WH[®]

CH32V303_305_307 数据手册

V2.9

概述

CH32V 系列是基于青稞 RISC-V 内核设计的工业级通用微控制器,包括 CH32V305 连接型 MCU、CH32V307 互联型 MCU、CH32V208 无线型 MCU等。CH32V30x 系列基于青稞 V4F 微处理器设计,支持单精度浮点指令和快速中断响应,支持 144MHz 主频零等待运行,提供 8 组串口、4 组电机 PWM高级定时器、SDIO、DVP 数字图像接口、4 组模拟运放、双 ADC 单元、双 DAC 单元,内置 USB2.0 高速 PHY 收发器(480Mbps)、千兆以太网 MAC 及 10 兆物理层收发器等。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V4F 内核, 多种指令集组合
- 快速可编程中断控制器+硬件中断堆栈
- 分支预测、冲突处理机制
- 单周期乘法、硬件除法、硬件浮点
- 系统主频 144MHz, 零等待

● 存储器:

- 可配最大 128KB 易失数据存储区 SRAM
- 可配 480KB 程序存储区 CodeFlash (零等待应用区+非零等待数据区)
- 28KB 系统存储区 SystemFLASH
- 128B 系统非易失配置信息存储区
- 128B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V_{DD} 额定: 3.3V
- GPI0 单元独立供电 V₁₀ 额定: 3.3V
- 低功耗模式: 睡眠、停止、待机
- VBAT 电源独立为 RTC 和后备寄存器供电

● 系统时钟、复位:

- 内置出厂调校的 8MHz 的 RC 振荡器
- 内置约 40KHz 的 RC 振荡器
- 内置 PLL, 可选 CPU 时钟达 144MHz
- 外部支持 3~25MHz 高速振荡器
- 外部支持 32.768KHz 低速振荡器
- 上电和掉电复位、可编程电压监测器
- 实时时钟 RTC: 32 位独立定时器
- 2 组 18 路通用 DMA 控制器:
- 18个通道,支持环形缓冲区管理
- 支持 TIMk/ADC/DAC/USART/I2C/SPI/I2S/SDI0
- 4组运放、比较器: 连接 ADC 和 TIMk
- 2 组 12 位数模转换 DAC

● 2组12位模数转换 ADC:

- 模拟输入范围: V_{SSA}~V_{DDA}
- 16 路外部信号+2 路内部信号通道
- 片上温度传感器
- 双 ADC 转换模式

● 16 路 TouchKey 通道检测

● 多组定时器:

- 4 个 16 位高级定时器,支持死区控制和紧急 刹车,提供用于电机控制的 PWM互补输出
- 4 个 16 位通用定时器,提供输入捕获/输出比较/PWW/脉冲计数及增量编码器输入
- 2 个基本定时器
- 2 个看门狗定时器(独立和窗口型)
- 系统时基定时器: 64 位计数器

● 多种通讯接口:

- 8个USART接口(包含5个UART)
- 2个I2C接口(支持SMBus/PMBus)
- 3 个 SPI 接口(SPI2, SPI3 用于 I2S2, I2S3)
- USB2.0 全速主机/设备接口, 内置 PHY
- USB2.0 全速 OTG 接口
- USB2.0 高速主机/设备接口,内置 PHY
- 2组 CAN 接口(2.0B 主动)
- SDIO 主机接口(MMC、SD/SDIO 卡及 CE-ATA)
- FSMC 存储器接口
- 数字图像接口 DVP
- 千兆以太网控制器 MAC, 10 兆 PHY 收发器

● 快速 GPI0 端口:

- 80 个 I/0 口,映射 16 个外部中断
- 安全特性: CRC 计算单元, 96 位芯片唯一 ID
- 调试模式:串行2线调试接口
- 封装形式: LQFP、QFN 和 TSSOP

第1章 系列产品说明

CH32V 系列产品是基于 32 位 RISC-V 指令集架构设计的工业级通用增强型 MCU,按照功能资源划分为通用、连接、无线等类别。它们之间以封装类别、外设资源及数量、引脚数目、器件特性高低上的差异相互延伸,但在软件和功能、硬件引脚配置上保持相互兼容,为用户在产品开发中进行产品迭代及快速应用提供了自由和方便。

有关此系列产品的器件特性请参考数据手册。

有关产品各外设功能描述、使用方法及寄存器配置等详细信息请参考《CH32FV2x_V3xRM》。

数据手册和参考手册均可在沁恒官网下载: www. wch. cn

有关 RISC-V 指令集及架构的相关信息,可在"http://riscv.org"网站下载。

本手册为 CH32V303、CH32V305、CH32V307 系列产品数据手册。V203 系列请参考《CH32V203DS0》、V208 系列请参考《CH32V208DS0》。

表 1-1 系列产品概览

W 1 1 /N/3/						
中小容量通	值用型(V203)	大容量通	用型(V303)	连接型(V305)	互联型(V307)	无线型(V208)
青科	₹ V4B		青科	果 V4F		青稞 V4C
32K 闪存	64K 闪存	128K 闪存	256K 闪存	128K 闪存	256K 闪存	128K 闪存
10K SRAM	20K SRAM	32K SRAM	64K SRAM	32K SRAM	64K SRAM	64K SRAM
2*ADC (TKey) ADTM 3*GPTM 2*USART SPI I 2C USBD USBFS CAN RTC 2*WDG 2*OPA	2*ADC (TKey) ADTM 3*GPTM 4*USART 2*SPI 2*I 2C USBD USBFS CAN RTC 2*WDG 2*OPA	2*ADC (TKey) 2*DAC ADTM 3*GPTM 3*USART 2*SPI 2*I 2C USBFS CAN RTC 2*WDG 4*OPA	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI (2*I2S) 2*I2C USBFS CAN RTC 2*WDG 4*OPA RNG SDIO FSMC	2*ADC (TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 5*USART/UART 3*SPI (2*I2S) 2*I2C OTG_FS USBHS (+PHY) 2*CAN RTC 2*WDG 4*OPA RNG SDI O		ADC (TKey) ADTM 3*GPTM GPTM(32) 4*USART/UART 2*SPI 2*I2C USBD USBFS CAN RTC 2*WDG 2*OPA ETH-10M(+PHY) BLE5. 3

注: 同一类产品的某些外设数量或功能可能受封装限制,选择时请确认产品封装。

缩写

ADTM:高级定时器TKey:触摸按键USBFS:全速主机/设备控制器GPTM:通用定时器OPA:运放、比较器USBHS:高速主机/设备控制器

 GPTM(32): 32 位通用定时器
 RNG: 随机数发生器

 BCTM: 基本定时器
 USBD: 全速设备控制器

表 1-2 MCU 内核对比概览

特点 内核	指令集	硬件 堆栈 级数	中断 嵌套 级数	快速 中断 通道数	整数 除法 周期	向量表 模式	扩展指令	内存保护
青稞 V4B	I MAC	2	2	4	9	地址或指令	支持	无
青稞 V4C	I MAC	2	2	4	5	地址或指令	支持	标准
青稞 V4F	I MAFC	3	8	4	5	地址或指令	支持	标准

注:有关内核的相关信息,可参考青稞 QingKeV4 微处理器手册《QingKeV4_Processor_Manual》。

第2章 规格信息

CH32V30x 系列是基于青稞 V4F 微处理器设计的 32 位 RISC-V 内核 MCU, 工作频率 144MHz, 内置高速存储器,系统结构中多条总线同步工作,提供了丰富的外设功能和增强型 I/0 端口。本系列产品内置 2个 12位 ADC 模块、2个 12位 DAC 模块、多组定时器、多通道触摸按键电容检测(TKey)等功能,还包含了标准和专用通讯接口:I2C、I2S、SPI、USART、SDI0、CAN 控制器、USB2. 0 全速主机/设备控制器、USB2. 0 高速主机/设备控制器(内置 480Mbps 收发器)、数字图像接口、千兆以太网控制器等。

产品工作额定电压为 3.3V,工作温度范围为 -40° C~ 85° C工业级。支持多种省电工作模式来满足产品低功耗应用要求。系列产品中各型号在资源分配、外设数量、外设功能等方面有所差异,按需选择。

2.1 型号对比

表 2-1 大容量通用型/连接/互联产品资源分配

	j	^在 品型号		СНЗ	2V303		C	H32V305			CH32V307	,
资》	原差异		СВ	RB	RC	VC	FB	GB	RB	RC	WC	VC
	芯片引刷	却数	48	64	64	100	20	28	64	64	68	100
	闪存(字 [±]	芦) ⁽¹⁾	128K	128K	256K ⁽²⁾	256K ⁽²⁾	128K	128K	128K	256K ⁽²⁾	256K ⁽²⁾	256K ⁽²⁾
	SRAM(字	节)	32K	32K	64K ⁽²⁾	64K ⁽²⁾	32K	32K	32K	64K ⁽²⁾	64K ⁽²⁾	64K ⁽²⁾
	GPI0 端口	コ数	37	51	51	80	17	24	51	51	54	80
	GPI0 供	电	共用	,	独立供电	V_{10}	共用		ð	独立供电 V	I_{10}	
	高级(1	16位)	1	1	4	4	4 ⁽³⁾	4	4	4	4	4
定	通用(1	16位)	3	3	4	4	4 ⁽³⁾	4	4	4	4	4
时	基本(1	16位)	-		2	2	2	2	2	2	2	2
器	看门	〕狗					2 (WWDG -	+ IWDG)				
	系统时基	(64位)					支扎	寺				
	RTC						支扎	寺				
_{^1}	OC/TKey	单元数	2	2	2	2	2	2	2	2	2	2
AI	JC/TRey	通道数	10	16	16	16	1	6	16	16	16	16
	DAC(单:	元)	2	2	2	2	DAC2	DAC2	2	2	2	2
	运放、比	较器	4	4	4	4	-	OPA3	4	4	4	4
	随机数发	生器	-	-	1	1	1	1	1	1	1	1
	USART	/UART	3	3	8	8	USART1/3	5	5	8	8	8
	SP	Ί	2	2	3	3	SPI 2	3	3	3	3	3
	12	2S	-	-	2	2	I 2S2	2	2	2	2	2
 通	12	CC C	2	2	2	2	2	2	2	2	2	2
년	CA	N	1	1	1	1	CAN2	2	2	2	2	2
 接	SD	0 1	-	-	1	1	-	1	1	1	1	1
	USB(FS)	USBHD	1	1	1	1	-	_	1	1	1	1
-	USBHS (1	含 PHY)	- 1 1 1 1						1	1	1	
	Ethe	rnet				-				1G]	MAC+10M	PHY
	DV	P					-					1
	FS	MC		-		1			-			1
	CPU 主	频	Max: 144MHz									
	工作温	度					□业级: -4					
	封装形	式	LQFP48	LQF	P64M	LQFP100	TSS0P20	QFN28	LQFP64N	LQFP64M	QFN68	LQFP100

注: 1. 闪存字节表示的是零等待运行区域 Romar, 非零等待区域于 V303、V305、V307型号是 480K- Romar 2. 256K FLASH+64K SRAM的产品支持用户选择字配置为(192K FLASH+128K SRAM)、(224K FLASH+96K SRAM)、(256K FLASH+64K SRAM)、(288K FLASH+32K SRAM) 几种组合中的一种。

3. 定时器中的 PWM、捕捉等涉及引脚信号的功能需要结合实际芯片封装的引脚,有些封装芯片没有引出则此类功能不能使用。

2.2 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将内核、仲裁单元、DMA 模块、SRAM存储等部分通过 多组总线实现交互。设计中集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理 机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。 下图是系列产品内部总体架构框图。

图 2-1 系统框图

2.3 存储器映射表

图 2-2 存储器地址映射

2.4 时钟树

系统中引入 4 组时钟源: 内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)、外接低频振荡器 (LSE)。其中,低频时钟源为 RTC 和独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 PLL 倍频后输出为系统总线时钟 (SYSCLK),系统时钟再由各预分频器提供了 AHB 域、APB1 域、APB2 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 2-3 CH32V305/307 时钟树框图 40kHz LSI RC **IWDGCLK** to independent watchdog OSC32 IN 32.768kHz RTCCLK → to RTC OSC32 OUT LSE OSC 60MHz ► ETH-PHY /128 PLL3MUL to I2S2 interface PLL3CLK *2.5,*4,*** ▶ to I2S3 interface *16,*20 PLL3VCO ▶ to TRNG PREDIV2 PLL2MUL PREDIVISEC *2.5,*4,••• /1./2.... PREDIV1 *16,*20 /15,/16 PHISRO XTI to MCO /1,/2,... ₩ PLL2VCO PLLMUL /15,/16 SW OSC_IN 3-25MHz *3,*4,... **HSE OSC** OSC_OUT /2 *16,*18 8MHz HSI RC -SYSCLK-HSI USB prescaler 48MHz USBCLK PLLCLK -/1,/2,/3 HSE /1 /2 ... USB → OTGFSCLK CLKFLS48MHz **HSPLL** CSS /7,/8 HSPLLSRC USBHSPREDIV ► USB2.0 PHY OTGFSSRC MCO[3:0] /1,/2 to Flash prog IF HSE to AHB bus/core/memory/DMA HSI AHB prescaler /1,/2.../512 ► FCLK core free running clock PLLCLK/2 мсоф → to Core System timer PLL2CLK - 78 -PLL3CLK/2 PLL3CLK APB1 prescaler PCLK1

► to APB1 peripherals - HCLK XTI /1,/2.../16 144MHz max peripheral clock enable if(APB1 prescaler=1)*1 else *2 MII/RMII interface TIMxCLK to TIM2,3,4,5,6,7 MII_TXC ► MACTXCLK peripheral clock enable MII_RMII_SEL in AFIO_MAPR MII RXC ► MACRXCI K APB2 prescaler to Ethernet PCLK2 ► to APB2 peripherals /1,/2.../16 **GTXC** GTXC peripheral clock enable RGMII EN ADC prescaler ADCCLK to ADC1,2 ► GRXC GRXC /2,/4,/6,/8 ETH1G_EN peripheral clock enable EXT_125M ETH1G_125M if(APB2 prescaler=1)*1 PLL2VCO TIMxCLK to TIM1,8,9,10 PLL3VCO else *2

peripheral clock enable

ETH1G_SRC

RGMII interface

图 2-4 CH32V303 时钟树框图

注: 当使用 USB 功能时, CPU 的频率必须是 48MHz 或 96MHz 或 144MHz。当系统从停机或待机状态唤醒时,系统会自动切换为 HSI 做主频。

2.5 功能概述

2.5.1 RISC-V4F 处理器

RISC-V4F 支持 RISC-V 指令集 IMAFC 子集,增加了单精度浮点运算。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、内存保护、分支预测模式、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。RV32IMAFC 指令集,小端数据模式

青稞微处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微 控制器设计,例如小面积低功耗嵌入式场景、高性能应用操作系统场景等。

- 支持机器和用户特权模式
- 快速可编程中断控制器(PFIC)
- 多级硬件中断堆栈
- 串行2线调试接口
- 标准内存保护设计
- 静态或动态分支预测、高效跳转、冲突检测机制
- 自定义扩展指令

2.5.2 片上存储器及自举模式

内置最大 128K 字节 SRAM区,用于存放数据,掉电后数据丢失。具体容量要对应芯片型号。

内置最大 480K 字节程序闪存存储区(Code FLASH),用于用户的应用程序和常量数据存储。其中包括零等待程序运行区域和非零等待区域。区域具体大小对应芯片型号。

内置 28K 字节系统存储区(System FLASH),用于系统引导程序存储(厂家固化自举加载程序)。 128 字节用于系统非易失配置信息存储区,128 字节用于用户自定义信息存储区。

在启动时,通过自举引脚(B00T0 和 B00T1)可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部 SRAM自举

自举加载程序存放于系统存储区,可以通过USART1和USB接口对程序闪存存储区的内容重新编程。

2.5.3 供电方案

- V_{DD} = 2.4~3.6V: 为部分 I/O 引脚和内部调压器供电,包括内置的 USB PHY 和以太网 PHY。
- $V_{10} = 2.4 \sim 3.6V$: 为大部分 I / 0 引脚供电以及以太网模块,决定了引脚输出高压幅值。正常工作时, V_{10} 电压不能高于 V_{10} 电压。
- $V_{DDA}=2.4\sim3.6V$: 为高频 RC 振荡器、ADC、温度传感器、DAC 及 PLL 的模拟部分供电。 V_{DDA} 电压必须和 V_{10} 电压相同(如果 V_{DD} 掉电, V_{10} 带电,则 V_{DDA} 必须带电并且和 V_{10} 一致)。使用 ADC 时, V_{DDA} 不得小于 2.4V。
- $V_{BAT} = 1.8 \sim 3.6 V$: 当关闭 V_{DD} 时,(通过内部电源切换器)单独为 RTC、外部低频振荡器和后备寄存器供电。(注意 V_{BAT} 供电)

2.5.4 供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过 2.4V 时工作;当 V_{DD}低于设定的阀值(V_{POR/PDR})时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{1D} 供电与设定的阀值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{DD} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 4 章。

2.5.5 电压调节器

复位后,调节器自动开启,根据应用方式有三个操作模式

- 开启模式:正常的运行操作,提供稳定的内核电源
- 低功耗模式: 当 CPU 进入停止模式后, 可选择调节器低功耗运行
- 关断模式: 当 CPU 进入待机模式后自动切换调节器到此模式,调压器输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态。

该调压器在复位后始终处于开启模式,在待机模式下被关闭处于关断模式,此时是高阻输出。

2.5.6 低功耗模式

系统支持三种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 停止模式

此模式 FLASH 进入低功耗模式, PLL、HSI 的 RC 振荡器和 HSE 晶体振荡器被关闭。在保持 SRAM和 寄存器内容不丢失的情况下, 停止模式可以达到最低的电能消耗。

退出条件:任意外部中断/事件(EXTI信号)、NRST上的外部复位信号、IWDG复位,其中EXTI信号包括 16个外部 I/0口之一、PVD的输出、RTC 闹钟、以太网唤醒信号或 USB 的唤醒信号。

● 待机模式

此模式下,系统主 LDO 关闭,由低功耗 LDO 给唤醒电路供电,其他数字电路全部断电,且 FLASH 处于断电状态。从待机模式唤醒系统会产生复位,同时 SBF (PWR_CSR)会置位。唤醒后,查询 SBF 状态可知唤醒前的低功耗模式,SBF 由 CSBF (PWR_CR)位清除。在待机模式下,32KB 的 SRAM的内容可以保持(取决于睡前的规划配置),后备寄存器内容保留。

退出条件:任意外部事件(EXTI信号)、NRST上的外部复位信号、IWDG复位、WKUP引脚上的一个上升边沿,其中EXTI信号包括 16 个外部 I/O 口之一、RTC 闹钟、以太网唤醒信号或 USB 的唤醒信号。

2.5.7 CRC (循环冗余校验) 计算单元

CRC (循环冗余校验) 计算单元使用一个固定的多项式发生器,从一个 32 位的数据字产生一个 CRC 码。在众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC 60335-1 标准的范围内,提供了一种检测闪存存储器错误的手段, CRC 计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

2.5.8 快速可编程中断控制器 (PFIC)

产品内置快速可编程中断控制器 (PFIC), 最多支持 255 个中断向量, 以最小的中断延迟提供了灵活的中断管理功能。当前产品管理了 8 个内核私有中断和 88 个外设中断管理, 其他中断源保留。PFIC的寄存器均可以在用户和机器特权模式下访问。

- 2 个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 4 路免表中断(VTF)
- 向量表支持地址或指令模式
- 中断嵌套深度可配置最高8级
- 支持中断尾部链接功能

2.5.9 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 19 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 APB2 的时钟周期。多达 80 个通用 I/0 口都可选择连接到16 个外部中断线。

2.5.10 通用 DMA 控制器

系统内置了 2 组通用 DMA 控制器,总共管理 18 个通道,灵活处理存储器到存储器、外设到存储器和存储器到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级/基本定时器 TIMx、ADC、DAC、I2S、USART、I2C、SPI、SDI0。 注: DMA1、DMA2 和 CPU 经过仲裁器仲裁之后对系统 SRAM进行访问。

2.5.11 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 8MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

多个预分频器用于配置 AHB 的频率、高速 APB(APB2)和低速 APB(APB1)区域提供各外设时钟,最高频率 144MHz,参考图 2-3 的时钟树框图。I2S 单元的时钟来源另一个专用的 PLL(PLL3),这样,I2S 主时钟可产生 8MHz~192MHz 之间的所有标准的采样频率。

2.5.12 RTC (实时时钟) 和后备寄存器

RTC 和后备寄存器在系统内部处于后备供电区域,在 V_{10} 有效时由 V_{10} 供电,在 V_{10} 无效时内部自动切换到由 V_{BAT} 引脚供电。

RTC 实时时钟是一组 32 位可编程计数器,时基支持 20 位预分频,用于较长时间段的测量。时钟基准来源高速的外部时钟 128 分频(HSE/128)、外部晶体低频振荡器(LSE)或内部低功耗 RC 振荡器(LSI)。其中 LSE 也存在后备供电区域,所以,当选择 LSE 做 RTC 时基下,系统复位或从待机模式唤醒后,RTC 的设置和时间能够保持不变。

后备寄存器最多包含 42 个 16 位寄存器,可以用来存储 84 字节的用户应用数据。此数据在待机唤醒后,或系统复位或电源复位时,都能继续保持。在侵入检测功能开启下,一旦侵入检测信号有效,将被清除后备寄存器中所有内容。

2.5.13 ADC (模拟/数字转换器) 和触摸按键电容检测(TKey)

产品内置 2 个 12 位的模拟/数字转换器(ADC), 共用多达 16 个外部通道和 2 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换,且支持双 ADC 转换模式。提供模拟看门狗功能允许非常精准地监视一路或多路选中的通道,用于监视通道信号电压。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。

ADC 内部通道采样包括一路内置温度传感器采样和一路内部参考电源采样。温度传感器产生一个随温度线性变化的电压。温度传感器在内部被连接到 IN16 输入通道上, 用于将传感器的输出转换到数字数值。

触摸按键电容检测单元,提供了多达 16 个检测通道,复用 ADC 模块的外部通道。检测结果通过 ADC 模块转换输出结果,通过软件计算识别触摸按键状态。

2.5.14 DAC (数字/模拟转换器)

产品内置 2 个 12 位电压输出数字/模拟转换器 (DAC),转换 2 路数字信号为 2 路模拟电压信号并输出,支持双 DAC 通道独立或同步转换,支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚 (EXTI 线 9)。可实现三角波、噪声生成。支持使用 DMA 操作。

2.5.15 定时器及看门狗

系统中的定时器包括高级定时器、通用定时器、基本定时器、看门狗定时器以及系统时基定时器。 系列中不同的产品包含的定时器数量有差异,具体参考表 2-2。

表 2-2 定时器比较

定印	付器	分辨率	计数类型	时基	DMA	功能作用
	TIM		向上			PWM互补输出,单脉冲输出
高级	TIMB	16 位	向下	APB2 时域	支持	输入捕获
定时器	TI M9	10 12	向上/下	16 位分频器		输出比较
	TIM10		I-J-T-/ I.			定时计数
	TIM2		← L			to > 1±25
通用	TIMB	16 位	向上	APB1 时域	-+++	输入捕获
定时器	TI M4		向下	16 位分频器	支持	输出比较
	TI M5	16 位	向上/下			定时计数
基本	TI M6 16 付立		⇔ ⊾	APB1 时域	+ +±	⇒ □+ \1 米 ₆
定时器	TIM7	10 1	向上	16 位分频器	支持	定时计数
空口马	雪门狗	7位	6 T	APB1 时域	不支持	定时
図口作	目 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ <u> </u>	向下	4 种分频	小又行	复位系统 (正常工作)
хh ÷ э			ЬT	APB1 时域	不士 ±	定时
出工作	目 10円	12 位	向下	7 种分频	不支持	复位系统(正常+低功耗工作)
□玄纺叶	基定时器	64 位	白上武工	SYSCLK 或	不士性	定时
□ 示绒的	至此凹品	04 JV	向上或下	SYSCLK/8	不支持	(CP)

● 高级控制定时器

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外, 可以被看成是分配到 6 个通道的三相 PWM发生器, 具有带死区插入的互补 PWM输出功能, 允许在指定数目的计数器周期之后更新定时器进行重复计数周期, 刹车功能等。高级控制定时器的很多功能都与通用定时器相同, 内部结构也相同, 因此高级控制定时器可以通过定时器链接功能与其他 TIM定时器协同操作,提供同步或事件链接功能。

● 通用定时器

通用定时器是一个 16 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,同时 PWM输出被禁止,从而切断由这些输出所控制的开关。任意通用定时器都能用于产生 PWM输出。每个定时器都有独立的 DMA 请求机制。这些定时器还能够处理增量编码器的信号,也能处理 1 至 3 个霍尔传感器的数字输出。

● 基本定时器

基本定时器是一个 16 位自动装载计数器,支持 16 位可编程预分频器。可以位数模转换(DAC)提供时钟,触发 DAC 的同步电路。基本定时器之间是互相独立的,互不共享任何资源。

● 独立看门狗

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的约 40KHz 的 RC 振荡器(LSI)提供时钟;因为 LSI 独立于主时钟,所以可运行于停止和待机模式。I WDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗

窗口看门狗是一个 7 位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器

青稞微处理器内核自带一个 64 位可选递增或递减的计数器,用于产生 SYSTICK 异常(异常号:15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 64 位计数器。具有自动重加载功能及可编程的时钟源。

2.5.16 通讯接口

2.5.16.1 通用同步/异步串口收发器(USART)

产品提供了3组通用同步/异步串口收发器(USART1、USART2、USART3),以及5组通用异步收发器(UART4、UART5、UART6、UART7、UART8)。支持全双工异步通信、同步单向通信以及半双工单线通信,也支持LIN(局部互连网),兼容ISO7816的智能卡协议和IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作。还允许多处理器通信。其采用分数波特率发生器系统,并支持DMA 操作连续通讯。

2.5.16.2 串行外设接口(SPI)

最高 3 组串行外设 SPI 接口,提供主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

2.5.16.3 I2S(音频)接口

最高 2 组标准的 I2S 接口(与 SPI2 和 SPI3 复用)工作于主或从模式。软件可配置为 16/32 位数据包传输帧,支持音频采样频率从 8KHz 到 562.2KHz,支持 4 种音频标准。在主模式下,其主时钟可以以固定的 256 倍音频采样频率输出到外部的 DAC 或 CODEC(解码器),支持 DMA。

2.5.16.4 I2C 总线

多达 2 个 I 2C 总线接口, 能够工作于多主机模式或从模式, 完成所有 I 2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度, 同时与 SMBus 2. 0 兼容。

I2C 接口提供 7 位或 10 位寻址,并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器/校验器。可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

2.5.16.5 控制器区域网络(CAN)

CAN 接口兼容规范 2.0A 和 2.0B(主动),波特率高达 1Mbits/s,支持时间触发通信功能。可以接收和发送 11 位标识符的标准帧,也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个 3 级深度接收 FIF0。

具有 2 组 CAN 控制器的产品, 共享 28 个可设置的过滤器和 512 字节的 SRAM存储器资源。

具有1组CAN控制器产品只有14个可设置的过滤器,并和USBD模块共用一个专用的512字节SRAM

存储器用于数据的发送和接收,当 USBD 和 CAN 同时使用时,为了防止访问 SRAM冲突, USBD 只能使用低 384 字节空间。

2.5.16.6 通用串行总线 USB2.0 全速主机/设备控制器(USBFS/OTG_FS)

USB2.0 全速主机控制器和设备控制器(USBFS),遵循 USB2.0 Fullspeed 标准。提供 16 个可配置的 USB 设备端点及一组主机端点。支持控制/批量/同步/中断传输,双缓冲区机制,USB 总线挂起/恢复操作,并提供待机/唤醒功能。USBFS 模块专用的 48MHz 时钟由内部主 PLL 分频直接产生(PLL 必须为144MHz 或 96MHz 或 48MHz)。

OTG_FS 是双重角色 USB 控制器,支持主机端和设备端的功能,兼容 On-The-Go Supplement to the USB2.0 规范。同时,该控制器也可配置为仅支持主机端或仅支持设备端功能的控制器,兼容 USB2.0 全速规范。控制器使用来自 PLL 分频得到的 48MHz 时钟,主要特性包括:

- 支持在(OTG_FS 控制器的物理层)USB On-The-Go Supplement, Revision1.3 规范中定义为可选项目 OTG 协议
- 通过软件可配置 USB 全速主机、USB 全速/低速设备、USB 双重角色设备
- 提供省申功能
- 支持控制传输、批量传输、中断传输、实时/同步传输
- 提供总线复位、挂起、唤醒和恢复功能

2.5.16.7 通用串行总线 USB2.0 高速主机/设备控制器(USBHS)

USB2.0 高速控制器具有主机控制器和设备控制器双重角色,内置 480Mbps 的 USB-PHY 物理层收发器。当作为主机控制器时,它可支持低速、全速和高速的 USB 设备。当作为设备控制器时,可以灵活设置为低速、全速或高速模式以适应各种应用。主要特性包括:

- 支持 USB 2.0、USB 1.1、USB 1.0 协议规范
- 支持控制传输、批量传输、中断传输、实时/同步传输
- 提供总线复位、挂起、唤醒和恢复功能
- 支持高速 HUB
- 设备模式下提供 16 组上下传输通道, 支持配置 16 个端点号
- 除设备端点 0 外,其他端点均支持最大 1024 字节的数据包,可使用双缓冲功能

2.5.16.8 数字图像接口(DVP)

数字图像接口 DVP(Digital Video Port)用来连接摄像头模块获取图像数据流。提供了 8/10/12bit 并行接口方式通讯。支持按原始的行、帧格式组织的图像数据,如 YUV、RGB 等,也支持如 JPEG 格式的压缩图像数据流。接收时,主要依靠 VSYNC 和 HSYNC 信号同步。支持图像裁剪功能。

2.5.16.9 SDI0 主机控制器

SDI 0 主机接口提供了多媒体卡(MMC)、SD 存储卡、SDI 0 卡以及 CE-ATA 设备的操作接口。支持 3 种不同的数据总线模式: 1 位(默认)、4 位和 8 位。在 8 位模式下,该接口可以使数据传输速率达到 48 MHz。目前该接口全兼容多媒体卡系统规范 4. 2 (向前兼容)、SD I / 0 卡规范 2. 0 、SD 存储卡规范 2. 0 、CE-ATA 数字协议规范 1. 1 。

2.5.16.10 可配置的静态存储器控制器 (FSMC)

FSMC 接口主要提供了同步或异步存储器接口,支持 SRAM、PSRAM、NOR 及 NAND 等器件。内部 AHB 传输信号被转换成合适的外部通讯协议,允许 8/16/32 位数据的连续访问。并灵活可配置采样延迟时间以满足不同器件时序。

此外, FSMC 也可用于多数图形 LCD 控制器接口, 它支持 Intel 8080 和 Motorola 6800 的模式, 很方便地构建简易的图形应用环境,或用于专用加速控制器的高性能方案。

2.5.16.11 千兆以太网控制器 (MAC, +10M PHY)

产品提供了符合 IEEE 802.3-2002 标准的千兆以太网控制器(MAC), 充当数据链路层的角色, 其 Link 速率最高支持 1Gbps, 支持千兆和百兆及速度自适应, 提供 MII/RMII/RMII 接口连接外置的 PHY 芯片(例如 100Mbps 的工业级物理层芯片 CH182)。应用时, 结合 TCP/IP 协议栈接口实现网络产品的开发。产品还内置了 10Mbps 的以太网 PHY 物理层收发器,单芯片实现以太网通讯。主要特性包括:

- 符合 IEEE 802.3 协议规范及设计
- 提供 RGMII、RMII、MII 接口,连接外置的以太网 PHY 收发器
- 支持全双工操作,支持 10/100/1000Mpps 的数据传输速率
- 硬件自动完成 IPv4 和 IPv6 包完整性校验, IP/ICMP/UDP/TCP 包校验和计算机帧长度填充
- 多种 MAC 地址过滤模式
- SMI 即可对外置 PHY 进行配置和管理
- 已内置 10Mbps 的物理层 PHY, 简化外围电路

2.5.17 通用输入输出接口(GPIO)

系统提供了 5 组 GPI 0 端口, 共 80 个 GPI 0 引脚。每个引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数 GPI 0 引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有的 GPI 0 引脚都有大电流通过能力。提供锁定机制冻结 10 配置,以避免意外的写入 1/0 寄存器。

系统中大部分 I0 引脚电源由 V_{10} 提供,通过改变 V_{10} 供电将改变 I0 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

2.5.18 随机数发生器 (RNG)

产品内置一个随机数发生器,它通过内部的模拟电路提供一个32位的随机数。

2.5.19 运放比较器 (OPA)

产品内置 4 组运算放大器,也可用于比较器,内部选择关联到 ADC 和 TIMc 外设,其输入和输出均可通过更改配置对多个通道进行选择。支持将外部模拟小信号被放大送入 ADC 以实现小信号 ADC 转换,也可以完成信号比较器功能,比较结果由 GPIO 输出或者直接接入 TIMc 的输入通道。

2.5.20 串行 2 线调试接口(2-wire SDI Serial Debug Interface)

内核自带一个串行 2 线调试的接口(SDI),包括 SWDI 0 和 SWCLK 引脚。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭 SDI。

第3章 引脚信息

3.1 引脚排列

3.1.1 互联型 V307

CH32V307RCT6

3.1.2 连接型 V305

CH32V305RBT6

3.1.3 大容量通用型 V303

CH32V303VCT6

CH32V303RxT6 CH32V303CBT6

3.2 引脚描述

表 3-1 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

		引脚		3 12 4 3/2	7, 17,	主与火冰水棚	7,,,,,,	,,,,	7,,5		
TSS0P20	QFN28	L0FP48	LQFP64M	QFN68	LQFP100	引脚 名称	引脚 类型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
18	20	-	-	0	-	VSS	P	-	VSS	-	-
-	ı	1			1	PE2	I/0	FT	PE2	FSMC_A23	TIM10_BKIN_2 TIM10_BKIN_3
-	1	1	1	1	2	PE3	I/0	FT	PE3	FSMC_A19	TI M10_CH1N_2 TI M10_CH1N_3
-	-	ı	-	ı	3	PE4	I/0	FT	PE4	FSMC_A20	TI M1 0_CH2 N_2 TI M1 0_CH2 N_3
-	-	-	-	-	4	PE5	I/0	FT	PE5	FSMC_A21	TI M10_CH3N_2 TI M10_CH3N_3
-	-	ı	-	-	5	PE6	I/0	FT	PE6	FSMC_A22	
-	-	1	1	1	6	$V_{\scriptscriptstyle BAT}$	P	-	$\mathbf{V}_{\mathtt{BAT}}$		
-	-	2	2	2	7	PC13- TAMPER-RTC ⁽²⁾	I/0	_	PC13 ⁽³⁾	TAMPER-RTC	TI MB_CH4_1
-	-	3	3	3	8	PC14- OSC32_IN ⁽²⁾	I/0/A	_	PC14 ⁽³⁾	OSC32_IN	TI M9_CH4_1
-	-	4	4	4	9	PC15- 0SC32_0UT ⁽²⁾	I/0/A	-	PC15 ⁽³⁾	OSC32_OUT	TI M1 O_CH4_1
-	-	1	-	1	10	$\mathbf{V}_{\mathrm{SS}_5}$	P	-	V_{SS_5}		
-	-	1	-	1	11	$V_{ exttt{DD}_5}$	P	-	$V_{\mathtt{DD}_5}$		
19	1	5	5	5	12	OSC_IN	I/A	-	OSC_IN		PD0 ⁽⁴⁾
20	2	6	6	6	13	OSC_OUT	0/A	-	OSC_OUT		PD1 ⁽⁴⁾
1	3	7	7	7	14	NRST	I	-	NRST		
-	-	-	8	8	15	PC0	I/0/A	-	PCO	ADC_IN10 TIM9_CH1N UART6_TX ETH_RGMII_RXC	
_	-	-	9	9	16	PC1	I/0/A	-	PC1	ADC_IN11 TIM9_CH2N UART6_RX ETH_MII_MDC ETH_RMII_MDC ETH_RGMII_RXCTL	
-	4	-	10	10	17	PC2	I/0/A	-	PC2	ADC_IN12 TIM9_CH3N	

		引脚	编号				⊐ l n+n		<u>→</u> +L Δ/:		
TSS0P20	QFN28	LQFP48	LQFP64M	0,FN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										UART7_TX OPA3_CH1N ETH_MI I_TXD2 ETH_RGMI I_RXD0	
1	5	1	11	11	18	PC3	I/0/A	-	PC3	ADC_IN13 TIMIO_CH3 UART7_RX OPA4_CH1N ETH_MII_TX_CLK ETH_RGMII_RXD1	
_	-	8	12	12	19	V _{SSA}	P	-	V _{SSA}		
-	-	-	-	-	20	V _{REF} -	P	-	V _{ref} -		
-	-	-	- 10	- 10	21	V _{REF+}	P	-	V _{REF+}		
-	-	9	13	13	22	V _{DDA}	P	- 	V _{DDA}	WKUP	
-	-	10	14	14	23	PAO-WKUP	I/0/A	-	PAO	USART2_CTS ADC_INO TIM2_CH1 ⁽¹³⁾ TIM2_ETR ⁽¹³⁾ TIM5_CH1 TIM5_CH1 TIM8_ETR OPA4_OUTO ETH_MII_CRS ETH_RGMII_RXD2	TI M2_CH1_2 ⁽¹³⁾ TI M2_ETR_2 ⁽¹³⁾ TI M8_ETR_1
2	7	11	15	15	24	PA1 ⁽¹⁴⁾	I/0/A	-	PA1	USART2_RTS ADC_IN1 TIM5_CH2 TIM2_CH2 OPA3_OUTO ETH_MII_RX_CLK ETH_RMII_REF_CLK ETH_RGMII_RXD3	TI M2_CH2_2 TI M9_BKI N_1
-	-	12	16	16	25	PA2	I/0/A	-	PA2	USART2_TX TI M5_CH3 ADC_I N2 TI M2_CH3 TI M9_CH1 TI M9_ETR OPA2_OUTO ETH_MI I_MDI O	TI M2_CH3_1 TI M9_CH1_1 TI M9_ETR_1

		引脚	编号								
TSS0P20	QFN28	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										ETH_RMII_MDIO ETH_RGMII_GTXC	
-	-	-	-	17	-	V_{10_4}	P	-	V_{10_4}		
-	-	13	17	19	26	PA3	I/0/A	-	PA3	USART2_RX TI M5_CH4 ADC_I N3 TI M2_CH4 TI M9_CH2 OPA1_OUTO ETH_MI I_COL ETH_RGMI I_TXEN	TI M2_CH4_1 TI M9_CH2_1
-	-	-	18	-	27	V_{SS_4}	P	-	V_{SS_4}		
-		-	19	-	28	$V_{\mathtt{DD}_4}$	P	-	V_{DD_4}		
-	7	14	20	20	29	PA4	I/0/A	-	PA4	SPI 1_NSS USART2_CK ADC_I N4 DAC1_OUT TI M9_CH3 DVP_HSYNC	SPI3_NSS_1 I2S3_WS_1 TIM9_CH3_1
2	8	15	21	21	30	PA5 ⁽¹⁴⁾	I/0/A	-	PA5	SPI 1_SCK ADC_I N5 DAC2_OUT OPA2_CH1N DVP_VSYNC	TI M10_CH1N_1 USART1_CTS_2 USART1_CK_3
-	9	16	22	22	31	PA6	I/0/A	-	PA6	SPI 1_MI SO TI MB_BKI N ADC_I N6 TI MB_CH1 OPA1_CH1 N DVP_PCLK	TI MI_BKI N_1 USART1_TX_3 UART7_TX_1 TI MI O_CH2N_1
-	10	17	23	23	32	PA7	I/0/A	-	PA7	SPI 1_MDSI TI M8_CH1N ADC_I N7 TI M8_CH2 OPA2_CH1P ETH_MI I_RX_DV ETH_RMI I_CRS_DV ETH_RGMI I_TXDO	TIMI_CH1N_1 USART1_RX_3 UART7_RX_1 TIMIO_CH3N_1
-	-	-	24	24	33	PC4	I/0/A	-	PC4	ADC_IN14 TIM9_CH4	USART1_CTS_3

		引脚	编号								
TSS0P20	QFN28	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										UART8_TX OPA4_CH1P ETH_MII_RXDO ETH_RMII_RXDO ETH_RGMII_TXD1	
-	ı	-	25	25	34	PC5	I/0/A	-	PC5	ADC_IN15 TIM9_BKIN UART8_RX OPA3_CH1P ETH_MII_RXD1 ETH_RMII_RXD1 ETH_RGMII_TXD2	USART1_RTS_3
-		18	26	26	35	PB0	I/0/A	-	PBO	ADC_I N8 TI MB_CH3 TI MB_CH2N OPA1_CH1P ETH_MI I_RXD2 ETH_RGMI I_TXD3	TI MI_CH2N_1 TI MB_CH3_2 TI MB_CH1N_1 UART4_TX_1
-	-	19	27	27	36	PB1	I/0/A	-	PB1	ADC_I N9 TI MB_CH4 TI MB_CH3N OPA4_CHON ETH_MI I_RXD3 ETH_RGMI I_125I N	TI MI_CH3N_1 TI MB_CH4_2 TI MB_CH2N_1 UART4_RX_1
-	-	20	28	28	37	PB2 ⁽⁵⁾	I/0	FT	PB2 B00T1 ⁽⁵⁾	OPA3_CHON	TI M9_CH3N_1
-	ı	-	-	-	38	PE7	I/0/A	FT	PE7	FSMC_D4 0PA3_0UT1	TIM1_ETR_3
-	ı	ı	-	-	39	PE8	I/0/A	FT	PE8	FSMC_D5 OPA4_OUT1	TIMI_CH1N_3 UART5_TX_2 UART5_TX_3
-	-	-	_	-	40	PE9	I/0	FT	PE9	FSMC_D6	TI M1_CH1_3 UART5_RX_2 UART5_RX_3
-	-	-	-	-	41	PE10	1/0	FT	PE10	FSMC_D7	TI MI_CH2N_3 UART6_TX_2 UART6_TX_3
-	-	-	-	-	42	PE11	I/0	FT	PE11	FSMC_D8	TI M1_CH2_3 UART6_RX_2 UART6_RX_3

		引脚	编号				71040		- \ _ \ \ \ \ \		
TSS0P20	QFN28	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	学型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
-	-	-	-	-	43	PE12	1/0	FT	PE12	FSMC_D9	TI MI_CH3N_3 UART7_TX_2 UART7_TX_3
-	-	-	-	-	44	PE13	I/0	FT	PE13	FSMC_D10	TI M1_CH3_3 UART7_RX_2 UART7_RX_3
-	-	-	-	-	45	PE14	I/0/A	FT	PE14	FSMC_D11 OPA2_OUT1	TI M1_CH4_3 UART8_TX_2 UART8_TX_3
-	-	-	-	-	46	PE15	I/0/A	FT	PE15	FSMC_D12 OPA1_OUT1	TI MI_BKI N_3 UART8_RX_2 UART8_RX_3
3	11	21	29	29	47	PB10	I/0/A	FT	PB10	I 2C2_SCL USART3_TX OPA2_CHON ETH_MI I_RX_ER	TI M2_CH3_2 TI M2_CH3_3 TI M10_BKI N_1
4	12	22	30	30	48	PB11	I/0/A	FT	PB11	I 2C2_SDA USART3_RX OPA1_CHON ETH_MII_TX_EN ETH_RMII_TX_EN	TI M2_CH4_2 TI M2_CH4_3 TI M10_ETR_1
-	1	23	31	18	49	$\mathbf{V}_{\mathrm{SS}_1}$	P		V_{SS_1}		
-	1	ı	32	31	50	$\mathbf{V}_{10_{-1}}$	P		V_{10_1}		
-	-	24	-	-	-	$V_{\mathtt{DD_IO_1}}$	P		$V_{{\scriptscriptstyle DD_I}{\scriptscriptstyle 0}_1}$		
-	1	-	-	32	-	$\mathbf{V}_{\mathtt{DD}_1}$	P		$V_{\mathtt{DD}_1}$		
5	13	25	33	35	51	PB12	I/0/A	FT	PB12	SPI 2_NSS I 2S2_WS I 2C2_SMBA USART3_CK TI MI_BKI N OPA4_CHOP CAN2_RX ETH_MI I_TXDO ETH_RMI I_TXDO ETH_RGMI I_MDC	
6	14	26	34	36	52	PB13	I/0/A	FT	PB13	SPI 2_SCK I 2S2_CK USART3_CTS TI MI_CH1N OPA3_CHOP	USART3_CTS_1

		引脚	编号				71.00) _ (Ak		
TSS0P20	QFN28	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	予期 类型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										CAN2_TX ETH_MII_TXD1 ETH_RMII_TXD1 ETH_RGMII_MDIO	
7	15	27	35	37	53	PB14	I/0/A	FT	PB14	SPI 2_MI SO TI MI_CH2N USART3_RTS OPA2_CHOP SDI 0_DO ⁽⁷⁾	USART3_RTS_1
8	16	28	36	38	54	PB15	I/0/A	FT	PB15	SPI 2_MOSI I 2S2_SD TI MI_CH3N OPA1_CHOP SDI 0_D1 ⁽⁷⁾	USART1_TX_2
-	-	_	-	33	55	PD8	1/0	FT	PD8	FSMC_D13	USART3_TX_3 TI M9_CH1N_2 TI M9_CH1N_3 ETH_MI I_RX_DV_1 ETH_RMI I_CRS_DV_1
-	-	-	-	34	56	PD9	1/0	FT	PD9	FSMC_D14	USART3_RX_3 TI M9_CH1_2 TI M9_ETR_2 TI M9_CH1_3 TI M9_ETR_3 ETH_MI I_RXDO_1 ETH_RMI I_RXDO_1
-	-	-	-	-	57	PD10	1/0	FT	PD10	FSMC_D15	USART3_CK_2 USART3_CK_3 TIM9_CH2N_2 TIM9_CH2N_3 ETH_MII_RXD1_1 ETH_RMII_RXD1_1
-	-	-	-	-	58	PD11	1/0	FT	PD11	FSMC_A16	USART3_CTS_2 USART3_CTS_3 TI M9_CH2_2 TI M9_CH2_3 ETH_MI I _RXD2_1
-	-	-	-	-	59	PD12	I/0	FT	PD12	FSMC_A17	TI M4_CH1_1 TI M9_CH3N_2 TI M9_CH3N_3

		引脚	编号				⊐10+n		→ т ⊥ Δ۲.		
TSS0P20	QFN28	LQFP48	LQFP64M	0,FN68	LQFP100	引脚 名称	引脚 类型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
											USART3_RTS_3 ETH_MII_RXD3 USART3_RTS_2
-	-	-	-	-	60	PD13	1/0	FT	PD13	FSMC_A18	TI M4_CH2_1 TI M9_CH3_2 TI M9_CH3_3
-	-	-	-	-	61	PD14	I/0	FT	PD14	FSMC_DO	TI M4_CH3_1 TI M9_BKI N_2 TI M9_BKI N_3
-	-	-	-	-	62	PD15	1/0	FT	PD15	FSMC_D1	TI M4_CH4_1 TI M9_CH4_2 TI M9_CH4_3
9	-	-	37	39	63	PC6	I/0	FT	PC6	I 2S2_MCK TI MB_CH1 SDI 0_D6 ETH_RXP	TI MB_CH1_3
10	-	-	38	40	64	PC7	1/0	FT	PC7	I 2S3_MCK ^{(11) (16)} TI MB_CH2 SDI O_D7 ETH_RXN	TI MB_CH2_3
11	17	-	39	41	65	PC8	1/0	FT	PC8	TI MB_CH3 SDI O_DO ETH_TXP DVP_D2	TI MB_CH3_3
		-	40	42	66	PC9 ⁽⁶⁾	1/0	FT	PC9	TI MB_CH4 SDI O_D1 ETH_TXN DVP_D3	TI MB_CH4_3
12	18	29	41	43	67	PA8 ⁽⁶⁾	I/0	FT	PA8	USART1_CK TI M1_CH1	USART1_CK_1 USART1_RX_2 TIM1_CH1_1
13	-	30	42	44	68	PA9 ⁽¹⁵⁾	1/0	FT	PA9	USART1_TX TI M1_CH2 OTG_FS_VBUS DVP_D0 SPI 3_MOSI (10) I 2S3_SD (10) (11)	USART1_RTS_2 TI M1_CH2_1
-	-	31	43	45	69	PA10	I/0	FT	PA10	USART1_RX TI M1_CH3	USART1_CK_2 TIM1_CH3_1

		引脚	编号								
TSS0P20	QFN28	L0FP48	LQFP64M	0,FN68	LQFP100	引脚 名称	引脚 类型 ⁽¹⁾	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										OTG_FS_ID DVP_D1	
-		32	44	46	70	PA11	I/0/A	FT	PA11	USART1_CTS CAN1_RX TIM1_CH4 OTG_FS_DM	USART1_CTS_1 TIM1_CH4_1
-		33	45	47	71	PA12	I/0/A	FT	PA12	USART1_RTS CAN1_TX TIM1_ETR TIM10_CH1N OTG_FS_DP	USART1_RTS_1 TIM1_ETR_1
13	19	34	46	48	72	PA13 ⁽¹⁵⁾	I/0	FT	SWDI0	TI MI O_CH2N	PA13 TI M8_CH1N_1 USART3_TX_2
-	-	-	-	-	73		T		7	卡使用 	
_	-	35	47	49	74	V_{SS_2}	P	-	V_{SS_2}		
_	-	36	48	50	75	$V_{ m DD_2}$	P	-	V_{DD_2}		
15	22	37	49	52	76	V _{10_2} PA14	I/0	FT	V _{10_2}	TI M1 O_CH3N	TI MB_CH2N_1 UART8_TX_1 PA14 USART3_RX_2
-	-	38	50	53	77	PA15	1/0	FT	PA15	SPI3_NSS I2S3_WS ⁽¹¹⁾	TIM2_CH1_1 ⁽¹³⁾ TIM2_ETR_1 ⁽¹³⁾ TIM2_ETR_3 ⁽¹³⁾ TIM2_ETR_3 ⁽¹³⁾ SPI 1_NSS_1 TIM8_CH3N_1 UART8_RX_1
-	23	-	51	54	78	PC10	I/0	FT	PC10	UART4_TX SDI 0_D2 TI MI 0_ETR DVP_D8	USART3_TX_1 SPI3_SCK_1 I2S3_CK_1
-	24	-	52	55	79	PC11	1/0	FT	PC11	UART4_RX SDI 0_D3 TI MI 0_CH4 DVP_D4	USART3_RX_1 SPI3_MISO_1
-	25	-	53	56	80	PC12	I/0	FT	PC12	UART5_TX SDIO_CK TIMIO_BKIN	USART3_CK_1 SPI3_MDSI_1 I2S3_SD_1

		引脚	编号								
TSS0P20	QFN28	LQFP48	LQFP64M	QFN68	LQFP100	引脚 名称	学型 (1)	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										DVP_D9	
-	1	-	-	-	81	PDO	I/0/A	FT	PD0	FSMC_D2	CAN1_RX_3 TIM10_ETR_2 TIM10_ETR_3
-	2	ı	-	ı	82	PD1	I/0/A	FT	PD1	FSMC_D3	CAN1_TX_3 TIM10_CH1_2 TIM10_CH1_3
1	26	ı	54	57	83	PD2	I/0	FT	PD2	TIMB_ETR UART5_RX SDIO_CMD DVP_D11 FSMC_NADV ⁽⁹⁾	TI MB_ETR_2 TI MB_ETR_3
-	-	-	-	-	84	PD3	1/0	FT	PD3	FSMC_CLK	USART2_CTS_1 TIMI0_CH2_2 TIMI0_CH2_3
-	-	-	-	-	85	PD4	I/0	FT	PD4	FSMC_NOE	USART2_RTS_1
-	-	1	-	-	86	PD5	1/0	FT	PD5	FSMC_NWE	USART2_TX_1 TI MI 0_CH3_2 TI MI 0_CH3_3
-	-	-	-	-	87	PD6	1/0	FT	PD6	FSMC_NWAIT DVP_D10	USART2_RX_1
-	-	-	-	-	88	PD7	1/0	FT	PD7	FSMC_NE1 FSMC_NCE2	USART2_CK_1 TIM10_CH4_2 TIM10_CH4_3
-	-	39	55	58	89	PB3	I/0	FT	PB3	SPI 3_SCK I 2S3_CK ⁽¹¹⁾ DVP_D5 ⁽⁸⁾	TI M2_CH2_1 TI M2_CH2_3 SPI 1_SCK_1 TI M10_CH1_1
-	-	40	56	59	90	PB4	1/0	FT	PB4	SPI3_MISO	TI MB_CH1_2 SPI 1_MI S0_1 UART5_TX_1 TI MI 0_CH2_1
-	ı	41	57	60	91	PB5	1/0	FT	PB5	I 2C1_SMBA SPI 3_MOSI (10) I 2S3_SD(10) (11) ETH_MI I_PPS_OUT ETH_RMI I_PPS_OUT I 2C1_SCL	TI MB_CH2_2 SPI 1_MDSI_1 CAN2_RX_1 TI MI 0_CH3_1 UART5_RX_1
16	27	42	58	61	92	PB6	I/0	FT	PB6	TI M4_CH1 USBFS_DM	USART1_TX_1 CAN2_TX_1 TI MB_CH1_1

		引脚	编号				⊐ l n+n		<u>→</u> +L Δ½		
TSS0P20	QFN28	L0FP48	LQFP64M	0FN68	LQFP100	引脚 名称	予期 类型	1/0 电平	主功能 (复位 后)	默认复用功能	重映射功能 ⁽¹²⁾
										DVP_D5	
										USBHS_DM	
17	28	43	59	62	93	PB7	1/0	FT	PB7	I 2C1_SDA FSMC_NADV TI M4_CH2 USBFS_DP USBHS_DP	USART1_RX_1 TI MB_CH2_1
-	-	44	60	63	94	B00T0 ⁽⁵⁾	I	-	B00T0 ⁽⁵⁾		
_	-	45	61	64	95	PB8	I/0/A	FT	PB8	TIM4_CH3 SDIO_D4 TIM1O_CH1 DVP_D6 ETH_MII_TXD3	I 2C1_SCL_1 CAN1_RX_2 UART6_TX_1 TI MB_CH3_1
-	-	46	62	65	96	PB9	I/0/A	FT	PB9	TI M4_CH4 SDI 0_D5 TI M1 0_CH2 DVP_D7	I 2C1_SDA_1 CAN1_TX_2 UART6_RX_1 TI M8_BKI N_1
-	-	-	-	66	97	PE0	I/0	FT	PE0	TI M4_ETR FSMC_NBLO	TI M4_ETR_1 UART4_TX_2 UART4_TX_3
-	-	-	-	-	98	PE1	1/0	FT	PE1	FSMC_NBL1	UART4_RX_2 UART4_RX_3
_	-	47	63		99	$V_{\rm SS_3}$	P	-	V _{SS_3}		
-	-	-	64	67	100	V_{10_3}	P	-	V_{10_3}		
-	-	-	-	68	-	$V_{\mathtt{DD}_3}$	P	-	V_{DD_3}		
-	-	48	-		-	V _{DD_IO_3}	P	-	$V_{\mathtt{DD_I0_3}}$		
14	21	-	-	-	-	$\mathbf{V}_{\mathtt{DD}}$	P	-	V _{DD}		
	6	-	-	-	-	V_{10}	P	-	V_{10}		

注1:表格缩写解释:

- I = TTL/CMOS 电平斯密特输入; 0 = CMOS 电平三态输出; A = 模拟信号输入或输出;
- P = 电源; FT = 耐受5V; ANT = 射频信号输入输出(天线)。

注2: 当备份区域由V_{no}(内部模拟开关连到V_{no})供电时: PC14和PC15可用于GPI0或LSE引脚、PC13可作为通用I/0口、TAMPER引脚、RTC校准时钟、RTC同钟或秒输出; 作为输出脚时只能工作在2MH2模式下,最大驱动负载为30pF; 当后备区域由V_{no}(V_{no}消失后模拟开关连到BAT): PC14和PC15只能用于LSE引脚、PC13可作为TAMPER引脚、RTC间钟或秒输出。

注3: 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制(这些寄存器不会被主复位系统所复位)。关于如何控制这些IO口的具体信息,请参考CH32FV2x V3xRMF册的电池备份区域和BKP寄存器的相关章节。

注4: LQFP64M封装的引脚5和引脚6在芯片复位后默认配置为OSC_IM和OSC_OUT功能脚。软件可以重新设置这两个引脚为PD0和PDI功能。但对于LQFP100封装,由于PD0和PDI为固有的功能引脚,因此没有必要

再由软件进行重映射设置。更多详细信息请参考 $CH32FV2x_V3xRM$ 手册的复用功能I/O章节和调试设置章节。

注5: BOOTO引脚未引出的芯片,在内部将下拉到GND。BOOTO引脚引出,但BOOTI/PB2引脚未引出的芯片,内部BOOTI/PB2引脚将下拉到GND。此时如果进入低功耗模式配置IO口状态时,建议BOOTI/PB2引脚使用输入下拉模式防止产生额外电流。

注6:对于CH32V305FBP6和CH32V305GBU6芯片,PA8和PC9引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能,有功耗要求的注意引脚状态。

注7: SDIO_DO和SDIO_DI默认映射到PC8和PC9。仅对于批号倒数第五位大于1的产品,当寄存器
RCC_AHBPCENR的bit[14]ETHMACEN=1与bit[10]SDIOEN=1时,SDIO_DO和SDIO_DI映射到PB14和PB15。
注8: DVP_D5默认映射到PB6。仅对于批号倒数第五位大于1的产品,当寄存器RCC_AHBPCENR的
bit[13]DVPEN=1与bit[11]USBHSEN=1且R8_USB_CTRL的bit[2]RB_UC_RST_SIE=0时,DVP_D5映射到PB3。
注9: FSMC_NADV默认映射到PB7。仅对于批号倒数第五位大于1的产品,当寄存器RCC_AHBPCENR的
bit[8]FSMCEN=1与bit[11]USBHSEN=1且R8_USB_CTRL的bit[2]RB_UC_RST_SIE=0时,FSMC_NADV映射到
PD2。

注10: SPI3_MOSI(I2S3_SD)默认映射到PB5。仅对于批号倒数第五位大于2的产品,当使用SPI3时,如果同时使用10M以太网和SPI3的I2S功能,则SPI3_MOSI(I2S3_SD)默认映射自动改到PA9。

注11: 对于批号倒数第五位为2的产品,当使用以太网时,I2S3默认引脚功能不可用,SPI3默认引脚的 片选信号不可用。

注 12: 重映射功能下划线后的数值表示 AFIO 寄存器中相对应位的配置值。例如: UART4_RX_3 表示 AFIO 寄存器相应位配置为 11b。

注 13: TIM2_CH1 和 TIM2_ETR 共用一个引脚,但不能同时使用。

注14、注15:对于CH32V305FBP6芯片,PA5和PA1引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能;PA9和PA13引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能;有功耗要求的注意引脚状态。

注 $16: I2S3_MCK$ 默认映射到PC7。仅对于批号倒数第五位大于2的产品,如果同时使用10M以太网和I2S3,则 $I2S3_MCK$ 默认映射自动改到PA8。

3.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。 表 3-2 引脚复用和重映射功能

复用 引脚	ADC DAC	TIM 8/9/10	TIM2 3/4/5	UART USART	USB	SYS	I2C	SPI I 2S	ETH	FSMC SDI 0	DVP	OPA	CAN
PAO	ADC_I NO	TIMB_ETR TIMB_ETR_1	TIM2_CH1 TIM2_ETR TIM2_CH1_2 TIM2_ETR_2 TIM5_CH1	USART2_CTS		WKUP			ETH_MII_CRS ETH_RGMII_RXD2			OPA4_OUTO	
PA1	ADC_1N1		TIM2_CH2 TIM2_CH2_2 TIM5_CH2 TIM9_BKIN_1	USART2_RTS					ETH_MII_RX_CLK ETH_RMII_REF_CLK ETH_RGMII_RXD3			OPA3_OUTO	
PA2	ADC_I N2	TIM9_CH1 TIM9_CH1_1 TIM9_ETR TIM9_ETR_1	TI M2_CH3 TI M2_CH3_1 TI M5_CH3	USART2_TX					ETH_MII_MDIO ETH_RMII_MDIO ETH_RGMII_GTXC			OPA2_OUTO	
PA3	ADC_I N3	TI M9_CH2 TI M9_CH2_1	TI M2_CH4 TI M2_CH4_1 TI M5_CH4	USART2_RX					ETH_MII_COL ETH_RGMII_TXEN			OPA1_OUTO	
PA4	ADC_I N4 DAC1_OUT	TI M9_CH3 TI M9_CH3_1		USART2_CK				SPI 1_NSS SPI 3_NSS_1 I 2S3_WS_1			DVP_HSYNC		
PA5	ADC_I N5 DAC2_OUT	TI MI O_CH1 N_1		USART1_CTS_2 USART1_CK_3				SPI 1_SCK			DVP_VSYNC	OPA2_CH1N	
PA6	ADC_I N6	TIMI_BKIN_1 TIMB_BKIN TIMIO_CH2N_1	TI MB_CH1	USART1_TX_3 UART7_TX_1				SPI 1_MI SO			DVP_PCLK	OPA1_CH1N	
PA7	ADC_I N7	TI MI_CH1N_1 TI MB_CH1N TI MI O_CH3N_1	TI MB_CH2	USART1_RX_3 UART7_RX_1				SPI 1_MDSI	ETH_MII_RX_DV ETH_RMII_CRS_DV ETH_RGMII_TXDO			OPA2_CH1P	
PA8		TI MI_CH1 TI MI_CH1_1		USART1_CK USART1_CK_1 USART1_RX_2		MC0		I 2S3_MCK ⁽²⁾					
PA9		TI M1_CH2 TI M1_CH2_1		USART1_TX USART1_RTS_2	OTG_FS_VBUS			SPI 3_MOSI (1) I 2S3_SD (1)			DVP_D0		
PA10		TI M1_CH3 TI M1_CH3_1		USART1_RX USART1_CK_2	OTG_FS_ID						DVP_D1		
PA11		TI M1_CH4 TI M1_CH4_1		USART1_CTS USART1_CTS_1	OTG_FS_DM								CAN1_RX
PA12		TIMI_ETR TIMI_ETR_1 TIMIO_CHIN		USART1_RTS USART1_RTS_1	OTG_FS_DP								CAN1_TX
PA13		TI MB_CH1N_1 TI M1 O_CH2N		USART3_TX_2		SWDI 0							
PA14		TI MB_CH2N_1 TI MI O_CH3N		UART8_TX_1 USART3_RX_2		SWCLK							
PA15		TI MB_CH3N_1	TIM2_CH1_1 TIM2_ETR_1 TIM2_CH1_3 TIM2_ETR_3	UART8_RX_1				SPI 1_NSS_1 SPI 3_NSS I 2S3_WS					
PB0	ADC_I N8	TI MI_CH2N_1 TI MB_CH2N TI M9_CH1N_1	TI MB_CH3 TI MB_CH3_2	UART4_TX_1					ETH_MI I_RXD2 ETH_RGMI I_TXD3			OPA1_CH1P	
PB1	ADC_I N9	TI MI_CH3N_1 TI MB_CH3N TI M9_CH2N_1	TI MB_CH4 TI MB_CH4_2	UART4_RX_1					ETH_MII_RXD3 ETH_RGMII_125IN			OPA4_CHON	
PB2		TI MĐ_CH3N_1				B00T1						OPA3_CHON	
PB3		TI M1 0_CH1_1	TI M2_CH2_1 TI M2_CH2_3					SPI 1_SCK_1 SPI 3_SCK 12S3_CK			DVP_D5		

复用 引脚	ADC DAC	TIM 8/9/10	TIM2 3/4/5	UART USART	USB	SYS	12C	SPI I2S	ЕТН	FSMC SDI 0	DVP	OPA	CAN
PB4		TI M1 0_CH2_1	TI MB_CH1_2	UART5_TX_1				SPI 1_MI SO_1 SPI 3_MI SO					
PB5		TI M1 O_CH3_1	TI MB_CH2_2	UART5_RX_1			I 2C1_SMBA	SPI 1_MOSI_1 SPI 3_MOSI (1) I 2S3_SD ⁽¹⁾	ETH_MII_PPS_OUT ETH_RMII_PPS_OUT				CAN2_RX_1
PB6		TI MB_CH1_1	TI M4_CH1	USART1_TX_1	USBFS_DM USBHS_DM		I2C1_SCL				DVP_D5		CAN2_TX_1
PB7		TI MB_CH2_1	TI M4_CH2	USART1_RX_1	USBFS_DP USBHS_DP		I2C1_SDA			FSMC_NADV			
PB8		TI MB_CH3_1 TI MI O_CH1	TI M4_CH3	UART6_TX_1			I 2C1_SCL_1		ETH_MI I_TXD3	SDI 0_D4	DVP_D6		CAN1_RX_2
PB9		TI MB_BKI N_1 TI MI O_CH2	TI M4_CH4	UART6_RX_1			I2C1_SDA_1			SDI 0_D5	DVP_D7		CAN1_TX_2
PB10		TI M1 O_BKI N_1	TI M2_CH3_2 TI M2_CH3_3	USART3_TX			I2C2_SCL		ETH_MII_RX_ER			OPA2_CHON	
PB11		TI M1 O_ETR_1	TI M2_CH4_2 TI M2_CH4_3	USART3_RX			I 2C2_SDA		ETH_MII_TX_EN ETH_RMII_TX_EN			OPA1_CHON	
PB12		TIM1_BKIN		USART3_CK			I2C2_SMBA	SPI 2_NSS I 2S2_WS	ETH_MII_TXDO ETH_RMII_TXDO ETH_RGMII_MDC			OPA4_CHOP	CAN2_RX
PB13		TI M1_CH1N		USART3_CTS USART3_CTS_1				SPI2_SCK I2S2_CK	ETH_MII_TXD1 ETH_RMII_TXD1 ETH_RGMII_MDIO			OPA3_CHOP	CAN2_TX
PB14		TI M1_CH2N		USART3_RTS USART3_RTS_1				SPI2_MISO		SDI 0_D0		OPA2_CHOP	
PB15		TI M1_CH3N		USART1_TX_2				SPI 2_MOSI I 2S2_SD		SDI O_D1		OPA1_CHOP	
PC0	ADC_IN10	TI M9_CH1N		UART6_TX					ETH_RGMI I _RXC				
PC1	ADC_IN11	TI M9_CH2N		UART6_RX					ETH_MII_MDC ETH_RMII_MDC ETH_RGMII_RXCTL				
PC2	ADC_I N12	TI M9_CH3N		UART7_TX					ETH_MI I _TXD2 ETH_RGMI I _RXD0			OPA3_CH1N	
PC3	ADC_IN13	TI MI O_CH3		UART7_RX					ETH_MII_TX_CLK ETH_RGMII_RXD1			OPA4_CH1N	
PC4	ADC_IN14	TI MĐ_CH4		USART1_CTS_3 UART8_TX					ETH_MII_RXDO ETH_RMII_RXDO ETH_RGMII_TXD1			OPA4_CH1P	
PC5	ADC_IN15	TIM9_BKIN		USART1_RTS_3 UART8_RX					ETH_MII_RXD1 ETH_RMII_RXD1 ETH_RGMII_TXD2			OPA3_CH1P	
PC6		TI MB_CH1	TI MB_CH1_3					I 2S2_MCK	ETH_RXP	SDI 0_D6			
PC7		TI MB_CH2	TI MB_CH2_3					I 2S3_MCK ⁽²⁾	ETH_RXN	SDI 0_D7			
PC8		TI MB_CH3	TI MB_CH3_3						ETH_TXP	SDI 0_D0	DVP_D2		
PC9		TI MB_CH4	TI MB_CH4_3	HCAPTO TV 1				CDLO COV 1	ETH_TXN	SDI 0_D1	DVP_D3		
PC10		TIMIO_ETR		USART3_TX_1 UART4_TX				SPI3_SCK_1 12S3_CK_1		SDI 0_D2	DVP_D8		
PC11		TI M1 O_CH4		USART3_RX_1 UART4_RX				SPI 3_MI SO_1		SDI O_D3	DVP_D4		
PC12		TIM10_BKIN		USART3_CK_1 UART5_TX				SPI3_MDSI_1 I2S3_SD_1		SDI O_CK	DVP_D9		
PC13		TI MB_CH4_1				TAMPER-RTC					ļ		
PC14		TI M9_CH4_1				OSC32_IN							
PC15		TIM10_CH4_1				OSC32_OUT							
PD0		TIMIO_ETR_2 TIMIO_ETR_3				OSC_IN				FSMC_D2			CAN1_RX_3
PD1		TI M1 0_CH1_2 TI M1 0_CH1_3				OSC_OUT				FSMC_D3			CAN1_TX_3

复用	ADC DAC	TIM 8/9/10	TIM2 3/4/5	UART USART	USB	SYS	12C	SPI I2S	ЕТН	FSMC SDI 0	DVP	OPA	CAN
PD2			TIMB_ETR TIMB_ETR_2 TIMB_ETR_3	UART5_RX						SDIO_CMD FSMC_NADV	DVP_D11		
PD3		TI M1 0_CH2_2 TI M1 0_CH2_3		USART2_CTS_1						FSMC_CLK			
PD4				USART2_RTS_1						FSMC_NOE			
PD5		TI M1 0_CH3_2 TI M1 0_CH3_3		USART2_TX_1						FSMC_NWE			
PD6				USART2_RX_1						FSMC_NWAIT	DVP_D10		
PD7		TI M1 0_CH4_2 TI M1 0_CH4_3		USART2_CK_1						FSMC_NE1 FSMC_NCE2			
PD8		TI M9_CH1N_2 TI M9_CH1N_3		USART3_TX_3					ETH_MII_RX_DV_1 ETH_RMII_CRS_DV_1	FSMC_D13			
PD9		TI M9_CH1_2 TI M9_ETR_2 TI M9_CH1_3 TI M9_ETR_3		USART3_RX_3					ETH_MII_RXDO_1 ETH_RMII_RXDO_1	FSMC_D14			
PD10		TI M9_CH2N_2 TI M9_CH2N_3		USART3_CK_3 USART3_CK_2					ETH_MII_RXD1_1 ETH_RMII_RXD1_1	FSMC_D15			
PD11		TI M9_CH2_2 TI M9_CH2_3		USART3_CTS_3 USART3_CTS_2					ETH_MI I _RXD2_1	FSMC_A16			
PD12		TIM9_CH3N_2 TIM9_CH3N_3	TI M4_CH1_1	USART3_RTS_3 USART3_RTS_2					ETH_MI I _RXD3	FSMC_A17			
PD13		TI M9_CH3_2 TI M9_CH3_3	TI M4_CH2_1							FSMC_A18			
PD14		TIM9_BKIN_2 TIM9_BKIN_3	TI M4_CH3_1							FSMC_D0			
PD15		TI M9_CH4_2 TI M9_CH4_3	TI M4_CH4_1							FSMC_D1			
PEO			TIM4_ETR TIM4_ETR_1	UART4_TX_2 UART4_TX_3						FSMC_NBL0			
PE1				UART4_RX_2 UART4_RX_3						FSMC_NBL1			
PE2		TIM10_BKIN_2 TIM10_BKIN_3								FSMC_A23			
PE3		TIM10_CH1N_2 TIM10_CH1N_3								FSMC_A19			
PE4		TI MI O_CH2N_2 TI MI O_CH2N_3								FSMC_A20			
PE5		TI M1 0_CH3 N_2 TI M1 0_CH3 N_3								FSMC_A21			
PE6										FSMC_A22			
PE7		TI MI_ETR_3								FSMC_D4		OPA3_OUT1	
PE8		TI M1_CH1N_3		UART5_TX_2 UART5_TX_3						FSMC_D5		0PA4_0UT1	
PE9		TI MI_CH1_3		UART5_RX_2 UART5_RX_3						FSMC_D6			
PE10		TI M1_CH2N_3		UART6_TX_2 UART6_TX_3						FSMC_D7			
PE11		TI MI_CH2_3		UART6_RX_2 UART6_RX_3						FSMC_D8			
PE12		TI M1_CH3N_3		UART7_TX_2 UART7_TX_3						FSMC_D9			
PE13		TI MI_CH3_3		UART7_RX_2 UART7_RX_3						FSMC_D10			
PE14		TI MI_CH4_3		UART8_TX_2 UART8_TX_3						FSMC_D11		OPA2_OUT1	
PE15		TIM1_BKIN_3		UART8_RX_2 UART8_RX_3						FSMC_D12		OPA1_OUT1	

注1: SPI3_MOSI(I2S3_SD)默认映射到PB5。仅对于批号倒数第五位大于2的产品,当使用SPI3时,如果同时使用10M以太网和SPI3的I2S功能,则SPI3_MOSI

(I2S3_SD) 默认映射自动改到PA9。

注2: I2S3_MCK默认映射到PC7。仅对于批号倒数第五位大于2的产品,如果同时使用10M以太网和I2S3,则I2S3_MCK默认映射自动改到PA8。

第4章 电气特性

4.1 测试条件

除非特殊说明和标注,所有电压都以Vss为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 $25\,^{\circ}$ C和 $V_{10}=3.3V$ 环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 4-1 常规供电典型电路

4.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 4-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	Ĵ
V_{DD} – V_{SS}	外部主供电电压(包含 VDDA和 VDD)	-0.3	4. 0	V
V_{I0} - V_{SS}	IO 域端供电电压	-0.3	4. 0	V
V_{IN}	FT(耐受 5V)引脚上的输入电压	V _{ss} -0.3	5. 5	V
VIN	其他引脚上的输入电压	Vss-0.3	V _{DD} +0.3	
$ \triangle V_{\mathtt{DD}_{-x}} $	不同主供电引脚之间的电压差		50	mV
$ \triangle V_{I_{0_x}} $	不同 I0 端供电引脚之间的电压差		50	mV
$ \triangle V_{SS_x} $	不同接地引脚之间的电压差		50	mV
V	ESD 静电放电电压(人体模型,非接触式)	4K		V
V _{ESD (HBM)}	USB 引脚(PA11、PA12)	3K		V
I _{VDD}	经过 VDD/VDDA/VIO 电源线的总电流(供应电流)		150	
I_{vss}	经过 Vss 地线的总电流(流出电流)		150	
I_{10}	任意 I/0 和控制引脚上的灌电流		25	mA
110	任意 I/0 和控制引脚上的输出电流		-25	
I INJ(PIN)	NRST 引脚注入电流		+/-5	

	HSE 的 OSC_IN 引脚和 LSE 的 OSC_IN 引脚注入电流	+/-5	
	其他引脚的注入电流	+/-5	
ΣI _{INJ(PIN)}	所有 I0 和控制引脚的总注入电流	+/-25	

4.3 电气参数

4.3.1 工作条件

表 4-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK}	内部 AHB 时钟频率			144	MHz
F _{PCLK1}	内部 APB1 时钟频率			144	MHz
F _{PCLK2}	内部 APB2 时钟频率			144	MHz
$V_{ m DD}$	标准工作电压		2.4	3.6	v
V DD	1767年上17年巴压 	使用 USB 或 ETH	3.0	3.6	V
V_{10}	大部分 I0 引脚输出电压	V ₁₀ 不能高于 V _{DD}	2.4	3.6	V
$ m V_{DDA}$	模拟部分工作电压(未使用 ADC)	V _{DDA} 必须与 V _{IO} 相同, V _{REF+}	2.4	3. 6	v
V DDA	模拟部分工作电压(使用 ADC)	不能高于 V _{DDA} , V _{REF-} 等于 V _{SS}	2.4	3.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$V_{BAT}^{(1)}$	备份单元工作电压	不能大于 Vnn	1.8	3.6	V
T_{A}	环境温度		- 40	85	°C
T_{J}	结温度范围		- 40	105	°C

注: 电池到 VBAT连线要尽可能的短。

表 4-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
t _{VDD}	V _{DD} 上升速率		0	∞	uc /V
	Vm下降速率		30	∞	us/V

4.3.2 内置复位和电源控制模块特性

表 4-4 复位及电压监测(PDR选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0] = 000(上升沿)		2. 39		V
		PLS[2:0] = 000(下降沿)		2. 31		V
		PLS[2:0] = 001(上升沿)		2. 56		V
		PLS[2:0] = 001(下降沿)		2. 48		V
		PLS[2:0] = 010(上升沿)		2. 65		V
		PLS[2:0] = 010(下降沿)		2. 57		V
$\mathbf{V}_{\text{PVD}}^{(1)}$	可编程电压检测器的电	PLS[2:0] = 011(上升沿)		2. 78		V
V PVD	平选择	PLS[2:0] = 011(下降沿)		2. 69		V
		PLS[2:0] = 100(上升沿)		2.89		V
		PLS[2:0] = 100(下降沿)		2. 81		V
		PLS[2:0] = 101(上升沿)		3. 05		V
		PLS[2:0] = 101(下降沿)		2. 96		V
		PLS[2:0] = 110(上升沿)		3. 17		V
		PLS[2:0] = 110(下降沿)		3. 08		V

		PLS[2:0] = 111(上升沿)		3. 31		V
		PLS[2:0] = 111(下降沿)		3. 21		V
$\mathbf{V}_{\mathtt{PVDhyst}}$	PVD 迟滞			0.08		V
W	L由/指由复位评估	上升沿	1.9	2. 2	2. 4	V
V _{POR/PDR}	上电/掉电复位阈值	下降沿	1.9	2. 2	2. 4	V
VPDRhyst	PDR 迟滞			20		mV
+	上电复位		16	28	30	mS
T _{RSTTEMPO}	其他复位		2	10	30	IID

注: 常温测试值。

4.3.3 内置的参考电压

表 4-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V_{refint}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 17	1. 2	1. 23	V
т	当读出内部参考电压				17. 1	nc.
1 S_vrefint	时,ADC 的采样时间				17.1	us

4.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 4-2 电流消耗测量

微控制器处于下列条件:

常温 V_{DD} = 3. 3V 情况下,测试时: 所有 IO 端口配置下拉输入, HSE 或 HSI 只开 1 个, HSE=8M, HSI=8M (已校准), F_{PLCKI} = F_{HCLK} /2, F_{PLCKZ} = F_{HCLK} , 当 F_{HCLK} >8MHz 时, PLL 打开。使能或关闭所有外设时钟的功耗。

表 4-6 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

符号	会 数		参数条件		典型	単位
1寸写	多数	また。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		使能所有外设	关闭所有外设 ^②	半亚
			$F_{HCLK} = 144 MHz$	22. 4	12. 4	
	\= \= \ + + + + - + + + + + + + + + + + + + + + + + + +		$F_{\text{HCLK}} = 72 \text{MHz}$	11.5	6. 5	
$I_{DD}^{(1)}$	运行模式下的 供应电流	外部时钟	$F_{\text{HCLK}} = 48 \text{MHz}$	8.0	4.6	mA
			$F_{\text{HCLK}} = 36 \text{MHz}$	6.4	3.8	
			$F_{\text{HCLK}} = 24 \text{MHz}$	4.4	2.7	

			1	
	$F_{HCLK} = 16MHz$	3. 5	2.3	
	$F_{HCLK} = 8MHz$	1.8	1.3	
	$F_{\text{HCLK}} = 4MHz$	1.3	1.0	
	$F_{HCLK} = 500 \text{KHz}$	0.8	0.7	
	$F_{\text{HCLK}} = 144 \text{MHz}$	22. 1	12. 2	
	$F_{\text{HCLK}} = 72 \text{MHz}$	11.3	6. 3	
上午一方法也如	$F_{\text{HCLK}} = 48 \text{MHz}$	7. 7	4.3	
运行于高速内部	$F_{\text{HCLK}} = 36 \text{MHz}$	5.8	3.3	
RC 振荡器(HSI),	$F_{\text{HCLK}} = 24 \text{MHz}$	4. 1	2.4	
使用 AHB 预分频 以减低频率	$F_{\text{HCLK}} = 16 \text{MHz}$	3.0	1.8	
	$F_{\text{HCLK}} = 8 \text{MHz}$	1.5	1.0	
	$F_{HCLK} = 4MHz$	1.0	0.7	
	$F_{\text{HCLK}} = 500 \text{KHz}$	0.4	0.4	

注: 以上为实测参数。

表 4-7 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM中运行

<i>b</i> b =	⇔ ¥L	<i>₩</i>		典型	型值	* 1~	
符号	参数	条件		使能所有外设	关闭所有外设 ⁽²⁾	单位	
			$F_{\text{HCLK}} = 144 \text{MHz}$	13. 7	3.8		
			$F_{\text{HCLK}} = 72 MHz$	7. 2	2.3		
			$F_{\text{HCLK}} = 48 MHz$	5. 1	1.8		
	外部时钟	$F_{\text{HCLK}} = 36 MHz$	4.0	1.5			
		$F_{\text{HCLK}} \ = \ 24 M\!H\!z$	2.9	1.3			
			$F_{\text{HCLK}} = 16 \text{MHz}$	2. 2	1.1		
	睡眠模式下 的供应电流			$F_{\text{HCLK}} = 8 MHz$	1.4	0.8	
				$F_{\text{HCLK}} = 4MHz$	1.0	0.8	
$I_{DD}^{(1)}$			$F_{\text{HCLK}} = 500 \text{KHz}$	0.7	0.7	mA	
1 DD	(此时外设供 电和时钟保		$F_{\text{HCLK}} = 144 \text{MHz}$	13. 4	3.5	IIA	
	持)		$F_{\text{HCLK}} = 72 \text{MHz}$	6. 9	1.9		
	147	上午一点油中如	$F_{\text{HCLK}} = 48 \text{MHz}$	4.7	1.4		
		运行于高速内部 RC 振荡器 (HSI),	$F_{\text{HCLK}} = 36 \text{MHz}$	3.6	1. 2		
		使用 AHB 预分频	$F_{\text{HCLK}} = 24 \text{MHz}$	2.6	0.9		
		以减低频率	$F_{\text{HCLK}} = 16 \text{MHz}$	1.9	0.7		
		 	$F_{\text{HCLK}} = 8 \text{MHz}$	1.0	0.5		
			$F_{\text{HCLK}} = 4MHz$	0.7	0.4		
			$F_{\text{HCLK}} = 500 \text{KHz}$	0.4	0.3		

注:以上为实测参数。

表 4-8 停止和待机模式下典型的电流消耗

符号	参数	条件	典型值	单位
I _{DD}	停止模式下的供应电流	调压器处于运行模式,低速和高速内部 RC 振荡器及外部振荡器都处于关闭状态(没有独立看门狗) 调压器处于低功耗模式,低速和高速内	110 30	uA

		部 RC 振荡器及外部振荡器都处于关闭		
		状态(没有独立看门狗, PVD 关闭),		
		RAM进入低功耗模式		
		低速内部 RC 振荡器和独立看门狗处于	1.8	
		开启状态,所有 RAM不带电	1.0	
		低速内部 RC 振荡器处于开启状态,独	1.8	
		立看门狗关闭状态,所有 RAM不带电	1. 0	
	一待机模式下的供应电流	LSI/LSE/RTC/IWDG 关闭,	2. 5	
	1分机铁丸下的洪处电流	32K_RAM带电并处于低功耗状态	2. 3	
		LSI/LSE/RTC/IWDG 关闭,	1. 2	
		2K_RAM带电并处于低功耗状态	1. 2	
		LSI/LSE/RTC/IWDG 关闭,	1	
		所有 RAM不带电	1	
	备份区域的供应电流			
$I_{ ext{DD_VBAT}}$	(移除 V _{DD} 和 V _{DDA} ,只使	低速外部振荡器和 RTC 处于开启状态	1.8	
	用 V _{BAT} 供电)			

注:以上为实测参数。

4.3.5 外部时钟源特性

表 4-9 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
$F_{ ext{HSE_ext}}$	外部时钟频率		3	8	25	MHz
V _{HSEH} ⁽¹⁾	OSC_IN 输入引脚高电平电压		0. 8V ₁₀		V ₁₀	V
V _{HSEL} ⁽¹⁾	OSC_IN 输入引脚低电平电压		0		0. 2V ₁₀	V
$C_{in(HSE)}$	OSC_IN 输入电容			5		pF
Duty _(HSE)	占空比			50		%
IL	0SC_IN 输入漏电流				±1	uA

注: 不满足此条件可能会引起电平识别错误。

图 4-3 外部提供高频时钟源电路

表 4-10 来自外部低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
$F_{\text{LSE_ext}}$	用户外部时钟频率			32. 768	1000	KHz
V_{LSEH}	OSC32_IN 输入引脚高电平电压		0. 8V _{DD}		V _{DD}	V
V_{LSEL}	0SC32_IN 输入引脚低电平电压		0		0. 2V _{DD}	V
$C_{in(LSE)}$	0SC32_IN 输入电容			5		pF
Duty _(LSE)	占空比			50		%

I _L 0SC32_IN 输入漏电流			±1	uA
-------------------------------	--	--	----	----

图 4-4 外部提供低频时钟源电路

表 4-11 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fosc_in	谐振器频率		3	8	25	MHz
\mathbf{R}_{F}	反馈电阻			250		kΩ
С	建议的负载电容与对应晶体 串行阻抗 R s	$R_{\text{S}}{=}60\Omega^{(1)}$		30		pF
I_2	HSE 驱动电流	V _{DD} = 3.3V, 20p 负载		0.53		mA
$g_{\scriptscriptstyle m}$	振荡器的跨导	启动		17		mA/V
t _{su(HSE)}	启动时间	Vm稳定,8M晶体		1.5	4	ms

注: 25M晶体 ESR 建议不超过 60 欧,低于 25M可适当放宽。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1=CL2。

图 4-5 外接 8M晶体典型电路

表 4-12 使用一个晶体/陶瓷谐振器产生的低速外部时钟(fise=32.768KHz)

符号	参数	条件	最小值	典型值	最大值	单位
\mathbf{R}_{F}	反馈电阻			5		MΩ
С	建议的负载电容与对应晶体串 行阻抗 R s	R_s < 70k Ω			15	pF
i 2	LSE 驱动电流	VDD = 3.3V		0.35		uA
$g_{\scriptscriptstyle m}$	振荡器的跨导	启动		25. 3		uA/V
$t_{\scriptscriptstyle SU(LSE)}$	启动时间	VDD 是稳定的		800		mS

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CLi=CL2,可选 12pF 左右。

图 4-6 外接 32.768K 晶体典型电路

注: 负载电容 C_L 由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, 其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容,它的典型值是介于 2pF 至 7pF 之间。

4.3.6 内部时钟源特性

表 4-13 内部高速(HSI) RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HSI}	频率(校准后)			8		MHz
Duty _{HSI}	占空比		45	50	55	%
ACCHSI	HSI 振荡器的精度(校准后)	$TA = 0^{\circ}C \sim 70^{\circ}C$	-1.8		1.8	%
ACCHSI	MSI 旅汤台叫相及(牧/田口)	$TA = -40^{\circ}C \sim 85^{\circ}C$	-3.0		2.5	%
$t_{ ext{SU(HSI)}}$	HSI 振荡器启动稳定时间 (1)				8	us
I DD(HSI)	HSI 振荡器功耗		120	180	270	uA

注: 1. 寄存器 RCC CTLR HSION位置 1, 等待 HSIRDY 置 1。

表 4-14 内部低速(LSI) RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
$\mathbf{F}_{ ext{LSI}}$	频率		25	39	60	KHz
Duty	占空比		45	50	55	%
	ICI 振铁器点动移令时间 ⁽¹⁾	LSE 开启		230		us
t _{SU(LSI)}	LSI 振荡器启动稳定时间 (1)	LSE 关闭		5		ms
I DD(LSI)	LSI 振荡器功耗			0.6		uA

注: 1. 寄存器 RCC_RSTSCKR LSION 位置 1, 等待 LSIRDY 置 1。

4.3.7 PLL 特性

表 4-15 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
E	PLL 输入时钟		3	8	25	MHz
$\mathbf{F}_{\mathtt{PLL_IN}}$	PLL 输入时钟占空比		40		60	%
$\mathbf{F}_{\mathtt{PLL_OUT}}$	PLL 倍频输出时钟		18		144 ⁽¹⁾	MHz
t _{lock}	PLL 锁定时间			80	200	us

注:须选择合适倍频,满足PLL输出频率范围。

表 4-16 PLL2 和 PLL3 特性

符号	参数	条件	最小值	典型值	最大值	单位
	PLL 输入时钟		3		25	MHz
F _{PLL_IN}	PLL 输入时钟占空比		40		60	%
F _{PLL_OUT}	PLL 倍频输出时钟		30		75(1)	MHz

\mathbf{F}_{vco}	VCO 输出时钟	60		150	MHz
t _{lock1}	PLL 锁定时间		80	200	us

注:须选择合适倍频,满足PLL输出频率范围。

4.3.8 从低功耗模式唤醒的时间

表 4-17 低功耗模式唤醒的时间(1)

符号	参数	条件	典型值	单位
$t_{wusleep}$	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	2.4	us
	从停止模式唤醒(调压器处于运行模式)	HSI RC 时钟唤醒	23. 1	us
twustop	从停止模式唤醒(调压器为低功耗模式)	调压器从低功耗模式唤醒时间 + HSI RC 时钟唤醒	76. 7	us
twustdby	从待机模式唤醒	LDO 稳定时间 + HSI RC 时钟唤醒 + 代码加载时间 ⁽²⁾ (举例 256K)	8. 9	ms

注: 1. 以上为实测参数;

2. 代码加载时间以当前芯片配置 0 等待运行区域容量和加载配置时钟大小计算可得。

4.3.9 存储器特性

表 4-18 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
$\mathbf{F}_{ ext{prog}}$	操作频率①	$T_A = -40^{\circ}C \sim 85^{\circ}C$			60	MHz
$t_{\mathtt{prog_page}}$	页(256字节)编程时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		2	2. 5	ms
t _{erase_page}	页(256字节)擦除时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16	20	ms
t _{erase_sec}	扇区(4K 字节)擦除时间	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16	20	ms
V_{prog}	编程电压		2.4		3.6	V

注: flash 的操作频率包括读、编程、擦除, 时钟来自于 HCLK。

表 4-19 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N_{END}	擦写次数	$T_A = 25^{\circ}C$	10K	80K ⁽¹⁾		次
tret	数据保存期限		20			年

注: 实测操作擦写次数, 非担保。

4.3.10 I/0 端口特性

表 4-20 通用 I/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
VIH	标准 I/0 脚,输入高电平电压		0. 41* (V _{DD} - 1. 8)+1. 3		V _{DD} +0.3	V
	FT IO 引脚,输入高电平电压		0. 42* (V _{DD} - 1. 8)+1		5. 5	V
VIL	标准 I/0 脚,输入低电平电压		-0.3		0. 28* (V _{DD} - 1. 8) +0. 6	V
VIL	FT IO 引脚,输入低电平电压		-0.3		$0.32*(V_{DD}-1.8)+0.55$	V

v	标准 I/0 脚施密特触发器电压迟滞		150			J /
$V_{ m hys}$	FT IO 引脚施密特触发器电压迟滞		90			- mV
T	I _{1kg} 输入漏电流	标准 I0 端口			1	
I lkg		FT IO端口			3	uA
$\mathbf{R}_{ ext{PU}}$	弱上拉等效电阻		30	40	50	kΩ
R _{PD}	弱下拉等效电阻		30	40	50	kΩ
C10	I/0 引脚电容			5		pF

输出驱动电流特性

GPIO(通用输入/输出端口)可以吸收或输出多达 $\pm 8mA$ 电流,并且吸收或输出 $\pm 20mA$ 电流(不严格达到 V_{0L}/V_{0H})。在用户应用中,所有 IO 引脚驱动总电流不能超过 4.2 节给出的绝对最大额定值:

表 4-21 输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{OL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀ = 8mA		0.4	v
$V_{ m OH}$	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -0.4		V
Vol	输出低电平,8个引脚吸收电流	CMOS端口, I ₁₀ = 8mA		0.4	v
Voh	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -0.4		V
V_{oL}	输出低电平,8个引脚吸收电流	$I_{10} = 20$ mA		1.0	v
V _{oh}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -1.2		v
V_{oL}	输出低电平,8个引脚吸收电流	$I_{I0} = 6mA$		0.4	v
$V_{ m OH}$	输出高电平,8个引脚输出电流	$2.~4V<~V_{DD}~<2.~7V$	V _{DD} -0.6		V

注:以上条件中如果多个 IO 引脚同时驱动,电流总和不能超过表 4.2 节给出的绝对最大额定值。另外 多个 IO 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 IO 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 4-22 输入输出交流特性

MODEx[1:0] 配置	符号	参数	条件	最小值	最大值	单位
10	$F_{\text{max}(\text{I0})\text{out}}$	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		2	MHz
(2MHz)	$t_{\rm f(I0)out}$	输出高至低电平的下降时间	CI FORE V 9.7.2 CV		125	ns
(\(\lambda \) \(\mathbf{HZ} \)	$t_{\rm r(I0)out}$	输出低至高电平的上升时间	CL=50pF, V _{DD} =2. 7-3. 6V		125	ns
0.1	$F_{\text{max}(\text{I0})\text{out}}$	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		10	MHz
01 (10MHz)	$t_{\rm f(I0)out}$	输出高至低电平的下降时间	CI 50-E V 9 7 9 CV		25	ns
	$t_{\rm r(I0)out}$	输出低至高电平的上升时间	CL=50pF, V _{DD} =2. 7-3. 6V		25	ns
	F _{max(I0) out}	F _{max(10) out} 最大频率	CL=30pF, VDD=2. 7-3. 6V		50	MHz
			CL=50pF, VDD=2. 7-3. 6V		30	MHz
11	_	松山克万瓜中亚的丁咚叶间	CL=30pF, VDD=2. 7-3. 6V		20	ns
(50MHz)	$t_{\scriptscriptstyle{\mathrm{f(I0)}\mathrm{out}}}$	输出高至低电平的下降时间	CL=50pF, VDD=2. 7-3. 6V		5	ns
	_	松山低云言由亚的 L 11 时间	CL=30pF, V _{DD} =2. 7-3. 6V		8	ns
	t _{r(I0) out}	输出低至高电平的上升时间	CL=50pF, V _{DD} =2. 7-3. 6V		12	ns
	+	EXTI 控制器检测到外部信号		10		nc
	t _{ехтірw}	的脉冲宽度		10		ns

4.3.11 NRST 引脚特性

表 4-23 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL(NRST)}	NRST 输入低电平电压		-0.3		0. 28* (V _{DD} -1. 8)+0. 6	V
V _{I H(NRST)}	NRST 输入高电平电压		0. 41*(V _{DD} -1. 8)+1. 3		V _{DD} +0. 3	V
V _{hys(NRST)}	NRST 施密特触发器电压 迟滞		150			mV
$\mathbf{R}_{\mathrm{PU}}^{(1)}$	弱上拉等效电阻		30	40	50	kΩ
$V_{\text{F(NRST)}}$	NRST 输入可被滤波脉宽				100	ns
$V_{\text{NF(NRST)}}$	NRST 输入无法滤波脉宽		300			ns

注:上拉电阻是一个真正的电阻串联一个可开关的 PMOS 实现。这个 PMOS/NMOS 开关的电阻很小 (约占 10%)。

电路参考设计及要求:

图 4-7 外部复位引脚典型电路

4.3.12 TIM定时器特性

表 4-24 TIMx 特性

符号	参数	条件	最小值	最大值	单位
	定时器基准时钟		1		t _{timecle}
t _{res(TIM)}	企 的品类准的钟	$f_{\text{TIMACLK}} = 72 \text{MHz}$	13.9		ns
F_{EXT}	CH1 至 CH4 的定时器外部时钟频率		0	ftimecle/2	MHz
Γ EXT	CMI 主 CM4 时足时备外部时钟频率	$f_{\text{TIMACLK}} = 72 \text{MHz}$	0	36	MHz
$R_{ m esTIM}$	定时器分辨率			16	位
+	当选择了内部时钟时, 16 位计数		1	65536	t _{TI Me} CLK
t _{counter}	器时钟周期	$f_{\text{TIMACLK}} = 72 \text{MHz}$	0.0139	1 3. 9 0 f _{TIMACLE} /2 0 36 16 1 65536	us
+	最大可能的计数			65535	t _{TI MeCLK}
T _{MAX_} COUNT		f _{timecle} = 72MHz		59. 6	s

4.3.13 I2C 接口特性

图 4-8 I2C 总线时序图

表 4-25 I2C 接口特性

<i>ሎ</i> ሉ 🗆	42 ***	标准	I2C	快速 I2C		A A÷
符号	· 参数 	最小值	最大值	最小值	最大值	単位
$t_{\text{w(SCKL)}}$	SCL 时钟低电平时间	4. 7		1. 2		us
$t_{ ext{w(SCKH)}}$	SCL 时钟高电平时间	4. 0		0.6		us
$t_{ ext{SU(SDA)}}$	SDA 数据建立时间	250		100		ns
$t_{\scriptscriptstyle{h(SDA)}}$	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{ ext{f(SDA)}}/t_{ ext{f(SCL)}}$	SDA 和 SCL 下降时间		300			ns
$t_{\scriptscriptstyle h(STA)}$	开始条件保持时间	4. 0		0.6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0.6		us
t _{SU(ST0)}	停止条件建立时间	4. 0		0.6		us
t _{w(ST0: STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	pF

4.3.14 SPI 接口特性

图 4-9 SPI 主模式时序图

图 4-10 SPI 从模式时序图 (CPHA=0)

图 4-11 SPI 从模式时序图 (CPHA=1)

表 4-26 SPI 接口特性

符号	参数	条件	最小值	最大值	单位
£ /+	SPI 时钟频率	主模式		36	MHz
f _{sck} /t _{sck}	SPI 町押拠 件	从模式		36	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C = 30pF		20	ns
t _{su(NSS)}	NSS 建立时间	从模式	2t _{PCLK}		ns
$t_{\text{h(NSS)}}$	NSS 保持时间	从模式	2t _{PCLK}		ns
+ /+	SCK 高电平和低电平时间	主模式, f _{PCLK} = 36MHz, 预分频	40	60	nc
$t_{w(SCKH)}/t_{w(SCKL)}$	2016 同化十州队化十时间	系数=4	40	00	ns
t _{SU(M)}	数据输入建立时间	主模式	5		ns
$t_{\scriptscriptstyle SU(SI)}$	数据制八建业时间	从模式	5		ns
$t_{h(M)}$	** 据检》/2 ** 叶闪	主模式	5		ns
$t_{\mathtt{h}(SI)}$	· 数据输入保持时间 ·	从模式	4		ns
$t_{a(S0)}$	数据输出访问时间	从模式, fpclk = 20MHz	0	1t _{PCLK}	ns
$t_{dis(S0)}$	数据输出禁止时间	从模式	0	10	ns
t _{V(S0)}	数据检束方效时间	从模式 (使能边沿之后)		25	ns
t _{V(MD)}	数据输出有效时间	主模式(使能边沿之后)		5	ns
$t_{\scriptscriptstyle h(S0)}$	*** 据检查	从模式 (使能边沿之后)	15		ns
$t_{h(M)}$	数据输出保持时间 	主模式(使能边沿之后)	0		ns

4.3.15 I2S 接口特性

图 4-12 I2S 总线主模式时序图(飞利浦协议)

图 4-13 I2S 总线从模式时序图(飞利浦协议)

表 4-27 I2S 接口特性

符号	参数	条件	最小值	最大值	单位
f _{ck} /t _{ck}	I2S 时钟频率	主模式		8	MHz
1 CK/ CCK	123 时 钟妙学	从模式		8	MHz
$t_{r(ext{CK})}/t_{ ext{f(CK)}}$	I2S 时钟上升和下降时间	负载电容: C = 30pF		20	ns
$t_{v(Ws)}$	WS 有效时间	主模式		5	ns
t _{su(Ws)}	WS 建立时间	从模式	10		ns
	WS 保持时间	主模式	0		ns
$t_{h(WS)}$	MD 本社中計画	从模式	0		ns
+ /+	SCK 高电平和低电平时间	主模式, f _{PCLK} = 36MHz,	40	60	%
$t_{\text{\tiny W(CKH)}}/t_{\text{\tiny W(CKL)}}$	50% 高电平和低电平时间	预分频系数=4	40	00	70
t _{su(sd_mr)}	数据输入建立时间	主模式	8		ns

$t_{ ext{SU(SD_SR)}}$		从模式	8		ns
$t_{h(SD_MR)}$	*************************************	主模式	5		ns
$t_{\scriptscriptstyle h(SD_SR)}$	数据输入保持时间	从模式	4		ns
$t_{h(SD_MF)}$	数据输出保持时间	主模式(使能边沿之后)		5	ns
$t_{h(SD_ST)}$		从模式(使能边沿之后)		5	ns
t _{V(SD_MF)}	数据输出有效时间	主模式(使能边沿之后)		5	ns
$t_{v(SD_ST)}$		从模式 (使能边沿之后)		4	ns

4.3.16 USB 接口特性

表 4-28 USB 模块特性

符号	参数	条件	最小值	最大值	单位
$V_{\scriptscriptstyle DD}$	USB 操作电压		3. 0	3. 6	V
V_{SE}	单端接收器阈值	$V_{DD} = 3.3V$	1. 2	1. 9	V
Vol	静态输出低电平			0.3	V
V _{oh}	静态输出高电平		2. 8	3. 6	V
V _{HSSQ}	高速压制信息检测阈值		100	150	mV
V _{HSDSC}	高速断开连接检测阈值		500	625	mV
$V_{ m HSOI}$	高速空闲电平		-10	10	mV
$V_{ m HSOH}$	高速数据高电平		360	440	mV
$V_{ ext{HS}0L}$	高速数据低电平		-10	10	mV

4.3.17 SD/MMC 接口特性

图 4-14 SD 高速模式时序图

图 4-15 SD 默认模式时序图

表 4-29 SD/MMC 接口特性

符号	参数	条件	最小值	最大值	单位
fck/tck	数据传输模式下的时钟频率	CL≤30pF		48	MHz
t _{w(CKL)}	时钟低电平时间	CL≤30pF	6		
t _{w(ckh)}	时钟高电平时间	CL≤30pF	6		
$t_{\mathrm{r(CK)}}$	上升时间	CL≤30pF		4	ns
$t_{ m f(CK)}$	下降时间	CL≤30pF		4	
CMD/DAT 输入	(参考 CK)				
t _{ISU}	输入建立时间	CL≤30pF	7		nc
t _{IH}	输入保持时间	CL≤30pF	2		ns
在 MMC 和 SD ?	高速模式下,CMD/DAT 输出(参	参考 CK)			
tov	输出有效时间	CL≤30pF		5	
t _{он}	输出保持时间	CL≤30pF	20		ns
在SD默认模式	式下,CMD/DAT 输出(参考 CK)				
t _{ovp}	输出有效默认时间	CL≤30pF		8	nc
tohd	输出保持默认时间	CL≤30pF	20		ns

4.3.18 FSMC 特性

图 4-16 异步总线复用 PSRAM/NOR 读操作波形

表 4-30 异步总线复用的 PSRAM/NOR 读操作时序

符号	参数	最小值	最大值	单位
t _{W(NE)}	FSMC_NE 低电平时间	7t _{HCLK}		
t _{V(NOE_NE)}	FSMC_NE 低至 FSMC_NOE 低	0		
t _{w(NOE)}	FSMC_NOE 低时间	7t _{HCLK}		
t _{h(NE_NOE)}	FSMC_NOE 高至 FSMC_NE 高保持时间	0		
t _{V(A_NE)}	FSMC_NE 低至 FSMC_A 有效	0	5	
t _{v(NADV_NE)}	FSMC_NE 低至 FSMC_NADV 低	0	5	
t _{W(NADV)}	FSMC_NADV 低时间	t _{HCLK}		
$t_{\scriptscriptstyle h(AD_NADV)}$	FSMC_NADV 高之后 FSMC_AD(地址)有效保持时间	2t _{HCLK}		ns
$t_{h(A_NOE)}$	FSMC_NOE 高之后的地址保持时间	0		
$t_{\scriptscriptstyle h(BL_N0E)}$	FSMC_NOE 高之后的 FSMC_BL 保持时间	0		
t _{V(BL_NE)}	FSMC_NE 低至 FSMC_BL 有效	0	5	
t _{su(data_ne)}	数据至 FSMC_NE 高的建立时间	3t _{HCLK}		
tsu(data_noe)	数据至 FSMC_NOE 高的建立时间	3t _{HCLK}		
t _{h(DATA_NE)}	FSMC_NE 高之后的数据保持时间	0		
t _{h(DATA_NOE)}	FSMC_NOE 高之后的数据保持时间	0		

图 4-17 异步总线复用 PARAM/NOR 写操作波形

表 4-31 异步总线复用 PARAM/NOR 写操作时序

符号	参数	最小值	最大值	单位
t _{W(NE)}	FSMC_NE 低电平时间	5t _{HCLK}		
t _{v(NEW_NE)}	FSMC_NE 低至 FSMC_NWE 低	$3t_{\mathtt{HCLK}}$		
t _{w(NWE)}	FSMC_NWE 低时间	2t _{HCLK}		
$t_{\scriptscriptstyle h(\text{NE_NWE})}$	FSMC_NWE 高至 FSMC_NE 高保持时间	$t_{\mathtt{HCLK}}$		
t _{V(A_NE)}	FSMC_NE 低至 FSMC_A 有效	0	5	
t _{v(NADV_NE)}	FSMC_NE 低至 FSMC_NADV 低	0	5	
tw(NADV)	FSMC_NADV 低时间	$t_{\mathtt{HCLK}}$		ns
$t_{\scriptscriptstyle h(AD_NADV)}$	FSMC_NADV 高之后 FSMC_AD(地址)有效保持时间	2t _{HCLK}		
$t_{h(A_NWE)}$	FSMC_NWE 高之后的地址保持时间	t _{HCLK}		
t _{V(BL_NE)}	FSMC_NE 低至 FSMC_BL 有效	0	5	
$t_{h(BL_NWE)}$	FSMC_NWE 高之后的 FSMC_BL 保持时间	t _{HCLK}		
t _{v(DATA_NADV)}	FSMC_NADV 高至数据保持时间	2t _{HCLK}		
t _{h(DATA_NWE)}	FSMC_NWE 高之后的数据保持时间	t _{HCLK}		

图 4-18 同步总线复用 NOR/PARAM读波形

表 4-32 同步总线复用 NOR/PSRAM读时序

符号	参数	最小值	最大值	单位
t _{W(CLK)}	FSMC_CLK 周期	2thclk		
$t_{ ext{d(CLKL_NEL)}}$	FSMC_CLK低至FSMC_NE低	0	5	
t _{d(CLKH_NEH)}	FSMC_CLK高至FSMC_NE高	0.5t _{HCLK}	0.5t _{HCLK}	
t _{d(CLKL_NADVL)}	FSMC_CLK低至FSMC_NADV低	0	5	
t _{d(CLKL_NADVH)}	FSMC_CLK低至FSMC_NADV高	0	5	
$t_{ ext{d(CLKL_AV)}}$	FSMC_CLK低至FSMC_Ax有效(x = 16…23)	0	5	
t _{d(CLKH_AIV)}	FSMC_CLK高至FSMC_Ax无效(x = 16…23)	0	5	
t _{d(CLKL_NOEL)}	FSMC_CLK低至FSMC_NOE低	2t _{HCLK}		ns
t _{d(CLKH_NOEH)}	FSMC_CLK高至FSMC_NOE高	t _{HCLK}		
t _{d(CLKL_ADV)}	FSMC_CLK低至FSMC_AD[15:0]有效	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK低至FSMC_AD[15:0]无效	0	5	
t _{su(adv_clkh)}	FSMC_CLK高之前FSMC_AD[15:0]有效数据	8		
t _{h(CLKH_ADV)}	FSMC_CLK高之后FSMC_AD[15:0]有效数据	8		
t _{su(nwaitv_clkh)}	FSMC_CLK高之前FSMC_NWAIT有效	6		
t _{h(CLKH_NWAITV)}	FSMC_CLK高之后FSMC_NWAIT有效	2		

图 4-19 同步总线复用 PSRAM写波形

表 4-33 同步总线复用 PSRAM写时序

符号	参数	最小值	最大值	单位
t _{w(clk)}	FSMC_CLK 周期	2t _{HCLK}		
$t_{ ext{d(CLKL_NEL)}}$	FSMC_CLK低至FSMC_NE低	0	5	
t _{d(CLKH_NEH)}	FSMC_CLK高至FSMC_NE高	0.5t _{HCLK}	0.5t _{HCLK}	
t _{d(CLKL_NADVL)}	FSMC_CLK低至FSMC_NADV低	0	5	
t _{d(CLKL_NADVH)}	FSMC_CLK低至FSMC_NADV高	0	5	
t _{d(CLKL_AV)}	FSMC_CLK低至FSMC_Ax有效(x = 16…23)	0	5	
$t_{\tt d(CLKH_AIV)}$	FSMC_CLK高至FSMC_Ax无效(x = 16…23)	0	5	
t _{d(CLKL_NWEL)}	FSMC_CLK低至FSMC_NWE低	0		ns
t _{d(CLKH_NWEH)}	FSMC_CLK高至FSMC_NWE高	0		
$t_{\tiny d(CLKL_ADV)}$	FSMC_CLK低至FSMC_AD[15:0]有效	0	5	
t _{d(CLKL_ADIV)}	FSMC_CLK低至FSMC_AD[15:0]无效	0	5	
t _{d(CLKL_DATA)}	FSMC_CLK低之后FSMC_AD[15:0]有效	2		
t _{su(nwaitv_clkh)}	FSMC_CLK高之前FSMC_NWAIT有效	6		
t _{h(CLKH_NWAITV)}	FSMC_CLK高之后FSMC_NWAIT有效	2		
t _{d(CLKL_NBLH)}	FSMC_CLK低至FSMC_NBL高	2		

NAND 控制器波形和时序

测试条件: NAND 操作区域,选择 16 位数据宽度,使能 ECC 计算电路,512 字节页面大小,其他时序配置为设置寄存器 FSMC_PCR2=0x0002005E, FSMC_PMEM2=0x01020301, FSMC_PATT2=0x01020301。

图 4-20 NAND 控制器读操作波形

图 4-21 NAND 控制器写操作波形

图 4-22 NAND 控制器在通用存储空间的读操作波形

图 4-23 NAND 控制器在通用存储空间的写操作波形

表 4-34 NAND 闪存读写周期的时序特性

符号	参数	最小值	最大值	单位
$t_{ ext{d}(ext{D-NWE})}$	FSMC_NWE 高之前至 FSMC_D[15:0]数据有效	4t _{HCLK}		
$t_{w(NOE)}$	FSMC_NOE低时间	4t _{HCLK}		
$t_{su(\mathtt{D-NOE})}$	FSMC_NOE高之前至FSMC_D[15:0]数据有效	20		
$t_{\mathtt{h(NOE-D)}}$	FSMC_NOE高之后至FSMC_D[15:0]数据有效	15		
$t_{w(NWE)}$	FSMC_NWE低时间	4t _{HCLK}		
$t_{v(ext{NWE-D})}$	FSMC_NWE低至FSMC_D[15:0]数据有效	0		ns
t _{h(NWE-D)}	FSMC_NWE高至FSMC_D[15:0]数据无效	2t _{HCLK}		
t _{d(ALE-NWE)}	FSMC_NWE低之前至FSMC_ALE有效	2t _{HCLK}		
$t_{h(\text{NWE-ALE})}$	FSMC_NWE高至FSMC_ALE无效	2t _{HCLK}		
t _{d(ALE-NOE)}	FSMC_NOE低之前至FSMC_ALE有效	2t _{HCLK}		
t _{h(NOE-ALE)}	FSMC_NOE高至FSMC_ALE无效	4t _{HCLK}		

4.3.19 DVP 接口特性

图 4-24 DVP 时序波形

表 4-35 DVP 接口特性

符号	参数及描述	最小值	最大值	单位
$f_{ ext{\tiny PixCLK}}/t_{ ext{\tiny PixCLK}}$	像素时钟输入频率		144	MHz

Duty _(PixCLK)	像素时钟的占空比	15	%
t _{su(DATA)}	数据建立时间	2. 5	
t _{h(DATA)}	数据保持时间	1	
$t_{\mathrm{su(HSYNC)}}/t_{\mathrm{su(VSYNC)}}$	HSYNC/VSYNC信号输入建立时间	2. 5	ns
$t_{h(HSYNC)}/t_{h(VSYNC)}$	HSYNC/VSYNC信号输入保持时间	1	

4.3.20 千兆以太网接口特性

图 4-25 ETH-SMI 时序波形

表 4-36 以太网 MAC 的 SMI 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
$f_{ ext{MDC}}/t_{ ext{MDC}}$	MDC 时钟频率			2. 5	MHz
$t_{ ext{d}(ext{MDI}0)}$	MDI0写数据的有效时间	0		300	
$t_{su(MDI0)}$	读数据建立时间	10			ns
t _{h(MDI0)}	读数据保持时间	10			

图 4-26 ETH-RMII 信号时序波形

表 4-37 以太网 MAC 信号 RMII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
$t_{\mathrm{su}(\mathtt{RXD})}$	接收数据的建立时间	4			ns

$t_{ih(RXD)}$	接收数据的保持时间	2		
$t_{\mathrm{su}(\mathtt{CRS_DV})}$	载波侦测信号建立时间	4		
t _{ih(CRS_DV)}	载波侦测信号保持时间	2		
t _{d(TXEN)}	传输使能有效延迟时间		16	
$t_{ ext{d(TXD)}}$	数据传输有效延迟时间		16	

图 4-27 ETH-MII 信号时序波形

表 4-38 以太网 MAC 信号 MII 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
t _{su(RXD)}	接收数据的建立时间	10			
$t_{ih(RXD)}$	接收数据的保持时间	10			
t _{su(DV)}	数据有效信号建立时间	10			
t _{ih(DV)}	数据有效信号保持时间	10			
t _{su(ER)}	错误信号建立时间	10			ns
t _{ih(ER)}	错误信号保持时间	10			
t _{d(TXEN)}	传输使能有效延迟时间			16	
t _{d(TXD)}	数据传输有效延迟时间			16	

图 4-28 ETH-RGMII 信号时序波形

表 4-39 以太网 MAC 信号 RGMI I 信号特性

符号	参数及描述	最小值	典型值	最大值	单位
$f_{ ext{TXC}}/t_{ ext{TXC}}$	TXC/RXC 时钟频率	7. 2	8	8.8	
$t_\mathtt{R}$	TXC/RXC上升时间			2. 0	
$t_{\scriptscriptstyle{\mathrm{F}}}$	TXC/RXC下降时间			2. 0	
t _{su(TDATA)}	发送数据建立时间	1. 2	2.0		ns
t _{h(TDATA)}	发送数据保持时间	1. 2	2.0		
t _{su(RDATA)}	输入数据建立时间	1. 2	2.0		
t _{h(RDATA)}	输入数据保持时间	1. 2	2.0		

4.3.21 12 位 ADC 特性

表 4-40 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ ext{DDA}}$	供电电压		2. 4		3. 6	V
$V_{\rm REF+}$	正参考电压	V _{REF+} 不能高于 V _{DDA}	2. 4		V _{DDA}	V
I _{VREF}	参考电流			160	220	uA
I _{DDA}	供电电流			480	530	uA
$\mathbf{f}_{\mathtt{ADC}}$	ADC 时钟频率				14	MHz
fs	采样速率		0. 05		1	MHz
$\mathbf{f}_{\mathtt{TRIG}}$	外部触发频率				16	$1/f_{ m ADC}$
Vain	转换电压范围		0		$V_{\text{REF}+}$	V
R _{AIN}	外部输入阻抗				50	kΩ
$\mathbf{R}_{ ext{ADC}}$	采样开关电阻			0.6	1.5	kΩ
$C_{ m ADC}$	内部采样和保持电容			8		pF
t _{CAL}	校准时间			40		$1/f_{ADC}$
t_{Iat}	注入触发转换时延				2	1/f _{ADC}
$t_{\mathtt{Iatr}}$	常规触发转换时延				2	1/f _{ADC}

t	ts	采样时间	1. 5	239. 5	$1/f_{ADC}$
ts	STAB	上电时间		1	us
to	CONV	总的转换时间(包括采样时间)	14	252	1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大 RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗,使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。 表 4-41 $f_{ADC}=14$ MHz 时的最大 R_{AIN}

T _s (周期)	ts (us)	最大 R _{AIN} (kΩ)
1. 5	0.11	0. 4
7. 5	0. 54	5. 9
13. 5	0. 96	11.4
28. 5	2.04	25. 2
41.5	2.96	37. 2
55. 5	3. 96	50
71. 5	5. 11	无效
239. 5	17. 1	无效

表 4-42 ADC 误差

符号	参数	条件	最小值	典型值	最大值	单位
E0	偏移误差	$f_{PCLK2} = 56$ MHz, $f_{ADC} =$		±2		
ED	微分非线性误差	$14 \text{ MHz}, R_{AIN} < 10$		±0.5	±3	LSB
EL	积分非线性误差	$k \Omega$, $V_{DDA} = 3.3V$		±1	±4	

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 4-29 ADC 典型连接图

图 4-30 模拟电源及退耦电路参考

4.3.22 温度传感器特性

表 4-43 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
$\mathbf{R}_{ ext{TS}}$	温度传感器测量范围		-40		85	°C
A _{TSC}	温度传感器的测量误差			±12		°C
Avg_Sl ope	平均斜率(负温度系数)		3.8	4. 3	4.8	mV/°C
V_{25}	在 25°C时的电压		1.34	1.40	1.46	V
$T_{S_{ m temp}}$	当读取温度时,ADC 采样时间	$f_{ADC} = 14MHz$			17. 1	us

4.3.23 DAC 特性

表 4-44 DAC 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ ext{DDA}}$	供电电压		2.4	3.3	3.6	V
$V_{{ m REF}+}$	正参考电压	VREF+不能高于 VDDA	2.4	3.3	3.6	V
$\mathbf{R}_{\mathrm{L}}^{(1)}$	缓冲器打开时的负载电阻		5			kΩ
$C_{\rm L}^{(1)}$	缓冲器打开时负载电容				50	pF
V _{OUT_MIN} ⁽¹⁾	缓冲器打开,12 位 DAC 转换		0		8	mV
$V_{0UT_MAX}^{(1)}$	发冲部打开,12 位 DAC 转换	$V_{REF+}=3.3V$	3. 29		3.3	V
$V_{ m OUT_MIN}^{(1)}$	│ │缓冲器关闭,12 位 DAC 转换		0		3	mV
V _{OUT_MAX} ⁽¹⁾	该件品大例,12 位 DAC 转换	$V_{REF+}=3.3V$	3. 295		3.3	V
	无负载,输入值 0x800			58		
${ m I}_{ m VREF+}$	无负载, V _{REF+} =3.6V 时, 输入值 0xF1C			194		uA
	│ 无负载,V _{REF+} =3. 6V 时,输入位	直 0x555(最差)		331		
	缓冲器打开无负载,输入值 0x800			170		
${ m I}_{ m DDA}$	缓冲器打开无负载, V _{REF.} =3.6V, 输入值 0xF1C			150		uA
1 DDA	缓冲器打开无负载, V _{REF+} =3.6V 差)	V, 输入值 0x555 (最		170		uA
DNL	微分非线性误差			±2		LSB
I NL	积分非线性误差	经过失调误差和增 益误差校正后		±4		LSB
井 3田	(户场)中坐			±3	±12	mV
失调	│偏移误差 │	V _{REF+} =3. 6V			±10	LSB
增益误差		DAC配置为12位		±0.4		%
放大器增益(1)	开环时放大器的增益	5kΩ的负载(最大)	80	85		dB
+	设置时间(全范围:输入代码	C _{LOAD} \leq 50pF	3 4		4	110
tsettling	从最小值转变为最大值,	R _{LOAD} ≥5kΩ		<u> </u>	4	us

	DAC_OUT 达到其终值的±1 LSB)				
更新速率	当输入代码为较小变化时(从数值i变到i+1LSB),得到正确DAC_OUT的最大频率	$C_{LOAD} \leq 50 pF$ $R_{LOAD} \geq 5k \Omega$		1	MS/s
twakeup	从关闭状态唤醒的时间 (PDV18 从 1 变到 0)	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5kΩ,输入代码介于最小和最大可能数值之间	6. 5	10	us
PSRR+ ⁽¹⁾	供电抑制比(相对于V _{DDA})(静 态直流测量)	没有R _{LOAD} , C _{LOAD} ≤50pF	-100	-75	dB

注:来源设计或仿真非实测。

4.3.24 OPA 特性

表 4-45 OPA 特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ exttt{DDA}}$	供电电压		2. 4	3. 3	3. 6	V
C _{M R}	共模输入电压		0		V _{DDA} -0.9	V
V_{IOFFSET}	输入失调电压			2. 5	8	mV
I_{LOAD}	驱动电流				600	uA
I DDOPAMP	消耗电流	无负载,静态模式		195		uA
$C_{MRR}^{(1)}$	共模抑制比	@1KHz		96		dB
$P_{SRR}^{(1)}$	电源抑制比	@1KHz		86		dB
$A_V^{(1)}$	开环增益	CLOAD=5pF		136		dB
$G_{BW}^{(1)}$	单位增益带宽	CLOAD=5pF		19		MHz
$P_{\rm M}^{(1)}$	相位裕度	C _{LOAD} =5pF		93		
$S_{R}^{(1)}$	压摆率	CLOAD=5pF		8		V/us
twaku P	关闭到唤醒建立时间, 0.1%	输入VDDA/2, CLOAD=5pF, RLOAD=4kΩ			368	ns
R _{LOAD}	电阻性负载		4			kΩ
C_{LOAD}	电容性负载				50	pF
V (2)	高饱和输出电压	R _{LOAD} =4kΩ,输入V _{DDA}	V _{DDA} -45			mV
$V_{0 ext{HSAT}}^{(2)}$		R _{LOAD} =20kΩ,输入V _{DDA}	V _{DDA} - 10			
$ m V_{0LSAT}^{(2)}$	低饱和输出电压	R _{LOAD} =4kΩ,输入0			0. 5	w.V
		R _{LOAD} =20kΩ,输入0			0. 5	- mV
EN ⁽¹⁾	等效输入电压噪声	R_{LOAD} =4k Ω , @1KHz		83		nv
		R_{LOAD} =4k Ω , @10KHz		42		$\frac{\text{nv}}{\sqrt{Hz}}$

注: 1. 来源仿真非实测;

2. 负载电流会限制饱和输出电压。

第5章 封装及订货信息

芯片封装

订货型号	封装形式	塑体宽度	引脚间距	封装说明	出货料盘
CH32V303CBT6	LQFP48	7*7mm	0.5mm	LQFP48(7*7)贴片	托盘
CH32V303RBT6	LQFP64M	10*10mm	0.5mm	LQFP64M(10*10)贴片	托盘
CH32V303RCT6	LQFP64M	10*10mm	0.5mm	LQFP64M(10*10)贴片	托盘
CH32V303VCT6	LQFP100	14*14mm	0.5mm	LQFP100(14*14)贴片	托盘
CH32V305FBP6	TSS0P20	4. 4*6. 5mm	0.65mm	薄小型的 20 脚贴片	塑管
CH32V305GBU6	QFN28	4*4mm	0.4mm	四边无引线 28 脚	托盘
CH32V305RBT6	LQFP64M	10*10mm	0.5mm	LQFP64M(10*10)贴片	托盘
CH32V307RCT6	LQFP64M	10*10mm	0.5mm	LQFP64M(10*10)贴片	托盘
CH32V307WCU6	QFN68X8	8*8mm	0. 4mm	四边无引线 68 脚	托盘
CH32V307VCT6	LQFP100	14*14mm	0.5mm	LQFP100(14*14)贴片	托盘

说明: 1.QFP/QFN 一般默认为托盘。

2. 托盘尺寸:托盘大小一般为统一尺寸,322.6*135.9*7.62,不同封装类型限位孔尺寸有区别,塑管不同封装厂有区别,具体与厂家确认。

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于 ± 0.2 mm 或者 ± 10% 两者中的较大值。

图 5-1 TSSOP20 封装

图 5-2 QFN68X8 封装

图 5-3 QFN28 封装

图 5-4 LQFP48 封装

图 5-5 LQFP64M封装

图 5-6 LQFP100 封装

系列产品命名规则

产品系列

F = 基于 ARM内核, 通用 MCU

V = 基于青稞 RISC-V 内核, 通用 MCU

L = 基于青稞 RISC-V 内核, 低功耗 MCU

X = 基于青稞 RISC-V 内核, 专用架构或特殊 IO

CH32

产品类型

举例:

- 0 = 青稞 V2/V4 内核, 主频@48M
- 1 = MB/青稞 V3/V4 内核, 主频@72M
- 2 = MB/青稞 V4 非浮点内核, 主频@144M
- 3 = 青稞 V4F 浮点内核, 主频@144M

产品子系列

- 03 = 通用型
- 05 = 连接型(USB高速、SDIO、双CAN)
- 07 = 互联型(USB高速、双CAN、以太网、SDIO、FSMC)
- 08 = 无线型(蓝牙 BLE5. X、CAN、USB、以太网)
- 35 = 连接型(USB、USB PD)

引脚数目

J = 8 脚 A = 16 脚

F = 20 脚

G = 28 脚

K = 32 脚

T = 36 脚

C = 48 脚

R = 64 脚

W = 68 脚

V = 100 脚 Z = 144 脚

闪存存储容量

- 4 = 16K 闪存存储器
- 6 = 32K 闪存存储器
- 7 = 48K 闪存存储器
- 8 = 64K 闪存存储器
- B = 128K 闪存存储器
- C = 256K 闪存存储器

封装

T = LQFP

U = QFN

R = QSOP

P = TSSOP

M = SOP

温度范围

- $6 = -40^{\circ} \text{C} \sim 85^{\circ} \text{C}$ (工业级)
- 7 = -40°C~105°C (汽车2级)
- $3 = -40^{\circ}C \sim 125^{\circ}C$ (汽车1级)
- $D = -40^{\circ}C \sim 150^{\circ}C$ (汽车 0 级)