KochkaKV 17092024-192953

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.235	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 5.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Найти точку (см. рисунок 2), соответствующую коэффициенту отражения от нормированного импеданса $z=1.47+3.63\mathrm{i}$.

Рисунок 2 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.338	-169.8	9.669	84.3	0.049	68.2	0.276	-64.1
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
1.6	0.343	-174.9	8.358	80.5	0.054	67.5	0.248	-67.9
1.7	0.346	-177.1	7.877	79.1	0.057	67.3	0.235	-69.7
1.8	0.350	-179.0	7.456	77.7	0.060	67.1	0.225	-71.8
1.9	0.352	178.5	7.048	75.7	0.064	66.6	0.215	-73.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
2.2	0.360	173.8	6.033	72.1	0.072	65.5	0.194	-80.2
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2
2.6	0.364	168.0	5.044	67.3	0.084	63.6	0.176	-88.0
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5

и частоты $f_{\scriptscriptstyle \rm H}=1.7$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=2.4$ $\Gamma\Gamma$ ц.

Найти модуль $s_{11}\,$ в дБ на частоте $f_{\scriptscriptstyle \rm B}\,$.

Варианты ОТВЕТА:

- 1) -22.1 дБ
- 2) 14.8 дБ
- 3) -8.9 дБ
- 4) -14.7 дБ

Задан двухполюсник на рисунке 3, причём $R1 = 37.58 \, \text{Om}$.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 4 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
4.5	0.379	147.5	2.921	48.2	0.140	52.2	0.148	-115.5
5.0	0.383	143.2	2.635	43.5	0.154	49.0	0.137	-121.4
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
6.0	0.396	133.6	2.210	33.9	0.181	42.4	0.105	-136.2
6.5	0.409	128.1	2.044	29.2	0.194	39.0	0.089	-150.0
7.0	0.424	122.5	1.897	24.3	0.206	35.6	0.075	-168.1
7.5	0.446	118.4	1.769	19.8	0.219	32.2	0.072	166.7
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9
8.5	0.503	111.4	1.543	10.6	0.240	24.6	0.127	116.9
9.0	0.534	108.4	1.443	6.5	0.248	21.2	0.179	103.5
9.5	0.564	105.4	1.355	2.8	0.256	18.1	0.238	96.9

и частоты $f_{\mbox{\tiny H}}=5.5$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=8.5$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 3.8 дБ 2) 1.9 дБ 3) 1.7 дБ 4) 6.7 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.346	-161.8	11.790	89.8	0.042	67.1	0.303	-65.9
1.3	0.352	-168.2	9.941	85.5	0.048	66.9	0.266	-70.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.235	-75.3
1.7	0.365	-178.0	7.524	78.6	0.060	65.9	0.211	-80.4
1.9	0.373	177.7	6.731	75.2	0.066	65.3	0.194	-85.6
2.2	0.379	173.2	5.762	71.6	0.075	64.2	0.176	-93.6
2.6	0.383	167.5	4.815	66.9	0.087	62.4	0.162	-102.9
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9

и частоты $f_{\scriptscriptstyle \rm H}=1.1$ ГГц, $f_{\scriptscriptstyle \rm B}=4.0$ ГГц.

Найти развязку на $f_{\scriptscriptstyle \mathrm{B}}$.

Варианты ОТВЕТА:

1) 17.7 дБ 2) 8.9 дБ 3) 13.8 дБ 4) 27.5 дБ