Tarea 1 - Solución

Profesor: Luis Jesús Turcio Cuevas Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez

EJ 1. Demuestra que $f: A \to B$ es mono si y sólo si f es inyectiva.

Solución. Supongamos que $f: A \to B$ es mono y consideremos dos elementos globales $a_1, a_2: 1 \to A$ tales que el siguiente diagrama conmuta

$$1 \xrightarrow{\alpha_1} A \xrightarrow{f} B.$$

Como f es mono se sigue que $a_1 = a_2$. Por lo tanto, f es inyectiva.

Supongamos ahora que $f: A \to B$ es inyectiva y supongamos que el siguiente diagrama conmuta

$$T \xrightarrow{x} A \xrightarrow{f} B. \tag{1}$$

Para mostrar que x = y usamos que 1 es separador. Así, tomemos un elemento global $t: 1 \to T$ y veamos que xt = yt. Como el diagrama en (1) conmuta, se sigue que

$$1 \xrightarrow{\quad t \quad} T \xrightarrow{\quad x \quad} A \xrightarrow{\quad f \quad} B = 1 \xrightarrow{\quad xt \quad} A \xrightarrow{\quad f \quad} B.$$

conmuta. Como f es inyectiva, se sigue que xt = yt. Por lo tanto, x = yy así f es mono.

EJ 2. Sea m: $S \mapsto A$ un subobjeto y considera su flecha característica $\phi_m \colon A \to \Omega$. Demuestra que para cualquier elemento generalizado $x \colon X \to A$ se satisface: $x \in_A m \iff \phi_m x = \nu_X$, donde ν_X es la composición de $\ell_X \colon X \to 1$ con $\nu \colon 1 \to \Omega$.

Solución. Sean $x: X \to A$ cualquier elemento generalizado $y v_X := v!_X$.

 (\rightarrow) Supóngase que $x \in_A m$, entonces por definición de la pertenencia relativa a A, existe $y: X \to S$ tal que my = x. Además $!_X = !_S y$; por ser 1 objeto terminal, $y v !_S = \phi_m m$; por definición de flecha característica. Luego, todas las partes internas del siguiente diagrama conmutan:

Por lo que el exterior del diagrama conmuta, y por lo tanto $\varphi_m x = v!_X = v_X$. Pero si el "movimiento de manos" no hasta:

$$u_X = v !_X$$
 $= v !_S y$
 $= \varphi_m m y$
 $= \varphi_m x$
def. de v_X
 $= v !_S y$
 $= \varphi_m m y$
 $= \varphi_m x$
pues $my = x$

 (\leftarrow) Supóngase que $\phi_m x = \nu_X$, dado que $\nu_X = \nu\,!_X$, como consecuencia de lo anterior el exterior del siguiente diagrama conmuta:

Siguéndose de la propiedad universal del producto fibrado (de nuevo, recordando la definición de la flecha característica ϕ_m), existe una única h: $X \to S$ de modo que:

$$m h = x$$
, y también $!_S h = !_x$

En particular se da m h = x, mostrando por definición de pertenencia relativa a A, que $x \in_A m$.

- EJ 3. Demuestre las siguientes equivalencias o implicaciones. En cada inciso indique claramente qué ax.s de ZFC se utilizan durante la prueba.
 - i) El ax. de extensionalidad implica el enunciado $\forall x \forall y (\forall w (x \in w \leftrightarrow y \in w) \rightarrow x = y)$.
 - ii) El enunciado $\forall x \exists p \forall w (\forall z (z \in x \rightarrow z \in w) \rightarrow w \in p)$ es equivalente al ax. de potencia.
 - iii) El enunciado $\forall x \forall y \exists p \forall w (w \in p \leftrightarrow (w \in x \lor w = y))$ implica el ax. del par.

Demostración. (i) Supóngase el axioma de extensionalidad y sean x, y conjuntos cualesquiera tales que para todo conjunto w se tiene que $x \in w$ si y sólo si $y \in w$. Por el **axioma del par**, existe el conjunto $z = \{x, x\} = \{x\}$, así que en particular $x \in z$ si y sólo si $y \in z$. Dado que $x \in z$, entonces $y \in z$ y esto último ocurre sólo si y = x. Por lo tanto x = y.

En esta prueba sólo se usa el axioma del par.

(ii) (\rightarrow) Supóngase que el enunciado $\forall x \exists p \forall w (\forall z (z \in x \to z \in w) \to w \in p)$ es verdadero y sea x cualquier conjunto. Por hipótesis, existe p tal que " $\forall w (\forall z (z \in x \to z \in w) \to w \in p)$ " se satisface. Utilizando el **esquema de separación**, existe p' := { $w \in p \mid \forall z (z \in x \to z \in w)$ }. Así:

$$\forall w (\forall z (z \in x \to z \in w) \leftrightarrow w \in p').$$

En efecto, sea w cualquier conjunto. Si " $\forall z(z \in x \to z \in w)$ " se satisface, entonces $w \in p$ y debido a la definición de p' se tiene que $w \in p'$. Por otro lado, si $w \in p'$, entonces por definición de p', resulta que " $\forall z(z \in x \to z \in w)$ " se satisface. Lo anterior es, el axioma de potencia.

 (\leftarrow) Supóngase el axioma de potencia y sea x cualquier conjunto. Por hipótesis, existe un conjunto p de tal modo que " $\forall w (\forall z (z \in x \to z \in w) \leftrightarrow w \in p')$ " se satisface, en particular " $\forall w (\forall z (z \in x \to z \in w) \to w \in p')$ " es verdadera.

En esta prueba sólo se usa el **esquema de separación**.

(iii) Supóngase que el enunciado " $\forall x \forall y \exists p \forall w (w \in p \leftrightarrow (w \in x \lor w = y))$ " se satisface y sean x, y conjuntos cualesquiera. Por **axioma de existencia (vacío)**, existe un conjunto v tal que " $\forall w (w \in v \leftrightarrow w \neq w)$ " se satisface.

Utilizando la hipótesis, existe un conjunto q de modo que " $\forall w (w \in q \leftrightarrow (w \in v \lor w = y))$ " es verdadera. Como para cada conjunto w se tiene que " $w \in v$ " es falsa (pues de lo contrario $w \neq w$), la anterior fórmula es equivalente a " $\forall w (w \in q \leftrightarrow w = y)$ ", es decir que $q = \{y\}$. Ahora, como q y x son conjuntos, por hipótesis existe un conjunto p de modo que la fórmula

" $\forall w(w \in p \leftrightarrow (w \in q \lor w = x))$ " se satisface. Pero como " $\forall w(w \in q \leftrightarrow w = y)$ " es verdadera, de lo anterior se obtiene que " $\forall w(w \in p \leftrightarrow (w = y \lor w = x))$ ". Lo anterior demuestra el axioma del par.

En esta prueba sólo se utilizó el axioma de existencia (vacío).

- EJ 4. Todas las colecciones de este ejercicio son conjuntos. Prueba dos de los siguientes incisos:
 - i) $x \subseteq \mathcal{P}(y)$ si y sólo si $\bigcup x \subseteq y$.
 - ii) Si $x \neq \emptyset$, entonces $y \in \bigcap \{\mathscr{P}(a) \mid a \in x\}$ ocurre sólo si $y \subseteq \bigcap x$.
 - iii) $\bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} \subseteq \mathscr{P}(\bigcup x)$ pero no siempre $\bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} = \mathscr{P}(\bigcup x)$.
 - iv) $(\bigcup x) \cap (\bigcup y) = \bigcup \{a \cap b \mid (a, b) \in x \times y\}.$

Demostración. Demostraremos todos los incisos. Sean x y y conjuntos cualesquiera.

- (i) (\rightarrow) Supóngase que $x \subseteq \mathcal{P}(y)$ y sea $k \in \bigcup x$ cualquier elemento. Por definición de la unión de un conjunto, existe $h \in x$ de modo que $k \in h$. Así, de de la hipótesis, se obtiene $h \in \mathcal{P}(y)$. Esto es, $h \subseteq y$ y con ello $k \in y$. Por lo tanto $\bigcup x \subseteq y$.
- (\leftarrow) Supóngase que $\bigcup x \subseteq y$ y sea $h \in x$ cualquier elemento. Verificar que $h \in \mathscr{P}(y)$ es equivalente a verificar que $h \subseteq y$. En efecto, sea $k \in h$ cualquier elemento, entonces $k \in \bigcup x$ por definición de la unión de un conjunto. Así que por hipótesis $k \in y$, esto demuestra que $h \subseteq y$; y a su vez, que $x \subseteq \mathscr{P}(y)$.
 - (ii) Asúmase que $x \neq \emptyset$.
- (\rightarrow) Supóngase que $y \in \bigcap \{\mathscr{P}(\alpha) \mid \alpha \in x\}$ y sea $b \in y$ cualquier elemento. Verifiquemos que $y \in \bigcap x$, en efecto, si $a \in x$ es cualquiera, entonces $y \in \mathscr{P}(a)$ debido a la hipótesis. Consecuentemente $y \subseteq a$ y $k \in a$, lo que demuestra que $k \in \bigcap x$ y así $y \subseteq \bigcap x$.
- (\leftarrow) Supóngase que $y \subseteq \bigcap x$. Verifiquemos que $y \in \bigcap \{\mathscr{P}(a) \mid a \in x\}$, en efecto, sea $a \in x$ cualquier elemento. De este modo, considerando cualquier $b \in y$ se obtiene de la hipótesis que $b \in \bigcap a$, así que $y \subseteq a$, o equivalentemente, $y \in \mathscr{P}(a)$. Lo anterior; al ser $a \in x$ cualquiera, es una prueba de que $y \in \bigcap \{\mathscr{P}(a) \mid a \in x\}$.
- (iii) Considérese un elemento $k \in \bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\}$ cualquiera. Así, existe cierto $\alpha \in x$ de modo que $k \in \mathscr{P}(X)$; esto es, $k \subseteq \alpha$. Como $\alpha \in x$, entonces $\alpha \subseteq \bigcup x$, por lo que $k \subseteq \bigcup x$, o equivalentemente, $k \in \mathscr{P}(x)$. Demostrando que $\bigcup \{\mathscr{P}(\alpha) \mid \alpha \in x\} \subseteq \mathscr{P}(\bigcup x)$.

Para la segunda parte utilizaremos que $0 \neq 1$ (moral: £por qué?), sean $a := \{0\}$, $b := \{1\}$ y $x := \{a, b\}$. Todas estas colecciones son conjuntos (moral: £por qué?). Nótese que el conjunto $w := \{0, 1\}$ es subconjunto de la unión de x; en efecto, basta notar que $0 \in a$, $a \in x$, $1 \in b$ y $b \in x$, por lo que $w \in \mathcal{P}(x)$. Sin embargo $w \not\subseteq a$; pues $1 \in w$ y $1 \notin a$, así que $w \notin \mathcal{P}(a)$. Y $w \not\subseteq b$; pues $0 \in w$ y $0 \notin b$, así que $w \notin \mathcal{P}(b)$, demostrando que para cada $u \in x$ se tiene que $w \notin \mathcal{P}(u)$, o equivalentemente, $w \notin I$ $\mathcal{P}(a) \mid a \in x$.

De lo anterior se tiene que $\bigcup \{\mathscr{P}(a) \mid a \in x\} \neq \mathscr{P}(\bigcup x)$ y esto no usa extensionalidad (al menos la parte "útil" de extensionalidad).

(iv) Como ambas colecciones son conjuntos, verifiquemos por extensionalidad (doble contencion) que $(\bigcup x) \cap (\bigcup y) = \bigcup \{a \cap b \mid (a,b) \in x \times y\}.$

- (\subseteq) Supóngase que $k \in (\bigcup x) \cap (\bigcup y)$ es cualquier elemento. Entonces $k \in \bigcup x$, $k \in \bigcup y$ y por definición de la unión de un conjunto, existen a, b con juntos con $a \in x$, $b \in y$ y $k \in a, b$. De lo anterior, $k \in a \cap b$ y además $(a, b) \in x \times y$ por la definición del producto cartesiano de dos conjuntos. Mostrando que $k \in \bigcup \{a \cap b \mid (a, b) \in x \times y\}$.
- (\supseteq) Supóngase ahora que $k \in \bigcup \{a \cap b \mid (a,b) \in x \times y\}$ es arbitrario. Entonces por definición de la unión de un conjunto, existe un elemento $(a,b) \in x \times y$ de modo que $k \in a \cap b$. De lo anterior se tiene que $k \in a$ y $k \in b$; más aún, dado que $a \in x$ y $b \in y$, se tiene que $a \in x$ y $a \in b$ 0 y, respectivamente. Lo que prueba que $a \in a$ 1 y $a \in a$ 2 y $a \in a$ 3 $a \in a$ 4 y $a \in a$ 5 $a \in a$ 5 $a \in a$ 6 y $a \in a$ 6 $a \in a$ 7 y $a \in a$ 8 $a \in a$ 9 y $a \in a$ 9 y
- EJ 5. Sean X un conjunto y f una función con dominio X. Prueba lo siguiente:
 - i) Si $A \in \mathcal{P}(\mathcal{P}(X))$ es no vacío, entonces $f[\bigcap A] \subseteq \bigcap \{f[a] \mid a \in A\}$.
 - ii) f es inyectiva si y sólo si para cada $A \in \mathscr{P}(\mathscr{P}(X))$ no vacío se da la contención $\bigcap \{f[a] \mid a \in A\} \subseteq f[\bigcap A].$

Demostración. (i) Supóngase que $A \in \mathscr{P}(\mathscr{P}(X))$ es no vacío y sea $y \in f[\bigcap A]$ cualquier elemento. Sea $a \in A$ cualquiera, como $y \in f[\bigcap A]$, existe $h \in \bigcap A$ de modo que y = f(h). Obsérvese que así $h \in a$, implicando que $y = f(h) \in f[a]$. Por lo que $k \in \bigcap \{f[a] \mid a \in A\}$ y con ello $f[\bigcap A] \subseteq \bigcap \{f[a] \mid a \in A\}$.

- (ii) (\to) Supóngase que f es inyectiva y sea $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\varnothing\}$ cualquiera, fíjese un elemento $a_0 \in A$. Sea $y \in \bigcap \{f[a] \mid a \in A\}$ cualquier elemento, como $a_0 \in A$, entonces $k \in f[a_0]$ y existe cierto $h \in a_0$ de modo que y = f(h). Basta probar que $h \in \bigcap A$, en efecto, si $a \in A$ es cualquier elemento, entonces $y \in f[a]$ y con elllo, existe $h' \in a$ de modo que y = f(h'). De lo anterior se obtiene que f(h) = f(h') y h = h' dada la inyectividad de f, mostrando que $h \in a$, y por lo tanto $h \in \bigcap A$. Asi que $h \in f[\bigcap A]$ y en consecuencia $\bigcap \{f[a] \mid a \in A\} \subseteq f[\bigcap A]$.
- (\leftarrow) Recíprocamente prócedase por contrapuesta suponiendo que f es no inyectiva, entonces existen $x,y\in X$ tales que $x\neq y$ pero f(x)=f(y). Así, $A:=\{\{x\},\{y\}\}\in\mathscr{P}(\mathscr{P}(X))\setminus\{\varnothing\}$ y:

$$\bigcap \{f[\alpha] \mid \alpha \in A\} \nsubseteq f \Big[\bigcap A\Big]$$

En efecto, nótese que $f(x) \in f[\{x\}]$ y $f(x) = f(y) \in f[\{y\}]$, por lo que para cada $a \in A$ se cumple $f(x) \in f[a]$, esto es $f(x) \in \bigcap \{f[a] \mid a \in A\}$. Sin embargo, de ocurrir $f(x) \in f[\bigcap A]$ se tendría que existe $h \in \bigcap A$ de modo que f(x) = f(h). Pero esto es absurdo, pues como $x \neq y$, entonces $\bigcap A = \emptyset$. Por lo tanto $f(x) \notin f[\bigcap A]$ y por ende $\bigcap \{f[a] \mid a \in A\} \not\subseteq f[\bigcap A]$.

- **EJ 6.** Sean X, Y conjuntos y f : X \rightarrow Y. Se define la función g : $\mathscr{P}(X) \rightarrow \mathscr{P}(Y)$ para cada $\alpha \in \mathscr{P}(X)$ como $g(\alpha) = \{y \in Y \mid f^{-1}[\{y\}] \subseteq \alpha\}.$
 - i) Demuestra que si $a \in \mathscr{P}(X)$ y $b \in \mathscr{P}(Y)$, entonces $b \subseteq g(a)$ si y sólo si $f^{-1}[b] \subseteq a$.
 - ii) Prueba que para todo $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\emptyset\}$ se tiene $g(\bigcap A) = \bigcap \{g(a) \mid a \in A\}$.

Demostración. (i) Sean $a \in \mathcal{P}(X)$ y $b \in \mathcal{P}(Y)$ cualesquiera. (\to) Si $b \subseteq g(a)$ entonces para cada $y \in b$ se tiene que $f^{-1}[\{y\}] \subseteq a$. Luego, si $x \in f^{-1}[b]$ es cualquiera entonces $f(x) \in B$; es

decir, existe $y_0 \in B$ de modo que $f(x) = y_0$, con ello $x \in f^{-1}[\{y_0\}]$ y así $x \in \mathfrak{a}$, demostrando que $f^{-1}[b] \subseteq \mathfrak{a}$.

- (\leftarrow) Supóngase que $f^{-1}[b] \subseteq a$ y sea $k \in b$ cualquiera. Si $x \in f^{-1}[\{k\}]$ es arbitrario, entonces $f(x) = k \in B$ y entonces $x \in f^{-1}[b]$. Por hipótesis, se sigue de lo anterior que $x \in a$ y por lo tanto $f^{-1}[\{k\}] \subseteq a$. Lo anterior; probadao para cada $k \in b$, demuestra que $b \subseteq g(a)$.
- (ii) Sea $A \in \mathscr{P}(\mathscr{P}(X)) \setminus \{\varnothing\}$ cualquiera, se verificará que $g(\bigcap A) = \bigcap \{g(\alpha) \mid \alpha \in A\}$ utilizando extensionalidad (doble contención), pues estos objetos son conjuntos.
- (⊆) Como A ≠ Ø, dado el *Inciso ii*) del Ejercicio 4 de esta Tarea, para esta contención basta verificar que $g(\bigcap A) \in \bigcap \{\mathscr{P}(g(\alpha)) \mid \alpha \in A\}$. En efecto, si $\alpha \in A$ es cualquiera entonces $\bigcap A \subseteq \alpha$, siendo claro de la definición de g que $g(\bigcap A) \subseteq g(\alpha)$, esto es $g(\bigcap A) \in \mathscr{P}(g(\alpha))$.
- (\supseteq) Nótese que si $\alpha \in A$ es cualquiera, entonces $g(\alpha) \subseteq g(\alpha)$ y, por el *Inciso i) de este* ejercicio, se tiene $f^{-1}[g(\alpha)] \subseteq \alpha$. Así, $\bigcap \{f^{-1}[g(\alpha)] \mid \alpha \in A\} \subseteq \bigcap A$ y como se mostró en clase, la imagen inversa preserva intersecciones, con lo cual $f^{-1}[\bigcap \{g(\alpha) \mid \alpha \in A\}] \subseteq \bigcap A$. Por el *Inciso i)* de este ejercicio esto prueba que $\bigcap \{g(\alpha) \mid \alpha \in A\} \subseteq g(\bigcap A)$.