Habib University Assignment #3

Course Code: CS 352	Introduction to Reinforcement Learning	Given: $09/04/2023$
Due: 20/04/2023	Spring 2023	Maximum Marks: 100

General Instructions:

- 1. Please type the answers or write neatly in longhand.
- 2. Upload your word or PDF (if you write in longhand, scan and convert to PDF) file to Canvas.
- 5. No late submission will be accepted.

Instructions for Programming Assignments:

- 1. Upload your Python code as .py file and the output of the programs, if required, as PDF files to Canvas.
- 2. For programming assignments, short of copying and pasting complete code from other students, from published material and from the internet, you may use any resources that are available to you.
- 3. You are responsible for whatever you submit and must fully understand the work that you submit.
- 4. Submit solution to each question as a single .py file.
- 5. Include your ID in the name of the python files that you upload. For example, if your ID is 04321 then you should name the files A3_Q1_04321.py and A3_Q2_04321.py.
- 6. Assignments will be graded by inviting you to my office and asking you to explain the code or asking you questions to judge your understanding.
- Q1. Implementing the policy iteration algorithm on the grid of Q#2 in Assignment#2 to generate the optimal value function v_* and an optimal policy π_* .
- Q3. Implement the complete policy iteration algorithm on the modified GridWorld of the Q#3 in Assignment#2 using the First-visit Monte Carlo as the prediction algorithm. Start with an arbitrary initial policy.