10. APPENDIX

Proof of Lemma 1. Given $G'_{\mathcal{E}} = G_{\mathcal{E}} \oplus \mathcal{U}$ and \mathcal{U} contains only merge and insert operators, we first prove that there always exists a graph homorphism h' from $G_{\mathcal{E}}$ to $G'_{\mathcal{E}}$. A mapping h' from $G_{\mathcal{E}}$ to $G'_{\mathcal{E}}$ is constructed as follows. For each node $[v] \in V_{\mathcal{E}}$, $h'[v] \in V'_{\mathcal{E}}$ is an equivalent class that contains node [v], where $[v].\mathrm{id}=h'[v].\mathrm{id}$. (h'[v],h'[v']) is an edge in $E'_{\mathcal{E}}$ iff. $([v],[v']) \in E_{\mathcal{E}}$. We show that h' is a homorphism when we consider merging nodes and adding missing links. For each $[v] \in V_{\mathcal{E}}$, $L_{\mathcal{E}}([v]) = L'_{\mathcal{E}}(h'[v])$. Similarly, for each $([v],[v']) \in E_{\mathcal{E}}$, $(h'[v],h'[v']) \in E'_{\mathcal{E}}$ and $L_{\mathcal{E}}([v],[v']) = L'_{\mathcal{E}}(h'[v],h'[v'])$. Thus, (1) any node [v] in $G_{\mathcal{E}}$ has a counterpart h'[v] in $G'_{\mathcal{E}}$; similarly for induced edges; (2) if $[v] \sim [v']$ in $G_{\mathcal{E}}$, then $h'[v] \sim h'[v']$ in $G'_{\mathcal{E}}$, and (3) if $([v],[v']) \in P_{\mathcal{E}}(G_{\mathcal{E}})$, $h'([v],[v']) \in P_{\mathcal{E}}(G'_{\mathcal{E}})$.

Validation Problem for NEs. Following theorem 3, we have the following result for NEs.

Theorem 9: The validation is coNP-complete for NEs \Box

Proof: We first show that graph keys (GKeys) [14, 16] is a special case of NE. A GKey for entities of type τ is defined as a graph pattern Q(x), where where x is a designated entity variable, *i.e.*, the conditions specified in Q(x) uniquely identify entities of type τ . NE can be specified to GKeys when $P_{\mathcal{E}}$ contains two isomorphic patterns with u_o and u'_o as two designated nodes. The validation is coNP-complete for GKeys [16]. Given a set of GKeys, (1) there exists a NP algorithm to check they are satisfiable, and (2) it is coNP-hard for GKeys with no constant literals. The lower bound can be proved by a reduction from the complement of the 3-colorability problem. Given that GKey is a special case of NE, the validation for NEs alone is coNP-complete.

Implication Analysis. Given a set of constraints Σ and a constraint $\varphi \notin \Sigma$, we say Σ *implies* φ , denoted as $\Sigma \models \varphi$, if for any graph G, if $G \models \Sigma$, then $G \models \varphi$. The implication problem is to decide for any given finite set of constraints $\Sigma \cup \{\varphi\}$, whether $\Sigma \models \varphi$.

We first study the implication for NEs and EGs separately, i.e., $\Sigma \models \varphi$ contains only NEs or EGs.

Theorem 10: The NE implication is NP-complete. \Box

Proof: Given that GKey is a special case of NE and the implication problem of GKeys is $\mathsf{NP}\text{-complete}$ [16], the NE implication is $\mathsf{NP}\text{-complete}$.

Theorem 11: The EG implication is NP-complete. \Box

To characterize the implication problem, we introduce the notion of embeddings between two EGs.

Embedding of EGs. We say a EG $\varphi = P_{\mathcal{E}} \to \exists r(u,u')$ is embedded in another EG $\varphi' = P'_{\mathcal{E}} \to \exists r(u,u')$, denoted as $\varphi \preceq \varphi'$, if (1) $P'_{\mathcal{E}}$ is subgraph isomorphic to $P_{\mathcal{E}}$ via a bijection f and their anchored nodes u and u' have the same node labels, respectively; (2) $X' = f^{-1}(X)$, i.e., for each literal $l \in X$, there exists a literal $l' \in X'$ obtained by renaming u.A in l to $f^{-1}(u).A$ according to l and l. We have the following results.

Lemma 12: Given a set Σ of EGs and a EG $\varphi \notin \Sigma$, $\Sigma \models \varphi$ iff there exists a EG φ' in Σ , such that $\varphi' \preceq \varphi$.

Proof: (If). The If condition states that given a EG $\varphi =$

 $P_{\mathcal{E}} \to \exists r(u,u') \not\in \Sigma$, if there exists a EG $\varphi' = P'_{\mathcal{E}} \to \exists r(u,u')$ in Σ , such that $\varphi' \preceq \varphi$, then for any graph G, if $G \models \Sigma$, $G \models \varphi$. We perform a case analysis for $P_{\mathcal{E}}$. (1) If $P_{\mathcal{E}}$ has no match, or for every match h, an edge with r exists between h(u) and h(u'), then $G \models \varphi$ trivially. (2) Assume $P_{\mathcal{E}}$ has at least one match, and by contradiction, $G \not\models \varphi$. Then there exists a match h, such that there exist no edge with label r between h(u) and h(u'). We construct match h' from h for $P'_{\mathcal{E}}$, where each node u' in $P'_{\mathcal{E}}$, h'(u') = h(f(u')). We can verify that h' is a match satisfying $X' = f^{-1}(X)$. h'(u) = v and h'(u') = v', and $G \models \varphi'$, and therefore there exists an edge with label r between h(u) and h(u'). This contradicts to that $G \not\models \varphi$. Thus $G \models \varphi$.

(Only If). The Only If states that if $\Sigma \models \varphi$, then there exists a EG φ' in Σ , such that $\varphi' \preceq \varphi$ via mapping f. Assume there is no such EG φ' . We construct a graph G such that $G \models \Sigma$ and $G \not\models \varphi$.

 $G \models \Sigma$ and $G \not\models \varphi$. For each EG $\varphi' = P_{\mathcal{E}}' \to \exists r(u,u')$ in Σ , we construct a match by enforcing X' via a mapping h', and moreover, there exists an edge with label r between h'(u) and h'(u'). Such match always exists as X' is satisfiable. As there exists no EG that can be embedded in φ , there is no f from $P_{\mathcal{E}}'$ to $P_{\mathcal{E}}$ that preserves (i) label equality, or (ii) literal renaming requirement, i.e., there exists a literal in X that has no renamed literal in X' via f^{-1} . For any of these cases, we can always construct a match $P_{\mathcal{E}}(G)$, such that (a) h(u) = v, h(u') = v', and there exists an edge with label r between v and v'. Set $G = \bigcup P_{\mathcal{E}}'(G) \bigcup P_{\mathcal{E}}(G)$. Clearly, $G \models \Sigma$ and $G \not\models \varphi$.

Putting these together, Lemma 12 follows.

Theorem 13: The EGs implication is NP-complete.

Proof: It suffices to show the problem of checking whether the condition of Lemma 12 is NP-complete. (1) We develop a NP algorithm to check whether $\Sigma \models \varphi$. The algorithm guesses a mapping f for each $\varphi' \in \Sigma$, and verifies whether $\varphi' \preceq \varphi$ via f. The verification can be done in polynomial time. (2) The hardness of the problem can be easily verified by a reduction from subgraph isomorphism. Putting these together and given Lemma 12, Theorem 13 follows. \square

Details of Constraint-level Pruning.

For any operator o that enforces a dynamic constraint φ , procedure Trigger safely prunes all the constraints φ' where $(\varphi, \varphi') \in R_I$ without graph pattern matching. We show the following result.

Lemma 14: For any pair $(\varphi, \varphi') \in R_I$, φ' cannot be triggered by any step $(([v], [v']), \varphi, o)$ in any GRIP sequence. \Box

Proof: Any merge or insert enforced by φ revises a node pair ([v], [v']) and all the neighbors of the nodes in [v] and [v'] from the base graph G. We can verify that for any base graph G and given any condition, the changes introduce no new match for the entity pattern of φ' , thus has no trigger in GRIP sequence for φ' . (1) If φ is an EG, then is merges two nodes with label $L(u_o)$. Given that $P'_{\mathcal{E}}$ does not contain any nodes with label $L(u_o)$, φ' can not be triggered. (2) Similarly, if φ is an NE, it adds an link with label r between nodes with label $L(u_o)$ and $L(u'_o)$. Since $P'_{\mathcal{E}}$ does contain such an edge, φ' can not be triggered in any GRIP sequence.

For instance-level pruning, we have the following result.

Figure 11: Effectiveness

Lemma 15: Given operator o and any GRIP step $s = (([v_o], [v'_o]), \varphi', o')$ triggered by o, (1) $([v_o], [v_o]') \in P'_{\mathcal{E}}(G', o)$ induced by the above cases, and (2) any node pair $([v_o], [v_o]') \notin P'_{\mathcal{E}}(G')$ is not a trigger of φ' for s.

Proof: For all four cases, a possible trigger must be a new match of the pattern $P'(u_o,u_o')$ that fails either entity equivalence or with a missing edge. Upon merge (NE-NE and NE-EG) or insert (EG-NE and EG-EG), such matches can only be identified from the bounded neighborhood of either the newly merged nodes or inserted edges in G'. Specifically for φ' as a NE (NE-NE and EG-NE), new triggers may include one node from the verified matches. Lemma 15 thus follows.

Proof of Theorem 8. For Why query $\mathsf{why}(o, G, G_{\mathcal{E}})$, given that o is enforced by ρ' and ρ' is a fraction of ρ , any sequence ρ' is a witness.

We next show that given a Why-not query whyNot $(o,G,G_{\mathcal{E}})$ along with the constraint φ that enforces o, it is NP-hard to verify a GRIP sequence ρ' fails to be a witness, *i.e.*, whether $G'_{\mathcal{E}} \not\models \varphi$. Following the analysis for Theorem 3, the hardness can be shown by a reduction from k-clique problem. Putting these together, the hardness for whyNot is coNP-hard.

Procedure Backward for Why-not questions.

We introduce the Backward procedure for answering whyNot questions. Given a virtual step $s=(([v],[v']),\varphi,o)$, Backward aims to find a set of virtual steps that can "possibly" trigger o. (1) It first identifies a set of constraints Σ' that can trigger φ . Σ' is constructed by involving all constraints $\varphi' \in \Sigma$ s.t. $(\varphi',\varphi) \notin R_I$ (see constraint-level pruning in Section 5.2). (2) For each constraint $\varphi' \in \Sigma'$ with pattern $(P'(u_o,u'_o),X')$, Backward finds a set of node pairs within d-hop of [v] and [v'], where d is the diameter of the pattern in φ . Each node pair $([v_1],[v_2])$ is a candidate of (u_o,u'_o) , i.e., $L([v_1])=L(u_o)$, $L([v_2])=L(u'_o)$ and both nodes satisfy the literal constraints in X'. (3) For each node pair, Backward generates an operator $\operatorname{merge}(([v_1],[v_2]),f)$ (resp. insert $(r([v_1],[v_2])))$ if φ' is a NE (resp. EG). It then

constructs a virtual step $s' = (([v_1], [v_2]), \varphi', o')$ and adds it as a independent nodes to \mathcal{T} . Finally, it creates an edge from s' to s for each newly constructed virtual step s'.

Variants of provenance. We next introduce how GTrack can be specialized to answer other provenance need. These queries demonstrates how GRIP, a general online framework, takes user feedback as input and generates user-specified results.

- "What-if?". A What-if query what $f(o, G, G_{\mathcal{E}})$ asks "What if o is applied $G_{\mathcal{E}}$ ", where o is not involved in o.
- "What-if-not?". A What-if-not query what If Not $(o, G, G_{\mathcal{E}})$ asks "What if o is not applied $G_{\mathcal{E}}$ ", where o is involved in ρ .

A witness for whatlf $(o, G, G_{\mathcal{E}})$ is a single GRIP sequence ρ' , where o is involved in ρ' . Similarly, a GRIP sequence ρ' is a witness for whatlfNot $(o, G, G_{\mathcal{E}})$ if it involves o. These two queries are common used in crowdsourcing data integration [40, 30] where the system asks users to select if an operator can be applied or not.

To answering these two types of queries, GTrack leverages ApxGRIP to reconstruct the provenance tree \mathcal{T} .

Answering What-if query. To answer a What-if query whatlf $(o,G,G_{\mathcal{E}})$ where o is not selected by ApxGRIP, GTrack tracks the operator selection process in ApxGRIP and interrupts the process when step s with operator o is dequeued (line 4 in Figure 4). It directly adds s into \mathcal{U} instead of verifying the gain-cost ratio. By invoking Trigger, it adds newly triggered operators into \mathcal{U} and continues the selection process until ApxGRIP terminates. This will generate a new GRIP sequence ρ' and a new provenance tree \mathcal{T}' . This sequence ρ' thus leads to result with optimal completeness gain when operator o is enforced.

Answering What-if-not query. Similarly, in order to answer a What-if-not query whatlf($o, G, G_{\mathcal{E}}$), GTrack interrupts ApxGRIP by directly discarding o and all operators triggered by it. A new sequence ρ' is thus generated as an answer to this What-if-not query.

Complementary experiment results. Effectiveness. Set B=2.5K, we evaluate the effectiveness of ApxGRIP by tracking the change of the normalized gain value. We compare ApxGRIP with it's counterpart ApxGRIP_N and ApxGRIP_R, which does not prioritize the operators (see operator-level pruning). Figure 11 shows the normalized gain with increasing B and time. (1) The quality of graph refinement increases as B and time increase. (2) ApxGRIP converges faster to near-optimal completeness gain due to the optimization techniques. Remarkably, ApxGRIP converges after selecting 2.5K operators in less than 40 seconds.

9. REFERENCES

- Full version. https://songqi1990.github.io/Full.pdf.
- [2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases: the logical level. 1995.
- [3] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases. In *PODS*, 1999.
- [4] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack secretary problem with applications. In Approximation, randomization, and combinatorial optimization. Algorithms and techniques, pages 16–28. 2007.
- [5] I. Bhattacharya and L. Getoor. Entity resolution in graphs. *Mining graph data*, 2006.
- [6] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS, 2013.
- [7] P. Buneman, S. Khanna, and T. Wang-Chiew. Why and where: A characterization of data provenance. In *ICDT*, 2001.
- [8] M. Calautti, L. Libkin, and A. Pieris. An operational approach to consistent query answering. In *PODS*, 2018.
- [9] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In KDD, 2014.
- [10] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang. From data fusion to knowledge fusion. PVLDB, 2014.
- [11] X. L. Dong and F. Naumann. Data fusion: resolving data conflicts for integration. PVLDB, 2(2):1654–1655, 2009.
- [12] A. Ebaid, S. Thirumuruganathan, W. G. Aref, A. Elmagarmid, and M. Ouzzani. Explainer: entity resolution explanations. In *ICDE*, 2019.
- [13] V. Efthymiou, K. Stefanidis, and V. Christophides. Benchmarking blocking algorithms for web entities. *IEEE Transactions on Big Data*, 2016.
- [14] W. Fan, Z. Fan, C. Tian, and X. L. Dong. Keys for graphs. PVLDB, 8(12), 2015.
- [15] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record matching and data repairing. *SIGMOD*, 2011.
- [16] W. Fan and P. Lu. Dependencies for graphs. In PODS, 2017.
- [17] W. Fan, P. Lu, C. Tian, and J. Zhou. Deducing certain fixes to graphs. PVLDB, 2019.
- [18] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph patterns. PVLDB, 2015.
- [19] D. Firmani, B. Saha, and D. Srivastava. Online entity resolution using an oracle. PVLDB, 2016.
- [20] L. Galárraga, S. Razniewski, A. Amarilli, and F. M. Suchanek. Predicting completeness in knowledge bases. In WSDM, 2017.
- [21] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining in ontological knowledge bases with amie++. VLDBJ, 2015.
- [22] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. Amie: association rule mining under

- incomplete evidence in ontological knowledge bases. In WWW, 2013.
- [23] W. Gatterbauer and D. Suciu. Data conflict resolution using trust mappings. In SIGMOD, 2010.
- [24] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The llunatic data-cleaning framework. PVLDB, 2013.
- [25] S. Guo, X. L. Dong, D. Srivastava, and R. Zajac. Record linkage with uniqueness constraints and erroneous values. PVLDB, 2010.
- [26] E. N. Hanson and J. Widom. An overview of production rules in database systems. The Knowledge Engineering Review, 8(2):121–143, 1993.
- [27] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu. Graphflow: An active graph database. In SIGMOD, 2017.
- [28] P. Lin, Q. Song, J. Shen, and Y. Wu. Discovering graph patterns for fact checking in knowledge graphs. In DASFAA, 2018.
- [29] H. Ma, M. Alipourlangouri, Y. Wu, F. Chiang, and J. Pi. Ontology-based entity matching in attributed graphs. *PVLDB*, 2019.
- [30] R. Meng, H. Xin, L. Chen, and Y. Song. Subjective knowledge acquisition and enrichment powered by crowdsourcing. arXiv, 2017.
- [31] A. Morteza and C. Fei. Keyminer: Discovering keys for graphs. In VLDB workshop, 2018.
- [32] W. E. Moustafa, H. Miao, A. Deshpande, and L. Getoor. Grdb: a system for declarative and interactive analysis of noisy information networks. In SIGMOD, 2013.
- [33] F. Naumann and M. Häussler. Declarative data merging with conflict resolution. 2002.
- [34] H. Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic web, 8(3):489–508, 2017.
- [35] M. Pershina, M. Yakout, and K. Chakrabarti. Holistic entity matching across knowledge graphs. In *Big Data*, 2015.
- [36] P. Rahman, C. Hebert, and A. Nandi. Icarus: minimizing human effort in iterative data completion. PVLDB, 2018.
- [37] B. Shi and T. Weninger. Discriminative predicate path mining for fact checking in knowledge graphs. Knowledge-based systems, 2016.
- [38] D. Symeonidou, L. Galárraga, N. Pernelle, F. Saïs, and F. Suchanek. Vickey: mining conditional keys on knowledge bases. In ISWC, 2017.
- [39] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution. PVLDB, 2012.
- [40] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive relations for crowdsourced joins. In SIGMOD, 2013.
- [41] X. Wang, L. Haas, and A. Meliou. Explaining data integration. *Data Engineering Bulletin*, 2018.
- [42] S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolution. TKDE, 25(5):1111-1124, 2012.
- [43] Y. Zhou, D. Chakrabarty, and R. Lukose. Budget constrained bidding in keyword auctions and online knapsack problems. In WINE, 2008.