PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 97/28297 (51) International Patent Classification 6: (11) International Publication Number: A1 C30B 23/00 7 August 1997 (07.08.97) (43) International Publication Date: (74) Agents: SUMMA, Philip et al.; Bell, Seltzer, Park & Gibson, (21) International Application Number: PCT/US97/01292 P.O. Drawer 34009, Charlotte, NC 28234 (US). 24 January 1997 (24.01.97) (22) International Filing Date: (81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility (30) Priority Data: model), DE, DE (Utility model), DK, DK (Utility model), 08/596,526 5 February 1996 (05.02.96) US EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, (60) Parent Application or Grant PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, (63) Related by Continuation TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, 08/596,526 (CON) US LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, Filed on 5 February 1996 (05.02.96) KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), (71) Applicant (for all designated States except US): CREE RE-OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). SEARCH, INC. [US/US]; Suite 176, 2810 Meridian Parkway, Durham, NC 27713 (US). Published (72) Inventors; and (75) Inventors/Applicants (for US only): CARTER, Calvin, H. With international search report. Before the expiration of the time limit for amending the [US/US]; 114 N. Drawbridge Lane, Cary, NC 27513 claims and to be republished in the event of the receipt of (US): TSVETKOV, Valeri, F. [RU/US]; Apartment I, 717 amendments. Audubon Lake Drive, Durham, NC 27713 (US). GLASS, Robert, C. [US/US]; Apartment C5, 6123 Farrington Road, Chapel Hill, NC 27514 (US).

(54) Title: GROWTH OF COLORLESS SILICON CARBIDE CRYSTALS

(57) Abstract

Large single crystals of silicon carbide are grown in a furnace sublimation system. The crystals are grown with compensating levels of p-type and n-type dopants (i.e., roughly equal levels of the two dopants) in order to produce a crystal that is essentially colorless. The crystal may be cut and fashioned into synthetic gemstones having extraordinary toughness and hardness, and a brilliance meeting or exceeding that of diamond.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑŲ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH ·	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Vict Nam

10

WO 97/28297 PCT/US97/01292

GROWTH OF COLORLESS SILICON CARBIDE CRYSTALS

-1-

Field of the Invention

The invention relates to the growth of silicon carbide crystals. More particularly, the invention relates to the growth of transparent,

5 monocrystalline, colorless silicon carbide crystals. Because of their durability and other advantageous physical and crystal properties, these crystals may be cut and fashioned into finished gemstones having the fire and brilliance of diamond.

Background of the Invention

Silicon carbide (SiC) is rarely found in nature. It has, however, been manufactured for more than eighty years, in crystalline form, for abrasive products. Silicon carbide crystals found in nature and in abrasive products are generally black and not translucent because they contain substantial levels of impurity atoms.

Because of the theoretically quite favorable electronic properties of silicon carbide, significant development activities were initiated during the 1960s and 1970s with the objective of growing large (bulk) crystals of low impurity silicon carbide for use in the production of semiconductor devices. These efforts finally resulted in the commercial availability of relatively low impurity, translucent silicon carbide crystals. These silicon carbide crystals are fabricated and marketed as very thin, green, amber or blue (175μm - 400μm) slices useful for semiconductor devices.

Recently, it has been discovered that relatively low impurity, translucent, single crystal silicon carbide may be grown with a desired color and thereafter cut and fashioned into synthetic gemstones.

-2-

These gemstones have extraordinary hardness, toughness, chemical and thermal stability, and a high refractive index that produces unparalleled brilliance. The single crystals from which the gemstones are produced have been grown by sublimation according to techniques of the type described in U.S. patent number Re. 34,061.

Silicon carbide crystals can be grown in a wide range of colors (including green, blue, red, purple. yellow, amber and black) and shades within each color by the appropriate selection of dopants (e.g., nitrogen and aluminum) and by varying the net doping densities (concentrations). Because of its wide bandgap, undoped ("intrinsic") silicon carbide crystals in the hexagonal or rhombohedral forms are inherently colorless. Thus, silicon carbide crystals offer the potential to be cut and fashioned into gemstones of many various appearances, including that of diamond.

Although the colored crystals have proven relatively easy to produce, problems have been encountered in creating the exceedingly impurity-free sublimation system environment necessary for growing undoped, colorless silicon carbide. Because colorless silicon carbide gemstones have an extraordinary appeal, there is a need for a more cost effective and reliable process for growing large single crystals of silicon carbide in colorless form.

Summary of the Invention

The present invention, in one broad aspect, is the discovery that large, transparent, colorless silicon carbide crystals may be grown in a sublimation system where compensating levels of n-type and p-type dopants are introduced into the crystals's lattice structure. The compensated levels of p-type and n-type dopants (i.e., roughly equal levels of the two dopants) serve to produce a colorless crystal by canceling each other in terms of the production of color centers in

-3-

the crystal. The compensation is best carried out at low carrier levels. For example, the preferred n-type dopant, nitrogen, may be introduced into the lattice only at those low levels dictated by "background" 5 atmospheric nitrogen present in the sublimation system. A like amount of p-type dopant, e.g., aluminum, may be introduced via the sublimation powder or gas at a level sufficient to compensate for the background level of nitrogen. Thus, in one aspect, the present invention 10 may be described as a colorless single crystal of silicon carbide grown with compensated levels of n-type and p-type dopants. These crystals may be cut and fashioned into brilliant colorless synthetic gemstones.

In another aspect, the invention may be 15 defined as a method of producing a colorless single crystal of silicon carbide comprising the step of growing the single crystal of silicon carbide by a sublimation technique wherein compensated levels of ptype and n-type dopants are introduced into the crystal 20 lattice structure.

Detailed Description of the Invention

It is to be understood at the outset of the description which follows that persons of skill in the appropriate arts may modify the invention as herein 25 described while still achieving the favorable results of this invention. Accordingly, the description which follows is to be understood as being a broad, teaching disclosure directed to persons of skill in the appropriate arts, and not as limited upon the present invention.

30

Additionally, a number of the definitions, techniques and other aspects in the field of natural and synthetic gems and gemstones are well known to those of ordinary skill in this art. Relevant 35 background and related information can be found, for example, in Volume 7 of the McGraw-Hill Encyclopedia of

5

15

-4-

Science & Technology, 7th Ed. (1992) at pages 651-659. It will be understood, of course, that this source is exemplary of the general knowledge in this art, rather than any limitation of the present invention.

In a preferred manner of practicing the invention, the growth of large, colorless single crystals of silicon carbide is achieved by introducing a polished monocrystalline seed crystal of silicon carbide of a desired polytype into the furnace of a sublimation system along with silicon and carbon containing source gas or powder (source material). source material is heated to a temperature that causes the source material to create a vapor flux that deposits vaporized Si, Si₂C, and SiC₂ to the growth surface of the seed crystal. The reproducible growth of a single selected polytype on the seed crystal is achieved by maintaining a constant flux of Si, Si, C and SiC2, and controlling the thermal gradient between the source material and the seed crystal. The growth 20 procedure described above is set forth in more detail in U.S. patent number Re. 34,861, the teachings of which are incorporated entirely herein by reference.

During the growth process of the present invention, roughly equal amounts of p-type and n-type 25 dopants are maintained in the atmosphere of the sublimation furnace so that compensated levels of these two dopant types are introduced into the crystal lattice structure. In one preferred embodiment, the ntype dopant is nitrogen. The nitrogen source is the 30 nitrogen present in the furnace atmosphere at "background" levels. Therefore, according to this embodiment, a p-type dopant, preferably aluminum, is added to the source powder in an appropriate amount so that the nitrogen and aluminum are incorporated into 35 the crystal lattice structure in compensated amounts. In this regard, "compensated," "compensated amount," "compensated level," and like terms, are used to refer

-5-

to those roughly equal levels of p-type and n-type dopant atoms incorporated into the silicon carbide crystal lattice structure whereby the crystal is rendered essentially colorless.

"compensated" are also used in describing the electronic properties of a crystal, and likewise describes a semiconductor material that contains (frequently intentionally) both p and n-type dopants, including material in which one or the other predominates; e.g. a "compensated p-type material." Also, some uses refer to material in which p or n predominate as being "overcompensated" rather than simply "compensated." Thus, the terms "compensated" and "overcompensated" are familiar to those of ordinary skill in the semiconductor field.

It has been found desirable to compensate ptype and n-type dopants at low carrier levels. Thus,
prior to initiating the sublimation growth process, the

20 background level of atmospheric nitrogen in the furnace
is desirably reduced to a relatively low level, for
example, a level that will generally create an n-type
dopant level in the crystal lattice on the order of
about 1 x 10¹⁶ to 1 x 10¹⁸ atoms/cubic centimeter (cm⁻³)

25 with a more preferred range being between about 1 x 10¹⁷
cm⁻³ x 5 to 10¹⁷ cm⁻³. Reducing the level of atmospheric
nitrogen in the furnace can be achieved by methods
known in the art, typically, by backfilling with an
inert gas such as argon, following by evacuating the

30 furnace to very low pressure.

The compensated level of the p-type dopant is not absolutely critical provided it produces a crystal having sufficient colorless properties for the intended end use. Thus, broadly stated, the invention encompasses compensation that meets this goal, whether the dopant density is greater for the p-type or n-type dopant. It has been found desirable, however,

-6-

especially where the n-type dopant is nitrogen and the p-type dopant is aluminum, to have a greater density of aluminum atoms in the crystal lattice. Thus, in a preferred manner of practicing the invention, the level of aluminum atoms is in the range of one to five times that of the nitrogen atoms, with a more preferred range being one to two times.

The reasons for a somewhat greater density of p-type aluminum atoms are two-fold. First, p-type 10 aluminum doping alone tends to impart a blue color to silicon carbide crystals, while n-type nitrogen doping alone tends to impart a green or amber color. Because colorless brilliance for gemstone applications is desired, a slight blue tint is preferable to a slight 15 green or amber tint. Generally speaking, the preference arises from the aesthetic viewpoint that a blue tint is less detrimental than some other tint and, in some cases, is deemed desirable. The second reason for erring on the side of aluminum overcompensation is 20 that aluminum is a deeper level dopant than nitrogen. Thus, at room temperature, the crystal will contain fewer active carriers due to an overcompensation of nitrogen. Because active carrier concentration is directly linked to the creation of color centers within 25 the crystal, an overcompensation of aluminum is more likely to reduce the color of the crystal than will an overcompensation of nitrogen.

It will be appreciated that other dopants may be used, and that the dopants may be used at other densities. For example, the p-type dopant may be boron or beryllium, or other Group I, II or III elements. Similarly, other Group V elements may be used as n-type dopants in silicon carbide.

The present invention may be utilized to grow colorless crystals of different polytypes. In this regard, silicon carbide is a complex material system that forms more than 150 different polytypes, each

-7-

having different physical and electronic properties.

The different polytypes can be classified in three basic terms: cubic, rhombohedral and hexagonal. Both the rhombohedral and hexagonal forms can occur in a number of different atomic arrangements that vary according to atomic stacking sequence. According to the invention, the preferred polytypes are 2H, 6H, 4H, 8H, 15R and 3C.

Large, colorless single crystals of silicon

10 carbide grown by the techniques described above are
ideally suited for use as gemstone materials. The
colorless single crystals, if large enough, are first
cut into a number of smaller pieces that serve as the
rough gemstone material. The rough gemstones

15 thereafter may be fashioned into finished gemstones by
utilizing equipment currently employed in the art for
fashioning diamonds and natural colored gemstones.

Preferably, the silicon carbide gemstones of the
invention are fashioned with precision diamond cuts to

20 take advantage of the extraordinarily high refractive
index of the silicon carbide material.

As noted earlier, those techniques required to turn an appropriate material into a final gemstone are generally well understood, and can be applied to the silicon carbide material of the present invention without undue experimentation.

25

Although the invention has been described in connection with certain embodiments, it will be appreciated that modifications may be made without departing from the true spirit and scope of the invention.

-8-

THAT WHICH IS CLAIMED IS:

- 1. A synthetic gemstone formed from a colorless, single crystal of silicon carbide containing compensated levels of n-type and p-type dopants.
- A synthetic gemstone as claimed in Claim
 1 wherein the n-type dopant comprises nitrogen.
 - 3. A synthetic gemstone as claimed in Claim 2 wherein nitrogen atoms are present in the crystal at a concentration dictated by background levels of nitrogen in the sublimation system.
- 4. A synthetic gemstone as claimed in Claim wherein the n-type dopant comprises aluminum.
- 5. A synthetic gemstone as claimed in Claim
 4 wherein the concentration of aluminum atoms is in the
 range of about one to five times that of nitrogen
 15 atoms.
 - 6. A synthetic gemstone as claimed in Claim 4 wherein the concentration of aluminum atoms is between about one and two times the concentration of nitrogen atoms.
- 7. A colorless single crystal of silicon carbide grown with compensated levels of n-type and p-type dopants.
- 8. A synthetic gemstone according to Claim 7 or Claim 10 wherein the polytype of the silicon carbide 25 single crystal is selected from the group consisting of 2H, 6H, 4H, 8H, 15R and 3C.

-9-

- 9. A colorless single crystal of silicon carbide according to Claim 1 or Claim 7 wherein each dopant type is present in the crystal at a concentration of between about 1 x 10¹⁶ cm⁻³ and 1 x 10¹⁸ 5 cm⁻³.
- 10. A colorless single crystal of silicon carbide according to Claim 1 or Claim 7 wherein each dopant type is present in the crystal at a concentration of between about 1 x 10^{17} cm⁻³ and 5 x 10^{17} 10 cm⁻³.
 - 11. A colorless single crystal of silicon carbide as claimed in Claim 9 wherein the n-type dopant comprises nitrogen and the p-type dopant comprises aluminum.
- 12. A method of producing a colorless single crystal of silicon carbide comprising growing the single crystal of silicon carbide by a sublimation technique while introducing compensated levels of ptype and n-type dopants into the crystal lattice

 20 structure.
- 13. A method as claimed in Claim 12 wherein the n-type dopant comprises nitrogen and the sublimation technique incorporates a furnace having an atmosphere containing nitrogen only at background
 25 levels, and including the step of introducing the p-type dopant at a compensated level roughly equivalent to the amount of nitrogen introduced into the crystal due to the atmospheric background presence of nitrogen.
- 14. A method as claimed in Claim 13 wherein the p-type dopant comprises aluminum and including the step of introducing aluminum atoms into the crystal lattice structure at a concentration from about one to

-10-

five times the concentration of nitrogen atoms in the lattice structure.

- 15. A method as claimed in Claim 13 wherein the p-type dopant comprises aluminum and including the step of introducing aluminum atoms into the crystal lattice structure at a concentration from about one to two times the concentration of nitrogen atoms in the lattice structure.
- 16. A method as claimed in Claim 12 wherein each dopant type is present in the crystal at a concentration of between about 1 x 10^{16} cm⁻³ and 1 x 10^{18} cm⁻³.
- 17. A method as claimed in Claim 14 wherein each dopant type is present in the crystal at a concentration of between about 1 x 10^{17} cm⁻³ and 5 x 10^{17} cm⁻³.
 - 18. A method according to Claim 12 wherein the sublimation technique comprises:

introducing a monocrystalline seed crystal of 20 silicon carbide of desired polytype and a silicon carbide source powder into a sublimation system;

raising the temperature of the silicon carbide source powder to a temperature sufficient for the source powder to sublime; while

25 elevating the temperature of the growth surface of the seed crystal to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime 30 under the gas pressure conditions of the sublimation system; and

generating and maintaining a substantially constant flow of vaporized Si, Si₂c, and SiC₂ per unit

-11-

area per unit time from the source powder to the growth surface of the seed crystal for a time sufficient to produce a desired amount of macroscopic growth of monocrystalline silicon carbide of desired polytype

5 upon the seed crystal; and

maintaining levels of p-type and n-type dopant atoms in the sublimation system sufficient to introduce compensated levels of the two dopant types into the crystal lattice structure.

INTERNATIONAL SEARCH REPORT

Interr nal Application No PCT/US 97/01292

A. CLASSII	FICATION OF SUBJECT MATTER C30B23/00		
	(IDC) are both accorded	wifestion and IDC	
	o International Patent Classification (IPC) or to both national cla	Striction and Ir C	
	SEARCHED ocumentation searched (classification system followed by classification)	cation symbols)	
IPC 6	C30B	•	
Documentat	on searched other than minimum documentation to the extent th	at such documents are included in the fields s	earched
Electronic d	ata base consulted during the international search (name of data	base and, where practical, search terms used)	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No.
Х	JOURNAL OF CRYSTAL GROWTH, vol. 115, no. 1 / 04, 2 Decembe	r 1991	1-4,7,8,
,	pages 733-739, XP000322885 W00 SIK Y00 ET AL: "BULK CRYST OF 6H-SIC ON POLYTYPE-CONTROLLE SUBSTRATES THROUGH VAPOR PHASE CHARACTERIZATION" see page 735, right-hand column see page 736, right-hand column see page 737, left-hand column	AL GROWTH D AND	·
A	US RE34861 E (DAVIS ROBERT F E February 1995 see claim 1	T AL) 14	18
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
<u> </u>	ategories of cited documents:	"T" later document published after the in	
	nent defining the general state of the art which is not	or priority date and not in conflict wa cited to understand the principle or	nth the application but theory underlying the
	dered to be of particular relevance r document but published on or after the international	invention "X" document of particular relevance; the	e daimed invention
filing	date nent which may throw doubts on priority claim(s) or	cannot be considered novel or cannot involve an inventive step when the	nt be considered to
which is cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the cannot be considered to involve an i	e claimed invention
'0' docur	nent referring to an oral disclosure, use, exhibition or	document is combined with one of t ments, such combination being obvi	nore other such docu-
'P' docum	means nent published prior to the international filing date but than the priority date claimed	in the art. '&' document member of the same pater	
Date of the	e actual completion of the international search	Date of mailing of the international	search report
3	3 June 1997	1 9	. 06. 97
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rajswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Parc (+ 31-70) 340-3016	Flink, E	

INTERNATIONAL SEARCH REPORT

...iormation on patent family members

Interr nal Application No
PC1/US 97/01292

Patent document ted in search report	Publication date	Patent fami member(s		Publication date
S RE34861 E	14-02-95	US 486600)5 A	12-09-89
		CA 133173	30 A	30-08-94
		DE 385553	19 D	17-10-96
		DE 385553	39 T	23-01-97
		EP 038953		03-10-90
		EP 071215		15-05-96
		JP 350111	8 T	14-03-91
		WO 890405		05-05-89