Text LCD / Analog to Digital Converter Driver

Declared Version

Training Only					
Declare					
Document Version	1.00				
Release Date	2009.06.20				
Document Title	ent Title Text LCD / Analog to Digital Converter Driver				
Exercise Time	■ Lecture 30 minutes ■ Operating 60 minutes				
Platform	■ MIAT_STM32 ■ MIAT_IOB				
Peripheral	■ Text LCD ■ VR				
Author	■WU-YANG Technology Co., Ltd.				

實驗目的

□ 瞭解ARM A/D Converter 運作方式,並將轉換後的數位資料顯示於Text LCD上。

實驗原理

- ■Text LCD Control
- □ Development Flow
- **□**ARM Configure

Text LCD Control(1)

Text LCD Pin Define

NO	SYMBOL	LEVEL	FUNCTION
1	VSS) *** (GND (0V)
2	VDD	H/L	DC +5V
3	VO	H/L	Contrast Adjust
4	RS	H/L	Register select
5	R/W	H/L	Read/Write
6	E	H,H→L	Enable signal
7	DB0	H/L	Data Bit 0
8	DB1	H/L	Data Bit 1
9	DB2	H/L	Data Bit 2
10	DB3	H/L	Data Bit 3
11	DB4	H/L	Data Bit 4
12	DB5	H/L	Data Bit 5
13	DB6	H/L	Data Bit 6
14	DB7	H/L	Data Bit 7
15	A+ (EL1)		A (EL Backlight 1)
16	K- (EL2)		K (EL Backlight 2)

Text LCD Block Diagram

Text LCD Control(2)

□ 1.固定字型ROM,稱為CG(Character Generator)ROM。

CG ROM內儲存著192個5x7點矩陣的字型,這些字型均已固定,例如我們將"A"寫入LCD中,就是將 "A" 的ASCII碼41H寫至DDRAM中,同時至CG ROM中將 "A"的字型點矩陣資料找出來而顯示在LCD上。

□ 2.資料顯示RAM,稱為DD (Data Display) RAM。
DD RAM內用來儲存寫至LCD內部的字元,DD RAM的位址分佈從00H到67H,分別代表LCD的各行位置,如下表所示,例如我們要將 "A"寫入第2行的第1個位置,就先設定DD RAM位址為40H,而後寫入41H至LCD即可。

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Line 1	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F				
Line 2	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF				
Line 3																				
Line 4																				

□ 3.使用者自訂字型RAM,稱為CG RAM。

此區域只有64位元組,可由使用者將自行設計的字型寫入LCD中,一個字的大小為5x8點矩陣,共可以儲存8個字型,其顯示碼為00H到07H。

Text LCD Control(3)

Instruction Set

FUNCTION	R S	R /W	D B	D B	D B	D B	D B	D B	D B	D B	DESCRIPTION	EXECU. TIME*
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears entire display and returns the cursor to home position (address 0).	1.64ms
Return Home	0	0	0	0	0	0	0	0	1	х	Return the cursor to the home position. Also returns the display being shifted to the original position. DD RAM contents remain unchanged.	1.64ms
Entry mode set	0	0	0	0	0	0	0	1	I / D	S	Set cursor move direct and specifies display shift. These operations are performed during data rite/read. For normal operation, set S to zero. I/D=1: increment; 0:decrement; S=1: accompanies display shift when data is written, for normal operation, set to zero.	$40\mu\mathrm{s}$
Display ON/OFF control	0	0	0	0	0	0	1	D	С	В	Set ON/OFF all display(D),cursor ON/OFF(C), and	40 μ s
Cursor or Display shift	0	0	0	0	0	1	S / C	R / L	х	х	Move the cursor and shift the display without changing DD RAM contents. S/C=1: Display shift; 0:Cursor move. R/L=1: shift to right; 0: shift to left.	$40\mu\mathrm{s}$
Function Set	0	0	0	0	1	D L	N	F	х	х	Set the interface data length (DL). Number of display lines (N) and character font (F). DL=1: 8 bits; 0:4 bits. N=1: 2 lines; 0: 1 lines. F=1: 5x10 dots; 0: 5x7 dots.	40 μ s
Set CG RAM address	0	0	0	1			A(CG			Set CG RAM address. CG RAM data is sent and received after this setting.	$40\mu\mathrm{s}$
Set DD RAM address	0	0	1		9	e d	ADI)			Set DD RAM address. DD RAM data is sent and received after this setting	40μ s
Read busy flag & address	0	1	B F		AC			Reads Busy Flag (BF) indicating internal operation is being performed and reads address counter contents. BF=1: internally operating. 0: can accept instruction	1 μs			
Write Data to CG/DDRAM	1	0			WRITE DATA			Write data into DD RAM or CG RAM.	$40\mu\mathrm{s}$			
Read Data for CG/DDRAM	1	1			RE	EAD	DA	TA			Read data from DD RAM or CG RAM	40μ s

Text LCD Function List(1)

- □ init_lcd()
 LCD初始化,設定LCD游標是否出現、資料傳送方式等
- □ write_com(unsigned char c) 将參數C寫入指令暫存器
- □ write_data(unsigned char c) 將參數C寫入資料暫存器
- □ print(char line, char *str) 將LCD清空並把*str印在LCD上, line是決定要印在哪一行
- □ prline1(char x, char w) LCD不清空, 將字元w印在第一行的x位置
- □ prline2(char x, char w) LCD不清空,將字元w印在第二行的x位置

Text LCD Function List(2)

- □ clear(void) 清除LCD
- □ home(void) 游標移至原始位置
- □ setCursor(char index) 設定游標位置
- □ shiftDisplayLeft(void) 左移Display
- □ shiftDisplayRight(void) 右移Display
- □ pf4h(unsigned int value) 將整數轉為hex並輸出於LCD上

Development Flow

Configure RCC

RCC FwLib Functions List

Function name	Description
RCC_DeInit	Resets the RCC clock configuration to the default reset state.
RCC_HSEConfig	Configures the External High Speed oscillator (HSE).
RCC_WaitForHSEStartUp	Waits for HSE start-up.
RCC_HCLKConfig	Configures the AHB clock (HCLK).
RCC_PCLK1Config	Configures the Low Speed APB clock (PCLK1).
RCC_PCLK2Config	Configures the High Speed APB clock (PCLK2).
RCC_PLLConfig	Configures the PLL clock source and multiplication factor.
RCC_PLLCmd	Enables or disables the PLL.
RCC_SYSCLKConfig	Configures the system clock (SYSCLK).
RCC_APB2PeriphClockCmd	Enables or disables the High Speed APB (APB2) peripheral clock.

```
void RCC Configuration(void)
 /* RCC system reset(for debug purpose) */
 RCC DeInit():
 /* Enable HSE */
 RCC HSEConfig(RCC HSE ON);
 /* Wait till HSE is ready */
 HSEStartUpStatus = RCC WaitForHSEStartUp();
 if(HSEStartUpStatus == SUCCESS) {
   /* Enable Prefetch Buffer */
   FLASH PrefetchBufferCmd(FLASH PrefetchBuffer Enable);
   /* Flash 2 wait state */
   FLASH SetLatency(FLASH Latency 2);
   /* HCLK = SYSCLK */
   RCC HCLKConfig(RCC_SYSCLK_Div1);
   /* PCLK2 = HCLK */
   RCC PCLK2Config(RCC HCLK Div1);
   /* PCLK1 = HCLK/2 */
   RCC PCLK1Config(RCC HCLK Div2);
   /* ADCCLK = PCLK2/4 */
   RCC ADCCLKConfig(RCC PCLK2 Div4);
   /* PLLCLK = 8MHz * 7 = 56 MHz */
   RCC PLLConfig(RCC PLLSource HSE Div1, RCC PLLMul 7);
   /* Enable PLL */
   RCC PLLCmd(ENABLE);
   /* Wait till PLL is ready */
   while(RCC GetFlagStatus(RCC FLAG PLLRDY) == RESET) { }
   /* Select PLL as system clock source */
   RCC SYSCLKConfig(RCC SYSCLKSource PLLCLK);
   /* Wait till PLL is used as system clock source */
   while(RCC GetSYSCLKSource() != 0x08) { }
/* Enable peripheral clocks -----*/
 /* Enable DMA1 clock */
 RCC AHBPeriphClockCmd(RCC AHBPeriph DMA1, ENABLE);
 /* Enable ADC1 and GPIOA clock */
 RCC APB2PeriphClockCmd(RCC APB2Periph ADC1 | RCC APB2Periph GPIOA,
ENABLE);
 /* Enable GPIOC clock */
 RCC APB2PeriphClockCmd(RCC APB2Periph GPIOC, ENABLE);
```


Configure GPIO

GPIO FwLib Functions List

Function name	Description
GPIO_Delnit	Resets the GPIOx peripheral registers to their default reset values.
GPIO_AFIODeInit	Resets the Alternate Functions (remap, event control and EXTI configuration) registers to their default reset values.
GPIO_Init	Initializes the GPIOx peripheral according to the specified parameters in the GPIO_InitStruct.
GPIO_StructInit	Fills each GPIO_InitStruct member with its default value.
GPIO_ReadInputDataBit	Reads the specified input port pin
GPIO_ReadInputData	Reads the specified GPIO input data port
GPIO_ReadOutputDataBit	Reads the specified output data port bit
GPIO_ReadOutputData	Reads the specified GPIO output data port
GPIO_SetBits	Sets the selected data port bits
GPIO_ResetBits	Clears the selected data port bits
GPIO_WriteBit	Sets or clears the selected data port bit
GPIO_Write	Writes data to the specified GPIO data port
GPIO_PinLockConfig	Locks GPIO Pins configuration registers
GPIO_EventOutputConfig	Selects the GPIO pin used as Event output.
GPIO_EventOutputCmd	Enables or disables the Event Output.
GPIO_PinRemapConfig	Changes the mapping of the specified pin.
GPIO_EXTILineConfig	Selects the GPIO pin used as EXTI Line.

```
void GPIO Configuration(void)
 GPIO InitTypeDef GPIO InitStructure;
 /*Configure PA.1 (ADC Channel1) as analog input ----*/
 GPIO InitStructure.GPIO Pin = GPIO Pin 1;
 GPIO InitStructure.GPIO Mode = GPIO Mode AIN;
 GPIO Init(GPIOA, &GPIO InitStructure);
 /* Configure IO connected to GPIOC **************/
 GPIO InitStructure.GPIO Pin = GPIO Pin 0 | GPIO Pin 1 | GPIO Pin 2
                              GPIO Pin 3 | GPIO Pin 4 |
                                                        GPIO Pin 5
                              GPIO Pin 6 | GPIO Pin 7 | GPIO Pin 8
                              GPIO Pin 9 | GPIO Pin 10;
 GPIO InitStructure.GPIO Mode = GPIO Mode Out PP;
 GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
 GPIO Init(GPIOC, &GPIO InitStructure);
```


ARM ADC Control

ADC Block Diagram


```
void ADC Configuration(void)
  ADC InitStructure.ADC Mode = ADC Mode Independent;
  ADC InitStructure.ADC ScanConvMode = ENABLE;
  ADC InitStructure.ADC ContinuousConvMode = ENABLE;
  ADC InitStructure.ADC ExternalTrigConv = ADC ExternalTrigConv None;
  ADC InitStructure.ADC DataAlign = ADC DataAlign Right;
  ADC InitStructure.ADC NbrOfChannel = 1:
  ADC_Init(ADC1, &ADC_InitStructure);
  /* ADC1 regular channel1 configuration */
  ADC RegularChannelConfig(ADC1, ADC Channel 1, 1,
ADC SampleTime 55Cycles5);
  /* Enable ADC1 DMA */
  ADC DMACmd(ADC1, ENABLE);
  /* Enable ADC1 */
  ADC Cmd(ADC1, ENABLE);
  /* Enable ADC1 reset calibaration register */
  ADC ResetCalibration(ADC1);
  /* Check the end of ADC1 reset calibration register */
  while(ADC GetResetCalibrationStatus(ADC1));
  /* Start ADC1 calibaration */
  ADC StartCalibration(ADC1);
  /* Check the end of ADC1 calibration */
  while(ADC GetCalibrationStatus(ADC1));
  /* Start ADC1 Software Conversion */
  ADC SoftwareStartConvCmd(ADC1, ENABLE);
```


ARM DMA Control

DMA Block Diagram


```
void DMA Configuration(void)
 DMA DeInit(DMA1 Channel1);
 DMA InitStructure.DMA PeripheralBaseAddr = ADC1 DR Address;
 DMA InitStructure.DMA MemoryBaseAddr = (u32)&ADCConvertedValue;
 DMA InitStructure.DMA DIR = DMA DIR PeripheralSRC;
 DMA InitStructure.DMA BufferSize = 1;
 DMA InitStructure.DMA PeripheralInc = DMA PeripheralInc Disable;
 DMA InitStructure.DMA MemoryInc = DMA MemoryInc Disable;
 DMA InitStructure.DMA PeripheralDataSize =
DMA PeripheralDataSize HalfWord;
 DMA InitStructure.DMA MemoryDataSize = DMA MemoryDataSize HalfWord;
 DMA InitStructure.DMA Mode = DMA Mode Circular;
 DMA InitStructure.DMA Priority = DMA Priority High;
 DMA InitStructure.DMA M2M = DMA M2M Disable;
 DMA Init(DMA1 Channell, &DMA InitStructure);
  /* Enable DMA1 channel1 */
 DMA Cmd(DMA1 Channel1, ENABLE);
```

DMA1 request mapping00

硬體電路配置

- □A/D Test 電路配置
- □Text LCD 電路配置
- □硬體接線示意圖

A/D Test 電路配置(1)

A/D Test 電路配置(2)

A/D TEST

PA0 34 PA1 35 PA2 36 PA3 37	PAO/WKUP/USART2_CTS/ADC_INO/TIM2_CH1_ETR/TIM5_CH1/TIM8_E PAI/USART2_RTS/ADC_IN1/TIM2_CH2 PA2/USART2_TX/ADC_IN2/TIM2_CH5	PC14/OSC32_IN PC13/TAMPER-RTC	9 PC15 OSC32 OUT 8 PC14 OSC32 IN 7 PC13 113 PC12
PA4 40 PA5 41	PA3/USART2_RX/ADC_IN3/TIM2_CH4 PA4/SPI1_NSS/USART2_CK/ADC_IN4 PA5/SPI1_SCK/ADC_IN5	PC12/UARTS TX/SDIO CK PC11/UART4 RX/SDIO D3 PC10/14/PT4 TX/SDIO D3	112 PC11 111 PC10

子版腳位名稱	子版腳位編號	母版腳位名稱	母版腳位編號
A/D Test	CON2.20	PA1	CON1.33
VCC3.3V	CON2.29	VDD	CON2.36
GND	CON2.30	VSS	CON2.35

Text LCD 電路配置

子版腳位名稱	子版腳位編號	母版腳位名稱	母版腳位編號
VCC5V	CON2.11	VCC5V	CON1.36
GND	CON2.12	GND	CON1.35
LCD_D0	CON2.16	P00	CON1.24
LCD_D1	CON2.15	PC1	CON1.25
LCD_D2	CON2.14	PC2	CON1.26
LCD_D3	CON2.13	PC3	CON1.27
LCD_D4	CON2.8	PC4	CON2.8
LCD_D5	CON2.7	PC5	CON2.9
LCD_D6	CON2.6	P06	CON3.24
LCD_D7	CON2.5	PC7	CON3.25
LCD_EN	CON2.15	PC8	CON3.26
LCD_RS	CON2.17	PC9	CON3.27
LCD_R/W	CON2.18	PC10	CON4.3

PAO 34 PAO/WKUP/USART2 CTS/ADC INO/TIM2 CHI ETR/TIM:	CHI/TIM8 ETR PC15/OSC32 OUT	9	PC15 OSC32_OUT
PAL 35 PALLISARTS RESADO INICITAD CUS	PC14/OSC32 IN	8	PC14 OSC32_IN
PA2 36 PA2/USART2 TX/ADC IN2/TIM2 CH3		7	PC13
PA3 37 PA3/USART2 PX/ADC IN3/TIM2 CH4	PC13/TAMPER-RTC	113	PC12
PA4 40 THE GARRY FOR ABOUT IN THE	PC12/UART5_TX/SDIO_CK	112	PCLL
DAS 41 PA4/SPII_NSS/USARIZ_CR/ADC_IN4	PC11/UART4_RX/SDIO_D3 F	111	PC10
	PC10/UART4_TX/SDIO_D2 -		
PA6 42 PA6/SPII MISO/TIMB BKIN/ADC IN6/TIMB CHI	PC9/TIM8_CH4/SDIO_D1	99 98	PC9 rs PC8 en
PAT 43 PAT/SPH MOSE/TIME CHINIADC INT/TIME CHE	PC8/TIM8_CH3/SDIO_D0	98	
PAS 100 PAS/USARTI_CK/TIMI_CHI/MCO	PC7/12S3_MCK/TIM8_CH2/SDIO_D7		DB7
PAY 191 DAOJUSARTI TVITIAL CUI	PC6/12S2 MCK/TIM8 CH1/SDIO D6		PC6 DR6
		45	PC5 DB5
PAID 103 PAID USARTI RX/TIMI CH3	PCS/ADC_IN15	44	PC4 DB4
PATI 103 PATI / USARTI CTS/CANRX / USBDM (2)/TIMI CH4	PC4/ADC_IN14	29	PC4 DB4 PC3 DB3
PATA 105 PATA USARTI RIS/CANTA USBOP (2) TIMI ETR	PC3/ADC_IN13		PC2 DB3
PALA 100 PALATIMS-SWDAT	PC2/ADC_IN12		PCI DB2
PA15 110 PA14/JTCK-SWCLK	PCI/ADC_IN11		
PA15/JTDI/SP13_NSS/12S3_WS	PC0/ADC IN10	26	PC0 DB0

實驗步驟

- □軟體設置
- □原始碼檔案瀏覽
- □編譯燒錄程式並觀察結果

檔案目錄結構

<目錄>/檔案	説明
	<.\ADC2TextLCD\>
<pre>project></pre>	單元實驗Project目錄
<source/>	程式碼目錄
<include></include>	引入檔目錄
⊲ibrary>	函式車目錄
<image/>	燒鍋直置檔目錄
	<\ADC2TextLCD\image>
Lab.dfu	燒鍋配置檔
	<\ADC2TextLCD\source>
hw_config.c	硬體配置程式
lcd_func.c	Text LCD 控制程式

編譯燒錄程式並觀察結果

- □ 完成系統硬體設置之工作後,依 MIAT STM32 user manual (ch3, ch4)之操作指示,將編譯後的hex檔轉換為dfu
- □ 透過USB 燒錄dfu檔
- □ 旋轉VR2觀察電壓變化後A/D轉換後之結果

實作重點提示

- □ 觀察部份原始碼檔案,藉以了解程式架構
- □ 載入執行 Lab.dfu,操作 VR2(可變電阻)並觀察 Text LCD 是否有相對映之數字顯示

實際操作

操作時間~(30min)

習作及參考資料

□習作

Exe_1:改變Text LCD可顯示十進位輸出。

Exe_2: 將溫度感測轉換結果顯示於Text LCD第二列

- □ 參考資料
 - [1] MIAT_STM32_user_manual_V1.00.pdf
 - [2] STM32F10xxx reference manual.pdf
 - [3] STM32F103XX firmware library.pdf
 - [4] LMC-SSC2D16-01 Serial USER MANUAL(Text LCD datasheet)

Q & A

