

Légende:

Port Arduino:

USB: Port USB permettant une connexion série entre la carte Arduino et l'IHM.

10 (TX) : Port soft sérial permettant de transmettre les données de la connexion série avec la STM32.

11 (RX): Port soft sérial permettant de recevoir les données de la connexion série avec la STM32.

A0: Sortie analogique 0 sur laquelle la fonction tone() va jouer le son.

3 : Port GPIO 3 configuré en interruption, permet la détection du front descendant pour le bouton du clignotant droit.

2 : Port GPIO 2 configuré en interruption, permet la détection du front descendant pour le bouton du clignotant gauche.

Port STM32:

PA9 (TX): Port série de l'UART1 permettant de transmettre les données de la connexion série avec la Arduino.

PA10 (RX): Port série de l'UART1 permettant de recevoir les données de la connexion série avec la Arduino.

PB5: Sortie digitale permettant de piloter la LED du clignotant droit.

PB4: Sortie digitale permettant de piloter la LED du clignotant gauche.

5V : Sortie d'alimentation 5V, alimente le capteur à ultrason.

PA10: Sortie digitale qui envoie le signal TRIG au capteur à ultrason.

PAO: Entrée digitale qui va recevoir le signal ECHO du capteur à ultrason. Ce signal va être mesuré en temps grâce au mode capture du timer 2.

PA8: Port GPIO configuré en interruption, permet la détection du front descendant pour le bouton ON/OFF du moteur. Il est configuré en pull-up.

PA6 : Port GPIO configuré en sortie, pilote le relais pour le circuit du moteur.

Autres composant électriques :

B1: bouton clignotant gauche.

B2: bouton clignotant droit.

B3: bouton ON/OFF moteur.

R1: Résistance de 100 ohms fixant le courant sur la branche de B1.

R2: Résistance de 100 ohms fixant le courant sur la branche de B2.

R3 : Potentiomètre (résistance variable) permettant de modifier le gain sonore du montage avec l'amplificateur opérationnel.

R4 : Résistance permettant de créer un gain sonore.

R5: Résistance de 100 ohms permettant de fixer le courant dans la branche de D1.

R6: Résistance de 100 ohms permettant de fixer le courant dans la branche de D2.

R7: Résistance de 100 ohms fixant le courant sur la branche de B3.

R8: Résistance de 100 ohms fixant le courant sur la branche de M1.

H1: Haut-parleur.

D1: Diode représentant le clignotant gauche.

D2: Diode représentant le clignotant droit.

C1 : Capteur à ultrasons alimenté en 5V, relié à la masse du circuit.

D1: Diode représentant le clignotant gauche.

M1: Moteur à courant continu alimenté en 9V.

RE1: Relai piloter par la STM32, permettant d'ouvrir ou de fermer le circuit 9V du moteur.

P1 : Pile de 9V permettant d'alimenter le circuit moteur et l'amplificateur opérationnel.