

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

IN2090 – Databaser og datamodellering

ORM 1

Modellere for obliger og eksamen

 Digital eksamen, men modeller tegnes med penn og papir

 Det er like greit å tegne for hand også på obligene

Dagens tema:

- Grunnuttrykkene i ORM
- Sammenheng mellom ORM og naturlig språk
- Elementære setninger (fakta)
- Faktatyper og broer
- Entydighetsskranker og påkrevde roller

interesseområde (UoD) begrep verditype/representasjonstype elementær setning forekomst fakta faktatype objekttype en setnings aritet rolle bro setningstype entydighetsskranke forekomsttabell påkrevd rolle perfekt bro

interesseområde (UoD) begrep verditype/representasjonstype elementær setning forekomst fakta faktatype objekttype en setnings aritet rolle bro setningstype entydighetsskranke forekomsttabell påkrevd rolle perfekt bro

ORM – Object Role Modelling

Tre viktige prinsipper:

- Ogdens trekant: Sammenhengen mellom virkelighet og modell
- 2. Naturlig språk: Modellen må kunne uttrykkes i naturlig språk for å sikre at den kan forstås fullt ut av informerte brukere (de som kjenner virksomhets-området)
- 3. 100%-prinsippet: Vi kan lage en nøyaktig nok modell av virkeligheten ved hjelp av naturlig språk

 For å lage et <u>begrepsmessig skjema</u> for UoD må vi velge hvilke begreper skjemaet skal inneholde

Fra kinobillettdomenet:

Kino

Film

Rad

Forestilling

Dato

Billett

Sete

. . .

Representasjon

 I tillegg må vi for hvert begrep bestemme oss for hvordan vi skal lagre informasjon om forekomster av dette begrepet

Fra kinobillettdomenet:

```
Kino – kinonavn f.eks. "Colloseum"
Film – filmnavn f.eks. '七人の侍'
Rad – et naturlig tall mellom 1 og 54
Forestilling – tidspunkt og navn på film og kino
Dato – dag, måned, år
Billett – billettnavn
```

Sete - et naturlig tall mellom 1 og 29

. . .

Elementære setninger

- En setning som ikke kan deles opp uten å miste meningsinnhold, kalles elementær
- Eksempel:
 - Bjarte tar IN2090 og IN2010

Denne setningen er *ikke* elementær fordi den kan erstattes av de to elementære setningene

- Bjarte tar IN2090
- Bjarte tar IN2010

Setninger og Ogdens trekant

- La oss se nærmere på setningen: «Studenten med navn Hanne tar emnet med emnekode IN1000»
- «student» og «emne» er begreper
- «navn» og «emnekode» er deres verdityper (representasjonstyper)
- «Hanne» og «IN1000» er forekomster (data)

Setninger og faktatyper

- De to setningene under har samme meningsinnhold:
 - «Studenten med navn Hanne tar emnet med emnekode IN1000»
 - «Emnet med emnekode IN1000 har som deltaker studenten med navn Hanne»
- Vi kan forme liknende fakta ved å bytte ut forekomstene:
 - «Studenten med navn Henrik tar emnet med emnekode IN1020» (eller: «Emnet med emnekode IN1020 har som deltaker studenten med navn Henrik»)
- I ORM tegner vi denne faktatypen slik:

Roller og faktatyper

- Se på setningsparet:
 «En person med navn Siri eier en bil med registreringsnummer
 DL12345» og
 «En bil med registreringsnummer DL12345 eies av en person
 med navn Siri»
- Her kan vi åpenbart få lignende fakta ved å bytte ut forekomsten «Siri» med et annet navn og/eller forekomsten «DL12345» med et annet registreringsnummer
- Vi sier at begrepet «Person» spiller rollen «eier» overfor begrepet «Bil», og at «Bil» spiller rollen «eies av» overfor «Person»

Person

• Et slikt rollepar mellom to begreper kalles en (binær) faktatype

eier / eies av

Setningers aritet

Er denne setningen elementær?

- Anne fikk B i IN1010
- Ja, den mer eksplisitte elementære setningen: «Studenten med navn Anne fikk i emnet med emnekode INF1010 resultatet karakteren B» inneholder tre begreper: «student», «emne» og «resultat»
- Antall begreper i en setning kalles setningens aritet
- Vårt eksempel har aritet 3

Setningers aritet

- Setninger med aritet 1 kaller vi unære
- Setninger med aritet 2 kaller vi binære
- Setninger med aritet 3 kaller vi ternære
- Man kan konstruere elementære setninger med vilkårlig høy aritet
- Elementære setninger med aritet > 3 er sjeldnere, så vi gir dem ikke egne navn (n-ære setninger)

Modellere ternære setninger

Studenten med navn Anne fikk i emnet med emnekode IN1010 resultatet karakteren B

Setning med aritet 4

- Eksempel på en elementær setning med aritet 4:
 - 25.8.2008 lånte Per NOK 200 000 av Pål

 Kan være lurt å tenke på rekkefølgen til bogropore:

begrepene:

Ogdens trekant og ORM

 I ORM tegner vi begreper og verdityper (representasjonstyper) som henholdsvis heltrukne og stiplede rektangler/sirkler/elipser...

) :	,
J	

Ogdens trekant og ORM

 I ORM tegner vi begreper og verdityper (representasjonstyper) som henholdsvis heltrukne og stiplede rektangler/sirkler/elipser...

• Eksempel:

Begrepet **Person** og verditypen **Fødselsnummer** tegnes slik:

Ogdens trekant og ORM

 I ORM brukes ordet objekttype som en felles betegnelse på begreper og verdityper

Person (Fødselsnummer)

Faktatyper i ORM

• Vårt eksempel på en faktatype mellom begrepene Person og Bil tegner vi slik:

Broer

En **bro** er en forbindelse mellom et **begrep** og en **verditype**

Eksempel:

Slik tegner vi broen mellom Person og Fødselsnummer i ORM:

Setningstyper

 Ordet setningstype er en felles betegnelse på faktatyper og broer

Setningstyper

- Ordet setningstype er en felles betegnelse på faktatyper og broer
- Broer er alltid binære de forbinder ett begrep og én verditype

Setningstyper

- Ordet setningstype er en felles betegnelse på faktatyper og broer
- Broer er alltid binære de forbinder ett begrep og én verditype
- Faktatyper kan ha et vilkårlig antall roller (aritet)
 - hver rolle skal være knyttet til nøyaktig ett begrep
 - et begrep kan spille flere roller i samme faktatype (se f.eks. låneeksempelet ovenfor, der begrepet Person spiller rollene «er låntaker» og «er långiver»)

Rollenavn

- I faktatyper bør alle rollenavn inneholde et verb (hvis ikke, er det grunn til å tro at rollenavnet er dårlig valgt)
- I broer er det vanlig med preposisjoner som rollenavn. De to vanligste rolleparene er

- med/for
- med/på

Fakta – setningers dype struktur

• I ORM-diagrammet plasserer vi *en strek* over rollen hvor samme forekomst ikke kan gjentas i forekomsttabellen

- I ORM-diagrammet plasserer vi en strek over rollen hvor samme forekomst ikke kan gjentas i forekomsttabellen
- Streken kalles en entydighetsskranke

- I ORM-diagrammet plasserer vi en strek over rollen hvor samme forekomst ikke kan gjentas i forekomsttabellen
- Streken kalles en entydighetsskranke
- Entydighetsskranker kan gå over flere roller da er det forekomstkombinasjonen i rollene som ikke kan gjentas

- I ORM-diagrammet plasserer vi en strek over rollen hvor samme forekomst ikke kan gjentas i forekomsttabellen
- Streken kalles en entydighetsskranke
- Entydighetsskranker kan gå over flere roller da er det forekomstkombinasjonen i rollene som ikke kan gjentas

skranke

grense (I,1), hindring bryte alle skranker / sette en skranke for noe

- Vi skal nå se på en faktatype mellom en kvinne og en mann kalt ekteskap
- Uten entydighetsskranke(r) ser modellen slik ut:

- Hvilke(n) entydighetsskranke(r) skal vi ha?
- Lag forekomsttabell og sett på entydighetsskranke(r)!

- De fleste har vel foreslått modellen nedenfor
- Lag forekomsttabell

Monogami

 Vi kaller dette en 1:1 (én-til-én) faktatype mellom (begrepene) Kvinne og Mann

- En annen mulighet er nedenstående modell
- Lag forekomsttabell

Polygyni

- Polygyni (flerkoneri) er en ikke uvanlig ekteskapsform
- Dette er en n:1 (mange-til-én) faktatype fra Kvinne til Mann

- En tredje mulighet er nedenstående modell
- Lag forekomsttabell

Polyandri

- Polyandri (flermanneri) forekommer blant annet i Nepal og deler av India
- Dette er en 1:n (én-til-mange) faktatype fra Kvinne til Mann

- En siste mulighet er nedenstående modell
- Lag forekomsttabell

Polygami

- Ekte polygami (flergifte, polyamori) forekommer nok ikke, i hvertfall ikke institusjonalisert
- Dette er en m:n (mange-til-mange) faktatype

Påkrevde roller

- Dersom alle biler må ha en eier, sier vi at rollen «eies av» er en påkrevd rolle for Bil og markerer det med en fet prikk på rollen
- Merk: Det at rollen er påkrevd, gjør at hver gang vi legger inn en bilforekomst i databasen, må vi samtidig registrere hvem som eier bilen
- Matematikerne sier at vi har en total funksjon fra Bil til Person (rollen «eies av» er definert for alle forekomster av Bil).
 Påkrevde roller kalles derfor også totale roller

Perfekt bro - 1

 En 1:1 bro der begrepsrollen er påkrevd, kalles en perfekt bro

 Perfekte broer er så vanlige at vi har en egen kortform for dem (de implisitte rollenavnene er «med/på» eller «med/for» («with/of»)):

De to tegnemåtene er ekvivalente

Perfekt bro - 2

- Hvis vi har en perfekt bro hvor navnet på verditypen er lik begrepsnavnet med et suffiks, har vi en enda mer kompakt notasjon
- Eksempel:

Representasjon og refererbarhet

- Alle begreper trenger en eller flere verdityper som kan brukes for å representere begrepet
- **Eksempel**: om vi har begrepet «Ansatt», trenger vi en måte å entydig identifisere alle ansatte på:

- Perfekte broer er én måte å gjøre dette på
- Da sier vi at begrepet er refererbart. Alle begreper i en modell må være refererbare

Mer om entydighetsskranker

- Merk at hver setningstype (faktatype/bro)
 alltid skal ha minst én entydighetsskranke
- Hvis ikke, kunne samme faktum bli lagret vilkårlig mange ganger
- Merk også at en kort entydighetsskranke er strengere enn en lang
- Det er feil å la en lang entydighetsskranke dekke en kort

Entydighetsskranker i ikke-binære setninger (blir gjennomgått neste uke)

