Analyse de données

Biomechanical-features-of-orthopedic-patients

Margaux Peschiera, Tom Bourg, Yunfei Zhao

19 juin 2020

Sommaire

- Présentation des variables
- 2 Analyse exploratoire
 - Jeu de données
- Méthode et méthodologie
 - Deux types d'apprentissages
 - Évaluation des modèles
- Apprentissage non supervisé
 - Analyse en composantes principales
 - Kmeans et CAH
- 5 Apprentissage supervisée
 - KNN et PCA
 - Régression Logistique
 - Arbre de Décision
 - Forêt Aléatoire
 - Analyse des Composantes du Voisin (NCA)
- 6 Conclusion

Description des variables

Les variables

- pelvic incidence (PI) : Incidence pelvienne.
- pelvic tilt numeric(PT) : Inclinaison pelvienne.
- sacral slope (SS) : La pente sacrée.
- pelvic radius (PR) : Rayon pelvien.
- lumbar lordosis angle (LLA) : Angle de la lordose lombaire.
- degree spondylolisthesis(DS): Indicateur pour mesurer le niveau de spondylolisthésis.

Figure: Angles Pelviens

Figure: Représentation des angle LLA

Analyse exploratoire

Jeu de données

- Tableau individus-variables (310 l x 7 col)
- Une ligne correspond aux données d'un patients concernant 6 caractéristiques (des angles) et une colonne étiquette pour savoir si le patient est malade ou non.
- Maladies de l'appareil locomoteur
- \bullet PI = PT + SS

Figure: Barplot

Figure: Tableau de covariance

Deux types d'apprentissages

Apprentissage non supervisé

• Apprentissage autonome, données non étiquetées.

Apprentissage supervisé

 L'utilisateur "aide" l'algorithme en lui fournissant des données étiquetés. Le modèle apprend alors de chaque exemple en ajustant. Le but étant d'être capable de généraliser l'apprentissage à de nouveaux cas.

Évaluation des modèles

- Tailles des classes ne sont pas équilibrées
- Jeu de données concerne des maladies donc il faut éviter les faux négatifs
- Nested Cross Validation pour determiner les hyper-paramètre
- Utilisation du F-1 score pour un équilibre entre précision et rappel

$$F1_score = 2 * \frac{Precision * Rappel}{Precision + Rappel}$$

Figure: Nested Cross Validation

Figure: Précision - Rappel

Apprentissage non supervisé - ACP

Analyse en composantes principales

 L'objectif est de réduire nos données multidimensionnelles afin de pouvoir les visualiser dans un plan.

Figure: ACP 3 classes

Figure: ACP sans Spondylolisthesis

Apprentissage non supervisé - Kmeans et CAH

Kmeans et CAH

ullet Classification automatique par Kmeans et CAH, K = 3

Figure: Résultats de l'algorithme des KMeans, F1-Score : 47.02%

Figure: Résultats de la CAH, F1-Score : 47,68%

Apprentissage supervisé - KNN et ACP

KNN et ACP

- Les variables étant corrélées, nous avons appliqué les KNN sur les dimensions obtenues avec l'ACP.
- F1-Score moyen supérieur à celui obtenu avec KNN sur dimensions initiales.
- F1-score : 83,14%

Figure: F1-Scores et Variances du KNN (dimensions ACP) pour 5 itérations de la boucle extérieur

Apprentissage supervisé - Régression Logistique

Régression Logistique

• Estimer directement les probabilités d'appartenance aux classes

• F1-score : 85,46%

LogisticRegression: Score VS Variance

Figure: Affichage des F1-Scores et Variances de la régression logistique pour 10 itérations de la boucle extérieur

Apprentissage supervisé - Arbre de décision

Arbre de Décision

- Tracer le processus de décision et comprendre l'impact de chaque variable
- F1-Score: 79,03%

Figure: arbre de décision avec *ccp* – *alpha*: 0.008

Apprentissage supervisé - Forêt aléatoire

Forêt Aléatoire

- Création de 200 arbres de décision à partir de tirage avec remise dans les données
- F1-score : 82,86%

RandomForestClassifier: Score VS Variance

Figure: Forêt aléatoire scores

Figure: Axes importants de la forêt aléatoire

Apprentissage supervisé - NCA

Analyse des composantes du voisin

- Méthode de réduction de dimension
- Utilise la distance Mahalanobis.
- F1-score : 86,44%

Figure: NCA + LR

Figure: NCA + RF

Conclusion

- Comparaison des scores pour chaque méthode
- Meilleur score obtenu avec l'apprentissage supervisé (50% vs 85%)
- Meilleur F1-score: 86,44%

Figure: Barplot des F1-Scores obtenus avec les méthodes supervisées