

Machine Learning for Time Series

(MLTS or MLTS-Deluxe Lectures)

Dr. Dario Zanca

Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg 25.10.2022

Topics overview

- Time series fundamentals and definitions (2 lectures)
- Bayesian Inference (1 lecture)
- Gussian processes (2 lectures) ←
- State space models (2 lectures)
- Autoregressive models (1 lecture)
- Data mining on time series (1 lecture)
- Deep learning on time series (4 lectures)
- Domain adaptation (1 lecture)

In this lecture...

- 1. Gaussian process classification (GPC) formulation
- 2. Gaussian process classification (GPC) prediction

Gaussian process classification (GPC) GPC formulation

Regression vs. Classification

Regression

For regression we typically have:

- $x \in \mathbb{R}^d$
- $y_R \in \mathbb{R}$
- $y_R = f(x)$

Regression vs. Classification

Regression

For regression we typically have:

- $x \in \mathbb{R}^d$
- $y_R \in \mathbb{R}$
- $y_R = f(x)$

Classification

For (binary) classification, instead:

- $x \in \mathbb{R}^d$
- Task: $y_C \in \{-1, +1\}$
- $p \in [0, 1]$

Regression vs. Classification

Regression

For regression we typically have:

• $y_R \in \mathbb{R}$

•
$$y_R = f(x)$$

Classification

For (binary) classification, instead:

- $x \in \mathbb{R}^d$
- Task: $y_C \in \{-1, +1\}$
- p € [0,1]

Gaussian linear model

We use a Gaussian linear model in order to obtain the likelihood:

$$p(y = \pm 1 \mid x, w) = \sigma(x^T w)$$

where $\sigma(x^T w)$ is called sigmoid function.

Gaussian linear model

We use a Gaussian linear model in order to obtain the likelihood:

$$p(y = \pm 1 \mid x, w) = \sigma(x^T w)$$

where $\sigma(x^T w)$ is called sigmoid function.

Notice:

- $ightharpoonup p(y=\pm 1\,|x,w)$ is the likelihood.
- \triangleright Generally, we denote $\pi(x) \coloneqq \sigma(x^T w)$

The sigmoid function

Common options for the sigmoid functions:

$$\lambda(z) = \frac{1}{1 + e^{-z}}$$

The sigmoid function

Common options for the sigmoid functions:

$$\lambda(z) = \frac{1}{1 + e^{-z}}$$

The sigmoid function

Common options for the sigmoid functions:

$$\lambda(z) = \frac{1}{1 + e^{-z}}$$

The sigmoid function

Common options for the sigmoid functions:

$$\lambda(z) = \frac{1}{1 + e^{-z}}$$

The sigmoid function

Common options for the sigmoid functions:

$$\lambda(z) = \frac{1}{1 + e^{-z}}$$

(Logistic function)

$$\phi(z) = \int_{-\infty}^{z} \mathcal{N}(x|0,1) dz$$

(Cumulative distribution function - CDF)

Common options for the sigmoid functions:

$$\lambda(z) = \frac{1}{1 + e^{-z}}$$

(Logistic function)

$$\phi(z) = \int_{-\infty}^{z} \mathcal{N}(x|0,1) dz$$

(Cumulative distribution function - CDF)

Likelihood

For a 2-class problem, we can write the likelihood of the value pair (x_i, y_i) :

$$\to \sigma(x_i^T w) \qquad \text{if } y_i = +1$$

$$\to 1 - \sigma(x_i^T w) \quad \text{if } y_i = -1$$

Machine Learning Data Analytics

Likelihood

For a 2-class problem, we can write the likelihood of the value pair (x_i, y_i) :

$$\to \sigma(x_i^T w) \qquad \text{if } y_i = +1$$

$$\rightarrow 1 - \sigma(x_i^T w)$$
 if $y_i = -1$

For symmetric sigmoid functions: $\sigma(-z) = 1 - \sigma(z)$

Thus: $p(y_i|x_i^Tw) = \sigma(y_i|f_i)$

- $\rightarrow y_i = \pm 1$ (Sign)
- $ightharpoonup f_i = f(x_i) = x_i^T w$ (Gaussian Process)

Posterior

Let's assume the prior on w:

$$w \sim \mathcal{N}(0, \sigma_p)$$
 or $w \sim \mathcal{N}(0, \Sigma_p)$

Then, we can write the posterior over weights:

$$p(w|y,X) = \frac{p(y|X,w) \ p(w)}{p(y|X)}$$

The marginal likelihood can be written as:

$$p(y|X) = \int p(y|X, w) \ p(w) \ dw$$

A two-steps approach

Step 1: Gaussian Process (GP) over latent funtion f(x)

Step 2: Filter f through a sigmoid function to obtain

$$\pi(x) = p(y = +1|x) = \sigma(f(x))$$

Gaussian process classification GPC prediction

GPC prediction

Predict a new point x^* :

$$p(y^* = +1|x^*, D) = \int p(y^* = +1|w, x^*) \ p(w|D) \ dw$$

GPC prediction

Predict a new point x^* :

$$p(y^* = +1|x^*, D) = \int p(y^* = +1|w, x^*) p(w|D) dw$$

$$P(x) = +1|x^*, D) = \int p(y^* = +1|w, x^*) p(w|D) dw$$

$$P(x) = +1|x^*, D) = \int p(y^* = +1|w, x^*) p(w|D) dw$$

GPC prediction

Predict a new point x^* :

Technische Fakultät

Implementing prediction

Step 1: Compute the distribution of f^* at case x^* .

$$p(f^*|X,y,x^*) = \int p(f^*|X,x^*,f) \ p(f|X,y) \ df$$

The posterior on f(x) can be written as:

$$p(f|X,y) = \frac{p(y|f) \ p(f|X)}{p(y|X)}$$

Implementing prediction

Step 1: Compute the distribution of f^* at case x^* .

$$p(f^*|X,y,x^*) = \int p(f^*|X,x^*,f) \ p(f|X,y) \ df$$

The posterior on f(x) can be written as:

$$p(f|X,y) = \frac{p(y|f) p(f|X)}{p(y|X)}$$

Implementing prediction

Step 2: Produce a probabilistic prediction π^* .

$$\pi^* \triangleq p(y^* = +1 \mid X, y, x^*) = \int \sigma(f^*) \ p(f^* \mid X, y, x^*) \ df^*$$

- \rightarrow $\pi^* = \pi(x^*)$ expresses the probability of the class
- \succ The latent f has the role of nuissance function (we do not observe it)

GPC Example

Gaussian process classification (GPC) Recap

Recap

- Gaussian process classification (GPC) formulation
 - GLM
 - Sigmoid
- Gaussian process classification (GPC) prediction
 - Two step process

