

Today's Learning Goals

- Understand the role of the Transportation Division
- Understand the technical skills of the Division
- Understand the Division's role in policy discussions
- Understand the benefits of the Division's involvement in neighborhood planning efforts
- Understand the Division's role in ULURP applications with transportation, parking, loading or internal street components

TD Planning Objectives

TD Transportation Planning Objectives

- Improve safety and efficiency of transportation networks
- Increase mobility of people and accessibility of places
- Enhance public realm
- Improve access to housing and jobs
- Analyze transportation impacts of environmental review
- Assist with site plans and technical requirements of ULURP
- Assist with parking requirements of zoning
- Improve integrity and usability of transportation planning data

Encompass all Aspects of Mobility

- Subway system (part of most people's commute)
- Bus network
- Regional rail
- Traffic congestion
- Traffic safety
- Pedestrian and bike infrastructure
- Taxis and app-based for-hire vehicles
- Emerging modes (bike-share, micromobility, e-vehicles, ferry)

Transportation Division Work Scope

NYC Land Use Policy

 Provide technical support and expertise in the area of transportation for a specific site or at the neighborhood level

City and Regional Trends and Research

 Analyze transportation related datasets that can inform the decision-making process on policy issues and development density levels

Collaborative Projects

 Collaborate with other divisions and government agencies as DCP develops projects and proposals details

NYC Land Use Policy

- Transportation impact analysis
- Technical analysis
- Rezonings
- Citywide and neighborhood studies
- Private applications
- Parking policy
- Freight policy
- Manhattan core parking special permits

Workflow for Transportation Studies

1. Background research and meeting with DCP borough planner

- Determine if previous transportation studies or counts were done in study area
- Understand DCP's goals for land use actions

2. Data collection and maps to identify key locations

- Crash Locations
- Transportation networks
- Google Maps (real-time traffic, road configuration)
- Major land uses (existing and proposed)
- Future capital projects

3. Field visit(s) to key locations and corridors

- Observe auto, pedestrian and bike behaviors at key locations
- Visit study area at peak periods to determine where LOS counts should be done

4. Additional research (if needed)

- Conduct field work and traffic counts
- Perform traffic modeling, simulation, and LOS analysis
- Host charrette(s) for community input
- Research CTPP Census Data

5. Preliminary recommendations

- Identify key locations for roadway or network improvements
- Meet as needed with DCP divisions, operating agencies, community to discuss recommendations

6. Final recommendations

- Document final recommendations, including drawings for intersection improvements
- Provide next steps

Neighborhood Study: Jerome Avenue Rezoning

- Complementary to the neighborhood study
- Emphasis on pedestrian environment
 - Traffic calming
 - Walkability
 - Plaza space
- "Under the El" treatments
- Work with irregular street geometry and hilly terrain

Neighborhood Study: Jerome Avenue Rezoning

- Pedestrian safety measures and amenities added
- Bike route converted to a parking-protected lane.

Transportation Analysis for New Development

4-Step Framework

Data Input

Land use type by square feet or other metric such as housing units or school seat

Data Input

Mode split data from Census, CEQR documents and travel survey, etc.

Data Input

CTPP origindestination data, etc.

Data Input

Street network, transit routes, etc.

1. Trip Generation

Trip generation number of trip rates by land use

2. Mode Choice

Calculate the number of trips by the transportation mode used

3. Trip Distribution

Origin-destination patterns by mode (e.g. what geographies are trips coming from and going to)

4. Trip Assignment

Allocate the trips to a route between origin and destination, and determine how the network will be affected

Output

Traffic/Transit/ Pedestrian Level of Service

Data Input

Trip generation rates based on previous CEQR documents and Census, etc.

Technical Analysis Examples

Traffic Engineering

- We work with consultants to perform traffic counts
- Highway Capacity Software (HCS)
 - Level of service (LOS) analysis for individual intersections
- Synchro traffic modeling and simulation
 - Assess the performance of a transportation system
 - Produce visual demonstrations of present and future scenarios.

Transportation Engineering

- AutoCAD and AutoTURN to determine technical feasibility
- Review parking garage layouts and site planning
- Manhattan Core off-street parking special permits
- Pedestrian analysis
- Utilization for buses

Gowanus Intersection Level of Service Analysis

AutoTurn Analysis: 40' Truck vs Car

Site Planning Example: Whitestone Lanes Automated Parking

Concerns and Questions:

- 1. Massive curb cut
 - ~140 ft. wide
 - Pedestrian safety concerns
- Purpose of the bypass lane?
- Potential to consolidate and condense the ingress and egress lanes?
- Potential to move the loading berths further south?
- 2. Truck loading
- When? How often?
- Potential conflicts with the traffic on Farrington?
- How does truck loading serve the two separate commercial uses?

City and Regional Trends and Research

- Commuting patterns
- Transit accessibility
- Population trends
- Public transportation
- Roadway congestion and safety
- Bike, pedestrian, ferry studies
- App-based for-hire vehicles
- Autonomous, electric vehicles
- Micromobility
- Accessibility/ ADA studies

Dataset Stewardship

We collect, compile, update and process transportation-related datasets, and ensure that they are formatted for use by the rest of the agency.

Transit

- Subway lines and stations
- Bus routes and stops
- Ridership by mode
- Station ADA accessibility
- Rail, PATH, AirTrain, Ferry, etc.

Bike and Ped

- Bike Routes
- Bike racks
- Citi Bike
- Bike Counts
- Pedestrian Counts
- City bench locations

Road Safety

- Crash data
- Vision Zero safety measures

Parking

- On street parking regulations
- Off Street parking facilities

Other

- Truck Routes
- Wayfinding signage
- Traffic Counts

Data Analysis: Covid Trends MTA Subway & Bus System-wide Ridership Changes

During the week of 7/27, weekday ridership for both subway and bus were up slightly, while weekend ridership was down.

Data Analysis: Regional Travel Shed – World Trade Center 2017

Transit Travelshed tool can be found at: <u>Transit Travelshed (nycplanning.github.io)</u>

Data Analysis: Subway Ridership Trends

- In 2015, subway ridership reached a historical high point. However, 2016 saw the first subway ridership dip since 2009.
- In 2020, due to the pandemic, the subway ridership went down dramatically to the level in 1910s

Data Analysis: Growth of App-based Ride Services

- In 2016, For-Hire Vehicle trips started to exceed Yellow taxi trips, and they continue to increase.
- In recent years, there has been an increase in shared (or "pooled") trips with services such as Uber Pool and Lyft Line which reduce the perpassenger cost of a trip.

Source: NYCTLC

Ongoing Bike Projects

Increase access and bicycling as a mode of transportation

East Flatbush (Brooklyn)

Soundview (Bronx)

- Work with NYCDOT to expand the bicycle network in priority areas
- Perform initial site visits, suggest potential routes and lane configurations
- Typically work within Community Board boundaries
- Assist DOT with public outreach and route selection
- Final design done by DOT

Ongoing Micromobility Study

- Electric micromobility (e-bikes, escooters, electric cargo bikes, etc.) is gaining rapid adoption around the world and in New York City
- Small, lightweight modes that run on electric batteries at low speeds.
- Opportunities for
 - Congestion mitigation
 - Green house gas emissions mitigation
 - The creation of a more equitable transportation network by allowing for expansions in accessibility.

Collaborative Projects within DCP

- Neighborhood plans and City-wide studies with Borough Offices
 - Embedded planners
 - Bronx: Yijun Ma
 - Brooklyn: Lise Dorestant
 - Manhattan: Conor Clarke
 - Queens: Abraham Abreu
 - Staten Island: Olga Olovyannikov
- Street design with Urban Design
- Travel shed studies with HED and population
- Strategic regional transportation planning projects with population, regional planning, borough offices
- Open Restaurant Text Amendment with regional planning and urban design
- ZFA (Zoning for Accessibility) with zoning

Collaborative Projects outside of DCP

- Bike projects with CDOT
 - Neighborhood bike infrastructure planning studies
 - Last-mile bike mode-shift opportunities
- Mayor's jobs plan
 - Parking survey and freight research with CDOT
- Transit intercept research for Downtown Brooklyn and Long Island City with EDC
- NYMTC Committees including Safety and Best Practice Model (BPM)
- Serves as a consultant for NYMTC on the Regional Transportation Plan (RTP)
- Other interagency coordination: SDOT, MTA, DPR

Current and Future Research

- Ongoing Covid-19 travel trends and transit impacts
 - Story map of 2020 travel trends: https://storymaps.arcgis.com/stories/9ae470177d134f7fb42dac3ed61e37 ad
- Employment and commuting patterns / relationship to established and emerging job centers / impacts of WHF on transit demand
- Car ownership patterns / relationship to parking policy and demographics
- Travel patterns for app-based ride services (Uber, Lyft)/ including "last-mile" mode shift opportunities; "pooled ride" trends; and relationship to subway ridership decline
- New technologies- autonomous cars, electric vehicles
- Changes in patterns of freight, loading, and movement of goods due to increase in e-commerce and Covid
- Establish framework to discuss the "15-minute/60-minute city" concept

How to Reach Us

Neighborhood Planning Studies and Site-specific Research

Set up a meeting with us early on in the planning process (contact <u>Jack Schmidt</u> or <u>Laura Smith</u>).

Quick Response and Data

- For information on past studies we have done, contact <u>Jack Schmidt</u>.
- For transportation data, contact Karen Johnson.
- For traffic engineering issues, contact Olga Olovyannikov.

Transportation Division Contacts

Laura Smith **Deputy Director**

Olga Olovyannikov Traffic Engineering

Karen Johnson **Transportation Data**

Embedded Planners

Lise Dorestant Brooklyn

Yijun Ma Bronx

Conor Clarke Manhattan

Abraham Abreu Queens

Olga Olovyannikov Staten Island

