CLASSIFICATION CHANGED TO UNCLASSIFIED Classification cancelled in accordance with

12 Keedy

BY AUTHORITY OF

Executive Order 10501 issued 5 November 1953 **Document Service Center** Armed Services Tech. Info Agency

Signed

Armed Services Technical Information Agency

Reproduced DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, OHIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

The following ESPIONAGE NOTICE can be disregarded unless this document is plainly marked RESTRICTED, CONFIDENTIAL, or SECRET.

ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW. NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN

CHEMICAL ENGINEERING DEPA NORTHWESTERN TECHNOLOGICAL EVANSTON. ILLINOIS

NORTHWESTERN. UNIVERSITY

Evanston, Illinois

The Technological Institute

September 30, 1953

Letter of Transmittal

Chief of Naval Research EXOS:ONR:N66 Serial No. 20450 Washington 25, D. C.

Attention: Commandiar Officer

Dear Sir:

Attached is the report on the results of the demonstratici and utilization of the caustic process for removing excess carbon dioxide from submarine atmospheres as carried out on the submarine Haddock as a part of Operation Hideout. Operation Hideout was carried out to determine the maximum carbon dioxide concentration that personnel could withstand over long periods of time.

Overation Hideout was begun early in 1953 after several months of preparation and required a means to remove excess carbon dioxide in order to maintain its content in the atmosphere at the desired value. The caustic process served this purpose excellently and, in addition, removed smoke and odors to a remarkable degree according to submarine and medical officers who were familiar with submarine conditions.

The attached report covers the data and information obtained on the caustic unit which was operated during Operation Hideout.

Sincerely yours,

L. F. Stutzman, Director

Project 130-

Chemical Engineering Department

LFS:MF Encl.

THIS ADDOCES . OPNAV: #lansifier:

eviewes in accordance with of weaph 5. The security

Thirtopin correct.

it Eusparch (Code 466

CHEMICAL ENGINEERING DEPARTMENT NORTHWESTERN TECHNOLOGICAL INSTITUTE Evanston, Illinois

OPERATION HIDEOUT REPORT
September 30, 1953

NR 266-001
(N6 ori 158-03)

Respectfully submitted, September 30, 1953

Director Director Myne of Doda's

ABSTRACT

Operation Hideout took place from January 19, 1953 through March 19, 1953. This operation, organized to study extensively the prolonged exposure of personnel to high concentrations of carbon dioxide, utilized the caustic scrubber for the removal of excess carbon dioxide. This scrubber, developed by Northwestern Technological Institute, was in operation during the "closed up" portion of the operation, between January 27, 1953 and March 10, 1953. Since the carbon dioxide content of the air in this operation was higher than the design basis of the scrubber (1.5% compared to 1%) and the personnel was less than a regular submarine crew, the scrubber was operated intermittently.

The installation was a success in that the desired carbon dioxide content of the air was maintained at the desired 1.5% value.

The scrubber operation was as expected. It removed carbon dioxide at an average rate of 9.77 pounds per hour at an average caustic utilization of 90.3%. The removal rate and caustic utilization was expected to be higher than the values obtained for 1% carbon dioxide in air. This increase in caustic utilization at these conditions would permit a greater than 12% decrease in the required caustic storage. The absence of odors and cigarette smoke in the submarine was commented on by Navy personnel familiar with submarine operation, and this condition can be attributed to the scrubber.

TABLE OF CONTENTS

List of Figures	ס
List of Tables	3
Distribution List	f
Introduction	L
Equipment and Installation	2
Caustic Process	2
Location of Scrubber	ł
Equipment Required	7
Source of Equipment and Supplies	7
Scrubber Installation	9
Caustic Storage and Method of Feed 29	9
Control Equipment	5
Electric Power Connections 40)
Experimental Procedure	3
Operation Hideout43	3
Operation Preparation • • • • • • • • • • • • • • • • • • •	+
Operation	+
Liquid Analyses 4	7
Pump Calibration 49	9
Treatment of Data	0
Interpretation of Results	2
Conclusions and Recommendations	3
Acknowledgment	6
Bibliography	7
Appendix	8
Table 7	9
Flysheet for Figures 21 through 62 123	2

LIST OF FIGURES

Figure Number	<u>Title</u> <u>Page</u>
1	Carbon Dioxide Buildup in Air in Isolated Space · · 4
2	Operation Hideout Publicity 9
3	Caustic Unit Air Connection, Flow Diagram 16
4	Caustic Unit and Auxiliary Equipment, Flowsheet 20
5	Photo-101, Absorption Tower and Electrical
	Power Panel
6	Photo-102, Absorption Tower and Blower 23
7	Photo-103, Air Connection to Caustic Unit 24
8	Photo-104, Overflow and Waste Liquid Tank 25
9	Photo-105, Recirculation and Waste Discharge
	Pumps
10	Photo-106, Top Deck Installation
11	Photo-107, Electronic Control Equipment 37
12	Caustic Unit Electrical Flowsheet 41
13	Carbon Dioxide Removal Average for All Days 52
14	Carbon Dioxide Removal Average for Weekdays 53
15	Carbon Dioxide Removal Average for Weekends 54
16	Carbon Dioxide Removal Average for Saturdays 55
17	Carbon Dioxide Removal Average for Sundays
	and Holidays
18	Total Carbon Dioxide Removal 60
19	Carbon Dioxide Absorption Rate 61
20	Caustic Utilization vs. Date of Operation 66
21-62	Cumulative Operating Time vs. Time of Day 123-164

LIST OF TABLES

Table Number	<u>Title</u>	Page				
1	Operating Characteristics for the Caustic Unit	13				
2	Material Shipped from Northwestern Technological					
	Institute for Use in Operation Hideout	18				
3	Caustic Unit Average Operating Time	51				
4	Operating Time and Carbon Dioxide Absorption -					
	Daily Summary	58 - 59				
5	Caustic Utilization, Daily Weighted Average	65				
6	Carbon Dioxide Generation Rate	68				
7	Caustic Scrubber for Carbon Dioxide -					
	Operation Test	79-121				

DISTRIBUTION LIST

The following offices are being sent copies of this report in the amount shown.
Office Copie
Commanding Officer, Office of Naval Research 346 Broadway, New York 13, New York
Commanding Officer, Office of Naval Research 801 Donahue Street, San Francisco 24, California
Commanding Officer, Office of Naval Research 1030 East Green Street, Pasadena 1, Celifornia
Officer in Charge, Office of Naval Research, Branch Office London, Navy No. 100, Fleet Post Office, New York, New York 1
Chief of Navel Research, Department of the Navy (Code 466), Washington 25, D. C
Commanding Officer, O'fice of Naval Research 86 East Randolph Street, Chicago 1, Illinois
Chief, Bureau of Ships (Code 549) Department of the Navy, Washington 25, D. C
Commander, Mare Island Naval Shipyard (Code 371), Vallejo, California
Officer in Charge, U. S. Naval Medical Research Laboratory U. S. Naval Submarine Base, New London, Connecticut
Chief, Bureau of Medicine and Eurgery (Code 51) Department of the Navy, Washington 25, D. C
Chief of Naval Operations (Op-311) Department of the Navy, Washington 25, D. C
Chief of Naval Operations (Op-316) Department of the Navy, Washington 25, D. C
Director, Naval Research Laboratory (Code 3230) Department of the Navy, Washington 20, D. C
Director of Research, Northwestern Technological Institute Evanston, Illinois
Chemical Engineering Department Northwestern Technological Institute, Evanston, Illinois

CAUSTIC PROCESS

CARBON DIOXIDE REMOVAL SYSTEM

OPERATION HIDEOUT

Reported by B. J. Sollami

INTRODUCTION

Operation Hideout was initiated to bring closer to realization exact knowledge of the carbon dioxide concentrations which personnel might be able to withstand when exposed to it for extended periods. This information is necessary in order to design accurately equipment to control the carbon dioxide concentration of the atmosphere of a submarine.

The era of the perfect submarine is fast approaching. Up to the present time a limiting factor in submarine submergence was the power availability within the submarine when completely submerged. Submarines are electrically powered and when submerged obtain their power supply from storage batteries which require frequent recharging for which the submarine must surface. Since the submergence time was limited by power, the limitations on length of submergence by personnel was often not critical. development of power sources, particularly nuclear, has reached a stage where the power source on the submarine will no longer be a limiting factor for governing the submergence time. With this recent development in atomic research, the atomic-power submarine will have a continuous supply of energy for operation and therefore it will be capable of staying submerged for long periods. This development has progressed to where two nuclear powered boats. Nautilus and Sea Wolf, are under construction.

With the realization of a perfect submarine the human factor becomes critical. What are the maximum concentrations

of various constituents in air that humans can stand? Carbon dioxide is one of the principle constituents that must be studied to determine the concentration that personnel can withstand. Since personnel generate carbon dioxide, the concentration can quickly build up to a point where the personnel are adversely affected. Figure 1 shows the time required for the concentration of carbon dioxide to reach a given value in an isolated space. Parameters are shown for various values of free volume available per person. In Operation Hideout the free volume per person was approximately 1000 cubic feet. This plot is based upon the carbon dioxide generated by a person exhibiting moderate movement, sitting, or movement of arms and head as in desk activity with only occasional walking. (1) A sleeping person would generate carbon dioxide at a much lower rate so that the daily average generation rate (night and day) is slightly lower. (4)

The normal concentration of carbon dioxide in the atmosphere is 0.03%. While it is possible to maintain the atmosphere in any closed space at this low carbon dioxide concentration the equipment required to perform the task would or could be tremendous. Such would be the case in a submarine containing 60 to 100 men or more.

The equipment required to remove excess carbon dioxide increases in size as the tolerable concentration limit is decreased. It is therefore desirable to maintain this upper carbon dioxide concentration as high as possible.

The upper concentration limitations have been studied by

Temperature - 80°F. Pressure - 1 atm. medical personnel for some time and-indications that the upper limit was 1.5% were now being verified. Operation Hideout was then designed to verify on a comprehensive scale this maximum carbon dioxide concentration.

In order to obtain the value of this maximum carbon dioxide concentration, which could then be used for design purposes on carbon dioxide reloval equipment on future submarines, arrangements were made for the Medical Research Laboratory to carry out the recessary test.

Research Laboratory at the U. S. Haval Submarine Base at
New London, Connecticut. This work was very successfully
organized and carried out under the command of Commander
Gerald J. Duffner, MC, USN, efficer in charge of the
Medical Research Laboratory. The Project officer for the
test was Lt. Pierce P. Newman, MC, USN, whose tireless
efforts were responsible for the successof the test. Lt.
Newman prepared and coordinated the details, set the experiment in operation and supervised its execution. Lt.
Newman was very ably assisted by Chief Torpedoman's Mate
James D. Evans, USN, as well as having the complete cooperation of the volunteers, working details, and all the other
medical officers and men who were involved with Operation
Hideout.

The test itself required that the carbon dioxide concentration be kept from building up above 1.5±0.1%. The caustic unit was capable of doing this. The unit was

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

available and could be installed quickly and adapted easily although it had not been engineered for actual installation in a submarine. Lt. Commander F. M. Fellows of the Office of Naval Research arranged for the use of the caustic unit for this test.

Upon the completion of the arrangements to use the caustic unit for the removal of carbon dioxide, a conference at the United States Naval Submarine Base at New London between the Medical Research Laboratory and Northwestern Technological Institute was arranged to work out the details of the scrubber installation. This conference in November, 1952, was arranged for the purpose of determining the availability of equipment, materials, and supplies required in the installation of the carbon dioxide removal apparatus. The means for obtaining needed materials when such were unavailable for purchase or loan on the base was determined. The availability of utilities was also determined. Other details of the test were discussed and what the proposed plans for the test were as of that date.

Late in December of 1952 final plans were formulated and rigging of the submarine for the test was initiated. On December 29, 1952, Mr. Sollami, a representative of the Chemical Engineering Laboratory of Northwestern Technological Institute, went to New London to follow the installation and operation of the caustic carbon dioxide removal system.

The test was to be carried out aboard the submarine U. S. S. Haddock (SS231). The submarine was not chosen

to simulate conditions aboard a submarine but principally because it provided a very satisfactory test chamber. To build a chamber a large expenditure of \$30,000 or more would have been required, whereas the adaptation of the submarine resulted in a very modest expense. It was originally planned to moor this submarine in the Thames River alongside pier 13. These plans were subsequently changed, and the Haddock was moored outboard of the submarine tender, Proteus. This resulted in considerably more effort and inconvenience in carrying out the test but was a necessary navy procedure. A work barge was then moored outboard of the Haddock; the submarine thus was between the Proteus and the barge. The barge served as operating base and a storage depot.

Only five of the nine compartments of the Haddock, a fleet type submarine, were used in the test. Reading from bow to stern the five compartments were as follows: forward torpedo room, forward battery compartment, control room, after battery compartment, and forward engine room. The remaining four compartments were isolated from the test compartments. The free volume space in the test section was estimated at approximately 23,000 cubic feet.

For the test 22 seamen and one medical officer, Lt. Commander Ralph E. Faucett, the commanding officer, were sealed
in the submarine in these five compartments for sixty days,

January 19, 1953 to March 19, 1953. Without carbon dioxide removal equipment in an isolated space of 23,000 cu. ft. with 23 men

generating carbon dioxide at a rate equivalent to that associated with moderate movement the carbon dioxide concentration would reach a value of 1.5% in approximately 14 hours. This can be seen from Figure 1. In the Haddock, in addition to the 23 volunteers, were white rats, guinea pigs, physiological and psychological testing equipment, and the atmospheric control equipment. All this was housed in the five compartments of the Haddock which were used for this experiment.

In the determination of the effect of the 1.5% carbon dioxide atmosphere many medical examinations were required. These included the physiological, psychophysiological, psychophysiological, psychological, and sociological tests. The medical aspects of the test were the sole responsibility of the Medical Research Laboratory at the New London Submarine Base, whose activities were guided by the Project officer, Lt. Newman, under the command of Commander G. J. Duffner. This medical phase will, of course, not be discussed in any manner in this report.

The public interest of Operation Hideout can be shown by the large amount of publicity which it had received during and after its completion. Figure 2 is an example of one of many news releases which emanated from this experiment. This article appeared in The New York Herald Tribune on Wednesday, February 11, 1953. The importance of determining the maximum allowable concentrations of carbon dioxide for prolonged exposure is brought out in the article.

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

THE WEATHER

Today: Increasing cloudiness, with moderate to fresh northerly winds.

Temperatures Yesterday: Max., 28.5: Min., 25 9, Today's Probable Bange: Max., 39; Min., 25. Rumidity at 3 p. m. Yesterday: 40%. Expected Humidity This Afternoon: 46-30%.

Detailed Report and Map-Page 37

eta

European Editio

112th Year NO. U.M.

230 West 41st Street, New York 36, N. T. Telephone PEnnsylvania 6-1000

WEDNESDAY.

Jo Decision 23 Men Sealed in Submarine Bonn Arre In Blockade In Navy Test for Atom-Run Craft 4 Nazis. B **)f Red China**

fulles and Bradley

of Arms to Formosa Is London, Conn., since mid-January dioxide in the air.

It was said that air containing

win

The Haddock and continually replenish the sub-craft.

Free . . Herald Tribune Bureau

ines of the future.

marine's atmosphere with life-

WAS HINGTON, Feb. 10.-Navy sustaining air. officials disclosed today that Navy officials said the purpose Eport to Schalors twenty-two sailors and a medical of the experiment is to determine officer, who volunteered for the the tolerance of submarine crews experiment, have been "bottled up" over long periods to higher-thaniley Asserts Shipment in a moored submarine at New normal concentrations of carbon Freikorps. Their G

Improving how long crews can remain sub-more than 3 per cent carbon dimerged in a mic-power submar-oxide is considered highly dangerous by submarine experts, but that The craft in the test is the Had-the concentrations during the 10.—Sec-dock, a reserve submersible. The Haddock test probably would run er Dulles experiment is being conducted as high or higher at times than 2 ing the under the direction of Comdr. per cent. This gas, which is not a Nazi-type conspiratorial nmit-Gerald Duffner, of the Navy Medipoinsonous but has a "smothering" at least 1,000 men, ca tion cal Corps, who enters the sealed effect that can be ratal if too high Freikorps. Deutschland ck-vessel daily through an air lock in a percentage is present in breath-Free Corps, were arrest. the forward torpedo room to make ing air, is a by-product of human by the West German gov observations and test the condition respiration.

of those aboard. The Haddock is not submerged but merely tied up aboard submarines has been contained appeared by chemicals that have a The government said is Submarine Base, although she is high affinity for carbon dioxide Freikorps, which has bee as fully sealed as if she were under and remove it from the air by abwater.

Sorption. Since atomic submarines with a ring of neo-Nazi said to be are expected to be able to remain headed by Werner Naus equipped with an "air-scrubbing" submerged almost indefinitely bemachine to remove carbon dioxide cause their power plants will not Goebbels' Propaganda Consume air, the present tests are breathed air and a device to mandesigned to find out the human-ring were jaile ufacture oxygen from sea water endurance factor aboard such British High Commission

New London Volunteers Started Trial Last Month; Their Tro Goal Is to Find How Long Crews Can Stay Under

Links Them to Held by the Br

Denounced as Pl to Restore Hitler

By Gaston Coblen From the Herald Tribune B 1953. New York Herald BONN, Feb. 10 .- Four le The group was ordered by The four arrested today ELMUTH BECK-BROICHS former major in the Gross

organization of former Army officers ALFRED FRAUENFELD, & schluss Gauleiter (distric of the Vienna Nazis. He v organizer of the Austrian ? in the early 1930s. HERMANN LAMP, a Freiko and former S. S. (Nazi Elit

land Division and one of

founders of the Bru

(Brotherhood), an extreme

troops leader. S. A. (Storm Troop) leader of the Freikorps in Breme Parallel to 1920s

Says Mail Supports Ban e Trial Spectators, 8-1

Union Among Opponents; Pat Ward in, Reported Naming 25 to 50 Men

.ewis ge Francis L. in filth." Among those strongly against ited decision

C ıld use. Wil After o-hour n. Bra ked abou rlier in t step up e Nationali. Indicating t. me from the. id: "It is stepp s improved."

te.

Connetown Dulles

because "this case will be steeped EBERHARD HAWRANKE

alle from the Judge Valente's Monday ruling

Figure 2

FLEL.

Underlined in the news release is the statement about the equipment used to remove the carbon dioxide from the air. This equipment was designed, built, and laboratory tested for the Office of Naval Research by this laboratory, and Operation Hideout afforded the opportunity to demonstrate the effectiveness of the process. It is this equipment, as underlined in the news release, and its operation during Operation Hideout which is the substance of this report.

This equipment had been desirned for the Office of Naval Research to remove 7.5 pounds of carbon dickide per hour from an atmosphere having a concentration of 1% carbon dioxide. With the exception of the inlet gas composition, which is 1.5% in the test, and other factors which it directly affected, the unit was operated according to the design specifications.

Because of the more ricorous design requirements of the unit and because the number of mon was 23 (instead of the normal complement of about 80) the carbon dioxide removal rate would be too great and the carbon dioxide content of the air would be too low for this test. This required auxiliary controls to turn the scrubber on when the carbon dioxide concentration reached a certain level and to turn the scrubber off when the carbon dioxide concentration fell below a certain level. The plans called for controlling the carbon dioxide concentration at 1.5-0.1%, but the electronic gear actually controlled much more accurately than this. Allowance for human error in the calibration of the

instrument would still maintain this accuracy.

The equipment arrangement made it possible to control the carbon dioxide content at any reasonable concentration that might have been desired. The oxygen was controlled at 20.5±0.5%, and the carbon dioxide content was controlled at 1.5±0.1%.

EQUIPMENT AND INSTALLATION

The installation of the caustic process equipment aboard the Haddock was begun on December 30, 1952.

Caustic Process

The caustic process equipment was designed to remove 7.5 pounds of carbon dioxide per hour from an atmosphere having a concentration of 1% carbon dioxide. This rate of carbon dioxide removal was based upon the theoretical exhalation from a full complement (approximately 80 men) of a fleet type submarine during its actual operation.

Detailed design specifications for the caustic unit, operating data, and operating curves are presented in this project's previous report. (3) This unit, developed for the Office of Naval Research, is a non-regenerative type carbon dioxide removal apparatus. In non-regenerative systems either the absorbing materials can not be reused or it is more expedient to discard the materials rather than to go through another process which may be very complex, intricate, cumbersome or uneconomical to prepare the materials for reuse. Such is the case with the sodium carbonate formed when carbon dioxide reacts with sodium hydroxide in the caustic unit.

For this non-regenerative system there is an 80% utilization of the sodium hydroxide when the unit is operated according to the design conditions. The operating characteristics for the caustic system are presented in Table 1.

These operating conditions were very closely followed by the unit as installed for Operation Hideout. The conditions

Table 1

OPERATING CHARACTERISTICS FOR THE CAUSTIC UNIT

Air rate	539	1b. mole/hr. sefm. cfm at 80°F and 750 mm. Hg.
Liquid recycle rate Caustic (28.5%) feed rate Water feed ratetheoretical net	60 59.6 127.1	gram .
Effluent liquid rate Defoamer rate		lb/hr. fluid ounce/hr.
Pressures Tower operating pressure Pressure drop in tower	1 9	atma. inches H ₂ 0
Compositions (Theoretical) Air in Air out Liquid feed (composite) Effluent liquid	2•5 0•5	% CO2 % CO2 N NaOH N11 Na ₂ CO ₃ N NaOH ² CO ₃
CO2 removed from air		1b/hr.
Caustic utilization	80	%

that were not duplicated included the compositions of the inlet air and effluent air and the composition of the effluent liquid streams. The composition of the inlet air during this test was 1.5% carbon dioxide instead of 1% carbon dioxide. This change in condition then resulted in changed conditions for the outlet air composition and effluent liquid composition.

An increase in the carbon dioxide content of the air fed to the equipment permits the system to operate with a higher driving potential which results in an increase in the carbon dioxide absorption rate. Thus, the scrubber, which was designed to remove 7.5 pounds of carbon dioxide per hour with an inlet carbon dioxide concentration of 1%, should remove carbon diecoxide at a rate above 7.5 pounds per hour with an inlet carbon dioxide concentration of 1.5%.

If the flow rates of the air and liquid streams (including the caustic feed solution) are not changed, the increased carbon dioxide absorption rate will take place which will in turn increase the utilization of the caustic to greater than the 80% value.

Location of Scrubber

It was desired to locate the scrubber in an inconspicuous place where it would not interfere with the conduction of the tests by the medical personnel. In addition it was necessary to locate it where it could be conveniently connected to the ventilation system and without altering the boat's structure. It was also desirable, but not necessary, to install the unit where it might be observed and any improper operation noted.

The possible alternate locations for the carbon dioxide removal equipment and the methods of connecting the system were discussed at the November meeting. The simplest and easiest installation was desired, because the installation was temporary and the allotted installation time was short.

In the early plans as discussed in November, the forward tornedo room wasn't included in the test compartments, and therefore the scrubber and blower were to be located in the forward engine room. For the connection of the caustic unit it was planned to have the inlet to the unit's blower and the exhaust from the unit tied into the same duct of the ship's ventilation system. The carbon dioxide rich air was to be drawn from a point slightly upstream from the point at which the carbon dioxide lean air was to be returned to the duct. This is illustrated in Figure 3.

the plans called for the carbon dioxide and oxygen control equipment to be placed in the forward torpedo room which would then be a part of the test space of the Haddock. The final decision to use the forward torpedo room as a part of the test space and to house the control gear in this compartment permitted the scrubber to be installed also in this compartment. The installation of the scrubber here was advantageous on several counts. It permitted the watch of the control gear to observe also the scrubber operation. The installation of the equipment was simplified. The work space was larger permitting more freedom for personnel around the

CAUSTIC UNIT AIR CONNECTIONS -- OPERATION HIDEOUT FLOWSHEET

Figure 3

equipment for observation. Access to the scrubber direct from the top deck was now possible, and the scrubber could be inspected without the necessity of passing through the remaining test compartments.

Equipment Required

The equipment required for this installation can be divided into two groups. The primary group consists of the equipment required to accomplish the desired results. This would include that which would be required in a regular, routine installation. It would include the absorption tower, the recirculation pump, and the caustic feed flow controller.

The secondary group would consist of equipment needed because of the temporary nature of the installation. Also the improvisations and equipment required to observe or measure the operation to demonstrate its action more accurately. Source of Equipment and Supplies

The major items of equipment such as the absorption tower, proportionating feed pump, defoamer, liquid recirculation pump, blower, and other equipment which might be needed in the test were shipped from Northwestern Technological Institute. Much of this equipment was borrowed from the facilities of the Chemical Engineering Department. The equipment shipped from Evanston is listed in Table 2. Also included in this table are pertinent materials and supplies needed for the test.

It was determined at the November meeting that supplies such as pipe, pipe fittings, sheet metal, duct work, and electrical supplies other than those in Table 2 could be procured

Table 2

NATERIAL SHIPPED FROM NORTHWESTERN TECHNOLOGICAL INSTITUTE FOR USE IN OPERATION HIDEOUT

Quantity	Description	Identification Number
2	Transfer pumps	Ch E P55
2 1	Hills McCanna proportionating pump	Ch E P51 Ch E P134
1	Portable lightning mixer	Ch E M7
. 2 1	Displacement water meters	Ch E M34A
ī	Recycle pump	Ch E 35
-		Ch E P39
1	Blower (U. S. War Dept. No. 50870)	M B 8
1	Hasting airmeter	Ch E A23
1 1 1 2	Flowrite airmeter	Ch E A23
1	Carbon dioxide regulator	Ch E R119
2	Schutte Koerting rotameters	Ch E R80
2	Manometers	Ch E 85A Ch E 86B
· 1	Electric timer	Ch E T11
1 1 8	Absorption tower	• • • • • •
1	Defoamer	• • • • • • •
8	No. 2 - 16" x 25" x 2" fiber glass	
8 cu ft	dust-stop filters Berl saddles	•••••
C GILL	Disconnect switches	• • • • • • •
Ş	Starters	• • • • • •
3	Tower blower adapters	•••••
<i>-</i>	2", 1/2", and 1/4" piping and valves	
3	Goggles	
۲,	Pair rubber gloves	
ξ.	Dust masks	*******
25	Cotton pad refills for masks	*******
8 5 5 5 3 4 5 5 5 80	100 1b. drums sodium hydroxide	******

through the stores at New London and would therefore not have to be shipped from Evanston.

The electrical equipment which was available for use in this test required either 220 volt or 110 volt 60 cycle A. C. current. It would have been undesirable to purchase direct current motors specifically for this test because of the cost and time required for its procurement. This became unnecessary because the Haddock had been stripped of its batteries and power was to be fed to the boat from shore installations.

The exact equipment required for the process was unavailable in many cases so that oversize equipment was used and throttled to produce the proper characteristics. The air blower was an example of such equipment. The blower used was considerably oversize.

Scrubber Installation

To install the scrubber it was necessary to cut it and reweld it inside the boat. The scrubber and the other auxiliary equipment which were installed are illustrated in the flowsheet, Figure 4. This included all equipment of both groups, the primary group needed for a standard installation, and the secondary group needed to demonstrate its operation and to improvise for the temporary installation.

The air was pulled from the ventilation system by the blower, forced through the scrubber and entrainment separator and back to the ventilation system. The carbon dioxide was removed from this air stream by the caustic solution in the scrubber. The intimate contact required between the caustic solution and the air is accomplished by circulating the solution through packing material in the scrubber by pumping liquid from

CO₂ Removal-- Caustic Unit--Operation Hideout Flowsheet

Figure 4

2

the bottom with the recycle pump and feeding it back into the top of the scrubber through a liquid distributor.

To replace the caustic which has been used, fresh caustic is fed into the system. The caustic solution comes from the temporary caustic and water supply tanks and is fed into the system by metering pumps. A flow meter (FM) is also placed in this feed line to verify the flow rate.

The used caustic solution flows out of the scrubber through an overflow on the sump. This could be pumped directly to the sea, or let flow to one of the tanks or to the bilge and pumped out periodically. This installation utilized a small waste tank and a centrifucal pump. The waste tank level was controlled by a liquid level controller.

The equipment installed inside the submarine in the forward torpedo room consisted of the scrubber, blower, recycle pump, discharge pump, waste sump tank, displacement liquid meter, and manometer. All these items were placed just forward of the after bulkhead and sonar rear on the port side (left side) of the forward torpedo room. This equipment covers an area approximately 9 feet long and 2 feet wide.

compactness of the equipment for this set-up was not required or desired. The installation was temporary, because the authorities did not permit any changes in the submarine structure. As a result the equipment was spread out in a long narrow band. This allowed more space in the middle of the compartment for personnel traffic. Figures 5, 6, 7, 8, and 9 show different views of the installation of this equipment in

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

PHOTO-101

Figure 5

23

PHOTO-102

Figure 6

PHOTO-105

Figure 9

the forward torpedo room. The scrubber was placed on the platform deck with the deck plate removed. This was done so that observation could be maintained on the other equipment which had to be installed in the space below the unit. This is clearly shown in Figures 3 and 9. The blower shown in Figure 6 was bolted to strongbacks which in turn were anchored by clamps to the platform deck supports. This blower was also mounted on rubber pads in order to decrease any vibrational noises.

The capacity of the blower shown in this figure exceeds considerably the air flow rate desired for a carbon dioxide scrubber. This process would require a blower similar to the battery blower, but none were available for this test.

No blower of the exact size was available at Northwestern Technological Institute. However, for the temporary installation this large oversized blower was used and throttled to the proper rate.

A manometer was connected to the inlet and outlet of the tower. This was used as a measure of the air flow through the unit. It could also be used as an indicator for detecting any excessive foaming of the solution within the scrubber, detecting any stoppages in the fiber glass dust-stop, or detecting any other operational problems. It was mounted in the front of the scrubber and is visible in Figures 5, 6, and 7.

A top view of the space below the platform deck on which the scrubber was placed is more clearly shown in Figure 8. This figure shows the recycle lines to and from the scrubber,

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

the liquid level control for the sump on the scrubber, and the waste liquid tank with the float type liquid level control. Figure 9 is a picture of the same below deck area directly below the scrubber snowing the space limitation in which the recycle and waste discharge pumps and waste tank were installed. In the background of this figure the waste discharge tank is faintly visible.

Figure 5 is a view of the scrubber and the electrical power panel from which the unit operated. The equipment mounted on this panel included disconnect switches, starting relays, motor starters, an electrical timer, and an analytical time delay relay.

The air lines to the inlet and outlet of the scrubber and the liquid inlet line are shown best in Figure 7. These lines were installed for functional use only with what materials were available. The winding nature of these ducts would not be desirable or necessary in a regular installation. The ducts very excellently served the purpose of conducting the air stream between the ventilation system and the scrubber.

The air supply to the carbon dioxide scrubber is essentially similar to that originally proposed with the exception that the connections are made at the terminals of the ship's venilation system. The connections to the supply main can be seen in Figure 7. The main is continued and opens behind the chain fall. A damper in this line near the outlet controls the air supply to the forward torpedo room. The outlet from the entrainment separator is looped back in order that it could

be connected to the ventilation exhaust main. This is tied into the exhaust ventilation main in a manner similar to the connection to the supply ventilation main.

Both the waste discharge stream and the feed solution liquid stream go to the outside of the boat through a dummy hatch. These lines can be seen going to the hatch, which is visible in the upper left hand corner of Figure 7. The feed solution goes through the displacement type water meter located on top of the carbon dioxide scrubber and then to the unit. This meter is shown in Figures 5 and 7.

With the exception of the control equipment the above is the entire equipment which was installed in the forward torpedo room. Some of this equipment was installed for test purposes and will not be required on a final unit.

Caustic Storage and Method of Feed

It was determined at the November meeting that the 28.5% caustic feed solution could be stored either on the pier or on the work barge. From there the solution could be pumped by a proportionating pump into the Haddock to the unit through the high salvage line. With these plans it would have been necessary to run a flexible line between the barge and the submarine. To insure that the line would remain intact during shifting and to insure that the line would not freeze would have resulted in difficult but solvable problems.

As the final plans became formulated in December it was deemed possible to store the caustic solution on the bow of the submarine. This was much more convenient. This storage

was, of course, a temporary measure for use in this test only.

The feed solution could be stored in several manners in a regular installation.

The concentrated solution of caustic could be mixed as it was needed on the boat or else the entire supply could be mixed and stored as such. For the former method the pure sodium hydroxide must be stored inside the submarine as solid and a solution made with sea water during the time the caustic unit is in operation. The mixing of the concentrated caustic aboard the submarine would require additional equipment and a strict enforcement of the safety requirements. This would be similar to handling the carbon dioxide absorbent presently used aboard submarines. The storage of the solid sodium hydroxide and the additional mixing equipment would require space inside the submarine, and the actual mixing aboard the submarine would be undesirable. In the latter, the solution can be mixed aboard submarine tenders or ashore with fresh water or sea water whichever was accessible. This solution can then be stored in a ballast tank or in plastic bags, both of which do not affect the available space inside the submarine. There are probably other possibilites, but up to date the storage in plastic bags appears to show the greatest promise.

The use of plastic bags for stowage was based on the condition that they be placed outside the pressure hull of the submarine in the free flooding main ballast tanks which are between the pressure and outer hull and are separated by light athwartship bulkheads. These plastic bags would be manifolded

together so that the 28.5% caustic solution can be drawn from any one or all of the containers. In this way the storage of the solution would not require any space which is so vital inside a submarine. The caustic solution in the bags being exposed to sea pressure could be easily utilized by allowing this pressure to force the required solution into the scrubber. This matter of storage is discussed in greater detail as to the structure, construction, and arrangement of the plastic bags in this project's previous reports. (2,3)

However, since the installation for Operation Hideout was a temporary one and was for only a short duration, the use of the plastic bags for stowage was not warranted. Instead, the more temporary arrangement of using large metal tanks was adopted. The sodium hydroxide and the dilution water tanks were placed on the bow of the Haddock forward of the forward escape trunk hatch. The caustic solution strength was 28.5%, which is the strength that is proposed to store the caustic in plastic bags.

The freezing point of 28.5% sodium hydroxide is 3°C below the freezing point of water, or -3°C. If the caustic solution were stored in plastic bags, it would be surrounded by sea water. The coldest sea water is about -2°C. Therefore, the concentration of the caustic was so chosen that the solidification of the solution would occur below the freezing point of sea water.

The water to be used in this process would normally be drawn from the sea. This could have been done in this test

but would possibly have resulted in problems due to the debris in the river. This is not serious since strainers could have been provided and cleaned, but since even a temporary interference in the carbon dioxide content of the air might influence the medical tests and would be undesirable, it was decided to use clean water. To insure an adequate supply in case of an interruption of service from shore installations, a holding tank for a reserve was provided. Other problems such as plugging of the line due to freezing also influenced the choice of using a storage tank where better control could be maintained.

The storage tanks used for the liquids were available in the salvage depot at New London and were utilized because of their accessibility rather than for the purpose for which they were intended. These tanks had to be altered to allow for drainage and for heating facilities to be installed. Figure 10 shows a view of the top deck installation including the two storage tanks. The larger of the tanks appearing in the background was used for caustic storage and the other for water storage.

Provisions were necessary to keep the solutions in a liquid state for the duration of the test. Since these liquids
were exposed to the cold winter weather, arrangements were
necessary to keep the caustic and water in the storage tanks
from freezing. Steam was admitted directly into the water
tank since the condensate could be used as dilution water.
For the caustic solution, however, the steam was introduced

But to

into coils which were installed in the caustic storage tank, and the condensate was discharged overboard.

Installed next to the storage tanks were the metering pumps (driven by a single motor). In this temporary installation the metering pump was used primarily to meter and control the flow since the head of the tank would have been sufficient to provide the flow. This metering pump could and would normally be replaced by a flow controller. The pump is seen in Figure 10. The proportionating pump is equipped with an air dome to rive a cushioning effect to the flowing liquid stream and is equipped with a pressure relief valve downstream to insure the proper flow when the pump is operating. The choice of putting the feed pumps near the feed tanks rather than inside at the unit had no special reason. With installation on the top deck, one, instead of two, lines had to be steam traced, and the noise of the pumps which was not a necessary function of the unit would not be imposed unnecessarily on the personnel. The proportionating pump was kept warm by wrapping two loops of flexible piping around it and covering this with a wooden box.

The transfer lines from the tanks to the pump were traced with 1/2" copper tubing through which steam flowed. Both of these lines were wrapped together with 4" wide canvas strips in order to insulate the warm lines from the atmosphere. The wrapped lines from the tanks to the pump and the flexible pip-ing can be seen in Figure 10. The transfer line conveying the feed solution from the pump to the dummy hatch was similarly

wrapped. This line then proceeded through the dummy hatch to the liquid displacement meter on top of the caustic unit.

Control Equipment

Since the continuous operation of the scrubber would have resulted in a carbon dioxide concentration much lower than the desired value it was necessary to make provisions for preventing this situation. It could be accomplished by any of the following methods.

- 1. Run the scrubber continuously and introduce extra carbon dioxide from tanks to take care of the excess capacity of the scrubber.
- 2. Run the scrubber continuously but at operating conditions much below design specifications.
- 3. Run the scrubber intermittently and maintain the concentration between narrow limits.

The generation rate would not be constant throughout a twenty-four hour day because of the variation in the activity of the personnel. The entrance and exit of the medical teams and observers resulted in an even more variable total generation rate.

The second method was not a desirable one because it would give no true indication of the capabilities of the scrubber. Also because of the variations in the carbon dioxide generation rate, it would be very difficult to follow the generation rate with the removal rate. The time lag would be great and the ability to maintain the carbon dioxide concentration at exactly

the 1.5% level would have been difficult. The carbon dioxide concentration would tend to fluctuate over a wide range.

The first method would require the consumption of considerable carbon dioxide from the tanks, about 6 pounds an hour, or about 6000 pounds for the test.

The third method had the most desirable conditions and was the method actually used. This method called for intermittent operation of the scrubber. The turning on and off could have been done manually whenever the concentration so indicated that one or the other should be done. It could also be done automatically by electronic controls. These permit the concentration to be controlled over a finer range and permit a much more reliable control in that they eliminate the human error.

The electronic equipment used in Operation Hideout for controlling the atmosphere of the submarine at the proper level of carbon dioxide was installed on the starboard side of the forward torpedo room directly opposite the scrubber. Figure 11 shows most of the equipment, particularly the Gow Mac carbon dioxide analyzers and the Brown continuous balance potentiometers. Just a small portion of the equipment shown was used for control of the caustic unit. The oxygen content was also controlled and provisions were included for adding oxygen as needed and for even adding carbon dioxide if the concentration became too low. These were all controlled by this panel.

The equipment for controlling the carbon dioxide content consisted of a Gow Mac analyzer, a Brown potentiometer, and a Liston Becker carbon dioxide analyzer. The two Gow Mac units,

£....

only one of which was used, are seen on the left in Figure 11, and the necessary drying and ascarite U-tubes are below it. Three potentiometers, the middle one of which was used for the scrubber control, are located on the right. The Liston Becker is not visible in the figure.

The Gow Mac analyzed the air stream and sent a weak signal to the potentiometer, which responded to this signal. If the potentiometer deviated from the limited range for which it was set, the scrubber either started or stopped, depending on which end of the range was crossed. This hookup had a tendency to drift. The Liston Becker instrument was used to calibrate the Gow Mac - Brown combination, and the Liston Becker was in turn calibrated with standard gases.

The Gow Mac operates on the thermal conductivity principle.

The air was drawn from the ship's ventilation supply main at a constant rate of 5 cubic centimeters per minute. A Stedman pump aided in pulling this sample at the desired rate from the duct and through the instrument. This air stream must be dried, and this drying is accomplished by passing the stream through indicating silica gel in the U-tubes pointed out in the figure. The dried air is then passed through one side of the Gow Mac instrument.

After this passage the air must be stripped of its carbon dioxide and redried before passing it through the other side of the instrument. This is done by passing the air stream successively through U-tubes containing indicating ascarite and silica gel. The dry carbon dioxide-free air is then passed through the other side of the Gow Mac. The difference in thermal conductivity

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

of the air stream under these two conditions sets up an electrical direct current signal of very small magnitude.

The signal from the Gow Mac was sent to the breaker-type amplifier in the Brown potentiometer. The potentiometer amplified the electrical signal. The output from the amplifier operates a control motor which drives the indicator arm as seen on the face of the potentiometer in Figure 11. The smallest division visible in the dial of the potentiometer was equivalent to approximately 0.01% carbon dioxide (or the main divisions between numbers was approximately 0.1% carbon dioxide). The range of the potentiometer can be set so that as the arm, which indicates the composition, moves out of the range a microswitch is operated which then activates the necessary switches for the scrubber. The equipment was sensitive enough to control the carbon dioxide concentration at 1.5±0.03%. Due to the drifting tendencies the actual sensitivity would be less accurate.

This tendency to drift was corrected by periodic checks with a Liston Becker instrument. The Liston Becker is an infra red analyzer. This analyzer was first calibrated with two gases of known constant composition. The carbon dioxide content of the boat's atmosphere was then determined and if a drift in the Gow Mac - Brown system had occurred, the instrument was reset. This consisted of resetting the Brown for a new scale range that corresponded to the proper carbon dioxide content range. These Liston Becker analyses were made once an hour when possible. The instrument performed double duty and

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

Liter

was not always available.

Electric Power Connections

The power required for the scrubber installation included 110 volt and 220 volt alternating current. This power, in fact all power on the boat, was supplied from shore installations. The electrical equipment involved on the scrubber included the feed pump (110 volts), recycle pump (220 volts), overside pumps (220 volts), blower (220 volts), overflow valve (110 volts), and timer (110 volts). All equipment was connected through switches directly to the power supply. The overside pump switch was actuated by a liquid level controller in the overflow sump. All other switches were actuated by electrical signals from the Brown potentiometer. These connections are shown in Figure 12. The solid connecting lines represent power supply wires, and the dashed lines represent wires carrying electrical control signals.

The delay switch is necessary because of the liquid holdup in the backing. When the equipment is shut down, this holdup volume drains down into the sump and must be held there to permit efficient operation when the scrubber is next started. When it is necessary to start again, the recycle pump starts first, redistributing this solution through the packing. This arrangement eliminates any low utilization of the caustic solution and prevents the air from picking up solution from a high liquid level in the sump. These two effects are minor, however.

The switches were all located on a panel visible in Figure 5.

On the top row were (1) the main disconnect switch (220 volt, 3 phase) for the scrubber which controlled all power except that to CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

CAUSTIC UNIT ELECTRICAL FLOWSHEET -- OPERATION HIDEOUT

Figure 12

the 110 volt transformer, and (2) the 0.01 to 1000 minute electrical timer (110 volts). In the second row were (1) the starting relay switch for blower, feed pump, and timer, and (2) the disconnect switch (220 volt, 3 phase) for the transformer which is the 110 volt, single phase source. In the third row were (1) the waste pump starter switch (220 volt, 3 phase), (2) the adjustable time delay relay (0-120 seconds), and (3) the recycle pump starter switch. In the bottom row was the starting relay switch for the recycle pump.

EXPERIMENTAL PROCEDURE

Operation Hideout

The duration of the operation was from January 19, 1953 until March 19, 1953 or a total of 60 days. All personnel and equipment were on hoard, and the test not underway at 0915 o'clock on January 19. Ventilation with the outside atmosphere was maintained until 1300, January 27. During this interval the carbon dioxide concentration of the submarine air was essentially the same as it is in the normal atmosphere. At 1300 o'clock on January 27 the outside hatches were closed, at which time the submarine atmosphere was essentially isolated. The carbon dioxide content of the submarine atmosphere began to build up, reaching the control content of 1.5% at 2000 o'clock. From this time until the ship's ventilation was again opened to the outside atmosphere this isolated air was recirculated through the submarine. The excess carbon dioxide which was generated was removed, and the oxygen which was consumed was replaced, but the nitrogen, argon, and any other inert gases recirculated essentially unchanged throughout the isolation period.

At 2000 oblock on March 10 the ship's ventilation was again opened to the outside atmosphere. The personnel were then breathing essentially carbon dioxide-free air again. At 1400 o'clock on March 19 the test was completed, and the personnel left the boat.

The scrubber was used during the period January 27 through March 10 when the atmosphere was isolated and the excess carbon dioxide had to be removed.

Operation Preparation

After the equipment was installed, the preliminary testing consisted of insuring that all equipment operated, that the lines were clear, and that proper operating conditions could be attained and maintained.

The strong caustic solution was made up in sufficient quantity to last for the entire test. The amount made up was 29,030 pounds, which quantity only partially filled the tank used for the storage. All of this caustic made up was not used during the test. Approximately 6000 pounds remained to be disposed of at the end of the test.

Operation

The operation of the equipment was quite simple. Since the scrubber was turned on and off at the proper time by the electronic equipment shown in Figure 11, the required work consisted of periodic inspections to verify the proper operation, making readings and taking and analyzing samples to determine the exact carbon dioxide removal rate.

The operation of the scrubber consisted of intimately contacting the air and caustic solution by passing them through the 1 inch Berl saddles in the scrubber. The carbon dioxide reacts with the caustic solution according to the following reaction and is removed from the air.

 CO_2 + 2NaOH \longrightarrow Na₂CO₃ + H₂O

The fresh sodium hydroxide solution (2.5N) is metered into the scrubber at a constant rate by the proportionating pumps. These pumps were calibrated and set to deliver the proper amount

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

of water and 28.5% caustic solution. The volume of the diluted solution was checked by a displacement flow meter. The flow meter reading was actually less accurate than the calibration of the feed pumps. It served best to check against failure in the feed line such as a freeze which might either drastically reduce the flow or hold valves open and permit an excessive flow. After reacting with the carbon dioxide, the spent solution flowed out the overflow and was pumped overboard. In passing through the scrubber over 80% of the sodium hydroxide has been converted to sodium carbonate.

Readings taken during the test included (1) the meter reading on the feed stream, (2) the reading of the electrical timer, and (3) the manometer reading of the tower pressure drop. The carbon dioxide content of the air in the ventilation system as determined by the Liston Becker and the carbon dioxide content of four compartments as determined by the Dwyer were also recorded.

The meter reading checked the feed pump operation. The timer reading indicated the time the scrubber was in operation and the time of operation of the feed pumps. The recirculating pump always operated 30 seconds before the rest of the equipment went into action, and it was the latter time which was important and which was measured. This time was the scrubber operating time which was used to determine the carbon dioxide removal rate per hour. It was also the time used to measure the operating time of the feed pumps and thus the feed volume.

The manometer measured the pressure drop of the air stream through the scrubber. After setting the air rate on a properly

functioning tower the manometer could be used to detect pluggage in the entrainment separator or of the packing (increase of ΔP), a pluggage of the liquid distributor (decrease of ΔP), an excessively high liquid level in the sump (an increase in ΔP), and several other possible occurrences.

Samples of the liquid solution fed into the scrubber and of the effluent solution leaving the tower were taken at frequent intervals. Quick approximate analyses were performed immediately aboard the submarine. These analyses were also used to check the operation of the feed stream. A variation in the sodium hydroxide normality would indicate trouble due to freezing in either the water or the caustic feed solution. A variation in the carbonate-hydroxide ratio in the effluent stream would also indicate a pluggage in the line of either solution or of both solutions.

The samples for precise analyses were taken to the laboratory on the barge. These analyses were used to determine the carbon dioxide removal rate effected by the scrubber.

The carbon dioxide removal rate could also be obtained by the air analyses, but the method was more difficult to carry out and was considered to be less accurate than the liquid analysis. In addition the conditions of the tower are more difficult, if not impossible, to determine from the air analyses alone.

The only difficulty during the test was in the feed of the caustic solution to the scrubber. This was due principally to freezing of the lines. The pumps should have a discharge head greater than the suction head. Pressure control valves placed downstream of the pump were susceptible to failure. This all re-

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

Residue En

sulted in the precautions to check the feed streams.

Liquid Analyses

The compositions of the solutions were determined by both approximate and precise analyses for different purposes, as pre-viously described.

The precise analyses were made in the analytical space provided on the work barge. A seaman was specially trained to carry out these analyses, and the technique was frequently checked by the engineer who duplicated the analyses.

The classical method for a volumetric analysis of a strong base containing carb nate was followed. The normality of the hydroxyl ion, carbonate ion, and their sum, the sodium ion normality, were determined.

Into a clean Erlenmeyer flask (250 ml) a measured portion of the liquid sample was pipetted. To this was added a solution of barium chloride in excess of the theoretical amount required to react with the carbonate ion and remove it as a precipitate. The solution has then diluted with distilled water and two drops of phenolphthalein indicator were added. The supernatant liquid now contains essentially no carbonate ion. This slurry is then titrated with standard hydrochloric acid (ca.0.1N) until color-less. The hydroxide ion has then been neutralized, but the carbonate is still intact as the solid barium carbonate.

Two drops of methyl orange indicator were then added and the titration continued until the solution color changed from yellow to orange. During this second addition of hydrochloric acid, the barium carbonate dissolves and reacts with the acid and carbon

CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

dioxide is liberated. The solution is thenboiled to expel all the liberated carbon dioxide which has remained in solution.

During boiling the solution will change color back to yellow. After cooling the solution, the titration is continued until the solution again turns orange. At this point all the carbonate ion has been neutralized, and the resulting carbon dioxide has been released from the solution.

The normalities of hydroxide, carbonate, and sodium ions present in the original sample can then be determined from the normality and volume of hydrocaloric acid used and the volume of the original sample. The hydroxide normality is determined from the amount of acid required to reach the phenolphthalein end point, the carbonate normality from the acid needed to reach the methyl orange end point from the phenolphthalein end point, and the sodium normality from the total quantity of acid used. The compositions of the inlet and effluent liquid streams were then used to determine the amount of carbon dioxide removed by the scrubber.

The results of these analyses were precise, and as a result, required considerable time. This delay was too long to be use—ful in determining the operating conditions of the scrubber. As a consequence, therefore, a quick, abbreviated analysis was made when needed so that any trends in the operation of the caustic unit could be more closely followed. These were carried out in the forward torpedo room. In these analyses the sodium ion concentration was of principal interest. Approximate results, which were satisfactory, could be obtained quite rapidly by titrating a Chemical Engineering Laboratory, Chemical Engineering Department, Northwestern University

sample to the methyl orange end point without the addition of barium chloride. From these titrations any major changes in the concentrations of the solutions entering or leaving the scrubber could be immediately detected, and the adjustments could be made as necessary.

Pump Calibration

The pump for the feed solution was a piston type positive displacement pump. Its discharge rate could be varied by the length of the piston stroke. The discharge volume could be calculated directly from the piston displacement and a knowledge of the slippage. The discharge rates at various piston displacements were determined by measuring the discharge. This was done by measuring it both by volume and by weight.

TREATMENT OF DATA

All the pertinent data are tabulated in Table 7 in the Appendix. Each page represents the data of one day's operation. The information presented included the readings taken, the analyses of the submarine air, the analyses of the liquid samples, the calculations of the carbon dioxide absorbed, and the carbon dioxide absorption rate.

The operating time of the unit is an approximate indication of the carbon dioxide removal rate or the carbon dioxide generation rate. The cumulative operating time for each day is thus plotted vs. the time of the day. These are Figures 21 through 62 in the Appendix. An average for all days of the cumulative operating time of the scrubber at each hour of the day was determined, tabulated in Table 3, and plotted in Figure 13. Similar averages were prepared for weekdays only, Figure 14; weekends only, Figure 15; Saturdays only, Figure 16; and Sundays and holidays only, Figure 17.

The breakdown of these data between weekdays and weekends was made because the personnel were on "holiday routine" on Saturdays, Sundays, and the one holiday. The results were expected to be somewhat different between weekdays and weekends. These data are all listed in Table 3.

The carbon dioxide absorbed presented in Table 7 were based on the amount of caustic solution passing through the scrubber as measured by the liquid flow meter and the concentration of the

Table 3
CAUSTIC UNIT AVERAGE OPERATING TIME

Time of Day	Caustic Unit Operating Time						
	All Days (42)	Week Days (29)	Week Ends	Saturdays (6)	Sundays and Holidays (7)		
O'clock	Minutes	Minutes	Minutes	Minutes	Minutes		
0000 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2200 2300 2400	0.00 8.27 14.77 19.67 27.81 31.26 27.81 31.26 27.81 31.45 31	0.00 8.34 14.50 19.17 27.08 27.20 39.60 27.60 27.60 111.50 125.76 115.76 115.76 115.76 115.76 115.76 115.76 115.76 115.76 116.98 197.68 201.48	0.00 8.13 15.37 25.78 29.18 34.88 34 34.88 34.88 34.88 34.88 34.88 34.88 34.88 34.88 34.88	0.00 17.79 25.49 27.00 27.20 35.26 29.75 38.36 42.74 561.03 24.78 69.54 83.59 109.24 121.46 132.78 154.82 162.46 167.76	0.00 7.21 13.30 19.32 26.42 31.03 37.17 45.60 54.87 69.40 75.00 88.24 96.08 107.138.40 129.60 179.80 189.60		

Figure 15

RESTH.U. U

Figure 16

. NESS AND ST

carbonate ion as obtained in the analysis of the liquid effluent. The equation for obtaining these values is shown in Note 3 on the first page of Table 7.

A more rigorous determination of the amount of carbon dioxide absorbed was measured by the amount of solution passing through the scrubber and the amount of conversion of the hydroxide ion to the carbonate ion as obtained in the exact analysis of the liquid effluent. The net feed solution flow was determined from the pump, the operating time, and was adjusted for evaporation losses and leakage past the pump when such existed. The total operating time for each day, the total carbon dioxide absorbed each day, and the carbon dioxide absorption rate for each day are tabulated in Table 4. A plot of the carbon dioxide absorbed each day is plotted vs. the date in Figure 18. Also, a plot of the carbon dioxide absorption rate vs. the date is presented in Figure 19.

Table 4

OPERATING TIME AND CO₂ ABSORPTION DAILY SUMMARY

Date	Operating Time	Carbon Diox	Carbon Dioxide Absorbed		
		Total	Rate		
	Minutes	lbs	lbs/hr		
January		4.4			
28	329 .19 312 . 48	65.33	11.90		
29	312•48	51.59	9•90		
30 31	21:3.28	20.94	5.16		
31	123.10	7•90	5.16 3.85		
February		, ,			
	140.05	9.73	4.18		
1 2 3 4 5 6 7 8 9 9 0	21,5.59	31.30	7.65		
3	217.13	32.45	8.89		
Si .	225.81	31.66	8.40		
7	211.13	27 . 89			
ž			7.90		
7	198.12	25.74	7-80		
0	159.65	17.39	6.51		
0	187.59	26.65	₿ • <u>5</u> 1		
. 9	241.35	27.08	6.74		
10	168.33	26.31	9•40		
11	181.23	33.05	10.91		
12	290•25	53.32	11.02		
13	229.72	53.32 41.16	10.75		
11 12 13 14 15 16 17	138.69	24.77	10.72		
15	137.21				
16		20.24	8 • 94		
17	278.97	45.67	9.82		
10	330.18	53.48 51.00	9.72		
10	311.82		9.81		
19 20	26 2. 07	41.14	9.41		
20	2 7 9 .7 4	46.04	9.88		
<u>51</u>	207•58	35.13	10.15		
22	170.62	31.10	10.95		
23	229.06	39.56	10.37		
24	301.87	50.16	10031		
25	281.hh		9.97		
26	367.18	1.7.80	10.19		
21 22 23 24 25 26 27	325.06	60.62	9.91		
28		55.44	10.23		
arch	214.50	39.36	10.99		
1	001 / 0	1 - 4 -	• •		
2	2 <u>24</u> .62	40.65	10.87		
~	275.15	50 .7 5	11.06		

Table 4 (cont.)

OPERATING TIME AND CO2 ABSORPTION

Date	Operating Time	Carbon Dioxide Absorbe		
		Total	Rate	
	Minutes	lbs	lbs/hr	
March 3 4 5 6 7 8 9 10	334.57 320.33 340.93 234.37 163.07 238.06 346.67 312.43	56.21 52.66 54.87 41.23 27.58 38.10 55.21 14.11	10.07 9.84 9.66 10.54 10.14 9.60 9.55 8.52	
Total and rate	e (all days)	1632.37	9•77	
Total and rate	e (weekdays)	1274.21	9 •9 4	
Total and rate Sundays, and		358-16	9-21	
Total and rate	(Saturdays only)	152.13	9.07	
Total and rate Holidays on	e (Sundays and ly)	206•03	9-31	

INTERPRETATIONS OF RESULTS

An observation of Figure 13, the cumulative operating time of the scrubber vs. the time of the day shows a low operating time and thus a low carbon dioxide generation rate between midnight and 0800. About 0600 the scrubber operating time begins to increase until 0900 at which time it reaches its maximum operating time per hour. This maximum operating time is maintained until 2000 o'clock at which time the operating time begins to decrease. This pattern is even more pronounced in Figure 14 which is for weekdays only.

The operating time is nearly constant throughout a 24-hour day on weekends as shown in Figure 15. When the weekends are separated into Saturdays and Sundays, it is found that it is principally on Sunday that the rate is nearly constant throughout the 24-hour period. It is interesting to note that the rate is high between midnight Friday and 0200 on Saturday, after which it tapers off rapidly and is maintained at a low rate until 0900 when the rate increases again.

The amount of carbon dioxide absorbed each day is presented in Figure 18. The result of low activity on weekends is, of course, reflected here also. Sundays fall on February 1, 8, 15, 22, March 1 and 8. Saturdays and Sundays generally show a lower amount of carbon dioxide removal, which reflects a lower amount of carbon dioxide generated. The test ended at 2000 on March 10, so the value for that day does not represent a full 24-hour period.

The rate of carbon dioxide absorption is shown in Figure 19.

The low values obtained through February 9 can be attributed to analysis difficulties. The preparation and standardization of an acid, and the training of an analyst were problems in this period. Data obtained for later dates, the accuracy of which was more exact, indicates that these early values are undoubtedly low. Since no means were available for adjusting these values, no attempt was made to do so.

The average carbon dioxide removal rate for the 42 days was 9.77 pounds per hour. This is higher than the 7.50 pounds per hour which the unit was designed to remove from air with 1% carbon dioxide. A higher value than 7.5 was expected and the test verified the exact value of this rate. The rate over the last 27 full days was 10.6 pounds per hour. The high absorption rate at a higher per cent carbon dioxide in the air was indicated in a chart in a previous report, (3) though the value presented there was conservative.

A result of the increased absorption was an increase in the conversion of the caustic to the carbonate. This was a result indirectly attributed to the 1.5% carbon dioxide content of the air. The conversion normally ranged between 85% and 94%, while it would have been 80% if the unit had been operating under the original design conditions. This result was also expected.

An exact average of the conversion of the caustic would be difficult to obtain without many more analyses of the liquid effluent. However, a weighted average was obtained by weighting

the percent conversions for each day's liquid analyses to get a daily weighted average. The weighted average percent conversions of caustic for each day are listed in Table 5 and are plotted in Figure 20. The simple overall average was obtained by averaging the daily weighted averages, and the weighted overall average by averaging the weighted percent conversions. The averages are respectively 87.4 and 90.3%. The values of the weighted daily averages and the overall averages are quite accurate since the percent conversion varied over a narrow range throughout the test.

The chain of interacting influences reach a stabilized point at which the tower operates. The amount of carbon dioxide absorbed depends on the value of K_ga , the mass transfer coefficient, and the driving potential, $(\Delta y)_m$ in the equation

$$N = K_g a V P (\Delta y)_m$$

where N is the pounds of carbon dioxide absorbed per hour, V is the scrubber volume, and P is the total pressure of the system.

The increase in the inlet carbon dioxide concentration from 1% to 1.5% would tend to increase the amount of carbon dioxide absorbed, N, by 50%. With no change in the rate of feed of the caustic solution, the percent conversion would increase. As the percent conversion increases, the value of the Kg a decreases. An absorption increase slightly less than 50% would thus be expected. The Kg a could be maintained constant by increasing the feed rate of the caustic solution so that the conversion of hydroxide ion to carbonate ion was the 80% design figure. The first procedure

Table 5

CAUSTIC UTILIZATION

DAILY WEIGHTED AVERAGE

Date	Utilization	Date	Utilization
	Percent		Percent
January		February	
28	88.8	18	88.0
29	89.4	19	86.9
3 Ó	9 ó• 2	2 Ó	88.8
31	95•9	20 21	90.9
Pobruary	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22	90.8
1	96.7	22 23 24 25 26 27	90.8 84.6
2	91.0	24	89.2
3	87.2	25	9 ó.6
Ti.	92.3	26	87.2
इ	87.5	27	86.3
6	90•4	28	86.9
7	85.9	March	,
345678910	8 6. 6	i	85 .2
Q .	88.2	2	91.9
16	74.9	3	90.5
īĭ	72.6	Ti.	90.1
12	74.7	इ	67.7
	76.8	7	89.5
ร ัก	75.2	7	92.1
îĒ	75.7	Ŕ	93.9
13 14 15 16 17	87.2	ă	93.2
17	88.8	4 5 6 7 8 9	90.9

Simple Overall Average 87.4
Weighted Overall Average 90.3

was followed since it was felt the additional increase in carbon dioxide absorption would not be as important as the increase in utilization of the caustic.

The average amount of carbon dioxide removed per day (33.9 pounds) does not equal the previously determined amount of carbon dioxide that 23 humans would generate (4) in one day (50.7 pounds). If only the data between the dates 2/11/53 through 1/9/53 are used, which are considered more reliable, the average carbon dioxide removed per day is 43.9 pounds. These values are shown in Table 6.

There are several factors in this operation which account for the deviation:

- (1) The average activity of the personnel may be lower than that required to generate carbon dioxide at the average rate.
 - (2) There may be exchange of air with the outside air.
- (3) There may be leakage due to a slight pressure differential between the submarine interior and the surroundings.

Item one can undoubtedly account for part of this deviation. During weekdays only, when the activity was probably at more nearly the average rate, the average carbon dioxide removed during the whole test was 43.9 pounds per day. During the 27 days from 2/11/53 through 3/9/53 the average carbon dioxide removed was 49.4 pounds per day. These values are respectively 6.8 and 1.3 pounds less than the accepted rate.

The generation rate of one person at rest was given as 0.50 cfh (1) or 33.8 pounds per day for 23 men. Activity on weekends might better be compared to this value. The average carbon dioxide

removed per day over weekends was 27.6 pounds (average over whole test) and 32.9 pounds (average over period 2/11/53 through 3/9/53). These values are respectively 6.2 and 0.9 pounds less than the previously determined value.

A source of carbon dioxide loss would be present if the boat pressure was slightly greater than the outside pressure and there was a leak. The carbon dioxide loss would depend on the rate of this leak. This leak could not continue very long without equalizing the pressure or requiring that more air be supplied to the inside of the submarine. Since nitrogen would also be lost in a leak, added oxygen along could not compensate for the leak since its feed rate was governed by the percent of oxygen in the submarine air. Either nitrogen or air must also be supplied to the interior of the submarine. The carbon dioxide loss would depend on the leak rate, and if the leak rate was uniform, the carbon dioxide loss would be fairly constant. The figures arrived at by various assumptions for the carbon dioxide loss during weekdays and during weekends are about the same and might be accounted for in this manner.

At the conclusion of Operation Hideout, Dr. Nichols made a leak test on the submarine that was used and obtained a 4.68% leakage in 12 hours. Assuming a net volume in the submarine of 23,000 cu. ft., this leak rate would indicate a loss of 23.8 cu. ft. of carbon dioxide per day or approximately 2.75 pounds per day of carbon dioxide if the volume is measured at 60°F and 760 mm. Hg.

Another factor to be considered is the exchange of air between the submarine and its surroundings. This could be due to the breathing of the submarine through small openings and would be caused by changes in barometric pressure and by air temperatures both inside and outside. It could be due to exchange through the air lock due to traffic entering and leaving. This would depend on the traffic volume and should be higher on weekdays when the medical teams and other personnel were observing or inspecting. These extra personnel would also contribute to the carbon dioxide generation, however, and it is possible that these two factors essentially cancelled each other.

The interchange of air for each passage through the hatch cannot be determined accurately. With some assumptions and estimates, an order of magnitude of the possible carbon dioxide loss through this means can be indicated. Let it be assumed that the hatch has a volume of approximately 50 cubic feet and that the air in this volume approaches within 0.2% of the concentration of the atmosphere on the other side of the open hatch. That is, when the hatch is opened to the submarine interior and a man enters or leaves the hatchway, the air in the hatchway has 1.3% carbon dioxide. When the hatch is opened to the outside and a person enters or b aves, the air has a carbon dioxide content of 0.2%. The net loss of carbon dioxide per opening is

50 (.013-.002) cu. ft./passage

or

50 379 (100) (.013-.002) = .1375 lb mols/100 passages = 6.05 lbs/100 passages

This is based on an average temperature and pressure of 60°F and 760 mm. Hg.

It is apparent from the preceding analysis that there could be a loss of carbon dioxide to the outside. The loss of air that must contain this carbon dioxide is

(山) (379) (1) - 574 cu. ft./lb of carbon dioxide lost (山) (山) (015) - 574 cu. ft./lb of carbon dioxide lost If the assumptions are very accurate, then on a weekend, about 15 openings of the hatch in a 24-hour period would account for the carbon dioxide loss during the last 27 full days of the test. This would mean an exchange of air of about 500 cubic feet.

The oxygen concentration was maintained at a value essentially the same as the ambient air. If this concentration had been essentially different, the oxygen consumption could be used to check the carbon dioxide deviations.

The possible losses of carbon dioxide are indicated as possibilities since it is also possible that there were no appreciable losses and the values obtained, properly adjusted, should be used as the basis of carbon dioxide generation in future planning.

The variation of the carbon dioxide absorbed per day can be attributed thus to several factors. The variation of the carbon dioxide absorption rate can be attributed to variation in the liquid analyses. Sources of error are in the analyses themselves

and in the sample procurement. Precautions were taken to minimize both of these.

Another cause of the variation would be the gas analyses. If one day the carbon dioxide concentration was kept consistently high (for example 1.6%) and another day the concentration was maintained consistently low (1.4%), there would be a deviation of the absorption rate. Such a gas composition variation would cause a variation in the rate of about 13%.

A slight variation in the value of the carbon dioxide absorbed per day is due to the clock which was used. The clock gained such that after several days it would be necessary to set it back a half hour. On such days the elapsed time was about 24-1/2 hours in one day. This factor would tend to be smoothed out and become unimportant in the averages.

An observation of the chart, Figure 18, for carbon dioxide absorption indicates an upward trend in the carbon dioxide removal as the test proceeded. Even when the early days of the test are discounted, a slight trend is in evidence.

CONCLUSIONS AND RECONCENDATIONS

The conclusion drawn from this test was that the equipment excellently performs the task for which it was designed. It removes carbon dioxide at the desired rate with adequate utilization of the caustic. The scrubber was designed to maintain a 1% carbon dioxide atmosphere. Since in Operation Hideout it was required to maintain a 1.5% carbon dioxide atmosphere, the removal rate and per cent of caustic utilization were higher than the design values. These results were expected.

The scrubber is expected to remove or reduce the concentration of all base reactive material from air and to absorb physically many other materials. The caustic solution is saturated with air and will not absorb any oxygen or nitrogen. The caustic solution will remove chlorine and acrolein, for example. The odors, cigarette smoke and other fumes were very low in the opinion of veteran submarine personnel, and this lack of odors and smoke can be attributed to their removal by the caustic scrubber.

The research which is required in the future on this caustic system can be divided under two principle headings, (1) the adaptation of the unit to the submarine and the final design of a unit, and (2) the improvement of the system. The work to be done is outlined below.

- Build a package unit for the actual conditions and requirements for standard installation on a submarine. This would require close liaison with navy personnel familiar with navy requirements.
- 1.1 A knowledge would be required of the space available, the CHEMICAL ENGINEERING LABORATORY, CHEMICAL ENGINEERING DEPARTMENT, NORTHWESTERN UNIVERSITY

size, shape and location of this space. Whether the available space is in one or several pieces must be known.

- 1.2 Design and build the equipment to fit this space.
- 1.2.1 Procure a recycle pump of the proper sound and power characteristics.
- 1.2.2 Determine the blower source, whether the available blowers could be utilized for the unit if desired, or if a blower must be provided.
- 1.2.3 Study the method of disposal of waste. This would determine if waste was to be discharged continually or periodically.
- 1.2.4 Determine minimum sea pressure during which unit would be operating. This would determine whether a feed pump was necessary.
- 1.2.5 Procure a flow control device for automatically controlling feed rates.
- 1.2.6 Determine if it were desirable to have unit controlled from a carbon dioxide analyzer. If required, procure an instrument and adapt it to the scrubber. If scrubber is to be turned on manually when carbon dioxide analysis indicates that it should, a single switch would be sufficient.

- 2 Study methods to improve the unit.
- 2.1 Study the physical design to obtain a more streamlined unit without affecting the efficiency of the unit.
- 2.2 Study alternate methods of contacting to determine if a reduction in equipment volume, fluid flow rates, and power requirements can be attained.
- 2.2.1 Study contacting with spray nozzles.
- 2.2.2 Study contacting with porous plates.
- 2.2.3 Study contacting with other means.
- 2.3 Study use of alternate materials to determine if reduction of items in 2.2 can be attained. This would include studies on such material as potassium hydroxide.

ACKNOWLEDGMENT

The Chemical Engineering Laboratory of Northwestern
Technological Institute would like to acknowledge the
assistance given to us by the personnel of the Medical
Research Laboratory under the command of Commander
G. J. Duffner. We would like to express our appreciation
to all the personnel and particularly to the following:

Lt. Commander R. E. Faucett, Officer in Charge of Haddock

Lt. P. P. Newman, Project Officer

Lt. G. Nichols, Jr.

Chief J. D. Evans

Chief J. J. MacArthur

ET3 J. Elais

ET3 K. D. Merrill

BT3 D. T. Millspaw

FN J. King, Jr.

SN R. Fisher

All other members of the working party

All other volunteers on the Haddock

BIBLIOGRAPHY

- 1. Gray, J. S., Northwestern University, personal communication.
- 2. Report 22, September 30, 1951, Northwestern Technological Institute, Chemical Engineering Laboratory, Submarine Habitability Project No ori 158-03.
- 3. Report 23II, December 31, 1951, Northwestern Technological Institute, Chemical Engineering Laboratory,

 Submarine Habitability Project No ori 158-03.
- 4. Schaefer, K. E., Studies of Carbon Dioxide Toxicity:

 (1) Chronic Carbon Dioxide Toxicity in Submarine

 Medicine, MRL No. 181, 10, pp. 156-176.
- 5. Sverdrup, Johnson, and Fleming, THE OCEANS, Prentice-Hall, New York (1946).

APPENDIX

(Pages 79 through 121)ESTH CILL

Date 27 January 1953

CAUSTIC SCRUBBER FOR CO2 - OPERATIONAL TEST

Remarks		60, reached 1.5% Experiment Started		
CO Absorbed	lbs/hr.			7,61
Set Set	Ĉ a			2.00
į	nors			2.49 0.04 2.53 0.19 2.39 2.58 2.00
	norm			2.39
Liquid Composition Light Outlet CO3 Ne OH CO3	norm norm norm			0.19
id Comp	nor			2.53
Intet CO ₃	norm norm			0.04
됨	ft.}hr. ∷or∎			5.49
Plow Rate	r. %.			
9				268.85 0.06 2.09 269.43 0.c1 2.32
Feed Soluti Meter Net Reading Flow	.3 ft. ³	٤	62.	85 0 63
2 E	"H20 ft.3	268.79	268.79	269
Tower	"H ₂ 0			
nal Time Net Time	stn.			15.80
Operational Time Timer Net Reading Time	mîn.	88	0000	1.72
02 Conc.	vol.\$	1	5	888
E 2	×			
in Air ver Analyser	₩.			
me, in Dever	₩.	1.8		
CO Conc. in Air Liston Dever Analyser (2) Becker 1 2 3 4	¥01.\$	2.4 2.1 1.35		
Time (1)	0.clock	200 2030 2130 2130	88 883 883 883 883 883 883 883 883 883	3 & 8 3 & 8 3 & 8 3 & 8

(1) Data recorded at nearest half hour at which they were taken.

Duyer Analyzer at 4 locations
1. Forward Torpedo Room
2. Forward Battery Room
3. After Battery Room
4. Forward Engine Room 8

(3) CO_2 Absorbed = (feed solution net flow, ft. $3)\left(\frac{1114 \text{crs}}{\text{ft.}^3}\right)\left(\frac{1}{2}\right)\left(\frac{44}{454}\right)(CO_3^2]$ outlet) = 1.372 (ft. 3 feed) (CO_3^2 outlet) = 1bs. CO_2 (4) Chemicals changed or battery charged in instrument for CO_2 control (Gow Mac). Readings within $\frac{2}{3}$ 20 min. of this time are subject to error.

(5) Scrubber ruming continuously for extended period, on 1444, off 1709 o'clock.

(6) No reading because scrubber is running.

(7) Feed displacement type meter failed.

(8) End of recorder roll for speedomex. recorder.

s basis of clock time was reset. (9) Clock used as

added to tower to dilute solution. (10) Extra water

(11) Concentration based on normality of 0.242 for standard acid. This normality was found to be high.

(12) Speedomex recorder inoperative.

air being bled into submarine at the rate of 3 ofm in order to smalyze the enclosed atmosphere for trace substances. Air bleeding started at 1350 and ended at 1711. (13) Low pressure

submarine to increase percentage. (14) \cos_2 added to Date 28 January Josh VI

l	Remarks									Probable Record	Kr rog							,	Meter	Pa1104							
26 Gunuarr 1953	Abserbed Rate	10s/hr.															21.8										
Tenu	202 A ¥•t	10s 1															25.6							•			
30.00	1 +	norm]														99.											
Date	12															38 2											
		a norm														તં											
	Compositi	nou														0.30											
		nou														2.41											
	Efouid 303	norm														90.0											
	a .															.35											
	15 5 E	.Anrnorm	Ş	188	~~ (かん	73 7 2	533	57		7	, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	- 1	200 200 200 200 200 200 200 200 200 200	~ /~ a	23 22	82,83	3	•03								
1881	lution let Plo	ť					2.51 2.53 2.53	6 2.53									ณ์ ก	j	7								
CONAL	S	ť	o o		000	27.0	00	1.26 2.18	3.2		n 4	VN N		6.18 6.18 8.18	0.00	7-	7.85	-	8.05								
OPERATION	Feed Meter Reading	۴.	86	্বন	136	2		% <u>~</u>	25	96•	97	884	•	383		• •	ፙ፟፟፟፟፟፟	•	205	3		:2:	:22	<u> </u>	:22	22	2
•	_	Ğ	283	1	200	nma	200	48%	8	288	0		007	\$ 6 8 8 8		290	88	2	291		~~		~~	~~		~	
POR GO2	Tower	02Hu	,																								
SCRUBBER	Tine Tine	min.		•	• •	12:45 17:45	• •	ô,	53.69 75.96	32.28		32.75	ณ้	17.77. 17.77. 17.77.			82.39	66.29	38.50	300 300 300 300 300 300 300 300 300 300	25. 25.	, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	14: 25:4:	22.00	293.02	96.61	12.48
	rtion Ing	•							ρW	7		un. Hili					φα										
CAUSTIO	Operational Timer Reading Ti	afa	**	Ŕ	; ;	655	365-30	Φ,	20.02	477.2		477-7	٠	184 184 188 188		, o	527.3	•							638 538 538 538 538 538 538 538 538 538 5		
	O2 Cone.	ol. \$	54.0	1 -7-	0.32	88. 8.3.	0.25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• •	Υ,			• •	888		• •	rv.n	່ານຳ	ง งารุ่ม	ານານ	388 • • • • • • • • • • • • • • • • • • •	j j	ຸ່ທຸ	<u>.</u> ا	88 74	200	•
	o` - 	×	™					w w	9	.			ห๋ ผผ				\vec{N}		~	ئ مامار	, ,		ν. 	, v +	∗ งผ	4	λ. Iu
	TO TO	×	.6 1.	.6 1.5	4-1 9.	.3 1.5	.4 1.5	.6 1.	.7 1.	.6 1.	.2 1.3	.3 1.1	.6 1.	4°1 5°	.5 1.4	.5 1.3	.5 1.	1-1	.3 1.	.6 1	.7 1	.6 1	.6 1	.3 1	÷ 1.	.5 1.	.3 1
	44 P	×	1.3 1	1.6 1	1.4.1	1.3 1	1.4 1	1.61	1.7.1	1.61	1.2 1	1.3 1	1.4.1	1.1	1.4 1	1.4.1	1.42	1.4.1	1.3 1	1.6 1	1.7 1	1.6 1	1.7 1	1.4 1	1.5 1	1.3 1	1.3 1
	Cone. in	W	1.6	1.3	1.5	1.4	1.5	3.6		1.8	1.2	1.3	7-7		1.5	1.5	1.5	1.5	1.4	1.6	1.7	1.5	1.6	1.5	1.5	1-4	1.3
	00, Coi Listen Becker	¥.10																	•55				-				
	i i	ok V																	4							ì	
	# E	0,0100	88	200	0570	0230 0300	က် ကို	3 6	600 600 600 600 600	900	000 000 000 000 000	80	1000	11030	1200				12. 28.	286	1800						ू रेने

o'eloek

Elapsed time 13-1/2hre

17.21 7.22

Bene rks		Saturday (Bol.	Poutine)																	~e°~			
002_Abserbed	1bs 1bs/hr.																						07 2 71 4
Liguald Composition Outlet	norm norm norm										0.02 1.11 0.12 1.10 1.22												
Noter Not Flow In Note of The Off	n.3 n.3 n.3/hr norm	299.76	299.98 0,22 2.84	300.23 0.47 2.49	300.30 0.54 2.42		300.61 0.85 2.45	300.70 0.94 2.44		1.03	301.00 1.24 2.47 1.09 301.12 1.36 2.30		1.64	301.40 1.64 2.31	1.92	2.5	302.34 4.38 4.44 302.62 2.86 2.25	303.06 3.30 2.27	5.5	283	11 88	304.18 4.42 2.31	13 2
Tower A P	02#																						
The Time	mîn.		79.7	11.34	13.37		20.83	23.13	24.40	25.47 25.47	30.10 35.55	35.84 39.25	×.	42.55 45.90	51.89 58.21	77.79	73.17	87.30	27.75	104.23	104.23 104.23	114.96	120.98
Operational Timer Reading	min.	900.75	905.39	912.09	9 1.12		921.58	923.88	925.15	926.22 929.22	930.85 936.30	93 6.59 940.00	14.5%	943.27	952. % 958. %	965.19	976.92	988.05				015.72	
S. Gone.	wol. %	20.45	\$. \$. \$. \$.	20°5	2000 2000 2000 2000 2000 2000 2000 200	۲۰۰۶	20.5	20.5 20.6	20.5 20.5	20.5 20.5	20.5 20.5	20.5 20.5	% % 	20.5	20.5	20.55	20.46	20.45	20.5 20.46 20.46	20.20	20.45 20.45	20.50 50.50	27.02
CO Cone, in Air id other Derer Amelyser Becker 1 2 3 4	vol. 8 8 8 8	1.4 1.5 1.4 1.4	0.7 1.0 0.3 1.1	0.6 1.0 0.8 0.3			7.		1.4 1.3	1.2 1.3 1.3 1.4	1.1 1.2 1.1	1.2 1.2 1.1 1.2	1.0 1.11.21.2	1.5 1.6 1.5	1.6 1.4 1.5 1.5	1.5 1.5 1.4 1.5	1.5 1.5 1.4 1.5	1.4 1.5 1.3 1.5	1.52 1.4 1.4 1.5	1.3 1.2 1.4 1.4	1.5 1.3 1.5 1.4	1,3 1,5 1,5	717171
1. 13.8	o'elock vo	0000	0100(1)	0500	00000000000000000000000000000000000000	0630 0630 0630	0430	0830	9330 1000	881	1130	1300	(†) (*) (*) (*)	500 500 500 500 500 500 500 500 500 500	2091	1700	1800	1900		218	250 250 250 250 250 250 250 250 250 250	2230	23.30

Name of the		Sunday (Bollday	Datine)																							
•	_	ø.																								3.64
P to	1bs/hr.																									
Ob Absorbed Not Asto	1be																									8.9
ان	100																						8 3			
200 F	BOTH																						8 3			
on OH	HOT																					4	% c> 0.0			·
Liquid Composition	Foot																						0.17 Z.			
15 to	a north																						2.04 0.			
1 18	hr norm																									
Flow Pate	n.3/15		2.67	2.54 2.54	2.42	2.37	2.39	2.39	3.94	5.49	2.48	2.51	2.52	2.51	2.55	2.59	2,67	2.67	2.58	26.2	2.73	2.81	2.85	2.95	3.11	3.26
7	£.							0.72	1.25	1.58	1.86	2,22	2,35	2.46	2.58	2.90	3.29	3.44		4:15		4.88	5.77		7.15	
Food Motor Boading	£.	304.50	304.73	304.90	304.95	305.14	305.22	305.22	305.75	. 306,08	306.36	306.72	306.85	306.96	307.08	307.40	307.79	307.94	30%,00	38.5	30%.21	309.38	310.27	311.08	311.65	312.12
<u>.</u>	•																									
Towar Q P	"H20																									
Operational Time Timer Met Reading Time	afn.		5.17	9.75 9.75	10.91	16.23	18.05	18.05	19.04	38.01	72.00	53.16	55.85	58.78	60.73	67.21	74°C7	77.36	78.36	3.8.5 3.8.5 3.8.5	101.41	104.07	121.29	134.02	137.75	140.05
Operatio Finer Reading	atn.	023.85	29.02	33.60	034.76	80.070	067770	06'17'0	042.89	98.190	068.85	077.01	079.70	082,63	084.58	90.160	097.92	101,21	02,21	115.30	22.25	127.92	145.14	57.87	161.60	63.90
			•			J	Ü		J	U	Ü	Ū	Ū		Ü	Ü	J	-						•		
co cone.	**************************************	20.51	38. 38.	8.8 8.2	20.52 20.52	8.8 5.4	20.45	20.5	88.2	20.55 20.55 20.55	888 888 888 888 888 888 888 888 888 88	20.45	30.53 20.53	\$5.45 \$0.45	30°55	20.00	20.45 20.45 20.45	\$ 50.00 \$ 10.00 \$ 10.00	20.51	20.5	20°5 20°5	800	200	20.55	38.8 5.2.5	20.5
HE T	×	7.17	1.4 1.5	4 1.4	4 1.4	5 1.4	5 1.4	4 - 7	5 1.4	5 1.4	1.5 1.3	5 1.4	5 1.5	7.17	5 1.5	5 1.5	6 1.4	5 1.5	5 1.5	5 1.5	5 1.5	6 1.5	4 1.5	5 1.4	5 1.5	5 1.5
344	W	1.4 1.4 1.	1.2 1.	1.4 1.4 1.4	1.4 1.4 1.4	1.3 1.5 1.4	1.4 1.5 1.4	141	1.4 1.5 1.4	1.4 1.5 1.	1.31.	1.3 1.5 1.4	1.3 1.5 1.	1.3 1.4 1.4	1.5 1.5 1.5	1.5 1.5 1.5	1.4 1.6 1.4	1.5 1.5 1.	1.5 1.5	1.5 1.5 1.	1.5 1.5 1.	1.5 1.6 1.5	1.3 1.4 1.	1.4 1.5 1.	1.4 1.5	1.5 1.5
Co Cone, in Air Lid effen Derer Analyser Becker 1 2 3	M.	1.4	1.3	1.4	1.3	1.4	7.7		1:4	1.4	1.4	1.4	1.3	1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.4	1.5	1.5
8 4	*.lov									E																
ali.	o' clock	88	388	0500 0200(1)	8230(1) 9300(1)	9330(1) 9400(1)	050 050 050	9230	0630(1) 0700(1)	(1) 080 080 080 080 080 080 080 080 080 08	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888	(T) (T) (T) (T) (T) (T) (T) (T) (T) (T)	383	388 388		385	1600	1786/1	1800	1909	1930	200 200 200 200 200 200 200 200 200 200	2200(I)	(1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	200
																			. ,		•	, , ,			•	

Romarks			Nearest 1/2 hour									Chemicals changed					1.00 less than this due to error	edir					earest 1/2 nour			Nearest 1/2 hour	Chemical changed						
CO ₂ Absorbed R			Nea									ďS				£ .	r4 4 3	4				*	Ž			Z	; O						28.48 6.97
Liquid Composition Inlet Outlet OH COT NA OH COT NA	S norm norm norm																						2.16 0.15 3.31 3.22 2.00 2.22										
Feed Solution Meter Net Flow Reading Flow Rate	'n.	312,12	0.38 2.2		95°0 0°58	0.63	0.74 0.81	8.0	313.07 0.95 2.42	36°€	1%	1.47	7. X. Z	2.51	7 7	3.82	7.4 66	5.20	5.50 1.3		9 7.7	7:35	7.74 2.52	7.00 2.52	0.40	87.8	8.76 2	9.32 2	9.58 2	9.80 2	322.14 10.02 2.53	10.23	10.38 2
Tower	. "H ₂ 0	O	C		-	0 1	v vi	0	ō ō	Ŋ,	ŭ &	9 8	8 T	70	3.8	:8	22	67	17	19	26 35	27	6 8	20,	,	.59 38	88.	2 ;	7.7	.51 .50	. S. S	32.	
Operational Time Timer Net Reading Time		163.90							187.46 23.56 187.46 23.56											311.09 147.19											401.40 237.50		
02 cone.	vol. ≴	20.5	8.8	8 .v.	9. K	20.6	8.5	20.50	8 8 8.0	07.02	8.5. 8.5.	8 8 8 8	8.8. 8.8.	8.5	50°52	67.02	& & & &	90.6	2.5	8.53	20.50 20.5	\$7.08	8 8 8 8	80.5	8 5.5.	80°55	\&. &.	8.65 5.65	30.65	8 8 5.5.	8.8	8	20.55
CO Cond, in Air Liston Dayer Analyzer	401. M M M M	1.5 1.5 1.5 1.5	1.5 1.5 1.4 1.4	1.5 1.4 1.4 1.5	2.12.12.12.1		1.5 1.5 1.4 1.4	1.5 1.4 1.5 1.5	1.5 1.4 1.5 1.4		1.6 1.5 1.5 1.5	1.5 1.5 1.6 1.5	1,5 1,5 1,5 1,5	3 (7 (7 (7)	7.6 1.6 1.6 1.5	1.6 1.5 1.6 1.3	1.5 1.5 1.6 1.5		1.5 1.5 1.5 1.5	1.5 1.4 1.5 1.4	1.5 1.5 1.4 1.3		1.5 1.5 1.5 1.5	1.5 1.4 1.6 1.4	1.5 1.4 1.5 1.5	1.51.51.61.6		1.5 1.5 1.6 1.6	1,5 1,5 1,5 1,5	1,5 1,5 1,6 1,5	ואואואו		1,5 1,4 1,5 1,5
Tine	o'clock	0000	0100(1)	0000	0230	0330	0070 0070	0200	0530 0600	0630	8 8 8 8	0800(4)	3 8 8 8 8 8	0666	30°C	817	1130 200 1200	1230(1)	1300	28	8 8 8	1530	1630(1) 1630	1700	1800	1830 1900(1)	1930(4)	2000 2000 2000 2000	2100	2 00 7 7	2230	2330	2700

Date: 3 Pebruary 1953

Remarks	Merest 1/2 hr.	Ghem. Changed		Ches. Changed	· · · · · · · · · · · · · · · · · · ·
l ji					3.61
CO ₂ Absorbed Net Rate lbe lbs/					13.2
Outlet Outlet Outlet norm norm norm norm			8.44 0.11 1.75 1.86		
Injet Ou OH OH OH OH OH NOTE NOTE NOTE NOTE NOTE NOTE			8.21 0.23		
Flow Rate ft. 3 Arr.	2.56 2.56 2.54	2,54	0 000000000000000000000000000000000000	0.92 0.92 1.08 1.08 1.43 1.43 1.45 1.45 1.45	1.48
Feed Solution Meter Met Reading Flow ft. 3 ft. 3	322.67 0.17 322.67 0.17 322.64 0.17 322.74 0.24	32 2.74 0.24	323.18 0.68 323.30 0.80 323.30 0.80 323.45 0.95 323.45 0.95 323.45 0.95 323.40 1.10 323.72 1.22 323.81 1.31	••	327.54 5.04 327.54 5.04 327.90 5.04 327.98 5.48
Tower \$\int \text{P}\$ "H20					
1	3.98 3.98 5.64	5.67	32.45 46.39 56.19 56.19 71.14 73.54 79.80	130.12 131.55 139.17 144.15 147.29 185.28 195.73 203.23	206.04 209.58 215.29 219.13
Operational Time Timer · Net Reading Time	409.49 413.48 413.48 413.48 415.16	415.16	441. °2 455.78 455.68 465.68 473.89 480.63 489.63	539.61 541.04 548.56 553.54 556.78 605.22 605.22 617.72	615.53 619.07 624.78 628.62
O Conc.	888888 888.22 9.61 9.61 9.61 9.61	ស្តស្តស្តស្តស្ត ភូទស្តស្តស្ត ភូទស្តស្តស្ត	នៃ ខាន់ ខាន់ខាន់ខាន់ខាន់ កំណុំ កំសុំស្នាំស្នាំស្នាំស្នាំស្នាំ	ខ្លួននួននួននួននួន ភូកស្តិស្តិស្តិស្តិស្តិស្តិស្តិស្តិស្តិស្តិ	8888 5.5.5.5.
CO2 Cope, in Air Liston Dever Analyzer Becker 1 2 3 4	1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5	1.51.51 1.61.51 1.51.51 1.51.51	, 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1,5 1,5 1,6 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6
Time I B B	0000 0100(1) 0100(1) 0200(1) 0300(1)	9330 930 930 930 930 930 930 930 930 930	(†) 868 869 869 869 869 869 869 869 869 869	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.28 7.388 7.388 7.388 7.388 7.388

Roserts											Chemicais Changed				Mearest 1/2 hr.				Mearest 1/2 hr.			Prob. Record Error	1.00 ft? less				,	Chemicals Changed			,	
1	lbs/hr.										8.24 0				*			•										6			38.9	7.15
CO ₂ Absorbed Net Rate																										,					20.85	26.85
ଧ ≇	200										8°.9																				₹¥	Ni .
Outlet OH CO3 MA	nors nors nors									•	7 0.41 2.38 2.79																					Total
Injet OH CORPOSITION OH OH	nors nors nors									•	2.41 0.06 2.47																					
Flor Flor	ft.3/hr.		0,40	•	5.69	2.61	46.3			2.52	2.53 2.53	2.50	2.50	2°, 5	2 2	2.49	2.17	2.47	2.48	2.48	2.52	2.47	2.51	2.47	2.56	2.44	74.7	5.46		2.46	2.46	
Solution Net Flow Flow Rate	ft.3		6,0	3	1.07	1.19	1.67			7.62	1.87	2.37	3.20	ر عرو	7.78	4.59	*	5.3	2.60	62.9	6.62	6.9	7.08	7.30	33	8.02	6.23	8.75		8.99	6.27	
Feed Weter Reading	ñ.3	327.98	07 800	260.00	329.05	329.17	369.41			329,60	329.82 329.85	330.35	331,18	331.79	332.26	332.57	333.25	333.25	333.58	334.27	334.60	335.75	335.06	335.28	335.94	336.1	2000	336.73		336.97	337.25	
Town	. H 20																															
Operational Time Timer Not Reading Time	stn.		12 2/	* :	23.91	27.35	64.43			38.59	63.23 83.23	56.81	76.95	91.46	102.64	110.61	127.13	127.13	135.37	152,40	157.90	164.31	169.57	176.98	186.23	197.43	404.00	213.32		219.16	225.81	
Operatio Timer Reading	ain.	628.62	8	04.1400	652.53	655.97	676.53			667.21	672.30 673.43	685.43	705.57	720.08	731.36	739.23	755.75	755.75	763.99	781,02	786.52	792.93	798.19	805.60	814.85	826.05	0/.00	841.94		847.78	854.43	
0 ₂ Come.	v ol. %	20.55	388		8 8 8 5 5 5	888 3.00	21.0 2				88.9 8.85	20.75 57.75	80.00	8.55 8.55	20.45	20.5	8.5	8	8.8	8.5	8.8	8 	8:5	% % %	8.55.55	88	8.55	88.6	8.8	888	8.55.	
Liston Dayer Analyser Becker 1 2 3 4	wol.5	1.5 1.5 1.5 1.6	1,5 1,5 1,5 1,3	1.5 1.4 1.5 1.3	1.4 1.5 1.5 1.3	1,3 1,4 1,4 1,3	1.4 1.4 1.4 1.3	1.3 1.4 1.4 1.4	1.5 1.5 1.5 1.5	1.5 1.5 1.4 1.5		וטואו	•• •• ••	1.5 1.6 1.7 1.5	1,5 1,5 1,5 1,5		4.7 1.7 1.7 1.4	1.5 1.5 1.6 1.4	7 1 2 1		1,6 1,5 1,6 1,4	1.6 1.4 1.5 1.5		1.5 1.5 1.6 1.5	1.5 1.4 1.5 1.4	ר ני א	4.5 4.5 4.5 4.5	1.5 1.4 1.5 1.4	1.5 1.5 1.5 1.5	1.7 1.8 1.6 1.7	1,6 1,6 1,7 1,6	
Ties	o'clock	000	808	000 000 000	8 00 00 00	200	0000 0000	0230 0630 0630 0630	200 200 200 200 200 200 200 200 200 200	88	0830(4) 0 8 00	06.90 06.01	200	1100	1200(1)	1230	1330	287 77	1,30(1)	1530	1600	1700	1730	1800	1987	1930	8 8	2100(4)	388	888	20 27 27	

1

Dates 5 Phruntz 1985

Inter 6 February 1953

6.72 6.88 22.33

1

estro.		Mearest 1/2 hr	rday (Holiday Moutipe)				•	Mearest 1/2 hr			Chemicals changed										•	Chemicals changed			Mearest 1/2 Mr.		arest 1/2 B.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
į		Heares	Se turd				:	Kere			Chemi										1	Š			3	7	1	1) 77 .
Od. Absorbed Not Auto	1be/hr.,																											•	8.3
8	1be																												16.52
Outlet Off CO3	HOTE BOTE BOTE	0.19 1.94 2.13						0.28 1.77 2.05																					
Manual Composition Injet Off Co, M. OH	norm norm norm	1,46 0,18 1,64						0.05																					
, 100	r. 3hr. 1	~		5.45	2,52	, ,		7 /4.7		2,48	2.53	<u> </u>	;	2.2 2.38	2,55 53,55	2,53	2.2 2.2	2.73	2.53		2.53	2.54	2.59	2.54	2.55 55.55	2.56	2.56	2.2 8.5	2.56
botton Fet 1	R.3 1		0.24	0.39	0.91	0.99	76.5	70.1		1.19	1.52		;	1.55	2.11 2.38	2,51	2.55 2.79	3.8	3.13		4.05	7.26	4.75	4.98	5.7 6.11	6.42	6.64	6.64 6.83	6.81
Feed 3	દું	354.24	354.46	5 4.	355.15	355.21	355.25			355.43	355.76		25.5		356.35 356.62	356.75	357.03	357.24	357.37	357.74	358.29	358.50	359.09	359.22	360.35	360.64	360,88	360.88 361.05	361.05
Tower P P	"H20																												
Al Tine Net Tine	min.		8,9	96.24	23.59 23.10	23.10	24.57			28.82 29.71	35.99		37.12	4:25	56.51	59.61 50.51	65.98	2. •	74.17	8.8. U.S.	%°%	100.7	117.74	117.74	173.99	150,32	155.66	155.66 159.65	159.65
Operational Timer Reading	min.	263.98	269.98	26.672	285.67 287.08	287.08	288.55			292.80 29 3. 69	299.97		301.10	308.42	320.49	323.59	329.96	347.70	338.15 342.71	347.11 354.31	360.07	364.75	381.72	381.72	101.97	414.30	419.64	423.63	423.63
D. Conc.	vol. \$	20.5		20.5	20.5 20.5	20.55 20.55	20.55 20.55	20.55 20.5	20.5 20.55	20.5	20.45	20.50	20.30 20.7	20.6	20.5	20.45	20.4	20.9	12.0 21.0	21.0	21.0 21.0	21.0	21.0	21.+	21.+	20.85	20.	20.78 20.75	20.72
Conc. in Air Direr Apalyzer	* * *	1.5 1.5 1.6 1.4	1.5 1.4 1.4 1.4	1.6 1.5 1.5 1.4	1.5 1.5 1.5 1.5	7	1.3 1.4 1.3 1.2	1.3 1.3 1.3 1.3	1.3 1.3 1.3 1.3	1.3	1.5 1.4 1.5 1.4	1.5 1.4 1.6 1.5	1.5 1.4 1.5 1.4	1 2 1 2 1		1.0 1.7 1.7 1.0	1.6 1.6 1.6 1.6	1.5 1.6 1.5 1.5	1.5 1.5 1.6 1.6	1.6 1.4 1.5 1.5	1.6 1.5 1.5 1.5	-	7 (7) 7)	1.6 1.5 1.5 1.4	1.6 1.4 1.4 1.5	3.1 2.1 7.1 9.1		1.5 1.5 1.	1.6 1.5 1.6 1.4
CO Con Liston Becker	w1.8	1.44(1)		1.43		1.43						٠	- •	-	•		. •	- •	•	41	**	•	• .	[(1)97 [1.48(1)		1.48	7
Tine.	o'aloak	0000	96	000	8 8 8 8	0330 0700	0430	0530 0600	0630 0730	0730 0800 0830()	(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	200	001 001 001	130	225	35 55 55	0071	1500	1530	1700	1,30(1)	1830	1930			2200	•	2330	2700

1.52(1)

1.50

1.54(1)

+

	Bearks				Chemicals Changed														Prob. Becord Error	Battery Charged	•												Mearent 1/2 Hr.		Chemicals Changed	न	Bearest 1/2 Mr.	
Date: 9 Pebruary 1953	orbed 1	P to	1ba/hr.		8.24 0						8.85	i.																										, y
9 Peter	Oc. Absorbed	Š	1be		0.43						3.79	•																										87.01
Pate	1	ja	non		2.59						2.95																											433
	melet	8			2.22						2.51																											7 . 4.73
	- 1	8	HON		0.37						0.4																											2.256 0 200 1 473 1 832
	Composition	2	BOT		2.83						3.79																											
	Mand G	8	Born		60.0						7 0.12																											2,175,0,87
	7	ō	r fform		2.74						3.67																											
and the	3	a te	r.3/12		2.7 17.0	,,	2,2	2.61	2.59	2, 2, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	2.58	2.58	2.50 5.50	. 25	2.50	2°2	2.58	 	3	2.58	76.0	, , , , %	2.56	7 56	2.53		•	2,50	2.55	2.55		2.52	, v.	1	2.49	2.48	5.49	2.48
OPERATIONAL	1	7100	٣.		7,00	46	0.84	0.84	76.0	7 6 0 0	1.24	1.24	1.31	1.33	38	2.16	2.19	 83.	3.39	3.85	2:	4.57	4.59	,	.93		•	\$ 6 \$ 6	6.80	\$.4 8.8	7.53	7.50	7.57	:	9.54	6.47	9.75	8
8,	Yese Solution	¥	ું.	369.10	369.24 360.50	369.73	369.94	369.94	370.04	370.04	370.34	370.34	370.41	370.41	370.72	371.26	371.29	371.66	372.49*	372.95	27.5.55	373.67	373.69	27.7	374.00			375.90	375.90	376.00 376.00	376.35	376.60	376.67 376.67		378.34	378.57	378.85	379,09
CAUSTIC SCHERBER JOA	Total	ΔP	*H20																																			
5	1 7 Tan	Time	min.	•	3.10	15.6%	19.31	19.31	21.75	21.75	28.82	28.82	30.72	30.71	37.53	50.23	21.00	8 8 8 8	79.20	89.65	30.00	107.05	107.74		114.50		7.60.63	159.71	159.71	164.20	171.59	178.36	180.13	.	223.03	228.75	433.30	241.35
	Operational Timer	Reading	mtn.	611.22	622.57	626.82	630.53	630.53	632.97	632.97	20.05	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	677	641.93	653.03	661.45	662.22	680.50 50.50	690.42	78.87 78.83	718.27	718.27	718,96	718.96	725.72		761.84	770.93	770.93	73.52 25.52	782.81	789.58	791.35		834.25	839.97	?	852.57
	15000 3		vol. ≤	20.45	20.5 20.5	20.5	20.45	20.48	, ç, ç,	8 5.2	% % %	20.0	20.55	20.5	20.5	20.6	20.5	7.02 7.02	20.5	20°5	20.5	20.5	8.6 2.6	20.5	20.4	20.4	20.5	20.5	20.5	20.5	20.5	70.7 7.0.7	20.5	20.5 20.5	20.5	20.5 20.5	20.00	20.5
	Anelyzer	4	w	5 1.5	5 1.4		3 1.3	•	4 4	5 1.5			5 1.5			6 1.5	, ,		5 1.5	5 1.5		5 1.5	-	i	1.4	1.5	1.4		1.5	1.4	•	T.4	1.5	1.6		1.5	1.5	1.5
	7 2	2	×	1.4 1.	1.3 1.		1.3 1.	•	i	1.4 1.		•	1.5 1.		•	1.5 1.	, , ,	•	1.5 1.9	1.5 1.5		1.6 1.6	1.5 1.5	•	1.5 1.6	1.5 1.5	1.5 1.5		1.6 1.4	1.4 1.4	•	4.1 L.4	5 1.6	.61.6	•	.5 1.5	.5 1.5	.5 1.5
	Liston Derer	r F	×	1.5	1.5	1	1.5	•	*	1.5	¥	ì	1.5		ì	1.7	•	•	1.5	1.4		1.5	1.4	ŀ	1.6	1.5	1.4	•	1.5 1	1.51		7.07	1.51	1.61	4	1.01	1.51	1.5 1
	8	Boker	vol.	1.52	1.50		1.52	1, 43		1.55																							1.69(1)	1.38(1		1.50	1,52(1)	1.52
	7/m		0' 010ck	0000	886	0130	888	88	0330	0070	3 S	0530	890	8 8 8	02.20	888	2 6 8 8	830	1000) 801	1130	823	88	1330	85	8	1530	1630	1730	1800	1830 0.00	1930	000	2030	2130(£)	2230	2300	2,00

12 5 <u>40</u>	Remarks								Probable Error		peduredo											(Nearest					
	Rate	lbs/hr.					3.90		Reading													foot and	0				7-07
uary 1	QV COS	108					1.22		-																		17.60
Date 10 Pebruary 1953	Liguid Composition Cog Ma ON COG MA	norm norm norm norm norm	0.081 2.256 0.209 1.623 1.832				1.536 ما1.00 ما1.1536 م																				0.131 7.871 0.905 2.440 3.345
Test	E	ft3/hr norm	2.175	1.96	8.	2.02	2.04 0.995				1.59	1.31	1.35	1.09	15.31	1.0.0 2.0.0 2.0.0 2.0.0 3.0 3	1.56	i	1.78	1.88	9	2.01 2.01	2 50 50 50 50 50 50 50 50 50 50 50 50 50	co•2	2.08	2.10	2.10 7.74
¥	Solution Net Flow Flow Rate	rt.3 f	0	0.37	36	0.57	19°0				17	0.72 0.81	16	257	۶.28 د د د د د د د د د د د د د د د د د د د	೧೮	70		2.83	38	-	3€	+ 10 10 10 10 10 10		2.07	5.90	2.90
- OPERATION	Feed S Reading	rt.3	79	379-46	~	379.66	379.73		380.08		67	379.81 379.90	ဆွ	380.05	300	2 C	7		381.96 382.02	88 87	1	383.72	384.10	70.00	384.76	384.99	384.99
FOR CO2	TOWOT A P	. *H20																									
SCRUBBER	nel Time Net Time	min.	•	11.31	•	16.92	18.85		20.68		9	35.57	40.35	7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50	67.50	15:	16.11		98.13 12.03 13.13		1	174-71	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		163.21	168.33	168.33
CAUSTIC	Operational Timer Reading T	mfn.	N	863.05 863.05 863.05	2	64-698	871.42		873.25		2	888.14	892.92	909-30	920-56	927-12	46.626		949 950 950 10 10 10 10 10 10 10 10 10 10 10 10 10	• •	00 200	993.16	000 000 000 000 000 000 000 000 000 00		015.(8	050.90	050-90
	02 Conc.	¥01. %	88 200	98 8	្ត ភូភិវិ	20-74 20-46	385 vār	20.00 20.00 20.00 20.00	888 vv	20.45 145	888 vv	÷.÷.	88. 51.	888 308	86.0	28. 28.	3 50	50.3	888 ~~~	8 8 8 9 8	9.7	888 30,1	00 K	88 1.2.	888 vv.	388 308	20.55 20.55
: 1	Conc. in Air n Dwyer Analyzer	85. 86. 86.	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.6 1.5 1.5	1.5 1.5 1.5 1.6	1.5 1.5 1.5 1.5	1.5 1.5 1.6 1.5	1.5 1.4 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.4	1.5 1.5 1.5 1.5	1.4 1.4 1.5 1.4	1.5 1.4 1.5 1.4	1.4 1.4 1.6 1.4	1.4 1.5 1.5 1.4	1.5 1.5 1.4	1.5 1.5 1.6 1.5	1.5 1.5 1.	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.4 1.5 1.4 1.5	1.3 1.4 1.4 1.5	1.4 1.3 1.3 1.4	1.4 1.4 1.3 1.5	1.5 1.5 1.4 1.4
	Co C Liston Becker	¥01.%	1.52																			1.53(1)	+				
	Time	o'elock	0000	0000	0500	0000	300	30 g	200 200 200 200 200 200 200 200 200 200	2000	t		0000	2001	1200	200	86	300 500 500 500 500 500 500 500 500 500	1600	1700	1800	1000	2000 2000 2000 2000 2000 2000 2000 200	188 188	250	2302	255 257 257 257 257 257 257 257 257 257

384.99 5.90 2.107.74 0.1317.871 0.905 2.440 3.345 17.60 7.97 Total 18.82 6.72

	Romarka					. 6	1 7 7 m.			als changed													Chemicals	pedueqo	ost 1/2 hr.	: #		
7 1953	Absorbed	1bs/hr.				2	10.01			Chemicals													ថ		Mear	7.87	ω	
Pobrusry	002 Not	1 bs					3.26																			21.18	4-17	
Date 11 F	Liquid Composition ot Outlet Og Na OH CO3 Ha	norm norm norm norm morm	131 7.871 0.905 2.440 3.345				0.111 4.011 1.610 2.700 4.310																			.093 3.208 0.982 2.765 3.7LT	Total	
	o FO	norm n	• 47.				• 300																			3.115 0.		
CONAL TEST	Colution Net Flow Flow Rate	rt.3 rt?hr	7 0.2 12.0 0.2 12.0	-48 2		<u>ئن</u> 9.2	788 288	လုံလုံင် သူဆိုရှင်	8 8 8 8 8 8	0.98 2.71		54: 2.2.	100	2000 2000 2000 2000 2000 2000 2000 200	286	2.28.2 2.28.2 2.29.2 2.23.2	Š.	2.69 2.31 3.43 2.31	3.62 2.24	3.93 2.23	4.58 2.21	-	17,	200	23	47.00 60.00		
- OPERATION	Feed S Meter Reading	ft.3	384.99 385.23 385.23	85.4		R R R	2000 2000 2000 2000 2000	ວອງ ທຸກທຸກ ລັດວິຊ	ທີ່ ທີ່ໝູ່	28.0 7.0 9.0 9.0 9.0 9.0 9.0	; ;	96,69	869		9	387.12	•	387.68 388.42	388.61	388.92	389.57				• •	391.30	•	
FOR CO2	Tower	*H20	ı																									
SCRUBBER	onal Time Net Time	min.	7V.7.	N		5.7	でる	GO.	2.00 2.00	19.50	•	• •	• •	• •	• •	25. 56. 57.	•	69.81 91.68	66.93	105.96	124.25		52.7 55.1	61.1	66	176.99	2.10	
CAUSTIC S	Operatio Timer Reading	min.	020.05	31.1		ω .	⊙ -‡.	ママ	ささ	010	•	• •	• •	• •	• •	073.51	•	090.71	117.83	126.86	145.15		72.6	82.0	96.	197.89	7.20	
	02 Conc.	vol. %	20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5		• •		• •	• •	• •	•	20.7	081 081	cal cal		200 200 200 200 200 200 200 200 200 200	8 8 8	50 • tt	• •	20 20 20 20 20 20 20 20 20 20 20 20 20 2	• •		• •	• •	• •	• •		•	
	Conc. in Air	es es es	1.5 1.5 1.4 1.4	·4 1.5 1.5 1.	·4 1.5 1.4 1.	1.4 1.5 1.5 1.	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.4 1.5 1.5	1.5 1.5 1.4 1.4	1.5 1.41.51.5	1.6 1.4 1.5 1.5	1.5 1.4 1.5 1.5	1.2 1.5 1.5 1.5	1.6 1.4 1.5 1.5	1.5 1.5 1.5 1.6	1.6 1.6 1.5 1.5	.6 1.61.61.	1.6 1.6 1.5 1.5	1.5 1.5 1.6 1.6	1.6 1.5 1.5 1.5	1.6 1.6 1.5 1.5	1.5 1.5 1.5 1.5	ין אין אין	יי ליי ליי ל	** ** * * * * * * * * * * * * * * * *	1.7	
	CO C Liston Becker	×01.8	1. 1. 2. 2.	, -	1.48 1.49	: 5	1.48(1)										-	1,61				1	•	1.50	1.52(1)	1) 74.	7.7	
	Time	otolock	0000	0130	0230 0300	0330	0000	000	0200	0800 (4)	000	1000	1100	1200	1300		1500 1500 1500 1500 1500 1500 1500 1500	1500	1700	1800	2000	2000	200 (4) 2100 (4)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2230 3330	230 230 230 230 230 230 230 230 230 230	0014	

Dates 12 Polemer 1959 EU

None y't s			Nearest 1/2 hr		Nearest 1/2 hr			Mearest 1/2 hr			redumn granteau	Battery charged							Hearest 1/2 hr	,	Chambala alamada	•	Opentionship Value	array array a			ં જ 'તુક્રોન્ડ ક
orted Inte	1be/hr.	•		1	~	8.23			-	•	-	-					£	<u> </u>							Ę	*0*/	57.43
00 ₂ Absorbed let late	1bs					3.27											6	۲۶. کا							C	Q	34.15
Liguid Composition Inlet Outlet ON 003 - No ON	nors nors nors nors nors nors	3.115 0.093 3.208 0.982 2.765 3.747				2.785 0.108 2.893 0.973 2.877 3.850												6,745 U.111 6,090 1,U.5 6,830 3,709								5,210 5,120 0,500 0,500 2,150 5,150 5,250 5,250	Total
No.	rt. 3/11	8.7.	8 ×	֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡֝֟֝֝֝֟֝֟֝֝֟֝֟֝֟֝֟֝֝֟֝֝֟֝	3.8	8 8 8 8 8 8	1.9	2.10	77.7	2°08 7°08	2.05	2.07	2.07	2.07	2.02	20.2	2.03	70.2	2.04		č	200	2.04	5	1.8	1.9	1.9
lution Not 710v	£,3					5.0.0 ₽.0.0 		3.06	71.1	1.34	1.37	2.53	2.83	3.23	3.75	3.33	4.07	4.63	4.84					3.6	8.92	9.19	5.53
Feed Solution Motor Not Reading Flov	£.3	391.45	391.84	25.03	2.19 2.19	392.28	392.33	392.51	CC.24	392.79 392.85	393.32	393.98	394.28	394.68	395.20	395.28	395.52	396.08	36.29 36.29		§	88. 8. 8. 8.	38.58 38.58	S. 8	60 0.37	79.007	10. '8
							-			*********		T	بسوار د المحال		7	p			•		Templ	 -	. 4.			•	
Tower Δ P	**20			•	بر	•																					
ral Time Not Time	min.	8.	10.52	17.05	18.65 21.47	23.91 23.91	26.79	30.23	51.45	34.65 40.48	54.83	73.17	81.95	13.40	111.25	113.55	120.14	136.14	142.59			2:4.97	247.30	QL 771	275.5	280,23	270,45
Operational Time Timer Met Reading Time	min.	202.13	212.65	219.18	220.78 223.60	226.04 226.04	2592	232.36	235.3¢	270.78	256.96	275.30	234.08	295.53	313.38	315.68	322.27	338.27	344.72			77.10	-			45	2 0
O Conc.	¥01.\$	20.55	20°5	. S.	88 2.5.	20.5 20.5	20.45	20.7 20.4	20.25 20.4	20.45 20.55	20.5	20.46 20.46	20.5	20.5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20.5	20.7 20.7	20.5 20.5 20.5	20°2 20°2 20°2	20.45	20.55	20.5	20.45 20.5	, s. s.	20.5 20.5	20.0 20.0 20.0 20.0	20.6
Cone, in Air Derer Analyzer	w w	1.5 1.5 1.5 1.5	1.4 1.5 1.5 1.4	15151818	1.5 1.5 1.5 1.4	1.5 1.5 1.4 1.4	1.4 1.4 1.5 1.5	1.4 1.5 1.5 1.5	1,51,51,51,5	1.5 1.5 1.5 1.5	1.4 1.5 1.5 1.4	1.61.6	1.6 1.5 1.4 1.5	1.6 1.5 1.6 1.6	1.7 1.6 1.5 1.5	1.7 1.7 1.6	1.6 1.6 1.6 1.5	1.6 1.5 1.5 1.5	1.7 1.7 1.7 1.7	1.7 1.7 1.6							
State State	wol. \$	3	1.49 (1)		1.49(1)																	1.51	<i>47.</i> 1	7.4	1.49	1.52	
ži.	o'oloek	0000 0030	8 6			633 663 663 663 663 663 663 663 663 663	0200	2 200 200 200 200 200 200 200 200 200 2	0700 0700	0800	(4) 0660 0600	1000 (4)	2001	202	383	283	1500	1600	1700 (1)	, 183 183 183 183 183 183 183 183 183 183	1900	2000 (T) 2000 (T)	2030 2030 2030	22	230	2330	2700

OPERATIONAL TEST	
ŧ	
8	٤
FOR	`
SCRUBBER	
CAUSTIC	

Absorbed Remarks Rate	lbs/hr.				Nearest 1/2 hr			8.01	•	Chemicals changed		8•1 1 5				Q	5-47 (10) Water added				Chemicals	*Prob. Record Err		(•53	7.02
CO ₂ Abs	16s 16							1.85				5.60					6.0							11.15	25.59
Inlet Outlet OH CO3 Na OH CO3 Na 1	norm norm norm norm norm							2.20 4.195 0.091 4.286 2.238 2.650 4.888	,			3.190 0.098 3.288 1.194 2.920 4.114					2.247 0.052 2.299 0.163 2.810 2.973					· m		1.883.072 0.075 3.147 1.064 2.50 3.644	39 Total
ಜಿಕ್ಟ್ ಜ್ಞ	rt.Inrt.3		0.05 2.01	5	0.37 2.17			0.51 2.20	0.62 2.2lt	£6	1.65 2.03	96	2.03 1.63	55.	93	3.72 1.72		1 ·	^	6.00 1.87	٠.	han		6.87 1.80	7.25 1.89
छ ध	ft. ³	400.38	401.03	co• rot	401 . 35			64.104	101.60	•	402.54	102.94	402.01 403.01	2000	403.91	1,01,20	5 1 20 T	th•con	400.03	100-100-100-100-100-100-100-100-100-100	107.38	407.76		407.85	408.23
Tower AP	*H20																								
nal Time Net Time	min.		1.49	07.2	10.22			13.88	16.61	ν̈́•	44.31	55.26	74.76	90.72	102.26	נמ סגר		#A-6#1	60.011	192.10	203,63	216.34		218.78	229.72
Operational Timer Reading T	min.	492.38	193.87	•	502.60			506.26	508.99	•	516.69	547.64	202	583.10	261.94	01,069	(10.00)	044-54	14.200	84-189 684-189	10.969 10.969	708.72		711.16	722.10
O2 Conc.	vol. %	20.6	988 Çıvı	₹8 ₹	20.48 20.48 20.78	20.65	888 699	888 ÿ^,	888 1 -1-	200 200 200 200 200 200 200 200 200 200	100 100 100 100 100 100 100 100 100 100	20.	20.52 20.52 20.52	888 647	888 ∮∿;	988 7-1-1-1	8 8 8 8 8 8	388 Vivi	38: \$n	888 ~ 	388 ••••		188 250	ອີຊີຊີ ທູ້ກໍາ	\$8 v.v.
Conc. in Air Dwyer Analyzer	96 86 86									1.5 1.6 1.5 1.5	1.5 1.5 1.4 1.5	1.5 1.4 1.5 1.5	1.5 1.4 1.5 1.4	1.5 1.4 1.5 1.4	1.5 1.4 1.5 1.5	3.1 1.4 1.1 3.1	1.6 1.5 1.6 1.5	1.6 1.4 1.6 1.4	1.5 1.5 1.4 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1 1 1	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5
CO C Liston Becker	vol. 2	,	1.52	1.53	1.48	3.48	1.50	1.51								•	รู้หู้เ	,	•	1.47	1.45	1-46	• •	1-495	
T Luo	o'clock	0000	0000	000	0300 0300 3000	0000	000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0730 0800	0830	0630	1100	1130	1300	200	1500	J	1700	1800	1830 1900	2000 2000 3030	#	288 788	200	2330 2400

1,

Des acrite		Saturday (Holiday Routine)														(11)Used Acid as 0,242M	•		(9) Clock turned back					d Acid as 0,242#	End of 2nd roll							ない
.pag	Pate	1bs/hr.									8.8					3	•		6)			9.55		D	E E					96.9		8.20
OD Absorbed	Xet	1be 1b									2.98	-							_			9.25								6.26 6		18.89 8
Liquid Composition Inlet	HO WE COO NO	nors nors nors nors nors nors									4.020 0.089 4.109 1.892 2.687 4.579 2					3.25(11)			4,12 (11)			2.930 0.113 3.043 0.950 2.528 3.478 9		5.1 (11)						3.050 0.096 3.146 0.412 2.482 2.894 6		Total 18
Solution Net Flov	3 5	1 rt. 3/Hr.	0	8	ď	3 2.11			2.12		1 2,18	2,16											4.25		7.36			6.31			5.67	
꾀	*	િ. જ.		59 0.36		91 0.68			95 0.72		04 0.81	15 0.92		ญ่ บ		٠, ۸	i vi	vo v	ં જં	6	φ.	6	6.30		77 11.54	ដុដ		85.74 85.74 85.74	8	ន្តន	22 13.99	
18 P	Read	ť	408.23	30	7 08	16.807			56° 807		70.607	409.15	410.	20.0		3 3	ia	i ?	77	717	777	777	415.93		419.	20.23		420.83	121	ផ្ទ	421.32	
Town	40	"H20																ניטנ	•			10.4										
	Tine.	mfn.	ķ	10.36	16.14	19,30			20.33		22.32	25.59	29.34	36.79 60.60	46.95	56.36		8. 8.					89,31		77.7%	107.04	117 63	3	129.00		138.69 138.69	
	Reading	min.	722,10	732.46	738.24	741.40			742.43		744.42	747.69	751.44	758.89	768.95	785.15	790.10	790.10	796.67	796.67 800.90	800.90	802.68 806.16	809.69 811.41		816.24	826.15 826.17	930 73	346.54	851.10	852.46 856.72	860.73 860.73	
O Cone.		vol. \$	20.4	20.49	20.49 20.49	20.48	20.50	8.5	20.50	3 0 0 0 0 0 0 0 0	20.35	20.73 20.73 20.73	20.52 20.52	20.50 20.50	20.50	20.20	20.50	20, 50	20.45	8 8 8	20.45	20.45	20.5 20.5	20.45	20.4	20.45 20.45	20.4 20.4	20.43	20.48 20.48	20 .45 20.45	20.44 20.45	
경임	1 2 3 4	* * * *	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5		51.51.51.		• • • • • • • • • • • • • • • • • • • •	1.5 1.6 1.4 1.5	1.4 1.4 1.5 1.5	1.5 1.5 1.6 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1,51,51,51,5		2.2 L.2 L.2 L.2	1.5 1.5 1.5 1.5	1.5 1.4 1.5 1.5		1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.51.51.51.5		2 T·2 T·2 T·2	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	10	
32	Becker.	vol.	1.495		1.47	1.47	1.49	1.48					1.44	1.48	•	- -	, , ,		~	-	1.50	1.52	1.50		1.55	70.7	1.48	1.48	1.49	1.50		
on II		o'clock	0000 0030	000	2 0 2 0 3 0 6 0	0300 0300 0300	0330	0570	888	9690	88		88	1000	1030(4)	13061	1200	1300(9)	1330	867	1500	1600	1630 17 00	1730 1800(8)	1830(10	1930	2 2 2 2 3 2 3 2 3	2100	550	8 8 8 8 8 8 8 8 8 8	2330 2700	

Date: 15 Pebruary 1953

2.2 16.43

Total

OPERATIONAL TEST	
ŧ	
8	
2	
IC SCRUBBER	
CAUSTIC	

Remarks											Clock turned back 15											Sorubber	ruming	Weter failed		•	
Absorbed Rate	1be/hr.			•					7.78										7.17			(9)		3		22.7	15 0 72
CO ₂ Ab	15e 1							•	1.4		_				1				17.30							4 + 4 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +	6.5(11)5.5
=	morn								3.828		6.9m			•	4.95(11)				0 2.793				2.3	•		N	•
oution 60,	norm								8 2.640										3 2.500					•		4	Inlet sutlet
Composition Out	arion a								08 1.188		角								of 0.203				11.0			31 0.149	
Liguid (m norm								38 9.508		1-14								105 2 305				6			91 2.631	
Inlet L									9.270 0.238										300 0 005							2.540 0.091	
명 2.3i	thr norm	,	•35	να	3 7 3	¥.				0.0	18	91	ร์ผู้ผู	0,- 3 ,4	ئىرى كەرد	20°	į 6	202	~	60.		1.97				2•	
ution t Flow	٣.	,	15 1	15 1.95	36	.39 2.				17	₹	200 200 200	, , , ,	222	700	107 100	2 7	200	, ,	V		•00					
Feed Solution Feet ding Flor)	•	ċ	oc	ò	ŏ				ŏŏ	0	-1 1	-1 1	• ~ ~	u () m		` -		u			9				01	
	43	437.56	37.7	1,37.71	50.	437.95			27	437.97	-40	၀ထ င	139.03	بآڻن	متند		i (175.25	1.1.0			443.56	E	333	EE	*	
Tower				, .							10.5				10.3					7. ¢			•	1		10.0	
	min.	•	7.62	4.62	• •	06.0			,	38.	•	• •	## 20.55 20.	• •	• •	• •	•	7.22	1	20.6		2.61		•	•	8.26 8.97	
Operational Timer Reeding		88		25	H	90 1				38			nm- ### 8			•	•	53 12 22 12	•	ر1		61 182		_		26 245 97 278	
•	Ħ	966	05.	002.6	• •	908			(600	•	• •	030	• •	• •	• •	•	125	3	155		180,		900	•	243.	
os cone	¥01. %	20.51 20.5	80. 87. 87.	888 vv	388 •••••	888 var	988 194	886 54.	8 8 9 1 1	888 323	988 Vai	886 2007	888 337	388 307	20. 20. 1. 3.	888 7-4-	100 100 100 100 100 100 100 100 100 100	88 5 5 5 5 5	888 34,		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		88 9.v.	888 ivi		88 • ~	
180	. K	ä	5 1.5	5 1.5	5 1. 5	5 1.5	5 1.5	5 1.5	5 1.5	6 1.5	5 1.5	6 1.5	5 1.5	5 1.6	6 1.5	5 1.5	9.19	6 1.5		.5 1.5	5 1.5	5 1.5	5 1.5	5 1.5	5 1.4	5 1.5	
争		.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.6 1.	1.6 1.	1.4 1.	1.5 1.	1.6 1.	1.5 1.	1.5 1.	1.5 1.	1.6 1.	1.6 1.		1.4 1.	1.4 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	
conc. tn	1 %	•	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.6	1.5	1.5	1.6	1.6	1.6		1.5	1.5	1.6	1.6	1.5	1.5	1.5	
00 00 00 00 00 00 00 00 00 00 00 00 00	¥01.\$	•	 	1.51	1.47	1.49		1.50		_	_						1	4.505	1.59		1.66	•	•	•	, v.	•	
_	olock	82	82	282	282	385	285	282	282	> -	00 (4 X 9) 00 (4 X 9)	282	284	282	282	285	28	282	282	282	282	282	382	289	20:	28	
Time	•	88	8	100	80	ੇਰੋਂ	2 Q Q	383	900	500	888	325	34	125	an:	क्रिक	17.	1007	276	- 60 á	900	188	রর	1000 1000	งกั	กล้	

7.37

40.36

Pate: 18 Physics 1959 . Ail.

Beneathe																												
20 ₂ Absorbed. Bet Rate	1be/hr.								6					<i>;</i> ••	1.48		13.98	7.98		8.28						8,55	***	8.00
व दें	1b .								80	3			7.19	1	6.7 2		Ø.	2.69		5.57						77.77		5
Composition Outlet Outlet Off CO3 in	norm norm norm								2,561 0,402 2,638 3,040				9 0.22 2.62 2.84		2 0.23 2.58 2.81		9 0.15 2.58 2.73	94 0.382 2.453 2.835		2,42,0.27 2,39 2,66						782 0.281 2.548 2.829.12.17		Total
Liquid Compo	norm norm								5.2 821.0 887.5				2.39		27.75		2.39	2,438 0,056 2,494		2.4						2.420 0.062 2.482 0.281		
Flow Fate	r. 3/2r.			3.7	2,51	2.76	2,76	2.52	2.56	2,52	2.55	, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	2.52		2,03	9.	2.43	74.7	2.48	2.48	2.7 84.7 84.7	2.47	2.48	2.47	2.47	2,47	5.49	
d Solution Net Fl	£.3			0.20	67.0	0.61	0.61	1.24	1.72	2.06	2.58	3.26	3.8		4.13	ð.	4.61	<u>;</u>	٥.10	9.11	9.49	10.07	10.54 10.71	11.00	11.51	12.58	76.21	
Motor Reading	ft.3	76:557		456.74 456.34	456.43	456.55	456.55	457.18	157.66	758.00	458.52	459.20	45.3		40.034	401.78	462.55	467.55	70.797		465.34		466.48 466.65					
Tower A P	"H20								10.4	•			10.8		10.8		10.2			10.2								•
Operational Time Timer Net	min.			7.22 9.92	11.70	13.27	13.27	29.26 31.15	40.35	49.12	29.09	77.29	93.46		122.21	77067	159.98	91.70	196.02	220.55	235.16	244.37	255.49 259.48	26 6.87 274.15	280.02 288.80	305.68	311.82	
Operati Ilmer Reading	min.	607.15		61 4. 37 617.07	618.85	620.42	27. 029	63 6.41 638.30	647.50 652.85	656.27	667.77	77.789 77.789	700.61		729.36	3	767.13		803.17	827.70	842.31		862.64 866.63			912.83		
O2 Cone.	vol. %	20.5	20.5	20.5 20.5	20.5 20.5	20.5	20.48 20.48	20.6 20.48	20.47 20.43	20.55	20.43	20.7 20.7	20.5	20.45	20.45	20.5	20.45 20.45	20.5	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	20.5	. s.	20.5 20.55	20.5	20.5 20.5	20.5	20°2 20°2	20.6 20.4	
CO_6Conc. in Air Liston Duver Analyzer Becker 1 2 3 4	K K K	1.5 1.5 1.5 1.5	1.4 1.5 1.4 1.4	1.5 1.5 1.3 1.4	1.5 1.5 1.4 1.5	1.5 1.5 1.5 1.5	1.5 1.4 1.5 1.5	1.5 1.	1.5 1.5 1.4 1.4	1.5 1.4 1.5 1.4	12121	1 2 1 7 1 7	7 4	7.7 7.4 7.7 7.4	1.5 1.5 1.4 1.4	1.4 1.5 1.5 1.4	1.3 1.4 1.5 1.5	1.4 1.4 1.5 1.4	1.4 1.3 1.5 1.4	1.5 1.4 1.4 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.4	10	1.5 1.5 1.5 1.4		1.6 1.5 1.5 1.4	1,51,51,51,4	***
00,600 Liston Bocker	k vol. \$	1,46	*	1.49	1.5	1.48	1.53	1.53	 43.1				1.54	1.57	1.51	1.50	1.53	1.515	1.53	63 -	;;;	2	1.50	1.54	1.52	1.52	1.51	
Tine	o'clock	0000	86	888 888	388	200	2000	0530	0630 0400 0400	833 833 833	0830 0830	1000	001	in in	1200 1230	1300 0551	100 171 171 171	1500	1630	1700	1800	1900	1930 200 300 300	202	888	2300	2 03 2 72 2 73 2 73 2 73 2 73 2 73 2 73 2 7	•

Romarks	£															Pressure air	bmar ed 8	d at 1/11								
Absorbed Rate	10s/hr.								8.75				3	٠ <u>٠</u>	3.55	Low	into m. Sta	rinished			7				6.30	5.49
CO2 Ab	1 be 1								3.92				,	2.00	94.80	(13)	b le d 3 cf	and			7••				4.53	22.05
Liquid Composition Inlet Outlet CO3 Na OH CO3 Na	m norm norm norm norm								54 0.079 2.433 0.395 2.533 2.928					2.39 0.12 2.09 2.01	2.43 0.29 2.56 2.85					2 760 0 01:0 2 800 0 363 2 316 2 672	2000 00012				53 0.079 2.232 0.291 2.560 2.851	Total
Solution Net Flow Flow Rate OH	ft3/hr norm		60.0	100 100 100 100 100 100 100 100 100 100	יים היים היים	2.43			2.53 2.354) 1	2.03	-		1.41	1-49) • •		•	• •	, du	ŮŸ;	1.75	u de Non	JUNE JUNE	1.58 2.253	1.59
	rt.				, α	96.0			1.13	•	2,2	•		2.47	4.00	, ,	225 125 14t	~ c		· ~ c) ~ V	J F	ννν ν ω ν ω ν ω ν ω ν ω ν ω	8	i w. M	~•
Feed Meter Reading	rt.3	1,60,28	60°F	169.76 169.81	2002	470.18			1,70.41	} •	171.90	*		472.75	173.12	<u> </u>	474 474 90 1777 90 90 90 90 90 90 90 90 90 90 90 90 90	777	55.	-t-t-	-£-£	• • •	174 - 96 177 - 96 177 - 96	77.7.	77.77	75.8
Tower	*B20								11,00					ν, ν,	•					0	>				1).	
nal Time Net	min.	Æ.	(12.61	; -	19.40 22.25			26.85	•	74-47	~ ,		147.65	162.56	0	187.92 187.92	700	- پۍ	, O	900	6.	215.44			
Operational Timer N Reading Ti	min.	,	~ a	5,776 5,776 5,776 5,776	•	951-15			958.60	1 • ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	91.900	D•67		c4•620	15.460	v•.co	119.67	19.6	19.61 19.61	19.6	3.45 2.45 2.45 2.45 2.45	<u>.</u>	150-36	yw,	\$ 2° 5	91.
Os Conc.	vol. 3	2°	ຽຽ ເກົາ	ດ ວິດ ບໍ່ກໍກ	000 000 000	889 rv.rv.	888 *•••••	20.5 1.48	988 \$35	000 000 000 000 000 000 000 000 000 00	988 v,	888 * 3 -	88 3~	200 200 200 200 200 200 200 200 200 200	888 3.rvr	88 53.	000 000 000 000 000	888 3	888 401	9 8 8	988 vivi	0.00 VW	000 000 000	200 400 400	000 000 000 000 000 000 000 000 000 00	20.5
Conc. in Air	K K K	1.5 1.5 1.4	1.6 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.4 1.5 1.6 1.5	1.4 1.4 1.5 1.4	1.5 1.5 1.4	1.5 1.4 1.5 1.5	1.5 1.4 1.5 1.4	1.5 1.4 1.5 1.4	1.5 1.5 1.5 1.5	1.4 1.4 1.5 1.4	1.5 1.5 1.4	1.5 1.4 1.5 1.5	1-1 1-1 1-1 1-1	1.4 1.0 1.3 1.2	1.4 1.0 1.2 1.2	1.3 1.4 1.4 1.4	1.5 1.5 1.5 1.5	1.5 1.4 1.5 1.4	1.5 1.4 1.5 1.4	1.3 1.4 1.5 1.5	उ.१ १.१ ग.१ १.5	1.3 1.3 1.3 1.4	1.3 1.2 1.3 1.3
Time CO Liston Becker	olook vol. %	151	1.53	200 1.50	1.51	1.50	1.49 200 1.49	1.515	700 1.51				001	2.49	† ·	(13)	بر -		10	•	i ri r	†• 	30 .00 .00	1.52	30 1.52	1.53
Ħ	•	88	565		000	0'0'	3 65	555	òòò	őőc	ŏŏŏ	รัหร	4 7 7	iä,	-1 mm	ार्न (i i i i	Ä	,,,,,,	-wa	45°	48 6	หสร	1000 1000	3 C C	ার

Ě				CAUSTIC :	SCRUBBER 4	*08 CO2-	OPERATIONAL		Test				Date 21	Pabman		· LED
7.1110	Listan Becker	Conc. in Air	02 Conc.	Operatic Timer Reading	onal Time	L,	Food We tor	301	ution			Composition	,I	I	1 !	210
o, clock	vol. %	80 80 80	vol. 4	r E	- 1	4	Reading	F	-	10	CO3 Ne	18	CO, IL		Patro	
0000	1.45		0	9	• 47	. 02H	ند	rt.3	ft³/hr 1	norm n	norm norm	rm norm	norm norm		1bs /br.	
0100	4	1.5 1.5 1.4 1.4	_ =	557	7-10		85.29 55.29 15.29	.16	2.1/					Saturd	lay (Holiday	lay Routine)
0200 0230	,	1.4 1.5 1.5 1.5	•	200	900		85.56 85.86	5.5	2.9							
0300	1.50	1.5 1.5 1.5 1.5		<u>ي</u> ږي	6.6	~	ድ ማ ማ	2,3	2.16							
0000	1.51	1.5 1.4 1.5 1.5	20.83 20.75	0100	21.69 27.49	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	486.08 486.08	0.79	2.19 2.19							
0500 0530	N	1.5 1.5 1.5 1.5	~~~	489.21		7 -	72.00	86	₹.							
0 60 0 0 63 0	1.50	1.5 1.5 1.4	יונים	497.60	. 9	⇒ -	90.29	8	2·0/t							
0700 0730	บ	1.5 1.5 1.5 1.5	~			7	86.55	1.26 2	2•05							
0800	1.52		<i>ក</i> រីករ	00		7°6 17	36.71 36.73	77	8,5	2.438 0.075	75 2.513	0.276	2.560 2.836	86-77 9	7.10	
0000	1-49	1.5 1.4 1.5 1.5	99	27.80		.t-t-	36.76 36.87	7 28 28	010						Ì	
1000	\ Y	1.5 1.5 1.5 1.5		<u></u>		Ť.	36.90	56	0.0							
1100	1.49	1.4 1.4 1.3 1.4	<i>بن برن</i>	So y		, E-E-	37.09	88	ಲ್ಲಿ							
1200	1.52	1.5 1.5 1.5 1.5	· w	727	, ab	17	7.51	,2,5,	0.00							
1300	1.51	1.5 1.5 1.5 1.5	25. 1.05.	26.51	83.63 88.63 88.02	- 	7.95 8.18	65 89 89	90							
985 177 177	1	1.5 1.5 1.6 1.5		55.5 55.2		74. 74.	200 200 200 200 200 200 200 200 200 200	~ 971	90.							
	ি ফু	1.5 1.5 1.5 1.5		56.9		3 1 1 1 1 1 1 1 1 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3.K	% %							
	524	1.5 1.5 1.4 1.4		560.02	77.65	3 7 7	8.68 8.68 3.	30	ភូភិ							
1700 1730	53	1.5 1.5 1.4 1.4	~	76.2	15:41	87 1.	9.59 .85 .85 .85	96 20 20 20 20 20 20 20 20 20 20 20 20 20	1000	.625 0.073	3 1.698	0.311	2.528 2.839	8.28	7.20	
	£.	1.5 1.5 1.4	m	588.92	16.80	-	;									
	17 T	1.5 1.5 1.5	. •	/ r ://1.70	91	257	7 99.6		•05							
	, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	1.4 1.5 1.5 1.4	.	18.23	77.0	•••	200 200 200 200	623	స్త							
1 000	•55	1.5 1.5 1.4 1.5		12.55	ייייי זיייי זיייני	264 7-7-	 	₩	ಕಚ							
2200	52 1	.5 1.5 1.5 1.5		77.68	26.5	\mathbf{c}	8 8 7 7	82	86							
2300	.52	.6 1.5 1.5 1.5	9	52.14		$\overline{}$. 59 . 71 6	<u> </u>	20.02							
2400 1	.55 1	6 1.5 1.5 1.5	99	66.07 20 68.36 20	5.29 10. 7.58 10.	2 492 492	20 24 6	1 %	.02 2.460	0 0.036	2.496	0.212 2.	2.565 2.777	10.9	7.72	
							-	,	;			Total		24.16	7.06	

Remarks		Sunday (nolida; Routine)				Added at	0506												els.	changed					
Absorbed Rate	10s/k					7 600			7.46							7.65			Chemical	cher				ŧ	7.62
CO2 At	1bs 1								4.34							7.65								ì	20.75
the state of the s	norm								2.832							2.961									: 2•991 1
Composition Outlet	R								6 2.686							18 2.713								1	9 2.652 Total
1 🕈	norm norm								941.0 496.							.60 0.248									•888 0. 339
Lt du	Ħ								0.115 1.9							0.054 2.460									0•058 2•8
Interior CO ₃	norm n								.0 6 4 8.							2.406 0.								į	•830
18.8	rt3/hr	• •	1.91	2.81	* :			2.01	.03 1	2.08 2.08	20.5	νος 2000 2001	7.00.0 7.00.0	2.07	20.0 20.0 20.0 20.0	6.9.	0, 0, 0, 0, 0, 0,	2.06	2.08 2.08	5.09	2000	200	20.0	200	2.07
431	rt.3	16	0.00	1.00	9			1.16	.18	#.c.	8	25.00	.19 91.	25.7	3.8°	म त्रे	6.6% 1	25.	84	99.	14. 14.	2,77,	Jæj-	<u>ئېږ</u> :	કું છું
Feed Meter Reading	ft.3	922	92.	193.2h	•			04.564	93.4	193.56	4	.	ŧŧ	94.58	35,5	3	5	3.8	88	6.96	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	2000 2000 2000	97.70	97.7	97.8 98.1
TOWOT A P R	'H ₂ 0				J			7	10.1	たた		J-J-	7-7	-tt-		9.2		-J		J	-tt-		J- -J	-33 (
t 128	•	0 11	96.	ريار دريار	>			85.	26	148	(-r	- o c	\mathcal{O}	డ్ స్ట్రెం	\sim (シロ い	\sim	$\mathbf{p} \propto 0$	\sim	$-\infty$	ivi E		- O (ን ድ ኒ	. 2 2
nal T Ne Tim	min		20 B	22	4			त्रे		13	5,5	, 100-	75	, 20 <u>-</u> 7	चें से श	3,000	286		22	m		V co a	One	200	0
Operatic Timer Reading	min.	668.36 672.36 574.67	77•3 89•0	689.75	•			702.9lt	93	711.84	۲; د	iy.	200	8-1-1-3 8-1-1-3 1-1-3	in in	500 500 500 500 500 500 500 500 500 500	200	٠ <u>٠</u> ٠	200	02.2	818.93	ない	27.75	,000 000	38.9
2 Conc.	ol. 🐇	20.45 20.42 20.42	マギー		tt	20°42 20°4	-57	18 8 17 7	-		000 (1101	, r., r.	20 7.7.		000 000 01-1-	<u>-t-:t-</u> :	000 477 707	ــ نـــ <u>ا</u>	さいい	シバン	Λ 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	, 2 , 2	ງ ເກັກ	ູ່ທຸນ	טע. טעי
zer	5 8	7. 1.5	1.5	1.5	7.		1.4	1.	1.4	1.4	1.4	٦. ۲.	ĵů	īV	μ	μV	ν̈́	r,	rγ	71.	Ň	۶,	lņ.	ŗŲ.	ň
Anely	P5	5 1.5 . 5 1.5 .	.4 1.5	4 1.5	1.4	1.4	.4 1.3	5 1.4]	1, 1.4	·t 1·t]	1.1.4.	.l ₁ 1.5 1	,5 1.5 1	51.51	5 1.5 1	4 1.5 1	•4 1.5 1	5 1.4 1	1-4-1 4-	5 1.5 1	4.1.4.1	1 1.4 1	5 1.4 1	4 1.5 1	5 1.5 1
one. in	£3.	1.6 1.1	1.5 1	1.4-1	٠. ١	. †	1.5	1-4 1	1.5 1.	1.4 1.	1.4 1.	1.4 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.5 1.	1.4 1.	1.5 1.	1.4 1.	1.5 1.	1.5 1.	1.5 1.
CO Co Liston Becker	۷01. بخ	•	1	いっす	1. 5. 5. 6. 7.	₹.	1.50 1.00	1-3	1.52	ָרְיָּהָ הְיִהָּ	in	2,52	L	1.52	1.55	1	•	1.54	1.52		w	•55	67•	75.	55.
om!	clock 1					(17)									205	202		200	(†)00	200		.00		.i	н
H.	0	00000	1000	S S S S S S S S S S S S S S S S S S S	उँउ	ับ เบ้า	9.90 000	070	<u> </u>	868	Š	ă	25.	A M.	Ä.	ĮŅ.	196	170	180	190		200	200 200 200 200 200 200 200 200 200 200	33,000	200

C. JOYED

						CAUSTI	Caustic scrubber for	- 60	OPERATIONAL TEST	Se	34	23 70	Date: 23 February 1953	LESIMICT.
a a	25 % 25 %	Cone, in Air Derer Amiraer	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Q2 Cone.	Operational Timer Meading	onal Thee	Jour A	75	2	Light	ogition Ortlet	AA GO	Absorbed	learte
o'aloak	k w1. \$	×	×	vol. \$	ata.	, E				3		R	B te	
8	1.55	1.4.7.4.1				i	'n		n. ' n. '/h.	norm norm	BOTH BOTH ROTH BOTH	1bs	1be/hr.	
86 86	1.54	1.51	.5 1.5	20.48 20.48 20.48	846.19 846.19 849.06	7.21		498.13 498.39	0.26 2.16				ت ا	(Holiday Routine
9 9 8	18.			20.48		00.01								
888	7° 7	1.5	1.5	20.48 20.45	85 4. 28 857.13	15.30 18.15								
9,6	1.53	1.5 1.5 1,	1.5 1.5	20.47	860.78	21.80								
0070	1.51	1.5 1.5 1.	1.5 1.5	20.72	866.78 866.78	27.80 27.80		69.05	0.92					
38	1.53	1.5 1.5 1.	1.5 1.4	8°69 8°69	873.25	46 78		*						
8 8 8 8	1.54	-		20.6	875.54	36.56		1.00.35						
0630	•	ŧ	7:7	20.55	875.63 876.83	36.65 27.88								
2 2 3 3	1.55	1.5 1.5 1.	.5 1.5		878.42	33.4	9.6			2 015 0 058 2 0	031 C 307 C 671 O 660	1	,	
808	1.52	1.5 1.4 1.	5 1.5		891,13	52.15				0.030	4.91.5 U.401 4.035 3.152	4.78	7.28	
8 8 8 8 8	1.56	7			894.92	55.94		500.03	1.94 2.12 1.94 2.08					
930		ì	•		903.24	64.26 66.96								
000 000 000 000 000 000 000 000 000 00	1.54	1.5 1.5 1.4	1.5		912.86	73.88								
811	1.54	1.5 1.5 1.5	1.5		918 .48 919.52	79.50 80.54								
38	1.49	3.5.1.5.1	7		925.47	86.49								
1230	ì	•	C		934.00	95.02		501.42 3.						
13.00 56.00	1 53	1.5 1.5 1.5	1.5	20.5	934.11	95.13		201.43						
160	60:	1.5 1.6 1.5	1.5		945.37	106.39	6	100 B	72 2.10					
1430	1.56					1111.22	10.2	To care			0.23 2.73 2.96	9.05	8.11	
1530	1.56	1.5 1.5 1.5	1.5			120.90	•	502.39	26 2.11 26 2.11 27 2.11			•		
1600	1.52	1.5 1.5 1.5	1.5			131.56 150.4 9	10.2	502.80	4,0	2 7 70 0 70 7 7		;		
178	1.48	1.5 1.5 1.5	1.4			155.12	•	503.68 5.		2.124 0.00K 2.1	2.100 U.22 2.24 3.090	8 .9	8.16	
1808	1,51	1.5 1.5 1.5	5 1.5		996.63 999.84	157.65	6	503.88 8.88 8.88 8.88 8.88 8.88 8.88 8.88	5.73 2.18		A. 2. 45 2. 9.	1.05	6.83	
66. 66. 66. 66. 66. 66. 66. 66. 66. 66.	1.53	1.5 1.5 1.5	1.5			167.20		50.20						
200 000 000	3					1/2.85		504.40 6.	~ ~					
88	!	C*1 C*7 C**	1.5			188.61		504.94 6.8						
2 2 2 8 8 8	1,51	1.5 1.5 1.5	1.5			199.87 199.16		505.20 7.	~ 0					
822	1.52	1.5 1.5 1.5	1.5	20.73		201.46 203.87		505.38 7.2	25 2,16					
2300	1.53	1.5 1.5 1.5	1.5		75.970	217.56		505.98 7.89	85 2.16	2,728 0,078 2.806	170 2 237 0 728 3 071	76 6	36.0	
2700	1.53	1.5 1.4 1.5	1.5	20.5	70.890	229.06		506.40 8.2	~		**************************************	2	C :	
												;	i	

Total 28.63

TEST
OPERATIONAL
200
FOR
SCRUBBER
CAUSTIC

Remarks			Clock turned back	elapsed time is 1 hr.		
Absorbed Rate		6.58	7.88	7.63		19.1
CO ₂ Ab		5.30	5.68	6.61 5.40		13.26 36.25
a long) 3.064	2. 85	2.70		0 2.846
Outlet CO3		94 2.670	9 2.66	9 2.51 88 2.495		96 2.550 Total
Composition Outl OH CO		43 0.394	3 .19	.39 0.19		80 0.296
Liquid Co		61 1.743	2.43	2 2		60 2.480
111100 SE		.682 0.361		2.130 0.058		090.0 024.
Flow Rate OH	3 % F % K	~	,44 2500		%8866699999999	~
3 4 tto	32 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CH 4756866	,040,000 0410,000	ಗ್ರಹಿತ್ರ ಬಿಡಿ ಬಿಕ್ಕಪ್ರಕ್ಷ	25227222222222222222222222222222222222	.30
ಕ್ಷ ಜ	40 72 0 92 0 0 0 53 0 0 0 53 0 0 0 53 0 0 0 53 0 0 0 53 0 0 0 0	747 738 738 739 739	200 de 100 de	500550 500550 500550	00000000000000000000000000000000000000	25 20 10
Read	200 0 000	000 000 000 000 000 000 000 000 000 00			หู้เก็ก เก็บ เก็บ เก็บ เก็บ เก็บ เก็บ เก็บ	25 25 25
Tower P	202	10.4	10.3	10.3		10.2
Time	7.85 15.73 22.78 22.59				201177 2017 201	
Operational Timer Reading Ti	068.04 075.89 083.77 089.84 090.82				33338872887 335138872887 33513887 351388 35138 35138 351388 351388 35138 35138 35138 351388 35138 3518 351	
ပိ	2888888 86 . v-j.v.v.v.v.v. v.	8888888888 \$\$\$\$\$\$\$\$ \$	3888888 izii-ivv	88888 ** * *****	888888888888 เพ่นน์เพ่อจ่าจ่าจ่าน้ำเพ่น	3999999 ບໍ່ <i>ກໍ່ກໍ</i> ່ທໍ່ທໍ່ທ້ວ
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v 4 v 4 v	4	4 4 4 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1		+ + + + + + + + + + + + + + + + + + +
And S	11	4.1 4.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1.5 1.5	<i>, v</i>	1.5 1.5 1.4 1.4 1.4 1.4
200	* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	יי יי יי יי יי		4 4 4 6 6 6	1 4 0 4 4 4 4	1.5
de Ker	1.50 1.50 1.50 1.50	1.51	ν, ·	11111 040 040 040 040	11.52 1.52 1.52 1.55 1.55 1.55 1.55 1.55	1.50
į	Ö	00000000	6)	(†) 00000	000000000000	000000
		00000000000000000000000000000000000000		WEE BUN	80000000000000000000000000000000000000	である。

Remarks														5
Absorbed Rate	1bs/hr.	,		6.77	7.65	7.18	8.36	∂.18	8.15	8.31			8.08	26.5
CO ₂ Al	108]			60°†	1.67	0.687	64.9	6.24	4.65	3.70			小.7	34.967
on tlet CO ₃ Na	norm norm			.530 2.843	2.60 2.78	.64 2.85	.57 2.81	.59 2.79	.595 2.886	.65 2.91			2.648 2.828	Total
Composition Outi	norm			.313 2	.18	.21 2	2 tz.	20 2	• 2 91 2	.26 2			0.180 2	
Liquid Con Inlet OH Coq Na	Arnorm norm norm			2.345 0.063 2.408 0	2.82 0	2.85 0	2.71 0	2.38 0	2,307 0,072 2,379 0	० टेंग•ट			2.398 0.062 2.467 C	
Flow Rate	rt. 3	1.76	11.73 11.77 11.77	1.99	2.01	2.14	2000	, , , , , , , , , , , , , , , , , , ,		्तेत्त <u>े</u> १००	2.24	तंत्र ०००	₹ 8	2.2
Solution Net Flow Flow Rate	rt.3	45°00	47.c.00 77.c.00 77.c.00	0.91 1.13 1.18	1.65	2.10	 	作いな	6.18	7.75	8.28 8.28	9.10	9.71	10.50
Feed Meter Reading	ft.	517.25 517.25 517.25	517.35 517.36 517.38 517.38 517.38	517.92 518.14 518.19	516.66 518.85	8.1	10000 10000 10000 10000	2882	23.1	2002. 1002.	525.10 525.29	526.11 526.18 526.55	526.72	527.51
Tower	"H20			9.6	۵) ه	10.7	10.1	13.2	10.2	10.3			8.2	
Time	min.	8.16 8.76	112.27.77.21.21.22.22.22.22.22.22.22.22.22.22.22.	27.14 34.03 36.21	40.72 40.72	,	000000000000000000000000000000000000000	NNON	γ. Φ.	191.72 201.77 205.41	21 6.72 222.65	244.03 246.07 256.38	266.57	44.182
Operational Timer Reading Ti	min.	369.91 378.97 378.67	1882 1882 1882 1883 1883 1883 1883 1883	30 .05 103 .04 106.12	419.25	K7.0	12100 1200 1200	925.00	5. 35. 15. 25. 25. 25. 25. 25. 25. 25. 25. 25. 2	570.03 570.08 570.08	586 .63 59 2. 57	613.94 615.38 626.29	630-48	651.35
O2 Cone.	vol. %	0000 0000 0000 0000 0000 0000 0000 0000 0000	00000000000000000000000000000000000000	218888 60 mmm	C • O •		888 8.4.4.	88888 •••••	3888 \$-\$n.c-	÷≓∹. 8888	(≓. † - 8888	888888 44	0000 0000	20. 20. 20.
Conc. in Air a Dayer Analyzer	e e e e	1.5 1.4 1.4 1.4 1.5 1.5	1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.4	1.4 1.5 1.4 1.4	5 1.4 1.5 1	1.1 1.5 1.4 1.4	1.6 1.4 1.5 1.4	1.5 1.4 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.4	7 1.5 1.6 1	5 1.4 1.5 1.	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5
CO C Liston Becker	vol. %	1.51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.53				11.53		, n	1.50	1	1.53 1.54	1.53
Time	o'eloek	00000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0830	1030	1130	00000 00000	111111 10000 00000	1730 1730 1800	1830	2000 2000 2000 2000 2000 2000 2000 200	2230 2330 2300 2300	2400

1,	1,	,			r		, '							-						
\$ \$ val. \$ val. \$ val. \$ val val val val val val. \$ val.	\$ \$ vol.	T	PRE 1255	#	E T	02 Come.	Operation Finer Reading	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10897	Reding	Solution Not 710m	15.5	1 1	Served to	830	9 3	Pare Sara	Romarks		
15 15 20 46 65 17 17 17 17 17 17 17 1	15 15 204 699 17 207 2	*		*	×	vol. \$	afa.	nta.	0ZH.	H. 3	٤.	42	nor	note		ğ	be/hr.	•		
15.16 20.25	15 16 2 20 4 40 10 10 10 10 10 10 10 10 10 10 10 10 10	1.5	• •	1.5 1,	.5 1.5	30.5	651.35	8		527.51		ç								
15.15	15.15 20.54 66.77 15.50 23.20 0.52 2.23 11.15.15 20.55 2.23 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 11.15.15 20.55 2.25 2.25 2.25 2.25 2.25 2.25 2.	1.5	V	.6 1	9	38	663.43	11.08		527.9		2.69								
15 15 20 20 20 20 20 20 20 2	1.5 1.5 20.45 (20.00) 1.5 1.5 20.45 (20.00)		•		7	5 5	564.73	13.40		528.03		2.33								
1, 1, 1, 1, 1, 2, 30, 46, 48, 13, 12, 38, 82, 13, 13, 27, 38, 82, 13, 13, 27, 38, 82, 13, 13, 27, 38, 82, 13, 13, 27, 38, 82, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	1,5 1,5 20,45 664,18 31,23 238-82 1,13 2,77 1,3 1,5 20,45 664,18 31,23 238-82 1,13 2,77 1,3 1,5 20,44 664,18 31,23 238-82 1,13 2,77 1,3 1,5 20,44 664,18 24,52 24,52 24,52 24,52 24,52 1,3 1,5 20,44 669,17 24,52 24,52 24,52 24,52 24,52 1,3 1,5 1,5 20,44 669,17 24,52 24,52 24,52 24,52 24,52 1,3 1,5 1,5 20,44 70,60		•		0.4 C.	8 8 7.	678.78	22.52		528.59		; ; ; %								
13 13 13 20	15 15 15 25 25 25 25 25	1.5	· · · · ·		.5 1.5	20.45	684.58	33.23		528.82		2.37								
1.5 1.5 1.5 20.4 695.4 44.07 525.10 1.59 2.32 1.69 2.30 1.69 2.32 1.64 2.30 1.69 2.32 1.64 2.30 1.69 2.32 1.64 2.30 1.69 2.32 1.64 2.30 1.69 2.32 1.64 2.30 1.69 2.32 1.64 2.30 1.69 2.32 1.65 2.39 1.65 2.32 1.65 2.30 1.69 2.32 1.65 2.32	115 115 115 20.4 695.14 44.70 579.10 1159 2.32 115 115 20.4 695.17 44.70 579.20 1159 2.32 115 115 20.4 70.000 90.37 57.000 2.32 1.32 115 115 20.4 70.000 90.37 57.000 2.32 1.32 115 115 115 20.4 70.000 90.37 57.000 2.32 115 115 115 20.4 70.000 90.37 570.000 2.32 116 116 115 20.4 70.000 90.37 570.000 2.32 116 116 115 20.4 70.000 90.37 570.000 2.32 116 116 115 20.4 70.000 90.37 570.000 9.24 115 115 115 20.4 70.000 90.37 570.000 9.24 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.4 70.000 90.32 115 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.5 70.000 90.32 115 115 20.	1.5		-	.5 1.5	88	85.55 85.55	8.78 8.78		528.82		×.4								
15 15 15 20 20 20 20 20 20 20 20 20 20 20 20 20	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	_			•	7.00	692.51	41.16		529.10		25.								
15 1.5 1.5 20.4 70.5 5.5.4 2.10 2.2.4 2.10 2.2.4 1.10 2.10 2.2.4 2.2.4 2.	15 15 15 20 ii	•	^	n	.5 1.5	88	83.5 83.5 12.5	44.04 67.82		53.33 53.33		2. 2.								
15 15 15 15 15 15 16 16 15 725.06 725.07 16 16 15 725.06 16 16 15 725.06 725.06 17 15 15 15 725.06 725.06 17 15 15 15 725.06 725.06 18 15 15 15 725.06 725.0	15 15 15 15 20.0 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0. 2.0 2.0	9.1		5		8	701.89	50.5		529.47		2,33								
16 16 15 175 18 175	1.6 1.6 1.5	1.5		~	ä	7.8	706.06	54.71 65.19		539.62 530.05		7.7. 7.7.								
16 16 1.5 775,04 73,59 10.0 590,78 2.78 2.78 2.780 0.006 2.880 0.422 2.644 3.046 10.0 8.14 15 15 1.5 777,22 195,87 131,20 131,20 2.32 2.33 2.38 2.84 15 15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 15 15 1.5 20.5 856,07 184,72 2.33 2.32 2.42 2.24 15 15 1.5 20.5 856,07 184,72 2.346 7.14 2.23 15 16 1.5 20.5 856,07 184,72 2.346 7.14 2.23 15 16 1.5 20.5 856,07 184,72 2.346 7.14 2.23 15 16 1.5 20.4 856,17 184,72 2.34 2.32 2.42 2.42 2.81 16 1.6 1.5 20.4 856,17 184,72 2.32 2.42 2.42 2.81 16 1.6 1.5 20.4 856,17 2.32 2.32 2.42 2.42 2.81 16 1.6 1.5 20.4 856,17 2.32 2.32 2.42 2.32 2.42 2.81 15 1.5 1.5 20.4 856,17 2.32 2.32 2.32 2.32 2.32 2.32 2.32 15 1.5 1.5 20.4 856,17 2.32 2.32 2.32 2.32 2.32 2.32 15 1.5 1.5 20.5 856,07 8	16 16 15 175,14 175,04 175,05 10,05 2,785 2,785 1,785 1,045 1,				•		725.04	73.69	i 1	530.29						1	•			
16 16 11.5 777.22 95.75 731.20 5.55 2.33 2.38 2.84 775.21 126 0.05 531.50 5.95 2.33 775.22 95.75 775.22 95.75 11.5 11.5 11.5 11.5 11.5 11.5 11.5	1.5 1.5 1.5	9			.6 1.5		725.04	3.69	0.01	530.33			.760 0.066 2.82	6 0.422	.624 3.046	8.8	7. 8			
115 1.5 1.5	1.5 1.5 1.5	1.5	- T		.6 1.5		747.22	95.87		531.20		, . ,								
15 1.5 1.5 20.5 805.03 133.68 10.0 532.50 4.59 2.34 2.38 2.84 2.84 115 1.5 1.5 20.5 855.03 133.68 10.0 532.50 4.59 2.34 2.33 2.34 2.35 115 1.5 20.5 856.07 184.72 534.65 7144 2.32 2.42 2.81 856.07 184.72 534.65 7144 2.32 2.42 2.81 856.07 184.72 534.65 7144 2.32 2.42 2.81 856.07 184.72 534.65 7144 2.32 2.42 2.81 856.07 184.72 534.65 7144 2.32 2.42 2.81 856.12 24.77 24.62 2.30 2.42 2.81 856.12 24.77 24.62 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.81 856.12 24.77 2.32 856.12 24.77 2.32 856.12 24.77 2.32 856.12 24.77 2.32 856.12 24.77 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.42 2.30 2.30 2.42 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.3	15 1.5 1.5 20.5 895.07 133.68 2.33 2.34 2.38 2.34 2.34 1.5 1.5 1.5 1.5 1.5 20.5 895.07 135.68 1.5 1.5 1.5 1.5 20.5 895.07 134.72 1.5 1.5 1.5 20.5 895.07 134.72 1.5 1.5 1.5 20.5 895.07 134.72 1.5 1.5 1.5 20.5 895.07 134.72 1.5 1.5 2.32 1.	•	•				767.26	115.91		531.99		2.35		,	•		•			
1.5 1.5 1.5 20.5 86.07 184.72 534.65 7.14 2.22 2.81 86.07 184.72 534.65 7.14 2.22 2.81 86.07 184.72 534.65 7.14 2.22 2.82 2.82 2.82 2.82 2.82 2.82 2.8	1.5 1.5 1.5 20.5 856.07 184.72 544.65 714 2.22 2.22 2.42 2.45 714 2.22 2.42 2.45 714 2.23 2.45 84.24 2.44 2.44 2.44 2.44 2.44 2.44 2.4	<u>.</u>	~ •	^	.5 1.5		805.03	153,68	10.0	533.50		4 K	2.3	20	2.04					
115 115 115 20,5 856,77 184,72 534,65 7144 2.32 2.42 2.81 20.45 856,77 184,72 10.0 334,65 7144 2.32 2.42 2.81 20.45 856,77 184,72 10.0 334,65 7144 2.32 2.42 2.81 20.45 856,12 24,77 184,72 10.0 334,65 7144 2.32 20.45 856,12 24,77 184,72 10.0 334,65 7144 2.32 20.45 856,12 24,77 184,72 10.0 334,65 7144 2.32 20.45 856,12 24,77 184,72 10.0 334,65 7.42 10.0 0.042 2.62 0.331 2.557 2.88 20.40 8.13 20.45 856,12 24,77 10.1 356,12 8.61 2.30 20.45 856,12 24,77 10.1 356,12 8.61 2.30 20.45 993,13 22,16 24,77 10.19 2.30 20.45 993,42 284,77 10.19 2.30 20.45 993,42 284,77 10.10 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.45 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 20.45 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.89 2.29 2.776 0.085 2.801 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.89 2.29 2.776 0.085 2.801 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.89 2.29 2.776 0.085 2.801 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.891 18.43 7.82 20.5 993,47 10.40 2.891 18.43 7.82 20.5 993,47 10.40 2.891 18.43 7.82 20.5 993,47 10.40 2.891 18.43 7.82 20.5 993,47 10.40 2.891 18.43 7.82 20.5 993,47 10.40 2.801 0.390 2.501 2.891 18.43 7.82 20.5 993,47 10.40 2.801 0.390 2	1.5 1.5 1.5 20.5 836.07 184.72 534.65 7.44 2.32 2.42 2.81 1.5 1.6 1.5 20.45 836.07 184.72 534.65 7.44 2.32 2.42 2.42 1.5 1.6 1.5 20.4 836.07 184.72 10.0 834.65 7.44 2.32 2.42 2.42 1.5 1.6 1.6 1.5 20.4 856.32 210.33 595.95 8.44 2.33 2.420 0.042 2.462 0.331 2.557 2.888 20.40 8.13 1.6 1.6 1.5 20.4 875.77 224.22 10.1 595.15 8.64 2.30 2.420 0.042 2.462 0.331 2.557 2.888 20.40 8.13 1.5 1.5 1.5 20.4 875.77 224.22 10.1 595.15 8.64 2.30 2.420 0.042 2.462 0.331 2.557 2.888 20.40 8.13 1.5 1.5 1.5 20.4 875.77 224.22 10.1 595.15 8.64 2.30 2.420 0.042 2.462 0.331 2.557 2.888 20.40 8.13 1.5 1.5 1.5 20.4 924.1 225.16 577.70 10.19 2.30 1.5 1.5 1.5 20.5 995.51 297.10 538.18 10.67 2.30 1.5 1.5 1.5 20.5 995.7 395.2 599.7 11.6 2.29 1.5 1.5 1.5 20.5 990.47 3390.12 599.7 11.6 2.29 1.5 1.5 1.5 20.5 990.47 3390.12 540.43 13.70 2.29 1.5 1.5 1.5 20.5 990.47 3390.12 540.43 13.70 2.29 1.5 1.5 1.5 20.5 990.47 3390.12 540.43 13.70 2.29 1.5 1.5 1.5 20.5 990.47 390.12 12.41 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 1.5 1.5 1.5 20.5 900.8 358.61 541.20 13.70 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.4 3 7.99	7	~	*	.5 1.5		819.66	168.31		534.05		2.33						;	•	
1.5 1.6 1.5 20.45 886.07 184,72 10.0 534,65 7.14 2.32 2.42 2.81 1.5 1.6 1.5 20.45 860.12 124,77 10.0 534,65 7.14 2.32 2.42 2.81 1.6 1.6 1.5 20.45 860.12 199.03 195.03 195.03 10.15 1.21 1.22 1.31 1.6 1.6 1.5 20.4 876.57 24,22 10.1 536.12 864 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 265.35 59.14 2.30 1.5 1.5 1.5 20.4 916.70 300.96 598.70 11.46 2.39 1.5 1.5 1.5 20.5 990.47 390.32 590.47 339.12 2.30 1.5 1.5 1.5 20.5 990.47 339.12 2.04.15 12.40 2.39 1.5 1.5 1.5 20.5 990.47 339.12 24.41 13.90 2.39 1.5 1.5 1.5 20.5 990.47 339.12 24.41 13.90 2.39 1.5 1.5 1.5 20.5 990.47 339.12 24.41 13.90 2.39 1.5 1.5 1.5 20.5 20.5 390.47 339.12 24.41 13.90 2.39 1.5 1.5 1.5 20.5 20.5 390.47 339.12 24.41 13.90 2.39 1.5 1.5 1.5 20.5 20.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 3	1.5 1.6 1.5 20.45 286.07 184,72 10.0 534.65 7.14 2.32 2.42 2.81 1.5 1.6 1.5 20.45 286.77 134,72 10.0 534.65 7.14 2.32 1.5 1.6 1.5 20.45 286.77 214,77 214,27 2.31 1.6 1.6 1.5 20.4 287.67 214,77 214,27 2.31 1.5 1.5 1.5 20.4 287.77 214,77 214,27 2.30 1.5 1.5 1.5 20.4 297.77 214,77 214,27 2.30 1.5 1.5 1.5 20.4 297.77 214,77 214,27 2.30 1.5 1.5 1.5 20.4 297.77 214,77 214,27 2.30 1.5 1.5 1.5 20.5 297.47 297.47 297.47 297.47 1.5 1.5 1.5 20.5 297.47 297.47 297.47 1.5 1.5 1.5 20.5 297.47 297.47 297.47 1.5 1.5 1.5 20.5 297.47 297.47 1.5 1.5 1.5 20.5 297.47 297.47 1.5 1.5 1.5 20.5 297.47 20.5 1.5 1.5 20.5 20.5 20.5 1.5 1.5 20.5 20.5 20.5 1.5 1.5 20.5 20.5 20.5 1.5 1.5 20.5 20.5 1.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.5 2.5 20.5 20.5 20.	1.5	5			20.5	88.5 88.6	184.72		534.65		2, 2, 2, 2, 2, 2,						Chemicals o	peduan	
1.5 1.6 1.5 20.4 895.37 199.00 1.5 1.6 1.5 20.5 366.12 21.77 10.0 535.15 7.44 2.32 2.42 2.81 1.5 1.6 1.5 20.4 865.12 21.77 20.0 535.15 7.44 2.30 1.6 1.6 1.5 20.4 875.57 24.22 10.1 556.12 84.2 2.31 1.6 1.6 1.5 20.4 875.57 24.22 10.1 556.12 84.2 2.31 1.5 1.5 1.5 20.4 995.4 236.9 93.11 2.22 10.1 556.12 8.20 1.5 1.5 1.5 20.5 99.3 22.16 577.17 9.66 2.30 1.5 1.6 20.4 916.70 25.35 577.17 10.19 2.30 1.5 1.5 1.5 20.50 93.4 26.7 558.18 10.67 2.30 1.5 1.5 1.5 20.50 93.4 26.7 558.18 10.67 2.30 1.5 1.5 1.5 20.50 93.4 20.5 577.17 10.19 2.29 1.5 1.5 1.5 20.5 950.47 390.16 579.31 11.66 2.29 1.5 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 390.12 12.61 2.39 1.5 1.5 20.5 950.47 300.10 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.6 1.5 20.4 836.38 199.03 534.18 7.44 2.32 2.42 2.61 1.5 1.6 1.5 20.4 856.32 124.77 20.0 534.65 2.30 1.5 1.6 1.6 1.5 20.4 875.77 24.22 1.5 1.6 1.6 1.5 20.4 875.77 24.22 1.5 1.5 1.5 20.4 875.77 24.22 1.5 1.5 1.5 20.4 875.77 24.22 1.5 1.5 1.5 20.4 875.77 24.22 1.5 1.5 1.5 20.4 875.77 24.22 1.5 1.5 1.5 20.4 935.8 278.51 1.5 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 1.5 20.5 935.8 278.51 1.5 20.5 935.8 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5		•			50.45	836.07	184.72		534.65		2.32								
1.5 1.6 1.5 20.45 866.12 214.77 535.78 8.27 2.31 1.6 1.6 1.5 20.4 866.12 214.77 535.78 8.27 2.31 1.6 1.6 1.5 20.4 875.77 214.22 10.1 536.12 8.44 2.31 1.5 1.5 1.5 20.5 903.51 252.16 537.17 9.66 2.30 1.5 1.6 1.6 20.4 936.4 236.35 537.17 9.66 2.30 1.5 1.6 1.6 20.4 94.36 226.31 536.18 10.67 2.30 1.5 1.6 1.5 20.5 94.36 278.51 538.18 10.67 2.30 1.5 1.6 1.5 20.5 94.36 278.51 538.38 10.87 2.30 1.5 1.6 1.5 20.5 94.36 278.31 200.06 538.37 11.45 2.29 1.5 1.6 1.5 20.5 941.91 390.56 540.12 12.61 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.12 12.61 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.12 12.61 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.56 540.41 13.70 2.29 1.5 1.5 1.5 20.5 038.44 544.09 541.50 13.99 2.29 2.776 0.065 2.861 0.390 2.801 2.891 18.43 7.482	1.5 1.6 1.5 20.45 866.12 214.77 535.78 8.47 2.31 1.5 1.5 20.44 2.31 2.557 2.488 20.40 8.13 2.488 20.40 2.501 2.489 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489 20.40 2.501 2.489	9			.6 1.5	2.8	836.04	184.72	10.0	5%.65		22.5	7.7	α	2,61					
20.4 875.57 23.531 535.95 8.44 2.31 2.00.0.02 2.462 0.331 2.557 2.888 20.40 8.13 2.55 1.5 1.5 20.4 875.57 2.885 20.40 8.13 2.55 1.5 1.5 20.5 903.51 2.52.16 5.57 2.885 20.40 8.13 2.55.15 20.5 903.51 2.52.16 5.30 2.420 0.002 2.462 0.331 2.557 2.888 20.40 8.13 2.55.15 20.5 903.51 2.52.16 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30	1.6 1.6 1.5 20.4 87.5 224.22 10.1 535.55 8.44 2.31 1.6 1.6 1.5 20.4 875.7 224.22 10.1 535.55 8.44 2.31 1.5 1.5 2.5 20.4 895.9 2.2 20.1 536.5 9.14 2.30 1.5 1.5 2.5 20.5 903.51 222.16 577.77 9.66 2.30 1.5 1.6 1.6 20.4 916.70 265.35 577.70 10.19 2.30 1.5 1.6 1.6 20.4 94.16 226.70 10.19 2.30 1.5 1.6 1.6 20.4 94.11 292.81 10.67 2.30 1.6 1.5 1.6 20.5 94.11 200.06 538.70 11.19 2.29 1.5 1.6 1.5 20.5 941.91 300.06 538.70 11.10 2.29 1.5 1.5 1.5 20.5 941.91 300.36 539.31 11.80 2.29 1.5 1.5 1.5 20.5 941.91 390.36 540.31 12.4 2.29 1.5 1.5 1.5 20.5 941.91 390.36 540.31 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.36 540.31 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.36 540.31 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.36 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.36 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.36 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29 1.5 1.5 1.5 20.5 941.91 390.35 541.41 13.70 2.29	1.6	7		.6 1.5	\$ 7. 8	866.12	24.73		535.78		3 4								
1.5 1.5 1.5 20.4 875.77 224.22 10.1 250.12 2.30 2.420 0.042 2.402 20.31 2.577 2.888 20.40 8.13 1.5 1.5 20.4 895.4 238.59 556.65 9.14 2.30 2.420 0.042 2.402 0.331 2.577 2.888 20.40 8.13 1.5 1.5 20.4 903.51 2.92.16 597.77 10.19 2.30 2.30 2.400 2.30 2.30 2.400 2.30 2.30 2.400 2.20 2.30 2.20 2.20 2.20 2.20 2.20 2.	1.5 1.5 1.5 20.4 895.57 224.22 10.1 255.42 10.1 256.65 1.30 2.420 0.042 2.402 0.042 2.402 0.0231 2.557 2.888 20.40 8.13 11.5 1.5 20.5 903.51 2.28.29 556.55 577.77 9.66 2.30 20.42 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.402 0.042 2.203 0.042 0		•		•	% %	87°.66	219.31	•	535.95							;			
1.5 1.5 1.5 20.5 903.51 252.16 537.17 9.66 2.30 1.5 1.6 1.6 20.4 926.70 265.35 537.70 10.19 2.30 1.5 1.6 1.6 20.4 926.8 278.51 538.18 10.67 2.30 1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 1.5 1.6 1.5 20.5 956.51 307.16 539.31 11.80 2.29 1.5 1.5 20.5 990.47 330.56 539.31 11.80 2.29 1.5 1.5 1.5 20.5 990.47 330.56 541.61 13.70 2.29 1.5 1.5 20.5 009.96 338.61 541.61 13.70 2.29 1.5 1.5 20.5 008.53 367.18 10.0 541.60 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.5 1.5 20.5 903.51 252.16 537.17 9.66 2.30 1.5 1.6 1.6 20.4 916.70 265.35 537.70 10.19 2.30 1.5 1.6 1.6 20.4 916.70 265.35 537.70 10.19 2.30 1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.67 2.30 20.40 944.16 292.81 500.06 538.70 11.19 2.29 1.5 1.5 1.6 20.5 993.41 300.06 538.73 11.76 2.29 1.5 1.6 1.5 20.5 993.91 300.06 538.73 11.76 2.29 1.5 1.5 1.5 20.5 993.91 330.35 539.75 12.44 2.29 1.5 1.5 1.5 20.5 993.91 330.35 540.45 12.94 2.29 1.5 1.5 1.5 20.5 993.41 344.00 541.50 13.70 2.29 1.5 1.5 1.5 20.5 015.44 344.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 015.44 344.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 015.44 344.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 015.42 344.09 541.50 13.70 2.29 1.5 1.5 1.5 20.5 015.42 344.09 541.50 13.70 2.29 1.5 1.5 1.5 20.5 015.42 344.09 541.50 13.70 2.29	•	0		.0 4.5	3 8	889.94	24.2	101	5%.65 5%.65			.420 0.042 2.46	2 0.331	., 557 2,888		8.13			
1.5 1.6 1.6 20.4 916.70 265.35 537.70 10.19 2.30 1.5 1.6 1.6 20.4 92.66 278.51 538.18 10.67 2.30 1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.67 2.30 20.40 944.16 292.81 598.70 11.19 2.29 1.6 1.5 1.6 20.4 951.41 300.06 538.97 11.46 2.29 20.5 991.41 30.95 540.42 12.41 2.29 1.5 1.6 1.5 20.5 990.47 339.12 12.61 2.29 1.5 1.5 1.5 20.5 990.47 339.12 540.45 12.94 2.29 1.4 1.5 1.5 20.5 009.96 338.61 540.45 13.90 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 1.5 1.5 1.5 20.5 0.35.44 364.09 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.6 1.6 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4	1.6	9		.5 1.5	20.5	903.51	252.16		537.17		۲ ۲								
20.45 929.86 278.51 536.18 10.67 2.30 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 1.6 1.5 20.40 944.16 222.81 37.11 2.29 1.6 1.5 20.4 955.41 300.06 538.37 11.72 2.29 1.5 1.6 1.5 20.5 96.87 309.52 539.73 11.72 2.29 1.5 1.6 1.5 20.5 96.87 309.55 540.12 12.41 2.29 1.5 1.5 1.5 20.5 980.47 339.12 240.45 12.94 2.29 1.5 1.5 1.5 20.45 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.5 009.96 336.61 541.41 13.90 2.29 1.5 1.5 20.5 036.44 364.09 541.50 13.99 2.29 2.776 0.005 2.501 2.891 18.27	1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 2.29 20.44 22.84 20.05 538.39 10.87 2.30 2.29 2.29 20.44 300.06 538.97 11.19 2.29 2.29 20.5 958.31 307.16 20.5 958.31 11.2 2.29 20.5 950.47 330.35 539.31 11.80 2.29 2.29 20.5 950.47 330.35 539.31 11.80 2.29 2.29 20.5 950.47 339.35 540.45 12.61 2.29 2.29 2.29 2.29 2.20 2.20 2.20 2.20	1.6				7. 7. 8. 8.	916.70	265.35		537.70		8.3								
1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 20.40 944.16 292.81 538.70 11.19 2.29 1.6 1.5 1.6 20.4 951.41 300.06 538.70 11.19 2.29 1.5 1.6 1.5 20.5 996.87 300.52 539.31 11.20 2.29 1.5 1.5 1.5 20.5 990.47 339.12 2.40.12 12.61 2.29 1.5 1.5 1.5 20.5 900.47 339.12 240.45 12.94 2.29 1.5 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 1.5 1.5 1.5 20.5 038.44 364.09 541.41 13.90 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.5 1.5 20.50 935.42 284.07 538.38 10.87 2.30 1.6 1.5 1.6 20.40 944.16 222.81 538.70 11.19 2.29 1.6 1.5 1.6 20.4 954.21 307.16 539.31 11.46 2.29 1.5 1.6 1.5 20.5 956.81 309.52 539.31 11.80 2.29 1.5 1.5 1.5 20.5 960.47 339.12 2.61 2.29 1.5 1.5 1.5 20.5 990.47 339.12 240.45 12.94 2.29 1.5 1.5 1.5 20.5 900.47 339.12 240.45 12.94 2.29 1.4 1.5 1.5 20.5 009.96 338.61 541.61 13.70 2.29 1.5 1.5 1.5 20.5 0.26.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.89	i				20.45	98.626	278.51				8.30								
1.6 1.5 1.6 20.4 951.41 300.06 538.97 11.46 2.29 20.5 958.51 307.16 539.23 11.72 2.29 1.5 1.6 1.5 20.5 960.87 309.52 539.73 11.80 2.29 20.5 990.47 320.35 539.75 12.4 2.29 20.45 990.47 339.12 540.45 12.94 2.29 20.45 990.47 339.12 540.45 12.94 2.29 20.45 20.5 009.96 358.61 541.61 13.70 2.29 20.5 018.44 364.09 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.6 1.5 1.6 20.4 951.41 300.06 538.97 11.45 2.29 20.5 958.51 307.16 539.23 11.72 2.29 20.5 950.87 309.52 539.73 11.80 2.29 20.5 990.47 339.12 540.12 12.61 2.29 20.45 990.47 339.12 540.45 12.94 2.29 20.45 20.5 009.96 358.61 541.61 13.70 2.29 20.5 015.44 364.09 541.41 13.90 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.89 20.5 025.5 025.5 025.5 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.89	_:			.5 1.5	8.8	935.42	264.07				88								
20.5 954.51 307.16 539.23 11.72 2.29 1.5 1.6 1.5 20.5 960.87 309.52 539.71 11.80 2.29 1.5 1.5 1.5 20.5 971.70 320.35 539.75 12.4 2.29 1.5 1.5 1.5 20.5 980.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.45 338.61 541.61 13.70 2.29 1.4 1.5 1.5 20.5 035.44 364.09 541.61 13.70 2.29 1.5 1.5 1.5 20.5 035.44 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	20.5 958.51 307.16 539.23 11.72 2.29 1.5 1.6 1.5 20.5 960.87 309.52 539.31 11.80 2.29 20.5 971.70 320.35 539.75 12.24 2.29 1.5 1.5 20.5 981.91 330.56 540.12 12.61 2.29 20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 20.5 018.44 364.09 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 1.5 1.5 1.5 20.5 018.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.99	:	~			8	921.42	80.00				2.29								
1.5 1.6 1.5 20.5 960.87 309.52 539.31 11.80 2.29 1.5 1.5 1.5 20.5 981.91 330.56 540.12 12.61 2.29 1.5 1.5 1.5 20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 1.5 1.5 1.5 20.5 035.44 364.09 541.41 13.90 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 1.5 1.5 1.5 20.5 035.44 364.09 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.6 1.5 20.5 990.87 309.52 539.31 11.80 2.29 20.5 991.91 330.56 540.12 12.41 2.29 1.5 1.5 1.5 20.5 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 1.5 1.5 1.5 20.5 025.44 364.09 541.61 13.70 2.29 1.5 1.5 1.5 20.5 025.45 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 1.5 1.5 1.5 20.5 025.45 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.99		•			8.00	958.51	307.16				2.29								
1.5 1.5 1.5 20.5 981.91 330.56 540.12 12.61 2.29 20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.45 1.4 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 1.4 1.5 1.5 20.5 035.44 364.09 541.41 13.90 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.5 1.5 20.5 981.91 330.56 540.12 12.61 2.29 20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 1.5 1.5 1.5 20.5 035.44 364.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 035.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 20.5 035.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.89	_:			.6 1.5	88	889 899 899 899 899	20.52				8,8		-						
20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.45 20.45 20.45 358.61 541.61 13.70 2.29 1.4 1.5 1.5 20.5 035.44 364.09 541.41 13.90 2.29 2.776 0.085 2.861 0.390 2.891 18.43 7.82 1.5 1.5 1.5 20.5 036.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	20.45 990.47 339.12 540.45 12.94 2.29 1.5 1.5 1.5 20.45 20.45 20.45 1.4 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 1.5 1.5 1.5 20.5 038.44 364.09 541.41 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 1.5 1.5 1.5 20.5 038.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.89	2:5			.5 1.5	8	981.91	38.28				2.3								
1.4 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 20.5 015.44 364.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 018.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	20.5 1.4 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 20.5 015.44 364.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 0.26.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82				86°	% % %	250.47	339.12				2.3								
14 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 20.5 015.44 364.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 018.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.4 1.5 1.5 20.5 009.96 358.61 541.61 13.70 2.29 20.5 015.44 364.09 541.41 13.90 2.29 1.5 1.5 1.5 20.5 0.26.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82 7.62 7.63 7.641 7.65 7.99	1			` ·	8 ; z.														
1.5 1.5 1.5 20.5 02.53 367.18 10.0 541.50 13.99 2.29 2.776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	1.5 1.5 1.5 20.5 02.53 367.18 10.0 541.50 13.99 2.29 2,776 0.085 2.861 0.390 2.501 2.891 18.43 7.82	5	~			8,8	%.600 %.600	358.61				2.29			-					
	total 48.83 7.99	1,6				 	04.53	367.18	10.0				.776 0.085 2.86	1 0,390	2,501 2,891	18.43	7.83			
	44.83 7.99												·	1	•		1			-

	bed Romer'es to	h .								-92								.83									00.00 0.00 0.00
1953	CO2 Absorbed	10s 10s/hr								8-48 7.								18.90 8.									25.00
Date 27 Petruary	ON CO NE.	norm norm norm	0.390 2.501 2.891							0.408 2.495 2.903		2.92		0°E			0.0	0.418 2.698 3.116		3.12							0.418 2.582 3.000
	Liguid Con	Ar norm norm norm	2.776 0.085 2.861							2.777 0.082 2.859		2.73		2.84		ī	ガベ・ソ	2-455 0.055 2.510		8. 50							2.433 0.080 2.513
IONAL TEST	Solution Ret Flow	rt.3 rt.3	•	N W	NN	N N	0.90 2.35	NN	1.56 2.15	2.48 2.32		3.1/ 2.30	4.38 2.31	4.43 2.19	6.22 2.35		7.59 2.37	ű	i	9.57 2.30	N.	N N	ง่งง	vini	11.87 2.33	ง่ณ่า	2.31
- OPERAT	Feed Meter Reading	ft.3	4				2000 1000 1000 1000 1000 1000 1000 1000		543.06	54.3.98	`	Jo• 1175	545.38	545.93	547.72		60.645	41,0,68	3	200	, G	223	32	38;	ントゥ	2000	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
FO CO.	Town	*B20	10.0							10.3		10.3		10.3		10.2		10.3		10.3							10.1
SCRUBBER	onel Time Net Time	mfn.	•	.00	o o	90	22.99	ů.	43.47	64.25	7	82.12	113.69	139.54	159.08		192.50	69,306	•	242.77	•	• •	• •		3000		
CAUSTIC	Operational Timer Reading T	min.	018.53	035.55	037.75	641-140	041-43	04.7.90	062.0	082.78		101.25	132.22	158.07	177.61		211.03	27.75	•	261.30	276.19	286. 289. 289. 289. 289.	30505	312.97	323.67	334.37	200
	O2 Conc.	vol. %	8	88; ••••	0 0 0 0 0 0 0	88 •••••	88 vivi	888 v.v.	88 3v	888 \$\$\display	888 ••••	8 8 5 6 5 7 7	888 3vr	885 •£.	88 3.25 3.75	888 3 rů,	888 * j .	รูช รูช	88 1.0.1	888 vý	9.9. 8.8.8	รูช อู๋กำ	888 vivi	88 ini	ອ જ દ ບໍ່າບໍ່າ	00 6 00 0 00 1	
	Defer Analyser	<i>K K K</i>	6 1.5 1.5 1.5	5 1.6 1.5 1.5	1.6 1.4 1.6 1.5	1.5 1.5 1.5 1.5	3.6 1.4 1.5 1.5	1.6 1.5 1.5 1.5	6 1.5 1.5 1.5	1.5 1.4 1.5 1.5	1.5 1.5 1.5 1.5	1.6 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.6 1.6 1.5 1.5	1.5 1.5 1.5 1.5	1.6 1.6 1.5 1.5	4.15.15.1 5.1	1.6 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.6 1.5 1.5	1.5 1.5 1.6 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5	5 1.5 1.5 1.5	5 1.5 1.5 1.5	.5 1.5 1.5 1.5
•	CO CODO Liston Becker	*01. K	1,50 1	1.47	1.52	•		, , , ,		220	• •		~		1-45	•	1,565	•	1.5	1.46	1.49	1.50	1.51	1.54 1	1.52	1.50 1	1.53
	Time	otelock	0000	0000	0530	0330	800 800 800	9 9 9 9 9 9	000	0000	000	0000	0000	2001	1200(4)	1300		11. 2007.	1630	386	1800	1900	200 200 200 200 200 200 200 200 200 200	200	2500 2500 2500 2500 2500 2500 2500 2500	1300 1300 1300 1300 1300 1300 1300 1300	्र श्ले

d Romerke	•															Clock turned back 1/2 hour	-					emicals changed				
Rate	1 bs/hr														8.08	ថ្ងី	国二			8.52		8				5.0
CO2 Absorbed Not Rate	1bs 1														13.80					8.72						30.72
	norm	000•									•09	Š	o :	.12	.203		9	Ş		.131						.236
	norm n	2.582 3.									ň	•	*	* *,	2.737 3.		•	*		Sec.						2
	norm n	0.418 2.													0-466 2.					H9 2.						0.290 2.
Liquid Compositi	norm no										7	j	v	7			2	-		2.839 0.449 2.682						
Liguid		80 2.513									2.77	(2•2 2	2.77	461.5 99		•	.,								2.6
3	Marion ma	33 0.080													990.089					92 0.047						2.630 0.054 2.684
	Ar norm	2.433													3.068					2.792						2.6
lution et Flow low Rate	**			2.06		200		80.0	2.08				2.12		4.15	2.24	2.19			เ เล				NO	CRY	
O IN IN	rt.3		•	82	, i	1.0	9	2.03	2.33	Ň			8	•	7	4.57	4.96	เก๋า	ก้นกั	\$5°	òò	Ġ	00			9
Feed Meter Reading	E.	554.02	ī	555.35	1	555.05	;	550.05	556.35	Š		ş	551.02	į	551.10	558.59	558.98	•		\$ 65. \$ 65.	• •	•			24% 5.2%	•
Tower	"H20	1015									10.2	(10.2					1.01		10.0						0.0
Time -	min.			35.88	4	53.85 53.85	(59.18	67.32	\$ · c		6	19*ho	i	102.53	122.51	136.04			163.63		•			22000	
Operational Timer Reading Ti	å	•59		12	•	;. .).	.91	.03	•	-	04-024		17. oth	166.10	.63	8.	18.	8जे.	ने ने	53	rie.	, 10,000	36.	8
OD I	min	343	Š	372	39	366	-	704	61	1		-	97	711	otti	994	479	183	150	V.V.	22	25	100 V	35 5	֧֓֞֝֟֓֓֓֓֓֓֓֓֟֓֓֓֓֟֓֓֓֓֟֓֓֓֟֓֓֓֟֓֓֟֓֓֟֓֟֓֟֓֟	N. N.
O2 Conc.	vol. &	88	88 3 3 1, 1, 1	មួន សំសំរ	ទូងខ បំរបំរុ	38.	1-1-	3 8 3	888 V	20.5	888 3 3 3 5	000 000 000 000 000	388 3~7	કેજ કેજ્	989 Çıvı	808 127	300 300 300 300 300 300 300 300 300 300		รูชเ งักงัก	888 vivi	98; v,r,	88	888 888	888 **	รูช รู้เก๋า	
	æ	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.4	1.4	1.5	7.1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Att. And years	K	.5 1.5	.5 1.5	.5 1.5	.5 1.h	.5 1.4	.5 1.4	.5 1.5	1.5 1.4	.5 1.5	4.1.4.	4.1 4.	.5 1.5	1.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	.5 1.5	5 1.5
Cono in	ж	•5 1	1-4-1	٠٤	1.5 1.	104 1	1.5 1,	1.5 1.	1.4 1.	1.5	1.5 1.	1.5 1.	1.5 1.	1.5 1,	1.5 1,	1.5 1,	1.5	1.5 1	1.5 1	1.5 1,	1.5 1	1.5 1	1.5 1	1.5 1.	1.5 1.	٠. د
CO CON Listen Becker	1. %	200	 28	1 84.	1 240	- A		.	ታ ለ ጃ		£55	~	53 1		~	1 6ħ•	2	1 8 [†] 1•	.51	.51	.55	Cu.	.56	50 1	52 1	23
Ti å	ck vol	rd r	• •	न-१	4		•	•	-1 m	•	ਰ -		7.5		1.5		7.5	7.7	Ä	7	mi,	1.5	7.	7.	7.5	7.0
Time	0,0100	88		000		200	300	200	0.00 700 700 700 700	800		200	200		1300		17.7 18.2	200	1700	200		# P00 P00 P00 P00 P00 P00 P00 P00 P00 P0	383 373	386		100 100 100 100 100 100 100 100 100 100

U

7.8 Total

36.53

こうごこうご

Date: 3 March 1953

t.

	Reserks							,																	Chemicals	Changed											
3	Absorbed	1 40		15s/hr											7.12										J	•									7.17	ž	or.,
1953	CO2 Abs	4) 0 2	19 e .											7.65																				6.62	į	37.33
4 March 1953	1	*	e	nor											2.846		2.77		2.77		2.76														2.770		
Dates		207200	က်	nor											2.560																				2,500	•	Total
	0011100		E C	norm											0.286																				0.270		
	Liquid Composition	*	4	nor													2.50		3.46		2,50	•				2,511									2.527		
	130	Inlet	င္ပ	nor											0.052 2.512											9€0*0									0.062	,	
			HO.	nor											2.460											2.475									597.2		
NAL TEST		Flow Rate		t ³ /hr	2.11	2.13	3 6,	2.03 2.03	7.7	2.21	6	1.95	1.99	2.03	2.03	% ? ? ?	2.13	6	2.07	2.07	18. 18.	2.07	2°08	2.08 2.08	2.08	2.08	2,08	36.8	,	2.08 2.08	2.08	2.08	2.08	200	2 2 08 0 8 0 0 8 0		
- OPERATIO	utsol	Wet.		rt.³ r	0.25	0.25	0.92	0.92	1.03	1.05	,	1.5/							77.7					3.65 6.69		7.63	य:8	8.57 8.54		9.05 9.10	9.58	0.19	10.35	0.47		60.1	
R CO ₂ -	Feed	Meter		~								592.02 592.13												597.05 597.34		598.28	8.77	598,86 599,19							601.52		
Caustic scrubber for co		97		" H20 f	\$ \$	86	3	8 8	50.	25		6 66	26	5 5 5		26							<u> </u>	56 50 50	26.		59	5, 6 <u>5</u>	`	\$ \$	3 3	3 2	33	33			
ric scri	ine Tower		1	•	ឌ	21	ተብ	1	18	32		83	31	<u>.</u> .	48 10.0	5	33 24 10.4		20 10 . 3		18		83	ይሄ	្ត	0,01 20.0	29	20 2 5	;	0 8 17	£ 2€ 1	- E	8	86	2 20 22		
CAUS	Operational Time	Net	1110	ata.				23.12				%1.% 77.57												187.53		220.04		237.05							313.68		
			Heed-	1	392.43	399.5	417.60	419.5	750.027	750.18		433.49	28.777	77.977	456.93	70.977	481.76		521.13	530.71	532.61	547.70	570.91	576.96	592.53	612.47	627.10	629.48		653.53	668.78 37.839	685 76	690.4	695.4	138 14:55	721.76	
	O.Cone.	٧		vol. \$	20.5	20.5	20° 20° 20° 20° 20° 20° 20° 20° 20° 20°	8	2.5	20.5	8 5.5	20.2	20.55								7.02	20.5	20.5	20.5 5.5	20.45	20.5	20.45 20.5	20.5	1.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00 3	20.65	8	2 6	20.5	20.5	888	. S. S.	
			14	×	1.4	1.4	4	•	1.5	1.5	1.5	۲,	•	1.5	1.5		1.4	1.5	1.5	;	1.5	1.5		1.5	1.5	1.5	1.5	4		1.5	1.5	4		1.5	1.5	1.5	
	to Air	Analyzer	~	*	1.4	1.4	``	* :	1.5	1.5	1.5	•	;	1.5	1.5		1.5	1.5	3,5	;	1.6	1.6	<u>.</u>	1.6	1.6	1.6	1.6		•••	1.5	1.5			1.5	1.5	1.5	
	Cone. tr	١١.		w	1.4	1.5	4		1.5	1.5	1.6			1.6	1.6		1.5	1.6	7	;	1.6	1.6		1.6	1.6	1.6	1.5		7:7	1.5	1.5	•	1.2	1.5	1.5	1.5	
	S	2	-		1.4	1.5	-	1	1.5	1.5	1.4			1.5	1.5		1.6	1.5	7	1	1.5	1.5	ì	1.6	1.6	1.5	1.6	,	1.0	1.5	1.5	•	4:5	1.5		1.5	
		Taton	Becker	vol.\$	1.50	1,51	,	97.1	1.48	1.51	1.51	1.51	1.49	2.5							1.50	1.54	1.51	1.49	1.51		1.52		χ .	1.51	1.51		1.52	1.505	1.49	1.50	ì
	2	!		o'clock	0000	86	0130	05 23 23 23 23 23 23 23 23 23 23 23 23 23	000	0070	0.50 0.50 0.50	0530	888	0200	0730 0800	0830	000	808	001 001 001	387	1200	1230	1330	877	4 5 5 8 5 8	1530 (4) 1600	1630 1700	1730	986	888	2000 7000 74700 74700	2030	2100	2023	2230 2300	2330	}

TEST
OPERATIONAL
- '00
ğ
SCRUBBER
CAUSTIC

Remarks										Chemicals	changed		Clock turned														
Rate	lbs/hr	· ·											7.32						7.16							7.21	7.24
CO2 absorbed	1bs.												9,11						16.9							11.42	39.91
14	norm											2.77	2.875			2.83			2.824	•	2.77					2.835	
00. 00.	nors												2.518						2.468							2.487	Total
Bositio	nor												0.357						0.356							0.348	
Liquid Composition	nor											2.58	2,667			5.46			2.482		2.51	•				2.485	
Inlet CO3	nor												0.109						0.062							0.045	
B	norm												2.558						2.420							2.440	
Plow Rate	rt3/br	1.88	2. 11.	2.07	2.05	2.08	2.04	9.6	9.6	2.06	2.07	7	2.12 2.13	1.73	1.79	1	2.17	2.11	12.5	22.2	22.8	22.5	;;;;	7. 7. 7. 7.	2.12	21.2	2.2
Feed Solution Net	r. 3	0.12	0.78	1.8	1.3	1.36	1.63 1.63	2.3	1.73	1.79	2.21	۲۰۵۶	3.37 3.86	90*7	4.80	į	6.89	7.64	× 5	3 d 6	6.33	9.76 8.08	30°31	16.78 16.78	11.43 11.43	11.71	12.05
Foot Meter Read-	r. 3	601.74	602.52	702.74	603.03	503.03 503.10	603.37	503.53	503.53	503.53	603.95	04.37	605.11	08*509	75.909	200	608.63	86.00		610.55						613.45	
	" H ₂ 0			•						•			7.01	·		JC.0	•	•	10.4		9 7 0		, ••	D • D •	• •	10.5 6 6	• •
1 Time Net Time	nin.	3.82	22.20	28.94	37.84	37.84 39.27	47.24 52.11	52.11	52.11 52.11	52.11	63.95		95.18 108.84	140.90	161.07		190.93	17.37		276.72				3.58 3.58	3.13	331.28 1	66.0
Operational Time Timer Net Read- Time		712.76					760.00					788.30	821.60	853.66 1	873.83 1		903.69			962.50						044.04	
O Conc.	vol. %	20.5										ę	8 %		20.5											0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	
1.1	o *	1.5 2	1.5 2								V	8	. 4														
780F 4	*	1.5 1,	1.5 1.	1.5 1.5	1.5 1.5	1.5 1.5			1.5 1.5	1.5 1.5		1.5 1.5		1.5 1.5	1.5 1.5	1.5 1.5	1.5 1.5	5 1.5	5 1.5	5 1.5	5 1.4	5 1.5	5 1.5	5 1.5	5 1.5	7 1.8	5 1.5
Conc. in Air Dryer Analyser 2	*	1.5 1	1.5	1.5 1	1.5 1	1.5 1			1.5	1.5 1		1.5		1.5 1,	1.5 1,	1.5 1,	1.5 1.	1.5 1.5	1.5 1.5	1.5 1.5	1.5 1.5	1.5 1.5	1.5 1.5	1.5 1.5	1.5 1.5	7.1.7	5 1.5
CO ₂ Conc	*	1.5	1.5	1.5	1.5	1.5			1.5	1.5	1.5	1.5		1.5 1	1.5 1	1.5 1	1.5 1	1.5 1	1.5 1	1.5 1	1.5	1.5	1.5 1,	1.5 1,	1.5 1.	7.1 7.1	1.5 1.5
Liston	v ol. ≴	1.50	1.52	1.50	22			:	1.53	1.52	- •	. •	. ••	1.49	1.48	1.52	1.50	1.50	1.48	1.51	1.50	1.50 1		1.49 1.51	1.47	1 87.	1,46
11386 11	o'clock v	0000	888					6530 6530	0,000 6	3	(4) 080 080	0.00 0.00 0.00 0.00	0930 1000 (9)	•											2130 2200 1	4	2,00

Remarks												changed															Chestoale	
orbed		Rate	10s/kr									7.30				8.05				ļ	7.57						<u> </u>	3.5
CO. Absorbed	2	ž	1bs.									1,102				8.69					86. 6							29.80
		Xe.	nors									2,885	2.30	ì	2.76	2.789				2.75	2.791						,	2.808
	Outlet	•05 •05	nor									2.515				2,508					2.503							2.503 Total
noed trom		HO	norm									0.370				0.281					0.288							0.305
Tioned Composition	200	, ag	Born									2.523			2.56	2.622				2.50	2.440							2.522
Ž	Inlet		Born									0.189				0,082					0.062							090.0
•		je B	nor									2.334				2,540					2.378							2,462
	100	Rate	rt./hr.	1.69	1.69	27.7	2.13	2,13					2.04		2.32		2.01	888	2.28	2.33	2.26	2.26	2.2	2.27	•	2.23	2.22	2.22
	Met.	Flow	rt.3	70.0	70.0	0.23	0.23	0,32					c.57		2.85		3.46	4.07	98.7	ď	5.76	6.45	6.78	7.31		7.92	6.47	8.68
7	Vator	Read-	* # #	613.79	613.83	61,02	617,02	617,11					614.36 614.66		616.64		617.25	617.86	618.65	610 27	619.55	620.24	620.57	621.10		621.71	622.26	622.47
	TOWer	ΔP	" H ₂ 0									4.7	10.0		10.3	10.2				8.6	6.6							10.0
	nal Time	Time	afn.	7 ر	17:	2.5°	6.52	9.06					16.78		73.78		103.17	106.03	127.76	8	153.03	171.58	181.40	195.97		213.10	228.72	234.37
,	Operational Time	Read-	ata.	053.69	055.11	055.11 060.21	060.21	062.75					070.47	3	127.47		156.86	159.72	181.45	97 901	206.72	225.27	235.09	249.66	20.00	266.79	282.41	288.06
	Ocome.		vol. \$	20.5	25.5	3.55 8.85 8.85 8.85	28.5	\$ \$ \$ \$ \$ \$ \$ \$	20°5	87.00 87.00	}		20.5	200	20.48		4.8 4.2	25°2	7 9 9 8 8 8	20.02 87.02 97.02	87.02 70.78	20°5 20°5 20°5 20°5	\$ 5 7 8 8 8 8 8 8 8 8 8 8	22.5	8 8 8 5 6 8	8 8 8 4 7 7	8 8 8 8 8	20.5
		7	, 86	1.5	1.4	1.5	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.6	1.6	1.6	1.6	1.5	1.5	1.5	1.5	1.5	1.6	1.7	1.6
	to Air	nalyzer 3	\ b e	1.5	1.5	1.5	1.5	1.5	1.6	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.5	1.7	1.7	1.6
	Cone. tr	Dever Analyzer	1 50	1.5	1.5	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.5	1.5	1.5	1.7	1.7	1.6
	00	1			1.4		1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.6	1.6			1.6	1.6	1.6	1.5	1.5	1.6	1.6	1.6	1.7	1.8	1.7
		Liston	Vol.	1.46	1.51	 	1.52	1.49	1.49	1.49		_				1.53	1.49	1.53	1.50	1.5 2.5	1.52	1.51	1.47	1.48	2.53	1.56	 8.6	1.49
	Time		o'clock	000	86 86 86	0130 0200	000	0,00	000	0000	966	(4) 0800 0800 0800		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	881	230	1230	, 23 1, 23 1	128	1530 1600	1630 1700	1730	1830 1900	200 200 200 200 200	50 510 510 510 510 510 510 510 510 510 5	2130 2200	2230 2300	2330 (4) 2400

•				19801				-							Ħ	hr causes	151.0 lbs/hr hr				T valve								3
	Rossrks			Dayer replaced											1.		and 151.0				New pop-of	installed							NEO.
	Absorbed	Rate	1 bs/hr									:	7.tz		1	7.25						7.08	`						7.72
7 Ma rch 1953	CO2 Abs	Met	1bs.									•	1.76			2.73						8)						12.38
		¥a.	norm	2,808									2.898		2.93	2.800	מ	70.7				603	6. 072						
Dates	Outlet	" 65	Borra	2,503									2.570			2,463							7.430						Total
	Liquid Composition	HO	nor	0,305									0.328			0.337						6	0.243						
	utd Com	* B	nor	2.522									2.510			2,263	ć	2,31				4	4.455						
	Inlet	•°5	nor	090.0									0.050			0.061						6	970.0						
		, H	norn	2.462									2.460			2,202							2.407						
- OPERATIONAL TEST	7104	Rate	ft./hr.	2.57				2,11	2.2	2.2	2.11 2.11	4.7 1.1.		1.97	2.13	2.13 81.0	200	2.2 2.2	2.25	2.25	2.28	2.28 2.28	2.28	2.31	2,32	2.33	10 10 10 10 10 10 10 10 10 10 10 10 10 10	2.25	2.24
OPERATIO	Feed Solution		ft. ³ f					0.50			8.0					1.31								67.4		5.38			60.9
	Peed		_	622.47							622.97 0					623.78								7 96.929		627.85 5			628.56 6
caustic scrubber for ${\mathfrak co}_2$		AP Re	* H20 £		5			62	25 29	62	62 62	79	9.6	65					62 62	79	33			62	3 3	3 3 3	3 3 3	3 3	9
IC SCRU	Torer			10.0	ŧ			7	144	44	44	4 ~		* ~		10.2		20.01	· •	t Qi r	,		7 10.2	ē,	0 0	45.	ٽ ⊀.	v 0	۶
CAUST	Operational Time	Time	ein.	77 7	†			14.2	7.7.	7,7	77	7.7	77.	18.8		38.								116.63		138.57			163.07
	Operati	Fead-	r i	288.06	05.565			302	305.50	302.30	302.30	302.30	302.30	306.93	316.55	324.96	332.46	336.14	355.62	36.58	378.49	378.49	384.43	69.707	417.96	426.63	18.5	448.86 448.86	451.13
	Occorc.		v 01. \$	8.5 5.5	3 % F	\$ 8 5 \$ 5. 8	8 8 8 8 8 8	20°5	1	25.55 25.55 25.55	88.5 88.5 88.5 88.5 88.5 88.5 88.5 88.5	87.02 50.78	\$ 25.55 \$ 25.5	20.78	2.8.8 2.0.8 2.0.8	4 4 5 2 8 8	88 5.5	20.45	20.48	8.8	20.42	20.35 20.38	20.38	200 200 200 200 200 200 200 200 200 200		20°5	20.7 20.48	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	20.5 20.5
	:	1	×	1.6	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.6	1.5	1.5	1.5		, ,	· ·	\. . 1	1.7	1.6	1.5	1.5	1.6	1.5	1.5	1.5
	Atr	Analyser 3	, v e	1.6	1.5	1.5	1.4	1.5	1.5	1.6	1.5	1.5	1.5	1.7	1.6	1.6	1.6	9) a	9 4	×.	1.7	1.6	1.6	1.6	1.5	1.5	1.6	1.6
	Conc. in	Dayer An	×	1.6	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.6	1.6	1.6	1.5	4		•	1.7	1.7	1.5	1.5	1.5	1.5	1.5	1.5	1.5
	ა იე	1 1	×	1.7	1.5	1.5	1.4	1.5	1.5	1.5	1.6	1.5	1.6	1.6	1.6	1.6	1.5		} ,	0 1	∞ -1	1.7	1.6	1.5	1.5	1.5	1.6	1.5	1.5
		Liston	vol. \$	1.49	1.50	1.49	1.48	1.49	1.505	1.45	1.45	1.49	78,	1.51	1,505	1.53	1.51		::. :::	1.49	1.49	1.49	7.25	7.5.	1.51	1.49	1.52	1.49	1.49

23300 2300 2000 2000

Pump setting changed to deliver 60.5 lbs/hr caustic and 151.0 lbs/hr water

Tower

Ocono.

Conc. in Air

131123T

Date: 8 March 1953

Remarks

CO Absorbed

Outlet

Liquid Composition

د

CAUSTIC SCRUBBER FOR CO2 - OPERATIONAL TEST

4,-

Romerko					Meter failed		j Ž
Rate 1bs/hr		7.54	8.02	6.21	7.62	24.7	7.07
CO ₂ Absorbed Net Rate lbs. lbs/hr		5.15	3.49	11.90	35. 80.	6.56	36.51
Me .		2.552	2,667	~	2.53	2,522	73
Co. co.		2.410	2.467	2,428	7.77	2.353	Total
OH norm		0.142	0.200	0.215	0.145	0.169	
Inlet CO3 Na OH norm norm norm		2,328	9.	2.25	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	2.266	
Inlet CO3		0.038	690*0	970.0	0.065	0.059	
OH_ norm		2.290	2.265	2,186	2.120	2.207	
reed Solution Flow 1- Flow Rate 5 ft. 3 ft./hr.	2.3 2.3 2.36	22.22.22 23.33.33.33.33.33.33.33.33.33.33.33.33.3	333333	1.79 1.91 2.03	•		
Soluti Net Flow	0.26 0.82 0.91	1.13 1.26 1.56 1.62 1.91	33555 33555 33555	3.31 4.01 5.11 6.17	7.18		
Meter Read- ing ft.	637.69 637.69 637.95 638.51 638.60	638.82 638.95 639.06 639.25 639.60 639.60	639.83 639.93 640.13 640.28 640.65	641.00 641.70 642.80 643.86		3333 333 33	3333
Tower P		10.2	10.2	10.6	10.5 10.5 10.5	10.4	
Al Time Net Time min.	6.78 20.24 24.13	23.23 23.25 26.23 28.83	56.21 58.11 62.83 67.05	110.97 127.26 155.50 182.30	204.67 219.58 233.22 234.18 251.01	280.77 280.77 287.27 287.27 286.83 306.95 310.21	334.73 334.73 346.67
Operational Time Timer Net Read- Time ing min.	689.19 689.19 695.97 710.03	718.98 722.44 725.31 730.12 731.43 738.04	745.40 747.30 752.02 756.24 765.16	800.16 E16.45 844.69	893.86 908.77 922.41 923.37 940.20	963.32 969.96 976.46 982.82 986.02 989.99	023.92 023.92 035.86
02Coma.	8888888 ********	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.52 20.52 20.52 20.53 20.53	88888888888888888888888888888888888888	88 2 5 2 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$	200 200 200 200 200 200 200 200 200 200
4 W	1.5 5.4 5.5 5.4	1.5	1.5	1.5	1.5	11.5	1.5
in Air Analyzer	1.5		1.5	1.6	9 5 9 9 9	1 1 1 2 2 2 1	1.5
Conc. in Dayer At	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.5	1.6	1.5	1:0	1.5	1.5
% H %	1 1 2 5 5 1	11.5	1.5	1.5	1:5	1.5	1.6
Liston Becker vol. *	1.58		1.51	1.58	1.52 53 11 1.52	1.50	1.51
Time o'clock	0000 0100 0130 0230 0230	06000000000000000000000000000000000000	0730 0830 0830 0930 1000	20000000000000000000000000000000000000	1730 1730 1730 1730 1730 1730	1830 1930 2030 2130 2330	68.8 30 73.8 30 73.8 30

7.35

37.31

Total

Timer started after 1500

scrubber ran approx. 12 min. calc. from the speedomax recorder.

Timer was stopped and when scrubber started

Scrubber Operation
Operating Time vs. Time of Day
List of Figures for Detail Results by Days

Figure	Date	Page	Figure	Date	Page
Number		Number	Number		Number
	January			February	
21	28 •	123	42	18	244
22 23 24	29	12/	43	19	145
23	3Ó		414	2Ó	11/6
24	31	125 126	45	21	11.7
	February		46	22	1 <u>1</u> 18
25 26 27	1	127	Ľ7		1li9
26	2	12 8	48	ર્ટા	150
27	3	129	49	25	151
28	<u>L</u>	13ó	5ó	27 24 25 26	152
29	3	131	51	27	153
29 30	6	132	5 1 5 2	28	153 154
31	7	133	-	March	-24
32	8	13[5 3	1	155
33	9	135	511	Ž	155 156
34	1Ó	136	55	3	157
35	11	137	53 55 55 56	Ĺ	158
36	12	138	57	3	159
37	13	139	58	ž	16ó
38	14	14ó	59	7	161
39	1 5	1/i	59 60	8	162
4ó	16	1/12	61		163
41	17	1/i3	62	9 10	164

f.estrict

.

