Formelsammlung Mathematik

Daniel Winz, Ervin Malagic

28. Oktober 2012

Über diese Arbeit

Dies ist das Ergebnis einer Zusammenarbeit auf Basis freier Texte erstellt von Studierenden der Fachhochschule Luzern.

Dieses Schriftstück ist lizenziert unter der GPLv2 und der TEX- bzw. LATEX- Code ist auf github.com/daniw/fosamath hinterlegt.

Inhaltsverzeichnis

1	Vek	torgeometrie	7
	1.1	Vektorgeometrie in der Ebene	8
		1.1.1 Anstand zweier Puntke	8
		1.1.2 Geradengleichungen	8
		1.1.3 Normalenvektor	9
		1.1.4 Abstand Punkt-Gerade	9
		1.1.5 Schnittwinkel zwischen Geraden	9
	1.2	Vektorgeometrie im Raum	10
		1.2.1 Ortsvektor	10
		1.2.2 Länge eines Ortsvektors (Betrag)	10
2	Diff	erenzieren	11
	2.1	Ableitungsregeln	12
		2.1.1 Grundoperationen	12
		2.1.2 Spezielle Regeln	13

Kapitel 1

Vektorgeometrie

1.1 Vektorgeometrie in der Ebene

1.1.1 Anstand zweier Puntke

$$\overline{P_1 P_2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

1.1.2 Geradengleichungen

Normalform (explizite Form)

$$g: y = mx + q$$

Steigung
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} = tan\varphi$$

Koordinatenform (implizite Form)

$$g: ax + by + c = 0$$

Achsenabschnittsform

$$g: \frac{x}{p} + \frac{y}{q} = 1$$

Hesse'sche Normalform

$$g: \frac{ax + by + c}{\sqrt{a^2 + b^2}} = 0$$

Parameterform

$$g: \vec{r} = \vec{r_0} + t \cdot \vec{a} = \left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) + t \cdot \left(\begin{array}{c} a_x \\ a_y \end{array}\right)$$

1.1.3 Normalenvektor

Der Normalenvektor ist ein Vektor, welcher senkrecht auf einem anderen Vektor bzw. einer Geraden liegt. Hier im Beispiel in welchem $\vec{n} \perp g(x)$

$$\left[\vec{n} = \left(\begin{array}{c} n_x \\ n_y \end{array} \right) = \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} -a_y \\ a_x \end{array} \right) \right]$$

Der Richtungsvektor von g(x) ist $\begin{pmatrix} a_x \\ a_y \end{pmatrix} \Rightarrow \begin{pmatrix} -a_y \\ a_x \end{pmatrix} = \vec{n}$.

1.1.4 Abstand Punkt zu Gerade

Für eine Gerade g: ax + by + c = 0 und einen Punkt $P_1(x_1|y_1)$ gilt:

$$d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

1.1.5 Schnittwinkel zwischen Geraden

Für den spitzen Schnittwinkel φ zwischen den Geraden

 $g_1: y = m_1x + q_1$ und $g_2: y = m_2x + q_2$ gilt:

$$tan\varphi = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right| \qquad \text{für } \varphi \neq 90^{\circ}$$

$$g_1||g_2 \Leftrightarrow m_1 = m_2 \text{und } g_1 \perp g_2 \Leftrightarrow m_2 = -\frac{1}{m_1}$$
 für $m_1 \neq 0$

1.2 Vektorgeometrie im Raum

1.2.1 Ortsvektor

Ein Ortsvektor beschreibt den Vektor vom Urspung des Koordinatensystems O(0|0|0) zu einem beliebigen Punkt P(x|y|z).

$$\overrightarrow{r} = \overrightarrow{OP} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z} := \left(egin{array}{c} x \\ y \\ z \end{array}
ight)$$

Die Vektoren $\vec{e_x}, \vec{e_y}, \vec{e_z}$ sind die Einheitsvektoren des Koordinatensystems (meist einfach 1 ohne Einheit).

1.2.2 Länge eines Ortsvektors (Betrag)

$$|\vec{r}| = r = \sqrt{x^2 + y^2 1z^2}$$

Kapitel 2

Differenzieren

2.1 Ableitungsregeln

2.1.1 Grundoperationen

Summenregel

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Wichtig: Ableitung einer konstanten Funktion ist Null!

$$\Rightarrow (f(x) + c)' = f'(x)$$
 für $c \in R$

Faktorregel

$$(c \cdot f(x))' = c \cdot f'(x)$$

Ein konstanter Faktor bleiobt beim Differenzieren (Ableiten) erhalten!

Produkteregel

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotientenregel

$$\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} \quad \text{gilt falls } g(x) \neq 0 !$$

Kettenregel

$$(f(g(x)))' = g'(x) \cdot f'(g(x))$$

13

2.1.2 Spezielle Regeln

Exponenten

$$(x^n)' = n \cdot x^{(n-1)}$$

$$(e^x)' = e^x$$

$$(e^{k \cdot x})' = k \cdot e^x$$

$$\boxed{(a^x)' = ln_a(a^x)}$$

Logarithmen

$$(ln(x))' = \frac{1}{x}$$

Trigonometrie

$$(\sin(x))' = \cos(x)$$

$$(\cos(x))' = -\sin(x)$$

$$(tan(x))' = \frac{1}{cos^2(x)}$$

$$(\cot(x))' = -\frac{1}{sn^2(x)}$$