Coursework

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

477 - Computational Optimisation

Author:

Jiahao Lin (CID: 00837321)

Date: November 6, 2016

1 Part 1

1.1 1

1) To prove is $\log \sum_{k=1}^{10} exp(B_{jk})$ is convex, we define:

$$f(B_j) = \log \sum_{k=1}^{10} exp(B_{jk})$$
 (1)

$$f(x) = \log \sum_{k=1}^{10} exp(x_k)$$
 (2)

First we need to compute the hessian of f(x):

$$\nabla f(x) = \frac{1}{1^{\top} Z} \times z \tag{3}$$

$$\nabla^2 f(x) = \frac{1}{1^{\top} Z} \times diag(Z) - \frac{Z^{\top} Z}{1^{\top} Z^2}$$
 (4)

where
$$Z = \sum_{k=1}^{10} exp(x_k)$$
 (5)

To prove the hessian is positive semi-definite, we need to prove:

$$v^{\top} \nabla^2 f(x) v >= 0 \tag{6}$$

$$v^{\top} \left(\frac{1}{1^{\top} Z} \times diag(Z) - \frac{Z^{\top} Z}{1^{\top} Z^2} \right) v \ge 0 \tag{7}$$

- 2)
- 3)
- 4)