Cpr E 281 HW04

ENGINEERING IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Fourth Week Due Date: Monday, Sep. 19, 2016

P1. (20 points) Use a K-map to find the minimal sum-of-products (SOP) expression for the following four problems. Show the terms that are grouped in each K-map.

b)

d)

F(A, B, C) = AC' + BC'

CD							
AB		00	01	11	10 B	'D'	
	00	1	0	O A'BD	1		
	01	0	1	1	0		
	11	0	0	0	0		
	10	1	0	0	1		

F(A,B,C,D) = B'D' + A'BD

F(A, B, C) = C + A'B

Cpr E 281 HW04 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Fourth Week Due Date: Monday, Sep. 19, 2016

P2. (15 points) Use a K-map to find the minimal product-of-sums (POS) expression for the following three problems. Show the terms that are grouped in each K-map.

b)

$$F(A, B, C) = (A + B)C'$$

	CD						
AB		00	-1	01 B+	D' 11	10	7
	00	1		0	0	1	
	01	0		1	1	0	+ -B'+D
	11	0		1	1	0	+
	10	1		0	0	1	
							_

$$F(A, B, C, D) = (B' + D)(B + D')$$

$$F(A, B, C, D) = (B' + D')(A' + C' + D')$$

Cpr E 281 HW04 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Fourth Week Due Date: Monday, Sep. 19, 2016

P3. (15 points) A four-variable function F(w, x, y, z) is called a *majority* function if F = 1 when any three or all four of its input variables are equal to 1.

a) Truth table:

w	x	y	z	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

b) minimal SOP:

F(w, x, y, z) = wxz + wxy + xyz + wyz

c) minimal POS:

F(w, x, y, z) = (w+x)(w+y)(w+z)(x+y)(x+z)(y+z)

Cpr E 281 HW04 SOLUTION ELECTRICAL AND COMPUTER

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Fourth Week Due Date: Monday, Sep. 19, 2016

P4. (10 points) Use a K-map to derive the minimal SOP expressions for the following Boolean function:

$$F(A,B,C,D) = ACD' + C'D + AB' + ABCD$$

One way to solve this question is to build a truth table from the logic expression of F, and draw a K-map based on that truth table. Another way is to build the K-map by looking at each minterm in F:

$$ACD' \Rightarrow 1 \Box 10 \Rightarrow 1010,1110$$

 $C'D \Rightarrow \Box \Box 01 \Rightarrow 0001,0101,1001,1101$
 $AB' \Rightarrow 10 \Box \Box \Rightarrow 1000,1001,1010,1011$
 $ABCD \Rightarrow 1111$

K-map:

The simplified SOP expression is:

$$F(A,B,C,D) = AC + AB' + C'D.$$

Cpr E 281 HW04 SOLUTION ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Fourth Week Due Date: Monday, Sep. 19, 2016

P5. (20 points) Design a circuit that accepts a 4-bit number $X = x_3x_2x_1x_0$ as input and generates a 1-bit output *P* that is equal to 1 if the input number is a prime. (0 and 1 are not prime; 2, 3, 5, etc., are prime.)

a) Truth table:

decimal	x_3	x_2	x_1	x_{θ}	P
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	0
15	1	1	1	1	0

b) There exist two possible minimal SOP expressions for *P*. (students only need to have one of them in their answers)

Cpr E 281 HW04 SOLUTION

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned Date: Fourth Week Due Date: Monday, Sep. 19, 2016

P6. (20 points) Design a circuit that accepts a 3-bit number $X = x_2x_1x_0$ as input and generates a 6-bit number $Y = y_5y_4y_3y_2y_1y_0$ as output, which is equal to the square of the input number (i.e., $Y = X^2$).

a)

If the numbers are in decimal, we have the following table:

X	Y
0	0
1	1
2	4 9
2 3 4 5	9
4	16
5	25
6	36
7	49

Next, we convert the above table into binary numbers:

\boldsymbol{X}			Y					
x_2	x_1	x_{θ}	y 5	<i>y</i> ₄	<i>y</i> ₃	y_2	y_1	<i>y</i> ₀
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0	1

b) The simplest SOP expressions of each output bit is as follows:

$$y_5 = x_2 x_1$$

$$y_4 = x_2 x_1' + x_2 x_0$$

$$y_3 = x_2' x_1 x_0 + x_2 x_1' x_0$$

$$y_2 = x_2' x_1 x_0' + x_2 x_1 x_0'$$

$$y_1 = 0$$

$$y_0 = x_0$$