INTRODUÇÃO À PROGRAMAÇÃO LINEAR

FTL 118 - PO

REVISÃO

• Classificar as funções a seguir como lineares ou não lineares:

a)
$$24x_1 + 12x_2 = 10$$

b)
$$\ln(x_1) - x_2 + x_3 = 5$$

c)
$$x_1 x_2 + 10x_3 \le 40$$

d)
$$\frac{X_1X_2}{X_3}$$

e)
$$24x_1 + 12x_2 - 2x_3 \ge 24$$

f)
$$\frac{5}{x_1} + 10x_2 \le 10$$

g)
$$24x_1 + \frac{x_2}{2} = 8$$

REVISÃO

• Considerando que x representa as variáveis de decisão, classificar os problemas abaixo como Programação Linear (PL) ou não linear (PNL).

a) max
$$\sum_{j=1}^{10} 10x_j$$

sujeito a:
 $2x_1 - 5x_2 = 10$ (1)
 $x_1x_2 \le 50$ (2)
 $x_1, x_2 \ge 0$ (3)

d) max
$$3x_1 + 3x_2 - 2x_3$$

sujeito a:
 $6X_1 + \cos X_2 - X_3 \le 10$ (1)
 $\frac{X_2}{4} + X_3 \le 20$ (2)
 $X_1, X_2, X_3 \ge 0$ (3)

INTRODUÇÃO

• A **Programação Linear (PL)**, é uma das principais ferramentas da PO, e sua aplicação está cada vez mais difundida.

INTRODUÇÃO

- Em um problema de PL:
 - A função objetivo e todas as restrições do modelo são representadas por funções lineares
 - As variáveis de decisão devem ser todas contínuas
 - O objetivo consiste em maximizar ou minimizar determinada função linear de variáveis de decisão, sujeita a um conjunto de restrições representadas por equações ou inequações lineares, incluindo as de não negatividades das variáveis de decisão.

MODELO DE PL DE DUAS VARIÁVEIS

- A Reddy Mikks produz tintas para interiores e exteriores com base em duas matérias-primas, M1 e M2. A tabela abaixo apresenta os dados básicos do problema:
- Uma pesquisa de mercado indica que a demanda diária de tintas para interiores não pode ultrapassar a de tintas para exteriores por mais de I tonelada. Além disso, a demanda máxima diária de tinta para interiores é 2t.

	Toneladas de matéria prima por tonelada de		Disponibilidade máxima diária	
	Tinta para exteriores	Tinta para interiores	(ton)	
Matéria-Prima, M I	6	4	24	
Matéria-Prima, M2	I	2	6	
Lucro por tonelada (\$1000)	5	4		

O MODELO DE PO

- Três componentes básicos:
 - Variáveis de decisão que procuramos determinar
 - Objetivo (meta) que precisamos otimizar (maximizar ou minimizar)
 - **Restrições** que a solução deve satisfazer.

VARIÁVEIS DE DECISÃO

• xj: toneladas de tinta j produzidas diariamente (j = I se tinta para exteriores e 2 se tinta para interiores)

PARÂMETROS

- Mij → Quantidade de matérias primas i para a tinta j
- Dij → Disponibilidade máxima diária da matéria prima i para a tinta j
- Aj → Demanda máxima diária para tinta j
- Lj → Lucro por tonelada da tinta j

FUNÇÃO OBJETIVO

- Para construir a função objetivo, observe que a empresa quer *maximizar* o lucro total diário para as duas tintas. Dado que os lucros por tonelada de tintas para exteriores são de 5 e 4 (mil) dólares, respectivamente:
 - Lucro total da tinta para exteriores: 5 x_1 (mil) doláres
 - Lucro total da tinta para interiores: 4 x_1 (mil) doláres

$$Maximizar z = 5x_1 + 4x_2$$

RESTRIÇÕES

 As restrições limitam a utilização da matéria-prima e a demanda do produto. As restrições sobre a matéria-prima são expressas em palavras como:

$$\binom{Utiliza \tilde{\varsigma} \tilde{a}o \ de \ uma \ matéria - prima}{para \ ambas \ as \ tintas} \leq \binom{M \tilde{a}xima \ disponibilidade}{de \ matérias - prima}$$

• Logo:

$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

RESTRIÇÕES

• A primeira restrição relacionada à demanda estipula que o excesso da produção diária de tinta para interiores em relação à tinta para exteriores, não deve ultrapassar 1 t:

$$x_2 - x_1 \le 1$$

 A segunda restrição relacionada à demanda estipula que a demanda diária máxima de tinta para interiors está limitada a 2 t:

$$x_2 \leq 2$$

RESTRIÇÕES

• Uma restrição implícita (ou "subentendida") é que as variáveis, xj, não podem assumir valores negativos. Logo as restrições de **não-negatividade** são:

$$x_1, x_2 \ge 0$$

MODELO COMPLETO

• Função Objetivo:

$$Maximizar z = 5x_i + 4x_2$$

• Sujeito a:

$$6x_{1} + 4x_{2} \leq 24$$

$$x_{1} + 2x_{2} \leq 6$$

$$x_{2} - x_{1} \leq 1$$

$$x_{2} \leq 2$$

$$x_{1}, x_{2} \geq 0$$

EXEMPLO DE PROTÓTIPO

- A Wyndor Glass Co. fabrica produtos de vidro de alta qualidade, entre os quais janelas e portas de vidro. A empresa possui três fábricas industriais. As esquadrias de alumínio e ferragens são feitas na fábrica I, as esquadrias de madeira são produzidas na fábrica 2 e, finalmente, a fábrica 3 produz o vidro e monta os produtos.
- Em consequência da queda nos ganhos, a direção decidiu modernizar a linha de produtos da empresa. Produtos não rentáveis estão sendo descontinuados, liberando capacidade produtiva para o lançamento de dois novos produtos com grande potencial de vendas.

EXEMPLO DE PROTÓTIPO

A EQUIPE DE PO DESCOBRIU QUE A NECESSIDADE DA GERÊNCIA É A DE MAXIMIZAR OS LUCROS DA EMPRESA POR LOTE

	Tempo de Produção por Lote (em horas)		Tempo de Produção Disponível por Semana
Fabrica	Produto I	Produto 2	(em horas)
	I	0	4
2	0	2	12
	3	2	18
ucro por ote	3	5	

OUTRAS FORMAS (MINIMIZAÇÃO)

Função Objetiva

$$\min z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

Restrições de Desigualdade

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b_i$$

• Restrições de Igualdade

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b_i$$

Não Negatividade

$$x_1, x_2 \dots x_n \ge 0$$

TERMINOLOGIA PARA SOLUÇÕES DE MODELOS

- A convenção em programação linear para o termo solução é bem diferente.
- Qualquer especificação de valores para as variáveis de decisão é chamada de solução, independentemente de ela ser desejável ou admissível.
 - Uma solução viável é aquela para a qual todas as restrições são satisfeitas
 - Uma solução inviável é aquela para a qual pelo menos uma das restrições é violada.
 - A região de soluções viáveis é o conjunto de todas as soluções viáveis
 - Uma solução **ótima** é uma solução viável que tem o valor mais favorável da função objetivo.

TERMINOLOGIA PARA A SOLUÇÃO DE MODELOS

- O valor mais favorável é o maior valor se a função objetivo tiver de ser maximizada ao passo que será o menor valor caso ela deva ser minimizada.
- Qualquer problema tendo soluções ótimas múltiplas terá um número infinito delas,
 cada uma com o mesmo valor ótimo da função objetivo.
- Outra possibilidade é que um problema não tenha nenhuma solução ótima:
 - Ela não tem nenhuma solução viável
 - As restrições não impedem que se aumente indefinidamente o valor da função objetivo (z) na direção favorável.

HIPÓTESES DA PROGRAMAÇÃO LINEAR

- Todas as hipóteses de programação linear estão, na realidade, implícitas na formulação do modelo apresentado.
- Em particular, do ponto de vista matemático, as hipóteses simplesmente são que o modelo deve ter uma função objetivo linear sujeita a restrições lineares.
- Do ponto de vista de modelagem, essas propriedades matemáticas de um modelo de programação linear implicam que certas hipóteses têm de ser satisfeitas em relação às atividades e ao dados do problema que está sendo modelado, incluindo hipóteses sobre o efeito de se variar os níveis de atividades.

HIPÓTESES - PROPORCIONALIDADE

- Proporcionalidade é uma hipótese que se refere tanto à função objetivo quanto às restrições funcionais:
- A contribuição de cada atividade ao valor da função objetiva Z é proporcional ao nível de atividade xj conforme representado pelo termo cjxj na função objetivo.
- A contribuição de cada atividade do lado esquerdo de cada restrição funcional é proporcional ao nível de atividade xj como representado na restrição.

HIPÓTESES - ADITIVIDADE

- Embora a hipótese da proporcionalidade descarte qualquer expoente que não seja I, ela não proíbe termos de produto virtual (termos envolvendo o produto de duas ou mais variáveis). A hipótese da aditividade descarta efetivamente essa última possibilidade, conforme sinterizado a seguir:
- Toda função em um modelo de programação linear é a soma das contribuições das respectivas atividades

HIPÓTESES - DIVISIBILIDADE

- As variáveis de decisão em um modelo de programação linear podem assumir quaisquer valores, inclusive valores não-inteiros, que satisfaçam as restrições funcionais e de não-negatividade.
- Logo, essas variáveis não são restritas apenas a valores inteiros.
- Cada variável de decisão representa o nível de alguma atividade, supõe-se que as atividades possam ser desenvolvidas em níveis fracionários.

HIPÓTESES - CERTEZA

• O valor atribuído a cada parâmetro de um modelo de programação linear é assumido como uma constante conhecida.

HIPÓTESE

• Por essa razão é normalmente importante realizar a **análise de sensibilidade** após uma solução ter sido classificada como ótima segundo os valores de parâmetros assumidos.

SOLUÇÃO DE UM MODELO DE MINIMIZAÇÃO

- A ozark farms usa no mínimo 800lb de ração especial por dia. Essa ração especial é uma mistura de milho e soja com as composições elencadas na tabela:
- Os requisitos nutricionais da ração especial são de no mínimo 30% de proteína e de no máximo 5% de fibra. A Ozark Farms quer determinar a mistura que gera a ração de mínimo custo diário.

Ração	lb por l raçã	Custo (\$/lb)	
	Proteína	Fibra	
Milho	0.09	0.02	0.3
Soja	0.6	0.06	0.9

PLANEJAMENTO DE SESSÕES DE RADIOTERAPIA

- Mary acaba de receber um diagnóstico de câncer em um estágio relativamente avançado.
 Mais especificadamente, ela tem um tumor maligno na área da bexiga (uma "lesão integral da bexiga").
- Mary está por receber o tratamento médico mais avançado mais disponível oferecendolhe todas as chances disponíveis de sobrevivência. Esse tratamento incluirá radioterapia.

PLANEJAMENTO DE SESSÕES DE RADIOTERAPIA

Área	Fração da Entrada A por Área	bsorvida	Restrição sobre a dosagem Média Total, em
	Fluxo I	Fluxo 2	kilorads
Anatomia Saudável	0.4	0.5	Minimizar
Tecidos Críticos	0.3	0.1	<=2.7
Região do Tumor	0.5	0.5	=6
Núcleo do Tumor	0.6	0.4	>=6

 Formulação como um Problema de Programação Linear: as duas variáveis de decisão x1 e x2 representam, respectivamente, a dose (em kilorads) no ponto de entrada para os fluxos 1 e 2. Pelo fato de a dosagem total atingindo a anatomia saudável ter de ser minimizada, façamos que Z simbolize essa quantidade. Os dados abaixo podem ser então usados diretamente para formular o seguinte modelo de PL.

EXERCÍCIOS

• Uma empresa fabrica dois produtos A e B. O volume de vendas de A é de no mínimo 80% do total de vendas de ambos (A+B). Contudo, a empresa não pode vender mais do que 100 unidades de A por dia. Ambos os produtos usam uma matéria-prima cuja disponibilidade máxima diária é 240 lb. As taxas de utilização da matéria-prima são 2 lb por unidade de A e 4lb por unidade de B. Os lucros unitários para A e B são \$20 e \$50, respectivamente. Determine o mix de produto ótimo para a empresa.

EXERCÍCIOS

- Uma linha de montagem que consiste em três estações consecutivas produz dois modelos de rádio: Hi-Fi-I e Hi-Fi-2. A tabela dá os tempos de montagem para as três estações de trabalho.
- A manutenção diária para as estações 1, 2 e 3 consome 10%, 14% e 12%, respectivamente de no máximo de 480 minutos disponíveis para cada estação por dia. Determine o mix ótimo de produtos que minimizará as horas ociosas (ou não utilizadas) nas três estações de trabalho.