Lincoln Martins de Oliveira (ES 90693) - Mini-relatório 01 (26 de Março de 2018)

Mecanismos de transferência de calor

Quando você coloca uma colher em uma caneca contendo leite quente, a colher se aquece e o leite se esfria e ambos os corpos lentamente encaminham-se para atingir o equilíbrio térmico. O contato que ocasiona essas variações de temperatura é basicamente uma movimentação de energia entre um corpo e outro. A transferência de energia gerada apenas por diferença de temperatura e chamada de transferência de calor ou fluxo de calor, e a energia transferida desta forma e designada por calor.

Os três processos de propagação de calor são a condução, a convecção e a radiação. A condução ocorre no interior de um corpo ou entre dois ou mais corpos em contato. A convecção depende do movimento de massas de uma região para outra. A radiação é a propagação de calor que ocorre por meio da radiação eletromagnética, sem que seja necessária a presença de mátria entre os corpos. Seja por qualquer um desses processos de transferência, o calor sempre fluirá de um corpo que possui maior temperatura para o corpo com menor temperatura.

Condução térmica

Suponha que uma pessoa esteja segurando a extremidade A de uma barra metálica e a outra extremidade, B, esteja em contato com uma chama. Com o passar do tempo essa pessoa nota que a temperatura na extremidade A se elevou, isso e deve a maior agitação das moléculas ou átomos da extremidade B, aquecida pela chama. Parte dessa energia adquirida da chama por B e transferida para as partículas da região vizinha por meio do choque entre as partículas que constituem o corpo, ao receber essa energia as partículas passam a vibrar com maior ímpeto, esta propaga energia para a subsequente e assim, sucessivamente como mostrada na figura 1.

Figura 1: Barra sendo aquecida e ampliação das moleculas que a compoem mostrando seu comportamento microscópio. Figuras extraídas da Referência [2].

Conforme seja a constituição atômica de uma substancia, a agitação térmica pode ser transmitida de um átomo parra outro com maior o menor facilidade, metais, por exemplo, são bons condutores de calor, no entanto outras substâncias, como o isopor, o vidro, a borracha, o ar a madeira, a lã, entre outros são maus condutores de calor, ou seja, isolantes térmicos.

Fluxo de calor

Figura 2: A figura mostra um sistema formado por dois corpos a temperaturas diferentes ligados por uma barra. Figuras extraídas da Referência [2].

Imaginemos uma barra metálica de comprimento L e cuja área de seção reta transversal seja A, e as quais sejam mantidas em temperaturas diferentes, como na figura 2.

Nessas condições o calor fluirá do corpo mais quente (Th) para o corpo mais frio (Tc) através da barra. A quantidade de calor (Q) que transpassa a seção reta da barra em um intervalo e tempo (Δ t) é chamada de fluxo de calor.

Representamos a taxa de transferência de calor H por meio da equação abaixo, no SI sua unidade de medida é dada por joule por segundo $(\frac{J}{s})$ ou watt (W):

$$H = \frac{Q}{\Delta t} \qquad . \tag{1}$$

Lei da condução térmica ou lei de Fourier

Consideremos agora o mesmo esquema apresentado anteriormente representado pela figura 2, vimos que o fluxo de calor H depende da área de seção reta transversal A da barra, do comprimento L da mesma, da diferença de temperatura $\Delta T = (Th - Tc)$ e da natureza o material que compõe a barra.

Por meio de um experimento verifica-se que, para um determinado material, a taxa de transferência de calor e tanto maior quanto mais extenso for à área de seção reta transversal da barra (A), quão grande for à diferença de temperatura ΔT e quanto menor o comprimento L da barra.

Deste modo podemos enunciar a lei de Fourier da seguinte maneira:

"Em regime estacionário, a corrente de calor por condução em um material uniforme é diretamente proporcional a A e a ΔT , e inversamente proporcional ao comprimento L"

Essa lei Relaciona o fluxo de calor com as variáveis que o determinam. Essa relação e dada por:

$$H = \frac{Q}{\Delta t} = KA \frac{\Delta T}{L} \qquad . \tag{2}$$

Material	Massa específica ()	Condutividade térmica (W/mK)
Aumínio	2800	204
Cobro	9000	372
Ligas	12250	35
Aço, ferro	7800	52
Zinco	7200	110
Basalto, granito	3000	3.5
Calcário, mármore	2700	2.5
arenito	2060	1.6
Ar	1.2	0.023

Tabela 1: Alguns dos coeficientes de condutibilidade térmica de alguns materiais presentes no nosso dia a dia. Observe que esses valores valem somente no seco. Tabela extraídas da Referência [6].

A constante de proporcionalidade K é conhecida como coeficiente de condutibilidade térmica e define o material por onde o calor flui por condução. Se o material apresentar valor de K elevado, significa que ele é bom condutor de calor, já se o material apresentar valor de K baixo remete que o material e mau condutor de calor ou isolante térmico. Algums de seus valores estao representados na tabela 1.

Bibliografia

- [1] Ramalho. Nicolau. Toledo. Os Fundamentos da Física 2, termologia ótica e ondas.
- [2] Curso de formação de operadores de refinaria física aplicada termometria, calorimetria e transmissão de calor.
- [3] MÁXIMO, Antônio; ALVARENGA, Beatriz. Curso de Física. São Paulo: Scipione, 2006. V1.
- [4] SEARS, ZEMANSKY, Física, Vol 2, 10ª Edição, Pearson, 2003.
- [5] http://educador.brasilescola.uol.com.br/estrategias-ensino/experimento-sobre-correntes-convecção.htm (23/03/2018)
- [6] http://www.protolab.com.br/Tabela-Condutividade-Material-Construcao.htm (23/03/2018)