Exercices « Formules trigonométriques »

Exercice 1 : Formules trigonométriques (I)

Calculer les valeurs exactes des quantités suivantes :

- 1. $\cos(\pi/12)$
- 2. $\sin(11\pi/12)$
- 3. $\cos(\pi/8)$
- 4. $\sin(7\pi/8)$

Exercice 2: Formules trigonométriques (II)

Résoudre dans \mathbb{R} les (in)équations suivantes

- 1. $\cos(x) + \sin(x) \ge 1$
- 2. $\cos(x) + \sqrt{3}\sin(x) > 1$
- 3. $\cos(2x) + 2\sin(x) = 0$
- 4. $\sin(2x) 2\sin(x) = 0$
- 5. cos(x) + cos(2x) + cos(3x) = 0
- 6. cos(3x) sin(2x) = 0 [difficile]

Exercice 3: Tangente

Donner le nombre de solutions dans $[0, \pi]$ de l'équation

$$\tan(x) + \tan(2x) + \tan(3x) + \tan(4x) = 0$$

Exercice 4 : Fonctions trigonométriques réciproques

Résoudre dans \mathbb{R} (sauf mention explicite du contraire) les équations trigonométriques suivantes :

- 1. $10\cos(8\theta) = -5$
- 2. $2\sin(\theta/4) = \sqrt{3}$
- 3. $2\sin(\theta/4) = \sqrt{3} \text{ dans } [0, 16\pi]$
- 4. $10 + 7\tan(4\theta) = 3 \text{ dans } [-\pi, 0].$
- 5. $3 4\sin(4\theta) = 5 \text{ dans } [-3\pi/2, -\pi/2]$
- 6. $2\cos^2(x) 3\cos(x) + 1 = 0$ dans $[0, 2\pi]$

Exercice 5: Inéquations

Résoudre dans \mathbb{R} (sauf mention explicite du contraire) les équations suivantes :

- 1. $|\cos(x)| \ge |\sin(x)|$
- 2. $\ln(\cos^2(x)) = 0$
- 3. $2\ln(\cos(x)) = 0$
- 4. $\sqrt{1-\cos^2(x)} = \frac{\sqrt{3}}{2}$

5.
$$e^{\cos(x)} \le 1$$

Exercice 6: arcsin

On cherche à calculer $X = \arcsin\left(-\sqrt{\frac{2-\sqrt{2}}{4}}\right)$.

1. Montrer que pour tout $x \in \mathbb{R}$

$$\sin^2(x) = \frac{1 - \cos(2x)}{2}$$

- 2. Appliquer la formule précédente à $x = \frac{\pi}{8}$.
- 3. En déduire la valeur de X.
- 4. Vérifier que vous n'avez pas fait de fautes, par exemple avec une calculatrice.

Exercice 7: Produit de cosinus

Soit $a \in (0, \pi)$. Calculer pour tout $n \in \mathbb{N}^*$

$$\prod_{k=1}^{n} \cos\left(\frac{a}{2^k}\right)$$

On pourra utiliser $\sin(2x) = 2\cos(x)\sin(x)$. En déduire

$$\lim_{n \to \infty} \sum_{k=1}^{n} \ln \left(\cos \left(\frac{a}{2^k} \right) \right)$$