Pontos da aula

- Definição.
- Árvores binárias.
- Implementação.

Definição.

- Árvores são estruturas de dados adequadas para a representação de hierarquias.
- A forma mais natural de definir uma estrutura de árvore é usando a recursividade.

- Uma árvore é constituída por um conjunto de nós.
- Existe um nó r, denominado raiz, que contém zero ou mais subárvores, cujas raízes são ligadas diretamente a r.

- Esses nós raízes das subárvores são ditos filhos do nó pai,
 r.
- Nós filhos são comumente chamados de nós internos, e nós que não têm filhos são chamados de folhas ou nós externos.

- É tradicional desenhar as estruturas de árvores com a raiz para cima e as folhas para baixo.
- Os ponteiros apontam sempre do nó pai para os nós filhos.
- O número de filhos permitido por nó e as informações armazenadas em cada nó diferenciam os vários tipos de árvores existentes.

- Árvores nas quais cada nó tem no máximo dois filhos.
- Ou seja, cada nó possui zero, um ou dois nós.

• Exemplo 1: árvore de expressão (3+6)*(4-1)+5.

- De maneira recursiva, é possível definir uma árvore binária com sendo:
 - uma árvore vazia; ou
 - um nó raiz tendo duas subárvores, identificadas como a subárvore da direita e a subárvore da esquerda.

- Exemplo 2: árvore binária.
 - Nó 'a': raiz.
 - Subárvore esquerda: 'b' e 'd'.
 - Subárvore direita: 'c', 'e' e 'f'.
 - Nós 'b' e 'c': raízes das subárvores.
 - Folhas: 'd', 'e' e 'f'.

- Notação textual de uma árvore binária:
 - Árvore vazia: < >
 - Árvores não-vazias: <raiz sa-esq sa-dir>

<a<b<><d<>><><c<e<><>><f<>><>><</p>

- Ordem de percurso em uma árvore binária:
 - pré-ordem: trata raiz, percorre sa-esq, percorre sa-dir;
 - em-ordem: percorre sa-esq, trata raiz, percorre sa-dir;
 - pós-ordem: percorre sa-esq; percorre sa-dir, trata raiz.

Ordem de percurso em uma árvore binária - pré-ordem:

Ordem de percurso em uma árvore binária - em-ordem:

Ordem de percurso em uma árvore binária - pós-ordem:

• Árvore binária completa (cheia):

- se todos os seus nós internos têm duas subárvores associadas e todos os nós folhas estão no último nível.
- sua altura h tem um número de nós dado por $2^{(h+1)} 1$.

Árvore binária completa (cheia):

• Árvore binária degenerada:

- se todos os seus nós internos têm uma única subárvore associada.
- a estrutura hierárquica se degenera em uma estrutura linear.

Árvore binária degenerada:

Altura de uma árvore binária:

- todas as árvores é que só existe um caminho da raiz para qualquer nó.
- altura de uma árvore como sendo o comprimento do caminho mais longo da raiz até uma das folhas.
- a altura da árvore com um único nó raiz é zero.
- a altura de uma árvore vazia é -1.

Altura de uma árvore binária:

 a altura de uma árvore é uma medida importante na avaliação da eficiência com que cada nó de uma árvore é visitado.

Altura de uma árvore binária:

 uma árvore binária com n nós tem uma altura mínima proporcional a log n (caso da árvore cheia) e uma altura máxima proporcional a n (caso da árvore degenerada).

Altura de uma árvore binária:

 a altura indica o esforço computacional necessário para alcançar qualquer nó da árvore.

Implementação.

Funções básicas:

- Arv *arv_criavazia(void);
- Arv *arv_cria(char c, Arv *e, Arv *d);
- Arv *arv_libera(Arv *a);
- int arv_vazia(Arv *a);
- int arv_pertence(Arv *a, char c);
- void arv_imprime(Arv *a);

Fim da aula