Exercices on Linear Error-correcting Codes

Éric Filiol

ECC3 - 2013/2014

Exercice 1.- In order to show that $A_q(n,d)=M$ it is enough to show that $A_q(n,d)\leq M$ and then find a specific q-ary (n,M)-code $\mathcal C$ for which $d(C)\geq d$, which shows that $A_q(n,d)\geq A_q(n,d(C))\geq M$. Let $\mathcal C$ be a binary (4,M,3)-code. We assume that $\mathcal C$ contains the $\mathbf 0=00...00$ codeword. Prove that $A_2(4,3)=2$.

Exercice 2.- Let G be the generator matrix for the Hamming code $\mathcal{H}_2(3)$

$$G = \left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

How do you encode the string $x=1101\,$? Give the parity-check matrix P and the parity-check equations.

Exercice 3.- Let $\mathcal C$ be the ternary code whose generator matrix is given by

$$G = \left(\begin{array}{rrr} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{array}\right)$$

Write out all the codewords for this code and give the parameters of this code.

Exercice 4.- Let $\mathcal C$ be the 5-repetition code (k=1,n=5). Give the parity-check matrix for this code and well as the parity-check equations. Give the codewords of $\mathcal C$.

Exercice 5.- Let $\mathcal C$ a code with generator matrix given by

$$G = \left(\begin{array}{rrr} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

Give a standard array for C. We received the string y=1111 for the message x being sent. How do you decode y and what is the message x?

Exercice 6.- A binary code C is described by its parity-check matrix

$$P = \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$$

- How would you encode the message 0001101?
- How would you decode the received vectors 0000111 and 0001110?
- Give the parameters n, M, d of this code.

Exercice 7.- A binary code C is described by its parity-check matrix

$$P = \left(\begin{array}{ccccccc} 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 \end{array}\right)$$

- Construct the syndrome table for \mathcal{C} .
- Decode the received vectors 1111111, 1101011, 0110111 and 0111000?
- The channel error probability is p=0.015. Give $P[\mathsf{correct\ decoding}]$ and $P[\mathsf{undetected\ error}]$ probabilities.