

Erwin Bente
Photonic Integration group
e.a.j.m.bente@tue.nl

Interaction of light with matter

devices for generation of light

detection of light

Schedule

Photons and Atoms	8, 10	Thursday	19-Sept	
Photon and Atoms, Lasers	10, 13	Tuesday	24-Sept	HW1
Lasers	13	Thursday	26-Sept	
Semiconductor light sources	14	Tuesday	8-Oct	
Semiconductor light sources	14	Thursday	10-Oct	
1 hour Test (Ch 8-13) Semiconductor detectors	15	Tuesday	15-Oct	
Technology, Displays, Guest lecture	16,18	Thursday	17-Oct	
Lab tours – Problems, Homework discussion, Q&A Erwin Bente		Tuesday	22-Oct	\
Lab tours – Problems, Homework discussion, Q&A Erwin Bente		Thursday	24-Oct	

e.a.j.m.bente@tue.nl

Please check <u>Canvas page on Schedule</u> for more details

Photon Optics (Chapter 8)

Photons, photon energy, momentum Radiation pressure

Photon stream, coherent light

Electromagnetic radiation - normal modes

A superposition of normal modes of EM radiation describes field pattern propagating waves. EM modes analogous to normal modes of vibration in other systems

Mode shapes for a Rectangular Membrane (2 dimensions) with $L_x = 2L_y$

Standing wave = sum of two counterpropagating travelling waves

all parts of the system move sinusoidally: same frequency - fixed phase relation

Figures from: https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html

Photons

Electromagnetic radiation or field mode

You can think of:

standing **plane waves** in a large **cavity** with perfectly conducting walls

The mode density per unit volume per unit frequency turns out to be independent of size and shape of the cavity

mode density:
$$M(v)dv = \frac{8\pi v^2}{c^3}dv$$

This value is also valid for <u>free space!</u>

Photon energy

The energy in the mode with frequency ν can change only in discrete steps. It is quantized in what are called photons.

Photon energy

$$E = h\nu$$

 $h = 6.626 \ 10^{-34} \text{ Js}$ Planck's constant

• Energy of the EM mode $E_n = (n+1/2) hv$, n=0, 1, 2, ...

Zero point energy

Energy change in EM mode: absorption or generation of photons by matter. (atom, molecules, electrons etc.)

The photon

Measuring the position of a photon

A single photon in the beam

single photon detector (see Chapt. 15) will detect a photon or not

will detect the photon with a probability proportional to local intensity of the wave at the detector

Where does the photon go?

Momentum of a photon

A photon carries momentum

$$\vec{p} = \hbar \vec{k}$$

$$\hbar = \frac{h}{2\pi}$$

The momentum is a vector proportional to the k vector (see chapter 4).

The magnitude of the momentum

$$\left| \vec{p} \right| = \hbar \left| \vec{k} \right| = \frac{h}{\lambda} = \frac{hv}{c} = \frac{E}{c}$$

The relation follows from the theory of relativity

Momentum is a property that is associated with particles.

Radiation pressure

When *N* photons/s are absorbed their momentum is transferred

Radiation pressure

$$P = \frac{dp}{dt} = N\frac{h}{\lambda}$$

Application:

- Affects course of interplanetary space craft.
 - (e.g. 15000 km difference for Viking spacecraft to Mars, Eugene Hecht, "Optics", 4th edition)
 - The Pioneer anomaly (https://en.wikipedia.org/wiki/Pioneer anomaly)
- Solar sail:
 - IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun, http://global.jaxa.jp/projects/sat/ikaros/topics.html#topics4743, https://en.wikipedia.org/wiki/IKAROS)
 - Interstellar travel proposal http://physicstoday.scitation.org/do/10.1063/PT.5.2035/full/
- Trapping and cooling atoms for quantum computing

Radiation pressure (2)

- Comet has typically two tails
 - dust particles: smaller particles absorb and reflect sunlight and are affected by radiation pressure (r<~0.006 cm) and solar wind (particles) the reflected light looks white, smallest particles are affected by solar wind (particles)

ions: mostly CO⁺, N_2 ⁺, CO₂⁺ interact with solar wind and magnetic field lines (the blue light is mainly CO₂⁺)

This does <u>not</u> work on radiation pressure

Crookes radiometer

https://en.wikipedia.org/wiki/Crookes radiometer

Photon - wave particle duality

Photon interference (chapter 4.5)

Even when the light source produces only one photon a second, you still have the interference pattern appearing (after waiting a long time) https://youtu.be/GzbKb59my3U

Photon streams

- Average photon flux
 - Power density [W/m²]

average photon flux density [photons/s•m²]

When $\lambda = 200$ nm (UV) 1 nW =1 photon /ns

Photon stream

Statistics of the photon flux

$coherent\ light \Leftrightarrow thermal\ light$

Photon stream - single mode

- Coherent Light (e.g. laser light)
 - Probability p(n) of n photons arriving in time interval ΔT

$$p(n) = \frac{\bar{n}^n e^{-\bar{n}}}{n!}$$
 (Poisson distribution) shot noise

• average number of photons in ΔT : \bar{n}

"noise" becomes smaller for a larger number of photons (more power)

Variance: \bar{n}

Probability distribution coherent light

p(n)

Note log scale P(n)

Example 8.4

Photon stream – single mode

Probability distribution coherent light

Review questions

- What is a photon? Discuss it's basic properties.
- What is meant by the particle-wave duality?
- What determines intensity noise in an electromagnetic radiation beam?
- How does splitting a light beam affect its intensity noise?