Multi-head self-attention is the core modeling component of Transformers. In this question, we'll get some practice working with the self-attention equations, and motivate why multi-headed self-attention can be preferable to single-headed self-attention.

Recall that attention can be viewed as an operation on a query vector $q \in \mathbb{R}^d$, a set of value vectors $\{v_1,\ldots,v_n\}, v_i\in\mathbb{R}^d$, and a set of key vectors $\{k_1,\ldots,k_n\}, k_i\in\mathbb{R}^d$, specified as follows:

$$c = \sum_{i=1}^{n} v_i \alpha_i \tag{1}$$

$$c = \sum_{i=1}^{n} v_i \alpha_i$$

$$\alpha_i = \frac{\exp(k_i^\top q)}{\sum_{j=1}^{n} \exp(k_j^\top q)}$$
(2)

with $alpha = \{\alpha_1, \dots, \alpha_n\}$ termed the "attention weights". Observe that the output $c \in \mathbb{R}^d$ is an average over the value vectors weighted with respect to α .

- (a) (3 points) Copying in attention. One advantage of attention is that it's particularly easy to "copy" a value vector to the output c. In this problem, we'll motivate why this is the case.
 - i. (2 points) The distribution α is typically relatively "diffuse"; the probability mass is spread out between many different α_i . However, this is not always the case. **Describe** (in one sentence) under what conditions the categorical distribution α puts almost all of its weight on some α_i , where $j \in \{1, ..., n\}$ (i.e. $\alpha_j \gg \sum_{i \neq j} \alpha_i$). What must be true about the query q and/or the keys $\{k_1, ..., k_n\}$?
 - ii. (1 point) Under the conditions you gave in (i), **describe** the output c.
- (b) (2 points) An average of two. Instead of focusing on just one vector v_j , a Transformer model might want to incorporate information from multiple source vectors.
 - Consider the case where we instead want to incorporate information from two vectors v_a and v_b , with corresponding key vectors k_a and k_b . Assume that (1) all key vectors are orthogonal, so $k_i^{\dagger} k_j = 0$ for all $i \neq j$; and (2) all key vectors have norm 1. **Find an expression** for a query vector q such that $c \approx \frac{1}{2}(v_a + v_b)$, and justify your answer.* (Recall what you learned in part (a).)
- (c) (5 points) Drawbacks of single-headed attention: In the previous part, we saw how it was possible for a single-headed attention to focus equally on two values. The same concept could easily be extended to any subset of values. In this question we'll see why it's not a practical solution. Consider a set of key vectors $\{k_1, \ldots, k_n\}$ that are now randomly sampled, $k_i \sim \mathcal{N}(\mu_i, \Sigma_i)$, where the means $\mu_i \in \mathbb{R}^d$ are known to you, but the covariances Σ_i are unknown (unless specified otherwise in the question). Further, assume that the means μ_i are all perpendicular; $\mu_i^{\top} \mu_j = 0$ if $i \neq j$, and unit norm, $\|\mu_i\| = 1$.
 - i. (2 points) Assume that the covariance matrices are $\Sigma_i = \alpha I, \forall i \in \{1, 2, \dots, n\}$, for vanishingly small α . Design a query q in terms of the μ_i such that as before, $c \approx \frac{1}{2}(v_a + v_b)$, and provide a brief argument as to why it works.
 - ii. (3 points) Though single-headed attention is resistant to small perturbations in the keys, some types of larger perturbations may pose a bigger issue. In some cases, one key vector k_a may be larger or smaller in norm than the others, while still pointing in the same direction as μ_a . As an example, let us consider a covariance for item a as $\Sigma_a = \alpha I + \frac{1}{2}(\mu_a \mu_a^{\top})$ for vanishingly small α (as shown in figure 1). This causes k_a to point in roughly the same direction as μ_a , but with large variances in magnitude. Further, let $\Sigma_i = \alpha I$ for all $i \neq a$.

^{*}Hint: while the softmax function will never exactly average the two vectors, you can get close by using a large scalar

[†]Unlike the original Transformer, newer Transformer models apply layer normalization before attention. In these prelayernorm models, norms of keys cannot be too different which makes the situation in this question less likely to occur.

Figure 1: The vector μ_a (shown here in 2D as an example), with the range of possible values of k_a shown in red. As mentioned previously, k_a points in roughly the same direction as μ_a , but may have larger or smaller magnitude.

When you sample $\{k_1, ..., k_n\}$ multiple times, and use the q vector that you defined in part i., what do you expect the vector c will look like qualitatively for different samples? Think about how it differs from part (i) and how c's variance would be affected.

- (d) (3 points) **Benefits of multi-headed attention:** Now we'll see some of the power of multi-headed attention. We'll consider a simple version of multi-headed attention which is identical to single-headed self-attention as we've presented it, except two query vectors $(q_1 \text{ and } q_2)$ are defined, which leads to a pair of vectors $(c_1 \text{ and } c_2)$, each the output of single-headed attention given its respective query vector. The final output of the multi-headed attention is their average, $\frac{1}{2}(c_1 + c_2)$.
 - As in question 1(c), consider a set of key vectors $\{k_1, \ldots, k_n\}$ that are randomly sampled, $k_i \sim \mathcal{N}(\mu_i, \Sigma_i)$, where the means μ_i are known to you, but the covariances Σ_i are unknown. Also as before, assume that the means μ_i are mutually orthogonal; $\mu_i^{\mathsf{T}}\mu_j = 0$ if $i \neq j$, and unit norm, $\|\mu_i\| = 1$.
 - i. (1 point) Assume that the covariance matrices are $\Sigma_i = \alpha I$, for vanishingly small α . Design q_1 and q_2 in terms of μ_i such that c is approximately equal to $\frac{1}{2}(v_a + v_b)$. Note that q_1 and q_2 should have different expressions.
 - ii. (2 points) Assume that the covariance matrices are Σ_a = αI + ½(μ_aμ_a[⊤]) for vanishingly small α, and Σ_i = αI for all i ≠ a. Take the query vectors q₁ and q₂ that you designed in part i. What, qualitatively, do you expect the output c to look like across different samples of the key vectors? Explain briefly in terms of variance in c₁ and c₂. You can ignore cases in which k_a[⊤]q_i < 0.</p>
- (e) (1 point) Based on part (d), briefly summarize how multi-headed attention overcomes the draw-backs of single-headed attention that you identified in part (c).