Bases de Données Relationnelles

L'algèbre relationnelle

Langages de manipulation

- Langages formels : base théorique solide
- Langages utilisateurs : version plus ergonomique

- Langages procéduraux : définissent comment dériver le résultat souhaité
- Langages assertionnels (ou déclaratifs) : définissent le résultat souhaité

LMD classiques

- Langages formels
 - langages algèbriques : définissent un ensemble d'opérateurs de manipulation
 - ◆ langages prédicatifs (calcul) : définissent le résultat souhaité en utilisant des expressions de logique
- Langages utilisateurs
 - inspirés principalement des langages algèbriques : SQL
 - ♦ inspirés des langage prédicatifs : QBE, QUEL

L'approche algèbrique

- Une algèbre est un ensemble d'opérateurs de base, formellement définis, qui peuvent être combinés à souhait pour construire des expressions algèbriques
- Propriété des algèbres : fermeture
 - Le résultat de tout opérateur est du même type que les opérandes (ce qui est indispensable pour construire des expressions)
- Propriété souhaitée : complétude
 - Toute manipulation pouvant être souhaitée par les utilisateurs devrait pouvoir être exprimable par une expression algèbrique

L'algèbre relationnelle

- Opérandes : relations du modèle relationnel (1NF)
- Fermeture : le résultat de toute opération est une nouvelle relation
- Complétude : permet toute opération sauf les fermetures transitives et les fonctions d'agrégation (min, max, count...)
- Opérations unaires (un seul opérande) : sélection (σ) , projection (π) , renommage (a)
- Opérations binaires (deux opérandes): produit cartésien (´), jointures (*), union (È), intersection (Ç), différence (-), division (/)

Préambule

- Pour chacune de ces 9 opérations, on donne :
 - ◆ l'opération
 - ◆ la syntaxe (notation)
 - ◆ la sémantique (résultat attendu)
 - ♦ le schéma
 - ♦ d'éventuelles remarques
 - ◆ un exemple

Sélection

σ

But : ne retenir que certains tuples dans une relation

Pays	nom	capitale	population	surface
	Autriche	Vienne	8	83
	UK	Londres	56	244
	Suisse	Berne	7	41

On ne veut que les pays dont la surface est inférieure à 100 :

Petit-pays = s [surface < 100] Pays

Petit-pays	nom	capitale	population	surface
	Autriche	Vienne	8	83
	Suisse	Berne	7	41

Sélection

S

- Petit-pays = σ [surface < 100] Pays
- Syntaxe: σ [c] R

c : condition de sélection

- condition-élémentaire :
 - attribut opérateur-de-comparaison constante-ou-attribut
 - ◆ attribut est un attribut de la relation R
 - ◆ opérateur-de-comparaison : =, ? , <, >, =, =
- condition :
 - ◆ condition-élémentaire
 - ◆ condition ET/OU condition ET Ù OU Ú
 - ◆ NON condition NON Ø
 - ◆ (condition)

Condition de sélection - Exemples

- \bullet σ [nom=capitale] Pays
- Pays dont le nom est le même que celui de sa capitale

- σ [(surface>100 ∧ surface<500) ∨ (population>30 ∧ population<300)] Pays
- Pays dont la surface est comprise entre 100 et 500 ou dont la population est comprise entre 30 et 300

Sélection

- sémantique : crée une nouvelle relation de population l'ensemble des tuples de R qui satisfont la condition
- schéma (résultat) = schéma (opérande)
- population (résultat) ⊆ population (opérande)

Projection

 π

But : ne retenir que certains attributs dans une relation

Pays	nom	capitale	population	surface
	Autriche	Vienne	8	83
	UK	Londres	56	244
	Suisse	Berne	7	41

On ne veut que les attributs nom et capitale :

Capitales $= p$	[nom, capitale]	Pays
-----------------	-----------------	------

Capitales	nom	capital	
	Autriche	Vienne	
	UK	Londres	
	Suisse	Berne	

Projection

 π

- opération unaire
- syntaxe : p [attributs] R
 - ◆ attributs : liste des attributs de R à conserver dans le résultat
- sémantique : crée une nouvelle relation de population l'ensemble des tuples de R réduits aux seuls attributs de la liste spécifiée
- schéma (résultat) ⊆ schéma (opérande)
- nb tuples (résultat) = nb tuples (opérande)

Effet de bord de la projection

- Création et élimination de tuples en double
 - ◆ Une projection qui ne conserve aucun identifiant de la relation peut générer dans le résultat des tuples identiques (à partir de tuples différents de l'opérande)
 - ◆ le résultat ne gardera que les tuples différents (fermeture)

Expressions

- On veut les capitales des petits pays:
 - ◆ Petit-pays = s [surface < 100] Pays</p>
 - ◆ Capitale-petit-pays = p [nom, capitale] Petit-pays

Capitale-petit-pays =

p [nom, capitale] s [surface < 100] Pays

<u>nom</u>	capitale	population	surface
Irlande	Dublin	3	70
Autriche	Vienne	8	83
UK	Londres	56	244
Suisse	Berne	7	41

(Parties grise et beige à enlever)

Expressions - exemples

```
Surface-petit-pays =
     p [nom, surface] s [surface < 100] Pays
     s [surface < 100] p [nom, surface] Pays
OU
Capitale-petit-pays =
     p [nom, capitale] s [surface < 100] Pays
MAIS s [surface < 100] p [nom, capitale] Pays ERREUR!
\pi [nom, capitale] s [surface < 100]
            p [nom, capitale, surface] Pays
                                                OK
```

Renommage a

- but : résoudre des problèmes de compatibilité entre noms d'attributs de deux relations opérandes d'une opération binaire
- opération unaire
- syntaxe : α [nom_attribut1 -> nouveau_nom1, ...] R
- sémantique : les tuples de R avec un (des) nouveau nom d'attribut
- schéma de α [n1->m1, ..., ni->mi] R : le même schéma que R avec les attributs n1, ... ni renommés en m1, ... mi
- précondition : les nouveaux noms n'existent pas déjà dans R
- exemple : $R2 = \alpha [B->C] R1$

R1	Α	В
	а	b
	У	Z
	b	b

Α	С
а	b
y	Z
b	b

R2

Produit cartésien

- but : construire toutes les combinaisons de tuples de deux relations (en général, en vue d'une sélection)
- syntaxe : R ´ S
- exemple :

 $\mathsf{R} \ \ \mathsf{S}$

Α	В	С	D	Ε
а	b	Сb	d	eь
a a a b	b	b	d a a	b
a	b	a c b		сер
b	С	С	d	е
b	0000	b	d a a	b
b	С	a		ceb
С	b	c b	d a	е
b c c	b	b		b
С	b	a	a	С

n x m tuples

Produit cartésien

- opération binaire
- sémantique : chaque tuple de R est combiné avec chaque tuple de S
- schéma : schéma $(R \times S) = schéma(R) \cup schéma(S)$
- précondition : R et S n'ont pas d'attributs de même nom (sinon, renommage des attributs avant de faire le produit)

Jointure naturelle

- but : créer toutes les combinaisons significatives entre tuples de deux relations
 - significatif = ont la même valeur pour tous les attributs de même nom
- précondition : les deux relations ont au moins un attribut de même nom
- exemple :

R * S	Α	В	С	D
	а	b	C C	d
	С	b	С	d

Jointure naturelle

- opération binaire
- syntaxe : R * S
- sémantique : combine certains tuples
- schéma : schéma (R * S) = schéma (R) ∪ schéma (S)
 - ♦ les attributs de même nom n'apparaissent qu'une seule fois
- la combinaison exige l'égalité des valeurs de tous les attributs de même nom de R et de S
 - ◆ si R et S n'ont pas d'attributs de même nom la jointure peut être dynamiquement remplacée par un produit cartésien

Jointure naturelle - Exemple

Pays (<u>nom</u>, capitale, population, surface, continent)
 LangueParlée (<u>langue</u>, pays, %population)

- Pour chaque langue, dans quels continents est-elle parlée ?
- π [langue, continent]
 (LangueParlée * α [nom -> pays] Pays)

Theta jointure

ou

* [c]

- but : créer toutes les combinaisons significatives entre tuples de deux relations
 - ◆ significatif = selon un critère de combinaison explicitement défini en paramètre de l'opération (c)
- précondition : les deux relations n'ont pas d'attribut de même nom
- exemple : R * [B ? C] S

R * [B ? C] S

Α	В	С	D	E
a	р	С	а	С
b	D C C	b	a C	C d
b c	С	b	a	b
С	b	С	a	С

Theta-jointure

- opération binaire
- syntaxe : R *[c] S
 - c : condition de jointure
- condition-élémentaire :
 - attribut1 opérateur-de-comparaison attribut2
 - ◆ attribut1 est un attribut de la relation R
 - ◆ attribut2 est un attribut de la relation S (ou vice-versa)
 - ◆ opérateur-de-comparaison : =, ? , <, >, =, =
- condition :
 - ◆ condition-élémentaire
 - ◆ condition ET/OU condition ET Ù OU Ú
 - ♦ NON condition
 NON Ø
 - ♦ (condition)

Theta-jointure (suite)

- sémantique : combine les tuples qui satisfont la condition
- schéma (R *[c] S) = schéma (R) ∪ schéma (S)
- Exemple :

```
Pays (<u>nom</u>, capitale, population, surface, continent)
LangueParlée (<u>langue</u>, <u>pays</u>, %population)
```

Pour chaque langue, dans quels continents est-elle parlée?

```
π [langue, continent]
( LangueParlée *[nom = pays] Pays )
```

Jointures : opérateurs dérivés

- R (A, B, C)
- S (C, D, E)
- $R^*S = \pi$ [A, B, C, D, E] σ [CC=C] ((α [C->CC] R) x S)
- Même chose pour la theta-jointure

Union

È

- opération binaire
- syntaxe : $R \cup S$
- sémantique : réunit dans une même relation les tuples de R et ceux de S
- $schéma(R \cup S) = schéma(R) = schéma(S)$
- précondition : schéma(R) = schéma(S)
- Exemple :

R1

A	В
а	b
b	b
У	Z

R2

Α	В
u	V
У	Z

R1 È R2

В
b
b
Z
V

3DA.6.26

Union (suite)

- Effet de bord : des tuples en double peuvent être créés.
- Ils sont automatiquement supprimés du résultat.

Intersection Ç

- opération binaire
- syntaxe : $R \cap S$
- sémantique : sélectionne les tuples qui sont à la fois dans R et S
- schéma (R ∩ S) = schéma (R) = schéma (S)
- précondition : schéma (R) = schéma (S)
- Exemple :

R1	А	В
	а	b
	У	Z
	b	b

R2 A B u v y z

R1 Ç **R2** A B y z

Différence -

- opération binaire
- syntaxe : R S
- sémantique : sélectionne les tuples de R qui ne sont pas dans S
- schéma (R S) = schéma (R) = schéma (S)
- précondition : schéma (R) = schéma (S)
- Exemple :

R1	А	В
	а	b
	У	Z
	b	b

R2 A B u v y z

R1 – R2 A B
a b
b b

Intersection: opérateur dérivé

 $\blacksquare R \cap S = R - (R - S)$

populations

La division

- But : traiter les requêtes du genre «les ... tels que TOUS les ...»
- Soient R(A1, ..., An) et V(A1, ..., Am) avec n>m et A1, ..., Am des attributs de même nom dans R et V
- R/V = les tuples de R
 réduits aux attributs Am+1, ..., An
 tels qu'ils existent dans R concaténés à tous les
 tuples de V
- $R/V = \{ \langle am+1, am+2, ..., an \rangle / \forall \langle a1, a2, ..., am \rangle \in V \}$ $\exists \langle a1, a2, ..., am, am+1, am+2, ..., an \rangle \in R \}$

La division - exemples

R

Α	В	C
A 1 1 1 1 2 2 3 3 3	B 1 2 2 3 1 3 1 2 2	C 101013101
1	2	1
2	3	0
2	3	3
3	2	0
3	2	1

Exemple de division

R: Obtenu

ETUDIANT	COURS
Francois	BD
François	SI
Francois	Prog
Annie	BD
Annie	SI
Annie	Math
Pierre	Prog
Pierre	BD

V : Prérequis

COURS
Prog
BD

R/V

ETUDIANT
Francois
Pierre

R/V : Etudiants ayant tous les prérequis

Division - opérateur dérivé

- R(A1, ..., An) et V(A1, ..., Am)
 avec n>m
- R / V = $\pi[Am+1, ..., An)]R$ − $\pi[Am+1, ..., An)]((\pi[A1, ..., Am)]R)xV) - R)$

Propriétés des opérateurs

- $R \cap S = S \cap R$ (commutativité)
- R * S = S * R
- **.**.
- σ [p1] (σ [p2] R) = σ [p2] (σ [p1] R) = σ [p2 \wedge p1] R
- σ [p] (π [a] R) = π [a] (σ [p] R) si attributs(p) \subseteq a
- **...**

Utilité : optimisation des expressions

◆ faire les sélections et projections le plus tôt possible pour réduire le volume des relations opérandes

Optimiseur de requêtes

SELECT ...
FROM ...
WHERE ...

S G B D 1) Traduction en expression algébrique

2) Optimisation de l'expression algébrique

3) Exécution des opérations de l'algèbre

Base de données

Exemples de requêtes algébriques

Soient les relations suivantes :

Journal (code-j, titre, prix, type, périodicité)

Dépôt (no-dépôt, nom-dépôt, adresse)

Livraison (no-dépôt, code-j, date-liv, quantité-livrée)

Répondre aux requêtes suivantes :

• Quel est le prix des journaux ?

 π [titre, prix] Journal

- Donnez tous les renseignements connus sur les journaux hebdomadaires
 - σ [périodicité = "hebdomadaire"] Journal

Répondre aux requêtes suivantes (2)

 Donnez les codes des journaux livrés aux dépots de Bienne

 π [code-j] (σ [adresse = "Bienne"] Dépôt * Livraison)

Répondre aux requêtes suivantes (3)

Donnez les numéros des dépots qui reçoivent plusieurs journaux

```
Livraison (<u>no-dépôt</u>, <u>code-j</u>, <u>date-liv</u>, quantité-livrée)

= | ?
Livraison (<u>no-dépôt</u>, <u>code-j</u>, <u>date-liv</u>, quantité-livrée)
?
```

```
\pi [no-dépôt] (
\alpha [ no-dépôt -> dépôt2 , code-j -> code2] Livraison
* [code-j \neq code2 \wedge no-dépôt=dépôt2]
\pi [no-dépôt, code-j] Livraison )
```