Low SNR FreeDV Mode

David Rowe VK5DGR

September 2, 2023

1 Introduction

After 10 years development and on air experience with various FreeDV waveforms, we would like to develop a new waveform that outperforms and replaces a variety of existing modes such as 700C/D/E and 1600. Requirements include [2]:

- 1. Better performance than SSB at 0dB SNR on MPP and MPD channels.
- 2. A single mode that can handle MPP, MPD, GEO (e.g. QO-100), and replace several existing FreeDV modes, simplifying the end user experience.
- 3. For compliance with Export Control regulations, the minimum speech codec bit rate is 700 bit/s.

It is acceptable for performance to gradually decrease as the multipath channel quality declines, but we would like the decline to be gradual, e.g. a few dB more power for operation on MPD versus MPP.

This document explores ways we can improve the existing OFDM modem waveforms in order to meet these requirements.

1.1 Glossary

Acronym	Explanation					
AWGN	Additive White Gaussian Noise - a communications					
	channel with flat frequency response and additive					
	noise					
CP	Cyclic Prefix					
FEC	Forward Error Correction					
LEO	Low earth orbit satellite channel, AWGN with large					
	freq offset and Doppler shift (high rate of change of					
	freq offset)					
GEO	Geosynchronous satellite channel, AWGN but high					
	phase noise and large freq offset					
PTT	Push To Talk - voice communications where only one					
	person is transmitting at any one time. Common in					
	two way radio but not mobile telephones					
MPP	Multipath Poor channel, 1 Hz Doppler spread, 2ms					
	delay spread, typical for US and Australian inter-					
	state propogation					
MPD	Multipath Disturbed channel, 2 Hz Doppler spread,					
	4ms delay spread, typical for UK Winter NVIS pro-					
	pogation					

Table 1: Glossary of Acronyms

 $^{^{1}\}mathrm{Can}$ be expressed as a linear ratio E_{b}/N_{0} or $10log_{10}(E_{b}/N_{0})$ dB

Symbol	Explanation	Units
\overline{B}	Noise bandwidth	Hz
B_d	Doppler spreading bandwidth for HF channel model	Hz
E_b/N_0	Energy per bit on spectral noise density	dimensionless, dB^1
N_p	Pilot insertion rate	dimensionless
R_b	Bit rate	Bits/second
R_s	Symbol rate	symbols/second
T_s	Symbol period	seconds
SNR	Signal to Noise Ratio	dB
S	Signal Power	Watts
N	Noise Power	Watts

Table 2: Glossary of Symbols

2 Modem and Channel Models

In this section we will develop theoretical models to help us explore performance limits

For practical PTT voice systems algorithmic delay is limited to a few 100ms, which limits the FEC codeword size and hence the performance of the code. For PSK channels a threshold $E_b/N_0 = 2 \,\mathrm{dB}$ and a code rate R = 0.5 is typical, where E_b/N_0 is the energy per payload data bit (coded E_b/N_0). The lowest (threshold) SNR for a viable voice link is given by:

$$\frac{S}{N} = \frac{E_b R_b}{N_0 B}$$

$$SNR = 10log_{10} \left(\frac{E_b}{N_0}\right) + 10log_{10} \left(\frac{R_b}{B}\right) \quad [dB]$$
(1)

where R_b is the payload data bit rate, and B is the bandwidth in which we measure SNR. Given Rb = 700 and B = 3000 we have:

$$SNR = 2 + 10log_{10}(700/3000)$$

= -4.3 dB (2)

This is ideal performance for an AWGN channel. In practice we must allocate some power to symbols used for synchronisation, such as pilot symbols used for frequency and phase estimation, or unique word bits used for frame synchronisation. Synchronisation algorithms often struggle at low SNRs, introducing additional "implementation" losses.

Performance on multipath channels is significantly worse, in our use cases typically 5 dB. On these channels, we may allocate some carrier power to deal with intersymbol interference (for example a cyclic prefix in OFDM modems).

A more complete model is:

$$SNR = 10log_{10} \left(\frac{E_b}{N_0}\right) + 10log_{10} \left(\frac{R_b}{B}\right) + L_p + L_{il} + L_{cp}$$
 (3)

where L_p is the loss from power allocated to pilot symbols, L_{il} is the real world implementation loss, and L_{cp} is the loss in SNR due to the power allocated to the cyclic prefix.

TODO: Discuss Available bandwidth. 2000 Hz, using QPSK we can get 4000 bits/s. Less overheads (which can be expressed as SNR or bandwidth reduction?). We have 700 bits/s source code or 1400 bits/s with rate 0.5 FEC.

2.1 Pilot symbol overhead

In this section we explore the effect of inserting pilot symbols on the threshold SNR (1). Consider a sequence of N_p-1 PSK data symbols that carry the modulated FEC codeword bits (e.g. data and parity bits) over the channel. We denote this sequence a modem *modem frame*. The frame of N_p-1 symbols has

Figure 1: Modem Frame with $N_p = 8$, the pilot of the next modem frame is also shown.

a period of $T_f = (N_p - 1)T_s$ seconds, where T_s is the period of each symbol. We wish to insert a single pilot symbol after the data symbols, creating a new frame N_p symbols long, with period $T_f' = N_p T_s$. To maintain the same payload data rate:

$$T_f = T'_f$$

$$(N_p - 1)T_s = N_p T_s$$

$$R'_s = R_s \frac{N_p}{N_p - 1}$$
(4)

where the symbol rate $R_s=1/T_s$. Expressing S/N (1) in terms of E_s and R_s :

$$\frac{S}{N} = \frac{E_s R_s}{N_0 B}$$

$$\frac{S'}{N} = \frac{E_s R'_s}{N_0 B}$$

$$= \frac{E_s R_s N_s}{N_0 B (N_p - 1)}$$

$$\frac{S'/N}{S/N} = \frac{N_p}{N_p - 1}$$
(5)

Thus when we insert pilots, the threshold S/N increases by a factor of $N_p/(N_p-1)$. Expressed in dB:

$$10log_{10}\left(\frac{S'}{N}\right) = 10log_{10}\left(\frac{S}{N}\right) + 10log_{10}\left(\frac{N_s}{N_s - 1}\right)$$

$$SNR' = SNR + 10log_{10}\left(\frac{N_p}{N_p - 1}\right)$$

$$SNR' = SNR + L_p \quad [dB]$$
(6)

where L_p can be considered the pilot symbol loss - the SNR degradation from the ideal performance (1) due to the insertion of pilot symbols. For example FreeDV 700D uses a pilot insertion rate of $N_s=8$ results in $L_p=10log_{10}(8/7)=0.58$ dB, thus we need 0.58 dB more SNR to acheive the threshold SNR for the voice link. To maintain Rs=700 data symbols/second over the channel, we require $R_s'=(700)8/7=800$ symbols/second which introduces a 100 Hz bandwidth overhead.

2.2 Cyclic Prefix Overhead

Figure 2: Construction of composite symbol with a Cyclic Prefix CP pre-pended to a shortened data symbol D'.

Now we consider the SNR overhead for the Cycle Prefix (CP) used in OFDM modems to cope with delay spread on multipath channels. To achieve our payload data rate (e.g. 700 bits/s), we send symbols D across the channel at a constant symbol rate R_s , or one symbol every $T = T_s$ seconds. To cope with delay spread, we construct a composite symbol by pre-pending a Cyclic Prefix (CP) T_{cp} seconds in duration to a new symbol D' of T'_s seconds in duration. D and D' contain the same PSK symbol, and convey the same information over the channel. The new composite symbol is now $T' = T_{cp} + T'_s$ seconds long. The CP contains no additional information, it is just a cyclic extension of the single symbol D'. Thus we still send one symbol of data over the channel every T' seconds. To maintain the payload data rate over the channel, we must send the new composite symbol at the same rate as the original symbol:

$$T = T'$$

$$T_s = T_{cp} + T'_s$$

$$R'_s = \frac{R_s}{1 - T_{cp}/T_s}$$
(7)

It can be observed that $R'_s > R_s$, to account for the portion of the composite symbol allocated to the CP. For example with $R_s = 700$, $T_s = 0.02$, $T_{cp} = 0.002$, $R'_s = 700/(1 - 0.002/0.02) = 777.78$ symbols/second. Thus additional bandwidth is required to send the composite symbol including the cyclic prefix.

The increase in symbol rate does not directly affect BER performance if E_s/N_0 remains the same. For example if $Rs' = 2R_s$ we could send the symbol across the channel in $T_s/2$ seconds at power 2S, followed by $T_s/2$ seconds of silence. The energy per symbol E_s and BER would remain the same.

For the composite symbol, the transmitter power S' is spread between the CP and D'. Given a constant power S', the energy for the symbol D' is given by:

$$E'_{s} = \frac{S'}{R'_{s}}$$

$$= \frac{S'}{R_{s}} (1 - T_{cp}/T_{s})$$
(8)

For the link BER to be maintained the energy per symbol must be unchanged, i.e. $E'_s = E_s$:

$$E_{s} = \frac{S'}{R_{s}} (1 - T_{cp}/T_{s})$$

$$\frac{S}{R_{s}} = \frac{S'}{R_{s}} (1 - T_{cp}/T_{s})$$

$$\frac{S}{N} = \frac{S'}{N} (1 - T_{cp}/T_{s})$$

$$\frac{S'}{N} = \frac{S}{N} \left(\frac{1}{1 - T_{cp}/T_{s}}\right)$$

$$SNR' = SNR - 10log_{10}(1 - T_{cp}/T_{s})$$

$$= SNR + L_{cp} \quad [dB]$$

$$L_{cp} = -10log_{10}(1 - T_{cp}/T_{s})$$
(9)

Thus to close the link with the composite symbol the S/N must be increased by a factor of $1/(1-T_s/T_{cp})$ compared to our ideal modem, to account for the energy allocated to the CP. For example FreeDV 700E has $T_s=0.02$, $T_{cp}=0.006$, giving $L_{cp}=-10log10(1-0.006/0.02)=1.55 dB$.

2.3 HF Channel Model

A common two path HF channel model [1] is given by:

$$y(t) = x(t)G_1(t) + x(t-d)G_2(t)$$
(10)

where G_1 and G_2 are two time varying, complex, Gaussian filtered random variables with *Doppler Spread* bandwidth B_d Hz, d is the path delay in seconds.

As $B_d \ll R_s$ we assume G_1 and G_2 are complex constants for the duration of a single symbol. Expressed in discrete time for the current symbol:

$$y(n) = x(n)G_1 + x(n - dF_s)G_2$$
(11)

where F_s is the sample rate in Hz. Taking the z-transform:

$$Y(z) = X(z)G_1 + X(z)z^{-dF_s}G_2$$

$$\frac{Y(z)}{X(z)} = G_1 + z^{-dF_s}G_2$$

$$H(z) = G_1 + z^{-dF_s}G_2$$

$$H(e^{j\omega}) = G_1 + e^{-j\omega dF_s}G_2$$
(12)

For OFDM, the angular frequency of carrier c is given by $\omega = 2\pi cR_s/F_s$, which can be used to derive a single complex coefficient that describes the channel for carrier c:

$$H_c = G_1 + e^{-j2\pi c R_s d} G_2 (13)$$

Lets examine the effects of intersymbol interference due to the delay spread. Consider the transmitter sample x(0) where we transition from one PSK phase ϕ_1 to the next ϕ_2 . Near the transition we can define x(n) in terms of a step function s(n):

$$x(n) = \begin{cases} e^{j(\omega n + \phi_1)}, & n < 0 \\ e^{j(\omega n + \phi_2)}, & n \ge 0 \end{cases}$$

$$= s(n)e^{j(\omega n + \phi_2)} + (1 - s(n))e^{j(\omega n + \phi_1)}$$

$$s(n) = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$
(14)

where $\omega = 2\pi c R_s/F_s$ is the frequency of OFDM carrier c. Substituting into (11):

$$y(n) = G_1 s(n) e^{j(\omega n + \phi_2)} + G_1 (1 - s(n - dF_s)) e^{j(\omega n + \phi_1)}$$

+ $G_2 e^{j(\omega (n - dF_s) + \phi_2)} + G_2 (1 - s(n - dF_s)) e^{j(\omega (n - dF_s) + \phi_1)}$ (15)

At n = 0 we have a mixture of both symbols:

$$y(0) = G_1 s(n) e^{j(\omega n + \phi_2)} + G_2 e^{j(\omega(n - dF_s) + \phi_1)}$$
(16)

However by $y(dF_s)$ the ISI from ϕ_1 has gone:

$$y(dF_s) = G_1 s(n) e^{j(\omega n + \phi_2)} + G_2 e^{j\phi_1}$$
(17)

Or more generally for $n \geq dF_s$:

$$y(n) = G_1 s(n) e^{j(\omega n + \phi_2)} + G_2 e^{j(\omega (n - dF_s) + \phi_2)}$$

$$= e^{j(\omega n + \phi_2)} [G_1 + G_2 e^{-j\omega dF_s}]$$

$$= e^{j(\omega n + \phi_2)} [G_1 + G_2 e^{-j2\pi cR_s d}]$$

$$= e^{j(\omega n + \phi_2)} H_c$$
(18)

Thus if we start detecting y(n) after the longest delay term we can recover the transmitted PSK symbol without ISI.

3 Waveform Improvements

In this section notes on (proposed) waveform improvements are presented.

The general strategy is to propose an innovation, and explore with analysis/maths and Octave simulation. Try low risk approaches to start with, then iterate. To simulate performance with voice codec, use PER=0.1, BER=0.01 voice codec threshold for modem tests alone.

3.1 Equalisation

- 1. Pilot symbols are used to the estimate channel. We require a 2 Hz bandwidth and low implementation loss L_{il} in a noisy channel.
- Each OFDM carrier experiences phase and amplitude shifts due to the channel impulse response. For example consider two path simulation model (TODO ref, subsection), which has two time varying complex coefficients and delay.
- 3. Consider the two path HF channel model, comprised of two time varying complex coefficients, with bandwidth (-20dB) of B = 1Hz (MPP). The model is considered stationary over one symbol.
- 4. We should be able to reconstruct a 1 Hz bandwidth signal at 1 Hz sample rate, which suggests a low pilot insertion rate. Other factors are adequate (in a modem performance sense) estimation in the presence of AWGN channel noise, and the short window of samples (at least fwd in time) that we can use, e.g. 4 samples total.
- 5. Each coefficient of the channel h_n is a complex random variable with bandwidth B. Consider the channel model applied to steady state symbol (or a time varying PSK signal after ISI has settled). Two terms of bandwidth B add linearly, so by linearity the result also has bandwidth B. The sum is a random modulation of bandwidth B about the symbol centre frequency. The Doppler bandwidth B therefore defines the bandwidth required for equalisation, independent of delay spread.
- 6. One caveat if B an appreciable fraction of Rs the DFT orthogonality may break down to some extent as energy falls into adjacent DFT bins. This could be explored by simulation too (or find a reference).
- 7. 700D samples pilots at $1/(N_pTs) = 6.25$ Hz, which should be adequate for our target channels. This will result in an acceptably low L_{ps} SNR overhead.

- 8. 700D currently uses a block average over a 2D array of 12 pilots, this can be interpreted as a filter with all coefficients $c_i = 1/12$. We may be able to do better with a different set of coefficients. Use a simulation to explore.
- 9. Benefit wide Doppler bandwidth, small pilot overhead, low noise channel estimator, one waveform for AWGN through to MPD.

Take away notes from analysis and simulation (TODO edit and write up properly):

- 1. filter response is a combination of number of taps and cut off frequency
- 2. further work: an IIR filter if the delay could be managed
- 3. if we just interpolate (cutoff = π) we could handle quite fast fading at high SNR, this might be an acceptable trade off.
- 4. We could provide bandwidth switches for Hams to experiment with, or people could try their own filter coefficients.
- 5. Curves AWGN, HF theory, HF with perfect phase est (amplitude fading only) as controls, then try different phase estimators
- 6. is one sample/modem frame OK? Or should re resample for each data symbol?
- 7. seeing similar HF perf on lin2 (700E and data modes) and mean4 (700D-ish, at least in time). Mean4 has sluggish freq response, but good filtering. lin2 doesn't filter noise much, but good freq response. What really matters is HF.
- 8. Have sinc interpolator working, with some adjustments to delay and bandwidth. As bandwidth is wider, it tracks time domain pilot noise better, rather than averaging it, so poor AWGN performance. lin2 very hard to beat on fading channels (outperforms sinc at current bandwidths), and so simple, due to oversampling. Thickness of arms is a good indication of fading perf. lin2 works above 2 Hz.
- 9. "bandwidth" interpretation of mean 4 also shows how it is impacted by fast fading.
- 10. We are showing reasonable HF perf with Np=8, Ts=0.02, 1dB off hf theory for 1Hz, 2dB for 2Hz Doppler in a single mode. So this is progress towards our single mode goal, with 0.4dB saving in L_p and bandwidth savings using $N_p = 8$. It would be nice to improve slow fading/AWGN perf, and get closer to ideal HF.
- 11. idea: try lin2 with adajacent carriers, to see if HF gets closer to ideal and we improve AWGN. Accidental plotting of time domain adjacent carrier

is instructive. Phase shift of 2nd phase term of adjacent carriers is symmetrical which might help. It is proportional to delay spread so we may see more degredation. lin2 AWGN Improved by 1dB (now 0.5dB), fading improved about 0.5dB (now 1dB).

- 12. Same Np, Lp as 700D, but works on 2 Hz (and beyond) fading. If channel improves, users get benefit of improved perf (unlike 700E where you're stuck with needing a high SNR)). Less use of bandwidth I think as less pilot overhead (so room for tx diversity). Potential down side is 0.5dB off AWGN for 700D, and (maybe) some loss from bigger CP. Put perhaps longer symbol will help that.
- 13. When correct 4ms delay used for MPD, freq weighting breaks it! This is explained by (??), as d increases phase shift between carriers is greater. Unfortunately this implies different phase estimators for different channels, something we would like to avoid. Parallel demodulators might be a reasonable approach here try two different phase estimators.
- 14. Latest plot take aways. mean12 best on AWGN, but linls just 0.5dB worse. We could try parallel demodulation. linls 0.5dB on MPP and MPD, which is pretty good, lin 2dB, mean12 breaks on MPP. Table useful here

Combining pilots from adjacent carriers is used in FreeDV 700D to reduce estimation noise. Examining (13) we can see some symmetry in the RH term in the phase between carrier c-1 and carrier c+1 which supports averaging over adjacent carriers to estimate H_c , especially when the term $2\pi R_s d$ is small. A more robust approach is to perform a least squares fit of three equations with G_1 and G_2 as the two unknowns, and H_{-1} , H_0 , H_1 as the three pilot samples centred around the current carrier:

$$G_{1} + G_{2}e^{j2\pi R_{s}d} = H_{-1}$$

$$G_{1} + G_{2} = H_{0}$$

$$G_{1} + G_{2}e^{-j2\pi R_{s}d} = H_{1}$$

$$\begin{bmatrix} 1 & e^{j2\pi R_{s}d} \\ 1 & 1 \\ 1 & e^{-j2\pi R_{s}d} \end{bmatrix} \begin{bmatrix} G_{1} \\ G_{2} \end{bmatrix} = \begin{bmatrix} H_{-1} \\ H_{0} \\ H_{1} \end{bmatrix}$$

$$Ag = h$$

$$g = (A^{T}A)^{-1}A^{T}h$$

$$\overline{H_{0}} = G_{1} + G_{2}$$

$$(19)$$

where $\overline{H_0}$ is the smoothed estimate of the current carriers pilot symbol. The $(A^TA)^{-1}A^T$ term can be precomputed as all the parameters of A are known.

Algorithm	Mode	Colour	AWGN	MPP	MPD
mean12	700D	blue	0.0	0.5	unusable
lin2	700E	green	1.5	2.0	2.0
lin2ls	700X	magenta	0.5	0.5	0.5

Table 3: Comparison of equaliser algorithms for $N_p=8$. The last three numbers are implementation loss in dB, smaller is better. 700X has the advantage of low implementation loss across channels with a single waveform, but is 0.5dB poorer than 700D on the (rare) AWGN channel. The 700E results are an approximation, as that waveform uses $N_p=5$.

3.2 Multipath

n=2 diversity to handle multipath. Say 3dB gain on MPP/MPD. Research combining techniques. Risks are copies will have half power so estimates will have more noise.

3.3 FEC

If we use diversity, I am not sure how much FEC we can also use, as we may run out of bandwidth. Alternative is MAP techniques or some combination of MAP and FEC.

3.4 Delay Spread (ISI)

- 1. We need a CP long enough to handle MPD (4ms plus guard)
- 2. Try longer T_s which will mean less overhead. However this implies lower R_s which may be impacted by frequency spreading effect of Doppler. Caveat (as in equalisation section) is possible issues with Doppler spread and frequency offset tracking as R_s reduces.
- 3. Measure implementation loss or EVM against ISI, we might be able to get away with some ISI, it is acceptable to have performance drop off for MPD, but it needs to be gradual rather than breaking.
- 4. 700C had just 13ms symbols but dealt with ISI pretty well this might be worth exploring.

3.5 Acquisition

TODO: also include frequency offset estimation and tracking. Sensitivity of Doppler spread, freq offset errors with reduced R_s . Can we use othogonality property to track freq offset, e.g. iterative adjustments of offset to peak OFDM carriers?

4 Further Work

This section presents topics useful to explore in future.

- Can we include PAPR into model? Can we have different trajectories for QPSK symbols around unit circle that reduce PAPR? No I don't think that helps when multiple carriers are added together. ECSSB techniques may be useful.
- Expression for Fading channels, block error rate, why 2020 is a lemon.
- Table of FreeDV waveforms and values, plugged into formula, effect of increasing pilot symbol rate.
- Where we can gain, diversity, PAPR reduction, reduced overheads for fast fading and ISI (discuss)
- Wades MAP techniques (ref). This has a lot of promise, need an effective way to simulate and establish benefit with a modest amount of work. Without a rate 0.5 code this would free up a lot of bandwidth to deal with ISI better, e.g. we could have large gaps between symbols. Or use parallel tone modem to reduce effects of ISI. A high rate code on top of this may be useful option (if it can converge). Can we combine MAP with extra bits? Index optimisation also a simple approach.
- Extending (19) to more carriers, it is essentially estimating the entire channel. Literature search, I'm sure this is nothing new. Determine if (19) is a reasonable approximation for real HF channels we have derived it from a simulation model.

5 References

- [1] ITU-R F.1487: Testing of HF modems with bandwidths of up to about 12 kHz using ionospheric channel simulators, 2000.
- [2] David Rowe. FreeDV-020 WP4000 Low SNR Mode.

Figure 3: Performance curves for equaliser algorithms over various channels. mean12 is the algorithm used for 700D, and lin2 for 700E. Note mean12 (blue) is very close to theory for AWGN but breaks down on MPP.

