

WHAT WE CLAIM IS:

1. A yellow dye-forming coupler represented by formula (I):

5

formula (I)



wherein Q represents a group of nonmetallic atoms  
that form a 5- to 7-membered ring in combination with the  
10 -N=C-N(R<sub>1</sub>)-; R<sub>1</sub> and R<sub>2</sub> each independently represents a  
substituent; R<sub>4</sub> represents an alkyl group; m represents an  
integer of 0 to 4; when m is 2 or more, the multiple R<sub>2</sub>s  
may be the same or different, and the R<sub>2</sub>s may bond each  
other to form a ring; and X represents a hydrogen atom, or  
15 a group capable of being split-off upon a coupling  
reaction with an oxidized product of a developing agent;  
and when R<sub>4</sub> represents a primary alkyl group, R<sub>1</sub>  
represents -(CH<sub>2</sub>)<sub>3</sub>O-R<sub>101</sub> in which R<sub>101</sub> is an alkyl group  
having 4 to 8 carbon atoms.

2. The yellow dye-forming coupler as claimed in  
claim 1, wherein the yellow dye-forming coupler  
represented by formula (I) is a yellow dye-forming coupler  
5 represented by formula (IA):

formula (IA)



wherein Q represents a group of nonmetallic atoms  
10 that form a 5- to 7-membered ring in combination with the  
-N=C-N(R<sub>1</sub>)-; R<sub>1</sub> and R<sub>2</sub> each independently represents a  
substituent; R<sub>41</sub> represents a secondary or tertiary alkyl  
group; m represents an integer of 0 to 4; when m is 2 or  
more, the multiple R<sub>2</sub>s may be the same or different, and  
15 the R<sub>2</sub>s may bond each other to form a ring; and X  
represents a hydrogen atom, or a group capable of being  
split-off upon a coupling reaction with an oxidized  
product of a developing agent.

3. The yellow dye-forming coupler as claimed in  
claim 1, wherein the yellow dye-forming coupler  
represented by formula (I) is a yellow dye-forming coupler  
5 represented by formula (IB):

formula (IB)



wherein Q<sub>1</sub> represents a group of nonmetallic atoms  
10 that form a 5- to 7-membered ring in combination with the  
-N=C-N((CH<sub>2</sub>)<sub>3</sub>O-R<sub>101</sub>)-; R<sub>101</sub> represents an alkyl group  
having 4 to 8 carbon atoms; R<sub>2</sub> represents a substituent;  
R<sub>42</sub> represents a primary alkyl group; m represents an  
integer of 0 to 4; when m is 2 or more, the multiple R<sub>2</sub>s  
15 may be the same or different, and the R<sub>2</sub>s may bond each  
other to form a ring; and X represents a hydrogen atom, or  
a group capable of being split-off upon a coupling  
reaction with an oxidized product of a developing agent.

4. A silver halide color photographic light-sensitive material comprising at least one yellow dye-forming coupler represented by formula (I) in at least one  
5 layer provided on a support:

formula (I)



wherein  $Q$  represents a group of nonmetallic atoms  
10 that form a 5- to 7-membered ring in combination with the  
 $-N=C-N(R_1)-$ ;  $R_1$  and  $R_2$  each independently represents a  
substituent;  $R_4$  represents an alkyl group;  $m$  represents an  
integer of 0 to 4; when  $m$  is 2 or more, the multiple  $R_2$ s  
may be the same or different, and the  $R_2$ s may bond each  
15 other to form a ring; and  $X$  represents a hydrogen atom, or  
a group capable of being split-off upon a coupling  
reaction with an oxidized product of a developing agent;  
and when  $R_4$  represents a primary alkyl group,  $R_1$   
represents  $-(CH_2)_3O-R_{101}$  in which  $R_{101}$  is an alkyl group

having 4 to 8 carbon atoms.

5. The silver halide color photographic light-sensitive material as claimed in claim 4, wherein the  
5 yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IA):

formula (IA)



10 wherein Q represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the -N=C-N(R<sub>1</sub>)-; R<sub>1</sub> and R<sub>2</sub> each independently represents a substituent; R<sub>41</sub> represents a secondary or tertiary alkyl group; m represents an integer of 0 to 4; when m is 2 or  
15 more, the multiple R<sub>2</sub>s may be the same or different, and the R<sub>2</sub>s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

6. The silver halide color photographic light-sensitive material as claimed in claim 5, wherein Q in formula (IA) is a group represented by  $-C(-R_{11})=C(-R_{12})-$   
5  $SO_2-$  or  $-C(-R_{11})=C(-R_{12})-CO-$ , in which  $R_{11}$  and  $R_{12}$  are groups that bond with each other to form a 5- to 7-membered ring together with  $-C=C-$ , or they each independently represents a hydrogen atom or a substituent.

10 7. The silver halide color photographic light-sensitive material as claimed in claim 5, wherein the yellow dye-forming coupler represented by formula (IA) is a yellow dye-forming coupler represented by formula (IIA):

formula (IIA)



15

wherein  $R_1$  and  $R_2$  each independently represents a substituent;  $R_{41}$  represents a secondary or tertiary alkyl group;  $m$  represents an integer of 0 to 4; when  $m$  is 2 or

more, the multiple R<sub>2</sub>s may be the same or different, and the R<sub>2</sub>s may bond each other to form a ring; R<sub>3</sub> represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R<sub>3</sub>s may be the same or  
5 different, and the R<sub>3</sub>s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

10        8. The silver halide color photographic light-sensitive material as claimed in claim 4, wherein the yellow dye-forming coupler represented by formula (I) is a yellow dye-forming coupler represented by formula (IB):

formula (IB)



15

wherein Q<sub>1</sub> represents a group of nonmetallic atoms that form a 5- to 7-membered ring in combination with the

$-N=C-N((CH_2)_3O-R_{101})-$ ;  $R_{101}$  represents an alkyl group having 4 to 8 carbon atoms;  $R_2$  represents a substituent;  $R_{42}$  represents a primary alkyl group;  $m$  represents an integer of 0 to 4; when  $m$  is 2 or more, the multiple  $R_2$ s 5 may be the same or different, and the  $R_2$ s may bond each other to form a ring; and  $X$  represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

10       9. The silver halide color photographic light-sensitive material as claimed in claim 8, wherein  $Q_1$  in formula (IB) is a group represented by  $-C(-R_{11})=C(-R_{12})-SO_2-$  or  $-C(-R_{11})=C(-R_{12})-CO-$ , in which  $R_{11}$  and  $R_{12}$  are groups that bond with each other to form a 5- to 7-15 membered ring together with  $-C=C-$ , or they each independently represent a hydrogen atom or a substituent.

10       10. The silver halide color photographic light-sensitive material as claimed in claim 8, wherein the 20 yellow dye-forming coupler represented by formula (IB) is a yellow dye-forming coupler represented by formula (IIB):

formula (IIB)



wherein R<sub>101</sub> represents an alkyl group having 4 to 8 carbon atoms; R<sub>2</sub> represents a substituent; R<sub>42</sub> represents a primary alkyl group; m represents an integer of 0 to 4; when m is 2 or more, the multiple R<sub>2</sub>s may be the same or different, and the R<sub>2</sub>s may bond each other to form a ring; R<sub>3</sub> represents a substituent; n represents an integer of 0 to 4; when n is 2 or more, the multiple R<sub>3</sub>s may be the same or different, and the R<sub>3</sub>s may bond each other to form a ring; and X represents a hydrogen atom, or a group capable of being split-off upon a coupling reaction with an oxidized product of a developing agent.

15        11. The silver halide color photographic light-sensitive material as claimed in claim 8, wherein R<sub>2</sub> in formula (IB) represents a t-butyl group.

12. The silver halide color photographic light-

sensitive material as claimed in claim 4, wherein the amount of the yellow dye-forming coupler is  $1 \times 10^{-3}$  mole to 1 mole per mol of silver halide.

5        13. The silver halide color photographic light-sensitive material as claimed in claim 4, wherein an emulsion of the layer containing the yellow dye-forming coupler represented by formula (I) is a silver halide emulsion having silver chloride content of 90 mol% or more.

10

14. The silver halide color photographic light-sensitive material as claimed in claim 13, wherein the silver halide emulsion is doped with an iridium complex.

15

15. The silver halide color photographic light-sensitive material as claimed in claim 4, wherein a hydrophilic colloid layer is provided between the support and a color-forming silver halide emulsion layer nearest to the support.