Kürzeste Wege II Algorithmen für verteilte Systeme

Sebastian Forster

Universität Salzburg

Dieses Werk ist unter einer Creative Commons Namensnennung 4.0 International Lizenz lizenziert.

Gegeben: Gewichteter, ungerichteter Graph G mit Startknoten s

Ziel: Jeder Knoten v kennt Distanz $d_G(s, v)$ von s zu v

Gegeben: Gewichteter, ungerichteter Graph G mit Startknoten s

Ziel: Jeder Knoten v kennt Distanz $d_G(s, v)$ von s zu v

SSSP: "Single-Source Shortest Paths"

Gegeben: Gewichteter, ungerichteter Graph *G* mit Startknoten *s*

Ziel: Jeder Knoten v kennt Distanz $d_G(s, v)$ von s zu v

SSSP: "Single-Source Shortest Paths"

Annahmen:

- Positive, ganzzahlige Kantengewichte von 1 bis W
- Jeder Knoten weiß initial, ob er Startknoten ist

Gegeben: Gewichteter, ungerichteter Graph G mit Startknoten s

Ziel: Jeder Knoten v kennt Distanz $d_G(s, v)$ von s zu v

SSSP: "Single-Source Shortest Paths"

Annahmen:

- Positive, ganzzahlige Kantengewichte von 1 bis W
- Jeder Knoten weiß initial, ob er Startknoten ist

CONGEST Modell:

- Kommunikation mit Nachbarn in synchronen Runden
- Bandbreite (= maximale Nachrichtengröße) $O(\log n)$
- Heute: $W = n^{O(1)}$, also $\log W = O(\log n)$

Theorem ([Peleg/Rubinovich '99])

Im Allgemeinen werden $\Omega(\sqrt{n}/\log n + D)$ Runden benötigt, um das SSSP-Problem zu lösen.

Theorem ([Peleg/Rubinovich '99])

Im Allgemeinen werden $\Omega(\sqrt{n}/\log n + D)$ Runden benötigt, um das SSSP-Problem zu lösen.

Theorem (Bellman-Ford)

Das SSSP-Problem kann in O(n) Runden gelöst werden.

Theorem ([Peleg/Rubinovich '99])

Im Allgemeinen werden $\Omega(\sqrt{n}/\log n + D)$ Runden benötigt, um das SSSP-Problem zu lösen.

Theorem (Bellman-Ford)

Das SSSP-Problem kann in O(n) Runden gelöst werden.

Theorem ([Forster/Nanongkai '18])

Das SSSP-Problem kann in $O((\sqrt{n}D^{1/4} + n^{3/5} + D) \cdot \log^{O(1)} n)$ Runden gelöst werden (mit hoher Wahrscheinlichkeit).

Theorem ([Peleg/Rubinovich '99])

Im Allgemeinen werden $\Omega(\sqrt{n}/\log n + D)$ Runden benötigt, um das SSSP-Problem zu lösen.

Theorem (Bellman-Ford)

Das SSSP-Problem kann in O(n) Runden gelöst werden.

Theorem ([Forster/Nanongkai '18])

Das SSSP-Problem kann in $O((\sqrt{n}D^{1/4} + n^{3/5} + D) \cdot \log^{O(1)} n)$ Runden gelöst werden (mit hoher Wahrscheinlichkeit).

Enge obere/untere Schranke ist großes offenes Problem!

Ziel: Berechne für jeden Knoten v eine Distanzschätzung $\delta(s,v)$, für die gilt:

$$d(s, v) \le \delta(s, v) \le (1 + \epsilon) d(s, v)$$

Ziel: Berechne für jeden Knoten v eine Distanzschätzung $\delta(s,v)$, für die gilt:

$$d(s, v) \le \delta(s, v) \le (1 + \epsilon) d(s, v)$$

Theorem ([Elkin '04])

Im Allgemeinen werden $\Omega(\sqrt{n/(\alpha \log n)} + D)$ Runden benötigt, um eine α -Approximation für das SSSP Problem zu berechnen.

Ziel: Berechne für jeden Knoten v eine Distanzschätzung $\delta(s,v)$, für die gilt:

$$d(s, v) \le \delta(s, v) \le (1 + \epsilon) d(s, v)$$

Theorem ([Elkin '04])

Im Allgemeinen werden $\Omega(\sqrt{n/(\alpha \log n)} + D)$ Runden benötigt, um eine α -Approximation für das SSSP Problem zu berechnen.

Theorem ([Becker et al. '17])

Eine $(1+\epsilon)$ -Approximation für das SSSP Problem kann in $O((\sqrt{n}+D)\cdot \log^{O(1)}(n)/\epsilon^{O(1)})$ Runden berechnet werden (mit hoher Wahrscheinlichkeit).

Ziel: Berechne für jeden Knoten v eine Distanzschätzung $\delta(s, v)$, für die gilt:

$$d(s, v) \le \delta(s, v) \le (1 + \epsilon) d(s, v)$$

Theorem ([Elkin '04])

Im Allgemeinen werden $\Omega(\sqrt{n/(\alpha \log n)} + D)$ Runden benötigt, um eine α -Approximation für das SSSP Problem zu berechnen.

Theorem ([Becker et al. '17])

Eine $(1+\epsilon)$ -Approximation für das SSSP Problem kann in $O((\sqrt{n}+D)\cdot \log^{O(1)}(n)/\epsilon^{O(1)})$ Runden berechnet werden (mit hoher Wahrscheinlichkeit).

Heute: $O(n^{2/3} \log^2{(n)}/\epsilon + D)$ Runden

Tools

Lemma

Sei h ein Parameter und sei Z (Zentren) eine Menge zu der jeder Knoten unabhängig mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ hinzugefügt wurde. Dann gilt mit Wahrscheinlichkeit mindestens $1 - \frac{1}{n^c}$: Für jedes Knotenpaar u und v gibt es einen kürzesten Weg von u nach v, der innerhalb der ersten h Knoten ein Zentrum enthält.

Tools

Lemma

Sei h ein Parameter und sei Z (Zentren) eine Menge zu der jeder Knoten unabhängig mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ hinzugefügt wurde. Dann gilt mit Wahrscheinlichkeit mindestens $1 - \frac{1}{n^c}$: Für jedes Knotenpaar u und v gibt es einen kürzesten Weg von u nach v, der innerhalb der ersten h Knoten ein Zentrum enthält.

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In $O((|Z|+h)\log(nW)\log(n)/\epsilon)$ Runden kann für jedes $x\in Z$ und jedes $v\in V$ eine approximative Distanz $\tilde{d}(x,v)$ berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

$$d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$$
.

Idee: Reduktion auf Overlay Netzwerk

Bilde Graph mit Zentren als Knoten:

Idee: Reduktion auf Overlay Netzwerk

Bilde Graph mit Zentren als Knoten:

Idee: Reduktion auf Overlay Netzwerk

Bilde Graph mit Zentren als Knoten:

• Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu
- **②** Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x,v)$, für die gilt: $d(x,v) \le \tilde{d}(x,v) \le (1+\epsilon) d^h(x,v)$

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu
- **3** Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x, v)$, für die gilt: $d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$
- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu
- **3** Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x, v)$, für die gilt: $d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$
- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt
- ① Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{\mathbf{d}}(x,y)$ für jede Kante (x,y)

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu
- **3** Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x, v)$, für die gilt: $d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$
- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{d}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu $|Z| = O((n/h) \log n)$ mit hoher Wahrscheinlichkeit
- **3** Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x, v)$, für die gilt: $d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$
- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{d}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu $|Z| = O((n/h) \log n)$ mit hoher Wahrscheinlichkeit
- ② Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{\mathbf{d}}(x,v)$, für die gilt: $\mathbf{d}(x,v) \leq \tilde{\mathbf{d}}(x,v) \leq (1+\epsilon) \, \mathbf{d}^h(x,v)$ #Runden: $O((|Z|+h) \cdot \log(nW) \log(n)/\epsilon)$
- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{d}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu $|Z| = O((n/h) \log n)$ mit hoher Wahrscheinlichkeit
- ② Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{\mathbf{d}}(x,v)$, für die gilt: $\mathbf{d}(x,v) \leq \tilde{\mathbf{d}}(x,v) \leq (1+\epsilon) \, \mathbf{d}^h(x,v)$ #Runden: $O((|Z|+h) \cdot \log(nW) \log(n)/\epsilon)$
- Mache d̃(x, y) für alle Paare x, y ∈ Z im gesamten Netzwerk durch Upund Downcasts bekannt
 #Runden: $O(|Z|^2 + D)$
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x, y) = \tilde{d}(x, y)$ für jede Kante (x, y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu $|Z| = O((n/h) \log n)$ mit hoher Wahrscheinlichkeit
- ② Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x,v)$, für die gilt: $d(x,v) \le \tilde{d}(x,v) \le (1+\epsilon) d^h(x,v)$ #Runden: $O((|Z|+h) \cdot \log(nW) \log(n)/\epsilon)$
- **③** Mache $\tilde{d}(x,y)$ für alle Paare $x,y \in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt #Runden: $O(|Z|^2 + D)$
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{\mathbf{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis
- #Runden: $O((|Z| + h) \cdot \log(nW) \log(n)/\epsilon + |Z|^2 + D)$ mit $|Z| = O(n \log n/h)$

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu $|Z| = O((n/h) \log n)$ mit hoher Wahrscheinlichkeit
- ② Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x,v)$, für die gilt: $d(x,v) \le \tilde{d}(x,v) \le (1+\epsilon) d^h(x,v)$ #Runden: $O((|Z|+h) \cdot \log(nW) \log(n)/\epsilon)$
- **③** Mache $\tilde{d}(x,y)$ für alle Paare $x,y \in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt #Runden: $O(|Z|^2 + D)$
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{\mathbf{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

```
#Runden: O((|Z|+h) \cdot \log(nW)\log(n)/\epsilon + |Z|^2 + D) mit |Z| = O(n\log n/h)
Setze h = n^{2/3}:
```

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu $|Z| = O((n/h) \log n)$ mit hoher Wahrscheinlichkeit
- ② Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{\mathbf{d}}(x,v)$, für die gilt: $\mathbf{d}(x,v) \leq \tilde{\mathbf{d}}(x,v) \leq (1+\epsilon) \, \mathbf{d}^h(x,v)$ #Runden: $O((|Z|+h) \cdot \log(nW) \log(n)/\epsilon)$
- Mache $\tilde{d}(x,y)$ für alle Paare $x,y \in Z$ im gesamten Netzwerk durch Upund Downcasts bekannt #Runden: $O(|Z|^2 + D)$
- **1** Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $w_{H_v}(x,y) = \tilde{\mathbf{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

```
#Runden: O((|Z| + h) \cdot \log(nW) \log(n)/\epsilon + |Z|^2 + D) mit |Z| = O(n \log n/h)
Setze h = n^{2/3}: O((n^{1/3} \log n + n^{2/3}) \log (nW) \log(n)/\epsilon + n^{2/3} \log^2 n + D) = O(n^{2/3} \log (nW) \log(n)/\epsilon + D)
```

Lemma

 $\textit{Mit hoher Wahrscheinlichkeit gilt:} \ d_G(s,v) \leq d_{H_v}(s,v) \leq (1+\epsilon) \, d_G(s,v)$

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

Beweis:

• Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

- Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen
- Sei π kürzester Weg von s nach v in G

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

- Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen
- Sei π kürzester Weg von s nach v in G
- Mit wiederholter Anwendung des Lemmas: Kann π so wählen, dass nach höchstens h Kanten immer ein Zentrum getroffen wird

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

- Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen
- Sei π kürzester Weg von s nach v in G
- Mit wiederholter Anwendung des Lemmas: Kann π so wählen, dass nach höchstens h Kanten immer ein Zentrum getroffen wird
- Sei x_1, x_2, \dots, x_k die Sequenz der Zentren auf inneren Knoten von π und setze $x_0 = s$ und $x_{k+1} = v$

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

- Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen
- Sei π kürzester Weg von s nach v in G
- Mit wiederholter Anwendung des Lemmas: Kann π so wählen, dass nach höchstens h Kanten immer ein Zentrum getroffen wird
- Sei x_1, x_2, \dots, x_k die Sequenz der Zentren auf inneren Knoten von π und setze $x_0 = s$ und $x_{k+1} = v$
- Auf π sind x_i und x_{i+1} nur h Kanten voneinander entfernt

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

- Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen
- Sei π kürzester Weg von s nach v in G
- Mit wiederholter Anwendung des Lemmas: Kann π so wählen, dass nach höchstens h Kanten immer ein Zentrum getroffen wird
- Sei x_1, x_2, \ldots, x_k die Sequenz der Zentren auf inneren Knoten von π und setze $x_0 = s$ und $x_{k+1} = v$
- Auf π sind x_i und x_{i+1} nur h Kanten voneinander entfernt
- Somit $d_G^h(x_i, x_{i+1}) = d_G(x_i, x_{i+1})$ für alle $0 \le i \le k$

Korrektheit

Lemma

Mit hoher Wahrscheinlichkeit gilt: $d_G(s, v) \le d_{H_v}(s, v) \le (1 + \epsilon) d_G(s, v)$

Beweis:

- Erste Ungleichung $d_G(s,v) \le d_{H_v}(s,v)$ gilt, weil Kantengewichte in H_v echte Distanz nicht unterschätzen
- Sei π kürzester Weg von s nach v in G
- Mit wiederholter Anwendung des Lemmas: Kann π so wählen, dass nach höchstens h Kanten immer ein Zentrum getroffen wird
- Sei x_1, x_2, \dots, x_k die Sequenz der Zentren auf inneren Knoten von π und setze $x_0 = s$ und $x_{k+1} = v$
- Auf π sind x_i und x_{i+1} nur h Kanten voneinander entfernt
- Somit $d_G^h(x_i, x_{i+1}) = d_G(x_i, x_{i+1})$ für alle $0 \le i \le k$

• Da $x_0, \ldots, x_k \in \mathbb{Z}$, enthält H_v Kante (x_i, x_{i+1}) für alle $0 \le i \le k-1$

- Da $x_0, \ldots, x_k \in \mathbb{Z}$, enthält H_v Kante (x_i, x_{i+1}) für alle $0 \le i \le k-1$
- Ebenso enthält H_v Kante (x_k, x_{k+1})

- Da $x_0, \ldots, x_k \in \mathbb{Z}$, enthält H_v Kante (x_i, x_{i+1}) für alle $0 \le i \le k-1$
- Ebenso enthält H_v Kante (x_k, x_{k+1})
- Betrachte Pfad $\pi' = (x_0, x_1, \dots, x_k, x_{k+1})$ in H_v

- Da $x_0, \ldots, x_k \in \mathbb{Z}$, enthält H_v Kante (x_i, x_{i+1}) für alle $0 \le i \le k-1$
- Ebenso enthält H_v Kante (x_k, x_{k+1})
- Betrachte Pfad $\pi' = (x_0, x_1, \dots, x_k, x_{k+1})$ in H_v
- $w_{H_v}(x_i, x_{i+1}) = \tilde{d}(x_i, x_{i+1}) \le (1 + \epsilon) d_G^h(x_i, x_{i+1}) = (1 + \epsilon) d_G(x_i, x_{i+1})$

- Da $x_0, \ldots, x_k \in \mathbb{Z}$, enthält H_v Kante (x_i, x_{i+1}) für alle $0 \le i \le k-1$
- Ebenso enthält H_v Kante (x_k, x_{k+1})
- Betrachte Pfad $\pi' = (x_0, x_1, \dots, x_k, x_{k+1})$ in H_v
- $w_{H_v}(x_i, x_{i+1}) = \tilde{d}(x_i, x_{i+1}) \le (1 + \epsilon) d_G^h(x_i, x_{i+1}) = (1 + \epsilon) d_G(x_i, x_{i+1})$
- Somit:

$$\begin{aligned} \mathbf{d}_{H_{\upsilon}}(s,\upsilon) &\leq w_{H_{\upsilon}}(\pi') \\ &= \sum_{i=0}^k w_{H_{\upsilon}}(x_i,x_{i+1}) \\ &\leq (1+\epsilon) \sum_{i=0}^k \mathbf{d}_G(x_i,x_{i+1}) \\ &= (1+\epsilon) \, \mathbf{d}_G(s,\upsilon) \end{aligned}$$

Sampling

Lemma

Sei h ein Parameter und sei Z (Zentren) eine Menge zu der jeder Knoten unabhängig mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ hinzugefügt wurde. Dann gilt mit Wahrscheinlichkeit mindestens $1 - \frac{1}{n^c}$: Für jedes Knotenpaar u und v gibt es einen kürzesten Weg von u nach v, der innerhalb der ersten h Knoten ein Zentrum enthält.

• **Technisches Detail:** Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v

- **Technisches Detail:** Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege

- **Technisches Detail:** Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \geq 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i

- **Technisches Detail:** Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p}$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u, v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

$$\Pr[X_i > h] \le \left(\frac{1}{e}\right)^{\ln n^{c+2}} = \frac{1}{n^{c+2}}$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

$$\Pr[X_i > h] \le \left(\frac{1}{e}\right)^{\ln n^{c+2}} = \frac{1}{n^{c+2}}$$

$$\Pr\left[\bigwedge_{i=1}^{\ell} X_i \le h\right]$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

$$\Pr[X_i > h] \le \left(\frac{1}{e}\right)^{\ln n^{c+2}} = \frac{1}{n^{c+2}}$$

$$\Pr\left[\bigwedge_{i=1}^{\ell} X_i \le h\right] = 1 - \Pr\left[\bigvee_{i=1}^{\ell} X_i > h\right]$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \ge 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

$$\Pr[X_i > h] \le \left(\frac{1}{e}\right)^{\ln n^{c+2}} = \frac{1}{n^{c+2}}$$

$$\Pr\left[\bigwedge_{i=1}^{\ell} X_i \le h\right] = 1 - \Pr\left[\bigvee_{i=1}^{\ell} X_i > h\right] \ge 1 - \sum_{i=1}^{\ell} \Pr\left[X_i > h\right]$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \geq 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

$$\Pr[X_i > h] \le \left(\frac{1}{e}\right)^{\ln n^{c+2}} = \frac{1}{n^{c+2}}$$

$$\Pr\left[\bigwedge_{i=1}^{\ell} X_i \le h\right] = 1 - \Pr\left[\bigvee_{i=1}^{\ell} X_i > h\right] \ge 1 - \sum_{i=1}^{\ell} \Pr\left[X_i > h\right] \ge 1 - \ell \cdot \frac{1}{n^{c+2}}$$

- Technisches Detail: Fixiere in Analyse für jedes Paar von Knoten u,v einen der kürzesten Wege von u nach v
- Sei Z die Menge der Zentren und seien $\pi_1, \pi_2, \dots \pi_\ell$ (mit $\ell \leq n^2$) die paarweisen kürzesten Wege
- Sei $X_i \geq 1$ die Zufallsvariable für die Position des ersten Zentrums auf π_i
- X_i is geometrisch verteilt (mit Einzelerfolgswahrscheinlichkeit p):

$$\Pr[X_i > h] = (1 - p)^h = (1 - p)^{((c+2)\ln n)/p} = \left((1 - p)^{\frac{1}{p}} \right)^{\ln n^{c+2}}$$

$$(1-x)^{\frac{1}{x}} \le \frac{1}{e} \text{ für } x \ge 1$$

$$\Pr[X_i > h] \le \left(\frac{1}{e}\right)^{\ln n^{c+2}} = \frac{1}{n^{c+2}}$$

$$\Pr\left[\bigwedge_{i=1}^{\ell} X_i \le h\right] = 1 - \Pr\left[\bigvee_{i=1}^{\ell} X_i > h\right] \ge 1 - \sum_{i=1}^{\ell} \Pr\left[X_i > h\right] \ge 1 - \ell \cdot \frac{1}{n^{c+2}} \ge 1 - \frac{1}{n^c}$$

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In $O((|Z|+h)\log(nW)\log(n)/\epsilon)$ Runden kann für jedes $x\in Z$ und jedes $v\in V$ eine approximative Distanz $\tilde{\mathrm{d}}(x,v)$ berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

$$d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v).$$

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In $O((|Z|+h)\log(nW)\log(n)/\epsilon)$ Runden kann für jedes $x\in Z$ und jedes $v\in V$ eine approximative Distanz $\tilde{\mathrm{d}}(x,v)$ berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

$$d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v).$$

Anmerkungen:

• Für jeden Knoten können *h*-Distanzen mit Bellman-Ford Algorithmus berechnet werden

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In $O((|Z|+h)\log(nW)\log(n)/\epsilon)$ Runden kann für jedes $x\in Z$ und jedes $v\in V$ eine approximative Distanz $\tilde{\mathrm{d}}(x,v)$ berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

$$d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$$
.

Anmerkungen:

- Für jeden Knoten können *h*-Distanzen mit Bellman-Ford Algorithmus berechnet werden
- Parallelisierung mit Random-Delay Technik mit Bellman-Ford nicht sinvoll, da jeder Knoten in jeder Runde Nachrichten sendet

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In $O((|Z|+h)\log(nW)\log(n)/\epsilon)$ Runden kann für jedes $x\in Z$ und jedes $v\in V$ eine approximative Distanz $\tilde{\mathrm{d}}(x,v)$ berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

$$d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$$
.

Anmerkungen:

- Für jeden Knoten können *h*-Distanzen mit Bellman-Ford Algorithmus berechnet werden
- Parallelisierung mit Random-Delay Technik mit Bellman-Ford nicht sinvoll, da jeder Knoten in jeder Runde Nachrichten sendet
- Alternative: Bei gewichteter Breitensuche sendet jeder Knoten insgesamt nur in O(1) vielen Runden, aber Laufzeit hat Faktor W

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In $O((|Z| + h) \log(nW) \log(n)/\epsilon)$ Runden kann für jedes $x \in Z$ und jedes $v \in V$ eine approximative Distanz d(x, v) berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

 $d(x, v) < \tilde{d}(x, v) < (1 + \epsilon) d^h(x, v)$.

Anmerkungen:

- Für jeden Knoten können h-Distanzen mit Bellman-Ford Algorithmus berechnet werden
- Parallelisierung mit Random-Delay Technik mit Bellman-Ford nicht sinvoll, da jeder Knoten in jeder Runde Nachrichten sendet
- Alternative: Bei gewichteter Breitensuche sendet jeder Knoten insgesamt nur in O(1) vielen Runden, aber Laufzeit hat Faktor W
- Daher: Parallele Ausführung eines Approximationsalgorithmus für SSSP (mit Abhängigkeit log W)

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $\mathbf{d}_i^{\downarrow}(\cdot,\cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot,\cdot)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

$$\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$$

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $\mathbf{d}_i^{\downarrow}(\cdot,\cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot,\cdot)$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$

- $ilde{\mathbf{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $\mathbf{d}_i^{\downarrow}(\cdot,\cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot,\cdot)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $\mathbf{d}_i^{\downarrow}(\cdot,\cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot,\cdot)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Notation:

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $d_i^{\downarrow}(\cdot, \cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot, \cdot)$

Idee:

• $\tilde{w}_i(u,v)$ rundet Gewicht w(u,v) auf das nächste Vielfache von ρ_i

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Notation:

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $\mathbf{d}_i^{\downarrow}(\cdot,\cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot,\cdot)$

Idee:

- $\tilde{w}_i(u,v)$ rundet Gewicht w(u,v) auf das nächste Vielfache von ρ_i
- $\tilde{\mathbf{d}}_i(s,v)$ approximiert h-Distanz $\mathbf{d}^h(s,v)$ sofern $\mathbf{d}^h(s,v) \geq 2^i$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

Eigenschaften:

- $\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Notation:

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $d_i^{\downarrow}(\cdot, \cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot, \cdot)$

Idee:

- $\tilde{w}_i(u,v)$ rundet Gewicht w(u,v) auf das nächste Vielfache von ρ_i
- $\tilde{\mathbf{d}}_i(s,v)$ approximiert h-Distanz $\mathbf{d}^h(s,v)$ sofern $\mathbf{d}^h(s,v) \geq 2^i$
- Berechnung von $\tilde{\mathbf{d}}_i(s,v)$ durch Berechnung von $\mathbf{d}_i^{\downarrow}(s,v)$ Es gilt: $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Notation:

- ullet $ilde{\mathrm{d}}_i(\cdot,\cdot)$: Distanz mit Gewichten $ilde{w}_i(\cdot,\cdot)$
- $d_i^{\downarrow}(\cdot, \cdot)$: Distanz mit Gewichten $w_i^{\downarrow}(\cdot, \cdot)$

Idee:

- $\tilde{w}_i(u,v)$ rundet Gewicht w(u,v) auf das nächste Vielfache von ρ_i
- $\tilde{d}_i(s, v)$ approximiert h-Distanz $d^h(s, v)$ sofern $d^h(s, v) \ge 2^i$
- Berechnung von $\tilde{\mathbf{d}}_i(s,v)$ durch Berechnung von $\mathbf{d}_i^{\downarrow}(s,v)$ Es gilt: $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$
- \Rightarrow Effiziente Berechnung von $d_i^{\downarrow}(s,v)$ durch gewichtete Breitensuche sofern $2^i \leq d^h(s,v) \leq 2^{i+1}$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

Eigenschaften:

- $\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Algorithmus (für fixes $s \in Z$):

• Für jedes $0 \le i \le \log{(hW)}$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- $\bullet \ \ \mathsf{Falls} \ 2^i \le \mathsf{d}^h(s,\upsilon) \le 2^{i+1} \mathsf{:} \ \mathsf{d}_i^{\downarrow}(s,\upsilon) \le \tfrac{4}{\epsilon} h$

Algorithmus (für fixes $s \in Z$):

• Für jedes $0 \le i \le \log{(hW)}$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log{(hW)} \cdot h/\epsilon)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Algorithmus (für fixes $s \in Z$):

- Für jedes $0 \le i \le \log(hW)$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log(hW) \cdot h/\epsilon)$
- ② Intern, für jeden Knoten v: Berechne $\tilde{d}_i(s,v) = d_i^{\downarrow}(s,v) \cdot \rho_i$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\tilde{\mathbf{d}}_i(s,v) \geq \mathbf{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$

Algorithmus (für fixes $s \in Z$):

- Für jedes $0 \le i \le \log{(hW)}$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log{(hW)} \cdot h/\epsilon)$
- ② Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$
- **3** Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}(s,v) := \min_{0 \le i \le \log(hW)} \tilde{\mathbf{d}}_i(s,v)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$

Algorithmus (für fixes $s \in Z$):

- Für jedes $0 \le i \le \log{(hW)}$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log{(hW)} \cdot h/\epsilon)$
- ② Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$
- **1** Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}(s,v) := \min_{0 \le i \le \log{(hW)}} \tilde{\mathbf{d}}_i(s,v)$

Korrektheit:

• Wegen (1): $\tilde{d}(s, v) \ge d(s, v)$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Algorithmus (für fixes $s \in Z$):

- Für jedes $0 \le i \le \log(hW)$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log(hW) \cdot h/\epsilon)$
- ② Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$
- **1** Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}(s,v) := \min_{0 \le i \le \log(hW)} \tilde{\mathbf{d}}_i(s,v)$

Korrektheit:

- Wegen (1): $\tilde{d}(s, v) \ge d(s, v)$
- Jede h-Distanz $d^h(s, v)$ fällt in einen Bereich $2^i \le d^h(s, v) \le 2^{i+1}$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- **3** Falls $2^i \le d^h(s, v) \le 2^{i+1}$: $d_i^{\downarrow}(s, v) \le \frac{4}{\epsilon}h$

Algorithmus (für fixes $s \in Z$):

- Für jedes $0 \le i \le \log{(hW)}$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log{(hW)} \cdot h/\epsilon)$
- ② Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$
- **1** Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}(s,v) := \min_{0 \le i \le \log{(hW)}} \tilde{\mathbf{d}}_i(s,v)$

Korrektheit:

- Wegen (1): $\tilde{d}(s, v) \ge d(s, v)$
- Jede h-Distanz $d^h(s, v)$ fällt in einen Bereich $2^i \le d^h(s, v) \le 2^{i+1}$
- Wegen (3): $\tilde{\mathbf{d}}_i(s, v)$ korrekt berechnet

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Eigenschaften:

- $\bullet \ \tilde{\mathbf{d}}_i(s,v) \ge \mathbf{d}(s,v)$
- ② Falls $d^h(s, v) \ge 2^i$: $\tilde{d}_i(s, v) \le (1 + \epsilon) d^h(s, v)$
- $\bullet \ \ \mathsf{Falls} \ 2^i \le \mathsf{d}^h(s,\upsilon) \le 2^{i+1} \mathsf{:} \ \mathsf{d}_i^{\downarrow}(s,\upsilon) \le \tfrac{4}{\epsilon} h$

Algorithmus (für fixes $s \in Z$):

- Für jedes $0 \le i \le \log(hW)$: Berechne $\operatorname{d}_i^{\downarrow}(s,v)$ für jeden Knoten v mit $\operatorname{d}_i^{\downarrow}(s,v) \le \frac{4}{\epsilon}h$ Laufzeit $O(\log(hW) \cdot h/\epsilon)$
- **3** Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}_i(s,v) = \mathbf{d}_i^{\downarrow}(s,v) \cdot \rho_i$
- **1** Intern, für jeden Knoten v: Berechne $\tilde{\mathbf{d}}(s,v) := \min_{0 \le i \le \log{(hW)}} \tilde{\mathbf{d}}_i(s,v)$

Korrektheit:

- Wegen (1): $\tilde{d}(s, v) \ge d(s, v)$
- Jede h-Distanz $\mathrm{d}^h(s,v)$ fällt in einen Bereich $2^i \leq \mathrm{d}^h(s,v) \leq 2^{i+1}$
- Wegen (3): $d_i(s, v)$ korrekt berechnet
- Wegen (2): $\tilde{\mathbf{d}}(s, v) \leq \tilde{\mathbf{d}}_i(s, v) \leq (1 + \epsilon) \, \mathbf{d}^h(s, v)$

Parallelisierung

Approximation der *h*-Distanzen

Lemma

Eine Distanzapproximation $\tilde{d}(s,\cdot)$, für die

$$\mathrm{d}(s,v) \leq \tilde{\mathrm{d}}(s,v) \leq (1+\epsilon)\,\mathrm{d}^h(s,v)$$

für jeden Knoten v gilt, kann in $O(h\log{(hW)/\epsilon})$ vielen Runden berechnet werden. Dabei sendet jeder Knoten in $O(\log{(hW)})$ vielen Runden.

Parallelisierung

Approximation der *h*-Distanzen

Lemma

Eine Distanzapproximation $\tilde{d}(s,\cdot)$, für die

$$\mathrm{d}(s,v) \leq \tilde{\mathrm{d}}(s,v) \leq (1+\epsilon)\,\mathrm{d}^h(s,v)$$

für jeden Knoten v gilt, kann in $O(h \log (hW)/\epsilon)$ vielen Runden berechnet werden. Dabei sendet jeder Knoten in $O(\log (hW))$ vielen Runden.

Parallelisierung mit Random Delay Technik:

Lemma

Sei Z eine Teilmenge von Knoten und h ein Parameter. In

 $O((|Z|+h)\log(nW)\log(n)/\epsilon)$ Runden kann für jedes $x\in Z$ und jedes $v\in V$ eine approximative Distanz $\tilde{\mathrm{d}}(x,v)$ berechnet werden (die v am Ende kennt), für die mit hoher Wahrscheinlichkeit gilt:

$$d(x, v) \le \tilde{d}(x, v) \le (1 + \epsilon) d^h(x, v)$$
.

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$
Zu zeigen: $\tilde{d}_i(s, v) \ge d(s, v)$

Zu zeigen:
$$\tilde{d}_i(s, v) \ge d(s, v)$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$
Zu zeigen: $\tilde{d}_i(s, v) \ge d(s, v)$

$$\begin{array}{l} \rho_i = \epsilon 2^i/h \\ w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil \\ \tilde{w}_i(u,v) = w_i^{\downarrow}(u,v) \cdot \rho_i \end{array} \qquad \textbf{Zu zeigen: } \tilde{\mathbf{d}}_i(s,v) \geq \mathbf{d}(s,v) \end{array}$$

$$\tilde{\mathbf{d}}_i(s, v) = \sum_{(x,y) \in \tilde{\pi}} \tilde{w}_i(x, y)$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$
Zu zeigen: $\tilde{d}_i(s, v) \ge d(s, v)$

$$\begin{split} \tilde{\mathbf{d}}_i(s,\upsilon) &= \sum_{(x,y) \in \tilde{\pi}} \tilde{w}_i(x,y) \\ &= \sum_{(x,y) \in \tilde{\pi}} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \end{split}$$

$$\begin{array}{l} \rho_i = \epsilon 2^i/h \\ w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil \\ \tilde{w}_i(u,v) = w_i^{\downarrow}(u,v) \cdot \rho_i \end{array} \qquad \textbf{Zu zeigen: } \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v) \end{array}$$

$$\begin{split} \tilde{\mathbf{d}}_i(s,\upsilon) &= \sum_{(x,y) \in \tilde{\pi}} \tilde{w}_i(x,y) \\ &= \sum_{(x,y) \in \tilde{\pi}} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \\ &\geq \sum_{(x,y) \in \tilde{\pi}} w(x,y) \end{split}$$

$$\begin{array}{l} \rho_i = \epsilon 2^i/h \\ w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil \\ \tilde{w}_i(u,v) = w_i^{\downarrow}(u,v) \cdot \rho_i \end{array} \qquad \textbf{Zu zeigen: } \tilde{\mathrm{d}}_i(s,v) \geq \mathrm{d}(s,v) \end{array}$$

$$\begin{split} \tilde{\mathbf{d}}_i(s,\upsilon) &= \sum_{(x,y)\in\tilde{\pi}} \tilde{w}_i(x,y) \\ &= \sum_{(x,y)\in\tilde{\pi}} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \\ &\geq \sum_{(x,y)\in\tilde{\pi}} w(x,y) \\ &= w(\tilde{\pi}) \geq \mathbf{d}(s,\upsilon) \end{split}$$

$$\rho_{i} = \epsilon 2^{i}/h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v)/\rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Zu zeigen:
$$\tilde{\mathbf{d}}_i(s,v) \leq (1+\epsilon) \, \mathbf{d}^h(s,v)$$
, wenn $\mathbf{d}^h(s,v) \geq 2^i$

$$\rho_{i} = \epsilon 2^{i}/h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v)/\rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Zu zeigen:
$$\tilde{\mathbf{d}}_i(s,v) \leq (1+\epsilon) \, \mathbf{d}^h(s,v)$$
, wenn $\mathbf{d}^h(s,v) \geq 2^i$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Zu zeigen:
$$\tilde{\mathbf{d}}_i(s,v) \leq (1+\epsilon)\,\mathbf{d}^h(s,v)$$
, wenn $\mathbf{d}^h(s,v) \geq 2^i$

Sei π kürzester Weg s nach v mit höchstens h Kanten für Gewichte $w(\cdot,\cdot)$ $\tilde{\mathbf{d}}_i(s,v) \leq \tilde{w}_i(\pi)$

$$\rho_{i} = \epsilon 2^{i}/h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v)/\rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Zu zeigen:
$$\tilde{\mathbf{d}}_i(s,v) \leq (1+\epsilon) \, \mathbf{d}^h(s,v)$$
, wenn $\mathbf{d}^h(s,v) \geq 2^i$

$$\tilde{\mathbf{d}}_i(s,v) \leq \tilde{w}_i(\pi) = \sum_{(x,y) \in \pi} \tilde{w}_i(x,y)$$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

$$Zu \text{ zeigen: } \tilde{\mathbf{d}}_i(s, v) \leq (1 + \epsilon) \, \mathbf{d}^h(s, v), \text{ wenn } \mathbf{d}^h(s, v) \geq 2^i$$

$$\tilde{\mathbf{d}}_{i}(s, v) \leq \tilde{w}_{i}(\pi) = \sum_{(x, y) \in \pi} \tilde{w}_{i}(x, y)$$
$$= \sum_{(x, y) \in \pi} \left[\frac{w(x, y)}{\rho_{i}} \right] \cdot \rho_{i}$$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

$$w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$\tilde{d}^h(s,v) \geq 2^i$$

$$Zu \text{ zeigen: } \tilde{d}_i(s,v) \leq (1+\epsilon) d^h(s,v), \text{ wenn } d^h(s,v) \geq 2^i$$

$$\begin{split} \tilde{\mathbf{d}}_i(s,v) &\leq \tilde{w}_i(\pi) = \sum_{(x,y) \in \pi} \tilde{w}_i(x,y) \\ &= \sum_{(x,y) \in \pi} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \leq \sum_{(x,y) \in \pi} (w(x,y) + \rho_i) \end{split}$$

$$\rho_{i} = \epsilon 2^{i}/h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v)/\rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

$$w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$Zu \text{ zeigen: } \tilde{d}_i(s,v) \le (1+\epsilon) d^h(s,v), \text{ wenn } d^h(s,v) \ge 2^i$$

$$\begin{split} \tilde{\mathbf{d}}_i(s,v) &\leq \tilde{w}_i(\pi) = \sum_{(x,y) \in \pi} \tilde{w}_i(x,y) \\ &= \sum_{(x,y) \in \pi} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \leq \sum_{(x,y) \in \pi} (w(x,y) + \rho_i) \\ &= w(\pi) + |\pi| \cdot \rho_i \end{split}$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

$$w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$Zu \text{ zeigen: } \tilde{d}_i(s,v) \le (1+\epsilon) d^h(s,v), \text{ wenn } d^h(s,v) \ge 2^i$$

$$\begin{split} \tilde{\mathbf{d}}_{i}(s, v) &\leq \tilde{w}_{i}(\pi) = \sum_{(x, y) \in \pi} \tilde{w}_{i}(x, y) \\ &= \sum_{(x, y) \in \pi} \left[\frac{w(x, y)}{\rho_{i}} \right] \cdot \rho_{i} \leq \sum_{(x, y) \in \pi} (w(x, y) + \rho_{i}) \\ &= w(\pi) + |\pi| \cdot \rho_{i} = \mathbf{d}^{h}(s, v) + |\pi| \cdot \rho_{i} \end{split}$$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

$$w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$Zu \text{ zeigen: } \tilde{d}_i(s,v) \le (1+\epsilon) d^h(s,v), \text{ wenn } d^h(s,v) \ge 2^i$$

$$\begin{split} \tilde{\mathbf{d}}_i(s,v) &\leq \tilde{w}_i(\pi) = \sum_{(x,y) \in \pi} \tilde{w}_i(x,y) \\ &= \sum_{(x,y) \in \pi} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \leq \sum_{(x,y) \in \pi} (w(x,y) + \rho_i) \\ &= w(\pi) + |\pi| \cdot \rho_i = \mathbf{d}^h(s,v) + |\pi| \cdot \rho_i \\ &\leq \mathbf{d}^h(s,v) + h \cdot \rho_i \end{split}$$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

$$w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$Zu \text{ zeigen: } \tilde{d}_i(s,v) \le (1+\epsilon) d^h(s,v), \text{ wenn } d^h(s,v) \ge 2^i$$

$$\begin{split} \tilde{\mathbf{d}}_i(s,v) &\leq \tilde{w}_i(\pi) = \sum_{(x,y) \in \pi} \tilde{w}_i(x,y) \\ &= \sum_{(x,y) \in \pi} \left\lceil \frac{w(x,y)}{\rho_i} \right\rceil \cdot \rho_i \leq \sum_{(x,y) \in \pi} (w(x,y) + \rho_i) \\ &= w(\pi) + |\pi| \cdot \rho_i = \mathbf{d}^h(s,v) + |\pi| \cdot \rho_i \\ &\leq \mathbf{d}^h(s,v) + h \cdot \rho_i = \mathbf{d}^h(s,v) + \epsilon 2^i \end{split}$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

$$w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil$$

$$\tilde{w}_i(u,v) = w^{\downarrow}(u,v) \cdot \rho_i$$

$$\tilde{d}^h(s,v) \leq (1+\epsilon) d^h(s,v), \text{ wenn } d^h(s,v) \leq 2^i$$

$$\tilde{\mathbf{d}}_{i}(s,v) \leq \tilde{w}_{i}(\pi) = \sum_{(x,y)\in\pi} \tilde{w}_{i}(x,y)$$

$$= \sum_{(x,y)\in\pi} \left\lceil \frac{w(x,y)}{\rho_{i}} \right\rceil \cdot \rho_{i} \leq \sum_{(x,y)\in\pi} (w(x,y) + \rho_{i})$$

$$= w(\pi) + |\pi| \cdot \rho_{i} = \mathbf{d}^{h}(s,v) + |\pi| \cdot \rho_{i}$$

$$\leq \mathbf{d}^{h}(s,v) + h \cdot \rho_{i} = \mathbf{d}^{h}(s,v) + \epsilon 2^{i}$$

$$\leq \mathbf{d}^{h}(s,v) + \epsilon \mathbf{d}^{h}(s,v)$$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Zu zeigen:
$$\tilde{\mathbf{d}}_i(s, v) \leq (1 + \epsilon) \, \mathbf{d}^h(s, v)$$
, wenn $\mathbf{d}^h(s, v) \geq 2^i$

$$\tilde{\mathbf{d}}_{i}(s,v) \leq \tilde{w}_{i}(\pi) = \sum_{(x,y)\in\pi} \tilde{w}_{i}(x,y)$$

$$= \sum_{(x,y)\in\pi} \left\lceil \frac{w(x,y)}{\rho_{i}} \right\rceil \cdot \rho_{i} \leq \sum_{(x,y)\in\pi} (w(x,y) + \rho_{i})$$

$$= w(\pi) + |\pi| \cdot \rho_{i} = \mathbf{d}^{h}(s,v) + |\pi| \cdot \rho_{i}$$

$$\leq \mathbf{d}^{h}(s,v) + h \cdot \rho_{i} = \mathbf{d}^{h}(s,v) + \epsilon 2^{i}$$

$$\leq \mathbf{d}^{h}(s,v) + \epsilon \mathbf{d}^{h}(s,v) = (1+\epsilon) \mathbf{d}^{h}(s,v)$$

$$\rho_{i} = \epsilon 2^{i} / h$$

$$w_{i}^{\downarrow}(u, v) = \lceil w(u, v) / \rho_{i} \rceil$$

$$\tilde{w}_{i}(u, v) = w_{i}^{\downarrow}(u, v) \cdot \rho_{i}$$

Zu zeigen:
$$d_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h$$
, wenn $2^i \leq d^h(s,v) \leq 2^{i+1}$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

$$Zu \text{ zeigen: } d_i^{\downarrow}(s, v) \leq \frac{4}{\epsilon} h, \text{ wenn}$$

$$2^i \leq d^h(s, v) \leq 2^{i+1}$$

Zu zeigen:
$$\operatorname{d}_{i}^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h$$
, wenr $2^{i} \leq \operatorname{d}^{h}(s,v) \leq 2^{i+1}$

$$d_i^{\downarrow}(s,v) = \frac{\tilde{d}_i(s,v)}{\rho_i}$$

$$\rho_i = \epsilon 2^i / h$$

$$w_i^{\downarrow}(u, v) = \lceil w(u, v) / \rho_i \rceil$$

$$\tilde{w}_i(u, v) = w_i^{\downarrow}(u, v) \cdot \rho_i$$

$$Zu \text{ zeigen: } d_i^{\downarrow}(s, v) \leq \frac{4}{\epsilon} h, \text{ wenn}$$

$$2^i \leq d^h(s, v) \leq 2^{i+1}$$

Zu zeigen:
$$d_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h$$
, wenr $2^i \leq d^h(s,v) \leq 2^{i+1}$

$$d_i^{\downarrow}(s, v) = \frac{\tilde{d}_i(s, v)}{\rho_i}$$

$$\leq \frac{(1 + \epsilon) d^h(u, v)}{\rho_i}$$

$$\begin{array}{l} \rho_i = \epsilon 2^i/h \\ w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil \\ \tilde{w}_i(u,v) = w_i^{\downarrow}(u,v) \cdot \rho_i \end{array} \hspace{0.5cm} \textbf{Zu zeigen: } \mathbf{d}_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h, \text{ wenn } \\ 2^i \leq \mathbf{d}^h(s,v) \leq 2^{i+1} \end{array}$$

Zu zeigen:
$$\operatorname{d}_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h$$
, wenn $2^i \leq \operatorname{d}^h(s,v) \leq 2^{i+1}$

$$\begin{aligned} \mathbf{d}_{i}^{\downarrow}(s,v) &= \frac{\tilde{\mathbf{d}}_{i}(s,v)}{\rho_{i}} \\ &\leq \frac{(1+\epsilon)\,\mathbf{d}^{h}(u,v)}{\rho_{i}} \\ &= \frac{(1+\epsilon)h\,\mathbf{d}^{h}(u,v)}{\epsilon 2^{i}} \end{aligned}$$

$$\begin{array}{l} \rho_i = \epsilon 2^i/h \\ w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil \\ \tilde{w}_i(u,v) = w_i^{\downarrow}(u,v) \cdot \rho_i \end{array} \hspace{0.5cm} \textbf{Zu zeigen: } \mathbf{d}_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h, \text{ wenn } \\ 2^i \leq \mathbf{d}^h(s,v) \leq 2^{i+1} \end{array}$$

Zu zeigen:
$$\operatorname{d}_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h$$
, wenn $2^i \leq \operatorname{d}^h(s,v) \leq 2^{i+1}$

$$d_{i}^{\downarrow}(s, v) = \frac{\tilde{d}_{i}(s, v)}{\rho_{i}}$$

$$\leq \frac{(1+\epsilon) d^{h}(u, v)}{\rho_{i}}$$

$$= \frac{(1+\epsilon)h d^{h}(u, v)}{\epsilon 2^{i}}$$

$$\leq \frac{(1+\epsilon)h2^{i+1}}{\epsilon 2^{i}}$$

$$\begin{array}{l} \rho_i = \epsilon 2^i/h \\ w_i^{\downarrow}(u,v) = \lceil w(u,v)/\rho_i \rceil \\ \tilde{w}_i(u,v) = w_i^{\downarrow}(u,v) \cdot \rho_i \end{array} \hspace{0.5cm} \textbf{Zu zeigen: } \mathbf{d}_i^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h, \text{ wenn} \\ 2^i \leq \mathbf{d}^h(s,v) \leq 2^{i+1} \end{array}$$

Zu zeigen:
$$\mathbf{d}_{i}^{\downarrow}(s,v) \leq \frac{4}{\epsilon}h$$
, wenn $2^{i} \leq \mathbf{d}^{h}(s,v) \leq 2^{i+1}$

$$\begin{aligned} \mathbf{d}_{i}^{\downarrow}(s,v) &= \frac{\tilde{\mathbf{d}}_{i}(s,v)}{\rho_{i}} \\ &\leq \frac{(1+\epsilon)\,\mathbf{d}^{h}(u,v)}{\rho_{i}} \\ &= \frac{(1+\epsilon)h\,\mathbf{d}^{h}(u,v)}{\epsilon 2^{i}} \\ &\leq \frac{(1+\epsilon)h2^{i+1}}{\epsilon 2^{i}} \\ &\leq \frac{4h}{\epsilon} \end{aligned}$$

Zusammenfassung

Algorithmus:

• Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu

3 Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{\mathbf{d}}(x,v)$, für die gilt: $\mathbf{d}(x,v) \leq \tilde{\mathbf{d}}(x,v) \leq (1+\epsilon)\,\mathbf{d}^h(x,v)$

- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcast bekannt
- **1** Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $\tilde{\mathrm{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu Probabilistisches Argument zur Bestimmung von Zentren ohne Kommunikationsoverhead
- **3** Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{d}(x,v)$, für die gilt: $d(x,v) \le \tilde{d}(x,v) \le (1+\epsilon) d^h(x,v)$

- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcast bekannt
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $\tilde{\mathrm{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu Probabilistisches Argument zur Bestimmung von Zentren ohne Kommunikationsoverhead
- ② Berechne, für alle Paare $x \in Z$, $v \in V$, approximative Distanzen $\tilde{\mathbf{d}}(x,v)$, für die gilt: $\mathbf{d}(x,v) \leq \tilde{\mathbf{d}}(x,v) \leq (1+\epsilon)\,\mathbf{d}^h(x,v)$ Runden der Gewichte, gewichtete Breitensuche, parallele Ausführung mit geringer Bandbreite durch Random Delay
- **1** Mache $\tilde{\mathbf{d}}(x,y)$ für alle Paare $x,y\in Z$ im gesamten Netzwerk durch Upund Downcast bekannt
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $\tilde{\mathrm{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu Probabilistisches Argument zur Bestimmung von Zentren ohne Kommunikationsoverhead
- ② Berechne, für alle Paare $x \in Z, v \in V$, approximative Distanzen $\tilde{d}(x,v)$, für die gilt: $d(x,v) \le \tilde{d}(x,v) \le (1+\epsilon) d^h(x,v)$ Runden der Gewichte, gewichtete Breitensuche, parallele Ausführung mit geringer Bandbreite durch Random Delay
- Mache d̃(x, y) für alle Paare x, y ∈ Z im gesamten Netzwerk durch Upund Downcast bekannt

 Queuing und Pipelining durch globalen Breitensuchbaum
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $\tilde{\mathrm{d}}(x,y)$ für jede Kante (x,y)
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

- Intern für jeden Knoten v: Füge v mit Wahrscheinlichkeit $p = ((c+2) \ln n)/h$ zu Z hinzu, füge s immer zu Z hinzu Probabilistisches Argument zur Bestimmung von Zentren ohne Kommunikationsoverhead
- ② Berechne, für alle Paare $x \in Z, v \in V$, approximative Distanzen $\tilde{\mathbf{d}}(x,v)$, für die gilt: $\mathbf{d}(x,v) \leq \tilde{\mathbf{d}}(x,v) \leq (1+\epsilon)\,\mathbf{d}^h(x,v)$ Runden der Gewichte, gewichtete Breitensuche, parallele Ausführung mit geringer Bandbreite durch Random Delay
- Mache d̃(x, y) für alle Paare x, y ∈ Z im gesamten Netzwerk durch Upund Downcast bekannt

 Queuing und Pipelining durch globalen Breitensuchbaum
- Intern für jeden Knoten v: Konstruiere Graph $H_v = (Z \cup \{v\}, (Z \cup \{v\})^2)$ mit Gewicht $\tilde{\mathbf{d}}(x,y)$ für jede Kante (x,y) Zerstückeln und Zusammenfügen kürzester Wege
- **1** Intern für jeden Knoten v: Berechne $\delta(s,v)=\mathrm{d}_{H_v}(s,v)$ als Ergebnis

Schnellere Berechnung von $d_H(s, v)$:

• Broadcast ist simpelste Lösung

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert
- Entspricht Berechnung von SSSP auf einer gewichteten Clique

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert
- Entspricht Berechnung von SSSP auf einer gewichteten Clique
- Schnellster Algorithmus für Clique: $O(\log^{O(1)}(n)/\epsilon^{O(1)})$ Runden \rightarrow Gradientenabstiegsverfahren

Schnellere Berechnung von $d_H(s, v)$:

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert
- Entspricht Berechnung von SSSP auf einer gewichteten Clique
- Schnellster Algorithmus für Clique: $O(\log^{O(1)}(n)/\epsilon^{O(1)})$ Runden \to Gradientenabstiegsverfahren

Exakte Berechnung der Distanz:

Schnellere Berechnung von $d_H(s, v)$:

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert
- Entspricht Berechnung von SSSP auf einer gewichteten Clique
- Schnellster Algorithmus für Clique: $O(\log^{O(1)}(n)/\epsilon^{O(1)})$ Runden \to Gradientenabstiegsverfahren

Exakte Berechnung der Distanz:

• Reduziere auf $O(\log{(nW)})$ approximative SSSP-Berechnungen

Schnellere Berechnung von $d_H(s, v)$:

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert
- Entspricht Berechnung von SSSP auf einer gewichteten Clique
- Schnellster Algorithmus für Clique: $O(\log^{O(1)}(n)/\epsilon^{O(1)})$ Runden \to Gradientenabstiegsverfahren

Exakte Berechnung der Distanz:

- Reduziere auf $O(\log{(nW)})$ approximative SSSP-Berechnungen
- Aber: Reduktion nur möglich, wenn approximative Distanzen eine Metrik bilden

Schnellere Berechnung von $d_H(s, v)$:

- Broadcast ist simpelste Lösung
- Besser: Simuliere (approximativen) SSSP Algorithmus auf Overlay Netzwerk
- Senden von Nachrichten wird über globalen Spannbaum simuliert
- Entspricht Berechnung von SSSP auf einer gewichteten Clique
- Schnellster Algorithmus für Clique: $O(\log^{O(1)}(n)/\epsilon^{O(1)})$ Runden \to Gradientenabstiegsverfahren

Exakte Berechnung der Distanz:

- Reduziere auf $O(\log{(nW)})$ approximative SSSP-Berechnungen
- Aber: Reduktion nur möglich, wenn approximative Distanzen eine Metrik bilden
- Zusätzlicher Aufwand beim Design des Algorithmus

Quellen

Literatur:

- Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, Christoph Lenzen. "Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models". In: *Proc. of the International Symposium on Distributed Computing (DISC)*. 2017, S. 7:1–7:16
- Michael Elkin. "An Unconditional Lower Bound on the Time-Approximation Trade-off for the Distributed Minimum Spanning Tree Problem". SIAM Journal on Computing 36(2): 433–456 (2006)
- Sebastian Forster, Danupon Nanongkai. "A Faster Distributed Single-Source Shortest Paths Algorithm". In: Proc. of the Symposium on Foundations of Computer Science (FOCS). 2018, S. 686–697
- David Peleg, Vitaly Rubinovich. "A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction". SIAM Journal on Computing 30(5): 1427–1442 (2006)