Section 6.2

Propositional Calculus

- Propositional calculus is the language of propositions (statements that are true or false).
- We represent propositions by formulas called well-formed formulas (wffs) (pronounced like woofs) that are constructed from an alphabet consisting of:
 - Truth symbols: T (or true) and F (or false)
 - Propositional variables: uppercase letters
 - Connectives (operators):
 - ¬ (not, negation)
 - ∧ (and, conjunction)
 - ∨ (or, disjunction)
 - ullet o (conditional, implication)
 - Parentheses symbols: (and).

More About Wffs

- A wff is either a truth symbol, a propositional variable, or if V and W are wffs, then so are:
 - ¬V
 - V ∧ W
 - V ∨ W
 - $V \rightarrow W$
 - (W)
- Example: The expression $A \neg B$ is not a wff. But the following are wffs:
 - $A \wedge B \rightarrow C$
 - $(A \wedge B) \rightarrow C$
 - $A \wedge (B \rightarrow C)$

Truth Tables

• The connectives are defined by the following truth table.

Р	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	P o Q
T	T	F	T	T	T
T	F	F	F	Τ	F
F	Τ	T	F	T	T
F	F	T	F	F	Τ

Semantics

- The meaning of T (or True) is true and the meaning of F (or False) is false. The meaning of any other wff is its truth table, where, in the absence of parentheses, we define the hierarchy of evaluation to be \neg , \wedge , \vee , \rightarrow , and we assume \wedge , \vee , \rightarrow are left associative.
- Examples:

$$\neg A \land B$$
 means $(\neg A) \land B$
 $A \lor B \land C$ means $A \lor (B \land C)$
 $A \land B \to C$ means $(A \land B) \to C$
 $A \to B \to C$ means $(A \to B) \to C$

Three Classes

- A Tautology is a wff for which all truth table values are T.
- A Contradiction is a wff for which all truth table values are F.
- A Contingency is a wff that is neither a tautology nor a contradiction.
- Examples:
 - $P \vee \neg P$ is a tautology.
 - $P \land \neg P$ is a contradiction.
 - P → Q is a contingency.

Equivalence

• The wff V is equivalent to the wff W (written $V \equiv W$) iff V and W have the same truth value for each assignment of truth values to the propositional variables occurring in V and W.

Equivalence

- The wff V is equivalent to the wff W (written $V \equiv W$) iff V and W have the same truth value for each assignment of truth values to the propositional variables occurring in V and W.
- Example: $\neg A \land (B \lor A) \equiv \neg A \land B$

Equivalence

- The wff V is equivalent to the wff W (written $V \equiv W$) iff V and W have the same truth value for each assignment of truth values to the propositional variables occurring in V and W.
- Example: $\neg A \land (B \lor A) \equiv \neg A \land B$
- Example: $A \lor \neg A \equiv B \lor \neg B$

Equivalence and Tautologies

- We can express equivalence in terms of tautologies as follows:
- $V \equiv W$ iff $(V \rightarrow W)$ and $(W \rightarrow V)$ are tautologies.
- Proof: $V \equiv W$ iff V and W have the same truth values iff $(V \to W)$ and $(W \to V)$ are tautologies. QED.

Basic Equivalences that Involve True and False

The following equivalences are easily checked with truth tables:

- $A \wedge \mathsf{True} \equiv A$
- $A \wedge \mathsf{False} \equiv \mathsf{False}$
- $A \land \neg A \equiv \mathsf{False}$
- $A \vee \text{True} \equiv \text{True}$
- $A \vee \mathsf{False} \equiv A$
- $A \rightarrow \mathsf{True} \equiv \mathsf{True}$
- $A \rightarrow \mathsf{False} \equiv \neg A$
- $A \lor \neg A \equiv \mathsf{True}$
- True $\rightarrow A \equiv A$
- False $\rightarrow A \equiv \text{True}$
- $A \rightarrow A \equiv \text{True}$

Other Basic Equivalences

The connectives \land and \lor are commutative, associative, and distribute over each other. These properties and the following equivalences can be checked with truth tables

- $A \wedge A \equiv A$
- $A \lor A \equiv A$
- $\neg \neg A \equiv A$
- $\neg (A \land B) \equiv \neg A \lor \neg B$
- $\neg (A \lor B) \equiv \neg A \land \neg B$
- $A \rightarrow B \equiv \neg A \lor B$
- $A \wedge (A \vee B) \equiv A$
- $A \lor (A \land B) \equiv A$
- $\neg (A \rightarrow B) \equiv A \land \neg B$
- $A \wedge (\neg A \vee B) \equiv A \wedge B$
- $A \lor (\neg A \land B) \equiv A \lor B$

Using Equivalences to Prove Other Equivalences

We can often prove an equivalence without truth tables because of the following two facts.

- 1. If $U \equiv V$ and $V \equiv W$, then $U \equiv W$.
- 2. If $U \equiv V$, then any wff W that contains U is equivalent to the wff obtained from W by replacing an occurrence of U by V.

continued

- Example: Use equivalences to show that $A \lor B \to A \equiv B \to A$
- Proof:

$$A \lor B \to A \equiv \neg (A \lor B) \lor A$$
$$\equiv (\neg A \land \neg B) \lor A$$
$$\equiv (\neg A \lor A) \land (\neg B \lor A)$$
$$\equiv \mathsf{True} \land (\neg B \lor A)$$
$$\equiv \neg B \lor A$$
$$\equiv B \to A$$

Practice Problems

Use known equivalences.

- Prove that $A \vee B \rightarrow C \equiv (A \rightarrow C) \wedge (B \rightarrow C)$.
- Prove that $(A \to B) \lor (\neg A \to B)$ is a tautology (i.e., show it is equivalent to true).
- Prove that $A \to B \equiv (A \land \neg B) \to \mathsf{False}$.

Is it a tautology, a contradiction, or a contingency?

If P is a variable in a wff W, let W(P/True) denote the wff obtained from W by replacing all occurrences of P by True. W(P/False) is defined similarly. The following properties hold:

- W is a tautology iff W(P/ True) and W(P/ False) are tautologies.
- W is a contradiction iff W(P/ True) and W(P/ False) are contradictions.

Quine's method uses these properties together with basic equivalences to determine whether a wff is a tautology, a contradiction, or a contingency.

Example of Quine's Method

Let
$$W = (A \land B \rightarrow C) \land (A \rightarrow B) \rightarrow (A \rightarrow C)$$
.

$$W(A/\mathsf{False}\) \equiv (\mathsf{False}\ \land\ B \to C) \land (\mathsf{False} \to B) \to (\mathsf{False} \to C) \\ \equiv (\mathsf{False} \to C) \land \mathsf{True} \to \mathsf{True} \\ \equiv \mathsf{True}.$$

$$W(A/\mathsf{True}\) \equiv (\mathsf{True}\ \land\ B \to C) \land (\mathsf{True}\ \to B) \to (\mathsf{True}\ \to C) \equiv (B \to C)\ \land\ B \to C$$

Let
$$X = (B \to C) \land B \to C$$
. Then we have:

$$X(B/\mathsf{True}\) \equiv (\mathsf{True} o C) \wedge \mathsf{True} o C$$
 $\equiv C \wedge \mathsf{True} o C$
 $\equiv C \to C$
 $\equiv \mathsf{True}$
 $X(B/\mathsf{False}\) \equiv (\mathsf{False} \to C) \wedge \mathsf{False} \to C$
 $\equiv \mathsf{False} \to C$
 $\equiv \mathsf{True}$

Practice Quine's Method

- Show that $(A \lor B \to C) \lor A \to (C \to B)$ is NOT a tautology.
- Show that $(A \rightarrow B) \rightarrow C$ is NOT equivalent to $A \rightarrow (B \rightarrow C)$.

Normal Forms

- A literal is either a propositional variable or its negation, e.g.,
 A and ¬A are literals.
- A disjunctive normal form (DNF) is a wff of the form
 C₁ ∨ . . . ∨ C_n where each C_i is a conjunction of literals, called
 a fundamental conjunction.
- A conjunctive normal form (CNF) is a wff of the form $D_1 \wedge ... \wedge D_n$ where each D_i is a disjunction of literals, called a fundamental disjunction.
- Examples:
 - $(A \wedge B) \vee (\neg A \wedge C \wedge \neg D)$ is a DNF.
 - $(A \lor B) \land (\neg A \lor C) \land (\neg C \lor \neg D)$ is a CNF.
 - A, B, $A \lor \neg B$, and $A \land \neg B$ are each both DNF and CNF. Why?

Any wff has a DNF and a CNF

For any propositional variable A we have True $\equiv A \lor \neg A$ and False $\equiv A \land \neg A$. Both forms are DNF and CNF. For other wffs use basic equivalences to:

- 1. remove conditionals
- 2. move negations to the right, and
- 3. transform into required form, simplifying when desired.

Example

Transform $(A \rightarrow B \lor C) \rightarrow (A \land D)$ into first DNF, then CNF.

CNF and DNF practice problem

Transform $(A \land B) \lor \neg (C \rightarrow D)$ into DNF and into CNF.

Every Truth Function is a WFF

- A truth function is a function whose arguments and results take values in {true, false}. So a truth function can be represented by a truth table. The task is to find a wff with the same truth table. We can construct both a DNF and a CNF.
- Technique: To construct a DNF, take each line of the table
 with a true value and construct a fundamental conjunction
 that is true only on that line. To construct a CNF, take each
 line with a false value and construct a fundamental
 disjunction that is false only on that line.

Truth function example

• Example: Let f be defined by f(A, B) = if A = B then True else False.

•

Α	В	f(A,B)	(DNF Parts)	(CNF Parts)
T	T	T	$A \wedge B$	
T	F	F		$\neg A \lor B$
F	Τ	F		$A \lor \neg B$
F	F	T	$\neg A \wedge \neg B$	

- So f(A, B) can be written as follows:
 - $f(A, B) = (A \wedge B) \vee (\neg A \wedge \neg B)$ (DNF)
 - $f(A, B) = (\neg A \lor B) \land (A \lor \neg B) (CNF)$

Complete Sets of Connectives

A set S of connectives is *complete* if every wff is equivalent to a wff constructed from S. So $\{\neg, \land, \lor, \rightarrow\}$ is complete by definition. Each of the following sets is a complete set of connectives.

- $\{\neg, \land, \lor\}$
- $\{\neg, \wedge\}$
- $\{\neg, \lor\}$
- $\{\neg, \rightarrow\}$
- $\{\mathsf{False}, \rightarrow\}$
- {NAND}
- {NOR}