Mikromagnetyczne symulacje nanostruktur magnetycznych

Amadeusz Filipek

Model mikromagnetyzmu

- Aproksymacja ciągła
- Struktura atomowa jest pomijana
- Mikromagnetyzm statyczny
- Mikromagnetyzm dynamiczny

Mikromagnetyzm statyczny

- Minimalizacja energii całkowitej
- Energia wymiany
- Energia anizotropii
- Energia demagnetyzacji
- Energia magnetoelastyczna
- Energia Zeemana

Gęstość energii wymiany

$$dE = A(\nabla m)^2 dV$$

- $m = \frac{M}{M_S}$ zredukowane namagnesowanie
- A stała wymiany
- Faworyzuje układy o wolno zmiennej magnetyzacji.
- Minimalizacja prowadzi do jednorodnego namagnesowania.

Gęstość energii anizotropii (jednoosiowej)

$$dE = K_u(1 - m_z^2)dV$$

- $ightharpoonup K_u$ jednoosiowa stała anizotropii
- Kierunek anizotropii stanowi oś łatwą magnetyzacji
- Minimalizacja energii prowadzi do jednorodnej magnetyzacji w kierunku osi łatwej

Gęstość energii demagnetyzacji

$$dE = -\frac{1}{2}\mu_0 M \cdot H_d dV$$

 $ightharpoonup H_d$ - pole demagnetyzacji, efekt namagnesowania, wyliczane z równań:

- $-\nabla \cdot M$ gęstość ładunku magnetycznego
- Minimalizacja prowadzi do konfiguracji o małym ładunku magnetycznym
- Minimalizacja prowadzi do wzrostu innych energii
- Odpowiada za tworzenie się domen

Gęstość energii Zeemana

$$dE = -\mu_0 H \cdot MdV$$

- Namagnesowanie w zewnętrznym polu magnetycznym
- Minimalizacja prowadzi do orientacji równoległej namagnesowania do zewnętrznego pola magnetycznego

Mikromagnetyzm dynamiczny

Równanie Landaua-Lifshitza-Gilberta :

$$\frac{\partial m}{\partial t} = -|\gamma|m \times H_{eff} + \alpha m \times \frac{\partial m}{\partial t}$$

 $ightharpoonup H_{eff}$ - pole efektywne widziane przez namagnesowanie

$$H_{eff} = -\frac{1}{\mu_0 M_s} \frac{d^2 E}{dm dV}$$

- $ightharpoonup \gamma$ żyromagnetyczny współczynnik Gilberta
- \triangleright α stała tłumienia

Object Oriented MicroMagnetic Framework (OOMMF)

- Środowisko dostępne publicznie
- Napisane w C++
- Umożliwia iteracyjne rozwiązywanie zadanych problemów mikromagnetycznych metodą skończonych elementów
- Symulacje statyczne oraz dynamiczne

Parametry wejściowe

- Zdefiniowanie geometrii próbki
- Zadanie wymiarów siatki obliczeniowej
- Parametry energetyczne:
 - Stała wymiany A
 - Stała anizotropii K_u
 - Stała Namagenosowania saturyzacji M_s
- Specyfikacja doświadczenia (geometria i wartość zewnętrznego pola magnetycznego, rozkład startowy namagnesowania)

Symulacje nanostruktur

- Wymiary układu : 1000 nm x 1000 nm x 12 nm
- Wymiary komórki obliczeniowej: 4 x 4 x 3 nm
- $\gamma = 2.211 \cdot 10^5 \, \frac{m}{A \cdot s}$
- $\alpha = 0.5$
- Temperatura T = 0 K
- Parametry wyjściowe :
 - $M_s = 6.7 \cdot 10^5 \frac{A}{m}$ (wartość z pomiarów)
 - $A = 5 \cdot 10^{-12} \frac{J}{m} \text{ (z literatury)}$
 - $K_u = 2.2 \cdot 10^5 \frac{J}{m^3}$ w osi z (wartość z pomiarów)
- Symulacje histerezy w jednorodnym polu magnetycznym w zakresie -2 do 2 T
- Periodyczne warunki brzegowe dla domen

$$K_u = 2 \cdot 10^5 \frac{J}{m^3}$$

• Wymiary: 960 nm x 840 nm x 12 nm

Period sieci : ~240 nm

Promień dziury: 75 nm

Topografia próbki 2 x 2 µm Period sieci : ~263 nm Promień dziury ~ 78 nm

5 x 5 μm

 $2 \times 2 \mu m$

Podsumowanie

- Symulacje przewidują tworzenie się struktur domenowych typu stripe domain
- ► Zbadane parametry w istotny sposób wpływają na strukturę domenową układu
- Przyjęte uproszczenia :
 - Monkorystaliczna budowa symulowanego układu
 - Temperatura 0 K
 - Idealna gładkość powierzchni
 - Brak defektów i zanieczyszczeń
- Wykonane symulacje mogą stanowić podstawę do dalszych badań

Dziękuję za uwagę