CS2842 Computer Systems – Lecture X

Modern Computer Systems

Dr. Sapumal Ahangama Department of Computer Science and Engineering

OUTLINE

- CPU Enhancements
- Multiprocessing
- ▶ Clusters
- Virtualization

PIPELINING

- If there are 2 stages of the execution cycle and implemented separately,
 - Only one stage is in use at a given time
- Overlap of instructions
 - More than one instruction is worked at a time

PIPELINING

- Branching?
 - May invalidate all the instructions in the timeline
- Solutions?
 - Multiple pipelines
 - Branch prediction

PIPELINING

- Instruction reordering
 - Problem of waiting for data results from previous instructions
 - Computer designs contain logic that can reorder instructions

MODERN CPU DESIGN

Familiar components of the CPU

- PC
- ► CU

- Increase performance in a computer system is to increase the number of CPUs
 - Sharing some or all of the system's memory and I/O facilities
 - Multiprocessor systems
 - Multicore processors multiple CPU processors are supplied within a single integrated circuit

- Each CPU processes its own assigned sequence of program instructions independently
 - Dual-core processor effectively doubles the number of instructions?
 - Quad-core processor would quadruple the rate, and so forth?
- Increasing the number of CPUs might lead to an increase in overheads
- ▶ The program segments will be dependent

- Benefits of multiprocessing capabilities
 - Increased computation power at a lower cost
 - Equivalent processing power can be reached at lower clock speed
 - Programs can be subdivided to independent pieces
 - Higher throughput
- Assignment of work to the various processors is the responsibility of the operating system
 - Threads

- Configuring a multiprocessing systems
 - Master-slave multiprocessing: master CPU manages the system, controls all resources and scheduling and execute the operating system.
 - Symmetrical multiprocessing: each CPU has identical access to the operating system and system resources

SYNERGY

 CPU, memory, I/O modules and the connections are optimized to maximize computer system performance

COMPUTER SYSTEMS

A more realistic modern computer system layout

COMPUTER SYSTEMS

UNIVERSAL SERIAL BUS

CLUSTERS

- ▶ A group of loosely coupled computers configured to work together as a unit
 - Multiprocessor vs. Cluster?
- Reasons for using clusters
 - Increasing available computing power
 - Create fault tolerant systems
 - To create high availability systems
 - Load balancing

CLUSTERS

HIGH PERFORMANCE COMPUTING

- For tasks that need a large amounts of computing power
 - Supercomputers
 - Used for complex scientific computations such as quantum mechanics, weather forecasting, molecular modeling etc.

THANK YOU

REFERNCES

Chapter 8 and II: The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach -4th Edition, Irv Englander -John Wiley and Sons