If the last inequality is strict, then there exists $\gamma > 0$ and a normalized $\hat{x} \in Fix((\lambda - i\alpha)\hat{R}(\lambda))$ such that

$$\gamma \leq \|\hat{y} - \hat{x}\|$$

for all $y \in Fix((\lambda - i\alpha)R(\lambda))$. Take a normalized sequence $(x_n) \in \hat{x}$. Then (x_n) has a convergent subsequence whence we may assume that $\lim_{n \to \infty} x_n = z$ exists in E . Thus $0 \neq z \in Fix((\lambda - i\alpha)R(\lambda))$. From this we obtain the contradiction

$$\gamma \le \|\hat{z} - \hat{x}\| = \lim \|z - x_n\| = 0$$
.

Consequently

dim Fix((
$$\lambda - i\alpha$$
)R(λ)) = dim Fix(($\lambda - i\alpha$)R(λ)).

Let $\{x_1,...,x_n\}$ be a base of $Fix((\lambda - i\alpha)R(\lambda))$ and choose $\{\phi_1,...,\phi_n\}$ in $Fix((\lambda - i\alpha)R(\lambda)')$ such that $\phi_k(x_j) = \delta_{k,j}$ (Lemma 1.6). Then

$$E = Fix((\lambda - i\alpha)R(\lambda)) \oplus (\bigcap_{j=1}^{n} ker\phi_{j})$$
,

where both subspaces on the right are $(\lambda - i\alpha)R(\lambda)$ -invariant and 1 is a pole of $(\lambda - i\alpha)R(\lambda)$ | Fix($(\lambda - i\alpha)R(\lambda)$) by the finite dimensionality of Fix($(\lambda - i\alpha)R(\lambda)$). Suppose 1 belongs to the spectrum of S where S is the restriction of $(\lambda - i\alpha)R(\lambda)$ to $\bigcap_{j=1}^n \ker \phi_j$. Then there exists a normalized sequence (γ_n) in $\bigcap_{j=1}^n \ker \phi_j$ such that

$$\lim_{n} \|(\lambda - i\alpha)R(\lambda)y_{n} - y_{n}\| = 0.$$

Therefore (y_n) has an accumulation point different from zero in

$$Fix((\lambda - i\alpha)R(\lambda)) \cap (\bigcap_{j=1}^{n} ker\phi_{j})$$
.

This contradiction implies that 1 does not belong to the spectrum of S . Since $Fix((\lambda - i\alpha)R(\lambda))$ is finite dimensional, it follows from general spectral theory that $(\lambda - i\alpha)^{-1}$ is a pole of $R(.,R(\lambda))$ for every λ . Thus (a) and (b) are proved. Assertion (c) follows from the resolvent equality as in the proof of [Greiner (1981), Proposition 1.2].