N	ame			Date
	Test on Stoic	hiometry		
1	A compound, X,	contains 40.0% carbon	n, 6.7% hydrogen and 53	.3% oxygen by mass.
Tł	he relative molecu	lar mass, Mr, of X is 6	0.	
W	hat is the molecul	lar formula of X?		
Test on Stoichiometry 1 A compound, X, contains 40.0% carbon, 6.7% hydrogen and 53.3% oxygen by mass. The relative molecular mass, Mr, of X is 60. What is the molecular formula of X? A CH ₂ O B CH ₄ O C C ₂ H ₄ O D C ₂ H ₄ O ₂ 2 What is the percentage, by mass, of nitrogen in the fertiliser (NH ₄) ₃ PO ₄ ? [Ar: H, 1; N, 14; O, 16; P, 31] A 9.4% B 18.8% C 28.2% D 37.6% 3 A 25 cm ³ sample of dilute sulphuric acid contains 0.025 moles of the acid. What is the concentration of the acid in the solution? A 0.25 mol/dm ³ B 0.50 mol/dm ³ C 1.00 mol/dm ³ D 2.00 mol/dm ³	\mathbf{D} C ₂ H ₄ O ₂			
2	What is the perce	entage, by mass, of nitr	ogen in the fertiliser (NI	$H_4)_3PO_4$?
		[Ar: H, 1; N, 14; O,	16; P, 31]	
A	9.4%	B 18.8%	C 28.2%	D 37.6%
3	A 25 cm ³ sample	of dilute sulphuric acid	l contains 0.025 moles of	f the acid.
W	hat is the concent	ration of the acid in the	e solution?	
A	0.25 mol /dm^3	$\mathbf{B} \ 0.50 \ \text{mol /dm}^3$	$\mathbf{C} \ 1.00 \ \text{mol /dm}^3$	\mathbf{D} 2.00 mol /dm ³

4 The empirical formula of a liquid compound is C_2H_4O .

To find the empirical formula, it is necessary to know the

A density of the compound.

B percentage composition of the compound.

C relative molecular mass of the compound.

D volume occupied by 1 mole of the compound.

5 The equation represents the action of dilute nitric acid on copper.

$$xCu + yHNO_3 \rightarrow xCu(NO_3)_2 + 4H_2O + 2NO$$

What are the values of x and y?

A
$$x = 1, y = 4$$
 B $x = 1, y = 8$ **C** $x = 3, y = 4$ **D** $x = 3, y = 8$

B
$$x = 1, y = 8$$

$$C x = 3, y = 4$$

D
$$x = 3, y = 8$$

6.(a) Complete the table below

Compound	Formula	RFM	Mass	Number of moles	Volume of solution	Concentration
Iron(iii) sulfate	Fe ₂ (SO ₄) ₃		6.4g		20cm ³	
	NaNO ₃		3.4g			0.2mol/dm ³
Silver nitrate	AgNO ₃				80cm ³	0.08mol/dm ³
Oxygen gas	O_2		9.6g			XXXXXXX
Propane gas	C ₃ H ₈				14.2dm ³	XXXXXXXX

(1 mole of gas occupies 24dm³)

(b) Complete the following word equations.	
(i) magnesium hydroxide + dilute nitric acid	
[1	1]
(ii) zinc + dilute sulfuric acid	
[1	1]
(iii) copper carbonate + dilute sulfuric acid	
[1	1]
(c) Complete the following equations for reactions of these two acids.	
(i) sodium hydroxide + phosphoric acid \rightarrow	1]
(ii) $CuO + H_2SO_4 \rightarrow \dots + \dots + \dots$	[1]
(iii) Mg $+$ $+$ $+$	1]
(iv) $K_2CO_3 + H_2SO_4 \rightarrow \dots + \dots + \dots + \dots$ [1]	1]
7. (a) Sodium nitrate is a white crystalline solid. When heated it melts and the following	
reaction occurs.	
$2NaNO_3(l) \rightarrow 2NaNO_2(l) + O_2(g)$	
A 3.40 g sample of sodium nitrate is heated.	
Calculate the	
• number of moles of NaNO ₃ used,	
mol	
• number of moles of O ₂ formed,	
mol	

• volume of O_2 formed, in dm^3 (measured at r.t.p.).

..... dm³

8 The apparatus in the diagram is used to heat a sample of hydrated copper(II) sulfate crystals, CuSO₄.5H₂O

The equation for the reaction that takes place is

(a) Draw an arrow on the diagram to show where heat is applied.

(1)

(b) What is the purpose of the ice?

(1)

(c) Calculate	the maximum mass of water that could be collected when a sample of	
hydrated copp	per(II) sulfate of mass 2.50 g is heated.	
[Mr of CuSO4	₄ .5H ₂ O is 250]	
		(3)
	mass of water =	g
9 Titanium is	a metal that can be extracted from its ore in a three-stage process.	
stage 1	titanium ore is converted into titanium dioxide, TiO ₂	
stage 2	titanium dioxide is then converted into titanium chloride,	TiCl ₄
stage 3	titanium chloride is converted into titanium, Ti	
(a) A titanium	n ore contains the composition by mass	
	Fe = 36.8% Ti = 31.6% O = 31.6%	
Show by calcu	ulation that the empirical formula of this ore is FeTiO ₃	
		(3)

10 Potassium hydrogencarbonate (KHCO₃) decomposes on heating.

Three possible equations for the decomposition are

equation 1
$$2KHCO_3(s) \rightarrow K_2O(s) + 2CO_2(g) + H_2O(g)$$

equation 2
$$KHCO_3(s) \rightarrow KOH(s) + CO_2(g)$$

equation 3
$$2KHCO_3(s) \rightarrow K_2CO_3(s) + CO_2(g) + H_2O(g)$$

When 8.00 g of potassium hydrogencarbonate is heated until it is fully decomposed, 5.52 g of solid is formed.

(a) Complete the table by calculating the amount, in moles, of each solid.

(2)

Solid	$M_{\rm r}$ of solid	Mass of solid in g	Amount of solid in mol
KHCO ₃	100	8.00	
K ₂ O	94	5.52	
КОН	56	5.52	
K ₂ CO ₃	138	5.52	

(b) Use the information in the table to explain which equation, 1, 2 or 3, represents the decomposition of potassium hydrogenearbonate.

(2)

11(a) One of the compounds in the table reacts with bromine to form G, a compound with the composition by mass C = 22.2%, H = 3.7%, Br = 74.1%.

(i) Show, by calculation, that the empirical formula of G is C₂H₄Br

(3)

(ii) The relative formula mass of G is 216

Deduce the molecular formula of G.

(2)

(b) A teacher uses this apparatus to demonstrate the reaction between a different oxide of copper and methane.

(i) The teacher heats the oxide of copper until the reaction is complete.

The table shows the teacher's results.

	Mass in g
empty weighing boat	15.05
weighing boat + oxide of copper	18.63
weighing boat + copper	18.23

Use the teacher's results to show that the empirical formula of this oxide of copper is Cu_2O

(4)

(ii) When hydrated copper(II) sulfate crystals are heated, anhydrous copper(II) sulfate forms.

A mass of 12.5 g of hydrated copper(II) sulfate crystals is heated in a crucible until all the water of crystallisation is removed.

A mass of 8.0 g of anhydrous copper(II) sulfate forms.

Show by calculation that the formula of hydrated copper(II) sulfate is $CuSO_4.5H_2O$ [Mr of $CuSO_4 = 159.5$ Mr of $H_2O = 18$]

(4)

12 Lithium hydroxide (LiOH) and lithium peroxide (Li ₂ O ₂) have been used in spacecraft to
remove the carbon dioxide astronauts breathe out.
The equations for the reactions with carbon dioxide are
2LiOH + $CO_2 \rightarrow Li_2CO_3 + H_2O$
$2Li_2O_2 + 2CO_2 \rightarrow 2Li_2CO_3 + O_2$
(b) (i) Calculate the mass of lithium hydroxide needed to react with 100 g of carbon dioxide.
[Mr of LiOH = 24]
(3)
mass of lithium hydroxida —
mass of lithium hydroxide = g
(ii) Calculate the volume of carbon dioxide, at room temperature and pressure,
removed by 100 g of lithium peroxide.
$[Mr \text{ of } \text{Li}_2\text{O}_2 = 46]$
Assume that one mole of gas has a volume of 24 000 cm ³ at rtp.
(3)
volume of carbon dioxide = cm ³

(c) After drying the crystals, the student weighs them and then heats them until they reach a constant mass.

This equation represents the change that occurs during heating.

$$MgSO_4.xH_2O \rightarrow MgSO_4 + xH_2O$$

These are the student's results.

mass of dry crystals before heating = 17.2 g

mass of crystals after heating to a constant mass = 8.3 g

Use these results to find the value of x in the formula of MgSO4.xH₂O

[Mr values: $MgSO_4 = 120$, $H_2O = 18$]

(4)

(d) Potassium sulfate can be prepared by reacting aqueous potassium hydroxide with dilute sulfuric acid.

$$2\mathsf{KOH} \,+\, \mathsf{H_2SO_4} \,\longrightarrow\, \mathsf{K_2SO_4} \,+\, 2\mathsf{H_2O}$$

In an experiment, 20.0 cm³ of 0.650 mol / dm³ sulfuric acid is just neutralised by aqueous potassium hydroxide.

(i) Calculate the maximum mass of potassium sulfate, K₂SO₄, that could be prepared.

maximum mass of potassium sulfate = g [3]

(ii) After crystallisation, 1.72 g of da	y potassium sulfate	was obtained.	Calculate the
percentage yield of potassium sulfat	e.		

13. This apparatus can be used to investigate the reduction of metal oxides.

In an experiment using a different metal oxide, a mass of 2.8 g of metal is obtained from 3.6 g of the metal oxide.

The formula of the metal oxide is MO, where M is the symbol of the metal.

Deduce the amount, in moles, of M in the sample of the metal oxide hence calculate the relative atomic mass of M?

(5)

relative	atomic	mass c	of $M =$	 	 	

Metal M is

The Periodic Table of Elements

		z He	helium 4	10	Se	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	II/			6	щ	fluorine 19	17	Cl	chlorine 35.5	32	ă	bromine 80	23	П	iodine 127	82	Ą	astatine -			
	N			8	0	oxygen 16	16	S	sulfur 32	8	Se	selenium 79	25	<u>e</u>	tellurium 128	8	Ро	polonium -	116	^	livemorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	ä	bismuth 209			
	2			9	O	carbon 12	41	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	F1	flerovium -
	=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	64	Ч	indium 115	84	11	thallium 204			
										30	Zu	zinc 65	84	පි	cadmium 112	88	£	mercury 201	112	5	copemicium –
										59	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
슠										78	z	nickel 59	46	В	palladium 106	78	풉	platinum 195	110	Ds	damstadtium -
Group										27	ပိ	cobalt 59	42	뫈	rhodium 103	11	'n	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	nuthenium 101	92	SO	osmium 190	108	£	hassium -
				J						25	M	manganese 55	43	ပု	mngeum —	75	Re	menium 186	107	B	pohrium -
					00	SS				24	ပ်	chromium 52	42	Мо	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	\vdash		niobium 93						dubnium -
				æ	atol	relal				22	F	ftanium 48	40	Zr	zirconium 91	72	Ξ	hafinium 178	401	꿆	rutherfordium -
							1			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89-103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	stronfum 88	56	Ba	barium 137	88	Ra	radium
	_			8	:=	lithium 7	£	Na	sodium 23	19	×	potassium 39	37	&	rubidium 85	55	Cs	caesium 133	87	ıт.	francium -

						_
7.1	Γn	lutetium 175	103	ב	lawrencium	
20	Υþ	ytterbium 173	102	Š	nobelium	ı
69	۳	thulium 169	101	Md	mendelevium	1
89	ш	erbium 167	100	Fm	fermium	ı
29	웃	holmium 165	66	Es	einsteinium	ı
99	ò	dysprosium 163	86	ŭ	californium	1
65	Тр	terbium 159	97	益	berkelium	ı
49	g	gadolinium 157	96	Cm	curium	
63	Ш	europium 152	92	Am	americium	1
62	Sm	samarium 150	94	Pu	plutonium	
61	Pm	promethium	93	Δ	neptunium	
		neodymium 144				
59	ሗ	praseodymium 141	91	Pa	protactinium	107
58	Ce	cerium 140	06	丘	thorium	202
22	La	lanthanum 139	89	Ac	actinium	

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

© UCLES 2017

0620/42/O/N/17