

< Return to Classroom

Create Your Own Image Classifier

	REVIEW
	CODE REVIEW
	HISTORY
leets Spec	ifications
ood job. Keep it u	p. 🚅:+1:
iles Submi	tted
Γhe submission i	ncludes all required files. (Model checkpoints not required.)
art 1 - Dev	relopment Notebook
All the necessary	packages and modules are imported in the first cell of the notebook
torchvision tra	nsforms are used to augment the training data with random scaling, rotations, mirroring, and/or

A pretrained network such as VGG16 is loaded from torchvision.models and the parameters are frozen
A new feedforward network is defined for use as a classifier using the features as input
The data for each set (train, validation, test) is loaded with torchvision's ImageFolder
The parameters of the feedforward classifier are appropriately trained, while the parameters of the feature network are left static
The network's accuracy is measured on the test data
During training, the validation loss and accuracy are displayed
The trained model is saved as a checkpoint along with associated hyperparameters and the class_to_idx dictionary
There is a function that successfully loads a checkpoint and rebuilds the model
The process_image function successfully converts a PIL image into an object that can be used as input to a trained model
The predict function successfully takes the path to an image and a checkpoint, then returns the top K most probably classes for that image
A matplotlib figure is created displaying an image and its associated top 5 most probable classes with actual flower names
Part 2 - Command Line Application
train.py successfully trains a new network on a dataset of images and saves the model to a checkpoint

The training script allows users to choose from at least two different architectures available from torchvision.models
The training script allows users to choose training the model on a GPU
The training script allows users to set hyperparameters for learning rate, number of hidden units, and training epoch
The predict.py script successfully reads in an image and a checkpoint then prints the most likely image class and it's associated probability
The predict.py script allows users to print out the top K classes along with associated probabilities
The predict.py script allows users to load a JSON file that maps the class values to other category names
The predict.py script allows users to use the GPU to calculate the predictions
□ DOWNLOAD PROJECT
RETURN TO PATH
Rate this project

The training loss, validation loss, and validation accuracy are printed out as a network trains