CLAIM AMENDMENTS

Listing of Claims:

1

2

2	TTTL of the statement of the
3	What is claimed, is
4	
5	1. (original) A wartermark signal generating apparatus for generating wartermark signals to be
6	embedded as a digital watermark in real-time contents, the wartermark signal generating
7	apparatus comprising:
8	input means for inputting the real-time contents;
9	an input buffer for storing the real-time contents;
10	generation means for generating, from the real-time contents, wartermark signals to be
11	outputted corresponding to predicted intensities of the real-time contents; and
12	an output buffer for storing the generated wartermark signals to be outputted,
13	wherein the generation means includes:
14	prediction means for predicting intensities of the wartermark signals from prediction of
15	perceptual stimulation values of the real-time contents after a predetermined lapse of time;
16	control means for controlling embedding by use of a message to be embedded as a digital
17	watermark in the real-time contents; and
18	means for generating the wartermark signals to be outputted by use of outputs from the
19	prediction means and outputs from the control means.
20	2. (original) The wartermark signal generating apparatus according to claim 1,
21	wherein the perceptual stimulation values represent amplitude of sound or luminance, and
22	
23	the prediction means generates a predicted inaudible amount or a predicted invisible
24	amount of wartermark signals corresponding to intensities of the real-time contents after the
25	predetermined lapse of time by use of data stored in the input buffer.

Docket No.: JP920020105US1

1	3. (currently amended) The wartermark signal generating apparatus according to <u>claim 1</u>
2	any one of claims 1 and 2, wherein the control means includes means for generating a value to be
3	embedded, which is a binary based on a positive and a negative, by use of a secret key, the
4	message and a pseudo-random number.
5	4. (currently amended) The wartermark signal generating apparatus according to <u>claim 1</u>
5	
6	any one of claims 1 to 3, further comprising output controlling means for controlling outputs
7	from the output buffer by comparing the generated wartermark signals with the real-time
. 8	contents after a time needed to embed the generated wartermark signals has passed.
9	5. (currently amended) The wartermark signal generating apparatus according to claim 1
10	any one of claims 1 to 4,
11	wherein the input means includes means for dividing, and inputting, the real-time
12	contents, and
13	the generation means generates wartermark signals by use of the divided real-time
14	contents.
1.5	
15	6. (original) A wartermark signal generating method for generating wartermark signals to be
16	embedded as a digital watermark in real-time contents, the method comprising the steps of:
17	inputting the real-time contents;
18	storing the real-time contents;
19	generating, from the real-time contents, wartermark signals to be outputted corresponding
20	to predicted intensities of the real-time contents; and
21	storing the generated wartermark signals to be outputted,
22	wherein the generation step includes the steps of:
23	predicting intensities of the wartermark signals from prediction of perceptual stimulation
24	values of the real-time contents after a predetermined lapse of time;
25	controlling embedding by use of a message to be embedded as a digital watermark in the
26	real-time contents; and

Docket No.: JP920020105US1

1	generating the wartermark signals to be outputted by use of outputs from the prediction
2	step and outputs from the control step.
3	7. (original) The wartermark signal generating method according to claim 6,
4	wherein the perceptual stimulation values represent sound or luminance, and
5	the prediction step includes a step of generating a predicted inaudible amount or a
6	predicted invisible amount of wartermark signals corresponding to intensities of the real-time
7	contents after the predetermined lapse of time by use of data stored in the step of storing the
8	real-time contents.
9	8. (currently amended) The wartermark signal generating method according to claim 6 any one of
10	claims 6 and 7.
11	wherein the control step includes a step of generating a value to be embedded, which is a
12	binary based on a positive and a negative, by use of a secret key, the message and a
13	pseudo-random number.
	•
14	9. (currently amended) The wartermark signal generating method according to claim 6 any one of
15	claims 6 to 8, further comprising a step of controlling outputs from the step of storing the
16	generated wartermark signals to be outputted, by comparing the generated wartermark signals
17	with the real-time contents after a time needed to embed the generated wartermark signals has
18	passed.
19	10. (currently amended) The wartermark signal generating method according to claim 6 any one
20	of claims 6 to 9,
21	wherein the input step includes a step of dividing the real-time contents, and
22	the generation step includes a step of generating the wartermark signals by use of the
23	divided real-time contents.
23	divided four diffe contents.

11. (original) A program for causing a wartermark signal generating method to be executed, the

program being computer-executable one for causing a computer to execute the method for

Docket No.: JP920020105US1

24

25

1	generating wartermark signals to be embedded as a digital watermark in real-time contents, the
2	program causing the computer to execute the steps of:
3	storing the real-time contents which have been inputted;
4	generating, from the real-time contents, wartermark signals to be outputted corresponding
5	to predicted intensities of the real-time contents; and
6	storing the generated wartermark signals to be outputted,
7	wherein the generation step includes the steps of:
8	predicting intensities of the wartermark signals from prediction of perceptual stimulation
9	values of the real-time contents after a predetermined lapse of time;
10	controlling embedding by use of a message to be embedded as a digital watermark in the
11	real-time contents; and
12	generating the wartermark signals to be outputted, by use of outputs from the prediction
13	step and outputs from the control step.
14	12. (original) The program according to claim 11,
15	wherein the perceptual stimulation values represent sound or luminance, and
16	the prediction step includes a step of generating a predicted inaudible amount or a
17	predicted invisible amount of wartermark signals corresponding to intensities of the real-time
18	contents after the predetermined lapse of time by use of data stored in the step of storing the
19	real-time contents which have been inputted.
20	13. (currently amended) The program according to claim 11 and one of claims 11 and 12,
21	wherein the real-time contents which have been divided and inputted are used in the
22	generation step, and
23	the control step includes a step of generating a value to be embedded, which is a binary
24	based on a positive and a negative, by use of a secret key, the message and a pseudo-random
25	number.
26	14. (currently amended) The program according to claim 11 any one of claims 11 to 13, further
27	comprising a step for controlling outputs from the step of storing the generated wartermark

1	signals to be outputted, by comparing the generated wartermark signals with the real-time
2	contents after a time needed to embed the generated wartermark signals has passed.
3	15. (original) A computer-readable storage medium, in which a computer-executable program for
4	causing a computer to execute a method for generating wartermark signals to be embedded as a
5	digital watermark in real-time contents is stored,
6	wherein the program causes the computer to execute the steps of:
7	storing the inputted real-time contents;
8	generating, from the real-time contents, wartermark signals to be outputted corresponding
9	to predicted intensities of the real-time contents; and
10	storing the generated wartermark signals to be outputted,
11	wherein the generation step includes the steps of:
12	predicting intensities of the wartermark signals from prediction of perceptual stimulation
13	values of the real-time contents after a predetermined lapse of time;
14	controlling embedding by use of a message to be embedded as a digital watermark in the
15	real-time contents; and
16	generating the wartermark signals to be outputted, by use of outputs from the prediction
17	step and outputs from the control step.
18	16. (original) The storage medium according to claim 15,
19	wherein the perceptual stimulation values represent sound or luminance, and
20	the prediction step includes a step of generating a predicted inaudible amount or a
21	predicted invisible amount of wartermark signals corresponding to intensities of the real-time
22	contents after the predetermined lapse of time, by use of data stored in the step of storing the
23	real-time contents.
24	17. (currently amended) The storage medium according to <u>claim 15</u> any one of claims 15
25	and 16 ,

wherein the real-time contents which have been divided and inputted are used in the

generation step, and

26

27

random s 15 to enerated with the ed.
enerated vith the
enerated vith the
enerated vith the
vith the
ed.
mark in
ls to be
ding the
ction of
;
a digital
rom the
2

Docket No.: JP920020105US1 -8-

- the prediction means generates a predicted inaudible amount or a predicted invisible
- 2 amount of wartermark signals corresponding to intensities of the real-time contents after the
- 3 predetermined lapse of time by use of data stored in the input buffer.
- 4 21. (currently amended) The digital watermark embedding apparatus according to claim 19
- 5 any one of claims 19 and 20, wherein the control means includes means for generating a value to
- 6 be embedded, which is a binary based on a positive and a negative, by use of a secret key, the
- 7 message and a pseudo-random number.
- 8 22. (currently amended) The digital watermark embedding apparatus according to claim 19
- 9 any one of claims 19 to 21, further comprising output controlling means for controlling outputs
- from the output buffer by comparing the generated wartermark signals with the real-time
- 11 contents after a time needed to embed the generated wartermark signals has passed.
- 12 23. (currently amended) The digital watermark embedding apparatus according to claim 19
- 13 any one of claims 19 to 22, wherein the input means includes means for dividing and inputting
- 14 the real-time contents, and
- the generation means generates wartermark signals by use of the divided real-time
- 16 contents.
- 17 24. (currently amended) The digital watermark embedding apparatus according to claim 19 any
- one of claims 19 to 23, wherein the real-time contents are music to be played live.
- 19 25. (currently amended) The digital watermark embedding apparatus according to any one of
- 20 claims 19 to 24, wherein the real-time contents are broadcast contents to be broadcast live.
- 21 26. (currently amended) The digital watermark embedding apparatus according to claim 19
- 22 any one of claims 19 to 25, wherein the digital watermark embedding apparatus is included in an
- 23 external device of a digital television apparatus or in the digital television apparatus.

1	27. (original) A digital television apparatus, comprising:
2	means for receiving a digital broadcast, for decoding the digital broadcast, and for
3	generate the real-time contents;
4	display means for displaying the generated real-time contents; and
5	a digital watermark embedding apparatus for embedding a digital watermark in the
6	decoded real-time contents,
7	wherein the digital watermark embedding apparatus includes:
8	input means for inputting the real-time contents;
9	an input buffer for storing the real-time contents;
10	generation means for generating, from the real-time contents, wartermark signals to be
11,	outputted, corresponding to predicted intensities of the real-time contents;
12	an output buffer for storing the generated wartermark signals to be outputted; and
13	embedding means for receiving the generated wartermark signals to be outputted, and for
14	embedding the generated wartermark signals to be outputted in the real-time contents,
15	wherein the generation means includes:
16	prediction means for predicting intensities of the wartermark signals from prediction of
17	perceptual stimulation values of the real-time contents after a predetermined lapse of time;
18	control means for controlling the embedding by use of a message to be embedded as a
19	digital watermark in the real-time contents; and
20	means for generating the wartermark signals to be outputted, by use of outputs from the
21	prediction means and outputs from the control means.
22	28. (original) The digital television apparatus according to claim 27, wherein the digital
23	watermark embedding apparatus is included in an external device of the digital television
24	apparatus or in the digital television apparatus.
25	29. (currently amended) The digital television apparatus according to <u>claim 27</u> -any one of
26	claims 27 and 28,
27	wherein the input means includes division means, and
28	the control means controls the embedding by use of the message and a secret key.

- 1 30. (new) A computer program product comprising a computer usable medium having computer
- 2 readable program code means embodied therein for causing wartermark signal generation, the
- 3 computer readable program code means in said computer program product comprising computer
- 4 readable program code means for causing a computer to effect the functions of claim 1.
- 5 31. (new) A computer program product comprising a computer usable medium having computer
- 6 readable program code means embodied therein for causing wartermark signal generation, the
- 7 computer readable program code means in said computer program product comprising computer
- 8 readable program code means for causing a computer to effect the functions of claim 19.
- 9 32. (new) A computer program product comprising a computer usable medium having computer
- readable program code means embodied therein for causing functions of digital television, the
- computer readable program code means in said computer program product comprising computer
- readable program code means for causing a computer to effect the functions of claim 27.
- 13 33. (new) An article of manufacture comprising a computer usable medium having computer
- 14 readable program code means embodied therein for causing wartermark signal generation, the
- 15 computer readable program code means in said article of manufacture comprising computer
- readable program code means for causing a computer to effect the steps of claim 6.

Docket No.: JP920020105US1 -11-