RMQ, LCA

Problems

- 1. Use Sparse Table idea to solve static RMQ problem...
 - (a) ...in $\langle \mathcal{O}(n \log \log n), \mathcal{O}(1) \rangle$ time.
 - (b) ...in $\langle \mathcal{O}(n), \mathcal{O}(\log \log n) \rangle$ time.
 - (c) ...in $\langle O(n \log^* n), O(\log^* n) \rangle$ time. What is $\log^* n$?
- 2. You are given a full binary tree of size $2^h 1$ labelled in level order fashion. I.e. the root has label 1, and for each non-leaf vertex labelled i its left and right children has labels 2i and 2i + 1. Find a simple way to answer LCA(u, v) queries in this tree in O(1) time.
 - (a) How the binary representation of label i and the path from root to i are related?
 - (b) Solve the problem if depth(u) = depth(v).
 - (c) Solve the problem in general case.
- 3. Bender-Farach-Colton algorithm takes $\mathcal{O}(\sqrt{n}\log^2 n)$ time and space to precompute answers for all short ± 1 sequences. Show how to do that in just $\mathcal{O}(\sqrt{n})$ time and space, keeping the same $\frac{1}{2}\log_2 n$ block size and $\mathcal{O}(1)$ query time.
- 4. Create a data structure which starts with a single root vertex and can quickly answer the following queries: (1) add a new leaf vertex and (2) find LCA(u, v), both in O(log n) time. You can use O(n log n) memory.
- 5. You are given a tree where each vertex has an assigned value. Create a data structure which finds minumum value on a shortest path between a pair of vertices u, v in $\langle \mathcal{O}(n \log n), \mathcal{O}(\log n) \rangle$ time.
- 6. You a given a tree where each vertex can be colored or not. Create a data structure which can quickly answer the following queries: (1) color/uncolor any vertex and (2) find the number of colored vertices in a subtree, both in $O(\log n)$ time. You can use O(n) memory.
- 7. You are given a binary operation $\circ: X \times X \to X$ which is associative $((a \circ b) \circ c = a \circ (b \circ c))$, but not necessarily idemponent. You are asked to answer range queries $a_L \circ a_{L+1} \circ \ldots \circ a_{R-1}$ in O(1) time. Construct a data structure which allows that after $O(n \log n)$ preprocessing.
 - (a) Solve the special case $R L \geqslant N/2$ with O(n) preprocessing.
 - (b) Solve the general case for $N = 2^k$.

Compiled by Dmytro Korduban. Last updated: March 19, 2019