

ПЛАН ВЫСТУПЛЕНИЯ

ВВЕДЕНИЕ

ЦЕЛЬ И ЗАДАЧИ

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

выводы

ПЕРСПЕКТИВЫ

ЗАКЛЮЧЕНИЕ

ВВЕДЕНИЕ

КАКИЕ ВВОДНЫЕ?

Обнаружено несколько расчётных моделей, которые необходимо скорректировать для достижения большей эффективности работы облучателей:

- Модель лампы в виде «тонкой линии», согласно стандарту, принятому IUVA.
- Модель лампы, абсолютно прозрачной для света от другой такой же лампы.
- Модель излучателя как системы из нескольких источников света с мощностью в УФ, равной суммарной мощности ламп.

В целях улучшения энергоэффективности необходимо пересмотреть эти модели и ввести более точные и подходящие к реальным объектам.

ЦЕЛЬ И ЗАДАЧИ

КАК ДОСТИЧЬ ЖЕЛАЕМОГО?

Цель работы: получить программное обеспечение для расчёта распределения интенсивности излучения в различных направлениях.

Задачи:

- 1) Измерить коэффициент пропускания света в УФ диапазоне лампой ДБ300 Н
- 2) Экспериментально измерить зависимость светового потока от угла точки наблюдения в различных компоновках
- 3) По полученным данным составить и запрограммировать расчётную модель системы ламп

0,6 0,55 0,5 0,4 0,35

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

ИНФОГРАФИКА

ПОТОК СВЕТА ОТ ЛАМПЫ

РАСПРЕДЕЛЕНИЕ ИНТЕНСИВНОСТИ

Для реализации наиболее правдоподобной модели лампы, необходимо учитывать, что свет исходит не только из центра лампы, но и по всей видимой площади.

ПОТОК СВЕТА ОТ ЛАМПЫ

КОЭФФИЦИЕНТ ПРОПУСКАНИЯ ЛАМПЫ

ПРОЗРАЧНА ЛИ ЛАМПА ДЛЯ УФИ

Главное новшество в методике расчёта распределения интенсивности от системы ламп в пространстве — это введение коэффициента пропускания для ламп.

Другими словами, в расчётной модели лампа не считается прозрачной для света на длине волны 254нм.

КОЭФФИЦИЕНТ ПРОПУСКАНИЯ ЛАМПЫ

	Пропускание негорящей лампы (%)	Кв. отклонение (%)	Пропускание горящей лампы (%)	Кв. отклонение (%)
Усреднённые значения	46,63	0,767	14,8	1,14

Стоит отметить, что данные по пропусканию негорящей лампы значительно отличаются от значений, получаемых в спектрофотометре (СПФ): 74%.

Есть предположение, что сильное различие обусловлено наличием фокусировки пучка в СПФ, и отсутствием какойлибо систематизации светового фронта в лампе, что приводит к сильному рассеянию.

ВСЕ НЕОБХОДИМЫЕ ДАННЫЕ ДЛЯ СОСТАВЛЕНИЯ ЦИФРОВОЙ МОДЕЛИ ЛАМПЫ СОБРАНЫ И ОБРАБОТАНЫ. ТЕПЕРЬ НЕОБХОДИМО СОСТАВИТЬ МОДЕЛЬ ИЗЛУЧАТЕЛЯ И ПРОВЕСТИ РАСЧЁТЫ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ДЛЯ СИСТЕМЫ ЛАМП.

display:block;position:a

ВЕРИФИКАЦИЯ МОДЕЛИ

ВАРИАНТЫ КОМПОНОВОК

ФИНАЛЬНЫЙ ЭТАП ИССЛЕДОВАНИЯ

- В работу были взяты варианты с 3, 4, 6 и 8 лампами, чтобы имитировать уже существующие излучатели.
- Экспериментальный стенд позволяет закреплять лампы в любой точке пространства внутри своих габаритов.

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

ПРИМЕР РАСПОЛОЖЕНИЯ ЛАМП

12

ВЫВОДЫ

И РЕКОМЕНДАЦИИ

ОСНОВНЫЕ ВЫВОДЫ ПО ПРОДЕЛАННОЙ РАБОТЕ

- Введённые модели лампы и методика расчёта позволяют определять тренды в поведении реальных объектов.
- Существующие компоновки не обеспечивают оптимальность распределения УФИ.
- Есть потенциал к повышению эффективности.

РЕКОМЕНДАЦИИ ПО ПРОЕКТИРОВАНИЮ ИЗЛУЧАТЕЛЕЙ

- Как согласованно показали практика и расчёты, компоновки из трёх и шести ламп более перспективны.
- Радиус, на котором располагаются лампы, необходимо делать как можно больше в границах конструкции.
- Следует проводить анализ компоновки до её утверждения с целью проверки минимального значения интенсивности по направлениям.

ПЕРСПЕКТИВЫ

направления исследований

НОВЫЙ КОНСТРУКТИВ

Одним из вариантов может служить расположение ламп по образующим однополостного гиперболоида. В эксперименте достигался минимум в 80% от максимально возможной мощности. В то время, как классическая компоновка обеспечивает не более 55%.

