- (1) Sia $E \subseteq \mathbb{R}$ un insieme non vuoto. Se E è limitato superiormente, allora
 - (a) il massimo di E esiste e coincide con l'estremo superiore di E;
 - (b) il massimo di E esiste ed è finito;
 - (c) il massimo di E non esiste;
 - (d) l'insieme dei maggioranti di E non è vuoto.
- (2) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione iniettiva. Allora
 - (a) ogni retta orizzontale interseca il grafico di f in uno e un solo punto;
 - (b) ogni retta orizzontale interseca il grafico di f in al più un punto;
 - (c) ogni retta orizzontale interseca il grafico di f in almeno un punto;
 - (d) nessuna delle precedenti.
- (3) Siano $f: \mathbb{R} \to \mathbb{R}$ e $x_0 \in \mathbb{R}$ tali che $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$. Allora
 - (a) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \delta$ si ha $|f(x) \ell| < \varepsilon$;
 - (b) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \varepsilon$ si ha $|f(x) \ell| < \delta$;
 - (c) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \delta$ si ha $|f(x) \ell| < \varepsilon$;
 - (d) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \varepsilon$ si ha $|f(x) \ell| < \delta$;
- (4) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione tale che per ogni $\varepsilon > 0$ esiste M > 0 tale che per ogni x > M si ha $|f(x) 3| < \varepsilon$. Allora
 - (a) $\lim_{x\to-\infty} f(x) = 3$;
 - (b) $\lim_{x\to+\infty} f(x) = 3$;
 - (c) $\lim_{x\to 3} f(x) = \infty$;
 - (d) $\lim_{x\to 3} f(x) = -\infty$.
- (5) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione tale che $x^2 \leqslant f(x) \leqslant x^4$ per ogni $x \in [1, \infty)$. Quale delle seguenti affermazioni è falsa?
 - (a) f è continua da destra in 1;
 - (b) f è crescente;
 - (c) $f(x) \ge 0$ per ogni $x \ge 1$;
 - (d) $\lim_{x\to\infty} f(x) = +\infty$.
- (6) Siano $f\colon [a,b]\to \mathbb{R}$ una funzione continua tale che f(a)=1 e f(b)=3. Allora
 - (a) f([a,b]) = [1,3];
 - (b) f è crescente in [a, b];
 - (c) esiste almeno un $c \in (a, b)$ tale che f(c) = 2;
 - (d) esiste un unico $c \in (a, b)$ tale che f(c) = 2.
- (7) Sia $f: [a,b] \to \mathbb{R}$ continua in [a,b] e derivabile in (a,b). Sotto quale delle seguenti ipotesi possiamo affermare che esiste $c \in (a,b)$ tale che f'(c) = 0?
 - (a) f è derivabile anche negli estremi a e b dell'intervallo;
 - (b) f è positiva in [a, b];
 - (c) f(a) > 0 e f(b) < 0;
 - (d) f(a) = f(b).

- (8) Siano $f:(a,b)\to\mathbb{R}$ derivabile e $x_0\in(a,b)$ tale che $f'(x_0)=0$. Allora
 - (a) x_0 è un massimo o un minimo di f;
 - (b) se f'(x) < 0 per $x \in (a, x_0)$ e f'(x) > 0 per $x \in (x_0, b)$, allora x_0 è un massimo relativo;
 - (c) se f'(x) < 0 per $x \in (a, x_0)$ e f'(x) > 0 per $x \in (x_0, b)$, allora x_0 è un minimo relativo;
 - (d) nessuna delle precedenti.
- (9) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione. Quale tra le seguenti affermazioni è falsa?
 - (a) f ammette una primitiva se e solo se ne ammette infinite;
 - (b) se f ammette una primitiva allora f è derivabile;
 - (c) se f è continua, allora f ammette una primitiva;
 - (d) le primitive di f, se esistono, differiscono tra loro per una costante additiva.
- (10) Sotto quale delle seguenti ipotesi una funzione $f:[a,b] \to \mathbb{R}$ è integrabile secondo Riemann in [a,b]?
 - (a) f è limitata in [a, b];
 - (b) f è continua in $[a, b] \setminus \{x_0\}$, e in x_0 ha una discontinuità a salto;
 - (c) f è continua in (a, b);
 - (d) f è derivabile in (a, b).