

Module 7

Memory Mapping

Port Mapped I/0

How its accessed

Memory Mapped I/0

Address space for I/O devices

Address space for Memory

Memory Mapped I/O

How its accessed

Memory Mapping in STM32

GPIO Register Mapping

Datasheet

• PG - 50

7-Segment Display

Types of 7-Segment Display

Common Anode

Common Cathode

Pin Outs

Shift Register – 74HC595

Types of 7-Segment Display

LAB - 1

Drive 7-Segment display using STM32 through shift register

Pin Connections

Pseudo Code

- 1. Init
 - SERIN = 0
 - SRCLK = 0
 - RCCLK = 0

- 2. Setting the data pin
 - SERIN = 1

• 3 Creating the clock

- SRCLK = 0
- Delay(1) in ms
- SRCLK = 1
- Delay(1) in ms
- SRCLK = 0
- SERIN = 0

• 4 Setting the output latch

- RCLK = 0
- Delay(1) in ms
- RCLK = 1
- Delay(1) in ms
- RCLK = 0

GitHub Repo

Code Snippets – Shift Register Write


```
void ShiftRegister WriteByte(uint8 t data)
     for (int i = 0; i < 8; i++) {
         // Write the bit to SERIN
         if (data & 0x80) {
             HAL GPIO WritePin(SERIN GPIO Port, SERIN Pin, GPIO PIN SET); // Send 1
         } else {
             HAL GPIO WritePin(SERIN GPIO Port, SERIN Pin, GPIO_PIN_RESET); // Send 0
         data <<= 1;
         // Pulse the SRCLK (Shift Clock)
         PulsePin(SRCLK GPIO Port, SRCLK Pin);
     // Pulse the RCLK (Latch Clock) to output data to the parallel pins
     PulsePin(RCLK GPIO Port, RCLK Pin);
void PulsePin(GPIO TypeDef *port, uint16 t pin)
    HAL GPIO WritePin(port, pin, GPIO_PIN_SET);
    HAL Delay(1); // Short delay
    HAL GPIO WritePin(port, pin, GPIO_PIN_RESET);
```