Intro to Algorithms and Computation

Goals:

- 1. Solve Computational Problems
- 2. Prove correctness
- 3. Argue efficiency
- 4. Communication

Problems are inputs mapped to outputs.

We want to create algorithms for:

- General problems
 - Arbitrarily sized inputs

Algorithm

A function that takes inputs and maps it to a single correct output.

For birthday problem:

- Maintain record
- Interview students in some order
 - Check if birthday in record
 - If it is, return pair
 - Otherwise, add new student to record
- Return none

Induction

Inductive Hypothesis: if first k students contain a match, algorithm returns a match before interviewing student k+1.

Base Case: k = 0 True

Assume inductive hypothesis is true for k=k'

If k' contains a match, it is already returned by induction.

Else, if k' + 1 students contains match

Algorithm checks k' against all students

Efficiency

Don't measure time, instead count ops (fundamental operations) Expect performance to depend on size of our input (n)

- O (upper bounds)
- Ω lower bounds (omega)
- Θ both (theta)

Running Time / Time Complexity

O(1) Constant Time (O(log n)) Logarithmic Time O(n) Linear Time (O(n log n)) Linearithmic Time $O(n^2)$ Quadratic Time $O(n^2)$ Polynomial Time

Model of Computation (Wiki)

Word-RAM Integer Arithmetic Logical Operations Bitwise Operations

constant time constant time constant time constant time

Data Structures

Next Lesson