291K Machine Learning

Lecture 10 Gaussian Mixture Models

Lei Li and Yu-xiang Wang UCSB

Recap

- Bayesian networks:
 - Directed acyclic graph
 - Nodes are random variables
 - arcs are probabilistic dependencies
- Examine dependence of two variables given observation: d-separation

Housing Price Pattern

Gaussian Distribution

Only single spike

Two Underlying Patterns

 It might be multiple underlying patterns of Gaussian distribution

 Los Angeles and Pittsburgh have different median housing price

Gaussian Mixture Model

Generative process:

- z ~ Categorical(K)
- $x|z\sim \text{Gaussian}(\mu_z, \Sigma_z)$
- Density:

$$p(Z, X) = p(Z) \cdot p(X|Z)$$

$$= \begin{cases} w_0 \cdot \mathcal{N}(x|\mu_0, \Sigma_0) \\ w_1 \cdot \mathcal{N}(x|\mu_1, \Sigma_1) \end{cases}$$

$$p(X) = \sum_{i=1}^{k} p(Z=i, X) = \sum_{i=1}^{k} p(Z=i) |\psi_i|$$

$$= w_0 \mathcal{N}(x|\mu_0, \Sigma_0) + w_1 \mathcal{N}(x|\mu, \Sigma_0)$$

Gaussian Mixture

Mixture Distribution

- Z: latent variable
- x|z can be any distribution in parametric form (e.g. exponential distribution)

Learning Parameters for GMM

- Observation: $x_{1..N}$ $\theta = \{w_{1..k}, \mu_{1..k}, \Sigma_{1..k}\}$ $= \{w_0, \mathcal{N}(x|\mu_0, \Sigma_0)\}$ MLE (with latent variable z) $p(x) = \sum_{k=1}^{k} p(z=i, x) = \sum_{k=1}^{k} p(z$
- Log-likelihood:
- Expectation-maximization algorithm

$$\frac{1}{2} \left(\frac{\partial}{\partial t} \right) = \log \frac{1}{n-1} p(x_n | \theta)$$
Optimality condition
$$= \sum_{n=1}^{N} (\log \sum_{i=1}^{N} p(z_n = i) \cdot p(x_n; M_i, \Sigma_i)$$

$$+ taking \frac{\partial L(\theta)}{\partial \theta} = 0$$
no closed form solution

Expected log-likelihood

•
$$L(\theta) = E_{p(z_n|x_n)} \log p(x_n, z_n)$$

$$L(\theta) = \sum_{n=1}^{N} \log p(z_n | z_n |$$

$$(\theta) = E_{p(z_n|x_n)} \log p(x_n, z_n)$$

$$= \sum_{n=1}^{N} (\log \sum_{i=1}^{n} (2n^{2i}) \cdot p(x_n|2n^{2i}))$$

$$= \sum_{n=1}^{N} (\log \sum_{i=1}^{n} (2n^{2i}|x_n) \cdot p(x_n|2n^{2i}))$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{n} p(2n^{2i}|x_n) \cdot p(x_n|2n^{2i})$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{n} p(2n^{2i}|x_n) \cdot (\log \frac{p(2n^{2i}) \cdot p(x_n|2n^{2i})}{p(2n^{2i}|x_n)}$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{n} p(2n^{2i}|x_n) \cdot (\log \frac{p(2n^{2i}) \cdot p(x_n|2n^{2i})}{p(2n^{2i}|x_n)}$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{n} p(2n^{2i}|x_n) \cdot (\log \frac{p(2n^{2i}) \cdot p(x_n|2n^{2i})}{p(2n^{2i}|x_n)}$$

$$= \sum_{n=1}^{N} \sum_{i=1}^{n} p(2n^{2i}|x_n) \cdot (\log \frac{p(2n^{2i}) \cdot p(x_n|2n^{2i})}{p(2n^{2i}|x_n)}$$

Posterior

•
$$p(z_n|x_n) = \frac{p(z_n,x_n)}{p(x_n)} = \frac{p(z_n,x_n)}{\sum_{j=1}^{k} p(z_i,y_j) \cdot p(x_n|x_n)}$$

$$\sum_{j=1}^{k} p(z_n=i) \cdot p(x_n|M_i,\Sigma_i)$$

$$\sum_{j=1}^{k} p(z_n=j) \cdot p(x_n|M_i,\Sigma_i)$$

$$= \frac{w_i \cdot N(x_n,M_i,\Sigma_i)}{\sum_{j=1}^{k} w_j \cdot N(x_n,M_i,\Sigma_i)}$$

Update mixture weights

$$\int_{N=1}^{N} \frac{1}{\lambda^{2}} \int_{N=1}^{N} \frac{1}{\lambda^{2}} \int_{N$$

Update mean and covariance

$$L(\theta) = \sum_{n=1}^{N} \sum_{i=1}^{K} \hat{Z}_{ni} \left[-\frac{1}{2} (\log |\Sigma_{i}| - \frac{1}{2} (x_{n} - \mu_{i})^{T} \sum_{i}^{-1} (x_{n} - \mu_{i})^{$$

Summary of EM algorithm

- Observation: $x_{1..N}$
- $\theta = \{w_{1..k}, \mu_{1..k}, \Sigma_{1..k}\}$
- Iterate until convergence
 - 1. E step: use X and current θ to calculate $p(z_{1..N}|x_{1..N};\theta)$
 - 2. M step:
 - $\theta \leftarrow \arg\max_{\theta} E_{p(z_{1..N}|x_{1..N};\theta_{old})} \log p(x_n, z_n|\theta)$
- Guaranteed to find local maximum
- Works for general mixture model

Illustration of GMM

Property of GMM

- Interpretable:
 - Participation weight of each data point from every component
- Generative:
 - Able to generate new data
- Handles missing values
- Efficient: O(TKN)
- Local optimal:
 - Can be viewed as coordinate descent (why?)
- Need to specify K

K-Means vs GMM

- 1. Decide on a value for *K*, the number of clusters.
- 2. Initialize the *K* cluster centers / parameters (randomly).

K-Means

- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster center.
- 4. Re-estimate the *K* cluster centers using the memberships found above

3. E-step: assign *probabilistic* membership

GMM

4. M-step: re-estimate parameters based on *probabilistic* membership

5. Repeat 3 and 4 until parameters do not change.

Probabilistic PCA

- Continuous latent variable $z \sim N(0, I)$
- Observation data $x|z \sim N(W \cdot z + \mu, \sigma^2 I)$

Learning Parameters for PPCA

- Again EM algorithm
- $\arg \max_{\theta} E_{p(z_{1..N}|x_{1..N};\theta_{old})} \log p(x_{1..N}, z_{1..N}|\theta)$

A Variational View of EM

- $L(\theta) = \log p(X; \theta)$
- Introduce a variational distribution $q(X; \phi)$
- Variational bound for this data likelihood

What does EM actually do?

EM is coordinate-descent

Summary

- Mixture Distribution: to build more complex distribution from simple ones
- Gaussian Mixture Model: k Gaussian components
- Expectation-Maximization: general for graphical models with latent variables
 - E-step: fix parameter, estimate posterior mean/variance
 - M-step: update parameter
- Probabilistic PCA: latent is continuous

Recommended Reading

PRML Chapter 9, 12.2

Next up

- Dynamic Bayesian Network
- Linear Dynamical System