

Application of Graph Learning to inverse problems

Cédric Mendelin <cedric.mendelin@stud.unibas.ch>

Department of Mathematics and Computer Science, University of Basel

Date

Outline

Imaging methods

2 Graph Denoising

3 Conclusion

Cryo-EM

Cryo-EM overview Singer 2018, Figure 1 and Figure 2

Cryo-EM challenges

- High-noise level
- Unknown rotation during freezing
- > (Structural variety of observations)

The main domain of interest is the high-noise domain (cryo-EM).

Computed Tomography

- > Related to cryo-EM
- > Can be seen as simpler version in 2D
- Good to start with

Definition (Observation)

$$y_i[j] = R(x, \theta_i, s_j) + \eta_i[j]$$
, with $1 \le i \le N$ and $1 \le j \le M$,

Graph construction

Let Ω be a dataset $\Omega \subset \mathbb{R}^M$, a graph can be constructed like:

- V: each node associated with $x \in \Omega$
- > E: Calculate adjacency matrix with similarity measure d and some threshold au

Definition (Adjacency Matrix)

$$A_{ij} = \begin{cases} 1 & \text{if } d(x_i, x_j) < \tau \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Graph construction

Let Ω be a dataset $\Omega \subset \mathbb{R}^M$, but only observation of $y = x + \eta$ (with η drawn from $\mathcal{N} \sim (0, \sigma^2)$), a graph can be constructed like:

- >V: each node associated with $y \in \Omega$
- > E: Calculate adjacency matrix with similarity measure d and some threshold au

Definition (Noisy Adjacency Matrix)

$$A_{0_{ij}} = \begin{cases} 1 & \text{if } d(y_i, y_j) < \tau \\ 0, & \text{otherwise} \end{cases}$$
 (2)

Noisy graph

Theorem

For every noisy graph $G_0 = \langle V, E_0 \rangle$, there exists a noiseless graph $G = \langle V, E \rangle$. Both graphs consists of the same set of vertices V but different edges. E_0 is defined as follows:

$$E_0 = E \setminus E_0^- \cup E_0^+,$$

where $E_0^- \subseteq E$ and $E_0^- \subseteq U$ with U the set of all possible edges and $E_0^+ \cap E = \emptyset$

Graph Denoising

Graph denoising is the task, to estimate a denoised graph \tilde{G} from a given noisy graph G_O , with underlying original graph G:

Definition (Graph Denoising)

$$GD: G_0 \mapsto \tilde{G} \approx G,$$

where G_0 , \tilde{G} , G denotes noisy, estimated denoised and original graph respectively.

Definition (Graph Denoising)

$$GD: A_0 \mapsto \tilde{A} \approx A,$$

where A_0 , \tilde{A} , A denotes adjacency matrix from G_0 , \tilde{G} and G respectively.

Manifolds

We know structure of manifolds for noiseless data:

- \rightarrow Computed Tomography \rightarrow circle
- \rightarrow Cryo-Em \rightarrow sphere

If data is noisy, manifold will "drift" away from noise less manifold:

Manifolds for phantom without noise, and different noise levels.

Project Conclusion

- > Introduce Graph Denoising method
- > Focus on high-noise domain (cryo-EM)
- > Exploit known manifold in 2D and 3D
- > Further study Graph Laplacian and connection with
 - > Tomography domain
 - > GNNs and Machine Learning in general
- > Evaluate on toy dataset in 2D and 3D
- Nice to have: evaluate on cryo-EM / CT dataset

Project schedule

References

Singer, Amit (2018). "Mathematics for cryo-electron microscopy". In: Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018. World Scientific, pp. 3995–4014.