IOB-CACHE

User Guide, 0.1, Build f9d8890

May 1, 2022

Contents

•	introduction	Э
2	Symbol	5
3	Features	5
4	Benefits	5
5	Deliverables	6
6	Block Diagram and Description	6
7	Interface Signals	7
8	Instantiation and External Circuitry	7
9	Simulation	9
10	O Synthesis	10
	10.1 Synthesis Macros	10
	10.2 Synthesis Parameters	10
	10.3 Synthesis Script and Timing Constraints	10
11	1 Macros and Configuration Parameters	12
12	2 Registers	12
Li	ist of Tables	
	1 General Interface Signals	7
	2 IObundle Master Interface Signals	7
	3 Control-Status Interface Signals	7
	4 IObundle Slave Interface Signals	7

IOB-CACHE

USER GUIDE, 0.1, BUILD F9D8890

5	Synthesis Macros.	10
6	Synthesis Parameters	11
List	of Figures	
1	IP Core Symbol	5
2	High-Level Block Diagram	6
3	Core Instance and Required Surrounding Blocks	8
4	Testbench Block Diagram	9

1 Introduction

The IObundle CACHE is an open source pipelined-memory cache. It is a performance-wise and highly configurable IP core. The cache core is isolated from the processor and memory interfaces in order to make it easy to adopt new processors or memory controllers while keeping the core functionality intact. It implements a simple front-end native interface. It also implements an AXI4 interface with configurable data width which allows maximum use of the available memory bandwidth. The IObundle CACHE can be implemented as a Direct-Mapped cache or K-Way Set-Associative cache. It supports both fixed write-through not-allocate policy and write-back policy.

2 Symbol

Figure 1: IP Core Symbol.

www.iobundle.com

3 Features

- · AXI4 interface with configurable data width
- · Simple front-end native interface
- · Direct-Mapped or K-Way Set-Associative
- · Fixed write-through not-allocate policy
- · Write-back policy
- Pipelined-memory (1 request/clock-cycle)

4 Benefits

- · Compact and easy to integrate hardware and software implementation
- Can fit many instances in low cost FPGAs and ASICs
- Low power consumption

5 Deliverables

- ASIC or FPGA synthesized netlist or Verilog source code, and respective synthesis and implementation scripts
- ASIC or FPGA verification environment by simulation and emulation
- · Bare-metal software driver and example user software
- User documentation for easy system integration
- Example integration in IOb-SoC (optional)

6 Block Diagram and Description

Figure 2 presents a high-level block diagram of the core, followed by a brief description of each block.

Figure 2: High-Level Block Diagram.

FRONT-END Front-end block.

CACHE MEMORY Cache memory block.

BACK-END Back-end block.

CACHE CONTROL Cache control block.

Interface Signals

Name	Direction	Width	Description			
clk	INPUT	1	System clock input			
reset	INPUT	1	System reset, asynchronous and active high			

Table 1: General Interface Signals

Name	Direction	Width	Description		
valid	INPUT	1	Native CPU interface valid signal		
addr	INPUT	CTRL_CACHE + FE_ADDR_W - FE_BYTE_W	Native CPU interface address signal		
addr	INPUT	CTRL_CACHE + FE_ADDR_W	Native CPU interface address signal		
wdata	INPUT	FE_DATA_W	Native CPU interface data write signal		
wstrb	INPUT	FE_NBYTES	Native CPU interface write strobe signal		
rdata	OUTPUT	FE_DATA_W	Native CPU interface read data signal		
ready	OUTPUT	1	Native CPU interface ready signal		

Table 2: IObundle Master Interface Signals

Name	Direction	Width	Description
force_inv_in	INPUT	1	force 1'b0 if unused
force_inv_out	OUTPUT	1	cache invalidate signal
wtb_empty_in	INPUT	1	force 1'b1 if unused
wtb_empty_out	OUTPUT	1	write-through buffer empty signal

Table 3: Control-Status Interface Signals

Name	Direction	Width	Description
mem_valid OUTPUT 1 Native CPU interface valid signal			
mem_addr OUTPUT BE_ADDR_W Native CPU interface address signal		Native CPU interface address signal	
mem_wdata OUTPUT BE_DATA_W Native CPU interface data write signal		Native CPU interface data write signal	
mem_wstrb OUTPUT BE_NBYTES Native CPU interface write strobe signal		Native CPU interface write strobe signal	
mem₋rdata	mem_rdata INPUT BE_DATA_W Native CPU interface read data signal		Native CPU interface read data signal
mem_ready INPUT 1 Native CPU interface ready signal		Native CPU interface ready signal	

Table 4: IObundle Slave Interface Signals

Instantiation and External Circuitry

Figure 4 illustrates how to instantiate the IP core and, if applicable, the required external blocks. A Verilog instantiation template is provided for convenience.

www.iobundle.com

bla bla bla...

Figure 3: Core Instance and Required Surrounding Blocks

9 Simulation

The provided testbench uses the core instance described in Section 8. A high-level block diagram of the testbench is shown in Figure 4. The testbench is organized in a modular fashion, with each test described in a separate file. The test suite consists of all the test case files to make adding, modifying, or removing tests easy.

Figure 4: Testbench Block Diagram

In this preliminary version, simulation is not yet fully functional. The provided testbench merely allows compilation for simulation, and drives the clock and reset signals. Behavioural memory models to allow presynthesis simulation are already included. In the case of ROMs, their programming data is also included in the form of .hex files.

10 Synthesis

10.1 Synthesis Macros

The synthesis macros apply to all instances of the core, and are listed in Table 5.

Parameter	Min	Тур	Max	Description
WRITE_POL	?	WRITE_THROUGH	?	write policy: write-through (0), write-back (1)

Table 5: Synthesis Macros.

10.2 Synthesis Parameters

The generic synthesis parameters of the core are presented in Table 6. Generic parameters can vary from instance to instance.

10.3 Synthesis Script and Timing Constraints

A simple .tcl script is provided for the Cadence Genus synthesis tool. The script reads the technology files, compiles and elaborates the design, and proceeds to synthesise it. The timing constraints are contained within the constraints file provided, or provided in a separate file.

After synthesis, reports on silicon area usage, power consumption, and timing closure are generated. A post-synthesis Verilog file is created, to be used in post-synthesis simulation.

In this preliminary version, synthesis of the IP core without the memories is functional. The memories are for now treated as black boxes.

It is important not to include the memory models provided in the simulation directory in synthesis, unless they are to be synthesised as logic. In a next version, the memories will be generated for the target technology and included.

Parameter	Min	Тур	Max	Description
FE_ADDR_W	?	32	?	Address width -
				width of the Mas-
				ter's entire access
				address (includ-
				ing the LSBs that
				are discarded,
				but discarding the
				Controller's)
FE_DATA_W	?	32	?	Data width - word
				size used for the
				cache
N₋WAYS	?	2	?	Number of Cache
				Ways (Needs to be
				Potency of 2: 1, 2,
				4, 8,)
LINE_OFF_W	?	7	?	Line-Offset Width -
				2**NLINE_W total
WODD 055 W				cache lines
WORD_OFF_W	?	3	?	Word-Offset Width
				- 2**OFFSET_W
				total FE_DATA_W
				words per line -
				WARNING about
				LINE2MEM_W
				(can cause word_counter [-
				word_counter [- 1:0]
WTBUF_DEPTH_W	?	5	?	Depth Width of
VVIDOI_DLI III_VV		J	•	Write-Through
				Buffer
REP_POLICY	?	PLRU_mru	?	LRU - Least
TIET I OLIOT		i Lito_mid		Recently Used;
				PLRU_mru (1) -
				mru-based pseu-
				doLRU; PLRU_tree
				(3) - tree-based
				pseudoLRU
NWAY_W	?	clog2(N_WAYS)	?	Cache Ways Width
FE_NBYTES	?	FE_DATA_W/8	?	Number of Bytes
				per Word
FE_BYTE_W	?	clog2(FE₋NBYTES)	?	Byte Offset
BE_ADDR_W	?	FE_ADDR_W	?	Address width of
				the higher hierarchy
				memory
BE_DATA_W	?	FE_DATA_W	?	Data width of the
				memory
BE₋NBYTES	?	BE_DATA_W/8	?	Number of bytes
BE_BYTE_W	?	clog2(BE_NBYTES)	?	Offset of Number of
				Bytes
LINE2MEM ₋ W	?	WORD_OFF_W-clog2(BE_DATA_W/FE_DATA_W)	?	Logarithm Ratio be-
				tween the size of
				the cache-line and
	_			the BE's data width
CTRL_CACHE	?	0	?	Adds a Controller to
				the cache, to use
©2022 IObundle Lda.	All righ	ts reserved www.iobundle.com Confid	ential	functions sent by 1
				the master or count
0.751 0::-				the hits and misses
CTRL_CNT	?	0	?	Counters for Cache
				Hits and Misses -

11 Macros and Configuration Parameters

12 Registers