1.

a. Represent in compressed representation and with IPv4-dot notation of last 32 bits

b. Show the expanded representation of

```
i. 2607:f010:bfc:e009::2/64
= 2607:f010:0bfc:e009:0000:0000:0000:0002
ii. ::ffff:131.179.196.70
= 0000:0000:0000:0000:0000:ffff:83b3:c446
```

c. Calculate the number of addresses in the network, the first address, and the last address of

```
i. 2607:f010:bfc:e009::2/64
number of addresses: 18446744073709551616
first address: 2607:f010:bfc:e009:0000:0000:0000:0000
last address: 2607:f010:bfc:e009:ffff:ffff:ffff
ii. 2620:0:1c00::/40
number of addresses: 309485009821345068724781056
first address: 2620:0:1c00:0000:0000:0000:0000
last address: 2620:0:1cff:ffff:ffff:ffff
```

iii. 2620:107:3000::/44

number of addresses: 19342813113834066795298816

first address: 2620:107:3000:0000:0000:0000:0000
last address: 2620:107:300f:ffff:ffff:ffff:ffff

iv. 2600:1406:32::/48

number of addresses: 1208925819614629174706176

first address: 2600:1406:32:0000:0000:0000:0000:0000
last address: 2600:1406:32:ffff:ffff:ffff:ffff:ffff

- 2. Considering calculations from the perspective of node z:
 - a. Show a table showing iterations of the Link State routing algorithm.

Iteration	Visited (length)	Dz	Dy	Dx	Dw	Dv	Du	Dt	Ds
0	Z (0)	0	14	-	-	-	-	2	-
1	Z,T (2)	0	6	-	-	11	4	2	3
2	Z,Y (14)	0	6	12	-	7	4	2	3
3	Z,T,S (3)	0	6	12	-	7	4	2	3
4	Z,T,U (4)	0	6	12	7	5	4	2	3
5	Z,T,U,V (5)	0	6	8	6	5	4	2	3
6	Z,T,U,V,W (6)	0	6	7	6	5	4	2	3

b. Show a resulting routing table (next hop for each destination).

Destination	Next Hop				
Y	T				
X	T				
W	T				
V	T				
U	T				
T	T				
S	T				

c. Assume the link between y and t is broken at time T. Estimate the amount of time needed to recalculate routing tables (in absolute time and/or link propagation delays L).

$$Z \rightarrow Y = L$$

 $Z \rightarrow Y \rightarrow V = 2L$
 $Z \rightarrow Y \rightarrow V \rightarrow W = 3L$
 $Z \rightarrow Y \rightarrow V \rightarrow U = 3L$
 $Z \rightarrow Y \rightarrow V \rightarrow U \rightarrow T = 4L$
 $Z \rightarrow Y \rightarrow V \rightarrow U \rightarrow T = 4L$
 $Z \rightarrow Y \rightarrow V \rightarrow U \rightarrow T = 4L$

- 3. Considering calculations from the perspective of node z:
 - a. Show a table showing iterations of the DV algorithm with split horizon and poison reverse.

Iteration	Z receives	Dz	Dy	Dt	Dv	Ds	Du	Dx	Dw
	data from								
0	Z	0	14	2	-	-	-	-	-
1	T	∞	6	2	11	3	4	-	-
2	Y	∞	6	2	7	-	_	12	-
3	S	-	-	2	7	3	4	-	-
4	U	-	-	2	5	3	4	-	7
5	V	-	6	2	5	-	4	10	7
6	W	-	-	-	5	-	4	7	6

b. Show a resulting routing table (next hop for each destination).

Destination	Next Hop
Y	T
X	T
W	T
V	T
U	T
T	T
S	T

c. Assume the link between y and t is broken at time T. Estimate the amount of time needed to recalculate routing tables (in absolute time and/or link propagation delays L).

$$Z \rightarrow Y = L$$

$$Y \rightarrow X, V, T = L$$

$$V \rightarrow Y, T, U, W, X = L$$

$$W \rightarrow X, V, U = L$$

$$U \rightarrow W, V, T, S = L$$

$$T \rightarrow Y, V, U, S = L$$

$$(1 + 1 + 1 + 1 + 1 + 1)L = 6L$$

4. Suppose AS3 and AS2 are running OSPF for their intra-AS routing protocol. Suppose AS1 and AS4 are running RIP for their intra-AS routing protocol. Suppose eBGP and iBGP are used for the inter-AS routing protocol. Initially suppose there is no physical link between AS2 and AS4.

At some time T, the prefix x appears in AS4, adjacent to the router 4a. From which routing protocol (OSPF, RIP, eBGP, or iBGP):

- a. Router 3c learns about prefix x? eBGP
- b. Router 3a learns about prefix x? iBGP
- c. Router 1c learns about prefix x? eBGP
- d. Router 1d learns about prefix x? iBGP