Clustering: Mixture Models

Machine Learning 10-601B
Seyoung Kim

Problem with K-means

Hard Assignment of Samples into Three Clusters

	Cluster 1	Cluster 2	Cluster 3
Individual 1	1	0	0
Individual 2	0	1	0
Individual 3	0	1	0
Individual 4	1	0	0
Individual 5			•••
Individual 6			•••
Individual 7			
Individual 8			•••
Individual 9			
Individual 10	•••	•••	•••

Probabilistic Soft-Clustering of Samples into Three Clusters

Probability of	Cluster 1	Cluster 2	Cluster 3	Sum
Individual 1	0.1	0.4	0.5	1
Individual 2	0.8	0.1	0.1	1
Individual 3	0.7	0.2	0.1	1
Individual 4	0.10	0.05	0.85	1
Individual 5		•••		1
Individual 6		•••		1
Individual 7				1
Individual 8		•••		1
Individual 9		•••		1
Individual 10				1

- Each sample can be assigned to more than one clusters with a certain probability.
- For each sample, the probabilities for all clusters should sum to 1. (i.e., each row should sum to 1.)
- •Each cluster is explained by a cluster center variable (i.e., cluster mean)

Probability Model for Data P(X)?

Mixture Model

• A density model $\mathbf{p}(\mathbf{x})$ may be multi-modal.

Mixture Model

- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).

Learning Mixture Models from Data

 Given data generated from multi-modal distribution, can we find a representation of the multi-model distribution as a mixture of uni-modal distributions?

Gaussian Mixture Models (GMMs)

Consider a mixture of K Gaussian components:

$$p(x_n) = \sum_k p(x_n \mid z_n = k) p(z_n = k)$$

$$= \sum_k N(x_n \mid \mu_k, \Sigma_k) \pi_k$$
mixture component mixture proportion

Gaussian Mixture Models (GMMs)

Consider a mixture of K Gaussian components:

$$p(x_n) = \sum_{k} p(x_n, z_n = k) p(z_n = k)$$

$$= \sum_{k} N(x_n \mid \mu_k, \Sigma_k) \pi_k$$
mixture component mixture proportion

- This probability model describes how each data point x_n can be generated
 - Step 1: Flip a K-sided die (with probability π_k for the k-th side) to select a cluster c
 - Step 2: Generate the values of the data point from $N(\mu_c, \Sigma_c)$

Gaussian Mixture Models (GMMs)

Consider a mixture of K Gaussian components:

$$p(x_n) = \sum_{k} p(x_n, z_n = k) p(z_n = k)$$

$$= \sum_{k} N(x_n \mid \mu_k, \Sigma_k) \pi_k$$
mixture proportion mixture component

• Parameters for K clusters: $\theta = \{\mu_k, \Sigma_k, \pi_k, k = 1, ..., K\}$

Learning mixture models

- Latent variable model: data are only partially observed!
 - x_i: observed sample data
 - $z_i = \{z_i^1 \dots z_i^K\}$: Unobserved cluster labels (each element 0 or 1, only one of them is 1)
- MLE estimate
 - What if all data $(x_{i,} z_{i})$ are observed?
 - Maximize the data log likelihood for $(x_{i,} z_{i})$ based on $p(x_{i,} z_{i})$
 - Easy to optimize!
 - In practice, only x_i 's are observed
 - Maximize the data log likelihood for (x_i) based on $p(x_i)$
 - Difficult to optimize!
 - Maximize the expected data log likelihood for (x_{i, z_i}) based on $p(x_{i, z_i})$
 - Expectation-Maximization (EM) algorithm

Learning mixture models: fully observed data

In <u>fully observed iid settings</u>, assuming the <u>cluster labels</u> z_i's were observed, the log likelihood decomposes into a sum of local terms.

$$I_c(\theta; D) = \sum_n \log p(x_n, z_n \mid \theta) = \sum_n \log p(z_n \mid \theta) + \sum_n \log p(x_n \mid z_n, \theta)$$
Depends on π_k Depends on μ_k, Σ_k

– The optimization problems for μ_k , Σ_k and for π_k are decoupled, and a closed-form solution for MLE exists.

MLE for GMM with fully observed data

- If we are doing MLE for completely observed data
- Data log-likelihood

$$I(\theta;D) = \log \prod_{n} p(z_n, x_n) = \log \prod_{n} p(z_n \mid \pi) p(x_n \mid z_n, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{k} \pi_k^{z_n^k} + \sum_{n} \log \prod_{k} N(x_n; \mu_k, \sigma)^{z_n^k}$$

$$= \sum_{n} \sum_{k} z_n^k \log \pi_k - \sum_{n} \sum_{k} z_n^k \frac{1}{2\sigma^2} (x_n - \mu_k)^2 + C$$

MLE

$$\begin{split} \hat{\pi}_{k,MLE} &= \arg\max_{\pi} \boldsymbol{I}(\boldsymbol{\theta}; D), \\ \hat{\mu}_{k,MLE} &= \arg\max_{\mu} \boldsymbol{I}(\boldsymbol{\theta}; D) \\ \hat{\sigma}_{k,MLE} &= \arg\max_{\sigma} \boldsymbol{I}(\boldsymbol{\theta}; D) \end{split} \qquad \qquad \beta \quad \hat{\mu}_{k,MLE} = \frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}} \end{split}$$

• What if we do not know \mathbb{Z}_n ?

Learning mixture models

• In <u>fully observed iid settings</u>, assuming the cluster labels z_i 's were observed, the log likelihood decomposes into a sum of local terms.

$$I_c(\theta; D) = \sum_n \log p(x_n, z_n \mid \theta)$$

With latent variables for cluster labels

$$I_c(\theta;D) = \sum_n \log p(x_n \mid \theta)$$

$$= \sum_n \log \sum_z p(x_n,z \mid \theta) = \sum_n \log \sum_z p(z \mid \theta) p(x_n \mid z,\theta)$$
- all the parameters become coupled together via marginalization

Are they equally difficult?

Depends on π_k Depends on μ_k, Σ_k

Theory underlying EM

- Recall that according to MLE, we intend to learn the model parameter that would have maximized the likelihood of the data.
- But we do not observe z, so computing

$$I_c(\theta; D) = \sum_{n} \log \sum_{z} p(x_n, z \mid \theta) = \sum_{n} \log \sum_{z} p(z \mid \theta) p(x_n \mid z, \theta)$$
is difficult!

- Optimizing the log-likelihood for MLE is difficult!
- What shall we do?

Complete vs. Expected Complete Log Likelihoods

The complete log likelihood:

$$I(\mathbf{\theta}; D) = \log \prod_{n} p(z_{n}, x_{n}) = \log \prod_{n} p(z_{n} | \pi) p(x_{n} | z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{k} \pi_{k}^{z_{n}^{k}} + \sum_{n} \log \prod_{k} N(x_{n}; \mu_{k}, \sigma)^{z_{n}^{k}}$$

$$= \sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k} - \sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2\sigma^{2}} (x_{n} - \mu_{k})^{2} + C$$

The expected complete log likelihood

$$\begin{split} \left\langle \textit{\textbf{I}}_{c}(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{z}) \right\rangle &= \sum_{n} \left\langle \log \textit{\textbf{p}}(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \right\rangle_{\textit{\textbf{p}}(\boldsymbol{z}|\boldsymbol{x})} + \sum_{n} \left\langle \log \textit{\textbf{p}}(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \right\rangle_{\textit{\textbf{p}}(\boldsymbol{z}|\boldsymbol{x})} \\ &= \sum_{n} \sum_{k} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle \log \pi_{k} - \frac{1}{2} \sum_{n} \sum_{k} \left\langle \boldsymbol{z}_{n}^{k} \right\rangle ((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log \left| \boldsymbol{\Sigma}_{k} \right| + \mathcal{C} \,) \\ &\text{Depends on } \boldsymbol{\pi}_{k} \qquad \text{Depends on } \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \end{split}$$

Complete vs. Expected Complete Log Likelihoods

The complete log likelihood:

$$I(\mathbf{0}; D) = \log \prod_{n} p(z_{n}, x_{n}) = \log \prod_{n} p(z_{n} | \pi) p(x_{n} | z_{n}, \mu, \sigma)$$

$$= \sum_{n} \log \prod_{k} \pi_{k}^{z_{n}^{k}} + \sum_{n} \log \prod_{k} N(x_{n}; \mu_{k}, \sigma)^{z_{n}^{k}}$$

$$= \sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k} - \sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2\sigma^{2}} (x_{n} - \mu_{k})^{2} + C$$

The expected complete log likelihood

$$\langle I_{c}(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{z})\rangle = \sum_{n} \langle \log \boldsymbol{p}(\boldsymbol{z}_{n} \mid \boldsymbol{\pi}) \rangle_{\boldsymbol{p}(\boldsymbol{z}|\boldsymbol{x})} + \sum_{n} \langle \log \boldsymbol{p}(\boldsymbol{x}_{n} \mid \boldsymbol{z}_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \rangle_{\boldsymbol{p}(\boldsymbol{z}|\boldsymbol{x})}$$

$$= \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle \log \boldsymbol{\pi}_{k} - \frac{1}{2} \sum_{n} \sum_{k} \langle \boldsymbol{z}_{n}^{k} \rangle ((\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) + \log |\boldsymbol{\Sigma}_{k}| + \boldsymbol{C})$$

• EM optimizes the expected complete log likelihood

EM Algorithm

Maximization (M)-step:

- Find mixture parameters

Expectation (E)-step:

- -Re-assign samples x_i 's to clusters
- Impute the unobserved values z_i

K-Means Clustering Algorithm

Find the cluster means

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

Re-assign samples x_i 's to clusters

$$\operatorname{argmax}_{k} \| x_{i} - \mu_{k} \|_{2}^{2}$$

Iterate until convergence

The Expectation-Maximization (EM) Algorithm

- Start:
 - "Guess" the centroid μ_k and covariance Σ_k of each of the K clusters
- Loop

The Expectation-Maximization (EM) Algorithm

A "soft" k-means

E step:

$$\tau_n^{k(t)} = \left\langle z_n^k \right\rangle_{q^{(t)}} = p(z_n^k = 1 \mid x, \mu^{(t)}, \Sigma^{(t)})$$

M step:

$$\pi_k^{(t+1)} = \frac{\sum_n \tau_n^{k(t)}}{N} = \langle n_k \rangle_N$$

$$\mu_k^{(t+1)} = \frac{\sum_{n} \tau_n^{k(t)} x_n}{\sum_{n} \tau_n^{k(t)}}$$

$$\sum_{k} \tau_n^{k(t)} (x_n - \mu_k^{(t+1)}) (x_n - \mu_k^{(t+1)})^T$$

$$\sum_{k} \tau_n^{k(t)}$$

Compare: K-means

- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:

$$\boldsymbol{Z}_{n}^{(t)} = \arg\max_{k} (\boldsymbol{X}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{T} \boldsymbol{\Sigma}_{k}^{-1(t)} (\boldsymbol{X}_{n} - \boldsymbol{\mu}_{k}^{(t)})$$

• In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:

$$\mu_k^{(t+1)} = \frac{\sum_n \delta(\boldsymbol{z}_n^{(t)}, \boldsymbol{k}) \boldsymbol{x}_n}{\sum_n \delta(\boldsymbol{z}_n^{(t)}, \boldsymbol{k})}$$

Expected Complete Log Likelihood Lower-bounds Complete Log Likelihood

• For **any** distribution q(z), define **expected** complete log likelihood:

$$\langle I_c(\theta; \mathbf{x}, \mathbf{z}) \rangle_q = \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}, \theta) \log p(\mathbf{x}, \mathbf{z} | \theta)$$

- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$I(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \qquad \Rightarrow \qquad I(\theta; x) \geq \langle I_{c}(\theta; x, z) \rangle_{q} + H_{q}$$

Closing notes

- Convergence
- Seed choice
- Quality of cluster
- How many clusters

Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - -- A state in which clusters don't change.
- K-means is a special case of a general procedure the Expectation Maximization (EM) algorithm.
 - Both are known to converge.
 - Number of iterations could be large.

Seed Choice

Results can vary based on random seed selection.

- Some seeds can result in convergence to sub-optimal clusterings.
 - Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-class (that is, intra-cluster) similarity is high
 - the inter-class similarity is low
 - The measured quality of a clustering depends on both the obj representation and the similarity measure used
- External criteria for clustering quality
 - Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
 - Assesses a clustering with respect to ground truth

How Many Clusters?

- Number of clusters K is given
 - Partition n docs into predetermined number of clusters
- Finding the "right" number of clusters is part of the problem
 - Given objs, partition into an "appropriate" number of subsets.
 - E.g., for query results ideal value of K not known up front though UI may impose limits.
- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters
- Nonparametric Bayesian Inference

Cross validation

- We can also use cross validation to determine the correct number of classes
- Recall that GMMs is a generative model. We can compute the likelihood of the held-out data to determine which model (number of clusters) is more accurate $\frac{n}{\sqrt{\frac{k}{n}}}$

 $p(x_1 \cdots x_n \mid \theta) = \prod_{j=1}^n \left(\sum_{i=1}^k p(x_j \mid C = i) w_i \right)$

Cross validation

Gaussian mixture clustering

Clustering methods: Comparison

	Hierarchical	K-means	GMM
Running time	naively, $O(N^3)$	fastest (each iteration is linear)	fast (each iteration is linear)
Assumptions	requires a similarity / distance measure	strong assumptions	strongest assumptions
Input parameters	none	K (number of clusters)	K (number of clusters)
Clusters	subjective (only a tree is returned)	exactly <i>K</i> clusters	exactly <i>K</i> clusters

What you should know about Mixture Models

- Gaussian mixture models
 - Probabilistic extension of K-means for soft-clustering
 - EM algorithm for learning by assuming data are only partially observed
 - Cluster labels are treated as the unobserved part of data
- EM algorithm for learning from partly unobserved data
 - MLE of θ = $\underset{\theta}{\operatorname{arg max}} \log P(data|\theta)$
 - EM estimate: θ = $\arg \max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$
 - Where X is observed part of data, Z is unobserved