Ciclo Hamiltoniano e Problema do Caixeiro Viajante

Problema do Ciclo Hamiltoniano

Dado um grafo G = (V,E), um ciclo H que passa por todos os vértices de G é dito Hamiltoniano.

G é dito Hamiltoniano se possui ciclo Hamiltoniano.

Problema: Dado G saber se G é Hamiltoniano.

Problema do Caminho Hamiltoniano

Dado um grafo G = (V, E), um caminho C que passa por todos os vértices de G é dito semi-Hamiltoniano.

G é dito semi-Hamiltoniano se possui caminho Hamiltoniano.

Problema: Dado G saber se G é semi-Hamiltoniano.

Grafo semi-Hamiltoniano

Os problemas de decisão:

G é hamiltoniano?

G é semi-hamiltoniano?

são *NP-completos*

Condição suficiente

Teorema de Chvátal (1972)

Se um grafo simples G de ordem $n \ge 3$ possui sequência de graus $d_1 \le d_2 \le ... \le d_n$, tal que para todo k, $1 \le k < n/2$, $d_{n-k} \ge n-k$ ou $d_k > k$, então G é hamiltoniano.

Teorema de Chvátal (1972)

Se um grafo simples G de ordem $n \ge 3$ possui sequência de graus $d_1 \le d_2 \le ... \le d_n$, tal que para todo k, $1 \le k < n/2$, $d_{n-k} \ge n-k$ ou $d_k > k$, então G é hamiltoniano.

Sequência de graus: 2, 3, 3, 3, 3

Cumpre a condição do teorema.

O grafo é Hamiltoniano

Teorema de Chvátal (1972)

Se um grafo simples G de ordem $n \ge 3$ possui sequência de graus $d_1 \le d_2 \le ... \le d_n$, tal que para todo k, $1 \le k < n/2$, $d_{n-k} \ge n-k$ ou $d_k > k$, então G é hamiltoniano.

$$n = 6 e k = 2$$

$$d_2 = 2$$

 $d_4 = 2 \ge 6-2$ NÃO

Sequência de graus: 2, 2, 2, 2, 3, 3

Não cumpre a condição do teorema.

O grafo é Hamiltoniano

Teorema de Dirac, 1952

Um grafo G = (N, M) com $n \ge 3$ e $d(x) \ge n/2$ para todo $x \in N$, é hamiltoniano.

Teorema de Ore, 1961

Uma condição suficiente para que um grafo G seja hamiltoniano é que a soma dos graus de cada par de vértices não adjacentes seja no mínimo n.

Dado um grafo ponderado G = (V, E), encontrar um ciclo gerador H cuja soma das arestas seja mínima dentre todos os ciclos geradores de G.

"Dado **N** cidades, achar a caminho mais curto passando por todas as cidades uma única vez."

Aplicações

- ➤ Programação da rota de ônibus escolares (Angel *et al.*, 1972).
- × Programação de tripulação (Svestka & Huckfeldt, 1973).
- X Fiação de computadores (Lenstra & Rinnooy Kan, 1974).
- ➤ Movimentação de material em depósitos (Ratliff & Rosenthal, 1983).
- × Programação de transporte entre células de manufatura (Finke & Kusiak , 1985).
- **x** Em grande parte dos problemas de roteamento de veículos (Bodin *et al.*,1983).
- × Programação de operações de máquinas em manufatura (Kusiak & Finke, 1987).
- ➤ Otimização do movimento de ferramentas de corte (Chauny et al., 1987).
- X Manutenção de motores de turbina a gás (Plante *et al.*, 1987).
- X Otimização de perfurações de furos em placas de circuitos impressos (Reinelt, 1989).
- ➤ Cristalografia através de raio X (Bland & Shallcross, 1989).
- X Na solução de problemas de sequenciamento (Whitley *et al.*, 1991).
- × Agendamento de entrevistas (Gilbert & Hofstra, 1992).
- ➤ Trabalhos administrativos (Laporte *et al.*, 1996).
- ➤ Na solução de problemas de programação e distribuição de tarefas em plantas (Salomon *et al.,* 1997).
- 🗙 Programação de laminação em siderurgia (Tang *et al.*, 2000).

Aplicações

- × Programação de operações de monitoramento de satélites (Czerniak, 2000).
- ➤ Construção de mapas genéticos e mapeamento de cromossomos (Agarwala *et al.*, 2000).
- × Programação de Impressão em gráficas ou jornais (Carter & Ragsdale, 2002).
- ➤ Planejamento do caminho de robôs cooperativos (Yu *et al.*, 2002).
- × Posicionamento de satélites para cobertura de comunicação (Saleh & Chelouah, 2004).
- ➤ Identificação do Alzheimer (De Vreese *et al.*, 2005).
- × Predição de propriedades de Proteínas (Johnson & Liu, 2006).
- X Classificação de componentes eletrônicos (Goyal, 2006).
- ★ Aplicações reais do TSP em Flowshop (Bagchi *et al.*, 2006 e Caricato *et al.*, 2007).
- ➤ Distribuição de combustível para postos de gasolina (Ismail & Ibrahim, 2008).
- X Mamografia (Lupşa *et al.* 2008).
- × Programação de laminação a frio (Zhao *et al.*, 2011).
- ➤ Sistema antimíssil (Gao & Wang, 2011).
- X Otimização da busca de planetas extra-solares (Kolemen & Kasdin, 2012).
- ➤ Perfuração de peças (Tsai *et al.*, 2012)
- X Cirurgia Endoscópica (Falcone et al., 2013).

"Dado **N** cidades, achar a caminho mais curto passando por todas as cidades uma única vez."

Para N cidades há (N-1)!Rotas (4-1)! = 3! = 6 rotas

Dado um grafo G ponderado em arestas, encontrar o ciclohamiltoniano de comprimento mínimo.

Para N cidades há (N-1)! Rotas.

N = 11 --> 3.628.800 rotas.

N = 12 --> 39.916.800 rotas.

N = 26 --> 15.511.210.043.330.985.984.000.000 rotas.

Big-O Complexity Chart

Dado um grafo G ponderado em arestas, encontrar o ciclohamiltoniano de comprimento mínimo.

Um problema simétrico com *n* cidades possui (n-1)!/2 soluções.

Se n= 20, então existem mais de 10¹⁸ soluções.

Karp (1975) provou que o problema pertence à classe NP-difícil.

- PCV é NP-Difícil (Grarey & Johnson, 1979)
- Um dos problemas mais pesquisados

Sahni e Gonzalez (1976) provaram que para qualquer $\varepsilon > 0$, existirá um algoritmo ε -aproximado para o Problema do Caixeiro Viajante se e somente se

P = NP

Problema do Caixeiro Viajante

Teorema.

Dada uma constante c, se P \neq NP, então não existe algoritmo c-aproximado para o PCV, isto é, não existe algoritmo de aproximação polinomial tal que $Z_H \leq cZ_{\acute{o}timo}$.

Algoritmos Exatos

Os algoritmos mais eficientes para o problema são devidos a Padberg e Rinaldi (1991), Grötchell e Holland (1991) e Applegate et al. (1995).

M.W. Padberg, G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Review 33 (1991) 60-100.

M. Grötchel, O. Holland, Solution of large scale symmetric traveling salesman problems, Mathematical Programming 51 (1991) 141-202.

D. Applegate, R. Bixby, V. Chvàtal, W. Cook, Finding cuts in the TSP (A preliminary report), DIMACS, Tech. Report 95-05, 1995.

Maior instância solucionada

> 85.900 pontos Pla85900 (2006) - Concorde

Vizinho mais Próximo (Guloso)

Belmore e Nemhauser (1988)

- 1. Escolher um vértice inicial
- 2. Encontrar o vértice v_k mais próximo ao último vértice (vértices extremos do caminho) incluído no caminho
- 3. Inserir o vértice v_k após o último vértice (o seu vizinho mais próximo)
- 4. Caso o ciclo formado seja Hamiltoniano pare. Caso contrário volte a etapa 2.

Algoritmos Exatos e Heurísticas

Duas classes de algoritmos são usados para resolver problemas de otimização combinatória:

- Algoritmos exatos.
- Técnicas heurísticas (ou algoritmos aproximados)

Exemplo 1

Iniciando no vértice 1

$$1 - 2 - 3 - 4 - 1$$

$$Custo = 10$$

Melhor solução = 8

$$1 - 2 - 4 - 3 - 1$$

10/8 = 1,25 – fator de aproximação

Exemplo 2

Iniciando no vértice 1

1 - 2 - 3 - 4

Custo = 10004

10004/8 - fator de aproximação

O fator de aproximação pode ser arbitrariamente ruim.

O fator de aproximação tende a infinito.

Cij	a	b	С	d	е
a	-	1	2,2	2	4,1
b	1	-	1,4	2,2	4
С	2,2	1,4	-	2,2	3,2
d	2	2,2	2,2	-	2,2
е	4,1	4	3,2	2,2	-

Vizinho mais Próximo

Complexidade: $O(n^2)$

A solução gerada depende muito do vértice inicial.

Aplicar a heurística começando em cada vértice e ficar com a melhor solução: *O*(*n*³)

Inserção mais barata

- 1. Escolher um vértice inicial
- 2. Iniciar uma rota com 3 vértices (guloso)
- 3. Inserir uma cidade \mathbf{k} entre as cidades \mathbf{i} e \mathbf{j} tal que esta inserção minimize: $s_{ij} = c_{ik} + c_{kj} c_{ij}$
- 4. Repita o passo 3 até que todas as cidades sejam visitadas.

C _{ij}	a	b	С	d	е
a	-	1	2,2	2	4,1
b	1	-	1,4	2,2	4
С	2,2	1,4	-	2,2	3,2
d	2	2,2	2,2	-	2,2
е	4,1	4	3,2	2,2	-

Inserir uma cidade \mathbf{k} entre as cidades \mathbf{i} e \mathbf{j} tal que esta inserção minimize: $\mathbf{s}_{ij} = \mathbf{c}_{ik} + \mathbf{c}_{kj} - \mathbf{c}_{ij}$

C _{ij}	a	b	С	d	е
a	-	1	2,2	2	4,1
b	1	-	1,4	2,2	4
С	2,2	1,4	-	2,2	3,2
d	2	2,2	2,2	-	2,2
е	4,1	4	3,2	2,2	-

Inserir uma cidade \mathbf{k} entre as cidades \mathbf{i} e \mathbf{j} tal que esta inserção minimize: $\mathbf{s}_{ij} = \mathbf{c}_{ik} + \mathbf{c}_{kj} - \mathbf{c}_{ij}$