CS1231 Review 12

- 1. Modular Arithmetic
 - Definition: a is congruent to b modulo m, we write as $a \equiv b \mod m$, if $a \equiv b \mod m$, if
 - Theorem. $a \equiv b \mod m$ iff a Modm = b Modm of a = b + km ke n = b + km
 - Theorem. $a \equiv b \mod m$ and $c \equiv d \mod m$, then $a + c \equiv b + d \mod m$ as $a \in a + d \mod m$
- 2. 1 is NOT prime. 1 is NOT composite.

 $ac \equiv bd \mod m$ $a-c \equiv b-d \mod m$ $a^n \equiv b^n \mod m$ $ne \mathbb{Z}^t$