TRAINING DEEP Q-NETWORK FOR STOCHASTIC PROCESS ENVIRONMENTS

Gerald He

April 27th, 2023

PART I: FLAPPY BIRD ENVIRONMENT

FLAPPY BIRD ENVIRONMENT

- I Observation: The position of the bird
- 2 Actions: The bird goes up and down
- Reward: +I each time when the bird passes through the pipe
- Done: When the bird crashes at the pipe
- Note: The initial reward is 101 in the hard mode

Chen, Kevin. 2017

MY FIRST DQN

```
class DQN(nn.Module):
    # DEFINE THE SPECIAL INIT METHOD
    def init (self, features, hidden, output):
       super(DQN, self).__init__()
        self.linear1 = nn.Linear(features, hidden[0])
        self.linear2 = nn.Linear(hidden[0], hidden[1])
        self.linear3 = nn.Linear(hidden[1], output)
    # DEFINE THE FORWARD METHOD
    def forward(self, x):
       out = F.relu(self.linear1(x))
       out = F.relu(self.linear2(out))
       y pred = self.linear3(out)
       return y pred
```

RESULT


```
BATCH_SIZE = 128
GAMMA = 0.99
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
TAU = 0.005
LR = 1e-4
HIDDEN = 64
MEMORY = 50000
```

```
Episode 1: Cumulative Reward = 116
Episode 2: Cumulative Reward = 228
Episode 3: Cumulative Reward = 179
Episode 4: Cumulative Reward = 143
Episode 5: Cumulative Reward = 137
Episode 6: Cumulative Reward = 174
Episode 7: Cumulative Reward = 174
Episode 8: Cumulative Reward = 212
Episode 9: Cumulative Reward = 107
Episode 10: Cumulative Reward = 121
Episode 11: Cumulative Reward = 174
Episode 12: Cumulative Reward = 148
Episode 13: Cumulative Reward = 103
Episode 14: Cumulative Reward = 226
Episode 15: Cumulative Reward = 154
Episode 16: Cumulative Reward = 156
Episode 17: Cumulative Reward = 108
Episode 18: Cumulative Reward = 190
Episode 19: Cumulative Reward = 137
Episode 20: Cumulative Reward = 187
Average Reward over 20 Episodes = 158.70
```

The actual score is 57.70

COMPARE TO REFERENCE

Average Score

7.11.01.01.90								
Game difficulty	Human	Baseline (flap every n)	DQN (easy)	DQN (medium)	DQN (hard)			
Easy	Inf	Inf	Inf	Inf	Inf			
Medium	Inf	Inf	0.7	Inf	Inf			
Hard	21	0.5	0.1	0.6	82.2			

Highest Score Achieved

Game difficulty	Human	Baseline (flap every n)		DQN (medium)	DQN (hard)
Easy	Inf	Inf	Inf	Inf	Inf
Medium	Inf	11	2	Inf	Inf
Hard	65	1	1	1	215

Chen, Kevin. 2017

Any Differences Between Two Environments?

Enhanced DQN With Drop-out Layers

```
class enhancedDQN(nn.Module):
   def init (self, n features, hidden, n actions, p=0.1):
        super(enhancedDQN, self). init ()
        self.fc1 = nn.Linear(n features, hidden[0])
        self.drop1 = nn.Dropout(p)
       self.fc2 = nn.Linear(hidden[0], hidden[1])
        self.drop2 = nn.Dropout(p)
        self.fc3 = nn.Linear(hidden[1], n actions)
   def forward(self, x):
       x = F.relu(self.drop1(self.fc1(x)))
       x = F.relu(self.drop2(self.fc2(x)))
       x = self.fc3(x)
       return x
    def init weights(self):
        for m in self.modules():
           if isinstance(m, nn.Linear):
               nn.init.kaiming uniform (m.weight, nonlinearity='relu')
               nn.init.constant (m.bias, 0.1)
```

BETTER OUTCOME


```
BATCH_SIZE = 256

GAMMA = 0.99

EPS_START = 0.99

EPS_END = 0.01

EPS_DECAY = 1000

TAU = 0.005

LR = 1e-4

HIDDEN = 256

MEMORY = 50000
```

```
Episode 1: Cumulative Reward = 506
Episode 2: Cumulative Reward = 396
Episode 3: Cumulative Reward = 210
Episode 4: Cumulative Reward = 285
Episode 5: Cumulative Reward = 1394
Episode 6: Cumulative Reward = 358
Episode 7: Cumulative Reward = 1024
Episode 8: Cumulative Reward = 212
Episode 9: Cumulative Reward = 211
Episode 10: Cumulative Reward = 804
Episode 11: Cumulative Reward = 139
Episode 12: Cumulative Reward = 211
Episode 13: Cumulative Reward = 728
Episode 14: Cumulative Reward = 2320
Episode 15: Cumulative Reward = 1805
Episode 16: Cumulative Reward = 1098
Episode 17: Cumulative Reward = 876
Episode 18: Cumulative Reward = 876
Episode 19: Cumulative Reward = 1765
Episode 20: Cumulative Reward = 802
Average Reward over 20 Episodes = 801.00
```

The actual score is 701.00

PART 2: STOCHASTIC PROCESS WITH STOCK TRADING SIMULATION

- What is the relationship between the Flappy Bird and stock price?
- A stochastic process is a mathematical model that describes the evolution of a random system over time. It involves the study of the probability distribution of a sequence of random variables.

$$\frac{dS}{S} = \mu \ dt + \sigma \ dW_t.$$

VIX Index from 2018 to Today

BACK TO FLAPPY BIRD ENVIRONMENT


```
class StockBirdEnv(gym.Env):
                                                                      # Calculate the distance from the ideal trajectory
                                                                      distance = np.abs(price tick - self.trajectory[self.steps])
    def init (self):
         # Define observation space (single continuous V
                                                                      if price tick > self.trajectory[self.steps]:
         self.observation space = spaces.Box(low=0, high
                                                                          reward = distance
                                                                          reward = -distance
         # Define action space (discrete with 3 actions)
         self.action space = spaces.Discrete(3)
                                                                      # Update the cumulative reward
                                                                       self.reward += reward
         # Set initial reward and step count
                                                                      # Update the state with the new observation
                                                                       observation = np.array([price tick])
         self reward = 100
         self steps = 0
                      FLAPPY BIRD STOCK ENVIRONMENT
                                                                                                                  ctionary
         self fig = plt.figure(figsize=(5, 3), dpi=100)
    def reset(selt):
                                                                   def render(self, mode='human'):
         # Reset the environment to its initial state
                                                                      # Clear the figure and plot the ideal trajectory and the bird's position
                                                                      self.fig.clf()
         self.reward = 100
                                                                      plt.plot(self.trajectory[:self.steps+1], color='gray')
         self.steps = 0
                                                                      plt.plot(self.steps, self.state[0], 'ro', markersize=10)
         self.trajectory = np.random.normal(loc=0, scale
                                                                      plt.title('Stock Bird Environment')
                                                                      plt.xlabel('Time Step')
         # Return the initial state as an observation
                                                                      plt.ylabel('Price Tick')
         observation = np.array([0])
                                                                      plt.ylim([-5, 5])
                                                                      plt.xlim([0, 1000])
         self.state = observation
                                                                                                                    14
         return observation
                                                                      # Show the plot
                                                                      plt.show()
```

MY TRADING ENVIRONMENT

- Initial state: \$IM cash balance
- 4 Observations:
 - The current price of the stock
 - The current value of the account.
 - The current position of the account (how many stocks the account holds)
 - The current cash balance of the account
- 3 Actions: Buy/Sell stock or hold
- Reward: The total profit made by trading
- Done: When the time comes to an end (1700 steps total)
- Data: 20 stocks with the highest trading volume from 2017 to 2020

DQN DESIGN

```
class DQN(nn.Module):
                                                                             def forward(self, state):
   def init (self, lr, input dims, fc1 dims, fc2 dims, n actions):
                                                                                  state.to(self.device)
      super(DQN, self).__init__()
                                                                                  x = self.fc1(state.to(torch.float32))
      self.lr = lr
      self.input dims = input dims
                                                                                  x = F.relu(x)
      self.fc1 dims = fc1 dims
                                                                                  x = self.fc2(x)
      self.fc2 dims = fc2 dims
                                                                                  x = F.relu(x)
      self.n_actions = n_actions
                                                                                  actions = self.fc3(x)
                                                                                  return actions
      self.fc1 = nn.Linear(*self.input dims, self.fc1 dims)
      self.BN1 = nn.BatchNorm1d(fc1 dims)
       self.drop1 = nn.Dropout(p)
                                                                               def init weights(self):
      self.fc2 = nn.Linear(self.fc1 dims, self.fc2 dims)
                                                                                  for m in self.modules():
       self.drop2 = nn.Dropout(p)
      self.BN2 = nn.BatchNorm1d(fc2 dims)
                                                                                       if isinstance(m, nn.Linear):
      self.fc3 = nn.Linear(self.fc2 dims, self.n actions)
      self.optimizer = optim.Adam(self.parameters(), lr=lr)
                                                                        nn.init.kaiming uniform (m.weight,
      self.loss = nn.MSELoss()
                                                                        nonlinearity='relu')
                                                                                            nn.init.constant (m.bias, 0.1)
      self.device = torch.device('cuda:0' if torch.cuda.is available() else
'cpu')
      self.to(self.device)
```

BATCH_SIZE = 256 GAMMA = 0.99 EPS_START = 0.9 EPS_END = 0.01 EPS_DECAY = 2000 TAU = 0.005 LR = 1e-4 HIDDEN = 256 MEMORY = 100000

20 episodes average profit: 10854882.156452134

RESULT

BACKTEST CLASS

- I am still working on testing the policy in the real world using real-time data.
- Currently using the Alpha Vantage API to test the "strategy".

REFLECTION

- 1. Use convolutional layers to play the rendering environment like a human.
- 2. Improve the performance of the trading environment by exploring additional strategies and techniques.
- 3. Add more observations to the trading environment, such as trading volume, financial reports, and other relevant data.
- 4. Enable the agent to trade multiple stocks simultaneously with customized trading volumes. This will allow for more diverse and sophisticated trading strategies.

CONCLUSION

- Reinforcement learning enables researchers to create data freely and at low cost, instead of gathering and labeling data expensively as in supervised learning.
- Drop-layer, batchnorm, and enhanced activation functions make DQN more effective in high-precision environments, such as stochastic processes.
- Even in information-missing environments, a well-trained agent can still find a way to solve the problem.

CITATION AND SOURCE

- Chen, Kevin. *Deep Reinforcement Learning for Flappy Bird Stanford University*. 2017, https://cs229.stanford.edu/proj2015/362_report.pdf.
- Chuchro, Robert, and Deepak Gupta. Game Playing with Deep Q-Learning Using Openai Gym. 2017, http://cs231n.stanford.edu/reports/2017/pdfs/616.pdf.
- He, Kaiming, et al. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification." 2015 IEEE International Conference on Computer Vision (ICCV), 2015, https://doi.org/10.1109/iccv.2015.123.

THANK YOU!

Any questions?