Identifiability for sparse Tucker-1 models

Miaoyan Wang, Oct 1, 2020

Theorem 0.1 (Identifiability). Let $\Omega_k \in \mathbb{R}^{d \times d}$ denote the precision matrix for tissue $k \in [K]$. Assume that $\{\Omega_k\}$ admits the rank-r Tucker-1 decomposition model with $r \leq \min(K, d^2)$,

$$\Omega_k = \Theta_0 + \sum_{l=1}^r u_{lk} \Theta_l, \quad \text{for all} \quad k = 1, \dots, K.$$
 (1)

Define the vector $\mathbf{u}_l = (u_{l1}, \dots, u_{lK})^T \in \mathbb{R}^K$ and $Supp(\mathbf{u}_l) = \{i \in [K]: \mu_{lk} \neq 0\}$. Suppose the vectors $\{\mathbf{u}_l\}$ and Θ_0 satisfy the following conditions,

- 1. The vectors $\{\mathbf{u}_l\}$ have mutually non-overlapping supports; i.e, $Supp(\mathbf{u}_l) \cap Supp(\mathbf{u}_l') = 0$, for all $l \neq l' \in [r]$.
- 2. The vectors $\{\mathbf{u}_l\}$ are normalized such that $\mathbf{u}_l^T\mathbf{u}_l = 1$ for all $l \in [r]$.
- 3. $\frac{1}{n}\sum_{k}\Omega_{k}=\Theta_{0}$.

Then the decomposition (2) is unique. Specifically, if $\{\Omega_k\}$ admits another rank-r decomposition that satisfying the above conditions 1-3,

$$\Omega_k = \Theta_0' + \sum_{l=1}^r u_{lk}' \Theta_l', \quad \text{for all} \quad k = 1, \dots, K,$$
(2)

then we must have $\Theta_l = \Theta'_l$ for l = 0, 1, ..., r, and $\mathbf{u}_l = \pm \mathbf{u'}_{\pi(l)}$ up to sign and permutation $\pi : [r] \to [r]$.