西安电子科技大学

考试时间____分钟

试 题

题	_		三	四	五	正考	附加1	附加 2	附加题
号						总分			总分
分									
数									
1. 形式: 闭卷; 2. 日期: 2013 年 7 月 10 日 3. 本卷共 5 大题 (不含附加题),满分 100 分。									
班纫	班级								
(本次考试与竞赛评优结合进行,试题由期末正考试题及附加题两部分组成,第一部									
分为正考试题 100 分,记为《高等数学》期末考试卷面成绩;第二部分附加题 20 分,									
学生可以根据自身学习情况自愿选做。考试时间 120 分钟。正考题得分和附加题得分									
统一纳入竞赛评分范围。竞赛评优方案已下发各学院,请到学院查看具体方案)									
一、填空题(每题 3 分,共 12 分)									
1、设 $z = \ln(x + y^2 + e^{xy})$,则 $dz =$									
11 22 m(x + y + c), xxu2 =									
2 、曲线 $x = \sin t$, $y = \cos t$, $z = t$ 在对应于 $t = 0$ 的点处的切线方									
担									
程为									
3、若函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在(1,-1) 处取得极值,则									
常数 <i>a</i> =									
4、微分方程 $y^{(3)} + y = 0$ 的通解是									
二、解答题(每题7分,共63分)									
1 、设函数 f 具有二阶连续偏导数,求 $z = f(x^2 - y^2, xy)$ 的二阶偏									
导数	$x \frac{\partial^2 z}{\partial x \partial y}$	- .							

2、设函数 z = z(x, y) 由方程 F(x - 2z, y + 3z) = 0 确定,试求 $\frac{\partial z}{\partial x}$.

- 3、求微分方程 $y'' y' 6y = -3e^{-2x}$ 的通解.
- 4、求二次积分 $\int_0^1 dx \int_x^1 x \sin y^3 dy$
- 5、设区域(V) 由曲面 $z = x^2 + y^2$ 与 z = 9 平面围成,求三重积分 $\iiint\limits_{(V)} (x + y + z) dv$
- 6、设L为圆周 $x^2 + y^2 = 4$, 求 $\int_I 2y^2 ds$.
- 7、一质点在平面场力

$$\vec{F} = (2xy^3 - y^2 \cos x)\vec{i} + (1 - 2y \sin x + 3x^2y^2)\vec{j}$$
 的作用下,

沿曲线 $L:2x=\pi y^2$ 从点 o(0,0) 运动到点 $A\left(\frac{\pi}{2},1\right)$,求场力 \vec{F} 所作

的功W

- 8、将 $f(x) = \frac{1}{x^2 3x + 2}$ 展开成 x 的幂级数.
- 9、 将 f(x) = 1 x 在[0, 1]区间上展开成以 2 为周期的傅里叶正弦级数.
- 三、(8 分)设(S) 为上半球面 $z = \sqrt{R^2 x^2 y^2}$ 的下侧,试求第二型面积分

$$I = \iint_{(S)} x^2 yz^2 dydz - xy^2 z^2 dzdx + (1 + xyz)dxdy$$

四、(8分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n^{2^n}}$ 的收敛域及和函数.

五、(9分) 求函数 u = x + y + z 在条件 $x^2 + y^2 + z^2 - 2ax - 2ay - 2az + 2a^2 = 0$ (a > 0) 下的最小值,并证明:

若 Σ 为曲面
$$x^2 + y^2 + z^2 = 2ax + 2ay + 2az - 2a^2$$
,则有
$$\oint_{\Sigma} (x + y + z + \sqrt{3}a)^3 dS \ge 108\pi a^5.$$

附加题:

- 1、(10 分) 设 $P_0(\frac{1}{2},\frac{1}{2},\frac{3}{2})$ 为曲面 $z=x^2+y^2+1$ 上的一点,求此曲面在该点处的切平面与曲面 $y=\sqrt{1-x^2}$ 以及三个坐标面在第一卦限内所围成的柱体的体积。
- 2、 (10 分)设在上半平面 $D = \{(x,y)|y>0\}$ 内, 函数 f(x,y) 具有连续的偏导数,且对任意 t>0 都有 $f(tx,ty) = t^{-2}f(x,y)$,证明: 对 D 内 的 任 意 分 段 光 滑 的 有 向 简 单 闭 曲 线 L , 都 有 $\int_{t}^{t} y f(x,y) dx x f(x,y) dy = 0$.