

PH2282 part 6: Confidence Intervals

Applied Multi-Messenger Astronomy 2: Statistical and Machine Learning Methods in Particle and Astrophysics

Hans Niederhausen and Matteo Agostini TUM - summer term 2019

Topics of this block of lectures

About my lectures (upcoming three Fridays):

- Introduction to IceCube (and relevant physics)
- Statistical models: describing the detection process
- Monte Carlo Generation: understanding importance weights
- Example application: discovering diffuse astrophysical neutrinos
- Asymptotic properties of maximum likelihood methods
- for today: Interval estimation and confidence regions
- **Example application**: Searching for a point source of neutrinos in the sky (bonus topic, to be added at a later time)

Outline of today's lecture

- summary of last lecture
- concept of **power** of a hypothesis test
- concept of confidence sets
- concept of coverage
- example: CI on normal mean using a pivot
- general Construction: Inversion of Likelihood Ratio Tests
- example: our toy-problem (gaussian signal on uniform bg)
- example and exercise: IceCube diffuse flux measurement

Summary of Previous Lectures: Diffuse Neutrino Flux

ingredients for the IceCube discovery analysis:

- maximum likelihood fitting, hypothesis testing using likelihood ratio $(H_0: \Phi_{astro} = 0 \text{ and } H_1: \Phi_{astro} > 0$, with $\lambda = -2 \log L0/L1$ as TS)
- weighted Monte Carlo simulation to predict expected number of counts in each bin (for some assumption about the signal and background flux)

Summary of Previous Lectures: Large Sample Theory and Point Estimation

The distribution of the MLE converges to a normal distribution (with variance given by the CRB bound). The MLE is ...

- a consistent estimator. bias and variance converge to 0.
- an asymptotically efficient estimator. smallest possible variance as n grows large.
- asymptotically normal.

These are the reasons why maximum likelihood is so popular.

Summary of Previous Lectures: Large Sample Theory and Likelihood Ratio Testing

Reminder

given two hypotheses $H0: \theta = \theta_0$ and $H1: \theta \neq \theta_0$ the likelihood ratio test-statistic $\lambda(\mathbf{x})$ is defined as

$$\lambda(\mathbf{x}) = -2\log\Lambda(\mathbf{x}) = -2\log\left\{\frac{\sup_{\nu}L(\theta_0, \nu \mid \mathbf{x})}{\sup_{\nu, \theta}L(\theta, \nu \mid \mathbf{x})}\right\}$$
(1)

Wilk's Theorem

As the sample size increases, the distribution of the likelihood ratio test-statistic (??) converges to a χ^2 distribution with number of degrees of freedom k equal to the difference in number of free parameters specified by each hypothesis. In our notation $k = \dim \theta$.

$$f_{\lambda}(\lambda; \theta_0) \underset{n \to \infty}{\longrightarrow} \chi^2(k)$$
 (2)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Summary of Previous Lectures: Large Sample Theory and Likelihood Ratio Testing

Wilk's Theorem (cont'd)

Unfortunately there are strict regularity conditions. Here are the two most important ones

- θ_0 needs to be an interior point of Θ
- ullet nuisance parameters u that are only present under H1 are another issue
- ... several minor ones (typically not important)

Some extensions exists that might be useful (see Chernoff 1954, Gross, Vitells 2010) in such situations.

Summary of Previous Lectures: Large Sample Theory: The Toy Problem

Example: Our standard toy problem (with fixed sample size)

In the following treat p_s as the only unknown in the problem - and thus as a parameter.

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Large Sample Theory: The Toy Problem

Application to our standard toy problem (with 2 parameters: p_s , μ_s)

Two different hypothesis tests satisfying Wilk's theorem

Case 1: $H0: p_s = 0.2$ and $H1: p_s \neq 0.2$ (k=1)

Case 2: $H0: p_s = 0.2, \ \mu_s = 10.0 \ \text{and} \ H1: p_s \neq 0.2, \ \mu_s \neq 10.0 \ (k=2)$

Large Sample Theory: The Toy Problem

Large Sample Theory: The Toy Problem

Questions about previous lectures?

Hypothesis Tests: Statistical Power

Hypothesis Tests: Statistical Power

The power function $\beta(\theta)$ of a hypothesis test with rejection region R is the probability of the test rejecting H0: $\theta = \theta_0$ as a function of the parameters θ in the model

$$\beta(\theta) = P_{\theta}(TS(\mathbf{X}) \in R) \tag{4}$$

example: gaussian mean $H0: \mu = \mu_0$ and $H1: \mu \neq \mu_0$ (σ known) (check ipython notebook)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Hypothesis Tests: Statistical Power

- the **ideal** power function would be equal to 1 through the parameter space of the alternative hypothesis and 0 throughout the null-space **good metric to judge tests**
- if you have to choose between two tests with same type I error probability, take the one that has larger power in the parameter space of the alternative hypothesis.
- **discovery potential**: value of $\theta' \neq \theta_0$ with $\beta(\theta') = 0.5$ (need to define rejection region, e.g. the 5σ criterion)

(beware of tests with small power: rejection of H_0 would not make H_1 more plausible.)

Confidence Intervals

Goal: calculate some range/region that has some probability to contain the true (unknown) parameter/s.

- Probability does not refer to the parameter (the true parameter is a fixed constant, not a random variable.) but to the region/interval that we obtain from the data.
- Generally speaking: different data results in a different region/interval (albeit construction is the same).

Mathematically, from data \mathbf{X} we calculate function values $L(\mathbf{X})$ and $U(\mathbf{X})$ which are random variables.

$$[L(\mathbf{X}), U(\mathbf{X})] \quad (two - sided)$$

$$(-\infty, U(\mathbf{X})] \quad or \quad [L(\mathbf{X}), \infty) \quad (one - sided)$$

$$(6)$$

in physics: two-sided intervals often called "uncertainties", one-sided intervals often called "limits". (sometimes gets mixed ... e.g. hard to tell difference on bounded parameter spaces. always check how the construction was done.)

Confidence Intervals: Coverage

coverage := probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ (or limit) happens to overlap with the unknown, true parameter value.

$$P_{\theta}\left(\theta \in [L(\mathbf{X}), \ U(\mathbf{X})]\right) \tag{7}$$

confidence coefficient of an interval (denoted by $1-\alpha$) defined by

$$\inf_{\theta} P_{\theta} \left(\theta \in [L(\mathbf{X}), \ U(\mathbf{X})] \right) = 1 - \alpha$$
 (8)

Can not always guarantee exact coverage (hello nuisance parameters!) - strive to guarantee confidence coefficient (i.e. minimum coverage!). That is usually possible.

Confidence Intervals: Coverage in the normal mean problem

Consider the problem of constructing a confidence interval for the unknown mean μ of a normal distribution (variance σ^2 known) from n observations ($\mathbf{X} = \{X_1, ..., X_n\}$). This can be done using a **pivot** (a function of the parameter and observations, that has a distribution which is independent of the parameter).

$$Q(\mu, \mathbf{X}) = rac{ar{X} - \mu}{\sigma / / \sqrt{n}}$$
 (9)
 $Q \sim N(0, 1)$ (10)

i.e. here Q is a standard normal random variable. Thus can solve

$$P_{\mu}\left(-\mathsf{a}\leq \mathsf{Q}\leq \mathsf{a}
ight)=1-lpha$$

which corresponds to the following confidence set

which corresponds to the following confidence set
$$\left\{\mu: \ \bar{X} - a \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + a \frac{\sigma}{\sqrt{n}} \right\}$$

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

(11)

Confidence Intervals: Coverage in the normal mean problem

Check with Monte-Carlo (see ipython notebook)

Confidence Intervals from inversion of hypothesis tests

If you can construct a level α hypothesis test for the unknown parameter/s specified by H_0 it is always possible to use this test to construct a confidence interval with guaranteed confidence coefficient $1-\alpha$ (see Theorem 9.2.2 in Casella and Berger). This is called **inverting a hypothesis test**. Whether you get two-sided or one-sided intervals depends on the alternative hypothesis

- $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$ produces two-sided intervals
- $H_0: \theta = \theta_0$ and $H_1: \theta < \theta_0$ produces one-sided intervals (upper-limit)
- $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$ produces one-sided intervals (lower-limit)

The more powerful the underlying hypothesis test, the better the interval (smaller range, more accurate).

(Note, the Feldman-Cousins construction is a special case of this. They invert a likelihood ratio test (two-sided) concerning the poisson mean).

Confidence Intervals from inversion of hypothesis tests

Why does it work?

- perform the test on every possible point in parameter space
- if the test rejects the point, simply discard it
- if the point is accepted, add the point to your confidence set
- Whats the coverage of this strategy? (probability that the random set contains true parameter)
- Probability to rejected a parameter if it is true is $\leq \alpha$ by definition (size of test)
- Thus, probability for true parameter to contribute to set is $> 1 \alpha$.
- ullet Hence, probability for set to cover true parameter is $\geq 1-lpha$ by construction

Confidence Intervals from inversion of LRT

We have learned how to construct likelihood ratio tests. Let's invert a likelihood ratio test to obtain a confidence set on the signal fraction p_s in our toy model. (see ipython notebooks)

$$f_X(x;\mu,\sigma,p_s) = \left[p_s \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} + (1-p_s) \cdot \frac{1}{20} \right]$$

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

(13)

 $H_0: p_s = p_s^0$ and $H_1: p_s \neq p_s^0$, sample size n=100 endpoints of interval: intersection points of obs. TS value (white) with critical value (red)

 $H_0: p_s = p_s^0$ and $H_1: p_s \neq p_s^0$, sample size n=10 endpoints of interval: intersection points of obs. TS value (white) with critical value (red)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

 $H_0: p_s = p_s^0$ and $H_1: p_s \neq p_s^0$, sample size n=3 endpoints of interval: intersection points of obs. TS value (white) with critical value (red)

- very simple if your measurement is in the asymptotic regime (lots of data!)
- obtain the critical value (red curve) from wilk's theorem (i.e. appropriate χ^2 -pdf)
- generalizes well to high dimensions, if analysis remains asymptotic
- if asymptotics don't apply, you will run out of CPU quickly as the dimensionality increases (since you need to costruct the TS distributions for each point in parameter space)
- always check a few representative parameter combinations (and also a few extreme ones) first
- be mindful of the power in your tests!)

Inversion of LRT in the IceCube diffuse flux measurement

To construct a joint confidence interval for the normalization and spectral index of the astrophysical neutrino flux, we need to invert a LRT:

$$H_0: (\Phi, \gamma) = (\Phi_0, \gamma_0)$$
 and $H_1: (\Phi, \gamma) \neq (\Phi_0, \gamma_0)$

The asymptotic expectation for the TS distribution would be χ^2 with 2 dof.

Inversion of LRT in the IceCube diffuse flux measurement

if we have sufficient data, we use the χ^2 pdf (left) otherwise we need to obtain (valid) p-values from MC simulations and use those to get the contours (right)

$$p(\mathbf{x_{obs}}) = \sup_{\theta \in \Theta_0} P_{\theta} \left(TS(\mathbf{X}) \ge TS(\mathbf{x_{obs}}) \right) \tag{14}$$

Exercise

• ...

Further Reading

- Casella and Berger
- Asymptotics by Cranmer et. al.
- Maybe FC paper