אלגברה ב' – טענה בנוגע לדרך מציאת בסיס ז'ורדן

$$.i=k$$
 וניקח וניקח $B=\biguplus_{v\in B_{k}}C_{v}$ 1.

2. נקטין את i באחת. נבחר תת־קבוצה סדורה מקסימלית $ilde B_i$ של $ilde B_i$ שהינה בלתי־תלויה לינארית בוקטורים בל בי זה מספר הבלוקים מגודל ב' $2\dim\ker\left(T^i\right)-\dim\ker\left(T^{i+1}\right)-\dim\ker\left(T^{i-1}\right)$ בי זה מספר הבלוקים מגודל B בצורת ז'ורדן של C. לבל וקטור $v\in ilde B_i$ נשרשר ל' בצורת ז'ורדן של C.

$$B_{\text{new}} = B_{\text{old}} \uplus C_n$$

. אם B באורך n, נסיים. אחרת נחזור לשלב הקודם.

לשם הוכחת הטענה, נזכיר תחילה הגדרה וטענה מההרצאה, ונוכיח למה על סכומים ישרים.

V= מבורם וקטוריים עבורם בורם $V_1,V_2\leq V$ תת־מרחבים וקטורי סוף־מימדי מעל שדה $\mathbb F$ ויהיו ויהיו $V_1,V_2\leq V$ תת־מרחבים וקטוריים עבורם $P_{V_1,V_2}\left(v_1+v_2
ight)=P_{V_1,V_2}\left(v_1+v_2
ight)=P_{V_1,V_2}\in\mathrm{End}_{\mathbb F}\left(V\right)$ היחידה המקיימת V_1+V_2 במקביל לי V_1+V_2 היא ההעתקה ויהיו ויהיו V_1+V_2 היחידה המקיימת במקביל לי V_1+V_2 היא ההעתקה ויהיו ויהיו עבורם V_1+V_2 היחידה המקיימת עבורם עבורם עבורם V_1+V_2 היא העתקה ויהיו עבורם עבורם

V שענה ערחבים וקטוריים של $V_1,\dots,V_m \leq V$ ויהיו ויהיו מעל שדה \mathbb{F} מרחבים וקטוריים של סענה מרנאים הבאים שקולים.

;
$$V=igoplus_{i\in[m]}V_i$$
 .1

- ;V בסיסים ל $\biguplus_{i \in [m]} B_i$ הינה הסדורה אלב בחירה עבור בל עבור בל בהתאמה, הקבוצה הסדורה של בסיסים וU
 - V אבסיס של לבל $\biguplus_{i \in [m]} B_i$ היא הסדורה בך שהקבוצה בהתאמה לבל לבל לבל מיסים.

 $V=V_1\oplus V_2$ מרחב עבורם עבורם $V_1,V_2\leq V$ ויהיו $\mathbb F$ אויהיו מעל שדה פון־מימדי מעל מרחבים עבורם $\ell:=\dim_{\mathbb F}(V_2)$ אז אויהיו $\ell:=\dim_{\mathbb F}(V_2)$ קבוצה סדורה של $C=(w_1,\dots,w_\ell)$ וקטורים. אז $B=(u_1,\dots,u_k)$ בסיס של B אם ורק אם $B\oplus C$

$$P_{V_2,V_1}(C) := (P_{V_2,V_1}(w_1), \dots, P_{V_2,V_1}(w_\ell))$$

 $.V_2$ בסיס של

הובחה. V_2 בסיס של V_2 ונראה ביי V_3 בסיס של V_3 בסיס של בסיס של V_3 בייס של בסיס של V_3 הובחה.

$$\sum_{i \in [\ell]} \alpha_i P_{V_2, V_1} \left(w_i \right) = 0$$

 $i\in [\ell]$ לכל מי ליבל מי נראה בי

מתקיים

$$\sum_{i \in [\ell]} \alpha_i w_i = \sum_{i \in [\ell]} \alpha_i (w_i - P_{V_2, V_1} (w_i)) + \sum_{i \in [\ell]} \alpha_i P_{V_2, V_1} (w_i)$$

$$= \sum_{i \in [\ell]} \alpha_i (w_i - P_{V_2, V_1} (w_i))$$

באשר

$$w_i - P_{V_2,V_1}(w_i) \in \text{Im}\left(\text{Id}_V - P_{V_2,V_1}\right) \subseteq V_1$$

לכל $B \uplus C$, אך $\operatorname{Span}(B)$, אך הינו בסיס ב־ $B \uplus C$, קיבלנו צירוף לינארי של וקטורים ב־C ששווה לוקטור ב-C, קיבלנו צירוף לינארית (כי $B \uplus C$ כי שווה אפס. לבן, מבך שהקבוצה הסדורה בלתי תלויה לינארית (כי C בטיס) נקבל בי $\alpha_i = 0$ לכל $\alpha_i = 0$, כנדרש.

 $.V_2$ של בסיס הינו בסיס של $P_{V_2,V_1}\left(C
ight)$. נניח כעת כי

.V בסיס של $B \uplus P_{V_2,V_1}\left(C
ight)$ בסיס של 0.2 מטענה

יהיו $lpha_i,eta_j\in\mathbb{F}$ עבורם

$$\sum_{i \in [k]} \alpha_i u_i + \sum_{j \in [\ell]} \beta_j w_j = 0$$

נראה בי $\beta_j=0$ לבל הל, אבן, מתקיים

$$0 = \sum_{i \in [k]} \alpha_i u_i + \sum_{j \in [\ell]} \beta_j w_j$$

=
$$\sum_{i \in [k]} \alpha_i u_i + \sum_{j \in [\ell]} \beta_j P_{V_2, V_1}(w_j) + \sum_{j \in [\ell]} \beta_j (w_j - P_{V_2, V_1}(w_j))$$

אבל $j\in\left[\ell
ight]$ לכל $w_{j}-P_{V_{2},V_{1}}\left(w_{j}
ight)\in V_{1}$ אבל

$$\sum_{j \in [\ell]} \beta_j (w_j - P_{V_2, V_1} (w_j)) \in V_1$$

אז יש $\gamma_i \in \mathbb{F}$ עבורן

$$\sum_{j \in [\ell]} \beta_j \left(w_j - P_{V_2, V_1} \left(w_j \right) \right) = \sum_{i \in [k]} \gamma_i u_i$$

ונקבל כי

$$0 = \sum_{i \in [k]} (\alpha_i + \gamma_i) u_i + \sum_{j \in [\ell]} \beta_j P_{V_2, V_1} (w_j)$$

 $lpha_i+\gamma_i=0$, אבל ראינו בי שווים לאפס. כלומר, V הינו בסיס עבור $B\uplus P_{V_2,V_1}\left(C\right)$ אבל ראינו בי γ_i לכל $\beta_j=0$ לכל ל $\beta_j=0$ לכל ל $\beta_j=0$

$$\sum_{i \in [k]} \gamma_i u_i = 0$$

 $lpha_i=0$ ולבן ביוון ש־ $lpha_i+\gamma_i=0$ בסיס נקבל בי $\gamma_i=0$ בסיס נקבל בי בסיס נקבל בי אז מכך ש־ $B=(u_1,\dots,u_k)$ נקבל בי גם לכל , נבדרש.

n גוניח את הטענה באינדוקציה על הובחה (הובחת הטענה). נוכיח

בסיס האינדוקציה: עבור n=1 מתקיים בי T אופרטור מלרי נילפוטנטי, ולכן אופרטור האפס. אז לכל בחירה n=1 נקבל בי $\ker(T)$ עבור בסיס של $\ker(T)$ עבור בסיס של $\ker(T)$

צעד האינדוקציה: נניח כעת שהטענה נכונה עבור כל מרחב־וקטורי ממימד קטן מn, ונוכיח את הטענה עבור צעד האינדוקציה: נניח כעת שהטענה נכונה עבור כל מרחב־וקטורי ממימד N

לפי משפט מההרצאה, קיימים תת־מרחבים T-שמורים $V_1,\dots,V_\ell\leq V$ עבורם V_i עבורם V_i ובך שר $\dim_{\mathbb F}(V_i)=k$ ש־ $T|_{V_i}$ הם מניח בלי הגבלת הכלליות כי המרחבים V_i עבורם $i\in[\ell]$ הם $i\in[\ell]$ הינו אי־פריד לכל $i\in[\ell]$. נניח בלי הגבלת הכלליות בי המרחבים $i\in[\ell]$ נזכיר בי $i\in[\ell]$ הוא מספר הבלוקים מגודל $i\in[\ell]$ בצורת ז'ורדן של $i\in[\ell]$. נסמן $i\in[\ell]$ ב $i\in[\ell]$ $i\in[\ell]$

k מתקיים כי לכל $i\in[n_k]$ הצמצום $T|_{V_i}$ הוא אופרטור נילפוטנטי אי־פריד על מרחב וקטורי ממימד V_i , לכן, קיימים וקטורים w_1,\dots,w_{n_k} עבורם v_i,\dots,v_i לכן, קיימים וקטורים v_i,\dots,v_n עבורם v_i,\dots,v_n בסיס ז'ורדן של v_i,\dots,v_n ישר, נקבל מטענה v_i,\dots,v_n ישר, נקבל מטענה v_i,\dots,v_n ישר, נקבל מטענה v_i,\dots,v_n

$$B_{W} := \biguplus_{i \in [n_{k}]} C_{w_{i}} = \left(T^{k-1}(w_{1}), \dots, T(w_{1}), w_{1}, \dots, T^{k-1}(w_{n_{k}}), \dots, T(w_{n_{k}}), w_{n_{k}}\right)$$

.W בסיס של