Exercise 2 **Data Analysis and Visualization**Computer Graphics - Projection and Shading

Task 1

A 3D triangle is defined by $\vec{a}=(4,2,1)$, $\vec{b}=(7,-3,-4)$, and $\vec{c}=(1,3,-2)$. A camera is located at $\vec{p}=(-2,0,-1)$ and is rotated by 90° around y such that it looks along the global x-axis. The camera performs a simple symmetrical projection onto the projection plane located at z=3 of the camera's local coordinate system.

- (a) Transform the three points from the global coordinate frame to the camera's coordinate frame (View-Transformation).
- (b) Project the transformed points onto the camera's projection plane and determine the corresponding 2D points on the image.

Task 2

In 2D, a line is bounded by $\vec{p}_1 = (5,1)$ and $\vec{p}_2 = (7,5)$ with normals $\vec{n}_1 = (-0.8,0.6)$ and $\vec{n}_2 = (-0.6,0.8)$. It is observed by a viewer from $\vec{c} = (1,3)$.

A light source is positioned infinitely far away on the y-axis, so that the light vector (i.e. the vector from a surface point to the light) is always $\vec{l} = (0,1)$. The light emits an intensity of $I_i = 1.0$ and $I_a = 0.25$.

All points on the line have an ambient reflection coefficient $k_a = 0.4$, diffuse reflection coefficient $k_d = 0.5$, specular reflection coefficient $k_s = 0.6$, and a specularity factor (i.e. surface roughness) of s = 4.

- (a) Calculate the light intensity for both points.
- (b) The point \vec{p}_M is located on the center of the line between \vec{p}_1 and \vec{p}_2 . Calculate its Intensity using Gouraud shading.
- (c) Calculate the Intensity of \vec{p}_M using Phong shading.