# **CAPSTONE PROJECT**

# ON

# **Customer Churn Prediction**

BY

**Santan Chakraborty** 

PGP-DSBA (June-2020 B)

FINAL PROJECT REPORT

# **Contents**

| Introduction - What did you wish to achieve while doing the project                                                                                                                                 | 3           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| EDA - Univariate / Bi-variate / multi-variate analysis to understand relationship b/w varial visual and non-visual understanding of the data                                                        |             |
| Data Cleaning and Pre-processing - Approach used for identifying and treating missing val<br>treatment (and why) - Need for variable transformation (if any) - Variables removed or add<br>(if any) | ded and why |
| Model building - Clear on why was a particular model(s) chosen Effort to improve model performance                                                                                                  |             |
| Model validation - How was the model validated? Just accuracy, or anything else too                                                                                                                 | 20-22       |
| Final interpretation / recommendation - Very clear and crisp on what recommendations do                                                                                                             | you want to |

• Introduction - What did you wish to achieve while doing the project?

Ans. The ability to predict that a particular customer is at a high risk of churning, while there is still time to do something about it, represents a huge additional potential revenue source for every business. Besides the direct loss of revenue that results from a customer abandoning the business, the costs of initially acquiring that customer may not have already been covered by the customer's spending to date. (In other words, acquiring that customer may have been a losing investment.) Furthermore, it is always more difficult and expensive to acquire a new customer than it is to retain a current paying customer. My goal is to design a model which can effectively helps to find out a potential churner.

• EDA - Univariate / Bi-variate / multi-variate analysis to understand relationship b/w variables. - Both visual and non-visual understanding of the data.

**Ans.** In statistics, **exploratory data analysis** is an approach of analysing data sets to summarize their main characteristics, often using statistical graphics and other data visualization methods.

#### **Descriptive Details:**

|                 | count   | mean         | std         | min     | 25%      | 50%     | 75%      | max     |
|-----------------|---------|--------------|-------------|---------|----------|---------|----------|---------|
| AccountID       | 11260.0 | 25629.500000 | 3250.626350 | 20000.0 | 22814.75 | 25629.5 | 28444.25 | 31259.0 |
| Churn           | 11280.0 | 0.168384     | 0.374223    | 0.0     | 0.00     | 0.0     | 0.00     | 1.0     |
| City_Tier       | 11148.0 | 1.653929     | 0.915015    | 1.0     | 1.00     | 1.0     | 3.00     | 3.0     |
| CC_Contacted_LY | 11158.0 | 17.887091    | 8.853269    | 4.0     | 11.00    | 16.0    | 23.00    | 132.0   |
| Service_Score   | 11162.0 | 2.902528     | 0.725584    | 0.0     | 2.00     | 3.0     | 3.00     | 5.0     |
| CC_Agent_Score  | 11144.0 | 3.066493     | 1.379772    | 1.0     | 2.00     | 3.0     | 4.00     | 5.0     |
| Complain_ly     | 10903.0 | 0.285334     | 0.451594    | 0.0     | 0.00     | 0.0     | 1.00     | 1.0     |

#### Numerical

|                         | count | unique | top        | freq |
|-------------------------|-------|--------|------------|------|
| Tenure                  | 11158 | 38     | 1          | 1351 |
| Payment                 | 11151 | 5      | Debit Card | 4587 |
| Gender                  | 11152 | 4      | Male       | 6328 |
| Account_user_count      | 11148 | 7      | 4          | 4569 |
| account_segment         | 11163 | 7      | Super      | 4062 |
| Marital_Status          | 11048 | 3      | Married    | 5860 |
| rev_per_month           | 11158 | 59     | 3          | 1746 |
| rev_growth_yoy          | 11260 | 20     | 14         | 1524 |
| coupon_used_for_payment | 11260 | 20     | 1          | 4373 |
| Day_Since_CC_connect    | 10903 | 24     | 3          | 1816 |
| cashback                | 10789 | 5693   | 155.62     | 10   |
| Login_device            | 11039 | 3      | Mobile     | 7482 |

#### Categorical

# **Univariate Analysis:**

To get a proper visual demonstration of the dataset and the correlations between the features we import the libraries. import matplotlib.pyplot as plt %Matplotlib inline import seaborn as sns.

#### **Graphs:**





Fig: 1 Tenure

Fig: 2 Account\_user\_count





Fig: 3 Rev\_per\_month

Fig: 4 Rrv\_growth\_yoy





Fig: 5 Coupon\_used\_for\_payment

Fig: 6 Day\_since\_cc\_connect

From Fig:1 it is clear that 'Tenure' is right skewed

Fig:2 'Account\_user\_count' is multimodal variable.

Fig:3 'Rev\_per\_month' highly skewed variable.

Fig:4 'Rrv\_growth\_yoy' right skewed.

Fig:5 'Coupon\_used\_for\_payment' is multimodal right skewed.

Fig:6 'Day\_since\_cc\_connect' is multimodal.

# **Bivariate Analysis:**

To get a proper visual demonstration of the dataset and the correlations between the features we import the libraries. import matplotlib.pyplot as plt %Matplotlib inline import seaborn as sns.

# **Graphs:**





Fig:7 Churn-Gender









Fig:10 Churn-Service\_Score





Fig:11 Churn-Account\_segment

Fig:12 Churn-Login\_device



Fig:13 Churn-Complain\_ly

From Fig:7 we can conclude that number of churns in Male is more than the number of Female.

Fig:8 We can conclude no. of churns are more in Singles in compared to others.

Fig:9 Tire 1 and Tire 2 city customers are Churning more than the others.

Fig:10 The customers with Service\_score 3.0 Churned more than the others.

Fig:11 Regular plus subscribers churned more than the others.

Fig:12 Mobile users churned more than the computer users.

Fig:13 Complain\_ly=1.0 Churned more than the others.

# **Multivariate Analysis:**

To get a proper visual demonstration of the dataset and the correlations between the features we import the libraries. import matplotlib.pyplot as plt %Matplotlib inline import seaborn as sns.

#### **Graphs:**



Fig:14 Distplot



Fig:15 Pairplot



Fig:16 Heat Map

**First, I checked From the Figure-14 Distplot, Most** of Features are showing Multimodal right skewed distribution plot, so the features contain huge number of outliers in it.

We must apply outlier removal technique to clean the data to process further.

**From Figure-15 Pairplot** from the pair plot we can see that data points are highly overlapped and convoluted as well so the Linear Regression Model will not work much so we will go for classification techniques such as Random Forest, Decision Tree or **K-Nearest Neighbours (KNN)**. **From Figure-16 Heat Map**,

I am using heat map to get a visualization of the correlations among the features of the dataset dark colour depicts high correlation between two features and light colour shows no correlation.

• Data Cleaning and Pre-processing - Approach used for identifying and treating missing values and outlier treatment (and why) - Need for variable transformation (if any) - Variables removed or added and why (if any)

#### Ans. Data Cleaning and Pre-processing:

• My first job is treating the null vales are present in the dataset.

To check the total Null values in each Features I used isnull(). sum () and from OutPut-2 I can see that the columns contain a lot of null values in it.

| AccountID               | 9   |
|-------------------------|-----|
| Churn                   | 9   |
| Tenure                  | 102 |
| City_Tier               | 112 |
| CC_Contacted_LY         | 102 |
| Payment                 | 109 |
| Gender                  | 108 |
| Service_Score           | 98  |
| Account_user_count      | 112 |
| account_segment         | 97  |
| CC_Agent_Score          | 116 |
| Marital_Status          | 212 |
| rev_per_month           | 102 |
| Complain_ly             | 357 |
| rev_growth_yoy          | 0   |
| coupon_used_for_payment | 0   |
| Day_Since_CC_connect    | 357 |
| cashback                | 471 |
| Login_device            | 221 |
| dtype: int64            |     |

#### Fig:17 Null values

Now, my next job is treating the Null values by imputing the values with relevant replacements. In case of **Numerical Features**, I Imputed the Null values with **Medians** and **Categorical Features** with **Mode**.

```
AccountID
Churn
Tenure
City_Tier
CC_Contacted_LY
Payment
Service_Score
Account_user_count
account_segment
CC Agent Score
                              а
Marital_Status
rev_per_month
                              0
Complain ly
                              0
rev growth you
coupon_used_for_payment
Day_Since_CC_connect
                              0
cashback
Login_device
```

Fig:18 After treating Null values

Before proceeding I will check whether there are some duplicate values present or not. To check that I will use **duplicated** (). From the results, no duplicate rows are present there.

- My next job is treating the special symbols present in the dataset.
- First, I will check if any of the Feature contains any unwanted signs like [@, #, %, ggg, &&&, \*] (Except numbers or alphabets)
- From **Figure-19** it is visible that some of the features contain unwanted signs.
- Now I come across some problems which is related to data collection such as (RegularPlus as Regular + or Male as M).
- To get rid of such interruptions I replace the made-up (**Regular + or M**) data points with the original one (**Regular Plus or Male**) by using **relace** ()

```
TENURE :
               38
                              ACCOUNT_USER_COUNT : 7
                                                                  8
                                                                           643
              2
                              6
                                     315
                                                                           689
  50
              2
                                                                  7
                                                                           754
                              Ø
                                     332
  60
             2
                                                                          1085
                              1
                                     446
                                                                  4
  51
             2
                                                                          1218
                              2
                                     526
                                                                  5
                                                                          1337
            96
  31
                                                                  2
                                                                          1585
                              5
                                    1699
  25
           114
                                                                  3
                                                                          1746
                              3
                                    3261
  29
           114
                                                                  Name: rev_per_month, dtype: int64
           116
                                    4569
                               COUPON_USED_FOR_PAYMENT : 20
                               $
                                        1
                                        1
                               16
                                        4
REV GROWTH YOY :
                      20
                               15
                                        4
                                                               DAY_SINCE_CC_CONNECT :
4
           3
                                14
                                       12
                                                               $
                                                                          1
$
           3
                                13
                                       22
                               12
                                       26
                                                               46
                                                                          1
28
          14
                               11
                                       30
27
                                                               31
                                                                          2
          35
                              LOGIN_DEVICE :
26
         98
                                                               30
                                                                          2
                              &&&&
                                          539
25
         188
                                                               47
                                                                          2
                                         3018
                              Computer
24
         229
                                         7482
                                                              18
                                                                         26
                              Mobile
23
         345
                              Name: Login device.
                                                                         20
```

Fig:19 Unwanted Symbols

• Outlier treatment (if required) e) Variable transformation (if applicable) f) Addition of new variables (if required)

Now, to check the outliers, I am using Boxplots for all the numerical features of the dataset. I predicted earlier the features hold a lot of outliers. It is visible from the **Figure-20 Boxplot**. To remove these outliers, I used IQR method from the **SciPy library of Python**.

#### IQR method:

I replace all the upper outlier values and bring them to the upper whisker level. Similarly, all the lower outlier values and bring down to the lower whisker levels. This will not affect the shape of the dataset. If I only need the high value and low value of the dataset then this method is useful. But if we need the difference of the values then this value is not useful. Now I am creating a user-defined function for finding the lower and upper range for a variable so that outlier can be treated. Here I identify the IQR, lower whisker, and upper whisker. lower range= Q1-(1.5 \* IQR) and upper range= Q3+(1.5 \* IQR).

Using the value for all the columns. From Figure-21 BoxPlot (Outliers Removed) the outliers are removed, and my dataset is cleaned to proceed further.



Fig:20 Boxplot

Figure:21 Boxplot (Outliers Removed)

#### Variable transformation:

Before applying machine learning techniques, we need to pre-process our data by converting all the categorical variables to numerical variables. To perform that I am using **Feature Engineering technique**. It will convert all the categorical Features into unique codes.

```
feature: City_Tier
[3, 1, '1.6', 2]
Categories (4, object): [1, 2, 3, '1.6']

feature: Payment
['Debit Card', 'UPI', 'Credit Card', 'Cash on Delivery', 'E wallet']
Categories (5, object): ['Cash on Delivery', 'Credit Card', 'Debit Card', 'E wallet', 'UPI']

feature: Gender
['Female', 'Male']
Categories (2, object): ['Female', 'Male']
[8 1]

feature: Service_Score
[3, 2, 1, '3.6', 6, 4, 5]
Categories (7, object): [0, 1, 2, 3, 4, 5, '3.8']
[3 2 1 6 8 4 5]

feature: account_segment
['Super', 'Regular Plus', 'Regular', 'HNI', 'Super Plus']
Categories (5, object): ['HNI', 'Regular', 'Regular Plus', 'Super', 'Super Plus']
[3 2 1 8 4]

feature: CC_Agent_Score
[2, 3, 5, 4, '3.8', 1]
Categories (6, object): [1, 2, 3, 4, 5, '3.8']

feature: Marital_Status
['Single', 'Divorced', 'Married', 'Single']

feature: Complain_ly
[1, 0, '0.0']
Categories (3, object): [0, 1, '0.8']
[1 0 2]

feature: Login_device
['Mobile', 'Computer']
Categories (2, object): ['Computer', 'Mobile']
[1 0]
```

Fig:22 Encoded Features

• Model building - Clear on why was a particular model(s) chosen. - Effort to improve model performance.

**Ans.** Now I am ready to apply Predictive Models on my both train and test datasets. The problem is a classification problem so I will give priority to the models such as

- Decision Tree
- Random Forest
- K-Nearest Neighbours
- Bagging
- Ada-Boost
- Gradient-Boost
- Logistic-Regression
- LDA
- Naïve Bays

Before applying Machine learning technique, I need to understand Confusion Matrix.

|                      | Actual value<br>1 | Actual value<br>0 |
|----------------------|-------------------|-------------------|
| Predicted value<br>1 | True Positive     | False Positive    |
| Predicted value<br>0 | False Negative    | True Negative     |

**true positives (TP):** These are cases in which I predicted yes (Churn=1), and customers **churns**. **true negatives (TN):** I predicted (Churn=0), and they do not **churn**.

false positives (FP): I predicted (Churn=1), but customers do not churn. (Also known as a "Type I error.") false negatives (FN): I predicted (Churn=0), but customer churns. (Also known as a "Type II error.")

It is a classification problem so I will give importance to

- Decision Tree
- Random Forest
- K-Nearest Neighbours
- Bagging
- Ada-Boost
- Gradient-Boost

# **K-Nearest Neighbours:**

#### **Results:**

1.0

| [0.04203670811130844, |
|-----------------------|
| 0.05476613380698636,  |
| 0.06305506216696266,  |
| 0.07519242155121375,  |
| 0.0849615156897573,   |
| 0.09532267613972767,  |
| 0.10213143872113672,  |
| 0.10834813499111906,  |
| 0.11130846654825344,  |
| 0.11841326228537596]  |

Fig:23 Misclassification Error Values for specific K-Values



Fig:25 Train Performance and ConfusionMatrix



Fig:27 Train ROC-AUC Curve



Fig:24 Misclassification Error Values forspecific K-Values graph

| 0.95 | 796329188869 | 16<br>ecision | recall | £1.50 | nra                     | support  |
|------|--------------|---------------|--------|-------|-------------------------|----------|
|      | pi           | ECISION       | recarr | 11-50 | JI E                    | Suppor C |
|      | 0            | 0.98          | 0.97   | 0.    | .97                     | 2809     |
|      | 1            | 0.87          | 0.88   | 0.    | .88                     | 569      |
|      | accuracy     |               |        | 0.    | .96                     | 3378     |
|      | acro avg     | 0.92          | 0.93   | 0.    | .93                     | 3378     |
| weig | hted avg     | 0.96          | 0.96   | 0.    | .96                     | 3378     |
| 0 -  | 2735         |               | 74     |       | - 250<br>- 200<br>- 150 | 10       |
| ۲,   | 68           |               | 501    |       | - 100<br>- 500          |          |
|      | 'n           |               | i      |       |                         |          |

Fig:26 Test Performance and ConfusionMatrix



Fig:28 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
| Train Data | 1.00   | 1.00      | 1.00    |
| Test Data  | 0.88   | 0.88      | 0.93    |

# **Decision Tree:**

# **Results:**







Fig:29 Train Performance and ConfusionMatrix

AUC: 0.929
[<matplotlib.lines.Line2D at 0x1c654f36a90>]

10

08

06

04

02

00

00

02

04

06

08

10

Fig:30 Test Performance and ConfusionMatrix



Fig:31 Train ROC-AUC Curve

Fig:32 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
| Train Data | 0.58   | 0.65      | 0.93    |
| Test Data  | 0.56   | 0.62      | 0.91    |

# **Random Forest Classifier:**

#### **Results:**

| 0.89659984775 | 43771<br>precision | recall | f1-score | support |
|---------------|--------------------|--------|----------|---------|
| 0             | 0.92               | 0.96   | 0.94     | 6555    |
| 1             | 0.76               | 0.56   | 0.65     | 1327    |
| accuracy      |                    |        | 0.90     | 7882    |
| macro avg     | 0.84               | 0.76   | 0.79     | 7882    |
| weighted avg  | 0.89               | 0.90   | 0.89     | 7882    |



0.8919478981645944 precision recall f1-score support 0.91 0.76 0.94 0.62 0.52 accuracy macro avg weighted avg 0.89 0.78 0.88 3378 3378 3378 0.88 0.89



Fig:33 Train Performance and ConfusionMatrix

Fig:34 Test Performance and ConfusionMatrix







Fig:36 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
|            |        |           |         |
| Train Data | 0.56   | 0.65      | 0.93    |
|            |        |           |         |
| Test Data  | 0.52   | 0.62      | 0.91    |
|            |        |           |         |

# **Bagging:**

# **Result:**

| 0.89089063689 | 41893<br>precision | recall | f1-score | support |
|---------------|--------------------|--------|----------|---------|
| 0             | 0.91               | 0.97   | 0.94     | 6555    |
| 1             | 0.76               | 0.51   | 0.61     | 1327    |
| accuracy      |                    |        | 0.89     | 7882    |
| macro avg     | 0.83               | 0.74   | 0.77     | 7882    |
| weighted avg  | 0.88               | 0.89   | 0.88     | 7882    |



| 0.8889875666 | 0746      |        |          |         |
|--------------|-----------|--------|----------|---------|
|              | precision | recall | f1-score | support |
| 0            | 0.90      | 0.97   | 0.94     | 2809    |
| 1            | 0.77      | 0.49   | 0.60     | 569     |
| accuracy     |           |        | 0.89     | 3378    |
| macro avg    | 0.84      | 0.73   | 0.77     | 3378    |
| weighted avg | 0.88      | 0.89   | 0.88     | 3378    |



Fig:37 Train Performance and ConfusionMatrix



Fig:38 Test Performance and ConfusionMatrix



Fig:39 Train ROC-AUC Curve

Fig:40 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
| Train Data | 0.51   | 0.61      | 0.92    |
| Test Data  | 0.49   | 0.60      | 0.91    |

From the results the Recall and f-1score is low.

#### **Ada Boost:**

#### **Result:**

| 0.89774168992                         | 64146<br>precision | recall       | f1-score             | support              |
|---------------------------------------|--------------------|--------------|----------------------|----------------------|
| 0<br>1                                | 0.92<br>0.75       | 0.96<br>0.60 | 0.94<br>0.66         | 6555<br>1327         |
| accuracy<br>macro avg<br>weighted avg | 0.83<br>0.89       | 0.78<br>0.90 | 0.90<br>0.80<br>0.89 | 7882<br>7882<br>7882 |



 
 0.8987566607460036 precision
 recall
 f1-score
 support

 0
 0.92
 0.96
 0.94
 2809

 1
 0.75
 0.60
 0.67
 569

 accuracy macro avg weighted avg
 0.83
 0.78
 0.89
 3378

 weighted avg
 0.89
 0.90
 0.89
 3378



Fig:41 Train Performance and ConfusionMatrix



Fig:42 Test Performance and ConfusionMatrix



Fig:43 Train ROC-AUC Curve

Fig:44 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
|            |        |           |         |
| Train Data | 0.60   | 0.66      | 0.92    |
|            |        |           |         |
| Test Data  | 0.60   | 0.67      | 0.91    |
|            |        |           |         |

From the results the Recall and f-1score is low.

#### **Gradient Boost:**

# **Result:**

| 0.91626490738                         | 39128<br>precision | recall       | f1-score             | support              |
|---------------------------------------|--------------------|--------------|----------------------|----------------------|
| 0<br>1                                | 0.93<br>0.83       | 0.97<br>0.63 | 0.95<br>0.72         | 6555<br>1327         |
| accuracy<br>macro avg<br>weighted avg | 0.88<br>0.91       | 0.80<br>0.92 | 0.92<br>0.83<br>0.91 | 7882<br>7882<br>7882 |



Fig:45 Train Performance and ConfusionMatrix



Fig:46 Test Performance and ConfusionMatrix



Fig:47 Train ROC-AUC Curve



Fig:48 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
|            |        |           |         |
| Train Data | 0.63   | 0.72      | 0.95    |
|            |        |           |         |
| Test Data  | 0.60   | 0.69      | 0.93    |
|            |        |           |         |

From the results the Recall and f-1score is low.

# model tuning measures:

I used the technique called **Model Tuner (tunning the hyper parameters)** it increases the Model performance. I am applying **gridSearchCV** from **SKlearn.** 

It improves the **Recall** and **f1score** of the models.

#### **Results:**

|                | Train_Recall | Test_Recall | Train_F1_score | Test_F1_score | Train_precision | Test_precision |
|----------------|--------------|-------------|----------------|---------------|-----------------|----------------|
|                |              |             |                |               |                 |                |
| KNN            | 1.00         | 0.88        | 1.00           | 0.88          | 1.00            | 0.87           |
| DECISION_TREE  | 0.58         | 0.56        | 0.65           | 0.62          | 0.72            | 0.70           |
| RANDOM_FOREST  | 0.56         | 0.52        | 0.65           | 0.62          | 0.76            | 0.76           |
| BAGGING        | 0.51         | 0.49        | 0.61           | 0.60          | 0.76            | 0.77           |
| ADABOOST       | 0.60         | 0.60        | 0.66           | 0.67          | 0.75            | 0.75           |
| GRADIENT_BOOST | 0.63         | 0.60        | 0.72           | 0.69          | 0.83            | 0.81           |

From the results the KNN showing best result but **Train\_Recall** = 1.00, **Triain\_f1\_score** = 1.00 and **Train\_Precision** = 1.00 which means the model is overfitted

I use **SMOTE** to clear this problem.

#### **Results:**

| 0.9 | 09117821195974 |        | 11     | Ca       |       |
|-----|----------------|--------|--------|----------|-------|
|     | pre            | cision | recall | f1-score | suppo |
|     | 0              | 0.99   | 0.83   | 0.90     | 65    |
|     | 1              | 0.85   | 0.99   | 0.92     | 65    |
|     | accuracy       |        |        | 0.91     | 131   |
|     | macro avg      | 0.92   | 0.91   | 0.91     | 131   |
| wei | ghted avg      | 0.92   | 0.91   | 0.91     | 131:  |
|     |                |        |        |          |       |
|     |                |        |        | - 60     | 00    |
| 0   | 5446           |        |        | - 50     | 00    |
|     |                |        |        | - 40     | 00    |
|     |                |        |        | - 30     | 00    |
|     | 73             |        | 6482   | - 20     | 00    |
|     |                |        |        | - 10     | 00    |
|     |                |        |        |          |       |
|     | ò              |        | i      |          |       |

Fig:49 Train Performance and ConfusionMatrix



FiFig:51 Train ROC-AUC Curve



Fig:50 Test Performance and ConfusionMatrix



Fig:52 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
|            |        |           |         |
| Train Data | 0.99   | 0.92      | 0.99    |
|            |        |           |         |
| Test Data  | 0.93   | 0.64      | 0.96    |
|            |        |           |         |

Model validation - How was the model validated? Just accuracy, or anything else too?

Ans. To check whether the model is valid for this problem or not I will apply the models on test data and check the parameters.



Fig:53 KNN

0.8919478981645944

|                            | -          | precision    | recall       | f1-score             | suppor            |
|----------------------------|------------|--------------|--------------|----------------------|-------------------|
|                            | 0<br>1     | 0.91<br>0.76 | 0.97<br>0.52 | 0.94<br>0.62         | 280<br>56         |
| accur<br>macro<br>weighted | acy<br>avg | 0.84<br>0.88 | 0.74<br>0.89 | 0.89<br>0.78<br>0.88 | 337<br>337<br>337 |
|                            |            |              |              | _                    |                   |
| ٥.                         | 2718       |              | 91           | - 25<br>- 20         |                   |
|                            |            |              |              | - 15                 | 00                |
|                            | 274        |              | 295          | - 10                 | 00                |

Fig:55 Random Forest



Fig:54 Decision Tree

|     | 0<br>1<br>curacy<br>ro avg<br>ed avg | 0.90<br>0.77<br>0.84<br>0.88 | 0.97<br>0.49<br>0.73<br>0.89 | 0.94<br>0.60<br>0.89<br>0.77<br>0.88 | 2809<br>569<br>3378<br>3378<br>3378 |
|-----|--------------------------------------|------------------------------|------------------------------|--------------------------------------|-------------------------------------|
| 0 - | 2727                                 |                              | 82                           | - 2500<br>- 2000<br>- 1500           |                                     |
| г.  | 293                                  |                              | 276                          | - 1000<br>- 500                      |                                     |

0.88898756660746 precision recall f1-score support

Fig:56 Bagging

| 0.8987566607460036<br>precision |                                    |              | recall       | f1-score             | support              |
|---------------------------------|------------------------------------|--------------|--------------|----------------------|----------------------|
|                                 | 0<br>1                             | 0.92<br>0.75 | 0.96<br>0.60 | 0.94<br>0.67         | 2809<br>569          |
|                                 | accuracy<br>macro avg<br>ghted avg | 0.83<br>0.89 | 0.78<br>0.90 | 0.90<br>0.80<br>0.89 | 3378<br>3378<br>3378 |
| 0 -                             | 2693                               |              | 116          | - 250<br>- 200       | 00                   |
| 1                               | 226                                |              | 343          | - 10<br>- 50         |                      |
| '                               | Ö                                  |              | i            |                      |                      |

Fig: 57 ADA Boost

| 0.909 | 11782119597<br>pr             |              | recall       | f1-score             | support              |
|-------|-------------------------------|--------------|--------------|----------------------|----------------------|
|       | 0<br>1                        | 0.92<br>0.81 | 0.97<br>0.60 | 0.95<br>0.69         | 2809<br>569          |
| ma    | ccuracy<br>cro avg<br>ted avg | 0.87<br>0.90 | 0.78<br>0.91 | 0.91<br>0.82<br>0.90 | 3378<br>3378<br>3378 |
| 0 -   | 2731                          |              | 78           | - 250<br>- 200       | 00                   |
| ч.    |                               |              | 340          | - 100<br>- 500       |                      |
|       | 0                             |              | i            |                      |                      |

Fig:58 Gradient Boost

|                | Train_Recall | Test_Recall | Train_F1_score | Test_F1_score | Train_precision | Test_precision |
|----------------|--------------|-------------|----------------|---------------|-----------------|----------------|
|                |              |             |                |               |                 |                |
| KNN            | 1.00         | 0.88        | 1.00           | 0.88          | 1.00            | 0.87           |
| DECISION_TREE  | 0.58         | 0.56        | 0.65           | 0.62          | 0.72            | 0.70           |
| RANDOM_FOREST  | 0.56         | 0.52        | 0.65           | 0.62          | 0.76            | 0.76           |
| BAGGING        | 0.51         | 0.49        | 0.61           | 0.60          | 0.76            | 0.77           |
| ADABOOST       | 0.60         | 0.60        | 0.66           | 0.67          | 0.75            | 0.75           |
| GRADIENT_BOOST | 0.63         | 0.60        | 0.72           | 0.69          | 0.83            | 0.81           |

From the results the KNN showing best result but **Train\_Recall** = 1.00, **Triain\_f1\_score** = 1.00 and **Train\_Precision** = 1.00 which means the model is overfitted

I use **SMOTE** to clear this problem.

# **Results:**



Fig:59 Train Performance and ConfusionMatrix



Fig:60 Test Performance and ConfusionMatrix





FiFig:61 Train ROC-AUC Curve



Fig:62 Test ROC-AUC Curve

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
| Train Data | 0.99   | 0.92      | 0.99    |
| Test Data  | 0.93   | 0.64      | 0.96    |

From the result **KNN(SMOTE**) is the best model for this classification problem and it is the most valid model.

• Final interpretation / recommendation - Very clear and crisp on what recommendations do you want to give to the management / client.

Ans. From OutPut-4, 0=9364 & 1=1896 so the difference between datapoints Churn=1 and Churn=0 is very high which indicates that the dataset is highly unbalanced, and it may lead to a very high no. of false positive results. That is why I used ENSEMBLE TECHNIQUES & SMOTE

- As the dataset is imbalanced so I will investigate both Accuracy and Performance table.
- From Accuracy table it is clear that 'Decision Tree', 'Random Forest' and 'KNN' are showing best results.
- Now I will move to Performance Table to get some deeper insights.

(10.1) 
$$Accuracy = \frac{T_p + T_n}{T_p + T_n + F_p + F_n}$$

(10.2) 
$$Precision = \frac{T_p}{T_p + F_p}$$

$$(10.3) Recall = \frac{T_p}{T_p + T_p}$$

(10.4) 
$$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

|                | Train_Recall | Test_Recall | Train_F1_score | Test_F1_score | Train_precision | Test_precision |
|----------------|--------------|-------------|----------------|---------------|-----------------|----------------|
|                |              |             |                |               |                 |                |
| KNN            | 1.00         | 0.88        | 1.00           | 0.88          | 1.00            | 0.87           |
| DECISION_TREE  | 0.58         | 0.56        | 0.65           | 0.62          | 0.72            | 0.70           |
| RANDOM_FOREST  | 0.56         | 0.52        | 0.65           | 0.62          | 0.76            | 0.76           |
| BAGGING        | 0.51         | 0.49        | 0.61           | 0.60          | 0.76            | 0.77           |
| ADABOOST       | 0.60         | 0.60        | 0.66           | 0.67          | 0.75            | 0.75           |
| GRADIENT_BOOST | 0.63         | 0.60        | 0.72           | 0.69          | 0.83            | 0.81           |

From the results the KNN showing best result but **Train\_Recall** = 1.00, **Triain\_f1\_score** = 1.00 and **Train\_Precision** = 1.00 which means the model is overfitted

I use **SMOTE** to clear this problem.

| Dataset    | Recall | f-1 score | ROC-AUC |
|------------|--------|-----------|---------|
| Train Data | 0.99   | 0.92      | 0.99    |
| Test Data  | 0.93   | 0.64      | 0.96    |

#### **Business Insights:**

- 1. Test\_Recall(SMOTE)= 0.93, Test\_f1\_score(SMOTE)=0.64 and Test\_AUC-ROC(SMOTE)=0.96 it means it is 93% accurately filtering out the Potential Churners.
- 2. The company can segregate the Potential Churners from the customers list with 93% accuracy. Company can design packages for a specific customer with a confidence of 93% accuracy that he or she might Churn.
- 3. It will also help the company to design products based on customer demand for future purposes. Company will successfully retain existing customers, which is the main purpose.
- 4. In the end the company will generate a good revenue.

#### **Other Business Recommendations:**

- Check Demographics and behavioural data. Is this user a single user or using your product on behalf of their company?
- Check Revenue information for each customer.
- Check Contract terms.
- Check High number of customers **churning** after sign-up.
- Check Long-time customer **churn**.
- Check Frequent **churn** spikes following product updates.

