RLC串联电路的暂态特性

姓名:金智勇 年级:大二 学号:2018302020051

一.实验目的

1.观测 RC、RL 电路的暂(瞬)态过程,加深对电容、电感特性的认识和对时间常数 $RC, \frac{L}{R}, \frac{2L}{R}$ 的理解。

二.仪器用具

qucs-s中的低频信号发生器(使用其中方波信号)、示波器、电感器、电容器及交流电阻箱。

三.实验原理

电压由一个值跳变到另一个值时称为"阶跃电压",如图 3-11-1 所示。如果电路中包含有电容、电感等元件,则在阶跃电压的作用下,电路状态的变化通常经过一定的时间才能稳定下来。电路在阶跃电压的作用下,从开始发生变化到变为另一种稳定状态的过渡过程称为"暂态过程"。这一过程主要由电容、电感的特性所决定。

1. RC 串联电路的暂态过程

• RC 电路暂态过程可以分为充电过程和放电过程,首先研究充电过程。

•

- 图 3-11-2 为研究 RC 暂态过程的电路。当开关 K 接到"1"点时,电源 E 通过电阻 R 对 C 充电,此充电过程满足如下方程
- $\bullet \ R\frac{dq}{dt} + \frac{q}{C} = E \tag{3-11-1}$
- 式中,q 是电容 C 上的电荷, $\frac{dq}{dt}$ 是电路中的电流。考虑初始条件 $t=0,q_0=0$,便得到它的解为
- $q = CE(1 e^{-t/RC})$ (3-11-2)
- 因而有
- $u_C = \frac{q}{C} = E(1 e^{-t/RC})$ (3-11-3)
- $i = \frac{dq}{dt} = \frac{E}{R}e^{-t/RC}$ (3-11-4)
- $u_R = Ri = Ee^{-t/RC}$ (3-11-5)
- 以上四式都是指数形式,我们只需观测电容电压 u_C 随时间的变化规律,就可以了解其余三个量随时间的变化规律。其中 $RC=\tau$ 称为电路的时间常数。充电和放电的快慢由 RC 决定。由(3-11-3)式可得,当 $t=\tau$ 时, $u_C=0.632E$ 。

图 3-11-3

• 图 3-11-3 即为 $u_C(t)$ 曲线。由图 3-11-3 可见:τ 越大,充电过程越慢。 其原因是不难理解的。

• 当增大到 E 时,电路即达到了稳定状态,此后若将图 3-11-2 中的开关 K 由"1"点迅速转接到"2"点,则电容 C 将通过 R 放电,此放电过程的微分 方程为

• $R \frac{dq}{dt} + \frac{q}{C} = 0$ (3-11-6)

• 考虑初始条件 t=0 时 , $q_0=CE$, 于是得到它的解

• $q = CEe^{-t/RC}$

• $u_C = \frac{q}{C} = Ee^{t/RC}$ (3-11-8) • $i = \frac{dq}{dt} = -\frac{E}{R}e^{-t/RC}$ (3-11-9)

• $u = R = R = -E e^{-t/RC}$ (3-11-10)

• 其中 $i = u_R$ 两等式右边的负号表示放电电流方向与充电电流方向相反。 由公式可知放电过程也是按指数形式变化的。当 $t=\tau$ 时, $u_C=0.368E$ 。 u_C 随 t 的变化关系如图 3-11-4 所示。

图 3-11-4

图 3-11-5

2. RL 电路的暂态过程

- RL 电路的暂态过程分为电流增长和衰减两个过程。图 3-11-5 就是实现 这两个过程的电路图。
- 当开关 K 接到"1"时,为电流增长过程。设 t 时刻的电流为 i ,电感 L 上 的感应电动势为, $\epsilon=-L\frac{di}{dt}$,则有电路方程
- $L\frac{di}{dt} + Ri = E$ (3-11-11)
- 由于 L 的影响,电流不能突变。因此初始条件为 t=0 时,i=0。方程的解为:
- $i = \frac{E}{R}(1 e^{-\frac{R}{L}t})$ (3-11-12)
- $u_R = Ri = E(1 e^{-\frac{R}{L}t})$ (3-11-13)
- $u_L = L \frac{di}{dt} = E e^{-\frac{R}{L}t}$ (3-11-14)
- 式中: $\frac{L}{R} = \tau$ 称为电路时间常数。
- 当电流i增长到最大值 $i_m=\frac{E}{R}$ 时,电路进入稳定状态。 此时若将开关K 由"1"迅速接到"2",则为电流衰减过程,其电路方程为
- $L\frac{di}{dt} + Ri = 0$ (3-11-15)
- 考虑初始条件 t=0 时, $i=\frac{E}{R}$,便得到它的解为
- $i = \frac{E}{R}e^{-\frac{E}{L}t}$ (3-11-16)
- $u_R = Ri = Ee^{-\frac{R}{L}t}$ (3-11-17)
- $u_L = L \frac{di}{dt} = -E e^{-\frac{R}{L}t}$ (3-11-18)
- (3-11-18) 式右边的负号表示电流衰减时 L 上的自感电动势与电流的方向相反,其时间常数仍为 $\frac{L}{R}=\tau$ 。
- 若将 RL 电路与 RC 电路的解作比较,可以看出:两者的电流、电压都同样按指数规律变化。

• 观察 RL 电路中 R 上的电压 u_R 的变化,就像观测 RC 电路的 u_C 变化一样,此时 u_R 反映了 L 所储存的能量状态。

四.实验内容

1. 观察 RC 电路的 u_C 和 τ

- ・ 如上图所示连接电路 , $R=6000\Omega, C=0.015 \mbox{\mbox{miu}} F$,电源 f=500Hz, E=3V
- 开始模拟,记录 u_C-t 数据
- 用最小二乘法算出 τ 值,将 R 值及 τ 的理论值和实际值记录与表格之中。
- 改变 R 的值, 重复以上步骤。

R/Ω	$ au$ 理论值 / $ imes 10^{-6} \Omega F$	$ au$ 实际值 / $ imes 10^{-6} \Omega F$
6000	90.000	89.918
7000	105.00	104.93

R/Ω	$ au$ 理论值 / $ imes 10^{-6} \Omega F$	$ au$ 实际值 / $ imes 10^{-6} \Omega F$
8000	120.00	119.94
9000	135.00	134.94
10000	150.00	149.95

2. 观察 RL 电路的 u_C 并测 au

- 如上图所示连接电路 , $R=600\Omega, L=0.1H$, 电源 f=500Hz, E=3V
- 开始模拟,记录 u_L-t 数据
- 用最小二乘法算出 τ 值,将 R 值及 τ 的理论值和实际值记录与表格之中。
- 改变 R 的值, 重复以上步骤。

R/Ω $ au$ 理论值 / $(imes 10^{-6} H/\Omega)$ $ au$ 实际值 / $(imes 10^{-6} H/\Omega)$
--

R/Ω	$ au$ 理论值 / $(imes 10^{-6} H/\Omega)$	$ au$ 实际值 / $(imes 10^{-6} H/\Omega)$
600.0	166.67	166.62
700.0	142.86	142.80
800.0	125.00	124.94
900.0	111.11	111.04

五.预习思考

1. 在 RC 电路中,当 τ 比方波的半个周期大得很多或小得很多时候(相差几十倍以上)各有什么现象?

• au 比方波的半个周期大得很多倍时,由上图知,在各半周期中 u_C 随时间几乎呈线性增加或减少,最终平均值稳定在 E/2 处

- τ 比方波的半个周期小得很多倍时,由上图知,电容器迅速完成充电放电过程, u_C 几乎与 u 重合。
- 2. 在 RLC 的实验电路中,在仅把 R 由 200Ω 逐步加至 $1.02\times 10^4\Omega$ 的过程中, u_C 暂态过程按顺序如何变换?相应的波形是怎样的?
- 欠阻尼 \rightarrow 临界阻尼 \rightarrow 过阻尼
- 相应的波形如下:

- 3. u_C 的临界阻尼暂态过程的波形,与欠阻尼、过阻尼有何差异?我们采用什么方法可使 u_C 逼近临界阻尼暂态过程?
- 与欠阻尼相比,临界阻尼没有振荡;
- 与过阻尼相比,临界阻尼时最快达到稳态;
- 从一个很小的电阻开始,逐渐增大电阻至恰好无振荡为止。
- 4. 分别变化 R、C 值,它对 RLC 电路的欠阻尼振荡的 ω 和 τ 各产生什么影响?
- 增大R值时 , ω 逐渐减小至0 , τ 逐渐减小 ;
- 增大C值时, ω 逐渐减小, τ 不变。

六.习题

1. (填空) 在一个直流电源供电,只有R,L,C三元件任意组合的电路中,如果电流的暂态出现低频震荡,则电路中必然存在着 L,C,该L与C共同产生欠阻尼振荡,该振荡持续时间较长,其R的值一定很小。

2. 在图 3-11-11 所示的方波电路中,若负载电路先后为四种情况,其对应的波形为 i_a,i_b,i_c,i_d ,试分析这四种负载各对应是 R,L,C 中的哪一个或者哪两个,三个串联?

• C; L; R; RLC.

七.实验照片

1. 最小二乘法算 au

