partitions-leanblueprint

Carter Hastings

Quinn Oveson

September 11, 2025

0.1 Definitions

Definition 1 (Modular Form). In lean, A modular form of weight $k \in \mathbb{N}$ is a function $f : \mathbb{C} \to \mathbb{C}$ such that :

- (1) f is holomorphic on \mathbb{H}
- (2) For all $z \in \mathbb{H}$, f(z) = f(z+1)
- (3) For all $z \in \mathbb{H}$, $f(z) = z^{-k} f(-1/z)$
- (4) f is bounded as $Re(z) \to \infty$

Definition 2 (Integer Modular Form). An integer modular form of weight $k \in \mathbb{N}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}$ such that $\sum_{n=0}^{\infty} a(n)q^n$ is a modular form of weight k, where $q = e^{2\pi iz}$.

Definition 3 (ModularFormMod ℓ). A modular form mod ℓ of weight $k \in \mathbb{Z}/(\ell-1)\mathbb{Z}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}/\ell\mathbb{Z}$ such that there exists an integer modular form b of weight k' where $b \equiv a \pmod{\ell}$ and $k' \equiv k \pmod{(\ell-1)}$.

Definition 4 (Theta). Θ sends modular forms mod ℓ of weight k to weight k+2 by $(\Theta a)n = na(n)$.

Definition 5 (U Operator). The operator U sends modular forms mod ℓ of weight k to weight k by $(a|U)n = a(\ell n)$.

Definition 6 (hasWeight). A modular form mod ℓ called a has weight $j \in \mathbb{N}$ if there exists an integer modular form b of weight j such that $b \equiv a \pmod{\ell}$.

Definition 7 (Filtration). The filtration of a modular form mod ℓ called a is defined as The minimum natural number j such that a has weight j. The filtration of the zero function is 0.