Санкт-Петербургский государственный университет Математико-механический факультет

Литвинов Степан Сергеевич

Степенной метод. Метод скалярных произведений

Практическая работа

Оглавление

1.	Постановка задачи	3
2.	Теорминимум	4
	2.1. Степенной метод	4
	2.2. Метод скалярных произведений	4
3.	Тесты	5
4.	Код	6

1. Постановка задачи

Сравнить метод скалярного произведения и степенной метод для нахождении максимального по модулю собственного числа матрицы A.

2. Теорминимум

2.1. Степенной метод

Нужно вычислить максимальное по модулю собственное число λ_1 матрицы A.

В качестве нулевого приближения $x^{(0)}$ возьмем произвольный вектор. Далее строим $x^{(k)}$ и $\lambda_1^{(k)}$ по формулам

$$x^{(k)} = Ax^{(k-1)}.$$

$$\lambda_1^{(k)} = \frac{(x^{(k)})_i}{(x^{(k-1)})_i}.$$

Итерационный процесс идет до тех пор, пока вектор приближений не достигнет заданной точности ε ., т. е. когда

$$|\lambda_1^{(k+1)} - \lambda_1^{(k)}| < \varepsilon.$$

Получаем, что $\lambda_1 \approx \lambda_1^{(k+1)}$.

2.2. Метод скалярных произведений

Нужно вычислить максимальное по модулю собственное число λ_1 матрицы A.

В качестве нулевого приближения $x^{(0)}$ возьмем произвольный вектор, а $y^{(0)}=x^{(0)}$. Далее строим $x^{(k)},\,y^{(k)}$ и $\lambda_1^{(k)}$ по формулам

$$x^{(k)} = Ax^{(k-1)},$$

$$y^{(k)} = A^{\mathrm{T}}y^{(k-1)},$$

$$\lambda_1^{(k)} = \frac{(x^{(k)}, y^{(k)})}{(x^{(k-1)}, y^{(k)})}.$$

Итерационный процесс идет до тех пор, пока вектор приближений не достигнет заданной точности ε .

Получаем, что $\lambda_1 \approx \lambda_1^{(k+1)}$.

3. Тесты

	1	2	3	4
1	1.00000000	0.50000000	0.33333333	0.25000000
2	0.50000000	0.33333333	0.25000000	0.20000000
3	0.33333333	0.25000000	0.20000000	0.16666667
4	0.25000000	0.20000000	0.16666667	0.14285714

Приближение	n_iter степенной	n_iter скалярный	np_eig - pow_eig	np_eig - scal_eig
0.01	4	3	0.000625661090738916	4.832066194504492e-06
0.001	5	3	7.051089044129988e-05	4.832066194504492e-06
0.0001	6	4	7.94935753334336e-06	6.142239605821942e-08
1e-05	7	4	8.962432478387683e-07	6.142239605821942e-08

Рис. 1: Сравнение методов для матрицы Гильберта 4го порядка

	1	2	3	4	5
1	1.00000000	0.50000000	0.33333333	0.25000000	0.20000000
2	0.50000000	0.33333333	0.25000000	0.20000000	0.16666667
3	0.33333333	0.25000000	0.20000000	0.16666667	0.14285714
4	0.25000000	0.20000000	0.16666667	0.14285714	0.12500000
5	0.20000000	0.16666667	0.14285714	0.12500000	0.11111111

Приближение	n_iter степенной	n_iter скалярный	np_eig - pow_eig	np_eig - scal_eig
0.01	4	3	0.001221369082482715	1.3406487584743942e-05
0.001	6	3	2.1610229907320644e-05	1.3406487584743942e-05
0.0001	7	4	2.875727316054011e-06	2.3741478982763908e-07
1e-05	8	5	3.8268478186331834e-07	4.204325332324288e-09

Рис. 2: Сравнение методов для матрицы Гильберта 5го порядка

Метод скалярных произведений более эффективно (за меньшее количество итераций) достигает выбранного приближения. Помимо этого он точнее.

4. Код

Можно посмотреть здесь