MO102 : Cuisson d'une pièce thermo-formée Patrick Ciarlet

Introduction

Afin d'aborder la simulation numérique de problèmes physiques, nous présentons un problème modèle : la discrétisation par la méthode des éléments finis d'un problème de thermique en dimension deux.

Dans un premier temps, il s'agit de déterminer la carte des températures dans un four destiné à la cuisson d'une pièce thermo-formée (un pare-chocs de voiture). Les éléments chauffants sont des résistances électriques. A partir de la valeur de chaque résistance, on cherche à calculer la température à l'intérieur d'un four, et en particulier la température de l'objet mis à cuire. Cette première approche est appelée problème direct. Sachant que la température idéale de cuisson conditionne la stabilité du produit fini, et que des essais expérimentaux sont longs et onéreux, cette simulation numérique permet de vérifier à moindre coût la validité des réglages du four.

D'un point de vue concret, la démarche effectivement suivie par l'ingénieur consiste à résoudre le problème **inverse**, c'est-à-dire de déterminer la valeur des résistances (considérées comme inconnues) en fonction de la température idéale de cuisson qui est alors une donnée du problème. Enfin, l'ingénieur peut essayer de **minimiser** l'énergie consommée pour alimenter les résistances. Il s'agira donc dans un second temps de résoudre des problèmes d'optimisation.

1 Problème direct

1.1 Formulation du problème direct

Le four est modélisé par un domaine Ω de frontière $\partial\Omega$, i. e. les parois. On note respectivement Ω_a et Ω_p les domaines occupés par l'air et par le pare-chocs. Sur une partie des parois, notée Γ_D , la température T est fixée à la valeur T^D . Les autres parois sont parfaitement isolées ; elles sont notées Γ_I . On écrit l'équation de diffusion de la chaleur sous la forme :

$$\begin{cases}
-\operatorname{div}(\kappa \nabla T) = f & \operatorname{dans} \Omega \\
T = T^{D} & \operatorname{sur} \Gamma_{D} \\
\kappa \frac{\partial T}{\partial n} = 0 & \operatorname{sur} \Gamma_{I}.
\end{cases}$$
(1)

On rappelle que :

— T est la température à calculer dans le domaine Ω ,

- κ est la conductivité thermique, égale à κ_a dans l'air et κ_p dans le pare-chocs,
- f représente la source de chaleur volumique produite par les résistances placées en différents points.

FIGURE 1 – Schéma du four

Le problème ci-dessus admet une solution unique T. Moyennant une formule d'intégration par parties, il peut être écrit sous la forme **variationnelle** équivalente :

$$\begin{cases}
\text{Trouver } T \in \widetilde{T}^D + V_0 \text{ tel que} \\
\int_{\Omega} \kappa \nabla T \cdot \nabla v \, d\Omega = \int_{\Omega} f \, v d\Omega, \quad \forall v \in V_0.
\end{cases} \tag{2}$$

où \widetilde{T}^D est une fonction "régulière" vérifiant $\widetilde{T}^D = T^D$ sur Γ_D , appelée relèvement de T^D , et V_0 est un espace de fonctions "régulières" s'annulant sur Γ_D .

Exercice 1 Justifier l'obtention de la formulation variationnelle (2).

Il est à noter que l'espace V_0 est de dimension infinie. Généralement, il n'est pas possible de calculer analytiquement une solution à ce problème. C'est pourquoi, on a recours à une méthode d'approximation, comme la méthode des éléments finis que nous utilisons dans la suite.

Ce problème possède une propriété importante; il est dit **linéaire**, au sens suivant : si T_0 est la solution du problème correspondant aux données $\{f_0, T_0^D\}$ et T_1 la solution du problème correspondant aux données $\{f_1, T_1^D\}$, alors $T_0 + T_1$ est la solution du problème avec les données $\{f_0 + f_1, T_0^D + T_1^D\}$. Cette propriété est utilisée de la manière suivante :

- on résout un problème thermique sans terme source, c'est-à-dire que f_0 est identiquement nulle, mais avec les conditions au bord du problème direct : température $T_0 = T^D$ imposée sur Γ_D (flux nul sur Γ_I). La solution de ce premier problème est notée T_0 .
- on résout ensuite successivement autant de problèmes thermiques qu'il y a de sources de chaleur (un problème par résistance). Chaque problème consiste à calculer la température du four quand une seule résistance fonctionne. Cette température est obtenue en prenant $f_r \neq 0$ uniquement au voisinage de la résistance **unité** qui chauffe, f_r valant zéro ailleurs. La condition au bord associée est : température T_r nulle sur Γ_D (flux nul sur Γ_I). La solution du problème avec la résistance r est notée T_r .

La linéarité du problème implique que la température T du four, obtenue avec température T^D imposée à la frontière, avec les n résistances de valeur $(A_r)_{1 \le r \le n}$ qui chauffent, s'écrit

$$T = T_0 + \sum_{r=1}^{n} A_r T_r,$$

où A_r est la valeur de la résistance r.

1.2 Discrétisation par éléments finis

Le principe de la méthode des éléments finis consiste à construire un sous-espace vectoriel de dimension finie N, noté V_0^N , de l'espace V_0 ainsi qu'une approximation \widetilde{T}^{DN} de \widetilde{T}^D et à chercher une solution T^N approchée, solution du problème variationnel **discret** :

$$\begin{cases}
\text{Trouver } T^N \in \widetilde{T}^{DN} + V_0^N \text{ tel que} \\
\int_{\Omega} \kappa \nabla T^N \cdot \nabla v \, d\Omega = \int_{\Omega} f \, v d\Omega, \quad \forall v \in V_0^N.
\end{cases}$$
(3)

Si on note $(w_i)_{1 \leq i \leq N}$ une base de l'espace V_0^N , en écrivant :

$$T^N = \widetilde{T}^{DN} + \sum_{j=1,N} t_j w_j \tag{4}$$

et en injectant cette expression dans la formulation (2), on obtient, $\forall i \in \{1, \dots, N\}$:

$$\sum_{j=1,N} t_j \int_{\Omega} \kappa \nabla w_i \cdot \nabla w_j \, d\Omega = \int_{\Omega} f w_i \, d\Omega - \int_{\Omega} \kappa \nabla \widetilde{T}^{DN} \cdot \nabla w_i \, d\Omega$$

qui est équivalent au système linéaire :

$$\mathbb{K}\,\vec{t} = \vec{f} - \vec{g}.\tag{5}$$

 \mathbb{K} est une matrice d'ordre N donnée par :

$$\mathbb{K}_{ij} = \int_{\Omega} \kappa \nabla w_i \cdot \nabla w_j \, d\Omega, \ 1 \le i, j \le N,$$

et \vec{f} et \vec{g} sont des vecteurs de \mathbb{R}^N définis par :

$$f_i = \int_{\Omega} f w_i d\Omega \text{ et } g_i = \int_{\Omega} \kappa \nabla \widetilde{T}^{DN} \cdot \nabla w_i d\Omega, \ 1 \leq i \leq N.$$

Pour construire l'espace d'approximation V_0^N , on se donne un maillage du domaine Ω , c'est-à-dire une partition en M triangles du domaine (les triangles doivent être de surface non nulle, ne pas se recouvrir et être seulement connectés par une arête complète ou un sommet).

FIGURE 2 – Exemple de maillage

On note $(T_\ell)_{1 \leq \ell \leq M}$ les triangles du maillage et $(S_i)_{1 \leq i \leq P}$ les sommets de tous les triangles. Par construction, $\overline{\Omega} = \cup_l T_l$. On appelle par la suite $g(\ell,k)$ le numéro **global** du $k^{\grave{e}me}$ sommet du triangle T_ℓ : si S_i est le $k^{\grave{e}me}$ sommet de T_ℓ , $g(\ell,k)=i$. On introduit maintenant pour chaque indice i la fonction w_i définie de la façon suivante sur **chaque** triangle T_ℓ :

- si S_i est le $k^{\grave{e}me}$ sommet de T_ℓ ($g(\ell,k)=i$), alors w_i est l'unique fonction affine définie sur T_ℓ valant 1 au sommet k et 0 aux deux autres sommets de T_ℓ ;
- si S_i n'est pas un sommet de T_ℓ alors $w_i = 0$ sur T_ℓ .

Il est aisé de constater que sur le triangle T_ℓ dont S_i est le $k^{\grave{e}me}$ sommet, la fonction w_i évaluée au point (x,y) est égale à la $k^{\grave{e}me}$ coordonnée barycentrique du point (x,y) dans ce même triangle (voir l'Annexe pour l'expression des coordonnées barycentriques). Ainsi, sur chacun des triangles dont S_i est un des sommets, w_i est non nulle et elle correspond à une des trois coordonnées barycentriques. Construites de cette façon, les fonctions w_i sont linéairement indépendantes car elles vérifient :

$$w_i(S_j) = \delta_{ij} \quad \forall i, j \in \{1, \dots, P\}.$$

L'espace vectoriel $V^P = Vect(w_i)_{1 \le i \le P}$ est de dimension P et il coïncide avec l'espace des fonctions continues sur $\overline{\Omega}$ et **affines** (polynôme de degré au plus 1 en x et y)

FIGURE 3 – Allure d'une fonction de base

par triangle. Pour construire l'espace de discrétisation V_0^N proprement dit il suffit de se restreindre aux fonctions de bases correspondant aux sommets ne se trouvant pas sur Γ_D . Plus précisément en notant \mathcal{D} l'ensemble des numéros de sommets se trouvant sur $\overline{\Gamma_D}^1$, on considère le sous-espace de V^P défini par :

$$V_0^N = Vect(w_i)_{i \notin \mathcal{D}}.$$

 V_0^N est exactement de dimension N, où N est égal au nombre de sommets ne se trouvant pas sur Γ_D . On peut vérifier que, par construction, les fonctions $(w_i)_{i\notin\mathcal{D}}$ s'annulent sur Γ_D .

1.3 Mise en œuvre

Pour mettre en œuvre la méthode des éléments finis, il suffit de construire un maillage, puis de calculer la matrice et les vecteurs second membre du système linéaire (5), et enfin de le résoudre.

1.3.1 Construction d'un maillage

On appelle \mathtt{Nbpt} la variable qui contient le nombre P de sommets du maillage, et \mathtt{Nbtri} la variable qui contient le nombre M de triangles du maillage.

Il s'agit de construire essentiellement deux tableaux : le premier contenant les coordonnées des sommets $(S_i)_{1 \leq i \leq P}$, noté Coorneu(Nbpt,2), et le second, noté Numtri(Nbtri,3), contenant le lien entre les triangles et leurs sommets. Par définition, ce second tableau contient les valeurs $(g(\ell,k))_{1 \leq l \leq M, 1 \leq k \leq 3}$, où, rappelons-le, $g(\ell,k)$ est le numéro global du $k^{\grave{e}me}$ sommet du triangle T_ℓ . On utilise également deux autres tableaux, dits de **référence** : Reftri(Nbtri) indiquant pour chaque triangle T_ℓ un numéro de référence permettant de repérer son appartenance aux domaines Ω_a ou Ω_p et Refneu(Nbpt) indiquant pour chaque sommet S_i un numéro de référence permettant de repérer les sommets situés sur la frontière Γ_D .

^{1.} On inclut en particulier dans \mathcal{D} les sommets correspondants aux extrémités de Γ_D .

Un exemple de maillage, ainsi qu'une procédure Matlab permettant de lire les données correspondantes, sont décrits en Annexe.

1.3.2 Construction de la matrice

La construction de la matrice \mathbb{K} , pour l'instant d'**ordre** P, s'effectue en réalisant une boucle sur les triangles appelée procédure d'assemblage. On note \mathbb{K}^{ℓ} la matrice locale 3×3 définie par :

$$\mathbb{K}_{km}^{\ell} = \int_{T_{\ell}} \kappa \nabla w_i \cdot \nabla w_j \, d\Omega \text{ avec } i = g(\ell, k) \text{ et } j = g(\ell, m)$$

Remarque : $\kappa = \kappa_a$ si $T_{\ell} \subset \Omega_a$ et $\kappa = \kappa_p$ si $T_{\ell} \subset \Omega_p$. On assemble la matrice \mathbb{K} à l'aide de l'algorithme suivant :

Initialiser le tableau Kmat(Nbpt,Nbpt) à la valeur zeros(Nbpt,Nbpt).

for l = 1: Nbtri

- (a) Lecture des donnees dans le triangle 1, dont Numtri = numeros des sommets du triangle 1 Reftri = numero de reference du triangle 1
- (b) Calcul du tableau elementaire Kloc(3,3)
- (c) Assemblage de la matrice Kmat(Nbpt,Nbpt)
 for k = 1 : 3
 for m = 1 : 3
 i = Numtri(1,k)
 j = Numtri(1,m)
 Kmat(i,j) = Kmat(i,j) + Kloc(k,m)
 end
 end

end

Exercice 2 On appelle S, A et T respectivement le nombre de sommets, d'arêtes et de triangles du maillage. En toute généralité, on peut établir la relation d'Euler

$$S - A + T = 1.$$

- 1. Interpréter l'algorithme précédent. Quelle est sa complexité en fonction de T?
- 2. En comptant les arêtes, vérifier que l'on a la relation 3T < 2A.
- 3. En conclure que la matrice \mathbb{K} est **creuse**, c'est-à-dire que le nombre d'éléments non nuls de \mathbb{K} croît comme S... \diamond

1.3.3 Construction du second membre

On dispose de n résistances de valeur $(A_r)_{1 \leq r \leq n}$, placées aux points $(M_r)_{1 \leq r \leq n}$ de coordonnées $(x_r, y_r)_{1 \leq r \leq n}$. Classiquement, la valeur du terme source est de la forme

$$f = \sum_{r=1}^{n} A_r \, \delta_{M_r},$$

où δ_{M_r} est la masse de Dirac au point M_r . On remarque alors que les intégrales portant sur le second membre, comme par exemple pour (2) et (3), doivent être remplacées par des crochets de dualité.

Si on s'intéresse au cas d'une unique résistance, on a $f = A_1 \delta_{M_1}$. Supposons que le point M_1 appartienne ² au triangle T_{ℓ_0} : le vecteur $\vec{f} \in \mathbb{R}^P$ correspondant est de la forme

$$f_{g(\ell_0,k)} = A_1 w_{g(l_0,k)}(x_0, y_0) \text{ pour } k = 1,3 ; f_i = 0 \text{ pour } i \notin (g(l_0,k))_{1 \le k \le 3}.$$
 (6)

 \Diamond

Exercice 3 Justifier l'obtention de la formule (6).

En ce qui concerne l'autre terme intervenant dans le second membre (le vecteur \vec{g} de \mathbb{R}^P), on choisit le relèvement discret \widetilde{T}^{DN} de la forme

$$\widetilde{T}^{DN} = \sum_{i \in \mathcal{D}} T^D(S_i) w_i,$$

de telle sorte que si on introduit le vecteur \vec{t}_D de \mathbb{R}^P défini par :

$$(\vec{t}_D)_i = T^D(S_i) \text{ si } i \in \mathcal{D} \text{ et } (\vec{t}_D)_i = 0 \text{ sinon},$$

on a : $\vec{g} = \mathbb{K}\vec{t}_D$.

1.3.4 Elimination de la condition $T = T^D$ sur Γ_D

Compte-tenu de la définition de l'espace V_0^N , on doit se restreindre aux sommets $i \notin \mathcal{D}$. Or la matrice \mathbb{K} issue de la phase d'assemblage prend en compte tous les sommets (elle est d'ordre P). Il faut donc éliminer les lignes et les colonnes correspondant aux sommets $i \in \mathcal{D}$. Il existe une technique qui évite d'avoir à réaliser effectivement une élimination. Il suffit pour cela de modifier la matrice \mathbb{K} de la façon suivante :

$$\mathbb{K}_{ii} = 1 \text{ si } i \in \mathcal{D} \text{ et } \mathbb{K}_{ij} = 0 \text{ si } i \in \mathcal{D} \text{ ou } j \in \mathcal{D}, \text{ avec } i \neq j.$$

^{2.} Si le point M_1 correspond exactement à un sommet du maillage S_{i_0} , on remplace tout simplement (6) par : $f_{i_0} = A_1$, $f_i = 0$ pour $i \neq i_0$.

Il faut également modifier le second membre $\vec{c} = \vec{f} - \vec{g}$ comme suit :

$$c_i = T^D(S_i) \text{ si } i \in \mathcal{D},$$

 $(c_i = f_i - g_i \text{ sinon}).$

On résout alors le système (5) d'ordre N (de solution le vecteur \vec{t}) augmenté des équations triviales qui déterminent \tilde{T}^{DN} : au total, on calcule donc T^N défini en (4), qui est la solution du problème variationnel discret (3). La technique présentée ici est dite technique de pseudo-élimination.

 \Diamond

Exercice 4 Justifier la validité de la technique de pseudo-élimination.

Remarque: La condition $T=T^D$ sur Γ_D est appelée condition **essentielle**, alors que la condition $\kappa \partial T/\partial n=0$ sur Γ_I est appelée condition **naturelle**, car il n'est pas nécessaire, pour la prendre en compte, de modifier le système linéaire construit auparavant.

1.3.5 En résumé

A la suite de ce qui vient d'être exposé, vous êtes en mesure de réaliser – sous la forme d'un programme informatique – la première partie du projet.

Il reste simplement à préciser quelques-unes des données du problème :

- La conductivité thermique ³ prend la valeur $\kappa_a=1$ dans l'air et $\kappa_p=10$ dans le pare-chocs.
- La température sur Γ_D est fixée à $T^D = 300$.
- Vous placerez quelques résistances dans le four. Compte-tenu du problème étudié³, on considérera des valeurs $(A_r)_{1 \le r \le n}$ de l'ordre de $A_0 = 10^4$.
- La discrétisation par éléments finis, et par voie de conséquence le système linéaire à résoudre, dépendent du maillage. Vous avez le choix entre trois maillages (voir l'Annexe) qui se trouvent dans le répertoire

http://perso.ensta-paristech.fr/~pcarpent/MO102/Cours/Projets/Pr-calcul/;

Exercice 5 Quel est l'intérêt d'avoir plusieurs maillages du même four?

Vous écrirez notamment les fonctions suivantes sous Matlab:

- 1. Lecture du maillage (voir Annexe).
- 2. Génération de la matrice du système non éliminée.
- 3. Calcul du second membre.
- 4. Elimination des conditions essentielles.
- 5. **Résolution** du système linéaire.
- 6. Visualisation des résultats.

^{3.} Les données ont été adimensionnalisées; une valeur physique de κ_a est de l'ordre de 10^{-2} W.m⁻¹.K⁻¹, et celle de κ_p est de l'ordre de 10^{-1} W.m⁻¹.K⁻¹.

Pour étalonner vos résultats, vous résoudrez tout d'abord le problème à une résistance, placée en (3/4, 3/4), de valeur A_0 , et répondrez à la question :

Pour chacun des trois maillages, quelle est la température maximale calculée?

2 Problème inverse

2.1 Formulation du problème inverse

Dans cette seconde partie, on suppose que l'on cherche à chauffer le pare-chocs à la température idéale de cuisson T_{opt} . Pour cela, on va déterminer la valeur des résistances qui permet d'obtenir une température aussi proche que possible de T_{opt} . On rappelle que, par application du principe de linéarité (voir §1.1), la température T peut être écrite sous la forme

$$T = T_0 + \sum_{r=1}^{n} \alpha_r \, \theta_r,$$

où $A_r = \alpha_r A_0$ est la valeur de la résistance r et θ_r la température générée par une source unitaire $(A_r = A_0, \text{ cf. }\S 1.3, \text{ et température } \theta_r \text{ nulle sur } \Gamma_D)$. Pour obtenir une température la plus proche de T_{opt} dans l'objet à cuire Ω_p , une méthode est de déterminer les valeurs $\vec{\alpha} = (\alpha_r)_{1 \le r \le n} \in \mathbb{R}^n$ des résistances qui minimisent la fonctionnelle

$$\vec{\alpha} \mapsto \frac{1}{2} \int_{\Omega_p} \left[\left(T_0 + \sum_{r=1, n} \alpha_r \, \theta_r \right) - T_{opt} \right]^2 d\Omega.$$

Par ailleurs, il est souhaitable d'atteindre ce but en dépensant peu d'énergie. En d'autres termes, on veut limiter la valeur de la puissance électrique consommée par les résistances : on choisit par exemple de limiter la quantité

$$\vec{\alpha} \mapsto ||\vec{\alpha}||_2^2$$
.

On arrive donc à la minimisation de

$$J(\vec{\alpha}) = \frac{1}{2} \int_{\Omega_p} \left[\left(T_0 + \sum_{r=1,n} \alpha_r \, \theta_r \right) - T_{opt} \right]^2 d\Omega + \frac{\beta}{2} ||\vec{\alpha}||_2^2,$$

où β est un paramètre positif ou nul qui permet de prendre en compte l'importance relative des deux termes à minimiser.

On introduit alors le nombre c, la matrice \mathbb{A} de $\mathbb{R}^{n \times n}$ et le vecteur \vec{b} de \mathbb{R}^n composantes

$$c = \frac{1}{2} \int_{\Omega_p} \left(T_0 - T_{opt} \right)^2 d\Omega, \ \mathbb{A}_{rr'} = \int_{\Omega_p} \theta_r \, \theta_{r'} \, d\Omega + \beta \delta_{rr'}, \ \text{et } b_r = \int_{\Omega_p} \theta_r \left(T_{opt} - T_0 \right) d\Omega.$$

On peut réécrire la fonctionnelle J sous la forme équivalente

$$J(\vec{\alpha}) = c - (\vec{\alpha}|\vec{b})_{\mathbb{R}^n} + \frac{1}{2} (\mathbb{A}\vec{\alpha}|\vec{\alpha})_{\mathbb{R}^n}. \tag{7}$$

Exercice 6 Justifier, par le calcul, l'obtention de la formule (7).

A partir de là, on peut établir, cf. l'exercice suivant, que la fonctionnelle J admet un **point de minimum unique** $\vec{\alpha}_m$, solution du système linéaire

$$\mathbb{A}\vec{\alpha}_m = \vec{b}.\tag{8}$$

Exercice 7 Pour démontrer l'existence et l'unicité du point de minimum de J, on peut procéder comme suit.

- 1. Soit $\vec{\alpha} \neq 0$; vérifier que $(\mathbb{A}\vec{\alpha}|\vec{\alpha})_{\mathbb{R}^n} > 0$. En particulier, en déduire que la matrice \mathbb{A} est inversible.
- 2. Vérifier que la matrice \mathbb{A} est symétrique. Pour α quelconque, on écrit $\vec{\alpha} = \vec{\alpha}_m + \vec{\alpha}'$: établir l'égalité

$$J(\vec{\alpha}) = J(\vec{\alpha}_m) + \frac{1}{2} (\mathbb{A}\vec{\alpha}' | \vec{\alpha}')_{\mathbb{R}^n}.$$

3. En conclure que d'une part $\vec{\alpha}_m$ est bien un point de minimum de J, et que d'autre part il est unique.

2.2 Résolution du problème inverse

On rappelle que V_0^N est l'espace de dimension finie N obtenu à l'aide de la méthode des éléments finis, dont une base est $(w_i)_{i=1,N}$. Dans un premier temps, il faut donc résoudre numériquement les n+1 problèmes directs qui permettent de calculer les températures T_0 et θ_r $(r=1,2,\ldots,n)$: on arrive alors aux solutions (cf. (4))

$$\begin{cases}
T_0^N = \widetilde{T}^{DN} + \sum_{j=1,N} t_{j,0} w_j, \\
\theta_r^N = \sum_{j=1,N} t_{j,r} w_j & \text{pour } 1 \le r \le n.
\end{cases}$$
(9)

Remarque : Pour le calcul de $(\theta_r)_{r=1,\dots,n}$, il faut prendre en compte le fait que $\theta_r=0$ sur Γ_D , et modifier en conséquence la procédure d'élimination des conditions essentielles (calcul du vecteur \vec{c} du paragraphe 1.3.4).

Ensuite il faut déterminer le système linéaire (8) d'inconnue $\vec{\alpha}_m$. Pour construire la matrice \mathbb{A} , il faut calculer des intégrales du type

$$\int_{\Omega_p} \theta_r^N \, \theta_{r'}^N \, d\Omega.$$

Pour effectuer ce calcul, on utilise la même technique que pour le problème direct :

$$\begin{split} &\int_{\Omega_p} \theta_r^N \, \theta_{r'}^N \, d\Omega = \sum_{i=1,N} \sum_{i'=1,N} t_{i,r} \, t_{i',r'} \int_{\Omega_p} w_i \, w_{i'} \, d\Omega, \text{ avec} \\ &\int_{\Omega_p} w_i \, w_{i'} \, d\Omega = \sum_{T_\ell \in \Omega_p} \int_{T_\ell} w_i \, w_{i'} \, d\Omega. \end{split}$$

Sur un triangle T_{ℓ} donné, la restriction d'une fonction de base w_i est soit zéro (lorsque le sommet S_i associé n'est pas un des sommets du triangle), soit une des trois coordonnées barycentriques $(\lambda_m)_{1 \leq m \leq 3}$ du triangle (voir l'Annexe). Sur T_{ℓ} , il suffit en fait d'évaluer des intégrales du type

$$\int_{T_{\ell}} \lambda_m \, \lambda_{m'} \, d\Omega, \text{ pour } 1 \le m, m' \le 3,$$

ce qui correspond au calcul d'une matrice élémentaire \mathbb{M}^ℓ de $\mathbb{R}^{3\times 3}.$

Conseil : Pour la construction de la matrice \mathbb{A} , suivre l'algorithme ci-dessous. On note $\mathsf{T}(\mathsf{Nbpt,n})$ le tableau contenant les valeurs $(t_{j,r})_{1 \le j \le N, 1 \le r \le n}$.

Initialiser le tableau A(n,n) a la valeur beta*eye(n).

for l = 1: Nbtri

- (a) Lecture des donnees dans le triangle 1, dont Numtri = numeros des sommets du triangle 1 Reftri = numero de reference du triangle 1
- --> Si l est inclus dans le pare-chocs (voir Reftri) Faire
 - (b) Calcul du tableau elementaire M(3,3)
 - (c) Assemblage de la matrice A(n,n)
 for r = 1 : n
 for s = 1 : n
 for i = 1 : 3
 for j = 1 : 3
 A(r,s) = A(r,s) + M(i,j)*T(Numtri(l,i),r)*T(Numtri(l,j),s)
 end
 end
 end
 end
 end

end

On procède de même pour calculer le second membre \vec{b} .

2.3 Mise en œuvre

Ici, la valeur de β sera comprise entre 10^{-5} et 10^{-2} .

2.3.1 Température optimale et placement des résistances

On commence par la donnée de la température optimale, nécessaire à la mise en œuvre effective.

— On veut chauffer le pare-chocs à la température $T_{opt} = 500K$.

Quant aux résistances, elles sont au nombre de **six**, leur position étant **libre** dans Ω_a . Une fois chaque résistance placée en (x_r, y_r) , il est nécessaire de résoudre le problème :

— **Déterminer**, pour un maillage donné, le triangle T_{ℓ_r} qui contient le point (x_r, y_r) .

2.3.2 En résumé (bis)

Finalement, sous Matlab, il est nécessaire d'ajouter les fonctions qui suivent :

- 1. Placement des résistances et initialisation de la valeur du paramètre β .
- 2. Calcul de la matrice A ainsi que du second membre \vec{b} .
- 3. **Résolution** du système linéaire $\mathbb{A}\vec{\alpha}_m = \vec{b}$.
- 4. **Détermination** de
 - la valeur de $||\vec{\alpha}_m||_2$;
 - la valeur de $\left(\int_{\Omega_p} (T T_{opt})^2 d\Omega\right)^{1/2}$.
- 5. Tracé des courbes isothermes.

3 Optimisation globale du four

Dans la suite, la valeur de β est fixée à 10^{-4} .

Une fois le problème inverse résolu, pour une position donnée des résistances, on peut considérer le problème de l'optimisation globale du four. On introduit donc la fonctionnelle

$$K(x_1, y_1, \cdots, x_n, y_n) = J(\vec{\alpha}_m).$$

En d'autres termes, pour une position donnée des résistances, K prend la valeur minimale de J, que nous avons déterminée à la section précédente. La question qui se pose maintenant est d'évaluer numériquement

$$\min_{(x_1,\cdots,y_n)} K(x_1,\cdots,y_n).$$

Pour parvenir à une estimation de cette valeur, vous pourrez utiliser la suggestion suivante :

Concevoir une fonction qui explore automatiquement un certain nombre de configurations et qui détermine, parmi celles-ci, la meilleure.

Annexe

Coordonnées barycentriques

Soit T_{ℓ} un triangle de sommets $S_1(x_1, y_1)$, $S_2(x_2, y_2)$, et $S_3(x_3, y_3)$. Les coordonnées barycentriques λ_1 , λ_2 et λ_3 d'un point (x, y) du triangle sont données par les formules suivantes :

$$\lambda_1(x,y) = \frac{1}{\Delta} (y_{23}(x - x_3) - x_{23}(y - y_3))$$

$$\lambda_2(x,y) = \frac{1}{\Delta} (y_{31}(x - x_1) - x_{31}(y - y_1))$$

$$\lambda_3(x,y) = \frac{1}{\Delta} (y_{12}(x - x_2) - x_{12}(y - y_2))$$

où on a posé $x_{ij} = x_i - x_j$, $y_{ij} = y_i - y_j$ pour i et j différents entre 1 et 3, et $\Delta = x_{23}y_{31} - x_{31}y_{23}$. Notons que Δ est égal, au signe près, à deux fois la surface du triangle.

On rappelle que, pour $(k_1, k_2, k_3) \in \mathbb{N}^3$,

$$\int_{T_{\ell}} \lambda_1^{k_1} \lambda_2^{k_2} \lambda_3^{k_3} d\Omega = 2 \frac{k_1! \, k_2! \, k_3!}{(k_1 + k_2 + k_3 + 2)!} \operatorname{aire}(T_{\ell}).$$

Exemple de maillage

Voici un maillage généré par **EMC2**. Le fichier de maillage est *maillagegros.amdba*. Le fichier de maillage a la forme suivante :

```
173 304 - nbs,nbt
1 1.0000000E+00 -1.0000000E+00 4
2 1.0000000E+00 -7.9999995E-01 3
3 7.6839125E-01 -8.0331707E-01 0
...
173 -1.00000000E+00 1.0000000E+00 4
1 173 170 171 2
2 154 142 143 2
3 142 126 127 2
...
304 91 93 109 2
```

La première ligne contient le nombre de sommets Nbpt ainsi que le nombre de triangles Nbtri. Les lignes suivantes contiennent (par colonne) les coordonnées des sommets Coorneu(Nbpt,2) et les numéros de réference des sommets Refneu(Nbpt). Enfin les lignes suivantes correspondent la numérotation des sommets des triangles

FIGURE 4 – Maillage du four

Numtri (Nbtri, 3) ainsi que des numéros de référence des triangles Reftri (Nbtri). Sur cet exemple représentatif, les numéros de référence sont respectivement 1 pour le pare-chocs et 2 pour l'air. Les sommets situés sur la paroi du four où la température est imposée ont 3 pour numéro de référence et ceux situés sur les parois isolantes ont 4 pour numéro de référence.

Pour lire un maillage de type .amdba on utilisera la procédure :

```
function [Nbpt,Nbtri,Coorneu,Refneu,Numtri,Reftri]=Lecmail(nomfile)
fid = fopen(nomfile,'r');
N = fscanf(fid,'%i');
Nbpt = N(1);
Nbtri = N(2);
line = fgets(fid);
tmp = fscanf(fid,'%f',[4,Nbpt]);
Coorneu = tmp(2:3,:)';
Refneu = tmp(4,:)';
tmp = fscanf(fid,'%i',[5,Nbtri]);
Numtri=tmp(2:4,:)';
Reftri=tmp(5,:)';
```

Dans le répertoire http://perso.ensta-paristech.fr/~pcarpent/MO102/Cours/Projets/Pr-calcul/se trouvent trois fichiers de maillage de différentes tailles.