

复变函数与积分变换

作者: 张神星

组织: 合肥工业大学

时间: 2024年8月28日

版本: v1.0.0.0

前言

张神星 2024年8月27日

Bib 格式:

```
@misc{ZhangNotes2021,
  AUTHOR = {张神星},
  KEY = {zhang2 shen4 xing2},
  TITLE = {复变函数与积分变换 (v1.0.0.0)},
  YEAR = {2024},
  PAGES = {vi+163},
  HOWPUBLISHED = {Course Notes},
  URL = {https://zhangshenxing.github.io/teaching/复变函数与积分变换/note/main.pdf},
  LANGUAGE = {Chinese}
}
```

目录

前言		j
第 一 章	章 解析函数	1
1.1	解析函数的概念	1
	1.1.1 可导的函数	1
	1.1.2 可微的函数	2
	1.1.3 解析的函数	2
1.2	图数解析的充要条件	3
	1.2.1 柯西-黎曼方程	3
	1.2.2 柯西-黎曼方程的应用	4
1.3	7 初等函数	6
	1.3.1 指数函数	6
	1.3.2 对数函数	7
	1.3.3 幂函数	9
	1.3.4 三角函数和反三角函数	10

第一章 解析函数

§1.1 解析函数的概念

§1.1.1 可导的函数

由于 C 和 ℝ 一样是域, 因此我们可以像一元实变函数一样去定义复变函数的导数和微分.

定义 1.1 (导数)

设w = f(z)的定义域是区域 $D, z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数, 记作

$$f'(z_0) = \frac{\mathrm{d}w}{\mathrm{d}z}\Big|_{z=z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

如果 f(z) 在区域 D 内处处可导, 称 f(z) 在 D 内可导.

例题 **1.1** 函数 f(z) = x + 2ui 在哪些点处可导?

解:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

当 $\Delta x = 0, \Delta y \to 0$ 时, 上式 $\to 2$; 当 $\Delta y = 0, \Delta x \to 0$ 时, 上式 $\to 1$. 因此该极限不存在, f(z) 处处不可 루.

△ 练习 **1.1.1** 函数 f(z) = x - yi 在哪些点处可导?

例题 1.2 求 $f(z) = z^2$ 的导数.

解:

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z} = \lim_{\Delta z \to 0} (2z + \Delta z) = 2z.$$

和一元实变函数情形类似, 我们有如下求导法则:

定理 1.2 (导函数的运算法则)

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g'$, (cf)' = cf';

•
$$(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2};$$

• $[f(g(z))]' = f'[g(z)] \cdot g'(z);$
• $g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$

•
$$g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$$

定理 1.3 (可导蕴含连续)

若 f(z) 在 z_0 可导, 则 f(z) 在 z_0 连续.

该定理的证明和实变量情形完全相同.

证明:设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \lim_{\Delta z \to 0} \Delta z = f'(z_0) \cdot 0 = 0.$$

§1.1.2 可微的函数

复变函数的微分也和一元实变函数情形类似.

定义 1.4 (微分)

如果存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

和一元实变函数情形一样, 复变函数的可微和可导是等价的, 且 $dw = f'(z_0)\Delta z$, $dz = \Delta z$. 故

$$dw = f'(z_0) dz, f'(z_0) = \frac{dw}{dz}.$$

§1.1.3 解析的函数

定义 1.5 (解析和奇点)

- 若函数 f(z) 在 z_0 的一个邻域内处处可导, 则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析, 则称 f(z) 在 D 内解析, 或称 f(z) 是 D 内的一个解析函数.
- 若 f(z) 在 z_0 不解析, 则称 z_0 为 f(z) 的一个奇点.

无定义、不连续、不可导、可导但不解析,都会导致奇点的产生.

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域. 所以 f(z) 在 D 内解析和在 D 内可导是等价的.

如果 f(z) 在 z_0 解析,则 f(z) 在 z_0 的一个邻域内处处可导,从而在该邻域内解析. 因此 f(z) 解析点全体是一个开集.

- △ 练习 1.1.2 单选题: 函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的 ().
 - (A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

例题 **1.3** 研究函数 $f(z) = |z|^2$ 的解析性.

解: 由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z} = \overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi}$$

- (1) 若 z = 0, 则当 $\Delta z \rightarrow 0$ 时该极限为 0.
- (2) 若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \to 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \to 0$ 时该极限为 $\overline{z} z$. 因此此时极限不存在.

故 f(z) 仅在 z=0 处可导, 从而处处不解析.

§1.2 函数解析的充要条件

§1.2.1 柯西-黎曼方程

通过对一些简单函数的分析, 我们发现可导的函数往往可以直接表达为 z 的函数的形式, 而不解析的往往包含 x,y,\overline{z} 等内容. 这种现象并不是孤立的. 我们来研究二元实变量函数的可微性与复变函数可导的关系.

为了简便我们用 u_x, u_y, v_x, v_y 等记号表示偏导数.

设 f 在 z 处可导, f'(z) = a + bi, 则

$$\Delta u + i\Delta v = \Delta f = (a + bi)(\Delta x + i\Delta y) + o(\Delta z).$$

展开可知

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

由于 $o(\Delta z) = o(|\Delta z|) = o(\sqrt{x^2 + y^2})$, 因此 u, v 可微且 $u_x = v_y = a, v_x = -u_y = b$.

反过来, 假设 u,v 可微且 $u_x = v_y, v_x = -u_y$. 由全微分公式

$$du = u_x dx + u_y dy = u_x dx - v_x dy,$$

$$dv = v_x dx + v_y dy = v_x dx + u_x dy,$$

$$df = d(u + iv) = (u_x + iv_x) dx + (-v_x + iu_x) dy$$

$$= (u_x + iv_x) d(x + iy)$$

$$= (u_x + iv_x) dz = (v_y - iu_y) dz.$$

故 f(z) 在 z 处可导, 且 $f'(z) = u_x + iv_x = v_y - iu_y$.

由此得到

定理 1.6 (柯西-黎曼方程)

f(z) 在 z 可导当且仅当在 z 点 u,v 可微且满足柯西-黎曼方程 (简称为 C-R 方程):

$$u_x = v_y, \quad v_x = -u_y.$$

此时

$$f'(z) = u_x + iv_x = v_y - iu_y.$$

注意到 $x=\frac{1}{2}z+\frac{1}{2}\overline{z}, y=-\frac{i}{2}z+\frac{i}{2}\overline{z}$. 仿照着二元实函数偏导数在变量替换下的变换规则, 我们定

图 1.1: 柯西

图 1.2: 黎曼

义 f 对 z 和 z 的偏导数为

$$\begin{cases} \frac{\partial f}{\partial z} = \frac{\partial x}{\partial z} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial z} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{i}{2} \frac{\partial f}{\partial y}, \\ \frac{\partial f}{\partial \overline{z}} = \frac{\partial x}{\partial \overline{z}} \frac{\partial f}{\partial x} + \frac{\partial y}{\partial \overline{z}} \frac{\partial f}{\partial y} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y}. \end{cases}$$

如果把 z, \overline{z} 看成独立变量, 那么当 f 在 z 处可导时, $\mathrm{d}f = f' \, \mathrm{d}z$. 当 f 关于 z, \overline{z} 可微时 (即 u, v 可微),

$$\mathrm{d}f = \frac{\partial f}{\partial z} \, \mathrm{d}z + \frac{\partial f}{\partial \overline{z}} \, \mathrm{d}\overline{z}.$$

所以 f 在 z 处可导当且仅当 u,v 可微且 $\frac{\partial f}{\partial \overline{z}} = 0$.

由于二元函数的偏导数均连续蕴含可微, 因此我们有:

定理 1.7

- 如果 u_x, u_y, v_x, v_y 在 z 处连续, 且满足 C-R 方程, 则 f(z) 在 z 可导.
- 如果 u_x, u_y, v_x, v_y 在区域 D 上处处连续, 且满足 C-R 方程, 则 f(z) 在 D 上可导 (从而解析).

§1.2.2 柯西-黎曼方程的应用

例题 1.4

- (1) 函数 $f(z) = \overline{z}$ 在何处可导, 在何处解析?
- (2) 函数 $f(z) = z \operatorname{Re} z$ 在何处可导, 在何处解析?
- (3) 函数 $f(z) = e^x(\cos y + i\sin y)$ 在何处可导, 在何处解析?

解:

(1) 由 u = x, v = -y 可知

$$u_x = 1,$$
 $u_y = 0,$ $v_x = 0,$ $v_y = -1.$

因为 $u_x = 1 \neq v_y = -1$, 所以该函数处处不可导, 处处不解析. ¹

(2) 由 $f(z) = x^2 + ixy, u = x^2, v = xy$ 可知

$$u_x = 2x,$$
 $u_y = 0,$ $v_x = y,$ $v_y = x.$

由 2x = x, 0 = -y 可知只有 x = y = 0, z = 0 满足 C-R 方程. 因此该函数只在 0 可导, 处处不解析

 $[\]frac{1}{1}$ 也可由 $\frac{\partial f}{\partial \overline{z}} = 1 \neq 0$ 看出.

$$\mathbb{E} f'(0) = u_x(0) + iv_x(0) = 0.$$

(3) 由 $u = e^x \cos y, v = e^x \sin y$ 可知

$$u_x = e^x \cos y,$$
 $u_y = -e^x \sin y,$ $v_x = e^x \sin y,$ $v_y = e^x \cos y.$

因此该函数处处可导,处处解析,且

$$f'(z) = u_x + iv_x = e^x(\cos y + i\sin y) = f(z).$$

实际上, (3) 中的函数就是复变量的指数函数 e^z .

△ 练习 1.2.1 单选题: 函数 () 在 z = 0 处不可导.

(A) 2x + 3yi

(B)
$$2x^2 + 3y^2i$$

(C)
$$e^x \cos y + ie^x \sin y$$
 (D) $x^2 - xyi$

例题 1.5 设函数 $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ 在复平面内处处解析. 求实常数 a, b, c, d 以及 f'(z).

解: 由于

$$u_x = 2x + ay,$$
 $u_y = ax + 2by,$ $v_x = 2cx + dy,$ $v_y = dx + 2y,$

因此

$$2x + ay = dx + 2y$$
, $ax + 2by = -(2cx + dy)$, $a = d = 2$, $b = c = -1$, $f'(z) = u_x + iv_x = 2x + 2y + i(-2x + 2y) = (2 - 2i)z$.

例题 1.6 证明: 如果 f'(z) 在区域 D 内处处为零,则 f(z) 在 D 内是一常数.

证明: 由于

$$f'(z) = u_x + iv_x = v_y - iu_y = 0,$$

因此 $u_x = v_x = u_y = v_y = 0$, u, v 均为常数, 从而 f(z) = u + iv 是常数.

类似地可以证明, 若 f(z) 在 D 内解析, 则下述条件等价:

- *f*(*z*) 是一常数,
- f'(z) = 0,
- arg f(z) 是一常数,
- |f(z)| 是一常数,
- Re f(z) 是一常数,
- Im f(z) 是一常数,
- $v = u^2$,
- $u = v^2$.

例题 1.7 证明: 如果 f(z) 解析且 f'(z) 处处非零,则曲线族 $u(x,y)=c_1$ 和曲线族 $v(x,y)=c_2$ 互相正交.

¹也可由 $f = \frac{1}{2}z(z + \overline{z}), \frac{\partial f}{\partial \overline{z}} = \frac{1}{2}z$ 看出.

证明: 由于 $f'(z)=u_x-iu_y$, 因此 u_x,u_y 不全为零. 对 $u(x,y)=c_1$ 使用隐函数求导法则得 $u_x\,\mathrm{d}x+$ $u_y dy = 0$, 从而 $(u_y, -u_x)$ 是该曲线在 z 处的非零切向量.

同理 $(v_y, -v_x)$ 是 $v(x, y) = c_2$ 在 z 处的非零切向量. 由于

$$u_y v_y + u_x v_x = u_y u_x - u_x u_y = 0,$$

因此二者正交.

当 $f'(z_0) \neq 0$ 时, 经过 z_0 的两条曲线 C_1, C_2 的夹角和它们的像 $f(C_1), f(C_2)$ 在 $f(z_0)$ 处的夹角总 是相同的. 这种性质被称为保角性. 这是因为 $\mathrm{d}f = f'(z_0)\,\mathrm{d}z$. 局部来看 f 把 z_0 附近的点以 z_0 为中心放 缩 $f'(z_0)$ 倍并逆时针旋转 $\arg f'(z_0)$. 由 w 复平面上曲线族 $u=c_1,v=c_2$ 正交可知上述例题成立.

最后我们来看复数在求导中的一个应用.

例题 1.8 设 $f(z) = \frac{1}{1+z^2}$, 则它在除 $z = \pm i$ 外处处解析. 当 z = x 为实数时,

$$\left(\frac{1}{1+x^2}\right)^{(n)} = f^{(n)}(x) = \frac{i}{2} \left(\frac{1}{x+i} - \frac{1}{x-i}\right)^{(n)}$$

$$= \frac{i}{2} \cdot (-1)^n n! \left(\frac{1}{(x+i)^{n+1}} - \frac{1}{(x-i)^{n+1}}\right)$$

$$= (-1)^{n+1} n! \operatorname{Im} \frac{1}{(x+i)^{n+1}}$$

$$= (-1)^n n! (x^2+1)^{-\frac{n+1}{2}} \sin((n+1) \operatorname{arccot} x).$$

§1.3 初等函数

我们将实变函数中的初等函数推广到复变函数. 多项式函数和有理函数的解析性质已经介绍过, 这 里不再重复.

§1.3.1 指数函数

我们来定义指数函数. 指数函数有多种等价的定义方式:

- (1) $\exp z = e^x(\cos y + i\sin y)$ (欧拉恒等式);
- (2) $\exp z = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n (\text{极限定义});$ (3) $\exp z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \lim_{n \to \infty} \sum_{k=0}^n \frac{z^k}{k!} (\text{级数定义});$
- (4) $\exp z$ 是唯一的一个处处解析的函数, 使得当 $z = x \in \mathbb{R}$ 时, $\exp z = e^x$ (e^x 的解析延拓).

有些人会从 e^x , $\cos x$, $\sin x$ 的泰勒展开

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$

形式地带入得到欧拉恒等式 $e^{ix} = \cos x + i \sin x$. 事实上我们可以把它当做复指数函数的定义, 而不是 欧拉恒等式的证明. 我们将在第四章说明(1)、(3)和(4)是等价的.

我们来证明(1)和(2)等价.

$$\begin{split} \lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n &= \lim_{n \to \infty} \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)^{\frac{n}{2}} \quad (1^\infty \, \text{型不定式}) \\ &= \exp \left[\lim_{n \to \infty} \frac{n}{2} \left(\frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right) \right] = e^x. \end{split}$$

不妨设 n > |z|, 这样 $1 + \frac{z}{n}$ 落在右半平面,

$$\lim_{n \to \infty} n \arg\left(1 + \frac{z}{n}\right) = \lim_{n \to \infty} n \arctan\frac{y}{n+x} = \lim_{n \to \infty} \frac{ny}{n+x} = y.$$

故

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^x (\cos y + i \sin y).$$

定义 1.8 (指数函数)

定义指数函数

$$\exp z := e^x(\cos y + i\sin y).$$

为了方便, 我们也记 $e^z = \exp z$. 指数函数有如下性质:

- $\exp z$ 处处解析, 且 $(\exp z)' = \exp z$.
- $\exp z \neq 0$.
- $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2$.
- $\exp(z + 2k\pi i) = \exp z$, 即 $\exp z$ 周期为 $2\pi i$.
- $\exp z_1 = \exp z_2 \stackrel{\text{def}}{=} \mathbb{I} \mathbb{I} \mathbb{I} = z_1 = z_2 + 2k\pi i, k \in \mathbb{Z}.$
- $\exp z$ 将直线族 $\operatorname{Re} z = c$ 映为圆周族 $|w| = e^c$, 将直线族 $\operatorname{Im} z = c$ 映为射线族 $\operatorname{Arg} w = c$.

例题 **1.9** 计算函数 $f(z) = \exp(z/6)$ 的周期.

解: 设 $f(z_1) = f(z_2)$, 则 $\exp(z_1/6) = \exp(z_2/6)$. 因此存在 $k \in \mathbb{Z}$ 使得

$$\frac{z_1}{6} = \frac{z_2}{6} + 2k\pi i,$$

从而 $z_1-z_2=12k\pi i$. 所以 f(z) 的周期是 $12\pi i$.

一般地,
$$\exp(az+b)$$
 的周期是 $\frac{2\pi i}{a}$ (或写成 $-\frac{2\pi i}{a}$), $a \neq 0$.

§1.3.2 对数函数

对数函数 $\operatorname{Ln} z$ 定义为指数函数 $\exp z$ 的反函数. 为什么我们用大写的 Ln 呢? 在复变函数中, 很多函数是多值函数. 为了便于研究, 我们会固定它的一个单值分支. 我们将多值的这个开头字母大写, 而对应的单值的则是开头字母小写. 例如 $\operatorname{Arg} z$ 和 $\operatorname{arg} z$.

设
$$z \neq 0$$
, $e^w = z = re^{i\theta} = e^{\ln r + i\theta}$. 则

$$w = \ln r + i\theta + 2k\pi i, \quad k \in \mathbb{Z}.$$

定义 1.9 (对数函数)

(1) 定义对数函数

$$\operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z.$$

它是一个多值函数.

(2) 定义对数函数主值

$$ln z = ln |z| + i \arg z.$$

对于每一个整数 k, $\ln z + 2k\pi i$ 都给出了 $\operatorname{Ln} z$ 的一个单值分支. 特别地, 当 z = x > 0 是正实数时, $\ln z$ 就是实变的对数函数.

例题 1.10 求 Ln 2, Ln(-1) 以及它们的主值.

解:

$$\operatorname{Ln} 2 = \operatorname{ln} 2 + 2k\pi i, \quad k \in \mathbb{Z},$$

主值为 ln 2.

$$Ln(-1) = ln 1 + i Arg(-1) = (2k+1)\pi i, \quad k \in \mathbb{Z},$$

主值为 πi .

例题 1.11 求 Ln(-2+3i), $Ln(3-\sqrt{3}i)$.

解.

$$\begin{split} & \operatorname{Ln}(-2+3i) = \ln|-2+3i| + i\operatorname{Arg}(-2+3i) = \frac{1}{2}\ln 13 + \left(-\arctan\frac{3}{2} + \pi + 2k\pi\right)i, \quad k \in \mathbb{Z}. \\ & \operatorname{Ln}(3-\sqrt{3}i) = \ln\left|3+\sqrt{3}i\right| + i\operatorname{Arg}(3-\sqrt{3}i) = \ln 2\sqrt{3} + \left(-\frac{\pi}{6} + 2k\pi\right)i = \ln 2\sqrt{3} + \left(2k - \frac{1}{6}\right)\pi i, \quad k \in \mathbb{Z}. \end{split}$$

例题 **1.12** 解方程 $e^z - 1 - \sqrt{3}i = 0$.

解: 由于 $1+\sqrt{3}i=2e^{\frac{\pi i}{3}}$, 因此

$$z = \operatorname{Ln}(1 + \sqrt{3}i) = \ln 2 + \left(2k + \frac{1}{3}\right)\pi i, \quad k \in \mathbb{Z}.$$

△ 练习 1.3.1 求 $\ln(-1-\sqrt{3}i) =$ _____.

对数函数与其主值的关系是

$$\operatorname{Ln} z = \operatorname{ln} z + \operatorname{Ln} 1 = \operatorname{ln} z + 2k\pi i, \quad k \in \mathbb{Z}.$$

根据辐角以及主辐角的相应等式, 我们有

$$\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2,$$

$$\operatorname{Ln} \sqrt[n]{z} = \frac{1}{n} \operatorname{Ln} z.$$

而当 $|n| \ge 2$ 时, $\operatorname{Ln} z^n = n \operatorname{Ln} z$ 不成立. 以上等式换成 $\operatorname{ln} z$ 均不一定成立.

设x是正实数,则

$$\ln(-x) = \ln x + \pi i, \quad \lim_{y \to 0^{-}} \ln(-x + yi) = \ln x - \pi i,$$

因此 $\ln z$ 在负实轴和零处不连续. 而在其它地方, $-\pi < \arg z < \pi$, $\ln z$ 是 e^z 在区域 $-\pi < \operatorname{Im} z < \pi$ 上 的单值反函数, 从而 $(\ln z)' = \frac{1}{z}$, $\ln z$ 在除负实轴和零处的区域解析.

也可以通过 C-R 方程来得到 $\ln z$ 的解析性和导数: 当 x > 0 时,

$$\ln z = \frac{1}{2} \ln(x^2 + y^2) + i \arctan \frac{y}{x},$$

$$u_x = v_y = \frac{x}{x^2 + y^2}, \qquad v_x = -u_y = -\frac{y}{x^2 + y^2},$$

$$(\ln z)' = \frac{x - yi}{x^2 + y^2} = \frac{1}{z}.$$

其它情形可取虚部为 $\operatorname{arccot} \frac{x}{y}$ 或 $\operatorname{arccot} \frac{x}{y} - \pi$ 类似证明.

§1.3.3 幂函数

定义 1.10 (幂函数)

(1) 设 $a \neq 0, z \neq 0$, 定义幂函数

$$w = z^a = e^{a \operatorname{Ln} z} = \exp(a \ln |z| + ia(\arg z + 2k\pi)), \quad k \in \mathbb{Z}.$$

(2) 幂函数的主值为

$$w = e^{a \ln z} = \exp(a \ln |z| + ia \arg z).$$

根据 a 的不同,这个函数有着不同的性质.

- (1) 当 a 为整数时, 因为 $e^{2ak\pi i}=1$, 所以 $w=z^a$ 是单值的. 此时 z^a 就是我们之前定义的乘幂. 当 a 是非负整数时, z^a 在复平面上解析; 当 a 是负整数时, z^a 在 $\mathbb{C}-\{0\}$ 上解析.
- (2) 当 $a = \frac{p}{q}$ 为分数, p, q 为互质的整数且 q > 1 时,

$$z^{\frac{p}{q}} = |z|^{\frac{p}{q}} \exp\left(\frac{ip(\arg z + 2k\pi)}{q}\right), \quad k = 0, 1, \dots, q - 1$$

具有 q 个值. 去掉负实轴和 0 之后, 它的主值 $w = \exp(a \ln z)$ 是处处解析的. 事实上它就是 $\sqrt[q]{z^p} = (\sqrt[q]{z})^p$.

(3) 对于其它的 a, z^a 具有无穷多个值. 这是因为此时当 $k \neq 0$ 时, $2k\pi ai$ 不可能是 $2\pi i$ 的整数倍. 从而不同的 k 得到的是不同的值. 去掉负实轴和 0 之后, 它的主值 $w = \exp(a \ln z)$ 也是处处解析的.

a	z^a 的值	z^a 的解析区域
整数 n	单值	$n \ge 0$ 时处处解析 $n < 0$ 时除零点外解析
分数 <i>p/q</i>	q 值	除负实轴和零点外解析
无理数或虚数	无穷多值	除负实轴和零点外解析

例题 1.13 求 $1^{\sqrt{2}}$ 和 i^i .

解:

$$1^{\sqrt{2}} = e^{\sqrt{2} \ln 1} = e^{\sqrt{2} \cdot 2k\pi i} = \cos(2\sqrt{2}k\pi) + i\sin(2\sqrt{2}k\pi), \quad k \in \mathbb{Z}.$$

$$i^i = e^{i\operatorname{Ln} i} = \exp\left(i\cdot\left(2k + \frac{1}{2}\right)\pi i\right) = \exp\left(-2k\pi - \frac{1}{2}\pi\right), \quad k \in \mathbb{Z}.$$

▲ 练习 **1.3.2** 3ⁱ 的主辐角是

幂函数与其主值有如下关系:

$$z^a = e^{a \ln z} \cdot 1^a = e^{a \ln z} \cdot e^{2ak\pi i}, \quad k \in \mathbb{Z}.$$

对于幂函数的主值,

$$(z^a)' = (e^{a \ln z})' = \frac{ae^{a \ln z}}{z} = az^{a-1}.$$

一般而言, $z^a \cdot z^b = z^{a+b}$ 和 $(z^a)^b = z^{ab}$ 都是不成立的.

最后, 注意 e^a 作为指数函数 $f(z) = e^z$ 在 a 处的值和作为 $g(z) = z^a$ 在 e 处的值是<mark>不同</mark>的. 因为后者在 $a \notin \mathbb{Z}$ 时总是多值的. 前者实际上是后者的主值. 为避免混淆, 以后我们总<mark>默认 e^a 表示指数函数 $\exp a$.</mark>

§1.3.4 三角函数和反三角函数

我们知道

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

对于任意实数 x 成立, 我们将其推广到复数情形.

定义 1.11 (余弦和正弦函数)

定义余弦和正弦函数

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i}.$$

那么欧拉恒等式 $e^{iz} = \cos z + i \sin z$ 对任意复数 z 均成立.

不难得到

$$\cos(iy) = \frac{e^y + e^{-y}}{2}, \quad \sin(iy) = i\frac{e^y - e^{-y}}{2}.$$

当 $y \to \infty$ 时, $\cos(iy)$ 和 $\sin(iy)$ 都 $\to \infty$. 因此 $\sin z$ 和 $\cos z$ 并不有界. 这和实变情形不同.

容易看出 cos z 和 sin z 的零点都是实数. 于是可类似定义其它三角函数

$$\tan z = \frac{\sin z}{\cos z}, z \neq \left(k + \frac{1}{2}\right)\pi, \qquad \cot z = \frac{\cos z}{\sin z}, z \neq k\pi,$$
$$\sec z = \frac{1}{\cos z}, z \neq \left(k + \frac{1}{2}\right)\pi, \qquad \csc z = \frac{1}{\sin z}, z \neq k\pi.$$

这些三角函数的奇偶性, 周期性和导数与实变情形类似,

$$(\cos z)' = -\sin z, \quad (\sin z)' = \cos z,$$

且在定义域范围内是处处解析的. 三角函数的各种恒等式在复数情形也仍然成立, 例如

- $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$,
- $\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$,
- $\sin^2 z + \cos^2 z = 1.$

类似的,我们可以定义双曲函数:

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2} = \cos iz,$$

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} = -i \sin iz,$$

$$\operatorname{th} z = \frac{e^z - e^{-z}}{e^z + e^{-z}} = -i \tan iz, \quad z \neq \left(k + \frac{1}{2}\right) \pi i.$$

它们的奇偶性和导数与实变情形类似, 在定义域范围内是处处解析的. $\operatorname{ch} z$, $\operatorname{sh} z$ 的周期是 $2\pi i$, $\operatorname{th} z$ 的周 期是 πi .

设
$$z=\cos w=rac{e^{iw}+e^{-iw}}{2}$$
,则
$$e^{2iw}-2ze^{iw}+1=0,\quad e^{iw}=z+\sqrt{z^2-1}^1.$$

因此反余弦函数为

$$w = \operatorname{Arccos} z = -i\operatorname{Ln}(z + \sqrt{z^2 - 1}).$$

显然它是多值的. 同理, 我们有:

- 反正弦函数 $Arcsin z = -i Ln(iz + \sqrt{1-z^2});$
- 反正切函数 $Arctan z = -\frac{i}{2} Ln \frac{1+iz}{1-iz}, z \neq \pm i;$
- 反双曲余弦函数 $\operatorname{Arch} z = \operatorname{Ln}(z + \sqrt{z^2 1});$
- 反双曲正弦函数 $\operatorname{Arsh} z = \operatorname{Ln}(z + \sqrt{z^2 + 1});$ 反双曲正切函数 $\operatorname{Arth} z = \frac{1}{2} \operatorname{Ln} \frac{1+z}{1-z}, z \neq \pm 1.$

例题 1.14 解方程 $\sin z = 2$

解: 由于

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 2,$$

我们有

$$e^{2iz} - 4ie^{iz} - 1 = 0.$$

于是 $e^{iz} = (2 \pm \sqrt{3})i$,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = \left(2k + \frac{1}{2}\right)\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

另解: 由 $\sin z = 2$ 可知

$$\cos z = \sqrt{1 - \sin^2 z} = \pm \sqrt{3}i.$$

于是 $e^{iz} = \cos z + i \sin z = (2 \pm \sqrt{3})i$,

$$z = -i \operatorname{Ln}[(2 \pm \sqrt{3})i] = \left(2k + \frac{1}{2}\right)\pi \pm i \ln(2 + \sqrt{3}), \quad k \in \mathbb{Z}.$$

我们总有形式

$$\operatorname{Arcsin} z = (2k + \frac{1}{2})\pi \pm \theta,$$

$$Arccos z = 2k\pi \pm \theta,$$

$$Arctan z = k\pi + \theta, \quad k \in \mathbb{Z}.$$

中外人名对照表

阿贝尔	Niels Henrik Abel, 1802–1829
阿基米德	Άρχιμήδης, 公元前 287–前 212
埃尔布朗	Jacques Herbrand, 1908–1931
艾森斯坦	Ferdinand Gotthold Max Eisenstein, 1823-1852
奥斯特洛斯基	Олександр Маркович Островський, 1893–1986
贝克	Alan Baker, 1939–2018
伯奇	Bryan John Birch, 1931-
泊松	Siméon Denis Poisson, 1781–1840
戴德金	Julius Wilhelm Richard Dedekind, 1831–1916
狄利克雷	Johann Peter Gustav Lejeune Dirichlet, 1805–1859
法尔廷斯	Gerd Faltings, 1954–
方丹	Jean-Marc Fontaine, 1944–2019
费马	Pierre de Fermat, 1601–1665
傅里叶	Jean-Baptiste Joseph Fourier, 1768–1830
弗罗贝尼乌斯	Ferdinand Georg Frobenius, 1849–1917
伽罗瓦	Évariste Galois, 1811-1832
高斯	Johann Carl Friedrich Gauß, 1777–1855
谷山丰	谷山豊, 1927-1953
哈尔	Alfréd Haar, 1885–1933
哈塞	Helmut Hasse, 1898–1979
豪斯多夫	Felix Hausdorff, 1868–1942
赫克	Erich Hecke, 1887–1947
亨泽尔	Kurt Hensel, 1861–1941
怀尔斯	Sir Andrew John Wiles, 1953-
克拉斯纳	Marc Krasner, 1912–1985
克鲁尔	Wolfgang Krull, 1899–1971
克罗内克	Leopold Kronecker, 1823–1891
柯西	Augustin-Louis Cauchy, 1789-1857
库默尔	Ernst Eduard Kummer, 1810–1893
莱布尼茨	Gottfried Wilhelm Freiherr von Leibniz, 1646–1716
勒让德	Adrien-Marie Legendre, 1752–1833
黎曼	Georg Friedrich Bernhard Riemann, 1826–1866
卢宾	Jonathan Darby Lubin, 1936-
闵可夫斯基	Hermann Minkowski, 1864–1909
默比乌斯	August Ferdinand Möbius, 1790–1868

牛顿	Sir Isaac Newton, 1643–1727
诺特	Amalie Emmy Noether, 1882–1935
欧拉	Leonhardus Eulerus, 1707–1783
庞特里亚金	Лев Семёнович Понтря́гин, 1908–1988
佩尔	John Pell, 1611–1685
切博塔廖夫	Мико́ла Григо́рович Чеботарьо́в, 1894–1947
塞尔	Jean-Pierre Serre, 1926–
施瓦兹	Laurent-Moïse Schwartz, 1915–2002
斯温纳顿-戴尔	Sir Henry Peter Francis Swinnerton-Dyer, 1927–2018
沙法列维奇	И́горь Ростисла́вович Шафаре́вич, 1923–2017
泰勒	Brook Taylor, 1685–1731
泰特	John Torrence Tate, 1925–2019
泰希米勒	Paul Julius Oswald Teichmüller, 1913–1943
韦伯	Wilhelm Eduard Weber, 1804–1891
魏尔斯特拉斯	Karl Theodor Wilhelm Weierstraß, 1815–1897
维特	Ernst Witt, 1911–1991
韦伊	André Weil, 1906–1998
希尔伯特	David Hilbert, 1862–1943
伯努利	Jacques Bernoulli, 1654–1705
岩泽健吉	岩澤健吉, 1917–1998
志村五郎	志村五郎, 1930-2019