Probabilistic Inference for Solving Markov Decision Processes

Toussaint, Storkey, ICML '06

Noam Siegel

Computer Science M.Sc. Seminar Ben Gurion University

May 15, 2022

- Motivation & Prior work
 Main contribution
- Research Problem Solving Markov Decision Processes
- Research Plan Mixture of MDPs and likelihood An EM-algorithm for computing the optimal policy Relation to Policy Iteration
- Experimental results
 Discrete maze
 Stochastic optimal control
- 6 Conclusion

- 1 Introduction
 Motivation & Prior work
 Main contribution
- 2 Research Problem
- 3 Research Plan
- 4 Experimental results
- **5** Conclusion

Motivation

Planning in stochastic environments

Motivation

1 Bui et al. (2002) used inference on Abstract Hidden Markov Models for policy recognition, but not for computing an optimal policy.

- Attias (2003) got close to translating the problem of planning to a problem of inference. However, the total time T had to be fixed and the MAP action sequence that is proposed as a solution is not optimal.
- 3 Verma and Rao (2006) used inference to compute plans, but again T has to be fixed and the plan is not optimal.

Contribution

1 Translate the problem of maximizing the expected future return exactly into a problem of likelihood maximization in a latent variable model, for arbitrary reward functions and episode lengths.

Main contribution

Contribution

- 1 Translate the problem of *maximizing the expected future* return exactly into a problem of *likelihood maximization in a* latent variable model, for arbitrary reward functions and episode lengths.
- 2 Demonstrate the approach on discrete & continuous stochastic optimal control problems.

- Introduction
- Research Problem Solving Markov Decision Processes
- 3 Research Plan
- 4 Experimental results
- 6 Conclusion

Figure 1: Posterior state-visiting-probabilities generated by our Probabilistic Infernce Planner (PIP)

Definition (MDP)

state transition probability $P(x_{t+1} \mid a_t, x_t)$ reward probability $P(r_t \mid a_t; x_t)$, $r_t \in \{0, 1\}$ action probability $P(a_t \mid x_t; \pi)$,

 π a parameter

Probabilistic Inference for Solving MDPs

Definition (MDP)

state transition probability $P(x_{t+1} \mid a_t, x_t)$ reward probability $P(r_t \mid a_t; x_t)$, $r_t \in \{0, 1\}$ action probability $P(a_t \mid x_t; \pi)$, π a parameter

Definition (Policy π)

The action probabilities are parameterized by a policy:

$$P(a_t \mid x_t = i; \pi) = \pi_{ai}$$
 s.t. $\sum_{a} \pi_{ai} = 1$

Markov Decision Processes

Figure 1. Dynamic Bayesian Network for a MDP. The x states denote the state variables, a the actions and r the rewards.

Definition (MDP)

state transition probability $P(x_{t+1} \mid a_t, x_t)$ reward probability $P(r_t \mid a_t; x_t)$, $r_t \in \{0, 1\}$ action probability $P(a_t \mid x_t; \pi)$, π a parameter

200

Definition (solving an MDP)

Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = i; \pi\}$, where $\gamma \in [0, 1]$ is a discount factor.

Definition (solving an MDP)

Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^t r_t \mid x_0 = i; \pi\}$, where $\gamma \in [0,1]$ is a discount factor.

research problem

The problem is to *solve the MDP*, i.e. to find a policy that maximizes the expected future return.

- Research Plan

Mixture of MDPs and likelihood An EM-algorithm for computing the optimal policy Relation to Policy Iteration

Mixture of MDPs

Figure 2. Mixture of finite-time MDPs.

full joint for finite time MDP

$$P(r, x_{0:T}, a_{0:T} \mid T; \pi) =$$

$$P(r \mid a_T, x_T)P(a_0 \mid x_0; \pi)P(x_0) \cdot \prod_{t=1}^{r} P(a_t \mid x_t; \pi)P(x_t \mid a_{t-1}, x_{t-1})$$

full joint for finite time MDP

$$P(r, x_{0:T}, a_{0:T} \mid T; \pi) =$$

$$P(r \mid a_T, x_T)P(a_0 \mid x_0; \pi)P(x_0) \cdot \prod_{t=1}^{r} P(a_t \mid x_t; \pi)P(x_t \mid a_{t-1}, x_{t-1})$$

full joint for mixture of finite-time MDPs

$$P(r, x_{0:T}, a_{0:T}, T; \pi) = P(r, x_{0:T}, a_{0:T} \mid T; \pi)P(T)$$

full joint for finite time MDP

$$P(r, x_{0:T}, a_{0:T} \mid T; \pi) =$$

$$P(r \mid a_T, x_T)P(a_0 \mid x_0; \pi)P(x_0) \cdot \prod_{t=1}^{r} P(a_t \mid x_t; \pi)P(x_t \mid a_{t-1}, x_{t-1})$$

full joint for mixture of finite-time MDPs

$$P(r, x_{0:T}, a_{0:T}, T; \pi) = P(r, x_{0:T}, a_{0:T} \mid T; \pi)P(T)$$

prior over the total time

$$P(T) = \gamma^T (1 - \gamma)$$

Defining the likelihood

Definition (likelihood for a finite-time MDP)

$$L_T^{\pi}(i) = P(r = 1 \mid x_0 = i, T; \pi) = E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for a finite-time MDP)

$$L_T^{\pi}(i) = P(r = 1 \mid x_0 = i, T; \pi) = E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for mixture of MDPs)

$$L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{T} P(T)E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for a finite-time MDP)

$$L_T^{\pi}(i) = P(r = 1 \mid x_0 = i, T; \pi) = E\{r \mid x_0 = i, T; \pi\}$$

Definition (likelihood for mixture of MDPs)

$$L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{T} P(T)E\{r \mid x_0 = i, T; \pi\}$$

Corollary

$$L_T^{\pi}(i) = (1 - \gamma)V^{\pi}(i)$$

Reminders

- **1** Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0} = i; \pi\}$.
- 2 The *likelihood for a mixture of MDPs* is given by $L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{T} P(T)E\{r \mid x_0 = i, T; \pi\}$
- 3 This implies that $L_T^{\pi}(i) = (1 \gamma)V^{\pi}(i)$

Theoretical Guarantee

Reminders

- **1** Solving an MDP means to find a parameter π of the graphical model in Figure 1 that maximizes the expected future return $V^{\pi}(i) = E\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid x_{0} = i; \pi\}$.
- 2 The *likelihood for a mixture of MDPs* is given by $L^{\pi}(i) = P(r = 1 \mid x_0 = i; \pi) = \sum_{T} P(T)E\{r \mid x_0 = i, T; \pi\}$
- 3 This implies that $L_T^{\pi}(i) = (1 \gamma)V^{\pi}(i)$

Theorem

(proved) Maximizing the likelihood in the mixture of finite-time MDPs is equivalent to solving the MDP.

What are EM algorithms?

A class of algorithms consisting of two modes:

- E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

What are EM algorithms?

A class of algorithms consisting of two modes:

- E-step: estimates missing variables.
- M-step: optimizes parameters of model to best explain the data.

An EM-algorithm for computing the optimal policy

What are EM algorithms?

A class of algorithms consisting of two modes:

- 1 E-step: estimates missing variables.
- 2 M-step: optimizes parameters of model to best explain the data.

What are EM algorithms?

A class of algorithms consisting of two modes:

- 1 E-step: estimates missing variables.
- M-step: optimizes parameters of model to best explain the data.

E-step

For a given π , compute posteriors $P(T \mid x_0 = A, r = 1; \pi)$ and $P(x_{1:T}, a_{1:T} \mid x_0 = A, r = 1, T; \pi)$

What are EM algorithms?

A class of algorithms consisting of two modes:

- 1 E-step: estimates missing variables.
- M-step: optimizes parameters of model to best explain the data.

E-step

For a given π , compute posteriors $P(T \mid x_0 = A, r = 1; \pi)$ and $P(x_{1:T}, a_{1:T} \mid x_0 = A, r = 1, T; \pi)$

M-step

Adapt parameters π to optimize $V^{\pi}(A)$

Simplifying notation

- 1 $p(j \mid a, i) = P(x_{t+1} = j \mid a_t = a, x_t = i)$
- 2 $p(j \mid i; \pi) = P(x_{t+1} = j \mid x_t = i; \pi) = \sum_a p(j \mid a, i) \pi_{ai}$

Forward Propagation

$$\alpha_0(i) = \delta_{i=A}$$

$$\alpha_t(i) = P(x_t = i \mid x_0 = A; \pi)$$
$$= \sum_i p(i \mid j; \pi) \alpha_{t-1}(j)$$

E-step: forward-backward in all MDPs synchronously

Forward Propagation

$$\alpha_t(i) = P(x_t = i \mid x_0 = A; \pi)$$

$$= \sum_i p(i \mid j; \pi) \alpha_{t-1}(j)$$

Backward Propagation (temp.)

$$\tilde{\beta}_{t}(i) = P(r = 1 \mid x_{t} = i; \pi)$$

$$= \sum_{i} p(j \mid i; \pi) \tilde{\beta}_{t+1}(j)$$

Where

$$\hat{\beta}(i) = P(r = 1 \mid x_T = i; \pi) = \sum_{a} P(r = 1 \mid a_T = a, x_T = i) \pi_{ai}$$

E-step: forward-backward in all MDPs synchronously

Backward Propagation (temp.)

$$\widetilde{\beta}_{t}(i) = P(r = 1 \mid x_{t} = i; \pi)$$

$$= \sum_{j} p(j \mid i; \pi) \widetilde{\beta}_{t+1}(j)$$

Where

$$\hat{\beta}(i) = P(r = 1 \mid x_T = i; \pi) = \sum_{a} P(r = 1 \mid a_T = a, x_T = i) \pi_{ai}$$

Backward Propagation (corrected)

$$\beta_{\tau}(i) = P(r = 1 \mid x_{T-\tau} = i; \pi)$$

$$= \sum_{i} p(j \mid i; \pi) \beta_{\tau-1}(j)$$

Definition (expected complete log-likelihood)

$$Q(\pi^*, \pi) = \sum_{T} \sum_{x_{0:T}, a_{0:T}} P(x_{0:T}, a_{0:T}, T \mid r = 1; \pi)$$

Definition (expected complete log-likelihood)

$$Q(\pi^*, \pi) = \sum_{T} \sum_{x_{0:T}, a_{0:T}} P(x_{0:T}, a_{0:T}, T \mid r = 1; \pi)$$

Fact

Maximizing $Q(\pi^*,\pi)$ w.r.t. π^* is achieved by setting

$$\pi_{ai}^* = P(a_t = a \mid x_t = i, r = 1; \pi)$$

Definition (expected complete log-likelihood)

$$Q(\pi^*, \pi) = \sum_{T} \sum_{x_{0:T}, a_{0:T}} P(x_{0:T}, a_{0:T}, T \mid r = 1; \pi)$$

Fact

Maximizing $Q(\pi^*, \pi)$ w.r.t. π^* is achieved by setting $\pi^*_{ai} = P(a_t = a \mid x_t = i, r = 1; \pi)$

However

exploiting the structure of the MDP, we can also write the likelihood as

$$P(r = 1 \mid x_0 = i; \pi) = \sum_{aj} P(r = 1; a_t = a, x_t = j; \pi^*) \pi^*_{aj}$$

 $\cdot P(x_t = j \mid x_0 = i; \pi^*)$

200

However

exploiting the structure of the MDP, we can also write the likelihood as

$$P(r = 1 \mid x_0 = i; \pi) = \sum_{aj} P(r = 1; a_t = a, x_t = j; \pi^*) \pi^*_{aj}$$

 $\cdot P(x_t = j \mid x_0 = i; \pi^*)$

$$\pi_{ai}^* = \delta_{a=a^*(i)}$$
 $\alpha^*(i) = \underset{a}{\operatorname{arg max}} P(r=1 \mid a_t = a, x_t = i; \pi)$

$$oldsymbol{\theta}$$
 $\beta_{\tau}(i) \propto (V^{\pi}(i) \text{ of the MDP of time } T = \tau).$

1 $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).

2
$$V^{pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$$
.

Relation to Policy Iteration

E-step: Policy Evaluation

- 1 $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- 2 $V^{pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.

- 1 $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- 2 $V^{pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.
- **4** Additionally, it yields the time, state and action posteriors.

Probabilistic Inference for Solving MDPs

- 1 $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- 2 $V^{pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T)\beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.
- 4 Additionally, it yields the time, state and action posteriors.

Probabilistic Inference for Solving MDPs

- **1** $\beta_{\tau}(i) \propto (V^{\pi}(i))$ of the MDP of time $T = \tau$).
- **2** $V^{pi}(i) = \frac{1}{1-\gamma} \sum_{T} P(T) \beta_{T}(i)$.
- 3 Hence, the E-step performs a policy evaluation.
- 4 Additionally, it yields the time, state and action posteriors.

M-step: Policy Update

1 Maximizing the Q-function w.r.t. the action a and state i.

Thus.

the EM-algorithm using exact inference and belief representation is effectively equivalent to Policy Iteration but computes the necessary quantities in a different way.

Noam Siegel

Thus,

the EM-algorithm using exact inference and belief representation is effectively equivalent to Policy Iteration but computes the necessary quantities in a different way.

However,

when using approximate inference or belief representations

- 4 Experimental results Discrete maze Stochastic optimal control

Noam Siegel

Discrete maze

(a)

Stochastic optimal control - 'walker'

- $P(x' \mid u, x) = \mathcal{N}(x', \phi(u, x), Q + (|u|/\mu)^2 I)$ is transitions.
- $\alpha_0(x) = \mathcal{N}(x, (0, 0), .011)$ is start-state.
- $P(r = 1 \mid x) = \mathcal{N}(x, (1, 1), diag(.0001, .1))$ is goal.
- $\phi(u, x) = x + .1u$ is control-law.

Noam Siegel

Stochastic optimal control - 'golfer'

- 2 Research Problem
- 3 Research Plan
- 4 Experimental results
- **5** Conclusion

Noam Siegel

BGU

Conclusion

We present a model that translates the problem of planning into a problem of probabilistic inference.

We present a model that translates the problem of planning into a problem of probabilistic inference.

Main contributions

- 1 we do not have to fix a total time
- 2 likelihood maximization is equivalent to maximization of the expected future return

We present a model that translates the problem of planning into a problem of probabilistic inference.

Main contributions

- 1 we do not have to fix a total time
- 2 likelihood maximization is equivalent to maximization of the expected future return

We can compute posteriors over actions, states, and the total time.

Conclusion

We present a model that translates the problem of planning into a problem of probabilistic inference.

Main contributions

- 1 we do not have to fix a total time
- 2 likelihood maximization is equivalent to maximization of the expected future return

We can compute posteriors over actions, states, and the total time.

The full variety of existing inference techniques can be applied to solving MDPs.

Thank You

