THE AUSTRALIAN NATIONAL UNIVERSITY

Second Semester Practice Final Examination – October, 2014

Econometrics II: Econometric Modelling (EMET 2008/6008)

Reading Time: 5 Minutes Writing Time: 90 Minutes Permitted Materials: None

Instructions:

- This handout of exam questions contains 9 pages (including cover page) with 5 exam questions plus an Appendix. Make sure you are not missing any pages!
- Answer **ALL** questions of this handout in the script book provided to you.
- Always provide comprehensive and exhaustive answers. Show your work!
- No partial credit will be given for merely stating results (unless I explicitly ask you to 'state' a result).
- Cheat sheets are not permitted.
- Total marks: 100.
- Good luck!

1. [20 marks]

Consider the following linear models:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

$$\bar{Y} = \beta_0 + \beta_1 \bar{X} + \bar{u},$$

where $\bar{Y} := \sum Y_i/n$ and similarly for \bar{X} .

- (a) [5 marks] Subtract both equations from each other and mathematically define an OLS estimator for β_1 .
- (b) [10 marks] Derive the OLS estimator for β_1 .
- (c) [5 marks] Using your result from part (b), propose an estimator for β_0 .

2. [15 marks]

Are the following statements true or false? Provide a short explanation. (Note: you will not receive any credit without providing a correct explanation.)

- (a) Consistency of an estimator is a property that does not depend on the size of the random sample drawn from the population.
- (b) The coefficient estimates of a linear probability model can be interpreted as marginal probabilities.
- (c) In order to deal with time trends in panel data estimation, each subject/entity needs to be observed for at least three time periods.

3. [20 marks]

Evans and Schwab (1995) study the causal effect of attending Catholic high school on the probability of attending university. They consider the following equation:

Uni_i =
$$\beta_0 + \beta_1$$
CathHS_i + other factors + u_i ,

where Uni_i is a dummy variable equal to one if person i attends university and zero otherwise, and $CathHS_i$ is a dummy variable equal to one if person i attended Catholic high school and zero otherwise. (Note: 'other factors' is shortcut for explanatory variables on gender, race, family income and parental education.)

- (a) Why might CathHS $_i$ be correlated with u_i ?
- (b) If you estimated the above model by probit would you expect your estimate for β_1 to be an overestimate or an underestimate of the causal effect of Catholic high school?
- (c) Let CathRel_i be a dummy variable equal to 1 if a person is Catholic and zero otherwise. Discuss the two requirements needed for CathRel_i to be a valid instrumental variable. Which of these two requirements can be tested?
- (d) Is CathRel_i a convincing instrumental variable?

4. [20 marks] Consider the research question

Do workplace smoking bans induce smokers to quit?

To answer this question, you have available a data set with 10,000 observations on the following variables:

Variable name	Variable description
smoker	dummy equal 1 if person smokes
smkban	dummy equal 1 if smoke ban at workplace
age	age of person
hsdrop	dummy equal 1 if person is high school dropout
hsgrad	dummy equal 1 if person finished with high school degree
colsome	dummy equal 1 if person attained some college
colgrad	dummy equal 1 if person finished with college degree
black	dummy equal 1 if person is black
hispanic	dummy equal 1 if person is hispanic
female	dummy equal 1 if person is female

Make use of the attached Stata log-file to answer the following questions. Provide short yet comprehensive answers.

- (a) Using a linear probability model which only includes *smoker* and *smkban*, how would you answer the above question?
- (b) Now, adding all remaining explanatory variables to the linear probability model, how would you answer the above question?
- (c) What could explain the change in the estimated effect of a smoke ban between parts (a) and (b)?
- (d) Using a probit model, how would you answer the above question?
- (e) What are the predicted smoking probabilities for a 20 year old white male who dropped out of high school when a smoke ban is absent? What if a smoke ban is in place? Study both the linear probability model and the probit model.
- (f) How do the predicted probabilities from part (e) change when the person has a completed college degree instead? Study both the linear probability model and the probit model. Explain.

5. [25 marks]

Consider the following linear model for panel data:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + u_{it},$$

where $E[u_{it}X_{it}] = 0$ and $E[\alpha_iX_{it}] \neq 0$.

- (a) Assuming T = 2 (that is, there are only two time periods in your panel data), mathematically define and derive the first difference estimator for β_1 .
- (b) Still assuming that T = 2, how would you obtain an estimate for β_0 ? (Note: You can use your result from part (a).)
- (c) Letting T > 2, if $E[\alpha_i X_{it}] = 0$, suggest a consistent estimator for β_1 . Is it efficient?

Appendix follows below.

name: <unnamed>
 log: ,Ķ
log type: text

opened on: 17 Oct 2014, 11:31:15

. // end preamble

. use "../Stata/Stock_data/Smoking.dta"

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
smoker	10000	.2423	.4284963	0	1
smkban	10000	.6098	.4878194	0	1
age	10000	38.6932	12.11378	18	88
hsdrop	10000	.0912	.2879077	0	1
hsgrad	10000	.3266	.468993	0	1
colsome	10000	.2802	.4491193	0	1
colgrad	10000	.1972	.3979045	0	1
black	10000	.0769	.266446	0	1
hispanic	10000	.1134	.317097	0	1
female	10000	.5637	.4959505	0	1

. generate agesq = age^2

. regress smoker smkban, robust

Linear regression

Number of obs = 10000 F(1, 9998) = 75.06 Prob > F = 0.0000 R-squared = 0.0078 Root MSE = .42684

smoker	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
smkban	0775583	.008952	-8.66	0.000	0951061	0600106
_cons	.2895951	.0072619	39.88		.2753604	.3038298

. regress smoker smkban female age agesq hsdrop hsgrad colsome colgrad black hi > spanic, robust

Linear regression

Number of obs = 10000 F(10, 9989) = 68.75 Prob > F = 0.0000 R-squared = 0.0570 Root MSE = .41631

______ Robust Coef. Std. Err. P>|t| [95% Conf. Interval] smoker t -.0296645 -.0472399 .0089661 -.0648153 smkban -5.27 0.000 -.0332569 .0085683 -.0500525 female -3.88 0.000 -.0164612 age .0096744 .0018954 5.10 0.000 .005959 .0133898 -.0001747 agesq -.0001318 .0000219 -6.02 0.000 -.0000889 .3227142 .2845128 .3609156 .2573807 hsdrop .0194885 0.000 16.56 hsgrad .0125903 18.48 0.000 0.000 .1395495 .189044 colsome .1642968 .0126248 13.01 .0447983 3.72 -1.71 .0120438 colgrad -.0590828 bĺack -.0275658 .0160785 0.086 .0039513 -.1048159 -.1322093 hispanic .0139748 -7.50 0.000 -.0774226 -.0141099 .0670872 _cons .0414228 -0.34 0.733 -.0953069

. margins, at(smkban=(0 1) female=0 age=20 agesq=400 hsdrop=1 hsgrad=0 colsome= > 0 colgrad=0 black=0 hispanic=0)

Adjusted predictions Number of obs = 10000 Model VCE : Robust Expression : Linear prediction, predict() : smkban 0 1._at female age agesq 20 400 hsdrop 1 hsgrad colsome colgrad 0 black hispanic 0 2._at : smkban 1 = = = = ${\tt female}$ 0 age agesq 20 400 hsdrop hsgrad 0 colsome colgrad = black 0 hispanic 0 Delta-method Margin Std. Err. t P>|t| [95% Conf. Interval] _at 1 | 2 | .0204352 .4894292 .4093151 .4493721 21.99 0.000 .4433651 .0204352 21.99 0.000 .021035 19.12 0.000 .4021323 .3608994

. margins, at(smkban=(0 1) female=0 age=20 agesq=400 hsdrop=0 hsgrad=0 colsome= > 0 colgrad=1 black=0 hispanic=0)

Adjusted pred Model VCE		ctions Robust			Nun	nber	of	obs =		10000
Expression	:	Linear pred	iction, pr	redict()						
1at	•	smkban female age agesq hsdrop hsgrad colsome colgrad black hispanic	= = = = = = = =	0 0 20 400 0 0 0						
2at	:	smkban female age agesq hsdrop hsgrad colsome colgrad black hispanic	= = = = = = = =	1 0 20 400 0 0 0 1						
	Ī	Margin	Delta-meth Std. Err	nod • t	P> t		[9	95% Conf	. Int	erval]
_at 1 2	 -	.1714562 .1242163	.0146762					1426879 0968214		2002245

. probit smoker smkban female age agesq hsdrop hsgrad colsome colgrad black his > panic, robust

Iteration 0: log pseudolikelihood = -5537.1662
Iteration 1: log pseudolikelihood = -5238.7464
Iteration 2: log pseudolikelihood = -5235.868
Iteration 3: log pseudolikelihood = -5235.8679

Number of obs = Wald chi2(10) = Prob > chi2 = Pseudo R2 = 10000 542.93 0.0000 Probit regression

Log pseudolikelihood = -5235.8679 0.0544

smoker	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
smkban	15863	.0291099	-5.45	0.000	2156843	1015757
female	1117313	.028841	-3.87	0.000	1682585	055204
age	.0345114	.0068839	5.01	0.000	.0210192	.0480035
agesq	0004675	.0000826	-5.66	0.000	0006295	0003056
hsdrop	1.14161	.0729708	15.64	0.000	.9985902	1.284631
hsgrad	.8826708	.0603706	14.62	0.000	.7643467	1.000995
colsome	.6771192	.0614448	11.02	0.000	.5566896	.7975488
colgrad	.2346839	.0654163	3.59	0.000	.1064703	.3628976
black	0842789	.0534536	-1.58	0.115	1890461	.0204883
hispanic	3382743	.0493523	-6.85	0.000	435003	2415457
_cons	-1.734926	.1519802	-11.42	0.000	-2.032802	-1.437051

. margins, at(smkban=(0 1) female=0 age=20 agesq=400 hsdrop=1 hsgrad=0 colsome= > 0 colgrad=0 black=0 hispanic=0)

Adjusted pred				Number	of obs	= 10000
Model VCE	: Robust					
Expression	: Pr(smoker),	predict()				
1at	: smkban	=	0			
	female	=	0			
	age	=	20			
	agesq	=	400			
	hsdrop	=	1			
	hsgrad	=	0			
	colsome	=	0			
	colgrad	=	0			
	black	=	0			
	hispanic	=	0			
2. at	: smkban	=	1			
2uc	female	=	0			
	age	=	20			
	agesq	=	400			
	hsdrop	=	1			
	hsgrad	=	0			
	colsome	=	Ö			
	colgrad	=	0			
	black	=	0			
	hispanic	=	0			
	 	Delta-method				
	 Margin			P> z	[95% Con	f. Interval]
at						
_1	.464102	.0236973	19.58	0.000	.4176562	.5105479
2	.401783		16.73		.3547027	.4488634

. margins, at(smkban=(0 1) female=0 age=20 agesq=400 hsdrop=0 hsgrad=0 colsome= > 0 colgrad=1 black=0 hispanic=0)

Number of obs = Adjusted predictions
Model VCE : Robust 10000 : Robust Expression : Pr(smoker), predict() : smkban 1._at = 0 = 0 = 200 = 400 = 0 = 0 = 1 = 0 female
age
agesq
hsdrop
hsgrad
colsome
colgrad
black female black hispanic
 =
 1

 female
 =
 0

 age
 =
 20

 agesq
 =
 400

 hsdrop
 =
 0

 hsgrad
 =
 0

 colsome
 =
 0

 colgrad
 =
 1

 black
 =
 0

 hispanic
 =
 0
 : smkban 2._at Delta-method Delta-method Margin Std. Err. [95% Conf. Interval] . log close // c? name: <unnamed> log type: text
closed on: 17 Oct 2014, 11:31:15

End of Appendix. End of Exam.