Datarock

Data Scientist - Geoscience in the Datarock Applied Science team - Coding Challenge

By: Stephanie Walmsley

Overview of the Solution Approach

- Exploratory Data Analysis (EDA)
- 2. QA/QC
- 3. Create Training Features
- 4. Model Training
- 5. Feature Importance Assessment
- 6. Predict Labels onto Unlabelled Data
- 7. Conclusion
- 8. Next Steps

1. Exporatory Data Anaylsis

Understand the label split, note class imbalance

	label	Count	Percentage
0	proximal	2787	60.025845
1	distal	1118	24.079259
2	?	738	15.894896

ID holeid from to As	object object int64 float64 float64
Au	object
Pb	float64
Fe	float64
Mo	float64
Cu	float64
S	float64
Zn	float64
label	object
dtype:	object

Check dtypes:
Noticed Au was
an object so
investigated
further & found
<LDL → fixed by
changing value to
½ of <LDL to get
id of <

Summary Stats:

	from	to	As	Au	Pb	Fe	Мо	Cu	S	Zn
count 4	4771.000000	4771.000000	3268.000000	4765.000000	4756.000000	4709.000000	4741.000000	4746.000000	4761.000000	4762.000000
mean	750.379585	760.353574	19.730855	0.051956	689.831232	49952.514598	9.991452	12.450601	9750.033213	59.389636
std	447.126995	447.114592	37.181529	0.089862	1047.642566	21490.606419	87.098943	107.438873	15557.657335	120.489477
min	71.000000	81.000000	1.000000	0.002500	1.600000	2080.000000	-999.000000	1.000000	26.000000	5.600000
25%	421.000000	431.000000	5.400000	0.010000	132.200000	39260.000000	1.400000	3.000000	1338.000000	29.800000
50%	641.000000	651.000000	9.200000	0.027000	396.700000	49020.000000	4.400000	4.600000	3636.000000	38.200000
75%	991.000000	1001.000000	20.000000	0.061000	940.200000	58420.000000	17.400000	8.000000	10988.000000	52.600000
max 2	2201.000000	2211.000000	827.800000	1.878000	29793.800000	397000.000000	1939.400000	6767.000000	217600.000000	3455.000000

2. QA/QC

Interval lengths:

None are extremely different from the standard/majority (10), so would assume these are fine

Check number of samples per unique hold ID:

	holeid	Count
0	SOLVE236	164
1	SOLVE279A	163
2	SOLVE237	154
3	SOLVE197	141
4	SOLVE196	136
5	SOLVE198	129
6	SOLVE127	126
7	SOLVE064	119
8	SOLVE195W3	105
9	SOLVE080	103
10	SOLVE291	96
11	SOLVE040	86
12	SOLVE045	85
13	SOLVE179	84
14	SOLVE177	79
15	SOLVE040W1	77
16	SOLVE044	77
17	SOLVE161	76
18	SOLVE143	75
19	SOLVE145	73
20	SOLVE147	71
21	SOLVE176	70
22	SOLVE146	69
23	SOLVE195W1	69
24	SOLVE225	69

Top 25 largest hole lds by number of samples (between 164 – 69 samples per hole)

	holeid	Count
115	SOLVE234	6
116	SOLVE104	6
117	SOLVE108	6
118	SOLVE181W1	6
119	SOLVE099	6
120	SOLVE195W2	6
121	SOLVE201	5
122	SOLVE003	5
123	SOLVE015	5
124	SOLVE010	4
125	SOLVE133	4
126	SOLVE046	4
127	SOLVE149W1	4
128	SOLVE169	4
129	SOLVE218	4
130	SOLVE090	4
131	SOLVE122	3
132	SOLVE132	3
133	SOLVE124	3
134	SOLVE080W1	2
135	SOLVE055	2
136	SOLVE199	2
137	SOLVE057	1
138	SOLVE047	1
139	SOLVE206	1

Bottom 25 smallest hole IDs by number of samples (between 1 – 6 samples per hole)

** these lower samples seem concerning - I would check for missing samples** But I included them due to time constraints of this task

2. QA/QC Cont'd

Unique Count Unique Labels holeid SOLVE003 SOLVE004 [proximal] SOLVE007 SOLVE010 [proximal SOLVE011 [proximal] SOLVE015 [proximal] SOLVE016 [proximal] SOLVE017 [proximal] SOLVE021 [proximal] SOLVE025 [proximal] SOLVE026 2 [distal, proximal] SOLVE027 SOLVE028 SOLVE031 SOLVE036 SOLVE039 SOLVE040 SOLVE040W1 2 [distal, proximal] SOLVE041 SOLVE042 SOLVE043 SOLVE044 SOLVE045 SOLVE046 [proximal SOLVE047 [proximal] SOLVE048 [proximal] SOLVE055 [proximal] SOLVE056 SOLVE057 [proximal SOLVE064 SOLVE066 SOLVE067 SOLVE068 SOLVE069

←Checked to see what the labels per holeid looked like (would expect both proximal & distal) but looking at the first 50 results show that a lot of holes have only proximal which doesn't make sense unless only the proximal zone has been sampled suggests missing data that would be useful to have for this study or that samples have been mislabelled

the labels and data looked like downhole and found evidence of missing data – in this example (holeid: SOLVE080) data is missing from 751 to 1391 - this example is especially concerning as its missing a huge number of samples from the ore zone \rightarrow

** would look at all the holes in detail if time permitted

2. QA/QC Cont'd

- Check for Duplicates in the sample Id's & for intervals within unique sampleIds → None found
- Already dealt with lower detection limit issues for Au: fixed by changing value to ½ of <LDL to get id of <
 - Would have been ideal to have the analytic LDL for all elements and then would take ½ of any at the reported analytical LDL

NaNs:

	holeid	from	to	As	Au	Pb	Fe	Мо	Cu	s	Zn
id											
A04812	SOLVE003	561	571.0	NaN	0.066000	1031.00	61380.0	138.2000	3.600	3586.0000	43.6000
A03356	SOLVE003	571	581.0	NaN	0.152000	1982.00	50860.0	75.4000	4.800	1822.0000	36.4000
A04764	SOLVE003	581	591.0	NaN	0.068000	1064.80	57940.0	29.2000	3.000	740.4000	36.6000
A04626	SOLVE003	591	601.0	NaN	0.074000	891.60	48620.0	63.0000	4.200	820.8000	39.6000
A05579	SOLVE003	601	611.0	NaN	0.043125	801.25	51025.0	56.0625	4.875	745.6875	32.3125
A04915	SOLVE291	1291	1301.0	12.2	0.064000	208.20	51500.0	2.6000	3.000	4200.0000	29.4000
A06596	SOLVE291	1301	1311.0	10.4	0.024000	145.40	55040.0	2.6000	3.000	6160.0000	34.6000
A07560	SOLVE291	1311	1321.0	10.0	0.011000	109.60	55460.0	2.6000	4.000	5700.0000	33.4000
A07802	SOLVE291	1321	1331.0	5.0	0.009000	69.20	42520.0	2.4000	3.000	3140.0000	29.6000
NaN_count	0	0	0.0	1503.0	6.000000	15.00	62.0	30.0000	25.000	10.0000	9.0000

Counted NaN's per column and found As was missing 1503 values. Decided to throw out As and keep the others. If time permitted I coud have tried some imputation methods for filling in the NaNs.

2. QAQC Cont'd: Upper Outlier Detection

Looking at Probability Plots to decide on upper limit outliers. The distal group (orange) has one very distinct outlier in Plot 1 and some questionable values in the other 2 groups, possibly an UDL for the top 3 proximal points (blue). I have compared the plots for removing the 98% and 99% outliers and have chosen to use the 99th percentile cut off because it deals with the extreme outliers, whereas 98% removes too many high values.

Next step:

If I had more time I would consider assigning these outliers a upper limit value so that we did not loose them and we could ensure they didn't mess up our stats moving forward. Would ideally know the analytical method upper limit to make these decisions.

I would also do this process with every element, but again due to the limited time frame I will just show this example (Pb) and use the 99th percentile for all the elements.

3. Features - PCA

- Ran a PCA Analysis on the 7 elements (having excluded As)
- Included PC1-PC5 as training features

- Interesting separate population showing up in the unlaballed group, suggests the prediction task might not work well if the unlabelled data is not from the same population as the labelled data
- A lot of overlap between the proximal and distal populations which may suggest that the elements we have will not do well at classifying the 2 labels.

Chose to include first 5 components as the explained variance becomes insignificant(less then .10) past PC5

3. Features

Z-scored the elements to use as features (in order to normalize the data):

Created a number of Element Ratios to include as features (would have experimented with more ratios if time permitted):

Final features included PC1-PC5, the 7 elements z-scores & 9 element ratios = 21 Features

4. Model Training

- Ran a few models to see which worked best for the classification task (predicting proximal vs. distal)
- chose a test/train split of 30/70

Model Accuracies:
Logistic Regression: 0.80
Random Forest: 0.84
SVM: 0.82
KNN: 0.81
Gradient Boosting: 0.82

Best Model: Random Forest with accuracy 0.84

Classification report and confusion matrix for the best (highest accuracy) model: Random Forest

Classificatio	n Report: precision	recall	f1-score	support
distal	0.80	0.64	0.72	349
proximal	0.85	0.93	0.89	747
accuracy			0.84	1096
macro avg	0.83	0.79	0.80	1096
weighted avg	0.83	0.84	0.83	1096
Confusion Mat [[225 124] [55 692]]	rix:			

Note: class imbalance – proximal has a lot more labels then distal and so the model does a better job of predicting proximal compared to distal

^{**}Could have done hyperparameter tuning with more time**

5. Feature Assessment

Feature importance for Random Forest Model

^{*} Would look at other librarys/ methods for explainability if I had more time

6. Predict Labels on Unlabelled Data using the

Chosen Model

predicted_label distal 339 proximal 334

Name: count, dtype: int64

predicted_label	probability_proximal
proximal	0.99
proximal	1.00
proximal	1.00
proximal	0.95
proximal	1.00
proximal	0.82
proximal	0.79
proximal	0.75
proximal	0.76
proximal	0.84

7. Conclusion

- Can we use the same geochemical data and labels to generate a predictive model for future drill holes which can label samples on whether they are in class A or class B?
 - Yes, however:
 - Need to address the class imbalance need more distal labels, and/or need to weight labels differently (more weight on the distal)
 - Model predicts the labels well (F1 of 72% distal, 89% proximal) so it could work for a similar deposit, similar Geochem
- More data has been acquired since the geochemist completed her work can we predict labels onto these data points (labelled "?")
 - PCA discovered a unique population in the unlabelled data suggests some of this data would not be predicted well
 - Based on the example drillhole prediction viz the unlabelled data can be predicted generally, but errors will definetly occur espiecally near proximal/distal boundaries
- Potential issues or pitfalls with the approach:
 - Grouping background/ unmineralized zones into distal --> would be ideal to break out these classifications further
 - Lots of zones will blend into eachother, having only 2 categories doesn't really make sense geologically
 - Lots of missing data thoughout the drill holes, drill holes containing only proximal labels (where is the distal?
 Missing or mislabelled?)
 - Concerns with overlapping populations in the PCA's would investigate further

Next Steps:

- Find missing and/or mislabelled data
- Look at clustering the proximal and distal labels seperately to see if they can be broken down further for more fine grained vectoring/classification potential
 - Look at PCAs in more detail
- Near miss-modeling checking that DHs go through Distal-Proximal-Distal (checking if any only hit Distal or didn't make it all the way through the orebody)
- Visualizing the ratios (XY plots) to check which ones are making the best predictions/ validate the top feature importance
- Would always want to spatially check the data ** out of scope/ no coordinates provided
- Would suggest assaying for additional elements such as: Ag, Sb, Cd, Mn, Bi,