

Video Based Human Action Recognition Using Deep Learning

Why This Thesis

- > Integrate machine learning to university level dance education
- Investigate the use of deep action recognition models
- Investigate the provided BAST dataset

Bewegungs Analyse Skalen UND Test

- Based on the Laban analysis (body, effort, shape, space)
- Investigates the relation between movements & mental state
- Nine basic movements evaluated on specific dimensions

Human Action Recognition

Sprinting: crouch (start) → run on track (middle) → finish (end line)

Input modality: RGB, Optical Flow,2D poses

Goal: recognize BAST movements

2D poses made of 17 keypoints

Datasets

- > 98 videos, partly annotated; using 10s clips with 5s sliding window
- > Formed two datasets for base and evaluation annotations respectively
- Insufficient data & imbalance data for bast-eval

Table 1: Number of clips for the *bast-base* and *bast-eval* datasets

Dataset	#Clips
bast-base	3894
bast-eval	4112

Experiments

- > Best Classifier for Base Annotations
- Best Classifier for Evaluation Annotations
- Robustness of Models

Experiments

> Transfer Learning

> Background Influence

Best Classifier for Base Annotations

- 2D Conv Nets either underfit or overfit
- > 3D Conv Nets perform an excellent job
- PoseC3D also very fast to train and low complexity (params & flops)

Model	Caveat	Top1 Acc	Top2 Acc	Top2 Acc (val)	Mean Cls Acc
I3D	baseline	87.2%	96.3%	92.6%	87.1%
13D	no dropout	20.9%	25.3%	86.4%	18.4%
SlowOnly	omni-pr	92.1%	97.31%	95.1%	91.7%
SlowFast	baseline	90.6%	96%	95%	90%
CSN	baseline	-	-	30%	-
	gym-pr	88.9%	95.4%	94%	88.6%
	gym-0.7d	90.61%	95.5%	97.1%	90%
	ntu60-pr	89.25%	95.5%	96.3%	89.2%
PoseC3D	ntu120-0.8d	91.5%	96.25%	97.8%	91.1%
	ntu120-0.8d-54x1x1	87.0%	93.9%	96.9%	85.7%
	ntu120-0.8d-64x1x1	88.9%	96.1%	97.6%	91%
	kinetics-ucf	92.32%	97.27%	97.7%	92.52%
	kinetics-0.7d-32x1x1	90.44%	96.93%	97.4%	89.6%

Best Classifier for Eval Annotations

- PoseC3D provides pretty decent results
- 64x1x1 dense sampling strategy for fine-grained actions
- Half of annotations classified perfectly

Model	Caveat	Top3 Acc (test)	Top3 Acc (val)	Mean Class Acc
	-	59.5%	54.7%	25.4%
	0.4d	27%	63%	5.4%
I3D	0.65d	22%	58%	9.8%
	0.6d-48x3x1	66%	59%	21%
ClaryOnly	bb-pr-8x8x1	60.3%	64.4%	24.6%
SlowOnly	bb-pr-0.6d-16x8x1	71%	67.6%	25.64%
	gym-pr	69%	69.4%	22%
PoseC3D	gym-bb-pr-0.65d	72.2%	72.3%	32.5%
	ntu120-pr-0.7d	71.2%	74.9%	32.2%
	ntu120-pr-0.8d	75.7%	68.5%	23.6%
	bb-pr-64x1x1-0.6d	77.39%	72.68%	33.19%

Robustness of Models

- Nine bast-base movements as general categories
- No evaluation dataset
- Derive heuristics from bast-avatar and explain model's performance

Figure 4.5: Emulation of water using body movements from the bast-avatar test dataset

Water Heuristics

> Emulate wave patterns with arms

Hand movements point to horizontal direction

> Perform fish-like movements

Fire Heuristics

> Emulating something going up in the air with hand movements

> Imitate explosions by jumping

Air Heuristics

> Move around the room a lot

Move hands a lot

> Rotate to simulate a whirl

Earth Heuristics

> Fall to the ground and move on all fours

Some people contracted on the ground

Some hit the ground with legs

Results

Robustness of Models

- Test the kinesphere evaluation of contract/expand
- Validation dataset contains complex, dance-like kinesphere
- Evaluations: narrow, middle, wide

Figure 4.4: Kinesphere movement from the kinesphere test dataset

Results

The four related movements: expandnarrow; expand-wide; expand-widemore; expand-narrow-more entirely missing

The model outputs movements not related to the kinesphere

No subtle difference between predictions for narrow-kinesphere; middle kinesphere; and widekinesphere

Table 11: kinesphere domain-test dataset analysis

Ground truth	Model's prediction	Count
	jump-time-long	13
narrow kinesphere	stamp-body-isolated	12
	jump-emphasis-upward	9
	jump-time-long	7
middle kinesphere	con-expand-no-emphasis	7
	walk-straight-more	6
	stamp-strength-none	9
wide kinesphere	stamp-body-isolated	6
	jump-time-long	6

Transfer Learning

Improvement of learning in a new task through the transfer of knowledge from an already learned task

Ameliorates the insufficent samples and imbalanced classes problem for tasks that have small datasets

Training From Scratch vs Transfer Learning

Table 12: Training from scratch vs. transfer learning

Model	Task type	Transfer learning	No transfer learning
I3D	bast-base	96.3%	87%
13D	bast-eval	60%	51%
SlowOnly	bast-base	97.31%	90.78%
	bast-eval	71%	29.31%
SlowFast	bast-base	96%	89.8%
PoseC3D	bast-base	97.27%	95.9%
	bast-eval	77.39%	72.19%

Transfer Learning with Bast Base for Bast Eval

Table 14: Benchmark dataset vs *bast-base* dataset pre-training for the *bast-eval* task

Model	Benchmark	Bast-base
I3D	59.5%	62.3%
SlowOnly	60.3%	70%
PoseC3D	75.7%	77.39%

Transfer learning for Bast Eval

> Also solves the class imbalance problem to a certain degree

Nevertheless, class imbalance remains a problem

Best benchmark dataset for pre-training: Kinetics & Omni-Sourced

Background Influence

- Background plays an important role in the model's prediction
- > Ideally the model should only focus on the person inside the frames
- "Dancing ballet" vs "jogging"

GradCam Analysis

GradCam Analysis on Models Without Background

Background Influence

> Stripping background hurts the model's performance

Models are less robust on testing sets

> Solution: Use 2D poses as input stream

Conclusions

> Perfect classification for base annotations; good results for evaluation

> Base classifier possibly extendable; eval classifier too specific for BAST

> Transfer learning yields robust models; background is crucial to model

Appendix

BAST Evaluation

- > Floor Pattern: (1) rather straight (2) rather curved (3) curved
- Emphasis: (1) upwards (2) forward
- Time in air: (1) long (2) short
- Body involvement: (1) isolated (2) whole body
- Strength: (1) no strength (2) little (3) max
- Kinesphere: (1) narrow (2) medium (3) wide
- Emphasis: (1) contracting (2) expanding (3) none
- Balance: (1) unstable (2) rather stable (3) stable
- > Flow: (1) very bound (2) bound (free) (4) very free)
- Acceleration: (1) yes (2) no
- Falling-flow: (1) lying down (2) free
- End-position: (1) sitting (2) lying

Training With Various Benchmark Datasets

> Top benchmark datsets: Kinetics 400 & Omni-Sourced

Table 13: Training with various benchmarks for both tasks

Model	Benchmark	Bast-Base	Bast-Eval
SlovyOply	Omni-Sourced	97.31%	29.3%
SlowOnly	Kinetics400	24.07%	46.4%
TIN	Sth-Sth-V2	19.7%	-
111N	Kinetics400	28.45%	-
	Gym	96.93%	74%
	Ntu-60	95.5%	-
PoseC3D	Ntu-120	96.25%	75.7%
	Kinetics-hmdb	97.27%	72.19%
	Kinetics-ufc	97.42%	71.36%

Figure 6.7: Accuracy for each annotation of the *bast-eval* task for the PoseC3D model pre-trained on the *ntu-120* dataset

Figure 6.5: Accuracy for each annotation of the *bast-eval* task for the PoseC3D model pre-trained on the *bast-base* dataset

- the *kinesphere* evaluation of *contract* is imbalanced as the evaluation *contract-narrow* has more than double the amount of annotations that *contract-narrow-more* has. In Figure 6.7 it is observed that the model is unable to correctly classify this evaluation. The *top-3* accuracy for the *contract-narrow-more* annotation is 0, while the classification of *contract-narrow* is almost perfect. In contrast, in Figure 6.5 we can see that the model has started to recognize the *contract-narrow-more* evaluation.
- the *kinesphere* evaluation of *expand* is imbalanced as the evaluation *expand-wide* has more than triple the amount of annotations that *expand-wide-more* has. The accuracy of *expand-wide-more* is roughly 40% for the PoseC3D model trained on *ntu-120* but with a *bast-base* pre-training this accuracy rises to almost 70%. Thus the latter model is able to recognize both the classes properly even though they are severely imbalanced.
- the *emphasis* evaluation of *jump* is in particular severely imbalanced because the evaluation *jump-emphasis-upward* has as much as eight times more samples than its counterpart *jump-emphasis-forward*. Notwithstanding this, the model pre-trained on *bast-base* is able to perfectly classify both of them when taking into account the *top-3* accuracy. However, the model not pre-trained on *bast-base* cannot even classify one sample correctly when considering the *top-3* accuracy for the *jump-emphasis-forward* evaluation. This is understandable given the severe imbalance

but the fact that a pre-training with *bast-base* solves this problem perfectly really serves to prove the point of this section.

• the *strength* evaluatuion of *stamp* is slightly imbalanced because *stam-strength-medium* has almost the same amount of annotations as *stamp-strength-none*, and *stamp-strength-little* taken together. For the model not pre-trained on *bast-eval*, the *top-3* accuracy for *stamp-strength-none* is 40% and for *stamp-strength-little* is 0%. The model pre-trained on *bast-base* on the other hand has a confidence of 60% and 40% respectively.