Introduction à l'Apprentissage Artificiel

Plan

- Introduction à l'Induction
 - Exemples d'applications
 - □ Types d'apprentissage
 - Apprentissage Supervisé
 - Apprentissage par Renforcement
 - Apprentissage Non-supervisé
 - □ Théorie de l'Apprentissage (Artificiel)
- Quelles questions se pose-t-on?

Un domaine interdisciplinaire

Qu'est ce que l'apprentissage?

- Mémoire
 - Acquisition de connaissance
 - Neurosciences
 - A court terme (de travail)
 - rétention de 7±2 objets à la fois (exemple du joueur d'échec professionnel, plateau aléatoire, plateau structuré)
 - A long terme
 - Mémoire procédurale
 - » les enchaînements d'actions
 - Mémoire déclarative
 - » sémantique (concepts)
 - » épisodique (faits)
- Types d'apprentissage
 - Par coeur
 - Par règles
 - Par imitation / démonstration
 - Par essais-erreurs
- Réutilisation de la connaissance
 - Dans des situations similaires

APPRENTISSAGE ARTIFICIEL

<u>« Capacité d'un système à améliorer ses performances</u> via des interactions avec son <u>environnement</u> »

Une des familles essentielles de techniques pour l'Intelligence Artificielle (IA) : permet conception et/ou adaptation automatisée du modèle et/ou du comportement d'agents « intelligents »

Qu'est-ce que l'Apprentissage Artificiel?

```
Etant donné:
  □de l'expérience E,
   une classe de tâches T
  une mesure de performance P,
On dit d'un ordinateur qu'il apprend si
 sa performance sur une tâche de T
 mesurée par P
 augmente avec l'expérience E
```

Tom Mitchell, 1997

Termes associés à l'Apprentissage Artificiel

- Robotique
 - Automatic Google Cars, Nao
- Prédiction / prévision
 - □ Bourse, pics de pollution, ...
- Reconnaissance
 - □ faciale, parole, écriture, mouvements, ...
- Optimisation
 - vitesse du métro, voyageur de commerce,
- Régulation
 - Chauffage, trafic, température du frigo, ...
- Autonomie
 - □ Robots, prothèses de main
- Résolution automatique de problèmes
- Adaptation
 - préférences utilisateur, Robot sur terrain accidenté, ...
- Induction
- Généralisation
- Découverte automatique

•

Quelques applications

Apprendre à cuisiner

- Apprentissage par imitation / démonstration
- Apprentissage procédural (précision motrice)
- •Reconnaissance d'objets

DARPA Grand challenge (2005)

Applications > DARPA Grand Challenge

5 Finalistes

Reconnaissance de la route

Apprendre à étiqueter des images: Reconnaissance de visages

B. Heisele et al. | Computer Vision and Image Understanding 91 (2003) 6-21

15

Fig. 5. (a) The 14 components of our face detector. The centers of the components are marked by a white cross. The 10 components that were used for face recognition are shown in (b).

Face Recognition: Component-based versus Global Approaches" (B. Heisele, P. Ho, J. Wu and T. P<mark>o</mark>ggio) Computer Vision and Image Understanding, Vol. 91, No. 1/2, 6-21, 2003. <u>1</u>4

Combinaisons de composantes

Fig. 4. System overview of the component-based face detector using four components.

Prothèse de main

- Reconnaissance des signaux pronateurs et supinateurs
 - capteurs imparfaits
 - □ bruit des signaux
 - □ incertitude

Robot autonome sur Mars

1. 1- Des scénarios

Apprendre par coeur ? INEXPLOITABLE

→ Généraliser

Apprentissage supervisés

Comment coder les formes ?

Typologie de l'apprentissage

- « Capacité d'un système à améliorer ses performances via des interactions avec son environnement »
- Quel « système » ?
 - → types de modèle (Ad hoc ? Issu d'une famille particulière de fonctions mathématiques [tq splines, arbre de décision, réseau de neurones, arbre d'expression, machine à noyau...] ?)
- Quelles « interactions avec l'environnement » ?
 - → apprentissage « hors-ligne » v.s. « en-ligne »
 - → apprentissage « supervisé » ou non, « par renforcement »
- Quelles « performances » ?
 - → fonction de coût, objectif, critère implicite, ...
- Comment améliorer ?
 - → type d'algorithme (gradient, résolution exacte problème quadratique, heuristique, ...)

Paradigme d'apprentissage

<u>Chaque paradigme se caractérise par :</u>

Un modèle, le plus souvent paramétrique

+

Une façon d'intéragir avec l'environnement

+

Une « fonction de coût » à minimiser (sauf exceptions)

+

Un algorithme pour adapter le modèle, en utilisant les données issues de l'environnement, de façon à optimiser la fonction de coût

Exemple trivial : régression linéaire par moindres carrés

- Modèle : droite y=ax+b (2 paramètres a et b)
- Interaction: collecte préalable de n points (x_i,y_i)∈ № 2
- Fonction de coût : somme des carrés des écarts à la droite $K=\Sigma_i(y_i-a.x_i-b)^2$
- Algorithme : résolution directe (ou itérative) du système linéaire

$$\begin{pmatrix}
\sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\
\sum_{i=1}^{n} x_i & n
\end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{n} x_i y_i \\
\sum_{i=1}^{n} y_i
\end{pmatrix}$$

Nombreux paradigmes

- Régression linéaire par moindre carrés
- Algo ID3 ou CART pour arbres de décision
- Méthodes probabilistes
- •
- Rétropropagation du gradient sur <u>réseau</u> neuronal à couches
- Cartes topologiques de Kohonen
- Support Vector Machines
- Boosting de classifieurs faibles
- •

Principaux types d'algorithmes

- Résolution système linéaire (régression, Kalman, ...)
- Algos classiques d'optimisation
 - Descente de gradient, gradient conjugué, ...
 - Optimisation sous contrainte

— ...

- Heuristiques diverses :
 - Algo d'auto-organisation non supervisée de Kohonen
 - Algorithmes évolutionnistes (GA, GP, ...)
 - « colonies de fourmis » (Ant Colony Optimization)
 - Optimisation par Essaim Particulaire (OEP)
 - Renforcement (Q-learning, ...)

APPRENTISSAGE SUPERVISÉ : régression et classification

points = exemples 🗲 courbe = régression

Classification $(y_i = \text{ etiquettes })$

entrée = position point

sortie désirée = classe (□ =-1,+=+1)

Fonction étiquette=f(x) (et frontière de séparation)

Introduction à la théorie de l'apprentissage

- Apprentissage supervisé
- Apprentissage par renforcement
- Apprentissage non-supervisé (CM)

Apprentissage supervisé

- Ensemble d'exemples x_i étiquetés u_i
- Trouver une hypothèse h tq:

$$h(x_i) = u_i$$
?

 $h(x_i)$: étiquette prédite

Meilleure hypothèse h*?

Apprentissage Supervisé: 1er Exemple

- Maisons : Prix / m²
- Recherche de h
 - Plus proches voisins?
 - Régression linéaire, polynomiale ?
- Plus d'information
 - localisation (x, y ? ou variable symbolique ?), age du batiment, voisinage, piscine, impots locaux, évolution temporelle ?

Problème

1) Modélisation

- Espace d'entrée
 - Quelles sont les informations pertinentes ?
 - Variables
- Espace de sortie
 - □ Que cherche-t-on à prédire ?
- Espace des hypothèses
 - □ Entrées –(calcul) → Sorties
 - □ Quel (genre de) calcul?

1-a) Espace d'entrée : Variables

- Quelles sont les informations pertinentes ?
- Doit-on récupérer tout ce qu'on peut ?
- Qualité des informations ?
 - □ Bruit
 - Quantité
- Coût de la collecte d'une information ?
 - Economique
 - □ Temps
 - □ Risque (invasif?)
 - Ethique
 - □ Droit (CNIL en France, le Maroc ???)
- Domaine de définition de chaque variable ?
 - Symbolique, numérique borné, non bornée, etc.

Prix au m²: Variables

- Localisation
 - □ Continu : (x, y) longitude latitude ?
 - □ Symbolique : nom de la ville ?
- Age du bâtiment
 - □ Années
 - □ relatif au présent ou année de création ?
- Nature du terrain
- Piscine?

1-b) Espace de sortie

- Que veut-on en sortie ?
 - Classes symboliques ? (classification)
 - Booléennes Oui/Non (apprentissage de concept)
 - Multi-valuées A/B/C/D/...
 - Valeur numérique ? (régression)
 - [0; 1]?
 - [-∞; +∞]?
- Combien de sorties ?
 - □ Multi-valué → Multi-classe ?
 - 1 sortie pour chaque classe
 - Apprendre un modèle pour chaque sortie ?
 - Plus "libre"
 - Apprendre un modèle pour toutes les sorties ?
 - Chaque "modèle" peut utiliser des informations des autres

1-c) Espace des hypothèses

- Phase cruciale
- Dépend de la méthode d'apprentissage utilisée!
 - \square Régression linéaire : espace = ax + b
 - Régression polynomiale
 - nombre de paramètres = degré du polynôme
 - □ Réseaux de neurones, SVM, Algo Gen, ...
 - ⊔ ...

Choix de l'espace des hypothèses

Choix de l'espace des hypothèses

- Espace trop "pauvre"
 - → Solutions inadaptées
 - \square Ex: modéliser sin(x) avec une seule droite y=ax+b
- Espace trop "riche"
 - → risque de sur-apprentissage
 - □ Ex: cf. tableau
- Défini par un ensemble de *paramètres*
 - \square Plus grand nb param \rightarrow app. plus difficile
- Préférer cependant un espace plus riche!
 - Utilisation de méthodes génériques
 - □ Ajouter de la *régularisation*

2) Collecte des données

- Collecte
 - Capteurs électroniques
 - Par simulation
 - Sondages
 - Récupération automatique sur internet
 - **п** ...
- Obtenir la plus grande quantité d'exemples
 - Coût de la collecte
- Obtenir les données les plus "pures" possibles
 - éviter tout bruit
 - bruit dans les variables
 - bruit dans les étiquettes!
 - \Box Un exemple = 1 valeur pour chacune des variables
 - valeurs manquantes = exemple inutilisable ?

Données collectées

Prétraitements des données

- Nettoyer les données
 - □ ex: Réduire le bruit de fond
- Transformer les données
 - □ Format final adapté à la tâche
 - □ Ex: Transformée de Fourier d'un signal audio temps/amplitude → fréquence/amplitude

3) Apprentissage

- a) Choix des paramètres du programme
- b) Choix du critère inductif
- c) Lancement du programme d'apprentissage
- d) Test des performancesSi mauvais, retour en a)...

a) Choix des paramètres du programme

- Temps max de calcul alloué
- Erreur maximale acceptée
- Paramètres d'apprentissage
 - □ Spécifiques au modèle
- Introduction de connaissance
 - □ Initialiser les paramètres à des valeurs correctes ?

•

b) Choix du critère inductif

Objectif : trouver une hypothèse $h \in H$ minimisant le risque réel (espérance de risque, erreur en généralisation)

Risque réel

Objectif : Minimiser le risque réel

$$R(h) = \int_{X\times Y} l(h(x)y) dP(x,y)$$

- On ne connaît pas le risque réel, en particulier pas la loi de probabilité P(X,Y).
- Discrimination

$$l(h(x_i),u_i) = \begin{cases} 0 & \text{si } u_i = h(x_i) \\ 1 & \text{si } u_i = h(x_i) \end{cases}$$

Régression

$$l(h(x_i),u_i) = [h(x_i) - u_i]^2$$

Minimisation du risque empirique

- Le principe ERM (minimisation du risque empirique) prescrit de chercher l'hypothèse $h \in H$ minimisant le risque empirique
- Plus faible erreur sur l'ensemble d'apprentissage

$$R_{Emp}(h) = \sum_{i=1}^{m} l(h(x_i), u_i)$$

Courbe d'apprentissage

 La quantité de données d'apprentissage est importante!

Test / Validation

- Mesurer le sur-apprentissage
- GENERALISATION
 - la connaissance acquise est-elle utilisable dans des circonstances nouvelles ?
 - □ Ne pas valider sur l'ensemble d'apprentissage !
- Validation sur ensemble de test supplémentaire
- Validation Croisée
 - utile quand peu de données
 - □ leave-p-out

Sur-apprentissage

Régularisation

- Limiter le sur-apprentissage avant de le mesurer sur le test
- Ajout d'une pénalisation dans le critère inductif

□ Ex:

- Pénaliser l'utilisation de grands nombres
- Pénaliser l'utilisation de ressources
- ...

Maximum a posteriori

- Approche bayésienne
- On suppose qu'il existe une distribution de probabilités a priori sur l'espace \mathbf{H} : $p_{\mathbf{H}}(h)$

Principe du Maximum A Posteriori (MAP):

 On cherche l'hypothèse h la plus probable après observation des données S

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{ArgMax}} \ \frac{P(\mathcal{S} \mid h)P(h)}{P(\mathcal{S})} = \underset{h \in \mathcal{H}}{\operatorname{ArgMax}} \ P(\mathcal{S} \mid h)P(h)$$

- Ex: Observation de la couleur des moutons
 - \Box *h* = "Un mouton est blanc"

Principe de Description de Longueur Minimale

- Rasoir d'Occam
 - "Les hypothèses les plus simples sont les meilleures"
- Simplicité : taille de h
 - → Compression maximale
- Maximum a posteriori avec $p_H(h) = 2^{-d(h)}$
 - d(h): longueur en bits de l'hypothèse h

Exploration locale

- Seulement une notion de voisinage dans H
 - □ Méthodes de « gradient »
 - Réseaux de neurones
 - SVM (Séparatrices à Vastes Marges)
 - Recuit simulé / algorithmes d'évolution simulée
- /!\ Minima locaux

Exploration sans espace d'hypothèse

- Pas d'espace d'hypothèses
 - Utiliser directement les exemples
 - Et l'espace des exemples
 - Méthodes de plus proches voisins (Raisonnement par cas / Instance-based learning)
 - □ Notion de **distance**
- Exemple : *k Plus Proches Voisins*
 - Option : Vote pondéré par la distance

Autres types d'apprentissage

Apprentissage par Renforcement Apprentissage non-supervisé

Apprentissage par Renforcement

Pavlov

□ Cloche : **déclencheur**

□ Gamelle : **récompense**

□ saliver : action

- ☐ Associationcloche ↔ gamelle
- Renforcement du comportement "saliver"

- Contrôler le comportement par renforcements
 - □ Récompenses et punitions

Apprentissage par Renforcement

- L'agent doit *découvrir* le bon comportement
 - □ Et l'optimiser
 - → Maximiser l'espérance des récompenses

```
\mathbf{s}_{t}: état à l'instant t
```

Choix de l'action : $a_t := argmax_a Q(s_t, a)$

Mise à jour des valeurs

```
\mathbf{r}_{t}: récompense reçue à l'instant t
```

$$Q(s_t, a_t) \leftarrow \alpha Q(s_t, a_t) + (1 - \alpha) [r_{t+1} + \gamma \max_a Q(s_{t+1}, a)]$$

Apprentissage Non-supervisé

- Pas de classe, pas de sortie, pas de récompense
- Objectif : grouper les exemples

- Notion de distance
- Biais inductif

Conclusion

- Induction
 - □ Trouver une hypothèse générale à partir d'exemples
- Eviter le sur-apprentissage
- Choisir le bon espace d'hypothèse
 - □ Pas trop petit (mauvaise induction)
 - □ Pas trop grand (sur-apprentissage)
- Utiliser un algorithme adapté
 - □ Aux données
 - □ A l'espace des hypothèses

Ce qu'il faut retenir

- C'est surtout <u>l'induction supervisée</u> qui est étudiée
- On ne peut apprendre sans biais
- La réalisation de l'apprentissage dépend de la structuration de l'espace des hypothèses
 - Sans structure : méthodes par interpolation
 - □ Notion de distance : méthodes par gradient (approximation)
 - Relation d'ordre partiel : exploration guidée (exploration)