
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2012; month=1; day=25; hr=9; min=7; sec=31; ms=11;]

Reviewer Comments:

<210> 70

<211> 174

<212> PRT

<213> Oerskovia jenensis

<400> 70

(ERRORED PORTION SHOWN BELOW)

Thr Asn Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Leu Ala

115 120 125

Please remove the blank lines between the above amino acid numbers and their respective amino acids: amino acid numbers must appear directly below their amino acids.

<210> 125

<211> 189

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus sequence

(ERRORED PORTION SHOWN BELOW)

<220>

<221> VARIANT

<222> 1, 8-16, 24, 35, 36, 38, 39, 41-44, 48, 61-64, 66, 67, 69-71, 81, 87, 89, 93, 109-111, 113, 116

<223> Xaa can be any naturally occurring amino acid

The above "<222>" line exceeds the Sequence Rules' required 72-character line limit; please insert a hard return after "69-71,"; that way, the remaining response will move to the next line. See below for sample:

<220>

<221> VARIANT

<222> 1, 8-16, 24, 35, 36, 38, 39, 41-44, 48, 61-64, 66, 67, 69-71, 81, 87, 89, 93, 109-111, 113, 116

<223> Xaa can be any naturally occurring amino acid

<210> 134

<211> 340

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic

<400> 134

(ERRORED PORTION SHOWN BELOW)

Val Asn Glu Arg Gly Glu Gln Val Gln Leu Lys Gly Met Ser Ser His

50 55

Please remove the blank lines between the above amino acid numbers and their respective amino acids. Amino acid numbers must appear directly below their amino acids.

<210> 639

<211> 255

<212> PRT

<213> Streptogrisin C

Regarding the above "<213> Streptogrisin": per Sequence Rules, the only valid "<213>" responses are: the Genus species of the organism,
"Artificial Sequence", or "Unknown". "Artificial Sequence" and
"Unknown" require an explanation in the "<220>-<223>" section; please clearly indicate the source of the genetic material. "Streptogrisin" also appears in subsequent sequences (as the "<213>" response).

<210> 640

<211> 185

<212> PRT

<213> Streptogrisin B

<400> 640

(see below)

Gly Phe Asn Val Arg Ser Gly Ser Thr Tyr Tyr Phe Leu Thr Ala Gly

20 25 30

Please check the above "<213>" response: as indicated in Sequence 639 above, the only valid "<213>" responses are: the Genus species of the organism, "Artificial Sequence", or "Unknown". "Artificial Sequence" and "Unknown" require explanation in the "<220>-<223>" section. Please remove the blank lines between the above amino acid numbers and their respective amino acids; amino acid numbers must appear directly below their amino acids.

<210> 642

<211> 188

<212> PRT

<213> Streptogrisin D

<400> 642

(see below)

Gly Gln Ala Val Thr Arg Ser Gly Ser Thr Thr Gln Val His Asp Gly

100 105 110

Please check "Streptogrisin" as the above "<213>" response. Please remove the blank lines between the above amino acid numbers and their amino acids. Amino acid numbers must appear directly below their amino acids.

To correct the sequence listing errors noted in this report - The recommended method for correction of errors is to access the sequence listing working file using the software program in which the listing was originally prepared, e.g., the project file in PatentIn, make any necessary corrections within that program, then generate a new sequence listing file. Use of a word processing program to correct errors directly in the original sequence listing file is strongly discouraged, since such programs often introduce unintended changes to the sequence listing, rendering the listing unacceptable. When the working file or original program is not available for correction, then use of a common or plain text-only editor, such as NotePad, to edit the original sequence listing file may suffice.

Validated By CRFValidator v 1.0.3

Application No: 10576331 Version No: 2.0

Input Set:

Output Set:

Started: 2012-01-24 13:57:36.425

Finished: 2012-01-24 13:57:58.381

Elapsed: 0 hr(s) 0 min(s) 21 sec(s) 956 ms

Total Warnings: 605

Total Errors: 28

No. of SeqIDs Defined: 656

Error code	Error Description								
W 402	Undefined organism found in <213> in SEQ ID (1)								
W 402	Undefined organism found in <213> in SEQ ID (2)								
W 402	Undefined organism found in <213> in SEQ ID (3)								
W 402	Undefined organism found in <213> in SEQ ID (4)								
W 402	Undefined organism found in <213> in SEQ ID (5)								
W 402	Undefined organism found in <213> in SEQ ID (6)								
W 402	Undefined organism found in <213> in SEQ ID (7)								
W 402	Undefined organism found in <213> in SEQ ID (8)								
W 402	Undefined organism found in <213> in SEQ ID (9)								
W 213	Artificial or Unknown found in <213> in SEQ ID (10)								
W 213	Artificial or Unknown found in <213> in SEQ ID (11)								
W 402	Undefined organism found in <213> in SEQ ID (12)								
W 402	Undefined organism found in <213> in SEQ ID (13)								
W 213	Artificial or Unknown found in <213> in SEQ ID (14)								
W 213	Artificial or Unknown found in <213> in SEQ ID (15)								
W 213	Artificial or Unknown found in <213> in SEQ ID (16)								
W 213	Artificial or Unknown found in <213> in SEQ ID (17)								
W 402	Undefined organism found in <213> in SEQ ID (18)								
W 402	Undefined organism found in <213> in SEQ ID (37)								
W 402	Undefined organism found in <213> in SEQ ID (38)								

Input Set:

Output Set:

Started: 2012-01-24 13:57:36.425

Finished: 2012-01-24 13:57:58.381

Elapsed: 0 hr(s) 0 min(s) 21 sec(s) 956 ms

Total Warnings: 605

Total Errors: 28

No. of SeqIDs Defined: 656

Error code		Error Description
W	402	Undefined organism found in <213> in SEQ ID (40)
W	213	Artificial or Unknown found in <213> in SEQ ID (45)
W	213	Artificial or Unknown found in <213> in SEQ ID (46)
W	213	Artificial or Unknown found in <213> in SEQ ID (47)
W	213	Artificial or Unknown found in <213> in SEQ ID (48)
W	213	Artificial or Unknown found in <213> in SEQ ID (49)
W	213	Artificial or Unknown found in <213> in SEQ ID (50)
W	213	Artificial or Unknown found in <213> in SEQ ID (51)
W	213	Artificial or Unknown found in <213> in SEQ ID (52)
W	402	Undefined organism found in <213> in SEQ ID (61)
W	402	Undefined organism found in <213> in SEQ ID (62)
W	402	Undefined organism found in <213> in SEQ ID (65)
W	402	Undefined organism found in <213> in SEQ ID (66)
W	402	Undefined organism found in <213> in SEQ ID (69) This error has occured more than 20 times, will not be displayed
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (70)
W	213	Artificial or Unknown found in <213> in SEQ ID (79)
W	213	Artificial or Unknown found in <213> in SEQ ID (80)
W	213	Artificial or Unknown found in <213> in SEQ ID (81)
W	213	Artificial or Unknown found in <213> in SEQ ID (82)
W	213	Artificial or Unknown found in <213> in SEQ ID (83)
W	213	Artificial or Unknown found in <213> in SEQ ID (84)

Input Set:

Output Set:

Started: 2012-01-24 13:57:36.425

Finished: 2012-01-24 13:57:58.381

Elapsed: 0 hr(s) 0 min(s) 21 sec(s) 956 ms

Total Warnings: 605
Total Errors: 28

No. of SeqIDs Defined: 656

Error code		Error Description
E	341	'Xaa' position not defined SEQID (125) POS (170)
E	341	'Xaa' position not defined SEQID (125) POS (171)
E	341	'Xaa' position not defined SEQID (125) POS (172)
E	341	'Xaa' position not defined SEQID (125) POS (173)
E	341	'Xaa' position not defined SEQID (125) POS (174)
E	341	'Xaa' position not defined SEQID (125) POS (175)
E	341	'Xaa' position not defined SEQID (125) POS (176)
E	341	'Xaa' position not defined SEQID (125) POS (177)
E	341	'Xaa' position not defined SEQID (125) POS (178)
E	341	'Xaa' position not defined SEQID (125) POS (179)
E	341	'Xaa' position not defined SEQID (125) POS (180)
E	341	'Xaa' position not defined SEQID (125) POS (181)
E	341	'Xaa' position not defined SEQID (125) POS (182)
E	341	'Xaa' position not defined SEQID (125) POS (183)
E	341	'Xaa' position not defined SEQID (125) POS (184)
E	341	'Xaa' position not defined SEQID (125) POS (185)
E	341	'Xaa' position not defined SEQID (125) POS (186)
E	341	'Xaa' position not defined SEQID (125) POS (187)
E	341	'Xaa' position not defined SEQID (125) POS (188)
E	341	'Xaa' position not defined SEQID (125) POS (189) This error has occured more than 20 times, will not be displayed
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (134)

Input Set:

Output Set:

Started: 2012-01-24 13:57:36.425

Finished: 2012-01-24 13:57:58.381

Elapsed: 0 hr(s) 0 min(s) 21 sec(s) 956 ms

Total Warnings: 605
Total Errors: 28

No. of SeqIDs Defined: 656

Err	or code	Error Description
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (640)
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEOID (642)

SEQUENCE LISTING

```
<110> Jones, Brian E.
      Kolkman, Marc
      Leeflang, Chris
      Oh, Hiroshi
      Poulose, A.J.
      Sadlowski, Eugene S.
      Shaw, Andrew
      van der Kleij, Wilhelmus A.H.
      van Marrenwijk, Leo
<120> Serine Proteases, Nucleic Acids Encoding Serine Enzymes and
      Vectors and Host Cells Incorporating Same
<130> GC819-2-US/B
<140> 10576331
<141> 2012-01-24
<150> PCT/US2004/039066
<151> 2004-11-19
<150> US 60/523,609
<151> 2003-11-19
<160> 656
<170> PatentIn version 3.2
<210> 1
<211> 1680
<212> DNA
<213> Cellulomonas strain 69B4
<400> 1
gegegetgeg cecaegaega egeegteege egttegeegg egtaeetgeg ttggeteaee
                                                                     60
acceaceaga tegaceteea taacgaggee gtatgaceag aaagggatet geeacegeee 120
accagcacgc tectaacete egageacegg egacegeegg gtgegatgaa agggaegaac
                                                                    180
cgagatgaca ccacgcacag tcacgcgggc cctggccgtg gccaccgcag ccgccacact
                                                                   240
cctggcaggc ggcatggccg cccaggccaa cgagcccgca ccacccggga gcgcgagcgc
                                                                    300
                                                                   360
accgccacgc ctggccgaga agctcgaccc cgacctcctc gaggccatgg agcgcgacct
gggcctcgac gcggaggaag ccgccgccac cctggcgttc cagcacgacg cagccgagac 420
cggcgaggcc ctcgccgaag agctcgacga ggacttcgcc ggcacctggg tcgaggacga
                                                                    480
cgtcctgtac gtcgccacca ccgacgagga cgccgtcgag gaggtcgagg gcgaaggcgc
                                                                    540
cacggccgtc accgtcgagc actccctggc cgacctcgag gcctggaaga ccgtcctcga
                                                                    600
cgccgccctc gagggccacg acgacgtgcc cacctggtac gtcgacgtcc cgaccaacag
                                                                    660
                                                                   720
cgtcgtcgtc gccgtcaagg ccggagccca ggacgtcgcc gccggcctcg tcgaaggtgc
                                                                    780
cgacgtcccg tccgacgccg tgaccttcgt cgagaccgac gagaccccgc ggaccatgtt
cgacgtgatc ggcggcaacg cctacaccat cggggggcgc agccgctgct cgatcgggtt
                                                                   840
                                                                    900
cgcggtcaac ggcgggttca tcaccgccgg ccactgcggc cgcaccggcg ccaccaccgc
caaccccacc gggaccttcg ccgggtccag cttcccgggc aacgactacg cgttcgtccg
                                                                   960
taccggggcc ggcgtgaacc tgctggccca ggtcaacaac tactccggtg gccgcgtcca
                                                                   1020
                                                                   1080
ggtcgccggg cacaccgcgg cccccgtcgg ctcggccgtg tgccggtccg ggtcgaccac
cgggtggcac tgcggcacca tcactgcgct caactcctcg gtcacctacc ccgagggcac
                                                                   1140
```

cgtccgcggc ctgatccgca ccaccgtctg cgccgagccc ggcgactccg gtggctcgct

1200

gctcgccggc	aaccaggccc	agggcgtcac	gtccggcggc	tccggcaact	gccgcaccgg	1260
tggcaccacg	ttcttccagc	cggtcaaccc	catcctccag	gcgtacggcc	tgaggatgat	1320
				tcctgcaccg		1380
caccttcacc	gggaccctcg	cggccggccg	ggccgccgcc	cagcccaacg	ggtcctacgt	1440
gcaggtcaac	cggtccggga	cccacagcgt	gtgcctcaac	gggccctccg	gtgcggactt	1500
cgacctctac	gtgcagcgct	ggaacggcag	ctcctgggtg	accgtcgccc	agagcacctc	1560
ccccggctcc	aacgagacca	tcacctaccg	cggcaacgcc	ggctactacc	gctacgtggt	1620
				accctcccct		1680
<210> 2						
<211> 1488	3					
<212> DNA						
<213> Cell	Lulomonas st	rain 69B4				
<400> 2						
atgacaccac	gcacagtcac	gcgggccctg	gccgtggcca	ccgcagccgc	cacactcctg	60
gcaggcggca	tggccgccca	ggccaacgag	cccgcaccac	ccgggagcgc	gagcgcaccg	120
ccacgcctgg	ccgagaagct	cgaccccgac	ctcctcgagg	ccatggagcg	cgacctgggc	180
				acgacgcagc		240
				cctgggtcga		300
				tcgagggcga		360
				ggaagaccgt		420
				acgtcccgac		480
				gcctcgtcga		540
				ccccgcggac		600
				gctgctcgat		660
				ccggcgccac		720
				actacgcgtt		780
				ccggtggccg		840
						900
				ggtccgggtc		960
				actccggtgg		1020
	-					1020
				gcaactgccg		1140
_				acggcctgag		1200
				gcaccggcta		1260
				ccaacgggtc		
				cctccggtgc		1320
				tcgcccagag		1380
	_			actaccgcta	cgtggtcaac	1440
gccgcgtccg	gctccggtgc	ctacaccatg	gggctcaccc	tcccctga		1488
<210> 2						
<210> 3 <211> 1404	1					
	ŧ					
<212> DNA						
<213> Cell	Lulomonas sp	pp.				
<400> 3						
	caccacccc	daddddaad	acaccaccac	gcctggccga	gaaget egae	60
				acgcggagga		120
						180
				ccctcgccga		240
				acgtcgccac		300
				tcaccgtcga		360
				tcgagggcca		420
				tcgccgtcaa		
				cgtccgacgc		480
				tcggcggcaa		540 600

ategggggge geageegetg etegateggg ttegeggtea aeggegggtt cateaeegee 600

```
ggccactgcg gccgcaccgg cgccaccacc gccaacccca ccgggacctt cgccgggtcc
                                                                     660
                                                                     720
agetteeegg geaacgaeta egegttegte egtaeegggg eeggegtgaa eetgetggee
caggtcaaca actactccgg tggccgcgtc caggtcgccg ggcacaccgc ggcccccgtc
                                                                     780
ggctcggccg tgtgccggtc cgggtcgacc accgggtggc actgcggcac catcactgcg
                                                                  840
                                                                    900
ctcaactcct cggtcaccta ccccgagggc accgtccgcg gcctgatccg caccaccgtc
tgegeegage ceggegaete eggtggeteg etgetegeeg geaaceagge eeagggegte
                                                                   960
acgtccggcg getccggcaa ctgccgcacc ggtggcacca cgttcttcca gccggtcaac 1020
                                                                   1080
cccatcctcc aggcgtacgg cctgaggatg atcaccacgg actcgggcag cagcccggcc
cctgcaccga cctcctgcac cggctacgcc cgcaccttca ccgggaccct cgcggccggc
                                                                   1140
cgggccgccg cccagcccaa cgggtcctac gtgcaggtca accggtccgg gacccacagc
                                                                    1200
gtgtgcctca acgggccctc cggtgcggac ttcgacctct acgtgcagcg ctggaacggc
                                                                   1260
agetectggg tgaccgtege ccagageace tecceegget ccaaegagae cateacetae
                                                                    1320
cgcggcaacg ccggctacta ccgctacgtg gtcaacgccg cgtccggctc cggtgcctac
                                                                    1380
accatggggc tcaccctccc ctga
                                                                    1404
<210> 4
<211> 567
<212> DNA
<213> Cellulomonas spp.
<400> 4
ttcgacgtga tcggcggcaa cgcctacacc atcggggggc gcagccgctg ctcgatcggg
                                                                      60
                                                                     120
ttcgcggtca acggcgggtt catcaccgcc ggccactgcg gccgcaccgg cgccaccacc
gccaacccca ccgggacctt cgccgggtcc agcttcccgg gcaacgacta cgcgttcgtc
                                                                     180
cgtaccgggg ccggcgtgaa cctgctggcc caggtcaaca actactccgg tggccgcgtc
                                                                     240
caggtegeeg ggeacacege ggeeceegte ggeteggeeg tgtgeeggte egggtegaee
                                                                     300
accgggtggc actgcggcac catcactgcg ctcaactcct cggtcaccta ccccgagggc
                                                                     360
acceptccgcg gcctgatccg caccaccqtc tgcgccgagc ccggcgactc cggtggctcg
                                                                     420
ctgctcgccg gcaaccaggc ccagggcgtc acgtccggcg gctccggcaa ctgccgcacc
                                                                     480
ggtggcacca cgttcttcca gccggtcaac cccatcctcc aggcgtacgg cctgaggatg
                                                                     540
                                                                     567
atcaccacgg actcgggcag cagcccg
<210> 5
<211> 83
<212> DNA
<213> Cellulomonas strain 69B4
<400> 5
atgacaccac cacagtcacg cgggccctgg ccgtggccac cgcagccgcc acactcctgg
                                                                      60
caggcggcat ggccgcccag gcc
                                                                      83
<210> 6
<211> 495
<212> PRT
<213> Cellulomonas strain 69B4
<400> 6
Met Thr Pro Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr Ala Ala
                5
                                    1.0
Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala Asn Glu Pro Ala
Pro Pro Gly Ser Ala Ser Ala Pro Pro Arg Leu Ala Glu Lys Leu Asp
        35
                                                45
                            40
Pro Asp Leu Glu Ala Met Glu Arg Asp Leu Gly Leu Asp Ala Glu
                        55
    50
```

Glu Ala Ala Thr Leu Ala Phe Gln His Asp Ala Ala Glu Thr Gly

75 65 70 Glu Ala Leu Ala Glu Glu Leu Asp Glu Asp Phe Ala Gly Thr Trp Val 90 Glu Asp Asp Val Leu Tyr Val Ala Thr Thr Asp Glu Asp Ala Val Glu 100 105 Glu Val Glu Gly Glu Gly Ala Thr Ala Val Thr Val Glu His Ser Leu 120 Ala Asp Leu Glu Ala Trp Lys Thr Val Leu Asp Ala Ala Leu Glu Gly 135 140 His Asp Asp Val Pro Thr Trp Tyr Val Asp Val Pro Thr Asn Ser Val 155 150 Val Val Ala Val Lys Ala Gly Ala Gln Asp Val Ala Ala Gly Leu Val 170 165 Glu Gly Ala Asp Val Pro Ser Asp Ala Val Thr Phe Val Glu Thr Asp 180 185 Glu Thr Pro Arg Thr Met Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr 200 Ile Gly Gly Arg Ser Arg Cys Ser Ile Gly Phe Ala Val Asn Gly Gly 220 215 Phe Ile Thr Ala Gly His Cys Gly Arg Thr Gly Ala Thr Thr Ala Asn 230 235 Pro Thr Gly Thr Phe Ala Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala 250 245 Phe Val Arg Thr Gly Ala Gly Val Asn Leu Leu Ala Gln Val Asn Asn 260 265 Tyr Ser Gly Gly Arg Val Gln Val Ala Gly His Thr Ala Ala Pro Val 280 Gly Ser Ala Val Cys Arg Ser Gly Ser Thr Thr Gly Trp His Cys Gly 300 295 Thr Ile Thr Ala Leu Asn Ser Ser Val Thr Tyr Pro Glu Gly Thr Val 310 315 Arg Gly Leu Ile Arg Thr Thr Val Cys Ala Glu Pro Gly Asp Ser Gly 330 325 Gly Ser Leu Leu Ala Gly Asn Gln Ala Gln Gly Val Thr Ser Gly Gly 340 345 Ser Gly Asn Cys Arg Thr Gly Gly Thr Thr Phe Phe Gln Pro Val Asn 360 Pro Ile Leu Gln Ala Tyr Gly Leu Arg Met Ile Thr Thr Asp Ser Gly 380 375 Ser Ser Pro Ala Pro Ala Pro Thr Ser Cys Thr Gly Tyr Ala Arg Thr 395 400 Phe Thr Gly Thr Leu Ala Ala Gly Arg Ala Ala Gln Pro Asn Gly 405 410 Ser Tyr Val Gln Val Asn Arg Ser Gly Thr His Ser Val Cys Leu Asn 420 425 Gly Pro Ser Gly Ala Asp Phe Asp Leu Tyr Val Gln Arg Trp Asn Gly 440 Ser Ser Trp Val Thr Val Ala Gln Ser Thr Ser Pro Gly Ser Asn Glu 455 460 Thr Ile Thr Tyr Arg Gly Asn Ala Gly Tyr Tyr Arg Tyr Val Val Asn 470 475 Ala Ala Ser Gly Ser Gly Ala Tyr Thr Met Gly Leu Thr Leu Pro 485 490

<210> 7 <211> 467 <212> PRT

<400> 7

Asn 1	Glu	Pro	Ala	Pro 5	Pro	Gly	Ser	Ala	Ser 10	Ala	Pro	Pro	Arg	Leu 15	Ala
Glu	Lys	Leu	Asp 20	Pro	Asp	Leu	Leu	Glu 25	Ala	Met	Glu	Arg	Asp	Leu	Gly
Leu	Asp	Ala 35	Glu	Glu	Ala	Ala	Ala 40	Thr	Leu	Ala	Phe	Gln 45	His	Asp	Ala
Ala	Glu 50	Thr	Gly	Glu	Ala	Leu 55	Ala	Glu	Glu	Leu	Asp	Glu	Asp	Phe	Ala
Gly 65	Thr	Trp	Val	Glu	Asp	Asp	Val	Leu	Tyr	Val 75	Ala	Thr	Thr	Asp	Glu 80
Asp	Ala	Val	Glu	Glu 85	Val	Glu	Gly	Glu	Gly 90	Ala	Thr	Ala	Val	Thr 95	Val
Glu	His	Ser	Leu 100	Ala	Asp	Leu	Glu	Ala 105	Trp	Lys	Thr	Val	Leu 110	Asp	Ala
Ala	Leu	Glu 115	Gly	His	Asp	Asp	Val 120	Pro	Thr	Trp	Tyr	Val 125	Asp	Val	Pro
Thr	Asn 130	Ser	Val	Val	Val	Ala 135	Val	Lys	Ala	Gly	Ala 140	Gln	Asp	Val	Ala
Ala 145	Gly	Leu	Val	Glu	Gly 150	Ala	Asp	Val	Pro	Ser 155	Asp	Ala	Val	Thr	Phe 160
Val	Glu	Thr	Asp	Glu 165	Thr	Pro	Arg	Thr	Met 170	Phe	Asp	Val	Ile	Gly 175	Gly
Asn	Ala	Tyr	Thr 180	Ile	Gly	Gly	Arg	Ser 185	Arg	Cys	Ser	Ile	Gly 190	Phe	Ala
Val	Asn	Gly 195	Gly	Phe	Ile	Thr	Ala 200	Gly	His	Cys	Gly	Arg 205	Thr	Gly	Ala
Thr	Thr 210	Ala	Asn	Pro	Thr	Gly 215	Thr	Phe	Ala	Gly	Ser 220	Ser	Phe	Pro	Gly
Asn 225	Asp	Tyr	Ala	Phe	Val 230	Arg	Thr	Gly	Ala	Gly 235	Val	Asn	Leu	Leu	Ala 240
Gln	Val	Asn	Asn	Tyr 245	Ser	Gly	Gly	Arg	Val 250	Gln	Val	Ala	Gly	His 255	Thr
Ala	Ala	Pro	Val 260	Gly	Ser	Ala	Val	Cys 265	Arg	Ser	Gly	Ser	Thr 270	Thr	Gly
Trp	His	Cys 275	Gly	Thr	Ile	Thr	Ala 280	Leu	Asn	Ser	Ser	Val 285	Thr	Tyr	Pro
Glu	Gly 290	Thr	Val	Arg	Gly	Leu 295	Ile	Arg	Thr	Thr	Val 300	Cys	Ala	Glu	Pro
Gly 305	Asp	Ser	Gly	Gly	Ser 310	Leu	Leu	Ala	Gly	Asn 315	Gln	Ala	Gln	Gly	Val 320
Thr	Ser	Gly	Gly	Ser 325	Gly	Asn	Cys	Arg	Thr 330	Gly	Gly	Thr	Thr	Phe 335	Phe
Gln	Pro	Val	Asn 340	Pro	Ile	Leu	Gln	Ala 345	Tyr	Gly	Leu	Arg	Met 350	Ile	Thr
Thr	Asp	Ser 355	Gly	Ser	Ser	Pro	Ala 360	Pro	Ala	Pro	Thr	Ser 365	Суз	Thr	Gly
Tyr	Ala 370	Arg	Thr	Phe	Thr	Gly 375	Thr	Leu	Ala	Ala	Gly 380	Arg	Ala	Ala	Ala
Gln	Pro	Asn	Gly	Ser	Tyr	Val	Gln	Val	Asn	Arg	Ser	Gly	Thr	His	Ser
385					390					395					400
Val	Cys	Leu	Asn	Gly 405	Pro	Ser	Gly	Ala	Asp	Phe	Asp	Leu	Tyr	Val 415	Gln
Arg	Trp	Asn	Gly	Ser	Ser	Trp	Val	Thr	Val	Ala	Gln	Ser	Thr	Ser	Pro

420 425 Gly Ser Asn Glu Thr Ile Thr Tyr Arg Gly Asn Ala Gly Tyr Tyr Arg 440 Tyr Val Val Asn Ala Ala Ser Gly Ser Gly Ala Tyr Thr Met Gly Leu 455 Thr Leu Pro 465 <210> 8 <211> 189 <212> PRT <213> Cellulomonas spp. <400> 8 Phe Asp Val Ile Gly Gly Asn Ala Tyr Thr Ile Gly Gly Arg Ser Arg 1.0 Cys Ser Ile Gly Phe Ala Val Asn Gly Gly Phe Ile Thr Ala Gly His 25 Cys Gly Arg Thr Gly Ala Thr Thr Ala Asn Pro Thr Gly Thr Phe Ala 40 Gly Ser Ser Phe Pro Gly Asn Asp Tyr Ala Phe Val Arg Thr Gly Ala 55 Gly Val Asn Leu Leu Ala Gln Val Asn Asn Tyr Ser Gly Gly Arg Val 70 75 Gln Val Ala Gly His Thr Ala Ala Pro Val Gly Ser Ala Val Cys Arg 90 85 Ser Gly Ser Thr Thr Gly Trp His Cys Gly Thr Ile Thr Ala Leu Asn 100 105 Ser Ser Val Thr Tyr Pro Glu Gly Thr Val Arg Gly Leu Ile Arg Thr 120 Thr Val Cys Ala Glu Pro Gly Asp Ser Gly Gly Ser Leu Leu Ala Gly 135 140 Asn Gln Ala Gln Gly Val Thr Ser Gly Gly Ser Gly Asn Cys Arg Thr 145 150 155 Gly Gly Thr Thr Phe Phe Gln Pro Val Asn Pro Ile Leu Gln Ala Tyr 165 170 Gly Leu Arg Met Ile Thr Thr Asp Ser Gly Ser Ser Pro 180 185 <210> 9 <211> 28 <212> PRT <213> Cellulomonas strain 69B4 <400> 9 Met Thr Pro Arg Thr Val Thr Arg Ala Leu Ala Val Ala Thr Ala Ala 10 Ala Thr Leu Leu Ala Gly Gly Met Ala Ala Gln Ala <210> 10 <211> 23 <212> DNA

<213> Artificial Sequence

```
<220>
<223> primer
<220>
<221> misc_feature
<222> (3)..(3)
<223> n is a, c, g, or t
<400> 10
acnacsggst ggcrgtgcgg cac
<210> 11
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222>
```

23