Линейная однородная система с периодическими коэффициентами

$$X' = A(t)X, A(t+T) = A(t), t \ge 0$$
 (1)

Пусть $\Phi(t)$ - фундаментальная матрица системы (1), т.е. ее столбцы — линейно независимые решения уравнения (1). В матричной записи это выглядит так: $\Phi' = A(t)\Phi$. Обозначим $\Psi(t) = \Phi(t+T)$.

Ранее было доказано, что если X(t) — решение линейной автономной системы, то $X(t+\tau)$, где τ — любое число, является решением этой системы. Если же система неавтономная, то это неверно. но периодическая с периодом T, то X(t+T) — тоже решение. Действительно, подставим X(t+T) в уравнение (1)

$$X(t+T)' = A(t+T)X(t+T) = A(t)X(t+T)$$

Доказанное утверждение верно и для матрицы Φ , так как ее столбцы являются решениями уравнения (1). Значит, столбцы матрицы Ψ тоже образуют базис в пространстве решений. Два базиса в одном линейном пространстве связаны матрицей перехода. Это можно записать так $\Phi(t+T) = \Phi(t)C$. C — невырожденная матрица перехода от одного базиса к другому.

Определение. Матрица С, удовлетворяющая условию

$$\Phi(t+T) = \Phi(t)C, \ \forall t \ge 0, \tag{2}$$

называется **основной** для фундаментальной матрицы $\Phi(t)$.

Итак, сдвиг на период в аргументе фундаментальной матрицы равносилен умножению ее на основную матрицу.

Теорема. Спектр основной матрицы не зависит от выбора фундаментальной матрицы. Доказательство.

Докажем, что основные матрицы, соответствующие двум фундаментальным матрицам, подобны друг другу. Пусть $\Psi(t)$ новая фундаментальная матрица, а C_1 - ее основная матрица. Очевидно, существует невырожденная постоянная матрица G , что $\Psi(t) = \Phi(t)G$ (почему?). Тогда

$$\Psi(t+T) = \Psi(t)C_1 = \Phi(t)GC_1,$$

С другой стороны имеем $\Psi(t+T) = \Phi(t+T)G = \Phi(t)CG$. Отсюда следует

$$GC_1 = CG \Rightarrow C_1 = G^{-1}CG$$
.

Итак, основные матрицы подобны между собой что т.д. .

Как известно, собственные числа подобных матриц совпадают. Теорема доказана.

<u>Определение</u>. **С**обственные числа основной матрицы С, называются **характеристическими числами** системы (1).

Различным фундаментальным матрицам, очевидно, соответствуют различные основные матрицы, однако собственные числа у них одни и те же, т.е. характеристические числа — **инварианты системы** (1).

Поведение решения однородной периодической системы при $t o +\infty$

Формула (2) означает, что сдвиг на период T в аргументе фундаментальной матрицы равносилен умножению ее справа на основную матрицу C. Отсюда следует, что для любого натурального m

$$\Phi(t + mT) = \Phi(t)C^m \tag{3}$$

Представим произвольное t в виде $t = \tau + mT$, $0 \le \tau < T$. Тогда из (3) получим

$$\Phi(t) = \Phi(\tau + mT) = \Phi(\tau)C^m \quad (4)$$

Пусть X(t) — любое решение системы (1) с начальным условием $X(t_0) = X_0$, а $\Phi(t)$ — фундаментальная матрица с начальным условием $\Phi(t_0) = E$. Ранее было получено представление для решения $X(t) = \Phi(t)X_0$ (оно верно для любой линейной однородной системы с переменными коэффициентами). Применим формулу (4)

$$X(t) = \Phi(\tau)C^m X_0 \tag{5}$$

Отсюда

$$|X(t)| \le ||\Phi(\tau)|| \cdot |C^m X_0|$$
 (6)

Норма $\|\Phi(\tau)\|$ является непрерывной функцией на отрезке [0;T] и, значит, ограниченной, т.е. $\|\Phi(\tau)\| \leq M$, где M — некоторая постоянная.

Окончательно получаем

$$|X(t)| \le M \cdot |C^m X_0| \tag{7}$$

Из формул (5),(6) и (7) следует, что поведение X(t) при $t\to +\infty$ определяется поведением \mathcal{C}^m при $m\to +\infty$.

О поведении степеней матрицы

Вопрос о поведении степеней матрицы важен в задачах вычислительной математики, в которых применяются итерационные процессы. Действительно, в них решение является пределом последовательности X_m , определяемой уравнением вида $X_{m+1} = AX_m \Longrightarrow X_m = A^m X_0$.

<u>Определение</u>. **Спектральным радиусом** матрицы A называется максимум модуля ее собственных чисел.

Обозначение:

$$\rho(A) = \max_{0 \le j \le n} |\lambda_j|$$

Выясним, что происходит со степенями матрицы в зависимости от значения $\rho(A)$.

A) $\rho(A) > 1$.

Тогда хотя бы для одного собственного числа выполнено неравенство $|\lambda|>1$. Пусть X- соответствующий этому λ нормированный собственный вектор, т.е. |X|=1 . Тогда

$$AX = \lambda X \Longrightarrow A^m X = \lambda^m X \Longrightarrow |A^m X| = |\lambda|^m \to +\infty$$
 при $m \to +\infty$.

Отсюда

$$||A^m|| \to +\infty$$
,

так как $||A^m|| \ge |A^m X|$.

Б) $\rho(A) \le 1$ и жорданова форма матрицы A диагональна (существует базис из собственных векторов).

В этом случае имеем $A = G^{-1}DG$, D — диагональная матрица, на ее диагонали собственные числа. По условию $|\lambda_j| \le 1$, j = 1, ... n. Тогда $A^m = G^{-1}D^mG \Longrightarrow ||A^m|| = ||C^m|| = 1$ ограничены.

В) $\rho(A) = 1$ и жорданова форма матрицы A не диагональна (базис содержит не только собственные, но и присоединенные векторы).

Пусть X — собственный вектор , X_1 — присоединенный вектор. Имеем

$$AX_1 = \lambda X_1 + X \Longrightarrow A^2 X_1 = \lambda AX_1 + AX = \lambda(\lambda X_1 + X) + \lambda X = \lambda^2 X_1 + 2\lambda X$$

Аналогично

$$A^3X_1 = \lambda^2 AX_1 + 2\lambda AX = \lambda^2 (\lambda X_1 + X) + 2\lambda^2 X = \lambda^3 X_1 + 3\lambda^2 X$$
 и т.д. $A^mX_1 = \lambda^m X_1 + m\lambda^{m-1} X$. (8)

Отсюда следует, что при $|\lambda|=1$ последовательность A^mX_1 не ограничена, а при $|\lambda|<1$ будет $A^mX_1\to 0$ при $m\to +\infty$.

Г) $\rho(A) < 1$. Из пунктов Б) и В) следует $||A^m|| \to 0$ при $m \to +\infty$.

Следствием этого исследования является

Теорема. Для того, чтобы $A^m \to 0$ при $m \to +\infty$ необходимо и достаточно, чтобы $\rho(A) < 1$.

Вернемся к формуле (7). Теперь понятно, что поведение при $t \to +\infty$ решения однородной системы с периодическими коэффициентами полностью определяется ее характеристическими числами.

Здесь в отличие от системы с постоянными коэффициентами определяющую роль играют не собственные числа матрицы A коэффициентов системы, а собственные числа основной матрицы \mathcal{C} .

Вычислить характеристические числа можно только приближенно с помощью численных методов решения дифференциальных уравнений. Схема решения этой задачи будет дана ниже.

Пример.

$$x'' + a(t)x = 0$$
, $a(t) = p + q \sin t$, $T = 2\pi$, $a(t+T) = a(t)$.

Обозначим $x_1 = x$, $x_2 = x'$. Получим равносильную систему.

$$\begin{cases} x'_1 = x_2 \\ x'_2 = -a(t)x_1 \end{cases}$$
 (8)

Найдем фундаментальную матрицу $\Phi(t)$, удовлетворяющую начальному условию $\Phi(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Пусть
$$\Phi(t) = \begin{pmatrix} \varphi_{11}(t) & \varphi_{12}(t) \\ \varphi_{21}(t) & \varphi_{22}(t) \end{pmatrix}$$
. Векторы-столбцы $\Phi_1(t) = \begin{pmatrix} \varphi_{11}(t) \\ \varphi_{21}(t) \end{pmatrix}$, $\Phi_2(t) = \begin{pmatrix} \varphi_{12}(t) \\ \varphi_{22}(t) \end{pmatrix}$ являются

решениями системы (8), удовлетворяющими начальным условиям

$$\Phi_1(0) = \binom{1}{0} \qquad (9) \quad \mathsf{и}$$

$$\Phi_2(0) = \binom{0}{1} \qquad (10)$$

соответственно. Найти эти решения можно только приближенно, решив задачу Коши с помощью какой-нибудь компьютерной программы. Например, в пакете Matlab можно использовать функцию ode45. Применим эту функцию для решения задачи Коши.

Схема решения задачи в пакете Matlab

(почти так же решается и в Octave)

Для вычисления вектора-столбца $\Phi_1(t)$, фундаментальной матрицы, вводим в командную строку Matlab'а

$$[\sim, X] = ode45(@f, [0 T], [1 0]);$$

3десь

Т – период, [0 Т] – отрезок, на котором ищется решение;

[1 0] - начальный вектор;

@f – вызов вектор-функции, задающей правые части уравнений (она должна задаваться либо в отдельном файле либо в том же файле, где решается задача);

X — матрица размера nx2, i-я строка которых содержит значения функций $\varphi_{11}(t)$ и $\varphi_{21}(t)$ при t=(i-1)T/(n-1) , i=1,2,...,n, где n — число строк матрицы (оно определяется внутри самой программы автоматически, его точное значение нам не нужно);

последняя, т.е. n-я, строка матрицы X состоит из чисел $\varphi_{11}(T)$ и $\varphi_{21}(T)$.

Точно так же вычисляется столбец $\Phi_2(t)$ командой

$$[\sim, X] = ode45(@f, [0\ T], [0\ 1]);$$

Отсюда
$$\mathcal{C} = \Phi(T) = \begin{pmatrix} \varphi_{11}(T) & \varphi_{12}(T) \\ \varphi_{21}(T) & \varphi_{22}(T) \end{pmatrix}.$$

Последний шаг – вычисление собственных чисел и спектрального радиуса.

L = eig(C);

$$r(C) = max(abs(L));$$

Пример.

Зависимость спектрального радиуса основной матрицы от параметра p при q=3 и значениях p от 1 до 10 показаны на графике функции r(p).

Из графика видно, что на отрезке $1 \le p \le 10$ есть интервалы, на которых r(p) > 1. При таких значениях p по крайней мере часть решений системы не ограничена на $[0; +\infty)$, и система неустойчива. Первый интервал неустойчивости примерно (1; 2). За ним располагается небольшой отрезок, примерно [2; 2.2], на котором r(p) = 1. При таких значениях p все решения системы ограничены на $[0; +\infty)$, и система устойчива. Далее снова интервал неустойчивости примерно (2.2; 3.1), затем идут большой интервал устойчивости, малый интервал неустойчивости и, наконец, при $p \ge 4.4$ (примерно) зона устойчивости.