NOME: TURMA

Departamento de Engenharia Electrotécnica e de Computadores

Sistemas Digitais (2000/2001)

2ª chamada - 25/Janeiro/2001

Duração: 2horas, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- · Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.
- 1 Considere X=11010011₂ e Y=E7₁₆ que representam números inteiros com sinal em complemento para dois com 8 bits.
- a) Diga, justificando, se pode ocorrer *overflow* na adição de X com Y.

b) Efectue a adição de X com Y em binário, e indique se ocorre ou não overflow.

c) Qual é o maior número negativo representado em complemento para 2 com 8 bits que adicionado ao o número X provoca *overflow*? Justifique.

Pág

2 Considere a função booleana F(A,B,C,D) representada no seguinte mapa de Karnaugh, onde os termos indiferentes (don't care) estão representados por d.

CD	√B	A			
02	1	1	0	0	
D	0	1	0	0	
	d	1	d	d	
	1	1	d	1	
]	В	-	

Escreva as expressões simplificadas na forma de soma-de-produtos e produto-de-somas para a função F(A,B,C,D) (utilize um mapa de Karnaugh para obter cada expressão)

Desenhe um circuito lógico que realize a função F(A,B,C,D) utilizando um número mínimo de portas lógicas do tipo NAND de duas entradas, ou de portas lógicas do tipo NOR de duas entradas.

Pág

- 3 Pretende-se projectar o sistema de controlo de um monta-cargas que se desloca entre dois andares (ver figura). Para controlar o monta-cargas dispõe-se das seguintes entradas para o sistema de controlo:
 - um botão no interior do monta-cargas (MOVER) que é activado para deslocar o monta-cargas para o outro andar.
 - dois botões exteriores de chamada, um em cada andar (CHAMA_DESCER e CHAMA_SUBIR), que são activados quando se pretende deslocar o monta-cargas para o andar respectivo.
 - dois sensores (NO_ANDAR1 e NO_ANDAR2) que são activados sempre que o monta-cargas está correctamente posicionado no andar respectivo.

e das saídas do sistema de controlo:

 MOTOR_SUBIR e MOTOR_DESCER que quando activadas provocam o movimento do monta-cargas no sentido respectivo

Admita que o sistema de controlo só aceita comandos provenientes dos botões quando o monta-cargas está parado num dos andares.

Complete o diagrama de transição de estados do sistema descrito, utilizando apenas os estados já representados e os nomes simbólicos referidos no texto para as entradas e saídas.

Pág

TURMA NOME:

 $\mathbf{4}$ — O diagrama de transição de estados da figura representa uma máquina de Moore com uma entrada X e uma saída S.

Construa a tabela de transição de estados, atribuindo uma codificação apropriada aos estados.

Desenhe o esquema do circuito lógico que implementa a máquina de estados, utilizando flip-flops do tipo D.

5 –

a) Construa um circuito síncrono baseado num contador binário (74x163) e em circuitos lógicos adicionais capaz de gerar, nas saídas Q_D,Q_C,Q_B,Q_A do contador, a seguinte sequência de valores (admitindo que o estado inicial é igual a Q_D,Q_C,Q_B,Q_A=0000):

74x163			estado presente			próximo estado					
/CLR	/LD	ENT	ENP	QD	QC	QB	QA	QD*	QC*	QB*	QA*
0	x	x	x	x	x	х	x	0	0	0	0
1	0	x	x	x	x	x	x	D	C	В	A
1	1	0	x	x	x	x	x	QD	QC	QB	QA
1	1	x	0	x	x	x	x	QD	QC	QB	QA
1	1	1	1	:	N (se :	N<15)		N -	+ 1	
1	1	1	1	1	1	1	1	0	0	0	0

b) Modifique o circuito que construiu, acrescentando-lhe uma entrada X por forma a que quando X=0 é mantida a sequência de contagem anterior, e quando X=1 passa a ser gerada a sequência:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 1, 2, ...

NOME: ____TURMA

6 — Pretende-se construir uma máquina de estados com uma saída Z que é '1' quando os 4 últimos bits consecutivos colocados na sua entrada X são 1011 (ver exemplo). Após o início do funcionamento da máquina de estados a saída Z só é considerada válida após o 4º ciclo de relógio.

Entrada X: 0001**1011011**00**1011**000 Saída Z: xxxx000**1**00**1**00000**1**000

a) Desenhe um circuito baseado num *shift-register* 74x194 e em circuitos lógicos adicionais capaz de realizar a funcionalidade pretendida para a máquina de estados.

Universal Shift-register 74x194

s1	S 0	QA* QB* QC* QD*
0	0	QA QB QC QD
0	1	QA QB QC QD RIN QA QB QC OB OC OD LIN
1	0	QB QC QD LIN
1	1	A B C D
	0 0 1 1	0 0

b) Admita agora que a máquina de estados só deve detectar sequências não sobrepostas (ver exemplo). Modifique o circuito anterior por forma a satisfazer este novo requisito (sugestão: é possível realizar este circuito sem introdução de novos circuitos lógicos ao circuito pedido na alínea anterior).

Entrada X: 0001**1011**01100**1011**000 Saída Z: xxxx000**1**000000001000