SVODJENJE NA KANONSKI OBLIK (KRIVE DRUGOG REDA)

ZADACI

1. Sledeću jednačinu svesti na kanonski oblik i odrediti koja kriva je njome određena:

$$2x^2 + 5xy + 2y^2 - 2 = 0$$

Rešenje:

Datu jednačinu upoređujemo sa $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$, pa je :

$$A = 2$$
 $2B = 5$
 $C = 2$
 $2D = 0$
 $2E = 0$
 $F = -2$
Odavde je dakle: $A = 2$; $B = \frac{5}{2}$; $C = 2$; $D = 0$; $E = 0$; $F = -2$

Pošto je D = E = 0, zaključujemo da kriva ima centar u (0,0). [pogledaj fajl sa postupkom]

Dakle, odmah vršimo rotaciju!

$$ctg2\alpha = \frac{A-C}{2B}$$
 pa je $ctg2\alpha = \frac{2-2}{2\frac{5}{2}}$, pa je $ctg2\alpha = 0$, odnosno $2\alpha = \frac{\pi}{2}$, odakle je $\alpha = \frac{\pi}{4}$

Kad je A=C , u sledećim primerima, odmah možemo zaključiti da je $\alpha = \frac{\pi}{4}$; **zapamti!**

Upotrebljavamo formule rotacije:

$$\mathbf{x} = \mathbf{x} \cdot \cos \alpha - \mathbf{y} \cdot \sin \alpha$$

$$\mathbf{x} = \mathbf{x} \cdot \cos \frac{\pi}{4} - \mathbf{y} \cdot \sin \frac{\pi}{4}$$

$$\mathbf{x} = \mathbf{x} \cdot \frac{\sqrt{2}}{2} - \mathbf{y} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\mathbf{x} \cdot - \mathbf{y})$$

$$\mathbf{y} = \mathbf{x} \cdot \sin \alpha + \mathbf{y} \cdot \cos \alpha$$

$$\mathbf{y} = \mathbf{x} \cdot \sin \frac{\pi}{4} + \mathbf{y} \cdot \cos \frac{\pi}{4}$$

$$\mathbf{y} = \mathbf{x} \cdot \frac{\sqrt{2}}{2} + \mathbf{y} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\mathbf{x} \cdot + \mathbf{y})$$

Vraćamo se u zadatak i menjamo x i y:

$$2x^2 + 5xy + 2y^2 - 2 = 0$$

$$2\left[\frac{\sqrt{2}}{2}(x^{2}-y^{2})\right]^{2}+5\frac{\sqrt{2}}{2}(x^{2}-y^{2})\frac{\sqrt{2}}{2}(x^{2}+y^{2})+2\left[\frac{\sqrt{2}}{2}(x^{2}+y^{2})\right]^{2}-2=0 \quad sredjujemo...$$

$$2\left[\frac{2}{4}(x^2-2xy^2+y^2)\right]+5\frac{2}{4}(x^2-y^2)+2\left[\frac{2}{4}(x^2+2xy^2+y^2)\right]-2=0$$

$$\mathbf{x}^2 - 2\mathbf{x}^2 + \mathbf{y}^2 + \frac{5}{2}\mathbf{x}^2 - \frac{5}{2}\mathbf{y}^2 + \mathbf{x}^2 + 2\mathbf{x}^2 + \mathbf{y}^2 - 2 = 0$$

$$\frac{9}{2}$$
 x² - $\frac{1}{2}$ y² = 2 podelimo sa 2

$$\frac{9}{4}x^2 - \frac{1}{4}y^2 = 1$$
 kao trikče spustimo 9 ispod 4

$$\frac{x^2}{\frac{4}{9}} - \frac{y^2}{4} = 1$$
 ovo je jednačina hiperbole! $a^2 = \frac{4}{9}$ i $b^2 = 4$

Ne moramo vršiti translaciju, jer smo već došli do rešenja! [pogledaj fajl postupak]

2. Jednačinu svesti na kanonski oblik i odrediti koja kriva je njome određena:

$$7x^2 + 6xy - y^2 + 28x + 12y + 28 = 0$$

Rešenje:

Upoređujemo $7x^2 + 6xy - y^2 + 28x + 12y + 28 = 0$ sa $Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$ pa je

$$A = 7$$
 $2B = 6$
 $C = -1$
 $2D = 28$
 $2E = 12$
 $F = 28$

odavde je $A = 7$; $B = 3$; $C = -1$; $D = 14$; $E = 6$, $F = 28$

Proverimo da li kriva ima centar?

$$Aa + Bb + D = 0$$

$$Ba + Cb + E = 0$$

$$7a + 3b + 14 = 0$$

$$3a - b + 6 = 0$$
Rešenje ovog sistema je $\mathbf{a} = -2$ \mathbf{i} $\mathbf{b} = 0$

Dakle, kriva ima centar O(-2,0) pa prvo radimo translaciju:

$$7x^2 + 6xy - y^2 + 28x + 12y + 28 = 0$$

$$7(x'-2)^2 + 6(x'-2)y' - y'^2 + 28(x'-2) + 12y' + 28 = 0$$
 sredimo...

$$7(x^2-4x^4)+6x^3-12y^2+28x^3-56+12y^4+28=0$$

$$7x^2 + 6x^2 - y^2 = 0$$
 "otarasili" smo se onih sa x i y što je i cilj translacije!

Dalje nastavljamo sa rotacijom!

$$ctg2\alpha = \frac{A-C}{2B}$$
 pa je $ctg2\alpha = \frac{7+1}{6}$ to jest $ctg2\alpha = \frac{4}{3}$

Evo one situacije kada ne možemo odmah odrediti ugao....idemo preko trigonometrijskih formula:

$$ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$$
 to jest $\frac{ctg^2\alpha - 1}{2ctg\alpha} = \frac{4}{3}$ pa je odavde $3ctg^2\alpha - 8ctg\alpha - 3 = 0$

$$3\operatorname{ctg}^2 \alpha - 8\operatorname{ctg} \alpha - 3 = 0$$
 uzimamo smenu ctg $\alpha = t$

$$3t^2 - 8t - 3 = 0$$
 Rešenja ove kvadratne jednačine su : $t_1 = 3$ i $t_2 = -\frac{1}{3}$

Vratimo se u smenu: $\operatorname{ctg} \alpha = 3$ ili $\operatorname{ctg} \alpha = -\frac{1}{3}$

Ako je ctg $\alpha = 3$

Iskoristićemo formulice
$$ctg\alpha = \frac{\cos \alpha}{\sin \alpha}$$
 i $\sin^2 \alpha + \cos^2 \alpha = 1$

$$\frac{\cos \alpha}{\sin \alpha} = 3$$
 pa je $\cos \alpha = 3 \sin \alpha$ i to zamenimo u $\sin^2 \alpha + \cos^2 \alpha = 1$

$$\sin^2\alpha + (3\sin\alpha)^2 = 1$$

$$10 \sin^2 \alpha = 1$$

$$\sin \alpha = \pm \frac{1}{\sqrt{10}}$$
 vratimo se u $\cos \alpha = 3 \sin \alpha$ pa je $\cos \alpha = \pm \frac{3}{\sqrt{10}}$

Dakle odavde su rešenja :
$$(\sin \alpha, \cos \alpha) = (+\frac{1}{\sqrt{10}}, +\frac{3}{\sqrt{10}})$$
 i $(\sin \alpha, \cos \alpha) = (-\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}})$

Ako je ctg
$$\alpha = -\frac{1}{3}$$

$$\frac{\cos \alpha}{\sin \alpha} = -\frac{1}{3}$$
 pa je $\sin \alpha = -3 \cos \alpha$

$$(-3\cos\alpha)^2 + \cos^2\alpha = 1$$

$$10\cos^2\alpha = 1$$
 to jest $\cos\alpha = \pm\frac{1}{\sqrt{10}}$ pa to zamenimo u $\sin\alpha = -3\cos\alpha$ i dobijamo $\sin\alpha = \mp\frac{3}{\sqrt{10}}$

Odavde su rešenja:
$$(\sin \alpha, \cos \alpha) = (-\frac{3}{\sqrt{10}}, +\frac{1}{\sqrt{10}})$$
 i $(\sin \alpha, \cos \alpha) = (\frac{3}{\sqrt{10}}, -\frac{1}{\sqrt{10}})$

Sve mogućnosti su
$$\left(+\frac{1}{\sqrt{10}},+\frac{3}{\sqrt{10}}\right), \left(-\frac{1}{\sqrt{10}},-\frac{3}{\sqrt{10}}\right), \left(-\frac{3}{\sqrt{10}},+\frac{1}{\sqrt{10}}\right)$$
 i $\left(\frac{3}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right)$

Od ove četiri mogućnosti, prva nama odgovara! Zašto?

Podsetite se trigonometrijskog kruga i imajte na umu činjenicu da ugao $\alpha \in (0, \pi)$! (fajl iz druge godine, ovde na sajtu, naravno)

Dakle:
$$\sin \alpha = \frac{1}{\sqrt{10}}$$
 i $\cos \alpha = \frac{3}{\sqrt{10}}$

Dalje koristimo formule rotacije:

$$\mathbf{x}' = \mathbf{x}'' \cos \alpha - \mathbf{y}'' \sin \alpha$$

$$\mathbf{x}' = \frac{3}{\sqrt{10}} \mathbf{x}'' - \frac{1}{\sqrt{10}} \mathbf{y}''$$

$$\mathbf{y}' = \mathbf{x}'' \sin \alpha + \mathbf{y}'' \cos \alpha$$

$$\mathbf{y}' = \frac{1}{\sqrt{10}} \mathbf{x}'' + \frac{3}{\sqrt{10}} \mathbf{y}''$$
ovo menjamo u $7\mathbf{x}'^2 + 6\mathbf{x}'\mathbf{y}' - \mathbf{y}'^2 = \mathbf{0}$

$$7x^2 + 6x^y - y^2 = 0$$

$$7(\frac{3}{\sqrt{10}}\mathbf{x}^{"} - \frac{1}{\sqrt{10}}\mathbf{y}^{"})^{2} + 6(\frac{3}{\sqrt{10}}\mathbf{x}^{"} - \frac{1}{\sqrt{10}}\mathbf{y}^{"})(\frac{1}{\sqrt{10}}\mathbf{x}^{"} + \frac{3}{\sqrt{10}}\mathbf{y}^{"}) - (\frac{1}{\sqrt{10}}\mathbf{x}^{"} + \frac{3}{\sqrt{10}}\mathbf{y}^{"})^{2} = \mathbf{0}$$

Ovaj izraz ,naravno, sredimo...

 $7 x^2 - 2 y^2 = 0$ je konačno rešenje!

Ono predstavlja dve prave koje se seku!

3. Sledeću jednačinu svesti na kanonski oblik i odrediti koja kriva je njome određena:

$$x^2 - 2xy + y^2 - 12x + 12y - 13 = 0$$

Rešenje:

Tražimo centar:

$$Aa + Bb + D = 0
Ba + Cb + E = 0$$

$$a - b - 6 = 0
-a + b + 6 = 0$$
Ovaj sistem ima beskonašno mnogo rešenja(iste jednačine) to jest $AC - B^2 = 0$

Dakle idemo u rotaciju...

$$ctg2\alpha = \frac{A-C}{2B}$$
 Kako su A i C jednaki ,to je $\alpha = \frac{\pi}{4}$

$$\mathbf{x} = \mathbf{x} \cdot \cos \alpha - \mathbf{y} \cdot \sin \alpha$$

$$\mathbf{x} = \mathbf{x} \cdot \cos \frac{\pi}{4} - \mathbf{y} \cdot \sin \frac{\pi}{4}$$

$$\mathbf{x} = \mathbf{x} \cdot \frac{\sqrt{2}}{2} - \mathbf{y} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\mathbf{x} \cdot \mathbf{y})$$

$$\mathbf{y} = \mathbf{x} \cdot \sin \alpha + \mathbf{y} \cdot \cos \alpha$$

$$\mathbf{y} = \mathbf{x} \cdot \sin \frac{\pi}{4} + \mathbf{y} \cdot \cos \frac{\pi}{4}$$

$$\mathbf{y} = \mathbf{x} \cdot \frac{\sqrt{2}}{2} + \mathbf{y} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\mathbf{x} \cdot \mathbf{y})$$

$$x^2 - 2xy + y^2 - 12x + 12y - 13 = 0$$

$$\left[\frac{\sqrt{2}}{2}(\mathbf{x}^{\mathsf{`}}-\mathbf{y}^{\mathsf{`}})\right]^{2}-2\frac{\sqrt{2}}{2}(\mathbf{x}^{\mathsf{`}}-\mathbf{y}^{\mathsf{`}})\frac{\sqrt{2}}{2}(\mathbf{x}^{\mathsf{`}}+\mathbf{y}^{\mathsf{`}})+\left[\frac{\sqrt{2}}{2}(\mathbf{x}^{\mathsf{`}}+\mathbf{y}^{\mathsf{`}})\right]^{2}-12\frac{\sqrt{2}}{2}(\mathbf{x}^{\mathsf{`}}-\mathbf{y}^{\mathsf{`}})+12\frac{\sqrt{2}}{2}(\mathbf{x}^{\mathsf{`}}+\mathbf{y}^{\mathsf{`}})-13=0$$

$$\frac{2}{4}(x^2 - 2x^2y^2 + y^2) - 2\frac{2}{4}(x^2 - y^2) + \frac{2}{4}(x^2 + 2x^2y^2 + y^2) - 6\sqrt{2}(x^2 - y^2) + 6\sqrt{2}(x^2 + y^2) - 13 = 0$$

$$\frac{1}{2}x^{2} - x^{2}y^{2} + \frac{1}{2}y^{2} - x^{2} + y^{2} + \frac{1}{2}x^{2} + x^{2}y^{2} + \frac{1}{2}y^{2} - 6\sqrt{2}x^{2} + 6\sqrt{2}y^{2} + 6\sqrt{2}y^{2} - 13 = 0$$

Posle skraćivanja dobijamo:

$$2y^2 + 12\sqrt{2}y^3 - 13 = 0$$

Dakle, dobili smo kvadratnu jednačinu po y'. Probamo da li ona ima rešenja...Njena diskriminanta je:

$$D = b^2 - 4ac$$

$$D = (12\sqrt{2})^2 - 4*2*(-13) = 288 + 104 = 392 > 0 \quad 392 = 196*2$$

$$\mathbf{y}_{1,2}^{2} = \frac{-12\sqrt{2} \pm 14\sqrt{2}}{4}$$
 Pa je $\mathbf{y}_{1}^{2} = \frac{\sqrt{2}}{2}$ i $\mathbf{y}_{2}^{2} = \frac{-13\sqrt{2}}{2}$

Dakle radi se o dvema paralelnim pravama!

4. Jednačinu svesti na kanonski oblik i odrediti koja kriva je njome određena:

$$5x^2 - 2xy + 5y^2 - 4x + 20y + 20 = 0$$

Rešenje:

$$A = 5$$
; $B = -1$; $C = 5$; $D = -2$; $E = 10$ $F = 20$

$$Aa + Bb + D = 0
Ba + Cb + E = 0$$

$$5a - b - 2 = 0
-a + 5b + 10 = 0$$

$$5a - b - 2 = 0$$

-a + 5b + 10 = 0

Rešenje je (0, -2)

Translacija:

$$\begin{cases}
x = x \\
y = y - 2
\end{cases}$$

Menjamo u datu jednačinu!

$$5x^2 - 2xy + 5y^2 - 4x + 20y + 20 = 0$$

$$5x^2 - 2x(y-2) + 5(y-2)^2 - 4x + 20(y-2) + 20 = 0$$

$$5x^2 - 2x^3y^2 + 4x^2 + 5y^2 - 20y^2 + 20 - 4x^2 + 20y^2 - 40 + 20 = 0$$
 potiremo...

$$5x^2 - 2x^y + 5y^2 = 0$$

Rotacija:

Kako je A=C ugao je $\alpha = \frac{\pi}{4}$

$$\mathbf{x}' = \mathbf{x}'' \cos \alpha - \mathbf{y}'' \sin \alpha$$

$$\mathbf{x}' = \mathbf{x}'' \cos \frac{\pi}{4} - \mathbf{y}'' \sin \frac{\pi}{4}$$

$$\mathbf{x}' = \mathbf{x}'' \frac{\sqrt{2}}{2} - \mathbf{y}'' \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\mathbf{x}'' - \mathbf{y}'')$$

$$\mathbf{y}' = \mathbf{x}'' \sin \alpha + \mathbf{y}'' \cos \alpha$$

$$\mathbf{y}' = \mathbf{x}'' \sin \frac{\pi}{4} + \mathbf{y}'' \cos \frac{\pi}{4}$$

$$\mathbf{y}' = \mathbf{x}'' \frac{\sqrt{2}}{2} + \mathbf{y}'' \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\mathbf{x}'' + \mathbf{y}'')$$

$$x = x \cos \frac{\pi}{4} - y \sin \frac{\pi}{4}$$

$$y = x \sin \frac{\pi}{4} + y \cos \frac{\pi}{4}$$

$$x' = x'' \frac{\sqrt{2}}{2} - y'' \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (x'' - y'')$$

$$y' = x'' \frac{\sqrt{2}}{2} + y'' \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (x'' + y'')$$

$$5x^2 - 2x^y + 5y^2 = 0$$

$$5\left[\frac{\sqrt{2}}{2}(x'-y')\right]^2 - 2\frac{\sqrt{2}}{2}(x'-y')\frac{\sqrt{2}}{2}(x'+y') + 5\left[\frac{\sqrt{2}}{2}(x'+y')\right]^2 = 0$$

$$5\frac{2}{4}(x^2-2x^2+y^2)-2\frac{2}{4}(x^2-y^2)+5\frac{2}{4}(x^2+2x^2+y^2)=0$$
 sredimo...

$$4 x^2 + 6 v^2 = 0$$

 $2 x^2 + 3 y^2 = 0$ je konačno rešenje, koje predstavlja TAČKU!

5. Jednačinu svesti na kanonski oblik i odrediti koja kriva je njome određena:

$$x^2 + 4xy + 4y^2 + 4x + y - 15 = 0$$

Rešenje:

A = 1; B = 2; C = 4; D = 2; E =
$$\frac{1}{2}$$
; F = -15

$$Aa + Bb + D = 0$$

$$Ba + Cb + E = 0$$

$$2a + 4b + \frac{1}{2} = 0$$
Nemoguć sistem! Nema centar!

Rotacija:

$$ctg2\alpha = \frac{A-C}{2B}$$
 pa je $ctg2\alpha = \frac{1-4}{4}$ to jest $ctg2\alpha = -\frac{3}{4}$

$$ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$$
 to jest $\frac{ctg^2\alpha - 1}{2ctg\alpha} = \frac{-3}{4}$ pa je odavde $2ctg^2\alpha + 3ctg\alpha - 2 = 0$

$$2\operatorname{ctg}^2 \alpha + 3\operatorname{ctg} \alpha - 2 = 0$$
 smena $\operatorname{ctg} \alpha = \operatorname{tg}$

 $2 t^2 + 3t - 2 = 0$ kvadratna po t, a njena rešenja su : $t_1 = \frac{1}{2}$; $t_2 = -2$; vratimo se u smenu ctg $\alpha = t$

$$\mathbf{Za} \ \mathbf{ctg} \, \alpha = \frac{1}{2}$$

Iskoristićemo formulice $ctg\alpha = \frac{\cos \alpha}{\sin \alpha}$ i $\sin^2 \alpha + \cos^2 \alpha = 1$

 $\frac{\cos \alpha}{\sin \alpha} = \frac{1}{2}$ pa je $2\cos \alpha = \sin \alpha$ i to zamenimo u $\sin^2 \alpha + \cos^2 \alpha = 1$

 $4\cos^2\alpha + \cos^2\alpha = 1$

 $5\cos^2\alpha = 1$

 $\cos \alpha = \pm \frac{1}{\sqrt{5}}$ vratimo se u $2\cos \alpha = \sin \alpha$ pa je $\sin \alpha = \pm \frac{2}{\sqrt{5}}$

Dakle odavde su rešenja : $(\sin \alpha, \cos \alpha) = (+\frac{2}{\sqrt{5}}, +\frac{1}{\sqrt{5}})$ i $(\sin \alpha, \cos \alpha) = (-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$

Koristeći isti postupak dobijamo rešenja:

$$(\sin \alpha, \cos \alpha) = (+\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}})$$
 i $(\sin \alpha, \cos \alpha) = (-\frac{1}{\sqrt{5}}, +\frac{2}{\sqrt{5}})$

Rešenje koje ćemo mi uzeti je $(\sin \alpha, \cos \alpha) = (+\frac{2}{\sqrt{5}}, +\frac{1}{\sqrt{5}})$

Rotacija:

$$x = x \cdot \cos \alpha - y \cdot \sin \alpha$$

$$y = x \cdot \sin \alpha + y \cdot \cos \alpha$$

$$x = \frac{1}{\sqrt{5}} x \cdot - \frac{2}{\sqrt{5}} y \cdot$$

$$y = \frac{2}{\sqrt{5}} x \cdot + \frac{1}{\sqrt{5}} y \cdot$$

$$y = \frac{1}{\sqrt{5}} (2x \cdot + y \cdot)$$

$$menjamo u:$$

$$x^2 + 4xy + 4y^2 + 4x + y - 15 = 0$$

$$\left[\frac{1}{\sqrt{5}}(x^{2}-2y^{2})\right]^{2}+4\frac{1}{\sqrt{5}}(x^{2}-2y^{2})\frac{1}{\sqrt{5}}(2x^{2}+y^{2})+4\left[\frac{1}{\sqrt{5}}(2x^{2}+y^{2})\right]^{2}+4\frac{1}{\sqrt{5}}(x^{2}-2y^{2})+\frac{1}{\sqrt{5}}(2x^{2}+y^{2})-15=0$$

Sve ovo lepo sredimo, skratimo šta ima, i dobijamo:

$$5 x^2 + \frac{5}{\sqrt{5}} x^2 - \frac{7}{\sqrt{5}} y^2 - 15 = 0$$
 sve podelimo sa 5

$$\mathbf{x'}^2 + \frac{1}{\sqrt{5}}\mathbf{x'} - \frac{7}{5\sqrt{5}}\mathbf{y'} - \mathbf{5} = \mathbf{0}$$
 sad vršimo dopunu do punog kvadrata...(po x')

$$x^2 + \frac{1}{\sqrt{5}}x^2 + (\frac{1}{2\sqrt{5}})^2 - (\frac{1}{2\sqrt{5}})^2 - \frac{7}{5\sqrt{5}}y^2 - 5 = 0$$
 prva tri daju pun kvadrat!

$$(\mathbf{x}' + \frac{1}{2\sqrt{5}})^2 = \frac{7}{5\sqrt{5}}\mathbf{y}' + \frac{61}{20}$$
 izvučemo $\frac{7}{5\sqrt{5}}$ kao zajednički na desnoj strani...

$$(\mathbf{x}' + \frac{1}{2\sqrt{5}})^2 = \frac{7}{5\sqrt{5}}(\mathbf{y}' + \frac{61}{20}/\frac{7}{5\sqrt{5}})$$

malo sredimo

$$(\mathbf{x}' + \frac{1}{2\sqrt{5}})^2 = \frac{7}{5\sqrt{5}}(\mathbf{y}' + \frac{61}{4}/\frac{7}{\sqrt{5}})$$

$$(\mathbf{x}' + \frac{1}{2\sqrt{5}})^2 = \frac{7}{5\sqrt{5}}(\mathbf{y}' + \frac{61\sqrt{5}}{28})$$

SAD IZVRŠIMO TRANSLACIJU: (napravili smo šta je x`` i y``)

$$\mathbf{x}^{"} = \mathbf{x}^{"} + \frac{1}{2\sqrt{5}}$$

$$\mathbf{y}`` = \mathbf{y}` + \frac{61\sqrt{5}}{28}$$

Tako da sada kriva postaje:

$$x^2 = \frac{7}{5\sqrt{5}} y^2$$
 a ovo je parabola!
