Independence

Informal and formal definition

Examples

Motivation

$$P(F \mid E) > P(F)$$

$$P(F \mid E) < P(F)$$

$$P(2 | Even) = \frac{1}{3} > \frac{1}{6} = P(2)$$

$$P(2 \mid Odd) = 0 < \frac{1}{6} = P(2)$$

E → probability of F

E > probability of F

$$P(F \mid E) = P(F)$$

$$P(Even | \le 4) = \frac{1}{2} = P(Even)$$

E neither / nor / probability of F

Whether or not E occurs, does not change P(F)

motivation \rightarrow intuitive definition \rightarrow formal

Independence - Intuitive

Events E and F are independent, denoted E I F, if the occurrence of one does not affect the other's probability

$$P(F \mid E) = P(F)$$

$$P(F) = \frac{P(F)}{P(\Omega)}$$
 F as a fraction of Ω

E n F as a fraction of E

Two issues

Asymmetric

Undefined if P(E)=0

Independence - Formal

Informally

$$P(F) = P(F \mid E) \triangleq \frac{P(E \cap F)}{P(E)}$$

Asymmetric

Undefined if P(E)=0

Formally

E and F are independent if $P(E \cap F) = P(E) \cdot P(F)$

Otherwise, dependent

Implies

intuitive def. P(FIE) = P(F) P(EIF) = P(E)

 $P(FI\overline{E}) = P(F)$ $P(EI\overline{F}) = P(E)$

Non-Surprising Independence

Two coins

H₁ First coin heads

 $P(H_1)=\frac{1}{2}$

H₂ Second coin heads

 $P(H_2)=\frac{1}{2}$

H₁∩H₂ Both coins heads

 $P(H_1 \cap H_2) = \frac{1}{4}$

 $P(H_1 \cap H_2) = \frac{1}{4} = P(H_1) \cdot P(H_2)$

 $H_1 \perp H_2$

Not surprising as two separate coins

Can have **#** even for one experiment

Single Die

Three events

Event	Set	Probability		
Prime	{ 2, 3, 5 }	1/2		
Odd	{ 1, 3, 5 }	1/2		
Square	{ 1, 4 }	1/3		

Which pairs are II and II

Intersection	Set	Prob	Product	=?	Independence
Prime n Odd	{ 3, 5 }	1/3	$1/2 \cdot 1/2 = 1/4$	≠	dependent
Prime n Square	Ø	0	$\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$	≠	dependent
Odd n Square	{1}	1/6	$1/2 \cdot 1/3 = 1/6$	=	independent

Three Coins

Three events

Event	Description	Set	Probability
H ₁	first coin heads	{h**}	1/2
H ₂	second coin heads	{ *h* }	1/2
HH	exactly 2 heads in a row	{hht, thh}	1/4

Which pairs are II and II

Intersection	Set	Prob	=?	Product	Independence
H ₁ ∩ H ₂	{hh*}	1/4	=	$1/_2 \cdot 1/_2 = 1/_4$	independent
H ₂ ∩ HH	{hht, thh}	1/4	≠	$\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$	dependent
H ₁ ∩ HH	{hht}	1/8	=	1/2 · 1/4 = 1/8	independent

Independence of Ω and \varnothing

$$\forall A$$

$$P(\Omega \cap A) = P(A) = P(\Omega) \cdot P(A)$$

Ω 11 of any event

A occurring doesn't modify likelihood of Ω

$$\forall A$$

$$P(\varnothing \cap A) = P(\varnothing) = P(\varnothing) \cdot P(A)$$

A occurring doesn't modify likelihood of Ø

Independence

Informal and formal definitions

