Optimizacija i mašinsko učenje

Odnos optimizacije i mašinskog učenja

 Matematička optimizacija i mašinsko učenje su dve veoma sofisticirane napredne softverske tehnologije za analitiku koje se koriste u velikom broju aplikacija, što otežava njihovo brzo i sažeto definisanje i povlačenje razlika između njih.

Sličnosti između optimizacije i mašinskog učenja

- Matematička optimizacija i mašinsko učenje zapravo imaju mnogo značajnih sličnosti, kao što su:
 - 1. Oni su i popularni i moćni alati za rešavanje problema pomoću elemenata veštačke inteligencije, koje organizacije u brojnim različitim industrijama sada koriste za upravljanje složenošću i za postizanje boljih poslovnih rezultata.
 - 2. Oba rade na podacima i zahtevaju velike računarske resurse, i oba su napredovala i zahvaljujući napretku u računarskim performansama, kao i u dostupnosti i kvalitetu podataka koji je nastupio tokom prethodnih decenija.
 - 3. U osnovi, oba su zasnovana na ozbiljnoj matematici i predstavljaju sjajne primere kako se matematika zajedno sa podacima i računarima može koristiti za rešavanje složenih poslovnih problema.

Razlike između optimizacije i mašinskog učenja

- Međutim, kada su u pitanju njihove osnovne karakteristike i oblasti primene, uočavaju se neke važne razlike:
 - 1. Tip analize
 - 2. Oblasti primene
 - 3. Prilagodljivost
 - 4. Zrelost

Razlike između optimizacije i mašinskog učenja – tip analize

- Uopšteno govoreći, postoje tri različite vrste naprednih alata za analitiku:
 - deskriptivni (pružaju uvid u ono što se dešavalo u prošlosti ili se trenutno dešava)
 - prediktivni (omogućavaju da se predvidi šta će se dogoditi u budućnosti)
 - preskriptivni (pomažu da se odluči šta treba uradit).
- Mašinsko učenje vrhunski alat za prediktivnu analitiku koji je danas dostupan - sposoban je da obradi ogromne količine istorijskih "velikih podataka" da bi automatski identifikovao obrasce, učio iz prošlosti i napravio predviđanja o budućnosti.
- Matematička optimizacija vodeća preskriptivna analitička alat na tržištu koristi najnovije dostupne podatke, matematički model poslovnog okruženja i rešavač zasnovan na algoritmu da generiše rešenja za najizazovnije poslovne probleme radi donošenja najboljih mogućih poslovnih odluka.

Razlike između optimizacije i mašinskog učenja – oblasti primene

- Mašinsko učenje se koristi u naizgled beskrajnom spektru aplikacija od kojih mnoge dotiču svakodnevni život, uključujući prepoznavanje slika i govora, preporuke proizvoda, virtuelne lične asistente, otkrivanje prevara i samovozeće automobile.
- Preduzeća koriste matematičku optimizaciju širom poslovnog spektra u širokom spektru aplikacija za rešavanje velikih poslovnih problema, kritičnih za misiju preduzeća: planiranje proizvodnje, raspoređivanje radne snage, distribuciju električne energije i rutiranje otpreme.
- Kako su mnoge aplikacije za mašinsko učenje okrenute potrošačima i
 postale su deo našeg svakodnevnog života, ova tehnologija je vidljivija i
 poznatija od matematičke optimizacije. Međutim, uticaj obe tehnologije se
 može osetiti u gotovo svakoj industriji i u praktično svakom aspektu našeg
 današnjeg sveta.

Razlike između optimizacije i mašinskog učenja – prilagodljivost

- Pošto je matematička optimizacija zasnovana na detaljom matematičkom modelu (koji funkcioniše kao digitalni blizanac operativnog okruženja) i pošto radi na najnovijim podacima, može se lako prilagoditi promenljivim uslovima i pružiti vidljivost i agilnost koji su potrebni da se efikasno reaguje na poremećaj.
- Aplikacije za mašinsko učenje, koje se oslanjaju na istorijske podatke, često pate od onoga što se zove "zanošenje modela", tj. činjenicu da modeli mašinskog učenja gube moć predviđanja zbog promena u radnom okruženju i podacima. Vremenom, a posebno kada se susreću sa iznenadnim promenama, predviđanja mašinskog učenja postaju manje tačna. Kada se to dogodi, modeli mašinskog učenja moraju da se obuče za nove podatke.

Razlike između optimizacije i mašinskog učenja – prilagodljivost

 Treba istaći da robusnost modela matematičke optimizacije ima svoju cenu, jer ovi modeli obično zahtevaju veće investicije u vremenu i trudu za izgradnju modela, nego što je sto slučaj kod mašinskog učenja.

Razlike između optimizacije i mašinskog učenja – zrelost

- I matematička optimizacija i mašinsko učenje imaju dugu i slavnu istoriju. Početne inkarnacije ovih tehnologija pojavile su se sredinom 20. veka, dok su mnoge osnovne tehnike prvi put razvijene pre nekoliko stotina godina.
- lako su obe tehnologije čvrsto ustanovljene uspostavljene, one su u različitim fazama svog životnog ciklusa.
 - Matematička optimizacija je prošla kroz ono što se po Gartner-u naziva "vrhunac naduvanih očekivanja" ranih 1970-ih kada su, podstaknuti nizom uspeha, praktičari verovali da se matematička optimizacija može koristiti za rešavanje ogromnog spektra realnih problema.
 - Potom je pala u "razočarenje" u kasnim 1970-im kada tehnologija nije uspela da dostigne popularnost.
 - Na kraju, ona se smestila u "plato produktivnosti" 1990-ih i sada je matematička optimizacija dokazana tehnologija koju široko primenjuju kompanije u različitim industrijama.

Razlike između optimizacije i mašinskog učenja – zrelost

- lako su obe tehnologije čvrsto ustanovljene uspostavljene, one su u različitim fazama svog životnog ciklusa.
 - Prema Gartner-u, mašinsko učenje, koje je sada suštinski sveprisutno u poslovnom svetu, sada dostiže "vrhunac naduvanih očekivanja".
 - Stoga Gartner predviđa da se u narednim godinama može pojaviti osećaj razočaranja kada mašinsko učenje ne bude u stanju da ispuni projektovana velika očekivanja.
 - Međutim, sigurno je da će taj pristup postići široku tržišnu održivost i veliku vrednost
- Može se zaključiti da će i matematička optimizacija i mašinsko učenje imati trajni i sve veći uticaj na svet u kome živimo u godinama koje dolaze, i da će preduzeća nastaviti da pronalaze inovativne načine za korišćenje koriste ovih alate veštačke inteligencije kako bi se uhvatila u koštac sa svojim najvažnijim poslovnim izazovima.

Neke od primena optimizacije

Applying LP and NLP to optimal radiation therapy.

How to set prices.

Photo courtesy of epSos.de on Flickr. License CC BY.

Neke od primena optimizacije

Neke od primena optimizacije

Optimal strategies against adversaries.

Photo courtesy of Curtis Perry on Flickr.

How to solve some challenging puzzles

