

HierSpeech: Bridging the Gap between Text and Speech by Hierarchical Variational Inference using Self-supervised Representations for Speech Synthesis

Sang-Hoon Lee¹

Seung-Bin Kim²

Ji-Hyun Lee²

Eunwoo Song³ N

Min-Jae Hwang³

Seong-Whan Lee²

Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea, sh_lee@korea.ac.kr
 Department of Artificial Intelligence, Korea University, Seoul, Korea, {sb-kim, jihyun-lee, sw.lee}@korea.ac.kr
 NAVR Corp., Seongnam, Korea, {eunwoo.song, min-jae.hwang}@navercorp.com

Objective

The fundamental objectives of our proposed method are

- Introducing an additional linguistic representation to bridge the gap between text and speech
- Adopting the hierarchical conditional variational autoencoder to connect linguistic and acoustic representations, and to lean each attribute hierarchically
- Proposing an untranscribed text-to-speech framework, which can adapt to a novel speaker by utilizing self-supervised speech representations without text transcripts

Text-to-Speech (TTS) "Hello!" TTS Text sequence Mel-spectrogram TTS pipeline

Self-supervised Speech Representation

- Self-supervised model can learn useful information from large-scale unlabeled data
- The representations from the middle layer of the pre-trained model contain rich linguistic information (e.g., the pronunciation of speech)
- Self-supervised model for speech: Wav2Vec 2.0 [A. Baevski, 2020]

HierSpeech

- We integrate the linguistic representations learned by self-supervised learning (SSL) models into the end-to-end TTS pipeline
- Baseline TTS model: VITS [J. Kim, 2021]
- SSL model: XLS-R (Wav2Vec 2.0), we used the middle layer (12th) of XLS-R

- Model Architecture

- **Decoder**: Generate raw waveform audio from acoustic representation z_a
- Acoustic Encoder: Extract the acoustic representation z_a from linear spectrogram
- Linguistic Encoder: Extract the linguistic representation z_l from the wav2vec 2.0
- Phoneme Predictor: Enforce the linguistic characteristics in z_1
- Text Encoder: Extracting the linguistic prior distribution

- Hierarchical variational inference + Adversarial training

- Reconstruction: *l*1 distance of Mel-spectrogram between the GT and reconstructed waveform using STFT and Mel-scale transformation
- KL Divergence between acoustic posterior and prior distribution
- KL Divergence between linguistic posterior and prior distribution
- Adversarial training: GAN loss + Feature Matching loss

- HierSpeech-U: Untranscribed text-to-speech model

Finetuing the model without text transcripts

Experiment and Result

- Dataset

- 1. VCTK (46 hours for 108 speakers)
- 2. LibriTTS (110 hours for 1,151 speakers)

- Analysis of self-supervised representations

The representations from the middle layer of XLS-R contain a small amount of speaker information

Figure 7: Speaker classification on self-supervised representations from different layers of XLS-R. Figure 8: Speaker classification on linguistic representations from different layers of XLS-R.

- Evaluation

- 1. Subjective metrics: naturalness/similarity Mean Opinion Score (nMOS/sMOS)
- 2. Objective metrics: Phoneme Error Rate (PER), Word Error Rate (WER), Equal Error Rate (EER) of the Automatic Speaker Verification model, etc.

Table 3: The TTS evaluation results on the VCTK dataset.

Method	nMOS	sMOS	PER	WER	EER	MCD	RMSE_{f0}	DDUR	Speed (kHz)	Real-time
GT GT (HiFi-GAN)	4.06±0.02 4.03±0.02	3.34±0.03 3.30±0.03	5.64 5.94	18.94 19.52	4.03 5.04	- 1.25	28.32	-	6,484.09	×294.06
Tacotron2	3.76±0.02	3.16±0.03	11.73	22.48		4.18	35.30	0.49	263.94	×11.97
Glow-TTS	3.95±0.02	3.09 ± 0.03	11.77	26.40	5.33	4.31	32.98	0.38	1,410.75	$\times 63.97$
PortaSpeech	3.97±0.02	3.15±0.03	11.35	25.46	5.48	4.34	32.89	0.43	1,163.21	×52.75
VITS HierSpeech (Ours)	4.02±0.02 4.04±0.02	3.19±0.03 3.22±0.03	9.16 5.78	25.54 19.55	3.83 3.74	4.27 4.05	32.93 32.15	0.37 0.33	1,610.77 1,459.95	× 72.83 ×66.21

Table 4: The speaker transfer evaluation results on the LibriTTS dataset.

Method	nMOS	sMOS PER	WER EER	MCD	$RMSE_{f0}$	DDUR	Speed (kHz)	Real-time
GT	4.04±0.03	3.40±0.03 7.01	18.28 4.45	-	-	-	-	-
VITS HierSpeech (Ours)		3.26±0.03 13.62 3.26±0.03 7.47					1,781.40 1,678.79	× 80.78 ×76.13

- Untranscribed TTS

Table 6: Results for untranscribed text-to-speech. We compare few-shot speaker adaptation performance of HierSpeech-U with that of HierSpeech. Both models use the pre-trained HierSpeech which is trained using VCTK and LibriTTS datasets. We used 10 unseen speakers of VCTK dataset as novel speakers, and fine-tuned each model with 20 samples from each speaker.

_	Method	Transcript	nMOS	sMOS	PER	WER	EER	MCD	$RMSE_{f0}$	DDUR
	GT	-	4.13±0.10	$3.38{\pm}0.10$	4.26	16.69	4.14	-	-	-
	HierSpeech	l .		3.18 ± 0.11					29.56	0.28
	HierSpeech-U	X	4.08±0.09	3.15 ± 0.12	3.71	15.85	6.40	4.09	30.64	0.36

References

[J. Kim, 2021] J. Kim et al., "Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech," *ICML*, 2021. [H.-S. Choi, 2021] H.-S. Choi et al., "Neural Analysis and Synthesis Reconstructing Speech from Self-supervised Representations," *NeurIPS*, 2021. [A. Baevski, 2020] A. Baevski et al., "Wav2vec 2.0: A Framework for Self-supervised Learning of Speech Representation," *NeurIPS*, 2020. [A. Babu, 2021] A. Babu, et al., "XIs-r: Self-supervised cross-lingual speech representation learning at scale," *arXiv preprint arXiv:2111.09296*, 2021.