Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Withdrawn/Previously presented): A method of controlling a hybrid electric vehicle as recited in claim 12, wherein said power generator comprises a recuperated turbine engine, said method further comprising controlling a fuel flow to said recuperated turbine engine so as to convert heat energy to useful work, wherein at least a portion of said heat energy is stored in a recuperator of said recuperated turbine engine as a result of operating said recuperated turbine engine, and the operation of controlling said fuel flow is in anticipation of shutting down said recuperated turbine engine.
- (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim
 the wherein said operation of controlling said fuel flow comprises decreasing said fuel flow over time.
- 3. (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim2, wherein said operation of controlling said fuel flow comprises shutting off said fuel flow while operating said recuperated turbine engine using heat from said recuperator to heat air that is compressed by a compressor of said recuperated turbine engine.
- 4. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 3, wherein said recuperated turbine engine is used to charge **-said energy storage device of said hybrid electric vehicle after said fuel flow is shut off to said recuperated turbine engine.
- 5. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 3, wherein said recuperated turbine engine is used to charge **said* energy storage device of said hybrid electric vehicle after said hybrid electric vehicle is shutdown upon reaching **-said destination.

10

- 6. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 1, wherein the operation of controlling said fuel flow is in anticipation of said hybrid electric.vehicle reaching *-said destination.
- 7. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 12, wherein said power generator comprises a recuperated turbine engine, said method further comprising:
 - a. monitoring a condition of said recuperated turbine engine;
 - b. shutting off a fuel flow to said recuperated turbine engine; and
 - c. resuming said fuel flow to said recuperated turbine engine so as to resume operating said <u>recuperated</u> turbine engine, wherein the operation of resuming said fuel flow is initiated prior to a time when said condition would indicate that said recuperated turbine engine would not likely start without requiring a source of energy external to said recuperated turbine engine to rotate a compressor of said recuperated turbine engine.
- 8. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 7, wherein said condition comprises a temperature of a gas stream that interacts with said a recuperator of said recuperated turbine engine.
- 9. (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim7, wherein said condition comprises a rotational speed of said recuperated turbine engine.
- 10. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 7, wherein said recuperated turbine engine is installed in a vehicle, and the operation of shutting off a-said fuel flow to said recuperated turbine engine occurs when said hybrid electric vehicle is in a mode of operation that does not require power from said recuperated turbine engine.

5

10

- 11. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 7, wherein while said fuel flow is shut off prior to the operation of resuming said fuel flow, shaft power from said recuperated turbine engine is used to generate electrical energy that is stored in an said energy storage device of a said hybrid electric vehicle.
- 12. (Currently amended): A method of controlling a hybrid electric vehicle, wherein said hybrid <u>electric</u> vehicle incorporates a power generator, an energy storage device and a traction motor, said method comprising:
 - a. determining at least one location of the hybrid electric vehicle;
 - b. determining a measure responsive or related to an amount of energy required for said hybrid electric.vehicle to reach a destination, wherein said measure is responsive to said at least one location of said hybrid electric.vehicle in relation to said destination, and said destination is automatically determined responsive to a driving pattern of said hybrid electric vehicle inferred from said at least one location in view of information related to a previously stored driving pattern of said hybrid electric vehicle;
 - c. at least reducing the power generated by said power generator responsive to said measure in advance of said <u>hybrid electric</u> vehicle reaching said destination; and
 - d. continuing travel of said <u>hybrid electric</u> vehicle to said destination <u>at least</u> using said traction motor powered <u>at least</u> by said energy storage device.
- 13. (Currently amended): A method of controlling a hybrid electric vehicle as recited in claim
 12, wherein said at least one location of the said hybrid electric vehicle is determined with a vehicle location sensor that the said hybrid electric vehicle.
- 14. (Original): A method of controlling a hybrid electric vehicle as recited in claim 13, wherein said vehicle location sensor comprises at least one of a GPS navigation system, an inertial navigation system, a dead reckoning navigation system, and a map matching navigation system.
- **15.** (Cancelled without prejudice)

- 16. (Currently amended): A method of controlling a hybrid electric vehicle as recited in claim12, wherein said measure is responsive to a distance of said hybrid electric vehicle to said destination along a predicted route to said destination.
- 17. (Original): A method of controlling a hybrid electric vehicle as recited in claim 12, wherein said measure is responsive to an estimate of energy required to reach said destination along a predicted route to said destination.
- 18. (Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 12, wherein said measure is responsive to previously stored information corresponding to said at least one location of said hybrid electric.vehicle for subsequent travel along a predicted route to said destination.
- 19. (Currently amended): A method of controlling a hybrid electric vehicle as recited in claim \$\frac{1218}{218}\$, wherein said previously stored information is responsive to the energy that had been required during at least one previous trip to reach said destination along \$\pi\sides\text{said}\$ predicted route to said destination.
- 20. (Currently amended): A method of controlling a hybrid electric vehicle as recited in claim \$218, wherein said previously stored information is responsive to an average of a plurality of previous trips from said at least one location of said hybrid electric vehicle to said destination along *said predicted route to said destination.
- 22. (Currently amended): A method of controlling a hybrid electric vehicle as recited in claim \$\frac{19}{2}\$, further comprising causing a fuel flow to said power generator and generating power with said power generator responsive thereto, wherein the operation of at least reducing the power generated by said power generator comprises shutting off &-said fuel flow to said power generator.

10

15

- 23. (Currently amended): A method of controlling a hybrid electric vehicle, wherein said hybrid electric vehicle incorporates a power generator, an energy storage device and a traction motor, said method as recited in claim 22, further comprising:
 - a. determining at least one location of the hybrid electric vehicle;
 - b. determining a measure responsive or related to an amount of energy required for said
 hybrid electric vehicle to reach a destination, wherein said measure is responsive to said
 at least one location of said hybrid electric vehicle in relation to said destination;
 - c. causing a fuel flow to said power generator and generating power with said power generator responsive thereto;
 - d. shutting off said fuel flow to said power generator responsive to said measure in advance of said hybrid electric vehicle reaching said destination;
 - e. generating power with said power generator after said fuel flow is shut off to said power generator, and;
 - <u>f.</u> using at least a portion of said power generated by said power generator to store energy in said energy storage device; and
 - g. continuing travel of said hybrid electric vehicle to said destination at least using said traction motor powered by said energy storage device.
- **24.** (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim **12**, further comprising:
 - determining a likely second destination of said <u>hybrid electric</u> vehicle responsive to said at least one location of said <u>hybrid electric</u> vehicle, wherein said <u>hybrid electric</u> vehicle is possibly traveling from a known first destination to said likely second destination, and said destination associated with said amount of energy comprises either said <u>known</u> first destination or said likely second destination.
- 25. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 24, wherein said at least one location of the said hybrid electric vehicle is determined with a vehicle location sensor inof the said hybrid electric vehicle.

- **26.** (Withdrawn/Previously presented): A method of controlling a hybrid electric vehicle as recited in claim **25**, wherein said vehicle location sensor comprises at least one of a GPS navigation system, an inertial navigation system, a dead reckoning navigation system, and a map matching navigation system.
- 27. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 24, wherein the operation of determining said likely second destination comprises: storing information about a previous driving pattern of said <u>hybrid electric</u> vehicle; and comparing said plurality of locations with said information characterizing said at least one route that was driven from said first destination to said possible second destination determining said likely second destination of said hybrid electric vehicle from said information about said previous driving pattern in view of said at least one location of said hybrid electric vehicle along a driving route from said known first destination.
- 28. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 27, wherein said stored information about said previous driving pattern comprises a likelihood that said <u>hybrid electric</u> vehicle at said <u>known</u> first destination will travel to said likely second destination.
- 29. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 28, wherein said likelihood is calculated from at least one <u>said</u> previous driving pattern of said <u>hybrid electric</u> vehicle.
- **30.** (Withdrawn/Previously presented): A method of controlling a hybrid electric vehicle as recited in claim **28**, wherein said likelihood is responsive to a measure of time.
- **31.** (Withdrawn/Previously presented): A method of controlling a hybrid electric vehicle as recited in claim **30**, wherein said measure of time comprises any or all of a time of day, a day of week, or a day of a year or month.
- 32. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 27, wherein said stored information about said previous driving pattern comprises information characterizing at least one said driving route that was previously driven from said known first destination to a possible second destination.

5

5

- 33. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 32, wherein the operation of determining said likely second destination from said stored information about said previous driving pattern comprises: recording a plurality of locations of said hybrid electric.no.nd/ vehicle after departing said known.first destination; and using said plurality of locations to evaluate said information characterizing said at least one said driving route that was driven from said known.first destination to said possible second destination.
- **34.** (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim **27**, wherein said stored information about said previous driving pattern comprises information characterizing at least one said driving route that had previously been driven and which leads from said at least one location of said hybrid electric vehicle to a possible second destination.
- **35.** (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim **12**, further comprising:
 - a. determining <u>said</u> at least one location of <u>we said hybrid electric</u> vehicle in advance of or during a first driving pattern of said <u>hybrid electric</u> vehicle, wherein said first driving pattern of said <u>hybrid electric</u> vehicle is associated with said <u>hybrid electric</u> vehicle traveling from a first destination to a likely second destination;
 - b. anticipating a likely second driving pattern of said <u>hybrid electric</u> vehicle, wherein the operation of anticipating said <u>likely</u> second driving pattern is responsive to <u>either</u> said at least one location or to said first driving pattern of said <u>hybrid electric</u> vehicle, and said <u>likely</u> second driving pattern of said <u>hybrid electric</u> vehicle is associated with said <u>hybrid electric</u> vehicle traveling from said likely second destination to a likely third destination; and
 - c. controlling said hybrid electric vehicle during said first driving pattern responsive to the anticipation of said <u>likely</u> second driving pattern.

- **36.** (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim **35**, wherein said at least one location of the said hybrid electric vehicle is determined with a vehicle location sensor to the said hybrid electric vehicle.
- 37. (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim 36, wherein said vehicle location sensor comprises at least one of a GPS navigation system, an inertial navigation system, a dead reckoning navigation system, and a map matching navigation system.
- 38. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 35, wherein the operation of anticipating said likely second driving pattern of said hybrid electric. vehicle comprises: anticipating said likely second destination responsive to said at least one location of said hybrid electric.vehicle; and anticipating said likely second driving pattern responsive to said first destination, said likely second destination and/or said first driving pattern associated therewith.
- 39. (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim 38, wherein the operation of anticipating said likely second driving pattern comprises: anticipating said likely third destination; and anticipating said likely second driving pattern responsive to said likely second destination and to said likely third destination.
- **40.** (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim **39**, wherein the operation of anticipating said likely third destination comprises storing information about a previous driving pattern of said <u>hybrid electric</u> vehicle.
- 41. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 40, wherein said stored information about said previous driving pattern comprises a likelihood that said <u>hybrid electric</u> vehicle at said first destination will travel first to said likely second destination and then to said likely third destination.
- **42.** (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim **41**, wherein said likelihood is calculated from at least one <u>said previous</u> driving pattern of said <u>hybrid electric</u> vehicle.

- 43. (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim41, wherein said likelihood is responsive to a measure of time.
- 44. (Withdrawn/Original): A method of controlling a hybrid electric vehicle as recited in claim43, wherein said measure of time comprises any or all of a time of day, a day of week, or a day of a year or month.
- 45. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 41, wherein the operation of anticipating said likely second driving pattern comprises: storing information about **-said previous driving pattern of said hybrid electric vehicle; and associating said **ered-information about said previous driving pattern of said hybrid electric vehicle with said **ered-information comprising said likelihood that said hybrid electric vehicle at said first destination will travel first to said likely second destination and then to said likely third destination.
- 46. (Withdrawn/Currently amended): A method of controlling a hybrid electric vehicle as recited in claim 35, wherein the operation of controlling said hybrid electric vehicle comprises controlling at least one of **-said power generator of said hybrid electric vehicle, **-said energy storage ***-device of said hybrid electric vehicle, and an electrical power controller of said hybrid electric vehicle.
- **47.** (Currently amended): A hybrid electric vehicle, comprising:
 - a. a power generator;

5

- b. an energy storage device, wherein the hybrid electric vehicle is adapted to provide for selectively using power generated by said power generator to charge said energy storage device with stored energy;
- a traction motor, wherein said hybrid electric vehicle is adapted to provide for selectively operating said traction motor from power generated by said power generator and/or power from a discharge of said stored energy from said energy storage device;

Application No. 10/708,897 Amendment dated 21 January 2008 Response to Office Action dated 18 October 2007

15

20

- d. a vehicle location sensor, wherein said vehicle location sensor generates at least one measure of location of said hybrid electric vehicle;
 - e. a computer adapted to execute a stored program;
 - f. a memory operatively associated with said computer, wherein said stored program is adapted to record in said memory information related to a destination of said hybrid electric vehicle, and said stored program provides for:
 - i. automatically determining said destination responsive to a driving pattern of said hybrid electric vehicle inferred from said at least one measure of location in view of information related to a previously stored driving pattern of said hybrid electric vehicle;
 - said <u>hybrid electric</u> vehicle to reach said destination, wherein said measure is responsive to said at least one measure of location of said <u>hybrid electric</u> vehicle in relation to said destination;
 - to said measure in advance of said <u>hybrid electric</u> vehicle reaching said destination; and
 - said traction motor powered at least by said energy storage device.
 - **48.** (Withdrawn/Currently amended): A hybrid electric vehicle as recited in claim **55**, wherein said stored program provides for anticipating a likely second destination from a known first destination responsive to evaluating said at least one measure of location in view of said information related to at least one previous driving pattern of said <u>hybrid electric</u> vehicle.
 - **49.** (Withdrawn/Original): A hybrid electric vehicle as recited in claim **48**, wherein said stored program provides for controlling said power generator, said energy storage device, and/or a flow of power therebetween responsive to said at least one measure of location in relation to said likely second destination.

Application No. 10/708,897 Amendment dated 21 January 2008 Response to Office Action dated 18 October 2007

5

5

5

- 50. (Withdrawn/Currently amended): A hybrid electric vehicle as recited in claim 48, wherein said stored program provides for determining a likely route leading to said likely second destination from at least one location corresponding to said at least one measure of location, responsive to said at least one measure of location, and to said at least one previous driving pattern of said hybrid electric.not/ vehicle stored in said memory.
- 51. (Withdrawn/Original): A hybrid electric vehicle as recited in claim 50, wherein said stored program provides for controlling said power generator, said energy storage device, and/or a flow of power therebetween responsive to information stored in said memory related to said likely route.
- 52. (Withdrawn/Currently amended): A hybrid electric vehicle as recited in claim 48, wherein said stored program provides for anticipating a likely third destination from *said known first destination responsive to evaluating said at least one measure of location in view of said information related to said at least one previous driving pattern of said <a href="https://hybrid.electric.org/hybrid.electric
- 53. (Withdrawn/Currently amended): A hybrid electric vehicle as recited in claim 48, further comprising at least one environment sensor, wherein said stored program further provides for controlling said power generator, said energy storage device, and/or a flow of power therebetween over a route between said known first destination and said likely second destination, responsive to information from said at least one environment sensor.
- 54. (Withdrawn/Currently amended): A hybrid electric vehicle as recited in claim 55, further comprising a map database operatively associated with said computer, wherein said map database provides information about a system of roads upon which said hybrid electric vehicle is operated, and by which said information related to said at least one previous driving pattern is structured.

Application No. 10/708,897 Amendment dated 21 January 2008 Response to Office Action dated 18 October 2007

5

55. (Withdrawn/Currently amended): A hybrid electric vehicle as recited in claim 47, wherein said stored program is adapted to record in said memory information related to at least one previous driving pattern of said <a href="https://hybrid.electric.ncb/hybrid.elec