$$1q = 6.28 \times 10^{18}e; \quad F = k \frac{q_1 q_2}{d^2}, k = 9 \times 10^9; \qquad E = \frac{F}{q}; \qquad E = \frac{V}{d};$$

$$I = \frac{q}{t}; \ V = \frac{W}{q}; \qquad \rho = \frac{1}{\chi}; \chi_{cu} = 56; \qquad R = \rho \frac{l}{A}; \qquad R_t = R_0 (1 + \alpha t)$$

$$V = RI$$
; kvl: $\sum v = 0$, kcl: $\sum I = 0$,

Seri:
$$R_t = \sum R_i$$
, Par: $\frac{1}{R_t} = \sum \frac{1}{R_i}$,

Voltage divider:
$$v_1 = v \frac{R_1}{R_1 + R_2}$$
, Current divider: $I_1 = \frac{R_2}{R_1 + R_2} I$,

$$W = Vq$$
, $W = VIt$, $W = RI^2t$, $Q = KW$, $K = 0.24$, $P = \frac{W}{t}$, $P = VI$, $1hp = 746w$, $\eta = \frac{P_2}{P_1} \times 100$,

1 wb =
$$10^8$$
 magnetic flux, $B = \frac{\Phi}{A}$, $F_m = \theta = NI$, $H = \frac{F_m}{l}$, $\mu = \frac{B}{H}$, $\mu_0 = 4\pi \times 10^{-7}$, $\mu_r = \frac{\mu}{\mu_0}$,

$$R_m = \frac{l}{\mu A}$$
, Ohm law: $R_m = \frac{\theta}{\phi}$,

$$L = \mu \frac{N^2 A}{l}$$
, $\tau = \frac{L}{R}$, $I_L(1\tau) = 0.63 I_{max}$, $I_L(3\tau) = 0.95 I_{max}$, $I_L(5\tau) = 0.99 I_{max}$,

$$v_L = C_{emf} = -L \frac{\Delta I}{\Delta t}, \qquad W_L = \frac{1}{2} L I^2,$$

$$k = \frac{\Phi_{1,2}}{\Phi_1}$$
, $M = k\sqrt{L_1L_2}$, $L_T = L_1 + L_2 \pm 2M$,

$$C = \frac{q}{V}$$
, $C = E_0 k \frac{A}{d}$, $E_0 = 8.8 \times 10^{-12}$,

$$\tau = RC$$
, $V_C(1\tau) = 0.63V_S$, $W_C = \frac{1}{2}CV^2$