Rosklad De pro H

What Is pro the
$$X \sim Geom(P)$$
. Tekam' we uspech (posloupnost Derm(P), promi uspech = Longe)

 $D_1 = \text{poprob uspecence}$
 $D_2 = D_1$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$
 $E(X) = P(X|D_1) \cdot P(D_1) + P(X|D_2) \cdot P(D_2)$

$$= P + (1 + \mathbb{E}(X))(1 - P) = P + (1 - P) + \mathbb{E}(X)(1 - P) = 1 + \mathbb{E}(X)(1 - P)$$

$$E(x) - E(x)(\lambda - P) = 1$$

$$E(x)(x) - (\lambda - P) = 1$$

$$E(x)(P) = 1$$

$$E(x) = \frac{\Lambda}{P}$$

Soucet mezavislych m.v.

Mame-lidano Px,y, joh zjistit vozdělení součtu Z=X+Y.

$$\begin{cases}
me \mathcal{J}: X(m) = 2^{1} A(m) = y \\
me \mathcal{J}: X(m) = 1 & A(m) = 2 & A(m) = 2$$

Nahodma tětiva kruhu

jeu D: tětiva je delsi než IADI z DABC rovnostramm.

1) Nah. vyber X, Y mal. vyber X, potom vyber Y a platí:

$$P(D) = P(Y \in c', L) = \frac{1}{3}$$

2) Vobereme smerteding a potem mal. rolar Prot = prisecile tetings & plati P(D) = P(+E AUB) = 12

Podminene rozdeleni

?)
$$P_{X|Y}(x|y) = P(X=x|Y=y)$$

Prikled: X,2 1200 vysledky nezavislých hode kostkou, Y = X+ Z

$$\frac{P_{X|Y}(6|10)}{P(Y=10)} = \frac{\frac{3}{36}}{\frac{3}{36}} = \frac{1}{3}$$

$$\frac{7(X=6,Y=10)}{P(Y=10)} = \frac{\frac{3}{36}}{\frac{3}{36}} = \frac{1}{3}$$

$$\frac{P_{x|y}(x|y)}{P(y=y)} = \frac{P(x=x, y=y)}{P(y=y)} = \frac{P_{x|y}(x|y)}{P(y|y)} = \frac{P_{x|y}(x|y)}{\sum_{x'} P_{x|y}(x|y)} \frac{P_{x|y}(x|y)}{\sum_{x'} P_{x|y}(x|y)} \frac{P_{x|y}(x|y)}{\sum_{x'} P_{x|y}(x|y)}$$
Solved by a product of the product of

4) sorvæene us. podminene rozdélent Y= X+2 ... souced

PXIY	 10	11	12	- Q, -
1	0	Ō	0	
Σ			•	
3	•			
4	1136			
2	1106	1/26		
6	1126	1/36	1/36	_

Cod3	~-		١.	<u> </u>		1	
	PXIY	•·•	10	11	15		
	1		٥	0	0		
	2						
	3						
	4		1/3				∑≠ 1
	3		1/3	1/2			Σ≠ 1 ∑+ 1
-	6		%	1/2	1		Σ# /
		(5=1	2=1	Σ=1		

Z#1

$$\sum_{x|y} P_{x|y}(x,y) = \sum_{x'} P(X=x',Y=y) = 1 \dots \text{ musi so mascitat ma } 1$$
with bodingtor Y

Disdribuemi tunkce

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$

Hustoda lee - trulka

Mame S(x)... hudolu drubky v bodě x

Podom:

Amodnost trusky =
$$\int_{0}^{C} \int_{0}^{C} \int_{0}^{C} dt = 0$$

Amodnost iseku = $\int_{0}^{C} \int_{0}^{C} \int_{0}^{C} dt = 0$
 $\int_{0}^{C} \int_{0}^{C} \int_{0}^{C} dt = 0$
 $\int_{0}^{C} \int_{0}^{C} \int_{0}^{C} dt = 0$
 $\int_{0}^{C} \int_{0}^{C} \int_{0}^{C} dt = 0$