

 W 	hv s	should	we	quote	error	bars	on	our	measurements?
-----------------------	------	--------	----	-------	-------	------	----	-----	---------------

• What distinguishes a sample mean from a population mean?

• What integrals should be calculated to give the expectation and variance?

• State the central limit theorem and explain what each of the terms in this theorem represent.

• What is the variance of the random variable $S = \frac{1}{N} \sum_{i=1}^{N} X_i$ if each of the X_i s in this sum is a independent and identically distributed random variable taken from a distribution with variance σ ?

• Explain in your own words why a sample mean gives an estimate of the true population mean.

• Give the expression that allows you to calculate an estimate of the true population from a sample taken from that population and explain how this result is derived.

Understanding statistical error bars

• We can calculate a weighted sample average as $\mu_S = \frac{1}{W} \sum_{i=1}^{N_S} w_i x_i$, where $W = \sum_{i=1}^{N_S} w_i$. In these expressions the x_i s are the values of the quantities in our samples and the w_i s are the sample weights. Show, using the maths from the video, that an appropriate estimator for the popupation variance for this weighted sample is $\sigma^2 = \frac{W}{W - \frac{W_2}{W}} \frac{1}{W} \sum_{i=1}^{N_S} w_i (x_i - \mu_S)^2$, where $W_2 = \sum_{i=1}^{N_S} w_i^2$.