# 1 Common Families of Distributions

Lots of this chapter is standard definitions of distributions, so is omitted

#### 1.1 Multinomial Distribution

**Definition 1** (Multinomial Distribution). Let m and n be positive integers and let  $p_1, \ldots, p_n \in [0,1]$  satisfy  $\sum_{i=1}^n p_i = 1$ . Then the random vector  $(X_1, \ldots, X_n)$  has multinomial distribution with m trials and cell probabilities  $p_1, \ldots, p_n$  if the joint pmf of  $(X_1, \ldots, X_n)$  is

$$f(x_1, \dots, x_n) = \frac{m!}{x_1! \cdots x_n!} p_1^{x_1} \cdots p_n^{x_n} = m! \prod_{i=1}^n \frac{p_i^{x_i}}{x_i!}$$

on the set of  $(x_1, \ldots, x_n)$  such that each  $x_i$  is a nonnegative integer and  $\sum_{i=1}^n x_i = m$ .

**Remark 1.** The marginal distributions have  $X_i \sim \text{binomial}(m, p_i)$ .

**Theorem 1** (Multinomial Theorem). Let m and n be positive integers and let  $\mathcal{A}$  be the set of vectors  $\mathbf{x} = (x_1, \dots, x_n)$  such that each  $x_i$  is a nonnegative integer and  $\sum_{i=1}^n x_i = m$ . Then for any real numbers  $p_1, \dots, p_n$ ,

$$(p_1 + \dots + p_n)^m = \sum_{x \in A} \frac{m!}{x_1! \dots x_n!} p_1^{x_1} \dots p_n^{x_n}.$$

### 1.2 Exponential Families

**Definition 2** (Exponential family 1). A family of pmfs/pdfs is called an *exponential family* if it can be expressed

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left(\sum_{i=1}^{k} w_i(\boldsymbol{\theta})t_i(x)\right)$$

where  $h(x) \geq 0$ , the  $t_i$  are real valued functions of the observation x that do not depend on  $\theta$  and  $c(\theta) \geq 0$  and the  $w_i(\theta)$  are real valued functions of  $\theta$  that do not depend on x.

**Theorem 2.** If X is a random variable from an exponential family distribution then

$$\mathbb{E}\left[\sum_{i=1}^{k} \frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X)\right] = -\frac{\partial}{\partial \theta_j} \log c(\boldsymbol{\theta})$$

and

$$\operatorname{Var}\left[\frac{\partial w_i(\boldsymbol{\theta})}{\partial \theta_j} t_i(X)\right] = -\frac{\partial^2}{\partial \theta_j^2} \log c(\boldsymbol{\theta}) - \mathbb{E}\left[\sum_{i=1}^k \frac{\partial^2 w_i(\boldsymbol{\theta})}{\partial \theta_j^2} t_i(X)\right]$$

**Definition 3** (Exponential family 2). We can write another parameterisation of the exponential family

$$f(x|\boldsymbol{\eta}) = h(x)c^*(\boldsymbol{\eta})\exp(\boldsymbol{\eta}\cdot\boldsymbol{t}(x))$$

where  $\eta$  is called the *natural parameter* and the set  $\mathcal{H} = \{ \eta : \int_{\mathbb{R}} f(x|\eta) dx < \infty \}$  is called the *natural parameter space* and is convex.

**Remark 2.**  $\{\eta : \eta = w(\theta), \ \theta \in \Theta\} \subseteq \mathcal{H}$ . So there may be more parameterisations here than previously.

The natural parameter provides a convenient mathematical formulation, but sometimes lacks simple interpretation.

**Definition 4** (Curved exponential family). A curved exponential family distribution is one for which the dimension of  $\theta$  is d < k. If d = k then we have a full exponential family.

#### 1.3 Location and Scale Families

**Definition 5** (Location family). Let f(x) be any pdf. The family of pdfs  $f(x - \mu)$  for  $\mu \in \mathbb{R}$  is called the *location family with standard pdf* f(x) and  $\mu$  is the *location parameter* of the family.

**Definition 6** (Scale family). Let f(x) be any pdf. For any  $\sigma > 0$  the family of pdfs  $\frac{1}{\sigma}f(x/\sigma)$  is called the *scale family with standard pdf* f(x) and  $\sigma$  is the *scale parameter* of the family.

**Definition 7** (Location-Scale family). Let f(x) be any pdf. For  $\mu \in \mathbb{R}$  and  $\sigma > 0$  the family of pdfs  $\frac{1}{\sigma}f(\frac{x-\mu}{\sigma})$  is called the *location-scale family with standard pdf* f(x);  $\mu$  is the *location parameter* and  $\sigma$  is the *scale parameter*.

**Theorem 3** (Standardisation). Let f be any pdf,  $\mu \in \mathbb{R}$  and  $\sigma \in \mathbb{R}_{>0}$ . Then X is a random variable with pdf  $\frac{1}{\sigma}f(\frac{x-\mu}{\sigma})$  if and only if there exists a random variable Z with pdf f(z) and  $X = \sigma Z + \mu$ .

**Remark 3.** Probabilities of location-scale families can be computed in terms of their standard variables Z

$$\mathbb{P}(X \le x) = \mathbb{P}\left(Z \le \frac{x - \mu}{\sigma}\right)$$

## 1.4 Inequalities and Identities

**Theorem 4** (Chebychev's inequality). Let X be a random variable and let g(x) be a nonnegative function. Then, for any r > 0,

$$\mathbb{P}(g(X) \ge r) \le \frac{\mathbb{E}[g(X)]}{r}.$$

Remark 4. This bound is conservative and almost never attained.

**Remark 5** (Markov inequality). The Markov inequality is the special case with  $g = \mathbb{I}$ .

**Theorem 5.** Let  $X_{\alpha,\beta}$  denote a gamma $(\alpha,\beta)$  random variable with pdf  $f(x|\alpha,\beta)$ , where  $\alpha > 1$ . Then for any constants a and b:

$$\mathbb{P}(a < X_{\alpha,\beta} < b) = \beta(f(a|\alpha,\beta) - f(b|\alpha,\beta)) + \mathbb{P}(a < X_{\alpha-1,\beta} < b)$$

**Lemma 1** (Stein's Lemma). Let  $X \sim \mathcal{N}(\theta, \sigma^2)$  and let g be a differentiable function with  $\mathbb{E}[g'(x)] < \infty$ . Then

$$\mathbb{E}[g(X)(X - \theta)] = \sigma^2 \mathbb{E}[g'(X)]$$

The proof is just integration by parts.

Remark 6. Stein's lemma is useful for moment calculations

**Theorem 6.** Let  $\chi_p^2$  denote a chi squared distribution with p degrees of freedom. For any function h(x),

$$\mathbb{E}[h(\chi_p^2)] = p\mathbb{E}\left[\frac{h(\chi_{p+2}^2)}{\chi_{p+2}^2}\right]$$

provided the expressions exist.

**Theorem 7.** Let g(x) be a function that is bounded at -1 and has finite expectation, then

a. If 
$$X \sim \text{Poisson}(\lambda)$$
,

$$\mathbb{E}[\lambda q(X)] = \mathbb{E}[Xq(X-1)].$$

b. If  $X \sim \text{negative-binomial}(r, p)$ .

$$\mathbb{E}[(1-p)g(X)] = \mathbb{E}\left[\frac{X}{r+X-1}g(X)\right].$$