

ANÁLISIS MATEMÁTICO I Examen Final 26/07/2023

APEI	LLIDO DE	L ALUMN(O: NOMBRE:				
COR	RIGIÓ:	•••••	•••••		•••		
	1	2	3	4	5	CALIFICACIÓN	

Todas las respuestas deben ser justificadas con los procedimientos analíticos adecuados para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): 50% del examen correctamente resuelto.

- 1) Analice si las afirmaciones siguientes son verdaderas (V) o falsas (F). **Justifique las respuestas**: ya sea mostrando un contraejemplo o proporcionando un argumento basado en las herramientas teóricas que conoce, según corresponda.
- a. $\lim_{x \to 0} e^{\frac{\cos^2(2x) 1}{x^2}} = \lim_{x \to 0} (1 4x)^{\frac{1}{x}}$ NO USAR EL TEOREMA DE BERNOULLI-L'HÔPITAL
- b. La serie $\sum_{n=0}^{+\infty} \frac{(-1)^n (x+1)^n}{2^n}$ es convergente $\forall x \in [-3,1]$
- 2) Sea f una función que admite función derivada primera continua en todo el eje real y que verifica $\int_1^{e^x} f'(lnt)dt = \frac{x^2}{2} + 4x \text{ para todo } x \in R. \text{ Determine } f(x) \text{ tal que } f(0) = -5. \text{ Justifique claramente el procedimiento empleado.}$
- 3) Sea la función definida por h(x)=f(senx) y $P(x)=4x-x^2$ el polinomio de Taylor de segundo grado asociado a la función f en el punto $x_0=1$. Determine el polinomio de Taylor de 2° grado asociado a la función h en el punto $a=\frac{\pi}{2}$.
- 4) a) Calcule el área de la región plana D limitada por el gráfico de la función definida por $f(x) = \begin{cases} (2-x)^3 & \text{si } x \leq 1 \\ x^2 & \text{si } x > 1 \end{cases}$ y la recta y = 8
 - b) Dibuje la región D.
- 5) Sea la función definida por $g(x) = x^2 \cdot \ln(x)$, determine, analíticamente, si g admite extremos locales, extremos globales y luego indique el conjunto imagen de g. Justifique todas sus respuestas.