CZ4045 Natural Language Processing

Part-of-speech Tagging (Chapter 5)

Topics

- Word classes
- Part of speech tagging
- Use HMMs for POS tagging

Word Classes: Parts of Speech

- Traditional parts of speech
 - Noun, verb, adjective, preposition, adverb,
 - Article, interjection, pronoun, conjunction, etc.
- Also Called:
 - parts-of-speech, lexical categories,
 - word classes, morphological classes, lexical tags...
- Examples on next slide

POS examples

N noun chair, bandwidth, pacing

V verb study, debate, munch

ADJ adjective purple, tall, ridiculous

ADV adverb unfortunately, slowly

P preposition of, by, to

PRO pronoun I, me, mine

DET determiner the, a, that, those

POS Tagging

 The process of assigning a part-of-speech or lexical class marker to each word in a sequence.

_	WORD	tag
---	------	-----

- the DET
- koalaN
- put V
- the DET
- keys N
- on P
- the DET
- tableN

Why is POS Tagging Useful?

- First step of a vast number of practical tasks
- Information extraction
 - Finding names, e.g., people, organization -- N.
- Machine Translation
 - E.g. result/N, result/V -> kyol-kwa/N, kyol-kwa-lul-ne-da/V
- Parsing
 - Helpful to know parts of speech before you start parsing,
 e.g. subject-verb-object
- Many Others

POS Tagging: Choosing a Tagset

- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets (e.g., N, V, Adj, Adv.)
- More commonly used set is the finer grained,
 "Penn TreeBank tagset", 45 tags
 - See next slide
- Even more fine-grained tagsets exist

Penn TreeBank POS Tagset

Tag	Description	Example	Tag Description		Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	or "
POS	possessive ending	's	,,	right quote	or"
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), },>
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster	. sentence-final punc		.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Using the Penn Tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition "to" is just marked "TO".

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	,,	right quote	or"
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	ир, off			

POS Tagging

- Words often have more than one POS: back
 - The back door = JJ (adj)
 - On my **back** = NN
 - Win the voters back = RB (adv)
 - Promised to back the bill = VB (verb, base form)
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How Hard is POS Tagging? Measuring Ambiguity

 Number of word types with different levels of POS ambiguity from the Brown corpus

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Many **ambiguous** words appear **frequently** in corpus

Two Methods for POS Tagging

- Rule-based tagging
 - (ENGTWOL; Section 5.4)
- Stochastic
 - Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - Using an HMM to do POS tagging is a special case of Bayesian inference
 - MEMMs (Maximum Entropy Markov Models)

POS Tagging as Sequence Classification

- Input: We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- Output: What is the best sequence of tags that corresponds to this sequence of observations?

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words $w_1 \dots w_n$.

Road to HMMs

• Out of all sequences of n tags $t_1 \dots t_n$ the single tag sequence such that $P(t_1 \dots t_n | w_1 \dots w_n)$ is highest.

$$\hat{t}_1^n = arg \max_{t_1^n} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- $arg \max_{x} f(x)$ means "the x such that f(x) is maximized"

Road to HMMs

This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = arg \max_{t_1^n} P(t_1^n | w_1^n)$$

- But how to compute this value?
- Intuition of Bayesian inference: Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

<u>Using Bayes Rule</u>

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$
 $\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \underbrace{P(w_1^n | t_1^n)} \underbrace{P(t_1^n)}$$

The/DT yellow/JJ hat/NN

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

The probability of a word appearing depends only on its own POS tag P (the | DT)

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

The probability of a tag appearing depends only on the previous tag P(NN|JJ)

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Two Kinds of Probabilities

- Tag transition probabilities $p(t_i|t_{i-1})$ $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$
 - Determiners likely to precede adjectives and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high, but not P(DT|JJ) to be high
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two Kinds of Probabilities

• Word likelihood probabilities $p(w_i|t_i)$

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

- VBZ (3rd person singular present verb) likely to be "is"
- Compute P(is|VBZ) by counting in a labeled corpus:

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

for now, assuming tags of other words are known)

Calculating estimated probability

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$


```
p(Secretariat|NNP) * p(NNP|Start)
* p(is|VBZ) * p(VBZ|NNP)
* p(expected|VBN) * p(VBN|VBZ)
* p(to|TO) * p(TO|VBN)
* p(race|VB) * p(VB|TO)
* p(tomorrow|NR) * p(NR|VB)
```

Example

From a training corpus, we know

$$-P(NN|TO) = .00047$$
 $P(VB|TO) = .83$ $P(race|NN) = .00057$ $-P(race|VB) = .00012$ $P(NR|VB) = .0027$ $P(NR|NN) = .0012$

- How to use the above information to do POS tagging?
 - -P(VB|TO)P(NR|VB)P(race|VB) = .00000027
 - -P(NN|TO)P(NR|NN)P(race|NN) = .00000000032
- So we (correctly) choose the verb reading

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Exercise: Compute missing probabilities

Also called: build the HMM model

 $P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$

- Training corpus:
 - People/NNS continue/VB the/DT race/NN
 - Secretariat/NNP inquire/VB reason/NN

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

- Compute transition probabilities
 - $P(VB|NNS) = 1/1 \qquad P(DT|VB) = \frac{1}{2} \qquad P(NN|VB) = \frac{1}{2}$

- P(NN|DT) =
- P(VB|NNP) =
- Compute Word likelihood probabilities

 - P(people|NNS) = 1/1 P(continue|VB) = $\frac{1}{2}$ P(inquire|VB) = $\frac{1}{2}$
 - P(Secretariat|NNP) = P(race|NN) = p(reason|NN) = P(the|DT) =

<u>Summary</u>

- Parts of speech
- Tagsets
- Part of speech tagging
- HMM Tagging
- Next:
 - Markov Chains
 - Hidden Markov Models
 - Viterbi decoding
- The next several slides are about linguistics and are for your references

Open and Closed Classes

- Closed class: a small(ish) fixed membership
 - Usually function words (short common words which play a role in grammar)

```
prepositions: on, under, over, ...
particles: up, down, on, off, ...
determiners: a, an, the, ...
pronouns: she, who, I, ..
conjunctions: and, but, or, ...
auxiliary verbs: can, may should, ...
numerals: one, two, three, third, ...
```

- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have these 4, but not all!
 - Nouns are typically where the bulk of the action is with respect to new items

Open Class Words

Nouns

- Proper nouns (Boulder, Granby, Beyoncé) -- English capitalizes these.
- Common nouns (the rest)
- Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)
- Adverbs: tend to modify things
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here,home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)
- Verbs: In English, have morphological affixes (eat/eats/eaten)
 - With differing patterns of regularity