_	
()	<i>-</i> 1
\subseteq 1 .	/ / -
Shohic	$l - l \wedge \alpha \wedge .$
Chann	

2. Given the following coordinates for measurement points, solve the problem of fitting a line to these points using linear least square estimation. You are to solve the problem **two** ways: (1) by hand, (2) with a Python program. Be sure to set up the problem in the form Aq = b by defining A and b. Then compute the parameter vector q using least squares estimation. Note: Fill in the sections of the Problem 2.ipynb file and submit.

Po	Points			
x	У			
-1.1	8.6			
2.3	2.9			
5.8	-5.8			
-3.5	13.0			
3.0	0.1			
8.5	-9.9			

A= [-1.1 1 2.3 1		8.6 7	$(A^{T}A) = \begin{bmatrix} 133.64 & 15 \\ 15 & 6 \end{bmatrix} (A^{T}A)^{-1} = \frac{1}{133.64(6) - 15^{2}} \begin{bmatrix} 6 & -15 \\ -15 & 133.64 \end{bmatrix}$	
	5.8 1	b=	-5.8		
	-3.5 I		13.0	(ATA)-1AT - [-0.037 -0.002 0.034 -0.062 0.005 0.062]	
	3.0 1		ا م ا	$(A^TA)^{-1}A^T = \begin{bmatrix} -6.637 & -6.662 & 6.662 & 6.662 \\ 6.260 & 6.171 & 6.680 & 6.322 & 6.153 & 6.610 \end{bmatrix}$	
	8.5 1		~9.9		

3. As we discussed in class the following are basis vectors for \mathbb{R}^3 (3D Cartesian coordinate system).

$$w_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, w_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Are the following vectors basis vectors for \mathbb{R}^3 ? Why or why not?

$$w_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, w_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{bmatrix} = 7 \begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix} = 7 \begin{bmatrix}
0 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix} = 7 \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

The following vectors do form a basis since they reduce to I

-4. Do the following vectors form a basis for \mathbb{R}^3 ? Why or why not?

$$t_1 = \begin{bmatrix} 0.707 \\ -0.707 \\ 0 \end{bmatrix}, t_2 = \begin{bmatrix} 0.707 \\ 0.707 \\ 0 \end{bmatrix}, t_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} .767 & .767 & 6 \\ -.767 & .767 & 6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 6 \\ -1 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 6 \\ -1 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & 1 \end{bmatrix}$$

These vectors also form a basis in 1R3 since they reduce to I which we know forms abasis

m a basis? $w_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \underbrace{ \begin{cases} 1 \\ 2 w_2 \\ 0 \end{bmatrix} }_{\mathbf{S}}^{\mathbf{I}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \underbrace{ \begin{cases} 1 \\ 2 \\ 3 \end{bmatrix} }_{\mathbf{S}}^{\mathbf{I}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \underbrace{ \begin{cases} 1 \\ 3 \\ 3 \end{bmatrix} }_{\mathbf{S}}^{\mathbf{I}} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} }_{\mathbf{S}}^{\mathbf{I}} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$				
ω _η = 3ω,-2ω ₂ +2ω,	The followins vectors do span 12 since you can form any vector in 12 from w., wz., wz but they do not form a basis since wy is linearly dependent			