Digital Electronic Circuits Section 1 (EE, IE)

Lecture 2

Propagation Delay

Due to finite switching speed of transistors and circuit capacitances

t_{PHL}: Delay in changing output from H to L

tpi H: Delay in changing output from L to H

Propagation delay, $t_{PD} = (t_{PHL} + t_{PLH})/2$

 t_r : Rise time \rightarrow 10% to 90% of max.

t_f: Fall time → 90% to 10% ...

Power dissipation

- Static power dissipation
 - when transistor is either ON or OFF
 - depends on current drawn in each case
 - power dissipation, P_D is average of these two
 - significant in switching of Bipolar Junction Transistor
- Dynamic power dissipation
 - when transistor switches
 - depends on switching speed
 - significant in switching of CMOS Transistor

Figure of Merit, $F = P_D x t_{PD}$ The lower the F, the better.

RTL NOR Gate

RTL: Resistance Transistor Logic

- For 3 input NOR gate, another input would come in parallel with A and B.
- More no. of inputs increases delay
- Fan-in: Max. number of inputs a gate can handle

RTL NAND Gate

It will be shown that any other logic gates can be obtained using only NAND gate or NOR gate.

From Archive (Motorola datasheet)

R1≸

Two 3-input NOR gates $R1 = 450\Omega \text{ , } R2 = 640\Omega$ $P_D = 55 \text{ mW (input H), } 15 \text{ mW (input L)}$ $t_{PD} = 12 \text{ ns}$

The MRTL family of resistor-transistor logic offers the industry's broadest line of digital circuits. Devices in this section are medium-power circuits; low-power mW MRTL circuits are also available.

DTL NAND Gate

DTL: Diode Transistor Logic

- D_1 , D_2 , R_1 , V_{CC} : AND logic at P.
- D₃ and D₄ are level shifters
 (V_P = 3 x 0.7V turns ON transistor.)
- R₃ provides discharge path of stored charge at BE junction that reduces t_{PLH}.
- Any of A or B low (0.2 V), $V_p = 0.9$ V, insufficient to turn ON the transistor.

TTL: Transistor Transistor Logic

NAND Gate

- Totem pole output reduces output resistance when at H.
- R₃ cannot be made zero.
- D₁ to avoid indeterminate output.

TTL: Transistor Transistor Logic

NAND Gate

- Totem pole output reduces output resistance when at H.
- R_{c2} cannot be made zero.
- D₁ to avoid indeterminate output.

References:

- ☐ Grinich, V.H., and H.G. Jackson, Introduction to Integrated Circuits, McGraw-Hill
- ☐ Herbert Taub, and Donald Schilling, Digital Integrated Electronics, McGraw Hill
- ☐ Motorla Datasheet accessed on Oct. 08, 2018 from

http://willowdaledesign.com/17_MRTL_700P_800P_text.pdf