

• Generative models, in particular those producing new images, need to upsample i.e., dimension of the output is greater than that of the input.

- Generative models, in particular those producing new images, need to upsample i.e., dimension of the output is greater than that of the input.
- We've already seen downsampling techniques, e.g.
 - Pooling

- Generative models, in particular those producing new images, need to upsample i.e., dimension of the output is greater than that of the input.
- We've already seen downsampling techniques, e.g.
 - Pooling

- Generative models, in particular those producing new images, need to upsample i.e., dimension of the output is greater than that of the input.
- We've already seen downsampling techniques, e.g.
 - Pooling
 - Strided convolution
- Want strategies to increase the size of the feature map in the network.
- Unpooling opposite pooling layer

Upsampling

- Nearest neighbouring unpooling
 - Duplicate input values in the receptive field of the unpooling region.

- Learnable upsampling
 - Learn kernel for performing the upsampling.
- Also known as
 - Fractionally strided convolution
 - Upconvolution
 - Deconvolution (This is wrong!)
- Output contains copies of the kernel weighted by the values in the input.
 - For any overlapping region, the output is the sum of the weighted entries.

8	4	2	
2	0	6	
0	10	2	

8	4	2	
2	0	6	
0	10	2	

0	0	0
0	0	0
0	0	0

16	8	4	
4	0	12	
0	20	8	

0	0	0
0	0	0
0	0	0

16	8	4	
4	0	12	
0	20	0	

0	0	0
0	0	0
0	0	0

4	2	1
1	0	3
0	5	2

16	8	4	
4	0	12	
0	20	8	

0	0	0
0	0	0
0	0	0

	4	2	1
	1	0	3
	0	5	2

8	4	2	0
18	12	12	1
4	11	16	3
0	20	13	2