Воронежский государственный педагогический университет

Кафедра информатики и методики преподавания математик

В.А. ЧУЛЮКОВ

ЗАДАЧНИК по программированию

Воронеж - 2000

Содержание

ОПЕРАТОР ПРИСВАИВАНИЯ5
ВВОД ДАННЫХ11
Операторы Read, ReadIn11
ПРОГРАММИРОВАНИЕ ВЕТВЛЕНИЙ11
Условный переход11
Оператор выбора14
ПРОГРАММИРОВАНИЕ ЦИКЛОВ15
Циклы с предварительным условием15
Циклы с последующим условием19
Циклы с параметром20
ОРГАНИЗАЦИЯ ДАННЫХ В ВИДЕ МАССИВОВ 23
Одномерные массивы23
Двумерные массивы26
ПОДПРОГРАММЫ30

Подпрограммы-функции	30
Подпрограммы-процедуры	30
РАБОТА СО СТРОКАМИ	30
РАБОТА С ФАЙЛАМИ	30

Оператор присваивания

Задача 1.

Вычислить объем пирамиды, основанием которой является треугольник, для значений $A,\ B,\ C$ и H данных в контрольном примере. Для вычисления площади основания использовать формулу Герона:

$$S = \sqrt{P(P-A)(P-B)(P-C)},$$

гле:

$$P = \frac{A + B + C}{2}.$$

Объем пирамиды:

$$V = \frac{SH}{3}$$
.

Исходные данные взять из контрольного примера. Контрольный пример: A=3, B=4, C=5, H=6. Результат V=12.

Залача 2.

По заданным величинам радиусов оснований R и r и высоты h найти объем и площадь поверхности усеченного конуса по формулам:

$$V = \frac{ph}{3}(R^{2} + r^{2} + Rr)$$

$$S = pl(R+r) + p(R^{2} + r^{2})$$

$$l = \sqrt{h^{2} + (R-r)^{2}}$$

Исходные данные взять из контрольного примера. Контрольный пример: R=20, r=10, h=30. Результат: S=4548.866, V=21980.

Задача 3.

Дана длина ребра куба. Вычислить объем куба и площадь его боковой поверхности. Данные взять из контрольного примера.

Контрольный пример: A=5. Результат: V=125, S=100.

Залача 4.

Даны два положительных действительных числа. Найти среднее арифметическое и среднее геометрическое этих чисел. Данные взять из контрольного примера.

Среднее геометрическое вычисляется по формуле:

$$G = \sqrt{AB}$$
.

Контрольный пример: A=4, B=9. Pезультат: среднее арифметическое = 6,5. Среднее геометрическое = 6.

Задача 5.

Даны катеты прямоугольного треугольника. Найти его гипотенузу и площадь. Данные взять из контрольного примера.

Контрольный пример: A=4, B=3. Результат: гипотенуза = 5, площадь = 6.

Задача 6.

Дана сторона равностороннего треугольника (взять из контрольного примера). Найти площадь треугольника по формуле Герона:

$$S = \sqrt{P(P-A)(P-B)(P-C)},$$

где:

$$P = \frac{A + B + C}{2}.$$

Контрольный пример: A=B=C=4. Результат: S=6.928203.

Задача 7.

Даны два действительных числа. Найти среднее арифметическое и среднее геометрическое их модулей. Данные взять из контрольного примера.

Среднее геометрическое вычисляется по формуле:

$$G = \sqrt{|A||B|}.$$

Контрольный пример: A=-4, B=-9. Результат: среднее

$$S = \mathbf{p} \cdot R^2$$

арифметическое = 6.5. Среднее геометрическое = 6.

Задача 8.

Три сопротивления *R1*, *R2*, *R3* соединены параллельно. Найти сопротивление соединения RO по формуле:

$$\frac{1}{R0} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$

Исходные данные взять из контрольного примера.

Контрольный пример: R1=2, R2=4, R3=8. Результат: R0=1.142857.

Залача 9.

По заданной длине окружности L найти площадь круга S, ограниченного этой окружностью. Длина окружности вычисляется по формуле:

 $L = 2 \cdot \mathbf{p} \cdot \mathbf{R}$

Площадь круга вычисляется по формуле:

$$S = \mathbf{p} \cdot R^2$$

 $S = p \cdot R^2$ Данные взять из контрольного примера.

Контрольный пример: L=6. Результат: S=2.866242.

Залача 10.

Даны гипотенуза и катет прямоугольного треугольника. Найти второй катет и радиус вписанной окружности, который вычисляется по формуле:

 $r = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$

где p — полупериметр.

Исходные данные взять из контрольного примера.

Контрольный пример: c=5, a=3. Результат: b=4, r=1.

Задача 11.

Найти площадь кольца, внутренний радиус которого 20, а внешний радиус больше 20. Площадь круга радиусом R вычисляется по формуле:

Данные взять из контрольного примера.

Контрольный пример: $R_{\text{внешний}}$ =30. Результат: Площадь кольца = 1570.

Задача 12.

Найти площадь равнобедренной трапеции по заданным величинам оснований A и B, и угла при большем основании. Исходные данные взять из контрольного примера.

Контрольный пример: A=20, B=10, угол=45°. Pезультат: S=74.9403.

Задача 13.

Треугольник задан длинами сторон a, b, c. Найти длины высот. Длина высоты, проведенной на сторону a, вычисляется по формуле:

$$h_a = \frac{2S}{a}$$

Площадь треугольника *S* вычислить по формуле Герона:

$$S = \sqrt{P(P-A)(P-B)(P-C)},$$

где:

$$P = \frac{A + B + C}{2}.$$

Исходные данные взять из контрольного примера.

Контрольный пример: a=3, b=4, c=5. Результат: $h_a=4$, $h_b=3$, $h_c=2.4$.

Задача 14.

Треугольник задан длинами сторон a, b, c. Найти длины медиан. Длина медианы, проведенной на сторону a, вычисляется по формуле:

$$m_a = 0.5\sqrt{2(b^2 + c^2) - a^2}$$

Исходные данные взять из контрольного примера.

Контрольный пример: a=3, b=4, c=5. Результат: $m_a=4.27$, $m_b=3.61$, $m_c=2.5$.

Задача 15.

Треугольник задан длинами сторон a, b, c. Найти длины биссектрис. Длина биссектрисы, проведенной на сторону a, вычисляется по формуле:

$$l_a = \frac{\sqrt{bc[(b+c)^2 - a^2]}}{b+c}$$

Исходные данные взять из контрольного примера.

Контрольный пример: a=3, b=4, c=5. Результат: $l_a=4.22$, $l_b=3.35$, $l_c=2.42$.

Задача 16.

Вычислить расстояние между двумя точками с заданными координатами x_1 , y_1 и x_2 , y_2 . Исходные данные взять из контрольного примера.

Контрольный пример: $x_1=1$, $y_1=1$, $x_2=3$, $y_2=3$. Результат: l=2.83.

Задача 17.

Даны x, y, z. Вычислить a, b, если

$$a = \frac{\sqrt{|x-1|} - \sqrt[3]{|y|}}{1 + \frac{x^2}{2} + \frac{y^2}{4}}, \qquad b = x(arctg(z) + e^{-(x+3)}).$$

Исходные данные взять из контрольного примера.

Контрольный пример: x=-1, y=-1, z=3. Результат: a = 0.2366935, b=-1.384381.

Задача 18.

Даны x, y, z. Вычислить a, b, если

$$a = (1+y)\frac{x+y/(x^2+4)}{e^{-x-2}+1/(x^2+4)}, \qquad b = \frac{1+\cos(y-2)}{x^4/2+\sin^2 z}.$$

Исходные данные взять из контрольного примера.

Контрольный пример: x=1, y=1, z=3. Результат: a=9.608184, b=2.962605.

Задача 19.

Даны x, y, z. Вычислить a, b, если

$$a = \frac{2\cos(x - p/6)}{1/2 + \sin^2 y}, \qquad b = 1 + \frac{z^2}{3 + z^2/5}.$$

Исходные данные взять из контрольного примера.

Контрольный пример: x=3, y=4, z=5. Результат: a=-1.467187, b=4.125.

Залача 20.

Даны x, y, z. Вычислить a, b, если

$$a = \frac{1 + \sin^2(x + y)}{2 + \left| x - 2x/(1 + x^2 y^2) \right|} + x, \quad b = \cos^2\left(arctg \frac{1}{z}\right)$$

Исходные данные взять из контрольного примера.

Контрольный пример: x=3, y=4, z=5. Результат: a=3.288716, b=0.9615385.

Ввод данных с клавиатуры

Операторы Read, Readln

Решить задачи 1-20 раздела «Оператор присваивания» с использованием оператора ввода.

Программирование ветвлений

Условный переход

Залача 1.

Даны три действительных числа $X,\ Y,\ Z.$ Найти максимальное из этих трех чисел.

Залача 2.

Даны три действительных числа X, Y, Z. Найти минимальное из этих трех чисел.

Задача 3.

Даны три действительных числа X, Y, Z. Удвоить эти числа, если $X \ge Y \ge Z$, и заменить их абсолютными значениями, если это не так.

Залача 4.

Даны два действительных числа. Вывести первое число, если оно больше второго, и оба числа, если это не так.

Залача 5.

Даны два действительных числа. Заменить первое число нулем, если оно меньше или равно второму, и оставить числа без изменения в противном случае.

Задача 6.

Даны три действительных числа. Выбрать из них те, которые принадлежат интервалу (1, 3).

Залача 7.

Даны действительные числа X, Y ($X \neq Y$). Меньшее из этих двух чисел заменить их полусуммой, а большее – их удвоенным произведением.

Залача 8.

Даны три действительные числа. Возвести в квадрат те из них, значения которых неотрицательны.

Залача 9.

Даны два действительные числа X, $Y(X \neq Y)$. Найти большее из них, если X отрицательное число, и меньшее, если это не так.

Залача 10.

Точка задана координатами X, Y. Определить, находится ли эта точка внутри круга радиусом R с центром в начале координат.

Залача 11.

Даны действительные числа A, B, C и D. Если $A \le B \le C \le D$, то каждое число заменить наибольшим из них; если A < B < C < D, то числа оставить без изменения; в противном случае все числа заменяются их квадратами.

Залача 12.

Даны действительные числа X, Y. Если X и Y отрицательны, то каждое значение заменить его модулем; если отрицательно только

одно из них, то оба значения увеличить на 0.5; если оба значения неотрицательны и ни одно из них не принадлежит отрезку [0.5, 2.0], то оба значения уменьшить в 10 раз; в остальных случаях X и Y оставить без изменения.

Задача 13.

Даны действительные положительные числа X, Y, Z. Выяснить, существует ли треугольник с длинами сторон X, Y, Z.

Залача 14.

Определить, верно ли, что при делении неотрицательного целого числа A на положительное целое число B получается остаток, равный одному из заданных чисел R или S.

Задача 15.

Дано натуральное число N ($N \le 100$), определяющее возраст человека (в годах). Дать для этого числа наименование «год», «года» или «лет»: например, 1 год, 23 года, 45 лет и т.д.

Залача 16.

Найти значение функции, вычисляемое по формуле: $y = \cos^2 x$ при 0 < x < 2, иначе $y = 1 - \sin x^2$.

Залача 17.

Перераспределить значения переменных X и Y так, чтобы в X оказалось большее из этих значений, а в Y – меньшее.

Задача 18.

Переменной K присвоить номер четверти плоскости, в которой находится точка с координатами X и Y ($XY \neq 0$).

Залача 19.

По номеру Y(Y>0) некоторого года определить номер его столетия (учесть, что, к примеру, началом XX столетия был 1901, а не 1900 год).

Задача 20.

Для заданных x, y, z найти:

$$u = \frac{\max^{2}(x, y, z) - 2^{x} \cdot \min(x, y, z)}{\sin 2 + \max(x, y, z) / \min(x, y, z)}$$

Контрольный пример: x=3, y=4, z=5. Ответ: 0,38961.

Залача 21.

Значения переменных A, B и C поменять местами так, чтобы оказалось $A \geq B \geq C$

Оператор выбора

Залача 1.

По введенному номеру дня недели вывести его словесное наименование. Например, 1 – понедельник.

Задача 2.

По введенному номеру месяца вывести его словесное наименование. Например, 1 – январь.

Залача 3.

Написать программу, позволяющую получить словесное наименование школьных оценок. Например, 1 – очень плохо.

Залача 4.

Написать программу, которая по введенному номеру выводит фамилию студента вашей группы.

Залача 5.

По введенному номеру музыкальной ноты вывести ее словесное наименование. Например, 3 – ми.

Залача 6.

По введенному номеру дня недели вывести количество часов занятий в вашей группе.

Задача 7.

Написать программу, которая выводит возможные значения координат X и Y в зависимости от номера координатной четверти.

Задача 8.

Чтобы определить на какую цифру оканчивается квадрат целого числа, достаточно знать последнюю цифру самого числа. Написать программу, которая по одной из цифр 0,1,2,3, 4,5,6,7,8,9 – последней цифре числа N - находит последнюю цифру квадрата этого числа.

Залача 9.

Написать программу нахождения числа дней в месяце, если даны номер месяца и целая величина, равная 1 для високосного года и 0 в противном случае.

Задача 10.

Написать программу калькулятор, которая выполняет арифметические действия, задаваемые в виде:

знак_операции, операнд1, операнд2,

где **знак_операции** — 1-сложение, 2-вычитание, 3-умножение, 4деление.

операнды — числа, над которыми выполняются действия. Например, при вводе 3, 4, 5 результат — 20.

Программирование циклов

Циклы с предварительным условием

Задача 1.

С помощью цикла «пока» или цикла «до» написать программу возведения числа A в целую степень N.

Залача 2.

С помощью цикла «пока» или цикла «до» написать программу вычисления факториала заданного целого числа.

Факториал числа N вычисляется по следующей формуле:

$$N!=1\cdot 2\cdot 3\cdot ...\cdot N$$
.

Залача 3.

С помощью цикла «пока» или цикла «до» написать программу вычисления числа Фибоначчи, не превосходящего заранее заданное число N.

Числа Фибоначчи вычисляются с помощью следующих соотношений:

$$F_0=0;\ F_1=1;\ F_i=F_{i-1}+F_{i-2}$$
для $\mathrm{i}>1.$

Задача 4.

С помощью цикла «пока» или цикла «до» написать программу вычисления суммы S квадратов чисел от I до N.

Залача 5.

Составить программу, вычисляющую для заданного x сумму:

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

При суммировании учитывать только слагаемые, большие по абсолютной величине заданного положительного числа E. Знак «!» после числа означает факториал этого числа. Факториал числа N вычисляется по следующей формуле:

$$N!=1\cdot 2\cdot 3\cdot ...\cdot N.$$

Контрольный пример: x=1, *E*=0.1. *Результат:* 2.666667.

Задача 6.

С помощью цикла «пока» или цикла «до» написать программу вычисления суммы S квадратов четных и кубов нечетных чисел от 1 до N. Проверку числа на четность осуществить с помощью встроенной функции ODD.

Задача 7.

Составить программу для определения k, при котором функция $\frac{x^k}{k}$ становится меньше заданного числа A при заданном x для k=1,2,3,...

Контрольный пример: x=1, A=0.25. Результат: 5.

Задача 8.

Написать программу поиска суммы последовательности чисел, вводимых с клавиатуры, предшествующих первому введенному нулю. *Указание:* должен многократно выполняться оператор ввода. *Контрольный пример:* 1,2,3,-4,5,-2,0. *Результат:* 7.

Задача 9.

Написать программу поиска суммы последовательности положительных чисел, вводимых с клавиатуры, предшествующих первому введенному нулю.

Указание: должен многократно выполняться оператор ввода. *Контрольный пример:* 1,2,3,-4,5,-2,0. *Результат:* 11.

Залача 10.

Написать программу поиска суммы последовательности отрицательных чисел, вводимых с клавиатуры, предшествующих первому введенному нулю.

Указание: должен многократно выполняться оператор ввода. *Контрольный пример*: 1,2,3,-4,5,-2,0. *Результат*: -6.

Задача 11.

Написать программу поиска произведения последовательности чисел, вводимых с клавиатуры, предшествующих первому введенному отрицательному числу.

Указание: должен многократно выполняться оператор ввода. *Контрольный пример:* 1,2,3,4,5,-2. *Результат:* 120.

Задача 12.

Написать программу поиска произведения последовательности чисел, вводимых с клавиатуры, предшествующих первому введенному нулю. *Указание:* должен многократно выполняться оператор ввода. *Контрольный пример:* 1,2,3,-4,5,-2,0. *Результат:* 240.

Залача 13.

Написать программу поиска произведения последовательности положительных чисел, вводимых с клавиатуры, предшествующих первому введенному нулю.

Указание: должен многократно выполняться оператор ввода. *Контрольный пример:* 1,2,3,-4,5,-2,0. *Результат:* 30.

Задача 14.

Написать программу поиска произведения последовательности отрицательных чисел, вводимых с клавиатуры, предшествующих первому введенному нулю.

Указание: должен многократно выполняться оператор ввода. *Контрольный пример:* 1,2,3,-4,5,-2,0. *Результат:* 8.

Задача 15.

Написать программу поиска чисел, лежащих в интервале от -5 до 5, в последовательности чисел, вводимых с клавиатуры, предшествующих первому введенному нулю.

Указание: должен многократно выполняться оператор ввода. Контрольный пример: 1,10,-4,5,-16,-5,0. Результат: 1,-4,5,-5.

Залача 16.

Написать программу поиска чисел, лежащих в интервале от 3 до 13, в последовательности чисел, вводимых с клавиатуры, предшествующих первому введенному отрицательному числу.

Указание: должен многократно выполняться оператор ввода. Контрольный пример: 1,3,16,7,13,10,2,-1. Результат: 3,7,13,10.

Задача 17.

Вычислить y – первое из чисел sin x, sin sin x, sin sin sin x, ..., меньшее по модулю 10^{-4} .

Залача 18.

Не используя стандартные функции (за исключением abs), вычислить с точностью eps>0

$$y = \cos x = 1 - x^2/2! + x^4/4! - ... + (-1)^n x^n/(2n)! + ...$$

Считать, что требуемая точность достигнута, если очередное слагаемое по модулю меньше eps, - все последующие слагаемые можно уже не учитывать.

Залача 19.

Не используя стандартные функции (за исключением abs), вычислить с точностью eps>0

$$y = \ln(1+x) = x - x^2/2 + x^3/3 - \dots + (-1)^{n-1} x^n/n + \dots$$
 (|x| < 1)

Считать, что требуемая точность достигнута, если очередное слагаемое по модулю меньше eps, - все последующие слагаемые можно уже не учитывать.

Залача 20.

Не используя стандартные функции (за исключением abs), вычислить с точностью eps>0

$$y = arctg \ x = x - x^3 / 3 + x^5 / 5 - ... + (-1)^n \ x^{2n+1} / (2n+1) + (x < 1)$$

Считать, что требуемая точность достигнута, если очередное слагаемое по модулю меньше eps, - все последующие слагаемые можно уже не учитывать.

Циклы с последующим условием

С помощью цикла «пока» или цикла «до» решить задачи 1-20 раздела "Циклы с предварительным условием".

Циклы с параметром

Залача 1.

Написать программу возведения числа A в целую степень N.

Залача 2.

Написать программу вычисления факториала заданного целого числа. Факториал числа N вычисляется по следующей формуле:

$$N!=1\cdot 2\cdot 3\cdot ...\cdot N.$$

Залача 3.

Написать программу вычисления суммы *S* квадратов четных и кубов нечетных чисел от 1 до N. Проверку числа на четность осуществить с помощью встроенной функции ODD.

Залача 4.

Написать программу выбора наименьшего из 10 данных чисел.

Залача 5.

Написать программу получения в порядке убывания всех делителей данного числа.

Залача 6.

Написать программу вычисления суммы положительных и количества отрицательных чисел, содержащихся среди данных 10 чисел.

Залача 7.

Написать программу, выясняющую, есть ли среди чисел:

$$\cos i^3 \cdot \sin in$$
, $i = 1,...,n$,

меньшие 0.0001. Если такие числа есть – вывести их на экран.

Задача 8.

Написать программу, выясняющую, есть ли среди чисел $i^3\text{-}17in^2\text{+}n^3, \quad i\text{=}1,...,n$

$$i^3-17in^2+n^3$$
, $i=1,...,n$

числа кратные заданному числу A и одновременно не кратные заданному числу B.

Вывести найденные числа на печать.

Контрольный пример: n=10, A=3, B=2. Ответ: -699, -10557.

Задача 9.

Написать программу, выясняющую, есть ли среди данных 10 чисел точные квадраты. Если такие есть, то после ввода числа должно появляться сообщение «Точный квадрат».

Залача 10.

Написать программу, в которой определяется сумма S всех целых чисел в интервале, заданном переменными N и M, а также сумма SA четных и SB нечетных чисел в том же интервале.

Залача 11.

Вычислить сумму чисел от 1 до N, возведенных в степень M. Возведение в степень оформить как многократное умножение.

Задача 12.

Даны действительные числа. Вычислить их среднее арифметическое.

Залача 13.

Дано 10 вещественных чисел. Вычислить разность между максимальным и минимальным из них.

Залача 14.

Вычислить:

$$y = \sqrt{3 + \sqrt{6 + \dots + \sqrt{96 + \sqrt{99}}}}.$$

Ответ: 2.469926

Задача 15.

Вычислить:

$$Y = 1! + 2! + 3! + ... + N!$$
 (N>1)

Факториал числа N вычисляется по следующей формуле:

$$N!=1\cdot 2\cdot 3\cdot ...\cdot N$$
.

Залача 16.

Определить 20-е число Фибоначчи.

Числа Фибоначчи вычисляются с помощью следующих соотношений:

$$F_0 = 0; \ F_1 = 1; \ F_i = F_{i-1} + F_{i-2}$$
для $i > 1$.

Ответ: 6765.

Залача 17.

Дано 10 вещественных чисел. Определить, образуют ли они возрастающую последовательность.

Задача 18.

Дана последовательность из 10 целых чисел. Определить, со скольких отрицательных чисел она начинается.

Задача 19.

Дано число N. Определить, является ли это число простым.

Залача 20.

Дано натуральное число n. Вычислить:

$$\left(1+\frac{1}{1^2}\left(1+\frac{1}{2^2}\right)\mathbf{K}\left(1+\frac{1}{n^2}\right)\right)$$

Задача 21.

Написать программу, печатающую все буквы латинского алфавита от A до Z.

Задача 22.

Написать программу, печатающую все буквы латинского алфавита от Z до A.

Залача 23.

Написать программу вывода последовательности букв:

Α

AB

ABC

. . . .

ABC...XYZ.

Задача 24.

Написать программу вывода последовательности букв:

ZYYXXX...AAA...A.

Организация данных в виде массивов

Одномерные массивы

Залача 1.

В массиве из 15 чисел найти наибольший элемент и его индекс в массиве.

Задача 2.

В массиве из 15 чисел найти наименьший элемент и его индекс в массиве.

Задача 3.

В массиве из 15 чисел найти первый отрицательный элемент и его индекс в массиве.

Залача 4.

В массиве из 15 чисел найти индекс первого нулевого элемента.

Залача 5.

В массиве из 10 чисел есть хотя бы один отрицательный элемент. Вычислить произведение элементов массива до первого отрицательного.

Залача 6.

В массиве из 10 чисел есть хотя бы один нулевой элемент. Вычислить сумму элементов массива до первого нуля.

Задача 7.

В массиве из 10 чисел есть положительные и отрицательные элементы. Вычислить сумму положительных элементов массива.

Залача 8.

В массиве из 10 чисел есть хотя бы один нулевой элемент. Вычислить произведение элементов массива до первого нуля.

Запача 9.

В массиве из 10 чисел есть положительные и отрицательные элементы. Вычислить сумму отрицательных элементов массива.

Залача 10.

В массиве из 10 чисел есть положительные и отрицательные элементы. Подсчитать количество положительных элементов массива.

Залача 11.

В массиве из 10 чисел есть положительные и отрицательные элементы. Вычислить произведение положительных элементов массива.

Залача 12.

В массиве из 10 чисел есть положительные и отрицательные элементы. Подсчитать количество отрицательных элементов массива.

Залача 13.

В массиве из 10 чисел есть положительные и отрицательные элементы. Вычислить произведение отрицательных элементов массива.

Залача 14.

В массиве из 10 чисел подсчитать количество элементов, больших трех.

Залача 15.

В массиве из 10 чисел подсчитать сумму элементов, стоящих на четных местах.

Задача 16.

Дан массив X из 10 чисел. Воспользовавшись вспомогательным массивом такой же размерности, сдвинуть элементы массива X на заданное число K позиций влево.

Контрольный пример: массив X = [1,2,3,4,5,6,7,8,9,10]. Число K=4. Результат: полученный массив = [4,5,6,7,8,9,10,1,2,3].

Задача 17.

В массиве из 10 чисел переставить все нули в конец массива, не меняя порядок не нулевых элементов.

Контрольный пример: исходный массив X = [1,0,3,4,0,0,7,0,9,10] Результат: полученный массив X = [1,3,4,7,9,10,0,0,0].

Задача 18.

В массиве из 10 чисел поменять местами первое и десятое, второе и девятое и т.д. (т.е. перевернуть массив).

Залача 19.

В массиве из 10 чисел переставить минимальный элемент на послелнее место.

Задача 20.

Сформировать массив из 9 чисел, элементы которого равны квадратному корню из индекса элемента.

Двумерные массивы

Залача 1.

Дан двумерный массив чисел A размером 6x6 и одномерный массив X из 6-ти чисел. Нечетные строки массива A заменить на X.

Залача 2.

Дан двумерный массив чисел A размером бхб и одномерный массив X из 6-ти чисел. Четные столбны массива A заменить на X.

Задача 3.

Дан двумерный массив чисел A размером 6x6 и одномерный массив X из 6-ти чисел. Первые три строки массива A заменить на X.

Залача 4.

Дан двумерный массив чисел A размером 6х6. Воспользовавшись одномерным массивом размером 6 элементов как вспомогательным, поменять местами 1-ю и 2-ю строки, 3-ю и 4-ю строки, 5-ю и 6-ю строки.

Залача 5.

В массиве чисел размером 6х6 элементов найти максимальный элемент, минимальный элемент и их индексы.

Задача 6.

Дана матрица чисел размером 3x4. Переставляя ее строки и столбцы, добиться того, чтобы ее наибольший элемент (один из них) оказался в верхнем левом углу.

Задача 7.

Дана матрица A чисел размером 5x5 элементов. Найти сумму элементов массива A из заштрихованной области:

Задача 8.

Массив целых чисел размером 10x10 элементов заполнить следующим образом:

$$\begin{pmatrix}
0 & 0 & 0 & \mathbf{K} & 0 \\
0 & 1 & 0 & \mathbf{K} & 0 \\
0 & 0 & 2 & \mathbf{K} & 0 \\
& & \mathbf{K} & & & \\
0 & 0 & 0 & \mathbf{K} & 9
\end{pmatrix}
\begin{pmatrix}
1 & 2 & \mathbf{K} & 10 \\
11 & 12 & \mathbf{K} & 20 \\
21 & 22 & \mathbf{K} & 30 \\
& & \mathbf{L} & & \\
91 & 92 & \mathbf{K} & 100
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & \mathbf{K} & 10 \\
0 & 1 & 2 & \mathbf{K} & 9 \\
0 & 0 & 1 & \mathbf{K} & 8 \\
& & \mathbf{K} & & \\
0 & 0 & 0 & \mathbf{K} & 1
\end{pmatrix}$$

$$\stackrel{\text{a)}}{} \qquad \stackrel{\text{6)}}{} \qquad \qquad \stackrel{\text{6)}}{} \qquad \qquad \stackrel{\text{B)}}{}$$

Задача 9.

Заполнить массив A из 6 строк и 9 столбцов по следующему правилу: $A_{ii} = x_{\ i}^{i}$.

Залача 10.

Даны целые числа $a_{\it l},~a_{\it 2},~a_{\it 3}.$ Получить целочисленную матрицу 3х3, для которой $b_{\it ij}=a_{\it i}-3a_{\it j}.$

Задача 11.

Получить действительную матрицу 7x7, первая строка которой задается формулой $a_{1j}=2\,j+3, \quad (j=1,{\bf K},7)$, вторая строка

задается формулой
$$a_{2j}=j-\frac{3}{2+1/j}, \quad (j=1,\mathbf{K},7),$$
 а каждая

следующая строка есть сумма двух предыдущих.

Задача 12.

Даны натуральное число n, действительная матрица размера $n \times 9$. Найти среднее арифметическое каждого из столбцов.

Залача 13.

Даны натуральное число n, действительная матрица размера $n \times 9$. Найти среднее арифметическое каждого из столбцов, имеющих четные номера.

Залача 14.

Дана действительная матрица размера $n \times m$, в которой не все элементы равны нулю. Получить новую матрицу путем деления всех элементов данной матрицы на ее наибольший элемент.

Залача 15.

Дана действительная квадратная матрица порядка 6. Заменить нулями все ее элементы, расположенные на главной диагонали и выше нее.

Залача 16.

Даны натуральное число n, действительная матрица A размером n х n. Получить последовательность элементов главной диагонали A_{II} , A_{22} , ..., A_{nn} .

Залача 17.

Все элементы с наибольшим значением в данной целочисленной квадратной матрице порядка 6 заменить нулями.

Залача 18.

Дана действительная матрица размером 6 х 9. Найти среднее арифметическое наибольшего и наименьшего значений ее элементов.

Задача 19.

Дана действительная матрица размером $n \times m$. Найти сумму наибольших значений ее строк.

Задача 20.

В данной квадратной целочисленной матрице порядка 6 указать индексы всех элементов с наибольшим значением.

Подпрограммы

Подпрограммы-функции

Подпрограммы-процедуры

Работа со строками

Работа с файлами