EXAMENUL DE BACALAUREAT – 2010 Proba E c) Probă scrisă la MATEMATICĂ

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică. Filiera vocațională, profilul militar, specializarea matematică-informatică.

BAREM DE CORECTARE ȘI DE NOTARE

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I 30 de puncte

	<u> </u>	
1.	$2\sqrt[3]{6} = \sqrt[3]{48}$	2p
	$3\sqrt[3]{3} = \sqrt[3]{81}$	2p
	$2\sqrt[3]{6} < 3\sqrt[3]{3}$	1p
2.	$ x \ge 0, \ \forall x \in \mathbb{R} \Rightarrow \operatorname{Im} f \subset [0, +\infty)$	2p
	$x \ge 0 \Rightarrow x = f(x) \Rightarrow [0, +\infty) \subset \operatorname{Im} f$	2p
	$Im f = [0, +\infty)$	1p
3.	$\Delta = 1 - 4m^2$	2p
	Ecuația are două soluții egale $\Leftrightarrow \Delta = 0$	1p
	$\Delta = 0 \iff m = \pm \frac{1}{2}$	2p
4.	$T_{k+1} = C_{41}^k \sqrt[4]{2^k} = C_{k+1}^k 2^{\frac{k}{4}}$	•
		2p 1p
	$T_{k+1} \in \mathbb{Q} \Leftrightarrow 4 \text{ divide } k$	ւր 2p
5.	Sunt 11 termeni raționali	
٥.	$m_{AB} = m_{CD}$	1p
	$m_{AB} = -\frac{1}{2}$ și $m_{CD} = \frac{a+3}{3}$	2p
	Finalizare: $a = -\frac{9}{2}$	2p
	Timatizate: $u = -\frac{1}{2}$	
6.	$\sin^3 x + \cos^3 x = 1, x \in A$, numai pentru $x \in \left\{0; \frac{\pi}{2}\right\}$	3 p
	$P = \frac{2}{5}$	2p

 SUBIECTUL al II-lea
 30 de puncte

 1.a)
 $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ a & 0 & 0 \\ 0 & a & 0 \end{pmatrix}$ 1p

 $A^3 = aI_3$ 2p

 $A^{2010} = (A^3)^{670} = a^{670}I_3$ 2p

1.5		1
b)	$B_1 = A + A^2 + A^3 = \begin{pmatrix} a & 1 & 1 \\ a & a & 1 \\ a & a & a \end{pmatrix}$	2p
	$\det(B_1) = a(a-1)^2$	2p
	$\det(B_1) = 0 \Leftrightarrow a = 0 \text{ sau } a = 1$	1p
c)	$B_n = A^{n-1}B_1$	1p
	B_n inversabilă $\Leftrightarrow \det(B_n) \neq 0$	1p
	$\det B_n = a^n \left(a - 1 \right)^2$	2p
	$a \in \mathbb{R} \setminus \{0; 1\}$	1p
2.a)	$x * y = 2\left(x - \frac{3}{2}\right)\left(y - \frac{3}{2}\right) + \frac{3}{2} + m - 6$	1p
	Dacă $m = 6$, atunci oricare ar fi $x, y \in M$ rezultă că $x * y \neq \frac{3}{2}$, adică $x * y \in M$	2p
	Dacă $m \neq 6$, atunci $0 * \frac{2m-3}{6} = \frac{3}{2}$	1p
	Cum $0, \frac{2m-3}{6} \in M$ rezultă $0 * \frac{2m-3}{6} \notin M$, deci $m = 6$	1p
b)	Asociativitatea	1p
	Justificarea faptului că elementul neutru este 2	2p
	Justificarea faptului că pentru $x \in M$, există $x' = \frac{3x-4}{2x-3} \in M$ astfel încât $x*x' = x'*x = 2$	2p
c)	Verificarea relației $f(x * y) = f(x) \cdot f(y), \forall x, y \in M$	3p
	Justificarea faptului că f este bijectivă	2p

30 de puncte SUBIECTUL al III-lea $f'(x) = \frac{2}{3\sqrt[3]{(2x-1)^2}} - \frac{2}{3\sqrt[3]{(2x+1)^2}}, x \neq \pm \frac{1}{2}$ 2p

2p f(0) = -2 și f'(0) = 01p

y + 2 = 0 $\lim_{x \to +\infty} f(x) = 0$ **3**p 2p

y = 0 asimptotă orizontală spre $+\infty$ 2p

 $\int_{0}^{2\pi} \int_{0}^{2\pi} \frac{d^{2}n}{dt} dt = \int_{0}^{2\pi} \frac{1}{\sqrt[3]{2n+1}} dt = \int_{0}^{2\pi} \frac{1}{\sqrt[3]{2n$ 1p

 $= e^{\lim_{n \to \infty} \left(-\frac{\sqrt[3]{2n}}{\sqrt[3]{2n+1}} \right)} =$ 1p 1p

 $= e^{-1} = \frac{1}{e}$ $I_1 + I_2 + I_3 = \int_0^1 \frac{x^3 + x^2 + x}{x^2 + x + 1} dx =$ 2p

	$=\int_{0}^{1}xdx=\frac{1}{2}$	3p
b)	$0 \le x \le 1 \Longrightarrow x^n \ge x^{n+1}$	1p
	$x^2 + x + 1 > 0, \ \forall x \in \mathbb{R}$	2p
	$\frac{x^n}{x^2+x+1} \ge \frac{x^{n+1}}{x^2+x+1}, \ \forall x \in [0,1] \Rightarrow I_n \ge I_{n+1}, \ \forall n \in \mathbb{N}^*, \text{ adică șirul este descrescător}$	2p
c)	$x^{2} + x + 1 \ge 1, \ \forall x \ge 0 \Rightarrow 0 \le \frac{x^{n}}{x^{2} + x + 1} \le x^{n}, \ \forall x \in [0, 1] \Rightarrow$	2p
	$\Rightarrow 0 \le I_n \le \int_0^1 x^n dx = \frac{1}{n+1}$	2p
	$\lim_{n \to \infty} I_n = 0$	1p