Lab 1 Report: 5-bit R-2R Ladder DAC

Name: Jameson Stanley Course: VLSI Design

Date: September 25, 2025

1. Introduction

The goal is to Design a 5-R2R Ladder Dac utilizing $10k\Omega$ resistors in the Electric VLSI design software and preform simulations to confirm the functionality of the design. Then a physical layout can then be implemented using n-well resistors.

2. Schematic and Design

2.1 5-bit DAC Schematic

2.3 Delay Analysis

3. Layout

3.1 N-Well Resistor Design

To find the dimensions required for a $10 \mathrm{k}\Omega$ the equations $R = R_{sq} * \frac{L}{W}$ can be used knowing that $R_{sq} = 855 \frac{\Omega}{sq}$ and using a chosen width of 14 μ m to find the length required for a $10 \mathrm{k}\Omega$ n-well resistor.

$$R = R_{sq} * \frac{L}{W}$$

$$10k\Omega = 855 \frac{\Omega}{sq} * \frac{L}{14\mu m}$$
$$\frac{10k\Omega}{855 \frac{\Omega}{sq}} * 14\mu m = L$$
$$L \approx 16$$

3.2 DAC Layout

3.4 DRC & LVS Results

Passed DRC & LVS

6. References

Electric VLSI

List all references used (textbook, lab handouts, PDK documentation, etc.).