# BIG DATA ASSIGNMENT 3 REPORT

Nathalie Uwamahoro CMU\_AFRICA

# **BIG DATA ASSIGNMENT 3 REPORT**

# **QUESTION 1 TO QUESTION 5 D**

To solve question 1 until question 5 d. I followed the instruction to do each question as they instruct.

The Required created layers and tables were saved in ARCGIS in VMWARE horizon client.

For more proof, please check the uploaded ARCGIS folder.

# **QUESTION 5 e.**

To visualize the map the following map was created in ARCGIS



## **Noting where the brightness occurs**

# By referring to Rwanda google map



The brightness occurs in the city of Kigali and nearby cities in the country side.

## Do they make sense

Yes, the brightness make sense because the brightest spot occurs in Kigali city where the development and socio economic are high.

# **QUESTION 5.F, G, H**

By following the instructions listed in the assignment. I have created the necessary table to use to the next questions. Please for more details, check the ARCGIS folder.

## **QUESTION 6: ANALYZING THE DATA**

# **6.a Loading the MP assignment data**

The following data was logged into Python.

# The following table is a sample of MPI assignment data:

|     | Prov_ID | Province    | Dist_ID | District   | Sect_ID | Sector     | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi   |
|-----|---------|-------------|---------|------------|---------|------------|----------------|--------------|---------------|---------------|-------|
| FID |         |             |         |            |         |            |                |              |               |               |       |
| 0   | 1       | Kigali City | 11      | Nyarugenge | 1101    | Gitega     | 101.297202     | 30758        | 0.064         | 0.412         | 0.027 |
| 1   | 1       | Kigali City | 11      | Nyarugenge | 1102    | Kanyinya   | 85.060422      | 19802        | 0.282         | 0.445         | 0.126 |
| 2   | 1       | Kigali City | 11      | Nyarugenge | 1103    | Kigali     | 133.991142     | 26452        | 0.212         | 0.434         | 0.092 |
| 3   | 1       | Kigali City | 11      | Nyarugenge | 1104    | Kimisagara | 161.933015     | 62266        | 0.081         | 0.409         | 0.033 |
| 4   | 1       | Kigali City | 11      | Nyarugenge | 1105    | Mageregere | 49.415699      | 23144        | 0.369         | 0.430         | 0.159 |

# 6.b plotting histogram of each features and the dependent variables.



## 6.i Are the variables normally distributed

# Histogram of nightlight sum:

As seen from its graph, the data are skewed to the right, so it is not a normal distribution.

## Histogram for landscan\_pop:

It is not normal distribution since its distribution is skewed to the right.

Histogram for mpi\_headcount is not also a normal distribution as there is not any symmetry in its graph.

## Histogram of mpi\_intensity:

By vision the distribution is almost a normal distribution, but not a perfect bell curve hence this histogram is not normal distribution.

# Histogram of mpi:

This histogram is not normal distribution because there is no symmetry in the data as the graph shows.

## 6.c. Create a scatter plots of the mpi vs each feature



## 6.c.i. Relationship between each explanatory variable and dependent variable

mpi with mpi\_headcount scatter plot is the only linear relationship that is clearly visible from the graph. However, other scatter plot for other variables the relationship is not linear.

# 6.c. ii. Are there significant outliers

Yes, in every scatter plot. They are significant outliers.

Blue circles are the examples of the outliers in different plots, because they are away of other dots in the plotted graph.









# 6.d. Calculation of the correlation between:

- X vs y
- log X vs y
- X vs log y
- log X vs log y v

case i : correlation between x and y

|                | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi       |
|----------------|----------------|--------------|---------------|---------------|-----------|
| nightlight_sum | 1.000000       | 0.447506     | -0.470580     | -0.196437     | -0.449116 |
| landscan_pop   | 0.447506       | 1.000000     | -0.050481     | 0.070575      | -0.035350 |
| mpi_headcount  | -0.470580      | -0.050481    | 1.000000      | 0.690300      | 0.994479  |
| mpi_intensity  | -0.196437      | 0.070575     | 0.690300      | 1.000000      | 0.754426  |
| mpi            | -0.449116      | -0.035350    | 0.994479      | 0.754426      | 1.000000  |

# Case ii: correlation between log x and y

|                | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi       |
|----------------|----------------|--------------|---------------|---------------|-----------|
| nightlight_sum | 1.000000       | 0.447506     | -0.470580     | -0.196437     | -0.449116 |
| landscan_pop   | 0.447506       | 1.000000     | -0.050481     | 0.070575      | -0.035350 |
| mpi_headcount  | -0.470580      | -0.050481    | 1.000000      | 0.690300      | 0.994479  |
| mpi_intensity  | -0.196437      | 0.070575     | 0.690300      | 1.000000      | 0.754426  |
| mpi            | -0.449116      | -0.035350    | 0.994479      | 0.754426      | 1.000000  |

# Case iii: x vs log y

|                | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi       |
|----------------|----------------|--------------|---------------|---------------|-----------|
| nightlight_sum | 1.000000       | 0.494108     | -0.552686     | -0.373522     | -0.638927 |
| landscan_pop   | 0.494108       | 1.000000     | -0.193782     | -0.036433     | -0.223342 |
| mpi_headcount  | -0.552686      | -0.193782    | 1.000000      | 0.750575      | 0.942200  |
| mpi_intensity  | -0.373522      | -0.036433    | 0.750575      | 1.000000      | 0.769113  |
| mpi            | -0.638927      | -0.223342    | 0.942200      | 0.769113      | 1.000000  |

# Case iv .log x vs log y

|                | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi       |
|----------------|----------------|--------------|---------------|---------------|-----------|
| nightlight_sum | 1.000000       | 0.447506     | -0.470580     | -0.196437     | -0.449116 |
| landscan_pop   | 0.447506       | 1.000000     | -0.050481     | 0.070575      | -0.035350 |
| mpi_headcount  | -0.470580      | -0.050481    | 1.000000      | 0.690300      | 0.994479  |
| mpi_intensity  | -0.196437      | 0.070575     | 0.690300      | 1.000000      | 0.754426  |
| mpi            | -0.449116      | -0.035350    | 0.994479      | 0.754426      | 1.000000  |

# v. Which are the strongest correlations for each feature.

| Original feature | <b>Selected feature from this case</b> | <b>Strongest correlation</b> |
|------------------|----------------------------------------|------------------------------|
|                  |                                        |                              |
| nightlight sum   | x vs logy                              | -0.638927                    |
| landscan_pop     | X vs log y                             | -0.223342                    |
| mpi_headcount    | Log x vs logy, log x vs y, x and y     | 0.994479                     |
| mpi_intensity    | x vs log y                             | 0.769113                     |

## **Question 7**

Creation of final features

7.a.i creation of nightlight\_per\_capita

nightlight\_per\_capita = nightight\_sum / landscan\_pop

The following is the sample of the data created:

|     | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi   | nightlight_per_capita | population_density |
|-----|----------------|--------------|---------------|---------------|-------|-----------------------|--------------------|
| FIE | )              |              |               |               |       |                       |                    |
| (   | 101.297202     | 30758        | 0.064         | 0.412         | 0.027 | 0.003293              | 3.556028e+08       |
| 1   | 85.060422      | 19802        | 0.282         | 0.445         | 0.126 | 0.004296              | 1.040623e+07       |
| 2   | 133.991142     | 26452        | 0.212         | 0.434         | 0.092 | 0.005065              | 1.116131e+07       |

# 7.a. ii. Creation of population density

population \_density = landscan\_pop / area

|     | nightlight_sum | landscan_pop | mpi_headcount | mpi_intensity | mpi   | nightlight_per_capita | population_density |
|-----|----------------|--------------|---------------|---------------|-------|-----------------------|--------------------|
| FID |                |              |               |               |       |                       |                    |
| 0   | 101.297202     | 30758        | 0.064         | 0.412         | 0.027 | 0.003293              | 3.556028e+08       |
| 1   | 85.060422      | 19802        | 0.282         | 0.445         | 0.126 | 0.004296              | 1.040623e+07       |
| 2   | 133.991142     | 26452        | 0.212         | 0.434         | 0.092 | 0.005065              | 1.116131e+07       |

## 7.b. Plotting histograms for each recreated feature and the dependent variables



The above histogram shows that nightlight\_per\_capita data is not normally distributed. Instead, the graph is skewed to the right.

# Histogram for population density



The histogram for population density is not normal distribution.

# Histogram for dependent variable



This graph is fairly a normal distribution. Hence it is not a normal distribution because there is no symmetry in its graph.

# 7.c. calculation of the following correlation

# i. X vs y

|                       | nightlight_per_capita | population_density | mpi       |
|-----------------------|-----------------------|--------------------|-----------|
| nightlight_per_capita | 1.000000              | 0.370426           | -0.546978 |
| population_density    | 0.370426              | 1.000000           | -0.487136 |
| mpi                   | -0.546978             | -0.487136          | 1.000000  |

# ii. log X vs y

i

|                       | nightlight_per_capita | population_density | mpi       |
|-----------------------|-----------------------|--------------------|-----------|
| nightlight_per_capita | 1.000000              | 0.431585           | -0.605358 |
| population_density    | 0.431585              | 1.000000           | -0.617437 |
| mpi                   | -0.605358             | -0.617437          | 1.000000  |

# iii. X vs log y

| nightlight_per_capita | population density | mpi |
|-----------------------|--------------------|-----|
| ggp                   | P-P                |     |

| nightlight_per_capita | 1.000000  | 0.370426 -0.660497 |
|-----------------------|-----------|--------------------|
| population_density    | 0.370426  | 1.000000 -0.66828  |
| mpi                   | -0.660497 | -0.668281 1.000000 |

# iv. log X vs log y

|                       | nightlight_per_capita | population_density | mpi       |
|-----------------------|-----------------------|--------------------|-----------|
| nightlight_per_capita | 1.000000              | 0.431585           | -0.638304 |
| population_density    | 0.431585              | 1.000000           | -0.745331 |
| mpi                   | -0.638304             | -0.745331          | 1.000000  |

# v. Which are the strongest correlations for each feature?

| Original variables    | Selected variables for each | Strongest Correlation |  |  |
|-----------------------|-----------------------------|-----------------------|--|--|
|                       | <u>feature</u>              | coefficient           |  |  |
| nightlight per capita | Logy x data, case iii       | -0.660497             |  |  |
| Population_density    | log x and logy ,case iv     | -0.745331             |  |  |

## **QUESTION 8**

The strongest correlations from Q7 are:

- Nightlight \_per capita
- Log of population density

Building model by using backwise-stepwise, ridge regression, and elastic nets

# Back wise stepwise

Table that shows the P value for each feature

|                       | coef     | std err | t       | P> t  | [0.025  | 0.975]  |
|-----------------------|----------|---------|---------|-------|---------|---------|
| population_density    | 0.0270   | 0.000   | 65.676  | 0.000 | 0.026   | 0.028   |
| nightlight_per_capita | -14.8427 | 1.127   | -13.174 | 0.000 | -17.057 | -12.628 |

## Are the features significant

The levels where the variables are significant

Yes, since the p value of all features are less than significant level. Hence all features are statistically significant All features are significant at 0.05 significant level.

#### The p\_value of the whole model

By using print(stats.coef\_pval(Model,SelectedExplanarVars,y))

# The overall p-value of the stepwise model is 2.22044605e-16 and it is significant level at 0.05.

#### Ridge regression

#### Coefficients:

```
Estimate Std. Error t value p value _intercept 0.716943 0.040212 17.8291 0.0 x1 -0.078335 0.001128 -69.4202 0.0 x2 -8.602184 0.957748 -8.9817 0.0 --- R-squared: 0.48171, Adjusted R-squared: 0.47920 F-statistic: 191.92 on 2 features
```

### At 0.05 level

#### Are the values significant:

yes ,all values are significant since their values are zero which less than 0.05 significant level.

#### The P-value of the overall model

The overall p-value of the stepwise model is 2.22044605e-16 and it is significant level at 0.05.

### Elastic nets

#### 

No, all variables are not significant at 0.05.

X2 which is **logarithm of population density** is not significant for elastic model, because its p values is greater than 0.05.

The P value for the elastic model

0.12257377. This value is not statistically significant.

### **QUESTION 9**

#### Evaluate the model by using Lasso

By using Lasso cross validation estimates the log Yhat.

The sample values of the estimated log mpi is as follow:

```
array([-1.50953564, -0.99212808, -1.03392861, -1.40959851, -0.80215317, -1.59207851, -1.30565927, -1.21998273, -1.65835294, -1.43682069, -0.97001496, -1.21996007, -0.77751629, -1.33211044, -1.00494553, -0.91231141, -1.491587, -1.66107454, -1.43798058, -1.28116993, -1.09778899, -0.84830447, -1.55690933, -0.9704822, -0.7735689, -0.96805061, -1.26271746, -1.46305238, -1.39304392, -1.29463283, -1.42030768, -1.32657223, -0.94574101, -1.4584176, -1.4497833, -0.96921713, -0.75079374, -0.71192333, -0.72435469, -0.78297225, -0.811974, -0.74614513, -0.74601055, -0.71114087, -0.71398472, -0.74943065, -0.72344375, -0.72908673, -0.82544135, -0.7595134, -0.74686043, -0.7400909, -0.73291238, -0.76050952, -0.7560647, -0.81240834, -0.72646613, -0.91200291, -0.72512394, -0.74253314, -0.76038427, -0.53839183, -0.624444884, -0.58988611, -0.71037935, -0.71336235, -0.76501676, -0.5583333, -0.74944095, -0.67354689, -0.73603931, -0.71583483, -0.71323356, -0.78855373, -0.69879669,
```

## 9.b.Calculate the correlation of log yhat to logy

# The correlation coefficient obtained is approximately 0.83792371.

## What this value tell us:

Is that all explanatory variables used are the best candidates to build and predict the model.

The calculated correlation is good close to 1.

## 9.c. What does this R-squared tell us

0.7 R-squared shows that 70% of the observed variance can be observed by the model's input. In addition, since the model R-squared is close to 1. Probably, the model is predicting the log mpi very well.

## **QUESTION 10**

## Add the estimated MPI in the MPIassignment.xlsx then in ARCGIS

Please refer to the uploaded data to check for this step.

10.a. Loading sectors table\$ in dataset MP Assignment.



Selecting layer by following the instructions given on the Piazza.

# Creation and selecting layer for sector\_2012 actual mpi.



# Creation and selecting layer for estimated values.



# Question 10.c:

Style it by using symbology.

And select 10 Quantiles for exact sector layer

Case 1: for actual mpi values



Case2: Sector \_boundaries for estimated mpi



10.d. Spot the similarities between two maps

They are some similarities, even though, they are not enough.

Following points represent the similarities between two maps:

- The west part of Rwanda near Cyangungu, Rusizi the nightlight is approximately zero.
- More light is in Kigali city due to many businesses and socio economic activities.
- There is no nightlight to places such as Akagera, National park of Rwanda.