Detecting AF Burden using 1-D CNNs

Hasan Khan | CSCI 3033 083

Problem

- 1-D CNNs have been used to classify ECG sequences into types of AF
- Can we use CNNs to detect AF burden metric instead?
- AF Burden = ratio of sequence marked with AF
- More informative than simply sub-typing AF

Method

- Chopped all ~1400 ECG sequences into 30-second and 10-second chunks
- Ran binary classification to categorize chunks as AF/non-AF
- Aggregate chunks to the sequence level to calculate Burden

Signal	Label
	Normal
	Normal
	Paroxysmal AF
mmmm.	Persistent AF

Chunked Signal	Label
	Normal
	Normal
-4~	Normal
-1	Normal
-A-	Normal
	Normal
	Normal
	Normal
~~~	AF
~~~	AF
-Amh	AF
~~~~	AF

## Results

#### Using a 1-D CNN model w/ 9 layers:

AF Chunk Classification	Accuracy	F1
30-second chunks	0.893	0.891
10-second chunks	0.910	0.910

AF Burden	MAE
30-second chunks	0.15
10-second chunks	0.12



Burden Differential (10-second Chunks)

True Burden

0.6

0.8

0.4

0.2

