EXAMPLE: The following are rings.

- (1) Rings of numbers, like \mathbb{Z} and $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z}\}.$
- (2) Given a starting ring A, the polynomial ring in one indeterminate

$$A[X] := \{a_d X^d + \dots + a_1 X + a_0 \mid d \ge 0, a_i \in A\},\$$

or in a (finite or infinite!¹) set of indeterminates $A[X_1, \ldots, X_n], \ A[X_{\lambda} \mid \lambda \in \Lambda].$

(3) Given a starting ring A, the power series ring in one indeterminate

$$A[\![X]\!] := \left\{ \sum_{i \ge 0} a_i X^i \mid a_i \in A \right\},\,$$

or in a set of indeterminates $A[X_1, \ldots, X_n]$.

- (4) For a set X, Fun $(X, \mathbb{R}) := \{\text{all functions } f : [0, 1] \to \mathbb{R} \}$ with pointwise + and \times .
- (5) $\mathcal{C}([0,1]) := \{\text{continuous functions } f:[0,1] \to \mathbb{R}\}$ with pointwise + and \times .
- (6) $\mathcal{C}^{\infty}([0,1]) := \{\text{infinitely differentiable functions } f:[0,1] \to \mathbb{R} \}$ with pointwise + and \times .
- (\div) Quotient rings: given a starting ring A and an ideal I, R = A/I.
- (\times) Product rings: given rings R and S, $R \times S = \{(r, s) \mid r \in R, s \in S\}$.

DEFINITION: An element x in a ring R is called a

- unit if x has an inverse $y \in R$ (i.e., xy = 1).
- **zerodivisor** if there is some $y \neq 0$ in R such that xy = 0.
- **nilpotent** if there is some $e \ge 0$ such that $x^e = 0$.
- idempotent if $x^2 = x$.

We also use the terms **nonunit**, **nonzerodivisor**, **nonnilpotent**, **nonidempotent** for the negations of the above. We say that a ring is **reduced** if it has no nonzero nilpotents.

- (1) Warmup with units, zerodivisors, nilpotents, and idempotents.
 - (a) What are the implications between nilpotent, nonunit, and zerodivisor?
 - **(b)** What are the implications between reduced, field, and domain?
 - **(c)** What two elements of a ring are always idempotents? We call an idempotent **nontrivial** to mean that it is neither of these.
 - (d) If e is an idempotent, show that e' := 1 e is an idempotent² and ee' = 0.
 - (a) nilpotent \Rightarrow zerodivisor \Rightarrow nonunit
 - **(b)** reduced \Leftarrow domain \Leftarrow field
 - **(c)** 0 and 1
 - (d) $e'^2 = (1-e)(1-e) = 1-2e+e^2 = 1-e=e'$ and $ee' = e(1-e) = e-e^2 = 0$.
- (2) Elements in polynomial rings: Let $R = A[X_1, \ldots, X_n]$ a polynomial ring over a *domain* A.
 - (a) If n = 1, and $f, g \in R = A[X]$, briefly explain why the top degree³ of fg equals the top degree of f plus the top degree of g. What if A is not a domain?

¹Note: Even if the index set is infinite, by definition the elements of $A[X_{\lambda} \mid \lambda \in \Lambda]$ are finite sums of monomials (with coefficients in A) that each involve finitely many variables.

²We call e' the **complementary idempotent** to e.

³The **top degree** of $f = \sum a_i X^i$ is $\max\{k \mid a_k \neq 0\}$; we say **top coefficient** for a_k . We use the term top degree instead of degree for reasons that will come up later.

- **(b)** Again if n = 1, briefly explain why R = A[X] is a domain, and identify all of the units in R.
- (c) Now for general n, show that R is a domain, and identify all of the units in R.
 - (a) If $f = a_m X_m + \text{lower terms}$ and $g = b_n X_n + \text{lower terms}$, then $fg = \sum a_m b_n X^{m+n} + \text{lower terms}$. If A is a domain, then $a_m, b_n \neq 0$ implies $a_m b_n \neq 0$, but if A is not a domain, the top degree may drop.
 - **(b)** By looking at the top degree terms as above, we see that the product of nonzero polynomials is nonzero. The units in R are just the units in A viewed as polynomials with no higher degree terms. Indeed, such elements are definitely units; on the other hand, if fg = 1 in R, then the top degree of f and g are both zero, so f and g are constant, which means f and g are in A, so a unit in R is a unit in A.
 - (c) The claim that R is a domain follows by induction on n, since $A[X_1, \ldots, X_n] = A[X_1, \ldots, X_{n-1}][X_n]$. The units in R are again the units in A. This also follows by induction on n: a unit in $A[X_1, \ldots, X_n] = A[X_1, \ldots, X_{n-1}][X_n]$ is a unit in $A[X_1, \ldots, X_{n-1}]$, which by the induction hypothesis is constant.
- (3) Elements in power series rings: Let A be a ring.
 - (a) Explain why the set of formal sums $\{\sum_{i\in\mathbb{Z}} a_i X_i \mid a_i \in A\}$ with arbitrary positive and negative exponents is *not* clearly a ring in the same way as A[X].
 - **(b)** Given series $f, g \in A[X]$, how much of f, g do you need to know to compute the X^3 -coefficient of f + g? What about the X^3 -coefficient of fg?
 - (c) Find the first three coefficients for the inverse⁴ of $f = 1 + 3X + 7X^2 + \cdots$ in $\mathbb{R}[X]$.
 - (d) Does "top degree" make sense in A[X]? What about "bottom degree"?
 - (e) Explain why⁵ for a domain A, the power series ring $A[X_1, \ldots, X_n]$ is also a domain.
 - (f) Show⁶ that $f \in A[X_1, \dots, X_n]$ is a unit if and only if the constant term of f is a unit.
 - (a) To multiply two such formal sums, you would have to take an infinite sum in A to compute the coefficient of any X^i .
 - **(b)** To compute the X^3 -coefficient of f+g, you just need to know the X^3 -coefficients of f and g. To compute the X^3 -coefficient of fg, you need to know the $1, X, X^2, X^3$ coefficients of f and g.
 - (c) $g = 1 3X + 2X^2 + \cdots$
 - **(d)** No; yes.
 - (e) For n=1, look at the bottom degree terms. The bottom degree term of the product is the product of the bottom degree terms; if A is a domain, this product is nonzero. The statement just follows by induction on n.
 - (f) If f is a unit, then the constant term is a unit, since the constant term of fg is the constant term of f times that of g.
 - For the other direction, first, take n=1. Given $f=\sum_i a_i X^i$, construct $g=\sum_i b_i X^i$ by defining b_m recursively $b_0=1/a_0$ and that the X^m -coefficient of $(\sum_{i=0}^m a_i X^i)(\sum_{i=0}^m b_i X_i)$ is 0 for m>0: we can do this since, given b_0,\ldots,b_m that work in the mth step, in the next step we can the formula for the X^{m+1} coefficient is $a_0b_{m+1}+a_1b_m+\cdots+a_{m+1}b_0$, since a_0 is a unit, we can solve for b_{m+1} to make this equal

⁴It doesn't matter what the · · · are!

⁵You might want to start with the case n = 1.

⁶Hint: For n=1, given $f=\sum_i a_i X^i$, construct $g=\sum_i b_i X^i$ by defining b_m recursively $b_0=1/a_0$ and that the X^m -coefficient of $(\sum_{i=0}^m a_i X^i)(\sum_{i=0}^m b_i X_i)$ is 0 for m>0.

zero without changing the lower coefficients. Continuing this way, take $g = \sum_i b_i X^i$. Then for any k, the X^k -coefficient only depends on the a_0, \ldots, a_k and b_0, \ldots, b_k coefficients, and by construction, this coefficient is zero for $k \geq 1$. Thus, any such f has an inverse.

The general claim follows by induction on n: if $f \in A[\![X_1,\ldots,X_n]\!]$ has a unit constant term considered as a power series in $A[\![X_1,\ldots,X_n]\!]$, then its constant term in $(A[\![X_1,\ldots,X_{n-1}]\!])[\![X_n]\!]$ has a unit constant term, hence is a unit in $A[\![X_1,\ldots,X_{n-1}]\!]$, so f is a unit in $(A[\![X_1,\ldots,X_{n-1}]\!])[\![X_n]\!] = A[\![X_1,\ldots,X_n]\!]$.

- (4) Elements in function rings.
 - (a) For $R = \text{Fun}([0, 1], \mathbb{R})$,
 - (i) What are the nilpotents in R?
- (iii) What are the idempotents in R?

(ii) What are the units in R?

- (iv) What are the zerodivisors in R?
- (b) For $R = \mathcal{C}([0,1],\mathbb{R})$, $R = \mathcal{C}^{\infty}([0,1],\mathbb{R})$ same questions as above. When are there any/none?
 - (a) For $R = \text{Fun}([0, 1], \mathbb{R})$,
 - (i) There are no nilpotents, since for any $\alpha \in [0,1]$, $f(\alpha)^n = 0$ means that $f(\alpha) = 0$.
 - (ii) The units are the functions that are never zero, since the function g(x) = 1/f(x) is then defined (and conversely).
 - (iii) f(x) is idempotent if $f(\alpha) \in \{0, 1\}$ for all $\alpha \in [0, 1]$.
 - (iv) Any function that is zero at some point is a zerodivisor: if $S = \{\alpha \in [0,1] \mid f(\alpha) = 0\}$ is nonempty, then let g be a nonzero function that vanishes on $[0,1] \setminus S$, then fg = 0.
 - (b) For R = C([0, 1]) or $R = C^{\infty}([0, 1])$,
 - (i) Same
 - (ii) Same
 - (iii) There are no nontrivial idempotents: the same condition as above applies, but by continuity, f must either be identically 0 or identically 1.
 - (iv) The difference is that now there may not be a nonzero function that vanishes on $[0,1] \setminus S$, e.g., if f vanishes at a single point. To be a zerodivisor, the set $[0,1] \setminus S$ as above must be not be dense.
- **(5)** Product rings and idempotents.
 - (a) Let R and S be rings, and $T = R \times S$. Show that (1,0) and (0,1) are nontrivial complementary idempotents in T.
 - **(b)** Let T be a ring, and $e \in T$ a nontrivial idempotent, with e' = 1 e. Explain why $Te = \{te \mid t \in T\}$ and Te' are rings with the same addition and multiplication as T. Why didn't I say "subring"?
 - (c) Let T be a ring, and $e \in T$ a nontrivial idempotent, with e' = 1 e. Show that $T \cong Te \times Te'$. Conclude that R has nontrivial idempotents if and only if R decomposes as a product.
 - (a) $(1,0)^2 = (1,0)$, $(0,1)^2 = (0,1)$, and (1,0) + (0,1) = (1,1) is the "1" of $R \times S$.
 - **(b)** re + se = (r + s)e and $(re)(se) = rse^2 = rse$. Same with e'.
 - (c) Define $\phi: T \to Te \times Te'$ by $\phi(t) = (te, te')$. The verification that this is a ring homomorphism essentially the content of (b). If $\phi(t) = (0,0)$, then te = 0 and 0 = te' = t(1-e) = t te, so t = 0, hence ϕ is injective. Given $(re, se') \in Te \times Te'$, we have $\phi(re + se') = ((re + se')e, (re + se')e') = (re, se')$, hence ϕ is surjective, as well.

- (6) Elements in quotient rings:
 - (a) Let K be a field, and $R = K[X,Y]/(X^2,XY)$. Find
 - \bullet a nonzero nilpotent in R
 - \bullet a zerodivisor in R that is not a nilpotent
 - \bullet a unit in R that is not equivalent to a constant polynomial
 - (b) Find $n \in \mathbb{Z}$ such that
 - $[4] \in \mathbb{Z}/(n)$ is a unit
 - $[4] \in \mathbb{Z}/(n)$ is a nonzero nilpotent
- $[4] \in \mathbb{Z}/(n)$ is a nonnilp. zerodivisor
- $[4] \in \mathbb{Z}/(n)$ is a nontrivial idempotent

This solution is embargoed.

- (7) More about elements.
 - (a) Prove that a nilpotent plus a unit is always a unit.
 - (b) Let A be an arbitrary ring, and R = A[X]. Characterize, in terms of their coefficients, which elements of R are units, and which elements are nilpotents.
 - (c) Let A be an arbitrary ring, and R = A[X]. Characterize, in terms of their coefficients, which elements of R are nilpotents.