COURSERA Capstone Project: Diversity of Restaurants in Singapore

Author: JL

1. Introduction

Singapore has the second greatest population density in the world, and has very vibrant and diverse communities. As a home to a wide range of cultures, ethnicities and religions, Singapore has a rich choice of different cuisines and restaurants. People from same background and culture tend to gather spatially and form local communities, and it is assumed that such spatial pattern of communities can be reflected by the popularity and distribution of different types of restaurants. For example, places that have many Chinese restaurants may be the places that Chinese communities stay or visit most. In addition, a map that presents the clusters of different types of cuisines in Singapore can be treated as a kind of food guide map for tourists and local citizens, which can be interesting despite commercial valuable.

2. Data Description

To achieve the product as described above, two major datasets are required, the spatial data of Singapore and food related Point of Interests (POI).

• Spatial data of Singapore

To facilitate urban planning, the Urban Redevelopment Authority (URA) divides Singapore into regions, planning areas and subzones. The Planning Regions are divided into smaller Planning Areas. Each Planning Area is further divided into smaller subzones which are usually centred around a focal point such as neighbourhood centre or activity node. There are over three hundred subzones of a total of 55 planning areas, organised into 5 regions. To achieve a more detailed investigation, this project will be conducted in the subzone level.

The Singapore subzone shapefile data can be downloaded from the following link on data.gov.sg (https://data.gov.sg/dataset/master-plan-2019-subzone-boundary-no-sea). There are a total of 325 Singapore subzones in the data downloaded.

The subzones are presented as polygons in the original shapefile. With the help of QGIS (a spatial analysis tool), we can extract the centroid of each subzone polygon (as shown in figure 1). The subzone information including latitude, longitude and name, can be exported as a csv file for the use of POI collection later, an example is given in figure 2.

Figure 1 Singapore subzones

	Lon	Lat	SUBZONE_NAME	SUBZONE_CODE	PLN_AREA_NAME	PLN_AREA_CODE	REGION_NAME	REGION_CODE
0	103.872352	1.288517	MARINA EAST	MESZ01	MARINA EAST	ME	CENTRAL REGION	CR
1	103.837500	1.294016	INSTITUTION HILL	RVSZ05	RIVER VALLEY	RV	CENTRAL REGION	CR
2	103.837064	1.291286	ROBERTSON QUAY	SRSZ01	SINGAPORE RIVER	SR	CENTRAL REGION	CR
3	103.698639	1.262532	JURONG ISLAND AND BUKOM	WISZ01	WESTERN ISLANDS	WI	WEST REGION	WR
4	103.846053	1.294046	FORT CANNING	MUSZ02	MUSEUM	MU	CENTRAL REGION	CR

Figure 2 Example of the SG_Subzone data

• Food related POI (restaurants) data

The restaurant data can be collected from Foursquare. We can search for all the POIs under the "Food" category (Foursquare categoryID is '4d4b7105d754a06374d81259') around each subzone centroid. The searching buffer is defined as 1 km to ensure a good coverage, the limit of venues returned per request was set as 100. A total of 16294 venues were collected. A sample of the collected POIs after processing is shown in figure 3. The POIs will be joint with subzones and more exploratory analysis will be conducted in the following sessions.

	name	categories	lat	Ing
0	Yen Yakiniku	Japanese Restaurant	1.281074	103.845743
1	Bam! Tapas-Sake Bar	Tapas Restaurant	1.278393	103.844426
2	Tippling Club	Restaurant	1.279420	103.843848
3	PS.Cafe	Café	1.280468	103.846264
4	Fat Prince	Kebab Restaurant	1.277801	103.845202
5	Lolla	Spanish Restaurant	1.281034	103.845708
6	Park Bench Deli	Deli / Bodega	1.279872	103.847287
7	Pantler	Bakery	1.280137	103.847256
8	Maxwell Food Centre	Food Court	1.280291	103.844742
9	Dumpling Darlings	Dumpling Restaurant	1.280483	103.846942
10	Super Star K Korean BBQ	Korean Restaurant	1.278003	103.843680

Figure 3 data sample of collected POIs

3. Methodology

3.1 Exploratory Data Analysis

We can first check how many food related POIs we have collected for each subzone. We can use plotly package to create a map of venue counts. It can be observed that restaurants are mostly located in the city centre. Some subzones are missing because there is no POI within the searching radius, and these subzones are the natural areas.

Venue counts by subzone

We can also check what restaurant types are most common in Singapore. As the plot shows, Chinese Restaurant is the most common type in Singapore.

3.2 Data processing

Calculate distribution of different restaurant types of each subzone.

check top 10 restaurant types of each subzone

Out[8]:		Subzone	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	ADMIRALTY	Chinese Restaurant	Food Court	Fast Food Restaurant	Bakery	Soup Place	Italian Restaurant	Pizza Place	Asian Restaurant	Seafood Restaurant	Japanese Restaurant
	1	AIRPORT ROAD	Food Court	Breakfast Spot	Cafeteria	Bakery	Noodle House	Chinese Restaurant	Restaurant	Asian Restaurant	Indian Restaurant	Fast Food Restaurant
	2	ALEXANDRA HILL	Chinese Restaurant	Food Court	Noodle House	Café	Bakery	Asian Restaurant	BBQ Joint	Indian Restaurant	Sandwich Place	Fast Food Restaurant
	3	ALEXANDRA NORTH	Chinese Restaurant	Café	Noodle House	Bakery	Food Court	Indian Restaurant	Fast Food Restaurant	Asian Restaurant	Hainan Restaurant	Bistro
	4	ALJUNIED	Chinese Restaurant	Noodle House	Food Court	Dim Sum Restaurant	Seafood Restaurant	Asian Restaurant	Vegetarian / Vegan Restaurant	BBQ Joint	Café	Thai Restaurant

3.3 Clustering

We are going to use K-means clustering method to identify subzones of similar restaurant distributions. As the basic parameter of K-means, we first need to identify the optimal number of clusters in our case. The elbow test is conducted here, the optimal K value is identified as 5.

4. Results

We can create a map to show the clusters of the subzones based on their restaurant distribution. You can click on each subzone to see the subzone name, total venue counts and top 3 types. As

shown in the map, the city centre areas are mostly cluster_2 and cluster_4, while the outer ring areas are mostly cluster_0, and areas with smaller population density are cluster_3.

Subzone clusters based on restaurant distributions

We can also identify the most common restaurant type of each subzone. It can be observed that in the south centre (the CBD area), Japanese restaurants are most common. In the northern part, food court is the most common type, which is a very typical Singaporean place where diverse food choices are provided.

Most common restaurant type of each subzone

As the subzones have been grouped into 5 clusters, we can look into each of them. The distribution of different restaurant types of each cluster is displayed in the pie charts.

Restaurant distribution within cluster_0

Restaurant distribution within cluster_1

Restaurant distribution within cluster_2

Restaurant distribution within cluster_3

Restaurant distribution within cluster 4

5. Conclusion

This project is trying to explore the diversity of restaurants in Singapore and provide an overview of distributions of different restaurant types in different subzones. By analysing the top 100 food-related Foursquare POIs of each subzone, we successfully identified the distribution of different cuisines in the local communities, and observed some interesting spatial patterns of the subzone clusters purely based on food preferences. If someone is interested in opening a restaurant in Singapore, they can use the outcome of this project for reference in popularity of the relevant restaurant types. This is just a practical project with very limited time. However, it can be extended and improved in many aspects.