Manisa Celal Bayar University - Department of Computer Engineering CSE 3121 & 3239 Numerical Analysis for Computer Engineers - Midterm Exam

Name and Surname		Questi
Student Id		Sco
Signature		300

Question	1	2	3	4	Total
Score					

Questions

Q1 (25 Points) Build a **binary** representation to store colored points in a 2D coordinate system. This representation should include 5 parts to hold the following information. Fill the table given below with the required **number of bits** to build such representation.

x-coordinate (Base-10 Signed Integer) : From -999 to 999 y-coordinate (Base-10 Signed Integer) : From -999 to 999

RGB Color Code (3 of Base-10 Unsigned Integers) : From (0,0,0) to (255,255,255)

Part	Х	У	R	G	В	TOTAL
Number of Bits	11	11	8	8	8	46

Q2 (25 Points) We want to write a Python program which can generate a desired number of points in the type of that defined in Q1. Finally, this program calculates the average RGB color of these points. In terms of the CPU-time and Memory **performance**, write a main function by using **some** of the following predefined functions.

```
import numpy as np
import random
def function A(n: int) -> list:
    points = []
    for i in range(n):
        points.append(
            (
                random.randint(0, 999),
                random.randint(0, 999),
                random.randint(0, 255),
                random.randint(0, 255),
                random.randint(0, 255),
    return points
def function B(n: int) -> np.ndarray:
    points = np.array([], dtype=int).reshape(0, 5)
    for i in range(n):
        point = np.array(
            (
                random.randint(0, 999),
                random.randint(0, 999),
                random.randint(0, 255),
                random.randint(0, 255),
                random.randint(0, 255),
            dtype=int,
        points = np.append(
            points,
            [point],
            axis=0,
    return points
def function_C(n: int) -> np.ndarray:
    points = np.zeros((n, 5), dtype=int)
    for i in range(n):
        points[i] = (
            random.randint(0, 999),
            random.randint(0, 999),
            random.randint(0, 255),
            random.randint(0, 255),
            random.randint(0, 255),
    return points
def function_D(points: list) -> np.ndarray:
    return np.array(points)
def function E(points: np.ndarray) -> list:
    return points.tolist()
```

```
def function F(points: list) -> tuple:
    r, g, b = 0, 0, 0
    for point in points:
        r += point[2]
        g += point[3]
        b += point[4]
    return (
        r // len(points),
        g // len(points),
        b // len(points)
def function G(points: np.ndarray) -> tuple:
    r, g, b = 0, 0, 0
    for point in points:
        r += point[2]
        g += point[3]
        b += point[4]
    return (
        r // len(points),
        g // len(points),
        b // len(points)
def main(number of points: int) -> tuple:
    points = function_A (number_of-points)
points = function_D (points)
Feturn function_G (points)
```

if name == " main ":

main(100000000)

Q3 (25 Points) Find the Single Precision IEEE 754 representation of the number -19.75 and fill the boxes given below with its hexadecimal digits.

Single Precision (1-bit Sign + 8-bit Exponent + 23-bit Mantissa) in Hex

Q4 (25 Points) Build a **custom** IEEE 754 representation precision with 1 sign bit, 3 exponent bits, and 4 mantissa bits. If we want to represent **7.1** with precision, calculate the **error**, which is the absolute difference between the real value and the stored value of this number.

Custom Precision (1-bit Sign + 3-bit Exponent + 4-bit Mantissa) in Binary Fractional Port: O.1 Integer Part: 7 0.1 ×2 = 0.2 +0 7%2=1 3%2=1 (0.1)₁₀ = (000 1100 110011.) 2 Same $0.2 \times 1 = 0.4 \rightarrow 0$ 0.4 x 2 = 0.8 >0 0.8 x2 = 1.6 >1 () $(7)_{10} = (111)_{2}$ $0.6 \times 2 = 1.2 \rightarrow 1$ 0.2 x 2 = 0.4 > 0 7 Patterns $0.4 \times 2 = 0.8 \rightarrow 0$ 0.8 x 2 = 1.6 -> 1 $0.6 \times 2 = 1.2 \rightarrow 1$ 111,0001100110011._ The number is 1.110001100110011.22 h= (101), Normalization Bias for 3 bits is 23-1-1=3 The final number is 1.110001100110011-22+3 Sign: O, Exponent: 101, Mantissa: 1101 - with Converted Number is 1.1101.22 = 111.01 Eller is \7.1-7.25 = 0.15

	QUESTIONS VS PÇB MATRIX																											
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Q1	~																											
Q2	~						~																					
Q3	~	/																										
Q4	>	>					>																					