Teoria dei Segnali - Esercitazione 5 Segnali periodici e sistemi lineari.

Esercizio 1

È dato il segnale

$$y(t) = \sum_{i=-\infty}^{+\infty} x(t - 2iT),$$

dove

$$x(t) = \begin{cases} 1 - \frac{3|t|}{4T} & \text{per} & |t| < 2T/3\\ 1/2 & \text{per} & 2T/3 < |t| < T\\ 0 & \text{altrove} \end{cases}$$

y(t) viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{4T}$ e 0 altrove. Calcolare l'espressione del segnale z(t) in uscita dal filtro.

Esercizio 2

Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left\{-\frac{|t - kT|}{T}\right\}$$

viene filtrato con un passabasso ideale la cui funzione di trasferimento vale 1 per $|f| < B = \frac{3}{2T}$ e 0 altrove. Quanto vale il segnale y(t) in uscita dal filtro?

Esercizio 3

È dato il segnale

$$x(t) = \sum_{n=-\infty}^{\infty} \exp\left\{-\frac{\pi}{2}(t - nT)^2\right\}.$$

Tale segnale passa attraverso un sistema LTI con risposta all'impulso h(t) rettangolare di supporto [-T/2, T/2] e ampiezza pari a 1. Sia y(t) il segnale in uscita dal sistema. Calcolare la potenza media di y(t).

Esercizio 4

Il segnale

$$x(t) = \sum_{k=-\infty}^{\infty} \Pi(2t/T - 2k)$$

dove $\Pi(t) = 1$ se $t \in [-1/2, 1/2]$ e zero altrove, viene posto all'ingresso di un filtro passabanda ideale con frequenza centrale $f_c = L/T$, L intero positivo, e banda 1/(2T). Si scriva l'espressione del segnale d'uscita y(t).

Teoria dei Segnali - Esercitazione 5 Segnali periodici e sistemi lineari.

Esercizio 5

Il segnale $x(t) = \sum_{i=-\infty}^{+\infty} (-1)^i p_T(t-iT)$, dove $p_T(t)$ vale 1 per |t| < T/2 e 0 altrove, subisce una trasformazione LTI caratterizzata da H(f) = 1 per |f| < B e 0 altrove. Nel caso BT = 1/3, quanto vale il segnale y(t) ottenuto?

Esercizio 6

Dato il segnale $x(t) = \sum_{i=-\infty}^{+\infty} (-1)^i r(t-iT)$, dove $r(t) = e^{-at} u(t)$, calcolare lo spettro di ampiezza. E' possibile ottenere da x(t) un segnale sinusoidale di frequenza f_0 filtrando opportunamente? Motivare la risposta. Escludendo il caso $f_0 = 0$, qual è il minimo valore di f_0 ottenibile?