Consistent Efficient Estimators via MCMC

Supervisor: Prof. Dootika Vats

April 13, 2024

Siddharth Pathak

Indian Institute of Technology Kanpur

Overview

- 1. Preliminaries
- 2. MCIS Estimator
- 3. Drawbacks and Alternative
- 4. Results
- 5. Posterior Inference via MCMC samples
- 6. Estimation of Quantiles and HPD
- 7. Results

Notations & Definitions[3]

PRELIMINARIES

Let $(\$, \Sigma)$ is a measurable space and $A \subseteq \$$. Formally the discrete-time continuous state space Markov chain $\{X_i\}_{i\geqslant 0}$ follows:

$$\mathbb{P}(X_{n+1} \in A | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \mathbb{P}(X_{n+1} \in A | X_n = i).$$

Definition (Markov Transition Kernel)

A Markov transition kernel is a map $P : \mathbb{S} \times \Sigma \mapsto [0, 1]$ such that

- For all $A \in \Sigma$, $P(\cdot, A)$ is a measurable function on S.
- For all $x \in \mathbb{S}$, $P(x, \cdot)$ is a probability measure on Σ .

Definition (Transition Density)

Let P(x, .) be absolutely continuous with respect to a measure μ . Denote $p: \mathbb{S} \times \mathbb{S} \mapsto [0, \infty)$ as the Markov transition density defined as

$$p(x, y)\mu(dy) = P(x, dy)$$

PRELIMINARIES

Notations & Definitions

Definition (F-irreducible)

A Markov Chain Transition Kernel *P* is *F*—irreducible if $\forall x \in \mathbb{S}$ and $A \in \Sigma$ such that F(A) > 0 there exists *n* such that $P^n(x, A) > 0$.

Definition (Harris Recurrence)

Let $A \in \Sigma$ and define $\tau_A = \inf\{n \ge 1 : X_n \in A\}$, τ_A is called the first return time to A. If $X_n \notin A$ for all $n \ge 1$, $\tau_A = \infty$. If FP = F and P is F—irreducible, then P is Harris Recurrent if for all $A \in \Sigma$ with F(A) > 0 and all $x \in S$.

$$\mathbb{P}(\tau_A < \infty | X_0 = x) = 1$$

Rate of Convergence

Let $M : \mathbb{S} \mapsto \mathbb{R}^+$ and $\psi : \mathbb{N} \to [0, 1]$ be such that

- $||P^{n}(x,.) F(.)|| \le M(x)\psi(n)$ for all x, n.
- 1. **Geometric Ergodicity:** $\psi(n) = t^n$ for some $0 \le t < 1$.
- 2. **Uniform Ergodicity:** $\sup_x M(x) < \infty$ and $\psi(n) = t^n$ for some $0 \le t < 1$.

Notations & Definitions

PRELIMINARIES

MCMC Accept-Reject Algorithm

Let ρ be the target density function on \mathbb{R}^d without normalization constant, $Q = q(.|x) : \mathbb{R}^d \mapsto [0,1]$ is the proposal density function. In each accept-reject algorithm, there is a computable function $\alpha : \mathbb{R}^d \times \mathbb{R}^d \mapsto [0,1]$ called the acceptance probability function

Algorithm 1 Generic MCMC Accept-Reject Algorithm

- 1: Draw $Y_k \sim q(.|X_k)$ independently from $X_{k-1}, ..., X_1$.
- 2: Compute $\alpha_k = \alpha(X_k, Y_k)$.
- 3: Draw $U \sim Uniform(0,1)$.
- 4: **if** $U < \alpha_k$ **then**
- 5: Set $X_{k+1} = Y_k$.
- 6: else
- 7: Set $X_{k+1} = X_k$.
- 8: end if

00000

Notations & Definitions

Unadjusted Langevin Algorithm

Given a function $f: \mathbb{R}^d \to \mathbb{R}$ for which we have access to its gradient Δf , and where $\int exp(-f(x))dx$ is finite, the Langevin algorithm produces a sequence of random iterates x_0, x_1 , with associated density function $x_0 \sim p_0, x_1 \sim p_1, ...$ increasingly approximates the following target distribution:

$$q(x) := \frac{1}{Z} \exp(-f(x)), \text{ with } Z = \int_{\mathbb{R}^d} \exp(-f(x)) dx.$$

Algorithm 2 Unadjusted Langevin Algorithm (ULA)

Require: starting guess $x_0 \in \mathbb{R}^d$ and step-size $\gamma > 0$

- 1: **for** t=0,1,... **do**
- sample $\epsilon_t \sim N(0, I)$
- 3: $x_{t+1} = x_t \gamma \Delta f(x_t) + \sqrt{2\gamma \epsilon_t}$
 - 4: end for
 - 5: **return** $x_1, x_2, ...$

Importance Sampling Estimators

For $h: \mathfrak{X} \mapsto R$, we want to estimate $\theta = \mathbb{E}_F[h(X)]$. Let G be a distribution with density g defined on X so that,

$$\theta = \mathbb{E}_F[h(X)] = \int_{\mathcal{X}} h(x)f(x)dx = \int_{\mathcal{X}} \frac{h(x)f(x)}{g(x)}g(x)dx = \mathbb{E}_G\left[\frac{h(x)f(x)}{g(x)}\right]$$

If $Z_N = Z_N \stackrel{IID}{\sim} G$, then an estimator of θ is

$$\hat{\theta}_g = \sum_{i=1}^N \frac{h(Z_i)f(Z_i)}{g(Z_i)}$$

Theorem

The importance sampling estimator $\hat{\theta}_a$ is unbiased for θ . Also it is consistent for θ . That is, as $N \to \infty$,

$$\widehat{\theta}_a \stackrel{p}{\to} \theta$$

Markov Chain Importance Sampling Estimator[2]

Let $\{Y_k\}_{k\in\mathbb{N}}$ be the proposed samples and the corresponding density function be $\rho_{\rm V}$. An asymptotically unbiased estimator of $\rho_{\rm V}$ can be defined as

$$\hat{\rho}_{Y}(y) = \frac{1}{K} \sum_{k=0}^{K} q(y|X_{k}) \xrightarrow{K \to \infty} \rho_{Y} = \int \rho_{X}(x) q(y|x) dx$$

As the *K* increases, the size of chain $\{X_k\}_{k\geq 0}$ increases, it converges to some distribution ρ_X (say). So,

$$\frac{1}{K} \sum_{k=0}^{K} q(y|X_k) = \sum_{x \in S_X} \left[q(y|x) \sum_{k=1}^{K} \frac{\mathbb{1}_x(x_k)}{K} \right] \xrightarrow{K \to \infty} \int \rho_X(x) q(y|x) dx$$

Now, $\rho_{\rm Y}$ and $\hat{\rho}_{\rm Y}$ give their respective estimates of the expected value of any function f over density ρ . So, the two MCIS estimators for $\mathbb{E}_{\mu}(f)$ can be constructed by taking importance density to be ρ_{Y} and $\hat{\rho}_{Y}$.

MCIS Estimators

$$S_K^{IS}(f) = \frac{\sum_{k=1}^K w(Y_k) f(Y_k)}{\sum_{k=1}^K w(Y_k)}, \qquad w = \frac{\rho_Y}{\rho_Y}$$

$$\widehat{S}_K^{IS}(f) = \frac{\sum_{k=1}^K \widehat{w}(Y_k) f(Y_k)}{\sum_{k=1}^K \widehat{w}(Y_k)}, \qquad \widehat{w} = \frac{\rho}{\widehat{\rho}_Y}$$

Augmented Chain $\{Z_k\}_{k\in\mathbb{N}}$ & It's Kernel

Let $\{Z_k\}_{k\in\mathbb{N}}$ be an augmented chain where, $Z_k=(X_k,Y_k)$. Note that $\{Z_k\}_{k\in\mathbb{N}}$ is not necessarily a markov chain, if $\{X_k\}_{k\in\mathbb{N}}$, $\{Y_k\}_{k\in\mathbb{N}}$ are generated by MH algorithm. In case, the samples generated by ULA, $\{Z_k\}_{k\in\mathbb{N}}$ will also be a Markov chain. So, the kernel of $\{Z_k\}_{k\in\mathbb{N}}$ is a function $K_Z:\mathbb{R}^{2d}\times \mathcal{B}^{2d}\mapsto [0,1]$ define as follows:

$$K_Z((x,y),A\times B) = (1-\alpha(x,y)) \mathbb{1}_A(x)q(B|x) + \alpha(x,y) \mathbb{1}_A(y)q(B|y)$$

Inference about Augmented Chain $\{Z_k\}_{k\in\mathbb{N}}$

Theorem ([2])

Let $(Z_k)_{k\in\mathbb{N}} = (X_k, Y_k)_{k\in\mathbb{N}}$ is an augmented chain, where $\{X_k\}_{k\in\mathbb{N}}$ and $\{Y_k\}_{k\in\mathbb{N}}$ are the chains generated by Markov chain accept reject algorithm. Then $\{Z_k\}_{k\in\mathbb{N}}$ has following properties:

- If $\{X_k\}_{k\in\mathbb{N}}$ has a stationary distribution μ_X with density ρ_X , then $\{Z_k\}_{k\in\mathbb{N}}$ has the stationary distribution μ_Z with density $\rho_Z(x, y) = \rho_X(x)q(y|x)$.
- Let the proposal densities q(.|.) be globally supported and continuous in both arguments. If $\{X_k\}_{k\in\mathbb{N}}$ is irreducible, aperiodic and/or Harris positive, so is $\{Z_k\}_{k\in\mathbb{N}}$.
- If $\{X_k\}_{k\in\mathbb{N}}$ is geometrically ergodic, so is $\{Z_k\}_{k\in\mathbb{N}}$.
- If $\{X_k\}_{k\in\mathbb{N}}$ is uniformly ergodic, so is $\{Z_k\}_{k\in\mathbb{N}}$.

For further analysis let us define $\phi(y)$ and w(y) as following:

$$\varphi(y) = \frac{f(y)\rho(y)}{\rho_{Y}(y)} \quad \& \quad w(y) = \frac{\rho(y)}{\rho_{Y}(y)}$$

Law of Large Number for $S_K^{IS}(f)$ [2]

Theorem (LLN for $S_K^{IS}(f)$)

MCIS ESTIMATOR

$$S_K^{IS}(f) = \frac{\sum_{i=1}^K \phi(Y_i)}{\sum_{i=1}^K w(Y_i)} \xrightarrow{a.s.} \mathbb{E}_{\mu}(f)$$

Proof

$$\bar{\Phi}_K = \frac{1}{K} \sum_{i=1}^K \Phi(Y_i) \xrightarrow{a.s.} \mathbb{E}_{Y \sim \rho_Y} \left(\frac{f \rho}{\rho_Y} \right) = \int f(y) \rho(y) dy = \varepsilon \mathbb{E}_{\rho}(f)$$

$$\bar{w}_K = \frac{1}{K} \sum_{i=1}^K w(Y_i) \xrightarrow{a.s.} \mathbb{E}_{Y \sim \rho_Y} \left(\frac{\rho}{\rho_Y}\right) = \int \rho(y) dy = \epsilon$$

Above two, statements imply $S_K^{IS}(f) = \frac{\sum_{i=1}^K \Phi(Y_i)}{\sum_{i=1}^K \psi(Y_i)} \xrightarrow{a.s.} \mathbb{E}_{\mu}(f)$.

Central Limit Theorem for $S_{\nu}^{IS}(f)[2]$

Let us define a function $h: \mathbb{R}^{2d} \to \mathbb{R}^2$ such that $h(z) = h(x, y) = (\phi(y), w(y))^t$. Let us have the following assumptions:

- $\{X_k\}_{k \ge 1}$ is geometrically ergodic.
- for some $\psi > 0$, $\mathbb{E}_{Y \sim \Omega_Y}(|\phi(Y)|^{2+\psi}) < \infty$ and $\mathbb{E}_{Y \sim \Omega_Y}(|w(Y)|^{2+\psi}) < \infty$

If the above two conditions hold then $\|\Sigma_h\| < \infty$, where

$$\Sigma_h := 0.5\Sigma_h^{(1)} + \sum_{k=2}^{\infty} \Sigma_h^{(k)}$$

Where,
$$\Sigma_h^{(k)} := \mathbb{C}ov_{X_1 \sim \rho}[h(Z_1), h(Z_k)] + \mathbb{C}ov_{X_1 \sim \rho}[h(Z_k), h(Z_1)]$$

Theorem (CLT for $S_{\kappa}^{IS}(f)$)

$$\sqrt{K}(S_K^{IS} - \mathbb{E}_{\wp}(f)) \xrightarrow{\mathcal{D}} Normal(\wp, \Sigma_{CLT})$$

Where,
$$\Sigma_{CLT} = \varepsilon^{-2} \begin{bmatrix} 1 & -\mathbb{E}_{\mu}(f) \end{bmatrix} \Sigma_h \begin{bmatrix} 1 \\ -\mathbb{E}_{\mu}(f) \end{bmatrix}$$

Lack of Efficiency

One must note that the estimator \hat{S}_K^{IS} is not efficient because it is taking $\Theta(K^2)$ in computing the estimate. This estimator has no use in big data, and we have proved this fact computationally. One can have another estimator by replacing $\hat{\rho}(y)$ with the KDE estimate of y.

Test Results

We consider the density function $\rho = e^{-x^2}(1+\sin(5x)+\sin(2x))$. In our experiment, we estimate the expectation of a random variable having density ρ . The computation of the estimate from this approach is taking 1/100 time as compared to MCIS. Also, the variance of these estimates is smaller than that of MCIS.

Repetitions	Variance of MCIS	Variance of Estimate with KDE
1000 0.003161821		7.337105e-07

Table: For 10000 Samples

Posterior Inference via MCMC samples

It is expected to summarize posterior distributions by listing out $100(1-\alpha)\%$ posterior credible interval parameters of interest. We can obtain such credible intervals by considering a Bayesian posterior density represented by the equation:

$$\pi(\theta, \phi|D) \propto L(\theta, \phi|D)\pi(\theta, \phi)$$

where D represents the data, the parameter θ is one-dimensional, and φ is the multidimensional parameter. $\pi(\theta, \varphi)$ represents the prior on the joint distribution of $\pi(\theta, \varphi)$. In this equation, $L(\theta, \varphi|D)$ is the likelihood function given the data.

Consistent Estimator for CDF[1]

Assume that $g(\theta, \phi)$ is a joint importance sampling density for $\pi(\theta, \phi)$. Also note that $\pi(\theta, \phi)$ may be evaluated only up to an unknown normalizing constant. It can be seen as

$$\pi(\theta, \phi|D) \propto p(\theta, \phi|D) = L(\theta, \phi|D)\pi(\theta, \phi)$$

Let $\Pi(\theta|D)$ be the marginal posterior cumulative distribution function of θ . We formalize the Monte Carlo approach to approximate the α^{th} quantile, obtaining an estimation of Bayesian credible or HPD interval. It is easy to observe that for a given θ^*

$$\Pi(\theta * | D) = \mathbb{E}(\mathbb{1}_{\theta \leqslant \theta^*}) = \frac{\int \mathbb{1}_{\theta \leqslant \theta^*} \frac{p(\theta, \varphi | D)}{g(\theta, \varphi)} g(\theta, \varphi | D) d\varphi d\theta}{\int \frac{p(\theta, \varphi | D)}{g(\theta, \varphi)} g(\theta, \varphi | D) d\varphi d\theta}$$

Consistent Estimator for CDF[1]

Then, a simulation consistent estimator of $\Pi(\theta|D)$ can be obtained as

$$\widehat{\Pi}(\theta * | D) = \frac{\sum_{i=1}^{n} \mathbb{1}_{\theta \leqslant \theta^*} \frac{p(\theta, \varphi|D)}{g(\theta, \varphi)} g(\theta, \varphi|D)}{\sum_{i=1}^{n} \frac{p(\theta, \varphi|D)}{g(\theta, \varphi)} g(\theta, \varphi|D)}$$

Let $\{\theta_{(i)}\}$ be the ordered values of $\{\theta_i\}$. Corresponding to $\{\theta_{(i)}, i = 1, ..., n\}$, we rewrite the ergodic MCMC sample $\{(\theta_{(i)}, \varphi_{(i)}, i = 1, ..., n\}$. Note that $\varphi_{(i)}$ is a notation. Denote

$$w_i = \frac{\frac{p(\theta, \Phi|D)}{g(\theta, \Phi)}}{\sum_{i=1}^{n} \frac{p(\theta, \Phi|D)}{g(\theta, \Phi)}}$$

Estimator for CDF

for $1 \le i \le n$. We have

$$\widehat{\Pi}(\theta|D) = \left\{ \begin{array}{ll} \texttt{o,} & \text{if } \theta \leqslant \theta_{(1)} \\ \sum_{j=1}^{i} w_j, & \text{if } \theta_{(i)} \leqslant \theta < \theta_{(i+1)} \\ \texttt{I,} & \text{if } \theta \geqslant \theta_{(n)} \end{array} \right\}$$

Estimation of Quantiles and HPD[1]

Let $\theta^{(\alpha)}$ be the α^{th} quantile of θ . i.e.

$$\theta^{(\alpha)} = \inf\{\theta : \Pi(\theta|D) \geqslant \alpha\}$$

Using empirical cdf $\theta^{(\alpha)}$ can be estimated as

$$\widehat{\theta}^{(\alpha)} = \left\{ \begin{array}{ll} \theta_{(1)}, & \text{if } \alpha = 0 \\ \theta_{(i)}, & \text{if } \sum_{j=1}^{i-1} w_j < \alpha \leqslant \sum_{j=1}^{i} w_j \end{array} \right\}$$

To obtain a 100(1 $- \alpha$)% HPD interval for θ , we let

$$R_j(n) = \left(\widehat{\theta}^{\left(\frac{j}{n}\right)}, \widehat{\theta}^{\left(\frac{j+(1-\alpha)n}{n}\right)}\right)$$

For $i = 1, 2, ..., n - [(1 - \alpha)n]$.

Theorem

Let $R_{i^*}(n)$ be the interval that has the smallest width among all $R_i(n)$'s. If $\pi(\theta|D)$ is unimodal and has unique HPD interval for α , then we have

$$R_{i^*}(n) \to R(\pi_{\alpha})$$
 as $n \to \infty$

00

Generalization

Corollary

Let $\eta = h(\theta, \phi)$ for i = 1, 2, ..., n. Also, let the $\eta_{(i)}$ denote the ordered values of the η_i . Then, the α^{th} quantile of the marginal posterior distribution of η can be estimated by

$$\hat{\eta}^{(\alpha)} = \left\{ \begin{array}{l} \eta_{(1)}, & \text{if } \alpha = 0 \\ \eta_{(i)}, & \text{if } \sum_{j=1}^{i-1} w_j < \alpha \leqslant \sum_{j=1}^{i} w_j \end{array} \right\}$$

Using the above result, we can compute

$$R_j(n) = \left(\widehat{\eta}^{\left(\frac{j}{n}\right)}, \widehat{\eta}^{\left(\frac{j+(1-\alpha)n}{n}\right)}\right)$$

A 100(1 $- \alpha$)% HPD interval of η is $R_{i*}(n)$ that has the smallest interval among all $R_i(n)$.

RESULTS

Results

Example 1

Let $Y_i \overset{IID}{\sim} N(\mu, \sigma^2)$. Let us consider the case we know σ exactly. We want to find the quantiles of the posterior distribution of μ . Let us consider prior to being N(0,100) It will be easy to establish that the posterior distribution of μ with σ known is Normal distribution with mean $\frac{\sum_{i=1}^n Y_i/\sigma^2}{(n/\sigma^2)+(1/100)}$ and variance $\frac{1}{(n/\sigma^2)+(1/100)}$.

Our analysis fixes $\mu=0$ and $\sigma=1$. After summarising the posterior distribution of μ , i.e. $\pi(\mu|Y)$, we obtained n=100000 samples for vis Unadjusted Langevin algorithm and calculated the 95% HPD interval mentioned above.

Actual HPD Interval	(-0.05607639, 0.49822971)	
Obtained HPD Interval	(-0.05941751, 0.49253528)	

Table: HPD Interval for $\pi(\mu|Y, \sigma^2)$

Example 1 Continued

Obtained HPD are decently accurate. To test the consistency of the estimator, we obtained mean squared error for $\alpha = 0.25$, 0.5, 0.75. The results are shown below:

α	MSE (Proposed Estimator)	MSE (Naive Estimator)
0.25	2.361802 <i>e</i> — 07	9.630869e — 05
0.50	3.490802 <i>e</i> — 08	8.786842e — 05
0.75	3.491659e — 08	9.504091e — 05

Table: MSE = 0.0001
$$\times \sum_{i=0}^{10000} (\hat{\mu}^{(\alpha)} - \mu^{(\alpha)})^2$$

Example 2

Consider another example where $Y_i \stackrel{IID}{\sim} Poisson(\lambda)$ for i = 1, 2, ..., n. We will infer about the posterior of λ . Let us consider the prior to Gamma(1, 1). Posterior for λ will be $Gamma(\sum_{i=1}^{n} Y_i + 1, n + 1)$.

Example 2 Continued

After getting posterior samples from *ULA*, we have the following results.

Actual HPD Interval	(12.55808, 14.57834)	
Obtained HPD Interval	(12.56114, 14.56607)	

Table: HPD Interval for $\pi(\lambda|Y)$

Results after repeating the experiments 1000 times each for $\alpha =$ 0.25, 0.5, 0.75 are as following:

	α	MSE (Proposed Estimator)	MSE (Naive Estimator)
ſ	0.25	3.686399e — 06	0.001605519
	0.50	6.695139e — 07	0.001539897
	0.75	4.705776e — 06	0.001783654

Table: MSE = 0.0001
$$\times \sum_{i=0}^{10000} (\hat{\lambda}^{(\alpha)} - \lambda^{(\alpha)})^2$$

References

M.-H. Chen and Q.-M. Shao.

Monte carlo estimation of bayesian credible and hpd intervals.

Journal of Computational and Graphical Statistics, 8(1):69–92, 1999.

🔋 I. Schuster and I. Klebanov.

Markov chain importance sampling—a highly efficient estimator for mcmc.

Journal of Computational and Graphical Statistics, 30(2):260–268, 2021.

🔋 D. Vats.

2021.

Lecture Notes for Markov Chain Monte Carlo.

Questions?

Thank You ⊚!