MoodSwing

Aravind Narayanan, Akshith Rajkumar

Introduction

- Vitality of efficient music categorization in the digital age spurred by Spotify and Apple Music dominance.
- Shift towards mood-based classification over traditional genres to meet user needs in navigating a vast musical landscape.
- Emphasis on the connection between human emotions and music through NLP and psychological elements to delve into a person's mental state.
- Exploration of emotional analysis by harnessing lyrics and NLP, diverging from traditional acoustic feature-centric approaches.
- Conducting a multi-modal analysis merging lyrical and audio features for a deeper understanding of emotional context in music classification through deep learning and NLP.

Rubric for Classification

Audio features have been traditionally used to classify the songs into different emotions and moods.

Mood	Intensity	Timbre	Pitch	Rhythm
Нарру	Medium	Medium	Very High	Very High
Exuberant	High	Medium	High	High
Energetic	Very High	Medium	Medium	High
Frantic	High	Very High	Low	Very High
Anxious/Sad	Medium	Very Low	Very Low	Low
Depression	Low	Low	Low	Low
Calm	Very Low	Very Low	Medium	Very Low
Contentment	Low	Low	High	Low

■ Using the Valence-Arousal model, we analyze lyrics to classify mood based on emotional dimensions, enhancing song classification by interpreting the underlying sentiments and tones.

Source of Data and Data Processing

- Using 1% subset of the extensive 280GB Million Song Dataset, tailored for our project's audio feature needs.
- Songs' tags, encompassing various moods and genres, stored separately will require linkage queries.
- We intend to categorize diverse emotional tags from Last.fm into 4 quadrants based on existing literature.
- Musixmatch dataset presents lyrics in a Bag of Words (BoW) format.
- We plan to scrape lyrics from the internet for sequential arrangement, crucial for BERT or GPT2 embeddings.

THE MILLION SONG DATASET

Thierry Bertin-Mahieux, Daniel P.W. Ellis
Columbia University
LabROSA, EE Dept.

{thierry, dpwe}@ee.columbia.edu

Brian Whitman, Paul Lamere
The Echo Nest
Somerville, MA, USA
{brian, paul}@echonest.com

Model Architecture

- Our proposed model architecture is a multi-modal system.
- It comprises of CNN for analyzing acoustic features as well as a pretrained GPT2 model for analyzing the lyrical data.
- The outputs of the models are combined to finally present a weighted classification of moods.

Baseline Model and Comparison

- The baseline models used for comparison are from paper titled 'Transformer-based Automatic Music Mood Classification using Multi-modal framework'.
- The paper presents performance metrics (F1 score, Recall and Precision) and accuracy for various models.
- The plan is to compare results with these published results.

Model	Scheme	Overall Accuracy (in%)
M0	Acoustic+Textual features (SVM)	59.55
M1	Acoustic features (Bi-GRU)	56.00
M2	Acoustic features (CNN)	61.76
M3	Textual features (Word2Vec+Bi-GRU)	44.15
M4	Textual features (GloVe+Bi-GRU)	50.73
M5	Multi-modal fusion (Word2Vec+Bi-GRU)	63.97
M6	Multi-modal fusion (GloVe+Bi-GRU)	65.44
M7	Multi-modal fusion with single attention (Word2Vec+Bi-GRU)	73.52
M8	Multi-modal fusion with single attention (GloVe+Bi-GRU)	76.47
M9	BERT	58.08
M10	XLNet [27]	57.25
M11	CNN+BERT [28]	71.32
M12	Bi-GRU+BERT	73.50
M13	Proposed multi-modal transformer-based	77.94

Risks

■ Limited Lyrics Access:

 Copyright constraints might limit complete lyric access, resulting in a smaller dataset or mismatched audio-lyric pairs, affecting performance unpredictably.

■ Audio Feature Reliability:

 Existing audio features may underperform, potentially necessitating reliance solely on lyrical data in case of poor performance.

■ Dataset Size and Complexity:

 Large individual lyric sizes could pose computational challenges during model training. Mitigation includes exploring optimization methods or potential dataset size reduction.

Plan

DATASET
COMPILATION
1 week

MODEL
IMPLEMENTATION
2 weeks

WEIGHTED LYRICS
MOOD CLASSIFICATION
1 week

Expectations for November 21st:

- A complied dataset that is ready to be trained on.
- One trainable model, either the CNN model or the Transformer model with inferable results.