Ранжирование экспертов при помощи γ^2 - согласования. Александра Харь, 774

Постановка задачи:

Пусть заданы множество объектов $V = \{v_i\}_{i=1}^m$ и множество показателей $\Psi = \{\psi_j\}_{j=1}^n$.

Множество измерений показателей каждого объекта представлено в виде матрицы исходных данных $A = \{a_{ij}\}_{i,j=1}^{m,n}$.

Также пусть имеется K экспертов, для каждого из которых известны вектор его оценок объектов (интегральные идникаторы) $q_0 = (q_{01}, \dots, q_{0m})^T \in \mathbb{R}^m$ и вектор его оценок показателей $w_0 = (w_{01}, \dots, w_{0n})^T \in \mathbb{R}^n$.

Требуется на основе этих данных отранжировать данных экспертов.

Если в данных имеются пропуски, то мы заполняем их методом трех ближайших соседей.

По исходным экспертным оценкам весов показателей w_0 вычислим значение вектора интегрального индикатора:

$$q_1 = Aw_0 \tag{1}$$

Также по исходным экспертным оценкам значения вектора интегрального индикатора q_0 вычислим веса показателей:

$$w_1 = A^+ q_0, (2)$$

где A^+ - псевдообратная матрица.

В общем случае $q_0 \neq q_1, \ w_0 \neq w_1$.

Назовем значения \hat{q} и \hat{w} - согласованными значениями интегрального индикатора и весов показателей , если:

$$\hat{q} = A\hat{w}, \ \hat{w} = A^{+}\hat{q} \tag{3}$$

γ^2 согласование:

Определим согласованное решение как решение, удовлетворяющее условию (3), при котором расстояние от согласованных векторов q_{γ} и w_{γ} таких, что $q_{\gamma} = Aw_{\gamma}$, до соответственно, векторов экспертных оценок q_0 и w_0 будет минимальным.

Пусть $\epsilon = d(Aw, q_0), \ \delta = d(w, w_0), \ \text{где } d(x, y) = ((x - y)^T R^{-1} (x - y))^{0.5}$ - расстояние Махаланобиса.

Решение задачи нахождения минимального расстояния от согласованных векторов до векторов экспертных оценок имеет вид

$$w_{\gamma} = \arg\min_{w \in W} (\epsilon^2 + \gamma^2 \delta^2) \tag{4}$$

, где весовой множитель $\gamma^2 \in (0,\infty)$ - определяет степень компромисса между оценкой объектов и показателей. При малых значениях γ^2 в большей степени учитывается экспертная оценка объектов, а при больших значениях γ^2 в большей степени учитывается экспертная оценка показателей.

Теорема. Функционал $\epsilon^2 + \gamma^2 \delta^2$ достигает единственного глобального минимума на множестве $w_{\gamma} \in W$ в точке

$$w_{\gamma} = (A^T A + \gamma^2 I)^{-1} (A^T q_0 + \gamma^2 w_0)$$
(5)

Полученная процедурой γ^2 - согласования удовлетворяет требованием согласования.

Параметр γ^2 для получения согласованных векторов $q_{\gamma} = Aw_{\gamma}$ и w_{γ} выбирается исходя из условия $\frac{\epsilon^2}{m} = \frac{\delta^2}{n}$ или же назначается экспертами.

Результаты эксперимента:

Рис. 1: Медиана

Рис. 2: Рейтинг 2

Рис. 3: Рейтинг 8

Рис. 4: Рейтинг 11