ІНФОРМАТИКА ТА ПРОГРАМУВАННЯ

Тема 11. Множини

Множини

- Тип множини використовують у задачах, у яких має значення тільки належність або неналежність елемента деякій множині.
- В основному реалізація множин у програмуванні повторює відомі операції та відношення для множин у математиці.
- Множини, є такими, що змінюються (mutable).

Носій типу множина

• Множина позначається включенням її елементів у фігурні дужки через кому.

$$\{x_1, ..., x_n\}.$$

- Порожня множина позначається set(), щоб уникнути плутанини зі словниками.
- Нехай множина $M \in$ носієм типу елементів t.
- Тоді носієм типу множини елементів типу t буде $M_s = 2^M$ множина всіх підмножин множини M.

Основні операції для множин

Операція	Опис
$\{x_1,, x_n\}$	Створити множину з елементів x ₁ ,, x _n
set()	Порожня множина
set(x)	Перетворення х у множину (х повинно належати
	типу, що ітерується)
a b	Об'єднання множин а U b
a & b	Перетин множин а ∩ b
a - b	Різниця множин а \ b
a ^ b	Симетрична різниця множин а та b
len(a)	Довжина а – кількість елементів у множині
min(a)	Найменший елемент множини а
max(a)	Найбільший елемент множини а
a.copy()	Повертає копію множини а

Основні відношення для множин

- Для множин визначено відношення з Rel = {==, !=, >, <, >=, <=} а також in, not in.
- Відношення а == b означає рівність множин.
- Відношення a != b ≡ not (a == b).
- Відношення a < b означає включення множини a у множину b.
- Відношення а <= b означає нестроге включення множини а у множину b.
- Відношення a > b ≡ b < a.
- Відношення а >= b ≡ b <= a.
- x in a == True, коли х входить у а
- x not in a == True, коли x не входить у а

Основні інструкції для множин

• Для множин визначено присвоєння та виведення.

a = b, print(a)

- Введення не визначено, тому треба вводити множину поелементно.
- Визначено також цикл по всіх елементах множини

for x in a:

P

Приклад

 Перевірити, чи складаються 2 рядки s1 та s2 з одних і тих же символів. Тобто, чи справедливе твердження, що кожний символ s1 входить у s2 та кожний символ s2 входить у s1.

Додаткові операції для множин

Операція	Опис		
a.union(b)	Об'єднання множин а U b, те ж		
	саме, що й а b		
a.intersection(b)	Перетин множин а ∩ b, те ж саме,		
	що й а & b		
a.difference(b)	Різниця множин а \ b, те ж саме,		
	що й a - b		
a.symmetric_difference(b)	Симетрична різниця множин а та		
	b, те ж саме, що й а ^ b		

Додаткові відношення для множин

Відношення	Опис				
a.isdisjoint(b)	True, коли перетин а та b – порожня множина,				
	те ж саме, що й а & b == set()				
a.issubset(b)	Чи є а підмножиною b, те ж саме, що й а <= b				
a.issuperset(b)	Чи є b підмножиною а, те ж саме, що й b <= а				

Додаткові інструкції для множин

Інструкція	Опис			
a.add(x)	Додає елемент х до множини а			
a.remove(x)	Видаляє елемент х з множини а. Якщо			
	елемента немає у множині, - дає помилку			
a.discard(x)	Видаляє елемент х з множини а, якщо цей			
	елемент є у множині			
a.pop()	Видаляє довільний елемент з множини а.			
	Якщо множина порожня та в ній немає			
	жодного елемента, - дає помилку			
a.clear()	Видаляє всі елементи з множини а			
a.update(b)	Оновити а значенням об'єднання а та b. Те ж			
	саме, що й a = a b			
a.intersection_update(b)	Оновити а значенням перетину а та b. Те ж			
	саме, що й a = a & b			
a.difference_update(b)	Оновити а значенням різниці а та b. Те ж			
	саме, що й a = a - b			
a.symmetric_difference_update(b)	Оновити а значенням симетричної різниці а			
	та b. Те ж саме, що й a = a ^ b			

Незмінні множини frozenset

- У Python окрім звичайних множин є також множини, що не змінюються (immutable), frozenset.
- Для створення такої множини треба писати frozenset(t), де t вираз типу, що ітерується.
- Для frozenset визначено всі ті ж основні операції, відношення та інструкції, що й для звичайних множин set.
- Також визначені додаткові операції та відношення, наведені вище.
- Не визначені тільки додаткові інструкції.
- frozenset можуть фігурувати у виразах разом із звичайними множинами. При цьому результат виразу буде того типу, до якого належить перший операнд операції (set або frozenset).
- frozenset використовують тоді, коли множина після створення не змінюється і потрібна більша швидкодія у порівнянні з використанням звичайних множин set.

Множиноутворення

- Множиноутворення (set comprehension) це вираз, результатом якого є множина.
- Множиноутворення схоже на спискоутворення та словникоутворення.
- Вираз має такий синтаксис:

$\{e(x) \text{ for } x \text{ in } t \text{ if } F\}$

- де e(x) вираз, t вираз типу, що ітерується, F умова.
- Python вибирає всі x з t, які задовольняють умову F, додає у множину e(x) та повертає отриману множину.
- Якщо умова F відсутня, то іf F опускають.

Приклад «Тур коня»

- «Тур коня». Знайти шлях шахової фігури «кінь» з поля шахової дошки (*x*,*m*) на поле (*y*,*k*), де *x*, *y* вертикалі (позначаються літерами від а до h), *m*, *k* горизонталі (позначаються цифрами від 1 до 8).
- Програма, яку ми розбирали у попередній темі, знаходила шлях коня, але цей шлях був неоптимальний через вибір наступного ходу, починаючи з початку списку ходів.
- Побудуємо програму, яка буде знаходити більш оптимальний шлях.

Приклад «Тур коня».2

- На *i*-му кроці будуємо граничну множину полів шахової дошки, яких кінь може досягти з початкової позиції за *i* кроків.
- Коли у множину потрапляє кінцеве поле, йде повернення до початкової позиції з побудовою шляху.

2	3	4	1	2	1	4	3
3	2	1	2	3	2	1	2
2	3	2	3	9	3	2	3
3	2	1	2	3	2	1	2
2	3	4	1	2	1	4	3
3	2	3	2	3	2	3	2
4	3	2	3	2	3	2	3
3	4	3	4	3	4	3	4

Резюме

- Ми розглянули:
 - 1. Множини: носій, основні операції, відношення та інструкції для множин.
 - 2. Додаткові операції, відношення та інструкції для множин.
 - 3. Множини, що не змінюються.
 - 4. Множиноутворення.

Де прочитати

- 1. A Byte of Python (Russian) Версия 2.01 Swaroop C H (Translated by Vladimir Smolyar), http://wombat.org.ua/AByteOfPython/AByteofPythonRussian-2.01.pdf
- Марк Лутц, Изучаем Python, 4-е издание, 2010, Символ-Плюс
- 3. Python 3.4.3 documentation
- 4. Бублик В.В., Личман В.В., Обвінцев О.В.. Інформатика та програмування. Електронний конспект лекцій, 2003 р.,
- 5. http://www.python-course.eu/python3_sets_frozensets.php