

Computer System Architecture

Dr Rahul NagpalComputer Science

Computer System Architecture

Dr. Rahul NagpalDepartment of Computer Science

Computer-System Architecture

- Most systems use a single general-purpose processor
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include: Slides Adapted from Operating System Concepts 9/e © Authors
 - Increased throughput
 - Economy of scale
 - Increased reliability graceful degradation or fault tolerance
 - Two types:
 - Asymmetric Multiprocessing each processor is assigned a specific task.
 - Symmetric Multiprocessing each processor performs all tasks

Symmetric Multiprocessing Architecture

A Dual Core Design

- Multi-chip and multicore
- Systems containing all chips
 - Chassis containing multiple separate systems

OPERATING SYSTEMS Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 Slides Adapted from Operating System Concepts 9/e © Authors
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
 - Some have distributed lock manager (DLM) to avoid conflicting operations

Clustered Systems

THANK YOU

Dr Rahul Nagpal

ting System Concepts 9/e © Authors

Computer Science

rahulnagpal@pes.edu