(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-100255

(43)公開日 平成8年(1996)4月16日

(51) Int.Cl. ⁶	技術表示箇所
C 2 2 C 21/00 N H 0 1 L 29/40 Z 29/43 H 0 1 L 29/46 R 審査請求 未請求 請求項の数1 F D	
H01L 29/40 Z 29/43 H01L 29/46 R 審査請求 未請求 請求項の数1 FD	•
29/43 H01L 29/46 R 審査請求 未請求 請求項の数1 FD	
H01L 29/46 R 審査請求 未請求 請求項の数1 FD	
審査請求 未請求 請求項の数1 FD	
(21) 出願番号 特顯平6-261229 (71) 出願人 000006264	(全 7 貝)
三菱マテリアル株式会社	
(22)出願日平成6年(1994)9月30日東京都千代田区大手町1丁目5(72)発明者木下 真兵庫県三田市テクノパーク12-	
テリアル株式会社三田工場内	
(74)代理人 弁理士 富田 和夫 (外14	3)
·	
·	

(54) 【発明の名称】 薄膜トランジスタの薄膜形成用スパッタリングターゲット材

(57) 【要約】

【目的】 パーティクル数が少なく、かつ合金成分含有量の経時的バラツキが小さい薄膜の形成が可能な薄膜トランジスタの薄膜形成用スパッタリングターゲット材を提供する。

【構成】 スパッタリングターゲット材が、Nb, V, Ti, Zr, Ni, Pt、およびWからなる合金成分のうちの1種または2種以上:1~20重量%を含有し、残りがAlと不可避不純物からなる組成、並びに平均粒径:30μm以下のAlと上記合金成分との金属間化合物が素地に分散し、かつ素地の平均結晶粒径が30μm以下の再結晶組織を有する。

【特許請求の範囲】

【請求項1】 Nb、V、Ti、Zr、Ni、Pt、およびWからなる合金成分のうちの1種または2種以上: $1\sim20$ 重量%、を含有し、残りがAlと不可避不純物からなる組成、並びに平均粒径: 30μ m以下のAlと前記合金成分との金属間化合物が素地に分散し、かつ素地の平均結晶粒径が 30μ m以下の再結晶組織を有することを特徴とする薄膜トランジスタの薄膜形成用スパッタリングターゲット材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、薄膜トランジスタの 薄膜をスパッタリング法により形成するに際して、パー ティクルの発生数が少なく、かつ合金成分含有量の経時 的バラツキも小さい薄膜の形成が可能なターゲット材に 関するものである。

[0002]

【従来の技術】従来、一般に、例えば特開平4-99171号公報、特開平6-25773号公報、および特開平4-323871号公報に記載されるように、薄膜トランジスタの薄膜をスパッタリング法により形成するに際して、ターゲット材として、Nb, V, Ti, Zr, Ni, Pt、およびWからなる合金成分のうちの1種には2種以上:1~20重量%を含有し、残りがAlとたは2種以上:1~20重量%を含有し、残りがAlとれて可避不純物からなる組成を有するターゲット材が用いられ、このターゲット材が、前記組成のAl合金を容がある。

[0003]

【発明が解決しようとする課題】一方、近年のスパッタリング技術の進歩はめざましく、これに伴ない、成膜速度は高速化し、かつ成膜面積は拡大化する方向にあるが、上記の従来ターゲット材は、A1と合金成分で構成される金属間化合物の粒径が20~100μmの範囲に亘ってバラツキ、素地の結晶粒径も粗く、不均一であり、さらにピンホールや樹脂状組織も残存する鋳造組織をもつものであることから、これを高速成膜および拡大成膜面積の条件下で使用すると、前記鋳造組織が原因で、成膜中にパーティクルが発生し易くなるばかりでなく、成膜中の合金成分含有量が経時的にバラツクようになるのを避けることができないのが現状である。

[0004]

【課題を解決するための手段】そこで、本発明者等は、 上述のような従来ターゲット材のもつ問題点を解決すべ く研究を行なった結果、上記従来ターゲット材と同じ組 成のAl合金インゴットに熱間圧延を施して所定形状の 板材とし、ついで前記板材に再結晶化熱処理を施すと、 この結果の板材においては、前記熱間圧延によって素地 に分散する金属間化合物が微細整粒化されて、平均粒径 50

で30μm以下となるばかりでなく、樹枝状組織が破壊され、かつピンホールも消滅し、さらに前記再結晶化熱処理によって素地の結晶粒が整粒にして、平均粒径で30μm以下の細粒となることから、これをスパッタリングターゲット材として用いると、薄膜中のパーティクル数が激減すると共に、成膜中の合金成分含有量の経時的バラツキが著しく小さなものとなるという研究結果を得たのである。

【0005】この発明は、上記の研究結果にもとづいてなされたものであって、Nb, V, Ti, Zr, Ni, Pt、およびWからなる合金成分のうちの1種または2種以上: $1\sim20$ 重量%を含有し、残りがA1と不可避不純物からなる組成、並びに平均粒径: 30μ m以下のA1と前記合金成分との金属間化合物が素地に分散し、かつ素地の平均結晶粒径が 30μ m以下の再結晶組織を有する、薄膜トランジスタの薄膜形成用スパッタリングターゲット材に特徴を有するものである。

【0006】なお、この発明のターゲット材において、 合金成分の含有量を1~20重量%と定めたのは、その 含有量が1重量%未満では、合金成分によって薄膜にも たらされる耐ストレスマイグレーション性および耐食性 の向上に所望の効果が得られず、一方その含有量が20 重量%を越えると、薄膜の電気抵抗が急激に増大するよ うになるという理由によるものであり、また、金属間化 合物の平均粒径に関し、熱間圧延を金属間化合物の平均 粒径が30μm以下になるまで行なわないと、ピンホー ルの消滅および樹枝状組織の破壊が不十分であることと 相まって、成膜中のパーティクルの発生および合金成分 の経時的バラツキを抑制することができず、このことは 素地の平均結晶粒径が30μmを越えた場合にも同じく 30 見られることから、金属間化合物の平均粒径および素地 の平均結晶粒径をそれぞれ30μm以下と定めたのであ

[0007]

【実施例】つぎに、この発明のスパッタリングターゲッ ト材を実施例により具体的に説明する。真空度を1×1 O-Morr以下とした真空溶解炉で表1~3に示される組 成のA1合金溶湯を溶製し、鉄製鋳型に鋳造して平面寸 法:200mm×200mm、厚さ:40mmのインゴットと し、このインゴットに、大気中、550~600℃の範 囲内の所定温度に加熱後、5パスの圧延を1サイクルと し、これを3回繰り返す熱間圧延を施して、厚さ: 8 mm の圧延板とし、引続いてこの圧延板に、大気中、450 ~600℃の範囲内の所定温度に1時間保持の再結晶化 熱処理を施し、最終的に切削加工にて幅:300mm×厚 さ:5mm×長さ:600mmの寸法に仕上げることにより 本発明ターゲット材1~30をそれぞれ製造した。ま た、比較の目的で、表4に示される通り、水冷銅鋳型を 用いてインゴットとし、このインゴットの寸法を幅:3 15mm×厚さ:8mm×長さ:620mmとすると共に、熱 間圧延および再結晶化熱処理を行なわずに、前記インゴットを最終寸法に仕上げる以外は同一の条件で従来ター

ゲット材1~10をそれぞれ製造した。

【0008】ついで、この結果得られた各種のターゲット材について、それぞれのターゲット材の任意5ヶ所の組織を観察し、金属間化合物と素地の結晶粒の最大粒径と最小粒径を測定し、さらに平均粒径も求めた。これらの結果を表5~8に示した。また、これらの各種のターゲット材を、それぞれ純Inはんだを用い、大気中、温度:180℃に20分間保持の条件で無酸素銅製パッキ 10ングプレートにはんだ付けした状態で、直流マグネトロンスパッタリング装置に装入し、真空度:2×10⁻¹10*

***バを保持しながら、5ml/min のAr気流中、10KW の出力でスパッタリングを行ない、直径:100mmのガラス基板表面への厚さ:1500オングストロームの薄膜形成を10回行なった。この結果得られた10枚の薄膜のそれぞれについて、パーティクルカウンタを用い、直径:0.5μm以上の粗大パーティクル数を測定し、さらに薄膜中心部の合金成分含有量を測定した。この測定結果を表5~8に平均値で示すと共に、合金成分含有量については最高値および最低値も示した。

[0009]

【表1】

			玟	∌	粗	蛟	(重量%)		美国庄莲	再結品化 無処理の
産	31	ΝЬ	V	T i	Z r	Ni	P t	₩	A 1 ÷不純物	の有無	有録
	i -	5. 2	-	-	-	-	-	_	長	育り	有り
*	2	_	7. 2	-	1	1	-	-	费	有り	有り
発	3	-	-	1. 1	_			-	英	育り	有り
明	- 4	-	-	-	2.5	-	-	-	5	有り	有り
9	5	-	-	_	_	16.4	-	-	吳	有り	有り
1	6	-	-	-	_	-	1. 3	-	昙	有り	有り
4	7	-	-	-	_	-	-	10.3	表	有り	有り
7	8	0.5	0. 5		-	_	-	-	芸	・有り	有り
ا	g	15.3	-	3. 2	_	-	-	_	長	有り	有り
材	10	2. 5	_		0.3	_	-	_	费	有り	育り

[0010]

【表2】

			銰	Я	超	载	()	武量劣)		熱觀狂蓬	再結晶化 熱処理の
覆	判	ΝЬ	γ	·T i	2 r	Νi	Pt	W	. A.1 +不純物	の有無	有無
	11	8. 3	<u>-</u> ·	-	-	2. 4	-		践	有り	有り
*	12	11. 3	-	-	-	-	1. 1	-	良	有り	有り
発	13	1. 2	-	.	-	-	-	0.8	燕	有り	育り
朝	1 4	-	3. 2	9. 4	-	-	_	_	喪	有り	有り
3	15	-	1. 2	-	6.8	_	_	_	茂	有り	有う
1	16	. -	12.6	- :	-	1. 8	_	-	獎	有り	有り
ゲ	17	_	6. 2	-	_	_	0. 3	-	袋	有り	育り
7	18	-	0. 9	_	-	-	_	0. 6	菸	有り	有り
ŀ	19	-	-	15.8	1. 3	-	-	-	蕻	有り	有り
材	20	-	-	0.4	-	0.9	_	_	蒉	有り	有り

[0011]

【表3】

			駁	∌	. #1	豉	(1	重量%)		無關圧延	再結晶化 無処理の
趙	81	ΝЬ	v	Τi	Z r	Ni	Pt	₩	AI+不純物	の有套	有無
	21	-	-	4. 3	1	-	14. 4	-	銭	有り	有り
本	22	_	-	2.3	**	1	-	9. 6	袋	有り	有り
発	23	-	-	-	0. 3	0.8	-	-	夷	有り	有り
蚜	24	_	_	-	16.4	-	2. 1	-	芸	有り	有り
9	2 5	_	_	_	10.2	_	_	2. 6	聂	有り	有り
	26	-		-	-	17. 2	1. 2	-	裘	有り	有り
4	27	_		-	-	8.3	-	1. 5	裘	有り	有り
7	28	-	-	-	_	-	7. 5	6. 2	表	有り	有り
1	2 9	0.5	0.8	-	-	1. 2		-	莨	有り	有り
材	3 0	_	-	4. 1	2. 6		2. 9	1. 3	£	有り	有り

[0012]

【表4】

7 再結晶化 (建盘%) 庻 分 組 為陽任廷 島処理の 港別 の有無 A I +不純物 有無 2 r Pt .Ti Nь なし 本発明ターゲット材1に同じ なし 本発明ターゲット対4に同じ 蓰 2 なし なし 本発明ターゲット材でに同じ 3 亲 なし なし 本発明ターゲット対14を同じ 9 なし なし 本発明ターゲット村19に同じ πi なし 本発明ターゲット林24に同じ なし なし 本発明ターゲット村26に同じ 4L なじ 本独明ターゲット材28に同じ 8 なし なし 本発明ターゲット村29に同じ Ħ なし なし 本熟明ターゲット材30に同じ 10

[0013]

【表5】

		全量	图化	合物	. 发月	のおし	昌拉	ž	ī	9	
at	201	平均粒径	最大粒篷	最小粒径	平均粒径	最大粒径	最小粒锤	パーティ クル数	合金或分	含有量((武量%)
		(gm)	(µm)	(#0)	(µm)	(µm)	(gm)	(個)	平均值	投棄值	最低氢
	1	16	2 3	9	15	2 0	11	3	5. 0	5. 2	4.8
*	2	18	2 5	11	1 2	17	9	4	7. 0	7. 3	6.7
2	3	1 4	19	10	16	2 1	11	4	0.8	0. 9	0.7
朝	4	16	2 1	10	16	2 0	11	3	2. 3	2. 5	2. 2
9	5	2 1	2 8	13	11	1 6	8	5	16. 5	17. 0	16.1
	6	14	20	10	16	2 1	11	4	2. 0	2. 1	1. 9
7	7	18	2 4	11	13	17	g	4	10.1	10.4	9.8
7	8	14	19	10	15	2 1	11	4	0. 9	1. 1	0.7
1	g	27	3 5	1 5	8	11	5	6	17.9	18. 3	17.4
Ħ	10	17	2 4	10	13	18	10	3	2. 5	2. 7	2. 3

[0014]

【表6】

10

		全 团	關化	合物	菜堆	ぬの結	品粒	3	5	E	1
種	題	平均拉篷	最大粒蓬	最小粒径	平均粒径	最大粒径	最小粒径	パーティ クル数	合金联络) 含有量	(重量%)
		(四四)	(μm)·	(µm)	(2四)	(µm)	(μm)	(4)	平均值	最高值	最低值
	11	18	2 4	11	1 2	18	9	4	10.7	11.1	10.1
*	12	20	27	1 2	11	16	8	5	12. 4	12.8	12.0
発	13	1 4	19	1 0	16	2 1	11	4	1. 7	1.8	1. 6
切	14	21	28	1 3	11	1 6	8	5	12. 1	12.5	11.7
9	15	15	2 2	10	11	1 5	7	3	7. 6	7. 9	7. 3
!	16	2 0	28	1 2	1 2	1 7	8	5	14. 4	14.8	14.0
ゲ	17	1 5	2 3	1 0	1 5	2 1	1 1	3	6. 4	6. 8	6. 2
7	18	15	19	1 1	16	2 1	11	4	1. 2	1. 3	1, 1
i	19	2 7	3 5	1.6	8	1 1	5	8	16.6	17. 0	15. I
*	20	1 5	20	1 1	16	2 1	11	4	1. 4	1. 5	1. 3

[0015]

【表7】

		金多	間化	≙ %	素堆	の箱。	B 83	;	E	B	
a	24	平均拉窪	最大粒篷	最小拉径	平均粒径	最大粒堡	最小粒径	パーティ クル数	合金成:) 含有重 ((重量%)
		(µm)	(um)	(gm)	(# =)	(µm)	(gm)	(個)	平均值	最高值	最低值
	21	2 6	3 4	15	9	1 2	6	6	18.7	19. 1	18.4
本,	22	20	2 7	12	11	16	8	5	11.5	11.9	11.1
発	23	14	19	10	1 6	2 1	11	4	1. 2	1. 3	1. 1
明	24	2 8	34	1 6	7	11	ő	5	18. 5	18.8	18. 1
9	25	20	27	1 2	11	16	8	5	12.4	12.7	12. 1
	26	26	33	15	8	1 1	5	6	18.8	19. 1	18.5
4	2 7	18	2 5	11	1 2	18	9	4	9.8	10.0	9. 5
7	28	21	28	1 3	1 1	16	8	5	13.7	14.1	13.4
 	29	1 5	20	10	15	2 1	11	3	2. 5	2. 7	2. 3
Ħ	30	2 4	3 2	1 7	i 5	2 0	10	3	10.5	10.8	10.1

[0016]

【表8】

		全事	福化	合物	类均	の結	显 拉	į	3		Ģ
雅	躃	平均拉强	最大粒径	最小粒径	平均拉链	最大粒径	最小粒径	パーティ クル数	合金成	分含有量	(重量%)
		(EB)	(µm)	(µm)	(mm)	(µm)	(#m)	(組)	平均道	最高值	最低值
	1	8 3	105	6 3	6 9	9 3	· 5 0	3 9	5. 1	5. 7	4. 5
徒	2	72	91	5 2	8 2	108	6 1	3 4	2. 2	2. 7	- 1. 8
*	3	104	131	81	5 5	7 2	3 7	4 5	10.0	10.9	9. 2
9	4	1 4 2	173	101	4 9	6 3	3 1	4 9	11.9	13.1	10.7
ı	5	182	225	130	3 7	4 9	2 7	50	16.4	18.0	15. 1
4	6	191	2 3 2	138	3 6	4 5	2 3	5 2	18.4	19.5	17. 4
,	7	189	229	1 3 6	3 8	47	2 5	4.8	18.8	19.8	17. 8
4	8	138	-167	9 5	4 3	5 9	2 7	4 2	13. 7	14. B	12.5
材	9	71	9 0	5 1	80	106	5 8	3 2	2. 4	3. C	1.8
	10	103	129	7 8	5 3	70	3 5	4 2	10.4	11.8	9. 6

[0017]

【発明の効果】表1~8に示される結果から、本発明ターゲット材1~30は、いずれも金属間化合物および素地の結晶粒が平均粒径で30μm以下の微細組織を有し、かつピンホールや樹枝状組織がほとんど存在しないことから、スパッタ中に異常放電が発生することもなく、成膜面積が上記の通り大きいにもかかわらず、パーティクル数がきわめて少なく、合金成分含有量の経時的バラツキも著しく小さい薄膜を形成することができるのに対して、従来ターゲット材1~10では、金属間化合物および素地の結晶粒が相対的に粗粒で、粒径のパラツ

キも大きく、さらに鋳造組織をもつことから、ピンホールおよび樹枝状組織が存在し、これらが原因でスパッタ中に異常放電が発生するのが避けられず、このため形成された薄膜中にはパーティクルが多く発生し、かつ合金成分含有量の経時的バラツキも相対的に大きなものとなることが明らかである。上述のように、この発明のスパッタリングターゲット材によれば、広い成膜面積は勿論のこと、高速成膜でもパーティクル発生がきわめて少なく、かつ合金成分含有量の経時的バラツキの著しく小さい薄膜を形成することができるなど工業上有用な効果がもたらされるのである。

PARTIAL TRANSLATION OF JAPANESE UNEXAMINED PATENT PUBLICATION (KOKAI) NO. 8-100255

Title of the Invention: Sputtering Target Material for

Forming Thin Film of Thin Film

Transistor

Publication Date: April 16, 1996

Patent Application No.: 6-261229

Filing Date: September 30, 1994

Applicants: MITSUBISHI MATERIAL CORP.

/-									•	-		
	i	F 21	}	17 -2	<u>u</u>	. 4	- ·	6	7	~ ·	± .	1 0
		N P	5. 2	1	t	ı	1	1	J	0. 5	15. 3	2. 5
	野	٧	l .	7. 2		. 1	1	ı	1.	0. 6	ı	1 .
	8	Ti	l	-	1. 1	ı	i	i			3. 2	1
	×	7.7	-	1	ı	123 55		1	ı	ı	I	0.3
	魯	Z 	ı	l	ł	ı	16.4	ı	1	1	ŧ	ı
		P ~	l	ı	l	1	1	1. 8	ì	` 1	(*	1
	重量%)(水%)	¥	I	į	1	ì	ţ	1	10.3	1	1	ı
	wk%)	↑ 1 × × 村後	no	yes	yes	yes	yes	yes	yw	yes	on h	22
· · ·	游园 田田 田田	の対流	96	ha	200	4.00	900	200	yed	yes	me	900
	力配法	規模を開める。	400	500	you	y.co	38	400	5cm	ma	yes	5,00
		2	·		×	· }	C	۵				

Table I Reference 7

: Classification

2: Tanget
(the present invention)
3: Chemical composition
(wx %)
4: All + impurities

: Heat treatment of recryptallization

. Hot nolling

×	3 2		Fs.	9	×	A.	成 (WL%)(斑菌%)	第			建
	4	N S	٧	T	12	Z	P r	₩	$\overline{\mathbf{x}}$	A.1+不慎物	
→	T:	& ப	i	1	1	2. 4		1		By	res
125	1 2	11. 3	ı		I	ı	1. 1	1		900	
H	1 3	1. 2		ı	1	1	1	0. 8		mt.	
<u></u>	14		3, 2	9. 4	1	l	l ,				
_×	1 5		1. 2	ı	6. 8	ı	· .	ı		500	
ን :	1 6	. 1	12.6	;	1	1. 8	1	1			
4	17	,	6. 2	i. !	ı	ı	0.3	1		250	200
ブ .	1.8	,	0. 9	1	,	1	1	0. 6	 	BG	SCA
গ্ৰ	6 1	1	1	15. 8	1. 33			1	-	, prof.	Ch. ws and
	20	ı	ı	0.4	ı	0.9	1	1		1	so you you

1: classification

2: Target
(the present invention)
3: Chimical composition
(with)

4: Dl + impurities

: Hot rolling

6: Heat treatment of recrystallization

Table 2

Refurence 7

				•		· }						<u>; </u>
						/						
3	= -	- 4	1 \	₹ -	× 、	<u>ک</u>	1	ذ تع	¥) H	1	
30	29	2 8	27	2 6	2 5	24	23	22	21	ġ	<u>ra</u>	
l	0. 5	1	l	;	Ł	l	1	. 1	ŧ	N D		
ı	0	1 ,	1	ı	ı	ı	I	l	1	V	磊	
4. 1	ı	ţ	1	1	t	1	1	2. 3	4. 3	7	53	
2. 6	ı	t	1	1	10.2	16.4	0. 3	ı	ţ	2 г	芦	
1	1. 2	ı	8. 3	17. 2	l	ı	0. 8	1	i	NI) ji	-56
2. 9	ı	7. 5	ı	1. 2	t	2. 1			14. 4	Pι	(以上%)(重量%)	
1. 3	ì	6. 2	1. 5	1	2. 6	!		9. 6	1	₩	(% 四 %	
88	See .	me	pro	hw	90	826	568	2.8	no	XA 1 + 不純物		
S	Che	20	900	56	DG	yco	pa	Ses	on	の有無	大 熱間圧延	-
30	Sign	CEE	300	ya	pa	500	900	50	900	拉	の題を表現の	
- •	<u>~</u>	:	C-,	7	>		w		1)	2	

1: Assification

2: Target
(the present invention)
3: Armical composition
(wx.6)

: Al + impurities

: Had rolling of recreptallization

Table 3

<u>~</u> /:				:			ൗമ	÷			<u>.</u>		
				5 ,	<i>y</i>	× =	A C	(%度压)(%分別)	知 (%)		新聞任 東	英語の記念による。	_
	, sa	5	N P	γ	T :	7.5	Z	Pt	¥	χ _Λ + 不植物	の有類	·右無	Ν
		_	* *	死明夕 一	7 7 1 #	1 に同じ	samu	want	HI + + # 1 に同じ same content as the	26	In Su	ga	
	幫	2	>; %	本是則ター	タット材々	4 ⊏ 🕅 ២	J.	re COM	some content as the 4	と	red	hes	J
/	**	3	本 :	明 4 -	ሃ ፣ ኑ ₦	本発明ターゲット村7に同じ	4	ne con	same content so the present tanget ?	27	yed	yes	ij
	\br	4	**	明ター	7 7 1 13	1 4 1 1	1: 30	me con	本強明ターサット村14下同じ、some content as the	ome content as the 14	geo	50	
	_×	హ	≯ }	明ター	本架明ターゲット村19	1 9 77	2000	ne Con	EAU same content is the	40/9	bad	'n	×
-	7	o.	本発	明 少 —	サット材	2 4 に開	li sa	me co.	FAV same corent as de	prosent tought 24	50	Jes	
	4	7	本到	乳明ターゲ	ゲット村 2	2 6 17 61	17 MM	nic con	6 1: 19 1: DAMILE CONTENT OF 40 26	200	900	gisa	$\langle \cdot \rangle$
-	 -	8	* ¾	木 視 明 夕 一	ゲット材	2 8 に同じ	11: 50	une co	present tordet	present target 28	900	22	
	<u> </u>	.	}	明 9 -	木発明ターゲット材	2 9 に同じ		me w	Tara	same wortene as the 9	Sea	XX	8
		10	*	明夕一	本克明ターゲット材	30៥៣៥		sence a	entina E tana	same contrict as the of you you	yes	yes	

1: Clossification

2: Target
(pior ort)
3: Chinical conjustition
(w1%)

i: Al +umpurities

: Hot rolling

s: Heat Treatment of necrystallization

Talle 4

						•	/	~								
		<u></u>		· •	**	_×	<u> </u>			· >+	T			7		
	10	9	∞	-3	6	57			~		-	超				
	17	27	1.4	1.8	14	21	16	14	1-8	1.6	(m m)	平均拉强	H\$		- A	
	2 4	3 5	1.9	24	20	2.8	21	1 9	2 5	23	(mm)	最大粒度	(F) X (E) X			_U
2	10	1.6	10	11	10	1 3	10	10	Ξ	9	(" ")	数小粒锤	35		Ó	
Table 5 Referenc "	1 3	œ. -	1 5	1 မ	1 6	11	9.1	1 6	12	1.5	(mm)	平均拉語	**		Ø	
3 3	20	11	2 1	17	2 1	16	2.0	2 1	17	2 0	(m m)	最大粒區	の間		<u> </u>	->>
)	1 0	CH .	=	9	11	8	11	11.	9	11	(mm)	和小拉路	含		6	
	ယ	6			4	сл <u>"</u>	ဃ	4	4	ဃ	()	ン シープ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ			_	- 0
	2. 5	17. 9	0. 8	10. 1	2. 0	16.6	2. 3	0. 8	7. 0	5. 0	200	合金成分	<u>æ</u> ⊁		<u></u> -	-~
	2. 7	1 8. 3	-	10.4	2. 1	17.0	2. 5	0. 9	7. 3	5. 2	地區	合計量		`	<u> </u>	<i>\</i>
	2. 3	17. 4		9. 8	1. 9	16. 1	2. 2	0. 7	6. 7	4. 8	強兵強	(新量光)	95		\$	
10:	?	\$;	<i>'</i>		8:	0	^	4:		w		?				
10: Min. grain sige (mm)	9: Max grain sige (um)	8: Average grain size (um)	7: Alloy content (w1%)		6: Number of particles	mi gum		4: Sudotrate		3: Internetable compound	(the present inventori)	Turget	: Classification			

Table 5 Reference 1

						/	,					_	~	
Г.					- X.		= :	# -		Γ	<u> </u>		·]	
20	1 9	1 2 8	1.7	1.6	1 5	1 1	1 3	12	<u> </u>		翼		_	
15	27	1.5	16	20	1 5	21	1- 4	20	1 8	(m m)	平均位征	P	- 8	
2 0	3 5	1 9	23	2 8	22	28	19	27	24	(mm)	最大位征	35 EM	9	à
11	16	11	10	12	10	1 3	10	12	11	(m m)	操小拉扭	<u>-0</u> x	70	
1 8	89	1 6	1.5	12	11	11	1 6	-11	12	(µ m)	数对结本	発	8	
2 1	11	2 1	2 1	17	1 5	16	2 1	1 6	18	(m m)	最大粒径	のは		, `
11	5	11	1.1	. 8	7	œ	1: 1	8	o	(µm)	及小粒花	中	6	
4	6	4	ຍ	5	3	5 1	4	51		(頭)	オーディ	21	<u> </u>	_ 0
1. 4	16.6	1. 2	6. 4	14.4	7. 6	12. 1	1. 7	12.4	10.7	軍司	合会成为			(
1. 5	17.0	1. 3	6. 6	14.8	7. 9	12. 5	1. 8	12.8	11, 1	提高值	中方日		9	 >
1. 3	16. 1	1. 1	6. 2	14.0	7. 3	11. 7	1. 6	12.0	10. 1	知能	(光温度)	25	- 6	>
2	, ex	, ,	2	6		<u>~</u>	4		w		~		•	

1: classification

2: Target (the prusent invention)

(the present invention)

3: Internetablic compround

i: Substrate

5: Thin film

: Number of particles

i Alboy content (with)

: Aurage grain size (4m)

5: Max, grain size (um)
10: Min. grain size (um)

Table 6

							\sim					-		•
					/			 					,	
	**	-	u	*	_×	· ;	SE 1		}!		≈			
30	29	2 8	27	26	25	24	23	22	21		23			
24	1.5	21	8 1	26	20	2.8	1.4	20	2 6	(mm)	野科特本	₩ \$\$		- <i>₽</i> 1
3 2	20	2 8	2 5	ພ	27	3 4	6.1	27	3 4	(m m)	最大拉径	語合		<u> </u>
17	10	1 3	11	15	12	16	0.1	12	15	(mm)	最小位在	SE		<u>-0</u>
1.5	15	=	12	~	11	7	16	=	9	(mm)	要項係为	禁		<i>-⊲</i>
20	21	16	18	11	16.	1	21	16	12	(m m)	极大拉链	の #		<u>-9</u>
10	11	æ	9	ទ	8	6	11	8	6	(# m)	最小拉锤	25	:	-0`
ယ	' చ	S	4	6	5	ຽ	4	5	6	(图)	パーティ	Æ		
10.5	2. 5	13.7	9. 8	18.8	12.4	18.5	1. 2	11.5	18.7	平均值	合金球			- Q
10.	2	14.	10.	19	12	1 8	1.	11.	19.	斑	合作			<u>-2</u>
∞	7		0	<u>—</u>	-3	⇔	6 23	9		福	ໝ	海		
10.1	2. 3	13.4	9, 5	18.5	12. 1	18. 1	1. 1	11.1	18.4	最低的	(光西班		:	<i>'</i> 0'
٥.	0	×0	<u>\</u>	6.		~	8	(~		N //			

1: Chasefication 2: Target (the present invention)

3: Intermetable compound 4: Substrate

: Thin film

: Number of particles

: Alloy content (web)

Average grain size (µm)

9: Max, grain size (mm)
10: Min. grain size (mm)

Table 7 Reference 7

						/	/						/	`	
		~	· ·		×_		}	fix	· .				7		
10	9	- co	7	ტ	55		ω	2	-		常				
103	7.1	138	189	191	182	142	104	72	88 23	(EII)	到科學本	₽₽		8	
129	9 0	167	229	232	225	173	131	9 1	105	(E #)	最大粒胀			<i>√</i> 0	_ (
7 8	5 1	9 5	136	138	130	1.01	8 1	5 2	6 3	(E 11)	双子群群	£≱ \$ 2 ₹		6	
హ ట	8.0	4 3	යා ස	3 6	3 7	4 9	5 5	8 2	6.9	(HH)	五谷女母	≱		8	
7 0	106	5 9	47	4 5	49	63	72	108	9 3	(# B)	最大粒窪	ある大語		9	۲ -
င္မာ	5 8	27	2 5	23	27	3 1	37	6 1	5 0	(E H)	最小粒链	## 		6	
4 2	3 2	42	48	52	50	49	4 5	3 7	3 9		· >		:		6
10.4	2. 4	13. 7	18.8	18.4	16.4	11.9	10.0	2. 2	5. 1	1000	合金咸	- 7		_—	C
11.8	3. D	14.8	19.8	19, 5	18.0	1 3 1	10.9	2. 7	5. 7	海海	分合有量			- 9	
9. 6	1. 8	12.5	17.8	17. 4	15. 1	10.7	9. 2	1. 8	4. 5	海南	(重量%)	海		0	
	10: Mur. gram suge (um)		7: Mrx. Stown size (mm)		P: Average grain size (4m.	7: Allon content (witob)	6: The number of particles		5: Thin film	4: Substrate	and the second of the second o	3: Intermetallic Commound	2: Target (prior art)	1: Classification	

Table 8

Reforence 7

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08100255 A

(43) Date of publication of application: 16 . 04 . 96

(51) Int. CI

C23C 14/34

C22C 21/00

H01L 29/40

H01L 29/43

(21) Application number: 06261229

61229 (71) Applicant:

MITSUBISHI MATERIALS CORP

(22) Date of filing: 30 . 09 . 94

(72) Inventor:

KINOSHITA MAKOTO

(54) SPUTTERING TARGET MATERIAL FOR FORMING THIN FILM OF THIN FILM TRANSISTOR

(57) Abstract:

PURPOSE: To obtain a sputtering target material generating a small number of particles and capable of forming a thin film less liable to cause unevenness in the alloying component content with the lapse of time.

CONSTITUTION: This sputtering target material has a

compsn. consisting of 1-20wt.% one or more kinds of alloying components selected from among Nb, V, Ti, Zr, Ni, Pt and W and the balance Al with inevitable impurities and a recrystallized structure contg. an intermetallic compd. of Al with the alloying components dispersed as particles of ${\leq}30\mu\text{m}$ average particle diameter in the matrix of ${\leq}30\mu\text{m}$ average grain diameter. This target material can suppress the generation of particles during film formation.

COPYRIGHT: (C)1996,JPO