Ch 6.2: Shrinkage - The Lasso Lecture 19 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

:

Dept of Computational Mathematics, Science & Engineering

Weds, Oct 18, 2023

Announcements

Last time:

• Ridge Regression

This time:

The Lasso

Announcements:

- HW # 5 due tonight
- Friday Review Class
- Monday No class
- Weds Exam #2

Dr. Munch (MSU-CMSE)

Section 1

Last time

Goal

- Fit model using all p predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Dr. Munch (MSU-CMSE)

Ridge regression

Before:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^{n}$$

$$\sum_{i=1}^{n} \left(y_i \right)$$

5 / 27

Weds. Oct 18, 2023

Scale equivariance (or lack thereof)

Scale equivariant: Multiplying a variable by c (cX_i) just returns a coefficient multiplied by 1/c ($1/c\beta_i$)

Solution: standardize predictors

$$\widetilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \overline{x}_{j})^{2}}}$$

- Least squares is scale equivariant
- Ridge regression is not

Section 2

The Lasso

Same goal as before

- Fit model using all *p* predictors
- Aim to constrain (regularize) coefficient estimates
- Shrink the coefficient estimates towards 0

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

The lasso

Least Squares:

$$\sum_{i=1}^{n} \left(\mathbf{v}_{i} - \beta_{0} - \sum_{i=1}^{p} \beta_{i} \mathbf{x}_{i} \right)^{2}$$

Ridge:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \qquad \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

The Lasso:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Subsets with lasso

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

An example on Credit data set

More example on Credit data set

Scale equivavariance (or lack thereof)

Scale equivariant: Multiplying a variable by c just returns a coefficient multiplied by 1/c

Least squares **is** scale equivariant. Ridge/Lasso **are very much not**.

Solution: standardize predictors

$$\widetilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}}$$

Bias-Variance tradeoff

Squared bias (black), variance (green), and test mean squared error (purple) for simulated data.

r. Munch (MSU-CMSE) Weds, Oct 18, 2023

Using Cross-Validation to find λ

- ullet Choose a grid of λ values
- Compute the (k-fold) cross-validation error for each value of λ
- Select the tuning parameter value λ for which the CV error is smallest.
- The model is re-fit using all of the available observations and the selected value of the tuning parameter.

10-fold CV choice of λ for lasso and simulated data

16 / 27

r. Munch (MSU-CMSE) Weds, Oct 18, 2023

Coding example

r. Munch (MSU-CMSE) Weds, Oct 18, 2023

Section 3

Optimization Formulation

Another formulation for Ridge Regression

Find β to minimize:

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

Find β to minimize

RSS

subject to

$$\sum_{j=1}^p \beta_j^2 \le s$$

Visualization using disks

Find β to minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to

$$\sum_{j=1}^{p} \beta_j^2 \le s$$

What about ℓ_1 ?

$$\|\beta\|_1 = \sum |\beta_i|$$

What does the set of points (β_1, β_2) for which $\|(\beta_1, \beta_2)\|_1 \le s$ look like?

Dr. Munch (MSU-CMSE)

Same game for Lasso

Find β to minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to

$$\sum_{j=1}^{p} |\beta_j| \le s$$

Same game for subset selection

Find β to minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to

$$\sum_{j=1}^p \mathrm{I}(eta_j
eq 0) \leq s$$

Using this visual to understand why lasso gets us zero values

Dr. Munch (MSU-CMSE)

TL;DR - Original forumlation

Least Squares:

Ridge:

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \qquad \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

The Lasso:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

TL;DR

Find β to minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to:

Least Squares:

No constraints

Ridge:

$$\sum_{i=1}^p \beta_j^2 \le s$$

The Lasso:

$$\sum_{j=1}^p |eta_j| \le s$$

Next time

12	Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	HW #4 Due
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20	Fri	Oct 27	Dimension Reduction	6.3	

Or. Munch (MSU-CMSE) Weds, Oct 18, 2023