ÔN THI GIỮA KỲ VI TÍCH PHÂN 2B HỆ ĐẠI TRÀ HOC KỲ 2 NĂM HOC 2022-2023

DẠNG 1. TÌM ĐẠO HÀM RIÊNG CẤP 1

<u>Chú ý:</u> Tìm đạo hàm riêng cấp 1, cấp 2, 3 theo công thức đạo hàm, áp dụng cho biểu thức hàm sơ cấp

$$(u^{\alpha})' = \alpha u^{\alpha - 1} u'$$

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}; \left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$(e^{u})' = e^{u} u'; (a^{u})' = a^{u} u' \ln a$$

$$(\ln|u|)' = \frac{u'}{u}; (\log_{a} u)' = \frac{u'}{u \ln a}$$

$$(\sin u)' = u' \cos u; (\cos u)' = -u' \sin u$$

$$(\tan u)' = u'(1 + \tan^{2} u) = \frac{u'}{\cos^{2} u}$$

$$(\arctan u)' = -\frac{u'}{1 + u^{2}}$$

$$(\operatorname{arccot} u)' = -\frac{u'}{1 + u^{2}}$$

$$(\operatorname{arccot} u)' = -\frac{u'}{1 + u^{2}}$$

-Khi tính f'_x : xem y là hằng số (và ngược lại)

-Đạo hàm hàm ẩn: Hàm số ẩn z = z(x; y) xác định bởi phương trình F(x; y; z) = 0 thì

$$z'_{x} = -\frac{F'_{x}}{F'_{z}}; z'_{y} = -\frac{F'_{y}}{F'_{z}}$$

-Để ý

$$f_x' = f_x = \frac{\partial f}{\partial x}; \ f_y' = f_y = \frac{\partial f}{\partial y}.$$

Bài 1. Tính các đạo hàm riêng cấp một của hàm

$$f(x; y; z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

<u>Bài 2.</u> Cho hàm số $z = \ln(x^4 + 5y^4)$, $(x; y) \neq (0; 0)$. Tính $A = x \cdot z'_x + y \cdot z'_y$.

<u>Bài 3.</u> Cho $z = xe^{y+x^3}$. Tính $z'_x(1;1)$; $z'_y(1;1)$.

<u>Bài 4.</u> Tính $f_x'(1;0)$, biết rằng $f(x;y) = \frac{xe^{x^2y}}{x^2+y^2}$.

Bài 5. Cho hàm ẩn z = z(x; y) xác định bởi phương trình $\cos(xy) + z + e^z = 0$. Chứng minh rằng $xz'_x - yz'_y = 0$.

1

DẠNG 2. TÌM ĐẠO HÀM RIÊNG CẤP 2

Chú ý:

-Tìm đạo hàm riêng cấp 2 theo công thức đạo hàm, áp dụng cho biểu thức hàm sơ cấp -Để ý:

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right).$$

<u>Bài 6.</u> Tính đạo hàm riêng $\frac{\partial^2 u}{\partial x \partial y}$ nếu $u = xy \ln (xy)$.

Bài 7. Cho

$$f(x; y; z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Chứng tỏ

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

<u>Bài 8.</u> Hãy kiểm hàm $u(x;t) = [2\cos(ct) + 3\sin(ct)]\sin x$, với c là một hằng số thực, thỏa phương trình truyền sóng

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

Bài 9. Chứng minh rằng hàm số $u(x;t) = e^{-16t}\cos(2x+3)$ thỏa mãn phương trình truyền nhiệt

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}.$$

<u>Bài 10.</u> Hàm f thỏa phương trình $f_{xx} + f_{yy} = 0$, phương trình Laplace, được gọi là một hàm điều hòa. Hỏi hàm số sau có phải hàm điều hòa không?

$$f(x; y) = \arctan\left(\frac{y}{x}\right)$$
.

DẠNG 3. TÌM ĐẠO HÀM RIÊNG CẤP 3

Chú ý:

-Tìm đạo hàm riêng cấp 2 theo công thức đạo hàm, áp dụng cho biểu thức hàm sơ cấp -Để ý

$$f_{xyy} = (f_{xy})_y = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y \partial x} \right) = \frac{\partial^3 f}{\partial y^2 \partial x}.$$

Bài 11. Cho
$$f(x; y) = x^4 y^2 - x^3 y$$
. Tìm f_{xxx} ; f_{xyx} .

Bài 12. Cho
$$f(x; y) = \sin(2x + 5y)$$
. Tìm f_{yxy} .

Bài 13. Cho
$$f(x; y; z) = e^{xyz^2}$$
. Tìm f_{xyz} .

Bài 14. Cho
$$g(r; s; t) = e^r \sin(st)$$
. Tìm g_{rst} .

Bài 15. Cho
$$u = e^{r\theta} \sin \theta$$
. Tìm $\frac{\partial^3 u}{\partial r^2 \partial \theta}$.

DẠNG 4. TÌM ĐẠO HÀM RIÊNG DỰA VÀO ĐỊNH LÝ CƠ BẢN CỦA GIẢI TÍCH

Chú ý: Định lý cơ bản của giải tích (phép tính vi tích phân)

$$\left(\int_{a}^{x} f(t)dt\right)' = f(x); \left(\int_{u(x)}^{v(x)} f(t)dt\right)' = f[v(x)] \cdot v'(x) - f[u(x)] \cdot u'(x)$$

Bài 16. Cho

$$f(x;y) = \int\limits_{x}^{y} \sqrt{1+t^3}dt.$$

Tìm
$$\frac{\partial f}{\partial x}(1;2)$$
 và $\frac{\partial f}{\partial y}(1;2)$.

Bài 17. Tính các đạo hàm riêng cấp 1 của các hàm số

a)
$$F(x; y) = \int_{x}^{y} \cos(e^{t}) dt$$
 b) $F(\alpha; \beta) = \int_{\alpha}^{\beta} \sqrt{t^{3} + 1} dt$.

Bài 18. Tính z'_x ; z'_y của hàm số

$$z = \int_{xy}^{\frac{x}{y}} t^2 \sin 2t \, dt.$$

DẠNG 5. TÍNH ĐẠO HÀM HÀM HỢP THEO QUY TẮC MẮC XÍCH TẠI 1 ĐIỂM

+Quy tắc mắc xích

 $-N\acute{e}u\ z=z(x;y)\ v\grave{a}\ y=y(x)\ th\grave{i}$

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$

 $-N\acute{e}u\ z=z(x;y)\ v\grave{a}\ x=x(t);y=y(t)\ thì$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

 $-N\acute{e}u\ z=z(x;y)\ v\grave{a}\ x=x(s;t);y=y(s;t)\ th\grave{a}$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s};$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$$

Bài 19. Cho biết
$$z = x \ln(x^2 + y^4)$$
; $x = 2s + 3t$; $y = 5s - 3t$. Tìm $\frac{\partial z}{\partial s}$; $\frac{\partial z}{\partial t}$

Bài 20. Cho
$$z = f(x; y); x = u - v; y = v - u$$
. Chứng tổ $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = 0$.

- **Bài 21.** Hàm số z = z(u; v) khả vi trên \mathbb{R}^2 , có $z'_u(1; -1) = 2$; $z'_v(1; -1) = 3$. Đặt $f(x) = z(x^2; x^3)$, tính f'(-1).
- **Bài 22.** Cho hàm số z=z(x;y) có các đạo hàm riêng cấp một liên tục, ở đó $\begin{cases} x=r\cos\varphi\\ y=r\sin\varphi \end{cases}$. Chứng minh rằng

$$\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} = \left(\frac{\partial z}{\partial r}\right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial z}{\partial \varphi}\right)^{2}.$$

DẠNG 6. ĐẠO HÀM THEO HƯỚNG

Chú ý:

- -Tìm đạo hàm theo hướng cụ thể tại một điểm cụ thể.
- -Xác định hướng mà đạo hàm đạt trị và tìm giá trị đạo hàm này.
- -Giá trị lớn nhất của $D_{\vec{u}}f(x)$ là $|\nabla f(x)|$, xảy ra khi $\vec{u} = \frac{\overline{\nabla f}(x)}{|\overline{\nabla f}(x)|}$. Vậy giá trị của hàm tăng nhanh nhất theo hướng của véc tơ gradient.
- -Giá trị nhỏ nhất của $D_{\vec{u}}f(x)$ là $-|\nabla f(x)|$, xảy ra khi $\vec{u} = -\frac{\overline{\nabla f}(x)}{|\overline{\nabla f}(x)|}$. Vậy giá trị của hàmgiảm nhanh nhất theo hướng đối với hướng của véc tơ gradient.
- **<u>Bài 23.</u>** Tìm đạo hàm của hàm $f(x;y) = \sqrt{x^2 + y^2}$ tại điểm (1; 2) theo hướng của véc to (3; 4).
- **Bài 24.** Xét hàm Xét hàm $f(x; y; z) = 2x^3y 3y^2z$ tại điểm P(1; 2; -1). Tìm đạo theo hướng của hàm f theo hướng từ P tới điểm Q(3; -1; 5). Theo hướng này thì giá trị của hàm f là tăng hay giảm? Theo hướng nào thì hàm tăng, giảm nhanh nhất?
- **<u>Bài 25.</u>** Cho hàm số $u = \ln (3x + 2y^2 z^3)$ và hai điểm A(1; -1; 1); B(0; 1; 3). Tính $\frac{\partial u}{\partial \vec{a}}(A)$ theo hướng \overrightarrow{AB} .

DẠNG 7. VIẾT PHƯƠNG TRÌNH TIẾP DIỆN VÀ PHÁP TUYẾN

Chú ý:

- -Viết phương trình tiếp diện và pháp tuyến, sử dụng véc tơ gradien;
- -Phương trình tiếp diện của mặt mức f(x; y; z) = c tại một điểm $(x_0; y_0; z_0)$ là

$$\nabla f(x_0; y_0; z_0) \cdot (x - x_0; y - y_0; z - z_0) = 0$$

$$Hay f_x(x_0; y_0; z_0)(x - x_0) + f_y(x_0; y_0; z_0)(y - y_0) + f_z(x_0; y_0; z_0)(z - z_0) = 0;$$

-Phương trình pháp tuyến của mặt mức f(x; y; z) = c tại một điểm $(x_0; y_0; z_0)$ là

$$\frac{x - x_0}{f_x'(x_0; y_0; z_0)} = \frac{y - y_0}{f_y'(x_0; y_0; z_0)} = \frac{z - z_0}{f_z'(x_0; y_0; z_0)}.$$

- **Bài 26.** Tìm phương trình mặt phẳng tiếp xúc với mặt cầu $x^2 + y^2 + z^2 = 14$ tại điểm (3; 1; 2).
- **<u>Bài 27.</u>** Viết phương trình tiếp diện và pháp tuyến của mặt cong (S): $x^2 + 2y^3 + yz = 0$ tại điểm M(1; 1; -3).
- **Bài 28.** Viết phương trình mặt phẳng tiếp xúc với đồ thị hàm số $z = x^3y + 2x^4y^5$ tại (x; y) = (1; 1).