REAL ANALYSIS

Yaohui Wu

October 25, 2024

1 The Real Number System

1.1 The Set of Real Numbers

We define:

- 1. The set of natural numbers is $\mathbb{N} = \{1, 2, 3, \dots\}$.
- 2. The set of integers is $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}$.
- 3. The set of rational numbers is $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \right\}$.
- 4. The set of real numbers is \mathbb{R} .

Note that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Definition 1.1.1 (Well Ordering Property of \mathbb{N}). Every nonempty subset of \mathbb{N} has a least element.

Definition 1.1.2. An ordered set is a set S with a relation < such that

- 1. (Trichtomy) If $x, y \in S$, then one and only one of the statements x < y, x = y, y < x is true.
- 2. (Transitivity) If $x, y, z \in S$, x < y, and y < z, then x < z.

Definition 1.1.3. Suppose S is an ordered set and $E \subset S$. If there exists a $b \in S$ such that $x \leq b$ for all $x \in E$, then E is bounded above and b is an upper bound of E. If there exists an upper bound a such that $a \leq b$ for all upper bounds b of E, then a is the least upper bound or the supremum of E and we write $\sup E = a$.

Similar definition applies for a set that is bounded below by a lower bound. The greatest lower bound or the infimum of E is denoted by $\inf E$.

Definition 1.1.4. A set is bounded if it is bounded above and below.

Definition 1.1.5 (Dedekind Completeness). An ordered set S has the least-upper-bound property if every nonempty subset $E \subset S$ that is bounded above has a least upper bound, that is, sup E exists in S.

Theorem 1.1.1. There exists a unique ordered field \mathbb{R} with the least-upper-bound property such that $\mathbb{Q} \subset \mathbb{R}$.

1.2 Archimedian Property

Theorem 1.2.1. If $x \in \mathbb{R}$ and $x \leq \varepsilon$ for all real numbers $\varepsilon > 0$, then $x \leq 0$.

Theorem 1.2.2. Suppose $x, y \in \mathbb{R}$.

- 1. (Archimedian property) If x > 0, then there exists an $n \in \mathbb{N}$ such that nx > y.
- 2. (\mathbb{Q} is dense in \mathbb{R}) If x < y, then there exists an $r \in \mathbb{Q}$ such that x < r < y.

If $A \subset \mathbb{R}$ and $\sup A \in A$, then the supremum is the maximum of A denoted by $\max A$. Similarly, the infimum is the minimum of A denoted by $\min A$.

Theorem 1.2.3 (Triangle Inequality). If $x, y \in \mathbb{R}$, then $|x + y| \le |x| + |y|$.

2 Sequences and Series

2.1 Sequences

Definition 2.1.1. A sequence $\{x_n\}_{n=1}^{\infty}$ is a function with domain \mathbb{N} and codomain \mathbb{R} .

Definition 2.1.2. A sequence $\{x_n\}$ is bounded if there exists a $B \in \mathbb{R}$ such that $|x_n| \leq B$ for all $n \in \mathbb{N}$.

Definition 2.1.3. A sequence is convergent and has the limit L and we write

$$\lim_{n \to \infty} x_n = L$$

if for every $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|x_n - L| < \varepsilon$ for all $n \ge N$.

If a sequence is not convergent, then it is divergent.

Theorem 2.1.1. A convergent sequence has a unique limit.

Theorem 2.1.2. If a sequence is convergent, then it is bounded.

Theorem 2.1.3 (Squeeze Theorem). If $a_n \leq b_n \leq c_n$ for all $n \geq N$, and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then

$$\lim_{n\to\infty}b_n=L.$$

2.2 Monotonic Sequences

Definition 2.2.1. A sequence $\{x_n\}$ is increasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$. $\{x_n\}$ is decreasing if $x_n \geq x_{n+1}$ for all $n \in \mathbb{N}$. A sequence is monotonic if it is increasing or decreasing.

Theorem 2.2.1 (Monotone Convergence Theorem). A monotonic sequence is convergent if and only if it is bounded. If $\{x_n\}$ is increasing and bounded above, then

$$\lim_{n\to\infty} x_n = \sup x_n.$$

If $\{x_n\}$ is decreasing and bounded below, then

$$\lim_{n\to\infty} x_n = \inf x_n.$$

2.3 Subsequences

Definition 2.3.1. Let n_k be a sequence with $n_k < n_{k+1}$ for all $k \in \mathbb{N}$. The sequence $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$.

Theorem 2.3.1. If $\{x_n\}$ is convergent, then every subsequence $\{x_{n_k}\}$ is convergent, and

$$\lim_{n\to\infty} x_n = \lim_{i\to\infty} x_{n_k}.$$

2.4 Bolzano-Weierstrass Theorem

Theorem 2.4.1 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

2.5 Cauchy Sequences

Definition 2.5.1. A sequence $\{x_n\}$ is a Cauchy sequence if for every $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge \mathbb{N}$.

Theorem 2.5.1. If a sequence is a Cauchy sequence, then it is bounded.

Theorem 2.5.2 (Cauchy Completeness). A sequence is convergent if and only if it is a Cauchy sequence.