1. Prove the following equations have exactly one real solution in the given interval (do not find the root)

Calculus I

- (a) $\cos x = e^x$ in the interval [-1, 1].
- (b) $\ln x = \tan x$ in the interval (3, 4.5)
- **2.** Given $f(x) = \sin 2x$ in $[0, \frac{\pi}{2}]$
 - (a) Verify *f* meets the conditions of the Mean Value Theorem.
 - (b) Find the value(s) of *c* that satisfies the conclusion of the Mean Value Theorem.
- **3.** For $f(x) = |x^3 + 1|$ defined on the entire real number line
 - (a) Find all Critical Points
 - (b) Find all Inflection Points
 - (c) Use the First Derivative to find any max/mins.
 - (d) Use the Second Derivative to find any max/mins.
- **4.** Graph $f(x) = \frac{4x}{x^2 + 1}$. Don't use a table of values and show all work.
- **5.** Given f is a continuous function and f(0) = 0 use the following table to graph the function f

x	$-\infty$	1		4		6	+	-∞
f'(x)	+	i	_	i C	_	i	+	
		 		l I		1 1		
f''(x)	_		_	l l	+	1	+	