

500.43498X00

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): IWAJI, et al.

Serial No.: 10/781,745

Filed:

February 20, 2004

Title:

MOTOR DRIVE SYSTEM FOR AC MOTORS

LETTER CLAIMING RIGHT OF PRIORITY

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450 March 22, 2004

Sir:

Under the provisions of 35 USC 119 and 37 CFR 1.55, the applicant(s) hereby claim(s) the right of priority based on:

> **Japanese Patent Application No. 2003-074750** Filed: March 19, 2003

A certified copy of said Japanese Patent Application is attached.

Respectfully submitted,

ANTONELLI, TERRY, STOUT & KRAUS, LLP

Melvin Kraus

Registration No.: 22,466

MK/rr Attachment

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月19日

出願番号 Application Number:

特願2003-074750

[ST. 10/C]:

[JP2003-074750]

出 願 人

Applicant(s):

株式会社日立製作所 株式会社日立産機システム

日立ホーム・アンド・ライフ・ソリューション株式会社

2004年 2月16日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

【整理番号】 1102013251

【あて先】 特許庁長官 殿

【国際特許分類】 H02P 6/00

【発明の名称】 交流電動機の制御装置及び制御方法

特許願

【請求項の数】 11

【発明者】

r . r

【住所又は居所】 茨城県日立市大みか町七丁目1番1号

株式会社 日立製作所 日立研究所内

【氏名】 岩路 善尚

【発明者】

【住所又は居所】 茨城県日立市大みか町七丁目1番1号

株式会社 日立製作所 日立研究所内

【氏名】 遠藤 常博

【発明者】

【住所又は居所】 茨城県日立市大みか町七丁目1番1号

株式会社 日立製作所 日立研究所内

【氏名】 坂本 潔

【発明者】

【住所又は居所】 千葉県千葉市美浜区中瀬二丁目6番地

株式会社 日立産機システム内

【氏名】 大久保 智文

【特許出願人】

【識別番号】 000005108

【氏名又は名称】 株式会社 日立製作所

【特許出願人】

【識別番号】 502129933

【氏名又は名称】 株式会社 日立産機システム

【特許出願人】

【識別番号】

502131431

【氏名又は名称】 日立ホーム・アンド・ライフ・ソリューション株式会社

【信託関係事項】

委託者

住所 東京都千代田区神田須田町一丁目23番地2

名称 株式会社 日立空調システム

受託者

住所 東京都千代田区神田駿河台四丁目6番地

名称 株式会社 日立製作所

受益者

住所 東京都千代田区神田須田町一丁目23番地2 名称 株式会社 日立空調システム

1. 信託の目的

委託者の所有する本発明の特許を受ける権利の維持、 管理、処分をすること。

2. 信託財産の管理の方法

本発明の特許を受ける権利の維持、管理、処分に必要 な一切の行為。

3. 信託の終了の理由

信託契約の締結日より満1年とする。

期間満了の30日前までに委託者及び受託者双方から の申出がないときは、信託契約は同一条件で更に1年間 継続するものとする。

それ以降もこの例による。

- 4. その他の信託条項
- (1) 委託者は、信託期間中において上記目的の遂行 に必要な費用を受託者に支払う。
- (2) 受益者は、信託特許の権利行使またはその他の 処分により得た利益のすべてを享受する。

- (3) 委託者は、受託者に対し信託財産の維持管理処 分方法につき指示することができ、受託者は委託者の意 に反して信託特許を処分してはならない。
- (4)前条に定める有効期間内においても、委託者は 、30日前に書面をもって受託者に通知することにより 、若しくは受託者は、信託契約に定められた受託者の義 務の履行を著しく困難とされる状況が出来したときに委 託者と協議の上委託者の同意に基づき、信託契約を解約 することができる。
- (5) 委託者または受託者において信託契約に定めら れた義務の履行を著しく困難とさせる状況が出来したと きは委託者、受託者協議の上信託契約の条件を変更する 事ができる。

【代理人】

【識別番号】

100075096

【弁理士】

【氏名又は名称】 作田 康夫

【電話番号】

03-3212-1111

【手数料の表示】

【予納台帳番号】

013088

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 交流電動機の制御装置及び制御方法

【特許請求の範囲】

【請求項1】

交流電動機と、正弦波状の連続した電流を用いて前記交流電動機を駆動する駆動信号を生成するインバータと、パルス幅変調信号を生成して前記パルス幅変調信号により前記インバータを制御する制御器と、前記インバータに電力を供給する電源と、前記電源からインバータへ供給されるインバータ電流を検出する電流検出手段を備えた交流電動機の制御装置において、

前記電流検出手段によって検出されたインバータ電流を、前記インバータ電流 における通電期間内でサンプルするサンプル手段を設けたことを特徴とする交流 電動機の制御装置。

【請求項2】

請求項1記載の交流電動機の制御装置において、

インバータ電流の立ち上り時から通電期間の33~67%の時間内でサンプル する前記サンプル手段を設けたことを特徴とする交流電動機の制御装置。

【請求項3】

請求項2記載の交流電動機の制御装置において、

前記サンプル手段から出力されるサンプル値を平均化処理する平均化処理手段 を設けたことを特徴とする交流電動機の制御装置。

【請求項4】

請求項3記載の制御装置による交流電動機の制御方法において、

前記平均化処理に、前記駆動信号における駆動周期の6分の1周期の移動平均 を用いたことを特徴とする交流電動機の制御方法。

【請求項5】

請求項2記載の制御装置による交流電動機の制御方法において、

前記制御装置に前記交流電動機の有効電流と無効電流のうち少なくとも一つを 演算する演算手段を設け、

前記サンプル手段から出力されるサンプル値を用いて、前記駆動信号における

駆動周期の6分の1周期毎に、前記演算を行うことを特徴とする交流電動機の制御方法。

【請求項6】

a1

請求項2記載の制御装置による交流電動機の制御装置において、

前記制御装置に、前記駆動信号の周波数に依存した周期関数を発生する発生器 と、前記交流電動機の有効電流と無効電流のうち少なくとも一つを演算する演算 手段を設け、

前記周期関数と前記サンプル手段から出力されるサンプル値を用いて、前記演算を行うことを特徴とする交流電動機の制御方法。

【請求項7】

請求項5記載の交流電動機の制御方法において、

有効電流ならびに無効電流値を用いて、前記交流電動機の磁束軸を基準とした 励磁電流成分と前記磁束軸に直交するトルク電流成分を演算し、前記励磁電流成 分と前記トルク電流成分の少なくとも一つを用いて前記交流電動機の制御を行う ことを特徴とする交流電動機の制御方法。

【請求項8】

複数の前記サンプル手段と、前記複数のサンプル手段から出力されるサンプル 値を用いて前記交流電動機の相電流を再現する相電流再現手段を設けたことを特 徴とする請求項2記載の交流電動機の制御装置。

【請求項9】

前記インバータと、前記制御器と、前記電流検出手段をモジュール化したこと を特徴とする請求項2記載の交流電動機の制御装置。

【請求項10】

交流電動機と、正弦波状の連続した電流を用いて前記交流電動機を駆動するインバータと、前記交流電動機の3相の指令電圧と前記交流電動機の搬送波信号に基づいてパルス幅変調信号を生成して前記インバータを制御する制御器と、前記インバータに電力を供給する電源と、前記電源からインバータへ供給されるインバータ電流を検出する電流検出手段を備えた制御装置による交流電動機の制御方法において、

前記インバータ電流をサンプルするサンプル手段を設け、

前記搬送波信号の正のピーク値と負のピーク値の中間時刻をトリガとし、

前記サンプル手段は、前記トリガを用いて前記インバータ電流値をサンプルすることを特徴とする交流電動機の制御方法。

【請求項11】

交流電動機と、正弦波状の連続した電流を用いて前記交流電動機を駆動するインバータと、前記交流電動機の3相の指令電圧と前記交流電動機の搬送波信号に基づいてパルス幅変調信号を生成して前記インバータを制御する制御器と、前記インバータに電力を供給する電源と、前記電源からインバータへ供給されるインバータ電流を検出する電流検出手段を備えた制御装置による交流電動機の制御方法において、

前記インバータ電流をサンプルするサンプル手段を設け、

前記3相の指令電圧と、前記搬送波信号の正負のピーク値を比較し、

比較結果に基づいて前記搬送波信号の正のピーク値もしくは負のピーク値を選択し、

前記選択した正のピーク値もしくは負のピーク値の時間をトリガとし、

前記サンプル手段は、前記トリガを用いて前記インバータ電流をサンプルする ことを特徴とする交流電動機の制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、交流電動機の制御装置及び制御方法に関するものである。

 $[0\ 0\ 0\ 2\]$

【従来の技術】

従来、交流電動機の回転速度センサあるいは位置センサを用いない方式としては、電動機の相電流を検出し、磁極位置の推定演算を行う制御装置が知られている(例えば、引用特許文献1参照)。

[0003]

また電流センサを用いない方式として、電動機を駆動するインバータの直流電

流を検出し、その瞬時値とインバータのスイッチング状態から、電動機の交流電流を再現する電流再現方式が提案されている(例えば、引用特許文献2参照)。本方式は、インバータを駆動するゲートパルス信号を利用し、インバータの直流電流に瞬間的に現れる電動機電流をサンプル・ホールドし、電動機電流を間接的に検出している。

$[0\ 0\ 0\ 4\]$

しかしながら電流再現方式は、インバータの直流電流とゲートパルス信号から電動機電流を再現しているため、極端にゲートパルスが短い場合に、電動機電流成分を捕らえることが難しくなる。特に、インバータの平均スイッチング周波数(キャリア周波数)を高く設定するほど、ゲートパルスが短くなり、電流の再現が難しい。インバータのキャリア周波数を下げた対策を行えば、電流高調波の増大化による効率の低下や、電磁ノイズ発生の原因となる。また、インバータのキャリア周期内で最低2回の電流サンプリングを行う必要があり、特別な回路を必要とする。しかも、ワンチップ・マイコンで実現するには2個のアナログ入力端子が必須であり、マイコン内にAD変換器を2組用意するか、高速AD変換器を1個備えて連続して電流を読み込む必要がある。

 $[0\ 0\ 0\ 5]$

【特許文献1】

特開2001-251889号公報

【特許文献 2】

特開平2-197295号公報

[0006]

【発明が解決しようとする課題】

本発明は、シンプルな制御構成で、且つ、高いキャリア周波数での高性能な電動機駆動を実現する制御装置及び制御方法を提供する。

[0007]

【課題を解決するための手段】

交流電動機の制御装置において、電動機を駆動するインバータの直流電源から の電流を検出する際、インバータ電流に対して、各通電期間の中間時刻近傍で電 流値をサンプリングし、該サンプル値に基づいて、電動機への印加電圧、あるい は周波数を制御する。

[00008]

【発明の実施の形態】

次に、図1ないし図17を参照して、本発明による交流電動機を制御する制御装置の実施例について説明する。尚、以下の実施形態では、交流電動機として、永久磁石型同期電動機を用いて説明するが、誘導電動機やリラクタンスモータなどの他の交流電動機に関しても、同様に実現可能である。

[0009]

(実施例1)

図1は、本発明による交流電動機制御装置の実施例1の系統構成を示すブロック図である。本実施例の制御装置は、電動機に回転数指令 ω_r^* を与える回転数指令発生器1と、電動機の交流印加電圧を演算し、パルス幅変調信号(PWM信号)に変換して出力する制御器2と、このPWM信号により駆動されるインバータ3と、インバータ3に電力を供給する直流電源4と、制御対象である永久磁石型の電動機5と、直流電源4がインバータ3へ供給する電流 I_0 を検出する電流検出器6からなる。

[0010]

制御器 2 は、電動機 5 の極数 P を用いて回転数指令 ω_r^* を電動機 5 の電気角周波数指令 ω_1^* に変換する変換ゲイン 7 と、制御装置内部の交流位相 θ dc を演算する積分器 8 と、電流 I_0 の検出値をサンプリングする電流サンプラー 9 と、サンプリングされた電流値 I_{0s} に対して、指令を与える I_{0s}^* 発生器 1_0 と、信号を加算する加算器 1_0 と、サンプルされた電流 I_{0s} が、 I_{0s}^* に一致するように電動機 1_0 0 の印加電圧指令を演算する電流制御器 1_0 1 と、印加電圧指令に基づいて、電動機 1_0 1 への交流電圧を演算する 1_0 2 な、交流電圧指令に基づいて、インバータ 1_0 3 を駆動するゲートパルスを作成する 1_0 3 を駆動するゲートパルスを作成する 1_0 3 を駆動するゲートパルスを作成する 1_0 3 を収入を容る。

[0011]

インバータ3は、インバータの主回路部31と、主回路へのゲート信号を発生

するゲート・ドライバ32からなり、インバータ3に電力を供給する直流電源4 は、交流電源41と、交流を整流するダイオード・ブリッジ42と、直流電源に 含まれる脈動成分を抑制する平滑コンデンサ43とで構成されている。

[0012]

次に、図1を用いて、本実施例1の動作原理を説明する。変換ゲイン7は、回転数指令発生器1からの回転数指令 ω_r^* に基づき、電動機5の電気角周波数 ω_1^* を演算し出力する。さらに積分器8を用いて ω_1^* を積分し、交流位相 θ dcを演算する。電流サンプラー9では、インバー ϕ 3の直流電流 I_0 をサンプル・ホールドし、 I_{0s} として値を取り込む。 I_{0s} は、 I_{0s} *発生器 1_0 0が出力する電流指令 I_{0s} *に一致するように、電流制御器 1_2 により制御される。 d_0 2では、電流制御器 1_2 0出力である印加電圧指令 V_{qc} *と、 V_{dc} *に基づき、交流電圧指令 v_0 0*では v_0 0*では v_0 0*では v_0 0*では v_0 0*では v_0 0*では v_0 0。なお本実施例では v_0 0*で0。 v_0 0

【数1】

$$\begin{bmatrix} vu*\\ vv*\\ vw* \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \cos\theta_{dc} & -\sin\theta_{dc}\\ \sin\theta_{dc} & \cos\theta_{dc} \end{bmatrix} \begin{bmatrix} V_{dc}^*\\ V_{qc}^* \end{bmatrix} \qquad \cdots (1)$$

[0014]

次に、PWM発生器 14 において、交流電圧指令をPWM信号に変換する。ゲート・ドライバ 32 は、この PWM信号に基づいてスイッチング素子を駆動し、電動機 5 に対して V_{dc}^* , V_{ac}^* に相当する交流電圧を印加する。

[0015]

図2、および図3は、PWM発生器14において、交流電圧指令から、ゲートパルスを作成する様子を示した波形である。ゲートパルスは、図のように、搬送波信号の三角波キャリアと、交流電圧指令の大きさを比較することで作成される

。ここで交流電圧指令は図2(a)のように、vu * >vv * >v * >∨ * >∨ * >∨ * >∨ * >∨ * >∨ * 0、 * 1 つ、 * 1 ∨ * 2 * 1 ∨ * 2 * 1 の条件である。この時のゲートパルス * 6 * 1 * 2 * 2 * 2 * 3 * 4 におけると倒の素子 * 4 におけるには、インバータの主回路部31における上側の素子 * 4 (* 3 * 4 * 3 * 4 いずオンし、 * 5 * 9

[0016]

つまり、断続電流である I_0 の通流期間内、しかも通電期間の中間点近傍で電流をサンプリングすると、電圧指令の絶対値が最も大きな相の電流が検出できることになる。なお、三相の本実施例においては、インバータ電流の立ち上り時刻から通電期間の $3.3 \sim 6.7$ %の範囲内であれば、中間点近傍でのサンプリングと同様の効果が得られる。

[0017]

図3は、図2とは条件が異なり、 $vu^*>vv^*>vw^*$ であり、且つ、 $|vu^*|>|vw^*|>|vv^*|$ となる条件である。この場合は、 I_0 の通電期間の中間点近傍で電流をサンプリングすると、U相の電流値が検出できることになる。

[0018]

ここで、交流電圧指令を数2のように定義する。

[0019]

【数2】

$$\begin{bmatrix} vu * \\ vv * \\ vw * \end{bmatrix} = \begin{bmatrix} V_0 \sin \theta_v \\ V_0 \sin \left(\theta_v - \frac{2\pi}{3}\right) \\ V_0 \sin \left(\theta_v + \frac{2\pi}{3}\right) \end{bmatrix} \dots (2)$$

[0020]

この場合、電圧指令波形は、図4 (a) のようになる。 I_0 の通電期間の中間 点近傍でサンプリングを行うと、電圧位相 θ_V に応じて、検出できる相電流が、 図4 (b) のように60 度毎に変化する。サンプリング後の電流波形である I_{0s} は、同図 (c) の太線のような波形になる。

[0021]

交流電動機は、インダクタンス成分を持つため、電流は電圧に対して遅れ位相となる。よって、図4の(a)と(c)のような関係になる。電流位相は、電動機定数や、負荷条件などによって変化するが、ほぼ、電流の最大付近を含むような波形を観測できる。

[0022]

本実施例では、 I_{0s} を、電流指令 I_{0s} * に一致するように電流制御を行う。この結果、電動機5には、所定量の交流電流が流れることになる。電流が十分流れることで、起動時などのトルクを確保することが可能である。

[0023]

従来の「電流再現方式」では、電動機の起動時には、三角波キャリアの周波数が高いほどゲートパルス幅が狭くなり、電流検出そのものが難しくなる。また、起動時には、デッドタイム(インバータの上下スイッチング素子の短絡防止期間)の影響や、スイッチング素子のオン電圧降下の影響などで、フィードバックなしで所定量の電流を流すことは困難である。しかしながら、本実施例では、通流パルス幅の中間時点近傍で電流をサンプルし、その値を制御することで、起動に必

9/

要なだけの電流を確実に流すことができる。また、電流サンプルのタイミングは 単純であり、複雑な電流検出アルゴリズムを必要としない。よって、マイコンを 用いて本実施例を実現するためには、電流検出器6の出力を、1つのアナログ入 力端子に接続すればよく、また、図示しないAD変換器も1個備えていればよい

[0024]

次に、I₀をサンプル・ホールドするタイミングの発生方法について説明する

[0025]

 I_0 の通電期間の中間時点近傍で電流をサンプリングするためには、例えば、 I_0 の立ち上がり、ならびに立ち下がりをトリガとして、パルス幅を計測しておき、次回のパルスの立ち上がりから、パルスの中間時点を推定して、サンプル信号を発生させることで実現できる。しかし、この方法では、ハードウエアが複雑となるし、また、ノイズなどの影響による誤動作も懸念される。

[0026]

図5を用いて、サンプル信号の発生方法について説明する。図2ならびに図3に示したPWM発生方法の場合、通電期間の中間時刻は、三角波キャリアの上下ピークの中間時点に一致する。すなわち、三角波キャリアの零クロスをトリガとして、 I_0 のサンプル信号を発生させれば、簡単に I_{0s} を取り込むことが可能になる。

[0027]

また、PWM方式によっては、図6に示すような電圧指令波形を用いる場合がある。これらは、「二相スイッチング方式」等と呼ばれているPWM変調方式であり、三相のいずれか1相がスイッチング動作を行わないものである。例えば、図6において、60度
 $\theta_{\rm V}$
 <120度の期間では、U相のスイッチング素子は上側(図1の $S_{\rm up}$)がオンし続け、下側(図1の $S_{\rm un}$)はオフ状態を保つ。この電圧指令は、元の正弦波状の電圧指令に対して、三相すべてに共通の電圧成分(零相成分)を加えることで実現できる。

[0028]

この条件での、電圧指令、ゲートパルス、ならびに I のを、図7に示す。

[0029]

図7からわかるように、U相電圧が三角波キャリアの上側ピークよりも大きい時には、三角波キャリアの上側ピーク時が、通流期間の中間時刻になる。よって、このタイミングで、電流サンプルを実施すればよいことになる。尚、一つの相の電圧指令を、例えば図7の0~60度期間のような負側に飽和させる場合には、三角波キャリアの下側ピーク時点で電流をサンプルすればよいことになる。

[0030]

(実施例2)

次に、図8を用いて、本発明による実施例2について説明する。

[0031]

実施例1では、電動機に流れる電流を所定値になるように流し、駆動に必要な 電流を確保するものであった。それに対し、実施例2では、電動機に流れる「有 効電流」を検出して、電動機を高性能に制御することを目的としている。

[0032]

図8は、制御器 2 Aのブロック構成を示すものであり、図1における制御器 2 の代わりに、図8の制御器 2 Aを用いることで、実施例 2 が実現できる。図8においては、 I_{0s} に対するフィルタ 1 5 と、フィルタ 1 5 の出力に基づいて、電動機の電気角周波数指令 ω_1^* に $\Delta\omega_1$ を加える ω_1 補償器 1 6 と、 ω_1^* から、電動機への印加電圧を決定する電圧指令演算器 1 7 が、図1の制御器 2 と異なるブロックである。

[0033]

制御器 2 Aでは電流制御を行わず、電圧指令演算器 1 7を用いて、 ω_1^* から直接電圧指令 V_{qc}^* を演算している。このように、電動機制御方式としては、V/F 一定制御を基本としているが、図 1 の制御器のように、電流制御を用いても問題はない。

[0034]

次に、本実施例の特徴部分であるフィルタ15、ならびに ω_1 補償器16について説明する。図8の制御器2Aでは、 I_{0s} に対して、フィルタ15を設けてお

り、このフィルタ出力を有効電流 I_a としている。 I_{0s} にフィルタ 1.5 を介することで、有効電流 I_a が得られる原理を、以下に示す。

電動機への印加電圧V、ならびに電流Iを、数3のように定義する。なお電圧 Vをu相電圧、電流Iをu相電流とする。

【数3】

$$V = V_0 \sin \theta_v$$

$$I = I_0 \sin(\theta_v + \delta) \qquad \cdots \quad (3)$$

数3において、 V_0 は電圧振幅であって本実施例では V_{qc}^* に一致、 I_0 は電流振幅、 θ_V は電圧位相、 δ は電流位相(力率角)である。ここで、数3のI は、数4のように表すことができる。

【数4】

$$I = I_0 \cos \delta \sin \theta_v + I_0 \sin \delta \cos \theta_v \qquad \cdots (4)$$

数4から、有効電流、ならびに無効電流の大きさ I_a , I_r は、数5のように表される。

[0040]

【数5】

$$l_a = l_0 \cos \delta$$

$$I_r = I_0 \sin \delta$$
 ... (5)

[0041]

数 4 は、u 相電流であるので、6 0 度 < θ_V < 1 2 0 度の期間において、 I_{0s} として観測される。フィルタ 1 5 により、この期間の電流が平均化されるものとし、数 4 のこの間の平均値 I_m を求めてみる。6 0 度 \sim 1 2 0 度期間の平均値であるので、

【数6】

$$I_{m} = \frac{1}{\pi} \int_{3}^{2\pi} I d\theta_{v} = \frac{3}{\pi} \int_{3}^{2\pi} (I_{0} \cos \delta \sin \theta_{v} + I_{0} \sin \delta \cos \theta_{v}) d\theta_{v}$$
$$= \frac{3I_{0}}{\pi} \cos \delta \qquad \cdots (6)$$

[0043]

となる。すなわち、有効電流成分 I_a は、平均値 I_m を用いることで、

【数7】

$$I_a = I_0 \cos \delta = \frac{\pi}{3} I_m \qquad \cdots \quad (7)$$

[0045]

として演算することが可能になる。よって、フィルタ15を介して I_{0s} を平均化することで、有効電流 I_a を検出することができる。

有効電流 I_a は、電動機の負荷の大きさを直接示すものであるため、制御に有効に使うことで、より安定な電動機の制御装置が実現できる。図8に示す制御器2 Aでは、 I_a に基づいて ω_1 *への補償量である Δ_{ω_1} を演算している。 ω_1 補償器 1 6 は、 I_a に対して不完全微分を実施し、負荷が増えて有効電流が増加した時には、電気角周波数を下げ、逆に負荷が減少した場合には電気角周波数を上げるように動作している。これによって、負荷変動による過渡振動を大幅に低減することが可能になり、より安定な交流電動機の制御装置が実現できる。

[0047]

尚、フィルタ 15 は、電動機を駆動する周波数の 6 倍の高調波成分を取り除く必要がある。この場合、 1 次遅れフィルタなどを介するよりも、むしろ移動平均を用いた方が、脈動成分を容易に取り除くことができる。図 9 は、フィルタ 15 を移動平均フィルタ 15 Bとした場合のブロック構成図である。図 9 において、移動平均フィルタ 15 Bは、 1 演算周期分の遅れ要素である信号遅延器 15 1 と、加算器 11 と、フィルタゲイン 15 2 から構成されている。この移動平均を取る期間を、電気角の 6 0 度に相当するように設定しておけばよい。この結果、1 0s に含まれる脈動成分は理想的に削除され、有効電流 1 a がより正確に検出できるようになる。

[0048]

(実施例3)

次に、図10、ならびに図11を用いて、本発明による実施例3について説明する。図10及び図11は、無効電流の検出方法と、それを用いた制御を具現化した例である。

[0049]

図10は、制御器2Cのブロック構成を示すものであり、図1における制御器2の代わりに、図10を用いることで、実施例3が実現できる。図10においては、 I_{0s} から電動機に流れる有効電流成分 I_a と無効電流成分 I_r の少なくとも一つを演算する I_a ・ I_r 演算器18と、 I_a ・ I_r 演算器18の演算開始割込みを発生する割込発生器19と、無効電流 I_r に対して、電流指令 I_r *を与える I_r *発生器20と、が、これまでの実施例における制御器2, 2Aと異なる部分である。

[0050]

次に、本実施例の動作原理について説明する。 I_a ・ I_r 演算器 1.8 では、電動機に流れる有効電流と無効電流を演算する。割込発生器 1.9 では、交流電圧指令から、 $\theta_V=0$ 度,6.0 度,1.2 0 度,1.8 0 度,2.4 0 度,3.0 0 度の 6.0 度毎に割込み信号を発生し、 I_a ・ I_r 演算器に対してトリガをかけている。

(0051)

図4に示す電流サンプルを実施すると、 I_{0s} として検出される電流相が、 θ_v の60度毎に変化する。ここで図11のように、観測できる電流相が変化した直後の電流値を I_1 とし、変化する直前の値を I_2 と定義する。今、 θ_v が60~120度期間であると仮定する。この期間では、U相電流が観測できるため、 I_1 、ならびに I_2 は、数4を用いて、

[0052]

【数8】

$$I_{1} = I(\pi/3) = I_{0} \cos \delta \sin \frac{\pi}{3} + I_{0} \sin \delta \cos \frac{\pi}{3}$$

$$= I_{0} \cos \delta \frac{\sqrt{3}}{2} + I_{0} \sin \delta \frac{1}{2}$$

$$I_{2} = I(2\pi/3) = I_{0} \cos \delta \sin \frac{2\pi}{3} + I_{0} \sin \delta \cos \frac{2\pi}{3}$$

$$I_{2} = I(2\pi/3) = I_{0} \cos \delta \sin \frac{\pi}{3} + I_{0} \sin \delta \cos \frac{\pi}{3}$$

$$= I_{0} \cos \delta \frac{\sqrt{3}}{2} - I_{0} \sin \delta \frac{1}{2} \qquad \cdots (8)$$

[0053]

と表すことができる。数8より、

[0054]

【数9】

$$I_1 + I_2 = \sqrt{3}I_0 \cos \delta$$
 ... (9)

【数10】

$$I_1 - I_2 = I_0 \sin \delta \qquad \cdots (10)$$

[0056]

となる。数5より、 I_a , I_r は、

[0057]

【数11】

$$I_a = I_0 \cos \delta = \frac{I_1 + I_2}{\sqrt{3}}$$
 ... (11)

[0058]

【数12】

$$I_r = I_0 \sin \delta = I_1 - I_2$$
 ... (12)

[0059]

となる。よって、検出できる電流相が切り替わる前後の電流サンプル値を用いれば、電動機の有効電流と無効電流を観測できることになる。また、定常状態においては、図11に示すように、 $I_2'=I_2$ であるので、 I_1 と I_2' を用いて演算することもできる。本方式によれば、演算遅れが伴わずに有効電流と無効電流を演算することができる。

[0060]

このように、有効電流と無効電流が観測できると、電動機電流の位相情報が得られることになり、より高度な電動機制御が実現できるようになる。図10では、無効電流 I_r に対して、電流指令 I_r *を与え、無効電流が所定値になるように制御を行っている。無効電流を制御することで、電動機の効率最適化運転や、界磁弱め制御等の実現が可能になり、より高性能な交流電動機の制御装置が提供できる。

 $[0\ 0\ 6\ 1]$

(実施例4)

次に、図12、ならびに図13を用いて、本発明による実施例4について説明 する。

[0062]

電動機に流れる有効電流、ならびに無効電流の検出方法に関する実施例3では、演算できるタイミングは、60°に一回しかなかった。従って、ノイズなどの

影響を受けることがある。

[0063]

実施例 4 は、ノイズの影響を受け難くするために、電流サンプル値 I_{0s} を積分することにより有効電流、無効電流を演算する手法を提供するものである。

[0064]

図12は、制御器2Dのブロック構成を示すものである。図12においては、 I_{0s} から電動機に流れる有効電流成分 I_a と、無効電流成分 I_r を演算する I_a ・ I_r 演算器 18 Dと、 I_a ・ I_r 演算器 18 Dで用いる周期関数 F_c 、ならびに F_s を発生する関数発生器 21 と、無効電流 I_r に対して、指令電流 I_r *を与える I_r *発生器 20 と、が、これまでの実施例における制御器 2 、2A 、2C と異なる部分である。

[0065]

次に、本実施例の動作原理について説明する。図12に示す制御器2Dは、動作としては、基本的に図10のものと同等であるが、 I_a , I_r の求め方が大きく異なっている。

[0066]

関数発生器 2 1 は、図 1 3 に示す波形($F_c(\theta_v)$, $F_s(\theta_v)$)を発生する。関数 F_s は、 $\sin\theta_v$ の 6 0 度 \sim 1 2 0 度期間の波形を繰り返し出力する関数であり、関数 F_c は、 $\cos\theta_v$ の 6 0 \sim 1 2 0 度期間の波形を繰り返すものである。

[0067]

 $I_a \cdot I_r$ 演算器 18Dでは、下記に示す積分演算を行う。

[0068]

【数13】

$$I_{am} = \frac{2}{\frac{\pi}{3}} \int_{\theta_{v0}}^{\theta_{v0} + \frac{\pi}{3}} I_{0s} \times F_{s} d\theta_{v} \qquad \cdots (13)$$

[0069]

【数14】

$$I_{rm} = \frac{2}{\pi} \int_{\theta_{vo}}^{\theta_{vo} + \frac{\pi}{3}} I_{0s} \times F_{c} d\theta_{v} \qquad \cdots (14)$$

[0070]

上式において、 θ_{v0} は任意の電圧指令位相である。

[0071]

今、 θ_V が 60~120度である場合について、動作原理を説明する。この期間では、 $F_S=\sin\theta_V$, $F_C=\cos\theta_V$ であり、また、 I_{0S} も、数4で表すことが可能である。数13を展開すると、下記のようになる。

[0072]

【数15】

$$I_{am} = \frac{2}{\pi} \int_{3}^{2\pi} |\sin \theta_{v}| d\theta_{v}$$

$$= \frac{6}{\pi} \int_{\frac{\pi}{3}}^{2\pi} (I_{0} \cos \delta \sin^{2} \theta_{v} + I_{0} \sin \delta \cos \theta_{v} \sin \theta_{v}) d\theta_{v}$$

$$= I_{0} \cos \delta \left(\frac{2\pi + 3\sqrt{3}}{2\pi}\right) \qquad \dots (15)$$

[0073]

よって、数15より、

[0074]

【数16】

$$I_a = I_0 \cos \delta = \frac{2\pi}{2\pi + 3\sqrt{3}} I_{am} \quad \cdots \quad (16)$$

[0075]

となり、I_{am}から、有効電流 I_a が演算できる。

[0076]

同様に、数14を展開すると、

[0077]

【数17】

$$I_{rm} = \frac{2}{\pi} \int_{3}^{\frac{2\pi}{3}} |\cos\theta_{v}| d\theta_{v}$$

$$= \frac{6}{\pi} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} (I_0 \cos \delta \sin \theta_v \cos \theta_v + I_0 \sin \delta \cos^2 \theta_v) d\theta_v$$

$$=I_0 \sin\delta\left(\frac{2\pi-3\sqrt{3}}{2\pi}\right) \quad \cdots \quad (17)$$

[0078]

となる。

[0079]

よって、数15より、

[0080]

【数18】

$$I_r = I_0 \sin \delta = \frac{2\pi}{2\pi - 3\sqrt{3}} I_{rm}$$
 ... (18)

[0081]

となり、 I_{rm} から、無効電流 I_r が演算できる。

[0082]

実施例 4 では、積分演算により、6 0 度以内で、有効電流 I_a と無効電流 I_r

を演算することができる。積分演算のため、ノイズなどの外的要因に対する影響を受け難くなり、より、精度が高く、安定度の増した交流電動機の制御装置が実現できる。

(実施例5)

次に、図14、ならびに図15を用いて、実施例5について説明する。

[0083]

実際の電動機制御では、電動機電流を電動機の磁束軸成分(d軸成分)と、それに直交する成分(q軸成分)に分離して、電動機電流を制御する「ベクトル制御」が用いられることが多い。本実施例は、このベクトル制御を実現するものである。

[0084]

図14は、制御器2Eのブロック構成を示すものである。図14においては、有効電流成分 I_a 、ならびに無効電流成分 I_r から、電動機の磁束軸を基準にした I_{dc} , I_{qc} 軸の電流を演算する ar-d q 変換器22と、 d 軸上の電流指令 I_d *を発生する I_d *発生器23と、回転速度指令 ω_r *と速度推定値 ω_r の差を演算し q 軸上の電流指令 I_q *を出力する速度制御器24と、電動機の d 軸位置(位相)と制御上の位相(θ_{dc})との軸誤差 Δ θ を演算する軸誤差推定器25と、軸誤差 Δ θ が零になるように回転速度を修正する P L L 制御器26とが、これまでの実施例における制御器2,2A,2C,2Dと異なる部分である。また、 I_{dc} 、ならびに I_{qc} が、それぞれ I_d *, I_q *に一致するように、電流制御器12を備えている。

[0085]

次に、本実施例の動作について説明する。.

[0086]

 $I_a\cdot I_r$ 演算器 18 D において得られた I_a 、ならびに I_r に基づいて、 a_r ー d_q 変換器 22 において、 I_{dc} , I_{qc} が演算される。ここでは、数 19 に従って、 I_{dc} , I_{qc} を求める。

[0087]

【数19】

$$I_{dc} = -I_{a} \sin \phi + I_{r} \cos \phi$$

$$I_{qc} = I_{a} \cos \phi + I_{r} \sin \phi \qquad \cdots \quad (19)$$

[0088]

尚、数19における ϕ は、電圧位相とq軸の相差角であり、

[0089]

【数20】

$$\varphi = t a n^{-1} \frac{-V_{dc}^*}{V_{qc}^*}$$
 ... (20)

[0090]

と求めることができる。これらの電動機の電圧と、電流の位相関係を、図15に 示す。

[0091]

 I_{dc} と I_{qc} は、それぞれ電動機の励磁電流,トルク電流に相当する成分であり、各々の指令値 I_d^* , I_q^* に一致するように、電流制御器12により制御される

[0092]

 値になるように電流制御が行われる。非突極型の磁石モータでは、通常 $I_d^*=0$ である。

[0093]

以上のように、本実施例によれば、電動機のトルク電流と励磁電流の個別制御 が可能となり、ベクトル制御が実現可能となる。

[0094]

(実施例6)

次に、図16を用いて、本発明の実施例6について説明する。

[0095]

本実施例では、中高速以上において高速応答が可能な制御装置を提供する。

[0096]

図16は、制御器2Fのブロック構成を示すものである。図16においては、 I_0 を三角波キャリアの半周期内で2ケ所サンプリングするための電流サンプラー9を2個追加しており、相電流再現器27において、電動機の三相電流を再現する。この相電流再現方法に関しては、特開平2-197295号に記載されている従来技術を用いてもよい。三相電流をdq変換器28において座標変換し、 Z_1 0年29により、 Z_2 1年29により、 Z_3 1年29により、 Z_4 1年29により、 Z_4 1年29により、 Z_4 1年29により、 Z_4 1年29により、 Z_4 2年29により、 Z_4 2年29により、 Z_4 2年2月により、 Z_4 2年2月により、 Z_4 2年2月により、 Z_4 2月により、 Z_4 2月により、 Z_4 3年2月により、 Z_4 4年2月により、 Z_4 4年2月により、 Z_4 5年2月により、 Z_4 6年3月においては、 Z_4 7年3月においては、 Z_4 7年3月により、 Z_4 7年3月によりにより、 Z_4 7年3月により、 Z_4 7年3月1日により、 Z_4 7年3月により、 Z_4 7年3月により、 Z_4 7年3月により、 Z_4 7年3月により、 Z_4 7年3月により、 Z_4

[0097]

インバータで電動機を駆動する場合、速度が低いほど、ならびに、キャリア周波数が高いほど、インバータのゲートパルス信号は狭くなり、相電流再現器 27の動作が困難になる。しかしながら、そのような条件の場合には、2つのスイッチ 29 をそれぞれ上側に切替え、 I_a ・ I_r から演算する電流検出へ切替える。逆に、パルス幅が十分に大きな場合には、電流再現器 27 による電動機電流の検出を行い、高応答な電流制御を実現する。

[0098]

以上のように、本実施例によれば、条件によって、電流検出方式を切替えることで、より高性能な電動機の制御装置が実現できるようになる。

[0099]

(実施例7)

図17は、本発明による交流電動機制御装置の模式図である。図に示す部品番号 $1\sim3$, 5, 6, 41, 42, 43は、図1における同じ番号のものと同一のものである。

[0100]

本実施例では、制御器2と、インバータ3と、電流検出器6と、ダイオード・ブリッジ42を一体化し、モジュール化した点に特徴がある。モジュールには、回転数指令発生器1からの回転数指令信号と、電源41の入力端子,平滑コンデンサ43の接続端子,交流電動機5の接続端子が設けられており、その他の部品はすべてモジュール内に収められている。なお本実施例では、回転数指令発生器1は、マイコンを用いている。モジュール内では、マイコンを用いた制御器2と、スイッチングデバイスで構成されたインバータ3,シャント抵抗からなる電流検出器6,ダイオード・ブリッジ42が収められている。

[0101]

これまで説明した実施例によれば、位置センサレス・電流センサレスによる交流電動機の高性能な制御装置が、安価なマイコンで実現できるため、このような制御装置のモジュール化が実現できる。

[0102]

この結果、パワーモジュールを一つの部品のように扱うことができ、組み立て が容易になると同時に、装置全体の小形化が可能になる。

$\{0103\}$

【発明の効果】

本発明によれば、交流電動機の回転子位置を検出する位置センサと、電流を検 出する電流センサを用いることなく、シンプルな制御構成で、尚且つ、高いキャ リア周波数での高性能な交流電動機の制御装置が実現できる。

【図面の簡単な説明】

【図1】

本発明の一実施例である電動機制御装置を示すブロック図である。

【図2】

本発明の実施例におけるPWM変調の原理と、電流サンプルの関係を示す波形

例である。

【図3】

本発明の実施例における PWM変調の原理と、電流サンプルの関係を示す波形 例である。

【図4】

本発明の実施例における電圧指令,相電流,電流サンプル値の関係を示す波形 図である。

【図5】

本発明の実施例における電流サンプルのタイミングを示す波形図である。

図6

従来技術の二相変調時の電圧指令と、三角波キャリアの関係を示す波形図である。

【図7】

本発明の実施例において、二相変調方式を用いた時の電流サンプルのタイミングを示す波形図である。

【図8】

本発明の他の実施例による電動機制御装置を示すブロック図である。

図9】

本発明の他の実施例における移動平均フィルタを示すブロック図である。

【図10】

本発明の他の実施例における電動機制御装置を示すブロック図である。

【図11】

本発明の他の実施例における電動機制御装置の動作を説明する波形図である。

【図12】

本発明の他の実施例における電動機制御装置を示すブロック図である。

【図13】

本発明の他の実施例における電動機制御装置の動作を説明する波形図である。

【図14】

本発明の他の実施例における電動機制御装置を示すブロック図である。

【図15】

電動機の磁束軸を基準としたd-q座標軸と、電圧、電流の関係を示すベクトル図である。

【図16】

本発明の他の実施例における電動機制御装置を示すブロック図である。

【図17】

本発明の電動機制御装置の模式図である。

【符号の説明】

1 …回転数指令発生器、2 …制御器、3 …インバータ、4 …直流電源、5 …交流電動機、6 …電流検出器、7 …変換ゲイン、8 …積分器、9 …電流サンプラー、10 … 10 * 発生器、11 …加算器、12 …電流制御器、13 … 12 …電流制御器、13 … 14 … PWM発生器、11 …インバータ主回路部、12 …ゲート・ドライバ、11 …交流電源、11 … 1

【書類名】 図面 【図1】

【図2】

図 2

【図3】

図 3

【図4】

図 4

【図5】

【図6】

図 6

【図7】

図 7

【図8】

【図9】

【図10】

図 10

【図11】

【図12】

図 12

【図13】

図 13

【図14】

図 14

【図15】

【図16】

図 16

【図17】

図 17

【書類名】 要約書

【要約】

【課題】

交流電動機の回転子位置,回転速度、ならびに電動機の相電流を直接検出する 手段を持たない駆動装置において、高いキャリア周波数であっても高性能な可変 速駆動が実現できる電動機の制御装置を提供する。

【解決手段】

電動機を駆動するインバータの直流電源からの電流を検出する際、この断続してパルス状に流れる電流に対して、各通流期間の中間時刻近傍での値をサンプリングし、該サンプル値に基づいて、電動機への印加電圧あるいは周波数を制御する。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2003-074750

受付番号

5 0 3 0 0 4 4 5 0 6 6

書類名

特許願

担当官

鈴木 紳

9764

作成日

平成15年 4月30日

<認定情報・付加情報>

【提出日】

平成15年 3月19日

特願2003-074750

出願人履歴情報

識別番号

[000005108]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

東京都千代田区神田駿河台4丁目6番地

氏 名

株式会社日立製作所

出願人履歴情報

識別番号

[502129933]

1. 変更年月日 2002年 4月11日

[変更理由]

新規登録

住 所

千葉県千葉市美浜区中瀬二丁目6番地

氏 名

株式会社日立産機システム

特願2003-074750

出願人履歴情報

識別番号

[502131431]

1. 変更年月日

2002年 4月12日

[変更理由]

新規登録

住 所

東京都港区西新橋二丁目15番12号

氏 名

日立ホーム・アンド・ライフ・ソリューション株式会社