University of Texas at Austin, Cockrell School of Engineering Data Mining – EE 380L

Problem Set # 2 (2b)

March 09, 2016

Gabrielson Eapen
EID: EAPENGP

Discussed Homework with Following Students:

1. Mudra Gandhi

Q1] Part a]

FE (Fuel Efficiency) is a good candidate for dependent variable.

EngDispl, NumCyl, Transmission, NumGears, IntakeValvePerCyl, ExhaustValvesPerCyl are continuous variables.

AirAspirationMethod, TransLockup, TransCreeperGear, DriveDesc, CarlineClassDesc, VarValveTiming, VarValveLift are categorical variables.

Part b]

```
In [5]: #Part b
            # http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.linalg.lstsq.html
           # B1 = m; B0 = c
# y = B1x + B0
           # y = Ap, where A = [[x 1]] and p = [[B1], [B0]]
           x = df["EngDispl"]
           A = np.vstack([x, np.ones(len(x))]).T
#print A
           y = np.array(df["FE"])
           y - np.array(d1 FE ))
#m, c = np.linalg.lstsq(A, y)[0]
#B1, B0 = np.linalg.lstsq(A, y)[0]
model, resid = np.linalg.lstsq(A, y)[:2]
B1, B0 = model
           #np.linalg.lstsq(A, y)
print("m(B1) is: {}.".format(round(B1,8)))
print("c(B0) is: {}.".format(round(B0,8)))
           r2 = 1 - resid / (y.size * y.var())
print("R2 is: {}.".format(round(r2[0],8)))
           m(B1) is: -4.52092928.
c(B0) is: 50.56322991.
           R2 is: 0.61998904.
In [6]: #Part b
            # Add bestfit line to ScatterPlot using B1 and B0 values
           # y = B1x + B0
           part_b, = plt.plot(df["EngDispl"],df["FE"],'g*')
           plt.grid(True)
           plt.ylabel("Fuel Economy",fontsize=12)
plt.xlabel("Engine Displacement",fontsize=12)
           plt.title("FE vs Eng. Disp.")
           plt.xlim(0, 9)
           plt.ylim(10, 75)
           xVals = np.arange(0, 325)
yVals = (B1*xVals) + B0
           plt.plot(xVals, yVals, 'b-', linewidth=2.0)
           plt.show()
```


-15

```
Part c]
In [7]: # Part C
         # Plot the residual errors. Now sum the residual errors. What do you find?
         # compute the predicted value for EngDispl
        def predictedVals(coeff,intercept,engDisp):
            y_vals=list()
            for x in np.nditer(engDisp):
                 y_vals.append((coeff * x )+ intercept)
            return y vals
In [8]: yPredict=predictedVals(B1,B0,df.as_matrix(["EngDispl"]))
In [9]: # compute residual errors
        residualErrors=[]
        Y FE = df.as matrix(["FE"])
        for i in np.arange(len(Y FE)):
            residualErrors.append(Y_FE[i]-yPredict[i])
In [10]: part_c, = plt.plot(df["EngDispl"],residualErrors,'g*')
         plt.grid(True)
         plt.ylabel("Residual Error", fontsize=12)
         plt.xlabel("Engine Displacement", fontsize=12)
         plt.title("Residual Errors vs Eng. Disp.")
         plt.xlim(0, 9)
         xVals1 = np.arange(0, 325)
         yVals1 = (0*xVals)
         plt.plot(xVals1,yVals1,'b-',linewidth=2.0)
         plt.show()
                        Residual Errors vs Eng. Disp.
       30
       25
       20
       15
  Residual Error
       10
        5
        0
       -5
     -10
```

```
In [11]: #Sum of residual errors
         print "Sum of Residual Errors: ",np.sum(residualErrors)
         Sum of Residual Errors: -2.2055246518e-11
```

Engine Displacement

Part d]

```
In [12]: # Part D
          # Now do the same where you fit a linear regression for FE on both EngDispl and NumCyl.
         # Report the R2 value. Sum the residual errors. What do you find?
         X1 = df.as matrix(["EngDispl","NumCyl"])
         FE_Y = df.as_matrix(["FE"])
         model lr = linear model.LinearRegression()
         model_lr.fit(X1,FE_Y)
print "Coeff, B0:", model_lr.coef_, model_lr.intercept_
print "r2 = ", model_lr.score(X1,FE_Y)
         Coeff, B0: [[-3.74535214 -0.58802919]] [ 51.35414193]
         r2 = 0.623958939799
In [13]: def predictedVals1(coeff,intercept,X):
              y_vals1=list()
              for x in np.arange(len(X)):
                 y_vals1.append(np.dot(coeff, X[x]) + intercept )
              return y_vals1
In [14]: #yPredict=predictedVals(B1,B0,df.as matrix(["EngDispl"]))
         yPredict D=predictedVals1(model lr.coef ,model lr.intercept ,X1)
In [15]: # compute residual errors
          residualErrors D=[]
          for i in np.arange(len(FE_Y)):
             residualErrors D.append(FE Y[i]-yPredict D[i])
In [16]: #Sum of residual errors
         print "Sum of Residual Errors: ",np.sum(residualErrors_D)
         Sum of Residual Errors: 0.0
```

Part e]

```
In [17]:
         #PART E
          #Now solve the OLS regression problem for FE against all the variables. Report the R2
         #value. Sum the residual errors. What do you find?
"TransCreeperGear", "DriveDesc", "CarlineClassDesc", "VarValveTiming",
                             "VarValveLift"])
         FE Y = df.as matrix(["FE"])
         model_lr = linear_model.LinearRegression()
         model_lr.fit(X1,FE_Y)
         print "Coeff, B0:", model_lr.coef_, model_lr.intercept_
print "r2 = ", model_lr.score(X1,FE_Y)
         Coeff, B0: [[-3.73881937 -0.59854429 0.09853067 -0.26103154 -0.46677908 -1.41290715 -0.32029424 -0.74947468 -0.75500417 0.83699599 -0.27189826 1.63506899
            0.8440168 ]] [ 54.26927826]
         r2 = 0.707406484867
In [19]: yPredict E=predictedVals1(model lr.coef ,model lr.intercept ,X1)
In [20]: # compute residual errors
         residualErrors_E=[]
         for i in np.arange(len(FE_Y)):
             residualErrors_E.append(FE_Y[i]-yPredict_E[i])
In [21]: #Sum of residual errors
         print "Sum of Residual Errors: ",np.sum(residualErrors_D)
         Sum of Residual Errors: 0.0
```

Q2. Part A]

```
In [4]: df=pd.read_stata("cars2010.dta")
In [5]: X = df["EngDispl"]
         A = np.vstack([X, np.ones(len(X))]).T
         #print A
         y = np.array(df["FE"])
         \#m, c = np.linalg.lstsq(A, y)[0]
         #B1, B0 = np.linalg.lstsq(A, y)[0]
         model, resid = np.linalg.lstsq(A, y)[:2]
         B1, B0 = model
         #np.linalg.lstsq(A, y)
         print("m(B1) is: {}.".format(round(B1,8)))
         print("c(B0) is: {}.".format(round(B0,8)))
        r2 = 1 - resid / (y.size * y.var())
print("R2 is: {}.".format(round(r2[0],8)))
        m(B1) is: -4.52092928.
         c(B0) is: 50.56322991.
         R2 is: 0.61998904.
```



```
In [7]: df2=pd.read_stata("cars2011.dta")

In [9]: X = df2["EngDispl"]
    A = np.vstack([X, np.ones(len(X))]).T
    #print A
        y = np.array(df2["FE"])
        #m, c = np.linalg.lstsq(A, y)[0]
        #B1, B0 = np.linalg.lstsq(A, y)[0]
        model, resid = np.linalg.lstsq(A, y)[:2]
        B1, B0 = model
        #np.linalg.lstsq(A, y)
        print("m(B1) is: {}.".format(round(B1,8)))
        print("c(B0) is: {}.".format(round(B0,8)))
        r2 = 1 - resid / (y.size * y.var())
        print("R2 is: {}.".format(round(r2[0],8)))

        m(B1) is: -5.24210076.
        c(B0) is: 53.78837489.
        R2 is: 0.70186418.
```



```
In [11]: df3=pd.read_stata("cars2012.dta")
In [12]: X = df3["EngDispl"]
    A = np.vstack([X, np.ones(len(X))]).T
    #print A
        y = np.array(df3["FE"])
        #m, c = np.linalg.lstsq(A, y)[0]
        #B1, B0 = np.linalg.lstsq(A, y)[2]
        B1, B0 = model
        #np.linalg.lstsq(A, y)
        print("m(B1) is: {}.".format(round(B1,8)))
        print("c(B0) is: {}.".format(round(B0,8)))
        r2 = 1 - resid / (y.size * y.var())
        print("R2 is: {}.".format(round(r2[0],8)))

        m(B1) is: -5.63071065.
        c(B0) is: 57.47228974.
        R2 is: 0.71225482.
```


Q2 Part B]

Given:

$$\begin{split} \mathbf{E}[w_i] &= 0 \\ \mathbf{E}[w_i w_k] &= \mathbf{E}[w_i] \mathbf{E}[w_k] = 0 \\ \mathbf{E}[w_i^2] &= \sigma^2 \end{split}$$

$$Cov(w) = E[ww^{T}]$$

$$= E\begin{bmatrix} \binom{w_{1}}{w_{n}} (w_{1} & \dots & w_{n}) \end{bmatrix}$$

$$= E\begin{bmatrix} w_{1}^{2} & w_{1}w_{i} & w_{i}w_{n} \\ w_{j}w_{1} & \ddots & w_{j}w_{n} \\ w_{n}w_{1} & w_{n}w_{i} & w_{n}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma^{2} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma^{2} \end{bmatrix}$$

$$= \sigma^{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma^{2}I$$

Q2 Part C]

```
In [13]: #Part C
          df=pd.read_stata("cars2010.dta")
          df1=pd.read_stata("cars2011.dta")
          df2=pd.read stata("cars2012.dta")
          X_2010 = df.as_matrix(["EngDispl","NumCyl"])
          X_2011 = dfl.as_matrix(["EngDispl","NumCyl"])
          X_2012 = df2.as_matrix(["EngDispl","NumCyl"])
          FE_Y_2010 = df.as_matrix(["FE"])
          FE_Y_2011 = df1.as_matrix(["FE"])
          FE_Y_2012 = df2.as_matrix(["FE"])
In [14]: X0 = np.column_stack((X_2010,np.ones(FE_Y_2010.shape[0])))
    X1 = np.column_stack((X_2011,np.ones(FE_Y_2011.shape[0])))
          X2 = np.column_stack((X_2012,np.ones(FE_Y_2012.shape[0])))
In [15]: # Estimate Sigma
          def sigma estimate(B, X, Y):
              b0 = B[2]
              b1 = B[1]
              b2 = B[0]
              sum = 0.0
              for i in np.arange(len(X)):
                  sum += np.square(Y[i]-(b0 + np.dot(X[i][0],b1) + np.dot(X[i][1],b2)))
              return (sum / (len(X) - 2))
```

```
In [16]: # Compute Beta_hat 2010
B_hat =np.dot(np.dot(np.linalg.inv(np.dot(X0.transpose(),X0)),X0.transpose()),FE_Y_2010)
print B_hat
        [[ -3.74535214]
        [ -0.58802919]
        [ 51.35414193]]
In [17]: print "Sigma Estimate Cars 2010: ", sigma_estimate(B_hat,X0,FE_Y_2010)
Sigma Estimate Cars 2010: [ 89.94853481]
```

```
In [18]: # Compute Beta_hat 2011
B_hat =np.dot(np.dot(np.linalg.inv(np.dot(X1.transpose(),X1)),X1.transpose()),FE_Y_2011)
print B_hat

[[ -3.96769213]
        [ -1.13215237]
        [ 56.10527854]]

In [19]: print "Sigma Estimate Cars 2011: ", sigma_estimate(B_hat,X1,FE_Y_2011)
Sigma Estimate Cars 2011: [ 80.00672933]
```

Q2 Part D]

```
In [22]: #PART D
B_hat =np.dot(np.dot(np.linalg.inv(np.dot(X0.transpose(),X0)),X0.transpose()),FE_Y_2010)
sigma_2010 = sigma_estimate(B_hat,X0,FE_Y_2010)
cov_B = (np.square(sigma_2010)) * (np.linalg.inv(np.dot(X0.transpose(),X0)))
print cov_B

[[ 24.00506369 -14.94797628    5.06021902]
[-14.94797628    11.33329747 -15.24353096]
[ 5.06021902 -15.24353096    80.58099929]]
```

Q2 Part E)

I think there is some relationship between the standard deviation for each hear and the computed beta hat. The 2012 dataset had the highest standard deviation of the three datasets.

Q3 Part A]

```
In [4]: # PART A - 2010 data
In [5]: import numpy as np
        import matplotlib.pyplot as plt
        from sklearn import datasets, linear_model
        import pandas as pd
        from pandas import DataFrame, Series
        from __future__ import division
In [6]: df=pd.read stata("cars2010.dta")
In [7]: # get XMean
        X0 = df.as_matrix(["EngDispl","NumCyl"])
        FE_Y_2010 = df.as_matrix(["FE"])
        Xmean=[]
        Xmean.append(np.mean(X0[:,0]))
        Xmean.append(np.mean(X0[:,1]))
        print Xmean
        [3.5074074074074071, 5.9710930442637764]
```

```
In [8]: sigma=[]
         sigma.append(np.std(X0[:,0]))
         sigma.append(np.std(X0[:,1]))
         print sigma
         Ymean = np.mean(FE_Y_2010)
         print Ymean
         [1.3053151226197799, 1.8997158959884082]
         34.7064890696
In [9]: std_X0=X0
         for i in np.arange(len(X0)):
             for j in np.arange(len(X0[0])):
                 std_X0[i][j]=(X0[i][j] - Xmean[j])/sigma[j]
         print std_X0
         [[ 0.91364344 1.06800546]
          [ 0.91364344 1.06800546]
[ 0.53059417 1.06800546]
          [-0.23550436 0.01521646]
          [-0.23550436 0.01521646]
[ 0.68381388 1.06800546]]
```

Q3 Part B]

```
In [9]: #Part B
           lamda = 0.01
           model_rr = linear_model.Ridge(alpha =lamda)
           model rr.fit(std_X0, Y_Center)
           coeff=model_rr.coef_
print 'When Lambda=', lamda
           print 'B1 =', coeff[0][0]
print 'B2 =', coeff[0][1]
           print 'B0 ', model_rr.intercept_
print 'r2 = ', model_rr.score(std_X0, Y_Center)
           When Lambda= 0.01
           B1 = -4.88866883941
           B2 = -1.11725589258
           B0 [ -8.38049530e-16]
r2 = 0.623958939675
In [10]: lamda = 5
            model_rr = linear_model.Ridge(alpha =lamda)
            model_rr.fit(std_X0, Y_Center)
            coeff=model_rr.coef_
print 'When Lambda=', lamda
            print 'B1 =', coeff[0][0]
print 'B2 =', coeff[0][1]
            print 'B0 ', model rr.intercept_
print 'r2 = ', model_rr.score(std_X0, Y_Center)
            When Lambda= 5
            B1 = -4.79507488508
            B2 = -1.19668137988
            B0 [ -8.77082684e-16]
r2 = 0.62393043522
In [11]: lamda = 10000
            model rr = linear model.Ridge(alpha =lamda)
            model_rr.fit(std_X0, Y_Center)
            coeff=model_rr.coef_
print 'When Lambda=', lamda
            print 'When Lamoda=', Lamoda
print 'B1 =', coeff[0][0]
print 'B2 =', coeff[0][1]
print 'B0 ', model_rr.intercept_
print 'r2 = ', model_rr.score(std_X0, Y_Center)
            When Lambda= 10000
            B1 = -0.542643100054
            B2 = -0.503905302656
            B0 [ -1.64280226e-15]
            r2 = 0.194972254986
```

Q3 Part C]

```
In [15]: Y_Center1 = FE_Y_2011
              for i in np.arange(len(FE_Y_2011)):
                   Y_Center1[i]=FE_Y_2011[i]-Ymean1
              #print Y Center1
In [23]: lambdaList = [0,0.001,0.01,0.1,1,10,100]
           for L in lambdaList:
                model rr = linear model.Ridge(alpha = L)
                model_rr.fit(std_X0, Y_Center)
print "Coefficients [L=",L,"] ",model_rr.coef_
print "Intercept [L=",L,"] ",model_rr.intercept_
                print "r2 =", model_rr.score(X0, FE_Y_2010)
           Coefficients [L= 0 ] [[-4.88886479 -1.1170884 ]]
Intercept [L= 0 ] [ -8.37967528e-16]
           r2 = 0.623958939799
           Coefficients [L= 0.001 ] [[-4.88884519 -1.11710515]]
           Intercept [L= 0.001 ] [ -8.37975729e-16]
            r2 = 0.623958939798
           Coefficients [L= 0.01 ] [[-4.88866884 -1.11725589]]
           Intercept [L= 0.01 ] [ -8.38049530e-16]
           r2 = 0.623958939675
           Coefficients [L= 0.1 ] [[-4.88690687 -1.11876173]]
           Intercept [L= 0.1 ] [ -8.38786838e-16]
           r2 = 0.623958927422
           Coefficients [L= 1 ] [[-4.86944216 -1.13366626]]
Intercept [L= 1 ] [-8.46090060e-16]
           Intercept [L= 1 ] [
r2 = 0.623957721019
           Coefficients [L= 10 ] [[-4.70893834 -1.26868796]]
           Intercept [L= 10 ] [ -9.12750278e-16]
           r2 = 0.623853611485
           Coefficients [I= 100 ] [[-3.82749986 -1.90671901]]
Intercept [L= 100 ] [ -1.25458771e-15]
            r2 = 0.619847045333
In [24]: lambdaList = [0,0.001,0.01,0.1,1,10,100]
            for L in lambdaList:
                 model_rr = linear_model.Ridge(alpha = L)
                model_rr.fit(std_X1, Y_Center1)

print "Coefficients [L=",L,"] ",model_rr.coef_
print "Intercept [L=",L,"] ",model_rr.intercept_
                print "r2 =", model_rr.score(X1, FE_Y_2011)
           Coefficients [L= 0 ] [[-5.8258967 -2.04233847]] Intercept [L= 0 ] [ -6.67111699e-16]
            r2 = 0.709795966141
           Coefficients [L= 0.001 ] [[-5.82579615 -2.04242227]]
Intercept [L= 0.001 ] [ -6.67089827e-16]
            r2 = 0.70979596612
           Coefficients [L= 0.01 ] [[-5.82489157 -2.04317601]] Intercept [L= 0.01 ] [ -6.66893075e-16]
            r2 = 0.709795964137
            Coefficients [L= 0.1 ] [[-5.81588574 -2.05067383]]
           Intercept [L= 0.1 ] [ -6.64934802e-16] r2 = 0.709795767266
           Coefficients [L= 1 ] [[-5.72963895 -2.12187227]]
Intercept [L= 1 ] [-6.46233628e-16]
            r2 = 0.709777458332
            Coefficients [L= 10 ] [[-5.12405807 -2.58007675]]
            Intercept [L= 10 ] [ -5.18552931e-16]
            r2 = 0.70872791014
            Coefficients [L= 100 ] [[-3.56542497 -2.92115038]]
Intercept [L= 100 ] [ -2.62862347e-16]
r2 = 0.683238364945
```

Q3 Part D]

Q3 Part E]

We need three separated datasets for the following reasons:

- Training Develop optimal parameters for the model we intend to use
- Cross Validation Test the quality of the model against data not sampled to test predicted result against known results
- Testing Exercise model against test samples to predict results using the model we developed

4. For X, Y, and Z random variables, the Covariance Matrix of the random vector (X, Y, Z) is defined as:

$$\mathbb{E}\left[\left(\begin{array}{c}X\\Y\\Z\end{array}\right)\left(\begin{array}{ccc}X&Y&Z\end{array}\right)\right] = \mathbb{E}\left[\begin{array}{ccc}X^2&XY&XZ\\XY&Y^2&YZ\\XZ&YZ&Z^2\end{array}\right].$$

Suppose X, Y and Z represent the result of rolling three independent dice. What is the covariance matrix of (X, Y, Z)?

PMF of rolling a dice

$$f_X(y) = \begin{cases} \frac{1}{6} & \text{if } y \in \{1,2,3,4,5,6\} \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_X = E(X) = \sum_{y=1}^6 y \cdot f_Z(y) = (1)\left(\frac{1}{6}\right) + (2)\left(\frac{1}{6}\right) + (3)\left(\frac{1}{6}\right) + (4)\left(\frac{1}{6}\right) + (5)\left(\frac{1}{6}\right) + (6)\left(\frac{1}{6}\right)$$

$$\mu_X = \frac{1+2+3+4+5+6}{6} = \frac{21}{6} = \frac{7}{2} = 3.5$$

$$\begin{split} &\sigma_X^2 = var(X) = \sum_{y=1}^6 (y - \mu_X)^2 \cdot f_Z(y) \\ &\sigma_X^2 = \left(1 - \frac{7}{2}\right)^2 \left(\frac{1}{6}\right) + \left(2 - \frac{7}{2}\right)^2 \left(\frac{1}{6}\right) + \left(3 - \frac{7}{2}\right)^2 \left(\frac{1}{6}\right) + \left(4 - \frac{7}{2}\right)^2 \left(\frac{1}{6}\right) + \left(5 - \frac{7}{2}\right)^2 \left(\frac{1}{6}\right) + \left(6 - \frac{7}{2}\right)^2 \left(\frac{1}{6}\right) \\ &\sigma_X^2 = \left(-\frac{5}{2}\right)^2 \left(\frac{1}{6}\right) + \left(-\frac{3}{2}\right)^2 \left(\frac{1}{6}\right) + \left(-\frac{1}{2}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{1}{2}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{3}{2}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{2}\right)^2 \left(\frac{1}{6}\right) \\ &\sigma_X^2 = \left(\frac{25}{24}\right) + \left(\frac{9}{24}\right) + \left(\frac{1}{24}\right) + \left(\frac{1}{24}\right) + \left(\frac{9}{24}\right) + \left(\frac{25}{24}\right) = \left(\frac{70}{24}\right) = \frac{35}{12} = 2\frac{11}{12} \end{split}$$

Rules:

$$E(XY) = E(X)E(Y)$$

$$E(X \pm a) = E(X) \pm a$$

Covariance Matrix is 2

Covariance Matrix is
$$\Sigma$$

$$\Sigma = \begin{pmatrix} E(X-3.5)^2 & E(X-3.5)(Y-3.5) & E(X-3.5)(Z-3.5) \\ E(X-3.5)(Y-3.5) & E(Y-3.5)^2 & E(Y-3.5)(Z-3.5) \\ E(X-3.5)(Z-3.5) & E(Y-3.5)(Z-3.5) & E(Z-3.5)^2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 2\frac{11}{12} & E(X-3.5)E(Y-3.5) & E(X-3.5)E(Z-3.5) \\ E(X-3.5)E(Y-3.5) & 2\frac{11}{12} & E(Y-3.5)E(Z-3.5) \\ E(X-3.5)E(Z-3.5) & E(Y-3.5)E(Z-3.5) \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 2\frac{11}{12} & 0 & 0\\ 0 & 2\frac{11}{12} & 0\\ 0 & 0 & 2\frac{11}{12} \end{pmatrix}$$

Q71

7. Consider flipping a fair coin. Let Z denote the random variable that is the number of Heads that come up in a row. Thus, if the first flip comes up tails, Z = 0. If the flip sequence is

HHTHHHHT....

then Z=2, and so on.

- Write the probability mass function of Z.
- Compute the mean and variance of Z.

For a Fair Coin.

$$P(H) = p = \frac{1}{2}$$

$$P(T) = (1 - p) = \frac{1}{2}$$

Random Variable

Compound Event	Elementary Event	Probability
(Z=0)	(T) =	1
•	. ,	$\overline{2}$
(Z=1)	(HT)	$(1)^{1}(1)$ 1
		$\left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right) = \frac{1}{4}$
(Z=2)	(HHT)	$(1)^2(1)$ 1
		$\left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right) = \frac{1}{8}$
(Z=3)	(HHHT)	
		$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right) = \frac{1}{16}$
(Z=4)	(ННННТ)	
		$\left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right) = \frac{1}{32}$

PMF:

y
0
$$\frac{1}{2} \qquad p^{0}(1-p)$$
1
$$\left(\frac{1}{2}\right)^{1} \left(\frac{1}{2}\right) = \frac{1}{4} \qquad p^{1}(1-p)$$
2
$$\left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right) = \frac{1}{8} \qquad p^{2}(1-p)$$
3
$$\left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right) = \frac{1}{16} \qquad p^{3}(1-p)$$
4
$$\left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right) = \frac{1}{32} \qquad p^{4}(1-p)$$

So **PMF** for Z is $f_Z(y) = p^y(1-p)$ or for fair coin where p = (1-p)

$$f_Z(y) = p^{y+1} = \left(\frac{1}{2}\right)^{y+1}$$
 where $y = 0, 1, 2, ..., n$

Compute Mean & Variance:

$$\mu = E(Z) = \sum_{y=0}^{n} y \cdot f_Z(y) = \sum_{y=0}^{n} y \cdot \left(\frac{1}{2}\right)^{y+1} = \sum_{y=1}^{n} y \cdot \left(\frac{1}{2}\right)^{y+1} = \frac{1}{4} \sum_{y=1}^{n} y \cdot \left(\frac{1}{2}\right)^{y-1}$$

From http://www.trans4mind.com/personal_development/mathematics/series/airthmeticGeometricSeries.htm

$$1 + 2r + 3r^{2} ... n r^{(n-1)} = \frac{(1 - (n+1)r^{n} + n r^{(n+1)})}{(1 - r)^{2}}$$

$$\mu = E(Z) = \frac{1}{4} \sum_{y=1}^{n} y \cdot \left(\frac{1}{2}\right)^{y-1} = \frac{1}{4} \frac{\left(1 - (n+1)\left(\frac{1}{2}\right)^{n} + n\left(\frac{1}{2}\right)^{n+1}\right)}{\left(\frac{1}{2}\right)^{2}}$$

$$\mu = \frac{1}{4} \frac{\left(1 - (n+1)\left(\frac{1}{2}\right)^{n} + n\left(\frac{1}{2}\right)^{n+1}\right)}{\frac{1}{4}} = \left(1 + n\left(\frac{1}{2}\right)^{n+1} - (n+1)\left(\frac{1}{2}\right)^{n}\right) = \mu = \left(1 + n\left(\frac{1}{2}\right)^{n+1} - (n+1)\left(\frac{1}{2}\right)^{n}\right) = \left(1 + \left(\frac{1}{2}\right)n\left(\frac{1}{2}\right)^{n} - (n+1)\left(\frac{1}{2}\right)^{n}\right)$$

$$\lim_{n \to \infty} \left(\frac{1}{2}\right)^{n} = 0, \text{ then } \mu = 1$$

Variance:

Use:

•
$$var(X) = E\{(X - E[X])^2\} = E[X^2] - (E[X])^2$$

Take advantage of:

$$E[Z^2] = E[Z(Z-1)] + E[Z]$$

Compute:

$$E[Z(Z-1)] = \sum_{y=1}^{n} y(y-1) \cdot \left(\frac{1}{2}\right)^{y+1}$$

$$\sigma_Z^2 = E[(Z - \mu)^2] = E[Z^2] - (E[Z])^2 = E[Z^2] - \mu^2$$

$$\sum_{y=0}^{n} (y-\mu)^{2} f_{Z}(y) = \sum_{y=0}^{n} (y-1)^{2} \left(\frac{1}{2}\right)^{y+1} = \sum_{y=0}^{n} (y-1)^{2} \left(\frac{1}{2}\right)^{y+1}$$

$$\sigma_{Z}^{2} = (0-1)^{2} \left(\frac{1}{2}\right)^{0+1} + \sum_{y=1}^{n} (y-1)^{2} \left(\frac{1}{2}\right)^{y+1} = \frac{1}{2} + \sum_{y=1}^{n} (y-1)^{2} \left(\frac{1}{2}\right)^{y+1}$$

Use from <http://math2.org/math/expansion/power.htm>:
$$\sum_{k=1}^n k^2 = \frac{1}{6} n(n+1)(2n+1) \quad \to \quad \sum_{j=1}^n (j-1)^2 = (1-1)^2 + \sum_{j=2}^n (j-1)^2 = \sum_{k=1}^n k^2$$

Use from http://math2.org/math/expansion/geom.htm:

$$\sum_{k=1}^{n} k^2$$

Revisit with:

http://arnoldkling.com/apstats/geometric.html