Seminar 2: Efficiency of LLM

Xiaohuan Pei

xiaohuan.pei@sydney.edu.au School of Computer Science

How important of efficiency?

Overview of Efficiency in LLM

(b) KV-Cache Optimization

Seminar 2, Part 1.1: Efficiency of Fune-Tuning

Low-Rank Adaption: LoRA

$$\mathbf{A} = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 10 \end{bmatrix}, \quad \mathrm{Rank}(\mathbf{A}) = 3. \qquad \mathbf{A} = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 2 & 4 & 6 \end{bmatrix}, \quad \mathrm{Rank}(\mathbf{A}) = 2.$$

We hope the rank is large in weights as it can represent more dimentional latent features

The weights pretrained only need specfic base vectors for specific tasks

Low-Rank Adaption: LoRA

Low-Rank Adaption: LoRA

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Why
$$A = \mathcal{N}(0, \sigma^2)$$
 Gradient updating process is stable

Implement for each layer:

Other Variants

Seminar 1, Part 1.2: Efficiency of Inference

Zoom-in! (simplified without Scale and Softmax)

VLM Inference

Pick up the mug that's in front of you at the coffee maker.

VLM Inference

How about another approach?

Thank you! Q&A