# Capstone 1: Predicting the Salaries of NBA players based on their stats

By Alvaro Hu

#### The Problem

- What makes a player more valuable than another?
  - Are "overpaid" players really overpaid?
- How much money should a player be making depending on the stats they produced the previous season?
  - Are certain players worth the money? Is the team getting their best 'bang for their buck?'

#### Why is this useful?

- Team General Managers (GM)
  - O How much is a certain player worth?
  - Can we afford a player of this caliber, and
    If not, what is the best deal we can make



#### Players

- Is there anything specific I can do to earn more money?
- What change in my game will result in a definite increase in pay?





#### **The Data**

- Three datasets from basketball-reference.com
  - o 2018-2019 Salaries for each player
  - 2017-2018 Common Statistics
    - Per game stats, field goal percentages, etc.
  - 2017-2018 Advanced Statistics
    - Win Shares, Player Efficiency Rating, Rebound Percentage, etc.
- Merged these together into one

#### **Final DataFrame**

| Tm  | 2018-19  | Name                 | Pos | G  | GS | FG   | FG%   | 3P  | 3P%   | eFG%  | FT%   | ORB | TRB  | AST  | STL | BLK | PS/G | TOV | Age | ws   | PER  | MP   | TRB% | AST% | TOV% | ows  | DWS |
|-----|----------|----------------------|-----|----|----|------|-------|-----|-------|-------|-------|-----|------|------|-----|-----|------|-----|-----|------|------|------|------|------|------|------|-----|
| GSW | 37457154 | Stephen<br>Curry     | PG  | 51 | 51 | 8.4  | 0.495 | 4.2 | 0.423 | 0.618 | 0.921 | 0.7 | 5.1  | 6.1  | 1.6 | 0.2 | 26.4 | 3.0 | 29  | 9.1  | 28.2 | 1631 | 9.0  | 30.3 | 13.3 | 7.2  | 1.8 |
| HOU | 35654150 | Chris Paul           | PG  | 58 | 58 | 6.3  | 0.460 | 2.5 | 0.380 | 0.550 | 0.919 | 0.6 | 5.4  | 7.9  | 1.7 | 0.2 | 18.6 | 2.2 | 32  | 10.2 | 24.4 | 1847 | 9.5  | 40.9 | 12.5 | 7.5  | 2.7 |
| LAL | 35654150 | LeBron<br>James      | PF  | 82 | 82 | 10.5 | 0.542 | 1.8 | 0.367 | 0.590 | 0.731 | 1.2 | 8.6  | 9.1  | 1.4 | 0.9 | 27.5 | 4.2 | 33  | 14.0 | 28.6 | 3026 | 13.1 | 44.4 | 16.1 | 11.0 | 3.0 |
| OKC | 35350000 | Russell<br>Westbrook | PG  | 80 | 80 | 9.5  | 0.449 | 1.2 | 0.298 | 0.477 | 0.737 | 1.9 | 10.1 | 10.3 | 1.8 | 0.3 | 25.4 | 4.8 | 29  | 10.1 | 24.7 | 2914 | 15.3 | 49.8 | 16.4 | 5.5  | 4.5 |
| DET | 31873932 | Blake<br>Griffin     | PF  | 58 | 58 | 7.5  | 0.438 | 1.9 | 0.345 | 0.493 | 0.785 | 1.3 | 7.4  | 5.8  | 0.7 | 0.3 | 21.4 | 2.8 | 28  | 4.9  | 19.6 | 1970 | 12.0 | 28.1 | 12.6 | 3.2  | 1.8 |

 $<sup>^*</sup>$ Some features were selected because of supposed importance, but others were chosen out of curiosity to see their impact on salary

# **Exploring the Data**

- Pairplot of the per-game stat categories
- Positive Correlations across the board
- Non-normal distributions



### Takeaways From EDA

- Strong Correlation Coefficients with Salary
  - o Points per game, games started, minutes per game, rebounds, and.... **Turnovers**?
- Turnovers with 2nd strongest correlation of the per-game statistics
  - Quick analysis of minutes vs. turnover reveals
  - Draw back from intercorrelation of variables
    - Question of correlation vs. causation



# Takeaways (cont.)

- Different teams seem to be making different amounts of money.
- "Soft" salary cap enforced



### Takeaways (cont.)

- Although some positions have higher max salaries, they all seem to have relatively the same median salaries
- Many outliers in the PG position
  - o PG are the "face" of the team
  - Salary dependent on teams performance?



#### **Inferential Statistics**

- How reliable are these strong correlations?
  - Bootstrapping while shuffling 10% of the data
    - $\blacksquare$   $H_0: \rho = \rho_{From Data}$
    - $H_a: \rho \neq \rho$  From Data
  - Tells me with a 95% confidence interval the following:
    - $\rho_{PS/G} = 0.637$ ,  $\rho_{WS} = 0.591$ ,  $\rho_{GS} = 0.569$ ,  $\rho_{M/G} = 0.583$
    - These all fall in the category of "moderate positive correlations"
  - Rechecked with Mann-Whitney U test for Non-Normal distributions

### Are all teams paid differently?

- Bootstrapping technique to test the difference in means
  - Shuffle salaries from two teams and redistribute to teams
  - Check the mean difference and repeat many times
    - $\blacksquare \quad \mathsf{H}_{\mathsf{o}}: \mu_{\mathsf{Team}\, \mathsf{1}} = \mu_{\mathsf{Team}\, \mathsf{2}}$
    - $H_a: \mu_{\text{Team 1}} > \mu_{\text{Team 2}}$
- Results
  - No difference between GSW and OKC
  - Significant difference between GSW and SAC

# Are positions paid differently?

- Ran the same bootstrapping test but with positions
  - $\circ$  H<sub>o</sub>:  $\mu$ Position 1 =  $\mu$ Position 2
  - $\circ$   $H_a: \mu_{Position 1} \neq \mu_{Position 2}$
- Result
  - There is no difference in mean pay between positions.

### **Principal Component Analysis**

• Using Games Started, Win Shares, Points per Game, Minutes per Game, and Rebounds per

Game

Only 1 Principal Component

 Could be caused by the intercorrelation of the features



# **Ordinary Least Squares (OLS) Regression**

- Run twice
  - Choosing least correlated features with correlations with salary
    - Points per game and Games Started
  - Results
    - R-square: 0.434
    - F-statistic: 143.5
    - P-value: 0.000 for Both



### 2nd OLS Regression

- Started using entire dataset and removed one at a time
- Ended with Games Played, Assists per Game, Points per Game, Win Shares, and Assist percentage
- Results
  - R-squared: 0.504 (slightly better)
  - F-Statistic: 75.38 (not as good of model)

0