

1.6.1 推理的基本概念

推理——从前提推出结论的思维过程。

前提——已知的命题公式。

结论——从前提出发运用推理规则推出的命题公式。

定义1.24 若A和B是两个命题公式,当且仅当A \rightarrow B为永真式,即A \Rightarrow B,称B为A的有效结论,或称B可由A逻辑地推出。

上述定义可以推广到n个前提的情形:

当且仅当($A_1 \land A_2 \land ... \land A_n$) →B为永真式,则称B是一组前提 $A_1, A_2, ..., A_n$ 的有效结论。

例1.31 判断下列各推理是否正确:

如果天气凉快,小王就不去游泳。天气凉快, 所以小王就没去游泳。

解:符号化,设:

p: 天气凉快; q: 小王去游泳

前提: $p \rightarrow \neg q$, p 结论: $\neg q$

形式结构: $((p \rightarrow \neg q) \land p) \rightarrow \neg q$ 是否为永真式?

- ① 真值表法
- ② 等值演算法
- ③ 主析取范式法

① 真值表法

构造公式 $((p \rightarrow \neg q) \land p) \rightarrow \neg q$ 的真值表,确定公式真值全部为1,则公式为永真式,所以推理正确。

② 等值演算法

使用等值演算方法证明 $((p \rightarrow \neg q) \land p) \rightarrow \neg q \Leftrightarrow 1$,则公式为永真式,所以推理正确。

③ 主析取范式法

$$((\boldsymbol{p} \to \neg \boldsymbol{q}) \land \boldsymbol{p}) \to \neg \boldsymbol{q} \Leftrightarrow m_0 \lor m_1 \lor m_2 \lor m_3$$

$$\Leftrightarrow \Sigma(0,1,2,3)$$

则公式为永真式,所以推理正确。

1.6.2 构造证明法

人们在研究推理过程中,发现一些重要的永真蕴涵式,我们把这些永真蕴涵式称为推理定律,下面我们给出这些推理定律。

附加: **A**⇒ **A** ∨ **B**

化简: A ∧ B ⇒A

假言推理: (A → B) ∧ A⇒B

拒取式: (A → B) ∧ ¬B ⇒ ¬A

析取三段论: $(A \lor B) \land \neg B \Rightarrow A$

假言三段论: $(A \rightarrow B) \land (B \rightarrow C) \Rightarrow A \rightarrow C$

等价三段论: (A ↔ B) ∧ (B ↔ C)⇒ A ↔ C

构造性二难: (A → B) ∧ (C→ D) ∧ (A ∨ C) ⇒ B ∨ D

■1.6 推理理论

常用的推理规则:

前提引入: 任何步骤, 均可以引入前提。

结论引入: 任何步骤, 所证明的结论都可作为后续证明的前提。

置换: 在任何步骤, 命题公式中的任何子命题公式都可以用与之

等值的命题公式置换。如:可用 $\neg p \lor q$ 置换 $p \to q$

合取引入: A, B ⇒ A ∧ B

假言推理: **A** → **B**, **A**⇒**B**

附加: **A**⇒ **A** ∨ **B**

化简: **A** ∧ **B** ⇒ **A**

拒取式: $A \rightarrow B$, ¬ $B \Rightarrow ¬A$

析取三段论: $A \lor B$, $\neg B \Rightarrow A$

假言三段论: $A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$

构造性二难: $A \rightarrow B$, $C \rightarrow D$, $A \lor C \Rightarrow B \lor D$

举例说明构造证明法的运用

例1.32 若数a是实数,则它不是有理数就是无理数。若a不能表示成分数,则它不是有理数。 a是实数且它不能表示成分数,所以a是无理数。

解: 首先将简单命题符号化:

p: a是实数;

q: a是有理数;

r: a是无理数;

s: a能表示成分数。

前提: $p \rightarrow q \lor r$, $\neg s \rightarrow \neg q$, $p \land \neg s$

结论:r

前提: $p \rightarrow q \lor r$, $\neg s \rightarrow \neg q$, $p \land \neg s$

结论:r

证明: ① *p* ∧ ¬s

前提引入

2 p

①化简

③ ¬**s**

- ①化简

- \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
- ② ④ 假言推理
- ⑥¬*s*→¬*q* 前提引入

⑦ ¬q

③ ⑥假言推理

 \otimes r

⑤⑦ 析取三段论

若推理结构具有形式:

$$(A_1 \land A_2 \land \dots \land A_n) \rightarrow (A \rightarrow B)$$
 (*)

(*)中的结论也为蕴涵式,则可加工结论中的前件作为推理的前提,即:

$$(A_{1} \land A_{2}, \land \dots \land A_{n}) \rightarrow (A \rightarrow B)$$

$$\Leftrightarrow \neg (A_{1} \land A_{2}, \land \dots \land A_{n}) \lor (\neg A \lor B)$$

$$\Leftrightarrow (\neg (A_{1} \land A_{2}, \land \dots \land A_{n}) \lor \neg A) \lor B$$

$$\Leftrightarrow \neg (A_{1} \land A_{2}, \land \dots \land A_{n} \land A) \lor B$$

$$\Leftrightarrow (A_{1} \land A_{2}, \land \dots \land A_{n} \land A) \rightarrow B$$

称A为附加前提,称此证明方法为附加前提证明法。

例1.33 用附加前提法证明下列推理:

前提:
$$(p \land q) \rightarrow r$$
, $\neg s \lor p$, q

结论: $s \rightarrow r$

证明: ① s

附加前提引入

③ **p**

①②析取三段论

4 q

前提引入

- ⑤ **p** ∧ **q**
- ③ 4)合取
- ⑥ $(p \land q) \rightarrow r$ 前提引入

⑤ ⑥假言推理

✓归谬法

若推理结构具有形式: $(A_1 \wedge A_{2,} \wedge ... \wedge A_n) \rightarrow B$ (*) 若将¬B也作为前提能推出矛盾,比如说得出 $A \wedge \neg A$,则说明(*)中的蕴涵式为永真式。即:

$$(A_{1} \wedge A_{2}, \wedge \dots \wedge A_{n}) \rightarrow B$$

$$\Leftrightarrow \neg (A_{1} \wedge A_{2}, \wedge \dots \wedge A_{n}) \vee B$$

$$\Leftrightarrow \neg (A_{1} \wedge A_{2}, \wedge \dots \wedge A_{n} \wedge \neg B)$$

即: $(A_1 \land A_{2,} \land ... \land A_n \land \neg B)$ 为永假式正好与(*)为永真式等价,即: $(A_1 \land A_{2,} \land ... \land A_n) \Rightarrow B$ 称此证明方法为归谬法。

例1.34 用归谬法证明下列推理:

前提: $(p \land q) \rightarrow r$, $\neg r \lor s$, p, $\neg s$

结论: $\neg q$

证明: ① q

$$2 \neg r \lor s$$

- ③ ¬**s**
- ⑤ $(p \land q) \rightarrow r$ 前提引入
- $\bigcirc (p \land q)$
- $\bigcirc \neg p \lor \neg q$
- (8) p
- $9 \neg q$
- $\bigcirc 0$ $q \land \neg q$

结论的否定引入

前提引入

前提引入

- ②③析取三段论
- - 4 5 拒取式
 - 6置换
 - 前提引入
 - ⑦⑧析取三段论
 - (9)合取

1.7 题例分析 (选讲)

例1.35 给出下面8个命题公式:

- $(1) (p \land q) \rightarrow p \lor q;$
- $(2) (\neg p \vee \neg q) \rightarrow (\neg p \wedge \neg q);$
- (3) $(\neg(q \rightarrow p) \land p) \lor (p \land q \land r)$;
- (4) $p \wedge q \wedge r$;
- (5) $(p \rightarrow q) \land r$;
- (6) $(\neg p \lor q) \land r \land (p \land q \rightarrow q)$;
- (7) $q \rightarrow (p \rightarrow r)$;
- (8) $(p \rightarrow q) \rightarrow r$.
- ① 用真值表法证明(1)与(2)不等值;
- ② 用真值演算法证明(3)与(4)等值;
- ③ 用主析取范式法证明(5)与(6)等值;
- ④ 用主合取范式法证明(7)与(8)不等值。

证明: ①给出(1)与(2)的真值表如下,说明不等值:

p	q	¬ p	¬ q	p v q	$p \wedge q$	$(p \land q) \rightarrow (p \lor q)$
0	0	1	1	0	0	1
0	1	1	0	1	0	1
1	0	0	1	1	0	1
1	1	0	0	1	1	1

p	q	¬ p	$\neg q$	$\neg p \lor \neg q$	$\neg p \wedge \neg q$	$(\neg p \vee \neg q) \to (\neg p \wedge \neg q)$
0	0	1	1	1	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	0	0	1

证明: ②用真值演算法证明(3)与(4)等值:

(3)
$$(\neg(q \rightarrow p) \land p) \lor (p \land q \land r)$$

(4) $p \wedge q \wedge r$

从(3)开始演算:

$$(3) \Leftrightarrow (\neg(q \to p) \land p) \lor (p \land q \land r)$$

$$\Leftrightarrow (\neg(\neg q \lor p) \land p) \lor (p \land q \land r)$$

$$\Leftrightarrow (q \land \neg p) \land p) \lor (p \land q \land r)$$

$$\Leftrightarrow 0 \lor (p \land q \land r)$$

$$\Leftrightarrow p \land q \land r$$

$$\Leftrightarrow (4)$$

证明: ③用主析取范式法证明(5)与(6)等值:

先求(5)的主析取范式:

$$(5) \Leftrightarrow (p \rightarrow q) \land r$$

$$\Leftrightarrow (\neg p \lor q) \land r$$

$$\Leftrightarrow (\neg p \land r) \lor (q \land r)$$

$$\Leftrightarrow (\neg p \land (q \lor \neg q) \land r) \lor ((p \lor \neg p) \land q \land r)$$

$$\Leftrightarrow (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land r) \lor (p \land q \land r)$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_7$$

再求(6)的主析取范式:

$$(6) \Leftrightarrow (\neg p \lor q) \land r \land (p \land q \rightarrow q)$$

$$\Leftrightarrow ((\neg p \land r) \lor (q \land r)) \land (\neg p \lor \neg q \lor q)$$

$$\Leftrightarrow ((\neg p \land r) \lor (q \land r)) \land 1$$

$$\Leftrightarrow ((\neg p \land r) \lor (q \land r))$$

$$\Leftrightarrow m_1 \lor m_3 \lor m_7$$

证明: ④用主合取范式法证明(7)与(8)不等值:

先求(7)的主合取范式:

$$(7) \Leftrightarrow q \to (p \to r) \Leftrightarrow q \to (\neg p \lor r)$$

$$\Leftrightarrow \neg q \lor \neg p \lor r \Leftrightarrow \neg p \lor \neg q \lor r \Leftrightarrow M_6$$

再求(8)的主合取范式:

$$(8) \Leftrightarrow (p \rightarrow q) \rightarrow r$$

$$\Leftrightarrow \neg(\neg p \lor q) \lor r$$

$$\Leftrightarrow (p \land \neg q) \lor r$$

$$\Leftrightarrow (p \lor r) \land (\neg q \lor r)$$

$$\Leftrightarrow (p \lor (q \land \neg q) \lor r) \land ((p \land \neg p) \lor \neg q \lor r)$$

$$\Leftrightarrow (p \lor q \lor r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$$

$$\Leftrightarrow M_0 \land M_2 \land M_4$$

显然: (7) 与(8) 不等值

 $\sqrt{1.36}$ 将公式($\neg p \lor q$) $\leftrightarrow r$ 化成下列各功能完备集中的公式:

$$(1) \{\neg, \rightarrow\}, (2) \{\neg, \land, \lor\}, (3) \{\neg, \land\}, (4) \{\neg, \lor\}$$

解: $(1) (\neg p \lor q) \leftrightarrow r$

$$\Leftrightarrow ((\neg p \lor q) \to r) \land (r \to (\neg p \lor q))$$

$$\Leftrightarrow \neg (\neg ((\neg p \lor q) \to r) \lor \neg (r \to (\neg p \lor q)))$$

$$\Leftrightarrow \neg (((\neg p \lor q) \to r) \to \neg (r \to (p \to q)))$$

$$\Leftrightarrow \neg(((p \rightarrow q) \rightarrow r) \rightarrow \neg(r \rightarrow (p \rightarrow q)))$$

(2)
$$(\neg p \lor q) \leftrightarrow r$$

 $\Leftrightarrow ((\neg p \lor q) \to r) \land (r \to (\neg p \lor q))$
 $\Leftrightarrow (\neg (\neg p \lor q) \lor r) \land (\neg r \lor (\neg p \lor q))$

例1.36 将公式 $(\neg p \lor q) \leftrightarrow r$ 化成下列各功能完备集中的公式:

$$(1) \{\neg, \rightarrow\}, (2) \{\neg, \land, \lor\}, (3) \{\neg, \land\}, (4) \{\neg, \lor\}$$

解:
$$(3) (\neg p \lor q) \leftrightarrow r$$

$$\Leftrightarrow (\neg(\neg p \lor q) \lor r) \land (\neg r \lor (\neg p \lor q))$$

$$\Leftrightarrow ((p \land \neg q) \lor r) \land (\neg r \lor \neg (p \land \neg q))$$

$$\Leftrightarrow \neg(\neg(p \land \neg q) \land \neg r) \land \neg(r \land (p \land \neg q))$$

(4)
$$(\neg p \lor q) \leftrightarrow r$$

$$\Leftrightarrow (\neg(\neg p \lor q) \lor r) \land (\neg r \lor (\neg p \lor q))$$

$$\Leftrightarrow \neg(\neg(\neg(\neg p \lor q) \lor r)) \lor \neg(\neg r \lor (\neg p \lor q)))$$

例1.37 将用附加前提证明法和不用附加前提证明法证明下列推理:

前提: $p \lor q$, $p \rightarrow r$, $q \rightarrow s$ 结论: $\neg s \rightarrow r$

证明:方法一,用附加前提证明法证明:

- ① ¬s
- $2q \rightarrow s$
- ③ ¬**q**
- $\bigoplus p \vee q$
- (5) **p**
- $\bigcirc p \rightarrow r$
- 7r

附加前提引入

前提引入

① ②拒取式

前提引入

③④析取三段论

前提引入

⑤⑥假言推理

例1.37 将用附加前提证明法和不用附加前提证明法证明下列推理:

前提: $p \lor q$, $p \rightarrow r$, $q \rightarrow s$ 结论: $\neg s \rightarrow r$

证明:方法二,不用附加前提证明法证明:

- ① $q \rightarrow s$
- $\bigcirc \neg q \lor s$
- $3 \neg \neg s \lor \neg q$
- $4 \neg s \rightarrow \neg q$
- $\bigcirc p \lor q$
- $\bigcirc \neg \neg q \lor p$
- $\bigcirc \neg q \rightarrow p$
- $\otimes \neg s \rightarrow p$
- $9 p \rightarrow r$

前提引入

- ①置换
- ②置换
- ③置换

前提引入

- 5置换
- ⑥置换
- ④⑦假言三段论

前提引入

⑧⑨假言推理

2019/9/29

电子工程学院, 离散数学

第一章 命题逻辑(小结)

- ▶ 了解命题和9个连结词的概念,深刻理解其中5个连结词,熟练掌握将复合命题符号化的方法。
- 理解公式,成真、成假赋值,及公式的类型等概念,熟练掌握利用真值表判断公式类型的方法。
- 理解等值式的概念,掌握置换定理和全功能集、极小 全功能集的概念,熟记24个等值式并熟练掌握它们的 应用(等值演算法)。
- 熟练掌握求主析取范式的方法,了解主析取范式的应用(标准型)。
- 了解推理、前提、有效结论、证明的概念,理解推理的形式结构,掌握判断推理是否正确的方法,熟练掌握用已知的推理规则构造证明的方法。

第一章习题

- 1.16 (2) (4)
- 1.17 (3) (4)
- 1.18
- 1.21 (3)
- 1.22