Planche 1.

Question de cours. Soit u une suite réelle. Montrer que si u converge vers $l \in \mathbb{R}$, alors toute suite extraite de u converge vers l.

Exercice 1. On pose $u_n = \sum_{k=1}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{nn!}$. Montrer que ces suites sont adjacentes.

Exercice 2. Montrer que la suite (u_n) suivante est convergente où

$$u_n = \sum_{k=1}^n \frac{1}{n+k}$$

Planche 2.

Question de cours. Montrer que si $u_n \to l \in \mathbb{R}$ et $v_n \to l' \in \mathbb{R}$, alors $u_n + v_n \to l + l'$.

Exercice 1. Calculer la limite de $\frac{\sin(n)}{n+(-1)^{n+1}}$.

Exercice 2. Soit (u_n) une suite réelle telle que pour tout $k \in \mathbb{N}^*$, pour tout $n \in \mathbb{N}^*$,

$$0 \le u_n \le \frac{k}{n} + \frac{1}{k}$$

Montrer que u_n converge vers 0.

Planche 3.

Question de cours. Montrer que toute suite de réelle convergente est bornée.

Exercice 1. Calculer la limite de $\sum_{k=1}^{n} \sqrt{k}$.

Exercice 2. On pose $u_n = \frac{1! + \dots + n!}{(n+1)!}$. Quelle est la limite de (u_n) ?

Solutions - Planche 1.

Exercice 1. Regardons la croissance ou la divergence de (u_n) :

$$u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$$

Donc la suite (u_n) est croissante. On va donc maintenant montrer que la suite (v_n) est décroissante.

$$v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{nn!}$$

$$= \frac{n(n+1) + n - (n+1)(n+1)}{n(n+1)(n+1)!} = \frac{n - (n+1)}{n(n+1)(n+1)!} = \frac{-1}{n(n+1)(n+1)!} \le 0$$

Donc (v_n) est bien décroissante. Reste à montrer que $v_n - u_n \to 0$ lorsque $n \to +\infty$. Or

$$v_n - u_n = \frac{1}{nn!} \le \frac{1}{n} \to 0$$

Finalement les suites (u_n) et (v_n) sont adjacentes.

Exercice 2. On va avoir du mal à trouver la limite directement. Du coup en général on essaye de montrer que la suite est décroissante et minorée ou croissante et majorée. Regardons la monotonie de la suite :

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^n \frac{1}{n+k}$$
$$= \sum_{k=2}^{n+2} \frac{1}{n+k} - \sum_{k=1}^n \frac{1}{n+k}$$
$$= \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}$$
$$= \frac{1}{2n+1} - \frac{1}{2(n+1)} \ge 0$$

Donc la suite est croissante. Essayons de montrer qu'elle est majorée. Pour ce faire on essaye de majorer chacun des termes de la somme :

$$u_n = \sum_{k=1}^n \frac{1}{n+k} \le \sum_{k=1}^n \frac{1}{n} = 1$$

Donc $u_n \leq 1$ pour tout n. On en déduit que la suite (u_n) converge.

Remarque : à l'aide d'outils d'intégration on pourra montrer que la suite tend vers ln(2).

Solutions - Planche 2.

Exercice 1. Au dessus c'est bornée. En dessous ça tend vers l'infini. Du coup ça va tendre vers 0. Pour le montrer on regarde $|u_n|$ et on le majore par quelque chose qui tend vers 0.

$$|u_n| = \frac{|\sin(n)|}{|n + (-1)^{n+1}|} \le \frac{1}{n-1} \to 0$$

Donc u_n tend vers 0 en $+\infty$.

Exercice 2. Comme à l'exercice précédent si on pouvait avoir $u_n \leq v_n$ avec v_n qui tend vers 0 c'est gagné. Du coup va falloir choisir le bon k. On va le choisir en fonction de n. Il faudrait que $\frac{k}{n} \to 0$ et que $\frac{1}{k} \to 0$ lorsque $n \to +\infty$. On va pas choisir k = n car $k/n = 1 \not\to 0$. Ni k = 1. On va choisir un truc entre les deux : $k = E(\sqrt{n})$ où E désigne la partie entière. Pourquoi ? car à peu près on $\sqrt{n}/n + 1/\sqrt{n} = 2/\sqrt{n} \to 0$. Par contre k doit être entier donc on prend la partie entière. On espère que cela ne va rien changer au résultat.

Montrons donc que $\frac{E(\sqrt{n})}{n} + \frac{1}{E(\sqrt{n})} \to 0$. Pour cela on utilise les inégalités qu'on a sur la partie entière. $\sqrt{n} - 1 \le E(\sqrt{n}) \le \sqrt{n}$. Du coup

$$\frac{E(\sqrt{n})}{n} + \frac{1}{E(\sqrt{n})} \le \frac{\sqrt{n}}{n} + \frac{1}{\sqrt{n} - 1} = \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n} - 1} \to 0$$

Donc c'est bon $u_n \to 0$ lorsque $n \to +\infty$.

Solutions - Planche 3.

Exercice 1. On sent que ça va tendre vers l'infini car les termes sont de plus en plus grand. Pour le montrer on va donc minorer par une suite divergente. Il y a deux minorations faciles à montrer.

La première consiste à minorer par un terme de la série. Par exemple par le terme pour k=n. On a alors $\sum_{k=1}^{n} \sqrt{k} \ge \sqrt{n}$ or $\sqrt{n} \to +\infty$. Donc notre suite fait de même.

Une deuxième minoration : pour tout $1 \le k \le n$ on a $\sqrt{k} \ge 1$ donc $\sum_{k=1}^{n} \sqrt{k} \ge \sum_{k=1}^{n} 1 \ge n$. On conclut de même.

Exercice 2. L'idée c'est que la croissance de (n+1)! est plus que la somme de toutes celles au dessus. Donc ça va tendre vers 0. Pour montrer cela on va majorer par une suite qui tend vers 0. Allons y de manière grossière d'abord en majorant k! par n!. On obtient :

$$\frac{1! + \dots + n!}{(n+1)!} \le \frac{n! + \dots + n!}{(n+1)!} \le \frac{nn!}{(n+1)!} = \frac{n}{n+1}$$

Mais fort malheureusement cela ne tend pas vers 0. Il faut ruser un peu. Comment faire moins grossier? En fait on peut majorer k! par (n-1)! pour $k \leq n-1$. Tandis que le n! on le laisse tranquille. On obtient la majoration :

$$\frac{1! + \dots + n!}{(n+1)!} \le \frac{(n-1)! + \dots + (n-1)!}{(n+1)!} + \frac{n!}{(n+1)!}$$
$$\le \frac{(n-1)(n-1)!}{(n+1)!} + \frac{1}{n+1}$$
$$\le \frac{(n-1)}{n(n+1)} + \frac{1}{n+1}$$

Les deux termes tendent vers 0. Et là c'est bon on conclut que notre suite (positive) tend vers 0.