Data: Splits, Bias, Variance, ...

Denis Baskan Zia Muhammad Rashik Islam Alexei Figueroa

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

University of Applied Sciences

Content

- Data
 - Amount
 - Splits
 - Distribution
- Errors
 - Irreducible Error
 - Bias and Variance Error
 - Underfitting and overfitting
 - Avoidable Bias
- BV- Tradeoff
 - In terms of MSE
 - Impact
 - Techniques to control
- BV Ensemble Methods and NNs
 - From trees to forests
 - Neural networks

ML & DL Methods are taking off now

Annual size of global dataspace

1 ZB = 1e9TB = 1,000,000,000TB

Curse of Dimensionality

Curse of Dimensionality

Big-O Complexity Chart

Elements

Algorithm	Classification/Regression	Training	Prediction
Decision Tree	C+R	$O(n^2p)$	O(p)
Random Forest	C+R	$O(n^2pn_{trees})$	$O(pn_{trees})$
Random Forest	R Breiman implementation	$O(n^2pn_{trees})$	$O(pn_{trees})$
Random Forest	C Breiman implementation	$O(n^2\sqrt{p}n_{trees})$	$O(pn_{trees})$
Extremly Random Trees	C+R	$O(npn_{trees})$	$O(npn_{trees})$
Gradient Boosting (n_{trees})	C+R	$O(npn_{trees})$	$O(pn_{trees})$
Linear Regression	R	$\mathcal{O}(p^2n+p^3)$	O(p)
SVM (Kernel)	C+R	$O(n^2p + n^3)$	$O(n_{sv}p)$
k-Nearest Neighbours (naive)	C+R	_	O(np)
Nearest centroid	C	O(np)	O(p)
Neural Network	C+R	?	$O(pn_{l_1}+n_{l_1}n_{l_2}+\dots)$
Naive Bayes	С	O(np)	O(p)

Splits

- 3 Data Sets
 - Training Set
 - Used for training model
 - Validation Set
 - Subset of training set
 - Used for optimizing (tuning parameters, selecting features,...)
 - Test Set
 - Evaluate your model
- Split Ratio 70/30 or 80/20
 - Shuffle data & stratify by classes

Splits

- Validation & Test Set
 - Data that you expect in future
- Example 1 Turnover for next year
 - Last 3-5 years might be helpful
- Example 2 Image Classifier
 - User feeds images from smartphone
 - Model was trained on images from web

- Good Performance on Training/Validation Set
- Reasons for poor performance on test set
 - Overfit to validation set
 - Use more data
 - Train less

- Good Performance on Training/Validation Set
- Reasons for poor performance on test set
 - Overfit to validation set
 - Use more data
 - Train less
 - Test set is more complex
 - Model hasn't seen all the features
 - Model is too small / simple
 - Test set comes from different distribution
 - Example: Image is horizontally flipped

kfold cv?

https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6

- When to use different distribution?
 - Not enough data from customer / user
 - Some features might not be in data
 - Collect data from other sources
 - Split user data into 2 parts
 - Training / Validation
 - Testing

- Why not using all (user) data?
 - Was the way to go in past.
 - Other data sources could bias your data
 - Other data sources could harm your model
 - Some features might not be in data
 - Collect data from other sources
 - Split user data into 2 parts
 - Training / Validation
 - Testing

- Using customer data only
 - Was the way to go in past.
 - Other data sources could bias your data
 - Other data sources could harm your model
 - Training models takes more time
 - Adding more data
 - More features
 - Small model might not capture all features
 - Inconsistent data
 - Image classifier
 - Predicting house prices

Data Augmentation

Example: Image-based methods

- Horizontal flip
- Rotate
- Scale
- Crop
- Translation
- Noise
- Blur
- Brightness / Contrast
- RGB -> Gray -> BW

Basic Error Analysis

• Irreducible Error

- Reducible Error
 - Bias Error
 - Variance Error

What is Irreducible error?

Irreducible Error:

- The Measure of the amount of noise in the Data
- It is usually caused by unknown variables that may be having an influence on the output variable.
- How good we make our model, our data will have certain amount of noise or irreducible error that can not be removed.

What is Bias?

Bias:

The difference between the average prediction of our model and the correct value which we are trying to predict on training data.

- Poorly Perform on Training data
- Low Training Accuracy
- Example:
 - Training error = 15%
 - Test error = 16%

The bias as 15%, and variance as 1%(**Variance = Test error - Training error**) This classifier is fitting the training set poorly with 15% error, but it's error on the Test set is barely higher than the training error. This classifier therefore has **high bias**, but low variance.

Underfitting

Underfitting:

- Model can not capture underlying pattern of the data
- High Bias leads to Underfitting

Underfitted

Techniques To Reduce High Bias

Techniques To Reduce High Bias:

- Train Longer
- Train a more complex model
- Decrease Regularization
- New model architecture

Avoidable Bias

Avoidable Bias:

The difference between the training set error and the optimal error rate.

- The "avoidable bias" reflects how much worse your algorithm performs on the training set than the "optimal model."
- Optimal error rate smallest possible error that the algorithm can reach.
- Difference (Training Error, Human-Level Performance) = Avoidable Bias
- Difference (Validation Error, Training Error) = Variance

Example: Classification Cat vs Not Cat

	Classification error (%)		
	Scenario A	Scenario B	
Humans	1	7.5	
Training error	8	8	
Development error	10	10	

	Scenario A	Scenario B
Human Error	1%	7.5%
Avoidable Bias	7%	0.5%
Variance	2%	2%

Techniques for avoidable Bias

Techniques to reduce avoidable Bias

- Increase the model size
- Reduce regularization
- Modify model architecture

What is Variance?

Variance:

Variance is the variability of Model Prediction for a given data point.

- Low Testing Accuracy
- Example
 - Training error = 1%
 - Test error = 11%
 - Variance = Test error Training error

The bias as 1%, and the variance as 10% (=11% - 1%). Thus, it has **high variance**. The classifier has very low training error, but it is failing to generalize to the Test set.

Overfitting

Overfitting:

- Model capture underlying pattern too well of the training data.
- High Variance leads to Overfitting

Overfitted

How To Reduce High Variance?

High variance is due to a model that tries to fit most of the training dataset points and hence gets more complex. To resolve high variance issue we need to work on.

- Getting more training data
- Increase Regularization term
- Modify Model Architecture(Neural network architecture)

Mean squared error

• Let the variable we are trying to predict as Y and other covariates as X. We assume there is a relationship between the two such that:

$$\circ$$
 Y = f(X) + e

- Assume a model f[^](X) of f(X)
- Expected squared error at a point x is

$$Err(x) = E\left[(Y - \hat{f}(x))^2\right]$$

Bias-Variance In Terms of MSE

• The Err(x) can be further decomposed as

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)
ight)^2 + E\left[\left(\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]
ight)^2
ight] + \sigma_e^2$$
 $Err(x) = ext{Bias}^2 + ext{Variance} + ext{Irreducible Error}$

Bias-Variance Tradeoff

- Overfitting gives too much predictive power even to noise elements
- Attempt to reduce overfitting can also begin to underfit

Bias-Variance Tradeoff (Cont.)

- Low Bias and Low Variance
 - Perfect model
- Low Bias and High Variance
 - Inconsistent models
- High Bias and Low Variance
 - Consistent but inaccurate models
- High Bias and High Variance
 - Inaccurate and inconsistent models

Fig. 1 Graphical illustration of bias and variance.

Bias-Variance Tradeoff

In terms of model complexity

- For the case of high bias, a linear model is used.
- And for the case of high variance, the model used was super complex.

Bias-Variance Tradeoff

In terms of model complexity

- Low complexity model- Will be prone to underfitting because of high bias and low variance
- High complexity model(Decision trees)- Will be prone to overfitting due to low bias and high variance

Bias-Variance Tradeoff

In terms of model complexity

Balance between Bias-Variance

Regularization is one way to control Bias and Variance

 Which reduces the complexity in the model either by getting rid of the complex features or reducing their importance

Impact of Regularization

For example if the price of a house is based on 4 features which are Location (X1), Number of bedrooms(X2), Year of Construction(X3), Nearby School ranking(X4).

$$Y = 2.5*X_1 + 3*X_1*X_2 + 1.4*X_3^2 + 4.5*X_4^3 + 1.3$$

• It reduces the importance of features especially features such as X3 and X4.

Impact of Regularization(Cont.)

Regularization process

Optimization objective of Linear Regression.

W* = argmin
$$(1/(2n) * (\sum_{i=1}^{n} (f(Xi) - Yi)^2 + \lambda \sum_{j=1}^{m} (Wj)^2))$$

Regularization Process

Optimization objective of Linear Regression.

W* = argmin
$$(1/(2n) * (\sum_{i=1}^{n} (f(Xi) - Yi)^2 + \lambda \sum_{j=1}^{m} (Wj)^2))$$

• Thus, λ acts as a hyperparameter to control the Bias- Variance trade-off.

Regularization Techniques

- L1 / Lasso Regression
 - adds absolute value of weights

$$= \sum_{i=1}^{N} \left\{ y_i - \sum_{j=0}^{M} w_j x_{ij} \right\}^2 + \lambda \sum_{j=0}^{M} w_j$$

- L2/ Ridge Regression
 - Squared value of weights

Regularization Techniques

Elastic Net

 Elastic Net includes both L1 and L2 norm regularization terms.

$$\hat{eta} \equiv \operatorname*{argmin}_{eta} (\|y - Xeta\|^2 + \lambda_2 \|eta\|^2 + \lambda_1 \|eta\|^2$$

Other Techniques to control Bias-Variance Tradeoff

- Feature selection
- Randomization
- Increase data
- Early stopping
- Choice of Algorithm

From Trees to Forests

Random Trees:

Iteratively partition the data and minimize the RSS of the partitions (for regression)

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Key points:

- For every region we use the mean or mode to compute the prediction value.
- Top to bottom greedy algorithm that might not yield the best tree.

From Trees to Forests cont'd

Why do we stop?

 We could have as many partitions as to fit single observations in the data, basically memorize the training data -> Overfit

When do we stop?

- Naively set a minimum number of samples per partition
- Naively set a minimum RSS improvement per iteration

Better

Grow a large tree and prune it back -> Regularization

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

From Trees to Forests cont'd

Even better: use an ensemble

- Bagging
- Random Forests
- Boosting

Combine "weak learners" with high bias into a model that has lower bias (Boosting)

Combine "strong learners" with low bias (high variance) into a general model with lower variance (Bagging)

Random forests are somewhere in the middle.

What's the price?

Mainly interpretability and more computation

Neural Networks

Overfitting machines

- Large number of parameters
- Variable architectures
- They can theoretically approximate any function (Cybenko, Hornik)

Deep learning just makes things even harder

- Deep architectures
- Millions(Billions) of parameters

Lu et.al proved in 2017 expressivity on Lebesgue integrable functions for width limited deep architectures, still the depth is a variable.

Neural Networks

Strategies

- Naively opt for simpler architectures
- Early stopping stop when the validation error starts to increase
- L2 regularization Penalize the parameters

$$R(\boldsymbol{\theta}) = \sum_{i \in Tr} (y_i - f(\boldsymbol{x_i}; \boldsymbol{\theta}))^2 + \lambda \sum_{j=1}^p \theta_j^2$$

- Ensembles
- Dropout
- Data augmentation
- SGD
- Bayesian networks

References

- gpu image: https://miro.medium.com/max/3322/1*WBMLfNKon41AFt8lpwbFFw.png
- data image: https://wallpaperbro.com/img/451165.jpg
- data exp:
 - https://www.ft.com/__origami/service/image/v2/images/raw/https%3A%2F%2Fs3-eu-west-1.amazonaws.com%2Fic-ez-prod%2Fez%2Fi mages%2F9%2F8%2F1%2F3%2F3173189-1-eng-GB%2FSectorFocus 171117 line.jpg?source=invchron
- Zettabyte: https://en.wikipedia.org/wiki/Zettabyte
- curse: https://miro.medium.com/proxy/1*kpNRfZ9DgkNPf_dA6DukLw.png
- curse acc:https://miro.medium.com/max/535/1*vah8lolNqlxNHq9ysVzYkw.png
- lin reg complexity: https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms/
- complex:https://miro.medium.com/max/1663/1*0BvHowg6TmamenKHVsxngA.png
- flip h: https://i.stack.imgur.com/wM1Kc.png
- https://github.com/ajaymache/machine-learning-yearning/tree/master/full%20book
- Irreducible error: https://heartbeat.fritz.ai/bias-variance-tradeoff-to-avoid-under-overfitting-d92f1fcff352
- Bias/var: https://medium.com/ml-research-lab/chapter-3-bias-and-variance-trade-off-in-machine-learning-a449fa1e2729
- Bias/var: https://medium.com/datadriveninvestor/bias-variance-trade-off-fb5fa4c8ab56
- variance: https://www.knowledgehut.com/blog/data-science/bias-variance-tradeoff-in-machine-learning
- Avoaidable bias: http://upscfever.com/upsc-fever/en/data/deeplearning3/8.html
- https://harangdev.github.io/deep-learning/structuring-machine-learning-projects/16/
- Under/Overfitting: https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a98
 9c76
- bias/var image: https://cscherrer.github.io/post/bias-variance/
- bias/var tradeoff image: http://scott.fortmann-roe.com/docs/BiasVariance.html
- bias/var regression image: https://towardsdatascience.com/holy-grail-for-bias-variance-tradeoff-overfitting-underfitting-7fad64ab5d76
- bias/var complexity: https://insidebigdata.com/2014/10/22/ask-data-scientist-bias-vs-variance-tradeoff/
- regularization image1: https://medium.com/swlh/the-what-why-and-how-of-bias-variance-trade-off-55c0b6cf3d00
- regularization image2: Timothy Downey, Lecture notes ML2 WiSe 2018, Beuth University of Applied Sciences.
- regularization image3: https://web.stanford.edu/~hastie/TALKS/enet_talk.pdf
- stop learning: http://fouryears.eu/wp-content/uploads/2017/12/early_stopping.png
- Timothy Downey, Lecture notes ML2 WiSe 2018, Beuth University of Applied Sciences.
- A.Kryzhevsky et. al ImageNet classification with Deep Convolutional Neural Networks
- James et. al An introduction to statistical learning with applications in R