

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 26.04.2017

Bitübertragungsschicht Physical Layer

ISO-Definition

- Die Bitübertragungsschicht definiert
 - mechanische
 - elektrische
 - funktionale und
 - prozedurale
- Eigenschaften um eine physikalische Verbindung
 - aufzubauen,
 - aufrecht zu erhalten und
 - zu beenden.

Signale, Daten und Information

Schlechter Wetter

Information

- Menschliche Interpretation,
 - z.B. schönes Wetter

Daten

- Formale Präsentation,
 - z.B. 8 Grad Celsius, Niederschlagsmenge 0cm, Wolkenbedeckung 40% 00%

Signal

- Repräsentation von Daten durch physikalische Variablen,
 - z.B. Stromfluss durch Thermosensor, Videosignale aus Kamera
- Beispiele für Signale:
 - Strom, Spannung
- In der digitalen Welt repräsentieren Signale Bits

Physikalische Medien

- Leitungsgebundene Übertragungsmedien
 - Kupferdraht Twisted Pair
 - Kupferdraht Koaxialkabel
 - Glasfaser
- Drahtlose Übertragung
 - Funkübertragung
 - Mikrowellenübertragung
 - Infrarot
 - Lichtwellen

Die einfachste Bitübertragung

Bit 1: Strom an

Bit 0: Strom aus

Übertragung eines Buchstabens: "b"

- Zeichen "b" benötigt mehrere Bits
 - z.B. ASCII code of "b" als Binärzahl 01100010
- Spannungsverlauf:

Was kommt an?

- Übertrieben schlechter Empfang
- Was passiert hier?

5 Gründe für den schlechten Empfang

- 1. Allgemeine Dämpfung
- 2. Frequenzverlust
- 3. Frequenzabhängige Dämpfung
- 4. Störung und Verzerrung
- 5. Rauschen

1. Signale werden gedämpft

Dämpfung α (attenuatation)

- Verhältnis von Sendeenergie
 P₁ zu Empfangsenergie P₀
- Bei starker Dämpfung erreicht wenig Energie dem Empfänger
- Dämpfung hängt ab von
 - der Art des Mediums
 - Abstand zwischen Sender und Empfänger
 - ... anderen Faktoren
- Angegeben in deziBel

$$\log_{10} \frac{P_1}{P_0} \quad \text{(in Bel)}$$

= $10 \log_{10} \frac{P_1}{P_0}$ (in deziBel [dB])

2. Nicht alle Frequenzen passieren das Medium

Das Signal beim Verlust der hohen Frequenzen

3. Frequenzabhängige Dämpfung

- Vorherige Seite: Cutoff
 - Zuerst ist die Dämpfung 1
 - und dann Unendlich
- Realistischer:
 - Dämpfung steigt kontinuierlich von 1 zu höheren Frequenzen
- Beides:
 - Bandweiten-begrenzter
 Kanal

Beispiel mit realistischerer Dämpfung

 Beispiel: Dämpfung ist 2; 2,5, 3,333..., 5, 10, 1 für den ersten, zweiten, ... Fourier-koeffizienten

4. Das Medium stört und verzerrt

- In jedem Medium (außer dem Vakuum) haben verschiedene Frequenzen verschiedene Ausbreitungsgeschwindigkeit
 - Resultiert in Phasenverschiebung
 - Die zugrunde liegende Sinuskurve ist bestimmt durch Amplitude a, Frequenz f, and Phase φ

$$a\sin(2\pi ft + \phi)$$

- Die Größe dieser Phasenverschiebung hängt von der Frequenz ab
 - Dieser Effekt heißt Verzerrung (distortion)

Frequenzabhängige Dämpfung und Verzerrung

5. Echte Medien rauschen

- Jedes Medium und jeder Sender und Empfänger produzieren Rauschen
 - Verursacht durch Wärme, Störungen anderer Geräte, Signale, Wellen, etc.
- Wird beschrieben durch zufällige Fluktuationen des (störungsfreien) Signals
 - Typische Modellierung: Gauß'sche Normalverteilung

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Zusammenfassung

Dies alles kann das Eingangssignal erklären.

Basisband und Breitband

Basisband (baseband)

- Das digitale Signal wird direkt in Strom- oder Spannungsveränderungen umgesetzt
- Das Signal wird mit allen Frequenzen übertragen
 - z.B. Durch NRZ (Spannung hoch = 1, Spannung niedrig = 0)
- Problem: Übertragungseinschränkungen
- Breitband (broadband)

- Weiter Bereich an Möglichkeiten:
 - Die Daten k\u00f6nnen auf eine Tr\u00e4gerwelle aufgesetzt werden (Amplitudenmodulation)
 - Die Trägerwelle kann verändert (moduliert) werden (Frequenz/ Phasenmodulation)
 - Verschiedene Trägerwellen können gleichzeitig verwendet werden