Applications of DSP	3				
	5.1	Need DSP processor, Difference between DSP processor & General Purpose (GP) Processor.	3	06			
	5.2	Case study of DSP applications to Speech Signal Processing and Biomedical Signal Processing.	3				
	Self	Multi-rate Signal Processing: Up sampling and Down sampling,	1, 2,				
6	Study	Signal Compression, Carl Correlation Coefficient for measurement of degree of similarity between two signals.	3, 4, 5	05*			

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Signal Operations
2	Discrete Convolution
3	Discrete Correlation
4	Discrete Fourier Transform
5	Magnitude and Phase Spectrum
6	Fast Fourier Transform
7	Overlap Add Method using FFT
8	Overlap Save Method using FFT
9	Application of DSP Part I
10	Application of DSP Part II

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing: Principles, Algorithms and Applications	Fourth Edition	Proakis Manolakis	Pearson Education, ISBN 81-317-1000-9	2007
2	Digital Signal Processing	First Edition	S. Salivahanan, A. Vallavaraj, C. Gnanapriya	TataMcgraw Hill ISBN 978-0-07-066924-6	2010
3	Digital Signal Processing: A Computer Science Perspective	First Edition published on 25th Sept, 2000	Jonathan (Y) Stein	Copyright © 2000 John Wiley & Sons, Inc Print ISBN:9780471295464 Online ISBN:9780471200598 DOI:10.1002/047120059X	2000

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
4	Digital Signal Processing: A Practical Approach		Emmanuel C. Ifeachor, Barrie W. Jervis	Pearson Education ISBN 0-201- 59619- 9	2001
5	Digital Signal Processing	Sixth Edition	P. Ramesh Babu	Scitech Publication	2014

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	5	10	3	0	1	4
(PC)	Distributed Computing		Examination Scheme							
		Component		ISE		MSE	E	SE	Total	
CS304/IT304		Theory			75		75	1	.50	300
		Laboratory			50			:	50	100

Pre-requisite Cou	rse Codes, if any. Operating Systems, Computer Networks and Communications					
Course Objective: To familiarize students with the fundamental concepts, techniques and design of Distributions and use of distributed computing applications domains.						
Course Outcomes	(CO): At the End of the course students will be able to					
CS304.1/IT304.1	Understand the principles and desired properties of distributed systems.					
CS304.2/ T304.2	Apply the various communication techniques for distributed communication.					
CS304.3/IT304.3	Apply the concepts of process, naming, consistency, replication and faults tolerance in distributed environment.					
CS304.4/IT304.4	Apply the algorithms such as clock synchronization, election, and mutual exclusion in distributed applications.					
CS304.5/IT304.5	Identify the challenges in developing distributed applications.					

Module No.	Unit No.	Topics	Ref.	Hrs.
	Title	Introduction to Distributed Systems		
	1.1	Definition, Type, Goals, Distributed Computing Models, Issues in Distributed Systems.	1,2	08
1	1.2	Hardware Concepts, Software Concepts, The Client-Server Model, Positioning Middleware, Models of Middleware, Services offered by Middleware, models of Distributed Algorithms and some fundamental problems.	1,2	
2	Title	Communication In Distributed Systems		12
	2.1	Introduction to Message Passing, Desirable Features of a Good Message-Passing System, Issues in IPC by Message Passing, Synchronization, Buffering, Multi-datagram Messages, Group Communication.	1,2	
	2.2	Remote Procedure Call (RPC): Basic RPC Operations, Parameter Passing, Extended RPC Models. Remote Object Invocation: Distributed Objects, Binding a Client to an Object, Static Vs Dynamic RMI Message Oriented Communication: Persistence and synchronicity in communication, Message Oriented Transient and Persistent Communications		
3	Title	Process in Distributed Systems		6
	3.1 Introduction to Threads, Threads in Distributed Systems, Clients, Server		1,2	
	3.2	Code Migration: Approaches to Code Migration, Models, Migration and Local Resources, Migration in Heterogeneous Systems	1,2	

4	Title	Synchronization in Distributed Systems		10
	4.1	1,2		
		System, Clock Synchronization Algorithms;		
		Logical Clocks: Lamport's Logical Clocks, Vector Clocks		
	4.2	Election Algorithms: Bully and Ring; Mutual Exclusion:	1,2	
		Centralized Algorithm, Decentralized Algorithm, Distributed		
		Algorithm, Token Ring Algorithm, Comparison of Algorithms;		
		Load Balancing: Goals, Types, Strategies.		
5	Title	Consistency and Replication		6
	5.1	Reasons for Replication, Object Replication, Replication as	1	
		Scaling Technique Data Replication in Distributed Systems, Goals,		
	Types, Schemes,			
	5.2	Data-Centric Consistency Models, Client Centric Consistency	1	
		Models Continuous Consistency, Consistent Ordering of		
		Operations		
6	Self	Naming Entities, Locating Mobile Entities, Distribution Protocols,	1,2	8*
	Study	Consistency Protocols, Faults Tolerance: Process Resilience,		
		Distributed Commit, Recovery		
	•	Total(* Not incl	uded)	42

Laboratory Component

Sr. No	Title of the Experiments
1	Implementation of Client Server Communication using RPC/RMI.
2	Implementation of Clock Synchronization (logical/physical).
3	Implementation of Election algorithm.
4	Implementation of Mutual Exclusion algorithm.
5	Implementation of Client Server based program to check data consistency.
6	Implement Load Balancing Algorithms
7	Mini Project

Text Books:

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Distributed Systems-	First	Andrew S.	PHI	2004
	Principles and Paradigms.	Edition	Tanenbaum,		
			Maarten Van		
			Steen		
2	Distributed Operating	Second	P. K. Sinha	PHI	2010
	Systems Concepts and	Edition			
	Design				

Reference Books:

Sr.	Title	Edition	Authors	Publisher	Year
No					

1	Distributed Systems –		Fou	ourth George		I	Pearson		2010			
	Concept	Concept and Design		lition Coulouris, Jean								
						limore	,					
						dberg,						
					+	don B						
2	Distribut	ed VOD Systems	Fir			hir D.			Research		2011	
			Edi	ition	Ban	du B.N	M		India			
								I	Publicatio	n		
		T		Т					1			
	Course Category)	Course Name		Teach	ing So	heme	(Hrs/	week	(x)	Cr	edits A	ssigned
	Code			L	T	P	0	E	L	T	P	Total
				1	0	2	5	8	1	0	1	2
	SBC						E	xami	ination S	chem	e	
		Internet Technolog Lab		Comp	onent]	ISE		MSE	F	ESE	Total
CS.	305/IT305	Lab		The	ory							
				Labor	atory		100			1	100	200

Pre-requisite Course Codes, if any.		CS208/IT208 Mini Project			
Course Objective: : To impart a knowledge of different Internet Technologies.					
Course Outcomes	Course Outcomes (CO): At the End of the course students will be able to				
CS305.1/IT305.1	Develop a sophisticated web UX				
CS305.2/IT305.2	Create, integrate and test REST based web services				
CS305.3/IT305.3	305.3/IT305.3 Design secured web application/ web services				
CS305.4/IT305.4 Demonstrate behaviour of web crawlers and testing of web application					

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Designing UI		
	1.1	Fundamentals of UX Design, Defining UX Solutions, Design Communication and Visualizing Ideas	1	2
2		Web content management system		1
	2.1	Introduction to Web CMS, different types of Web CMS	2	
3		Web services		2
	3.1	Introduction to web service, REST architecture	3	
4		Web mashups		1
	4.1	Introduction to web mashups, server side mashups, client side mashups	2	
5		Secured Web application		2
	5.1	Introduction to Web Tokens, Auth2.0, OAuth, Access token	2	
6		Integration of web services		2
	6.1	Introduction to Mule ESB, Introduction to Anypoint studio, Integrating Web Services using Any point studio	4	
7		Web crawlers		2
	7.1	Introduction to web crawler, role of crawler in the internet, concept of page ranking	3	

8		Testing web applications	2
	8.1	Introduction to different types of testing, manual testing, automated testing, performance testing and functional testing, open source tools used for testing	
		used for testing	14

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design web pages using HTML, CSS and javascript
2	Design UX for a given problem definition by using open source UX tools
3	Create a website using web CMS (Node Js/Angular Js/React Js/Flask/Django/Wordpress/Joomla etc.)
4	Create a Restful webservice to demonstrate different HTTP methods
5	Testing of restful web service using Postman/ARC
6	Create a web mashup of web services using open source framework
7	Design secured Web application using web token
8	Integration of web services using open source integration tools like Mulesoft
9	Demonstrate the behavior of Web Crawlers/ spiders (use XPATH,CSS PATH),extract information and store it in the database.
10	Test the web application using open source testing tools like Selenium, Test runner and Junit

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Sketching the User experiences	Second edition	Bill Buxton	Diane Cerra	2010
2	Rich Internet Application AJAX and Beyond	Third edition	Dana Moore, Raymond Budd, Edward Benson	WROX Publisher	2017
3	Web Technology	Second Edition	Srinivasan	Pearson	2014
4	API Recipes with Mulesoft(r) Anypoint Platform	First Edition	WHISHWOR KS Editorial Board	White falcon	2017

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
5	Internet Technology And Web Design	First Edition	R. K. JAIN	Khanna Book Publishing	2015
				Company	

6	Understanding the Internet: A Clear Guide to Internet Technologies	First Edition	Keith Sutherland	A ButterworthHeinemann Title	2016
7	RESTful Web APIs: Services for a Changing World	Third edition	Leonard Richardson, Mike Amundsen, Sam Ruby	O'REILLY	2013