CS60050 Machine Learning Introduction to Bayesian Classifiers

Somak Aditya

Sudeshna Sarkar

Department of CSE, IIT Kharagpur Sep 8, 2023

Outline of lectures

Outline of Maximum likelihood estimation

2 examples of Bayesian classifiers:

- Naïve Bayes
- Logistic regression

Recap: Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Let's us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many practical systems (e.g. ASR, MT)
- In the running for most important ML equation!

Returning to thumbtack

• P(Heads) = θ , P(Tails) = $1-\theta$

- Flips are *i.i.d.*: $D = \{x_i | i = 1...n\}, P(D \mid \theta) = \prod_i P(x_i \mid \theta)$
 - Independent events
 - Identically distributed according to Bernoulli distribution
- Sequence *D* of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$

Called the "likelihood" of the data under the model

Maximum Likelihood Estimation

- Data: Observed set D of $\alpha_{\rm H}$ Heads and $\alpha_{\rm T}$ Tails
- Hypothesis: Bernoulli distribution
- Learning: finding θ is an optimization problem
 - What's the objective function?

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

• MLE: Choose θ to maximize probability of D

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

Your first parameter learning algorithm

$$\widehat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right]
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta)
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \qquad \widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Data

$$L(\theta; D) = \ln P(D|\theta)$$

What if I have prior beliefs?

- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ

Bayesian Learning

• Use Bayes' rule!

- Or equivalently: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$
- For uniform priors, this reduces to

maximum likelihood estimation!

$$P(\theta) \propto 1$$
 $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)$

Bayesian Learning for Thumbtacks

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

Likelihood:
$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

- What should the prior be?
 - Represent expert knowledge
 - Simple posterior form
- For binary variables, commonly used prior is the Beta distribution: $\alpha \beta_{T} = 1$

Beta distribution:
$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

 Since the Beta distribution is conjugate to the Bernoulli distribution, the posterior distribution has a particularly simple form:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

$$\propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}$$

$$= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_T - 1}$$

$$= Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

Using Bayesian inference for prediction

- We now have a distribution over parameters
- For any specific f, a function of interest, compute the expected value of f:

$$E[f(\theta)] = \int_0^1 f(\theta) P(\theta \mid \mathcal{D}) d\theta$$

- Integral is often hard to compute
- As more data is observed, posterior is more concentrated
- MAP (Maximum a posteriori approximation): use most likely parameter to approximate the expectation

$$\widehat{\theta} = \arg \max_{\theta} P(\theta \mid \mathcal{D})$$

$$E[f(\theta)] \approx f(\widehat{\theta})$$

Bayesian Classification

- Problem statement:
 - Given features

$$X_1, X_2, \dots, X_n$$

Predict a label Y

[Next several slides adapted from: Vibhav Gogate, Jonathan Huang, Luke Zettlemoyer, Carlos Guestrin, and Dan Weld]

Example Application

Digit Recognition

- X₁,...,X_n ∈ {0,1} (Black vs. White pixels)
- $Y \in \{0,1,2,3,4,5,6,7,8,9\}$

The Bayes Classifier

If we had the joint distribution on X₁,...,X_n and Y, could predict using:

$$\operatorname{arg} \max_{Y} P(Y|X_1,\ldots,X_n)$$

– (for example: what is the probability that the image represents a 5 given its pixels?)

• So ... How do we compute that?

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$
 Normalization Constant

 Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 5)P(Y = 5)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

$$P(Y = 6|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 5)P(Y = 5)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

 To classify, we'll simply compute these probabilities, one per class, and predict based on which one is largest

Model

- Parameters
 How many parameters are required to specify the likelihood, $P(X_1,...,X_n|Y)$?
 - (Supposing that each image is 30x30 pixels)
- The problem with explicitly modeling $P(X_1, ..., X_n | Y)$ is that there are usually way too many parameters:
 - We'll run out of space
 - We'll run out of time
 - And we'll need tons of training data (which is usually not available)

Naïve

- Naïve Bayes as BAYESh:
 - Features are independent given class:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

– More generally:

$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

- How many parameters now?
 - Suppose X is composed of n binary features

The Naïve Bayes Classifier

Given:

- Prior P(Y)
- n conditionally independent features X_1, \ldots, X_n , given the class Y
- For each feature i, we specify $P(X_i | Y)$

Classification decision rule:

$$y^* = h_{NB}(\mathbf{x}) = \arg \max_{y} P(y) P(x_1, \dots, x_n \mid y)$$

= $\arg \max_{y} P(y) \prod_{i} P(x_i \mid y)$

If certain assumption holds, NB is optimal classifier! (they typically don't)

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Are the naïve Bayes assumptions realistic here?

What has to be learned?

MLE for the parameters of NB

- Given dataset
 - Count(A=a,B=b) □ number of examples where A=a and
 B=b
- MLE for discrete NB, simply:
 - Prior:

$$P(Y = y) = \frac{Count(Y = y)}{\sum_{y'} Count(Y = y')}$$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y)}{\sum_{x'} Count(X_i = x', Y = y)}$$

MLE for the parameters of NB

 Training amounts to, for each of the classes, averaging all of the examples together:

Using the Naïve Bayes Classifier

Now, we have

$$P(Y = y_k \mid X = \mathbf{x}_i) = \frac{P(Y = y_k) \prod_{j=1}^d P(X_j = x_{i,j} \mid Y = y_k)}{P(X = \mathbf{x}_i)}$$

This is constant for a given instance, and so irrelevant to our prediction

- In practice, we use log-probabilities to prevent underflow
- To classify a new point x,

$$\begin{split} h(\mathbf{x}) &= \operatorname*{arg\,max}_{y_k} \ P(Y = y_k) \prod_{j=1}^d P(X_j = x_j \mid Y = y_k) \\ &= \operatorname*{arg\,max}_{y_k} \ \log P(Y = y_k) + \sum_{j=1}^d \log P(X_j = x_j \mid Y = y_k) \end{split}$$

The Naïve Bayes Classifier Algorithm

- For each class label y_k
 - Estimate $P(Y = y_k)$ from the data
 - For each value $x_{i,j}$ of each attribute X_i
 - Estimate $P(X_i = x_{i,j} | Y = y_k)$
- Classify a new point via:

$$h(\mathbf{x}) = \underset{y_k}{\operatorname{arg\,max}} \log P(Y = y_k) + \sum_{j=1}^{a} \log P(X_j = x_j \mid Y = y_k)$$

 In practice, the independence assumption doesn't often hold true, but Naïve Bayes performs very well despite this

Naïve Bayes: Subtlety #1

Often the X_i are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Extreme case: what if we add two copies: $X_i = X_k$

Naïve Bayes: Subtlety 2 Zero Counting

- Notice that some probabilities estimated by counting might be zero
 - Possible overfitting!
- Fix by using Laplace Smoothing
 - Adds 1 to each count

$$P(X_j = v \mid Y = y_k) = \frac{c_v + 1}{\sum_{v' \in \text{values}(X_j)}}$$

where

- c_v is the count of training instances with a value of v for attribute j and class label y_k
- |values(X_i)| is the number of values X_i can take on

MAP estimation for NB

- Given dataset
 - Count(A=a,B=b) □ number of examples where A=a and
 B=b
- MAP estimation for discrete NB, simply:
 - Prior: $P(Y=y) = \frac{Count(Y=y)}{\sum_{y'} Count(Y=y')}$

– Observation distribution:

$$P(X_i = x | Y = y) = \frac{Count(X_i = x, Y = y) + \mathbf{a}}{\sum_{x'} Count(X_i = x', Y = y) + |\mathbf{X_i}|^*\mathbf{a}}$$

• Called "smoothing". Corresponds to Dirichlet prior!

Training Naïve Bayes (Example 2)

Estimate $P(X_i | Y)$ and training data by counting! P(Y) directly from the

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	Play?
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy	cold	high	strong	warm	change	no
sunny	warm	high	strong	cool	change	yes

P(play) = ?

P(Sky = sunny | play) = ?

P(Humid = high | play) = ?

 $P(\neg play) = ?$

P(Sky = sunny | play) = ?

P(Humid = high | play) = ?

Estimate $P(X_j | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	Play?
sunny						yes
sunny						yes
rainy	cold	high	strong	warm	change	no
sunny						yes

$$P(play) = 3/4 P(play) = 1/4$$

...

• • •

Estimate $P(X_i | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	Play?
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
rainy						no
sunny	warm	high	strong	cool	change	yes

P(play) =
$$\frac{3}{4}$$

P(play) = $\frac{1}{4}$
P(Sky = sunny | play) = $\frac{4}{5}$
P(Sky = sunny | play) = $\frac{1}{3}$
P(Humid = high | play) = ?

•

Estimate P(Xi|Y) and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	Play?
		normal				yes
		high				yes
rainy	cold	high	strong	warm	change	no
		high				yes

P(play) =
$$\frac{3}{4}$$

P(play) = $\frac{1}{4}$
P(sky = sunny | play) = $\frac{4}{5}$ /5
P(Sky = sunny | play) = $\frac{1}{3}$ /5
P(Humid = high | play) = ?

. . .

• • •

Estimate $P(X_i | Y)$ and P(Y) directly from the training data by counting with Laplace smoothing:

<u>Sky</u>	<u>Temp</u>	<u>Humid</u>	<u>Wind</u>	<u>Water</u>	<u>Forecast</u>	Play?
sunny	warm	normal	strong	warm	same	yes
sunny	warm	high	strong	warm	same	yes
		<u>high</u>				
sunny	warm	high	strong	cool	change	yes

P(play) =
$$\frac{3}{4}$$

P(play) = $\frac{1}{4}$
P(sky = sunny | play) = $\frac{4}{5}$ /5
P(Sky = sunny | play) = $\frac{1}{3}$ /5
P(Humid = high | play) = $\frac{2}{3}$

•

Extra Slides with Full Example

The Naïve Bayes Graphical Model

- Nodes denote random variables
- Edges denote dependency
- Each node has an associated conditional probability table (CPT), conditioned upon its parents

Sky	<u>Temp</u>	<u>Humid</u>	<u>Play</u>	?					
sunny	warm	normal	yes				Play	۸۶	P(Play)
sunny	warm	high	yes			Play	ye.	S	3/4
rainy	cold	high	no		\		nc)	1/4
sunny	warm	high	yes						
Clas	. Dla. 2	D/Slav I Dis	Sky	<u></u>	. · (Temp	Plan)	· (+	Humid
Sky	Play?	P(Sky Pla	ay)	lemp	Play?	P(Temp	Play)		
suni	ny yes	4/5		warm	yes	4/5			
rair	y yes	1/5		cold	yes	1/5			
suni	пу по	1/3		warm	no	1/3			
rair	ny no	2/3		cold	no	2/3	_		

Example Using NB for Classification

Play?	P(Play)
yes	3/4
no	1/4

Temp	Play?	P(Temp Play)
warm	yes	4/5
cold	yes	1/5
warm	no	1/3
cold	no	2/3

Sky	Play?	P(Sky Play)
sunny	yes	4/5
rainy	yes	1/5
sunny	no	1/3
rainy	no	2/3

Humid	Play?	P(Humid Play)
high	yes	3/5
norm	yes	2/5
high	no	2/3
norm	no	1/3

$$h(\mathbf{x}) = \underset{y_k}{\operatorname{arg\,max}} \log P(Y = y_k) + \sum_{j=1}^{d} \log P(X_j = x_j \mid Y = y_k)$$

Goal: Predict label for $\mathbf{x} = (\text{rainy, warm, normal})$

Example Using NB for Classification

Play?	P(Play)
yes	3/4
no	1/4

Temp	Play?	P(Temp Play)
warm	yes	4/5
cold	yes	1/5
warm	no	1/3
cold	no	2/3

Sky	Play?	P(Sky Play)
sunny	yes	4/5
rainy	yes	1/5
sunny	no	1/3
rainy	no	2/3

Humid	Play?	P(Humid Play)	
high	yes	3/5	
norm	yes	2/5	
high	no	2/3	
norm	no	1/3	

$$P(\text{play} \mid \mathbf{x}) \propto \log P(\text{play}) + \log P(\text{rainy} \mid \text{play}) + \log P(\text{warm} \mid \text{play}) + \log P(\text{normal} \mid \text{play})$$

$$\propto \log 3/4 + \log 1/5 + \log 4/5 + \log 2/5 = \boxed{-1.319} \quad \text{PLA}$$

$$P(\neg \text{play} \mid \mathbf{x}) \propto \log P(\neg \text{play}) + \log P(\text{rainy} \mid \neg \text{play}) + \log P(\text{warm} \mid \neg \text{play}) + \log P(\text{normal} \mid \neg \text{play})$$

$$\propto \log 1/4 + \log 2/3 + \log 1/3 + \log 1/3 = -1.732$$