University Admit Eligibility Predictor Professional Readiness for Innovation, Employability and Entrepreneurship

Team ID: PNT2022TMID21562

Team Members

DHARSHINI SHREE C Y (19IT022)

SARVESH V S (19IT084)

SOWMYA V (19IT099)

VIBHISHEAK L S (19IT116)

Dissertation submitted in partial fulfillment of the requirements for the degree of

BACHELOR OF TECHNOLOGY

Branch: INFORMATION TECHNOLOGY

NOVEMBER 2022 DEPARTMENT OF INFORMATION TECHNOLOGY THIAGARAJAR COLLEGE OF ENGINEERING

(Autonomous Institution)

Madurai – 625 015

TABLE OF CONTENTS

1.	INT	RODUCTION	-4
	1.1	Project Overview	
	1.2	Purpose	
2.	LITI	ERATURE SURVEY	-5
	2.1	Existing problem	
	2.2	References	
	2.3	Problem Statement Definition	
3.	IDE	ATION & PROPOSED SOLUTION	-8
	3.1	Empathy Map Canvas	
	3.2	Ideation & Brainstorming	
	3.3	Proposed Solution	
	3.4	Problem Solution fit	
4.	REQ	QUIREMENT ANALYSIS	-11
	4.1	Functional requirement	
	4.2	Non-Functional requirements	
5.	PRO	DJECT DESIGN	-12
	5.1	Data Flow Diagrams	
	5.2	Solution & Technical Architecture	
	5.3	User Stories	
6.	PRO	DJECT PLANNING & SCHEDULING	-14
	6.1	Sprint Planning & Estimation	
	6.2	Sprint Delivery Schedule	
	6.3	Reports from JIRA	
7.	COL	DING & SOLUTIONING	-16
	7.1	Feature 1	
	7.2	Feature 2	
	7.3	Database Schema	

8.	TEST	ING	-18
	8.1	Test Cases	
	8.2	User Acceptance Testing	
9.	RESU	ULTS	-22
	9.1	Performance Metrics	
10.	ADV	ANTAGES & DISADVANTAGES	-23
11.	CON	CLUSION	-23
12.	FUTU	URE SCOPE	-23
13.	APPI	CNDIX	-23
14.	GITE	IUB AND DEMO LINK	-29

University Admit Eligibility Predictor

INTRODUCTION

1. Project Overview

PROBLEM STATEMENT:

Students are often worried about their chances of admission to the university. There are so many universities. Surfing through all the universities' past details is a time-consuming process.

OBJECTIVES:

- To build a model which gives accurate results
- To build a user-friendly web-based application for the users
- To create a simple user interface getting all the required input from the users
- To integrate the model with the web application using flask
- To deploy the model on IBM cloud

DATASET:

The dataset is taken from Kaggle. The dataset contains several parameters which are considered important during the application for Masters Programs.

- GRE Scores (out of 340)
- TOEFL Scores (out of 120
- University Rating (out of 5)
- Statement of Purpose and Letter of Recommendation Strength (out of 5)
- Undergraduate GPA (out of 10)
- Research Experience (either 0 or 1)
- Chance of Admit (ranging from 0 to 1)

APPROACH:

The dataset is trained using different models and the model which gives high accuracy is considered. Random forest model gives the highest accuracy of 94%.

2. Purpose

- A web-based application in which students can register and enter their grades to determine
 whether or not they will be admitted to a university with a specific ranking can help the
 students proceed further.
- The analysis can help students who are currently preparing for exams or who have received their results gain a better understanding.
- It helps the students to know the weightage of each category of marks and to concentrate more in it.

2. LITERATURE SURVEY

1. Existing problem

S.NO	RESEARCH PAPER	AUTHOR	ALGORITHM USED	DATASET	INFERENCE
1	Prediction of the admission lines of college entrance examination based on machine learning	Zhenru Wang, Yijie Shi	Adaboost algorithm is used to study and forecast, which belongs to ensemble learning.	The data were selected from 2006 to 2015 in Sichuan Province. TotalNumber: total number of indicates of CEE in province Sichuan. NumberOtKeyUniversity: enrolment plan of first batch of undergraduate. NumberOfUniversity: enrolment plan of second batch of undergraduate. NumberOfMath: the number of science students who take part in CEE. Param: difficulty of test question.	AdaBoost also called Adaptive Boosting is a technique in Machine Learning used as an Ensemble Method. The most common algorithm used with AdaBoost is decision trees with one level that means with Decision trees with only 1 split. These trees are also called Decision Stumps.

S.NO	RESEARCH PAPER	AUTHOR	ALGORITHM USED	DATASET	INFERENCE
2	Research on Prediction of College Students' Performance Based on Support Vector Machine	Peng Wang , Yinshan Jia	Support vector machine was used to establish a college course performance prediction model, and cross-validation methods were used to obtain the best parameters and a reliable and stable model	The 2016 college computer science and technology and communication engineering students of a university were selected as the experimental data.	The prediction accuracy rate reached 73.6%. The prediction results show that the support vector machine can accurately predict college course performance based on the college entrance examination results.

S.NO	RESEARCH	AUTHOR	ALGORITHM	DATASET	INFERENCE
	PAPER		USED		
3	A University Admission Prediction System using Stacked Ensemble Learning	Sashank Sridhar, Siddartha Mootha, Santosh Kolagati	MULTI LAYER PERCEPTRON AND THE STACKED ENSEMBLE MODEL. The proposed model takes into consideration various factors related to the student including their research experience, industry experience etc. The system proposed has been evaluated against various other machine learning algorithms including other deep learning methods. It is observed that the proposed model easily outperforms all other models and provides a very high accuracy.	The dataset consists of the applicant scores such as TOEFL, IELTS, GRE, GMAT, CGPA. web crawler has been ued to extract student details from Edulix for 45 universities shortlisted. The scraped data had a total of 22 features and 50, 000 samples.	The proposed ensemble neural network is evaluated by comparing it to other supervised algorithms such as Decision Trees, Random Forest, K-Nearest Neighbor, Naive Bayes Classifier, Logistic Regression, Support Vector Machine, (SVM), Linear Discriminant Analysis and Quadratic Discriminant Analysis. Ensemble NN has the highest accuracy.

S.NO	RESEARC H PAPER	AUTHOR	ALGORITHM USED	DATASET	INFERENCE
4	Engineering & Technology Admission Analysis and Prediction	Sachin Bhimrao Bhoite, Ajit More	Logistic Regression, K Nearest Neighbours', Decision Tree Classifier, Random Forest Classifier, Naive Bayes & Support Vector Machine Supervised Machine Learning Algorithms. Out all six models Decision Tree classifier & Random Forest always give great accuracy.	Various non-aided but affiliated to Savitribai Phule Pune University's engineering colleges admission record of academic year 2015-16 are considered. This Dataset has various attributes, which are: 'Main Serial No.', 'Sr. No.', 'College Name', 'College Name', 'College Code', 'Merit No', 'Merit Marks', 'Candidate Name', 'Gender', 'Candidate Type', 'Category', 'Home University', 'PH Type', 'Defence Type', 'HSC Eligibility', 'Seat Type', 'Fees Paid', 'CAP Round', 'Admitted/Uploaded Late', 'BRANCH' and 'NATIONALITY'.	Feature engineering is very essential part while implementing & building predictive models using machine learning techniques. The results have been more improved after feature engineering.

2. References

https://ieeexplore.ieee.org/document/7924718

https://ieeexplore.ieee.org/document/9213205

https://www.researchgate.net/publication/341740217 ENGINEERING TECHNOLOGY ADMISSION ANAL YSIS_AND_PREDICTION

https://www.jncet.org/Manuscripts/Volume-8/Issue-4/Vol-8-issue-4-M-32.pdf

3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

1. Empathy Map Canvas

miro

2. Ideation & Brainstorming

3. Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Most of the people especially from the rural area are not that much aware of the standards which has been followed in various universities. At the time of completion of their higher secondary, they are having various stream willingness but not everybody is getting into the actual stream they have been wished. Same in the case of college too.
2.	Idea / Solution description	The aim of our project is to bring a new platform for the students who are in the phase of university admission, to predict the college in which they can get in to the stream they have been decided and wished already based on their performances in their academics includes cut-offs and quota. Here we are bringing the output which has good percentage of accuracy.
3.	Novelty / Uniqueness	In our University Admit Eligibility Predictor, student can able to get the complete insights about all the possible colleges and branches based on their cut-offs and quota. It will be like the practise session for them before attending the counselling conducted by various universities.

4.	Social Impact / Customer Satisfaction	Our project let the students to know about the possible colleges and streams based on their cut-offs and quota. So, it will be very helpful for them in their counselling processes.
5.	Business Model (Revenue Model)	We can have two models for revenue, one is the subscription model. In here user will be asked to get the subscription in order to get output from our prediction. Subscription may be monthly or weekly. Actually, this model is for admission centres. The next revenue model is pay per each prediction model, here the individual has to pay for each prediction. This model has been designed for the individual

4. Problem Solution fit

4. **REQUIREMENT ANALYSIS**

1. Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN		
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP		
FR-3	User Requirements	All the needed files are been asked to feed in the website. By having the file, it will do all the preprocessing and shows all the required information to the student(user). The information includes the list of all the possible universities and streams.		
FR-4	User Details	Has to feed some documents 1. Score Sheets 2. Letter of Recommendation (LOR) 3. Statement of Purpose (SOP) 4. Curriculum Vitae (CV)		

2. Non-Functional requirements

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	 Our website is very user friendly so even the layman can able to access our website. There is no need for any pre requisite technical skill in order to access our website. Each and every content of the page will be in synchronous way. Thus, it will not take much time to refresh or reload.
NFR-2	Security	 The user who is having the valid credentials can able to access our site. Data they are feeding into our website will not be accessed by any one of them.
NFR-3	Reliability	 Our website is more reliable. Since nobody can able to see the data fed by the user. The user can get the result with higher percent of accuracy.
NFR-4	Performance	 User can able to handle the process in our website even by having internet connection

5. PROJECT DESIGN

1. Data Flow Diagrams

2. Solution & Technical Architecture

3. User Stories

User	Function	User	User Story / Task	Acceptance	Priority	Release
Туре	al Require ment (Epic)	Story Number		criteria		
Custo mer (Stude nt)	Dashboard	USN-1	As a user, I can view the cut off marks of previous years in my dashboard	I can access and download the files	High	Sprint-1
		USN-2	As a user, I can view university details and their rankings	I can only view(read-only)	Medium	Sprint-1
		USN-3	As a user, I can review the experience of the students in the university	I can access the review sections	Medium	Sprint-2
		USN-4	As a user, I can upload my documents	I have read and write access to upload files	High	Sprint-1
		USN-5	As a user, I can fill out the general and educational details in the form provided	I have read and write access to the forms filled	High	Sprint-2
	Predictor	USN-6	I can view the list of universities in which I am eligible to get an admission	I can receive the final result as whether eligible or not	High	Sprint-2
		USN-7	I can view the list of universities I am eligible with the same cut-off but in previous years	I can access the files with read-only permission	Medium	Sprint-2
Admin istrator	Dashboard	USN-8	As an administrator,I can have access to update the latest updates of the universities	I can have access to read and write the university information in the dashboard	High	Sprint-3
		USN-9	As an administrator,I can access any resources available in the page	I can access the resources that are available	Medium	Sprint-3
		USN-10	As an administrator,I can have a track on the universities the student is eligible to get admission at	I can access the list of the universities obtained as final result	High	Sprint-3

6. PROJECT PLANNING & SCHEDULING

1. Sprint Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Member s
Sprin t-1	Dataset Analysis	USN-1	Download the admission_predict dataset and analyze it.	2	High	Sowmya V
(-1	Dataset preprocessin g	USN-2	Examine the dataset and perform preprocessing steps	1	Medium	Dharshini Shree C Y
	Model Creation and Training	USN-3	Create a model from the training data	2	High	Vibhisheak L S
Sprint -2	Testing the model	USN-4	Choosing the best model from the obtained accuracy	2	Medium	Sarvesh V S
	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Sowmya V
Sprint -3	Dashboard	USN-6	As a user, once I log in, I can view the Admission Prediction page	1	High	Dharshini Shree C Y
	Predictor	USN-7	As a user, I can specify all the values for prediction and get accurate results	1	High	Vibhisheak L S
	Base Flask App	USN-8	Integrate Flask and the built model	2	High	Sarvesh V S
Sprint -	Integration	USN-9	Integrate the app on IBM cloud	2	High	Sowmya V
4	About page	USN-10	As a user, I can know about the predictor system	1	Medium	Dharshini Shree C Y

2. Sprint Delivery Schedule

Sprint	Total Story Point s	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Releas e Date (Actua I)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

3. Reports from JIRA

7. CODING & SOLUTIONING

1. Feature 1

The model has been deployed using IBM Watson Machine learning service.

2. Feature 2

Login and registration page for users has been created using firebase authentication service.

3. Database Schema

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 8 columns):
     Column
                        Non-Null Count
                                        Dtype
     -----
                        -----
     GRE Score
0
                        400 non-null
                                        int64
 1
     TOEFL Score
                        400 non-null
                                        int64
                                        int64
 2
     University Rating 400 non-null
 3
                        400 non-null
                                        float64
     SOP
                        400 non-null
4
                                        float64
     LOR
5
     CGPA
                        400 non-null
                                        float64
     Research
                        400 non-null
                                        int64
7
     Chance of Admit
                        400 non-null
                                        float64
dtypes: float64(4), int64(4)
memory usage: 25.1 KB
```

An additional column is created based on the chance of admit column values which changes the continuous value to categorical value giving Yes/No output predictions.

			lumn from co is yes. Else t				le to ca	tegorical varia	ble.lf
df['	result']=po	d.cut(df.Cha	nce_of_Admit_,b	ins=[0,0.8	ð,1],lá	abels=['N	o','Yes'])	
df									
	GRE_Score	TOEFL_Score	University_Rating	SOP	LOR_	CGPA	Research	Chance_of_Admit_	result
0	337	118	4	4.5	4.5	9.65	1	0.92	Yes
1	324	107	4	4.0	4.5	8.87	1	0.76	No
2	316	104	3	3.0	3.5	8.00	1	0.72	No
3	322	110	3	3.5	2.5	8.67	1	0.80	No
4	314	103	2	2.0	3.0	8.21	0	0.65	No
395	324	110	3	3.5	3.5	9.04	1	0.82	Yes
396	325	107	3	3.0	3.5	9.11	1	0.84	Yes
397	330	116	4	5.0	4.5	9.45	1	0.91	Yes
398	312	103	3	3.5	4.0	8.78	0	0.67	No
399	333	117	4	5.0	4.0	9.66	1	0.95	Yes

8. TESTING

1. Test Cases

Test case ID	Feat ure Type	Co m p on ent	Test Scena rio	Prere quisit e	Steps To Execute	Test Data	Expe cted Resul t	Act ual Res ult	Sta tus	Co m me nts	TC for Aut oma t ion(Y/N)	B U G ID	Exec uted by
Login Pa ge_T C_0 01	UI	Lo gin Pa ge	Tested with all the UI compo nents and input fields in the home page.	HTM L, CSS	Need to give URL first Check with all the elements in the UI that it is displayed or not.		All the UI comp onent s and the input fields have to be functi on prope rly	Working as exp ecte d	Pas s		N		Dhars hini Shree C Y
Login Page_ TC_0 02	Func tiona 1	Lo gin Pa ge	Verify ing wheth er the user has been authen ticated to enter	HTM L, CSS	Need to click on the predict or tab in the navigat ion bar. Check with all the elements in the UI that it is		All the UI comp onent s has to be functi on prope rly and users	Working as expected	Pas s		N		Sarve sh V S

			into our predic		displayed or not.		has to navig ate to				
			tor page.				the predic				
							tor page prope rly				
Pre dic t_ Pa ge _T C _003	UI	Pre dic t Pa ge	Verify wheth er all the UI eleme nts in the Predic tion page are functi on proper ly or not.	HTM L, CSS, Flask	Check with all the elements in the UI that it is displayed or not		All the UI comp onent s has to be functi on prope rly	Working as exp ecte d	Pas s	N	Sow mya V
PredictP age_TC_004	Func tiona 1	Pre dic t Pa ge	Do enter the values in the input fields and click on predic t	Flask	Need to enter 7 values for each attributes and click on predict.	2 0 0 1 0 4 4 4 9 No Rese	Navig ate to the predic tion page and do predic t the accur ate result	Working as exp ected	Pas s	N	Vibhi sheak L S

Outp utP age_ TC_ 005	Func tiona 1	Ch an c e Pa ge	Verify wheth er it is naviga tes to chance page only if the appro priate values are entere d.	Flask	Need to enter 7 values for each attributes and click on predict. If prediction equals one, chance page is displayed	Prediction = You have a chan ce	Do navig ate to chanc e page	Wor king as exp ecte d	Pas s	N	Dhars hini Shree C Y
Outp utP age_ TC_ 006	Func tiona 1	No ch an c e Pa ge	Check ing wheth er it is redirec ted to no chance page or not		Need to enter the URL Need to enter the values and click on predict. It has to be redirecte d to no chance page if the predictor result is zero	Predictio n = You don't have a chan ce	Do redire ct to no chanc e page	Working as expected	Pas s	N	Sow mya V

2. User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the University Admit Eligibility Predictor project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	11	4	2	3	20
Duplicate	1	0	3	0	4
External	3	3	0	1	7
Fixed	10	2	4	20	36
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	25	14	13	26	78

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	50	0	0	50
Security	2	0	0	2
Outsource Shipping	2	0	0	2
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4

Version Control	2	0	0	2

9. RESULTS

1. Performance Metrics

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - , MSE - , RMSE - , R2 score - Classification Model: Confusion Matrix - , Accuray Score - & Classification Report -	In [118]: from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error from math import sort RMSE=Float(format(pp.sprt(mean_squared_error(y_test,rf_y_pred)))) MSEmmean_sbolute_error(y_test,rf_y_pred) RSemean_sbolute_error(y_test,rf_y_pred) RSemean_sbolute_error(y_test,rf_y_pred) Print('RMSE:', RMSE, '\nMSE:', MSE, '\nMAE:',MAE, '\nR2 score:',R2) RMSE: 0.8625 MSE: 0.8625 MSE: 0.8625 MSE: 0.8625 MSE: 0.8625 R2 score: 0.8685203761755486 In [155]: Corr_matrix = df.corr() Corr_matrix = df.cor
			rf_accuracy=accuracy_score(rf_y_pred,y_test) print("Accuracy: ",rf_accuracy*100,"%") Accuracy: 93.75 %
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	In [128]: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV c_space = np.logspace(-5, 8, 15) param_grid = ('C': c_space) logreg = LogisticRegression() logreg_cv = GridSearchCV(logreg, param_grid, cv = 5) logreg_cv.fit(X_train, y_train) print("Tuned Logistic Regression Parameters: ()".format(logreg_cv.best_params_)) print("Best score is ()".format(logreg_cv.best_score_)) Tuned Logistic Regression Parameters: ('C': 0.4393970560760795)

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- It gives an overall accuracy of 94%, which is really high.
- The dataset consists of all possible attributes needed for prediction.
- Confidence booster if results are positive.
- Students can also change their scores to see how they affect the overall prediction results and focus more on that area.

DISADVANTAGES:

- The model is built in such a way that the prediction is positive only if the chance of admit percent is greater than 80%. Even if the result is 79%, the prediction would be NO.
- The complexity of the examinations is not considered. Therefore the results may vary every year for the same set of attribute.
- The dataset used for training the model is of comparatively small size. Therefore, the model cannot be relied on to take accurate real-time decisions.

11. CONCLUSION

The dataset is trained with different ML model. The ML models used to train our dataset are KNN, Logistic Regression, Random Forest, SVM each having accuracy of 86%, 88%, 93%, 89% respectively. Random forest algorithm is finally selected to be used in our model. The Machine Learning model is integrated using flask for our web application. At long last, understudies can have an open-source AI model which will assist the understudies with knowing their opportunity of entrance into a specific college with high exactness

12. FUTURE SCOPE

A real-time project can be developed by gathering data from institutions. The data can be processed and trained using big data frameworks like spark and MLLib can be used to train the data using different machine learning models.

13. APPENDIX

Source Code

App.py

```
from flask import Flask, request, jsonify, render_template, redirect, url_for
import requests
import json
import pickle
model = pickle.load(open('university.pkl','rb'))
import pyrebase
```

```
API KEY = "w7wZ3NDUKJjLg9ulwEFwDCKCnOurNNLrzp3gZ-SNrbGO"
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
config = {
firebase = pyrebase.initialize app(config)
auth = firebase.auth()
model = pickle.load(open('university.pkl','rb'))
app = Flask(name)
@app.route('/',methods=['GET','POST'])
def homepage():
        y pred = [[gre, toefl, universityNumber, sop, lor, cgpa, research]]
```

```
"values": y_pred}])
    response_scoring =
requests.post('https://us-south.ml.cloud.ibm.com/ml/v4/deployments/67f91885-c382-4d
94-9b23-60bbc3f65a47/predictions?version=2022-11-18',json=payload_scoring,headers={
'Authorization': 'Bearer ' + mltoken})
    print("Scoring response")
    print(print("Scoring response"))
    print(response_scoring.json())
    output = predictions['predictions'][0]['values'][0][0]
    print(output)

    if output == 'Yes':
        return render_template('chance.html')
        if output == 'No':
            return render_template('Nochance.html')
    return render_template('index.html')

@app.route('/index.html',methods=['GET', 'POST'])
def index():
    return render_template('index.html')

@app.route('/about.html')
def about():
    return render_template('about.html')

if __name__ == '__main__':
    app.run(debug=True)
```

Model.py

```
import matplotlib.pyplot as plt
data=pd.read csv('C:/Users/Lenovo/OneDrive/Documents/Nalaiya Thiran/University
Admit Eligibility Predictor/dataset/Admission_predict.csv')
data.drop(["Serial No."],axis=1,inplace=True)
df = pd.DataFrame(data)
df.columns = df.columns.str.replace(' ', ' ')
df['result']=pd.cut(df.Chance of Admit ,bins=[0,0.80,1],labels=['No','Yes'])
independent = data.iloc[:,0:7].values
dependent = data.iloc[:,8:].values
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(independent, dependent,
random state=0, train size = .2)
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
trained_model = rf.fit(X_train, y_train)
pickle.dump(rf, open('university.pkl','wb'))
```

Login.html

```
!DOCTYPE html>
    </style>
    <h2 style="color:black"><font size="+5"><b>UNIVERSITY ADMISSION PREDICTION
SYSTEM</b></font></h2>
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u"
crossorigin="anonymous">
   <link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css"
integrity="sha384-rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwl/Sp"
crossorigin="anonymous">
   <script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"
integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA712mCWNIpG9mGCD8wGNIcPD7Txa"
crossorigin="anonymous"></script>
src="https://www.czechuniversities.com/uploads/2020/08/6408.jpg" alt="" width="800"
    </div>
         </div>
         </div>
       <input type="email" id="inputEmail" name="name" placeholder="Email</pre>
address" required autofocus>
            <br><font size="+1"><label for="inputPassword">Password
```

Index.html

```
!DOCTYPE html>
background="https://oge.tmu.edu.tw/admission/apply/graduation-hat-with-degree-paper
           background-repeat: no-repeat;
           background-size: 100% 100%;
         </style>
      </head>
admission</font></h3>
required="required"></font>
name="toefl" required="required"></font>
value="1">
         <label for="1">1</label><br>
```

Chance.html

```
</body>
</html>
```

Nochance.html

GitHub link: https://github.com/IBM-EPBL/IBM-Project-34841-1660277975

Project Demo Link: https://youtu.be/nDXrbuxJznI