Churn Prediction

Kowsalya Nitya Vootla

Business Problem: How can xxx take a more proactive approach to retaining their customers?

BACKGROUND

- Previous approach to churn management was reactive, offering discounts only when customers threatened to leave.
- The analytics team, proposed a data-driven approach to predict churn before customers even consider leaving.

APPROACH

- Develop a predictive churn model using machine learning techniques, including logistic regression.
- Identify key churn drivers
- Design targeted retention strategies
 based on customer behavior, service usage,
 and demographics.
- Quantify the impact of interventions by simulating retention offers and estimating their effect on churn probability.
- Evaluate the economic feasibility using Customer Lifetime Value (CLV) analysis over a 5-year period.

Data

Cust ID

Age

Female

Income

Education

Children

Department-specific customer purchase history

Freq_endurance, Freq_eater,
Freq_team, Frew_strength,
Freq_backcountry,
Freq_racquet

Outcome Variable

Purchase in 2 days of email receipt (y/n)

Total order Size (Euros)

Train:Test, Cross Validation Representative Sample

Exploratory Data Analysis and Transformation

Data heavily imbalance and skewed towards non-buyers - ONLY 2.4% buyers

Income, children, education, total os left skewed

 $Multiple\ Categorical\ variables\ (female,\ age,\ message)$

Predicting Probability of Buying

- Entire Train Dataset
- **Rvar**: buyer = yes
- Evar: 'income', 'education', 'children', 'freq_endurance', 'freq_strength', 'freq_water', 'freq_team', 'freq_backcountry', 'freq_racquet', 'message_control', 'message_endurance', 'message_racquet', 'message_strength', 'message_team', 'message_water', 'female', 'age_30_44, 'age_45_59', 'age_60a'
- Exclude total os from evar

Logistic Regression

Log transform

Int terms added: message: (all other variables)

AUC: 0.884

Neural Network

Scaled df

Hls = (3,3), Apha = 0.1

AUC: 0.891

Random Forest

One-hot encode + convert to binary

Max_features = 6, max_samples = 0.5

AUC: 0.871

XGBoost

One-hot encode + convert to binary

Max_depth = 5, n_estimators = 51

AUC: 0.899

% of customers for whom the message maximizes probability of purchase

Utilizing the predicted probability of purchase to determine the best message per customer:

Message Type	Logistic Regression	Neural Network	Random Forest	XGBoost
Endurance	73.20%	45.34%	87.86%	52.62%
Strength	19.39%	30.49%	2.34%	23.65%
Racquet	4.57%	0.52%	0.15%	6.26%
Water	1.07%	0.17%	5.96%	1.92%
Team	1.05%	23.48%	2.75%	1.78%
Backcountry	0.72%	0.00%	0.002%	7.64%
No message	~0.00%	0.00%	0.912%	6.12%

Predicting Total Order Size

- Train Dataset, filter on buyer == 'yes'
- Rvar: total os
- Evar: 'income', 'education', 'children', 'freq_endurance', 'freq_strength', 'freq_water', 'freq_team', 'freq_backcountry', 'freq_racquet', 'message_control', 'message_endurance', 'message_racquet', 'message_strength', 'message_team', 'message_water', 'female', 'age_30_44, 'age_45_59', 'age_60a'

R^2 improves, MAE and MSE decreases compared to baseline. However, R^2 are still very low.

Predicting Total Order Size

R^2 improves, MAE and MSE decreases compared to baseline. However, R^2 are still very low and residual plots are suboptimal with visible heteroscedasticity.

Decision (approach to calculating order size)

Utilize Average order size for each message type from historical buyer data

% of customers for whom the message maximizes expected profit

Expected Profit = probability of purchase * average order size * (1-COGS)

COGS = 60%

Message Type	Logistic Regression	Neural Network	Random Forest	XGBoost
Endurance	56.47%	33.49%	0%	37.79%
Strength	12.5%	4.56%	0%	17.28%
Racquet	17.48%	2.18%	0%	13.1%
Water	6.43%	0.17%	100%	17.61%
Team	3.44%	34.40%	0%	3.3%
Backcountry	0.72%	~0.00%	0%	8.57%
No message	~0.00%	0.00%	0%	2.35%

Expected profit on average (Euros) is highest for customized messages

	Logistic Regression	Neural Network	Random Forest	XGBoost		
Customized message	0.68	0.65	0.61	0.70		
Randomised message	0.55	0.55	0.55	0.55		
Same message						
Endurance	0.598	0.604	0.518	0.603		
Strength	0.576	0.583	0.525	0.581		
Racquet	0.568	0.584	0.589	0.583		
Water	0.618	0.639	0.610	0.627		
Team	0.574	0.598	0.580	0.585		
Backcountry	0.545	0.570	0.570	0.569		
No message	0.426	0.447	0.482	0.447		

Extrapolated profits to 5M customers & Improvement metrics

Extrapolated profit when	Logistic Regression	Neural Network	Random Forest	<u>XGBoost</u>	
Personalized message is sent	€3,394,907.78	€3,267,902.93	€3,051,997.78	€3,486,245.57	
Improvement in profit (%) when personalized message is sent against					
Same message	9.81%	2.33%	0%	11.14%	
Random message	23.03%	18.42%	10.60%	26.34%	
No message	59.43%	46.31%	26.70%	56.00%	

Personalized messaging seems to be the best approach

• XGBoost delivers the highest % improvement in profit compared to same/random/no message

Evaluating and Improving the New E-mail Policy Proposal

STRENGTHS

✓ Data-Driven Decision Making

 Allocates promotional emails based on expected profitability

✓ Fair Departmental
 Distribution – Split emails
 between the top two high-profit messages.

✓ Continuous Learning – Monthly re-evaluation refines predictions using recent data.

WEAKNESS

X Bias Toward
High-Performing Messages &
Customer fatigue— Other
messages may never be tested.

X Short-Term Profit Focus – May lead to aggressive marketing strategies that hurt long-term engagement.

X No Built-in Experimentation− Lacks A/B testing to improve

 Lacks A/B testing to improve predictions and customer response modeling.

IMPROVEMENTS

- Introduce A/B Testing Randomly assign some customers a different message type to explore effectiveness.
- Control for Confounding Factors Consider seasonality, self-selection bias, and prior purchases.
- Implement Uplift Modeling –
 Measure impact by comparing
 P(Purchase | Message) P(Purchase | No Message) in
 randomized trials.

