České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Katedra softwarového inženýrství Obor: Aplikace softwarového inženýrství

Porovnání účinnosti komprese dat ve formátech XML a JSON

Comparison of the effectiveness of data compression in XML and JSON format

DIPLOMOVÁ PRÁCE

Vypracoval: Bc. Tomáš Smola

Vedoucí práce: Ing. Tomáš Liška, Ph.D.

Rok: 2015

Před svázáním místo téhle stránky vložte zadání práce s podpisem děkana (bude to jediný oboustranný list ve Vaší práci) !!!!

D., 11/2/			
Prohlášení			
Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.			
V Praze dne	Bc. Tomáš Smola		

Název práce:

Porovnání účinnosti komprese dat ve formátech XML a JSON

Autor: Bc. Tomáš Smola

Obor: Aplikace softwarového inženýrství

Druh práce: Diplomová práce

Vedoucí práce: Ing. Tomáš Liška, Ph.D.

Katedra softwarového inženýrství, Fakulta jaderná a fyzikálně

inženýrská, České vysoké učení technické v Praze

Konzultant: —

Abstrakt: Abstrakt

Klíčová slova: Klíčová slova

Title:

Comparison of the effectiveness of data compression in XML and JSON format

Author: Bc. Tomáš Smola

Abstract: Abstract

Key words: Key words

Obsah

Ú	$ m \acute{U}vod$				
1	Obe	ecné se	známení s formáty XML a JSON	2	
	1.1	XML		2	
		1.1.1	Charakteristika	2	
		1.1.2	Syntaktická analýza	2	
		1.1.3	Parsování	3	
		1.1.4	Výhody a nevýhody	3	
	1.2	JSON		3	
		1.2.1	Charakteristika	4	
		1.2.2	Syntaktická analýza	4	
		1.2.3	Parsování	5	
		1.2.4	Výhody a nevýhody	5	
2	Komprese dat				
	2.1	Princi	p komprese dat	7	
	2.2	Typy l	kompresních metod	7	
	2.3	Chara	kteristika komprese	8	
	2.4	Míra i	nformace v datech	8	
3	Pop	ois exis	tujících kompresních algoritmů	9	
4	Přehled existujících implementací kompresních algoritmů pro efektivní uchovávání dat ve formátu XML a JSON				
5	Vlastní implementace vybraných kompresních algoritmů				
6	Por	Porovnání účinnosti komprese dat ve formátu XML a JSON			

Závěr	13
Seznam použitých zdrojů	14
Přílohy	15

$\mathbf{\acute{U}vod}$

Závěrečnou diplomovou práci ke studijnímu oboru Aplikace softwarového inženýrství s názvem Porovnání účinnosti komprese dat ve formátu XML a JSON jsem si vybral z důvodu aktuálnosti – XML a JSON jsou v současnosti jedny z nejpoužívanější textových datových formátů – a také proto že toto téma velmi dobře propojuje teoretické znalosti získané při studiu s praktickými zkušenostmi v oboru softwarového inženýrství.

Dle výzkumu International Data Corporation (IDC) The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things [2] bylo pouze v roce 2014 vytvořeno a zkonzumovýno 2837 EB (exabytů) dat. Ze závěrů vyplývá, že se toto číslo každé dva roky zdvojnásobí, tedy v roce 2020 to bude již přibližně 40000 EB. Takové množství dat klade enormní požadavky na přenosové kanály a datová úložiště. Jako příklad mohou sloužit miliony shlédnutí oblíbených videí na serveru youtube.com. Pouze jedna sekunda videa v nekomprimovaném formátu CCIR 601 zabere více než 20 MB, tímto způsobem by zmiňovaná služba nemohla fungovat.

Vzhledem k tomu, že jsou technologie omezeny současnými možnostmi, znalostmi a také fyzikálními limity, je nutné hledat řešení jinde než v jejich zlepšování. Zde přichází na řadu komprese dat jako účinná metoda snížení velikosti objemu přenášených a ukládaných dat. Ve své práci bych čtenáře rád seznámil se základními principy komprese a vybranými kompresními algoritmy. Hlavním cílem je ale zodpovědět otázku, zda je možné dosáhnout dalších úspor volbou XML nebo JSON formátu a vhodného algoritmu, který využije znalosti struktury datového formátu.

Obecné seznámení s formáty XML a JSON

V této kapitole seznámím čtenáře se značkovacím jazykem XML a následně s JSONem, formátem pro výměnu dat. Mým cílem je popsat základní charakteristiky a syntaxi obou formátů tak, abych byl já, a následně i čtenář, schopen pochopit v kapitole 4 principy a výhody vybraných algoritmů využívajících znalosti struktury datových souborů.

1.1 XML

Na základě značkovacího jazyka SGML (Standard Generalized Markup Language), jehož obecnost činí úplnou implementaci velmi náročnou, vznikl vybráním nejpoužívanějších možností nový značkovací jazyk XML (eXtensible Markup Language), je tedy podmnožinou jazyka SGML. XML je obecný a otevřený, jeho vývoj a standardizaci realizovalo konsorcium W3C (World Wide Web Consorcium) [3]. XML umožňuje snadné vytváření konkrétních značkovacích jazyků pro popis dokumentů a dat ve standardizované, textově orientované podobě.

1.1.1 Charakteristika

1.1.2 Syntaktická analýza

V podstatě jde o textový dokument, je tvořen posloupností Unicode¹ znaků, ve kterém se rozlišují dva základní prvky: elementy neboli značky a obsah. Při práci s XML je nutné mít na paměti, že je na dodržení syntaxe kladen velmi velký důraz. Při dodržení správného způsobu zápisu a pravidel, která budou popsána níže, lze dokument považovat za tzv. well-formed XML [3].

 $^{^1\}mathrm{Unicode}$ je standard pro konzistentní kódování, reprezentaci a manipulaci znaků většiny světových abeced.

Element

Základním prvkem každého XML dokumentu je element, který je vyznačen pomocí takzvaných tagů², mezi které může být vložen obsah. Počáteční i ukončující tag je dle definice [3] složen z dvojice znamének < (menší než) a > (větší než), mezi kterými je zapsán název tagu a volitelně i atributy. Ukončovací tag má navíc před svým názvem znak / (lomeno). Při správné aplikaci pravidel může vypadat element například následujícím způsobem:

<název_elementu název_atributu="hodnota atributu"></název_elementu>.

V případě, že element neobsahuje žádný obsah, lze ho zkráceně zapsat jako tzv. prázdný element:

<název_prázdného_elementu />.

V případě nedodržení správné syntaxe může nastat problém při rozpoznávání zapsaných dat, což může mít za následek nekompatibilitu mezi různými systémy při výměně dat.

Atribut

Počáteční tag elementu může obsahovat atributy upřesňující jeho význam. Atribut je vždy složen ze svého názvu a hodnoty, které jsou odděleny znakem = (rovná se). Hodnota je navíc zapsána mezi dvojici znaků " (uvozovky) nebo ' (apostrof), přičemž hodnota může obsahovat jeden z těchto znaků tak, že se syntakticky nekříží. Následuje příklad atributu, jehož hodnota obsahuje znak ':

název_atributu="hodnota atributu osahující znak ' (apostrof)".

Obsah

Vše, co není tagem, je v dokumentu považováno za obsah. Kromě obyčejného textu mohou být obsahem další vnořené elementy, komentáře, instrukce pro zpracování, reference a další. Vzhledem k tomu, že určité znaky mají v syntaxi XML speciální význam (např. <, >), využívají se pro jejich zápis znakové entity³. Úplný výčet toho, co může XML dokument obsahovat, je včetně pravidel definován v [3].

1.1.3 Parsování

1.1.4 Výhody a nevýhody

1.2 JSON

JSON neboli JavaScript Object Notation je odlehčený způsob zápisu (formátování) dat. Tento textový formát je nezávislý na počítačové platformě a je čitelný pro člověka. JSON je založen na dvou univerzálních datových strukturách: kolekce dvojic klíč/hodnota a seřazený seznam hodnot, které podporují v nějaké formě asi všechny známé moderní programovací jazyky. Díky těmto vlastnostem se JSON stal velmi oblíbeným formátem pro vzájemnou výměnu dat.

²Tag definuje formu části textu.

³Pomocí znakových entit (sekvence znaků) lze zapsat znaky, které neobsahuje zvolená znaková sada, nebo mají v použitém kontextu speciální význam.

1.2.1 Charakteristika

1.2.2 Syntaktická analýza

Jak již bylo zmíněno, je JSON textový formát a je tedy posloupností tokenů tvořených z Unicode znaků. Sada tokenů obsahuje šest strukturálních tokenů: [(levá hranatá závorka), { (levá složená závorka),] (pravá hranatá závorka), } (pravá složená závorka), : (dvojtečka) a , (čárka); dále obsahuje znakové řetězce, čísla a tři doslovné tokeny: true, false a null.

Hodnoty

Za hodnotu je v JSONu považován objekt, pole, číslo, řetězec, true, false, nebo null.

Obrázek 1.1: Struktura hodnoty

Objekty

Objekt je reprezentován dvojicí složených závorek, uvnitř kterých je žádná nebo více dvojic klíč/hodnota, přičemž klíč je řetězec. Klíč a hodnota jsou odděleny dvojtečkou a jednotlivé dvojice odděluje čárka.

Obrázek 1.2: Struktura objektu

Pole

Pole je složeno z dvojice hranatých závorek, mezi kterými může být nula nebo více seřazených hodnot, které jsou odděleny čárkou.

Obrázek 1.3: Struktura pole

Čísla

Čísla jsou v desítkové soustavě (tedy číslice 0-9) záporná čísla jsou uvozena znaménkem – (mínus), desetinná část je oddělena znaménkem . (tečka). Je možný i takzvaný vědecký zápis čísel s použitím symbolů e (malé e) nebo E (velké e) a volitelně lze použít u exponentu znaménka + (plus) nebo – (mínus).

Obrázek 1.4: Struktura čísla

Řetězce

Řetězec je posloupnost Unicode znaků uvozená a zakončená znakem " (uvozovky). Mezi uvozovky mohou být zapsány všechny znaky kromě speciálních znaků, které jsou uvozeny tzv. únikovým znakem \ (zpětné lomítko), těmito znaky jsou například ", \, t (znak tabulátoru), n (znak posunu kurzoru na nový řádek) a r (znak posunu kurzoru na začátek řádku, známý jako návrat vozíku) a další. Kompletní výčet je možné vidět na obrázku 1.5 nebo v [1]. Navíc je možné každý znak zapsat pomocí kombinace \u a čtyřmístného hexadecimálního čísla odpovídajícího Unicode kódu požadovaného znaku. Řetězec obsahující pouze zpětné lomítko můžeme tedy zapsat následujícími způsoby: "\\", "\u005c" nebo "\u005c" (u hexadecimálních čísel A-F nezáleží na velikosti).

1.2.3 Parsování

1.2.4 Výhody a nevýhody

Obrázek 1.5: Struktura řetězce

Komprese dat

Komprese nebo také komprimace dat je taková transformace dat, která má za cíl úsporu zdrojů při ukládání nebo archivaci a nebo snížení datového toku při přenosu, to vše při současném zachování informace obsažené v datech. Jinými slovy jde o redukci velikosti datových souborů, jehož následkem je úspora paměťových či přenosových kapacit. Postup, při kterém z komprimovaných dat rekonstruujeme data originální, se nazývá dekomprese.

2.1 Princip komprese dat

Data velmi často obsahují tzv. redundantní¹ informaci, toho právě využívá komprese – data jsou zpracována tak, aby byla redundance minimalizována. Jak lze vidět na obrázku 2.1, je na vstupní data použita operace komprese. Operací dekomprese dostaneme poté data rekonstruovaná – v závislosti na použité kompresní metodě, respektive na požadavcích získáme buď data přesně odpovídající původním a nebo pouze částečná. Z tohoto hlediska rozlišujeme dva typy kompresních metod: ztrátové a bezeztrátové.

Obrázek 2.1: Princip komprese

2.2 Typy kompresních metod

Jak název napovídá, při ztrátové kompresi ztratíme část informace obsaženou v původních datech, respektive jsou původní data pouze aproximována. Toto nám nemusí vadit například u obrázků, zvuku a videí, kde je využito nedokonalosti lidských smyslů. Lidské ucho nedokáže například slyšet velmi vysoké frekvence. Má smysl v datech určených k poslechu zachovávat informaci, kterou nemůže člověk slyšet? Častá odpověď je "ne". Tohoto principu využívá mnoho kompresních metod, například známý zvukový formát MP3. Odstraněním "nepotřebné" informace z dat je dosaženo ještě větší redukce objemu.

¹Redundance znamená informační nadbytek, např. vícenásobný výskyt slov v textu.

Naopak v případě bezeztrátových metod je při kompresi zachována veškerá informace a při dekompresi jsou rekonstruována původní data. Těchto metod se využívá převážně tam, kde není možné původní data jakkoliv pozměnit. Například data ve formátech XML a JSON, kterým se věnuji v této práci, si nemůžeme dovolit pozměnit (přestanou mít původní význam), nebo dokonce ztratit.

2.3 Charakteristika komprese

Kompresní algoritmy lze hodnotit z mnoha různých úhlů pohledu. Můžeme měřit složitost algoritmu, rychlost, jakou data komprimována a dekomprimována (to může být ovlivněno výkonem stroje, na kterém algoritmus běží), jak moc odpovídají rekonstruovaná data původním atd. Jednou z nejčastějších charakteristik je, logicky ze smyslu komprese vyplývající, tzv. kompresní poměr, který vyjadřuje velikost komprimovaných dat vůči původním, lze ho zapsat následujícím vztahem:

$$\texttt{kompresní poměr} = \frac{\texttt{d\'elka původn\'eh dat}}{\texttt{d\'elka komprimovan\'ych dat}}. \tag{2.1}$$

Další sledovanou charakteristikou je tzv. úspora místa, která je vyjádřena jako:

úspora místa = 1 - kompresní poměr
$$^{-1}$$
. (2.2)

Mějme například 2D obrázek o velikosti 256×256 pixelů, který zabírá 65536 bytů. Obrázek zkomprimujeme a zabírá-li komprimovaná verze 16384 bytů, můžeme říct, že kompresní poměr je 4:1 a úspora místa 75 %.

2.4 Míra informace v datech

Popis existujících kompresních algoritmů

Přehled existujících implementací kompresních algoritmů pro efektivní uchovávání dat ve formátu XML a JSON

Vlastní implementace vybraných kompresních algoritmů

Porovnání účinnosti komprese dat ve formátu XML a JSON

Závěr

Seznam použitých zdrojů

- [1] Standard ECMA-404. The JSON Data Interchange Format. Geneva: Ecma International, 2013, [online], [cit. 28. října 2014]. Dostupné na: http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf.
- [2] The Digital Universe of Opportunities: Rich Data and the Incre-Value of the Internet of Things. INTERNATIONAL DATA CORPORATION. EMC[online]. 2014 [cit. 2015-02-25]. Dostupné <http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm>.
- [3] W3C. ExtensibleMarkupLanguage(XML) 1.0 (Fifth Edition). 26. listopadu 2008, [online], [cit. 26. listopadu 2014]. Dostupné na: <http://www.w3.org/TR/2008/REC-xml-20081126/>.

Přílohy