

Geometry

CS 432 Interactive Computer Graphics
Prof. David E. Breen
Department of Computer Science

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012.

Objectives

- · Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012.

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- · We will need three basic elements
 - Scalars
 - Vectors
 - Points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space **p**=(x,y,z)
 - We derived results by algebraic manipulations involving these coordinates
- $\bullet \ {\it This \ approach \ was \ nonphysical}\\$
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Scalars

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - · Can map to other types

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{Q}}$ Addison-Wesley 2012.

6

Vector Operations

- · Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication u= αv
 - Vector-vector addition: w=u+v
- Expressions such as

v=u+2w-3r

Make sense in a vector space

E. Angel and D. Shreiner: Interactive Computer Graphics 6E @ Addison-Wesley 2012.

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Points

- · Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- · For any point define
 - 1 P = P
 - $0 \cdot P = 0$ (zero vector)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Lines

- Consider all points of the form
 - $P(\alpha)=P_0 + \alpha d$
 - Set of all points that pass through ${\bf P}_0$ in the direction of the vector ${\bf d}$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$
$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Rays and Line Segments

• If $\alpha \ge 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction \mathbf{d}

If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$
$$= \alpha R + (1-\alpha)Q$$

For $0 \le \alpha \le 1$ we get all the points on the *line segment* joining R and Q

,g 1: <

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{C}}$ Addison-Wesley 2012.

Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

E. Angel and D. Shreiner: Interactive Computer Graphics 6E $\ensuremath{\mathbb{C}}$ Addison-Wesley 2012.

Affine Sums

· Consider the "sum"

$$P=\alpha_1P_1+\alpha_2P_2+\ldots+\alpha_nP_n$$

lf

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

in which case we have the affine sum of the points $P_1,\!P_2,\!\dots\!,P_n$

• If, in addition, $\alpha_i\!\!>=\!\!0,$ we have the \emph{convex} \emph{hull} of $P_1,\!P_2,\!\dots,\!P_n$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Convex Hull

- Smallest convex object containing P₁,P₂,....P_n
- Formed by "shrink wrapping" points

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $P(\alpha,\beta)$
 - Linear functions give planes and polygons

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Barycentric Coordinates

Triangle is convex so any point inside can be represented as an affine sum

$$\begin{array}{l} P(\alpha_{1,}\alpha_{2,}\alpha_{3})\!\!=\!\!\alpha_{1}P\!\!+\!\!\alpha_{2}Q\!\!+\!\!\alpha_{3}R\\ where \end{array}$$

$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$
$$\alpha_i \ge 0$$

The representation is called the **barycentric coordinate** representation of P

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha,\beta)=R+\alpha u+\beta v$, we know we can use the cross product to find $n=u \times v$ and the equivalent form

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012.

Representation

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives

- Introduce concepts such as dimension and basis
- Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces
- Discuss change of frames and bases
- Introduce homogeneous coordinates

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

1

Linear Independence

• A set of vectors $v_1, v_2, ..., v_n$ is linearly independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$
 iff $\alpha_1 = \alpha_2 = \dots = 0$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

E. Angel and D. Shriener: Interactive Computer Graphics 6E @ Addison-Wesley 2012

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis $v_1, v_2,, v_n$, any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Coordinate Systems

- \bullet Consider a basis $\nu_{\rm l}, \nu_{\rm 2}, \ldots, \nu_{\rm n}$
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$
- The list of scalars $\{\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n\}$ is the representation of ν with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example

- $v = 2v_1 + 3v_2 4v_3$
- $a = [2 \ 3 \ -4]^T$
- Note that this representation is with respect to a particular basis
- For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Coordinate Systems

· Which is correct?

Both are because vectors have no fixed location

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representation in a Frame

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + ... + \beta_n v_n$$

E. Angel and D. Shriener: Interactive Computer Graphics 6E @ Addison-Wesley 2012

2

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

They appear to have the similar representations

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

 $P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$ Thus we obtain the four-dimensional

homogeneous coordinate representation

$$\mathbf{v} = \left[\alpha_1 \, \alpha_2 \, \alpha_3 \, 0 \,\right]_{\mathrm{T}}^{\mathrm{T}}$$

 $\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^{\mathrm{T}}$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point [x y z] is given as

$$\mathbf{p} = [\mathbf{x'} \ \mathbf{y'} \ \mathbf{z'} \ \mathbf{w}]^{\mathrm{T}} = [\mathbf{wx} \ \mathbf{wy} \ \mathbf{wz} \ \mathbf{w}]^{\mathrm{T}}$$

We return to a three dimensional point (for w≠0) by

x**←x'**/w

y**←**y'/w

z←z'/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [x y z 1]

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - For perspective we need a perspective division

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

6

Change of Coordinate Systems

• Consider two representations of the same vector with respect to two different bases. The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

where

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3] [v_1 v_2 v_3]^T$$

= $\beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = [\beta_1 \beta_2 \beta_3] [u_1 u_2 u_3]^T$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representing second basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

 $u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3$ $u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3$ $u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

$$\mathbf{a} = \mathbf{M}^{\mathrm{T}} \mathbf{b}$$

see text for numerical examples

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Change of Frames

 We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames: (P_0, v_1, v_2, v_3) (Q_0, u_1, u_2, u_3)

- Any point or vector can be represented in either frame
- We can represent Q_0 , u_1 , u_2 , u_3 in terms of P_0 , v_1 , v_2 , v_3

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Representing One Frame in Terms of the Other

Extending what we did with change of bases

$$\begin{aligned} u_1 &= \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\ u_2 &= \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\ u_3 &= \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \\ Q_0 &= \gamma_{41} v_1 + \gamma_{42} v_2 + \gamma_{43} v_3 + \gamma_{44} P_0 \end{aligned}$$

defining a 4 x 4 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

Working with Representations

Within the two frames any point or vector has a representation of the same form

 $\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]$ in the first frame $\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]$ in the second frame

where α_{4} = β_{4} = 1 for points and α_{4} = β_{4} = 0 for vectors and

$$a=M^Tb$$

The matrix **M** is 4 x 4 and specifies an affine transformation in homogeneous coordinates

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same (M=I)

E. Angel and D. Shriener: Interactive Computer Graphics 6E © Addison-Wesley 2012

