Real analysis general exam, January 2020

- 1. Let μ be the Lebesgue measure on \mathbb{R} . For a Lebesgue measurable set $A \subset [0,1]$, is it true that
 - (a) $\mu(A) = \sup_{U \subset A, \ U \text{ open}} \mu(U)$? If true, prove this. If false, give a counterexample.
 - (b) $\mu(A) = \inf_{U \supset A.\ U \text{ open}} \mu(U)$? If true, prove this. If false, give a counterexample.
- 2. Find a polynomial P(x) of degree at most 3 such that $\int_{-1}^{1} |x^4 P(x)|^2 dx$ is minimal.
- 3. Let X be a compact metric space, and C(X) be the space of all real-valued continuous functions on X with the supremum norm. Assume that the subset $A \subset C(X)$ satisfies the following properties:
 - (algebra) For all $f, g \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{R}$ we have $\alpha f + \beta g \in \mathcal{A}$ and $fg \in \mathcal{A}$.
 - (separates points) For any $x \neq y$ from X there exists a function $f \in A$ such that $f(x) \neq f(y)$.

This question has two parts:

- (a) Show by example that \mathcal{A} need not be dense in C(X), explicitly checking all the properties of your example \mathcal{A} .
- (b) In order to conclude that \mathcal{A} is dense by Stone-Weierstrass Theorem, what additional condition(s) should be added?
- 4. Let μ be a measure on $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the Borel σ -algebra. Let $\mu(\mathbb{R}) = 1$. Next, let $\mathcal{F} \subset \mathcal{B}$ be the sub- σ -algebra of symmetric Borel sets, that is, \mathcal{F} generated by all intervals of the form (-a, a) with a > 0.

Let $f \in L^1(\mathbb{R}, \mathcal{B}, \mu)$. Find a function g such that:

- (a) $g \in L^1(\mathbb{R}, \mathcal{F}, \mu)$ (in particular, g is \mathcal{F} -measurable).
- (b) For all $E \in \mathcal{F}$ we have $\int_E g \, d\mu = \int_E f \, d\mu$.
- 5. Let μ be a finite measure on some measurable space (X, \mathcal{F}) .

Show that a sequence of \mathcal{F} -measurable functions f_n converges to a function f in measure if and only if $\int_X \min\{1, |f_n - f|\} \mu(dx) \to 0$ as $n \to +\infty$.