MATH 165 Linear Algebra & Diff. Equation Final Notes with Examples

Professor Kalyani Madhu

by Ethan University of Rochester

Spring 2024

Contents

1	Line	ear Transformations	2
	1.1	Lecture 18 & 19: Kernel, Range, Eigenvalues	3
		1.1.1 Definition of Linear Transformations	3

Chapter 1

Linear Transformations

1.1 Lecture 18 & 19: Kernel, Range, Eigenvalues

This lecture covers:

- 6.1 Definition of Linear Transformations
- 6.2 Transformations of \mathbb{R}^2
- 6.3 The Kernel and Range of a Linear Transformation

1.1.1 Definition of Linear Transformations

Definition 1.1.1: Mapping

Let V and W be vector spaces. A **mapping** T from V to W is a rule that assigns to each vector \vec{v} in V precisely one vector $\vec{w} = T(\vec{v})$. We write $T: V \to W$.

Definition 1.1.2: Linear Transformation

Let V and W be vector spaces over the same field. A mapping $T:V\to W$ is a linear transformation if for all $\vec{v}_1,\vec{v}_2\in V$ and all scalars c:

1.
$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$
 for all $\vec{u}, \vec{v} \in V$

2.
$$T(c\vec{v}) = cT(\vec{v})$$
 for all $\vec{v} \in V$

In the above equations, the operations on the left of the equal signs are the ones defined in the domain V and the ones on the right of the equal signs are the ones defined in the codomain W.

Theorem 1.1.3

Let V, W be vector spaces over field F. A mapping $T: V \to W$ is a linear transformation if and only if for all $\lambda_1, \lambda_2 \in F$ and all $\vec{v}_1, \vec{v}_2 \in V$:

$$T(\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2) = \lambda_1 T(\vec{v}_1) + \lambda_2 T(\vec{v}_2)$$

Example.

Show $T: P_2 \to P_4$ given by $T(p) = x^2 p(x)$ is linear.