Testing Graph Dependency

Youjin Lee

April, 2016

Local Graph Correlation

- A function takes two distance matrices as an input and returns the local family of distance correlation matrix(k, l = 1, ..., n).
- Independence test is performed based on the permutation test of all the family.
- Comparison across different tests(e.g. LGC by {mcorr/dcorr/Mantel}/HHG) and also within a family of local statistics.

 $(\mathsf{Multiscale}\ \mathsf{Graph}\ \mathsf{Correlation}(\mathsf{MGC}) = \mathsf{Local}\ \mathsf{Graph}\ \mathsf{Correlation?})$

X and Y

▶ Test independence between nodes' attribute X and Y

$$\begin{aligned} A_{ij} &:= ||X_i - X_j||_2; B_{ij} := ||Y_i - Y_j||_2 \\ dCov_{kl}(\mathcal{X}, \mathcal{Y}) &:= \frac{1}{n^2} \sum_{i,j=1}^n A_{ij}^H B_{ij}^H \mathcal{I}(r(A_{ij}) < k) \mathcal{I}(r(B_{ij}) < l) \end{aligned}$$

Local Distance Correlation

$$dCorr_{kl}(\mathcal{X}, \mathcal{Y}) = \frac{dCov_{kl}(\mathcal{X}, \mathcal{Y})}{\sqrt{dVar_k(\mathcal{X}) \cdot dVar_l(\mathcal{Y})}}$$

Node attribute X vs. their underlying Graph G

- ▶ adjacency.spectral.embedding of underlying Graph G vs. dist of G
- Q. Why we use spectral embedding method(i.e. dimensionality reduction), not using just similarity matrix or adjacency matrix of G? How can we determine the number of dimension (dimc) of embedded network?
- Q. Latent position graph models(DL Sussman, Hoff et al (2002)) confused about the relationship between latent position of vertices and spectral embedded matrix.

Graph G vs. Graph H

- ▶ A =(geodesic distance matrix of G) or (adjacency matrix of G) or (weight matrix of G; edge weight). Same for B and H.
- Create a rank matrix(disToRanks) of each matrix (A and B) and returns a family of local statistics.

Q. Do we necessarily have to reduce the dimentionality of distance matrix?

General Question

- Since we do not know the true distribution of f_{XY} , we cannot estimate the testing power. Then choosing the number neighbors(k, l) always requires the empirical methods like permutation tests(i.e. permutate row/column index of Y) for every pair of k, l = 1, ..., n?
- ► How to pratically generate "all" alternatives? it sounds impossible.
- ▶ What do you mean by "non-linearity"? e.g. $\mathbf{X} \neq a \cdot \mathbf{Y} + b$?

General Question

In data analysis, the optimal scale of MGC is estimated by maximizing the empirical powers:

$$(k^*, I^*) = \operatorname{argmax}_{k,l \in [2, \dots, n]} \{ \hat{\beta}_{\alpha}(g_{kl}) \}$$

Then the p-value of MGC is calculated at the optimal scale (k^*, l^*) .

▶ The way to calculate the power is confusing. Why not using estimated $P(pvalue <= 0.05 | \alpha = 0.05)$?

General Question

- ▶ I have a lot of simulation data comprised of network-structure-dependent outcomes *Y* and its underlying networks. I try to mimic peer influenced network and latent variable dependent network. Try to simulate the network(it takes time), but I don't know it adds a new information.
- ▶ I do not generally have no idea what can I contribute to :)

Simulation

- ▶ We have worked with *n* observations of an univariate outcome and their underlying network(simple, connected graph)
- ▶ (in a draft) in the absence of noise and at dimension 1, certain dependency like linear is very easy to be detected so that the testing powers of all methods coverage to 1 at very small n.
- ▶ We have assumed two data generation schemes : (1) Peer Influence and (2) Latent Variable Dependence

Simulation (1) Peer Influence Model

Univariate Y_i , i=1,...,100. Independently generate M=50 networks. My method's theoretical pvalue vs. LGC mcorr p-values(r=300)

Simulation (1) Peer Influence Model

Univariate Y_i , i = 1, ..., 100. Independently generate M = 50 networks.

	LGC{mcorr}	LGC{dcorr}	LGC{Mantel}	mcorr	dcorr	Mantel	I
t=0	0.16	0.14	0.12	0.04	0.04	0.02	0.06
t=1	0.32	0.30	0.20	0.12	0.12	0.04	0.32
t=2	0.60	0.58	0.48	0.22	0.24	0.12	0.54
t=3	0.78	0.76	0.66	0.34	0.32	0.18	0.84

(I chose maximum within local test in LGC.)

Simulation

- ▶ We have considered a test when an outcome variable is categorical(nominal). In that case, $||X_i X_j||_2$ does not have a particular meaning. The other issue is when both types of variable continuous and categorical are mixed up. I do not know much about brain, but we are possibly interested in the correlation between certain cell type and the brain structure.
- ► The basic idea we used is to count concordant pairs in a neightbor and make a comparison between the overall count. Also, we put more weights on more unlikely concordant pairs.