Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций Высшая инженерно-физическая школа

Определение константы диссоциации молекулы нитроуксусной кислоты

Отчет по лабораторной работе \mathbb{N}_{6} , вариант 16

Работу

выполнил:

В. Х. Салманов

Группа:

3430302/60201

Преподаватель:

И. М. Соколов

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2020

Содержание

1. Цель работы		3	
2.	Постановка задач	4	
3.	Теоретическая информация	5	
	3.1. Модель поляризуемого континуума (РСМ)	5	
	3.2. Pacuet pK_a	5	
4.	Результаты	7	
5.	Выводы	8	
6.	Контроль результатов	9	
7.	Приложенные файлы	10	

1. Цель работы

Расчитать pK_a молекулы нитроуксусной кислоты.

2. Постановка задач

Провести оптимизацию нейтральной и депротонированной форм (с отщепленным Н3-атомом) молекулы методом B3LYP/6-31G. Расчитать полную энергию систем с учетом сольватации методом B3LYP/6-311G++(2d,p). Привести следующие результаты:

- значения полной энергии с учетом сольватации и энергию сольватации;
- значение pK_a .

Рисунок 2.1. Молекула нитроуксусной кислоты

3. Теоретическая информация

3.1. Модель поляризуемого континуума (РСМ)

Модели поляризуемого континуума является широко используемым методом в вычислительной химии для моделирования сольватации эффектов. Если бы каждая молекула растворителя рассматривалась отдельно, то вычислительные затраты на моделирования процессов с учетом сольвента росли бы очень сильно. Рассматриваение растворителя в качестве непрерывной поляризуемой среды делает квантовохимические вычисления возможными. Широко используется два типа РСМ: диэлектрический РСМ (D-РСМ), в котором континуум является поляризуемым, и проводниковый РСМ (C-РСМ), в котором континуум является проводником.

Рисунок 3.1. Модель поляризуемого континуума

3.2. Расчет pK_a

Константа диссоциации кислоты (K_a) — константа равновесия реакции диссоциации кислоты на катион водорода и анион кислотного остатка. Чаще вместо самой константы диссоциации K_a используют величину pK_a , которая определяется как отрицательный десятичный логарифм самой константы K_a :

$$pK_a = -\lg\left(K_a\right)$$

Величина pK_a связана с разностью энергий между депротонированной и нейтральной формами $D=E^--E^0$ следующим теоретическим соотношением (при T=293):

$$(pK_a)_T' = \frac{1}{2.3RT} \left(D - \frac{5}{2}RT - 0.41345 \right)$$

где 0.41345 Хатри – энергия сольватации протона в водной среде.

Для получения реального приближенного значения pK_a по полученному значению используются эмпирические соотношения, зависящие от конкретного варианта метода

расчета. В рассматриваемом методе B3LYP/6-31G такое эмпирическое соотношение имеет следующий вид:

$$(pK_a)_T = -6.9 + 0.55 (pK_a)_T'$$

4. Результаты

Для нейтральной и депротонированной форм молекулы была проведена оптимизация методом B3LYP/6-31G. В полученных минимумах были проведены SP-вычисления методом B3LYP/6-311G++(2d,p).

Таблица 4.1 Значения энергии для форм молекулы (в Хартри)

Форма соединения	Полная энергия	Энергия сольватации
	с учетом сольватации	
Нейтральная	-433.538121	-0.019305
Депротонированная	-433.090787	-0.096514

Вычислим значение pK_a .

$$D = E^{-} - E^{0} = 0.447334$$
$$(pK_a)_T = 1.23$$

Экспериментальное значение $pK_a = 1.68^1$

https://pubchem.ncbi.nlm.nih.gov/bioassay/448096#sid=103702226§ion= Version

5. Выводы

Расчитанное значение pK_a отличается от экспериментального на десятые доли единиц. Таким образом, сольватационная модель РСМ достаточно хорошо позволяет теоретически оценить константу диссоциации кислоты.

6. Контроль результатов

- для каждой из рассчитываемых форм минимум энергии действительно найден, о чем свидетельствует наличие в выходном файле слов "EQUILIBRIUM GEOMETRY LOCATED";
- ullet действительно использовались базисы 6-31G при оптимизации и 6-31G++(2d,p) при SP-вычислениях;
- ullet полученное значения pK_a не противоречит здравому смыслу.

7. Приложенные файлы

- struct.mol исходная структура;
- optimized_neutral.mol оптимизированная нейтральная структура;
- optimized_anion.mol оптимизированная депротонированная структура;
- файлы в папке inp файлы на вход GAMESS;
- файлы в папке outp выходные файлы GAMESS.