Parametric or Nonparametric: The Focused Information Criterion Approach

Martin Jullum

Nils Lid Hjort

University of Oslo

martinju@math.uio.no

August 4, 2014

Modeling and model selection

- Unknown underlying distribution G for data Y_1, \ldots, Y_n
- Parametric approach

- Nonparametric approach
- Several appropriate models which one should we trust?

Classical model selection

- Information criteria
 - AIC, BIC, DIC, GIC, TIC,...
 - Cannot handle nonparametrics
- Goodness-of-fit measures
 - Cramér-von Mises, Kolmogorov-Smirnov, Pearson's chi-squared
 - Requires a pre-set significance leve

Classical model selection

- Information criteria
 - AIC, BIC, DIC, GIC, TIC,...
 - Cannot handle nonparametrics
- Goodness-of-fit measures
 - Cramér-von Mises, Kolmogorov-Smirnov, Pearson's chi-squared
 - Requires a pre-set significance level

- No particularly well-suited criterion for model selection among parametrics and nonparametrics
- Different models have strengths and weaknesses at different parts of the data space
- What you want to learn should reflect your choice of model

Research objective

Create a focused/interest driven model selection criterion for selection among a set of parametric and nonparametric models

No particularly well-suited criterion for model selection among parametrics and nonparametrics

- Different models have strengths and weaknesses at different parts of the data space
- What you want to learn should reflect your choice of model

Research objective

Introduction

Create a focused/interest driven model selection criterion for selection among a set of parametric and nonparametric models

Claim and objective

- No particularly well-suited criterion for model selection among parametrics and nonparametrics
- Different models have strengths and weaknesses at different parts of the data space
- What you want to learn should reflect your choice of model

Research objective

Introduction

Create a focused/interest driven model selection criterion for selection among a set of parametric and nonparametric models

Focus parameter

- A general population quantity of interest - not(!) a model specific parameter
- A functional μ of the distribution $G: \mu(G)$

Examples

Introduction

• Expectation: $\mu(G) = E_G[Y_i]$

•
$$Pr\{Y_i > 2\}$$
: $\mu(G) = 1 - G(2)$

• Interquartile range:

- A general population quantity of interest - not(!) a model specific parameter
- A functional μ of the distribution $G: \mu(G)$

Examples

- Expectation: $\mu(G) = E_G[Y_i]$
- $Pr\{Y_i > 2\}$: $\mu(G) = 1 G(2)$
- Interquartile range:

Focus parameter

- A general population quantity of interest - not(!) a model specific parameter
- ullet A functional μ of the distribution $G: \mu(G)$

Examples

- Expectation: $\mu(G) = E_G[Y_i]$
- $Pr\{Y_i > 2\}$: $\mu(G) = 1 G(2)$
- Interquartile range:

Focus parameter

- A general population quantity of interest - not(!) a model specific parameter
- A functional μ of the distribution $G: \mu(G)$

Examples

- Expectation: $\mu(G) = E_G[Y_i]$
- $Pr\{Y_i > 2\}$: $\mu(G) = 1 G(2)$
- Interquartile range: $\mu(G) = G^{-1}(3/4) - G^{-1}(1/4)$

Criterion idea

- Model selection problem o Best estimator for $\mu = \mu(G)$
- Estimate μ by plug-in estimation for each model M: $\widehat{\mu}_M = \mu(\widehat{G}_M)$
- Performance measure:

$$\operatorname{mse}(\widehat{\mu}_{M}) = \mathsf{E}\left[(\widehat{\mu}_{M} - \mu_{\operatorname{true}})^{2}\right] = \operatorname{bias}^{2}(\widehat{\mu}_{M}) + \operatorname{Var}(\widehat{\mu}_{M})$$

Basic idea

• Estimate the mean squared error (mse) as squared bias + variance:

$$FIC(M) = \widehat{\mathrm{mse}}(\widehat{\mu}_M) = \widehat{\mathrm{bias}}^2(\widehat{\mu}_M) + \widehat{\mathrm{Var}}(\widehat{\mu}_M)$$

- Choose the model and estimator with the smallest estimated mse
- Conceptually similar approach as the original FIC criterion by Claeskens and Hjort (JASA 2003)

Criterion idea

- Model selection problem \to Best estimator for $\mu = \mu(G)$
- Estimate μ by plug-in estimation for each model M: $\widehat{\mu}_M = \mu(\widehat{G}_M)$
- Performance measure:

$$\operatorname{mse}(\widehat{\mu}_{M}) = \operatorname{\mathsf{E}}\left[(\widehat{\mu}_{M} - \mu_{\operatorname{true}})^{2}\right] = \operatorname{bias}^{2}(\widehat{\mu}_{M}) + \operatorname{Var}(\widehat{\mu}_{M})$$

Basic idea

• Estimate the mean squared error (mse) as squared bias + variance:

$$\mathsf{FIC}(M) = \widehat{\mathrm{mse}}(\widehat{\mu}_M) = \widehat{\mathrm{bias}^2}(\widehat{\mu}_M) + \widehat{\mathrm{Var}}(\widehat{\mu}_M)$$

- Choose the model and estimator with the smallest estimated mse
- Conceptually similar approach as the original FIC criterion by Claeskens and Hjort (JASA 2003)

- Mse estimation based on joint limiting distribution for focus parameter estimators
- Use straight forward empirical analogues of unknown quantities
- Precise formulae depend on the type of data situation
- Data types
 - Univariate and multivariate i.i.d. data, categorical data, time series
 - Data from different populations
 - Hazard rate models
 - Cox regression vs. parametric regression
- Other strategies for the standard regression setting and density estimation

- Mse estimation based on joint limiting distribution for focus parameter estimators
- Use straight forward empirical analogues of unknown quantities
- Precise formulae depend on the type of data situation
- Data types
 - Univariate and multivariate i.i.d. data, categorical data, time series
 - Data from different populations
 - Hazard rate models
 - Cox regression vs. parametric regression
- Other strategies for the standard regression setting and density estimation

- Mse estimation based on joint limiting distribution for focus parameter estimators
- Use straight forward empirical analogues of unknown quantities
- Precise formulae depend on the type of data situation
- Data types
 - Univariate and multivariate i.i.d. data, categorical data, time series
 - Data from different populations
 - Hazard rate models
 - Cox regression vs. parametric regression
- Other strategies for the standard regression setting and density estimation

- Mse estimation based on joint limiting distribution for focus parameter estimators
- Use straight forward empirical analogues of unknown quantities
- Precise formulae depend on the type of data situation
- Data types
 - Univariate and multivariate i.i.d. data, categorical data, time series
 - Data from different populations
 - Hazard rate models
 - Cox regression vs. parametric regression
- Other strategies for the standard regression setting and density estimation

Averaged Focused Information Criterion (AFIC)

- Sometimes a single focus parameter is not desirable
- Focus on a (weighted) set of focus parameters simultaneously
- Performance measure: risk = $\int \operatorname{mse}(\widehat{\mu}(t)) dW(t) = \int E[(\widehat{\mu}(t) \mu_{\mathsf{true}}(t))^2] dW(t)$,

General AFIC formula

$$\mathsf{AFIC}(M) = \int \widehat{\mathrm{mse}}(\widehat{\mu}_M(t)) \, \mathsf{d}W(t) = \int \mathrm{FIC}(\widehat{\mu}_M(t)) \, \mathsf{d}W(t)$$

Averaged Focused Information Criterion (AFIC)

- Sometimes a single focus parameter is not desirable
- Focus on a (weighted) set of focus parameters simultaneously
- Performance measure: risk = $\int \operatorname{mse}(\widehat{\mu}(t)) dW(t) = \int E[(\widehat{\mu}(t) \mu_{\operatorname{true}}(t))^2] dW(t)$,

General AFIC formula

$$\mathsf{AFIC}(M) = \int \widehat{\mathrm{mse}}(\widehat{\mu}_M(t)) \, \mathsf{d}W(t) = \int \mathrm{FIC}(\widehat{\mu}_M(t)) \, \mathsf{d}W(t)$$

Criterion properties (i.i.d.)

Robust mse estimation

- Consistent variance and squared bias estimators
- Estimation outside model conditions

FIC asymptotics

- Parametrics biased: $Pr\left\{ \mathsf{Select}\;\mathsf{pm} \right\} o 0$
- Parametrics correct: $Pr\left\{\text{Select pm}\right\} \rightarrow \chi_1^2(2) \approx 0.843$

AFIC asymptotics are not as general and depend on μ and W

Criterion properties (i.i.d.)

Robust mse estimation

- Consistent variance and squared bias estimators
- Estimation outside model conditions

FIC asymptotics

- ullet Parametrics biased: $Pr\left\{ \mathsf{Select}\ \mathsf{pm} \right\} o 0$
- ullet Parametrics correct: $Pr\left\{ \mathsf{Select\ pm} \right\} o \chi_1^2(2) pprox 0.843$

AFIC asymptotics are not as general and depend on μ and W

Criterion properties (i.i.d.)

Robust mse estimation

- Consistent variance and squared bias estimators
- Estimation outside model conditions

FIC asymptotics

- ullet Parametrics biased: $Pr\left\{ \mathsf{Select}\ \mathsf{pm} \right\} o 0$
- ullet Parametrics correct: $Pr\left\{ \mathsf{Select\ pm} \right\} o \chi_1^2(2) pprox 0.843$

AFIC asymptotics are not as general and depend on μ and W

Introduction Criterion (Properties) Summary

Performance comparison

Introduction Criterion (Properties) Summary

Performance comparison

Introduction Criterion (Properties) Summary

Performance comparison

Summary

- Focus driven model selection with a nonparametric alternative
- Rank models according to $\widehat{\mu}_M$'s estimated risk
- Robustifies parametric model selection by including the nonparametric candidate model
- AFIC allows several focus parameters to be considered simultaneously
- Optimistic performance comparison results

R-functions: folk.uio.no/martinju/FIC

Contact: martinju@math.uio.no

