Representando Significado com Vetores

Bruno Ferrari Guide

Orientador: Marcos Lopes Universidade de São Paulo bruno.guide@usp.br

9 de novembro de 2018

Tópicos

- Vetorizando a Língua
- Um breve desvio: Vetores, Álgebra e Geometria
- Vetores Esparsos e Densos
- Moções Linguísticas Subjacentes
- Limitações e problemas
- Bibliografia

Vetorizando a Língua

Juntando e contando coisas - Corpora e estatística

```
#contando as palavras
def histograma(corpus):
    dic = dict()
    for palavra in corpus:
        if (palavra not in dic):
            dic[palavra] = 1
        else:
            dic[palavra] += 1
    return dic
```

Figura: Script em Python para contar palavras

Frequência de termo (TF)

Variants of term frequency (tf) weight

weighting scheme	tf weight				
binary	0,1				
raw count	$f_{t,d}$				
term frequency	$\left f_{t,d} \middle/ \sum_{t' \in d} f_{t',d} ight $				
log normalization	$\log(1+f_{t,d})$				
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$				
double normalization K	$K+(1-K)rac{f_{t,d}}{\max_{\{t'\in d\}}f_{t',d}}$				

Matriz de termos-documentos

ma	nce/marm01.txt	romance/marm02.txt	romance/marm03.txt	romance/marm04.txt	romance/marm05.txt	romance/marm06.txt	romance/marm07.txt	romance/marm08.txt
	romance,	romance,	romance,	romance,	romance,	romance,	romance,	romance,
re	ssurreição,1872	a	helena,1876	iaiá	memórias	casa	quincas	dom
	ressurreição	mão	helena	garcia,1878	póstumas	velha,1885	borba,1891	casmurro,
	texto-fonte:	e	texto-fonte:	iaiá	de	casa	quincas	1899
	obra	a	obra	garcia	brás	velha	borba	dom
	completa,	luva,1874	completa,	texto-fonte:	cubas,	texto-fonte:	texto-fonte:	casmurro
	machado	a	de	obra	1890	obra	obra	texto

Figura: Matriz termo-documento

Frequência inversa em documentos (IDF)

$$\operatorname{idf}(t,D) = \log \frac{N}{|\{d \in D : t \in d\}|}$$

Figura: Inverse Document Frequency

TF-IDF

$$\operatorname{tfidf}(t,d,D) = \operatorname{tf}(t,d) \cdot \operatorname{idf}(t,D)$$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Figure 6.8 A tf-idf weighted term-document matrix for four words in four Shakespeare plays, using the counts in Fig. 6.2. Note that the idf weighting has eliminated the importance of the ubiquitous word good and vastly reduced the impact of the almost-ubiquitous word fool.

Figura: TF-IDF com exemplo

• Vetores, Álgebra e Geometria

Plano Cartesiano

Figura: O plano Cartesiano

Ponto e vetor

Figura: Pontos, Vetores e dimensões

Palavras são vetores

```
('helena', [0.28651808681165336, 0.702058430987814, 0, 0.3414983950784797])
('casmarro', [0.6454947137463482, 0, 0, 0])
('casa', [0.009719545955246493, 0.00224123223039625, 0.00015107275510106155, 0.0054821492925818])
('casamarro', [0.6661184290694248, 0.7330428931966182, 0.437326099084505, 0.8577315612168996])
('casamarro', [0.6661184290694248, 0.7330428931966182, 0.437326099084505, 0.0573251612168996])
('verdade', [0.12926613589474578, 0.9170286217031972, 0.16477416499879327, 0.9762289194905985])
('verdade', [0.12926613589474578, 0.9170286217031972, 0.16477416499879327, 0.9762289194905985])
('para', [0.0002551198905075053, 5.6183774208779599-05, 0.0001362325832865, 0.0001458258911221055])
```

Figura: Vetores de palavras

Distância entre vetores

Cosine Similarity

Figura: Similaridade de cosseno

• Vetores Esparsos e Densos

A Maldição da Dimensionalidade

/1.0	0	5.0	0	0	0	0	0 \
0	3.0	0	0	0	0	11.0	0
0	0	0	0	9.0	0	0	0
0	0	6.0	0	0	0	0	0
0	0	0	7.0	0	0	0	0
2.0	0	0	0	0	10.0	0	0
0	0	0	8.0	0	0	0	0
$\int 0$	4.0	0	0	0	0	0	12.0

Figura: Coleção de Vetores (Matriz)

Vetores Densos vs. Vetores Esparsos

Tipo de Vetor	Interpretação	Exigência para processamento
Esparso	Transparente	Exigente
Denso	Opaco	Amigável

Tabela: Comparação entre vetores densos e esparsos

Adensando Vetores

BENGIO, DUCHARME, VINCENT AND JAUVIN

Figure 1: Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

Figura: É possível, mas não cabe a discussão no momento

Funciona?

- Muito!
- Hoje a semântica de vetores densos é dominante nos algoritmos mais bem sucedidos para interpretação de significado, como chatbots, tradução automática, busca.
- Os modelos principais não são iguais a LSA do slide anterior, mas o principio de adensar vetores é o mesmo.
- A seguir, explorarei os tipos de relação semântica que podemos explorar nos vetores gerados pelo modelo Word2Vec.

• Noções Linguísticas Subjacentes

Operações com vetores - similaridade

Figura: Similaridade com Word2Vec

Operações com vetores - linearidades

Figura: Relações lineares

O que um vetor codifica?

• Limitações e questões

Limitações e questões

- Sensibilidade ao corpus de treinamento
- Na prática, é um modelo muito bem sucedido para tarefas de NLP, mas a semantização do modelo é algo complexo.
- Modelo é treinado a partir de uma quantidade absurda de dados linguísticos. Não possui nenhuma expectativa de ter alguma veracidade neurolinguística.
- A noção de 'relação semântica' é intuitiva, mas formalmente vaga.

Próximos passos

- Investigar um tipo específico de relação semântica: a sinonímia.
- Analisar o funcionamento da sinonímia nos modelos.
- Criar classificadores de sinônimos para esse tipo de modelo, usando abordagens matemáticas e/ou linguísticas.

References

- Jurafsky, D. & Martin, J.(2018). Speech and Language Processing. 3rd Edition draft. 2018.
- Bengio, Y et al (2003). A Neural Probabilistic Language Model. Journal of Machine Learning Research 3, 2003.
- Manning, C. et al (2008). Introduction to information retrieval. *Cambridge University Press*, 2018.
- Widdows, D. (2004). Geometry and Meaning. CSL1 Publications, 2004.
- Tensorflow, Vector Representations of words (2018). https://www.tensorflow.org/tutorials/representation/word2vec.
- Colyer, A. The amazing power of word vectors (2016). https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/.
- Deisenroth, M.P. et al (2018). Mathematics for Machine Learning. Cambridge University Press, 2018.

Figura: Obrigado!