Assignment 2

HMTH407/HFM307 (Partial Differential Equations)

September 2022

1. (10 marks) Solve the Cauchy problem for the heat equation

$$u_t - ku_{xx} = 0, -\infty < x < \infty, t > 0$$

 $u(x, 0) = \phi(x),$

where

$$\phi(x) = \begin{cases} 5, & \text{if } |x| < 2, \\ 0, & \text{if } |x| > 2. \end{cases}$$

leaving your solution in terms of the error function.

2. (5 points) Use Fourier Transforms to solve the Cauchy problem for the heat equation

$$u_t - ku_{xx} = 0, -\infty < x < \infty, t > 0.$$

 $u(x, 0) = \phi(x).$

3. (10 points) Use Fourier Transforms to show that the solution of the Dirichlet problem for the Laplace equation in the upper-half plane

$$u_{xx} + u_{yy} = 0, \quad x \in \mathbb{R}, \ y > 0,$$

 $u(x, 0) = g(x).$

is given by

$$u(x,y) = \frac{y}{x} \int_{-\infty}^{\infty} \frac{f(\tau)}{(x-\tau)^2 + y^2} d\tau.$$

4. (10 points) Use the result from Question 4 to show that the solution of the Dirichlet problem for the Neumann problem for the Laplace equation

$$u_{xx} + u_{yy} = 0, \quad x \in \mathbb{R}, \quad y > 0,$$

 $u_y(x, 0) = f(x).$

is given by

$$u(x,y) = \int_{-\infty}^{\infty} g(x-\xi) \ln(y^2 + \xi^2) d\xi + C.$$

Hint: Use the transformation $v = u_y$ and reduce the problem to a Dirichlet problem.

HFM only

5. (10 points) Logan 4.1: 1.

HMTH only

 $6.~(10~{
m points})$ Use Laplace Transforms to solve

$$u_t = u_{xx}$$
, on $x > 0$, $t > 0$, $u(0,t) = a$, $u(x,0) = b$.

where a and b are constants.