

# **EV155-J-00A**Energy Efficient Off-line Regulator EV Board

### DESCRIPTION

The MP155 is a primary-side regulator that provides accurate constant voltage regulation without the opto-coupler, and supports buck, buck-boost, and flyback topologies. An integrated 500V MOSFET simplifies the structure and reduces costs. These features make it a competitive candidate for off-line low-power applications, such as home appliances and standby power.

The MP155 is a green-mode-operation regulator. Both the peak current and the switching frequency decrease as the load decreases. As a result, it offers excellent efficiency performance at light load, thus improving the overall average efficiency.

The MP155 features various protections such as thermal shutdown (TSD), VCC under-voltage lockout (UVLO), overload protection (OLP), short-circuit protection (SCP), and open loop protection.

The MP155 is available in the TSOT23-5 package.

#### **FEATURES**

- Primary-side constant voltage (CV) control, supporting buck, buck-boost and flyback topologies
- Integrated 500V/20Ω MOSFET
- < 100mW No-load power consumption</li>
- Up to 3W output power
- Maximum DCM output current of 130mA
- Maximum CCM output current of 220mA
- Low VCC operating current
- Frequency foldback
- Maximum frequency limit
- Peak current compression
- Internal high-voltage current source
- Internal 350ns leading-edge blanking
- Thermal shutdown (auto restart)
- VCC under-voltage lockout with hysteresis (UVLO)
- Timer-based overload protection.
- Short circuit protection
- Open loop protection

### **APPLICATIONS**

- Home Appliance, white goods and consumer electronics
- Industrial Controls
- Standby Power

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology", are Registered Trademarks of Monolithic Power Systems, Inc..



# **EV155-J-00A EVALUATION BOARD**



(LxWxH) 3.4cm x 2.2cm x 1.6cm

| Board Number | MPS IC Number |  |  |
|--------------|---------------|--|--|
| EV155-J-00A  | MP155GJ       |  |  |

# **EVALUATION BOARD SCHEMATIC**





# **EV155-J-00A BILL OF MATERIALS**

| Qty | Ref           | Value     | Description                                  | Package  | Manufacture | Part Number        |
|-----|---------------|-----------|----------------------------------------------|----------|-------------|--------------------|
| 1   | C1            | 220nF     | Ceramic Capacitor;<br>16V;X7R;0603;          | 0603     | muRata      | GRM188R71C224KA01  |
| 1   | C2            | 2.2µF     | Ceramic Capacitor;<br>10V;X7R;0603           | 0603     | muRata      | GRM188R71A225KE15D |
| 2   | C3, C4        | 10μF/400V | Capacitor;400V;20%                           | DIP      | Any         | Any                |
| 1   | C5            | 100μF/16V | Electrolytic Capacitor; 16V;Electrolytic;DIP | DIP      | Jianghai    | CD11C-16V100       |
| 1   | C6            | 1μF       | Ceramic Capacitor; 50V;X7R;0805;             | 0805     | muRata      | GRM21BR71H105KA12L |
| 1   | C7            | 470pF     | Ceramic<br>Capacitor;50V;COG                 | 0603     | TDK         | C1608COG1H471J     |
| 3   | D1,<br>D2, D4 | 1N4007    | Diode;1000V;1A                               | DO-41    | Diodes      | 1N4007             |
| 1   | D3            | WUGC10JH  | Diode;600V;1A                                | SMA      | ZOWIE       | WUGC10JH           |
| 1   | L1            | 1mH       | Inductor;1mH;6;<br>250mA                     | DIP      | Wurth       | 7447462102         |
| 1   | L2            | 2.2mH     | Inductor;2.2mH;4.73;<br>300mA                | DIP      | Wurth       | 7447720222         |
| 1   | R1            | 19.1k     | Film Resistor;1%                             | 0603     | Yageo       | RC0603FR-0719K1L   |
| 1   | R2            | 4.99k     | Film Resistor;1%;                            | 0603     | Yageo       | RC0603FR-074K99L   |
| 1   | R3            | 10k       | Resistor;1%                                  | 0603     | Yageo       | RC0603FR-0710KL    |
| 1   | RF1           | 10        | Fuse Resistor;5%;1W                          | DIP      | Any         | 10 Ohm/1W          |
| 1   | U1            | MP155GJ   | Buck regulator                               | TSOT23-5 | MPS         | MP155GJ            |



## **EVB TEST RESULTS**

Performance waveforms are tested on the evaluation board.  $V_{IN} = 85-265 Vac$ ,  $V_{OUT} = 12 V$ ,  $I_{OUT} = 200 mA$ ,  $T_A = 25 °C$ , unless otherwise noted.











## **EVB TEST RESULTS** (continued)

Performance waveforms are tested on the evaluation board.  $V_{IN} = 85-265 Vac$ ,  $V_{OUT} = 12 V$ ,  $I_{OUT} = 200 mA$ ,  $T_A = 25 °C$ , unless otherwise noted.









## **EVB TEST RESULTS** (continued)

Performance waveforms are tested on the evaluation board.  $V_{IN} = 85-265VAC$ ,  $V_{OUT} = 12V$ ,  $I_{OUT} = 200mA$ ,  $T_A = 25^{\circ}C$ , unless otherwise noted.











## **SURGE PERFORMANCE**

With the input capacitors C3 (10 $\mu$ F) and C4 (10 $\mu$ F), the board can pass 1kV surge test. Table 1 shows the capacitance required under normal condition for different surge voltage.

**Table 1: Recommended Capacitor Values** 

| Surge Voltage | 500V | 1000V | 2000V |
|---------------|------|-------|-------|
| C3            | 1µF  | 10μF  | 22µF  |
| C4            | 1µF  | 4.7µF | 10μF  |



# PRINTED CIRCUIT BOARD LAYOUT



Figure 1 — Top Silk Layer



Figure 2 — Bottom Silk Layer





Figure 3 — Bottom Layer



## **QUICK START GUIDE**

- 1. Preset Power Supply to  $85V \le V_{IN} \le 265V$ .
- 2. Turn Power Supply off.
- 3. Connect the Line and Neutral terminals of the power supply output to L and N port.
- Connect the positive terminal of the load to V<sub>OUT</sub> port, and connect the negative terminal of the load to GND port.
- 5. Turn Power Supply on after making connections.

**NOTICE:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.