Week 2 Practical: Hill cipher & Playfair cipher

Dr. Qublai Ali K. Mirza and Madhu Khuruna

University of Gloucestershire

qamirza@glos.ac.uk

Overview

- Recap
- 2 Hill Cipher
- Playfair cipher
- Bringing it all together
- Post-sessional work

Alphabet index

Α	В	С	D	Е	F	G	Н	I	J	K	L	М
0	1	2	3	4	_	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25
	-	?										
26	27	28										

Table: Alphabet and their indices

Recap

- Last week, we established that classical ciphers can be classified into
 - Substitution ciphers
 - Polygraphic ciphers
- We looked at Caesar and Vigenère ciphers as examples of substitution ciphers
- This week we will look at Hill cipher and Fairplay cipher

Overview

- Created by Lester S. Hill in 1929
- Polygraphic Substitution Cipher
- Uses matrices to encrypt and decrypt
- Uses modular arithmetic (Mod 26)

Modular arithmetic recap

- Given two numbers a and b, a modular operation takes the remainder/modulo of a division operation on a by b
- Denoted by mod

$$r = a \mod b$$

- For example,
 - $0 \mod 26 = 0$
 - $-10 \mod 26 = 10$
 - $27 \mod 26 = 1$
 - $= 30 \mod 26 = 4$

How it works

- One matrix to encrypt, one to decrypt
- Must be $n \times n$, invertible matrices
- Decryption matrix must be modular inverse of encryption matrix in mod 26

Suppose that we have a key matrix K

$$K = \begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}$$

to encrypt plaintext P = CRYPTO

Step 1: Organise plaintext into a matrix

$$P = \begin{array}{ccc} C & Y & T \\ R & P & O \end{array}$$

Step 2: Convert each character into their corresponding indices

$$P = \begin{array}{cccc} 2 & 24 & 19 \\ 17 & 15 & 14 \end{array}$$

Example

Step 3: Multiply with key matrix *K* to get ciphertext *C*:

Decryption

- Now that we have got our ciphertext C together with key K, decrypting it is pretty straightforward
- It is done by using this equation

$$P = (K^{-1} \times C) \mod 26$$

- But first we have to get the *inverse* of K (i.e., K^{-1}), using what we discussed in the lecture slides
- But we need to get two things first:
 - Determinant of K det(K)
 - modulo inverse M of det(K)

The modulo inverse M of an integer A is an integer A^{-1} such that

$$AA^{-1} \mod m = 1$$

So for instance the modulo inverse of 9 with respect to 26 would be 3, since

$$(9 \times 3) \mod 26 = 1$$

Example: Decryption

Given the key matrix K

$$K = \begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}$$

Step 1: Get the determinant det(K)

$$M = det(K) = 2 \times 4 - 3 \times 1 = 5$$

Step 2: Get the modulo inverse M^{-1} of M with respect to 26, which would be 21 since

$$(5 \times 21) \mod 26 = 1$$

Example: Decryption

Step 3: Get the inverse matrix K^{-1} of K using

$$K^{-1} = M^{-1} \quad \begin{array}{cccc} 4 & -1 & mod \ 26 \\ & = 21 \quad \begin{array}{cccc} 4 & -1 & mod \ 26 \end{array}$$
$$= 21 \quad \begin{array}{ccccc} 4 \times 21 & -1 \times 21 & mod \ 26 = 6 & 5 \\ -3 \times 21 & 2 \times 21 & mod \ 26 = 6 & 5 \end{array}$$

Step 3: With ciphertext

$$C = VWLCAJ = V. L A = 21 11 0 W. C J = 22 2 9$$

Getting plaintext P then becomes

$$P = K^{-1} \times C =$$
 $\begin{pmatrix} 6 & 5 \\ 15 & 16 \end{pmatrix} \times \begin{pmatrix} 21 & 11 & 0 \\ 22 & 2 & 9 \end{pmatrix} \mod 26 = CRYPTO$

Hill Cipher on CryptTool 2

- From the CryptTool 2 startup menu, click Cryptography
- Then click Classical and then select Hill cipher
- In the plaintext section of TextInput, type in: roses are red
- Then in the Hill cipher box, type in:

Finally click on the Play button to execute

Hill Cipher on CryptTool 2

Figure: Hill Cipher on CryptTool 2

Overview

- Invented by Charles Wheatstone in 1854
- Encrypts two letters at a time
- Features a 5 × 5 matrix of letters based on a keyword
- Fill in letters of keyword (sans duplicates)
- Fill rest of matrix with other letters

Rules of the Playfair cipher

- If a pair is a repeated letter, insert a filler like "X". E.g., "hallway" would become ha lx wa yx
- If both letters fall in the same row, replace each with letter to right.
- If both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
- Otherwise each letter is replaced by the one in its row in the column of the other letter of the pair

Example

Given the keyword K = ``HELLO'' and plaintext P = ``CRYPTO'', Step 1: Arrange K into a 5 × 5 matrix, making it like so:

Step 2: Break down P into two letter pairs, like so: CR YP TO

Example (cont.)

Step 3: Encrypt each pair using the 4 rules and the key matrix, so

$$\begin{array}{c} \mathsf{CR} \xrightarrow{-} & \mathsf{KW} \\ \mathsf{YP} \xrightarrow{-} & \mathsf{ZN} \\ \mathsf{TO} \xrightarrow{-} & \mathsf{YF} \end{array}$$

Step 4: The encrypted ciphertext Cthen becomes: KWZNYF

Playfair Cipher on CryptTool 2

- From the CryptTool 2 startup menu, click Cryptography
- Then click Classical and then select Playfair cipher
- In the plaintext section of TextInput, type in: CRYPTO
- Next double-click on the *Playfair cipher* box to open up its settings
- Then type in HELLO in the Key Value
- Finally minimize it and click on the Play button to execute

Playfair Cipher on CryptTool 2

Figure: Playfair Cipher on CryptTool 2

Playfair Cipher on CryptTool 2

Bringing it all together

- We looked at both Hill and Playfair ciphers
- We also looked at how each of them works and how to get them working in CrypTool 2
- Next week: Information theory and classical ciphers

Post-sessional work

- Create a CryptTool project which accepts a plaintext, and
 - First encrypts it using Hill Cipher
 - Then encrypts the Hill Cipher with Playfair Cipher
 - Then gets the original plaintext back to its original form

Recaj

Hill Ciphe
Playfair ciphe
Bringing it all together
Post-sessional work

Q & A

