Lineare Algebra S2

Raphael Nambiar

Version: 15. Juni 2022

Vektorgeometrie

Begriffe

 $\begin{tabular}{ll} \textbf{Kollinear:} Es existiert eine Gerade g, zu der beide Vektoren parallel sind. \end{tabular}$

Komplanar: Existiert eine Ebene e, zu der alle drei Vektoren parallel.

Ortsvektor: Beginnt vim Ursprung. Schreibweise: $\vec{r}(P)$ **Nullvektor:** Vektor mit Betrag 0,keine Richtung.: $\vec{0}$

Betrag

$$\mid \vec{a} \mid = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$$

Skalarprodukt

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$
$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} \to \arccos(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Orthogonal

Wenn zwei Vektoren senkrecht zueinander sind.

$$\vec{a} \cdot \vec{b} = 0$$

Orthogonale Projektion

Projektion des Vektores \vec{b} auf den Vektor \vec{a} .

$$\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

$$|\vec{b}_a| = \frac{|\vec{a}| \cdot |\vec{b}|}{|\vec{a}|}$$

$$|\vec{b}_a| = |\vec{a}| \cdot \cos(\varphi)$$

Zwischenwinkel

$$\varphi = \cos^{-1}(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

In der Ebene	Im Raum
$cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \cdot \vec{b} } = \frac{a_1 \cdot b_1 + a_2 \cdot b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$	$cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{ \vec{a} \cdot \vec{b} } = \frac{a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$

Einheitsvektor

$$ec{e}_a = rac{1}{|ec{a}|} \cdot ec{a}$$
 ; $|ec{e}_a| = 1$

Vektorprodukt / Kreuzprodukt

 $\mid \vec{a} \times \vec{b} \mid = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos(\alpha)$ $\vec{a} \times \vec{b} \text{ ist orthogonal zu } \vec{a} \text{ und zu } \vec{b}$

Kreuzprodukt in R²

Seien a und b zwei Vektoren, dann gilt für das Kreuzprodukt in R²:

$$\mathbf{a} = \begin{bmatrix} a_x \\ a_y \end{bmatrix} \quad \text{und} \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \end{bmatrix}$$
$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \det \begin{pmatrix} \vec{\mathbf{a}} \, \vec{\mathbf{b}} \end{pmatrix} = \begin{vmatrix} \mathbf{a}_x & \mathbf{b}_x \\ \mathbf{a}_y & \mathbf{b}_y \end{vmatrix} = \mathbf{a}_x \cdot \mathbf{b}_y - \mathbf{b}_x \cdot \mathbf{a}_y$$

Fläche / Parallelogramm

$$\mid \vec{a} \times \vec{b} \mid = \mathsf{A}$$

Dreieck $= \frac{1}{2} \mathsf{A}$

Volumen / Spatprodukt

Das Spatprodukt der drei Vektoren $\vec{a}=\left(\begin{array}{c}a_1\\a_2\\a_3\end{array}\right)$, $\vec{b}=\left(\begin{array}{c}b_1\\b_2\\b_3\end{array}\right)$ und $\vec{c}=\left(\begin{array}{c}c_1\\c_2\\c_3\end{array}\right)$

berechnest du mit

- $(\vec{a} \times \vec{b}) \cdot \vec{c}$ oder mit
- der Determinante $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$. Volumen: -> \mid Betrag nehmen \mid

Geraden

Parameterdarstellung

$$g: \vec{r}(P) + \lambda \cdot \vec{a}$$

P: Aufpunkt

 $\vec{a} = \overrightarrow{PQ}$; = Richtungsvektor

Koordinatendarstellung

$$g: ax + by + c = 0$$

Koordinatendarstellung zu Parameterdarstellung

Zwei Punkte auf g bestimmen: 2 beliebige \times Koordinaten wählen und in g einsetzen. Danach jeweils g auslesen. Dies ergibt zwei Punkte g0. In Parameterdarstellung bringen.

Parameterdarstellung zu Koordinatendarstellung

Gerade
$$g: \begin{pmatrix} 7\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2\\-4 \end{pmatrix}$$

Gleichungssystem aufstellen und Lösen:

$$x = 7 - 2\lambda$$
$$y = 1 - 4\lambda$$

In Koordinatendarstellung bringen: -2x + y + 13 = 0

Abstand Punkt zu Geraden

Gerade g:
$$\begin{pmatrix} 1\\13\\-5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\5\\-4 \end{pmatrix}$$

Punkt A: (3, -1, 4)

$$\overrightarrow{PA} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 13 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -14 \\ 9 \end{pmatrix}$$

 $l = \frac{|PA \times \vec{a}|}{|\vec{a}|}$

 $\vec{a}\Rightarrow$ aus der Parameterdarstellung

Ebene

Normalenvektor der Ebene (orthogonal zur Ebene)

Auf der Ebene E senkrecht stehnder Vektor \vec{n} .

$$\vec{n} = \vec{a} \times \vec{b}$$

Parameterdarstellung

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

P: Aufpunkt

$$\vec{a} = \overrightarrow{PQ}$$
; $\vec{b} = \overrightarrow{PR} = \text{Richtungsvektoren}$

Koordinatendarstellung

$$E: ax + by + cz + d = 0$$

Parameterdarstellung zu Koordinatendarstellung

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$
$$\vec{n} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -14\\6\\-4 \end{pmatrix}$$

- (2) Koordinatendarstellung E: -14x + 6y 4z + d = 0
- ③ Aufpunkt einsetzen: $\begin{pmatrix} \overline{4} \\ 1 \end{pmatrix} \Rightarrow E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0$
- (4) d ausrechnen: $E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0 \Rightarrow d = 8$

(5)
$$E: -14x + 6y - 4z + 8 = 0$$

 $\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E: -7x + 3y - 2z + 4 = 0$

Koordinatendarstellung zu Parameterdarstellung

Wir bestimmen drei beliebige Punkte auf E, indem wir die x- und y-Koordinaten frei wählen und die zugehörigen z-Koordinaten aus der Koordinatendarstellung von E berechnen. Aus diesen drei Punkten können wir dann eine Parameterdarstellung von E gewinnen.

$$\begin{array}{lll} E:2x+7y-4z+1=0 \\ x=0,y=0 & -4z+1=0 \Rightarrow z=1/4 \Rightarrow P=(0;0;1/4) \\ x=1,y=0 & 2-4z+1=0 \Rightarrow z=3/4 \Rightarrow Q=(1;0;3/4) \\ x=0,y=1 & 7-4z+1=0 \Rightarrow z=2 \Rightarrow R=(0;1;2) \end{array}$$

Eine mögliche Parameterdarstellung der Ebene
$$E$$
: $\begin{pmatrix} 0 \\ 0 \\ 1/4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{1}{2} \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{7}{4} \end{pmatrix}$

Abstand Punkt zu Ebene

Abstand
$$l=rac{|ax_A+bx_A+cz_A+d|}{|\vec{n}|}$$

Ebene E: 3x - 6y - 2z + 67 = 0

Punkt A = (3, -4, 1)

Punkt
$$A = (3, -4, 1)$$
(1) \vec{n} bestimmen: $\begin{pmatrix} 3 \\ -6 \\ -2 \end{pmatrix} \sqrt{3^2 + -6^2 + -2^2} = 7$
(2) $I = \begin{pmatrix} (3 \cdot 3) - (6 \cdot (-4)) - (2 \cdot 1) \\ -1 \cdot 4 \end{pmatrix} = 14$

$$2) l = \frac{(3\cdot3) - (6\cdot(-4)) - (2\cdot1)}{7} = 14$$

normierte Koordinatendarstellung der Ebene

$$E: 2x - 6y + 3z + 4 = 0$$

$$\vec{n} = \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} \qquad |\vec{n}| = \sqrt{2^2 + (-6)^2 + 3^2} = \sqrt{49} = 7$$

normierte Koordinatendarstellung der Ebene

E:
$$\frac{2}{7} \cdot x - \frac{6}{7} \cdot y + \frac{3}{7} \cdot z + \frac{4}{7} = 0$$

Schnittgerade zweier Ebenen

- (1) Ebenen in die Koordinatendarstellung schreiben
- (2) 'd' auf die andere Seite des Gleicheitszeichen schreiben
- (3) Lgs aufstellen
- (4) Gauss-Jordan anwenden → Schnittgerade (siehe 'Lösung nach reduzierter Zeilenstufenform')

$$x + 3y + 5z + 11 = 0$$

$$\begin{pmatrix} 1 & 3 & 5 \\ 2 & 1 & 0 \end{pmatrix} \begin{bmatrix} -11 \\ 3 & 6 \end{bmatrix} \cdot (-2)$$

$$\begin{pmatrix} 1 & 3 & 5 \\ 0 & -5 & -10 \end{pmatrix} \begin{bmatrix} -11 \\ 25 \end{pmatrix} \cdot (-5) \stackrel{\leftarrow}{-} | \cdot (-3)$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -5 \end{pmatrix}$$
 $z = \mu$, $y = -5 - 2\mu$, $x = 4 + \mu$

Schnittgerade h: $\begin{pmatrix} 4 \\ -5 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Schnittpunkt mit Gerade

Aufpunkt von Ebene \vec{Ea} Aufpunkt von Gerade \vec{qa} $\vec{aa} - \vec{Ea} = \vec{c}$

- (1) Erste 2 Vektoren im Lgs sind die Parameter Vektoren der Ebene. Der Dritte Vektor, ist der Parameter vektor der geraden und der Lösungsvektor ist \vec{c}
- (2) Lgs mit Gauss Lösen
- (3) Unterste Zeile \rightarrow nur eine führenden 1 in der untersten Zeile und einer Zahl im Lösungsvektor = Zahl als Parameter in Gerade einsetzen.

Sollte das Lgs nicht Lösbar sein, existiert kein Schnittpunkt \vec{S}

Lineare Gleichungssysteme

Rang

Matrix muss in Zeilenstufenform sein.

rq(A) = Gesamtanzahl Zeilen - Anzahl Nullzeilen .

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & | & 3 \\ 0 & 6 & | & 4 \\ 0 & 3 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & | & 3 \\ 0 & 6 & | & 4 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \underset{\mathsf{A}}{\operatorname{rang}}(\mathbf{A}) = 2$$

Lösbarkeit von LGS

n = Anzahl Spalten(Variablen)

Das LGS $A \cdot \vec{x} = \vec{c}$ ist genau dann lösbar, wenn $rg(A) = rg(A \mid \vec{c})$. Es hat genau eine Lösung, falls zusätzlich gilt: rg(A) = n. Es hat unendlich viele Lösungen, falls zusätzlich gilt: rg(A) < n.

Freie Variable

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -2 \mid 0) \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ freie Variable } \lambda_3$$

Lösungsmenge: λ_3 = kann beliebig gewählt werden, ∞-viele Lösungen.

Lösung nach reduzierter Zeilenstufenform

Bestimmen der Lösung nach reduzierter Zeilenstufenform

- Führende Unbekannte
- Spalte mit führender Eins
- Freie Unbekannte
- Spalte ohne führende Eins

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & -2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix}$$

Auflösen nach der führenden Unbekannten

- $1x_1 2x_2 + 0x_3 + 3x_4 = 5$ $x_2 = \lambda$ $x_1 = 5 + 2 \cdot \lambda 3 \cdot \mu$ $0x_1 + 0x_2 + 1x_3 + 1x_4 = 3$ $x_4 = \mu$ $x_3 = 3 \mu$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 + 2 \cdot \lambda - 3 \cdot \mu \\ \lambda \\ 3 - \mu \\ \mu \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Matrizen

Begriffe

Quadratische Matrix: gleich viele Zeilen und Spalten

Hauptdiagonale: Die Diagonale von links oben nach rechts un-

Untere- und obere Dreiecksmatrix

Silicic and obeic Breiecksmatrix					
Beispiel	(a) (1. L. J.) (0. C. S.)				
Beschreibung		ale Nul.			
Bezeichnung	Ober Oreichmatin	Unlere Dreichnahr			

Symmetrische Matrix : symmetrisch bzgl. Hauptdiagonale

$$\begin{pmatrix} 1 & 5 & 6 \\ 5 & 2 & 3 \\ 6 & 3 & 1 \end{pmatrix}$$

Multiplikation / Rechenregeln

$$A, B, C \in \mathbb{R}^{m \times n} \land \lambda, \mu \in \mathbb{R}$$
$$A + (B + C) = (A + B) + C$$
$$A + B = B + A$$

$$A + 0 = A$$

$$A - A = 0$$
 (Nullmatrix)

Transponieren

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 5 \end{pmatrix} \quad \rightarrow \quad A^T = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 0 & 5 \end{pmatrix}$$

Rechenregeln:

$$(A^T)^T = A$$
$$(A+B)^T = A^T + B^T$$
$$(A \cdot B)^T = B^T \cdot A^T$$

Gilt $A=A^T$, so heißt die Matrix A symmetrisch.

Gilt $A = -A^T$, so heißt die Matrix A antisymmetrisch.

Inverse

Matrix muss quadratisch sein: $n \times n \rightarrow 2 \times 2, 3 \times 3$

2x2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Die 2×2 -Matrix hat genau dann ein Invese wenn $ad - bc \neq 0$

3x3 und grösser

Geometrische Interpretation der Determinante

2x2

Fläche von \vec{a} und \vec{b} = Betrag von $det \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix}^{\frac{\vec{b}}{\vec{a}}}$

3x3

Volumen von \vec{a} , \vec{b} und \vec{c} = Betrag von $det \begin{vmatrix} a2 & b2 & c2 \end{vmatrix}$ $\begin{vmatrix} a3 & b3 & c3 \end{vmatrix}$

Determinante

2x2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

3x3 Regel von Sarrus

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b.$$

Laplacescher Entwicklungssatz (>3x3)

Entwickeln nach derjenigen Zeile oder Spalte, in der die meisten Nullen stehen (hier gelb)

$$\begin{vmatrix} 2 & -1 & 3 & 0 & 5 \\ 0 & 4 & 1 & 3 & -2 \\ 0 & 0 & 2 & 0 & 0 \\ 6 & 2 & -1 & 0 & 3 \\ 3 & -1 & 4 & 0 & 2 \end{vmatrix} \rightarrow 2 \cdot det \begin{vmatrix} 2 & 1 & 0 & 5 \\ 0 & 4 & 3 & -2 \\ 6 & 2 & 0 & 3 \\ 3 & -1 & 0 & 2 \end{vmatrix}$$

Wichtig: häufig sind die entwickelten identisch! → Aufwand sparen!

det **Dreiecksmatrix** = Produkt der Hauptdiagonale

Rechenregeln

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für jede $n \times n$ -Dreiecksmatrix U gilt: $\det(U) = u_{11} \cdot u_{22} \cdot ... \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt: $det(A^T) = det(A)$
- (4) Für alle $n \times n$ -Matrizen A und B gilt: $\det(A \cdot B) = \det(A) \cdot \det(B)$
- (5) Für jede invertierbare Matrix A gilt: $\det(A^{-1}) = \frac{1}{\det(A)}$
- (6) Für jede $n \times n$ -Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

$$2 \times 2 \to det(5 \cdot A) = 5^2 \cdot det(A)$$
$$3 \times 3 \to det(5 \cdot A) = 5^3 \cdot det(A)$$

Matrizengleichungen

Grundgleichung	Lösung
$A \cdot X = B$	$X = A^{-1} \cdot B$
$X \cdot A = B$	$X = B \cdot A^{-1}$
$A \cdot X \cdot B = C$	$X = A^{-1} \cdot C \cdot B^{-1}$

Lösung einer Matrizengleichung:

1 Wenn man eine unbekannte Matrix X ausklammert, muss X nach dem Ausklammern auf der Seite stehen, wo sie vorher stand:

$$A \cdot X + B \cdot X = (A + B) \cdot X$$

② Die Zahlen beim Ausklammern werden mit einer Einheitsmatrix multipliziert:

$$A \cdot X + 4X = (A + 4E) \cdot X$$

(3) Man kann nicht durch eine Matrix dividieren, man kann aber mit einer inversen Matrix multiplizieren:

$$A\cdot X=B\to X=A^{-1}\cdot B$$

$$X\cdot A=B\to X=B\cdot A^{-1}$$

$$A\cdot X + 4\cdot X = C \to (A+4E)\cdot X = C \to X = (A+4E)^{-1}\cdot C$$

Vektorräume

Unterräume

Eine Teilmenge U eines Vektorraums V heisst Unterraum von V wenn U selber auch ein Vektorraum ist.

Unterraumkriterien

- (1) Für beliebige Elemente $\vec{a}, \vec{b} \in U$ ist $\vec{a} + \vec{b} \in U$.
- (2) Für jeden Skalar $\lambda \in \mathbb{R}$ und jeden Vektor $\vec{a} \in U$ ist $\lambda \cdot \vec{a} \in U$.

Unterraumkriterien überprüfen

(a) Ja, Vektorraum
$$1 \cdot \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 0 \\ 0 & b_1 + b_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

$$2 \cdot \lambda \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \lambda \cdot a & 0 \\ 0 & \lambda \cdot b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \text{ Nein } \rightarrow \begin{pmatrix} a_1 & 1 \\ 1 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 1 \\ 1 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 2 \\ 2 & b_1 + b_2 \end{pmatrix} \neq \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}.$$

Linearkombination

Stellen Sie
$$\vec{d} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$
 als Linearkombination von $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ dar.

Gesucht sind
$$\lambda$$
, μ und ν mit $\lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \nu \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$

Lineareabhängigkeit prüfen

Quadratische Matrix:

 $det(a) = 0 \Rightarrow$ Lineare Abhängigkeit $det(a) \neq 0 \Rightarrow$ Lineare Unabhängigkeit

Nicht Quadratische Matrix:

Vektoren nebeneinander in eine Matrix schreiben \to Gauss Nullzeile oder -Spalte in der Matrix \Longrightarrow Lineare Abhängigkeit der Vektoren

Keine Nullzeile oder-Spalte in der Matrix \Longrightarrow Lineare Unabhängigkeit der Vektoren.

Linearer Spann (Lineare Hülle)

Diese Menge besteht aus allen Vielfachen der Vektoren und deren Summen, ist also die Menge aller möglichen Linearkombinationen, die mit den gegebenen Vektoren gebildet werden können.

$$span(\vec{a}, \vec{b}) =$$
 Ebene $span(\vec{a}, \vec{b}, \vec{c}) =$ eine Gerade mit Aufpunkt.

Dimension

Wir betrachten einen reellen Vektorraum V. Die Anzahl Vektoren, die eine Basis von V bilden, heisst Dimension von V.

Bezeichnung: dim(V)

Es gilt:

$$\begin{array}{ll} \text{Vektorraum } \{\vec{0}\} \rightarrow \dim \ 0 & \dim = rg(A) \\ \dim(span(\vec{a},\vec{b})) = 2 & \dim(R^{3\times 3}) = 2 \\ \dim(R^{2\times 2}) = 2 & \end{array}$$

Beispiel:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$$

$$\implies a = -a; \ d = -d; \ c = -b; \ b = -c$$

$$\begin{pmatrix} 0 & b \\ -c & d \end{pmatrix} \implies dim() = 1$$

Erzeugendensystem

Eine Menge von Vektoren heißt Erzeugendensystem, wenn man mit ihnen alle Vektoren eines Vektorraumes durch Linearkombination erzeugen kann.

 $A \cdot A^T = -A$

Menge von Vektoren auf Erzeugendeneigenschaft überprüfen

ightarrow Bestimmung des Rangs rg(A)

Wenn $rg(A) < \text{Anzahl Zeilen}(m) \rightarrow \text{kein Erzeugendensystem}$

Basis eines Vektorraums

Eine Basis eines Vektorraumes ist ein "minimales Erzeugendensystem"des Vektorraumes. Die Vektoren einer Basis nennt man Basisvektoren.

Überprüfung, ob eine Menge von Vektoren eine Basis ist Quadratische Matrix : $\rightarrow det(A) \neq 0$ Generell:

- (1) Die Anzahl der Vektoren stimmt überein mit der Dimension des Vektorraumes.
- (2) Die Vektoren sind linear unabhängig.

Wichtige Basen

Für R^n : Basis S heisst Standardbasis Für $P_n[x]$: Basus M heisst Monombasis

Umrechnung von Basis B zur Standardbasis S

$$\vec{a} = a_1 \cdot \vec{b_1} + a_2 \cdot \vec{b_2} + a_3 \cdot \vec{b_3} \dots + a_n \cdot \vec{b_n}$$

$$Beispiel: \begin{cases} \binom{1}{0}, \binom{2}{2}, \binom{3}{3} \\ \binom{3}{3} \end{cases}$$

$$(7, -3, -1) \text{ von } B \text{ nach } S$$

$$\vec{b} = \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}_B = 7 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}_S - 3 \cdot \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}_S + 1 \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}_S = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}_S$$

Umrechnung von Standardbasis S zur Basis B

LGS bilden:

Matrizen als Vektor darstellen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} b \\ c \\ d \end{pmatrix}$$

$$\lambda \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \nu \cdot \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Lineare Abbildungen

Definition: Lineare Abbildung

Gegeben sind zwei reelle Vektorräume V und W (können auch identisch sein).

Eine Abbildung $f:V\to W$ heisst $lineare\ Abbildung$, wenn für alle Vektoren $\vec{x},\vec{y}\in V$ und jeden Skalar $\lambda\in\mathbb{R}$ gilt:

(1)
$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

(2)
$$f(\lambda \cdot \vec{x}) = \lambda \cdot f(\vec{y})$$

Der Vektor $\vec{x} \in W$, der herauskommt, wenn f auf einen Vektor \vec{x} angewendet, heisst **Bild** von \vec{x} .

Beispiele:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 \\ x_2 \end{pmatrix}$$

(e)
$$f: \mathbb{R}^3 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - x_2 \\ -3x_1 + 5x_3 \end{pmatrix}$$

(a) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{0}{0}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{0}{0} + \binom{0}{0} = \binom{0}{0}$ o.k

Bed 2:
$$f\left(\lambda \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = f\left(\begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 $\lambda \cdot f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \lambda \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ o.k. $\Rightarrow f$ ist linear

(b) Bed 1:
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2}{x_2 + y_2}$$

 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2}{x_2} + \binom{y_1 + 2}{y_2} = \binom{x_1 + y_1 + 4}{x_2 + y_2}$
nicht gleich $\Rightarrow f$ ist nicht linear

$$\begin{array}{l} \text{(c) Bed 1: } f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2(x_2 + y_2)}{x_2 + y_2} \\ f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2x_2}{x_2} + \binom{y_1 + 2y_2}{y_2} = \binom{x_1 + 2x_2 + y_1 + 2y_2}{x_2 + y_2} \\ \text{o.k.} \end{array}$$

$$\begin{array}{l} \operatorname{Bed} 2 \colon f\left(\lambda \cdot \binom{x_1}{x_2}\right) = f\left(\binom{\lambda \cdot x_1}{\lambda \cdot x_2}\right) = \binom{\lambda \cdot x_1 + 2\lambda \cdot x_2}{\lambda \cdot x_2} \\ \lambda \cdot f\left(\binom{x_1}{x_2}\right) = \lambda \cdot \binom{x_1 + 2x_2}{x_2} = \binom{\lambda \cdot (x_1 + 2x_2)}{\lambda \cdot x_2} & \text{o.k. } \Rightarrow f \text{ ist linear.} \end{array}$$

Abbildungsmatrix cAb ermitteln

$$f: \mathbb{R}^{2} \to \mathbb{R}^{3}: \binom{x_{1}}{x_{2}} \to \binom{-x_{2}}{2x_{1}},$$

$$B = \left\{\binom{2}{5}_{S}; \binom{-1}{3}_{S}\right\}, \qquad C = \left\{\binom{1}{0}_{1}; \binom{0}{2}_{1}; \binom{1}{-4}_{S}\right\}$$

$$cA_{B} = \left(\left(f\binom{2}{5}\right)_{C} \left(f\binom{-1}{3}\right)_{C}\right)_{B}$$

$$\left(f\binom{2}{5}\right)_{C} = \left(\binom{-5}{4}\right)_{C} = \begin{pmatrix}1 & 0 & 1 & -5\\ 4 & 3 & 2 & -4 & 4\\ 1 & 1 & 1 & 3\end{pmatrix} = \begin{pmatrix}1 & 0 & 0 & -11\\ 0 & 1 & 0 & 1\\ 0 & 0 & 1 & 6\end{pmatrix}$$

$$\left(f\binom{-1}{3}\right)_{C} = \left(\begin{pmatrix}-3\\-2\\4\end{pmatrix}\right)_{C} = \begin{pmatrix}1 & 0 & 1 & -3\\ 0 & 2 & -4 & -2\\ 1 & 1 & 1 & 4\end{pmatrix} = \begin{pmatrix}1 & 0 & 0 & -11\\ 0 & 1 & 0 & 15\\ 0 & 0 & 1 & 8\end{pmatrix}$$

$$cA_{B} = \begin{pmatrix}-11 & -11\\14 & 15\\ 6 & 8\end{pmatrix}_{B}$$

Anwendung von Lineraren Abbildungen auf Punkte

Beispiel: Rotation von Punkt P:(2,7,9) um die x-Achse um den Winkel 90°

P ist immer rechts von der Abbildungsmatrix:

$$A \cdot P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cos(90^{\circ}) & -sin(90^{\circ}) \\ 0 & sin(90^{\circ}) & cos(90^{\circ}) \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 7 \\ 9 \end{pmatrix}$$

Abbildungsmatrix

Bzgl. Standardbasis: Ablesen \rightarrow

1.

Gegeben ist die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} \xrightarrow{\chi_2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

Bestimmen Sie die Abbildungsmatrix A von f.

2.

Wir betrachten die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{S}} \mapsto \begin{pmatrix} x_1 - x_2 \\ x_1 + x_2 \end{pmatrix}_{\mathcal{S}}$. Dabei ist \mathcal{S} die Standardbasis von \mathbb{R}^2 . Bestimmen Sie

- (a) die Abbildungsmatrix $_{\mathcal{S}}A_{\mathcal{S}}$ von f bezüglich \mathcal{S} .
- (b) die Abbildungsmatrix $_{\mathcal{B}}A_{\mathcal{B}}$ von f bezüglich der Basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{s}; \begin{pmatrix} -1 \\ 0 \end{pmatrix}_{s} \right\}$ von \mathbb{R}^{2} .

(a)
$$f\left(\begin{pmatrix}1\\0\\\delta\end{pmatrix}\right) = \begin{pmatrix}1\\1\\\delta\end{pmatrix}$$
, $f\left(\begin{pmatrix}0\\1\\\delta\end{pmatrix}\right) = \begin{pmatrix}-1\\1\\\delta\end{pmatrix}$, $_{\mathcal{S}}A_{\mathcal{S}} = _{_{\mathcal{S}}}\begin{pmatrix}1&-1\\1&1\end{pmatrix}_{\mathcal{S}}$

(b)
$$f(\vec{b}_1) = f\left(\binom{1}{1}_{\mathcal{S}}\right) = \binom{0}{2}_{\mathcal{S}} = 2 \cdot \left(\binom{1}{1}_{\mathcal{S}} + \binom{-1}{0}_{\mathcal{S}}\right) = 2\vec{b}_1 + 2\vec{b}_2 = \binom{2}{2}_{\mathcal{I}}$$

$$f(\vec{b}_2) = f\left(\binom{-1}{0}_{\mathcal{S}}\right) = \binom{-1}{-1}_{\mathcal{S}} = -\binom{1}{1}_{\mathcal{S}} = -\vec{b}_1 = \binom{-1}{0}_{\mathcal{B}}$$

$${}_{\mathcal{B}}A_{\mathcal{B}} = \binom{2}{2} - \binom{-1}{2}_{\mathcal{B}}$$

cA_B Beispiel 5

Gegeben ist die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^3: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{S}_2} \mapsto \begin{pmatrix} -x_2 \\ 2x_1 \\ x_2 - x_1 \end{pmatrix}_{\mathcal{S}_2}$ sowie

$$\text{die Basen } \mathcal{B} = \left\{ \binom{2}{5}_{\mathcal{S}_2} \; ; \; \binom{-1}{3}_{\mathcal{S}_2} \right\} \text{von } \mathbb{R}^2 \text{ und } \mathcal{C} = \left\{ \binom{1}{0}_{1}_{\mathcal{S}_3} \; ; \; \binom{0}{2}_{1}_{\mathcal{S}_3} \; ; \; \binom{1}{-4}_{0}_{\mathcal{S}_3} \right\} \text{von } \mathbb{R}^3.$$

Bestimmen Sie die Abbildungsmatrix ${}_{\mathcal{C}}A_{\mathcal{B}}$ von f sowie das Bild $f(\vec{x})$ von $\vec{x} = \begin{pmatrix} -2\\1 \end{pmatrix}_{\mathcal{B}}$.

 $\widehat{(1)}$ Vektoren aus $\mathcal B$ in f einsetzen

1.
$$f(b_1) = f(\frac{2}{5}) = \begin{pmatrix} -5\\4\\3 \end{pmatrix}_S$$
; 2. $f(b_2) = f(\frac{-1}{3}) = \begin{pmatrix} -3\\-2\\4 \end{pmatrix}_S$

(2) dargestellt über C (LGS mit C und (1))

$$cA_B = \begin{pmatrix} -11 & -11 \\ 14 & 15 \\ 6 & 8 \end{pmatrix}$$

$$f(b_1) = f({-2 \choose 1}_B = cA_B \cdot f(b_1) = f({-2 \choose 1}_B)$$

$$\begin{pmatrix} -11 & -11 \\ 14 & 15 \\ 6 & 8 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 11 \\ -13 \\ -4 \end{pmatrix}$$

Verknüpfung von linearen Abbildungen(Komposition)

 $f \rightarrow \mathsf{Abbildungsmatrix} \ \mathsf{A} \ ; \ g \rightarrow \mathsf{Abbildungsmatrix} \ \mathsf{B}$

$$f \text{ zuerst } \to g(f(x)) \to g \circ f \to B \cdot A$$

g zuerst
$$\to f(g(x)) \to f \circ g \to A \cdot B$$

Die Matrix der Abbildung, die zuerst ausgeführt wird, steht rechts

 $f\circ g$: müssen wir zunächst g dann f ausführen, daher steht die Matrix B rechts im Matrizenprodukt: $\to A\cdot B$ $g\circ f\to B\cdot A;$ $f\circ g\to A\cdot B$

lineare Abbildungen in der Ebene

Streckung um λ_1 in x und λ_2 in y	orthogonale Projektion auf die Gerade g: ax + by = 0 mit $a^2 + b^2 = 1$	Spiegelung an der Geraden g: ax + by = 0 mit $a^2 + b^2 = 1$	$\begin{array}{c} \textbf{Rotation} \\ \text{um den Ursprung} \\ \text{um Winkel } \varphi \end{array}$	Scherung in x-Richtung mit Faktor m
		•		
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1 - 2a^2 & -2ab \\ -2ab & 1 - 2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) - \sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$

Scherung: um den Winkel ϕ bedeutet: $m \to tan(\phi)$

linearen Abbildungen im Raum

→! normieren nicht vergessen! ←

Bei einer zentrischen Streckung mit dem Faktor λ wird jeder Basisvektor mit diesem Faktor multipliziert. Somit ist die entsprechende Abbildungsmatrix gegeben durch:

5.4.2 Orthogonale Projektionen und Spiegelungen

Orthogonale Projektion auf die x/y-Ebene	Spiegelung an der x/y -Ebene	Orthogonale Projektion auf die x-Achse	Spiegelung an der x-Achse
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Orthogonale Projektion auf die x/z -Ebene	Spiegelung an der x/z -Ebene	Orthogonale Projektion auf die y-Achse	Spiegelung an der <i>y</i> -Achse
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
Orthogonale Projektion auf die y/z-Ebene	Spiegelung an der <i>y/z</i> -Ebene	Orthogonale Projektion auf die z-Achse	Spiegelung an der z-Achse
$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Rotationen

Aufgabe: Rotationen um die Koordinatenachsen

(1) Rotation um den Winkel φ um die z-Achse:

Blick von oben	$r_z(\vec{e}_1)$	$r_z(\vec{e}_2)$	$r_z(\vec{e}_3)$	Abbildungsmatrix
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) - \sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix}$

(2) Rotation um den Winkel φ um die x-Achse:

Blick von vorne	$r_x(\vec{e}_1)$	$r_x(\vec{e}_2)$	$r_x(\vec{e}_3)$	Abbildungsmatrix
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$

(3) Rotation um den Winkel φ um die y-Achse:

Blick von rechts	$r_y(\vec{e}_1)$	$r_y(\vec{e}_2)$	$r_y(\vec{e}_3)$	Abbildungsmatrix	
$ \begin{array}{c c} \uparrow x \\ \hline \vec{e}_1 \\ \hline \vdots \\ \downarrow 0 \\ \hline \uparrow 1 \\ \hline y \mid 0 \\ \hline \vec{e}_3 \\ \hline \downarrow z \\ \downarrow $	$\begin{pmatrix} \cos(\varphi) \\ 0 \\ -\sin(\varphi) \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} \sin(\varphi) \\ 0 \\ \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$	

Rotation um eine allgemeine Achse durch den Ursprung

```
 \begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) & a_1a_2(1 - \cos(\varphi)) - a_3\sin(\varphi) & a_1a_3(1 - \cos(\varphi)) + a_2\sin(\varphi) \\ a_1a_2(1 - \cos(\varphi)) + a_3\sin(\varphi) & \cos(\varphi) + a_2^2(1 - \cos(\varphi)) & a_2a_3(1 - \cos(\varphi)) - a_1\sin(\varphi) \\ a_1a_3(1 - \cos(\varphi)) - a_2\sin(\varphi) & a_2a_3(1 - \cos(\varphi)) + a_1\sin(\varphi) & \cos(\varphi) + a_3^2(1 - \cos(\varphi)) \end{pmatrix}
```

Kern einer Matrix

Definition: Der Kern ker(A) einer $m \times n$ -Matrix A ist die Lösungsmenge des homogenen linearen Gleichungssystems:

$$A \cdot \vec{x} = \vec{0}$$

$$det(A) \neq 0 \rightarrow Kern(A) = \{0\}$$
 trivial

$$det(A) = 0 \rightarrow Kern(A)$$
 ist nicht trivial.

→ Abbildungsmatrix → Lösen durch LGS

Beispiel 1:

Bestimmen Sie Kern und Bild der linearen Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$, die durch die folgendermassen definiert ist:

(a)
$$f \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$
 $f \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ 3 \end{pmatrix}$ $f \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix}$
(b) $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + z \\ -6y + 12z \\ -2x + 2y - 2z \end{pmatrix}$

Abbildungsmatrix:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -6 & 12 \\ -2 & 2 & -2 \end{pmatrix}$$

Kern der Matrix (Lösung des LGS $A\vec{x} = \vec{0}$)

$$\begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & -6 & 12 & | & 0 \\ -2 & 2 & -2 & | & 0 \end{pmatrix} : (-6) \leftarrow \begin{vmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{vmatrix}$$

$$\ker(A) = \begin{cases} \vec{x} \in \mathbb{R}^3 | \vec{x} = \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R} \end{cases}$$

Beispiel 2:

Es ist $g(\vec{x}) = A \cdot \vec{x}$ mit

$$A = \begin{pmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ -2 & 4 & -1 & 0 \end{pmatrix}.$$

Gauss-Elimination ergibt

$$\begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ -2 & 4 & -1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Also ist

$$\ker(g) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \cdot \lambda - \mu \\ \lambda \\ 2\mu \\ \mu \end{pmatrix} = \lambda \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix} \middle| \lambda \in \mathbb{R}, \mu \in \mathbb{R} \right\}. \tag{1P}$$

Das Bild ist die lineare Hülle der Spalten von A. Es ist

 $\dim(\operatorname{im}(g)) = \dim(\mathbb{R}^4) - \dim(\ker(g)) = 4 - 2 = 2$. (0.5P)

Die 1. und 3. Spalte von A sind linear unabhängig und bilden somit eine Basis des Bilds.

Bild einer Matrix

Wir multiplizieren eine Matrix A mit einem Vektor \vec{x} und erhalten den Lösungsvektor \vec{b} .

Das Bild einer Matrix gibt an, welche Menge an Vektoren als Lösungen auftreten können.

- \rightarrow Die linear unabhängigen Spalten einer Matrix heißen Bild der Matrix.
- (1) Matrix in obere Dreiecksmatrix umwandeln
- (2) Linear unabhängige Spalten mithilfe der Köpfe bestimmen
- 3 Lösung aufschreiben

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 4 \\ 3 & 5 & 6 \end{pmatrix} \textcircled{1} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\textcircled{2} \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 4 \\ 3 & 5 & 6 \end{pmatrix}$$

Da sich die Köpfe in der 1. und 2. Spalte befinden, sind diese beiden Spalten der ursprünglichen (!) Matrix die linear unabhängigen Spalten.

$$(3) \operatorname{img}(A) = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \right\rangle$$

Beispiel aus der Aufgabe von "Kern der Matrix"

Bild der Matrix (Linearkombination zweier linear unabhängige Spaltenvektoren von A):

$$\operatorname{im}(A) = \left\{ \vec{x} \in \mathbb{R}^3 | \vec{x} = \mu \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \nu \begin{pmatrix} -1 \\ -6 \\ 2 \end{pmatrix}, \ \mu, \nu \in \mathbb{R} \right\}$$

Basiswechsel von S nach B

$$BT_S = (ST_B)^{-1}$$

$$SA_S = ST_B \cdot BA_B \cdot BT_S$$

$$BA_B = BT_S \cdot SA_S \cdot ST_B$$

		, .		
D :-	aege	WIT	2eisc	こというへ
	. 0		_	

Streckung	Orthogonale Projektion	Spiegelung	Rotation	Scherung
 x-Richtung λ₁ y-Richtung λ₂ 	 Gerade g: ax + by = 0 Mit a² + b² = 1 	 Geraden g: ax + by = 0 Mit a² + b² = 1 	• Um den Ursprung • Um den Winkel φ	In x-RichtungMit Faktor m
$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$	$\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$	$\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix}$	$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$	$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$
x-Richtung 3y-Richtung -1	• Gerade $g: 2x - y = 0$ • Normiert $g: \frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}y = 0$	• Geraden $g: x + 7y = 0$ • Normiert $g: \frac{1}{\sqrt{50}}x + \frac{7}{\sqrt{50}}y = 0$	• Um den Ursprung • Winkel $\varphi = 90^{\circ}$	In x-RichtungMit Faktor 3
$\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$	$\frac{1}{5} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$	$\frac{1}{50} \cdot \begin{pmatrix} 48 & -14 \\ -14 & -48 \end{pmatrix}$	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$
Zentrische Streckung	Orthogonale Projektion auf die Ebene	Spiegelung an der Ebene	Rotation um den Winkel $arphi$	
• Faktor λ $\begin{pmatrix} \lambda & 0 & 0 \end{pmatrix}$	• $E: ax + by + cz = 0$ • $a^2 + b^2 + c^2 = 1$	• $E: ax + by + cz = 0$ • $a^2 + b^2 + c^2 = 1$	$x - Achse: \begin{pmatrix} 1 \\ 0 & \cos \\ 0 & \sin \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ (\varphi) & -\sin(\varphi) \\ (\varphi) & \cos(\varphi) \end{pmatrix} $
$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$		$S = \begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}$	$y - Achse: \begin{pmatrix} \cos(\varphi \\ 0 \\ -\sin(\varphi) \end{pmatrix}$	
	$P = E - \vec{n} \cdot \vec{n}^T$	$S = E - 2\vec{n} \cdot \vec{n}^T$	$z - Achse: \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} -\sin(\varphi) & 0 \\ \cos(\varphi) & 0 \\ 0 & 1 \end{array} $
Rotation um den Winkel q	o um die Achse durch den Ursprung, deren	Richtung durch den normierten Vektor \vec{a} fe	estgelegt ist.	

$$x - Achse: \begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) & a_1a_2(1 - \cos(\varphi)) - a_3\sin(\varphi) & a_1a_3(1 - \cos(\varphi)) + a_2\sin(\varphi) \\ a_1a_2(1 - \cos(\varphi)) + a_3\sin(\varphi) & \cos(\varphi) + a_2^2(1 - \cos(\varphi)) & a_2a_3(1 - \cos(\varphi)) - a_1\sin(\varphi) \\ a_1a_3(1 - \cos(\varphi)) - a_2\sin(\varphi) & a_2a_3(1 - \cos(\varphi)) + a_1\sin(\varphi) & \cos(\varphi) + a_3^2(1 - \cos(\varphi)) \end{pmatrix}$$

Rotation
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 um φ um den Ursprung
$$\begin{pmatrix} \cos{(\varphi)} & -\sin{(\varphi)} & 0 \\ \sin{(\varphi)} & \cos{(\varphi)} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 Translation $\mathbb{R}^2 \to \mathbb{R}^2$ um den Vektor $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$
$$\begin{pmatrix} 1 & 0 & a_1 \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix}$$

Station
$$\mathbb{R}^{2} \to \mathbb{R}^{2}$$
 um den vektor $a = \begin{pmatrix} 1 & 0 & a_{1} \\ 0 & 1 & a_{2} \\ 0 & 0 & 1 \end{pmatrix}$

Rotation und Translation in einem
$$\begin{pmatrix} \cos{(\varphi)} & -\sin{(\varphi)} & a_1 \\ \sin{(\varphi)} & \cos{(\varphi)} & a_2 \\ 0 & 0 & 1 \end{pmatrix}$$