W2 – Podstawy rachunku prawdopodobieństwa (przypomnienie)

Henryk Maciejewski Marek Woda

Rachunek prawdopodobieństwa - przypomnienie

1. Zdarzenia

2. Prawdopodobieństwo

3. Zmienne losowe, rozkłady

Matematyczny model eksperymentu losowego

Eksperyment losowy opisujemy za pomocą układu zwanego przestrzenia probabilistyczną:

 $[\Omega, \mathcal{B}, P]$

 Ω – zbiór zdarzeń elementarnych (przestrzeń próbek)

B – zbiór zdarzeń losowych

P-prawdopodobieństwo zdarzeń ze zbioru ${\cal B}$

Model zaproponowany przez Kołmogorowa (1933)

Zdarzenia elementarne

 Ω – jest to zbiór wszystkich możliwych wyników eksperymentu losowego, zbiór <u>zdarzeń elementarnych</u> ω - element zbioru Ω , zdarzenie elementarne (pojęcie pierwotne)

<u>Przykład 1</u>: eksperyment – pojedynczy rzut kostką $\Omega = \{\omega_1, \, \omega_2 \, , \omega_3 \, , \omega_4, \, \omega_5, \, \omega_6\}, \qquad \omega_i - \text{wyrzucenie i oczek}$

<u>Przykład 2</u>: eksperyment – obserwujemy czas życia elementu

$$\Omega = [0, \infty)$$

Zdarzenia losowe

Zdarzenia losowe będą określane jako podzbiory zbioru Ω .

• Jeśli jest Ω - skończony (lub przeliczalny) wówczas zbiór zdarzeń losowych ${\bf B}$ jest to zbiór wszystkich podzbiorów Ω

<u>Przykład 1</u>: eksperyment – pojedynczy rzut kostką, zdarzenia:

$$A_1 = \{\omega_1, \omega_3, \omega_5\}$$

$$A_2 = \{\omega_6\}$$

• • •

Zdarzenia losowe

• Jeśli jest Ω jest nieprzeliczalny - wówczas trzeba nałożyć pewne ograniczenia na rodzinę podzbiorów Ω

<u>**B** – zbiór zdarzeń losowych</u> – rodzina podzbiorów spełniająca warunki:

- 1. Ω jest elementem \mathcal{B}
- 2. Jeśli A jest elementem \mathcal{B} , to dopełnienie A jest elementem \mathcal{B}
- 3. Jeśli $A_1, A_2, ...$ (przeliczalny ciąg) należą do \mathcal{B} , wówczas $\bigcup_{i=1}^{\infty} A_i$ należy do \mathcal{B}

Taka rodzinę zbiorów nazywamy <u>ciałem borelowskim</u> podzbiorów zbioru Ω (lub σ -algebrą)

Zdarzenia losowe - własności

- ullet Zbiór pusty ϕ należy do ${\cal B}$
- Jeśli $A_1,A_2,...$ (przeliczalny ciąg) należą do \mathcal{B} , wówczas $\bigcap_{i=1}^{\infty}A_i$ należy do \mathcal{B}
- Jeśli A_1, A_2 należą do \mathcal{B} , wówczas różnica zdarzeń $A_1 \setminus A_2$ należy do \mathcal{B}

- ϕ zdarzenie niemożliwe
- Ω zdarzenie pewne

Przykład 2: eksperyment – obserwujemy czas życia elementu, $\Omega = [0, \infty)$

Przykłady zdarzeń losowych:

 Uszkodzenie nastąpi pomiędzy 1000 a 2000 godziną pracy:

$$A_1 = \{\omega : 1000 \le \omega \le 2000\}$$

 Uszkodzenie nastąpi po przepracowaniu co najmniej 2000 godzin:

$$A_2 = \{\omega : \omega > 2000\}$$

Prawdopodobieństwo

Zdarzaniom losowym przypisujemy liczby z przedziału [0, 1] P(A) – prawdopodobieństwo zdarzenia A

Prawdopodobieństwo P – funkcja określona na ciele \mathcal{B} spełniająca warunki:

- 1. Dla każdego $A \in \mathcal{B}$ zachodzi $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. Jeśli zdarzania losowe $A_1, A_2, ...$ (przeliczalny ciąg) są wzajemnie rozłączne (tzn. $A_j \cap A_k = \emptyset$ dla $j \neq k$), wówczas

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Własności

- $P(\phi) = 0$
- $P(\Omega) = 1$
- $P(\overline{A}) = P(\Omega \setminus A) = 1 P(A)$ pr. zdarzenia dopełniającego
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ pr. sumy zdarzeń

Prawdopodobieństwo warunkowe

 Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Zdarzenia niezależne

• Zdarzenia A i B są niezależne jeśli:

$$P(A \cap B) = P(A) \cdot P(B)$$

alternatywna definicja: P(A|B) = P(A)

(informacja o tym, że zaszło zdarzenie B nie zmienia prawdopodobieństwa zdarzenia A)

Zmienne losowe

Jeśli zdarzeniom elementarnym przypiszemy liczby, wówczas otrzymaną wielkość nazywamy <u>zmienną</u> <u>losową</u>. Oznaczamy zwykle dużą literą np. X, T.

Przykład: rzut kostką:

X – liczba wyrzuconych oczek

Przykład: uszkodzenie elementu:

T – czas który upłynął od chwili 0 do chwili uszkodzenia (zmienna losowa ciągła)

t – wartość, jaką przyjęła zmienna losowa (liczba)

Rozkład zmiennej losowej

Jak powiązać wartości przyjmowane przez zmienną losową z prawdopodobieństwem?

X – zmienna losowa przyjmująca wartości z przedziału od $-\infty$ do $+\infty$

Dystrybuanta zmiennej losowej X (cumulative distribution function, cdf) F(x) – definiujemy jako prawdopodobieństwo zajścia zdarzenia $X < x \ (x - liczba rzeczywista z przedziału od -<math>\infty$ do + ∞)

$$F(x) = P(X < x)$$

Przykład – dystrybuanta dla rzutu kostką

Przykładowa dystrybuanta dla czasu życia elementu

Na podstawie dystrybuanty możemy ocenić prawdopodobieństwo uszkodzenia elementu przed upływem miliona godzin – wynosi ono około 0.9.

Własności dystrybuanty F

1. Jest funkcją niemalejącą, dla a<b:

$$F(a) \leq F(b)$$

2. Jest lewostronnie ciągła:

$$\lim_{x \to a^{-}} F(x) = F(a)$$

3. Spełnia warunki dotyczące granic

$$\lim_{x \to -\infty} F(x) = 0 \qquad \lim_{x \to +\infty} F(x) = 1$$

Gęstość prawdopodobieństwa

Jeśli dystrybuantę zmiennej losowej X można przestawić w postaci całki x

$$F(x) = \int_{-\infty}^{\infty} f(u)du$$

to zmienną X nazywamy ciągłą.

Funkcję f() nazywamy gęstością prawdopodobieństwa rozkładu X (probability density function, pdf).

Jeśli dla dystrybuanty F(x) suma prawdopodobieństw wartości, w których F jest nieciągła równa się jeden, to zmienną losową X nazywamy <u>dyskretną</u>.

Gęstość prawdopodobieństwa - własności

1.
$$f(x) \ge 0$$

$$2. \quad \int_{-\infty}^{+\infty} f(u) du = 1$$

Jeśli dystrybuanta jest funkcję różniczkowalną, to

$$f(x) = \frac{dF(x)}{dx}$$

Prawdopodobieństwo zdarzeń – wyznaczamy z dystrybuanty lub funkcji gęstości

