EE25BTECH11033 - Kavin

Question:

Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence, find m.

Solution:

Let the vector **P** be

$$\mathbf{P} = \begin{pmatrix} 4 \\ m \end{pmatrix} \,, \tag{1}$$

1

Given the points,

$$\mathbf{A} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 6 \\ -3 \end{pmatrix} \tag{2}$$

The points A, P, B are collinear.

Points A, P, B are defined to be collinear if

$$rank(\mathbf{P} - \mathbf{A} \quad \mathbf{B} - \mathbf{A}) = 1 \tag{3}$$

$$\mathbf{P} - \mathbf{A} = \begin{pmatrix} 2 \\ m - 3 \end{pmatrix} \tag{4}$$

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 4 \\ -6 \end{pmatrix} \tag{5}$$

$$\begin{pmatrix} \mathbf{P} - \mathbf{A} & \mathbf{B} - \mathbf{A} \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ m - 3 & -6 \end{pmatrix} \tag{6}$$

$$R_2 \to 2R_2 + 3R_1 \implies \begin{pmatrix} 2 & 4 \\ 2m & 0 \end{pmatrix}$$

For rank 1, the second row must be zero:

$$2m = 0 \implies m = 0 \tag{7}$$

$$\mathbf{P} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

Section formula for a vector \mathbf{P} which divides the line formed by vectors \mathbf{A} and \mathbf{B} in the ratio k:1 is given by

$$\mathbf{P} = \frac{k\mathbf{B} + \mathbf{A}}{k+1} \tag{8}$$

$$k(\mathbf{P} - \mathbf{B}) = \mathbf{A} - \mathbf{P} \tag{9}$$

$$\implies k = \frac{(\mathbf{A} - \mathbf{P})^{\top} (\mathbf{P} - \mathbf{B})}{\|\mathbf{P} - \mathbf{B}\|^2}$$
 (10)

$$(\mathbf{A} - \mathbf{P})^{\mathsf{T}} (\mathbf{P} - \mathbf{B}) = \begin{pmatrix} -2 & 3 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix} = 13$$
 (11)

$$\|\mathbf{P} - \mathbf{B}\|^2 = (\sqrt{2^2 + 3^2})^2 = 13$$
 (12)

$$\implies k = 1$$
 (13)

Therefore the ratio in which ${\bf P}$ divides the line segment joining the points ${\bf A}$ and ${\bf B}$ is 1:1

See Fig. 0,

Fig. 0