CLAIMS

1	1. A method of forming a virtual network, comprising:
2	
3	providing each of a plurality of mobile objects with a transceiver;
4	
5	transmitting a cellular/radio signals from a source;
6	
7	moving at least a first of the mobile objects into a location where the transceiver of the
8	first mobile object does not receive the signal directly from the source;
9	
10	locating a second of the mobile objects in a position where the transceiver of the second
11	mobile object receives the signal directly from the source; and
12	
13	using the transceiver on the second mobile object to receive the signal directly from the
14	source and to transmit the signal to the transceiver of the first mobile object.
1	2. A method according to Claim 1, further comprising the step of providing each of
2	the mobile objects with a sensor to determine when the transceivers of others of the
3	mobile objects are not able to receive the cellular/radio signals directly from the source;
4	and wherein when the sensor of one of the mobile objects determines that the transceiver
5	of another of the mobile objects is not able to receive the signals directly from the
6	source, the sensor of said one of the mobile objects activates the transceiver of said one
7	of the mobile objects to transmit the signal to the transceiver of the other of the mobile
8	object.
1	3 A method according to Claim 1, wherein the mobile objects are cars or people

- 4. A method according to Claim 1, further including the steps of verifying whether the 1
- 2 signal is an emergency signal, and giving a preferred treatment for the emergency signal.

2

4

6

8

11

- 5. A method according to Claim 4, wherein the step of giving a preferred treatment for
- 2 the emergency signal includes the steps of assigning a most available frequency band for
- 3 the emergency signal, and stopping transmitting other signal through this band.
- 1 6. A method according to Claim 1, wherein the location where the transceiver on
- 2 the first mobile object does not have access to the signal directly from the source is one
- 3 or more of the following: in a tunnel, under a bridge, or in a subway.
- 7. A method according to Claim 1, further comprising the step of determining whether
- 2 the signal has reached the final user before sending the signal further.
- 1 8. A virtual network for transmitting cellular/radio signal, comprising:
- 3 a plurality of transceivers;
- 5 a plurality of mobile objects, each of the mobile objects having one of the transceivers;
- 7 a source for transmitting cellular/radio signals;
- 9 wherein a first of the mobile objects is in a location where the transceiver of the first
- mobile object does not have access to the signals directly from the source;
- wherein a second of the mobile objects is in a location where the transceiver of the
- second mobile object receives the signals directly from the source; and the transceiver of
- the second mobile object transmits the signals to the transceiver of the first mobile
- 15 object.
- 1 9. A network according to Claim 8, further comprising a plurality of sensors, and
- 2 wherein each of the mobile objects is provided with one of the sensors to determine

- 3 when the transceivers of others of the mobile objects are not able to receive the
- 4 cellular/radio signals directly from the source; and wherein when the sensor of one of the
- 5 mobile objects determines that the transceiver of another of the mobile objects is not
- 6 able to receive the signals directly from the source, the sensor of said one of the mobile
- 7 objects activates the transceiver of said one of the mobile objects to transmit the signal to
- 8 the transceiver of the other of the mobile object.
- 1 10. A network according to Claim 8, wherein the mobile objects are cars or people.
- 1 11. A network according to Claim 8, wherein the first mobile object is in one of the
- 2 following locations: in a tunnel, under a bridge, or in a subway.
- 1 12. A network according to Claim 8, wherein a chip can be embedded in EZ-pass for
- 2 transmitting cellular signals between cars.
- 1 13. A network according to Claim 8, wherein a chip can be added to cellular telephones
- 2 to transmit signals between cellular telephones.
- 1 14. A network according to Claim 8, wherein a local network of transmission devices is
- 2 used to count the density of cars by defining the short distances.
- 1 15. A network according to Claim 14, wherein the transmission devices can be either
- 2 chips in cellular telephones or in EZ passes.
- 1 16. A program storage device readable by machine, tangibly embodying a program of
- 2 instructions executable by the machine to perform method steps for using a virtual
- 3 network, wherein the virtual network comprises a plurality of transceivers; a plurality of
- 4 mobile objects, each of the mobile objects having one of the transceivers; and a source
- 5 for transmitting cellular/radio signals; wherein a first of the mobile objects is in a
- 6 location where the transceiver of the first mobile object does not have access to the

7	signals directly from the source; and wherein a second of the mobile objects is in a
8	location where the transceiver of the second mobile object receives the signals directly
9	from the source; said method steps comprising:
10	
11	transmitting a cellular/radio signals from the source;
12	
13	using the transceiver on the second mobile object to receive the signal directly from the
14	source and to transmit the signal to the transceiver of the first mobile object.
1	17. A program storage device according to Claim 16, wherein the network further
2	comprises a plurality of sensors, and each of the mobile objects is provided with one of
3	the sensors to determine when the transceivers of others of the mobile objects are not
4	able to receive the cellular/radio signals directly from the source; and wherein when the
5	sensor of one of the mobile objects determines that the transceiver of another of the
6	mobile objects is not able to receive the signals directly from the source, the sensor of
7	said one of the mobile objects activates the transceiver of said one of the mobile objects
8	to transmit the signal to the transceiver of the other of the mobile object.
1	18. A program storage device according to Claim 16, wherein the mobile objects are
2	cars or people.
1	19. A program storage device according to Claim 16, wherein the location where the
2	transceiver on the first mobile object does not have access to the signal directly from the
3	source is one or more of the following: in a tunnel, under a bridge, or in a subway.