Asymptotic Complexity & Notations

Asymptotic Analysis?

Asymptotic analysis is analyzing what happens to the run time (or other performance metric) as the input size n goes to infinity.

What is an asymptote?

• An asymptote is a **line** that a curve approaches, as it heads towards infinity:

Asymptotic analysis

- Asymptotic analysis of an algorithm refers to defining the mathematical boundary/framing of its run-time performance.
- is a mathematical representation of its complexity.
- Use only the <u>most significant terms</u> in the complexity of that algorithm and ignore least significant terms in the complexity of

that algorithm

Insertion
Sort

Asymptotic Complexity

- ◆ Running time of an algorithm as a function of input size *n* for large *n*.
- Expressed using only the highest-order term in the expression for the exact running time.
 - Describes behavior of function in the limit.

Written using Asymptotic Notations.

- Asymptotic notations: Θ , O, Ω
- Defined for functions over the natural numbers.

Example:
$$f(n) = \Theta(n^2)$$
.

Describes how f(n) grows in comparison to n^2 .

- Define a *set* of functions; in practice used to compare two function sizes.
- ◆ The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

$$O(g(n)) = \{f(n) :$$

 \exists positive constants c and $n_{0,}$
such that $\forall n \geq n_{0}$,
we have $0 \leq f(n) \leq cg(n)$

Intuitively: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

g(n) is an asymptotic upper bound for f(n).

Prove that 3n+2 = O(N)

Solution:

$$t(n) = 3n + 2 - 0$$
 $g(n) = n - 0$

To prove . 3n+2 \in O(n), the following condition is to be satisfied.

$$t(n) \leq c.g(n), n \geq n_o$$

i e), inthis case,
 $3n+2 \leq c.n, n \geq n_o$
Nence find $c.constant l$
 $n_o, n_o n_o n_o$

Assign
$$C=1$$
, $N_0=1$, then $n=1,2,3,...$
 $N=1 \implies 3(1)+2 \le 1.8 = 5 \le 1 \times \text{false}$, will be false for all 'n's

Assign $C=2$, $N_0=1$, then $N=1,2,3...$
 $N=1 \implies 3(1)+2 \le 2.1 = 5 \le 2 \times \text{false}$, will be false for all 'n's

Assign
$$C=3$$
, $N_0=1$, then $N=1,2,3$.
 $N=1 \implies 3(1)+2 \le 3$. $N=5 \le 3 \times \text{false}$, will be false for all N 's.

Assign C=4, no=1, than n=1,2,3...

$$n=1 \Rightarrow 3(1)+2 \leq 4.1 = 5 \leq 4 \times \text{false}.$$

 $n=2 \Rightarrow 3(2)+2 \leq 4.2 = 8 \leq 8 \checkmark$
 $n=3 \Rightarrow 3(3)+2 \leq 4.3 = 11 \leq 12 \checkmark$
 $n=4 \Rightarrow 3(4)+2 \leq 4.4 = 14 \leq 16 \checkmark$

y when
$$C = 4$$
, and $n_0 = 2$, the y when $C = 4$, and $n_0 = 2$, the y condition, $3n + 2 \le 4n$, for $n \ge 2$ y Sina the condition is satisfied, $3n + 2 \in O(n)$ proved.

O-notation

- define the <u>upper bound</u> of an algorithm in terms of Time Complexity.
- Big Oh notation always indicates the <u>maximum time</u>
 required by an algorithm for all input values

```
O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,
such that \forall n \geq n_0, we have 0 \leq f(n) \leq cg(n) \}
```

- $3n+2=O(n) /* 3n+2 \le 4n \text{ for } n \ge 2 */$
- $3n+3=O(n) /* 3n+3 \le 4n \text{ for } n \ge 3 */$
- \bullet 100n+6=O(n) /* 100n+6≤101n for n≥10 */
- $10n^2+4n+2=O(n^2)$ /* $10n^2+4n+2\le 11n^2$ for $n\ge 5$ */
- $6*2^n+n^2=O(2^n)$ /* $6*2^n+n^2 \le 7*2^n$ for $n \ge 4*/$

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$
 \exists positive constants c and n_{0} , such that $\forall n \geq n_{0}$,
we have $0 \leq cg(n) \leq f(n)\}$

Intuitively: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

 $\Theta(g(n)) \subset \Omega(g(n))$

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,$ such that $\forall n \geq n_0$, we have $0 \leq cg(n) \leq f(n)\}$

• $\sqrt{\mathbf{n}} = \Omega(\lg n)$.

Choose c and n_0 .

Prove that
$$3n+2 \in \Omega(n)$$
 $\pm (n) = 3n+2$ Solution: $\pm (n) = 3n+2$ Solution: $\pm (n) = n$.

To prove $3n+2 \in \Omega(n)$, we need to satisfy the following condition, $\pm (n) \geq cg(n)$; $n \geq n_0$.

Hence find C , constant $2nv$, nonnegative in legen,

```
Assign C=1, no=1, n=1,2,3....
Jesugn C=2, No=1, n=1,2,3...
n=1 ⇒ 3(1)+2≥2·1·= 5≥2~ Gwall by true
n=2 ⇒ 3(2)+2≥2·2 = 8:4~ Jor all value
```

Assign=C=3,
$$N_0=1$$
, $N=1,2,3$...

 $N=1\Rightarrow 3(1)+2\ge 9.1=5\ge 3$ will be time

 $N=2\Rightarrow 2(2)+2\ge 3.2=81\ge 6$ for all values

 $N=2\Rightarrow 2(2)+2\ge 3.2=81\ge 6$ for all values

 $N=1\Rightarrow 3(1)+2\ge 4.1=5\ge 4$

N=2=> 312)+2 =4.2=828 レ

$$n=3 \Rightarrow 3(3)+2 \geq 4.3 = 11 \geq 12 \times \text{ false}$$
.

When we assign $C=H$, we end up with a false condition, bunce, $C=B$ & $n_0=1$, well satisfy. The condition,

$$\frac{t(n) \geq (\cdot q(n))}{3n+2 \geq 3n}, n \geq 1$$
Hence
$$\frac{3n+2 \leq J_2(n)}{3n+2 \in J_2(n)}$$

Θ-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

$$\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,} \text{ such that } \forall n \geq n_0,$$

we have $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$

Intuitively: Set of all functions that have the same *rate of growth* as g(n).

g(n) is an asymptotically tight bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$

 $\Theta(g(n)) \subset O(g(n)).$

```
Prove that 3n+2 E O(n)
Solution:
            t(n) = 3n+2
            g(n) = n
 To prove 3n+2 E O(n), we need to satisfy
the following condition,
      Gg(n) ≤ t(n) ≤ c,g(n), for all n≥no
 Hence find c, constant & no, non-negative integer,
```


Assign
$$C_2 = 3$$
, $C_1 = 4$, $n_0 = 2$, $n = 1, 2, 3...$
 $3n \le 3n + 2 \le 4n$
 $n = 2$, $\Rightarrow 3(2) \le 3(2) + 2 \le 4(2) = 6 \le 8 \le 8$ (1944) $\frac{1}{2}$ (will $\frac{1}{2}$
 $n \ge 3$, $\Rightarrow 3(3) \le 3(3) + 2 \le 4(3) = 9 \le 11 \le 12$ (1844) $\Rightarrow 1$ (1

Assign
$$C_2 = 3$$
, $C_1 = 4$, $n_0 = 2$, $n = 1, 2, 3...$
 $3n \le 3n + 2 \le 4n$
 $n = 2$, $\Rightarrow 3(2) \le 3(2) + 2 \le 4(2) = 6 \le 8 \le 8$ (1944) $\frac{1}{2}$ (will $\frac{1}{2}$
 $n \ge 3$, $\Rightarrow 3(3) \le 3(3) + 2 \le 4(3) = 9 \le 11 \le 12$ (1844) $\Rightarrow 1$ (1

Show that
$$n(n-1) \in -\infty$$
 (n2).

$$t(n) = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}$$

$$g(n) = n^2.$$

To prove that $\frac{n^2 - n}{2} \in \mathcal{L}(n^2)$, the following wondition is to be satisfied.

$$t(n) > c \cdot g(n) \quad \text{for all } n > n_0.$$

i.e., In this case,
$$\frac{n^2 - n}{2} \leq c \cdot n^2.$$

Assign
$$\begin{bmatrix} c-\frac{1}{2} \end{bmatrix}$$

$$\frac{n^2}{2} - \frac{n}{2} \cdot \nearrow c \cdot n^2$$

$$\frac{1}{2} - \frac{1}{2} \nearrow \frac{1}{2} \cdot li \rangle$$

$$0 \not = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \cdot li \rangle$$

$$- \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \cdot li \rangle$$

$$\frac{4^{2}-\frac{\chi^{2}}{2}}{12} > \frac{1}{2} \times 2$$

$$\frac{12}{2} - \frac{10}{2} > \frac{1}{2} \times 10$$
False fuls will be false for all $\frac{100}{2} - \frac{10}{2} > 50 - \frac{10}{2} > 50 - \frac{10}{2} > \frac{1}{2} \times 10$

So, Assign
$$C = \frac{1}{4}$$
.

$$\frac{n^2}{2} - \frac{n}{2} > C \cdot n^2$$

$$\frac{1}{2} - \frac{1}{2} > \frac{1}{4} (1)$$

$$0 > \frac{1}{4} \qquad Palse.$$

$$\frac{(100)^{2}}{2} - \frac{100}{2} > \frac{1}{4} \times \frac{25}{100} \times 100$$

$$\frac{10000}{2} - 50 > 2500$$

$$5000 - 50 > 2500$$

$$\frac{4950}{2} > 2500$$
Thus, we for all values of notice.

Thus we assign,
$$C = \frac{1}{4}$$
, $N_0 = 2$.

$$\frac{N^{\frac{1}{2}} - \frac{1}{2}}{2} > \frac{1}{4}N^{2}$$

$$\Rightarrow \frac{n(n-1)}{2} > \frac{1}{4}N^{2}$$
, for $n > 2$

$$\frac{n(n-1)}{2} \in A(n^{2})$$

$$\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0,$$

such that $\forall n \geq n_0, \quad 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$

$$1. 3n+2 = \Theta(n)$$

For
$$n \ge 2$$
, $c1 = 3$ and $c2 = 4$

2.10
$$n^2 + 4n + 2 > = \Theta(n^2)$$

$$10n^2 + 4n + 2 > = 10n^2$$

$$10n^2 + 4n + 2 < = 11n^2$$

Relations Between Θ , O, Ω

Relations Between Θ , O, Ω

Theorem: For any two functions g(n) and f(n),

$$f(n) = \Theta(g(n))$$
 iff

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$.

- i.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

o-notation

For a given function g(n), the set little-o:

$$o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \}$$

 $\forall n \geq n_0, \text{ we have } 0 \leq f(n) < cg(n)\}.$

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} \left[f(n) / g(n) \right] = 0$$

$$2n = O(n)$$
 but $2n \neq O(qn)$
 $2n < C \cdot n + n > n_0$ for some C
 $+ C > 0$
if $C = 1$
 $2n < n -)$ Not true
 $b(n) = o(g(n))$ (condition must be satisfied.

 $2n = o(n^2)$ 2n < cn + c70 + n >, No. 2 < c.n [/byn] 2 (1, n[n /3] 2 < 0.1*2 + n>, no Value must be

Little ω-notation

Let f(n) and g(n) be functions that map positive integers to positive real numbers

```
(g(n)) = \{f(n): \underline{\forall c > 0}, \exists n_0 > 0 \text{ such that}
 \forall n \ge n_0, \text{ we have } 0 \le c.f(n) < g(n)\}.
```

iff
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$
.

 $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

 $\lim_{n\to\infty} \frac{2n}{n^2} = \frac{2}{n} = \frac{2}{n} = 0$.

 $\lim_{n\to\infty} \frac{2n}{n^2} = 2 = 0$.

 $\lim_{n\to\infty} \frac{2$

g(n) = log n +(n) = n lim n log & n-10gn - 2n = 2x00 line 2n n -) 00 + (n) = w g(n) n = zv log(n) Bigon - O Big Omega- SZ Big Theta- O small oh - 0 Small Omega- Co

While calculating lim tin) if the we get in Indeterminant form, like so or 0, then apply L'Hapitalis Rule and substitute limits.

L'Hopitala Rule:

 $\frac{dsn}{n\rightarrow\infty} \frac{t(n)}{g(n)} = \frac{dsm}{n\rightarrow\infty} \frac{t'(n)}{g'(n)}$

$$\frac{1}{2} n(n-1) \text{ and } n^{2}$$

$$t(n) = \frac{1}{2} n (n-1)$$

$$g(n) = n^{2}.$$

$$\lim_{n \to \infty} \frac{\frac{1}{2} n(n-1)}{n^{2}} = \frac{1}{2} \lim_{n \to \infty} \frac{n^{2} - n}{n^{2}}$$

$$= \frac{1}{2} \lim_{n \to \infty} 1 - \frac{1}{n} = \frac{1}{2} \left[1 - \frac{1}{\infty}\right]$$

$$= \frac{1}{2} (i) = \frac{1}{2} > 0$$

$$= \frac{1}{2} (n-1) \in \Theta(n^{2}).$$

logen & Jn - - t(n)= dogin $\frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\left(\frac{1}{n}\right)}{1}$ J.m = yen. = = = = 0

Common Time Complexities

