TP3 Control con modos flexibles

Elementos de matemática aplicada para aplicaciones tecnológicas Octubre 2024

Figura 1: Esquema del sistema.

Sea un satélite con momento de inercia I_s y paneles flexibles simétricos con momento de inercia individual $I_p = mL^2$, frecuencia cantiléver F_p y coeficiente de atenuación ζ_p

Diseñar un sistema de control LEAD-LAG que aplique al sistema un torque T para controlar el ángulo de rotación θ , con las siguientes especificaciones:

- Margen de fase mínimo a la frecuencia de crossover $\omega_{CO}=30^{\circ}$
- \blacksquare Atenuación mínima de modos flexibles: -6dB

Para un satélite con $I_s = 1069 \ kgm^2$ y considerando una demora $T_{delay} = 1s$ en el loop de control presentar los siguientes resultados:

- Sin incorporar filtros estructurales en el loop: ω_{CO} y ganancia DC máximas obtenida, respetando las condiciones anteriores de margen de fase y atenuación de los modos flexibles, para valores de F_p entre 0.1Hz y 1Hz, y $R_p = (2I_p)/I_s$ entre 0.1 y 0.5.
- \blacksquare Repetir lo anterior incorporando filtro estructural en el loop, especificando los parámetros del filtro: Tipo, orden, F_{corte} , DB atenuación.

Presentar los resultados en forma de tablas y gráficas ω_{CO} , K vs F_p , R_p . Presentar graficas de Bode (Margin) y Nichols:

Figura 2: Margin.

Figura 3: Nichols.

Tener en cuenta que $G[db] = 20log_{10}G[-]$ Ejemplo:

- \blacksquare Si debo bajar la curva $5db \to$ bajar la ganancia K en un factor $10^{-5/20} = 0{,}56$
- \blacksquare Si quiero subir la curva $5db \to {\rm aumentar}$ la ganancia H en un factor $10^{5/20} = 1{,}78$

Referencias:

- SATE.m
- CONT.m
- FILT.m
- SATE_FILT_CONT_F030_RM034_K317.m
- SATE_FILT_CONT_F010_RM034_K016.m
- SATE_FILT_CONT_F010_RM034_K300_FIL.m

Nota: para realizar el practico, solo necesitaran ajustar en cada corrida del *.m provisto los siguientes parámetros:

- FILTRO=... 0 No se usa filtro, 1 se usa filtro
- rm2=... (0.1 a 0.5) Relacion entre la inercia del apéndice flexible y la total del satelite
- f2=.., (0.1 a 1.0) Frecuencia cantiléver del apéndice en Hz;
- k=.... Ganancia del lazo de control; Solo tocar k, la kd se ajusta automáticamente.
- [N1, D1]=ellip(6,2.,10,1.5,'low','s'); Parametros del filtro : Orden, Ripple, Atenuación, ω_{corte}
- Sin filtro: Se barre rm2 y f2, varios pares de valores en el rango de valores propuestos y se ajusta k para lograr la mayor ω_{CO} posible que cumpla con los márgenes de ganancia y fase requeridos. Se tabula ω_{CO} logrado en función de rm2 y f2.
- Con filtro: Idem anterior, pero con la ayuda de poder incorporar un filtro, seleccionar iterando cual es el mejor orden y frecuencia de corte del filtro para maximizar la ω_{CO} que se puede lograr.