Sistemas de Aquisição de Dados e Interface Laboratório de Microcontroladores Protocolo Serial e UART

Professor Carlos Alberto de Souza Filho 16 de dezembro de 2023

1 Protocolo de Comunicação Serial

1.1 Objetivo

Proporcionar que o aluno aprenda a utilizar o recurso da UART do microcontrolador, além de compreender e desenvolver um protocolo de comunicação simples baseado em caracteres ASCII.

1.2 Desenvolvimento

Crie um *firmware* para o TM4C1294 capaz de identificar um protocolo de comunicação baseado em caracteres ASCI, utilizando a interface RS232, que contenha os campos ilustrados na Figura 1.

Figura 1: Quadro de mensagens do protocolo

Os caracteres usados para início e fim devem ser T e V. Para endereço pode ser qualquer número entre 0 e 9. O campo referente ao comando especifica qual ação deve ser realizada pelo nó ao receber a mensagem. O campo de Dados contém a informação adicional do valor referente a um comando enviado. As mensagens existentes no protocolo estão descritas na Tabela 1.2.

Tabela 1: Comandos Utilizados no Protocolo

Descrição	Mensagem	Resposta enviada
Leitura do valor da vazão	TeRFxV	(x=1 ou 2) Vazão=
Leitura do valor do nível	TeRLV	Nível=
Acionamento da Bomba 1	TeB1xV	B1 ligada(x=1)
		B1 desligada(x=0)
Acionamento da Bomba 2	TeB2xV	B2 ligada(x=1)
		B2 desligada(x=0)
Mudança de rotação de B1	TeSB1xxxV	Rotação B1= xxx %
Mudança de rotação de B2	TeSB2xxxV	Rotação B2= xxx %
Mudança da referência	TeSRCxxxV	Referência= xxx
Seleção de Estado	TeSExV	Estado Automático (x=A)
		Estado Manual (x=M)
Mudança de KP	TeSKPxxxV	Kp = xxx
Mudança de Ti	TeStixxxV	Ti = xxx
Mudança de Td	TeStdxxxV	Td = xxx
Mudança de th	TeSthxxxV	h=xxx

Ao receber o comando por meio da porta serial, o microcontrolador deve enviar como resposta a mensagem descrita na Tabela 1.2. Na coluna referente à mensagem o valor de **e** é o endereço do nó, que deve ser entre 0 a 9. Deve-se no *firmware* atribuir um endereço ao nó por meio de uma variável, de forma que o nó só deve responder ao comando quando o endereço enviado for igual ao atribuído.

Para o comando de mudança de rotação o valor da rotação deve ser entre 0 a 100%, representado na tabela como xxx.

O firmware implementado no microcontrolador dever ser capaz de identificar uma mensagem válida de acordo com o quadro estipulado, além de separar a informação correspondente ao endereço e ao comando recebido em duas variáveis distintas

Sempre que receber um novo caractere de início deve-se reiniciar o armazenamento da mensagem independente de ter finalizado o anterior.

Deve-se detectar quando exceder um número maior do que o estipulado para o quadro através de uma variável de erro.

A taxa de comunicação utilizada deve ser 19200 b
ps para uma frequência do microcontrolador de 120 MHz.