ANTENNA POINTER

Nathaniel Blair

By: Joshua Nutter

Cesar Vasquez

Senior Design 1: Team 3

Group Members

Nathaniel Blair, E.E.

Joshua Nutter, M.E.

Cesar Vasquez, M.E. - Team Leader

Group Meetings

Tuesday 3:00pm-4:00pm

Thursday 12:00pm-4:00pm

Advisors

Dr. Tej Lamichhane (Main)

Tuesday 11:00:am-1:00pm

Jonathan Adams (FAA)

• Friday 12:00pm-1:00pm

Dr. Evan Lemley (Co)

Dr. Nesreen Alsbou (Co)

Introduction

ASTI team with FAA

Setup antennas at FAA supported airports

- Point at geostationary satellites
- No hardline communication

Use compass and plumb bob for orientation

Deliverables

Digital Handheld Device

- Outputs current antenna orientation
- Battery powered, usable in cold weather

User Manual

How to use

Design Documentation

- CAD Models
- Wiring Diagrams
- Software

Plan of Execution

ESP32

- User Interface
- Sensor data

MPU9250

- Magnetometer
- Gyroscope
- Accelerometer

Ceramic coated fabric

- Lightweight and durable
- Non-magnetic
- Insulated (Cold and heat proof)

Antenna Pointer Device Shell

Keypad

Backplate

Antenna SolidWorks Model

Antenna materials thus far include:

- Antenna dish
- Elevation gear
- Servo base
- Platform

Electrical Prototype

Display

Code

```
TickType_t UITest(TFT_t * dev, FontxFile *fx, int width, int height) {
 TickType_t startTick, endTick, diffTick;
 startTick = xTaskGetTickCount();
 uint8_t buffer[FontxGlyphBufSize];
 wint8 t fontWidth;
 uint8 t fontHeight;
GetFontx(fx, 0, buffer, &fontWidth, &fontHeight);
 wint16 t color;
 lcdFillScreen(dev, BLACK);
 uint8_t ascii[20];
 color = BLUE;
 lcdSetFontDirection(dev, θ);
 strcpy((char *)ascii, "Latitude");
 lcdDrawString(dev, fx, 0, fontHeight-1, ascii, color);
 endTick = xTaskGetTickCount();
 diffTick endTick startTick;
ESP_LOGI(__FUNCTION__, "elapsed time[ms]:%"PRIu32,diffTick*portTICK_PERIOD_MS);
 return diffTick;
```

User Interface Prototype

Input

Output

Future Work

Nathaniel:

- Order components before end of October
- Program user input
- Read sensor data
- Output adjusted data

Joshua:

- Get antenna 3D printed by this week
- Research button materials

Cesar:

- Get shell 3D printed by this week
- Find suitable seal

Goals

Senior Design 1

Setup

- User data input
- Sensor Data

3D print necessary components

Finish usable prototype

Senior Design 2

Improve UI

Weatherproof device

Incorporate stand & clamp

Custom keypad & switches to fit

SolidWorks model

Test on antennas at FAA

Impacts

Social

- Communication is critical
- ATC and pilot communication
- Weather data
- Supports aircraft operations

Economic

- Lower maintenance costs
- Device is relatively cheap

Project Standards

Mechanical

• ASME Y14.5: Dimensioning and Tolerancing

Electrical

- IEEE 315: Graphical Symbols for Electrical and Electronic Diagrams
- IEEE P145: IEEE Draft Standards for Definition of Terms for Antennas

Timeline

Budget

Theoretically Spent:

• \$143.62, still need to order parts

Possible Future Costs:

- Keypad, switches, etc.
- Satellite Finder App
- Prime ribeye steaks

QUESTIONS?

Thank you

