A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 2ED	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Let G be a group. The symbol $H \triangleleft G$ should be read, "H is a normal subgroup of G." A maximal normal subgroup of G is an $H \triangleleft G$ such that, if $H \triangleleft J \triangleleft G$, then necessarily J = H or J = G. Prove the following:

Let $f: G \to H$ be a homomorphism. If $J \subset H$, then $f^{-1}(J) < G$.

Step-by-step solution

Here, objective is to prove that $f^{-1}(J) < G$ Comment Step 2 of 4 Finite group is a group which contains finite number of elements. If G is a finite group. Then H is normal subgroup of G is denoted by $H \triangleleft G$ Consider $f: G \rightarrow H$ is a homomorphism, then $f(xy) = f(x).f(y); \forall x, y \in G$.

Step 3 of 4

Consider $f: G \to H$ is a homomorphism and $J \triangleleft H$ That is J is any subgroup of H.

Let $x, y \in f^{-1}(J)$

Then,
$$f(x), f(y) \in J$$

 $f(xy) = f(x).f(y) \in J$
Since, J is a group which is closed under multiplication.
So $f(xy) \in J$
 $xy \in f^{-1}(J)$
 $f^{-1}(J)$ is closed under multiplication.

Step 4 of 4

Let
$$z \in f^{-1}(J)$$

 $f(z) \in J$
 $f(c)^{-1} \in J$
 $f(c^{-1}) \in J$
 $c^{-1} \in f^{-1}(J)$
 $f^{-1}(J)$ is closed under inversion.

So, $f^{-1}(J)$ is closed under multiplication and inversion.

Therefore, $f^{-1}(J) < G$ is a subgroup of G, implies $f^{-1}(J) < G$.

Hence, proved

Comment