Quantum Computing: An Intro

Heman Gandhi

Rutgers – HackRU RnD hemang@ndhi.ninja

November 30, 2018

UwU, What This?

This is an intro to quantum computing. So what I'll be doing is going over brief, sometimes not very technical answers to the following (in chronological order):

- What is quantum computing?
- What are some questions people are asking about it?
- Some Math
- Where can I go to mess with quantum computing?

What is Quantum Computing?

(See [?] for more.)

To a Child:

Computers represent computers as coins with "heads" and "tails". A quantum computer also lets you rotate the coin.

To a Teen:

Superposition is like trying to tell if a coin if heads or tails while it's being tossed.

Entanglement is when two coins are forced to have the same state.

How to use this?

This is a subset:

- Fast factoring (Shor's Algorithm)
- Computational (micro)-biology
- Quantum Machine Learning
- Quantum Cryptography

How to Measure the Benefit?

There is a field called Quantum complexity theory. We know that quantum computers are at most exponentially faster from this. We also get that we can solve circuit satisfiability in a square-root of the time (with an error bound).

Searches are also theorized to be in a square-root of the time. [?] Only recently can we verify whether a quantum computer even used quantum magic to compute. [?]

Open Questions

Some of the open questions are:

- How to implement...anything?
- What should programming languages look like?
- How to scale quantum computers to match the requirements?

There are many, many more!

More rigorously...

This is why I used LaTeX. Much of what follows about how Q-bits work is thanks to [?].

Definition

We write bits as vectors. So $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is the 0 bit, written in "Dirac notation" as $|0\rangle$.

Any guesses about representing a 1-bit?

Classical Systems

Bit	As a Vector	Dirac Notation
1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	$ 1\rangle$
0	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$ 0\rangle$

Table: The Classical Bit States

Mnemonic: the Dirac notation gives you the index of the ${\bf 1}$ in the vector.

Matrix Multiplication as Bit Operators

Bit operations can be thought of as certain matrices.

Bit Operation	Matrix
Identity	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Set to 0	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$
Set to 1	$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

Table: The Classical Unary Bitwise Operators

What does invertibility mean here?

Definition (Tensor Product of vectors)

$$\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} \otimes \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} x_0 \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix} \\ \vdots \\ x_m \begin{pmatrix} y_0 \\ \vdots \\ y_m \end{pmatrix} \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 6 \\ 8 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \\ 8 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} = ????$$

Using Tensors

You can treat multiple bits as tensors of single bits:

$$ullet$$
 $|2
angle=|1,0
angle=egin{pmatrix}0\\1\end{pmatrix}\otimesegin{pmatrix}1\\0\end{pmatrix}=egin{pmatrix}0\\0\\1\\0\end{pmatrix}$

$$ullet$$
 $|4
angle=|1,0,0
angle=egin{pmatrix}0\0\1\end{pmatrix}\otimesegin{pmatrix}1\0\end{pmatrix}\otimesegin{pmatrix}1\0\0\end{pmatrix}$

Note that the mnemonic still works.

CNOT: A Building Block

Takes in 2 bits. If the first bit is 1, flip the second. Leave the first bit alone.

Here is the matrix:

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Example:
$$C|1,0\rangle = C|2\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = |3\rangle = |1,1\rangle.$$

This is an important building block.

Q-Bits

- The vectors we've been messing with are just special Q-bits. Any vectors $\binom{a}{b} \in \mathbb{C}^2$ with $|a|^2 + |b|^2 = 1$ work.
- This is superposition. Each component is the square root of the probability of that component "collapsing" to a 1.
- You can see this as a unit circle for most of our purposes. The axis the bit is closer to is the bit it's more likely to collapse to.
- We can prove that for any vectors $u, v, |u \otimes v| = |u||v|$. This means that tensoring Q-Bits gives us valid Q-Bits.

Hadamard Gate

Takes a 0 or 1 and puts it in perfect superposition. This is a 45 degree reflection.

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

This is self-inverse, so you can go from prefect super-position to classical bits too.

Composition

So we have X as the bit flip and H as the Hadamard, giving us our operators. This results in the below (thanks to [?]):

Figure: The Map for Moving Q-Bits around

IBM's API

Qiskit is bae.

You write QASM (Quantum-ASM) files and Qiskit runs them on a local simulator or online on a real quantum computer.

There is an online interface: and it's free for like 5 runs on a Quantum computer.

The Deutsch Oracle

Let $f: \{0,1\} \to \{0,1\}$ (so f is a bit operator). How do we know if it's constant? How can you do it on a standard computer?

Bit Operation	Matrix
Identity	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Not	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Set to 0	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$
Set to 1	$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

The Deutsch Oracle: the Quantum Advantage

Let $f \colon \{0,1\} \to \{0,1\}$ (so f is a bit operator). How do we know if it's constant?

One query? He superpose.

The Deutsch Oracle: Reversibility

f(x) = 0 is not reversible.

Reversibility Hack

The hack: operate on two bits: $g(|0,x\rangle) = |f(x),x\rangle$ The idea is that the 0 bit is the output wire and x the input.

This g is reversible. (Only proof I know: matrices.) Asking about g is equivalent to asking about f, but now you can use quantum operators.

The Deutsch Oracle: What the Constant Functions Look Like

Constant 0

nothing on either wire.

Constant 1

X (the flip) on the output wire.

The Deutsch Oracle: What the Variable Functions Look Like

Identity

output = CNOT(input, output)

Negation

output = Not(CNOT(input, output))

The Deutsch Oracle: Solution

Solution

input = Hadamard(second bit of g(Hadamard(1), Hadamard(1)) input is 1 iff g constant.

Figure: The Map for Moving Q-Bits around

The Deutsch Oracle: How the CNOT Works

$$C\left(\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}\right) = C\begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 1/2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \left(\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}\right)$$

The Deutsch Oracle: Why Care?

It turns out you can do this for functions with n inputs. Shor's algorithm uses this to factor.

References

WIRED (2018)

Quantum Computing Expert Explains Once Concept in 5 Levels of Difficulty *youtube.com* https://www.youtube.com/watch?v=OWJCfOvochA

Microsoft Research (2018)

Quantum Computing for Computer Scientists youtube.com https://youtu.be/F_Riqjdh2oM

Alan Tatourian (2018)

Quantum Computing for Computer Scientists

tatourian.blog https://tatourian.blog/2018/09/01/
quantum-computing-for-computer-scientists/

Richard Cleve

An Introduction to Quantum Complexity Theory

University of Calgary

https://cds.cern.ch/record/392006/files/9906111.pdf

Erica Klarreich

Graduate Student Solves Quantum Verification Problem

Quanta Magazine https://www.quantamagazine.org/

The End