

1           In the Claims

2           Claims 5, 10-12, 14 and 21 are amended.

3           Claims 1-25 remain in the application and are listed below:

4

5           1. (Previously Presented) A method comprising:

6           receiving a command from a decoder application at an application program  
7           interface (API), wherein the API is configured to facilitate the use of a plurality of  
8           different multimedia accelerators with the decoder application; and

9           generating one or more filter control command data structures, recognizable  
10          by a communicatively coupled accelerator including one or more parameters  
11          which, when received by the accelerator, affects one or more filter settings of the  
12          accelerator based, at least in part, on the content of the received command.

13

14           2. (Original) A method according to claim 1, further comprising:

15           passing the generated filter control command data structures to the  
16          accelerator, wherein the accelerator modifies one or more filter settings in  
17          accordance with the parameters embedded within the data structure.

18

19           3. (Original) A method according to claim 1, wherein the filter is a post-  
20          processing filter.

21

22           4. (Original) A method according to claim 3, wherein output data  
23          subsequent to the application of a post-processing filter are used as prediction  
24          references for decoding subsequent data.

1       5. (Currently Amended) A method according to claim 3, wherein the  
2 post-processing filter is one or more of a deblocking filter[,] and a de-ringing  
3 filter,and the like.

4

5       6. (Original) A method according to claim 1, wherein the parameters  
6 include a strength parameter.

7

8       7. (Original) A method according to claim 6, wherein the generated data  
9 structure includes a strength parameter for each of one or more block boundaries  
10 of a frame.

11

12       8. (Original) A method according to claim 1, wherein the API issues  
13 filter control commands for each of a number of edges of luminance and  
14 chrominance blocks of received media content.

15

16       9. (Original) A method according to claim 1, wherein the API issues  
17 macroblock filter control command data structures for each macroblock of video  
18 picture content, each macroblock filter control command comprising four (4) or  
19 sixteen (16) luminance block filter control command data structures for controlling  
20 the filtering of the luminance blocks of the macroblock, and/or two (2), four (4),  
21 eight (8), sixteen (16), or thirty-two (32) chrominance block filter control  
22 command data structures for controlling the filtering of the chrominance blocks of  
23 the macroblock.

1       10. (Currently Amended) A storage medium comprising a plurality of  
2 executable instructions which, when executed One or more computer-readable  
3 media having computer-readable instructions stored thereon which, when executed  
4 by a computer, implement a method according to claim 1.

5

6       11. (Currently Amended) A computing system comprising:  
7           a storage medium having stored therein a plurality of executable  
8 instructions one or more computer-readable media; and  
9           an execution unit, coupled to the storage medium, to execute at least a  
10 subset of the plurality of executable instructions to computer-readable instructions  
11 on the one or more computer-readable media which, when executed by one or  
12 more processors, implement a method according to claim 1.

13

14       12. (Currently Amended) A storage medium comprising a plurality of  
15 executable instructions which, when executed One or more computer-readable  
16 media having computer-readable instructions stored thereon which, when executed  
17 by a computer, implement an application program interface (API) to dynamically  
18 generate one or more filter control command data structures in response to a  
19 command received from a decoder application, wherein the one or more filter  
20 control command data structure(s) include one or more parameters which, when  
21 received by a communicatively coupled accelerator, effect one or more filter  
22 settings on the accelerator in accordance with the received command, wherein the  
23 API is not specific to any particular multimedia application and/or multimedia  
24 accelerator.

1       13. (Original) A storage medium according to claim 12, wherein the  
2 filter control command data structure(s) effect one or more post processing  
3 filter(s) of the accelerator.

4

5       14. (Currently Amended) A storage medium according to claim 12,  
6 wherein the filter control command data structure(s) effect one or more of a  
7 deblocking filter(s), de-ringing filter(s), and/or another post processing filter of the  
8 accelerator.

9

10      15. (Original) A storage medium according to claim 12, wherein the  
11 API issues a filter control command data structure for each of a number of edges  
12 of luminance and chrominance blocks of received media content.

13

14      16. (Original) A storage medium according to claim 15, wherein the  
15 API issues four (4) filter control command data structures for each luminance  
16 block, and/or two (2) filter control command data structure(s) for each  
17 chrominance block.

18

19      17. (Original) A storage medium according to claim 12, wherein the  
20 parameter(s) include a filter strength parameter.

21

22      18. (Previously Presented) A computing system comprising:  
23            a decoder application to process received media content; and  
24            an operating system including an application program interface (API),  
25 support the media processing, wherein the API generates one or more filter control

1 commands including one or more parameters which, when received by a  
2 communicatively coupled media processing accelerator, effect one or more filter  
3 settings of the accelerator in accordance with a command received from the  
4 decoder, wherein the decoder application is configured to iteratively issue  
5 configuration commands reflecting various alternative degrees and methods of  
6 decoding acceleration capability until choosing one that is acceptable to both the  
7 decoder application and the accelerator.

8

9 19. (Original) A computing system according to claim 18, further  
10 comprising:

11 one or more media processing accelerator(s), communicatively coupled to  
12 the decoder application via the API, including one or more filter(s) responsive to  
13 the filter control command data structures reflecting information received in the  
14 command from the decoder.

15

16 20. (Original) A computing system according to claim 19, wherein the  
17 filter(s) are post processing filters.

18

19 21. (Currently Amended) A computing system according to claim 19,  
20 wherein the filter(s) include one or more of a deblocking filter[,]and de-ringing  
21 filter,and the like.

1        22. (Original) A computing system according to claim 18, wherein the  
2 API issues macroblock filter control command data structures for each macroblock  
3 of video picture content, each macroblock filter control command comprising four  
4 (4) or sixteen (16) luminance block filter control command data structures for  
5 controlling the filtering of the luminance blocks of the macroblock, and/or two (2),  
6 four (4), eight (8), sixteen (16) or thirty-two (32) chrominance block filter control  
7 command data structures for controlling the filtering of the chrominance blocks of  
8 the macroblock.  
9

10      23. (Original) A computing system according to claim 18, wherein the  
11 filter control command data structures include a strength parameter to control an  
12 amount of filter applied by a receiving filter.  
13

14      24. (Original) A computing system according to claim 18, further  
15 comprising:

16        a storage medium having stored therein a plurality of executable  
17 instructions; and

18        an execution unit, coupled to the storage medium, to execute at least a  
19 subset of the plurality of executable instructions to implement the operating  
20 system and associated API.  
21

22      25. (Original) A computing system according to claim 24, wherein the  
23 execution unit executes at least a subset of the plurality of executable instructions  
24 to implement the decoder application.  
25