homework12

Homework 12

yc3356 Yi Chen

1. Review the following case study, focusing on the model:

http://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html#data-lynx-and-hare-pelts-in-canada (http://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html#data-lynx-and-hare-pelts-in-canada)

```
# load the packages
library(rstan)
## Loading required package: ggplot2
## Loading required package: StanHeaders
## rstan (Version 2.18.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan options(auto write = TRUE)
library(ggplot2)
library(gridExtra)
library(knitr)
library(reshape)
library(tufte)
library(bayesplot)
## This is bayesplot version 1.6.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme default()
##
      * Does not affect other ggplot2 plots
##
      * See ?bayesplot theme set for details on theme setting
```

```
library(deSolve)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)
```

a. Simulate fake data and check that the model recovers the parameters. Feel free to simplify the model as necessary.

```
# simulate the fake data based on the machanistic model

set.seed(123)
LotVmod <- function (Time, State, Pars) {
    with(as.list(c(State, Pars)), {
        dx = x*(alpha - beta*y)
        dy = -y*(gamma - delta*x)
        return(list(c(dx, dy)))})
}

Pars <- c(alpha = rnorm(1,1,0.5), beta = rnorm(1,0.05, 0.05), gamma = rnorm(1,1,0.5), de
lta = rnorm(1,0.05, 0.05))
State <- c(x = 100, y = 24)
Time <- seq(0, 20, by = 1)
out <- as.data.frame(ode(func = LotVmod, y = State, parms = Pars, times = Time))

matplot(out[,-1], type = "l", xlab = "time", ylab = "population")
legend("topright", c("Predator", "Prey"), lty = c(1,2), col = c(1,2), box.lwd = 0)</pre>
```


writeLines(readLines("lotka-volterra.stan"))

Warning in readLines("lotka-volterra.stan"): incomplete final line found on
'lotka-volterra.stan'

```
## functions {
     real[] dz_dt(real t,
##
                                 // time
##
                                // system state {prey, predator}
                  real[] z,
##
                  real[] theta, // parameters
##
                  real[] x r,
                                // unused data
##
                  int[] x_i) {
##
       real u = z[1];
##
       real v = z[2];
##
##
       real alpha = theta[1];
##
       real beta = theta[2];
##
       real gamma = theta[3];
##
       real delta = theta[4];
##
##
       real du_dt = (alpha - beta * v) * u;
##
       real dv_dt = (-gamma + delta * u) * v;
##
       return { du_dt, dv_dt };
##
     }
## }
## data {
                                 // number of measurement times
##
     int<lower = 0> N;
                                  // measurement times > 0
##
     real ts[N];
##
     real y_init[2];
                                 // initial measured populations
##
     real<lower = 0 > y[N, 2];
                               // measured populations
## }
## parameters {
##
     real<lower = 0> theta[4]; // { alpha, beta, gamma, delta }
##
     real<lower = 0> z init[2]; // initial population
     real<lower = 0> sigma[2];  // measurement errors
##
## }
## transformed parameters {
##
     real z[N, 2]
##
       = integrate ode rk45(dz dt, z init, 0, ts, theta,
##
                             rep_array(0.0, 0), rep_array(0, 0),
##
                             1e-5, 1e-3, 5e2);
## }
## model {
##
     theta[\{1, 3\}] ~ normal(1, 0.5);
##
    theta[\{2, 4\}] ~ normal(0.05, 0.05);
##
     sigma ~ lognormal(-1, 1);
     z init ~ lognormal(log(10), 1);
##
##
     for (k in 1:2) {
##
       y_init[k] ~ lognormal(log(z_init[k]), sigma[k]);
##
       y[, k] \sim lognormal(log(z[, k]), sigma[k]);
##
     }
## }
## generated quantities {
##
     real y init rep[2];
##
     real y rep[N, 2];
##
     for (k in 1:2) {
##
       y_init_rep[k] = lognormal_rng(log(z_init[k]), sigma[k]);
##
       for (n in 1:N)
##
         y_rep[n, k] = lognormal_rng(log(z[n, k]), sigma[k]);
```

```
## }
## }
```

```
set.seed(123)
y <- out[,c('x','y')]
fake_data <- list(N=nrow(out), ts = 1:nrow(out), y_init = c(out$x[1],out$y[2]), y=y)
comp_model_f <- stan_model('lotka-volterra.stan')</pre>
```

```
## Warning in readLines(file, warn = TRUE): incomplete final line found on '/
## Users/yi/Desktop/study/subjects/bayesian-data-analysis/homework/homework17/
## lotka-volterra.stan'
```

```
fit_model_f <- sampling(comp_model_f, data = fake_data, seed = 123)
fit_model_f</pre>
```

```
## Inference for Stan model: lotka-volterra.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                     mean se mean
                                        sd
                                            2.5%
                                                     25%
                                                             50%
                                                                     75%
                                                                          97.5%
## theta[1]
                     0.80
                              0.00
                                      0.04
                                            0.73
                                                    0.77
                                                            0.80
                                                                    0.82
                                                                           0.88
                     0.05
                              0.00
                                      0.01
                                            0.03
                                                    0.04
                                                            0.05
                                                                    0.06
                                                                           0.08
##
  theta[2]
## theta[3]
                     1.46
                              0.00
                                      0.11
                                            1.25
                                                    1.39
                                                            1.46
                                                                    1.54
                                                                           1.69
## theta[4]
                     0.04
                              0.00
                                      0.00
                                            0.04
                                                    0.04
                                                            0.04
                                                                    0.04
                                                                           0.05
## z_init[1]
                    73.49
                              0.09
                                      3.62 66.81
                                                   70.98
                                                           73.32
                                                                  75.74
                                                                          81.12
                     2.61
                                      0.53
                                            1.74
                                                    2.24
                                                            2.56
                                                                    2.93
                                                                           3.82
## z init[2]
                              0.01
                                      0.02
                                            0.07
                                                    0.09
## sigma[1]
                     0.10
                              0.00
                                                            0.10
                                                                    0.11
                                                                           0.14
## sigma[2]
                     0.82
                              0.00
                                      0.13
                                            0.62
                                                    0.73
                                                            0.80
                                                                    0.89
                                                                           1.12
## z[1,1]
                    95.34
                              0.10
                                      5.76 83.96
                                                   91.55
                                                           95.39
                                                                  99.24 106.92
## z[1,2]
                    32.91
                              0.15
                                      6.98 21.84
                                                   27.99
                                                           31.99
                                                                  36.93
                                                                          49.38
## z[2,1]
                    12.83
                              0.02
                                      0.94 10.99
                                                   12.21
                                                           12.81
                                                                  13.44
                                                                          14.68
                                    13.24 33.37
                                                   44.54
## z[2,2]
                    53.71
                              0.35
                                                           51.62
                                                                  60.92
                                                                          84.42
## z[3,1]
                     5.95
                              0.00
                                     0.21
                                            5.54
                                                    5.80
                                                            5.94
                                                                    6.08
                                                                           6.37
                    17.09
                                      3.21 11.79
                                                           16.70
## z[3,2]
                              0.07
                                                   14.84
                                                                  18.99
                                                                          24.32
                     8.16
                              0.01
                                      0.33
                                            7.54
                                                    7.94
                                                            8.15
                                                                    8.37
                                                                           8.84
## z[4,1]
                                            3.74
                                                            5.17
                                                                           7.22
                     5.24
                              0.02
                                      0.88
                                                    4.63
                                                                    5.77
## z[4,2]
                    15.48
                                                                          16.59
## z[5,1]
                              0.01
                                      0.55 14.43
                                                   15.11
                                                           15.46
                                                                  15.83
## z[5,2]
                     1.97
                              0.01
                                      0.36
                                            1.37
                                                    1.72
                                                            1.93
                                                                    2.17
                                                                           2.79
                    32.03
                              0.02
                                      0.99 30.12
                                                   31.35
                                                           32.00
                                                                  32.67
                                                                          34.02
\#\# z[6,1]
## z[6,2]
                     1.20
                              0.01
                                      0.24
                                            0.81
                                                    1.03
                                                            1.18
                                                                    1.34
                                                                           1.76
                    66.46
                              0.07
                                     2.65 61.47
                                                   64.71
                                                           66.35
                                                                  68.17
                                                                          71.85
## z[7,1]
                     2.09
                              0.01
                                     0.41
                                            1.42
                                                    1.80
                                                            2.04
                                                                    2.33
                                                                           3.03
## z[7,2]
## z[8,1]
                   102.93
                              0.07
                                      4.72 93.49
                                                   99.85 102.89 105.97 112.64
## z[8,2]
                    21.76
                              0.08
                                      3.93 15.24
                                                   18.99
                                                           21.34
                                                                  24.08
                                                                          30.49
                    16.98
                                      0.92 15.18
                                                           16.97
## z[9,1]
                              0.02
                                                   16.37
                                                                  17.56
                                                                          18.80
## z[9,2]
                    60.81
                              0.41
                                    15.34 37.28
                                                   50.09
                                                           58.50
                                                                  69.18
                                                                          96.41
                     6.03
                              0.00
                                      0.23
                                            5.60
                                                    5.88
                                                            6.03
## z[10,1]
                                                                    6.18
                                                                           6.49
## z[10,2]
                    20.41
                              0.09
                                      3.88 14.02
                                                   17.70
                                                           19.95
                                                                  22.69
                                                                          29.26
                     7.56
                              0.01
                                     0.28
                                            7.04
                                                    7.38
                                                            7.55
                                                                    7.73
                                                                           8.14
## z[11,1]
                              0.02
                                     1.02
                                            4.45
                                                    5.46
                                                            6.09
                                                                    6.78
                                                                           8.40
## z[11,2]
                     6.18
                    13.97
                              0.01
                                      0.45 13.09
## z[12,1]
                                                   13.68
                                                           13.97
                                                                  14.26
                                                                          14.87
                                            1.56
                                                    1.95
                                                            2.18
## z[12,2]
                     2.22
                              0.01
                                      0.40
                                                                    2.45
                                                                           3.11
## z[13,1]
                    28.74
                              0.01
                                      0.76 27.25
                                                   28.23
                                                           28.73
                                                                  29.23
                                                                          30.27
                                            0.83
                                                                    1.37
## z[13,2]
                     1.23
                              0.01
                                      0.24
                                                    1.06
                                                            1.21
                                                                           1.80
## z[14,1]
                    59.93
                              0.05
                                      2.19 55.82
                                                   58.47
                                                           59.83
                                                                  61.35
                                                                          64.49
                     1.74
                                      0.34
                                            1.18
                                                    1.51
                                                            1.71
                                                                    1.94
## z[14,2]
                              0.01
                                                                           2.56
                                      4.33 95.52 100.98 103.83 106.59 112.62
## z[15,1]
                   103.84
                              0.08
## z[15,2]
                    14.11
                              0.05
                                     2.59
                                            9.76
                                                   12.28
                                                           13.86
                                                                  15.67
                                                                          19.99
                                                   22.35
                                      1.83 20.23
                                                                  24.73
## z[16,1]
                    23.60
                              0.03
                                                           23.48
                                                                          27.47
                    66.55
                              0.46
                                    17.13 40.27
                                                   54.60
                                                           63.95
                                                                  75.63 106.76
## z[16,2]
                                      0.26
                                            5.79
                                                    6.12
                                                            6.28
## z[17,1]
                     6.29
                              0.00
                                                                    6.45
                                                                           6.81
                    24.37
                                      4.85 16.39
                                                                          35.17
## z[17,2]
                              0.11
                                                   20.99
                                                           23.80
                                                                  27.10
## z[18,1]
                     7.06
                              0.01
                                      0.26
                                            6.55
                                                    6.89
                                                            7.06
                                                                    7.23
                                                                           7.59
## z[18,2]
                     7.32
                              0.02
                                      1.23
                                            5.24
                                                    6.47
                                                            7.20
                                                                    8.06
                                                                          10.05
                    12.65
                                     0.48 11.71
## z[19,1]
                              0.01
                                                   12.33
                                                           12.65
                                                                  12.96
                                                                          13.60
## z[19,2]
                     2.53
                              0.01
                                     0.45
                                            1.77
                                                    2.22
                                                            2.50
                                                                    2.80
                                                                           3.54
                    25.80
                              0.01
                                      0.90 23.99
                                                   25.22
                                                           25.80
                                                                          27.59
## z[20,1]
                                                                  26.39
## z[20,2]
                     1.29
                              0.01
                                      0.25
                                            0.87
                                                    1.11
                                                            1.26
                                                                    1.43
                                                                           1.87
```

-						nome wor	K12		
	## z[21,1]	53.95	0.04	2.28	49.67	52.40	53.88	55.46	58.50
	## z[21,2]	1.52	0.01	0.31	1.02	1.31	1.48	1.69	2.24
	## y_init_rep[1]	73.78	0.15	8.37	59.02	68.05	73.23	78.88	91.84
	## y_init_rep[2]	3.68	0.07	4.36	0.44	1.48	2.57	4.31	13.89
	## y_rep[1,1]	95.75	0.20	11.53	74.96	87.97	95.10	102.86	120.67
	## y_rep[1,2]	46.64	1.00	62.00	5.90	18.19	32.39	56.21	166.29
	## y_rep[2,1]	12.92	0.03	1.60	10.00	11.84	12.85	13.90	16.29
	## y_rep[2,2]	76.28	1.46	88.91	9.04	29.71	51.46	92.60	280.44
	## y_rep[3,1]	5.99	0.01	0.65	4.78	5.57	5.95	6.38	7.39
		24.11	0.44	27.96	3.19	9.60	16.47	28.61	91.99
	## y_rep[4,1]	8.20	0.01	0.88		7.60	8.15	8.76	10.08
		7.15	0.13	7.68	0.98	2.93	4.99	8.67	25.15
		15.58	0.03	1.67	12.59	14.45	15.50	16.62	19.20
		2.78	0.06						
	## y_rep[6,1]	32.18		3.34					
		1.68	0.03		0.22				
	· · ·	66.85	0.13		53.53				
	-	2.95	0.05	3.17		1.19	2.06		
		103.24	0.18		82.07		102.70		
	-	30.92	0.56	34.93		12.33			108.51
	l		0.03		13.52				
	## y_rep[9,2]			124.49				103.46	
	## y_rep[10,1]		0.01	0.66				6.45	
	## y_rep[10,2]		0.48	29.90			19.83		102.07
	-	7.60	0.01	0.82		7.05			
	## y_rep[11,2]		0.15	9.02			6.10		
	## y_rep[12,1]		0.02		11.27		13.92		
	-	3.12	0.06		0.42	1.24	2.16		
	## y_rep[13,1]		0.05	2.99					
	## y_rep[13,1]					0.72			
	## y_rep[14,1]		0.11	6.44					
			0.05	2.96			1.72		
	## y_rep[15,1] ## y_rep[15,2]								
	-						23.56		30.48
	## y_rep[16,1] ## y_rep[16,2]								
	## y_rep[10,2]			0.69			6.29		
	## y_rep[17,1] ## y_rep[17,2]		0.65						122.64
	## y_rep[17,2] ## y_rep[18,1]						7.04		
	## y_rep[18,1] ## y_rep[18,2]		0.01				7.12		
	## y_rep[10,2] ## y rep[19,1]				10.27		12.65		
	## y_rep[19,1] ## y rep[19,2]								
	· · ·			2.74					
	## y_rep[20,1]						25.78		
	## y_rep[20,2]								
	## y_rep[21,1]								
	## y_rep[21,2]						1.48		
	## lp			2.14	18.40	22.25	23.77	25.02	26.63
		n_eff Rh							
	## theta[1]		1						
	## theta[2]	1448							
	## theta[3]	1003							
	## theta[4]	995							
	## z_init[1]								
	## z_init[2]	2130	1						
-									

25/2018		
## sigma[1]	2301	1
## sigma[2]	2787	1
## z[1,1]	3630	1
## z[1,2]	2164	1
## z[2,1]	3268	1
## z[2,2]	1438	1
## z[3,1]	3998	1
## z[3,2]	2104	1
## z[4,1]	2487	1
## Z[4,1]	2889	1
## z[5,1]	2943	1
## z[5,2]	2389	1
## z[6,1]	2858	1
## z[6,2]	2060	1
## z[7,1]	1536	1
## z[7,2]	2145	1
## z[8,1]	4321	1
## z[8,2]	2327	1
## z[9,1]	3217	1
## z[9,2]	1415	1
## z[10,1]	3637	1
## z[10,2]	1955	1
## z[11,1]	2293	1
## z[11,2]	2748	1
## z[12,1]	2185	1
## z[12,2]	2373	1
## z[13,1]	4119	1
## z[13,2]	2060	1
## z[14,1]	1827	1
## z[14,2]	2207	1
## z[15,1]	3168	1
## z[15,2]	2776	1
## z[16,1]	4047	1
## z[16,2]	1408	1
## z[17,1]	3078	1
## z[17,2]	1885	1
## Z[17,Z] ## Z[18,1]	2424	1
## z[18,1]	2640	1
## z[19,1]	2290	1
## Z[19,1] ## Z[19,2]		1
	2376	
## z[20,1]	4455	1
## z[20,2]	2049	1
## z[21,1]	2784	1
## z[21,2]	2253	1
## y_init_rep[1]		1
## y_init_rep[2]		1
## y_rep[1,1]	3462	1
## y_rep[1,2]	3835	1
## y_rep[2,1]	3614	1
## y_rep[2,2]	3693	1
## y_rep[3,1]	3999	1
## y_rep[3,2]	3956	1
## y_rep[4,1]	3894	1
## y_rep[4,2]	3692	1

```
## y_rep[5,1]
                  3643
                          1
## y_rep[5,2]
                  3846
                          1
## y_rep[6,1]
                  3525
                          1
## y_rep[6,2]
                  3669
                          1
## y rep[7,1]
                  3129
                          1
## y_rep[7,2]
                  3459
                          1
## y_rep[8,1]
                  4019
                  3884
## y_rep[8,2]
                          1
## y_rep[9,1]
                  3929
                          1
## y_rep[9,2]
                  3897
                          1
                  4236
## y_rep[10,1]
                          1
## y_rep[10,2]
                  3855
                          1
## y_rep[11,1]
                  3758
                          1
## y_rep[11,2]
                  3736
                           1
## y_rep[12,1]
                  3767
                          1
## y_rep[12,2]
                  3566
                          1
## y_rep[13,1]
                  4145
                          1
## y_rep[13,2]
                  3909
                          1
                          1
## y_rep[14,1]
                  3155
## y_rep[14,2]
                  3853
                          1
                  3999
## y_rep[15,1]
                          1
## y_rep[15,2]
                  3717
                          1
                           1
## y_rep[16,1]
                  4235
## y_rep[16,2]
                  3871
                          1
## y_rep[17,1]
                  3954
                          1
## y_rep[17,2]
                  3588
                          1
                  3077
                          1
## y rep[18,1]
## y_rep[18,2]
                  3871
                          1
                  4094
## y rep[19,1]
                          1
## y rep[19,2]
                  3563
                          1
## y_rep[20,1]
                  3888
                          1
## y rep[20,2]
                  3614
                          1
## y_rep[21,1]
                  3837
                          1
## y_rep[21,2]
                  4012
                          1
## lp__
                  1201
                           1
##
## Samples were drawn using NUTS(diag e) at Sun Nov 25 18:27:23 2018.
## For each parameter, n eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

```
posterior_alpha_beta <- as.matrix(as.matrix(fit_model_f, pars = c('theta','z_init')))
true_alpha_beta <- c(Pars,c(out$x[1],out$y[2]))
mcmc_recover_hist(posterior_alpha_beta, true = true_alpha_beta)</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


For my fake data:

The inite value did not cover very well. But the most the thetas can cover in the posterior thetas. The Rhat of all the parameters works very well.

b. In two or three sentences, discuss the strengths and weaknesses of the model. How might the model be expanded?

The model works very well. Here are just some extension I will try in this model: The model assume that the population is only depend on the Predator-Prey Population. No other systematic effect exist. However, this may not true make the sigma term not the real normal. I will try to add a offset term to measure all the other effects.

2.

a. Fit the model to the real data and perform model checking and/or validation (Chapters 6 and 7 of BDA).

```
lynx_hare_df <- read.csv("hudson-bay-lynx-hare.csv",comment.char="#")
N <- length(lynx_hare_df$Year) - 1
ts <- 1:N
y_init <- c(lynx_hare_df$Hare[1], lynx_hare_df$Lynx[1])
y <- as.matrix(lynx_hare_df[2:(N + 1), 2:3])
y <- cbind(y[ , 2], y[ , 1]); # hare, lynx order
lynx_hare_data <- list(N, ts, y_init, y)
model <- stan_model("lotka-volterra.stan")</pre>
```

```
## Warning in readLines(file, warn = TRUE): incomplete final line found on '/
## Users/yi/Desktop/study/subjects/bayesian-data-analysis/homework/homework17/
## lotka-volterra.stan'
```

```
fit <- sampling(model, data = lynx_hare_data, seed = 123)
print(fit, pars=c("theta", "sigma", "z_init"), probs=c(0.1, 0.5, 0.9), digits = 3)</pre>
```

```
## Inference for Stan model: lotka-volterra.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                    10%
                                           50%
                                                  90% n eff Rhat
              mean se mean
                              sd
## theta[1]
             0.545
                     0.002 0.064 0.465
                                         0.542 0.630 1076 1.002
                     0.000 0.004 0.022
## theta[2]
             0.028
                                         0.027 0.033 1195 1.001
                     0.003 0.092 0.692
## theta[3]
             0.803
                                         0.797 0.926
                                                      993 1.002
                     0.000 0.004 0.020
## theta[4]
             0.024
                                         0.024 0.029 1062 1.001
## sigma[1]
             0.250
                     0.001 0.045 0.200
                                         0.243 0.307
                                                       2537 1.001
## sigma[2]
             0.252
                     0.001 0.044 0.200 0.245 0.309
                                                      2692 1.000
## z init[1] 33.956
                     0.057 2.856 30.415 33.908 37.630
                                                       2474 1.000
## z_init[2]
             5.933
                     0.012 0.535 5.273 5.912 6.614
                                                       2095 1.002
##
## Samples were drawn using NUTS(diag_e) at Sun Nov 25 18:28:01 2018.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

```
y_rep_1 <- as.matrix(as.matrix(fit, pars = "y_rep")[1:200,1:20])
y_rep_2 <- as.matrix(as.matrix(fit, pars = "y_rep")[1:200,21:40])

ppc_dens_overlay(y = y[,1], yrep = y_rep_1)</pre>
```


ppc_dens_overlay(y = y[,2], yrep = y_rep_2)


```
mean_y_rep_1 <- colMeans(y_rep_1)
std_resid <- (y[,1] - mean_y_rep_1) / sqrt(mean_y_rep_1)
qplot(mean_y_rep_1, std_resid) + hline_at(2) + hline_at(-2)</pre>
```



```
mean_y_rep_2 <- colMeans(y_rep_2)
std_resid <- (y[,2] - mean_y_rep_2) / sqrt(mean_y_rep_2)
qplot(mean_y_rep_2, std_resid) + hline_at(2) + hline_at(-2)</pre>
```


b. Expand the model as discussed in 1.b./class and interpret the results.

```
## for the fake data
set.seed(123)
y <- out[,c('x','y')]
fake_data <- list(N=nrow(out), ts = 1:nrow(out), y_init = c(out$x[1],out$y[2]), y=y)
comp_model_f <- stan_model('model_extend.stan')</pre>
```

```
## Warning in readLines(file, warn = TRUE): incomplete final line found on '/
## Users/yi/Desktop/study/subjects/bayesian-data-analysis/homework/homework17/
## model_extend.stan'
```

hash mismatch so recompiling; make sure Stan code ends with a blank line

```
fit_model_f <- sampling(comp_model_f, data = fake_data, seed = 1234)</pre>
```

```
## Warning in validityMethod(object): The following variables have undefined
## values: y init rep[1], The following variables have undefined values:
## y_init_rep[2], The following variables have undefined values: y_rep[1,1], The
## following variables have undefined values: y rep[2,1], The following
## variables have undefined values: y rep[3,1], The following variables have
## undefined values: y_rep[4,1], The following variables have undefined values:
## y rep[5,1], The following variables have undefined values: y rep[6,1], The
## following variables have undefined values: y_rep[7,1], The following
## variables have undefined values: y_rep[8,1], The following variables have
## undefined values: y_rep[9,1], The following variables have undefined values:
## y rep[10,1], The following variables have undefined values: y rep[11,1], The
## following variables have undefined values: y_rep[12,1], The following
## variables have undefined values: y rep[13,1], The following variables
## have undefined values: y rep[14,1], The following variables have undefined
## values: y rep[15,1], The following variables have undefined values:
## y rep[16,1], The following variables have undefined values: y rep[17,1], The
## following variables have undefined values: y_rep[18,1], The following
## variables have undefined values: y_rep[19,1], The following variables
## have undefined values: y_rep[20,1], The following variables have undefined
## values: y rep[21,1], The following variables have undefined values:
## y_rep[1,2], The following variables have undefined values: y_rep[2,2], The
## following variables have undefined values: y rep[3,2], The following
## variables have undefined values: y rep[4,2], The following variables have
## undefined values: y rep[5,2], The following variables have undefined values:
## y_rep[6,2],The following variables have undefined values: y_rep[7,2],The
## following variables have undefined values: y rep[8,2], The following
## variables have undefined values: y rep[9,2], The following variables have
## undefined values: y rep[10,2], The following variables have undefined
## values: y rep[11,2], The following variables have undefined values:
## y rep[12,2], The following variables have undefined values: y rep[13,2], The
## following variables have undefined values: y rep[14,2], The following
## variables have undefined values: y_rep[15,2], The following variables
## have undefined values: y rep[16,2], The following variables have undefined
## values: y rep[17,2], The following variables have undefined values:
## y rep[18,2], The following variables have undefined values: y rep[19,2], The
## following variables have undefined values: y rep[20,2], The following
## variables have undefined values: y rep[21,2]. Many subsequent functions
## will not work correctly.
```

```
## Warning: There were 1496 divergent transitions after warmup. Increasing adapt_delta a
bove 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
```

```
## Warning: There were 517 transitions after warmup that exceeded the maximum treedepth.
Increase max_treedepth above 10. See
## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
```

Warning: Examine the pairs() plot to diagnose sampling problems

```
posterior_alpha_beta <- as.matrix(as.matrix(fit_model_f, pars = c('theta','z_init')))
true_alpha_beta <- c(Pars,c(out$x[1],out$y[2]))
mcmc_recover_hist(posterior_alpha_beta, true = true_alpha_beta)</pre>
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


writeLines(readLines("model_extend.stan"))

Warning in readLines("model_extend.stan"): incomplete final line found on
'model extend.stan'

```
## functions {
     real[] dz_dt(real t,
                                 // time
##
##
                                 // system state {prey, predator}
                  real[] z,
##
                  real[] theta, // parameters
##
                  real[] x r,
                                // unused data
##
                  int[] x_i) {
##
       real u = z[1];
##
       real v = z[2];
##
##
       real alpha = theta[1];
##
       real beta = theta[2];
##
       real gamma = theta[3];
##
       real delta = theta[4];
##
##
       real du dt = (alpha - beta * v) * u;
##
       real dv_dt = (-gamma + delta * u) * v;
##
       return { du_dt, dv_dt };
##
     }
## }
## data {
##
                                  // number of measurement times
     int<lower = 0> N;
                                  // measurement times > 0
##
     real ts[N];
##
                                  // initial measured populations
     real y_init[2];
##
     real<lower = 0 > y[N, 2];
                                 // measured populations
## }
## parameters {
##
    real<lower = 0> theta[4]; // { alpha, beta, gamma, delta }
##
    real<lower = 0> z init[2]; // initial population
     real<lower = 0> sigma[2]; // measurement errors
##
##
     vector[N] offset;
## }
## transformed parameters {
##
     real z[N, 2]
##
       = integrate_ode_rk45(dz_dt, z_init, 0, ts, theta,
##
                             rep array(0.0, 0), rep array(0, 0),
##
                             1e-5, 1e-3, 5e2);
##
     for (k in 1:2) {
##
       for (n in 1:N) {
##
               z[N, 2] = z[N, 2] + offset[n];
##
##
     }
## }
## model {
     theta[\{1, 3\}] ~ normal(1, 0.5);
##
##
    theta[\{2, 4\}] ~ normal(0.05, 0.05);
     sigma ~ lognormal(-1, 1);
##
##
     z init ~ lognormal(log(10), 1);
##
    offset \sim cauchy(0,1);
##
     for (k in 1:2) {
##
       y init[k] ~ lognormal(log(z init[k]), sigma[k]);
##
       y[, k] \sim lognormal(log(z[, k]), sigma[k]);
##
     }
## }
```

```
## generated quantities {
##
     real y_init_rep[2];
##
     real y_rep[N, 2];
##
##
     for (k in 1:2) {
##
       y_init_rep[k] = lognormal_rng(log(z_init[k]) , sigma[k]);
##
       for (n in 1:N)
##
         y_rep[n, k] = lognormal_rng(log(z[n, k]), sigma[k]);
##
     }
## }
```

```
lynx_hare_df <- read.csv("hudson-bay-lynx-hare.csv",comment.char="#")
N <- length(lynx_hare_df$Year) - 1
ts <- 1:N
y_init <- c(lynx_hare_df$Hare[1], lynx_hare_df$Lynx[1])
y <- as.matrix(lynx_hare_df[2:(N + 1), 2:3])
y <- cbind(y[ , 2], y[ , 1]) # hare, lynx order
lynx_hare_data <- list(N, ts, y_init, y)
model <- stan_model("model_extend.stan")</pre>
```

```
## Warning in readLines(file, warn = TRUE): incomplete final line found on '/
## Users/yi/Desktop/study/subjects/bayesian-data-analysis/homework/homework17/
## model_extend.stan'
```

```
fit <- sampling(model, data = lynx_hare_data, seed = 123)</pre>
```

```
## Warning: There were 43 divergent transitions after warmup. Increasing adapt_delta abo
ve 0.8 may help. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
```

```
## Warning: There were 7 transitions after warmup that exceeded the maximum treedepth. I
ncrease max_treedepth above 10. See
## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded
```

Warning: Examine the pairs() plot to diagnose sampling problems

```
print(fit, digits = 3)
```

```
## Inference for Stan model: model_extend.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                    mean se mean
                                       sd
                                             2.5%
                                                      25%
                                                              50%
                                                                     75%
                                                                            97.5%
## theta[1]
                   0.533
                            0.001
                                   0.060
                                            0.420
                                                    0.493
                                                           0.530
                                                                   0.571
                                                                            0.660
                   0.027
                            0.000
                                   0.004
                                            0.020
                                                    0.024
                                                           0.027
                                                                   0.029
                                                                            0.036
## theta[2]
## theta[3]
                   0.823
                            0.002
                                   0.091
                                            0.661
                                                    0.763
                                                           0.817
                                                                   0.878
                                                                            1.025
## theta[4]
                   0.025
                            0.000
                                   0.004
                                            0.019
                                                    0.022
                                                           0.024
                                                                   0.027
                                                                            0.033
## z_init[1]
                  34.234
                            0.047
                                   2.825
                                           28.877 32.298 34.197 36.090
                                                                           39.867
                            0.009
                                   0.501
                                            4.791
                                                    5.353
                                                           5.669
                                                                   6.009
## z_init[2]
                   5.694
                                                                            6.770
                                                    0.218
## sigma[1]
                   0.248
                            0.001
                                   0.043
                                            0.181
                                                           0.243
                                                                   0.271
                                                                            0.348
## sigma[2]
                   0.242
                            0.001
                                   0.043
                                            0.174
                                                    0.211
                                                           0.235
                                                                   0.267
                                                                            0.341
## offset[1]
                   0.164
                            0.083
                                   3.804
                                           -6.513 - 0.854
                                                           0.023
                                                                   0.998
                                                                            8.436
## offset[2]
                   0.109
                            0.113
                                   4.215
                                           -6.844 - 0.828
                                                           0.039
                                                                   0.957
                                                                            6.517
## offset[3]
                   0.063
                            0.097
                                   3.960
                                           -7.574 - 0.914
                                                           0.013
                                                                   0.900
                                                                            7.715
## offset[4]
                   0.355
                            0.273
                                   5.858
                                           -8.130 - 0.963
                                                           0.023
                                                                   1.059
                                                                           10.386
## offset[5]
                   0.277
                            0.193
                                   5.389
                                           -7.225 -0.885
                                                           0.025
                                                                   1.012
                                                                            9.687
                            0.051
                                           -5.615 -0.858
## offset[6]
                   0.090
                                   2.794
                                                           0.016
                                                                   0.896
                                                                            6.590
                            0.197
                                           -8.142 - 0.930
                                                           0.026
## offset[7]
                   0.034
                                   5.055
                                                                   0.982
                                                                            8.329
## offset[8]
                   0.009
                            0.103
                                   4.116
                                           -8.116 -0.948 -0.010
                                                                   0.944
                                                                            7.747
                                           -6.675 -0.875
                            0.179
## offset[9]
                  -0.097
                                   4.821
                                                           0.003
                                                                   0.986
                                                                            6.979
## offset[10]
                   0.172
                            0.145
                                   4.918
                                           -7.567 - 0.883
                                                           0.026
                                                                   0.975
                                                                           10.009
## offset[11]
                  -0.057
                            0.190
                                   4.711
                                           -8.309 - 0.949
                                                           0.003
                                                                   1.016
                                                                            7.368
## offset[12]
                   0.119
                            0.130
                                   4.638
                                           -7.272 -0.926
                                                           0.011
                                                                   0.941
                                                                            7.532
## offset[13]
                            0.182
                                   5.554
                                           -7.241 - 0.923
                                                           0.026
                                                                   0.985
                   0.350
                                                                          10.395
## offset[14]
                            0.074
                                   3.392
                                           -6.903 -0.935 -0.017
                                                                   0.871
                  -0.069
                                                                            6.135
                                   5.862
## offset[15]
                  -0.018
                            0.254
                                           -7.531 - 0.946
                                                           0.015
                                                                   1.000
                                                                            9.580
## offset[16]
                   0.364
                            0.221
                                   4.838
                                           -6.604 - 0.872
                                                           0.051
                                                                   1.001
                                                                            9.214
                            0.102
## offset[17]
                   0.069
                                   5.031
                                           -7.469 - 0.917
                                                           0.007
                                                                   1.001
                                                                            8.608
## offset[18]
                  -0.171
                            0.215
                                   5.612
                                           -8.807 - 0.912
                                                           0.039
                                                                   0.960
                                                                            7.704
                   0.047
                            0.075
                                   3.448
                                           -6.281 -0.886
                                                           0.022
                                                                   0.931
## offset[19]
                                                                            6.145
## offset[20]
                  -0.065
                            0.125
                                   4.199
                                           -8.845 -0.945 -0.022
                                                                   0.925
                                                                            8.384
                  49.484
                            0.083
                                   4.417
                                           41.383 46.387 49.301 52.263
                                                                           58.551
## z[1,1]
                            0.010
                                   0.631
                                            5.803
                                                  6.503
                                                          6.894
                                                                  7.326
## z[1,2]
                   6.933
                                                                            8.266
                            0.137
                                   6.718
                                           53.785 61.265 65.524 70.176
                                                                          80.203
## z[2,1]
                  65.893
                            0.022
                                           10.042 11.637 12.562 13.522
## z[2,2]
                  12.623
                                   1.440
                                                                          15.761
## z[3,1]
                  65.819
                            0.136
                                   7.178
                                           53.097 60.869 65.312 70.232
                                                                           81.126
                                           23.130 27.189 29.364 31.670
## z[3,2]
                  29.488
                            0.055
                                   3.436
                                                                           36.514
## z[4,1]
                  38.386
                            0.067
                                   4.162
                                           30.946 35.584 38.016 40.852
                                                                           47.433
                            0.090
                                   4.973
                                           38.365 44.153 47.253 50.509
## z[4,2]
                  47.462
                                                                           58.097
                                           15.944 17.950 19.063 20.237
## z[5,1]
                  19.161
                            0.028
                                   1.786
                                                                           23.027
## z[5,2]
                  40.789
                            0.074
                                   4.071
                                           33.473 38.046 40.555 43.274
                                                                           49.553
                                   1.192
                                           11.171 12.518 13.242 14.058
                  13.316
                            0.021
                                                                          15.853
\#\# z[6,1]
                            0.037
                                   2.250
                                           22.167 24.744 26.167 27.715
## z[6,2]
                  26.295
                                                                          31.138
                                           10.877 12.214 12.943 13.732
## z[7,1]
                  13.003
                            0.021
                                   1.164
                                                                          15.530
                            0.020
                                           13.624 15.045 15.863 16.641
## z[7,2]
                  15.881
                                   1.235
                                                                           18.477
## z[8,1]
                  15.751
                            0.023
                                   1.286
                                           13.309 14.871 15.707 16.550
                                                                          18.485
## z[8,2]
                   9.912
                            0.014
                                   0.803
                                            8.398
                                                   9.371
                                                           9.898 10.414
                                                                           11.581
                            0.024
                                           18.598 20.489 21.461 22.397
## z[9,1]
                  21.473
                                   1.487
                                                                           24.457
## z[9,2]
                   6.860
                            0.011
                                   0.595
                                            5.763
                                                    6.450
                                                           6.844
                                                                   7.234
                                                                            8.118
                                                                           35.006
                            0.032
                                           27.079 29.628 30.921 32.209
## z[10,1]
                  30.960
                                   1.996
## z[10,2]
                   5.707
                            0.009
                                   0.505
                                            4.788
                                                  5.361
                                                          5.683 6.024
                                                                            6.773
```

_	3/2010						nome work 12			
	##	z[11,1]	45.074	0.064	3.468	38.665	42.798	44.889	47.227	52.273
	##	z[11,2]	6.324	0.010	0.568	5.280	5.938	6.305	6.670	7.516
	##	z[12,1]	62.167	0.124	6.087	51.258	58.016	61.767	65.963	75.131
	##	z[12,2]	10.341	0.016	1.040	8.439	9.652	10.292	10.975	12.635
	##	z[13,1]	69.091	0.148	7.374	55.688	64.091	68.565	73.695	84.557
	##	z[13,2]	23.700	0.042	2.728	18.866	21.844	23.563	25.335	29.507
	##	z[14,1]	46.210	0.078	4.782	37.137	43.062	45.915	49.230	56.253
	##	z[14,2]	44.869	0.082	4.837	35.835	41.558	44.583	47.926	54.787
	##	z[15,1]	22.502	0.034	2.297	18.173	20.948	22.417	23.953	27.333
	##	z[15,2]	44.251	0.083	4.471	36.095	41.248	44.026	46.941	53.901
	##	z[16,1]	14.133	0.022	1.311	11.746	13.253	14.067	14.956	16.865
	##	z[16,2]	29.880	0.044	2.739	24.966	27.981	29.734	31.542	35.710
	##	z[17,1]	12.767	0.021	1.151	10.702	11.988	12.699	13.478	15.283
	##	z[17,2]	18.151	0.023	1.551	15.328	17.102	18.056	19.102	21.395
	##	z[18,1]	14.781	0.023	1.310	12.366	13.896	14.734	15.586	17.663
	##	z[18,2]	11.158	0.015	0.966	9.418	10.504	11.115	11.761	13.228
	##	z[19,1]	19.685	0.027	1.696	16.547	18.550	19.631	20.737	23.305
	##	z[19,2]	7.466	0.012	0.658	6.273	7.018	7.430	7.868	8.940
	##	z[20,1]	28.111	0.039	2.492	23.461	26.453	27.995	29.642	33.427
	##	z[20,2]	9.362	0.041	2.322	5.773	7.731	9.056	10.642	14.799
	##	<pre>y_init_rep[1]</pre>	35.215	0.151	9.537	20.140	28.653	34.049	40.448	56.963
	##	y_init_rep[2]	5.878	0.026	1.582	3.372	4.776	5.707	6.737	9.539
	##	y_rep[1,1]	51.314	0.225	13.878	29.275	41.710	49.832	59.061	81.856
	##	y_rep[1,2]	7.179	0.032	1.926	4.148	5.834	6.966	8.216	11.709
			68.207	0.305	18.844	38.802	55.363	65.798	78.225	110.610
		y_rep[2,2]	13.040	0.057	3.648	7.328	10.588	12.504	15.085	21.138
		y_rep[3,1]	67.958	0.320	19.043	37.980	54.828	65.487	78.453	114.076
		y_rep[3,2]	30.432	0.132	8.453			29.555		49.944
		y_rep[4,1]	39.667		11.075			38.139		
		y_rep[4,2]	49.042		13.406			47.347		79.963
		y_rep[5,1]	19.757	0.086	5.392	11.252	15.997	19.074	22.590	32.635
		y_rep[5,2]	41.901	0.181	11.158	24.080	34.014	40.535	48.118	67.204
		_	13.736	0.061	3.778	7.848	11.180	13.236	15.754	22.432
		y_rep[6,2]	27.152	0.117	7.305	15.727	22.157	26.126	31.124	43.893
		y_rep[7,1]	13.363	0.058						
		y_rep[7,2]	16.285	0.071						26.368
		y_rep[8,1]		0.071	4.402					26.402
		y_rep[8,2]	10.162	0.043	2.663		8.329		11.611	16.335
		y_rep[9,1]	22.248	0.094	5.927	12.736	18.065	21.573	25.524	35.584
		_	7.028	0.030	1.896	4.105	5.747	6.791	8.032	11.423
		y_rep[10,1]		0.131				30.829		51.430
		_	5.899	0.026			4.772		6.788	
		_	46.251	0.199	12.401					
		_	6.535	0.028	1.755			6.301		10.838
		y_rep[12,1]	64.296		17.658					105.746
		y_rep[12,2]	10.643		2.832			10.297		17.102
		y_rep[13,1]	71.022		19.872					114.979
		y_rep[13,2]	24.454		6.822			23.572		40.029
		y_rep[14,1]	47.776		13.544			45.978		80.587
		y_rep[14,2]	45.893		12.340			44.400		73.989
		y_rep[15,1]			6.235	12.700				37.230
		y_rep[15,2]	45.374		12.222			43.965		72.804
		y_rep[16,1]			3.935			14.110		23.545
		y_rep[16,2]	30.737	0.134				29.756		50.070
		, ,	-	- -	-	-				

```
7.634 10.744 12.748 15.194
                 13.246
                           0.058
                                  3.613
                                                                        21.804
## y_rep[17,1]
## y_rep[17,2]
                 18.740
                           0.080
                                  5.100
                                        10.853 15.252 18.028 21.404
                                                                        30.735
                           0.065
                                  4.122
                                           8.867 12.382 14.745 17.637
## y_rep[18,1]
                 15.300
                                                                        25.426
                                           6.657
## y_rep[18,2]
                 11.476
                           0.049
                                  3.061
                                                  9.351 11.125 13.069
                                                                        18.651
## y rep[19,1]
                 20.383
                           0.092
                                  5.718
                                        11.498 16.431 19.746 23.389
                                                                        33.953
## y_rep[19,2]
                                           4.440 6.226
                  7.648
                           0.035
                                  2.049
                                                        7.345 8.742
                                                                        12.508
## y_rep[20,1]
                 28.983
                           0.128
                                  8.068
                                         16.110 23.356 27.931 33.320
                                                                        47.211
                  9.692
                           0.063
                                  3.567
                                           4.612
                                                 7.196 9.089 11.337
                                                                        18.377
## y_rep[20,2]
## lp__
                           0.384
                                  7.453 -10.870 1.403 6.458 11.104
                   5.788
                                                                        18.229
                 n_eff Rhat
##
## theta[1]
                  1722 1.002
## theta[2]
                  1881 1.002
                  1633 1.002
## theta[3]
## theta[4]
                   1669 1.001
## z_init[1]
                   3683 1.000
## z_init[2]
                  2968 1.000
## sigma[1]
                  2925 1.000
## sigma[2]
                   3401 1.001
## offset[1]
                  2079 1.000
                  1402 1.000
## offset[2]
## offset[3]
                  1661 1.000
## offset[4]
                   460 1.003
                   782 1.004
## offset[5]
## offset[6]
                  3025 1.000
## offset[7]
                   658 1.008
## offset[8]
                  1609 1.003
## offset[9]
                   722 1.003
## offset[10]
                  1157 1.001
## offset[11]
                   612 1.009
## offset[12]
                  1276 1.004
                   927 1.005
## offset[13]
## offset[14]
                  2092 1.001
## offset[15]
                   533 1.005
## offset[16]
                   479 1.009
## offset[17]
                  2411 1.001
## offset[18]
                   684 1.002
## offset[19]
                  2091 1.000
                  1123 1.002
## offset[20]
## z[1,1]
                   2806 1.000
## z[1,2]
                   4045 1.000
## z[2,1]
                  2395 1.001
                  4370 1.000
## z[2,2]
## z[3,1]
                  2766 1.001
## z[3,2]
                  3938 1.000
## z[4,1]
                  3806 0.999
                  3027 1.001
## z[4,2]
                   4064 1.000
## z[5,1]
                  3008 1.001
## z[5,2]
## z[6,1]
                   3377 1.001
## z[6,2]
                   3739 1.000
                  3072 1.002
## z[7,1]
## z[7,2]
                  3878 0.999
                  3264 1.001
## z[8,1]
## z[8,2]
                   3087 0.999
```

25/2018	3		
##	z[9,1]	3882	1.000
##	z[9,2]	2709	1.000
##	z[10,1]	3992	1.000
##	z[10,2]	2876	1.000
##	z[11,1]	2921	1.000
##	z[11,2]	3532	1.000
##	z[12,1]	2417	1.000
##	z[12,2]	4119	1.000
##	z[13,1]	2493	1.001
##	z[13,2]	4224	
##	z[14,1]	3736	
	z[14,2]	3485	
##	z[15,1]	4448	1.000
##	z[15,2]	2873	
##	z[16,1]	3628	1.001
	z[16,2]	3806	1.001
##	z[17,1]	3068	1.002
##	z[17,2]	4429	
	z[18,1]	3342	
	z[18,2]	4107	1.000
##	z[19,1]	3857	1.001
##	z[19,2]	3145	1.000
##	z[20,1]	4045	1.000
	z[20,2]	3140	1.000
##	y_init_rep[1]	3996	1.000
##	y_init_rep[2]	3614	
##	y_rep[1,1]	3788	1.000
##	y_rep[1,2]	3684	
##	y_rep[2,1]	3822	1.000
##	y_rep[2,2]	4069	0.999
##	y_rep[3,1]	3544	1.000
##		4074	
##	y rep[4,1]	3727	1.000
##	y_rep[4,2]	3860	1.000
##	y_rep[5,1]	3966	1.000
##	y_rep[5,2]	3796	1.001
##	y_rep[6,1]	3873	1.000
##	y_rep[6,2]	3884	1.000
##	y_rep[7,1]	4005	1.000
##	y_rep[7,2]	3768	1.000
##	y_rep[8,1]	3880	1.001
##	y_rep[8,2]	3763	1.001
##	y_rep[9,1]	4007	1.000
##	y_rep[9,2]	3961	0.999
##	y_rep[10,1]	4126	1.000
##	y_rep[10,2]	3758	1.000
##	y_rep[11,1]	3888	0.999
##	y_rep[11,2]	3955	1.000
##	y_rep[12,1]	3560	0.999
##	y_rep[12,2]	4141	1.000
##	y_rep[13,1]	4009	1.000
##	y_rep[13,2]	3980	1.001
##	y_rep[14,1]	3826	1.000
##	y_rep[14,2]	3965	0.999
"	, ,		

```
3883 1.000
## y_rep[15,1]
## y_rep[15,2]
                 4033 1.001
## y_rep[16,1] 3936 1.000
## y_rep[16,2] 3775 1.001
              3875 1.000
## y rep[17,1]
## y_rep[17,2]
                 4036 1.000
## y_rep[18,1]
                 3996 1.000
## y_rep[18,2] 3949 1.001
                 3890 1.001
## y_rep[19,1]
## y_rep[19,2] 3485 1.000
                 3984 1.000
## y_rep[20,1]
## y_rep[20,2]
                 3205 1.000
## lp__
                  378 1.005
##
## Samples were drawn using NUTS(diag e) at Sun Nov 25 18:49:31 2018.
## For each parameter, n eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

The improvement in this extension is that, we can measurem the effect of the systematical influence from the factors outside.

```
lynx_hare_df <- read.csv("hudson-bay-lynx-hare.csv",comment.char="#")
N <- length(lynx_hare_df$Year) - 1
ts <- 1:N
y_init <- c(lynx_hare_df$Hare[1], lynx_hare_df$Lynx[1])
y <- as.matrix(lynx_hare_df[2:(N + 1), 2:3])
y <- cbind(y[ , 2], y[ , 1]); # hare, lynx order

y_rep_1 <- as.matrix(as.matrix(fit, pars = "y_rep")[1:200,1:20])
y_rep_2 <- as.matrix(as.matrix(fit, pars = "y_rep")[1:200,21:40])

ppc_dens_overlay(y = y[,1], yrep = y_rep_1)</pre>
```


ppc_dens_overlay(y = y[,2], yrep = y_rep_2)


```
mean_y_rep_1 <- colMeans(y_rep_1)
std_resid <- (y[,1] - mean_y_rep_1) / sqrt(mean_y_rep_1)
qplot(mean_y_rep_1, std_resid) + hline_at(2) + hline_at(-2)</pre>
```



```
mean_y_rep_2 <- colMeans(y_rep_2)
std_resid <- (y[,2] - mean_y_rep_2) / sqrt(mean_y_rep_2)
qplot(mean_y_rep_2, std_resid) + hline_at(2) + hline_at(-2)</pre>
```

