

*B2
cont*

- d) in cyclizing the compound of formula IV to a compound of formula I in the presence of NH₄Cl and AcOH,
- e) optionally converting the compound of formula I thus obtained into another compound of formula I--.

REMARKS

Responsive to the restriction requirement set forth in the Official Action of March 4, 2003, applicants hereby provisionally elect Group I, claims 1-2 in part, 3-7, 8-12 in part, 13 and 14, drawn to compounds, compositions and methods according to Formula I and Ia wherein X is O, not required for Group II, with traverse.

As to the election of species requirement imposed in the outstanding Official Action, applicants provisionally elect 5-amino-9H-quino[4,3,2-de][1,10]phenanthrolin-9-one (Example 9, CRL8347). It is believed that the elected species reads on claims 5, 7 and 10. Applicants believe that claims 1-4, 6, 8-9 and 11 are generic.

The grounds for traverse are as follows:

1. The same claims as pending in the present national stage application were subject to examination during the International Phase of the PCT application. The International

Examiner found no lack of unity, applying the same legal standards to the identical facts.

Applicants believe that the U.S. Patent Office cannot now contend that the examination of the same claims in the present application would pose an undue searching burden. Indeed, the U.S. Examiner has the considerable benefit of the search results generated by the International Examiner, on the basis of all pending claims.

Moreover, applicants note that the Official Action fails to explain why, applying the identical legal standards to the identical claims, the opposite result is now being reached in the present U.S. national phase application, relative to the international application.

2. Applicants believe that the outstanding Official Action fails to comply with the requirements of PCT Rules 13.1 and 13.2, in attempting to justify the lack of unity determination. Specifically, the definition of "special technical feature" in PCT Rule 13.2 is art-based. Thus, applicants believe that a proper lack of unity of determination requires the citation of a reference showing an absence of a "special technical feature". No such citation having been made, the lack of unity of determination is improper as a matter of law.

In light of the above discussion, therefore, it is believed that applicants are entitled to an action on the merits

to all the pending claims, in their full scope, in the present application. Such action is accordingly respectfully requested.

Attached hereto is a marked-up version of the changes made to the claims. The attached page is captioned "VERSION WITH MARKINGS TO SHOW CHANGES MADE."

Respectfully submitted,

YOUNG & THOMPSON

By Philip A. DuBois
Philip A. DuBois
Agent for Applicants
Registration No. 50,696
745 South 23rd Street
Arlington, VA 22202
Telephone: 521-2297

April 4, 2003

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE CLAIMS:

Claim 13 has been amended as follows:

--13. (amended) A process for preparing compounds of general formula I, of formula:

in which:

- R_1 is chosen from hydrogen, halogens, a nitro group and groups $-NR_8R_9$ in which R_8 and R_9 are chosen, independently of each other, from hydrogen and (C_1-C_4) alkyl groups,

- R_2 is chosen from hydrogen and halogens,

- R_3 is chosen from hydrogen, halogens, (C_1-C_4) alkyl groups, (C_1-C_6) alkoxy groups, a guanidino group, groups $-NR_{10}R_{11}$ in which R_{10} and R_{11} are chosen, independently of each other, from hydrogen, (C_1-C_4) alkyl groups, (C_1-C_4) phenylalkyl groups and groups $-(CH_2)_n-Y$ with Y being chosen from halogens and CN, $-CH(O-Et)_2$, (C_1-C_6) alkoxy, $-O-(CH_2)_2-N(CH_3)_2$ groups and $-N(CH_3)_2$ and $n = 1$ to 3,

- R_4 is chosen from hydrogen, halogens, nitro groups and groups $-NR_{12}R_{13}$ in which R_{12} and R_{13} are chosen, independently of each other, from hydrogen and (C_1-C_4) alkyl groups,

- R_5 , R_6 and R_7 are chosen from:

hydrogen or a halogen atom,

C_1-C_6 alkyl, hydroxyl, C_1-C_6 alkoxy, (C_1-C_6) alkoxy(C_1-C_6)alkyl, (C_1-C_4) alkylcarbonyloxy- (C_1-C_4) alkyl, -CHO, -COOH, -CN, -CO₂R₁₄, -CONHR₁₄ and -CONR₁₄R₁₅ groups, -NHCOR₁₄ and -NR₁₄R₁₅ in which R₁₄ and R₁₅ are chosen, independently of each other, from hydrogen and (C_1-C_6) alkyl, -phenyl-CO-CH₃ and -CH₂-CH₂-N(CH₃)₂ groups, -phenyl-CO-CH₃ or -phenyl-CO-CH=CH-N(CH₃)₂, morpholino, nitro or SO₃H groups, groups:

R₁₆ and R₁₇ being chosen from C_1-C_6 alkyl groups and Ar being a C_6-C_{14} aryl group,
 with the exclusion of the compounds of formula I
 in which either R₁, R₂, R₃, R₄, R₅, R₆, R₇ = H, or
 R₁, R₃, R₄, R₅, R₆, R₇ = H and R₂ = Br, or R₁, R₂, R₄,
 R₅, R₆, R₇ = H and R₃ = OCH₃, or R₁, R₂, R₃, R₄, R₆,
 R₇ = H and R₅ = OH or OCH₃ or R₁ = NO₂ and R₂, R₃,
 R₄, R₅, R₆, R₇ = H,
 which consists

a) in reacting a hydroquinone of formula

with a compound of formula

in the presence of $\text{CeCl}_3 \cdot 7\text{H}_2\text{O}$ and ethanol to give
a compound of formula II

b) in converting the compound of formula II into
a compound of formula III

c) in reacting the compound of the formula III
with $\text{HC}(\text{OC}_2\text{H}_5)_2\text{N}(\text{CH}_3)_2$ in DMF at 120°C to form
a compound of formula IV

- d) in cyclizing the compound of formula IV to a compound of formula I in the presence of NH₄Cl and AcOH,
- e) optionally converting the compound of formula I thus obtained into another compound of formula II^{B}