Permit No. 9627

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source A	ir Contaminant	<u>Emission</u>	Rates
<u>*</u> Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
PF-1	Revolatilizing Furnace-1 Baghouse	PM_{10} VOC NO_x SO_2 CO	0.307 0.007 0.185 0.001 0.039	1.237 0.031 0.810 0.005 0.170
PF-2	Revolatilizing Furnace-1 Baghouse	PM_{10} VOC NO_x SO_2 CO	0.352 0.007 0.185 0.001 0.039	1.420 0.031 0.810 0.005 0.170
PF-3	Cupola Furnace Baghouse	PM_{10} VOC NO_x SO_2 CO	0.307 0.004 0.109 <0.001 0.023	1.237 0.018 0.477 0.003 0.100
PF-4	Cupola Furnace Baghouse	PM_{10} VOC NO_x SO_2 CO	0.278 0.004 0.109 <0.001 0.023	1.122 0.018 0.477 0.003 0.100
PF-5	Revolatilizing Furnace-3 Cartridge Fi 0.062	PM ₁₀ ilter NO _x SO ₂	0.651 VOC 0.370 0.002	2.623 0.014 1.619 0.010

Emission	Source	Air Contaminant	ontaminant <u>Emission Rates *</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
		СО	0.078	0.340
PF-6	MS4 Classifier Baghous	e PM ₁₀	0.246	0.493
PF-7	MS5 Classifier Baghous	e PM ₁₀	0.486	0.972
HF-1	North Fullers Blast Furnace Baghouse	$\begin{array}{c} PM_{10} \\ VOC \\ NO_{x} \\ SO_{2} \\ CO \end{array}$	0.774 0.054 2.378 29.840 0.171	3.121 0.219 9.616 120.310 0.691
HF-2	South Fullers Blast Furnace Baghouse	PM_{10} VOC NO_{x} SO_{2} CO	1.149 0.054 2.378 29.840 0.171	4.632 0.219 9.616 120.310 0.691
HF-3	Cupola Hygiene Baghous	e PM ₁₀	0.506	2.039
HF-4	Auger Packer Baghouse	PM_{10}	0.318	1.283
HF-10	Crude Oxide Silo Hygiene Baghouse	PM_{10}	0.037	0.148
CVS-1	Old Central Vacuum System Baghouse	PM ₁₀	0.092	0.370
CVS-2	New Central Vacuum System Baghouse	PM_{10}	0.092	0.370
SODANTFURN	Sodium Antimonate Furnace	$\begin{array}{c} PM \\ VOC \\ NO_x \\ SO_2 \\ CO \end{array}$	0.019 0.010 0.251 0.002 0.053	0.076 0.039 1.012 0.006 0.213

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
HF-22	Sodium Antimonate Hygiene Baghouse 2	NaSbO₃	0.354	1.427
HF-15	Ongard II Fugitive Baghouse	$\begin{array}{c} PM_{10} \\ VOC \\ NO_x \\ SO_2 \\ CO \\ ZnO \\ MgO \end{array}$	0.028 0.014 0.378 0.002 0.079 0.203 0.304	0.114 0.058 1.530 0.009 0.320 0.818 1.227
PF-8	Ongard II Packaging Baghouse	Zn0 Mg0	0.205 0.308	0.828 1.241
ATCBLR	Antimony Trichloride Boiler	PM VOC NO _x SO ₂ CO	0.002 0.001 0.033 <0.001 0.007	0.010 0.005 0.133 <0.001 0.028
ATCFUG	Antimony Trichloride Area Fugitives (4)	Cl ₂ TSP PM ₁₀	0.078 0.075 0.008	0.100 0.017 0.002
WS-1	Antimony Trichloride Venturi Scrubber	SbC1₃	0.075	0.302
PF-9	Antimony Sulfide Grinde Baghouse	er Sb₂S₃	0.078	0.315
HF-20	Compounding Plant Baghouse	PM_{10}	0.275	1.109
HF-21	Pilot Plant Baghouse	PM_{10}	0.025	0.101

${\tt EMISSION} \ {\tt SOURCES} \ {\tt -MAXIMUM} \ {\tt ALLOWABLE} \ {\tt EMISSION} \ {\tt RATES}$

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
HF-24	Flexkleen Baghouse	Zinc Borate	0.070	0.283
ZBPLNT1	Building Vent 1 (4)	Zinc Borate ZnO Boric Acid	0.004 0.019 0.047	0.015 0.077 0.190
ZBPLNT2	Building Vent 2 (4)	Zinc Borate ZnO Boric Acid	0.004 0.019 0.047	0.015 0.077 0.190
ZBPLNT3	Building Vent 3 (4)	Zinc Borate ZnO Boric Acid	0.004 0.019 0.047	0.015 0.077 0.190
ZBPLNT4	Building Vent 4 (4)	Zinc Borate ZnO Boric Acid	0.004 0.019 0.047	0.015 0.077 0.190
ZNBORBLR	Zinc Borate Boiler	PM VOC NO $_{x}$ SO $_{z}$ CO	0.001 <0.001 0.015 <0.001 0.003	0.005 0.002 0.061 <0.001 0.013
TF-1	Transfer System	PM_{10}	0.184	0.740
Slgcrusher	Slag Crusher (4)(5)	TSP PM ₁₀	0.189 0.011	0.064 0.004
Slgscreen	Slag Screen (4)(5)	TSP PM ₁₀	0.108 0.081	0.036 0.027
Slgpiles	Slag Stockpile (4)	TSP PM ₁₀		2.713 1.308
AST-1	Diesel Tank Vent	VOC	0.014	<0.001

Emission	Source Air Contaminant		Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
AST1-F	Diesel Tank System (4)	VOC	<0.001	<0.001
AST-2	Gasoline Tank Vent	VOC	2.415	0.051
AST2-F	Gasoline Tank System ((4) VOC	0.110	0.069
FUGC	Crude Building (4)	PM_{10}	0.001	0.004
FUGF FUGS	Furnace Building (4) Sodium Antimony Buildi 0.001	PM_{10} ng (4)	0.001 PM ₁₀	0.004 <0.001
FUGB	Banbury Building (4)	PM_{10}	<0.001	<0.001
FUGN	Inter Warehouse North	(4) PM ₁₀	0.001	0.004
FUGW	Inter Warehouse West ((4) PM ₁₀	0.001	0.004

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) TSP total suspended particulate matter (including PM_{10}) PM_{10} particulate matter less than 10 microns in diameter
 - VOC volatile organic compounds as defined in General Rule 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide CO - carbon monoxide NaSbO₃ - sodium antimonate
 - ZnO zinc oxide
 - MgO magnesium oxide
 - SbCl₃ antimony trichloride
 - Cl₂ chlorine
 - Sb_2S_3 antimony sulfide
- (4) Fugitive emissions are an estimate only.
- (5) Maximum allowable hourly throughput is 15 tons and the maximum annual throughput is 10,080 tons. Crusher and screen shall not be operated during normal plant operations and then for a maximum of 28 days per year.

AIR CONTAMINANTS DATA

Dated____

Emission	Source	Air	Contaminant	<u>Emission R</u>	<u>ates *</u>
Point No. (1)	Name (2)		Name (3)	lb/hr	TPY
				s (except slag our commons of the common com	
Hrs/day or Hrs/year	24 8,064	Days/week	7	Weeks/year	48