USN									
-----	--	--	--	--	--	--	--	--	--

RV COLLEGE OF ENGINEERING®

Autonomous Institution affiliated to VTU
II Semester B. E. Examinations Oct-Nov 2023

NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS MODEL QUESTION PAPER Branch: AI, BT, CD, CS, CY, IS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART – A

1	1.1	For what value of b, the vector	01
		$\vec{F} = y(bx^2 + z)\hat{\imath} + x(y^2 - z^2)\hat{\jmath} + 2xy(z - xy)\hat{k} \text{ is solenoidal.}$	
	1.2	If $\phi = x^2y + y^2z + 4$, then $\nabla \phi =$	01
	1.3	Particular integral of $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = e^{3x}$ is	01
	1.4	If $x = e^{-3t}$ is the solution of the equation $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + kx = 0$ then value of k is	01
	1.5	The value of $\Delta^3[(1+3x)(1-5x)(1-4x)]$ taking interval of differencing	01
		h = 1 is	
	1.6	Construct a forward difference table for the data (0,2), (2,6), (4,7).	01
	1.7	If \vec{F} represents force acting on a particle then $\int_{c} \vec{F} \cdot d\vec{r}$ represents	01
	1.8	If \vec{F} is velocity of fluid then $\iint_{S} \vec{F} \cdot \hat{n} ds$ represents	01
	1.9	Calculate the sum of positive divisors of the integer 882.	02
	1.10	Find the remainder when $135 \times 74 \times 48$ is divided by 7.	02
	1.11	Find the directional derivative of $\phi = 3x^2 + 2y - 3z$ at (1,1,1) in the direction of $2\hat{i} + 2\hat{j} - \hat{k}$.	02
	1.12	If $\vec{F} = (x^2 + y)\hat{\imath} + (3y - 5x)\hat{\jmath}$, evaluate $\int_c \vec{F} \cdot d\vec{r}$ along the straight line from $A(0,0)$ to $B(2,0)$.	02
	1.13	The complementary function of the differential equation is $c_1 cos3x + c_2 sin3x$, then Wronskian is	02
	1.14	Given	02

x 1 3	5 7
f(x) 2 7	16 29
The value of j	f'(7) =

PART-B

2	a	Find the greatest common divisor d of the numbers 1819 and 3587 using Euclid's	6
		algorithm and then obtain the integers x and y to satisfy $1819 x + 3587 y = d$.	
	b	Solve the linear congruence $6x \equiv 15 \pmod{21}$.	4
	С	Given the public key $(e, n) = (7,51)$, encrypt plain text LIV , where the alphabets $A, B, C, \dots X, Y, Z$ are assigned the numbers $3,4,5,\dots,26,27,28$. Give the cipher text and find the private key d .	6
2	1 _		
3	a	Find the unit tangent vector s to the curve $\hat{r} = 4 \sin t \hat{\imath} + 4 \cos t \hat{\jmath} + 3t \hat{k}$ at the points $t = \frac{\pi}{6}$ and $t = \frac{\pi}{4}$. Obtain the angle between these tangent vectors.	5
	b	If $\hat{F} = \nabla(x^2y + y^2z + z^2x - xyz)$, then compute $\operatorname{div} \hat{F}$ and $\operatorname{curl} \hat{F}$ at (1,2,1).	5
	С	Find the constants a and b such that the surfaces $ax^2 - byz = ax + 2x$ and $4x^2y + z^3 = 4$ are orthogonal at the point $(1, -1, 2)$.	6
		OR	1
4	a	A particle moves along the curve C : $x = (2t^2 + 1)$, $y = (5t - 3)$ and $z = (t^2 - 5t)$; where t is the time. Find the components of velocity and acceleration at $t = 2$ in the direction of $\hat{i} + 2\hat{j} + 3\hat{k}$.	5
	b	Show that the vector $r^n \hat{r}$ is irrotational for any constant n and solenoidal only for $n = -3$.	5
	c	Compute the values of the constants a, b, c such that	6
		$\vec{F} = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + cy + 2z)\hat{k}$ is curl free vector.	
		Determine the scalar potential function ϕ such that $\vec{F} = \nabla \phi$.	
5	a	Verify Green's theorem in the plane for $\int (2x^2 - 9x^2) dx + (4x - 6xx) dx$	8
		Verify Green's theorem in the plane for $\int_c (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where c is the boundary of the region defined by $y = \sqrt{x}$ and $y = x^2$.	
			8
	h	Evaluate $\iint_S \vec{F} \cdot \hat{n} ds$, if $\vec{F} = 4y\hat{i} + 18z\hat{j} - x\hat{k}$ and S is the surface of the plane	

	b	Evaluate $\iint_S \vec{F} \cdot \hat{n} ds$, if $\vec{F} = 4y\hat{i} + 18z\hat{j} - x\hat{k}$ and S is the surface of the plane $3x + 2y + 6z = 6$ contained in the first octant.	8
		OR	
6	a	If $\vec{F} = (2x + y^2)\hat{\imath} + (3y - 4x)\hat{\jmath}$, evaluate $\oint_C \vec{F} \cdot d\vec{r}$ around the triangle in the xy plane with vertices $(0,0)$, $(2,0)$ and $(2,1)$.	8
	b	Use Stokes theorem to evaluate $\int_c \sin z dx - \cos x dy + \sin y dz$ where c is the boundary of the rectangle $0 \le x \le \pi, 0 \le y \le 1, z = 3$.	8

7	a	Solve $x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \cos(\log_e x)$.	8		
	b	Apply the method of variation of parameters to solve the ordinary differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \frac{1}{1+e^x}$	8		
	OR				

8	Τ_		8						
0	a	Obtain the general solution of the differential equation:	0						
		$2\frac{d^{3}y}{dt^{3}} - 3\frac{d^{2}y}{dt^{2}} + 6\frac{dy}{dt} - 9y = \cos^{2}\left(\frac{\sqrt{3}}{2}t\right) + t.$							
		$2\frac{1}{dt^3} - 3\frac{1}{dt^2} + 6\frac{1}{dt} - 9y = \cos^2\left(\frac{1}{2}t\right) + t.$							
	b	An electric circuit consists of an inductance of 0.1 henry, a resistance of 20 ohms							
		and a condenser of capacitance 25 micro-farads connected in series. Find the							
		charge q and the current i at any time t. Given that $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} = 0$ at $t = 0$,							
		$q = 0.05 \text{ C}, i = \frac{dq}{dt} = 0 \text{ when } t = 0.$							
		$\frac{q-0.03}{dt} = 0 \text{ when } t=0.$							
9	Ι.,	The fellowing table sives the galeties between steem gazzane and temperature	8						
9	a	The following table gives the relation between steam pressure and temperature. $T \circ C = 361 = 367 = 378 = 387 = 399$	0						
		P 154.9 167.9 191 212.5 244.2							
		Using suitable interpolation formula find the pressure at the temperature 372 and							
	b	404. The following table gives the distance in nautical miles of the visible horizon for							
		the given heights in feet above the earth's surface:							
		x = height 100 150 200 250 300 350 400							
		y = distance 10.63 13.03 15.04 16.81 18.42 19.90 21.27							
		Estimate the value of y when $x = 180$ and $x = 410$.							
		OR							
10	a	Given that	8						
		x 1.0 1.1 1.2 1.3 1.4 1.5 1.6							
		y 7.989 8.403 8.781 9.129 9.451 9.750 10.031							
		Compute the velocity and acceleration at $x = 1.1$.							
	la								
	b	b From the following data, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation method							
		Marks: 30-40 40-50 50-60 60-70 70-80							
1		Number of Students: 31 42 51 35 31							
