Laborator 4

Exerciții de probabilități în R

Obiectivul acestui laborator este de a rezolva câteva probleme de teoria probabilităților cu ajutorul limbajului R.

1 Generarea unei variabile aleatoare discrete

Definiți o funcție care să genereze un eșantion de talie n dintr-o distribuție discretă definită pe mulțimea $\{x_1, \ldots, x_N\}$ cu probabilitățile $\{p_1, \ldots, p_N\}$. Pentru început încercați cu v.a. de tip Bernoulli.

Avem următoarea funcție:

```
GenerateDiscrete = function(n = 1, x, p, err = 1e-15){
  # talia esantionului
  # x alfabetul
  # p probabilitatile
  lp = length(p)
  lx = length(x)
  # verify if x and p have the same size
  if(abs(sum(p)-1))= | sum(p)=0)!= | lp){
    stop("suma probabilitatilor nu este 1 sau probabilitatile sunt mai mici decat 0")
  }else if(lx!=lp){
   stop("x si p ar trebui sa aiba aceeasi marime")
  }else{
   out = rep(0, n)
   indOrderProb = order(p, decreasing = TRUE) # index
   pOrdered = p[indOrderProb] # rearrange the values of the probabilities
   xOrdered = x[indOrderProb] # rearramnge the values of x
    \# u = runif(n) \# generate n uniforms
   pOrderedCS = cumsum(pOrdered)
   for (i in 1:n){
      u = runif(1)
      k = min(which(u<=pOrderedCS))</pre>
      out[i] = x0rdered[k]
  }
 return(out)
```

}

și pentru a o putea testa să considerăm cazul repartițiilor Poisson și Geometrică:

a) Poisson

Repartitia Poisson

b) Geometrică

```
breaks = seq(-0.5,99.5, by = 1),
    xlim = c(-0.5, 20),
    col = "grey80",
    main = "Repartitia Geometrica",
    xlab = "X",
    ylab = "Densitatea")

lines(0:100,
    dgeom(0:100, 0.3),
    type = "l",
    col = "brown3", lty = 2, lwd = 2)
```

Repartitia Geometrica

2 Funcția de repartiție pentru variabile aleatoare

Scrieți o funcție în R care să traseze graficul funcției de repartitie a unei distribuții date. Verificați și documentația funcției ecdf.

Definim următoarea funcție:

```
cdfPlot = function(dist, title, err = 1e-10){
    # dist - repartitia discreta (sau discretizata)
    lp = length(dist)
```

```
if (abs(sum(dist)-1)>err | sum(dist>=0)!=lp){
    stop("Eroare: vectorul de probabilitati nu formeaza o repartitie")
 }else{
   x = 0:(lp-1) # ia valori in 1:lp
   cp = cumsum(dist)
   plot(x, cp, type = "s", lty = 3,
         xlab = "x",
         ylab = "F",
         main = paste("Functia de repartitie:", title),
         ylim = c(0,1),
         col = "grey",
         bty = "n")
   abline(h = 0, lty = 2, col = "grey")
   abline(h = 1, lty = 2, col = "grey")
   for(i in 1:(lp-1)){
      lines(c(x[i], x[i+1]), c(cp[i], cp[i]), lwd = 2)
   points(x,cp, col = "black", pch = 20, cex = 0.85)
 }
}
```

Pentru a testa această funcție să considerăm repartițiile discrete:

a) Binomiala: $\mathcal{B}(100, 0.3)$

```
cdfPlot(dist = dbinom(0:100, 100, 0.3), title = "B(100,0.3)")
```

Functia de repartitie: B(100,0.3)

b) Poisson: Pois(0.3) și Pois(5)

```
par(mfrow = c(1, 2))

cdfPlot(dist = dpois(0:20, 0.3), title = "Pois(0.3)")
```

```
cdfPlot(dist = dpois(0:50, 5), title = "Pois(5)")
```

Functia de repartitie: Pois(0.3)

Functia de repartitie: Pois(5)

c) Geometrica: Geom(0.3)

```
par(mfrow = c(1,1))
cdfPlot(dist = dgeom(0:100, 0.3), title = "Geom(0.3)")
```


și repartiția continuă:

a) Normala: $\mathcal{N}(0,1)$

cdfPlot(dist = dnorm(seq(-5,5,0.01))/100, title = "N(0,1)", err = 1e-1)

Functia de repartitie: N(0,1)

3 Aproximarea Poisson și Normală a Binomialei

Ilustrați grafic aproximarea Poisson și normală a repartiției binomiale.

Scopul acestei probleme este de a ilustra grafic aproximarea legii binomile cu ajutorul repartiției Poisson și a a normalei.

Pentru o v.a. X repartizată binomial de parametrii n și p (q=1-p) funcția de masă este

$$f_{n,p}(k) = \mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

iar funcția de repartiție este

$$F_{n,p}(k) = \mathbb{P}(X \le k) = \sum_{x=0}^{k} \binom{n}{x} p^x (1-p)^{n-x}.$$

3.1 Aproximarea Poisson

Dacă $n \to \infty$ (n este mare) și $p \to 0$ (p este mic, evenimentele sunt rare) așa încât $np \to \lambda$ atunci se poate verifica cu ușurință că

$$f_{n,p}(k) \approx f_{\lambda}(k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Mai exact, avem că dacă k este mic în comparație cu n atunci

$$\binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{\lambda}{n}\right)^k$$
$$= 1 \times \left(1 - \frac{1}{n}\right) \times \cdots \times \left(1 - \frac{k-1}{n}\right) \frac{\lambda^k}{k!}$$
$$\approx \frac{\lambda^k}{k!}$$

și

$$\log(1-p)^{n-k} = (n-k)\log\left(1-\frac{\lambda}{n}\right) \approx n\left(-\frac{\lambda}{n}\right)$$

ceea ce conduce la $(1-p)^{n-k} \approx e^{-\lambda}$. Combinând cele două aproximări obținem

$$\binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}.$$

Pentru a ilustra acuratețea acestei aproximări vom folosi instrucțiunile R dbinom și dpois care permit calcularea funcțiilor de masă $f_{n,p}(k)$ și $f_{\lambda}(k)$.

```
AppBP <- function(n,p,a,b){
    lambda <- n*p
    x<- matrix(numeric((b-a+1)*3),ncol=3,
               dimnames = list(a:b,c("Binomiala","Poisson","Eroarea Absoluta")))
    x[,1] < -dbinom(a:b,n,p)
    x[,2]<-dpois(a:b,lambda)
    x[,3] < -abs(x[,1]-x[,2])
    error \leftarrow \max(abs(x[,3]))
    return(list(x = as.data.frame(x), error = error, param = c(n, p, lambda)))
}
# Functie care ilustreaza aproximarea Binomial vs. Poisson
pl <- function(n,p,a,b){</pre>
    clr<-c("#E69F00", "#56B4E9")# culori
    lambda <- n*p
    mx <- max(dbinom(a:b,n,p))</pre>
    plot(c(a:b,a:b), c(dbinom(a:b,n,p), dpois(a:b,lambda)), type="n",
         main = paste("Approx. Poisson pentru binomiala\n n=",
                      n, ", p = ", p, ", lambda = ",lambda),
         ylab = "Probabilitatea", xlab="x",
         bty = "n")
    points((a:b)-.15, dbinom(a:b,n,p), type = "h",col = clr[1], lwd = 8)
    points((a:b)+.15, dpois(a:b,lambda), type = "h", col = clr[2], lwd = 8)
    legend(b-b/2, mx, legend = c(paste0("Binomiala(",n,",",p,")"),
                                paste0("Poisson(",lambda,")")),
           fill = clr, bg="white",
           bty = "n")
}
```

Pentru setul de parametri
in=20 și p=0.3 avem următorul tabel și următoarea figură

Tab. 1: Aproximarea Poisson la binomiala n $=20~\rm p=0.3$ lambda =6. Eroarea (Diferenta in valoare absoluta maxima) =0.03102 .

k	Binomiala	Poisson	Eroarea Absoluta
	Dinomaa	1 0155011	
1	0.0068393	0.0148725	0.0080332
2	0.0278459	0.0446175	0.0167717
3	0.0716037	0.0892351	0.0176314
4	0.1304210	0.1338526	0.0034316
5	0.1788631	0.1606231	0.0182399
6	0.1916390	0.1606231	0.0310158
7	0.1642620	0.1376770	0.0265850
8	0.1143967	0.1032577	0.0111390
9	0.0653696	0.0688385	0.0034689
10	0.0308171	0.0413031	0.0104860
11	0.0120067	0.0225290	0.0105223
12	0.0038593	0.0112645	0.0074052
13	0.0010178	0.0051990	0.0041812
14	0.0002181	0.0022281	0.0020100
15	0.0000374	0.0008913	0.0008539

iar pentru parametri
in=100 și p=0.01obținem

Tab. 2: Aproximarea Poisson la binomiala n = 100 p = 0.01 lambda = 1. Eroarea (Diferenta in valoare absoluta maxima) = 0.00185.

k	Binomiala	Poisson	Eroarea Absoluta
1	0.3697296	0.3678794	0.0018502
2	0.1848648	0.1839397	0.0009251
3	0.0609992	0.0613132	0.0003141
4	0.0149417	0.0153283	0.0003866
5	0.0028978	0.0030657	0.0001679
6	0.0004635	0.0005109	0.0000475
7	0.0000629	0.0000730	0.0000101
8	0.0000074	0.0000091	0.0000017
9	0.0000008	0.0000010	0.0000003
10	0.0000001	0.0000001	0.0000000

Pentru funcția de repartiție $F_{n,p}(k)$, folosid
n aproximarea Poisson avem că

$$F_{n,p}(k) \approx F_{\lambda}(k) = \sum_{x=0}^{k} e^{-\lambda} \frac{\lambda^x}{x!}.$$

3.2 Aproximarea Normală

Să considerăm repartiția binomială $\mathcal{B}(n,p)$ pentru p=0.3 și $n\in\{20,50,100,150,200\}$ și să trasăm histogramele variabilelor aleatoare care au aceste repartiții (X_n) precum și a variabilelor standardizate $Z_n=\frac{X_n-np}{\sqrt{npq}}$.

Observăm, pentru graficele din partea stângă, că valoarea maximă se atinge în jurul punctului $n \times 0.3$ pentru fiecare grafic în parte. De asemenea se observă că odată cu creșterea lui n crește și gradul de împrăștiere, cu alte cuvinte crește și abaterea standard $(\sigma_n = \sqrt{npq})$.

Pe de altă parte putem remarca că figurile din partea dreaptă au o formă simetrică, de tip clopot, concentrate în jurul lui 0, fiind translatate în origine și scalate pentru a avea o varianță egală cu 1. Abraham de Moivre a justificat acest efect (pentru p=0.5) încă din 1756 observând că raportul

$$\frac{f_{n,p}(k)}{f_{n,p}(k-1)} = \frac{\frac{n!}{k!(n-k)!}p^kq^{n-k}}{\frac{n!}{(k-1)!(n-k+1)!}p^{k+1}q^{n-k+1}} = \frac{(n-k+1)p}{kq}$$

pentru k = 1, 2, ..., n. Astfel $f_{n,p}(k) \ge f_{n,p}(k-1)$ dacă și numai dacă $(n+1)p \ge k$ de unde, pentru n fixat, deducem că $f_{n,p}(k)$ atinge valoarea maximă pentru $k_{\text{max}} = \lfloor (n+1)p \rfloor \approx np$ (acesta este motivul pentru care fiecare grafic din partea stângă are vârful în jurul punctului np).

Să observăm ce se întâmplă în jurul lui k_{max} . Avem

$$\frac{f_{n,p}(k_{\max}+i)}{f_{n,p}(k_{\max}+i-1)} = \frac{(n-k_{\max}-i+1)p}{(k_{\max}+i)q} \approx \frac{(nq-i)p}{(np+i)q} = \frac{1-\frac{i}{nq}}{1+\frac{i}{np}}$$

și cum (folosind relația $\log(1+x) \approx x$, pentru x în jurul lui 0)

$$\log\left(1 - \frac{i}{nq}\right) - \log\left(1 + \frac{i}{np}\right) \approx -\frac{i}{nq} - \frac{i}{np} = -\frac{i}{npq}$$

¹de Moivre, A. (1756). The Doctrine of Chances: or, A Method of Calculating the Probabilities of Events in Play (Third ed.). New York: Chelsea.

deducem, pentru $m \ge 1$ și $k_{\text{max}} + m \le n$, că

$$\log \frac{f_{n,p}(k_{\max} + m)}{f_{n,p}(k_{\max})} = \log \left(\frac{f_{n,p}(k_{\max} + 1)}{f_{n,p}(k_{\max})} \times \frac{f_{n,p}(k_{\max} + 2)}{f_{n,p}(k_{\max} + 1)} \times \dots \times \frac{f_{n,p}(k_{\max} + m)}{f_{n,p}(k_{\max} + m - 1)} \right)$$

$$= \log \frac{f_{n,p}(k_{\max} + 1)}{f_{n,p}(k_{\max})} + \log \frac{f_{n,p}(k_{\max} + 2)}{f_{n,p}(k_{\max} + 2)} + \dots + \log \frac{f_{n,p}(k_{\max} + m)}{f_{n,p}(k_{\max} + m - 1)}$$

$$\approx \frac{-1 - 2 - \dots - m}{npq} = -\frac{1}{2} \frac{m^2}{npq}.$$

Sumarizând avem, pentru m nu foarte mare,

$$\mathbb{P}(X = k_{\text{max}} + m) \approx f_{n,p}(k_{\text{max}})e^{-\frac{1}{2}\frac{m^2}{npq}}$$
.

Folosind formula lui Stirling²

$$n! \approx \sqrt{2\pi} n^{n + \frac{1}{2}} e^{-n}$$

pentru $k = k_{\text{max}} \approx np$, avem

$$f_{n,p}(k) \approx \frac{1}{\sqrt{2\pi}} \frac{n^{n+\frac{1}{2}}}{(np)^{np+\frac{1}{2}}(nq)^{nq+\frac{1}{2}}} p^{np} q^{nq} = \frac{1}{\sqrt{2\pi npq}}.$$

Astfel aproximarea de Moivre devine

$$\mathbb{P}(X = k_{\text{max}} + m) \approx \frac{1}{\sqrt{2\pi npq}} e^{-\frac{1}{2}\frac{m^2}{npq}}$$

și scriind kpentru $k_{\rm max}+m$ și înlocuind $k_{\rm max}$ cunpobținem

$$\mathbb{P}(X = k) \approx \frac{1}{\sqrt{2\pi npq}} e^{-\frac{1}{2} \frac{(k - np)^2}{npq}} = \frac{1}{\sigma_n \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{k - np}{\sigma_n}\right)^2}.$$

Astfel $mathbb{P}(X = k)$ este aproximativ egală cu aria de sub curba

$$f(x) = \frac{1}{\sigma_n \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - np}{\sigma_n}\right)^2}$$

pe intervalul $k - \frac{1}{2} \le x \le k + \frac{1}{2}$.

Ïn mod similar, pentru $0 \le a < b \le n$, avem

$$\mathbb{P}(a \le X \le b) = \sum_{k=a}^{b} f_{n,p}(k) \approx \sum_{k=a}^{k=b} \int_{k+\frac{1}{2}}^{k-\frac{1}{2}} f(x) \, dx = \int_{a}^{b} f(x) \, dx$$

de unde prin schimbarea de variabilă $y=\frac{x-np}{\sigma_n}$ obținem

$$\mathbb{P}(a \le X \le b) \approx \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\beta} e^{-\frac{y^2}{2}} dy = \Phi(\beta) - \Phi(\alpha)$$

²A se vedea cartea lui Feller, W. (1968). An Introduction to Probability Theory and Its Applications (third ed.), Volume 1. New York: Wiley. pag. 52-53 pentru o derivare a formulei lui Stirling.

unde
$$\alpha = \frac{a - np - \frac{1}{2}}{\sigma_n}$$
, $\beta = \frac{b - np + \frac{1}{2}}{\sigma_n}$ și $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy$.

Aplicând rezultatele de mai sus, în cele ce urmează vom considera două aproximări pentru funcția de repartiție $F_{n,p}(k)$:

a) aproximarea normală

$$F_{n,p}(k) \approx \Phi\left(\frac{k-np}{\sqrt{np(1-p)}}\right).$$

b) aproximarea normală cu coeficient de corecție de continuitate

$$F_{n,p}(k) \approx \Phi\left(\frac{k+0.5-np}{\sqrt{np(1-p)}}\right).$$

În practică această ultimă aproximare se aplică atunci când atât $np \ge 5$ cât și $n(1-p) \ge 5$.

Următorul cod crează o funcție care calculează cele trei aproximări pentru funcția de repartiție binomială

Avem următoarea ilustratie grafică a diferitelor metode de aproximare

```
# Plot
R <- 1000
set.seed(10)
out \leftarrow appBNP(n = 100, p = .01, k = 2, R = 1000)
plot(1:R, out$prob.pois, type = "l", col = "#E69F00", xlab = "Numar repetari",
     main = expression(paste("Probabilitatile simulate: ",
                             n==100, ", ", p==0.01, sep="")),
     ylab = "Probabilitatea", ylim = c(.7, .97),
     btv = "n")
abline(h = out$trueval, col="black", lty=2, lwd=2)
lines(1:R, out$prob.zcc, lty = 1, col = "#56B4E9")
lines(1:R, out$prob.zncc, lty = 1, col = "gray80")
legend("bottomleft", c("Poisson", "Normala (cu factor corectie)",
                       "Normala (fara factor corectie)"),
       lty = c(1), col = c("#E69F00", "#56B4E9", "gray80"),
       bty = "n")
```

Probabilitatile simulate: n = 100, p = 0.01

Avem și următorul boxplot (discuție ce reprezintă un boxplot) care ne permite să evidențiem care dintre aproximări este mai bună pentru valorile selectate

```
# n = 200
set.seed(10)
out \leftarrow appBNP(n = 100, p = .01, k = 2, R = 1000)
boxplot(out$prob.pois, boxwex = 0.25, xlim = c(0.5, 1.5),
        col = "#E69F00",
        main = expression(paste("Aproximarea Binomialei: ",
                                n==100, ", ", p==0.01, sep="")),
        ylab = "Probablitatea",
       ylim = c(out$trueval - 0.1, out$trueval + 0.15),
       bty = "n")
boxplot(out$prob.zcc, boxwex = 0.25, at = 1:1 - 0.2, add = T,
        col = "#56B4E9")
boxplot(out$prob.zncc, boxwex = 0.25, at = 1:1 + 0.2, add = T,
        col = "gray80")
abline(h = out$trueval, col = "red", lty=2)
legend("topleft", c("Poisson", "Normala (cu factor corectie)",
                    "Normala (fara factor corectie)"),
       fill = c("#E69F00", "#56B4E9", "gray80"),
       bty = "n")
```

Aproximarea Binomialei: n = 100, p = 0.01

