Mathematics for Economists Kapitel 11 Differensligninger

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus Universitet

Disposition Kapitel 11

- Differensligninger af første orden (11.1)
- Økonomiske Anvendelser (11.2)
- DL af anden orden (11.3)
- Anden-ordens DL med konstante koefficienter (11.4)
- Systemer af DL (11.6)

Betragt systemet

$$\left[\begin{array}{c} x_{t+1} \\ y_{t+1} \end{array}\right] = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} x_t \\ y_t \end{array}\right],$$

eller

$$x_{t+1} = Ax_t$$
, $x_t \in \mathbb{R}^2$, $A \in \mathbb{R}^{2 \times 2}$.

Antag at en løsning har formen

$$x_t = \lambda^t v$$
, $\lambda \in \mathbb{R}$, $v \in \mathbb{R}^2$.

Så får vi fra DL'en, at

$$\lambda^{t+1} v = A \lambda^t v,$$

og efter division med λ^t står vi foran egenværdiproblemet igen.

Fremgangsmåden generaliseres til $x_t \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$.

Lad x(t), $b(t) \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ ob betragt matrix ligningen

$$x(t+1) = Ax(t) + b(t),$$

= $A[Ax(t-1) + b(t-1)] + b(t) = ...,$
= $A^{t+1}x_0 + \sum_{k=0}^{t} A^k b(t-k).$

Vi skriver summen baglæns for at få lign. 11.6 (5) i bogen:

$$\sum_{k=0}^{t} A^{k} b(t-k) = A^{0} b(t) + A^{1} b(t-1) + A^{2} b(t-2) + \dots + A^{t} b(0),$$

$$= \sum_{k=1}^{t+1} A^{t+1-k} b(k-1).$$

Hvis det inhomogene led er konstant, $b(t) \equiv b$, så gælder

$$\sum_{k=1}^{t} A^{t-k} b(k-1) = \sum_{k=1}^{t} A^{t-k} b = (A^0 + A^1 + A^2 + \ldots + A^{t-1}) b.$$

Lige som i det skalare tilfælde kan vi definere den geometriske række for matricer

$$S_{t-1} = A^0 + A^1 + A^2 + \dots + A^{t-1},$$

 $AS_{t-1} = A^1 + A^2 + A^3 + \dots + A^t.$

Derved,

$$(I-A)S_{t-1}=I-A^t,$$

eller, hvis $(I - A)^{-1}$ findes,

$$S_{t-1} = (I - A)^{-1}(I - A^t).$$

Hvis A er diagonaliserbar med egenværdier $\neq 1$, så gælder $A = P\Lambda P^{-1}$, og

$$I - A = PIP^{-1} - P\Lambda P^{-1} = P(I - \Lambda)P^{-1}$$

har fuld rang, altså findes $(I - A)^{-1}$. Hvis egenværdierne er derudover *mindre* end 1 i absolutværdien, så gælder

$$\lim_{t\to\infty}A^t=\lim_{t\to\infty}(P\Lambda P^{-1})^t=P(\lim_{t\to\infty}\Lambda^t)P^{-1}=0.$$

I dette tilfælde har vi

$$\lim_{t \to \infty} S_t = A^0 + A^1 + A^2 + \ldots = (I - A)^{-1},$$

og

$$\sum_{k=1}^{\infty} A^{t-k} b = (I - A)^{-1} b.$$

Teorem (11.6.1)

En nødvendig og tilstrækkelig betingelse for systemet x(t+1) = Ax(t) + b(t) at være globalt asymptotisk stabilt er at alle egenværdier for matricen A er streng mindre end 1 i absolutværdien.

Teorem (11.6.2)

Hvis alle egenværdier for $A=(a_{ij})_{n\times n}$ er streng mindre end 1 i absolutværdien, så er DL'en

$$x(t+1) = Ax(t) + b, \quad t = 0, 1, ...$$

globalt asymptotisk stabil, og hver løsning x konvergerer til den konstante vektor $(I-A)^{-1}b$.