Q1.

(a) To compute the longest common subsequence for the strings TGTCGA and GCAGCTTGCC:

	j	0	1	2	3	4	5	6	7	8	9	10
i		Y_j	G	С	Α	G	С	T	T	G	С	С
0	X_{i}	0	0	0	0	0	0	0	0	0	0	0
1	Т	0	↑0	↑0	↑0	↑0	↑0	\^1	√ 1	←1	←1	←1
2	G	0	\1	←1	←1	√ 1	←1	↑1	↑1	∖ 2	← 2	← 2
3	Т	0	↑1	↑1	↑1	↑1	↑1	₹ 2	₹ 2	↑2	↑2	↑2
4	С	0	↑1	₹ 2	← 2	← 2	₹ 2	↑2	↑2	↑2	√3	√3
5	G	0	<u>\1</u>	↑2	↑2	√3	← 3	← 3	← 3	√3	1 3	↑3
6	Α	0	↑1	↑2	√3	1 3	1 3	1 3	1 3	1 3	1 3	↑3

From the table above, the longest common subsequence computed is TGC.

(b) No, the answer is not unique. Two other LCS for the two given strings are TTC and TTG.

Q2. Items we have:

Item No.	Size	Value	Value/Size
1	2	1	0.50
2	2	2	1.00
3	4	5	1.25
4	5	6	1.20

Assuming this is a **0/1 Knapsack** and multiple copies of an item is **NOT ALLOWED**.

	S=0	1	2	3	4	5	6
Item=0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1
2	0	0	2	2	3	3	3
3	0	0	2	2	5	5	7
4	0	0	2	2	5	6	7

Hence, the solution to this problem is value 7, where items 2 and 3 will be taken.

- (a) The elements in the second last column are 0, 1, 3, 5, 6.
- **(b)** True. In the Greedy approach, we would choose to take the item with the most value-to-size ratio at each stage. Thus, we would end up with item 3 and then item 2; and thus, a value of 7 (similar to the answer given by DP). In this question, the greedy approach does give us an optimal solution and since a greedy approach is usually much faster than that of Dynamic Programming, the greedy approach would yield a better performance. (However, the greedy approach would not always work for 0/1 knapsack questions if we are unable to fill the knapsack to capacity. The empty space would lower the effective value per size of our load, leading to a less than optimal solution than that provided by DP.)

Q3 DP recurrence relation:

DP Table:

 $P_0 = 4$

i \ j	1	2	3	4
1	0	12	14	24
2	X	0	6	12
3	X	X	0	18
4	X	X	X	0

$$\begin{aligned} &(k=1) \ M[1,2] = M[1,1] + M[2,2] + P_0 P_1 P_2 = 0 + 0 + 4(1)(3) = 12 \\ &(k=2) \ M[2,3] = M[2,2] + M[3,3] + P_1 P_2 P_3 = 0 + 0 + 1(3)(2) = 6 \\ &(k=3) \ M[3,4] = M[3,3] + M[4,4] + P_2 P_3 P_4 = 0 + 0 + 3(2)(3) = 18 \\ &M[1,3]: (k=1) -> M[1,1] + M[2,3] + P_0 P_1 P_3 = 0 + 6 + 4(1)(2) = 14 \ \text{(the min value)} \\ &(k=2) -> M[1,2] + M[3,3] + P_0 P_2 P_3 = 12 + 0 + 4(3)(2) = 36 \\ &M[2,4]: (k=2) -> M[2,2] + M[3,4] + P_1 P_2 P_4 = 0 + 18 + 1(3)(3) = 27 \\ &(k=3) -> M[2,3] + M[4,4] + P_1 P_3 P_4 = 6 + 0 + 1(2)(3) = 12 \ \text{(the min value)} \\ &M[1,4]: (k=1) -> M[1,1] + M[2,4] + P_0 P_1 P_4 = 0 + 12 + 4(1)(3) = 24 \ \text{(the min value)} \\ &(k=2) -> M[1,2] + M[3,4] + P_0 P_2 P_4 = 12 + 18 + 4(3)(3) = 66 \end{aligned}$$

Minimum cost to perform the matrix multiplication is 24. Order of multiplication: $(A_1)((A_2 A_3) A_4)$

 $(k=3) \rightarrow M[1,3] + M[4,4] + P_0P_3P_4 = 14 + 0 + 4(2)(3) = 38$

To check:

$$(4\times1) \left[(1\times3)(3\times2) (2\times3) \right]$$

$$(4\times1) \left[(1\times2)(2\times3) \right]$$

$$(4\times3) \left[(1\times3)(3\times2) \right]$$

$$(4\times3) \left[(1\times3$$