算法基础第二次作业

肖桐 PB18000037

2020年10月13日

解 1. 若题目要求排序结果为升序排列,则对应的堆排序就要建立最大堆.

(1). 此时若初始数组 A 为升序排列,实际上对建堆过程没有特殊贡献,建堆复杂度仍然为 O(n). 接着进行堆排序所需的复杂度为 $O(n \lg n)$.

因此总的复杂度为 $O(n \lg n)$.

(2). 若初始数组 A 为降序排列,则此时建堆过程复杂度为 O(1),即相当于最大堆已经建好. 接下来进行堆排序的复杂度仍然为 $O(n \lg n)$.

因此总的复杂度仍然为 $O(n \lg n)$.

若题目要求排序结果为降序排列, 对应的堆排序需要建立最小堆. 则当 A 为升序排列时建堆时间为 O(1), A 降序时建堆时间为 O(n), 但总的排序复杂度都为 $O(n \lg n)$.

解 2. (a). 因为 $0 \le \alpha \le \frac{1}{2}$, 因此 $\alpha < 1 - \alpha$. 故每次划分比例为 α 的部分会最早到达叶节点. 每次划分比例为 $1 - \alpha$ 的部分会最晚到达叶节点

假设叶节点最小深度为 h_1 , 因为叶节点节点个数为 1, 则令 $n\alpha^{h_1}=1$, 两边取对数即可解得: $h_1=-rac{\lg n}{\lg \alpha}$

设叶节点最大深度为 h_2 , 则同理可令 $n(1-\alpha)^{h_2}=1$, 两边取对数可解得: $h_2=-\frac{\lg n}{\lg(1-\alpha)}$

(b). 假设该随机数组有 n 个元素,每个元素作为主元的概率都相等,都为 $\frac{1}{n}$. 假设这 n 个元素升序排序如下:

易知选取 αn 点或 $(1-\alpha)n$ 点作为主元进行切分则满足切分比为 $(1-\alpha):\alpha$, 若要比 $(1-\alpha):\alpha$ 更平均, 则选取的主元应该在 αn 和 $(1-\alpha)n$ 之间, 共有 $(1-2\alpha)n$ 个点.

故比 $(1-\alpha)$: α 更平均的概率为: $(1-2\alpha)n \cdot \frac{1}{n} = 1-2\alpha$