Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики ______ Кафедра Суперкомпьютеров и Квантовой Информатики_____

Спецкурс: системы и средства параллельного программирования

Отчёт № 2

Анализ влияния кэша на операцию блочного матричного умножения

Работу выполнила Домрачева Д. А.

Постановка задачи и формат данных

Задача:

Реализовать последовательный алгоритм матричного умножения и оценить влияние кэша на время выполнения программы.

Формат командной строки:

<имя файла матрицы A> <имя файла матрицы B> <имя файла матрицы C> <режим, порядок индексов>.

Параметры командной строки, определяющие режим выполнения:

- 0-ijk, 1-ikj;
- 32 блок размера 32 \times 32, или 0 блок оптимального размера, вычисляемый по формуле: $3\times b^2 = m\times L$, где b размер блока в элементах, а $m\times L$ размер кэша;
- 1, 2, 3, 4, 5, 6, 7 режимы для вычисления определенных параметров системы, могут быть заданы в произвольном порядке, где, соответственно:
 - 1 − PAPI_L1_TCM промахи кэша L1;
 - 2 − PAPI_L2_TCM − промахи кэша L2;
 - 3 PAPI_L3_TCM промахи кэша L3;
 - ∘ 4 PAPI_TOT_INS общее число выполненных инструкций;
 - ∘ 5 PAPI_TLB_IM промахи инструкций TLB;
 - \circ 6 PAPI_TOT_CYC общее число циклов;
 - ∘ 7 PAPI_TLB_DM промахи данных TLB.

Примечание: среди доступных счетчиков на устройстве, где выполнялись запуски программы, нет счетчиков для определения числа FLOP.

Формат файла с матрицей:

Матрица представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
Число типа size_t	N — натуральное число	Число строк матрицы
Число типа size_t	M — натуральное число	Число столбцов матрицы
Массив чисел типа Т	N×M элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма

Математическая постановка:

Алгоритм матричного умножения $(A \times B = C)$ можно представить в следующем виде:

$$c_{ij} = \sum_{\substack{k=1 \ k_{1}=k}}^{n} \sum_{\substack{k_{1}=k}}^{k+b} \left(a_{ik_{1}} \cdot b_{k_{1}j} \right)$$
 для каждого элемента матрицы C .

Оценка влияния кэша на время выполнения программы осуществляется за счёт перестановки индексов суммирования и за счет изменения размеров блока.

Анализ выполнения:

Для оценки времени выполнения программы использовалась функция *clock()*. Для оценки таких параметров, как промахи кэша, промахи TLB и количество процессорных тактов, использовались счетчики библиотеки papi.h.

Верификация:

Для проверки корректности работы программы использовались тестовые данные. Для нахождения среднего времени выполнения умножения матриц программа запускалась по 5 раз.

Основные функции:

- Выделение памяти для матриц *init_matrix*. Чтение матриц из бинарных файлов *read marix*. Функция для вывода матриц в файл *write matrix*.
- Основная функция, определяющая время выполнения умножения *get_time*. Вызывает дополнительную функцию, реализующую умножение *multiply_ijk* или *multiply_ikj*, в зависимости от заданного режима перемножения.
- Функции, реализовывающие умножение матриц в зависимости от порядка индексов и размера блоков *multiply_ijk* и *multiply_ikj*. Возвращают количество тактов, за время которых выполнялись операции.

Результаты выполнения

Результаты:

Проводилось перемножение матриц размерами 1000×1000 и 1000×1000 , 2000×2000 и 2000×2000 , 3000×3000 и 3000×3000 , 4000×4000 и 4000×4000 , 5000×5000 и 5000×5000 . Зависимость среднего времени выполнения от порядка индексов суммирования и размера блоков представлена на графике (время в секундах).

 1000×1000 : 2000×2000 :

3000×3000 :

Зависимость промахов кэша L1.

1000×1000 :

2000×2000 :

Зависимость промахов кэша L2.

1000×1000 :

2000×2000:

Зависимость промахов инструкций TLB.

1000×1000 :

2000×2000 :

Зависимость промахов данных TLB. 1000×1000 :

2000×2000 :

Зависимость количества инструкций. 1000×1000 :

2000×2000 :

Зависимость количества циклов.

1000×1000 :

2000×2000 :

Основные выводы