#### Machines à courant continue

#### I. Présentation

### I.1. Conversion d'énergie



### I.2. Principe



La machine est constituée de deux parties :

- · le stator qui produit un champ magnétique grâce à un bobinage ou des aimants permanents. C'est <u>l'inducteur</u>.
- le rotor, circuit électrique qui subit les effets de ce champ magnétique : c'est <u>l'induit</u>.

### I.3. Force électromotrice

Une bobine en mouvement dans un champ magnétique de flux  $\Phi$  voit apparaître à ses bornes une force électromotrice (f.é.m.) donnée par la loi de Faraday :

$$E = -\frac{d\mathcal{D}}{dt}$$

On montre sur ce principe que la machine à courant continu est le siège d'une f.é.m. E :

Ε = ΚΦ Ω

K constante caractéristique de la machine  $\Phi$  flux maximum à travers les spires (en Webers - Wb)  $\Omega$  vitesse de rotation (en rad.s<sup>-1</sup>)

La fem dépend donc du flux et de la vitesse de rotation.

# II. Schématisation électrique de l'inducteur et de l'induit



Le schéma ci-contre représente l'inducteur et l'induit dans le cas d'une excitation séparée. Lorsque le stator est constitué d'aimants permanents, il n'y a pas de circuit électrique pour l'inducteur.

Pour l'induit, si la machine fonctionne en moteur, les orientations de E et I sont opposées, comme ci-dessus. Si la machine fonctionne en génératrice, E et I sont de même sens (cf ci-contre).





#### III. Différentes relations

### III.1. <u>Puissance et couple électromagnétique</u>

Puissance électromagnétique reçue par l'induit (convention récepteur) :

 $P_{em} = EI$ 

Comme  $P_{em} = T_{em}\Omega$ 

On en déduit  $T_{em} \Omega$  = EI =  $K\Phi \Omega I$  d'où  $T_{em} = K\Phi I$ 

Pour un moteur,  $P_{em} > 0$  et pour une génératrice,  $P_{em} < 0$ .

#### III.2. Rendement

Le rendement est défini par  $\eta = \frac{P_u}{P_a}$ 

|                    | Moteur                                   | Génératrice                                |
|--------------------|------------------------------------------|--------------------------------------------|
| Puissance utile    | puissance mécanique                      | puissance électrique au niveau de l'induit |
| Puissance absorbée | puissance électrique consommée au        | puissance mécanique apportée au rotor et   |
|                    | niveau de l'induit et de l'inducteur (le | la puissance électrique consommée au       |
|                    | cas échéant)                             | niveau de l'inducteur.                     |

## IV. Caractéristiques

## IV.1. Caractéristique à vide $Ev = f(\Phi)$ à $\Omega$ constante

- Sur la partie linéaire,  $E = K'\Phi = kI_e$ .
- Après B, le matériau est saturé, le f.é.m. n'augmente plus.
- La zone utile de fonctionnement de la machine se situe au voisinage du point A.



# IV.2. Caractéristique Ev = $f(\Omega)$ à $\Phi$ constant

2

 $E = K''\Omega$ 

<u>Remarque</u>: la caractéristique est linéaire tant que la saturation n'est pas atteinte.





BTS ATI / A2

# V. Différents types d'excitations



## VI. Aspects énergétiques



3



BTS ATI / A2