Завдання №18

- 1. Поєднання технічних та організаційних заходів для захисту ОІД;
- 2. Ідеологія та приклади реалізації інформаційної атаки з використанням ВЧ нав'язування;
- 3. Фільтрування інформаційних сигналів. Приклади та характеристики фільтруючих пристроїв;
- 4. Віброакустичне маскування.
- 1. Поєднання технічних та організаційних заходів для захисту ОІД; Організаційні заходи:
- обмеження доступу в приміщення, де знаходиться об'єкт захисту
- Використання сертифікованих ТЗПІ і ДТЗС
- введення територіальних, частотних, енергетичних, просторових і часових обмежень
- Відключення від ліній зв'язку під час проведення секретних засобів
- встановлення контрольованої зони навколо об'єкту; т. . .

Технічні заходи:

- встановлення технічних засобів та систем обмеження і контролю доступу.
- встановлення діелектричних вставок у всі комунікації що мають вихід за межі K3;
- звукоізолювання приміщень.
- заземлення ТЗПІ і екранів їх з'єднувальних ліній;
- просторове електромагнітне зашумлення з використанням генераторів шуму або створення прицільних завад

- лінійне зашумлення ліній електроживлення;
- створення акустичних і вібраційних завад з використанням генераторів акустичного шуму шумотронів.
- спеціальна перевірка виділених приміщень
- та ін
- 2. Ідеологія та приклади реалізації інформаційної атаки з використанням ВЧ нав'язування;

ВЧ-нав'язування не є актуальною загрозою, проте в майбутньому зможе наносити суттєвий збиток державним і комерційним структурам. Ідея загрози нав'язування полягає у формуванні направленого спеціального електромагнітного імпульсу з метою примусового дистанційного запису вірусної програми у пам'ять ЕОМ. При цьому в пам'яті ОЗП можлива активізація вірусного коду безпосередньо як у момент його нав'язування, так і у будь який інший момент вибраний зловмисником, в такому випадку шкідливий код буде записано на жорсткий диск ПК.

Як правило, для захисту телефонних апаратів використовують пристрої, котрі об'єднують фільтр та обмежувач. Це пристрої типу "Экран", "Гранит-8" і "Гранит-10", "Корунд", "Грань-300" та і

3. Фільтрування - метод локалізації небезпечних сигналів, в технічних засобах та системах обробки інформації. Існують розділяючі трансформатори і завадоподавляючі фільтри.

Завадоподавляючі фільтри

Діляться на ФНЧ і ФВЧ, полосові і загороджувальні. ВОНИ пропускаЮТЬ без послаблення сигнали з робочого діапазону частот при ослабленні усіх складових за межами цього діапазону.

Розділяючі трансформатори

Забезпечують розв'язування первинного та вторинного ланцюгів по сигналам наведень. Вони ослаблюють симетричні наведення в ланцюгу вторинних кіл, розділяють за ланцюгами живлення джерела та рецептори наведень, а також усувають асиметричні наведенння;

Приклади та характеристики

Основні характеристики завадоподавляючих фільтрів

Наара успантаристии	Тип фільтру					
Назва характеристик	ФП-1	ФП-2	ФП-3	ФП-4	ФП-5	ФП-6
Кількість дротів	2	2	2	2	2	2
Номінальний струм, А	2,5	4,0	4,0	4,0 10,0	0 20,0	
Номінальна напруга (фаза- заземлення), В -постійного струму -змінного струму 50 Гц -змінного струму 400 Гц	500 22	250 110 60	220 5	000 500 220	500 50 220 11	
Згасання, що заноситься, дБ	60					
Маса, кг	2,5	2,5	4,5	4,5	4,5	4,5
Габаритні розміри, мм -довжина -ширина -висота (товщина)	350 100 60	350 100 60	430 150 60	430 150 80	150 1	30 50 80
Різьба труби патрубка, дюйм	S	S	SSS		S	

4. Віброакустичне маскування.

Системи віброакустичного зашумления призначені для запобігання прослуховування приміщення шляхом створення шумової смуги звукових частот. Відноситься до активного методу захисту. Система складається, як правило, з генератора шуму та комплекту акустичних

і вібраційних випромінювачів. Генератори формують акустичні завади. Для формування шумових сигналів використовують вакуумні, газорозрядні, напівпровідникові та інші елементи, а також цифрові пристрої.

Приклади:

Мобільний генератор акустичного шуму "РІАС-2ГМ"

Признаений для захисту інформації з обмеженим доступом на об'єктах інформаційної діяльності від її витоку акустичним та віброакустичним каналами шляхом генерації шумового сигналу (шумової завади)

Пристрій захисту "Базальт-4ГА"

Призначений для генерації шумових сигналів при використанні у складі технічних засобів активного захисту мовної інформації від витоку акустичним і віброакустичним каналами