二次曲线系视角下对 2017 年

全国 I 卷理数 20 题的反思

江西省南昌市第三中学 (330049) 张金生

2017 年高考新课标全国 I 卷理数的设计遵循《普通高中数学课程标准》和《高考说明》的要求和阐述,紧密联系高中数学教学现状,关注数学本质,渗透学科核心素养.

本文从二次曲线系的角度去研究该卷 20 题,请看题:

已知椭圆
$$C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
, 四点

 $P_1(1,1)$, $P_2(0,1)$, $P_3(-1,\frac{\sqrt{3}}{2})$, $P_4(1,\frac{\sqrt{3}}{2})$ 中恰有 三点在椭圆 C 上. (1) 求 C 的方程; (2) 设直线 l 不经过 P_2 点且与 C 相交于 A, B 两点. 若直线 P_2A 与直线 P_2B 的斜率之和为 -1, 证明: l 过定点.

常规解法略,为巧解该题,我们先看关于二次曲 线系的相关概念:

二次方程 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ 表示的曲线叫做二次曲线,它包括圆、椭圆、双曲线、抛物线以及两条直线(退化的二次曲线).

二次方程 $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) = 0$ 表示两条直线,但这个方程展开后,是一个二次式,因此我们说这是退化的二次曲线.

已知两条二次曲线 Γ_1 : f(x,y) = 0 与 Γ_2 : g(x,y) = 0 相交,且有四个交点,则方程 $\lambda f(x,y) + \mu g(x,y) = 0 (\lambda,\mu$ 为参数)表示经过其四个交点的二次曲线系方程. 若能确定所求的曲线不是 Γ_1 : f(x,y) = 0 或 Γ_2 : g(x,y) = 0,我们可以只设一个参数.

当我们已知曲线 h(x,y) = 0, 要求某些未知数时, 我们可以利用 $\lambda f(x,y) + \mu g(x,y) = h(x,y)$, 两边对比系数即可.

下面利用该知识解决笔者原创的南昌市 2017 年一模试题 20 题:

例 1 (2017 年南昌一模 20) 如图 1,已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右顶点分别为 A_1 ,

 A_2 , 左、右焦点分别为 F_1 , F_2 , 离心率为 $\frac{1}{2}$, 点 B(4, 0), F_2 为线段 A_1B 的中点.

(I) 求椭圆C的方程:

(II) 若过点 B 且斜率不为 0 的直线 l 与椭圆 C 交于 M, N 两点,已知直线 A_1M 与 A_2N 相交于点 G, 试判断点 G 是否在定直线上? 若是,请求出定直线的方程; 若不是,请说明理由.

图 1

$$\mathbf{M}: (1) \frac{x^2}{4} + \frac{y^2}{3} = 1.$$

(2) 常规方法计算量较大,此处略.

设 MN:y = k(x-4), 易知 $A_1M:x+2 = t_1y$, $A_2N:x-2 = t_2y$, $A_1A_2:y = 0$,

因为椭圆过二次曲线 $A_1M \cdot A_2N$ 与二次曲线 $A_1A_2 \cdot MN$ 的四个交点 A_1,A_2,M,N ,则有 $(x+2-t_1y)(x-2-t_2y)+\mu y(kx-y-4k)=\lambda(\frac{x^2}{4}+\frac{y^2}{3}-1)$,比较两边 xy 项的系数,得 $-t_1-t_2+\mu k=0$;

比较两边 y 项的系数, 得 $2t_1-2t_2-4\mu k=0$, 两 式联立, 得 $\begin{cases} t_1+t_2=\mu k,\\ t_1-t_2=2\mu k, \end{cases}$ 所以 $t_1=-3t_2$, 由

 $\begin{cases} x+2=-3t_2y,\\ x-2=t_2y \end{cases} \Rightarrow x=1,$ 即点 G在定直线 x=1 上.

如图 2, 若一条直线与一条二次曲线交于 P,Q 两点,那么对于这两条直线 $OP \cdot OQ$,怎么来刻划呢?设直线 PQ 的方程为 y = kx + m①,曲线方程为 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ ②.

图 2

我们将①变形为 $\frac{y-kx}{m}=1$,利用它将②中的 所有项配成二次,得

注意到点P,Q满足③式,又③为二次齐次式, 所以它一定能分解成 $(y-k_1x)(y-k_2x)=0$,这就 是过原点的两直线 $OP\cdot OQ$,也可以将③两边同除 x^2 ,视其为关于 $\frac{y}{x}$ 的二次方程,解出两根,即为 k_1 , k_2 ,这即为OP,OQ的斜率.

由上可得2017年高考解析几何20题的巧解:

- (1) 根据椭圆的对称性,可知 P_2 , P_3 , P_4 在椭圆 C 上, 所以椭圆方程为 $\frac{x^2}{4}$ + y^2 = 1.
- (2) 将坐标系向上平移一个单位,将原点移至 P_2 点. 椭圆方程化为 $C':\frac{x'^2}{4}+(y'+1)^2=1$,即 $\frac{1}{4}x'^2+y'^2+2y'=0$,设平移后直线 l 对应的直线 l' 为 mx'+ny'=1,将平移后的椭圆方程齐次化,得 $\frac{1}{4}x'^2+y'^2+2y'(mx'+ny')=0$,整理得 $(2n+1)y'^2+2mx'y'+\frac{1}{4}x'^2=0$,即 $(2n+1)(\frac{y}{x})^2+2m\frac{y}{x}+\frac{1}{4}=0$,结合两直线斜率之和为 -1,得 $-\frac{2m}{2n+1}=-1$, 2m=2n+1. 所以直线 l':(2n+1)x'+2ny'=2, l' 恒过点 l':(2n+1)x'+2ny'=2, l' 也过点 l':(2n+1)x'+2ny'=2, l:(2n+1)x'+2ny'=2 l':(2n+1)x'+2ny'=2 l:(2n+1)x'+2ny'=2 l:(2n+1)x'+2ny'=2

我们再来深挖该题背景性质:

性质 1 已知点 A(a, -b), B(a,b), D(-a, b), E(-a, -b), 我们称矩形 ABDE 为椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的伴随矩形, 设直线 l 不经过点 P(0,b) 且与椭圆 C 相交于 M, N 两点, 若 $k_{PM} + k_{PN}$

 $=-\frac{2b}{a}$,则直线 l 过定点 A.

性质 2 从椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的伴随矩形 ABDE 的顶点 A(a, -b) 引一条直线与椭圆 C 交于 M,N 两点,若 P(0,b),则 $k_{PM} + k_{PN} = -\frac{2b}{a}$.

这两条性质读者不妨用前面二次曲线系的方法 去简洁证明.

关于椭圆类似性质的探究,笔者在《对一次试卷讲评课的一点感悟》(见本刊2016年第4期)一文中有以下两个结论:

性质3 从已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的大伴随圆 $C': x^2 + y^2 = a^2 + b^2$ 上一点 P 作椭圆 C 的两条切线,则两条切线相互垂直.

性质 4 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的小伴随圆 $C': x^2 + y^2 = \frac{a^2 \cdot b^2}{a^2 + b^2}$ 的任意一条切线与椭圆 C 恒有两个交点 $P, Q, 则 \overrightarrow{OP} \perp \overrightarrow{OQ}$.

2017 高考全国 【卷解析几何解答题考查了数学抽象、逻辑推理、数学运算、数据分析等核心素养,重点考查思维品质,减少计算量.数学离不开计算,核心素养下的数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果.重在运算法则的掌握、运算方向的探究、方法的选择,也就是"多一点想、少一点算".基于核心素养视角的教育教学将是今后相当长时间段内的热点.

本文从二次曲线系视角下探索试题的多种解法,挖掘试题的本质属性,在提高数学学科核心素养方面作出一点探索,不到之处敬请批评指正.