HW₂

前言:

使用五種不同套件(tree、rpart、randomforest、svm、logistic regression),對給 定資料切成 80%的 train 與 20%的 test 進行訓練(這次採用除了 Buy 以外的所有 feature)建模之後測試並分析最後的準確率,為了避免抽樣有所影響,因此總共 會做十次比較其平均與標準差。

程式碼:

randomForest 的部分

```
# 導入相關套件
library(tree)
library(rpart)
library(randomForest)
library(e1071)
setwd('C:/Users/Steven/Desktop/陽交109下/巨量資料分析/課程/單元2: 預測模式(二)/範例程式與資料')
data <- read.csv("MaaS_Data.csv",header=T)
head(data) # 看一下前幾筆資料
# 資料清洗和選取
data[data == ""] <- NA # 將空值以NA取代
head(data) #確認一下空值是否都用NA補
# 刪除具有NA的資料並加以確認 data<-data[,-1] # ID對判斷是否購買沒幫助,予以刪除 num_na <- function(x){sum(is.na(x))} sapply(data, num_na) # 對Data Frame的每一行(column)進行num_na函數運算,用來計算NA的數量,發現只有Buy那欄有NA data <- data[!is.na(data$Buy),] # 將有NA值得資料刪除 sapply(data, num_na) # 確認是否還有空值 head(data) # 確認一下資料現在的樣子
# label 轉成factor,用於分類
data$Buy <- as.factor(data$Buy)</pre>
以下的部分要跑十次
# 分割資料(train:80%, test:20%)(這個block要跑10次)
n <- 0.2*nrow(data)
index <- sample(1:nrow(data), n) # 用隨機取的方式
maas_train <- data[-index,]
maas_test <- data[index,]</pre>
tree 的部分
# 利用tree套件建模
maas.tree <- tree(Buy ~ ., data=maas_train)</pre>
tree.predict <- predict(maas.tree, maas_test, type="class")
compare.tree <- ifelse(tree.predict == maas_test$Buy, 1, 0)</pre>
accuracy.tree <- sum(compare.tree)/ length(compare.tree); accuracy.tree
rpart 的部分
# 利用rpart套件建模
maas.rpart <- rpart(Buy ~ ., data=maas_train)</pre>
rpart.predict <- predict(maas.rpart, maas_test, type="class")</pre>
compare.rpart <- ifelse(rpart.predict == maas_test$Buy, 1, 0)</pre>
accuracy.rpart <- sum(compare.rpart)/ length(compare.rpart); accuracy.rpart
```

```
# 利用rf套件建模
maas.rf <- randomForest(Buy ~ ., data=maas_train)
rf.predict <- predict(maas.rf, maas_test, type="class")</pre>
compare.rf <- ifelse(rf.predict == maas_test$Buy, 1, 0)</pre>
accuracy.rf <- sum(compare.rf)/ length(compare.rf); accuracy.rf
svm 的部分
# 利用SVM套件建模
maas.svm <- svm(Buy ~ ., data=maas_train)
svm.predict <- predict(maas.svm, maas_test)</pre>
compare.svm <- ifelse(svm.predict == maas_test$Buy, 1, 0)
accuracy.svm <- sum(compare.svm)/ length(compare.svm); accuracy.svm
logistic regression 的部分
# 利用Logistics Regression套件建模
maas.logit <- glm(Buy ~ ., family=binomial(link='logit'), data=maas_train)</pre>
logit.predict <- predict(maas.logit, maas_test, type="response")
logit.results <- ifelse(logit.predict > 0.5, 2, 1)
compare.logit <- ifelse(logit.results == as.numeric(maas_test$Buy), 1, 0)</pre>
accuracy.logit <- sum(compare.logit)/ length(compare.logit); accuracy.logit
```

輸出結果:

	tree	rpart	randomForest	svm	logit
第1次	0.9412266	0.9412266	0.9369676	0.9412266	0.9412266
第2次	0.9250426	0.9250426	0.9156729	0.9241908	0.923339
第3次	0.9250426	0.9250426	0.9182283	0.923339	0.9216354
第4次	0.9403748	0.9403748	0.927598	0.939523	0.9378194
第5次	0.939523	0.939523	0.9224872	0.9386712	0.9378194
第6次	0.9344123	0.9344123	0.9267462	0.9335605	0.9318569
第 7 次	0.9369676	0.9369676	0.9250426	0.9369676	0.9369676
第8次	0.9369676	0.9369676	0.9284497	0.9369676	0.9361158
第9次	0.9386712	0.9386712	0.9250426	0.9386712	0.9378194
第10次	0.9412266	0.9412266	0.9293015	0.939523	0.9386712
平均	<mark>0.935945</mark>	<mark>0.935945</mark>	0.925554	0.935264	0.934327
標準差	0.006127	0.006127	0.005958	0.006399	0.006676

分析:

- 1.從結果來看,在準確率方面 tree 和 rpart 最好、而在變動程度方面,rf 最好。
- 2.因為本次打算所有模型都不設 cp=XXX,方便比較,發現十次下來,tree 跟rpart 的表現完全一樣,可以合理推斷,雖然用的演算法不同,但他們生成的樹的模樣應該是完全一樣的,代表 gini 跟 entropy 都是可以拿來判斷亂度的。
- 3.而 rf 的穩定度最高也是合理的,因為它屬於多棵樹的生成,有用到平均的概念,因此每次的表現得差異應該都差不了太多。
- 4.而至於為什麼 tree 和 rpart 表現最好,我認為可能還是因為 data 本身不算太

複雜,所以用樹就可以表現得很好,如果 data 整個 feature 維度加 10 倍、資料量也加 10 倍,那可能這時 svm 或 logistic regression 表現可能會更佳。 5.而事實上本次實驗,雖然看似有高低,但五種模型的表現不會差太多,因此也有可能只是抽樣帶來的結果,可能需要做更多次來考證此想法。