Fisica CdL in Viticoltura ed Enologia

Appello 20/02/2019

Problema 1: Un punto materiale P di massa $m=462\,\mathrm{g}$ si muove su un piano orizzontale non ideale, con coefficiente di attrito pari a μ =0.268.

- i) Calcolare la forza massima che si può applicare a P prima che inizi a muoversi partendo da fermo. (1 pt)
- ii) Se si applica a P, inizialmente in quiete, una forza pari a $F=9.37\,\mathrm{N}$, trovare l'accelerazione di P. (1.5 pt)
- iii) Nelle stesse condizioni del punto (ii), calcolare la velocità di P dopo $t=13\,\mathrm{s}$. (1 pt)
- iv) Nelle stesse condizioni del punto (ii), calcolare in quanto tempo (in secondi) P percorre una distanza pari a $s=55\,\mathrm{cm}$. (1.5 pt)
- v) Nelle stesse condizioni del punto (iv), calcolare il lavoro della forza di attrito quando P percorre quella stessa distanza. (2 pt)

Problema 2: Un cilindro con pistone contiene $m_v = 500 \,\mathrm{g}$ di vapore d'acqua alla temperatura $T_i = 130 \,\mathrm{^{\circ}C}$ ed è tenuto a pressione costante pari alla pressione atmosferica ($P_{atm} = 1.013 \times 10^5 \,\mathrm{Pa}$).

- i) Calcolare quanto calore deve essere sottratto al vapore per portarlo alla temperatura $T_1 = 100$ °C. (Assumere che l'acqua sia ancora in forma di vapore dopo questa trasformazione). (1 pt)
- ii) Si continua a sottrarre calore al sistema fino a che esso non arriva alla temperatura di $T_2 = 30$ °C. Quanto calore è stato sottratto al sistema in questa trasformazione? In che fase è l'acqua dopo la trasformazione? (Si noti che il sistema va prima incontro ad una transizione di fase e poi ad un raffreddamento.) (2 pt)
- iii) A questo punto un cubetto di acciaio di massa $m_a = 300 \,\mathrm{g}$ alla temperatura $T_a = 90^{\circ}\mathrm{C}$ viene immerso nell'acqua. Dopo un po' di tempo il sistema raggiunge l'equilibrio termico. Calcolare la temperatura di equilibrio. (Il calore specifico dell'acciaio è $c_a = 448 \,\mathrm{J/kg}$.°C.) (2 pt)
- iv) Quanto calore è ceduto dall'acciaio all'acqua nella trasformazione considerata al punto iii)? (0.5 pt)
- v) Nelle condizioni iniziali del sistema (temperatura T_i e pressione P_{atm}) quale è il volume occupato dal vapore d'acqua. (Si usi il fatto che una mole di vapore di acqua ha massa 18 g e si assuma che il vapore d'acqua si comporti come un gas perfetto.) (1.5 pt)

Domande a risposta multipla (risposta corretta 1.5 pt, nessuna risposta 0 pt, risposta errata -0.25 pt)

- 1. Un auto di massa $m = 1995 \,\mathrm{kg}$ si muove di moto uniformemente accelerato con accelerazione $a = 1.87 \,\mathrm{m/s^2}$. Quanto spazio (in metri) percorre in un tempo di $t = 5 \,\mathrm{s}$.
 - a) 46.75 m
- b) 23.38 m
- c) 4.675 m
- d) 9.35 m
- 2. Quale delle seguenti affermazioni <u>non</u> è corretta?
 - a) Un punto materiale non soggetto a forze sta sempre in quiete.
 - b) Un punto materiale soggetto a forze si muove di moto accelerato.
 - c) La massa di un punto materiale è una sua proprietà intrinseca.
 - d) Un punto materiale soggetto a forze acquisisce un'accelerazione proporzionale alla forza applicata.
- 3. Un auto A si muove su una strada rettilinea a velocità v_A =77 km/h, mentre un auto B in corsia di sorpasso si muove nella stessa direzione alla velocità v_B =85 km/h. Calcolare la velocità relativa di B rispetto ad A (senza segno).
 - a) 77 km/h
- b) $162 \,\mathrm{km/h}$
- c) 8 km/h
- d) 85 km/h
- 4. Calcolare l'energia cinetica (in Joule) di un punto materiale P di massa $m = 1322\,\mathrm{g}$ e velocità di $30\,\mathrm{km/h}$.
 - a) 5.508 J
- b) 45.9 J
- c) 91.81 J
- d) 594900 J

6.	compressa di 17.8 cm.	nziale elastica di t $(b) = 0.5862 \mathrm{J}$	na molla ideale c) 5862 J	e di costante elastica $k=37 \mathrm{N/m}$, se questa viene d) $0.5862 \mathrm{J}$	
7	,	,	,	d) 0.00020	
1.	A quante calorie corris a) 3516 cal		c) 420 cal	d) 840 cal	
8.	volume quando la tem cemento è $\alpha = 14 \times 10$	nperatura raggiung	ge il valore T_1 =	a un volume di $V=175\mathrm{m}^3$. Quanto <u>varia</u> il suo = 15°C? (Il coefficiente di dilatazione <u>lineare</u> del $35\mathrm{m}^3$ d) $0\mathrm{m}^3$	
9.		fferenza tra la pres	ssione sul fondo densità dell'olic		
10.	Quale delle seguenti affermazioni collegate al principio dei vasi comunicanti è corretta? (Si consideri un liquido fermo e si trascurino gli effetti di capillarità.)				
	b) L'altezza del lic) L'altezza del livaso.	quido nei diversi v	vasi è proporzion rasi è inversamen	nale alla densità del liquido. Inte proporzionale all'area della sezione di ciascun Inte proporzionale all'area della sezione di ciascun	
11.			$R_2 = 9.76\Omega$ e $R_2 = 9.76\Omega$	$R_3=19.1\Omega$ sono collegati in serie. Quanto vale la d) 40.16Ω	
12.	,	,	,	na differenza di potenziale $\Delta V = 209\mathrm{V}$ collegato	
± - ·				enza $P=3.87\mathrm{kW},$ determinare la sua resistenza. d) 11.29Ω	
	a) 0.000012	b) 0.0040142	c) 04.0122	u) 11.2032	
			2		

5. Un punto materiale P di massa $m=3\,\mathrm{kg}$ si muove di moto circolare uniforme su una circonferenza di raggio $R{=}269\,\mathrm{cm}$. Sapendo che compie un giro completo in $t{=}7\,\mathrm{s}$, trovare la forza centripeta a cui è

d) 7.24 N

c) 649.5 N

soggetto P.

a) 724 N

b) 6.495 N

Costanti fisiche

gravità				
acc. gravità Terra	$g = 9.81\mathrm{m/s^2}$			
acc. gravità Luna	$g_L = 1.62\mathrm{m/s^2}$			
densità				
acqua	$\rho = 1000 \mathrm{kg/m^3}$			
olio	$\rho = 920\mathrm{kg/m^3}$			
calori specifici				
acqua	$c = 4186 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$			
ghiaccio	$c = 2090 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$			
vapore	$c = 2010 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$			
acciaio	$c = 448 \mathrm{J/kg} \cdot ^{\circ}\mathrm{C}$			
calori latenti				
fusione ghiaccio	$L_f = 3.33 \times 10^5 \text{J/kg}$			
vaporizzazione acqua	$L_v = 2.26 \times 10^6 \mathrm{J/kg}$			
costanti termodinamiche				
costante universale dei gas	$R = 8.314 \mathrm{J/mol \cdot K}$			
costante di Boltzmann	$k_B = 1.38 \times 10^{-23} \mathrm{J/K}$			
numero di Avogadro	$N_A = 6.022 \times 10^{23} / \text{mol}$			
equiv. meccanico del calore	$1\mathrm{cal} = 4.186\mathrm{J}$			
zero assoluto	$-273.15^{\circ}{\rm C}$			