0.1 Multiplikasjon (Gonging)

Gonging med heiltal: Innleiiande definisjon

When adding equal numbers, we can use the multiplication symbol \cdot to write our calculations more compact:

Example

$$4 + 4 + 4 = 4 \cdot 3$$

$$8 + 8 = 8 \cdot 2$$

$$1+1+1+1+1=1\cdot 5$$

The language box

A calculation involving multiplication includes severeal factors and one produkt. In the calculation

$$4 \cdot 3 = 12$$

both 4 and 3 are factors, while 12 is the product.

Common ways of saying $4 \cdot 3$ is

- "4 times 3"
- "4 multiplied by 3"
- "4 and 3 multiplied together"

A lot of texts use \times in stead of \cdot . In computer programming

* is the most common symbol for multiplication.

Gonging av mengder

Let us use a figure to illustrate $2 \cdot 3$:

Now notice the product of $3 \cdot 2$:

0.1 Multiplikasjon er kommutativ

The order of the factors have no impact on the product.

Example

$$3 \cdot 4 = 12 = 4 \cdot 3$$

$$6 \cdot 7 = 42 = 7 \cdot 6$$

$$8 \cdot 9 = 72 = 9 \cdot 8$$

Mulitplication on the number line

We can also use the number line to calculate multiplications. For the instance of $2 \cdot 4$ we can think like this:

"2 · 4 means moving 2 places to the right, 4 times."

We can also use the number line to convince ourselves that the order of the factors does not matter:

" $4 \cdot 2$ means moving 4 places to the right, 2 times."

Final definition of multiplication by positive integers

It may be most intuitive to interpret "2 times 3" as "3, 2 gonger". Then

"2 times
$$3$$
" = $3 + 3$

In this section we introduced $2 \cdot 3$, that is "2 times 3", as 2+2+2. With this interpretation 3+3 corresponds to $3 \cdot 2$, but the fact that multiplication is a commutative operation (*Rule 0.1*) ensures that the one interpretation does not exclude the other; $2 \cdot 3 = 2 + 2 + 2$ and $2 \cdot 3 = 3 + 3$ are two expressions of same value.

0.2 Multiplication as repeated addition

Multiplication by a positive integer can be expressed as repeated addition.

Example 1

$$4+4+4=4\cdot 3=3+3+3+3$$

$$8+8=8\cdot 2=2+2+2+2+2+2+2$$

$$1+1+1+1+1=1\cdot 5=5$$

Note

That multiplication with positive integers can be expressed as repeated addition does not exclude other expressions. It's nothing wrong to write $2 \cdot 3 = 1 + 5$.

0.3 Multiplication by 0

If 0 is a factor, the product equals 0.

Example 1

$$7 \cdot 0 = 0$$

$$0 \cdot 219 = 0$$