Recap

Code Management

Master

Branch

Merge

Visualisation

- Different types of plots
- Matplotlib
- Seaborn
- Plotly express

Advanced visualisation

Overview

- 3D plots
- Geospatial visualisation
- Interactive visualisation
- Dashboarding

3D plots

- X
- y
- Z
- Eg: line plots, scatter plots, surface plots
- plotly_express only line_3d and scatter_3d

Geospatial visualisation

Vector data basics

- Point
- Linestring
- Polygon

Raster data basics

Raster over the same extent, at 4 different resolutions

Data formats

Extension	File Type	Description		
Esri Shapefile	.SHP, .DBF, .SHX	The shapefile is BY FAR the most common geospatial file type you encounter. All commercial and open source accept shapefile as a format. It's so ubiquitous that it's become the industry standard. But you'll need a complete set of three files that are mandatory to make up a shapefile. The three required files are: • SHP is the feature geometry. • SHX is the shape index position.		
		 DBF is the attribute data. You can optionally include these files but are not completely necessary. PRJ is the projection system metadata.XML is the associated metadata.SBN is the spatial index for optimizing queries.SBX optimizes loading times. 		
Geographic JavaScript Object Notation (GeoJSON)	.GEOJSON .JSON	The GeoJSON format is mostly for web-based mapping. GeoJSON stores coordinate as text in JavaScript Object Notation (JSON) form. This includes vector points, lines and polygons as well as tabular information. GeoJSON store objects within curly braces {} and in general have less markup overhead (compared to GML).		
		GeoJSON has a straightforward syntax that you can modify in any text editor. Webmaps browsers understand JavaScript so by default GeoJSON is a common web format. But JavaScript only understands binary objects. Fortunately, JavaScript can convert JSON to binary.		

Libraries

- Data manipulation pandas, geopandas
- Visualisation plotly graph objects, plotly_express, geopandas, folium

Interactive visualisation

- Hover, animation, slider, buttons
- animation_frame
- animation_group

Visualisation - Dashboarding

Streamlit

Streamlit

- Prototyping
- No additional languages needed
- Only python

Prepare you to apply data pipelines to real-world TIL tasks or to leave you well-qualified to start data modelling and quantitative research in TIL

Schedule

	Advanced Visualisation Lab 8	Hand in Lab 8	Project (no supervision) Project	Research Questions Data check
6	Project (no supervision)Project		Project (no supervision)Project	Resit Exam
7	Project (no supervision)Project		Project (no supervision) Project	B Mid-term check
8	Project (no supervision) Project		Project (no supervision)Project	
9				
10				Project submission

- Application project
 - Effect of covid on activity patterns and vice-versa
- Algorithmic project
 - Implement an optimization method and improve it efficiency and accuracy
- Theoretical project
 - Build a car-following model and analyse its sensitivity to different parameters

- Research question (10%)
 - Must include data modelling and quantitative research in TIL domain
 - Data check and requirements
- Coding/Logic (30%)
- Narrative (20%)
- Code readability (20%)
 - Pep8 standard, modularity, creating libraries if necessary
- Individual contribution (10%)
- Technical quality and significance (10%)

Deliverables

- Jupyter notebook, PDF/HTML
- Milestones
 - Proposal + datasets formative feedback
 - Midterm notebook formative feedback
 - Final notebook summative feedback
 - Should include research objective, dataset details, author contribution statement
 - Result analysis, visuals, insights, discussion

Possible datasets

- EUROPE data https://ec.europa.eu/eurostat/web/transport/data/main-tables
- CBS data https://opendata.cbs.nl/statline/portal.html?la=en&catalog=CBS
- Dutch open data https://data.overheid.nl
- Google mobility report https://www.google.com/covid19/mobility/
- COVID data https://data.rivm.nl/covid-19/
- Flight data https://opensky-network.org
- Public transport data https://travic.app/?
 z=12&x=260915.3&y=6251439.5&l=osm_standard&ol=
- Emission data https://map.carbonspace.tech

Example project

- Research objective
 - How did covid affect the activity patterns of people in NL?
- Data
 - Google mobility report
 - Covid data
 - Population data
 - RIVM data