{LINEAR REGRESSION}

What is Regression? 1

A technique for determining the **statistical relationship** between two or more variables where a change in a dependent variable (DV) is associated with, and depends on, a change in one or more independent variables (IV).

Simple Linear Regression is used when we have, one independent variable and one dependent variable.

Multiple Linear Regression is used when we have more than one independent variable and one dependent variable.

What is Regression? 2

A technique for determining the **statistical relationship** between two or more variables where a change in a dependent variable(DV) is associated with, and depends on, a change in one or more independent variables(IV).

Since it is a statistical relationship therefore understanding of

Hypothesis testing

Statistical tests

(t test/ ANOVA)

Significance (alpha)

p value

Required

Standard Error & Confidence Interval

R² and Adjusted R²

Types of Linear Regression

SIMPLE LINEAR REGRESSION

has **one** independent and one dependent variable

sales is a function of price of the product

has **multiple** independent variables and one dependent variable

sales is a function of price and advt budget of the product

Linear Regression

Uses a best-fit straight line (regression line) constructed using the **Ordinary Least Squares method (OLS)**

What is "Linear" about "Linear Regression"?

Linearity is the property of a mathematical relationship or function.

Graphically represented as a straight line.

Mean of the dependent variable is a linear combination of the parameters (regression coefficients) and the predictor variables.

 β_0 – y-intercept or the constant

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots \beta_n X_n + \epsilon$$

Y – dependent variable

 X_1, X_2, X_n – independent variables

 β_1 , β_2 , β_n - Slope of regression line or regression co-efficients

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \beta_n X_n + \epsilon$$

 $\beta_1 X_1$ = effect of an independent variable on the expected value of dependent variable

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots \beta_n X_n + \epsilon$$

 ϵ – Error term i.e. unexplained variation in the dependent variable

 β_0 – y-intercept or the constant

 X_1, X_2, X_n – independent variables

 β_1 , β_2 , β_n – Slope of regression line or regression co-efficients

 $\beta_1 X$ = effect of an independent variable on the expected value of dependent variable

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \beta_n X_n + \epsilon$$

Y – dependent variable

 ϵ – Error term i.e. unexplained variation in the dependent variable

How Well a Regression Line Fits The Data

Accuracy of prediction R squared.

Goodness of Fit

Over Mean

The R² value

Co-efficient of Determination.

Identify how good the model is in predicting the dependent variable.

How well model fits the data.

Measures strength of relationship between the model and dependent variable.

Percentage of the variance in the dependent variable that the independent variables explain collectively.

Larger the R², better regression model fits data.

Therefore

R-Squared = Proportion of Variance Explained.

R -Squared = (TSS -RSS)/TSS.

R -Squared = 1- (Unexplained/Total) = Explained /Total.

R²= Explained / Total

Calculating R² value

$$R^{2} = \frac{SSR}{SST} = \frac{SSR}{SSR + SSE}$$

SSE should be low for a high R²

R² - what % of SST can be explained by the model

 $R^2 = 384831/394000$

 $R^2 = 97.67\%$

97.7% of variation in Profit (y) is explained by Sales (x)

R-Squared Ranges From 0 to 100%

R²= Explained / Total

When Explained = Total i.e. Regression is able to capture the total variability

> R-Squared = 100%

When Explained = 0 i.e. Regression is not able to capture the total variability

> R-Squared = 0%

Therefore

While r is the direction and strength of the relationship.

R² conveys

1. How much better a regression line predicts the dependent variable than the mean of that variable.

2. How much of the variance in the dependent variable is explained by the independent variables.

Interpreting R^2 in 2 ways

$$R^2 = 0.69$$

1. Prediction error is 69 % smaller than when mean is used.

2. The amount of variance in the dependent variable (y) that is explained by the independent variables (X).

The OLS Method

• Ordinary Least Squares (OLS) is a linear least squares method.

• Estimates the unknown parameters (b₀ and b₁) in a model.

How does OLS method work?

 \bigcirc

Applies the principal of least squares.

2

Minimizes sum of the squares of the differences between observed variable and those predicted by the linear function.

The smaller the differences, the better the model.

In the Add-Ins available box, select the Solver Add-in check box, and then click OK

The OLS method

X & Y variables		Predicted Y	Obs - pred	(Obs – pred) ²
X	Υ	Y'	Y-Y'	(Y-Y') ²
1.00	1.00	1.210	-0.210	0.044
2.00	2.00	1.635	0.365	0.133
3.00	1.30	2.060	-0.760	0.578
4.00	3.75	2.485	1.265	1.600
5.00	2.25	2.910	-0.660	0.436
		SUM	0	2.791

Sum of Squares of differences $\sum (Y - Y')^2 = 2.791$

The Regression Line

INTERCEPT ONLY MODEL

MODEL WITH ONE X VARIABLE

Sum of Residual Squares (SSE) = 394000

Sum of Residual Squares (SSE) = 9169

SSE has decreased significantly after the independent variable (Sales) was introduced, thereby producing a better regression model

Measures of predictive accuracy

Which model is more accurate?

The actual values are closer to the regression line in Model A.

Measures of Predictive Accuracy

Mean absolute error (MAE)

Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)

Mean Absolute Error (MAE)

Averages sum of absolute differences (error) between observed and predicted values

$$MAE = \frac{1}{n} \sum |y - \hat{y}|$$

For average

Absolute value of the error

Less prone to the effect of outliers

Calculating MAE

Day	Sales x _i	Profit y_i \hat{y}		Abs_error	
1	1300	400	372.51	27.5	
2	1900	700	684.12	15.9	
3	1550	450	502.35	52.3	
4	2100	800	787.98	12.0	
5	1025	250	229.69	20.3	
6	1750	600	606.22	6.2	
7	1600	550	528.31	21.7	
8	1475	400	463.40	63.4	
9	2300	900	891.85	8.1	
10	1225	350	333.56	16.4	
Average				24.4	

 $absolute\ error = abs(y - \hat{y})$

Root Mean Square Error

MSE: Square of the error before averaging the residual errors

RMSE = \sqrt{MSE}

Lower RMSE Score ⇒ a better fit

$$MSE = \frac{1}{n} \sum (y - \hat{y})^2$$

Square of error

More weightage to larger errors- sensitive to outliers

Calculating RMSE

Day	Sales x _i	Profit y _i		Error^2
1	1300	400	372.51	756
2	1900	700	684.12	252
3	1550	450	502.35	2740
4	2100	800	787.98	144
5	1025	250	229.69	412
6	1750	600	606.22	39
7	1600	550	528.31	470
8	1475	400	463.40	4019
9	2300	900	891.85	66
10	1225	350	333.56	270
Average				917

MSE = 917

RMSE = $\sqrt{917}$ = 30.3

Mean Absolute Percentage Error (MAPE)

MAPE measures how far the model's predictions are off from their corresponding outputs on average

$$MAPE = \frac{100\%}{n} \sum \left| \frac{y - \hat{y}}{y} \right|$$

Mean Absolute Percentage Error (MAPE)

Clear interpretation since percentages are easier to conceptualize

MAPE Value	Prediction Accuracy		
MAPE ≤ 10%	High		
10% < MAPE ≤ 20%	Good		
20% < MAPE ≤ 50%	Reasonable		
MAPE > 50%	Low		

Calculating MAPE

Day	Sales x _i	Profit y _i	ŷ	Abs_error	Abs_error/Y
1	1300	400	372.51	27.5	0.07
2	1900	700	684.12	15.9	0.02
3	1550	450	502.35	52.3	0.12
4	2100	800	787.98	12.0	0.02
5	1025	250	229.69	20.3	0.08
6	1750	600	606.22	6.2	0.01
7	1600	550	528.31	21.7	0.04
8	1475	400	463.40	63.4	0.16
9	2300	900	891.85	8.1	0.01
10	1225	350	333.56	16.4	0.05
Average					0.06

MAPE = 0.06 X 100 = 6%

Calculating SST, SSR, SSE

Day	Sales x _i	Profit y _i	Ypred			
1	1300	400	372.5	19600	28052	756
2	1900	700	684.1	25600	20770	252
3	1550	450	502.3	8100	1418	2740
4	2100	800	788.0	67600	61496	144
5	1025	250	229.7	84100	96289	412
6	1750	600	606.2	3600	4385	39
7	1600	550	528.3	100	137	470
8	1475	400	463.4	19600	5868	4019
9	2300	900	891.9	129600	123800	66
10	1225	350	333.6	36100	42616	270
SUM				394000	384831	9169
mean	1622.5	540		SST	SSR	SSE

Sum of Squares Total SST = $\sum (y_i - y_i)^2 = 394000$

Sum of Squares Regression SSR = $\sum (\hat{y}_i - y \hat{y})^2 = 384831$

Sum of squares Error SSE = $\sum (y_i - \hat{y}_i)^2 = 9169$

SSR + SSE = SST 384831 + 9169 = 394000

In sum

Simple linear regression is essentially a comparison of two models.

- 1. One where independent variable does not even exist.
- 2. Other uses the best fit regression line.

If there is only one variable, then the best prediction for the other values is the mean of the dependent variable.

The difference between the best fit line and the observed values is called the residual (error).

Residuals are squared and added together to generate sum of squares (SSE).

Simple linear regression is designed to find the best fitting line through the data that minimizes SSE.

Interpreting regression results

{THANK YOU}