ISEN Lille	Examen en automatique	Nom:	Note:
Junia, la grande école	CIR3, CNB3, CSI3	Prénom :	
Prof : KRAIEM Youssef	Durée : 8h30 à 10h30	Classe:	
	28 mai 2021		

<u>Aucun document n'est autorisé : les transformées de Laplace nécessaires sont résumées dans</u> l'annexe à la fin de l'épreuve.

Exercice 1 - Identification d'un modèle de comportement d'un système mécanique (5 points) On étudie le comportement dynamique d'un système mécanique masse-ressort-amortisseur. Sa réponse indicielle unitaire est représentée sur la Figure 1.

Figure 1. Réponse indicielle unitaire du système mécanique

- **1.1.** Proposer en justifiant un modèle sous forme de fonction de transfert $G(p) = \frac{Y(p)}{U(p)}$.
- 1.2. Déterminer son gain statique, son instant de 1^{er} dépassement et sa valeur de 1^{er} dépassement.
- 1.3. En déduire le coefficient d'amortissement et la pulsation propre non amortie.

Exercice 2 : Réglage d'un système en stabilité et en précision (7 points)

On souhaite asservir un système dont la fonction de transfert est :

$$A(p) = \frac{8}{p^2 + 5p + 6}$$

On place ce système dans la chaîne directe d'une boucle de régulation, en cascade avec un correcteur C(p)=K. La boucle de retour est assurée par un système de fonction de transfert B(p)=3.

- **1-** Donner le schéma fonctionnel du système asservi, ainsi que la fonction de transfert en boucle ouverte et en boucle fermée.
- **2-** Déterminer la condition nécessaire sur K pour que le système possède une marge de phase supérieure à 45°.
- **3** Est ce qu'un correcteur à avance de phase est capable de garantir une erreur de position inférieure à 20 % ? Justifier
- **4-** Déterminer l'expression du nouveau correcteur C(p) qui permet d'avoir à la fois une marge de phase de 45° et une erreur de position inférieure à 20 %=0,2.

Exercice 3 - Contrôle en température d'un four de traitement thermique (8 points) <u>Modélisation</u>

La mise en équation d'un four de traitement thermique a conduit à l'équation suivante :

$$800 \frac{d\theta(t)}{dt} + 4\theta(t) = 8u(t) + 0,4d(t)$$

- $\theta(t)$ est la température au sein du four
- -u(t) est la puissance de chauffe du four
- d(t) est une perturbation
- 1- On suppose les conditions initiales des variables nulles et on note :

$$L[\theta(t)] = \theta(p), L[u(t)] = U(p), L[d(t)] = D(p)$$

Montrer que le comportement dynamique du four peut être modélisé dans le domaine de Laplace par la relation suivante :

$$\theta(p) = G(p)U(p) + G_D(p)D(p)$$

Avec:
$$G(p) = \frac{8}{4 + 800.p}$$
 et $G_D(p) = \frac{0.4}{4 + 800.p}$

- **2-** Pour chacune des fonctions de transfert G(p) et $G_D(p)$, préciser les gains statiques K et K_D et les constantes de temps T et T_D .
- **3-** Calculer et tracer $\theta(t)$ la réponse à un échelon unitaire sur la puissance de chauffe du four en l'absence de perturbation. Placer les paramètres K et T sur la réponse.

Performances de l'asservissement de température par correction PI

On suppose que la perturbation d(t) nulle. Le schéma-bloc de l'asservissement de température est représenté sur la Figure 2 :

Figure 2. Schéma-bloc de l'asservissement

Le correcteur choisi est de type proportionnel-intégral (PI) et prend la forme :

$$C(p) = K_p \frac{1 + T_i \cdot p}{T_i \cdot p}$$

Le cahier des charges pour l'asservissement de température doit respecter les contraintes suivantes .

- La fonction de transfert en boucle fermée doit être du 1^{er} ordre,
- Le système bouclé doit être 3 fois plus rapide que le système sans correcteur,
- L'erreur (statique) en régime permanent suite à un échelon de consigne sur la puissance de chauffe doit être nulle,
- **4-** En prenant la forme suivante de la fonction de transfert G(p) du four :

$$G(p) = \frac{K}{1 + T.p}$$

Déterminer la fonction de transfert en boucle ouverte FTBO(p) en fonction de K, K_p , T et T_i .

- **5-** Démontrer que le réglage de la constante de temps de l'action intégrale $T_i = T$ conduit à une fonction de transfert en boucle fermée FTBF(p) du 1^{er} ordre.
- **6-** Avec ce réglage pour T_i , déterminer la plage de valeurs de K_p qui permet de garantir la stabilité du système bouclé.
- 7- Déterminer le gain K_p afin de respecter la contrainte du cahier des charges sur la rapidité.
- 8- Avec ce réglage du correcteur PI, vérifier si la contrainte sur l'erreur statique est respectée.

Bon travail

Annexe : Table de transformées de Laplace

F(p)	f(t)
$\frac{1}{p}$	Echelon unitaire u(t)
$\frac{1}{p.(1+\tau p)}$	$\left(1-e^{-t/\tau}\right)u(t)$