Advanced Discrete Event Simulation in R

TA Trikalinos (joint work with F Alarid-Escudero, Y Sereda, SA Chrysanthopoulou)

CISNET, 28/05/2025

Disclosures

- No financial or other conflicts
- Supported by the NCI CISNET Incubator (bladder, all) and CISNET programs (colorectal - FAE)
- Trikalinos and Sereda developed and maintain the nhppp R package
- Half day course at SMDM 2025 Take it, it's all fun and games.

Outline

- Discrete event simulation as a convolution of point processes
- Non-homogeneous Poisson point processes (NHPPPs)
- Sampling from NHPPPs
- Demonstration

Outline

- Discrete event simulation as a convolution of point processes
 - Non-homogeneous Poisson point processes (NHPPPs)
 - Sampling from NHPPPs
 - Demonstration

Background

Discrete-time simulation samples events in each cycle

Background

Discrete-event simulation works with event-generating processes

Background

Discrete-event simulation works with event-generating processes

A typology of event-generating processes

The building blocks of a DES

Events that happen exactly once

Events that happen 0 or 1 times

Events that happen 0, 1, ... times

Graphical notation: Chained events (in series)

For chained processes, the next one starts once the preceding one realizes an event. imagine simulating the first row first, etc.

Graphical notation: Competing events (parallel)

Competing event processes run parallel to each other.

A simple DES model

All shall die.

Some may develop a cancer.

Some cancers will

- be clinically diagnosed, or
- cause deaths

Outline

- Discrete event simulation as a convolution of point processes
- Non-homogeneous Poisson point processes (NHPPPs)
 - Sampling from NHPPPs
 - Demo

The building block

• A scheme that generates a sequence of events (points) over a time interval

- A scheme that generates a sequence of events (points) over time
- An instantiation (trajectory)
 of the process is a
 sequence of 0, 1 or more
 events in the interval, but
 none outside it

- A scheme that generates a sequence of events (points) over time
- Each instantiation is random

- A scheme that generates a sequence of events (points) over time
- Each instantiation is random

- A scheme that generates a sequence of events (points) over time
- Each instantiation is random

- The *arrival times* (times of the events) are random
- They start from whenever we zeroed the clock

- The interarrival times are the lengths of the interarrival time intervals
- The arrival times and interarrival times give the same information

(... thus, the interarrival times are random)

Hereon, we refer only to arrival times

Modeling non-repeatable events

If the point process models a nonrepeatable event, we care only about the earliest event.
Will it occur in the interval, and, and if so, when?

Example: model a cause of death

Modeling repeatable events

If the point process models a repeatable event, we care are about all events.

Will any occur in the interval, and, and if so, when?

Example: model the emergence of tumors, or the start of symptomatic episodes

The Poisson point process

- There are many types of point processes
- We will consider only a one type the Poisson point process

The Poisson point process

If for a sequence of events

Number of events between t and $t + \Delta t$

 $o(\Delta t)$ becomes 0 **very fast**

$$\Pr[N(t, t + \Delta t) = 0] = 1 - \lambda \Delta t + o(\Delta t),$$

$$\Pr[N(t, t + \Delta t) = 1] = \lambda \Delta t + o(\Delta t),$$

$$\Pr[N(t, t + \Delta t) > 1] = o(\Delta t), \text{ and}$$

$$N(t, t + \Delta t) \perp N(0, t),$$

for some $\lambda > 0$ and as $\Delta t \to 0$, then that sequence is a Poisson point process

If for a sequence of events

$$\Pr[N(t, t + \Delta t) = 0] = 1 - \lambda \Delta t$$

$$\Pr[N(t, t + \Delta t) = 1] = \lambda \Delta t$$

$$\Pr[N(t, t + \Delta t) > 1] = \mathbf{0} \quad \text{and}$$

$$N(t, t + \Delta t) \perp N(0, t),$$

for some $\lambda > 0$ and as $\Delta t \to 0$, then that sequence is a Poisson point process

Over a vanishingly small interval

• you may get 1 event with probability $\lambda \Delta t$...

If for a sequence of events

$$\Pr[N(t, t + \Delta t) = 0] = 1 - \lambda \Delta t$$
 $\Pr[N(t, t + \Delta t) = 1] = \lambda \Delta t$
 $\Pr[N(t, t + \Delta t) > 1] = \mathbf{0}$ and $N(t, t + \Delta t) \perp N(0, t)$,

for some $\lambda > 0$ and as $\Delta t \to 0$, then that sequence is a Poisson point process

Over a vanishingly small interval

- you may get 1 event with probability $\lambda \Delta t$...
- otherwise, you'll get 0 events;

If for a sequence of events

$$\Pr[N(t, t + \Delta t) = 0] = 1 - \lambda \Delta t$$
 $\Pr[N(t, t + \Delta t) = 1] = \lambda \Delta t$
 $\Pr[N(t, t + \Delta t) = 1] = 0$ and $N(t, t + \Delta t) \perp N(0, t)$,

for some $\lambda > 0$ and as $\Delta t \to 0$, then that sequence is a Poisson point process

Over a vanishingly small interval

- you may get 1 event with probability $\lambda \Delta t$...
- otherwise, you'll get 0 events;
- you'll never get many concurrent events

If for a sequence of events

$$\Pr[N(t, t + \Delta t) = 0] = 1 - \lambda \Delta t$$

$$\Pr[N(t, t + \Delta t) = 1] = \lambda \Delta t$$

$$\Pr[N(t, t + \Delta t) > 1] = \mathbf{0} \quad \text{and}$$

$$N(t, t + \Delta t) \perp \!\!\! \perp N(0, t),$$

for some $\lambda > 0$ and as $\Delta t \to 0$, then that sequence is a Poisson point process

Over a vanishingly small interval

- you may get 1 event with probability $\lambda \Delta t$...
- otherwise, you'll get 0 events;
- you'll never get many concurrent events
- and it does not matter what happened in the past

The intensity function λ in the example

Event times for five instantiations

The intensity function λ in the example

As the number of instantiations increases, the histogram approaches the shape of the intensity function $\lambda(t)$.

The intensity function governs event occurrence.

The intensity function is scaled by the expected number of events in the interval to be on the same plot

Time-homogeneous and non-homogeneous

- $\lambda(t)=$ constant: the Poisson point process (PPP) is called time-homogeneous
- Otherwise, it is called a non-homogeneous PPP (NHPPP)

All events vs earliest event in the example

All events, 10K instantiations

Earliest event, 10K instantiations

The histogram of the earliest event times does not approach the shape of the intensity function

All events vs earliest event, different example

All events, 100K instantiations

$\lambda(t) = \begin{cases} e^{-1+t/2}, & t \in [1,5] \\ 0, & \text{elsewhere} \end{cases}$ 0.00.00.1 2 3 4 5 time

Earliest event, 100K instantiations

The three important functions

• Intensity function $\lambda(t)$

- Always available
- Sufficient to sample from any NHPPP efficiently and accurately

- Cumulative intensity function $\Lambda(t) = \int_0^t \lambda(s) \, \mathrm{d}s$
- Inverse cumulative intensity function $\Lambda^{-1}(z)$, defined so that $\Lambda^{-1}(\Lambda(t)) = t$
- Not always available
- If available, you accelerate sampling by several times

Intensity and cumulative intensity functions

Intensity function $\lambda(t)$

5-4-2-1-0-0 1 2 3 4 5

Cumulative intensity function $\Lambda(t)$

Cumulative intensity function and its inverse

Cumulative intensity function $\Lambda(t)$

Inverse cumulative intensity function $\Lambda^{-1}(z)$

Duality with the Poisson counting process

Poisson counting process

 N_0, N_1, \dots Cumulative number events over time

Outline

- Discrete event simulation as a convolution of point processes
- Non-homogeneous Poisson point processes (NHPPPs)
- Sampling from NHPPPs
 - Demonstration

Three important properties for sampling

Memorylessness

You can ignore what happens outside your interval

Composability

You can merge two NHPPPs with intensities λ_1 , λ_2 to get a new NHPPP with intensity $\lambda_1 + \lambda_2$.

Transmutability (time warping)

Any one-to-one transformation of the intensity function results in a unique NHPPP in the transformed time axis

1. Sampling from a PPP is easy

Constant intensity function (homogeneous PPP)

Sampling from a constant intensity function is easy.

The interarrival times have an exponential distribution.

2. Memorylessness: Sampling from piecewise constant NHPPP is peasy

Piecewise constant intensity function (NHPPP)

- Look at each piecewise constant interval separately
- In each interval you have a constant intensity (easy)
- Return the union of all events

Sampling from piecewise constant intensities is easy (memorylessness)

3. Composability: Sampling NHPPPs when you know $\lambda(t)$ reduces to sampling from a PPP (#1) or piecewise constant NHPPP (#2)*

You cannot get achieve something difficult with zero effort.

You will put in some work.

Other terms and conditions may apply.

^{*} You still need to find a constant or piecewise constant majorizer $\lambda_*(t)$, whose choice determines your efficiency .

Composability

The general case is more challenging

• Find a majorizer function λ_* that's easy to sample

Majorizer: any function that is "taller" that λ

$$\lambda_* \geq \lambda$$

(and has the same support as λ)

• Find a majorizer function λ_* that's easy to sample

- Find a majorizer function λ_* that's easy to sample
- Draw events $\{Z_{*1}, \dots\}$ from λ_*

- Find a majorizer function λ_* that's easy to sample
- Draw events $\{Z_1, ...\}$ from λ_*
- Accept event i with probability $\frac{\lambda(Z_i)}{\lambda_*(Z_i)}$

- Find a majorizer function λ_* that's easy to sample
- Draw events $\{Z_{*1}, ...\}$ from λ_*
- Accept event i with probability $\frac{\lambda(Z_i)}{\lambda_*(Z_i)}$
- The set of accepted points is an instantiation from $\lambda(t)$

(composability)

Thinning, efficiency

- Thinning efficiency: average fraction of proposals that are accepted
- Depends on the choice of λ_*
- The smaller the blue area, the better the efficiency

Thinning, efficiency

- Thinning efficiency: average fraction of proposals that are accepted
- Depends on the choice of λ_*
- The smaller the blue area, the better the efficiency

Thinning, efficiency

- Thinning efficiency: average fraction of proposals that are accepted
- Depends on the choice of λ_*
- The smaller the blue area, the better the efficiency

4. Transmutability of time: Sampling NHPPPs when you know Λ , Λ^{-1} reduces to sampling from a PPP with rate one (#1) *

* You will need to do some maths to get Λ , Λ^{-1} . It may not be practical to do so, or even possible. In such a case, back to (#3). Even if you have Λ , you may not have a cheap Λ^{-1} .

You cannot achieve something difficult with zero effort. You will put in some work. Other terms and conditions may apply.

Transmutability

Transmutability

A nice u is Λ (and then u^{-1} is Λ^{-1})

Change of variable from s to u

$$\Lambda(t) = \int_{a}^{t} \lambda(s) \, ds = \int_{u(a)}^{u(t)} \frac{\lambda(s)}{u'(s)} \, du$$

Pick u so that $u' = \lambda$. Any antiderivative of λ works. Using $u := \Lambda$, transforms time to scale where the process has constant rate 1,

$$\int_{\Lambda(a)}^{\Lambda(t)} \frac{\lambda(s)}{\Lambda'(s)} du = \int_{\Lambda(a)}^{\Lambda(t)} 1 du.$$

This is a sketch of the formal proof – omitting the rigorous bits

Transmutability

1. Find the start and stop of the transformed time interval

$$au_{start} = \Lambda(t_{start}) ext{ and } au_{stop} = \Lambda(t_{stop})$$

2. Sample transformed times from a PPP with constant rate one

3. Back-transform the instantiation to the original time scale

$$\{\Lambda^{-1}\left(au_{(1)}\right),\dots\}$$

 Λ^{-1}

More in these works...

PLOS ONE

RESEARCH ARTICLE

The nhppp package for simulating nonhomogeneous Poisson point processes in R

Thomas A. Trikalinos 1,2,3*, Yuliia Sereda

Original Research Article

A Fast Nonparametric Sampling Method for Time to Event in Individual-Level Simulation **Models**

David U. Garibay-Treviño, Hawre Jalal, and Fernando Alarid-Escudero

Medical Decision Making 2025, Vol. 45(2) 205–213 © The Author(s) 2025

sagepub.com/journals-permissions DOI: 10.1177/0272989X241308768 journals.sagepub.com/home/mdm

Outline

- Discrete event simulation as a convolution of point processes
- Non-homogeneous Poisson point processes (NHPPPs)
- Sampling from NHPPPs

Demonstration

nhppp from CRAN

```
    Fast vectorized

  implementations of the
                                                       an_intensity_fun <- function(t) { ... }</pre>
                                                        majorizer_matrix <- matrix( ... )</pre>
  presented algorithms
                                                    3
               Define a vectorized \lambda and piecewise

    Wrapper 1

                                                    4
                                                        vdraw(
                constant majorizer \lambda_*
                                                          lambda = an_intensity_function,
                                                          lambda_maj_matrix = majorizer_matrix,
                                                    6
                Simulation window varies by person,
                                                          t_min = rep(40, N),
                time on the simulation clock
                                                          t_{max} = 40 + runif(N, 1, 60),
                                                    8
                                                          atmost1 = TRUE,
                                                    9
                Select black, red, or blue process
                                                   10
                                                          atleast1 = TRUE
                                                   11
```

nhppp simulates correctly

Fig 2. Theoretical (red) and empirical (black) cumulative distribution functions for event counts in the illustration example with nhppp functions. The unsigned area between the theoretical and empirical curves equals the Wasserstein-1 distance in Table 5.

PLoS ONE 2024

...but other packages do not

Fig 3. Theoretical (red) and empirical (black) cumulative distribution functions for event counts in the illustration example with the R packages in Table 3. The unsigned area between the theoretical and empirical curves equals the Wasserstein-1 distance in Table 5.

PLoS ONE 2024

... and are slower

Fig 7. Computation times when drawing the first event in interval.

See vignettes at package site

https://bladder-ca.github.io/nhppp/index.html

All materials on a public GitHub repository

All expository materials and example code are available at

https://github.com/ttrikalin/des-R-course

(choose the 2025_cisnet release for today's talk)

Join us at the 47th Annual SMDM in Michigan

Meetings/Events ▼

Networking

Education/Career Tools

UPCOMING MEETINGS / SMDM 47TH ANNUAL MEETING

SMDM 47th Annual Meeting

June 15 - June 18, 2025

University of Michigan, Ann Arbor, Michigan, USA

Meeting Co-Chairs:

David W. Hutton, PhD Brian J. Zikmund-Fisher, PhD

Short Courses

AM Short Courses, In-Person

15 June 2025; 9:00 AM - 12:30 PM (local time)

Act the expert! Improvisational games to boost your scientific presentation skills

Brian Zikmund-Fisher, PhD Brittany Batell, MPH, MSW, CHES Daniel Matlock, MD, MPH

An Introduction to Research Prioritization and Study Design Using Value of Information Analysis

Fernando Alarid-Escudero, PhD Jeremy Goldhaber-Fiebert, PhD Hawre Jalal, PhD

Advanced Discrete - Event Simulations in R

Thomas A. Trikalinos, MD Fernando Alarid-Escudero, PhD Yuliia Sereda, PhD Stavroula A. Chrysanthopoulou, PhD

Several Diagrams, Target Trial Emulation and Causal Inference for Modeling and Medical Decision Making

Uwe Siebert, MD, MPH, MSc, ScD

Introduction to Reproducible Programming and Project Management

Jacob Jameson, MS Madison Coots, MS