Google Earth Engine with rgee:: cheat sheet

Mission

The goal of rgee is to offer a user-friendly interface for analyzing spatial data on the Google Earth Engine (GEE) platform using the R programming language.

Installation

For **Python requirements installation**, use **ee_install**:

> rgee::ee_install() only run once rgee is installed

See the **Python** section in **rgeebook** for more details.

Hello world Earth Engine

```
> library("rgee")
> ee_Initialize(user, drive, gcs)

GEE username
(Optional)

Connect GEE
with GCS.

# Earth Engine API style (chaining methods)
> ee$String("Hello World from Earth Engine!")$
getInfo()

Fetch and return
information. From GEE
```

> [1] "Hello World from Earth Engine!"

server to local.

Pipe integration %>%

Pipe operator has been included into rgee to provide functional programming style.

- # Earth Engine API with pipes style
 > ee\$String("Hello World from Earth Engine!")%>%
 ee\$String\$getInfo()
- > [1] "Hello World from Earth Engine!"

Basic classes

Basic data structures available in GEE.

Class	Example
ee\$Number	> ee\$Number(2021)
ee\$String	> ee\$String("Hello")
ee\$List	> ee\$List(c("Hi","amy"))
ee\$Dictionary	> ee\$Dictionary(list(year = 2021))
ee\$Array	> ee\$Array(<mark>26, 9, 2021</mark>)
ee\$Date	> ee\$Date("1990-01-01")
	ee\$Number ee\$String ee\$List ee\$Dictionary ee\$Array

ee\$Geometry

A collection of geometric forms that describe an object spatially.

A collection of geometric forms that describe an object spatially.			
Type Point	Geom •	Function ee\$Geometry\$Point sf:: st_point	
LineString		ee\$Geometry\$LineString sf:: st_linestring	
LineRing		ee\$Geometry\$LineRing sf:: st_linestring	
Polygon		ee\$Geometry\$Polygon sf:: st_polygon	
Multipoint	•:	ee\$Geometry\$Multipoint sf::st_multipoint	
MultiLineString	g N	ee\$Geometry\$MultiLineString sf::st_multilinestring	
MultiGeometry		ee\$Geometry\$MultiGeometry sf::st_geometrycollection	

Geometric operations

Туре	Function
Buffer	*\$buffer
Intersection	*\$intersection
Union	*\$union
Difference	*\$difference
Symmetric difference	*\$symmetricdifference
(*: The symbol mean is a type o	f GEE geometry for example : a

(*: The symbol mean is a type of GEE geometry, for example: a ee\$Geometry\$Polygon)

Data catalog

The Earth Engine catalogue can be accessed interactively from R with rgee.

Function Example

ee_utils_dataset_display > ee utils dataset display("Landsat")

Visualization

rgee supports the visualization of spatial Earth Engine objects such as Image, ImageCollection, Feature, FeatureCollection, and allows users to customize the legend using the **Map\$addLegend** method.

Object	Geom	Method	Arguments
Image Feature	}	Map\$addLayer	eeObject* VisParams name show
FeatureCollection			opacity
ImageCollection	}	Map\$addLayers	} nmax

^{*} **eeObject** can also be a Cloud Optimized GeoTIFF (COG) file.

Map\$Legend needs that users pass the same *visParams* used in **Map\$addLayer**.

Data	Function	ınction Type	
Categorical	Map\$addlegend()	color_mapping = "categorical"	
Continue	visParams name	color_mapping = "continue"	
Discrete	position color_mapping	color_mapping = "discrete"	
Customize	opacity	color_mapping = "character"	

Example

```
> image <- ee$Image$Dataset$CGIAR_SRTM90_V4
> visparams <- list(min = 0, max = 3000)
> m1 <- Map$addLayer(image, visparams, "DEM")
> m1 + Map$addLegend(visparams, "DEM", "bottomright", 8)
rgee also supports the metadata display of GEE spatial objects (ee_print).
```

Google Earth Engine with rgee:: cheat sheet

Considerations

Some issues can occurs when reticulate translate the R code into Python. We detected four cases:

 map method in ee\$List objects. 	Solution: Use ee_utils_pyfunc.	
2. Strict integer number data type.	Solution : Add "L" at the end. For instace: > ee\$Number(20L)	
3. Be careful with ee\$Date objects.	Solution : <i>Use eedate_to_rdate and rdate_to_eedate.</i>	
4. Reserved words.	Solution: Use quotation marks. For instace: > x\$'repeat'(20, 2)	

ee\$Feature

It is an GEE geometry + properties.

```
Longitude and
> xy < -c(-77.08643, -12.05536)
                                           latitude in a vector
  geom <- ee$Geometry$Point(xy)</pre>
> props <- list(ID = 1, NAME = IGSM)</pre>
> point <- ee$Feature(geom, props)</pre>
R local
                                               EE server
                     to retrieve the data.
                             get
point$get("NAME"
                            getInfo
 >[1] \IGSM'
                                   properties
point$set(list(ISO="PE"))
```

> EarthEngine Object: Feature

ee\$FeatureCollection

It is an set of GEE features + properties.

min-max coords for create new rectangle

```
> minmax <- c(-77.08, -12.05, -77.08, -12.05)
> box <- ee$Geometry$Rectangle(minmax)</pre>
> lf1 <- ee$Feature(box, list(ISO="PE"))</pre>
> lf2 <- ee$Feature(box, list(ISO="RU"))</pre>
> prps <- list(ID=1, NAME="polygons")</pre>
> fc <- ee$FeatureCollection(c(lf1,lf2), prps)</pre>
> print(fc)
```

> EarthEngine Object: FeatureCollection

ee\$Image

It is an set of bands. An band is array of values + properties.

Concatenate two

single-band images into

one multi-band image

Create a constant > image1 <- ee\$Image(1)</pre> > image1

> EarthEngine Object: Image

- > image2 <- ee\$Image(2)</pre> > list img <- list(image1, image2)</pre>
- > image3 <- ee\$Image(list img)</pre>
- > image3

> EarthEngine Object: Image

Image I/O

Functions	FROM	TO	RETURN
ee_as_raster ee_image_to_asset ee_image_to_gcs ee_image_to_drive ee_as_stars raster_as_ee stars_as_ee	EE server EE server EE server EE server Local Local	Local EE asset GCS GD Local EE server EE server	R object Unstarted task Unstarted task Unstarted task R object GEE object GEE object

ee\$ImageCollection

It is an set of GEE images + properties.

- > ic <- ee\$ImageCollection(list img)</pre>

> EarthEngine Object: ImageCollection

ImageCollection I/O

Functions	FROM	TO	RETURN
ee_get_date_ic ee_imagecollection_to_local			R data.frame R object

FeatureCollection Export (Table)

Set of functions to fetch and return GEE FeatureCollections.

Functions	FROM	TO	RETURN
gcs_to_ee_table ee_as_sf ee_table_to_drive ee_table_to_gcs ee_table_to_asset sf_as_ee	GCS EE server EE server EE server EE server Local	EE server Local GD GCS EE asset EE server	Unstarted task R object Unstarted task Unstarted task Unstarted task GEE object

GEE Asset Manager

Set of functions to interact with the GEE asset manager. Batch operations are supported.

FUNCTIONS

ee_manage_create
ee_manage_delete
ee_manage_assetlist
ee_manage_quota
ee_manage_copy
ee_manage_move
ee_manage_set_properties
ee_manage_delete_properties
ee_manage_asset_access
ee_manage_task
ee_manage_cancel_all_running_task
_

DESCRIPTION

Create an empty folder or ic. Delete an GEE asset. List files in a folder or ic. Show user GEE quota. Copy a paste GEE asset. Cut and paste a GEE asset. Set GEE asset properties. Delete GEE asset properties. Change IAM policy. Show the task's user history. Cancel all the running task.

Custom Animations

Auxiliary functions to create GIF files with Earth Engine. They depend of the magick package. rgeeExtra now include these functions.

FUNCTIONS

ee_utils_gif_annotate ee_utils_gif_creator ee_utils_gif_save

DESCRIPTION

Add text to a GIF. From ee\$ImageCollection to GIF. Write a magick object as a GIF file.

Miscellaneous

FUNCTIONS

ee_utils_create_ison ee_utils_create_manifest_image ee utils create manifest table ee_utils_dataset_display ee_utils_future_value ee_utils_get_crs ee_utils_py_to_r ee_utils_pyfunc ee_utils_shp_to_zip ee_utils_cog_metadata

DESCRIPTION

Convert a R list into a JSON. GEE Image manifest creator. GEE Table manifest creator. Search into the GEE Data Catalog. Return the future values object. Convert SR-ORG into a OGC WKT. Translate Python objects to R. Wrap a R function in Python. Create a zip from an sf object. Metadata of a COG tile server.

• Update 25 - 02 - 2022

Others

This cheatsheet was created using the rgee reference manual and the rgee vignettes. Visit the rgeebook for additional information about this package.

rgee package • Cheatsheet created by Antony Barja and Cesar Aybar.