



## Contenido

#### Contenido

concepto criterios algoritmos ejemplos

#### Tema 3. Admin. y planificación de procesos. 4h

#### 3.1 Concepto de planificación

Criterios generales de planificación Tipos de planificadores

#### 3.2 Criterios cuantitativos de planificación

#### 3.3 Algoritmos de planificación

Clasificación: expropiativos/no expropiativos Políticas de planificación simples Políticas de planificación híbridas.

#### 3.4 Ejemplos:

Linux y Windows XP



# 3.1 Concepto de planificación

#### Contenido

concepto criterios algoritmos ejemplos

# 3.1 Concepto de planificación

Dept. Arquitectura de Computadores

3 Univ. Málaga



# 3.1 Concepto de planificación conceptos básicos

#### Contenido

concepto criterios algoritmos ejemplos

- Procesos alternan fases de cómputo con esperas por E/S
- Clasificación de procesos
  - a) Intensivos en CPU (ráfagas de CPU largas)
  - b) Intensivos en E/S (ráfagas de CPU cortas)



ráfaga de CPU corta espera por E/S



# 3.1 Concepto de planificación

conceptos básicos

**CPU** 

Run

#### Contenido

concepto criterios algoritmos ejemplos

- © Con sólo un proceso, la CPU permanecería ociosa en las esperas por entrada/salida
- Multiprogramación

Procesos

- Permite ejecutar varios procesos concurrentemente
- Aprovechar al máximo la CPU
- Función del planificador
  - decidir qué proceso accede a la CPU

Ready



# 3.1 Concepto de planificación ¿qué es planificar?

#### Contenido

concepto criterios algoritmos ejemplos

- Una política de planificación responde a:
  - a) Cuándo y en qué condiciones expulsamos a un proceso en ejecución
    - Preemption (adelantamiento, expropiación)
  - b) Qué proceso de la cola listos despachamos
    - Scheduler (planificador)



- Resumiendo:
- La planificación son las políticas y mecanismos que deciden el orden en que se completan los procesos.



# 3.1 Concepto de planifiación criterios generales del planificador

#### Contenido

concepto criterios algoritmos ejemplos

## Objetivo del planificador

 Maximizar las prestaciones del computador según ciertos criterios

## Criterios generales

- Maximizar el rendimiento
  - Uso de la CPU, n° de trabajos terminados por u. tiempo,....
- Ser estadísticamente predecible
  - Posibilidad de estimar cuánto va a tardar un trabajo
- Ser imparcial
  - No debe discriminar injustamente a unos proc. sobre otros
- Aprovechar los recursos
  - Mantener en uso los distintos subsistemas del HW



# 3.1 Concepto de planifiación prioridad

#### Contenido

concepto criterios algoritmos ejemplos

## Concepto de prioridad

- Derecho de preferencia de un proc. sobre otro
- Se materializa en un número

## Origen de la prioridad de un proceso

- Externo al SO: Aspectos políticos
  - Departamet. u organización al que pertenece el propietario del proceso; Precio pagado por el tiempo de CPU; ...
- Interno al SO: criterios
  - Reducir el Tesp; asegurar tiempos de respuesta; aprovechar recursos; evitar discriminaciones; ....

#### Pueden ser

- Estáticas: fáciles de implementar. No adaptat.
- Dinámicas: Sensibles a cambios en el sist.
  - **Envejecimiento**: aumento de prioridad de un proceso que lleva mucho tiempo esperando.



# 3.1 Concepto de planifiación

tipos de planificadores

#### Contenido

concepto criterios algoritmos ejemplos

## Tipos de planificadores

- Largo plazo
- Medio plazo

Corto plazo **DISCO SWAPPED** medio (TRANSFERIDOS) exit **BATCH READY RUN** largo corto (COLA DE (LISTOS) (EJECUCIÓN) **EJECUCIÓN**) Interactivos-**MEMORIA BINARIO BLOCK EJECUTABLE** (BLOQUEADOS)

Dept. Arquitectura de Computadores

Univ. Málaga



# 3.1 Concepto de planifiación tipos de planificadores

#### Contenido

concepto criterios algoritmos ejemplos

## Largo plazo

- Poca frecuencia de ejecución
- Para procesos por lotes (batch o jobs)
- Lanza programas a ejecución (crea procesos)
- Objetivos
  - Mantener constante el grado de multiprogramación
    - Si acaba un proceso, lanza otro
  - Mantener una buena mezcla de procesos
    - Tantos procesos intensivos en CPU como intensivos en E/S
- No siempre existe un planificador de este tipo

## Los interactivos pasan direct. a Ready

- Filtrado de otra naturaleza
  - Por el número de terminales disponible (limita los usuarios)
  - Usuarios que abandonan si el sistema está muy cargado



# 3.1 Concepto de planifiación tipos de planificadores

#### Contenido

concepto criterios algoritmos ejemplos

## Medio plazo

- Puede controlar
  - La ocupación de memoria (si hay poca, descarga procesos)
  - La carga del sistema (si es mucha, suspende procesos)
  - Puede mejorar la mezcla de procesos
- No es relevante en SO modernos con M. Virt.
  - Los procesos que no referencian sus páginas, las van perdiendo porque otros procesos las reemplazan

## Corto plazo

- Mantiene ocupada la CPU
- Se invoca muy frecuentemente
  - Por tanto no debe consumir mucho tiempo de CPU
  - Ejemplo: Quantum de 10ms. Planificador consume 1ms
    - 9% del tiempo de CPU ocupado por el planificador



# 3.2 Criterios de planificación

#### Contenido

concepto criterios algoritmos ejemplos

# 3.2 Criterios de planificación



## 3.2 Criterios de planificación criterios cuantitativos

#### Contenido

concepto criterios algoritmos ejemplos

- El planificador debe optimizar valores objetivos y cuantitativos = medidas de rendimiento:
  - Utilización de la CPU: 0%-100%
    - Porcentaje de tiempo con la CPU ocupada
    - Descontar el tiempo de CPU consumido por el SO
  - Capacidad de procesamiento, rendimiento o productividad (throughput): trabajos/hora, procesos/seq.
    - Trabajos terminados por unidad de tiempo
  - Tiempo de retorno (t. real o elapsed): Tr
    - Tiempo desde que lanzas un programa hasta que termina.
  - Tiempo de espera: Te=Tr-Tproc
    - Parte de Tret en que el proceso está esperando en Ready
  - Tiempo de respuesta
    - En sist. multitarea mide la interactividad: desde que pides algo al SO hasta que éste responde.

planificación

# 3.2 Criterios de planificación ejemplo y optimización de criterios

#### Contenido

concepto criterios algoritmos ejemplos

- @ Ejemplo: time ls -lR /usr/X11
  - El comando time devuelve inf. temp. del ls

3.38 user, 13.82 sys, 21.24 elapsed, 80%

- Tr: desde que empieza hasta que termina 21.24s
- Tproceso: 3.38 + 13.82 = 17.2
  - 3.38s en ejecución del proceso (modo user)
  - 13.82s en ejec. de syscalls llamadas por el proceso (núcleo)
- Te = 21.24 (3.38 + 13.82) = 4.04s. 17.2/21.24 x 100= 80% (suponiendo que no hay bloqueos por E/S)

## Optimizar criterios

- Maximizar la utilización y productividad
- Minimizar los tiempos (retorno, espera, resp.)
- En general se max. o min. valores medios
- A veces se optimizan valores max. o min.
  - Ejemplo: minimizar el valor max. del tiempo de respuesta
- Otras veces interesa optimizar la varianza



# 3.2 Criterios de planificación diferentes entornos = diferentes objetivos

#### Contenido

concepto criterios algoritmos ejemplos

- → Política de planificación
  - Conjunto de estrategias y decisiones tomadas para diseñar la planificación y conseguir los objetivos propuestos
- Sistemas por lotes
  - Capacidad de procesamiento/rendimiento
  - Tiempo de retorno
  - Utilización de la CPU
- Sistemas interactivos
  - Tiempos de respuesta (varianza)
  - Proporcionalidad complejidad/tiempo respuesta
- Sistemas en tiempo real
  - Cumplir tiempos límite de servicio
  - Predicibilidad o consistencia



#### Contenido

concepto criterios algoritmos ejemplos

# 3.3 Algoritmos de planificación



# 3.3 Algoritmos de planificación tipos de planificación

#### Contenido

concepto criterios algoritmos ejemplos

En la política de planificación se decide

- a) Preemption: cuándo expulsar a un proceso run
  - a) Cuando un proceso termina
  - b) Cuando el proceso inicia una operación E/S bloqueante (fin ráfaga CPU)
  - c) Cuando el proceso ya lleva cierto tiempo en run Tiempo máximo en Run: Quantum o rodaja de tiempo: una interrupción programada cada cierto tiempo lanza el planificador
  - d) Cuando aparece un proc. ready más prioritario (nuevo o procedente de un bloqueo)
- b) Scheduler: cómo ordenar la cola ready (=qué proceso de la cola listos despachamos)
  - a) Por orden de llegada (FIFO)
  - b) Por tiempo de ejecución del proceso o ráfaga de CPU
  - c) Por prioridad





# 3.3 Algoritmos de planificación planificación apropiativa/no apropiativa

#### Contenido

concepto criterios algoritmos ejemplos

## Tipos de 'preemption'

- No expropiativa (no preemptive, sin expulsión)
  - Sólo considera las situaciones de preemption a) y b)
  - Implicaciones: mientras un proceso no termine o solicite una operación de E/S no puede despacharse otro a Run
- Expropiativa (preemptive, con expulsión)
  - También considera las situaciones de preemption c) y/o d)
  - **Implicaciones** 
    - Un proceso puede expropiar a otro menos prioritario
    - Un proceso que agote su quatum tiene que dejar paso
  - Ventajas
    - Mejora la interactividad y baja Trespt. de proc. prioritarios
    - Se evita que un proceso acapare la CPU
    - Más seguro: un proc. colgado en Run no bloquea todo el SO
  - Inconveniente: aumenta el n° de cambios de contexto



## 3.3 Algoritmos de planificación algoritmos de planificación simples

#### Contenido

concepto criterios algoritmos ejemplos

- Planificadores de largo plazo
  - FIFO y SJF (Shortest Job First)
- Planificadores de corto plazo
  - No expropiativos
    - FCFS y Prioridad no expropiativo
  - Expropiativos
    - Round Robin, Prioridad expropiativo y SRT

| Planifi-       | a     | ) Pre | emptio  | n      | b)   | Sched  | ule    | Tipo           |  |
|----------------|-------|-------|---------|--------|------|--------|--------|----------------|--|
| cador          | Nunca | E/S   | Quantum | Prior. | FIFO | Tiempo | Prior. | Προ            |  |
| FIFO           | Х     |       |         |        | Χ    |        |        | Largo          |  |
| SJF            | Χ     |       |         |        |      | Х      |        | Largo<br>Plazo |  |
| FCFS           |       | Χ     |         |        | Χ    |        |        |                |  |
| Round Robin    |       | Χ     | Х       |        | Х    |        |        |                |  |
| Pri. No Exprop |       | Χ     |         |        |      |        | Χ      | Corto<br>Plazo |  |
| Pri. Exprop    |       | Χ     |         | Χ      |      |        | Χ      | 1 1020         |  |
| SRT            |       | Χ     |         | Χ      |      | X      |        |                |  |

# planificación

# 3.3 Algoritmos de planificación planificación para procesos batch

#### Contenido

concepto criterios algoritmos ejemplos

### FIFO: Monoproceso

- Ordenación por orden de llegada
- Ventaja: implementación simple
- Inconveniente: Tespera y Tretorno elevados
  - Ejemplo: En 0 llegan P1 (10s), P2 (2s) y P3 (1s)



Te = 
$$(0+10+12) / 3 = 7.33$$
  
Tr =  $(10+12+13) / 3 = 11.66$ 

## SJF (Shortest Job First): Monoproceso

- Ordenación por tiempo de ejecución más corto
- Ventaja: reduce Tespera y Tretorno
- Inconveniente: discrimina procesos largos



Te = 
$$(0+1+3) / 3 = 1.33$$
  
Tr =  $(1+3+13) / 3 = 5.66$ 



#### Contenido

concepto criterios algoritmos ejemplos

#### © Características de SJF

- Inf. temporal extraída de los parámetros del trabajo batch (proporcionada por el usuario)
- Proporciona un Te mínimo
  - Si adelantas un proceso corto a uno largo, se reduce más el Te del proc. corto de lo que aumenta el Te del proc. largo.



### @ Ejemplo:

|    | Tproc | H <sub>Ilega</sub> | $H_{entra}$ | H <sub>salida</sub> | Te | Tr |
|----|-------|--------------------|-------------|---------------------|----|----|
| P1 | 6     | 0                  |             |                     |    |    |
| P2 | 3     | 2                  |             |                     |    |    |
| P3 | 2     | 3                  |             |                     |    |    |
| P4 | 1     | 7                  |             |                     |    |    |
|    |       |                    |             |                     |    |    |



planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

- FCFS (First Come First Served)
  - Preemption por E/S (No expropiativo)
  - Planificación por orden de llegada
  - Inconvenientes: sistema multiprogramado
    - Como en FIFO elevados Te y Tr
    - Efecto convoy: bajo índice de ocupación de recursos (i.e.los procesos limitados por E/S no pueden continuar, y bloquearse, hasta que terminen los anteriores, que pueden ser intensivos de CPU)
  - Ejemplo
    - Ahora planificas ráfagas de CPU. Ejemplo P1(en solitario)

|   | CPU (4s) | E/S | CPU(6s) |
|---|----------|-----|---------|
| ( |          | 4   | 5       |

|    | T <sub>rafaga</sub> | $H_{Ilega}$ | H <sub>entra</sub> | H <sub>salida</sub> | Te | Tr |
|----|---------------------|-------------|--------------------|---------------------|----|----|
| P1 | 4,6                 | 0,5         |                    |                     |    |    |
| P2 | 3                   | 2           |                    |                     |    |    |
| P3 | 2                   | 3           |                    |                     |    |    |
| P4 | 1                   | 7           |                    |                     |    |    |
|    |                     | Medios:     |                    |                     |    |    |



planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

## RR (Round Robin)

- Preemption por E/S y por Quantum (Q)
- Planificación por orden de llegada
- Inconvenientes:
  - Aumenta el número de cambios de contexto
- Ventaja: sistema multitarea
  - Aumenta la interactividad

Q=1

| Q=1 | T <sub>rafaga</sub> | H <sub>Ilega</sub> | H <sub>entra</sub> | H <sub>salida</sub> | Te | Tr |  |  |  |  |
|-----|---------------------|--------------------|--------------------|---------------------|----|----|--|--|--|--|
| P1  | 6                   | 0                  |                    |                     |    |    |  |  |  |  |
| P2  | 3                   | 2                  |                    |                     |    |    |  |  |  |  |
| Р3  | 2                   | 3                  |                    |                     |    |    |  |  |  |  |
| P4  | 1                   | 7                  |                    |                     |    |    |  |  |  |  |
|     | Valores Medios:     |                    |                    |                     |    |    |  |  |  |  |





# 3.3 Algoritmos de planificación planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

## RR (Round Robin)

- Si el grado de multiprogramación es N
  - Cada proceso recibe 1/N del tiempo de CPU
  - Trespuesta ≤ N x Q
    - No garantiza un Tresp muy pequeño para un proceso, pero si minimiza la desviación de Tresp y establece una cota superior
    - Propiedad muy útil en sistemas interactivos: un retardo esporádico no es grave y los usuarios tienen sensación de interactividad
- Decidir tamaño de O
  - Si Q el sistema degenera en FCFS

  - Relación de Q con el rendimiento de caché
    - Si Q♠ cuando un proceso entra no encuentra sus bloques cache
    - Si Q
       ✓ un proc. que trae sus bloques, no le da tiempo a aprovecharlos
  - Regla empírica: elegir Q de forma que:
    - El 80% de las ráfagas de CPU sean menores que Q



# 3.3 Algoritmos de planificación planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

## Planificación por prioridades

- Se asigna un valor numérico (prioridad) a cada proceso
- Se concede la CPU al proceso de mayor prioridad
  - normalmente menor valor ≡ mayor prioridad
  - expropiativa o no expropiativa
- SJF es un caso particular donde la prioridad es el tiempo previsto de ejecución (si se utiliza el tiempo previsto de la ráfaga para la planificación y hay preemption por E/S)
- Problema: inanición o postergación indefinida
  - puede que procesos de baja prioridad nunca alcancen la CPU
- Solución: envejecimiento (aging)
  - incrementar la prioridad de los procesos con el avance del tiempo



planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

## Prioridad No Expropiativo

- Preemption por E/S (No expropiativo)
- Planificación por prioridad
- Ejemplo: Prioridad más alta = 31

|    | T <sub>rafaga</sub> | Prioridad | H <sub>Ilega</sub> | H <sub>entra</sub> | H <sub>salida</sub> | Te | Tr |
|----|---------------------|-----------|--------------------|--------------------|---------------------|----|----|
| P1 | 5                   | 4         | 0                  |                    |                     |    |    |
| P2 | 3                   | 3         | 2                  |                    |                     |    |    |
| P3 | 4                   | 5         | 3                  |                    |                     |    |    |
| P4 | 10                  | 3         | 5                  |                    |                     |    |    |
| P5 | 6                   | 4         | 7                  |                    |                     |    |    |
|    |                     |           |                    |                    |                     |    |    |

Dept. Arquitectura de Computadores

 SJF es un caso particular de Prioridad No Expropiativo con Prioridad=1/Tproceso



planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

## Prioridad Expropiativo

- Preemption por E/S y por prioridad
- Planificación por prioridad
- Ejemplo: Prioridad más alta = 31

|    | T <sub>rafaga</sub> | Prioridad | H <sub>llega</sub> | H <sub>entra</sub> | H <sub>salida</sub> | Te | Tr |
|----|---------------------|-----------|--------------------|--------------------|---------------------|----|----|
| P1 | 5                   | 4         | 0                  |                    |                     |    |    |
| P2 | 3                   | 3         | 2                  |                    |                     |    |    |
| P3 | 4                   | 5         | 3                  |                    |                     |    |    |
| P4 | 10                  | 3         | 5                  |                    |                     |    |    |
| P5 | 6                   | 4         | 7                  |                    |                     |    |    |
|    |                     |           |                    |                    |                     |    |    |

- Ahora un proceso puede adelantar a otro con menos prioridad aunque éste esté en ejecución
- Útil en sistemas Tiempo Real (blando)



## 3.3 Algoritmos de planificación planificación de corto plazo

#### Contenido

concepto criterios algoritmos ejemplos

- SRT (Shortest Remaining Time first)
  - Preemption por E/S y por Prioridad
  - Planificación por prioridad=1/Trafaga
  - Inconvenientes:
    - Discrimina procesos largos: starvation o inanición
  - Ventaja:
    - Disminuye Te y aumenta productividad

|                 | T <sub>rafaga</sub> | $H_{llega}$ | H <sub>entra</sub> | H <sub>salida</sub> | Te | Tr |  |  |
|-----------------|---------------------|-------------|--------------------|---------------------|----|----|--|--|
| P1              | 6                   | 0           |                    |                     |    |    |  |  |
| P2              | 3                   | 2           |                    |                     |    |    |  |  |
| Р3              | 2                   | 3           |                    |                     |    |    |  |  |
| P4              | 1                   | 7           |                    |                     |    |    |  |  |
| Valores Medios: |                     |             |                    |                     |    |    |  |  |

- Solución para el starvation: aging
  - Aumentar la prioridad de procesos que lleven mucho tiempo esperando (envejecimiento)

## 3.3 Algoritmos de planificación SRT y HRRN

#### Contenido

concepto criterios algoritmos ejemplos

## Estimación del tiempo de ráfaga

Promedio exponencial

Estimación ráfaga n+1 Tiempo ráfaga n Estimación ráfaga n 
$$\tau_{n+1}' = \alpha \cdot t_n' + (1-\alpha) \cdot \tau_n \qquad 0 \leq \alpha \leq 1$$

$$\tau_{n+1} = \alpha \cdot t_n + (1 - \alpha)\alpha \cdot t_{n-1} + \dots + (1 - \alpha)^j \alpha \cdot t_{n-j} + \dots + (1 - \alpha)^{n+1} \cdot \tau_0$$

- Es decir, el segundo término contiene un histórico
- Cuanto más antigua es la ráfaga menos pesa su duración
- Si α=0 no consideras el último tiempo de ráfaga
- Si α=1 no consideras la historia acumulada
- Típicamente  $\alpha$ =1/2

## Ejemplo de planificador con aging

- HRRN (Highest Response Ratio Next)
- Relación de respuesta RR=(Tesp+Traf)/Traf
- El proceso con mayor RR es el de más prioridad



resumen planificadores simples

#### Contenido

concepto criterios algoritmos ejemplos

#### Atendiendo a:

- Decisión de preemption:
  - Expropiativo o no expropiativo
- Decisión de scheduling:
  - Orden de llegada, tiempo de proc./ráfaga, prioridad

| Preem.<br>Sched.    | No<br>Expropiat. | Expropiat.  |
|---------------------|------------------|-------------|
| Orden de<br>Ilegada | FIFO<br>FCFS     | Round Robin |
| Tiempo              | SJF              | SRT         |
| Prioridad           | Prio. No Exp.    | Prio. Exp.  |



# 3.3 Algoritmos de planificación planificadores híbridos

#### Contenido

concepto criterios algoritmos ejemplos

- Los sitemas reales son heterogéneos
- Varias colas de listos (categorías y políticas específicas)
  - se clasifican los procesos: primer plano (foreground), segundo plano (background), sistema, ... cada grupo tiene requerimientos distintos
  - cada cola tiene asociado su propio algoritmo de planificación
  - el procesador se reparte entre los distintos niveles:
    - Las colas se planifican por prioridad. Problema: inanición o postergación indefinida
    - La CPU se reparte entre colas: sistema 70%, interactivos 20%....





# 3.3 Algoritmos de planificación planificadores híbridos

#### Contenido

concepto criterios algoritmos ejemplos

#### Colas multinivel con realimentación

 Los procesos se clasifican solos automáticamente: no necesitamos clasificar a priori, permite a los procesos migrar de una cola a otra



- Los procesos entran por la cola Max. Prior.
  - Si agotan el Q de la cola actual bajan de cola; si no lo agotan, suben.
  - Ej. planificación de colas: Prioridad Expropiativa
    - Un proc. de Med. Prioridad no ejecuta (o es expropiado) mientras haya un proceso ready de Max. Prioridad.
    - Un proceso de Min. Prio. ejecuta cuando en las otras colas no hay procesos (están bloqueados por E/S)



# 3.3 Algoritmos de planificación planificadores híbridos

#### Contenido

concepto criterios algoritmos ejemplos

#### Colas multinivel con realimentación

- Resultado: Clasificación automática
  - Los procesos intensivos en E/S se quedan arriba
  - Los procesos intensivos en CPU caen a la última cola
- Subir el Q cuando baja la prioridad proporciona una realimentación negativa al sistema
  - Si Q fuese cte, todos los proc. estarían en las colas extremas
- Inconveniente:
  - Un proceso que puntualmente tiene unas ráfagas de CPU largas puede acabar en la cola de mínima prioridad
  - Alternativas
    - Un proceso tiene que consumir su Q, "n" veces para bajar, y "n" puede crecer al bajar de cola.
    - Un proceso también puede subir (no solo bajar) en el sistema de colas:
      - » Si no consume un Q umbral "m" veces, se sube a la cola de arriba



# 3.3 Algoritmos de planificación planificadores híbridos

#### Contenido

concepto criterios algoritmos ejemplos @ Ejemplo: Colas multinivel con realiment.



|                 | T <sub>rafaga</sub> | H <sub>llega</sub> | H <sub>entra</sub> | H <sub>salida</sub> | Te | Tr |  |  |
|-----------------|---------------------|--------------------|--------------------|---------------------|----|----|--|--|
| P1              | 8                   | 0                  |                    |                     |    |    |  |  |
| P2              | 4,2                 | 2,10               |                    |                     |    |    |  |  |
| Р3              | 6                   | 4                  |                    |                     |    |    |  |  |
| P4              | 3,3                 | 7,18               |                    | 1                   |    |    |  |  |
| P5              | 2                   | 9                  |                    |                     |    |    |  |  |
| Valores Medios: |                     |                    |                    |                     |    |    |  |  |

|  |  | 1 |  | 1 |  |  |  |  |
|--|--|---|--|---|--|--|--|--|
|  |  | 1 |  | 1 |  |  |  |  |
|  |  | 1 |  | 1 |  |  |  |  |
|  |  | 1 |  | 1 |  |  |  |  |
|  |  |   |  |   |  |  |  |  |



# 3.4 Ejemplos

#### Contenido

concepto criterios algoritmos ejemplos

# 3.4 Ejemplos



# 3.4 Ejemplos

planificación Linux

#### Contenido

concepto criterios algoritmos ejemplos

- Objetivos Unix (¿incompatibles?)
  - bajos tiempos de respuesta, buena productividad (trhoughput) para segundo plano, evitar inanición de procesos, conciliar las necesidades de procesos de alta y baja prioridad...
- Política de planificación
  - Planifica procesos
  - Planificación expropiativa en base a prioridades (dinámicas para procesos normales – estáticas TR)
  - Tiempo compartido mediante cuantos de tiempo
  - Procesos en tiempo real: tienen mayor prioridad y planificación diferenciada
  - Favorece procesos interactivos incrementando su prioridad



planificación Linux

#### Contenido

concepto criterios algoritmos ejemplos

#### Colas multinivel

- Procesos de tiempo real (sin realimentación)
- Procesos normales (con realimentación)
- Os clases de procesos dos políticas
  - Procesos de tiempo real
    - Siempre se despachan antes que los procesos normales
    - Prioridades estáticas
    - No equitativo, lo importante: la prioridad absoluta
  - Procesos normales (tiempo compartido)
    - Prioridades dinámicas
    - Intenta ser equitativo
    - Procesos de baja prioridad pueden llegar a alcanzar la CPU
    - Favorecer interactivos



planificación Linux

#### Contenido

concepto criterios algoritmos ejemplos



Dept. Arquitectura de Computadores



Univ. Málaga

38



planificación Linux: tiempo compartido

#### Contenido

concepto criterios algoritmos ejemplos

- Planificación por prioridad expropiativa
  - Siempre se escoge el proceso de prioridad más alta
- Prioridad dinámica
  - Calculada a partir de la prioridad base (100..139)
  - Procesos heredan prioridad del padre
  - Usuarios pueden cambiar prioridad base (llamadas nice() y setpriority())
- Esquema de turno rotatorio (RR) para procesos de la misma prioridad
  - Cuanto fijo dependiente directamente de la prioridad estática del proceso



planificación Linux: tiempo compartido

#### Contenido

concepto criterios algoritmos ejemplos

### Cálculo de la prioridad dinámica

- Cada proceso tiene un prioridad base (nice) asignada en la creación del proceso
- La dinámica se calcula a partir de la base para favorecer procesos interactivos
  - pdinámica = max (100, min(pestática bonus +5), 139))
  - bonus = 0..10
    - bonificación (hasta -5) a procesos intensivos en E/S
    - penalización (hasta +5) a procesos intensivos en CPU
- La bonificación se calcula en base al tiempo medio dormido (TMD en milisegundos)
  - $0 \le TMD \le 1000 \text{ ms}$
  - bonus = floor(TMD / 100)



planificación Linux: tiempo compartido

#### Contenido

concepto criterios algoritmos ejemplos Cálculo de la prioridad dinámica

- Intervalo "dinámico" (±5)
  - suficientemente grande para favorecer procesos interactivos
  - no suficiente para distorsionar totalmente prioridad base
    - Proceso con prioridad 12 nunca más urgente que prioridad 1
- La prioridad se recalcula cuando el proceso ha agotado su cuanto
- "Cuanto" fijo y dependiente de la prioridad estática del proceso (140 prioridad estática) x 20 si prioridad estática < 120 cuanto = (140 prioridad estántica) x 5 si prioridad estática ≥ 120</li>

| Descripción | Prioridad est. | Valor nice | Cuanto |
|-------------|----------------|------------|--------|
| Máxima      | 100            | -20        | 800 ms |
| Alta        | 110            | -10        | 600 ms |
| Defecto     | 120            | 0          | 100 ms |
| Baja        | 130            | 10         | 50 ms  |
| Mínima      | 139            | 19         | 5 ms   |



planificación Linux: tiempo compartido

#### Contenido

concepto criterios algoritmos ejemplos

### Turno rotatorio (RR) modificado

- Dos colas de procesos "listos"
  - Cola "listos activos" formada por los procesos que aún no han consumido su cuanto
  - Cola "listos expirados" formada por los procesos que ya han agotado su cuanto
- El proceso siguiente a ejecutar se elige sólo de los "activos"
- Si un proceso se bloquea sin consumir su cuanto, cuando se desbloquee vuelve a "listos activos"
- Si un proceso consume su rodaja, pasa a "listos expirados"



3.4 Ejemplos
planificación Linux: tiempo compartido

#### Contenido

concepto criterios algoritmos ejemplos Turno rotatorio (RR) modificado

- Evita inanición:
  - Un proceso menos prioritario se ejecutará aunque existan procesos más prioritarios listos (pero que hayan consumido su cuanto)
- Aparecen "épocas de ejecución"
  - Todos los procesos entran a ejecutarse en una época
  - Una época termina cuando todos los procesos han entrado a ejecución (no hay listos activos)
- Cambio de época
  - Basta cambiar cola de expirados por cola de activos





planificación Linux: tiempo compartido

#### Contenido

concepto criterios algoritmos ejemplos

### Turno rotatorio (RR) modificado

- Implementación real un poco más complicada
- Clasificación de los procesos en Batch e Interactivos
- Interactive si:
  - prioridad dinámica ≤ 3 x prioridad estática / 4 + 28
  - depende del bonus (TMD) del proceso
- Procesos Batch
  - Cuando agota su cuanto es movido a "expirados"
- Procesos Interactivos
  - Cuando agota su cuanto normalmente permanece en "activos"
  - Es movido a expirados si:
    - El proceso expirado más viejo lleva mucho tiempo esperando
    - Hay un proceso expirado con mayor prioridad estática que el interactivo



planificación Linux: tiempo real

#### Contenido

concepto criterios algoritmos ejemplos

- Tiempo real se panifica antes que los procesos normales
- Planificación por prioridad expropiativa
  - Siempre se escoge el proceso TR de prioridad más alta;
    - si hay varios iguales: el primero de la cola
  - prioridades estáticas 1..99
- Dos clases de planificación en tiempo real para procesos con igual prioridad
  - FIFO por orden de llegada (SCHED\_FIFO)
    - Se ejecuta hasta que termine (cuanto ilimitado)
    - Sólo es expropiable por procesos TR de más prioridad
  - Round Robin turno circular (SCHED\_RR)
    - Es desalojado si agota su cuanto
    - Vuelve al final de la cola de listos (misma prioridad)
    - El tiempo se comparte en procesos TR con la misma prioridad



planificación Linux: Posix

#### Contenido

concepto criterios algoritmos ejemplos

# Syscalls para planificación de procesos

- Modificar la prioridad de un proceso
  - int **sched\_setparam**(pid\_t pid, const struct\_param \*param);
- Modificar la prioridad y la política
  - int sched\_setscheduler(pid\_t pid, const sched param \*param);
- Obtener los parámetros de planificación de un proceso
  - int sched getscheduler(pid t pid);
- Obtener la prioridad de un proceso
  - int sched\_getparam(pid\_t pid, const struct\_param \*param);



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

### Política de planificación

- NT es un SO operativo expropiativo, donde el thread es la unidad básica de planificación.
- Planificación expropiativa en base a prioridades:
  - Estáticas para tiempo real [ 16..31], sólo el administrador
  - Dinámicas para usuario [1..15], aplicaciones típicas
- La prioridad 0 se asigna al thread nulo (ocioso)
- Procesos en tiempo real: tienen mayor prioridad
- Favorece threads interactivos incrementando su prioridad
- Tiempo compartido mediante cuantos de tiempo:
  - Determinación del cuanto de tiempo:
    - 2 ticks NT workstation 12 ticks NT server (20 120 ms), sobre x86.



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

Prioridad base del proceso:

Realtime (24)

- High (13)
- Above Normal (10)
- Normal (8)
- Below Normal (6)
- Idle (4)
- Prioridad base del thread (offset max. ±2 de la priordad base del proceso):
  - Time\_Critical (15 para todas las clases excepto RT que es 31)
  - Idle (1 para todas las clases excepto para RT que es 16)
  - Highest (+2)
  - Above normal (+1)
  - Normal (+0)
  - Below Normal (-1)
  - Lowest (-2)





Windows NT

#### Contenido

concepto criterios algoritmos ejemplos © Correspondencia prioridades Win32 - kernel

|            |               | Win32 process class priorities |      |                 |        |                 |      |
|------------|---------------|--------------------------------|------|-----------------|--------|-----------------|------|
|            |               | Realtime                       | High | Above<br>Normal | Normal | Below<br>Normal | Idle |
|            | Time critical | 31                             | 15   | 15              | 15     | 15              | 15   |
|            | Highest       | 26                             | 15   | 12              | 10     | 8               | 6    |
| Win32      | Above normal  | 25                             | 14   | 11              | 9      | 7               | 5    |
| thread     | Normal        | 24                             | 13   | 10              | 8      | 6               | 4    |
| priorities | Below normal  | 23                             | 12   | 9               | 7      | 5               | 3    |
|            | Lowest        | 22                             | 11   | 8               | 6      | 4               | 2    |
|            | Idle          | 16                             | 1    | 1               | 1      | 1               | 1    |



Windows NT

#### Contenido

concepto criterios algoritmos eiemplos

- El planificador mantiene 32 colas para threads listos: una cola por cada prioridad
- Las prioridades dinámicas utilizan colas multinivel con realimentación
- Se escoge el primer thread listo de la cola de prioridad más alta no vacía
- Tiempo compartido en turno circular (RR) dentro de un mismo nivel de prioridad
- El thread expropiado
  - Por fin de cuanto se coloca al final de la cola de su prioridad (RR)
  - Por un thread de más prioridad se coloca en la cabeza de la cola de su prioridad (conserva el turno)



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

### Ajustes automáticos de las prioridades

- Los threads de usuario (prioridades dinámicas < 16) pueden experimentar incrementos (boosts) y reducciones (decays) automáticos en su prioridad
- Para favorecer procesos intensivos en E/S y para evitar inanición
- Los threads de tiempo real (prioridad > 15) no experimentan estos ajustes
  - La planificación en TR es predecible: respeta la prioridad original de cada thread. Pero esto NO garantiza tiempos de respuesta.



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

- Incrementos en la prioridad de un thread
  - Tienen lugar tras un bloqueo, normalmente cuando se resuelve una petición de E/S
    - Dispositivos lentos = grandes incrementos (p.e. KB o ratón + 6)
    - Dispositivos rápidos = pequeños incrementos (p.e. HD + 1)
  - El incremento se aplica sobre su prioridad base
    - El resultado nunca es mayor que 15 (máx. para usuarios)
  - Buen tiempo de respuesta para interactivos, dispositivos de E/S se mantienen ocupados
- Decrementos en la prioridad
  - Cada vez que consuma un cuanto de ejecución, se decrementa en 1 la prioridad. Hasta alcanzar la prioridad base del thread



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

### Eliminación de la inanición

- "Balance Set Manager" es un thread con prioridad 16 (de sistema) que se despierta cada segundo
- Busca threads de usuario que han estado listos 3 ó más segundos sin ejecutar
- Les incrementa la prioridad y el cuanto
  - Prioridad = 15 (máxima para usuario)
  - Doble cuanto de tiempo
- El incremento es transitorio: sólo hasta completar el cuanto o bloquearse, después vuelve a su prioridad y cuanto normal



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

- Incrementos automáticos de prioridad algo arbitrarios
  - Favorece los threads que usan dispositivos de E/S
    - Los incrementos están prefijados
    - La tarjeta de sonido tiene máximo incremento +8
  - Si queremos ir rápido hay que tocar mucha música
- El sistema no evita implícitamente la inanición
  - No existe envejecimiento, es necesario vigilar activamente que no ocurra postergación indefinida
- Soporte para tiempo real soft
  - No se garantizan tiempos de respuesta
  - Sólo que la planificación es predecible (prio. estáticas)



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos Asignación de la prioridad base del proceso:

CreateProcess(...,fdwCreate,...)

- Aplicaciones a nivel de usuario
  - TASKLIST.EXE: listar procesos (como ps en unix)
  - TASKMGR.EXE: parecido, pero con interfaz gráfico
  - START /LOW file.exe: permite lanzar procesos
    - Otros parámetros son /Normal, /High o /RealTime
  - TASKKILL.EXE: termina el proceso especificado



Windows NT

#### Contenido

concepto criterios algoritmos ejemplos

## Syscalls para planificación

- © Control de la clase de prioridad
  - BOOL **SetPriorityClass**(HANDLE hProcess, DWORD fdwPriorityClass);
  - DWORD GetPriorityClass(HANDLE hProcess);
- Control de la prioridad relativa del thread
  - BOOL SetTrheadPriority(HANDLE hThread, DWORD fdwPriority);
  - DWORD GetThreadPriority(HANDLE hProcess);

### FSO - Examen septiembre de 2006

# 8.- En un sistema con planificación de colas de realimentación multinivel de tres niveles se ejecutan tres procesos.

Los tiempos de computación pura de los procesos (total CPU) son los siguientes: P1=60 ciclos, P2=130 ciclos y P3=180 ciclos. Además el proceso P1 realiza una operación de E/S cuando han pasado 20 ciclos de su tiempo de computación. El proceso P2 realiza una operación de E/S cuando han pasado 80 ciclos de su tiempo de computación. El proceso P3 no realiza operaciones de E/S. Cada operación de E/S dura 25 ciclos.

Los cuantos de tiempo asociados a cada cola, a medida que desciende la prioridad de las colas son Cola1: 50, Cola2: 100 y Cola3: 120 ciclos (la Cola1 es la de mayor prioridad). Suponiendo que, inicialmente, todos los procesos llegan al mismo tiempo al sistema de planificación y que el orden inicial en la cola es P1(primero), P2(segundo) y P3 (tercero), completar el diario de ejecución en la tabla siguiente anotando el tiempo en el cual ocurre cada nuevo evento, dónde se encuentra cada proceso en ese momento y la descripción del evento.

| Tiempo | Ejecución | Cola1 | Cola2 | Cola3 | Bloqueados | Descripción evento                                  |
|--------|-----------|-------|-------|-------|------------|-----------------------------------------------------|
| 0      | P1        | P2,P3 |       | 4     | F .        | Llegada de los procesos P1,P2, P3<br>Despacho de P1 |
|        |           |       |       |       |            |                                                     |
|        |           | 3     |       |       |            |                                                     |

### Ejemplo de planificación

| Proceso | Llegada | Tiempo CPU | Prioridad |
|---------|---------|------------|-----------|
| T0      | 0       | 50         | 4 (min.)  |
| T1      | 10      | 50         | 3         |
| T2      | 20      | 20         | 1 (max.)  |
| T3      | 30      | 10         | 2         |

 El proceso T0 se bloquea a las 10 unidades de tiempo durante 15 unidades de tiempo

|                            | Expropiativa                       |                                                |
|----------------------------|------------------------------------|------------------------------------------------|
| por orden de<br>llegada    | FCFS                               | Turno circular<br>(RR) <b>Q=10</b>             |
| por tiempo de<br>ejecución | Trabajo más corto primero<br>(SJF) | Tiempo restante más<br>corto primero<br>(SRTN) |
| por prioridades            | Prioridades                        | Prioridades<br>expropiativas                   |

### Ejemplo de planificación

| Proceso | Llegada | Tiempo CPU | Prioridad |
|---------|---------|------------|-----------|
| T0      | 0       | 50         | 4 (min.)  |
| T1      | 10      | 50         | 3         |
| T2      | 20      | 20         | 1 (max.)  |
| T3      | 30      | 10         | 2         |

 El proceso T0 se bloquea a las 10 unidades de tiempo durante 15 unidades de tiempo

|                            | Expropiativa                       |                                                |
|----------------------------|------------------------------------|------------------------------------------------|
| por orden de<br>llegada    | FCFS                               | Turno circular<br>(RR) <b>Q=10</b>             |
| por tiempo de<br>ejecución | Trabajo más corto primero<br>(SJF) | Tiempo restante más<br>corto primero<br>(SRTN) |
| por prioridades            | Prioridades                        | Prioridades<br>expropiativas                   |