

-1-

SEQUENCE LISTING

<110> The Scripps Research Institute
The Regents of the University of California
Wu, Eugene
Nemerow, Glen R.
Stewart, Phoebe

<120> MODIFIED FIBER PROTEINS FOR EFFICIENT
RECEPTOR BINDING

<130> 22908-1237PC

<140> 60/478,008
<141> 2004-06-10

<150> not assigned
<151> 2003-06-11

<160> 70

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 1
tgtcttgaat ccaagatgaa gcgcgccgc cccagcgaag atgacttc

48

<210> 2
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 2
tggagctgggt gtggccaca aagtgcgcgt gtcattttct gggttcca

48

<210> 3
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 3
actttgtgga ccacaccaggc tcca

24

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

-2-

```
<220>
<223> primer

<400> 4
cataacgcgg ccgcttcttt attcttgggc 30
<210> 5
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 5
gtgctactaa acaattcctt cctggatcca gaatatttggaa ac 42
<210> 6
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6
gttccaaatat tctggatcca ggaaggaatt gtttagtagc ac 42
<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 7
atgggatcca agatgaagcg cgcaagaccg 30
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 8
tggtgtggtc cacaaagtta gcttattcatt 30
<210> 9
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 9
aagctaactt tgtggaccac accagacaca tctccaaact gcacaatt 48
```

-3-

<210> 10
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 10
aaacacggcg gcccgtcttt cattcttg 28

<210> 11
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
ctttgtggac cacaccagac actagtccaa actgcacaat tgctc 45

<210> 12
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
gagcaattgt gcagtttggaa cttagtgtctg gtgtggtcca caaag 45

<210> 13
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
gcttaggtta acctcaagct ttttcttggc ttttttgaga ggtgggct 48

<210> 14
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
agccccaccc tcaaaaaaaaac caggaaaaag cttgagggtta acctaagc 48

<210> 15
<211> 72
<212> DNA
<213> Artificial Sequence

<220>

-4-

<223> primer

<400> 15
atcagtatta acttgcagtg gagccttagg gtttacagtt aggcttcgg cctcggtccag 60
agagaggccg tt 72

<210> 16

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 16
ggaaggctaa ctgtaaaccc taaggctcca ctgcaagtta atactgattc aaacataaac 60
ctggaaatat ct 72

<210> 17

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 17
atcattgtca aatgtcaacc cttctttgc tcttacattt ataccaatgt tgtaatcaaa 60
ttcttaggcca tg 72

<210> 18

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 18
attggtataaa atgttaagagc aagagaaggg ttgacatgg acaatgatgg tgccattaca 60
gttaggaaaca aa 72

<210> 19

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 19
ctggacgagg ccggcagcct aactgtaaac cctaaggc 38

<210> 20

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

-5-

<400> 20
 gccttagggt ttacagttag gctgccggcc tcgtccag
 <210> 21
 <211> 7960
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> pDV67
 <400> 21
 gacggatcg gagatctccc gatcccstat ggtcgactct cagtacaatc tgctctgatg 60
 ccgcataatt aagccagtat ctgotccctg cttgtgtt ggaggtcgct gagtagtgcg 120
 cgagaaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatt aagaatctgc 180
 ttagggtagt gcggtttcgct ctgottcgcg atgtacgggc cagatatacg cgttgcatt 240
 gattattgc tagttatcaa tagtaatcaa ttacgggtc attagttcat agccatata 300
 tggagttccg ctgttacataa ctacggtaa atggcccgcc tggctgaccg cccaaaggacc 360
 cccgcccatt gacgtcaata atgacgtat tttccatagt aacgccaata gggacttcc 420
 attgacgtca atgggtggac tatttacggt aaactgccc cttggcagta catcaagtgt 480
 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
 atgcccagta catgacctta tggacttcc tcaacttggca gtacatctac gtattagtca 600
 tcgttattac catggtgatg cggtttggc agtacatcaa tggcgttgg tagcgggtttg 660
 actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttgg 720
 aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggccg 780
 gtaggcgtgt acgggtggag gtctatataa gcagagctct ctggctaact agagaaccca 840
 ctgcttactg gcttatcgaa attaatacgaa ctcactatag ggagacccaa gctggctagc 900
 gtttaaactt aagcttggta ccgagctcg atccactctc ttccgcattcg ctgtctgcga 960
 gggccagctg ttggggtag gtttccatgtt gaaaaggccg catgacttct gcgcctaagat 1020
 tgtcagttc caaaaaccgag gaggatttga tattcacctg gcccgggttgc atgccttga 1080
 ggggtggccgc atccatctgg tcagaaaaaga caatctttt gtttcaagc ttgggtggcaa 1140
 acgaccgcgt gggggcggtt gacagcaact tggcgatggc ggcggcgtcg 1200
 cgcgatcgcc ggcgttccctt gccgcgtatgt ttagctgcac gtattcgccg gcaacgcacc 1260
 gccattccggg aaaaacgggt gtgcgtcg tggggcaccag gtgcacgcgc caaccggcg 1320
 tgtcaggggt gacaaggta acgcttggg ctacccctcc gcgtaggcgc tcgttggtcc 1380
 agcagaggcg gccgccttgc cgcgcgcgaa atggcggtag ggggtcttagc tgcgtctcg 1440
 cgggggggtc tgcttccacg gtaaagaccc cgggcagcag ggcgcgtcg aagttagtcta 1500
 tcttgcattcc ttgcaagtct agccgcctgtc gccatgcgcg ggcggcaga ggcgcgtcg 1560
 atgggtttag ggggggaccc catggcatgg gttgggttagt tacatgcgcg 1620
 aaatgtcgta aacgttagagg ggctctctga gtattccaag atatgttaggg tagcatcttc 1680
 caccgccgtat gttggcgcgc acgtaatcgt atagttcgta cgagggagcg aggaggctgg 1740
 gaccgaggtt gtcacggggcg ggctgtctg ctcggaaagac tatctgcctg aagatggcat 1800
 gtgagttgga tgatatgggt ggacgcttggaa agacgttga gctggcgctc gtgagaccta 1860
 cccgcgtcaccg cacgaaggag gcttaggat cgcgcagctt gttgaccagc tcggcggtga 1920
 cctgcacgtc tagggcgca gtagtccagggt tttcttgc gatgtcatac ttatctgtc 1980
 cctttttttt ccacagctcg cgggtttagggaa caaactcttc gcggtcttc cagtagtctt 2040
 ggatcgaaaa cccgtcgcc tccgaacgag atccgtactc cgcgcgcgag ggacctgagc 2100
 gagtccgcat cgaccggatc ggaaaaacctc tcgagaaagg cgtctaaccac gtcacagtctg 2160
 caagatccaa gatgaagcgc gcaagaccgt ctgaagatac cttaaacccc gtgtatccat 2220
 atgacacggaa aaccggtcctt ccaactgtgc ctttcttac tcctccctt gtagccccca 2280
 atgggttca agagatccc cttgggttac tctcttgcg cctatccgaa gtcacagtta 2340
 cctccatgg catgcttgcg ctcaaaatgg gcaacggcct ctctctggac gaggccggca 2400
 accttacctc cccaaatgtaa accactgtga gcccacctt caaaaaaaaacc aagtcaaca 2460
 taaaccttggaa aatatctgca cccctcacat tttttttttt gatgtcatac ttatctgtc 2520
 cccgcacccct aatggtcgcg ggcaacacac tcaccatgca atcacaggcc cccgctaaacc 2580
 tgcacgactc caaacttagc attgcccaccc aaggaccctt cagactgtca gaggaaagc 2640
 tagccctgca aacatcaggc cccctcacca ccaccgatag cagttaccctt actatactg 2700
 cctcaccccc tctaactact gccactggta gtttggcat tgacttgaaa gagggccattt 2760
 atacacaaaaa tggaaaacta ggactaaagt acggggctcc tttgcattgtat aacagacgacc 2820
 taaacactt gaccgttagca actggtccag gtgtgactat taataataact tccttgcataa 2880
 cttaaagttac tggagccttgc gtttttgatt cacaaggccaa tatgcaactt aatgtaqcaq 2940

gaggactaag gattgattct caaaacagac gcottatact tgatgttagt tatccgtttg 3000
 atgctcaaaa ccaactaaat ctaagactag gacagggccc tcttttata aactcagccc 3060
 acaacttga tattaactac aacaaggcc tttacttgtt tacagcttc aacaattcca 3120
 aaaagctga ggttaaccta agcactgcc aggggttgat gtttgcgc acagccatag 3180
 ccattaatgc aggagatggg cttaatgtt gttcacctaa tgacccaaac acaaattcccc 3240
 tcaaaaacaaa aattggccat ggcctagaat ttgattcaaa caaggctatg gttcctaaac 3300
 taggaactgg ccttagttt gacagcacag gtgcattac agtagaaac aaaaataatg 3360
 ataagctaac ttgtggacc acaccagtc catctcctaa ctgttagacta aatgcagaga 3420
 aagatgtcaa actcaacttg gtcttaacaa aatgtggcag tcaaataactt gtcacagt 3480
 cagtttggc tgtaaaaggc agtttggctc caatatctgg aacagtctaa agtgctcatc 3540
 ttattataag atttgcgaa aatggagtgc tactaaacaa ttcccttcgt gacccagaat 3600
 attggaactt tagaaatgg aatcttactg aaggcacagc ctatacaaac gctgttggat 3660
 ttatgcctaa cctatcagat tatccaaaat ctcacggtaa aactgcacaa agtaacattg 3720
 tcagtcagt ttacttaaac ggagacaaaa ctaaacctgt aacactaacc attacactaa 3780
 acggtacaca ggaaacagga gacacaactc caatgcata ctctatgtca ttttcatggg 3840
 actggctctgg ccacaactac attaatggaa tatttgcac acctcttac actttttcat 3900
 acattggcca agaataaaaag aagcgccgc tcgagtctag agggccctt taaacccgat 3960
 gatcagccctc gactgtgcct tctagttgcc accatctgt tttttggccccc tccccctgtc 4020
 cttccttgac cctggaaaggt gccactccca ctgtccttcc ttaataaaat gaggaaattt 4080
 catcgcattt tctgagtagg tgcatttcta ttctgggggg tgggggtgggg caggacagca 4140
 aggggggaggaa ttggaaagac aatgcagggc atgctggggat gtcgggtggc 4200
 ctgaggcgggaa aagaaccaggc tggggctcta ggggttatcc ccacgcgccc ttagcggcg 4260
 cattaagcgc ggcgggtgtg gtgggtacgc gcacgcgtac cgtacactt gccagcggccc 4320
 tagcgcggcc tcctttcgct ttcttccctt ccttctcgcc cacgttcgccc ggcttcccc 4380
 gtcaagctct aaatcggggc atcccttttag gttccgttgc tagtcttta cgccacccctcg 4440
 accccaaaaaa acttgattag ggtgatggtt cacgtatgtt gccatcgccc tgatagacgg 4500
 ttttcgcccc ttgcgttg gagtccacgt tcttaatag tggactctt tttccaaactt 4560
 gaacaacact caaccctatc tcggcttatt cttttgattt ataaggaggatt ttggggattt 4620
 cggcctattt gttaaaaaaat gagctgattt aacaaaaatt taacgcgaat taattctgt 4680
 gaatgtgtgt cagttagggt gtggaaagtc cccaggctcc ccaggcaggc agaagtatgc 4740
 aaagcatgca tctcaattag tcagcaacca ggtgtggaaa gtcaggatcc tcccccaggc 4800
 gcagaagttt gcaaaagcatg catctcaattt agtcagcaac catgtcccg cccctaactc 4860
 cgcccatccccc gcccctaactt ccccccagggtt ccccccattt tccggcccat ggtgactaa 4920
 ttttttttat ttatgcagag gccgaggccg cctctgcctc tgacgttattc cagaagtagt 4980
 gaggaggctt tttggaggc otaggctttt gcaaaaaagct cccggggact tttatatcca 5040
 ttttcggatc tgatcagcac gtgttgacaa ttaatcatcg gcatagtata tcggcatagt 5100
 ataataacgac aagggtgggaa actaaaccat ggccaagttt accagtgcgc ttccgggtgc 5160
 caccgcgcgc gacgtcgccg gageggcgtga gttctggacc gaccggctcg gttctcccg 5220
 ggacttcgtg gaggacact tcggccgggt ggtccgggac gacgtgaccc ttttcatcag 5280
 cgcgggtccag gaccagggtt tgccggacaa caccctggcc tgggtgtggg tgcggggcct 5340
 ggacgagctg tacgcggagt gtcggaggat cgttccacg aacttccggg acgcctccgg 5400
 gccggccatg accgagatcg gcgagcagcc gtggggggcc gatgtccccc tgcgcgacc 5460
 gggccggcaac tgcgtcact tcgtggccga ggacgaggac tgacacgtgc tacgagattt 5520
 cgattccacc gccgccttct atgaaagggtt gggcttcgga atgtttttcc gggacggccgg 5580
 ctggatgatc ctccaggcgc gggatctcat gctggagtt ttcggccacc ccaacttgc 5640
 tattgcagct tataatgggtt acaaataaaag caatagcatc acaaatttca caaataaaagc 5700
 attttttca ctgcatttca gttgtggttt gtccaaactc atcaatgtat ttatcatgt 5760
 ctgtataaccg tcgacccctca gtagagctt ggcgtaatca tggcatagc ttttccgt 5820
 gtgaaattgt tatccgctca caattccaca caacatacgaa gccgaaagca taaagtgtaa 5880
 agcctggggat gcttaatgag ttagctactt cacattaaat gctgtgcgc tgcgtgcgc 5940
 ttcccaatcg ggaaacctgt cgtgcacgtt gcatatga atcggccaaac ggcggggag 6000
 aggcgggtttt cgtattgggc gctttccgc ttccgcgtc atgactcgc tgcgtcggt 6060
 cttccggctcg cggcgagccg tatcagctca ctcaaggcc gtaataacggt tattccacaga 6120
 atcaggggat aacgcaggaa agaacatgt agcaaaaaggc cggccatcc tgcgtgcgc 6180
 taaaaaggcc gcgttgcgtgg cgtttttcca taggtccgc cccctgcac agcatcacaa 6240
 aaatcgacgc tcaagtccaga gttggcgaaa cccgacaggaa ctataaaagat accaggcggtt 6300
 tcccccttggaa agctccctcg tgcccttcc tggtccgacc ctgcccgtt ccggataacct 6360
 gtccgcctt ctcccttccg gaagcgtggc gcttctcaa tgctcacgt gtaggtatct 6420
 cagttcggtg taggtcggtc gctccaaatg gggctgtgtg cacgaacccc ccgttcagcc 6480
 cgaccgcgtcc gccttacccg gtaactatcg tcttgcgttcc aacccggtaa gacacgactt 6540
 atcggccactg gcagcagcca ctggtaacag gattagcaga gcgaggatgt taggcgggtgc 6600

-7-

tacagagttc	ttgaagtgg	ggcctaacta	cggctacact	agaaggacag	tat	ttggtat	6660
ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctt	gatccggcaa	6720	
acaaccacc	gctgttagcg	gtggttttt	tgtttgc	cagcagatta	cgcgcagaaa	6780	
aaaaggatct	caagaagatc	cttgc	ttcacgggg	tctgacgctc	agtggAACGA	6840	
aaactcacgt	taaggattt	tggtcatgag	attatcaaaa	aggatctca	cctagatcct	6900	
tttaaattaa	aatgaagtt	ttaaaatcaat	ctaaagtata	tatgagtaaa	cttggctgt	6960	
cagttaccaa	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	7020	
catagttgcc	tgactccccg	tcgtgttagat	aactacgata	cgggagggt	taccatctgg	7080	
ccccagtgt	gcaatgatac	cgcgagaccc	acgctcacgg	gtcccgatt	tatcagcaat	7140	
aaaccagcca	gcccggaaagg	ccgagcgcag	aagtggctt	gcaactttat	ccgcctccat	7200	
ccagtctt	aatttgtgc	gggaagctag	agtaagtagt	tcgcccgtt	atagttgcg	7260	
caacgttgg	gccattgtca	caggcatcg	ggtgtcacgc	tcgtcgtt	gtatggcttc	7320	
attcagctcc	ggttcccaac	gatcaaggcg	agtatcatga	tccccatgt	tgtgcaaaaaa	7380	
agcggttagc	tccttcggtc	ctccgatcg	tgtcagaagt	aagttggccg	cagtgttattc	7440	
actcatgg	atggcagcac	tgcataattt	tcttactgtc	atgcacatccg	taagatgctt	7500	
ttctgtgact	ggtgact	caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	7560	
ttgctcttgc	ccggcgtcaa	tacggataa	tacccgc	catagcagaa	ctttaaaagt	7620	
gctcatcatt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	cgtgttgag	7680	
atccagttcg	atgtAACCC	ctcgatgcacc	caactgtatct	tcagcatctt	ttactttcac	7740	
cagcgttgc	gggtgagcaa	aaacaggaaag	gcaaaatgcc	gcaaaaaagg	gaataaggc	7800	
gacacggaaa	tgttgaatac	tcatactctt	ccttttcaa	tattattgaa	gcatttatca	7860	
gggttattgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	7920	
ggttccgcgc	acatttcccc	gaaaagtgc	acctgacg	7960			

<210> 22

<211> 1240

<212> DNA

<213> Artificial Sequence

<220>

<223> Adenovirus TPL

<400> 22

ggatccactc	tcttcggcat	cgctgtctgc	gagggccagc	tgttgggtg	agtactccct	60
ctgaaaagcg	ggcatgactt	ctgcgctaag	attgtcagtt	tccaaaaacg	aggaggattt	120
gatattcacc	tggcccgccgg	tgtgcctt	gaggggtggcc	gcatccatct	ggtcagaaaa	180
gacaatctt	ttgttgtcaa	gttgggtggc	aaacgaccgg	tagagggcgt	tggacagcaa	240
cttggcgtat	gagcgcagg	tttggttttt	gtcgatcg	gcgcgcttct	tggccgcgt	300
gtttagctgc	acgtatttcg	gcccacgc	ccgcattcg	ggaaagacgg	tggtgcgtc	360
gtcgggcacc	agggtcacgc	gccaaccgcg	gttgcagg	gtgacaaggt	caacgcttgc	420
ggttacctct	ccgcgtaggc	gtcggttgc	ccagcagagg	cgccgcctt	tgcgcgagca	480
gaatggcggt	agggggctca	gtcgatc	gtccgggggg	tctgcgttca	cggtaaagac	540
cccgccgcgc	aggcgcgcgt	cgaagtagtc	tatcttgc	ccttgc	ctagcgcctg	600
ctgcccattgc	cgggcggcaa	gcccgcgtc	gtatgggttgc	agtggggac	cccatggcat	660
gggggtgggt	agcgcggagg	cgtacatgc	gcaaatgtcg	taaaacgtaga	ggggctctct	720
gagtatttca	agatgttag	gttgcacatct	tccaccgcgg	atgcgtggc	gcacgtatc	780
gtatagttcg	tgcgagggg	cgaggagg	gggaccgg	ttgcgtacgg	cggtctgtc	840
tgctcgaaag	actatctgc	tgaagatggc	atgtgatgttgc	gatgtatgg	ttggacgctg	900
gaagacgttgc	aagctggcg	ctgtgagacc	tacccgc	cgcacgaagg	aggcgttagga	960
gtcgcgcagg	ttgttgc	gctcgccgt	gacctgcacg	tctagggc	agtactccag	1020
ggtttcccttgc	atgatgtcat	acttatcc	tccctttttt	ttccacatct	cgccgttgag	1080
gacaaactct	tcgcggctt	tccagactc	ttggatcg	aacccgtcg	cctccgaacg	1140
agatccgtac	tccgcgc	agggacactg	gcgagtcgc	atcgaccg	tcggaaaaacc	1200
tctcgagaaa	ggcgtctaac	cagtcacagt	cgcaagatct	1240		

<210> 23

<211> 7607

<212> DNA

<213> Artificial Sequence

<220>

-8-

<223> Plasmid GRE5-2.E1

<400> 23

tctagaagat	ccgctgtaca	ggatgttcta	gctactttat	tagatccgct	gtacaggatg	60
ttctagctac	tttatttagat	ccgctgtaca	ggatgttcta	gctactttat	tagatccgct	120
gtacaggatg	ttctagctac	tttatttagat	ccgctgtacag	gatgttctag	ctactttatt	180
agatcgatct	cctggccgtt	cggggtaaaa	aaccaggttt	ggctataaaa	gggggtgggg	240
gcgcgttcgt	cctcaactc	ttccgcatcg	ctgtctgcga	ggccaggat	cgatcctgag	300
aacctcagg	tgagtttggg	gacccttgat	tgttcttct	tttcgttat	tgtaaaattc	360
atgttatatg	gagggggcaa	agtttcagg	gtgttgtta	aatggaaag	atgtcccctt	420
tatcaccatg	gaccctcatg	ataattttgt	ttctttcaact	ttctactctg	ttgacaaccca	480
ttgtctcctc	ttattttctt	ttcatttctt	gtaacttttt	cgttaaactt	tagcttgcat	540
ttgttaacgaa	ttttttaaatt	cacttttgtt	tatttgtcag	attgtaaagta	cttctctaa	600
tcactttttt	ttcaaggcaa	tcagggtata	ttatattgtat	cttcagacaca	gttttagaga	660
acaattgtta	taattttaaatg	ataaggtaga	atatttgc	ataaaattc	tgcgtggcgt	720
ggaaatattc	ttattttgttag	aaacaactac	atccgtgtca	tcatccgtcc	tttctcttta	780
tgtttacaat	gatatacact	gtttgagatg	aggataaaaat	actctgtgtc	caaaccgggc	840
ccctctgcta	accatgttca	tgcccttcttc	ttttcctac	agctcttggg	caacgtgtc	900
gttattgtgc	tgtctcatca	ttttttggaaaa	gaatttagatc	taagcttctg	cagctcgagg	960
actcggcgtca	ctgaaaatga	gacatattat	ctgccacgg	ggtgttatta	ccgaagaaat	1020
ggccggcagg	ctttttggacc	agctgtatcg	agaggtactg	gctgataatc	ttccacctcc	1080
tagccatttt	gaaccaccta	cccttcacga	actgtatgtat	ttagacgtga	cggcccccg	1140
agatccaaac	gaggaggcgg	tttcgcagat	ttttccgcac	tctgtaatgt	tgcgtgtc	1200
ggaagggatt	gacttaactca	ttttccgc	ggcccccgg	tctccggagc	cgccctcacct	1260
ttcccccggca	cccgagcagc	gggagcagag	agccctgggt	ccggtttcta	tgccaaacac	1320
tgtaccggag	gtgatcgatc	ttacctgcac	cgaggctgg	tttccaccca	gtgacgacga	1380
ggatgaagag	ggtgaggagt	ttgtgttaga	ttatgtggag	caccctgggc	acggttgcag	1440
gtcttgcata	tatcaccgg	ggaatacggg	ggaccggat	attatgtgtt	cgcttgcata	1500
tatgaggacc	tgtggatgt	ttgtctacag	taagtaaaaa	ttatggcag	tgggtgatag	1560
atgtgtgggt	ttgggtgtgt	aatttttttt	ttaattttta	cagttttgt	gtttaaagaa	1620
ttttgtattt	tgattttttt	aaaaggtoct	gtgtctgaac	ctgagcttga	gcccggacca	1680
gaaccggagc	ctgcaagacc	tacccggcgt	cctaaaaattgg	cgccctgtat	cctgagacgc	1740
ccgacatcac	ctgtgtctag	agaatgcata	agtagtacgg	atagctgtga	ctccggctct	1800
tctaacacac	ctccgttagat	acacccgggt	gtcccgctgt	gccccattaa	accagttgcc	1860
gtgagagttt	gtggggctcg	ccaggctgt	gaatgtatcg	aggacttgc	taacgagcct	1920
ggccaacacctt	tggacttgag	ctgtaaaacgc	cccaggccat	aagggttaaa	cctgtgattt	1980
cgtgtgttgt	taacgcctt	ttttgctgaa	tgagttgtat	taagtttaat	aaagggtgag	2040
ataatgttta	acttgcattt	cgtgttaaat	ggggcggggc	ttaaagggtt	tataatgcgc	2100
cgtgggctaa	tcttggttac	atctgaccctc	atggaggctt	gggagtgtt	ggaagatttt	2160
tctgtgtgc	gtaaacttgc	gaaacagagc	tctaacagta	cctcttgggtt	ttggagggtt	2220
ctgtggggct	catcccgagg	aaagtttgc	tgcagaattt	aggaggatta	caagtgggaa	2280
tttgaagagc	ttttgaaatc	ctgtggtgag	ctgttttgc	cttgaatct	gggtcaccag	2340
gctgtttcc	aagagaagg	catcaagact	ttggattttt	ccacaccggg	gcbcgtctgc	2400
gctgtgttg	cttttttgag	ttttataaag	gataaaatgg	gcaaaaaaac	ccatctgagc	2460
gggggggtacc	tgctggattt	tctggccatg	catctgttgc	gagcggtgt	gagacacaag	2520
aatcgccctc	tactgttgc	ttccgtccgc	ccggcgataa	taccgacgga	ggagcagcag	2580
cagcagcagg	aggaagccag	ggggcgccgg	caggagcaga	gccccatggaa	cccgagagcc	2640
ggcctggacc	ctcggaaat	aatgttgcac	agggtggctg	actgtatcca	gaactgagac	2700
gcattttgac	aattacagag	gatggggcagg	ggctaaagggg	gtttaaagagg	gagcgggggg	2760
cttgtgaggc	tacagaggag	gcttaggaatc	tagcttttag	cttaatgacc	agacaccgtc	2820
ctgagtgtat	tacttttca	cagatcaagg	ataattgcgc	taatgagctt	gatctgtctgg	2880
cgcagaagta	ttccatagag	cagctgacca	cttactgtgt	gcagccagg	gatgattttgc	2940
aggaggctat	tagggatata	gcaaaagggtt	cacttagggcc	agattgcag	tacaagatca	3000
gcaaacttgc	aaatatcagg	aattgttgc	acatttctgg	gaacggggcc	gaggtggaga	3060
tagatacgga	ggatagggtt	gccttttagat	gtagcatgtat	aaatatgtgg	ccgggggtgc	3120
ttggcatgga	cggggtgggtt	attatgtat	taaggtttac	tggcccaat	tttagcggta	3180
cggttttct	ggccaaatacc	aacccttatcc	tacacgggt	aagcttctat	gggttaaca	3240
ataacctgtgt	ggaaggcctgg	accgatgtaa	gggttccgggg	ctgtgcctt	tactgtctgc	3300
ggaaggggggt	ggtgtgtcgc	cccaaaagca	gggcttcaat	taagaaatgc	ctctttgaaa	3360
ggtgtacctt	gggtatcctg	tctgagggtt	actccagggt	gcccacaat	gtggcctccg	3420
actgtggtttgc	tttcatgcta	gtgaaaagcg	tggctgtat	taagcataac	atggtatgt	3480

-9-

gcaactgcga	ggacaggccc	tctcagatgc	tgacctgctc	ggacggcaac	tgtcacctgc	3540
tgaagaccat	tcacgttagcc	agccactctc	gcaaggcctg	gccagtgtt	gagcataaca	3600
tactgaccgg	ctgttcccttg	catttgggta	acaggagggg	ggtgttccct	ccttaccaat	3660
gcaattttgag	tcacactaaag	atattgcttg	agcccggagag	catgtccaag	gtgaacctga	3720
acgggggtgt	tgacatgacc	atgaagatct	ggaagggtct	gaggtacgat	gagaccccgca	3780
ccaggtgcag	accctgcgag	tgtggcggtt	aacatattag	gaaccagcct	gtgatgctgg	3840
atgtgaccga	ggagctgagg	cccgatcact	tgtgctggc	ctgcacccgc	gctgagttt	3900
gctctagcga	tgaagataca	gattgaggta	ctgaaaatgt	tgggcgtggc	ttaagggtgg	3960
gaaagaataat	ataaggtggg	ggtcttatgt	agttttgtat	ctgttttgc	gcagccgccc	4020
ccgccccatgag	caccaactcg	ttttagggaa	gcatttggag	ctcatatttt	acaacgcgc	4080
tgccccccatg	ggccgggggt	cgtcagaatg	tgtatggctc	cagcattgtat	gtgcggcc	4140
tcctggccgc	aaactctact	accttgcacct	acgagaccgt	gtcttggaa	ccgttggaga	4200
ctgcagccct	cggccggcgct	tcagccgctg	cagccaccgc	ccgcgggatt	gtgactgact	4260
ttgttttcct	gagcccgctt	gcaaggcgt	cagcttcccg	ttcatccg	cgcgatgaca	4320
agttgacggc	tcttttggca	caatttggatt	cttttggaccgg	ggaacttaat	gtcgtttctc	4380
agcagctgtt	ggatctgcgc	caggcgtt	ctggccgtt	ggcttccctcc	cctcccaatg	4440
cgttttaaaa	cataaataaa	aaaccagact	ctgtttggat	tttgatcaag	caagtgtctt	4500
gctgtctcag	ctgactgctt	aagtgcgaag	ccgaatttgg	tccaatttcg	atcgatctta	4560
ttaaaggcaga	acttgtttat	tgcaagctt	aatgtttaca	aataaagcaa	tagcatcaca	4620
aatttcacaa	ataaaagcatt	tttttcaact	cattctagtt	gtggtttgc	caaactcata	4680
aatgtatctt	atcatgtctg	gtcgactcta	gactttcccg	tttcctcgct	cactgactcg	4740
ctgcgtctgg	tcgttccggct	gcccggagcg	gtattcagctc	actcaaaaggc	ggttaatacgg	4800
ttatccacag	aatcaggggg	taacgcggga	aagaacatgt	gagcaaaaagg	ccagcaaaaag	4860
gccaggaacc	gtaaaaaaggc	cgcgttgc	gcgttttcc	ataggctccg	ccccctgac	4920
gagcatcaca	aaaatccacg	ctcaagtca	agttggcgaa	acccgacagg	actataaaga	4980
taccaggcgt	ttccccctgg	aagctccctc	gtgcgtctc	ctgttccgac	cctgcccgtt	5040
acggatacc	tgtccgcctt	tctcccttcg	ggaagcgtgg	cgcttttctca	tagctcacgc	5100
ttaggtatc	tcagttcggt	gttagtgcgtt	cgcttca	tgggctgtgt	gcacgaaccc	5160
cccggtcagc	ccgacccgctg	cgccttatacc	gtaactatc	gtcttgcgtc	caacccggta	5220
agacacgact	tatcggccact	ggcagcggcc	actgttaaca	ggatttagcag	agcgaggtat	5280
gtaggcgggt	ctacagagtt	tttgaagttgg	tggcctaact	acggctacac	tagaaggaca	5340
gtatttggta	tctgcgtctt	gctgaaggca	gttacccctcg	aaaaaagagt	tggtagctct	5400
tgatccggca	aacaaaccac	cgcttggtag	ggtggttttt	ttgtttgca	gcagcagatt	5460
acgcgcagaa	aaaaaggatc	tcaagaagat	ccttgcatt	tttctacggg	gtctgacgct	5520
cagtggaa	aaaactcact	ttaaggggatt	ttggcatga	gatttacaa	aagatcttc	5580
acttagatcc	ttttaaatta	aaaatgaagt	tttaatcaa	tctaaagat	atatgagtaa	5640
acttggtctg	acagtacca	atgtttaatc	agtggggcac	ctatctcagc	gatctgtcta	5700
tttctgtcat	ccatatttgc	ctgactcccc	gtcggtttaga	taactacat	acggggaggc	5760
ttaccatctg	gccccactgc	tgcaatgtata	ccgcggagacc	cacgctcacc	ggctccagat	5820
ttatcagcaa	taaaccaggc	agccggaaagg	ggcgagcga	gaagtggcc	tgcaacttta	5880
tccgcctcca	tccagcttat	taatttggtc	cgggaaagcta	gagtaagtag	tgcgcagtt	5940
aatagtttgc	gcaacgttgt	tgccattgt	acaggcatcg	tgggtgtcacg	ctcgtcgtt	6000
ggtatggctt	cattcagctc	cgggtcccaa	cgatcaaggc	gagttacatg	atccccatg	6060
ttgtgcaaaa	aagcggttag	ctccctcggt	cctccatcg	ttgtcagaag	taagttggcc	6120
gcagtgttat	cactcatgtt	tatggcggca	ctgcataatt	cttctactgt	catgcccattc	6180
gtaagatgtc	tttctgtgac	ttgtggtagtac	tcaaccaat	cattctgaga	atagtgtatg	6240
cgccgaccga	gttgcgttgc	cccgccgtca	atacgggata	ataccgcgc	acatagcaga	6300
actttttaaag	tgctcatcat	ttggaaaacgt	tcttcggggc	gaaaactctc	aagatctta	6360
ccgctgttga	gatccaggcc	gatgttaccc	actcggtc	ccaactgatc	ttcagcatct	6420
tttacttca	ccagcggtt	ttgggtggaca	aaaacaggaa	ggcaaaatgc	cgaaaaaaag	6480
ggaataagggg	cgacacggaa	atgttgaata	ctcataact	tccttttca	atattattga	6540
agcatttatac	agggttattt	tctcatggac	ggatcatat	ttgaatgtat	ttagaaaaat	6600
aaacaaatag	gggttcccg	cacatttccc	cgaaaaagtgc	cacctgcacgt	ctaagaaaacc	6660
attattatca	tgacattaaac	ctataaaaaat	aggcgatata	cgaggcccct	ttcgctcgc	6720
gcgtttcggt	gatgacgggt	aaaacctctg	acacatgcag	ctcccgagaa	cggtcacagc	6780
ttgtctgtaa	cgggatggcc	ggagcagaca	agcccgtc	ggcgcgtc	cggtgttgg	6840
cgggtgtcgg	ggctggctt	actatgcggc	atcagagcag	attgtactga	gagtgaccca	6900
tatgcgtgtt	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcata	ggaatttgta	6960
agcgttaata	ttttgttaaa	attcgcgtt	aatttttggtt	aatcagctc	attttttaac	7020
caataggccg	aaatccctt	aatccctt	aaatccaaag	aatagaccga	gatagggttg	7080
agtgttggtc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	caacgtcaaa	7140

-10-

```

gggcgaaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt 7200
tttttgggt cgaggtgccg taaagcacta aatcggaacc ctaaaggag ccccccattt 7260
agagcttgcg gggaaaagcc ggcgaacgtg gcgagaaagg aagggaaagaa agcggaaagga 7320
ggggcgcta gggcgctggc aagtgttagcg gtacacgctgc gcttaaccac cacacccgccc 7380
gcttaatg cgccgtacaca gggcgctggc cattcgccat tcaggctgctg caactgttg 7440
gaagggcgat cggtgcgggc ctcttcgtta ttacgcccagc tggcgaaagg gggatgtgct 7500
gcaaggcgat taagttgggt aacgcggagg ttttcccaatg cacgacgttg taaaacgacg 7560
gccagtgaat tgtaatacga ctcaactatag ggcaattaa ttccccgg 7607

```

<210> 24

<211> 11600

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid pMNNeoE2-a-3.1

<400> 24

```

gaattccgca ttgcagagat attgtattta agtgcctagc tcgatacaat aaacgcccatt 60
tgaccattca ccacatttgtt gtgcacccctc aagcttgggc agaaatggtt gaactcccg 120
gagtgtccta cacccatgggg agaagcagcc aagggttgtt ttcccaccaa ggacgaccccg 180
tctgcgcaca aacggatgg cccatcagac aaagacatat tcattctctg ctgcaaaactt 240
ggcatagctc tgctttgcct gggcttattt ggggaagttt cgggtcgtgc tcgcaggggct 300
ctcacccctt actcttttaa tagctttctt gtcaagattt acaatctaaa caattcggag 360
aacctcgacct tcctcttgag gcaaggacca cagccaactt cctcttacaa gccgcatcga 420
tttgcctt cagaaataga aataagaatg cttgtctaaaatttattttt tccaataaag 480
accaatccaa taggttagatt attagttact atgttaagaa atgaatcatt atcttttagt 540
actatttttt ctcaaattca gaagtttagaa atggaaatag aaaaatagaaa gagacgctca 600
acctaattt aagaacagggt gcaaggacta ttgaccacag gcctagaagt aaaaaggga 660
aaaaagagtt ttttgcctt aataggagac aggtgggtggc aaccaggggac ttatagggg 720
ccttacatct acagaccaac agatggccccc ttacccatata caggaagata tgacttaaat 780
tgggataggt gggttacagt caatggctat aaagtgttat atagatccct ccctttcgt 840
gaaagactcg ccagagctag acctcccttg tttatgttgc atcagaaga aaaaagacgac 900
atgaaacaaac aggtacatga ttatattttt cttagaacag gaatgcact ttggggaaag 960
attttccata ccaaggagggg gacagtggc ggactaaatc aacattttc tgcaaaaact 1020
catggcatga gttattatga atagccctta ttggcccaac cttgcgggttc ccaggggctta 1080
agtaagttt tggttacaaa ctgttcttaa aacgaggatgt tgagacaatgtt ggtttcctga 1140
cttggtttg tatcaaagggt tctgtatctg gctctgagtg ttcttatttc ctatgttctt 1200
tttgcctt tccaaatctt atgttaatgtc ttatgttaaac caagatataa aagagtgtcg 1260
atttttttagt taaaatgtca acagtcttaa cattcaccc tcgtgtgttt gtgtctgttc 1320
gccatcccgctt ctcgcgtcgta cacttaccc tcactttccaa ggggtcccccc ccgcagaccc 1380
cgccgaccctt caggtcgccgactgccc gctggcgccc gaacaggggac cctcggataa 1440
gtgacccttg tctctatttc tactatttgg tttttgtttt gtattgtctc tttcttgtct 1500
ggctatccatc acaagagcgg aacggactca ccataaggggac caagctagcg cttctcgctg 1560
cggtccaaagat cctcaaaatgttggcaact tcgttgagcg aggcgatatac aggtatgaca 1620
gcccctgcg gcaaggcccg ctgctgtcc gctcggtcg ggttggcaacg gcaggatagg 1680
ggatcttcgat agttttggaa aaagatgtga tagtggcaaa gcacctctgg caccgcaaat 1740
acggggtaga agtttggggcg cgggttgggc tcgcattgtgc cgttttcttgc gctgttgggg 1800
ggtagcgcggc gtgagaatag gtggcggtcg taggcaaggc tgacatccgc tatggcgagg 1860
ggcacatcgcc tgcgccttgc caacgcgtcg cagataatgg cgcactggcg ctgcagatgc 1920
ttcaacagca cgtcgctcc cacaatctagg tagtcgcctt gcttttcgtc ccccccggcc 1980
acttgttccct cgtttgcctc tgctgttgc tggctttgtct ttttatctctc tgggttact 2040
gagcggctt cgtcgcttc gtttacaaaaa cctgggtctt gctcgataat cacttccctcc 2100
tcctcaagcg ggggtgcctc gacggggaaag gtggtagggcg cggtggccgc atcggtggag 2160
gcccgggtgg cgaactcaga gggggcggtt aggctgtccct tcttctcgat tgactccatg 2220
atctttttcttgcctatagga gaaggaaatg gccagtcggg aagaggagca gcgcgaaacc 2280
accccccggc gcgacgcggc tgccggcgca cgtcccccaaa ccatggagga cgtgtcgctcc 2340
ccgtccccgtt cggccggccccc tccccggggc cccccaaaaa agcggatgag gcggcgatcc 2400
gagtcggagg acgagggaaaga ctcatcacaa gacgcgttgg tgccgcgcac acccagcccg 2460
cgccatcgat cctcgccggc ggatttggcc attgcgcctt agaagaaaaa gaagcgccct 2520
tctcccaagc cggagcgcccc gccatcacca gagtaatcg tggacagcga ggaagaaaga 2580

```

-11-

gaagatgtgg	cgctacaaat	ggtgggttcc	agcaacccac	cggtgctaatt	caagcatggc	2640
aaaggaggta	agcgcacagt	gcggcggctg	aatgaagacg	acccagtggc	gcgtggatag	2700
cggacgcaag	aggaagagga	agagcccagc	gaagcggaaa	gtgaaattac	ggtgatgaac	2760
ccgctgagtg	tgccgatcg	gtctcgctgg	gagaagggca	tggaggctgc	gcccgcgctg	2820
atggacaagt	accacgtgga	taacgatcta	aaggcgaact	tcaaactact	gcctgaccaa	2880
gtggaaagctc	tggcggccgt	atgcaagacc	tggctgaacg	aggagcacccg	cgggttgcag	2940
ctgaccccca	ccagcaacaa	gacctttgt	acgatgatgg	ggcgattccct	gcagggcgtac	3000
ctgcagtcgt	ttgcagaggt	gacctaacaag	catcagcgc	ccacggcgtg	cgcgttgtgg	3060
ctgcaccgct	gcgctgagat	cgaaggcgag	cttaagtgtc	tacacggaa	cattatgata	3120
aataaggagc	acgtgattga	aatggatgtg	acgagcgaaa	acgggcacgg	cgcgctgaag	3180
gagcgtct	gcaaggccaa	gatcgtgaag	aaccgggtgg	gocgaatgt	ggtcagatc	3240
tccaaacacc	acgcaaggtg	ctgcgtgcac	gacgcggcct	gtccggccaa	tcagtttcc	3300
ggcaagtctt	gcccgcgtt	cttctctgaa	ggcacaagg	ctcaggtggc	tttaagcag	3360
atcaaggctt	ttatgcaggc	gctgtatctt	aacgcccaga	ccgggcacgg	tcacctttt	3420
atgccactac	ggtgcgagtg	caactcaaaag	cctgggacacg	cgccctttt	ggaaggcag	3480
ctaccaaagt	tgactccgtt	cgccctgagc	aacgcggagg	acctggacgc	ggatctgatc	3540
tccgacaaga	gcgtgtggc	cagcgtgcac	cacccggcgc	tgatagttgt	ccagtgtctgc	3600
aaccctgtgt	atcgcaactc	gcgcgcgcag	ggcggaggcc	ccaaactgcga	cttcaagata	3660
teggcgcccc	acctgctaaa	cgcgttggtg	atggtgcgc	gcctgtggag	taaaaacttc	3720
accgagctgc	cgcgatggt	tgtgcctgag	tttaagtgg	gcactaaaca	ccagtatcgc	3780
aacgtgtccc	tgccgtggc	gcatagcgat	gcccggcaga	accccttga	tttttaaac	3840
gcccggacgg	caagggtgg	ggtaaataat	cacccgagag	tgtaacaata	aaagcatttg	3900
ccttattga	aagtgtctt	agtacattat	ttttacatgt	tttcaagtg	acaaaaaagaa	3960
gtggcgctcc	taatctgcgc	actgtggctg	cggaaatgg	gcgagtggcg	ctccaggaag	4020
ctgttagagct	gttcctgggt	gchgacgcagg	gtggctgt	cctgggact	gttgagcatg	4080
gagttgggtt	ccccggtaat	aaggttcatg	gtgggttgt	gatccatggg	agtttggggc	4140
cagtggca	aggcgtggag	aaacatgcag	cagaatagtc	cacaggcggc	cgagttgggc	4200
ccctgtacgc	tttgggtgg	ctttccagc	gttatacagc	ggtcggggga	agaagcaatg	4260
gcccgtccgg	gcaggaggt	ctcgactcta	aactggtaaa	cctgctttag	tcgctggta	4320
gaaaagccaa	agggtcaaa	gaggtagcat	gttttgagt	gccccgttca	ggcaaggc	4380
atccagtgtt	cggcccccagt	ctcgacccg	gcccgtattga	ctatggcga	ggcgagctt	4440
tgtggagaaa	caaaggctgg	aaagcgttgc	tcataggtgc	ccaaaaata	tggccacaa	4500
ccaaagatctt	tgacaatggc	tttcgttgc	tgctactgg	agcccattggc	ggcagctgtt	4560
gttgatgttg	cttgcttctt	tatgttgg	cggttgcggc	cgagaaggc	gtgcgcagg	4620
acacggtttc	gatgacgccc	cggtgcggcc	ggtgcacacg	gaccacgtca	aagacttcaa	4680
acaaaaacata	aagaagggtg	ggctcgto	tggatccat	atataggcc	cgggttataa	4740
ttacccctagg	tcgacccctga	gggatcttt	tgaaggaacc	ttacttctgt	ggtgtgacat	4800
aattggacaa	actaccta	gagattnaa	gctctaaggt	aaatataaaa	tttttaagt	4860
tataatgtgt	taaactactg	attctaattg	tttgggtatt	ttagatttca	acctatggaa	4920
ctgtatgtat	ggagcgtgg	ttgaatgcct	ttaatggaga	aaacctgttt	tgctcagaag	4980
aaatggccatc	tagtgatgt	gaggctactg	ctgactctca	acattctact	cctccaaaaa	5040
agaagagaaa	ggtagaaagac	cccaaggact	ttccctcaga	attgtcta	tttttgagtc	5100
atgctgtgtt	tagtaataga	actcttgctt	gctttgttat	ttacaccaca	aaggaaaaag	5160
ctgcactgtct	atacaagaaa	attatggaaa	aatattctgt	aacccattata	agtaggcata	5220
acagtataaa	tcataaacata	ctgtttttc	ttactccaca	caggcataga	gtgtctgcta	5280
ttaataacta	tgctaaaaaa	ttgtgtactt	ttacttttt	aatttgtaaa	ggggtaata	5340
aggaatattt	gatgtatagt	gccttgcacta	gagatcataa	tcagccat	cacatttgc	5400
gagggtttac	ttgcctttaaa	aaacccccc	cacccccc	tgaacctgaa	acataaaaatg	5460
aatgcaattt	ttgtgtttaa	ttgtgtt	gcagttata	atggttacaa	ataaaagcaat	5520
agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctatgtt	tggtttgtcc	5580
aaactcatca	atgtatctt	tcatgtctgg	atccggctgt	ggaatgtgt	tcagtttaggg	5640
tgtggaaagt	ccccaggctc	cccagcaggc	agaagatgtc	aaagcatca	tctcaatttag	5700
tcagcaacca	ggtgtggaaa	gtccccagc	tccccagcag	gcagaatgt	gcaagcatg	5760
catctcaatt	agtcagcaac	catagtcccg	cccctaactc	cgcccatcc	gcccctaact	5820
ccgcccagtt	ccgcccattc	tccgccccat	ggctgactaa	tttttttat	ttatgcagag	5880
gccgaggccg	cctcgccctc	ttagtatttc	cagaagttagt	gaggaggctt	tttggagggc	5940
ctaggctttt	gcaaaaaagct	tcacgttgc	gcaagactc	agggcgcaag	ggctgctaaa	6000
ggaagcggaa	cacgtagaaa	gccagtccgc	agaacgggt	ctgaccccg	atgaatgtca	6060
gctactgggc	tatctggaca	agggaaaacg	caagcgaaa	gagaaagcag	gtagcttgca	6120
gtgggcttac	atggcgatag	ctagactggg	cggttttatg	gacagcaagc	gaaccggaaat	6180
tgccagctgg	ggcgcctct	ggtaaggtt	ggaagccctg	caaagtaaac	tggatggctt	6240

-12-

tcttgcggcc	aaggatctga	tggcgcaggg	gatcaagato	tgatcaagag	acaggatgag	6300
gatcgtttcg	catgattgaa	caagatggat	tgcacgcagg	ttctccggcc	gcttgggtgg	6360
agaggctatt	cggctatgac	tgggcacaac	agacaatcg	ctgctctgat	gccgcccgtgt	6420
tccggctgtc	agcgcagggg	cggccgggtc	ttttgtcaa	gaccgacactg	tccggtgccc	6480
tgaatgaact	gcaggacgag	gcagcgcggc	tatcgtggct	ggccacgacg	ggcgttcctt	6540
gcccagctgt	gctcgacgtt	gtcaactgaag	cgggaaggga	ctggctgcta	ttgggcgaag	6600
tgccggggca	ggatctctg	tcatctcacc	ttgtctctgc	cgagaagaatg	tccatcatgg	6660
ctgtatgcaat	gcggcggctg	catacgttgc	atccggctac	ctgccccattc	gaccaccaag	6720
cgaaaacatcg	catcgagcga	gcacgtactc	ggatggaagc	cggcttgc	gatcaggatg	6780
atctggacga	agagacatcg	gggctcgcgc	cagccgaact	gttcgcagg	ctcaaggcgc	6840
gcatggccca	cggcggagat	ctcgctgtga	cccatggcga	tgccctgttgc	ccgaatatca	6900
tggtgaaaaa	tggcgcgtt	tctggatcca	tcgactgtgg	ccggctgggt	ttggcggacc	6960
gctatcagga	catagcgttgc	gctacccgtg	atattgtga	agagcttggc	ggcgaatggg	7020
ctgaccgctt	cctcgtgtt	taaggatcg	ccgctcccg	ttcgcagcgc	atcgcccttct	7080
atcgcccttct	tgacgagttc	ttctgagcgg	gactctgggg	ttcgaatga	ccgaccaagc	7140
gacgcccac	ctgcacatcac	gagatttgc	ttcacccggc	gccttctatg	aaaggttggg	7200
cttcggaaatc	gttttccggg	acggccggctg	gatgatcctc	cagcgggggg	atctcatgt	7260
ggagtttcttc	gcccaccccg	ggctcgatcc	cctcgcgagt	tggttcaact	gtgccttag	7320
gctggacgac	ctcgccggagt	tctacccggca	gtgaaatcc	gtcggcatcc	agggaaaccag	7380
cagcggctat	ccgcgcaccc	atgccccccga	actgcaggag	tggggaggca	cgtatggcgc	7440
tttggtccccc	gatctttgtg	aggaaacctt	acttctgtgg	tgtgacataa	ttggacaaaac	7500
tacctacaga	gattttaaagc	tctaaaggtaa	atataaaatt	tttaagtgt	aatgtgttta	7560
aactactgat	tctaattgtt	tgtgttattt	agattccaaac	ctatggaaact	gatgaatggg	7620
agcagtgggt	gaatgcctt	aatgaggaaaa	acctgttttg	ctcagaagaa	atgcacatcta	7680
gtgtatgatga	ggctactgt	gactctcaac	atttactcc	tccaaaaaaat	aagagaaaagg	7740
tagaaagaccc	caaggacttt	ccttcagaat	tgctaagtt	tttgagatcat	gtgtgttta	7800
gtaatagaac	tcttgcgtgc	tttgcatttt	acaccacaaa	ggaaaaaagct	gcaactgttat	7860
acaagaaaaat	tatggaaaaaa	tattctgtaa	cctttataag	gtctgctatt	aataactatg	7920
ataaacatact	gttttttctt	actccacacca	ggcatagagt	gtttaataag	gaatatttga	8040
ctcaaaaaatt	gtgtacctt	agctttttaa	tttggtaaagg	catttgtaga	gtttttactt	8100
tgtatagtg	cttgactaga	gatcataatac	agccatacca	ataaaatgaa	tcaattgtt	8160
gctttaaaaaa	acctccacaca	cctccccctg	aacctgaaac	aaagcaatag	catcacaaat	8220
gttgttaact	tgtttattgc	agcttataat	gtttacaat	gttccatcaa	actcatcaat	8280
ttcacaaata	aagcattttt	ttcactgtat	tctagttgt	ccctcataaa	ccctaacctc	8340
gtatcttac	atgtctggat	ccccaggaag	ctccctgtgt	accctctgt	tcctccctgtt	8400
ctctacttgc	gaggacattc	caatcatagg	ctgccccatcc	ttcacagacc	gttttctaag	8460
aatttaggtca	cttaacaaaaa	aggaaatttg	gtaggggttt	gttccagaag	tgttggtaaa	8520
ggttaatttta	aaatatctgg	gaagtcctt	ccactgctgt	gtttgcaca	agggccccac	8580
cagccccacaa	atgtcaacag	cagaaacata	caagctgtca	atgtgaaaaa	caggaggcac	8640
accctgctca	tcaagaagca	ctgtggttgc	tgttttagta	tcatttttac	ttggatcagg	8700
attttccccca	cctgtgttagg	ttccaaaata	tctagtttt	acagcttgc	gttcagtgtt	8760
aacccagcac	tccactggat	aagcattatc	cttacccaaa	gtttgagcag	gatattttgt	8820
catctgctga	ctgtcaactg	tagcattttt	tgggttaca	ccaccaacag	caaaaaaaaaatg	8880
cctgttagtt	gctaacacac	cctgcagctc	caaaggttcc	tgagttttt	gtgtccctga	8940
aaaattttgc	cctgtaatgg	gttttccagc	accattttca	ttaacagtaa	cagcttccca	9000
atgcaagttt	aacatagcag	ttaccccaat	aacctcagtt	ggcaaaggaa	ttcttgaaga	9060
catcaaaaata	tttccacagg	taaagtccctc	atttaaatta	tcatgataat	aatggtttct	9120
cggaaaggggcc	tcgtgatacg	cctatttta	tagttaatg	tttatttttgc	tttatttttgc	9180
tagacgtcag	gtggcacttt	tcggggaaat	gtgcgcgg	cccttatatttgc	tttatttttgc	9240
taaatacatt	caaataatgt	tccgtatcg	agacaataac	cctgataat	gctcaataa	9240
tattggaaaaaa	ggaagagtat	gagtattcaa	catttccgt	tcggcccttat	tccttttttt	9300
gcccacat	gccttcctgt	ttttgtctac	ccagaaaacgc	ttgtgaaatg	aaaagatgt	9360
gaagatcgt	tgggtgcacg	agtgggttac	atcgaactgg	atctcaacag	cggtaaagatc	9420
cttggagat	ttcgccccga	agaacgtttt	ccaatgtat	gcacttttac	agttctgtca	9480
tgtggcgcgg	tattatcccc	tgttgacggc	gggcaagagc	aactcggtcg	ccgcatacac	9540
tatttctcaga	atgacttgg	tgagtactca	ccagtcacag	aaaagcatct	tacggatggc	9600
atgacagtaa	gagaattatg	cagtgtgc	ataaccatga	gtgataaac	tgccggccaa	9660
ttacttctga	caacgatccg	aggaccgaag	gagctaacc	tttttttgc	caacatgggg	9720
gatcatgtaa	ctcgcccttga	tcgttggggaa	ccggagctga	atgaagccat	accaaacgac	9780
gagcgtgaca	ccacgatgcc	tgcagcaatg	gcaacaacgt	tgcgcaaact	attaactggc	9840
gaactactta	ctctagttc	ccggcaacaa	ttaatagact	ggatggaggc	ggataaaagtt	9900

-13-

```

gcaggaccac ttctgcgctc ggcccttccg gctggctgg tattgctga taaatctgga 9960
gccgtgagc gtgggtctcg cggtatcatt gcagcaactg ggccagatgg taagccctcc 10020
cgtatcgtag ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag 10080
atcgctgaga taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca 10140
tatatacttt agattgattt aaaacttcat ttttaattt aaaggatcta ggtgaagatc 10200
cttttgata atctcatgac caaaatccct taacgtgagt ttcgttcca ctgagcgtca 10260
gaccggtagt aaaagatcaa aggatcttct ttagatcctt ttttctgct cgtaatctgc 10320
tgcttgcaaa caaaaaaaaacc accgctacca gcggtgggtt gtttgcggg tcaagagcta 10380
ccaaactctt ttccgaaggt aactggctt aacagagcgc agatacaaa tactgtcctt 10440
ctagtgttagc cgtagtttagg ccaccactt aagaactctg tagcacccgc tacatacctc 10500
getctgtctaa tcctgttacc agtggctgct gccagtggcg ataagtctgt tcttaccggg 10560
ttggactcaa gacgatagtt accggataag ggcgacgcgtt cgggctgaac ggggggttcg 10620
tgcacacagg ccaggttgg gcgaaacgacc tacaccgaac tgagataacct acacgcgttag 10680
ctatgagaaa gcccacgct tcccgaaagg agaaaggcgg acaggatattcc ggtaaagcggc 10740
agggtcgaaa caggagagcg cacgaggag cttccagggg gaaacgcctg gtatctttat 10800
agtccctgtcg gtttcgcca cctctgactt gacgtcgat ttttgtatg ctcgtcaggg 10860
ggcgaggcc tatggaaaaaa cgccagcaac gggcccttt tacggttcct ggccttttgc 10920
tggccttttgc ttcacatgtt ctttcctgctt ttatccccctg attctgttggg taaccgtatt 10980
accgcctttt agtgagactga taccgctcgc cgccagccgaa cgaccgagcg cagcgcgtca 11040
gtgagcgagg aagcggaaaga ggcgcctgatg cggtattttcc tccttacgca tctgtgcgg 11100
atttcacacc gcatatggtg cactctcagt acaatctgtc ctgatgccgc atagtttaagc 11160
cagtatctgc tccctgttgc tttgttggag gtcgctgagt agtgcgcgag caaaatttaa 11220
gctacaacaa ggcaaggctt gaccgacaat tgcatttgcg atctgttttag ggttaggcgt 11280
tttgcgtgc ttgcgtatgt acggggccaga tatacgcgtt tctgagggga ctagggtgtg 11340
tttaggcgaa aagcggggct tcgggttgcg ggggtttagg gtccctcag gatatagttag 11400
tttcgttttgc ttcacatggg gggggaaatgt agtctttagc aatacacttg tagtcttgca 11460
acatggtaac gatgagtttag caacatgcct tacaaggaga gaaaaagcac cgtgcgtgc 11520
gattggtgaa agtaaggtgg tacgatcgtg ctttattttt aaggcaacag acgggtctga 11580
catggattgg acgaaccact 11600

```

<210> 25

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 25

tgtacaccgg atccggcgca cacc

24

<210> 26

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 26

cacaacgagc tcaattaattt aattgccaca tcctc

35

<210> 27

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<400> 27

-14-

cgcgctgact cttaaggact agtttc 26
<210> 28
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 28
gcgcttaatt aacatcatca ataataatacc ttatTTT 37
<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 29
atcatggccg acaagcagaa gaac 24
<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 30
gtacagctcg tccatgccga gagt 24
<210> 31
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> EGFP probe

<221> misc_feature
<222> 1
<223> FAM (6-carboxy-fluorescein)

<221> misc_feature
<222> 26
<223> TAMRA (6-carboxy-tetramethyl-rhodamine)

<400> 31
caggaccatg tgatcgcgct tctcgT 26
<210> 32
<211> 1749
<212> DNA
<213> Adenovirus serotype 2 fiber

<220>
<221> CDS

-15-

<222> (1) ... (1749)	
<400> 32	
atg aaa cgc gcc aga ccg tct gaa gac acc ttc aac ccc gtg tat cca Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro 1 5 10 15	48
tat gac aca gaa acc ggg cct cca act gtg ccc ttt ctt acc cct cca Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro 20 25 30	96
ttt gtt tca ccc aat ggt ttc caa gaa agt ccc cct gga gtt ctc tct Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser 35 40 45	144
cta cgc gtc tcc gaa cct ttg gac acc tcc cac ggc atg ctt gcg ctt Leu Arg Val Ser Glu Pro Leu Asp Thr Ser His Gly Met Leu Ala Leu 50 55 60	192
aaa atg ggc agc ggt ctt acc cta gac aag gcc gga aac ctc acc tcc Lys Met Gly Ser Gly Leu Thr Leu Asp Lys Ala Gly Asn Leu Thr Ser 65 70 75 80	240
caa aat gta acc act gtt act cag cca ctt aaa aaa aca aag tca aac Gln Asn Val Thr Thr Val Thr Gln Pro Leu Lys Lys Thr Lys Ser Asn 85 90 95	288
ata agt ttg gac acc tcc gca cca ctt aca att acc tca ggc gcc cta Ile Ser Leu Asp Thr Ser Ala Pro Leu Thr Ile Thr Ser Gly Ala Leu 100 105 110	336
aca gtg gca acc acc gct cct ctg ata gtt act agc ggc gct ctt agc Thr Val Ala Thr Thr Ala Pro Leu Ile Val Thr Ser Gly Ala Leu Ser 115 120 125	384
gta cag tca caa gcc cca ctg acc gtg caa gac tcc aaa cta agc att Val Gln Ser Gln Ala Pro Leu Thr Val Gln Asp Ser Lys Leu Ser Ile 130 135 140	432
gct act aaa ggg ccc att aca gtg tca gat gga aag cta gcc ctg caa Ala Thr Lys Gly Pro Ile Thr Val Ser Asp Gly Lys Leu Ala Leu Gln 145 150 155 160	480
aca tca gcc ccc ctc tct ggc agt gac agc gac acc ctt act gta act Thr Ser Ala Pro Leu Ser Gly Ser Asp Ser Asp Thr Leu Thr Val Thr 165 170 175	528
gca tca ccc ccg cta act act gcc acg ggt agc ttg ggc att aac atg Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asn Met 180 185 190	576
gaa gat cct att tat gta aat aat gga aaa ata gga att aaa ata agc Glu Asp Pro Ile Tyr Val Asn Asn Gly Lys Ile Gly Ile Lys Ile Ser 195 200 205	624
ggc cct ttg caa gta gca caa aac tcc gat aca cta aca gta gtt act Gly Pro Leu Gln Val Ala Gln Asn Ser Asp Thr Leu Thr Val Val Thr 210 215 220	672
gga cca ggt gtc acc gtt gaa caa aac tcc ctt aga acc aaa gtt gca Gly Pro Gly Val Thr Val Glu Gln Asn Ser Leu Arg Thr Lys Val Ala	720

-16-

225	230	235	240	
gga gct att ggt tat gat tca tca aac aac atg gaa att aaa acg ggc Gly Ala Ile Gly Tyr Asp Ser Ser Asn Asn Met Glu Ile Lys Thr Gly 245 250 255				768
ggt ggc atg cgt ata aat aac aac ttg tta att cta gat gtg gat tac Gly Gly Met Arg Ile Asn Asn Asn Leu Leu Ile Leu Asp Val Asp Tyr 260 265 270				816
cca ttt gat gct caa aca aaa cta cgt ctt aaa ctg ggg cag gga ccc Pro Phe Asp Ala Gln Thr Lys Leu Arg Leu Lys Leu Gly Gln Gly Pro 275 280 285				864
ctg tat att aat gca tct cat aac ttg gac ata aac tat aac aga ggc Leu Tyr Ile Asn Ala Ser His Asn Leu Asp Ile Asn Tyr Asn Arg Gly 290 295 300				912
cta tac ctt ttt aat gca tca aac aat act aaa aaa ctg gaa gtt agc Leu Tyr Leu Phe Asn Ala Ser Asn Asn Thr Lys Lys Leu Glu Val Ser 305 310 315 320				960
ata aaa aaa tcc agt gga cta aac ttt gat aat act gcc ata gct ata Ile Lys Lys Ser Ser Gly Leu Asn Phe Asp Asn Thr Ala Ile Ala Ile 325 330 335				1008
aat gca gga aag ggt ctg gag ttt gat aca aac aca tct gag tct cca Asn Ala Gly Lys Gly Leu Glu Phe Asp Thr Asn Thr Ser Glu Ser Pro 340 345 350				1056
gat atc aac cca ata aaa act aaa att ggc tct ggc att gat tac aat Asp Ile Asn Pro Ile Lys Thr Lys Ile Gly Ser Gly Ile Asp Tyr Asn 355 360 365				1104
gaa aac ggt gcc atg att act aaa ctt gga gcg ggt tta agc ttt gac Glu Asn Gly Ala Met Ile Thr Lys Leu Gly Ala Gly Leu Ser Phe Asp 370 375 380				1152
aac tca ggg gcc att aca ata gga aac aaa aat gat gac aaa ctt acc Asn Ser Gly Ala Ile Thr Ile Gly Asn Lys Asn Asp Asp Lys Leu Thr 385 390 395 400				1200
ctg tgg aca acc cca gac cca tct cct aac tgc aga att cat tca gat Leu Trp Thr Thr Pro Asp Pro Ser Pro Asn Cys Arg Ile His Ser Asp 405 410 415				1248
aat gac tgc aaa ttt act ttg gtt ctt aca aaa tgt ggg agt caa gta Asn Asp Cys Lys Phe Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Val 420 425 430				1296
cta gct act gta gct gct ttg gct gta tct gga gat ctt tca tcc atg Leu Ala Thr Val Ala Ala Leu Ala Val Ser Gly Asp Leu Ser Ser Met 435 440 445				1344
aca ggc acc gtt gca agt gtt agt ata ttc ctt aga ttt gac caa aac Thr Gly Thr Val Ala Ser Val Ser Ile Phe Leu Arg Phe Asp Gln Asn 450 455 460				1392
ggt gtt cta atg gag aac tcc tca ctt aaa aaa cat tac tgg aac ttt Gly Val Leu Met Glu Asn Ser Ser Leu Lys Lys His Tyr Trp Asn Phe 465 470 475 480				1440

-17-

aga aat ggg aac tca act aat gca aat cca tac aca aat gca gtt gga	1488
Arg Asn Gly Asn Ser Thr Asn Ala Asn Pro Tyr Thr Asn Ala Val Gly	
485 490 495	
ttt atg cct aac ctt cta gcc tat cca aaa acc caa agt caa act gct	1536
Phe Met Pro Asn Leu Leu Ala Tyr Pro Lys Thr Gln Ser Gln Thr Ala	
500 505 510	
aaa aat aac att gtc agt caa gtt tac ttg cat ggt gat aaa act aaa	1584
Lys Asn Asn Ile Val Ser Gln Val Tyr Leu His Gly Asp Lys Thr Lys	
515 520 525	
cct atg ata ctt acc att aca ctt aat ggc act agt gaa tcc aca gaa	1632
Pro Met Ile Leu Thr Ile Thr Leu Asn Gly Thr Ser Glu Ser Thr Glu	
530 535 540	
act agc gag gta agc act tac tct atg tct ttt aca tgg tcc tgg gaa	1680
Thr Ser Glu Val Ser Thr Tyr Ser Met Ser Phe Thr Trp Ser Trp Glu	
545 550 555 560	
agt gga aaa tac acc act gaa act ttt gct acc aac tct tac acc ttc	1728
Ser Gly Lys Tyr Thr Glu Thr Phe Ala Thr Asn Ser Tyr Thr Phe	
565 570 575	
tcc tac att gcc cag gaa taa	1749
Ser Tyr Ile Ala Gln Glu *	
580	

<210> 33

<211> 582

<212> PRT

<213> Adenovirus serotype 2 fiber

<400> 33

Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro	
1 5 10 15	
Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro	
20 25 30	
Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser	
35 40 45	
Leu Arg Val Ser Glu Pro Leu Asp Thr Ser His Gly Met Leu Ala Leu	
50 55 60	
Lys Met Gly Ser Gly Leu Thr Leu Asp Lys Ala Gly Asn Leu Thr Ser	
65 70 75 80	
Gln Asn Val Thr Thr Val Thr Gln Pro Leu Lys Lys Thr Lys Ser Asn	
85 90 95	
Ile Ser Leu Asp Thr Ser Ala Pro Leu Thr Ile Thr Ser Gly Ala Leu	
100 105 110	
Thr Val Ala Thr Thr Ala Pro Leu Ile Val Thr Ser Gly Ala Leu Ser	
115 120 125	
Val Gln Ser Gln Ala Pro Leu Thr Val Gln Asp Ser Lys Leu Ser Ile	
130 135 140	
Ala Thr Lys Gly Pro Ile Thr Val Ser Asp Gly Lys Leu Ala Leu Gln	
145 150 155 160	
Thr Ser Ala Pro Leu Ser Gly Ser Asp Ser Asp Thr Leu Thr Val Thr	
165 170 175	
Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asn Met	
180 185 190	
Glu Asp Pro Ile Tyr Val Asn Asn Gly Lys Ile Gly Ile Lys Ile Ser	

-18-

Gly	Pro	Leu	Gln	Val	Ala	Gln	Asn	Ser	Asp	Thr	Leu	Thr	Val	Val	Thr
210						215					220				
Gly	Pro	Gly	Val	Thr	Val	Glu	Gln	Asn	Ser	Leu	Arg	Thr	Lys	Val	Ala
225						230				235				240	
Gly	Ala	Ile	Gly	Tyr	Asp	Ser	Ser	Asn	Asn	Met	Glu	Ile	Lys	Thr	Gly
						245				250				255	
Gly	Gly	Met	Arg	Ile	Asn	Asn	Asn	Leu	Leu	Ile	Leu	Asp	Val	Asp	Tyr
						260			265			270			
Pro	Phe	Asp	Ala	Gln	Thr	Lys	Leu	Arg	Leu	Lys	Leu	Gly	Gln	Gly	Pro
						275			280			285			
Leu	Tyr	Ile	Asn	Ala	Ser	His	Asn	Leu	Asp	Ile	Asn	Tyr	Asn	Arg	Gly
						290			295			300			
Leu	Tyr	Leu	Phe	Asn	Ala	Ser	Asn	Asn	Thr	Lys	Lys	Leu	Glu	Val	Ser
						305			310			315			320
Ile	Lys	Lys	Ser	Ser	Gly	Leu	Asn	Phe	Asp	Asn	Thr	Ala	Ile	Ala	Ile
						325			330			335			
Asn	Ala	Gly	Lys	Gly	Leu	Glu	Phe	Asp	Thr	Asn	Thr	Ser	Glu	Ser	Pro
						340			345			350			
Asp	Ile	Asn	Pro	Ile	Lys	Thr	Lys	Ile	Gly	Ser	Gly	Ile	Asp	Tyr	Asn
						355			360			365			
Glu	Asn	Gly	Ala	Met	Ile	Thr	Lys	Leu	Gly	Ala	Gly	Leu	Ser	Phe	Asp
						370			375			380			
Asn	Ser	Gly	Ala	Ile	Thr	Ile	Gly	Asn	Lys	Asn	Asp	Asp	Lys	Leu	Thr
						385			390			395			400
Leu	Trp	Thr	Thr	Pro	Asp	Pro	Ser	Pro	Asn	Cys	Arg	Ile	His	Ser	Asp
						405			410			415			
Asn	Asp	Cys	Lys	Phe	Thr	Leu	Val	Leu	Thr	Lys	Cys	Gly	Ser	Gln	Val
						420			425			430			
Leu	Ala	Thr	Val	Ala	Ala	Leu	Ala	Val	Ser	Gly	Asp	Leu	Ser	Ser	Met
						435			440			445			
Thr	Gly	Thr	Val	Ala	Ser	Val	Ser	Ile	Phe	Leu	Arg	Phe	Asp	Gln	Asn
						450			455			460			
Gly	Val	Leu	Met	Glu	Asn	Ser	Ser	Leu	Lys	Lys	His	Tyr	Trp	Asn	Phe
						465			470			475			480
Arg	Asn	Gly	Asn	Ser	Thr	Asn	Ala	Asn	Pro	Tyr	Thr	Asn	Ala	Val	Gly
						485			490			495			
Phe	Met	Pro	Asn	Leu	Leu	Ala	Tyr	Pro	Lys	Thr	Gln	Ser	Gln	Thr	Ala
						500			505			510			
Lys	Asn	Asn	Ile	Val	Ser	Gln	Val	Tyr	Leu	His	Gly	Asp	Lys	Thr	Lys
						515			520			525			
Pro	Met	Ile	Leu	Thr	Ile	Thr	Leu	Asn	Gly	Thr	Ser	Glu	Ser	Thr	Glu
						530			535			540			
Thr	Ser	Glu	Val	Ser	Thr	Tyr	Ser	Met	Ser	Phe	Thr	Trp	Ser	Trp	Glu
						545			550			555			560
Ser	Gly	Lys	Tyr	Thr	Thr	Glu	Thr	Phe	Ala	Thr	Asn	Ser	Tyr	Thr	Phe
						565			570			575			
Ser	Tyr	Ile	Ala	Gln	Glu										
					580										

<210> 34
<211> 1746
<212> DNA
<213> Adenovirus serotype 5 fiber

<220>
<221> CDS
<222> (1)...(1746)

<400> 34

-19-

atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc gtg tat cca Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro 1 5 10 15	48
tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt act cct ccc Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro 20 25 30	96
ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg gta ctc tct Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser 35 40 45	144
ttg cgc cta tcc gaa cct cta gtt acc tcc aat ggc atg ctt gcg ctc Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu 50 55 60	192
aaa atg ggc aac ggc ctc tct ctg gac gag gcc ggc aac ctt acc tcc Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn Leu Thr Ser 65 70 75 80	240
caa aat gta acc act gtg agc cca cct ctc aaa aaa acc aag tca aac Gln Asn Val Thr Val Ser Pro Pro Leu Lys Lys Thr Lys Ser Asn 85 90 95	288
ata aac ctg gaa ata tct gca ccc ctc aca gtt acc tca gaa gcc cta Ile Asn Leu Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu 100 105 110	336
act gtg gct gcc gcc gca cct cta atg gtc gcg ggc aac aca ctc acc Thr Val Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr 115 120 125	384
atg caa tca cag gcc ccg cta acc gtg cac gac tcc aaa ctt agc att Met Gln Ser Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile 130 135 140	432
gcc acc caa gga ccc ctc aca gtg tca gaa gga aag cta gcc ctg caa Ala Thr Gln Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln 145 150 155 160	480
aca tca ggc ccc ctc acc acc acc gat agc agt acc ctt act atc act Thr Ser Gly Pro Leu Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr 165 170 175	528
gcc tca ccc cct cta act act gcc act ggt agc ttg ggc att gac ttg Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu 180 185 190	576
aaa gag ccc att tat aca caa aat gga aaa cta gga cta aag tac ggg Lys Glu Pro Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly 195 200 205	624
gct cct ttg cat gta aca gac gac cta aac act ttg acc gta gca act Ala Pro Leu His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr 210 215 220	672
ggc cca ggt gtg act att aat aat act tcc ttg caa act aaa gtt act Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr 225 230 235 240	720
gga gcc ttg ggt ttt gat tca caa ggc aat atg caa ctt aat gta gca	768

-20-

Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala			
245	250	255	
gga gga cta agg att gat tct caa aac aga cgc ctt ata ctt gat gtt		816	
Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val			
260	265	270	
agt tat ccg ttt gat gct caa aac caa cta aat cta aga cta gga cag		864	
Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln			
275	280	285	
ggc cct ctt ttt ata aac tca gcc cac aac ttg gat att aac tac aac		912	
Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn			
290	295	300	
aaa ggc ctt tac ttg ttt aca gct tca aac aat tcc aaa aag ctt gag		960	
Lys Gly Leu Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys Lys Leu Glu			
305	310	315	320
gtt aac cta agc act gcc aag ggg ttg atg ttt gac gct aca gcc ata		1008	
Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr Ala Ile			
325	330	335	
gcc att aat gca gga gat ggg ctt gaa ttt ggt tca cct aat gca cca		1056	
Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn Ala Pro			
340	345	350	
aac aca aat ccc ctc aaa aca aaa att ggc cat ggc cta gaa ttt gat		1104	
Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu Phe Asp			
355	360	365	
tca aac aag gct atg gtt cct aaa cta gga act ggc ctt agt ttt gac		1152	
Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser Phe Asp			
370	375	380	
agc aca ggt gcc att aca gta gga aac aaa aat aat gat aag cta act		1200	
Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys Leu Thr			
385	390	395	400
ttg tgg acc aca cca gct cca tct cct aac tgt aga cta aat gca gag		1248	
Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala Glu			
405	410	415	
aaa gat gct aaa ctc act ttg gtc tta aca aaa tgt ggc agt caa ata		1296	
Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile			
420	425	430	
ctt gct aca gtt tca gtt ttg gct gtt aaa ggc agt ttg gct cca ata		1344	
Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro Ile			
435	440	445	
tct gga aca gtt caa agt gct cat ctt att ata aga ttt gac gaa aat		1392	
Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu Asn			
450	455	460	
gga gtg cta cta aac aat tcc ttc ctg gac cca gaa tat tgg aac ttt		1440	
Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn Phe			
465	470	475	480
aga aat gga gat ctt act gaa ggc aca gcc tat aca aac gct gtt gga		1488	
Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val Gly			

-21-

485	490	495	
ttt atg cct aac cta tca gct tat cca aaa tct cac ggt aaa act gcc Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr Ala 500	505		1536
aaa agt aac att gtc agt caa gtt tac tta aac gga gac aaa act aaa Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr Lys 515	520	510	1584
cct gta aca cta acc att aca cta aac ggt aca cag gaa aca gga gac Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly Asp 530	535	540	1632
aca act cca agt gca tac tct atg tca ttt tca tgg gac tgg tct ggc Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly 545	550	555	1680
cac aac tac att aat gaa ata ttt gcc aca tcc tct tac act ttt tca His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Phe Ser 565	570	575	1728
tac att gcc caa gaa taa Tyr Ile Ala Gln Glu *			1746
	580		

<210> 35

<211> 581

<212> PRT

<213> Adenovirus serotype 5 fiber

<400> 35

Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro	1	5	10	15
Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro	20	25	30	
Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser	35	40	45	
Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu	50	55	60	
Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn Leu Thr Ser	65	70	75	80
Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr Lys Ser Asn	85	90	95	
Ile Asn Leu Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu	100	105	110	
Thr Val Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr	115	120	125	
Met Gln Ser Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile	130	135	140	
Ala Thr Gln Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln	145	150	155	160
Thr Ser Gly Pro Leu Thr Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr	165	170	175	
Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu	180	185	190	
Lys Glu Pro Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly	195	200	205	
Ala Pro Leu His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr	210	215	220	

-22-

Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr
 225 230 235 240
 Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala
 245 250 255
 Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val
 260 265 270
 Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln
 275 280 285
 Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn
 290 295 300
 Lys Gly Leu Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys Lys Leu Glu
 305 310 315 320
 Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr Ala Ile
 325 330 335
 Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn Ala Pro
 340 345 350
 Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu Phe Asp
 355 360 365
 Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser Phe Asp
 370 375 380
 Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys Leu Thr
 385 390 395 400
 Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala Glu
 405 410 415
 Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile
 420 425 430
 Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro Ile
 435 440 445
 Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu Asn
 450 455 460
 Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn Phe
 465 470 475 480
 Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val Gly
 485 490 495
 Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr Ala
 500 505 510
 Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr Lys
 515 520 525
 Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly Asp
 530 535 540
 Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly
 545 550 555 560
 His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Phe Ser
 565 570 575
 Tyr Ile Ala Gln Glu
 580

<210> 36
 <211> 1098
 <212> DNA
 <213> Adenovirus serotype 37 fiber

<220>
 <221> CDS
 <222> (1)...(1098)

<400> 36
 atg tca aag agg ctc cgg gtg gaa gat gac ttc aac ccc gtc tac ccc 48
 Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro
 1 5 10 15

-23-

tat ggc tac gcg cgg aat cag aat atc ccc ttc ctc act ccc ccc ttt Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe 20 25 30	96
gtc tcc tcc gat gga ttc aaa aac ttc ccc cct ggg gta ctg tca ctc Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu 35 40 45	144
aaa ctg gct gat cca atc acc att acc aat ggg gat gta tcc ctc aag Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys 50 55 60	192
gtg gga ggt ggt ctc act ttg caa gat gga agc cta act gta aac cct Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro 65 70 75 80	240
aag gct cca ctg caa gtt aat act gat aaa aaa ctt gag ctt gca tat Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr 85 90 95	288
gat aat cca ttt gaa agt agt gct aat aaa ctt agt tta aaa gta gga Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly 100 105 110	336
cat gga tta aaa gta tta gat gaa aaa agt gct gcg ggg tta aaa gat His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp 115 120 125	384
tta att ggc aaa ctt gtg gtt tta aca gga aaa gga ata ggc act gaa Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu 130 135 140	432
aat tta gaa aat aca gat ggt agc agc aga gga att ggt ata aat gta Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val 145 150 155 160	480
aga gca aga gaa ggg ttg aca ttt gac aat gat gga tac ttg gta gca Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly Tyr Leu Val Ala 165 170 175	528
tgg aac cca aag tat gac acg cgc aca ctt tgg aca aca cca gac aca Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr Thr Pro Asp Thr 180 185 190	576
tct cca aac tgc aca att gct caa gat aag gac tct aaa ctc act ttg Ser Pro Asn Cys Thr Ile Ala Gln Asp Lys Asp Ser Lys Leu Thr Leu 195 200 205	624
gta ctt aca aag tgt gga agt caa ata tta gct aat gtg tct ttg att Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Asn Val Ser Leu Ile 210 215 220	672
gtg gtc gca gga aag tac cac atc ata aat aat aag aca aat cca aaa Val Val Ala Gly Lys Tyr His Ile Ile Asn Asn Lys Thr Asn Pro Lys 225 230 235 240	720
ata aaa agt ttt act att aaa ctg cta ttt aat aag aac gga gtg ctt Ile Lys Ser Phe Thr Ile Lys Leu Leu Phe Asn Lys Asn Gly Val Leu 245 250 255	768

-24-

tta gac aac tca aat ctt gga aaa gct tat tgg aac ttt aga agt gga	816
Leu Asp Asn Ser Asn Leu Gly Lys Ala Tyr Trp Asn Phe Arg Ser Gly	
260 265 270	
aat tcc aat gtt tcg aca gct tat gaa aaa gca att ggt ttt atg cct	864
Asn Ser Asn Val Ser Thr Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro	
275 280 285	
aat ttg gta gcg tat cca aaa ccc agt aat tct aaa aaa tat gca aga	912
Asn Leu Val Ala Tyr Pro Lys Pro Ser Asn Ser Lys Lys Tyr Ala Arg	
290 295 300	
gac ata gtt tat gga act ata tat ctt ggt gga aaa cct gat cag cca	960
Asp Ile Val Tyr Gly Thr Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro	
305 310 315 320	
gca gtc att aaa act acc ttt aac caa gaa act gga tgt gaa tac tct	1008
Ala Val Ile Lys Thr Thr Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser	
325 330 335	
atc aca ttt aac ttt agt tgg tcc aaa acc tat gaa aat gtt gaa ttt	1056
Ile Thr Phe Asn Phe Ser Trp Ser Lys Thr Tyr Glu Asn Val Glu Phe	
340 345 350	
gaa acc acc tct ttt acc ttc tcc tat att gcc caa gaa tga	1098
Glu Thr Thr Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu *	
355 360 365	

<210> 37

<211> 365

<212> PRT

<213> Adenovirus serotype 37 fiber

<400> 37

Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro	
1 5 10 15	
Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe	
20 25 30	
Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu	
35 40 45	
Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys	
50 55 60	
Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro	
65 70 75 80	
Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr	
85 90 95	
Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly	
100 105 110	
His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp	
115 120 125	
Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu	
130 135 140	
Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val	
145 150 155 160	
Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly Tyr Leu Val Ala	
165 170 175	
Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr Thr Pro Asp Thr	
180 185 190	
Ser Pro Asn Cys Thr Ile Ala Gln Asp Lys Asp Ser Lys Leu Thr Leu	

-25-

Val	Leu	Thr	Lys	Cys	Gly	Ser	195	200	205						
210						Gln	Ile	Leu	Ala	Asn	Val	Ser	Leu	Ile	
Val	Val	Ala	Gly	Lys	Tyr	His	215	215	220						
225						Ile	Ile	Asn	Asn	Lys	Thr	Asn	Pro	Lys	
Ile	Lys	Ser	Phe	Thr	Ile	Lys	Leu	Leu	Phe	Asn	Lys	Asn	Gly	Val	Leu
245						245	250	255							
Leu	Asp	Asn	Ser	Asn	Leu	Gly	Lys	Ala	Tyr	Trp	Asn	Phe	Arg	Ser	Gly
260						260	265	270							
Asn	Ser	Asn	Val	Ser	Thr	Ala	Tyr	Glu	Lys	Ala	Ile	Gly	Phe	Met	Pro
275						275	280	285							
Asn	Leu	Val	Ala	Tyr	Pro	Lys	Pro	Ser	Asn	Ser	Lys	Lys	Tyr	Ala	Arg
290						290	295	300							
Asp	Ile	Val	Tyr	Gly	Thr	Ile	Tyr	Leu	Gly	Gly	Lys	Pro	Asp	Gln	Pro
305						305	310	315							
Ala	Val	Ile	Lys	Thr	Thr	Phe	Asn	Gln	Glu	Thr	Gly	Cys	Glu	Tyr	Ser
325						325	330	335							
Ile	Thr	Phe	Asn	Phe	Ser	Trp	Ser	Lys	Thr	Tyr	Glu	Asn	Val	Glu	Phe
340						340	345	350							
Glu	Thr	Thr	Ser	Phe	Thr	Phe	Ser	Tyr	Ile	Ala	Gln	Glu			
355						355	360	365							

<210> 38

<211> 1098

<212> DNA

<213> Adenovirus serotype 19p fiber

<220>

<221> CDS

<222> (1)...(1098)

<400> 38

atg	tca	aag	agg	ctc	cgg	gtg	gaa	gat	gac	ttc	aac	ccc	gtc	tac	ccc
Met	Ser	Lys	Arg	Ieu	Arg	Val	Glu	Asp	Asp	Phe	Asn	Pro	Val	Tyr	Pro
1							5			10				15	

tat	ggc	tac	gcg	cgg	aat	cag	aat	atc	ccc	ttc	ctc	act	ccc	ccc	ttt
Tyr	Gly	Tyr	Ala	Arg	Asn	Gln	Asn	Ile	Pro	Phe	Leu	Thr	Pro	Pro	Phe
							20			25			30		

gtc	tcc	tcc	gat	gga	ttc	aaa	aac	ttc	ccc	cct	ggg	gta	ctg	tca	ctc
Val	Ser	Ser	Asp	Gly	Phe	Lys	Asn	Phe	Pro	Pro	Gly	Val	Leu	Ser	Leu
							35			40			45		

aaa	ctg	gct	gat	cca	atc	acc	att	acc	aat	ggg	gat	gta	tcc	ctc	aag
Lys	Leu	Ala	Asp	Pro	Ile	Thr	Ile	Thr	Asn	Gly	Asp	Val	Ser	Leu	Lys
							50			55			60		

gtg	gga	ggt	ggt	ctc	act	ttg	caa	gat	gga	agc	cta	act	gta	aac	cct
Val	Gly	Gly	Gly	Leu	Thr	Leu	Gln	Asp	Gly	Ser	Leu	Thr	Val	Asn	Pro
							65			70			75		80

aag	gct	cca	ctg	caa	gtt	act	act	gat	aaa	aaa	ctt	gag	ctt	gca	tat
Lys	Ala	Pro	Leu	Gln	Val	Thr	Thr	Asp	Lys	Lys	Leu	Glu	Leu	Ala	Tyr
							85			90			95		

gat	aat	cca	ttt	gaa	tgt	agt	gct	aat	aaa	ttt	agt	tta	aaa	gta	gga
Asp	Asn	Pro	Phe	Glu	Cys	Ser	Ala	Asn	Lys	Phe	Ser	Leu	Lys	Val	Gly
							100			105			110		

-26-

cat gga tta aaa gta tta gat gaa aaa agt gct gcg ggg tta aaa gat		384
His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp		
115 120 125		
tta att ggc aaa ctt gtg gtt tta aca gga aaa gga ata ggc act gaa		432
Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu		
130 135 140		
aat tta gaa aat aca gat ggt agc agc aga gga att ggt ata aat gta		480
Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val		
145 150 155 160		
aga gca aga gaa ggg ttg aca ttt gac aat gat gga tac ttg gta gca		528
Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly Tyr Leu Val Ala		
165 170 175		
tgg aac cca aag tat gac acg cgc aca ctt tgg aca aca cca gac aca		576
Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr Pro Asp Thr		
180 185 190		
tct cca aac tgc aca att gct cag gat aag gac tct aaa ctc act ttg		624
Ser Pro Asn Cys Thr Ile Ala Gln Asp Lys Asp Ser Lys Leu Thr Leu		
195 200 205 210		
gta ctt aca aag tgt gga agt caa ata tta gct aat gtg tct ttg att		672
Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Asn Val Ser Leu Ile		
210 215 220		
gtg gtc gca gga aag tac cac atc ata aat aat aag aca aat cca gaa		720
Val Val Ala Gly Lys Tyr His Ile Ile Asn Asn Lys Thr Asn Pro Glu		
225 230 235 240		
ata aaa agt ttt act att aaa ctg tta ttt aat aag aac gga gtg ctt		768
Ile Lys Ser Phe Thr Ile Lys Leu Leu Phe Asn Lys Asn Gly Val Leu		
245 250 255		
tta gac aac tca aat ctt gga aaa gct tat tgg aac ttt aga agt gga		816
Leu Asp Asn Ser Asn Leu Gly Lys Ala Tyr Trp Asn Phe Arg Ser Gly		
260 265 270		
aat tcc aat gtt tcg aca gct tat gaa aaa gca att ggt ttt atg cct		864
Asn Ser Asn Val Ser Thr Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro		
275 280 285		
aat tta gta gcg tat cca aaa ccc agt aat tct aaa aaa tat gca aga		912
Asn Leu Val Ala Tyr Pro Lys Pro Ser Asn Ser Lys Lys Tyr Ala Arg		
290 295 300		
gac ata gtt tat gga act ata tat ctt ggt gga aaa cct gat cag cca		960
Asp Ile Val Tyr Gly Thr Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro		
305 310 315 320		
gca gtc att aaa act acc ttt aac caa gaa act gga tgt gaa tac tct		1008
Ala Val Ile Lys Thr Thr Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser		
325 330 335		
atc aca ttt gac ttt agt tgg tcc aaa acc tat gaa aat gtt gaa ttt		1056
Ile Thr Phe Asp Phe Ser Trp Ser Lys Thr Tyr Glu Asn Val Glu Phe		
340 345 350		
gaa acc acc tct ttt acc ttc tcc tat att gcc caa gaa tga		1098

-27-

Glu	Thr	Thr	Ser	Phe	Thr	Phe	Ser	Tyr	Ile	Ala	Gln	Glu	*
355													
							360						
												365	

<210> 39
<211> 365
<212> PRT
<213> Adenovirus serotype 19p fiber

<400> 39															
Met	Ser	Lys	Arg	Leu	Arg	Val	Glu	Asp	Asp	Phe	Asn	Pro	Val	Tyr	Pro
1							5			10				15	
Tyr	Gly	Tyr	Ala	Arg	Asn	Gln	Asn	Ile	Pro	Phe	Leu	Thr	Pro	Pro	Phe
20							25			30					
Val	Ser	Ser	Asp	Gly	Phe	Lys	Asn	Phe	Pro	Pro	Gly	Val	Leu	Ser	Leu
35							40					45			
Lys	Leu	Ala	Asp	Pro	Ile	Thr	Ile	Thr	Asn	Gly	Asp	Val	Ser	Leu	Lys
50							55			60					
Val	Gly	Gly	Leu	Thr	Leu	Gln	Asp	Gly	Ser	Leu	Thr	Val	Asn	Pro	
65							70			75				80	
Lys	Ala	Pro	Leu	Gln	Val	Thr	Thr	Asp	Lys	Lys	Leu	Glu	Leu	Ala	Tyr
85							90					95			
Asp	Asn	Pro	Phe	Glu	Cys	Ser	Ala	Asn	Lys	Phe	Ser	Leu	Lys	Val	Gly
100							105					110			
His	Gly	Leu	Lys	Val	Leu	Asp	Glu	Lys	Ser	Ala	Ala	Gly	Leu	Lys	Asp
115							120			125					
Leu	Ile	Gly	Lys	Leu	Val	Val	Leu	Thr	Gly	Lys	Gly	Ile	Gly	Thr	Glu
130							135			140					
Asn	Leu	Glu	Asn	Thr	Asp	Gly	Ser	Ser	Arg	Gly	Ile	Gly	Ile	Asn	Val
145							150			155				160	
Arg	Ala	Arg	Glu	Gly	Leu	Thr	Phe	Asp	Asn	Asp	Gly	Tyr	Leu	Val	Ala
165							170			175					
Trp	Asn	Pro	Lys	Tyr	Asp	Thr	Arg	Thr	Leu	Trp	Thr	Thr	Pro	Asp	Thr
180							185					190			
Ser	Pro	Asn	Cys	Thr	Ile	Ala	Gln	Asp	Lys	Asp	Ser	Lys	Leu	Thr	Leu
195							200			205					
Val	Leu	Thr	Lys	Cys	Gly	Ser	Gln	Ile	Leu	Ala	Asn	Val	Ser	Leu	Ile
210							215			220					
Val	Val	Ala	Gly	Lys	Tyr	His	Ile	Ile	Asn	Asn	Lys	Thr	Asn	Pro	Glu
225							230			235				240	
Ile	Lys	Ser	Phe	Thr	Ile	Lys	Leu	Leu	Phe	Asn	Lys	Asn	Gly	Val	Leu
245							245			250				255	
Leu	Asp	Asn	Ser	Asn	Leu	Gly	Lys	Ala	Tyr	Trp	Asn	Phe	Arg	Ser	Gly
260							260			265				270	
Asn	Ser	Asn	Val	Ser	Thr	Ala	Tyr	Glu	Lys	Ala	Ile	Gly	Phe	Met	Pro
275							275			280				285	
Asn	Leu	Val	Ala	Tyr	Pro	Lys	Pro	Ser	Asn	Ser	Lys	Lys	Tyr	Ala	Arg
290							290			295				300	
Asp	Ile	Val	Tyr	Gly	Thr	Ile	Tyr	Leu	Gly	Gly	Lys	Pro	Asp	Gln	Pro
305							310			315				320	
Ala	Val	Ile	Lys	Thr	Thr	Phe	Asn	Gln	Glu	Thr	Gly	Cys	Glu	Tyr	Ser
325							325			330				335	
Ile	Thr	Phe	Asp	Phe	Ser	Trp	Ser	Lys	Thr	Tyr	Glu	Asn	Val	Glu	Phe
340							340			345				350	
Glu	Thr	Thr	Ser	Phe	Thr	Phe	Ser	Tyr	Ile	Ala	Gln	Glu			
355							355			360				365	

<210> 40
<211> 1228

-28-

<212> DNA
 <213> Adenovirus serotype 9 fiber
 <220>
 <221> CDS
 <222> (50) ... (1138)

<400> 40
 aaggatgtc aaattcctgg tccacaattt tcattgtctt ccctcttag atg tca aag 58
 Met Ser Lys
 1

agg ctc cgg gtg gaa gat gac ttc aac ccc gtc tac ccc tat ggc tac	Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro Tyr Gly Tyr	106
5 10 15		
gcg cgg aat cag aat atc ccc ttc ctc act ccc ccc ttt gtc tcc tcc	Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe Val Ser Ser	154
20 25 30 35	20 25 30 35	
gat gga ttc caa aac ttc ccc cct ggg gtc ctg tca ctc aaa cta gct	Asp Gly Phe Gln Asn Phe Pro Pro Gly Val Leu Ser Leu Lys Leu Ala	202
40 45 50	40 45 50	
gac cca ata gcc atc gtc aat ggg aat gtc tca ctc aaa gtg gga ggg	Asp Pro Ile Ala Ile Val Asn Gly Asn Val Ser Leu Lys Val Gly Gly	250
55 60 65	55 60 65	
ggt ctc act ttg caa gat gga act gga aaa cta aca gtc aat gct gat	Gly Leu Thr Leu Gln Asp Gly Thr Gly Lys Leu Thr Val Asn Ala Asp	298
70 75 80	70 75 80	
cca cct ttg caa ctt aca aac aac aaa tta ggg att gct ttg gac gct	Pro Pro Leu Gln Leu Thr Asn Asn Lys Leu Gly Ile Ala Leu Asp Ala	346
85 90 95	85 90 95	
cca ttt gat gtt ata gat aat aaa ctc aca ttg tta gcg ggc cat ggc	Pro Phe Asp Val Ile Asp Asn Lys Leu Thr Leu Leu Ala Gly His Gly	394
100 105 110 115	100 105 110 115	
ttg tct att ata aca aaa gaa aca tca aca ctg cct ggc ttg agg aat	Leu Ser Ile Ile Thr Lys Glu Thr Ser Thr Leu Pro Gly Leu Arg Asn	442
120 125 130 135	120 125 130 135	
act ctt gta gta tta act gga aag ggt att gga aca gaa tca aca gat	Thr Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu Ser Thr Asp	490
135 140 145	135 140 145	
aat ggc gga acg gta tgt gtt aga gtt gga gaa ggt ggc ggc tta tca	Asn Gly Gly Thr Val Cys Val Arg Val Gly Glu Gly Gly Leu Ser	538
150 155 160	150 155 160	
ttt aat aat gat gga gac ttg gta gca ttt aat aaa aaa gaa gat aag	Phe Asn Asn Asp Gly Asp Leu Val Ala Phe Asn Lys Lys Glu Asp Lys	586
165 170 175	165 170 175	
cgc acc cta tgg aca act cca gac aca tct cca aat tgc aag att gat	Arg Thr Leu Trp Thr Pro Asp Thr Ser Pro Asn Cys Lys Ile Asp	634
180 185 190 195	180 185 190 195	
cag gat aag gac tct aag tta act ctg gtc ctt aca aag tgt gga agt		682

-29-

Gln Asp Lys Asp Ser Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser			
200	205	210	
caa ata ttg gct aat gtg tca tta att gtc gta gat ggt aag tac aaa			
Gln Ile Leu Ala Asn Val Ser Leu Ile Val Val Asp Gly Lys Tyr Lys			730
215	220	225	
att atc aat aac aat act caa cca gct ctc aaa gga ttt acc att aaa			
Ile Ile Asn Asn Asn Thr Gln Pro Ala Leu Lys Gly Phe Thr Ile Lys			778
230	235	240	
tta ttg ttt gat gaa aat gga gta ctt atg gaa tct tca aat ctt ggt			
Leu Leu Phe Asp Glu Asn Gly Val Leu Met Glu Ser Ser Asn Leu Gly			826
245	250	255	
aaa tca tat tgg aac ttt aga aat gaa aat tca att atg tca aca gct			
Lys Ser Tyr Trp Asn Phe Arg Asn Glu Asn Ser Ile Met Ser Thr Ala			874
260	265	270	275
tat gaa aaa gct att gga ttc atg cct aat ttg gta gcc tat cca aaa			
Tyr Glu Lys Ala Ile Gly Phe Met Pro Asn Leu Val Ala Tyr Pro Lys			922
280	285	290	
cct acc gct ggc tct aaa aaa tat gca aga gat ata gtt tat gga aac			
Pro Thr Ala Gly Ser Lys Lys Tyr Ala Arg Asp Ile Val Tyr Gly Asn			970
295	300	305	
atc tac ctt ggt gga aag cca gat caa cca gta acc att aaa act acc			
Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro Val Thr Ile Lys Thr Thr			1018
310	315	320	
ttt aat cag gaa act gga tgt gaa tat tct atc aca ttt gat ttt agt			
Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser Ile Thr Phe Asp Phe Ser			1066
325	330	335	
tgg gcc aag act tat gta aat gtt gaa ttt gaa aca acc tct ttt acc			
Trp Ala Lys Thr Tyr Val Asn Val Glu Phe Glu Thr Thr Ser Phe Thr			1114
340	345	350	355
ttt tcc tat atc gcc caa gaa tga aagaccaata aacgtgttt tcatttcaaa			1168
Phe Ser Tyr Ile Ala Gln Glu *			
360			
atttcatgt atcttattg attttacac cagcacgggt agtcagtctc ccaccaccag 1228			

<210> 41
<211> 362

<212> PRT

<213> Adenovirus serotype 9 fiber

<400> 41

Met Ser Lys Arg Leu Arg Val Glu Asp Asp Phe Asn Pro Val Tyr Pro			
1	5	10	15
Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe			
20	25	30	
Val Ser Ser Asp Gly Phe Gln Asn Phe Pro Pro Gly Val Leu Ser Leu			
35	40	45	
Lys Leu Ala Asp Pro Ile Ala Ile Val Asn Gly Asn Val Ser Leu Lys			
50	55	60	
Val Gly Gly Leu Thr Leu Gln Asp Gly Thr Gly Lys Leu Thr Val			

-30-

65	70	75	80
Asn Ala Asp Pro Pro Leu Gln Leu Thr Asn Asn Lys Leu Gly Ile Ala			
85	90	95	
Leu Asp Ala Pro Phe Asp Val Ile Asp Asn Lys Leu Thr Leu Leu Ala			
100	105	110	
Gly His Gly Leu Ser Ile Ile Thr Lys Glu Thr Ser Thr Leu Pro Gly			
115	120	125	
Leu Arg Asn Thr Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu			
130	135	140	
Ser Thr Asp Asn Gly Gly Thr Val Cys Val Arg Val Gly Glu Gly Gly			
145	150	155	160
Gly Leu Ser Phe Asn Asn Asp Gly Asp Leu Val Ala Phe Asn Lys Lys			
165	170	175	
Glu Asp Lys Arg Thr Leu Trp Thr Thr Pro Asp Thr Ser Pro Asn Cys			
180	185	190	
Lys Ile Asp Gln Asp Lys Asp Ser Lys Leu Thr Leu Val Leu Thr Lys			
195	200	205	
Cys Gly Ser Gln Ile Leu Ala Asn Val Ser Leu Ile Val Val Asp Gly			
210	215	220	
Lys Tyr Lys Ile Ile Asn Asn Asn Thr Gln Pro Ala Leu Lys Gly Phe			
225	230	235	240
Thr Ile Lys Leu Leu Phe Asp Glu Asn Gly Val Leu Met Glu Ser Ser			
245	250	255	
Asn Leu Gly Lys Ser Tyr Trp Asn Phe Arg Asn Glu Asn Ser Ile Met			
260	265	270	
Ser Thr Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro Asn Leu Val Ala			
275	280	285	
Tyr Pro Lys Pro Thr Ala Gly Ser Lys Lys Tyr Ala Arg Asp Ile Val			
290	295	300	
Tyr Gly Asn Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro Val Thr Ile			
305	310	315	320
Lys Thr Thr Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser Ile Thr Phe			
325	330	335	
Asp Phe Ser Trp Ala Lys Thr Tyr Val Asn Val Glu Phe Glu Thr Thr			
340	345	350	
Ser Phe Thr Phe Ser Tyr Ile Ala Gln Glu			
355	360		

<210> 42

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Ad2 third repeat

<400> 42

Gly Asn Leu Thr Ser Gln Asn Val Thr Thr Val Thr Gln Pro Leu Lys			
1	5	10	15
Lys Thr Lys Ser			
20			

<210> 43

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Ad5 third repeat

-31-

<400> 43
Gly Asn Leu Thr Ser Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys
1 5 10 15
Lys Thr Lys Ser 20

<210> 44
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Repeat motif

<221> VARIANT
<222> 4
<223> Xaa = Thr or Ser

<400> 44
Thr Thr Val Xaa
1

<210> 45
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Repeat Consensus Sequence

<221> VARIANT
<222> 3,5,7,13
<223> Xaa = Hydrophobic Amino Acid

<221> VARIANT
<222> 1, 2, 4, 6, 8, 9, 11, 12, 14, 15
<223> Xaa = Any Amino Acid

<221> VARIANT
<222> 10
<223> Xaa = Pro or Gly

<400> 45
Xaa
1 5 10 15

<210> 46
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad2 21st repeat

<400> 46
Gly Ala Met Ile Thr Lys Leu Gly Ala Gly Leu Ser Phe Asp Asn Ser
1 5 10 15

-32-

<210> 47
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad5 21st repeat

<400> 47
Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser Phe Asp Ser Thr
1 5 10 15

<210> 48
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad37 last repeat

<400> 48
Ile Gly Ile Asn Val Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp
1 5 10 15

<210> 49
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Last repeat consensus sequence

<221> VARIANT
<222> 4, 7
<223> Xaa = Any Amino Acid

<221> VARIANT
<222> 9
<223> Xaa = Asp or Asn

<400> 49
Lys Leu Gly Xaa Gly Leu Xaa Phe Xaa
1 5

<210> 50
<211> 1164
<212> DNA
<213> Artificial Sequence

<220>
<223> Ad5Ds fiber

<221> CDS
<222> (13) ... (1092)

<221> misc_feature
<222> 1130, 1157
<223> n = A, T, C or G

-33-

<400> 50
 atgggatcca ag atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc 51
 Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro
 1 5 10

 gtg tat cca tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt 99
 Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu
 15 20 25

 act cct ccc ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg 147
 Thr Pro Pro Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly
 30 35 40 45

 gta ctc tct ttg cgc cta tcc gaa cct cta gtt acc tcc aat ggc atg 195
 Val Leu Ser Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met
 50 55 60

 ctt gcg ctc aaa atg ggc aac ggc ctc tct ctg gac gag gcc ggc aac 243
 Leu Ala Leu Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn
 65 70 75

 ctt acc tcc caa aat gta acc act gtg agc cca cct ctc aaa aaa acc 291
 Leu Thr Ser Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr
 80 85 90

 aag aaa aag ctt gaa gtt aac cta agc act gcc aag ggg ttg atg ttt 339
 Lys Lys Leu Glu Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe
 95 100 105

 gac gct aca gcc ata gcc att aat gca gga gat ggg ctt gaa ttt ggt 387
 Asp Ala Thr Ala Ile Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly
 110 115 120 125

 tca cct aat gca cca aac aca aat ccc ctc aaa aca aaa att ggc cat 435
 Ser Pro Asn Ala Pro Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His
 130 135 140

 ggc cta gaa ttt gat tca aac aag gct atg gtt cct aaa cta gga act 483
 Gly Leu Glu Phe Asp Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr
 145 150 155

 ggc ctt agt ttt gac agc aca ggt gcc att aca gta gga aac aaa aat 531
 Gly Leu Ser Phe Asp Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn
 160 165 170

 aat gat aag cta act ttg tgg acc aca cca gct cca tct cct aac tgt 579
 Asn Asp Lys Leu Thr Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys
 175 180 185

 aga cta aat gca gag aaa gat gct aaa ctc act ttg gtc tta aca aaa 627
 Arg Leu Asn Ala Glu Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys
 190 195 200 205

 tgt ggc agt caa ata ctt gct aca gtt tca gtt ttg gct gtt aaa ggc 675
 Cys Gly Ser Gln Ile Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly
 210 215 220

 agt ttg gct cca ata tct gga aca gtt caa agt gct cat ctt att ata 723
 Ser Leu Ala Pro Ile Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile
 225 230 235

-34-

aga ttt gac gaa aat gga gtg cta cta aac aat tcc ttc ctg gac cca	771
Arg Phe Asp Glu Asn Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro	
240 245 250	
gaa tat tgg aac ttt aga aat gga gat ctt act gaa ggc aca gcc tat	819
Glu Tyr Trp Asn Phe Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr	
255 260 265	
aca aac gct gtt gga ttt atg cct aac cta tca gct tat cca aaa tct	867
Thr Asn Ala Val Gly Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser	
270 275 280 285	
cac ggt aaa act gcc aaa agt aac att gtc agt caa gtt tac tta aac	915
His Gly Lys Thr Ala Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn	
290 295 300	
gga gac aaa act aaa cct gta aca cta acc att aca cta aac ggt aca	963
Gly Asp Lys Thr Lys Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr	
305 310 315	
cag gaa aca gga gac aca act cca agt gca tac tct atg tca ttt tca	1011
Gln Glu Thr Gly Asp Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser	
320 325 330	
tgg gac tgg tct ggc cac aac tac att aat gaa ata ttt gcc aca tcc	1059
Trp Asp Trp Ser Gly His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser	
335 340 345	
tct tac act ttt tca tac att gcc caa gaa taa agaagcggcc gcgttatgaa	1112
Ser Tyr Thr Phe Ser Tyr Ile Ala Gln Glu *	
350 355	
gggcgaattc cagcacantg gcggccgtta tttagtgatc cgagntcatg ca	1164
<210> 51	
<211> 359	
<212> PRT	
<213> Artificial Sequence	
<220>	
<223> Ad5deltas	
<400> 51	
Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro	
1 5 10 15	
Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro	
20 25 30	
Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser	
35 40 45	
Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu	
50 55 60	
Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn Leu Thr Ser	
65 70 75 80	
Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr Lys Lys Lys	
85 90 95	
Leu Glu Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr	
100 105 110	
Ala Ile Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn	
115 120 125	
Ala Pro Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu	
130 135 140	

-35-

Phe Asp Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu Ser
 145 150 155 160
 Phe Asp Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp Lys
 165 170 175
 Leu Thr Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn
 180 185 190
 Ala Glu Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser
 195 200 205
 Gln Ile Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala
 210 215 220
 Pro Ile Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp
 225 230 235 240
 Glu Asn Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp
 245 250 255
 Asn Phe Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala
 260 265 270
 Val Gly Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys
 275 280 285
 Thr Ala Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys
 290 295 300
 Thr Lys Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr
 305 310 315 320
 Gly Asp Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp
 325 330 335
 Ser Gly His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr
 340 345 350
 Phe Ser Tyr Ile Ala Gln Glu
 355

<210> 52
<211> 1920
<212> DNA
<213> Artificial Sequence

<220>
<223> Ad5s/Ad37k fiber

<221> CDS
<222> (13)...(1755)

<221> misc_feature
<222> 1867, 1875
<223> n = A,T,C or G

<400> 52
gcaagatcca ag atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc 51
Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro
1 5 10

gtg tat cca tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt 99
Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu
15 20 25

act cct ccc ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg 147
Thr Pro Pro Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly
30 35 40 45

gta ctc tct ttg cgc cta tcc gaa cct cta gtt acc tcc aat ggc atg 195
Val Leu Ser Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met
50 55 60

-36-

ctt	gct	ctc	aaa	atg	ggc	aac	ggc	ctc	tct	ctg	gac	gag	gcc	ggc	aac		243
Leu	Ala	Leu	Lys	Met	Gly	Asn	Gly	Leu	Ser	Leu	Asp	Glu	Ala	Gly	Asn		
				65				70				75					
ctt	acc	tcc	caa	aat	gtt	acc	act	gtt	agc	cca	cct	ctc	aaa	aaa	acc		291
Leu	Thr	Ser	Gln	Asn	Val	Thr	Thr	Val	Ser	Pro	Pro	Leu	Lys	Lys	Thr		
				80				85				90					
aag	tca	aac	ata	aac	ctg	gaa	ata	tct	gca	ccc	ctc	aca	gtt	acc	tca		339
Lys	Ser	Asn	Ile	Asn	Leu	Glu	Ile	Ser	Ala	Pro	Leu	Thr	Val	Thr	Ser		
				95				100				105					
gaa	gcc	cta	act	gtt	gct	gcc	gca	cct	cta	atg	gtc	gct	ggc	ggc	aac		387
Glu	Ala	Leu	Thr	Val	Ala	Ala	Ala	Ala	Pro	Leu	Met	Val	Ala	Gly	Asn		
				110				115			120			125			
aca	ctc	acc	atg	caa	tca	cag	gcc	ccg	cta	acc	gtt	cac	gac	tcc	aaa		435
Thr	Leu	Thr	Met	Gln	Ser	Gln	Ala	Pro	Leu	Thr	Val	His	Asp	Ser	Lys		
				130				135			140						
ctt	agc	att	gcc	acc	caa	gga	ccc	ctc	aca	gtt	tca	gaa	gga	aag	cta		483
Leu	Ser	Ile	Ala	Thr	Gln	Gly	Pro	Leu	Thr	Val	Ser	Glu	Gly	Lys	Leu		
				145				150			155						
gcc	ctg	caa	aca	tca	ggc	ccc	ctc	acc	acc	acc	gat	agc	agt	acc	ctt		531
Ala	Leu	Gln	Thr	Ser	Gly	Pro	Leu	Thr	Thr	Asp	Ser	Ser	Ser	Thr	Leu		
				160				165			170						
act	atc	act	gcc	tca	ccc	cct	cta	act	act	gcc	act	ggt	agc	ttg	ggc		579
Thr	Ile	Thr	Ala	Ser	Pro	Pro	Leu	Thr	Thr	Ala	Thr	Gly	Ser	Leu	Gly		
				175				180			185						
att	gac	ttg	aaa	gag	ccc	att	tat	aca	caa	aat	gga	aaa	cta	gga	cta		627
Ile	Asp	Leu	Lys	Glu	Pro	Ile	Tyr	Thr	Gln	Asn	Gly	Lys	Leu	Gly	Leu		
				190				195			200			205			
aag	tac	ggg	gct	cct	ttg	cat	gta	aca	gac	gac	cta	aac	act	ttg	acc		675
Lys	Tyr	Gly	Ala	Pro	Leu	His	Val	Thr	Asp	Asp	Leu	Asn	Thr	Leu	Thr		
				210				215			220						
gta	gca	act	ggt	cca	ggt	gtg	act	att	aat	aat	act	tcc	ttg	caa	act		723
Val	Ala	Thr	Gly	Pro	Gly	Val	Thr	Ile	Asn	Asn	Thr	Ser	Leu	Gln	Thr		
				225				230			235						
aaa	gtt	act	gga	gcc	ttg	ggt	ttt	gat	tca	caa	ggc	aat	atg	caa	ctt		771
Lys	Val	Thr	Gly	Ala	Leu	Gly	Phe	Asp	Ser	Gln	Gly	Asn	Met	Gln	Leu		
				240				245			250						
aat	gta	gca	gga	gga	cta	agg	att	gat	tct	caa	aac	aga	cgc	ctt	ata		819
Asn	Val	Ala	Gly	Gly	Leu	Arg	Ile	Asp	Ser	Gln	Asn	Arg	Arg	Leu	Ile		
				255				260			265						
ctt	gat	gtt	agt	tat	ccg	ttt	gat	gct	caa	aac	caa	cta	aat	cta	aga		867
Leu	Asp	Val	Ser	Tyr	Pro	Phe	Asp	Ala	Gln	Asn	Gln	Leu	Asn	Leu	Arg		
				270				275			280			285			
cta	gga	cag	ggc	cct	ttt	ata	aac	tca	gcc	cac	aac	ttg	gat	att		915	
Leu	Gly	Gln	Gly	Pro	Leu	Phe	Ile	Asn	Ser	Ala	His	Asn	Leu	Asp	Ile		
				290				295			300						

-37-

aac tac aac aaa ggc ctt tac ttg ttt aca gct tca aac aat tcc aaa Asn Tyr Asn Lys Gly Leu Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys 305 310 315	963
aag ctt gag gtt aac cta agc act gcc aag ggg ttg atg ttt gac gct Lys Leu Glu Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala 320 325 330	1011
aca gcc ata gcc att aat gca gga gat ggg ctt gaa ttt ggt tca cct Thr Ala Ile Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro 335 340 345	1059
aat gca cca aac aca aat ccc ctc aaa aca aaa att ggc cat ggc cta Asn Ala Pro Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu 350 355 360 365	1107
gaa ttt gat tca aac aag gct atg gtt cct aaa cta gga act ggc ctt Glu Phe Asp Ser Asn Lys Ala Met Val Pro Lys Leu Gly Thr Gly Leu 370 375 380	1155
agt ttt gac agc aca ggt gcc att aca gta gga aac aaa aat aat gat Ser Phe Asp Ser Thr Gly Ala Ile Thr Val Gly Asn Lys Asn Asn Asp 385 390 395	1203
aag cta act ttg tgg acc aca cca gac act agt cca aac tgc aca att Lys Leu Thr Leu Trp Thr Pro Asp Thr Ser Pro Asn Cys Thr Ile 400 405 410	1251
gct caa gat aag gac tct aaa ctc act ttg gta ctt aca aag tgt gga Ala Gln Asp Lys Asp Ser Lys Leu Thr Leu Val Leu Thr Lys Cys Gly 415 420 425	1299
agt caa ata tta gct aat gtg tct ttg att gtg gtc gca gga aag tac Ser Gln Ile Leu Ala Asn Val Ser Leu Ile Val Val Ala Gly Lys Tyr 430 435 440 445	1347
cac atc ata aat aat aag aca aat cca aaa ata aaa agt ttt act att His Ile Asn Asn Lys Thr Asn Pro Lys Ile Lys Ser Phe Thr Ile 450 455 460	1395
aaa ctg cta ttt aat aag aac gga gtg ctt tta gac aac tca aat ctt Lys Leu Leu Phe Asn Lys Asn Gly Val Leu Leu Asp Asn Ser Asn Leu 465 470 475	1443
gga aaa gct tat tgg aac ttt aga agt gga aat tcc aat gtt tcg aca Gly Lys Ala Tyr Trp Asn Phe Arg Ser Gly Asn Ser Asn Val Ser Thr 480 485 490	1491
gct tat gaa aaa gca att ggt ttt atg cct aat ttg gta gcg tat cca Ala Tyr Glu Lys Ala Ile Gly Phe Met Pro Asn Leu Val Ala Tyr Pro 495 500 505	1539
aaa ccc agt aat tct aaa aaa tat gca aga gac ata gtt tat gga act Lys Pro Ser Asn Ser Lys Lys Tyr Ala Arg Asp Ile Val Tyr Gly Thr 510 515 520 525	1587
ata tat ctt ggt gga aaa cct gat cag cca gca gtc att aaa act acc Ile Tyr Leu Gly Gly Lys Pro Asp Gln Pro Ala Val Ile Lys Thr Thr 530 535 540	1635
ttt aac caa gaa act gga tgt gaa tac tct atc aca ttt aac ttt agt	1683

-38-

```

Phe Asn Gln Glu Thr Gly Cys Glu Tyr Ser Ile Thr Phe Asn Phe Ser
      545          550          555
tgg tcc aaa acc tat gaa aat gtt gaa ttt gaa acc acc tct ttt acc   1731
Trp Ser Lys Thr Tyr Glu Asn Val Glu Phe Glu Thr Thr Ser Phe Thr
      560          565          570
ttc tcc tat att gcc caa gaa tga aaaagcggcc gctcgagtct agagggcccg  1785
Phe Ser Tyr Ile Ala Gln Glu *                               575
      580
tttaaacccg ctgatcagcc tcgactgtgc cttctagttg ccagccatct gttgtttgcc 1845
cctccccgt gccttccttg ancctggaa gtgccactcc cactgtcctt tcctaataaa 1905
atgaggaaat gcatac                                         1920

<210> 53
<211> 580
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad5s/Ad37k

<400> 53
Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro
  1           5           10          15
Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro
  20          25          30
Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser
  35          40          45
Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu
  50          55          60
Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Asn Leu Thr Ser
  65          70          75          80
Gln Asn Val Thr Thr Val Ser Pro Pro Leu Lys Lys Thr Lys Ser Asn
  85          90          95
Ile Asn Leu Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu
 100         105         110
Thr Val Ala Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr
 115         120         125
Met Gln Ser Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile
 130         135         140
Ala Thr Gln Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln
 145         150         155         160
Thr Ser Gly Pro Leu Thr Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr
 165         170         175
Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu
 180         185         190
Lys Glu Pro Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly
 195         200         205
Ala Pro Leu His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr
 210         215         220
Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr
 225         230         235         240
Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala
 245         250         255
Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val
 260         265         270
Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln
 275         280         285
Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn

```

-39-

Lys	Gly	Leu	Tyr	Leu	Phe	Thr	Ala	Ser	Asn	Asn	Ser	Lys	Lys	Leu	Glu
290	295														
305	310														
Val	Asn	Leu	Ser	Thr	Ala	Lys	Gly	Leu	Met	Phe	Asp	Ala	Thr	Ala	Ile
Ala	Ile	Asn	Ala	Gly	Asp	Gly	Leu	Glu	Phe	Gly	Ser	Pro	Asn	Ala	Pro
Asn	Thr	Asn	Pro	Leu	Lys	Thr	Lys	Ile	Gly	His	Gly	Leu	Glu	Phe	Asp
Ser	Asn	Lys	Ala	Met	Val	Pro	Lys	Leu	Gly	Thr	Gly	Leu	Ser	Phe	Asp
Ser	Thr	Gly	Ala	Ile	Thr	Val	Gly	Asn	Lys	Asn	Asn	Asp	Lys	Leu	Thr
385	390														
Leu	Trp	Thr	Thr	Pro	Asp	Thr	Ser	Pro	Asn	Cys	Thr	Ile	Ala	Gln	Asp
Lys	Asp	Ser	Lys	Leu	Thr	Leu	Val	Leu	Thr	Lys	Cys	Gly	Ser	Gln	Ile
420	425														
Leu	Ala	Asn	Val	Ser	Leu	Ile	Val	Val	Ala	Gly	Lys	Tyr	His	Ile	Ile
435	440														
Asn	Asn	Lys	Thr	Asn	Pro	Lys	Ile	Lys	Ser	Phe	Thr	Ile	Lys	Leu	Leu
450	455														
Phe	Asn	Lys	Asn	Gly	Val	Leu	Leu	Asp	Asn	Ser	Asn	Leu	Gly	Lys	Ala
465	470														
Tyr	Trp	Asn	Phe	Arg	Ser	Gly	Asn	Ser	Asn	Val	Ser	Thr	Ala	Tyr	Glu
485	490														
Lys	Ala	Ile	Gly	Phe	Met	Pro	Asn	Leu	Val	Ala	Tyr	Pro	Lys	Pro	Ser
500	505														
Asn	Ser	Lys	Lys	Tyr	Ala	Arg	Asp	Ile	Val	Tyr	Gly	Thr	Ile	Tyr	Leu
515	520														
Gly	Gly	Lys	Pro	Asp	Gln	Pro	Ala	Val	Ile	Lys	Thr	Thr	Phe	Asn	Gln
530	535														
Glu	Thr	Gly	Cys	Glu	Tyr	Ser	Ile	Thr	Phe	Asn	Phe	Ser	Trp	Ser	Lys
545	550														
Thr	Tyr	Glu	Asn	Val	Glu	Phe	Glu	Thr	Thr	Ser	Phe	Thr	Phe	Ser	Tyr
555	565														
Ile	Ala	Gln	Glu												
580															

<210> 54
<211> 1767
<212> DNA
<213> Artificial Sequence

<220>
<223> Ad5s/Ad37s fiber

<221> CDS
<222> (13)...(1749)

<400> 54

```
atgggatcca ag atg aag cgc gca aga ccg tct gaa gat acc ttc aac ccc 51
      Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro
          1           5           10
```

```
gtg tat cca tat gac acg gaa acc ggt cct cca act gtg cct ttt ctt 99
Val Tyr Pro Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu
    15          20          25
```

```
act cct ccc ttt gta tcc ccc aat ggg ttt caa gag agt ccc cct ggg 147
Thr Pro Pro Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly
```

-40-

30	35	40	45	
gta ctc tct ttg cgc cta tcc gaa cct cta gtt acc tcc aat ggc atg Val Leu Ser Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met				195
50	55	60		
ctt gcg ctc aaa atg ggc aac ggc ctc tct ctg gac gag gcc ggc agc Leu Ala Leu Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Ser				243
65	70	75		
cta act gta aac cct aag gct cca ctg caa gtt aat act gat tca aac Leu Thr Val Asn Pro Lys Ala Pro Leu Gln Val Asn Thr Asp Ser Asn				291
80	85	90		
ata aac ctg gaa ata tct gca ccc ctc aca gtt acc tca gaa gcc cta Ile Asn Leu Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu				339
95	100	105		
act gtg gct gcc gcc gca cct cta atg gtc gcg ggc aac aca ctc acc Thr Val Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr				387
110	115	120	125	
atg caa tca cag gcc ccg cta acc gtg cac gac tcc aaa ctt agc att Met Gln Ser Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile				435
130	135	140		
gcc acc caa gga ccc ctc aca acc acc gat agc agt acc ctt act atc act Ala Thr Gln Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln				483
145	150	155		
aca tca ggc ccc ctc acc acc acc gat agc agt acc ctt act atc act Thr Ser Gly Pro Leu Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr				531
160	165	170		
gcc tca ccc cct cta act act gcc act ggt agc ttg ggc att gac ttg Ala Ser Pro Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu				579
175	180	185		
aaa gag ccc att tat aca caa aat gga aaa cta gga cta aag tac ggg Lys Glu Pro Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly				627
190	195	200	205	
gct cct ttg cat gta aca gac gac cta aac act ttg acc gta gca act Ala Pro Leu His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr				675
210	215	220		
ggt cca ggt gtg act att aat aat act tcc ttg caa act aaa gtt act Gly Pro Gly Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr				723
225	230	235		
gga gcc ttg ggt ttt gat tca caa ggc aat atg caa ctt aat gta gca Gly Ala Leu Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala				771
240	245	250		
gga gga cta agg att gat tct caa aac aca aga cgc ctt ata ctt gat gtt Gly Gly Leu Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val				819
255	260	265		
agt tat ccg ttt gat gct caa aac caa cta aat cta aga cta gga cag Ser Tyr Pro Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln				867
270	275	280	285	

-41-

ggc cct ctt ttt ata aac tca gcc cac aac ttg gat att aac tac aac	915
Gly Pro Leu Phe Ile Asn Ser Ala His Asn Leu Asp Ile Asn Tyr Asn	
290 295 300	
aaa ggc ctt tac ttg ttt aca gct tca aac aat tcc aaa aag ctt gag	963
Lys Gly Leu Tyr Leu Phe Thr Ala Ser Asn Asn Ser Lys Lys Leu Glu	
305 310 315	
gtt aac cta agc act gcc aag ggg ttg atg ttt gac gct aca gcc ata	1011
Val Asn Leu Ser Thr Ala Lys Gly Leu Met Phe Asp Ala Thr Ala Ile	
320 325 330	
gcc att aat gca gga gat ggg ctt gaa ttt ggt tca cct aat gca cca	1059
Ala Ile Asn Ala Gly Asp Gly Leu Glu Phe Gly Ser Pro Asn Ala Pro	
335 340 345	
aac aca aat ccc ctc aaa aca aaa att ggc cat ggc cta gaa ttt gat	1107
Asn Thr Asn Pro Leu Lys Thr Lys Ile Gly His Gly Leu Glu Phe Asp	
350 355 360 365	
tca aac att ggt ata aat gta aga gca aga gaa ggg ttg aca ttt gac	1155
Ser Asn Ile Gly Ile Asn Val Arg Ala Arg Glu Gly Leu Thr Phe Asp	
370 375 380	
aat gat ggt gcc att aca gta gga aac aaa aat aat gat aag cta act	1203
Asn Asp Gly Ala Ile Thr Val Gly Asn Lys Asn Asp Lys Leu Thr	
385 390 395	
ttg tgg acc aca cca gct cca tct cct aac tgt aga cta aat gca gag	1251
Leu Trp Thr Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala Glu	
400 405 410	
aaa gat gct aaa ctc act ttg gtc tta aca aaa tgt ggc agt caa ata	1299
Lys Asp Ala Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile	
415 420 425	
ctt gct aca gtt tca gtt ttg gct gtt aaa ggc agt ttg gct cca ata	1347
Leu Ala Thr Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro Ile	
430 435 440 445	
tct gga aca gtt caa agt gct cat ctt att ata aga ttt gac gaa aat	1395
Ser Gly Thr Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu Asn	
450 455 460	
gga gtg cta cta aac aat tcc ttc ctg gac cca gaa tat tgg aac ttt	1443
Gly Val Leu Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn Phe	
465 470 475	
aga aat gga gat ctt act gaa ggc aca gcc tat aca aac gct gtt gga	1491
Arg Asn Gly Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val Gly	
480 485 490	
ttt atg cct aac cta tca gct tat cca aaa tct cac ggt aaa act gcc	1539
Phe Met Pro Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr Ala	
495 500 505	
aaa agt aac att gtc agt caa gtt tac tta aac gga gac aaa act aaa	1587
Lys Ser Asn Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr Lys	
510 515 520 525	

-42-

cct gta aca cta acc att aca cta aac ggt aca cag gaa aca gga gac	1635
Pro Val Thr Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly Asp	
530 535 540	
aca act cca agt gca tac tct atg tca ttt tca tgg gac tgg tct ggc	1683
Thr Thr Pro Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly	
545 550 555	
cac aac tac att aat gaa ata ttt gcc aca tcc tct tac act ttt tca	1731
His Asn Tyr Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Phe Ser	
560 565 570	
tac att gcc caa gaa taa agaagcggcc gcgttatg	1767
Tyr Ile Ala Gln Glu *	
575	

<210> 55
<211> 578
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad5s/Ad37s

<400> 55	
Met Lys Arg Ala Arg Pro Ser Glu Asp Thr Phe Asn Pro Val Tyr Pro	
1 5 10 15	
Tyr Asp Thr Glu Thr Gly Pro Pro Thr Val Pro Phe Leu Thr Pro Pro	
20 25 30	
Phe Val Ser Pro Asn Gly Phe Gln Glu Ser Pro Pro Gly Val Leu Ser	
35 40 45	
Leu Arg Leu Ser Glu Pro Leu Val Thr Ser Asn Gly Met Leu Ala Leu	
50 55 60	
Lys Met Gly Asn Gly Leu Ser Leu Asp Glu Ala Gly Ser Leu Thr Val	
65 70 75 80	
Asn Pro Lys Ala Pro Leu Gln Val Asn Thr Asp Ser Asn Ile Asn Leu	
85 90 95	
Glu Ile Ser Ala Pro Leu Thr Val Thr Ser Glu Ala Leu Thr Val Ala	
100 105 110	
Ala Ala Ala Pro Leu Met Val Ala Gly Asn Thr Leu Thr Met Gln Ser	
115 120 125	
Gln Ala Pro Leu Thr Val His Asp Ser Lys Leu Ser Ile Ala Thr Gln	
130 135 140	
Gly Pro Leu Thr Val Ser Glu Gly Lys Leu Ala Leu Gln Thr Ser Gly	
145 150 155 160	
Pro Leu Thr Thr Asp Ser Ser Thr Leu Thr Ile Thr Ala Ser Pro	
165 170 175	
Pro Leu Thr Thr Ala Thr Gly Ser Leu Gly Ile Asp Leu Lys Glu Pro	
180 185 190	
Ile Tyr Thr Gln Asn Gly Lys Leu Gly Leu Lys Tyr Gly Ala Pro Leu	
195 200 205	
His Val Thr Asp Asp Leu Asn Thr Leu Thr Val Ala Thr Gly Pro Gly	
210 215 220	
Val Thr Ile Asn Asn Thr Ser Leu Gln Thr Lys Val Thr Gly Ala Leu	
225 230 235 240	
Gly Phe Asp Ser Gln Gly Asn Met Gln Leu Asn Val Ala Gly Gly Leu	
245 250 255	
Arg Ile Asp Ser Gln Asn Arg Arg Leu Ile Leu Asp Val Ser Tyr Pro	
260 265 270	
Phe Asp Ala Gln Asn Gln Leu Asn Leu Arg Leu Gly Gln Gly Pro Leu	

-43-

Phe	Ile	Asn	Ser	Ala	His	Asn	Leu	Asp	Ile	Asn	Tyr	Asn	Lys	Gly	Leu
275							280					285			
290							295					300			
Tyr	Leu	Phe	Thr	Ala	Ser	Asn	Asn	Ser	Lys	Lys	Leu	Glu	Val	Asn	Leu
305							310					315			320
Ser	Thr	Ala	Lys	Gly	Leu	Met	Phe	Asp	Ala	Thr	Ala	Ile	Ala	Ile	Asn
						325					330			335	
Ala	Gly	Asp	Gly	Leu	Glu	Phe	Gly	Ser	Pro	Asn	Ala	Pro	Asn	Thr	Asn
						340					345			350	
Pro	Leu	Lys	Thr	Lys	Ile	Gly	His	Gly	Leu	Glu	Phe	Asp	Ser	Asn	Ile
						355					360			365	
Gly	Ile	Asn	Val	Arg	Ala	Arg	Glu	Gly	Leu	Thr	Phe	Asp	Asn	Asp	Gly
						370					375			380	
Ala	Ile	Thr	Val	Gly	Asn	Asn	Asp	Lys	Leu	Thr	Leu	Trp	Thr		
						385					390			395	
Thr	Pro	Ala	Pro	Ser	Pro	Asn	Cys	Arg	Leu	Asn	Ala	Glu	Lys	Asp	Ala
						405					410			415	
Lys	Leu	Thr	Leu	Val	Leu	Thr	Lys	Cys	Gly	Ser	Gln	Ile	Leu	Ala	Thr
						420					425			430	
Val	Ser	Val	Leu	Ala	Val	Lys	Gly	Ser	Leu	Ala	Pro	Ile	Ser	Gly	Thr
						435					440			445	
Val	Gln	Ser	Ala	His	Leu	Ile	Ile	Arg	Phe	Asp	Glu	Asn	Gly	Val	Leu
						450					455			460	
Leu	Asn	Asn	Ser	Phe	Leu	Asp	Pro	Glu	Tyr	Trp	Asn	Phe	Arg	Asn	Gly
						465					470			475	
Asp	Leu	Thr	Glu	Gly	Thr	Ala	Tyr	Thr	Asn	Ala	Val	Gly	Phe	Met	Pro
						485					490			495	
Asn	Leu	Ser	Ala	Tyr	Pro	Lys	Ser	His	Gly	Lys	Thr	Ala	Lys	Ser	Asn
						500					505			510	
Ile	Val	Ser	Gln	Val	Tyr	Leu	Asn	Gly	Asp	Lys	Thr	Lys	Pro	Val	Thr
						515					520			525	
Leu	Thr	Ile	Thr	Leu	Asn	Gly	Thr	Gln	Glu	Thr	Gly	Asp	Thr	Thr	Pro
						530					535			540	
Ser	Ala	Tyr	Ser	Met	Ser	Phe	Ser	Trp	Asp	Trp	Ser	Gly	His	Asn	Tyr
						545					550			555	
Ile	Asn	Glu	Ile	Phe	Ala	Thr	Ser	Ser	Tyr	Thr	Phe	Ser	Tyr	Ile	Ala
						565					570			575	
Gln	Glu														

<210> 56

<211> 1132

<212> DNA

<213> Artificial Sequence

<220>

<223> Ad37s/Ad5k fiber

<221> CDS

<222> (16)...(1116)

<221> misc_feature

<222> 1125

<223> n = A,T,C or G

<400> 56

gtcgcaagat ccaag atg aag agg gcc cgg ccc agc gaa gat gac ttc aac 51
 Met Lys Arg Ala Arg Pro Ser Glu Asp Asp Phe Asn
 1 5 10

-44-

ccc gtc tac ccc tat ggc tac gcg cg _g aat cag aat atc ccc ttc ctc	99
Pro Val Tyr Pro Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu	
15 20 25	
act ccc ccc ttt gtc tcc tcc gat gga ttc aaa aac ttc ccc cct ggg	147
Thr Pro Pro Phe Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly	
30 35 40	
gta ctg tca ctc aaa ctg gct gat cca atc acc att acc aat ggg gat	195
Val Leu Ser Leu Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp	
45 50 55 60	
gta tcc ctc aag gtg gga ggt ggt ctc act ttg caa gat gga agc cta	243
Val Ser Leu Lys Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu	
65 70 75	
act gta aac cct aag gct cca ctg caa gtt aat act gat aaa aaa ctt	291
Thr Val Asn Pro Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu	
80 85 90	
gag ctt gca tat gat aat cca ttt gaa agt agt gct aat aaa ctt agt	339
Glu Leu Ala Tyr Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser	
95 100 105	
tta aaa gta gga cat gga tta aaa gta tta gat gaa aaa agt gct gcg	387
Leu Lys Val Gly His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala	
110 115 120	
ggg tta aaa gat tta att ggc aaa ctt gtg gtt tta aca gga aaa gga	435
Gly Leu Lys Asp Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly	
125 130 135 140	
ata ggc act gaa aat tta gaa aat aca gat ggt agc agc aga gga att	483
Ile Gly Thr Glu Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile	
145 150 155	
ggt ata aat gta aga gca aga gaa ggg ttg aca ttt gac aat gat gga	531
Gly Ile Asn Val Arg Ala Arg Glu Gly Leu Thr Phe Asp Asn Asp Gly	
160 165 170	
tac ttg gta gca tgg aac cca aag tat gac acg cgc act ttg tgg acc	579
Tyr Leu Val Ala Trp Asn Pro Lys Tyr Asp Thr Arg Thr Leu Trp Thr	
175 180 185	
aca cca gct cca tct cct aac tgg aga cta aat gca gag aaa gat gct	627
Thr Pro Ala Pro Ser Pro Asn Cys Arg Leu Asn Ala Glu Lys Asp Ala	
190 195 200	
aaa ctc act ttg gtc tta aca aaa tgg ggc agt caa ata ctt gct aca	675
Lys Leu Thr Leu Val Leu Thr Lys Cys Gly Ser Gln Ile Leu Ala Thr	
205 210 215 220	
gtt tca gtt ttg gct gtt aaa ggc agt ttg gct cca ata tct gga aca	723
Val Ser Val Leu Ala Val Lys Gly Ser Leu Ala Pro Ile Ser Gly Thr	
225 230 235	
gtt caa agt gct cat ctt att ata aga ttt gac gaa aat gga gtg cta	771
Val Gln Ser Ala His Leu Ile Ile Arg Phe Asp Glu Asn Gly Val Leu	
240 245 250	
cta aac aat tcc ttc ctg gat cca gaa tat tgg aac ttt aga aat gga	819

-45-

Leu Asn Asn Ser Phe Leu Asp Pro Glu Tyr Trp Asn Phe Arg Asn Gly				
255	260	265		
gat ctt act gaa ggc aca gcc tat aca aac gct gtt gga ttt atg cct			867	
Asp Leu Thr Glu Gly Thr Ala Tyr Thr Asn Ala Val Gly Phe Met Pro	270	275	280	
aac cta tca gct tat cca aaa tct cac ggt aaa act gcc aaa agt aac			915	
Asn Leu Ser Ala Tyr Pro Lys Ser His Gly Lys Thr Ala Lys Ser Asn	285	290	295	300
att gtc agt caa gtt tac tta aac gga gac aaa act aaa cct gta aca			963	
Ile Val Ser Gln Val Tyr Leu Asn Gly Asp Lys Thr Lys Pro Val Thr	305	310	315	
ctt acc att aca cta aac ggt aca cag gaa aca gga gac aca act cca			1011	
Leu Thr Ile Thr Leu Asn Gly Thr Gln Glu Thr Gly Asp Thr Thr Pro	320	325	330	
agt gca tac tct atg tca ttt tca tgg gac tgg tct ggc cac aac tac			1059	
Ser Ala Tyr Ser Met Ser Phe Ser Trp Asp Trp Ser Gly His Asn Tyr	335	340	345	
att aat gaa ata ttt gcc aca tcc tct tac act ttt tca tac att gcc			1107	
Ile Asn Glu Ile Phe Ala Thr Ser Ser Tyr Thr Phe Ser Tyr Ile Ala	350	355	360	
caa gaa taa agaagcggnc gctcga			1132	
Gln Glu *				
365				

<210> 57
<211> 366
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad37s/Ad5k

<400> 57
Met Lys Arg Ala Arg Pro Ser Glu Asp Asp Phe Asn Pro Val Tyr Pro
1 5 10 15
Tyr Gly Tyr Ala Arg Asn Gln Asn Ile Pro Phe Leu Thr Pro Pro Phe
20 25 30
Val Ser Ser Asp Gly Phe Lys Asn Phe Pro Pro Gly Val Leu Ser Leu
35 40 45
Lys Leu Ala Asp Pro Ile Thr Ile Thr Asn Gly Asp Val Ser Leu Lys
50 55 60
Val Gly Gly Leu Thr Leu Gln Asp Gly Ser Leu Thr Val Asn Pro
65 70 75 80
Lys Ala Pro Leu Gln Val Asn Thr Asp Lys Lys Leu Glu Leu Ala Tyr
85 90 95
Asp Asn Pro Phe Glu Ser Ser Ala Asn Lys Leu Ser Leu Lys Val Gly
100 105 110
His Gly Leu Lys Val Leu Asp Glu Lys Ser Ala Ala Gly Leu Lys Asp
115 120 125
Leu Ile Gly Lys Leu Val Val Leu Thr Gly Lys Gly Ile Gly Thr Glu
130 135 140
Asn Leu Glu Asn Thr Asp Gly Ser Ser Arg Gly Ile Gly Ile Asn Val
145 150 155 160

-46-

Arg	Ala	Arg	Glu	Gly	Leu	Thr	Phe	Asp	Asn	Asp	Gly	Tyr	Leu	Val	Ala
				165					170					175	
Trp	Asn	Pro	Lys	Tyr	Asp	Thr	Arg	Thr	Leu	Trp	Thr	Thr	Pro	Ala	Pro
				180				185					190		
Ser	Pro	Asn	Cys	Arg	Leu	Asn	Ala	Glu	Lys	Asp	Ala	Lys	Leu	Thr	Leu
				195				200				205			
Val	Leu	Thr	Lys	Cys	Gly	Ser	Gln	Ile	Leu	Ala	Thr	Val	Ser	Val	Leu
	210				215						220				
Ala	Val	Lys	Gly	Ser	Leu	Ala	Pro	Ile	Ser	Gly	Thr	Val	Gln	Ser	Ala
	225				230				235			240			
His	Leu	Ile	Ile	Arg	Phe	Asp	Glu	Asn	Gly	Val	Leu	Leu	Asn	Asn	Ser
				245					250			255			
Phe	Leu	Asp	Pro	Glu	Tyr	Trp	Asn	Phe	Arg	Asn	Gly	Asp	Leu	Thr	Glu
				260				265			270				
Gly	Thr	Ala	Tyr	Thr	Asn	Ala	Val	Gly	Phe	Met	Pro	Asn	Leu	Ser	Ala
	275				280				285			290			
Tyr	Pro	Lys	Ser	His	Gly	Lys	Thr	Ala	Lys	Ser	Asn	Ile	Val	Ser	Gln
	290				295				300			305			
Val	Tyr	Leu	Asn	Gly	Asp	Lys	Thr	Lys	Pro	Val	Thr	Leu	Thr	Ile	Thr
	305				310				315			320			
Leu	Asn	Gly	Thr	Gln	Glu	Thr	Gly	Asp	Thr	Thr	Pro	Ser	Ala	Tyr	Ser
				325				330			335				
Met	Ser	Phe	Ser	Trp	Asp	Trp	Ser	Gly	His	Asn	Tyr	Ile	Asn	Glu	Ile
		340				345					350				
Phe	Ala	Thr	Ser	Ser	Tyr	Thr	Phe	Ser	Tyr	Ile	Ala	Gln	Glu		
		355				360					365				

<210> 58

<211> 16

<212> PRT

<213> Artificial Sequence

<220>

<223> Ad37 third repeat

<400> 58

Gly	Ser	Leu	Thr	Val	Asn	Pro	Lys	Ala	Pro	Leu	Gln	Val	Asn	Thr	Asp
1				5					10				15		

<210> 59

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Ad8 last repeat

<400> 59

Val	Arg	Val	Gly	Glu	Gly	Gly	Leu	Ser	Phe	Asn	Asp	Asn			
1				5				10							

<210> 60

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> Ad9 last repeat

-47-

<400> 60
Val Arg Val Gly Glu Gly Gly Gly Leu Ser Phe Asn Asn Asp .
1 5 10

<210> 61
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad15 last repeat

<400> 61
Val Arg Val Gly Glu Gly Gly Gly Leu Ser Phe Asn Glu Ala
1 5 10

<210> 62
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Penton region

<400> 62
His Ala Ile Arg Gly Asp Thr Phe
1 5

<210> 63
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Penton amino acid replacement

<400> 63
Ser Arg Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Thr Ser
1 5 10 15

<210> 64
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Fiber protein conserved sequence

<400> 64
Thr Trp Leu Thr
1

<210> 65
<211> 4
<212> PRT
<213> Artificial Sequence

-48-

```

<220>
<223> HSP binding motif

<400> 65
Lys Lys Thr Lys
 1

<210> 66
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad8 third repeat

<400> 66
Gly Lys Leu Thr Val Asn Thr Glu Pro Pro Leu His Leu Thr Asn Asn
 1           5           10          15

<210> 67
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad9 third repeat

<400> 67
Gly Lys Leu Thr Val Asn Ala Asp Pro Pro Leu Gln Leu Thr Asn Asn
 1           5           10          15

<210> 68
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Ad15 third repeat

<400> 68
Gly Asn Leu Thr Val Asn Thr Glu Pro Pro Leu Gln Leu Thr Asn Asn
 1           5           10          15

<210> 69
<211> 3929
<212> DNA
<213> Artificial Sequence

<220>
<223> Vector pCR2.1

<400> 69
agcgcccaat acgcaaaccg cctctccccg cgcggtggcc gattcattaa tgcagctggc 60
acgacagggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttgc 120
tcactcatta ggcaccccaag gctttacact ttatgcttcc ggctcgatg ttgtgtggaa 180
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttg 240
gtaccgagct cggatccact agtaacggcc gccagtgtgc tggaattcgg cttaagccga 300

```

-49-

attctgcaga tatccatcac	actggcgccc	gctcgagcat	gcatacttagag	ggcccaattc	360
gccctatagt gagtcgtatt	acaattcaact	ggccgtcggt	ttacaacgtc	gtgactggga	420
aaaccctggc gttacccaac	ttaatcgctt	tgcaagcacat	cccccttcg	ccagctggcg	480
taatagcgaa gaggccccca	ccgatcgccc	ttcccaacag	ttgcgcagcc	tgaatggcga	540
atggacgcgc cctgtagcgg	cgcattaaagc	gcggcggtgt	tgggtgttac	gogcagcgtg	600
accgctacac ttgcgcgc	cctagcgccc	gctcccttcg	cttcttccc	ttcccttctc	660
gccacgttcg ccggcttcc	ccgtcaagct	ctaaatcggg	ggctccctt	agggttccga	720
tttagtgcgt tacggcacct	cgaccggaaa	aaacttggat	agggtatgg	ttcacgttagt	780
gggcattcgc cctgatagac	ggttttcgc	ccttgcgt	tggagttcac	gttctttaat	840
atggactct tgttccaaac	tggaaacaaca	ctcaacccta	tctcggtcta	ttcttttgat	900
ttataaggga ttttgcgt	ttcggcctat	tggtaaaaaa	atgagctgat	ttaacaaaaaa	960
tttaacgcga attttaacaa	aattcaggcgc	gcaaggcgtg	ctaaaggaaag	cgaacacacgt	1020
agaaaagccag tccgcaaaaa	cgggtctgac	cccggatgaa	tgtcagctac	tgggctatot	1080
ggacaaggga aaacgcaagc	gcaaagagaa	agcaggtagc	ttgcagtggt	cttacatggc	1140
gatagctaga ctggcggtt	ttatggacac	caagcgaacc	ggaattgcca	gctggggcgc	1200
cctctggtaa ggttgggaag	ccctgcaaaag	taaactggat	ggcttcttgc	ccgccaagga	1260
tctgtatggcg cagggatca	agatctgatc	aagagacagg	ataggatcg	ttcgcatga	1320
ttgaaacaaga tggatgcac	gcagggttctc	cggccgttg	ggttggagagg	ctattcggct	1380
atgactggc acaacagaca	atcggctgct	ctgatggcgc	cgttccgg	ctgtcagcgc	1440
aggggcgc	gttcttttt	gtcaagaccg	tgccctgaat	gaactgcagg	1500
acgaggcgc	gcccgtatcg	ttggctggca	tccttgcga	gtgtgctcg	1560
acgttgtcac tgaagggggaa	ggggactggc	cgacggcgt	cgaaagtgcg	ggcaggatc	1620
tccgtcatac ccacccgt	cctgcccgg	tgctattggg	catggctgat	gcaatgcggc	1680
ggctgcatac gttgtatccg	gtcacctgccc	aagtatccat	ccaagcgaaa	catcgcatcg	1740
agcgagcacg tactcgatg	gaagccggtc	ttgtcgatca	ggatgtatcg	gacgaagagc	1800
atcaggggct cgcgcagcc	gaactgttcg	ccaggtcaaa	ggcgcgcatg	cccgacggcg	1860
aggatctcg	cgtgacccat	ggcgtatgc	tatcatggtg	gaaaatggcc	1920
gttttctgg attcatcgac	tgtggccggc	tgggtgtggc	ggaccgttat	caggacatag	1980
cgttggctac cctgtatatt	gctaaagagc	ttggggcga	atgggctgac	cgcttcctcg	2040
tgcttacgg tattcggcgt	cccgatccgc	agcgcatcgc	tttctatcgc	cttcttgacg	2100
agttcttctg aattgaaaaa	gaaagagatg	gagtttcaaa	catttcgt	tcgcccatt	2160
tccctttttt gcgccatttt	gccttcctgt	ttttgtcac	ccagaaacgc	tggtggaaatg	2220
aaaagatgct gaagatcagt	ttgggtgcacg	agtgggttac	atcgaactgg	atctcaacag	2280
cgttaagatc cttgagagtt	ttcgccccga	agaacgtttt	ccaatgtga	gcacttttaa	2340
agttctgta ttttgcgg	tattatcccg	tatttgcgc	gggcgaagagc	aactcggtcg	2400
ccgcatacac tatttcaga	atgacttggt	tgatgtactca	ccagtcacag	aaaagcatct	2460
tacggatggc atgacagata	gagaattatg	cagtctgccc	ataaccatga	gtgataaacac	2520
tgccgccaac ttacttctg	caacgatccg	aggaccgaag	gagctaaccg	ctttttgca	2580
caacatgggg gatcatgtaa	ctcgccattga	tcgttgggaa	ccggagctga	atgaagccat	2640
acccaaacgac gagcgtgaca	ccacgatggc	tgtgtcaatg	gcaacaacgt	tgcgc当地	2700
attaactggc gaactactta	ctctagcttc	ccggcaacaa	ttaatagact	ggatggaggc	2760
ggataaaagtt gcaggaccac	ttctgcgtc	ggcccttcg	gttggctgtt	ttattgtctga	2820
taaatctgga gcccgtgac	gtgggtctcg	cggtatcatt	cgacgactgg	ggccagatgg	2880
taagccctcc cgtatcttag	ttatctacac	gacggggagt	caggcaacta	tggatgaacg	2940
aaatagacag atcgctgaga	taggtgcctc	actgattaag	cattggtaac	tgtcagacca	3000
agtttactca tataacttt	agattgattt	aaaacttcat	tttaatatta	aaaggatcta	3060
ggtgaagatc ctttttata	atctcatgac	aaaatccct	taacgttagt	tttcgttcca	3120
ctgagcgtca gaccccttag	aaaagatcaa	aggatcttct	tgagatcctt	ttttctgctg	3180
cgtaatctgc tgcttgcataa	caaaaaaaaaacc	accgttacca	gggggtgggtt	gtttggccgg	3240
tcaagagcta ccaactcttt	ttccgaaagg	aactggcttc	agcagagcgc	agataccaaa	3300
tactgttctt ctagtgcgt	cgtgtttagg	ccaccacttc	agaactctg	tagcaccggc	3360
tacataccctc gctctgtaa	ttctgttacc	agtgggtgtct	gccagtggcg	ataagtctgt	3420
tcttaccggg ttggactcaa	gacgatagtt	accggataag	gcccgggt	cgggctgaaac	3480
gggggggttcg tgcacacage	ccagcttgg	gcgaacgacc	tacaccgaac	tgagataacct	3540
acagcgtgag ctatgaaaaa	gcccacgct	tcccgaaagg	agaaaaggcgg	acaggtatcc	3600
ggtaagcgcc agggtcggaa	caggagagcg	cacggggag	tttccagggg	gaaacgcctg	3660
gtatctttat agtcctgtcg	ggttgcctca	cctctgactt	gagcgtcgt	ttttgtatg	3720
ctcgctcagg ggccggagcc	tatggaaaaaa	cgccacaa	gcccggc	tacggttct	3780
ggccctttgc tggccctttt	ctcacatgtt	ctttctgctg	ttatccccctg	attctgtgga	3840
taaccgtatt accgcctttt	agtgagctga	taccgctcgc	cgcagccgaa	cgaccgagcg	3900
cagcgtca gtgagcggagg	aagcggaaag				3929

-50-

```

<210> 70
<211> 3931
<212> DNA
<213> Artificial Sequence

<220>
<223> Vector pCR2.1-Topo

<400> 70
agcgcccaat acgcaaaccg cctctcccg cgcggtggcc gattcattaa tgcagctggc 60
acgacaggtt tcccgactgg aaagcgccaa gtgagcgcaa cgcaattaat gtgagtttagc 120
tcactcatta ggcaccccaag gctttacact ttatgtttcc ggctcgatg ttgtgtggaa 180
tttgagcggtt ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttg 240
gtaccgagctt cggatccact agtaacggcc gccagtgtgc tggaattcgc ccttaagggc 300
gaattctgcgatataccatc acactggggc cgcgtcgagc atgcatctag agggcccaat 360
tcgcccataatgtgagtcgtt ttacaatttca ctggccgtcg ttttacaacg tcgtgactgg 420
gaaaaccctgt gcgttaccca acttaatcgc cttgcagcac atccccctt cggcagctgg 480
cgtaatagcgaagaggcccg caccgatcgc ccttccaaac agttgcgcag cctgaatggc 540
gaatggacgcgcccgttagc ggccgtttaa ggcggggggc tgacgcgtac acttggccagc cccctagcgc cgcgtccttt 600
tgacgcgtac atttggccg cccctagcgc cgcgtccttt cgcttcttc cttcccttc 660
tcgcccacgtt cggccgtttt ccccgtaag ctctaaatcg ggggctccct ttagggttcc 720
gatttagtgc ttacggcac ctcgacccca aaaaacttga ttagggtgat ggttacgtt 780
gtggggccatc gccctgatag acgggttttc gccccttgcg atagtggactt cttgttccaa acttggaaacaa cactcaaccc 840
atttataagg gattttggccg atttggcctt attgtttaaa tatctcggtc tattctttt 900
aatttaaacgc gaattttaaac aaaatttacgg gcgcgaaaggc aatagactgatcgtt attaacaaa 960
gtagaaagccatccgcaga aacgggtgtc accccggatg aatgtcgtt aactggcttat 1020
ctggacaagg gaaaacgcgaa ggcgcgaaaggaaaggcgttgcgatggcattttatggac 1080
gcgcgtatgcgacttggccgg ttttgcgttgcgatggcaccggcgttgcgatggc 1140
gcgcgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1200
gatctgtatggcgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1260
gattgaacaa gatggatttgc acgcgggttc tccggccgttgcgatggcaccggcgttgcgatggc 1320
ctatgactggcgcacaaacaga caatcggtcg ctctgtatggcaccggcgttgcgatggc 1380
gcgcgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1440
ggacggggcgcgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1500
cgacgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1560
tctcctgtca tccccacccgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1620
gcggctgtcatcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1680
cgagcgagcgcgtactcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1740
gcacgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1800
cgaggatctcgatggcaccggcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1860
ccgcgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1920
agcgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 1980
cggttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2040
cgagttcttcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2100
atccccttttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2160
gtaaaagatgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2220
agcggtaagaatggcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2280
aaagttctgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2340
cgccgcataacttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2400
cttacggatgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2460
actgcggccatcttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2520
cacaacatggggatcatgttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2580
ataccaaaccgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2640
ctattaactgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2700
gcggataaaatggcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2760
gataaaatctggcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2820
ggtaagccctccgtatcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2880
cgaaatagacagatcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 2940
caagtttactcatatataacttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 3000
caagtttactcatatataacttgcgttgcgatggcaccggcgttgcgatggcaccggcgttgcgatggc 3060

```

-51-

taggtgaaga	tccttttga	taatctcatg	acccaaaatcc	cttaacgtga	gttttcgttc	3120
cactgagcgt	cagaccgggt	agaaaaagatc	aaaggatctt	cttgagatcc	ttttttttctg	3180
cgcgtaatct	gctgcttgc	aacaaaaaaaa	ccaccgctac	cagcggtgtt	ttgttgcgcg	3240
gatcaagagc	taccaactct	ttttccgaag	gtaactgct	tcagcagagc	gcagatacca	3300
aatactgttc	ttcttagtgta	gccgtagtt	ggccaccact	tcaagaactc	tgttagcaccc	3360
cctacatacc	tcgtctgtct	aatccgtt	ccagtggctg	ctgccagtg	cgataatgc	3420
tgtcttaccg	ggttggactc	aagacgatag	ttaccggata	aggcgcagcg	gtcgggctga	3480
acgggggggtt	cgtgcacaca	gcccagctt	gagcgaacga	cctacaccga	actgagatac	3540
ctacagcg	tgactatgaga	aaggccac	cttcccgaa	ggagaaaaggc	ggacaggtat	3600
ccggtaagcg	gcagggtcgg	aacaggagag	cgcacgaggg	agcttccagg	ggaaaacgc	3660
tggtatcttt	atagtctgt	cgggttgc	cacctctgac	tttagcgtcg	atttttgta	3720
tgctcgtcag	ggggggcggag	cctatggaaa	aacgcccagca	acgcggcctt	tttacggttc	3780
ctggcccttt	gctggccctt	tgctcacatg	ttctttctg	cgttatcccc	tgattctgt	3840
gataaccgt	ttaccggcctt	tgagtgagct	gataccgctc	gcccagccg	aacgaccgag	3900
cgcagcgagt	cagtgagcga	ggaagcggaa	g			3931