Claims

1. Process for the preparation of substituted pyridine derivatives of formula (I)

$$R^{2}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}

5 wherein

 R^1 , R^2 independently the same or different are H; C_{1-20} -alkyl (branched or straight chain or cyclic); C_{8-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{8-20} -aryloxy, amino; F; Cl; Br, I;

 R^3 = CN, NO₂, C₁₋₂₀-alkyl (branched or straight chain or cyclic); C₈₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₈₋₂₀-aryloxy, amino; F; Cl; Br; I;

15

10

 $R^4 = E_n R^6_m$ in which

if n = m = 1 than E = S and R^6 = C_{1-20} -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F, Cl, Br, I;

if n = 0 and m = 1 than R⁶ = H, C₁₋₂₀-alkyl (branched or straight chain or cyclic);

C₈₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₆₋₂₀-aryloxy, amino; F, Cl, Br, I;

 $E^1 = O, N$

25

 $R^5 = H$

n=1 for $E^1=0$ und 2 for $E^1=N$

30 comprising reaction of a α-β-unsaturated carbonyl compound of formula (II)

$$R^3$$
-C(O)-C(R^1)=C(R^2)-G (II)

wherein

R¹, R² and R³ have the above defined meaning;

5 $G = -NH_2$ or a leaving group

with a Wittig reagent or Horner-Wadsworth-Emmons reagent of formula (III)

$$(P) \stackrel{\stackrel{\stackrel{}{=}}_{n}R^{\delta}_{m}}{C-Y} \qquad \qquad (IIIa1)$$

$$\stackrel{\stackrel{\stackrel{}{=}}_{n}R^{\delta}_{m}}{R^{i}-O} \stackrel{\stackrel{\stackrel{}{=}}_{n}R^{\delta}_{m}}{C-Y} \qquad (IIIa2)$$

$$\stackrel{\stackrel{\stackrel{}{=}}_{n}R^{\delta}_{m}}{R^{i}-O}$$

wherein

10

15

25

(P)= P(Ar)₃, with Ar = substituted or preferably unsubstituted C_{6-20} aryl, R' = is equal or different independently means C_{1-20} alkyl, branched or straight or cyclic, or $C_{8^{-}20}$ aryl;

 $E_0R_m^6 = in which$

if n = m = 1 than E = S and R⁶ = C₁₋₂₀-alkyl (branched or straight chain or cyclic);

C₈₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₈₋₂₀-aryloxy, amino; F; Cl; Br, I;

if n = 0 and m = 1 than R⁶ = H, C₁₋₂₀-alkyl (branched or straight chain or cyclic);

C₆₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₈₋₂₀-aryloxy, amino; F; Cl; Br; I;

Y = - CN; -C(O)NH₂; -C(O)OR⁷ with R⁷ = as defined for R¹ above, except H

in the presence of a base and if

- i) Y = -CN or C(O)NH₂, G = a leaving group and the base is an alcoholate,
 subsequent acidic catalyzed, with zeolithes catalyzed or basic catalyzed cyclization;
 - ii) $Y = -C(O)-OR^7$, G = a leaving group and the base is an alcoholate, subsequent basic cyclization in the presence of ammonia.

- 2. Process according to claim 1, wherein $R^1 = R^2 = H$ and $R^3 =$ electron withdrawing group.
- 5 3. Process according to claims 1 to 2, wherein $R^1 = R^2 = H$ and R^3 is a partially or fully fluorinated C_{1-8} -alkylgroup.
 - 4. Process according to claims 1 to 3, wherein $R^3 = -CF_3$.
- 10 5. Phosporus compounds of formula Illa2

$$\begin{array}{ccc} O & E_n R^6_m \\ II & I & \\ R' - O & / & \\ R' - O & \\ \end{array}$$
(IIIa2)

in which

R' = is equal or different independently means C_{1-20} alkyl, branched or straight or cyclic, or C_{8-20} aryl

 $E_0R^6_m = in which$

- if n = m = 1 than E = S and $R^6 = C_{1-20}$ -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{8-20} -aryloxy, amino; F; Cl; Br, I;
- Y = CN; -C(O)NH₂; -C(O)OR⁷ with R⁷ = C₁₋₂₀-alkyl (branched or straight chain or cyclic);

 Conversely which each of those may be substituted with one or more of the follow:

 C_{8-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{8-20} -aryloxy, amino; F; Cl; Br; I.

6. Compounds of the formula IV-1 to IV-4

$$E_{n}R_{m} \stackrel{?}{\longrightarrow} Y OR'$$

$$R^{3} \qquad G$$

$$IV-1 \qquad IV-2$$

$$E_{n}R_{m} \stackrel{6}{\longrightarrow} Y OR'$$

$$R^{3} \qquad G$$

$$IV-3 \qquad IV-4$$

in which the variables have the following meanings:

 $E_nR^6_m = in which$

5

25

if n = m = 1 than E = S and R^6 = C_{1-20} -alkyl (branched or straight chain or cyclic); C_{8-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{8-20} -aryloxy, amino; F; Cl; Br, I; if n = 0 and m = 1 than R^6 = H, C_{1-20} -alkyl (branched or straight chain or cyclic); C_{8-20} -aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{8-20} -aryloxy, amino; F; Cl; Br, I;

- 15 Y = -CN; $-C(O)NH_{2}$; $-C(O)OR^7$ with $R^7 = C_{1-20}$ -alkyl (branched or straight chain or cyclic); C_{6-20} -aryl which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C_{1-20} -alkoxy, C_{6-20} -aryloxy, amino; F, Cl, Br, I.
- 20 R' is equal or different independently means C₁₋₂₀ alkyl, branched or straight or cyclic

 R^3 = CN, NO₂, C₁₋₂₀-alkyl (branched or straight chain or cyclic); C₈₋₂₀-aryl - which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₈₋₂₀-aryloxy, amino; F; Cl; Br; I;

 $G = -NH_2$ or a leaving group.

WO 2005/063780 PCT/EP2004/014590

21

7. Compounds as claimed in claims 5 or 6 as intermediates in the synthesis of pyridine derivatives.