PROJETO DE MICROPROCESSADORES

Descrição

Uma Unidade Lógica Aritmética (ALU) é um circuito combinacional que realiza micro-operações lógica e aritmética em um par de operandos de n-bit (ex. A[3:0] e B[3:0]). As operações realizadas por uma ULA são controladas por um conjunto de entradas de *seleção de funções*. Neste experimento, você irá projetar uma ULA de 4-bit ALU com 3 entradas de *seleção de funções*: Modo M, Entradas Seleção S1 e S0. A entrada modo M seleciona entre uma operação Lógica (M=0) e Aritmética (M=1). As funções realizadas pela ULA estão especificadas na Tabela I.

		,	Γabela 1: Fun	ções da ULA
$\mathbf{M} = 0$	Lógica			
S1	S0	C0	FUNÇÃO	OPERAÇÃO (bit a bit)
0	0	X	A_iB_i	AND
0	1	X	$A_i + B_i$	OR
1	0	X	$A_i \oplus B_i$	XOR
1	1	X	$(A_i \oplus B_i)$	XNOR
$\mathbf{M} = 1$	Aritmétic	a	,	
S1	S0	C0	FUNÇÃO	OPERAÇÃO
0	0	0	A	Transfere A
0	0	1	A + 1	Incrementa A de 1
0	1	0	A + B	Adiciona A e B
0	1	1	A + B + 1	Incrementa a soma de A e B de 1
1	0	0	A + B'	A mais complemento de B
1	0	1	A - B	Subtrai B de A (i.e. B' + A + 1)
1	1	0	A' + B	B mais complemento de A
1	1	1	B - A	B menos A (ou A' + B + 1)

O diagrama de blocos é apresentado na Figura 1 e Figura 2.

Figura 1 – Diagrama de blocos de uma ALU de **4-Bit**

Figura 2: Diagrama de bloco de uma ALU bit-slice (ALU de 1 bit)

Ao fazer uma operação aritmética, você precisa decidir como representar números negativos. Geralmente em sistemas digitais, números negativos são representados em complemento de dois. Isto tem várias vantagens em relação a representação sinal e magnitude como a facilidade de realizar operações de adição e subtração de números negativos e positivos. Além disto, o número zero tem uma representação única em complemento de dois. O complemento de dois de um número N de n-bit é definida como,

$$2^{n} - N = (2^{n} - 1 - N) + 1$$

Objetivos

- 1. Projetar a Unidade Lógica e Aritmética de 4-Bit e desenvolve-la em VHDL;
- 2. Fornecer o diagrama de blocos de todas as partes projetadas;
- 3. Simular todas as operações;
- 4. Desenvolver relatório técnico contendo:
 - a. Introdução;
 - b. Objetivos;
 - c. Metodologias;
 - d. Resultados;
 - e. Conclusão;
 - f. Bibliografia;
 - g. Utilizar formatação padrão para documentos científicos publicados em periódicos (IEEE), com nome e matrícula dos integrantes do grupo;
- 5. Apresentar o projeto funcionando no QUARTUS II da Altera;