ANALISIS DE NUMEROS

NOTACION CIENTIFICA

En muchos campos de la Física y de otras ciencias, es frecuente encontrarnos con valores numéricos muy elevados (millones, billones, cuatrillones...) y otros casos muy pequeños (millonésimas, trillonésimas,...), los cuales son difíciles de expresar y operar con ellos.

Resulta conveniente adoptar una forma abreviada de escritura para dichos números , que permita además leerlos sin estar contando ceros en cada oportunidad y facilite la operación aritmética entre ellos

Un buen método es usar las potencias de diez y sus propiedades.

Por ejemplo:

- 1) $7080000000 \rightarrow 7,08x10^8$
- 2) $2700000 \rightarrow 2.7x10^6$
- 3) $0.000000054 \rightarrow 5.4x10^{-8}$
- 4) $0,00009 \rightarrow 9x10^{-5}$

Valor numérico	Representación en Notación Científica	Representación numérica
Miltrillonésima	10-21	0.000000000000000000000000001
Trillonésima	10 ⁻¹⁸	0,0000000000000000000001
Milbillonésima	10 ⁻¹⁵	0,000000000000001
Billonésima	10 ⁻¹²	0,00000000001
Milmillonésima	10 -9	0,000000001
Millonésima	10 ⁻⁶	0,000001
Milésima	10 -3	0,001
Centésima	10 ⁻²	0,01
Décima	10 ⁻¹	0,1
Uno	1	1
Diez	10 ¹	10
Cien	10 ²	100
Mil	10 ³	1 000
Millón	10 ⁶	1 000 000
Mil millones	10 ⁹	1 000 000 000
Billón *	10 ¹²	1 000 000 000 000
Mil billones	10 ¹⁵	1 000 000 000 000 000
Trillón	10 ¹⁸	1 000 000 000 000 000 000
Mil trillones	10 ²¹	1 000 000 000 000 000 000 000

Exprese en notación científica las siguientes cantidades:

80,600	$= 8,06x10^4$	170,000,000	
586,100	$= 5,861x10^5$	710,000,000	
295,000	$= 2,95x10^5$	8,800,000	
1,490	$= 1,49x10^3$	23,000	
16,000	$= 1,6x10^4$	67,800	
6,103	=	37,000,000	
992,400,000	=	45,300,000	
2,544	=	59,750	
2,820,000	=	2,300,000	
28,000,000	=	6,800,000	=

CIFRAS SIGNIFICATIVAS

Al realizar una medición con algún un instrumento de medida, este nos entrega un valor formado por una serie de cifras. Dicha serie de cifras recibe el nombre de cifras significativas(cs), que es el conjunto de dígitos que se conocen con seguridad de una medida.

Reglas para determinar las cifras significativas:

a) Cualquier cifra distinta de cero se considera significativa.

Ejemplos: 6825,36 m tiene 6 c.s. o 425 tiene 3 c.s.

 Se consideran cifras significativas los ceros situados entre dos dígitos distintos de cero y los situados después de la coma decimal.

Ejemplos: 2005.20 tiene 6 c.s. o 34,00 tiene 4 c.s.

 No se consideran cifras significativas los ceros situados al comienzo de un número, incluidos aquellos situados a la derecha de la coma decimal hasta llegar a un dígito distinto de cero.

Ejemplo: 0,003460 tiene 4 c.s. (3460)

d) No se consideran significativos los ceros situados al final de un número sin coma decimal, excepto si se indican con un punto.

Ejemplos: 750 tiene 2 c.s. (75), sin embargo 750. tiene 3 c.s.

EJERCICIOS

Indique cuántas cifras significativas tiene cada uno de los siguientes números experimentales:

- a)8 1(cs)
- b)80 1(cs)
- c)8000,0 5(cs)
- d)0,08 1(cs)
- e)0,080 2(cs)
- f)808 ^{3(cs)}
- g)4,16221 6(cs)
- h)8,1609 5(cs)
- i)7,28 3(cs)
- j)9,80 3(cs)

APROXIMACIONES

- A) <u>DEFECTO</u>: Es la búsqueda de un numero con un determinado número de cifras decimales que es menor que el dado
- B) EXCESO: Es la búsqueda de un numero con un determinado número de cifras decimales que es mayor que el dado
- C) <u>TRUNCAMIENTO</u>: Es la posición de corte que se realiza, eliminando las cifras hacia la derecha sin tomar alguna consideración alguna
- D) <u>REDONDEO</u>: Es la aproximación en que consideramos la cifra que esta a la derecha del numero que queremos aproximar , es decir:
- a) Si la cifra es mayor que 5, incrementamos en 1 la cifra de la izquierda
- b) Si la cifra es menor que 5, la cifra de la izquierda no se altera
- c) Si la cifra tiene un valor de 5, observamos la cifra que precede a este valor, si es par no se incrementa, en caso contrario se incrementa en 1

Por ejemplo:

Considerar el valor 13,682413, aproximar a la milésima bajo los métodos antes expuestos.

DEFECTO \rightarrow 13,682413 \approx 13,682 TRUNCAMIENTO \rightarrow 13,682413 \approx 13,682

EXCESO \rightarrow 13,682413 \approx 13,683 REDONDEO \rightarrow 13,682413 \approx 13,682 , porque el que precede es menor que 5

Complete el recuadro

Valor	Aprox	Defecto	Exceso	Truncamiento	Redondeo
15,034562	Decima 15,034562	15,0	15,1	15,0	15,0
25/42 0,595238095	Centésima 0,595238095	0,59	0,60	0,59	0,60
(2/15)+1,18 1,313333333	Milésima 1,313333333	1,313	1,314	1,313	1,313
15x10 ⁻² :9 0,016666666	Diez milésima 0,0166666666	0,0166	0,0167	0,0166	0,0167
2x√π 3,544907702	Centésima 3,544907702	3,54	3,55	3,54	3,54

Por ejemplo:

Al redondear 72,36 en decimas, nos queda 72,4 (porque al 3, le sigue el 6 que es mayor que 5) Al redondear 7,462 en centésimas, nos queda 7,46 (porque al 6, le sigue el 2 que es menor que 5) Al redondear 7,465 en centésimas, nos queda 7,46 (porque al 6, le sigue el 5, y el 6 es par) Al redondear 7,475 en centésimas, nos queda 7,48 (porque al 7, le sigue el 5, y el 7 es impar) Al redondear 72,8 a unidades, nos queda 73 (porque al 2, le sigue el 8, que es mayor que 5) Al redondear 116.500.000 a millones, nos queda 116.000.000 Al redondear 117.500.000 a millones, nos queda 118.000.000

EJERCICIOS

1)Truncar y Redondear los siguientes números a la centésima y a la milésima

- *a*) 1, 234564668
- b) $2, \overline{7}$
- *c*) $4,\overline{51}$
- *d*) 1,143643625
- $f) 3,12\overline{7}$

- $g)\sqrt{5}$
- *h*) 3, 222464
- $i)\sqrt{3}$
- *j*) 1,6467538
- k)1,1234
- $l)5,\overline{5}$

2)Aproximar por redondeo al orden de unidad especificado en cada uno de los apartados

$$a) \frac{1}{12}, \rightarrow milesimas$$

b)
$$\frac{5}{40}$$
, \rightarrow décimas

$$c)\frac{6}{7}$$
, \rightarrow centésimas

$$d) \pi, \rightarrow centésimas$$

$$e)\frac{13}{6}$$
, $\rightarrow diezmilésima$

$$f)\sqrt{2}, \rightarrow unidades$$

$$g)\sqrt{7}, \rightarrow centésimas$$

h)
$$\sqrt{5}$$
, \rightarrow milésimas

ANALISIS ERRORES

Para reconocer el mejor método de aproximación , se utiliza la teoría de errores , donde nos encontramos con los llamados errores Absolutos y Relativos.

ERROR ABSOLUTO (E_{AB}): Este error nos determina la cercanía entre el valor real y el aproximado.

$$\boxed{E_{AB} = \left| V_R - V_A \right|}$$

ERROR RELATIVO (E_R): Este es la razón entre el E_{AB} y el Valor real (V_R), cuyo valor entrega la fracción porcentual del método utilizado.

$$E_R = \frac{E_{AB}}{V_R}$$

Por ejemplo:

Consideremos el valor 4,567 con una aproximación a la centésima, verificando cual aproximación entre Truncar o Redondear es mas correcta ha realizar.

TRUNCAMIENTO \rightarrow 4,567 \approx 4,56

$$E_{AB} = |V_R - V_A|$$
 $E_{AB} = |4,567 - 4,56|$
 $E_{AB} = 0,007$

$$E_{R} = \frac{E_{AB}}{V_{R}}$$

$$E_{R} = \frac{0,007}{4,567}$$

$$E_{R} = 0,00153$$

$$E_{R} = 0,153\%$$

REDONDEO \rightarrow 4,567 \approx 4,57

$$E_{AB} = |V_R - V_A|$$
 $E_{AB} = |4,567 - 4,57|$
 $E_{AB} = 0,003$

$$E_{R} = \frac{E_{AB}}{V_{R}}$$

$$E_{R} = \frac{0,003}{4,567}$$

$$E_R = 0,00066$$

$$E_R = 0.066\%$$

Prof: Alvaro Osorio

En resumen:

La aproximación mas valida es por redondeo, ya que su porcentaje de error es menor

EJERCICIOS

1) Calcular el error Absoluto y Relativo que se realizo en las siguientes aproximaciones:

$$a) \frac{7}{6} \approx 1,2$$

$$c)\frac{7}{6} \approx 1,16$$

a)
$$\frac{7}{6} \approx 1,2$$
 c) $\frac{7}{6} \approx 1,16$ e) $\frac{17}{12} \approx 1,4$
b) $\frac{17}{12} \approx 1,42$ d) $2,59201 \approx 2,5$ d) $2,59201 \approx 2,6$

$$b)\frac{17}{12} \approx 1,42$$

$$d) 2,59201 \approx 2,5$$

$$d) 2,59201 \approx 2,6$$

- 2) La masa de una persona adulta es de 74,5 Kg y la de un bebé de 8,5 Kg. Si se aproximan sus masas a 75 Kg y 9 Kg respectivamente ¿ en que caso se realiza una peor aproximación?
- 3) Se quiere evaluar la precisión de dos calibres.
 - El calibre A se mide un cilindro de diámetro 3,256 cm y el calibre da una medición de 3,28 cm
 - Con el calibre B se mide un tornillo de diámetro 0,458 cm y su medición es de 0,47 cm
- ¿ Que calibre es más preciso? .Determina los errores relativos y compáralos.
- 4) Al medir un segmento de longitud 1,26 cm con una regla, se obtiene que mide 1,2 cm ¿Qué error absoluto y relativo se obtiene?
- 5) Se ha calculado la distancia entre dos puentes de un río, obteniéndose una medida de 1500 m con un margen de error de 10m. Otros operarios han medido la altura de los puentes, siendo ésta de 5,83 m con un error máximo de 2 centímetros. a) ¿Cuál es el error relativo máximo cometido en cada medida? Exprésalo en porcentajes. b) ¿Cuál de las dos medidas se ha efectuado con mayor precisión.