# Uma breve introdução aos problemas de Sturm-Liouville

#### Matheus Horácio

Professor: Yuri Dumaresq Sobral

Departamento de Matemática, Universidade de Brasília

Trabalho final da disciplina de Introdução a Métodos Computacionais em EDO

# Sumário

| ın | troa  | uçao                                                          | 3  |
|----|-------|---------------------------------------------------------------|----|
| 1  | Res   | olvendo numericamente o problema de Sturm-Liouville           | 6  |
|    | 1.1   | Problemas regulares                                           | 6  |
|    |       | 1.1.1 O método do atirador marchante                          | 9  |
|    |       | 1.1.2 Usando o método de Newton-Raphson                       | 13 |
|    |       | 1.1.3 Resultados numéricos do método do atirador marchante    | 13 |
|    | 1.2   | Problemas singulares de tipo 1                                | 18 |
|    | 1.3   | Problemas singulares de tipo 2                                | 19 |
|    | 1.4   | Resultados numéricos do método do atirador marchante adaptado | 20 |
|    | 1.5   | Resultados numéricos do método de Newton-Raphson              | 29 |
| Bi | bliog | grafia                                                        | 31 |

## Introdução

U m problema de Sturm-Liouville regular é (em dimensão um) um problema de valores de contorno de segunda ordem da forma

$$-\frac{\mathrm{d}}{\mathrm{d}t}\left(p(t)\frac{\mathrm{d}y}{\mathrm{d}t}\right) + q(t)y = \lambda r(t)y, \quad \forall t \in [a, b],$$

$$g\left(y(a), y'(a), y(b), y'(b)\right) = 0;$$
(1)

onde  $g: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$  é dada por

$$g(u_1, u_2, u_3, u_4) = \begin{pmatrix} \alpha u_1 + \beta u_2 \\ \gamma u_3 + \delta u_4 \end{pmatrix}$$

Aqui, os dados do problema são as funções reais p,q,r (com hipóteses de continuidade/suavidade apropriadas) e as constantes  $\alpha, \beta, \gamma, \delta$  (que por motivos evidentes pedimos que satisfaçam  $\{\alpha^2 + \beta^2, \gamma^2 + \delta^2\} \neq \{0\}$ ). Encontrar  $\lambda \in \mathbb{R}$  tal que o problema (1) admita uma solução não identicamente nula y é o que chamamos de problema de autovalor de Sturm-Liouville, nomenclatura justificada pelo fato de que se  $0 \neq \lambda$  é tal que o problema (1) admite uma solução não identicamente nula, então  $\lambda$  é um autovalor do operador

$$\mathbb{H} \ni u \mapsto L(u) = -\frac{1}{w(t)} \left( \frac{\mathrm{d}}{\mathrm{d}t} \left[ p(t) \frac{\mathrm{d}u}{\mathrm{d}t} \right] + q(t)u \right) \in \mathbb{H};$$

onde H é um espaço de Hilbert apropriado que não convém definirmos aqui.

O objetivo dessa introdução é convencer o leitor da grande relevância de tais problemas, tanto na matemática (pura ou aplicada) quanto na física. Mais especificamente, ilustraremos concretamente a extrema força do seguinte teorema, que é a joia de ouro da teoria de Sturm-Liouville:

Teorema (T.0.1) (Propriedades do problema regular de Sturm-Liouville). (a) Existe uma quantidade infinita de autovalores reais que podem ser ordenados em ordem crescente:

$$\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$$

e de forma que  $\lambda_n \to \infty$  conforme  $n \to \infty$ .

(b) A dimensão de cada autoespaço é um.

- (c) Autofunções correspondentes a autovalores distintos são linearmente independentes.
- (d) As autofunções são ortogonais com respeito ao produto interno induzido por p(t) e formam uma base ortonormal.

# A equação de Helmholtz e os autovalores de Dirichlet: é possível ouvir a forma de um tambor?

Pode-se mostrar que o deslocamento F de uma membrana plana  $\Omega$ , mantida fixa ao longo de sua fronteira, satisfaz a equação de onda

$$\frac{\partial^2 F}{\partial t^2} = c^2 \nabla^2 F,$$

onde c depende das propriedades físicas da membrana e da tensão aplicada. Modelando a membrana de um tambor como um aberto limitado  $\Omega \subset \mathbb{R}^2$ , temos o problema de autovalor

$$\begin{cases}
-\Delta u = \lambda u & \text{em } \Omega, \\
u|_{\partial\Omega} = 0.
\end{cases}$$
(2)

no qual buscamos  $\lambda \in \mathbb{R}$  e  $u \not\equiv 0$ . Note que tal problema pode ser visto como um problema de Sturm-Liouville *n*-dimensional. Tais autovalores  $\lambda$  são chamados de *frequências naturais* de vibração da membrana, e as funções u são chamadas de *modos normais* de vibração. A solução geral do problema (ou, equivalentemente, o som do tambor) é uma combinação dos modos normais.

Mark Kac, em 1966, formulou a seguinte questão: Can one hear the shape of a drum?: é possível determinar a forma de  $\Omega$  conhecendo apenas as suas frequências naturais de vibração, i.e, o espectro do laplaciano?

A investigação remonta a 1911, quando Weyl mostrou que a área de um domínio plano é determinada por seu espectro (ou seja, é possível "ouvir a área de um tambor"!). Posteriormente verificou-se que o espectro também determina o perímetro e o número de componentes conexas. Combinando esses fatos à desigualdade isoperimétrica

perímetro(
$$\Omega$$
) >  $4\pi$  área( $\Omega$ ),

A resposta geral da pergunta de Kac é negativa: existem domínios isoespectrais não congruentes. Porém, Kac provou que um domínio isoespectral a um disco de raio r deve ser congruente ao próprio disco, demonstrando que pelo menos alguns domínios são completamente determinados pelo seu espectro (ou seja, pode-se "ouvir" a forma de alguns tambores).

#### Motivos físicos e aplicações

A equação de Schrödinger autônoma em dimensão um é dada por

$$\frac{-\hbar^2}{2m}\frac{d^2\psi(t)}{dt^2} = [E - V(t)]\,\psi(t),$$

que é claramente um problema de Sturm-Liouville. A equação de Schrödinger não autônoma, a saber,

$$\frac{-\hbar^2}{2m}\frac{\partial^2 \psi(x,t)}{\partial x^2} + V(t)\psi(x,t) = i\hbar \frac{\partial \psi(x,t)}{\partial t};$$

também pode ser vista como um problema de Sturm-Liouville via separação de variáveis. O teorema (T.0.1) pode ser visto como uma validação matemática (com certas ressalvas pertinentes à dimensionalidade, domínios infinitos e singularidades, e com sutilezas que dependem de quão intimamente o problema de Sturm-Liouville se relaciona ao problema original de Schrödinger) dos seguintes fatos:

- Existe uma sequência discreta de níveis de energia, rotulados por um número quântico n. Essa natureza discreta é a razão de a física quântica ser chamada de "quântica". Os valores de energia dos estados formam a sequência crescente  $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots$ , que tende ao infinito. Assim, existe uma noção bem-definida de estado fundamental (energia mínima): é o estado com n = 1.
- As funções de onda de dois níveis de energia com valores distintos podem ser tomadas ortonormais.
- Qualquer função de onda geral u pode ser escrita como combinação linear  $u = \sum_{n} c_n u_n$  das funções de onda de nível de energia puro  $u_n$ . Esse é o enunciado de completude na teoria de Sturm-Liouville. Na linguagem dos físicos, o estado u é uma superposição dos estados de nível de energia puro.

#### Motivos matemáticos

Considere uma EDO linear de segunda ordem qualquer, digamos

$$\psi(t)y'' + \varphi(t)y' + \eta(t)y = f(t), \text{ onde } \psi \neq 0.$$
(3)

Definindo

$$p(t) = \exp\left(\int \frac{\varphi(t)}{\psi(t)} dt\right),$$

$$q(t) = p(t) \frac{\eta(t)}{\psi(t)},$$

$$F(t) = p(t) \frac{f(t)}{\psi(t)};$$
(4)

vemos que (3) é equivalente a uma EDO na forma de Sturm-Liouville. De fato, podemos reescrever (3) como

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(p(t)\frac{dy}{\mathrm{d}t}\right) + q(t)y = F(t),\tag{5}$$

Isso prova uma das forças da teoria de Sturm-Liouville: reduzimos o estudo de todas as EDOs lineares de segunda ordem a uma só! Além disso, pode-se mostrar que qualquer solução y de (5) é uma combinação linear de autofunções  $u_n$  do problema de Sturm-Liouville

$$-\frac{\mathrm{d}}{\mathrm{d}t}\left(p(t)\frac{\mathrm{d}u}{\mathrm{d}t}\right) + q(t)u = \lambda r(t)u$$
(6)

## Capítulo 1

# Resolvendo numericamente o problema de Sturm-Liouville

Vamos usar o método do tiro para resolver numericamente problemas de Sturm-Liouville, ou seja, determinar numericamente os autovalores e autofunções de tais problemas.

Observação (O.1). Os códigos desenvolvidos para resolver numericamente todos os exemplos apresentados aqui estão disponíveis nos repositórios a seguir

- https://github.com/SaganGromov/SL\_REGULAR\_EXEMPLOS
- https://github.com/SaganGromov/SL\_SINGULAR\_EXEMPLOS
- https://github.com/SaganGromov/SL\_NEWTON\_RAPHSON

#### 1.1 Problemas regulares

Definição (D.1.1). Uma equação de Sturm-Liouville da forma

$$-(p(x)y'(x))' + q(x)y(x) = \lambda r(x)y(x), \ \forall x \in [a, b],$$
(1.1)

é dita regular se as funções p, q e r são suaves em [a, b], com p, q estritamente positivas em [a, b].

Definição (D.1.2). Um problema de Sturm-Liouville *regular* é um problema da forma (1.1) sujeito a condições de contorno lineares separadas, a saber,

$$\alpha \cdot y(a) + \beta \cdot y'(a) = 0; \tag{1.2}$$

$$\gamma \cdot y(b) + \delta \cdot y'(b) = 0; \tag{1.3}$$

onde  $\alpha, \beta, \gamma, \delta$  são constantes reais tais que  $(\alpha, \beta) \neq (0, 0)$  e  $(\gamma, \delta) \neq (0, 0)$ 

Antes de explicitarmos o método do tiro, vamos enunciar vários resultados clássicos da teoria de Sturm-Liouville que serão essenciais para criarmos nosso algortimo que determina numericamente o

espectro e as autofunções de um problema de Sturm-Liouville regular. A demonstração de tais resultados está fora do escopo desse trabalho, mas pode ser encontrada em [2].

Teorema (T.1.1).

• Os autovalores de um problema regular são reais, simples e podem ser ordenados como

$$\lambda_0 < \lambda_1 < \lambda_2 < \cdots$$

- A autofunção y<sub>n</sub> correspondente a λ<sub>n</sub> tem exatamente n zeros nodais (zeros interiores onde ocorre uma mudança de sinal) e nenhum outro zero interior. Além disso, os nós de y<sub>n-1</sub> e y<sub>n</sub> estritamente se entrelaçam - ou seja, entre quaisquer dois zeros consecutivos de y<sub>n</sub>, existe exatamente um zero de y<sub>n-1</sub>.
- Se  $\alpha\beta \leq 0$ ,  $\gamma\delta \geq 0$ , p > 0,  $q \geq 0$ ,  $e \ r(x) > 0$  em [a,b], então todos os autovalores são positivos, exceto no caso em que o problema de autovalores  $\acute{e} (py')' = \lambda ry$ , y'(a) = 0, y'(b) = 0, no qual caso 0  $\acute{e}$  um autovalor e todos os outros autovalores são positivos. (Ver Teorema 124.)
- Se  $\alpha\beta \leq 0$ ,  $\gamma\delta \geq 0$ , p > 0,  $q \geq 0$ ,  $e \ r(x) > 0$  em [a,b], então  $\lambda_0 \geq \min_{\forall x \in [a,b]} \frac{q(x)}{r(x)}$  e  $\lambda_0 > 0$  a menos que o problema de autovalores seja  $-(py')' = \lambda ry$ , y'(a) = 0, y'(b) = 0, no qual caso  $0 \neq um$  autovalor e todos os outros autovalores são positivos.

Observação (O.2). Observe que estamos começando a contagem em n=0. Isso significa que o autovalor  $\lambda_0$  é o menor autovalor, e a autofunção  $y_0$  é a autofunção correspondente a  $\lambda_0$ . A autofunção  $y_0$  não tem zeros nodais, em particular, nunca muda de sinal em (a,b).

Consideremos agora o problema regular de autovalor, i.e

$$\begin{cases}
-(p(x)y'(x))' + (q(x) - \lambda r(x))y(x) = 0, & \forall x \in [a, b], \\
\alpha y(a) + \beta y'(a) = 0, \\
\gamma y(b) + \delta y'(b) = 0,
\end{cases}$$
(1.4)

com os coeficientes e constantes satisfazendo as hipóteses já mencionadas. O método que utilizaremos para resolver esse PVC consiste em transformar o PVC em um PVI. Uma vez que os autovalores  $\lambda_i$  de (1.4) são todos simples e as autofunções correspondentes satisfazem  $\alpha y(a) + \beta y'(a) = 0$ , o vetor (y(a), y'(a)) é paralelo a  $(-\beta, \alpha)$ . Segue que existe uma única autofunção normalizada correspondente a cada autofunção, que é exatamente a solução do PVI a seguir:

$$\begin{cases} -(p(x)u'(x))' + (q(x) - \lambda r(x))u(x) = 0, & \forall x \in [a, b], \\ u(a) = -\frac{\beta}{\sqrt{\alpha^2 + \beta^2}}, & u'(a) = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}}. \end{cases}$$

$$(1.5)$$

Denotemos então a solução global do PVI por  $u = u(x) = u(x, \lambda)$ , que está definida em [a, b] seja qual for nossa escolha de  $\lambda$ . Agora, lembremos que  $\lambda$  é um autovalor do problema de Sturm-Liouville (1.4) se e somente se o PVI possuir uma solução  $u(x, \lambda)$  definida em [a, b] que satisfaz  $F(\lambda) = 0$ , onde

$$F(\lambda) = \gamma u(b, \lambda) + \delta u'(b, \lambda),$$

Nesse caso,  $y(x) = u(x, \lambda)$  é a autofunção correspondente normalizada.

Sabemos então que as raízes de  $F(\lambda)$  são exatamente os autovalores do problema de autovalor de Sturm-Liouville. Isso motiva então usarmos o seguinte algoritmo:

- (i). Passo 1. Determinamos um chute inicial para um autovalor de interesse (ou, ainda melhor, um intervalo que contenha um autovalor de interesse).
- (ii). Passo 2. Resolvemos o PVI com o chute inicial  $\lambda_k^0$  e obtemos a solução  $u(x, \lambda_k^0)$ .
- (iii). Passo 3. Calculamos  $F(\lambda_k^0) = \gamma u(b, \lambda_k^0) + \delta u'(b, \lambda_k^0)$ .
- (iv). Passo 4. Se  $|F(\lambda_k^0)| < \varepsilon$ , então  $\lambda_k^0$  é um autovalor (aproximado) do problema de Sturm-Liouville. Caso contrário, usamos algum método de busca de raízes (como o método da bisseção) para atualizar o palpite de  $\lambda_k^0$  e voltamos ao passo 2.

Para usarmos o método da bissecção, precisamos saber a priori que F muda de sinal em cada autovalor. Isso de fato é verdade, como demonstrado em [2]. Podemos também utilizar o método de Newton-Raphson: de fato, denotando

$$w(x,\lambda) := \frac{\partial u}{\partial \lambda}(x,\lambda);$$

e derivando termo a termo usando o PVI, obtemos

$$-(pw')' + (q - \lambda r)w - ru = 0.$$

Agora, como os dados iniciais  $n\tilde{a}o$  dependem de  $\lambda$ , segue que

$$w(a,\lambda) = 0, \quad w'(a,\lambda) = 0.$$

Isso nos dá outro PVI, a saber,

$$-(p w')' + (q - \lambda r) w = r u, \ \forall x \in [a, b],$$
$$w(a) = 0, \quad w'(a) = 0.$$

Tal PVI nos permite determinar numericamente  $F'(\lambda)$ ,

$$F'(\lambda) = \gamma w(b, \lambda) + \delta w'(b, \lambda).$$

Como mostrado em [2],  $F'(\lambda) \neq 0$ . Assim, podemos usar o método de Newton-Raphson para atualizar o palpite de  $\lambda_k^n$ , fazendo

$$\lambda_k^{(n+1)} = \lambda_k^{(n)} - \frac{F(\lambda_k^{(n)})}{F'(\lambda_k^{(n)})}.$$

Começaremos aplicando essa estratégia (inicialmente usando o método da bissecção) para determinar o primeiro autovalor  $\lambda_0$  e sua autofunção corresponde  $y_0$ . Para muitos problemas que consideraremos, pode-se mostrar a priori que  $\lambda_0 > 0$ , tornando razoável um palpite inicial  $\lambda_0^0 = \varepsilon$  com algum  $\varepsilon > 0$  pequeno.

Determinando um incremento  $\Delta\lambda$  pequeno, podemos então iterar o método da bissecção em intervalos da forma  $[\lambda_k^i + k\Delta\lambda, \lambda_k^i + (k+1)\Delta\lambda]$  até encontrarmos quantos autovalores e autofunções quisermos. Evidentemente, essa abordagem é muito cara e ineficiente, mas possui duas vantagens em comparação com o método de Newton-Raphson: ela não depende de um bom palpite inicial para qualquer k-ésimo autovalor que queiramos encontrar, e pode ser iterada sucessivamente para determinarmos quaisquer quantidade de autovalores. Note que a mesma abordagem munida do método de Newton-Raphson enfrenta graves problemas - a rapidez/convergência quadrática do método vale somente localmente, tornando possível divergência ou encontro de valores espúrios. A técnica de incrementar  $\lambda$  em pequenos passos fixos  $\Delta\lambda$  e iterar o método de bissecção para percorrer todo o espectro também obviamente não funciona para o método de Newton-Raphson.

#### 1.1 O método do atirador marchante

Nessa seção explicaremos o passo-a-passo de um programa desenvolvido em Fortran cujo objetivo é resolver numericamente qualquer problema de Sturm-Liouville usando o método do tiro, conforme descrito acima. O programa é capaz de encontrar os autovalores e as autofunções correspondentes para um problema regular de Sturm-Liouville com condições de contorno lineares separadas. Para resolver o PVI associado, usamos o método de Runge-Kuta clássico, de ordem quatro, e para encontrar as raízes de F usamos o método da bissecção A seguir, apresentamos uma análise passo a passo do algoritmo implementado.

#### PASSO 1. Configuração e Preparação do Problema

#### SUBPASSO 1.1. Inicialização do domínio e condições de contorno - constantes.f90

Definimos o domínio [a, b] do problema (na versão atual do código, [0, 1]) e inicializamos  $\alpha, \beta, \gamma, \delta$  como constantes reais. No exemplo inicial implementado, usamos  $\alpha = \gamma = 1$  e  $\beta = \delta = 0$ , correspondendo às condições de contorno y(0) = y(1) = 0.

#### SUBPASSO 1.2. Inicialização de diversos parâmetros numéricos - constantes.f90

- passos = 100000: Número de passos de integração utilizados para resolver o PVI via RK4
- tol = 1e-12: Tolerância para a convergência do método de bissecção
- n eigen = 10: Número de autovalores a ser encontrado
- verbose\_level = 3: Nível de verbosidade desejado ao executar o programa compilado, serve principalmente para debug

#### SUBPASSO 1.3. Definição do problema - problema.f90

Especificamos qual problema de Sturm-Liouville iremos considerar ao definir as funções p(x), q(x) e r(x) como funções Fortran. Por exemplo, para o problema de Dirichlet clássico, definimos:

$$p(x) = 1$$
$$q(x) = x$$
$$r(x) = 0$$

correspondente à EDO

$$y'' + \lambda y = 0$$

#### PASSO 2. EDO de 2ª ordem como um sistema de ordem um - definicao\_EDO.f90

Convertemos a EDO de segunda ordem inicial num sistema de primeira ordem fazendo

$$\begin{cases} y_1(x) = y(x), \\ y_2(x) = p(x)y'(x) \end{cases}$$

de forma que

$$\begin{cases} y_1' = \frac{y_2}{p(x)}, \\ y_2' = (q(x) - \lambda r(x)) y_1, \end{cases}$$
 (1.6)

#### PASSO 3. Definição do método RK4 - integrador\_rk4.f90

O método clássico de Runge-Kutta de 4ª ordem é implementado com tamanho de passo

$$h = \frac{b - a}{\text{passos}} = 10^{-5},$$

onde, para o sistema  $\mathbf{y}' = \mathbf{f}(x, \mathbf{y}, \lambda)$ , temos:

$$\mathbf{k}_1 = \mathbf{f}(x_n, \mathbf{y}_n, \lambda),\tag{1.7}$$

$$\mathbf{k}_2 = \mathbf{f}\left(x_n + \frac{h}{2}, \mathbf{y}_n + \frac{h}{2}\mathbf{k}_1, \lambda\right),\tag{1.8}$$

$$\mathbf{k}_3 = \mathbf{f}\left(x_n + \frac{h}{2}, \mathbf{y}_n + \frac{h}{2}\mathbf{k}_2, \lambda\right),\tag{1.9}$$

$$\mathbf{k}_4 = \mathbf{f}\Big(x_n + h, \mathbf{y}_n + h\mathbf{k}_3, \lambda\Big),\tag{1.10}$$

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4).$$
 (1.11)

#### PASSO 4. Implementação do Método do Tiro - atirador.f90

#### SUBPASSO 4.1. Resolução do PVI

Agora resolvemos numericante o PVI (1.5), a saber,

$$\begin{cases} -(p(x)u'(x))' + (q(x) - \lambda r(x))u(x) = 0, & \forall x \in [a, b], \\ u(a) = -\frac{\beta}{\sqrt{\alpha^2 + \beta^2}}, & u'(a) = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}}. \end{cases}$$

Armazenamos a solução numérica y e sua derivada y' em um vetor de tamanho passos. Além disso, fazemos a "contabilidade" dos nós, ou seja, contamos quantas vezes a função  $y_1(x)$  muda de sinal no intervalo [a, b]. O sistema é integrado de x = a até x = b, contando as mudanças de sinal em  $y_1(x)$  (nós):

- Inicializamos nodes = 0, yprev = y\_1(a)
- Para cada passo/iteração do loop de integração:
  - Se  $y_1(x_{i+1})$  · yprev < 0, incremente nodes
  - Atualize  $y_{\text{prev}} = y_1(x_{i+1})$

Finalmente, calculamos o resíduo associado à condição de contorno em b:

$$F(\lambda) = \gamma y_1(b) + \delta \frac{y_2(b)}{p(b)} = \gamma y(b) + \delta y'(b)$$
(1.12)

#### PASSO 5. A marcha da busca por autovalores - espectro\_melhorado.f90

#### SUBPASSO 5.1. Varrendo valores de $\lambda$

O algoritmo varre valores de  $\lambda$  começando do 0 com um incremento  $\Delta\lambda$  adaptativo:

- $\Delta \lambda$  inicial é definido como 0.01.
- Após encontrar autovalores, refinamos  $\Delta \lambda = 0.01 \cdot (\lambda_n \lambda_{n-1})$

#### SUBPASSO 5.2. Detecção de candidatos a autovalores

Um candidato a autovalor é detectado quando acontece uma das seguintes condições:

- 1. Mudança de sinal em  $F(\lambda)$ :  $F(\lambda_{prev}) \cdot F(\lambda) < 0$
- 2. Incremento de nós:  $nodes(\lambda) > nodes(\lambda_{prev})$

#### PASSO 6. Bisseccção refinada - modulo\_bisseccao.f90

#### Resumo dos Métodos de Bissecção:

- Método 1: Bissecção por Sinal (bissec\_sig)
  - Utilizado quando a função  $F(\lambda)$  apresenta mudança de sinal no intervalo.
  - Realiza a bissecção padrão para encontrar a raiz de  $F(\lambda) = 0$ .
  - Opera com uma tolerância de  $10^{-12}$ .

#### Método 2: Bissecção por Nós (bissec\_nos)

- Empregado quando a contagem de nós aumenta em 1 no intervalo.
- Divide o intervalo para identificar onde ocorre a mudança na contagem de nós.
- Emite um aviso se a variação dos nós não for exatamente 1.

#### Método 3: Bissecção Robusta (bissec\_robusta)

- Avalia os dois extremos do intervalo para determinar a condição apropriada.
- Seleciona o método adequado (por sinal ou por contagem de nós) com base nas condições observadas.
- Se nenhum dos métodos anteriores se aplicar, utiliza o ponto médio como critério de bissecção.

#### PASSO 7. Validação de autovalores - espectro\_melhorado.f90

#### SUBPASSO 7.1. Verificação de critérios de validação

Cada candidato a autovalor  $\lambda_i$  é validado ao verificarmos que as duas condições abaixo são satisfeitas:

- 1.  $|F(\lambda)| < \varepsilon$  (resíduo aproximadamente nulo)
- 2.  $F(\lambda \varepsilon) \cdot F(\lambda + \varepsilon) < 0$  (mudança de sinal)

Candidatos que falhem essa validação são rejeitados como espúrios.

#### PASSO 8. Salvando a solução - solucao.f90

Para cada autovalor encontrado, calculamso a autofunção correspondente:

- Reintegramos o PVI de x = a a x = b usando o autovalor encontrado
- Salvamos os valores  $(x, y_1(x))$  nos arquivos solucao\_autovalor\_N.dat

#### 1.1 Usando o método de Newton-Raphson

Desenvolvemos também um programa que implementa o método de Newton-Raphson para encontrar os autovalores e autofunções correspondentes de um problema regular de Sturm-Liouville. Como a implementação nesse caso é muito mais simples, não explicaremos o passo a passo do programa agora. Em contraste com o algoritmo de marcha usando o método da bissecção que descrevemos acima, nesse caso só conseguimos encontrar um autovalor de cada vez, e precisamos de um bom chute inicial para cada autovalor que queremos encontrar.

Lembramos que Newton-Raphson atualiza o chute inicial via

$$\lambda_k^{(n+1)} = \lambda_k^{(n)} - \frac{F(\lambda_k^{(n)})}{F'(\lambda_k^{(n)})}.$$

onde  $F(\lambda)$  é o resíduo associado ao PVI (1.5) e  $F'(\lambda)$  é a derivada de F em relação a  $\lambda$ , que pode ser obtida resolvendo o PVI

$$\begin{cases} -(pw')' + (q - \lambda r)w = ru, & \forall x \in [a, b], \\ w(a) = 0, & w'(a) = 0. \end{cases}$$

De fato,

$$F'(\lambda) = \gamma w(b, \lambda) + \delta w'(b, \lambda)$$

#### 1.1 Resultados numéricos do método do atirador marchante

Exemplo (E.1.1). Testaremos a abordagem do atirador marchante com o problema de Sturm-Liouville regular mais simples que há, o problema de Dirichlet clássico:

$$\begin{cases} y'' + \lambda y = 0, \ \forall x \in [0, 1]; \\ y(0) = y(1) = 0. \end{cases}$$

Pela construção do método, devemos encontrar os autovalores  $\lambda_n = (n+1)^2 \pi^2$ , com as autofunções normalizadas correspondentes

$$y_n(x) = \frac{\text{sen}((n+1)\pi x)}{(n+1)\pi}, \quad n = 0, 1, 2, \dots$$

Note que a normalização se deve ao fato de estarmos resolvendo o PVI (1.5), i.e

$$\begin{cases} -(1 \cdot u'(x))' + (0 - \lambda \cdot 1)u(x) = 0, & \forall x \in [0, 1], \\ u(0) = 0, & u'(0) = 1. \end{cases}$$
 (1.13)

Segue abaixo uma tabela com os autovalores encontrados pelo programa, bem como o número de iterações da bissecção necessárias para encontrá-los. Devido a abordagem cuidadosa do método de

incrementar  $\lambda$  em passos muito pequenos, precisamos buscar por autovalores em milhares de intervalos, sendo a vasta maioria (na verdade, todos exceto um - o último) deles descartados.

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 9.86960440   | 987                 | 34                     |
| 1 | 39.47841760  | 3938                | 34                     |
| 2 | 88.82643961  | 4105                | 39                     |
| 3 | 157.91367042 | 4245                | 39                     |
| 4 | 246.74011003 | 4374                | 40                     |
| 5 | 355.30575844 | 4497                | 40                     |
| 6 | 483.61061565 | 4616                | 40                     |

Plotamos também as autofunções correspondentes  $y_n = \frac{\text{sen}((n+1)\pi x)}{(n+1)\pi}$  e as autofunções determinadas numericamente pelo programa. Conforme veremos abaixo, não há nenhuma diferença humanamente perceptível entre as autofunções determinadas numericamente pelo programa e as autofunções teóricas.



Figura 1.1: Autofunções exatas



Figura 1.2: Autofunções determinadas numericamente pelo programa

Exemplo (E.1.2). Vamos agora determinar numericamente os cinco primeiros autovalores e autofunções do problema de Sturm-Liouville regular

$$\begin{cases} y'' + \lambda y = 0, & 0 \le x \le 1, \\ y(0) = 0, & \\ y(1) + y'(1) = 0. & \end{cases}$$

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 4.11585837   | 412                 | 34                     |
| 1 | 24.13934203  | 2405                | 34                     |
| 2 | 63.65910655  | 2602                | 38                     |
| 3 | 122.88916176 | 2752                | 39                     |
| 4 | 201.85125830 | 2886                | 40                     |



Figura 1.3: Autofunções determinadas numericamente pelo programa



Figura 1.4: Gráficos das autofunções como mostrado no livro [2]

Exemplo (E.1.3). Vamos agora determinar numericamente os cinco primeiros autovalores e autofunções do problema de Sturm-Liouville regular

$$\begin{cases} -(1 \cdot u'(x))' + (x - \lambda \cos(x))u(x) = 0, & \forall x \in [0, 1], \\ u'(0) = 0, & u'(1) = 0. \end{cases}$$
 (1.14)

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 0.57824838   | 58                  | 34                     |
| 1 | 13.01659499  | 1292                | 34                     |
| 2 | 48.48917784  | 1577                | 37                     |
| 3 | 107.57497472 | 1744                | 39                     |
| 4 | 190.28375117 | 1884                | 40                     |



Figura 1.5: Autofunções determinadas numericamente pelo programa



Figura 1.6: Gráficos das autofunções como mostrado no livro [2]

#### 1.2 Problemas singulares de tipo 1

Ajustaremos agora a abordagem desenvolvida acima para lidar com problemas de Sturm-Liouville singulares, ou seja, problemas que não são regulares. Um problema de Sturm-Liouville singular de tipo 1 é um problema da forma:

$$\begin{cases}
-\left(p(x)y'\right)' + q(x)y = \lambda r(x)y, & a < x < b, \\
|y(a)| < \infty, & \\
\gamma y(b) + \delta y'(b) = 0, & |\gamma| + |\delta| \neq 0,
\end{cases}$$
(1.15)

onde agora

- (1)  $p(x) \ge 0$  é suave em [a, b], não nula em  $a < x \le b$ , e satisfaz p(a) = 0,  $p'(a) \ne 0$ .
- (2) q(x) é suave em [a, b].
- (3) p(x) e q(x) são funções reais,  $\gamma$  e  $\delta$  são constantes reais.
- (4) r(x) é suave em [a, b], valendo ou r(x) > 0 em [a, b] ou  $r(x) = (x a)^m \rho(x)$  onde m > 0 e  $\rho(x) > 0$  é suave em  $a \le x \le b$ .

Observemos agora que o fato de p se anular em a condena fatalmente a abordagem definida em (1.6), introduzindo uma divisão por zero em x = a. Para lidar com isso, começaremos a integrar a partir de  $a + \varepsilon$ ,  $\varepsilon$  sendo um número positivo pequeno. Evidentemente, também é necessário mudar o PVI que estamos resolvendo.

Como mostrado em [2], o PVI e normalização apropriado a ser resolvido é

$$\begin{cases} -(p(x)u'(x))' + (q(x) - \lambda r(x)) u(x) = 0, & a \le x \le b, \\ u(a) = 1, & u'(a) = \frac{q(a) - \lambda r(a)}{p'(a)}. \end{cases}$$

A condição de contorno em b permanece a mesma, ou seja,  $\gamma u(b) + \delta u'(b) = 0$ . Além disso, também é possível determinar  $F'(\lambda)$  via outro PVI, como veremos a seguir

<u>Teorema (T.1.2) (Teorema 190, [2]).</u> Se  $\lambda$  é um autovalor do problema de Sturm-Liouville (1.16), então  $F(\lambda) = 0$  e

$$F'(\lambda) = \gamma w(b, \lambda) + \delta w'(b, \lambda) \neq 0$$

 $onde \ w = w(x,\lambda) = \frac{\partial u(x,\lambda)}{\partial \lambda} \ e \ y = u(x,\lambda) \ \'e \ a \ autofunç\~ao \ normalizada \ correspondente.$ 

#### 1.3 Problemas singulares de tipo 2

Um problema de Sturm-Liouville singular de tipo 2 é um problema da forma:

$$\begin{cases}
-(p(x)y')' + q(x)y = \lambda r(x)y, & a < x < b, \\
|y(a)| < \infty, \\
\gamma y(b) + \delta y'(b) = 0, & |\gamma| + |\delta| \neq 0,
\end{cases}$$
(1.16)

onde agora

- (1)  $p(x) = (x a)\varphi(x)$ , onde  $\varphi > 0$  e suave em [a, b].
- (2)  $q(x) = \frac{q_1(x)}{x-a}$ , onde  $q_1$  assume valores reais e é suave em [a,b], além de satisfazer  $q_1(a) > 0$ .
- (3) r(x) é suave em [a, b],  $\gamma$  e  $\delta$  são constantes reais tais que  $\gamma \delta \geq 0$ .

Notemos que agora também vale p(a) = 0, e mais ainda, é possível que  $|q(x)| \to \infty$  conforme  $x \to a$ . Porém, ainda podemos utilizar a mesma abordagem para problemas singulares de tipo 1. Isso tornará as autofunções que encontrarmos não normalizadas como na convenção adotada em [2], o que evidentemente não é um grande problema, já que as mesmas irão se distinguir das normalizadas tão somente por um fator multiplicativo constante.

#### 1.4 Resultados numéricos do método do atirador marchante adaptado

Utilizaremos quase exatamente a mesma abordagem que usamos para problemas regulares, as única diferenças sendo que agora resolvemos outro PVI ao atirar e integramos de  $x = a + 10^{-6}$  até x = b.

Exemplo (E.1.4). Consideremos o problema de Sturm-Liouville singular de tipo 1

$$\begin{cases} -(xy')' = \lambda xy, & 0 < x < 1, \\ |y(0)| < \infty, & y(1) + y'(1) = 0. \end{cases}$$

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 1.57699273   | 158                 | 24                     |
| 1 | 16.64213839  | 1655                | 24                     |
| 2 | 51.20546183  | 1884                | 28                     |
| 3 | 105.49314030 | 2041                | 29                     |
| 4 | 179.51705520 | 2178                | 30                     |



Figura 1.7: Autofunções determinadas numericamente pelo programa



Figura 1.8: Gráficos das autofunções como mostrado no livro [2]

Exemplo (E.1.5). Consideremos o problema de Sturm-Liouville singular de tipo 1

$$\begin{cases} -((\sin x)y')' + xy = \lambda(\cos x)y, & 0 < x < 1, \\ |y(0)| < \infty, & y(1) = 0. \end{cases}$$

| n | $\lambda_n$ | Intervalos buscados | Iterações da bissecção |
|---|-------------|---------------------|------------------------|
| 0 | 1.63556063  | 164                 | 24                     |
| 1 | 8.31310754  | 822                 | 24                     |
| 2 | 20.27440115 | 1000                | 26                     |
| 3 | 37.55132388 | 1144                | 27                     |
| 4 | 60.14601837 | 1275                | 28                     |



Figura 1.9: Autofunções determinadas numericamente pelo programa



Figura 1.10: Gráficos das autofunções como mostrado no livro [2]

Exemplo (E.1.6). Consideremos o problema de Sturm-Liouville singular de tipo 1

$$\begin{cases} -(xy')' + \sin(\pi x) y = \lambda xy, & 0 < x < 1, \\ |y(0)| < \infty, & y'(1) = 0. \end{cases}$$

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 1.22123592   | 123                 | 24                     |
| 1 | 16.63599690  | 1655                | 24                     |
| 2 | 51.09474141  | 1878                | 28                     |
| 3 | 105.36250987 | 2036                | 29                     |
| 4 | 179.37909191 | 2173                | 30                     |



Figura 1.11: Autofunções determinadas numericamente pelo programa



Figura 1.12: Gráficos das autofunções como mostrado no livro [2]

Exemplo (E.1.7). Consideremos o problema de Sturm-Liouville singular de tipo 2

$$\begin{cases} -(xy')' + \frac{1}{x}y = \lambda xy, & 0 < x < 1, \\ |y(0)| < \infty, & y(1) + y'(1) = 0. \end{cases}$$

Numericamente, obtemos os seguintes autovalores:

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 5.78318596   | 579                 | 24                     |
| 1 | 30.47126234  | 3038                | 24                     |
| 2 | 74.88700679  | 3218                | 28                     |
| 3 | 139.04028443 | 3363                | 29                     |
| 4 | 222.93230362 | 3494                | 30                     |

É interessante observamos aqui que para encontrarmos os autovalores, precisamos baixar a tolerância do resíduo, F, de  $10^{-6}$  para  $10^{-3}$ , caso contrário o programa descarta autovalores verdadeiros como espúrios. Também foi necessário aumentar significativamente o número de passos de integração para determinarmos as autofunções, além de diminuirmos o valor de  $\varepsilon$  ao integramos partindo de  $x = a + \varepsilon$ .



Figura 1.13: Autofunções determinadas numericamente pelo programa



Figura 1.14: Gráficos das autofunções como mostrado no livro [2]

Exemplo (E.1.8). Consideremos o problema de Sturm-Liouville singular de tipo 2

$$\begin{cases} -(xy')' + \frac{\cos(x)}{4x}y = \lambda(\sin x)y, & 0 < x < 1, \\ |y(0)| < \infty, & y(1) = 0. \end{cases}$$

| n | $\lambda_n$  | Intervalos buscados | Iterações da bissecção |
|---|--------------|---------------------|------------------------|
| 0 | 10.21624703  | 1022                | 24                     |
| 1 | 41.53026555  | 4144                | 24                     |
| 2 | 93.72409193  | 4311                | 29                     |
| 3 | 166.79600338 | 4451                | 29                     |
| 4 | 260.74576040 | 4580                | 30                     |

Tabela 1.1: Resultados para o segundo conjunto de autovalores



Figura 1.15: Autofunções determinadas numericamente pelo programa



Figura 1.16: Gráficos das autofunções como mostrado no livro [2]

Exemplo (E.1.9). A equação de Legendre pode ser vista como um problema de Sturm-Liouville singular:

$$\begin{cases} -\frac{\mathrm{d}}{\mathrm{d}t} \left( (1 - t^2) \frac{\mathrm{d}P_n}{\mathrm{d}t} \right) = \lambda P_n, & \forall t \in [-1, 1], \\ P(-1) = (-1)^n, & P(1) = 1. \end{cases}$$

Sabe-se que os autovalores são dados por  $\lambda_n = n(n+1)$ . As autofunções correspondentes de n=0 até n=4 são dadas por

| n | Polinômio de Legendre                                     |
|---|-----------------------------------------------------------|
| 0 | 1                                                         |
| 1 | x                                                         |
| 2 | $\frac{1}{2}(3x^2 - 1)$                                   |
| 3 | $\frac{1}{2}(5x^3 - 3x)$ $\frac{1}{8}(35x^4 - 30x^2 + 3)$ |
| 4 | $\frac{1}{8}(35x^4 - 30x^2 + 3)$                          |

| n | $\lambda_n$ | Intervalos buscados | Iterações da bissecção |
|---|-------------|---------------------|------------------------|
| 0 | 0.00007518  | 1                   | 24                     |
| 1 | 2.00022555  | 192                 | 24                     |
| 2 | 6.00037594  | 387                 | 25                     |
| 3 | 12.00052635 | 535                 | 26                     |
| 4 | 20.00067675 | 667                 | 26                     |



Figura 1.17: Autofunções determinadas numericamente pelo programa



Figura 1.18: Gráficos dos polinômios de Legendre exatos

Observamos que os polinômios de grau ímpar determinados numericamente diferem pela constante multiplicativa -1 dos polinômios de Legendre exatos correspondentes, o que é esperado, já que os polinômios de Legendre satisfazem  $P_n(-1) = (-1)^n$  e  $P_n(1) = 1$ , enquanto que no nosso programa forçamos  $P_n(1) = 1$  sempre.

#### 1.5 Resultados numéricos do método de Newton-Raphson

Como mencionamos anteriormente, a abordagem marchante usando o método da bissecção enfrenta grandes dificuldades para ser adaptada com o método de Newton-Raphson. No programa que desenvolvemos, implementamos o método de Newton-Raphson para encontrar um autovalor por vez, com um palpite inicial bom. A implementação é bem mais simples que a do método do atirador marchante, mas não consegue sistematicamente determinar o espectro como anteriormente.

Exemplo (E.1.10). Para o problema

$$\begin{cases} -(1 \cdot u'(x))' + (x - \lambda \cos(x))u(x) = 0, & \forall x \in [0, 1], \\ u'(0) = 0, & u'(1) = 0. \end{cases}$$
 (1.17)

e com o chute inicial  $\lambda_0 = 0$ , Newton-Raphson convergiu em somente 4 iterações:

| Iteração | λ                   | $F(\lambda)$                |
|----------|---------------------|-----------------------------|
| 1        | 0.53761681266555983 | -0.53403483428546394        |
| 2        | 0.57802783474609609 | -0.034945050888573075       |
| 3        | 0.57824837086275171 | -0.00018864919931886801     |
| 4        | 0.57824837740937718 | -0.000000055997283388719053 |

Já com o chute inicial  $\lambda_0=140,$  Newton-Raphson convergiu em 5 iterações:

| Iteração | λ                  | $F(\lambda)$             |
|----------|--------------------|--------------------------|
| 1        | 60.773415429648637 | -9.8908269771386994      |
| 2        | 46.353458505247033 | 4.6605507929687588       |
| 3        | 48.528804125931671 | -0.83760614199634920     |
| 4        | 48.489185568458076 | 0.015769242002305423     |
| 5        | 48.489177842533614 | 0.0000030739212154774114 |

É um pouco surpreendente que o chute inicial  $\lambda_0=140,$  mais próximo ao autovalor teórico

$$\lambda_3 = 107.57497472$$

tenha convergido para  $\lambda_2$  ao invés de  $\lambda_3.$ 

### Bibliografia

- [1] Kac, Marc. "Can One Hear the Shape of a Drum?". The American Mathematical Monthly, vol. 73, no. 4, 1966, pp. 1–23. JSTOR, https://doi.org/10.2307/2313748.
- [2] Guenther, R.B; Lee, J.W. (2019) Sturm-Liouville problems: Theory and numerical implementation., Boca Raton: CRC Press, Taylor & Francis Group.
- [3] https://math.stackexchange.com/questions/1915313/what-is-the-motivation-for-the-equation-of-the-sturm-liouville-problem.
- [4] https://math.stackexchange.com/questions/2268037/can-sturm-liouville-theory-actually-solve-odes.
- $[5] \ https://physics.stackexchange.com/questions/176041/the-sturm-liouville-equations-the-schrodinger-equation-and-the-wave-equation.$
- [6] https://github.com/SaganGromov/SL\_REGULAR\_EXEMPLOS.
- [7] https://github.com/SaganGromov/SL\_SINGULAR\_EXEMPLOS.
- [8] https://github.com/SaganGromov/SL\_NEWTON\_RAPHSON.