RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT

SESSION 2017

Épreuve: Mathématiques

Section: Mathématiques

Durée: 4h

Coefficient: 4

Session de contrôle

Le sujet comporte six pages numérotées de 1/6 à 6/6. Les pages 5/6 et 6/6 sont à rendre avec la copie.

Exercice 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte.

Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondante à la réponse choisie. Aucune justification n'est demandée.

On représente une expérience aléatoire par l'arbre de probabilité ci-contre :

- 1) La probabilité de l'évènement B sachant A est égale à :
 - a) 0,7
- b) 0,24
- c) 0,11
- 2) La probabilité de l'évènement A nB est égale à :
 - a) 0,11
- b) 0,18
- La probabilité de l'évènement A sachant B est égale à :
 - a) $\frac{3}{7}$
- b) $\frac{5}{7}$ c) $\frac{4}{7}$

Exercice 2 (6 points)

Le plan est orienté.

Dans la figure 1 de l'annexe 1 jointe, ABC est un triangle direct tel que $\left(\overrightarrow{BC}, \overrightarrow{BA}\right) = \frac{\pi}{4} [2\pi]$

et $\left(\overrightarrow{CA}, \overrightarrow{CB}\right) = \frac{\pi}{6} [2\pi]$. Les points I, J et K sont les pieds des hauteurs du triangle ABC issues

respectivement des sommets A, B et C. Le point E est le milieu du segment [AC].

- 1) Montrer que le triangle AIE est équilatéral direct.
- 2) Soit S la similitude directe de centre A, de rapport $\sqrt{2}$ et d'angle $-\frac{\pi}{4}$.

On note Δ est la médiatrice du segment [IE] et on pose $f = S \circ S_{\Delta}$.

- a) Montrer que S(I) = B. En déduire que f(E) = B.
- b) Montrer que f est une similitude indirecte de centre A et de rapport $\sqrt{2}$.
- c) Caractériser fof. En déduire que f(B) = C.
- d) Montrer que l'image par f de la droite (BJ) est la droite (CK). En déduire que f(J) = K.

- 3) Soit g la similitude indirecte telle que g(C) = A et g(K) = I.
 - a) En remarquant que le triangle BCK est rectangle, isocèle et direct, montrer que le point B est le centre de g.
 - b) On pose D = g(A). Montrer que le point D appartient à la droite (BI).
 - c) Justifier que $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{6} [2\pi]$. Construire alors le point D.
- 4) On pose $\varphi = g \circ f$.
 - a) Montrer que φ est une similitude directe. Déterminer $\varphi(A)$ et $\varphi(B)$.
 - b) Montrer qu'une mesure de l'angle de ϕ est $\frac{7\pi}{6}$
- 5) Soit Ω le centre de ϕ .
 - a) Vérifier que $D = \phi$ o ϕ o $\phi(E)$. En déduire que $\left(\overrightarrow{\Omega E}, \overrightarrow{\Omega D}\right) = -\frac{\pi}{2} [2\pi]$.
 - b) On pose $F = \phi \circ \phi \circ \phi(J)$. Montrer les droites (FD) et (JE) sont perpendiculaires.
 - c) Vérifier que $F = \phi$ o $\phi(I)$. En remarquant que IB = IE, montrer que FD = FA.
 - d) Construire le point F. En déduire une construction du point Ω .

Exercice 3 (4 points)

Soit dans \mathbb{C} l'équation (E): $z^2 - \left(\frac{3}{2} + i \frac{\sqrt{3}}{2}\right)z + 1 = 0$.

- 1) a) Justifier que l'équation (E) possède deux solutions distinctes. (On ne demande pas de déterminer ces solutions) .
 - b) Déterminer $z_1 + z_2$. En déduire que les solutions de l'équation (E) ne sont pas conjuguées. On désigne par z_1 la solution telle que $|z_1| > 1$ et z_2 l'autre solution.

On considère, dans le plan rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , les points A, B, I et J d'affixes respectives z_1 , z_2 , 1 et -1.

- 2) a) Soit C le milieu du segment [AB]. Montrer que l'affixe du point C est $z_C = \frac{\sqrt{3}}{2}e^{i\frac{\pi}{6}}$.
 - b) En utilisant $(z_2 z_1)^2 = (z_2 + z_1)^2 4z_1z_2$, montrer que $(z_2 z_1)^2 = 4(z_C^2 1)$.
 - c) Montrer que $\left(\overrightarrow{AB}, \overrightarrow{CI}\right) + \left(\overrightarrow{AB}, \overrightarrow{CJ}\right) \equiv 0 \left[2\pi\right]$.

En déduire que la droite (AB) porte la bissectrice intérieure de l'angle ICJ.

- 3) Soit (C) le cercle circonscrit au triangle IAJ. On note K le centre de (C) et z_K l'affixe du point K.
 - a) Prouver que K est un point de l'axe (O, \vec{v}) . On pose $z_K = i \ y$, où y est un réel non nul.
 - b) Soit M un point du plan d'affixe z. Justifier que $(M \in (C))$ équivaut à $(|z-iy|^2 = |1-iy|^2)$. En déduire que $(M \in (C))$ équivaut à (zz+iy(z-z)=1).
 - c) En remarquant que $z_1 = \frac{1}{z_2}$, montrer que le point B appartient au cercle (C).
- 4) a) Construire le point C dans le repère (O, u, v).
 - b) Construire la droite (AB) et la médiatrice du segment [AB].
 - c) Déduire une construction des points A et B, images des solutions de l'équation (E).

Exercice 4 (7 points)

Soit f la fonction définie sur $]0,+\infty[$ par $f(x)=ln(\frac{x^2}{x+1}).$

On désigne par (C_f) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .

- A) 1) a) Calculer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement.
 - b) Calculer $\lim_{x \to +\infty} f(x)$ et montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$. Interpréter graphiquement.
 - 2) a) Montrer que pour tout $x \in]0,+\infty[, f'(x) = \frac{x+2}{x(x+1)}$.
 - b) Dresser le tableau de variation de f.
 - c) Montrer que f réalise une bijection de]0,+∞[sur un intervalle J que l'on précisera.
 - 3) a) Résoudre dans \mathbb{R} l'équation $x^2 = x + 1$.
 - b) On note α la solution positive. Vérifier que la deuxième solution est égale à $-\frac{1}{\alpha}$.
 - c) Montrer que la courbe (C_f) coupe l'axe des abscisses au point A d'abscisse α .
 - d) Montrer qu'une équation de la tangente T à (C_f) au point A est $y = \left(\frac{1}{\alpha} + \frac{1}{\alpha^3}\right)(x \alpha)$.
 - e) Vérifier que la tangente T passe par le point $B\left(0, -1 \frac{1}{\alpha^2}\right)$.

- 4) Dans la figure 2 de l'annexe 2 jointe, on a tracé dans le repère $(0, \vec{i}, \vec{j})$, la droite D d'équation y = x + 2 et la courbe Γ de la fonction $x : \mapsto x^2 + 1$.
 - a) Construire les points A et B.
 - b) Construire la tangente T et tracer la courbe (Cf).
- B) Soit nun entier naturel non nul.

On pose pour tout $x \ge 1$, $G_n(x) = \int_1^x f(t^n) dt$.

- 1) a) Montrer que pour tout $x \ge 1$, $\ln\left(\frac{1}{2}\right)(x-1) \le G_n(x) \le f(x^n)(x-1)$.
 - b) Montrer que pour tout réel $x \ge 1$, $G_n(x) = x f(x^n) ln(\frac{1}{2}) n(x-1) \int_1^x \frac{n}{1+t^n} dt$.
- 2) On pose $J_n = n \int_1^{\sqrt[n]{\alpha}} \frac{1}{1+t^n} dt$.
 - a) Montrer que $\lim_{n\to +\infty} \sqrt[n]{\alpha} = 1$.
 - b) En utilisant B)1)a), montrer que $\lim_{n\to +\infty} G_n\left(\sqrt[n]{\alpha}\right) = 0$.
 - c) Montrer que $\lim_{n \to +\infty} \frac{\sqrt[n]{\alpha} 1}{\frac{1}{n}} = \ln(\alpha).$
 - d) Déterminer alors $\lim_{n\to +\infty}\,J_n$.

	Section:	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
×		

Épreuve : Mathématiques Section : Mathématiques

Annexe 1 à rendre avec la copie

Figure 1

Épreuve : Mathématiques

Annexe 2 à rendre avec la copie

Figure 2