Decimal to Binary

(I) to
$$(21)_2$$

Sol: $2 | 1 - 1$
 $2 | 5 - 1$
 $2 | 2 - 0$
 $2 | 1 - 1$

M.S.B $\rightarrow L.S.B$

(101)2

Shortest:

Binary to Decimal

$$(101)_{2} + 0 \quad (22)_{10}$$
 Shortcut:

$$3 \quad 2 \quad 1 \quad 0$$

$$1 \quad 0 \quad 1 \quad 1$$

$$(2^{3}\times1) + (2^{1}\times1) + (2^{1}\times1) + (2^{1}\times1)$$

$$= 8 + 0 + 2 + 1$$

$$= 11$$

Q1. $(22)_{10}$ to $(11)_{2}$ Sol: $(16)_{3}$ $(9)_{2}$ $(0)_{1}$ $(1)_{1}$ $(0)_{1}$ $(0)_{2}$ $(0)_{3}$ Q2. $(45)_{10}$ to $(11)_{2}$ Sol: $(45)_{10}$ to $(11)_{2}$ $(10)_{1}$ $(10)_{2}$ $(10)_{3}$

Boolean Algebra

Bituise operator	symble
AND	&
OR	
XOR	^
NoT	\sim

Truth table:

Input		Output						
A	В	AND	OR	XOR	NAND	NOR	XNOR	
0	0	0	0	0	3	3	3	
0	1	0	1	1	3	2	2	
0	2	0	2	2	3	1	1	
0	3	0	3	3	3	0	0	
1	0	0	1	1	3	2	2	
1	1	1	1	0	2	2	3	
1	2	0	3	3	3	0	0	

XOR

 $\begin{array}{c} 010110 \\ \downarrow 01100 \\ 10110 \\ 0110 \\ 01110$

Key observation; occurance of condoesn't matter.

Even number of 1, XOR = 00dd ,, 1, XOR = 1

000000 = 6

000001=1

0 11110 = 0

Bitwise Operations

Let,
$$a = 0$$
, $6 = 19$
 $a = 6 = 1$

Explanation:

 \bigcirc

0 1 (

$$(1)_2 = (1)_{10}$$

$$(1)_2 = (3)_{10}$$

Left-shift

Guess 11 lest-shift of 3 position:D

11 -> 22 -> 44

44

Guess the output !!

cout << (1<<5);

Right-shift

128 64 32 16 8 4 2 1

$$3 \leftarrow 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 3 \leftarrow 100$$

Key observation: 14 > 7 > 3

floor dixision by 2 at
each step

* to handle overflow, add 1LL...