Bias-Variance and Cross-Validation

Nipun Batra and teaching staff

IIT Gandhinagar

August 14, 2025

Table of Contents

1. Introduction to Bias-Variance

2. Cross-Validation

3. Practice and Review

Roadmap

1. Introduction to Bias-Variance

2. Cross-Validation

Practice and Review

What is the Bias-Variance Tradeoff?

Important: The Core Dilemma

Simpler model ⇒ misses structure (High Bias) **Complex model** ⇒ fits noise (High Variance)

Key Points

Today: Intuition \rightarrow Math \rightarrow Practice

A Real-World Analogy: Weather Prediction

Example: Simple Model: "Tomorrow = Today"

High Bias, Low Variance

Low Bias, High Variance

Example: Huge Model: 1000+ features

Aim: Find the Goldilocks zone (just right).

A Question!

What would be the decision boundary of a decision tree classifier?

Decision Boundary vs Tree (depth = 1)

Decision Boundary vs Tree (no depth limit)

Decision Boundary

Are deeper trees always better?

Deeper trees learn more complex boundaries.

Are deeper trees always better?

But they can generalize poorly (overfit).

Three concepts from what we saw

Key Points

- 1. Bias: Error from restrictive assumptions
- 2. Variance: Sensitivity to data fluctuations
- 3. Irreducible Error: Data noise

Dartboard Analogy: Four Scenarios

High Bias, Low Var Consistent & wrong

High Bias, High Var Worst

Bias-Variance Decomposition

Definition: Fundamental Equation

$$\mathbb{E}\big[(Y - \hat{f}(X))^2\big] = \underbrace{(\mathbb{E}[\hat{f}(X)] - f(X))^2}_{\text{Bias}^2} + \underbrace{\mathbb{V}[\hat{f}(X)]}_{\text{Variance}} + \underbrace{\mathbb{V}[\varepsilon]}_{\text{Irreducible noise}}$$

Intuitions

Example: Bias

Average model \neq truth (e.g., linear on curved data).

Example: Variance

Model changes a lot across different train sets.

An example: Train vs Test

Train

Intuition for Variance

Small data changes \Rightarrow very different models.

Bias-Variance vs Complexity (schematic)

Underfitting (too simple)

Important: High Bias

Systematic error; both train/test errors high.

Overfitting (too complex)

Important: High Variance

Memorizes noise; train error low, test error high.

Good Fit (sweet spot)

Example: Goldilocks

Balanced bias and variance \Rightarrow best generalization.

Interactive: Polynomial Degrees

Roadmap

Introduction to Bias-Variance

2. Cross-Validation

3. Practice and Review

Why training error fails for model selection

Example: Optimistic bias

Training error \downarrow as capacity $\uparrow,$ even if test error $\uparrow.$

Key Points

We need an unbiased estimate of generalization.

Cross-Validation: Core Idea

Definition: Philosophy

Split into k folds; train on k-1, validate on 1; rotate; average.

Benefits of Cross-Validation

Key Points

- · Uses all data for both train and validation
- Less sensitive to a single split
- · Honest model comparison

Our General Training Flow

K-fold CV: utilize full dataset

Validation Set Workflow

Nested Cross-Validation (schematic)

Cross-Validation

Nipun Batra and teaching staff

IIT Gandhinagar

August 2, 2025

Nested CV: Model Selection

Average validation performance across folds; pick hyperparameters with best mean (and consider variance).

Roadmap

Introduction to Bias-Variance

2. Cross-Validation

3. Practice and Review

Pop Quiz

- 1. What drives high bias? (example)
- 2. What drives high variance? (example)
- 3. How does cross-validation help model selection?
- 4. Why not optimize on test error?

• $Error = Bias^2 + Variance + Noise$

- $Error = Bias^2 + Variance + Noise$
- High Bias \Rightarrow underfit; High Variance \Rightarrow overfit

- $Error = Bias^2 + Variance + Noise$
- High Bias ⇒ underfit; High Variance ⇒ overfit
- Cross-validation ⇒ honest selection

- Error = $Bias^2 + Variance + Noise$
- High Bias ⇒ underfit; High Variance ⇒ overfit
- Cross-validation ⇒ honest selection
- Choose capacity at the sweet spot

Next time: Ensembles

- Combining models
- Reducing bias vs reducing variance