Randomized algorithms

Randomness in algorithms

ightharpoonup Data is random \Rightarrow average-case analysis of algorithms

▶ Algorithm is non-deterministic, uses randomness ⇒
 randomized algorithms

Some applications of randomization

- Universal hashing: helps to avoid dependency on data distribution, insures security (e.g. adversary-made worst cases)
- Locality-sensitive hashing: helps "sketching", i.e. representing big objects by small objects without much distortion of distances
- Online algorithms: improves the competitiveness
- Approximate counting and other streaming algorithms: drastically reduces spaces

Accessing an exclusive resource by noncommunicating processes

- n non-communicating processes want to access a resource in rounds
- if two processes ask for access at the same round, none of them gets access
- What would be the good strategy?

Accessing an exclusive resource by noncommunicating processes

- n non-communicating processes want to access a resource in rounds
- if two processes ask for access at the same round, none of them gets access
- What would be the good strategy?
- ► Each process ask access with probability *p* ("*symmetry breaking*")
- optimum: p = 1/n
- then each process will get access on average between 1/en and 1/2n of time (depending on n)
- with probability at least (1 1/n) all processes access R at least once in $O(n \log n)$ rounds (about $2en \cdot \ln(n)$)

Besides ...

randomized algorithms are usually simple (to implement, not to understand) and, as a consequence, efficient

Two types of randomized algorithms

Las Vegas: always correct (but fast in expectation, e.g. Randomized QUICKSORT)

Monte Carlo: admits a small error probability

Books on randomized algorithms

- Motwani, Raghavan, Randomized algorithms, Cambridge University Press, 1995
- Mitzenmaher, Upfal, Probability and Computing: Randomzied Algorithms and Probabilistic Analysis, Cambridge University Press, 2005

Monte Carlo: simple example

• Given a (very large) array of numbers, return some array element larger than the median

Edge connectivity (global min-cut)

▶ Given an undirected graph G = (V, E), a cut is $V = A \cup B$ $(A \cap B = \emptyset)$. What the minimal number of edges connecting the two parts of a cut of G?

- Can be solved in polynomial time:
 - $O(n^2m)$ using Edmons-Karp
 - $O(n(n+m)\log n)$ using Stoer-Wagner
- A much simpler randomized algorithm exists due to David Karger (1992)

High-level idea

• Stoer-Wagner takes time $O((n+m)\log n)$ to find the pair of nodes to merge

 Idea: pick a random edge and merge endpoints (contract the edge)

Contraction algorithm

Like Stoer-Wagner, the algorithm works with multigraphs. (The input graph G can be a multi-graph as well)

$$C=\{c,d,e,j,k,l\}=(\{1,5\},\{2,3,4\})$$

$$C=\{e,f,g\}=(\{2\},\{1,3,4,5\})$$

Contraction

- ▶ Contraction of an edge (u, v):
 - lacktriangleright merge u and v into a single new node w
 - for all edges (t, u) or (t, v), update to (t, w)
 - keep parallel edges, but delete self-loops

 Remark (cf Stoer-Wagner): Contraction can not decrease the min-cut value (but can increase)

Contraction algorithm

do

```
pick an edge e = (u, v) uniformly at random; contract (u, v)
```

until G has just two nodes s, t

return the corresponding cut (nodes contracted to s and t respectively) and the number of crossing edges

Analysis of the algorithm

Theorem: The contraction algorithm returns a min cut with probability $\geq \frac{2}{n(n-1)}$

Proof: Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = F^* =$ size of min cut.

- In first step, algorithm contracts an edge in F^* probability k/|E|.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be mincut $\Rightarrow |E| \geq \frac{kn}{2}$.
- Thus, algorithm contracts an edge in F^* with probability $\leq \frac{2}{n}$

Analysis of the algorithm (cont)

- Let G' be graph after j iterations. There are n' = n j supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \ge kn'/2$.
- ▶ Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
- Let E_j = event that an edge in F^* is not contracted in iteration j.

$$\begin{split} P[E_1 \cap E_2 \cap \cdots E_{n-2}] &= P[E_1] \cdot P[E_2 | E_1] \cdot \cdots \cdot P[E_{n-2} | E_1 \cap E_2 \cap \cdots E_{n-3}] \\ &\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ &= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\ &= \frac{2}{n(n-1)} \geq \frac{2}{n^2} \end{split}$$

Contraction algorithm: amplification

Amplification: To amplify the probability of success, run the contraction algorithm many times and take the best cut!

Claim: If we repeat the contraction algorithm $n^2 \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1/n^2$.

Proof: By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left(\left(1 - \frac{2}{n^2}\right)^{\frac{n^2}{2}}\right)^{2 \ln n} \le (e^{-1})^{2 \ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

Contraction algorithm: complexity

- Contraction algorithm: $O(m \cdot n^2 \cdot \log(n)) = O(n^4 \cdot \log(n))$
- ▶ Solution by network flow requires time $O(n^4)$
- However, the contraction algorithm can be improved to $O(m \cdot \log^3(n))$ [Karger, Stein, Journal of the ACM, 1996; Karger, Journal of the ACM, 2000]