Факультет Программной Инженерии и Компьютерной техники

Информатика

Лабораторная работа №2

Вариант 8*4 + 4 = 36

Выполнил:

Махфудх Ахмед Айнин

Группа Р3132

Преподаватели:

Балакшин Павел Валерьевич

Бострикова Дарья Константиновна

Санкт-Петербург 2025

Оглавление

Задание	3
Основные этапы вычисления	3
1. Задание 1 − №32	3
2. Задание 2 — №59	4
3. Задание 3 — №86	4
4. Задание 4 — №1	5
5. Задание 5 — №37	5
6. Задание 6 − № ((32 + 59 + 86 + 1 + 37) * 4 = 860)	5
7. Задание 7	6
Вывод	6
Список литературы	6

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариант выбирается как:
- Вычислить произведение 4-й цифры номера ISU и 5-й цифры номера ISU.
- К полученному числу прибавить 6-ю цифру номера ISU.
- Если полученный вариант больше 99, то необходимо вычесть из него 99.
- То есть если номер ISU = 125598, то это 5*9 + 8 = 45 + 8 = 53 40 = 13-й вариант. Если номер ISU = 467205, то это 2*0 + 5 = 7-й вариант.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 15-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Сделать себе учётную запись на https://gitlab.se.ifmo.ru/.
- 10. Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

1. Задание 1 — №32

r1	r2	i1	r3	i2	i3	i4
0	0	1	1	0	1	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$ $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$ $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$

	1	L	2	3	4	5	6	7	
2 ^x	r	1	r_2	i ₁	r ₃	i ₂	i ₃	i ₄	S
1)		1	Χ	-	Χ	-	Χ	S ₁
2			Χ	Χ	-	-	Х	Х	S ₂
4			-	-	Х	Х	Χ	Х	S 3

 $s = (s_3, s_2, s_1) = 001 \Rightarrow$ ошибка в символе r_1 Правильное сообщение: 1010

2. Задание 2 — №59

r1	r2	i1	r3	i2	i3	i4
0	0	1	0	1	0	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$ $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$ $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	r ₁	r_2	i ₁	r_3	i ₂	<u>.</u> 3	i ₄	S
1	Х	ı	Χ	1	Χ		Χ	S ₁
2	-	Х	Х	-	-	X	Х	S ₂
4	-	-	-	Χ	Χ	X	Χ	S ₃

 $s = (s_3, s_2, s_1) = 110 \Rightarrow$ ошибка в символе i_3 Правильное сообщение: 1110

3. Задание 3 — №86

r1	r2	i1	r3	i2	i3	i4
0	0	0	1	1	1	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$ $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$ $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

	1	2	3	4	5	6	7	
2 ^x	r ₁	r_2	i ₁	r_3	i ₂	i ₃	i ₄	S
1	Χ	ı	Χ	ı	Χ	ı	X	S ₁
2	-	Χ	Χ	-	-	Χ	X	S ₂
4	-	-	-	Χ	Χ	Χ	X	S 3

s = (s₃, s₂, s₁) = 111 \Rightarrow ошибка в символе i₄ Правильное сообщение: 0111

4. Задание 4 — №1

$$s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$
 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

r1	r2	i1	r3	i2	i3	i4
0	0	0	1	0	0	0

	1	2	3	4	5	6	7	
2 ^x	r_1	r ₂	i ₁	r ₃	i ₂	i ₃	i ₄	S
1	Χ	-	Χ		Χ	-	Χ	S ₁
2	-	Χ	Х	-	-	Х	Х	S ₂
4	•	-	-	X	Х	Х	Х	S 3

s = (s₃, s₂, s₁) = 100 ⇒ ошибка в символе r_3

Правильное сообщение: 0000

5. Задание 5 — №77

														i11
0	1	0	1	0	1	0	0	1	0	1	0	0	1	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 \oplus i5 \oplus i7 \oplus i9 \oplus i11 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 0$ $s2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$ $s3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 1$ $s4 = r4 \oplus i5 \oplus i6 \oplus i7 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 1$

	1	2	3	4	5	6	7	8	9	10	11	12	2 1	3	14	15	
2 ^x	r ₁	r ₂	i ₁	r_3	i ₂	i ₃	i ₄	r ₄	i ₅	i ₆	i ₇	i ₈	i	9	i ₁₀	i ₁₁	S
1	Χ	-	Х	1	Χ	-	Χ	-	Χ	-	Χ	_	>		-	Χ	S 1
2	-	Χ	Х	1	-	Х	Х	-	-	Χ	Х	-	-		Χ	Χ	S ₂
4	-	-	-	Х	Х	Х	Х	-	-	-	-	X	>	(Χ	Х	S ₃
8	-	-	-	-	-	-	-	Х	Х	Х	Х	X	>	(Χ	Х	S ₄

 $s = (s_4, s_3, s_2, s_1) = 1100 \Rightarrow$ ошибка в символе i_8

Правильное сообщение: 0010101<mark>1</mark>010

6. Задание 6 — N \circ ((32 + 59 + 86 + 1 + 37) * 4 = 860)

Информационных разрядов в передаваемом сообщении: 860

Пусть r — число проверочных разрядов. Тогда всего разрядов в кодовом слове n=i+r Условия для исправляющего одиночные ошибки кода Хэмминга записывают в форме : $2^r >= i + r + 1$

Или эквивалентно проверяют $2^r - r - 1 >= i$

Проверяем минимальное r:

 $r=9: 2^9-9-1=512-9-1=502<860$ — недостаточно.

 $r=10: 2^{10}-10-1=1024-10-1=1013>860$ — подходит.

Значит минимальное число проверочных разрядов r=10.

коэффициент избыточности = $r / (i + r) = 11 / (860 + 10) \approx 0,0114943$

Ответ: r = 10, коэффициент избыточности $\approx 0,0114943$

7. Задание 7

Click Here

Вывод

В ходе выполнения лабораторной работы я научился работать с кодом Хэмминга, написал небольшую программу на Java, а также освоил вставку кода с подсветкой синтаксиса в Word-документ.

Список литературы

GeeksforGeeks. Hamming Code in Computer Network [Электронный ресурс]. URL: https://www.geeksforgeeks.org/computer-networks/hamming-code-in-computer-network/ (дата обращения: 21.09.2025).

Baeldung. Error Detection: Hamming Code [Электронный ресурс]. URL: https://www.baeldung.com/cs/hamming-code-error-detection-correction (дата обращения: 21.09.2025).

Sudan M. Hamming Codes, Distance, Examples, Limits, and Algorithms [Электронный ресурс] // Harvard University, 2017. URL: https://people.seas.harvard.edu/~madhusudan/courses/Spring2017/scribe/lect01.pdf (дата обращения: 21.09.2025).