Zenilton Patrocínio

Emparelhamento em Grafo Bipartido

Seja G = (V, E) um grafo bipartido com uma partição (X, Y) dos vértices.

Dizemos que temos um casamento de X em Y quando o casamento satura Y (não necessariamente X).

Método para Grafo Bipartido Não Ponderado

Método para Grafo Bipartido Não Ponderado

Método para obtenção de caminho M-aumentante em grafo bipartido

- 1. Dado um grafo não direcionado e bipartido $G = (V_1 \cup V_2, E)$ e um emparelhamento $M \subseteq E$, construir grafo direcionado $G' = (V_1 \cup V_2, E')$, em que, para $v \in V_1$ e $w \in V_2$, :
 - a. se a aresta $\{v, w\} \not\in M$ então $(v, w) \in E'$; ou
 - b. se a aresta $\{v, w\} \in M$ então $(w, v) \in E'$.
- 2. Se existir um caminho P em G' de um vértice livre em V_1 para um vértice livre em V_2 então P corresponde a caminho M-aumentante

Método para Grafo Bipartido Não Ponderado

Método para Grafo Bipartido Ponderado

O que fazer na presença de pesos nas arestas?

O problema da **atribuição linear** consiste em determinar a maneira ótima de se atribuir *n* tarefas à *n* agentes.

Essa designação deve ser feita de modo que nenhuma tarefa deixe de ser executada e que todos os agentes tenham uma tarefa atribuída a eles.

Em outras palavras, consistem em atribuir o "melhor agente" à "melhor tarefa".

Problema

Em uma fábrica temos 3 operários e 3 máquinas.

Pelo conhecimento e pelas características de cada operário o custo por hora é diferente.

Qual a atribuição de menor custo?

Operário\Máquina	1	2	3
1	3	5	6
2	5	4	2
3	2	3	4

Emparelhamento em grafo bipartido com o menor custo

Operário\Máquina	1	2	3
1	3	5	6
2	5	4	2
3	2	3	4

Ao atribuir uma máquina para cada operário estamos tomando 3 elementos da matriz tal que:

- Cada elemento está em uma linha diferente e uma coluna diferente;
- Cada linha e coluna contém exatamente 1 elemento.

Seja $x_{i,j}$ indica a seleção do elemento da linha i e coluna j. Uma solução: $x_{1,1}$, $x_{2,2}$, $x_{3,3}$, com custo 11. Solução é ótima? Não

Atribuição Linear – Formulação Matemática

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

sujeito a:

$$\sum_{j=1}^{n} x_{ij} = 1, \forall i = 1, ..., n$$

$$\sum_{i=1}^{n} x_{ij} = 1, \forall j = 1, ..., n$$

$$x_{ij} \ge 0, \forall i = 1, ..., n,$$

 $\forall j = 1, ..., n$

Método Húngaro

Método de Húngaro

Origem em 1935, por Kuhn, porém, inventado em 1931, pelos húngaros Egerváry e König.

Resolve o problema de atribuição linear em tempo polinomial, normalmente, $O(n^3)$, utilizando transformações da matriz de custo.

3	5	6
5	4	2
2	3	4

Método de Húngaro – Transformação

Teorema: Se um número real é somado ou subtraído de todas as entradas de uma linha ou coluna, então uma alocação ótima para a matriz resultante é também uma alocação ótima para a matriz original.

Ao diminuir os valores nas linhas e colunas, estamos comparando-as com valores relativos.

Método de Húngaro – Solução Viável

Teorema de König: Se o número mínimo de traços que atravessam todos os zeros for exatamente n, temos uma alocação possível para cada linha ou coluna.

Interpretação: Se tivermos n traços, então haverá pelo menos n elementos zero distribuídos conforme necessário, e consequentemente, uma atribuição ótima.

Método de Húngaro – Solução Inviável

Solução inviável, mais zeros necessários.

Operação de viabilização: Identificamos o valor do menor elemento não riscado e o subtraímos em todos os elementos não riscados. Para elementos riscados duas vezes, adicionamos esse mesmo valor.

Método de Húngaro – Solução Inviável

Matriz Original

Solução inviável, mais zeros necessários.

Operação de viabilização: Identificamos o valor do menor elemento não riscado e o subtraímos em todos os elementos não riscados. Para elementos riscados duas vezes, adicionamos esse mesmo valor.

Método de Húngaro – Algoritmo

- 1. Identificar o valor mínimo por linha e o subtrair dos elementos da linha
- 2. Identificar o valor mínimo por coluna e o subtrair dos elementos da coluna
- 3. Identificar o número mínimo de riscos para cobrir todos os zeros da matriz
- 4. <u>enquanto</u> (número mínimo de riscos < n) <u>efetuar</u> // Sem solução viável
 - a. Identificar o valor mínimo α dos elementos não riscados
 - b. Subtrair α dos elementos não riscados e adicionar α aos cobertos por dois riscos
 - c. Identificar o número mínimo de riscos para cobrir todos os zeros
- 5. Identifique a solução ótima na solução viável encontrada

Método de Húngaro – Observações

O método Húngaro só resolve problemas de minimização em matrizes quadradas.

Porém, o algoritmo pode ser adaptado para problemas de maximização, bastando multiplicar a matriz de custos por -1.

Além disto, matrizes não quadradas podem se tornar quadradas pela inclusão de linhas/colunas zeradas.

