Continuité

Ex 1 Ecrivons comme composées de fonctions élémentaires :

a)
$$a: x \mapsto \sqrt{1 - \ln(x)}$$
 est la composée de $a_1: x \mapsto \sqrt{x}$ et de $a_2: x \mapsto 1 - x$ et de $\ln x$

$$a = a_1 \circ a_2 \circ \ln$$

b)
$$b: x \mapsto \sqrt{1+\sin^2(x)}$$
 est la composée de $b_1: x \mapsto \sqrt{x}$, de $b_2: x \mapsto 1+x^2$ et de $\sin:$

$$b = b_1 \circ b_2 \circ \sin$$

c)
$$c:x\mapsto 1-e^{2-x^2}$$
 est la composée de $c_1:x\mapsto 1-x$ de \exp et de $c_2:x\mapsto 2-x^2:$

$$c = c_1 \circ \exp \circ c_2$$

d) $\delta: x \mapsto \cos(3x^2 - 1)$ est la composée de \cos et de $\varphi: x \mapsto 3x^2 - 1$:

$$\delta = \cos \circ \varphi$$

e)
$$\varepsilon: x \mapsto \frac{1}{1-e^x}$$
 est la composée de inv : $x \mapsto \frac{1}{x}$, de $\psi: x \mapsto 1-x$ et de exp :

$$\varepsilon = \operatorname{inv} \circ \psi \circ \exp$$

f)
$$f: x \mapsto \frac{a\sqrt[3]{x+b}}{c\sqrt[3]{x+d}}$$
 est la composée de $f_1: x \mapsto \frac{ax+b}{cx+d}$ et de $f_2: x \mapsto \sqrt[3]{x}:$

$$f = f_1 \circ f_2$$

Ex 2 Continuité sur \mathbb{R} de $f: x \mapsto |x| + \sqrt{x - |x|}$:

- Par somme et composée, f est continue sur $\mathbb{R}\backslash\mathbb{Z}$ ($x\mapsto \lfloor x\rfloor$ l'est).
- Soit $k\in\mathbb{Z}$. On sait que $\lim_{x\to k^+}\lfloor x\rfloor=k=\lfloor k\rfloor$ et $\lim_{x\to k^-}\lfloor x\rfloor=k-1$. Donc

$$* f(k) = k$$

$$* \lim_{k+} f = k + \sqrt{k-k} = k = f(k)$$

*
$$\lim_{k \to \infty} f = k - 1 + \sqrt{k - (k - 1)} = k - 1 + 1 = k = f(k)$$

On en déduit que f est continue en k.

Finalement f est continue sur $\mathbb R$

Ex 3 Prolongements par continuité en 0 :

a)
$$f: x \mapsto x \left| 1 + \frac{1}{x} \right|$$
. On a $\forall x \in \mathbb{R}^*$, $f(x) = \frac{x}{|x|} |x+1|$. Alors:
* $\forall x > 0$, $f(x) = x+1$, d'où $\lim_{0+} f = 1$

*
$$\forall x > 0$$
, $f(x) = x + 1$, d'où $\lim_{0+} f = 1$

*
$$\forall x \in \left]-1,0\right[,\; f\left(x\right)=-\left(x+1\right),$$
 d'où $\lim_{0-}f=-1$

f n'est pas prolongeable par continuité en 0

Remarque: la courbe de f est une Γ

PCSI 1 Thiers

b)
$$f: x \mapsto \sin \frac{1}{x}$$

- * La suite de terme général $x_n = \frac{1}{n\pi}$ converge vers 0 et $f(x_n) = 0$.
- * La suite de terme général $x_n' = \frac{1}{\frac{\pi}{2} + 2n\pi}$ converge vers 0 et $f(x_n') = 1$.

Cela nie le critère séquentiel et montre que f n'a pas de limite en 0, et <u>n'est pas prolongeable par continuité en 0.</u>

Remarque: la courbe de f est "pathologique" au voisinage de 0:

c) $f: x \mapsto x \sin \frac{1}{x}$. On peut écrire pour tout réel $x \neq 0$:

$$|f(x)| = |x| \left| \sin \frac{1}{x} \right| \leqslant |x|$$

Le théorème des gendarmes permet d'affirmer que $\lim_{0} f$ existe et vaut 0.

f se prolonge par continuité en 0 en posant f(0) = 0

d) $f: x \mapsto (x + \sqrt{1 + x^2})^{1/x} = \exp \frac{\ln (x + \sqrt{1 + x^2})}{x}$. En notant $g: x \mapsto \ln (x + \sqrt{1 + x^2})$, on a

$$\forall x \neq 0, \ \frac{\ln\left(x + \sqrt{1 + x^2}\right)}{x} = \frac{g(x) - g(0)}{x}$$

Donc $\lim_{x\to 0} \frac{\ln\left(x+\sqrt{1+x^2}\right)}{x} = g'\left(0\right)$. Comme

$$\forall x \in \mathbb{R}, \ g'(x) = \frac{1 + \frac{x}{\sqrt{1+x^2}}}{x + \sqrt{1+x^2}} = \frac{1}{\sqrt{1+x^2}} \frac{\sqrt{1+x^2} + x}{x + \sqrt{1+x^2}} = \frac{1}{\sqrt{1+x^2}}$$

il en résulte que $g'\left(0\right)=1,$ et en composant les limites $\overline{\lim_{0}f=e}$

f se prolonge par continuité en 0 en posant $f\left(0\right)=e$

Ex 4 Soit f la fonction définie sur \mathbb{R} par f(0) = 0 et $\forall x \neq 0, \ f(x) = \frac{e^{1/x}}{x^2}$.

Les fonctions $\operatorname{inv}: x \mapsto \frac{1}{x}$ et $\varphi: x \mapsto \frac{1}{x^2}$ sont continues $\operatorname{sur} \mathbb{R}^*$, donc $f = \varphi \times (\exp \circ \operatorname{inv})$ l'est aussi.

- $\quad \text{En posant } y = \frac{1}{x} \underset{x \rightarrow 0^{+}}{\rightarrow} + \infty, \text{ on a pour } x > 0: f\left(x\right) = y^{2}e^{y}. \text{ Donc } \lim_{x \rightarrow 0^{+}} f\left(x\right) = \lim_{y \rightarrow +\infty} y^{2}e^{y} = +\infty$
- De même $y = -\frac{1}{x} \underset{x \to 0^{-}}{\to} +\infty$, et pour x < 0: $f(x) = y^{2}e^{-y}$. Donc $\lim_{x \to 0^{+}} f(x) = \lim_{y \to +\infty} \frac{y^{2}}{e^{y}} = 0 = f(0)$

Ainsi f est continue à gauche en 0, mais non continue à droite

Ex 5 Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x) + f(y).

Montrons que f est continue sur \mathbb{R} : si $a \in \mathbb{R}$, alors $\forall h \in \mathbb{R}$

$$f\left(a+h\right) \stackrel{(*)}{=} f\left(a\right) + f\left(h\right)$$

Comme f est continue en 0, on a $\lim_{h\to 0}f\left(h\right)=f\left(0\right)\stackrel{\text{(i)}}{=}0$, d'où $\lim_{h\to 0}f\left(a+h\right)=f\left(a\right)$, qui assure la continuité de f en a.

Ex 6 Trouvons toutes les fonctions continues en 0 vérifiant $\forall x \in \mathbb{R}, f(2x) = f(x)$ (*).

On a l'intuition que seules les constantes conviennent. Prouvons-le.

Analyse : supposons que f soit solution du problème, et fixons un réel x.

La relation (*) s'écrit aussi, en substituant $\frac{x}{2}$ à x:

$$f\left(x\right) = f\left(\frac{x}{2}\right)$$

Mais alors $f(x) = f\left(\frac{x}{2}\right) = f\left(\frac{x}{4}\right)$... Montrons par récurrence :

$$\forall n \in \mathbb{N}, \ f(x) = f\left(\frac{x}{2^n}\right) \quad H(n)$$

- H(0) est une évidence.
- Soit $n \in \mathbb{N}$. Si H(n) est vraie, alors $f(x) = f\left(\frac{x}{2^n}\right) \stackrel{(*)}{=} f\left(\frac{x}{2^{n+1}}\right)$, d'où H(n+1) est vraie.

On passe alors à la limite quand $n \to +\infty$: comme $\left(\frac{x}{2^n}\right)_{n \in \mathbb{N}}$ converge vers 0, la continuité de f en 0 donne :

$$f(x) = \lim_{n \to +\infty} f\left(\frac{x}{2^n}\right) = f(0)$$

f est donc constante égale à f(0).

Synthèse : il est clair que les fonctions constantes répondent au problème.

Conclusion : seules les fonctions constantes répondent au problème .

Dérivabilité

Ex 7 Calcul de dérivées :

a) $f: x \mapsto \sqrt[3]{\tan x}$ est définie sur \mathbb{R} et dérivable sur \mathbb{R}^* seulement (puisque $x \mapsto \sqrt[3]{x}$ n'est pas dérivable en 0). Par composition :

$$\forall x \in \mathbb{R}^*, \ f'(x) = \frac{\text{th}'(x)}{3\sqrt[3]{(\text{th } x)^2}} = \frac{1}{3 \text{ch}^2(x) \sqrt[3]{\frac{\text{sh}^2 x}{\text{ch}^2 x}}} = \boxed{\frac{1}{3\sqrt[3]{\text{ch}^6 x \text{sh}^2 x}}}$$

b) $f: x \mapsto \ln(1 + \sqrt[6]{x})$ est définie sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* (puisque $x \mapsto \sqrt[6]{x}$ n'est pas dérivable en 0). Comme $\forall x > 0$, $\frac{d\sqrt[6]{x}}{dx} = \frac{dx^{1/6}}{dx} = \frac{1}{6}x^{-5/6}$, on en déduit

$$\forall x > 0, \ f'\left(x\right) = \frac{1}{6x^{5/6}\left(1 + \sqrt[6]{x}\right)} = \frac{1}{6\sqrt[6]{x^{5}}\left(1 + \sqrt[6]{x}\right)} = \boxed{\frac{1}{6}\frac{1}{\sqrt[6]{x^{5}} + x}}$$

c) $f: x \mapsto \sqrt[3]{\frac{x^3+1}{x^3-1}}$ est définie pour tout réel x tel que $x^3 \neq 1$, soit sur $\mathbb{R} \setminus \{1\}$.

Comme $x\mapsto \sqrt[3]{x}$ n'est pas dérivable en 0, f est dérivable en tout x de $\mathbb{R}\setminus\{1\}$ tel $x^3\neq -1$, soit sur $\mathbb{R}\setminus\{-1,1\}$. On commence par dériver $\varphi:x\mapsto \frac{x+1}{x-1}=1+\frac{2}{x-1}$:

$$\forall x \in \mathbb{R} \setminus \{1\}, \ \varphi'(x) = -\frac{2}{(x-1)^2}$$

En composant avec $R: x \mapsto \sqrt[3]{x}$ et en notant $g = R \circ \varphi : x \mapsto \sqrt[3]{\frac{x+1}{x-1}}$

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \ g'(x) = -\frac{2}{(x-1)^2} \frac{1}{3} \frac{1}{\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}}$$
$$= -\frac{2}{3(x-1)^2} \sqrt[3]{\left(\frac{x-1}{x+1}\right)^2}$$
$$= -\frac{2}{3} \frac{1}{\sqrt[3]{(x-1)^4 (x+1)^2}}$$

En remarquant que $\forall x \in \mathbb{R} \setminus \{-1,1\}$, $f\left(x\right) = g\left(x^3\right)$, il vient par composition encore :

$$\forall x \in \mathbb{R} \setminus \{-1, 1\}, \ f'(x) = -\frac{2x^2}{\sqrt[3]{(x^3 - 1)^4 (x^3 + 1)^2}}$$

d) $f: x \mapsto \frac{1}{\sqrt{\ln x}}$ est définie sur $]1, +\infty[$ (on doit avoir $\ln x > 0$). Elle y est dérivable et en écrivant

$$\forall x > 0, \ f(x) = (\ln x)^{-1/2}$$

on a

$$\forall x > 0, \ f'(x) = -\frac{1}{2x} (\ln x)^{-3/2} = \boxed{-\frac{1}{2} \frac{1}{x \ln(x) \sqrt{\ln(x)}}}$$

- e) Soit $(a,b,c,d) \in \mathbb{R}^4$ tel que $cd \neq 0$ et $a \neq 0$. $f: x \mapsto \sqrt{\frac{ax+b}{cx+d}}$ est définie pour tout réel x tel que $\frac{ax+b}{cx+d} \geqslant 0$, ce qui revient à $(ax + b)(cx + d) \ge 0$ et $x \ne -\frac{d}{a}$.
 - * Pour ac > 0, f est donc définie sur "à l'extérieur" de $-\frac{d}{c}$ et $-\frac{b}{a}$, sans $-\frac{d}{c}$
 - * Pour ac < 0, f est définie sur "à l'intérieur" de $-\frac{d}{c}$ et $-\frac{b}{a}$, sans $-\frac{d}{c}$

f est dérivable sur le même ensemble, privé du point $-\frac{b}{a}$ (car $x \mapsto \sqrt{x}$ n'est pas dérivable en 0).

En notant \mathcal{D} cet ensemble de dérivabilité, on a

$$\forall x \in \mathcal{D}, \ \frac{d}{dx} \frac{ax+b}{cx+d} = \frac{a(cx+d) - cax+b}{(cx+d)^2} = \frac{ad-bc}{(cx+d)^2}$$

donc

$$\forall x \in \mathcal{D}, f'(x) = \frac{1}{2} \frac{ad - bc}{(cx + d)^2} \sqrt{\frac{cx + d}{ax + b}}$$

- f) $f: x \mapsto \frac{ax^n + b}{cx^n + d}$ (mêmes hypothèses sur a, b, c, d) est définie pour tout réel x tel que $x^n \neq -\frac{d}{c}$
 - * Si n est pair et $\frac{d}{c} > 0$, f est définie sur \mathbb{R} .
 - * Si n est pair et $\frac{d}{c} < 0$, f est définie sur $\mathbb{R} \setminus \left\{ \sqrt[n]{-\frac{d}{c}}, -\sqrt[n]{-\frac{d}{c}} \right\}$
 - * Si n est impair, f est définie sur $\mathbb{R}\setminus\left\{\sqrt[n]{-\frac{d}{c}}\right\}$

Rationnelle, f est dérivable sur son ensemble de définition \mathcal{D} , et en utilisant le calcul du e), on a par composée :

$$\forall x \in \mathcal{D}, \quad f'(x) = nx^{n-1} \frac{ad - bc}{\left(cx^n + d\right)^2}$$

g) $f: x \mapsto \sin(\cos(\sin(x)))$ est dérivable sur \mathbb{R} et par composition :

$$\forall x \in \mathbb{R}, \ f'\left(x\right) = \frac{d}{dx}\cos\left(\sin\left(x\right)\right) \times \cos\left(\cos\left(\sin\left(x\right)\right)\right)$$

$$= \cos x \times \left(-\sin\left(\sin x\right)\right) \times \cos\left(\cos\left(\sin\left(x\right)\right)\right)$$

$$\boxed{f'\left(x\right) = -\cos\left(x\right)\sin\left(\sin\left(x\right)\right)\cos\left(\cos\left(\sin\left(x\right)\right)\right)}$$
h) $f: x \mapsto \left(x^2 + 1\right)^2 \left(x^3 - 1\right)^2$ est polynomiale, dérivable sur \mathbb{R} donc, et par produit et composition :

$$f'(x) = -\cos(x)\sin(\sin(x))\cos(\cos(\sin(x)))$$

$$\forall x \in \mathbb{R}, \ f'(x) = 4x(x^2+1)(x^3-1)^2 + (x^2+1)^2(6x^2)(x^3-1)$$
$$= 2x(x^2+1)(x^3-1)[2(x^3-1)+3x(x^2+1)]$$
$$f'(x) = 2x(x^2+1)(x^3-1)(5x^3+3x-2)$$

i) $f: x \mapsto \sqrt[3]{\arcsin x}$ est définie sur [-1,1], mais \arcsin n'est pas dérivable en -1 et 1. De plus $x \mapsto \sqrt[3]{x}$ n'est pas dérivable en 0, et \arcsin s'annule en 0. On en déduit sue f est dérivable seulement sur $\mathcal{D} =]-1,0[\,\cup\,]0,1[$. De plus par composition:

$$\forall x \in \mathcal{D}, f'(x) = \frac{1}{3} \frac{1}{\sqrt{1 - x^2}} \frac{1}{\sqrt[3]{\arcsin^2 x}}$$

j) $f:x\mapsto\arctan\left(\operatorname{th}x\right)$ est dérivable sur $\mathbb R$ par composée de fonctions qui le sont, et

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{\text{th}'(x)}{1 + \text{th}^2(x)} = \boxed{\frac{1 - \text{th}^2(x)}{1 + \text{th}^2(x)}}$$

k)
$$f: x \mapsto \operatorname{ch}\left(x\right)^{1/x} = \exp\left(\frac{\ln \operatorname{ch} x}{x}\right)$$
 est dérivable sur \mathbb{R}^* (puisque $\operatorname{ch} \geqslant 1$), et

$$\forall x \neq 0, \ f'(x) = \left(\frac{1}{x}\frac{\sin x}{\cot x} - \frac{\ln \cot x}{x^2}\right) \exp\left(\frac{\ln \cot x}{x}\right)$$

$$f'(x) = \frac{1}{x^2} (x \operatorname{th} x - \ln \operatorname{ch} x) \operatorname{ch} (x)^{1/x}$$

1) $f: x \mapsto (x+2)e^{1/x}$ est dérivable sur \mathbb{R}^* par composée et produit, et

$$\forall x \neq 0, \ f'(x) = e^{1/x} - \frac{x+2}{x^2}e^{1/x}$$

$$f'(x) = \frac{1}{x^2} (x^2 - x - 2) e^{1/x}$$

m) $f: x \mapsto x^{\ln(x)} = e^{\ln^2(x)}$ est dérivable sur son ensemble de définition \mathbb{R}_+^* et

$$\forall x > 0, \ f'(x) = \frac{2 \ln x}{x} e^{\ln^2(x)} = 2 \frac{\ln x}{x} x^{\ln(x)}$$

$$f'(x) = 2\ln(x) x^{\ln(x)-1}$$

 $\boxed{f'\left(x\right)=2\ln\left(x\right)x^{\ln\left(x\right)-1}}$ n) $f:x\mapsto x^{(x^x)}=e^{x^x\ln x}=e^{e^{x\ln x}\ln x}$ est dérivable sur son ensemble de définition \mathbb{R}_+^* .

On a dans un premier temps

$$\forall x > 0, \ \frac{d}{dx}x^x = \frac{d}{dx}e^{x \ln x} = (1 + \ln x)e^{x \ln x}$$

donc

$$\frac{d}{dx}x^{x} \ln x = (1 + \ln x) e^{x \ln x} \ln x + \frac{x^{x}}{x}$$

$$= (1 + \ln x) x^{x} \ln x + x^{x-1}$$

$$= [(1 + \ln x) \ln x + x^{-1}] x^{x}$$

Ainsi par composition

$$\forall x > 0, \left[f'(x) = \left[(1 + \ln x) \ln x + \frac{1}{x} \right] x^x x^{(x^x)} \right]$$

Ex 8 Soit
$$f: x \mapsto 2 \arctan \sqrt{\frac{1-\sin x}{1+\sin x}}$$

a) Le signe de $\varphi: x \mapsto \frac{1-x}{1+x}$ est le même que celui de $x \mapsto (1-x)\,(1+x)$, soit positif sur]-1,1]. Comme arctan est définie sur $\mathbb{R},\ f(x)$ est définie pour tout x tel que $\sin x \neq -1$, soit sur la réunion des intervalles de la forme $]-\frac{\pi}{2}+2k\pi,\frac{3\pi}{2}+2k\pi\big[$, avec $k\in\mathbb{Z}$:

$$\mathcal{D}_0 = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \right]$$

Par composition ($2 \arctan \circ R \circ \varphi \circ \sin$, où R est la fonction racine), f est continue sur $\mathcal{D} = \mathcal{D}_0$.

De plus
$$\lim_{x \to -1^+} \sqrt{\varphi(x)} = +\infty$$
, donc $\lim_{x \to -1^+} 2 \arctan\left(\sqrt{\varphi(x)}\right) = \frac{\pi}{2}$.

Par composition avec \sin , pour tout $k \in \mathbb{Z}$ on a

$$\lim_{x \to -\frac{\pi}{2} + 2k\pi} f(x) = \frac{\pi}{2}$$

On peut prolonger f par continuité en $-\frac{\pi}{2} + 2k\pi$ en posant $f\left(-\frac{\pi}{2} + 2k\pi\right) = \frac{\pi}{2}$, et obtenir une fonction f continue sur \mathbb{R} .

En revanche, R n'étant pas dérivable en 0, f ne l'est pas partout où $\varphi \circ \sin$ s'annule, c'est-à-dire pour tout x tel que $\sin x \neq 1$, soit tout réel x de la forme $\frac{\pi}{2} + 2k\pi$ où $k \in \mathbb{Z}$. Il en résulte que f est dérivable sur

$$\mathcal{D}' = \bigcup_{k \in \mathbb{Z}} \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \left[= \bigcup_{k \in \mathbb{Z}} \right] (2k - 1) \frac{\pi}{2}, (2k + 1) \frac{\pi}{2} \left[\frac{\pi}{2} \right]$$

b) Si $k \in \mathbb{Z}$, posons $I_k = \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$ et calculons f' sur I_k :

Remarquons dans un premier temps que pour $x \in]-1,1]$, $\varphi(x) = -1 + \frac{2}{1+x}$, donc $\varphi'(x) = -\frac{2}{(1+x)^2}$.

Ainsi par composée avec R, pour x dans]-1,1[,

$$\frac{d}{dx}\sqrt{\frac{1-x}{1+x}} = -\frac{2}{\left(1+x\right)^2} \times \frac{1}{2}\sqrt{\frac{1+x}{1-x}} = -\frac{1}{\left(1+x\right)^2}\sqrt{\frac{1+x}{1-x}}$$

et en recomposant par arctan :

$$\frac{d}{dx} 2 \arctan \sqrt{\frac{1-x}{1+x}} = -\frac{2}{(1+x)^2} \sqrt{\frac{1+x}{1-x}} \frac{1}{1+\frac{1-x}{1+x}}$$

$$= -\frac{2}{1+x} \sqrt{\frac{1+x}{1-x}} \frac{1}{1+x+1-x}$$

$$= -\frac{1}{1+x} \sqrt{\frac{1+x}{1-x}}$$

$$= -\frac{1}{\sqrt{1+x}} \frac{1}{\sqrt{1-x}}$$

$$= -\frac{1}{\sqrt{1-x^2}}$$

qui est la dérivée de $g=2\arctan\circ R\circ \varphi$. On compose enfin à droite par \sin (car $f=g\circ \sin$):

$$\forall x \in I_k, \ f'(x) = -\frac{\cos x}{\sqrt{1 - \sin^2 x}} = -\frac{\cos x}{\sqrt{\cos^2 x}} = -\frac{\cos x}{|\cos x|}$$

Finalement,

$$\forall x \in I_k, \ f'(x) = -\operatorname{signe}(\cos x)$$

c) Or si $k \in \mathbb{Z}$ et $x \in I_k$, on a signe $(\cos x) = (-1)^k$, de sorte que $\forall x \in I_k$, $f'(x) = -(-1)^k$. On en déduit qu'il existe une constante C_k telle que

$$\forall x \in I_k, \ f(x) = -(-1)^k x + C_k$$

On calcule la valeur en $k\pi \in I_k$: $f(k\pi) = 2 \arctan \sqrt{1} = \frac{\pi}{2}$. Mais aussi $f(k\pi) = C_k - (-1)^k k\pi$.

Ainsi $C_k = \frac{\pi}{2} + (-1)^k k\pi$ et pour tout $x \in I_k$,

$$f(x) = \frac{\pi}{2} + (-1)^k k\pi - (-1)^k x$$

soit

$$f(x) = \frac{\pi}{2} - (-1)^k (x - k\pi)$$

 $\boxed{f\left(x\right)=\frac{\pi}{2}-\left(-1\right)^{k}\left(x-k\pi\right)}$ Pour avoir l'allure de la courbe de f, remarquons que f est 2π -périodique, et qu'on a établi :

$$\forall x \in I_0 = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \ f(x) = \frac{\pi}{2} - x$$

$$\forall x \in I_1 = \left[\frac{\pi}{2}, \frac{3\pi}{2} \right], \ f(x) = \frac{\pi}{2} + (x - \pi) = x - \frac{\pi}{2}$$

Par continuité, ces expressions restent vraies aux bornes de ces intervalles, et on a f sur la période $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$:

d) Retrouvons l'expression de f sur $I_1 = \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ directement : on passe par "l'angle moitié" :

$$\forall \theta \in \mathbb{R}, \begin{cases} \cos^2 \theta = \frac{1}{2} (1 + \cos(2\theta)) \\ \sin^2 \theta = \frac{1}{2} (1 - \cos(2\theta)) \end{cases}$$

donc si $x \in I_0$:

$$1 + \sin x = 1 + \cos\left(\frac{\pi}{2} - x\right) = 2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)$$
$$1 - \sin x = 1 - \cos\left(\frac{\pi}{2} - x\right) = 2\sin^2\left(\frac{\pi}{4} - \frac{x}{2}\right)$$

d'où

$$f(x) = 2 \arctan \sqrt{\frac{2 \sin^2 \left(\frac{\pi}{4} - \frac{x}{2}\right)}{2 \cos^2 \left(\frac{\pi}{4} - \frac{x}{2}\right)}}$$
$$= 2 \arctan \sqrt{\tan^2 \left(\frac{\pi}{4} - \frac{x}{2}\right)}$$
$$= 2 \arctan \left|\tan \left(\frac{\pi}{4} - \frac{x}{2}\right)\right|$$

Or $\frac{\pi}{4}-\frac{x}{2}\in\left]0,\frac{\pi}{2}\right[$ donc on peut simplifier la valeur absolue, puis l'arctangente :

$$\begin{split} f\left(x\right) &= 2\arctan\left(\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right) \\ &= 2\left(\frac{\pi}{4} - \frac{x}{2}\right) \\ &= \frac{\pi}{2} - x \quad \text{CQFD}. \end{split}$$

Ex 9 a) Montrons que $\forall x \in \mathbb{R}$, $|\arctan[\operatorname{sh}(x)]| = \arccos\left[\frac{1}{\operatorname{ch}(x)}\right]$

Les deux membres sont pairs, il suffit donc de montrer cette égalité sur \mathbb{R}_+ , soit

$$\forall x \ge 0, \arctan(\sinh(x)) = \arccos\left(\frac{1}{\cosh(x)}\right)$$

Soient f et g les fonctions que définissent le membre de gauche et le membre de droite de cette égalité.

f et g sont continues sur \mathbb{R}_+ par composition, et dérivables sur \mathbb{R}_+^* (arccos n'est pas dérivable en 1 et $\frac{1}{\cosh 0} = 1$).

Alors pour tout réel x > 0:

$$f'(x) = \frac{\operatorname{ch} x}{1 + \operatorname{sh}^2 x} = \frac{\operatorname{ch} x}{\operatorname{ch}^2 x} = \frac{1}{\operatorname{ch} x}$$

et

$$g'(x) = \frac{\sinh x}{\cosh^2 x} \frac{1}{\sqrt{1 - 1/\cosh^2 x}}$$

$$= \frac{\sinh x}{\cosh x} \frac{1}{\sqrt{\cosh^2 x - 1}} \quad (\operatorname{car} \, \operatorname{ch} x > 0)$$

$$= \frac{\sinh x}{\cosh x} \frac{1}{\sqrt{\sinh^2 x}}$$

$$= \frac{1}{\cosh x} \quad (\operatorname{car} \, \forall x > 0, \, \operatorname{sh} x > 0)$$

Ainsi f' et g' sont égales sur \mathbb{R}_+^* , donc f et g diffèrent d'une constante sur cet intervalle :

$$\exists C \in \mathbb{R} / \forall x > 0, \ f(x) = g(x) + C$$

En passant à la limite en 0 on a par continuité de f et g: f(0) = g(0) + C.

Or $f(0) = \arctan 0 = 0$ et $g(0) = \arccos 1 = 0$. d'où C = 0: ainsi

$$f$$
 et g coïncident sur \mathbb{R}_+ et sur \mathbb{R} par parité, CQFD

b) Montrons que $\forall x \in \mathbb{R}$, $\arcsin\left(\operatorname{th}(x)\right) = \arctan\left(\operatorname{sh}(x)\right)$

Notons f et g les fonctions que définissent le membre de gauche et le membre de droite de cette égalité. Elles sont définies sur \mathbb{R} (g évidemment et f car th prend ses valeurs dans]-1,1[), et dérivables. De plus $\forall x \in \mathbb{R}$,

$$f'(x) = \frac{1 - \sinh^2 x}{\sqrt{1 - \sinh^2 x}} = \sqrt{1 - \sinh^2 x} = \sqrt{\frac{\cosh^2 x - \sinh^2 x}{\cosh^2 x}} = \frac{1}{\sqrt{\cosh^2 x}} \stackrel{\text{th } x > 0}{=} \frac{1}{\cosh x}$$

$$g'\left(x\right)=\frac{\operatorname{ch}x}{1+\operatorname{sh}^{2}x}=\frac{\operatorname{ch}x}{\operatorname{ch}^{2}x}=\frac{1}{\operatorname{ch}x}$$
 Il en résulte que f et g diffèrent d'une constante sur \mathbb{R} . Or $f\left(0\right)=g\left(0\right)=0$, d'où

$$\forall x \in \mathbb{R}, \ f(x) = g(x), \text{COFD}$$

Ex 10 Soit f une fonction dérivable en a. On cherche $\lim_{h\to 0} \frac{f\left(a+h\right)-f\left(a-h\right)}{2h}$ Pour tout $h\neq 0$ suffisamment proche de a, on peut écrire :

$$\frac{f(a+h) - f(a-h)}{2h} = \frac{1}{2} \frac{f(a+h) - f(a) + f(a) - f(a-h)}{h}$$
$$= \frac{1}{2} \left[\frac{f(a+h) - f(a)}{h} + \frac{f(a-h) - f(a)}{-h} \right]$$

Or par hypothèse $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ existe et vaut f'(a).

De même $\lim_{h\to 0} \frac{f(a-h)-f(a)}{-h} = \lim_{h'\to 0} \frac{f\left(a+h'\right)-f(a)}{h'} = f'\left(a\right)$ grâce au changement de variable h'=-h.

Il en résulte :

la limite cherchée existe et vaut f'(a)

Ex 11 Montrons que la fonction $f: x \mapsto \sqrt{x} \sin(\sqrt{x})$ est de classe C^1 sur \mathbb{R}_+ .

- La fonction $r: x \mapsto \sqrt{x}$ est de classe C^1 sur \mathbb{R}_+^* et sin est de classe C^1 sur \mathbb{R} . Il en résulte que $f = r \times (\sin \circ r)$ est de classe C^1 sur \mathbb{R}_+^* .
- Dérivabilité en 0 : on a pour tout x > 0 :

$$\frac{f(x) - f(0)}{x} = \frac{\sin(\sqrt{x})}{\sqrt{x}}$$

En posant $y = \sqrt{x} \underset{x \to 0}{\to} 0$, on a alors $\lim_{x \to 0} \frac{\sin(\sqrt{x})}{\sqrt{x}} = \lim_{y \to 0} \frac{\sin y}{y} = \sin'(0) = 1$. Donc

$$f$$
 est dérivable en 0 et $f'(0) = 1$

Continuité de f' en 0 : on a pour tout x > 0 :

$$f'(x) = \frac{1}{2\sqrt{x}}\sin\left(\sqrt{x}\right) + \frac{\sqrt{x}}{2\sqrt{x}}\cos\left(\sqrt{x}\right) = \frac{1}{2}\left[\frac{\sin\left(\sqrt{x}\right)}{\sqrt{x}} + \cos\left(\sqrt{x}\right)\right]$$

Le calcul mené plus haut permet d'affirmer que $\lim_{x\to 0}f'\left(x\right)=\frac{1}{2}\left(1+1\right)=1=f'\left(0\right)$:

$$f'$$
 est continue en 0

Bilan: f est bien de classe C^1 sur \mathbb{R}_+

Ex 12 Soit $f: x \mapsto x^2 \sin \frac{1}{x}$

$$\forall x \neq 0, |f(x)| = x^2 \left| \sin \frac{1}{x} \right| \leqslant x^2$$

 $\forall x\neq 0,\; |f\left(x\right)|=x^{2}\left|\sin\frac{1}{x}\right|\leqslant x^{2}$ Le théorème des gendarmes permet d'affirmer que $\lim_{0}f$ existe et vaut 0:

$$f$$
 se prolonge par continuité en 0 en posant $f(0) = 0$

En notant encore f ce prolongement, on a pour tout $x \neq 0$:

$$\left| \frac{f(x) - f(0)}{x} \right| = |x| \left| \sin \frac{1}{x} \right| \leqslant |x|$$

Le théorème des gendarmes entraine encore $\lim_{x\to 0} \frac{f(x)}{x} = 0$, donc \underline{f} est dérivable en 0 de dérivée nulle.

De plus f est dérivable sur \mathbb{R}^* par composée, donc f est dérivable sur \mathbb{R}

Mais pour tout $x \neq 0$:

$$f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

Or on a vu que $\lim_{x\to 0} x \sin\frac{1}{x} = 0$. Mais $\cos\frac{1}{x}$ n'a pas de limite en 0 (en posant $y = \frac{1}{x}$, on est ramené à $\sin y$ en $+\infty$). Il s'ensuit que f' n'a pas de limite en 0, et donc qu'elle n'est pas continue en 0. Finalement

f n'est pas de classe C^1 sur \mathbb{R}

Ex 13 Soit $n \in \mathbb{N}^*$, a_1, \ldots, a_n des réels et $f: x \mapsto \sum_{k=1}^n a_k \sin(kx)$.

On suppose que $\forall x \in \mathbb{R}, |f(x)| \leq |\sin(x)|$. Montrons que $|a_1 + 2a_2 + \cdots + na_n| \leq 1$.

On remarque immédiatement que, f étant dérivable sur \mathbb{R} ,

$$\forall x \in \mathbb{R}, \ f'(x) = \sum_{k=1}^{n} k a_k \cos(kx) \quad \text{donc} \quad f'(0) = \sum_{k=1}^{n} k a_k$$

Or $f'(0) = \lim_{x \to 0} \frac{f(x)}{x}$ (car f(0) = 0). L'hypothèse faite sur f s'écrit donc, en divisant par |x|:

$$\forall x \neq 0, \left| \frac{f(x)}{x} \right| \leqslant \left| \frac{\sin(x)}{x} \right|$$

Le passage à la limite quand $x \to 0$ dans cette inégalité donne alors

$$|f'(0)| \leqslant |\sin'(0)|$$
 soit $\left|\sum_{k=1}^{n} ka_k\right| \leqslant 1$ CQFD.

Ex 14 Pour tout paramètre m, on définit $f_m: x \mapsto \frac{x+m}{x^2+1}$ dont la courbe représentative est notée \mathcal{C}_m . Calculons la dérivée de f_m :

$$\forall x \in \mathbb{R}, \ f'_m(x) = \frac{1}{x^2 + 1} - \frac{2x(x+m)}{(x^2 + 1)^2}$$

 $\forall x \in \mathbb{R}, \ f_m'\left(x\right) = \frac{1}{x^2+1} - \frac{2x\left(x+m\right)}{\left(x^2+1\right)^2}$ a) Si $m \in \mathbb{R}$, la tangente au point d'abscisse 0 à \mathcal{C}_m a pour pente $f_m'\left(0\right) = 1$, indépendant de m. Il en résulte que

toutes les tangentes au point d'abscisse 0 aux courbes \mathcal{C}_m sont parallèles

b) La tangente T_m au point d'abscisse 1, puisque $f_m'(1) = \frac{1}{2} - \frac{1+m}{2} = -\frac{m}{2}$ a quant à elle pour équation :

$$y = \frac{1+m}{2} - \frac{m}{2}(x-1)$$

Isolons le paramètre m dans cette équation :

$$y - \frac{1}{2} = \frac{m}{2} (2 - x)$$

On observe alors que si $M(x,y) \in T_m$ et que x=2, alors $y=\frac{1}{2}$. Cela démontre que

toutes les tangentes au point d'abscisse aux courbes C_m concourent en $A\left(2,\frac{1}{2}\right)$

Ex 15 Soient 0 < a < b. et $f: x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$. Etudions la monotonie de f sur \mathbb{R}_+^* :

f(x) n'a de sens que si 1 + ax > 0 et 1 + bx > 0 i.e. $x > -\frac{1}{a}$ et $x > -\frac{1}{b}$, et si $\ln(1 + bx) \neq 0$, soit $x \neq 0$. En particulier f est définie et dérivable sur \mathbb{R}_+^* , et

$$\forall x > 0, \ f'(x) = \frac{\frac{a}{1+ax}\ln(1+bx) - \frac{b}{1+bx}\ln(1+ax)}{\left(\ln(1+bx)\right)^2}$$
$$= \frac{g(x)}{(1+ax)(1+bx)\left(\ln(1+bx)\right)^2}$$

avec

$$g(x) = a(1+bx)\ln(1+bx) - b(1+ax)\ln(1+ax).$$

A son tour g est clairement dérivable sur \mathbb{R}_+ et pour tout x de \mathbb{R}_+ , on a :

$$g'(x) = a (b \ln(1 + bx) + b) - b (a \ln(1 + ax) + a)$$

= $ab (\ln(1 + bx) - \ln(1 + ax)) \ge 0$

Car 1 + bx > 1 + ax et 0 < a < b. Il s'ensuit que g est croissante sur \mathbb{R}_+ . Comme g(0) = 0, on en déduit que

$$\forall x \ge 0, \ g(x) \ge 0 \quad \text{et} \quad \forall x > 0, \ f'(x) \ge 0$$

Au total, f est croissante sur \mathbb{R}_+^* . Or $\frac{1}{a} \geqslant \frac{1}{b} > 0$, donc $f\left(\frac{1}{a}\right) \geqslant f\left(\frac{1}{b}\right)$, c'est-à-dire :

$$\frac{\ln 2}{\ln \left(1 + \frac{b}{a}\right)} \geqslant \frac{\ln \left(1 + \frac{a}{b}\right)}{\ln 2}$$

Puis en multipliant chancun des membres par le réel positif $\ln 2 \ln \left(1 + \frac{b}{a}\right)$, il vient finalement l'inégalité :

$$\ln\left(1 + \frac{a}{b}\right) \ln\left(1 + \frac{b}{a}\right) \leqslant \left(\ln(2)\right)^2$$

Ex 16 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction décroissante sur \mathbb{R} .

- Soient $x \leqslant x'$ dans \mathbb{R} . Alors $f(x) \geqslant f(x')$, donc $f(f(x)) \leqslant f(f(x'))$: $f \circ f$ est croissante De plus $f(f(f(x))) \geqslant f(f(f(x')))$ donc $f(f(x)) \leqslant f(f(x'))$
- On suppose f dérivable sur \mathbb{R} . Redémontrons les résultats précédents.
 - * Par composée, $f \circ f$ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $(f \circ f)'(x) = f'(x) \times f'(f(x))$ Comme f' est négative sur \mathbb{R} , il s'ensuit que $(f \circ f)'$ est positive sur \mathbb{R} et $f \circ f$ est croissante sur \mathbb{R} .
 - * De même pour tout réel x:

$$\left(f\circ f\circ f\right)'(x)=f'\left(x\right)\times\left(f\circ f\right)'\left(f\left(x\right)\right)=f'\left(x\right)\times f'\left(f\left(x\right)\right)\times f'\left(f\left(f\left(x\right)\right)\right)\leqslant 0$$
 donc $f\circ f\circ f$ est décroissante sur \mathbb{R} .

Ex 17 Soit $f: I \to \mathbb{R}$ vérifiant : $\forall (x, y) \in I^2$, $|f(y) - f(x)| \le k |y - x|^{\alpha}$, où k > 0 et $\alpha > 1$.

Fixons x dans I. Alors pour tout $y \in I \setminus \{x\}$,

$$\left| \frac{f(y) - f(x)}{y - x} \right| \leqslant k |y - x|^{\alpha - 1}$$

Or comme $\alpha-1>0$, on a $\lim_{y\to x}|y-x|^{\alpha-1}=0$. D'après le théorème des gendarmes, il s'ensuit que

$$\lim_{y \to x} \left| \frac{f(y) - f(x)}{y - x} \right| = 0$$

Autrement dit f est dérivable en x et f'(x) = 0.

Cela étant valable pour tout réel $x \in I$, f est ainsi dérivable sur I de dérivée nulle.

Comme I est un intervalle, cela entraine que f est constante sur I CQFD.

Ex 18 Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction dérivable vérifiant : $\forall x \in \mathbb{R}^+, f'(x) \leqslant f(x)$ et f(0) = 0.

Etudions les variations de $g: x \mapsto e^{-x} f(x)$ sur \mathbb{R}_+ : elle est dérivable sur \mathbb{R}_+ par produit, et

$$\forall x \ge 0, \ g'(x) = (f'(x) - f(x)) e^{-x}$$

Compte tenu de l'hypothèse $f'(x) \le f(x)$, on a $\forall x \ge 0, \ g'(x) \le 0.$ g est donc décroissante et positive sur \mathbb{R}_+ . Mais g(0) = f(0) = 0. On en déduit donc :

$$f$$
 est nulle sur \mathbb{R}_+

Ex 19 a) Montrons que la somme et le produit de deux fonctions de classe C^1 sur I sont de classe C^1 sur I.

Soient donc f et g deux fonctions de classe C^1 sur I. Alors elles sont dérivables sur I, et on sait que leur somme f+g aussi. De plus

$$(f+g)' = f' + g'$$

Or f' et g' sont continues, et on sait que leurt somme aussi. Donc (f+g)' est continue.

Au total, f + g est bien de classe C^1 sur I.

b) Montrons que la composée de deux fonctions de classe C^1 l'est aussi.

Soient donc $f \in C^1(I, J)$ et $g \in C^1(J, \mathbb{R})$. On sait que $g \circ f$ est dérivable sur I et

$$(g \circ f)' = f' \times (g' \circ f)$$

Mais g' est continue sur J et f est continue sur I. Par composée, $g' \circ f$ est continue sur I.

De plus f' est continue sur I. Par produit $f' \times (g' \circ f) = (g \circ f)'$ est continue sur I.

Au total $g \circ f$ est bien de classe C^1 sur I.

Ex 20 – Soit f une fonction paire dérivable sur \mathbb{R} . Alors $\forall x \in \mathbb{R}$, f(-x) = f(x). En dérivant :

$$\forall x \in \mathbb{R}, -f'(-x) = f'(x)$$
 soit $f'(-x) = -f'(x)$

$$f'$$
 est impaire

- Soit f une fonction impaire dérivable sur \mathbb{R} . Alors $\forall x \in \mathbb{R}, \ f(-x) = -f(x)$. En dérivant :

$$\forall x \in \mathbb{R}, \ -f'\left(-x\right) = -f'\left(x\right) \quad \text{soit} \quad f'\left(-x\right) = f'\left(x\right)$$

$$f'$$
 est paire

- Soit f une fonction T-périodique dérivable sur \mathbb{R} . Alors $\forall x \in \mathbb{R}, \ f(x+T) = f(x)$. En dérivant :

$$\forall x \in \mathbb{R}, \ f'(x+T) = f'(x+T)$$

$$f'$$
 est T -périodique

Inverse d'une fonction strictement positive strictement décroissante sur $\left]0,\frac{\pi}{2}\right]$, f est strictement positive strictement croissante sur $\left]0,\frac{\pi}{2}\right]$. Comme elle y est continue, elle réalise une bijection de $\left]0,\frac{\pi}{2}\right]$ dans son intervalle image. Mais $f\left(\frac{\pi}{2}\right)=1$ et $\lim_{x\to 0+}\frac{1}{\sin x}=+\infty$:

$$f$$
 réalise une bijection de $\left]0,\frac{\pi}{2}\right]$ dans $\left[1,+\infty\right[$

De plus f est définie et dérivable sur $\left[0, \frac{\pi}{2}\right]$ par quotient, et

$$\forall x \in \left]0, \frac{\pi}{2}\right], f'(x) = -\frac{\cos x}{\sin^2 x}$$

Cette dérivée est strictement positive sur $\left]0, \frac{\pi}{2}\right[$ mais s'annule en $\frac{\pi}{2}$.

Donc f^{-1} est dérivable sur $[1, +\infty[$ privé de $f(\frac{\pi}{2}) = 1$, i.e. sur $]1, +\infty[$, et

$$\forall x > 1, \ (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = -\frac{\sin^2(f^{-1}(x))}{\cos(f^{-1}(x))}$$

Mais par définition $f\left(f^{-1}\left(x\right)\right)=x$, soit $\frac{1}{\sin f^{-1}\left(x\right)}=x$, ou $\sin\left(f^{-1}\left(x\right)\right)=\frac{1}{x}$.

Par ailleurs on peut écrire $\cos^2\left(f^{-1}\left(x\right)\right)=1-\sin^2\left(f^{-1}\left(x\right)\right)$, avec $f^{-1}\left(x\right)\in\left]0,\frac{\pi}{2}\right[$, donc $\cos\left(f^{-1}\left(x\right)\right)>0$.

Ainsi

$$\cos(f^{-1}(x)) = \sqrt{1 - \sin^2(f^{-1}(x))} = \sqrt{1 - \frac{1}{x^2}} \stackrel{x \ge 1}{=} \frac{\sqrt{x^2 - 1}}{x}$$

Finalement, on a la dérivée de f^{-1}

$$(f^{-1})'(x) = -\frac{x}{x^2\sqrt{x^2 - 1}} = \boxed{-\frac{1}{x\sqrt{x^2 - 1}}}$$

Remarque: on peut exprimer directement f^{-1} avec la fonction \arcsin

$$\forall x \in \left]0, \frac{\pi}{2}\right], \ \forall y \in [1, +\infty[, \ f(x) = y \Longleftrightarrow \sin x = \frac{1}{y} \overset{x \in \left]0, \frac{\pi}{2}\right]}{\Longrightarrow} x = \arcsin\left(\frac{1}{y}\right)$$

Donc

$$\forall x \in [1, +\infty[, f^{-1}(x) = \arcsin\left(\frac{1}{x}\right)]$$

et

$$\forall x \in]1, +\infty[, f^{-1}(x) = -\frac{1}{x^2} \frac{1}{\sqrt{1 - \frac{1}{x^2}}} = -\frac{1}{x\sqrt{x^2 - 1}}$$

Ex 22 On pose $f : x \mapsto x^2 + \ln(x)$.

- a) Somme de deux fonctions continues strictement croissantes sur \mathbb{R}_+^* , f réalise une bijection de \mathbb{R}_+^* dans son intervalle image \mathbb{R} . En effet il est clair que $\lim_0 f = -\infty$ et $\lim_{+\infty} f = +\infty$. On note g la réciproque de f.
- b) f est dérivable sur \mathbb{R}_+^* de dérivée $f': x \mapsto 2x + \frac{1}{x} = \frac{2x^2 + 1}{x}$, qui ne s'annule pas sur \mathbb{R}_+^* . Un théorème affirme donc que g est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ g'(x) = \frac{1}{f'(g(x))} = \boxed{\frac{g(x)}{1 + 2g^2(x)}}$$