

Lesson Interrupt

Communicating with I/O Devices

- The OS/App needs to know when:
 - The I/O device has completed an operation
 - The I/O operation has encountered an error
- This can be accomplished in two different ways:
 - Polling
 - Interrupt

Communicating with I/O Devices.....

- Polling:
 - The I/O device put information in a status register
 - The OS/App periodically check the status register
- I/O Interrupt:
 - An I/O interrupt is an externally stimulated event, asynchronous to instruction execution but does allow instruction completion
 - Whenever an I/O device needs attention from the processor, it interrupts the processor from what it is currently doing

Interrupt

- Enabling/Disabling
- Protection of critical sections against interrupt
- Reentrance software (Thread safe)
- Priority
- Hardware interrupt
- Software interrupt
- Interrupt Service routines (ISR)

Interrupt routines

- Must save processor state and registers
- Clear the interrupt reason
- Handle the interrupt as fast as possible
- Restore the processor state and registers
- Return to normal execution

Types of interrupts

- Hardware vs Software
 - Hardware: I/O, clock tick, power failure, exceptions
 - Software: INT instruction (80386)
- External vs Internal Hardware Interrupts
 - External interrupts are generated by CPU's interrupt pins
 - Internal interrupts (exceptions): div by zero, single step, page fault,
 - bad op-code, stack overflow, protection, ...

Types of interrupts

- Synchronous vs Asynchronous Hardware Int.
 - Synchronous interrupts occur at exactly the same place every time the program is executed.
 E.g., bad opcode, div by zero, illegal memory address, software int.
 - Asynchronous interrupts occur at unpredictable times relative to the program
 E.g., I/O, clock ticks

Hardware

Hardware.....

Software

Interrupt Sequence

- Device sends signal to interrupt controller
- Controller uses IRQ# for interrupt # and priority
- Controller sends signal to CPU if the CPU is not already processing an interrupt with higher priority
- CPU finishes executing the current instruction
- CPU saves FLAGS & return address on the stack
- CPU gets interrupt # from controller using I/O ops
- CPU finds "gate" in Interrupt Description Table
- CPU switches to Interrupt Service Routine (ISR). This may include a change in privilege level
- IF cleared

Interrupt Sequence

- ISR saves registers if necessary
- ISR, after initial processing, sets IF to allow interrupts
- ISR processes the interrupt
- ISR restores registers if necessary
- ISR sends End of Interrupt (EOI) to controller
- ISR returns from interrupt using IRET. EFLAGS (including IF)
 & return address restored
- CPU executes the next instruction
- Interrupt controller waits for next interrupt and manages pending interrupts

Interrupt on AVR

- Number and type of interrupt depends on MCU type
- ATMEGA1280 has 57 Vectors

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$0002	INT0	External Interrupt Request 0
3	\$0004	INT1	External Interrupt Request 1
4	\$0006	INT2	External Interrupt Request 2
5	\$0008	INT3	External Interrupt Request 3
6	\$000A	INT4	External Interrupt Request 4
7	\$000C	INT5	External Interrupt Request 5
8	\$000E	INT6	External Interrupt Request 6
9	\$0010	INT7	External Interrupt Request 7
10	\$0012	PCINT0	Pin Change Interrupt Request 0
11	\$0014	PCINT1	Pin Change Interrupt Request 1
12	\$0016 ⁽³⁾	PCINT2	Pin Change Interrupt Request 2
13	\$0018	WDT	Watchdog Time-out Interrupt
14	\$001A	TIMER2 COMPA	Timer/Counter2 Compare Match A
15	\$001C	TIMER2 COMPB	Timer/Counter2 Compare Match B
16	\$001E	TIMER2 OVF	Timer/Counter2 Overflow
17	\$0020	TIMER1 CAPT	Timer/Counter1 Capture Event
18	\$0022	TIMER1 COMPA	Timer/Counter1 Compare Match A
19	\$0024	TIMER1 COMPB	Timer/Counter1 Compare Match B
20	\$0026	TIMER1 COMPC	Timer/Counter1 Compare Match C
21	\$0028	TIMER1 OVF	Timer/Counter1 Overflow
22	\$002A	TIMERO COMPA	Timer/Counter0 Compare Match A
23	\$002C	TIMER0 COMPB	Timer/Counter0 Compare match B
24	\$002E	TIMER0 OVF	Timer/Counter0 Overflow
25	\$0030	SPI, STC	SPI Serial Transfer Complete

Priority

Interrupt on AVR

			<u> </u>	
26	\$0032	USART0 RX	USART0 Rx Complete	
27	\$0034	USARTO UDRE	USART0 Data Register Empty	
28	\$0036	USART0 TX	USART0 Tx Complete	: (
29	\$0038	ANALOG COMP	Analog Comparator	
30	\$003A	ADC	ADC Conversion Complete	
31	\$003C	EE READY	EEPROM Ready	
32	\$003E	TIMER3 CAPT	Timer/Counter3 Capture Event	
33	\$0040	TIMER3 COMPA	Timer/Counter3 Compare Match A	
34	\$0042	TIMER3 COMPB	Timer/Counter3 Compare Match B	
35	\$0044	TIMER3 COMPC	Timer/Counter3 Compare Match C	
36	\$0046	TIMER3 OVF	Timer/Counter3 Overflow	
37	\$0048	USART1 RX	USART1 Rx Complete	
38	\$004A	USART1 UDRE	USART1 Data Register Empty	
39	\$004C	USART1 TX	USART1 Tx Complete	
40	\$004E	TWI	2-wire Serial Interface	
41	\$0050	SPM READY	Store Program Memory Ready	
42	\$0052 ⁽³⁾	TIMER4 CAPT	Timer/Counter4 Capture Event	
43	\$0054	TIMER4 COMPA	Timer/Counter4 Compare Match A	
44	\$0056	TIMER4 COMPB	Timer/Counter4 Compare Match B	
45	\$0058	TIMER4 COMPC	Timer/Counter4 Compare Match C	
46	\$005A	TIMER4 OVF	Timer/Counter4 Overflow	
47	\$005C ⁽³⁾	TIMER5 CAPT	Timer/Counter5 Capture Event	
48	\$005E	TIMER5 COMPA	Timer/Counter5 Compare Match A	
49	\$0060	TIMER5 COMPB	Timer/Counter5 Compare Match B	

Priority

Interrupt on AVR

		•
\$0032	USART0 RX	USART0 Rx Complete
\$0034	USARTO UDRE	USART0 Data Register Empty
\$0036	USART0 TX	USART0 Tx Complete
\$0038	ANALOG COMP	Analog Comparator
\$0062	TIMER5 COMPC	Timer/Counter5 Compare Match C
\$0064	TIMER5 OVF	Timer/Counter5 Overflow
\$0066 ⁽³⁾	USART2 RX	USART2 Rx Complete
\$0068 ⁽³⁾	USART2 UDRE	USART2 Data Register Empty
\$006A ⁽³⁾	USART2 TX	USART2 Tx Complete
\$006C ⁽³⁾	USART3 RX	USART3 Rx Complete
\$006E ⁽³⁾⁾	USART3 UDRE	USART3 Data Register Empty
\$0070 ⁽³⁾	USART3 TX	USART3 Tx Complete
	\$0034 \$0036 \$0038 \$0062 \$0064 \$0066 ⁽³⁾ \$0068 ⁽³⁾ \$006A ⁽³⁾ \$006C ⁽³⁾ \$006E ⁽³⁾	\$0034 USARTO UDRE \$0036 USARTO TX \$0038 ANALOG COMP \$0062 TIMER5 COMPC \$0064 TIMER5 OVF \$0066 ⁽³⁾ USART2 RX \$0068 ⁽³⁾ USART2 UDRE \$006A ⁽³⁾ USART2 TX \$006C ⁽³⁾ USART3 RX \$006E ⁽³⁾ USART3 UDRE

AVR Software for interrupt handling

- Implement a ISR
- Setup and enable the interrupt source
- Enable the MCU's general interrupt

Case:

Setup external interrupt 1 (INT4/PE4) to interrupt on every level change


```
/**
 * Interrupt Service Routine (ISR) for
handling
 * INT4 interrupts.
 * Toggles PHO for every interrupt
 */
ISR(INT4_vect) {
   // Toggle PHO
   PORTH = PORTH ^{\wedge} _BV(PH0);
```


Setup and enable interrupt source

```
/**
 * Initialize the asyncron port pin toggler.
 * Setup INT4 (PE4) to interrupt on all level changes.
 * Setup PE4 to input.
 * Setup PHO to output
void init_port_toggler( void ) {
   // Set PE4 (INT4) to input
   DDRE &= ~_BV(DDE4);
   // Set PHO to output
   DDRH \mid = \_BV(DDH0);
   // Set INT4 to interrupt on every level change
   EICRB \mid = \_BV(ISC40);
   // Enable INT4 in the Externalinterrupt register
   EIMSK \mid = \_BV(INT4);
```

Enable the MCU's general interrupt


```
/**
* Main function
 * \return always 0
int main( void ) {
   init_port_toggler();
   // Enable MCU interrupt (set I-flag)
   sei();
   // The main loop
   while (1) {
   return 0;
```

How to protect your code against interrupts?

- Sometimes you can/will not allow your program to be interrupted
- We need a way to disable interrupts, but still be sure that all interrupts will be remembered and executed
- In the example we used sei() (set enable interrupt flag) to enable the MCU's general interrupt
- cli() (clear enable interrupt flag) can be used to disable all interrupts with a single instruction
- sei() and cli() manipulates with the global interrupt bit (I) in the MCU's status register (SREG)

How to protect your code against interrupts?

- The safe way to disable and enable interrupts
 - Disable interrupt

```
// disable interrupt
uint8_t cSREG = SREG;
cli();
```

- First store the whole status register
- Then disable the interrupt by clearing the interrupt bit

How to protect your code against interrupts?

- The safe way to disable and enable interrupts
 - Enable interrupt

```
// restore interrupt status
SREG = cSREG;
```

Restore the whole status register

Using this method you will never enable interrupt by accident