Løsningsforslag eksamen tretermin våren 2015

Oppgave 1

For at funksjonen
$$g(x) = \begin{cases} 5 & \text{for } x = 2 \\ a + x^2 & \text{for } x < 2 \\ b / x^2 & \text{for } x > 2 \end{cases}$$
 skal være kontinuerlig ved $x = 2$ må

 $\lim_{x\to 2^-} g(x) = \lim_{x\to 2^+} g(x) = g(2) = 5$. Her er $\lim_{x\to 2^-} g(x) = a+4 \text{ og } \lim_{x\to 2^+} g(x) = b/4$. Følgelig må a+4=5, dvs. $\underline{a=1}$ og b/4=5, dvs. $\underline{b=20}$ for at funksjonen skal være kontinuerlig.

Oppgave 2.

1. Vi skriver funksjonen på formen $y = 2 + x^{3/2} + x^{-1/2}$ og bruker potensregelen for derivasjon,

$$(x^n)' = nx^{n-1}$$
. Det gir $y' = (3/2)x^{1/2} - (1/2)x^{-3/2}$ som kan skrives $y' = \frac{3}{2}\sqrt{x} - \frac{1}{2x\sqrt{x}}$.

- 2. Derivasjon gir: $y' = 3e^{3x} + \frac{2}{2x} = 3e^{3x} + \frac{1}{x}$.
- 3. Ved å bruke produktregelen for derivasjon fås: $y' = 2x\cos x x^2 \sin x$.

Oppgave 3. Likningen for en linje som tangerer grafen til en funksjon y(x) i punktet (x_0, y_0) , er

$$y-y_0=y'(x_0)(x-x_0)$$
. Her er $y=\frac{1}{x}=x^{-1}$ som gir $y'=-x^{-2}=-\frac{1}{x^2}$.

Videre er $(x_0, y_0) = (1,1)$, som gir y' = -1. Likningen for tangenten blir da: y-1=-(x-1)=-x+1 eller y=-x+2.

Oppgave 4. Utregning gir:

$$I_1 = \int_{1}^{4} \left(1 + 2e^x + e^{2x}\right) dx = \left[x + 2e^x + \frac{1}{2}e^{2x}\right]_{1}^{4} = \left(4 + 2e^4 + \frac{1}{2}e^8\right) - \left(1 + 2e + \frac{1}{2}e^2\right) = \underbrace{3 + 2e^4 + \frac{1}{2}e^8 - 2e - \frac{1}{2}e^2}_{1}.$$

1

Oppgave 5

$$I_2 = \int \frac{\sin x}{\cos^4 x} dx$$
. $u = \cos x$. Da er $du = u' dx = -\sin x dx$. Dermed fås $I_2 = -\int \frac{1}{u^4} du = -\int u^{-4} + K = -\frac{1}{3\cos^3 x} + K$.

Oppgave 6

$$I_3 = \int x \cos(3x) dx = \frac{1}{3} x \sin(2x) - \frac{1}{3} \int \sin(3x) dx = \frac{1}{3} x \sin(3x) + \frac{1}{9} \cos(3x) + K.$$

Oppgave 7

a) Grafen til funksjonen y = x(x-1) i området fra x = 0 til x = 1:

Vi har:
$$y = x(x-1) = x^2 - x$$
.

Derivasjon gir:
$$y' = 2x - 1$$
.

Maksimum spunktet finnes ved å sette
$$y'=0$$
, dvs. $2x-1=0$.

Løsningene er:
$$x = \frac{1}{2}$$
. Dvs. det er minimumspunkt i $x = 1$, $y = -0.25$.

b) Arealet mellom kurven og x-aksen i området fra x = 0 til x = 1 er:

$$A = \int_{0}^{1} y \, dx = \int_{0}^{1} x (x - 1) \, dx = \int_{0}^{1} (x^{2} - x) \, dx = \left[\frac{1}{3} x^{3} - \frac{1}{2} x^{2} \right] = \frac{1}{3} - \frac{1}{2} = \frac{1}{\underline{6}}.$$

Minustegnet betyr at flaten befinner seg under x-aksen.

Oppgave 8

Kurven $y_1 = x^2$ og linjen $y_2 = x$ skjærer hverandre i et punkt x_p gitt ved $y_1(x_p) = y_2(x_p)$, dvs. $x_p^3 = x_p$ som gir $x_p = 1$. Skjæringspunktet er (1,1).

Volumet av rotasjonslegemet som oppstår når flaten mellom kurven $y_1(x) = x^2$ og linjen $y_2(x) = x$ roteres om y-aksen, kan beregnes på to måter.

Vi tenker oss først at det består av vannrette sirkelskiver med indre radius $x_1(y) = y^{1/2}$ og ytre radius $x_2(y) = y$. Da er volumet gitt ved integralet

$$V = \pi \int_{0}^{1} (x_{2}^{2}(y) - x_{1}^{2}(y)) dy = \pi \int_{0}^{1} (y - y^{2}) = \pi \left[\frac{1}{2} y^{2} - \frac{1}{3} y^{3} \right]_{0}^{1} = \pi \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{\pi}{6}.$$

Alternativt kan vi tenke oss at volumet består av sylinderskall. Da er volumet gitt ved integralet

$$V = 2\pi \int_{0}^{1} (xy_{2}(x) - xy_{1}(x)) dx = 2\pi \int_{0}^{1} (x^{2} - x^{3}) dx = 2\pi \left[\frac{1}{3}x^{3} - \frac{1}{4}x^{4} \right]_{0}^{1} = 2\pi \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{\pi}{\underline{6}}.$$

Oppgave 9

Gitt de to vektorene $\vec{A} = [1, 1, 1]$ og $\vec{B} = [a, -4, 1]$. Skalarproduktet av vektorene er

 $\vec{A} \cdot \vec{B} = 1 \cdot a + 1 \cdot (-4) + 1 \cdot 1 = a - 3$. Skalarproduktet kan også skrives $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$ der θ er vinkelen mellom \vec{A} og \vec{B} . Siden $\cos 90^\circ = 0$ betyr $\vec{A} \cdot \vec{B} = 0$ at vektorene står vinkelrett på hverandre. Følgelig står vektorene vinkelrett på hverandre dersom $\underline{a} = 3$.

Oppgave 10

Vi skal først skrive likningen for linjen L på vektorform. La $\vec{r} = [x, y, z]$ være posisjonsvektoren til et vilkårlig punkt P på linjen som vist i figuren. Av figuren ser vi at $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$. Vektoren $\vec{r} = \overrightarrow{AP}$ peker langs \overrightarrow{AB} . Det betyr at man alltid kan finne et tall t slik at $\vec{r} = \overrightarrow{AP} = t\overrightarrow{AB}$. Tallet t kalles en parameter og kan oppfattes som en koordinat langs linjen slik at hvert punkt på linjen har en verdi av t, og alle punktene har forskjellige verdier. Verdien av t kan for eksempel vokse fra 0 ved \overrightarrow{A} til 1 ved \overrightarrow{B} . Dermed fås vektorlikningen for linjen $\overrightarrow{r} = \overrightarrow{OA} + \overrightarrow{AB}t$.

På komponentform tar denne likningen formen

$$[x, y, z] = [3, 4, 2] + [5-3, 8-4, 10-2]t = [3, 4, 2] + [2, 4, 8]t$$
.

Dette gir parameterformen til likningen for L

$$x=3+2t$$
 , $y=4+4t$, $z=2+8t$.