Robot Architectures

• Organizing a robot (software) control system.

BLG456E Robotics Robot Software Architectures

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
 - Shakey Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Considerably adapted from work by Dr. Sanem Sariel-Talay

Temporal decomposition of robot architectures

- Coarse division of control
- Layering can be loosely synchronous

Sample Mobile Platform Decomposition

BLG456E Robotics Robot Software Architectures

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
 - Shakey Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Considerably adapted from work by Dr. Sanem Sariel-Talay

Control Architecture Types

- Deliberative control
- Reactive control
- Hybrid control
- Behaviour-based control

Deliberative Architecture

- Maps, lots of state
- Look-ahead

Control Decomposition: Sense-Plan-Act

High-level planning: Planning problems

Example <u>high-level planning problem:</u>

Initial state:

at(boxA,place2),at(boxB,place2),at(robot,place3)

Goal state description:

at(boxB,place1),at(boxB,place2)

Also need a <u>domain description</u> with:

- Possible actions.
 - Action <u>preconditions</u>.
 - Action effects.

Example plan

Example plan:

```
1 STATE: at(boxA,place2),at(boxB,place2),at(robot,place3)
  ACTION: go(place1,place2)
2 STATE: at(boxA, place2), at(boxB, place2), at(robot, place2)
  ACTION: push (boxA, place2, place1)
3 STATE: at(boxA, place1), at(boxB, place2), at(robot, place1)
  ACTION: go(place1,place2)
4 STATE: at(boxA, place1), at(boxB, place2), at(robot, place2)
  ACTION: push (block2, place2, place1)
5 STATE: at(boxA, place1), at(boxB, place1), at(robot, place1)
  DONE
```

Example action description

Move from place to place in a room:

```
go(X,Y):
```

- PRECONDITIONS:
 - at(robot,X)
- ADD EFFECTS:
 - at(robot,Y)
- REMOVE EFFECTS:
 - at(robot,X)

Example action description

Push movable objects within a room:

push(B, X, Y):

- PRECONDITIONS:
 - at(B,X)
 - at(robot,X)
- ADD EFFECTS:
 - at(B,Y)
 - at(robot,Y)
- REMOVE EFFECTS:
 - at(B,X)
 - at(robot,X)

Finding plans

- Given:
 - Domain description (available actions).
 - Goal description and initial state.
- Find:
 - Sequence of actions.
- Approaches:
 - First-order logic & theorem-proving.
 - → SEARCH
 - General purpose planners.
 - → SEARCH

Example state subgraph

BLG456E Robotics Robot Software Architectures

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
 - Shakey Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Considerably adapted from work by Dr. Sanem Sariel-Talay

Reactive Architecture

- No maps, no state
- No look ahead
- Could be implemented by a look-up table

Braitenberg Car

- By default, the motors turn!
- Each sensor is connected to the motor on the same side inhibiting the motor.
- The vehicle
 - heads toward light sources
 - speeds up in dark areas
 - slows down in light areas
 - spends more time in light and less time in dark.

Braitenberg Car

- appears to have goals
- does not possess states (current velocities)
- characterized as: "loves" light.

BLG456E Robotics Robot Software Architectures

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
 - Shakey Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Considerably adapted from work by Dr. Sanem Sariel-Talay

Parallel Decomposition - Behavioural

Behaviour-based Architecture

- Some state.
- Look ahead only while acting.
- Reactive + state.

Combining modules does not give any guarantees of correctness (not easy to formally model)

Layered (incremental) control: Subsumption architecture

- Higher level layers subsume roles of lower layers when they take control.
- Layers below any level form a complete operational control system.

Mobile robot example

- Level 0: Avoid objects.
- Level 1: Wander aimlessly (without hitting).
- Level 2: "Explore" head towards distant places.
- Level 3: Build map, plan routes.
- Level 4: Notice changes in map.
- Level 5: Reason about objects and tasks.
- Level 6: Formulate plans.
- Level 7: Reason about object dynamics.

Mobile robot example

*Figure courtesy of Handbook of Robotics, Springer, 2008

Mobile robot example

- sonar: Vector of sonar readings → robot-centered map of obstacles.
- collide: Map → detects objects ahead → halt signal.
- feelforce: Obstacle map → repulsive force.
- runaway: Repulsive force → heading.
- turn and forward: Feedback control from encoders.
- wander: Random movement generation.
- avoid: Reactive avoidance: Combine feelforce and wander.

Subsumption Modules

- Input and output lines: "wires".
- 1-message buffer.
- Suppression of inputs or inhibition of outputs.
- Can be reset.

Augmented Finite State Machines

Message arrival/timer expiration \rightarrow trigger a change in the state of FSM.

BLG456E Robotics Robot Software Architectures

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
 - Shakey Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Considerably adapted from work by Dr. Sanem Sariel-Talay

Hybrid Architectures

- State.
- Look ahead but react.
- Combines long and short time scales.

- Interleaves deliberation (planning) with reactive control e.g. moving obstacle avoidance.
- Very common nowadays.

Hybrid Architectures

BLG456E Robotics Robot Software Architectures

- Temporal Decomposition
- Main Architecture Types
 - Deliberative.
 - Planning Intro
 - Reactive.
 - Behaviour-based.
 - Hybrid.
 - Shakey Example.

Lecturer: Damien Jade Duff Email: djduff@itu.edu.tr

Office: EEBF 2316

Schedule: http://djduff.net/my-schedule

Coordination: http://ninova.itu.edu.tr/Ders/4709

Considerably adapted from work by Dr. Sanem Sariel-Talay

Early robots - Shakey

Shakey (SRI), 1960's

- -Sensors:
 - VidiconTV camera
 - Optical range finder
 - Whisker bump sensors
- Environment: Office environment with specially colored and shaped objects
- -STRIPS planner: developed for this system

Shakey the robot

To controlling computer

Shakey outline

World
Model

PLANEX
Plan Executor (& monitor).

STRIPS
Planner.

ILAs
Intermediate Level Actions.

LUAS
Hardware

- Central representation (world model)
- Logic based representation.

- Components communicate via world model.
- Error recovery at several levels (e.g. plan executor, low level actions).