Pierwsze pochodne

Dwupunktowe różnice zwykłe
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$
 $O(h)$

Trzypunktowe różnice zwykłe
$$f'(x_i) = \frac{-3f(x_i) + 4f(x_{i+1}) - f(x_{i+2})}{2h}$$
 $O(h^2)$

Dwupunktowe różnice wsteczne
$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$$
 $O(h)$

Trzypunktowe różnice wsteczne
$$f'(x_i) = \frac{f(x_{i-1}) - 4f(x_{i-1}) + f(x_i)}{2h}$$
 $O(h^2)$

Dwupunktowe różnice centralne
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$
 $O(h^2)$

Czteropunktowe różnice centralne
$$f'(x_i) = \frac{f(x_{i-1}) - 8f(x_{i-1}) + 8f(x_{i+1}) - f(x_{i+2})}{12h}$$
 $O(h^4)$

Drugie pochodne

Trzypunktowe różnice zwykłe
$$f''(x_i) = \frac{f(x_i) - 2f(x_{i+1}) + f(x_{i+2})}{h^2}$$
 $O(h)$

Trzypunktowe różnice wsteczne
$$f''(x_i) = \frac{f(x_{i-2}) - 2f(x_{i-1}) + f(x_i)}{h^2}$$
 $O(h)$

Trzypunktowe różnice centralne
$$f''(x_i) = \frac{f(x_{i-1}) - 2f(x_i) + f(x_{i+1})}{h^2}$$
 $O(h^2)$

Pięciopunktowe różnice centralne
$$f''(x_i) = \frac{-f(x_{i-1}) + 16f(x_{i-1}) - 30f(x_i) + 16f(x_{i+1}) - f(x_{i+2})}{12h^2} O(h^4)$$

Wyprowadzone wcześniej wzory różniczkowania numerycznego funkcji f(x) w punkcie $x = x_0$ mają tę wadę, że wykorzystuje się w nich jedynie wartości funkcji f(x) dla argumentów leżących z jednej strony x_0 . Wady tej nie posiadają wzory wykorzystujące wartości funkcji f(x) po prawej i po lewej stronie punktu $x = x_0$. Są to wzory symetryczne, oparte na różnicach centralnych.

