Chương 3

TCP/IP và Internet

Giáo viên

Đơn vị

: ThS. Trần Văn Thọ

: Bộ môn KTHT & MMT

Giới thiệu chung về internet

- Lịch sử phát triển.
 - Tiền thân của mạng Internet là ARPANET.
 - Thuật ngữ "Internet" xuất hiện lần đầu vào khoảng năm 1974.
 - Năm 1984 mạng internet chính thức ra đời.
 - Vào giữa thập kỷ 80 thành lập mạng liên kết các trung tâm máy tính lớn gọi là NSFNET.

Các yếu tố thúc đẩy sự tăng trưởng của Internet

- Sử dụng giao thức TCP/IP trong Unix.
- Năm 1980 máy tính PC ra đời.
- Hệ thống tên miền ra đời
- Năm 1986 mạng NSFNET ra đời.
- Bộ giao thức đơn giản và linh hoạt.
- Các ứng dụng ngày càng nhiều.

Hình mô phỏng sự tăng trưởng của internet

Internet hosts 1981-2012

Kiến trúc mạng internet

- Giáo thức IP (Internet Protocol)
 - Tổng quát về IP
 - Định nghĩa
 - Đặc điểm:
 - Không phải thiết lập, giải phóng kết nối.
 - Packets có thể đi theo các con đường khác nhau.
 - Không có cơ chế phát hiện, khắc phục lỗi truyền.

- Địa chỉ IP có độ dài 32 bít
- Có 2 các biểu diễn địa chỉ IP
 - Biểu diễn dưới dạng số thập phân:

VD: 192.168.1.100

- Biểu diễn dưới dạng số nhị phân
 - VD: 00001010.00001010.00001010.00000101

Cấu trúc của 1 gói tin IP

VER	IHL	TOS		TL				
Identification					DF	MF		FO
TTL Protocol				HC				
Source address								
Destination address								

- Version: gồm 4 bít, dùng để chỉ phiên bản hiện hành giao thức.
- IHL (IP packet Header Length): gồm 4 bít, chỉ độ dài phần đầu của gói tin datagram, tính theo đơn vị từ (32 bits).
- TOS (Type Of Service): gồm 8 bit, chỉ cấp bậc dịch vụ của gói tin.
 - Cấu trúc của trường TOS:

3 bit	1 bit	1 bit	1 bit	2 bit
Precedence	D	T	R	Reserved

- TL (Total Length): gồm 16 bit, chỉ độ dài toàn bộ gói tin.
- Identification: gồm 16 bit, dùng để định danh duy nhất cho một datagram.
- Flags: Gồm 3 bít, liên quan đến sự phân đoạn các datagram, căn cứ vào giá trị của 2 cờ DF và MF.
- FO (Fragment Offset): gồm 13 bit, cho biết vị trí dữ liệu thuộc phân đoạn tương ứng với đoạn bắt đầu của gói dữ liệu gốc.

- TTL (Time to Live): gồm 8 bit, cho biết thời gian tồn tại của gói tin trên mạng.
- Protocol : gồm 8 bit, chỉ giao thức tầng trên kế tiếp sẽ nhận vùng dữ liệu ở trạm đích.
- HC (Header Checksum): Gồm 16 bit, chứa mã kiểm soát lỗi của header gói tin IP.
- Source Address (32 bits): Địa chỉ của máy nguồn.
- Destination Address (32 bits): Địa chỉ của máy đích.

Các lớp địa chỉ IP

- Địa chỉ IP được chia thành 5 lớp:
 - Lớp A: cho phép định danh tới 126 mạng, với tối đa 16 triệu host trên mỗi mạng.
 - Lớp B cho phép định danh tới 16384 mạng, với tối đa 65534 host trên mỗi mạng.
 - Lớp C cho phép định danh tới 2 triệu mạng, với tối đa 254 host trên mỗi mạng
 - Lớp D và lớp E chưa được sử dụng.

- Các địa chỉ IP sau đây thuộc lớp nào:
- a) 10.0.0.100
- b) 192.168.1.1
- c) 10.254.0.1
- d) 128.0.0.0
- e) 192.254.1.1
- f) 225.1.1.1
- g) 191.255.255.255

Các giao thức trong mạng IP

- Giao thức ARP (Address Resolution Protocol): là giao thức dùng để tìm địa chỉ vật lý từ địa chỉ IP
- Giao thức RARP (Reverse Address Resolution Protocol): là giao thức dùng để tìm địa chỉ IP từ địa chỉ vật lý.
- Giao thức ICMP (Internet Control Message Protocol): là giao thức dùng để truyền các thông báo điều khiển giữa các gateway hoặc một nút của liên mạng.

- Định tuyến:
 - Khái niệm: là quá trình chọn lựa các đường đi trên một mạng máy tính để truyền dữ liệu.
 - Phân loại:
 - Định tuyến tĩnh
 - Định tuyến động

Định tuyến động

- Có 2 phương pháp cơ bản:
 - Distance vector: quan tâm đến chiều và khoảng cách đến các link trong mạng.

Ví dụ: RIP, IGRP, EIGRP

 Link-state : tạo lại chính xác topology của toàn bộ mạng.

Ví du: OSPF, IS-IS

- Chia làm 3 giai đoạn:
 - Thực thể IP ở máy nguồn:
 - Tạo một IP datagram dựa trên tham số nhận được.
 - Tính checksum và ghép vào header của gói tin.
 - Ra quyết định chọn đường.
 - Chuyển gói tin xuống tầng dưới để truyền qua mạng.

- Thực thể IP ở nút trung gian:
 - Tính chesksum, nếu sai thì loại bỏ gói tin.
 - Giảm giá trị tham số Time to Live
 - Ra quyết định chọn đường.
 - Phân đoạn gói tin, nếu cần.
 - Kiến tao lai IP header.
 - Chuyển datagram xuống tầng dưới để chuyển qua mạng.

- Thực thể IP ở máy đích
 - Tính checksum. Nếu sai thì loại bỏ gói tin.
 - Tập hợp các đoạn của gói tin (nếu có phân đoạn)
 - Chuyển dữ liệu và các tham số điều khiển lên tầng trên.

Phân chia mạng con

- Sự cần thiết phải phân chia mạng con:
 - Do giới hạn về kiến trúc mạng.
 - Việc quản trị mạng có quá nhiều thiết bị gặp rất nhiều khó khăn

Phân chia mạng con

- Lợi ích của phân chia thành mạng con:
 - Giảm nghên mạch.
 - Giới hạn trọng phạm vi từng mạng con các trục trặc có thể xảy ra.
 - Giảm phần trăm thời gian sử dụng CPU.
 - Tăng cường bảo mật.

Phân chia mạng con

Cấu trúc của 1 địa chỉ IP:

Mặt nạ mạng con

- Định nghĩa: Mặt nạ mạng con là số 32 bít xác định phần địa chỉ mạng của một địa chỉ IP.
- Phân loại:
 - Mặt nạ mạng con mặc định.
 - Mặt nạ mạng con tùy biến.

Quản trị địa chỉ IP

- Gồm 4 bước:
 - Chọn mặt nạ mạng con.
 - Tính số thiết bị trên mỗi mạng con.
 - Gán địa chỉ cho các mạng con.
 - Gán địa chỉ thiết bị.

Chọn mặt nạ mạng con.

- B1: Xác định số mạng con cần thiết.
- B2: Chuyển số mạng con này sang dạng nhị phân.
- B3: Chuyến tất cả các bit trong dạng nhị phân thành bit 1. Thêm các bit 0 vào sau để được đầy đủ một octet.
- B4: Thêm phần mặt nạ tùy biến vào mặt nạ mạng con mặc định.
- Bài toán: Cần phân chia địa chỉ mạng: 162.199.0.0 thành 10 mạng con. Giá trị của mặt nạ mạng con là bao nhiêu?

Tính số thiết bị trên mạng con

- B1: Chuyển mặt nạ mạng con sang dạng nhị phân.
- B2: Đếm số bit không của mặt nạ mạng con, gọi là u.
- B3: Sử dụng công thức 2^u-2 để tính số thiết bị trên mỗi mạng con.
- Bài toán: có bao nhiêu thiết bị có thể kết nối vào mạng con có địa chỉ mặt nạ mạng con là: 255.255.240.0

Gán địa chỉ mạng con

- B1: Chuyển giá trị mặt nạ mạng con sang dạng nhị phân.
- B2 Tìm bit 1 tận cùng bên phải và chuyển bít đó sang dạng thập phân. Đây gọi là giá trị lũy tiến a.
- B3: Danh sách địa chỉ mạng con được tính bằng cách cộng giá trị lũy tiến a vào địa chỉ mạng đã được cấp.
 Giá trị kết thúc sẽ bằng với giá trị mặt nạ mạng con.
- Bài toán: Hãy liệt kê tất cả các địa chỉ mạng con hợp lệ cho một mạng lớp B có địa chỉ 162.199.0.0 với mặt nạ mạng con là 255.255.240.0

Gán địa chỉ thiết bị

- Phạm vi địa chỉ thiết bị trong mỗi mạng con được xác định như sau:
 - Địa chỉ bắt đầu: Bằng địa chỉ mạng con cộng 1
 - Địa chỉ kết thúc: Bằng địa chỉ mạng con kế tiếp trừ
 2.
- Bài toán: Trong ví dụ trước ta có giá trị 2 mạng con liền kề là: 162.199.16.0 và 162.199.32.0 Tính giải địa chỉ thiết bị hợp lệ của mạng con 162.199.16.0?

Cho IP của một host như sau: 172.29.32.30/255.255.240.0

- a. Mạng chứa host trên có chứa mạng con hay không? Tại sao lại biết được?
- b. Có bao nhiều mạng con tương tự như vậy?
- c. Có bao nhiều Host trong mỗi mạng con?
- d. Cho biết địa chỉ Broadcast của mạng chứa Host trên
- e. Liệt kê các Host nằm chung với mạng con nói trên.

Giao thức TCP

- TCP là một giao thức "có liên kết", nghĩa là cần phải thiết lập liên kết giữa hai thực thể TCP trước khi chúng trao đổi dữ liệu với nhau.
- Các phương thức để thiết lập một liên kết TCP/IP:
 - Chủ động.
 - Bị động.

Bit 0	La.			1	5 16					31
	Source Port				Destination Port					
	Sequence Number									
	Acknowledgment Number									
	Data Offset	Reserved	U G	A C	P S	R S	S	F	Window	
			R	K	Н	Т	И	И		
	Checksum				Urgent Pointer					
	Options				Padding					
				TCP	data	,,,,,,,,,,,,				

- Source Port (16 bits): Số hiệu cổng TCP của trạm nguồn.
- Destination Port (16 bit): Số hiệu cổng TCP của trạm đích.
- Sequence Number (32 bit): số hiệu của byte đầu tiên của segment.
- Acknowledgment Number (32 bit): số hiệu của segment tiếp theo mà trạm nguồn đang chờ để nhận.
- Data offset (4 bit): chỉ ra vị trí bắt đầu của nguồn dữ liệu.

- Reserved (6 bit): dành để dùng trong tương lai
- Các bit điều khiển:
 - URG: Vùng con trỏ khẩn có hiệu lực.
 - ACK: Vùng báo nhận có hiệu lực.
 - PSH: Chức năng PUSH.
 - RST: Khởi động lại liên kết.
 - SYN: Đồng bộ hóa số hiệu tuần tự
 - FIN: Không còn dữ liệu từ trạm nguồn.

- Window (16 bit): là số lượng các byte dữ liệu tối đa có thể nhận.
- Checksum (16 bit): mã kiểm soát lỗi cho toàn bộ segment (header + data)
- Urgent Pointer (16 bit): con trỏ này trỏ tới số hiệu tuần tự của byte đi theo sau dữ liệu khẩn.
- Options: khai báo các thông số của TCP
- Padding: phần chèn thêm vào header. Phần thêm này gồm toàn số 0.
- TCP data: chứa dữ liệu của tầng trên, có độ dài tối đa ngầm định là 536 byte.

Các bước thực hiện truyền dữ liệu

Thiết lập kết nối:

Các bước thực hiện truyền dữ liệu

Truyền dữ liệu và điều khiển luồng:

Các bước thực hiện truyền dữ liệu

Giải phóng kết nối:

 Cho kịch bản truyền dữ liệu giữa 2 điểm cuối TCP như sau:

Với: Seq A khởi đầu =0, Seq B khởi đầu = 10000,
 MSS= 1000 Bit

Xác định số thứ tự và số báo nhận của mỗi gói tin từ 2 điểm cuối.

 Cho kịch bản truyền dữ liệu giữa 2 điểm cuối TCP như sau:

 Với: Seq A khởi đâu =0, Seq B khởi đầu = 10000, kích thước gói tin là: MSS= 1000 Byte

Xác định số thứ tự và số báo nhận của mỗi gói tin từ 2 điểm cuối.

Cho IP của một host như sau: 126.29.32.30/11

- a. Mạng chứa host trên có chứa mạng con hay không? Tại sao lại biết được?
- b. Chỉ ra địa chỉ Broadcast và địa chỉ mạng của mạng con liền kề (ngay sau) với mạng con chứa Host trên?
- c. Có bao nhiều Host trong mỗi mạng con?
- d. Liệt kê các Host nằm chung với mạng con nói trên.

Bài Tập 2

- Cho kịch bản truyền dữ liệu giữa 2 điểm cuối TCP như hình 1.
- Với: Seq A khởi đầu = 1000.
 Seq B khởi đầu = 1000. Kích thước bản tin là 10 KBit
- Tính số thứ tự và số báo nhận của mỗi gói tin từ 2 điểm cuối.

 $\bullet B/m$ KTHT, khoa CNTT, ĐHXD