BANCO DE DADOS GEOGRÁFICOS

Sumário

- □ 1. Introdução
 - 1.1. Banco de Dados Convencionais
 - 1.2. Banco de Dados Geográfico
- 2. Dados Geográficos
 - 2.1. Projeções Cartográficas
 - 2.2. Dados Vetoriais
 - 2.3. Dados Matriciais
 - 2.4. Na prática
- 3. Relações Topológicas
 - 3.1. Principais Relações
 - 3.2. Exemplos
- 4. Funções Geométricas
- 5. Consultas Espaciais
- 6. SGBDs
- 7. Exemplos de Consulta

1.1. Banco de Dados Convencionais

- Banco de Dados Convencionais
 - Trabalha com tipos de dados convencionais (integer, varchar, etc.).

1.1. Banco de Dados Geográficos

- SGBD Convencional + Extensão Espacial
 - Tipos de Dados

- Índices Espaciais
- Relações Topológicas
- Funções Geométricas
- Base de um Sistema de Informação Geográfica

2. Dados Geográficos

- Dados Convencionais
 - Dados alfanuméricos.
 - Ex. integer, varchar, etc.
- Dados Espaciais
 - Dados que possuem dimensão espacial.
 - Ex. 2D Ponto, Linha, Polígono, etc.
 - Ex. 3D Cubo, Paralelepípedo, etc.
- Dados Geográficos
 - Dados Espaciais relacionados a algum ponto da Terra através de uma Projeção Cartográfica.

2.1. Projeções Cartográficas

Representação da Terra de forma plana.

- Deformação da forma, área ou distância.
- Sistema de Coordenadas, Geóide, Datum, etc.
- "Normalizado" pelo EPSG.
 - EPSG:4326 Mais utilizado por GPSs (WGS84)
 - EPSG:900913 Utilizado pela Google.

2.2. Tipos de Dados

Raster x Vetorial

2.2. Tipos de Dados

Estereoscópio x Sensoriamento Remoto

2.2. Dados Vetoriais

2.2. Dados Vetoriais

- Tipos de geometria:
 - Simples:
 - POINT(0 0)
 - LINESTRING(0 0,1 1,1 2)
 - POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))
 - Composta:
 - MULTIPOINT(0 0,1 2)
 - MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))
 - MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))
 - GEOMETRYCOLLECTION(POINT(23),LINESTRING(23,34))
- Representação em WKT (texto) ou WKB (binário)

2.3. Dados Matriciais

2.3. Dados Matriciais

2.3. Dados Matriciais

- Possui diversas representações:
 - □ Grades, pontos, etc.
- SGBDs usam tipos diferentes para representar dados Raster:
 - Postgis Postgis Raster
 - Oracle Spatial Oracle GeoRaster
- No Postgis:
 - Uma linha = Um raster
 - Uma tabela = Uma cobertura

2.4. Na prática

- Adicionar uma coluna do tipo Geometria em uma tabela:
 - AddGeometryColumn(varchar schema, varchar tabela, coluna, integer srid, varchar tipo, integer dimensão, boolean use_typmod);
 - SRID Sistema de Referência da tabela spatial_ref_sys
 - Ex. número EPSG quando existente na tabela
 - Tipo POINT, POLYGON, etc.

3. Relações Topológicas

- Dados Geográficos possuem relações no espaço:
 - Uma ponte cruza um rio
 - Um prédio está dentro de um terreno
 - Duas ruas encontram-se

3.1. Principais Relações

3.2. Exemplos

- Funções que possuem como entrada dois valores do tipo geometria (ou raster em alguns casos).
 - ST_Intersects verifica se há intersecção entre duas geometrias (ou entre uma geometria e um raster).
 - ST_Covers verifica se uma geometria cobre espacialmente a outra.
 - ST_Contains verifica se uma geometria contém a outra.
 - ST_Within verifica se uma geometria está contida em otura.
 - ST_Equals verifica se duas geometrias são iguais.
 - Entre outras: ST_Touches, ST_Overlaps, etc.

4. Funções Geométricas

Distância

- Ex. distância entre dois pontos no espaço
 - ST_Distance(geometria,geometria)
 - Saída: distância mínima na unidade projetada

□ Área

- Ex. área de um município
 - ST_Area(geometria)
 - Saída: área na unidade projetada

Agregação

- Ex. união de dois polígonos
 - ST_Union(geometria,geometria)
 - Saída: geometria unificada

4. Funções Geométricas

□ Conversão

- Ex. transformação de uma projeção em outra
 - ST_Transform(geometria,projeção)
 - Saída: geometria reprojetada

Raio

- Ex. faixa de 30m nas margens de um rio
 - ST_Buffer(geometria,raio)
 - Saída: geometria contendo todos os pontos ao alcance do raio em relação a geometria de entrada

Perímetro/Comprimento

- Ex. comprimento total de uma rua.
 - ST_Length(geometria)
 - Saída: comprimento na unidade projetada

4. Funções Geométricas

- Muitos outros operadores:
 - ST_Centroid()
 - ST_StartPoint() / ST_EndPoint()
 - ST_X(), ST_Y()
 - ST_Rotate()
 - ST_Distance_Spheroid()
 - Outros podem ser encontrados no Manual do PostGIS:
 - http://www.postgis.org/docs/reference.html#PostGIS_Types

5. Consultas Espaciais

- E como utilizar estes operadores e funções?
 - Qual o ponto central dos municípios do estado do Acre?
 - SELECT nome, AsText(ST_Centroid(the_geom))
 FROM municipios WHERE uf = 'AC'

	nome character vai	astext text
1	Santa Rosa do F	POINT(-70.3975205190795 -9.41188081650848)
2	Manoel Urbano	POINT(-69.8545675926051 -9.3800067518906)
3	Sena Madureira	POINT(-69.3822475151065 -9.77140641312939)
4	Assis Brasil	POINT(-70.0059803565267 -10.7790546964731)
5	Braciléia	DOTNIT/_60 2071366740277 _10 7474060001314\

6. SGBDs

- Uma série de SGBDs possui suporte a tipos de dados e funções espaciais:
 - Tanto gratuitos...
 - PostgreSQL(Postgis), SQLite (SpatialLite), etc.
 - PostgreSQL(Postgis) é adotado na INDE do Brasil.
 - Quanto pagos...
 - MS SQL Server, Oracle (Oracle Spatial), etc.
- Tabela comparativa com base em:
 - http://www.bostongis.com/PrinterFriendly.aspx?content_na me=sqlserver2008r2_oracle11gr2_postgis15_compare

6. SGBDs

	MS SQL Server	Oracle Spatial	Postgis
Gratuito	Não	Não	Sim
Versões	Express, Standard, Datacenter, Enterprise	Express, Personal, Standard e Enterprise	Versão única.
Limitações	Sim	Sim	Não
Editores Gratuitos	Sim	Sim	Sim
Funções Espaciais	Sim	Sim	Sim
Suporte Geodésico	Sim	Sim	Sim
Índice Espacial	4 level Multi-Level grid hierarchy	R-Tree	GiST
Tipos de Geometrias Suportados	Básicos da OGC 2D/2.5D	Básicos da OGC 2D/2.5D/3D	Básicos da OGC 2D/2.5D
Suporte a Curvatura	Não	Sim	Sim
Funções de Medida	Sim	Sim	Sim

- Outros exemplos de consulta?
 - Os municípios do estado de São Paulo ordenados pelo tamanho de sua área de maneira decrescente, mostrada em metros de acordo com a projeção EPSG:900913.
 - SELECT nome, ST_Area(ST_Transform(the_geom,900913)) FROM municipios WHERE uf = 'SP' ORDER BY ST_Area(ST_Transform(the_geom,900913)) DESC;

	nome character vai	st_area double precision
1	Iquape	2404988809.62305
2	Itapeva	2196008701.21973
3	Itapetininga	2145423211.77344
4	Eldorado	2009598350.93066
5	Capão Bonito	1976184947.37891
6	Rancharia	1859646050.87207
7	Teodoro Sampai	1830825580.33203
8	São Paulo	1823338925.24023
9	Barretos	1791748553.03125
10	Botucatu	1754648480.87598

Parte do resultado da consulta realizada.

É possível visualizar os dados de um banco de dados em Mapas?

Carregamento dos dados da tabela municipios no software OpenJUMP.

Dados da tabela municípios carregados software OpenJUMP.

- E consultar exibindo o resultado no Mapa?
 - Selecionar todos os municípios do estado do Acre.

Execução de consulta SQL realizada no OpenJUMP.

Resultado da consulta realizada no OpenJUMP.

8. Conclusão

- Algumas vantagens de utilizar Bancos de Dados:
 - Edição por muitos usuários é possibilitada.
 - Não há limite para tamanho de armazenamento.
 - Melhor performance com grandes volumes de dados.
 - Diferentes geometrias em uma mesma tabela.
 - Permite a relação entre diferentes tabelas através de chaves estrangeiras.
 - Manipulação de dados pode ocorrer através dos mais variados SIGs.
 - PostGIS é uma alternativa gratuita e eficiente para o armazenamento de dados espaciais.

Referências Bibliográficas

- [1] EGENHOFER, M. F. MARK, D. M. HERING, J. The 9intersection: Formalism and its use for natural-language spatial predicates. Technical Report 94-1, National Center for Geographic Information and Analysis, Santa Barbara, CA, 1994.
- [2] CASANOVA, M. et al. Bancos de dados geográficos. Curitiba: MundoGEO, 2005. Disponível em: http://www.dpi.inpe.br/gilberto/livro/bdados/material.html. Acesso em: 30 de Abril 2010.
- [3] CÂMARA G, QUEIROZ, G. R. Arquitetura de Sistemas de Informação Geográfica. In: G Câmara, C Davis, AM Monteiro (org.), Introdução à Ciência da Geoinformação, http://www.dpi.inpe.br/gilberto/livro/introd >, 2000.
- [4] Postgis. Spatial Relationship. Disponível em:
 http://postgis.refractions.net/documentation/manual1.4/ch07.html#Spatial_ Relationships_Measurements >. Acesso em: 9 de Setembro de 2010.

