AI Search

Tristan Slater

October 6, 2022

Contents

1	D	efining Search Problems	1
	1.1	2 Successor 1 amount 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1.5		
	1.4	-	
2	Ва	asic Search	2
3	In	formed Search	
	3.1	2 Bobo I moo seemen	
		2 A*	
	J. (g incurisites	,
1		Defining Search Problems	
	1.	Initial state	
	2.	Successor	
	3.	Goal test	
	4.	Step cost	
1	1	Successor Function	

1.1 Successor Function

Tells us where we can go from a state:

$$S(s_0) = \{(a_1, s_1), ..., (a_n, s_n)\}$$
(1)

When actions are inferrable from states:

$$S(s_0) = \{s_1, ..., s_n\}$$
 (2)

1.2 Goal Test Function

Tells when solution has been reached. **Explicit** defines which state is a goal. **Implicit** is some set of conditions that could happen at various states under various conditions.

1.3 Step Cost Function

Tells how much a single step costs:

$$c(s_1, a, s_2) \ge 0 \tag{3}$$

1.4 Solution

Any path from initial state to goal state:

$$\{a_1, ..., a_n\}$$

When actions are inferrable from states:

$$\{s_1, ..., s_n\}$$

2 Basic Search

A **node** is an abstract data structure that contains information about a state, parent node, action, path cost, and depth (optional).

The **frontier** is the collection of nodes that have been *generated*, but *not expanded*.

Table 1: Comparison of Basic Search Strategies

		9	
	BFS	UCS	DFS
Node ADS	Queue	Min queue ³	Stack
Nodes to Expand First	Shallowest	Cheapest	Deepest
Complete?	Yes^1	Yes^4	No
Optimal?	Yes^2	Yes	No
Time Complexity	$O(b^{d+1})$	$O(b^{\lceil C^*/\varepsilon \rceil})^5$	$O(b^m)$
Space Complexity	$O(b^{d+1})$	$O(b^{\lceil C^*/\varepsilon \rceil})$	O(bm)

 $^{^1}$ If b infinite

DLS is exactly like DFS except with the depth limited.

IDS is exactly like DLS except it tries all depths starting at 0.

IDS is complete.

IDS is *optimal* if the step cost is 1.

² If step costs equal

 $^{^3}$ Path cost

⁴ If step cost > 0

 $^{^5}$ C^* cost of solution

- 3 Informed Search
- 3.1 Best-First Search
- 3.2 A*
- 3.3 Heuristics