Restless Bandits

Deep Reinforcement Learning

CS698R - Prof. Ashutosh Modi

Group 4 - Brute Force

Members:

Arpit Agarwal 180139

Abhinav Kumar 16907018

Vartika Gupta 180849

Suman Singha 180793

Mentors: Harsh and Samik

Restless Bandit Problem & Motivation

In a nutshell

- A game between a player and an environment
- K arms to pull
- Each arm's reward evolves with an underlying distribution at each time step
- At each time step, player pulls an arm and receives a reward
- Goal: Maximize reward collected at the end of total T time steps

Restless Bandit Problem & Motivation

Has myriad applications in the real world

- Resource and Job Allocation in a Server
- Preventive Health Care Systems
- Dynamic Posted Pricing
- Dynamic UAV Routing
- Channel Detection in a Wireless Network

Dynamic UAV Routing <u>[src]</u> using Weighted RMAB

Related Work

01

Whittle Index & Q-Learning

- 1. On an index policy for restless bandits 11
- Towards Q-learning the Whittle Index for Restless Bandits <a>[2]
- 3. A Reinforcement Learning Algorithm for Restless Bandits [3]
- 4. Learn to Intervene: An Adaptive Learning Policy for Restless Bandits in Application to Preventive Healthcare [4]

03

Convex Optimization

1. Weighted Restless Bandit and Its Applications [5]

02

Bayesian Methods

 Restless-UCB, an Efficient and Low-complexity Algorithm for Online Restless Bandits [6]

04

Deep Reinforcement Learning

- Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks
- 2. Actor-Critic Deep Reinforcement Learning for Dynamic Multichannel Access [8]
- Robust Restless Bandits: Tackling Interval Uncertainty with Deep Reinforcement Learning [9]

Related Work

- Extensions used in Related Work
 - Choosing K arms from total N arms
 - Minimizing cost associated with choosing K arms
 - Multi-agent setting for K different arms

Environment Details: Theory

- A single Non-Terminal starting state and four Terminal states
- Each episode consist of a single time step (1-step horizon)
- No stochasticity during transition from one state to another
- Reward corresponding to each action is sampled from a gaussian distribution with
 - A time-varying mean and
 - A fixed variance

$$\Rightarrow R_{j}(t) = \mu_{j}(t) + \epsilon_{j}(t)$$

$$\Rightarrow \mu_{j}(t) = \lambda \mu_{j}(t-1) + k_{j} + \epsilon_{j}(t)$$

$$\epsilon_{j}(t) - N(0,\sigma_{\epsilon}) \quad \forall j \in \{0,1,2,3\}$$

$$\epsilon_{j}(t) - N(0,\sigma_{\epsilon}(t)) \quad \forall j \in \{0,1,2,3\}$$

$$\epsilon_{j}(t) - N(0, \sigma_{\epsilon}) \quad \forall j \in \{0, 1, 2, 3\} \\
\epsilon_{j}(t) - N(0, \sigma_{\epsilon}(t)) \quad \forall j \in \{0, 1, 2, 3\}$$

- k_i trend parameter, λ decay parameter
- Four versions of the environment:
 - a. No trend and low volatility
 - b. No trend and high volatility
 - c. Trend and low volatility
 - Trend and high volatility

Environment Details: Implementation

```
P = {
                       0: [(1, 0, N(\mu_0(t), \sigma_e), true]
                                                           # state is same as action
                       1: [(1, 1, N(\mu_1(t), \sigma_e), true] # transition probability is 1
                       2: [(1, 2, N(\mu_2(t), \sigma_e), true] #\mu_i's are function of time t
                       3: [(1, 3, N(\mu_3(t), \sigma_e), true]
                       0: [(1, 0, 0, true)]
                       1: [(1, 0, 0, true)]
                       2: [(1, 0, 0, true)]
                       3: [(1, 0, 0, true)]
```

Environment Details: Testing & Demo

Image taken from Uncertainty and Exploration in a Restless Bandit Problem [10]

Demo

Baseline Implementation

- Testing the environment with classical RL strategies
 - Pure Exploitation
 - Pure Exploration
 - Epsilon Greedy
 - Decaying Epsilon Greedy
 - Softmax
 - UCB

Trend & Low Volatility

Trend-Low

No Trend & Low Volatility

No Trend-Low

Reward

Regret

Optimal Action Percentage

Trend and High Volatility

Trend-High

Regret

Optimal Action Percentage

No Trend & High Volatility

No Trend-High

Future Work

Approaches

- Deep RL
- Bayesian Methods
- Classical RL

Challenges

- Scaling: in case of K actions (^NC_K, eg: ⁵⁰C₂₀ ≅ 10¹²)
- Online vs Offline: known and unknown MDP
- Robustness: dealing with uncertainty

Future Work

- Robust Restless Bandits with Proximal Policy Optimization [9]
 - Minimax regret objective (policy that minimizes the maximum regret possible by transitions)
 - Real world scenarios with no knowledge of MDP and multi-action RMABs
 - o Interval uncertainty in probability of transition instead of a fixed value Robustness
 - Decoupling each arm's learning
 - Multi-agent setting where agents learn optimal policies and generates maximum possible regret
- Deep Q-Networks [7]
 - Learns underlying distributions of different arms over time
 - DQN comparison with
 - Myopic Policy (focuses on immediate reward)
 - Whittle Index Policy (assigns index values to states and selects the maximum)
- Actor-Critic [8]
 - Actor-Critic comparison with above mentioned DQN
 - Actor scores all possible actions for a state and selects the best one
 - Critic calculates TD error using the actor's action and provides feedback to actor

Timeline

Contributions

Members		Work Done	
Arpit Agarwal	Literature Review	Future Work	PPT and Report
Abhinav Kumar	Literature Review	Future Work	PPT and Report
Vartika Gupta	Literature Review	Future Work	PPT and Report
Suman Singha	Environment Implementation	Future Work	PPT and Report

Thank You