KØBENHAVNS UNIVERSITET

Tosidet variansanalyse

Anders Tolver Institut for Matematiske Fag

Dagens program

Tosidet variansanalyse (ANOVA)

- Additive model (uden vekselvirkning)
- Model med vekselvirkning
- Forskel på additive effekter og vekselvirkning
- Test for vekselvirkning
- Forskellige parametriseringer (primært af den additive model)

Generel info:

Det er ekstremt vigtigt, at I lærer at løse standardopgaver hurtigt og uden hjælp!

Gå i træning nu og træk på de mange hjælpelærere ...

- Afleveringsopgave til onsdag den 12. oktober
- Gamle eksamensopgaver: Kør selv analyserne hvis der er data
- HS-opgaver minder også om kommende eksamensopgaver

Overblik

Vi skal have "udfyldt" følgende skema over modeller (rækker) og statistiske begreber (søjler):

	Intro	Model	$Est. {+} SE$	ΚI	Test	Kontrol	Præd.
En stikprøve	✓	✓	√	✓	✓	✓	✓
Ensidet ANOVA	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lineær regr.	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
To stikprøver	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Multipel regr.	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Tosidet ANOVA	nu	nu	nu	nu	nu	nu	nu
Blandede modeller							

Tosidet ANOVA uden vekselvirkning

Eksempel: Højde på studieretninger

Spørgeskema med studerende på Statistisk Dataanalyse 2017: bl.a. info om studieretning og højde.

- Svar fra 50 BB + 42 HV + 31 JØ + 31 NR + 2 andre. Skipper de "2 andre".
- ullet Der mangler desuden højde for en mindre antal studerende ightarrow n=152

Eksempel: Højde på studieretninger

Spørgeskema med studerende på Statistisk Dataanalyse 2017: bl.a. info om studieretning og højde.

- Svar fra 50 BB + 42 HV + 31 JØ + 31 NR + 2 andre. Skipper de "2 andre".
- ullet Der mangler desuden højde for en mindre antal studerende ightarrow n=152

Spørgsmål: Er den gennemsnitlige højde forskellig på studierne?

- Respons: Højde
- Forklarende variabel: Studieretning
- Lægger op til ensidet ANOVA

Ensidet ANOVA

```
oneway <- lm(hojde ~ studie, data = useData)
onesample <- lm(hojde ~ 1, data = useData)
drop1(oneway, test = "F")
## Single term deletions
##
## Model:
## hojde ~ studie
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none>
                     11299 662.91
## studie 3 1185.2 12484 672.07 5.1745 0.001985 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```


Ensidet ANOVA

```
oneway <- lm(hojde ~ studie, data = useData)
onesample <- lm(hojde ~ 1, data = useData)
drop1(oneway, test = "F")
## Single term deletions
##
## Model:
## hojde ~ studie
## Df Sum of Sq RSS AIC F value Pr(>F)
                      11299 662.91
## <none>
## studie 3 1185.2 12484 672.07 5.1745 0.001985 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```

Har vi nu vist at "unge menneskers studievalg har noget med deres højde at gøre"? Eller **er der noget vi har overset?**

Tosidet ANOVA

Køn påvirker (formentlig) både højde og studievalg.

Vores egentlige spørgsmål er nok snarere: Er der en forskel på højden på de fire studieretninger, selv hvis vi **justerer for køn?**

Tosidet ANOVA

Køn påvirker (formentlig) både højde og studievalg.

Vores egentlige spørgsmål er nok snarere: Er der en forskel på højden på de fire studieretninger, selv hvis vi **justerer for køn?**

Ny analyse:

- Respons: Højde
- Forklarende var. Studieretning og køn. Begge er kategoriske
- Tosidet ANOVA

Check modelskemaet.

Statistisk model

Model for **tosidet ANOVA uden vekselvirkning**, kaldes også den **additive model** for tosidet ANOVA:

$$\mathsf{højde}_i = \alpha_{\mathsf{studie}_i} + \beta_{\mathsf{kon}_i} + e_i$$

hvor e_i 'erne som sædvanlig er uafhængige $N(0, \sigma^2)$

Parametre:

- Et α per studie: $\alpha_{J\emptyset}$, α_{NR} , α_{HV} , α_{BB}
- Et β per køn: β_M og β_K
- ullet Residualspredning σ

Additiv tosidet ANOVA

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

Additiv tosidet ANOVA

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

R: Tilføj leddene til 1m, med + imellem:

```
twoway.add <- lm(hojde ~ studie + kon, data=useData)</pre>
```

NB. Det er lidt sværere at bestemme antal frihedsgrader — men det klarer R heldigvis for os.

Additiv tosidet ANOVA

Vi kan allerede det hele: Estimation, modelkontrol, hypotesetest, konfidens- og prædiktionsintervaller fra uge 3–4.

R: Tilføj leddene til 1m, med + imellem:

```
twoway.add <- lm(hojde ~ studie + kon, data=useData)
```

NB. Det er lidt sværere at bestemme antal frihedsgrader — men det klarer R heldigvis for os.

Hvad nu?

- Modelkontrol: Se dagens R-materiale
- Fortolkning af parameterestimater
- Test for studieretning når vi justerer for køn

$For tolkning\ af\ parameter estimater$

twoway.add <- lm(hojde ~ studie, data = useData)

Se også dagens R-program

R vælger en **referencegruppe for hver variabel**. Her: BB og kvinder.

Følgende estimater anigves:

- "Intercept": Estimeret middelværdi gives for kombinationen af de to referencer, altså for kvindelige BB-studerende
- Estimerede forskelle mellem de andre studieretninger og BB
- Statistic DEstimeret forskel mellem mænd og kvinder

Spørgsmål

- Estimat for gennemsnitshøjde blandt kvindelige BB-stud.?
- Estimat for gennemsnitshøjde blandt mandlige BB-stud.?
- Estimat for gennemsnitshøjde blandt mandlige JØ-stud.?
- Hvilket studie estimeres til at have de højeste studerende (når der er korrigeret for køn)?
- Estimat for σ ?
- Antal frihedsgrader? Er det mærkeligt?
- Hvordan skal p-værdierne fortolkes?

Additive effekter vs. vekselvirkning

Prisskilt fra isbod

•	1 kugle1	5
•	2 kugler20	0
•	3 kugler2	3
•	1 kugle med guf19	9
•	2 kugler med guf24	4
•	3 kugler med guf2	7

To ækvivalente prisskilte

Prisskilt 1:

•	1	kugle15
•	2	kugler20
•	3	kugler23
•	1	kugle med guf 19

- 2 kugler med guf24
- 3 kugler med guf27

Prisskilt 2:

•	1	kugle,	uden	guf				15
	_	Rugic,	uucii	5 u i	•	•	•	

• 2 kugler												+5
------------	--	--	--	--	--	--	--	--	--	--	--	----

med	guf												+4	
-----------------------	-----	--	--	--	--	--	--	--	--	--	--	--	----	--

To ækvivalente prisskilte

Prisskilt 1:

- 1 kugle15
- 1 | | | | | | |
- 1 kugle med guf 19
- 2 kugler med guf24
- 3 kugler med guf27

Prisskilt 2:

- 1 kugle, uden guf ... 15
- 2 kugler+5
- 3 kugler+8
- med guf+4

Seks forskellige is at vælge imellem, men "effekterne" af guf og størrelse indgår additivt. Guf koster altid 4 kr ekstra.

Dermed kan priserne beskrives med kun fire parametre (1+2+1)

Eksempel med højdedata

Tilsvarende for den additive model for højdedata

- Der er otte kombinationer af studieretning og køn
- Men kun 1+3+1=5 parametre i den additive model: En for ref-gruppen, tre for studieretningsforskelle, en for kønsforskel.

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

 Is: Ingen vekselvirkning mellem guf og kugler: Guf kostede 4 kr uanset antal kugler.

Ækvivalent: Prisen for ekstra kugler er den samme uanset om der skal guf på eller ej.

Vekselvirkning

Når effekten af én variabel af niveuaet af en anden variabel, så siger man at der er **vekselvirkning** mellem de to variable.

Engelsk: Interaction

- Is: Ingen vekselvirkning mellem guf og kugler: Guf kostede 4 kr uanset antal kugler.
 - Ækvivalent: Prisen for ekstra kugler er den samme uanset om der skal guf på eller ej.
- Højde: Antog at kønsforskellen er den samme på alle studier.
 - Ækvivalent: Forskel ml. studier er den samme for begge køn.

Prisskilte uden/med vekselvirkning

Nye priser giver rabat på guf hvis man køber store is:

Gam	le priser:
•	1 kugle15
•	2 kugler20
•	3 kugler23
•	$1 \; \text{kugle med guf} \; \dots 19$
•	2 kugler med guf 24

• 3 kugler med guf .. 27

Nye priser:

•	1 kugle	15
•	2 kugler	20
•	3 kugler	23
•	1 kugle med guf	19

•	2	kugler	med	guf	22

3 kugler med guf .. 23

Prisskilte uden/med vekselvirkning

Nye priser giver rabat på guf hvis man køber store is:

Gamle priser:	Ny
• 1 kugle15	
• 2 kugler20	
• 3 kugler23	
• 1 kugle med guf19	
• 2 kugler med guf24	
• 3 kugler med guf 27	

Nye priser:

•	1 kugle						. 15	
•	2 kugler						. 20	

- 3 kugler23
- 1 kugle med guf ...19
- 2 kugler med guf .. 22
- 3 kugler med guf .. 23

Nu er der vekselvirkning/interaktion! Prisen for guf afhænger af antal kugler: 4/2/0 kr ved 1/2/3 kugler.

Det kræver seks parametre at beskrive den nye prisstruktur.

Vekselvirkningsgraf/interaktionsplot

Plottet visualiserer vekselvirkning. Kig efter **parallellitet:**

- ullet Parallelle profiler \leftrightarrow Ingen vekselvirkning
- Ikke-parallelle profiler \leftrightarrow Vekselvirkning

Vekselvirkningsgraf/interaktionsplot, forventede værdier

v = A

Tosidet ANOVA med vekselvirkning

Model med vekselvirkning

Modellen med vekselvirkning lægger **ingen restriktioner** på de otte middelværdier. Vi skriver

$$\mathsf{h}\mathsf{g}\mathsf{j}\mathsf{d}\mathsf{e}_i = lpha_{\mathsf{studie}_i} + eta_{\mathsf{kon}_i} + \gamma_{\mathsf{studie}_i,\mathsf{kon}_i} + e_i$$

eller blot

$$\mathsf{h}\mathsf{øjde}_i = \gamma_{\mathsf{studie}_i,\mathsf{kon}_i} + e_i$$

Dette svarer faktisk til en ensidet ANOVA efter den variabel der inddeler obs. i otte grupper.

Opskrivningen med græske bogstaver ikke så vigtig. Vigtigt:

- at forstå den konceptuelle forskel mellem de to modeller
- at kunne fortolke output/estimater fra R

Eksempel: Højde efter studieretning og køn

Ingen mandlige HV-studerende i datasættet:

- Lidt bøvlet når vi skal have vekselvirkning med \rightarrow vi dropper HV-studerende (selvom det faktisk ikke er nødvendigt)
- Datasættet useData2 indeholder data fra 110 studerende med højderegistreringer: 49 BB, 30 JØ, 31 NR.

Med vekselvirkning

```
useData2 <- filter(useData, !(studie == "Husdvrvidenskab") )
twoway.int <- lm(hojde ~ studie + kon + studie*kon, data=useData2)
round(summary(twoway.int)$coef, digits = 5)
##
                                  Estimate Std. Error
                                                       t value Pr(>|t|)
## (Intercept)
                                 167.76471
                                             1.09212 153.61443 0.00000
## studieJordbrugsøkonomi
                                 -0.45701
                                             2.07657 -0.22008 0.82624
## studieNaturressourcer
                                   1.66387
                                             2 02220 0 82280 0 41251
## konMand
                                  15 63529
                                             1.97388 7.92109 0.00000
## studieJordbrugsøkonomi:konMand
                                 -0.64887
                                             3.06611
                                                      -0.21163 0.83281
## studieNaturressourcer:konMand
                                             3.02956
                                                      -1.01132 0.31421
                                  -3.06387
```

Modellen med vekselvirkning:

- Hvorfor netop seks linjer med estimater?
- Estimat for BB, kvinder? For JØ, kvinder? For JØ, mænd?

Test for vekselvirkning

Er der faktisk vekselvirkning?

- Uformelt: Vekselvirkningsgraf/interaktionsplot
- Formelt: Hypotesetest

Vekselvirkningsgraf/interaktionsplot

- Gennemsnit plottes med profiler med den ene variabel på x-aksen og med profiler for niveauerne af den anden var.
- Er profilerne parallelle, på nær tilfældig variation?
- \bullet Parallelle \to tegn på at der ikke er vekselvirkning. Ikke-parallelle \to tegn på at der er vekselvirkning.
 - Under alle omstændigheder nyttig til at forstå samspillet.
- Svært at vurdere om ikke-parallellitet faktisk skyldes vekselvirkning eller blot tilfældig variation
- R: interaction.plot (se dagens R-kode)

Velselvirkningsgraf/interaktionsplot

- Profiler ser ganske parallelle ud, så næppe vekselvirkning
- Helt parallelle profiler på "den ene graf"

 ⇔ Helt parallelle profiler på "den anden graf"

Hypotesetest

Model uden vekselvirkning er et **specialtilfælde** af model med vekselvirkning \rightarrow de to modeller er nestede \rightarrow F-test.

- Hypotese, H_0 : Ingen vekselvirkning mellem studie og køn (dvs. kønseffekt den samme for alle studier, eller omvendt).
- Beskriver modellen med vekselv. faktisk data bedre end modellen uden vekselvirkning?
- Brug anova med de to modeller som argumenter, eller drop1 på model med vekselvirkning.

R: Hypotesetest ved brug af anova

```
twoway.add2 <- lm(hojde ~ studie + kon, data = useData2)
anova(twoway.add2, twoway.int)

## Analysis of Variance Table
##
## Model 1: hojde ~ studie + kon
## Model 2: hojde ~ studie + kon + studie * kon
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 106 4261.1
## 2 104 4217.4 2 43.7 0.5388 0.5851
```

summary(twoway.add2)\$coef

```
## Estimate Std. Error t value
## (Intercept) 168.1051102 0.9840758 170.8253621 3.13
## studieJordbrugsøkonomi -0.5349840 1.5058537 -0.3552696 7.2
## studieNaturressourcer 0.2530765 1.4865576 0.1702433 8.6
## konMand 14.5233067 1.2567448 11.5562892
```

otacistist bataanaryse 1, reasonage 0, manaa

Dias 30/38

Konklusion

Der er ikke signifikant vekselv. mellem studie og køn (p = 0.59)

Vi ser defor nærmere på R-output fra modellen uden vekselvirkning:

- Der er en sign. kønseffekt $(p \approx 0)$.
- Hvad kan vi aflæse om effekten/forskelle mellem studieretninger?
- Mænd estimeres til at være 14.5 cm (SE 1.26) højere end kvinder; 95% konfidensinterval (12.0, 17.0)

Diverse om vekselvirkning

Vekselvirkning ml. A og B siger ikke at der er sammenhæng mellem A og B, men at effekten af A på y afhænger af B.

Vi taler om **hovedeffekter** og **vekselvirkning** af de to variable:

- Ofte ligger den primære interesse i hovedeffekterne, men sommetider er vekselvirkningen det primære
- Inddrag kun vekselvirkning hvis det giver faglig mening

Vekselvirkningsmodellen kræver **gentagelser:** Kan ikke fittes hvis der kun er en obs. for hver kombination af de to variable.

Test for hovedeffekter

Test for studieretning når vi justerer for køn

Statistisk model:

$$\mathsf{højde}_i = \alpha_{\mathsf{studie}_i} + \beta_{\mathsf{kon}_i} + e_i$$

Hypotese:

$$H_0: \alpha_{J\emptyset} = \alpha_{NR} = \alpha_{BB}$$

Test for studieretning når vi justerer for køn

Statistisk model:

$$\mathsf{højde}_i = \alpha_{\mathsf{studie}_i} + \beta_{\mathsf{kon}_i} + e_i$$

Hypotese:

$$H_0: \alpha_{J\emptyset} = \alpha_{NR} = \alpha_{BB}$$

Testes med *F*-test. Flere metoder i R, men med samme resultat:

- Fit stat. model + model under hypotese og brug anova med de to modeller som argumenter. Hvad er nulmodellen her?
- drop1: Kan vi "droppe" hvert af leddene fra modellen?
- Brug ikke anova med kun en model som argument

Test for studieretning når vi justerer for køn: med drop1

```
twoway.add2 <- lm(hojde ~ studie + kon, data = useData2)
drop1(twoway.add2, test = "F")
## Single term deletions
##
## Model:
## hojde ~ studie + kon
##
         Df Sum of Sq RSS AIC F value Pr(>F)
## <none>
                     4261.1 410.25
## studie 2 9.9 4271.1 406.50 0.1233 0.8841
## kon 1 5368.6 9629.7 497.93 133.5478 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```


Konklusion

Der er **ikke** signifikant forskel på højden af studerende på de tre studieretninger når vi korrigerer for køn (p = 0.88).

Konklusion

Der er **ikke** signifikant forskel på højden af studerende på de tre studieretninger når vi korrigerer for køn (p = 0.88).

I denne situation var vi mest interesseret i den ene variabel (studieretning), men vi kunne også have undersøgt den anden:

- Hypotese, $H_0: \beta_M = \beta_K$
- Testes med *F*-test eller *t*-test. Begge giver $p \approx 0$
- Konklusion: Gennemsnitshøjden er forskellig for mænd og kvinder, også når vi korrigerer for studieretning

Uden vekselvirkning: Vi startede at sikre os, der er ikke var vekselvirkning ...

Opsummering

Tosidet ANOVA efter to kategoriske variable, A og B:

- Model uden vekselvirkning: A+B
- Model med vekselvirkning: A+B+A*B
- Faktisk mange versioner af modellen med vekselvirkning:
 A+B+A:B eller A*B eller A:B. Prøv selv!

Estimater:

- R vælger referencegrupper for A og B (i de fleste versioner). Så er interceptet estimatet for referencekombinationen.
- Estimat for andre kombinationer: Interceptestimatet plus de relevante estimater.

Diverse + kontrol af egen forståelse

Det giver ikke mening af tale om effekt**en** (bestemt form) af en variabel hvis den indgår i vekselvirkning med en anden:

- Fx kan man ikke bestemme estimatet for kønseffekten i modellen hvor studie og køn indgår med vekselvirkning
- Fx kan man ikke teste hovedeffekten af køn i modellen hvor studie og køn indgår med vekselvirkning

Tænk over følgende:

- Hvornår kan man bruge tosidet ANOVA?
- Hvad betyder det at der vekselvirkning mellem to variable?
- Hvordan fitter du en tosidet ANOVA (med/uden vekselvirkning)
 i R, og hvordan bruger du estimaterne?
- Hvordan undersøger man om de er vekselvirkning?

