Lenguajes Formales, Autómatas y Computabilidad

Clase Teórica Autómatas Finitos y Gramáticas Regulares

Segundo cuatrimestre 2024

Bibliografía

Capítulo 2, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

En esta clase

- Definición de autómata finito determinístico (AFD)
- Definición de autómata finito no-determinístico (AFND)
- ► Teorema: Para todo AFND hay un AFD que reconoce el mismo lenguaje.
- Teorema: Para cada gramática regular hay un AFND que acepta el lenguaje generado por la gramática,
- ► Teorema: Para cada AFD hay una gramática que genera el mismo lenguaje que el acpetado por el AFD.

Definición (autómata finito determinístico (AFD))

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ el alfabeto de entrada
- $lackbox{\delta}:Q imes\Sigma o Q$ es la función de transición
- $ightharpoonup q_0 \in Q$ es el estado inicial
- ▶ $F \subseteq Q$ es el conjunto de estados finales

Definición (función de transición generalizada $\widehat{\delta}$)

Definimos $\widehat{\delta}: Q \times \Sigma^* \to Q$,

- $\triangleright \widehat{\delta}(q,\lambda) = q$
- $\blacktriangleright \ \widehat{\delta}\left(q,xa\right)=\delta\left(\widehat{\delta}\left(q,x\right),a\right)\text{, con }x\in\Sigma^{*}\text{ y }a\in\Sigma.$

Notar que $\widehat{\delta}\left(q,a\right)=\delta\left(\widehat{\delta}\left(q,\lambda\right),a\right)=\delta\left(q,a\right).$

Muchas veces usaremos símbolo δ para ambas funciones.

Definición (lenguaje aceptado por un AFD)

El lenguaje aceptado por un AFD $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, al que denotamos $\mathcal{L}\left(M\right)$, es el conjunto de cadenas de Σ^* aceptadas por M,

$$\mathcal{L}\left(M\right) = \left\{x \in \Sigma^* : \widehat{\delta}\left(q_0, x\right) \in F\right\}.$$

Veremos a los autómatas finitos como funciones tales que para cada cadena dan un valor booleano: aceptación o no aceptación,

$$M: \Sigma^* \to \{0, 1\}$$

Autómata finito no determinístico

Definición (autómata finito no determinístico (AFND))

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ el alfabeto de entrada
- $ightharpoonup q_0 \in Q$ es el estado inicial
- $ightharpoonup F\subseteq Q$ es el conjunto de estados finales

Definición (función de transición generalizada $\widehat{\delta}$)

Definimos $\widehat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$,

- $\widehat{\delta}(q,\lambda) = \{q\}$
- $\widehat{\delta}\left(q,xa\right) = \left\{p \in Q : \exists r \in \widehat{\delta}\left(q,x\right) \ \ \text{y} \ p \in \delta\left(r,a\right)\right\},$ $\operatorname{con} x \in \Sigma^{*} \ \ \text{y} \ a \in \Sigma.$

Notar que

$$\begin{split} \widehat{\delta}\left(q,\lambda a\right) &= \left\{p \in Q: \exists r \in \widehat{\delta}\left(q,\lambda\right) \text{ y } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: \exists r \in \left\{q\right\} \text{ y } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q: p \in \delta\left(q,a\right)\right\} \\ &= \delta\left(q,a\right). \end{split}$$

Muchas veces utilizaremos el símbolo δ para ambas funciones.

Definición (lenguaje aceptado por un AFND)

El lenguaje aceptado por AFND $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, al que denotamos $\mathcal{L}\left(M\right)$, es el conjunto de cadenas de Σ^* aceptadas por M,

$$\mathcal{L}\left(M\right) = \left\{x \in \Sigma^* : \widehat{\delta}\left(q_0, x\right) \cap F \neq \phi\right\}.$$

Podemos extender la función de transición aún más, haciendo que mapee conjuntos de estados y cadenas en conjuntos de estados.

Definición (función de transición de conjuntos de estados)

Función de transición $\delta:\mathcal{P}\left(Q\right)\times\Sigma^{*}\rightarrow\mathcal{P}\left(Q\right)$ dada por

$$\delta(P, x) = \bigcup_{q \in P} \delta(q, x).$$

Es trivial ver que, para todo AFD existe un AFND equivalente. Lo que no es tan obvio es que lo recíproco también es cierto: para cada AFND existe un AFD equivalente.

Teorema (Equivalencia entre AFND y AFD (Rabin & Scott, 1959))

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}\left(M\right) = \mathcal{L}\left(M'\right)$.

Demostración del teorema

Construimos un AFD
$$M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$$

$$Q' = \{[q_1, \dots, q_i], q_1, \dots, q_i \in Q\} \text{ (son los elementos de } \mathcal{P}(Q)\text{)}$$

$$F' = \{[q_1, \dots, q_i] \in Q' : \{q_1, \dots, q_i\} \cap F \neq \phi\}$$

$$q'_0 = [q_0]$$

$$\delta'([q_1, \dots, q_i], a) = [p_1, \dots, p_i] \text{ si y solo si } \delta(\{q_1, \dots, q_i\}, a) = \{p_1, \dots, p_i\}.$$

Demostremos que para toda cadena $x \in \Sigma^*$, $\delta'\left(q_0',x\right) = \left[q_1,\ldots,q_i\right]$ si y solo si $\delta\left(q_0,x\right) = \left\{q_1,\ldots,q_i\right\}$.

Demostración por inducción en la longitud de la cadena.

Escribimos |x| para la longitud de la cadena x.

Caso Base: |x| = 0, o sea $x = \lambda$.

Por definición de
$$\widehat{\delta}$$
,

$$\delta'\left(q_{0}',\lambda\right)=\left[q_{0}\right] \ \ \mathsf{y} \ \ \delta\left(q_{0},\lambda\right)=\left\{q_{0}\right\},$$

por lo que
$$\delta'\left(q_0',\lambda\right)=\left[q_0\right]$$
 si y solo si $\delta\left(q_0,\lambda\right)=\left\{q_0\right\}$.

Caso inductivo: suponemos que vale para x tal que |x| = n, es decir suponemos $\delta'(q_0',x)=[p_1,\ldots,p_k]$ si y solo si $\delta(q_0,x)=\{p_1,\ldots,p_k\}$.

Veamos que vale para xa, con $a \in \Sigma$.

$$\delta'\left(q_0',xa\right)=\delta'\left(\delta'\left(q_0',x\right),a\right)=[r_1,\ldots,r_i]$$
 si y solo si
$$(\text{ por definición de }\delta'\text{ en AFD }M')$$

$$\exists \left[p_1,\ldots,p_k\right],\\ \delta'\left(q_0',x\right)=\left[p_1,\ldots,p_k\right]\text{ y }\delta'\left(\left[p_1,\ldots,p_k\right],a\right)=\left[r_1,\ldots,r_i\right]$$
 si y solo si
$$(\text{por HI y y por definición de }\delta\text{ en AFND }M)$$

$$\exists \left\{p_1,\ldots,p_k\right\}.$$

 $\delta(q_0, x) = \{p_1, \dots, p_k\} \wedge \delta(\{p_1, \dots, p_k\}, a) = \{r_1, \dots, r_i\}$

si v solo si

por def δ en AFND M. $\delta(q_0, xa) = \delta(\delta(q_0, x), a) = \{r_1, \dots, r_i\}$

Concluimos.

 $\delta'(q'_0, xa) = [r_1, \dots, r_i]$ si y solo si $\delta(q_0, xa) = \{r_1, \dots, r_i\}$.

Nos queda probar que $\mathcal{L}\left(M\right)=\mathcal{L}\left(M'\right)$.

$$x \in \mathcal{L}(M)$$

si y solo si

$$\delta\left(q_{0},x\right)=\left\{ q_{1},\ldots,q_{i}\right\} \wedge\left\{ q_{1},\ldots,q_{i}\right\} \cap F\neq\phi$$

si y solo si

$$\delta'\left(q_0',x\right) = \left[q_1,\ldots,q_i\right] \wedge \left[q_1,\ldots,q_i\right] \in F'$$

si y solo si

$$x \in \mathcal{L}(M')$$
.

Recordemos que una gramática $G=\langle V_N,V_T,P,S\rangle$ es regular si todas las producciones son de la forma $A\to\lambda$, o $A\to a$ o $A\to aB$

Teorema

Dada una gramática regular $G = \langle V_N, V_T, P, S \rangle$ existe un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ tal que $\mathcal{L}(G) = \mathcal{L}(M)$.

Demostración del teorema

Definamos M de la siguiente manera:

- $\blacktriangleright \ Q = V_N \cup \{q_f\}$, para mayor claridad, llamaremos q_A al estado correspondiente al no terminal A
- $ightharpoonup \Sigma = V_T$
- $q_0 = q_S$
- $q_B \in \delta(q_A, a) \Leftrightarrow A \to aB \in P$
- $q_f \in \delta (q_A, a) \Leftrightarrow A \to a \in P$
- $ightharpoonup q_A \in F \Leftrightarrow A \to \lambda \in P$
- $ightharpoonup q_f \in F$.

Lema

Para todo $w \in V_T^*$, Si $A \stackrel{*}{\Rightarrow} wB$ entonces $q_B \in \delta (q_A, w)$.

Demostración del Lema.

Por inducción en la longitud de w.

Caso base |w|=0, es decir $w=\lambda$. Como $A\stackrel{*}{\Rightarrow} A$ y $q_A\in\delta\left(q_A,\lambda\right)$,

$$A \stackrel{*}{\Rightarrow} A \Leftrightarrow q_A \in \delta(q_A, \lambda)$$
.

Caso $|w|=n+1, n\geq 0$, es decir, $w=\alpha a$ con $\alpha=n$. Asumamos h.i. para longitud n, es decir, vale para α .

$$A \stackrel{*}{\Rightarrow} \alpha a B \qquad \Leftrightarrow \exists C \in V_N, A \stackrel{*}{\Rightarrow} \alpha C \wedge C \to a B \in P$$

$$\Leftrightarrow \exists q_C \in Q, q_C \in \delta \left(q_A, \alpha\right) \wedge q_B \in \delta \left(q_C, a\right) \text{ por h.i.}$$

$$\Leftrightarrow q_B \in \delta \left(\delta \left(q_A, \alpha\right), a\right)$$

$$\Leftrightarrow q_B \in \delta \left(q_A, \alpha\right)$$

Continuación de la demostración del Teorema

$$\begin{split} wa &\in \mathcal{L}\left(G\right) \Leftrightarrow S \stackrel{*}{\Rightarrow} wa \\ &\Leftrightarrow \left(\exists A \in V_N, S \stackrel{*}{\Rightarrow} wA \wedge A \rightarrow a \in P\right) \vee \\ &\left(\exists B \in V_N, S \stackrel{*}{\Rightarrow} waB \wedge B \rightarrow \lambda \in P\right) \text{ (únicas dos formas)} \\ &\Leftrightarrow \left(\exists q_A \in Q, q_A \in \delta\left(q_S, w\right) \wedge q_f \in \delta\left(q_A, a\right)\right) \vee \\ &\left(\exists q_B \in Q, q_B \in \delta\left(q_S, wa\right) \wedge q_B \in F\right) \text{ (por el Lema)} \\ &\Leftrightarrow q_f \in \delta\left(q_S, wa\right) \vee \left(\exists q_B \in Q, q_B \in \delta\left(q_S, wa\right) \wedge q_B \in F\right) \\ &\Leftrightarrow wa \in \mathcal{L}\left(M\right). \\ &\lambda \in \mathcal{L}\left(G\right) \Leftrightarrow S \stackrel{*}{\Rightarrow} \lambda \\ &\Leftrightarrow S \rightarrow \lambda \in P \\ &\Leftrightarrow q_S \in F \\ &\Leftrightarrow \lambda \in \mathcal{L}\left(M\right). \end{split}$$

L

Teorema

Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ existe una gramática regular $G = \langle V_n, V_T, P, S \rangle$ tal que $\mathcal{L}(G) = \mathcal{L}(M)$.

Demostración del Teorema

Definimos gramática $G=(V_N,V_T,P,S)$, donde $V_N=Q$ y llamaremos A_p al no terminal correspondiente a $p\in Q$; $S=A_{q_0}$; $V_T=\Sigma$ y el conjunto P es:

$$A_{p} \to aA_{q} \in P \Leftrightarrow \delta(p, a) = q$$

$$A_{p} \to a \in P \Leftrightarrow \delta(p, a) = q \in F$$

$$S \to \lambda \in P \Leftrightarrow q_{0} \in F$$

Lema

$$\delta(p,w) = q \text{ si y solo si } A_p \stackrel{*}{\Rightarrow} w A_q.$$

Demostración del Lema.

Por inducción en la longitud de w.

Para $w=\lambda$, es cierto que $\delta\left(p,\lambda\right)=p$ y que $A_{p}\overset{*}{\Rightarrow}A_{p}$, por lo tanto $\delta\left(p,\lambda\right)=p\Leftrightarrow A_{p}\overset{*}{\Rightarrow}A_{p}$.

Asumamos h.i. vale para α de longitud n, con $n \geq 0$, y veamos que vale para para $w = \alpha a$.

$$\begin{split} \delta\left(p,\alpha a\right) &= q \Leftrightarrow \exists r \in Q, \delta\left(p,\alpha\right) = r \wedge \delta\left(r,a\right) = q \\ &\Leftrightarrow \exists A_r, A_p \overset{*}{\Rightarrow} \alpha A_r \wedge A_r \to a A_q \in P \text{ por h.i.} \\ &\Leftrightarrow A_p \overset{*}{\Rightarrow} \alpha a A_q. \end{split}$$

Continuación de la demostración del Teorema

Asumamos Lema:
$$\delta\left(p,w\right)=q$$
 si y solo si $A_{p}\overset{*}{\Rightarrow}wA_{q}$.
$$wa\in\mathcal{L}\left(M\right)\Leftrightarrow\delta\left(q_{0},wa\right)\in F$$

$$\Leftrightarrow\exists p\in Q, \delta\left(q_{0},w\right)=p\wedge\delta\left(p,a\right)\in F$$

$$\Leftrightarrow\exists A_{p},A_{q_{0}}\overset{*}{\Rightarrow}wA_{p}\wedge A_{p}\rightarrow a\in P$$

$$\Leftrightarrow A_{q_{0}}\overset{*}{\Rightarrow}wa$$

$$\Leftrightarrow wa\in\mathcal{L}\left(G\right)$$

$$\lambda\in\mathcal{L}\left(M\right)\Leftrightarrow q_{0}\in F$$

$$\Leftrightarrow S\rightarrow\lambda\in P$$

$$\Leftrightarrow S\overset{*}{\Rightarrow}\lambda$$

$$\Leftrightarrow\lambda\in\mathcal{L}\left(G\right).$$

Ejercicios

- 1. Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, y sea a in símbolo de Σ . Construir otro AFD M' que acepte el lenguaje $L = \{ax \in \Sigma^* : x \in \mathcal{L}(M)\}$.
- $2. \ \, \text{Indicar Verdadero o Falso y justificar} \\$
 - Si $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ es un AFD entonces reconoce al menos |Q| palabras distintas, es decir $\#\mathcal{L}(M) \geq |Q|$.
 - Si $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ es AFND entonces todas las palabras de $\mathcal{L}(M)$ tienen longitud menor or igual que $|Q|^2$.
- 3. ¿Cuántos AFD hay con |Q|=2 y $|\Sigma|=3$?
- 4. ¿qué pasa si revierto todas las flechas de un AFD ?
- 5. ¿qué pasa si invierto estados finales con no finales de un AFND?