Set Theory vs Boolean Functions

by Sven Nilsen, 2019

Using Higher Order Operator Overloading^[1] (HOOO), one can compare operations in Set Theory^[2] with their equivalent operations using Boolean Functions^[3]:

	Set Theory	НООО
Set membership	$a \ni b$	b(a)
Union	$a \cup b$	a v b
Intersect	$a \cap b$	а∧b
Exclude	a \ b	a ∧ ¬b
Subset	a⊆b	$\forall x \{ (a \Rightarrow b)(x) \}$
Strict subset	$a \subset b$	$\forall x \{ (a => b)(x) \} \land \neg \forall x \{ (b => a)(x) \}$

Notation:

`v`	Logical gate OR
`^`	Logical gate AND
`¬`	Logical gate NOT
`=>`	Logical gate IMPLY (material implication)
`∀`	For-all loop

From this overview, it is easy to see that "subset" and "strict subset" are computationally expensive.

The strict subset property can be proven from another definition:

$$\forall x \{ (a => b)(x) \} \land \exists x \{ (b \land \neg a)(x) \}$$

 $\forall x \{ (a => b)(x) \} \land \neg \forall x \{ \neg (b \land \neg a)(x) \}$
 $\forall x \{ (a => b)(x) \} \land \neg \forall x \{ (\neg b \lor a)(x) \}$
 $\forall x \{ (a => b)(x) \} \land \neg \forall x \{ (b => a)(x) \}$

References:

[1] "Higher Order Operator Overloading" Sven Nilsen, 2018

 $\underline{https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/higher-order-operator-overloading.pdf}$

[2] "Set theory"
Wikipedia
https://en.wikipedia.org/wiki/Set_theory

[3] "Boolean function" Wikipedia

https://en.wikipedia.org/wiki/Boolean_function