Tutorial 2

(1) Find the CC h parameters in terms of the CE h parameters.

(2) (a) For a CE configuration, what is the maximum value of R_L (load resistance) for which R_i (input impedance) differs by no more than 10 percent of its value at R_L = 0? Transistor parameters are given in table at the end.

(b) What is the maximum value of R_s for which R_o (output resistance) differs by no more than 10 percent of its value for $R_s = 0$?

(3) a) The transistor amplifier shown uses a transistor whose h parameter are given by Transistor parameters are given in table at the end.

. Calculate
$$A_I = {}^{I_O}/{}_{I_i}$$
, A_V , A_{Vs} , R_O , and R_i

(4) For the amplifier shown, using a transistor parameters as given in the table below, compute $A_I = {}^{I_O}/{}_{I_i}$, A_V , A_{VS} , R_O , and R_i

- (6) (a) Find the voltage gain A_{Vs} of the amplifier shown. Take the transistor parameter from the given table.
 - (b) Find R'_{O} , where effective output impedance of the complete system.

(7) For the two-stage amplifier shown calculate, A_V , A_{Vs} , R_i , and R_O' . Neglect the effect of all capacitances. Transistor parameters are same as the table below.

Parameter	CE	CC	СВ
$h_{11} = h_i$	1,100 Ω	1,100 Ω	21.6 Ω
$h_{12} = h_r$	2.5×10^{-4}	~1	2.9×10^{-4}
$h_{21} = h_f$	50	-51	-0.98
$h_{22} = h_0$	24 μA/V	25 µA/V	0.49 µA/V
1/h.	40 K	40 K	2.04 M