

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE ECONOMÍA Y ADMINISTRACIÓN INSTITUTO DE ECONOMÍA

Profesor: Alexandre Janiak

Teoría Macroeconómica I - EAE320B Leonardo Montoya (lalms@uc.cl) - Ignacio Rojas (irojasking@gmail.com)

Ayudantia 8 - OLG y estabilidad

1. Modelo de Generaciones Traslapadas (OLG)

Considere un modelo de generaciones traslapadas. El tiempo es discreto y el horizonte de la economía es infinito. En cada uno de estos periodos nace una cierta cantidad de agentes que viven dos periodos, esto es, existen dos tipos de consumidores: jóvenes y viejos. Suponga que la población crece a una tasa η , es decir, en el periodo t+1, la población de jóvenes que nace es $N_{t+1} = (1+\eta)N_t$, con N_0 dado. Estos agentes nacen con riqueza igual a cero. La utilidad viene dada por:

$$U = u\left(c_t^j\right) + \beta u\left(c_{t+1}^v\right) \tag{1}$$

donde

$$u(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma}, \quad \sigma > 1 \tag{2}$$

Los agentes sólo trabajan cuando son jóvenes, recibiendo un salario w_t . Los agentes pueden ahorrar a una tasa r_t cada periodo. Los precios w_t y r_t están determinado por la demanda de los factores de la firma representativa. La función de producción de la firma representativa es

$$F(K_t, N_t) = K_t^{\alpha} N_t^{1-\alpha}, \quad \alpha \in (0, 1)$$
(3)

- (a) Plantee el problema del consumidor con sus restricciones y halle el ahorro para los jóvenes.
- (b) ¿Qué pasa con la proporción del ingreso destinada al ahorro ante un cambio en r_t ?
- (c) ¿Cuál es el consumo en la vejez?
- (d) Plantee el problema de la firma y expresiones para los precios w_t y r_t en función de capital per cápita.
- (e) Halle una expresión para el movimiento de k_{t+1} . Explique la evolución de la economía, para un nivel per capital inicial que se encuentra por debajo del estado estacionario k^* . [Considere que $0 < k_0 < k^*$]

2. Estabilidad de la Deuda

En este problema conviven un gobierno y un consumidor que vive infinitamente en una economía con mercados perfectos. El consumidor resuelve el siguiente problema:

$$\max_{\{\mathbf{c}_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \tag{4}$$

s.a.

$$c_t + b_{t+1} + \tau_t \le y + (1 + r_t)b_t \tag{5}$$

$$b_0 \text{ dado},$$
 (6)

donde \mathbf{x}_t denota las variables de control del agente en el periodo t, y una dotación fija de bienes de consumo, b_t los bonos del gobierno, r_t la tasa de interés pagada sobre los bonos y τ_t un impuesto de suma alzada fijado mediante una regla ad-hoc. Por último, $\beta \in (0,1)$ refiere al factor de descuento subjetivo del agente.

El gobierno por su parte consume una cantidad de bienes g cada periodo. El gasto en bienes del gobierno es financiado según la siguiente restricción presupuestaria:

$$b_{t+1} + \tau_t \ge g + (1 + r_t)b_t \tag{7}$$

- (a) Encuentre e interprete económicamente la condición de primer orden del problema del consumidor.
 - (b) Usando la condición de vaciamiento del mercado de bienes, encuentre la trayectoria de consumo óptimo c_t .
 - (c) Emplee las condiciones de equilibrio que encontró en sus respuestas anteriores para mostrar que la trayectoria de la deuda del gobierno es:

$$b_{t+1} = (g - \tau_t) + \beta^{-1}b_t \tag{8}$$

2. (a) A continuación, definiremos los impuestos como una función del nivel de endeudamiento de la forma:

$$\tau_t = h(b_t) = \overline{\tau} + \tau_1 (b_t - \overline{b})^3 \tag{9}$$

donde $\tau_1 > 0$ y $\overline{\tau}$ y \overline{b} son respectivamente los impuestos y la cantidad de bonos que emite el gobierno en estado estacionario. Utilizando las ecuaciones (8) y (9), encuentre una expresión de \overline{b} como función de $\overline{\tau}$ y otros parámetros.

(b) Considere un estado estacionario en que los impuestos y la cantidad de bonos son $\bar{\tau}$ y \bar{b} . Muestre que, a partir de las ecuaciones (8) y (9), aplicando una aproximación de Taylor de primer orden a la trayectoria de la deuda en torno a este estado estacionario podemos escribir:

$$b_{t+1} - \bar{b} = \beta^{-1}(b_t - \bar{b}) \tag{10}$$

(c) Considere un estado estacionario en que los impuestos y la cantidad de bonos son $\overline{\tau}$ y \overline{b} . ¿Es este estado estacionario localmente estable? Justifique su respuesta.

Figura 1: Estabilidad Global

- (d) Basándose en el análisis local que ha hecho en las preguntas anteriores, ¿qué deberíamos esperar con la evolución de la deuda del gobierno si $b_0 > \bar{b}$? Explique la intuición económica detrás de esta dinámica.
- (e) Observe en la figura 1 un análisis de estabilidad global de la trayectoria de endeudamiento. La línea continua gruesa representa la trayectoria de b_{t+1} de acuerdo con (8) y (9), y la linea cortada representa la aproximación lineal en (10). Además, se ha graficado la recta de 45 grados así indicada en el gráfico. Discuta cuáles son los estados estacionarios y su estabilidad respectiva para el caso global.

Seguimiento 8

(a) Ahora definiremos los impuestos como una función del nivel de endeudamiento de la forma:

$$\tau_t = h(b_t) = -(b_t - a)(b_t - \overline{b})(b_t - c) + b_t \tag{11}$$

Usando las ecuaciones (8) y (11), encuentre una aproximación lineal de primer orden para la cantidad de bonos que emite el gobierno, determinando una expresión para en (12):

$$b_{t+1} - \bar{b} = \gamma (b_t - \bar{b}) \tag{12}$$

Discuta la estabilidad local del estado estacionario para valores de los parámetros tales que $\gamma = 0$.

- (b) Supongamos que los valores de los parámetros son tales que $\gamma = 0$. Utilice la figura 2, que considera la relacion entre b_{t+1} y b_t según las ecuaciones (8) y (11) (linea gruesa) y según su versión linealizada en (12) (linea cortada), para encontrar los estados estacionarios y discutir su respectiva estabilidad.
- (c) Considere que la deuda inicial $b_0 \in (\bar{b}_1, \bar{b})$. Explique como difiere su conclusión sobre la velocidad de convergencia al estado estacionario según si considera la versión linealizada del modelo (dada

Figura 2: Estabilidad Global

por la ecuación (12)) o la versión no aproximada (dada por las ecuaciones (8) y (11)). Deduzca una ventaja del análisis global sobre el análisis local para esta segunda versión del modelo.