PAT-NO:

JP405133831A

DOCUMENT-IDENTIFIER: JP 05133831 A

TITLE:

TIRE AIR PRESSURE DETECTION DEVICE

PUBN-DATE:May 28, 1993 **INVENTOR-INFORMATION:**

NAME

TAGUCHI, TAKEYASU NAITO, TOSHIHARU TOKUDA, HIROMI

INT-CL (IPC):

G01L017/00, B60C023/00

US-CL-CURRENT: 73/146.3

ABSTRACT:

PURPOSE: To enable a tire pressure to be detected indirectly and improve its detection accuracy.

CONSTITUTION: A title item is provided with speed sensors 2 and 3 which output a signal according to a rotary speed of a tire and an electric control device 4 which performs a specified operation processing by inputting a signal from the speed sensors 2 and 3. The electronic control device 4 performs operation of a wheel speed based on an output signal of the speed sensors 2 and 3 and at the same time performs frequency analysis of the calculated wheel speed, and then calculates a resonance frequency of a spring lower part of the vehicle in up/down and forward/backward directions. Then, a state of tire pressure is detected based on the resonance frequency.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-133831

(43)公開日 平成5年(1993)5月28日

(51)Int.CL⁵

識別記号

庁内整理番号

技術表示箇所

G01L 17/00

B 9009-2F

B60C 23/00

G 7312-3D

審査請求 未請求 請求項の数6(全 7 頁)

(21)出願番号

特願平3-294622

(22)出題日

平成3年(1991)11月11日

(71)出願人 000004260

FΙ

日本電装株式会社

爱知県刈谷市昭和町1丁目1番地

(72)発明者 田口 健康

爱知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(72)発明者 内藤 俊治

爱知県刈谷市昭和町1丁目1番地 日本電

装株式会社内

(72)発明者 徳田 ▲ひろみ▼

爱知県刈谷市昭和町1丁目1番地 日本電

技株式会补内

(74)代理人 弁理士 碓氷 裕彦

(54) 【発明の名称】 タイヤ空気圧検知装置

(57)【要約】

【目的】 間接的にタイヤ空気圧を検知するとともに、 その検知精度を向上すること。

【構成】 タイヤの回転速度に応じた信号を出力する速度センサ2,3と、速度センサ2,3からの信号を入力し、所定の演算処理を行う電子制御装置4とを備え、電子制御装置は、速度センサ2,3の出力信号に基づいて車輪速度を演算するとともに、その演算された車輪速度の周波数解析を行い、車両のばね下の上下方向及び前後方向の共振周波数を算出する。そして、この共振周波数に基づき、タイヤ空気圧の状態を検知する。

【特許請求の範囲】

【請求項1】 車両の走行時に、タイヤの振動周波数成分を含む信号を出力する出力手段と、

前記タイヤの振動周波数成分を含む信号から共振周波数 を抽出する抽出手段と、

前記共振周波数に基づいて、前記タイヤの空気圧の状態 を検知する検知手段とを備えることを特徴とするタイヤ 空気圧検知装置。

【請求項2】 前記出力手段は、車輪の回転速度に応じた信号を出力する車輪速度センサであることを特徴とす 10 る請求項1記載のタイヤ空気圧検知装置。

【請求項3】 前記抽出手段は、車両のばね下の上下方向の共振問波数と前後方向の共振問波数との少なくとも一方を抽出することを特徴とする請求項1記載のタイヤ空気圧検知装置。

【請求項4】 前記検知手段は、予め空気圧正常時の共振周波数を基準共振周波数として記憶しておき、この基準共振周波数に対する抽出された共振周波数の変化量から前記タイヤの空気圧の低下を検知することを特徴とする請求項1記載のタイヤ空気圧検知装置。

【請求項5】 前記検知手段は、予め前記タイヤの空気 圧と共振周波数との関係を記憶しておき、この記憶され た関係に基づいて抽出された共振周波数より前記タイヤ の空気圧を推定することを特徴とする請求項1記載のタ イヤ空気圧検知装置。

【請求項6】 前記検知手段によって、前記タイヤの空 気圧が下限空気圧よりも低下したことが検知されたと き、運転者に対して警報を行う警報手段を備えることを 特徴とする請求項1記載のタイヤ空気圧検知装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、車両のタイヤの空気圧 の状態を検知するタイヤ空気圧検知装置に関するもので ある。

[0002]

【従来の技術】従来、タイヤの空気圧を検知する装置としては、タイヤの内部にタイヤ空気圧に応動する圧力応動部材等を設け、直接的にタイヤの空気圧を検知するものが提案されている。しかし、直接的にタイヤの空気圧を検知する装置では、タイヤの内部に圧力応動部材等を設ける必要があることから構造が複雑となり、また価格も高価となってしまうという問題があった。

【0003】このため、タイヤの空気圧が低下したとき にタイヤ半径が変化する(短くなる)ことを利用して、 各車輪の車輪速度を検出する車輪速度センサの検出信号 に基づいて、車両のタイヤの空気圧を間接的に検知する ことが提案されている。

[0004]

【発明が解決しようとする課題】しかしながら、検出対象であるタイヤ半径は、磨耗等による個体差があった

り、旋回、制動、発進等の走行状態の影響を受けやすい。さらに、近年普及が著しいラジアルタイヤは、タイヤ空気圧の変化によるタイヤ半径の変形量が小さい(例えば、タイヤの空気圧が1kg/cm²低下したとき、タイヤ半径の変形量は約1mmである。)。このような理由から、タイヤ半径の変形量からタイヤ空気圧の変化を間接的に検知する方式は、検知精度が充分に確保できないという問題がある。

2

【0005】本発明は上記の点に鑑みてなされたものであり、間接的にタイヤ空気圧を検知するとともに、その 検知精度を向上することができるタイヤ空気圧検知装置 を提供することを目的とするものである。

[0006]

【課題を解決するための手段】上記目的を達成するために、本発明によるタイヤ空気圧検知装置は、車両の走行時に、タイヤの振動周波数成分を含む信号を出力する出力手段と、前記タイヤの振動周波数成分を含む信号から共振周波数を抽出する抽出手段と、前記共振周波数に基づいて、前記タイヤの空気圧の状態を検知する検知手段20とを備えることを特徴とする。

[0007]

【作用】上記構成により、タイヤの振動周波数成分を含む信号から共振周波数を抽出し、この抽出された共振周波数に基づいて、タイヤの空気圧の状態が検知される。【0008】ここで、タイヤの空気圧が変化すると、それによってタイヤのばね定数も変化する。このタイヤのばね定数の変化により、タイヤの振動周波数成分における共振周波数が変化するので、抽出した共振周波数に基づき、タイヤの空気圧の状態を検知することができる。30【0009】

【実施例】以下、本発明の第1実施例を図面に基づいて 詳しく説明する。図1は、第1実施例の全体の構成を示 す構成図である。

【0010】図1に示すように、 車両の各タイヤ1 a~ 1 dに対応して車輪速度センサが設けられている。 各重 輪速度センサは、歯車2a~2d及びピックアップコイ ル3a~3dによって構成されている。 歯車2a~2d は、各タイヤ1a~1dの回転軸(図示せず)に同軸的 に取り付けられており、円盤状の磁性体より成る。ヒッ クアップコイル3a~3dは、これらの歯車2a~2d の近傍に所定の間隔を置いて取り付けられ、歯車2 a~ 2d、すなわちタイヤ1a~1dの回転速度に応じた問 期を有する交流信号を出力する。 ピックアップコイル3 a~3 dから出力される交流信号は、波形整形回路、R OM、RAM等よりなる公知の電子制御装置(ECU) 4に入力され、波形整形を含む所定の信号処理が行われ る。この信号処理の結果は表示部5に入力され、表示部 5は運転者に対して各タイヤ1a~1dの空気圧の状態 を報知する。この表示部5は、各タイヤ1a~1dの空 50 気圧の状態を独立に表示しても良いし、一つの警告ラン

アを設けて、いずれか一つのタイヤの空気圧が基準空気 圧よりも低下したときに点灯させて、それを警告するよ うにしても良い。

【0011】ここで、まず本実施例におけるタイヤ空気 圧の検知原理について説明する。車両が、例えば舗装さ れたアスファルト路面を走行した場合、その路面表面の 微小な凹凸により上下及び前後方向の力を受け、その力 によってタイヤは上下及び前後方向に振動する。このタイヤ振動時の車両ばね下の加速度の周波数特性は図2に 示すようなものとなる。図2に示すように、加速度の周 波数特性は2点においてピーク値を示し、a点は車両の ばね下における上下方向の共振周波数であり、b点は車 両のばね下における前後方向の共振周波数である。

【0012】一方、タイヤの空気圧が変化すると、タイヤゴム部のばね定数も変化するため、上記の上下方向及び前後方向の共振周波数がともに変化する。例えば、図3に示すように、タイヤの空気圧が低下した場合には、タイヤゴム部のばね定数も低下するので、上下方向及び前後方向の共振周波数がともに低下する。従って、タイヤの振動周波数より、車両のばね下における上下方向及び前後方向の共振周波数の少なくとも一方を抽出すれば、この共振周波数に基づいてタイヤの空気圧の状態を検知することができる。

【0013】そのため、本実施例では、車輪速度センサの検出信号から、車両のばね下における上下方向及び前後方向の共振周波数を抽出する。これは、発明者らの詳細な検討の結果、車輪速度センサの検出信号には、タイヤの振動周波数成分が含まれていることが判明したためである。すなわち、車輪速度センサの検出信号を周波数解析した結果、図4に示すように2点でピーク値を示す 30とともに、タイヤの空気圧が低下すると、その2点のピーク値も低下することが明らかとなった。

【0014】これにより、本実施例によれば、近年搭載車両の増加しているアンチスキッド制御装置(ABS)を備える車両等は、既に各タイヤに車輪速度センサが装備されているため、何ら新たなセンサ類を追加しなくともタイヤ空気圧の検知が可能となる。また、車両の実用範囲では、上記共振周波数の変化量はほとんどタイヤ空気圧の変化に起因するタイヤばね定数の変化に基づくものであるため、例えばタイヤの磨耗等の他の要因の影響 40を受けることなく安定した空気圧検知が可能となる。

【0015】図10に、ECU4が実行する処理内容を表したフローチャートを示す。なお、ECU4は各車輪1a~1dに対して同様の処理を行うため、図10のフローチャートは1車輪に対しての処理の流れのみを示している。また、これ以後の説明において、各符号の添字は省略する。さらに、図10に示すフローチャートでは、特にタイヤの空気圧が基準値以下に低下したことを検知し、運転者に対して警告を行う例について示している。

【0016】図10において、ステップ100では、ピックアップコイル3から出力された交流信号(図5)を波形整形してバルス信号とした後に、そのバルス間隔をその間の時間で除算することにより車輪速度 v を演算する。この車輪速度 v は、図6に示すように、通常、タイヤの振動周波数成分を含む多くの高周波成分を含んでい

マの体動局放致成分を含む多くの高局液成分を含んでいる。ステップ110では、演算された車輪速度 v の変動 幅 Δ v が基準値 v 0 を超えたか否かを判定する。このとき、車輪速度 v の変動幅 Δ v が基準値 v 0 を超えていると判定されると、ステップ120に進む。ステップ120では、車輪速度 v の変動幅 Δ v が基準値 v 0 を超えている時間 Δ T が、所定時間 t 0 を超えたか否かを判定する。上記ステップ110、120での処理は、車両が走行している路面が、本実施例の検知手法によってタイヤ空気圧の検知が可能な路面か否かを判定するために行うものである。つまり、本実施例では、タイヤの空気圧の

の変化に基づいて行う。このため、車輪速度 v がある程度変動し、かつそれが継続されなければ、上記共振周波数を算出するための充分なデータを得ることができない。なお、ステップ 1 2 0 における判定では、車輪速度 v の変動幅 Δ v が基準値 v 0 を超えた時点で所定時間 Δ t が設定され、この所定時間 Δ t 内に再び車輪速度 v の変動幅 Δ v が基準値 v 0 を超えると、時間 Δ T の計測が

検知を、タイヤの振動周波数成分に含まれる共振周波数

【0017】ステップ110及びステップ120において、ともに肯定判断されるとステップ130に進み、どちらか一方において否定判断されると、ステップ100に戻る。ステップ130では、演算された車輪速度に対して周波数解析 (FFT) 演算を行うとともに、その演算回数Nをカウントする。このFFT演算を行った結果の一例を図7に示す。

継続される。

【0018】図7に示すように、実際に車両が一般道を 走行して得られる車輪速度に対してFFT演算を実施す ると、非常にランダムな周波数特性となることが通常で ある。これは、路面に存在する微小な凹凸の形状(大き さや高さ)が全く不規則なためであり、従って車輪速度 データ毎にその周波数特性は変動することとなる。従っ て、本実施例では、この周波数特性の変動をできるだけ 低減するために、複数回のFFT演算結果の平均値を求 める。このため、ステップ140では、ステップ130 におけるFFT演算回数Nが所定回数noに達したか否 かを判定する。そして、演算回数Nが所定回数noに達 っしていないときには、さらにステップ100からステ ップ130の処理を繰り返し実行する。一方、演算回数 Nが所定回数no に違っしているときには、ステップ1 50に進んで平均化処理を行う。この平均化処理は、図 8に示すように、各FFT演算結果の平均値を求めるも のであり、各周波数成分のゲインの平均値が算出され

50 る。このような平均化処理によって、路面によるFFT

演算結果の変動を低減することが可能となる。

【0019】しかし、上述の平均化処理だけでは、ノイズ等によって車両のばね下の上下方向及び前後方向の共振周波数のゲインが、その近辺の周波数のゲインに比較して必ずしも最大ビーク値になるとは限らないという問題がある。そこで、本実施例では、上述の平均化処理に引き続き、ステップ160において以下の移動平均処理を実施する。

【0020】この移動平均処理は、n番目の周波数のゲインY。を以下の演算式によって求めることにより実施 10される。

[0021]

【数1】 $Y_n = (y_{n+1} + Y_{n-1})/2$

つまり、移動平均処理では、n番目の周波数のゲインYnが、前回の演算結果におけるn+1番目のゲインyn・1と既に演算されたn-1番目の周波数のゲインYn-1との平均値とされる。これにより、FFT演算結果は、滑らかに変化する波形を示すことになる。この移動平均処理により求められた演算結果を図9に示す。

【0022】なお、ここでの波形処理は、上記移動平均 20 処理に限らず、平均化処理後のFFT演算結果に対してローパスフィルタ処理を施しても良いし、或いは、ステップ130のFFT演算を実施する前に、車輪速度vの 微分演算を行い、その微分演算結果に対してFFT演算を実施してもよい。

【0023】次に、ステップ170では、上記移動平均
処理によりスムージングされたFFT演算結果に基づい
て、車両のばね下の前後方向の共振周波数 f を算出す
る。そしてステップ180では、予め正常なタイヤ空気
圧に対応して設定されている初期周波数 f のからの低下
30 偏差 (f の - f) を求め、この低下偏差 (f の - f) と
所定偏差 f とを比較する。この所定偏差 f は、正常
なタイヤ空気圧に対応する初期周波数 f のを基準とし
て、タイヤ空気圧に対応する初期周波数 f のを基準とし
て、タイヤ空気圧の許容下限値 (例えば1.4kg/m²)に対応して設定されている。従って、ステップ18
0において低下偏差 (f の - f) が所定偏差 f を上回
ったと判定されると、タイヤの空気圧が許容下限値より
も低下したとみなして、ステップ190に進み、表示部
5によって運転者に対して警告表示を行う。

【0024】なお、上述の例では、車両のばね下の前後 40 方向の共振周波数のみに基づいて、タイヤの空気圧の低下を検知する例を示したが、これに代えて上下方向の共振周波数のみに基づきタイヤ空気圧の低下を検知しても良いし、前後方向及び上下方向の共振周波数の両者に基づいて検知しても良い。

【0025】次に本発明の第2実施例について説明する。上述の第1実施例では、特にタイヤの空気圧が許容下限値よりも低下したことを検知するようにしていたが、第2実施例では、タイヤの空気圧自体を検知しようとするものである。

【0026】このため、第2実施例では、図11に示すようなタイヤ空気圧と共振周波数との関係を各タイヤ毎にマップとして記憶し、第1実施例と同様に共振周波数 f を算出して、この算出された共振周波数 f からタイヤ空気圧自体を直接推定する。

【0027】この第2実施例では、ECU4における処理内容の一部のみが上記第1実施例と異なり、その構成は上記第1実施例と共通である。このため、構成の説明は省略し、かつECU4における処理内容の相違点のみを説明する。

【0028】すなわち、第2実施例では、図10に示す 第1実施例のフローチャートのステップ180を、図1 2に示す処理に変更する。図12において、ステップ1 82では、ステップ170において算出された車両のば ね下の前後方向の共振周波数 fを用いて、予め設定され 記憶されたマップに従って、対応するタイヤ空気圧Pを 算出する。そして、ステップ184において、算出され たタイヤ空気圧Pと予め設定されるタイヤ空気圧の許容 下限値Poとを比較し、算出されたタイヤ空気圧Pが許 容下限値Po以下であるとき、ステップ190に進む。 【0029】なお、この第2実施例では、表示部5の表 示形態を代えて、ステップ182において算出したタイヤ空気圧Pを各輪毎に直接表示するようにしても良い。 次に、本発明の第3実施例について説明する。

【0030】上述の第1実施例では、タイヤの振動周波数成分を含む信号を出力するセンサとして車輪速度センサを用いていたが、第3実施例では図13に示すように車両のばね下部材(例えば、ロアアーム10)に加速度センサ11を配置し、タイヤの振動周波数成分を含む信号を出力するセンサとして加速度センサ11を用いるものである。

【0031】車両のばね下の加速度を検出し、それに対してFFT演算を実施することにより、車両のばね下の上下方向及び前後方向の共振周波数を算出できることは前述した通りである。しかも、加速度センサ11を用いる場合には、その検出信号を直接FFT演算の対象とすることができるため、前述の第1実施例に比較してECU4における演算処理を簡略化することができるというメリットがある。

10 【0032】従って、この第3実施例では、図10のフローチャートのステップ100に代えて、図14に示す処理を実行する。すなわち、図14に示すように、ステップ102において、加速度センサ11から出力される加速度信号の読み込みのみをを行えばよい。そして、この読み込んだ加速度信号に対して、前述の第1実施例と同様の信号処理を行う。

【0033】次に、本発明の第4実施例について説明する。上述の第1実施例では、タイヤの振動周波数成分を含む信号を出力するセンサとして車輪速度センサと用い 50 ていたが、第4実施例では車体(ばね上部材)とタイヤ (ばね下部材)との相対変位を検出する車高センサ20 を設置し、タイヤの振動周波数成分を含む信号を出力す るセンサとして車高センサ20を用いるものである。

【0034】図15に示すように、車高センサ20を用いる場合には、車高センサ20の検出信号に対し、適当なローバスフィルタ処理を施した上で、2回微分処理を行う。これにより、車高センサ20の検出信号は、車体とタイヤとの相対加速度を示す信号となる。そして、この相対加速度を示す信号に対して図10のフローチャートのステップ110以降の処理を行うことで、前述の第101実施例と同様に、タイヤ空気圧を検知することが可能となる。

【0035】次に、本発明の第5実施例について説明する。上述の第1実施例では、タイヤの振動周波数成分を含む信号を出力するセンサとして車輪速度センサと用いていたが、第5実施例では図16に示すように、車体(ばね上部材)とタイヤ(ばね下部材)との間の荷重を検出する荷重センサ30を設置し、タイヤの振動周波数成分を含む信号を出力するセンサとして荷重センサ30を用いるものである。

【0036】図16において、荷重センサ30は、荷重に応じた電荷を発生する圧電素子から構成され、ショックアブソーバのピストンロッドの内部に収納されている。このため、荷重センサ30は、ショックアブソーバの減衰力に応じた信号を出力する。この信号に対し、上記第3実施例と同様の信号処理を施すことにより、タイヤ空気圧を検知することも可能である。

[0037]

【発明の効果】以上説明したように、本発明によれば、 タイヤの振動周波数成分を含む信号から共振周波数を抽 30 る。出し、この抽出された共振周波数に基づいて、タイヤの空気圧の状態を検知する。ここで、共振周波数は、タイヤのばね定数に応じて変化し、タイヤのばね定数は実質 的にタイヤの空気圧にのみ依存して変化する。従って、 本発明によれば、タイヤの空気圧を間接的に検知しなが 5、その検知精度を向上することが可能となる。 3

【図面の簡単な説明】

【図1】本発明の第1実施例の構成を示す構成図であ

る.

【図2】車両のばね下の加速度の周波数特性を示す特性 図である。

8

【図3】タイヤの空気圧の変化による車両のばね下の上下方向及び前後方向の共振周波数の変化の様子を示す特性図である。

【図4】第1実施例のタイヤ空気圧の検知原理を示す説明図である。

【図5】車輪速度センサの出力電圧波形を示す波形図で ある。

【図6】車輪速度センサの検出信号に基づいて演算された車輪速度vの変動状態を示す波形図である。

【図7】図6に示す波形の車輪速度vに対して周波数解 析演算を行った結果を示す特性図である。

【図8】第1実施例における平均処理を説明するための 説明図である。

【図9】第1実施例における移動平均処理を行った後の 周波数解析結果を示す特性図である。

【図10】第1実施例の電子制御装置の処理内容を示す 20 特性図である。

【図11】本発明の第2実施例におけるタイヤ空気圧と 共振周波数との関係を示す特性図である。

【図12】第2実施例と第1実施例との処理内容の相違 点を示すフローチャートである。

【図13】本発明の第3実施例の構成を示す構成図である。

【図14】第3実施例と第1実施例との処理内容の相違 点を示すフローチャートである。

【図15】本発明の第4実施例の構成を示す構成図である。

【図16】本発明の第5実施例の構成を示す構成図である。

【符号の説明】

- **1 タイヤ**
- 2 歯車
- 3 ピックアップコイル
- 4 電子制御装置 (ECU)
- 5 表示部

