Homework 2 (Due Date: Thursday, Jan 31st In Class)

Consider the circuit in Figure P3.44. The transistor parameters for M_1 are $V_{TN}=0.4$ V and $k_n^{'}=120\,\mu\,\text{A/V}^2$, and for M_2 are $V_{TN}=-0.6$ V, $k_n^{'}=120\,\mu\,\text{A/V}^2$, and W/L=1. Determine the W/L ratio of M_1 such that $\upsilon_O=0.025\,\text{V}$ when $\upsilon_I=3\,\text{V}$.

Figure P3.44

Problem 3.47

Consider the circuit in Figure P3.47. (a) The nominal transistor parameters are $V_{TN}=0.6~{\rm V}$ and $k_n^{'}=120~\mu\,{\rm A/V}^2$. Design the width-to-length ratio required in each transistor such that $I_{DQ}=0.8~{\rm mA},~V_1=2.5~{\rm V},$ and $V_2=6~{\rm V}.$ (b) Determine the change in the values of V_1 and V_2 if the $k_n^{'}$ parameter in each transistor changes by (i) +5 percent and (ii) -5 percent. (c) Determine the values of V_1 and V_2 if the $k_n^{'}$ parameter of M_1 decreases by 5 percent and the $k_n^{'}$ parameter of M_2 and M_3 increases by 5 percent.

Figure P3.47

Problem 3.53

For the two-input NMOS NOR logic gate in Figure 3.46 in the text, the transistor parameters are $V_{TN1}=V_{TN2}=0.6$ V, $\lambda_1=\lambda_2=0$, and $k_{n1}=k_{n2}=120\,\mu\,\text{A/V}^2$. The drain resistor is $R_D=50~\text{k}\,\Omega$. (a) Determine the width-to-length ratios of the transistors so that $V_O=0.15~\text{V}$ when $V_1=V_2=5~\text{V}$. Assume that $(W/L)_1=(W/L_2)$. (b) Using the results of part (a), find V_O when $V_1=5~\text{V}$ and $V_2=0.2~\text{V}$.

The transistor in the circuit in Figure P3.65 has parameters $I_{DSS} = 8$ mA and $V_P = 4$ V. Design the circuit such that $I_D = 5$ mA. Assume $R_{in} = 100$ k Ω . Determine V_{GS} and V_{SD} .

Figure P3.65

The GaAs MESFET in the circuit in Figure P3.71 has parameters $k = 250 \,\mu\text{A/V}^2$ and $V_{TN} = 0.20 \,\text{V}$. Let $R_1 + R_2 = 150 \,\text{k}\,\Omega$. Design the circuit such that $I_D = 40 \,\mu\text{A}$ and $V_{DS} = 2 \,\text{V}$.

Figure P3.71