Cálculo integral

Contenidos

1	Seri	ies Numéricas e Integrales Impropias
	1.1	Series numéricas
	1.2	Series de números positivos
	1.3	Series absolutamente convergentes y condicionalmente convergentes
		Teorema de Riemman para series condicionalmente convergentes
	1.4	Aplicación: Series de potencias
		Teorema de Cauchy-Hadamard
		1.4.1 Series de números complejos
	1.5	Integrales impropias: definición y ejemplos
_	<u>.</u> .	
2	Inte	egración multiple
	2.1	Integral de Riemann sobre rectangulos compactos

1 Series Numéricas e Integrales Impropias

1.1 Series numéricas

Definición 1.1.1

Una serie de números reales es una pareja de sucesiones de números reales $(a_n)_{n\geq 0}$, $(s_n)_{n\geq 0}$, relacionadas por

$$s_n = \sum_{i=0}^n a_n$$

Denominaremmos término n-ésimo de la serie al elemento a_n y llamaremos suma parcial n-ésima de la serie a s_n

Observación Las sumas parciales definen los términos

$$a_0 = s_0$$
 $a_n = s_n - s_{n-1}$ $(n \ge 1)$

Definición 1.1.2

Llamaremos suma de una serie a

$$s = \lim s_n = \lim_{n \to \infty} \sum_{k=0}^n a_n$$

suponiendo que existe

Observación Denotaremos $s = \sum_{n \geq 0} a_n = \sum_{n \geq 0}^{\infty} a_n$. Esta misma notación nor servirá para representar la serie.

Definición 1.1.3

Diremos que una serie $\sum a_n$ es convergente o divergente si lo es la sucesión de sumas parciales

- convergente $\lim s_n \in \mathbb{R}$
- divergente $\lim s_n = \pm \infty$
- oscilante $\nexists \lim s_n$

Observación 1.1.4 Una serie no tiene por qué comenzar por el índice 0, y por tanto, podemos considerar series con términos a_n donde $n \ge n_0$. En tal caso, las sumas parciales son $s_n = \sum_{k=n_0}^n a_n$, y la suma (si existe) $\sum_{k=n_0}^{\infty} a_n = \lim_{n\to\infty} \sum_{k=n_0}^n a_n$.

Definición 1.1.5

Sea $r \in \mathbb{R}$. Llamaremos serie geométrica de razón r a la serie

$$\sum_{n>0} r^n$$

Proposición

La serie geométrica es convergente si y solo si |r| < 1, en tal caso la suma es

$$\sum_{n>0} r^n = \frac{1}{1-r}$$

Demostración

Primero, calculamos el término n-ésimo

$$s_n = 1 + r + \dots + r^n = \begin{cases} n+1 & \text{si } r = 1\\ \frac{r^{n+1}-1}{r-1} & \text{si } r \neq 1 \end{cases}$$

- Si r = 1, $\lim s_n = \lim_{n \to \infty} n + 1 = \infty$
- Si |r| > 1, $\lim s_n = \lim_{n \to \infty} \frac{r^{n+1} 1}{r 1} = \infty$
- Si |r| < 1, $\lim s_n = \lim_{n \to \infty} \frac{r^{n+1} 1}{r 1} = \frac{-1}{r 1}$
- $\bullet\,$ Si $r=-1,\,s_n=0$ si n par y $s_n=1$ si n impar. Por lo tanto la serie es oscilante

Proposición 1.1.6

Si $\sum a_n$ es convergente, entonces $\lim a_n = 0$

Demostración

Sabemos que $a_n = s_n - s_{n-1}$, por lo tanto $\lim a_n = \lim (s_n - s_{n-1})$, como $\lim s_n$ existe (y por lo tanto también $\lim s_{n-1}$)

$$\lim a_n = \lim (s_n - s_{n-1}) = \lim s_n - \lim s_{n-1} = 0$$

Proposición 1.1.7 (Criterio de Cauchy para series)

La serie $\sum a_n$ es convergente si $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tal que

$$m, n \ge n_0 \implies |s_m - s_n| = |a_m + a_{m-1} \cdots + a_n| < \varepsilon$$

Proposición 1.1.8 (linealidad)

Sean $\alpha, \beta \in \mathbb{R}$ y sean $\sum a_n$ y $\sum b_n$ series convergentes. Entonces $\sum (\alpha a_n + \beta b_n)$ también lo es y $\sum (\alpha a_n + \beta b_n) = \alpha \sum a_n + \beta \sum b_n$.

Proposición 1.1.9

Sean dos sucesiones $(a_n)y$ (b_n) , son iguales salvo en número finito de términos, entonces las series $\sum a_n$ y $\sum b_n$ tienen la misma convergencia.

Demostración

Sea $d_n = b_n - a_n$, que vale 0 salvo en número finito de términos

• Si $\sum a_n$ converge $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ converge

• Si $\sum a_n$ diverge $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ diverge

• Si $\sum a_n$ oscila $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ oscila

Proposición 1.1.10 (Asociatividad)

Sea $\sum a_n$ una serie y $(n_k)_{k\geq 0}$ una sucesión estrictamente creciente de números naturales. Definimos

$$b_0 = a_0 + \dots + a_{n_0}$$
 $b_k = a_{(n_{k-1}+1)} + \dots + a_{n_k}$

Si existe la suma de $\sum a_n$, entonces también existe la suma de $\sum b_k$ y son iguales.

Demostración

Sea $A_n = \sum_{i=0}^n a_i$ y $B_k = \sum_{i=0}^k b_i$, por la definición anterior se tiene que $B_k = A_{n_k}$ y por lo tanto (B_k) es una sucesión parcial de (A_n) , lo cual implica que si (A_n) converge, (B_k) también y lo hace al mismo número.

1.2 Series de números positivos

Proposición 1.2.1

Si una serie $\sum a_n$ es de *términos positivos* $(a_n \geq 0)$ entonces la sucesión (s_n) de sumas parciales es *creciente*, y por tanto, siempre tiene límite:

$$\sum a_n = \lim s_n = \sup_{n \in \mathbb{N}} s_n$$

Este puede ser finito (si la sucesión de sumas parciales es acotada) o infinito (en caso contrario).

Proposición 1.2.2 (Criterio de comparación directa)

Sean $\sum a_n$ y $\sum b_n$ series de términos positivos. Si $\exists n_0$ tal que $a_n \leq b_n$ ($\forall n \geq n_0$). Entonces

$$\sum_{n=n_0}^{\infty} a_n \le \sum_{n=n_0}^{\infty} b_n$$

Por tanto, la convergencia de $\sum b_n$ implica la de $\sum a_n$ y la divergencia de $\sum a_n$ implica la de $\sum b_n$.

Demostración

Por el enunciado

$$\sum_{i=n_0}^n a_i \le \sum_{k=n_0}^n b_k \implies \sum_{i=n_0}^\infty a_i \le \sum_{k=n_0}^\infty b_k$$

Los términos a_0, \dots, a_{n_0} se pueden añadir al sumatorio y no alteran la convergencia.

Definición

Llamamos serie harmónica a la serie

$$\sum_{n>1} \frac{1}{n}$$

Definición 1.2.3 (Serie de Riemman)

Sea $p \in \mathbb{R}$. Llamaremos serie harmónica generalizada o serie de Riemman de parámetro p a la serie

$$\sum_{n\geq 1} \frac{1}{n^p}$$

Proposición

La serie de Riemman es convergente si y solo si p > 1.

Demostración

Distinguiremos entre varios casos

• Si p=1. Suponemos que la serie es convergente con suma s

$$s = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots > \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = s$$

absurdo ya que s > s.

• Si p < 1.

$$n^p \le n \implies \frac{1}{n^p} \ge \frac{1}{n}$$

y por comparación directa con la serie harmónica, diverge.

• Si p > 1.

$$\sum_{n\geq 1} \frac{1}{n^p} = 1 + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right) + \dots \le$$

$$\le 1 + \left(\frac{1}{2^p} + \frac{1}{2^p}\right) + \left(\frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p}\right) = 1 + \frac{1}{2^{p-1}} + \frac{1}{2^{2(p-1)}} + \dots$$

que es una serie geométrica de razón $\frac{1}{2^{p-1}} < 1$ y por lo tanto convergente.

Proposición 1.2.4 (Criterio de comparación en el límite)

Sean $\sum a_n$ y $\sum b_n$ series de términos estrictamente positivos. Suponemos que existe el límite

$$\lim \frac{\sum a_n}{\sum b_n} = l \in [0, +\infty]$$

- Si $l < +\infty$. $\sum b_n$ converge $\implies \sum a_n$ converge y $\sum a_n$ diverge $\implies \sum b_n$ diverge.
- Si l>0. $\sum a_n$ converge $\Longrightarrow \sum b_n$ converge y si $\sum b_n$ diverge $\Longrightarrow \sum a_n$ diverge.
- Si $0 < l < +\infty$. Entonces las dos series tienen el mismo caracter.

Demostración

Provaremos cada caso de manera individual

• Caso $l < +\infty$. Fijado $\varepsilon > 0$, por definición de límite, existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_n}{b_n} < l + \varepsilon \implies a_n < (l + \varepsilon)b_n$$

y el resultado queda provado por comparación directa.

• Caso l > 0. Se deduce del primer caso, considerando

$$\lim \frac{b_n}{a_n} = \frac{1}{l}$$

 \bullet Caso $0 < l < +\infty$. Se trata de una conjunción de los casos anteriores

Lema 1.2.5 Sea $\sum a_n$ una serie de términos positivos.

• Suponemos que hay $n_0 \in \mathbb{N}$ y r < 1 tal que

$$n \ge n_0 \implies a_n^{1/n} < r$$

entonces $\sum a_n < +\infty$

• Suponemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \ge 1$$

entonces $\sum a_n = +\infty$

Demostración

Provaremos cada caso por separado

- $a_n^{1/n} < r \implies a_n < r^n$ que es la serie geométrica de razón r < 1, de modo que por comparación directa el resultado queda demostrado.
- $a_n^{1/n} \ge 1 \implies a_n \ge 1$ y por lo tanto diverge.

Proposición 1.2.6 (Criterio de la raíz de Cauchy)

Sea $\sum a_n$ una serie de términos positivos. Suponemos que existe $\lim a_n^{1/n} = \alpha$, entonces, si $\alpha > 1$ la serie diverge y si $\alpha < 1$ la serie converge.

Demostración

Demostraremos cada caso por separado

• Caso $\alpha < 1$. Sea $\alpha < r < 1$. Existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \le r$$

Y el resultado queda provado aplicando el lema anterior.

• Caso $\alpha > 1$. Existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \ge 1$$

y aplicamos el lema anterior.

Lema 1.2.7 Sea $\sum a_n$ una serie de términos estrictamente positivos.

• Suponemos que hay $n_0 \in \mathbb{N}$ y r < 1 tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \le r$$

entonces $\sum a_n < +\infty$

• Suponemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \ge 1$$

entonces $\sum a_n = +\infty$

Demostración

Separaremos los casos.

 $\frac{a_n+1}{a_n} \le r \implies a_{n+1} \le ra_n \implies a_n \le Cr^n \quad (n \ge n_0)$

donde $C = \frac{a_{n_0}}{r^{n_0}}$ y por el criterio de comparación directa $\sum a_n$ converge.

• $\frac{a_{n+1}}{a_n} \ge 1 \implies a_{n+1} \ge a_n \implies a_n$ es creciente $\implies \sum a_n$ diverge

Proposición 1.2.8 (Criterio del cociente de Alembert)

Sea $\sum a_n$ una serie de términos estrictamente positivos. Suponemos que existe $\lim \frac{a_{n+1}}{a_n} = \alpha$, entonces

- Si $\alpha > 1$ la serie diverge
- Si $\alpha < 1$ la serie converge

Demostración

Separamos los dos casos

• Si $\alpha < 1$. Sea $\alpha < r < 1$ entonces $\exists n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \le r$$

y aplicamos el lema anterior.

• Si $\alpha > 1$. Entonces $\exists n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \ge 1$$

y aplicamos el lema anterior.

Ejemplo

Estudiar la convergencia de

- $\sum_{n\geq 0} \frac{1}{n!}$. n! crece más que n^2 $(n!>n^2) \Longrightarrow \frac{1}{n!} < \frac{1}{n^2}$ que es la serie de Riemman de parámetro 2 (convergente). Por tanto, $\sum_{n\geq 0}^{\infty} \frac{1}{n!}$ es convergente.
- $\sum \frac{x^n}{n!}$ para x > 0.

$$\lim_{n \to \infty} \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} = \lim_{n \to \infty} \frac{x^{n+1}n!}{x^n(n+1)n!} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1$$

Por lo tanto, aplicando el criterio del cociente de Alembert, la serie coverge.

• $\sum \alpha^{n+\sqrt{n}}$

$$\lim_{n \to \infty} \alpha^{\frac{n + \sqrt{n}}{n}} = \lim_{n \to \infty} \alpha^{1 + \frac{1}{\sqrt{n}}} = \alpha$$

Por lo tanto, por el criterio de la raíz, $\begin{cases} \alpha < 1 \text{ convergente} \\ \alpha > 1 \text{ divergente} \end{cases}$. Si $\alpha = 1$, la serie es $\sum 1^{n+\sqrt{n}} = \sum 1 \text{ que es divergente}.$

Observación 1.2.9 Los criterios anteriores no deciden cuando $\alpha = 1$. Como $a_{n+1}/a_n \to \alpha$ implica que $a_n^{1/n} \to \alpha$, si el criterio del cociente no decide, entonces el de la raíz tampoco.

Proposición 1.2.10 (Criterio de Raabe)

Sea $\sum a_n$ una serie de términos estrictamente positivos tal que existe el límite

$$L = \lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right)$$

7

Si L > 1, la serie $\sum a_n$ es convergente. Si L < 1, la serie $\sum a_n$ es divergente.

Proposición (Criterio de condensación)

Sea (a_n) una sucesión de números positivos decreciente. Entonces

$$\sum_{n=0}^{\infty} a_n \text{ converge } \iff \sum_{n=0}^{\infty} 2^n a_{2^n} \text{ converge}$$

Proposición (Criterio logarítmico)

Sea $\sum a_n$ una serie de términos positivos tal que existe el límite

$$L = \lim_{n \to \infty} \frac{-\ln(a_n)}{\ln(n)} = \lim_{n \to \infty} \frac{\ln\left(\frac{1}{a_n}\right)}{\ln(n)}$$

Si L > 1, la serie $\sum a_n$ es convergente. Si L < 1, la serie $\sum a_n$ es divergente.

Proposición 1.2.11 (Criterio de la integral)

Sea $n_0 \in \mathbb{N}$ y $f: [n_0, +\infty) \to \mathbb{R}$ positiva, localmente integrable y decreciente. Consideramos $a_n = f(n) \ (n \ge n_0)$ entonces

- i) La serie $\sum a_n$ y la integral impropia $\int_{n_0}^{+\infty} f$ tienen el mismo carácter.
- ii) Para $N \geq n_0$

$$\sum_{n>n_0}^{\infty} a_n = \sum_{n=n_0}^{N-1} + \int_N^{+\infty} f + \varepsilon_n$$

donde $\varepsilon_n \in [0, a_n]$

Ejemplo

- $\sum \frac{1}{n^{\alpha}}$ tiene el mismo carácter que $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$ (convergente $\iff \alpha > 1$)
- Calcular $\sum_{n\geq 1} \frac{1}{n^{1.01}}$ con error $< 10^{-3}$.

Necesitamos que

$$\frac{1}{N^{1.01}} < 10^{-3} \implies N > 1000^{1/1.01} \implies N \ge 934$$

Calculamos ahora

$$\sum_{n=1}^{933} \frac{1}{n^{1.01}} + \int_{934}^{+\infty} \frac{\mathrm{d}x}{x^{1.01}} \simeq 100.577 \simeq \sum_{n>1} \frac{1}{n^{1.01}}$$

Proposición 1.2.12

Sea $\sum a_n$ una serie de términos positivos. Dada cualquier permutación $\sigma \colon \mathbb{N} \to \mathbb{N}$, la serie $\sum a_{\sigma(n)}$ tiene la misma suma que $\sum a_n$.

Demostración

Sea $A_n = \sum_{k=0}^n a_k$ y $B_n = \sum_{k=0}^n a_{\sigma(k)}$ y sean $A = \lim A_n$ y $B = \lim B_n$. Sea $m \in \mathbb{N}$, entonces $\exists n \in \mathbb{N}$ tal que

$$\{0, 1, \dots, m\} \le \{\sigma(0), \sigma(1), \dots, \sigma(n)\}$$

ya que σ es suprayectiva. Entonces $a_0 + a_1 + \cdots + a_m \leq a_{\sigma(0)} + a_{\sigma(1)} + \cdots + a_{\sigma(n)}$ por lo tanto, $A_m \leq B_n \implies A \leq B$. Haciendo el mismo razonamiento para σ^{-1} (biyectiva), obtenemos que $B \leq A$. Y por lo tanto, $A = \sum a_n = \sum a_{\sigma(n)} = B$.

1.3 Series absolutamente convergentes y condicionalmente convergentes

Definición 1.3.1

Diremos que una serie $\sum a_n$ es absolutamente convergente, si la serie $\sum |a_n|$ es convergente.

Proposición 1.3.2

Toda serie absolutamente convergente es convergente.

Demostración

Aplicamos criterio de Cauchy para series a $\sum |a_n|$: $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N}$ tal que

$$m > n \ge n_0 \implies ||a_{n+1}| + \dots + |a_m|| < \varepsilon \implies |a_{n+1}| + \dots + |a_m| < \varepsilon$$

De donde se deduce que

$$|a_{n+1} + \dots + a_n| < |a_{n+1}| + \dots + |a_m| < \varepsilon$$

(por la desigualdad triangular). Y por lo tanto, $\sum a_n$ cumple el criterio de Cauchy.

Definición 1.3.3

Una serie convergente, que no es absolutamente convergente, se dice que es condicionalmente convergente.

Ejemplo

La serie armónica alternada $\sum \frac{(-1)^n}{n}$ es condicionalmente convergente.

Proposición 1.3.4

Si $\sum a_n$ y $\sum b_n$ son absolutamente convergentes, y $\lambda \in \mathbb{R}$, entonces $\sum (a_n + b_n)$ y $\sum \lambda a_n$ son absolutamente convergentes.

Definición 1.3.5

Sea $a \in \mathbb{R}$. Definimos a_+ (la parte positiva de a) como $a_+ = \max(a, 0)$, asimismo, definimos la parte negativa de a como $a_- = \max(-a, 0)$.

Observación Dado un a, podemos expresar $a = a_+ - a_-$ y $|a| = a_+ + a_-$

Observación Dada $f: X \to \mathbb{R}$, podemos hacer exactamente lo mismo, $(f = f_+ - f_-, |f| = f_+ + f_-)$

Ejemplo

Lema 1.3.6 Sea (a_n) una sucesión de números reales. Sean (p_n) y (q_n) sus partes positiva y negativa (respectivamente).

- i) $\sum a_n$ converge absolutamente $\iff \sum p_n, \sum q_n$ son convergences.
- ii) Si $\sum a_n$ es condicionalmente convergente, entonces $\sum p_n$ y $\sum q_n$ son divergentes

Demostración

i) Se tiene que

$$\sum_{k=0}^{n} |a_k| = \sum_{k=0}^{n} p_k + \sum_{k=0}^{n} q_k$$

Si $\sum |a_n|$ converge $\implies \sum p_n$ y $\sum q_n$ tienen el mismo carácter, como ambas son series de términos positivos, $\sum a_n$ y $\sum b_n$ convergen.

El reciproco es directo por linealidad.

ii) Se tiene que

$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{n} p_k - \sum_{k=0}^{n} q_k$$

 $\sum p_n$ y $\sum q_n$ no pueden ser las dos convergentes por i y tampoco puede ser que solo una de las dos sea divergente, porque entonces $\sum a_n$ divergería.

Proposición 1.3.7

Si una serie es absolutamente convergente, entonces todas sus series reordenadas son convergentes con la misma suma.

Es decir, $\forall \sigma \colon \mathbb{N} \to \mathbb{N}$ permutación, $\sum a_n = \sum a_{\sigma(n)}$

Demostración

Primero, escribimos

$$a_n = p_n - q_n \stackrel{a_n \text{ abs. conv.}}{\Longrightarrow} \sum a_n = \sum p_n - \sum q_n$$

Consideramos ahora $\sigma \colon \mathbb{N} \to \mathbb{N}$ permutación, entonces, $\sum a_{\sigma(n)}$ también es absolutamente convergente ($\sum |a_{\sigma n}| = \sum |a_n|$ reordenando términos positivos). Ahora tenemos que

$$\sum a_{\sigma(n)} = \sum p_{\sigma(n)} - \sum q_{\sigma(n)} \underset{\text{positives}}{\text{términos}} \sum p_n - \sum q_n = \sum a_n$$

Teorema de Riemman para series condicionalmente convergentes (1.3.8)

Sea $\sum a_n$ una serie condicionalmente convergente. $\forall s \in [-\infty, +\infty]$ existe una reorenación de la serie $\sigma \colon \mathbb{N} \to \mathbb{N}$ (permutación) tal que $\sum a_{\sigma(n)} = s$.

Definición 1.3.9

Una serie alternada es una serie donde los términos cambian de signo alternativamente. Es decir, una serie de la forma $\sum (-1)^n a_n$ donde $a_n \geq 0$.

Proposición 1.3.10 (Criterio de Leibnitz)

Si (a_n) es una sucesión descendiente de términos positivos con lim $a_n = 0$, entonces $\sum (-1)^n a_n$ es convergente.

Además, si S_N es la N-ésima suma parcial de $\sum (-1)^n a_n$ y S es su suma, $|S - S_n| \le a_{n+1}$.

Demostración

Consideramos la serie (S_{2N})

$$S_{2N+2} = S_{2N} + \overbrace{\left(a_{2N+1} + a_{2N+2}\right)}^{\leq 0} \leq S_{2N}$$

Por lo tanto, (S_{2N}) es descendiente, acotada inferiormente por $a_0 - a_1$. Consideramos ahora (S_{2N+1})

$$S_{2N+3} = S_{2N+1} + \overbrace{(a_{2N+2} + a_{2N+3})}^{\geq 0} \geq S_{2N+1}$$

Con lo cual (S_{2N+1}) es creciente. Además se tiene que

$$a_0 - a_1 = S_1 \le S_{2N+1} \le S_{2N} \le S_0 = a_0 \tag{1}$$

Con lo cual deducimos que tanto (S_{2N}) como (S_{2N+1}) son convergentes (monótonas y acotadas). Por último, tenemos que

$$\lim(S_{2N} - S_{2N-1}) = \lim a_{2N} = 0 \implies \lim S_{2N} = S$$

$$\lim S_{2N} = S$$

$$\lim S_{2N+1} = S$$

Para acabar, sabemos por (1) que S está dentro del intervalo de extremos S_N y S_{N+1} de longitud a_{N+1} , por lo tanto $|S-S_N| \le a_{N+1}$

Ejemplo

La serie harmónica alternada, $\sum \frac{(-1)^n}{n}$ es convergente por el criterio de Laibnitz.

Hay otros criterios de convergencia para series cualesquiera, entre los cuales destaca el criterio de Dirichlet.

Proposición 1.3.11 (Critero de Dirichlet)

Sean (a_n) y (b_n) dos sucesiones numéricas. Suponemos que

- i) las sumas parciales s_n de la serie $\sum a_n$ están acotadas.
- ii) la sucesión (b_n) es positiva y decreciente con límite 0.

Entonces la serie $\sum a_n b_n$ es convergente.

1.4 Aplicación: Series de potencias

Definición 1.4.1

Una serie de potencias (centrada en 0) es una expresión

$$\sum_{n\geq 0} a_n x^n$$

donde a_n son los coeficientes de la serie.

Lema 1.4.2 Sea $\sum a_n x^n$ una serie de potencias. El conjunto de los $r \geq 0$ tales que $\sum |a_n| r^n$ converge es un intervalo que contiene al 0.

Demostración

Si $0 \le s \le r$ y $\sum |a_n| r^n$ converge, entonces $\sum |a_n| s^n$ converge también por comparación directa $(|a_n| s^n \le |a_n| r^n)$ y $\sum |a_n| 0^n$ converge a 0 trivialmente.

Definición 1.4.3

Sea $\sum a_n x^n$ una serie de potencias y sea I el intervalo de los $r \geq$ tales que $\sum |a_n| r^n$ converge. Llamamos radio de convergencia de la serie a R el extremo superior del intervalo I. Denominamos dominio de convergencia de la serie al intervalo (-R,R)

Observación La serie puede converger en los puntos frontera del dominio de convergencia.

Observación Los casos extremos corresponden a R = 0 (la serie solo converge para x = 0) y $R = +\infty$ (la serie converge para todo x).

Teorema de Cauchy-Hadamard (1.4.4)

Sea $\sum a_n x^n$ una serie de potencias. Su radio de convergencia R viene dado por

$$\frac{1}{R} = \lim \sup |a_n|^{1/n}$$

La serie de potencias es absolutamente convergente si |x| < R y es divergenete si |x| > R.

Observación A priori no se puede afirmar nada cuando |x| = R.

Demostración

Separaremos la demostración en varios casos

• Caso $0 < R < +\infty$. Sea 0 < |x| < R. Existe C < 1 tal que

$$|x| < CR \implies \frac{1}{R} < \frac{C}{|x|}$$

Por lo tanto, si n es suficientemente grande

$$|a_n|^{1/n} \le \frac{C}{|x|} \implies |a_n x^n| \le C^n$$

Como C^n es la serie geométrica de razón C < 1, la serie converge.

Sea ahora |x| > R, tenemos que $\frac{1}{R} > \frac{1}{|x|}$. Hay infinitos n tal que

$$|a_n|^{1/n} > \frac{1}{|x|} \implies |a_n x^n| > 1$$

Por lo tanto $a_n x^n$ no tiende a 0 y por lo tanto la serie no converge.

- Caso $R = +\infty$. Entonces $\limsup |a_n|^{1/n} = 0$. Por lo tanto, para n suficientemente grande $\exists C < 1$ tal que $|a_n|^{1/n} < \frac{C}{|x|} \Longrightarrow |a_n x^n| < C^n$ y por lo tanto la serie converge.
- Caso R = 0. Entonces $\forall x$ hay infinitos n tales que $|a_n|^{1/n} > \frac{1}{|x|} \implies |a_n x^n| > 1 \neq 0$ y por lo tanto, la serie diverge.

Observación 1.4.5 El radio de convergencia también se puede calcular con las expresiones

$$\frac{1}{R} = \lim |a_n|^{1/n}$$
 $\frac{1}{R} = \lim \frac{|a_{n+1}|}{|a_N|}$

Suponiendo que los límites existan.

Ejemplo

- $\sum n! x^n$, $\frac{1}{R} = \lim \frac{(n+1)!}{n!} = \lim (n+1) = +\infty \implies R = 0$
- $\sum x^n$, $\frac{1}{R} = \lim 1^{1/n} = 1^0 = 1 \implies R = 1$
- $\sum \frac{x^n}{n!}$, $\frac{1}{R} = \lim \frac{n!}{(n+1)!} = \lim \frac{1}{n+1} = 0 \implies R = +\infty$
- Las $\sum_{n\geq 0} x^n$, $\sum_{n\geq 1} \frac{x^n}{n}$ y $\sum \frac{1}{n^2}$ tienen R=1, pero tienen comportamiento distinto en la frontera

Definición 1.4.6

Si una serie de potencias $\sum a_n x^n$ tiene radio de convergencia R > 0, define una función

$$f: (-R, R) \to \mathbb{R}$$

 $x \mapsto f(x) = \sum a_n x^n$

Observación Se puede probar que f es continua, integrable y derivable "término" término"

Observación La serie derivada término a término tiene radio de convergencia R, y por lo tanto, la función es de clase \mathcal{C}^{∞}

Demostración

Primero, consideramos la función derivada $f'(x) = \sum_{n\geq 0} na_n x^{n-1} = \sum_{k\geq 0} (k+1)a_{k+1}x^k$, calculamos ahora el raido de convergencia por la definición.

$$\lim \sup |n+1|^{1/n} |a_{n+1}|^{1/n} = \lim \sup |n|^{1/n-1} |a_n|^{1/n-1} = \lim \sup \left(n^{1/n} |a_n|^{1/n}\right)^{\frac{n}{n-1}} = \frac{1}{R}$$

Además

$$f^{(k)}(0) = k! a_k \to f(x) = \sum_{k>0} \frac{f^{(k)}(0)}{k!} x^k$$

Definición

Una función tal que alrededor de cada punto se puede expresar como una serie de potencias (convergente) se llama analítica.

Definición 1.4.7

Sea D un intervalo abierto tal que $0 \in D$ y sea $f: D \to \mathbb{R}$ de clase \mathcal{C}^{∞} . Entonces, f define una serie de potencias

$$\sum_{n>0} \frac{f^{(n)}(0)}{n!} x^n$$

que es la serie de Taylor de f (centrada en 0).

Proposición

Sea D un intervalo abierto tal que $0 \in D$ y sea $f: D \to \mathbb{R}$ de clase \mathcal{C}^{∞} . Suponemos que la serie de Taylor de f tiene radio de convergencia R > 0. Recordando la formula de Taylor $f(x) = P_n(x) + R_n(x)$ (donde P_n es el polinomio de Taylor de grado $\leq n$ de f en 0, y R_n el correspondiente residuo de Taylor), por tanto en $D \cap (-R, R)$

$$f(x) = \sum_{n>0} \frac{f^{(n)}(0)}{n!} x^n \iff \lim_{n\to\infty} R_n(x) = 0$$

Observación 1.4.8 Hay funciones $f: \mathbb{R} \to \mathbb{R}$ de clase \mathcal{C}^{∞} tales que su serie de Taylor (centrada en 0) converge para todo x, pero no coincide con f(x) en ningún punto salvo el origen.

Hay funciones $f: \mathbb{R} \to \mathbb{R}$ de clase \mathcal{C}^{∞} tales que su serie de Taylor (centrada en 0) tiene radio de convergencia 0.

Ejemplo

La función
$$f(x) = \begin{cases} 0 & \text{si } x \le 0 \\ e^{-1/x} & \text{si } x > 0 \end{cases}$$

Su serie de Taylor es nula $(f^{(k)}(0) = 0 \ \forall k \in \mathbb{N})$. Pero f no se anula en ningún entorno de $0 \implies f$ no coincide con la serie de Taylor en ningún entorno de 0.

Proposición 1.4.9 (Algunas series de Taylor importantes)

•
$$e^x = \sum_{n>0} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

•
$$\cos(x) = \sum_{n\geq 0} (-1)^n \frac{x^{2n}}{(2n)!} \quad \forall x \in \mathbb{R}$$

•
$$\sin(x) = \sum_{n>0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \forall x \in \mathbb{R}$$

•
$$\log(1+x) = \sum_{n>1} (-1)^{n+1} \frac{x^n}{n}$$
 $|x| < 1$

•
$$(1+x)^p = \sum_{n\geq 0} \binom{p}{n} x^n$$

$$\begin{cases} x \in \mathbb{R} & \text{si } p \in \mathbb{N} \\ |x| < 1 & \text{si } p \notin \mathbb{N} \end{cases}$$

•
$$a = \sum_{n>0} (-1)^n x^n$$
 $|x| < 1$

Ejemplo

$$\bullet \sum_{n>0} \frac{1}{n!} = e^1 = e$$

•
$$\frac{1}{(1-x)} = \sum_{n>0} x^n \implies \sum_{n>1} nx^{n-1} = \left(\frac{1}{(1-x)}\right)' = \frac{1}{(1-x)^2}.$$

Por lo tanto

$$\sum_{n\geq 1} nx^n = \frac{x}{(1-x)^2}$$

• $f = \arctan(x) \operatorname{con} |x| < 1(\operatorname{a partir de} f'(x) = \frac{1}{1+x^2})$

$$\frac{1}{1+x^2} = \sum_{n\geq 0} (-1)^n x^{2n} \implies \arctan(x) = \int \frac{1}{1+x^2} \, \mathrm{d}x = \sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{2n+1}$$

1.4.1 Series de números complejos

Definición

La definición de serie, de serie convergente y de serie absolutamente convergente, es la misma si, en vez de considerar números reales, consideramos números complejos.

Proposición

Una serie $\sum c_n$ de números complejos es convergente si y solo si lo son separadamente sus partes real e imaginaria.

Proposición

Toda serie $\sum c_n$ de números complejos absolutamente convegente, es convergente.

Observación El estudio de las series de potencias es completamente análogo. En el caso complejo, si la serie de potencias $\sum c_n z^n$ tiene radio de convergencia R ($\frac{1}{R} = \limsup |c_n|^{1/n}$). Entonces, el dominio de convergencia es un disco abierto |z| < R del plano complejo.

Observación La serie de Taylor de la función exponencial real permite definir la exponencial compleja como

$$e^z = \sum_{n>0} \frac{z^n}{n!}$$

para todo $z \in \mathbb{C}$.

Proposición

Tomando $z \in \mathbb{C}$ un imaginario puro, y separando las partes real e imaginaria de las potencias, obtenemos la formula de Euler.

$$e^{ix} = \cos(x) + i\sin(x)$$

En particular para $x = \pi$, se tiene que $e^{i\pi} + 1 = 0$.

1.5 Integrales impropias: definición y ejemplos

2 Integración multiple

2.1 Integral de Riemann sobre rectangulos compactos

Definición 2.1.1

Un rectangulo de \mathbb{R}^n es un producto $A := I_1 \times \cdots \times I_n$ donde $I_j \in \mathbb{R}$ son intervalos que suponemos no degenerados i fitados. Si los I_j son compactos o abiertos, también lo es A.

Definición 2.1.2

La medida o volum *n*-dimensional de A es $vol(A) = long(I_1) \times \cdots \times long(I_n)$ (n = 1 longitud, n = 2 area...).

Definición 2.1.3

Una partición de A es el resultado de hacer una partición \mathcal{P}_j de cada I_j , $\mathcal{P} := \mathcal{P}_1 \times \cdots \times \mathcal{P}_n$. Si $A', A'' \in A$ subrectangulos de una partición, $\mathring{A}' \cap \mathring{A}'' = \emptyset$.