Week 14 Master Thesis 2020

Tobias Engelhardt Rasmussen (s153057)

DTU Compute

December 17, 2020

Since last

FLOPs for theoretical speed-up Timing Writing

Since Last

- ► FLOPs (Floating Point Operations + * %) for calculating theoretical speed-up
- Timing Found a timing function that seems to give stable results
- Writing Methodology and appendices

Since last FLOPs for theoretical speed-up Timing Writing

FLOPs given a network layer

Stolen:

A.1 FLOPS COMPUTATION

To compute the number of floating-point operations (FLOPs), we assume convolution is implemented as a sliding window and that the nonlinearity function is computed for free. For convolutional kernels we have:

$$FLOPs = 2HW(C_{in}K^2 + 1)C_{out}, \tag{11}$$

where H,W and C_{in} are height, width and number of channels of the input feature map, K is the kernel width (assumed to be symmetric), and C_{out} is the number of output channels.

For fully connected layers we compute FLOPs as:

$$FLOPs = (2I - 1)O, (12)$$

where *I* is the input dimensionality and *O* is the output dimensionality.

Convolutional FLOPs maybe a bit too simple... Does not take padding or stride into account.

Made my own calculations based on the size of the output tensor with very similar results...

FLOPs given a network

My calculations for convolutions based on the number of output values:

$$FLOPs = \underbrace{T \cdot F' \cdot H' \cdot W'}_{\text{Size of output}} \left(2 \cdot \underbrace{S \cdot K^3}_{\text{Size of filter}} - 1 \right)$$

Which would correspond to: (for 2D)

$$FLOPs = C_{out} \cdot H' \cdot W' \cdot \left(2 \cdot C_{in}K^2 - 1\right)$$

While theirs is (rearranged):

$$FLOPs = C_{out} \cdot H \cdot W \cdot 2 \cdot \left(C_{in}K^2 + 1\right)$$

Since last FLOPs for theoretical speed-up **Timing** Writing

Timing results

Number of parameters	3D conv 1	3D conv 2	Linear 1	Linear 2	Linear 3	Total
Original	14,520	58,080	358,400	10,752	168	441,920
Compressed	4,852	3,690	14,266	212	168	23,188
Ratio	0.334	0.064	0.039	0.020	1	0.052

The timing is performed on a $\ensuremath{\mathsf{CPU}}$

	Timing	3D	3D	Linear	Linear	Linear	Total
	ı iming	conv 1	conv 2	1	2	3	
FLOPs	Original	15,618,892	697,158	716.8	21.5	0.34	16,316,789.4
(1000)	Compressed	1,943,628	27,490.1	28.53	0.4	0.34	1,971,147.4
	Speed-up	8.0359	25.3603	25.1288	50.8369	1	8.2778
Time	Original	2.6807	0.01623	$1.3 \cdot 10^{-5}$	$5.6 \cdot 10^{-7}$	$1.1 \cdot 10^{-7}$	2.9594
(s)	Compressed	1.1688	0.007246	$2.1 \cdot 10^{-8}$	$2.1 \cdot 10^{-8}$	$9.8 \cdot 10^{-8}$	1.0805
	Speed-up	2.2936	2.2434	6.4310	2.5622	1.1249	2.7390
Accounts for approx. (%)		95.7	4.27	$4.4 \cdot 10^{-3}$	$1 \cdot 10^{-4}$	$2 \cdot 10^{-6}$	100

Since last
FLOPs for theoretical speed-up
Timing
Writing

Methodology Section

Overall outline:

- Decomposing the Input
 - Estimating the loadings for the testing data
- Compressing a pre-trained Network Using Tucker
 - ► The linear / dense layer
 - The convolutional layer
 - Rank selection
 - One-shot Compression of an entire CNN using Tucker

Decomposing the Input

For MNIST:

One-Shot Compression of an Entire CNN Using Tucker

Algorithm 1 One-Shot Tucker Compression of CNN

```
    net ← define an appropriate CNN

2: train net using the given training data
 3: net_dcmp ← make a copy of net
 4: for each convolutional layer; layer in net_dcmp do
        K_{layer} \leftarrow take out weight tensor
6.
        R_4, R_5 \leftarrow choose appropriate rank(s)
        G, U^{(4)}, U^{(5)} \leftarrow Decompose K_{layer} using relevant algorithm
7:
                                                                                                     ▷ Or just one U
 8.
        \texttt{layer\_dcmp\_1} \leftarrow \text{define new } 1 \times 1 \text{ convolution}
                                                                                                        ▶ If applicable
9:
        layer_dcmp_2 ← define new 3D convolution
10:
        laver_dcmp_3 \leftarrow define new 1 \times 1 convolution
                                                                                                        ▶ If applicable
11:
        K_{laver_{-dcmp_{-1}}} \leftarrow U^{(4)}
                                                                                                        ▶ If applicable
12:
        K_{1aver\_dcmp,2} \leftarrow G
        K_{layer\_dcmp\_3} \leftarrow U^{(5)}
13:
                                                                                                        ▶ If applicable
14:
        b_{\text{laver,dcnp,3}} \leftarrow b_{\text{laver}} add the bias to the last layer
                                                                                              Do Or in the line above
15:
        layer ← sequence(layer-dcmp-1, layer-dcmp-2, layer-dcmp-3)
16: end for
17: for each linear layer; layer in net-dcmp do
18:
        W_{lawer} \leftarrow take out weight matrix of size <math>N_{out} \times N_{in}
        R_A, R_B \leftarrow \text{choose appropriate rank(s)}
19:
        G, A, B \leftarrow decompose W_{laver} using relevant algorithm
                                                                                                   \triangleright Or just A or B
20:
        layer_dcmp_1 ← define new R_B \times N_{in} linear layer
                                                                                                        ▶ If applicable
21:
22:
        layer\_dcmp\_2 \leftarrow define new R_A \times R_B linear layer
                                                                                    \triangleright Or R_B \times N_{in} or N_{out} \times R_A
        layer_dcmp_3 \leftarrow define new N_{out} \times R_A linear layer
                                                                                                        ▶ If applicable
23:
24:
        W_{\text{laver.dcmp.1}} \leftarrow B
                                                                                                        ▶ If applicable
25:
        W_{\text{laver.dcmp.2}} \leftarrow G
26:
        W_{\text{layer.dcmp.}3} \leftarrow A
                                                                                                        ▶ If applicable
        b_{laver.dcnp.3} \leftarrow b_{laver} add the bias to the last layer
                                                                                              DO or in the line above
27:
28:
        layer ← sequence(layer_dcmp_1, layer_dcmp_2, layer_dcmp_3)
29: end for
30: train net_dcmp using the given training data
                                                                                                          b fine-tuning
```