工作项目介绍

●车牌识别

车牌定位---字符分割---字符识别

●车辆特征识别

模型训练: 样本采集、训练调参、网络调整

车牌定位流程

车牌定位——生成边缘图

- ●图像预处理:中值滤波、灰度图、HSL空间图像
- 定义车牌颜色空间(HSL): 蓝白、黄黑、白黑
- ●搜索波峰波谷
- 搜索边缘点,判断边缘点所属颜色空间
- ●生成三种颜色空间边缘图

车牌灰度图

车牌定位——生成边缘连线图

- 按行扫描边缘图
- 两点距离<DistanceThr
- SumPoints>=SumEdgePointThr

车牌定位——生成车牌候选区

- ●自上向下搜索
- ●垂直距离<VerticalDisThr
- CrossDistance>HoriDisThr

车牌定位——候选区过滤

- 宽高信息、纹理特征、颜色特征过滤
- LBP特征+Adaboost分类器过滤,耗时减少38%

车牌候选区耗时(ms):

版本	LBP检 测	分类器二 次定位	预处理 分割	字符识 别	搜索分 割	每候选 区
OLD	无	0.60	10.97	3.72	2.98	18.28
NEW	0.12	0.46	5.17	1.64	0.89	8.28

图片耗时(ms):

版本	检测	正常分割 识别	搜索分 割识别	选优	前四求 和	每图
OLD	18.61	50.28	10.13	0.0086	79.0286	78.45
NEW	18.45	24.20	3.12	0.0073	45.7773	44.47

字符识别——"学"字误识

●初始识别结果——SVM分类器——最终识别结果

eg: (I)真实值"7"——初始识别"7"——"7""学"SVM——最终识别"7"

(2)真实值"学"——初始识别"2"——"2""学"SVM——最终识别"学"

车型识别——训练样本采集

- ●原始大图存放: 样杆号_日期_时间_车牌类型_车牌号码_车辆类型_{}_{}.jpg
- 训练样本(小图)存放: 车牌位置+比例扩充→车辆小图

原模型识别新样本→参考label

人工比对,label→ID→车牌号→图片

●车辆位置与大小随机偏移 94%→96%

车型识别——模型训练

●网络: AlexNet、VGGI6、MobileNet(结构、耗时、识别效果)

AlexNet、VGG、MobileNet效果对比

模型	迭代次数	识别率
MobileNet_Finetuning	69,039	92.46%
MobileNet_NoFinetuning	280,000	94.21%
VGG_Finetuning	300,000	93.53%
Alex_NoFinetuning	111,101	95.73%

车型识别——模型训练

- 训练方式: 预训练模型finetune, noFinetune
- 学习率: fixed、step、multistep
- ●远景车辆类型识别:尺寸小、模糊

AlexNet为例,改输入227→II3,减少池化层PoolI

最终识别率94%,思考更高级的网络优化

车身颜色识别——模型训练

- AlexNet
- 多标签分类: 车型 + 车身颜色

两个标签,一个模型