answer release H.md 2024-10-14

Digital Logic

2024 Fall Assignment 1 Answer

1. (18 points 12+6)

a)

- $(234.25)_7$
- $(A3.49)_{12}$
- $(7B.66)_{16}$
- **b)** $(319)_{11}$

note: The 10's complement of base-11 system is the **diminished radix complement** (10 = r - 1) under base-11 system where r = 11, in comparation to **Radix complement** which is 11's complement.

Thus the calculation is similar to 9's complement under decimal system(base-10 system), but in base-11 form.

2. (8 points)

The following 2 ways of proof are correct answers.

Path 1: Definition & algebraic method

$$A \oplus B = A'B + AB'$$

$$= ((A'B)'(AB')')'$$

$$= ((A + B')(A' + B))'$$

$$= (AA' + AB + A'B' + BB')'$$

$$= (0 + AB + A'B' + 0)'$$

$$= (AB + A'B')'$$

Path 2: Truth Table

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	(AB + A'B')'
0	0	0
0	1	1
1	0	1
1	1	0

3. (16 points 8+8)

a)
$$(a+b)'\oplus c$$

Note: Algebraic Simplification should take the logic gate \oplus into account to achieve minimal number of literals. If you apply algebraic steps and result in a'b'c'+(a+b)c, you will get some points.

- **b)** *c*
- 4. (16 points 8+8)
- **a)** A' + B'C
- **b)** A'B' + B'C' + A'C'
- 5. (18 points 8+10)
- a) $\sum (0,1,4,5,6,10,11,12,14)$
- **b)** $\prod (2,3,7,8,9,13,15)$

a)

Karnaugh Map for (F_1(A,B,C))

	A \ BC	00	01	11	10
•	0	0	0	1	1
•	1	0	0	1	1

Answer: B

b)

Karnaugh Map for (F_2(A,B,C,D))

	AB \ CD	00	01	11	10
	00	0	1	0	0
	01	Х	X	0	0
•	11	1	1	0	1
	10	Χ	1	0	1

Answer: $(A+D)(C^\prime+D^\prime)$

c)

Karnaugh Map for ($F_3(W,X,Y,Z)$)

	WX \ YZ	00	01	11	10
	00	0	Χ	Χ	0
•	01	1	1	1	0
•	11	Х	0	0	0
•	10	1	X	0	X

Answer: $(W+X)(Y^\prime+Z)(W^\prime+Z^\prime)$