08: LARGE SAMPLE PROPERTIES

Rice 5.3, 8.5.2 Prof Amanda Luby

1 Sampling Distribution of a Statistic

Convergence in distribution

Let $X_1, ..., X_n$ be a sequence of random variables with CDFs $F_1, ..., F_n$ and let X be a random variable with CDF F. We say X_n converges in distribution to F if:

Sampling distribution of a statistic

Let $X_1,...,X_n$ be a random sample with pdf $f_x(\theta)$. Let $T=h(X_1,...,X_n,\theta)$. Then, the distribution of T (given θ) is called the *sampling distribution* of T.

Example:

Example:

2 Central Limit Theorem

Central Limit Theorem

For a large number n of iid observations $Y_i \sim f_y$, with mean μ and variance σ^2 , the sampling distribution of \bar{Y} is approximately:

Central Limit Theorem II

For a large number n of iid observations $Y_i \sim f_y$, with mean μ and variance σ^2 , then for each fixed x:

3 Delta Method

Delta Method

Let Y_1,Y_2,\ldots be a sequence of random variables, and let F^* be a continuous c.d.f. Let θ be a real number, and let a_1,a_2,\ldots be a sequence of positive numbers that increase to ∞ . Suppose that $a_n(Y_n-\theta)$ converges in distribution to F^* . Let α be a function with continuous derivative such that $\alpha'(\theta)\neq 0$. Then,

Example: Variance-stabilizing transformation

4 Large-Sample Properties of the MLE

- 1. MLE estimators are *sufficient*
- 2. MLE estimators are invariant
- 3. MLE estimators are asymptotically unbiased.
- 4. Under appropriate smoothness conditions of f_x , the MLE from an iid sample is *consistent*.
- 5. MLE estimators are *asymptotically efficient*: for large n, other estimators do not have smaller variance
- 6. Under smoothness conditions of f_x , the MLE has a normal sampling distribution for large samples

Sampling distribution of the MLE

Let $\hat{\theta} = h(Y)$ be the MLE for $\theta,$ where $Y \sim f_y(\theta).$

Example:

5 Large-Sample Properties of the Bayes Estimator

The large-sample properties of the MLE generally extend to the Bayes estimator:

- 1. Bayes estimators are asymptotically unbiased
- 2. Bayes estimators are asymptotically efficient
- 3. Bayes estimators are consistent
- 4. Bayes estimators are sufficient
- 5. Bayes estimators have normal sampling distributions for large \boldsymbol{n}