Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Feuille 1 — Révisions d'algèbre linéaire

Exercice 1. Dans \mathbb{R}^3 , on considère les vecteurs $v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix}$.

- 1. La famille (v_1, v_2, v_3) est-elle libre, génératrice, une base?
- 2. On note $F = \text{Vect}(v_1, v_2, v_3)$; trouver une base de F et sa dimension.
- 3. Donner une équation de F.
- 4. Trouver un vecteur v_4 tel que (v_1, v_2, v_4) soit une base de \mathbf{R}^3 .
- 5. Trouver un supplémentaire de F dans \mathbb{R}^3 . Est-il unique?

Exercice 2. On considère $E = \mathbf{R}_3[X]$, muni de l'opération de dérivation $D \colon P \mapsto P'$.

- 1. Vérifier que D est linéaire, calculer son noyau et son image.
- 2. Énoncer le théorème du rang et le vérifier sur cet exemple.
- 3. Écrire la matrice M de D dans la base $(1, X, X^2, X^3)$ (appelée base canonique).
- 4. On considère $D^2 \colon E \to E, \ P \mapsto P''$; trouver sa matrice dans la même base par deux méthodes distinctes.
- 5. Donner sans calculs la valeur de M^4 .

Exercice 3. On considère l'application $f: \mathbf{R}^3 \to \mathbf{R}$ définie par f(x, y, z) = x + 3y + 5z.

- 1. Justifier brièvement que f est linéaire.
- 2. Montrer que f est surjective et en déduire la dimension de son noyau.
- 3. Donner une base de ker f.
- 4. Donner la matrice de f dans les bases canoniques.

Exercice 4. Dans $M_2(\mathbf{C})$, on considère les matrices $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Par ailleurs, on pose $A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$ et on considère l'application $f: M_2(\mathbf{C}) \to M_2(\mathbf{C})$ définie par f(M) = AM.

- 1. Montrer que $(E_{11}, E_{12}, E_{21}, E_{22})$ est une base de $M_2(\mathbf{C})$.
- 2. Montrer que f est linéaire et calculer sa matrice dans cette base.
- 3. Montrer que f est un automorphisme en calculant son inverse.

Exercice 5. On considère $D: \mathbf{R}_3[X] \to \mathbf{R}_2[X], P \mapsto P'$ et $i: \mathbf{R}_2[X] \to \mathbf{R}_3[X], P \mapsto \int_0^X P(t) dt$. On pose par ailleurs $\mathcal{B}_2 = (1, 1 - X, 1 - 2X + X^2)$ et $\mathcal{B}_3 = (1, 1 - X, 1 - 2X + X^2, 1 - 3X + 3X^2 - X^3)$.

1. Justifier brièvement que D et i sont linéaires.

- 2. Les applications D et i sont-elles injectives, surjectives? Calculer $D \circ i$ et $i \circ D$; nommer les rapports entre ces deux applications.
- 3. Justifier brièvement que \mathcal{B}_2 (resp. \mathcal{B}_3) est une base de $\mathbf{R}_2[X]$ (resp. $\mathbf{R}_3[X]$) et écrire les matrices de D et de i dans ces bases.
- 4. Calculer les matrices de passages de ces bases aux bases canoniques, en déduire par les formules de changement de base les matrices de D et i dans les bases canoniques. Vérifier ce dernier résultat.

Exercice 6. À l'aide des opérations élémentaires sur les lignes et/ou les colonnes, déterminer le rang des matrices suivantes et donner leur déterminant ainsi que leur inverse éventuel.

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 0 & 3 \\ 1 & 2 & 0 \end{pmatrix} B = \begin{pmatrix} 3 & -1 & 1 \\ -3 & 3 & 0 \\ 2 & 2 & 2 \end{pmatrix} C = \begin{pmatrix} 2 & 6 & 12 & 20 \\ 0 & 2 & 6 & 12 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2 \end{pmatrix} D = \begin{pmatrix} 1 & -2 & 3 & 4 \\ 1 & 2 & 3 & 2 \\ 0 & 1 & 0 & -2 \\ 2 & -4 & 6 & 5 \end{pmatrix}$$

Exercice 7. Problèmes de carrés.

- 1. Soit A une matrice de $M_n(\mathbf{R})$ telle que $A^2 = -\mathbf{I}_n$. Montrer que n est pair.
- 2. Montrer qu'il n'existe pas de matrice $B \in M_n(\mathbf{Q})$ telle que $B^2 = \begin{pmatrix} 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \\ 0 & \cdots & 0 & 2 \end{pmatrix}$.

Exercice 8. 1. Dites quelles matrices sont diagonalisables parmi:

$$\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \ \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix} \ \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix} \ \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 2. Pour quelle(s) valeur(s) de $t \in \mathbf{R}$ la matrice $\begin{pmatrix} -1 & t \\ 1 & 3 \end{pmatrix}$ est-elle diagonalisable sur \mathbf{R} ? Pour lesquelles est-elle diagonalisable sur \mathbf{C} ?
- **Exercice 9.** Diagonaliser la matrice $M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ et écrire la matrice de passage de la base canonique à la base de diagonalisation choisie.

Exercice 10. Diagonaliser la matrice suivante après avoir calculé son rang.

$$A = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$$