Australian Phenotyping Platforms: the Phenomics Ontology Driven Data Repository (PODD)

Dr Xavier Sirault

Research Team Leader | Plant imaging and image analysis Co-project Leader | Phenomics Informatics and Modelling Tools

CSIRO Plant industry / High resolution plant phenomics centre

www.csiro.au

Crop Ontology and Phenotyping Data Interoperability Workshop Montpellier (3rd April 2014)

Managing Phenomics data from multiple heterogeneous, high volume, high resolution data generation platforms

PODD Workflow

Managing Data workflow

PODD Events

- Event created in PODD for each set of images from a platform
- Pots linked to images using events
- Pots currently linked to:
 - Genus, species, genotypes
 - Planting date
- Pots will be linked to more events in future:
 - Watering
 - Client reviews

Ontology of events (co-implementation)

Dr Pascal Neveu (INRA - MISTEA)
Mr Alexandre Mairin (INRA - MISTEA)

Modelling phenomics metadata with PODD ontologies

In the PODD Ontology we model every thing as objects:

- Experiments (Investigations)
- Plants (Materials)
- Treatments
- Environments
- Measurement Platforms
- Temporal Events
- •Raw Data (Data)

We then define the relationships between objects:

- Investigation has Material
- Material has Observations
- Material references Genotype
- Data references Material

PODD ontologies

Model domain objects as ontological objects Base ontology: domain independent Phenomics ontology: domain specific

PODD Object Model

Objects represented semantically

- raptured in Resource Description
 Framework triples (subject-predicateobject)using concepts defined in Web
 Ontology Language, named using version
 Internationalised Resource Identifier
- > overall goal to allow for federated SPARQL queries acrossPODD instances to reuse existing plant phenomics data whereever possible (this is implemented, but datasets are small so far)
- Flexible integration of all project management data for a research group in a single PODD instance using the most relevant schema ontologies in each project
- similar SPARQL queries across all artifacts, regardless of the schema ontologies currently used (results limited by the practicality of the query for the particular schema ontologies in use)

PODD in summary

Quality

Semantic and structural Linked data both correct and complete

Flexibility

Controlled, optional migration of data (different physical RDF database instances for each set of schema being used - unique to PODD)

Based on OWL Version IRIs and OWL Imports (import other ontologies and tell which version to import)

Performance

Scales by OWL performance for updating Scales by SPARQL performance for querying

Acknowledgements

Co-Authors

Adjunct Prof. Robert Furbank
Dr Peter Ansell

Colleagues

Mr Kutila Gunasekera
Dr Pascal Neveu
Mr Alexandre Mairin

