PENGARUH RANGKAK, SUSUT, DAN RELAKSASI BAJA TERHADAP LENDUTAN BALOK JEMBATAN KOMPOSIT BETON PRATEGANG.

I Nyoman Sutarja¹

Abstrak: Lendutan merupakan perilaku struktur yang tidak dapat dihindari karena sifat elastisitas material. Oleh karenanya, para perancang struktur harus selalu mengevaluasi lendutan yang terjadi secara seksama, karena besarnya lendutan akan mempengaruhi kenyamanan ataupun daya layan struktur. Besarnya lendutan akan bertambah seiring dengan bertambahnya umur beton, karena adanya rangkak dan susut beton. Pada balok komposit beton prategang, selain dipengaruhi oleh rangkak dan susut juga dipengaruhi oleh relaksasi dari baja prategang. Dalam balok komposit beton prategang terdapat perbedaan nilai rangkak dan susut, karena terdapat dua bahan dengan mutu yang berbeda. Perbedaan nilai rangkak dan susut tersebut juga akan mempengaruhi besarnya lendutannya. Didalam tulisan ini dianalisa faktor-faktor yang berkaitan erat dengan lendutan pada balok jembatan komposit beton prategang, beserta rumus-rumus yang digunakan untuk menganalisa lendutan tersebut. Adapun rumus tersebut digunakan untuk menganalisa lendutan balok komposit beton prategang pada struktur jembatan, dengan 5 tipe penampang yang luasnya sama. Hasil analisa menunjukan bahwa lendutan akibat pengaruh rangkak, susut dan relaksasi baja akan terus bertambah sejalan dengan pertambahan umur beton, tetapi dengan kecepatan pertambahan yang semakin kecil. Disamping itu juga diketahui bahwa letak flens pada penampang sangat mempengaruhi besarnya kehilangan gaya prategang dan lendutan yang terjadi.

Kata kunci: rangkak, susut, relaksasi, baja, komposit, beton, prategang.

THE INFLUENCE OF CREEP, SHRINKAGE AND STELL RELAXATION ON A COMPOSITE PRE-STRESSED CONCRETE BEAM BRIDGE.

Abstract: Deflection as one of structural behavior is an unavoidable matter due to the material elasticity. For the reason that the deflection will affected the structural serviceability and comfortability, hence, it is important for structural designer to confirm and consistently evaluate the deflection of structure precisely. The magnitude of deflection will increase with the increasing of the concrete age, because the presence of creeps and the shrinkage of concrete. Other than those two causes, the deflection occurred on a composite pre-stressed concrete also affected by the relaxation of prestressed steel. On a composite pre-stressed concrete, there is a difference between creep and shrinkage values due to the variation of material quality. Those different values also affected the magnitude of deflection. On this research, it is analyzed the factors related to the deflection of a composite pre-stressed concrete beam and the formulas employed to the deflection analyses. The formulas are employed to analyze the deflection of a composite pre-stressed concrete beam on a bridge structure with five different shapes for the same area of cross section. The result showed that the deflections influenced by creep, shrinkage and steel relaxation are increased with the increasing of concrete period with smaller increment velocity. Besides, it is known that the flens position on beam section area will influence significantly the lost of prestressed force value and the size of occurred deflection.

Keywords: creep, shrinkage, relaxation, steel, composite, concrete, pre-stressed.

_

¹ Dosen Jurusan Teknik Sipil, Fakultas Teknik, Universitas Udayana, Denpasar.

PENDAHULUAN

Pada saat ini beton prategang telah banyak digunakan di Indonesia. Struktur beton prategang lebih banyak digunakan karena struktur ini relatif lebih murah dibanding dengan beton bertulang untuk struktur yang bentangnya cukup panjang. Beton prategang biasanya digunakan bersamaan dengan beton yang dicor ditempat sehingga membentuk balok komposit. Aksi komposit ini banyak kita jumpai pada hubungan balok jembatan dan pelat begitupun pada bangunanlantainya, bangunan yang menggunakan balok pracetak.

Didalam perancangan suatu struktur harus selalu diperhatikan hal-hal sebagai berikut: 1) Dari segi kekuatan, struktur tersebut dapat diandalkan kekuatannya, 2) dari segi estetika memenuhi syarat keindahan dan 3) dari segi finansial struktur tersebut harus ekonomis.

Apabila semua persyaratan diatas terpenuhi, maka dapat dikatakan bahwa struktur yang direncanakan memenuhi syarat teknis. Sehingga masalah ini perlu mendapat perhatian yang serius dari para perancang struktur. Selain itu para perancang struktur harus menjamin bahwa: pada beban batas konstruksi tetap aman serta selama beban kerja normal, lendutan bagian-bagian konstruksi tidak mengurangi bentuk, keawetan dan unjuk kerja (performance) dari suatu konstruksi. Dengan kata lain suatu struktur harus tidak runtuh dan apabila terjadi lendutan tidak membahayakan pemakainya.

Dalam kenyataannya jarang sekali ditemui suatu konstruksi roboh, kecuali apabila terjadi bencana alam. Tetapi yang sering terjadi di lapangan adalah terjadinya lendutan yang melampaui batas yang diperbolehkan.

Terjadinnya lendutan ini banyak dijumpai dalam praktek. Beberapa kasus dapat saja terjadi, misalnya rusaknya partisi berupa eternit akibat lendutan pelat lantai yang terlalu besar, juga pecahnya kaca akibat hal yang sama. Hal ini terjadi

karena lendutan kurang mendapat perhatian serius dari perancang struktur.

Pada balok prategang, lendutan tergantung dari kombinasi antara gaya prategang dan beban luar. Gaya prategang akan menimbulkan anti lendutan (*camber*), sedang beban luar akan menyebabkan lendutan. Secara umum lendutan dibedakan menjadi dua: 1) Lendutan jangka pendek, yang terjadi segera setelah beban bekerja, dan 2) Lendutan jangka panjang, yang terjadi sesudah perkembangan waktu.

Pada beton prategang besarnya lendutan jangka panjang banyak ditentukan oleh parameter-parameter yang tergantung pada waktu, yaitu rangkak dan susut pada beton kemudian ditambah dengan relaksasi baja prategang.

Penulisan ini bertujuan untuk: 1) mengetahui pengaruh dari parameter-parameter yang tergantung waktu (rangkak, susut dan relaksasi baja) pada lendutan jangka panjang beton prategang, 2) mengetahui bagaimana menganalisa lendutan jangka panjang pada penampang komposit beton prategang pada suatu interval waktu tertentu; dan 3) mengetahui pegaruh bentuk penampang terhadap lendutan jangka panjang yang terjadi.

TINJAUAN PUSTAKA

Umum

Balok komposit beton prategang merupakan balok gabungan antara beton prategang sebagai balok gelegar dan beton cor ditempat sebagai pelat yang dengan alat penghubung geser antara keduanya membentuk suatu penampang komposit.

Lendutan pada suatu struktur beton selain dipengaruhi oleh beban luar yang diterima oleh struktur tersebut, juga dipengaruhi oleh rangkak dan susut beton itu sendiri. Pada beton prategang ditambah oleh relaksasi dari baja prategang. Pada balok komposit beton prategang terdapat perbedaan nilai rangkak dan susut beton pada masing-masing bagian.

Rangkak pada Beton

Rangkak beton (*creep*) adalah besarnya regangan tambahan pada suatu struktur beton yang mengalami tegangan konstan, yang diukur dari regangan elastis sampai regangan yang terjadi pada saat tertentu. Jadi regangan rangkak merupakan regangan yang terjadi karena fungsi waktu, sedangkan tegangan yang terjadi pada struktur tersebut adalah konstan. Hubungan antara tegangan dan waktu pada definisi rangkak tersebut dapat dilihat pada Gambar 1, sedangkan regangan yang terjadi dapat dilihat pada gambar hubungan regangan dan waktu pada Gambar 2.

Tegangan Konstan

o ti Waktu(t)

Gambar 1. Hubungan antara tegangan dan waktu pada definisi rangkak

Regangan

Tegangan

rangkak

elastik

to

waktu(t)

Gambar 2, Hubungan antara regangan dengan fungsi waktu

Dari gambar terlihat bahwa akibat rangkak beton, regangan akan bertambah besar, akan tetapi kecepatan pertambahan regangannya akan berkurang menurut waktu. Rangkak adalah fenomena yang sangat bervariasi, karena rangkak dipengaruhi oleh banyak faktor. Faktor-faktor yang mempengaruhi besarnya deformasi rangkak adalah; 1) Pilihan bahan dasar seperti susunan dari semen, bahan campuran, ukuran susunan butir dan isi

zat-zat mineral dari agregat, 2) proporsi, seperti kadar air dan perbandingan air semen, 3) suhu dan derajat kebasahan sewaktu pengeringan beton, 4) kelembaban nisbi selama penyimpanan, 5) ukuran dari anggota struktur, khususnya tebal dan perbandingan volume terhadap permukaan dan 6) umur pada waktu pembebanan, serta 7) nilai slump dan sebagainya.

Persamaan untuk memprediksi nilai rangkak yang diajukan oleh Branson, 1977 adalah

$$C_{ct} = \frac{(t-\tau)^{0.6}}{10 + (t-\tau)^{0.6}} C_{cu}$$
(1)

Dimana:

 C_{ct} : Koefisien rangkak pada waktu t (dalam hari).

t : waktu setelah pengerasan awal, dalam hari.

τ : Umur beton saat diberi beban pertama kali.

 C_{cu} : Koefisien rangkak batas (*ultimate* creep coefficient)= 2,35 K_C

K_C: Koefisien koreksi untuk rangkak yang besarnya 1 apabila dalam kondisi standart

= K_{AC} . K_{H} . K_{P} . K_{S} . K_{AG} . K_{A} (untuk kondisi diluar standart)

Tabel 1 Faktor yang mempengaruhi rangkak beton pada kondisi standart

rangkak beton pat	ia kuliuisi stallual t					
Keterangan	Kondisi standar					
Tipe semen	Tipe I dan III					
Slump beton	4 inci (100mm)					
Kadar udara	<6%					
Kehalusan agregat	50%					
Kadar semen	$278-446 \text{ kg/m}^3$					
Umur	7 hari untuk moist-					
pembebanan	cured					
	1-3 hari untuk steam					
	cured					
Kelembaban	40%					
relatif						
Temperatur beton	$23\pm2^{\circ}$ C					

Sumber: ACI Commite 209

Untuk kondisi diluar standar, maka harus dikalikan dengan faktor koreksi. Sedangkan faktor koreksi adalah perkalian semua faktor koreksi yang mempengaruhinya:

Umur Beton Saat Pembebanan (K_{AC}):

- O Untuk *moist cured concrete* (beton dirawat dengan pembasahan), $\tau > 7$ hari $K_{AC} = 1,25.(\tau)^{-0.118}$ (2)
- o *Untuk steam cured concrete* (beton dirawat dengan uap panas), $\tau > 3$ hari $K_{AC} = 1,13.(\tau)^{-0.095}$ (3) Dengan τ umur beton saat pembebanan pertama ,dalam hari.
- 1. Kelembaban relatif (K_H) $K_H = 1,27-0,0067$. H (untuk H > 40 %) Dengan H adalah kelembaban relatif dalam persen.
- 2. Rasio penampang (K_P) $K_P = 1.12 - 0.08$. V/S (5) Dengan V/S adalah rasio penampang dalam inch.
- 3. Nilai slump beton (K_S) $K_S = 0.82 + 0.00264.S_l$ (6) Dengan S_l adalah nilai slump beton dalam mm.
- 4. Kadar agregat (K_{AG}) $K_{AG} = 0.88 + 0.0024. \psi$ (7) Dengan ψ adalah perbandingan agregat halus dengan total agregat dalam persen.
- 5. Kadar udara (K_A) $K_A = 0.46 + 0.09$. A (8) Dengan A adalah kadar udara dalam persen.

Susut pada Beton

Pada dasarnya susut dibagi atas dua bagian, yaitu : 1) susut plastis dan 2) susut pengeringan.

Susut plastis adalah susut yang terjadi beberapa jam setelah beton segera dicor kedalam acuan. Susut pengeringan adalah susut yang terjadi setelah beton mencapai bentuk akhir dan proses hidrasi semen telah selesai.

Susut biasanya dinyatakan dengan regangan susut (ε_{sh}) yang nilainya sangat bervariasi dan sangat bergantung pada bahan yang digunakan sebagai campuran beton dan perawatan beton itu sendiri.

Susut seperti rangkak, merupakan fenomena yang sangat bervariasi dan

ditentukan oleh banyak faktor. Faktorfaktor tersebut antara lain:

- Agregat. Agregat berlaku sebagai bahan penahan susut pada beton. Jadi, beton dengan kandungan agregat yang semakin tinggi akan semakin berkurang perubahan volumenya akibat susut. Lagi pula derajat ketahanan beton ditentukan oleh sifat agregatnya, yaitu dengan modulus elastisitas yang tinggi atau dengan permukaan yang kasar akan lebih tahan terhadap proses susut.
- Faktor air semen. Semakin besar (4)ktor air semen, akan semakin besar pula efek susut.
- Ukuran elemen beton. Kelanjuan dan besarnya susut akan berkurang apabila volume elemen betonnya semakin besar. Akan tetapi terjadinya susut akan semakin lama untuk elemen yang lebih besar karena lebih banyak waktu yang diperlukan untuk pengeringan sampai kebagian dalam. Sebagai contoh mungkin diperlukan waktu sampai satu tahun untuk mencapai pengeringan pada kedalaman 10 inch dari permukaan luar dan 10 tahun untuk mencapai 24 inch dari permukaan luar.
- Kondisi lingkungan. Kelembaban relatif disekeliling beton sangat mempengaruhi besarnya susut, laju perubahan susut semakin kecil pada lingkungan dengan kelembaban relatif tinggi. Temperatur disekeliling juga merupakan faktor yang menentukan, yaitu susut akan tertahan pada temperatur rendah.
- Banyaknya penulangan. Beton bertulang lebih sedikit susutnya dibandingkan dengan beton sederhana, perbedaan relatifnya merupakan fungsi dari prosentase tulangan.
- Bahan tambahan pada campuran beton.
 Pengaruh ini sangat bervariasi bergantung pada bahan tambahan yang digunakan. Akselelarator seperti kalsium klorida digunakan untuk mempercepat proses pengerasan beton dan memperbesar susut. Pozzolan juga dapat menambah susut, sedangkan bahan air-

entraining hanya mempunyai sedikit pengaruh terhadap susut.

. Jenis semen. Susut karbonasi disebabkan oleh adanya reaksi karbondioksida (CO₂) yang ada diudara dan yang ada dalam pasta semen. Besarnya susut karbonasi bervariasi, bergantung pada urutan kejadian antara proses susut karbonasi dan susut pengeringan. Jika kedua fenomena ini terjadi bersamaan maka susut yang terjadi lebih kecil. Berbeda dengan proses susut pengeringan proses karbonasi sangat berkurang pada kelembaban relatif dibawah 50%.

ACI menyarankan bahwa rumus yang diberikan oleh Branson berikut ini dapat digunakan untuk memprediksikan regangan susut ε_{sh} .

a. Untuk waktu *t* setelah umur 7 hari dari beton yang dikeringkan dengan udara (*moist cured concrete*).

$$\varepsilon_{sh} = \frac{t}{35 + t} (\varepsilon_{sh})_u \tag{9}$$

Untuk waktu t setelah 1-3 hari dari beton yang dikeringkan dengan uap panas (steam cured concrete).

$$\varepsilon_{sh} = \frac{t}{55 + t} (\varepsilon_{sh})_u \tag{10}$$

 $(\varepsilon_{sh})_u$ = regangan susut batas.

$$= 780 \times 10^{-6}. \text{ K}_{\text{Sh}} \text{ in/in} \tag{11}$$

Untuk kondisi diluar standar, maka harus dikalikan dengan faktor koreksi yang mempengaruhi susut beton tersebut.

Kelembaban relatif (K_H)

 $K_H = 1,4-0,01. H$ (H=40% < H < 80%)

(H=40% < H < 80%) (12) $K_H = 3,00-0,03.H (H=80\% < H < 100\%)$

H= kelembaban relatif dalam persen.

Rasio penampang (K_P)

 $K_P = 1,14-0,09 \text{ V/S}$ (14)

Dengan V/S adalah rasio penampang dalam inch.

Nilai slump beton (K_S)

 $K_S = 0.89 + 0.00161. S_l$ (15)

Dengan S_l adalah nilai slump dalam mm.

Berat semen (K_{PC})

 $K_{PC} = 0.75 + 0.00061. c$ (16)

Dengan c adalah kandungan semen (kg/m^3)

Kadar agregat (K_{AG})

 $K_{AG} = 0.30 + 0.014.$ ψ (untuk $\psi < 50\%$)(17)

 $K_{AG} = 0.90 + 0.002 \quad \psi \text{ (untuk } \psi > 50\% \text{)}$

Dengan ψ adalah perbandingan agregat halus dengan total agregat dalam persen.

Kadar udara (K_A)

 $K_A = 0.95 + 0.008 .A$ (19)

Dengan A adalah kadar udara dalam persen.

Rangkak dan susut yang berlainan

Balok komposit merupakan penampang kesatuan yang terdiri dari dua buah material beton yang berbeda baik mutu maupun umur masing-masing bagiannya. Dengan adanya perbedaan umur dan mutu dari kedua bagian ini, masing-masing elemen memiliki nilai rangkak dan susut yang berbeda pula. Perbedaan rangkak dan susut ini akan menimbulkan tegangan yang berbeda pada masing-masing serat penampangnya. Hal ini dapat dilihat pada Gambar 3.

Pelat cor ditempat pertama-tama diijinkan mengalami seluruh susut ε_{cs} . Gaya-gaya tarik sebesar F_{sh} kemudian diterapkan pada masing-masing ujung yang bekerja pada titik berat pelat cor ditempat sedemikian rupa sehingga pelat tersebut dikembalikan kepada pangan tarik merata yang timbul pada beton cor ditempat adalah ε_{cs} . E_{c1} dan besarnya gaya tarik dihitung sebesar

$$F_{sh} = \varepsilon_{cs} \cdot E_{c_1} \cdot A_I \cdot \frac{1}{2} \tag{20}$$

Faktor ½ adalah faktor modifikasi untuk efek relaksasi rangkak akibat perbedaan susut.

Gambar 3. Gaya susut pelat (F_{sh}) pada pelat dan komposit

Batang komposit berada dalam keaseimbang internal tanpa daan eksternal yang bekerja pada batang tersebut. Maka gaya tariknya harus diimbangi dengan memberikan gaya tekan yang besarnya sama yang bekerja pada garis yang sama. Gaya tekan yang diberikan pada titik berat pelat cor ditempat adalah ekivalen dengan gaya tekan langsung yang bekerja pada titik berat penampang komposit bersama-sama dengan suatu momen lentur yang akan menimbulkan tegangan langsung dan tegangan lentur pada penampang komposit. Tegangan-tegangan ini ditambahkan pada tegangan-tegangan tarik yang ada pada pelat cor ditempat untuk menghitung tegangan-tegangan akhir. Besarnya nilai ε_{cs} dapat dilihat pada Tabel 2.

Tabel 2 Nilai regangan dari rangkak dan susut yang berlainan (ε_{co})

		CB	
Tipe Balok	Kondisi Pengerjaan	Umur balok pracetak pada saat plat dicor	Nilai \mathcal{E}_{cs} yang diberikan
Balok komposit beton	Dengan penyangga	1 bulan 2 bulan 3 bulan	310.10 ⁻⁶ 415.10 ⁻⁶ 470.10 ⁻⁶
prategang	Tanpa penyangga	1 bulan 2 bulan 3 bulan	270.10 ⁻⁶ 375.10 ⁻⁶ 435.10 ⁻⁶

Sumber: Branson, 1977 dalam buku Handbook of Composite Construction Engineering oleh Sabnis Nilai ε_{cs} dalam tabel berlaku untuk kelembaban relatif 70% dan tebal plat 6 in. Untuk kelambaban relatif dan tebal pelat yang lain, nilai ε_{cs} dikalikan dengan K_H dan K_{TP} . $K_{TP}=1,17-0,029\ T$, (T adalah tebal plat dalam inch).

Tegangan-tegangan akibat gaya susut pelat

$$f_{1t} = \frac{F_{sh}}{A_1} + \left(-\frac{F_{sh}}{A_c} - \frac{F_{sh} \cdot y_{cs} \cdot y_{ct}}{I_c} \right) n_e$$
 (21)

$$f_{1b} = \frac{F_{sh}}{A_1} + \left(-\frac{F_{sh}}{A_c} \pm \frac{F_{sh} \cdot y_{cs} \cdot y_{ci}}{I_c} \right) n_e$$
 (22)

$$f_{2t} = -\frac{F_{sh}}{A_c} \pm \frac{F_{sh} \cdot y_{cs} \cdot y_{ci}}{I_c}$$
 (23)

$$f_{2b} = -\frac{F_{sh}}{A_c} + \frac{F_{sh} \cdot y_{cs} \cdot y_{cb}}{I_c} \tag{24}$$

Kehilangan gaya prategang

Untuk menganalisis rancangan komponen strukutur beton prategang harus mempertimbangkan gaya-gaya efektif yang bekerja pada setiap tahap pembebanan struktur. Prategang efektif pada beton mengalami pengurangan secara berangsur-angsur sejak dari tahap transfer akibat berbagai sebab. Secara umum dinyatakan sebagai kehilangan prategang.

 Kehilangan Prategang Akibat Deformasi Elastis Beton

a. Sistem pratarik

$$\Delta f_{pes} = E_{PS}. \, \varepsilon_{es} = \frac{E_{PS}.F_o}{E_{ci}A_2} = n_P.f_{cs}$$
 (25)

Jika tendon mempunyai eksentrisitas sebesar *e* dan bekerja momen lentur akibat berat sendiri batang, maka:

$$\Delta f_{pcs} = n_p \left[-\frac{P_o}{A_t} \left[1 + \frac{e^2}{r^2} \right] + \frac{M_2 \cdot e}{I_t} \right]$$
 (26)

• b. Sistem pascatarik

Pada balok pascatarik, persoalannya sangat berbeda. Jika hanya sebuah tendon atau jika semua tendon ditarik bersama-sama, maka tidak akan ada kehilangan gaya prategangan yang perlu dihitung. Karena kehilangan gaya prategang dihitung setelah terjadinya deforelastis masi beton. Untuk pascatarik dengan dua tendon atau lebih yang ditarik secara berurutan, maka gaya prategang secara bertahap bekerja pada beton akibat pengukuran tendontendon berikutnya. Pada pengukuran tendon, tendon pertama yang diangkurkan akan mengalami kehilangan tegangan jika tendon kedua diangkurkan. Tendon pertama dan kedua akan mengalami kehilangan tegangan jika tendon ketiga diangkurkan dan seterusnya. Sehingga kehilangan gaya prategang pada setiap tendon akan berbedabeda, tendon yang ditarik pertamakali akan mengalami kehilangan tegangan terbesar akibat deformasi elastis beton karena gaya prategang yang bekerja berurutan pada tendon berikutnya.:

$$\Delta f_{pes} = \sum_{j=1}^{N} \frac{A_{psj} \cdot (\Delta f_{pes})_{j}}{\sum_{i=1}^{N} A_{psj}}$$
 (27)

 Kehilangan Prategang akibat gesekan Pada kasus batang pascatarik, apabila kabel-kabel lurus atau melengkung ditarik, maka gesekan terhadap dinding saluran akan mengakibatkan kehilangan tegangan yang makin bertambah menurut jaraknya dari dongkrak. Selain itu, akan terdapat kehilangan tegangan akibat gesekan antara kabel dan gerak menggelombang dalam saluran yang disebut sebagai gelombang yang merupakan penyimpangan kecil saluran dari kedudukan yang ditetapkan.

$$\Delta f_{pF} = f_I (1 - e^{-(\mu \alpha + kL)}) \qquad (28)$$

Kehilangan Prategang Akibat Penggelinciran Angkur

Dalam sistem pascatarik, apabila kabel ditarik dan dongkrak dilepaskan untuk mentransfer prategang beton, tentu ada slip sedikit antara angkur dan tendon. Besarnya slip ini tergantung dari jenis angkur dan tegangan pada kawat. Kehilangan prategang yang disebabkan oleh penggelinciran angkur sebesar:

$$\Delta f_{pA} = \frac{\Delta_A E_{PS}}{L} \tag{29}$$

Kehilangan Prategang Akibat Rangkak beton

Kehilangan prategangan akibat rangkak pada interval waktu tertentu adalah:

$$\Delta f_{pC}(ti,tj) = n_p.f_{cgs}(ti).(C_{ctj} - C_{cti}) \quad (30)$$

• Kehilangan Prategang Akibat Susut Beton

Kehilangan tegangan akibat susut terhadap interval waktu adalah:

$$\Delta f_{PS}(ti,tj) = \left(\varepsilon_{sh}(tj) - \varepsilon_{sh}(ti)\right)E_{PS} \quad (31)$$

 Kehilangan Prategang Akibat Relaksasi Baja

$$\Delta f_{pR}(ti,tj) = \frac{f_{ps}(ti)}{10} \left[\frac{f_{ps}(ti)}{f_{py}} - 0.55 \right] \cdot \log \frac{tj}{ti}$$
 (32)

Untuk perhitungan lendutan jangka panjang pada balok komposit beton prategang yang dipengaruhi oleh kehilangan gaya prategang, Branson merekomendasikan nilai rasio kehilangan gaya prategang untuk berat beton normal dan waktu antara penegangan sampai pembebanan termasuk pengecoran pelat adalah seperti terlihat pada Tabel 3.

Nilai yang direkomendasikan Bronson diatas adalah merupakan nilai pendekatan

yang telah biasa digunakan. Untuk mendapatkan nilai yang lebih akurat dan teliti, perhitungan dapat dilakukan dengan cara menghitung tahap demi tahap kehilangan beton prategang.

Tabel 3. Rasio kehilangan gaya prategang

Rasio kehilangan gaya prategang	Beton berat normal
$\Delta F_s / F_0$, untuk perbedaan	0,1
waktu antara penagangan dan	
pengecoran pelat selama 3	
minggu-1bulan	
$\Delta F_s / F_0$, untuk perbedaan	0,14
waktu antara penagangan dan	
pengecoran pelat selama 1-3	
bulan.	
$\Delta F_u / F_0$	0,18

Sumber: Branson, 1977 dalam buku Handbook of Composite Construction Eengineering oleh Sabnis

Persamaan Lendutan Balok Komposit **Beton Prategang**

Pada perhitungan lendutan jangka panjang pada balok komposit beton prategang, penurunan rumus akan tergantung digunakan atau tidaknya dukungan sementara dalam pelaksanaannya. Perhitungan total lendutan jangka panjang, selain dipengaruhi oleh lendutan yang tergantung waktu (rangkak, susut, relaksasi baja dan kehilangan gaya prategang), juga diakibatkan oleh lendutan jangka pendek yaitu camber yang diakibatkan oleh gaya dan prategang berat sendiri prategang.

Persamaan umum untuk menghitung lendutan total jangka panjang pada balok komposit beton prategang yang tidak menggunakan penyangga (unshored) ada-

$$\delta_{U} = -\delta_{FO} + \delta_{2} - \delta_{Fo} \left\{ -\frac{\Delta F_{S}}{F_{o}} + (\alpha_{s} K_{r}.C_{U}.\lambda_{S}) \right\}$$
$$-\delta_{FO} \frac{I_{2}}{I_{c}} \left[-\frac{\Delta F_{U} - \Delta F_{S}}{F_{o}} + (K_{r}.C_{U})(\lambda_{U} - \alpha_{S}\lambda_{S}) \right]$$

$$+ \delta_{2} \left(\alpha_{S}.K_{r}.C_{u}\right) + \left(1 - \alpha_{S}\right) \left(K_{r}.C_{u}\right).\delta_{2} \frac{I_{2}}{I_{c}}$$

$$+ \delta_{1} + \delta_{1} \left(\beta_{S}.K_{r}.C_{u}.\frac{I_{2}}{I_{c}}\right) + \delta_{DS} + \delta_{L}$$
(33)

Persamaan ini dibagi menjadi beberapa bagian untuk menunjukkan pengaruh dari masing-masing bagian yang menyebabkan terjadinya deformasi pada struktur, seperti akibat gaya prategang, beban mati, rangkak dan susut yang diperhitungkan baik sebelum maupun sesudah pengecoran pelat.

• Bagian (1), δ_{FO}

Adalah initial camber (lendutan keatas) dari balok pracetak, akibat momen yang ditimbulkan oleh gaya prategang pada saat

$$\delta_{FO} = \frac{5.F_o.ea.L^2}{48.E_{ci}.I_2}$$
 (tendon parabola) (34)

• Bagian (2), δ_2

Adalah lendutan mula akibat beban mati dari balok pracetak.

$$\delta_2 = \frac{5.M_2 L^2}{48.E_{ci} I_2} \tag{35}$$

• Bagian (3),
$$\delta_{FO} \left\{ -\frac{\Delta F_s}{F_o} + (\alpha_s k_r . C_u \lambda_s) \right\}$$

Adalah anti lendutan (camber) akibat rangkak balok pracetak dari vang disebabkan oleh momen gaya prategang, sampai waktu pengecoran pelat. ΔF_s adalah total kehilangan prategang pada waktu pengecoran plat dikurangi kehilangan akibat elastik beton. F_o adalah prategang pada saat transfer. α_s adalah perbandingan koefisien rangkak sampai pengecoran plat dengan koefisien rangkak ultimate. K_r adalah faktor reduksi untuk memperhitungkan pengaruh baja biasa didalam mereduksi tarik anti lendutan yang tergantung waktu.

$$k_r = 1/\{1 + (A_s / A_{ps})\}, A_s / A_{ps} \le 2.$$
 (36)

Untuk sistem prategang penuh tanpa baja tarik biasa nilai k_r = 1

$$\lambda_c = 1 - \Delta F_c / 2F \tag{37}$$

$$\lambda_{S} = 1 - \Delta F_{S} / 2F_{o}$$

$$\alpha_{S} = \frac{(t - \tau)^{0.6}}{10 + (t - \tau)^{0.6}}$$
(38)

• Bagian (4),

$$\delta_{FO} \cdot \frac{I_2}{I_C} \left[-\frac{\Delta F_U - \Delta F_S}{F_o} + (K_r \cdot C_u)(\lambda_U - \alpha_S \lambda_S) \right]$$

Adalah anti lendutan akibat rangkak dari balok komposit, yang disebabkan oleh momen gaya prategang, mengikut pengecoran pelat. Rasio I_2/I_C adalah untuk memperhitungkan pengaruh dari penampang komposit didalam menahan pertambahan rangkak sesudah balok komposit menjadi efektif. ΔF_U adalah total kehilangan prategang ultimate dikurangi kehilangan akibat elastik beton.

• Bagian (5), $\delta_2.(\alpha_s.K_r.C_u)$

Adalah lendutan akibat rangkak dari balok pracetak sampai waktu pengecoran pelat, yang disebabkan oleh beban mati balok pracetak.

• Bagian (6),
$$(1-\alpha_s)(K_r.C_U)\delta_2 \frac{I_2}{I_C}$$

Adalah lendutan akibat rangkak dari balok komposit mengikut pengecoran pelat yang disebabkan oleh beban mati balok pracetak.

• Bagian (7), δ_1

Adalah lendutan mula dari balok pracetak dibawah beban mati pelat (termasuk beban diafragma).

• Bagian (8),
$$\delta_1 \left(\beta_S.K_r.C_U \frac{I_2}{I_c} \right)$$

Adalah lendutan akibat rangkak dari balok komposit yang disebabkan oleh beban mati pelat.

 β_s adalah faktor koreksi rangkak untuk umur balok pracetak pada saat pelat dicor. $\beta_s = 1,13.t^{-0.095}$, t adalah umur beton pracetak saat pelat dicor.

• Bagian (9), δ_{DS}

Adalah lendutan akibat rangkak dan susut yang berlainan, yang diberikan oleh persamaan berikut:

$$\delta_{DS} = \frac{4.F_{Sh}.y_{cs}.L^2}{3.8.E_2.I_C}$$
 (39)

dimana: faktor 4/3 adalah untuk memperhitungkan tambahan reduksi.

• Bagian (10), δ_L

Adalah lendutan mula akibat beban hidup dari balok komposit (termasuk beban mati yang bekerja setelah aksi komposit).

METODOLOGI DAN PEMBAHASAN

Tulisan ini merupakan studi literatur mengenai lendutan pada balok komposit beton prategang akibat pengaruh rangkak, susut dan relaksasi baja. Sampel yang digunakan sebagai bahan analisa adalah balok komposit beton prategang pada struktur jembatan dengan 5 tipe penampang yang luasnya sama. Beton prategang tersebut menggunakan system pascatarik dan tidak menggunakan penyangga dalam pengecoran pelatnya.

Gambar 4. Model penampang beton pracetak yang akan dianalisa

Data Analisa

Panjang Bentang (L) = 25 m Lebar lantai kendaraan = 6 m Lebar trotoar = 2 x 1 m Jumlah gelegar = 5 Jarak antar gelegar (S) = 150 cm Tebal pelat = 20 cm

Peraturan pembebanan menggunakan : PPPJR 1983

Balok pracetak

 $\vec{f}_{ci} = 42 \text{ MPa}$ $\vec{f}_{ci} = 32 \text{ MPa}$ $E_{c} = 35.10^{3} \text{ MPa}$ $E_{ci} = 25.10^{3} \text{ MPa}$

Pelat cor ditempat

 $f'_c = 30 \text{ MPa}$ $E_c = 25.10^3 \text{ MPa}$

Baja Pratekan

 $f_{PU} = 1862 \text{ MPa}$

 $E_{PS} = 186000 \text{ MPa}$

 $f_{Py} = 0.9 f_{PU} = 1675.8 \text{ MPa}$

 $f_{pi} = 0.7 f_{PU} = 1303.4 \text{ MPa}$

Kelembaban relatif = 60 %

Slump beton = 110 mm

Kadar udara = 7 %

Perbandingan agregat halus dengan total agregat adalah 60%

Pemberian gaya prategang 30 hari setelah pengerasan awal.

Pengecoran pelat dilakukan 30 hari setelah penegangan.

Kehilangan prategang dianggap 20% (untuk perencanaan pendahuluan).

Potongan melintang jembatan seperti pada Gambar 5 dibawah ini:

Gambar 5. Potongan melintang jembatan

Analisa

Langkah-langkah analisa:

- 1. Menghitung besarnya tegangan ijin
- 2. Menghitung beban yang bekerja serta momen lentur yang terjadi.
- 3. Menghitung sifat penampang, mulai dari luas, titik berat, momen inersia dan bidang inti.
- Perhitungan gaya prategang, control luas penampang dengan tegangan yang terjadi dan mengontrol daerah aman kabelnya

- 5. Menghitung koefisien rangkak dan susut berdasarkan interval waktu.
- 6. Perhitungan kehilangan gaya prategang, dan perhitungan gaya akibat perbedaan susut dan rangkak (F_{sh}).
- 7. Kontrol tegangan yang terjadi.
- 8. Analisa lendutan dan control lendutan.

Hasil analisa untuk kelima tipe penampang akan ditabelkan dibawah ini dengan interval waktu 30 hari, 60 hari, 90 hari, 1 tahun, 5 tahun, 10 tahun, 25 tahun, 50 tahun.

Tabel4. Nilai koefisien rangkak berdasarkan interval waktu pada pe-

nampang 1

No	Umur beton (t)	α	C_{ct}
1	30 hari	0	0
2	60 hari	0,435	0,648
3	90 hari	0,538	0,801
4	1 tahun	0,766	1,1407
5	5 tahun	0,899	1,339
6	10 tahun	0,932	1,388
7	25 tahun	0,959	1,428
8	50 tahun	0,973	1,45

Tabel 5. Regangan susut berdasarkan interval waktu pada penampang 1

No	Umur beton (t)	${\cal E}_{sh}$				
1	30 hari	165,415.10 ⁻⁶				
2	60 hari	244,526.10 ⁻⁶				
3	90 hari	290,9.10 ⁻⁶				
4	1 tahun	407,3.10 ⁻⁶				
5	5 tahun	454,971.10 ⁻⁶				
6	10 tahun	462,353.10 ⁻⁶				
7	25 tahun	465,869.10 ⁻⁶				
8	50 tahun	467,268.10 ⁻⁶				

Tabel 6. Kehilangan prategang pada penampang 1

			<u> </u>			<u> </u>				
No	Umur	f(ti)	$f_{cgs}\left(ti\right)$	Δf_{pE}	Δf_{pF}	Δf_{pA}	Δf_{pR}	Δf_{pC}	Δf_{pS}	Δf_T
	beton	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²
1	30 hr	13034		0	671,933	74,4	409,765	0	0	1156,098
2	60 hr	11877,9	98,85	0	671,933	74,4	466,542	340,405	147,146	1700,427
3	90 hr	11333,57	62,94	0	671,933	74,4	491,75	391,582	233,402	1863,067

Tabel 6. Kehilangan prategang pada penampang 1 (Lanjutan)

No	Umur	f(ti)	$f_{cgs}(ti)$	Δf_{pE}	Δf_{pF}	Δf_{pA}	Δf_{pR}	Δf_{pC}	Δf_{pS}	Δf_T
	beton	kg/cm ²								
4	1 th	11170,93	61,053	0	671,933	74,4	570,952	501,799	449,906	2268,99
5	5 th	10765,01	56,34	0	671,933	74,4	640,463	561,171	538,574	2486,542
6	10 th	10547,46	53,814	0	671,933	74,4	665,673	575,184	552,304	2539,495
7	25 th	10494,5	53,2	0	671,933	74,4	697,512	586,493	558,844	2589,182
8	50 th	10444,82	52,62	0	671,933	74,4	720,55	592,645	561,446	2620,975

Tabel 7. Hasil analisa lendutan untuk variasi umur beton pada penampang 1

	//	30 hari	60 hari	90 hari	1 tahun	5 tahun	10tahun	25tahun	50tahun
	1	-4,917	-4,917	-4,917	-4,917	-4,917	-4,917	-4,917	-4,917
	2	3,164	3,164	3,164	3,164	3,164	3,164	3,164	3,164
	3	1	-0,654	-0,654	-0,654	-0,654	-0,654	-0,654	-0,654
	4	-	-	-0,8109	-1,0676	-1,2127	-1,2477	-1,2743	-1,2876
	5	-	0,892	0,892	0,892	0,892	0,892	0,892	0,892
	6	-	-	0,5824	0,8293	0,9735	1,0091	1,0382	1,0542
	7	1	1,395	1,395	1,395	1,395	1,395	1,395	1,395
	8	1	-	0,3454	0,4918	0,5773	0,5985	0,61573	0,6252
	9	1	-	0,706	0,706	0,706	0,706	0,706	0,706
	10	-	-	1,586	1,586	1,586	1,586	1,586	1,586
	$\delta_{\scriptscriptstyle T}$	-1,753	-0,12	2,2888	2,4255	2,5102	2,532	2,552	2,564
δ	CSR	0	0,238	1,0608	1,1976	1,2825	1,3039	1,3236	1,3358

 δ_{CSR} = Lendutan akibat pengaruh rangkak susut, dan relaksasi baja

= δ $_{\rm bag.3} + \delta$ $_{\rm bag.4} +$ δ $_{\rm bag.5} +$ δ $_{\rm bag.6} +$ δ $_{\rm bag.8} +$ δ $_{\rm bag.9}$

Tabel 8. Kehilangan prategang pada penampang 2

	aber of ixemiangan pracegang paca penampang 2										
No	Umur	f(ti)	$f_{cgs}(ti)$	Δf_{pE} kg/cm ²	Δf_{pF}	Δf_{pA}	Δf_{pR}	Δf_{pC}	Δf_{pS}	Δf_T kg/cm ²	
	beton	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	$\frac{\Delta f_{pA}}{\mathrm{Kg/cm}^2}$	kg/cm ²	Δf_{pC} kg/cm ²	kg/cm ²	kg/cm ²	
1	30 hr	13034		0	712,838	74,4	409,765	0	0	1197	
2	60 hr	11836,9	83,917	0	712,838	74,4	465,477	309,495	159,7	1721,9	
3	90 hr	11312,0	51,749	0	712,838	74,4	490,381	354,597	253,25	1885,4	
4	1 th	11148,5	50,106	0	712,838	74,4	568,519	451,522	488,058	2295,3	
5	5 th	10738,6	45,986	0	712,838	74,4	636,679	503,331	584,22	2511,4	
6	10 th	10522,5	43,814	0	712,838	74,4	661,359	515,671	597,837	2562,1	
7	25 th	10471,8	43,305	0	712,838	74,4	692,566	525,567	606,205	2611,5	
8	50 th	10422,4	42,807	0	712,838	74,4	715,136	530,572	609,027	2641,9	

Tabel 9. Hasil analisa lendutan untuk variasi umur beton pada penampang 2

								0
Umur	30 hari	60 hari	90 hari	1 tahun	5 tahun	10tahun	25tahun	50tahun
Bagian								
1	-3,69	-3,69	-3,69	-3,69	-3,69	-3,69	-3,69	-3,69
2	2,338	2,338	2,338	2,338	2,338	2,338	2,338	2,338
3	-	-0,5525	-0,5525	-0,5525	-0,5525	-0,5525	-0,5525	-0,5525
4	-	-	-0,744	-0,982	-1,116	-1,15	-1,175	-1,186

Tabel 9. Hasil analisa lendutan untuk variasi umur beton pada penampang 2 (Lanjutan)

Umur	30 hari	60 hari	90 hari	1 tahun	5 tahun	10tahun	25tahun	50tahun
Bagian								
5	-	0,706	0,706	0,706	0,706	0,706	0,706	0,706
6	-	-	0,526	0,749	0,879	0,911	0,938	0,951
7	-	1,03	1,03	1,03	1,03	1,03	1,03	1,03
8	-	=	0,312	0,444	0,521	0,540	0,556	0,564
9	-	=	0,616	0,616	0,616	0,616	0,616	0,616
10	-	=	1,337	1,337	1,337	1,337	1,337	1,337
$\delta_{\scriptscriptstyle T}$	-1,349	-0,165	1,881	1,999	2,071	2,089	2,106	2,116
$\delta_{\it CSR}$	0	0,1535	0,8633	0,9806	1,0529	1,0711	1,0881	1,0981

Tabel 10. Kehilangan prategang pada penampang 3

No	Umur	f(ti)	$f_{cgs}\left(ti\right)$	Δf_{pE}	Δf_{pF}	Δf_{pA}	Δf_{pR}	Δf_{pC}	Δf_{pS}	Δf_T
	beton	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²
1	30 hr	13034		0	747,988	74,4	409,765	0	0	1232,15
2	60 hr	11801,84	106,12	0	747,988	74,4	464,566	391,383	159,7	1838,04
3	90 hr	11195,96	64,893	0	747,988	74,4	487,849	447,939	253,25	2011,43
4	1 th	11022,57	62,695	0	747,988	74,4	560,066	569,217	488,05	2439,73
5	5 th	10594,27	57,267	0	747,988	74,4	620,93	633,736	584,22	2661,27
6	10 th	10372,72	54,459	0	747,988	74,4	642,466	649,075	597,83	2711,77
7	25 th	10322,23	53,819	0	747,988	74,4	669,559	661,373	606,20	2759,53
8	50 th	10274,47	53,214	0	747,988	74,4	689,078	667,595	609,02	2788,09

Tabel 11. Hasil analisa lendutan untuk variasi umur beton nada nenamnang 3

Tabel 11. Hash aliansa lehuutan untuk variasi untur beton pada penampang 5											
Umur	30 hari	60 hari	90 hari	1 tahun	5 tahun	10tahun	25tahun	50tahun			
Bagian											
1	-4,88	-4,88	-4,88	-4,88	-4,88	-4,88	-4,88	-4,88			
2	2,515	2,515	2,515	2,515	2,515	2,515	2,515	2,515			
3	-	-0,731	-0,731	-0,731	-0,731	-0,731	-0,731	-0,731			
4	-	-	-1,112	-1,469	-1,673	-1,724	-1,762	-1,780			
5	-	0,759	0,759	0,759	0,759	0,759	0,759	0,759			
6	-	-	0,66	0,94	1,103	1,144	1,177	1,194			
7	-	1,108	1,108	1,108	1,108	1,108	1,108	1,108			
8	-	-	0,391	0,557	0,654	0,678	0,698	0,708			
9	-	-	0,6374	0,6374	0,6374	0,6374	0,6374	0,6374			
10	-	-	1,678	1,678	1,678	1,678	1,678	1,678			
$\delta_{\scriptscriptstyle T}$	-2,365	-1,229	1,025	1,114	1,171	1,185	1,199	1,208			
$\delta_{\it CSR}$	0	0,028	0,6043	0,6934	0,7501	0,764	0,7782	0,7871			

Tabel 12. Kehilangan prategang pada penampang 4

	~		g	Paga I	o manipa	 8 -				
No	Umur beton	f(ti) kg/cm ²	$f_{cgs}(ti)$ kg/cm ²	Δf_{pE}	Δf_{pF}	Δf_{pA}	Δf_{pR}	Δf_{pC}	Δf_{pS}	Δf_T
	octon	Kg/CIII	Kg/CIII	kg/cm ²						
1	30 hr	13034		0	841,70	74,4	409,765	0	0	1325,87
2	60 hr	11708,13	128,78	0	841,70	74,4	462,16	474,95	159,7	2012,92
3	90 hr	11021,07	75,837	0	841,70	74,4	483,054	541,05	253,25	2193,46

Tabel 12. Kehilangan prategang pada penampang 4 (Lanjutan)

		9. I9	91		0 \	J /				
No		f(ti)	$f_{cgs}(ti)$	Δf_{pE_2}	Δf_{pF}	Δf_{pA}	Δf_{pR}	Δf_{pC_2}	Δf_{pS}	Δf_{T}
	beton	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²				
4	1 th	10840,53	73,007	0	841,70	74,4	546,918	682,27	488,05	2633,36
5	5 th	10400,64	66,112	0	841,70	74,4	598,269	756,76	584,22	2855,36
6	10 th	10178,64	62,633	0	841,70	74,4	615,854	774,40	597,83	2904,2
7	25 th	10129,80	61,867	0	841,70	74,4	637,814	788,54	606,20	2948,66
8	50 th	10085,33	61,171	0	841,70	74,4	653,547	795,69	609,02	2974,37

Tabel 13. Hasil analisa lendutan untuk variasi umur beton pada penampang 4

Tabel 13: Hash anansa lendatan antak tariasi amai beton pada penampang t										
Umur	30 hari	60 hari	90 hari	1 tahun	5 tahun	10tahun	25tahun	50tahun		
Bagian										
1	-5,59	-5,59	-5,59	-5,59	-5,59	-5,59	-5,59	-5,59		
2	2,338	2,338	2,338	2,338	2,338	2,338	2,338	2,338		
3	-	-0,6942	-0,6942	-0,6942	-0,6942	-0,6942	-0,6942	-0,6942		
4	-	-	-1,431	-1,875	-2,131	-2,195	-2,245	-2,269		
5	-	0,706	0,706	0,706	0,706	0,706	0,706	0,706		
6	-	-	0,679	0,967	1,135	1,177	1,211	1,228		
7	-	1,03	1,03	1,03	1,03	1,03	1,03	1,03		
8	-	-	0,4023	0,573	0,672	0,697	0,717	0,728		
9	-	-	0,604	0,604	0,604	0,604	0,604	0,604		
10	-	-	1,727	1,727	1,727	1,727	1,727	1,727		
$\delta_{\scriptscriptstyle T}$	-3,249	-2,207	-0,226	-0,212	-0,2	-0,198	-0,194	-0,19		
$\delta_{\it CSR}$	0	0,0118	0,2663	0,2803	0,2923	0,2942	0,2984	0,3021		

Tabel 14. Kehilangan prategang pada penampang 5

			18	ST WOOD BULLE	, param perre	<u> </u>				
No	Umur beton	f(ti)	$f_{cgs}(ti)$	Δf_{pE}	Δf_{pF}	$\Delta f_{\scriptscriptstyle pA}$	Δf_{pR}	Δf_{pC}	Δf_{pS}	Δf_T
	octon	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²				
1	30 hr	13034		0	823,576	74,4	409,76	0	0	1307,74
2	60 hr	11726,25	167,26	0	823,576	74,4	462,62	576,01	147,146	2083,76
3	90 hr	10950,23	97,912	0	823,576	74,4	482,56	655,62	233,402	2269,57
4	1 th	10764,42	94,147	0	823,576	74,4	543,01	825,58	449,906	2716,48
5	5 th	10317,51	85,093	0	823,576	74,4	590,37	915,26	538,574	2942,18
6	10 th	10091,81	80,52	0	823,576	74,4	606,23	936,22	552,305	2992,74
7	25 th	10041,25	79,495	0	823,576	74,4	625,89	953,12	558,844	3035,83
8	50 th	9998,162	78,622	0	823,576	74,4	639,92	962,31	561,446	3061,66

Tabel 15. Hasil analisa lendutan untuk variasi umur beton pada penampang 5

<u></u>	200022 0022002	2000 20220000		variasi amai secon pada penampang e						
	30 hari	60 hari	90 hari	1 tahun	5 tahun	10tahun	25tahun	50tahun		
1	-7,571	-7,571	-7,571	-7,571	-7,571	-7,571	-7,571	-7,571		
2	3,164	3,164	3,164	3,164	3,164	3,164	3,164	3,164		
3	-	-0,65	-0,65	-0,65	-0,65	-0,65	-0,65	-0,65		
4	-	-	-1,712	-2,215	-2,503	-2,575	-2,632	-2,662		
5	-	0,892	0,892	0,892	0,892	0,892	0,892	0,892		
6	-	-	0,825	1,176	1,380	1,431	1,472	1,494		
7	-	1,395	1,395	1,395	1,395	1,395	1,395	1,395		
8	-	-	0,489	0,697	0,818	0,848	0,873	0,886		
9	-	-	0,7076	0,7076	0,7076	0,7076	0,7076	0,7076		
10	-	-	2,249	2,249	2,249	2,249	2,249	2,249		
$\delta_{\scriptscriptstyle T}$	-4,407	-2,77	-0,210	-0,154	-0,118	-0,109	-0,101	-0,094		
$\delta_{\it CSR}$	0	0,242	0,5526	0,6083	0,6452	0,6536	0,6622	0,6686		

Gambar 7. Hubungan antara kehilangan prategang dengan umur beton

Gambar 8. Hubungan antara lendutan total dengan umur beton

Gambar 9. Hubungan antara lendutan akibat pengaruh rangkak, susut dan relaksasi baja dengan umur beton

Pembahasan

Akibat gaya susut pelat akan memberikan lendutan pada balok komposit. Besarnya gaya susut pelat selain dipengaruhi faktor-faktor kelembaban dan ketebalan plat, juga tergantung dari

interval waktu antara pemberian gaya prategang dan saat pengecoran pelat dilakukan.

Rangkak yang terjadi pada beton akan memberikan tambahan lendutan yang terjadi, baik penambahan lendutan keatas (camber) ataupun lendutan yang diakibatkan oleh beban gravitasi, besarnya pengaruh rangkak ini tergantung dari besarnya koefisien rangkak.

Pertambahan lendutan yang terjadi dari interval waktu ke interval waktu lainnya dari Gambar 8 dan Gambar 9, terlihat bahwa pertambahan lendutan total sesuai dengan bertambahnya umur penampang balok. Besarnya lendutan akibat rangkak, susut dan relaksasi baja separoh lebih dari lendutan totalnya (untuk penampang 1,2 dan 3) sehingga dapat dikatakan bahwa pertambahan lendutan akibat rangkak, susut, dan relaksasi baja harus diperhatikan.

Dari Gambar 8 diatas terlihat pengaruh letak *flens* penampang terhadap lendutan. Penampang 1 dengan letak *flens* dibawah menghasilkan lendutan yang lebih besar dari Penampang 5 dengan letak *flens* diatas. Begitu juga dengan Penampang 4 dan Penampang 2.

SIMPULAN

Dari hasil analisis dan pembahasan yang telah dilakukan dapat diambil kesimpulan sebagai berikut:

- Rangkak, susut dan relaksasi baja prategang akan memberikan tambahan lendutan yang tarjadi akibat lendutan seketika sejalan dengan bertambahnya waktu serta akan menyebabkan kehilangan gaya prategang.
- Pertambahan lendutan akibat rangkak dan susut ini akan tergantung dari besarnya koefisien rangkak dan regangan susut yang terjadi. Sedangkan besarnya koefisien rangkak dan regangan susut sangat dipengaruhi oleh kelembaban relatif, perawatan beton, umur beton pada saat dibebani, rasio antara volume-keliling penampang, slump beton, kadar agregat dan kadar udara.
- 3. Akibat pengecoran pelat setelah balok prategang mencapai perkerasan awal, gaya susut pelat yang terjadi akan memberikan tegangan-tegangan pada

- penampang komposit dan tegangan ini akan menimbulkan lendutan.
- 4. Letak flens pada penampang sangat mempengaruhi besarnya lendutan. Penampang dengan letak flens dibawah akan menghasilkan lendutan yang lebih besar dari penampang dengan letak flens diatas.

DAFTAR PUSTAKA

- Gilbert, R.I. and Mickleborough, N.C. 1990. *Design of Prestressed Concrete*, Unwin Hyaman, Sydney.
- Lin, T.Y. and Burns, N.H. 1998. *Desain Struktur Beton Prategang Jilid 1*, Penerbit Interaksara, Batam.
- Lin, T.Y. and Burns, N.H. 1998. *Desain Struktur Beton Prategang Jilid* 2, Penerbit Interaksa, Batam.
- Naaman, A.E. 1992. *Prestressed Concrete Analysis and Design*, McGraw-Hill Book Company, New York.
- Nawy, E.G. 1996. *Prestressed Concrete A Fundamental Approach*, Prentice-Hell inc, New Jersey.
- Nawy, E.G. 1998. *Beton Bertulang suatu Pendekatan Dasar*, Penerbit PT Refika Aditama, Bandung.
- Raju, N.K. 1993. *Beton Prategang*, Penerbit Erlangga, Jakarta.
- Sabnis, G.M. 1979. *Handbook of Composite Construction Engineering*, Van Nostrand Reinhold Company, New york.
- Wang, C.K. and Salmon, C.G. 1992. Desain Beton Bertulang Jilid 1, Penerbit Erlangga, Jakarta.
- Wang, C.K. and Salmon, C.G. 1992.

 Desain Beton Bertulang Jilid 2,
 Penerbit Erlangga, Jakarta.