

VESP Vision

To be the centre of excellence in the field of technical education.

Program Code:- Common to all semesters

Course Name:-Basic Science(physics)

Course Code: - 22102

Course coordinator: Mrs. Deepa Gupte

Date: 12/07/2020

Unit No:1

Unit Name: Units and Measurements

Unit Outcomes (UO1a): Describe the given measurement

device and its application

Learning Outcome (LO1): Students will be able to explain physical quantities and its types with examples.

Contents: Unit, physical quantities: fundamental and derived quantities and their units

110

Learning Objective/ Key learning

- Students will be able to explain physical quantities and its types with examples.
- ▶ Students will be able to state SI units of fundamental and derived Physical quantities

INTRODUCTION

- Basic physics is a branch of science which deals with the study of matter and its properties.
- Measurable quantity of matter is called a physical quantity.
- ► Measurement of quantities is important and has numerous applications in industry, construction and other field of engineering and technology.
- For accurate measurements of physical quantities, its value is compared with the standard quantity of same kind.
- ► The standard used to measure any physical quantity is called its unit.

MEASUREMENT OF PHYSICAL QUANTITY

V.E.5.
Since 1962

- What do you see?
- **▶** Which Physical Quantity will you measure?
- What are their dimensions?

A table and a chair
Height, Length and Width
Table dimension is
H = 75cm, L = 120cm, W = 70cm
Chair dimension is
H = 97cm, L = 60cm, W=44cm

UNITS FOR MEASUREMENT

- Measurement consists of two parts
 - ► First is the number which indicates the magnitude of quantity
 - Second indicates the standard
- ► Here the Length of table, L = 1.2 m
 - ► 1.2 is the magnitude of length
 - ▶ metre (m) is the standard or unit of length

Requirement of Standard Unit

- Requirement of standard unit are as follows:
 - ▶ It should be universally accepted (i.e. accepted by all).
 - ▶ It should be definite and well defined.
 - ▶ It should be invariable (fixed) with time and place.
 - ▶ It should be easily reproducible.
 - It should be easily comparable with other similar units.
 - ▶ Its size should be such that the quantities measured with it should not be too large or too small.
 - ► It should be readily available.

Attempt Set 1 MCQs

Set 1: Question No 1	Set 1: Question No 2	Set 1: Question No 3 Which of the following is NOT a characteristic of standard unit	
The used for the measurement of physical quantity is called unit of that quantity	Physical quantities are property of matter		
Recall/ Remembering	Understanding	Application	
a) quantity	a) immeasurable	a) invariable	
o) dimension	b) measurable	b) reproducible	
c) standard	c) reliable	c) available	
d) none	d) unreliable	d) perishable	
Ans: <c></c>	Ans: 	Ans: <d></d>	

Physical Quantities

- Physical quantities can also be classified into -
 - 1. Fundamental physical quantity and
 - 2. Derived physical quantity.

Fundamental Physical Quantities

- ► Fundamental Physical Quantities: Physical quantities which are independent and does not depend on other physical quantities are called *fundamental physical quantities*.
- ► Length, Mass and Time are taken as the basic fundamental quantities.
- ► Other fundamental physical quantities are electric current, temperature, luminous intensity and amount of substance.

► The units of Fundamental physical quantities are called *fundamental units*.

SI unit of Physical Quantities

Sr. No.	Physical Quantity	S.I unit	Symbol			
(a) Fundamental physical quantities						
1.	Length	metre	m			
2.	Mass	kilogram	kg			
3.	Time	second	S			
4.	Electric current	ampere	Α			
5.	Temperature	kelvin	K			
6.	Luminous Intensity	candela	cd			
7.	Amount of substance	mole	mol			
(b) Supplementary physical quantities						
1.	Plane angle	radian	rad			
2.	Solid angle	steradian	sr			

Derived Physical Quantities

- ▶ Derived Physical Quantities: Physical quantities which can be expressed in terms of fundamental physical quantities are called derived physical quantities.
- ► All physical quantities other than fundamental physical quantities can be expressed in terms of fundamental ones.
- ► Example speed = $\frac{\text{distance}}{\text{time}}$
- ► Hence speed depends on distance and time. Similarly, area, density, power, force, energy etc. can be expressed in terms of fundamental quantities and so they are derived quantities.
- ▶ Units of derived physical quantities are called *derived units*.

SI unit of Physical Quantities

Sr. No.	Physical Quantity	S.I unit	Symbol		
(c) Derived physical quantities					
1.	Area	square metre	m^2		
2.	Volume	cubic metre	m ³		
3.	Density	kg/cubic metre	Kg/m³		
4.	Velocity	meter/sec	m/s		
5.	Acceleration	meter/sec ²	m/s ²		
6.	Force	newton	N		
7.	Work or Energy	joule	J		
8.	Power	watt	W		
9.	Electric Charge	coulomb	С		
10.	Electric Resistance	ohm	Ω		
11.	Electric Potential	volt	V		
12.	Electric Capacitance	farad	F		