Selected Answers for Contemporary Abstract Algebra

Ian Shaw

August 22, 2020

These are write-ups for the questions left to the reader in Joseph A. Gallian's 8th edition of *Contemporary Abstract Algebra*. The questions were selected because they were the most interesting.

Contents

1 Chapter 0: Preliminaries

1

 $\mathbf{3}$

2 Notation

1 Chapter 0: Preliminaries

5. Show that if a and b are positive integers, then $ab = lcm(a, b) \bullet gcd(a, b)$.

Proof. By the Fundamental Theorem of Arithmetic (Theorem 0.3 in the book) that a is the product of primes, and by definition the greatest common divisor is a product of a subset of these primes

$$a = \gcd(a, b) \prod_{i=1}^{n} p_{a,i}$$

Since by this definition

$$\{\emptyset\} = \{p_{a,i}\} \cap \{p_{b,i}\}$$

Thus

lcm
$$(a, b)$$
 = gcd (a, b) $\prod_{i=1}^{n} p_{a,i} \prod_{j=1}^{m} p_{b,j}$

Therefore

$$lcm(a,b)gcd(a,b) = gcd(a,b)gcd(a,b) \prod_{i=1}^{n} p_{a,i} \prod_{j=1}^{m} p_{b,j}$$
$$= (gcd(a,b) \prod_{i=1}^{n} p_{a,i}) (gcd(a,b) \prod_{j=1}^{m} p_{b,j})$$
$$= ab$$

7. If a and b are integers and n is a positive integer, prove that $a \mod n = b \mod n$ if and only if n divides a - b.

Proof. Forward: If $a \mod n = b \mod n$, then n divides a - b.

So we know that

$$m_a, m_b, r, \in \mathbb{Z}$$

 $a = m_a n + r$
 $b = m_b n + r$

Doing some artihmetic

$$a-b=(m_a-m_b)n \implies n|(a-b)$$

Backward: If n divides a - b, then $a \mod n = b \mod n$.

$$mn = a - b$$
$$a = mn + b$$

We also know by the Division Algortihm

$$b = m_b n + r$$
$$r = b \bmod n$$

Thus with substitution

$$a = mn + m_b n + r$$

= $n * (m - m_b) + r \implies r = a \mod n$

11. Let n and a be positive integers and let $d = \gcd(a, b)$. Show that the equation $ax \mod n = 1$ has a solution if and only if d = 1.

Proof. Forward: If the equation $ax \mod n = 1$ has a solution, then d = 1.

By Theorem 0.2 (p.4),

$$d = \gcd(a, b) \implies \exists s, t \in \mathbb{Z} \text{ s.t. } as + nt = d$$

Also, by definition

$$ax \mod n = 1 \implies \exists m_n \in \mathbb{Z} \text{ s.t. } ax = nm_n + 1$$

$$ax - nm_n = 1$$

Further reading of Theorem 0.2 says that gcd(a, b) is the smallest possible integer of the form as + nt = d. Since 1 is the smallest possible integer,

$$1 = \gcd(a, b)$$

Backward: If d = 1, then the equation $ax \mod n = 1$ has a solution.

This is pretty straight forward

$$\gcd(a,b)=1 \implies \exists s,t \in \mathbb{Z} \text{ s.t. } as+nt=1$$

$$as=n(-t)+1$$

$$as \mod n=1$$

12. Show that 5n + 3 and 7n + 4 are relatively prime for all n.

Proof. As shown in Exercise 11, if the equation $ax \mod n = 1$ has a solution, then gcd(a, b) = 1. Specified to this situation: If $(7n + 4)x \mod (5n + 3) = 1$ has a solution, then gcd(7n + 4, 5n + 3) = 1 and thus are relatively prime.

Consider the equation for unknown $p, x \in \mathbb{X}$

$$(5n+3)p+1 = (7n+4)x$$

Well this can be solved with a p = -7 and x = 5. Therefore $(7n + 4)x \mod (5n + 3) = 1$ has a solution and 5n + 3 and 7n + 4 are relatively prime for all n.

17. Let a, b, s and t be integers. If $a \mod st = b \mod st$, show that $a \mod s = b \mod s$ and $a \mod t = b \mod t$. What condition on s and t is needed to make the converse true?

Proof. Given that $a \mod st = b \mod st$, we know that $\exists r \in \mathbb{Z}$ for $p, q \in \mathbb{Z}$ such that

$$a = stp + r$$

$$b = stq + r$$

2 Notation

Throughout the paper, we will reference the notation listed in this section.

$$\mathbb{Z} = \text{integers}$$
 (1)

$$\mathbb{Z}^+ = \text{positive integers} \tag{2}$$

(3)

ianedwardshaw (at) gmail.com