WEB3CLUBS FOUNDATION LIMITED

Course Instructor: DR. Cyprian Omukhwaya Sakwa

PHONE: +254723584205 Email: cypriansakwa@gmail.com

Foundational Mathematics for Web3 Builders

Implemented in RUST

Lecture 36
July 24, 2024

Algebraic Structures

11.1 Introduction

- 1. Modern cryptography relies heavily on algebraic structures, which serve as the mathematical foundation for a variety of cryptographic protocols and methods.
- 2. This chapter introduces some common algebraic structures such as groups, rings, and fields.
- 3. Understanding these structures and their features is critical for developing secure cryptographic systems and furthering the discipline of cryptography, particularly in the post-quantum age.
- (1) Groups: Groups are algebraic structures made up of a set with a single binary operation that has four properties: closure, associativity, identity, and invertibility.

Definition 9

Let G be a nonempty set together with a binary operation

 $\circ: G \times G \to G$. The system (G, \circ) is a group if it satisfies the following axioms:

For each $x \in G$ and $y \in G$, $x \circ y$ is an element of G. (Closure

b) For all $x,y,z\in G, (x\circ y)\circ z=x\circ (y\circ z)$ (Associativity axiom); $\int \int z \left\{ \int_{z}^{2} z^{2} \right\} dz = \int z \int_{z}^{2} dz = \int z \int_{$

(Identity axiom);

For each $a \in G$ there exists an element $b \in G$ such that $a \circ b = b \circ a = e$ (Existence of inverse axiom);

V/Z={..., -4,-3,-2,-1,0,1,3...

The number of elements of a group G denoted by |G| is called the order of the group. For instance, if G is a group containing nelements then we write |G| = n.

Definition 10

A group G is said to be infinite or of infinite order if it has an infinite number of elements, otherwise the group is finite or of finite order.

Definition 11

A group G is called Abelian or Commutative if it satisfies the additional property:

e) For all $g, h \in G$, $g \circ h = h \circ g$

(Commutativity axiom)

Groups not satisfying this property are said to be noncommutative or nonabelian.

A $\frac{2}{3}$ $\frac{10}{10}$ or nonabelian.

164/188

- If the group's defined operation is addition, the group can support both addition and subtraction because subtraction is the additive inverse of addition.
- This is true for both multiplication and division. A group can support either addition/subtraction or multiplication/division operations, but not both at the same time.

 Example 44

 Example 44

The set of integers \mathbb{Z} under addition forms an abelian group, with 0 being the identity and -a representing the inverse of $a \in \mathbb{Z}$.

Example 45

The set $n\mathbb{Z}=\{nz:n,z\in\mathbb{Z}\}$ under addition forms an abelian group, with 0 as the identity and n(-z) as the inverse of nz.

Example 46 $N = \{0, 1, 2, 3, \dots, 5\}$

The set of non-negative integers under addition is not an abelian group since there are no additive inverses for positive integers.

Example 47

Let $B=\{\cdots,-5,-4,-3,-2,-1,0,1,2,3,4,5\}$. Does B form a group under addition on \mathbb{Z} ?

Solution

B does not form a group under addition since it is not closed under addition. For instance, $4+5=9 \not\in B$. Notice that the rest of the group axioms are satisfied. That is, it has the identity element 0, every element has an inverse and associativity is satisfied.

$$2xq = 1$$

$$-3 \times x = 1$$

The set of integers under multiplication is not an abelian group as there are no inverses for any numbers other than ± 1 .

Example 49 $A = \{-1, 1\}$ $-1 \times 1 = -1 \in A$ (-1+1)+1=-1 + (-1+1)

The set $\{-1,1\}$ under multiplication is an abelian group, with 1 as the identity and -1 as its inverse. 2772

Example 50

The set of rational numbers $\mathbb{Q}=\{\frac{a}{b}:a,b\in\mathbb{Z},b\neq0\}$ under addition forms an abelian group, with 0 as the identity and $-\frac{a}{b}$ as the inverse of $\frac{a}{b}$.

2=

Example 51

The set of non-zero rational numbers $\underline{\mathbb{Q}}^*$ under multiplication forms an abelian group, with 1 as the identity and $\frac{b}{a}$ as its inverse.

Example 52

The group of units in $M(\mathbb{R})$ is

$$GL(2,\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \text{ and } ad - bc \neq 0 \right\}$$

and is referred to as the general linear group of degree 2 over \mathbb{R} . It is an infinite non abelian group.

Example 53

Let $G = \{A, B, C, D\}$ where A, B, C and D are 2×2 matrices given by:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{\text{K A } B}$$

and
$$D = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Does G form a group under multiplication? \vee

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = B$$

$$BC = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = D$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = D$$

Solution

We draw a Cayley table to check most of the axioms.

A is identit

Table 1

$$0 \times b = 1 \mid C^{-1} = C$$
 $B^{-1} = A \mid D^{-1} = D$

From table 1, closure is satisfied since multiplication of any two elements of set G gives an element of the set. Here, A is the identity element. Each element has an inverse for instance $A^{-1} = A$, B^{-1} $B,\ C^{-1}=C$ and $D^{-1}=D.$ Associativity is not checked by the Cayley table but it is known that matrix multiplication is associative. Thus, the set of above matrices forms a group.

$$BC = CB$$

$$2 \neq i$$

$$3 \neq 4 \neq i$$

Example 54 hrs 1 12=-1

Example 55

The set of non-zero complex numbers \mathbb{C}^* under multiplication forms an abelian group, with 1 as the identity.

Example 56

Let H be a set of complex numbers given by $H = \{i, -i, 1, -1\}$. Is (H, \times) _a group?

$$(H) \times A = 2000$$

$$i \times -i = 1$$

$$-i \times -i \times -i = 1$$

$$-i \times -i \times -i \times -i = 1$$

$$-i \times -i \times -i \times -i \times -i = 1$$

$$-i \times -i \times$$

Solution

×	į.	-i;	1	-1,
	-1	1/	i	
- <u>i</u>		-1	- <u>i</u>	i
1)\	- <u>j</u>		-1
-1	-i	i	-1	

Table 2

From table 2, closure is satisfied since each entry is an element of the set H. Element 1 is the identity element. Each element has an inverse for instance i is the inverse of -i while -i is the inverse of i. Each of 1 and -1 is its own inverse. It is known that multiplication in H is associative. Thus (H, \times) is a group.

0,12.-, n-1 residnes

Example 57

The set \mathbb{Z}_n of residue classes $[a]_n$ with the addition operator forms an abelian group, where $[0]_n$ is the identity and $[-a]_n$ is the inverse of $[a]_n$.

Example 58 $2/8 = \{3,1,2,7,7,4,5,6,$

The set \mathbb{Z}_n^* of residue classes $[a]_n$ with $\gcd(a,n)=1$ under multiplication forms an abelian group. The identity is $[1]_n$, and if b is a multiplicative inverse of a modulo n, then $[b]_n$ is the inverse of $[a]_n$.

Let us study the following addition and multiplication Cayley tables

of \mathbb{Z}_5 and \mathbb{Z}_5^* . $\mathbb{Z}_5 = \{1,2,3,4\}$ $\mathbb{Z}_5 = \{1,3,3,4\}$ $\mathbb{Z}_5 = \{1,3,3,4\}$

From table 3a, it is clear that $(\mathbb{Z}_5,+)$ is a group. Indeed, + is a binary operation on \mathbb{Z}_5 . Element 0 is the identity element. \mathbb{Z}_5 is associative for instance (4+3)+1=4+(3+1)=3. Every element has an inverse for instance 4 and 1 are inverses of each other while 2 and 3 are inverses of each other. Table 3b shows that (\mathbb{Z}_5^*,\times) is a group.

Note that all elements have inverses for example $1^{-1}=1,\ 2^2=3,\ 3^{-1}=2,\ 4^{-1}=4.$ Note also that the identity is 1, closure and associativity are satisfied. Here, \mathbb{Z}_n^* is a group of nonzero integers in \mathbb{Z}_n less than n but relatively prime to n.

Study the following Cayley table for \mathbb{Z}_{15}^{*} for emphasize.

				/	· · · ·		` .~	
•	1	2	4	7	8	11.	13.	14
/ 1	1	2	4	7	8		13	14
12.	2	4	8 1	14	1	7	11	13
~ 4	4	8	1	13	2	14	7	11
\z-	7	14	13	4	11	2	1	8
√ 8	8	1	2	11	4	13	14	7
11,	11	7	14	2	13	1	8	4
1 3	13	11	7	1	14	8	4	2
14	14	13	11	8	7	4	2	<u>(1)</u>

Table 4: Multiplication table for \mathbb{Z}_{15}^*