CMP362/CMPN446: Image Processing and Computer Vision

Lecture 03: Image Preprocessing Local Preprocessing- Smoothing

Mayada Hadhoud

Computer Engineering Department

Cairo University

Agenda

- Introduction
- Image Noise
- Local Preprocessing Techniques-Smoothing
 - Using Linear Filters (Averaging, Gaussian)
 - Using Non- Linear Filters (Min, Max, Median)
 - Using Limited Data Validity
 - Using Rotating Masks

Introduction

- Pre-processing methods (also called filters) use a small neighborhood of a pixel in an input image to get a new brightness value in the output image.
- Local pre-processing methods can be divided into two groups according to the goal of the processing:
 - Smoothing: suppresses high frequencies
 - Gradient operators: suppresses low frequencies

Introduction

- Clearly, smoothing and gradient operators have conflicting aims.
- As Smoothing suppresses noise or other small fluctuations in the image, unfortunately, smoothing also blurs all sharp edges that bear important information about the image.
- As Gradient operators suppress low frequencies in the frequency domain.

Image Noise

- What kind of noise?
 - Additive Noise (Ex. Gaussian)

Random noise n(i, j) added to pixel value I(i, j)

$$\hat{I}(i,j) = I(i,j) + n(i,j)$$

Impulsive (Salt and Pepper)

Principal sources of Gaussian noise in digital images arise during acquisition e.g. sensor noise caused by poor illumination and/or high temperature, and/or transmission An image containing salt-and-pepper noise will have dark pixels in bright regions and bright pixels in dark regions. [8] This type of noise can be caused by analog-to-digital converter errors, bit errors in

transmission

Figure: Random noise and Impulse noise.

Image Smoothing

- Calculation of the new value is based on averaging of brightness values.
- problem of blurring sharp edges
- Edge preserving techniques are based on the general idea that the average is computed only from those points in the neighborhood which have similar properties to the processed point

- Averaging to eliminate noise
 - For n images of the same scene, smoothing can be accomplished without blurring the image by:

$$f(i,j) = \frac{1}{n} \sum_{k=1}^{n} g_k(i,j)$$

- Averaging to eliminate zero mean noise
 - images g1,...,g{n} contain noise values V{1},...., V{n}
 - hence

$$\frac{g_1+\ldots+g_n}{n}+\underbrace{\frac{\nu_1+\ldots+\nu_n}{n}}$$

Original image

16 images

Corrupted image

64 images

8 images

128 images

- Averaging using averaging filters (Linear Filters)
 - In many cases only one image with noise is available, and averaging is then realized in a local neighborhood by using the convolution mask(Mean Filter):

$$h = \frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

blurring of edges is a serious disadvantage.

Linear Filters use convolution to apply the filter

3x3 Filter

- Averaging using averaging filters (Linear Filters)
 - Gaussian Filter
 - Gaussian distribution $G(x,y) = \frac{1}{2\pi}e^{-\frac{1}{2}\cdot\frac{x^2+y^2}{\sigma^2}}$

Figure: Gaussian distribution for $\sigma=1$ and $\sigma=2.5$ and corresponded Gaussian kernels of the size 11×11 .

Gaussian Filter Examples

$$h = \frac{1}{10} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$h = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Original Image

11×11 with $\sigma = 1$

Original Image

Figure 3.2 (a) Results of applying Gaussian filtering (kernel width 5 pixel, $\sigma = 1$) to the "checkerboard" image corrupted by Gaussian noise, and grey-level profile along a row. (b) Same for the "checkerboard" image corrupted by salt and pepper noise.

- Averaging with NonLinear Filters
 - Min, Max Filters
 - Max filter The maximum value replaces the current pixel
 ⇒ brighter image
 - Min filter The minimum value replaces the current pixel
 ⇒ darker image

Figure: Original image; Max filter with 3×3 kernel and Min filter with 3×3 kernel

Nonlinear filters don't use convolution It performs an operation to the pixels in the mask like Max, Min, Median

- Averaging with NonLinear Filters
 - Median Filter
 - Good for impulsive noise (Salt and Pepper Noise)
 - Sharp edges are kept as no new values are created
 - How it works:
 - The median filter works by moving through the image pixel by pixel, replacing each value with the median value of neighboring pixels
 - Disadvantages: fine details are erased as very thin lines and sharp corners are damaged
 - Time-consuming to sort values compared to average values
 - By choosing other shapes than rectangular neighborhoods (thin lines may be preserved)

Figure: Mean and Median filter with respect to: Random noise (top row) and Impulse noise (bottom row).

- · Averaging with limited data validity
 - Avoids blurring by averaging only those pixels
 which satisfy some criterion and prevent involving
 pixels that are part of a separate feature.
 - A very simple criterion is to use only pixels in the original image with brightness in a predefined interval [min,max].

$$h(i,j) = \begin{cases} 1 & \text{for } g(m+i,n+j) \in [min,max] \\ 0 & \text{otherwise} \end{cases}$$

- Averaging with limited data validity
 - Using edge strength, e.g. only pixels with gradient below a certain value are averaged. The magnitude of some gradient operator is first computed for the entire image.

- Averaging using a rotating mask
 - Avoids edge blurring by searching for the homogeneous part around the current pixel
 - average is calculated only within the homogeneous region
 - a brightness dispersion of is used as the region homogeneity measure

- Averaging using a rotating mask
 - The dispersion σ^2 is given by:

$$\sigma^2 = \frac{1}{n} \left(\sum_{(i,j) \in R} \left(g(i,j) - \frac{1}{n} \sum_{(i,j) \in R} g(i,j) \right)^2 \right)$$

$$\frac{1}{n} \left(\sum_{(i,j) \in R} (g(i,j))^2 - \frac{\left(\sum_{(i,j) \in R} g(i,j)\right)^2}{n} \right)$$

- Averaging using a rotating mask
 - Rotated Masks:

1

2

.

7

- Averaging using a rotating mask
 - Algorithm:
 - 1. Consider each image pixel (i, j).
 - 2. Calculate dispersion in the mask for all possible mask rotations about pixel (i, j) according to equation
 - Choose the mask with minimum dispersion.
 - 4. Assign to the pixel g(i, j) in the output image the average brightness in the chosen mask.