

Ţ <u>Help</u>

sandipan\_dey >

<u>Syllabus</u> laff routines **Community Discussion** <u>Outline</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

★ Course / Week 3: Matrix-Vector Operations / 3.3 Operations with Matrices

**(** 

Next >

3.3.1 Scaling a Matrix

□ Bookmark this page

< Previous

**■** Calculator

Week 3 due Oct 18, 2023 06:12 IST

# 3.3.1 Scaling a Matrix





HW 3.3.1.4 Alternative Proof?

3

? HW 3.3.1.5, what if scalar equals zero?

3

What is scalar = 0? In a such case, shouldn't all elements of the matrix A turn into zero making it a "zero-matrix"? If thats the case "sometimes"...

### Homework 3.3.1.1

1/1 point (graded)

Let  $L_A:\mathbb{R}^n o \mathbb{R}^m$  be a linear transformation and, for all  $x\in\mathbb{R}^n$ , define  $L_B:\mathbb{R}^n o \mathbb{R}^m$  by  $L_B\left(x
ight)=eta L_A\left(x
ight)$ where  $oldsymbol{eta}$  is a scalar. Then  $L_{B}\left( x
ight)$  is a linear transformation.

Always



Submit

### Homework 3.3.1.2

1/1 point (graded)

**Algorithm:**  $[A] := SCALE\_MATRIX\_ALTERNATIVE(\beta, A)$ 

Partition 
$$A \rightarrow \left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right)$$

where  $A_T$  has 0 rows

while  $m(A_T) < m(A)$  do

Repartition

$$\left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) 
ightarrow \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right)$$

where  $a_1$  has 1 row

Continue with

$$\left(\begin{array}{c} A_T \\ \hline A_B \end{array}\right) \leftarrow \left(\begin{array}{c} A_0 \\ \hline a_1^T \\ \hline A_2 \end{array}\right)$$

endwhile

Refering to the algorithm above, which of the following updates will scale  $m{A}$  one row at a time?



$$igodelightarrow a_1^T = eta a_1^T$$



$$\bigcirc \ a_1^T = a_1^T$$

None of the Above



**⊞** Calculator

Explanation  $a_1^T=eta a_1^T$  is the correct choice because eta will scale the rows by value eta. **Submit 1** Answers are displayed within the problem Homework 3.3.1.3 1/1 point (graded) Implement function Scale\_matrix\_unb( beta, A ) ) Some links that will come in handy: • <u>Spark</u> (alternatively, open the file LAFF2.0xM/Spark/index.html) • <u>PictureFLAME</u> (alternatively, open the file LAFF-2.0xM/PictureFLAME/PictureFLAME.html) Done/Skip **Submit** ✓ Correct (1/1 point) Homework 3.3.1.4 1/1 point (graded) Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix and  $eta \in \mathbb{R}$  a scalar, eta A is symmetric. Answer: Always **Always** Explanation Transcripted in final section of this week Scanned solution from video

Robert's explanation

**Answer:** Always

Let  $C = \beta A$ . We need to show that  $\gamma_{i,j} = \gamma_{j,i}$ . But  $\gamma_{i,j} = \beta \alpha_{i,j} = \beta \alpha_{j,i} = \gamma_{j,i}$ , since A is symmetric.

Hence *C* is symmetric.

(The last beta in the explanation should be a gamma)

Submit

Answers are displayed within the problem

#### Homework 3.3.1.5

1/1 point (graded)

Let  $A \in \mathbb{R}^{n imes n}$  be a lower triangular matrix and  $eta \in \mathbb{R}$  a scalar. eta A is a lower triangular matrix.



Transcripted in final section of this week

Scanned solution from video

Robert's explanation

Answer: Always

Assume A is a lower triangular matrix. Then  $\alpha_{i,j} = 0$  if i < j. Let  $C = \beta A$ . We need to show that  $\gamma_{i,j} = 0$  if i < j. But if i < j, then  $\gamma_{i,j} = \beta \alpha_{i,j} = \beta \times 0 = 0$  since A is lower triangular. Hence C is lower triangular.

Submit

**1** Answers are displayed within the problem

#### Homework 3.3.1.6

1/1 point (graded)

Let  $A \in \mathbb{R}^{n \times n}$  be a diagonal matrix and  $eta \in \mathbb{R}$  a scalar. eta A is a diagonal matrix.



Answer: Always

Explanation

Answer: Always

Assume A is a diagonal matrix. Then  $\alpha_{i,j} = 0$  if  $i \neq j$ .

Let  $C = \beta A$ . We need to show that  $\gamma_{i,j} = 0$  if  $i \neq j$ . But if  $i \neq j$ , then  $\gamma_{i,j} = \beta \alpha_{i,j} = \beta \times 0 = 0$  since A is a diagonal matrix. Hence C is a diagonal matrix.

Submit



© All Rights Reserved



## edX

**About** 

**Affiliates** 

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

# Legal

Terms of Service & Honor Code

**Privacy Policy** 

**Accessibility Policy** 

**Trademark Policy** 

<u>Sitemap</u>

**Cookie Policy** 

**Your Privacy Choices** 

## **Connect**

<u>Idea Hub</u>

**Contact Us** 

**Help Center** 

**Security** 

**Media Kit** 

















© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>