

PERMUTATION MATRICES

Why

Can permuting the rows or columns of a matrix be represented by matrix multiplication?

Definition

Let $\sigma: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ be a permutation of n. The permutation matrix of σ is the matrix P defined by $P_{ij} = 1$ if $\sigma(i) = j$ and 0 otherwise. This is sometimes called the column representation (in contrast to the row representation, in which $P_{ij} = 1$ if $\sigma(j) = i$.

Let $A \in \mathbf{R}^{n \times n}$. Then pre-multipying A by P permutes the rows of A. In other words PA has the same rows as A but permuted according to σ . Similarly, post-multiplying by P permutes the columns of A. In other words, AP has the same columns as A but permuted according to σ . Clearly, we can also speak of permuting the components of a vector.

Composition

Let $\pi, \sigma \in S_n$ with corresponding permutation matrices P_{σ} and P_{π} . Then $P_{\pi}P_{\sigma}A$ has the same rows as A but permuted by $\pi\sigma$. Likewise, $AP_{\pi}P_{\sigma}$ has the same columns as A but permuted by $\pi\sigma$. Clearly, the identity permutation on $\{1, 2, \ldots, n\}$ is the identity $I \in \mathbb{R}^{n \times n}$.

Inverses

It is clear from the definition that $P_{\sigma}^{-1} = P_{\sigma^{-1}}$ and so if P is a permutation matrix then P^{-1} is P^{\top} .

