PARISHRAM 2026

Mathematics

Matrices

DPP: 1

- **Q1** $\mathbf{A} = \left[\mathbf{a_{ij}}\right]_{\mathbf{m} \times \mathbf{n}}$ is a square matrix, if
 - (A) m < n
- (B) m > n
- (C) m = n
- (D) None of these
- In the matrix ${f A}=egin{bmatrix} 2 & 5 & 19 & -7 \ 35 & -2 & rac{5}{2} & 12 \ \sqrt{3} & 1 & -5 & 17 \end{bmatrix}$, Q2

write:

- (i) The order of the matrix,
- (ii) The number of elements,
- (A) 3×4 , 12
- (B) 4×3 , 12
- (C) 3×3 , 9
- (D) 3×4 , 9
- **Q3** Find the number of all possible matrices of order 3×3 having each entry either 0 or 1.
 - (A) 27

(B) 256

(C) 81

- (D) 512
- **Q4** If A and B are two matrices of the order 3 × m and $3 \times n$, respectively, and m = n, then the order of matrix (5A - 2B) is
 - $(A) m \times 3$
- (B) 3×3
- $(C) m \times n$
- (D) $3 \times n$
- **Q5** Which of the following is a row matrix?
 - (A) [1 2 3]

- **Q6** A matrix $\mathbf{A} = [\mathbf{a_{ij}}]$ of order 2 × 3 whose elements are such that $\mathbf{a_{ii}} = \mathbf{i} + \mathbf{j}$ is -

- (D) None of these
- Q7 If a matrix has 36 elements, the number of possible orders it can have, is:
 - (A) 13

(B)3

(C) 5

- (D) 9
- **Q8** A diagonal matrix must be:
 - (A) A row matrix
 - (B) A column matrix
 - (C) A square matrix
 - (D) A rectangular matrix
- Q9 The order of the matrix |5| is:
 - (A) 1×3
- (B) 3×1
- (C) 3×3
- (D) 1×1
- **Q10** Which matrix is not a diagonal matrix?
- $\begin{pmatrix} (C) & 4 & 5 \\ 0 & 4 \end{pmatrix}$

Answer Key

Q1	C	
Q2	Α	
Q3	D	
Q4	D	
Q5	Α	

Q6 Α Q7 D Q8 C Q9 B Q10 C

Hints & Solutions

Note: scan the OR code to watch video solution

Q1 Text Solution:

It is known that a given matrix is said to be a square matrix if the number of rows is equal to the number of columns.

Therefore, $\boldsymbol{A} = \left[\boldsymbol{a}_{ij}\right]_{m \times n}$ is a square matrix, if m = n.

Video Solution:

Q2 Text Solution:

The order of a matrix is (Number of Rows × Numbers of Columns)

So, Order of Matrix $A = 3 \times 4$

The Number of elements = $3 \times 4 = 12$

Video Solution:

O3 Text Solution:

For a 3×3 matrix, we have 9 positions. Each position can be filled with 0 or 1 Total number

of matrices
$$=\underbrace{2 \times 2 \times \dots 2}_{9 \text{ times}} = 2^9$$

Video Solution:

Q4 Text Solution:

Given matrix $[\mathbf{A}]_{\mathbf{3} imes\mathbf{m}}$ and matrix $[\mathbf{B}]_{\mathbf{3} imes\mathbf{n}}$

and m = n

So $[A]_{3\times n}$ and $[B]_{3\times n}$ then order of matrix $\mathbf{5[A]_{3 imes n}} \mathbf{-2[B]_{3 imes n}}$ is 3×n.

Video Solution:

Q5 Text Solution:

The Row matrix has only one row.

Video Solution:

Q6 Text Solution:

 $\mathbf{a_{ii}}$ is the element of $\mathbf{i^{th}}$ row and $\mathbf{j^{th}}$ column of matrix A

$$egin{array}{lll} \mathbf{a}_{11} &= 1+1=2, \mathbf{a}_{12} = 1+2=3, \mathbf{a}_{13} = 1 \ &+3=4 \ \mathbf{a}_{21} = 2+1=3, \mathbf{a}_{22} = 2+2=4, \mathbf{a}_{23} = 2 \ &+3=5 \ \mathbf{A} = egin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \end{bmatrix} = egin{bmatrix} 2 & 3 & 4 \ 3 & 4 & 5 \end{bmatrix} \end{array}$$

Video Solution:

Q7 Text Solution:

If a matrix has 36 elements then Number of Possible orders is:-

(1×36), (2×18), (3×12), (4×9), (6×6), (3×4), (12×3), (18×2), (36×1)

Total Possible orders = 9

Video Solution:

Q8 Text Solution:

A diagonal Matrix must be a Square matrix.

Video Solution:

Q9 Text Solution:

The order of a matrix = Number of Rows × Number of Columns

So Matrix $\begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$ has 3 Rows and 1 Column.

Video Solution:

Q10 Text Solution:

 $\mathbf{A} = \left[\mathbf{a_{ij}}\right]_{\mathbf{m} imes \mathbf{n}}$ is a Diagonal Matrix. If $\mathbf{a_{ij}}$ = 0, when ieqj

Video Solution:

