DNN Introduction

講者:Isaac

Outline

- Build DNN Model
- Define Loss Function
 - Mean square
 - Cross entropy with softmax
- Optimization
 - Gradient decent with moment
 - Adagrad, RMS, and Adam
- Predict/Validate Result

Big Picture

Same logic when implementation in TensorFlow

Assume we want to build a handwritten system to recognize image from 0 to 9

Total 10000 Images with labels

Split the data

Encode labels

What we want

We want this two as close as possible

What we want

3. Optimization

Finally, we get

We get it is '5'

Build DNN Model

DNN also called "Multilayer perceptron"

Weight (variable) Bias (variable)

$$y = f(x) = \sigma(W^L \dots \sigma(W^2 \sigma(W^1 X + b^1) + b^2) \dots + b^L)$$

We want to find the best parameter set:

$$\theta = \{W^1, b^1, W^2, b^2, ..., W^L, b^L\}$$

Parameters Initialization

- The most common way are
 - Use random normal distribution with zero mean and small standard deviation
- In complex model, it is very important to find better way to initialize the parameters

Activation Function

- Give NN nonlinearity property
- Can be regarded as "ON" (1) or "OFF" (0)

$$y = f(x) = \sigma(W^L \dots \sigma(W^2 \sigma(W^1 X + b^1) + b^2) \dots + b^L)$$

Activation Function

- ▶ There are many kinds of activation
 - relu, sigmoid, elu, etc.....
- Usually, we use relu as first try on building neural

network

We usually use this now!

Example-initialization

Example-feed data

Example-forward pass

Example-forward pass

Define Loss Function

Loss Function

- There are many kinds of loss function
- Usually, it is a function that map multi-variables to a single value
- We will introduce two loss function in DNN
 - Mean square
 - Cross-entropy

What is one-hot encode

Output of NN look like this

What we want (one hot encode)

Mean Square

Cross-entropy with Softmax

Information

 $\triangleright log\left(\frac{1}{p_i}\right)$ where p_i is probability of an event

Sun rises in the east tomorrow

It will rain tomorrow in Taiwan

Which is more informative?

Cross-entropy with Softmax

- Entropy
 - Expected value(mean) of information contained in each message
- Entropy can be seen as index of uncertainty
 - Bigger mean more chaos
- Cross-entropy
 - Measurement on the difference between two probability distribution
 - Different distribution apply on entropy
 - Cross-entropy is greater than entropy

$$H(y) = \sum_i y_i \log \frac{1}{y_i} = -\sum_i y_i \log y_i$$
 $H(y) = -\sum_i y_i \log \widehat{y}_i$ Entropy Cross-entropy

Example

Probability distribution I

Entropy on distribution 1 = $1/3 * \log(3) + 1/2 * \log(2) + 1/6 * \log(6)$

Probability distribution 2

Entropy on distribution 2 = $1/4 * \log(4) + 1/2 * \log(2) + 1/4 * \log(4)$

Cross-entropy on distribution 1 over distribution 2 = $1/3 * \log(4) + 1/2 * \log(2) + 1/6 * \log(4)$

Cross-entropy on distribution 2 over distribution 1 = $1/4 * \log(3) + 1/2 * \log(2) + 1/4 * \log(6)$

Example

```
Entropy on distribution 1 Entropy on distribution 2 = 1/3 * \log(3) + 1/2 * \log(2) + 1/6 * \log(6) = 1/4 * \log(4) + 1/2 * \log(2) + 1/4 * \log(4) = 0.452 Cross-entropy on distribution 1 over distribution 2 = 1/3 * \log(4) + 1/2 * \log(2) + 1/6 * \log(4) = 0.456 Cross-entropy on distribution 2 over distribution 1 = 1/4 * \log(3) + 1/2 * \log(2) + 1/4 * \log(6) = 0.464
```

- Cross-entropy is greater than entropy
 Cross-entropy on distribution 1 over 2 > Entropy on distribution 1
 Cross-entropy on distribution 2 over 1 > Entropy on distribution 2
- If two distribution become closer
 - Value of cross-entropy is closer to entropy

Cross-entropy with Softmax

- Cross-entropy usually come with softmax layer in NN
- Softmax function squash all of elements in vector to [0, 1]

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

Cross-entropy with Softmax

Example-forward pass

Softmax(
$$\begin{bmatrix} 0\\0.006\\0.12 \end{bmatrix}$$
) = $\begin{bmatrix} 0.319\\0.321\\0.36 \end{bmatrix}$

Softmax(
$$\begin{bmatrix} 0 \\ 0.006 \\ 0.12 \end{bmatrix}$$
) = $\begin{bmatrix} 0.319 \\ 0.321 \\ 0.36 \end{bmatrix}$ $\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ for $j = 1, ..., K$.

What we expect (label)

 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

$$-0*\ln(0.319) - 1*\ln(0.321) - 0*\ln(0.36)$$

= 1.1363

$$-\sum_{i=0}^{class \#} \hat{y}_i \ln(y_i)$$

This is large at the beginning. During training, this should decrease.

38

How to feed data	Mean Square	Cross-entropy
All data at a time	$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$	$\frac{1}{N} \sum_{j=1}^{N} \left(-\sum_{i=0}^{class \#} \hat{y}_i \ln(y_i)\right)$
One data at a time	$(y - \hat{y})$	$-\sum_{i=0}^{class \#} \hat{y}_i \ln(y_i)$
Batch of data a time (B < N)	$\frac{1}{B} \sum_{i=1}^{B} (y_i - \hat{y}_i)^2$	$\frac{1}{B} \sum_{j=1}^{B} \left(-\sum_{i=0}^{class \#} \hat{y}_i \ln(y_i)\right)$

Pick one training data at a time

Pick all training data at a time

All training data

A batch of data (you can define)

Pick a batch of data at a time

Optimization

Optimization

- We will introduce these Optimization methods
 - Gradient decent
 - Gradient decent with moment
 - Adagrad
 - RMSprop
 - Adam

An algorithm that find the minimum of a function

Randomly select θ_1 as start point

Compute
$$\frac{dC(\theta_{1})}{d\theta}$$

$$\theta_{2} \leftarrow \theta_{1} - \eta \frac{dC(\theta_{1})}{d\theta}$$
Compute
$$\frac{dC(\theta_{2})}{d\theta}$$

$$\theta_{3} \leftarrow \theta_{2} - \eta \frac{dC(\theta_{2})}{d\theta}$$

Learning rate

$$\theta = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \nabla C(\theta) = \begin{bmatrix} \frac{dz}{dx} \\ \frac{dz}{dy} \end{bmatrix}$$

Randomly select θ_1 as start point

Compute $\nabla C(\theta_1)$

$$\theta_2 \leftarrow \theta_1 - \eta \nabla C(\theta_1)$$

 $Compute \nabla C(\theta_2)$

$$\theta_3 \leftarrow \theta_2 - \eta \nabla C(\theta_2)$$

Gradient Descent with Momentum

Randomly select θ_1 as start point

Compute $\nabla \theta_1$

$$\theta_2 \leftarrow \theta_1 - \eta \nabla \theta_1$$

Compute $\nabla \theta_2$

$$\theta_3 \leftarrow \theta_2 - \eta \nabla \theta_2$$

•

Without momentum

Randomly select θ_1 as start point , initialize $v_1=0$

Compute $\nabla \theta_1$, $v_2 = \lambda v_1 - \eta \nabla \theta_1$

$$\theta_2 \leftarrow \theta_1 + v_2$$

Compute $\nabla \theta_2$, $v_3 = \lambda v_2 - \eta \nabla \theta_2$

$$\theta_3 \leftarrow \theta_2 + v_3$$

:

With momentum

- Drawback of gradient descent
 - Learning rate would not decay over time
 - Direction of learning rate is fixed
- Adaptive learning rate is needed

Adagrad

$$w^{1} \leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = \sqrt{(g^{0})^{2}}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2} [(g^{0})^{2} + (g^{1})^{2}]} \qquad \eta^{t} = \frac{\eta}{\sqrt{t+1}} \qquad g^{t} = \frac{\partial L(\theta^{t})}{\partial w}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]}$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1} \sum_{i=0}^{t} (g^{i})^{2}}$$

RMSProp

$$\begin{split} w^{1} &\leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0} \\ w^{2} &\leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}} \\ w^{3} &\leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}} \\ & \vdots \\ w^{t+1} &\leftarrow w^{t} - \frac{\eta}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\alpha(\sigma^{t-1})^{2} + (1 - \alpha)(g^{t})^{2}} \end{split}$$

Adam

```
Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise
square g_t \odot g_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
\beta_1 = 0.9, \, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
we denote \beta_1 and \beta_2 to the power t.
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
  m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector) \rightarrow for momentum
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                            → for RMSprop
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 (Update biased second raw moment estimate) \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

What is one epoch/step

- One epoch
 - One pass of all the training data
- One step
 - Pass a batch of training data (batch size is user defined)

An efficient way to compute gradient given a set of variable

$$\frac{\partial C}{\partial w_{ij}^l}$$
?

$$y = f(x) = \sigma(W^L \dots \sigma(W^2 \sigma(W^1 X + b^1) + b^2) \dots + b^L)$$

$$z^{1} = W^{1}X + b^{1}$$

$$a^{1} = \sigma(z^{1})$$

$$z^{2} = W^{2}a^{1} + b^{2}$$

$$a^{2} = \sigma(z^{2})$$

$$\vdots$$

$$z^{l} = W^{l}a^{l-1} + b^{l}$$

$$a^{l} = \sigma(z^{l})$$

$$\frac{\partial C}{\partial w_{ij}^l} = \frac{\partial C}{\partial z_i^l} * \frac{\partial z_i^l}{\partial w_{ij}^l}$$

- 1. Calculate $\frac{\partial z_i^l}{\partial w_{ij}^l}$
- 2. Calculate $\frac{\partial C}{\partial z_i^l}$ (error signal δ_i^l)

$$\frac{\partial C}{\partial z_i^l}$$
 (error signal δ_i^l)

- 1. Compute δ^L (L layer error signal)
- 2. Compute relation between δ^l and δ^{l+1}

$$\frac{\partial C}{\partial z_i^l}$$
 (error signal δ_i^l)

1. Compute δ^L (L layer error signal)

$$\delta_i^L = \frac{\partial C}{\partial z_i^L} = \frac{\partial y_i}{\partial z_i^L} * \frac{\partial C}{\partial y_i} = \sigma'(z_i^L) * \frac{\partial C}{\partial y_i}$$

i neurons

in output layer

 $\frac{\partial z_i^l}{\partial z_i^l}$ (error signal δ_i^l)

1. Compute δ^L (L layer error signal)

$$\delta^L = \sigma'(z^L) \bullet \nabla C(y)$$

$$\sigma'(z^L) = egin{bmatrix} \sigma'(z_1^L) \ \sigma'(z_2^L) \ dots \ \sigma'(z_n^L) \end{bmatrix} \qquad
abla C'(y) = egin{bmatrix} rac{\partial C}{\partial y_1} \ rac{\partial C}{\partial y_2} \ dots \ rac{\partial C}{\partial y_n} \end{bmatrix}$$

$$\frac{\partial C}{\partial z_i^l}$$
 (error signal δ_i^l)

2. Compute relation between δ^l and δ^{l+1}

1+1 layer

k neurons in
$$\delta_i^l = \frac{\partial C}{\partial z_i^l} = \frac{\partial a_i^l}{\partial z_i^l} \sum_k \frac{\partial z_k^{l+1}}{\partial a_i^l} \frac{\partial C}{\partial z_k^{l+1}}$$

recall

$$\frac{\partial a_i^l}{\partial z_i^l} = \sigma'(z_i^l), \ \frac{\partial z_k^{l+1}}{\partial a_i^l} = w_{ki}^{l+1}, \ \frac{\partial C}{\partial z_k^{l+1}} = \delta_k^{l+1}$$

$$\delta_i^l = \sigma'(z_i^l) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$

 $\frac{\partial C}{\partial z_i^l}$ (error signal δ_i^l)

2. Compute relation between δ^l and δ^{l+1}

k neurons in l+1 layer

$$\delta^l = \sigma'(z^l) \bullet (W^{l+1})^T \delta^{l+1}$$

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C(y)$$
$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C(y)$$
$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

$$\frac{\partial C}{\partial w_{ij}^l} = \frac{\partial C}{\partial z_i^l} * \frac{\partial z_i^l}{\partial w_{ij}^l}$$

$$\begin{split} \delta^L &= \sigma'(z^L) \bullet \nabla C(y) \\ \delta^{L-1} &= \sigma'(z^{L-1}) \bullet (W^L)^T \delta^L \\ &\vdots \\ \delta^{l-1} &= \sigma'(z^{l-1}) \bullet (W^l)^T \delta^l \\ &\vdots \\ \end{split}$$

$$if \ l = 1 \ (input \ layer \rightarrow layer \ 1)$$

$$z_{i}^{1} = \sum_{j} w_{ij}^{1} x_{j}^{r} + b_{i}^{1} \qquad \frac{\partial z_{i}^{1}}{\partial w_{ij}^{1}} = x_{j}$$

$$if l > 1(layer l - 1 \rightarrow layer 1)$$

$$z_{i}^{l} = \sum_{j} w_{ij}^{l} a_{j}^{l-1} + b_{i}^{l} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} = a_{j}^{l-1}$$

Predict/Validate Result

Predict/Validate Result

- "*" mean a better set of parameters we have found
- Use test data to find model accuracy (supervised learning)
 - # correct predict / # total data

Overfitting

Training error is going lower but testing error is not

Overfitting

- Prevent overfitting
 - Use more data
 - Stronger regularization
 - Data augmentation
 - Reduce complexity of model

Quick Recap in this Lecture

- Build DNN model
- 2. Define loss (mean square/cross entropy with softmax)
- 3. Optimization (backpropagation)
- Validate result

Example-initialization

Example-feed data

Softmax(
$$\begin{bmatrix} 0\\0.006\\0.12 \end{bmatrix}$$
) = $\begin{bmatrix} 0.319\\0.321\\0.36 \end{bmatrix}$

Softmax(
$$\begin{bmatrix} 0 \\ 0.006 \\ 0.12 \end{bmatrix}$$
) = $\begin{bmatrix} 0.319 \\ 0.321 \\ 0.36 \end{bmatrix}$ $\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ for $j = 1, ..., K$.

What we expect (label)

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$-0*\ln(0.319) - 1*\ln(0.321) - 0*\ln(0.36)$$

= 1.1363

$$-\sum_{i=0}^{class \#} \hat{y}_i \ln(y_i)$$

This is large at the beginning. During training, this should decrease.

Example-optimization

Use optimizer to optimize and wait.....

Example-after optimization

Example-predict

Feed you test data You may get something like this

 $\begin{bmatrix} 0.1 \\ 0.5 \\ 0.4 \end{bmatrix}$

Model predict this is class #2 (0.5 is greater than others)