Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Задача поиска гамильтонова цикла в ориентированном графе

Выполнил Степанов Н.Ю. студент группы 021704

Проверил Витязь В.С

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: поиск гамильтонова цикла в ориентированном графе

1 Список понятий

- 1. Графовая структура (абсолютное понятие) это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:
 - а. Вершина (относительное понятие, ролевое отношение);
 - b. Связка (относительное понятие, ролевое отношение).

- 2. Графовая структура с ориентированными связками (абсолютное понятие)
 - а. Ориентированная связка (относительное понятие, ролевое отношение) связка, которая задается ориентированным множеством.

- 3. Гиперграф (абсолютное понятие) это такая графовая структура, в которой связки могут связывать только вершины:
 - а. Гиперсвязка (относительное понятие, ролевое отношение);

- b. Гипердуга (относительное понятие, ролевое отношение) ориентированнаягиперсвязка;
- с. Гиперребро (относительное понятие, ролевое отношение) неориентированнаягиперсвязка.

- 4. Псевдограф (абсолютное понятие) это такой гиперграф, в котором все связки должны быть бинарными:
 - а. Бинарная связка (относительное понятие, ролевое отношение) –гиперсвязка арности 2;
 - b. Ребро (относительное понятие, ролевое отношение) неориентированнаягиперсвязка;
 - с. Дуга (относительное понятие, ролевое отношение) ориентированная гиперсвязка;
 - d. Петля (относительное понятие, ролевое отношение) бинарная связка, у которой первый и второй компоненты совпадают.

5. Мультиграф (абсолютное понятие) – это такой псевдограф, в котором не может быть петель:

6. Граф (абсолютное понятие) — это такой мультиграф, в котором не может быть кратных связок, т.е. связок у которых первый и второй компоненты совпадают:

7. Ориентированный граф (абсолютное понятие) - это такой граф, в котором все связки являются дугами:

8. Доминирующая вершина (относительное понятие) — это вершина степени выхода п-1 графа порядка п, где порядок графа — количество вершин в граф, степень выхода вершины — количество ребер графа, для которых вершина является начальной. В примере доминирующие вершины: A, C.

2 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

2.1 Тест 1

Вход:

Необходимо найти все доминирующие вершины ориентированного графа.

Выход:

Будет найдена доминирующая вершина А.

2.2 Тест 2

Вход:

Необходимо найти все доминирующие вершины ориентированного графа.

Выход:

Будут найдены доминирующие вершины А и С.

2.3 Тест 3

Вход:

Необходимо найти все доминирующие вершины ориентированного графа.

Выход:

Доминирующих вершин не существует. Программа должна вернуть ошибку вызывающему контексту.

2.4 Тест 4

Вход:

Необходимо найти все доминирующие вершины ориентированного графа.

Выход:

Будут найдены доминирующие вершины D и F.

2.5 Tect 5

Вход:

Необходимо найти все доминирующие вершины ориентированного графа.

Выход:

Доминирующих вершин не существует. Программа должна вернуть ошибку вызывающему контексту.

3 Описание алгоритма

1. Задание входного графа, множества непроверенных вершин и множества доминирующих вершин

Переменные изменятся следующим образом:

- _graph получит в качестве значения sc-узел ориентированного графа;
- _unchecked_vertexes получит в качестве значения множество непроверенных вершин обрабатываемого графа
- _dominant_vertexes получит в качестве значения множество доминирующих вершин, которые будут добавляться по мере работы алгоритма

2. Проверка вершины А

По мере работы алгоритма необходимо проверить все вершины графа: пока множество непроверенных вершин не станет пустым. Порядок проверки вершин не важен.

Проверим первой вершину А. Нас интересует количество ребер, для которых она является начальной: таких ребер 3.

По определению вершина является доминирующей, если ее степень равна n-1, если n – порядок графа. Порядок проверяемого графа: 4. По определению вершина A является доминирующей.

Добавляем вершину А во множество доминирующих вершин.

Удаляем вершину А из множества непроверенных вершин.

3. Проверка вершины В

Вершина В является начальной для 2 ребер.

Порядок проверяемого графа 4.

По определению вершина В не является доминирующей.

Удаляем вершину В из множества непроверенных вершин.

4. Проверка вершины С

Вершина С является начальной для 3 ребер.

Порядок проверяемого графа 4.

По определению вершина С является доминирующей.

Удаляем вершину С из множества непроверенных вершин.

Добавляем вершину С во множество доминирующих вершин.

5. Проверка вершины D

Вершина D является начальной для 1 ребра.

Порядок проверяемого графа 4.

По определению вершина D не является доминирующей.

Удаляем вершину D из множества непроверенных вершин.

Множество _unchecked_vertexes пустое, значит, мы проверили все вершины в графе.

6. Удаление множества _unchecked_vertexes. Результат работы алгоритма

4 Список литературы

OSTIS GT [В Интернете] // База знаний по теории графов OSTIS GT. - 2011 г.. - http://ostisgraphstheo.sourceforge.net/index.php/Заглавная_страница.

Харарри Ф. Теория графов [Книга]. - Москва : Едиториал УРСС, 2003.