Human Activity Recognition

이영기 서울대학교 컴퓨터공학부

Overview

- Overview of Activity Recognition
- Signal Processing
 - Fourier Transformation (FT)
 - Filters (Noise Removal)
 - Feature Extraction
- State-of-the-art Techniques
 - IMU sensor based
 - Gesture Recognition
 - Activity Recognition
 - WiFi signal based Activity Recognition
 - Vision based Activity Recognition
 - Audio based Activity Recognition

Mobile Activity Tracker

- Everyday exercise progress monitor and motivator
- Provide reliable feedback about how much they move (People often overestimate!)
- Provide instant and constant feedback about activity levels
- Gamify to encourage individuals to compete in getting fit and losing weight

Human Activity Recognition (HAR)

 Identification of the specification movement or action of a person based on a sensor data.

Approaches for HAR

Sensor Types for Activity Recognition

- (a) Surveillance Cameras
- (b) Depth Cameras
- (c) Wi-Fi
- (d)Accelerometer
- (e)Gyroscope
- (f) Proximity Sensor
- (g) RFID

(g)

(f)

Things to Consider

- Approach
- Technology
- Information Type
- Machine Learning Algorithm Used
- Supervised/Unsupervised
- Application
- Cost
- Accuracy
- Latency
- Real-time

HAR Techniques

Action Based Activities

- Gesture Recognition
- Posture recognition
- Behavior Recognition
- Fall Detection
- Activities of Daily Living
- Ambient Assisted Living

Motion Based Activities

- Tracking
- Motion Detection
- People Counting

Applications of HAR

- Elder Health Care
- Intelligent Environment
- Security and Surveillance
- Human Computer Interaction
- Indoor Navigation
- Shopping Experience

an Computer Interaction

How Do we Monitor Activities?

Activities involve physical movement of body limbs

Inertial Sensors: Accelerometer

- All commodity smartphones have accelerometers
- Measure linear acceleration (m/s^2) in three different directions

Inertial Sensors: Gyroscope and Compass

- Gyroscope: measure orientation and angular velocity
- Compass: measure the direction on the earth's surface toward the north

General Flow of Activity Recognition

Overview

- ✓ Overview of Activity Recognition
- Signal Processing
 - Fourier Transformation (FT)
 - Filters (Noise Removal)
 - Feature Extraction
- State-of-the-art Techniques
 - IMU sensor based
 - Gesture Recognition
 - Activity Recognition
 - WiFi signal based Activity Recognition
 - Vision based Activity Recognition
 - Audio based Activity Recognition

Fourier Transformation

 Fourier transformation decomposes a signal into its constituent frequencies.

Why Do we Need Filters?

- Sensor signals often include various noises
- Need to apply various pre-processing techniques to remove noises and highlight the signals we want to capture
- Common pre-processing techniques
 - Moving average filter
 - Exponential filter
 - Median filter
 - Frequency domain filter

Filters (1) - Moving Average Filter

- Use average values of multiple adjacent samples
- Example: Averaging the values for 3 samples
 - O Input: x = x1, x2, x3, ..., xn where the index is the sample number
 - O The output of the moving average filter, s = s1, s2, s3, is:
 - \blacksquare s1 = (x1 + x2 + x3)/3
 - = s2 = (x2 + x3 + x4)/3
 - s3 = (x3 + x4 + x5)/3
 - **...**
 - s(n-2) = (x(n-2) + x(n-1) + xn)/3
- The window size can be different
- The larger the window is, the cleaner the signal becomes
- Too large window may smooth out the important characteristics of the signal (e.g., steps for step detection)

Filter (2) - Exponential Filter

- What if we want to give more weights to recent values?
- The idea in exponential filter is to assign exponentially decreasing weights as the observation get older

$$s_1 = x_0$$

$$s_t = \alpha x_{t-1} + (1 - \alpha)s_{t-1} = s_{t-1} + \alpha(x_{t-1} - s_{t-1}), t > 1$$

- where a is the smoothing factor, and 0 < a < 1
- The filtered output s(t) is a simple weighted average of the current observation x(t) and the previous filtered output s(t-1)

Filter (2) - Effect of Exponential Filter

Raw Acceleration Signal

Signal with Exponential Filter (a=1/8)

Filter (2) - Problem of Exponential Filter

- Average out some of the peaks in the data
- Amplitude gets smaller
- Time lag in the peaks, i.e., peaks are slightly shifted to the right

Raw Acceleration Signal

Signal with Exponential Filter

Filter (3) - Median Filter

- Given input accelerometer signal: x = x1, x2, x3, ..., xn
- The output of the median filter, s = s1, s2, s3, ..., sn, is:
 - s1 = median(x1, x2, x3)
 - s2 = median(x2, x3, x4)
 - s3 = median(x3, x4, x5)
 - ...
 - s(n-2) = median(x(n-2), x(n-1), xn)

Filter (3) - Effect of Median Filter

Filter (4) - Frequency Domain Filter

- So far, we have studied the time domain filter
 - First method to remove noises
 - Simple and easy to understand
 - Work well in many practical examples
- In some cases, identifying a good time domain-filter is not easy
- Frequency domain filtering
 - O Convert a signal to a weighted sum of sine waves, and remove all the waves whose periods are outside the range that you expect!
 - O Jean Baptiste Fourier (1768-1830) proved the mathematical fact that any periodic waveform can be expressed as the sum of an infinite set of sine waves.

Filter (4) - Frequency Domain Filter

Feature Extraction (1) - Sliding Window

- Extract features with sliding window.
- Reduce the impact of the signal noises.

Feature Extraction (2) - Segmentation

- Split segments
- Extract features with segments
- Classify each segment

Feature Extraction (3)

- - o Mean
 - Standard deviation
 - o Maximum
 - o Minimum
 - o Cross-correlation
 - o RMS

- Time Domain Features
 Frequency Domain Features
 - o Energy
 - o Entropy
 - Coefficient sum
 - Dominant frequency

Overview

- Overview of Activity Recognition
- - Fourier Transformation (FT)
 - Filters (Noise Removal)
 - Feature Extraction
- State-of-the-art Techniques
 - IMU sensor based
 - Gesture Recognition
 - Activity Recognition
 - WiFi signal based Activity Recognition
 - Vision based Activity Recognition
 - Audio based Activity Recognition

IMU sensor

- Accelerometer
- Gyroscope
- + Magnetometer

- IMU Sensors on a Wristband
- 3 Classes: Smoking, Eating, Other
- Using Segmentation

- Quick change in orientation when taking a cigarette
- Long dwell time

- 10sec sliding window trajectory
- Check rapid increase
- Detect peak

- Feature Extracting with a Segment
 - Duration features
 - Velocity features
 - Displacement features
 - Angle features
- Classification
 - Random Forest
 - Conditional Random Field

	Accuracy	Recall	Precision	False-positive rate
RF	93.00%	0.85	0.72	0.023
CRF	95.74%	0.81	0.91	0.005

- User Study in the Wild
- Monitoring App
- Wristband

IMU-based HAR (CNN)

CNN for frame-based HAR (2014)

IMU-based HAR (LSTM)

Deep LSTM Networks for HAR (2016)

IMU-based HAR (CNN + LSTM)

- Combinations of convolutional layers and LSTM (2016)
- 1D convolutional layers extract features.

IMU-based HAR (LSTMs) (1/2)

Ensembles of Deep LSTM Learners. (2017)

IMU-based HAR (LSTMs) (2/2)

Multiple LSTM learners trained with random mini-batches.

Attention based LSTM (1/7)

- Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention, 2018
- Limitation of LSTM: Even though LSTM is designed to mitigate the long-distance dependencies problem, is it hard to guarantee that we will learn to handle those properly.
 - ⇒ Attention based LSTM

Attention based LSTM (2/7)

Standard LSTM

Temporal attention based LSTM

$$\mathbf{H} = \sum_{t=1}^{T} \alpha_t \mathbf{h}_t$$

$$\alpha_t = \frac{\exp\{\text{score}(\mathbf{h}_T, \mathbf{h}_t)\}}{\sum_{s=1}^{T} \exp\{\text{score}(\mathbf{h}_T, \mathbf{h}_s)\}}$$

$$score(\mathbf{h}_t, \mathbf{h}_s) = \mathbf{h}_t^T \mathbf{W}_{\alpha} \mathbf{h}_s$$

Attention based LSTM (3/7)

Standard LSTM

Attention-based LSTM (Temporal Attention + Sensor Attention)

Attention based LSTM (4/7)

 Continuous temporal attention regularization to encourage continuity.

$$\Omega_T(\boldsymbol{\alpha}) = \lambda_1 \sum_t |\alpha_t - \alpha_{t-1}|$$

 Continuous sensor attention regularization to discourage transitions.

$$\Omega_S(oldsymbol{eta}) = \lambda_2 \sum_t |oldsymbol{eta}_t - oldsymbol{eta}_{t-1}|$$

Attention based LSTM (5/7)

Attention weights of models with and without temporal attention.

Attention based LSTM (6/7)

 Attention weights of models with and without sensor attention.

Attention based LSTM (7/7)

Models	PAMAP2	DG	Skoda ⁴
LSTM baseline ([12]) (LSTM without Attention)	0.7548	0.6675	0.9040
DeepConvLSTM ([19])	0.7480	0.7344^3	0.9120
LSTM-S ([11])	0.8820	0.7600	0.9210
LSTM + Temporal Attention	0.8052	0.7913	0.9240
LSTM + Sensor Attention	0.7384	0.6700	0.9002
LSTM + Continuous Temporal Attention	0.8629	0.8216	0.9381
LSTM + Continuous Sensor Attention	0.7797	0.7817	0.8802
LSTM + Continuous Temporal + Continuous Sensor Attention ⁵	0.8996	0.8373	0.8903

mean F1 score

SenseHAR: Virtual Activity Sensor

- Data variances from different kinds of wearable/mobile devices.
- Mapping different kinds of raw sensor values to the same feature space.

SenseHAR: Virtual Activity Sensor

Figure 2: Branched Training Framework to construct SenseHAR: It has (a)Sensor Fusion Network comprising 'n' Sensor fusion models which maps to the shared latent space 'SenseHAR' (b) Shared Application model to predict activities.

Figure 4: Sensor Fusion Model - Stage 2: Captures the corre- 49 lation across the corresponding axes in different sensors.

 WiFi signals are available almost everywhere and they are able to monitor surrounding activities

- Multipaths contain both static component and dynamic component
- Each path has different phase
- Phases determine the amplitude of the combined signal

Interpreting CSI amplitude

- Phases of paths are determined by path length
- Path length change of one wavelength gives phase change of 2π
- Frequency of amplitude change can be converted to movement speed

- How accurate is it?
 - O Wave length \rightarrow 5~6cm in 5GHz band
 - Average distance measurement error of 2.86cm

Waveform with regular moving speed

Moving distance measurement error

- How robust is it?
 - Robust over different multipath conditions and movement directions
 - Linear combination of multipath do not change frequency

- Activities are characterized by
 - Movement speeds
 - Change in movement speeds
 - Speeds of different body components

- Use time-frequency analysis to extract features
- Use HMM to characterize the state transitions of movements

- Build one HMM model for each activity
- Determine states based on observations in waveform patterns
- State durations and relationships are captured by transition probabilities

Vision-based HAR

- Caesar: Cross-camera Complex Activity Recognition (Liu, 2019)
- Edge computing based system for complex activity detection.
- Provides vocabulary of activities to allow users to specify complex actions in terms of spatial and temporal relationships between actors, objects, and activities.

Vision-based HAR

The output of Caesar

Vision-based HAR

• The system overview of Caesar.

	Input	Output
Object Detection	Image	Object Bounding Boxes
Track & ReID	Object Bounding Boxes Image	Object TrackID
Action Detection	Object Boxes & TrackID Image	Actions

Thank you!