THE LNM INSTITUTE OF INFORMATION TECHNOLOGY JAIPUR, RAJASTHAN

Objective End Semester Exam (B)

MATH-II, 28^{th} April 2015

Time: 90 minutes, Maximum Marks: 40

Name:______ Roll No.:_____

Note: Fill in the blanks. Write the answers in the space provided. Submit this part of the question cum answer paper on or before 11 AM.

- 1. Dimension of all $n \times n$ symmetric matrices over \mathbb{R} is $\frac{n(n+1)}{2}$ [3]
- 2. Set of all real polynomials of degree $\leq n$ is a vector space over \mathbb{R} . TRUE [3]
- 3. Consider $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$. Then $A^{20} = \begin{bmatrix} 1 & 0 \\ -2^{20} + 1 & 2^{20} \end{bmatrix}$ [5]
- 4. The equation $(y^3 + bxy^4 2x)dx + (3xy^2 + 20x^2y^3)dy = 0$ is exact for b = 10 [5]
- 5. The solution of $y' y = e^{(y+1)^2}$, y(0) = -1 is $y \equiv -1$. [4]
- 6. Let y(x) be a non-trivial solution of $y'' + [\alpha + 2\sin(x + \pi/4)]y = 0$; $\alpha > 4$. Then the minimum number of zeros of y(x) in the interval $[0, 8\pi]$ is <u>8</u>.
- 7. The orthogonal trajectories for the family of curves $y^2(t) = 4c(t+c)$ is

$$y^2(t) = 4c(t+c) (4)$$

- 8. The general solution of $xy'' y' = 8x^2$ is $a + bx^2 + (8/3)x^3$ [4]
- 10. The inverse Laplace transform of $\frac{e^{-\pi s}}{(s+3)^{5/2}} + \frac{1}{s(s^2+1)}$ is $\frac{u(t-\pi)e^{-3(t-\pi)}(t-\pi)^{3/2}}{\Gamma(5/2)} + 1 \cos t \qquad .$ [4],

u- unit step function

End of paper