

EE4011

Transceiver Architectures

From Superhet to

Direct Conversion

Transceivers

- λ Transmitter + Receiver (eg mobile phone)
- λ Common Antenna
- λ Functionally separate but increasingly interdependent
- λ Level of integration increasing
- λ => "System on a Chip" SOC

Application Example: Transceiver Design Receiver Oscillator Low Noise Filter Mixer Demodulator **Amplifier Digital Baseband** AD/DA AD/DA **CMOS** Converter Converter Memory Logic **Transmitter** Oscillator Power Modulator Filter Mixer **Amplifier**

Existing Solutions are Inefficient

Component Count Evolution in GSM RF (Nokia)

EE4011

Evolution of RF Integration

Discrete functions:

·Partial front- end:

•Integrated front end:

SoC:

Ultimate Objective:

- Single-Chip, Scaled CMOS or BiCMOS
- Minimum External Components

Heterodyne receiver Receiver Front-End LO IFA Baseband signal Demodulator BPF1 Part Down-Channel conversion Band selection selection Image The front-end architecture rejection reflects the trade-off between image rejection and band selection.

EE4011

Receiver Sensitivity

- λ Input signal level to achieve specified minimum S/N at output
- λ Expressed in absolute units, dBm or dBuV

λ Also used – MDS – minimum detectable signal power dBm

Available Signal Power & Sensitivity

Sensitivity

Minimum Sg such that we have the required SNR at the receiver output for proper signal detection.

Example:

Receiver Sensitivity = -113dBm

$$\text{dBm}: 10 log \left(\frac{P}{1 mW}\right)$$

Assume

$$R = 50\Omega$$

$$P = 10^{(-113/10)} \cdot 1 \text{mW} = 5 \times 10^{-15} \text{ Watts}$$

$$P = V_{in}^2 / R - 50\Omega$$

$$\overline{V_{in_{rms}}} = \sqrt{P \cdot R} = \sqrt{(5 \times 10^{-15}) \cdot 50 \Omega}$$

$$\overline{V_{in_{rms}}} = 0.5 \mu V$$

Example Sensitivity for GSM/DECT

Standard DECT

GSM

Sensitivity

- 83 dBm

- 102 dBm

RMS Input Voltage(Vin)

15.8 μ**V**

1.8 μ**V**

Dynamic Range

λ Noise at lower limit

λ Distortion at upper limit

λ Difference is Dynamic Range dB

λ Number of definitions of Dynamic Range

Bit Error Rate and Noise

- λ Modern systems are inevitably digital
- λ BER and noise are inter-related
- λ As expected, multi-level modulation schemes require higher S/N for same BER.

Gain Compression

- Occurs when system cannot increase its
 output amplitude in linear proportion to
 amplitude increase at input
- λ Gain SATURATION occurs when system output amplitude stops increasing.
- λ Common measure is 1 dB compression point

Image Problem

EE4011

Intermodulation

- Non-linearities in system elements e.g amplifiers, mixers, --- but also filters, (and even cables!).
- λ Second order $\omega_1 + \omega_2 = \omega_1 \omega_2 = IM_2$
- λ Third order $2 \omega_1 \pm \omega_2$ $2 \omega_2 \pm \omega_1$ IM_3 » +terms outside passband terms in passband
- Note The Under Small signal conditions the power of IM2 varies by 2 dB and IM3 by 3dB per 1dB change in input power level

Intermodulation Intercept Point IP3

EE4011

Spectral Regrowth - ACPR

Old & New receiver architectures

 Superheterodyne receiver (good sensitivity and selectivity, good image rejection)

- Discrete IR and IF filters not amenable for integration
- Channel selection done with IF Filter multi standard programming hardly achieved

EE4011

Filter design for Front-End

Band selection filtering, BPF of high Q is needed

In-band interferers, LNA of high IP3 value is needed for low 3rd order component

cf Razavi pp 120,121

EE4011

EE4011

Filter design for Front-End (cont'd)

Choice of LO frequency - problem of images

Corrupted channel signal

Image tends to overlap the desired channel at the mixer output

In-band interferer suppression

Out-of-band image can be suppressed before mixing, $\omega_{\rm IF}$ should be large enough to relax the requirements for Q_2 factor

Heterodyne receiver Receiver Front-End LO IFA Baseband signal Demodulator BPF1 Part Down-Channel Band conversion selection selection Image The front-end architecture rejection reflects the trade-off between image rejection and band selection.

Filter design for Front-End (cont'd)

Trade-off between BPF2 and BPF3

Image Reject Filter

$$Q_2 = \frac{f_2}{\Delta f_2} \bigg|_{DECT} \approx \frac{1890 \text{ MHz}}{B_w}$$

 $B_w = m \cdot 20 \text{MHz}$

Channel Filter

$$Q_{3} = \frac{f_{IF}}{\Delta f_{ch}} \bigg|_{DECT} \approx \frac{k \cdot B_{w}}{1.728 \text{ MHz}}$$

By increasing B_w the Q_2 becomes smaller, but Q_3 becomes larger

Front-End analysis for NF (cont'd) Contribution of Component Stages

For
$$R_S = R_{in1} = R_{out1} = R_{in2} = \dots$$
 etc.

$$NF = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1G_2} + \dots$$

General formula for a chain of components ("Friis equation")

To reduce contribution of 2^{nd} , 3^{rd} , ... stages, G_1 , G_2 , ... should be large enough

EE4011

Receiver Input SNR & Sensitivity

Standard 10log(BW) Noise Floor(dBm) Input SNR DECT(1.7MHz) 62.3dB -111.5dBm 28.5dB GSM(200kHz) 53.0dB -120.8dBm 18.8dB

<u>Definitions used to Derive Noise Figure</u>

N : Available Noise Power

Sg: Available Signal Power

S: Available Signal Power @ the output of a

Network

F: Noise Factor

G: (Available Signal Power Output)

(Available Signal Power at the Input)

Required Receiver Noise Figure

Information used to find the receiver NF

- 1) Sensitivity
 - Standards
 - -Application
- 2) Signal BW Noise Floor
- 3) Modulation Scheme
 - GMSK?
 - QAM ?
 - DQPSK?

From the BER and modulation method, the Q function may be used to derive the required receiver output SNR.

Required Receiver Noise Figure

$$NF = 10\log(F)$$

$$= 10\log\left(\frac{CNR_{input}}{CNR_{output}}\right)$$

$$= CNR_{input}(dB) - CNR_{output}(dB)$$

$$= (Sen\ddot{s} - NFloor)dB - CNR_{output}dB$$

NF<

DECT: 18.5 dB GSM: 9.0 dB

Image-Rejection Example: DECT

Example : DECT

- -Desired Incoming Carrier: (freq. ~1.9GHz, Magn. -73dBm)
- -Local Osc. : (freq. ~1.7GHz)
- -Imageband :(freq. ~1.5GHz, Magnitude -23dBm)

$$IR_{required} = -73dBm - (-23dBm) + CNR_{required}$$

 $IR_{required} = 65dB$

$$IR_{DECT} \approx 70 dB$$
 with 200MHz IF
$$IR_{GSM} \approx 80 dB$$

EE4011

The Issue of Receiver Nonlinearity

- Lower limit of input power into receiver is limited by sensitivity (i.e., required SNR, Noise Figure, etc.)
- Upper limit of input power into receiver is determined by nonlinear characteristics of receiver
 - High input power will lead to distortion that reduces SNR (even in the absence of blockers)
 - Nonlinear behavior often characterized by IIP3 performance of receiver

MIT O

Receiver Dynamic Range

- Defined as difference (in dB) between max and min input power levels to receiver
 - Min input power level set by receiver sensitivity
 - Max input power set by nonlinear characteristics of receiver
 - Often defined as max input power for which third order IM products do not exceed the noise floor in a two tone test

A Key IIP3 Expression

By inspection of the right figure

$$P_{IIP3} = P_{in} + x$$
 $\Delta P = 3x - x = 2x$

Combining the above expressions:

$$\Rightarrow P_{IIP3} = P_{in} + \frac{\Delta P}{2} = P_{in} + \frac{P_{out} - P_{IM3,out}}{2}$$

EE4011

Refer All Signals to Input in Previous IIP3 Expression

- Difference between fundamental and IM3 products, △P, is the same (in dB) when referred to input of amplifier
 - Both are scaled by the inverse of the amplifier gain

$$\Rightarrow P_{IIP3} = P_{in} + \frac{\Delta P}{2} = P_{in} + \frac{P_{in} - P_{IM3,in}}{2}$$

Applying algebra:

$$P_{in} = \frac{2P_{IIP\beta} + P_{IM\beta,in}}{3}$$

EE4011

Calculation of Spurious Free Dynamic Range (SFDR)

- Key expressions:
 - Minimum P_{in} (dBm) set by SNR_{min} and noise floor

$$P_{in,min} = F + SNR_{out,min}$$

Where F is the input referred noise floor of the receiver

$$F = -174 + 10\log(B) + dB(NF)$$

Max P_{in} (dBm) occurs when IM3 products = noise floor

$$P_{in,max} = \frac{2P_{IIP3} + P_{IM3,in,max}}{3} \Rightarrow P_{in,max} = \frac{2P_{IIP3} + F}{3}$$

Dynamic range: subtract min from max P_{in} (in dB)

$$SFDR = \frac{2P_{IIP3} + F}{3} - (F + SNR_{out,min})$$

Calculation of Overall IIP3 for Cascaded Stages

Assume nonlinearity of each stage characterized as

$$\frac{y(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t)}{z(t) = \beta_1 y(t) + \beta_2 y^2(t) + \beta_3 y^3(t)}$$

 Multiply nonlinearity expressions and focus on first and third order terms

$$z(t) = \alpha_1 \beta_1 x(t) + (\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3) x^3(t) + \cdots$$

Resulting IIP3 expression

$$A_{IP\beta} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1 \beta_1}{\alpha_3 \beta_1 + 2\alpha_1 \alpha_2 \beta_2 + \alpha_1^3 \beta_3} \right|}$$

Perrott

MIT

Alternate Expression for Overall IIP3

Worst case IIP3 estimate – take absolute values of terms

$$A_{IP3} \approx \sqrt{\frac{4}{3} \frac{|\alpha_1 \beta_1|}{|\alpha_3 \beta_1| + |2\alpha_1 \alpha_2 \beta_2| + |\alpha_1^3 \beta_3|}}$$

Square and invert the above expression

$$\frac{1}{A_{IP3}^2} \approx \frac{3|\alpha_3\beta_1| + |2\alpha_1\alpha_2\beta_2| + |\alpha_1^3\beta_3|}{|\alpha_1\beta_1|}$$

Express formulation in terms of IIP3 of stage 1 and stage 2

$$\frac{1}{A_{IP3}^2} \approx \frac{1}{A_{IP3,1}^2} + \frac{3|\alpha_2\beta_2|}{2|\beta_1|} + \frac{\alpha_1^2}{A_{IP3,2}^2}$$

Perrott

MIT O

A Closer Look at Impact of Second Order Nonlinearity

Influence of α_2 of Stage 1 produces tones that are at frequencies far away from two tone input

Impact of Having Narrowband Amplification

 Removal of outside frequencies dramatically simplifies overall IIP3 calculation

Cascaded IIP3 Calculation with Narrowband Stages

• Note that α_1 and β_1 correspond to the loaded voltage gain values for Stage 1 and 2, respectively

EE4011

Front-End analysis for IP3

From DECT specs:

$$S_{in,min}$$
= -77dBm, $SNR_{out,min}$ = 25dB

Desensitization requirements for DECT: -77, -62, -43 dBm

Adjacent channels result in — IM3 product located at desired frequency (intermodulation)

Front-End analysis for IP3 (cont'd)
 Contribution of Component Stages

$$y_{1} = \alpha_{1}x + \alpha_{2}x^{2} + \alpha_{3}x^{3}$$

$$y_{2} = \beta_{1}y_{1} + \beta_{2}y_{1}^{2} + \beta_{3}y_{1}^{3}$$

$$y_{2} = (\alpha_{1}\beta_{1})x + (\alpha_{3}\beta_{1} + 2\alpha_{1}\alpha_{2}\beta_{2} + \alpha_{1}^{3}\beta_{3})x^{3} + ...$$

$$\alpha_{1,eq}$$

$$\alpha_{3,eq}$$

$$A_{_{IIP3,1}}^{2} = \frac{4|\alpha_{_{1}}|}{3|\alpha_{_{3}}|} \qquad \qquad A_{_{IIP3}}^{2} = \frac{4|\alpha_{_{1,eq}}|}{3|\alpha_{_{3,eq}}|} = \frac{4|\alpha_{_{1}}\beta_{_{1}}|}{3|\alpha_{_{3}}\beta_{_{1}} + 2\alpha_{_{1}}\alpha_{_{2}}\beta_{_{2}} + \alpha_{_{1}}^{_{3}}\beta_{_{3}}|}$$

Contribution of Component ... (cont'd)

$$\frac{1}{A_{IIP3}^{2}} = \frac{3|\alpha_{3}\beta_{1} + 2\alpha_{1}\alpha_{2}\beta_{2} + \alpha_{1}^{3}\beta_{3}|}{4|\alpha_{1}\beta_{1}|}$$

$$= \left|\frac{1}{A_{IIP3,1}^{2}} + \frac{3\alpha_{2}\beta_{2}}{2\beta_{1}} + \frac{\alpha_{1}^{2}}{A_{IIP3,2}^{2}}\right|$$

$$\approx \frac{1}{A_{IIP3,1}^{2}} + \frac{\alpha_{1}^{2}}{A_{IIP3,2}^{2}}$$

$$\frac{1}{IIP3} \approx \frac{1}{IIP3_1} + \frac{G_1}{IIP3_2} + \frac{G_1G_2}{IIP3_3} + \dots$$

$$IIP3 = A_{IIP3}^2 / 50\Omega$$

$$\alpha_1^2 = G_1 \quad \text{(power gain)}$$

General formula for a chain of components

Note! Here IIP3's are nonlogarithmic quantities

Linear components have (1/IIP3) = 0

The main contributors to total IIP3 of the frontend are usually LNA and mixer.

Trade-off between NF & Intermodulation

EE4011

Challenges of Receiver Integration

Problems with synthesizer integration:

- Poor phase noise performance of on-chip VCOs
- Channel-select synthesizer required at RF

Challenges in receive path integration:

- Image & noise filtering required
- Discrete high-Q IF channel select filter required

EE4011

Direct Conversion RF Transceivers

Low-Frequency Errors in Direct Conversion Receivers

- Desired signal often has L. F. information
- Time-varying offsets 100X bigger than signal

Direct Conversion

- The need for discrete component filters eliminated
- LO leak creates DC offset
- RF channel-select synthesizer still required

DC Offset in Direct Conversion

Mechanism for LO Leakage

- 1) LO leaks to the mixer input.
- 2) LO couples to the LNA input or antenna.
- Large blockers radiate from the mixer RF port to the mixer LO input.

Direct conversion receiver

- Fewer components than heterodyne
- Image filtering avoided no IR and IF filters
- Easy to integrate LP filters
- AD conversion in baseband lowest requirements for ADC

EE4011

Old & New receiver architectures (cont'd)

Direct receiver (homodyne) –
 (fewer components, image filtering avoided – no IR and IF filters)

- Large DC offset can corrupt weak signal or saturate LNA (LO mixes itself),
 Adaptive DC offset cancellation eg. By DSP baseband control
- Flicker noise (1/f) can be difficult to distinguish from signal
- Channel selection with LPF, (noise-linearity-power tradeoff are critical)

EE4011

EE4011

Direct conversion transmitter (cont'd)

LO with offset frequency

Here LO1 and LO2 work at far different frequency from PA, LO's corruption is alleviated

