Privacy Proofs for OpenDP: Is_Equal Transformation

Grace Tian

Summer 2021

Contents

1	\mathbf{Alg}	corithm Implementation
	1.1	Code in Rust
	1.2	Pseudo Code in Python
		Proof

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the make_is_equal function implementing the is_equal function. This is defined in lines 62-71 of the file manipulation.rs in the Git repository (https://github.com/opendp/opendp/blob/21-impute/rust/opendp/src/trans/manipulation.rs#L62-L71).

1.2 Pseudo Code in Python

Preconditions

To ensure the correctness of the output, we require the following preconditions:

- User-specified types:
 - Variable value must be of type TI
 - Type T must have trait PartialEq

Postconditions

• Either a valid Transformation is returned or an error is returned.

```
def make_is_equal(value : TI):
    input_domain = (VectorDomain(AllDomain(TI));
    output_domain = (VectorDomain(AllDomain(bool));
    input_metric = SymmetricDistance();
    output_metric = SymmetricDistance();

def Relation(d_in: u32, d_out: u32) -> bool:
    return d_out >= d_in*1

def function(data: Vec(TI)) -> Vec(Bool):
    return list(map(data == value))

return Transformation(input_domain, output_domain, function, input_metric, output_metric, Relation)
```

(grace) For the next round of the updates, will need to change pseudocode so that it returns the result of a make row by row transformation (which the code does).

1.3 Proof

Theorem 1.1. For every setting of the input parameters value to make_is_equal such that the given preconditions hold, the transformation returned by make_is_equal has the following properties:

- 1. (Appropriate output domain). If vector v is in the input_domain, then function(v) is in the output_domain.
- 2. (Domain-Metric Compatibility). The domain input_domain matches one of the possible domains listed in the definition of input_metric, and likewise output_domain matches one of the possible domains listed in the definition of output_metric.
- 3. (Stability Guarantee). For every pair of elements v, w in $input_domain$ and for every pair (d_in, d_out) , where d_in is of the associated type for $input_metric$ and d_out is the associated type for $output_metric$, if v, w are d_{in} -close under $input_metric$ and $Relation(d_in, d_out) = True$, then function(v), function(w) are d_{out} -close under $output_metric$.
- *Proof.* 1. (Appropriate output domain). In the case of make_is_equal, this corresponds to showing that for every vector v of elements of type TI, function(v) is a vector of elements of type bool.

The function(v) has type Vec(TI) follows from the assumption that element v is in input_domain and from the type signature of function in line 11 of the pseudocode (Section 1.2), which takes in an element of type Vec(TI) and returns an element of type Vec(Bool). If the Rust code compiles correctly, then the type correctness follows from the definition of the type signature enforced by Rust. Otherwise, the code raises an exception for incorrect input type.

2. (Domain-metric compatibility).

Symmetric distance is compatible with VectorDomain(AllDomain(TI)) for any generic type TI, as stated in "List of definitions used in the pseudocode". The theorem holds because for make_is_equal, the input domain is VectorDomain(AllDomain(TI)) for generic type TI and the output domain is VectorDomain(AllDomain(bool)).

3. (Stability guarantee). Because $Relation(d_in, d_out) = True$, it follows that $d_in \leq d_out$ by the is_equal stability relation defined in the pseduocode.

Since vector inputs v, w are d_{in} -close, then the symmetric distance is bounded by d_{in} by definition the symmetric distance is bounded by d_{in} : $d_{Sym}(v, w) \leq d_{in}$.

We apply the histogram notation, as stated in "List of definitions used in the pseudocode", to rewrite the symmetric distance in terms of elements z in function(v) and function(w)

$$d_{Sym}(v, w) = ||h_v - h_w||_1 = \sum_z |h_v(z) - h_w(z)|.$$

We now want to bound the symmetric distance of the transformed vectors:

$$d_{Sym}(\texttt{function}(v),\texttt{function}(w)) = \sum_{z} \big| h_{\texttt{function}(v)}(z) - h_{\texttt{function}(w)}(z) \big|.$$

Since each function maps each element to boolean {T,F}, we consider both cases.

(a) z = T:

$$\left|h_{\texttt{function}(v)}(\texttt{T}) - h_{\texttt{function}(w)}(\texttt{T})\right| = \left|h_v(\texttt{value}) - h_w(\texttt{value})\right|$$

(b)
$$z = F$$
:

Since any element $z \neq \text{value maps to } F$ by definition of is_equal, we consider all elements $z \neq val$: $\left|h_{\texttt{function}(v)}(\texttt{F}) - h_{\texttt{function}(w)}(\texttt{F})\right| = \left|\sum_{z \neq val} h_v(z) - h_w(z)\right|$ By triangle inequality, we have

$$\left|h_{\texttt{function}(v)}(\texttt{F}) - h_{\texttt{function}(w)}(\texttt{F})\right| \leq \sum_{z \neq val} |h_v(z) - h_w(z)|$$

Therefore, we can apply the first two cases respectively to the third line below.

$$\begin{split} d_{Sym}(\texttt{function}(v), \texttt{function}(w)) &= \sum_{z} \left| h_{\texttt{function}(v)}(z) - h_{\texttt{function}(w)}(z) \right| \\ &= \left| h_{\texttt{function}(v)}(\texttt{T}) - h_{\texttt{function}(w)}(\texttt{T}) \right| + \left| h_{\texttt{function}(v)}(\texttt{F}) - h_{\texttt{function}(w)}(\texttt{F}) \right| \\ &\leq \left| h_{v}(\texttt{value}) - h_{w}(\texttt{value}) \right| + \sum_{z \neq \texttt{value}} \left| h_{v}(z) - h_{w}(z) \right| \\ &= \sum_{z} \left| h_{v}(z) - h_{w}(z) \right| \\ &= d_{Sym}(v, w) \end{split}$$

Since $d_{Sym}(\text{function}(v), \text{function}(w)) \leq d_{Sym}(v, w) \leq \text{d_in}$ and $\text{d_in} \leq \text{d_out}$, it follows that the transformations are $\text{d_out\text{-}close}$: $d_{Sym}(\text{function}(v), \text{function}(w)) \leq \text{d_out}$. (grace) TODO in the next round of edits, will use Salil's suggested proof outline with row by row transformation abstraction. This will get rid of casework?