Artificial Intelligence

Taro Sekiyama

National Institute of Informatics (NII) sekiyama@nii.ac.jp

Notice

- Next week is for programming
 - ☐ The room will be changed to: E-room, 3rd floor, Building 63
 - You need to bring your laptop
- (Common) Programming weeks are for making opportunities to receive questions
 - No new information will be provided
 - No attendance will be taken

Agenda

Linear regression: an ML algorithm for solving regression problems

Regression

- Finding a relationship between properties of data points
 - Many relationships can be approximated by functions
- Goal: identifying functions approximating the relationship properly

Example

Relationship between Oil Prices and Chicago Gasoline Prices

http://www.calculatinginvestor.com/2011/03/10/oil-and-gasoline-prices/

Example

https://www.freecodecamp.org/news/learn-how-toimprove-your-linear-models-8294bfa8a731/

Linear regression

Approximation by *polynomial (linear)* functions

Approximate function f over real numbers is expressed by:

$$f(x) = ax + b$$

where a and b are parameters learned from a training dataset

- □ *a* is called a *weight* or *coefficient*
- □ b is called a bias parameter

Example

Relationship between Oil Prices and Chicago Gasoline Prices

http://www.calculatinginvestor.com/2011/03/10/oil-and-gasoline-prices/

Prediction (the red line) of the gasoline price for oil price x is approximated by

$$f(x) = 2.57x + 106.7$$

When is linear regression useful?

It works more well as outputs are more likely to be proportional to inputs

Important to take a careful look at data points

Extension to multiple features

If an input is multiple features $(x_1, ..., x_n)$, then:

$$f(x_1, ..., x_n) = a_1 x_1 + ... + a_n x_n + b$$

Shorthand

$$f(\mathbf{x}) = \mathbf{a}\mathbf{x}^T + b$$

- $\square \mathbf{x} = (x_1, \dots, x_n)$
- $\square \mathbf{a} = (a_1, \dots, a_n)$
- \Box $(-)^T$: the transpose of vectors

Linear regression in Python

scikit-learn provides a linear regression model sklearn.linear_model.LinearRegression

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Learning in simple linear regression

- Finding optimal values for parameters a and b of approximate function f(x) = ax + b
- Values \hat{a} and \hat{b} are optimal if $\hat{a}x_i + \hat{b}$ is as close to y_i as possible for training data points (x_i, y_i)
 - □ In other words: optimal values \hat{a} and \hat{b} make $(\hat{a}x_i + \hat{b}) y_i$ as small as possible

Cost function

- Mathematical description of the difference between given and optimal parameters
- Major means: the mean squared error (MSE)

$$C(a,b) = \frac{1}{n} \sum_{(x_i,y_i) \in \mathbf{T}} ((ax_i + b) - y_i)^2$$

where **T** is a set of *n* training data points (x_i, y_i)

lacksquare Values \hat{a} and \hat{b} are optimal if they minimize C

$$(\hat{a}, \hat{b}) = \arg\min_{(a,b) \in \mathbb{R}^2} C(a,b)$$

Optimization

- Finding \hat{a} , \hat{b} s.t. $(\hat{a}, \hat{b}) = \arg\min_{(a,b) \in \mathbb{R}^2} C(a,b)$
- Visualization tells what \hat{a} , \hat{b} minimize C(a,b)

Preprocess for visualization

Expanding C(a,b), which is equivalent to:

$$\frac{1}{n} \sum_{(x_i, y_i)}^{n} ((ax_i + b) - y_i)^2 =$$

$$\frac{1}{n} \sum_{(x_i, y_i)}^{n} (a^2x_i^2 + 2abx_i + b^2 - 2ax_iy_i - 2by_i + y_i^2)$$

- Viewing C(a,b) as a function with one parameter by fixing either of a and b
 - $\Box C^b(a) \equiv C(a,b)$ (only a is varying; b is fixed)
 - $\Box C^{a}(b) \equiv C(a,b)$ (only b is varying; a is fixed)

Characteristics of $C^b(a)$, $C^a(b)$

- $\mathbf{C}^b(a)$ and $C^a(b)$ are:
 - Quadratic: the highest degrees are 2
 - \square Convex: the coefficients of a^2 and $b^2 \ge 0$

$$C(a,b) = \frac{1}{n} \sum_{(x_i, y_i)}^{n} (a^2 x_i^2 + 2abx_i + b^2 - 2ax_i y_i - 2by_i + y_i^2)$$

The parameters that minimizes $C^b(a)$, $C^a(b)$ are found by looking at their *derivatives*

Derivatives for optimization

- For a convex quadratic function F(x),
 - $\hat{x} = \arg\min_{x} F(x)$ if and only if $d\frac{F(\hat{x})}{dx} = 0$
- \hat{a} and \hat{b} are optimal if and only if:

$$\frac{C^{\hat{b}}}{da}(\hat{a}) = 0 \text{ and }$$

$$\Box \frac{C^{\hat{a}}}{dh}(\hat{b}) = 0$$

Methods

Two methods to find \hat{a} and \hat{b} satisfying

$$d\frac{C^{\hat{b}}}{da}(\hat{a}) = 0 \text{ and } d\frac{C^{\hat{a}}}{db}(\hat{b}) = 0$$

- 1. Solving as simultaneous equation problem
- 2. Gradient descent

$$(1) d\frac{C^{\hat{b}}}{da}(\hat{a}) = 0$$

(2)
$$d\frac{C^{\hat{a}}}{db}(\hat{b}) = 0$$

$$C(a,b) = \frac{1}{n} \sum_{(x_i,y_i)}^{n} (a^2 x_i^2 + 2abx_i + b^2 - 2ax_i y_i - 2by_i + y_i^2)$$

$$(1) d\frac{C^{\hat{b}}}{da}(\hat{a}) = 0$$

(2)
$$\hat{b} = \frac{1}{n} \sum_{(x_i, y_i)}^n y_i - \frac{\hat{a}}{n} \sum_{(x_i, y_i)}^n x_i$$

$$C(a,b) = \frac{1}{n} \sum_{(x_i,y_i)}^{n} (a^2 x_i^2 + 2abx_i + b^2 - 2ax_i y_i - 2by_i + y_i^2)$$

$$(1) d\frac{C^{\hat{b}}}{da}(\hat{a}) = 0$$

(2)
$$\hat{b} = \overline{y} - \hat{a}\overline{x}$$
 $(\overline{x} = \frac{1}{n}\Sigma^n x_i, \overline{y} = \frac{1}{n}\Sigma^n y_i)$

$$C(a,b) = \frac{1}{n} \sum_{(x_i,y_i)}^{n} (a^2 x_i^2 + 2abx_i + b^2 - 2ax_i y_i - 2by_i + y_i^2)$$

$$(1) \hat{a} = \frac{\sum^{n} (x_i y_i) - n \overline{x} \overline{y}}{\sum^{n} x_i^2 - n \overline{x}^2}$$

(2)
$$\hat{b} = \overline{y} - \hat{a}\overline{x}$$
 $(\overline{x} = \frac{1}{n}\Sigma^n x_i, \overline{y} = \frac{1}{n}\Sigma^n y_i)$

$$C(a,b) = \frac{1}{n} \sum_{(x_i, y_i)}^{n} (a^2 x_i^2 + 2abx_i + b^2 - 2ax_i y_i - 2by_i + y_i^2)$$

Strong point

Production of the exactly optimal values

Weak point

- □ Poor scalability, especially w.r.t. # of features
 - Extension to multiple features gives rise to operations on matrices, whose run-time cost depends on # of features

2. Gradient descent

Approaching optimal values gradually

2. Gradient descent

Input

- \square Initial parameters \hat{a} , \hat{b}
- \square Learning rate $\eta \in \mathbb{R}$
 - Determining how parameters change by one time update
- \square The number n of updating the parameters
- Algorithm: repeat the following update *n* times

$$\Box \hat{a} := \hat{a} - \eta \cdot d \frac{C^{\hat{b}}}{da} (\hat{a}) \left(d \frac{C^{\hat{b}}}{da} (\hat{a}) = \frac{1}{n} \sum_{i=1}^{n} x_{i} (ax_{i} + b - y_{i}) \right)$$

$$\Box \hat{b} := \hat{b} - \eta \cdot d \frac{C^{\hat{a}}}{db} (\hat{b}) \left(d \frac{C^{\hat{a}}}{db} (\hat{b}) = \frac{1}{n} \Sigma^{n} (ax_{i} + b - y_{i}) \right)$$

2. Gradient descent

Strong point

- Extensible to an algorithm (relatively) scalable w.r.t. the numbers of features
 - Known as stochastic gradient descent
- Applicable to non-convex cost functions (if they are differentiable)
 - Ex: cost functions of neural networks

Weak point

 \Box Goodness of \hat{a} and \hat{b} depends on the choice of learning rate η and the number of updates n

Evaluation

■ Goodness of estimated \hat{a} and \hat{b} are evaluated by the cost function

$$C(a,b) = \frac{1}{n} \sum_{(x_i,y_i) \in \mathbf{E}} ((ax_i + b) - y_i)^2$$

for test dataset E

Learning in linear regression with multiple features

Cost function

$$C(a,b) = \frac{1}{n} \sum_{(\mathbf{x}_i, y_i) \in \mathbf{T}} ((\mathbf{a}\mathbf{x}_i^T + b) - y_i)^2$$

Both of (1) simultaneous equations solving and (2) gradient descent can be extended

Programming assignment (common)

- Two kinds of assignment
 - Mandatory: need to be solved to achieve the full score
 - Optional: NOT need to be solved, but evaluated positively
- Submitted by MyWaseda
 - ☐ I'll respond if I accept the submission

- Deadline: 11/14
- Topics
 - □ K-nearest neighbors
 - Linear regression

- 1. Implement K-nearest neighbors classifier
- Submission: implementation code and test
- Template of implementation is found at https://github.com/skymountain/waseda-Al-lecture/blob/ master/programming1/knn.py
 - □ You may fill the unimplemented parts there
 - ☐ It contains the minimum test
- Minimum requirements
 - The test in the script above has to be passed
 - DO NOT USE sklearn.neighbors.KNeighborsClassifier

- 1 (optional). Implement K-nearest neighbors regression
- Submission: implementation code and test
- Two choices on prediction of continuous values
 - □ The average of the outputs of the K nearest neighbors
 - The weighted average of the outputs of the K nearest neighbors
 - Weights are the inverses of the distances

- 2. Plot the relationship between learning rate η and the goodness of the estimated \hat{a} and \hat{b} by gradient descent
- Submission
 - □ Graph
 - Code used to generate test data points and plot the graph
 - □ Remark: Jupyter-notebook is fine
 - VSCode is not tested in my laptop

Example of graphs

- 2. Plot the relationship between learning rate η and the goodness of the estimated \hat{a} and \hat{b} by gradient descent
- Goodness: $C(\hat{a}, \hat{b}) = \frac{1}{n} \sum_{(x_i, y_i) \in \mathbf{E}} ((\hat{a}x_i + \hat{b}) y_i)^2$
- Minimum requirements
 - The number of updates n is $\geq 10,000$
 - Try all the learning rates produced by `numpy.linspace(0., 0.0005., 100)`
- Implementation of gradient descent is found at: https://github.com/skymountain/waseda-Al-lecture/blob/master/lecture3/simple%20linear%20regression.ipynb
 - Code to generate data points is also found

- 2 (optional). Extend linear regression to an arbitrary number of features
- Submission: implementation code and test
- Available dataset: `sklearn.datasets.load_boston`
- Either of
 - (1) simultaneous equations solving and
 - (2) gradient discent is fine