МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИХ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ПРИКЛАДНОЙ МАТЕМАТИКИ КАФЕДРА МАТЕМАТИЧЕСКОЙ КИБЕРНЕТИКИ

КУРСОВАЯ РАБОТА

НАХОЖДЕНИЕ КОМПОНЕНТ СИЛЬНОЙ СВЯЗНОСТИ ГРАФА

Студент: Архипов Д.Г.

Группа: М80-104Б-19

Преподаватель: Яшина Н.П.

Оценка:

Дата:

Задание

Вариант 3.

1. Определить для орграфа, заданного матрицей смежности:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

- А) матрицу односторонней связности;
- Б) матрицу сильной связности;
- В) компоненты сильной связности;
- Г) матрицу контуров
- **2.** Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

3. Используя алгоритм «фронта волны», найти все минимальные пути из первой вершину в последнюю орграфа, заданного матрицей смежности.

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

4. Используя алгоритм Форда, Найдите минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

2

$$\begin{pmatrix}
\infty & 4 & 5 & 3 & \infty & \infty & \infty \\
10 & \infty & 2 & \infty & 3 & \infty & \infty \\
\infty & 2 & \infty & 3 & 1 & 4 & 7 \\
\infty & \infty & 2 & \infty & \infty & 7 & \infty \\
\infty & \infty & 1 & \infty & \infty & \infty & 4 \\
\infty & \infty & 4 & \infty & \infty & \infty & 2 \\
2 & \infty & 3 & \infty & 5 & 7 & \infty
\end{pmatrix}$$

5. Найти остовное дерево с минимальной суммой длин входящих в него ребер.

6. Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники с ЭДС E_1 и E_2 , а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников равными нулю, получить систему уравнений для токов.

7. Построить максимальный поток по транспортной сети.

8. Нахождение компонент сильной связности графа; Кофман А. Введение в прикладную комбинаторику

Выполнение курсовой работы

Задание №1:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

а) Матрица однородной связности T ($T = E \ V \ A \ V \ A^2 \ V \dots \ V \ A^{n-1}$)

(n - число вершин) n = 4;

$$A^{3} = A^{2*} A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

б) Матрица сильной связности $S (S = T \& T^T)$

в) Компоненты сильной связности

г) Матрица контуров **К** (K = S & A)

$$K = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

%% Второй способ:

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Задание №2:

«Алгоритм Терри»

Путь: $V_1 - V_2 - V_3 - V_1 - V_3 - V_5 - V_4 - V_2 - V_5 - V_3 - V_2 - V_4 - V_5 - V_2 - V_1$

Задание №3:

«Алгоритм фронта волны» /: все минимальные пути?

 $W_2(V_1)$ -

$$\Gamma V_4 = \{V_3, V_5, V_6, V_7\}$$

$$\Gamma V_7 = \{V_3, V_5, V_6\}$$

$$\Gamma V_3 = \{V_1, V_2, V_4, V_5, V_6\}$$

$$\Gamma V_5 = \{V_1, V_2, V_3, V_4, V_6, V_7\}$$

$$\Gamma V_6 = \{V_1, V_2, V_3, V_5\}$$

$$\Gamma V_2 = \{V_1, V_3, V_4, V_6, V_8\}$$

6 кратчайших путей:

- V₁-V₄-V₃-V₂-V₈
- V₁-V₄-V₅-V₂-V₈
- V₁-V₄-V₆-V₂-V₈
- $V_1-V_7-V_3-V_2-V_8$
- V₁-V₇-V₅-V₂-V₈
- V₁-V₇-V₆-V₂-V₈

К=4 - минимальное число дуг

Промежуточные вершины кратчайших путей:

- 1) V₈
- 2) $W_3(V_1) \cap \Gamma^{-1}V_8 = \{V_2\} \cap \{V_2\} = \{V_2\}$
- 3) $W_2(V_1) \cap \Gamma^{-1}V_2 = \{V_3, V_5, V_6\} \cap \{V_3, V_5, V_6, V_2, V_8\} = \{V_3, V_5, V_6\}$
- 4) $W_1(V_1) \cap \Gamma^{-1}V_3 = \{V_4, V_7\} \cap \{V_2, V_4, V_5, V_6, V_7, V_8\} = \{V_4, V_7\}$ $W_1(V_1) \cap \Gamma^{-1}V_5 = \{V_4, V_7\} \cap \{V_3, V_4, V_6, V_7\} = \{V_4, V_7\}$ $W_1(V_1) \cap \Gamma^{-1}V_6 = \{V_4, V_7\} \cap \{V_2, V_3, V_4, V_5, V_7\} = \{V_4, V_7\}$
- 5) $W_0(V_1) \cap \Gamma^{-1}V_4 = \{V_1\} \cap \{V_1, V_2, V_3, V_5, V_8\} = \{V_1\}$ $W_0(V_1) \cap \Gamma^{-1}V_7 = \{V_1\} \cap \{V_1, V_4, V_5, V_8\} = \{V_1\}$

Задание №4:

$$\begin{pmatrix} \infty & 4 & 5 & 3 & \infty & \infty & \infty \\ 10 & \infty & 2 & \infty & 3 & \infty & \infty \\ \infty & 2 & \infty & 3 & 1 & 4 & 7 \\ \infty & \infty & 2 & \infty & \infty & 7 & \infty \\ \infty & \infty & 1 & \infty & \infty & \infty & 4 \\ \infty & \infty & 4 & \infty & \infty & \infty & 2 \\ 2 & \infty & 3 & \infty & 5 & 7 & \infty \end{pmatrix}$$

1. Составить таблицу итераций:

	V_1	V_2	V ₃	V_4	V_5	V ₆	V_7	λ i ⁰	λ_{i^1}	λi^2	λ_i^3	λ i ⁴
Vı	8	4	5	3	8	8	8	0 %	0	0	0	0
V_2	10	8	2	8	3	8	8	∞ \	4	4	4	4
V ₃	8	2	8	3	1	4	7	∞	\ * 5\	5	5	5
V_4	8	8	2	8	8	7	8	8	4 3 \	3	3	3
V ₅	∞	∞	1	8	8	8	4	∞	8	46,	6	6
V ₆	∞	8	4	8	8	8	2	∞	8	9	9	9
V ₇	2	∞	3	8	5	7	8	∞	∞	12	10	10

- 2. Длины минимальных путей из вершины V_1 определены в последнем столбце таблицы.
- 3. Найдем вершины, входящие в минимальные пути из V_1 во все остальные вершины графа.

3.1. Минимальный путь из
$$V_1$$
 в V_2 : V_1 - V_2 , длина = 4 $\lambda_1^0 + c_{12} = 0 + 4 = \lambda_2^1$

3.2. Минимальный путь из V₁ в V₃: V₁₋V₃, длина = 5
$$\lambda_{1^0} + c_{13} = 0 + 5 = \lambda_{3^1}$$

3.3. Минимальный путь из V₁ в V₄: V₁₋V₄, длина = 3
$$\lambda_1{}^0 + c_{14} = 0 + 3 = \lambda_4{}^1$$

3.4. Минимальный путь из
$$V_1$$
 в V_5 : V_1 - V_3 - V_5 , длина = 6
$$\lambda_3^1 + C_{35} = 5 + 1 = \lambda_5^2$$

$$\lambda_1^0 + C_{13} = 0 + 5 = \lambda_3^1$$

3.5. Минимальный путь из
$$V_1$$
 в V_6 : $V_{1-}V_{3-}V_6$, длина = 9 $\lambda_3^1 + c_{36} = 5 + 4 = \lambda_6^2$ $\lambda_1^0 + c_{13} = 0 + 5 = \lambda_3^1$

3.6. Минимальный путь из V₁ в V₇: V₁-V₃-V₅-V₇, длина = 10
$$\lambda_{5^2} + c_{57} = 6 + 4 = \lambda_{7^3}$$

$$\lambda_{3^1} + c_{35} = 5 + 1 = \lambda_{5^2}$$

$$\lambda_{1^0} + c_{13} = 0 + 5 = \lambda_{3^1}$$

Задание №5:

Найти остовное дерево с минимальной суммой длин входящих в него ребер

Решение:

- 1) Отметим все вершины
- 2) Добавим дуги длины 1, 2, 3, 4 (добавляются без циклов)
- 3) Добавим дуги длины 5, где это делается однозначно

4) Поочередно добавляем дуги длины 5, соединяем ребро = 6, получаем 4 варианта с одинаковым минимальным суммарной весом $L(D) = \underline{40}$.

Задание №6:

Получить систему уравнений для токов. E_1 и E_2 = 1-му и 5-му ребру соответственно.

1) Задать ориентацию на графе:

2) Построить остовное дерево D:

3) Найти базис циклов:

$$\begin{array}{l} (D+q_1): \varphi_1\colon V_6-V_1-V_2-V_3-V_4-V_5-V_6\\ C(\varphi_1)=(1,1,1,1,0,1,1,0,0,0)\\ (D+q_5)\colon \varphi_2\colon V_4-V_2-V_3-V_4\\ C(\varphi_2)=(0,0,1,1,1,0,0,0,0,0,0)\\ (D+q_8)\colon \varphi_3\colon V_5-V_1-V_2-V_3-V_4-V_5\\ C(\varphi_3)=(0,1,1,1,0,1,0,1,0,0)\\ (D+q_9)\colon \varphi_4\colon V_1-V_2-V_3-V_4-V_1\\ C(\varphi_4)=(0,1,1,1,0,0,0,0,0,-1,0)\\ (D+q_{10})\colon \varphi_5\colon V_2-V_3-V_4-V_5-V_2\\ C(\varphi_5)=(0,0,1,1,0,1,0,0,0,-1)\\ C=\begin{pmatrix} \varphi_1\\ \varphi_2\\ \varphi_3\\ \varphi_4 \end{pmatrix}. (цикломатическая матрица C)$$

4) Закон Кирхгофа для напряжений:

$$C * (U_1 ... U_{10})^{T} = \begin{pmatrix} \varphi 1 \\ \varphi 2 \\ \varphi 3 \\ \varphi 4 \\ \varphi 5 \end{pmatrix} * \begin{pmatrix} u1 \\ u2 \\ u3 \\ u4 \\ u5 \\ u6 \\ u7 \\ u8 \\ u9 \\ u10 \end{pmatrix} = 0$$

$$\begin{cases} u1 + u2 + u3 + u4 + u6 + u7 = 0 \\ u3 + u4 + u5 = 0 \\ u2 + u3 + u4 + u5 + u7 = 0 \\ u2 + u3 + u4 - u9 = 0 \\ u3 + u4 + u6 - u10 = 0 \end{cases}$$

5) 3-н Кирхгофа для токов: В * I = 0 (В - м-ца инцидентности, I – столбец токов от I_1 до I_{10})

B * (
$$I_1 ... I_{10}$$
) $^{T} = 0$

B:

	Q_1	Q_2	Q ₃	Q ₄	Q_5	Q ₆	Q ₇	Q ₈	Q ₉	Q ₁₀
V ₁	1	-1	0	0	0	0	0	1	-1	0
V_2	0	1	-1	0	1	0	0	0	0	-1
V ₃	0	0	1	-1	0	0	0	0	0	0
V_4	0	0	0	1	-1	-1	0	0	1	0
V ₅	0	0	0	0	0	1	-1	-1	0	1
V ₆	-1	0	0	0	0	0	1	0	0	0

B *
$$(I_1 ... I_{10})^T = 0$$

$$\begin{cases} I_1 - I_2 + I_8 - I_9 = 0 \\ I_2 - I_3 + I_5 - I_{10} = 0 \\ I_3 - I_4 = 0 \end{cases}$$

$$= \begin{cases} I_1 - I_2 + I_8 - I_9 = 0 \\ I_2 - I_3 + I_5 - I_{10} = 0 \\ I_4 - \overline{I_5} - I_6 + I_9 = 0 \\ I_6 - I_7 - I_8 + I_{10} = 0 \\ -I_1 + I_7 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} I_1 - I_2 + I_8 - I_9 = 0 \\ I_2 - I_3 + I_5 - I_{10} = 0 \\ I_3 - I_4 = 0 \\ I_6 - I_7 - I_8 + I_{10} = 0 \\ -I_1 + I_7 = 0 \end{cases}$$

6)
$$3akoh Oma: (IRn (IR5) = I_nR_n)$$

$$\begin{cases} E1 = -IR2 - IR3 - IR4 - IR6 - IR7 \\ E2 = -IR3 - IR4 \\ IR2 + IR3 + IR4 + IR5 + IR7 = 0 \\ IR2 + IR3 + IR4 - IR9 = 0 \\ IR3 + IR4 + IR6 - IR10 = 0 \end{cases}$$

7) Совместная система:

$$\begin{cases} I_1 - I_2 + I_8 - I_9 = 0 \\ I_2 - I_3 + I_5 - I_{10} = 0 \\ I_3 - I_4 = 0 \end{cases}$$

$$I_6 - I_7 - I_8 + I_{10} = 0$$

$$-I_1 + I_7 = 0$$

$$E1 = -IR2 - IR3 - IR4 - IR6 - IR7$$

$$E2 = -IR3 - IR4$$

$$IR2 + IR3 + IR4 + IR5 + IR7 = 0$$

$$IR2 + IR3 + IR4 - IR9 = 0$$

$$IR3 + IR4 + IR6 - IR10 = 0$$

10 уравнений и 10 неизвестных – токи I₁ ... I₁₀. Е_{1,2}, R_{2...10} - известны.

Задание №7:

Построить максимальный поток по транспортной сети.

1) Полный поток:

$$S_1 = V_1 - V_2 - V_3 - V_4 - V_5 \qquad \min \{3, 3, 10, 12\} = 3$$

$$S_2 = V_1 - V_3 - V_4 - V_5 \qquad \min \{11, 10\text{-}3, 12\text{-}3\} = 7$$

$$S_3 = V_1 - V_9 - V_4 - V_5 \qquad \min \{7, 3, 12\text{-}3\text{-}7\} = 2$$

$$S_4 = V_1 - V_9 - V_5 \qquad \min \{7\text{-}2, 6\} = 5$$

$$S_5 = V_1 - V_8 - V_7 - V_6 - V_5 \qquad \min \{4, 4, 9, 12\} = 4$$

$$S_6 = V_1 - V_7 - V_6 - V_5 \qquad \min \{9, 9\text{-}4, 12\text{-}4\} = 5$$

$$\Phi_{\PiOAHbi\check{\mu}} = 12 + 9 + 5 = 26$$

2) Максимальный поток:

Увеличивающие цепи:

$$\Delta_1 = \min \{11-7, \underline{3}, 2, 1\} = 1 (V_1 - V_3 - V_2 - V_9 - V_5)$$

$$\Delta_2 = \min \{9-5, \underline{4}, 3, 2, 3\} = 2 (V_1 - V_7 - V_8 - V_9 - V_6 - V_5)$$

 $\Phi_{MGKC} = 26 + 2 + 1 = \underline{29}$

Задание № 8:

Нахождение компонент сильной связности графа

Теоретические сведения. Описание алгоритма.

Задана матрица смежности ориентированного графа $A^{[1]}$. По итерационному алгоритму Уоршалла найти матрицу односторонней связности орграфа $T^{[2]}$ по матрице смежности A. Рассчитать матрицу сильной связности $S^{[3]}$ через матрицы T и T^T . В соответствии с алгоритмом по нахождению компонент сильной связности $S^{[4]}$ вычислить компоненты сильной связности ориентированного графа A.

[1] — Квадратная матрица порядка n (n — число вершин): $A = ||a_{ij}||$ с элементами

$$a_{ij} = \begin{cases} 1, \text{ если } \exists < \text{Vi, } \text{Vj} > \in X \\ 0 \text{ в противном случае} \end{cases}$$

[2] — Матрица односторонней связности $T = ||t_{ij}||$ орграфа - квадратная матрица порядка n с элементами

$$t_{ij} = \begin{cases} 1, \text{ если } \exists \text{ путь из } Vi \text{ в } Vj \in X \\ 0 \text{ в противном случае} \end{cases}$$

Итерационный алгоритм Уоршалла: находим $\mathsf{T}^{(0)}$, $\mathsf{T}^{(1)}$, ..., $\mathsf{T}^{(n)} = \mathsf{T}$

$$T^{(0)} = E V A;$$
 $T^{(k)} = ||t_{ij}^{(k)}||, t_{ij}^{(k)} = t_{ij}^{(k-1)} V (t_{ik}^{(k-1)} \& t_{kj}^{(k-1)})$
 $T^{(n)} = T$

 $[3] - S = ||s_{ij}||$ - матрица сильной связности вычисляется через матрицу односторонней связности Т по формуле:

$$S = T \& T^T$$

- [4] Алгоритм нахождения компонент сильной связности орграфа по матрице сильной связности S.
- 1. В матрице S обнуляем столбцы (можно строки), у которых в первой строке стоят единицы. Получаем матрицу S_1 . Соответствующие единицам первой строки номера вершины принадлежат первой компоненте связности, k=1.
- 2. Если $S_1 \not\equiv (0)$, то k = k + 1. Находим не нулевую строку S. Пусть ее номер i_1 . Соответствующие единицам i_1 строки номера вершин принадлежат второй компоненте связности. В матрице S_1 обнуляем столбцы (строки), у которых в строке i_1 стоят единицы. Получаем матрицу S_2 . Процесс оканчивается, когда матрица $S_t = (0)$.

Логическая блок-схема алгоритма

Оценка сложности алгоритма

Построение матрицы односторонней связности Т по алгоритму Уоршалла имеет сложность $O(n^3)$ по числу вхождений цикла. При нахождении матрицы S сложность $O(n^2)$. Определение компонент сильной связности - $O(n^3)$. Наибольшую сложность представляет функция раскраски ребер в один цвет с компонентами сильной связности. Необходимо определять, \in ли проверяемая вершина одному набору компоненты связности. Максимальная сложность — $O(n^4)$.

Тестовые примеры. Скриншоты программы.

<u>Пример №1.</u> Вариант 2 из номера 1 курсовой работы.

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

1) Рассчитаем матрицу Т для этого примера

$$T^{(0)} = E \lor A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$T^{(1)} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1$$

2) Матрица сильной связности S:

$$S = T \& T = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

3) Компоненты сильной связности:

1-я ксс: {1, 2} 2-я ксс: {3, 4}

(скриншоты программы в конце)

Пример №2. Матрица смежности порядка 5.

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

1) Рассчитаем матрицу Т для этого примера

$$T^{(0)} = E \lor A = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$T^{(1)} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$T^{(2)} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$T^{(3)} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$T^{(4)} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$T^{(5)} = T = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

2) Матрица сильной связности S:

$$S = T \& T^{T} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

3) Компоненты сильной связности:

1-я ксс: {1, 3, 5}

2-я ксс: {2}

3-я ксс: {4}

1 пример:

2 пример:

Примеры прикладных задач.

Существует n-е количество доступных аэропортов. Есть матрица смежности, задающая их связи между собой. Команда самолета всегда должна иметь сведения о доступных площадках для посадки. Компоненты сильной связности могут помочь выделить такие места. Требуются дополнительные параметры расположения вершин. Так как самолет выступает в качестве одной из них, и матрица смежности будет изменяться в течение полета.

Создание инфраструктуры с учетом единственности компоненты связности. Должны быть выстроены связи между каждым объектом. Программа по наличию текущих связей может определить, есть ли путь между каждым объектом в наборе. Может применено при построении обслуживающих предприятий, отделов полиции, других структур экстренного назначения, где необходимо двусторонее взаимодействие.

Список литературы:

- 1. Методические указания к выполнению курсовой работы по теории графов Смерчинская С.О. Яшина Н.П.
- 2. Источники из интернета для создания программы:
 - https://habr.com/ru/
 - https://matplotlib.org/
 - https://ru.wikiversity.org/wiki/Курс по библиотеке Tkinter языка Python
 - https://pythonworld.ru/numpy/1.html
 - https://ru.stackoverflow.com/

Оглавление:

Тутульный лист	1
Условия заданий	2
Выполнение курсовой	5
Задание №1	5
Задание №2	6
Задание №3	7
Задание №4	8
Задание №5	9
Задание №6	10
Задание №7	13
Задание №8 (Индивидуальное)	15
Список литературы	21
Оглавление	21