

CSE322 CONVERTING REGULAR EXPRESSION(RE) TO REGULAR GRAMMAR(RG) & RG TO RE

Lecture #17

CONVERITNG RE TO RG

Let
$$M = (\{q_0, \ldots, q_n\}, \Sigma, \delta, q_0, F).$$

We have to construct a

$$G = (\{A_0, A_1, \ldots, A_n\}, \Sigma, P, A_0)$$

where P is defined by the following rules:

- (i) $A_i \rightarrow aA_i$ is included in P if $\delta(q_i, a) = q_i \notin F$.
- (ii) $A_i \rightarrow aA_j$ and $A_i \rightarrow a$ are included in P if $\delta(q_i, a) = q_j \in F$.

We can show that L(G) = T(M) by using the construction of P. Such a construction gives

$$A_i \Rightarrow aA_j \quad \text{iff } \delta(q_i, a) = q_j$$

 $A_i \Rightarrow a \quad \text{iff } \delta(q_i, a) \in F$

So.

$$A_0 \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \ldots \Rightarrow a_1 \ldots a_{k-1} A_k \Rightarrow a_1 a_2 \ldots a_k$$
iff
$$\delta(q_0, a_1) = q_1, \quad \delta(q_1, a_2) = q_2, \ldots, \quad \delta(q_k, a_k) \in F$$

This proves that $w = a_1 \ldots a_k \in L(G)$ iff $\delta(q_0, a_1 \ldots a_k) \in F$, i.e. iff $w \in T(M)$.

NUMERICAL

Construct a regular grammar G generating the regular set represented by P = a*b(a + b)*.

SOLUTION

Let $G = (\{A0, A_1\}, \{a, b\}, P, A_0)$, where P is given by $A_0 \rightarrow aA_0, \quad A_0 \rightarrow bA_1, \quad A_0 \rightarrow b$ $A_1 \rightarrow aA_1, \quad A_1 \rightarrow bA_1, \quad A_1 \rightarrow a, \quad A_1 \rightarrow b$

G is the required regular grammar.

CONVERSION OG RG TO RE

CONSTRUCTION OF TRANSITION SYSTEM M ACCEPTING L(G) FOR A GIVEN REGULAR GRAMMAR G

Let
$$G = (\{A_0, A_1, \ldots, A_n\}, \Sigma, P, A_0)$$

We define M as $(\{q_0, \ldots, q_m, q_f\}, \Sigma, \delta, q_0, \{q_f\})$ where δ is defined as follows:

- (i) Each production $A_i \rightarrow aA_j$ induces a transition from q_i to q_j with label a.
- (ii) Each production $A_k \to a$ induces a transition from q_k to q_f with label a.

From the construction it is easy to see that $A_0 \Rightarrow a_1A_1 \Rightarrow a_1a_2A_2 \Rightarrow \dots$ $\Rightarrow a_1 \dots a_{n-1}A_{n-1} \Rightarrow a_1 \dots a_n$ is a derivation of $a_1a_2 \dots a_n$ iff there is a path in M starting from q_0 and terminating in q_f with path value $a_1a_2 \dots a_n$. Therefore, L(G) = T(M).

NUMERICAL

Let $G = (\{A_0, A_1\}, \{a, b\}, P, A_0)$, where P consists of $A_0 \to aA_1, A_1 \to bA_1$, $A_1 \to a, A_1 \to bA_0$. Construct a transition system M accepting L(G).

Solution

Let $M = (\{q_0, q_1, q_f\}, \{a, b\}, \delta, q_0, \{q_f\})$, where q_0 and q_1 correspond to A_0 and A_1 , respectively and q_f is the new (final) state introduced. $A_0 \rightarrow aA_1$ induces a transition from q_0 to q_1 with label a. Similarly, $A_1 \rightarrow bA_1$ and $A_1 \rightarrow bA_0$ induce transitions from q_1 to q_1 with label b and from q_1 to q_0 with label b, respectively. $A_1 \rightarrow a$ induces a transition from q_1 to q_f with label a.

NUMERICAL

