Colles - Semaine 1

Série 1

Question de cours

Développement limité en 0 à l'ordre 6 de $f(x) = \cos(x)\sin(3x)$.

Exercice 1

Montrer que A(a), B(b) et C(c) sont alignés si et seulement si $a\bar{b} + b\bar{c} + c\bar{a} \in \mathbb{R}$.

Exercice 2

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{u_n + n + 1} \end{cases}$$

- 1. a) Montrer que : $\forall n \in \mathbb{N}, u_n > 0$. En déduire que (u_n) est bien définie.
 - **b)** Montrer que : $\forall n \in \mathbb{N}^*, \ u_n \leqslant \frac{1}{n}$.
 - c) Déterminer la limite de la suite (u_n) .
- 2. a) Déterminer la limite de la suite (nu_n) .
 - b) En déduire un équivalent de u_n .
- 3. 1. Démontrer que $\lim_{n\to+\infty} n^3 \left(u_n \frac{1}{n}\right) = -1$.
 - 2. En déduire que $u_n = \frac{1}{n} \frac{1}{n^3} + \underset{n \to +\infty}{o} \left(\frac{1}{n^3}\right)$.

Série 2

Question de cours

Calculer
$$\int_1^{+\infty} \frac{\ln(x)}{x(1+(\ln(x))^4} dx$$
.

Exercice 1

Pour tous polynômes P et Q de $\mathbb{C}[X]$, on pose $[P,Q] = \bar{P}Q - P\bar{Q}$.

- 1. Discuter le degré de [P,Q] si $\deg(P)=p$ et $\deg(Q)=q$.
- 2. Montrer que pour tous polynômes P, Q et R:

$$[[P,Q],R] + [[Q,R],P] + [[R,P],Q] = 0$$

Exercice 2

On introduit la fonction f définie par : $\forall x \in \mathbb{R}, f(x) = e^x - 2$. On note (u_n) la suite telle que : $\begin{cases} u_0 = -1 \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$

- 1. Montrer que l'équation f(x) = x admet une unique solution strictement négative.
- **2.** Montrer que : $\forall n \in \mathbb{N}, \ \alpha \leqslant u_n \leqslant -1$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_{n+1} \alpha \le \frac{1}{e}(u_n \alpha)$.
- 4. En déduire que

$$\forall n \in \mathbb{N}, \ 0 \leqslant u_n - \alpha \leqslant \left(\frac{1}{e}\right)^n$$

5. Écrire un programme Scilab permettant de déterminer une valeur approchée de α à 10^{-4} près.

Série 3

Question de cours

Déterminer l'expression explicite de la suite définie par $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{4}{5}u_n + 1 \end{cases}$

Exercice 1

Étudier la suite définie par $u_0=2017$ et pour tout $n\geqslant 0$:

$$u_{n+1} = 1805 + \sqrt{u_n}$$

Exercice 2

- 1. Montrer que pour tous a, b de \mathbb{C}^* , on a $\left| \frac{a}{|a|^2} \frac{b}{|b|^2} \right| = \frac{|a-b|}{|a| \cdot |b|}$.
- 2. Montrer que : $\forall (x, y, z) \in \mathbb{C}^3$, $|x| \cdot |y z| \leq |y| \cdot |z x| + |z| \cdot |x y|$.
- 3. Montrer l'inégalité dite de Ptolémée :

$$\forall (x, y, z, w) \in \mathbb{C}^4, |x - y| \cdot |z - w| \le |x - z| \cdot |y - w| + |x - w| \cdot |y - z|$$