#### Correlación

#### Correlación lineal

La correlación es una medida estadística que nos permite cuantificar el grado de relación o dependencia entre dos variables. Para el caso de una dependencia lineal entre las variables, se obtiene con el coeficiente de correlación de Pearson:

$$\rho_{xy} = \frac{Cov_{xy}}{\sigma_x \sigma_y}$$

Donde:

 $Cov_{xy}$  es la covarianza entre los valores de las variables x e y.

 $\sigma_x$  y  $\sigma_y$  son las desviaciones estándar de las variables x e y.

Consideraciones: el cálculo del coeficiente de correlación de Pearson es para variables cuantitativas continuas que tienen una distribución normal y que presenten homocedasticidad. Es sensible a los valores atípicos.

Los valores que toma el coeficiente de Pearson están en el intervalo:

$$1 \leq \rho_{xy} \leq 1$$

En la siguiente tabla se puede ver el significado de la relación según el rango de valores.

| Valor de ρ                | Correlación       |
|---------------------------|-------------------|
| -1 ≤ <b>\rho</b> ≤ -0.8   | Negativa fuerte.  |
| -0.8 ≤ <b>\rho</b> ≤ -0.5 | Negativa moderada |
| -0.5 ≤ <b>ρ</b> ≤ 0       | Negativa débil    |
| 0                         | Sin correlación   |
| $0 \le \rho \le 0.5$      | Positiva débil    |
| $0.5 \le \rho \le 0.8$    | Positiva moderada |
| 0.8 ≤ <b>ρ</b> ≤ 1        | Positiva fuerte   |

# Coeficiente de Spearman

Es el equivalente al coeficiente de Pearson cuando los datos son ordinales o cuando no cumplen la condición de normalidad necesaria. Además, se transforman los datos a rangos. Se calcula de la siguiente forma:



$$r_{\rm S} = 1 \quad \frac{6\sum d_i^2}{n(n^2 \quad 1)}$$

Donde:

 $d_i$  es la distancia entre los rangos de cada observación  $(x_i - y_i)$ .

n es el número de observaciones.

La interpretación de los parámetros es la misma, pero se agrega el término de error.

Consideraciones: la relación entre las variables debe ser monótona.

#### Estimación con R

Para encontrar la correlación entre dos variables, vamos a utilizar las funciones de la instalación base de R: *cor()* y *cor.test()*.

Los parámetros que vamos a utilizar para las dos funciones son:

x: vector, matriz o data.frame numérico.

 $\mathbf{y}$ : vector, matriz o data.frame numérico de la misma dimensión que  $\mathbf{x}$  (opcional).

**method**: donde le indicamos que coeficiente de correlación obtendremos, por defecto el valor es "pearson", pero se pueden utilizar "spearman" y "kendall".



## **Eiercicios**

**Ejercicio 1** – Se tienen los datos de peso y altura de 15 individuos y se quiere ver si existe una relación lineal entre ellas y de que tipo es esa relación.

| Peso [kg] | Altura [cm] |
|-----------|-------------|
| 74        | 168         |
| 92        | 196         |
| 63        | 170         |
| 72        | 175         |
| 58        | 162         |
| 76        | 183         |
| 85        | 169         |
| 78        | 190         |
| 67        | 172         |
| 91        | 188         |
| 85        | 186         |
| 73        | 176         |
| 62        | 170         |
| 80        | 176         |
| 72        | 179         |

Analice los datos y justifique su repuesta.

**Ejercicio 2** – Cargue el archivo de datos bank.csv utilizado en la guía anterior. Encuentre si existe una relación lineal entre las variables "age" y "balance". Justifique la respuesta.

**Ejercicio 3** – Cargue el conjunto de datos "mammals" del paquete **MASS** que contiene los pesos del cuerpo y el cerebro de un conjunto de mamíferos.

Se quiere conocer la relación entre las dos variables.

- a. Explore los datos. ¿Puede utilizar el coeficiente de Pearson?
- b. Si los supuestos se cumplen, encuentre el coeficiente de correlación. Si no, utilice la rho de Spearman. ¿Qué tipo de correlación existe?
- c. Realice un escalamiento de los datos con el objetivo de "mejorar" la distribución de los datos y repita el análisis de correlación.

**Ejercicio – 4**. El conjunto de datos "Orange" del paquete **datasets** contiene los valores de edad y circunferencia de 5 árboles de naranjas.

- a. Explore los datos.
- b. Encuentre la correlación entre las variables. ¿Qué relación encuentra entre las variables?



# Referencias

- 1. "Correlación lineal y Regresión lineal simple". Disponible en: <a href="https://www.cienciadedatos.net/documentos/24">https://www.cienciadedatos.net/documentos/24</a> correlacion y regresion lineal
- 2. "An Introduction to corrplot Package". Disponible en: <a href="https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html">https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html</a>