2024 / 25

School of Science and Computing

+353 (0)51 302037

☑ Eleanor.Reade@setu.ie

www.wit.ie/schools/science_computing

Module Descriptor

3D Modelling Fundamentals (Computing and Mathematics)

3D Modelling Fundamentals (A13461)

Short Title: 3D Modelling Fundamentals

Department: Computing and Mathematics

Credits: 5 Level: Introductory

Description of Module / Aims

This module serves as an introduction to 3D modelling and comprises an emphasis on the modelling pipeline, from concept to model creation. Students will acquire a knowledge of the craft of 3D modelling and will gain experience in producing a number of 3D models using a number of essential tools within an industry-led 3D-creation toolset.

Programmes

	stage/semester/status
BSc (Hons) in Creative Computing (WD_KCRCO_B) BSc in Multimedia Applications Development (WD_KMULA_D)	$rac{2 \; / \; 4 \; / \; \mathrm{M}}{2 \; / \; 4 \; / \; \mathrm{M}}$

Indicative Content

- Introduction to the 3D production pipeline, from concept to mesh creation
- Components of an industry-standard 3D modelling platform
- Polygon, subdivision, and NURB modelling
- Basic camera and viewing techniques
- Introductory shading and rendering

Learning Outcomes

On successful completion of this module, a student will be able to:

- 1. Describe the fundamentals of the 3D modelling workflow, from concept to a shaded mesh.
- 2. Identify and effectively navigate the main components and features of an industry standard 3D modelling production platform.
- 3. Compare various modelling approaches, i.e. polygon, sub-division and NURB-based modelling.
- 4. Demonstrate the use of appropriate tools for the creation and manipulation of 3D objects and object components.

Learning and Teaching Methods

- Interactive and open-forum lectures.
- Class discussions and presentations.
- Problem-based learning activities.
- Self-directed learning.

Learning Modes

Learning Type	F/T Hours	P/T Hours
Lecture	12	
Practical	36	
Independent Learning	87	

Assessment Methods

	Weighting	Outcomes Assessed
Continuous Assessment	100%	
Assignment	30%	1
Project	70%	2,3,4
v		, ,

Assessment Criteria

- <40%: Inability to identify and navigate the main components of a 3D production software platform. Inability to critically evaluate techniques used in the creation and exporting of 3D computer graphics models.
- 40%–49%: Ability to identify and navigate the main components of a 3D production software platform. Ability to describe key concepts of the 3D modelling pipeline.
- 50% 59%: Ability to discuss and critically evaluate key concepts of the 3D modelling pipeline and techniques.
- 60%-69%: Be able to solve problems within the framework of the 3D modelling pipeline by experimenting with appropriate skills and tools of the 3D production software.
- 70%–100%: All the above to an excellent level. Be able to analyse and design solutions to a high standard for a range of problems through the use and modification of appropriate skills and tools of the 3D production software.

Supplementary Material(s)

• Palamar, T. Mastering Autodesk Maya 2016. New York: Sybex, 2015.

Requested Resources

• Computer Lab: BYOD Lab