1886

МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина) (СПбГЭТУ «ЛЭТИ»)

Кафедра теоретических основ электротехники

Отчет по лабораторной работе № 1 по дисциплине «МОЭ»

Тема: «ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ЛИНЕЙНЫХ И НЕЛИНЕЙНЫХ РЕЗИСТОРОВ И ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОЙ ЭНЕРГИИ»

Студент гр. 8382, ФКТИ		Мирончик П.Д.
Преподаватель		Кондаков А.В.
	Санкт-Петербург	

2020 г.

Цель работы

Экспериментальное определение BAX линейных и нелинейных резисторов и источников электромагнитной энергии; изучение временных реакций линейных и нелинейных резисторов на заданные воздействия.

Теоретические положения

Зависимость между напряжением и током элемента электрической цепи называется его BAX. У линейного резистора BAX описывается уравнением прямой, проходящей через начало координат: u=Ri. У нелинейного резистора BAX соответствует нелинейное уравнение: u=f(i). Примеры BAX линейного и нелинейного резисторов показаны на рис. 1, а, б соответственно.

Puc. 1

Экспериментальные результаты

A recre	gobarre xapa	arteques	cex 6	uneof me	ex core	6 gil	SUCER	u pejus	coport	U	
•	Прочокол едобичне хар Группа 83 Бригада: к	zzwea	A.M.,	Kepear	кова	M.K.	Mu	pourer	A.D.		
	Tadanya 1										
	u, B -2.98	- 192	- 0,93	107	2.44	5.06	0.0				
	i, MA -27.9	47.9	-9.1	10,0	20,0	28.2	0.0				
	Tadiseogra 2										
	u, B -3.09	-2.54	-1.9u	- 4.57	- 1.01	-0.51	0.55	4.12	1.52	1 2 36	0.
	i, m A - 20	-2.4	- 1.8	-1.6	-0.9	-0.5	0.6	7.7	15.0	22. 9	0. 0
0	Talinya 3										
	R, Qi 200	180	1 60	140	120	100	80	60	40	20	
	11, B 4.40	1.10	1.10	1.10	1.10	1.10	1.10	4.10	1.10	1.10	
	i, as A = 5, 1	5.6	6.2	7.3	8.5	10.1	12.5	46.5	24.6	46.5	
	Tadinga 4										
	R. DN 200	140	80	20		R. OM	200	140	80	20	
	w, B 1.01	100	1 4.0	3 11.98		u, B	10		0.		
	i, MA 4.6	6.8	14.8	22.0			4.7		1		
0						Young	a 4				
	Joynna 8382 Forguster K					R, OM		140	80	1 20	
				11.		u,B	1.02	0. 94	0.79	0.39	
	Мироний			May	7	inAl	и.Э	6.2	9.4	17.9	
	Kezura A		- 1								
	Kynarroba	M.	of	Th							
	02 09 2020	D 1/					0				
		IV	M	10	1	09	20	les			
				1							

Обработка результатов

1. Определение ВАХ линейного и нелинейного резисторов

Вопрос1: Что определяет угол наклона ВАХ линейного резистора? Сопротивление резистора: $i = \frac{u}{R}$, отсюда можно вычислить соответствие между напряжением и силой тока и по полученным точкам построить график

Рис.2, ВАХ линейного резистора

Соберем схему, изображенную на рисунке 3, и получим данные о напряжении и силе тока для линейного и нелинейного резисторов:

рис. 3, схема для измерения ВАХ резистора

Табл. 1, данные для исследования ВАХ линейного резистора

u, B	-2,98	-1,92	-0,98	0	1.07	2.14	3.06
i, MA	-27.9	-17.9	-9.1	0	10	20	28.2

Табл.2, данные для исследования ВАХ нелинейного резистора

u, B	-3.09	-2.51	-1.94	-1.57	-1.01	-0.51	0	0.55	1.12	1.52	1.96
І, мА	-3	-2.4	-1.8	-1.6	-0.9	-0.5	0	0.6	7.7	15.0	22.3

Сопротивление резистора по закону Ома равно:

$$R = \frac{U}{I}$$

Например, для первого измерения из табл. 1 сопротивление будет равно:

$$R = -\frac{2.98B}{-27.9MA} = 106.8 \text{ Om}$$

Найдем сопротивление из полученных результатов из табл.1 для линейного резистора:

табл. 3, BAX линейного резистора

u, B	-2,98	-1,92	-0,98	1.07	2.14	3.06
і, мА	-27.9	-17.9	-9.1	10	20	28.2
R, Om	106.8	107.3	107.7	107	107	108.5

Найдем ВАХ для полученных результатов из табл. 2 для нелинейного резистора:

табл. 4, BAX нелинейного резистора

u, B	-3.09	-2.51	-1.94	-1.57	-1.01	-0.51	0.55	1.12	1.52	1.96
I,	-3	-2.4	-1.8	-1.6	-0.9	-0.5	0.6	7.7	15.0	22.3
мА										
R,	1030.00	1045.83	1077.78	981.25	1122.22	1020.00	916.67	145.46	101.33	87.90
Ом										

Вопрос 2: Если точки ВАХ, полученные экспериментально, не лежат строго на прямой, то чем это можно объяснить? Каким образом в таком случае провести график ВАХ? Это объяснимо погрешностью снятия измерений, а также установки. В данном случае можно применить какойлибо метод приближения линейной функций.

Рис.4, ВАХ нелинейного резистора

Вопрос 3: Какой зависимостью связаны между собой ток и напряжение линейного и нелинейного резисторов? Для линейного резистора - линейной, для нелинейного - нелинейной (напряжение описывается функцией u=f(i))

2. Анализ временных зависимостей токов и напряжений линейного и нелинейного резисторов при синусоидальных воздействиях

Для исследования временных зависимостей токов и напряжения линейного и нелинейного резисторов была собрана схема, представленная на рис. 5, где в качестве исследуемого резистора подключались сначала линейный, а затем нелинейный резисторы.

Рис. 5, схема исследования временных зависимостей

Вопрос 4: На какой вход осциллографа подается сигнал, пропорциональный току, а на какой — напряжению? <u>На канал 1 - пропорциональный напряжению</u>, на канал 2 - пропорциональный току.

Вопрос 5: Может ли форма тока линейного резистора отличаться от формы напряжения, например, может ли ток быть несинусоидальным при синусоидальном напряжении? <u>Heт</u>

Рис.6, ожидаемая реакция нелинейного резистора при синусоидальном напряжении

Вопрос 6: Заметно ли отличие формы тока от синусоидальной? Да

Вопрос 7: Какой формы будет ток линейного резистора, если напряжение будет иметь вид периодической последовательности прямоугольных импульсов? Такую же форму, как и напряжение

Рис.7, временные зависимости тока и напряжения нелинейного резистора

Рис. 8, временные зависимости тока и напряжения линейного резистора

3. Исследование ВАХ реальных источников

Для исследования BAX реальных источников использовалась схема, представленная на рис. 9, где в качестве источника питания подключались ИП постоянного напряжения, а затем Γ C.

Рис. 9, схема для исследования ВАХ реальных источников

Показания для ВАХ ИП представлены в табл. 5

табл. 5, исследование ВАХ ИП постоянного напряжения

R, Om	20	40	60	80	100	120	140	160	180	200
u, B	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
і, мА	46.1	24.6	16.5	12.5	10.1	8.5	7.1	6.2	5.6	5.1

Рис.10, ВАХ ИП постоянного напряжения

Вопрос 8: Можно ли исследуемый источник считать близким к идеальному ИН или идеальному ИТ? Можно, т.к. при изменении тока, протекающего через источник, напряжение не меняется

Показания ГС представлены в табл.6

табл. 6, исследование ВАХ ГС

R, Om	200	140	80	20
u, B	1.02	0.94	0.79	0.38
I, MA	4.7	6.2	9.4	17.9

Рис.11, ВАХ ГС

Сопротивление ГС - константная величина (что видно на графике), поэтому найдем его сопротивление как отношение изменения напряжения к изменению тока:

$$R_0 = \left| \frac{u_i - u_j}{i_i - i_j} \right|, i \neq j$$

Например, для і=1, ј=2, сопротивление ГС будет равно

$$R_0 = \left| \frac{(1.02 - 0.94)B}{(4.7 - 6.2)MA} \right| = 53.3 \text{ Om}$$

Найдем сопротивление ГС для полученных данных из табл.6:

табл. 7, расчет сопротивления ГС

i, j	1,2	2,3	3,4
R_0 , Om	53.3	46.9	48.2

Вывод

В процессе выполнения лабораторной работы были исследованы ВАХ линейного и нелинейного резисторов, а также реальных источников, таких как генератор сигналов и ИП постоянного напряжения. Были определены сопротивление линейного и нелинейного резисторов, внутреннее сопротивление ГС, а также изучена форма тока и напряжения на резисторах. Также было выяснено, что нелинейный резистор не имеет постоянного сопротивления, линейный резистор — практически постоянное сопротивление. ИП постоянного напряжения можно считать близким к идеальному источнику напряжения, а ГС нельзя считать таковым, либо же близким к идеальному источнику тока.