Controllable text generation with small data using auxiliary in-domain enrichment

Беляев Станислав Научный руководитель: Брыксин Тимофей

Санкт-Петербургский Академический Университет stasbelyaev96@gmail.com

23 марта 2018

Введение

Обзор

"If a typical person can do a mental task with less than one second of thought, we can probably automate it using AI either now or in the near future."

Andrew Ng, 2017

Машины умеют:

- Различать формы и объекты
- Имитировать стиль изображений
- Отвечать на простые вопросы

Машины НЕ умеют:

- Хорошо подражать высшей нервной деятельности
- Понимать и обощать сложные категории
 - Этика (юмор, мораль, норма, ...)
 - Эстетика (книги, картины, ...)

Введение

Постановка задачи

МООС платформам нужна генерация контента:

- Дешево
- Быстро
- Ультимативная защита от списывания

Особенности:

- Generic характер генерации
- Примеров готового контента мало
- Набор текстовых свойств для единицы контента (курс, тема, тэги, сложность, ...)

<u>Задача</u>: По набору свойств $f = \{f_i \in F\}$ сгенерировать новые примеры текстовых данных из генеральной совокупности X, соответствующих f. Возьмем в качестве X условия задачек по программированию.

Введение

Данные в DL

"Data is the New Oil."

- Andrew Ng, 2017

Введение

Проблема данных

Если мы не знаем паттерна для генерации и хотим уметь обощать, то будем использовать DL и больше данных (Mikolov et al., 2010).

Но что делать, есть данных мало?

- Мы не сможем обобщать
- Мы скорее всего переобучимся
- При генерации новые сэмплы будут слишком похожи на старые

 $\underline{\text{Решение}}$: Искать похожие $X_{ ext{aux}} \sim X$ in-domain данные из смежных областей.

Данные

Условия задачек

- Разный контекст, форма, требования и сложность
 - Сложно выделить шаблон
- Собран вручную (~ 100)
- Запрос в Stepik
 - На английском
 - С тегами и темами
- Расширяемо за счет кравлеров по codeforces и hackerank

Given two integers n and m, not exceeding 100. Fill in a matrix of size n×m chequer-wise: the cells of one color should be filled with zeros, and of another color - with positive natural numbers top to bottom, left to right. Number 1 should be written in the top left corner.

Output data format

Output the resulting matrix, each element should take exactly 4 characters (including spaces).

Данные Stackoverflow

- Есть готовый за 2008-2016
- 2016-2018 получаем с открытого арі
- Хотя бы с одним тэгом *python*
 - Остальные тэги уже проставлены
- Замена нод с кодом на *CODE*
 - Не портим словарь
 - Не ищем/учитываем лишние ненужные зависимости
- X_{aux}, но слова и выражения используются в правильном значении

Данные Docstring

- Кравлер по гитхабу, python код
- ASCII text без вставок кода + ограничения по длинне
- Похожий на английский
 - Готовая языковая модель
- Тэги
 - Entities
 - Связки сущ. + прилаг.
 - Top1000
- X_{aux}, но слова и выражения используются в правильном значении

Пример

Docstring:
S.lower() -> string

Return a copy of the string S converted to lowercase.

Type: builtin_function_or_method

Entities

Apple vs Google

Dut Google cas is starting from behind. The company made a late push into hardware, and Apple cas is Siri, available on Phones smoour

and Amazon case is Alexa case is Shaker, which hars on its liE-ho case and Dot case devices, have clear leads in coroumner adoption.

Дерево разбора

Тэги

str(ecnts.most_common(50))

"[('test', 16568), ('list', 7555), ('object', 7078), ('file', 6770), ('value', 6252),

^{&#}x27;Return the address which this transport is pretending to be bound DCNL to.',

^{&#}x27;common code for quickly building an ansible module in Python DCNL (although you can write modules in anything that can return JSON) DCNL see library/* for examples',

^{&#}x27;Get the stylesheet from the visitor. DCNL Ask the visitor to setup the page.']

Данные

$X_{\text{data}} = X_1 \cup X_2 \cup X_3$

Условия задачек

- CODEFORCES B Sponsored by Telegram
 - HackerRank
- $|X_1 \in X| = 5k$
- Тэги (f) уже проставлены
- Собран вручную, но будет готовый

Stackoverflow

- Берем вопросы с тэгом *python*
- $|X_2 \in X_{aux}| = 600 \text{k}$
- Тэги уже проставлены
- Предобработка

Docstring

- $X_3 \in X_{aux} = 150 \mathrm{k}$
- Тэги = Entities
- Предобработка

Введение

Изображения vs текст

Изображения

$$f: R^2 -> R^M$$

- Непрерывное пространство
- Набор всевозможных преобразований как дифференцируемых функций
- Понятно, куда распространять градиент

Текст

- Дискретное пространство
- Переменная длинна
- Нет устойчивости к шуму
- Long-term зависимости
- Омонимия и контекст

Введение

Генерация текста

(Mikolov et al., 2011)

(Bowman et al., 2016; Hu et al., 2018)

(Yu et al., 2017; Fedus et al., 2018)

RNN O630p

Как задать RNN начальные условия для генерации?

- Out-of-band (Chen et al., 2015; Lipton et al., 2015):
 - Конкатенация с векторным представлением начальных условий
 - На каждом шаге/один раз в начале
 - One-hot/LDA topic modeling/doc2vec
- In-band
 - Префикс
 - Префис + суффикс

$$text \Rightarrow tags + | + text + | + tags$$

- Начинаем генерировать с нужного префикса
- Отрезаем суффикс

RNN

Реализация

Модель:

- MultiLayerLSTM, 2 слоя
- WordRNN/CharRNN/BPERNN
- Dropout=0.5 на первом слое
- 100 эпох
- Out-of-band/In-band

Результаты:

- Долго сходится и плохо интерпретируется
- ullet Правдоподобная генерация, но в качестве Seed не получится передать близость к X
 - ullet Out-of-band учится отделять X от $X_{
 m aux}$
 - In-band путается

VAE

Обзор и применение

GAN

Обзор и применение

TODO: Написать

Оценивание

Метрики

Как можно оценить результат генерации? (Salimans et al., 16)

- Perplexity
- Assessors evaluation
 - MTurk, Я.Толока
 - DCG, MAP
- Самому
 - Generic-генерация
 - Генерация по заданным темам

Оценивание

Определение perplexity

 $X_{ ext{train}}, X_{ ext{test}}$ - разбили датасет $X_{ ext{data}} \subset X \cup X_{ ext{aux}}.$

Есть языковая модель M, обученная на $X_{\rm train}$. Как оценить эффективность? Посчитаем вероятность предложений $W \in X_{\rm test}$.

Perplexity

$$PP(W) = P(w_1 w_2 w_3 \dots w_{|W|})^{-\frac{1}{|W|}}$$

Chain rule

$$PP(W) = \left[\prod_{i=1}^{|W|} \frac{1}{P(w_i|w_1...w_{i-1})}\right]^{\frac{1}{|W|}}$$

- Нижний терм в произведении \Leftrightarrow очередной шаг алгоритма
- Чем меньше perplexity, тем больше P(W), т.е. тем лучше
- ullet Отдельно посчитаем для $X_{ ext{test}}\cap X$ (это реально важная метрика)

Оценивание

Таблица perplexity

Test	RNN	VAE	CVAE	GAN
PTB	38.93	NaN	NaN	39.12
CMC	29.10	NaN	NaN	29.09
$X_{ ext{test}}$ $X_{ ext{test}} \cap X$	30.29	NaN	NaN	NaN
	40.10	NaN	NaN	NaN

Таблица: Perplexity

Оценивание

Примеры

RNN (20 эпох)

```
generate_text(60, seed=['user', 'server'], beam=5) # prefix = 'user, server | '
'Takes a user and service the service connection to server to'
```

Выводы Результаты

• Анализ state-of-the-art методов генерации текста

- Модификации для наших данных
- Сравнение подходов
- Анализ влияние данных на генерацию
 - Каково влияние $X_{
 m aux}$ на генерацию?
 - Как соотносятся X и $X_{\rm aux}$ в терминах латентных представлений?
- Метрики и эмпирические проверки, позволяющие оценить сложность задачи

Выводы

Будущая работа

- Попытаться проинтерпретировать важной свойств
 - Seed для RNN
 - Латентное подпространство для $X_{\text{test}} \cap X$ из VAE
- Больше данных ⇒ выделить паттерн для генерации?
- Оптимизация скорости для тестирования:
 - RNN ⇒ CNN
- Попробовать GAN'ы
 - WC-GAN
 - SeqGAN
 - GumbelSoftmax
- Генерировать код решения по условию задачи

Ссылки

Статьи, код и контакты

Antonio Valerio Miceli Barone (2017)
 A parallel corpus of Python functions and documentation strings for

automated code documentation and code generation

- Warpathy, Andrej (2015). "The Unreasonable Effectiveness of Recurrent Neural Networks".
- Samuel R. Bowman (2016)
 Generating Sentences from a Continuous Space
- Zhiting Hu (2018)
 Toward Controlled Generation of Text
- Heng Wang (2017)
 Text Generation Based on Generative Adversarial Nets with Latent Variable
- https://github.com/stasbel/task-gen (Генерация)
- https://github.com/stasbel/bachelor-thesis (Презентация)
- https://t.me/stasbel