I. Ensemble $\mathbb C$

Le nombre i est le nombre tel que $i^2 = -1$.

Remarque

Le nombre i n'est pas un nombre réel puisque son carré est négatif.

n Définition 2

On appelle **nombre complexe** tout nombre z pouvant s'écrire sous la forme z = x + yi, où x et ysont deux nombres réels quelconques.

Cette écriture est la **forme algébrique** du nombre z.

x est appelé la partie réelle de z et se note $x = \Re \mathfrak{e}(z)$.

y est appelé la **partie imaginaire** de z et se note $y = \mathfrak{Im}(z)$.

Exemples •
$$a = 4 + 2i$$
 est un nombre complexe : $\Re e(a) = 4$ et $\Im m(a) = 2$.

 $b=-1+3i \text{ est un nombre complexe}: \mathfrak{Re}(b)=-1 \text{ et } \mathfrak{Im}(b)=3.$

$$c = \frac{6-3i}{2}$$
 est un nombre complexe : $\Re \mathfrak{e}(c) = \frac{6}{2} = 3$ et $\Im \mathfrak{m}(c) = \frac{-3}{2}$.

 $d=\sqrt{2}+\sqrt{5}\,i$ est un nombre complexe : $\mathfrak{Re}(d)=\sqrt{2}$ et $\mathfrak{Im}(d)=\sqrt{5}.$

e=i est un nombre complexe : $\mathfrak{Re}(e)=0$ et $\mathfrak{Im}(e)=1$.

On appelle C l'ensemble des nombres complexes.

Tout nombre réel est un nombre complexe.

Par conséquent, l'ensemble des nombres réels est inclus dans l'ensemble des nombres complexes. On a : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

NDémonstration

Soit $a \in \mathbb{R}$. On peut écrire a sous la forme $a = a + 0 \times i$ donc $a \in \mathbb{C}$ et $\mathfrak{Re}(a) = a$ et $\mathfrak{Im}(a) = 0$. \square

Définition 4

Soit z = x + yi un nombre complexe.

1°) Si $\mathfrak{Im}(z) = 0$ alors z est un nombre réel.

2°) Si $\Re \mathfrak{e}(z) = 0$ alors z est un **imaginaire pur**.

- Les nombres i, 2i, $\frac{-5i}{7}$ sont imaginaires purs. Exemples •

– Les nombres 3, $-\sqrt{6}$, π , 0 sont des réels.

II. Opérations sur les nombres complexes

A. Prolongements des opérations de \mathbb{R}

On admet le théorème suivant :

- Théorème 1

Les propriétés de calculs valables dans $\mathbb R$ restent valables dans $\mathbb C$: associativité, commutativité, distributivité, identités remarquables. En particulier, en notant z = x + yi et z' = x' + y'i, on a :

$$z+z' = (x+x') + (y+y')i$$

 $z \times z' = (xx'-yy') + (xy'+x'y)i$
 $1 \times z = z$
 $0+z = z$
 $-z = -x-yi$

Exemples • Soient
$$z_1 = 3 + 2i$$
, $z_2 = 1 - 3i$ et $z_3 = -4i$. Calculer : $z_1 + z_2$; $z_2 \times z_3$, $-z_2$, $(z_1 + z_3) \times z_2$.

On admet également le théorème suivant :

Théorème 2

Soient z et z' deux nombres complexes.

$$z = z' \quad \Leftrightarrow \quad \left\{ egin{array}{lll} \mathfrak{Re}(z) & = & \mathfrak{Re}(z') \\ & & \mathbf{et} \\ \mathfrak{Im}(z) & = & \mathfrak{Im}(z') \end{array}
ight.$$

 \Rightarrow En particulier, en posant z = x + yi, on $a : z = 0 \Leftrightarrow (x = 0 \text{ et } y = 0)$.

P Définition 5

Deux nombres complexes non nuls z et z' sont des nombres inverses lorsque $z \times z' = 1$. On écrit alors $z' = \frac{1}{z}$ ou encore $z = \frac{1}{z'}$.

⁻ Théorème 3

Tout nombre complexe z = x + yi non nul admet un inverse z' tel que :

$$z' = \frac{1}{z} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}$$
i.

Démonstration

$$\frac{1}{z} = \frac{1}{x+yi}$$

$$= \frac{x-yi}{(x+yi)(x-yi)}$$

$$= \frac{x-yi}{x^2+y^2}$$

$$= \frac{\frac{x}{x^2+y^2} - \frac{y}{x^2+y^2}i}$$

Le théorème est bien démontré.

B. Conjugué d'un nombre complexe

Définition 6

Soit $z = x + yi \in \mathbb{C}$. On appelle **nombre conjugué** de z le nombre complexe noté \overline{z} défini par :

$$\overline{z} = x - yi$$
.

<u> Remarque</u>

Deux nombres sont conjugués lorsqu'ils ont la même partie réelle et que leur partie imaginaire sont opposés.

Exemples • Déterminer les nombres conjugués des nombres suivants : $z_1 = 3 + 2i$, $z_2 = 1 - 3i$, $z_3 = -4i$ et $z_4 = 5$.

Soit $z \in \mathbb{C}$. $z = \overline{z} \Leftrightarrow z \in \mathbb{R}$.

<u>Démonstration</u>

Notons z = x + yi.

$$\Leftarrow: z \in \mathbb{R} \Rightarrow z = x + 0 \times i \Rightarrow \overline{z} = x - 0 \times i = x = z.$$

$$\Rightarrow$$
 : $z = \overline{z} \Rightarrow x + yi = x - yi \Rightarrow 2yi = 0 \Rightarrow yi = 0 \Rightarrow y = 0 \Rightarrow z \in \mathbb{R}$.

Propriété 3

Soit $z = x + yi \in \mathbb{C}$. Alors : $z \times \overline{z} = x^2 + y^2$.

<u>Nemonstration</u>

$$z \times \overline{z} = (x + yi)(x - yi) = x^2 - xyi + xyi - y^2i^2 = x^2 + y^2.$$

Propriété 4

Pour tous nombres complexes z et z':

1°)
$$\overline{z+z'}=\overline{z}+\overline{z'}$$
.

2°)
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$
.

3°) Si
$$z \neq 0$$
, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$.

NDémonstration

Démontrons par exemple le deuxième point.

On note z = x + yi et z = x' + y'i. On effectue les calculs séparément.

$$z \times z' = (x + yi)(x' + y'i) = xx' - yy' + (xy' + x'y)i \text{ donc}:$$

$$\overline{z \times z'} = xx' - yy' - (xy' + x'y)i$$

$$\overline{z} \times \overline{z'} = (x - yi)(x' - y'i) = xx' - xy'i - x'yi + yy'i^2 = xx' - yy' - (xy' + x'y)i.$$

III. Représentation géométrique

On muni le plan \mathscr{P} d'un repère orthonormé (O; \overrightarrow{u} , \overrightarrow{v}).

On admet alors que le nombre complexe z = x + yi est entièrement déterminé par sa partie réelle x et sa partie imaginaire y. On peut donc associer ce nombre z au couple (x; y) qui, dans un repère, correspond à l'unique point de coordonnées (x; y).

Réciproquement, si le point M a pour coordonnées (a;b) alors, on peut lui associer un unique nombre complexe : a+bi.

Exemple • On peut faire correspondre le nombre complexe -2+5i au point du plan de coordonnées (-2;5).

Définition 7

- **1°)** Le point M(x; y) est l'**image** du nombre complexe z = x + yi.
- **2°)** Le nombre complexe z = x + yi est l'affixe du point M(x; y) et on note z = aff(M) ou directement M(z).

<u> Remarque</u>

\$ Le mot affixe est féminin : **une** affixe.

Si z = x + 0i alors $z \in \mathbb{R}$ et on lui associe le point de coordonnées (x; 0).

Si z = 0 + yi alors z est un imaginaire pur et on lui associe le point de coordonnées (0; y).

On en déduit la propriété suivante :

- 1°) Un nombre réel a pour image un point situé sur l'axe des abscisses.
- 2°) Un imaginaire pur a pour image un point situé sur l'axe des ordonnées.

En seconde, il a été vu que le vecteur \overrightarrow{OM} avait les mêmes coordonnées que le point M. En particulier, si M a pour coordonnées (x; y) alors $\overrightarrow{OM} = x\overrightarrow{u} + y\overrightarrow{v}$. On a alors la définition suivante :

Définition 8

- **1°)** Le vecteur $\overrightarrow{OM}(x; y)$ est le **vecteur image** du nombre complexe z = x + yi.
- **2°)** Le nombre complexe z = x + yi est l'affixe du vecteur $\overrightarrow{OM} \begin{pmatrix} x \\ y \end{pmatrix}$ et on note $z = aff \left(\overrightarrow{OM} \right)$ ou directement $\overrightarrow{OM}(z)$.

Exemple • Le point A et le vecteur \overrightarrow{AM} ont la même affixe : z = 3 + i.

On considère un point M d'affixe z. Alors le point N a pour affixe \overline{z} si et seulement si M et N sont symétriques par rapport à l'axe des abscisses.

Propriété 7

On considère deux points A et B d'affixe respective z_1 et z_2 .

On place les points C et D tels que $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$ et $\overrightarrow{OD} = k.\overrightarrow{OA}$ ($k \in \mathbb{R}$). Alors l'affixe de C est z_3 telle que :

$$z_3 = z_1 + z_2$$

et l'affixe de D est z_4 telle que :

$$z_4=k.z_1.$$

