MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 30 de abril de 2020.

Dualidad

	min	max	
Restricciones	$\geq b_i$	≥ 0	Variables
	$\leq b_i$	≤ 0	
	$=b_i$	Libre	
Variables	≥ 0	$\leq c_j$	Restricciones
	≤ 0	$\geq c_j$	
	Libre	$=c_j$	

Primal/Dual	Optimo finito	No acotado	Infactible
Optimo finito	Posible	Imposible	Imposible
No acotado	Imposible	Imposible	Posible
Infactible	Imposible	Posible	Posible

1. Lema de Farkas

Pruebe otras versiones del lema de Farkas:

a)
$$\{Ax = b, x \ge 0\} \ne \emptyset \iff \{A^T y \le 0, b^T y > 0\} = \emptyset$$

b)
$$\{Ax < 0, x > 0, c^T x > 0\} \neq \emptyset \iff \{A^T y > c, y > 0\} = \emptyset$$

Solución:

(a) Consideremos el siguiente par primal (P)-dual(D):

 (\Longrightarrow)

Si $\{Ax = b, x \ge 0\}$ es factible se tiene que (P) es factible, además cualquier solución factible es óptima y el óptimo es $c^Tx^* = 0$, por dualidad débil se tiene que $b^Ty \le 0 \ \forall y \in (D)$, por tanto $\{A^Ty \le 0, b^Ty > 0\}$ es infactible.

(₩)

Sabemos por dualidad fuerte que si (D) tiene óptimo finito, entonces (P) es factible y con mismo valor óptimo. Notar que (D) es siempre factible, basta tomar y=0, por ende, debemos demostrar que (D) es acotado, en efecto, por hipótesis tenemos que $\{A^Ty \leq 0, b^Ty > 0\}$ es infactible lo que implica que $b^Ty \leq 0 \ \forall y \in (D)$, por tanto (D) tiene óptimo finito e $\{Ax = b, x \geq 0\}$ es factible.

(b) Consideremos el siguiente par primal (P)-dual(D):

 (\Longrightarrow)

Sabemos que si (D) es no acotado (P) es infactible, para que D sea no acotado debe existir una dirección de mejora de la función objetivo en la cual podemos movernos infinitamente sin salirnos de la región factible, formalmente esto es:

 $\exists d \in R^m$ tal que $A(x + \lambda d) \leq 0$ y $c^T d > 0$, notar que $Ad \leq 0$, ya que si existe $i \in \{1, \dots, m\}$ tal que $(Ad)_i > 0$ basta que tomemos un λ lo suficientemente grande como $\lambda = +\infty$ obteniendosé que $\lambda(Ad)_i = +\infty$ lo que sería una contradicción. Del argumento anterior se tiene que el siguiente sistema tiene que ser factible $\{Ad \leq 0, c^T d > 0\}$ para que el primal sea infactible, en efecto, se tiene que el sistema anterior es factible por hipótesis, basta tomar x = d, por tanto, como el dual es no acotado $\{A^T y \geq c, y \geq 0\}$ es infactible.

(⇐=)

Si $\{A^Ty \geq c, y \geq 0\}$ es infactible se tiene que (P) es infactible entonces (D) debe ser infactible o no acotado, pero (D) es factible, basta tomar x = 0, por ende, (D) es no acotado, esto significa que $\exists d \in R^m$ tal que $A(x + \lambda d) \leq 0 \ \forall \lambda \geq 0$ y $c^Td > 0$, esto implica que el siguiente sistema de ecuaciones $\{Ad \leq 0, c^Td > 0\}$ es factible, tomado x = d se tiene que $\{Ax \leq 0, x \geq 0, c^Tx > 0\}$ es factible.

2. Dualidad y relajación Lagrangeana

Consideré el siguiente problema primal:

$$\min c^T x$$
s.a. $Ax \le b$

$$x > 0$$

Demuestre que la mejor cota (cota inferior más cercana al valor óptimo del primal) lagrangeana del primal es su dual. Hint: Escriba la relajación lagrangeana del primal e imponga condiciones sobre los multiplicadores para que sea una cota inferior distinta de $-\infty$.

Solución:

La relajación lagrangena del primal es:

$$L(y) = \min_{x \ge 0} c^T x + y^T (b - Ax)$$

Notar que el multiplicador $y \le 0$ puesto que se quiere penalizar cuando $b - Ax \le 0$. Sea $c^T x^*$ el valor óptimo del primal, notar que $L(y) \le c^T x^* + y^T (b - Ax^*) \le c^T x^*$, ya que $y^T (b - Ax^*) \le 0$.

$$L(y) = \min_{x \ge 0} c^T x + y^T (b - Ax) = y^T b + \min_{x \ge 0} (c^T - y^T A) x$$

Notar que

$$\min_{x \ge 0} \ (c^T - y^T A) x = \left\{ \begin{array}{l} 0, \ si \ (c^T - y^T A) \ge 0 \\ -\infty, \ \sim \end{array} \right.$$

Al maximizar L(y) necesitamos considerar solo aquellos valores de y para los cuales L(y) no es igual a $-\infty$. Luego maximizar L(y) respecto a y sujeto a las restricciones que evitan que sea $-\infty$ se obtiene:

$$\begin{aligned} & \text{máx } y^T b \\ & \text{s.a. } y^T A \le c^T \\ & y \le 0 \end{aligned}$$

Lo que es equivalente al dual de nuestro problema primal.

3. Maximum Flow Problem

Considere el grafo dirigido G(V, E), el objetivo del problema de flujo máximo es enviar la mayor cantidad de flujo desde un nodo s a un nodo t, donde los arcos tienen capacidades positivas $c = (c_e)_{e \in E}$.

- a) Formule el PL y obtenga su dual
- b) Obtenga el dual usando relajación lagrangeana

Solución

(a)

máx
$$x_{ts}$$
 s.a.
$$\sum_{e \in \delta^{+}(i)} x_{e} - \sum_{e \in \delta^{-}(i)} x_{e} = 0 \quad \forall i \in V \setminus \{s, t\}$$

$$\sum_{e \in \delta^{+}(s)} x_{e} - \sum_{e \in \delta^{-}(s)} x_{e} = x_{ts}$$

$$\sum_{e \in \delta^{+}(t)} x_{t} - \sum_{e \in \delta^{-}(t)} x_{e} = -x_{ts}$$

$$0 \le x_{e} \le c_{e} \quad \forall e \in E$$

mín
$$c^Tz$$

s.a. $y_i - yj + z_{ij} \ge 0 \quad \forall (i, j) \in E$
 $y_t - y_s = 1$
 $y_i \ libre, \ z_e \ge 0 \quad \forall i \in V, e \in E$

La dificultad de calcular el dual en este problema recae en observar en qué restricciones del primal aparece x_{ij} , para esto debemos notar que el arco (i,j) aparece en el conjunto de arcos que salen de i y que entran a j, es decir, $\delta^+(i)$ y $\delta^-(j)$ respectivamente, por ende, debemos mirar la restricción i y j las cuales estan asociadas a las variables duales y_i e y_j respectivamente, luego el componente que acompaña a x_{ij} en el primer conjunto es 1 y en el segundo -1, obteniendosé así $y_i - yj + z_{ij} \ge 0$.

(b)

Por relajación lagrangeana se tiene:

$$\begin{split} L(\hat{y}, z) &= \max_{x_{ts}, \ x_{e} \geq 0 \ \forall e \in E} x_{ts} \big[1 + \hat{y}_{t} - \hat{y}_{s} \big] + \sum_{i \in V} \hat{y}_{i} \big[\sum_{e \in \delta^{+} i} x_{e} - \sum_{e \in \delta^{-} i} x_{e} \big] + \sum_{e \in E} z_{e} \big[c_{e} - x_{e} \big] \\ &= \max_{x_{ts}, \ x_{e} \geq 0 \ \forall e \in E} x_{ts} \big[1 + \hat{y}_{t} - \hat{y}_{s} \big] + \sum_{(i, j) \in E} x_{e} \big[\hat{y}_{i} - \hat{y}_{j} - z_{ij} \big] + c^{T} z \end{split}$$

Notar que:

$$\max_{x_{st}} x_{ts} [1 + \hat{y}_t - \hat{y}_s] = \begin{cases} 0, \ si \ 1 + \hat{y}_t - \hat{y}_s = 0 \\ +\infty, \ \sim \end{cases}$$

Además se tiene que $\forall (i, j) \in E$:

$$\max_{x_{ij} \ge 0} x_{ij} [\hat{y}_i - \hat{y}_j - z_{ij}] = \begin{cases} 0, si \ \hat{y}_i - \hat{y}_j - z_{ij} \le 0 \\ +\infty, \sim \end{cases}$$

Luego la mejor cota lagrangeana es:

$$\begin{aligned} & \text{m\'in } c^T z \\ & \text{s.a.} & & \hat{y}_j - \hat{y}_i + z_{ij} \geq 0 \quad \forall (i,j) \in E \\ & & & \hat{y}_s - \hat{y}_t = 1 \\ & & & & \hat{y}_i \ libre, \ z_e \geq 0 \quad \forall i \in V, e \in E \end{aligned}$$

Para obtener el mismo problema de la parte anterior basta tomar $\hat{y} = -y$.

4. Teorema Carathéodory

Sea $P \subset \mathbb{R}^n$ un politopo y $W = \{x^1, \dots, x^k\}$ sus puntos extremos.

- a) Demuestre que P = conv(W).
- b) Muestre que todo elemento de P puede ser expresado como una combinación convexa de a lo más n+1 puntos extremos. *Hint:* plantee el poliedro asociado a un punto cualquiera de P.

Solución:

$$Q = \left\{ x = \sum_{i=1}^{k} \lambda_{i} x^{i} \middle| \sum_{i=1}^{k} \lambda_{i} = 1, \lambda \ge 0 \right\}$$

(a)

$$(Q \subset P)$$

Todo punto de Q es combinación convexa de puntos extremos de P y como P es un conjunto convexo cualquier combinación convexa de una colección finita de puntos de P pertenece a P, por tanto, todo punto de Q pertence a P.

$$(P \subset Q)$$

Sea P un poliedro acotado y sin pérdida de generalidad $P=\{x\in\mathbb{R}^n|Ax\leq b\}$ y sea $x\in P$ y I el conjunto de restricciones activas l.i., si |I|=k< n existe una dirección $d\in\mathbb{R}^n\setminus\{0\}$ ortogonal a todas las restricciones activas $a_i^Td=0$ $\forall i\in I$ si nos movemos en esa dirección en ambos sentidos chocaremos con una restricción debido a que el poliedro es acotado, sean $y=x-\mu^*d$, $z=x+\lambda^*d$ con $\mu^*>0$, $\lambda^*>0$ los puntos formados por movernos en esa dirección en ambos sentidos hasta chocar con una restricción, notar que z e y tienen k+1 restricciones activas l.i y que x esta en el segmento que une y con z por tanto se puede escribir como la combinación convexa de estos, $x=\lambda^0y+(1-\lambda^0)z$ con $\lambda^0\in(0,1)$. El procedimiento anterior se puede repetir n-k veces hasta llegar a puntos extremos que tienen n restricciones l.i por lo que ya no podemos encontrar direcciones ortongales no nulas (Nota: un arco tiene al menos un punto extremo, al ser un poliedro cerrado siempre tiene dos), por ejemplo, si k=n-2 el resultado de la primera iteración sería y y z, ambos puntos están dentro de una arista (una arista tiene n-1 restricciones l.i.), una siguiente iteración dejaría 4 puntos extremos, $\{x^1,x^2\}$ puntos extremos adyacentes asociados a y y $\{x^3,x^4\}$ puntos extremos adyacentes asociados a z, luego $y=\lambda^1x^1+(1-\lambda^1)x^2$ y $z=\lambda^2x^3+(1-\lambda^2)x^4$, con $\lambda^1,\lambda^2\in(0,1)$, por ende $x=\lambda^0y+(1-\lambda^0)z=\lambda^0(\lambda^1x^1+(1-\lambda^1)x^2))+(1-\lambda^0)(\lambda^2x^3+(1-\lambda^2)x^4))=\sum_{i=1}^4\theta_ix^i,\sum_{i=1}^4\theta_i=1,\theta\ge0$. Para concluir se tiene que un punto cualquiera puede ser generado por la combinación convexa de dos puntos, puntos que a su vez fueron

generados por la combinación convexa de otros dos puntos y así sucesivamente hasta llegar a puntos extremos, luego esa combinación convexa recursiva se puede escribir en términos de combinación convexa de puntos extremos.

(b) Sea $W=x^1,\ldots,x^k$ la matriz cuyas columas son los puntos extremos de un poliedro acotado cualquiera $P(\text{Nota: todo poliedro acotado no vacío tiene al menos un punto extremo}), por la parte anterior todo punto de <math>x\in P$ puede ser representado como una combinación convexa de las columnas de W, luego P se puede escribir como:

$$P = \left\{ x = \sum_{i=1}^{k} \lambda_i x^i \middle| \sum_{i=1}^{k} \lambda_i = 1, \lambda \ge 0 \right\}$$

Lo que se quiere demostrar es que cualquier punto $x \in P$ se puede escribir como $\sum_{i=1}^k \lambda_i x^i$, donde $\sum_{i=1}^k \lambda_i = 1$ y $\lambda_i \geq 0 \ \forall i \in 0, \dots, k$, con a lo más n+1 coeficientes λ_i no nulos. Para demostrar esto consideremos el siguiente poliedro Q para un $x \in P$ cualquiera:

$$W\lambda = x$$
$$1^T \lambda = 1$$
$$\lambda \ge 0$$

Notar que Q siempre es factible dado que P = conv(W), además Q tiene al menos un punto extremo (Nota: todo poliedro en forma estándar no vacío tiene al menos un punto extremo), todo punto extremo de Q debe tener k restricciones l.i. activas. Supongamos que k > n+1 (sino no hay nada que demostrar) y sea $\hat{\lambda}$ un punto extremo de Q, como $\hat{\lambda}$ es un punto extremo debe tener k restricciones l.i., sea I el conjunto de restricciones l.i provenientes de $\begin{bmatrix} W \\ 1^T \end{bmatrix} \lambda = \begin{bmatrix} x \\ 1 \end{bmatrix} y$ J el conjunto de restricciones l.i provenientes de las restricciones de no negatividad con $\lambda_j = 0 \ \forall j \in J$, se tiene que |I| + |J| = k y que $|I| \le n+1$, esto implica que $|J| \ge k - (n+1)$, por lo que a lo más n+1 componentes de $\hat{\lambda}$ son no nulos, por tanto x se puede escribir por la combinación convexa de a lo más n+1 puntos extremos.