Московский государственный технический университет им. Н.Э. Баумана.

Факультет «Информатика и управление»

Кафедра ИУ5. Курс «Технологии машинного обучения» Отчет по лабораторной работе №2

Выполнила:	Проверил:
студентка группы ИУ5-61	преподаватель каф. ИУ5
Абросимова Надежда	Гапанюк Ю.Е.
Подпись и дата:	Подпись и дата:

Задание

Часть 1.

Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Условие задания -

https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/as signments_demo/assignment01_pandas_uci_adult.ipynb?flush_cache=true

Набор данных можно скачать здесь - https://archive.ics.uci.edu/ml/datasets/Adult

Пример решения задания - https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset-solution

Часть 2.

Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL:

один произвольный запрос на соединение двух наборов данных один произвольный запрос на группировку набора данных с использованием функций агрегирования

Сравните время выполнения каждого запроса в Pandas и PandaSQL.

Текст программы

```
#Yactb 1
import numpy as np
import pandas as pd
data = pd.read_csv('adult.data.csv')
data.head()
```

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	per- wee
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174	0	40
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0	13
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40

```
#1. How many men and women (sex feature) are represented in this dataset?
data["sex"].value_counts()
Out[4]:
Male 21790
Female 10771
```

```
Name: sex, dtype: int64
In [5]:
#2. What is the average age (age feature) of women?
data.loc[data['sex'] == 'Female', 'age'].mean()
Out[5]:
36.85823043357163
In [6]:
#3. What is the proportion of German citizens (native-country feature)?
print("{0:%}".format(data[data["native-country"] == "Germany"]
                     .shape[0] / data.shape[0]))
0.420749%
In [7]:
#4-5. What are the mean and standard deviation of age for those who earn more
than 50K per year (salary feature)
#and those who earn less than 50K per year?
ages1 = data[data["salary"] == "<=50K"]["age"]</pre>
ages2 = data[data["salary"] == ">50K"]["age"]
print("<=50K: = \{0\} \pm \{1\} years".format(ages1.mean(), ages1.std()))
print(">50K: = \{0\} \pm \{1\} years".format(ages2.mean(), ages2.std()))
<=50K: = 36.78373786407767 \pm 14.020088490824813 years
>50K: = 44.24984058155847 \pm 10.51902771985177 years
In [8]:
#6. Is it true that people who earn more than 50K have at least high school e
ducation?
#(education - Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Docto
rate feature)
high educations = set(["Bachelors", "Prof-school", "Assoc-acdm",
                       "Assoc-voc", "Masters", "Doctorate"])
def high educated(e):
    return e in high educations
data[data["salary"] == ">50K"]["education"].map(high educated).all()
Out[8]:
False
In [9]:
#7. Display statistics of age for each race (race feature) and each gender. U
se groupby() and describe().
#Find the maximum age of men of Amer-Indian-Eskimo race.
for (race, sex), sub df in data.groupby(['race', 'sex']):
    print("Race: {0}, sex: {1}".format(race, sex))
    print(sub df['age'].describe())
Race: Amer-Indian-Eskimo, sex: Female
count
        119.000000
         37.117647
mean
std
         13.114991
         17.000000
min
25%
        27.000000
50%
         36.000000
75%
         46.000000
```

```
80.000000
max
Name: age, dtype: float64
Race: Amer-Indian-Eskimo, sex: Male
       192.000000
mean
         37.208333
         12.049563
std
         17.000000
min
         28.000000
25%
50%
         35.000000
75%
         45.000000
        82.000000
max
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex: Female
       346.000000
count
         35.089595
mean
std
         12.300845
min
         17.000000
25%
         25.000000
50%
          33.000000
75%
         43.750000
         75.000000
max
Name: age, dtype: float64
Race: Asian-Pac-Islander, sex: Male
       693.000000
count
         39.073593
mean
std
         12.883944
         18.000000
min
25%
         29.000000
50%
         37.000000
75%
         46.000000
max
        90.000000
Name: age, dtype: float64
Race: Black, sex: Female
count 1555.000000
         37.854019
mean
         12.637197
std
min
          17.000000
25%
         28.000000
          37.000000
50%
75%
          46.000000
         90.000000
Name: age, dtype: float64
Race: Black, sex: Male
       1569.000000
count
         37.682600
mean
          12.882612
std
          17.000000
min
25%
         27.000000
          36.000000
50%
75%
          46.000000
```

```
90.000000
max
Name: age, dtype: float64
Race: Other, sex: Female
        109.000000
mean
         31.678899
         11.631599
std
         17.000000
min
         23.000000
25%
50%
         29.000000
75%
          39.000000
         74.000000
max
Name: age, dtype: float64
Race: Other, sex: Male
       162.000000
count
mean
         34.654321
         11.355531
std
min
         17.000000
25%
         26.000000
         32.000000
50%
75%
         42.000000
         77.000000
max
Name: age, dtype: float64
Race: White, sex: Female
       8642.000000
count
          36.811618
mean
std
          14.329093
          17.000000
min
25%
          25.000000
50%
          35.000000
75%
          46.000000
         90.000000
max
Name: age, dtype: float64
Race: White, sex: Male
count 19174.000000
           39.652498
mean
           13.436029
std
min
            17.000000
25%
            29.000000
50%
            38.000000
7.5%
            49.000000
            90.000000
Name: age, dtype: float64
In [10]:
#8. Among whom is the proportion of those who earn a lot (>50K) greater: marr
ied or single men (marital-status feature)?
#Consider as married those who have a marital-status starting with Married (M
arried-civ-spouse, Married-spouse-absent or
#Married-AF-spouse), the rest are considered bachelors.
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].isin(['Never-married',
```

```
'Separated',
                                   'Divorced',
                                   'Widowed'])), 'salary'].value counts()
Out[10]:
<=50K 7552
        697
Name: salary, dtype: int64
In [11]:
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].str.startswith('Married')), 'salary'].value coun
ts()
Out[11]:
<=50K
       7576
>50K
        5965
Name: salary, dtype: int64
In [12]:
data['marital-status'].value counts()
Out[12]:
Married-civ-spouse
                       14976
Never-married
                        10683
Divorced
                         4443
Separated
                         1025
Widowed
                          993
                         418
Married-spouse-absent
Married-AF-spouse
                           23
Name: marital-status, dtype: int64
#9. What is the maximum number of hours a person works per week (hours-per-we
ek feature)?
#How many people work such a number of hours and what is the percentage of th
ose who earn a lot among them?
max load = data['hours-per-week'].max()
print("Max time - {0} hours./week.".format(max load))
num workaholics = data[data['hours-per-week'] == max load].shape[0]
print("Total number of such hard workers {0}".format(num workaholics))
rich share = float(data['hours-per-week'] == max load)
                 & (data['salary'] == '>50K')].shape[0]) / num workaholics
print("Percentage of rich among them {0}%".format(int(100 * rich share)))
Max time - 99 hours./week.
Total number of such hard workers 85
Percentage of rich among them 29%
In [14]:
#10. Count the average time of work (hours-per-week) those who earning a litt
le and a lot (salary) for each country
# (native-country).
pd.crosstab(data['native-country'], data['salary'],
          values=data['hours-per-week'], aggfunc=np.mean).T
```

native- country	?	Cambodia	Canada	China	Columbia	Cuba	Dominican- Republic	Ecuador	EI- Salvador	England
salary										
<=50K	40.164760	41.416667	37.914634	37.381818	38.684211	37.985714	42.338235	38.041667	36.030928	40.483333
>50K	45.547945	40.000000	45.641026	38.900000	50.000000	42.440000	47.000000	48.750000	45.000000	44.533333

2 rows × 42 columns

•

#Часть 2

```
!pip install pandasql
```

```
from pandasql import sqldf
pysqldf = lambda q: sqldf(q, globals())
user_usage = pd.read_csv('user_usage.csv')
user_device = pd.read_csv('user_device.csv')
user usage.head()
```

- 63	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

user_usage.dtypes

Out[10]:

outgoing_mins_per_month float64 outgoing_sms_per_month float64 monthly_mb float64 use_id int64

dtype: object
user_device.head()

	use_id	user_id	platform	platform_version	device	use_type_id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

user_device.dtypes

Out[12]:

use_id int64
user_id int64
platform object
platform_version float64
device object
use_type_id int64

dtype: object

In [16]:

user_device.merge(user_usage).head()

	use_id	user_id	platform	platform_version	device	use_type_id	outgoing_mins_per_month	outgoing_sms_per_month
0	22787	12921	android	4.3	GT- 19505	1	21.97	4.82
1	22788	28714	android	6.0	SM- G930F	1	1710.08	136.88
2	22789	28714	android	6.0	SM- G930F	1	1710.08	136.88
3	22790	29592	android	5.1	D2303	1	94.46	35.17
4	22792	28217	android	5.1	SM- G361F	1	71.59	79.26

```
%%timeit
user_device.merge(user_usage).head()
2.52 ms ± 41.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [19]:
pysqldf("""SELECT u.outgoing_mins_per_month, u.outgoing_sms_per_month, u.mon
thly_mb, u.use_id, d.user_id,d.platform,
d.platform_version, d.device, d.use_type_id
FROM user_usage AS u JOIN user_device AS d
ON u.use id = d.use id
```

""").head()

outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	user_id	platform	platform_version	devic
21.97	4.82	1557.33	22787	12921	android	4.3	GT- 19505
1710.08	136.88	7267.55	22788	28714	android	6.0	SM- G930
1710.08	136.88	7267.55	22789	28714	android	6.0	SM- G930
94.46	35.17	519.12	22790	29592	android	5.1	D2303
71.59	79.26	1557.33	22792	28217	android	5.1	SM- G361
	21.97 1710.08	21.97 4.82 1710.08 136.88 1710.08 136.88 94.46 35.17	21.97 4.82 1557.33 1710.08 136.88 7267.55 1710.08 136.88 7267.55 94.46 35.17 519.12	21.97 4.82 1557.33 22787 1710.08 136.88 7267.55 22788 1710.08 136.88 7267.55 22789 94.46 35.17 519.12 22790	21.97 4.82 1557.33 22787 12921 1710.08 136.88 7267.55 22788 28714 1710.08 136.88 7267.55 22789 28714 94.46 35.17 519.12 22790 29592	21.97 4.82 1557.33 22787 12921 android 1710.08 136.88 7267.55 22788 28714 android 1710.08 136.88 7267.55 22789 28714 android 94.46 35.17 519.12 22790 29592 android	1710.08 136.88 7267.55 22788 28714 android 6.0 1710.08 136.88 7267.55 22789 28714 android 6.0 94.46 35.17 519.12 22790 29592 android 5.1

%%timeit

```
pysqldf("""SELECT u.outgoing_mins_per_month, u.outgoing_sms_per_month, u.mon
thly mb, u.use id, d.user id, d.platform,
d.platform version, d.device, d.use type id
FROM user usage AS u JOIN user device AS d
ON u.use id = d.use id
""")
13.2 ms \pm 629 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
user usage.groupby("use id")["monthly mb"].mean().head()
Out[34]:
use_id
22787
       1557.33
22788 7267.55
22789 7267.55
22790
        519.12
22792
       1557.33
```

```
Name: monthly_mb, dtype: float64

In [28]:
%%timeit

user_usage.groupby("use_id")["monthly_mb"].mean()

407 µs ± 5.49 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [29]:
pysqldf("""SELECT use_id, AVG(monthly_mb)

FROM user_usage
GROUP BY use_id
""").head()
```

	use_id	AVG(monthly_mb)
0	22787	1557.33
1	22788	7267.55
2	22789	7267.55
3	22790	519.12
4	22792	1557.33

```
%%timeit
```

```
pysqldf("""SELECT use_id, AVG(monthly_mb)
FROM user_usage
GROUP BY use_id
""")
6.06 ms ± 23.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```