Probabilities of multilocus genotypes in SIB recombinant inbred lines

Kamel Jebreen, Marianyela Petrizzelli, Olivier C. Martin

1 Introduction

Set the working directory to the emplacement of the source file "PMG_SIB_RILs.R" and load it to the working environment. You can download the "PMG_SIB_RILs.R" file from https://github.com/olivier-c-martin/PMG_SIB_RILs.git,

```
setwd("the directory")
source("PMG_SIB_RILs.R")
```

Then load the required packages:

```
library(eply)
library(rlist)
library(rmarkdown)
```

2 Input

This code just needs as inputs the number of loci L_loci and the recombination rates for successive intervals which is a vector of length L_loci - 1. For example, for L_loci=3

```
L_loci = 3
recRates = c(0.4, 0.2)
```

3 The listing of variables used (all Q's and all non-equivalent Q's)

To gain time we find the list of inheritance indices (all Q's) that contribute in the system (till L_loci =10)

```
allQs = list.load("allVarTillL=10.rds")
allvpForallup = list.load("allContrVarTillL=10.rds")

nonEquivalentQs = allQs[[L_loci]]$symQs
allQsMappedToNonEquivalent = allQs[[L_loci]]$nonsymQs
allvpForallup = allvpForallup[[L_loci]]
```

Or you can reconstruct all these objects by direct calculation:

```
allQs = systemVar(L_loci)
```

##

1. Find the inheritance indices that are contributing to this system, please wait: \dots

```
Note that the non-equivalent Q's are nonEquivalentQs = allQs\symQs
```

and the 4^L Q's are mapped to the non-equivalent ones via

```
allQsMappedToNonEquivalent = allQs$indicesAllQs
Note that the first equation of the linear system is given by the fact that \sum (Q's) = 1
  multiplicityQs = table(allQsMappedToNonEquivalent)
This means that
\#\# \ 4Q(000) + 4Q(001) + 8Q(002) + 4Q(010) + 4Q(011) + 8Q(012) + 8Q(020) + 8Q(021) + 8Q(022) + 8Q(023) = 1
Now determine the list of all v' given the u' to be used to construct the self-consistent equations.
  allvpForallup = allvprimeForEachuprime(nonEquivalentQs)
##
## 2. calculate all the the contributing v_prime values contributing to the self-consistent equation f
## 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
     Find the system AQ = B
4
The analytic expressions of the system of linear equations to be solved are
    analyticEquations = twoWayRILsib(L_loci, nonEquivalentQs, allQsMappedToNonEquivalent, allvpForallup
##
##
    # ===== 3 - Loci ===== #
##
## 3. The First equation in the system is:
\#\# 4Q(000) + 4Q(001) + 8Q(002) + 4Q(010) + 4Q(011) + 8Q(012) + 8Q(020) + 8Q(021) + 8Q(022) + 8Q(023) = 1
##
   4. Computing the self-consistent equations: ...
## 1 of 9
2 of 9
3 of 9
4 of 9
5 of 9
6 of 9
7 of 9
8 of 9
9 of 9
## done
Hence, the matrix of equations is
  Amatrix = analyticEquations$A
  Amatrix[1:3,1:2]
##
         000
                                        001
## SumQs "4"
                                        "4"
         "2*(0.5)*(1-r12)*(1-r23)-1" "0"
## 000
         "2*(0.5)*(1-r12)*(r23)"
and, the coefficient matrix is
  Bvector = analyticEquations$B
```

[1] 1 0 0

Bvector[1:3]

Now substitute the numerical values of the recombination rates

```
numericAmatrix = evalMatrix(A = Amatrix, recRates = recRates)
##
## 5. Evaluate the input matrix, substituting the numerical values of the recombination rates:
## r12 = 0.4
                 r23 = 0.2
                                r13 = 0.44
For example,
  numericAmatrix[1:3,1:2]
         [,1] [,2]
##
## [1,] 4.00
## [2,] -0.52
                 0
## [3,] 0.12
Hence, the solution for the N_Q(L) unknown (non-equivalent) Q's is
  solution = solve(numericAmatrix, Bvector)
  names(solution) = nonEquivalentQs
 solution
##
                     001
                                002
                                           010
                                                      011
                                                                 012
## 0.03413811 0.01322519 0.01308306 0.01125016 0.02666891 0.01045223
                     021
                                022
## 0.01164653 0.01027273 0.02641467 0.01048960
This means,
   Q(0,0,0) = 0.03413811, Q(0,0,1) = 0.01322519, Q(0,0,2) = 0.01308306
## Q(0,1,0) = 0.01125016, Q(0,1,1) = 0.02666891, Q(0,1,2) = 0.01045223
## Q(0,2,0) = 0.01164653, Q(0,2,1) = 0.01027273, Q(0,2,2) = 0.02641467
## Q(0,2,3) = 0.0104896
```

5 Use the Q's to compute the RIL

We go from the Q's (RIL IBD probabilities) to RIL multilocus genotype probabilities by computing the 2^L probabilities of multilocus SIB RIL genotypes

```
allProbabilitiesOfRilGenotypes= QsToGenotypeProbabilities(L_loci, solution)

##

## 6. Going from Q's (RIL IBD probabilities) to RIL multilocus genotype probabilities:

## 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

allProbabilitiesOfRilGenotypes

## [1] 0.17056473 0.09414115 0.08767703 0.14761709 0.14761709 0.08767703

## [7] 0.09414115 0.17056473

Note that the sum of these probabilities should be one

sumAllProbabilities = sum(allProbabilitiesOfRilGenotypes)

sumAllProbabilities

## [1] 1
```

"" [1] 1

For more details see (Jebreen et al., 2019).

Bibliography

Jebreen, K., Petrizzelli, M., and Martin, O. C. (2019). Probabilities of multilocus genotypes in sib recombinant inbred lines. Statistical Genetics and Methodology, a section of the journal Frontiers in Genetics (Submitted).