

Diabetes Risk Identification And Prediction

A Predictive Model And Pre-screening Tool For Diabetes Risk

by Chisum Lindauer

TYPE 2 DIABETES FACTS

UNSEEN

22% of adults undiagnosed

\$412 Billion Annually

RISK

10% - 40% will have kidney failure

COMMON

Type 2 makes up 95% of all cases

IMPACT

Over 460 Million **Have Diabetes**

AVOIDABLE

Up to 58% of cases can be avoided.

BUSINESS UNDERSTANDING

Stakeholders

- + Healthcare Providers
- + You 🍅

Problem Solved

Helping pre-screen people for Diabetes Risk

DATA UNDERSTANDING

CDC Diabetes Health Indicators from the UCI Machine Learning Repository

Respondents

220,000

Health Indicators

23

Data Contains

Respondent answers to survey questions and if they have diabetes

Download Via

UCI Machine Learning Repository or ucimlrepo in python

Data Used To

Train models to predict diabetes based on health indicators

Robustness

A large dataset is more reliable and the CDC is a trusted source

DATA PREPARATION

- Thoroughly prepared the data to ensure readiness for modeling
- Reduced memory usage by 83.6%
- Removed over 20,000 duplicates
- Evaluated features and created features based on custom reports
- Balanced the data
- Split data into training, testing, and holdout sets for reliable evaluation

HYPERTUNED MODELS

COMBINING FINETUNING

Receiver Operating Characteristic Areac Under Curve for Final CatBoost Model | AUC = 0.8260

FEATURE IMPACT

Mean Impact on Diabetes Risk Chance in Min vs Max Values Per Feature For Final Model

PRIVATE

On device and never sends or stores any data

Works on any device and is mobile friendly

PREDICT

If risk is over 50% it recommends further screening

PROJECT CONCLUSIONS

IDENTIFIES

Identifies 81% of at risk cases on unseen data.

ACCURATE

70% of overall predictions are accurate

PROVIDERS

Prevent more diabetes cases

PATIENTS

Easy way to estimate and understand risks of diabetes

MODEL IMPROVEMENTS

INDICATORS

Explore additional health indicators

NOVEL

Explore new approaches with current data

Combine new indicators and approaches

MORE DATA

Find other datasets and repeat the process

NEXT STEPS

MANY THANKS!

Do you have any questions?

chisum@atrixtech.com linkedin.com/in/chisum-lindauer/ github.com/ds-minerva

