Visualisation and Analysis of Geographic Information Algorithms and Data Structures

João Valença

valenca@student.dei.uc.pt

Department of Informatics Engineering University of Coimbra

February 2, 2015

Motivation

- ► To develop a Web application for Geographic information system
- A QREN project with Smartgeo and UC

Motivation

- ► Reduce visual information when displaying large numbers of geographic points (e.g. Points of interest)
- ▶ Find a representative subset of a collection of points in a map

► The set of points can change (zooming/panning)

Coverage

► Minimising Coverage

Coverage

Minimising Coverage

$$\min_{\substack{P\subseteq N \\ |P|=k}} \max_{n\in N} \min_{p\in P} \|p-n\|$$

- 4 -

Work Plan

▶ 1st Semester

- Literature Review: Geographic Information Systems, OGC Standards WMS, WFS, Map Projections, algorithms and heuristics for clustering and facility-location problems.
- Development of a Branch-and-Bound approach.

▶ 2nd Semester

- Development of heuristic approaches.
- Experimental analysis of the algorithms.
- Integration of the algorithms in the visualisation framework through web-mapping standards (WMS/WFS).
- Comparison between different approaches using Open Street Map data.

Integer Linear Programming

minimise
$$D$$
 subject to $\sum_{j=1}^{N}y_j=k$
$$\sum_{j=1}^{N}x_{ij}=1 \qquad \qquad i=1,\ldots,N$$

$$\sum_{j=1}^{N}d_{ij}x_{ij}\leq D \qquad \qquad i=1,\ldots,N$$

$$x_{ij}\leq y_j \qquad \qquad i=1,\ldots,N; j=1,\ldots,N$$

$$x_{ij},y_j\in\{0,1\} \qquad i=1,\ldots,N; j=1,\ldots,N$$

- Branching
 - Divide search space in a binary tree
 - ▶ At each step, decide if a point is a centroid or non-centroid
 - Update objective function accordingly

- Branching
 - ▶ Divide search space in a binary tree
 - ▶ At each step, decide if a point is a centroid or non-centroid
 - Update objective function accordingly
- Bound
 - ► Assume best possible case
 - Prune tree

- Inserting a Centroid
 - ► Search all non-centroids for assignment update
 - ► Smaller or equal coverage value

- ► Inserting a Non-centroid
 - ► Search for closest centroid
 - ► Larger or equal coverage value

- Removing a Centroid
 - ► Update all non-centroids
 - ► Larger or equal coverage value

- ▶ Removing a Non-centroid
 - ▶ Update objective function
 - ► Smaller or equal coverage value

Applying the bound

► Applying the bound

(Only if a better solution has been found)

- Unnecessary number of calculations
 - Use geometric structures to speed-up the update of the objective function

- Unnecessary number of calculations
 - Use geometric structures to speed-up the update of the objective function
- Delaunay triangulations

Greedy Routing

- Greedy Routing
- Use Hilbert curves to minimise distance between consecutive routing calls

- ▶ Pre-process:
 - ▶ Initialize Delaunay Triangulation
 - ► Sort points by Hilbert curve

- Inserting a Centroid
 - ▶ Insert centroid in triangulation
 - ▶ Search all non-centroids for assignment update
 - ► Smaller or equal coverage value

- Inserting a Non-centroid
 - Search for closest centroid using greedy routing
 - ► Update objective function
 - ► Larger or equal coverage value

- Removing a Centroid
 - ► Revert assignment
 - Remove centroid from triangulation
 - ► Larger or equal coverage value

- ▶ Removing a Non-centroid
 - ► Update objective function
 - ► Revert assignment
 - ► Smaller or equal coverage value

► Complexity of operations

Algorithm	Insert		Remove	
	Centroid	Non-Centroid	Centroid	Non-Centroid
Naïve BB	$\Theta(N)$	Θ(K)	$\Theta(N)$	$\mathcal{O}(1)$
Geometric BB Average Case ¹	$\mathcal{O}(\log K + N/K)$	$\mathcal{O}(\sqrt{K})$	$\mathcal{O}(N/K)$	$\mathcal{O}(1)$
Geometric BB Worst Case	$\mathcal{O}(K+N)$	$\mathcal{O}(K)$	$\mathcal{O}(N)$	$\mathcal{O}(1)$

¹to be shown

- Tests Performed
 - ► Effect of N
 - Change N
 - Keep proportional K
 - Effect of K
 - Fixed N
 - Change K

Effect of N

Integer Linear Programming ▲ – Delaunay Assisted B&B
 Naive B&B

Effect of K

Integer Linear Programming ▲ – Delaunay Assisted B&B ■ – Naive B&B

Future Work

- ► Heuristic Approach
- Approximation Algorithms
- Adapt to allow panning and zooming
- ▶ Integration with WFS standard
- Benchmark with real data