

PATENT ASSIGNMENT AGREEMENT

This PATENT ASSIGNMENT AGREEMENT is made from NORTEL NETWORKS CORPORATION, a corporation duly incorporated under the laws of Canada, having its executive offices at 8200 Dixie Road, Suite 100, Brampton, Ontario L6T 5P6 Canada, and the Selling Subsidiaries (collectively, the "Assigning Parties") to BOOKHAM TECHNOLOGY PLC, a public limited company incorporated under the laws of England and Wales having its executive offices at 90 Milton Park, Abingdon, Oxfordshire OX14, 4RY United Kingdom ("Assignee"). Capitalized terms used herein but not defined herein shall have the meanings set forth in the Acquisition Agreement (as defined below).

WHEREAS, Nortel Networks Corporation and the Assignee have entered into an Acquisition Agreement (the "Acquisition Agreement") dated as of October 7, 2002 (*as amended through the date hereof*), for the sale by the Assigning Parties to the Assignee of certain assets and an assumption by the Assignee of certain liabilities of the Assigning Parties; and

WHEREAS, in connection with the Acquisition Agreement, the Assigning Parties desire to assign to the Assignee, and the Assignee desires to acquire, all of the Assigning Parties' right, title and interest in and to the patents, patent applications and unfiled invention disclosures set forth in Schedule A hereto (collectively, the "Patents").

NOW THEREFORE, for good and valuable consideration, including the execution of the Acquisition Agreement by Assignee, the receipt and sufficiency of which are hereby acknowledged, the Assigning Parties and Assignee are entering into this Patent Assignment Agreement (the "Assignment Agreement") and hereby agree as follows:

1. **Assignment of Patents.** The Assigning Parties hereby sell, assign, set over and transfer to the Assignee all of the Assigning Parties' respective right, title and interest in and to the said Patents and any and all continuations and divisions of said Patents and continuations-in-part based in whole or in part upon said Patents, and in, to and under any and all Letters Patent which may be granted on or as a result thereof, and any re-issue, re-examination or extension of said Letters Patent, and in and to any and all priority rights, convention rights and other benefits accruing or to accrue with respect to the filing of applications for patents or the issuance of patents in all countries in respect of the said Patents; the same to be held and enjoyed by the Assignee, its successors, assigns, nominees or legal representative, to the full end of the term or terms for which said Letters Patent respectively may be granted, reissued or extended, as fully and entirely as the same would have been held and enjoyed by the Assigning Parties had this assignment, sale and transfer not been made. The Assigning Parties hereby authorize and request the Commissioner of Patents of the United States of America and any official of any country or countries foreign to the United States of America whose duty it is to issue patents on applications as aforesaid, to issue to the Assignee, any and all Letters Patent for the said Patents, which may be issued and

RECEIVED
APR - 9 2003
TECHNOLGY CENTER 2800

granted on or as a result of the application aforesaid, in accordance with the terms of this Assignment.

2. Further Assurances. At Assignee's expense, the Assigning Parties agree to perform all further acts and execute and deliver all further documents and/or instruments which may be reasonably necessary to carry out the provisions of this Assignment Agreement, including, without limitation, cooperating fully with Assignee to perfect the transfer of the Patents hereunder and, if appropriate, to assure that the Patents are properly recorded at any appropriate administrative agency, including but not limited to, the United States Patent and Trademark Office.
3. Governing Law. This Assignment Agreement shall be governed by and enforced in accordance with the laws of the State of New York, without giving effect to any conflicts of law principles.
4. Successors and Assigns. This Assignment Agreement shall be binding on, and shall inure to the benefit of, the parties hereto and their respective successors and assigns.

IN WITNESS WHEREOF, the Assigning Parties and the Assignee have caused this Assignment Agreement to be executed by their authorized officers on this 8th day of November, 2002.

**NORTEL NETWORKS
CORPORATION**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS
INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

NORTEL NETWORKS LIMITED

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS PROPERTIES
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS
TECHNOLOGY CORPORATION**

By:

Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS (ASIA)
LIMITED**

By:

Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS (SWITZERLAND)
GmbH**

By:

Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS (U.K.)
LIMITED**

By:

Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS LIMITED**

By:

Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS HPOCS
INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS PHOTONICS
PTY LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS SHANNON
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

On this 11 day of November, 2002, before me appeared Mark A. Ferguson, the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of each of the Assigning Parties with authority to do so.

State of Wisconsin (private))

ss.

County of Walworth (reg'd)) *for me*

BOOKHAM TECHNOLOGY PLC

By: PJ Bui
Name:
Title:

[Signature Page to Patent Assignment Agreement]

On this 8 day of November, 2002, before me appeared PHILIP S.J. DAVIS, the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of Bookham Technology plc with authority to do so.

State of NEW YORK)
)
) ss.
County of NEW YORK)

ME 4

STEVEN FOUNDOS
Notary Public, State Of New York
No.01FO6076651
Qualified In Nassau County
Certificate Filed In New York County
Commission Expires July 1, 2006

SCHEDULE A

Transferred Patents

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
10289RO	US	19-Apr-99	6222200	Canada, United States	PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY
10412RO	US	17-Oct-00	Pending	United States	EXTERNAL CAVITY LASER USING ANGLE-TUNED FILTER AND METHOD OF MAKING SAME
10413ID	US	30-Jun-99	Pending	United States	FIBRE TERMINATION COMPOUND GRADED INDEX LENSES
10485RO	US	1-Dec-00	Pending	United States	ELECTROCHROMIC OPTICAL ATTENUATOR
10509RO	US	23-Dec-99	6287401	Canada, United States	ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS
11006ID	US	2-Feb-00	Pending	United States	MODULATOR ASSEMBLIES
11010ID	US	28-Feb-00	Pending	Canada, European Patent Convention, United States	OPTICAL AMPLIFIER STAGE
11920ID	US	21-Apr-00	Pending	United States	PUMPED OPTICAL AMPLIFICATION DEVICE
11945ID	US	18-May-00	Pending	United States	A RAMAN FIBRE LASER
11954ID	US	18-May-00	Pending	United States	A RAMAN FIBRE LASER
12242RO	US	11-Dec-00	Pending	United States	EPITAXIALLY GROWN AVALANCHE PHOTODIODE
12339ID	US	1-Sep-00	Pending	United States	OPTICAL FIBER DEVICE
12349RO	US	12-Oct-00	Pending	Canada, United States	COMPACT CHIP LABELING USING STEPPER TECHNOLOGY
12526RO	US	12-Sep-00	Pending	United States	APPARATUS FOR GRIPPING CERAMIC SUBSTRATES
12615ID	US	29-Sep-00	Pending	United States	PACKAGING ATMOSPHERE AND METHOD OF PACKAGING A MEMS DEVICE
12634RO	US	20-Dec-00	Pending	United States	STRUCTURE AND METHOD FOR DOPING OF III-V COMPOUNDS
12665RO	US	22-Sep-00	Pending	United States	PRINT QUALITY TEST STRUCTURE FOR LITHOGRAPHIC DEVICE MANUFACTURING
12686ID	US	27-Oct-00	Pending	United States	GLASS FIBER FIXATIVE AND FIXING PROCESS

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
12715RO	US	22-Sep-00	Pending	United States	METHODS FOR MAKING PATTERNS IN RADIATION SENSITIVE POLYMERS
12800AU	US	30-Aug-95	5930441	United States	SPLIT-BEAM FOURIER FILTER
12841ID	US	14-Jul-00	Pending	United States	INTEGRATED OPTICAL TRANSMITTER
12847RO	US	14-Dec-01	Pending	Canada, United States	CONFINEMENT LAYER OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
12849ID	US	9-Nov-00	Pending	Patent Cooperation Treaty, United States	OPTICAL AMPLIFIER METHOD AND APPARATUS
12948ID	US	6-Dec-00	Pending	Canada, United States	OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE
13063CK	US	27-Sep-96	6041071	United States	ELECTRO-OPTICALLY TUNABLE EXTERNAL CAVITY MIRROR FOR A NARROW LINewidth SEMICONDUCTOR LASER
13144CK	US	31-Aug-99	Pending	Canada, United States	LASER WITH SETTABLE WAVELENGTHS
13199CK	US	10-Aug-00	Pending	Canada, European Patent Convention, United States	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	US	10-Aug-00	Pending	Canada, European Patent Convention, United States	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13391RO	US	16-Nov-01	Pending	United States	MONOLITHICALLY INTEGRATED OPTICALLY-PUMPED EDGE-EMITTING SEMICONDUCTOR LASER
13417RO	US	29-Dec-00	Pending	United States	METHOD OF ETCHING PATTERNS INTO EPITAXIAL MATERIAL
13444CK	US	17-May-01	Pending	Patent Cooperation Treaty, United States	MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS
13494ID	US	29-Mar-01	Pending	Canada, European Patent Convention, United States	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13495ID	US	4-Oct-00	6377717	United States	OPTICAL MODULATORS
13502RO	US	14-Dec-00	Pending	United States	OPTICAL FIBER TERMINATION

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
13524RO	US	19-Jul-01	Pending	United States	A METHOD AND SYSTEM FOR FABRICATING SEMICONDUCTOR LASERS
13544RO	US	10-May-02	Pending	United States	SEMICONDUCTOR LASER
13584RO	US	13-Nov-00	Pending	Canada, European Patent Convention, United States	ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13591ID	GB	18-Dec-01	Pending	Great Britain, Patent Cooperation Treaty	OPTICAL MODULATORS
13614ID	US	26-Nov-01	Pending	United States, Patent Cooperation Treaty	OPTICAL PULSE GENERATION
13721RO	US	20-Sep-02	Pending	United States	AN NON-DESTRUCTIVE AND FAST WAY TO DETECT DIFFUSION DEPTH AND UNIFORMITY CROSS A WAFER
13813RO	US	20-May-02	Pending	United States	MONOLITHICALLY INTEGRATED HIGH POWER LASER OPTICAL DEVICE
13816RO	Unfiled	Unfiled	Unfiled	Unfiled	APPARATUS FOR MONITORING THE OUTPUT POWER OF DIODE LASERS AND MODULATORS
14224ID	US	21-Dec-01	Pending	United States	ISOLATION OF MICROWAVE TRANSMISSION LINES
14429ID	US	6-Dec-01	Pending	United States	OPTICAL BEAM SAMPLING MONITOR
14404RO	US	20-Dec-01	Pending	United States	HYBRID CONFINEMENT LAYERS OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
14433JD	US	20-Apr-98	6204560	Canada, European Patent Convention, Japan, Korea South, United States	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD
14434JD	US	1-Sep-00	Pending	European Patent Convention, United States	STABILIZED LASER SOURCE
14435JD	US	25-Oct-00	Pending	Canada, European Patent Convention, United States	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14480RO	Unfiled	Unfiled	Unfiled	Unfiled	GAIN COUPLED DISTRIBUTED FEEDBACK LASER USING SELF-ASSEMBLED QUANTUM DOTS

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
14549JD	US	9-May-02	Pending	Canada, European Patent Convention, Japan, United States	HIGH POWER SEMICONDUCTOR LASER DIODE
14551JD	US	19-Dec-01	Pending	United States	HIGH POWER LASER CARRIER
14552JD	US	6-Nov-01	Pending	United States	ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS
14592ID	US	19-Dec-01	Pending	United States	GIMBALED LENS MOUNT AND ALIGNMENT ASSEMBLY FOR A SENSITIVE OPTICAL ALIGNMENT
14676RO	US	26-Dec-01	Pending	United States	ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS
14681ID	US	21-Dec-01	Pending	United States	THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES
14716RO	US	12-Feb-02	Pending	United States	WAVEGUIDE MODE STRIPPER FOR INTEGRATED OPTICAL COMPONENTS
14777ID	US	18-Dec-2001	Pending	United States	OPTICAL AMPLIFIERS
14794RO	US	30-Sep-02	Pending	United States	METHOD AND APPARATUS FOR FLOATING GRATINGS IN DFB (DISTRIBUTED FEEDBACK) LASERS
14854RO	Unfiled	Unfiled	Unfiled	Unfiled	A METHOD FOR MINIMIZING CROSSTALK DUE TO LASER WAVELENGTH VARIATIONS WITH NON-IDEAL FILTERS
14864RO	US	8-Jul-02	Pending	United States	CURRENT TUNED MACH-ZEHNDER OPTICAL ATTENUATOR
14942RO	US	5-Apr-02	Pending	United States	RE-CIRCULATING OPTICAL PULSE GENERATOR
15004RO	US	18-Mar-02	Pending	United States	MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15093RO	US	26-Sep-02	Pending	United States	MULTIPLE-CONTACT SEMICONDUCTOR OPTICAL AMPLIFIERS
15095RO	US	29-Mar-02	Pending	United States	FREQUENCY IDENTIFICATION WITH FREQUENCY LOCKER

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
15113CK	US	7-Jun-02	Pending	United States	WAVELENGTH STABILIZED OPTICAL DEVICE
15116JD	US	24-Apr-02	Pending	United States	HIGH POWER SEMICONDUCTOR LASER DIODE AND METHOD FOR MAKING SUCH A DIODE
15117JD	Unfiled	Unfiled	Unfiled	Unfiled	PUMP LASER DIODE WITH IMPROVED WAVELENGTH STABILITY
15138ID	US	3-Jun-02	Pending	United States	AN IMPROVED METHOD FOR TERMINATING AN OPTICAL WAVEGUIDE INTO AN OPTICAL COMPONENT
15142RO	US	31-Jan-02	Pending	United States	FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS
15150RO	US	27-Sep-02	Pending	United States	METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIA GROWTH STEP
15164RO	US	2-Oct-02	Pending	United States	A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER.
15181ID	US	26-Jun-02	Pending	United States	LASER TRANSMITTER
15193RO	US	14-May-02	Pending	United States	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER
15320RO	US	15-Oct-02	Pending	United States	ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP
15338RO	Unfiled	Unfiled	Unfiled	Unfiled	HIGH POWER DISTRIBUTED FEEDBACK LASER
15386JD	US	16-Sep-02	Pending	United States	RIDGE WAVEGUIDE LASER DIODE WITH COMPLEX INDEX GUIDING LAYER
15389JD	Unfiled	Unfiled	Unfiled	Unfiled	LASER STABILIZATION USING VERY HIGH RELATIVE FEEDBACK
15390RO	US	16-Aug-02	Pending	United States	ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE
15399JD	US	17-Oct-02	Pending	United States	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
HQ0054	US	19-Feb-99	6141370	Canada, United States	SUPERIMPOSED GRATING WDM TUNABLE LASERS
ID0032	US	6-Oct-94	5534442	United States	OPTO ELECTRONIC COMPONENTS
ID0079	US	19-Jul-93	5393707	Great Britain, United States	SEMICONDUCTOR - SLICE CLEAVING
ID0094	US	17-Nov-95	5668823	France, Germany, Great Britain, Japan, United States	HYBRID OPTIC SOLUTION
ID0134	US	16-Feb-94	5419804	France, Germany, Great Britain, Japan, United States	SEMICONDUCTOR ETCHING PROCESS
ID0137	US	26-Jul-95	5574811	Great Britain, United States	PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS
ID0170	US	24-Feb-94	5365534	United States	INJECTION LASER AND PHOTOSENSOR ASSEMBLY
ID0193	US	13-Feb-95	5568728	Great Britain, United States	FILAMENT COOLER
ID0199	US	9-Sep-94	5542011	United States	CO & COUNTER-PUMPED OPTICAL AMPLIFIER
ID0206	US	9-Sep-94	5530580	France, Germany, Great Britain, Japan, United States	ELECTRO ABSORPTION OPTICAL MODULATORS
ID0216	US	29-Jul-94	5522000	France, Germany, Great Britain, Japan, United States	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0237	US	22-Mar-94	5502741	United States	DIRECT AMPLITUDE MODULATION OF LASERS
ID0261	US	7-Mar-96	5933707	France, Germany, Great Britain, Japan, United States	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0287	US	3-Aug-95	6275321	France, Germany, Great Britain, United States	POLARISATION-INSENSITIVE OPTICAL MODULATORS

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
ID0295	US	12-Dec-95	5570444	France, Germany, Great Britain, Italy, United States	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0311	US	4-Dec-96	5872649	France, Germany, Great Britain, Italy, United States	OPTICAL AMPLIFIER
ID0384	US	19-Jul-96	5664043	Great Britain, United States	HERMETIC OPTICAL FIBRE FEED-THROUGH
ID0426	US	30-Apr-97	5828689	Canada, European Patent Convention, Japan, United States	ETALON ARRANGEMENT
ID0431	US	19-Jun-98	6058125	France, Germany, Great Britain, Italy, Japan, United States	SEMICONDUCTOR LASERS
ID0467	US	5-Feb-97	5985086	France, Germany, Great Britain, Italy, Japan, United States	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE
ID0519	US	1-Aug-97	6188118	Canada, European Patent Convention, Japan, United States	SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0651	US	30-May-97	5901164	Canada, European Patent Convention, Japan, United States	DIRECT AMPLITUDE MODULATION OF LASERS
ID0687	US	4-Dec-97	6124956	United States	OPTICAL TRANSMITTER OUTPUT MONITORING TAP
ID0691	US	5-May-98	6075800	United States	BONDING RIDGE STRUCTURE LASER DIODES TO SUBSTRATES

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
ID0764	US	16-Aug-99	6351589	United States	A REMOVABLY COATED OPTICAL FIBRE
ID0803	US	24-Dec-97	5956437	Canada, European Patent Convention, Japan, United States	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0908	US	30-Apr-98	Pending	United States	SEMICONDUCTOR OPTO ELECTRONIC DEVICE PACKAGING
ID1107	US	29-Mar-99	6240221	Canada, European Patent Convention, United States	INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID8512	US	15-Jul-83	4615031	Great Britain, United States	INJECTION LASER PACKAGES
ID8850	US	22-Jul-86	4720684	Canada, United States	OPTICAL AMPLIFIERS
ID8852	US	21-May-85	4608276	Canada, United States	MANUFACTURING OPTICAL FIBRE
ID8960	US	11-Dec-86	4735648	United States	OPTICAL FIBRE MANUFACTURE
ID9003	US	2-Oct-85	4631078	Canada, Germany, Great Britain, Japan, Spain, United States	COATING OPTICAL FIBRES
ID9186	US	17-Jan-89	4949352	Great Britain, United States	LASER MANUFACTURE
ID9209	US	1-May-86	4748307	United States	TUBE FURNACE
ID9312	US	14-Aug-86	4793840	Great Britain, United States	OPTICAL FIBRE MANUFACTURE

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
ID9315	US	31-Dec-90	RE34,516	France, Germany, Great Britain, New Zealand, United States	OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9379	US	24-Nov-86	4772086	Great Britain, United States	OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER
ID9495	US	31-Mar-87	4760580	Germany, Japan, United States	LASER ARRAY
ID9552	US	10-Feb-88	4830459	France, Germany, Great Britain, United States	OPTICAL FIBRE CABLES
ID9604	US	9-Aug-88	4988159	France, Germany, Great Britain, Netherlands, Sweden, United States	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9617	US	1-Sep-88	4937638	United States	EDGE EMITTING LIGHT EMISSIVE DIODE
ID9661	GB	12-Oct-88	2213957	Great Britain	WAVEGUIDE TO OPTO-ELECTRONIC TRANSDUCER
ID9715	US	31-May-90	5083090	France, Germany, Great Britain, Japan, United States	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
ID9716	US	31-May-90	5062687	France, Germany, Great Britain, Japan, United States	CARBON COATING OF OPTICAL FIBRES
ID9731	GB	4-Aug-88	2221570	Great Britain	BONDING A SEMICONDUCTOR TO A SUBSTRATE
ID9742	GB	30-Sep-88	2223324	Great Britain	OPTICAL FILTERS
ID9750	US	10-Sep-90	5029981	France, Germany, Great Britain, Italy, Japan, Netherlands, United States	DIFFRACTION GRATING
ID9752	GB	4-Oct-88	2223509	Great Britain	VAPOUR PHASE PROCESSING
ID9763	US	11-Dec-90	5115444	France, Germany, Great Britain, United States	MULTICHANNEL CAVITY LASER
ID9774	GB	3-Feb-89	2227854	Great Britain	INTEGRATED OPTICS ASYMMETRIC Y-COUPLER
ID9806	US	27-Jun-90	5082380	United States	OPTICAL FIBRE CABLE
ID9837	US	12-Oct-90	5050960	United States	AERIAL OPTICAL FIBRE CABLE
ID9856	GB	2-Nov-89	2237654	Great Britain	SEMICONDUCTOR OPTICAL SOURCE
ID9870	US	17-Sep-90	5056096	France, Germany, Great Britain, Japan, United States	RING LASER
MO0068	US	8-Jun-89	5035916 and 4934774	Canada, France, Germany, Great Britain, United	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries/IC Family	Title
				States	
MO0166	US	20-Sep-96	5703980	United States	A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM A OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER
MO0167	US	10-Jul-96	5793913	Canada, European Patent Convention, Japan, United States	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	US	15-May-98	6158901	Canada, European Patent Convention, Japan, United States	METHOD FOR HYBRID INTEGRATION OF DISCRETE ELEMENTS ON SEMICONDUCTOR SUBSTRATE
MO0167	US	1-Jun-00	6391214	Canada, European Patent Convention, Japan, United States	METHOD FOR HYBRID INTEGRATION OF DISCRETE ELEMENTS ON SEMICONDUCTOR SUBSTRATE
RE1009	US	28-Nov-89	4950046	Canada, United States	FIBER OPTIC COUPLER
RE1037	US	28-Apr-86	4730171	Canada, United States	OPTICAL SIGNAL MODULATORS
RO1624	US	11-Feb-81	4695125	United States	HERMETIC OPTICAL ATTENUATOR
RO1807	US	3-Dec-82	4493287	Canada, United States	DIFFUSION EQUIPMENT
RO1809	US	9-Dec-82	4530099	United States	A PLANAR NARROW-STRIPE LASER WITH IMPROVED CHARGE CARRIER CONFINEMENT
RO1882	US	27-Feb-84	4574730	Canada, United States	MELT DISPENSING LIQUID PHASE EPITAXY BOAT
RO1903	US	23-Feb-84	4489477	Canada, United States	METHOD FOR SCREENING LASER DIODES
RO1944	US	22-Oct-84	4661962	Canada, United States	PHASED LINEAR LASER ARRAY
RO1961	US	9-Sep-88	4889830	Canada, United States	ZINC DIFFUSION INTO INDIUM PHOSPHIDE
RO1987	US	21-Nov-84	4660207	Canada, United States	DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE
RO1994	US	14-Feb-85	4675877	Canada, United States	A SURFACE EMITTING LASER

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
RO2005	US	14-Feb-85	4675876	Canada, United States	A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER
RO2268	US	11-Apr-88	4859628	Canada, United States	AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE
RO2314	US	31-Mar-88	4847665	United States	MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC
RO2349	US	2-Jun-88	4849373	Canada, United States	GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY
RO2461	US	22-Jun-89	4969712	United States	OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION
RO2468	US	27-Jul-89	4953006	Canada, United States	PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE
RO2564	US	11-May-90	4989214	France, Germany, Great Britain, United States	LASER DIODE STRUCTURE
RO2579	US	14-Sep-90	5050953	Great Britain, United States	MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER
RO2714	US	23-Dec-92	5350923	United States	APPARATUS FOR USE WITH ANALYTICAL MEASURING INSTRUMENTS
RO2785	US	15-Jul-93	5363457	France, Germany, Great Britain, Japan, United States	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2788	US	9-Sep-93	5345459	United States	METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES
RO2799	US	16-Dec-93	5452318	United States	GAIN COUPLED DFB LASER WITH INDEX COUPLING COMPENSATION

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Country Family	Title
RO2809	US	29-Nov-93	5586207	United States	METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES
RO2817	US	29-Nov-93	5448581	United States	CIRCULAR GRATING LASERS
RO2875	US	25-May-95	5526076	United States	CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NONEQUAL POWER SPLITTING
RO2879	US	10-May-94	5483547	United States	SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE
RO2956	US	8-Mar-96	5694504	Canada, Great Britain, Japan, United States	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2969	US	25-May-95	5567659	United States	METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL
RO2974	US	30-Mar-95	5536085	United States	MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY
RO2999	US	3-Jul-96	5799119	Canada, European Patent Convention, Japan, United States	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO3007	US	11-Oct-96	6028875	United States	BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKING LAYER
RO3015	US	24-Nov-97	5960014	Great Britain, Japan, United States	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3066	US	9-Jun-98	6151347	United States	LASER DIODE AND METHOD OF FABRICATION THEREOF

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
RO3090	US	7-Nov-96	5778113	Canada, European Patent Convention, United States	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	US	7-Nov-96	5991471	United States	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3092	US	25-Jul-96	5777793	United States	POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE
RO3139	US	11-Jul-96	5825792	Canada, France, Germany, Great Britain, Japan, United States	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3478	US	18-Sep-97	5936994	European Patent Convention, Japan, United States	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3479	US	16-Oct-97	6026110	United States	DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH GAIN MODULATION
RO3610	US	24-Dec-97	6104739	European Patent Convention, Japan, United States	SERIES OF STRONGLY COUPLED DFB LASERS
RO3746	US	19-Dec-97	5869398	United States	ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONIC FABRICATION
RO3920	US	10-Nov-99	Pending	Canada, European Patent Convention, Japan	A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO4144	US	11-Dec-98	6201824	United States	STRONGLY COMPLEX COUPLED DFB LASERS SERIES
RO4324	US	15-Dec-98	Pending	United States	GENERATION OF SHORT OPTICAL PULSES USING STRONGLY COMPLEX COUPLED DFB LASERS
RO4416	US	2-Sep-99	6246826	United States	VARIABLE OPTICAL ATTENUATOR WITH PROFILED BLADE

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
RO4504	US	20-Jul-00	Pending	Canada, European Patent Convention, Japan, United States	COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
15502RO	Unfiled	Unfiled	Unfiled	Unfiled	A P-SUBSTRATE SELF-ALIGNED LASER STRUCTURE WITH IRON DOPED CURRENT BLOCKING LAYERS
15507RO	Unfiled	Unfiled	Unfiled	Unfiled	A MAGNETO-OPTIC NONRECIPROCAL WAVEGUIDE TE/TM MODE CONVERTER IN SEMICONDUCTING MATERIALS
15558RO	Unfiled	Unfiled	Unfiled	Unfiled	MANUFACTURE OF A GRATING TEMPLATE AND ITS TRANSFER INTO AL (IN, GA)AS MATERIAL USING IN-SITU ETCHING AND REGROWTH INSIDE A GROWTH REACTOR.
15592RO	Unfiled	Unfiled	Unfiled	Unfiled	ETCHING OF INDEX- OR GAIN-COUPLED GRATINGS INTO INGAASP MATERIAL USING IN-SITU ETCHING IN A GROWTH REACTOR
15649JD	Unfiled	Unfiled	Unfiled	Unfiled	LASER STRUCTURE WITH LARGE OPTICAL SUPERLATTICE WAVEGUIDE
15655RO	Unfiled	Unfiled	Unfiled	Unfiled	HIGH TEMPERATURE OPERATION LASER DIODES
15656RO	Unfiled	Unfiled	Unfiled	Unfiled	FABRICATION OF A BURIED HETEROSTRUCTURE LASER WITH AN INGAASP ACTIVE LAYER USING IN-SITU ETCHING IN A GROWTH REACTOR
15683ID	Unfiled	Unfiled	Unfiled	Unfiled	OPTICAL ATTENUATOR AND MODULATOR

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title	Status / Comment
ID0130	US	29-Oct-93	5355248	Great Britain, United States	OPTICAL AMPLIFIER	Expired or Abandoned
ID0348	US	13-Jun-96	5844926	United States	LASERS	Expired or Abandoned
RO1269	US	7-Jan-83	4528438	United States	END POINT CONTROL IN PLASMA ETCHING	Expired or Abandoned
ID8907	US		4911742	United States, Australia, France, Great Britain	OPTICAL FIBER	Expired or Abandoned
11620ID	US		Pending prior to abandonment	Patent Cooperation Treaty, United States	VARIABLE OPTICAL ATTENUATOR	Expired or Abandoned

Disclosure Number	Filed Country	Filed Date	Patent Number	Filed Countries in Family	Title
10163ID	US	28-Sep-00	6424755	Canada, United States, European Patent Convention	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES
11550RO	US	28-Sep-00	Pending	Canada, United States	HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH
12801AU	US		6014475	United States, European Patent Convention	FIBRE OPTIC CIRCULATOR
12803AU	US		6263131	United States, Canada, European Patent Convention	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE
12803AU	US		6415072	United States	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE
13240AU	US			United States	POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE
14081ID	US			United States	FIBRE OPTICAL COMPONENT

14669AU	US			United States	VARIABLE ATTENUATION AND SPECTRAL SLOPE OPTICAL DEVICE
ID0190	US		5703976	United States, Germany, France, Great Britain, Japan	WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0226	GB		2281787	Great Britain	OPTICAL WAVEGUIDE GRATINGS
ID0291	US		5638473	United States, Germany, France, Great Britain	OPTICAL WAVEGUIDE GRATING FILTER
ID0309	US		5730888	United States	BRAGG GRATINGS IN WAVEGUIDES
ID0355	US		5708740	United States, Germany, France Great Britain	ALL-FIBRE OPTICAL FILTER
ID0421	US		5904491	United States	PLANAR WAVEGUIDES
ID0423	US		5885881	United States	PLANAR WAVEGUIDE CLADDING
ID0449	US		6044192	United States, Canada, Germany, France, Great Britain, Italy, Japan	WAVEGUIDE PAIR WITH CLADDING
ID8550	GB		2129152	Great Britain	OPTICAL FIBRES
ID9170	US		4756589	United States, Canada, Great Britain	BEAM SPLITTER/COMBERS
ID9441	US		4801185	United States, Germany, France, Great Britain, Japan	DIRECTIONAL COUPLER
ID9579	GB		2207254	Great Britain	GLASS CLAD OPTICAL FIBRE DIRECTIONAL COUPLERS
ID9730	GB		2222400	Great Britain	DOPED ELEMENTS
ID9758	GB		2238396	Great Britain	OPTICAL WAVEGUIDE TAPER HAVING CORE, INTERLAYER
ID0444	EP		EP0891570	United States, Canada, France, Germany, Great Britain, Italy, Japan	TAPERED SINGLE MODE WAVEGUIDES COUPLED TO PHOTODETECTOR BY MULTIMODE FIBRE
RO2922	US		5488679	United States	POLARISATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION
12802AU	US		6466704	United States, Canada, Patent Cooperation Treaty	OPTICAL FILTERING METHOD AND DEVICE
12804AU	US			United States, Canada	WAVELENGTH DEPENDENT ISOLATOR

15087ID	US			United States	AN OPTICAL GRATING DEVICE
ID0509	US		6115518	United States, Canada, Great Britain, Japan	OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS
ID0997	US		6321000	United States, Canada, Germany, France, Great Britain, Italy	OPTICAL EQUALIZER

AMENDMENT TO THE PATENT ASSIGNMENT AGREEMENT

This Amendment (this "Amendment"), effective as of November 8, 2002, to the Patent Assignment Agreement made on November 8, 2002 (the "PAA") is hereby made by and among NORTEL NETWORKS CORPORATION, a corporation duly incorporated under the laws of Canada, having its executive offices at 8200 Dixie Road, Suite 100, Brampton, Ontario L6T 5P6 Canada, and each of its subsidiaries that are listed on the signature pages hereto (collectively, the "Assigning Parties") and BOOKHAM TECHNOLOGY PLC, a public limited company incorporated under the laws of England and Wales having its executive offices at 90 Milton Park, Abingdon, Oxfordshire OX14, 4RY United Kingdom (the "Assignee") (each of the Assigning Parties and Assignee, a "Party" and, collectively, the "Parties").

WHEREAS, the Parties, having entered into the PAA, desire to amend the PAA to update the schedule of patents, patent applications and invention disclosures attached thereto.

NOW THEREFORE, in consideration of the foregoing premises and the mutual terms and conditions set forth herein, and for U.S. \$1.00 (ONE DOLLAR) and other good and valuable consideration, receipt and adequacy of which is hereby acknowledged, the Parties hereby agree that the PAA be, and is, amended as follows:

1. Schedule A of the PAA is deleted in its entirety and replaced with the new Schedule A attached hereto.
2. Except as expressly amended by this Amendment, all of the terms, covenants and conditions of the PAA shall remain unamended and in full force and effect.
3. This Amendment is hereby incorporated in, and forms a part of, the PAA. For the avoidance of doubt, this Amendment shall be governed by and enforced in accordance with the laws of the State of New York, without giving effect to any conflicts of law principles.
4. This Amendment shall be binding on, and shall inure to the benefit of, the Parties and their respective successors and assigns.
5. This Amendment may be executed in any number of counterparts, each of which shall be deemed to be an original but all of which shall constitute one and the same instrument.

[Remainder of page intentionally left blank]

IN WITNESS WHEREOF, the Parties have duly executed this Amendment as of
the date first above written.

**NORTEL NETWORKS
CORPORATION**

By:

Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS
INCORPORATED**

By:

Name: Khush Dadyburjor, as Attorney-in-
Fact

NORTEL NETWORKS LIMITED

By:

Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS PROPERTIES
LIMITED**

By:

Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS
TECHNOLOGY CORPORATION**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS (ASIA)
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS (SWITZERLAND)
GmbH**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS (U.K.)
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-Fact

**NORTEL NETWORKS OPTICAL
COMPONENTS INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS HPOCS
INCORPORATED**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS PHOTONICS
PTY LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

**NORTEL NETWORKS SHANNON
LIMITED**

By:
Name: Khush Dadyburjor, as Attorney-in-
Fact

BOOKHAM TECHNOLOGY PLC

By: _____

Name:

Title:

January, 2003

On this 6th day of December, 2002, before me appeared Klaus Dreyse Jr., the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of the Assigning Parties with authority to do so.

Province State of Ontario)
Region County of Pickering) ss. *by me*

On this 18th day of December, 2002, before me appeared Philip Davis, the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of Bookham Technology plc with authority to do so.

State of Maryland)
County of Oxfordshire) ss.
)

Stuart Capel.

STUART P. B. CAPEL
SOLICITOR & NOTARY PUBLIC
6 EAST SAINT HELEN STREET
ABINGDON, OXON, OX14 5EW
TEL: 01235 - 523411
FAX: 01235 - 533283

SCHEDULE A

Disc. No.	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	All inventors with Dept. No/s	Application title
10289RO	PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY	CA	2,269,298				PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY
10289RO	PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY	US	09/294,114	6,222,200			PHOTODETECTOR WITH SPECTRALLY EXTENDED RESPONSIVITY
10412RO	EXTERNAL CAVITY LASER	US	09/688,873				EXTERNAL CAVITY LASER USING ANGLE-TUNED FILTER AND METHOD OF MAKING SAME
10413ID	FIBRE TERMINATION COMPOUND GRADED INDEX LENSES	US	09/750,874				FIBRE TERMINATION COMPOUND GRADED INDEX LENSES
10485RO	ELECTRICALLY CONTROLLED OPTICAL ATTENUATOR WITH COPLANAR ELECTRODES	US	09/726,409				ELECTROCHROMIC OPTICAL ATTENUATOR
10509RO	ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS	US	09/472,121	6,287,401			ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS
10509RO	ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS	CA	2,328,279				ALIGNMENT METHOD FOR SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS
11006ID	MODULATOR ASSEMBLIES	US	09/496,917				MODULATOR ASSEMBLIES
11920ID	PUMPED OPTICAL AMPLIFICATION DEVICE	US	09/557,891				PUMPED OPTICAL AMPLIFICATION DEVICE
11945ID	A RAMAN FIBRE LASER	US	09/573,238				A RAMAN FIBRE LASER
11954ID	A RAMAN FIBRE LASER	US	09/573,236				A RAMAN FIBRE LASER
12242RO	INVERTED INP/INGAAS AVALANCHE PHOTODIODE	US	09/733,060				EPITAXIALLY GROWN AVALANCHE PHOTODIODE
12339ID	OPTICAL FIBER DEVICE	US	09/653,985				OPTICAL FIBER DEVICE
12349RO	COMPACT CHIP LABELING USING STEPPER TECHNOLOGY.	CA	2,320,612				COMPACT CHIP LABELING USING STEPPER TECHNOLOGY
12349RO	COMPACT CHIP LABELING USING STEPPER TECHNOLOGY.	US	09/688,366				COMPACT CHIP LABELING USING STEPPER TECHNOLOGY
12526RO	SELF ADJUSTING APPARATUS FOR GRIPPING AND MICRO-MANIPULATING CERAMIC SUBSTRATES	US	09/660,542	6,409,241			APPARATUS FOR GRIPPING CERAMIC SUBSTRATES
12615ID	PACKAGING ATMOSPHERE AND METHOD OF PACKAGING A MEMS DEVICE	US	09/676,256				PACKAGING ATMOSPHERE AND METHOD OF PACKAGING A MEMS DEVICE
12634RO	BE DOPING OF INP	US	09/741,350				STRUCTURE AND METHOD FOR DOPING OF III-V COMPOUNDS
12665RO	PRINT QUALITY TEST STRUCTURE FOR DEVICE MANUFACTURING.	US	09/667,620				PRINT QUALITY TEST STRUCTURE FOR LITHOGRAPHIC DEVICE MANUFACTURING
12686ID	GLASS FIBER FIXATIVE AND FIXING PROCESS	US	09/698,800				GLASS FIBER FIXATIVE AND FIXING PROCESS
12715RO	METHOD OF MAKING GRATINGS ON TUNABLE LASER DEVICES	US	09/667,622				METHODS FOR MAKING PATTERNS IN RADIATION SENSITIVE POLYMERS

App No.	Disclosure Date	Cv	Serial No.	Patent No.	Sub Status	All Inventors with Dept No.	Application Name
12800AU	SPLIT-BEAM FOURIER FILTER	US	08/793,729	5,930,441			SPLIT-BEAM FOURIER FILTER
12841ID	INTEGRATED OPTICAL TRANSMITTER	US	09/616,659				INTEGRATED OPTICAL TRANSMITTER
12847RO	BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER	CA	2,328,641				CONFINEMENT LAYER OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
12847RO	BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER	US	10/014,807				CONFINEMENT LAYER OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
12849ID	OPTICAL AMPLIFIER METHOD AND APPARATUS	US	09/710,372				OPTICAL AMPLIFIER METHOD AND APPARATUS
12849ID	OPTICAL AMPLIFIER METHOD AND APPARATUS	WO	PCT/GB01/04944				OPTICAL AMPLIFIER METHOD AND APPARATUS
12948ID	OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE	US	09/731,434				OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE
12948ID	OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE	CA	2,364,383				OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE
13063CK	AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINewidth	US	08/726,049	6,041,071			ELECTRO-OPTICALLY TUNABLE EXTERNAL CAVITY MIRROR FOR A NARROW LINewidth SEMICONDUCTOR LASER
13063CK	AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINewidth	US	60/004,620				AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINewidth
13063CK	AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINewidth	US	09/532,529				ELECTRO-OPTICALLY TUNABLE EXTERNAL CAVITY MIRROR FOR A NARROW LINewidth SEMICONDUCTOR LASER
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	0		Mailed Application	TAYEBATI, PARVIZ (7043-5010439), VAKHSHOORI, DARYOOSH (7068-5010442)	LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	60/099,252				LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	60/099,308				LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	US	09/386,604				LASER WITH SETTABLE WAVELENGTHS
13144CK	LASER WITH SETTABLE WAVELENGTHS	CA	2,317,133				LASER WITH SETTABLE WAVELENGTHS
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	60/148,017				SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	09/636,817				SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	WO	PCT/US00/21904		Nat'l Phase Filed		SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	CA	2,381,662				SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13199CK	SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	EP	973357.7				SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE

Publ. No.	Disclosure Info	Ctry	Serial No.	Patent No.	Issue Date	Applicant(s) with Dept No.	Application Info
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	60/148,148				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	WO	PCT/US00/21905		Nat'l Phase Filed		DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	US	09/636,807				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	CA	2,381,665				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13201CK	DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE	EP	00957375.9				DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE
13391RO	MONOLITHICALLY INTEGRATED OPTICALLY PUMPED EDGE-EMITTING SEMICONDUCTOR LASER	US	09/987,785				MONOLITHICALLY INTEGRATED OPTICALLY-PUMPED EDGE-EMITTING SEMICONDUCTOR LASER
13417RO	GRATING ETCHING WITH INP MASKING	US	09/750,124				METHOD OF ETCHING PATTERNS INTO EPITAXIAL MATERIAL
13444CK	MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS	US	09/859,938				MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS
13444CK	MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS	WO	PCT/US01/14918				MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS
13494ID	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN...	US	09/821,580				METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13494ID	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN...	EP	02251194.3				METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13494ID	METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN...	CA	2,374,557				METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS
13495ID	OPTICAL MODULATORS	US	09/679,165	6,377,717			OPTICAL MODULATORS
13502RO	ANGLED OUTPUT BALL TAPERED OPTICAL FIBER TERMINATION	US	09/735,571				OPTICAL FIBER TERMINATION
13524RO	A STATISTICAL MODEL USED TO CONTROL THE LASING WAVELENGTH OF SEMICONDUCTOR LASERS	US	10/196,956				A METHOD AND SYSTEM FOR FABRICATING SEMICONDUCTOR LASERS
13544RO	SEMICONDUCTOR LASERS	US	10/141,914				SEMICONDUCTOR LASER
13584RO	ELECTRODE METAL TERMINATION FOR REDUCED LOCAL HEATING	US	09/709,646				ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13584RO	ELECTRODE METAL TERMINATION FOR REDUCED LOCAL HEATING	CA	2,361,683				ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13584RO	ELECTRODE METAL TERMINATION FOR REDUCED LOCAL HEATING	EP	01309541.9				ELECTRODE TERMINATION FOR REDUCED LOCAL HEATING IN AN OPTICAL DEVICE
13591ID	OPTICAL MODULATORS	GB	0031241.3				OPTICAL MODULATORS

Disc No.	Disclosure Date	Ctry	Serial No.	Patent No.	Std Status	Patent Inventor's Name & Dept. No.	Applicant's Name
13591ID	OPTICAL MODULATORS	WO	PCT/GB01/05582				OPTICAL MODULATOR
13614ID	OPTICAL PULSE GENERATION	US	09/993,849				OPTICAL PULSE GENERATION
13614ID	OPTICAL PULSE GENERATION	WO	PCT/GB02/03664				OPTICAL PULSE GENERATION
13721RO	AN NON-DESTRUCTIVE AND FAST WAY TO DETECT DIFFUSION DEPTH AND UNIFORMITY CROSS A WAFER	US	0		Mailed Application	QIAN, YAHONG (C115-0531819,1), AN, SERGUEI (5C33-0510038,1)	AN NON-DESTRUCTIVE AND FAST WAY TO DETECT DIFFUSION DEPTH AD UNIFORMITY CROSS A WAFER
13813RO	HIGH POWER LASER DIODE AND METHOD OF FABRICATION THEREOF	US	10/141,862				MONOLITHICALLY INTEGRATED HIGH POWER LASER OPTICAL DEVICE
13816RO	APPARATUS FOR MONITORING THE OUTPUT POWER OF DIODE LASERS AND MODULATORS				Unfiled		
14224ID	ISOLATION OF MICROWAVE TRANSMISSION LINES	US	10/032,416				ISOLATION OF MICROWAVE TRANSMISSION LINES
14404RO	HYBRID CONFINEMENT LAYERS OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER	US	10/027,229				HYBRID CONFINEMENT LAYERS OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER
14429ID	OPTICAL BEAM SAMPLING MONITOR	US	10/006,509				OPTICAL BEAM SAMPLING MONITOR
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	CA	2,292,769				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	EP	99919257.8				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	JP	11-552490				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	US	09/063,173	6,204,560			TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	KR	10-1999-7012042				A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14433JD	TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	WO	PCT/EP99/02665		Natl Phase Filed		A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD

Disc No.	Disclosure Title	Ctry	Serial No.	Patent No.	Stat Status	App Inventors Name DEPENDING STATUS	Application Title
14433JD	TITANIUM NITRIE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD	JP	0			DAETWYLER, ANDREAS (-GPS4097856), DEUTSCH, URS (EXTR-GPS4097859), HARDER, CHRISTOPH (AA54-5050202), HEUBERGER, WILHELM (EXTR-GPS4097866), LATTA, ERNST-EBERHARD (EXTR-GPS4097878), JAKUBOWICZ, ABRAM (-GPS4097872), OOSENBURG, ALBERTUS (-GPS4097875)	A TITANIUM NITRIE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METALLIZATION METHOD
14434JD	STABILIZED LASER SOURCE	EP	99810837.7				STABILIZED LASER SOURCE
14434JD	STABILIZED LASER SOURCE	US	10/049,886				STABILIZED LASER SOURCE
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	EP	99811030.8				SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	WO	PCT/IB00/01530		Nat'l Phase Filed		SUPPORTING STRUCTURE FOR OPTICAL FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	US	PCT/IB00/01530		Nat'l Phase Filed		SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14435JD	SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT	CA	2,390,916		Nat'l Phase Filed		SUPPORTING STRUCTURE FOR FIBER FIXING AND SUBMICRON FINE ALIGNMENT
14480RO	GAIN COUPLED DISTRIBUTED FEEDBACK LASER USING SELF-ASSEMBLED QUANTUM DOTS				Unfiled		
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	US	09/852,994				HIGH POWER SEMICONDUCTOR LASER DIODE
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	CA	2,385,653				HIGH POWER SEMICONDUCTOR LASER DIODE
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	EP	2405380.3				HIGH POWER SEMICONDUCTOR LASER DIODE
14549JD	HIGH POWER SEMICONDUCTOR LASER DIODE	JP	2002-134066				HIGH POWER SEMICONDUCTOR LASER DIODE
14551JD	CARRIER DESIGN FOR MODULES WITH HIGH POWER LASER DIODES	US	10/026,150				HIGH POWER LASER CARRIER
14552JD	ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS	US	09/993,824				ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS
14592ID	OPTICAL COMPONENT ALIGNMENT TECHNIQUE	US	10/024,972				GIMBALED LENS MOUNT AND ALIGNMENT ASSEMBLY FOR A SENSITIVE OPTICAL ALIGNMENT
14676RO	ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS	US	60/334,013				ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS

DISCLOSURE DATE	DISCLOSURE INFORMATION	Serial No.	Patent No.	Ship Date	All Inventors With Surnames	Applicant's Name Surnames
INVENTOR'S NAME	INVENTION	COUNTRY	TYPE	STATUS	DEP. NO.	APPLICATION NUMBER
14676RO	ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN-COUPLED GRATINGS	US	10/025,866			ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS COUPLED-COUPLED GRATINGS
14681ID	THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES	US	10/032,421			THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES
14716RO	WAVEGUIDE MODE STRIPPER FOR INTEGRATED OPTICAL COMPONENTS	US	10/073,101			WAVEGUIDE MODE STRIPPER FOR INTEGRATED OPTICAL COMPONENTS
14794RO	A METHOD FOR MAKING FLOATING GRATINGS	US	10/259,745			METHOD AND APPARATUS FOR FLOATING GRATINGS IN DFB (DISTRIBUTED FEEDBACK) LASERS
14854RO	A METHOD FOR MINIMIZING CROSSTALK DUE TO LASER WAVELENGTH VARIATIONS WITH NON-IDEAL FILTERS			Unfiled		
14864RO	POLARIZATION AND WAVELENGTH INDEPENDENT MHZ SPEED OPTICAL ATTENUATOR	US	10/190,592			CURRENT TUNED MACH-ZEHNDER OPTICAL ATTENUATOR
14942RO	RE-CIRCULATING OPTICAL PULSE GENERATOR	US	10/116,168			RE-CIRCULATING OPTICAL PULSE GENERATOR
15004RO	DEFORMABLE POLYMER MICRO MIRRORS (DPMM)	US	10/098,446			MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15004RO	DEFORMABLE POLYMER MICRO MIRRORS (DPMM)	US	10/098,446			MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15004RO	DEFORMABLE POLYMER MICRO MIRRORS (DPMM)	US	10/098,446			MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS
15093RO	MULTIPLE-CONTACT SEMICONDUCTOR OPTICAL AMPLIFIERS	US	60/414,404			MULTIPLE-CONTACT OPTICAL AMPLIFIERS
15095RO	FREQUENCY IDENTIFICATION WITH A FREQUENCY LOCKER	US	10/108,856			FREQUENCY IDENTIFICATION WITH FREQUENCY LOCKER
15113CK	METHOD TO IMPROVE TEMPERATURE STABILITY OF FREQUENCY LOCKER IN OPTOELECTRONIC MODULES	US	10/165,465			WAVELENGTH STABILIZED OPTICAL DEVICE
15116JD	NEW STRAIGHT-FLARED-STRAIGHT WAVEGUIDE DESIGN	US	10/131,335			HIGH POWER SEMICONDUCTOR LASER DIODE AND METHOD FOR MAKING SUCH A DIODE
15117JD	PUMP LASER DIODE WITH IMPROVED WAVELENGTH STABILITY	US	0			*PUMP LASER DIODE WITH IMPROVED WAVELENGTH STABILITY
15138ID	AN IMPROVED METHOD FOR TERMINATING AN OPTICAL WAVEGUIDE INTO AN OPTICAL COMPONENT	US	10/161,523			AN IMPROVED METHOD FOR TERMINATING AN OPTICAL WAVEGUIDE INTO AN OPTICAL COMPONENT

DISC NO.	DISCLOSED TITLE	CN	Serial No.	Patent No.	Sub Status	All Inventors with Dept. No.s	Application No.
15142RO	SINGLE MODE, HIGH INDEX CONTRAST POLYMER FLEXIBLE WAVEGUIDES	US	60/352,572				FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS
15142RO	SINGLE MODE, HIGH INDEX CONTRAST POLYMER FLEXIBLE WAVEGUIDES	US	60/352,572				FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS
15150RO	METHOD FOR INTEGRATING A LASER WITH A WAVEGUIDE IN A SINGLE EPITAXIAL GROWTH STEP	US	0		Mailed Application	GLEW, RICK (C116-2819324), BETTY, IAN (5C33-0519725), GREENSPAN, JONATHAN (C116-0262541)	METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIAL GROWTH STEP
15150RO	METHOD FOR INTEGRATING A LASER WITH A WAVEGUIDE IN A SINGLE EPITAXIAL GROWTH STEP	US	0		Mailed Application	GLEW, RICK (C116-2819324), BETTY, IAN (5C33-0519725), GREENSPAN, JONATHAN (C116-0262541)	METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIAL GROWTH STEP
15164RO	A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER.	US	0		Mailed Application	GLEW, RICK (C116-2819324), REID, BENOIT (5C32-0531388), LICHTENSTEIN, NORBERT L (AA55-5050260), FILY, ARNAUD (AA55-5053568)	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15164RO	A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER.	US	0		Mailed Application	GLEW, RICK (C116-2819324), REID, BENOIT (5C32-0531388), LICHTENSTEIN, NORBERT L (AA55-5050260), FILY, ARNAUD (AA55-5053568)	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15181ID	LASER TRANSMITTER	US	60/391,648				LASER TRANSMITTER
15181ID	LASER TRANSMITTER	US	60/391,648				LASER TRANSMITTER
15193RO	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER	US	60/380,261				OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER
15193RO	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER	US			Mailed Application	EL-REFAEI, HATEM (5C33-0273812), JONES, TREVOR (C115-1342592,2), YEVICK, D (EXTR-GPS0380642,2)	OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER
15320RO	ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP	US	0		Mailed Application	PROSYK, KELVIN (5C33-0526051), BETTY, IAN (5C33-0519725)	ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP
15338RO	HIGH POWER DISTRIBUTED FEEDBACK LASER				Unfiled		
15386JD	RIDGE WAVEGUIDE LASER DIODE WITH COMPLEX INDEX GUIDING LAYER	US	0		Mailed Application	TRAUT, SILKE (4212-5050415), SCHMIDT, BERTHOLD (AA54-5050359,4), SVERDLOV, BORIS (AA54-5050400,1), THIES, ACHIM (4212-5050409,1)	HIGH POWER SEMICONDUCTOR LASER DIODE AND METHOD FOR MAKING SUCH A DIODE
15389JD	LASER STABILIZATION USING VERY HIGH RELATIVE FEEDBACK				Unfiled		

DISC NCE	Disclosure Title	CY	Serial No.	Patent No.	Sub- Status	All inventors/units Dept. No. S	Application Title
15390RO	ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE	US	60/404,166				ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE
15390RO	ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE	US	60/404,166				ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE
15399JD	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER	US	60/390,882				A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15399JD	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER	US			Mailed Application	LICHTENSTEIN, NORBERT L (AA55-5050260), FILY, ARNAUD (AA55-5053568,1), SCHMIDT, BERTHOLD (AA54-5050359,2), REID, BENOIT (5C32-0531388,2), KNIGHT, D. GORDON (C116-1529664,1)	A GUIDED SELF-ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER
15502RO	A P-SUBSTRATE SELF-ALIGNED LASER STRUCTURE WITH IRON DOPED CURRENT BLOCKING LAYERS				Unfiled		
15507RO	A MAGNETO-OPTIC NONRECIPROCAL WAVEGUIDE TE/TM MODE CONVERTER IN SEMICONDUCTING MATERIALS				Unfiled		
15558RO	MANUFACTURE OF A GRATING TEMPLATE AND ITS TRANSFER INTO AL (IN, GA)AS MATERIAL USING IN-SITU ETCHING AND REGROWTH INSIDE A GROWTH REACTOR.				Unfiled		
15592RO	ETCHING OF INDEX- OR GAIN-COUPLED GRATINGS INTO INGAASP MATERIAL USING IN-SITU ETCHING IN A GROWTH REACTOR				Unfiled		
15649JD	LASER STRUCTURE WITH LARGE OPTICAL SUPERLATTICE WAVEGUIDE				Unfiled		
15655RO	HIGH TEMPERATURE OPERATION LASER DIODES				Unfiled		
15656RO	FABRICATION OF A BURIED HETEROSTRUCTURE LASER WITH AN INGAASP ACTIVE LAYER USING IN-SITU ETCHING IN A GROWTH REACTOR				unfiled		
HQ0054	SUPERIMPOSED GRATING WDM TUNABLE LASERS	CA	2,228,683	2,228,683			SUPERIMPOSED GRATING WDM TUNABLE LASERS
HQ0054	SUPERIMPOSED GRATING WDM TUNABLE LASERS	US	09/253,129	6,141,370			SUPERIMPOSED GRATING WDM TUNABLE LASERS

Patent No.	Disclosure Date	ICV	Serial No.	Patent No.	Sub- Status	All Inventors with Dept./Obs.	Application Title
ID0032	OPTO ELECTRONIC COMPONENTS	US	08/319,435	5,534,442			OPTO ELECTRONIC COMPONENTS
ID0079	SEMICONDUCTOR - SLICE CLEAVING	GB	9216363.3	2 269 268			SEMICONDUCTOR - SLICE CLEAVING
ID0079	SEMICONDUCTOR - SLICE CLEAVING	US	08/093,766	5,393,707			SEMICONDUCTOR - SLICE CLEAVING
ID0094	HYBRID OPTIC SOLUTION	DE	95307824.3	695 04 280.7			HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	FR	95307824.3	0 713 271			HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	GB	9423282.4	2 295 265			HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	JP	293046/1995				HYBRID OPTIC SOLUTION
ID0094	HYBRID OPTIC SOLUTION	US	08/560,312	5,668,823			HYBRID OPTIC SOLUTION
ID0134	SEMICONDUCTOR ETCHING PROCESS	FR	94301114.8	0 614 214			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	GB	94301114.8	0 614 214			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	DE	69401370.6	69401370.6			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	GB	9303257.1	2 275 364			SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	JP	6-45068				SEMICONDUCTOR ETCHING PROCESS
ID0134	SEMICONDUCTOR ETCHING PROCESS	US	08/197,071	5,419,804			SEMICONDUCTOR ETCHING PROCESS
ID0137	PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS	GB	9417975.1	2 293 248			PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS
ID0137	PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS	US	08/507,613	5,574,811			PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS
ID0170	INJECTION LASER AND PHOTOSENSOR ASSEMBLY	US	08/201,473	5,365,534			INJECTION LASER AND PHOTOSENSOR ASSEMBLY
ID0193	FILAMENT COOLER	GB	9404290.0	2 287 244			FILAMENT COOLER
ID0193	FILAMENT COOLER	US	08/388,151	5,568,728			FILAMENT COOLER
ID0199	CO & COUNTER-PUMPED OPTICAL AMPLIFIER	US	08/303,367	5,542,011			CO & COUNTER-PUMPED OPTICAL AMPLIFIER
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	US	08/303,374	5,530,580			ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	EP	94306216.6	0 643 317	Nat'l Phase Filed		ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	GB	9417001.6	2 281 785			ELECTRO ABSORPTION OPTICAL MODULATORS

ID No.	Description	Cntry	Serial No.	Patent No.	Status	All Inventors with People Notes	Application notes
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	DE	94306216.6	694 26 796.1			ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	FR	94306216.6	0 643 317			ELECTRO ABSORPTION OPTICAL MODULATORS
ID0206	ELECTRO ABSORPTION OPTICAL MODULATORS	JP	216309/94				ELECTRO ABSORPTION OPTICAL MODULATORS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	DE	94305060.9	694 10 032.3			PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	FR	94305060.9	0 636 912			PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	GB	9315789.9	2 280 544			PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	GB	94305060.9	0 636 912			PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	JP	180288/94				PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0216	PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS	US	08/283,264	5,522,000			PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS
ID0237	DIRECT AMPLITUDE MODULATION OF LASERS	US	08/216,301	5,502,741			DIRECT AMPLITUDE MODULATION OF LASERS
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	EP	96301377.6	0 732 739	Natl Phase Filed		IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	JP	52013/96				IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	US	08/612,314	5,933,707			IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	GB	96301377.6	0 732 739			IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	DE	96301377.6	696 18 264.5			IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING

ID	DISCLOSURE REFERENCE	COPY	Serial No.	Patent No.	Status	All Inventors with Dept No.	Current Application Title
ID0261	IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING	FR	96301377.6	0 732 739			IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING
ID0287	POLARISATION-SENSITIVE OPTICAL MODULATORS	DE	195 28 165.9				POLARISATION-SENSITIVE OPTICAL MODULATORS
ID0287	POLARISATION-SENSITIVE OPTICAL MODULATORS	GB	9515400.1	2 291 979			POLARISATION-SENSITIVE OPTICAL MODULATORS
ID0287	POLARISATION-SENSITIVE OPTICAL MODULATORS	FR	9509417	2723485			POLARISATION-SENSITIVE OPTICAL MODULATORS
ID0287	POLARISATION-SENSITIVE OPTICAL MODULATORS	US	08/510,752	6,275,321			POLARISATION-SENSITIVE OPTICAL MODULATORS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	EP	95308872.1	0 717 297	Nat'l Phase Filed		OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	GB	9425022.2	2 296 101			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	US	08/570,983	5,570,444			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	DE	95308872.1	695 26 563.6			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	GB	95308872.1	0 717 297			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	FR	95308872.1	0 717 297			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0295	OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS	IT	95308872.1	0 717 297			OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS
ID0311	OPTICAL AMPLIFIER	DE	96308900.8	696 03 935.4			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	EP	96308900.8	0 779 689	Nat'l Phase Filed		OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	IT	96308900.8	0 779 689			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	FR	96308900.8	0 779 689			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	GB	9525766.3	2 308 222			OPTICAL AMPLIFIER
ID0311	OPTICAL AMPLIFIER	US	08/760,175	5,872,649			OPTICAL AMPLIFIER
ID0348	LASERS	EB	PCT/GB96/01406		Nat'l Phase Filed		LASERS
ID0384	HERMETIC OPTICAL FIBRE FEED-THROUGH	GB	9515004.1	2 303 467			HERMETIC OPTICAL FIBRE FEED-THROUGH
ID0384	HERMETIC OPTICAL FIBRE FEED-THROUGH	US	08/684,128	5,664,043			HERMETIC OPTICAL FIBRE FEED-THROUGH

ID	Disclosure Date	Ctry	Serial No.	Patent No.	Int'l Sub Status	All Inventors With Applic. Info	Applic. Info/Title
ID	Job					Applic. Info/Title	Applic. Info/Title
ID0426	ETALON ARRANGEMENT	EP	97305110.5				ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	JP	179766/1997				ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	JP	179766/1997				ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	CA	2,203,845	2,203,845			ETALON ARRANGEMENT
ID0426	ETALON ARRANGEMENT	US	08/848,337	5,828,689			ETALON ARRANGEMENT
ID0431	SEMICONDUCTOR LASERS	DE	97901693.8	697 00 830.4			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	EP	97901693.8	0 876 696	Nat'l Phase Filed		SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	FR	97901693.8	0 876 696			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	GB	9601703.3	2 309 581			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	GB	97901693.8	0 876 696			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	IT	97901693.8	0 876 696			SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	JP	526680/1997				SEMICONDUCTOR LASERS
ID0431	SEMICONDUCTOR LASERS	US	09/091,684	6,058,125			SEMICONDUCTOR LASERS
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	EP	97902473.4	0 879 435	Nat'l Phase Filed		SECURING AN OPTICAL FIBRE IN A V-GROOVE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	GB	9602564.8	2 310 052			CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	JP	528272/1997				CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	US	08/952,676	5,985,086			CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	DE	97902473.4	697 10 047.2			SECURING AN OPTICAL FIBRE IN A V-GROOVE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	IT	97902473.4	0 879 435			SECURING AN OPTICAL FIBRE IN A V-GROOVE

ID	DISCLOSURE TITLE	CNTY	Serial No.	Patent No.	Issue Date	Status	Attorneys with Dept No.	Application No.
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	FR	97902473.4	0 879 435				SECURING AN OPTICAL FIBRE IN A V-GROOVE
ID0467	CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE	WO	PCT/GB97/00320			Nat'l Phase Filed		CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	JP	507707/1998					SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	US	09/214,634	6,188,118				SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	CA	2,258,178					SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	EP	97933796.1					SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0519	SEMICONDUCTOR PHOTODETECTOR PACKAGING	WO	PCT/GB97/02053			Nat'l Phase Filed		SEMICONDUCTOR PHOTODETECTOR PACKAGING
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	EP	98303274.9					DIRECT AMPLITUDE MODULATION OF LASERS
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	US	08/865,760	5,901,164				DIRECT AMPLITUDE MODULATION OF LASERS
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	CA	2,235,179					DIRECT AMPLITUDE MODULATION OF LASERS
ID0651	DIRECT AMPLITUDE MODULATION OF LASERS	JP	146072/1998					DIRECT AMPLITUDE MODULATION OF LASERS
ID0687	OPTICAL TRANSMITTER OUTPUT MONITORING TAP	US	08/984,894	6,124,956				OPTICAL TRANSMITTER OUTPUT MONITORING TAP
ID0691	BONDING RIDGE STRUCTURE LASER DIODES TO SUBSTRATES	US	09/072,810	6,075,800				BONDING RIDGE STRUCTURE LASER DIODES TO SUBSTRATES
ID0764	A REMOVABLY COATED OPTICAL FIBRE	US	09/374,807	6,351,589				REMOVABLY COATED OPTICAL FIBRE
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	EP	98309206.5					ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	JP	365470/1998					ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	US	08/997,752	5,956,437				ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR
ID0803	ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR	CA	2,254,148					ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR

Disc No	Disclosure Title	Cntry	Serial No	Patent No	Sub Status	App Inventor Status	Dept No's	Application Title
ID0908	SEMICONDUCTOR OPTO ELECTRONIC DEVICE PACKAGING	US	09/070,899	6,407,438				SEMICONDUCTOR OPTO-ELECTRONIC DEVICE PACKAGING
ID1107	INTEGRATED OPTICAL MACH ZENDER STRUCTURES	EP	00301124.4					INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID1107	INTEGRATED OPTICAL MACH ZENDER STRUCTURES	US	09/280,360	6,240,221				INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID1107	INTEGRATED OPTICAL MACH ZENDER STRUCTURES	CA	2,299,794					INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES
ID8512	INJECTION LASER PACKAGES	US	06/514,066	4,615,031				INJECTION LASER PACKAGES
ID8512	INJECTION LASER PACKAGES	GB	8317959	2 124 402				INJECTION LASER PACKAGES
ID8850	OPTICAL AMPLIFIERS	US	06/888,274	4,720,684				OPTICAL AMPLIFIERS
ID8850	OPTICAL AMPLIFIERS	CA	469,211	1,245,328				OPTICAL AMPLIFIERS
ID8852	MANUFACTURING OPTICAL FIBRE	US	06/736,327	4,608,276				MANUFACTURING OPTICAL FIBRE
ID8852	MANUFACTURING OPTICAL FIBRE	CA	482,229	1,261,632				MANUFACTURING OPTICAL FIBRE
ID8960	OPTICAL FIBRE MANUFACTURE	US	06/940,232	4,735,648				OPTICAL FIBRE MANUFACTURE
ID9003	COATING OPTICAL FIBRES	DE	85306977.1	356 83 25.2				COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	JP	222908/85	2029150				COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	US	06/782,930	4,631,078				COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	GB	85306977.1	0 178 107				COATING OPTICAL FIBRES
ID9003	COATING OPTICAL FIBRES	CA	492,574	1,226,411				COATING OPTICAL FIBRES
ID9186	LASER MANUFACTURE	US	07/296,946	4,949,352				LASER MANUFACTURE
ID9186	LASER MANUFACTURE	GB	8512321	2 175 442				LASER MANUFACTURE
ID9209	TUBE FURNACE	US	06/858,617	4,748,307				TUBE FURNACE
ID9312	OPTICAL FIBRE MANUFACTURE	US	06/896,518	4,793,840				OPTICAL FIBRE MANUFACTURE
ID9312	OPTICAL FIBRE MANUFACTURE	GB	8520945	2 179 339				OPTICAL FIBRE MANUFACTURE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	DE	365 02 56.1	365 02 56.1				OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	FR	86306868.0	0 216 548				OPTICAL FIBRE CABLE HAVING SLOTTED CORE

ID/SC No.	Disclosure Title	Ctry	Serial No.	Patent No.	Side	All Inventors with Status	App Dept. No.	Application Notes
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	GB	86306868.0	0 216 548				OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	NZ	217514	217514				OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9315	OPTICAL FIBRE CABLE HAVING SLOTTED CORE	US	07/636,902	RE34,516				OPTICAL FIBRE CABLE HAVING SLOTTED CORE
ID9379	OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER	US	06/934,440	4,772,086				OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER
ID9379	OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER	GB	8530797	2 184 255				OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER
ID9495	LASER ARRAY	DE	87302417.8	376 44 10.6				LASER ARRAY
ID9495	LASER ARRAY	JP	129591/87	2511969				LASER ARRAY
ID9495	LASER ARRAY	US	07/032,779	4,760,580				LASER ARRAY
ID9552	OPTICAL FIBRE CABLES	DE	3883556.8	3883556.8				OPTICAL FIBRE CABLES
ID9552	OPTICAL FIBRE CABLES	FR	88300817.9	0 278 648				OPTICAL FIBRE CABLES
ID9552	OPTICAL FIBRE CABLES	GB	8703255	2 201 008				OPTICAL FIBRE CABLES
ID9552	OPTICAL FIBRE CABLES	US	07/154,866	4,830,459				OPTICAL FIBRE CABLES
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	DE	88306994.0	388 13 01.7				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	FR	88306994.0	0 304 182				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	GB	8719590	2 208 944				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	GB	88306994.0	0 304 182				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	NL	88306994.0	0 304 182				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	SE	88306994.0	0 304 182				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9604	FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER	US	07/230,057	4,988,159				FIBRE TAILED OPTO-ELECTRONIC TRANSDUCER
ID9617	EDGE EMITTING LIGHT EMISSIVE DIODE	US	07/239,403	4,937,638				EDGE EMITTING LIGHT EMISSIVE DIODE
ID9661	WAVEGUIDE TO OPTO-ELECTRONIC TRANSDUCER	GB	8823873.8	2 213 957				WAVEGUIDE TO OPTO-ELECTRONIC TRANSDUCER

ID	Disclosure Title	Serial No.	Patent No.	Status	All inventors with their Inventor No. & Dept. No.	Application title
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	DE 690 20 050.1	690 20 050.1			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	FR 90305474.0	0 400 853			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	GB 8912458.0	2 232 260			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	JP 141220/1990	2991238			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9715	CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...	US 07/531,791	5,083,090			CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH...
ID9716	CARB ON COATING OF OPTICAL FIBRES	DE 690 10 282.8	0 400 938			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	FR 90305776.8	0 400 938			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	GB 9011933.0	2 236 331			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	JP 141221/1990	2866707			CARB ON COATING OF OPTICAL FIBRES
ID9716	CARB ON COATING OF OPTICAL FIBRES	US 07/531,859	5,062,687			CARB ON COATING OF OPTICAL FIBRES
ID9731	BONDING A SEMICONDUCTOR TO A SUBSTRATE	GB 8818522.8	2 221 570			BONDING A SEMICONDUCTOR TO A SUBSTRATE
ID9742	OPTICAL FILTERS	GB 8823078.4	2 223 324			OPTICAL FILTERS
ID9750	DIFFRACTION GRATING	DE 68928711.9	0365125			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	FR 89308702.3	0 365 125			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	GB 8821898.7	2 222 891			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	IT 22874/BE/98	0 365 125			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP 239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP 239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP 239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	US 07/579,081	5,029,981			DIFFRACTION GRATING

DISCLOSURE NUMBER	DISCLOSURE TITLE	COUNTRY	SEARCHING NO.	PATENT NO.	STATUS	ALL INVENTORS WITHIN SEARCHED AND DEPTHS INDICATED	APPLICATION NUMBER
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	JP	239789/1989	2889608			DIFFRACTION GRATING
ID9750	DIFFRACTION GRATING	NL	89308702.3	0 365 125			DIFFRACTION GRATING
ID9752	VAPOUR PHASE PROCESSING	GB	8823233.5	2 223 509			VAPOUR PHASE PROCESSING
ID9763	MULTICHANNEL CAVITY LASER	DE	89312024.6	689 18 238.4			MULTICHANNEL CAVITY LASER
ID9763	MULTICHANNEL CAVITY LASER	FR	89312024.6	0 370 739			MULTICHANNEL CAVITY LASER
ID9763	MULTICHANNEL CAVITY LASER	GB	8827385.9	2 225 482			MULTICHANNEL CAVITY LASER
ID9763	MULTICHANNEL CAVITY LASER	US	07/625,818	5,115,444			MULTICHANNEL CAVITY LASER
ID9774	INTEGRATED OPTICS ASYMMETRIC Y- COUPLER	GB	8902391.5	2 227 854			INTEGRATED OPTICS ASYMMETRIC Y-COUPLER
ID9806	OPTICAL FIBRE CABLE	US	07/544,678	5,082,380			OPTICAL FIBRE CABLE
ID9837	AERIAL OPTICAL FIBRE CABLE	US	07/596,381	5,050,960			AERIAL OPTICAL FIBRE CABLE
ID9856	SEMICONDUCTOR OPTICAL SOURCE	GB	8924725.8	2 237 654			SEMICONDUCTOR OPTICAL SOURCE
ID9870	RING LASER	FR	90309362.3	0 419 059			RING LASER
ID9870	RING LASER	GB	8921295.5	2 236 426			RING LASER
ID9870	RING LASER	DE	69003780.5	0 419 059			RING LASER
ID9870	RING LASER	JP	249922/1990	3004336			RING LASER
ID9870	RING LASER	US	07/583,590	5,056,096			RING LASER
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	FR	90304772.8	0401971			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	CA	2,013,849	2,013,849			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	DE	90304772.8	0401971			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	EP	90304772.8	0401971			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	US	07/363,006	4,934,774			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE

Disc. No.	Disclosure Info	Ctry	Serial No.	Patent No.	Subj. Status	All inventors with App Inventor No.	Application Info
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	US	07/501,990	5,035,916			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0068	OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE	GB	90304772.8	0401971			OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE
MO0166	A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM AN OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER	US	08/710,775	5,703,980			A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM A OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	CA	2,209,548				A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	EP	97111629.8				A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	JP	9-185588				A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	US	08/677,922	5,793,913			A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	US	09/079,480	6,158,901			A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
MO0167	A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE	US	09/584,792	6,391,214			METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE
RE1009	FIBER OPTIC COUPLER	CA	476,580	1,258,787			FIBER OPTIC COUPLER
RE1009	FIBER OPTIC COUPLER	US	07/442,878	4,950,046			FIBER OPTIC COUPLER
RE1037	OPTICAL SIGNAL MODULATORS	CA	507,411	1,257,923			OPTICAL SIGNAL MODULATORS
RE1037	OPTICAL SIGNAL MODULATORS	US	06/856,887	4,730,171			OPTICAL SIGNAL MODULATORS
RO1624	HERMETIC OPTICAL ATTENUATOR	US	06/233,500	4,695,125			HERMETIC OPTICAL ATTENUATOR

Disclosure No.	Disclosure Title	Country	Serial No.	Patent No.	Issue Date	All Inventors with Dept. No's	Application Title
RO1807	DIFFUSION EQUIPMENT	CA	416,834	1,204,986			DIFFUSION EQUIPMENT
RO1807	DIFFUSION EQUIPMENT	US	06/446,441	4,493,287			DIFFUSION EQUIPMENT
RO1809	A PLANAR NARROW-STRIPE LASER WITH IMPROVED CHARGE CARRIER CONFINEMENT	US	06/448,383	4,530,099			A PLANAR NARROW-STRIPE LASER WITH IMPROVED CHARGE CARRIER CONFINEMENT
RO1882	MELT DISPENSING LIQUID PHASE EPITAXY BOAT	CA	448,169	1,201,220			MELT DISPENSING LIQUID PHASE EPITAXY BOAT
RO1882	MELT DISPENSING LIQUID PHASE EPITAXY BOAT	US	06/583,985	4,574,730			MELT DISPENSING LIQUID PHASE EPITAXY BOAT
RO1903	METHOD FOR SCREENING LASER DIODES	CA	447,814	1,196,080			METHOD FOR SCREENING LASER DIODES
RO1903	METHOD FOR SCREENING LASER DIODES	US	06/582,956	4,489,477			METHOD FOR SCREENING LASER DIODES
RO1944	PHASED LINEAR LASER ARRAY	CA	465,981	1,238,707			PHASED LINEAR LASER ARRAY
RO1944	PHASED LINEAR LASER ARRAY	US	06/663,424	4,661,962			PHASED LINEAR LASER ARRAY
RO1961	ZINC DIFFUSION INTO INDIUM PHOSPHIDE	CA	495,084	1,290,656			ZINC DIFFUSION INTO INDIUM PHOSPHIDE
RO1961	ZINC DIFFUSION INTO INDIUM PHOSPHIDE	US	07/243,138	4,889,830			ZINC DIFFUSION INTO INDIUM PHOSPHIDE
RO1987	DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE	CA	483,077	1,238,973			DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE
RO1987	DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE	US	06/673,644	4,660,207			DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE
RO1994	A SURFACE EMITTING LASER	CA	474,029	1,238,971			A SURFACE EMITTING LASER
RO1994	A SURFACE EMITTING LASER	US	06/701,839	4,675,877			A SURFACE EMITTING LASER
RO2005	A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER	US	06/701,707	4,675,876			A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER
RO2005	A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER	CA	474,030	1,238,972			A BRAGG DISTRIBUTED FEEDBACK SURFACE EMITTING LASER
RO2268	AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE	CA	562,885	1,293,179			AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE
RO2268	AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE	US	07/179,834	4,859,628			AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE

Disc No.	Disclosure Date	City	Serial No.	Patent No.	Sub Status	Att/Avenger/Swift Dept No.	Abstract Application Title
RO2314	MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC DEVICES	US	07/176,120	4,847,665			MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC DEVICES
RO2349	GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY	US	07/201,155	4,849,373			GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY
RO2349	GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY	CA	568,369	1,313,107			GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY
RO2461	OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION	US	07/369,883	4,969,712			OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION
RO2468	PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE	CA	2,018,900	2,018,900			PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE
RO2468	PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE	US	07/385,599	4,953,006			PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE
RO2564	LASER DIODE STRUCTURE	FR	91908207.3	0 530 212			LASER DIODE STRUCTURE
RO2564	LASER DIODE STRUCTURE	DE	91908207.3	691 07 845.9			LASER DIODE STRUCTURE
RO2564	LASER DIODE STRUCTURE	GB	91908207.3	0 530 212			LASER DIODE STRUCTURE
RO2564	LASER DIODE STRUCTURE	US	07/522,015	4,989,214			LASER DIODE STRUCTURE
RO2579	MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER	US	07/582,464	5,050,953			MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER
RO2579	MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER	GB	91185124	2 248 968			MULTICHANNEL FIBER OPTIC TRANSMITTER RECEIVER
RO2714	APPARATUS FOR USE WITH ANALYTICAL MEASURING INSTRUMENTS	US	07/996,411	5,350,923			APPARATUS FOR USE WITH ANALYTICAL MEASURING INSTRUMENTS
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	DE	94915483.5	694 08 144.2			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	FR	94915483.5	0 708 930			OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION

ID/Ref. No.	Disclosure Title	Ctry	Serial No.	Patent No.	Subj. Status	All Inventor's Name	Depend No.	Application Title
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	GB	94915483.5	0 708 930				OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	JP	7-504252-95	2691638				OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2785	OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION	US	08/091,708	5,363,457				OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION
RO2788	METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES	US	08/118,273	5,345,459				METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES
RO2799	GAIN COUPLED DFB LASER WITH INDEX COUPLING COMPENSATION	US	08/170,074	5,452,318				GAIN COUPLED DFB LASER WITH INDEX COUPLING COMPENSATION
RO2809	METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES	US	08/158,545	5,586,207				METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES
RO2817	CIRCULAR GRATING LASERS	US	08/158,543	5,448,581				CIRCULAR GRATING LASERS
RO2875	CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NON EQUAL POWER SPLITTING	US	08/450,841	5,524,076				CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NON EQUAL POWER SPLITTING
RO2879	SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE	US	08/242,653	5,483,547				SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	GB	9513146.2	2 302 738				SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	JP	8-188293					SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	CA	2,176,099	2,176,099				SEMICONDUCTOR MODULATOR WITH A SHIFT

Disc No.	Description	Ctry	Serial No.	Pattern No.	Sub Status	Alternative with Serial No.	Application Note
RO2956	SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT	US	08/612,555	5,694,504			SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT
RO2969	METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL	US	08/450,839	5,567,659			METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL
RO2974	MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY	US	08/413,555	5,536,085			MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	CA	2,209,455				COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	EP	97304743.4				COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	JP	9-174942				COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO2999	COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS	US	08/675,757	5,799,119			COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS
RO3007	BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKING LAYER	US	08/728,991	6,028,875			BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKING LAYER
RO3015	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS	GB	9700985.6	2 309 335			THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3015	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS	JP	9-009795				THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3015	THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS	US	08/977,371	5,960,014			THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS
RO3066	LASER DIODE AND METHOD OF FABRICATION THEREOF	US	09/093,399	6,151,347			LASER DIODE AND METHOD OF FABRICATION THEREOF

Disclosure No.	Disclosure Title	Country	Serial No.	Pending/Created	Status	All Inventors with Foreign Nationality	Application Number
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	CA	2,220,240	2,220,240			CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	EP	97308615.0				CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	US	08/745,168	5,778,113			CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3090	CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR	US	09/057,602	5,991,471			CONFIGURABLE CHIRP MACH-ZEHNDER OPTICAL MODULATOR
RO3092	POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE	US	08/686,355	5,777,793			POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	CA	2,209,558				WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	EP	97111630.6	0 818 859	Natl Phase Filed		WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	US	08/680,284	5,825,792			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	JP	9-186204				WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	GB	97111630.6	0 818 859			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	DE	97111630.6	697 11 126.1			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS
RO3139	WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS	FR	97111630.6	0 818 859			WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS

Disclosure Date	Cat	Serial No.	Patent No.	Issue Status	Entitlement Info Dept No's	Application Info
RO3478	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE	EP	98307439.4			TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3478	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE	JP	10-264323			TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3478	TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE	US	08/933,529	5,936,994		TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE
RO3479	DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH GAIN MODULATION	US	08/953,015	6,026,110		DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH GAIN MODULATION
RO3610	SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS	EP	98310111.4			SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS
RO3610	SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS	JP	10-366380			SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS
RO3610	SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS	US	08/998,071	6,104,739		SERIES OF STRONGLY COMPLEX COUPLED DFB LASERS
RO3746	ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONICS FABRICATION	US	08/994,453	5,869,398		ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONICS FABRICATION
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	WO	PCT/CA99/01067			A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	CA	2,310,604			A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	EP	99973441.1			A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER
RO3920	HIGH ORDER GAIN COUPLED DFB LASERS	JP	2000-588867			A GAIN COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER

ID#	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	All Inventors with Depn No's	Application Title
RO4144	COMPACT PROGRAMMABLE MATRIX OF STRONGLY COMPLEX COUPLED DFB LASERS FOR WIDE AND CONTINUOUS SINGLE WAVELENGTH	US	09/209,860	6,201,824			STRONGLY COMPLEX COUPLED DFB LASERS SERIES
RO4324	CONTINUOUSLY TUNABLE HIGH REPETITION RATE SHORT PULSE GENERATION USING DUAL MODE HIGHLY GAIN-COUPLED DFB LASER DIODES	US	09/213,088				GENERATION OF SHORT OPTICAL PULSES USING STRONGLY COMPLEX COUPLED DFB LASERS
RO4416	VARIABLE OPTICAL ATTENUATOR	US	09/388,628	6,246,826			VARIABLE OPTICAL ATTENUATOR WITH PROFILED BLADE
RO4504	ACTIVE REFLECTION MODULATOR	US	09/409,036				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	WO	PCT/CA00/00856		Nat'l Phase Filed		COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	CA	2,351,381				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	EP	947728.2				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM
RO4504	ACTIVE REFLECTION MODULATOR	JP	2001-527411				COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM

ID#	Disclosure Title	Ctry	Serial No.	Patent No.	Sub Status	All Inventors with Depn No's	Application Title
10163ID	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES	CA	2,311,961				SLOTTED MONOLITHIC OPTICAL WAVEGUIDES
10163ID	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES	EP	304657				PHASE ADJUSTER USING SLOTTED, CONCATENATED WAVEGUIDES AND THERMO-OPTIC OR ELECTRO-OPTIC INSERTS
10163ID	SLOTTED MONOLITHIC OPTICAL WAVEGUIDES	US	09/346,320	6,424,755			SLOTTED MONOLITHIC OPTICAL WAVEGUIDES
11550RO	HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH	CA	2,355,450				HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH
11550RO	HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH	US	09/672,703				HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH
12801AU	FIBRE OPTIC CIRCULATOR	EP	96940631.3				FIBRE OPTIC CIRCULATOR
12801AU	FIBRE OPTIC CIRCULATOR	US	08/942,601	6,014,475			FIBRE OPTIC CIRCULATOR
12802AU	OPTICAL FILTERING METHOD AND DEVICE	CA	2,318,674				OPTICAL FILTERING METHOD AND DEVICE
12802AU	OPTICAL FILTERING METHOD AND DEVICE	US	09/660,147	6,466,704			OPTICAL FILTERING METHOD AND DEVICE
12802AU	OPTICAL FILTERING METHOD AND DEVICE	WO	PCT/AU00/00735				OPTICAL FILTERING METHOD AND DEVICE
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	CA	2,313,311				REFLECTIVE NON RECIPROCAL OPTICAL DEVICE
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	EP	202289.5				REFLECTIVE NON RECIPROCAL OPTICAL DEVICE

Disc No.	Disclosure date	Country	Serial No.	Patent No.	Sub Status	Application info
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	US	09/345,027	6,263,131		REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE
12803AU	REFLECTIVE NON RECIPROCAL OPTICAL DEVICE	US	09/610,601	6,415,077		REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE
12804AU	WAVELENGTH DEPENDENT ISOLATOR	CA	10/129828		Nat'l Phase Filed	WAVELENGTH DEPENDENT ISOLATOR
12804AU	WAVELENGTH DEPENDENT ISOLATOR	US	PCT/AU00/01380		Nat'l Phase Filed	WAVELENGTH DEPENDENT ISOLATOR
12804AU	WAVELENGTH DEPENDENT ISOLATOR	WO	PCT/AU00/01380		Nat'l Phase Filed	WAVELENGTH DEPENDENT ISOLATOR
13240AU	POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE	US	09/736,095			POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE
14081ID	FIBRE OPTICAL COMPONENT	US	09/888,888			FIBRE OPTICAL COMPONENT
14669AU	VARIABLE ATTENUATION AND SPECTRAL SLOPE OPTICAL DEVICE	US	10/218,267			VARIABLE ATTENUATION AND SPECTRAL SLOPE OPTICAL DEVICE
15087ID	AN OPTICAL GRATING DEVICE	US	10/109,916			AN OPTICAL GRATING DEVICE
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	DE	95308065.2	695 27 251.9		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	EP	95308065.2	0 713 109	Nat'l Phase Filed	WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	FR	95308065.2	0 713 109		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	GB	9521916.8	2 295 245		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	JP	293047/1995			WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0190	WAVELENGTH RESONANT FUSED FIBRE COUPLER	US	08/557,857	5,703,976		WAVELENGTH RESONANT FUSED FIBRE COUPLER
ID0226	OPTICAL WAVEGUIDE GRATINGS	GB	9318670.8	2 281 787		OPTICAL WAVEGUIDE GRATINGS
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	DE	95308201.3	695 25 223.2		OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	EP	95308201.3	0 713 110	Nat'l Phase Filed	OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	FR	95308201.3	0 713 110		OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	GB	9523489.4	2 295 247		OPTICAL WAVEGUIDE GRATING FILTER
ID0291	OPTICAL WAVEGUIDE GRATING FILTER	US	08/558,709	5,638,473		OPTICAL WAVEGUIDE GRATING FILTER
ID0309	BRAGG GRATINGS IN WAVEGUIDES	US	08/647,795	5,730,888		BRAGG GRATINGS IN WAVEGUIDES
ID0355	ALL-FIBRE OPTICAL FILTER	DE	96302352.8	696 22 778.9		OPTICAL NOTCH FILTER MANUFACTURE
ID0355	ALL-FIBRE OPTICAL FILTER	EP	96302352.8	0 736 784	Nat'l Phase Filed	OPTICAL NOTCH FILTER MANUFACTURE

DISC NO.	DISCLOSURE NUMBER	CN	Serial No.	Patent No.	Sub Status	Application No.
ID0355	ALL-FIBRE OPTICAL FILTER	FR	96302352.8	0 736 784		OPTICAL NOTCH FILTER MANUFACTURE
ID0355	ALL-FIBRE OPTICAL FILTER	GB	96302352.8	0 736 784		OPTICAL NOTCH FILTER MANUFACTURE
ID0355	ALL-FIBRE OPTICAL FILTER	US	08/628,579	5,708,740		ALL-FIBRE OPTICAL FILTER
ID0421	PLANAR WAVEGUIDES	US	08/842,021	5,904,491		PLANAR WAVEGUIDES
ID0423	PLANAR WAVEGUIDE CLADDING	US	08/842,022	5,885,881		PLANAR WAVEGUIDE CLADDING
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	CA	2,241,189			WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	DE	97906822.8	697 09 330.1		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	EP	97906822.8	0 891 570	Nat'l Phase Filed	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	FR	97906822.8	0 891 570		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	GB	9605320.2	2 311 145		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	GB	97906822.8	0 891 570		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	IT	97906822.8	0 891 570		WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	JP	532348/1997			WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	US	09/101,276			WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0444	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY	WO	PCT/GB97/00606		Nat'l Phase Filed	WAVEGUIDES TO PHOTODETECTOR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	CA	2,239,118			WAVEGUIDE PAIR WITH CLADDING
ID0449	WAVEGUIDE PAIR WITH CLADDING	DE	97900292	697 02 299.4	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	EP	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	FR	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	GB	97900292	0 873 531	Nat'l Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY

Ref No.	Disclose date	Ctry	Serial No.	Patent No.	Subj Status	Applicant ref.
ID0449	WAVEGUIDE PAIR WITH CLADDING	IT	97900292	0 873 531	Natl Phase Filed	METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY
ID0449	WAVEGUIDE PAIR WITH CLADDING	JP	524974/1997			WAVEGUIDE PAIR WITH CLADDING
ID0449	WAVEGUIDE PAIR WITH CLADDING	US	09/091,257	6,044,192		WAVEGUIDE PAIR WITH CLADDING
ID0449	WAVEGUIDE PAIR WITH CLADDING	WO	PCT/GB97/00040		Natl Phase Filed	WAVEGUIDE PAIR WITH CLADDING
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	CA	2,211,244			OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	GB	9715185.6	2 316 185		MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	JP	209343/97			MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.
ID0509	MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.	US	08/896,092	6,115,518		OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	CA	2,282,939			OPTICAL EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	DE	99306728.9	699 01 419.0		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	EP	99306728.9	1 009 078	Natl Phase Filed	OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	FR	99306728.9	1 009 078		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	GB	99306728.9	1 009 078		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	IT	99306728.9	1 009 078		OPTICAL GAIN EQUALIZER
ID0997	SERIAL FILTERING FOR WAVELENGTH FLATTENING OF E.D.F.A.	US	09/209,387	6,321,000		OPTICAL EQUALIZER
ID8550	OPTICAL FIBRES	GB	8230675	2 129 152		OPTICAL FIBRES

ID	Disclosure Date	Ctry	Serial No.	Patent No.	Sub Status	Application Title
ID9170	BEAM SPLITTER/COMBERS	CA	500,513	1,288,267		BEAM SPLITTER/COMBERS
ID9170	BEAM SPLITTER/COMBERS	GB	8503506	2 170 920		BEAM SPLITTER/COMBERS
ID9170	BEAM SPLITTER/COMBERS	US	06/819,125	4,756,589		BEAM SPLITTER/COMBERS
ID9441	DIRECTIONAL COUPLER	DE	378 25 37.2	378 25 37.2		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	FR	87302418.6	0 246 737		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	GB	8612660	2 190 762		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	JP	118687/87	2022576		DIRECTIONAL COUPLER
ID9441	DIRECTIONAL COUPLER	US	07/032,783	4,801,185		DIRECTIONAL COUPLER
ID9579	GLASS CLAD OPTICAL FIBRE DIRECTIONAL COUPLERS	GB	8716382	2 207 254		GLASS CLAD OPTICAL FIBRE DIRECTIONAL COUPLERS
ID9730	DOPED ELEMENTS	GB	8820848.3	2 222 400		DOPED ELEMENTS
ID9758	"OPTICAL WAVEGUIDE TAPER HAVING CORE, INTERLAYER AND CLADDING"	GB	8926061.6	2 238 396		"OPTICAL WAVEGUIDE TAPER HAVING CORE, INTERLAYER AND CLADDING"
RO2922	POLARIZATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION	US	08/329,923	5,488,679		POLARIZATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION