NYU team 1

Contents

1 Mathematics

2	Data structures
3	Numerical

Mathematics (1)

[chapters]

1.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the *i*'th column replaced by b.

1.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n.$

1.3 Trigonometry

1

2

3

6

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

1.4 Geometry

1.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{r}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

 $s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

1.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

1.4.3 Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \cos \phi & r &= \sqrt{x^2 + y^2 + z^2} \\ y &= r \sin \theta \sin \phi & \theta &= \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z &= r \cos \theta & \phi &= \operatorname{atan2}(y, x) \end{aligned}$$

Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

1.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

1.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

1.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

1.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \ \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each which yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

1.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then $aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$

1.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is *irreducible* (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (2)

[chapters]

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
   const uint64_t C = 11(4e18 * acos(0)) | 71;
   11 operator()(11 x) const { return __builtin_bswap64(x*C); }
};
__gnu_pbds::gp_hash_table<11,int,chash> h({},{},{},{},{},{1<<16});</pre>
```

UnionFindRollback.h

```
Description: Disjoint-set data structure with undo. If undo is not needed.
skip st, time() and rollback().
```

```
Usage: int t = uf.time(); ...; uf.rollback(t);
Time: \mathcal{O}(\log(N))
```

```
struct RollbackUF {
  vi e; vector<pii> st;
  RollbackUF(int n) : e(n, -1) {}
  int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
  int time() { return sz(st); }
  void rollback(int t) {
    for (int i = time(); i --> t;)
     e[st[i].first] = st[i].second;
    st.resize(t);
  bool join(int a, int b) {
   a = find(a), b = find(b);
    if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
   st.push_back({a, e[a]});
    st.push back({b, e[b]});
   e[a] += e[b]; e[b] = a;
    return true;
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

```
Time: \mathcal{O}(\log N)
```

```
8ec1c7, 30 lines
struct Line {
  mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const 11 inf = LLONG MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
     isect(x, erase(y));
  11 query(11 x) {
    assert(!empty());
   auto 1 = *lower_bound(x);
    return 1.k * x + 1.m;
```

Numerical (3)

[chapters]

3.1 Polynomials and recurrences

```
Polynomial.h
                                                     c9b7b0, 17 lines
struct Poly {
  vector<double> a;
  double operator()(double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
    a.pop_back();
 void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
```

PolyRoots.h

```
Description: Finds the real roots to a polynomial.
```

Usage: polyRoots($\{\{2,-3,1\}\},-1e9,1e9$) // solve $x^2-3x+2=0$ Time: $\mathcal{O}\left(n^2\log(1/\epsilon)\right)$

```
"Polynomial.h"
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
 vector<double> ret;
 Poly der = p;
 der.diff();
 auto dr = polyRoots(der, xmin, xmax);
 dr.push back(xmin-1);
 dr.push back(xmax+1);
 sort (all (dr));
 rep(i, 0, sz(dr) - 1) {
   double l = dr[i], h = dr[i+1];
   bool sign = p(1) > 0;
   if (sign ^{(p(h) > 0)}) {
     rep(it,0,60) { // while (h - l > 1e-8)
       double m = (1 + h) / 2, f = p(m);
       if ((f \le 0) ^ sign) 1 = m;
       else h = m;
     ret.push_back((1 + h) / 2);
 return ret:
```

PolyInterpolate.h

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1)*\pi), k = 0...n-1.$ Time: $\mathcal{O}\left(n^2\right)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
 vd res(n), temp(n);
 rep(k, 0, n-1) rep(i, k+1, n)
  y[i] = (y[i] - y[k]) / (x[i] - x[k]);
 double last = 0; temp[0] = 1;
 rep(k, 0, n) rep(i, 0, n) {
   res[i] += y[k] * temp[i];
   swap(last, temp[i]);
   temp[i] -= last * x[k];
 return res;
```

BerlekampMassev.h

"../number-theory/ModPow.h"

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after bruteforcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: \mathcal{O}(N^2)
```

```
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
 vector<ll> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
  rep(i, 0, n) \{ ++m;
   11 d = s[i] % mod;
    rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
    if (!d) continue;
    T = C; 11 coef = d * modpow(b, mod-2) % mod;
    rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
    if (2 * L > i) continue;
    L = i + 1 - L; B = T; b = d; m = 0;
  C.resize(L + 1); C.erase(C.begin());
 for (11& x : C) x = (mod - x) % mod;
 return C;
```

LinearRecurrence.h

return res:

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number Time: $\mathcal{O}\left(n^2 \log k\right)$

```
typedef vector<ll> Polv;
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(tr);
  auto combine = [&](Poly a, Poly b) {
   Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res:
  Poly pol(n + 1), e(pol);
  pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
 11 \text{ res} = 0;
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
```

Optimization

GoldenSectionSearch.h.

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum and no local maximum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See Ternary-Search.h in the Various chapter for a discrete version. Usage: double func(double x) { return 4+x+.3*x*x; }

```
double xmin = qss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
                                                       31d45b, 14 lines
double gss(double a, double b, double (*f)(double)) {
  double r = (sqrt(5)-1)/2, eps = 1e-7;
  double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
    if (f1 < f2) { //change to > to find maximum
     b = x2; x2 = x1; f2 = f1;
     x1 = b - r*(b-a); f1 = f(x1);
    } else {
     a = x1; x1 = x2; f1 = f2;
      x2 = a + r*(b-a); f2 = f(x2);
 return a:
```

HillClimbing.h

 $\textbf{Description:} \stackrel{\smile}{\text{Poor man's optimization for unimodal functions}}_{\text{8eeeaf, 14 lines}}$

```
typedef array<double, 2> P;
template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j, 0, 100) rep(dx, -1, 2) rep(dy, -1, 2) {
     P p = cur.second:
     p[0] += dx * jmp;
     p[1] += dy * jmp;
     cur = min(cur, make_pair(f(p), p));
 return cur;
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
template<class F>
double quad(double a, double b, F f, const int n = 1000) {
 double h = (b - a) / 2 / n, v = f(a) + f(b);
   v += f(a + i*h) * (i&1 ? 4 : 2);
 return v * h / 3;
```

IntegrateAdaptive.h Description: Fast integration using an adaptive Simpson's rule. Usage: double sphereVolume = quad(-1, 1, [](double x) { return quad(-1, 1, [&] (double y) return quad(-1, 1, [&](double z)return $x*x + y*y + z*z < 1; }); }); }); }$ 92dd79, 15 lines

```
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
template <class F>
```

```
d rec(F& f, d a, d b, d eps, d S) {
  dc = (a + b) / 2;
  d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
  if (abs(T - S) <= 15 * eps || b - a < 1e-10)</pre>
    return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template<class F>
d \text{ quad}(d \text{ a, } d \text{ b, } F \text{ f, } d \text{ eps} = 1e-8)  {
  return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize $c^T x$ subject to $Ax \leq b, x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;
T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
```

```
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if (s == -1 \mid | MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
 int m, n;
 vi N, B;
 vvd D;
 LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i,0,m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
     rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
 void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
```

```
T *b = D[i].data(), inv2 = b[s] * inv;
    rep(j, 0, n+2) b[j] -= a[j] * inv2;
    b[s] = a[s] * inv2;
  rep(j,0,n+2) if (j != s) D[r][j] *= inv;
  rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
  D[r][s] = inv;
  swap(B[r], N[s]);
bool simplex(int phase) {
  int x = m + phase - 1;
  for (;;) {
    int s = -1;
    rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
    if (D[x][s] >= -eps) return true;
    int r = -1;
    rep(i,0,m) {
      if (D[i][s] <= eps) continue;</pre>
      if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
```

```
< MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

3.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}(N^3)$

```
double det(vector<vector<double>>& a) {
 int n = sz(a); double res = 1;
 rep(i,0,n) {
    int b = i;
    rep(j, i+1, n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
   if (i != b) swap(a[i], a[b]), res \star = -1;
   res *= a[i][i];
   if (res == 0) return 0;
   rep(j,i+1,n) {
     double v = a[j][i] / a[i][i];
     if (v != 0) rep(k, i+1, n) a[j][k] -= v * a[i][k];
 return res;
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version. Time: $\mathcal{O}\left(N^3\right)$

```
3313dc, 18 lines
const 11 mod = 12345;
11 det(vector<vector<ll>>& a) {
 int n = sz(a); 11 ans = 1;
 rep(i,0,n) {
    rep(j,i+1,n) {
      while (a[j][i] != 0) { // gcd step
        11 t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
         a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
 return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}(n^2m)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
     rep(j,i,n) if (fabs(b[j]) > eps) return -1;
     break;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
    rep(j,i+1,n) {
     double fac = A[j][i] * bv;
     b[j] -= fac * b[i];
     rep(k,i+1,m) A[j][k] -= fac*A[i][k];
   rank++;
  x.assign(m. 0):
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   rep(j, 0, i) b[j] -= A[j][i] * b[i];
  return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
  int n = sz(A), rank = 0, br;
  assert(m <= sz(x));
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
    for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
```

```
if (br == n) {
    rep(j,i,n) if(b[j]) return -1;
    break;
  int bc = (int)A[br]._Find_next(i-1);
  swap(A[i], A[br]);
  swap(b[i], b[br]);
  swap(col[i], col[bc]);
  rep(j, 0, n) if (A[j][i] != A[j][bc]) {
   A[j].flip(i); A[j].flip(bc);
  rep(j,i+1,n) if (A[j][i]) {
   b[j] ^= b[i];
   A[j] ^= A[i];
  rank++;
x = bs();
for (int i = rank; i--;) {
  if (!b[i]) continue;
  x[col[i]] = 1;
  rep(j,0,i) b[j] ^= A[j][i];
return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

return n;

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1})$ (mod p^k) where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
                                                       ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j, i+1, n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] = f*A[i][k];
      rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
    rep(j,i+1,n) A[i][j] /= v;
    rep(j,0,n) tmp[i][j] /= v;
    A[i][i] = 1;
  for (int i = n-1; i > 0; --i) rep(j,0,i) {
    double v = A[j][i];
    rep(k, 0, n) tmp[j][k] -= v*tmp[i][k];
  rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
```

```
| Tridiagonal
```

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,$$

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\{a_i\} = \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}).$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time: $\mathcal{O}(N)$ 8f9fa8, 26 line

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
      b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
     else {
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] = b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
    if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
      b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i]*super[i-1];
 return b;
```

3.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv (a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $\mathcal{O}(N \log N)$ with N = |A| + |B| ($\sim 1s$ for $N = 2^{22}$)

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
  int n = sz(a), L = 31 - _builtin_clz(n);
  static vector<complex<long double> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k *= 2) {
    R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);</pre>
```

```
rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  vi rev(n);
  rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);
  int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x *= x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
  return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N\log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT) "FastFourierTransform.h" b82773, 22 lines

```
typedef vector<ll> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
  if (a.empty() || b.empty()) return {};
  vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
    int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i,0,sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 \text{ bv} = 11(\text{imag}(\text{out1}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum_x a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in $[0, \operatorname{mod})$.

```
Time: \mathcal{O}(N \log N)
```

"../number-theory/ModPow.h" ced03d, 35 lines

```
<code>const</code> 11 mod = (119 << 23) + 1, root = 62; // = 998244353 // For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
```

```
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
void ntt(vl &a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
 static v1 rt(2, 1);
 for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n);
   ll z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 vi rev(n);
 rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 int s = sz(a) + sz(b) - 1, B = 32 - builtin clz(s),
     n = 1 << B;
 int inv = modpow(n, mod - 2);
 vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
 ntt(L), ntt(R);
 rep(i,0,n)
   out[-i \& (n - 1)] = (ll)L[i] * R[i] % mod * inv % mod;
 return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

```
Time: O(N log N)

void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
      int &u = a[j], &v = a[j + step]; tie(u, v) =
            inv ? pii(v - u, u) : pii(v, u + v); // AND
            inv ? pii(v, u - v) : pii(u + v, u); // OR
            pii(u + v, u - v);
    }
    if (inv) for (int& x : a) x /= sz(a); // XOR only
}
vi conv(vi a, vi b) {
    FST(a, 0); FST(b, 0);
    rep(i,0,sz(a)) a[i] *= b[i];
    FST(a, 1); return a;</pre>
```

Number theory (4)

chapters

4.1 Modular arithmetic

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

```
Time: \mathcal{O}(\log^2 p) worst case, \mathcal{O}(\log p) for most p
"ModPow.h"
                                                         19a793, 24 lines
11 sqrt(ll a, ll p) {
 a %= p; if (a < 0) a += p;
 if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
 11 s = p - 1, n = 2;
 int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
 11 b = modpow(a, s, p), q = modpow(n, s, p);
  for (;; r = m) {
    11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(g, 1LL << (r - m - 1), p);
    q = qs * qs % p;
    x = x * qs % p;
    b = b * g % p;
4.2 Primality
```

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM. **Time:** LIM= $1e9 \approx 1.5s$

```
6b2912, 20 lines
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = \{2\}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
    for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push_back((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
  return pr;
```

MillerRabin.h

"ModMulLL.h"

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7\cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

60dcd1, 12 lines

Time: 7 times the complexity of $a^b \mod c$.

```
bool isPrime(ull n) {
   if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
   ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
        s = __builtin_ctzll(n-1), d = n >> s;
   for (ull a : A) { // ^ count trailing zeroes}
   ull p = modpow(a%n, d, n), i = s;
   while (p != 1 && p != n - 1 && a % n && i--)
        p = modmul(p, p, n);
   if (p != n-1 && i != s) return 0;
```

```
}
return 1;
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                      d8d98<u>d</u>, 18 lines
ull pollard(ull n) {
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  auto f = [\&] (ull x) \{ return modmul(x, x, n) + i; \};
  while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
  return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
  if (isPrime(n)) return {n};
  ull x = pollard(n);
  auto 1 = factor(x), r = factor(n / x);
 l.insert(l.end(), all(r));
  return 1;
```

4.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in a-gcd instead. If a and b are coprime, then a is the inverse of a (mod b).

```
11 euclid(11 a, 11 b, 11 &x, 11 &y) {
   if (!b) return x = 1, y = 0, a;
   11 d = euclid(b, a % b, y, x);
   return y -= a/b * x, d;
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m,n)$. Assumes $mn < 2^{62}$. Time: $\log(n)$

4.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p, q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

```
11 lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
    a = (11)floor(y), b = min(a, lim),
    NP = b*P + LP, NQ = b*Q + LQ;

if (a > b) {
    // If b > a/2, we have a semi—convergent that gives us a
    // better approximation; if b = a/2, we *may* have one.
    // Return {P, Q} here for a more canonical approximation.
    return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
    make_pair(NP, NQ) : make_pair(P, Q);
}

if (abs(y = 1/(y - (d)a)) > 3*N) {
    return {NP, NQ};
}
LP = P; P = NP;
LQ = Q; Q = NQ;
}
```

FracBinarySearch.h

struct Frac { ll p, q; };

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // {1,3} Time: $\mathcal{O}(\log(N))$

```
template < class F >
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N)
 if (f(lo)) return lo;
  assert(f(hi));
  while (A || B)
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
      adv += step;
     Frac mid{lo.p * adv + hi.p, lo.g * adv + hi.g};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
   dir = !dir;
   swap(lo, hi);
   A = B; B = !!adv;
 return dir ? hi : lo;
```

4.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2)$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

4.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2,a>2, and there are $\phi(\phi(p^a))$ many. For p=2,a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

4.7 Estimates

$$\sum_{d|n} d = O(n \log \log n)$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

4.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n=1]$$
 (very useful)

$$g(n) = \sum_{n \mid d} f(d) \Leftrightarrow f(n) = \sum_{n \mid d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\left| \frac{n}{m} \right|) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m) g(\left| \frac{n}{m} \right|)$$

Combinatorial (5)

[chapters]

5.1 Permutations

5.1.1 Factorial

n	1 2 3	4	5 6	7	8	9		10
n!	1 2 6	24 1	20 72	0 5040	40320	3628	80 36	28800
n	11	12	13	14	1	5	16	17
n!	4.0e7	′ 4.8e	8 6.2e	9 8.7e	10 1.3	e12 2.	1e13	3.6e14 171
n	20	25	30	40	50	100	150	171
n!	2e18	2e25	3e32	8e47 3	3e64 9e	e157.6	e262	>DBL_MAX

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table.

```
Time: \mathcal{O}(n) 044568, 6 lines
```

0ae1d4, 48 lines

5.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

5.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

5.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g(g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

5.2 Partitions and subsets

5.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

5.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

5.2.3 Binomials

multinomial.h

Description: Computes
$$\binom{k_1+\cdots+k_n}{k_1,k_2,\ldots,k_n} = \frac{(\sum k_i)!}{k_1!k_2!\ldots k_n!}$$
.

5.3 General purpose numbers

5.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t)=\frac{t}{e^t-1}$ (FFT-able). $B[0,\ldots]=[1,-\frac12,\frac16,0,-\frac1{30},0,\frac1{42},\ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

5.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

5.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) > j$. k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

5.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

5.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

5.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

5.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

[noitemsep] sub-diagonal monotone paths in an $n \times n$ grid. strings with n pairs of parenthesis, correctly nested. binary trees with with n+1 leaves (0 or 2 children). ordered trees with n+1 vertices. ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines. permutations of [n] with no 3-term increasing subseq.

$\underline{\text{Graph}}$ (6)

[chapters]

6.1 Network flow

PushRelabel.h

Time: $\mathcal{O}\left(V^2\sqrt{E}\right)$

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
struct PushRelabel {
    struct Edge {
        int dest, back;
        ll f, c;
    };
    vector<vector<Edge>> g;
    vector<ll> ec;
    vector<Edge*> cur;
    vector<vi> hs; vi H;
    PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
```

```
vector<vi>vector<vi>hs; vi H;
PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n)

void addEdge(int s, int t, ll cap, ll rcap=0) {
    if (s == t) return;
    g[s].push_back({t, sz(g[t]), 0, cap});
    g[t].push_back({s, sz(g[s])-1, 0, rcap});
}

void addFlow(Edge& e, ll f) {
    Edge &back = g[e.dest][e.back];
    if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
    e.f += f; e.c -= f; ec[e.dest] += f;
    back.f -= f; back.c += f; ec[back.dest] -= f;
}
ll calc(int s, int t) {
    int v = sz(g); H[s] = v; ec[t] = 1;
    vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
```

for (Edge& e : g[s]) addFlow(e, e.c);

```
for (int hi = 0;;) {
    while (hs[hi].empty()) if (!hi--) return -ec[s];
    int u = hs[hi].back(); hs[hi].pop_back();
    while (ec[u] > 0) // discharge u
      if (cur[u] == g[u].data() + sz(g[u])) {
        H[u] = 1e9;
        for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
         H[u] = H[e.dest]+1, cur[u] = &e;
        if (++co[H[u]], !--co[hi] && hi < v)</pre>
          rep(i, 0, v) if (hi < H[i] && H[i] < v)
            --co[H[i]], H[i] = v + 1;
        hi = H[u];
      } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
        addFlow(*cur[u], min(ec[u], cur[u]->c));
      else ++cur[u];
bool leftOfMinCut(int a) { return H[a] >= sz(q); }
```

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}(V^3)$

8b0e19, 21 lines

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat);
  vector<vi> co(n);
  rep(i, 0, n) co[i] = {i};
  rep(ph,1,n) {
   vi w = mat[0];
   size_t s = 0, t = 0;
   rep(it,0,n-ph) { //O(V^2) \rightarrow O(E log V) with prio. queue
     w[t] = INT_MIN;
     s = t, t = max_element(all(w)) - w.begin();
     rep(i,0,n) w[i] += mat[t][i];
   best = min(best, \{w[t] - mat[t][t], co[t]\});
   co[s].insert(co[s].end(), all(co[t]));
   rep(i,0,n) mat[s][i] += mat[t][i];
   rep(i, 0, n) mat[i][s] = mat[s][i];
   mat[0][t] = INT_MIN;
  return best;
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path.

Time: $\mathcal{O}(V)$ Flow Computations

```
"PushRelabel.h"
                                                     0418b3, 13 lines
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
 vector<Edge> tree;
 vi par(N);
  rep(i,1,N) {
   PushRelabel D(N); // Dinic also works
   for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
   tree.push_back({i, par[i], D.calc(i, par[i])});
   rep(j,i+1,N)
     if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
 return tree:
```

6.2 Matching

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. Time: $\mathcal{O}(N^2M)$

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n - 1);
 rep(i,1,n) {
   p[0] = i;
   int j0 = 0; // add "dummy" worker 0
   vi dist(m, INT_MAX), pre(m, -1);
   vector<bool> done(m + 1);
   do { // dijkstra
     done[j0] = true;
     int i0 = p[j0], j1, delta = INT_MAX;
     rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
     rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
     j0 = j1;
    } while (p[j0]);
   while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

General Matching.h

Description: Matching for general graphs. Fails with probability N/mod. Time: $\mathcal{O}(N^3)$

```
"../numerical/MatrixInverse-mod.h"
                                                     cb1912, 40 lines
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
 int r = matInv(A = mat), M = 2*N - r, fi, fj;
 assert (r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<ll>(M));
   rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
       int r = rand() % mod;
       mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has(M, 1); vector<pii> ret;
 rep(it,0,M/2) {
```

```
rep(i,0,M) if (has[i])
    rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
      fi = i; fj = j; goto done;
  } assert(0); done:
  if (fj < N) ret.emplace_back(fi, fj);</pre>
  has[fi] = has[fj] = 0;
  rep(sw,0,2) {
    11 a = modpow(A[fi][fj], mod-2);
    rep(i,0,M) if (has[i] && A[i][fj]) {
      ll b = A[i][fj] * a % mod;
      rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
    swap(fi,fj);
return ret;
```

6.3 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

Time: $\mathcal{O}(NM)$

```
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
 for (pii e : eds) ++cc[e.first], ++cc[e.second];
 int u, v, ncols = *max_element(all(cc)) + 1;
 vector<vi> adj(N, vi(ncols, -1));
 for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v;
   loc.assign(ncols, 0);
   int at = u, end = u, d, c = free[u], ind = 0, i = 0;
    while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
     swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
     adj[u][e] = left;
     adi[left][e] = u;
     adj[right][e] = -1;
      free[right] = e;
   adj[u][d] = fan[i];
    adi[fan[i]][d] = u;
    for (int y : {fan[0], u, end})
      for (int & z = free[y] = 0; adj[y][z] != -1; z++);
 rep(i, 0, sz(eds))
    for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
 return ret;
```

6.4 Trees

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

```
Time: \mathcal{O}\left(|S|\log|S|\right)
```

```
"LCA.h"
                                                       9775a0, 21 lines
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
```

9706dc, 9 lines

```
static vi rev; rev.resize(sz(lca.time));
vi li = subset, &T = lca.time;
auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
sort(all(li), cmp);
int m = sz(li)-1;
rep(i,0,m) {
 int a = li[i], b = li[i+1];
 li.push_back(lca.lca(a, b));
sort(all(li), cmp);
li.erase(unique(all(li)), li.end());
rep(i, 0, sz(li)) rev[li[i]] = i;
vpi ret = {pii(0, li[0])};
rep(i, 0, sz(li)-1) {
 int a = li[i], b = li[i+1];
  ret.emplace_back(rev[lca.lca(a, b)], b);
return ret:
```

6.5 Math

6.5.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

6.5.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (7)

[chapters]

"Point.h"

7.1 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents -0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

```
Time: \mathcal{O}(n)
".../content/geometry/Point.h"
```

content/geometry/Point.h" 19add1, 19 lines

```
typedef Point < double > P;
#define arg(p, g) atan2(p.cross(g), p.dot(g))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [&] (P p, P q) {
    auto r2 = r * r / 2;
   Pd = q - p;
    auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
   if (det <= 0) return arg(p, g) * r2;</pre>
    auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, g) * r2;</pre>
   Pu = p + d * s, v = q + d * (t-1);
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,g) * r2;
 auto sum = 0.0;
 rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum;
```

circumcircle.h

Description:

84d6d3, 11 lines

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
    abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
}
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points.

```
Time: expected O(n)
```

7.2 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};bool in = inPolygon(v, P\{3, 3\}, false);
Time: \mathcal{O}(n)
```

"Point.h", "OnSegment.h", "SegmentDistance.h"

```
template < class P >
bool inPolygon(vector < P > &p, P a, bool strict = true) {
   int cnt = 0, n = sz(p);
   rep(i,0,n) {
      P q = p[(i + 1) % n];
      if (onSegment(p[i], q, a)) return !strict;
      //or: if (segDist(p[i], q, a) <= eps) return !strict;
   cnt ^= ((a.y < p[i].y) - (a.y < q.y)) * a.cross(p[i], q) > 0;
   }
   return cnt;
}
```

PolygonArea.

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

"Point.h"

f12300, 6 lines

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
  T a = v.back().cross(v[0]);
  rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
  return a;
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

```
Time: \mathcal{O}\left(n\right)
```

```
typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
P res(0, 0); double A = 0;
for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
  res = res + (v[i] + v[j]) * v[j].cross(v[i]);
  A += v[j].cross(v[i]);
}
return res / A / 3;
}</pre>
```

bac5b0, 63 lines

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

d07181, 13 lines

```
typedef Point<double> P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
 vector<P> res;
  rep(i, 0, sz(poly)) {
   P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    auto a = s.cross(e, cur), b = s.cross(e, prev);
   if ((a < 0) != (b < 0))
     res.push_back(cur + (prev - cur) * (a / (a - b)));
    if (a < 0)
     res.push_back(cur);
  return res;
```

ConvexHull.h

Description:

clockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Returns a vector of the points of the convex hull in counter-

"Point.h" 310954, 13 lines

```
typedef Point<11> P;
vector<P> convexHull(vector<P> pts) {
 if (sz(pts) <= 1) return pts;</pre>
  sort(all(pts));
  vector<P> h(sz(pts)+1);
 int s = 0, t = 0;
  for (int it = 2; it--; s = --t, reverse(all(pts)))
   for (P p : pts) {
     while (t \ge s + 2 \&\& h[t-2].cross(h[t-1], p) \le 0) t--;
     h[t++] = p;
  return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

```
Time: \mathcal{O}(n)
```

c571b8, 12 lines

```
"Point.h"
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
  int n = sz(S), j = n < 2 ? 0 : 1;
  pair<11, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i,0,j)
    for (;; j = (j + 1) % n) {
      res = \max(res, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
      if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
       break;
  return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h"
                                                                        71446b, 14 lines
```

```
typedef Point<11> P;
```

```
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
 if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
 if (sideOf(1[0], 1[a], p) \geq r || sideOf(1[0], 1[b], p) \leq -r)
    return false;
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
 return sgn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon:

```
(-1, -1) if no collision,
(i, -1) if touching the corner i,
(i, i) if along side (i, i + 1),
(i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner
i is crossed, this is treated as happening on side (i, i + 1). The points are
returned in the same order as the line hits the polygon. extrVertex returns
the point of a hull with the max projection onto a line.
```

```
Time: \mathcal{O}(\log n)
"Point.h"
```

```
7cf45b, 39 lines
#define cmp(i,j) sqn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
  if (extr(0)) return 0;
  while (10 + 1 < hi) {
    int m = (10 + hi) / 2;
    if (extr(m)) return m;
    int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
  return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
  int endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid \mid cmpL(endB) > 0)
    return {-1, -1};
  array<int, 2> res;
  rep(i,0,2) {
    int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
      int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;</pre>
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
    res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
 if (res[0] == res[1]) return {res[0], -1};
  if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
      case 0: return {res[0], res[0]};
      case 2: return {res[1], res[1]};
 return res;
```

7.3 Misc. Point Set Problems

```
ClosestPair.h
```

```
Description: Finds the closest pair of points.
```

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                                      ac41a6, 17 lines
typedef Point<11> P;
```

```
pair<P, P> closest (vector<P> v) {
  assert (sz(v) > 1);
  set<P> S:
  sort(all(v), [](P a, P b) { return a.y < b.y; });
  pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
  int j = 0;
  for (P p : v) {
    P d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y \le p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
      ret = min(ret, \{(*lo - p).dist2(), \{*lo, p\}\});
    S.insert(p);
  return ret.second;
```

kdTree.h

Description: KD-tree (2d, can be extended to 3d)

```
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on v(const P& a, const P& b) { return a.v < b.v; }
struct Node {
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
   T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
   return (P(x,y) - p).dist2();
 Node(vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
     x0 = min(x0, p.x); x1 = max(x1, p.x);
     y0 = min(y0, p.y); y1 = max(y1, p.y);
   if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
     sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
     int half = sz(vp)/2;
     first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
 Node* root;
 KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
```

pair<T, P> search(Node *node, const P& p) {

// uncomment if we should not find the point itself:

if (!node->first) {

BdHull

12

```
// if (p = node \rightarrow pt) return {INF, P()};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    /\!/ search closest side first, other side if needed
    auto best = search(f, p);
   if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest (const P& p) {
   return search (root, p);
};
7.4 3D
3dHull.h
Description: Computes all faces of the 3-dimension hull of a point set. *No
four points must be coplanar*, or else random results will be returned. All
faces will point outwards.
Time: \mathcal{O}\left(n^2\right)
"Point3D.h"
                                                       5b4<u>5fc</u>, 49 lines
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a != -1) + (b != -1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
 vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
     F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
        E(a,c).rem(f.b);
       E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
        FS.pop_back();
    int nw = sz(FS);
```

```
3dHull
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
 return FS;
};
```

01em

FHQ Treap -

```
mt19937 myRand(chrono::steady_clock::now().time_since_epoch().count6:
           ());
     struct Node
         int val;
         int rd = myRand();
         Node *lf = nullptr;
         Node *rt = nullptr;
         int cnt = 1;
11
12
     int Cnt(Node *a)
13
14
         return a ? a->cnt : 0;
15
16
     void Update(Node *a)
17
18
19
         a \rightarrow cnt = Cnt(a \rightarrow lf) + Cnt(a \rightarrow rt) + 1;
20
21
     void Split(Node *a, int pivot, Node *&1, Node *&r)
22
23
24
         if (a == nullptr)
25
26
             1 = nullptr;
27
             r = nullptr;
28
             return;
29
30
         if (a->val < pivot)</pre>
31
32
             1 = a;
33
             Split(a->rt, pivot, a->rt, r);
34
             Update(a);
35
             return;
36
37
38
         Split(a->lf, pivot, 1, a->lf);
39
         Update(a);
                                                                              100
40
                                                                              101
41
                                                                              102
     void SplitRk(Node *a, int pivot, Node *&1, Node *&r)
42
                                                                              103
43
                                                                              104
44
         if (a == nullptr)
                                                                              105
45
                                                                              106
46
             1 = nullptr;
                                                                              107
47
             r = nullptr;
                                                                              108
48
             return;
                                                                              109
49
50
         if (Cnt(a->lf) < pivot)</pre>
                                                                              111
51
52
                                                                              113
53
             SplitRk(a->rt, pivot - Cnt(a->lf) - 1, a->rt, r);
54
             Update(a);
                                                                              115
55
             return;
```

```
SplitRk(a->lf, pivot, 1, a->lf);
   Update(a);
Node *Merge(Node *1, Node *r)
   if (1 == nullptr)
       return r;
   if (r == nullptr)
       return 1;
   if (1->rd < r->rd)
       r->lf = Merge(1, r->lf);
       Update(r);
       return r;
   1->rt = Merge(1->rt, r);
   Update(1):
   return 1;
void Show(Node *a)
   if (a)
       cout << '(';
       Show(a->lf);
       cout << a->val << ',' << a->cnt;
       Show(a->rt);
       cout << ')';
void Insert(int x)
   Node *1, *r;
   Split(root, x, 1, r);
   root = Merge(Merge(1, new Node({x})), r);
void Delete(int x)
   Node *1, *mid, *r;
   Split(root, x, 1, r);
   SplitRk(r, 1, mid, r);
   delete mid;
   root = Merge(1, r);
int Rank(int x)
   Node *1, *r;
```

Split(root, x, 1, r);

57

58

59

```
int res = Cnt(1) + 1;
117
118
          root = Merge(1, r);
119
          return res;
120
121
122
      int Get(int x)
123
124
          Node *1, *mid, *r;
125
          SplitRk(root, x - 1, 1, r);
126
          SplitRk(r, 1, mid, r);
          int res = mid->val;
127
128
          root = Merge(Merge(1, mid), r);
129
          return res;
130
131
132
      int Prev(int x)
133
134
          Node *1, *mid, *r;
135
          Split(root, x, 1, r);
136
          SplitRk(1, Cnt(1) - 1, 1, mid);
137
          int res = mid->val;
138
          root = Merge(Merge(1, mid), r);
139
          return res:
140
141
142
      int Next(int x)
143
144
          Node *1, *mid, *r;
145
          Split(root, x + 1, 1, r);
146
          SplitRk(r, 1, mid, r);
          int res = mid->val;
147
148
          root = Merge(Merge(1, mid), r);
149
          return res;
150
15
     Node *root;
      int n;
      int m;
```

Cost Flow -

```
const int INF = 0x3f3f3f3f;

const int MAXN = 8000;
const int MAXM = 60000;

struct Edge
{
   int u;
   ll cap;
   ll w;
   int nxt;
};

Edge edges[MAXM];
```

```
int cc = 2:
16
     int first[MAXN];
     int dqh[MAXN]; //
17
18
19
     void Add(int x, int y, int cap, int w)
20
21
         edges[cc].u = y;
         edges[cc].cap = cap;
22
23
         edges[cc].w = w;
24
         edges[cc].nxt = first[x];
25
         first[x] = cc;
26
27
28
29
     void AddEdge(int x, int y, int flow, int w)
30
31
         Add(x, y, flow, w);
         Add(y, x, 0, -w);
32
33
34
35
     int n;
36
     int m;
     int p[60][60];
37
38
     int w[60][60];
39
     const int S = 1;
     const int T = 2;
40
     int N;
41
42
43
     int room[60][60];
     int heng[60][60];
44
     int shu[60][60];
45
46
47
     ll h[MAXN];
     long long cost = 0;
     11 \text{ flow = 0};
49
     11 dis[MAXN];
50
51
52
     bool SPFA()
53
54
         memset(h, 0x3f, sizeof(h));
55
56
         queue<pair<11, int>> que;
57
         que.push({0, S});
58
         while (que.size())
59
60
             auto [d, x] = que.front();
61
             que.pop();
62
             if (d == h[x])
63
64
                for (int i = first[x]; i; i = edges[i].nxt)
65
66
                    int y = edges[i].u;
                    if (edges[i].cap && d + edges[i].w < h[y])</pre>
67
68
69
                        h[y] = d + edges[i].w;
70
                        que.push({h[y], y});
71
72
73
            }
        }
74
75
         return h[T] < INF;</pre>
76
77
78
     void Flow(int x, ll flow)
79
80
         edges[x].cap -= flow;
         edges[x ^ 1].cap += flow;
```

```
bool vis[MAXN];
      11 Dfs(int x, 11 flow)
         if (x == T)
         {
             return flow:
         vis[x] = true;
         11 curFlow = 0:
         for (auto &i = dqh[x]; i; i = edges[i].nxt)
             int y = edges[i].u;
             if (!vis[y] && h[y] == h[x] + edges[i].w && edges[i].cap)
                 11 f = Dfs(y, min(flow - curFlow, edges[i].cap));
100
                 if (f)
101
102
                     Flow(i, f);
                     curFlow += f;
103
                     if (curFlow == flow)
104
105
106
                         vis[x] = false;
107
                         return flow;
108
                }
109
110
             }
111
         vis[x] = false;
112
113
         return curFlow;
114
115
      void Dinic()
116
117
118
         while (SPFA())
119
             for (int i = 1; i <= N; i++)</pre>
120
121
122
                 dqh[i] = first[i];
123
124
             11 curFlow = Dfs(S, INF);
125
             flow += curFlow:
126
             cost += (long long)curFlow * h[T];
127
```

LCT

```
const int MAXN = 100010;
int n;

namespace LCT
{
    int fa[MAXN];
    int ch[MAXN][2];
    int sz[MAXN];
    bool tag[MAXN];
#define ls ch[p][0]
#define rs ch[p][1]
    void PushUp(int p)
```

65

66

67

```
sz[p] = sz[ls] + sz[rs] + 1;
   void Flip(int p)
       tag[p] ^= true;
       swap(ls, rs);
   void PushDown(int p)
       if (tag[p])
          if (ls)
              Flip(ls);
          if (rs)
              Flip(rs);
          tag[p] = false;
   }
   void PushAll(int p)
       if (tag[p])
          if (ls)
              Flip(ls);
          if (rs)
              Flip(rs);
          PushAll(ls);
          PushAll(rs);
          tag[p] = false;
   }
   void Show()
       for (int j = 1; j <= n; j++)</pre>
          cout << "fa " << j << " = " << LCT::fa[j] << ", ";
          cout << "ls " << j << " = " << ch[j][0] << ", ";
          cout << "rs " << j << " = " << ch[j][1] << ", ";
          cout << "tag " << j << " = " << tag[j] << ", ";
          cout << "sz " << j << " = " << sz[j] << endl;
       cout << endl;
#define Get(x) (ch[fa[x]][1] == x)
#define IsRoot(x) (ch[fa[x]][0] != x && ch[fa[x]][1] != x)
   void Rotate(int x)
       int y = fa[x];
       int z = fa[y];
       bool k = Get(x);
       if (!IsRoot(y))
          ch[z][ch[z][1] == y] = x;
       ch[y][k] = ch[x][!k];
       fa[ch[x][!k]] = y;
       ch[x][!k] = y;
       fa[v] = x;
       fa[x] = z;
       PushUp(y);
       PushUp(x);
   void Update(int p)
       if (!IsRoot(p))
```

```
Update(fa[p]);
 82
 83
             PushDown(p);
 84
 85
          void Splay(int x)
 86
 87
              Update(x):
              for (int f; f = fa[x], !IsRoot(x); Rotate(x))
 88
 89
 90
                  if (!IsRoot(f))
 91
 92
                     Rotate(Get(f) == Get(x) ? f : x):
 93
             }
 94
          }
 95
          int Access(int x)
 96
 97
 98
 99
              for (p = 0; x; p = x, x = fa[x])
100
101
                  Splay(x);
                  ch[x][1] = p;
102
                 PushUp(x);
103
104
             }
105
              return p;
106
          void MakeRoot(int p)
107
108
109
             p = Access(p);
110
              Flip(p);
111
112
          void Link(int x, int y)
113
114
              MakeRoot(x):
              Splay(x);
115
116
              fa[x] = y;
117
          int Dis(int x, int y)
118
119
120
              MakeRoot(x);
              Access(y);
121
122
              Splay(y);
123
              return sz[v] - 1;
124
125
      }
126
127
      struct Diameter
128
129
          int x;
130
          int y;
          int len;
131
132
133
      bool Cmp(const Diameter &a, const Diameter &b)
134
135
136
          return a.len < b.len;</pre>
137
138
      int p[MAXN];
139
      Diameter diameters[MAXN];
140
141
      int curRes = 0;
142
143
144
      int P(int a)
      ſ
145
146
          if (a == p[a])
147
```

```
148
             return a:
149
         return p[a] = P(p[a]);
150
151
152
      pair<int, int> Farthest(int pa, int a)
153
154
155
          auto [x, y, d] = diameters[pa];
156
          int disx = LCT::Dis(x, a):
15
          int disy = LCT::Dis(y, a);
158
         if (disx < disy)</pre>
159
160
             return {y, disy};
161
163
         return {x, disx};
163
164
      void Init()
165
166
          for (int i = 1; i <= n; i++)</pre>
16
168
169
             p[i] = i;
             diameters[i] = {i, i, 0};
170
             LCT::sz[i] = 1;
17
172
173
174
      void Link(int a, int b)
175
176
          int pa = P(a);
177
          int pb = P(b);
178
         if (diameters[a].len < diameters[b].len)
179
180
181
             swap(pa, pb);
182
             swap(a, b);
183
          auto [fara, disa] = Farthest(pa, a);
184
          auto [farb, disb] = Farthest(pb, b);
185
         Diameter newD = {fara, farb, disa + disb + 1};
186
187
          curRes -= diameters[pa].len + diameters[pb].len;
188
         diameters[pa] = max({diameters[pa], diameters[pb], newD}, Cmp);56
          curRes += diameters[pa].len;
189
190
         p[pb] = pa;
         LCT::Link(b, a):
191
```

SA

```
#include <iostream>
#include <vector>

using namespace std;

struct SA {
    string s;
    int n;
    vector<int> rk;
    vector<int> oldrk;
    vector<int> sa;
    vector<int> id;
    vector<int> int;
    vector<int> int;
    vector<int> beight;
    vector<int> beight;
    vector<int> height;
    vector<int> height;
    vector<int> height;
```

```
bool Same(int a, int b, int w) {
   return a < n - w && b < n - w && oldrk[a] == oldrk[b] &&
       oldrk[a + w] == oldrk[b + w] ||
       a \ge n - w \&\& b \ge n - w \&\& oldrk[a] == oldrk[b];
SA(const string& s, int m) : s(s) {
   n = s.size();
   int p;
   rk.resize(n):
   oldrk.resize(n);
   sa.resize(n):
   id.resize(n);
   cnt.resize(m);
   height.resize(n);
   for (int i = 0; i < n; i++) {</pre>
       rk[i] = s[i];
       cnt[rk[i]]++;
   for (int i = 1; i < m; i++) {</pre>
       cnt[i] += cnt[i - 1];
   for (int i = n - 1; i > -1; i--) {
       sa[--cnt[rk[i]]] = i;
   for (int w = 1;; w <<= 1, m = p) {</pre>
       int cur = 0;
       for (int i = n - w; i < n; i++) {</pre>
           id[cur] = i;
           cur++;
       for (int i = 0; i < n; i++) {</pre>
           if (sa[i] >= w) {
               id[cur] = sa[i] - w;
               cur++;
           }
       cnt.assign(m, 0);
       for (int i = 0; i < n; i++) {</pre>
           cnt[rk[i]]++;
       for (int i = 1; i < m; i++) {</pre>
           cnt[i] += cnt[i - 1];
       for (int i = n - 1; i > -1; i--) {
           sa[--cnt[rk[id[i]]]] = id[i];
       p = 0;
       swap(rk, oldrk);
       for (int i = 0; i < n; i++) {</pre>
           if (i && !Same(sa[i - 1], sa[i], w)) {
              p++;
           rk[sa[i]] = p;
       p++;
       if (p == n) {
           break:
   for (int i = 0, k = 0; i < n; i++) {
       if (rk[i]) {
           if (k) {
              k--:
           int last = sa[rk[i] - 1];
```

```
while (i + k < n && last + k < n && s[i + k] == s[ 36|
                         k++;
 85
                     height[rk[i]] = k;
 86
 87
 88
         }
 89
      }:
 90
 91
      int main() {
          ios::sync_with_stdio(false);
 92
 93
          cin.tie(nullptr);
 94
          string s;
 95
          cin >> s;
 96
          SA sa(s, 128);
 97
          for (int i = 0; i < sa.n; i++) {</pre>
              cout << sa.sa[i] << ' ';
 98
 99
100
          cout << '\n';
          for (int i = 0; i < sa.n; i++) {</pre>
101
              cout << sa.height[i] << ' ';</pre>
102
103
104
          return 0;
105
```

Lyndon

```
#include <iostream>
                                                                           25
     using namespace std;
     int res;
     string s;
     int n;
     int main() {
        ios::sync_with_stdio(false);
11
        cin.tie(0):
12
        cin >> s;
13
        n = s.length();
14
        int i = 0, j = 0, k = 1;
15
         while (i < n) {
            while (k < n \&\& s[k] >= s[j]) {
16
                if (s[k] == s[j]) {
17
18
                    j++;
19
20
                else {
21
                    j = i;
22
23
                k++;
24
25
            while (i <= j) {</pre>
26
                i = min(n, i + k - j);
                // cout << i << ',' << j << ',' << k << endl;
27
28
                res ^= i:
29
            // cout << i << ',' << j << ',' << k << endl;
30
31
            j = i;
            k = i + 1;
32
33
            continue;
34
         cout << res:
```

```
return 0;
```

SAM

19

20

21

22

```
class Solution {
   struct Node {
       array<int, 26> nxt;
       int len = 0;
       int link = -1:
       Node() { nxt.fill(-1); }
   vector<Node> nodes;
   int last;
   void Init() {
       nodes = \{\{\}\};
       last = 0:
   void Insert(int c) {
       int cur = nodes.size();
       nodes.emplace_back();
       nodes[cur].len = nodes[last].len + 1;
       int p = last;
       while (p != -1 && nodes[p].nxt[c] == -1) {
          nodes[p].nxt[c] = cur;
          p = nodes[p].link;
       if (p == -1) {
          nodes[cur].link = 0;
       } else {
          int q = nodes[p].nxt[c];
          if (nodes[q].len == nodes[p].len + 1) {
              nodes[cur].link = q;
          } else {
              int clone = nodes.size();
              nodes.push_back(nodes[q]);
              nodes[clone].len = nodes[p].len + 1;
              nodes[cur].link = clone;
              nodes[q].link = clone;
              while (p != -1 && nodes[p].nxt[c] == q) {
                 nodes[p].nxt[c] = clone;
                 p = nodes[p].link;
          }
       last = cur;
   bool Match(const string& s) {
       int cur = 0;
       for (const auto& c : s) {
          cur = nodes[cur].nxt[c - 'a'];
          if (cur == -1) {
              return false;
       return true;
public:
   int numOfStrings(vector<string>& patterns, const string& word)
       Init();
       for (const auto& c : word) {
```

```
Insert(c - 'a');
}
int res = 0;
for (const auto& s : patterns) {
    res += Match(s);
}
return res;
}
};
```

PAM

61

62

63

64

65

```
#include <iostream>
#include <unordered_map>
using namespace std;
struct Node {
    int len = 0;
    Node* fail = nullptr;
    unordered_map<char, Node*> nxt;
    int cnt = 0;
};
string s;
int k = 0;
Node* ji = new Node({ -1 });
Node* ou = new Node({ 0, ji });
Node* last = ou;
Node* cur = ii:
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cin >> s:
    for (int i = 0; i < s.length(); i++) {</pre>
       char c = (s[i] - 97 + k) \% 26 + 97;
       while (i - last->len <= 0 || s[i - last->len - 1] != c) {
           last = last->fail;
       auto it = last->nxt.find(c);
       if (it == last->nxt.end()) {
           it = last->nxt.insert({ c, new Node({last->len + 2,
                nullptr, {}, 0}) }).first;
       while (i - cur->len <= 0 || s[i - cur->len - 1] != c) {
           cur = cur->fail;
       if (cur == last) {
           cur = cur->fail;
           if (cur) {
              while (i - cur->len <= 0 || s[i - cur->len - 1] != c
                   ) {
                  cur = cur->fail;
              }
       cur = cur ? cur->nxt[c] : ou;
       last = it->second;
       last->fail = cur;
       k = last->cnt = cur->cnt + 1;
```

```
50 cout << k << '';
51 }
52 return 0;
53 }
```

NTT

```
void Init() {
        while (N \le n + m) {
            N <<= 1;
        rev.resize(N);
        F.resize(N);
        G.resize(N):
        FG.resize(N):
        for (int i = 1; i < N; i++) {</pre>
            rev[i] = rev[i >> 1] >> 1 | (i & 1) * (N >> 1);
11
12
    void NTT(vector<int>& f, int d) {
15
        11 wn:
        11 w;
16
17
        int k;
18
        11 p, q;
19
        for (int i = 1; i < N; i++) {</pre>
20
            if (i < rev[i]) {</pre>
21
                swap(f[i], f[rev[i]]);
22
23
24
        for (int len = 2; len <= N; len <<= 1) {</pre>
            k = len >> 1;
            wn = Pow(YG, (MOD - 1) / len);
26
            for (int i = 0; i < N; i += len) {</pre>
27
                for (int j = i; j < i + k; j++) {
                    p = f[j];
                    q = f[j + k] * w % MOD;
31
                    f[j] = p + q;
                    if (f[i] >= MOD) {
                       f[j] -= MOD;
35
                    f[j + k] = p - q;
36
                    if (f[j + k] < 0) {
                       f[i + k] += MOD;
39
40
                    w = w * wn % MOD:
41
            }
42
43
44
        if (d == -1) {
45
            reverse(f.begin() + 1, f.end());
            11 \text{ inv} = Inv(N);
            for (int i = 0; i < N; i++) {</pre>
                f[i] = f[i] * inv % MOD;
49
            }
50
        }
    }
```

```
x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
```

```
#include <iostream>
     #include <vector>
     #include <cstring>
     #include <algorithm>
     #include <bit>
     #define 11 long long
     using namespace std;
     const int MOD = 998244353:
     const int YG = 3;
     const int N = 1 << 18;</pre>
    11 Pow(11 a, int b) {
        11 res = 1:
        while (b) {
            if (b & 1) {
               res = res * a % MOD;
            a = a * a % MOD;
            b >>= 1;
        return res;
    }
    11 Inv(11 a) {
        return Pow(a, MOD - 2);
    int n;
     int rev[N];
                                                                          101
    int F[N]:
                                                                          102
     int G[N]:
                                                                          103
    int inv[N]:
                                                                          104
                                                                          105
     void InitMain() {
                                                                          106
        inv[1] = 1:
                                                                          107
        for (int i = 2; i < N; i++) {</pre>
                                                                          108
            inv[i] = (11)(MOD - MOD / i) * inv[MOD % i] % MOD;
                                                                          109
                                                                          110
    }
                                                                          111
                                                                          112
     void Init(int lim) {
        for (int i = 1; i < lim; i++) {</pre>
                                                                         113
            rev[i] = rev[i >> 1] >> 1 | (i & 1) * (lim >> 1);
                                                                         114
                                                                         115
    }
                                                                         116
                                                                         117
     void NTT(int* f, int d, int lim) {
                                                                         118
        11 wn;
                                                                          119
        11 w:
        int k;
                                                                         122
        for (int i = 1; i < lim; i++) {</pre>
            if (i < rev[i]) {</pre>
                                                                         124
                swap(f[i], f[rev[i]]);
                                                                         125
                                                                          126
6
                                                                          127
        for (int len = 2: len <= lim: len <<= 1) {
                                                                          128
            k = len >> 1;
                                                                          129
64
            wn = Pow(YG, (MOD - 1) / len);
                                                                          130
            for (int i = 0: i < lim: i += len) {</pre>
65
                                                                          131
```

```
for (int j = i; j < i + k; j++) {</pre>
              p = f[i];
              q = f[j + k] * w % MOD;
              f[j] = p + q;
              if (f[j] >= MOD) {
                  f[j] -= MOD;
              f[j + k] = p - q;
               if(f[j+k]<0){
                  f[j + k] += MOD;
              w = w * wn % MOD;
       }
    }
    if (d == -1) {
       reverse(f + 1, f + lim):
       11 inv = Inv(lim):
       for (int i = 0; i < lim; i++) {</pre>
           f[i] = f[i] * inv % MOD;
   }
}
// fg = 1
// fg - 1 = 0
// f - 1 / g = 0
// g = g - (f - 1 / g) / (1 / g^2) = 2g - fg^2 = g(2 - fg)
int cur1[N];
int cur2[N];
void Inv(int* f, int* g, int lim) {
    g[0] = Inv(f[0]);
    for (int len = 2; len <= lim; len <<= 1) {
        int k = len << 1;</pre>
       int s = len >> 1:
       memcpy(cur1, f, len * sizeof(int));
       memset(cur1 + len, 0, len * sizeof(int));
        memcpy(cur2, g, s * sizeof(int));
        memset(cur2 + s, 0, (k - s) * sizeof(int));
        Init(k):
       NTT(cur1, 1, k);
        NTT(cur2, 1, k);
        for (int i = 0; i < k; i++) {</pre>
           g[i] = cur2[i] * (2 + MOD - (11)cur1[i] * cur2[i] % MOD)
        NTT(g, -1, k);
// g^2 = f
// g ^2 - f = 0
//g = g - (g^2 - f) / 2g = (g^2 + f) / 2g
int cur3[N];
void Sqrt(int* f, int* g, int lim) {
    for (int len = 2; len <= lim; len <<= 1) {
       int k = len << 1;</pre>
        int s = len >> 1:
       memset(g + s, 0, s * sizeof(int));
       Inv(g, cur3, len);
        memset(cur3 + len, 0, len * sizeof(int));
        memcpy(cur1, f, len * sizeof(int));
```

```
133
             memset(cur1 + len. 0. len * sizeof(int)):
                                                                               void Ln(int* f, int* g, int lim) {
134
             memcpy(cur2, g, s * sizeof(int));
                                                                        166
                                                                                  int k = lim << 1;</pre>
             memset(cur2 + s, 0, (k - s) * sizeof(int));
                                                                                  Inv(f, cur3, lim);
135
                                                                        167
                                                                                  memset(cur3 + lim, 0, lim * sizeof(int));
136
                                                                        168
137
             NTT(cur1, 1, k);
                                                                        169
                                                                                  Derivative(f, cur1, lim);
             NTT(cur2, 1, k);
                                                                                  memset(cur1 + lim, 0, lim * sizeof(int));
138
                                                                        170
139
             NTT(cur3, 1, k);
                                                                        171
                                                                                  Init(k):
             for (int i = 0; i < k; i++) {</pre>
                                                                                  NTT(cur3, 1, k);
140
                                                                         172
141
                 g[i] = ((11)cur2[i] * cur2[i] + cur1[i]) % MOD * ((MOD #73
                                                                                  NTT(cur1, 1, k);
                       1) / 2) % MOD * cur3[i] % MOD;
                                                                        174
                                                                                  for (int i = 0; i < k; i++) {
                                                                                      cur1[i] = (11)cur1[i] * cur3[i] % MOD;
                                                                         175
142
143
             NTT(g, -1, k);
                                                                        176
                                                                        177
                                                                                  NTT(cur1, -1, k);
144
     }
                                                                                  Integrate(cur1, g, lim);
                                                                        178
145
146
                                                                        179
147
     void Derivative(int* f, int* g, int lim) {
                                                                        180
         for (int i = 1; i < lim; i++) {
                                                                              // g = e ^ f
148
                                                                        181
             g[i - 1] = (11)f[i] * i % MOD;
                                                                        182
                                                                              // lng - f = 0
149
                                                                              // g = g - (lng - f) / (1 / g) = g(1 - lng + f)
150
                                                                        183
         g[lim - 1] = 0;
151
                                                                        184
                                                                        185
                                                                              void Exp(int* f, int* g, int lim) {
152
                                                                        186
                                                                                  g[0] = 1;
153
     void Integrate(int* f, int* g, int lim) {
                                                                        187
                                                                                  for (int len = 2; len <= lim; len <<= 1) {
154
                                                                                      int k = len << 1;</pre>
155
                                                                         188
156
         for (int i = 1; i < lim; i++) {</pre>
                                                                         189
                                                                                      int s = len >> 1;
             g[i] = (11)f[i - 1] * inv[i] % MOD;
                                                                         190
                                                                                      memset(g + s, 0, s * sizeof(int));
157
                                                                         191
                                                                                      Ln(g, cur3, len);
158
     }
                                                                         192
                                                                                      memset(cur3 + len, 0, len * sizeof(int));
159
                                                                                      memcpy(cur1, f, len * sizeof(int));
                                                                         193
160
                                                                                      memset(cur1 + len, 0, len * sizeof(int));
     // g = ln(f)
                                                                         194
161
     // dg = df / f
                                                                         195
                                                                                      memcpy(cur2, g, s * sizeof(int));
162
                                                                                      memset(cur2 + s, 0, (k - s) * sizeof(int));
     // g = int(df / f)
                                                                         196
                                                                         197
                                                                                      Init(k);
```

```
198
             NTT(cur1, 1, k):
199
             NTT(cur2, 1, k);
             NTT(cur3, 1, k);
200
201
             for (int i = 0; i < k; i++) {</pre>
202
                g[i] = (11)cur2[i] * (MOD + 1 - cur3[i] + cur1[i]) % MOD
203
204
             NTT(g, -1, k);
205
206
     }
207
208
     void Solve() {
209
         cin >> n;
210
         int lim = bit_ceil((unsigned)n);
         for (int i = 0; i < n; i++) {
211
212
             cin >> F[i];
213
214
         Exp(F, G, lim);
         for (int i = 0; i < n; i++) {
215
             cout << G[i] << ' ';
216
217
     }
218
219
220
     int main() {
221
         ios::sync_with_stdio(false);
222
         cin.tie(nullptr);
223
         InitMain();
224
         Solve();
225
         return 0;
226 }
```