System	Differentialgleichung $x_a = x_a(t), x_e = x_e(t)$	Übertragungsfunktion $F(s)$	Übergangs Funktion (Sprungantwort)	Ortskurve $F(j\omega)$	Bode- Diagramm	x: Pole o: Nullstellen
P	$x_a = K x_e$	K	ха К	lm h	K	j ω s-Ebene keine Pole keine Nullistellen
	konstant			K Re	+90° — — — — — — — — — — — — — — — — — — —	Keine Nullstellen
PT_1	$T\dot{x}_a + x_a = K x_e$	$\frac{K}{1+Ts}$	K.	$\lim_{\omega \to \infty} \frac{\mathbf{A}}{\omega} = 0$ $\lim_{\omega \to \infty} \frac{\mathbf{A}}{\mathbf{R}} = 0$ $\lim_{\omega \to \infty} \frac{\mathbf{A}}{\mathbf{R}} = 0$	1:1 1 0 0 E	j ω ♠ s-Ebene
PT_2	-20db/Dek.	7		lm Å	-90° -180°	j ω ∯ s-Ebene
$(D \ge 1)$	$\ddot{x}_a + 2D\omega_0 \dot{x}_a + \omega_0^2 x_a = $ $= K\omega_0^2 x_e$	$ \frac{K\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2} $	K	Re Re	K 1	-1/1 ₂ -1/1 ₁ σ
PT_2	-40db/Dek.	$(K_1K_2 \to K; \frac{1}{\sqrt{r_1r_2}} \to \omega_0^2; \frac{r_1+r_2}{2\sqrt{r_1r_2}} \to D)$	x _a	Im 4	(0<0.7)	j ω ∳ × ω _e − s-Ebene
$(0 \le D < 1)$	$\ddot{x}_a + 2D\omega_0\dot{x}_a + \omega_0^2x_a = $ $= K\omega_0^2x_e$	$\frac{K\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2}$	K	Re (0-0.7)	2:1 0 0 -90 -180	α ₀ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
I	$x_a = K_I \int x_e dt$	$\frac{K_I}{s} = K \cdot \frac{1}{T_N \cdot s} \left(K_I = \frac{K}{T_N} \right)$	x _a K ₁	im Re φ = -90°	1 K 1:1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	j ∞ Ås-Ebene σ
Systemtechnik IT ₁	$T\ddot{x}_a + x_a = K_I \int x_e dt$	$\frac{K_I}{s(1+Ts)}$	agungsglieder	-т К _т lm	1:1	j ω s-Ebene
		s(1+Ts)		Re	K ₁ 2:1 1 1 0 1 1 1 0 -90° 0 -180° 0	1 o
D	$x_a = K_D \dot{x}_e$ +20db/Dek.	$K_D s = K \cdot T_V \cdot s \qquad (K_D = K \cdot T_V)$	Ka Fläche: K D	lm φ = +90°	1:1 1 1 +180 +90°	j ω ♣ s-Ebene
DT_I	$T\dot{x}_a + x_a = K_D\dot{x}_e$	$\frac{K_D S}{1 + TS}$	X ₀ K ₀ T	$lm \qquad \omega_{\rm E} = \frac{1}{T}$ $\frac{K_{\rm D}}{T} \ {\rm Re}$	Δ _D 1:11 ω ω +180 +90 +90 +90 +90 +90 +90 +90 +90 +90 +9	j ∞ å s-Ebene
PI	$x_a = K \left(x_e + \frac{1}{T_N} \int x_e dt \right) K_I = \frac{K}{T_N}$	$K\left(1+\frac{1}{T_Ns}\right)$	Xa K	Im K K Re	K 1:1 w	J ∞ s-Ebene
PIT_{I}	$T\ddot{x}_a + x_a = K\left(x_e + \frac{1}{T_N} \int x_e dt\right)$	$K\frac{1+\frac{1}{T_{N}s}}{1+Ts}$	X ₀ K T t	$\lim_{M} \frac{K\left(1-\frac{T}{T_N}\right)}{Re}$	1:1 1:1 1:1 1:1 1:1 0:1 1:1 1:1	j ω s-Ebene 1 1 1 σ 1 TN T < TN
PD	$x_a = K(x_e + T_V \dot{x}_e)$ $K_D = K T_V$	$K(1+T_{V}s)$	Xa Fläche: K T _V	m K Re	1 1:1 00 1:10 1:10 1:10 1:10 1:10 1:10	j ω s-Ebene
Systemtechnik PDT _I	$T\ddot{x}_a + x_a = K\left(x_e + T_V \dot{x}_e\right)$	$K \frac{1 + T_{\nu} s}{1 + T s}$	agungsglieder x _a	Im $\Phi_{\rm E} = \frac{1}{T}$	1 111	j ω s-Ebene
Lead-Glied $(T < T_V)$	a a (e re)	$\frac{1}{1+Ts}$	$K = \frac{T_V}{T}$	K Tv Re	1 K 0 0 1/T _V 1/T +180 0 0 0 0 0 0 0 0 0 0	* •
PDT_I Lag-Glied $(T > T_V)$	$T\ddot{x}_a + x_a = K\left(x_e + T_V \dot{x}_e\right)$	$K \frac{1 + T_{l'}s}{1 + Ts}$	Xa N T>TV	$\frac{\operatorname{lm} \bigwedge_{K} \prod_{T} \prod_{V} T > T_{V}}{\bigcap_{\mathcal{O}_{E}} = \frac{1}{T}}$	1/T 1/T _V	j ∞ \$ s-Ebene
PID	$x_a = K \left(x_e + \frac{1}{T_N} \int x_e dt + T_V \dot{x}_e \right)$	$K\left(1 + \frac{1}{T_N s} + T_V s\right) \text{ bzw.}$ $K_P + K_I \frac{1}{s} + K_D s$	X _a Fläche: K T _V	lm K Re	17N 17TV	$j \otimes A$ s-Ebene $ \sigma $ $ dT_V < T_N $ $ dT_T > T_N \Rightarrow \text{kompl. Nst.} $
$PIDT_{I}$	$T\ddot{x}_a + x_a = K \left(x_e + \frac{1}{T_N} \int x_e dt + T_V \dot{x}_e \right)$	$K \frac{1 + \frac{1}{T_N s} + T_{\nu} s}{1 + T s}$	KTU T	$\begin{array}{c c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline \\ \hline$	1.11 1:11 00 11/N 1/TV 1/T +900 00 1900 00 00 00 00 00 00 00 00 00 00 00 00	J ∞ A s-Ebene T < T _V 4T _V < T _N
T_t	$x_a = K \cdot x_e(t - T_t)$	$K \cdot e^{-T_i s}$	Xa K	$\begin{array}{c} \text{Im} \\ \text{K} \\ \text{co} = \frac{2k\pi}{T_1} \\ \text{Re} \\ \text{k} = 0,1,2, \end{array}$	K 60 00 00 00 00 00 00 00 00 00 00 00 00	j co s-Ebene keine Pole keine Nullstellen
Anm.: Strecke	en "ohne Ausgleich" besitzen integrier	endes Verhalten. Strecken "mit Ausgleic	h" streben bei konstantem Eir	gangssignal einem	konstanten Ausga	ngswert zu.