

08/02/201709:00-12:00

חדו"א להנדסת תוכנה

מועד א'

מרצה:

'תשע"ח סמסטר א

השאלון מכיל עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

A4 עמודים בפורמט (A4).

אחר / הערות

יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - שאלות 1,2 יש לענות על כל השאלות!
 - שאלות 3,4,5,6 יש לענות שלוש שאלות בלבד מתוך ארבע. \bullet
 - שאלות 7,8 יש לענות על שאלה אחת בלבד מתוך שתיים.

שאלות 1 ו- 2 - חובה!

שאלה 1 חקרו באופן מלא את הפונקציה

$$f(x) = \frac{(x+2)^2}{x-2}$$

(תחום הגדרה, חיתוך עם הצירים, סימני הפונקציה, אסימפטוטות, תחומי עליה וירידה, נקודות קיצון, תחומי קמירות ונקודות פיתול) וציירו את סקיצת הגרף של הפונקציה.

שאלה 2 הוכיחו: לפונקציה f(x) קיים גבול בנקודה x=a אם ורק אם קיימים ומתלכדים הגבולות החד צדדיים של f(x) בנקודה זו.

שאלה 3

א) מצאו את משוואת המשיק ומשוואת הנורמל לקו

$$\begin{cases} x = 1 - \frac{1}{e^t} \\ y = \sqrt{e^t} - 1 \end{cases}$$

x=0 בנקודה שבה

 $\cos\left(rac{\pi}{2} - \arctan\left(rac{6}{8}
ight)
ight)$ הגדר את הפונקציה וחשבו ללא מחשבון $\arctan(t)$

שאלה 4

א) חשבו את הגבולות הבאים:

$$\lim_{x\to 0}\frac{\sin^2(2x)}{x}$$
 (2
$$\lim_{x\to \infty}(1-e^{-x})^x$$
 (1

ב) הוכיחו כי לא קיימת פונקציה אי-זוגית המוגדרת לכל מספר ממשי ואינה עוברת בראשית.

שאלה 5

א) פתור את האינטגרלים הבאים:

$$\int \frac{x+4}{x^2+8x} \, dx$$
 (2)
$$\int_0^1 \frac{1+\arctan(x)}{x^2+1} \, dx$$
 (1)

ב) חשבו על סמך המשמעות הגיאומטרית את

$$\int_{-1}^{4} \left| \min(x, 2x) \right| dx$$

שאלה 6

- $.[-\frac{\pi}{4},\frac{\pi}{4}]$ אחד בקטע פתרון יש $\tan(x)=x$ למשוואה הוכיחו (ג
 - $f(x)=\ln(x)$ שבו לפי ההגדרה את הנגזרת לפי חשבו לפי

שאלה 7 מתקיים -1 < a < b מתקיים

$$1 - \frac{a+1}{b+1} < \ln\left(\frac{b+1}{a+1}\right) < \frac{b+1}{a+1} - 1 \ .$$

. (שימו לב לתחום ההגדרה) אירים (שימו לב לתחום ההגדרה) אירים $y=\sqrt{\dfrac{\arccos(x)}{2}}$ מצאוו על הקו

פתרונות

שאלה 1

 $x \neq 2$ מחום הגדרה: 1 שלב

.(0,-2) ו- (-2,0) ו- (-2,0) ו- (-2,0) ו- (-2,0)

x	x < -2	-2 < x < 2	x > 2	
f(x)	_	_	+	

x=2 :שלב אסימפטוטה אנכית

שלב 4 אסימפטוטה אופקית: אין.

שלב 5 אסימפטוטה משופעת:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - m \cdot x) = 6$.

 $-x o \infty$ אסימפטוטה משופעת אסימפטוטה אסימפטוטה אסימפטוטה לכן אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה אסימפטוטה

ב- $\infty - \infty$ אותו הדבר.

שלב 6 תחומי עליה וירידה:

$$f'(x) = \frac{(x-6)(x+2)}{(x-2)^2}$$

(6,16) -ו (-2,0) נקודות קריטיות:

x	x < -2	x = -2	-2 < x < 2	2 < x < 6	x = 6	x > 6
f'(x)	+	0	_	_	0	+
f(x)	7	מקס	>	V	מינימום	7

שלב 7 תחוטמי קמירות:

$$f''(x) = \frac{32}{(x-2)^3}$$

נקודות פיתול: אין.

x	x < 2	x > 2		
f''(x)	_	+		
f(x)	↓ קמורה	למורה ↑		

שלב 8 שרטוט:

שאלה 2 ⇒

נתון כי $\delta>0$ קיים $\forall \epsilon>0$ ההגדרה לפי אז לפי , $\lim_{x\to a}f(x)=L$ כד נתון כי

$$|x-a| < \delta$$
 \Rightarrow $|f(x) - L| < \epsilon$.

שים לב

$$0<|x-a|<\delta$$
 $ightharpoonup -\delta < x-a < 0$ או $0< x-a < \delta$ $ightharpoonup a-\delta < x < a$ או $a< x < a+\delta$ $ightharpoonup x \in (a-\delta,a)$ או $x\in (a,a+\delta)$ $ightharpoonup \exists \delta>0 \;, orall \epsilon \;,$ כלומר, $\delta>0$

$$x \in (a - \delta, a) \Rightarrow |f(x) - L| < \epsilon$$
 (1*)

$$x \in (a, a + \delta) \Rightarrow |f(x) - L| < \epsilon$$
 (2*)

אזי, בהינתן ערך מסוים ל- ϵ , ניתן למצוא ערך של δ כך שהתנאים (*1) ן- (2*) מתקיימים. אבל (1*) דווקא התנאי , $\lim_{x\to a^+}f(x)=L$, $\lim_{x\to a^+}f(x)=L$ ההכרחי לקיום הגבול (2*) דווקא התנאי ההכרחי לקיום הגבול

לכן הוכיחונו כי

$$\lim_{x\to a} f(x) = L \qquad \lim_{x\to a^-} f(x) = L \quad \text{-1} \lim_{x\to a^+} f(x) = L \ .$$

 \Rightarrow

-ט כך א

$$\delta_1>0$$
 קיים ל $\epsilon>0$ אז ה
 $\lim_{x\to a^+}f(x)=L=\lim_{x\to a^-}f(x)$ אם

$$x \in (a - \delta_1, a) \qquad \Rightarrow \qquad |f - L| < \epsilon , \tag{#1}$$

-ו- $\delta_2>0$ כך ש $\forall \epsilon>0$ כך

$$x \in (a, a + \delta_2)$$
 \Rightarrow $|f - L| < \epsilon$. (#2)

נגדיר $\delta:=\min(\delta_1,\delta_2)$ אז

$$x \in (a - \delta_1, a)$$
 -1 $x \in (a, a + \delta_2) \leadsto x \in (a - \delta_1, a + \delta_2)$ $\leadsto x \in (a - \delta, a + \delta)$ $\leadsto 0 < |x - a| < \delta$. (#3)

-כך ש $\delta>0$, $\forall \epsilon>0$, הנתונים, (#2) ו- (#3) כך ש

$$0 < |x - a| < \delta$$
 \Rightarrow $|f(x) - L| < \epsilon$.

יכיחונו לכן הוכיחונו. לכן הו $\lim_{x\to a}f(x)=L$ אבל לקיום לקיום ההכרחי התנאי התנאי ההכרחי

$$\lim_{x\to a^-} f(x) = L \quad \operatorname{-1}\lim_{x\to a^+} f(x) = L \qquad \Rightarrow \qquad \lim_{x\to a} f(x) = L \ .$$

שאלה 3

$$x=0$$
 א) בנקודה

$$1 - \frac{1}{e^t} = 0 \qquad \Rightarrow \qquad e^t = 1 \qquad \Rightarrow \qquad t = 0 \ ,$$

-1

$$y(t=0)=0.$$

 $.y_x^\prime(t=0)$ ניתן ע"י x=0 ב- השיפוע של המשיק ב-

$$y_x' = \frac{y_t'}{x_t'} = \frac{1}{2} e^t \sqrt{e^t} \ ,$$

ולכן

$$y_x'(t=0) = \frac{1}{2} \ .$$

לכן משוואת המשיק בנקודה (0,0) היא

$$y = \frac{1}{2}x ,$$

ומשוואת הנומרל בנקודה (0,0) היא

$$y = -2x$$
.

 $y \in [-rac{\pi}{2},rac{\pi}{2}]$ לכל an(y)=t -ש הפונקציה כך ש $y=\arctan(t)$

$$\cos\left(\frac{\pi}{2} - \arctan\left(\frac{6}{8}\right)\right) = \sin\left(\arctan\left(\frac{6}{8}\right)\right) = \frac{6}{\sqrt{6^2 + 8^2}} = \frac{6}{10} = \frac{3}{5} \ .$$

שאלה 4

$$\lim_{x \to 0} \frac{\sin^2(2x)}{x} = 0$$
 (2
$$\lim_{x \to \infty} (1 - e^{-x})^x = 1$$
 (1 (**)

ב) נניח הטענה השלילית: קיימת f(x) המוגדרת לכל מספר ממשי, ובנוסף f(x) אי זוגית ועוברת בראשית נניח הטענה השלילית: קיימת אז אי-זוגית אז

$$f(-x) = -f(x) . (*)$$

ונקבל (*) במשוואה x=0 מוגדרת לכל x=0 ובפרט x=0 מוגדרת לכל x=0

$$f(0) = -f(0) . (#)$$

(#) מתקיימת רק אם f(0)=0. סתירה!

שאלה 5

$$\int \frac{x+4}{x^2+8x} \, dx = \frac{1}{2} (\log(x) + \log(x+8))$$
 (2)
$$\int_0^1 \frac{1+\arctan(x)}{x^2+1} \, dx = \frac{1}{32} \pi (8+\pi)$$
 (1) (1)

(a

 $\pm \Delta OCD$ ועוד השטח של ועוד המשולש ΔOAB השטח של המשולש

$$S = S_{\Delta OAB} + S_{\Delta OCD} = \frac{1}{2} \cdot 1 \cdot 2 + \frac{1}{2} \cdot 4 \cdot 4 = 9$$
.

שאלה 6

. גדיר ביניים ערך ביניים של בולנזו. $[-rac{\pi}{4},rac{\pi}{4}]$ רציפה בקטע אוניים ל f $f(x)=x-\tan x$. גדיר

$$f(\frac{\pi}{4}) = \frac{\pi}{4} - 1 < 0$$
, $f(-\frac{\pi}{4}) = -\frac{\pi}{4} + 1 > 0$,

יחיד: נוכיח שהוא יחיד. f(c)=0ש- כך כך בולנזו קיימת של בולנים ערך ביניים של לכן במשפט

$$f'(x) = 1 - \frac{1}{x^2 + 1} \ .$$

. מש"ל. מש"ל. לכן השורש יחיד. לכן $f'(x) \geq 0$ הנגזת הנגזת $[-\frac{\pi}{4},\frac{\pi}{4}]$ עולה לכן לכן לכן לכן העורש יחיד.

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

(1

$$(\ln x)' = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\ln\left(\frac{x + \Delta x}{x}\right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \ln\left(\frac{x + \Delta x}{x}\right)$$

$$= \lim_{\Delta x \to 0} \ln\left[\left(\frac{x + \Delta x}{x}\right)^{\frac{1}{\Delta x}}\right]$$

$$= \lim_{\Delta x \to 0} \ln\left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x} \cdot \frac{1}{x}}\right]$$

$$= \lim_{\Delta x \to 0} \frac{1}{x} \ln\left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]$$

$$= \frac{1}{x} \cdot \lim_{\Delta x \to 0} \ln\left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]$$

$$= \frac{1}{x} \cdot \ln\left(\lim_{\Delta x \to 0} \left[\left(1 + \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]\right)$$

$$= \frac{1}{x} \cdot \ln\left(e\right)$$

$$= \frac{1}{x} \cdot \ln\left(e\right)$$

-1 < a < b נגדיר לכל משפט לגרנזי, לכל x > -1 רציפה וגזירה לכל f . $f(x) = \ln(x+1)$ נגדיר לכל פיימת $c \in (a,b)$ כך ש-

$$\frac{\ln(b+1) - \ln(a+1)}{b-a} = \ln(c+1)' = \frac{1}{c+1} \qquad \Rightarrow \qquad \ln(b+1) - \ln(a+1) = \frac{b-a}{c+1} . \tag{*}$$

עים לב, a+1 < c+1 < b+1 אזי -1 < a < c < b, לכן

$$\frac{1}{b+1} < \frac{1}{c+1} < \frac{1}{a+1} \ .$$

נקבל: b-a - חיובי, אם נכפיל את האי-השוויון הזה ב-b-a>0 נקבל:

$$\frac{b-a}{b+1} < \frac{b-a}{c+1} < \frac{b-a}{a+1} ,$$

או שקול

$$\frac{b+1-(a+1)}{b+1} < \frac{b-a}{c+1} < \frac{b+1-(a+1)}{a+1} \qquad \Rightarrow \qquad 1 - \frac{a+1}{b+1} < \frac{b-a}{c+1} < \frac{b+1}{a+1} - 1 \ .$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | **קמפוס אשדוד** ז'בוטינסקי 84, 77245 | www.sce.ac.il | ח**ייג: ≋סמפוס**

נציב את היחס (*) ונקבל

$$1 - \frac{a+1}{b+1} < \ln\left(\frac{b+1}{a+1}\right) < \frac{b+1}{a+1} - 1 \ .$$

מש"ל

 $x \in [-1,1]$ תחום ההגדרה: 8 שאלה

$$d^2 = x^2 + y^2 = x^2 + \frac{\arccos(x)}{2} \ .$$

: d^2 את מזער את

$$(d^2)'_x = 2x + \frac{1}{2} \cdot \frac{(-1)}{\sqrt{1 - x^2}} = 0 \qquad \Rightarrow \qquad x = \frac{1}{4\sqrt{1 - x^2}}$$

$$2x + \frac{1}{2} \cdot \frac{(-1)}{\sqrt{1 - x^2}} = 0$$

$$x = \frac{1}{4\sqrt{1 - x^2}}$$

$$x^2 = \frac{1}{16} \frac{1}{1 - x^2}$$

$$16x^2 = \frac{1}{1 - x^2}$$

$$16x^2(1-x^2) = 1$$

$$16x^2 - 16x^4 - 1 = 0$$

$$16x^4 - 16x^2 + 1 = 0$$

$$16t^2 - 16t + 1 = 0$$

 $t=x^2$ כאשר

$$t = \frac{16 \pm \sqrt{256 - 128}}{32} = 0.853553, 0.146447$$

ולכן