ASSIGNMENT 10 (§13.5)

COLTON GRAINGER (MATH 6140 MODERN ALGEBRA 2)

[1, No. 13.5.3]. Given. Suppose $n, d \in \mathbb{N}$. (If either n or d is 0, this problem is trivial.) Fix a field F of characteristic 0.

To prove. In **Z**, d divides n if and only if, in F[x], $x^d - 1$ divides $x^n - 1$.

Proof. Immediately note $d \leq n$. For if $x^n - 1$ is in the ideal $\langle x^d - 1 \rangle$, then $d \leq n$ by degree considerations; conversely, if $d \mid n$, then $d \leq n$ by assumption that $n, d \in \mathbf{N}$. In either case, in the Euclidean domain \mathbf{Z} , there exist unique (here non-negative) $q, r \in \mathbf{N} \cup \{0\}$ such that

$$n = qd + r$$
 where $0 < r \le d$.

And so the proposition is concerned with whether or not the polynomial

(1)
$$x^{n} - 1 = x^{qd+r} - 1 = (x^{qd} - 1)x^{r} + x^{r} - 1 \text{ is in the ideal } \langle x^{d} - 1 \rangle.$$

Recall the factorization [2, No. VI.3]

$$x^d - 1 = \prod_{\zeta} (x - \zeta)$$

where the product is taken over all d-th roots of unity. Since these roots are closed under multiplication, they form a *subgroup* of F^{\times} . Because this subgroup (along with any finite subgroup of F^{\times}) is cyclic, we may group together all the terms belonging to the d-th roots of unity having the same order. Defining

$$\Phi_m(x) = \prod_{\text{order }\zeta=m} (x-\zeta),$$

we obtain

(2)
$$x^d - 1 = \prod_{m|d} \Phi_m(x).$$

To finish the proof. (\Rightarrow) If $d \mid n$, then (2) implies

(3)
$$x^{d} - 1 = \prod_{m|d} \Phi_{m}(x) \quad \text{divides} \quad \prod_{\ell|n} \Phi_{\ell}(x) = x^{n} - 1$$

because

- each divisor m of d corresponds to a factor $\Phi_m(x)$ on the LHS of (3), and
- each divisor m of d is also some divisor ℓ of n, so
- each factor $\Phi_m(x)$ on the LHS of (3) also appears as a factor $\Phi_{\ell}(x)$ on the RHS of (3).

(⇐) Conversely, suppose $x^n - 1$ is contained in $\langle x^d - 1 \rangle$. Consider the form of $x^n - 1$ in (1). Because r < d, by degree considerations, $x^r - 1$ cannot be in $\langle x^d - 1 \rangle$ unless r = 0. But $d \mid qd$ implies

(4)
$$x^{qd} - 1 = \prod_{\ell \mid ad} \Phi_{\ell}(x) \quad \text{is contained in} \quad \left\langle \prod_{m \mid d} \Phi_{m}(x) \right\rangle = \langle x^{d} - 1 \rangle.$$

Then (4) with our supposition that $x^n - 1 \in \langle x^d - 1 \rangle$ forces the difference

$$0 = x^{r} - 1 + (x^{qd} - 1)x^{r} - \langle x^{d} - 1 \rangle = x^{r} - 1 - \langle x^{d} - 1 \rangle.$$

and we conclude the remainder r of the integer division of n by d is 0. \square

 $Date : 2019 \hbox{-} 04 \hbox{-} 03.$

1

[1, No. 13.5.6]. Given. Fix a field F of characteristic 0, a prime $p \ge 2$, and a nonnegative integer n. Consider the polynomial $x^{p^n-1}-1$ over F.

 $To \ prove.$

(i)
$$x^{p^n-1} - 1 = \prod_{\zeta \in \mathbf{F}_{n^n}^{\times}} (x - \zeta).$$

(ii)
$$\prod_{\zeta \in \mathbf{F}_{p^n}^{\times}} \zeta = (-1)^{p^n}$$
.

(iii)
$$(p-1)! \equiv -1 \pmod{p}$$
.

Proof.

First to establish $x^{p^n-1}-1$ is separable. The derivative

$$D(x^{p^n-1}-1)=(p^n-1)x^{p^n-2}$$
 has root 0 of multiplicity p^n-2

but no roots in common with $x^{p^n-1}-1$. Thus $x^{p^n-1}-1$ is separable, with p^n-1 distinct roots of unity. Recall [1, No. 13.5.3] the factorization

(5)
$$x^{p^n - 1} - 1 = \prod_{\zeta} (x - \zeta)$$

where the product is taken over all $p^n - 1$ -th roots of unity. In particular, the $p^n - 1$ -th roots of unity form a cyclic group of order $p^n - 1$ that's (non-canonically) isomorphic to the cyclic group $\mathbf{F}_{p^n}^{\times}$ of the same order. Embedding $\mathbf{F}_{p^n}^{\times}$ in F, with (5) we have proved (i).

The evaluation map $ev_0: F[x] \to F$ produces

$$-1 = \operatorname{ev}_0\left(x^{p^n - 1} - 1\right) = \operatorname{ev}_0\left(\prod_{\zeta \in \mathbf{F}_{p^n}^{\times}} (x - \zeta)\right) = (-1)^{p^n - 1}\left(\prod_{\zeta \in \mathbf{F}_{p^n}^{\times}} \zeta\right),$$

which proves (ii).

Lastly, fix n = 1 and identify \mathbf{F}_{p^1} with $\mathbf{Z}/(p)$ (against geometric intuition). Then the result of part (ii) forces

$$(p-1)! \pmod{p} = \prod_{\zeta \in (\mathbf{Z}/(p))^{\times}} \zeta = (-1)^p = -1$$

for any odd prime p. If p=2, then $1=1!=-1 \pmod 2$ trivially. We've proven (iii), Wilson's theorem. \square

[1, No. 13.6.9]. Given 1, x in the polynomial ring F[x] over the field F.

To prove.

(i) $\binom{pn}{pi}$ is the coefficient of x^{pi} in the binomial expansion $(1+x)^{pn} = \sum_{k=0}^{pn} \binom{pn}{k} 1^k x^{pn-k}$.

(ii)
$$\binom{pn}{pi} = \binom{n}{i} \pmod{p}$$

Proof. For (i), observe that the coefficient of x^{pi} in the binomial expansion

$$(1+x)^{pn} = \sum_{k=0}^{pn} \binom{pn}{k} x^k$$

is found to be

$$\binom{pn}{k}$$
 such that $k = pi$

because k is strictly increasing as an index on $\{0, \ldots, pn\}$.

For (ii), suppose char(F) = p. Because

$$p$$
 divides $\frac{p!}{\ell!(p-\ell)!}$ for $0 < \ell < p$

and

$$\binom{p}{\ell} = \frac{p!}{\ell!(p-\ell)!}$$

we have that

$$(1+x)^p = \sum_{\ell=0}^p \binom{p}{\ell} x^{\ell} = 1 + \underbrace{0 + \dots + 0}_{p-1 \text{ terms}} + x^p.$$

From one perspective,

$$(1+x^p)^n = \sum_{\ell=0}^n \binom{n}{\ell} (x^p)^{\ell}.$$

Yet from another

$$(1+x^p)^n = (1+x)^{pn} = \sum_{k=0}^{pn} \binom{pn}{k} x^k.$$

Therefore whenever $k=p\ell,$ we have $\binom{pn}{pi}=\binom{n}{i}\pmod{p}.$ \square

References

- [1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.
- [2] S. Lang, Algebra. 2002.