RECOMMENDATION SYSTEM USING MATRIX FACTORIZATION

By Mert Uzgül

Yeditepe University
Faculty of Engineering
Department of
Computer Engineering
2020

CONTENTS

- -Introduction
- -Netflix prize competition
- -Matrix factorization in ML
- -Stochastic gradient descent
- -Test & Results
- -Conclusion & Future work

INTRODUCTION TO RECOMMENDER SYSTEMS

- Recommender systems were introduced in the mid-1990s to help people select the most suitable product for them from the plethora of options available with them.
- Recommender systems are utilized in a variety of areas such as Amazon, Netflix, and Youtube.
- The most widely known and used filtering techniques are;
- Collaborative Filtering
- Content-Based Filtering

Collaborative vs. Content Based Filtering

Netflix Prize Competition 2006

- The first team that can improve on the Netflix algorithm's RMSE(Root mean squared error) performance by 10 percent or more wins a \$1.000.000 prize.
- The contest created within the collaborative filtering field.

What is matrix factorization?

$$R_{ui} \sim q_i^T p_u$$

Short example of how matrix factorization works

	F1	F2
U1	1	0
U2	0	1
U3	1	0
U4	1	1

User – I	Feature	matrix

	F1	F2
M1	3	1
M2	1	2
МЗ	1	4
M4	3	1
M5	1	3

Movie – Feature matrix

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
User 1	3	1	1	3	1
User 2	1	2	4	1	3
User 3	3	1	1	3	1
User 4	4	3	5	4	4

Original matrix

The data sets in real-life

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
User 1	3		1		1
User 2	1		4	1	
User 3	3	1		3	1
User 4		3		4	4

2.76

1.68

User

3.37

1.99

3.73

2.32

2.07

1.2

1.02

0.63

ui ui Error = $(3 - 1.44)^2$

Movie

5

=?	

	U
?	U
	U
	U

l
Į
ι
l

Use 1
Use 2
Us∈ 3
Use 4

	Movie 1
User 1	3
User 2	1
User 3	3
User 4	

How to optimize predicted matrix?

User – Feature matrix

Predicted matrix

	Movie 1	Movie 2	Movie 3	Movie 4	Movie 5
User 1	1.44	1.37	2.26	0.7	0.59
User 2	1.32	1.53	1.85	0.91	0.5
User 3	2.76	3.37	3.73	2.07	1.02
User 4	1.68	1.99	2.32	1.2	0.63

Movie – Feature matrix

	F1	F2
M1	1.2	2.4
M2	3.1	1.5
МЗ	0.3	4.4
M4	2.5	0.4
M5	0.2	1.1

	F1	F2
U1	0.2	0.5
U2	0.3	0.4
U3	0.7	0.8
U4	0.4	0.5

Stochastic Gradient Descent

What is Stochastic Gradient Descent?

- The word 'stochastic' means a system or a process that is linked with a random probability.
- In Stochastic Gradient Descent, a few samples are selected randomly instead of the whole data set for each iteration.
- The matrix factorization of user and item matrices can be generated when the math cost function RMSE is minimized through matrix factorization. Stochastic gradient descent is a method to minimize the cost function.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Graident Descent vs.

Stochastic Gradient Descent

Gradient Descent

Stochastic Gradient Descent

Analyzing Amazon's data set

	rating	numberofratings
product_id		
B00014CZP8	4.158730	630
B00014JNI0	4.770992	393
B00014DJL2	3.923280	378
B0000DID5R	4.466472	343
B00012182G	3.169960	253
616719923X	4.275229	218
B00006IUTN	4.672414	174
B0000W0GQQ	4.801242	161
B0000V8IOE	4.000000	160
B0000531B7	4.418033	122

Analyzing Amazon's data set

product_id	0657745316	0700026444	140379
user_id			
A021874321O48MHLE22YG	5.0	NaN	
A025365536J4VIIEA7QWY	NaN	NaN	
A03097441ZJL0DBCA4RHL	NaN	NaN	
A03146861HWONIOQQ8SDR	NaN	NaN	
A03590772XZ86W3FKBCO1	NaN	NaN	

Amazon's Data Set

Books

Electronics

Movies and TV

CDs and Vinyl

Clothing, Shoes and Jewelry

Home and Kitchen

Kindle Store

Sports and Outdoors

Cell Phones and Accessories

Health and Personal Care

Toys and Games

Video Games

Tools and Home Improvement

Beauty

Apps for Android

Office Products

Pet Supplies

Automotive

Grocery and Gourmet Food

Patio, Lawn and Garden

Baby

Digital Music

Musical Instruments

Amazon Instant Video

5-core (8,898,041 reviews)

5-core (1,689,188 reviews)

5-core (1,697,533 reviews)

5-core (1,097,592 reviews)

5-core (278,677 reviews)

5-core (551,682 reviews)

5-core (982,619 reviews)

5-core (296,337 reviews)

5-core (194,439 reviews)

5-core (346,355 reviews)

5-core (167,597 reviews)

5-core (231,780 reviews)

5-core (134,476 reviews)

5-core (198,502 reviews)

5-core (752,937 reviews)

5-core (53,258 reviews)

5-core (157,836 reviews)

5-core (20,473 reviews)

5-core (151,254 reviews)

5-core (13,272 reviews)

5-core (160,792 reviews)

5-core (64,706 reviews)

5-core (10,261 reviews)

5-core (37,126 reviews)

ratings only (22,507,155 ratings)

ratings only (7,824,482 ratings)

ratings only (4,607,047 ratings)

ratings only (3,749,004 ratings)

ratings only (5,748,920 ratings)

ratings only (4,253,926 ratings)

ratings only (3,205,467 ratings)

ratings only (3,268,695 ratings)

ratings only (3,447,249 ratings)

ratings only (2,982,326 ratings)

ratings only (2,252,771 ratings)

ratings only (1,324,753 ratings) ratings only (1,926,047 ratings)

ratings only (2,023,070 ratings)

ratings only (2,638,172 ratings)

ratings only (1,243,186 ratings)

ratings only (1,235,316 ratings)

ratings only (1,373,768 ratings)

ratings only (1,297,156 ratings)

ratings only (993,490 ratings)

ratings only (915,446 ratings)

ratings only (836,006 ratings)

ratings only (500,176 ratings)

ratings only (583,933 ratings)

Training Amazon's open-to-use data sets

Flowchart of data training

Comparing Results

Trained Matrix

Original Matrix

	M1	M2	М3	M4	M5
U1	2.99	1.01	1.00	2.96	1.00
U2	1.00	1.88	3.99	1.01	2.82
U3	2.99	1.00	1.00	2.99	1.00
U4	3.94	3.00	4.81	3.99	3.99

	M1	M2	М3	M4	M5
Ul	3	1	1	3	1
U2	1	2	4	1	3
U3	3	1	1	3	1
U4	4	3	5	4	4

Non functional Requirements of Recommender Systems

Advantages and Disadvantages of Matrix Factorization

- Storage
- Fair
- Accurate
- Low error rate

- User dependent
- Cold start
- Stationary structure

Conclusion & Future Work

REFERENCES

- [1] Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix factorization techniques for recommender systems." Computer 42.8 (2009): 30-37.
- [2] Shani, Guy, and Asela Gunawardana. "Evaluating recommendation systems." Recommender systems handbook. Springer, Boston, MA, 2011. 257-297.
- [3] Bennett, James, and Stan Lanning. "The netflix prize." Proceedings of KDD cup and workshop. Vol. 2007. 2007.

THANK YOU FOR LISTENING!