מבוא וסדר ראשון

הגדרות כלליות

- . $F(x,y,y',\dots,y^{(n)})=0$ מד"ר: קשר מהצורה ביותר. סדר: סדר הנגזרת הגבוהה ביותר. מעלה: החזקה של הנגזרת מהסדר הגבוה ביותר (לאחר שהמשוואה מעלה: הח פולינומיאלית בנגזרות).
- תנאי התחלה: מד"ר מסדר n דורשת n תנאי התחלה לקביעת פתרון פרטי.
- $a_n(x)y^{(n)} + \cdots + a_0(x)y = R(x)$ **לינאריות:** אם ניתן לכתוב כ-
- G(x,y)=C) סתום (עם ת"ה), פרטי (עם קבועים), פרטי (סתום סינגולרי (לא נובע מהכללי).

משוואות פריקות (Separable)

- M(x)dx + N(y)dy = 0 או y' = f(x)g(y) צורה:
 - $\int \frac{dy}{g(y)} = \int f(x)dx + C$:פתרון
- המאפסים $y=y_0$ הערה חשובה: יש לבדוק בנפרד פתרונות קבועים את $g(y_0)$, שכן ייתכן שהם "הולכים לאיבוד" בחלוקה.

משוואות הומוגניות

- y'=f(y/x) אורה: y'=z/x+z בערה: פתרון: הצבה y'=z'x+z במשוואה הופכת פתרון: הצבה ב $\frac{dz}{f(z)-z}=\frac{dx}{x}$

משוואות "כמעט הומוגניות"

 $(a_1x+b_1y+c_1)dx+(a_2x+b_2y+c_2)dy=0$ צורה.

- מצא נק' חיתוך ((x_0,y_0) הצב ($a_1b_2
 eq a_2b_1$). הצב X, Y - X המשוואה הופכת להומוגנית. $X = X + x_0, y = Y + y_0$
- המשוואה $.t=a_1x+b_1y$ הצב ($a_1b_2=a_2b_1$). המשוואה הופכת לפריקה.

משוואות מדויקות

- הפתרון הוא $\phi(x,y)$ הפתרון היים פוטנציאל $\phi(x,y)$ הפתרון הוא $.\phi(x,y) = C$
- וחשב: y וחשב: x וחשב: x וחשב: בצע אינטגרל על x לפי אינטגרל על x

$$\phi(x,y) = \int M(x,y) dx + \int N(x,y) dy$$

 $\phi(x,y)=C$ התעלם מהאיברים שחוזרים פעמיים. הפתרון הוא (μ) גורם אינטגרציה

מטרה. הופך משוואה לא מדויקת למדויקת.

- $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)\Rightarrow \mu(x)=e^{\int f(x)\,dx}$ הם •
- $rac{1}{M}\left(rac{\partial N}{\partial x}-rac{\partial M}{\partial y}
 ight)=g(y)\Rightarrow \mu(y)=e^{\int g(y)\,dy}$ אם המשוואה הומוגנית אז $\mu=rac{1}{Mx+Ny}$ כאשר •

משוואות לינאריות מסדר ראשון

- .y'+P(x)y=Q(x) צורה: $.\mu(x)=e^{\int P(x)dx}$ אינטגרציה: $.y(x)=\frac{1}{\mu(x)}\left(\int \mu(x)Q(x)dx+C\right)$ הפתרון הכללי: $.y(x)=\frac{1}{\mu(x)}\left(\int \mu(x)Q(x)dx+C\right)$
 - $y(x) = y_h(x) + y_p(x)$ מבנה: •

משוואת ברנולי

- .($t \neq 0,1$), $y' + P(x)y = Q(x)y^t$ בורה: פתרון: הצבה $z = y^{1-t}$ הצבה פתרון: הצבה את המשוואה ללינארית: .z' + (1-t)P(x)z = (1-t)Q(x)

טכניקות נוספות

שימוש בקשר ההופכי: אם המשוואה y'=f(x,y) מסובכת, נסו ulletלפתור את במיוחד עבור x(y) עבור עבור לפתור את לפתור את לפתור את לפתור לפתור את לפתור לפתור את לפתור לפתור את לפתור את לפתור .x(y)-הופכת ללינארית ב

משוואת קלרו

- y = xy' + f(y') צורה: •
- y = Cx + f(C) פתרון כללי:

מד"ר מסדר שני

הורדת סדר (מקרים מיוחדים)

- .z'=y'' ,z(x)=y' בורה 1: חסר (F(x,y',y'')=0) אורה 1: חסר מתקבלת מד"ר מסדר 1, F(x,z,z')=0 הפתרון הסופי הוא $.y(x) = \int z(x)dx + C_2$
- y''=y''=y' הצב (F(y,y',y'')=0), ואז ulletמתקבלת מד"ר מסדר 1, $F(y,z,zrac{dz}{du})=0$. לאחר מציאת $zrac{dz}{du}$ $rac{dy}{dx}=z(y)$ את פותרים, z(y)

מד"ר לינארית, מקדמים קבועים - הומוגנית

.ay'' + by' + cy = 0 צורה.

- $ar^2 + br + c = 0$ משוואה אופיינית: •
- $:r_1,r_2$ הפתרון $y_h(x)$ תלוי בשורשים ullet
- $y_h(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.1 ממשיים ושונים: .1 $y_h(x) = (C_1 + C_2 x) e^{r x}$.2

 - :($r=lpha\pm ieta$) מרוכבים צמודים (3 $y_h(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$
- הרחבה למשוואה מסדר גבוה יותר: אם למשוואה האופיינית יש שורא ביבור אז הפתרון ההומוגני כולל k איברים מהצורה: r

$$(C_1 + C_2x + \dots + C_kx^{k-1})e^{rx}$$

 e^{rx} הפונקציה את לקחת הש ליש עם ריבוי עם שורש כלומר, עבור כל שורש עם ריבוי אורש בפולינום מדרגה ולשים אותה בפולינום מדרגה ולk-1

מד"ר לינארית, מקדמים קבועים - לא הומוגנית

.ay'' + by' + cy = R(x) צורה.

- $y(x)=y_h(x)+y_p(x)$ פתרון כללי: •
- y_p אמציאת (מקדמים לא ידועים) שיטת הניחוש שיטת שיטת בניית קבוצת הניחוש (S): בהתבסס על אגף ימין (R(x), בנה קבוצה .1
- הכוללת את כל הפונקציות שמופיעות ב- $\dot{R}(x)$ וכל הנגזרות Sהבלתי תלויות-לינארית שלהן. השתמש בטבלה הבאה:

17.12.7 The 202 0.22.70.77 1/1/12.0 2.7 12.12.7 2.7 1.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2			
אז קבוצת הניחוש S מכילה את האיברים	מכיל איבר מהצורה $R(x)$		
$\{x^n, x^{n-1}, \dots, x, 1\}$	(פולינום) $P_n(x)$		
$\{e^{\alpha x}\}$	$e^{\alpha x}$		
$\{\sin(\beta x),\cos(\beta x)\}$	$\cos(\beta x)$ או $\sin(\beta x)$		
שילובים (לפי מכפלות)			
$\{x^n e^{\alpha x}, \dots, e^{\alpha x}\}$	$P_n(x)e^{\alpha x}$		
$\{e^{\alpha x}\sin(\beta x), e^{\alpha x}\cos(\beta x)\}$	$e^{\alpha x}\sin(\beta x)$		
$\{x^k \sin(\beta x), x^k \cos(\beta x) \mid k = 1\}$	$P_n(x)\sin(\beta x)$		
$[0,\ldots,n]$			
$\left[\left\{ x^k e^{\alpha x} \sin(\beta x), x^k e^{\alpha x} \cos(\beta x) \right\} \right]$	$P_n(x)e^{\alpha x}\sin(\beta x)$		
$k = 0, \dots, n$			

- כל כל אינוף לינארי אירוף הפרטי הפתרון הפרטי הפתרון הפתרון .2 $(A,B,C\ldots)$ האיברים לא ידועים עם מקדמים בקבוצה האיברים האיברים האיברים
- 3. בדיקת תהודה (Resonance) ותיקון: אם איבר כלשהו בניחוש הראשוני y_p הוא גם פתרון של המשוואה ההומוגנית (y_h), קיימת תהודה. התיקון: יש להכפיל את כל הניחוש ב- x^k , כאשר k היא החזקה השלמה החיובית הנמוכה ביותר שמבטלת את כל החפיפות y_h עם

שיטת האופרטור המפרק.

• שלב 1: פירוק האופרטור. כותבים את המשוואה כ:

$$(D-r_1)(D-r_2)y = \frac{R(x)}{a}$$

. כאשר האופיינית הם שורשי הם r_1, r_2 ו ו- $D = rac{d}{dx}$

- שלב 2: פתרון מדורג. $g(x) = (D - r_2)y$:א)
- ב) הפתרון $g'-r_1g=rac{R(x)}{a}$ במור את מסדר מסדר מסדר (ב) $.C_1$ יכיל קבוע g(x)
- y(x) את המד"ר השנייה: $y'-r_2y=g(x)$ הפתרון (ג) C_2 הוא הפתרון הכללי המבוקש ויכיל קבוע נוסף

(p=y' פתרון סינגולרי: פתרון המערכת (עם •

$$\begin{cases} y = xp + f(p) \\ x + f'(p) = 0 \end{cases}$$

בעיות פיזיקליות נפוצות

- (חיובי גידול, שלילי דעיכה) קבוע קצב k
 - . תאוצת הכובד -g
- .(מיקום/מהירות) ערכי התחלה $-y_0,\,v_0,\,x_0$
- . קבוע קפיץ מסה; א (שוב) היכוך; א מסה, קבוע קפיץ m
- . תנודה במתנד מרוסן תנודה $-\omega = \sqrt{\frac{k}{m} \left(\frac{\gamma}{2m}\right)^2}$
- . שורשים אופייניים במתנד מרוסן הזק. $-r_{1,2} = -\frac{\gamma}{2m} \pm \sqrt{\left(\frac{\gamma}{2m}\right)^2 \frac{k}{m}} ~ \bullet$

פתרון / פירוש קצר	משוואה טיפוסית	בעיה
$y(t) = y_0 e^{kt}$	$\frac{dy}{dt} = k y$	קצב פרופורציונלי לגודל
-k < 0 גידול, $-k > 0$ דעיכה		
$x(t) = \frac{1}{2}gt^2 + v_0t + x_0$	$\ddot{x} = g$	תאוצה קבועה
$m\ddot{x}+\gamma\dot{x}+kx=0$ מתנד הרמוני מרוסן		
$x(t) = e^{-\frac{\gamma}{2m}t} [C_1 \cos \omega t +$	$\gamma^2 < 4mk$	ריסון <u>חסר</u> (חלש)
$C_2 \sin \omega t$		
$x(t) = (C_1 + C_2 t) e^{-\frac{\gamma}{2m}t}$	$\gamma^2 = 4mk$	ריסון קריטי
$x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ $r_{1,2} < 0$	$\gamma^2 > 4mk$	ריסון <u>יתר</u> (חזק)
$r_{1,2} < 0$		

אינטגרלים נפוצים

אינטגרל	פונקציה	אינטגרל	פונקציה
$x \ln(x) - x$	$\int \ln(x) dx$	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\int x^n dx$
$\frac{1}{a}$ arctan $\left(\frac{x}{a}\right)$	$\int \frac{dx}{x^2 + a^2}$	$\ln x $	$\int \frac{1}{x} dx$
$\arcsin\left(\frac{x}{a}\right)$	$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\frac{1}{a}e^{ax}$	$\int e^{ax} dx$
$\cosh x$	$\int \sinh x dx$	$\frac{a^x}{\ln a}$	$\int a^x dx$
$\sinh x$	$\int \cosh x dx$	$-\frac{1}{a}\cos(ax)$	$\int \sin(ax) dx$
tan x	$\int \sec^2 x dx$	$\frac{1}{a}\sin(ax)$	$\int \cos(ax) dx$
$\ln \sec x + \tan x $	$\int \sec x dx$	$-\ln \cos x $	$\int \tan x dx$
$-\ln \csc x + \cot x $	$\int \csc x dx$	$\ln \sin x $	$\int \cot x dx$

זהויות טריגונומטריות

- $\sin^2(x) + \cos^2(x) = 1 \quad \bullet$
- $\sin^2(x) = \frac{1 \cos(2x)}{2} \bullet$
- $\cos^2(x) = \frac{1 + \cos(2x)}{2} \bullet$ $\tan^2(x) + 1 = \sec^2(x) \bullet$
- $\cot^2(x) + 1 = \csc^2(x) \bullet$ $\sin(x \pm y) = \sin(x)\cos(y) \pm \bullet$
 - $\sin(2x) = 2\sin(x)\cos(x) \bullet$ $\cos(x)\sin(y)$
- $\cos(2x) = \cos^2(x) \sin^2(x) \quad \bullet$ $\cos(x \pm y) = \cos(x)\cos(y) \mp \bullet$ $\sin(x)\sin(y)$ $\cos(2x) = 2\cos^2(x) - 1 \bullet$

 - $\cos(2x) = 1 2\sin^2(x) \bullet$

שיטות אינטגרציה

• אינטגרציה בחלקים:

$$\int f(g(x))g'(x) dx = \int f(u) du, \quad u = g(x)$$

 $\int u \, dv = uv - \int v \, du$

שימושי כאשר חלק מהאינטגרנד הוא נגזרת של ביטוי פנימי.

- $rac{P(x)}{Q(x)}$ שברים חלקיים: לחישוב אינטגרל של פונקציה רציונלית ullet(Q קטנה ממעלת P (כאשר מעלת)
- -או ריבועיים איר לינאריים אורמים לגורמים לגורמים ער את פרק את פרק אורמים לגורמים לגורמים אורמים איר פרק את המכנה ער לגורמים לגורמים לגורמים איר
 - (ב) רשום את השבר כסכום של שברים חלקיים:
 - $\frac{A}{ax+b}$:- גורם (ax+b) תורם: $(ax+b)^k$ -- גורם $(ax+b)^k$ תורם: $(ax+b)^k$ -- גורם $(ax+b)^k$ תורם: $(ax+b)^k$ -- גורם $(ax+b)^k$
- ע"י השוואת מונים או הצבת (ג (A,B,\ldots) ע"י הקבועים או מצא (ג x ערכי x נוחים.

מד"ר לינארית, מקדמים כלליים

$$y'' + P(x)y' + Q(x)y = R(x)$$
 צורה.

- y_1 שלב 1: מציאת פתרון הומוגני •
- $1 + P(x) + Q(x) = 0 \implies y_1 = e^x$ אם -
- $1 P(x) + Q(x) = 0 \implies y_1 = e^{-x}$ אם - $P(x) + xQ(x) = 0 \implies y_1 = x$ אם -
- $m^2 + mP(x) + Q(x) = 0 \implies y_1 = e^{mx}$ אם -
 - :(מציאת סדר) y_2 מציאת -2

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1(x)^2} dx$$

- $y_h = C_1 y_1 + C_2 y_2$ הפתרון ההומוגני הכללי הוא: פרמטרים: שלב 3: פתרון לא-הומוגני (וריאציית פרמטרים: $y_p = u_1 y_1 + u_2 y_2$ כאשר:

$$u_1'(x) = -\frac{y_2 R}{W(y_1, y_2)}$$
 $u_2'(x) = \frac{y_1 R}{W(y_1, y_2)}$

באשר y_1 ו־ y_2 , כלומר: Wronskian הוא ה־ $W(y_1,y_2)$

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2$$

פתרון בעזרת טורים

(נק' רגולרית): $x_0=0$ שיטה. מציאת פתרון סביב

- $y'' = \sum_{n=0}^{\infty} a_n x^n$:הנחת הפתרון: $y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$ $y' = \sum_{n=1}^{\infty} na_n x^{n-1}$

 - $a_1 = y'(0)$, $a_0 = y(0)$ 4.

 - $y(x) = a_0 \cdot y_{\text{even}}(x) + a_1 \cdot y_{\text{odd}}(x)$.5. פתרון כללי:
 - טורי טיילור שימושיים (סביב 0)

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	e^x
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$	sin(x)
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$	$\cos(x)$
$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	sinh(x)
$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$\cosh(x)$

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} (-1)^k x^k$	$\frac{1}{1+x}$
$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$	ln(1+x)
$-\sum_{k=1}^{\infty} \frac{x^k}{k}$	ln(1-x)
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$	arctan(x)
$\sum_{k=1}^{\infty} kx^{k-1}$	$\frac{1}{(1-x)^2}$
$\sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$	$(1+x)^{\alpha}$

משוואת אוילר-קושי

- $ax^2y'' + bxy' + cy = R(x)$ צורה כללית:
 - שלב 1: פתרון ההומוגנית
 - ננחש פתרון מהצורה $y=x^m$ ונחשב:

$$y' = mx^{m-1}, \quad y'' = m(m-1)x^{m-2}$$

נציב במשוואה ונקבל את המשוואה העזרית:

$$am(m-1) + bm + c = 0$$

נסמן את שורשי המשוואה ב־ m_1, m_2 , ואז הפתרון ההומוגני הוא:

- $y_h(x) = C_1 |x|^{m_1} + C_2 |x|^{m_2}$.1.
- $y_h(x) = (C_1 + C_2 \ln |x|) |x|^m$ בפול ממשי: .2
- .3 שורשים מרוכבים צמודים: אם $ar{lpha}\pm iar{eta}$ אז:

$$y_h(x) = |x|^{\alpha} \left[C_1 \cos(\beta \ln|x|) + C_2 \sin(\beta \ln|x|) \right]$$

- שלב 2: פתרון פרטי ●
- ננחש פתרון פרטי $y_p(x)$ לפי צורת R(x) (למשל פולינום, טריגונומטרי או מעריכי), ונציב במשוואה כדי לקבוע את הפרמטרים.
 - שלב 3: פתרון כללי

$$y(x) = y_h(x) + y_p(x)$$

ונמצא כבר בפתרון ההומוגני, יש x^n מהצורה R(x) אם \bullet $\ln x$ להכפיל את הניחוש ב־