杭州电子科技大学信息工程学院考试试卷(A)卷

课程名称	工程数学(概率部分)	考试日期	201	16年1月	日	成 绩	
考生姓名		任课教师姓	名				
学号 (8 位)		班级			专业		

题 号	_	=	11	四	五
得 分					

得分

一、 填空题 (本题共 4 小题,每小题 4 分,共 16 分)

- 1. 已知事件 A , B 互不相容, $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{6}$, 则 $P(\overline{A \cup B}) = \underline{\hspace{1cm}}$.
- 2. 一批产品共有 10件,其中2件次品,无放回抽两次,求第2次抽到次品的概率为______
- 3. 设随机变量 X 具有如下分布律,则常数 θ =_

4. 设随机变量 X 具有概率密度函数 $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$

则随机变量X数学期望E(X)=_____。

得分

二、 选择题 (本题共8小题,每小题4分,共32)

- 1. 设事件 A, B 互不相容,且 P(A) > 0, P(B) > 0,则一定有(
- (A) P(A) = 1 P(B); (B) P(A|B) = P(A); (C) $P(A|\overline{B}) = 1$; (D) $P(\overline{A}|B) = 1$
- 2. 设事件 A, B 相互独立, 且 P(A) > 0, P(B) > 0 则 () 一定成立!
- (A) P(A|B) = P(A); (B) P(A|B) = 0; (C) P(A) = 1 P(B); (D) P(A|B) = P(B)
- 3. 设 $P{X = k} = ak$ (k = 1,2,3,4) 为离散型随机变量X的分布律,则常数a = (
- A. 1/12 B. 1/10 C. 1/15 D. 1/24

- 4. 设事件 A与B 相互独立,且 $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{2}$,则概率 $P(\overline{AB}) = ($
 - (A) $\frac{1}{6}$; (B) 0; (C) $\frac{5}{6}$; (D) $\frac{1}{3}$.
- 5. 下列型随机变量是连续型的是().
- (A) 服从 0-1 分布的随机变量 (B) 服从二项分布的随机变量
- (C) 服从指数分布的随机变量
- (D) 服从泊松分布的随机变量
- 6. 设随机变量 $X \sim N(0,1)$, $\Phi(x)$ 是 X 的分布函数,则对任意实数 a ,有 (

(A)
$$\Phi(-a) = \Phi(a)$$
; (B) $\Phi(-a) = 1 - \Phi(a)$; (C) $\Phi(-a) = 2\Phi(a) - 1$; (D) $\Phi(-a) = \frac{1}{2} - \Phi(a)$

- 7. 设随机变量 $X \sim \pi(\lambda)$, 已知 $P(X=0) = e^{-4}$,则 $\lambda = ($
 - (A) 4
- (B) 2
- (C) 1
- (D) 8
- 8. 设随机变量 X 服从二项分布,且 E(X) = 2.4, D(X) = 1.44 ,则参数 n, p 的值为 ()

A.
$$n = 6, p = 0.4$$
 B. $n = 8, p = 0.3$ C. $n = 6, p = 0.6$ D. $n = 24, p = 0.1$

得分

三. 判断题(本题共5小题,每小题2分,共10分)

1.若某事件的概率为 0,则该事件必为不可能事件。 ()

- 2.若事件 A 和 B 互不相容,则事件 A 和 B 必相互独立。 ()
- 3.若事件 A 为必然事件,则事件 A 的概率必为 1。 ()
- 4.设实函数 f(x)满足 $\int_{-\infty}^{+\infty} f(x) dx = 1$,则实函数 f(x) 必为一概率密度函数。()
- 5.设X为一连续型随机变量,则其分布函数F(x)必为一连续函数。 ()

得分

四. 计算题 (本题共 4 小题,每小题 6 分,共 24 分)

1. 设 P(A) = 0.3, P(B) = 0.5, 就如下两种情况 (1) P(AB) = 0.1; (2) $A \subset B$, 求 P(B - A).

2.	已知 $P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0$	$P(AC) = P(BC) = \frac{1}{16}$, 求(1) 事件 A, B, C 至少发生
----	--	---

得 分

五. 解答题(本题2小题,共18分)

一个的概率; (2) 事件 A,B,C 全不发生的概率.

三类电子元件的使用寿命能达到指定要求的概率分别为 0.9, 0.8 和 0.7, 求:(1)任取一个元件, 其使用寿命达能到指定要求的概率。 (2) 已经任意取出的元件使用寿命达到指定要求,求它属 于甲类的概率。

1. (本小题 8分)一批电子元件中, 甲类占 70%, 乙类占 20%, 丙类占 10%,

3. 某机器生产的螺栓长度 (cm) 服从参数为 μ =10.05, σ =0.06的正态分布, 规定长度 在范围 10.05 ± 0.12 cm 内为合格品, 求该机器生产的螺栓的合格率(已知 $\Phi(2)=0.9772$).

2. (本小题 10 分)设随机变量 X 的密度函数为 $f(x) = \begin{cases} ax^2 + 6x, 0 < x < 1 \\ 0, 其他 \end{cases}$, (1)求常数 a; (2)求 X的分布函数 F(x); (3)求概率 $P(X < \frac{1}{2})$;

4. 设X与Y为随机变量,E(X)=1,D(X)=1,E(Y)=2,D(Y)=4,记 $Z=\frac{X}{2}+\frac{Y}{3}$, 求E(Z), D(Z).