```
A 6.7.1 Geg. E = (eo, e, ez) Kanonische Basis von IR3*1
 Kanonisches 4- Eck '
  Q. = Reo, Q1 = Re1, Q2 = Re2, Q = IR (e0 + e1 + e2)
 der proj. Ebene P(1R3×1)
 Ges. f & GL(IR3x1) durch (E*, f(E)), sodass
 (Qo, Q1, Q2, Q) (Q1, Qo, Q, Q2).
  Wir untersuchen, wohin die Repräsentanten eo, ex, ez
 geschickt werden
 ∃ c1, c2, c2 € 1R:
  eo c, e, e, c2'eo,
  ez c3 ez, und wähle (e0 + e1 + ez) + e2.
\Rightarrow \left(\begin{array}{c} 1 \\ 0 \end{array}\right) + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) + \left(\begin{array}{c} 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \end{array}\right) + \left(\begin{array}{c} 0 \\ 3 \end{array}\right)
= \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}
 ⇒ (E*, {(E)) = (0 -1 1).
  Ges. Diagonal punkte A, B, C.
  Q_0 = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}, Q_1 = \begin{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}, Q_2 = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{bmatrix}, Q = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}.
```

Qo Qn =
$$\begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}$.

A = Qo Qn n Qz Q = $\begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}$.

Analog B = $\begin{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}$, $C = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}$.

Zz ' $P(f)$ ist Projektivs piegelung.

d.h. $P(f)$ hat die Form ' $x = x + (c - 1) \cdot (a^{*}, x) \cdot 2$, wobei $c = -1$.

mit A als Zentrum and B y C als Achse.

B y C = $\begin{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

a* muss so sein, dass alle $x \in B$ y C (est bleiben ah. $(a^{*}, x) = 0$)

a* muss so sein, dass alle $x \in B$ y C (est bleiben ah. $(a^{*}, x) = 0$)

An $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

Leistet als Gewönschte (auch A + A).

A 6.7.3 Geg.: In IR^{2×4} seien A: Ecke

(
$$\rho_0, ..., \rho_3$$
), ($\rho_0, ..., \rho_3$):

 $\rho_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\rho_4 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\rho_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, $\rho_3 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$,

 $\rho_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\rho_4 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $\rho_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, $\rho_3 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$,

(a) Bette in $P(R^{3×4})$ ein und bestimme $K \in Pal(R^{3×4})$, sodoss:

 $V_1 = 0, ..., 3$: $E(\rho_1) \stackrel{K}{\longrightarrow} E(\rho_1)$,

 $\begin{cases} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{cases} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} - \begin{cases} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ 0 \end{pmatrix}$

wähle

 $C_A \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + C_E \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} + C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$
 $O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$
 $O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = O(\frac{1}{2}) \stackrel{K}{\longrightarrow} C_S \begin{pmatrix}$

A 5.2.4 : ((Kec c*) = kec (f (c*)) = kec (c* o (). = (1,0,0) · (E*, f(E)) = (1/2,0,1/4) = c * beschreibt Ferugerade => 1/2 x + 1/4 x = 0 => 2x + x = 0. Ges. Affiner Ausschnitt 3 (K × H) (7 (0 × H) > Beschrieben durch xo # 0.

A 6.7.11 Geg.: R2×1 affine Ebene, a = (0), 6 = (1), c = (1), d = (1), Poukte, E : R2×1 -> P(R3×1) Einbettung in proj. Ebene. (a) Ges. $f \in GL(\mathbb{R}^{3\times 1})$, sodass $(\varepsilon(a), \varepsilon(6), \varepsilon(c), \varepsilon(d)) \xrightarrow{P} (\varepsilon(a), \varepsilon(6), \varepsilon(d), \varepsilon(c)).$ $f\left(\frac{1}{0}\right) = f\left(\frac{1}{1}\right) + f\left(\frac{1}{0}\right) + f\left(\frac{1}{0}\right)$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ (6) Zz: f ist involutorisch V

A 6.8.2 Gig:
$$S(R^{3M})$$
 proj. Eleme,

 $B = R\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $C = R\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $D = R\begin{pmatrix} 2 \\ 2 \end{pmatrix}$.

(a) $2z$: B, C, D Kolinear.

 $B \lor C = \begin{bmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix}$

```
A 6.8.3 Ga: X, P, Po, Pa poarweise verschiedene Punkte
auf proj. Carade
(a) Zz : DV(X, Po, P, Po) = 1- DV(X, P, Po, Po)
 \Rightarrow DV(X, P, Po, Po) = \frac{x_0}{x_0} - DV(X, Po, P, Po)
          [x] [p] [pa] [pa]
          := X4
  Wähle p = po + pa und x = x po + x pa.
 Zz_i DV (X, Po, P, Po) = \frac{x_0 - x_1}{x_0}
             [x] [po] [p] [-p]
 Wir weisen nach:
    Po( Po + (-Po) = Po + P1 - P1.
     x = xo (po + pa) + (xo + xa) (-pa) = xo po + xopa - xopa + xapa
 (6) Zz' DV (X, P, Po, Pa) = DV (X, P, Pa, Po)
                   wie oben
                 :=\left(\frac{x_A}{x_0}\right)^{-1}=\frac{x_0}{x_1}
  Zz, DV(X, P, P, Po) = x0
 Zz: DV(X, P, P, Po) = DV(P, X, Po, Po).
              wie oben
 Zz_A DV (P, X, P_0, P_1) = \frac{x_0}{x_1} = \frac{1/x_1}{1/x_0}
            [P] [x] [x0 Po] [x1Pa]
```

```
Wil weisen nach:
    x = xopo + xapa.
    P = x × × P + 1 × P = P + P =
(c) Zz DV(X, P, Po, Pa) = DV (Pa, Po, P, X).
                   siehe unten
Wähle Po = [ + Po ] und Pa = [ - Pa ].
 \Rightarrow P = \left[ \left( -\frac{P_0}{x_A} \right) + \left( -\frac{P_1}{x_A} \right) \right], \quad X = \left[ x_0 \left( -\frac{P_0}{x_A} \right) + x_4 \left( -\frac{P_A}{x_A} \right) \right].
             -1/x1 (Po+P1) =: P -x0/x1 Po-P1 =: x
Z= DV (P, Po, P, X) = x1
                 [ Exp] [x]
Wähle Po = [(1 - xi) po] und Pr = [(xo-xi)pr].
Wic weisen nach:
    (1 - x, ) po = (-x,p). + (-x, po - p,)
                  = Po + pa - xa Po - pa.
    (xo-x1)p1 = x0 (-x1p) + x1 (-x1p0-p1)
                   = x0 Po + x0 Pn - x0 Po - x1 Pn.
```

A 6.8.4 Ga. Haustassade mit Fassadenecken durch affine Koordinaten gegeben $A' = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, B' = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, C' = \begin{pmatrix} 0 \\ 2.5 \end{pmatrix}, D' = \begin{pmatrix} 3 \\ 2 \end{pmatrix};$ Cies. Affine Koordinater d. Bilder of Eckpunkte E, F, G d. neven (markierten) Haus fassade Wie sehen die gewünschten Punkte aus? $E = \begin{pmatrix} 16 \\ 12 \end{pmatrix}, F = \begin{pmatrix} 27 \\ 12 \end{pmatrix}, G = \begin{pmatrix} 27 \\ 0 \end{pmatrix}, \begin{pmatrix} B = \begin{pmatrix} 16 \\ 0 \end{pmatrix} \end{pmatrix};$ Wie übersetze ich sie in die affine Ebene, sodass sie mit den Ponkten A',..., D' Koherieren ? Einbetten, Übersetzonas - Matrix aufstellen $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \left\{ \begin{pmatrix} 1 \\ 16 \end{pmatrix} + \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \left\{ \begin{pmatrix} 1 \\ 16 \\ q \end{pmatrix} \right\} \right\}$ $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} 5/4 \\ 5/4 \\ 5/4 \end{pmatrix}$ E₃ 16 0 16 0 15/84 0 } (E*, f(E)) 514 1 514 15/4 0 15/4 0 2,5 10/4

	NL	da	do	n	1	1		die			60	coc	6,		in		060		R		ae	6:1	1	+	le	26	,		
	P. P.	1																	1)		Se		ONE	20	100	× VC	- 1		
4	Wo	4	cel	He	1	9	ie	_ (20	£	n	nai	ne	- 1	E6e	rie		Š		4		37		H					
		H	1		1	1			1	5/	4		5				1	1				N.		H					
					16			2	1	151	4				Ξ		8/	3	1										
					12	2 /			1	10	3					-1	8/	3	1										
			H	1	1	1			1	91	164	. 1			ł	H	1	1		1	+		+	+	H				
(E*	f(E	17		1	2			=		40	516	4			=		140	05/	91	1		T							
				1	A				1		013				1		60	0/2	73	1									
			Н			1				la.	11	64	(H	1				1		4						7.7
		t			7	.7		-		4	051	64	1		=		1	105	19	A			t						
						0					0		1		L		1		0)	1	•							
		-														-				1									
					-				PT																				
															l,								I						
														4		1	-			-			+						
			H											+		h							t						
																									-				
									×								L												
		15	H	1,				1						=	H	H	H				4	+	1	H				4	
							170								t					1	1		t						
																													Ä
																H	-	1,15,		4					H				
		+	H													H							+						
																	I						Ī						
															4								1						
																	H							H					
												-		12	T								İ						
						6				M													1						
		H			- 4										H		H			-		+	ł	H					
		t													+		T			Ħ				t	H				
																						1	I						
	1	-															-						-						
									T.E.																	1			
				3																									
														2.1															
																			1 1										
																	t												
															4														
					1								You.													ur li			
			-																			10							

								oj. R						
Po	=	IR	0	, P.	= 1	RA		Pz =	IR	0 0 1				
			0)			10			1	0				
D	=	IP I	111	D	_	ID / 3	1	V =	ID.	/2 \		2 1.1		
73			0	1		0) 1	^	IN	2 -1 2		CUNKTE		
			11			\1	J			10/				
(a)) 2	2 :	(Po.	Pa,	Pz,	P3, 1	P)	proj.	Ko	ordinat	eusy	stem		
0.	1	0	0	1			- 4	2 1 -1 1						
0	0	0	1	1		-		11]						
=>	20	+	10	- 1	D	+ 16	> =	0						
	21	0	1114		72	- 11	3							
Die	F	Repro	isenta	nten	Voi	n P	,	, P ₃	6ile	den e	ine	LK	von	
			P											
(6)	Ges.	Ko	ocdiv	naten	darste	ellon	g vo	n)	K bzg	1.	obecev	n Sys	tem.
2	0	0	1	2	->	-	= 4	1-1	7	aktoseu	. (1	'and'	10.	
0 0	1	-1	0	2			- 4	-3						0
0	0	0	1					101		gebeu 1				, ٢3
				X						danu	X	ergebe	eu,	
Vie	Kach	ne ·	Von	Po	, P3	- Re	pas	entan	en,					
Fakt	oren	do	ch	P fe	stage	egt,								
														1 1
									1 - 1					