Covariance Matrices:

https://www.youtube.com/watch?v=0GzMcUy7ZI0

https://www.youtube.com/watch?v=locZabK4Als

COVARIANCE MATRIX

	<i>x</i> ₁	x_2	x_3	x_4
x ₁	$Var(x_1)$	$Cov(x_1, x_2)$	$Cov(x_1, x_3)$	$Cov(x_1, x_4)$
x_2		$Var(x_2)$	$Cov(x_2, x_3)$	$Cov(x_2, x_4)$
x_3			$Var(x_3)$	$Cov(x_3, x_4)$
x_4				$Var(x_4)$

The diagonal of a covariance matrix provides the variance of each individual variable.

The off-diagonal entries in the matrix provide the **covariance** between each variable pair.

•

https://www.youtube.com/watch?v=152tSYtiQbw

Correlation:

- Varies between -1 and 1

https://www.youtube.com/watch?v=0FuK_mrcW98

Correlation(X,Y) = Covariance(X,Y) / (Sqrt(variance(X)) x Sqrt(variance(Y)))

Or

Correlation(X,Y) = Covariance(X,Y) / (StdDev(X) x StdDev(Y))

===============

https://www.youtube.com/watch?v=5HNr_j6LmPc

Covariance Matrix:

==========

- It is a square matrix
- The Eigen Values and Eigen Vectors can be calculated on this matrix
- The Eigen Vectors gives the direction of the data spread and the Eigen Vector gives the strength of those data points.

PCA:

=====

- PCA is a technique for linear transformation of data

_

============

Covariable Correlation

Cov(X,Y) =
$$\#((X-MX)(Y-MY))$$

X>Mx: + + +

X < Mx: - +

X>Mx: + -

X < Mx: - +

X < Mx: - +

X < Mx: - +

Yorxiv Vor(Y)

===============