Branislav Šobot

NZD matrice i jaki nizovi deljivosti

NZD matrica nad skupom $S = \{x_1, x_2, ..., x_n\}$ se definiše kao matrica $[S] = [a_{ij}]$ gde je $a_{ij} = NZD(x_i, x_j)$. U ovom radu smo posmatrali razne osobine ovakvih matrica. U slučajevima kada je S skup zatvoren za delioce, ili za NZD, prikazali smo rezultate vezane za determinantu matrice [S]. Razmatrane su i opštije matrice, kod kojih se na poziciji (i, j) nalazi $f(NZD(x_i, x_j))$, gde je f neka aritmetička funkcija. Inspirisani razmatranjima u vezi sa NZD matricama, u poslednjem odeljku uvodimo pojam jakih nizova deljivosti, i dokazujemo izvesna tvrđenja za takve nizove.

Uvod

Pojam NZD matrice prvi put se javlja u radu Smitha iz 1876. godine. Naime, u radu autor posmatra skup $E_n = \{1, 2, ..., n\}$ i matricu A dimenzije $n \times n$, koja na polju sa koordinatama i, j ima vrednost NZD(i, j) (Smith 1876). Dokazano je da u tom slučaju važi $\det(A) = \varphi(1) \cdot \varphi(2) \cdot ... \cdot \varphi(n)$, gde je φ Ojlerova funkcija, a napomenuto je da bi analogna formula mogla da važi i kada bismo skup E_n zamenili bilo kojim skupom zatvorenim za delioce. Beslin i Ligh (1989a; 1989b; 1992) su u radovima objavljenim krajem 20. veka razmatrali ovakvo i druga uopštenja rezultata Smitha. Bourque i Ligh (Bourque i Ligh 1993) su posmatrali NZD matrice u kojima na mestu sa koordinatama i, j stoji $f(NZD(x_i, x_j))$, gde je f specifična aritmetička funkcija, dok su x_1, x_2, \ldots, x_n prirodni brojevi.

Cilj ovog rada je prikaz osnovnih rezultata u vezi sa NZD matricama, i primena tih rezultata za izvođenje nekih zanimljivih svojstava tzv. *jakih nizova deljivosti*. Prema tome, rad je organizovan na sledeći način. U drugom odeljku ćemo se prisetiti osnovnih osobina aritmetičkih funkcija, ograničavajući se na one osobine koje ćemo kasnije koristiti. Unutar trećeg odeljka smo izložili najbitnije rezultate vezane za NZD matrice. U četvrtom odeljku razmatramo uopštenje NZD matrica pomoću aritmetičkih funkcija. Najzad, u petom i poslednjem odeljku prikazujemo neke rezultate u vezi sa

Branislav Šobot (1998, učenik 3. razreda Gimnazije "Jovan Jovanović Zmaj" u Novom Sadu

MENTOR: Marko Đikić, Prirodno-matematički fakultet Univerziteta u Nišu posebnom klasom nizova, i navodimo nekoliko mogućnosti za dalja istraživanja na ovu temu.

Na kraju ovog odeljka, uvedimo neke oznake koje ćemo koristiti u ovom radu. Najveći zajednički delilac celih brojeva x i y ćemo jednostavno označavati sa (x, y). Za $S \subseteq \mathbb{N}_0$ kažemo da je zatvoren za delioce (zatvoren za NZD) ako za sve $x \in S$ i $d \mid x$ važi $d \in S$ (ako za sve $x, y \in S$ važi $(x, y) \in S$. Dijagonalnu matricu sa vrednostima $x_1, x_2, ..., x_n$ na dijagonali, tim redom, označavamo sa diag $(x_1, x_2, ..., x_n)$. Ukoliko je A matrica dimenzije $n \times m$, tada sa $(A)_{ij}$ označavamo element matrice A u preseku i-te vrste i j-te kolone. Ukoliko je $m \ge n$, tada $A(k_1, k_2, ..., k_n)$ označava kvadratnu matricu reda n sastavljenu od kolona matrice A sa rednim brojevima $k_1, k_2, ..., k_n$ redom. Sa \sqrt{A} označavamo matricu koja je dobijena korenovanjem svih elemenata matrice A.

Neke osobine aritmetičkih funkcija

Definicija 2.1. Funkcija $f: \mathbb{N} \to \mathbb{C}$ naziva se aritmetička funkcija.

Skup svih aritmetičkih funkcija označavaćemo sa \mathcal{A} , a neki nama važni elementi skupa \mathcal{A} , su:

- a) Jedinična funkcija u(n) = 1
- b) Neutralna funkcija $O(n) = \left\lfloor \frac{1}{n} \right\rfloor = \begin{cases} 1, & n=1\\ 0, & n>1 \end{cases}$
- c) Ojlerova funkcija $\varphi(n)$ označava broj prirodnih brojeva manjih ili jednakih od n koji su uzajamno prosti sa n
 - d) Identička funkcija I(n) = n
 - e) Mebijusova funkcija:

$$\mu(n) = \begin{cases} 1, & n = 1\\ (-1)^k, & n \text{ jednak proizvodu } k \text{ različitih brojeva}\\ 0, & \text{inače} \end{cases}$$

Ojlerova funkcija φ je naročito važna, sa značajnom primenom, recimo, u kriptografiji. Osobine ove funkcije detaljno su proučavane, a jedna od zanimljivih osobina je navedena u teoremi 2.2. Napominjemo da se dokaz ovog i ostalih tvrđenja iznetih u ovom odeljku može naći u radu Andreescu i Andrica (2009).

Teorema 2.2. Za sve
$$n \in \mathbb{N}$$
 važi $\sum_{d|n} \varphi(d) = n$

Binarna operacija u skupu \mathcal{A} opisana u sledećoj definiciji predstavlja jednu od osnovnih operacija nad aritmetičkim funkcijama. Zapravo, snabdeven ovom operacijom, zajedno sa operacijom pokoordinatnog sabiranja, skup \mathcal{A} postaje prsten.

Definicija 2.3. Dirihleova konvolucija dveju aritmetičkih funkcija f i g, sa oznakom f * g, je operacija definisana sa:

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Ukoliko nije drugačije naglašeno, u nastavku rada ćemo podrazumevati da je n proizvoljan prirodan broj, a sve navedene jednakosti važiće za svako n. Možemo lako da primetimo da važi i $(f*g)(n) = \sum_{ab-n} f(a)g(b)$, gde se sumiranje vrši po svim ureženim parovima prirodnih brojeva a i b koji u proizvodu daju n. Ovaj oblik jednakosti koristićemo kada nam bude zgodno. Primera radi, asocijativnost ove operacije bi se utvrdila na sledeći način, koristeći ovaj oblik jednakosti:

$$((f * g) * h)(n) = \sum_{ab=n} (f * g)(a)h(b) = \sum_{ab=n} \left(\sum_{cd=a} f(c)g(d)\right)h(b) =$$

$$= \sum_{abc=n} f(a)g(b)h(c) = \sum_{ab=n} f(a)\left(\sum_{cd=a} g(c)h(d)\right) = \sum_{ab=n} f(a)(g * h)(b) =$$

$$= (f * (g * h))(n)$$

Takođe imamo da za sve $f \in \mathcal{A}$ važi f * O = O * f = f, a komutativnost Dirihleove konvolucije sledi direktno iz definicije. Sledeća teorema opisuje inverzne elemente u strukturi $(\mathcal{A}, *)$.

Teorema 2.4. Za sve funkcije $f \in \mathcal{A}$ za koje je $f(1) \neq 0$ postoji jedinstvena funkcija $f^{-1} \in \mathcal{A}$ (Dirihleov inverz) tako da važi $f * f^{-1} = f^{-1} * f = I$. Štaviše, f^{-1} se može rekurentno odrediti:

$$f^{-1}(-1) = \frac{1}{f(1)}, \ f^{-1}(n) = \frac{-1}{f(1)} \sum_{d|n-d \le 1} f\left(\frac{n}{d}\right) f^{-1}(d)$$

Može se lako dokazati da je:

$$\sum_{d\nmid n} \mu(d) = \left\lfloor \frac{1}{n} \right\rfloor$$

odnosno $\mu * u = O$. Odatle sledi da su funkcije μ i u jedna drugoj Dirihleovi inverzi. Sledeći rezultat se uobičajeno naziva Mebijusova inverzna formula.

Teorema 2.5. Za sve $f, g \in \mathcal{A}$ važi $f = g * u \Leftrightarrow g = f * \mu$.

Mebijusova inverzna formula se može interpretirati i kao:

$$f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} f(d) \mu\left(\frac{n}{d}\right)$$

Pomenimo sada jednu veoma bitnu klasu aritmetičkih funkcija – multiplikativne funkcije.

Definicija 2.6. Funkcija $f \in \mathcal{A}$ je multiplikativna ako za sve $m, n \in \mathbb{N}$ za koje je (m, n) = 1 važi f(mn) = f(m)f(n). Funkcija f je potpuno multiplikativna ako za sve $m, n \in \mathbb{N}$ važi f(mn) = f(m)f(n).

Na primer, funkcije φ i μ su multiplikativne, a O je potpuno multiplikativna. Očigledno je da za multiplikativne funkcije važi da je f(1)=1, osim ako je f(n)=0 za sve $n\in \mathbb{N}$. Lako se može videti da je funkcija $f\in \mathcal{A}$ multiplikativna akko je $f(n)=f(p_1^{\alpha_1})f(p_2^{\alpha_2})\ldots f(p_r^{\alpha_r})$, gde je $n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_r^{\alpha_r}$. Sledeća teorema govori da se operacija konvolucije slaže sa klasom multiplikativnih funkcija.

Teorema 2.7. Neka $f, g \in \mathcal{A}$. Ako su f i g multiplikativne funkcije, onda je i f * g multiplikativna funkcija. Takođe, ako su f i f * g multiplikativne funkcije, onda je i g multiplikativna funkcija.

NZD matrice

U narednoj definiciji opisan je centralni pojam ovog rada.

Definicija 3.1. Neka je $S = \{x_1, x_2, ..., x_n\}$ skup različitih prirodnih brojeva. Kvadratna matrica $[S]=[s_{i,j}]$ reda n u kojoj je $s_{i,j}=(x_i, x_j)$ se naziva NZD matrica skupa S.

Podrazumevaćemo da su elementi skupa S u prirodnom poretku, tj. da je $x_1 < x_2 < \ldots < x_n$. Treba pomenuti da se proizvoljan skup može dopuniti do skupa zatvorenog za delioce. Minimalan skup zatvoren za delioce dobijen dodavanjem elemenata skupu S obeležavaćemo sa S^{FC} .

Teorema 3.2 (Beslin i Ligh 1989a). Neka je $S = \{x_1, x_2, ..., x_n\}$ skup prirodnih brojeva. Tada postoji matrica A čiji su nenula elementi oblika $\sqrt{\varphi(d)}$, $d \in S^{FC}$ za koju važi $[S] = AA^T$.

Dokaz. Neka je $S^{FC} = \{d_1, d_2, ..., d_m\}$ i neka je $A = [a_{ij}]$ matrica dimenzije $n \times m$ gde je $a_{ij} = e_{ij} \sqrt{\varphi(d_{ij})}$, pri čemu je:

$$e_{ij} = \begin{cases} 1, & d_j | x_i \\ 0, & \text{inače} \end{cases}$$

Sa ovakvom matricom A dobijamo traženi rezultat:

$$(AA^{T}) = \sum_{k=1}^{n} a_{ik} a_{jk} = \sum_{k=1}^{n} e_{ik} \sqrt{\varphi(d_{k})} e_{jk} \sqrt{\varphi(d_{k})} =$$

$$= \sum_{d_{k} \mid x_{i}, d_{k} \mid x_{j}} \varphi(d_{k}) = \sum_{d_{k} \mid (x_{i}, x_{j})} \varphi(d_{k}) = (x_{i}, x_{j})$$

gde poslednja jednakost sledi na osnovu teoreme 2.2. ■

Matricu $[e_{ij}]$ dimenzije $n \times m$ čiji su elementi definisani u prethodnom dokazu ćemo označavati sa E i koristiti često u daljem radu. Ako je $\Delta = \operatorname{diag}(\varphi(d_1), \varphi(d_1), ..., \varphi(d_m))$, u prethodnom dokazu smo zapravo pokazali da je $[S] = E\Delta E^{\mathrm{T}}$. Sada možemo da izračunamo determinantu NZD matrice skupova zatvorenih za delioce.

Teorema 3.3 (Smith 1876). Neka je $S = \{x_1, x_2, ..., x_n\}$ skup različitih prirodnih brojeva zatvoren za delioce. Tada je $\det[S] = \varphi(x_1)\varphi(x_1)...\varphi(x_n)$.

Dokaz. Neka su matrice E i Δ definisane kao ranije. Iz uslova teoreme sledi da je $S \equiv S^{FC}$ i matrice E i Δ su kvadratne matrice reda n. Štaviše, matrica E je trougaona, pa joj je determinanta jednaka 1. Iz Koši-Bineove teoreme dobijamo da je:

$$\det([S]) = \det(E)\det(\Delta)\det(E) = \det(\Delta) = \varphi(x_1)\varphi(x_2) \dots \varphi(x_n). \blacksquare$$

Obrnuti smer ove teoreme takođe važi, ali ćemo ga dokazati nešto kasnije. Uzimanjem $S = \{1, 2, ..., n\}$ dobijamo rezultat Smitha $\det([S]) = \varphi(x_1) \cdot \varphi(x_2) \dots \varphi(x_n)$.

Posmatrajmo sada skupove zatvorene za NZD. Za skup $S = \{x_1, x_2, ..., x_n, x_n\}$ x_n } zatvoren za NZD uvedimo oznaku:

$$B(k) = \sum_{\substack{d \mid x_k, \ d \mid x_i, \ i < k}} \varphi(d) \tag{1}$$
 Dokažimo prvo lemu koja će nam pomoći u dokazu glavne teoreme.

Lema 3.4 (Beslin i Ligh 1989b). Neka je $S = \{x_1, x_2, ..., x_n\}$ skup prirodnih brojeva zatvoren za NZD. Onda za sve $i, j \in \{1, 2, ..., n\}$ važi:

$$(x_i, x_j) = \sum_{x_k \mid (x_i, x_j)} B(k) = \sum_{x_k \mid (x_i, x_j)} \sum_{d \mid x_k, d \mid x_{i+1} < k} \varphi(d)$$
 (2)

Dokaz. Iz Teoreme 2.2 znamo da je:

$$(x_i, x_j) = \sum_{\substack{d \mid (x_i, x_j)}} \varphi(d)$$
 Posmatrajmo sume na desnim stranama u jednakostima (2) i (3).

Obeležimo ih sa C i D redom. Članovi tih suma su oblika $\varphi(d)$. Nije teško videti da se za svaki prirodan broj d, $\varphi(d)$ pojavljuje najviše jednom u C. Naime, ako bi postojalo neko d za koje se $\varphi(d)$ pojavljuje najmanje dva puta, onda bi postojali r i k (neka je recimo r < k) za koje $d \mid x_r$ i $d \mid x_k$ gde je knajmanji takav broj, što je očigledna kontradikcija. Ostaje da dokažemo da se $\varphi(d)$ pojavljuje kao sabirak u jednoj sumi akko se pojavljuje u drugoj.

Neka se broj $\varphi(d)$ pojavljuje kao sabirak u C. Tada postoji neko k za koje $x_k | (x_i, x_j)$ i $d | x_k$. Pošto $d | (x_i, x_j)$, onda se $\varphi(d)$ pojavljuje i kao sabirak u D.

Obrnuto, neka se $\varphi(d)$ pojavljuje kao sabirak u D. Tada $d(x_i, x_i)$. Pošto je S skup zatvoren za NZD, postoji $r \le \min\{i,j\}$ tako da je $x_r = (x_i, x_j)$. Tada $d|x_r$. Neka je $k \le r$ najmanji broj za koji $d|x_k$. Koristeći opet zatvorenost skupa za NZD dobijamo da postoji $s \le \min\{k, r\}$ za koji je $x_s = (x_k, x_i)$. Međutim, tada $d|x_s$, pa zbog minimalnosti k mora biti s = k. Tada je $x_k = x_s$ i $x_k | x_i$. Na sličan način se dokaže da $x_k | x_i$. Dakle $x_k | (x_i, x_i)$, pa se $\varphi(d)$ pojavljuje kao sabirak i u *C*. ■

Sada možemo da izračunamo determinantu NZD matrice za skupove zatvorene za NZD.

Teorema 3.5 (Beslin i Ligh 1989*b*). Neka je $S = \{x_1, x_2, ..., x_n\}$ skup prirodnih brojeva zatvoren za NZD. Onda se matrica [S] može zapisati kao [S] = AC, gde je A donja trougaona matrica, a C gornja trougaona matrica. Takođe je $det([S]) = B(1)B(2) \dots B(n)$.

Dokaz. Neka su $A = (a_{ij})$ i $C = (c_{ij})$ definisane sa:

$$a_{ij} = \begin{cases} B(j), & x_j | x_i \\ 0, & \text{inače} \end{cases}, c_{ij} = \begin{cases} 1, & a_{ji} \neq 0 \\ 0, & \text{inače} \end{cases}$$

Sada imamo da je

$$(AC)_{ij} = \sum_{k=1}^{n} a_{ik} c_{kj} = \sum_{x_k \mid (x_i, x_j)} B(k) = (x_i, x_j)$$

Dakle, [S] = AC. Zbog poretka elemenata skupa S, očigledno je da je Adonja trougaona matrica i C gornja trougaona matrica. Zbog det(A) =

= B(1)B(2) ... B(n) i det(C) = 1, iz Koši-Bineove teoreme sledi da je det(S) = B(1)B(2) ... B(n).

Sledeća posledica prethodne teoreme delimično odgovara na pitanje o obrnutom smeru Teoreme 3.3.

Posledica 3.6 (Beslin i Ligh 1989*b*). Neka je $S = \{x_1, x_2, ..., x_n\}$ skup zatvoren za NZD. Tada je skup *S* zatvoren i za delioce akko je det([*S*]) = $\varphi(x_1)\varphi(x_1)$... $\varphi(x_n)$.

Dokaz. Ako je skup *S* zatvoren za delioce, tvrđenje sledi iz teoreme 3.3.

Ako skup *S* nije zatvoren za delioce, onda postoje i i d za koje $d|x_i$ i $d \nmid x_j$. Tada je $B(i) \ge \varphi(x_i) + \varphi(d) > \varphi(x_i)$. Konačno, pošto $B(j) \ge \varphi(x_j)$ važi za sve j, biće:

$$\det([S]) = B(1)B(2) \dots B(n) > \varphi(x_1)\varphi(x_2) \dots \varphi(x_n).$$

Posmatrajmo sada NZD matrice za proizvoljan skup S. Već smo videli da za njih važi da je $S = AA^{T}$, za neku matricu A (teorema 3.2). Prema tome, sledeće tvrđenje sledi direktno.

Teorema 3.7 (Beslin i Ligh 1989*a*) Matrica [S] je pozitivno-definitna.

Koristeći Adamarovu nejednakost i prethodnu teoremu dobijamo da je $\det([S]) \le x_1 x_2 \dots x_n$. Ova granica se može poboljšati kao u narednom tvrđenju.

Teorema 3.8 (Li 1990). Važi
$$\det([S]) \le x_1 x_2 \dots x_n - \frac{n!}{2}$$
.

Dokaz. Dokaz izvodimo indukcijom po n. Za n=2 je $\det([S])=x_1x_2-(x_1,x_2)^2 \le x_1x_2-1=x_1x_2-\frac{2!}{2}$. Pretpostavimo da tvrđenje važi za sve (n-1)-točlane skupove i neka je $S=\{x_1,x_2,...,x_n\}$ proizvoljan skup, $x_1< x_2<...< x_n$, dok je $S'=S\setminus\{x_n\}$. Onda je jasno $n\le x_n$. Tada koristeći Adamarovu nejednakost i indukcijsku hipotezu dobijamo da je:

$$([S]) \le ([S']) \le \left(x_1 x_2 \dots x_{n-1} - \frac{(n-1)!}{2}\right) x^n = x_1 x_2 \dots x_n - \frac{(n-1)! \cdot x^n}{2} \le$$

$$\le x_1 x_2 \dots x_n - \frac{n!}{2}. \blacksquare$$

Eksplicitna formula za računanje determinante proizvoljne matrice [S] se još uvek ne zna. U sledećoj teoremi opisan je način za izračunavanje determinante matrice [S] preko determinanti izvesnih 0,1-matrica.

Teorema 3.9 (Li 1990). Neka je $S=\{x_1,x_2,...,x_n\}$ skup prirodnih brojeva i $S^{FC}=\{x_1,x_2,...,x_m\}, (m\geq n)$ i neka važi $x_{n+1}< x_{n+2}<...< x_m$. Tada je

$$\det([S]) = \sum_{1 \le k_1 < k_2 < \dots < k_n \le m} \det(E(k_1, k_2, \dots, k_n)) \varphi(x_{k_1}) \varphi(x_{k_1}) \dots \varphi(x_{k_n})$$
(4)

Dokaz. Iz Koši-Bineove formule i teoreme 3.2 dobijamo da je:

$$\det([S]) = \det(AA^{T}) = \sum_{1 \le k_1 < k_2 < \dots < k_n \le m} \det(A(k_1, k_2, \dots, k_n))^{2}$$

Ubacivanjem $A = E\sqrt{\Delta}$ dobijamo traženi identitet.

Prethodna formula daje nam najbolju donju granicu za determinantu NZD matrice.

Teorema 3.10 (Li 1990). Važi $\det([S]) \ge \varphi(x_1)\varphi(x_2)...\varphi(x_n)$, pri čemu jednakost važi akko je skup S zatvoren za delioce.

Dokaz. Nejednakost važi jer se izraz na desnoj strani nejednakosti nalazi kao sabirak sume u (4). Već smo dokazali da ako je S zatvoren za delioce, tada je $\det([S]) = \varphi(x_1)\varphi(x_2)\ldots\varphi(x_n)$. Pretpostavimo da S nije skup zatvoren za delioce. To znači da postoji $x_{n+1} \in S^{FC} \setminus S$. Neka je r najmanji prirodan broj za koji $x_{n+1} \mid x_r$. Posmatrajmo matricu $E_1 = E(1, 2, ..., r-1, n+1, r+1, ..., n)$. Ona je po pretpostavci donja trougaona matrica, pa je $\det(E_1) = 1$. Koristeći teoremu 3.9 dobijamo da je:

$$\det([S] \ge \\ \ge \varphi(x_1)\varphi(x_2)...\varphi(x_n) + \varphi(x_1)\varphi(x_2)...\varphi(x_{r-1})\varphi(x_{r+1})...\varphi(x_{n+1}) > \\ > \varphi(x_1)\varphi(x_2)...\varphi(x_n)$$

Dakle ne može biti $[S] = \varphi(x_1)\varphi(x_2)...\varphi(x_n)$ ni u kom drugom slučaju, osim kada je S skup zatvoren za delioce.

Uopštene NZD matrice

Ukoliko je $S = \{x_1, x_2, ..., x_n\}$, u ovom odeljku posmatraćemo matrice koje će na polju sa koordinatama i,j imati vrednost $f((x_i, x_j))$, pri čemu je f neka aritmetička funkcija. Ovakve matrice nazivaćemo aritmetičke NZD matrice nad skupom S i označavaćemo ih sa [f(S)]. Radi jednostavnosti, umesto $f((x_i, x_j))$ pisaćemo $f(x_i, x_j)$. Aritmetičke funkcije koje će se javljati u ovom delu opisane su u narednoj definiciji.

Definicija 4.1. Za dati skup S sa C_S označavamo sledeći podskup skupa \mathcal{A} : $C_S = \{f \in \mathcal{A}: (f * \mu)(d) > 0 \text{ gde postoji za koje } d | x \}$.

Dajemo primer klase funkcija koja će biti sadržana u svakom C_S , za sve skupove S.

Primer 4.2. Neka je $\alpha_s(n) = n^{\varepsilon}$ i neka je $\beta_s(n) = (\alpha_s * \mu)(n) = n^{\varepsilon}$, tada:

$$\beta_{\varepsilon}(n) = (\alpha_{\varepsilon} * \mu)(n) = \sum_{d|n} d^{\varepsilon} * \mu \left(\frac{n}{d}\right)$$

gde $\varepsilon > 0$. Pošto su funkcije α_{ε} i μ multiplikativne, biće i funkcija β_{ε} . Dovoljno je još dokazati da je $\beta_{\varepsilon}(p^r) > 0$ za sve proste brojeve p i prirodne brojeve r. Kako je:

$$\beta_{\varepsilon}(p_r) = \mu(p^r) + p^{\varepsilon}\mu(p^{r-1}) + \ldots + p^{(r-1)\varepsilon}\mu(p) + p^{r\varepsilon}\mu(1) = p^{r\varepsilon} - p^{(r-1)\varepsilon} > 0$$

mora biti $\alpha_{\varepsilon} \in C_s$.

Nije teško videti da je za sve skupove S, klasa C_S zatvorena za sabiranje i za konvoluciju.

Teorema 4.3 (Bourque i Ligh 1993). Neka je $S = \{x_1, x_2, ..., x_n\}$ skup prirodnih brojeva i $f \in C_s$. Tada važe sledeća tvrđenja:

- a [f(S)] je pozitivno-definitna matrica
- b) $(f*\mu)(x_1)(f*\mu)(x_2)...(f*\mu)(x_n) \le \det[f(S)] \le$ $\leq f(x_1) f(x_2) \dots f(x_n)$
- c) $\det[f(S)] = (f * \mu)(x_1)(f * \mu)(x_2)...(f * \mu)(x_n)$ akko je S skup zatvoren za delioce

Dokaz. Neka je $g = f * \mu$, $D = [d_{ij}] = \text{diag}(g(1), g(2), \dots g(m))$, pri čemu je $m = \max\{x_1, x_2, ..., x_n\}$. Označimo sa $\overline{E} = (\overline{e}_{ii})$ matricu dimenzije $n \times m$ gde je:

$$\overline{e}_{ij} = \begin{cases} 1, & j | i \\ 0, & \text{inače} \end{cases}$$

Tada imamo da je:

$$(\overline{E}D\overline{E}^{T})_{ij} = \sum_{k=1}^{m} \left(\sum_{l=1}^{m} \overline{e}_{il} d_{lk}\right) \overline{e}_{jk} = \sum_{k=1}^{m} \overline{e}_{ik} g(k) \overline{e}_{jk} =$$

$$= \sum_{k|(x_{i}, x_{j})} k(k) = f(x_{i}, x_{j}) = ([f(x_{i}, x_{j})])$$

Dakle, $[f(x_i, x_i)] = \overline{E}D\overline{E}^T = AAT$, za $A = \overline{E}\sqrt{D}$. Iz Koši-Bineove formule dobijamo da je:

$$\det[f(x_{i}, x_{j})] = \det(AA^{T}) =$$

$$= \sum_{1 \le k_{1} < k_{2} < \dots < k_{n} \le k_{m}} (\overline{E}(k_{1}, k_{2}, \dots, k_{n}))^{2} g(k_{1}) g(k2) \dots g(k_{n})$$
(5)

Nejednakost $\det[f(x_i, x_i)] \le f(x_1)f(x_2) \dots f(x_n)$ sledi direktno iz Adamarove nejednakosti. Matrica $F = E(x_1, x_2, ..., x_n)$ očigledno je gornja trougaona, pa je det(F) = 1. Odatle je:

$$\det[f(x_i, x_i)] \ge \det(F)g(x_1)g(x_2)...g(x_n) = g(x_1)g(x_2)...g(x_n) > 0$$

Jednakost se dostiže ako je skup S zatvoren za delioce. Ostaje da dokažemo da se jednakost dostiže samo ako je skup S zatvoren za delioce.

Pretpostavimo da skup S nije zatvoren za delioce. Neka je r najmanji broj za koji postoji $d \notin S$ gde $d \mid x_r$. Tada je matrica:

$$G = \overline{E}(x_1, x_2, ..., x_{r-1}, d, x_{r+1}, ..., x_n)$$

gornja trougaona, pa je:

$$\det[f(x_i, x_j)] \ge$$

$$\geq g(x_1)g(x_2)...g(x_n) + g(x_1)g(x_2)...g(x_{r-1})g(d)g(x_{r+1})...g(x_n).$$

Kao što možemo da vidimo, osobine aritmetičkih NZD matrica su veoma slične osobinama NZD matrica. U narednom tvrđenju koristimo konstrukciju opštiju od one navedene u (4):

$$B_f(k) = \sum_{m} (f * \mu)(d)$$

 $B_f(k)=\sum_{\substack{d|x_k,d|x_k,t< k\\ I(n)=n}}(f*\mu)(d)$ Očigledno je $B_I(k)=B(k)$ gde je I(n)=n (vidi teoremu 2.2 i Mebijusovu inverznu formulu).

Teorema 4.4. Neka je $S = \{x_1, x_2, ..., x_n\}$ skup prirodnih brojeva i $f \in C_S$. Ako je S skup zatvoren za NZD, onda je $S = WDW^T$, gde je

 $D = diag(B_f(1), B_f(2), ..., B_f(n))$ i W = E(1, 2, ..., n). Dokaz. Neka je $x_m = (x_i, x_i)$. Imamo da je:

$$(WDW^{T})_{ij} = \sum_{k=1}^{n} e_{ik} e_{jk} B_{f}(k) = \sum_{x_{k} \mid x_{m}} B_{f}(k)$$

Neka $d \mid x_m$ i neka je x_r najmanji za koji $x_r \mid x_m$ i $d \mid x_r$ (može biti r = m). Ako bi bilo $d \mid x_t$ za $t \le r$, onda bi bilo $d \mid (x_r, x_t)$ i $(x_r, x_t) \mid x_m$, pa zbog minimalnosti x_r mora biti r = t. Ako $d \mid x_t$ i $x_t \mid x_m$, mora biti $x_r \le x_t$. Iz prethodno zaključenog imamo da je:

$$(WDW^{\mathsf{T}})_{ij} = \sum_{x_k | x_m} B_f(k) = \sum_{d | (x_i, x_j)} (f * \mu)(d) = f(x_i, x_j)$$

odnosno $WDW^{T} = [f(x_{i}, x_{i})]. \blacksquare$

Pošto je det(W) = 1 kada je skup zatvoren za NZD imamo direktnu posledicu prethodne teoreme (uporediti sa teoremom 3.5).

Posledica 4.5. Neka je $S = \{x_1, x_2, ..., x_n\}$ skup prirodnih brojeva i $f \in C_S$. Ako je S skup zatvoren za NZD, onda je $\det[f(S)] = B_f(1)B_f(2)...B_f(n)$.

Jaki nizovi deljivosti

U ovom odeljku dokazujemo neka tvrđenja u vezi sa jakim nizovima deljivosti, a inspirisani razmatranjima iz prethodnih odeljaka.

Definicija 5.1. Niz prirodnih brojeva $\{x_n\}$ naziva se jak niz deljivosti ako za sve prirodne brojeve m i n važi da je $(x_m, x_n) = x_{(m,n)}$.

Jaki nizovi deljivosti imaju neke zanimljive osobine koje nam daje sledeća lema. Naime, u sledećoj lemi dajemo karakterizaciju jakih nizova deljivosti koji su sastavljeni iz međusobno različitih članova.

Lema 5.2. Niz $\{x_n\}$ je jak niz deljivosti u kome su svaka dva člana međusobno različita, ako i samo ako ispunjava sledeća tri uslova:

- 1) Za sve $n \in \mathbb{N}$ skup $S = \{x_1, x_2, ..., x_n\}$ je zatvoren za NZD
- 2) Za sve $k, l \in \mathbb{N}$, ako $k \mid l$ onda i $x_k \mid x_l$
- 3) Za sve $k, l \in \mathbb{N}$, ako $x_k | x_l$ onda i k | l

Dokaz. Neka je $\{x_n\}$ jak niz deljivosti različitih prirodnih brojeva. Skup $\{x_i: i \in \mathbb{N}\}$ je zatvoren za NZD zbog uslova $(x_m, x_n) = x_{(m,n)}$. Ako $k \mid l$ za neke $k, l \in \mathbb{N}$, onda je $(x_k, x_l) = x_{(k,l)} = x_k$, pa $x_k \mid x_l$. Ako $x_k \mid x_l$ za neke k, $l \in \mathbb{N}$, onda je $x_k = (x_k, x_l) = x_{(k,l)}$. Kako su članovi ovog niza međusobno različiti, zaključujemo da je k = (k, l), tj. $k \mid l$.

Dokažimo sada drugi smer ovog tvrđenja. Neka niz prirodnih brojeva $\{x_n\}$ zadovoljava uslove 1), 2) i 3). Ukoliko bi bilo $x_k = x_l$, iz $x_k | x_l$ bi proizišlo k | l, a iz $x_l | x_k$ bi proizišlo l | k. Dakle, u nizu $\{x_n\}$ ne postoje dva ista broja. Neka su m i n proizvoljni prirodni brojevi i neka je (m, n) = k i $(x_m, x_n) = x_l$ (postojanje sledi iz zatvorenosti za NZD). Tada dobijamo da $x_l | x_m$, odnosno l | m. Slično, l | n, pa l | (m, n) = k. Sa druge strane, imamo da je k | m, pa $x_k | x_m$. Slično, mora da $x_k | x_n$, pa $x_k | (x_n, x_m)$, odnosno k | l. Dakle, mora biti k = l, pa je niz $\{x_n\}$ jak niz deljivosti.

Navedimo sada nekoliko poznatijih jakih nizova deljivosti:

- 1) Identički niz: I(n) = n za sve $n \in \mathbb{N}$
- 2) Fibonavčijev niz: $f_1 = 1$, $f_2 = 1$ i $f_n = f_{n-1} + f_{n-2}$ za n > 2, osim za k = 2 u trećem uslovu definicije 5.1
- 3) $y^n = a^n b^n$ za sve $n \in \mathbb{N}$ gde su a i b uzajamno prosti prirodni brojevi

Sada prikazujemo glavni rezultat u ovom odeljku vezan za jake nizove deljivosti.

Teorema 5.3. Neka je $\{x_n\}$ jak niz deljivosti koji ne sadrži dva jednaka elementa. Tada za sve prirodne brojeve k > 2 važi da je:

$$\sum_{d|x_k,d|x_l,s< k} \varphi(d) = \sum_{d|k} x_d \mu\left(\frac{k}{d}\right)$$
 (6)

Dokaz. Imajući u vidu da je niz $\{x_n\}$ jedna aritmetička funkcija, koristeći ranije uvedene oznake, jednakost (6) možemo napisati u sledećem obliku:

$$B(k) = (x * \mu)(k) \tag{7}$$

Dokazaćemo da jednakost (7) važi za sve prirodne brojeve k > 2. Uzmimo proizvoljne prirodne brojeve m i n takve da je k = (m, n). Pošto je $\{x_n\}$ jak niz deljivosti imamo da je $x_k = (x_m, x_n)$. Iz leme 3.4 i definicije jakog niza deljivosti dobijamo da je:

$$\sum_{d|k} B(d) = \sum_{x_d|x_k} B(d) = \sum_{x_d|(x_m, x_n)} B(d) = (x_m, x_n) = x_k$$

Konačno, koristeći Mebijusovu inverznu teoremu dobijamo traženi rezultat. ■

Zahvaljujući prethodnoj teoremi dobijamo neke zanimljive rezultate vezane za neke specijalne nizove deljivosti.

Primer 5.4. Pošto je Fibonačijev niz jak niz deljivosti, dobijamo da važi sledeća jednakost za sve prirodne brojeve k > 2:

$$\sum_{d|f_k,d|f_t,t< k} \varphi(d) = \sum_{d|k} f_d \mu\left(\frac{k}{d}\right)$$

Primer 5.5. Pošo je identički niz jak niz deljivosti, dobijamo poznatu jednakost $\varphi = I * \mu$:

$$\varphi(k) = \sum_{d \mid k, d \mid l, l < k} \varphi(d) = \sum_{d \mid k} d \mu \left(\frac{k}{d}\right) = (I * \mu)(k)$$

Ova jednakost je ekvivalentna jednakosti u teoremi 2.2, što se dobija primenjujući Mebijusovu inverznu teoremu.

U nastavku pokazujemo da je skup prostih faktora članova jakog niza deljivosti, koji ne sadrži jednake brojeve, obavezno beskonačan. U tu svrhu najpre dokazujemo jedno pomoćno tvrđenje. Uvedimo sledeću oznaku: za dve r-torke nenegativnih celih brojeva $a=(a_1,a_2,\ldots,a_r)$ i $b=(b_1,b_2,\ldots,b_r)$ kažemo da je $a \ge b$ ako za sve $i \in \{1,2,\ldots,n\}$,važi $a_i \ge b_i$.

Lema 5.6. Svaki niz $\{x_n\}$ *r*-torki nenegativnih celih brojeva sadrži rastući podniz, tj. podniz $\{y_n\}$ takav da je $y_{n+1} \ge y_n$ za sve $n \in \mathbb{N}$.

Dokaz. Dokaz vršimo indukcijom po r. Za r=1 imamo dve mogućnosti. Ako je niz $\{x_n\}$ ograničen sa nekim $M \in \mathbb{N}$, onda postoji $k \leq M$ tako da je $x_m = k$ za beskonačno mnogo $m \in \mathbb{N}$, pa možemo uzeti da je $x_m = k$ za sve $n \in \mathbb{N}$. Ako je niz $\{x_n\}$ neograničen onda možemo konstruisati niz $\{yn\}$ rekurzivno na sledeći način. Uzmemo $y_1 = x_1$. Dalje, za sve n > 1, ako je $y_{n-1} = x_m$ nađemo najmanje s > m za koje je $y_{n-1} \leq x_s$ i uzmemo $y_n = x_s$. Poslednji korak je uvek izvodljiv jer je niz $\{x_n\}$ neograničen.

Dokažimo da ako tvrđenje važi za prirodan broj r, da onda važi i za r+1. Neka je $\{x_n\}$ niz (r+1)-torki prirodnih brojeva i neka je $\{z_n\}$ njegov podniz takav da početne r-torke članova niza $\{z_n\}$ čine rastući niz (takav podniz postoji zahvaljujući indukcijskoj hipotezi). Iz niza $\{z_n\}$ možemo izdvojiti podniz $\{y_n\}$ postupkom prikazanim u bazi indukcije tako da članovi na (r+1)-om mestu budu u rastućem poretku. Dobijeni niz $\{y_n\}$ će zadovoljavati traženi uslov.

Sada možemo da dokažemo našu teoremu.

Teorema 5.7. Neka je $\{x_n\}$ jak niz deljivosti koji ne sadrži jednake članove i neka je $P_x = \{p : p \text{ je prost}, p \mid x_a \text{ za neko } a \in \mathbb{N}\}$. Tada je P_x beskonačan skup.

Dokaz. Pretpostavimo suprotno, neka je $P_x = \{p_1, p_2, ..., p_r\}$ gde su $p_1, p_2, ..., p_r$ neki prosti brojevi. Definišimo preslikavanje f: $\mathbf{N} \to \mathbf{N}_0^r$ za svako $n \in \mathbf{N}$ na sledeći način: ako je $x_i = p_1^{\alpha_{1,i}}, p_2^{\alpha_{2,i}}...p_r^{\alpha_{r,i}}$ onda je $f(i) = (\alpha_{1,i}, \alpha_{2,i}, ..., \alpha_{r,i})$. Uvedimo oznaku $z_n = f(n)$. Posmatrajmo njegov beskonačni podniz $y_n = z_{q_n}$, gde q_n predstavlja n-ti prost broj. Koristeći specijalan slučaj prethodne leme dobijamo da iz niza y_n možemo izvući neke y_s i y_t (s < t) za koje je $y_t \ge y_s$. Odatle sledi da je $z_{q_t} \ge y_{q_s}$, odnosno $x_{q_s} \mid x_{q_t}$. Koristeći da je x_n jak niz deljivosti dobijamo da $q_s \mid q_t$. Kontradikcija, jer su q_t i q_s različiti prosti brojevi. \blacksquare

Neka je x_n jak niz deljivosti i označimo sa $S_{x,n} = \{x_1, x_2, ..., x_n\}$. Posmatrajmo sada NZD matricu $[S_{x,n}]$. Pošto je $\{x_n\}$ zatvoren za NZD, iz teoreme 3.5. imamo da je $\det([S_{x,n}]) = B(1)B(1)...B(n)$. Iz teoreme 5.3. dobijamo da je:

$$\det([S_{x,n}]) = (x*\mu)(1)(x*\mu)(2)...(x*\mu)(n)$$

Do tog rezultata se moglo doći i ubacivanjem $S = \{1, 2, ..., n\}$ u posledicu 4.5.

Za kraj, navodimo nekoliko pitanja. Neka je $S = \{x_1, x_2, ..., x_k\}$. Kolika je vrednost determinante NZD matrice skupa S, gde je $\{x_n\}$ proizvoljan aritmetički niz? S obzirom da možemo uspešno izračunati NZD matricu u slučaju kada je $\{x_n\}$ Fibonačijev niz (jer je on jak niz deljivosti), da li se to može izvesti i kada je $\{x_n\}$ proizvoljan niz zadat rekurentnom formulom drugog reda $x_n = px_{n-1} + qx_{n-2}$)? Jasno je da je na prethodno pitanje delom odgovoreno, jer je niz $x_n = a^n - b^n$ jak niz deljivosti za uzajamno proste prirodne brojeve a i b, ali da li se to može proširiti na slično tvrđenje u slučaju kada su a i b iracionalni brojevi čiji su zbir i proizvod racionalni?

Literatura

- Andreescu T., Andrica D., Feng Z. 2006. *Number theory problems from the training of the USA IMO Team*. Boston: Birkhauser
- Andreescu T., Andrica D. 2009. *Number theory: Structures, examples and problems*. Boston: Birkhauser
- Apostol T. M. 1976. *Introduction to analytic number theory*. Springer
- Beslin S., Ligh S. 1989a. Greatest common divisor matrices. *Linear Algebra and its Applications*, **118**: 69.
- Beslin S., Ligh S. 1989b. Another generalisation of Smith's determinant. *Bulletin of the Australian Mathematical Society*, **40** (4): 413.
- Beslin S., Ligh S. 1992. GCD-closed sets and determinants of GCD matrices. *The Fibonacci Quarterly*, **30**: 157.
- Bourque K., Ligh S. 1993. Matrices associated with arithmetical functions. *Linear and Multilinear Algebra*, **34**: 261.
- Ivić A. 1996. *Uvod u analitičku teoriju brojeva*. Sremski Karlovci: Izdavačka kuća Zorana Stojanovića
- Li Z. 1990. The determinants of GCD matrices. *Linear Algebra and its Applications*, **134**: 137.
- Smith H. J. S. 1876. On the Value od a certain arithmetical determinant. *Proceedings of the London Mathematical Society*, 7: 208.

Branislay Šobot

GCD Matrices and Strong Divisibility Sequences

A GCD matrix on the set $S = \{x_1, x_2, ..., x_n\}$ is defined as the matrix $[S] = [a_{ij}]$, where $a_{ij} = GCD(x_i, x_j)$. In this paper we studied different properties of these matrices. In cases where the set S is factor-closed, or GCD-closed, results are shown for the determinant of the matrix [S]. We also considered a more general case of matrices having entries of the form $f(GCD(x_i, x_j))$, where f is some arbitrary arithmetic function. Inspired by GCD matrices, in the last section we define strong divisibility sequences and we prove some properties of these sequences.

