Programming Assignment-6 (Lab-11&12) CSL2050 - Pattern Recognition and Machine Learning

Neural Network MNIST Classification

Task-0: Data Preparation

- Downloaded the MNIST dataset using torchvision.
- Split the data into train, test, and validation sets.
- Applied augmentations to images: RandomRotation, RandomCrop, ToTensor, and Normalize.

Data	Size
Training Data	36000
Validation Data	12000
Test Data	12000

Task-1: Data Visualization and DataLoader Creation

Plotted a few images from each class along with its labels.

• Created data loaders for the training, validation and testing datasets.

Task-2: 3-Layer MLP Model

- Implemented a 3-Layer MLP model using PyTorch, with all layers using Linear functions with relu activation in both cases.
- Printed the number of trainable parameters of the model.

Number of trainable parameters: 109386

Task-3: Model Training

- Trained the model for 5 epochs using Adam optimizer and CrossEntropyLoss as the loss function and with the learning rate of 0.001.
- Evaluated the model on the validation set after each epoch.
- Saved the best model and logged the accuracy and loss of the model on training and validation data at the end of each epoch.

Epoch	Training loss	Val. loss	Training Acc.	Val. Acc.
1/5	0.81	0.43	0.74	0.87
2/5	0.37	0.34	0.88	0.90
3/5	0.31	0.28	0.91	0.91
4/5	0.27	0.25	0.92	0.92
5/5	0.24	0.24	0.92	0.93

Calculated the test accuracy of the model.

Test Accuracy: 0.9331666666666667

Task-4: Visualization of Results

 Visualized correct and incorrect predictions with both actual and predicted labels on the data printed. I have used the seaborn library to visualize the prediction for training and validation data. I have used cmap 'Greens' and 'Reds' for the correct and incorrect labels predicted by the model, respectively. This trick makes it easy to visualize predictions accurately.

• Plotted Loss-Epoch and Accuracy-Epoch graphs for both training and validation data.

· Here is the classification report for both training and testing data-

Training Data \rightarrow

Digit	Precision	Recall	F1-score	Support
0	0.95	0.96	0.96	3554
1	0.98	0.96	0.97	4000
2	0.86	0.95	0.90	3594
3	0.93	0.89	0.91	3724

4	0.94	0.93	0.93	3514
5	0.94	0.91	0.92	3255
6	0.95	0.96	0.96	3561
7	0.92	0.95	0.93	3729
8	0.92	0.89	0.90	3524
9	0.91	0.89	0.90	3535
accuracy			0.93	36000
Macro avg	0.93	0.93	0.93	36000
Weighted avg	0.93	0.93	0.93	36000

Validation Data \rightarrow

Digit	Precision	Recall	F1-score	Support
0	0.96	0.97	0.97	1177
1	0.99	0.96	0.97	1322
2	0.87	0.96	0.91	1183
3	0.93	0.90	0.91	1199
4	0.92	0.94	0.93	1184
5	0.93	0.89	0.91	1099
6	0.95	0.96	0.96	1209
7	0.91	0.96	0.93	1273
8	0.92	0.88	0.90	1131
9	0.91	0.88	0.90	1223
accuracy			0.93	12000
Macro avg	0.93	0.93	0.93	12000
Weighted avg	0.93	0.93	0.93	12000

This classification report shows that -

- ➤ This model predicts the digits- 0,1 and 6 most accurately. These digits have very high precision, recall and f1-score.
- > This model has lowest precision, recall and f1-score in case of the digits 8 and 9.
- ➤ Digit 2 has low precision and f1-score.
- > Digit 3 has a low f1-score.
- > Digit 5 has a low f1-score.
- > Digit 7 has a low precision score.
- Plotted the confusion matrix that can further help us evaluate and visualize the model results.

Conclusion

This report presents the implementation of a 3-Layer MLP model for classifying the MNIST dataset. The model was trained and evaluated using various metrics, including accuracy and loss, to assess its performance. Visualizations were used to understand the model's behavior and performance over the training epochs. The results demonstrate the effectiveness of the model in accurately classifying handwritten digits from the MNIST dataset.