I A R E

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

Examinations Control Office

Examination	B TECH VI SEMESTER END EXAMINATIONS REGULAR JUNE 2025 REG UG20				
Month & Year	1-Jun	Date	20/06/2025		
Course Name	DATA MINING AND KNOWLEDGE DICO	VERY			
Course Code	ACIC01	E-Code	7871		

Instructions to Evaluators

- ❖ Evaluators should spend at least 3-5 minutes on one answer booklet during the evaluation.
- Evaluators should cross check that marks are allotted for all the attempted questions.
- ❖ The marks should be assigned fairly according to the mark distribution specified in the scheme of evaluation.
- ❖ For questions that were attempted incorrectly, evaluators are required to award zero marks.
- ❖ The evaluator must give a proper justification in case of any mistakes identified in the marks provided.

START WRITING FROM HERE

Q.No.									
76) Ansê	To perform a k-means technique to from clusters for given data.								
	We he	We have to used Euclidean distance as							
		bosics to							
		3 3	4 -		-				
		cuclidean	distance	formulae 8					
		$x_1 = \sqrt{(x_1 + x_2)}$	1-22)2+(41-4	7)2					
		As (2,10), An			5,8), B	(9,5),			
	E	3(64), (1	(1,2), C21	(4,9).					
	Initia	Centers	are A	1, B, C1					
	lound-		<i>C</i> 1						
	Points	Intral			(1)	News			
	Λ / .		B.(5. 8)	G(4,2)	Clusters	Cluster			
	A1 (2,10)	0	3.605	8.062	3				
	A2(2,5)	5.0	4.242	3.162	3				
	A3(8,4)	8.4.85	5.0	7. 280	2				
	B. (5.8)	3,605	0	7. 211	2				
	B2 (7,5)	7.071	3.605	6.708	2				
	B3(6,4)	7-211	4.123	5.385	2				
	C, (9, 2)	8.062	7.211	0	3				
	C2 (4,9)	2. 236	1.414	7.615	2				

Q.No. ?) Three cluster centers after first rounce Cluster 1 elements = As Cluster center = (2,10) Cluster 2 elements = A3, B1, B2, B3, C2 Claster center= (8+5+9+6+4, 4+8+5+4+9) =(6,6)Cluster 3 elements = Az, C Cluster center= (2+1,5+9)= (1.5.7) Cluster centers after the first round are (2,10), (6,6), (1.5,7)

Round 2

Poruls	Cluster Centers		Old	New	
	(2,10)	(6.6)	(1.5,7)	Cluster	Cluster
A1(2,10)	0	5.656	3.041	4	4
A2(2,5)	5.0	4.123	2.061	3	3
As(8,1)	8.485	2.828	7.158	2	2
B(5,8)	3.606	2.236	3.640	2	2
Br(7,5)	7.071	1.414	5.852	2	2
B3(6,A)	7.211	2.0	5.408	2	2
C.(1,2)	8.062	6.403	5.024	3	3
C2(4,9)	2.236	3.603	3.201	2	2

Since Clusters of round 2 and round's don't notch Redo the centers and check again.

Cluster 1 center =
$$(4+2, 10+9) = (3, 9.5)$$

1

Q.No.

Round 3

Bints	Cluster Centers			014	Nec
MINIS	(3, 9.5)	(65, 5, 25)	(1.5,7)	Cluster	Chest
A(2,10)	1.118	6.543	3.041	1	1
Az (2.5)	4.609	4.506	2.061	3	3
Az(8,4)	7.438	1.952	7.158	2	2
By (5,8)		3.132	3.640	2	
B2(7,5)	6.020	0.55	5.852	2	2
B3(6, a)	6.264	1.346	5.408	12	2
C(1,2)	7.762	6.388	5.024	13	3
G(1.9)	1-118	4.506	3.201	1	1_

New Cluster does not match old so repea

Round 3

pote	Claster Centers			018	New
101wt 3	(3-67,9)	(7, 4.33)	(1.5.7)	Claster	Chester
4,(2,10)	1.946	7.559	3.641	1	1
Az(2,5)	4.334	5044	2.061	3	3
Az (8,4)	6.614	1.053	7.158	2	2
Bil 5.8)	1.664	4.199	3.640	1	1
B2(7,5)	5.204	0.67	5.852	2	2
Bs(6,4)	5.516	1.053	5.4-68	2	2
C.(1,2)	7.491	6.436	5.024	3	3
C.(1.9)	0.33	5.550	3.201	1	1

Since Both Old and New Cluster ore

final Clusters over

Cluster 1 = A, (2, 10), B, (5,8), C2 (4,9)

Cluster 2 = Az(8.4), & B2(7,5), B3(6,4)

Cluster 3 = A2 (2,5), C(1,2)

Q.No. To do do mining a cluster standards

Ans for a collect collection objects grouped together which have similar characterist Steps to form a clusters in data. 1) Step 1 is the first step where you have to arronge the date in on order. 2) Second step is to deside the process to form Elusters. Clasters can be formed by many types. Some of the methods are L-means, k-Medoids, Data density seta 3) After selecting the process/method for clustering smooth the data.
Through this step one can servore all the unwonted date present in the raw date.

Q.No. a) To apply the process here for exemple timeons ductoringo In this clustering we cluster the date based on partationing the date in equi-distance way.

We had centers of each cluster and check if all the elements arranged in that cluster are closer to that cluster center or not. for cluster analysis we use different types of data each time to analyze the This all depends on the type of the cluster. Some elements used ares-Partationing method: Cluster are formed based on distance. eg: k-means Grap Good method: take check at what Density Method : tale check the range/width of the cluster.

Q.No. Multi level /Highearchy method: he divide cluster based on levels. Given datas-2000, 3000, 4000, 6000, 10000 Mean for given do los = 2000 + 3000 + 4000 + 6000 + 10000 /5 = 500n SD = 15000 - 2000 1 = 3000, (5000 - 3000) = 2000 15000-40001=1000, 15000-600d=1000, 10000 5000 = 5000 %. Sum of SDs = 3000 + 2000 + 1000 + 1000 + 5000 = 12000 MAD 2 Sum of 8D/ Number of elements.

MAD = 12000/5
MAD = 12000/5

2- Score normalizations.

 $2' = \sqrt{[(5000 - 2000)^2 + (5000 - 3000)^2 + (5000 - 4000)^2 + (5000 - 10000)^2)/5]}$

= V[30002+20002+10002+10062+50002/5]

= 5 12000° \$5

= 128800000

2' = 5366.56

MPn-Max normalizations

Hen-Hori to Max-Hin/Nean

x'= 10000 - 2000 / 5000

x' = 8000/5000

2'= 1.6

Desmal See Scaling for Pucome attribute is

1.6 = 0.16.

20) Auss

Data Cleanings

In Dato Mining Data Cleaning process
plays an important role before organizing
the data.

This process helps us in many many ways and makes the dato robust.

Date Cleaning is the process where all the impurities present in the dataset

Impurities in data like missing values. Same values, etc are obt solved in this

Process.
These impusities colcouse the data set to mal hunchen. To avoid this companies always clean the data before store storing the data into their servers.

If there are missing values in the dataset companies simply delete the row from the dataset.

To Avoid repeation companies use unique attributes by which they can

	prevent some de	ata from	e entering	the
	By doing this error cashile fet	companies ling date	con ou	perso
ı	of and deligation	C. J	00 0 100	
ŀ	If some dato is	rounce of	3937600 000	(1) S
1	get confuised. So	compenie	3 provide	onig
1	ids for each			
1	their product to	20010	over copping	04
ŀ	data.			
-	. 1			
	In doing this way	compon	res can 3	ove
	In doing this way	compon soul spe	res con 3	stori
	In doing this way both cost and date	compan soul spe	res con 3	sbori
	In doing this way both cost and date	compon soul spe	res can 3	stori
	1	compan soul spe	res con 3	stori
	1	compon sour spe	res can 3	ston
	1	compan soul spe	res con 3	stori
	1	compan soul spe	res can 3	sbori
	1	compan soul spe	res con 3	ston
	1	compan soul spe	res can s	sbort
	1	compan soul spe	res con 3	ston
	1	compan soul spe	res can s	ston
	1	compan soul spe	res can s	stori

			ALION FOR LIBERT	
Q.No.				
56) Aws-	To cons	fruct c	on FAtree	for the
	R a			,
	Gruens-	e .		1 - 0
	Plin	imum s	upport cou	ent =3
	Rous	ection IDA	Items	
		P1	SE, K, M, N.	0,48
		P2	{D,E, K, N,C), V}
		73	lA.E.K,M	
		P4	EC, K, M, U,	
		15	LCE, I, Co	0.01
		101	Prosty	
	Items	Count	rhonty	
	C	2		. 1
	D	1		-
	E-	4	2	
	1	1		Suce him suppor
	K-	5	2 1	sount =3
	M -	3	34	
	N	2		
	0 -	4	23	
	1 4 -	3	345	

* K, E, O, M,	
Comblinations	
KEP,M, Y	
K, E, O, Y	
K,E, M	
K, M, Y	
K, E, O, O	
Tree :-	
(Null)	
	K-1, 2, 3, 4, 5
(K)-(M)	(P) E-1,2,3,4
(6)	0-1,2,3
T. M	M-1
	y - 4
000	Y-1
	M-1
	M-1
	4-1
Checking:	0 - 1
K=5, E=4, 0=3+1	=4, M=1711123, Y=1+1+1=3
It mataches to	
This is the final	

Q.No. Decision trees is a tree where all the pronches of the tree are present. This is a tree generated by tooking tuples. Verious tuples are trained to generate a decision tree. Steps to generate a decision tree ere: Steps: To arrange all the tuples in an Step 2: To break down each tuple and cosite the count of each element. Steps: To choose either a top down or a bottom up whethod to construct

Q.No. OLAP is the Online Analytical Processing. 30) This helps us to owing when out analyze the dato in a dato worehouse easig. TRB is used for large sets of deta. It is used to store date in data warehouse. There are defferent types of OLAD :-D'MOLAP: This is used to analyze date individual This uses multiplevel approach to analyze data. This uses relations in data base It does not care about levels of only cares the relation for the element. 3) HOLAP: This is a hyborid.

This is best of both worlds of uses both ROLAP and MOLAP to analyze data.

15/34

Q.No. MOLAP 3 wed when the data is vertical and linear. FOLAP is used in doms and to ston doto in servers and analyze them. HOLAP is used when the doto conforms vertical levels and also gele hous.

Aug.

I would employee a the clustering the technique as there would be more number of patients in as health core organization.

hle con form clusters like cordio petients, ent patients, etc.

By this the allocation of doctors and staff asould be easy. It would also be easy to study a petients case tile on all the related petients who had some symptoms.

This would be easy for organizations to morntoin all the required medicines for each patient.

A predestere Model 3 like a an ER Deagram where you would predict the regular response of a patent.

Patient
-odmission
10
- Doctor
assigned
- desease

Doctor
- Specification
- 19st of
perticuts

Administration
- Patient name
- Patient phone
- Patient
desease type

Q.No. Three scheme popularly used for modelling 35> a doto en data coorehouses ares-1) Role down & extenestends the data set down woods. It can add more columns and reduce the columns from bottom 2) Role Up: Et can decrease the columns from 3) Dice: It forms equal rows on columns on each side.

Q.No. 10) Anss Many types of ettributes can be found in a data set. Some of the 1) Primary attributes: -Pts a unique ID used to identify on element. 2) Required effortules It is an ottitute which is required to be filled to enter your do 3) Temperory attabutes. This is on attribute which holds a temperary volue until you decide the value of that element to provent any errors from occurry.

Q.No.	

Q.No.	
	,
	1

22/34

Q.No.		
	1	
		-
		,
		1
		+
		1
		1

Q.No.	
-	
E .	

Q.No.	

Q.No.	

Q.No.	
	·

Q.No.	

Q.No.	

Q.No.	

Q.No.	

Q.No.	

Q.No.	

ROUGH WORK

Content written here will not be considered for valuation