Deep Q-Network (DQN)
Training and
Hyperparameter
Analysis

1. Introduction

Deep Q-Networks (DQN) have become a fundamental approach to reinforcement learning by integrating deep neural networks with Q-learning. This report explores how different **batch sizes** and **target update rates** impact the training performance of a DQN agent.

We experiment with four different hyperparameter settings:

- 1. Batch = 8, Target Update = 10
- 2. **Batch = 16, Target Update = 10**
- 3. Batch = 8, Target Update = 3
- 4. Batch = 16, Target Update = 3

The goal is to determine which setting provides the best balance between **learning** stability and performance.

2. Network Architecture

The Deep Q-Network (DQN) used in this experiment follows a **convolutional neural network (CNN) architecture** to process visual input from the environment.

Breakdown of DQN Architecture

DQN Model Summary

Layer Type	Filters/Units	Kernel Size	Activation
Conv2D	32	(8,8)	ReLU
Conv2D	64	(4,4)	ReLU
Conv2D	64	(3,3)	ReLU
Flatten	-	-	-
Dense	512	-	ReLU
Output Layer	6 (Actions)	-	Linear

- Input Shape: (4, 84, 80) → A stacked frame of 4 images from the environment.
- Output: Q-values for 6 possible actions in the environment.
- Optimization Algorithm: Adam (lr = 0.00025).
- Loss Function: Mean Squared Error (MSE).

3. Training Metrics and Observations

We trained the DQN agent with different **batch sizes** and **target update frequencies** to analyze how these parameters affect learning.

The following plot shows how the **total score & Average Reward Over last 5 episodes** evolves over training:

• Observations:

- o Smaller batch sizes (8) seem to result in more fluctuations in scores.
- o Batch = 16 provides smoother learning curves with fewer spikes.
- Target update = 10 leads to better long-term performance, while target update = 3 seems too frequent and introduces instability.

Average Reward Over Last 5 Episodes

To assess **stability**, we track the **moving average reward** over 5 episodes:

Insert average reward graph here

Observations:

- Batch = 8, Update = 3 achieves the highest average reward, indicating faster learning.
- Batch = 16, Update = 10 produces a more stable learning curve, though it converges slightly slower.

Combined Comparisons

We compare all four configurations in one plot:

Observations:

- Frequent target updates (Update = 3) lead to higher variance.
- Larger batch size (Batch = 16) results in more consistent learning.
- Best performing model: Batch = 8, Target Update = 3 (highest reward growth).

4. Best Hyperparameter Choice

After analyzing the results, the best configuration depends on the desired outcome:

- For stability: Batch = 16, Target Update = 10 (consistent learning, low variance).
- For fast learning: Batch = 8, Target Update = 3 (highest average reward, but more variance).

Final Choice:

If we prioritize faster learning and higher rewards, **Batch = 8, Target Update = 3** is the best choice.

5. Conclusion

This study highlights the **trade-offs** between batch size and target network update frequency in DQN training:

- Larger batch sizes lead to smoother learning but can slow convergence.
- Frequent target network updates (update = 3) improve adaptation but increase variance.
- The **best trade-off** is using Batch = 8 with Target Update = 3, which **achieves the highest rewards while maintaining reasonable stability**.