Ελάχιστα Επικαλύπτοντα Δένδρα (Minimum Spanning Trees)

Θα εξετάσουμε απροσανατόλιστα γραφήματα με βάρη.

Υπογράφημα Επικάλυψης (Spanning Subgraph)

Υπογράφημα ενός γραφήματος G που περιέχει όλες τις κορυφές του G.

Δένδρο Επικάλυψης (Spanning Tree)

Υπογράφημα επικάλυψης που είναι και (ελεύθερο) δένδρο.

Ελάχιστο Δένδρο Επικάλυψης (Minimum Spanning Tree, MST)

Δένδρο επικάλυψης ενός γραφήματος με βάρη, του οποίου το συνολικό βάρος των ακμών είναι το ελάχιστο δυνατό.

Εφαρμογές

- Δίκτυα επικοινωνιών
- Δίκτυα μεταφορών

Ιδιότητα Κύκλου (Cycle Property):

- Έστω ότι Τ είναι ένα ελάχιστο επικαλύπτον δένδρο (Minimum Spanning Tree MST) ενός γραφήματος G με βάρη.
- Έστω e μία ακμή του G που δεν ανήκει στο T και έστω C ο κύκλος που σχηματίζεται προσθέτοντας την e στο T.
- Για κάθε ακμή f του κύκλου C, ισχύει: βάρος(f) ≤ βάρος(e)

Απόδειξη:

- Με άτοπο (απόδειξη με υπόθεση του αντιθέτου).
- Αν βάρος(f) > βάρος(e), τότε μπορούμε να πάρουμε ένα νέο επικαλύπτον δένδρο με μικρότερο συνολικό βάρος, αντικαθιστώντας την f με την e, κάτι που έρχεται σε αντίθεση με την υπόθεση ότι το T είναι ελάχιστο.

Ιδιότητα Διαμέρισης (Partition Property):

- Έστω ότι έχουμε μια διαμέριση των κορυφών του γραφήματος G σε δύο υποσύνολα U και V.
- Έστω e η ακμή ελάχιστου βάρους που συνδέει κορυφές από διαφορετικά σύνολα (δηλαδή που "διασχίζει" τη διαμέριση).
- Υπάρχει ένα ελάχιστο επικαλύπτον δένδρο (MST) του G που περιέχει την ακμή e.

Απόδειξη:

- Έστω Τ ένα ελάχιστο επικαλύπτον δένδρο του G.
- Αν το Τ δεν περιέχει την e, τότε προσθέτοντάς την στο T δημιουργείται ένας κύκλος C.
- Μέσα στον κύκλο C, έστω f μια άλλη ακμή που επίσης διασχίζει τη διαμέριση.
- Από την Ιδιότητα του Κύκλου (Cycle Property), ισχύει ότι:
 βάρος(f) ≤ βάρος(e)
- Άρα, αφού η e είναι η ακμή με ελάχιστο βάρος που διασχίζει τη διαμέριση, έχουμε:
 βάρος(f) = βάρος(e)
- Επομένως, μπορούμε να αντικαταστήσουμε την ακμή f με την e και να πάρουμε ένα άλλο MST, το οποίο περιέχει την e.

Αλγόριθμος Kruskal

- Διατηρούμε μια διαμέριση των κορυφών σε συστάδες (clusters)
- Αρχικά, κάθε κορυφή είναι μια ξεχωριστή συστάδα.
- Κρατάμε ένα MST για κάθε συστάδα.
- Συγχωνεύουμε τις «πιο κοντινές» συστάδες και τα MST τους.
- Χρησιμοποιούμε μία ουρά προτεραιότητας που περιέχει τις ακμές εκτός των συστάδων
- Κλειδί: το βάρος της ακμής
- Τιμή: η ακμή
- Στο τέλος του αλγορίθμου:
- Έχουμε μία συστάδα και ένα MST

```
🗇 Αντιγραφή 🤣 Επεξεργασία
Algorithm KruskalMST(G)
   foreach κορυφή v στο G do
       Δημιούργησε μία συστάδα που περιέχει μόνο τη ν
   Q ← νέα ουρά προτεραιότητας
   Εισήγαγε όλες τις ακμές στην Q
   T ← Ø
   {Το Τ είναι η ένωση των ΜSΤ των συστάδων}
   while Τ έχει λιγότερες από n - 1 ακμές do
      e ← Q.removeMin().getValue()
       [u, v] ← G.endVertices(e)
       A ← getCluster(u)
       B ← getCluster(v)
       if A ≠ B then
           Πρόσθεσε την ακμή e στο Τ
           mergeClusters(A, B)
   return T
```

Σχόλια για την υλοποίηση:

- Η σύνταξη αντικείμενο.συνάρτηση1.συνάρτηση2 είναι από αντικειμενοστραφή προγραμματισμό και σημαίνει ότι εφαρμόζουμε τη συνάρτηση2 στο αποτέλεσμα της συνάρτησης1.
 Παράδειγμα: Q.removeMin().getValue() σημαίνει "πάρε την τιμή του στοιχείου με το ελάχιστο κλειδί από την ουρά προτεραιότητας".
- Η ακμή e που επιλέγεται στο while είναι αυτή με το ελάχιστο βάρος από όλες τις διαθέσιμες ακμές.
- Οι u και v είναι τα άκρα της ακμής e.
- Η Ιδιότητα της Διαμέρισης (Partition Property) εγγυάται ότι κάθε φορά που προσθέτουμε μία τέτοια ακμή, αυτή ανήκει σε κάποιο MST του γράφου.

Παράδειγμα (συνέχεια)

- Οι κόκκινες ακμές είναι οι ακμές του MST.
- Οι γαλάζιες διακεκομμένες ακμές είναι ακμές που εξετάστηκαν από τον αλγόριθμο αλλά απορρίφθηκαν επειδή τα άκρα τους βρίσκονταν ήδη στο ίδιο σύνολο.

Δομές Δεδομένων για τον Αλγόριθμο Kruskal

- Ο γράφος υλοποιείται με λίστες γειτνίασης.
- Ο αλγόριθμος διατηρεί ένα δάσος δέντρων.
- \square Μία ουρά προτεραιότητας εξάγει τις ακμές με αύξον βάρος (υλοποιείται ως ελάχιστος σωρός min heap).
- Μια ακμή γίνεται αποδεκτή μόνο αν ενώνει ξεχωριστά δέντρα.

Χρειαζόμαστε μια δομή που υλοποιεί διαμέριση (σύνολα μη επικαλυπτόμενα), με λειτουργίες:

- makeSet(u): δημιουργεί ένα σύνολο που περιέχει μόνο το u
- findSet(u) : επιστρέφει το σύνολο που περιέχει το u
- union(A, B): συγχωνεύει τα σύνολα Α και B

Δομές Δεδομένων για τον Kruskal (συνέχεια)

Π Για την υλοποίηση των διακριτών συνόλων, θα χρησιμοποιήσουμε δέντρα διαμέρισης (disjoint forests) με τον αλγόριθμο weighted quick-union και συμπίεση διαδρομής με διπλασιασμό (path compression by halving).

Υλοποίηση με βάση τη Διαμέριση

Αλγόριθμος KruskalMST(G)

```
() Αντιγραφή () Επεξεργασία
less
Αρχικοποίησε μια διαμέριση Ρ
Για κάθε κορυφή ν του G κάνε:
   P.makeSet(v)
Q + ουρά προτεραιότητας
Εισήγαγε όλες τις ακμές στην Q
T + Ø // Τ είναι η ένωση των MST των συστάδων
Όσο το Τ έχει λιγότερες από n-1 ακμές κάνε:
   e + Q.removeMin().getValue()
   [u, v] ← G.endVertices(e)
   A + P.findSet(u)
   B \leftarrow P.findSet(v)
       Πρόσθεσε την ακμή e στο Τ
       P.union(A, B)
Επιστροφή Τ
```

Ανάλυση Πολυπλοκότητας

- □ Έστω η οι κορυφές και η οι ακμές του γράφου.
- Η ουρά προτεραιότητας μπορεί να αρχικοποιηθεί:
 - Σε O(m log m) με επαναληπτικές εισαγωγές
 - Ή σε O(m) με το bottom-up κατασκεύασμα σωρού (όπως παρουσιάστηκε στο μάθημα)
- Οι απαλοιφές min από την ουρά προτεραιότητας: O(m log m)
- Εναλλακτική: Ταξινόμηση των ακμών κατά βάρος → O(m log m) με mergesort ή heapsort.
- Πλήθος λειτουργιών:
 - n 1 ενώσεις (union)
 - έως m αναζητήσεις (findSet)
 Αυτές οι πράξεις εκτελούνται σε O(n log m) με τη δομή forest + path compression.
- Τελική Χρονική Πολυπλοκότητα: O((n + m) log n)

Αλγόριθμος Prim-Jarnik

- Παρόμοιος με τον αλγόριθμο του Dijkstra.
- Επιλέγουμε μια τυχαία κορυφή s και επεκτείνουμε το MST ως ένα σύννεφο κορυφών, ξεκινώντας από την s.
- \square Για κάθε κορυφή $\ \mathbf v$, αποθηκεύουμε μια ετικέτα $\ \mathbf D(\mathbf v)$ που δηλώνει το μικρότερο βάρος ακμής που συνδέει την $\ \mathbf v$ με κάποια κορυφή στο σύννεφο.

Σε κάθε βήμα:

- Προσθέτουμε στο σύννεφο την κορυφή u με τη μικρότερη ετικέτα D(u).
- 2. Ενημερώνουμε τις ετικέτες $\, {\tt D}(z) \,$ για όλες τις κορυφές $\, {\tt z} \,$ που είναι γειτονικές της $\, {\tt u} \,$

Υλοποίηση Αλγορίθμου Prim-Jarnik

- Ο γράφος αναπαρίσταται με λίστες γειτνίασης.
- - e = η ακμή μικρότερου βάρους που συνδέει το ν με το σύννεφο
 - D(v) = βάρος της ακμής e (το κλειδί στην ουρά)

Αλγόριθμος PrimJarnikMST(G)

Αυτός είναι ο γράφος **πριν εκτελεστεί ο βρόχος** while . Οι τιμές **D[v]** εμφανίζονται με **κόκκινο χρώμα** κοντά στις κορυφές.

Στην πρώτη επανάληψη του βρόχου while, θα επιλεγεί η κορυφή **A**, και στη συνέχεια ο αλγόριθμος θα προχωρήσει όπως φαίνεται στη επόμενη διαφάνεια.

Example (contd.)

Παράδειγμα (συνέχεια)

- Σε μια υλοποίηση, μπορούμε να χρησιμοποιήσουμε έναν πολύ μεγάλο θετικό ακέραιο στη θέση του
 ∞. Όλα τα βάρη θεωρούνται τότε μικρότερα από αυτόν τον ακέραιο.
- Στα προηγούμενα σχήματα, οι κόκκινες ακμές δηλώνουν ακμές του Ελάχιστου Επικαλύπτοντος
 Δένδρου (MST) όταν βρίσκονται μέσα στο «σύννεφο».
- Οι κόκκινες ακμές επίσης δηλώνουν τις ακμές ελάχιστου βάρους που συνδέουν κορυφές του MST (συννέφου) με κορυφές που βρίσκονται ακόμη στην ουρά Q.
- Οι μπλε διακεκομμένες ακμές δηλώνουν ακμές που απορρίφθηκαν, μέσα στη συνθήκη if του αλγορίθμου, υπέρ κόκκινων ακμών με μικρότερο βάρος.
- Με την ολοκλήρωση του αλγορίθμου, οι κόκκινες ακμές σχηματίζουν το MST.

Ανάλυση Πολυπλοκότητας

- Έστω n και m το πλήθος των κορυφών και ακμών αντίστοιχα του γράφου εισόδου.
- Ο βρόχος for εκτελείται σε χρόνο O(n).
- Αφού η ουρά προτεραιότητας υλοποιείται ως min-heap, μπορεί να αρχικοποιηθεί σε χρόνο O(n log
 n) με επαναλαμβανόμενες εισαγωγές, ή σε O(n) χρησιμοποιώντας τον bottom-up αλγόριθμο που
 παρουσιάστηκε στις διαλέξεις για heaps.
- Μπορούμε να εξάγουμε την κορυφή u από την ουρά προτεραιότητας σε χρόνο O(log n). Άρα, η πολυπλοκότητα για την εξαγωγή όλων των κορυφών είναι O(n log n).

Ανάλυση Πολυπλοκότητας (συνέχεια)

- Μπορούμε να εκτελέσουμε τις δύο εντολές αλλαγής μέσα στη συνθήκη if σε χρόνο O(log n) (πώς μπορούμε να ενισχύσουμε την υλοποίηση της ουράς προτεραιότητας για να πετύχουμε αυτό το όριο;).
- Αυτή η ενημέρωση γίνεται το πολύ μία φορά για κάθε ακμή (u, z), επομένως το συνολικό πλήθος των ενημερώσεων είναι O(m log n).
- Συνεπώς, ο αλγόριθμος Prim-Jarnik εκτελείται σε χρόνο O((n + m) log n).