

REPORT 191 PROGRAMMES SYLLABUS

INDUSTRIAL ELECTRONICS

N4

SUBJECT CODE: 8080164

Implementation: May 2024

CON	NTENTS	PAGE
1.	General aims	3
2.	Specific aim	3
3.	Pre-requisite	3
4.	Duration	3
5.	Evaluation	3
6.	Learning content	4
7. Mark allocation in the examination as an indication of the weighting		nting of the different
	modules	4
Mod	dule 1: Direct current theory	5
Mod	dule 2: Alternating current theory	6
Mod	dule 3: Electronic power control	7
Mod	dule 4: Power supplies	8
Mod	dule 5: Amplifiers	9
Mod	dule 6: Transducers and Electronic testing equipment	12

Syllabus: Industrial Electronics N4

1. General Aims

To equip students with knowledge and fundamental principles in the electronic industry in order to improve their work skills and further their career prospects.

2. Specific Aims

- 2.1 The student should obtain a thorough knowledge of principles and practices as applied in the electronics industry.
- 2.2.1 The teaching of this subject is aimed as an introduction to the application of technological principles and practices such as:
 - Power Supplies and Control
 - Design procedures
 - Process Control
 - Amplification

3. Pre-requisite

Student must meet at least one of the following requirements.

- 3.1 Completed National N3 certificate with Industrial Electronics.
- 3.2 Passed grade 12 with at least 40% or E symbol in Mathematics or Physical Science or relevant electrical related subjects.
- 3.3 Completed NC(V) level 4 certificate in Electrical Infrastructure and Construction.
- 3.4 Passed senior certificate for adult learners with at least 40% or E symbol in Mathematics or Physical Science.
- 3.5 Any relevant skills programme with at least 120 credits on NQF level 4.

4. Duration

Full-time: 7.5 hours per week. This instructional offering may also be offered in part-time basis.

5. Evaluation

5.1 Evaluation is conducted continuously by means of two formal tests at College level. Student must obtain a minimum ICASS mark of at least 40% in order to qualify to write the final examination and a mark will be calculated together in a ratio of 30:70 to derive the promotion mark. The student must obtain at least 40% on the final examination as pass mark.

The promotion mark will be calculated as follows:

Promotion Mark = 30% of (ICASS mark) + 70% of (Exam mark)

5.2 The examination in Industrial Electronics N4 (Engineering Studies - Report 191) will be conducted as follows:

Modules 1 to 7 MARKS: 100

DURATION: 3 HOURS

CLOSED BOOK: Formula sheet is attached to the question paper

Scientific calculators allowed

No programmable calculators allowed

No references allowed.

No external examination papers or memoranda allowed

5.3 Weighting:

The following weights are consequently awarded to each category:

Knowledge a Understanding	Applying	Analysing / Syntheses and Evaluating
30 – 40	45 – 50	10 – 25

6. Learning content

THEORETICAL BACKGROUND

It is essential that this subject should be illustrated and evaluated within the context of practical case studies.

7. Mark allocation in the examination as an indication of the weighting of the different modules

MODULES	WEIGHTING
1. Network Theorems	20
2. Alternating Current Theory	20
3. Electronic power control	15
4. Power Supplies	15
5. Amplifiers	15
6. Transducers and LCD	15
TOTAL	100

Module 1: Network Theorems General a

The student should be able to gain an understanding of theoretical terms and calculations.

calculations.		
LEARNING CONTENT	LEARNING OUTCOMES The student must be able to:	
1.1 Kirchhoff's laws	 1.1.1 Explain the two laws of Kirchhoff in electrical circuits: First law (currents law) Second law (voltage law) Calculate current, voltage and power by using Kirchhoff's laws. 	
1.2 Superposition Theorem	1.2.1 Briefly explain Superposition Theorem.1.2.2 Calculate the equivalent resistance, current and voltage by means of the Superposition's Theorem	
1.3 Thevenin's Theorem	 1.3.1 Briefly explain Thevenin's Theorem. 1.3.2 Calculate the current, voltage and resistance using Thevenin's Theorem. 1.3.3 Draw a neatly labelled circuit diagram of Thevenin's. equivalent circuit. 	
1.4 Norton's Theorem	 1.4.1 Briefly explain Norton's Theorem. 1.4.2 Calculate the current, voltage and resistance using Norton's Theorem. 1.4.3 Draw a neatly labelled circuit diagram of Norton's. equivalent circuit. 	
1.5 Maximum power transfer theorem using Nodal analysis and Thevenin's equivalent circuits	1.5.1 Briefly explain Maximum Power Theorem. Calculate the current, voltage, resistance and power by using Maximum Power Transfer	

Module 2: Alternating Current Theory General aim

On completion of this module, the student should be able to explain and apply the Alternating Current Theory using Complex numbers.

LEARNING CONTENT	LEARNING OUTCOMES The student must be able to:	
2.1 RLC circuits	 2.1.1 Apply the information given in RL, RC, RLC series or parallel circuits to calculate: Voltage, current, inductive reactance, capacitive reactance, impedance, phase angle and frequency. - Draw a neatly labelled phasor and impedance diagram 	
	2.1.2 Analyse phasor and impedance diagrams to calculate: Voltage, current, inductive reactance, capacitive reactance and impedance.	
2.2 Resonance circuits	 2.2.1 Explain the following terms: Resonance frequency Dynamic Impedance Bandwidth Quality factor 	
	 2.2.2 Calculate the resonance frequency, bandwidth and quality factor for parallel and series RLC circuits. 2.2.3 Draw neatly labelled characteristic curves for the resonance frequency, bandwidth and quality factor in parallel and series RLC circuits. 	
2.3 Dynamic impedance	2.3.1 Calculate the dynamic impedance in LC parallel circuits.	
2.4 Complex Numbers (j notation)	Apply the information given in RLC series or parallel circuits using complex numbers to calculate: Voltage, current, inductive reactance, capacitive reactance, impedance, phase angle and frequency. Draw a neatly labelled phasor diagram.	

Module 3: Electronic Power Control

General aim

On completion of this module the student should have an understanding of electronic power control circuits.

control circuits.		
LEARNING CONTENT	LEARNING OUTCOMES The student must be able to:	
3.1 Semiconductor diode	3.1.1 Calculate the diode's forward current, reverse saturation current and forward voltage drop using diode equation.3.1.2 Calculate the forward resistance of the diode.	
	3.1.3 List different types of diodes and their applications.	
	3.1.4 Describe the operating principles and the uses of the following diodes: Zener, Schottky, Avalanche, Gunn, Tunnel, Varactor, and Junction diode.	
	3.1.5 Draw neatly labelled characteristic curves of the following diodes, Tunnel, Varactor, Schottky, Avalanche, Gunn, Zener, and Junction diode.	
	3.1.6 Draw a neatly labelled circuit diagram of Zener voltage regulator.3.1.7 Calculate the current, voltage and resistance values Zener voltage regulator	
3.2 Electronic Power Control	 3.2.1 Draw a neatly labelled characteristic curve and describe the operating principle of the following Power control devices: SCR DIAC TRIAC QUADRAC LASCR 	
	 3.2.2 Draw a neatly labelled block diagram and describe the operating principle of: An open loop system A closed loop system 	

Module 4: Power Supplies

General aim

On completion of this module the student should be able to understand various types of transformers and the application thereof.

transformers and the appli	
LEARNING CONTENT	LEARNING OUTCOMES
	The student must be able to:
4.1 Transformers	 4.1.1 Identify different components of a DC power supply with the aid of a neatly labelled sketch 4.1.2 List and explain the operating principles of the following types of transformers with the aid of a neatly labelled circuit diagram Step down Step up Centre-tap Multiple winding Autotransformer Isolation transformer Power transformer Instrument transformer Potential/ voltage transformer
4.2 Transformer ratios	- Audio frequency transformer 4.2.1 Explain in words and by calculating the following transformer ratios: - Turns ratios - Voltage ratio - Current ratio 4.2.2 Use the information given for a transformer to calculate the current, voltage or turns on the primary and secondary windings.
4.3 Transformer ratings	4.3.1 Calculate KVA rating of the transformer.
4.4 Rectification	 4.4.1 Explain the term rectification 4.4.2 Describe the operating principles of half and full wave rectifiers. 4.4.3 Draw neatly labelled circuit diagrams and show input and output waveforms of the following rectifiers: Half- wave rectifier Full- wave (center- tap and bridge) rectifier 4.4.4 Utilise the information given for different rectifier

	circuits to calculate:
	 Average or DC values
	RMS values
	Efficiency
	Ripple factor
	PIV value.
4.5 Filter circuits	4.5.1 Briefly describe in words the basic operation of filter circuits.
	4.5.2 Draw neatly labelled circuit diagrams of the
	following filter circuits:
	- Capacitor filter
	- RC filter
	- LC filter
	4.5.3 Utilise the information given for different filters to
	calculate:
	 Average/DC values
	 RMS values
	Efficiency
	The ripple factor.

Module 5: Amplifiers

General aim

On completion of this module the students should understand the principles and properties of amplifiers.

To understand the basics and the benefits of amplifiers.

	 5.1.14 Draw neatly labelled circuit diagrams of push-pull amplifiers and show their input and output waveforms. 5.1.15 Describe the operation of the common emitter amplifier used in class A and B modes. 5.1.16 Explain the difference between class A, class B and class AB of amplifiers. 5.1.17 Describe the operating principle of class A, class B and class AB amplifiers. 5.1.18 List the advantages and disadvantages of noncomplementary class B push-pull amplifier and symmetrical push-pull class AB amplifier. 5.1.19 Draw neatly labelled circuit diagrams of noncomplementary class B, symmetrical push-pull class AB, complementary-symmetry push-pull class AB and the cross over distortion. 5.1.20 Describe the operating principle of noncomplementary class B, symmetrical push-pull class AB, complementary-symmetry push-pull class AB, complementary symmetry push-pull class AB and the cross over distortion. 5.1.21 Draw a neatly labelled circuit diagram of h parameter equivalent circuit for a common base and common emitter circuits.
5.2 Operational Amplifiers	 5.2.1 List the properties, characteristics and advantages of operational amplifier. 5.2.2 Calculate the gain and draw the neat, labelled circuit diagrams with the associated input and output waveforms for an operational amplifier used as: An inverting amplifier Non-inverting amplifier An adder/ summing amplifier A differentiator An integrator A comparator

Module 6: Transducers and LCD

General aim

On completion of this module the student should be able have an understanding transducers and test equipment's used in electronic industry.

LEARNING CONTENT	LEARNING OUTCOMES
	The student must be able to:
6.1 Transducers	6.1.1 Explain the operating principles and list the
	applications of the following resistive transducers:
	Potentiometer
	Strain gauge
	Thermistor
	6.1.2 Explain the operational principles and list the
	applications of the following capacitive
	transducers:
	Pressure
	Liquid level
	6.1.3 Explain the operating principles and applications
	of the following inductive transducers:
	Differential transformer
	Tacho-generator
	6.1.4 Describe the operating principles, circuit
	diagramand applications of the following photo- electric transducers:
	electric transducers.
	Light dependent resistor
	Photodiode
6.2 Introduction to LCD	Phototransistor 6.2.1 Define the term LCD
6.2 Introduction to LCD	6.2.1 Define the term LCD 6.2.2 List application/uses of LCD
	6.2.3 List different types of LCD