第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

6.2 数的定点表示和浮点表示

- 一、定点表示
- 二、浮点表示
 - -1. 浮点数的表示形式
 - -2. 浮点数的表示范围
 - -3. 浮点数的规格化形式
 - -4. 浮点数的规格化
- 三、举例
- 四、IEEE 754 标准

6.2 数的定点表示和浮点表示

小数点按约定方式标出

一、定点表示

$$S_f$$
 $S_1S_2\cdots S_n$ 或 S_f $S_1S_2\cdots S_n$ 数 数值部分 小数点位置 小数点位置

定点机 小数定点机 整数定点机 原码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 补码 $-1 \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$ 反码 $-(1-2^{-n}) \sim +(1-2^{-n})$ $-(2^n-1) \sim +(2^n-1)$

6.2 数的定点表示和浮点表示

- 一、定点表示
- 二、浮点表示
 - -1. 浮点数的表示形式
 - -2. 浮点数的表示范围
 - -3. 浮点数的规格化形式
 - -4. 浮点数的规格化
- 三、举例
- 四、IEEE 754 标准

二、浮点表示

- 为什么在计算机中要引入浮点数表示?
- 浮点表示的格式是什么?
- 尾数和阶码的基值必须是2吗? 基值的影响?
- 表数范围与精度和哪些因素有关?
- 为什么要引入规格化表示?
- 目前浮点数表示格式的标准是什么?

二、浮点表示

- 为什么要引入浮点数表示
 - -编程困难,程序员要调节小数点的位置;
 - 数的表示范围小,为了能表示两个大小相差很大的数据,需要很长的机器字长;
 - 例如:太阳的质量是0.2*10³⁴克,一个电子的质量大约为0.9*10⁻²⁷克,两者的差距为10⁶¹以上,若用定点数据表示: 2*>10⁶¹,解的, x>203位。
 - 数据存储单元的利用率往往很低。

二、浮点表示

6.2

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 尾数的基值 计算机中 r 取 2、4、8、16 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$ 计算机中 S 小数、可正可负

i 整数、可正可负

2015/6/9

1. 浮点数的表示形式

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j_f和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

n = 10

上溢 阶码 > 最大阶码 下溢 阶码 < 最小阶码 按 机器零 处理

 $-2^{-(2^{m}-1)} \times 2^{-n}$ $-2^{-15} \times 2^{-10}$

43

练习

6.2

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

: 如果是定点数15 位二进制数可反映 ±3 万之间的十进制数

满足 最大精度 可取 m = 4, n = 18

3. 浮点数的规格化形式

6.2

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数r越大,可表示的浮点数的范围越大基数r越大,浮点数的精度降低

例如: 设
$$m=4$$
, $n=10$, $r=2$

6.2

尾数规格化后的浮点数表示范围

最大负数
$$2^{-1111} \times (-0.1000000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

最小负数
$$2^{+1111} \times (-0.1111111111)$$
 $= -2^{15} \times (1-2^{-10})$ $10 \uparrow 1$

三、举例

6.2

例 6.13 将 + 19/128 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符),尾数规格化。

解: 设 $x = + \frac{19}{128}$

二进制形式 x = 0.0010011

定点表示

x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中

 $[x]_{\text{ff}} = [x]_{\text{ff}} = [x]_{\text{ff}} = 0.0010011000$

浮点机中

 $[x]_{\mathbb{R}} = 1,0010; 0.1001100000$

 $[x]_{36} = 1, 1110; 0.1001100000$

 $[x]_{\text{F}} = 1,1101; 0.1001100000$

例 6.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

解: 设x = -58

二进制形式 x = -111010

定点表示 x = -0000111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

浮点机中

 $[x]_{\text{ff}} = 1,0000111010$ $[x]_{\text{ff}} = 0,0110; 1.1110100000$

 $[x]_{\nmid \mid} = 1, 1111000110$ $[x]_{\nmid \mid} = 0, 0110; 1.0001100000$

 $[x]_{\mathbb{K}} = 1, 1111000101$ $[x]_{\mathbb{K}} = 0, 0110; 1.0001011111$

 $[x]_{\text{mb}} = 1,0110; 1.0001100000$

机器零

6.2

- ▶ 当浮点数 尾数为 0 时,不论其阶码为何值 按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如 m=4 n=10

当阶码和尾数都用补码表示时,机器零为

 $\times, \times \times \times \times; \quad 0.00 \quad \cdots \quad 0$

(阶码 = -16) 1, 0 0 0 0; ×.×× ··· ×

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

有利于机器中"判0"电路的实现

四、IEEE 754 标准

6.2

S	阶码(含阶符)	尾	数
数符	小数	点位置	

尾数为规格化表示

非 "0" 的有效位最高位为 "1" (隐含)

	符号位S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

哈尔滨工业大学 刘宏伟