Learning Objectives:

- To understand the concepts of support, lift and confidence of rules
- To implement association rules using Apriori algorithm in R

Activity:

a. Using the purchase data of stationery store across three days given below:

Trans Id	Item Purchased	Trans Id	Item Purchased
1	Pencils	5	Erasers
1	Markers	6	Envelop
1	Highlighters	7	Markers
1	Papers	7	Erasers
2	Markers	8	Pencils
2	Erasers	8	Markers
3	Stapler Pins	8	Stapler Pins
3	Papers	8	Post-It
3	Erasers	8	Highlighter
3	Card holders	8	Papers
3	Highlighters	8	Erasers
4	Papers	9	Stapler Pins
4	Erasers	9	Post-It
4	Card holders	9	Markers
5	Markers	9	Erasers
5	Post-It	10	Envelop

- 1. Manually compute rules using minimum support = 50%
- 2. Compute lift for the above rules
- b. Association Rules for transaction data: Steps to follow:
 - Install and load 'arules' package install.packages("arules")
 - Read 'Transactions.csv' data into R such that the arules package treats the input csv file as "transaction" data.

trans = read.transactions(file="Transactions.csv", format="single",sep=",",cols =c(1,2))

 Explore and understand the data and items of transaction data inspect(trans) trans image(trans)

itemFrequency(trans)
itemFrequencyPlot(trans)

• Implementing association mining using 'Apriori' algorithm to extract rules

rules <- apriori(trans,parameter = list(sup = 0.5, conf = 0.6,target="rules"))

- Understanding the rules summary(rules) inspect(rules)
- c. Association Rules for "Flight Delay" dataset:

Generate the rules and identify the patterns.

- 1. Read the data into R
- 2. Look at the summary of all the variables and convert the following variables as factors
 - Weather
 - DAY_WEEK
 - Flight Status
- 3. Bin the numeric variable 'CRS_DEP_TIME' into 4 bins as follows: If time is between 6 AM to 12 noon code as 1 and If the time is between 12.01 PM to 6 PM code as 2, etc.
- 4. Convert the preprocessed data frame in a transactions object. flight <- as(data, "transactions")
- 5.Apply 'arules' algorithm and experiment with various support, lift and confidence values.
- 6.Inspect all the rules.
- 7.Filter the rules with specific LHS and RHS conditions E.g.; Filter the rules with Flighstatus=0
- 8. Filter redundant rules
- 9. Write the Rules into CSV

Assignment:

Consider the dataset "titanic_data.csv". Do necessary data preprocessing if any and develop top association rules for each category Survived = Yes and Survived = No. To perform this, apply 'arules' algorithm and experiment with various support, lift and confidence values.

