Apprentissage pour les graphes – Partie 2

IFT 6758A - IFT 3700

Fall 2024

References

- Manuel sur les graphes et le ML : https://www.cs.mcgill.ca/~wlh/grl_book/
- Tutoriel sur les graphes et le ML:

https://www.youtube.com/watch?v=fbRDfhNrCwo

Motivation: Universalité des graphes

Encodage superficiel

Approche d'encodage la plus simple : un plongement par noeud

$$ENC(v) = \mathbf{Z}\mathbf{v}$$

$$\mathbf{Z} \in \mathbb{R}^{d imes |\mathcal{V}|}$$
 matrix, each column is node embedding [what we learn!]

$$\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$$
 indicator vector, all zeroes except a one in column indicating node v

From Shallow to Deep

 Nous allons maintenant discuter de méthodes « plus profondes » basées sur des réseaux de neurones pour les graphes.

$$\mathrm{ENC}(v) = \operatorname*{complex} function that \atop \mathrm{depends} \ \mathrm{on} \ \mathrm{graph} \ \mathrm{structure}.$$

 En général, tous les codeurs peuvent être combinés avec les fonctions de similarité qui dépendent de la structure du graphe.

Les bases: réseaux de neurones pour les graphes

- Basé sur les papiers:
 - Hamilton et al. 2017. <u>Representation Learning on Graphs: Methods and Applications</u>
 - Scarselli et al. 2005. The Graph Neural Network Model

Notations

- Supposons que nous ayons un graphe G:
 - V est l'ensemble des sommets.
 - A est la matrice d'adjacence (supposons binaire).
 - X est une matrice de caractéristiques des nœuds.
- Attributs catégoriels, texte, données d'image
 - Par exemple, des informations de profil dans un réseau social.
 - Degrés de nœuds, coefficients de clustering, etc.
 - Vecteurs indicateurs (c.-à-d. codage à chaud de chaque nœud)

Une idée naïve : deep learning style

 Utilisez la matrice d'adjacence et transmettez-la à un MLP (perceptron multicouche)

Problème : dépend de l'indexation arbitraire des nœuds !!!

<u>Idée clé : générer des agrégation de nœuds en fonction du voisinage.</u>

$$\begin{split} \mathbf{h}_u^{(k+1)} &= \text{UPDATE}^{(k)} \left(\mathbf{h}_u^{(k)}, \text{Aggregate}^{(k)} (\{\mathbf{h}_v^{(k)}, \forall v \in \mathcal{N}(u)\}) \right) \\ &= \text{UPDATE}^{(k)} \left(\mathbf{h}_u^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right), \end{split}$$

 Intuition : les nœuds agrègent les informations de leurs voisins à l'aide de réseaux neuronaux

$$\begin{split} \mathbf{h}_{u}^{(k+1)} &= \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \text{AGGREGATE}^{(k)} (\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right) \\ &= \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right), \end{split}$$

Intuition : Le voisinage dans le réseau définit un graphe de calcul!

- Les nœuds ont des représentations à chaque couche.
- Le modèle peut être d'une 'profondeur' arbitraire.
- La représentation initiale du nœud est ses caractéristiques.
- Contrairement aux méthodes superficielles, nous pouvons utiliser les caractéristiques des nœuds:
 - Caractéristiques supplémentaires des nœuds (caractéristiques d'expression génique dans les réseaux biologiques ou caractéristiques textuelles dans les réseaux sociaux)
 - En l'absence de caractéristiques de nœud supplémentaire:
 - Nous pouvons utiliser les statistiques de nœud (degré de nœud, centralité de nœud,... Voir : [livre])
 - Nous pouvons utiliser un encodage à chaud (ne peut pas généraliser aux nœuds invisibles ®)

Les principales distinctions résident dans la façon dont les différentes approches regroupent l'information à travers les couches.

$$\begin{aligned} \mathbf{h}_{u}^{(k+1)} &= \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \text{AGGREGATE}^{(k)} (\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right) \\ &= \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right), \end{aligned}$$

 Approche de base: Moyenne des informations de voisinage et appliquer un réseau neuronal.

Les Math pour le cas de base

 Approche de base: Moyenne des messages voisins et application d'un réseau neuronal.

$$\mathbf{m}_{\mathcal{N}(u)} = \sum_{v \in \mathcal{N}(u)} \mathbf{h}_v,$$

$$\text{UPDATE}(\mathbf{h}_u, \mathbf{m}_{\mathcal{N}(u)}) = \sigma \left(\mathbf{W}_{\text{self}} \mathbf{h}_u + \mathbf{W}_{\text{neigh}} \mathbf{m}_{\mathcal{N}(u)} \right),$$

Les Math pour le cas de base

 Approche de base: Moyenne des messages voisins et application d'un réseau neuronal.

Initial "layer 0" embeddings are
$$\mathbf{h}_v^0 = \mathbf{x}_v$$
 equal to node features

Motivations et intuitions

- AGGREGATE et UPDATE doivent conduire à des représentations équivariantes par permutation!
- Profondeur du réseau <-> Profondeur de la représentation du graphe
 - Première couche (k = 1), les représentations contiennent des informations provenant de son voisinage à 1 saut
 - Les representations de deuxième couche (k = 2) contiennent des informations provenant de son voisinage à 2 sauts
 - **-**/ ...
- Deux types d'informations au niveau de la k-ème couche :
 - Informations structurelles sur le graphe: (structure du voisinage k-hop)
 - Informations sur les caractéristiques : informations sur toutes les caractéristiques de leur voisinage khop

Voisinage pour les « Convolutions »

L'agrégation de voisinage peut être considérée comme un filtre convolutionel.

Mathématiquement lié aux convolutions spectrales pour les graphes (see <u>Bronstein</u> et al., 2017)

Convolution sur les images

Convolution est un « opérateur agrégateur ». D'une manière générale, l'objectif d'un opérateur agrégateur est de résumer les données locales sous une forme réduite.

Convolution sur les graphes

The most popular choices of convolution on graphs are averaging or summation of all neighbors, i.e. sum or mean pooling, followed by projection by a trainable vector W.

Motivations: invariance et équivariance

- A: Matrice d'adjacence
- P : matrice de permutation
- f:n'importe quelle fonction
- Équivariant
- Invariant

$$f(\mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = f(\mathbf{A})$$
 (Permutation Invariance)
 $f(\mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = \mathbf{P}f(\mathbf{A})$ (Permutation Equivariance)

Quand voulons-nous l'invariance et quand voulons-nous l'équivariance ?

- Les deux sont étroitement liés.
- Exemple : supposons que la matrice d'adjacence est définie avec l'indexation (A,B,...,F)
 - La représentation du nœud jaune est invariante à la permutation de l'indexation du nœud
 - La représentations du nœud A est équivariante (permuter les indexes des nœuds permutera les représentations)

Quand voulons-nous l'invariance et quand voulons-nous l'équivariance ?

- Les deux sont étroitement liés.
- Habituellement:
 - Nous voulons des représentations équivariantes.
 - Nous voulons des prédictions invariantes.

Exemple:

Rotation Equivariance in image features

Rotation Equivariance in image features

Exercice:

Exercice

Équivariant, invariant ou ni l'un ni l'autre?

$$\mathbf{h}_{v}^{0} = \mathbf{x}_{v} \qquad \text{(i.e., what we learn)}$$

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right), \ \forall k \in \{1, ..., K\}$$

$$\mathbf{z}_{v} = \mathbf{h}_{v}^{K}$$

Après les couches K de l'agrégation de voisinage, nous obtenons des représentations de sortie pour chaque nœud.

Comment entraînons-nous le modèle à générer des représentations de « haute qualité »?

$$\mathbf{h}_{v}^{0} = \mathbf{x}_{v} \qquad \text{(i.e., what we learn)}$$

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right), \ \forall k \in \{1, ..., K\}$$

$$\mathbf{z}_{v} = \mathbf{h}_{v}^{K}$$

- Après les couches K de l'agrégation de voisinage, nous obtenons des plongements pour chaque nœud.
- Nous pouvons utiliser ces représentations dans n'importe quelle fonction de perte et exécuter une descente de gradient stochastique pour entraîner les paramètres d'agrégation.

- Entraîner de manière non supervisée en utilisant uniquement la structure du graphe et les similarités.
- La fonction de perte non supervisée peut être n'importe quoi, par exemple, basée sur
 - Marches aléatoires (node2vec, DeepWalk)
 - Factorisation de graphes
 - c'est-à-dire entraı̂ner le modèle de sorte que les nœuds « similaires » aient des intégrations similaires.

Alternative : Entraîner directement le modèle pour une tâche supervisée (p. ex., classification des nœuds) :

Alternative : Entraîner directement le modèle pour une tâche supervisée (p. ex., classification des nœuds) :

Vue d'ensemble du modèle

Vue d'ensemble du modèle

Vue d'ensemble

Capacité de généralisation

- Les mêmes paramètres d'agrégation sont partagés pour tous les nœuds.
- Le nombre de paramètres du modèle est sous-blinéaire en |V| Et nous pouvons généraliser aux nœuds invisibles/nouveaux!

Capacité de généralisation

Inductive node embedding --> generalize to entirely unseen graphs

 p. ex., s'entraîner sur le graphe d'interaction des protéines de l'organisme modèle A et générer des intégrations sur les données nouvellement recueillies sur l'organisme B

Capacité de généralisation

- De nombreux applications rencontrent constamment des nœuds inédits.
 - Par exemple, Reddit, YouTube, GoogleScholar,
- Besoin de générer de nouvelles représentations « à la volée »

Les réseaux de neurones pour graphes dans la pratique

- Prédiction de nœud
- Prédiction de lien
- Classification de graphes

Classification des nœuds

- y_u : étiquettes pour les nœuds
- z_u : représentations de nœuds
- Appris pour la tâche

$$\mathcal{L} = \sum_{u \in \mathcal{V}_{\text{train}}} - \log(\operatorname{softmax}(\mathbf{z}_u, \mathbf{y}_u)).$$

Prédiction de lien

- y_u : étiquettes pour les nœuds
- z_u : représetations de nœuds
- Appris pour la tâche

Maximiser

$$p(A_{ij}) = \sigma(\mathbf{z_i^T z_j})$$

Sur l'ensemble d'entrainement

Prédiction à partir d'un graphe

z_G: représentation pour le graphe (nous verrons comment l'obtenir)

$$\mathcal{L} = \sum_{\mathcal{G}_i \in \mathcal{T}} \| ext{MLP}(\mathbf{z}_{\mathcal{G}_i}) - y_{\mathcal{G}_i} \|_2^2,$$

Représentation de (sous) graphe

- Refs: Convolutional Networks on Graphs for Learning Molecular Fingerprints https://arxiv.org/abs/1509.09292
- Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.
- Ying et al, 2018. Hierarchical Graph Representation Learning with Differentiable Pooling. NeurIPS.

(Sub) Graph embeddings

So far we have focused on node-level embeddings...

(Sub) Représentation de graphe

Qu'en est-il de la représentation d'un sous-graphe

Approche 1

Idée simple : additionner les representations

$$\mathbf{z}_S = \sum_{v \in S} \mathbf{z}_v$$

- Utilisé par Duveneaud et al. 2016 (pour la classification des molécules)

Approche 2

Introduisez un nœud virtuel qui représente le sous-graphe et obtenez la représentation de ce nouveau nœud.

Utilisé par Li et al. 2016

Approach 3

regrouper hiérarchiquement les nœuds.

Proposé par Ying et al. 2018

Approche 3

- Idée : Apprendre à regrouper hiérarchiquement les nœuds.
- Vue d'ensemble de base :
 - 1. GNN sur le graphe et obtenez des représentations de nœuds.
 - 2. Regroupez (clustering) les représentations de nœuds pour créer un graphe plus « grossier ».
 - 3. GNN sur le graphique « grossier ».
 - 4. Répétez.
- Différentes approches pour le regroupement (clustering) :
 - Clustering "souple" via des poids softmax appris (Ying et al., 2018)
 - Clustering "rigide" (Cangea et al., 2018 and Gao et al., 2018)

Approach 3

Conclusion

- Deep learning on graphs works and is very effective!
- Exciting area: lots of new applications and extensions (hard to keep up)

Relational reasoning

[Santoro et al., NIPS 2017]

Multi-Agent RL

GCN for recommendation on 16 billion edge graph!

Résumé: GNNs

- Récapitulatif: générez des représentations de nœuds en agrégeant les informations de voisinage.
 - Permet le partage des paramètres dans l'encodeur.
 - Permet un apprentissage inductif (généralisation aux noeuds non-vus).

Résumé Global sur les Graphes

- Représentations peu-profondes:
 - Un vecteur par nœud (peu prendre trop de place pour les gros graphes)
 - 'Des représentations similaires pour des nœuds similaires'
 - Trois grandes notions de similitudes:
 - Adjacences
 - Voisinage (k-hop,...)
 - Mache aléatoire.
- Représentation profonde:
 - Apprend un réseau de neurone pour extraire une représentation par nœud en fonction des voisins
 - Utilise les mêmes notions de similitudes que les représentations peu profondes.
 - Avantages (par rapport aux représentations peu profondes):
 - Peu généraliser à des nœuds et des graphes non-vus pendant l'entraînement
 - Utilise les caractéristiques des nœuds.

Resources

- http://snap.stanford.edu/proj/embeddings-www/
- https://jian-tang.com/files/AAAI19/aaai-grltutorial-part2-gnns.pdf