Вопрос по выбору: **Квантовая теория теплоемкости**

ВПВ подготовил Матренин Василий, Б01-006

1 Недостаточность классической теории теплоемкостей

1.1 Сравнение классической теории с опытом

Во многом, классическая теория дает правильные результаты (для определенного круга явлений).

Однако многие явления она не объясняет. Ряд опытных фактов находится в противоречии с этой теорией.

Прежде всего, классическая теория не дает объяснения зависимости теплоемкости тел от температуры. В таблице 1 приведены для примера молярные теплоемкости газообразного водорода при разных температурах.

Таблца 1

Т, К	$C_V, rac{ ext{кал}}{ ext{моль·K}}$
35	2.98
100	3.10
290	4.90
600	5.08
800	5.22
1000	5.36

Можно было бы попытаться объяснить зависимость теплоемкости от температуры негармоничностью колебательных степеней свободы при больших амплитудах колебаний, однако эти соображения теряют силу при низких температурах, где расхождения с теорией видны особенно резко. Кроме того, следует также иметь ввиду эксперементально установленный факт, что: $\lim_{T\to 0} C_V$, $C_P=0$.

1.2 Непоследовательность классической теории

По теореме о равномерном распределении энергии все степени свободы равноправны. Поэтому достаточно лишь подсичтать полное число степеней свободы, не обращая внимания на их природу. Однако, классическая теория по каким-то причинам учитывает одни и отбрасывает другие степени свободы.

Так, атом одноатомного газа рассматривается как материальная точка с тремя степенями свободы. Но атом - не точка, более того, атом обладает сложной внутренней структурой, вследствии чего обладает числом степеней свободы больше шести. Тогда, если посмотреть на атом с этой точки зрения, согласно классической теории, его C_V должна быть много больше 6 $\frac{\text{кал}}{\text{моль K}}$, но это противоречит фактам.

1.3 Выводы

Таким образом, опытные факты приводят к заключению, что эффективный вклад вносят только некоторые степени свободы. При понижении температуры некоторые степени свободы становятся мало эффективными и, наконец, совсем перестают вносить свой вклад. В таких случаях говорят, что степени свободы "заморожены".

Вышеописанные трудности были преодолены после того, как теория теплоемкости была построена на квантовой основе.

2 Квантовая теория теплоемкостей

2.1 Квантовые законы и простейшие следствия из них

Как доказывается в квантовой механике, внутренняя энергия атомных систем может принимать лишь дискретные значения.

Двухатомная моллекула, когда речь идет о малых колебаниях ее атомов, может рассматриваться как **гармонический осциллятор**. Возможные значения колебательной энергии такой системы представляются формулой:

$$\epsilon_n = \left(n + \frac{1}{2}\right)h\nu,\tag{1}$$

где ν - частота осциллятора, n - целое неотрицательное число, h - постоянная планка.

Из формулы видно, что самому низкому уровню энергии соответствует энергия $\epsilon_0=\frac{1}{2}h\nu$. Такие колебания называются нулевыми. Ближайшим к ϵ_0 является энергетический уровень, отстоящий на $\Delta\epsilon=h\nu$

Допустим теперь, что газ состоит из гармонических осцилляторов (например - двухатомных молекул). Если температура газа достаточно мала, чтобы выполнялось соотношение: $kT \leq h\nu$, то средняя энергия теплового движения будет порядка kT. А значит, такой энергии недостаточно, чтобы возбудить осциллятор, т.е. перевести его с нулевого уровня на ближайший энергетический уровень. Возбуждение может произойти только при столкновении с моллекулой, энергия которой значительно больше средней. Однако, таких моллекул относительно мало, так что npakmuvecku все осцилляторы останутся на нижнем энергетическом уровне.

Такая картина будет сохраняться в некотором диапазоне температур, следовательно, в этом диапазоне колебательная энергия осцилляторов практически не зависит от температуры, а следовательно, эта энергия не влияет на теплоемкость.

Т.о. классическая модель применима только в случае, если выполняется соотношение: $kT \leq h\nu$. Температура

$$T_v = \frac{h\nu}{k} \tag{2}$$

называется **характерестической температурой**. при $T \geq T_v$ колебания осцилляторов существенно влияют на теплоемкость двухатомного газа.

Анологично влияет на теплоемкость газов и вращение молекул. Энергия вращения также квантуется. Ее возможные значения по квантовой механике определяются формулой:

$$\epsilon_l = \frac{h^2}{8\pi^2 I} l(l+1),\tag{3}$$

где I - момент инерции молекулы, а l - целое неотрицательное число. при l=0 вращения не возбуждены. Характеристическая температура для вращения молекул определяется формулой:

$$T_r = \frac{\epsilon_1}{k} = \frac{h^2}{4\pi^2 Ik} \tag{4}$$

 $При\ T>>T_r$ справедлива классическая теория, при $T<< T_r$ вращения не возбуждены и не оказывают влияния на теплоемкость. По той же причине не возбуждены вращения атомов одноатомарных газов.

Вышеописанные соображения применимы к любым квантовым системам. Они показывают, что дискретность энергитических уровней несовместима с классической теоремой о равномерном распределении энергии по степеням свободы. Только при энергии теплового движения kT много больше разности энергий между высшими и низшими энергитическими уровнями, система ведет себя как классическая. Т.е. чем выше температура, тем лучше оправдывается классическая теорема о равномерном распределении энергии по степеням свободы.

2.2 Применение распределения Больцмана

Будем представлять тело, как систему N молекул, колебания которых не связаны друг с другом. Применим к ней закон распределения Больцмана, предпологая, что энергитические уровни дискретны:

$$\bar{\epsilon} = \frac{1}{Z} \int \epsilon e^{-\alpha \epsilon} d\Gamma = -\frac{1}{Z} \frac{dZ}{d\alpha},\tag{5}$$

где $\alpha=\frac{1}{kT},\,d\Gamma$ - элемент пространства скоростей, а Z определяется условием нормировки:

$$Z = \int e^{-\alpha \epsilon} d\Gamma \tag{6}$$

Средняя энергия, приходящаяся на одну молекулу в состоянии термодинамического равновесия, определяется уравнением:

$$\bar{\epsilon} = \frac{1}{N} \sum_{i=0}^{\infty} N_i \epsilon_i \tag{7}$$

С учетом распределения Больцмана и условия нормировки получим:

$$\bar{\epsilon} = \frac{\sum_{i=0}^{\infty} \epsilon_i e^{-\alpha \epsilon_i}}{\sum_{i=0}^{\infty} e^{-\alpha \epsilon_i}},$$
(8)

или

$$\bar{\epsilon} = -\frac{1}{Z} \frac{dZ}{d\alpha} = -\frac{d}{d\alpha} \left(\ln Z \right), \tag{9}$$

где введено обозначение

$$Z = \sum_{i=0}^{\infty} e^{-\alpha \epsilon_i} = \sum_{i=0}^{\infty} e^{-\frac{\epsilon_i}{kT}}$$
(10)

Выражение (10) называется статистической суммой или суммой состояний.

Рассмотрим далее систему одномерных гармонических осцилляторов. Уровни энергии гармонического осциллятора определяются формулой (1). Тогда для суммы состояний получаем:

$$Z = e^{\left(\frac{-\alpha h\nu}{2}\right)} \sum_{i=0}^{\infty} e^{-i\alpha h\nu} = \frac{e^{\left(\frac{-\alpha h\nu}{2}\right)}}{1 - e^{-\alpha h\nu}},\tag{11}$$

а для средней энергии осциллятора:

$$\bar{\epsilon} = -\frac{d}{d\alpha} \left(\ln Z \right) = \frac{h\nu}{2} + \frac{h\nu}{e^{\left(\frac{h\nu}{kT}\right)} - 1} \tag{12}$$

Слагаемое $\frac{h\nu}{2}$ есть **нулевая энергия** гармонического осциллятора. Она не зависит от температуры и не имеет отношения к тепловому движению. В теории теплоемкости ее можно опустить, тогда получим:

$$\bar{\epsilon} = \frac{h\nu}{e^{\left(\frac{h\nu}{kT}\right)} - 1} \tag{13}$$

Согласно этой формуле, елси $h\nu << kT$, что имеет место при высоких температурах, то $e^{\left(\frac{h\nu}{kT}\right)} \approx 1 + \frac{h\nu}{kT}$. В этом приближении формула (13) переходит в классическую: $\bar{\epsilon} = kT$.

2.3 Квантовая теория теплоемкости Эйнштейна

Формула (13) была положена Эйнштейном в основу квантовой теории теплоемкости твердых тел. Он пользовался той же моделью твердого тела, какая применялась в классической теории. Атомы кристаллической решетки рассматривались как гармонические осцилляторы, совершающие тепловые колебания около положений равновесия с одной и той же частотой ν . Осцилляторы считаются трехмерными. На каждую степень свободы приходится средняя энергия тепловых колебанй $\bar{\epsilon}$, а на каждый атом - $3\bar{\epsilon}$. Тогда внутренняя энергия одного моля определяется выражением:

$$U = 3N_A \overline{\epsilon} = \frac{3N_A h \nu}{e^{\left(\frac{h\nu}{kT}\right)} - 1} \tag{14}$$

Тогда можно получить выражение для молярной теплоемкости кристаллической решетки твердых тел:

$$C_V = \frac{dU}{dT} = \frac{3R\left(\frac{h\nu}{kT}\right)^2}{\left(e^{\left(\frac{h\nu}{kT}\right)} - 1\right)^2} \cdot e^{\left(\frac{h\nu}{kT}\right)} -$$
формула Эйнштейна (15)

При высоких температурах, когда $\frac{h\nu}{kT} << 1$, она переходит в классическую формулу:

$$C_V = 3R \tag{16}$$

В другом предельном случае низких температур, когда $\frac{h\nu}{kT} >> 1$, можно пренебречь единицей в знаменателе и получить:

$$C_V = 3R \left(\frac{h\nu}{kT}\right)^2 \cdot e^{-\left(\frac{h\nu}{kT}\right)} \tag{17}$$

При $T \to 0$ выражение (17) стремится к 0, что согласуется с теоремой Нернста.

2.4 Недостатки квантовой теории тепоемкости Эйнштейна

Несмотря на описанные выше преимущества квантовой теории тепоемкости Эйнштейна, она дает только качественное согласие с опытом. Например, при $T \to 0$, $C_V \to 0$ слишком быстро (практически экспоненциально). Опыт же показывает, что в действительности зависимость степенная. При остальных температурах, у данной формулы есть те же недостатки. Однако, это связано не с существом квантовой теории, а с упрощением расчета, в котором предпологается, что все гармонические осцилляторы колеблются с одной и той же частотой.

На самом деле кристаллическую решетку следует рассматривать как связанную систему взаимодействующих частиц. Малые колебания такой системы получаются в результате наложения многих гармонических колебаний с различными частотами. Число частот очень велико - порядка числа степеней свободы системы. При вычислении теплоемкости тело можно рассматривать как систему гармонических осцилляторов, но с различными частотами. Тогда задача сводится к вычислению этих частот, т.е. к отысканию так называемого спектра частот. На это указывал еще сам Эйнштейн.

Задача о спектре частот кристаллической решетки твердого тела рассматривалась Дебаем, а затем Борном и Карманом.

Teopus Эйнштейна, разумеется, применима и к колебательной теплоемкости двухатомных или многоатомных газов. Аналогично, можно построить и теорию вращательной теплоемкости. Однако, вычисления будут сложнее из-за более сложной структуры энергетического спектра.