Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3215	_К работе допущен
Студент <u>Ва</u>	сильков Д.А., Лавренов Д.А.	_ Работа выполнена
Преподават	гель Тимофеева Э.О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №4.11

"Определение основных характеристик дифракционной решётки"

1. Цели работы.

1. Изучить характеристики дифракционной решётки.

2. Задачи, решаемые при выполнении работы.

- 1. Провести измерения угловых координат зеленой и синей линий для первого порядка спектра. Повторить измерения трижды.
- 2. Рассчитать среднее значение угла дифракции для каждой из линий. Зная длину волны зеленой линии, рассчитать период дифракции, а также количество штрихов на 1мм ширины решетки.
- 3. Двумя способами рассчитать угловую дисперсию. Сравнить полученные значения.
- 4. Найти полное число штрихов решетки, рассчитать разрешающую способность решетки в спектре рассматриваемого порядка.
- 5. Вывести формулу для расчета погрешности определения периода решетки. Вычислить абсолютную и относительную ошибки расчета периода решетки.

3. Объект исследования.

Лабораторная установка, состоящая из ртутной лампы, осветительный коллиматора, дифракционной решётки и зрительной трубы.

4. Метод экспериментального исследования.

Получение экспериментальных данных угловых координат зеленой и синей линии в первом порядке спектра с помощью гониометра и нониуса.

5. Рабочие формулы и исходные данные.

1	$\varphi = \frac{N_2 - N_1}{2}$	Угол дифракции		
2	$d\sin\varphi = m\lambda$	Условие возникновения главных интерференцион- ных максимумов решётки		
3	$n=\frac{1}{d}$	Число штрихов, нанесённых на 1 мм ширины решётки		
4	$D = \frac{d\varphi}{d\lambda} = \frac{\Delta\varphi}{\Delta\lambda}$	Угловая дисперсия решётки		
5	$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi}$	Угловая дисперсия решётки		
6	R = mN	Разрешающая способность решётки		

6. Измерительные приборы.

Nº	Наименование	Тип прибо-	Используемый диапа-	Погрешность прибо-	
IND	Паименование	ра	зон	ра	
1	Гониометр	Аналоговый	0°-360°	30"	

7. Схема установки.

8. Результаты прямых измерений и их обработки.

Таблица 1. Ширина решётки 36 ± 0,5 мм.

	φ_1	φ_2	φ_3	$oldsymbol{arphi}_{cp}$	m
$N_{1}^{\it зел}$	19°20′	19°20′	19°40′	19°26′	2
N_1^{cuh}	15°40′	15°20′	15°20′	15°26′	1
$N_{2}^{ m 3e}$	42°20′	42°00′	42°00′	42°06′	4
$N_{2}^{ m cuh}$	32°20′	32°20′	32°20′	32°20′	3

$$\varphi_{cp}^{3en} = \frac{N_2^{3en}(\varphi_1) - N_1^{3en}(\varphi_1)}{2} = 42 \circ 06' - 19 \circ 26' = 11 \circ 40'$$

$$\varphi_{cp}^{\it cuh} \! = \! \frac{N_2^{\it cuh}\!\left(\varphi_1\right) \! - \! N_1^{\it cuh}\!\left(\varphi_1\right)}{2} \! = \! 3\,2\,{}^{\circ}\,20\,{}^{\prime} \! - \! 15\,{}^{\circ}\,26\,{}^{\prime} \! = \! 8\,{}^{\circ}\,46\,{}^{\prime}$$

$$d = \frac{m \lambda_{3en}}{\sin \varphi_{cn}^{3en}};$$
 $m = 2;$ $\lambda_{3en} = 546$ нм; $d = 0,006$ мм

$$n = \frac{1}{d} = \frac{1}{0.006} = 181 \,\text{M}\,\text{M}^{-1}$$

$$D_1 = \frac{d\varphi}{d\lambda} = \frac{\left|\tan\varphi_{cp}^{\text{3e}n}\right|}{\lambda_{\text{3e}n}} = \frac{\left|\tan 11^{\circ}40'\right|}{5,46*10^{-7}} = 369295,548 \text{ M}^{-1}$$

$$D_2 = \frac{d\varphi}{d\lambda} = \frac{m}{d|\cos\varphi_{co}^{3eq}|} = \frac{2}{5.5*10^{-6}*|\cos 11^{\circ}40'|} = 369295,548 \text{ M}^{-1}$$

$$\Delta D = |D_2 - D_1| = |369295,548 - 369295,548| = 0 \text{ M}^{-1}$$

$$N=nL$$
; $L=36 \text{ MM}$; $N=6516,17$

$$R=mN=2*6516,17=13032,35$$

9. Расчет погрешностей измерений.

$$\Delta_{d} = \lambda_{sen} \frac{\Delta \sin \varphi_{cp}^{sen}}{\sin \varphi_{cp}^{sen}} = \lambda_{sen} \frac{\sin \varphi_{cp}^{sen} \cos \varphi_{cp}^{sen}}{\sin^{2} \varphi_{cp}^{sen}} = 2,7*10^{-6} \text{ MM;}$$

10. Окончательные результаты.

$$\varphi_{cp}^{\scriptscriptstyle 3eA} = 11\,^{\circ}\,40\,^{\prime}$$

$$d = 0,006 \text{ MM}$$

$$n = 181 \text{MM}^{-1}$$

$$D_1 = 369295,548 \text{ m}^{-1}$$

$$D_2 = 369295,548 \text{ m}^{-1}$$

$$N = 6516, 17$$

$$R = 13032,35$$

11. Выводы и анализ результатов работы.

Исследованы основные характеристики дифракционной решетки: рассчитан период решетки и количество штрихов на миллиметр. Угловая дисперсия решетки определена двумя методами. Найдено общее количество штрихов и разрешающая способность решетки. Также вычислены погрешности для периода решетки.

Приложение — 600 ммм / мм и сме

Таблица 1: Ширина решетки (600 ± 0) мм

	φ_1	φ_2	φ_3	$arphi_{cp}$	m
$N_1^{ m 3e}$ л	19,20	19,20	19,40		\$2
N_1^{cuh}	(S+(2.20)	15,20	15,20		1
$N_2^{ m 3e}$ л	42,20	42	42		4
N_2^{cuh}	32,20	32,20	32,20		3

Baumbrob, Nabyenel & 194.79 11325 20.05.29