Übungsaufgabe Riesenrad Kräfte bei Drehbewegung

Heiko Schröter

6. März 2021

Aufgabe

Ein Riesenrad hat einen Durchmesser von 12 m und dreht sich in der Minute 4 mal. Das Gewicht einer Kabine beträgt bei voller Besetzung $F_G=3000\,\mathrm{N}$. Berechnen Sie

- a) die Umfangsgeschwindigkeit v_u in $\frac{m}{s}$ für $d=12\,\mathrm{m}$,
- b) die Winkelgeschwindigkeit ω ,
- c) die auf die Kabine wirkende Fliehkraft F_Z , wenn der Kabinenschwerpunkt auf $d=12\,\mathrm{m}$ liegt,
- d) die nach unten wirkende Kraft der Kabine, wenn sich diese durch den untersten Punkt des umfahrenen Kreises bewegt.

Lösung I

a)

$$v_u = \frac{d \cdot \pi \cdot n}{60} = \frac{12 \,\mathrm{m} \cdot \pi \cdot 4}{60 \,\mathrm{s}} = 2,513 \,\frac{\mathrm{m}}{\mathrm{s}}$$

b)

$$\omega = \frac{\pi \cdot n}{30} = \frac{\pi \cdot 4}{30} \frac{\text{rad}}{\text{s}} = 0,4189 \frac{\text{rad}}{\text{s}}$$

Lösung II

$$F_Z = m \cdot r \cdot \omega^2 = \frac{F_G}{g} \cdot r \cdot \omega^2 = \frac{3000 \text{ N}}{9.81 \frac{\text{m}}{\text{s}^2}} \cdot 6 \text{ m} \cdot (0.4189 \frac{1}{\text{s}})^2$$
$$= 322 \text{ N}$$

$$F_r = F_Z + F_G = 322 \,\text{N} + 3000 \,\text{N} = 3322 \,\text{N}$$

