Reinforcement Pre-Training (arxiv)

Key Highlights

問題

- 這篇論文旨在解決什麼問題 ? 論文針對在大語言模型(LLM)訓練中現行強化學習(RL)應用的可擴展性和通用性挑戰。現有的 RL 方法,如 RLHF 倚賴於昂貴的人類偏好數據且容易受到獎勵作弊的影響,而 RLVR 則受限於已註解的可驗證答案數據稀缺性,限制其應用於領域特定的微調,而非通用的預訓練。
- 現有的方法及其局限性是什麼 ? 現有方法包括: (1) 用於預訓練的標準下一個標記預測,學習表面上的標記層次關聯; (2) RLHF,它昂貴且容易受到獎勵作弊; (3) RLVR,受限於已註解數據稀缺性。這些方法未能在可擴展的自我監督預訓練與強化學習的強大能力之間架起橋梁以供通用應用。

解決方案

- 這篇論文提出了什麼解決方案 ? 論文提出了強化預訓練(RPT),將下一個標記預 測重構為使用 RL 訓練的推理任務。模型通過正確預測下一個標記獲得可驗證獎 勵,將大量未註解文本數據轉化為巨大的通用 RL 數據集,而不需要外部註解。
- 此理念受到了什麼啟發?是否受其他論文影響? 該方法基於測試時間擴展的概念, 並結合訓練時間計算擴展。它受 RLVR 方法啟發,但將其延伸至利用大量網頁文本 語料庫,而非僅限於領域特定註解數據集。
- **什麼理論基礎支持該方法?** RPT 使用前綴匹配獎勵系統,具有基於規則的驗證信號,減少獎勵作弊的風險。該方法通過鏈式思維過程鼓勵下一個標記推理模式,促進深度理解而非記憶,並實現訓練時間的推理擴展應用。

實驗

- 實驗表現如何? RPT-14B 在所有難度級別上都比基線具有更高的下一個標記預測 準確性。其性能與 R1-Distill-Qwen-32B(顯著更大的模型)相匹配,並顯示出 favorable 的擴展特性,R² 值達到 0.989-0.997。在下游任務上,RPT-14B 在 SuperGPQA 和 MMLU-Pro 基準上超越了 14B 和 32B 的基線。
- 此方法有哪些局限性或假設?實驗主要在14B參數模型上進行,預訓練語料庫主要包括數學文檔,而 RPT 訓練是在推理模型而非標準基本語言模型上初始化的。該方法需要仔細的標記層次數據篩選以專注於具有挑戰性的預測。

創新

• 這篇論文的主要或新穎發現是什麼?主要創新在於將下一個標記預測轉化為可驗證的推理任務,將 RL 擴展至網頁文本語料庫。論文展示了在預訓練期間鼓勵推理會導致不同的推理模式(假設生成增加161.8%,推論增加26.2%),並建立了基於強化學習預訓練的 favourable 擴展定律。

評論/批評

- 這篇論文有什麼局限性 ? 範圍僅限於數學領域和比較小的模型大小。倚賴篩選機制識別"具有挑戰性"的標記可能會引入偏差。從已具推理能力的模型初始化使得改善程度來自 RPT 還是原模型起點不甚明確。
- 論文是否有效證實其主張? 論文提供了堅實的實證證據,顯示其在各基準上均有一致改善並具備明確擴展趨勢。然而,評估在領域範圍上較窄,且比較基線可以更為全面。為什麼在預訓練期間推理應該提高性能的理論理由可以更強。

Comprehensive Analysis

Title

- 我注意到您只提供了標題「強化學習預訓練」,但沒有提供該論文部分的實際內容。
- 為了給您一個有意義的摘要,我需要該部分的實質內容——例如方法、發現、實驗 設置或討論的理論框架。
- 您能否分享您想要我總結的部分的實際內容?
- 一旦您提供了正文內容,我會很樂意給您一個簡明的摘要,涉及該機器學習論文部 分討論的關鍵點、方法和發現。

Authors

組織部分摘要

- 本節列出了機器學習/深度學習研究論文的作者及其機構。作者包括:
 - 董慶秀 (微軟研究院, 北京大學)
 - · **董力** (微軟研究院)
 - 唐堯 (微軟研究院)
 - · 葉天柱 (微軟研究院, 清華大學)
 - · 孫煜濤 (微軟研究院, 清華大學)
 - · **隋志芳** (北京大學)
 - · **魏福如** (微軟研究院)
- 該研究是微軟研究院與中國頂尖大學(北京大學 和 清華大學)之間的合作。
- 星號 (*) 可能表示前兩位作者的貢獻相等。
- 提供了項目網址 https://aka.ms/GeneralAI,表明該工作與通用人工智能研究有關。

Abstract

- 本論文介紹了強化預訓練(RPT),這是一種將強化學習與語言模型預訓練結合的新方法。
- 其關鍵創新在於將標準的下一個詞預測任務重新框定為一個強化學習問題,模型將因正確預測而獲得獎勵。

主要貢獻: - **可擴展的RL方法**:使用大量文本數據進行通用目的的強化學習訓練,而不是需要特定領域的標註數據集。 - **性能提升**:通過基於強化學習的推理激勵來提高下一個詞預測的準確性。 - **堅實的基礎**:為後續的強化微調創造了更好的預訓練模型。 - **擴展效益**:證明計算量的增加始終能改善性能。

• 該工作將RPT視為一個有前途的新范式,通過在基礎的下一個詞預測任務中利用強化學習原則來擴展語言模型的預訓練。

Introduction

摘要

• 這個介紹展示了一個稱為**強化預訓練(Reinforcement Pre-training, RPT)** 的新穎訓練模式,它結合了傳統下一詞預測的可擴展性與強化學習的原則。

問題背景:-當前的大型語言模型(LLMs)的強化學習方法面臨限制:強化學習的人類反饋(RLHF)需要昂貴的人類反饋且容易獎勵作弊,而強化學習的值評估(RLVR)則受限於稀少的標註數據。-現有的方法主要用於微調而非全域預訓練。

主要創新: - RPT將標準的下一詞預測重新定義為一個推理過程,模型必須推理為什麼特定的詞應該出現在下一個,並基於與語料庫中真實標註詞的預測正確性獲得內在獎勵。

主要優勢: 1. **可擴展且全域適用**:使用與傳統預訓練相同的大量未標註文本數據。 2. **抗獎勵作弊**:採用基於規則的簡單獎勵機制(預測正確性)。 3. **增強理解**:促進推理而非記憶,從而更好地泛化。 4. **計算效率**:在訓練期間為每一步預測分配更多的"思考"。

聲稱結果:-提高下一詞預測的準確性。-為後續的強化學習微調提供更好的基礎。-隨著計算量的增加,具備良好的可擴展屬性。-增強在下游任務中的零樣本表現。

• 該論文將RPT定位為一個有前景的新模式,將自監督預訓練與強化學習相結合,以 更有效地訓練大型語言模型。

"In this work, we introduce reinforcement pre-training (RPT), a novel paradigm that bridges the gap between scalable self-supervised pre-training and the power of reinforcement learning. RPT reframes the fundamental next-token prediction task as a next-token reasoning process."

在這項研究中,我們介紹了強化預訓練(RPT),這是一個新穎的範式,彌合了可擴展的 自我監督預訓練與強化學習之間的鴻溝。RPT 將基本的下一個標記預測任務重新框架為 下一個標記推理過程。

"For any given context in a pre-training corpus, the model is incentivized to reason about the subsequent token before predicting it. It receives a verifiable, intrinsic reward based on the correctness of its prediction against the ground-truth next token from the corpus itself."

對於預訓練語料庫中的任何給定上下文,模型被激勵在預測前對後續標記進行推理。它根據與語料庫中的真實下一個標記的預測正確性,獲得可驗證的內在獎勵。

"By explicitly encouraging next-token reasoning patterns, RPT promotes deeper understanding and generalization instead of merely memorizing next tokens. The model learns to explore and validate hypotheses about why a certain token should follow, fostering more robust representations."

通過明確鼓勵下一個標記的推理模式,RPT 促進更深入的理解和泛化,而不僅僅是記住下一個標記。模型學會探索和驗證關於為什麼某個標記應該跟隨的假設,從而促進更穩健的表徵。

Reinforcement Pre-Training

摘要

- 本部分闡述了**強化預訓練**,通過納入明確的推理步驟來增強傳統的下一個標記預測。
- 該方法對比了兩種方式:
 - **標準的下一個標記預測**:在"電力隨著電荷增加"之後直接預測下一個標記"大小"
 - **下一個標記推理**:模型在 <think> 標籤內明確展示其推理過程,考慮多種可能性和邏輯聯繫後達到相同的預測"大小"
- 主要創新點在於,預訓練期間,模型學會生成中間推理步驟,展示其如何達到標記預測,而非僅僅產生最終結果。
- 這種增強推理的方法旨在提高模型的邏輯思考能力,同時保持與標準語言建模目標的兼容性。
- 範例使用了物理概念(庫侖定律)來展示模型如何通過上下文來推理電力、電荷和 邏輯上的下一個概念(大小/幅度)。

'Standard Next-Token Prediction Next-Token Reasoning Electric force grows with charge To determine the next token, we need to ... Let's

think about what would logically come next in a text about ... Since the user mentioned '...' the next part is likely going to be ... Alternatively, it could be ... Common phrases after ... But perhaps, given the ... Wait, perhaps in the original, the next part was ... So, the entire text might continue as: ... Alternatively, perhaps ... So the most probable answer is \boxed{ size} size Electric force grows with charge size'

標準下一個標記預測 下一個標記推理 電力隨著電荷增加 要確定下一個標記,我們需要 … 讓我們思考一下在一段關於…的文本中邏輯上會接下來什麼。 由於用戶提到了 '...',下一部分很可能會是 ... 或者,這也可能是 ... 在...之後的常見短語 但也許,考慮到... 等等,也許原來的下一部分是... 所以,整個文本可能會繼續為:... 或者, 也許... 所以最可能的答案是 \boxed{ size} 是大小 電力隨著電荷增加 大小

'Given Context Prediction Electric force grows with charge size and decreases with distance squared. This is Coulomb's Law. It explains how charged objects interact ...'

給定上下文預測 電力隨著電荷大小增加並隨距離平方減少。這是庫侖定律。它解釋了帶電物體如何相互作用...

'Pre-Training Corpus'

預訓練語料庫

Preliminary

摘要

- 這一初步部分介紹了兩種大型語言模型的關鍵訓練方法:
- **下一個標記預測 (NTP)**: 現代大型語言模型的核心訓練方法,模型透過最大化序列中每個標記在給定所有前一標記時的概率來學習預測下一個標記。
- 下一個標記預測 (NTP): 目標函數對訓練序列中所有位置的對數概率求和。
- **有驗證獎勵的強化學習 (RLVR):** 一種替代訓練方法,使用強化學習來改進特定能力,並具有客觀的可驗證結果。
- **有驗證獎勵的強化學習 (RLVR)**: 需要一個問題-答案對的數據集,模型生成的回應由一個確定性驗證器進行評估。
- **有驗證獎勵的強化學習 (RLVR)**: 模型訓練的目的是最大化來自這個驗證過程的期望獎勵。
- 這代表兩種不同的範式:NTP通過序列預測專注於一般語言建模,而RLVR則通過 基於獎勵的學習和外部驗證來針對特定技能。

"Next-token prediction is the fundamental training objective for modern large language models"

預測下一個標記是現代大型語言模型的基本訓練目標。

"RLVR employs a reinforcement learning objective to enhance specific skills with verifiable answers"

RLVR利用強化學習目標來提升具有可驗證答案的特定技能。

"A deterministic verifier V calculates a verifiable reward r = V(o, a), and the model is trained to maximize the expected reward"

確定性驗證器V計算可驗證的獎勵r = V(o, a),模型被訓練以最大化期望獎勵。

Reinforcement Pre-Training

摘要

- 本節介紹了一種新的預訓練方法,稱為「下一個標記推理」,以提升傳統語言建模。
- 模型不直接預測序列中的下一個標記,而是需要先生成一個明確的思維鏈推理過程 (ct),然後再進行預測 (yt)。

關鍵方面:

- **任務結構**: 對於訓練序列中的每個位置,模型使用先前的上下文生成推理和預測兩部分。
- 推理模式: 思維鏈可以包括頭腦風暴、自我批評和自我修正。
- **目的**: 將標準的預訓練數據轉換為推理問題,鼓勵模型學習更深入的理解,而不僅僅是表面層次的標記關聯。
- 好處: 通過創建結構化的推理框架,實現強化學習的規模化發展。
- 這種方法旨在超越表面模式匹配,發展對訓練數據中底層知識的真正理解。

"We propose the next-token reasoning task for language modeling. Given an input sequence $x0 \cdot \cdot \cdot xT$ from the training corpus, for each position $t \in \{1, \ldots, T\}$, the prefix x

我們提議了一個用於語言模型的下一個詞元推理任務。給定一個來自訓練語料庫的輸入序列 $x0 \cdot \cdot \cdot xT$,對於每個位置 $t \in \{1, \ldots, T\}$,前綴 x

"The long chain-of-thought process for next-token reasoning can involve various reasoning patterns such as brainstorming, self-critique and self-correction."

下一個詞元推理的長思維鏈過程可以包括各種推理模式,比如頭腦風暴、自我批判和自我修正。

"The next-token reasoning task reconstructs the pre-training corpus into a vast set of reasoning problems, shifting pre-training beyond learning superficial token-level correlations to understanding the hidden knowledge behind them and making RL scaling possible."

下一個詞元推理任務將預訓練語料庫重構為大量的推理問題,使預訓練超越了學習表面詞元級關聯,進而理解其背後隱藏的知識,並使強化學習的規模化成為可能。

Reinforcement Pre-Training

摘要:增強學習預訓練

- 這部分似乎描述了用於預訓練語言模型的增強學習方法。
- 關鍵組成部分:
 - 思考軌跡:模型在生成最終答案前會先生成推理路徑或「思考」序列。
 - 獎勵系統:使用多種獎勵信號 (R1=0, R2=1, RG=0) 來評估模型回應的不同方面。
 - 。 **Rollout 過程**:系統生成完整的序列(rollout)以評估性能。
 - 。 RL 更新:基於增強學習原則,利用收集到的獎勵來更新模型參數。
- 過程流:
 - 。這種方法似乎遵循一個循環,其中LLM生成推理軌跡。
 - 。根據輸出的質量獲得獎勵(某些軌跡獲得正向獎勵,而其他軌跡則獲得零獎 勵)。
 - 通過增強學習更新其參數,以提高未來的性能。
- 這種方法似乎在訓練模型發展更好的推理能力,透過獎勵高品質的思考過程,與最近類似於鏈式思考推理或過程監督的技術進展相似。

"The provided content appears to be fragmented text with incomplete sentences, mathematical notation, and diagram elements that don't form coherent statements about the reinforcement pre-training methodology. Without complete, meaningful sentences that explain the

approach, findings, or insights, I cannot extract critical quotes that would be valuable for understanding the research."

所提供的內容似乎是一些零散的文本,包含不完整的句子、數學符號和圖表元素,這些都 未能形成關於強化預訓練方法的連貫陳述。若沒有完整、有意義的句子來解釋方法、發現 或見解,我無法提取出有價值的引述來理解研究。

Reinforcement Pre-Training

這段內容描述了**強化預訓練(Reinforcement Pre-Training,RPT)**,這是一種通過強化學習來訓練大型語言模型,以提升其推理能力的方法。 - **主要組成部分:** - **訓練過程**:模型為每個上下文生成多個「思考軌跡」,每個軌跡包含一系列的連鎖推理以及最終的預測。 - **獎勵系統**:使用「前綴匹配獎勵」,如果模型的預測與地面真值答案的開頭完全匹配,並且對齊有效的語料邊界,則賦予1分,否則為0分。 - **目標**:訓練模型最大化所有生成回應的期望獎勵。 - **技術創新**:前綴匹配方法允許系統處理多個標記的預測和超出詞彙表的標記,通過在字節層面而非僅僅標記層面工作,使獎勵機制更為穩健和精確。 - 基本上,這種方法教導語言模型「一步步思考」,並通過對其正確預測進行獎勵,鼓勵強化學習過程中的更佳推理模式。

"Reinforcement pre-training (RPT) trains LLMs to perform next-token reasoning via on-policy reinforcement learning"

強化預訓練(RPT)透過策略內強化學習訓練大語言模型(LLMs)進行下一個token推理。

"We introduce a prefix matching reward, which supports verifying predictions that span multiple tokens or involve out-of-vocabulary tokens"

我們引入前綴匹配獎勵,支持驗證跨多個token或涉及詞彙表外token的預測。

"The reward is 1 if the byte sequence of the prediction is an exact prefix of the ground-truth completion sequence and its length l matches any valid token boundary"

如果預測的字節序列是真實完成序列的精確前綴並且其長度l匹配任何有效的token邊界, 則獎勵為1。

Reinforcement Pre-Training

這部分描述了一個數學推理模型的強化預訓練實驗設置。以下是主要組件:

資料集與過濾:-使用包含4,428道競賽級數學問題的OmniMATH資料集,來源於 AoPS - 應用詞元級過濾,利用熵閾值集中訓練在具有推理需求的高熵詞元(過濾掉易於預測的詞元)

模型架構: - 基礎模型:Deepseek-R1-Distill-Qwen-14B(因其推理能力被選中) - 用於過濾的代理模型:Deepseek-R1-Distill-Qwen-1.5B

訓練配置:-演算法:GRPO(群體相對策略優化) - 主要超參數:8k序列長度, 1×10⁻⁶學習率,零KL懲罰 - 批次大小:256道題,每題8個回答樣本 - 溫度:0.8,用於取樣 - 總訓練步數:1.000步(動熊取樣從500步開始)

技術實現:-使用verl庫作為訓練框架,使用vllm作為推理-模型預測結果從</think>標記後的\boxed{}標籤內容中提取

• 這個設置旨在高效地在數學挑戰內容上訓練模型,同時優化計算資源。

"Since many tokens are easily predictable even without reasoning, we perform token-level data filtering before reinforcement pre-training. Particularly, we use Deepseek-R1-Distill-Qwen-1.5B as a small proxy model. For each token, we calculate the proxy model entropy on the top-16 next tokens. By applying an entropy threshold, we filter out lowentropy positions, prioritizing training on challenging tokens that require greater computational effort to predict."

由於許多標記即使在沒有推理的情況下也能輕易預測,我們在強化預訓練之前進行標記級數據篩選。特別是,我們使用 Deepseek-R1-Distill-Qwen-1.5B 作為小型代理模型。對於每個標記,我們計算代理模型在前16個下一個標記上的熵值。通過應用熵閾值,我們篩選出低熵位置,優先考慮需要更多計算努力來預測的挑戰性標記的訓練。

"We employ the GRPO algorithm [GYZ+25], with specific hyperparameters detailed in Appendix B. During training, we adopt an 8k training length, a learning rate of $1 \times 10-6$, zero KL penalty, and a batch size of 256 questions."

我們使用 GRPO 演算法 [GYZ+25],具體超參數詳見附錄B。在訓練期間,我們採用 8k的訓練長度, $1 \times 10-6$ 的學習率,零 KL 懲罰,批量大小為 256 個問題。

"Starting from 500 steps, we utilize dynamic sampling to boost training efficiency [YZZ+25]. The total training steps for our main experiment is 1,000."

從 500 步開始,我們使用動態採樣來提升訓練效率 [YZZ+25]。我們主要實驗的總訓練 步數為 1,000。

Reinforcement Pre-Training

這部分描述了經過強化預訓練 (Reinforcement Pre-Training, RPT) 的模型的評估方法。 - 主要要點包括: - **評估方法**:在預訓練之後,對模型進行兩個主要任務的測試: - 直接的下一個標記預測 - 在下游任務上的強化微調 - **目的**:評估的目的是要證明強化預訓練能夠增強大型語言模型的語言建模能力和推理能力。 - **語言建模評估**:使用下一個標記預測的準確性作為主要指標來評估模型,以測量: - 整體的語言建模性能 - RPT方法的擴展特性 - 本部分建立了一個框架,以便通過標準的語言建模基準展示其強化預訓練方法的有效性。

'Once the model is pretrained, we can directly conduct next-token prediction and reinforcement fine-tuning on downstream tasks.'

一旦模型預訓練完成,我們可以直接在下游任務上進行下一個標籤預測和強化調整。

'We use the settings to show that reinforcement pre-training improves the language modeling capabilities and reasoning abilities of large language models.'

我們使用這些設置顯示強化預訓練可以提高大型語言模型的語言建模能力和推理能力。

'We report the next-token prediction accuracy to evaluate the language modeling performance and scaling properties of RPT.'

我們報告了下一個標籤預測的準確性,以評估RPT的語言建模性能和擴展特性。

Experiments

這部分展示了在OmniMATH的200個樣本驗證集中進行的語言建模實驗。 研究人員使用基於熵的方法將標記位置根據熵閾值0.5、1.0和1.5分為三個難度級別(簡單、中等、困難)。

主要發現: - 標準的下一標記預測: 基礎模型(Qwen2.5-14B)和蒸餾模型(R1-Distill-Qwen-14B)表現相似,性能隨著難度增加而下降(簡單:約41-42%,中等:約29-30%,困難:約20-21%)。 - 下一標記推理方法: 當使用鏈條思考推理時,R1-Distill-Qwen-14B表現顯著變差(簡單:3.31%,中等:1.66%,困難:1.41%)。 - 最佳表現者: RPT-14B在所有難度級別中都取得了最高分數(簡單:45.11%,中等:33.56%,困難:23.75%)。

結果表明,雖然蒸餾保持了可比的標準預測性能,但基於推理的方法可能需要不同的優化 策略,而RPT-14B展示了在不同標記難度下優越的語言建模能力。

"Following the entropy-based data filtering strategy described in our setup (Section 3.3), we categorize token positions in the validation set according to their difficulty. Specifically, we calculate the entropy at each token position using R1-Distill-Qwen-14B."

根據我們在設定中描述的基於熵的數據過濾策略(第3.3節),我們根據難度來分類驗證 集中 token 的位置。具體來說,我們使用 R1-Distill-Qwen-14B 計算每個 token 位置 的熵。

"We report the performance of R1-Distill-Qwen-14B evaluated in two different ways: (1) Standard next-token prediction, selecting the token with the highest probability; and (2) Next-token reasoning, generating a chain-of-thought before the final prediction."

我們報告了 R1-Distill-Qwen-14B 在兩種不同評估方式下的性能: (1) 標準的下一個 token 預測,選擇具有最高概率的 token;(2) 下一個 token 推理,在最終預測之前生成思維鏈。

"RPT-14B 45.11 33.56 23.75."

RPT-14B 45.11 33.56 23.75.

Experiments

Task

Translate the provided note into the specified language, Traditional Chinese. Follow these rules for translation: - Preserve the original meaning as closely as possible. - Use terminology commonly used by data scientists and AI researchers. - Avoid over-translation; keep terms intact where applicable.

Here is the note: - This section investigates how Reinforcement Pre-Training (RPT) performance scales with increased training compute. The researchers:

Methodology: - Applied a power-law scaling model $P(C) = A C^{\alpha} + P^*$ to analyze the relationship between training compute (C) and next-token prediction accuracy. - Tested at 6 different training steps (100-1200) across three difficulty levels based on entropy thresholds: easy (0.5), medium (1.0), and hard (1.5). - Used R^2 coefficient to measure how well their scaling curves fit the observed data.

Key Findings: - RPT follows predictable scaling laws similar to standard language model pre-training. - Next-token prediction accuracy consistently improves as training compute increases. - The power-law relationship holds robustly across all difficulty levels (easy, medium, hard data). - High R² values indicate the scaling curves accurately capture performance trends.

 This demonstrates that RPT exhibits reliable and predictable scaling behavior, suggesting that increased computational investment will yield proportional performance improvements across varying data complexities.

所提供的筆記翻譯為繁體中文如下:

本節探討強化預訓練(RPT)的性能如何隨著訓練計算量的增加而進行擴展。研究 人員:

方法論: - 應用一個冪定律擴展模型 $P(C) = A C^{\alpha} + P^*$ 來分析訓練計算量(C)與下一詞預測準確率之間的關係。 - 在 6 個不同的訓練步驟(100-1200)中,根據熵閾值的不同測試了三個難度級別:簡單(0.5)、中等(1.0)和困難(1.5)。 - 使用 R^2 系數來衡量其擴展曲線與觀察數據的吻合程度。

主要發現:-RPT 遵循類似於標準語言模型預訓練的可預測擴展規則。 - 隨著訓練計算量的增加,下一詞的預測準確率持續提升。 - 冪定律關係在所有難度級別(簡單、中等、困難數據)中均堅挺有效。 - 高 R² 值表明擴展曲線能準確捕捉性能趨勢。

• 這表明 RPT 展現出可靠且可預測的擴展行為,表明增加計算資源的投資將帶來不同數據複雜度的比例性能提升。

"The loss achieved by next-token pre-training on natural language corpus empirically follows a power-law decay with respect to model size, number of training tokens, and training compute"

在自然語言語料庫上通過下一個標籤預訓練所達到的損失,實驗上隨著模型大小、訓練標籤數量和訓練計算量呈現冪定律衰減。

"We model this relationship using the following power-law form: $P(C) = A C\alpha + P * where P(C)$ denotes the next-token prediction accuracy on the validation set"

我們使用以下的冪定律形式來建模此關係: $P(C) = A C\alpha + P*$,其中 P(C) 表示驗證集上下一個標籤的預測準確性。

"As shown in Figure 5, the next-token prediction accuracy of RPT improves reliably as the training compute is scaled up. High R2 values across all difficulty levels demonstrate that the fitted curves accurately capture performance trends"

如圖 5 所示,隨著訓練計算量的增加,RPT 的下一個標籤預測準確性可靠地提高。所有難度級別的高 R2 值表明,擬合的曲線準確地捕捉到了性能趨勢。

Experiments

任務

將提供的筆記翻譯成指定語言——繁體中文。遵循以下翻譯規則: - 儘量保持原意。 - 使用數據科學家和AI研究人員常用的術語。 - 避免過度翻譯;適用的術語保持不變。

這是筆記內容: - 本節(4.3)探討了增強預訓練(RPT)模型是否能更有效地使用具有可驗證獎勵的強化學習(RLVR)進行微調。

實驗設置: - 使用Skywork-OR1數據集中的256個訓練樣本和200個測試樣本 - 應用R1-Distill-Qwen-32B來識別具有挑戰性的訓練實例 - 訓練配置:批量大小64,PPO小批量大小64,共15個時代

主要發現: - RPT + RLVR表現優異:增強預訓練模型在用RLVR進一步微調時達到了更高的上限 - 傳統微調降低性能:使用標準的下一個詞預測目標進行持續訓練會顯著降低推理能力 - 退化後的RLVR增益有限:在傳統微調後應用RLVR時,性能提升較慢

結論: - 結果表明,增強預訓練使加強的推理模式能有效轉移到下游任務,特別是在數據有限的情況下,RPT是一種在微調過程中保持和提升推理能力的寶貴方法。

"The reinforcement pre-trained model achieves a higher upper bound when further trained with RLVR."

增強式預訓練模型在進一步使用RLVR訓練後,能達到更高的上限。

"The reasoning ability of the model significantly declines when continually trained on the same data using a next-token prediction objective."

當模型使用下個標記預測目標在相同數據上不斷訓練時,其推理能力顯著下降。

"These results indicate that with limited data, reinforcement pretraining can quickly transfer the strengthened reasoning patterns learned from next-token reasoning to end tasks."

這些結果表明,在數據有限的情況下,增強式預訓練能迅速將從下個標記推理中學到的強 化推理模式轉移到最終任務。

Experiments

以下是這個部分對 RPT-14B 模型在下游任務中的零樣本效能進行評估,使用了兩個已建立的基準:

使用的基準: - MMLU-Pro: 多任務理解基準,涵蓋各種領域 - SuperGPQA: 涵蓋 285個學科的研究生級別推理問題

比較的模型: - R1-Distill-Qwen-14B 和 R1-Distill-Qwen-32B(標準的下個單詞預測模式) - RPT-14B 與 R1-Distill-Qwen-14B(推理模式)

主要結果: - 標準模式:較大的模型效能更佳(32B > 14B 版本) - 推理模式:相較於標準預測模式,有顯著改進 - RPT-14B 達到最佳效能:在 SuperGPQA 上為39.0%,在 MMLU-Pro 上為71.1% - 推理模式顯著優於標準模式(例如,14B 模型在 MMLU-Pro 上的效能分別為68.9%和48.4%)

這些結果表明,具備推理能力的 RPT-14B 不僅超越了兩種標準預測模式,而且即便模型 規模較小(相比32B基準模型),仍能達到競爭性的效能。

"We evaluate the zero-shot performance of RPT-14B on end tasks."

我們評估RPT-14B在終端任務上的零樣本性能。

"Our evaluation involves two widely acknowledged benchmarks: MMLU-Pro [HBB+20], a comprehensive multi-task understanding benchmark evaluating LLM capabilities across various domains; SuperGPQA [DYM+25], a large-scale benchmark of graduate-level reasoning questions spanning 285 disciplines."

我們的評估涉及兩個廣泛認可的基準:MMLU-Pro [HBB+20],一個綜合性多任務理解基準,評估LLM在各個領域的能力;SuperGPQA [DYM+25],一個涵蓋285個學科的大規模研究生級別推理問題基準。

"RPT-14B 39.0 71.1" [showing superior performance compared to R1-Distill-Qwen-14B's 36.1 68.9 in reasoning mode]

RPT-14B 39.0 71.1 [在推理模式中顯示出比R1-Distill-Qwen-14B 36.1 68.9更優越的性能]

Experiments

注意: - 本部分分析了兩種不同方法之間的推理模式:下一個 token 推理(RPT-14B 模型)和顯式問題解決(R1-Distill-Qwen-14B 模型)。 - **主要發現:** - 研究人員識別了六種類型的推理模式:轉換、反思、分解、假設、發散性思維和推論。 - 基於 OmniMATH 數據集每個模型抽取的 200 個樣本回應,他們發現顯著差異: - 下一個 token 推理(RPT-14B)顯示出 161.8% 更多的假設使用以及 26.2% 更多的推論。 - 問題解決方法更依賴於分解模式。 - **主要洞察:** - 分析顯示,下一個 token 推理涉及的是一個複雜的深思熟慮過程,而非簡單的模式匹配。 - 該模型通過以下方式展示多層次推理: - 分析語義上下文。 - 生成並測試關於可能延續的假設。 - 考慮替代方案和結構性提示。 - 檢查高層次意義和低層次文本細節。 - 這表明,與傳統的結構化問題解決方法相比,下一個 token 推理代表了一個質量上不同且潛在更全面的推理過程。

"RPT-14B's next-token reasoning process is markedly different from the problem-solving of R1-Distill-Qwen-14B, exhibiting a 161.8% greater use of the hypothesis pattern and a 26.2% greater use of the deduction pattern."

RPT-14B模型的下一個標記推理過程與R1-Distill-Qwen-14B的問題解決方式顯著不同,展現出161.8%更高的假設模式使用率及26.2%更高的演繹模式使用率。

"This multi-faceted reasoning, encompassing both high-level semantic understanding and low-level textual features, demonstrates the model's effort to deduce the next token through a reasoned exploration, aligning with the goals of RPT to cultivate deeper understanding beyond superficial correlations."

這種多方面的推理,涵蓋了高階語義理解和低階文本特徵,展示了模型通過推理探索下一個標記的努力,符合RPT的目標,即培養超越表面相關性的深入理解。

"It analyzes the broader semantic context ('calculating vector magnitude'), identifies pivotal phrases ('go over some...'), and then brainstorms and weighs multiple plausible continuations."

它分析更廣泛的語義上下文(如'計算向量大小'),識別關鍵短語(如'回顧一些...'),然 後集思廣益並權衡多種可能的連續性。

Related Work

這段相關工作部分涵蓋了與本文方法相關的兩個主要領域:

擴展範式:-作者區分了兩種建立的大型語言模型擴展方法:-**訓練時擴展**:增加模型參數和訓練數據-**測試時擴展**:推理時使用更多計算資源來改進推理能力-本文的方法 (RPT) 創新地將這兩種方法結合在一起,將每一個下一個標記預測視為推理任務。

強化學習應用: -本節回顧了強化學習如何被用於改進語言模型: -RLHF (來自人類反饋的強化學習):用於與人類偏好對齊-推理增強:大規模強化學習應用於改進模型推理能力-獎勵劫持問題:以往工作使用基於「有用性」的獎勵遭遇模型透過簡單重複目標標記在推理中來欺騙系統的問題-作者將他們的工作定位為通過使用下一個標記預測的正確性來解決這個獎勵劫持問題,該方法比主觀的有用性度量更具魯棒性和規則性。

"Going beyond existing scaling paradigms, RPT uniquely integrates the above principles, framing each next-token prediction as a reasoning task."

超越現有的擴展模式,RPT 獨特地融合了上述原則,將每個下一個 token 的預測看作是 一個推理任務。

"The helpfulness-based reward tends to be hacked by repeating the target token in the generated rationale, where the shortcut potentially harms the model."

基於幫助性的獎勵往往會被通過在生成的推理中重複目標 token 而被破解,這樣的捷徑可能會損害模型。

"In contrast, we use next-token prediction correctness as a rule-based reward signal to minimize reward hacking."

相較之下,我們使用下一個 token 預測的準確性作為基於規則的獎勵信號,以最大限度地減少獎勵破解。

Conclusion and Future Work

摘要

• 本結論部分介紹了**強化預訓練 (Reinforcement Pre-training, RPT)**,這是一種通過將下一個詞的預測視為一個可驗證的推理任務,並結合強化學習和基於正確性的獎勵來重新構建傳統語言模型預訓練的方法。

主要貢獻: - RPT 使大型語言模型 (LLMs) 能夠在預訓練期間使用延展的計算來發展更強的推理基礎 - 展示了在數學/推理基準測試中提升了下一個詞預測的準確性和零樣本學習能力 - 為後續的強化學習微調提供了更好的初始化狀態

目前的限制: - 測試僅限於 140 億參數的模型 - 預訓練語料庫主要集中在數學文檔而非通用文本 - 訓練是從現有的推理模型而非基礎語言模型開始的

未來研究方向: - 規模擴展: 更大的訓練語料庫、涵蓋更廣泛的領域及一般的互聯網數據 -計算擴展: 增加訓練計算量並建立 RPT 的擴展定律 - 方法學進步: 與混合思維方法的結合 以實現自適應推理 - 基礎研究: 從標準基礎模型開始測試 RPT 以理解其基本影響

• 這項工作代表了一種大型語言模型預訓練的範式轉變,從根本上重新思考訓練目標以納入推理能力。

'We introduce reinforcement pre-training (RPT), a novel paradigm for pre-training large language models. By framing next-token prediction as a verifiable reasoning task and applying reinforcement learning with correctness-based rewards, RPT allows LLMs to leverage extended computation during pre-training to build stronger foundational reasoning capabilities.'

我們介紹了增強預訓練 (RPT),一種用於預訓練大型語言模型的新範式。通過將下個詞的預測視為可驗證的推理任務並應用基於正確性的增強學習獎勵,RPT 允許 LLMs 在預訓練期間利用擴展計算來建立更強的基礎推理能力。

'Our experiments demonstrate that RPT improves next-token prediction, enhances performance on mathematical and general reasoning benchmarks in zero-shot settings, and provides a better starting point for further RL fine-tuning.'

我們的實驗表明,RPT 改善了下個詞的預測,在零樣本設置下提高了數學和一般推理基準測試的表現,並為進一步的 RL 微調提供了更好的起點。

'RPT offers a promising new direction for developing more capable and generally intelligent LLMs by fundamentally rethinking the pretraining objective itself.'

RPT 通過從根本上重新思考預訓練目標本身,為開發更具能力和一般智能的 LLMs 提供了一個有前途的新方向。

Acknowledgement

摘要

這是機器學習論文中的致謝部分,作者對在他們的研究中做出貢獻的幾位人士表示感謝: - **江雨婷** - 感謝其對GPU集群基礎設施的維護 - **遲澤文和王揚** - 感謝其在開發專門用於 MI300 GPU(AMD的數據中心GPU)的強化學習(RL)基礎設施時提供技術支持 - 作者還提到他們使用 **verl** 框架來實施訓練(參見 [SZY+24]) - 這部分表明,研究涉及在 高性能的AMD MI300 GPU上進行強化學習訓練,並使用verl訓練框架。

圖像摘要 - [空]

References

No references found.