

# Lógica para Programação

Resolução do Segundo Teste

15 de Junho de 2011

09:00-10:30

| Nome: | Número:                                                                                                                                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Para cada uma das seguintes questões, indique se é verdadeira ou falsa. NOTA<br>a resposta correcta vale 0.5 valores e uma resposta errada desconta 0.3 valores.                                                                                          |
| (a)   | Na conversão para a fórma clausal normal de uma <i>fbf</i> em lógica de primeira ordem, a eliminação do quantificador existencial consiste em substituir toda as variáveis quantificadas existencialmente por uma constante de Skolem. <b>Resposta:</b> F |
| (b)   | Um conjunto de cláusulas $\Delta$ é não satisfazível se e só se um conjunto finito de instâncias fechadas de cláusulas de $\Delta$ é não satisfazível.<br><b>Resposta:</b> V                                                                              |
| (c)   | Uma cláusula de Horn é uma cláusula que contém, no máximo, um litera negativo.  Resposta:  F                                                                                                                                                              |
| (d)   | A programação em lógica combina a representação de um subconjunto de fór<br>mulas de primeira ordem com uma estratégia de resolução.<br><b>Resposta:</b><br>V                                                                                             |
| (e)   | Uma função de selecção permite escolher o literal de uma cláusula objectivo como candidato na aplicação do princípio da resolução.  Resposta:  V                                                                                                          |
| (f)   | O PROLOG não permite que o mesmo símbolo de predicado seja utilizado con diferentes números de argumentos.  Resposta:  F                                                                                                                                  |
|       | Determine o unificador mais geral para o seguinte conjunto de <i>fbfs</i> . Apresentos os passos intermédios.                                                                                                                                             |

 $\Delta = \{ P(a, f(x), g(z)), P(x, f(a), y) \}$ 

# Resposta:

| Conjunto                        | Conjunto de desacordo | Substituição |  |
|---------------------------------|-----------------------|--------------|--|
| P(a, f(x), g(z)), P(x, f(a), y) | $\{a,x\}$             | $\{a/x\}$    |  |
| P(a, f(a), g(z)), P(a, f(a), y) | $\{g(z),y\}$          | $\{g(z)/y\}$ |  |
| $\{P(a, f(a), g(z))\}$          |                       |              |  |

O unificador mais geral é  $\{a/x, g(z)/y\}$ .

3. Considere a seguinte *fbf*:

$$\forall x [P(x, f(x)) \to \exists y [Q(y) \to \neg R(g(y), x)]]$$

(a) **(0.5)** Indique *todos* os termos existentes na *fbf* anterior.

# Resposta:

$$x$$
,  $f(x)$ ,  $y$ ,  $g(y)$ 

(b) (0.5) Indique todas as *fbfs* atómicas existentes na *fbf* anterior.

## Resposta:

(c) **(1.0)** Converta a *fbf* anterior para a forma clausal, indicando todos os passos realizados.

# Resposta:

$$\forall x [\neg P(x,f(x)) \lor \exists y [\neg Q(y) \lor \neg R(g(y),x)]] \text{ (El. do símbolo} \rightarrow) \\ \forall x [\neg P(x,f(x)) \lor (\neg Q(s(x)) \lor \neg R(g(s(x)),x))] \text{ (El. dos quantificadores existenciais)} \\ \neg P(x,f(x)) \lor (\neg Q(s(x)) \lor \neg R(g(s(x)),x)) \text{ (El. dos quantificadores universais)} \\ \{\neg P(x,f(x)) \lor \neg Q(s(x)) \lor \neg R(g(s(x)),x))\} \text{ (El. do símbolo} \land) \\ \{\{\neg P(x,f(x)), \neg Q(s(x)), \neg R(g(s(x)),x))\}\} \text{ (El. do símbolo} \lor)$$

- 4. Considerando definidos os predicados Super-heroi(x) (que afirma que x é um super-herói) e Tem(x, y) (que afirma que x tem a propriedade y), bem como as constantes Batman e super-poderes, represente em Lógica de Primeira Ordem as seguintes frases:
  - (a) (0.5) O Batman é um super-herói.

## Resposta:

Super-heroi(Batman)

(b) (0.5) Nem todos os super-heróis têm super-poderes.

# Resposta:

```
\exists x [Super-her\'oi(x) \land \neg Tem(x, super-poderes)]  ou \neg \forall x [Super-her\'oi(x) \rightarrow tem(x, super-poderes)]
```

5. (1.5) Usando o sistema de dedução natural, demonstre o seguinte teorema

$$\forall x [(\exists y [A(x,y)] \land \forall z [A(x,z) \to B(z)]) \to \exists y [A(x,y) \land B(y)]]$$

Número: \_\_\_\_\_ Pág. 3 de 6

## Resposta:

| 1  | $ x_0 $                                                                                                                      | $\exists y$ | $z[A(x_0,y)] \wedge \forall z[A(x_0,z) \to B(z)]$                                        | Hip                      |  |
|----|------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------|--------------------------|--|
| 2  |                                                                                                                              | $\exists y$ | $[A(x_0,y)]$                                                                             | $E \wedge$ , 1           |  |
| 3  | $\forall z[A(x_0,z) \to B(z)]$                                                                                               |             |                                                                                          | $E \wedge$ , 2           |  |
| 4  |                                                                                                                              | $y_0$       | $A(x_0, y_0)$                                                                            | Hip                      |  |
| 5  |                                                                                                                              |             | $\forall z[A(x_0,z) \to B(z)]$                                                           | Rei, 3                   |  |
| 6  |                                                                                                                              |             | $A(x_0, y_0) \to B(y_0)]$                                                                | $E \forall$ , $5$        |  |
| 7  |                                                                                                                              |             | $A(x_0, y_0)$                                                                            | Rep, 4                   |  |
| 8  |                                                                                                                              |             | $A(x_0, y_0) \to B(y_0)]$                                                                | Rep, 6                   |  |
| 9  |                                                                                                                              |             | $B(y_0)]$                                                                                | $E \rightarrow$ , (7,8)  |  |
| 10 |                                                                                                                              |             | $A(x_0, y_0)$                                                                            | Rep, 4                   |  |
| 11 |                                                                                                                              |             | $B(y_0)]$                                                                                | Rep, 9                   |  |
| 12 |                                                                                                                              |             | $A(x_0, y_0) \wedge B(y_0)$                                                              | $I \wedge$ , (10,11)     |  |
| 13 |                                                                                                                              |             | $\exists y [A(x_0, y) \land B(y)]$                                                       | <i>I</i> ∃, 12           |  |
| 14 |                                                                                                                              | $\exists y$ | $[A(x_0,y) \wedge B(y)]$                                                                 | E∃, (2,(4,13))           |  |
| 15 | (∃;                                                                                                                          | y[A         | $(x_0, y)] \wedge \forall z [A(x_0, z) \to B(z)]) \to \exists y [A(x_0, y) \wedge B(y)]$ | $I \rightarrow$ , (1,14) |  |
| 16 | $\forall x[(\exists y[A(x,y)] \land \forall z[A(x,z) \to B(z)]) \to \exists y[A(x,y) \land B(y)]] \qquad I \forall , (1,15)$ |             |                                                                                          |                          |  |

6. **(1.0)** Recorrendo ao que aprendeu relativamente ao Universo de Herbrand, prove que  $\neg \forall x [F(x)] \rightarrow \exists x [\neg F(x)]$  é um teorema.

# Resposta:

Para provar que  $\neg \forall x[F(x)] \rightarrow \exists x[\neg F(x)]$  é um teorema há que provar que  $\neg (\neg \forall x[F(x)] \rightarrow \exists x[\neg F(x)])$  não é satisfazível. Ora de acordo com o teorema de Herbrand, um conjunto de cláusulas não é satisfazível se e só se um conjunto finito de instâncias das suas cláusulas não é satisfazível. Assim sendo, uma solução passa por transformar  $\neg (\neg \forall x[F(x)] \rightarrow \exists x[\neg F(x)])$  num conjunto de cláusulas e, de seguida, provar que existe um conjunto finito das suas instâncias que não é satisfazível. A forma clausal resultante é  $\{\{\neg F(a)\}, \{F(y)\}\}\}$  e como  $\{\{\neg F(a)\}, \{F(a)\}\}\}$  não é satisfazível está concluída a demonstração.

7. (1.0) Considerando o programa

$$\begin{array}{l} A(f(f(x))) \leftarrow A(f(x)), A(x) \\ A(f(0)) \leftarrow \\ A(0) \leftarrow \end{array}$$

e o objectivo  $\leftarrow A(f(f(x)))$ , desenhe a árvore SLD parcial usando a função de selecção que escolha para unificar o último literal do objectivo. A árvore SLD parcial que se pretende deve conter duas soluções e 9 nós (ou menos, se não for possível ter 9 nós).

Número: \_\_\_\_\_ Pág. 4 de 6

Resposta:



- 8. Implemente em PROLOG os seguintes predicados:
  - (a) (1.0) num\_ocorrencias (Elem, Lista, Num), que afirma que Elem é um elemento que aparece exactamente Num vezes na lista Lista. Por exemplo,

```
?- num_ocorrencias(a, [a, b, a, a, a, c], Num).
Num = 4;
false.
?- num_ocorrencias(a, [a, b, a, a, a, c], 2).
false.
?- num_ocorrencias(a, [a, b, a, a, a, c], 4).
true
```

#### Resposta:

```
num_ocorrencias(_, [], 0).
num_ocorrencias(Elem, [Elem | Resto], Num) :- !,
    num_ocorrencias(Elem, Resto, Num1),
    Num is Num1 + 1.
num_ocorrencias(Elem, [Y | Resto], Num) :-
    Y \= Elem,
    num_ocorrencias(Elem, Resto, Num).
```

(b) (1.5) listaPares (Lista1, Lista2) que afirma que a Lista2 contém todos os elementos da Lista1 que aparecem exactamente duas vezes. Sugestões: use o predicado da alínea anterior e assuma que está definido o predicado remove (Elem, Lista1, Lista2), o qual afirma que a Lista2 é o resultado de eliminar de Lista1 todos os elementos Elem. Por exemplo,

Número: \_\_\_\_\_ Pág. 5 de 6

```
listaPares([a, b, a, a, b, c, c, d, c, d, e], L).
L = [b, d];
false.

Resposta:
listaPares([], []).

listaPares([Elem|Lista1], [Elem|Lista2]) :-
    num_ocorrencias(Elem, [Elem|Lista1], 2), !,
    remove(Elem, Lista1, Lista3),
    listaPares(Lista3, Lista2).

listaPares([Elem|Lista1], Lista2) :-
    remove(Elem, Lista1, Lista3),
    listaPares(Lista3, Lista2).
```

- 9. **(1.0)** Considere as seguintas regras com excepções:
  - Normalmente os adultos trabalham nos dias úteis, a não ser que tenham uma justificação para não o fazer.
  - Se uma pessoa está doente num dia, tem uma justificação para não trabalhar nesse dia, a não ser que esteja apenas constipada.

Escreva regras em PROLOG que traduzam as regras acima.

#### Resposta:

10. **(1.5)** Considere o seguinte programa em PROLOG. Indique todas as respostas do programa ao objectivo p (X, Y, Z).

```
p(X,Y,Z) := q(X,Y,Z).
p(5,5,5).
q(X,Y,Z) := r(X,Y), !, s(Z).
r(X,Y) := t(X),s(Y),!.
r(1,2).
s(0).
s(1).
t(2).
```

## Resposta:

```
X = 2, Y = 0, Z = 0; X = 2, Y = 0, Z = 1; X = 5, Y = 5, Z = 5
```

- 11. Considerando os seguinte predicados definidos no projecto deste ano:
  - pessoa(P\_id, Nome\_pessoa, Ano\_nascimento, Ano\_morte)

Número: \_\_\_\_\_ Pág. 6 de 6

- actividade (A\_id, Nome\_actividade)
- filme(F\_id, Nome, Ano\_estreia, Lugar\_top\_250)
- participa(P\_id, F\_id, A\_id)
- oscar(O\_id, A\_id, Tipo\_oscar)
- nomeada(P\_id, F\_id, A\_id, Ganhou?)
- (a) (1.5) Escreva em PROLOG o predicado filmes (P\_id, A\_id, Lista) que afirma que a Lista contém os nomes dos filmes em que participou a pessoa P\_id com a actividade A\_id.

# Resposta:

(b) (1.0) Escreva em PROLOG o predicado filmes (P\_id, Lista) que afirma que Lista contém os nomes dos filmes em que participou a pessoa P\_id, independentemente da actividade desempenhada. Sugestão: recorra ao predicado anterior.

#### Resposta:

```
filmes(P_id, Lista) :- filmes(P_id, _, Lista).
```

(c) (1.5) Escreva em PROLOG o predicado nomeacao (P\_id, A\_id, Lista) que afirma que Lista contém pares cujo primeiro elemento é o nome do filme para o qual a pessoa foi nomeada com a actividade A\_id e o segundo elemento é o tipo de Oscar em causa.

#### Resposta: