What is a Random Variable?

A random variable is just a way to represent the result of some random event with a number.

For example:

- Toss a coin: Heads = 1, Tails = $0 \rightarrow$ That's a random variable.
- Roll a die: You get 1, 2, 3, 4, 5, or 6 → That's another random variable.

** What does Jointly Distributed Random Variables mean?

It just means you are looking at two or more random things at the same time.

Think of this:

You roll two dice:

- Let X be the number on the first die
- Let Y be the number on the second die

Now, instead of just looking at X or Y separately, you look at both together — like (X=2, Y=5) or (X=6, Y=1).

This pair (X, Y) is called jointly distributed.

Ⅲ So what's the "distribution" part?

"Distribution" tells us how likely each pair (X, Y) is.

For example:

- P(X = 2 and Y = 5) = 1/36
- P(X = 6 and Y = 1) = 1/36
 Because each die roll is independent and each outcome is equally likely.

This table of all these joint probabilities is called a joint distribution.

Summary (Very Easy Terms):

- A joint distribution is just a list of chances of two (or more) random things happening at the same time.
- You study pairs (or triples, etc.) of values instead of just one.

What are Independent Random Variables?

Two random variables are independent if knowing the value of one does NOT tell you anything about the other.

Simple Example:

Let's say:

- You roll a red die → Call the result X
- You roll a blue die → Call the result Y

Now, X and Y are independent because:

- Whatever number you get on the red die doesn't affect what number you get on the blue die.
- Knowing X = 3 doesn't help you predict Y at all Y can still be 1, 2, 3, 4, 5, or 6 with equal chance.

So:

@ If X and Y are independent:

 $P(X = a \text{ and } Y = b) = P(X = a) \times P(Y = b)$

Natification What if they are not independent?

Suppose you pick a card from a deck:

- Let X = 1 if the card is red, 0 if it's black
- Let Y = 1 if the card is a heart, 0 otherwise

Now X and Y are not independent, because:

- If you know the card is a heart (Y = 1), then you know it's red \rightarrow So X = 1
- One variable gives you a clue about the other

Summary:

- Independent random variables: No influence on each other
- Dependent random variables: One gives you info about the other

What is Covariance?

Covariance tells you how two random variables change together.

Think of it as answering the question:

"When one variable increases, does the other also increase? Or decrease?"

Imagine Two Friends:

Let's say:

- X = Number of hours you study
- Y = Your marks in a test

Now:

- If you study more (X ↑), and your marks go up (Y ↑) → Covariance is positive
- If you study more (X ↑), and your marks go down (Y ↓) → Covariance is negative X
- If your study hours and marks have no relation → Covariance is near 0

Simple Intuition:

Covariance looks at this:

Do X and Y go up or down together?

It calculates:

$$Cov(X,Y)=E[(X-\mu X)(Y-\mu Y)]$$

Where:

- *E* = Expected value (average)
- μX = Mean of X
- μY = Mean of Y

It multiplies how far X and Y are from their averages, and takes the average of that product.

Summary (Super Simple):

- Covariance > 0 → X and Y increase together
- Covariance < 0 → One goes up, the other goes down
- Covariance = 0 → They don't affect each other (no linear relationship)

But: Covariance only shows the direction of the relationship, not the strength clearly — for that, we often use correlation, which is a scaled version of covariance.

What is Conditional Expectation?

Conditional expectation is just the average (expected) value of a random variable, given that you know something else has happened.

Think of it like this:

"What do I expect Y to be, if I already know X = x?"

Real-Life Example:

Let's say:

- Y = Number of pizzas sold in a day
- X = Whether it's a weekend or weekday

Now:

- On weekends (X = 1), you usually sell more pizzas.
- On weekdays (X = 0), you sell fewer.

Then:

- E[Y|X=1]
- E[Y|X=1] = Expected number of pizzas sold if it's a weekend
- E[Y | X=0]
- E[Y|X=0] = Expected pizzas sold if it's a weekday

This is conditional expectation — it's the average of Y under the condition that X has a certain value.

Formula (just for context):

$$E[Y | X=x] = \sum yy \cdot P(Y=y | X=x)$$

It's just a weighted average of Y values, using the conditional probabilities.

Summary in Simple Words:

- Expectation is the average.
- Conditional expectation is the average of a random variable when you already know something else has happened.
- It helps us update our prediction based on new information.

what is a Markov Chain?

A Markov Chain is a step-by-step process where:

The future only depends on the present — not the past.

In other words:

"Where I go next depends only on where I am now, not how I got here."

Hink of it like a board game:

You're standing on a tile (say, Tile A), and based on rules, you might:

- Stay on A
- Move to Tile B
- Move to Tile C
 - ... with some probability.

You then roll the dice again, but this time, you decide your next move based only on where you are now, not where you were before.

Example:

Imagine weather:

- States: Sunny, Rainy
- Rules:
 - If it's Sunny today, there's:
 - 70% chance tomorrow is Sunny again
 - 30% chance it will be Rainy
 - If it's Rainy today, there's:
 - 40% chance tomorrow is Sunny
 - 60% chance it stays Rainy

This is a Markov Chain! The weather tomorrow only depends on today, not the whole week before.

% Key Ideas:

- States: The possible positions (e.g., Sunny, Rainy)
- Transitions: Probabilities of moving from one state to another
- Transition Matrix: A table showing all the probabilities

Summary (Super Simple):

- A Markov Chain is a system that moves from one state to another, step by step.
- The next state depends only on the current state, not the path taken.
- It's used in things like weather modeling, games, finance, and even Google's PageRank!

What are Pseudo-Random Numbers?

Pseudo-random numbers are numbers that look random, but are actually generated by a formula — so they're not truly random.

Real-Life Analogy:

Imagine a magician who rolls a dice, but always starts from the same trick.

- Every time you say "go," he rolls: 4, 2, 6, 3, 1, 5 the same sequence.
- It looks random, but it's predictable if you know the trick.

That's what a pseudo-random number generator (PRNG) does.

* How It Works:

- It starts with a seed number (like the magician's starting point).
- Then it uses a math formula to generate a sequence of numbers.
- The sequence seems random, but if you use the same seed, you get the same sequence every time.

© Example:

```
    □ Copy

                                                                              ℃ Edit
python
import random
random.seed(42)
print(random.randint(1, 6)) # Always gives same result with seed 42
```

This will always give the same "random" number — that's pseudo-random!

Why use pseudo-random numbers?

- Fast and easy to generate
- Reproducible (good for testing or simulations)
- X Not suitable for serious security (like passwords)

Summary:

- Pseudo-random numbers are fake-random: they look random but are made by a deterministic process (formula + seed).
- Useful for games, simulations, and programming.
- Not good for cryptography for that, we use cryptographically secure random numbers.

What is Chebyshev's Inequality?

Chebyshev's Inequality tells us:

No matter what the distribution looks like, most values lie close to the mean, if you look far enough from it.

It gives a guaranteed minimum probability that values will fall within a certain distance (k standard deviations) from the mean.

12 The Formula:

$$P(|X-\mu| \geq k\sigma) \leq rac{1}{k^2}$$

Or more usefully:

$$P(|X-\mu| < k\sigma) \geq 1 - \frac{1}{k^2}$$

Where:

- X = a random variable
- μ = mean (average)
- σ = standard deviation
- k = how many standard deviations away from the mean

What does it mean?

It says:

- At least 75% of values lie within 2 standard deviations of the mean (Because $1-\frac{1}{2^2}=1-\frac{1}{4}=0.75$)
- At least 89% lie within 3 standard deviations (Because $1-\frac{1}{9}=0.89$)
- At least 94% lie within 4 standard deviations, and so on.
- This works for any distribution not just normal distributions!

Why is it useful?

Because it gives a safety net:

- Even if you don't know the shape of the data (normal, skewed, etc.)
- You still know that most data stays near the average

Summary (Very Simply):

- Chebyshev's Inequality tells you:
 "No matter what the data looks like, most of it stays close to the average."
- The further you go from the mean (in terms of standard deviations), the more data is included.
- It's like a guaranteed boundary for spread, even if you know very little about the data.

What is a Random Variable?

A random variable is a way to give a number to the result of a random event.

It turns random outcomes into numbers we can work with.

Real-Life Example:

Imagine you roll a die 🎲:

• The outcome is random: could be 1, 2, 3, 4, 5, or 6

Let's say:

• X = the number that comes up

Then X is a random variable.

It's called "random" because its value is not fixed — it depends on chance.

Another Example:

Toss a coin:

- Heads → Let's say X = 1
- Tails \rightarrow X = 0

Here, X is a random variable with possible values 0 and 1.

Summary:

- A random variable assigns numbers to outcomes of a random process
- It lets us use math and statistics to study randomness

Two Types:

- 1. Discrete random variable
 - → Takes specific values (like 0, 1, 2, 3...)
 - → Example: Number of heads in 3 coin tosses
- 2. Continuous random variable
 - → Takes values from a whole range (like 2.3, 3.141, etc.)
 - → Example: Time it takes for a train to arrive

What is Markov's Inequality?

Markov's Inequality gives you a guaranteed upper bound on how likely a non-negative random variable is to take on a very large value.

It says:

The chance that a non-negative random variable is much bigger than its average is small.

The Formula:

If $X \ge 0$ (X is a non-negative random variable), and a > 0, then:

$$P(X \geq a) \leq rac{E[X]}{a}$$

Where:

- $P(X \ge a)$ is the probability that X is at least **a**
- E[X] is the expected value (average) of X

Real-Life Example:

Say:

- X = number of chocolates a kid eats in a day
- E[X] = 2 (on average, the kid eats 2 chocolates per day)

Then:

• What's the chance the kid eats 10 or more chocolates in a day?

Using Markov's Inequality:

$$P(X\geq 10)\leq \frac{2}{10}=0.2$$

So: the chance is at most 20%

Summary (in plain words):

- Markov's Inequality says:
 "The chance that something non-negative is way bigger than average is small."
- It works even if you don't know the exact distribution just the average!

What is a Probability Mass Function (PMF)?

A PMF tells you:

"What is the probability that a discrete random variable takes a certain value?"

It gives the probability of each possible outcome for a discrete random variable.

🧁 Real-Life Example:

Let's roll a fair 6-sided die 🎲

Let *X* be the number that comes up.

Then the PMF of X is:

$$P(X=x)=rac{1}{6} \quad ext{for } x=1,2,3,4,5,6$$

This means:

- P(X = 1) = 1/6
- P(X = 2) = 1/6
- P(X = 6) = 1/6

That's the PMF — a list or function that gives each value and its probability.

Key Properties:

- 1. The PMF only works for discrete random variables (like number of heads in coin tosses, dice rolls, etc.)
- 2. The total of all probabilities must add up to 1:

$$\sum P(X=x)=1$$

🔽 Summary (Super Simple):

- PMF = a table or formula that tells you the chance of each exact value a random variable can take.
- It works only for discrete random variables.
- All probabilities in the PMF must add up to 1.

What is a Probability Density Function (PDF)?

A PDF tells you how the probability is spread out over all possible values of a continuous random variable.

Key difference from PMF:

- PMF is for discrete random variables (specific values like 1, 2, 3...)
- PDF is for continuous random variables (values in a range, like any number between 0 and 1, or any real number)

How does PDF work?

For a continuous variable X:

- The PDF, written as f(x), is **not a probability itself**.
- Instead, f(x) tells you **how dense** the probability is near the value x.

Example:

Think about the height of people:

- Height can be any value, say between 150 cm and 200 cm.
- The PDF tells you where heights are more likely to be found (higher PDF value means more likely nearby).

▲ Important:

To find the probability that X lies in a range, say between a and b:

$$P(a \leq X \leq b) = \int_a^b f(x) \, dx$$

That is, probability is the area under the PDF curve between a and b.

Properties of a PDF:

- **1.** $f(x) \geq 0$ for all x
- 2. Total area under the curve is 1:

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Summary:

- PDF describes the probability distribution of a continuous random variable.
- Probability for exact values is 0; only ranges have probability (areas under the curve).
- PDF values show where values are more likely to occur.

What is a Cumulative Distribution Function (CDF)?

The CDF of a random variable X tells you:

"What is the probability that X is less than or equal to a certain value x?"

In other words, it accumulates (adds up) all the probabilities up to x.

Definition:

$$F(x)=P(X \le x)$$

Where:

- F(x) is the CDF at value x
- $P(X \le x)$ is the probability that the random variable X is at most x

Example with a Dice:

If *X* is the roll of a fair 6-sided die:

•
$$F(3) = P(X \le 3) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = 0.5$$

So the probability of getting 3 or less is 0.5 (50%).

How CDF looks:

- For discrete variables, the CDF is a step function jumping up at possible values.
- For continuous variables, the CDF is a smooth curve that increases from 0 to

Relation with PDF/PMF:

- For discrete variables, CDF is sum of PMF up to *x*.
- For continuous variables, CDF is the integral of the PDF up to x:

$$F(x) = \int_{-\infty}^x f(t) \, dt$$

Summary:

- CDF gives the probability that a variable is less than or equal to a certain value.
- It "accumulates" probabilities.
- CDF always increases from 0 to 1 as x goes from $-\infty$ to $+\infty$.

🎲 What is a Discrete Random Variable?

A discrete random variable is a type of random variable that can take on specific, separate values — usually whole numbers you can count.

Real-Life Examples:

- Number of heads when you toss 3 coins (can be 0, 1, 2, or 3)
- Number of cars passing a street in one hour (0, 1, 2, 3, ...)
- Roll of a dice (1, 2, 3, 4, 5, or 6)

Key Point:

- Values are countable and often integers.
- No values in between e.g., you can't get 2.5 heads or 3.7 cars.

Summary:

- Discrete random variable = can only take certain specific values.
- Often counts or categories.
- Has a Probability Mass Function (PMF) that tells the probability for each possible value.

What is a Continuous Random Variable?

A continuous random variable can take any value within a range (or interval), including decimals and fractions — basically, infinite possible values.

Real-Life Examples:

- The height of a person (could be 170.2 cm, 170.25 cm, 170.251 cm, etc.)
- The time it takes to run a race (e.g., 12.34 seconds, 12.345 seconds, etc.)
- Temperature in a city (could be any real number within a range)

Key Point:

- The possible values are uncountably infinite.
- You can't list all values because there are infinitely many between any two numbers.
- The probability that the variable takes exactly one specific value is 0 (because infinite values).

How do we find probabilities?

- We use a Probability Density Function (PDF).
- The probability is the area under the curve over an interval, not just a single value.

For example:

$$P(a \leq X \leq b) = \int_a^b f(x) \, dx$$

Summary:

- A continuous random variable can take any value in a range.
- Values are infinite and uncountable.
- Use PDFs to describe probabilities over intervals.

What is a Bernoulli Distribution?

The Bernoulli distribution models a random experiment with only two possible outcomes:

- Success (usually coded as 1)
- Failure (usually coded as 0)

It describes the probability of these two outcomes happening.

🧁 Real-Life Example:

- Tossing a coin:
 - Heads = Success (1)
 - Tails = Failure (0)
- Did a light bulb work?
 - Yes (1) or No (0)

Mathematical Parameters:

- It has one parameter *p* which is the probability of success.
- So:
 - P(X=1)=p
 - P(X=0)=1-p

Probability Mass Function (PMF):

$$P(X = x) = p^x (1 - p)^{1 - x}$$
 for $x = 0$ or 1

Summary:

- Bernoulli distribution models a single yes/no trial.
- p
- *p* = probability of success.
- Useful for simple experiments with two outcomes.

For a Bernoulli random variable X with success probability p:

Mean (Expected Value):

$$E[X]=p$$

Variance:

$$Var(X)=p(1-p)$$

Explanation:

- The mean *p* is just the probability of success.
- The variance p(1-p) measures how much the values (0 or 1) spread around the mean.

Real-Life Applications of Bernoulli Distribution:

- 1. Coin Tossing 🥮
 - Heads = 1 (success), Tails = 0 (failure)
 - A fair coin has
 - p=0.5
 - p=0.5
- 2. Product Quality Check 🧪
 - A product passes = 1
 - A product fails = 0
 - Used in manufacturing to model pass/fail tests.
- 3. Customer Purchase 👘
 - A user sees an ad:
 - Buys the product (1)
 - Doesn't buy (0)
 - Used in marketing and online advertising.
- 4. Medical Test Result 💉
 - Test result is positive (1) or negative (0)

- Helps model individual diagnostic outcomes.
- 5. Website Click (CTR Analysis)
 - A user sees a button:
 - Clicks = 1
 - Doesn't click = 0
 - Used in A/B testing and user behavior tracking.
- 6. Light Bulb Check 💡
 - Bulb works (1) or doesn't work (0)
 - Common in reliability engineering.

Why it's useful:

- Simple: Only two outcomes
- Foundation: It's the building block of the Binomial distribution (which models multiple Bernoulli trials)
- Used in modeling decisions, predictions, and binary outcomes

What is Binomial Distribution?

The Binomial distribution models the number of successes in a fixed number of independent Bernoulli trials (i.e., yes/no outcomes), where the probability of success is the same in each trial.

🧁 Real-Life Examples:

- Tossing a coin 10 times and counting how many times you get heads
- Testing 20 light bulbs and counting how many pass the test
- Asking 100 people if they like pizza and counting how many say "yes"

Conditions for Binomial Distribution:

- 1. Fixed number of trials *n*
- 2. Each trial has two outcomes: success or failure
- 3. Probability of success p is the same every time
- 4. All trials are independent

Probability Mass Function (PMF):

Let $X \sim \text{Binomial}(n,p)$, where:

- n = number of trials
- *p* = probability of success in each trial
- x = number of successes

$$P(X=x)=inom{n}{x}p^x(1-p)^{n-x}$$

Where:

 $\binom{n}{x}$ = "n choose x" = number of ways to choose x successes from n trials

Mean and Variance:

Mean (Expected value):

$$E[X]=np$$

Variance:

$$Var(X)=np(1-p)$$

Real-Life Applications:

- 1. Coin Tossing
 - Number of heads in 100 tosses
- 2. Product Quality Testing
 - Out of 50 items, how many are defect-free?
- 3. Marketing
 - How many users click on an ad out of 1000 impressions?
- 4. Elections
 - How many voters support a candidate in a survey of 200 people?
- 5. Medicine
 - Out of 30 patients given a treatment, how many improve?

What is Geometric Distribution?

The geometric distribution models the number of trials needed to get the first success in repeated independent Bernoulli trials (i.e., yes/no experiments with same success probability each time).

🧁 Real-Life Examples:

- How many times you need to roll a die until you get a 6
- How many people you call until someone answers
- How many defective products you test until you find a working one

Probability Mass Function (PMF):

Let X be the number of trials until the first success, with success probability p. Then:

$$P(X=x) = (1-p)^{x-1} \cdot p \quad ext{for } x=1,2,3,...$$

This means:

- First x-1 trials fail
- The x^{th} trial is a success

Mean and Variance:

Mean (Expected value):

$$E[X] = \frac{1}{p}$$

Variance:

$$\mathrm{Var}(X) = \frac{1-p}{p^2}$$

Real-Life Applications:

- 1. Call Center 📞
 - How many calls before someone picks up?
- 2. Gaming 🎮
 - How many tries until you win a level?
- 3. Manufacturing
 - How many defective items before the first non-defective one appears?
- 4. Job Interviews 💼
 - How many interviews until you get your first offer?
- 5. Online Ads
 - How many users see an ad before the first one clicks?

Key Idea:

The geometric distribution is about "how long until success happens for the first time."

What is Poisson Distribution?

The Poisson distribution models the number of times an event occurs in a fixed interval of time or space, when:

- Events happen independently
- They occur at a constant average rate
- Two events can't happen at exactly the same instant

🧁 Real-Life Examples:

- Number of emails you receive per hour
- Number of calls to a call center in 10 minutes
- Number of typos per page in a book
- Number of accidents at a traffic signal per week
- Number of customers arriving at a store in a minute

Probability Mass Function (PMF):

Let $X \sim Poisson(\lambda)$, where:

- λ = average number of events in the interval
- x = actual number of events observed

$$P(X=x)=rac{\lambda^x e^{-\lambda}}{x!},\quad x=0,1,2,\ldots$$

III Mean and Variance:

Mean (Expected value):

$$E[X]=\lambda$$

Variance:

$$Var(X) = \lambda$$

Yes — in a Poisson distribution, the mean and variance are equal.

Real-Life Applications:

- 1. Customer arrivals
 - Number of people entering a store in an hour
- Traffic flow ____
 - Number of cars passing a toll booth per minute
- Web servers
 - Number of user logins per second

- 4. Natural events 🌋
 - Number of earthquakes in a region per year
- 5. Errors or defects
 - Number of defects on a manufactured item

Key Idea:

Use Poisson distribution when you're counting how often something happens in a fixed space/time and the average rate is known.

@ What is Multinomial Distribution?

The multinomial distribution is a generalization of the binomial distribution — but instead of just two outcomes (like success/failure), you have more than two possible outcomes in each trial.

It models the probability of counts for multiple categories over a fixed number of trials.

Real-Life Example:

Imagine you roll a 6-sided die 10 times:

- Each roll can result in 1, 2, 3, 4, 5, or 6
- You want to know: how many times each number appears in those 10 rolls?

That's a multinomial situation.

Probability Mass Function (PMF):

Let:

- n = number of trials
- k = number of possible outcomes/categories
- $p_1, p_2, ..., p_k$ = probabilities of each category (where $\sum p_i = 1$)
- $x_1, x_2, ..., x_k$ = number of times each outcome occurred (where $\sum x_i = n$)

Then:

$$P(X_1=x_1,...,X_k=x_k)=rac{n!}{x_1!x_2!\cdots x_k!}\cdot p_1^{x_1}p_2^{x_2}\cdots p_k^{x_k}$$

Mean and Variance:

For each outcome i (from 1 to k):

Mean:

$$E[X_i] = n \cdot p_i$$

Variance:

$$\mathrm{Var}(X_i) = n \cdot p_i \cdot (1-p_i)$$

Covariance between different outcomes $i \neq j$:

$$\mathrm{Cov}(X_i,X_j) = -n\cdot p_i\cdot p_j$$

(This makes sense: if one outcome happens more, others must happen less since the total number of trials is fixed.)

▼ Real-Life Applications:

- Dice Rolling **
 - Count how often each number comes up in multiple rolls
- Voting/Surveys **
 - Out of 100 people, how many prefer A, B, or C?
- 3. Genetics 🧬
 - Distribution of multiple alleles in a gene pool
- 4. Marketing
 - Out of 100 customers, how many chose Product A, B, C, etc.
- 5. Natural Language Processing (NLP)
 - Counting the frequency of different word categories (nouns, verbs, adjectives...) in a text

Summary:

Feature	Binomial	Multinomial
Outcomes per trial	2 (success/failure)	More than 2
Trials	Fixed number	Fixed number
Output	Count of successes	Count of occurrences in each class

What is Uniform Distribution?

A uniform distribution is one where every outcome is equally likely.

There are two types:

1. Discrete Uniform Distribution

Finite number of values (e.g., rolling a fair die)

2. Continuous Uniform Distribution

Infinite values in a range (e.g., choosing a random number between 0 and 1)

Formulas:

1. Discrete Uniform Distribution

Let X take on values $x_1, x_2, ..., x_n$ all with **equal probability**.

PMF (Probability Mass Function):

$$P(X=x_i)=rac{1}{n} \quad ext{for each } i=1,2,...,n$$

Mean:

$$E[X] = rac{x_1 + x_2 + \cdots + x_n}{n}$$

Or for values 1, 2, ..., n:

$$E[X] = \frac{n+1}{2}$$

Variance:

$$\operatorname{Var}(X) = rac{(n^2-1)}{12}$$

2. Continuous Uniform Distribution

Let $X \sim U(a,b)$ (uniformly distributed between a and b)

PDF (Probability Density Function):

$$f(x) = rac{1}{b-a} \quad ext{for } a \leq x \leq b$$

Mean:

$$E[X] = rac{a+b}{2}$$

Variance:

$$\mathrm{Var}(X) = rac{(b-a)^2}{12}$$

Real-Life Applications:

Discrete Uniform:

- 1. Dice Rolls 🎲 Fair die has 1 to 6, all equally likely
- 2. Lottery = Choosing numbers randomly with equal chance
- 3. Shuffling Cards 🐩 Any card has equal chance of being first

Continuous Uniform:

- Random Time Selection Picking a time randomly between 2 PM and 3 PM
- 2. Simulations Generating random numbers in computer models

Key Idea:

- Uniform = flat probability no outcome is favored.
- It's the simplest distribution and forms the base for generating random numbers.

What is Exponential Distribution?

The exponential distribution models the time between events in a process where events happen continuously and independently at a constant average rate.

It is often used when you ask:

"How long until the next event?"

Real-Life Examples:

- Time until the next customer arrives at a store
- Time between two earthquakes
- Time until a light bulb burns out
- Time between incoming calls at a call center

Probability Density Function (PDF):

Let $X \sim \text{Exponential}(\lambda)$, where:

• $\lambda > 0$ is the rate parameter (average number of events per unit time)

Then the PDF is:

$$f(x)=\lambda e^{-\lambda x},\quad ext{for } x\geq 0$$

Mean and Variance:

Mean (Expected value):

$$E[X] = rac{1}{\lambda}$$

Variance:

$$\mathrm{Var}(X) = rac{1}{\lambda^2}$$

Cumulative Distribution Function (CDF):

$$F(x)=P(X\leq x)=1-e^{-\lambda x},\quad x\geq 0$$

Real-Life Applications:

- 1. Queueing Theory 🛒
 - Time between arrivals of customers
- 2. Reliability Engineering $\stackrel{1}{\searrow}$
 - Time until a machine part fails
- 3. Telecommunications 📞
 - Time between incoming calls or messages
- 4. Physics/Nature
 - Time between radioactive particle emissions
- Web Analytics
 - Time between clicks or page views on a website

🧠 Key Idea:

- Use exponential distribution when you're modeling the waiting time until the next event, and events occur randomly but steadily over time.
- It is memoryless, meaning:
- $P(X>s+t \mid X>s)=P(X>t)$
- $P(X>s+t \mid X>s)=P(X>t)$
- (Past waiting time doesn't affect the future a unique and useful property!)

@ What is Normal Distribution?

The normal distribution (also called the Gaussian distribution) is a bell-shaped curve that describes how values of a random variable are distributed around the mean.

It's used when data tends to cluster around a central value with symmetrical spread.

🔑 Key Features:

- Symmetrical about the mean
- Mean = Median = Mode
- Most values lie close to the mean, fewer far away
- Defined for continuous random variables

Probability Density Function (PDF):

Let $X \sim N(\mu, \sigma^2)$, where:

- μ = mean (center of the curve)
- σ^2 = variance (spread of the curve)
- σ = standard deviation

Then the PDF is:

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Mean and Variance:

Mean (Expected value):

$$E[X] = \mu$$

Variance:

$$Var(X) = \sigma^2$$

🧁 Real-Life Applications:

- 1. Human Heights 👪
 - Heights of people follow a normal distribution
- 2. Test Scores 📝
 - SAT, IQ, or exam scores are often normally distributed
- 3. Manufacturing Quality Control 🔅
 - Variations in product size, weight, or strength
- 4. Finance 💸
 - Returns on investment often assume normal distribution (though imperfect)
- 5. Measurement Errors \
 - Errors in physical or lab measurements tend to be normally distributed

1 68-95-99.7 Rule (Empirical Rule):

For a normal distribution:

- ~68% of values lie within $\mu \pm 1\sigma$
- ~95% within $\mu \pm 2\sigma$
- ~99.7% within $\mu \pm 3\sigma$

This makes it super useful in statistics and decision-making.

Related Concepts:

Standard Normal Distribution:

A special case where $\mu=0$ and $\sigma=1$

You can convert any normal distribution to standard normal using:

$$Z = rac{X - \mu}{\sigma}$$

Mhat is the Central Limit Theorem (CLT)?

The Central Limit Theorem says that if you take a large number of random samples from any population, the distribution of the sample means will approximately follow a normal distribution, no matter what the shape of the original population is.

🔑 Key Points:

- You take samples (of size *n*) from a population.
- Compute the mean of each sample.
- As the number of samples increases (or as n gets large), the distribution of these means:
 - Looks like a bell curve (normal distribution)
 - Has mean = population mean μ
 - Has **standard deviation** = $\frac{\sigma}{\sqrt{n}}$ (called the **standard error**)

🧁 Simple Real-Life Analogy:

Imagine measuring the average height of groups of 30 students across many classes. Even if the overall student population has a weird or uneven height distribution, the distribution of the averages from each class will form a nice bell curve.

Why Is CLT Important?

- It allows us to use normal distribution for inference (confidence intervals, hypothesis testing) even when the population is not normal.
- Forms the foundation of many statistical techniques.

Conditions for CLT to Apply:

- 1. Independent samples
- 2. Sample size n is large enough (usually $n \ge 30$ is good)
- 3. Finite mean and variance of the population

III Summary:

Concept	Explanation
Applies to	Sample means (or sums)
Shape of resulting distribution	Approximately normal
	Equal to population mean
Mean of sample means	μ
	μ
	σn
Std dev of sample means	n
	σ
Importance	Lets us apply normal tools to any data

What is Conditional Probability?

Conditional probability is the probability of an event happening given that another event has already occurred.

In other words:

"What's the chance of A happening, if I already know that B has happened?"

📐 Formula:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

- $P(A \mid B)$: Probability of A given B
- $P(A\cap B)$: Probability that **both A and B** happen
- P(B): Probability that B happens

(As long as P(B)>0)

Real-Life Example:

Let's say:

- You have a deck of 52 playing cards.
- You know that the card you picked is a red card (so it's either ♥ or ♦ 26 cards).
- What's the probability that it's a heart (♥)?

Mormally, chance of ♥ is:

$$P(Heart)=13/52=1/4$$

But now you know it's red, so:

That's conditional probability!

Why Is It Useful?

- Medical testing: Probability of disease given a positive test
- Spam filters: Probability a message is spam given certain words
- Weather forecasting: Chance of rain given cloudy skies
- Risk analysis: Likelihood of failure given past problems

Key Idea:

Conditional probability updates your belief once you know something extra.

® What is Bayes' Theorem?

Bayes' Theorem helps you update your probability estimate for an event based on new information or evidence.

In other words, it tells you:

"Given some evidence B, what is the probability of cause A?"

Formula:

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

Where:

- $P(A \mid B)$ = **Posterior probability** probability of A after seeing B
- $P(B \mid A)$ = Likelihood probability of seeing B given A is true
- P(A) = Prior probability initial probability of A before seeing B
- P(B) = Marginal probability total probability of B

Real-Life Example:

Imagine you have a medical test for a disease:

- *A*: person has the disease
- *B*: test is positive

You want to find $P(A \mid B)$ — the chance that the person actually has the disease given that the test came back positive.

Bayes' theorem lets you combine:

How often people actually have the disease (prior)

- How accurate the test is (likelihood)
- How often the test is positive overall (marginal)

to find the true chance of having the disease if the test is positive.

Why Is Bayes' Theorem Useful?

- In medical diagnosis
- In spam filtering
- In machine learning and Al
- In decision making under uncertainty

Key Idea:

Bayes' theorem helps you update your beliefs rationally when you get new data.

The formula for conditional probability is:

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

Where:

- ullet $P(A\mid B)$ = Probability of event A **given** event B has occurred
- $P(A \cap B)$ = Probability that **both A and B** occur
- ullet P(B) = Probability of event B (and P(B)>0)