# EECS 336: Introduction to Algorithms Greedy by Value

Lecture 5 Kruskal, Matroids

Reading: 4.5-4.6, MIT notes on matroids.

Last Time:

- greedy-by-value
- MST

Today:

- MST / matroid (cont.)
- dynamic greedy
- shortest paths, MSTs

Algorithm: Greedy-by-Value

- 1.  $S = \emptyset$
- 2. Sort elts by decreasing value.
- 3. For each elt e (in sorted order):

if 
$$\{e\} \cup S$$
 is feasible

add e to S

else discard e.

**Example 2:** minimum spanning tree

input:

- graph G = (V, E)
- costs c(e) on edges  $e \in E$

 $\begin{array}{c} \textbf{output:} \ \underline{\text{spanning tree}} \ \text{with minimum total} \\ \text{cost.} \end{array}$ 

# Structural Observations about Forests

**Def:** G' = (V, E') is a **subgraph** of G = (V, E) if  $E' \subseteq E$ .

Def: An acyclic undirected graph is a forest Fact 2:

Fact 1: an MST on n vertices has n-1 edges.

**Lemma 1:** If G = (V, F) is a forest with m edges then it has n - m connected components.

**Proof:** Induction (on number of edges)

base case: 0 edges, n CCs.

IH: assume true for m.

IS: show true for m+1

- IH  $\Rightarrow n m$  CCs
- add new edge.
- must not create cycle
- $\Rightarrow$  connects two connected components.
- $\Rightarrow$  these 2 CCs become 1 CC.
- $\Rightarrow n-m-1$  CCs.

QED

**Lemma 2:** (Augmentation Lemma) If  $I, J \subset E$  are forests and |I| < |J| then exists  $e \in J \setminus I$  such that  $I \cup \{e\}$  is a forest.

#### **Proof:**

Lemma 1

$$\Rightarrow$$
 # CCs of  $(V, I) >$  # CCs of  $(V, J) \ge$  # CCs of  $(V, I \cup J)$ 

 $\Rightarrow$  add elements  $e \in J$  to I until # CCs change.

[PICTURE]

 $\Rightarrow (V, I \cup \{e\})$  is acyclic.

Fact 2: subgraphs of acyclic graphs are acyclic

### Correctness

"output is tree and has minimum cost"

**Goal:** understand why greedy-by-value works.

Lemma 1: Greedy outputs a forest.

**Proof:** Induction.

**Lemma 2:** if G is connected, Greedy outputs a tree.

**Proof:** (by contradiction)

**Theorem:** Greedy-by-Value is optimal for MSTs

Approach: "greedy stays ahead"

**Proof:** (by contradiction of first mistake)

- Greedy and OPT have n-1 edges (Fact 1)
- Let  $I = \{i_1, \dots, i_{n-1}\}$  be elt's of Greedy. (in order)
- Let  $J = \{j_1, \dots, j_{n-1}\}$  be elt's of OPT. (in order)
- Assume for contradiction: c(I) > c(J)
- Let r be first index with  $c(j_r) < c(i_r)$
- Let  $I_{r-1} = \{i_1, \dots, i_{r-1}\}$
- Let  $J_r = \{j_1, \ldots, j_r\}$
- $|I_{r-1}| < |J_r|$  & Augmentation Lemma  $\Rightarrow$  exists  $j \in J_r \setminus I_{r-1}$ such that  $I_{r-1} \cup \{j\}$  is acyclic.

- Suppose j considered after  $i_k$   $(k \le r 1)$
- $I_k \subseteq I_{r-1}$  $\Rightarrow I_k \cup \{j\} \subseteq I_{r-1} \cup \{j\}$
- $I_{r-1} \cup \{j\}$  acyclic & Fact 2
  - $\Rightarrow$  all subsets are acyclic
  - $\Rightarrow I_k \cup \{j\}$  acyclic
  - $\Rightarrow$  j should have been added.

 $\rightarrow \leftarrow$ 

# Matroids

**Def:** A set system  $M = (E, \mathcal{I})$  where

- $\bullet$  E is ground set.
- $\mathcal{I} \subseteq 2^E$  is set of **compatible** subsets of E.

**Question:** When does greedy-by-value algorithm work?

**Question:** What properties of MSTs were necessary for greedy-by-value to work?

#### Answer:

- MSTs are same size (Fact 1)
- augmentation property (Lemma 2)
- downward closure (Fact 2)

**Note:** augmentation property implies Fact 1.

**Def:** A matroid is a set system  $M = (E, \mathcal{I})$  satisfying:

M1 "subset property" if  $I \in \mathcal{I}$ , all subsets of I are in  $\mathcal{I}$ .

M2 "augmentation property" if  $I, J \in \mathcal{I}$  and |I| < |J|, then exists  $e \in J \setminus I$  such that  $I \cup \{e\} \in \mathcal{I}$ .

(compatible sets also called **independent** sets).

Corollary: acyclic subgraphs are a matroid.

Theorem: greedy algorithm is optimal iff feasible outputs are a matroid.

#### **Proof:**

- $(\Rightarrow)$  same as for Theorem 1.
- $(\Leftarrow)$  homework.

**Conclusion:** to see if greedy-by-value works, check matroid properties.

# Dynamic Greedy Algorithms

"adjust ordering dynamically as greedy algorithm proceeds"

#### Template: Repeat:

- Process minimal element by metric.
- Adjust metric on remaining elements.

**Note:** priority queues useful for dynamic greedy algs.

# Def: priority queue data structure

## Operations:

- insert(v,k): adds elt v to queue with key k (priority)
- decreasekey(v,k): decreases the key of v to k

(if key is less than k, leave it the same)

• deletemin: returns elt with minimum key.

#### Runtimes:

• can implement all operations in  $O(\log n)$ 

# **Shortest Paths**

"find short path from vertex s to t in graph"

E.g., driving directions, Internet routing.

Example:  $v_1$   $v_2$   $v_3$   $v_4$   $v_4$  v

**Idea:** given known distance to closest  $S \subset V$ , then distance of closest neighbor of S to s can be found. Then, induction.

**Metric:** shortest one-hop distance from vertices with known distances.

**Update:** (after processing vertex v)

- v's distance is known.
- update metric on unknown vertices if one-hop path from v is shorter.

**Algorithm:** Dijstra's Shortest Path Alg (w. Priority Q)

- 1. initialize
  - (a) for all v, insert $(v,\infty)$
  - (b) deceasekey(v,0)
- 2. while queue not empty
  - (a) (v,d) = deletemin()
  - (b) if v = t, return d.
  - (c) for each neighbor u of v:

decreasekey(u,d+c(v,u))

Runtime:  $T(n, m) = m \log n$ .

## Correctness

Theorem: Dijkstra is optimal

**Proof:** (by induction on known vertices, see text)

# MSTs, revisited

**Idea:** grow tree from s by adding cheapest new vertex.

**Note:** as we add vertices, must reevaluate cost of vertices.

Example:



**Idea:** grow tree from start vertex adding closest vertex to any vertex in tree

Metric: minimum one-hop distance to any vertex in current tree.

**Update:** (after processing vertex v)

- $\bullet$  add v to tree.
- update metric on non-tree vertices if one-hop distance to v is shorter.

Algorithm: Prim's MST Alg

- 1. initialize
  - (a) for all v, insert $(v,\infty)$
  - (b) decrease key(v,0)
- 2. while queue not empty
  - $(a) \ (v,d) = deletemin()$
  - (b) for each neighbor u of v:

 $\mathrm{decreasekey}(u, c(v, u))$ 

Runtime:  $T(n,m) = O(n \log m)$ 

# Correctness

**Lemma:** (cut lemma) For any (A, B)-cut and e' = (u, v) the min cost edge crossing cut, e' is in every MST.

**Proof:** (contradiction)

Conclusion: each edge Prim adds is minimum edge on cut, therefore Prim never adds wrong edge.