Model Comparison and Inference, Hierarchical Models

February 14, 2022

Regression vs ANOVA

- Regression: find coefficients for $y = \beta_0 + \beta_1 x_1 + \cdots$ that minimize the sum of squared differences between predicted y (\hat{y}) and actual y
- ANOVA: determine whether the estimate of variability in a sample based on group membership differs from the overall variability
- When x_i are discrete these two problems are mathematically equivalent
- Regression can also handle x_i that are continuous variables

Additive model approach to ANOVA

Α	В	С	D
62	63	68	56
60	67	66	62
63	71	71	60
59	64	67	61
	65	68	63
	66	68	64
			63
			59
	-		

 \bar{y}_A =61 \bar{y}_B =66 \bar{y}_C =68 \bar{y}_D =61 \bar{y} =64

24 df

Α	В	С	D
64	64	64	64
64	64	64	64
64	64	64	64
64	64	64	64
	64	64	64
	64	64	64
			64
			64

Α	В	C	D
-3	+2	+4	-3
-3	+2	+4	-3
-3	+2	+4	-3
-3	+2	+4	-3
	+2	+4	-3
	+2	+4	-3
			-3
			-3

column effect

Α	В	C	D
+1	-3	0	-5
-1	+1	-2	+1
+2	+5	+3	-1
-2	-2	-1	0
	-1	0	+2
	0	0	+3
			+2
			-2
		·	

grand mean

1 df

228 3 df

 $F_{3,20} = \frac{76}{5.6} = 13.57$ $\sigma_{\tau}^2 = \frac{228}{3} = 76$

112 20 df

error

$$\sigma_{\varepsilon}^2 = \frac{112}{20} = 5.6$$

Regression with categorical <- dummy coding

,	data1 %>%	select(aroup	obj_time,	aroup R	aroup D)	%>%	print	(n=Tni	F)
	A tibble:		g. oup,	obj_cime,	g. oap_b.	gi oup_b)	102 10	pi tiic	(11-2111	
			roup_B	group_C g	roup_D					
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>					
1	Α	62	Ø	0	0					
2	A	60	0	Ø	Ø					
3	Α	63	0	Ø	0					
4	Α	59	Ø	0	0					
5	В	63	1	Ø	0					
6	В	67	1	0	0					
7	В	71	1	0	0					
8	В	64	1	0	0					
9	В	65	1	0	0					
10	В	66	1	0	0					
11		68	0	1	0					
12		66	Ø	1	0					
13		71	0	1	0					
14		67	Ø	1	0					
15		68	0	1	0					
16		68	0	1	0					
17		56	Ø	0	1					
18		62	0	0	1					
19		60	0	Ø	1					
20		61	0	0	1					
21		63	0	0	1					
22		64	0	0	1					
23		63	0	0	1					
24	D	59	0	0	1					

Regression with categorical <- dummy coding

```
> lm(obj_time ~ group_B + group_C + group_D, data = data1) %>% summary()
Call:
lm(formula = obj_time ~ group_B + group_C + group_D, data = data1)
Residuals:
   Min
          10 Median
 -5.00 -1.25 0.00 1.25 5.00
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.100e+01 1.183e+00 51.554 < 2e-16 ***
           5.000e+00 1.528e+00 3.273 0.003803 **
group_B
          7.000e+00 1.528e+00 4.583 0.000181 ***
group_C
           2.991e-15 1.449e+00 0.000 1.000000
aroup_D
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.366 on 20 degrees of freedom
Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212
F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05
```

```
> lm(obj_time ~ group, data = data1) %>% summary()
Call:
lm(formula = obj_time ~ group, data = data1)
Residuals:
  Min
          10 Median
 -5.00 -1.25 0.00 1.25 5.00
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.100e+01 1.183e+00 51.554 < 2e-16 ***
           5.000e+00 1.528e+00 3.273 0.003803 **
groupB
          7.000e+00 1.528e+00 4.583 0.000181 ***
groupC
           2.991e-15 1.449e+00 0.000 1.000000
groupD
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 2.366 on 20 degrees of freedom
Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212
F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05
```

Repeated measures

Conceptually this is just another kind of dummy coding

 Critical to model the dependence in the residuals correctly – expect observations from same subject / unit of analysis to be more similar to each other than observations from different subjects

main effect of group: collapse across trial

main effect of <u>trial</u>: difference across trials irrespective of group membership

	linear trend	quadratic trend	cubic trend
trial == 1	-3	-1	-1
trial == 2	-1	1	3
trial == 3	1	1	-3
trial == 4	3	-1	1

dummy coding for polynomial contrasts

cannot get any of these from linear combination of others (add/subtract)

dot products of these vectors = 0 – they are <u>uncorrelated</u> (orthogonal) -3*-1+-1*1+1*1+3*-1=3+-1+1+-3=0

elements of each add to zero = net influence on predicted value is 0

```
> lmer(value ~ group + trial + (1|subject_ID), data = long_data) %>% summary()
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group + trial + (1 | subject_ID)
  Data: long_data
REML criterion at convergence: 173.1
Scaled residuals:
    Min
             1Q Median
                                     Max
                              3Q
-1.92537 -0.61932 0.07798 0.76722 1.52659
Random effects:
                     Variance Std.Dev.
 Groups
           Name
 subject_ID (Intercept) 0.3770 0.6140
 Residual
                     0.6372 0.7982
Number of obs: 64, groups: subject_ID, 16
Fixed effects:
           Estimate Std. Error
                                  df t value Pr(>|t|)
(Intercept) 0.45774 0.25892 14.00000 1.768 0.098860 .
           groupexp
trial.L
           0.78827
                     0.19956 45.00000 3.950 0.000272 ***
trial.0
           -0.09424
                     0.19956 45.00000 -0.472 0.639053
trial.C
           0.18340
                     0.19956 45.00000 0.919 0.362982
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
        (Intr) gropxp tril.L tril.Q
groupexp -0.707
trial.L 0.000 0.000
trial.Q 0.000 0.000 0.000
trial.C 0.000 0.000 0.000 0.000
```

```
> lm(value ~ group + linear_trend + quad_trend + cubic_trend, data = long_data) %>% summary()
Call:
lm(formula = value ~ group + linear_trend + quad_trend + cubic_trend,
   data = long_data)
Residuals:
   Min
            10 Median
                           3Q
                                 Max
-2.4662 -0.5974 0.1425 0.7078 1.8072
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.45774 0.17634 2.596 0.01189 *
            0.79226
                      0.24938 3.177 0.00237 **
groupexp
linear_trend 0.17626
                       0.05576 3.161 0.00248 **
                     0.12469 0.378 0.70688
auad_trend
            0.04712
cubic_trend 0.04101 0.05576 0.735 0.46499
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9975 on 59 degrees of freedom
Multiple R-squared: 0.2604, Adjusted R-squared: 0.2102
F-statistic: 5.192 on 4 and 59 DF, p-value: 0.001188
```

```
lmer(value ~ group + trial + (1|subject_ID), data = long_data) %>% summary()
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group + trial + (1 | subject_ID)
   Data: long_data
REML criterion at convergence: 173.1
Scaled residuals:
    Min
              1Q Median
                                3Q
                                       Max
-1.92537 -0.61932 0.07798 0.76722 1.52659
Random effects:
           Name
                       Variance Std.Dev.
 Groups
 subject_ID (Intercept) 0.3770 0.6140
 Residual
                       0.6372 0.7982
Number of obs: 64, groups: subject_ID, 16
Fixed effects:
           Estimate Std. Error
                                    df t value Pr(>|t|)
(Intercept) 0.45774
                     0.25892 14.00000 1.768 0.098860
            0.79226
                      0.36617 14.00000 2.164 0.048272 *
groupexp
trial.L
            0.78827
                      0.19956 45.00000 3.950 0.000272 ***
trial.0
           -0.09424
                      0.19956 45.00000 -0.472 0.639053
trial.C
            0.18340
                      0.19956 45.00000 0.919 0.362982
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
         (Intr) gropxp tril.L tril.Q
groupexp -0.707
trial.L 0.000 0.000
trial.Q 0.000 0.000 0.000
trial.C 0.000 0.000 0.000 0.000
```

```
> lm(value ~ group + linear_trend + quad_trend + cubic_trend, data = long_data) %>% summary()
Call:
lm(formula = value ~ group + linear_trend + quad_trend + cubic_trend,
   data = long_data)
Residuals:
   Min
            10 Median
-2.4662 -0.5974 0.1425 0.7078 1.8072
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.45774
                     0.17634 2.596 0.01189 *
             0.79226
                       0.24938
                               3.177 0.00237 **
groupexp
linear_trend 0.17626
                       0.05576 3.161 0.00248 **
auad_trend
            0.04712
                       0.12469 0.378 0.70688
cubic_trend 0.04101
                       0.05576 0.735 0.46499
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9975 on 59 degrees of freedom
Multiple R-squared: 0.2604, Adjusted R-squared: 0.2102
F-statistic: 5.192 on 4 and 59 DF, p-value: 0.001188
```

Imer vs Im: estimate of group effect is the same but p-values differ

Repeated measures

```
> lm(value ~ group + linear_trend + quad_trend + cubic_trend, data = long_data_3) %>% summary()
Call:
lm(formula = value ~ group + linear_trend + quad_trend + cubic_trend,
   data = long_data_3
Residuals:
   Min
            10 Median
-2.2397 -0.7877 0.2430 0.7054 1.8047
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       0.18326 2.318 0.0241 *
(Intercept) 0.42479
             1.61337
                      0.25924 6.224 6.17e-08 ***
groupexp
                       0.05796 5.452 1.11e-06 ***
linear_trend 0.31601
auad trend
             0.01156
                       0.12962
                                 0.089 0.9292
cubic_trend 0.03494
                       0.05794 0.603 0.5489
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.02 on 57 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.541,
                              Adjusted R-squared: 0.5087
F-statistic: 16.79 on 4 and 57 DF, p-value: 3.786e-09
```

```
> lmer(value ~ group * trial + (1|subject_ID), data = long_data_3) %>% summary()
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group * trial + (1 | subject_ID)
   Data: long_data_3
REML criterion at convergence: 164.4
Scaled residuals:
     Min
               1Q Median
 -2.02285 -0.66654 0.08559 0.65051 1.43750
Random effects:
 Groups
           Name
                       Variance Std.Dev.
 subject_ID (Intercept) 0.3768 0.6138
 Residual
                       0.6331 0.7957
Number of obs: 62, groups: subject_ID, 16
Fixed effects:
                 Estimate Std. Error
                                         df t value Pr(>|t|)
(Intercept)
                  0.4366
                             0.2603 14.2954 1.678 0.115162
aroupexp
                  1.6172
                             0.3681 14.2954 4.394 0.000583 ***
trial.L
                             0.2825 40.3892 3.273 0.002187 **
                  0.9246
trial.0
                 -0.1462
                             0.2873 40.6252 -0.509 0.613691
                                            1.062 0.294667
trial.C
                  0.3101
                             0.2921 40.8460
groupexp:trial.L 1.0087
                             0.4064 40.6252 2.482 0.017282 *
groupexp:trial.Q 0.2539
                             0.4064 40.6252 0.625 0.535648
                             0.4064 40.6252 -0.645 0.522869
groupexp:trial.C -0.2619
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Repeated measures

```
· lm(value ~ group + linear_trend + quad_trend + cubic_trend, data = long_data_3) %>% summary()
Call:
lm(formula = value ~ group + linear_trend + quad_trend + cubic_trend,
    data = long_data_3)
Residuals:
   Min
            10 Median
-2.2397 -0.7877 0.2430 0.7054 1.8047
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
           0.42479
                       0.18326 2.318 0.0241 *
             1.61337
                       0.25924 6.224 6.17e-08 ***
groupexp
linear_trend 0.31601
                       0.05796 5.452 1.11e-06 ***
auad trend
             0.01156
                       0.12962
                                 0.089 0.9292
cubic_trend 0.03494
                       0.05794
                                0.603 0.5489
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.02 on 57 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.541, Adjusted R-squared: 0.5087
F-statistic: 16.79 on 4 and 57 DF, p-value: 3.786e-09
```

Missing data: Im throws out the whole case Imer adjusts for different N at each trial

```
· lmer(value ~ group * trial + (1|subject_ID), data = long_data_3) %>% summary()
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: value ~ group * trial + (1 | subject_ID)
   Data: long_data_3
REML criterion at convergence: 164.4
Scaled residuals:
     Min
               1Q Median
 -2.02285 -0.66654 0.08559 0.65051 1.43750
Random effects:
 Groups
            Name
                       Variance Std.Dev.
 subject_ID (Intercept) 0.3768 0.6138
 Residual
                       0.6331 0.7957
Number of obs: 62, groups: subject_ID, 16
Fixed effects:
                 Estimate Std. Error
                                         df t value Pr(>|t|)
(Intercept)
                  0.4366
                             0.2603 14.2954
                                             1.678 0.115162
groupexp
                  1.6172
                             0.3681 14.2954 4.394 0.000583 ***
trial.L
                             0.2825 40.3892 3.273 0.002187 **
                  0.9246
trial.0
                  -0.1462
                             0.2873 40.6252 -0.509 0.613691
trial.C
                  0.3101
                             0.2921 40.8460
                                              1.062 0.294667
groupexp:trial.L 1.0087
                             0.4064 40.6252 2.482 0.017282 *
groupexp:trial.Q 0.2539
                             0.4064 40.6252 0.625 0.535648
groupexp:trial.C -0.2619
                             0.4064 40.6252 -0.645 0.522869
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Getting those p-values

- emmeans package
 - https://timmastny.rbind.io/blog/tests-pairwise-categorical-mean-emmeans-contrast/
 - https://aosmith.rbind.io/2019/03/25/getting-started-with-emmeans/
 - https://cran.r-project.org/web/packages/emmeans/vignettes/basics.html
- Generates estimated marginal means for effects weighted means based on cell sizes with appropriate confidence intervals

emmeans

emmeans

emmeans

if you are interested in where significant changes occur as trial factor increases, this is one way to get that information

```
> ld3model %>% emmeans(consec ~ trial | group, adjust = "none")
$emmeans
group = control:
 trial emmean
                SE
                     df lower.CL upper.CL
       -0.542 0.337 40.0
                          -1.223
                                     0.14
        0.556 0.356 43.4
                          -0.162
                                     1.27
        0.395 0.337 40.0
                          -0.287
                                     1.08
        0.834 0.337 40.0
                           0.152
                                     1.52
group = exp:
 trial emmean
                     df lower.CL upper.CL
                SE
        0.800 0.337 40.0
                           0.118
                                     1.48
        1.600 0.337 40.0
                           0.918
                                     2.28
 3
       2.400 0.337 40.0
                           1.718
                                     3.08
        3.391 0.356 43.4
                           2.673
                                     4.11
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
$contrasts
group = control:
 contrast estimate
                     SE
                          df t.ratio p.value
            1.098 0.402 40.6 2.732 0.0093
 2 - 1
            -0.162 0.402 40.6 -0.402 0.6898
 4 - 3
             0.439 0.385 40.0 1.140 0.2612
group = exp:
                          df t.ratio p.value
 contrast estimate
                     SE
 2 - 1
            0.800 0.385 40.0 2.077 0.0442
            0.800 0.385 40.0 2.077 0.0442
 3 - 2
 4 - 3
             0.991 0.402 40.6 2.466 0.0180
```

Degrees-of-freedom method: kenward-roger

20220214 repeated.R

- anova (model1, model2) will evaluate the difference in residual sums of squares between two models
- a significant test statistic indicates that the second model accounts for more variance / "fits better" than the first model
- this can be useful in cases where you want to evaluate complex interactions or whether some factors have an influence "over and above" that of other factors
- this is also a better approach when you are analyzing GLMs

```
> ld3model <- lmer(value ~ group * trial + (1|subject_ID), data = long_data_3)</pre>
> ld3model_reduced <- lmer(value ~ group + trial + (1|subject_ID), data = long_data_3) # main effects, no interacti
ons
> anova(ld3model, ld3model_reduced)
refitting model(s) with ML (instead of REML)
Data: long_data_3
Models:
ld3model_reduced: value ~ group + trial + (1 | subject_ID)
ld3model: value ~ group * trial + (1 | subject_ID)
                               BIC logLik deviance Chisq Df Pr(>Chisq)
                        AIC
ld3model_reduced 7 176.08 190.97 -81.038 162.08
ld3model
                  10 172.92 194.19 -76.460 152.92 9.1557 3
                                                                 0.02729 *
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
> ld3model <- lmer(value ~ group * trial + (1|subject_ID), data = long_data_3)</pre>
> ld3model_reduced <- lmer(value ~ group + trial + (1|subject_ID), data = long_data_3) # main effects, no interacti
ons
> anova(ld3model, ld3model_reduced)
refitting model(s) with ML (instead of REML)
Data: long_data_3
Models:
ld3model_reduced: value ~ group + trial + (1 | subject_ID)
ld3model: value ~ group * trial + (1 | subject_ID)
                               BIC logLik deviance Chisq Df Pr(>Chisq)
ld3model_reduced 7 176.08 190.97 -81.038 162.08
ld3model
                  10 172.92 194.19 -76.460 152.92 9.1557 3
                                                                 0.02729 *
Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Akaike information criterion Bayesian information criterion Log likelihood

```
> ld3model <- lmer(value ~ group * trial + (1|subject_ID), data = long_data_3)</pre>
> ld3model_reduced <- lmer(value ~ group + trial + (1|subject_ID), data = long_data_3) # main effects, no interacti
ons
> anova(ld3model, ld3model_reduced)
refitting model(s) with ML (instead of REML)
Data: long_data_3
Models:
ld3model_reduced: value ~ group + trial + (1 | subject_ID)
ld3model: value ~ group * trial + (1 | subject_ID)
                              BIC logLik deviance Chisq Df Pr(>Chisq)
                npar
                  7 176.08 190.97 -81.038
ld3model_reduced
                                           162.08
ld3model
                  0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Signif. codes:
                                Akaike information criterion
                                Bayesian information criterion
                                                           difference in deviance (-2 * log likelihood)
     number of parameters
                                Log likelihood
                                                                  distributed as chi-squared
```

AIC ~ amount of information lost by model relative to data

20220214_repeated.R