p.88: 2, 8, 9, 10, 11, 14

2. Prove that the vector space $\ell^2(\mathbb{Z})$ over \mathbb{C} is complete.

Proof. Suppose $A_k = \{a_{k,n}\}_{n \in \mathbb{Z}}$ with $k = 1, 2, \ldots$ is a Cauchy sequence.

For each $n \in \mathbb{Z}$, observe that the collection of n-th terms in each of the sequences A_k for k = 1, 2, ... form a Cauchy sequence $\{a_{k,n}\}_{k=1}^{\infty}$. This is because for each $n \in \mathbb{Z}$ and $\varepsilon > 0$, there exists $K \in \mathbb{Z}^+$ such that for k, k' > K,

$$|a_{k,n} - a_{k',n}|^2 \le ||A_k - A_{k'}||^2 = \sum_{n \in \mathbb{Z}} |a_{k,n} - a_{k',n}|^2 < \varepsilon^2,$$

implying that $|a_{k,n} - a_{k',n}| < \varepsilon$. Then because $\{a_{k,n}\}_{k=1}^{\infty}$ is Cauchy, it converges to some $b_n \in \mathbb{C}$. In particular, this means that the sequence A_k converges to some sequence $B = \{b_n\}_{n \in \mathbb{Z}}$. To see this, observe that for any given $\varepsilon > 0$, we may choose a positive integer K large enough so that for all k, k' > K, the partial sums $\sum_{n=-N}^{N} |a_{k,n} - a_{k',n}|^2$ of $||A_k - A_{k'}||^2$ satisfy

$$\sum_{n=-N}^{N} |a_{k,n} - a_{k',n}|^2 \le ||A_k - A_{k'}||^2 < \varepsilon^2,$$

for any positive integer N. Then let k' tend to positive infinity, so that

$$\sum_{n=-N}^{N} |a_{k,n} - b_n|^2 < \varepsilon^2.$$

Because N was arbitrary, it follows that $||A_k - B|| < \varepsilon$ for k > K, so A_k does converge to B.

The vector space $\ell^2(\mathbb{Z})$ is complete if we show that $B \in \ell^2(\mathbb{Z})$; that is, $||B||^2$ is finite. By the triangle inequality, $||B|| = ||B - A_k + A_k|| \le ||B - A_k|| + ||A_k||$. But $||A_k||$ and $||B - A_k||$ are finite, so $B \in \ell^2(\mathbb{Z})$.

Hence $\ell^2(\mathbb{Z})$ over \mathbb{C} is complete.

8.

(a) The Fourier coefficients of $f(\theta) = |\theta|$ are $a_0 = \pi/2$ and $a_n = ((-1)^n + 1)/(\pi n^2)$ for $n \neq 0$. Then because a_n vanishes for nonzero even n, we have by Parseval's identity that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |\theta|^2 d\theta = \frac{\pi^2}{3} = \left(\frac{\pi}{2}\right)^2 + \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \left(\frac{(-1)^n - 1}{\pi n^2}\right)^2$$
$$= \frac{\pi^2}{4} + \frac{8}{\pi^2} \sum_{\substack{n \text{ odd } > 1}} \frac{1}{n^4},$$

so that

$$\sum_{n \text{ odd } > 1} \frac{1}{n^4} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^4} = \frac{\pi^4}{96}.$$

Then observe that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \sum_{n \text{ even } \ge 2} \frac{1}{n^4} + \sum_{n \text{ odd } \ge 1} \frac{1}{n^4}$$
$$= \frac{1}{16} \sum_{n=1}^{\infty} \frac{1}{n^4} + \frac{\pi^4}{96},$$

which implies that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

(b) The Fourier coefficients of the odd function defined on $[0, \pi]$ by $f(\theta) = \theta(\pi - \theta)$ are given by $-4i/(\pi n^3)$ for odd $n \in \mathbb{Z}$. Then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta = \frac{1}{2\pi} \int_{-\pi}^{0} \theta^2 (\pi + \theta)^2 d\theta + \frac{1}{2\pi} \int_{0}^{\pi} \theta^2 (\pi - \theta)^2 d\theta$$
$$= \frac{1}{\pi} \int_{0}^{\pi} \theta^2 (\pi - \theta)^2 d\theta$$
$$= \frac{\pi^4}{30},$$

so that

$$\frac{\pi^4}{30} = \sum_{n \text{ odd } \ge 1} \left| \frac{-4i}{\pi n^3} \right|^2 = 2 \sum_{n \text{ odd } \ge 1} \left(\frac{4}{\pi n^3} \right)^2$$
$$= \frac{32}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^6}.$$

Hence

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^6} = \frac{\pi^6}{960}.$$

Then observe

$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \sum_{n \text{ even } \ge 2} \frac{1}{n^6} + \sum_{n \text{ odd } \ge 1} \frac{1}{n^6}$$
$$= \frac{1}{64} \sum_{n=1}^{\infty} \frac{1}{n^6} + \frac{\pi^6}{960},$$

which implies that

$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

9. The Fourier coefficients of $\frac{\pi}{\sin(\pi\alpha)}e^{i(\pi-x)\alpha}$ are

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{\pi}{\sin(\pi\alpha)} e^{i(\pi-x)\alpha} \right) e^{-inx} dx = \frac{e^{i\pi\alpha}}{2\sin(\pi\alpha)} \int_0^{2\pi} e^{-i(n+\alpha)x} dx$$
$$= \frac{e^{i\pi\alpha}}{2\sin(\pi\alpha)} \left(\frac{e^{-i\alpha x}}{-i(n+\alpha)} \Big|_0^{2\pi} \right)$$
$$= \frac{e^{-i\pi\alpha} - e^{i\pi\alpha}}{-2i\sin(\pi\alpha)(n+\alpha)}$$
$$= \frac{1}{n+\alpha}.$$

Hence the Fourier series of $\frac{\pi}{\sin(\pi\alpha)}e^{i(\pi-x)\alpha}$ is given by

$$\frac{\pi}{\sin(\pi\alpha)}e^{i(\pi-x)\alpha} \sim \sum_{n=-\infty}^{\infty} \frac{e^{inx}}{n+\alpha}.$$

Hence by applying Parseval's formula we have

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\pi e^{i(\pi - x)\alpha}}{\sin(\pi \alpha)} \right|^2 dx = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{\pi}{\sin(\pi \alpha)} \right)^2 dx = \frac{\pi^2}{\sin^2(\pi \alpha)} = \sum_{n = -\infty}^{\infty} \left| \frac{e^{inx}}{n + \alpha} \right|^2$$
$$= \sum_{n = -\infty}^{\infty} \frac{1}{(n + \alpha)^2}.$$

10. Show that the total energy $E(t) = \frac{1}{2}\rho \int_0^L \left(\frac{\partial u}{\partial t}\right)^2 dx + \frac{1}{2}\tau \int_0^L \left(\frac{\partial u}{\partial x}\right)^2 dx$ of a vibrating string whose displacement u(x,t) satisfies the wave equation $\rho u_{tt}'' = \tau u_{xx}''$ with initial conditions u(x,0) = f(x) and $u_t'(x,0) = g(x)$ is constant.

Proof. The total energy is constant if E'(t) vanishes. With u(x,t) smooth enough and satisfying the wave equation, we have

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}E(t) &= \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}\rho \int_{0}^{L} \left(\frac{\partial u}{\partial t}\right)^{2} \mathrm{d}x + \frac{1}{2}\tau \int_{0}^{L} \left(\frac{\partial u}{\partial x}\right)^{2} \mathrm{d}x \right) \\ &= \frac{1}{2}\rho \int_{0}^{L} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial u}{\partial t}\right)^{2} \mathrm{d}x + \frac{1}{2}\tau \int_{0}^{L} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial u}{\partial x}\right)^{2} \mathrm{d}x \\ &= \rho \int_{0}^{L} \frac{\partial^{2}u}{\partial t^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x + \tau \int_{0}^{L} \frac{\partial^{2}u}{\partial x \partial t} \frac{\partial u}{\partial x} \, \mathrm{d}x \\ &= \rho \int_{0}^{L} \frac{\partial^{2}u}{\partial t^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x + \tau \int_{0}^{L} \frac{\partial^{2}u}{\partial t \partial x} \frac{\partial u}{\partial x} \, \mathrm{d}x \\ &= \rho \int_{0}^{L} \frac{\partial^{2}u}{\partial t^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x + \tau \left(\frac{\partial u}{\partial x} \frac{\partial u}{\partial t}\Big|_{0}^{L}\right) - \tau \int_{0}^{L} \frac{\partial^{2}u}{\partial x^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x \\ &= \rho \int_{0}^{L} \frac{\partial^{2}u}{\partial t^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x + \tau \left(\frac{\partial u}{\partial x} \left(L,t\right) \frac{\partial u}{\partial t} \left(L,t\right) - \frac{\partial u}{\partial x} \left(0,t\right) \frac{\partial u}{\partial t} \left(0,t\right)\right) - \tau \int_{0}^{L} \frac{\partial^{2}u}{\partial x^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x \\ &= \rho \int_{0}^{L} \frac{\partial^{2}u}{\partial t^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x + \tau \left(\frac{\partial u}{\partial x} \left(L,t\right) \frac{\partial u}{\partial t} \left(L,t\right) - \frac{\partial u}{\partial x} \left(0,t\right) \frac{\partial u}{\partial t} \left(0,t\right)\right) - \tau \int_{0}^{L} \frac{\partial^{2}u}{\partial x^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x \\ &= \rho \int_{0}^{L} \frac{\partial^{2}u}{\partial t^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x - \tau \int_{0}^{L} \frac{\partial^{2}u}{\partial x^{2}} \frac{\partial u}{\partial t} \, \mathrm{d}x = \int_{0}^{L} \frac{\partial u}{\partial t} \left(\rho \frac{\partial^{2}u}{\partial t^{2}} - \tau \frac{\partial^{2}u}{\partial x^{2}}\right) \mathrm{d}x = \int_{0}^{L} 0 \, \mathrm{d}x = 0, \end{split}$$

where we used integration by parts and the periodicity of u'(x,t) in x to arrive at E'(t) = 0, which means that E(t) is constant for all time, and in particular, is equal to E(0).

11.

(a) Proof. Let f be T-periodic, continuous, and piecewise C^1 with $\int_0^T f(t) dt = 0$ as given. Then observe that the condition $\int_0^T f(t) dt = 0$ yields $\hat{f}(0) = 0$. Since f is C^1 , we can use integration by parts to find that for $n \neq 0$,

$$a_n = \hat{f}(n) = \frac{1}{T} \int_0^T f(t)e^{int(2\pi/T)} dt$$

$$= f(t) \frac{Te^{int(2\pi/T)}}{-2\pi in} \Big|_0^T + \left(\frac{T}{2\pi in}\right) \frac{1}{T} \int_0^T f'(t)e^{int(2\pi/T)} dt$$

$$= \frac{T}{2\pi in} \hat{f}'(n) = \frac{T}{2\pi in} b_n.$$

Then we can apply Parseval's identity with $\hat{f}(0) = 0$ to $\int_0^T |f(t)|^2 dt$ to find

$$\int_{0}^{T} |f(t)|^{2} dt = T \sum_{n \neq 0} |a_{n}|^{2}$$

$$= T \sum_{n \neq 0} \left| \frac{T}{2\pi i n} b_{n} \right|^{2}$$

$$= \frac{T^{3}}{4\pi^{2}} \sum_{n \neq 0} \frac{|b_{n}|^{2}}{n^{2}}$$

$$\leq \frac{T^{3}}{4\pi^{2}} \sum_{n = -\infty}^{\infty} |b_{n}|^{2}$$

$$= \frac{T^{2}}{4\pi^{2}} \int_{0}^{T} |f'(t)|^{2} dt.$$

We have equality if for $|n| \ge 2$, $a_n = 0$ (we also need $b_0 = 0$). This is because we must have $n^2 = 1$ for $n = \pm 1$, and this requirement also forces $b_0 = 0$ since $f(t) = a_1 e^{int(2\pi/T)} + a_{-1} e^{-int(2\pi/T)} = A \sin(2\pi t/T) + B \cos(2\pi t/T)$, whose derivative is clearly periodic over T as well.

(b) Proof. Let g be C^1 and T-periodic as given, with $a_n = \hat{f}(n)$, $b_n = \hat{g}(n)$, and $c_n = \hat{g}'(n)$. Note that for $n \neq 0$,

 $b_n = \frac{T}{2\pi i n} c_n$. Then with $a_0 = 0$ and using the Cauchy-Schwarz inequality,

$$\left| \int_{0}^{T} \overline{f(t)} g(t) \, dt \right|^{2} = T^{2} \left| \sum_{n=-\infty}^{\infty} \overline{a_{n}} b_{n} \right|^{2} = T^{2} \left| \sum_{n\neq 0} \overline{a_{n}} b_{n} \right|^{2}$$

$$\leq \left(T \sum_{n\neq 0} |a_{n}|^{2} \right) \left(T \sum_{n\neq 0} |b_{n}|^{2} \right)$$

$$\leq \left(T \sum_{n=-\infty}^{\infty} |a_{n}|^{2} \right) \left(\frac{T^{3}}{4\pi^{2}} \sum_{n\neq 0} |c_{n}|^{2} + Tc_{0} \right)$$

$$\leq \int_{0}^{T} |f(t)|^{2} \, dt \left(\frac{T^{3}}{4\pi^{2}} \sum_{n=-\infty}^{\infty} |c_{n}|^{2} \right)$$

$$= \frac{T^{2}}{4\pi^{2}} \int_{0}^{T} |f(t)|^{2} \, dt \int_{0}^{T} |g'(t)|^{2} \, dt ,$$

so
$$\left| \int_0^T \overline{f(t)} g(t) dt \right|^2 \le \frac{T^2}{4\pi^2} \int_0^T |f(t)|^2 dt \int_0^T |g'(t)|^2 dt$$
 as desired.

(c) Proof. Let [a, b] be any compact interval, and let f be any continuously differentiable function such that f(a) = f(b) = 0 as given. Then extend f to be an odd function centered at a (that is, f(t+a) is an odd function about the origin) and periodic with period T = 2(b-a), which means any integral over an interval of length T, like $\int_{2a-b}^{b} f(t) dt$, vanishes. Then this extended f satisfies the hypotheses of part (a) up to a change of variables (translation), so

$$\int_{a}^{b} |f(t)|^{2} dt = \frac{1}{2} \int_{2a-b}^{b} |f(t)|^{2} dt \le \frac{(b-a)^{2}}{2\pi^{2}} \int_{2a-b}^{b} |f'(t)|^{2} dt = \frac{(b-a)^{2}}{\pi^{2}} \int_{a}^{b} |f'(t)|^{2} dt,$$

where by construction, $|f'(t)|^2$ is symmetric (even) about a in an interval of length T. In the case of equality, from part (a) we have $f(t) = A\sin(2\pi(t-a)/T) + B\cos(2\pi(t-a)/T)$ which is centered at a, but it should not have the cosine term since f is odd about a. Then $f(t) = A\sin(2\pi(t-a)/T) = A\sin\left(\pi\frac{t-a}{b-a}\right)$.

14. Prove that the Fourier series of a continuously differentiable function f on the circle is absolutely convergent.

Proof. With $a_n = \hat{f}(n)$ and $b_n = \hat{f}'(n)$, the Fourier series for f is given by $\sum_{n=-\infty}^{\infty} a_n e^{int}$. Note that $a_n = (in)^{-1}b_n$ for $n \neq 0$, and observe that the Fourier series converges if the series $\sum_{n \neq 0} a_n e^{int}$ converges (removing a finite

number of terms does not affect convergence). Then

$$\left| \sum_{n \neq 0} a_n e^{int} \right| \leq \sum_{n \neq 0} |a_n| = \sum_{n \neq 0} |(in)^{-1} b_n|$$

$$= \sum_{n \neq 0} |n|^{-1} |b_n|$$

$$\leq \left(2 \sum_{n \geq 1} |n|^{-2} \right)^{\frac{1}{2}} \left(\sum_{n \neq 0} |b_n|^2 \right)^{\frac{1}{2}}$$

$$\leq \sqrt{\frac{\pi^2}{3}} \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} |f'(t)|^2 dt < \infty.$$

Hence the Fourier series of f converges absolutely.