Comp Sci, January 17,2023

Deep learning: NN (FFNN) important ingredients

- Universal approx theorem
- NN architecture (Mode ()
 - _ # hidden lagers and
 - # modes/nearons
 - activation functions
- Cost/coss function & optimization
 - Type of Loss Junction
 - regulantation
 - _ Gradient methods
 - SGD, tathe, epochs

Example of linear regrassion /classification.

consider two mepats x1, x2

$$X = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_1 = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_2 = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_2 = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_3 = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_4 = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_2 = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$x_4 = \begin{bmatrix} x$$

$$Z = x_1 w_1 + x_2 w_2 + b$$

$$T(Z) = x_1 w_1 + x_2 w_2 + b = y$$

$$data set ti$$

$$yi = T(x_1 j \Theta) = x_1 w + b$$

$$g_{\lambda}' = \nabla(x_{\lambda}') \ominus) = x_{\lambda}w + b$$

$$w^{T} = [w_{\lambda}, w_{Z}]$$

$$G = \{w_{\lambda}, b\}$$

X_{i}	Xz) t
0	0	O
0	1	1
l	0	1
1		1

$$X = \left\{ \begin{bmatrix} 0, 0 \end{bmatrix}, \begin{bmatrix} 0, 1 \end{bmatrix}, \begin{bmatrix} 1, 0 \end{bmatrix}, \begin{bmatrix} 1, 0 \end{bmatrix} \right\}$$

$$\begin{cases} x_{2} \\ 1 \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{7} \\ y_{7}$$

Think of
a line fit
$$y = x_1w_1 + x_2w_2 + b$$

 $= x^Tw + b$

\times_{ι}	XZ	6
0	0	0
0	1	1
L	, 0	1
11	1	\mathcal{O}

Linear Regression;

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} w, \\ wr \end{bmatrix} + L = 9 = 0$$

$$\begin{bmatrix} c & 1 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} + \ell = 4 = 1$$

$$[10] [w_1] + k = 9 = 1$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} -\omega_1 \\ w_2 \end{bmatrix} + \ell = g = 1$$

$$if \quad g > 1/2 \quad then \quad G = 1$$
else
$$g = 0$$

 $\frac{\times OR}{2} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix}$

=> Single perceptron

model (no hidden lager)

fails in regnaduraina)

data which a non-hima

description.

Adding hidden lager

XOR-gate

Fram input to hidden lager

$$\begin{bmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{bmatrix} \times_{\mathbf{I}}$$

W·X

h = { h, hz} = output pom hidden notes

$$h = \sigma^{h}(x; W, b) = \sigma^{h}(x; \epsilon)$$

$$b^{T} = [b_{1}, b_{2}]$$

h needs an activation

T(2); Rectified linear aut : Relu

2 = W.x + b

h = T(Wx+b) = T(z)

other activation functions

- Sigmoice
$$\sqrt{(z)} = \frac{1}{1+e^{-z}}$$

$$\nabla(z) = \nabla(z)(1 - \nabla(z))$$

$$\nabla'(z) = 0 = 7$$
vanishing
$$z \quad \text{gradients}$$

$$\frac{7}{4}(-\theta_1, \theta_2)$$

-
$$tamh$$
: $T(z) = tamh(z)$

$$T'(z) = 1 - (tamh(z))^{2}$$

$$z \in (-1, 1)$$

- Leaky ReLU ;
$$\nabla(z) = \begin{cases} \alpha_{1}z & z \leq 0 \\ z & 3 > 0 \end{cases}$$

$$\nabla'(z) = \begin{cases} \alpha & z \leq 0 \\ 1 & z \geq 0 \end{cases}$$

XOR-gate

From training of a newal

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$L^{4} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

weights from hadden to output

$$X = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 2}$$

$$\times \cdot W + b = \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$h = T(xwtb) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$

maltiply with w =>

$$\mathcal{G} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \mathbf{t} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Gemeral FFNN ama Basic algorithm

- 1 Feed Forward stage with a given number of hidden lager, moder and T(Z), with randomly mitights and weights and biases
 - produces an output which
 use feed in to a cast
 function and compare
 with the targets t-
- 2 Back propagation stage. Creverse mode un autamatic différentiation)
 - algorithm (Back propagation algo)
 to calculate gradients
 of weights & biases.
 - Use gradient descent to train weights & liasar
- 3 repeat 1 and 2 till scare is acceptable

Back propagation algo ; hidden lagar output lager Impat = weights for lager l connecting with l-1 out put facu mode Jin lager l a, e = Te (= je)

Define a cost function.

Example 15 MSE $C(\dot{e}) = \frac{1}{2} \sum_{i=1}^{n} (g_i - t_i)^2$ Typical activation function $q_i^2 = \sqrt{(z_i^2)} = \frac{1}{1+e^{-z_i^2}}e$