Binary Indexed Tree のはなし

保坂 和宏 (東京大学理学部数学科)

第 13 回 JOI 春合宿 2014/03/19

概要

- Binary Indexed Tree とは
 - 何ができる?
 - 何が嬉しい?
- 具体的な実装
- 応用範囲
 - 区間に足す問題
 - 多次元
 - 二分探索

目標

- 実装できるようにする
- 「普通に Binary Indexed Tree を使うだけ」の部分で詰まらないようになる
 - 補助的な道具としてぱっと使えるように

Binary Indexed Tree とは

Binary Indexed Tree

- Binary Indexed Tree (Fenwick Tree)
 - Peter M. Fenwick, "A New Data Structure for Cumulative Frequency Tables" (1994)
 - BIT と呼ぶことにします
- 列に対するある種の処理ができる

基本的な問題

- N 個の変数 v₁,...,v_N
 - すべて 0 で初期化
- 2 種類のクエリ
 - v_a に値 w を加える
 - prefix [1,a] のところの和 $v_1 + v_2 + \cdots + v_a$ を求める
- クエリあたり O(log N) 時間にしたい

それ〇〇でもできるよ!

- それ平衡二分探索木でもできるよ!
 - std::set 等では機能が足りず、自分で木を実装することに
 - 実装量と計算量がたくさん倍になります
- それ Segment Tree でもできるよ!
 - 実装量と計算量が数倍になります
 - が、割と現実的な選択肢
 - (少なくともコンテストにおいては)

それ〇〇でもできるよ!

- 詳しくは、例えば秋葉さんの講義を参考に
 - 平衡二分探索木
 - プログラミングコンテストでのデータ構造 2 (2012)
 - http://www.slideshare.net/iwiwi/2-12188757
 - Segment Tree
 - プログラミングコンテストでのデータ構造 (2010)
 - http://www.slideshare.net/iwiwi/ss-3578491

Binary Indexed Tree の特徴

- サイズ N の配列で実現できる!
- 速い!
- 実装が簡単!
- 応用範囲はあまり広くない
 - Segment Tree の機能を制限して単純化したものと考えられる

基本的な問題

- N 個の変数 v₁,...,v_N
 - すべて 0 で初期化
- 2 種類のクエリ
 - v_a に値 w を加える
 - prefix [1,a] のところの和 $v_1 + v_2 + \cdots + v_a$ を求める
- クエリあたり O(log N) 時間にしたい

Segment Tree のアイデア

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$
 $v_1 + v_2 + v_3 + v_4$
 $v_5 + v_6 + v_7 + v_8$
 $v_1 + v_2$
 $v_3 + v_4$
 $v_5 + v_6$
 $v_7 + v_8$
 v_1
 v_2
 v_3
 v_4
 v_5
 v_6
 v_7
 v_8

Binary Indexed Tree のアイデア

Binary Indexed Tree のアイデア

変数の値の更新

変数の値の更新 (v_1)

変数の値の更新 (v_2)

変数の値の更新 (v_3)

変数の値の更新 (v_4)

変数の値の更新 (v_5)

変数の値の更新 (v_6)

変数の値の更新 (v_7)

変数の値の更新 (v_8)

区間の和の計算

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_1)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_2)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_3)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_4)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_5)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_6)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_7)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

区間の和の計算 $(v_1 + \cdots + v_8)$

$$v_1 + v_2 + v_3 + v_4 + v_5 + v_6 + v_7 + v_8$$

Nは2ベキでなくてもOK

計算量

- N 個の区間の和を管理する
 - **■** 0(N) メモリ
- 変数の値の更新
 - O(log N) 時間
 - 高々 (log₂N+1) 個の区間に足す
- prefix の和の計算
 - O(log N) 時間
 - 高々 (log₂N + 1) 個の区間の和

具体的な実装

実装例 (C++)

```
int N;
int bit[1000010];
void add(int a, int w) {
  for (int x = a; x <= N; x += x & -x) bit[x] += w;
int sum(int a) {
  int ret = 0;
  for (int x = a; x > 0; x -= x & -x) ret += bit[x];
  return ret;
```

区間の右端で番号づけ

区間の右端で番号づけ

区間の右端で番号づけ

■ bit[1] から bit[N] までを使用

```
int N;
int bit[1000010];
```

区間の長さと番号

区間の長さと番号を二進数で見る

区間の長さと番号

■ bit[x] が管理する区間の長さは, x の最も下の 立っているビット

8 - X

区間の長さと番号

- x の最も下の立っているビットは, x & -x で取り 出せる
 - 覚えてしまいましょう

```
x = 00000000 00000000 00101110 01011000
```

-x = 111111111 111111111 11010001 101010000

x & -x = 00000000 00000000 00000000 00001000

変数の値の更新

変数の値の更新

■ 次に更新すべき区間は、番号に区間の長さを足す と求まる

```
// v[a] += w
void add(int a, int w) {
  for (int x = a; x <= N; x += x & -x) bit[x] += w;
}</pre>
```

区間の和の計算

区間の和の計算

■ 次に足すべき区間は、番号から区間の長さを引く と求まる

```
// v[1] + ... + v[a]
int sum(int a) {
   int ret = 0;
   for (int x = a; x > 0; x -= x & -x) ret += bit[x];
   return ret;
}
```

完成!

```
int N;
int bit[1000010];
void add(int a, int w) {
  for (int x = a; x <= N; x += x & -x) bit[x] += w;
int sum(int a) {
  int ret = 0;
  for (int x = a; x > 0; x -= x & -x) ret += bit[x];
  return ret;
```

0 以外の値で初期化

- add を N 回呼び出せば O(N log N) 時間
 - ほとんどの場合これで十分だと思います
- $v_x = 1$ で初期化するなら bit[x] = x & -x
- 一般には bit[x] を v_x で初期化したのち

```
for (int x = 1; x < N; ++x) bit[x + (x & -x)] += bit[x];
```

この木で累積和をとっている感じ

添え字を 0 から始めたいあなたへ

- 添え字を「1 から N まで」の代わりに「0 から N-1 まで」にしたいこともある
 - 毎回 1 を足したり引いたりをかませてもいいけれど結構な 混乱の元です
 - というわけで番号から 1 を引いたときのリンクを辿る式を 紹介
 - 式変形の見通しは悪くなりますが、動きを把握していれば丸 暗記でもよいでしょう
 - 本講義ではここ以外は BIT の添え字は 1 からです

添え字を 0 から始めたいあなたへ

```
// v[a] += w
void add(int a, int w) {
  for (int x = a; x < N; x |= x + 1) {
    bit[x] += w;
  }
}</pre>
```

添え字を 0 から始めたいあなたへ

```
// v[0] + ... + v[a - 1]
int sum(int a) {
  int ret = 0;
  for (int x = a - 1; x >= 0; x = (x & (x + 1)) - 1) {
    ret += bit[x];
  }
  return ret;
}
```


応用範囲

基本的な問題

- N 個の変数 v₁,...,v_N
 - すべて 0 で初期化
- 2種類のクエリ
 - v_a に値 w を加える
 - prefix [1,a] のところの和 $v_1 + v_2 + \cdots + v_a$ を求める
- クエリあたり O(log N) 時間にしたい

和でなくても OK

- N 個の変数 v₁,...,v_N
 - すべて 0 で初期化
- 2種類のクエリ
 - v_a を値 w に変更 (ただし $v_a \leq w$)
 - prefix [1,a] のところの最大値 $\max\{v_1,v_2,...,v_a\}$ を求める
- クエリあたり O(log N) 時間にしたい

和でないときにできないこと

- 小さい値に更新することはできない
- prefix 以外の区間の max は一般にはわからない
 - $v_a + v_{a+1} + \cdots + v_b = (v_1 + \cdots + v_b) (v_1 + \cdots + v_{a-1})$ だから,和に関しては prefix の和さえわかれば他の区間についてもわかる
- 和以外は無理せず Segment Tree を用いるのも 十分あり
 - BIT はどうしても速度・メモリがきついとき用に

区間に対する更新

- BIT でできることは「1 点の更新」「区間の和など」
 - 「区間に対する更新」などには基本的に何らかの式変形が 必要になると考えてよいでしょう

区間に対する更新

- N 個の変数 v₁,...,v_N
 - すべて 0 で初期化
- 2 種類のクエリ
 - 区間 [a,b] のところ $v_a, v_{a+1}, ..., v_b$ に値 w を加える
 - v_a の値を求める
- クエリあたり O(log N) 時間にしたい

- - ただし v₀ = 0 と考える

- 区間 [a,b] のところ $v_a, v_{a+1}, ..., v_b$ に値 w を加える
 - d_a に w を d_{b+1} に -w を加える

- v_a の値を求める
 - 和 $d_1 + d_2 + \dots + d_a$ を求める

- N 個の変数 *d*₁,...,*d*_N
 - すべて 0 で初期化
- 2種類のクエリ
 - d_a に w を d_{b+1} に -w を加える
 - 和 $d_1 + d_2 + \cdots + d_a$ を求める
- BIT でできる!

区間に対する更新&区間の和

- N 個の変数 v₀,..., v_{N-1}
 - すべて 0 で初期化
- 2 種類のクエリ
 - 区間 [a,b) のところ $v_a, v_{a+1}, ..., v_{b-1}$ に値 w を加える
 - 区間 [0,c) のところの和 $v_0 + v_1 + \cdots + v_{c-1}$ を求める
- クエリあたり $O(\log N)$ 時間にしたい

区間に対する更新&区間の和

- 1. Segment Tree に逃げる
 - いいと思います
- 2. かしこい式変形を用いる
- 3. かしこくない式変形を用いる

かしこい式変形

- 変数 $p_0, p_1, ..., p_N, q_0, q_1, ..., q_N$ をとる
- 2 種類のクエリ
 - 区間 [a,b) のところ $v_a, v_{a+1}, ..., v_{b-1}$ に値 w を加える
 - p_a に -wa を, p_b に wb を, q_a に w を, q_b に -w を加える
 - 区間 [0,c) のところの和 $v_0 + v_1 + \cdots + v_{c-1}$ を求める
 - $(p_0 + p_1 + \dots + p_c) + (q_0 + q_1 + \dots + q_c)c$ を求める
- BIT を 2 個使えばできる

かしこい式変形の説明(略)

- 和なので 1 クエリ分正しければ OK
- 2 種類のクエリ
 - 区間 [a,b) のところ $v_a, v_{a+1}, ..., v_{b-1}$ に値 w を加える
 - p_a に -wa を, p_b に wb を, q_a に w を, q_b に -w を加える
 - 区間 [0,a) のところの和 $v_0 + v_1 + \cdots + v_{a-1}$ を求める
 - $(p_0 + p_1 + \dots + p_c) + (q_0 + q_1 + \dots + q_c)c$ を求める
- $c < a, a \le c < b, b \le c$ のそれぞれの場合を計算 してみよう

かしこくない式変形

- 部分和をとる
- 0次の係数と1次の係数に対応するBITは作る
- 結局先ほどの式変形になります

2次元の問題

- $M \times N$ 個の変数 $v_{x,y}$ (x = 1, ..., M, y = 1, ..., N)
 - すべて 0 で初期化
- 2種類のクエリ
 - *v_{a,b}* に値 *w* を加える
 - $[1,a] \times [1,b]$ のところの和 $\sum_{1 \leq x \leq a, 1 \leq y \leq b} v_{x,y}$ を求める
- クエリあたり O((log M)(log N)) 時間にしたい

2次元の問題

- BIT が BIT をもつ感じ
- $\operatorname{bit}[x][y]$ に和 $\sum_{L_x < i \leq x, L_v < j \leq y} v_{i,j}$ をもたせる
 - $tilde{tilde{E}} = tilde{tilde{E}} = tilde{t$
- 実装は単純な2重ループ
 - Segment Tree 等と比べてはっきり優れていると思います
- 3 次元以上も同じ

実装例 (C++)

```
int N;
int bit[1010][1010];
void add(int a, int b, int w) {
  for (int x = a; x <= M; x += x & -x)
    for (int y = b; y \le N; y += y \& -y) {
      bit[x][y] += w;
```

実装例 (C++)

```
int sum(int a, int b) {
  int ret = 0;
  for (int x = a; x > 0; x -= x & -x) {
    for (int y = b; y > 0; y -= y \& -y) {
      ret += bit[x][y];
  return ret;
```

BIT 上で二分探索

- N 個の変数 v₁,...,v_N
- 3 種類のクエリ
 - v_a に値 w を加える (ただし常に $v_a \ge 0$ が成り立つとする)
 - prefix [1, a] のところの和 $v_1 + v_2 + \cdots + v_a$ を求める
 - $v_1 + v_2 + \dots + v_x \ge w$ となる最小の x を求める
- クエリあたり O(log N) 時間にしたい

普通に二分探索

- $v_1 + v_2 + \cdots + v_x$ (t
 - x について単調なので、二分探索でw 以上となる最小の場所がわかる
 - それぞれ *O*(log *N*) 時間で計算できる
- *O*((log *N*)²) 時間

BIT 上で二分探索

- 二分木の分かれ方に従って二分探索する
- 左の子に進むか右の子に進むかを知るためには, 左の子の範囲の和がわかればよい
 - ちょうど BIT がもっている情報, *O*(1) 時間で得られる

BIT 上で二分探索

```
int lowerBound(int w) {
  if (w <= 0) return 0;</pre>
  int x = 0;
  for (int k = (n 以下の最小の 2 ベキ); k > 0; k /= 2) {
    if (x + k \le N \&\& bit[x + k] < w) {
     w = bit[x + k];
     x += k;
  return x + 1;
```

BIT 上で二分探索できると嬉しいこと

- 変数の値を 0,1 として考えると,集合への要素の追加・削除,「指定された要素が何番目に小さいか」「w 番目に小さい要素は何か」ができる
 - 値の範囲がわかっている (1 から N まで) 場合の std::set より高機能なもの
 - メモリは O(N) かかる
 - 座標圧縮して使うことも多い

まとめ

■ 基本

- 1点に足す・prefix の和を求める
- bit[x] に右端が x で長さ x & -x の区間の和をもたせる

応用

- 差分・部分和に対する問題を考えてみる
- 多次元は多重ループ
- 高速に二分探索できる

http://hos.ac/slides/