23. Minimal- und Maximallösung

Stets in diesem Paragraphen: $\emptyset \neq D \subseteq \mathbb{R}^2, f: D \to \mathbb{R}$ eine Funktion, $(x_0, y_0) \in D$. Wieder betrachten wir das AWP

$$(A) \begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

 $L_{(A)}$ und I_y für $y \in L_{(A)}$ seien wie in Paragraph 22 definiert.

Definition

 $y^* \in L_{(A)}$ heißt eine **Maximallösung** von (A) : $\iff y \leq y^*$ auf $I_y \cap I_{y^*} \forall y \in L_{(A)}$. $y_* \in L_{(A)}$ heißt eine **Minimallösung** von (A) : $\iff y \geq y_*$ auf $I_y \cap I_{y_*} \forall y \in L_{(A)}$

Beispiel

$$D = \mathbb{R}^2, f(x, y) = \sqrt{|y|}, \text{AWP}$$

$$(A) \begin{cases} y' = \sqrt{|y|} \\ y(0) = 0 \end{cases}$$

Für
$$\alpha \ge 0 : y_{\alpha}(x) := \begin{cases} 0 & , x \le \alpha \\ \frac{(x-\alpha)^2}{4} & , x \ge \alpha \end{cases}$$

Es gilt weiterhin $\tilde{y}_{\alpha}(x) := -y_{\alpha}(-x)$.

Nachrechnen: $y_{\alpha}(x), \tilde{y}_{\alpha}(x)$ lösen das AWP auf \mathbb{R} .

Für
$$\alpha, \beta \ge 0 : y_{\alpha,\beta} := \begin{cases} y_{\alpha}(x) &, x \ge \alpha \\ 0 &, -\beta \le x \le \alpha \\ \tilde{y}_{\beta}(x) &, x \le -\beta \end{cases}$$

Übung: Sei $y:I\to\mathbb{R}$ eine Funktion, $I\subseteq\mathbb{R}$ ein Intervall und $0\in I$. y löst das AWP auf I $\iff y=0$ auf I oder $\exists \alpha\geq 0: y=(y_{\alpha})_{|I}$ oder $\exists \alpha\geq 0: y=(\tilde{y}_{\alpha})_{|I}$ oder $\exists \alpha,\beta\geq 0: y=(\tilde{y}_{\alpha,\beta})_{|I}$.

Damit ist y_0 eine Maximallösung und $\tilde{y_0}$ eine Minimallösung. Ab jetzt sei $I = [a, b] \subseteq \mathbb{R}, D := I \times \mathbb{R}, f \in C(D, \mathbb{R})$ sei beschränkt, $x_0 \in I, y_0 \in \mathbb{R}, M := \sup\{|f(x, y)| : (x, y) \in D\}.$

Vorbemerkungen:

- (1) Das AWP (A) hat Lösungen auf I (12.4, Peano)
- (2) $\mathcal{X} := C(I, \mathbb{R}) \text{ mit } ||.||_{\infty} \text{ ist ein BR.}$
- (3) $T: \mathcal{X} \to \mathcal{X}$ sei definiert durch $(Ty)(x) := y_0 + \int_{x_0}^x f(t, y(t)) dt \ (y \in \mathcal{X}, x \in I)$, T ist stetig; Für $y \in \mathcal{X}$ gilt: y löst das AWP auf $I \iff Ty = y$.
- (4) Sei $y \in \mathcal{X}$ eine Lösung von (A) auf I: für $x, \tilde{x} \in I$: $|y(x) y(\tilde{x})| = |y'(\xi)||x \tilde{x}| = |f(\xi, y(\xi))||x \tilde{x}| \le M|x \tilde{x}|$

Satz 23.1

Das AWP (A) hat eine Maximallösung $y^*: I \to \mathbb{R}$ und eine Minimallösung $y_*: I \to \mathbb{R}$.

Beweis

Wir zeigen nur die Existenz von $y^*: I \to \mathbb{R}$. $\mathcal{L} := \{y \in \mathcal{L}_{(A)}: I_y = I\}$. 12.4 $\Longrightarrow \mathcal{L} \neq \emptyset$. Sei $y \in \mathcal{L}, x \in I: |y(x)| = |y_0| + \int_{x_0}^x f(t,y(t))dt| \le |y_0| + |\int_{x_0}^x f(t,y(t))dt| \le |y_0| + M|x - x_0| \le |y_0| + M|b - a|$.

Also: $y(x) \leq c \ \forall y \in \mathcal{L} \ \forall x \in I$. Es existiert also $y^*(x) := \sup\{y(x) : y \in \mathcal{L}\}(x \in I)$. Sei $y \in \mathcal{L}$ (also $I_y = I$). Dann $y \leq y^*$ auf I. Sei $y \in \mathcal{L}_{(A)}$ (also $I_y \subseteq I$).

$$22.3 \implies \exists \hat{y} \in \mathcal{L} : y = \hat{y}_{|I_y} \implies y \leq \hat{y} \leq y^* \text{ auf } I_y.$$

Noch zu zeigen: $y^* \in \mathcal{L}$.

Sei
$$I \cap \mathbb{Q} = \{x_1, x_2, x_3, \dots \}$$

Seien $j, k \in \mathbb{N}$. Dann ex. ein $y_{jk} \in \mathcal{L} : y_{jk}(x_j) \ge y^*(x_j) - \frac{1}{k}$.

Für $k \in \mathbb{N}$ und $x \in I : y_k(x) := max\{y_{1k}(x), y_{2k}(x), \dots, y_{kk}(x)\}.$ Übung: $y_k \in \mathcal{L} \ \forall k \in \mathbb{N}$. Für $k, j \in \mathbb{N}, j \leq k : y_k(x_j) \geq y_{jk}(x_j) > y^*(x_j) - \frac{1}{k}$.

Vorbemerkung (4) und 11.4 \Longrightarrow (y_k) enthält eine auf I gleichmäßig konvergente Teilfolge. o.B.d.A (y_k) konvergiert gleichmäßig auf I. $\hat{y}(x) := \lim_{k \to \infty} y_k(x)(x \in I)$. $Ty_k = y_k \ \forall k \in \mathbb{N}, T$ stetig $\Longrightarrow T\hat{y} = \hat{y} \Longrightarrow \hat{y} \in \mathcal{L}$.

Es ist $\hat{y} \leq y^*$ auf I. Sei $x_j \in I \cap \mathbb{Q}$. $\hat{y}(x_j) = \lim_{k \to \infty} y_k(x_j) \geq \lim_{k \to \infty} (y^*(x_j) - \frac{1}{k}) = y^*(x_j) \implies \hat{y} = y^*$ auf $I \cap \mathbb{Q}$.

Annahme: $\exists \xi \in I : \hat{y}(\xi) < y^*(\xi) \implies \exists u \in \mathcal{L} : \hat{y}(\xi) < u(\xi)$. Für $x_{\mu} \in I \cap \mathbb{Q}$ hinreichend nahe bei $\xi : \hat{y}(x_{\mu}) < u(x_{\mu}) \leq y^*(x_{\mu})$, Widerspruch.

D.h. $\hat{y} \geq y^*$ auf I. Also $y^* = \hat{y}$ auf I, somit gilt $y^* \in \mathcal{L}$.

Definition

 $T := \{(x,y) \in \mathbb{R}^2 : x \in I, y_*(x) \le y \le y^*(x)\}$ heißt **Lösungstrichter** von (A).

Satz 23.2

Sei $(\sigma, \tau) \in T$. Dann existiert eine Lösung $v: I \to \mathbb{R}$ von (A) auf I mit $v(\sigma) = \tau$.

Reweis

Betweis
Betrachte das AWP (B) $\begin{cases} y' = f(x,y) \\ y(\sigma) = \tau \end{cases}$ 12.4 (Peano) \Longrightarrow (B) hat eine Lösung $w: I \to \mathbb{R}$

auf I. Ist $\sigma = x_0 \implies \tau = y_0 \implies v := w$ leistet das Verlangte. Sei also $\sigma \neq x_0$, etwa $x_0 < \sigma$. Ist $w(x_0) = y_0 \implies v := w$ leistet das Verlangte. Sei also $w(x_0) \neq y_0$. Es ist $y_*(\sigma) \leq \tau = w(\sigma) \leq y^*(\sigma)$.

Fall 1: $w(x_0) > y_0 = y^*(x_0) \implies w(x_0) - y^*(x_0) > 0$ und $w(\sigma) - y^*(\sigma) \le 0$. Zwischenwertsatz $\implies \exists \xi \in [x_0, \sigma] : w(\xi) = y^*(\xi)$

Definiere: $v: I \to \mathbb{R}$ durch $v(x) := \begin{cases} y^*(x), & x \in [a, \xi] \\ w(x), & x \in [\xi, b] \end{cases}$ $v(x_0) = y^*(x_0) = y_0, \ v(\sigma) = w(\sigma) = \tau.$ 12.3 $\implies v$ löst das AWP (A) auf I.

Fall 2: $w(x_0) < y_0 = y_*(x_0) \implies w(x_0) - y_*(x_0) < 0$ und $w(\sigma) - y_*(\sigma) \ge 0$. Zwischenwertsatz $\implies \exists \xi \in [x_0, \sigma] : w(\xi) = y_*(\xi)$

Definiere:
$$v: I \in \mathbb{R}$$
 durch $v(x) := \begin{cases} y_*(x), & x \in [a, \xi] \\ w(x), & x \in [\xi, b] \end{cases}$ $v(x_0) = y_*(x_0) = y_0, \ v(\sigma) = w(\sigma) = \tau.$
12.3 $\implies v$ löst das AWP (A) auf I