CLASSIFICAÇÃO AUTOMÁTICA DE ACÓRDÃOS A PARTIR DE ENUNCIADOS DA JURISPRUDÊNCIA SELECIONADA

Leonardo Augusto da Silva Pacheco

Agenda

- Problema
- Objetivos
- Abordagem
- Resultados
- Conclusões

Agenda

- Problema
- Objetivos
- Abordagem
- Resultados
- Conclusões

Pesquisa por Acórdão

- Uma das bases de Pesquisa Integrada do TCU.
- Permite uma pesquisa eficiente por:
 - chave do acórdão
 - número do processo
 - data da sessão
 - responsável
 - entidade da Administração Pública
- Porém a pesquisa por tema de jurisprudência é difícil:
 - Os textos dos acórdãos são muito grandes.
 - O volume de acórdãos é muito alto.

Pesquisa de Jurisprudência no STF

- **Importante** : Somente disponível para pesquisas nas bases de acórdãos, de repercussão geral e de questões de ordem.
- Recupera acórdãos que tragam a tese jurídica de acordo com os termos desejados, sendo que a pesquisa ficará limitada aos campos <u>Ementa</u> e/ou <u>Indexação</u>.

(extraído da ajuda da pesquisa do STF:

http://www.stf.jus.br/portal/cms/verTexto.asp?servico=jurisprudencia PesquisaGeral&pagina=ajudaPesquisaJurisprudencia&popup=S)

- Exige o trabalho de elaboração jurisprudencial para cada acórdão proferido
- O trabalho deve ser feito antes do acórdão ser publicado
- Demanda considerável de equipe e de tempo.

Volume de acórdãos do TCU

Fonte: https://pesquisa.apps.tcu.gov.br

31.075 acórdãos em 2019

~130 acórdãos por dia útil ~20 unitários por dia útil

4.620 unitários em 2019

Jurisprudência Selecionada

- Seleção de acórdãos que demonstram teses, soluções, precedentes e entendimentos do Tribunal.
- Seleção de trechos dos acórdãos que demonstram o entendimento: excertos.
- Elaboração de texto de enunciado.
- Classificação em área, tema e subtema de jurisprudência.
- Elaboração de outros indexadores.
- Termos advindos do Vocabulário de Controle Externo (VCE).

Acórdão Selecionado (inteiro teor)

Excerto do acórdão

Enunciado de Jurisprudência Área de Jurisprudência

Acórdão

Selecionado

(inteiro teor)

Acórdão

qualquer (inteiro teor)

Classificação automática

Objetivo geral

• Efetuar a classificação automática de acórdãos, por áreas de jurisprudência, a partir de seu inteiro teor, comparando diferentes modelos, técnicas, hiperparâmetros por meio de sua acurácia.

Objetivos específicos

- Efetuar a classificação automática de **enunciados** de jurisprudência por área, a partir de seu texto, comparando diferentes modelos, técnicas, hiperparâmetros por meio de sua **acurácia**.
- Efetuar a **classificação automática** enunciados de jurisprudência por área, a partir dos **excertos** dos acórdãos associados, comparando diferentes modelos, técnicas, hiperparâmetros por meio de sua **acurácia**.
- Avaliar os resultados encontrados. A classificação a partir do inteiro teor do acórdão é viável, ou a perda de acurácia em relação à classificação sobre enunciado é demasiada?

Agenda

- Problema
- Objetivos
- Abordagem
- Resultados
- Conclusões

Obtenção dos Dados

Pré-processamento

Classificação

Filtragem

Geração dos Embeddings

- Sem pré-treino
- Pré-treinados pelo NILC-USP
 - Download de http://nilc.icmc.usp.br/embeddings
 - Gerais: Textos literários, jornalísticos, didáticos, etc
 - Português Brasileiro e Europeu
 - Mantidos fixos ou variando durante a classificação
- Pré-treinados a partir de acórdãos
 - Criados durante o projeto
 - Textos dos inteiros teores de acórdãos
 - Mesmo domínio do conhecimento
 - Mantidos fixos ou variando durante a classificação

Avaliação

- Diversos treinamentos (+300), variando:
 - Modelo (arquitetura, tamanho)
 - Embeddings (pré-treino, tamanho)
 - Otimização
 - Número de épocas
 - Tamanho do batch
 - Dropout
 - Texto original x filtrado (excertos e acórdãos)
 - Single label x multi-label (acórdãos)
 - Registrada melhor acurácia e duração
- Validação cruzada com 10 folds
 - F1 micro, macro, ponderada e por classe
 - Média e desvio entre folds
 - Intervalos de confiança α=99% t-Student bicaudal

Agenda

- Problema
- Objetivos
- Abordagem
- Resultados
- Conclusões

Resultados – Enunciados

Estratégias de Embeddings – comparação

	Sem	NILC-USP		Acórdãos	
	pré-treino	fixos	Ajustáveis	fixos	Ajustáveis
Micro avg	86,6%±,6%	84,9%±1%	89,2%±,3%	89,6%±,8%	90,0%±,7%
Weighted avg	86,4%±,6%	84,7%±1%	89,1%±,3%	89,5%±,9%	89,9%±,7%
Macro avg	76,6%±2,7%	75,9%±3%	82,6%±2,2%	83,0%±2,1%	84,2%±1,8%

Referê	ncia
(micro	avg)

Logistic Regression	Naive Bayes	Random Forest	LDA
$86,7\% \pm 0,9\%$	82,6% ± 1,1%	74,3% ± 1,4%	$70,2\% \pm 1,3\%$

- Rede recorrente GRU de 256 unidades + Softmax
- Embeddings de 100 valores
- Otimização RMSProp
- batch size de 32
- validação cruzada com 10 folds
- 20 épocas, registrada melhor acurácia

Resultados – Excertos

Diferentes modelos – comparação

	rede recorrente	rede convolucional	rede convolucional
	sobre texto filtrado	sobre texto filtrado	sobre texto original
Micro avg	83,9% ± 1,4%	77,6% ± 1,8%	77,8% ± 1,6%
Weighted avg	83,8% ± 1,4%	77,2% ± 1,8%	77,3% ± 1,7%
Macro avg	77,1% ± 2,5%	65,7% ± 3,0%	63,2% ± 2,6%

Referê	ncia
(micro	avg)

Logistic Regression	Naive Bayes	Random Forest	LDA
83,2% ± 0,7%	72,4% ± 1,5%	72,9% ± 1,0%	80,8%±0,7%

- Embeddings de 100 valores
- Otimização RMSProp
- batch size de 32
- validação cruzada com 10 folds
- 20 épocas, registrada melhor acurácia

Resultados – Acórdãos

Diferentes modelos – comparação

	rede recorrente	rede convolucional	rede convolucional
	sobre texto filtrado	sobre texto filtrado	sobre texto original
Micro avg	66,7% ± 1,4%	66,7% ± 1,3%	66,1% ± 1,0%
Weighted avg	63,4% ± 1,4%	65,2% ± 1,4%	64,1% ± 1,5%
Macro avg	39,8% ± 3,1%	45,2% ± 3,0%	41,4% ± 2,8%

Referê	ncia
(micro	avg)

Logistic Regression	Naive Bayes	Random Forest	LDA
67,2% ± 1,0%	59,8% ± 1,6%	63,8% ± 1,1%	64,5%±1,0%

- Embeddings de 50 valores (GRU) e 100 (convolucionais)
- Otimização RMSProp
- batch size de 32
- validação cruzada com 10 folds
- 20 épocas, registrada melhor acurácia (10 épocas GRU)

Agenda

- Problema
- Objetivos
- Abordagem
- Resultados
- Conclusões

Conclusões

- Textos mais curtos de entrada (até 6.000 palavras):
 - Enunciados (90,0%)
 - Excertos (83,4%)
 - Acórdãos filtragem de 6000 palavras (66,7%)
 - melhor desempenho:
 - redes recorrentes
 - embeddings pré-treinados de acórdãos
 - Filtragem de excertos: sem melhoras
 - Filtragem excessiva acórdãos (500 palavras): piora

Conclusões

- Textos longos (>6.000 palavras):
 - inteiros teores dos acórdãos
 - melhor desempenho:
 - Logistic Regression
 - redes convolucionais
 - LDA
 - pré-treinamento de *embeddings* menos relevante
 - redes recorrentes:
 - treinamento demorado
 - resultados inexpressivos

Conclusões

- Enunciados:
 - Excelentes resultados
 - Texto curto, significativo, e de alta qualidade
 - Produzido por especialistas
 - Menor ganho com automatização
- Textos de enunciados e acórdãos:
 - Grande queda de acurácia entre classificações
 - Dificuldades:
 - lidar com textos grandes
 - extrair informação jurisprudencial do acórdão
- Possíveis usos para a classificação de acórdãos:
 - enriquecimento da pesquisa de acórdãos
 - sistemas de apoio ao pós-julgamento em geral
 - ajudar a orientar a geração de jurisprudência

Trabalhos Futuros

- Melhorias:
 - Arquiteturas: redes de atenção, BERT, ELMO, ULMfit
 - Maior pré-processamento: anexos, tabelas, repetições
 - Grid Search, busca ortogonal, repeated cross-validation, penalizações L1 e L2
 - Comitês de classificadores: votação, combinação, stacking
 - Embeddings:
 - Maior investimento em pré-processamento
 - Corpus: peças de processos, documentos do GED
 - Algoritmos: CBOW, Skip-row, Glove, FastText
- Outras tarefas:
 - Elaboração de excerto a partir do inteiro teor
 - Produção do enunciado a partir do excerto ou do acórdãos
 - Classificação por tema, subtema e outros indexadores

CLASSIFICAÇÃO
AUTOMÁTICA DE
ACÓRDÃOS A PARTIR DE
ENUNCIADOS DA
JURISPRUDÊNCIA
SELECIONADA

Obrigado!

<u>leonardopacheco@tcu.gov.br</u>

https://github.com/ leonardo3108/clacjur

