WAZLAWICK, Raul Sidnei. Metodologia de Pesquisa para Ciência da Computação. Rio de Janeiro: Elsevier, 2008.

Capítulo I – Introdução

Capítulo 2 – Estilos de Pesquisa Correntes

Capítulo 3 – Preparação de um Trabalho de Pesquisa

- 3.1 Escolhendo o Objetivo de Pesquisa
- 3.2 A Revisão Bibliográfica
- 3.3 O Objetivo
- 3.4 O Método de Pesquisa
- 3.5 Justificativa
- 3.6 Resultados Esperados
- 3.7 Limitações do Trabalho
- 3.8 Discussão

Capítulo 4 – Análise Crítica da Proposta de Monografia

Capítulo 5 – Escrita da Monografia

Capítulo 6 – Escrita de Artigo Científico

Capítulo 7 – Plágio

Capítulo 8 – Níveis de Exigência do Trabalho de Conclusão Referências

Capítulo 1

Introdução

Era uma vez um aluno de mestrado que queria fazer uma monografia.¹ Ele pensou um pouco sobre o assunto, olhou ao redor e resolveu que havia um problema relevante em sua cidade que ele poderia resolver durante seu mestrado.

O problema era o seguinte: havia um rio cortando a cidade ao meio e não havia forma segura de atravessá-lo.

Disposto a resolver o problema, o aluno conseguiu convencer seu orientador de que teriam material para uma monografia, e começou a trabalhar. Primeiramente, estudou tudo o que podia sobre rios. À medida que estudava, foi escrevendo um capítulo de revisão bibliográfica. Escreveu sobre água, citou a criação dos oceanos de acordo com o Gênesis, escreveu sobre a molécula de água e seus componentes, o hidrogênio e o oxigênio, sobre as diferentes maneiras como os rios desembocam no oceano (incluindo um estudo detalhado sobre os mais importantes deltas do mundo e sua história) e finalmente concluiu com um pequeno tratado sobre a maneira como a gravidade atrai as moléculas de água para o centro da terra, produzindo assim a correnteza dos rios.

Usualmente no Brasil diz-se "dissertação" de mestrado e "tese" de doutorado. Em outros países usam-se os termos indistintamente ou até com significados diferentes. Neste livro o trabalho individual para obtenção de um grau, seja graduação, especialização, mestrado ou doutorado, será denominado "monografia", para simplificar o texto.

Encerrada essa parte da pesquisa, o aluno deparou-se com o problema em si, que era a inexistência de um meio para cruzar o rio. Pensando um pouco sobre o assunto, ele se lembrou de um instrumento sobre o qual já tinha ouvido falar e que servia para levar objetos de um ponto A para um ponto B.

Esse instrumento era a catapulta.

Escolhida a ferramenta de trabalho, o aluno passou a planejar os experimentos. Inicialmente transportou 100 indivíduos de um lado ao outro do rio usando a catapulta. Desses indivíduos, 95 não sobreviveram ao experimento. O aluno concluiu que a eficácia do instrumento era, portanto, de apenas 5%, e que haveria grandes possibilidades de melhoria. Portanto, o tema era promissor.

Como segundo experimento, o aluno entregou um paraquedas a cada uma de suas cobaias, e fez o teste com mais 100 indivíduos. Observou então o seguinte: cerca de 20% dos indivíduos se assustavam durante a travessia e abriam o paraquedas antes da hora, caindo dentro do rio e sendo arrastados pela correnteza; cerca de 30% dos indivíduos se assustavam durante a travessia e esqueciam-se de abrir o paraquedas, sofrendo as consequências da queda na outra margem. Habilmente, o aluno concluiu que houve uma melhora no experimento, pois o índice de sucesso passou de 5% para aproximadamente 50%, o que é uma melhora substancial.

Não satisfeito, o aluno resolveu testar outra abordagem para melhorar o sistema. Eliminou o uso do paraquedas, que causava pelo menos 20% de perda sobre o rio, e instalou um colchão de ar na margem oposta. Realizou um novo teste com mais indivíduos e verificou que 95% das vezes os indivíduos sobreviviam à travessia, sendo que apenas 5% dos casos aterrissaram fora do colchão de ar.

Nesse momento, já satisfeito com os resultados, o aluno encerrou os experimentos (até porque estava ficando difícil encontrar voluntários). Como trabalho futuro ele já havia pensado em propor um algoritmo de cálculo da velocidade da catapulta baseado no peso do passageiro e no seu índice de pânico, com vistas a diminuir ainda mais a taxa de erro observada. Ele não ia programar esse algoritmo porque não teria tempo. Então, deixou isso como trabalho futuro para outro fazer. Escreveu, portanto, o capítulo do desenvolvimento e entregou o texto para o orientador, sendo que só faltava escrever as conclusões e o resumo.

O aluno foi reprovado.

Por incrível que pareça, exageros à parte, a história contada corresponde à história de muitas dissertações de mestrado em Ciência da Computação.

Ao longo deste livro se tentará mostrar por que o aluno foi reprovado.

Apesar de seu trabalho ter ares de ciência, ele pecou em vários aspectos no que concerne ao seu comportamento e à metodologia científica. Apenas para citar alguns:

- a) Desde o momento da definição do tema até a conclusão dos experimentos, ele não voltou a entrar em contato com seu orientador, que poderia tê-lo redirecionado.
- b) Não realizou uma revisão bibliográfica adequada, pois estudou muita coisa sobre rios, mas não sobre as formas que já existiam para cruzá-los, como, por exemplo, pontes, barcos, teleféricos etc. Por ter feito uma revisão bibliográfica inadequada, ele concluiu, erroneamente, que era a primeira pessoa no mundo a tentar resolver esse tipo de problema.
- Ele escolheu uma ferramenta a priori e começou a trabalhar com ela sem uma justificativa adequada para ter eliminado outras ferramentas candidatas.
- Seus resultados consistem na comparação do seu trabalho com o seu próprio trabalho, ou seja, não há comparação com trabalhos correlatos de outros autores.
- e) O aluno escolheu como problema-alvo algo que ele observou apenas na sua cidade. Problemas locais nem sempre são problemas para todo mundo. Soluções locais nem sempre podem ser generalizadas.

Este livro tem como objetivo apresentar aos estudantes de Ciência da Computação e áreas correlatas teoria e técnicas para a execução de bons trabalhos científicos, no nível de exigência adequado aos cursos de graduação, especialização, mestrado e doutorado. Casos semelhantes ao citado já aconteceram muitas vezes, mas podem ser evitados com alguma orientação.

A propósito, nenhuma pessoa ou animal foram feridos pelo autor deste livro enquanto ele escrevia a história da catapulta. Pelo menos não que ele tivesse conhecimento, já que a ciência o leva a não crer em verdades absolutas (ele poderia ter pisado em uma formiga sob a mesa sem perceber).

Capítulo 2

Estilos de Pesquisa Correntes em Computação

Com alguma frequência se ouve dizer que a Computação ou Informática é uma área nova no campo das ciências, e que está em franco desenvolvimento. Mas isso não justifica que o método científico específico da área de Computação tenha de ser vago e que tantas monografias sejam escritas sem um embasamento metodológico adequado.

Essa discrepância de estilos de pesquisa e baixa conformação à metodologia científica acontecem não só pelo fato de a área ser nova, mas também pelo fato de que a Computação permeia praticamente todas as atividades humanas, e, portanto, se inter-relaciona com muitas outras disciplinas.

A própria observação do surgimento dos primeiros cursos de Ciência da Computação no Brasil é evidência dessa variedade de abordagens e inter-relacionamentos. Alguns cursos surgiram nas faculdades de Engenharia. Em outras universidades, os cursos de Computação foram oriundos das faculdades de Matemática ou de Física. Em alguns casos ainda, cursos de Computação surgiram a partir de departamentos de processamento de dados cuja finalidade era a prestação de serviços e não o ensino.

A variedade de cursos, e mesmo de denominações, causou grande confusão no cenário nacional até aproximadamente o ano 2000. Até essa data, cursos na área poderiam ser denominados "Bacharelado em Ciência da Computação", "Análise de Sistemas", "Bacharelado em Informática", "Engenharia de Computação", "Engenharia de InforELSEVIER

mática", e assim por diante. Usualmente, não havia nenhum tipo de correspondência entre a denominação do curso e o tipo de formação que era oferecido. Após o ano 2000, os cursos da área foram definidos pela Comissão de Especialistas de Ensino de Computação e Informática, do Ministério da Educação, em apenas quatro denominações:

- Bacharelado em Ciência da Computação.
- Bacharelado em Sistemas de Informação.
- Licenciatura em Informática.
- Engenharia de Computação.

Tal classificação, porém, ainda é imprecisa, sendo que em muitos casos um licenciado em Informática poderá perfeitamente exercer as atribuições de um bacharel em Sistemas de Informação. Por outro lado, um engenheiro de Computação poderá dar aulas de Informática, e assim por diante.

Se as ideias já são difusas na nomenclatura dos cursos, quanto mais na pesquisa realizada pelos profissionais da área.

Este capítulo apresenta uma possível classificação para os tipos de pesquisa realizados em Ciência da Computação e áreas correlatas, considerando o grau de amadurecimento da pesquisa na subárea específica, bem como seu inter-relacionamento com outras ciências. Essa classificação é baseada em uma discussão ocorrida na lista sbc-l@sbc.org.br há cerca de 10 anos.

2.1. Estilo "Apresentação de um Produto"

Dentre as áreas emergentes dentro da Computação, ou seja, aquelas que, mesmo para a Computação, são consideradas muito novas, é aceitável uma pesquisa em que simplesmente se procura apresentar algo novo. Nessas áreas, a pesquisa é eminentemente exploratória, sendo difícil comparar um trabalho com trabalhos anteriores, pois estes podem não existir.

Sendo assim, as pesquisas nessas áreas apresentariam resultados da forma "Fiz algo novo. Eis meu produto". É muito pouco provável que áreas mais maduras reconheçam pesquisas apresentadas assim.

De qualquer maneira, apresentações desse tipo normalmente são ingênuas e devem ser evitadas. Mesmo que se esteja trabalhando em uma área nova do conhecimento, é interessante que a pesquisa demonstre que se está resolvendo um problema relevante. Se o problema é relevante, então provavelmente já se tentou resolvê-lo, e a partir daí, já é possível traçar um comparativo. O aluno da catapulta, mencionada anteriormente, apresentou uma solução para o problema sem ter tomado conhecimento de outras soluções que já existiam, e por isso falhou em sua pesquisa.

Um tipo de artigo que se encaixa muito bem nessa categoria é aquele em que o aluno desenvolve um sistema e escreve um artigo apresentando-o. Não há comparativos, não se apresenta nenhum conhecimento novo, a não ser o sistema em si, e, portanto, esse tipo de artigo tem poucas chances de ser aceito em um veículo de publicação relevante. Muitas vezes, tais artigos são vistos mais como uma propaganda do grupo que desenvolveu o sistema do que como uma contribuição científica. Em outras palavras, artigos do tipo "manual da ferramenta" devem ser evitados.

Esse tipo de publicação poderá ter seu espaço em sessões especiais de apresentação de ferramentas, ou em eventos cujo tema seja a aplicação da informática a alguma outra área, como, por exemplo,

ELSEVIER

a Medicina, a Educação e outras. Mesmo assim, essas áreas têm, cada vez mais, exigido que os artigos apresentados sejam mais do que uma mera descrição de um sistema, que tragam conhecimento novo para a área e, principalmente, comparem o trabalho apresentado com trabalhos anteriores.

O desenvolvimento de um sistema e sua apresentação podem ser considerados um trabalho relevante em cursos de graduação ou especialização, desde que fique evidente que o aluno aplicou técnicas no sistema ou no processo de desenvolvimento do sistema aprendidas durante o curso. Dificilmente esse tipo de trabalho seria aceito no mestrado e doutorado.

2.2. Estilo "Apresentação de algo Diferente"

Um segundo tipo de pesquisa, um pouco mais amadurecido, consiste na apresentação de uma forma diferente de resolver um problema. Esse tipo de pesquisa também é característico de áreas emergentes, e os trabalhos normalmente são apresentados como uma simples comparação entre técnicas, em que não se exige necessariamente rigor científico na apresentação dos resultados. As comparações normalmente são muito mais qualitativas do que quantitativas.

Um exemplo típico desse tipo de pesquisa seria um trabalho em Engenharia de Software no qual se apresenta uma nova técnica para realizar algo, em que se compara essa técnica com outras técnicas existentes (não necessariamente todas e não necessariamente as melhores, muitas vezes por falta de uma métrica para decidir sobre isso), e em que se apresenta um ou dois estudos de caso para reforçar o argumento.

Os resultados de um artigo deste tipo poderão ser aceitos em algum veículo de publicação, desde que os argumentos utilizados pelo autor sejam convincentes.

Um estudo de caso raramente prova alguma coisa, e a possibilidade de generalizar o resultado é responsabilidade do autor do texto, não do leitor. Se o método funcionou no estudo de caso A ou

no estudo de caso B, isso não quer dizer que funcionará sempre. Não há aqui, portanto, prova com rigor científico, mas uma tentativa de convencimento do leitor.

Apesar disso, o estudo de caso pode servir para provar que um método consagrado falha em uma ou outra situação. Esse resultado, sim, poderia ser interessante desde que o motivo da falha fosse claramente identificado e uma solução para o problema fosse proposta e validada.

Esse tipo de pesquisa é típico em áreas novas nas quais não se dispõe de grandes bases de dados para testar teorias empiricamente, ou quando o tempo e os recursos necessários para realizar a pesquisa empiricamente são inviáveis.

Para que esse tipo de pesquisa funcione é necessário que se tenha uma boa hipótese de trabalho, uma boa teoria construída para sustentá-la e uma boa argumentação para fazer com que um eventual leitor se convença da validade da teoria, mesmo sem poder testá-la com métodos estatisticamente aceitos.

Em relação à hipótese, convém mencionar que ela é o coração da monografia. Se a hipótese for mal escolhida, o trabalho pode não alcançar os objetivos. Nesse caso, quem é penalizado? O aluno! Portanto, uma boa hipótese com evidências de efetividade deve ser buscada.

Trabalhos de mestrado e doutorado, em geral, propõem algo: um novo método, uma nova ideia, um novo sistema etc. Porém, "propor" algo é fácil. Difícil é mostrar que a proposta apresenta algum tipo de melhoria em relação a outras propostas semelhantes que existem por aí.

Por exemplo, propor um método de compressão de textos mais eficiente do que os que atualmente estão no mercado é possível e até louvável como objetivo de uma tese. Mas daí o problema é: como criar um método mais eficiente do que os atuais? É necessário ter uma boa hipótese.

Uma hipótese, segundo a Wikipédia (2008), é uma teoria provável, mas ainda não demonstrada, ou uma suposição admissível. ELSEVIER

A hipótese norteia o trabalho de pesquisa justamente porque ainda não se sabe se ela é efetivamente verdadeira. Ela será testada ao longo do trabalho. Caso se confirme, o trabalho terá sido um sucesso. Caso não se confirme, será necessário juntar os cacos e tentar outra linha de pesquisa. Por isso é que é necessário ter uma hipótese bem embasada e justificada. O risco é sempre do aluno.

Uma das formas de aumentar a chance de sucesso desse tipo de trabalho é estruturá-lo na forma de uma tabela comparativa. A ideia é que não se vai criar algo simplesmente diferente daquilo que já existe, mas algo que incorpore várias características importantes em um mesmo artefato. Idealmente o trabalho começa com uma boa pesquisa bibliográfica para se descobrir quais são as formas correntes usuais para se resolver o problema em questão. Em seguida, analisam-se diferentes propriedades de cada uma das abordagens, construindo uma tabela como a da Figura 2.1.

	Característica 1	Caractoriotics o	Característica 3	
Artefato 1	X	ouracteristica 2	Característica 3	Característica 4
Artefato 2	X	X		
Artefato 3				X
and the second second	Exemplo de tabal	X	X	X

Figura 2.1: Exemplo de tabela comparativa de artefatos e características.

Uma vez identificados os artefatos usados para resolver o problema em questão e as principais características desses artefatos, pode-se proceder à criação ou definição de um novo artefato que abranja todas as características, conforme a Figura 2.2.

	Característica 1	Característico 2	0	
Artefato 1	Característica 1 X	v v	Característica 3	Característica 4
Artefato 2	X			
Artefato 3		V		X
Novo	26	X	X	X
Artefato	Х	X	x	
	Proposta de um n		X	X

Figura 2.2: Proposta de um novo artefato que tenha todas as características dos

Esse novo artefato será diferente dos demais, pois seu conjunto de características não é possuído por nenhum dos outros artefatos isoladamente. O novo artefato será útil na medida em que as características forem efetivamente relevantes. E a tabela comparativa será uma boa ferramenta para a pesquisa, caso as características possam ser efetiva e independentemente verificadas.

2.3. Estilo "Apresentação de algo Presumivelmente Melhor"

Áreas um pouco mais amadurecidas do que as anteriores exigem que qualquer nova abordagem apresentada seja comparada quantitativamente com outras da literatura. Na falta de bancos dados (benchmark) internacionalmente aceitos ou acessíveis, o próprio autor do artigo acaba criando e realizando os testes que demonstram que a sua abordagem é melhor do que outras.

Um problema com esse tipo de pesquisa é que o autor terá de testar a sua abordagem e também as outras, que constam da literatura, resultando em excesso de trabalho, além de, possivelmente, introduzir o risco de erro, visto que não há garantias de que as abordagens apresentadas na literatura estejam testadas nas melhores condições pelo autor do trabalho. Sendo assim, tais comparações muitas vezes são temerárias. Para que uma pesquisa desse tipo seja bem aceita, é necessário que o autor deixe bem claro a forma como aplicou cada uma das técnicas e que isolou todos os fatores que poderiam possivelmente afetar os resultados.

De qualquer maneira, uma abordagem para um determinado problema que se revela melhor do que outras abordagens requer alguns cuidados. Em primeiro lugar, o pesquisador deve se certificar de que está comparando a nova abordagem com alguma outra que seja do estado da arte. Em computação, muitas vezes é inadmissível apresentar um método e compará-lo com outro de uma referência bibliográfica de 15 anos atrás. Mesmo que o novo método seja melhor que o antigo, o artigo terá pouca credibilidade, a não ser que o autor deixe bem claro que nos últimos 15 anos não houve nenhum

avanço nessa área. Um artigo, porém, que apresente melhorias em relação a um processo publicado recentemente, digamos, no máximo um ou dois anos, terá mais credibilidade.

Não é necessário, porém, que o autor de algum método novo demonstre que o seu método é melhor que outro método do estado da arte para toda e qualquer situação. É possível, muitas vezes, apresentar métodos ou abordagens que funcionam melhor em determinadas situações. Nesse caso, o artigo deve deixar bem claro quais são as situações nas quais a nova abordagem funciona melhor e o porquê disso. Experimentos deverão ser feitos para demonstrar tal melhoria.

Aqui entra em foco um aspecto muito importante na pesquisa que leva em consideração o uso de dados comparativos: a métrica. Afirmações do tipo "O sistema x é mais fácil de usar" não terão fundamento a não ser que se defina claramente o que significa "ser fácil de usar". Um exemplo de definição nesse caso poderia ser a quantidade de cliques de mouse que o usuário tem de usar para executar uma tarefa dada em um ou outro sistema. Poderia ser questionado se a métrica é boa e eficiente, mas dentro da definição dada é possível confirmar qual sistema é mais fácil de usar.

2.4. Estilo "Apresentação de algo Reconhecidamente Melhor"

O nível mais maduro da pesquisa desta linha, em que a apresentação de dados empíricos é relevante para a aceitação dos resultados, é aquele no qual um trabalho é desenvolvido e seus resultados
são apresentados em função de testes padronizados e internacionalmente aceitos. Nesse caso, o autor do trabalho não precisa testar
outras abordagens, pois seus resultados já estão publicados. O autor
deverá buscar os dados de entrada para testar a sua abordagem em
um banco de dados conhecido e apresentar os resultados usando
uma métrica aceita pela comunidade. Dessa forma, os experimentos poderão ser reproduzidos por equipes independentes. Se for demonstrado que a nova abordagem é superior às abordagens anteriores, esta passará a ser considerada como estado da arte.

Pesquisas que apresentam resultados desse tipo são típicas de boas teses de doutorado. Supõe-se que após a publicação dos resultados ninguém mais possa ignorar essa nova abordagem em função das vantagens que ela oferece em relação às anteriores. Isso é o que se entende por "avançar o estado da arte".

Por incrível que pareça, essa é a pesquisa mais fácil de executar, desde que o autor tenha uma boa hipótese de trabalho. Por que isso? Porque os testes-padrão já estão definidos e os dados já estão disponíveis. Basta implementar a abordagem e realizar os testes. O grande problema e dificuldade inerente, então, consistem em encontrar uma boa hipótese de trabalho, que faça sentido e que seja promissora (isso, infelizmente, em geral não é trivial).

Portanto, esse tipo de pesquisa exigirá, por parte do autor, amplo estudo sobre o estado da arte em uma determinada área, e muita reflexão sobre a forma como as técnicas são desenvolvidas para resolver os problemas dessa área. Problemas em aberto serão excelentes focos de atenção para pesquisa.

Além disso, poderá ser de muita valia se o autor possuir conhecimentos em outras áreas, que muitas vezes nem estejam relacionadas ao problema em questão. Algumas vezes técnicas de áreas distintas aplicadas a um problema produzem resultados muito interessantes. Porém, deve-se lembrar que apenas aplicar uma técnica diferente para um problema remete o trabalho para "apresentar algo diferente". Quando se opta por utilizar uma técnica alienígena em um problema conhecido, é necessário que se tenha bons motivos para acreditar que a técnica possa produzir resultados melhores do que as técnicas correntes.

2.5. Estilo: "Apresentação de uma Prova"

Os diferentes tipos de pesquisa apresentados anteriormente se enquadram nas subáreas da computação em que normalmente os resultados são apresentados a partir de evidências empíricas ou pelo menos de argumentações ou estudos de caso que sugerem provas. Outro tipo de pesquisa exige provas matemáticas, de acordo com as regras da lógica. A área de métodos formais ou compiladores, por exemplo, dificilmente aceitará trabalhos que não apresentem demonstrações claras de correção ou eficiência.

Deve ser construída uma teoria, afirmando claramente quais são os conceitos utilizados e mostrando que a aplicação desses conceitos leva, logicamente, a determinados resultados. Esses resultados podem ser a demonstração de que um determinado algoritmo é o melhor algoritmo possível para resolver um determinado tipo de problema, ou que um algoritmo para resolver um determinado tipo de problema não existe, ou ainda que a complexidade de qualquer algoritmo que resolve um determinado tipo de problema não pode ser menor do que um determinado polinômio.

2.6. Discussão

A partir das observações feitas, pode-se verificar que diferentes subáreas da Computação podem ser caracterizadas por diversos estilos de pesquisa. É possível classificar esses estilos, então, em três tipos básicos:

- a) Pesquisas formais, em que é exigida a elaboração de uma teoria e uma prova formal de que essa teoria é correta. A lógica formal será a grande ferramenta de trabalho do pesquisador que optar por essa linha.
- b) Pesquisas empíricas, em que uma nova abordagem apresentada é comparada com outras através de testes aceitos pela comunidade. Os métodos estatísticos serão a grande ferramenta de trabalho do pesquisador que optar por essa linha.
- c) Pesquisas exploratórias, em que não se consegue provar uma teoria nem apresentar resultados estatisticamente aceitos. Mas entram aqui os estudos de caso, as análises qualitativas e as pesquisas exploratórias em áreas emergentes. A argumentação e o convencimento são as principais ferramentas do pesquisador.

Embora a pesquisa formal aparentemente seja mais difícil de realizar, seus resultados, quando obtidos, são mais difíceis de refutar.

ELSEVIER

A pesquisa empírica, mesmo baseada em métodos estatísticos, poderá ser refutável se não estiver também embasada em uma boa teoria, isso porque a estatística não explica causas. É bem conhecida a anedota do pesquisador que mandava uma aranha pular e em seguida lhe arrancava uma das pernas. Após arrancar sete pernas, a aranha ainda pulava com a perna que restava. Após arrancar a última perna, o cientista percebeu que a aranha não atendia mais à ordem de pular. A conclusão do pesquisador foi de que a aranha sem pernas fica surda, pois não escutava mais a ordem para pular.

Em último lugar, a pesquisa exploratória parece ser mais fácil de realizar, porque não é necessário utilizar os métodos da lógica formal e nem realizar experimentos exaustivos. Porém, em termos de pesquisa, é a abordagem mais arriscada, pois a aceitação dos argumentos não é universal, e artigos que não se fundamentam em uma boa teoria e/ou em um bom conjunto de testes têm menor chance de serem publicados em bons veículos do que os demais tipos. A apresentação de estudos de caso e exemplos, no caso de pesquisas exploratórias, poderá ajudar o pesquisador a convencer o leitor do seu ponto de vista, mas não constituem provas.