HW3

pong_pg model

breakout_dqn model

兩個model差不多 都是CNN以後接fully connected network 因為pong 有做畫面預處理 所以輸入是80*80 activation都用relu

dqn model用來預設q value 而pg model用來預測action distribution 所以最後有加上softmax

Learning Curve

這是上述模型 使用講義上的標準policy gradient做出來的曲線 X軸為episode Y 軸為total reward

A 中山 が c pisouc 1 中山 が total Tewaru

不過後來並沒有使用此模型 所以只有節錄一段開始穩定上升的曲線 每個episode只更新一次model (出現21分時完成一個episode)

這是dqn學習曲線 前面會撞牆的很嚴 重,總是在0分徘 徊,

加入reply memory 後才train的起來 不過後面上升得相 當快, 另外我在訓練時加 入SGD action 會練不起來,這是 我覺得有點奇怪的 地方

而且我的模型沒有出現over estimate q value的情況,在後述與double DQN比較的時候, 結果快一點,也許是episode拉長才看得出差異,不過我的機器來不及練,蠻可惜的

Experimenting with DQN hyperparameters

選用的hyper parameter是target network update frequency

target network update frequency會影響q network的loss 如果更新得太快 會導致q network無法接近target network 所以從前期的loss 震盪就可以看出影響

Average_Loss/Episode

Y軸為loss X軸為episode Tensor-board smooth:0.5 batch size:32

淺藍色 : 1

紅色 : 100

橘色: 1000

深藍色 : 10000

可以看見初期的震蕩由於random initialization所以幅度都滿大 但是在超過1k時, 1000/10000色明顯下降許多, 而1/100還在震盪中

Improvements to DQN (2%)

dueling network

double DQN

Y軸為average max q value

X軸為episode

淺藍色為DQN

橘色為Double DQN

桃紅色為Dueling Network

可以看出Double DQN的確Q value較低

但是下頁中看Total Reward比較時 並沒有明顯優勢

X軸為total reward

Y軸為episode

藍色為DQN

紅色為Duel Network

綠色為Double DQN

Double DQN訓練得比較久

看到上升的趨勢最快的Duel Network

而Double DQN比較慢

猜測是由於Double DQN收斂的比較慢的緣故

而Duel Network收斂的速度 分為兩個網路以後 參數變多 可能收斂的速度變快 r06922115

鄭皓謙