

Development of Stable Two-Way Shape Memory Behavior in a Polycrystalline NiTi Shape Memory Alloy

**O. Benafan, S.A. Padula II, R.D. Noebe, A. Garg, D.J. Gaydosh
and G.S. Bigelow**

*Structures and Materials Division
NASA Glenn Research Center*

R. Vaidyanathan and D.E. Nicholson
*Advanced Materials Processing and Analysis Center
Mechanical, Materials and Aerospace Engineering Department
University of Central Florida*

T.A. Sisneros, B. Clausen and D.W. Brown
*Los Alamos Neutron Science Center
Los Alamos National Laboratory*

Acknowledgment

- NASA Fundamental Aeronautics Program, Supersonics and Fixed-Wing Programs
- Basic Energy Sciences (DOE)
- CASMART

Two-Way Shape Memory Effect (TWSME)

- Two-Way Shape Memory effect (TWSME) is not an inherent behavior of SMAs
- Can be obtained after specific thermomechanical training procedures (many different training methods have been developed)

Thermomechanical cycling

Martensite deformation

[2] X.L. Meng et al. / Materials Letters 57 (2003)
4206–4211

Precipitation/aging

[1] K. C. Atli et al. / Scripta Materialia 65 (2011) 903–906

Motivation and Objectives

Motivation:

- Training by martensite deformation is relatively easy and quick [4] Y. Liu et al./Acta Mater. 47, (1998)
- Requires little more than a onetime deformation of the material
- Multiple thermomechanical cycles are NOT REQUIRED

Objectives:

- Investigate the role of deformation on the stability and efficacy of the TWSME
- Examine the micromechanical and microstructural changes associated with the training procedure (neutron diffraction)
- Optimize training for a specific TWSME actuator application
- Use the same training method to obtain different properties
- Can we apply this to the load-biased actuators??

Neutron Diffraction at LANL

(i) Experiment

neutron beam

(ii) Model

*Rietveld refinement
multi parameter curve fitting*

$$Y_{ci} = Y_{bi} + s \sum_k L_k |F_k|^2 \phi(2\theta_i - 2\theta_k) P_k A$$

Y_{bi} : background intensity
 s : scale factor
 L_k : Lorentz factor a
 F_k : structure factor
 f : reflection profile function
 $2\theta_i$: observed Bragg peak position
 $2\theta_k$: corrected calculated Bragg peak position
 P_k : preferred orientation function
 A : absorption factor

(iii) Result

- Bulk penetration ~1cm
- Ability to follow micromechanical and microstructural changes
- Phase specific, quantitative information during heating/cooling and loading
- **Material: 55NiTi (wt%), d = 5.08 mm**

Spectrometer for MAterials Research at Temperature and Stress (SMARTS)

Training Procedures

Training I

Constant temperature
Variable strain

Training II

Constant strain
Variable temperature

No-load thermal cycling (TWSME)

No-load thermal cycling (TWSME)

Training I: Constant Temperature/Variable Strain

Isothermal deformation

TWSME

- Room temperature deformation in strain control ($1 \times 10^{-4} \text{ sec}^{-1}$)
- No-load thermal cycling ($30 \leftrightarrow 200 \text{ }^{\circ}\text{C}$)

Training I: Constant Temperature/Variable Strain

TWSME magnitude

TWSME stability

- Straining to 14 - 16% was found to be optimum for this material
- Stable TWSME strain of 2.2% was obtained with near-zero strain reduction
- **Why 14-16%?**

Deformation Mechanisms in Martensitic NiTi

Training I: Constant Temperature/Variable Strain

Microstructure

Macroscopic response

Training I: Constant Temperature/Variable Strain

Microstructure

TWSME Response

Training Procedures

Training I

Constant temperature
Variable strain

Training II

Constant strain
Variable temperature

No-load thermal cycling (TWSME)

No-load thermal cycling (TWSME)

Training II: Constant Strain/Variable Temperature

TWSME Response

Training II: Constant Strain/Variable Temperature

TWSME magnitude

TWSME stability

- Positive TSWME → ~2.4%
- No TWSME → 0%
- Negative TWSME → ~-1%

Training II: Constant Strain/Variable Temperature

Extend from TWSME to Load-Biased On the Optimization of Actuator Properties

Samples deformed at 320 °C

Samples deformed at RT

Summary and Conclusions

- The role of deformation and the corresponding microstructure on the TWSME training was investigated
- The TWSME can be optimized to fit several applications using the same training procedure
- In this alloy (55NiTi):
 - Positive TSWME → ~2.2%
 - No TWSME → 0%
 - Negative TWSME → ~-1%
- Can be extended to optimize SMA actuators under load
- Understanding the microstructure (in this work using neutron diffraction) is key in training and optimizing the structure (e.g., SMA actuators)