Analysis of exponential decay models

MATMEK-4270

Prof. Mikael Mortensen, University of Oslo

Recap - Finite differencing of exponential decay

(i) The ordinary differential equation

$$u'(t)=-au(t),\quad u(0)=I,\quad y\in (0,T]$$

where a > 0 is a constant.

Solve the ODE by finite difference methods:

• Discretize in time:

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t - 1} < t_{N_t} = T$$

ullet Satisfy the ODE at N_t discrete time steps:

$$u'(t_n) = -au(t_n), \qquad n \in [1, \dots, N_t], ext{ or } \ u'(t_{n+\frac{1}{2}}) = -au(t_{n+\frac{1}{2}}), \qquad n \in [0, \dots, N_t-1]$$

Finite difference algorithms

• Discretization by a generic θ -rule

$$rac{u^{n+1}-u^n}{ riangle t} = -(1- heta)au^n - heta au^{n+1}$$

$$egin{cases} heta=0 & ext{Forward Euler} \ heta=1 & ext{Backward Euler} \ heta=1/2 & ext{Crank-Nicolson} \end{cases}$$

Note $u^n = u(t_n)$

ullet Solve recursively: Set $u^0=I$ and then

$$u^{n+1} = rac{1-(1- heta)a riangle t}{1+ heta a riangle t} u^n \quad ext{for } n=0,1,\ldots$$

Analysis of finite difference equations

Model:

$$u'(t) = -au(t), \quad u(0) = I$$

Method:

$$u^{n+1} = rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}u^n$$

i Problem setting

How good is this method? Is it safe to use it?

Solver

We already have a solver that we can use to experiment with. Lets run it for a range of different timesteps.

Encouraging numerical solutions - Backwards Euler

$$I=1, a=2, heta=1, \Delta t=1.25, 0.75, 0.5, 0.1.$$

Discouraging numerical solutions - Crank-Nicolson

$$I=1, a=2, heta=0.5, \Delta t=1.25, 0.75, 0.5, 0.1.$$

Discouraging numerical solutions - Forward Euler

$$I=1, a=2, \theta=0, \Delta t=1.25, 0.75, 0.5, 0.1.$$

Summary of observations

The characteristics of the displayed curves can be summarized as follows:

- The Backward Euler scheme *always* gives a monotone solution, lying above the exact solution.
- ullet The Crank-Nicolson scheme gives the most accurate results, but for $\Delta t=1.25$ the solution oscillates.
- The Forward Euler scheme gives a growing, oscillating solution for $\Delta t=1.25$; a decaying, oscillating solution for $\Delta t=0.75$; a strange solution $u^n=0$ for $n\geq 1$ when $\Delta t=0.5$; and a solution seemingly as accurate as the one by the Backward Euler scheme for $\Delta t=0.1$, but the curve lies *below* the exact solution.
- ullet Small enough Δt gives stable and accurate solution for all methods!

Problem setting

i We ask the question

• Under what circumstances, i.e., values of the input data I,a, and Δt will the Forward Euler and Crank-Nicolson schemes result in undesired oscillatory solutions?

Techniques of investigation:

- Numerical experiments
- Mathematical analysis

Another question to be raised is

ullet How does Δt impact the error in the numerical solution?

Exact numerical solution

For the simple exponential decay problem we are lucky enough to have an exact numerical solution

$$u^n = IA^n, \quad A = rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}$$

Such a formula for the exact discrete solution is unusual to obtain in practice, but very handy for our analysis here.

An exact dicrete solution fulfills a discrete equation (without round-off errors), whereas an exact solution fulfills the original mathematical equation.

Stability

Since $u^n = IA^n$,

- ullet A < 0 gives a factor $(-1)^n$ and oscillatory solutions
- ullet |A|>1 gives growing solutions
- Recall: the exact solution is monotone and decaying
- If these qualitative properties are not met, we say that the numerical solution is unstable

For stability we need

$$A > 0$$
 and $|A| \le 1$

Computation of stability in this problem

A < 0 if

$$rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t} < 0$$

To avoid oscillatory solutions we must have A>0, which happens for

$$\Delta t < rac{1}{(1- heta)a}, \quad ext{for} \, heta < 1$$

- ullet Always fulfilled for Backward Euler ($heta=1
 ightarrow A=1/(1+a\Delta t)>0$)
- $\Delta t \leq 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t \leq 2/a$ for Crank-Nicolson (heta=0.5)

We get oscillatory solutions for FE when $\Delta t \leq 1/a$ and for CN when $\Delta t \leq 2/a$

Computation of stability in this problem

 $|A| \leq 1$ means $-1 \leq A \leq 1$

$$-1 \leq rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t} \leq 1$$

- -1 is the critical limit (because $A \leq 1$ is always satisfied).
- ullet -1 < A is always fulfilled for Backward Euler (heta = 1) and Crank-Nicolson (heta = 0.5).
- ullet For forward Euler or simply heta < 0.5 we have

$$\Delta t \leq rac{2}{(1-2 heta)a},$$

and thus $\Delta t \leq 2/a$ for stability of the forward Euler (heta=0) method

Explanation of problems with forward Euler

- a. $a\Delta t = 2\cdot 1.25 = 2.5$ and A = -1.5: oscillations and growth
- b. $a\Delta t = 2\cdot 0.75 = 1.5$ and A = -0.5: oscillations and decay
- c. $\Delta t = 0.5$ and A = 0: $u^n = 0$ for n > 0
- d. Smaller Δt : qualitatively correct solution

Explanation of problems with Crank-Nicolson

a. $\Delta t = 1.25$ and A = -0.25: oscillatory solution

Never any growing solution

Summary of stability

- Forward Euler is *conditionally stable*
 - $\Delta t < 2/a$ for avoiding growth
 - $\Delta t \leq 1/a$ for avoiding oscillations
- The Crank-Nicolson is *unconditionally stable* wrt growth and conditionally stable wrt oscillations
 - $\Delta t < 2/a$ for avoiding oscillations
- Backward Euler is unconditionally stable

Comparing amplification factors

 u^{n+1} is an amplification A of u^n :

$$u^{n+1}=Au^n,\quad A=rac{1-(1- heta)a\Delta t}{1+ heta a\Delta t}$$

The exact solution is also an amplification:

$$egin{aligned} u(t_{n+1}) &= e^{-a(t_n + \Delta t)} \ u(t_{n+1}) &= e^{-a\Delta t} e^{-at_n} \ u(t_{n+1}) &= A_e u(t_n), \quad A_e &= e^{-a\Delta t} \end{aligned}$$

A possible measure of accuracy: A_e-A

Plotting amplification factors

$p=a\Delta t$ is the important parameter for numerical performance

- ullet $p=a\Delta t$ is a dimensionless parameter
- ullet all expressions for stability and accuracy involve p
- ullet Note that Δt alone is not so important, it is the combination with a through $p=a\Delta t$ that matters

$oldsymbol{i}$ Another evidence why $p=a\Delta t$ is key

If we scale the model by ar t=at, ar u=u/I, we get dar u/dar t=-ar u, ar u(0)=1 (no physical parameters!). The analysis show that $\Delta ar t$ is key, corresponding to $a\Delta t$ in the unscaled model.

Series expansion of amplification factors

To investigate A_e-A mathematically, we can Taylor expand the expression, using $p=a\Delta t$ as variable.

```
1 from sympy import *
2 # Create p as a mathematical symbol with name 'p'
3 p = Symbol('p', positive=True)
4 # Create a mathematical expression with p
5 A_e = exp(-p)
6 # Find the first 6 terms of the Taylor series of A_e
7 A_e.series(p, 0, 6)
```

$$1-p+rac{p^2}{2}-rac{p^3}{6}+rac{p^4}{24}-rac{p^5}{120}+O\left(p^6
ight)$$

This is the Taylor expansion of the exact amplification factor. How does it compare with the numerical amplification factors?

Numerical amplification factors

Compute the Taylor expansions of A_e-A

```
from IPython.display import display
theta = Symbol('theta', positive=True)
A = (1-(1-theta)*p)/(1+theta*p)
FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
half = Rational(1, 2) # exact fraction 1/2
CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
display(FE)
display(BE)
display(CN)
```

$$rac{p^2}{2}-rac{p^3}{6}+O\left(p^4
ight)$$

$$-rac{p^2}{2}+rac{5p^3}{6}+O\left(p^4
ight)$$

$$rac{p^3}{12} + O\left(p^4
ight)$$

- ullet Forward/backward Euler have leading error p^2 , or more commonly Δt^2
- ullet Crank-Nicolson has leading error p^3 , or Δt^3

The true/global error at a point

- ullet The error in A reflects the local (amplification) error when going from one time step to the next
- What is the global (true) error at t_n ?

$$e^n = u_e(t_n) - u^n = Ie^{-at_n} - IA^n$$

ullet Taylor series expansions of e^n simplify the expression

Computing the global error at a point

```
1  n = Symbol('n', integer=True, positive=True)
2  u_e = exp(-p*n)  # I=1
3  u_n = A**n  # I=1
4  FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
5  BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
6  CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
7  display(simplify(FE))
8  display(simplify(BE))
9  display(simplify(CN))
```

$$rac{np^2}{2} + rac{np^3}{3} - rac{n^2p^3}{2} + O\left(p^4
ight)$$

$$-rac{np^{2}}{2}+rac{np^{3}}{3}+rac{n^{2}p^{3}}{2}+O\left(p^{4}
ight)$$

$$\frac{np^3}{12} + O\left(p^4\right)$$

Substitute n by $t/\Delta t$ and p by $a\Delta t$:

- ullet Forward and Backward Euler: leading order term $rac{1}{2}ta^2\Delta t$
- Crank-Nicolson: leading order term $\frac{1}{12}ta^3\Delta t^2$

Convergence

The numerical scheme is convergent if the global error $e^n \to 0$ as $\Delta t \to 0$. If the error has a leading order term $(\Delta t)^r$, the convergence rate is of order r.

Integrated errors

The ℓ^2 norm of the numerical error is computed as

$$||e^n||_{\ell^2} = \sqrt{\Delta t \sum_{n=0}^{N_t} (u_e(t_n) - u^n)^2}$$

We can compute this using Sympy. Forward/Backward Euler has $e^n \sim np^2/2$

```
1 h, N, a, T = symbols('h,N,a,T') # h represents Delta t 2 simplify(sqrt(h * summation((n*p**\frac{2}{2})**\frac{0}{2}, (n, \frac{0}{2}, N))).subs(p, a*h).subs(N, T/h))
```

$$\frac{\sqrt{6}a^2h^2\sqrt{T\left(\frac{2T^2}{h^2}+\frac{3T}{h}+1\right)}}{12}$$

If we keep only the leading term in the parenthesis, we get the first order

$$||e^n||_{\ell^2}pprox rac{1}{2}\sqrt{rac{T^3}{3}}a^2\Delta t$$

Crank-Nicolson

For Crank-Nicolson the pointwise error is $e^n \sim np^3/12$. We get

1 simplify(sqrt(h * summation((n*p**3/12)**2, (n, 0, N))).subs(p, a*h).subs(N, T/h))

$$rac{\sqrt{6}a^3h^3\sqrt{T\left(rac{2T^2}{h^2}+rac{3T}{h}+1
ight)}}{72}$$

which is simplified to the second order accurate

$$||e^n||_{\ell^2}pprox rac{1}{12}\sqrt{rac{T^3}{3}}a^3\Delta t^2$$

i Summary of errors

Analysis of both the pointwise and the time-integrated true errors:

- 1st order for Forward and Backward Euler
- 2nd order for Crank-Nicolson

Truncation error

- How good is the discrete equation?
- ullet Possible answer: see how well u_e fits the discrete equation

Consider the forward difference equation

$$\frac{u^{n+1} - u^n}{\Delta t} = -au^n$$

Insert u_e to obtain a truncation error R^n

$$rac{u_e(t_{n+1})-u_e(t_n)}{\Delta t}+au_e(t_n)=R^n
eq 0$$

Computation of the truncation error

• The residual R^n is the **truncation error**. How does R^n vary with Δt ?

Tool: Taylor expand u_e around the point where the ODE is sampled (here t_n)

$$u_e(t_{n+1}) = u_e(t_n) + u_e'(t_n) \Delta t + \frac{1}{2} u_e''(t_n) \Delta t^2 + \cdots$$

Inserting this Taylor series for u_e in the forward difference equation

$$R^n = rac{u_e(t_{n+1}) - u_e(t_n)}{\Delta t} + au_e(t_n)$$

to get

$$R^n=u_e'(t_n)+rac{1}{2}u_e''(t_n)\Delta t+\ldots+au_e(t_n)$$

The truncation error forward Euler

We have

$$R^n=u_e'(t_n)+rac{1}{2}u_e''(t_n)\Delta t+\ldots+au_e(t_n)$$

Since u_e solves the ODE $u_e'(t_n)=-au_e(t_n)$, we get that $u_e'(t_n)$ and $au_e(t_n)$ cancel out. We are left with leading term

$$R^npprox rac{1}{2}u_e''(t_n)\Delta t$$

This is a mathematical expression for the truncation error.

The truncation error for other schemes

Backward Euler:

$$R^n pprox -rac{1}{2}u_e''(t_n)\Delta t$$

Crank-Nicolson:

$$R^{n+rac{1}{2}}pproxrac{1}{24}u_e'''(t_{n+rac{1}{2}})\Delta t^2$$

Consistency, stability, and convergence

- Truncation error measures the residual in the difference equations. The scheme is consistent if the truncation error goes to 0 as $\Delta t \to 0$. Importance: the difference equations approaches the differential equation as $\Delta t \to 0$.
- *Stability* means that the numerical solution exhibits the same qualitative properties as the exact solution. Here: monotone, decaying function.
- Convergence implies that the true (global) error $e^n=u_e(t_n)-u^n\to 0$ as $\Delta t\to 0$. This is really what we want!

The Lax equivalence theorem for *linear* differential equations: consistency + stability is equivalent with convergence.

(Consistency and stability is in most problems much easier to establish than convergence.)

Numerical computation of convergence rate

We assume that the ℓ^2 error norm on the mesh with level i can be written as

$$E_i = C(\Delta t_i)^r$$

where C is a constant. This way, if we have the error on two levels, then we can compute

$$rac{E_{i-1}}{E_i} = rac{(\Delta t_{i-1})^r}{(\Delta t_i)^r} = \left(rac{\Delta t_{i-1}}{\Delta t_i}
ight)^r$$

and isolate r by computing

$$r = rac{\log rac{E_{i-1}}{E_i}}{\log rac{\Delta t_{i-1}}{\Delta t_i}}$$

Function for convergence rate

```
u_exact = lambda t, I, a: I*np.exp(-a*t)
 3 def l2_error(I, a, theta, dt):
       u, t = solver(I, a, T, dt, theta)
       en = u_exact(t, I, a) - u
       return np.sqrt(dt*np.sum(en**2))
   def convergence_rates(m, I=1, a=2, T=8, theta=1, dt=1.):
       dt_values, E_values = [], []
       for i in range(m):
10
11
           E = l2_error(I, a, theta, dt)
12
           dt values.append(dt)
13
           E_values.append(E)
14
           dt = dt/2
15
       # Compute m-1 orders that should all be the same
16
       r = [np.log(E_values[i-1]/E_values[i])/
17
            np.log(dt_values[i-1]/dt_values[i])
18
            for i in range(1, m, 1)]
19
       return r
```

Test convergence rates

Backward Euler:

```
1  I, a, T, dt, theta = 1., 2., 8., 0.1, 1.
2  convergence_rates(4, I, a, T, theta, dt)

[np.float64(0.9619265651066382),
  np.float64(0.98003334385805),
  np.float64(0.9897576131285538)]
```

Forward Euler:

```
1  I, a, T, dt, theta = 1., 2., 8., 0.1, 0.
2  convergence_rates(4, I, a, T, theta, dt)

[np.float64(1.0472640894307232),
    np.float64(1.0222599097461846),
    np.float64(1.0108154242259877)]
```

Crank-Nicolson:

```
1  I, a, T, dt, theta = 1., 2., 8., 0.1, 0.5
2  convergence_rates(4, I, a, T, theta, dt)
[np.float64(2.0037335266421343),
    np.float64(2.0009433957768175),
    np.float64(2.000236481071457)]
```

All in good agreement with theory:-)