МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №1

з дисципліни

«Алгоритмізація та програмування»

Виконала:

студентка групи КН-112

Яцунда Софія

Викладач:

Мельникова Н.І.

Тема: Моделювання основних логічних операцій

Мета роботи: Ознайомитись на практиці із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинності значення таблицями, використовуючи закони алгебри логіки, освоїти методи доведення.

Варіант 16

- 1. Формалізувати речення. Якщо Микола та Василь не інтенсивно готувалися, то ні Микола, ні Василь не отримають призові місця на олімпіаді.
- х- Микола; у- Василь; Р- інтенсивно готуватись; Q- отримати призові місця на олімпіаді;

$$\neg P(x,y) = > \neg (Q(x,y))$$

2. Побудувати таблицю істинності для висловлювань:

$$((x \lor y) \Leftrightarrow (y \land \neg z)) \Leftrightarrow (x \lor y)$$

- 1- x ∨y
- 2- y∧¬ z
- 3- $(x \lor y) \Leftrightarrow (y \land \neg z)$
- 4- $((x \lor y) \Leftrightarrow (y \land \neg z)) \Leftrightarrow (x \lor y)$

X	y	Z	$\neg_{\mathbf{Z}}$	1	2	3	4
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	1
0	1	1	0	1	0	0	0
0	1	0	1	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	1	1	0	0	0
1	1	0	1	1	1	1	1
1	1	1	0	1	0	0	0

3. Побудовою таблиць істинності вияснити, чи висловлювання ϵ тавтологі ϵ ю або протиріччям: $\neg((p^{\wedge}q)=>\neg(q\Leftrightarrow r))=>\neg(p^{\wedge}r)$

$$7 - \neg ((p^{\wedge} q) = > \neg (q \Leftrightarrow r))$$

$$8\text{---}((p^{\wedge} q)\text{=}>\text{---}(q \Leftrightarrow r))\text{=}>\text{---}(p^{\wedge}r)$$

$$3-(q \Leftrightarrow r)$$

$$6-(p^q) = > \neg(q \Leftrightarrow r)$$

p	q	r	1	2	3	4	5	6	7	8
0	0	0	0	1	1	0	0	1	0	1
0	0	1	0	1	0	1	0	1	0	1
0	1	1	0	1	1	0	0	1	0	1
1	1	1	1	0	1	0	1	0	1	0
0	1	0	1	1	0	1	0	1	0	1
1	0	1	1	0	0	1	0	1	0	1
1	0	0	0	1	1	0	0	1	0	0
1	1	0	0	1	0	1	1	1	0	0

Отже дане висловлювання не ϵ ні тавтологією, ні протиріччям, а ϵ нейтральним.

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи ϵ тавтологією висловлювання:

$$((p \lor q)^{\wedge}(p=>r)^{\wedge}(q=>s))=>(r \lor s)$$

Застосуємо метод доведення від протилежного, тоді

Отже висловлювання не є тавтологією

5. Довести, що формули еквівалентні: $(p \land \neg q) = > \neg p$ та $\neg (p \land q) \lor (\neg q \land r)$

Еквівалентність доводитиму таблицею істинності

$$(p \land \neg q) = > \neg p$$

 $1 - \neg p$ $3 - (p \land \neg q)$
 $2 - \neg q$ $4 - (p \land \neg q) = > \neg p$

p	q	1	2	3	4
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	1	0	0	0	1

$$\neg(p \land q) \lor (\neg q \land r)$$

$$1 - \neg q \qquad 4 - (\neg q \land r)$$

$$2 - (p \land q) \qquad 5 - \neg(p \land q) \lor (\neg q \land r)$$

$$3 - \neg(p \land q)$$

p	q	r	1	2	3	4	5
0	0	0	1	0	1	0	1
0	0	1	1	0	1	1	1
0	1	1	0	0	1	0	1
1	1	1	0	1	0	0	0
1	0	1	1	0	1	0	1
0	1	0	0	0	1	0	1
1	0	0	1	0	1	0	1
1	1	0	0	1	0	0	0

Формули не еквівалентні

Додаток 2 до лабораторної роботи з розділу 1

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істиності логічних висловлювань при різних інтерпретаціях, для наступних формул: $(x \lor y) \Leftrightarrow (y \land \neg z) \Leftrightarrow (x \lor y)$

```
#include <iostream>
using namespace std;
          mint main()
                  int x, y, z, rez1, rez2, rez3, rez4, result;
cout << "x= ";
cin >> x;
cout << "y= ";
cin >> y;
cout << "z= ";</pre>
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
                    cin >> z:
                    if (z = 1)
                   { rez1 = 0;
                   else {
    rez1 = 1;
                    if (x || y || z==1) {
    rez2 = 1;
                    if (y && rez1 == 1) {
    rez3 = 1;
                  } else { rez3 = 0;
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
                   if (rez2 = rez3) {
    rez4 = 1;
                   else {
                         rez4 = 0;
                   if (rez4 = rez2) {
    result = 1;
                         result = 0;
                    cout << "Result of the task " << result << endl;
```

Висновок: Я ознайомилась на практиці із основними поняттями математичної логіки, навчилась будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинності значення таблицями, використовуючи закони алгебри логіки, освоїла методи доведення.