Lignes de transmission

I - Présentation

Une ligne de transmission est un **ensemble de conducteurs permettant de transmettre un signal** d'une source vers une charge.

Exemple 1. Lignes coaxiales (câbles vidéo, ...) et lignes bifilaires torsadées (câbles réseau, ...)

Les lignes de transmission sont caractérisées par des **paramètres spécifiques** (**impédance**, **capacité linéique**, **coefficient de vélocité**, **atténuation linéique**, ...) qui sont généralement donnés par les documentations techniques (datasheet) des constructeurs.

Exemple 2. Datasheet d'un câble coaxial RG59BU

MARKING	tasker® RG59 75 Ohm Mil C17/F Coaxial Video Cable Italy
AVAILABLE ALSO	RG59 BU, RG59 Flex, RG59 LSZH, RG59 eXtra, RG59 PUR,

RG59 AR

<u>CUSTOM</u>
PRODUCTION

This product may be custom produced also in **PE**, with or without Metallic Armor.

Cable Properties

Conductor Resistance	158 Ω/Km		
Capacity Core/Shield	67 pF/m		
Velocity of Propagation	66%		
Impedance	75 Ω		
Max Rated Voltage	2.000 V		
Operative Temperature	-15/+70°C		

Attenuation dB/100 m.

100 MHz	10,7			
200 MHz	15,7			
400 MHz	22,7			
600 MHz	28,7			
800 MHz	33,6			
1000 MHz	38,0			

II - Caractéristiques d'un ligne de transmission

Modèle équivalent

Pour un **tronçon de faible longueur** Δx et en négligeant les résistances (donc les pertes), une ligne de transmission est équivalente au schéma ci-dessous.

- L est l'inductance linéique ($H \cdot m^{-1}$).
- C est la capacité linéique $(F \cdot m^{-1})$.

Exemple 3. câble coaxial RG59BU

$$C \approx 67 \text{ pF} \cdot \text{m}^{-1}$$
 $L \approx ????$

Impédance caractéristique

L'impédance caractéristique d'une ligne de transmission est résistive.

$$\boxed{\underline{Z}_C = R_C = \sqrt{\frac{L}{C}}}$$

Exemple 4. câble coaxial RG59BU

$$R_C = \sqrt{\frac{???}{67 \cdot 10^{-12}}} \qquad \Longrightarrow \qquad R_C \approx 75 \ \Omega$$

Célérité de l'onde

Le signal qui se propage dans une ligne de transmission est une onde dont la célérité (ou vitesse) est donnée par la relation :

Exemple 5. câble coaxial RG59BU

$$v = \frac{1}{\sqrt{??? \times 67 \cdot 10^{-12}}} \qquad \Longrightarrow \qquad v \approx 2, 0 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$$

Coefficient de vélocité

Le coefficient de vélocité caractérise la célérité de l'onde dans la ligne de transmission par rapport à la célérité de la lumière.

$$k = \frac{v}{c}$$
 avec $c = 3.0 \cdot 10^8 \,\mathrm{m \cdot s^{-1}}$

Exemple 6. câble coaxial RG59BU

$$k = \frac{2,0 \cdot 10^8}{3,0 \cdot 10^8} = \frac{2}{3}$$
 \implies $k \approx 67\%$

Atténuation linéique

Pour une ligne de transmission non parfaite, on observe à la sortie une attenuation du signal transmis qui s'accentue avec la longueur de la ligne et avec la fréquence également.

On définit ainsi l'atténuation linéique par la relation :

$$A_{l} = \frac{20}{l} \times \log(\frac{U_{e_{max}}}{U_{s_{max}}}) \qquad (dB \cdot m^{-1})$$

Exemple 7. Câble coaxial RG59BU

f (MHz)	100	200	400	600	800	1000
$A_l \text{ (dB/100m)}$	10.7	15,7	22,7	28,7	33,6	38,0

III - Régime impulsionnel

Ligne adaptée

Ligne à vide

Ligne en court-circuit

