PSZT - Uczenie Maszynowe

Stawczyk Przemysław 293153, Piotr
 Zmyślony 268833 $\,$

Contents

1	Opis Preprocesingu i Modelowania						
	1.1 Analiza Zbioru danych						
	1.1.1 Brakujące dane						
	1.1.2 Zbalansowanie danych						
	1.2 Przepływ Danych						
	1.2.1 Wizualizacja Przepływu Danych						
2	Modele						
	2.1 Parametry Modeli						
3	Wyniki Eksperymentu						
	3.1 Wykresy						
	3.2 Interpretacja						

1 Opis Preprocesingu i Modelowania

1.1 Analiza Zbioru danych

1.1.1 Brakujące dane

Zaczęliśmy od analizy brakujących danych w wierszach. Jak widać w poniższych wynikach w większości zbiorów około połowa wierszy ma brakujące pola.

	rok 1	rok 2	rok 3	rok 4	rok 5
$dlugo\acute{s}\acute{c}$	7027	10173	10503	9792	5910
pełne wiersze	3194	4088	4885	4769	3031
brakujące dane	3833	6085	5618	5023	2879

Następnie przeprowadziliśmy analizę rozkładu brakujących danych w kolumnach i wierszach korzystając z biblioteki pythona missingno [fig 1-5]

Figure 1: rok 1

Figure 2: rok 2

Figure 3: rok 3

Jak widać większość brakujących danych jest w kolumnie X37. Kolumna X21 ma brakujące w niektórych ale nie wszystkich latach.

Figure 4: rok 4

Figure 5: rok 5

Trudno nam było ocenić jaki charakter mają braki w tych danych, czy są skorelowane w wartościami w innych kolumnach czy zupełnie losowe. Wierszy z brakującymi danymi jest około połowy lub więcej. Aby nie odrzucać tak dużej liczby krotek zdecydowaliśmy się interpolować brakujące dane.

W tym celu wybraliśmy 4 metody:

- 1. Wstawianie średniej w danej kolumnie (Jako punkt odniesienia)
- 2. K najbliższych krotek
- 3. Spodziewanej Maksymalizacji (Expected Maximalisation)
- 4. Algorytm MICE

1.1.2 Zbalansowanie danych

Dokonaliśmy analizy ile z poszczególnych rekordów należy do klas klasyfikacyjnych

	$Czy\ zbankrutowano:$	rok 1	rok 2	rok 3	rok 4	rok 5
	Tak	6756	9773	10008	9277	5500
	Nie	271	400	495	515	410
ĺ	procent większości	3.857 %	3.932 %	4.713 %	5.259 %	6.937 %

Dane w zbiorach są mocno niezbalansowane dlatego zdecydowaliśmy się na interpolację korzystając z metody SMOTE (Synthetic Minority Over Sampling Technique)

1.2 Przepływ Danych

Po powyższej analizie zdecydowaliśmy o następującym przepływie oryginalnych danych do konstrukcji modeli.

Walidacji modeli planujemy dokonać korzystając K-krotnej walidacji krzyżowej.

1.2.1 Wizualizacja Przepływu Danych

Dataset Imput... Overs... Models Generati... Output Analysis

Figure 6: Przepływ Danych

2 Modele

Zgodnie z poleceniem wykorzystaliśmy algorytmy tworzenia modeli :

- Las Losowy [RF Random Forrest]
- K Najbliższych sąsiadów /KNN K Nearest Neighbors/

Implementacje wymienionych algorytmów pochodzą z biblioteki sklearn.

- 2.1 Parametry Modeli
- 3 Wyniki Eksperymentu
- 3.1 Wykresy
- 3.2 Interpretacja