

Data Science & Visualization

Exploratory Data Analysis

Gabriela Molina León molina@uni-bremen.de

Institute for Information Management Bremen Information Management Group (AGIM)

Date	Lecture (10:00-11:30)	Practical (11:45-13:15)
08.04.24	Introduction to Data Science	Python Introduction
15.04.24	Basic Statistics & Supervised Learning	Practical Statistics + Supervised
22.04.24	Unsupervised Learning	Practical Unsupervised
29.04.24	Introduction to Data Visualization	Guest Lecture on NLP by Oxana Vitman
06.05.24	Exploratory Data Analysis	Data Science & Vis Presentation

19.07.24 Deadline Final Report

Date	Lecture (10:00-11:30)	Practical (11:45-13:15)
13.05.24	Visual Encoding	Exposé Workshop
20.05.24	Pentecost	Pentecost
27.05.24	Design Studies	Exposé Presentation
03.06.24	Interaction Techniques	Practical Interaction
10.06.24	Data Science & Journalism	Progress Presentation

19.07.24 Deadline Final Report

Date	Lecture (10:00-11:30)	Practical (11:45-13:15)
17.06.24	Machine Learning & Visualization	Project Workshop
24.06.24	Guest Lecture on Critical Data Studies by Paola Lopez	Observable (Plot)
01.07.24	Final Session: Recap	Final Project Presentation

19.07.24 Deadline Final Report

- Analyze the dataset to answer your questions using statistical methods and data visualization
- Build a machine learning model to make predictions of the future

Which is more random?

This is random

This is not random

Five-number summary

- Mean: The sum of the values divided by the count of non-missing observations
 - Median: The number exactly in the middle of an ordered list of numerical values
- Minimum value
- Maximum value
- First quartile (q1)
- Third quartile (q3)

Visualize your data

Anscombe's Quartet: Raw Data

All Sealines Qualitett Haw Buttu								
	1		2		3		4	
	X	Υ	Χ	Υ	Χ	Υ	Χ	Υ
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.8	16	0.8	16	0.8	16	0.8	316

What to look at first?

- Descriptive statistics
- Five-number summary (mean/median, min, max, q1, q3)
- Histograms
- Box plots
- Scatterplots

What to look at first?

- Make use of the Python libraries available
 - Numpy
 - Pandas
 - Matplotlib
 - ...

Munzner's framework

Spurious correlations

Correlation does not imply causation

- Analyze the dataset to answer your questions using statistical methods and data visualization
- Build a machine learning model to make predictions of the future

Supervised learning

- We have features (a X) and we have classes (a Y)
- The goal is prediction

Unsupervised learning

- We have features (a X)
- The goal is <u>exploration</u>

Ü

Supervised learning

Classification

Predict the category of the items (e.g., benign or malign)

Regression

Predict the value of the items (e.g., house price)

Clustering

Group items based on similarity (e.g., group customers based on what each one buys)

Dimensionality Reduction

Reduce the features of the items (e.g., biological features reduced to Body Mass Index)

Train test split

You choose what portions of the dataset to use as training and test datasets

Stratification

- Strata: non-overlapping groups
- Stratified sampling:
 Proportional random sample per strata

Population Sample

Train val test split

You choose what portions of the dataset to use as training and test datasets

K-Fold Cross validation

- Rather than one test-training split, use many
- Each split is then called fold

Shuffle -split cross validation

- Before each split, randomly shuffle the dataset
- ShuffleSplit

```
test_size=0.5
train_size=0.5
n splits=10
```


Evaluate your results Accuracy

Low accuracy in training and testing

Model complexity

High training accuracy, low test accuracy

Evaluate your results Confusion matrix

False Positive (Type I error)

The model predicts that a healthy patient has cancer

False Negative (Type II error)

The model predicts that an ill patient has no cancer

Evaluate your results Confusion matrix

Example: Detection of music genre

Source: https://github.com/jazdev/genreXpose

Evaluate your results **Precision and Recall**

$$Precision = \frac{TP}{TP + FP}$$

How many of our positive predictions are correct?

$$Recall = \frac{TP}{TP + FN}$$

How many correct predictions do we get among those we could have gotten?

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

How good is the model performance, even with imbalanced classes?

Evaluate your results Precision and Recall

Source: Yellowbrick

Evaluate your resultsReceiver Operating Characteristic curve

True positive rate (TPR) (== Recall)

False positive rate (FPR)

Source: Wikipedia

Evaluate your results Feature Importance & Rank2D

Source: Yellowbrick

Main textbooks

O'REILLY°

Andreas C. Müller & Sarah Guido

"Introduction to Machine Learning with Python" by Müller and Guido (e-book via SUUB)

"Visualization Analysis & Design" by Munzner (e-book via SUUB)

Data Science & Vis Presentation (20% of your grade)

- Every group member needs to present.
- If you can't make it in person, talk to your team and make it possible in hybrid format.

Data Science & Vis Presentation

Goal: Get a shared understanding of data science & vis

- Why is it relevant to data science & vis?
- Why is it relevant to you?
- You have 5 minutes (4 minutes if you are group of 2)

Clear Slides
Clear Delivery
Timing
Clarity of topic / focus
Command of content
Critical analysis
Conclusion
Questions and Answers
Overall Performance

Excellent	Very good	Good	Satisfactory	Weak	Very Weak	Unacceptable	N/A

Comments:

Grading Criteria

- Data Science & Vis paper presentation (20%)
- Exposé & exposé presentation (required)
- Interim presentation (required)
- Final presentation (30%)
- Final report (50%)

Credits (ECTS)

6 ECTS == 180 hours

- Lectures: 24h
- Tutorials: 24h
- Learning Python: 6h
- Data Science & Vis Paper Presentation: 12h
- Exposé: 18h
- Progress Presentation: 12h
- Final Presentation: 12h
- Final Report: 24h
- Final Project: 48h

Group Project

- As groups of three people, you will work on a project throughout the course
- Pick a dataset
- Pick a research question
- Pick a suitable method
- Find the best* analysis and visualization techniques for your dataset, question, and method
- Write a report on your findings and motivate your choices

Date	Lecture (10:00-11:30)	Practical (11:45-13:15)
08.04.24	Introduction to Data Science	Python Introduction
15.04.24	Basic Statistics & Supervised Learning	Practical Statistics + Supervised
22.04.24	Unsupervised Learning	Practical Unsupervised
29.04.24	Introduction to Data Visualization	Guest Lecture on NLP by Oxana Vitman
06.05.24	Exploratory Data Analysis	Data Science & Vis Presentation

19.07.24 Deadline Final Report

Date	Lecture (10:00-11:30)	Practical (11:45-13:15)
13.05.24	Visual Encoding	Exposé Workshop
20.05.24	Pentecost	Pentecost
27.05.24	Design Studies	Exposé Presentation
03.06.24	Interaction Techniques	Practical Interaction
10.06.24	Data Science & Journalism	Progress Presentation

19.07.24 Deadline Final Report

Date	Lecture (10:00-11:30)	Practical (11:45-13:15)
17.06.24	Machine Learning & Visualization	Project Workshop
24.06.24	Guest Lecture on Critical Data Studies by Paola Lopez	Observable (Plot)
01.07.24	Final Session: Recap	Final Project Presentation

19.07.24 Deadline Final Report

Exposé Presentation

Date:

27.05.2024

Title

clear title that describes your project

Abstract

short summary of approach and main findings

Introduction

a text that introduces somebody new to the topic to what

you did and why it is worth doing

Background

correctly cite the tools and approaches you used

Method

Data

Collection

what was your method?

what analysis/vis/ML techniques did you apply?

how did you get the data?

Results

Discussion

what are your answers to your research questions?

what are highlights and lowlights?

what other interesting things did you observe?

what didn't work and why?

Conclusion

quick summary of your work in 1-2 paragraphs

Project Report

Results

Deadline:

19.07.2024

•	Title	clear title that describes your project

Abstract short summary of approach and main findings

• Introduction a text that introduces somebody new to the topic to what

you did and why it is worth doing

Background correctly cite the tools and approaches you used

Method what was your method?

Data what analysis/vis/ML techniques did you apply?

how did you get the data?

• Collection what are your answers to your research questions?

what are highlights and lowlights?

• Discussion what other interesting things did you observe?

what didn't work and why?

• Conclusion quick summary of your work in 1-2 paragraphs