

Física Geral I

Estudo do comportamento dinâmico de uma mola elástica

Docente:

Miguel Araújo

Discentes:

Luís Carvalho, nº 51817

Rui Silva, nº 51262

Henrique Rosa nº51923

Rafaela Abade nº52246

Índice

Resumo	
Introdução	3
Material	
Procedimento	
Cálculos e resultados	
Conclusão	

Resumo

Medimos uma constante elástica de uma mola por 2 métodos diferentes.

O primeiro é ver os alongamentos produzidos por maces suspensas.

O segundo consiste em ver os períodos de oscilação de massas suspensas.

Os resultados obtidos foram:

Primeiro caso: k = 27.4771 N/m

Segundo caso: k = 34.49403 N/m

A incorreta medição dos alongamentos da mola com uma fita métrica é uma possível fonte de erro.

Introdução

Neste trabalho pretende-se verificar, por experiência, a lei do período de uma mola elástica e a lei de *Hooke*.

A Lei de *Hooke* diz que a deformação da mola pode ser caracterizada por uma força. Tal caracterização pode ser descrita pela seguinte fórmula:

$$F = k\Delta l$$

F -> Intensidade da força de deformação;

k -> Constante elástica da mola;

 $\Delta l \rightarrow Alongamento produzido pela força F.$

Considere-se uma massa m pendurada na mola, estando esta na vertical. A intensidade da força de deformação F é dada pelo peso da massa m (F=ma). A deformação longitudinal Δl é a diferença do comprimento da mola com e sem força de deformação aplicada.

Material

- Mola elástica;
- Diversos pesos (50g,100g,200g);
- Suporte universal com garra e noz;
- Cronómetro digital;
- Fita métrica de 2m;
- Balança digital.

Fig.1: Suporte universal com garra e noz.

Procedimento

Mediram-se as massas dos pesos e a massa da mola (0.0158 kg) com uma balança digital.

Após registados o valor das massas necessário mediram-se o comprimento inicial da mola elástica (0.236 m) com o auxílio da fita métrica.

Colocou-se progressivamente mais peso na ponta da mola elástica, medindo o alongamento cada vez que se incrementava o peso. Com o cronómetro digital, aquando da incrementação do peso, mediu-se a duração de 10 oscilações da mola, para um total de 7 medições, cada uma com um peso diferente.

Cálculos e resultados

Os resultados da medição do alongamento (ΔI) foram:

m +- 0,0001 (Kg)	F = mg (N)	△l (m)	T (s)	T^2 (s^2)
0.0999	0.97902	0.034	0.349	0.121801
0.1987	1.94726	0.069	0.473	0.223729
0.2986	2.92628	0.104	0.579	0.335241
0.3974	3.89452	0.138	0.678	0.459684
0.5958	5.83884	0.209	0.830	0.688900
0.7943	7.78414	0.279	0.959	0.919681
0.9938	9.73924	0.354	1.063	1.129969

Tabela 1: Resultados da medição do Δ l e da respetiva massa m suspensa.

Como se pretende saber o valor da constante elástica da mola (k) podemos descrever F na seguinte expressão: **F = mg**

Gráfico 1: Regressão linear dos valores da intensidade da força F (y) em função dos valores do alongamento (x).

Considerando g=9.8 m/s²

Pela regressão linear obtiveram-se os seguintes valores para os distintos parâmetros:

- Coeficiente de correlação = 0.999932
- Declive (k) = 27.4771N/m
- Ordenada na origem = 0.070564

Gráfico 2: Regressão linear dos valores do período de oscilação ao quadrado (T^2) (y) em função da massa (x).

- Coeficiente de correlação = 0.9998
- Declive = 1.1445
- Ordenada na origem = 0.0015 s

$$k = \frac{\pi^2}{declive}$$

Com a utilização da fórmula expressa anteriormente, chegou-se à constante elástica de k = 34.49403 N/m.

Conclusão

Os resultados obtidos não se encontram no intervalo esperado.

As principais fontes de erro foram as medições dos alongamentos da mola com a fita métrica.