CSCI 2300 HW #2

BY JOSHUA M. ZONE

Question 1 (2.23):

a) If A has a majority element v, v must also be a majority element of A_1 or A_2 or both. To find v, recursively compute the maroity elements, if any, of A_1 and A_2 check whether one of these is a majority element of A.

Run Time: $T(n) = 2T(n/2) O(n) = O(n \log n)$.

b) After the procedure, there are at most $\left(\frac{n}{2}\right)$ elements left since at lease one element in the pairs is discarded. If these remaining elements have a majority, v exists and appears at least $\left(\frac{n}{4}\right)$ times so v must be paired with itself at least $\left(\frac{n}{4}\right)$ times which shows that A contains at least $\left(\frac{n}{2}\right)$ copies of v.

Run Time:
$$T(n) = T(\frac{n}{2}) + O(n) = O(n)$$

Question 2(2.24):

a) function quicksort(array)

if
$$length(array) <= 1$$

return array

select and remove a pivot element piv from array

create empty lists less and greater

for each x in array:

if $x \le pivot$ then append x to less

else append x to greater

return concatenate(quicksort(less),list(pivot),quicksort(greater))

b)
$$T(n) = T(k) - T(n-k) + \alpha n$$

Worst Case:

$$T(n) = T(1) + T(n-1) + \alpha n$$

$$T(n) = T(n-1) + T(n) + \alpha n$$

$$T(n) = [T(n-2) + T(1) \alpha(n-1)] + T(1) + \alpha n$$

$$T(n) = T(n-2) + 2T(1) + \alpha(n-1+n)$$

$$T(n) = [T(n-3) + T(1) + \alpha(n-2)] + 2T(1) + \alpha(n-1+n)$$

$$T(n) = T(n-3) + 3T(1) + \alpha((n-2) + (n-1) + n)$$

$$T(n) = [T(n-4) + 4T(1) + \alpha(n-3)] + 3T(1) + \alpha((n-2) + (n-1) + n)$$

$$T(n) = T(n-4) + 4T(1) + \alpha((n-3) + (n-2) + (n-1) + n)$$

$$T(n) = T(n-i) + iT(1) + \alpha((n-i+1+...+n-2+n-2+n))$$

sub i=n-1 since n can't be less than 1. $\sum (n-j)$

$$nT(1) + \alpha \left(\frac{n}{n-2}\right) - \frac{(n-2)(n-1)}{2} = O(n^2)$$

c)
$$T(n) \le O(n) + \frac{1}{n} \sum_{i=1}^{n} (T(i) + T(n))$$

$$T(n) = 2T(\frac{n}{2}) + \alpha n$$

$$T(n) = 2\left(2T\left(\frac{n}{2}\right) + \alpha \frac{n}{2}\right) + \alpha n$$

$$T(n) = 2^2 T\left(\frac{n}{4}\right) + 2\alpha n$$

$$T(n) = 2^{2} \left(2T\left(\frac{n}{8}\right) + \alpha \frac{n}{4}\right) + 2\alpha n$$

$$T(n) = 2^3 T\left(\frac{n}{8}\right) + 3\alpha n$$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + k\alpha n$$

recurrence will continue until $k=2^k$ otherwise $\frac{n}{2^k} < i$

 $\operatorname{sub}, k = \log n$

$$T(n) = nT(1) + \alpha n \log n$$
 Therefore $O(n \log n)$

Question 3(3.3):

a)

$$C(2, 13)$$
 $G(5, 6)$

- b) A and B are sources while G and H are sinks
- c) Topological Sort: Decreasing order of postnum

d) $\{A,B\}$, C, $\{D,E\}$, F, $\{G,H\}$ where pairs in $\{\}$ can appear in any order there are a total of $2^3=8$ orderings.

Question 4(3.4):

i. {C, D, F, G, H, I, J} is found first and is the Source SCC.

{A, B, E} is found second and is the sink SCC.

By adding one edge in the sink to any vertex in the source would make the entire graph SCC.

ii. {D, F, G, H, I} is found first and is the sink SCC.

{C} is found second

{A, B, D} is found third and is the source SCC.

By adding one edge in the sink to any vertex in the source would make the entire graph SCC.

Question 5 (3.23):

Linearize the DAG;

Any path from s to t will only pass through the linearized vertices from s to t.

$$S\!=\!V_0,V_1,V_2,...,V_{k=t}$$
 (The vertices from s -> t linearized)

for each i:

count paths from s to V_i as n_i

each path to vertex i and an edge (i, j), gives a path vertex j

for all edges in E:

$$n_j = \sum n_i$$

 $i < j \ for \ all \ (i, j) \ in \ E$:

compute in increasing order.

Question 6 (4.1):

NODE	0	1	2	3	4	5	6	7
A	0	0	0	0	0	0	0	0
В	∞	1	1	1	1	1	1	1
С	∞	∞	3	3	3	3	3	3
D	∞	∞	∞	4	4	4	4	4
E	∞	4	4	4	4	4	4	4
F	∞	8	7	7	7	7	6	6
G	∞	∞	7	5	5	5	5	5
Н	∞	∞	∞	∞	8	8	6	6

Table 1.

Question 7 (4.2)

NODE	0	1	2	3	4	5	6
S	0	0	0	0	0	0	0
A	∞	7	7	7	7	7	7
В	∞	∞	11	11	11	11	11
С	∞	6	5	5	5	5	5
D	∞	∞	8	7	7	7	7
Е	∞	6	6	6	6	6	6
F	∞	5	4	4	4	4	4
G	∞	∞	∞	9	8	8	8
Н	∞	∞	9	7	7	7	7
I	∞	∞	∞	∞	8	7	7

Table 2.

Question 9 (5.2)

EDGE	COST	KNOWN
(A,B)	1	$\{A,B\}$
(B,C)	2	$\{A,B,C\}$
(C,D)	3	$\{A,B,C,D\}$
(D,G)	2	$\{A,B,C,D,G\}$
(G,F)	1	$\{A,B,C,D,G,F\}$
(G,H)	1	$\{A,B,C,D,G,F,H\}$
(A,E)	4	$\{A,B,C,D,G,F,H,E\}$
TOTAL	13	

Table 3.