Fields & Waves II

Project V - BVP 1 - Infinite Trough

Aaron Rosen

Oklahoma State University

Fields & Waves II - ECEN-3623

24 March 2022

A20198898

Contents

1	Intr	Introduction			
2	Part		3		
3	Part		6		
	3.1	(x,y)	7		
	3.2		10		
	3.3		13		
	3.4		16		
4	Δnn	·x	18		

1 Introduction

A waveguide is a structure that guides waves, such as high-frequency, high-power electromagnetic waves, with minimal loss of energy by restricting the transmission of energy in one direction. For Project 5 we are given a structure considered an infinite trough. The trough is bounded on the y axis from 0 to 1m. The x axis extends from 0 to infinity. At 0 on the x axis and all along the y axis is a voltage potential of 10 V. We are tasked to use MATLAB to effectively plot $\phi(x,y)$. Then change the discrete mode value to [1, 2, 5, 10, 100, 1000]. We are also tasked to plot E(x,y), E_x , E_y , and |E|.

2 Part A

First we plot $\phi(x,y)$ with $\Phi=10$ and b=1m. This is completed using the equation:

$$\sum_{k=1}^{N} \frac{4\Phi}{m\pi} \exp \frac{-m\pi x}{b} \sin \frac{m\pi y}{b} \tag{1}$$

Where m = 2k - 1

Figure 1: ϕ @ N = 1

Figure 2: ϕ @ N = 2

Figure 3: ϕ @ N = 5

Figure 4: ϕ @ N = 10

Figure 5: ϕ @ N = 100

Figure 6: ϕ @ N = 1000

Observing the graphs we see a half sinusoid relating to N (ie., if N=1 then we have one half a sinusoid). Continuing, we see boundary condition is continuous along $\mathsf{x}=0$ relating to the waves bouncing off the walls of the wave guide causing standing waves to exist inside the wave-guide. As N increases the boundary problem is similar to a Fourier series by the increasing summation adds up to a "rectangle." As you increase through the x axis you can see the boundary condition is no longer needed and the wave falls to zero. The waves also range on the z axis from 8-10V the waves peak at certain points due to making a tangential for the boundary crossover.

3 Part B

For part 2 we were required to plot E(x,y), E_x , E_y , and |E|. This was done by first determining E(x,y) using equation:

$$E(x,y) = \nabla \phi(x,y) \tag{2}$$

3.1 E(x,y)

Figure 7: E(x,y) @ N = 1

Figure 8: E(x,y) @ N = 2

Figure 9: E(x,y) @ N = 5

Figure 10: E(x,y) @ N = 10

Figure 11: E(x,y) @ N = 100

Figure 12: E(x, y) @ N = 1000

Given these graphs we are able to visualize the different modes for a transverse electric field inside of the wave-guide. We know it is transverse electric because the electric field propagates on the z axis, not the x axis/propagation axis. We can see the modes: TE_{10} , TE_{20} , TE_{50} , TE_{100} , TE_{1000} , and TE_{10000} . The intensity of the electric field is described by these graphs and explains where the electric field is most prominent. In future, I will utilize contour and quiver function as they're probably easier to read, but I ran out of time and figured these sufficed as they're very telling of the electric field activity. We see the electric field peaks at the mode peaks and the y axis extremities/ outer bounds (0 & 1).

3.2 E_x

Figure 13: E_x @ N = 1

Figure 14: E_x @ N = 2

Figure 15: E_x @ N = 5

Figure 16: E_x @ N = 10

Figure 17: E_x @ N = 100

Figure 18: E_x @ N = 1000

3.3 E_y

Figure 19: E_y 0 N = 1

Figure 20: E_y @ N = 2

Figure 21: E_y @ N = 5

Figure 22: E_y @ N = 10

Figure 23: E_y @ N = 100

Figure 24: E_y @ N = 1000

3.4 |*E*|

Figure 25: |E| @ N = 1

Figure 26: |E| @ N = 2

Figure 27: |E| @ N = 5

Figure 28: |E| @ N = 10

Figure 29: |E| @ N = 100

Figure 30: |E| @ N = 1000

The above graphs further describe the electric field function. I am not sure if we needed to include them, but I found them fascinating. Using the graphs we can determine the intensity of the electric field at certain areas of the wave-guide. The intensities were separated by variable x, y, and absolute value/ magnitude. The magnitude is very telling of the activity of the electric field and how it peaks towards the extremities of the wave-guide y bounds.

4 Appendix

- $_1$ %Aaron Rosen A20198898 March242022
- $_2$ %Fields & Waves II Project 5 BVP 1 Infinite Trough

```
syms y k x
        lo = 10; %Voltage Potential (V)
        b = 1; %trough height (m)
         begin = "Would you like to begin? ";
         beg = input(begin);
         while beg == 1
13
14
16
17
18
         prompt = "Set N \longrightarrow ";
        N = input(prompt);
        func1 = (4.*lo)./((2.*k-1).*pi);
        func2 = \exp((-(2.*k-1).*pi.*x)./b);
        func3 = sin(((2.*k-1).*pi.*y)./b);
       WG = symsum((func1.*func2.*func3), k, 1, N);
       \%WG = \text{symsum}((((4*lo)/((2*k-1)*pi))*exp(-((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*y))*exp(-((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*y))*exp(-((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*y))*exp(-((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin(((2*k-1)*pi*x)/b)*sin((
                    )/b)), k, 1, N);
       %figure
       %fsurf(WG, [0 2 0 1]);
28
       WGX = -1.*gradient(WG)
        WGXofX = -1.*gradient(WG, x)
       WGXofY = -1.*gradient(WG, y)
        figure
        fsurf(WGX, [0 2 0 1]);
35 %figure
       %fsurf(WGXofX, [0 2 0 1]);
       %figure
       %fsurf(WGXofY, [0 2 0 1]);
39 %figure
       %fsurf(norm(WGX), [0 2 0 1]);
41
        continue2 = "Would you like to continue? ";
```

```
cxnt = input(continue2);
if cxnt == 1
else
break
end
end
end
end
```