

Adversarial Unsupervised Representation Learning for Activity Time-Series

Presented at AAAI-19

Motivation

Huge amount of data from wearable devices, monitoring user's physical activity and sleep

Why not use these to assist healthcare professionals?

Problem description

- Few subject have clinical data AND activity data
- A lot of activity data, a supervised approach would result in most of this being unused
- Wearables' signals depends on the person wearing them as well as their environment

Related work - topic 1

Human activity for health informatics - use of activity data

- human activity recognition
- manual diagnostication of sleep-disorders
- quantifying sleep quality using DL
- monitoring human behavioural patterns

This paper propose task-agnostic models instead of plain supervised learning

Related work - topic 2

Representation learning - constructing a space that is discriminative for downstream task

- Better network convergence by adding unsupervised pre-trained vectors that encode mutual information between the input features
- Distributed bag-of-words architectures that predicts the context of the structure

This paper integrates a DBOW architecture in an adversarial setting to capture local patterns

Related work - topic 3

Time series analysis literature

- use of pair-wise similarity concept to perform classification and clustering tasks
- SAX and BOSS convert time-series to a symbolic sequence - both are supervised
- HCTSA feature extraction unsupervised

Embeddings learned by this paper's model can be used to initialize supervised learning models

Methods

- 1) Demonstrating the model's behaviour for granularities that are intuitive to humans
- 2) Dealing with local patterns within a time segment

Figure 1: Activity time-series for a subject over a week.

Methods

- 3) Dealing with global patterns between time segments
- 4) Make sure that subject-specific noise and environment does not affect the activity data

Figure 1: Activity time-series for a subject over a week.

Experimental Settings - datasets

SOL

- activity data and clinical data for 1887 subjects
 MESA
 - activity data for 2237 subjects

Together these datasets simulate the common scenario for semi-supervised learning

Experimental Settings - tasks

Evaluating the effectiveness of the learned embeddings

Binary classification tasks:

- Sleep Apnea
- Hypertension

Three-class classification tasks:

- Diabetes
- Insomnia

Results

	Method
Supervised	Majority
	Random
	SAX-VSM
	BOSS
	BOSSVS
	Task-specific
Unsupervised	sample2vec
	hour2vec
	hour2vec+Reg
	day2vec
	day2vec+Reg
	week2vec
	HCTSA
	LSTM
	day2vec+Reg+0
	day2vec+Reg+O+A

Capturing local patterns:

Segment-Specific Loss
Ordinal Regression Loss (O)

Capturing global patterns:

Neighbour Context Loss Smoothing Loss (R)

Subject invariance:

Adverseral Loss (A)

Results

Figure 1: Activity time-series for a subject over a week.

Results - adversarial loss

Figure 4: t-SNE visualization of subjects with regularized day2vec on the left and adversarial day2vec on the right, for all the subjects with respect to their level of activity.

Results - compared to supervised

Conclusions

- Day-level granularity for activity time-series are shown to be better (than other human-intuitive granularities)
- Unsupervised representation learning technique that works well with a simple classifier
- Generalizes embeddings
- Can complement supervised learning by initialization

Thank you