

FIGURE:E vs k GRAPH for different p

Question 7:

COMMENTS:

- 1)This graph plots Expected no. of tests vs K(no. of persons) in case 2 for some p values.
- 2) As P is increasing the graph tends towards y=x because as the probability of a person having the disease is high which means the no. of tests that to be performed tends to k+1 as there are k people.

QUESTION 8:

Q8b)

FIGURE2:E vs K graph

COMMENTS:

- 1)At z=0 the correlation coefficient is 1 as the matrices are same.
- 2)The function is decreasing because the correlation coefficient decreases when z is increasing

Q8c)

CASE Std.deviation QMI Absolute s	um
-----------------------------------	----

Not Randomized	0.9841	0.0359	1.4736
Randomized	0.3947	0.0013	0.4444

Comments:

- 1)As the pixel intensities are randomized the values becomes random and more independent which results in decrease of Pxy(x,y)-Px*Py which means that the QMI decreases and the same as with the absolute sum that is Normalized Sum.
- 2)In randomized the values are not related X1 and X2 and their correlation coefficient almost tends to zero.
- 3)The minimum value of normalized sum is zero when both random values are independent that is Pxy(x,y) = Px*Py. For all bins.
- 4)The maximum value is 2 when the correlation coefficient of X1 and X2 have correlation coefficient -1.