FINAL EXAM

Hien Tu – tun1

Question 5

Q5.1.

By applying Decomposition on AB \rightarrow DE, we get AB \rightarrow D and AB \rightarrow E

By applying Augmentation on $C \rightarrow A$ with B, we get $CB \rightarrow AB$

By applying Transitivity on CB \rightarrow AB and AB \rightarrow D, we get CB \rightarrow D

Thus, $\mathfrak{S} \models CB \rightarrow D$ holds.

Q5.2.

Minimal cover: {AB \rightarrow D, C \rightarrow E, D \rightarrow C, E \rightarrow A}

Key: ABF, (BCF, BEF, BDF)

Q5.3.

The relational schema is not in BCNF as AB \rightarrow D is a violation. We apply the Decompose-BCNF algorithm with the following steps:

- First, we split R using AB \rightarrow D, resulting in R₁ = (A, B, C, D, E) and R₂ = (<u>A</u>, <u>B</u>, <u>F</u>).
- R₂ is in BCNF as no non-trivial functional dependency holds in R₂.
- Next, we split R_1 using the violation $C \rightarrow E$, resulting in $R_{1,1} = (C, E, A)$ and $R_{1,2} = (C, B, D)$.
- Next, we split R_{1,1} using the violation E → A, resulting in R_{1,1,1} = (<u>E</u>, A) and R_{1,1,2} = (E, <u>C</u>).
- $R_{1,1,1}$ and $R_{1,1,2}$ are in BCNF as they have two attributes each.
- Next, we split R_{1,2} using the violation D → C, resulting in R_{1,2,1} = (<u>D</u>, C) and R_{1,2,2} = (<u>D</u>, <u>B</u>).
- $R_{1,2,1}$ and $R_{1,2,2}$ are in BCNF as they have two attributes each.