Preliminares Matemáticos

Pedro Villar

Análisis Numérico - Primer Cuatrimestre 2024

Teorema del valor intermedio para funciones continuas

Sea $f:[a,b]\to\mathbb{R}$ una función continua. Entonces, para todo y entre f(a) y f(b), existe un c en [a,b] tal que f(c)=y.

Fig. 1: Teorema del valor intermedio.

Teorema del valor medio para funciones derivables

Sea $f:[a,b]\to\mathbb{R}$ una función derivable. Entonces, existe un c en [a,b] tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Fig. 2: Teorema del valor medio.

Teorema de Taylor

Si $f \in C^{(n)}[a,b]$ y existe $f^{n+1}(a,b)$ entonces para todo par $x,c \in [a,b]$ se tiene que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x),$$

donde

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}, \quad \xi \in (x,c).$$

Observación: tomando y = c, (x - c) = h y por lo tanto x = y + h, entonces

$$f(y+h) = f(y) + f'(y)h + \frac{f''(y)}{2}h^2 + \dots + \frac{f^{(n)}(y)}{n!}h^n + E_n(h).$$

para algún $c \in (y, y + h)$.

Teorema de Taylor del resto integral

Si $f \in C^{(n+1)}[a,b]$ entonces para todo par $x,c \in [a,b]$ se tiene que

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + R_{n}(x)$$

donde

$$R_n(x) = \frac{1}{n!} \int_c^x f^{(n+1)}(t)(x-t)^n dt.$$

Sucesión convergente

Una sucesión $\{x_n\}$ es convergente si existe un número L tal que para todo $\varepsilon > 0$ existe un $N \in \mathbb{N}$ tal que si $n \geq N$ entonces $|x_n - L| < \varepsilon$.

Convergencia lineal, superlineal y cuadrática

Sea $\{x_n\}$ una sucesión convergente a x_{ast} .

• Se dice que la sucesión $\{x_n\}$ tiene tasa de convergencia (al menos) **lineal** si existe una constante c tal que 0 < c < 1 y un $N \in \mathbb{N}$ tal que

$$|x_{n+1} - x_*| \le c|x_n - x_*|, \quad \forall n \ge N.$$

• Se dice que la tasa de convergencia es (al menos) superlineal si existe una sucesión $\{\epsilon_n\}$ que converge a 0 y un $N \in \mathbb{N}$ tal que

$$|x_{n+1} - x_*| \le \epsilon_n |x_n - x_*|, \quad \forall n \ge N.$$

• Se dice que la tasa de convergencia es (al menos) **cuadrática** si existe una constante positiva c y un $N \in \mathbb{N}$ tal que

$$|x_{n+1} - x_*| \le c|x_n - x_*|^2, \quad \forall n \ge N.$$

Notación o grande y o chica

Introducimos una notación para comparar sucesiones y funciones. Sean $\{x_n\}$ y $\{\alpha_n\}$ dos sucesiones.

• Decimos que

$$\{x_n\} = \mathcal{O}(\alpha_n)$$

si existe una constante C > 0 y un $r \in \mathbb{N}$ tal que

$$|x_n| \le C|\alpha_n|, \quad \forall n \ge r.$$

• Decimos que

$$\{x_n\} = O(\alpha_n)$$

si existe una sucesión $\{\varepsilon_n\}$ que converge a 0, con $\varepsilon_n \geq 0$ y un $r \in \mathbb{N}$ tal que $|x_n| \leq \varepsilon_n |\alpha_n|, \quad \forall n \geq r.$

Esta notación también se puede extender a funciones. Se dice que

$$f(x) = \mathcal{O}(g(x))$$
 cuando $x \to \infty$

si existe una constante C>0 y un $r\in\mathbb{R}$ tal que $|f(x)|\leq C|g(x)|,\quad \forall x\geq r.$ Análogamente, se dice que

$$f(x) = O(g(x))$$
 cuando $x \to \infty$

si
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$
.

Ejemplo de notación o con sucesiones

 $\frac{1}{n \cdot ln(n)} = O\left(\frac{1}{n}\right).$

 S_1

$$\frac{1}{n \cdot ln(n)} \le \varepsilon_n \left(\frac{1}{n}\right).$$

basta tomar $\varepsilon_n = \frac{1}{\ln(n)}$.

Ejemplo de notación O con funciones

 $\sqrt{x^2 + 1} = \mathcal{O}(x)$ si $x \to \infty$.

pues

$$\frac{\sqrt{x^2+1}}{x} = \sqrt{\frac{x^2+1}{x^2}} = \sqrt{1+\frac{1}{x^2}} \le C,$$

luego basta tomar C = 2 y r = 1.