Indexed Sets

December 24, 2023

This chapter contains **adds** cussion of indexed sets, the set-theoretical counterpart to indexed categories. In particular, here we explore:

- 1. Indexed sets, i.e. functors $K_{\mathsf{disc}} \to \mathsf{Sets}$ with K a set;
- 2. The limits and colimits in the category of *K*-indexed sets;
- 3. Constructions with indexed sets like dependent sums, dependent products, and internal Homs.

Contents

1 Indexed Sets 00QK

1.1 Foundations 00QL

Let *K* be a set.

Definition 1.1.1.1. A K-indexed set is a full $X: K_{disc} \to Sets$.

Remark 1.1.1.2. By Categories, ??, a *K*-indexed set consists of a *K*-indexed collection

$$X^{\dagger}: K \to \mathrm{Obj}(\mathsf{Sets}),$$

of sets, assigning a set $X_x^{\dagger} \stackrel{\text{def}}{=} X_x$ to each element x of K.

1.2 Morphisms of There are Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 1.2.1.1. A morphism of K-indexed sets from X to Y^1 is a natural transformation

$$f: X \Longrightarrow Y, \quad K_{\mathsf{disc}} \underbrace{\int \int_{Y}^{X}}_{Y} \mathsf{Sets}$$

from X to Y.

Remark 1.2.1.2. In detail, a morphism of R-indexed sets consists of a K-indexed collection

$$\{f_x\colon X_x\to Y_x\}_{x\in K}$$

of maps of sets.

1.3 The Category of Sets Indexed by a Fixed Set

Let *K* be a set.

Definition 1.3.1.1. The **category of** K**-indexed sets** is the category |Sets(K)| defined by

$$\mathsf{ISets}(K) \stackrel{\text{def}}{=} \mathsf{Fun}(K_{\mathsf{disc}}, \mathsf{Sets}).$$

Remark 1.3.1.2. In detail, the **category** \mathbb{C}_{K} -indexed sets is the category \mathbb{C}_{K} where

- *Objects.* The objects of |Sets(K)| are K-indexed sets as in ??;
- Morphisms. The morphisms of ISets(K) are morphisms of K-indexed sets as in
 ??;
- *Identities.* For each $X \in \text{Obj}(\mathsf{ISets}(K))$, the unit map

$$\mathbb{F}_X^{\mathsf{ISets}(K)} \colon \mathsf{pt} \to \mathsf{Hom}_{\mathsf{ISets}(K)}(X,X)$$

of ISets(K) at X is defined by

$$\operatorname{id}_{X}^{\mathsf{ISets}(K)} \stackrel{\text{def}}{=} \left\{ \operatorname{id}_{X_{x}} \right\}_{x \in K};$$

• *Composition.* For each $X, Y, Z \in Obj(\mathsf{ISets}(K))$, the composition map

$$\circ_{X,Y,Z}^{\mathsf{ISets}(K)} \colon \mathsf{Hom}_{\mathsf{ISets}(K)}(Y,Z) \times \mathsf{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \mathsf{Hom}_{\mathsf{ISets}(K)}(X,Z)$$

of ISets(K) at (X, Y, Z) is defined by

$$\{g_x\}_{x\in K}\circ_{X,Y,Z}^{\operatorname{lSets}(K)}\{f_x\}_{x\in K}\stackrel{\operatorname{def}}{=}\{g_x\circ f_x\}_{x\in K}.$$

¹Further Terminology: Also called a K-indexed map of sets from X to Y.

1.4 The Category of this dexed Sets

Definition 1.4.1.1. The **category of indexed sets** is the category |Sets defined as the Grothendieck construction of the functor |Sets: Sets^{op} \rightarrow Cats of ??:

$$ISets \stackrel{\text{def}}{=} \int^{Sets} ISets.$$

Remark 1.4.1.2. In detail, the **category of the detail**, the **category of the detail** is the category lSets where

- Objects. The objects of ISets are pairs (K, X) consisting of
 - *The Indexing Set.* A set *K*;
 - *The Indexed Set.* A *K*-indexed set *X* : K_{disc} → Sets;
- *Morphisms*. A morphism of ISets from (K,X) to (K',Y) is a pair (ϕ,f) consisting of
 - The Reindexing Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Indexed Sets. A morphism of K-indexed sets $f: X \to \phi_*(Y)$ as in the diagram

$$f: X \to \phi_*(Y),$$

$$K_{\mathsf{disc}} \xrightarrow{\phi} K'_{\mathsf{disc}}$$

$$X \xrightarrow{f} Y$$
Sets:

• *Identities.* For each $(K, X) \in Obj(ISets)$, the unit map

$$\mathbb{F}^{\mathsf{ISets}}_{(K,X)} \colon \mathsf{pt} \to \mathsf{ISets}((K,X),(K,X))$$

of ISets at (K, X) is defined by

$$id_{(K|X)}^{\mathsf{ISets}} \stackrel{\text{def}}{=} (id_K, id_X).$$

• *Composition.* For each $\mathbf{X}=(K,X)$, $\mathbf{Y}=(K',Y)$, $\mathbf{Z}=(K'',Z)\in \mathrm{Obj}(\mathsf{ISets})$, the composition map

$$\circ_{X,Y,Z}^{\mathsf{ISets}} \colon \mathsf{ISets}(Y,Z) \times \mathsf{ISets}(X,Y) \to \mathsf{ISets}(X,Z)$$

of ISets at (X, Y, Z) is defined by

$$(\psi, g) \circ (\phi, f) \stackrel{\text{def}}{=} (\psi \circ \phi, (g \circ \mathrm{id}_{\phi}) \circ f),$$

as in the diagram

for each $(\phi, f) \in \mathsf{ISets}(\mathbf{X}, \mathbf{Y})$ and each $(\psi, q) \in \mathsf{ISets}(\mathbf{Y}, \mathbf{Z})$.

2 Limits of Indexed Sets

2.1 Products of Kandexed Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 2.1.1.1. The **product of** X **and** Wire the K-indexed set $X \times Y : K_{\text{disc}} \to \mathsf{Sets}$ defined by

$$(X \times Y)_k \stackrel{\text{def}}{=} X_k \times Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical product in ISets(K) follows from Limits and Colimits, ?? of ??.

2.2 Pullbacks of Kothdexed Sets

Let $X, Y, Z \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f \colon X \to Z$ and $g \colon Y \to Z$ be morphisms of K-indexed sets.

Definition 2.2.1.1. The **pullback of** X **and and over** Z is the K-indexed set $X \times_Z Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \times_Z Y)_k \stackrel{\text{def}}{=} X_k \times_{Z_k} Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical pullback in ISets(K) follows from Limits and Colimits, ?? of ??.

2.3 Equalisers of Mondexed Sets

Let $X, Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f, g \colon X \rightrightarrows Y$ be morphisms of K-indexed sets.

Definition 2.3.1.1. The **equaliser of** f **and** gR\$ the K-indexed set Eq $(f,g): K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(\operatorname{Eq}(f,g))_k \stackrel{\text{def}}{=} \operatorname{Eq}(f_k,g_k)$$

for each $k \in K$.

Proof. That this agrees with the categorical equaliser in |Sets(K)| follows from Limits and Colimits, ?? of ??.

2.4 Products in ISees 5

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y: K'_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 2.4.1.1. The **product of** X **and** whethe $(K \times K')$ -indexed set

$$X \times Y \colon (K \times K')_{\mathsf{disc}} \to \mathsf{Sets}$$

defined by

$$(X \times Y)_{(k,k')} \stackrel{\text{def}}{=} X_k \times Y_{k'}$$

for each $(k, k') \in K \times K'$.

Proof. We claim that this agrees with the categorical product in ISets.

2.5 Pullbacks in Sets7

Let $X\colon K_{\mathsf{disc}}\to\mathsf{Sets}$ be a K-indexed set, let $Y\colon K'_{\mathsf{disc}}\to\mathsf{Sets}$ be a K'-indexed set, let $Z\colon K''_{\mathsf{disc}}\to\mathsf{Sets}$ be a K''-indexed set, and let $(\phi,f)\colon X\to Z$ and $(\psi,g)\colon Y\to Z$ be morphisms of indexed sets (as in $\ref{eq:sets}$).

Definition 2.5.1.1. The **pullback of** X **and Prover** Z is the $(K \times_{K''} K)$ -indexed set

$$X \times_Z Y \colon (K \times_{K''} K)_{\mathsf{disc}} \to \mathsf{Sets}$$

defined by

$$(X \times_Z Y)_{(k,k')} \stackrel{\text{def}}{=} X_k \times_{Z_{\phi(k)}} Y_{k'}$$
$$\stackrel{\text{def}}{=} X_k \times_{Z_{\psi(k)}} Y_{k'}$$

for each $(k, k') \in K \times_{K''} K'$.

Proof. We claim that this agrees with the categorical pullback in ISets.

2.6 Equalisers in | Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ be a K-indexed set, let $Y: K'_{\mathsf{disc}} \to \mathsf{Sets}$ be a K'-indexed set, and let $(\phi, f), (\psi, g): X \to Y$ be morphisms of indexed sets (as in $\ref{eq:sets}$).

Definition 2.6.1.1. The **equaliser of** (ϕ, β) **End of** (ψ, g) is the Eq (ϕ, ψ) -indexed set Eq(f, g): Eq $(\phi, \psi) \to$ Sets defined by

$$(\operatorname{Eq}(f,g))_k \stackrel{\text{def}}{=} \operatorname{Eq}(f_k,g_k)$$

for each $k \in \text{Eq}(\phi, \psi)$.

Proof. We claim that this agrees with the categorical equaliser in ISets.

3 Colimits of Indexed Sets

3.1 Coproducts of Rindexed Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 3.1.1.1. The **coproduct** of X arappears the K-k-indexed set $X \coprod Y : K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \coprod Y)_k \stackrel{\text{def}}{=} X_k \coprod Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical coproduct in |Sets(K)| follows from Limits and Colimits, ?? of ??.

3.2 Pushouts of Kondexed Sets

Let $X, Y, Z \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f \colon Z \to X$ and $g \colon Z \to Y$ be morphisms of K-indexed sets.

Definition 3.2.1.1. The **pushout** of X and X and X the X-indexed set $X \coprod_Z Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \coprod_{Z} Y)_k \stackrel{\text{def}}{=} X_k \coprod_{Z_k} Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical pushout in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

3.3 Coequalisers of RGIndexed Sets

Let $X, Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f, g \colon X \rightrightarrows Y$ be morphisms of K-indexed sets.

Definition 3.3.1.1. The **coequaliser** of X and \mathbb{R}^H is the K-indexed set $CoEq(f,g): K_{disc} \to Sets$ defined by

$$(\operatorname{CoEq}(f,g))_k \stackrel{\text{def}}{=} \operatorname{CoEq}(f_k,g_k)$$

for each $k \in K$.

Proof. That this agrees with the categorical coequaliser in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

4 Construction With Indexed Sets

4.1 Change of IndexPKg

Let $\phi: K \to K'$ be a function and let X be a K'-indexed set.

Definition 4.1.1.1. The **change of indexing of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X) \stackrel{\text{def}}{=} X \circ \phi_{\text{disc}}.$$

Remark 4.1.1.2. In detail, the **change of ordering of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X)_X \stackrel{\mathrm{def}}{=} X_{\phi(X)}$$

for each $x \in K$.

Proposition 4.1.1.3. The assignment $X \mapsto \emptyset (N)$ defines a functor

$$\phi^* : \mathsf{ISets}(K') \to \mathsf{ISets}(K),$$

where

• *Action on Objects.* For each $X \in \text{Obj}(\mathsf{ISets}(K'))$, we have

$$[\phi^*](X) \stackrel{\text{def}}{=} \phi^*(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K'))$, the action on Hom-sets

$$\phi_{X,Y}^* \colon \operatorname{Hom}_{|\mathsf{Sets}(K')}(X,Y) \to \operatorname{Hom}_{|\mathsf{Sets}(K)}(\phi^*(X),\phi^*(Y))$$

of ϕ^* at (X, Y) is the map sending a morphism of K'-indexed sets

$$f = \{f_x \colon X_x \to Y_x\}_{x \in K'}$$

from X to Y to the morphism of K-indexed sets defined by

$$\phi^*(f) \stackrel{\text{def}}{=} \left\{ f_{\phi(x)} \colon X_{\phi(x)} \to Y_{\phi(x)} \right\}_{x \in K}.$$

Proof. Omitted.

Proposition 4.1.1.4. The assignment $K \mapsto \mathbb{D}_{\mathbf{C}}(K)$ defines a functor

ISets: Sets^{op}
$$\rightarrow$$
 Cats,

where

• *Action on Objects.* For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[\mathsf{ISets}](K) \stackrel{\text{def}}{=} \mathsf{ISets}(K);$$

• Action on Morphisms. For each $K, K' \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{ISets}_{K,K'} \colon \mathsf{Sets}^{\mathsf{op}}(K,K') \to \mathsf{Fun}(\mathsf{ISets}(K),\mathsf{ISets}(K'))$$

of ISets at (K, K') is the map defined by

$$\mathsf{ISets}_{K,K'}(\phi) \stackrel{\scriptscriptstyle \mathsf{def}}{=} \phi^*$$

for each $\phi \in \mathsf{Sets}^{\mathsf{op}}(K, K')$.

Proof. Omitted.

4.2 Dependent SumsQ

Let $\phi: K \to K'$ be a function and let X be a K-indexed set.

Definition 4.2.1.1. The **dependent sum of MRR** the K'-indexed set $\Sigma_{\phi}(X)^2$ defined by

$$\Sigma_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(X),$$

and hence given by

$$\Sigma_{\phi}(X)_{x} \cong \coprod_{y \in \phi^{-1}(x)} X_{y}$$

for each $x \in K'$.

² Further Notation: Also written $\phi_*(X)$.

Proposition 4.2.1.2. The assignment $X \mapsto \mathbb{Z}(\mathbb{X})$ defines a functor

$$\Sigma_{\phi} : \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

• *Action on Objects.* For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Sigma_{\phi}](X) \stackrel{\text{def}}{=} \Sigma_{\phi}(X);$$

• Action on Morphisms. For each $X, Y \in Obj(\mathsf{ISets}(K))$, the action on Hom-sets

$$\Sigma_{\phi|X,Y} \colon \mathrm{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \mathrm{Hom}_{\mathsf{ISets}(K')}(\Sigma_{\phi}(X),\Sigma_{\phi}(Y))$$

of Σ_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\begin{split} \Sigma_{\phi}(f) &\stackrel{\text{def}}{=} \mathrm{Lan}_{\phi}(f); \\ &\cong \coprod_{y \in \phi^{-1}(X)} f_y. \end{split}$$

Proof. Omitted.

4.3 Dependent Products

Let $\phi \colon K \to K'$ be a function and let X be a K-indexed set.

Definition 4.3.1.1. The **dependent productor** X is the X'-indexed set $\Pi_{\phi}(X)^3$ defined by

$$\Pi_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(X),$$

and hence given by

$$\Pi_{\phi}(X)_{x} \cong \prod_{y \in \phi^{-1}(x)} X_{y}$$

for each $x \in K'$.

Proposition 4.3.1.2. The assignment $X \mapsto \mathbb{M}(X)$ defines a functor

$$\Pi_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

³ Further Notation: Also written $\phi_!(X)$.

4.4 Internal Homs 10

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Pi_{\phi}](X) \stackrel{\text{def}}{=} \Pi_{\phi}(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on Hom-sets

$$\Pi_{\phi|X,Y} \colon \operatorname{Hom}_{|\mathsf{Sets}(K)}(X,Y) \to \operatorname{Hom}_{|\mathsf{Sets}(K')}(\Pi_{\phi}(X),\Pi_{\phi}(Y))$$

of Π_{ϕ} at (X, Y) is the map sending a morphism of K-indexed sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Pi_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(f);$$

$$\cong \prod_{y \in \phi^{-1}(x)} f_{y}.$$

Proof. Omitted.

4.4 Internal Homs ORW

Let *K* be a set and let *X* and *Y* be *K*-indexed sets.

Definition 4.4.1.1. The **internal Hom of indexed sets from** X **to** Y is the indexed set $\mathbf{Hom}_{|\mathsf{Sets}(K)}(X,Y)$ defined by

$$\mathbf{Hom}_{\mathsf{ISets}(K)}(X,Y) \stackrel{\mathsf{def}}{=} \mathsf{Sets}(X_{x},Y_{x})$$

for each $x \in K$.

4.5 Adjointness of Ardexed Sets

Let $\phi: K \to K'$ be a map of sets.

Proposition 4.5.1.1. We have a triple adjunction?

$$(\Sigma_{\phi} \dashv \phi^* \dashv \Pi_{\phi}): \quad \mathsf{ISets}(K) \longleftarrow \phi^* \longrightarrow \mathsf{ISets}(K').$$

Proof. This follows from Kan Extensions, ?? of ??.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

- 7. Indexed Sets
- 8. Fibred Sets
- Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories
- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

- 17. Bicategories
- 18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

34. Near-Semirings

35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes