# A Framework for Sensor Based Hand Gesture Recognition Using Machine Learning

Exam Roll: 16

Reg no.: 2015-516-695

Session: 2015-16

Exam Roll: 37

Reg no.: 2015-216-698

Session: **2015-16** 



Department of Electrical and Electronic Engineering
University of Dhaka

### Goal

### Static Hand Gesture Recognition Device

Dataglove Desktop Software

### Making a Dataset

Diversity
Statistically Applicable Dataset Size

Comparison of Accuracy of Four Classification Models

#### Related Works

- 8 dynamic gestures
- Classification based on HMM
- Used **accelerometer** sensor
- Single Participant
- Average accuracy 98%

- 72 dynamic gestures
- Classification based on HMM
- Used accelerometer and **EMG** sensors
- Two Participants
- Average accuracy 95.8%

- 26 dynamic gestures
- Classification based on **Template Matching**
- Used accelerometer, flex and Contact sensor
- Single participant
- Average accuracy 100%



- 5 dynamic gestures
- Classification based on HMM and Bayes Classifier
- Used **accelerometer** sensor
- Six participants
- Average accuracy 89.7%

- Classification based on **Elman** Back Propagation Neural Network
- Used accelerometer and flex sensor
- Single Participant
- Average accuracy **94.4%**

### MCU and Sensor Selection





- Xtensa dual-core **32-bit** LX6 MPU
- 240 MHz clock
- **4 MB** Flash and **520 KB** RAM
- 12-bit ADC
- WiFi and Bluetooth connectivity

### Our Dataset



### Data Processing



#### Flex Sensor

#### Filtering & Normalization

- Sampled every **10ms**
- Median filter is applied
- Values are normalized





#### **IMU Sensors**

#### Filtering raw data

- Accelerometer readings are noisy
- Gyroscope values **drifts** over time
- Use of Complementary filter
- Remove yaw angle drift using DMP



### The Device and the Software





**Data Glove** 

Desktop UI

### The Framework

#### **Sensor Calibration**



Flex sensors are calibrated and the values are normalized. IMU sensors are initialized.



#### **Data Preprocessing**

Raw sensor data are preprocessed using different filtering techniques before training the model.



#### Making Prediction

The best fitted model is used to make the real time predictions.



#### **Data Collection**

Flex and IMU sensors readings are taken and sent to the desktop software. In the software data is verified and saved using the interface.



#### Training the Model

Different machine learning models are trained on the processed sensor dataset. Models are tuned by changing different parameters.

### Result Analysis

#### **Evaluation Process**

**Confusion Matrix** 

Precision and Sensitivity

$$Precision = \frac{TP}{TP + FP}$$

$$Sensitivity = \frac{TP}{TP + FN}$$

Accuracy using Cross Validation



### Future Work



## Thank You