13.8 STOKES' THEOREM

13.9 THE DIVERGENCE THEOREM

STOKES' THEOREM Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

vector field **F** and surface S. Verify that Stokes' Theorem is true for the given $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k},$

$$\mathbf{F}(x, y, z) = y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$$
,
S is the part of the paraboloid $z = x^2 + y^2$ that lies below
the plane $z = 1$, oriented upward


```
LITS
                                     cF = curl(F)
syms t
x = cos(t);
                                                           RHS
y = sin(t);
                                     % problem 1
z = 1;
                                     % rhs
r = [x, y, z];
F = [y^2, x, z^2];
                                     syms s t
lhs = int(sum(F.*diff(r,t)),t,0,2)
                                     x = s*cos(t);
                                     y = s*sin(t);
                                     z = s^2;
                                     r = [x, y, z];
                                     CF = [0, 0, 1 - 2*y];
                                     c = simplify(cross(diff(r,s),diff(r,t)))
                                     rhs = int(int(sum(c.*cF), t, 0, 2*pi), s, 0, 1
```

 $F = [y^2, x, z^2]$

Verify that Stokes' Theorem is true for the given vector field \mathbf{F} and surface S.

$$\mathbf{F}(x, y, z) = x \,\mathbf{i} + y \,\mathbf{j} + xyz \,\mathbf{k},$$

S is the part of the plane 2x + y + z = 2 that lies in the

parametric ogn for surface

$$x = x$$
 $y = y$
 $z = 2 - 2x - y$
 $0 \le y \le 2 - 2x$

If S is a sphere and **F** satisfies the hypotheses of Stokes' Theorem, show that $\iint_S \text{curl } \mathbf{F} \cdot d\mathbf{S} = 0$.

a. Physical interpretation of curl (F). ſſcwrl(₹)·ds=β₹.dr curl(F) (AS) = (F, 28 DS I curl (F) RAS is small s.t. countout. kind of rotational energy -

Recoll Surface Integration of Vector Fields $\widehat{N}.d\vec{s} = \widehat{N}(F.\hat{x})ds = \widehat{N}.d\vec{s} = \widehat{N}(F.\hat{x})ds = \widehat{N}.d\vec{s} = \widehat{N}.d\vec{$ l vx vv

Divergence theorem:

if Surface is closed, then flor can be adapted by a volume integration.

THE DIVERGENCE THEOREM Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} dV$$

$$\lim_{S \to \infty} \mathbf{F} = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z}$$

$$\lim_{S \to \infty} \mathbf{F}(x) = f(x)$$

$$f(b) - f(a) = \int_{E} f'(x) dx$$

EXAMPLE I Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ over the unit sphere $x^2 + y^2 + z^2 = 1$.

$$flux = \iint \vec{F} \cdot \vec{ds} = \iiint 1 dV = \frac{4}{3}\pi$$

EXAMPLE 2 Evaluate
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}$$
, where
$$\mathbf{F}(x, y, z) = xy\mathbf{i} + (y^{2} + e^{y})$$

$$\mathbf{F}(x, y, z) = \mathbf{x} \mathbf{y} \mathbf{i} + (\mathbf{y}^2 + e^{\mathbf{x} \cdot \mathbf{z}^2}) \mathbf{j} + \sin(\mathbf{x} \mathbf{y}) \mathbf{k}$$
 and *S* is the surface of the region *E* bounded by the parabolic cylinder $z = 1 - x^2$ and the planes $z = 0$, $y = 0$, and $y + z = 2$. (See Figure 2.)

(1, 0, 0)

$$i1 = int(3*y,y,0,2-z)$$

$$\mathbf{1} = \mathsf{int}(3^*y, y, 0, 2-z)$$

$$i2 = int(i1, z, 0, 1-x^2)$$

$$i3 = int(i2, x, -1, 1)$$

to understand div (F) Recall divergence theorem

MF.ds = div (F) [volume of V] outword flux density $div(\vec{r}) = \lim_{|V| \to 0} \frac{1}{|V|} \iint_{S} \vec{r} ds =$

7

div (F) = 0 incompressible

SINK

source

13 REVIEW

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

- 1. If **F** is a vector field, then div **F** is a vector field.
- 2. If **F** is a vector field, then curl **F** is a vector field.
- If f has continuous partial derivatives of all orders on R³, then div(curl ∇f) = 0.
- **4.** If f has continuous partial derivatives on \mathbb{R}^3 and C is any circle, then $\int_C \nabla f \cdot d\mathbf{r} = 0$.

- 7. If S is a sphere and F is a constant vector field, then $\iint_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{S} = 0.$
- **8.** There is a vector field **F** such that

$$\operatorname{curl} \mathbf{F} = x \, \mathbf{i} + y \, \mathbf{j} + z \, \mathbf{k}$$

Chaitany's theorem

$$\begin{cases}
\vec{F} \cdot d\vec{r} = \begin{cases}
\vec{F} \cdot \vec{r}'(t)dt = -\int_{\vec{F}} \vec{r}'(t)dt
\end{cases}$$

$$-C$$

