Lecture 6: Model Selection, Multivariate Classification and Dimensionality Reduction

STAT261: Introduction to Machine Learning

Lecture 6, April 13

Outline: Multivariate Classification and Dimensionality Reduction

- Multivariate Data and Multiple Measurements
 - Multivariate Parameters
 - Multivariate Gaussian

Parametric Classification

- Different Covariances
- Quadratic Discriminant
- Dimensionality Reduction

Multivariate Data

- Multiple measurements (sensors)
- *d* inputs/features/attributes: *d*-variate
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_2^1 & \cdots & X_d^1 \\ X_1^2 & X_2^2 & \cdots & X_d^2 \\ \vdots & & & & \\ X_1^N & X_2^N & \cdots & X_d^N \end{bmatrix}$$

Multivariate Parameters

Mean:
$$E[\mathbf{x}] = \boldsymbol{\mu} = [\mu_1, ..., \mu_d]^T$$

Covariance: $\sigma_{ij} \equiv \text{Cov}(X_i, X_j)$

Correlation: Corr
$$(X_i, X_j) \equiv \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

$$\Sigma = \text{Cov}(\mathbf{X}) = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & & & & \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

Parameter Estimation

Sample mean
$$\mathbf{m} : m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}, i = 1,...,d$$

Covariance matrix
$$\mathbf{S}: s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

Correlation matrix
$$\mathbf{R}: r_{ij} = \frac{s_{ij}}{s_i s_i}$$

Estimation of Missing Values

- What to do if certain instances have missing attributes?
- Ignore those instances: not a good idea if the sample is small
- Use 'missing' as an attribute: may give information
- Imputation: Fill in the missing value
 - Mean imputation: Use the most likely value (e.g., mean)
 - Imputation by regression: Predict based on other attributes

Multivariate Normal Distribution

$$\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]$$

Multivariate Normal Distribution

- Mahalanobis distance: $(x \mu)^T \sum^{-1} (x \mu)$ measures the distance from x to μ in terms of \sum (normalizes for difference in variances and correlations)
- Bivariate: d = 2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right]$$

$$z_i = (x_i - \mu_i)/\sigma_i$$

Bivariate Normal

Bivariate Normal

 $Cov(x_1,x_2)=0$, $Var(x_1)>Var(x_2)$

Independent Inputs: Naive Bayes

• If x_i are independent, off diagonals of \sum are 0, Mahalanobis distance reduces to weighted (by $1/\sigma_i$) Euclidean distance:

$$p(\mathbf{x}) = \prod_{i=1}^{d} p_i(\mathbf{x}_i) = \frac{1}{(2\pi)^{d/2} \coprod_{i=1}^{d} \sigma_i} \exp \left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{\mathbf{x}_i - \mu_i}{\sigma_i} \right)^2 \right]$$

If variances are also equal, reduces to Euclidean distance

Parametric Classification

Classification: Maximum likelihood

Pick class that would make observation most likely

• If $p(x \mid C_i) \sim N(\mu_i, \Sigma_i)$

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) \right]$$

Discriminant functions

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x} \mid C_{i}) + \log P(C_{i})$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_{i}| - \frac{1}{2} (\mathbf{x} - \mu_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \mu_{i}) + \log P(C_{i})$$

Estimation of Parameters

$$\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N}$$

$$\mathbf{m}_i = \frac{\sum_{t} r_i^t \mathbf{x}^t}{\sum_{t} r_i^t}$$

$$\mathbf{S}_i = \frac{\sum_{t} r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T}{\sum_{t} r_i^t}$$

$$g_i(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_i| - \frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

Parametric Classification: Different Variances

- Different S_i
- Quadratic discriminant

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_{i}| - \frac{1}{2}(\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{x} - 2\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i}) + \log\hat{P}(C_{i})$$

$$= \mathbf{x}^{T}\mathbf{W}_{i}\mathbf{x} + \mathbf{w}_{i}^{T}\mathbf{x} + \mathbf{w}_{i0}$$
where
$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$\mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log\hat{P}(C_{i})$$

Parametric Classification: Different Variances

Common Covariance Matrix S

Shared common sample covariance S

$$\mathbf{S} = \sum_{i} \hat{P}(C_{i}) \mathbf{S}_{i}$$

Discriminant reduces to

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

which is a linear discriminant

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{S}^{-1}\mathbf{m}_{i} \quad \mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

Common Covariance Matrix S

Classification: Diagonal S's

- When $x_j j = 1,...d$, are independent,
- \sum is diagonal
- $p(x | C_i) = \prod_j p(x_j | C_i)$ (Naive Bayes' assumption)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j^t - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i)$$

 Classify based on weighted Euclidean distance (in s_j units) to the nearest mean

Classification: Diagonal S matrics

Classification: Diagonal S, equal variances

Nearest mean classifier:

Classify based on Euclidean distance to the nearest mean

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{m}_i\|^2}{2s^2} + \log \hat{P}(C_i)$$
$$= -\frac{1}{2s^2} \sum_{i=1}^d (x_j^t - m_{ij})^2 + \log \hat{P}(C_i)$$

Each mean can be considered a prototype or template
 This is sometimes called template matching

Diagonal S, equal variances

Model Selection

Assumption	Covariance matrix	No of parameters
Shared, Hyperspheric	$S_i = S = S^2 I$	1
Shared, Axis-aligned	$S_i = S$, with $S_{ij} = 0$	d
Shared, Hyperellipsoidal	S _i =S	d(d+1)/2
Different, Hyperellipsoidal	Si	K d(d+1)/2

- As we increase complexity (less restricted S), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)

Population Likelihoods and Posteriors

Diag. covar.

Equal var.

Classification: Discrete Features

• Binary features: $p_{ij} \equiv p(x_j = 1 | C_i)$ if x_j are independent (Naive Bayes')

$$p(x \mid C_i) = \prod_{j=1}^{d} p_{ij}^{x_j} (1 - p_{ij})^{(1 - x_j)}$$
the discriminant is linear

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x} | C_{i}) + \log P(C_{i})$$

$$= \sum_{j} \left[x_{j} \log p_{ij} + (1 - x_{j}) \log (1 - p_{ij}) \right] + \log P(C_{i})$$

Estimated parameters
$$\hat{p}_{ij} = \frac{\sum_{t} x_{j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Discrete Features

• Multinomial (1-of- n_j) features: $x_j \hat{l} \{v_1, v_2, ..., v_{n_j}\}$

$$p_{ijk} \equiv p(z_{jk}=1 | C_i) = p(x_j=v_k | C_i)$$

if x_i are independent

$$p(\mathbf{x} \mid C_i) = \prod_{j=1}^{d} \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$$

$$g_i(\mathbf{x}) = \sum_{j} \sum_{k} z_{jk} \log p_{ijk} + \log P(C_i)$$

$$\hat{p}_{ijk} = \frac{\sum_{t} z_{jk}^{t} r_i^{t}}{\sum_{t} r_i^{t}}$$

The Curse of Dimensionality The examples of Bayes Decision theory are misleacting because they are given in low-dimensional spaces (1-dim, or 2-dim) Many pattern classification tasks occur in high dimensional spaces. In these spaces our geometric intuitions are often wrong. EG. Consider the volume of a sphero of radius r=1 in D dune is soon what fraction of its volume lies in the region between 1-ECV<1? VD(r)= KD rD Vp(1)-Vp(1-E)=1-(1-E) Volume traction 03. for large D, the Volume fraction lends to even for small E. 0.2 0.4 6.6 6.8 Most of the volume is at the Goundary

(8) in high dimension can require a lot of data Eb. Gaussien Distorbeiten in D dimensier. mem-M D dimensions. Covariane - Z D(DHI) Dunerion. This is O(D2), not too bad. But suppose we represent the data by a histogram with B bins per dimension. R bins in D= B^2 bins in D=2BD bins in Ddmeuceur. Exponential growth? of data to learn the distribution.

How to deal with the curse of dimensionality? In practice, data typically lies on some low-dimensional sufrere in the high dinensial space. So the effective dimension of the data may be a lot smaller then the dimension of the space (+) Dimension Reduction Me tools attempt to reduce the dimening by seehing this low surfac. (Not always case). dimensional (*) Modeling, if we can guess distribution for the data (e.g. Gaussian) then the dependence on the dimension is not too tod-(*) Concentrate on the Decision Boundary - there may be enough duta to learn the decision boundary even it we cannot learn the distributions.

Bius and Variance (lb) This is a classical statistics perspective or generalization. First we need to introduce some statistics temoiology. Suppose coe coart to estimate a continuous quantity & - C.J. the mean I vonance of a Gaussian distribution (more about this in the next lecture), or the parameter of a regression line (see below) - then Stickisticiani use an estimator. The estimator is bassed on a set Xu=(\(\tilde{\times}_i:i=\to\(\tilde{\to}_i)\) q examples - down from an unknown distribution P(x) i.id. Pl7) = TIP(x) The task is to estimate a property & by an estimator &= 9(X). Eg. like a classification ret and Oil Continuous. For example: Let 0= (µ, 5) be the mean and voriance of the data (data is one-dimensional in this example) them $\chi = \langle \chi_{i}; i = t_0 N \rangle$ $\mu(\chi_i) = \frac{1}{N} \cdot \frac{7}{5^2} \cdot (\chi_i) = \frac{1}{N} \cdot \frac{1}{N} \cdot$ 9(XN) = (A(X), 22(X)) pote: that the estimator is a function of the set XN, this will be important later.

To evaluate the estimator we want to measure how much it differs from the comect b. It is attractive to use a quadratic errors (this helps the analysis)

(g(XN)-0)² - but this depends on the

dato set XN So we need to get the expected evror with respect to the set Xu, $F(g,6) = E_{\chi} [g(\chi)-6]^2 = \int (g(\chi)-6)^2 P(\chi) d\chi$ Mean squove error.

Over set $\chi(\chi)$. b & (9) = Ex [9(x)]-0, bies of estimator H bolg)=0 for all &, then g(.) is an unbiased Estimator of D $E_{\chi}[\mu(\chi)] = E_{\chi}[1 \frac{\chi}{\chi}] = 1 \frac{\chi}{\chi} E_{\chi}(\chi)$ $= \frac{1}{N} N \mu = M \qquad \qquad \chi \mu = 1$ $= \frac{1}{N} N \mu = 1$ =to average it gives you the right answer).

We can compute the variance of the Estimator - i.e. how much it varies depending on X.

(13) Bius Varianae Pilemma:
Note Title 3/29/2008
Datoset X = ((x;,y;): i= How)
Sampled from P(x,y) = p (y x)P(x)
Let 9(x) be an estimator of u
Let $g(x)$ be an estimator $g(y)$. Claim 1: $(y-g(x))^2/2 = (y-(y)^2)^2 + ((y)^2 + (y)^2)^2$
Voice Plu X) Voice of the Squared
Here < f(y,x))p(y x) -> Nothing log law -> Nothing log log law -> Nothing log log log log log log log log log lo
= \(\frac{7}{2}\)\ f(y\X)\P(y\X)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Proof: Write (y-g(x))2= (y-(y)plyx) - (y)plyx) - (x))2
= (y-4)p(4x) + (<y>p(4x) - y(x)) + 2(y-4)p(4x)(x) = (3/x)</y>
Take expectalin with respect to PlyIX)
m < (y-g(x)) > p(y1x) = < (y-(y)p(y1x)) > + (<y)p(y1x)-g(x))2< th=""></y)p(y1x)-g(x))2<>
because (<y7pyxx)-g(x))2 (y-(y7pyxxx)))pyxxxx<="" <="" and="" indep="" is="" of="" th="" y=""></y7pyxx)-g(x))2>
Claim I says we can decompose the expected com
Claim I says we can decompose the expected come (wr.k. P(y X)) into part we have no control over < (y-(y)) and part which depends on g(.) and the data X.
and part which depends on g (.) and the data x.
(< y > p(y(x)) - g(x))2
, , , , , , , , , , , , , , , , , , ,

What does this mean? Distribute P(x) paraset $X_1 = \langle x_1 \dots x_N \rangle$, $X_2 = \langle x_{N+1}, \dots x_{2N} \rangle$ For can data we get an estimate of y g(X1), g(X2) .. g(Xm) The mean estimate is g = 1/m \(\frac{1}{2}g(\chi_1)\) the variance is $Var(\bar{g}) = \frac{1}{2} \sum_{i=1}^{n} (g(x_i) - \bar{g})^2$ To get good generalization we want the variance to be small, so that it isn't sensitive to the data we have trained the classifier on. Ideally we wont to have a classifier g(.) which hus small bias and variance. In practice, there is often a trade -off between bias and variance. A complex classifier can give a good fit to the data (compand to a suiple classifier) but can have high variance because it over-fils the data. So it gives different results on different datasets.

(16)

Bias/ Variance Dilemma

		17191		•	
The d	ata is tel by	Fine	lain+ ()da.	7	Order 1
f(x)=	2 sun(1-5x)	××	× × ×		Similar results for different datasets X1, X2.
Fit a	order 1 _		Orde 3	1	Ordus.
Fel or	the (110) to the 3 poly. fit (then order 1) yeare variance.			. 7	MX
000	-		dels gwes underlyng	better model/	Rest tit,
Ru	t small	changes	in datas	set lead	
	Variationer	un fille	a model anove		
Lou	ordeus —	rish a	under filt, over fitting	no (fit	the noise,
luga	To you	a Sneel	enor we	Should h	up the
		M. Inna		VICE VE. LI TIV	NU LINTU
No	: take man	y wight war	riance mudels) WE WELL	and E cours

([7]
What to do? How to test generalization?
Cross-validation -> devide dataset into
he park as la i di solution solution
two parks as training I validation set. Train models of different complexity and test their error on the validation set.
Train models of atterest completing and test was
error on the Validation sec.
As model complexity increases, orror an treuning
As model complexity increases, orror an training set decreases. But error on valation set decreases
to increase cros for solidation
erro.
vegularzatin travia
E'= coror on data + 2. model completely. "Else" optimal completely less.
E = 610 V OK OBER TO PORTE OF THE STATE OF THE CONFINENCE OF THE CONFINENCE OF THE STATE OF THE CONFINENCE OF THE CONFIN
(2 optimized using cross-validation)
Structure rish miningation, (Vaprile) (Ke din)
-also pendizion model conpletity. Minimin Desuption Length (Missamon) Denaurio (In plevity by cost of encoding model.
Minimum Describer Levelle (Vassances)
Penalizie con plevity by cost of encoding model. Pryesian Model Selection. if some prior knowledge Provider Mark 1 = 10 lands (model) 10 (model)
penalize comparing of
Rayesian Model Setector. If some prox knowing
P(model Idata) = plack (model) p(model)
(in location nonto to complete mondale) Plata)
(give hyper prob-to simples modely) Plata)