Pracownia z ANALIZY NUMERYCZNEJ

Lista nr 2

Początek zapisów: 13 listopada 2007 r.

Termin realizacji: 10 grudnia 2007 r.

Punktacja: maksymalnie 8 punktów za każde zadanie.

Każde zadanie może być wybrane najwyżej czterokrotnie.

P2.1. Dla naturalnego $n \geq 2$ rozważyć równanie

$$\frac{x + x^{-1}}{x^n + x^{-n}} = \frac{1}{n}.$$

Równanie to można zapisać w równoważnej postaci $p_n(x) = 0$, gdzie p_n jest pewnym wielomianem. Można wykazać, że ma ono dokładnie dwa pierwiastki dodatnie,

$$\alpha_n \in (0,1), \quad \beta_n \in (1,3).$$

Ponadto ciąg $\{\beta_n\}_{n=2}^{\infty}$ jest monotonicznie malejący, tj.

$$\beta_2 > \beta_3 > \ldots > \beta_n > \beta_{n+1} > \ldots$$

- (a) Metodą bisekcji wyznaczyć β_n $(n=2,3,\ldots,20)$ z dokładnością 6 cyfr dziesiętnych. Użyć [1,3] jako przedziału początkowego dla β_2 oraz $[1,\beta_n]$ dla β_{n+1} $(n\geq 2)$. Dla każdego n zapisać liczbę wykonanych iteracji.
- (b) Stosując metodę Newtona do równania $p_n(x) = 0$ wyznaczyć β_n (n = 2, 3, ..., 20) z dokładnością 6 cyfr dziesiętnych. Użyć 3 jako wartości początkowej dla β_2 oraz β_n dla β_{n+1} $(n \geq 2)$. Dla każdego n zapisać liczbę wykonanych iteracji.
- **P2.2.** Zrealizować następujący wariant metody Newtona z nadzorem. Niech f będzie daną funkcją i niech będą dane takie dwa przybliżenia a i b jej pierwiastka, że f(a)f(b) < 0. Jeśli |f(a)| < |f(b)|, połóżmy c := a; w przeciwnym razie c := b. Jeśli jeden krok metody Newtona dla $x_0 := c$ daje wartość x_1 leżącą w przedziale [a, b], przyjmujemy $c := x_1$, w przeciwnym razie kładziemy c := a + (b-a)/2 (co to oznacza?). Następnie przyjmujemy

$$[a, b] := \begin{cases} [a, c], & \text{jeśli} \quad f(a)f(c) < 0, \\ [c, b], & \text{jeśli} \quad f(a)f(c) \ge 0 \end{cases}$$

i powtarzamy wszystkie opisane wyżej czynności dla aktualnych wartości a i b. Proces kończymy wówczas, gdy $|b-a|<\epsilon$ lub gdy $|f(c)|<\delta$, gdzie ϵ i δ są zadanymi z góry małymi liczbami. Proszę pamiętać o ograniczeniu liczby iteracji, żeby wykluczyć bardzo długie obliczenia!

P2.3. *Metoda Steffensena* jest następującą metodą iteracyjną rozwiązywania równania nieliniowego f(x) = 0:

$$x_{k+1} := x_k - f(x_k)/g(x_k), \qquad k = 0, 1, \dots,$$

gdzie

$$g(x) := [f(x + f(x)) - f(x)]/f(x).$$

Przy pewnych założeniach jest ona zbieżna kwadratowo.

Zaprogramować powyższą metodę i wykonać obliczenia m.in. dla $f(x) = x - \operatorname{tg} x$ (zera leżące w pobliżu 4.5 i 7.7) oraz $f(x) = x^3 - 5x^2 + 3x - 7$ i $x_0 = 5$.

P2.4. Załóżmy, że funkcja $f \in C[a,b]$ jest rosnąca w przedziale [a,m] oraz malejąca w przedziale [m,b], gdzie $a \le m \le b$. Inaczej mówiąc, f osiąga w punkcie m **jedyne maksimum** w przedziale [a,b]. Niech będzie $a_1 := (2a+b)/3$, $b_1 := (a+2b)/3$. Zauważmy, że jeśli $f(a_1) < f(b_1)$, to $m \in [a_1,b]$, a w przeciwnym wypadku $m \in [a,b_1]$. Wykorzystać tę obserwację do zaproponowania metody iteracyjnej pozwalającej wyznaczyć ciąg przedziałów $\{I_k\}$ o własności

$$m \in I_{k+1} \subset I_k \subset I_0 := [a, b], \qquad |I_k| \to 0, \text{ gdy } k \to \infty.$$

Czy w podobny sposób można szukać minimum funkcji? Przeprowadzić eksperymenty obliczeniowe dla odpowiednio dobranych f i [a, b].

P2.5. Metoda Newtona wyznacza pierwiastek α równania f(x) = 0 jako granicę ciągu (x_k) , gdzie x_0 jest dane, a pozostałe wyrazy oblicza się według wzoru

(1)
$$x_{k+1} := x_k - f(x_k)/f'(x_k) \qquad (k = 0, 1, \ldots).$$

Następujące dwa warianty metody Newtona mają znaczenie zwłaszcza wówczas, gdy obliczanie wartości pochodnej f' wiąże się ze znacznym kosztem.

- (a) We wzorze (1) zastępujemy $f'(x_k)$ przez $f'(x_0)$ (w każdym kroku).
- (b) Obliczamy pochodną w co drugim kroku:

$$x_{2k+1} := x_{2k} - f(x_{2k})/f'(x_{2k}),$$

 $x_{2k+2} := x_{2k+1} - f(x_{2k+1})/f'(x_{2k})$ $(k = 0, 1, ...).$

Porównać (również pod względem szybkości zbieżności) metodę Newtona (1) oraz warianty (a) i (b) na wybranych przykładach prostych funkcji o znanych pierwiastkach.

P2.6. Zrealizować następujący wariant metody siecznych. Niech f będzie daną funkcją i niech a i b będą takie, że f(a)f(b) < 0. Połóżmy c := a. W kolejnych krokach metody niech b oznacza ostatnie przybliżenie zera α funkcji f, a – przedostatnie przybliżenie, a c – najbardziej aktualne przybliżenie (tj. otrzymane najpóźniej) o własności

$$(2) f(c)f(b) < 0.$$

W każdym kroku aktualizujemy wartości a,b,c zastępując je odpowiednio wartościami a',b',c'. Jeśli f(a)f(b)<0, to obliczamy b' stosując jeden krok metody siecznych dla przybliżeń a i b (symbolicznie b':=MS(a,b)). Jeśli f(a)f(b)>0, to sprawdzamy najpierw, czy punkt MS(a,b) będzie leżał w przedziale o końcach b i c. Jeśli TAK, to kładziemy b':=MS(a,b); w przeciwnym razie przyjmujemy b':=(b+c)/2. Wreszcie definiujemy a':=b, potem c':=c albo c':=a', aby zachodziła własność analogiczna do własności (2), a następnie powtarzamy wszystkie wyżej opisane czynności dla aktualnych wartości a,b i c. Proces kończymy wówczas, gdy $|b-a|<\epsilon$ i/lub gdy $|f(b)|<\delta$, gdzie ϵ i δ są zadanymi z góry małymi liczbami. Proszę pamiętać o ograniczeniu liczby iteracji, żeby wykluczyć bardzo długie obliczenia!

P2.7. Na podstawie (udokumentowanych) obliczeń dla wybranych równań nieliniowych postaci f(x) = 0 wyznaczyć w przybliżeniu (inaczej mówiąc – odgadnąć) rząd każdej z poniższych metod iteracyjnych:

(3)
$$x_{k+1} := x_k - \frac{f(x_k)}{\sqrt{[f'(x_k)]^2 - f(x_k)f''(x_k)}},$$

(4)
$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)} - \frac{1}{2} \frac{f''(x_k)}{f'(x_k)} \left[\frac{f(x_k)}{f'(x_k)} \right]^2 \qquad (\textbf{metoda Olvera}),$$

(5)
$$x_{k+1} := x_k - 1 / \left[\frac{f'(x_k)}{f(x_k)} - \frac{1}{2} \cdot \frac{f''(x_k)}{f'(x_k)} \right] \qquad (\textbf{metoda Halleya}).$$

P2.8. Metodę Newtona można stosować także do znajdowania rozwiązań równania nieliniowego f(z)=0 w dziedzinie liczb zespolonych. Np. dla $f(z):=z^4+1$ i $z_0:=0.5+0.5i$ otrzymujemy $z_{10}=0.7071067812+0.7071067812i$ – czyli bardzo dobre przybliżenie liczby $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$, będącej jednym z rozwiązań równania $z^4+1=0$.

Niech c_{n+1} oznacza kolor czarny. Niech $\zeta_1, \zeta_2, \ldots, \zeta_n$ będą rozwiązaniami równania $z^n + 1 = 0$ w dziedzinie liczb zespolonych. Przypiszmy każdemu z tych rozwiązań inny, ale różny od czarnego, kolor; powiedźmy odpowiednio c_1, c_2, \ldots, c_n . Niech M będzie liczbą parzystą, a W_M następującym zbiorem punktów płaszczyzny zespolonej:

$$W_M := \left\{ -1 + 2\frac{k}{M} + \left(-1 + 2\frac{l}{M} \right) i : k, l = 0, 1 \dots, M \right\}.$$

Dla wybranych n i M (np. n=3,4,5,6; M=400,800), wykonaj rysunek, na którym każdy z punktów w zbioru W_M zostanie narysowany kolorem c(w) ustalonym na podstawie poniższej procedury:

(a)
$$z_0 := w;$$
 $z_{k+1} := z_k - \frac{f(z_k)}{f'(z_k)}$ $(k = 0, 1, ..., N-1; \text{ np. } N = 10, 20, 35);$

(b) jeśli istnieje takie k, że z_N jest blisko liczby ζ_k (jak należy to rozumieć w wypadku liczb zespolonych?), to przyjmujemy $c(w) := c_k$, w przeciwnym razie $c(w) := c_{n+1}$.

Jaki charakter ma otrzymamy w ten sposób obraz? Spróbuj prze
analizować zaobserwowane zjawisko i wyciągnąć wnioski. Następnie prze
prowadź podobny eksperyment dla $metody\ Halleya,$ która wyraża się wzorem

$$z_{k+1} := z_k - 1 / \left[\frac{f'(z_k)}{f(z_k)} - \frac{1}{2} \cdot \frac{f''(z_k)}{f'(z_k)} \right].$$

Czy metoda ta zachowuje się podobnie?

P2.9. Niech α będzie rozwiązaniem równania nieliniowego f(x) = 0. Załóżmy, że dysponujemy metodami iteracyjnymi postaci

$$x_{n+1} := F(x_n), \qquad x_{n+1} := G(x_n),$$

gdzie F i G są funkcjami spełniającymi warunek $F(\alpha)=G(\alpha)=\alpha$ (np. w wypadku metody Newtona mamy F(x)=x-f(x)/f'(x)). Załóżmy, że metody te są rzędu p i q, odpowiednio. Można wykazać, że metody postaci

$$x_{n+1} := F(G(x_n)), \qquad x_{n+1} := G(F(x_n))$$

są rzędu $p \cdot q$. Wykorzystaj powyższą obserwację do zaproponowania metod iteracyjnych wysokiego rzędu rozwiązywania równań nieliniowych. Przeprowadź odpowiednie eksperyment numeryczne i wyciągnij wnioski.

P2.10. Trudne zadanie dla dwuosobowego zespołu. Rozważmy następującą metodę iteracyjną wyznaczania pierwiastka α równania nieliniowego f(x) = 0:

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)} + h(x_k)$$
 $(k = 0, 1, ...),$

gdzie x_0 jest dane, a h jest pewną funkcją. Oczywiście przy $h(x) \equiv 0$ mamy do czynienia z klasyczną metodą Newtona, o której wiadomo, że jest zbieżna kwadratowo, jeśli α jest pierwiastkiem pojedynczym. Zbadać możliwość takiego doboru funkcji h, aby wykładnik zbieżności powyższej metody wynosił więcej niż 2, np. 3, 4 albo 5. Wyniki teoretyczne poprzeć odpowiednimi testami numerycznymi. Czy w podobny sposób można zmodyfikować inne metody, np. metodę Halleya (patrz zadanie **P2.7.**)?

WSKAZÓWKI: 1^o Jakie warunki musi spełniać funkcja h? 2^o Zapoznaj się z rozdziałem 8.4. książki A. Ralstona, $Wstęp\ do\ analizy\ numerycznej$, PWN, Warszawa 1971.

P2.11. Zadanie dla dwuosobowego zespołu Ważnym z punktu widzenia zastosowań jest zadanie obliczania wszystkich pierwiastków wielomianu $p_n \in \Pi_n$ o współczynnikach rzeczywistych, czyli takich liczb zespolonych z_1, z_2, \ldots, z_n dla których zachodzi

$$p_n(z_i) = 0$$
 $(i = 1, 2, ..., n),$

gdzie

$$p_n(z) := \sum_{k=0}^n a_k z^k$$
 $(a_k \in \mathbb{R}, \ k = 0, 1, \dots, n; \ a_n \neq 0).$

Przybliżone wartości pierwiastków z_1, z_2, \ldots, z_n można wyznaczyć stosując np. iteracyjną metodę Bairstowa, której zwięzły opis został podany m.in. w [1, str. 107], [2, str. 112], [3, str. 384] i [4, str. 293]. Wykonując odpowiednie testy numeryczne, sprawdź pod względem dokładności, skuteczności i stabilności powyższą metodę.

Literatura

- [1] W. Cheney, D. Kincaid, Analiza numeryczna, WNT, 2006.
- [2] M. Dryja, J. i M. Jankowscy, Przegląd metod i algorytmów numerycznych, cz. 2, WNT, 1988.
- [3] A. Ralston, Wstęp do analizy numerycznej, PWN, 1971.
- [4] J. Stoer, R. Bulirsch, Wstęp do analizy numerycznej, PWN, 1987.
- **P2.12.** Zadanie dla dwuosobowego zespołu W wielu zastosowaniach konieczne jest wyznaczenie wszystkich pierwiastków wielomianu $p_n \in \Pi_n$ o współczynnikach zespolonych, czyli takich liczb zespolonych z_1, z_2, \ldots, z_n dla których zachodzi

$$p_n(z_i) = 0$$
 $(i = 1, 2, \dots, n),$

gdzie

$$p_n(z) := \sum_{k=0}^n a_k z^k$$
 $(a_k \in \mathbb{C}, \ k = 0, 1, \dots, n; \ a_n \neq 0).$

Przybliżone wartości pierwiastków z_1, z_2, \ldots, z_n można wyznaczyć stosując np. iteracyjną metodę Laguerre'a, której zwięzły opis został podany m.in. w [1, str. 112], [2, str. 108] i [3, str. 376] (patrz zadanie **P2.11**). Wykonując odpowiednie testy numeryczne, sprawdź pod względem dokładności, skuteczności i stabilności powyższą metodę.

P2.13. Wielomian $L_n \in \Pi_n$, spełniający dla danych parami różnych liczb t_0, t_1, \ldots, t_n i liczb y_0, y_1, \ldots, y_n warunki $L_n(t_i) = y_i \ (i = 0, 1, \ldots, n)$, można zapisać w **postaci Lagrange'a**

(6)
$$L_n(t) = \sum_{i=0}^n \omega_i y_i \prod_{j=0, j \neq i}^n (t - t_j),$$

gdzie

$$\omega_i := 1 / \prod_{j=0, j \neq i}^n (t_i - t_j) \qquad (i = 0, 1, \dots, n).$$

Na przykładach, m. in. dla y_i określonych jako wartości funkcji $f_1(x) = (1 + 25x^2)^{-1}$, $f_2(x) =$ arctg x i $f_3(x) = \max(0, 1-4x)$, porównać algorytmy obliczania wartości wielomianu L_n , stosujące

- (a) postać (6);
- (b) postać barycentryczną tego wielomianu:

$$L_n(t) = \begin{cases} \sum_{i=0}^n \frac{\omega_i}{t - t_i} y_i / \sum_{i=0}^n \frac{\omega_i}{t - t_i} & (t \notin \{t_0, t_1, \dots, t_n\}, \\ y_k & (t = t_k, 0 \le k \le n). \end{cases}$$

- **P2.14.** Zrealizować algorytm, który dla danej liczby naturalnej N i danych liczb rzeczywistych: $x, \varepsilon > 0, x_0, x_1 \dots, x_N \ (x_i \neq x_j \ \text{dla} \ i \neq j), \ y_0, y_1, \dots, y_N \ \text{znajduje takie najmniejsze} \ n \ (n < N), że <math>|p_n(x) p_{n-1}(x)| < \varepsilon$, gdzie $p_m \in \Pi_m \ (0 \leq m \leq N)$ jest wielomianem spełniającym warunki $p_m(x_k) = y_k \ (k = 0, 1, \dots, m)$.
- **P2.15.** Zadanie dla dwuosobowego zespołu Jak wiadomo, interpolacja wielomianowa znajduje zastosowanie także w grafice komputerowej. Z pewnych względów (jakich?) osoby zajmujące się tą tematyką preferują tzw. postać Béziera wielomianu, tzn. wielomian $w_n \in \Pi_n$ zapisują w postaci

$$w_n(x) = \sum_{k=0}^n c_k B_k^n(x),$$

gdzie B_k^n jest k-tym wielomianem Bernsteina stopnia n,

$$B_k^n(x) := \binom{n}{k} x^k (1-x)^{n-k} \qquad (k = 0, 1, \dots, n; \ n \in \mathbb{N})$$

(patrz np. [1, §9], [2, §7.2.3], [3, §1]).

Niech dane będą liczby $0 \le x_0 < x_1 < \ldots < x_n \le 1$ oraz funkcja f określona w punktach x_i $(i = 0, 1, \ldots, n)$. Niech $L_n \in \Pi_n$ będzie wielomianem interpolacyjnym dla powyższych danych zapisanym w postaci Newtona,

$$L_n(x_i) = f(x_i)$$
 $(i = 0, 1, ..., n),$ $L_n(x) = \sum_{k=0}^n b_k p_k(x),$

gdzie $b_k := f[x_0, x_1, \ldots, x_k]$ $(k = 0, 1, \ldots, n)$ oraz $p_0(x) := 1$, $p_k(x) := (x - x_{k-1})p_{k-1}(x)$ $(k = 1, 2, \ldots, n)$. Opracuj **efektywny algorytm** zamiany postaci Newtona wielomianu interpolacyjnego L_n na jego postać Béziera, tj. znajdowania takich współczynników c_k $(k = 0, 1, \ldots, n)$ dla których zachodzi

$$\sum_{k=0}^{n} c_k B_k^n(x) = \sum_{k=0}^{n} b_k p_k(x).$$

Wykonując odpowiednie testy numeryczne, sprawdź zaproponowaną metodę pod względem jej dokładności, skuteczności i stabilności. Wyciągnij wnioski.

Literatura

- [1] J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, R.L. Phillips, Wprowadzenie do grafiki komputerowej, WNT, 2001.
- [2] M. Jankowski, Elementy grafiki komputerowej, WNT, 1990.
- [3] P. Kiciak, Podstawy modelowania krzywych i powierzchni. Zastosowania w grafice komputerowej, WNT, 2005.
- **P2.16.** Wielomian interpolacyjny Lagrange'a $L_n \in \Pi_n$, przyjmujący w węzłach $t_0, t_1, \ldots, t_n \in [-1, 1]$ takie same wartości, co funkcja f, można wyrazić wzorem

(7)
$$L_n(t) = \sum_{i=0}^n f(t_i) \lambda_i(t), \quad \text{gdzie} \quad \lambda_i(t) = \prod_{j=0, \ j \neq i}^n \frac{t - t_j}{t_i - t_j} \quad (-1 \le t \le 1).$$

Wskaźnik uwarunkowania zadania obliczania wartości wielomianu (7) określamy wzorem

$$K_n := \max_{-1 \le t \le 1} \sum_{i=0}^n |\lambda_i(t)|.$$

Obliczyć wartość K_n dla

- (a) węzłów równoodległych $t_i := \frac{2i}{n} 1$ lub $t_i := \frac{2i+1}{n+1} 1$ $(i = 0, 1, \dots, n),$
- (b) węzłów będących zerami (n+1)-go wielomianu Czebyszewa,
- (c) losowo wybranych węzłów.

Przedstawić wnioski, w szczególności dotyczące związku wartości wskaźnika z dokładnością przybliżenia funkcji f za pomocą wielomianu L_n (wykresy funkcji błędu $e_n := f - L_n$ mile widziane); w roli funkcji testowych można m.in. wziąć $f_1(x) = (1 + 25x^2)^{-1}$, $f_2(x) = \arctan x$ i $f_3(x) = \max(0, 1 - 4x)$.

P2.17. Skonstruować *naturalną funkcję sklejaną III stopnia* s, interpolującą daną funkcję $f \le n+1$ parami różnych punktach przedziału [a, b]. Obliczyć błąd

$$E_N^{(n)} := \max_{x \in D_N} |f(x) - s(x)|,$$

gdzie D_N jest zbiorem N równoodległych punktów przedziału [a, b]. Wykonać obliczenia dla kilku par wartości n i N oraz dla funkcji (a) $f(x) = \sin x$, $0 \le x \le \pi$; (b) $f(x) = e^x$, $0 \le x \le 4$; (c) $f(x) = (x^2 + 1)^{-1}$, $x \in [-5, 5]$; (d) $f(x) = x/(x^2 + \frac{1}{4})$, $x \in [-\pi, \pi]$.

- **P2.18.** Dla danej krzywej parametrycznej $x=x(t),\ y=y(t)\ (a\leq t\leq b)$ możemy skonstruować następującą krzywą sklejaną interpolacyjną. Dla wybranych: $n\in\mathbb{N}$ oraz $a=t_0< t_1<\ldots< t_n=b$ obliczamy $x_i=x(t_i),\ y_i=y(t_i)$ dla $i=0,1,\ldots,n$, a następnie konstruujemy naturalne funkcje sklejane interpolujące III stopnia $s_x(t),\ s_y(t)$. Poszukiwana krzywa sklejana ma przedstawienie parametryczne $x=s_x(t),\ y=s_y(t)\ (a\leq t\leq b)$. Wykonać obliczenia m.in. dla krzywej zwanej serpentynq: $x=\frac{1}{2}$ ctg $t,\ y=\sin 2t\ (-\frac{1}{2}\pi\leq t\leq \frac{1}{2}\pi)$.
- **P2.19.** Skonstruować *naturalną funkcję sklejaną III stopnia* s, interpolującą daną funkcję $f \le n+1$ równoodległych punktach przedziału [a, b]. Obliczyć błąd

$$\hat{E}_N^{(n)} := \max_{x \in D_N} |f(x) - s(x)|,$$

gdzie D_N jest zbiorem N równoodległych punktów przedziału [a, b]. Wykonać obliczenia dla kilku par wartości n i N oraz m.in. dla funkcji (a) $f(x) = \sin x$, $0 \le x \le \pi$; (b) $f(x) = e^x$, $0 \le x \le 4$; (c) $f(x) = (x^2 + 1)^{-1}$, $x \in [-5, 5]$; (d) $f(x) = x/(x^2 + \frac{1}{4})$, $x \in [-\pi, \pi]$.

P2.20. Obliczyć *przybliżoną wartość całki* $\int_a^b f(x) dx$ przy założeniu, że znane są tylko wartości f w zadanych z góry punktach $a = t_0 < t_1 < \cdots < t_n = b$. Wykonać obliczenia kontrolne m. in. dla funkcji podcałkowych:

$$f_1(x) = \frac{1}{x^4 + x^2 + 0.9}, \quad f_2(x) = \frac{4}{\pi(1 + x^2)}, \quad f_3(x) = \frac{2\pi^2(1 + x)}{(1 - x)(3 + x)}\sin(\pi(1 + x)).$$

- **P2.21.** Dla danej zamkniętej krzywej parametrycznej x = x(t), y = y(t) ($a \le t \le b$; x(a) = x(b), y(a) = y(b)) skonstruować następującą **okresową krzywą sklejaną interpolacyjną**. Dla wybranych: $n \in \mathbb{N}$ oraz $a = t_0 < t_1 < \ldots < t_n = b$ obliczamy $x_i = x(t_i)$, $y_i = y(t_i)$ dla $i = 0, 1, \ldots, n$, a następnie konstruujemy okresowe funkcje sklejane interpolujące III stopnia $\tilde{s}_x(t)$, $\tilde{s}_y(t)$. Poszukiwana krzywa sklejana ma przedstawienie parametryczne $x = \tilde{s}_x(t)$, $y = \tilde{s}_y(t)$ ($a \le t \le b$). Wykonać obliczenia m.in. dla okręgu, elipsy i danych z tabeli 1.
- **P2.22.** Na papierze milimetrowym narysować (jednym pociągnięciem!) kontur ulubionego zwierzątka. Wybrać n (np. 10 lub 20) punktów na otrzymanej linii i ponumerować je:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n).$$

Odtworzyć w przybliżeniu zadaną linię, stosując jeden lub oba z następujących pomysłów:

- (a) podzielić ciąg (8) na takie podciągi, żeby każdy z nich zawierał punkty leżące na wykresie pewnej funkcji; uzyskać przybliżoną postać linii wzorcowej łącząc wykresy przybliżeń tych funkcji;
- (b) potraktować linię jako krzywą parametryczną [x(t), y(t)], gdzie t jest parametrem przebiegającym przedział [1, n], tak więc $x_i = x(i)$, $y_i = y(i)$ dla i = 1, 2, ..., n; zrekonstruować funkcje x(t), y(t) stosując interpolację.

```
(3.2, 6.7)
(3.7, 6.4)
                         (2.7, 6.5)
                                      (2.1, 6.4)
                                                  (1.7, 6.0)
                                                               (1.1, 5.9)
                                                                            (0.7, 5.7)
                                                                                         (0.4, 5.7)
(0.4, 5.4)
            (0.5, 5.0)
                         (0.3, 4.6)
                                     (0.6, 4.3)
                                                  (0.6, 4.0)
                                                               (0.7, 3.7)
                                                                            (0.6, 3.2)
                                                                                         (0.8, 2.9)
(0.8, 2.6)
            (0.6, 2.4)
                         (0.8, 2.3)
                                      (0.9, 2.4)
                                                  (1.1, 2.2)
                                                               (1.4, 2.1)
                                                                            (1.8, 2.0)
                                                                                         (1.7, 1.8)
(1.9, 1.4)
            (2.2, 1.5)
                         (2.1, 1.8)
                                      (2.7, 1.6)
                                                  (2.6, 1.4)
                                                                (3.3, 1.3)
                                                                            (3.5, 0.9)
                                                                                         (3.7, 0.6)
(3.9, 0.8)
           (4.2, 0.7)
                         (4.3, 0.4)
                                      (4.5, 0.5)
                                                  (4.7, 0.7)
                                                                (5.0, 0.6)
                                                                            (5.5, 0.8)
                                                                                         (5.9, 0.6)
                                                   (6.8, 1.7)
(6.2, 0.4)
            (6.4, 0.3)
                         (6.3, 0.7)
                                      (6.5, 1.2)
                                                                (7.2, 2.0)
                                                                            (7.1, 2.2)
                                                                                         (7.2, 2.4)
(6.8, 2.8)
            (6.7, 3.2)
                         (6.8, 3.6)
                                      (6.4, 3.9)
                                                   (6.2, 4.2)
                                                                (6.9, 4.5)
                                                                            (6.8, 5.1)
                                                                                         (6.6, 5.6)
(6.5, 6.0)
            (6.1, 6.2)
                         (5.5, 6.1)
                                      (5.0, 6.2)
                                                   (4.6, 6.2)
                                                               (4.1, 6.3)
                                                                            (3.7, 6.0)
                                                                                         (3.4, 6.1)
(3.2, 6.5)
            (3.7, 6.4)
```

TABELA 1. Tajemnicza krzywa, zawarta w kwadracie $[0, 7.5] \times [0, 7.5]$

Rozważyć wariant zadania, w którym punkty (8) są podawane w pliku tekstowym. Sprawdzić działanie programu dla danych z tabeli 1.

P2.23. Niech będą dane: liczba naturalna n, węzły t_1, t_2, \ldots, t_n $(a = t_1 < t_2 < \ldots < t_n = b)$ oraz funkcja f określona w przedziale [a, b]. Punkty

$$\tau_0 := t_1, \quad \tau_i := \frac{1}{2}(t_i + t_{i+1}) \quad (1 \le i \le n-1), \quad \tau_n := t_n$$

nazywamy *przegubami*. Dowodzi się, że istnieje dokładnie jedna taka *interpolująca funkcja* sklejana DRUGIEGO stopnia $\sigma \in C^1[a, b]$, że 1° w każdym podprzedziale $[t_i, t_{i+1}]$ jest $\sigma \equiv q_i \in \Pi_2$ $(1 \le i \le n-1)$ oraz że 2° $\sigma(\tau_k) = f(\tau_k)$ (k = 0, 1, ..., n). Dla $x \in [t_i, t_{i+1}]$ $(1 \le i \le n-1)$ funkcja σ wyraża się wzorem

$$\sigma(x) = f(\tau_i) + \frac{1}{2}(m_{i+1} + m_i)(x - \tau_i) + \frac{1}{2h_i}(m_{i+1} - m_i)(x - \tau_i)^2,$$

gdzie $h_i:=t_{i+1}-t_i$, a wielkości $m_i:=\sigma'(t_i)$ $(i=1,2,\ldots,n)$ stanowią rozwiązanie układu równań

$$h_{i-1}m_{i-1} + 3(h_{i-1} + h_i)m_i + h_i m_{i+1} = 8(f(\tau_i) - f(\tau_{i-1}))$$
 $(1 \le i \le n)$

(Przyjmujemy, że $h_0:=h_n:=m_0:=m_{n+1}:=0$). Skonstruować funkcję sklejaną σ dla kilku wartości n oraz m.in. dla funkcji (a) $f(x)=\sin x,\ 0\leq x\leq \pi$; (b) $f(x)=e^x,\ 0\leq x\leq 4$; (c) $f(x)=(x^2+1)^{-1},\ x\in[-5,5]$; (d) $f(x)=x/(x^2+\frac{1}{4}),\ x\in[-\pi,\pi]$. W każdym wypadku obliczyć błąd

$$\Delta_N^{(n)} := \max_{x \in D_N} |f(x) - \sigma(x)|,$$

gdzie D_N jest zbiorem N (np. 101) równoodległych (lub wybranych losowo) punktów przedziału [a, b].

P2.24. Dla danej liczby naturalnej n, danych węzłów x_0, x_1, \ldots, x_n $(a = x_0 < x_1 < \ldots < x_n = b)$, danej liczby rzeczywistej τ i danej funkcji f istnieje dokładnie jedna taka funkcja S_{τ} , zwana $naprężoną funkcją sklejaną interpolacyjną, że <math>1^o$ $S_{\tau} \in C^2[a,b]$, 2^o $S_{\tau}(x_k) = f(x_k)$ $(k = 0,1,\ldots,n)$; 3^o w każdym z podprzedziałów (x_k, x_{k+1}) $(k = 0,1,\ldots,n-1)$ funkcja S_{τ} spełnia warunek $S_{\tau}^{(4)}(x) - \tau^2 S_{\tau}''(x) = 0$; 4^o $S_{\tau}''(a) = S_{\tau}''(b) = 0$. Można wykazać, że dla $x \in [x_k, x_{k+1}]$ $(0 \le k \le n-1)$ funkcja S_{τ} wyraża się wzorem

$$S_{\tau}(x) = \left\{ M_k \sinh[\tau(x_{k+1} - x)] + M_{k+1} \sinh[\tau(x - x_k)] \right\} / \sinh(\tau h_k)$$

+ $\left[f(x_k) - M_k \right] (x_{k+1} - x) / h_k + \left[f(x_{k+1}) - M_{k+1} \right] (x - x_k) / h_k,$

gdzie $h_k:=x_{k+1}-x_k$, a wartości $M_i:=S_{\tau}{''}(x_i)/\tau^2$ $(i=0,\,1,\,\dots,n)$ otrzymuje się jako rozwiązanie układu równań

$$\alpha_{i-1}M_{i-1} + (\beta_{i-1} + \beta_i)M_i + \alpha_i M_{i+1} = \gamma_i - \gamma_{i-1}$$
 $(1 \le i \le n-1; M_0 = M_n = 0),$

gdzie z kolei

$$\alpha_i := 1/h_i - \tau/\sinh(\tau h_i), \quad \beta_i := \tau \cosh(\tau h_i)/\sinh(\tau h_i) - 1/h_i, \quad \gamma_i := f[x_i, x_{i+1}].$$

Zrealizować powyższy algorytm i sprawdzić go dla wielu wartości parametru τ (im większe τ , tym krzywa $y=S_{\tau}$ jest mocniej naprężona; jeśli $\tau\approx 0$, krzywa ta przypomina wykres naturalnej funkcji sklejanej interpolującej).

LITERATURA: D. Kincaid, W. Cheney, Analiza numeryczna, WNT, 2005, s. 333–335.