Cover sheet for Assignment 3

Due Friday Nov. 6, 11:00pm

Complete this page and attach it to the front of your assignment	Complete this	page and	attach it	t to the	front of	your	assignmen
--	---------------	----------	-----------	----------	----------	------	-----------

Name:	Grant	<u>Wong</u>		
	(Underline yo	ur last nam	e)	
Student number:	10003	549445		
I declare that this a with the University	0		•	
Signature:				
		\ 1 0 0	/ /	

CSC457: Written Assignment 3

Grant Wong

October 2020

Question 1

(a) When there are m packets in the buffer then a new packet is dropped and lost with the probability

$$p_{\mathfrak{m}} = \frac{1 - \rho}{1 - \rho^{\mathfrak{m}+1}} \rho^{\mathfrak{m}}$$

meaning the probability that a new packet is lost is p_m and the rate that new packets are dropped is given by $p_m \lambda$.

(b) Throughput is defined by the arrival rate minus the loss rate, that is,

$$\lambda - p_m \lambda = \lambda (1 - p_m)$$

(c) It is such that $\mathfrak{p}_{\mathfrak{m}}<<1$ if and only if $\mathfrak{p}^{\mathfrak{m}+1}<<1$ which implies for part (a) the result

$$p_{\rm m} = (1 - \rho)\rho^{\rm m}$$

(d) From Little's formula the expected delay $T=\frac{N}{\lambda'}$ and with $\lambda'=(1-\rho)\lambda$ as well as $N=\sum_{n=1}^m np_n$ implies that

$$T = \frac{\sum_{n=1}^{m} n p_n}{(1 - \rho)\lambda}$$

Question 2

(a) Each packet is comprised of N bits and each bit has a bit transfer error probability of P_{bit} so the probability P_{packet} that a packet from host A arrives error-free at switch C is

$$P_{\text{packet}} = (1 - P_{\text{bit}})^{N}$$

(b) If host A takes k transmission attempts to have the kth packet accepted at switch C then the first k-1th packets arrive with an error and the kth packet arrives error-free which is expressed as

$$P_{k} = (1 - P_{packet})^{k-1} P_{packet} = (1 - (1 - P_{bit})^{N})^{k-1} (1 - P_{bit})^{N}$$

(c) Denote $E[T_{AC}]$ to be the total delay for one hop from host A to switch C and denote for $E[T_{CB}]$ in an analogous way. Note that from our assumptions that $E[T_{AC}] = E[T_{CB}]$. Now, expressing $E[T_{AC}]$ we have

$$E\left[T_{AC}\right] = \sum_{k=1}^{\infty} E[T|k] P_k = \sum_{k=1}^{\infty} k \frac{N}{R} P_k = \sum_{k=1}^{\infty} k \frac{N}{R} \left(1 - P_{\text{packet}}\right)^{k-1} P_{\text{packet}}$$

then using the infinite series result $\sum_{i=1}^{\infty}i(1-\alpha)^{i-1}=\frac{1}{\alpha^2}$ for $|1-\alpha|<1$

$$= \frac{N}{R} \frac{P_{\text{packet}}}{P_{\text{packet}}^2} = \frac{N}{R} \frac{1}{P_{\text{packet}}} = \frac{N}{R} \frac{1}{\left(1 - P_{\text{bit}}\right)^N}$$

The total delay E[T] is given by

$$E[T] = E[T_{AB}] + E[T_{CB}] = 2\frac{N}{R} \frac{1}{(1 - P_{bit})^{N}}$$

(d) In end-to-end ARQ transmitting a packet from host A to host B error-free has the probability $P'_{\text{packet}} = (1-P_{\text{bit}})^N (1-P_{\text{bit}})^N = (1-P_{\text{bit}})^{2N}$. The average delay is then

$$E[T'] = 2\frac{N}{R} \frac{1}{P'_{packet}} = 2\frac{N}{R} \frac{1}{(1 - P_{bit})^{2N}}$$

(e) In computing E[T'] we note that $P'_{packet} = P_{packet}^2$.

	$P_{packet} = 0.99$	$P_{packet} = 0.2$	$P_{packet} = 0.002$
E[T]	2.02N/R	10N/R	1000N/R
E[T']	2.04N/R	50N/R	500000N/R

(f) From the result of (e) we can determine which type of ARQ, i.e. hop-by-hop or end-to-end, to use based on the bit error probability P_{bit}. If it is high (as is in the case of a wireless transmission) then hop-by-hop significantly reduces the expected delay, however, if it is low (as is in the case of optical transmission) then end-to-end yields only a small increase in expected delay. Meaning, one should use hop-by-hop with a high P_{bit} but end-to-end with a low P_{bit}.