ADATSZERKEZETEK ÉS ALGORITMUSOK

- A rendezési probléma:
 - Bemenet:
 - n számot tartalmazó $(a_1, a_2, ... a_n)$ sorozat
 - Kimenet:
 - a bemenő sorozat olyan $(a_1', a_2', \dots, a_n')$ permutációja, hogy $a_1' \le a_2' \le \dots \le a_n'$

- Összehasonlításos rendezőknél mit tudunk mondani a rendezés időigényére? Tudunk-e alsó becslést adni?
 - Ugyanaz, mintha barkóbázva kellene kitalálni, hogy az elemek melyik sorrendje (permutációja) az igazi sorrend
 - Kezdetben n! lehetséges sorrend jön szóba.
 - Két elemet összehasonlítva, a válasz két részre osztja a sorrendeket
 - Ha például azt kapjuk, hogy x < y, akkor az olyan sorrendek, amikben x hátrébb van y-nál, már nem jönnek szóba
 - Ha a válasz mindig olyan, hogy minél több sorrend maradjon meg, akkor k kérdés után még szóba jövő sorrendek száma

 $\frac{n!}{2^k}$

- Döntési fa modell
 - Az összehasonlítások tekinthetők döntési fáknak, amik a rendezés során történt összehasonlításokat ábrázolják
 - Tegyük fel, hogy minden elem különböző
 - Egy belső csúcsot egy a_i : a_j párral jelölhetünk, ahol $1 \le i, j \le n$
 - A levelek egy-egy permutációnak feleltethetők meg

- Baloldali részfa: az $a_i \le a_j$ után szükséges összehasonlítások
- Jobboldali részfa: az $a_i > a_j$ után szükséges összehasonlítások
- Levél: a rendezett sorrend

Alsó korlát a legrosszabb esetben

Tétel: Bármely n elemet rendező döntési fa magassága

$$\Omega(n * \log_2 n)$$

- Bizonyítás: Vegyük az n elemet rendező döntési fát, jelöljük ennek magasságát h-val.
- A fának n! levele van ezek a permutációk.
- A h mélységű bináris fa leveleinek száma $\leq 2^h$, ezért $n! < 2^h$
- $h \ge \log_2(n!)$
 - felhasználva, hogy a log függvény monoton növő

Alsó korlát a legrosszabb esetben

Ismert a Stirling formula (~1730!):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

- ahol e a természetes logaritmus alapja
- Ennek alapján

$$n! > \left(\frac{n}{e}\right)^n$$

Behelyettesítve:

•
$$h \ge \log_2\left(\left(\frac{n}{e}\right)^n\right) = n * \log_2 n - n * \log_2 e = \Omega(n * \log_2 n)$$

Alsó korlát a legrosszabb esetben

- Következmény 1.
 - A kupacrendezés és az összefésüléses rendezés aszimptotikusan optimális összehasonlító rendezések.
- Bizonyítás
 - A kupacrendezés és az összefésüléses rendezés futási idejének felső korlátja $\Theta(n * \log_2 n)$ a legrosszabb esetre megadott $\Omega(n * \log_2 n)$ felső korláttal.
- Következmény 2.
 - Nincs lineáris idejű összehasonlításos rendezés
 - 🙁

Leszámláló rendező

Következő téma