RELAZIONE DI LABORATORIO

Misura Sperimentale dell'Accelerazione di Gravità Sfruttando il Pendolo di Kater

Eugenio Dormicchi^{1, 2}, Giovanni Oliveri¹, Mattia Sotgia¹

Gruppo C03, Esperienza di laboratorio n. 6

Presa dati– 24 Marzo 2021, 15:00– 18:00; Analisi dati– <end-date here>

Obiettivo– Metodi– Risultati– Conclusione–

1. Obiettivo

2. Strumentazione

Abbiamo a disposizione i seguenti strumenti:

Calibro ventesimale, di portata 150 mm e sensibilità uguale all'accuratezza dello strumento di 50 μ m;

Pendolo di Kater (si veda in seguto descrizione dettagliata dell'apparato);

Cronometro elettronico collegato ad una fotocellula in grado di misurare una singola oscillazione del pendolo, di portata potenzialmente infinita (molto maggiore comunque dei periodi misurati), e sensibilità 10^{-7} s, che assumiamo anche come accuratezza:

Il pendolo di Kater è costituito da due masse M_a e M_b e poste su un'asta di acciaio inox., una fissa (M_a) e una libera di muoversi, vincolata da una vite che la può bloccare all'asta in ben definite posizioni, che sono indicate da N=25 fori equidistanti 25 mm tra loro, eseguiti con strumentazione abbastanza precisa da poter trascurare l'incertezza associata a questa distanza. il pendolo è poi poggiato su un sostegno tramite due perni che si incastrano perfettamente in una sede su una piastra posta orizzontalmente munita di livella a bolla, mantenuta in perfetto equilibrio.

3. Metodi

Tutte le misure sono riportate nelle unità del Sistema Internazionale (SI). Si assume come nota e costante l'accelerazione di gravità $g_t = (9.8056 \pm 0.0001 \text{ stat}) \text{ m/s}^2$.

Si fa spesso riferimento anche alla regola del 3σ , con la quale si vuole intendere la volontà di trasformare un errore di tipo massimo in errore statistico.

I valori riportati sono stati approssimati tenendo conto di alcune convenzioni prese. Si approssima l'errore a una cifra significativa se tale cifra è $\geqslant 3$, altrimenti se tale cifra è 1 o 2 allora si considerano due cifre significative. Considerando quindi le posizioni decimali significative dell'errore si approssima per eccesso il valore numerico della grandezza.

4. Risultati

5. Conclusione

- 5.1. Controlli
- 5.2. Possibili errori sistematici

A. Dati completi

Tabella A1.

		Misure di x_b c $x_b = \begin{bmatrix} x_b \end{bmatrix}$	calcolate (m) (e $L_{0, 1} + L_{0, 2} +$			ı
x_b	0.899	0.874	0.849	0.824	0.799	0.774
			T_1 presi 10 volu, $T_{1_{(n \times 6)}}$ (err			
$T_{1_{(1\times i)}}$	1.8433475	1.8241344	1.8010792	1.7842967	1.7646188	1.7469742
$T_{1_{(2\times i)}}$	1.8438321	1.8250191	1.8014794	1.7831672	1.7654354	1.7470051
$T_{1_{(3\times i)}}$	1.8436974	1.8243224	1.8021671	1.7844837	1.7653484	1.7474456
$T_{1_{(4\times i)}}$	1.8441519	1.8246017	1.8026592	1.7838530	1.7646805	1.7473891
$T_{1_{(5\times i)}}$	1.8438134	1.8238088	1.8024890	1.7842300	1.7648372	1.7476352
$T_{1_{(6\times i)}}$	1.8440039	1.8240085	1.8030486	1.7839835	1.7650848	1.7468288
$\Gamma_{1_{(7\times i)}}$	1.8434289	1.8238919	1.8031204	1.7841418	1.7649879	1.7475854
$T_{1_{(8\times i)}}$	1.8437870	1.8239454	1.8048308	1.7838625	1.7647196	1.7475552
$T_{1_{(9\times i)}}$	1.8432011	1.8243763	1.8040768	1.7843554	1.7644894	1.7489131
$r_{1_{(10\times i)}}$	1.8436028	1.8242312	1.8036150	1.7840838	1.7641298	1.7474017
			T_2 presi 10 volt $\dots, T_{2_{(n \times 6)}}$ (err			
$T_{2_{(1\times i)}}$	1.8162160	1.8069800	1.7978242	1.7904099	1.7837065	1.7793795
$r_{2(2\times i)}$	1.8162461	1.8074008	1.7982385	1.7919054	1.7839124	1.7790879
$2_{(3\times i)}$	1.8164208	1.8066094	1.7983828	1.7912305	1.7838475	1.7794034
$2_{(4\times i)}$	1.8162922	1.8068046	1.7984080	1.7911800	1.7840367	1.7794454
$7_{2_{(5\times i)}}$	1.8165907	1.8073671	1.7984383	1.7912973	1.7837570	1.7793693
$2_{(6\times i)}$	1.8161985	1.8071854	1.7986348	1.7911650	1.7840481	1.7794584
$2_{(7\times i)}$	1.8163087	1.8080697	1.7989685	1.7908471	1.7845240	1.7793767
$T_{2_{(8\times i)}}$	1.8162481	1.8068933	1.7985901	1.7912831	1.7840374	1.7792549
$T_{2_{(9\times i)}}$	1.8167033	1.8072342	1.7986484	1.7910748	1.7848659	1.7794661
$r_{2_{(10\times i)}}$	1.8170554	1.8069937	1.7986683	1.7911061	1.7842935	1.7793790