Пусть m=2 \Rightarrow известны два сигнала $S_1(t)$ и $S_2(t)$. Пусть априорные вероятности появления этих сигналов равны, т.е. $P(H_1) = P(H_2) = 0.5$. Тогда

$$P_{OUU} = 0.5 \left[P(\gamma_1 | H_2) + P(\gamma_2 | H_1) \right] = \min.$$

Из формулы(2.32) имеем: если $\sum_{i=1}^n y_i (S_{1i} - S_{2i}) - 0.5(E_1 - E_2) > 0 \Rightarrow$ принимаем решение γ_I (на входе приемника присутствует сигнал S_{1i}); или в непрерывном времени: если $\int_0^T y(t) [S_I(t) - S_2(t)] dt - 0.5(E_1 - E_2) > 0 \Rightarrow$ принимаем решение γ_I о присутствии сигнала $S_1(t)$.

По гипотезе Н₁:

$$y(t) = S_{I}(t) + \eta(t) \Rightarrow \int_{0}^{T} (S_{I}(t) + \eta(t)) [S_{I}(t) - S_{2}(t)] dt - 0.5 (E_{I} - E_{2}) =$$

$$= \int_{0}^{T} S_{I}(t) [S_{I}(t) - S_{2}(t)] dt + \int_{0}^{T} \eta(t) [S_{I}(t) - S_{2}(t)] dt - 0.5 (E_{I} - E_{2}) = \zeta + 0.5 E_{9} \Rightarrow$$

$$P(\gamma_{2} | H_{I}) = P\{\zeta < -0.5 E_{9} | H_{I}\}, \ \zeta \sim N(0; \sigma_{\zeta}^{2}),$$

$$\sigma_{\zeta}^{2} = M \left(\int_{0}^{T} \eta(t) [S_{I}(t) - S_{2}(t)] dt\right)^{2} = \int_{0}^{T} M(\eta(t))^{2} [S_{I}(t) - S_{2}(t)]^{2} dt = \sigma_{\eta}^{2} E_{9},$$

где $E_{_9} = \int\limits_0^t \left[S_{_I}(t) - S_{_2}(t) \right]^2 dt$ -энергия разностного сигнала, М — оператор мат. ожидания, $\sigma_{_\eta}^2 = \frac{N_0}{2}$. ФПВ случайной величины ζ - гауссовская:

$$w_{\zeta}(x) = \frac{1}{\sqrt{2\pi\sigma_{\zeta}}} e^{\frac{x^2}{2\sigma_{\zeta}^2}} \Rightarrow$$

$$P(\gamma_{2}|H_{1}) = \int_{-\infty}^{-0.5E_{3}} \frac{1}{\sqrt{2\pi\sigma_{\zeta}}} e^{-\frac{x^{2}}{2\sigma_{\zeta}^{2}}} dx = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0.5E_{3}} e^{-\frac{V^{2}}{2}} dV = \frac{1}{\sqrt{2\pi}} \int_{0.5E_{3}}^{\infty} e^{-\frac{V^{2}}{2}} dV,$$

была проведена замена переменной: $V = \frac{-x}{\sigma_{\xi}} \Rightarrow dV = \frac{-dx}{\sigma_{\xi}}$,