Riset Operasional

Pertemuan 5:

"Program Linier: Metode Simpleks (2)"

Dosen: MOH. ALI ALBAR, ST., M.Eng

Program Studi Teknik Informatika

Fakultas Teknik UNRAM

Selesaikan soal berikut dengan metode simpleks

Minimumkan
$$4x + 6y + z$$

Kendala:

$$x + 2y \le 10$$

$$y + 4z \ge 20$$

$$3x + z \ge 40$$

$$x, y, z \geq 0$$

Model terlebih dahulu dijadikan bentuk standar

Minimumkan
$$4x + 6y + z + 0x_4 + 0x_5 + 0x_6$$

Kendala:
$$x + 2y + x_4 = 10$$
$$y + 4z - x_5 = 20$$
$$3x + z - x_6 = 40$$
$$x, y, z, x_4, x_5, x_6 \ge 0$$

- Karena matriks kendala belum membentuk submatriks identitas maka pada baris/kendala kedua dan ketiga harus ditambah variabel semu $x_7 \ dan \ x_8$
- Karena soalnya meminimumkan maka koefisien $x_7 dan x_8$ pada fungsi sasaran = M (suatu bilangan positif besar)
- Bentuk standar simpleks:

Minimumkan
$$4x + 6y + z + 0x_4 + 0x_5 + 0x_6 + Mx_7 + Mx_8$$

Kendala:
$$x + 2y + x_4 = 10$$
$$y + 4z - x_5 + x_7 = 20$$
$$3x + z - x_6 + x_8 = 40$$
$$x, y, z, x_4, x_5, x_6, x_7, x_8 \ge 0$$

	Cj	4	6	1	0	0	0	M	М		
(CB)i	(XB)i Xj	X	у	Z	X4	X 5	X 6	X 7	X8	b _i	
0	X4	1	2	0	1	0	0	0	0	10	
M	X 7	0	1	4	0	-1	0	1	0	20	5
M	X8	3	0	1	0	0	-1	0	1	40	40
	Zj	3M	М	5M	0	-M	-M	М	М	00.14	2
	Cj - Zj	4 - 3M	6 - M	1 - 5M	0	M	M	0	0	60 M	
0	X4	1	2	0	1	0	0	0	0	10	10
1	Z	0	1/4	1	0	$-\frac{1}{4}$	0	1/4	0	5	-
М	X 8	3	$-\frac{1}{4}$	0	0	$\frac{1}{4}$	-1	$-\frac{1}{4}$	1	35	35
	Zj	3M	<u>M+1</u> 4	1	0	<u>M-1</u>	- M	-M+1 4	М	35 M +	
	Cj - Zj	-3M+4	$\frac{M+23}{4}$	0	0	$\frac{-M+1}{4}$	M	<u>5M1</u>	0	5	
4	X	1	2	0	1	0	0	0	0	10	•
1	Z	0	$\frac{1}{4}$	1	0	$\left -\frac{1}{4} \right $	0	1/4	0	5	
М	X 8	. 0	$-\frac{25}{4}$	0	-3	$\frac{1}{4}$	-1	1 4	1	5	20
1 = 14	Zj	4	<u>-25<i>M</i> +33</u> 4	1	-3M+4	<u>M-1</u>	- M	<u>-M+1</u> 4	М	511.45	
-1	Cj - Zj	0	25 <i>M</i> -9 4	0	3M-4	$\frac{-M+1}{4}$	M	<u>5M-1</u>	0	5M+45	

LANJUTAN TABEL

		COM Linear company of the					47		38		
4	X	1	2	0	1	0	0	0	0	10	10
1	z	0	-6	1	-3	0	-1	0	1	10	
0	X 5	0	- 25	0	-12	1	-4	-1	4	20	-
	Zj	4	2	1	1	0	-1	0	1	F 0	
	Cj - Zj	0	4	0	-1	0	1	M	M - 1	50	
0	X4	1	2	0	1	0	0	0	0	10	
1	Z	3	0	1	0	0	-1	0	1	40	
0	X 5	12	-1	0	0	1	-4	-1	4	140	
	Zj	3	0	1	0	0	-1	0	1	40	
	Cj - Zj	1	6	0	0	0	1	M	M - 1	40	

ullet Maka penyelesaian masalahnya adalah $\,x=0,\;y=0,\;dan\,\,\,\,z=40\,$

Selesaikan soal berikut dengan metode simpleks

Maksimumkan
$$f = 30x_1 + 20x_2$$

Kendala:

$$x_1 + x_2 \le 8$$
 $6x_1 + 4x_2 \ge 12$
 $5x_1 + 8x_2 = 20$
 $x_1, x_2 \ge 0$

Jadikan bentuk standar simpleks dalam bentuk persamaan

Maksimumkan
$$f = 30x_1 + 20x_2 + 0x_3 + 0x_4$$

$$x_1 + x_2 + x_3 = 8$$

$$6x_1 + 4x_2 - x_4 = 12$$

$$5x_1 + 8x_2 = 20$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- Dalam kendalanya belum terbentuk matrik identitas, sehingga perlu ditambahkan variabel semu pada kendala ke-2 dan ke-3
- Bentuk standar simpleks:

Maksimumkan
$$f = 30x_1 + 20x_2 + 0x_3 + 0x_4 - Mx_5 - Mx_6$$

Kendala:
$$x_1 + x_2 + x_3 = 8$$

 $6x_1 + 4x_2 - x_4 + x_6 = 12$
 $5x_1 + 8x_2 + x_5 = 20$
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

	Cj	30	20	0	0	-M	-M		
(CB)i	(XB)i Xj	X1	X ₂	X 3	X 4	X 5	X 6	bi	
0	X 3	1	1	1	0	0	0	8	8
-M	X 6	6	4	0	-1	0	1	12	3
-M	X 5	5	8	0	0	1	0	20	5/2
	Zj	-11M	-12M	0	М	-M	-M		
	Cj - Zj	11M+30	12M+20	0	-M	0	0	-32M	
0	X 3	3/8	0	1.	0	$-\frac{1}{8}$	0	44 8	44 3
-M	X ₆	<u>28</u> 8	0	0	-1	$-\frac{4}{8}$. 1	2	16 28
20	X ₂	<u>5</u> 8	1	0	0	1/8	0	<u>20</u> 8	4
	Zj	<u>-28<i>M</i>+100</u> 8	20	0	-M	4 <i>M</i> +20 8	-M	-	
	c _j - z _j	28 <i>M</i> +140	0	0	М	<u>-12<i>M</i> -20</u>	0	2M+50	

LANJUTAN TABEL

0	Х3	0	0	1	3 28	$-\frac{2}{28}$	$-\frac{3}{28}$	148 28	148
30	X 1	1	0	0	$-\frac{8}{28}$	$-\frac{4}{28}$	8 28	16 28	-
20	X ₂	0	1	0	<u>5</u> 28	<u>6</u> 28	$-\frac{5}{28}$	<u>60</u> 28	12
	Zj	30	20	0	$-\frac{140}{28}$	0	140 28		
	Cj - Zj	0	0	0	140 28	-M	<u>-28<i>M</i>+140</u> 28	60	a la
0	X 3	0	$-\frac{3}{5}$	1	0	- 1/ ₅	0	4	
30	X 1	1	<u>8</u> 5	0	0	$\frac{1}{5}$	0	4	
0	X 4	0	<u>28</u> 5	0	1	<u>6</u> 5	-1	12	£
	Zj	30	48	0	0	6	0	400	
	Cj - Zj	0	-28	0	0	-M-6	-M	120	

Maka penyelesaian masalahnya adalah $x_1 = 4$, $x_2 = 0$ dengan nilai maksimum fungsi = 120

3.3 Kejadian Khusus

3.3.1 Alternatif Penyelesaian

- Alternatif penyelesaian berarti ada 2 penyelesaian atau lebih yang menghasilkan nilai optimal yang sama.
- Adanya alternatif penyelesaian dalam metode simpleks dapat dilihat pada tabel optimalnya.
- Alternatif penyelesaian didapat dengan "memaksa" variabel x_k menjadi basis (meskipun sebenarnya tabelnya sudah optimal).

Selesaikan soal berikut dengan metode simpleks

Maksimumkan
$$f(x_1, x_2) = 3x_1 + x_2$$

Kendala:

$$x_1 + 2x_2 \le 20$$

$$3x_1 + x_2 \le 20$$

$$x_1, x_2 \geq 0$$

Bentuk standar masalah tersebut adalah sebagai berikut:

Maksimumkan
$$f(x_1, x_2, x_3, x_4) = 3x_1 + x_2 + 0x_3 + 0x_4$$

Kendala:

$$x_1 + 2x_2 + x_3 = 20$$
$$3x_1 + x_2 + x_4 = 20$$
$$x_1, x_2, x_3, x_4 \ge 0$$

	Cj	3	1	0	0		
(CB)i	(XB)i Xj	X 1	X 2	X 3	X4	bi	
0	X 3	1	2	1	0	20	20
0	X4	3	1	0	1	20	20/3
	Zj	0	0	0	0	_	-
	Cj - Zj	3	1	0	0	0	2 70
0	X 3	0	5 3	1	$-\frac{1}{3}$	<u>40</u> 3	
3	X ₁	1	$\frac{1}{3}$	0	1/3	<u>20</u> 3	
85 2	Zj	3	1	0	1	20	
	Cj - Zj	0	$\mathbf{v}(0)$	0	1	20	

bukan basis tapi bernilai nol

- Tampak pada iterasi kedua, tabel tersebut sudah otimal dengan penyelesaian optimal $x_1=\frac{20}{3}$ dan $x_2=0$ (karena bukan variabel basis pada tabel optimal) Tampak bahwa pada tabel optimalnya, $c_2-z_2=0$ meskipun x_2 bukan variabel basis

ightharpoonup Jika x_2 dipaksa menjadi basis

	Cj	3	1	0	0		
(CB)i	(XB)i Xj	X ₁	X 2	X 3	X 4	bi	
.0	Х3	0	<u>5</u> 3	1	$-\frac{1}{3}$	<u>40</u> 3	8
3	X 1	1	$\frac{1}{3}$	0	$\frac{1}{3}$	<u>20</u>	20
	Zj	3	1	0	1	20	
	Cj - Zj	0	0	0	-1	20	
1	X 2	0	1	<u>3</u> 5	<u>1</u> 5	8	
3	X ₁	1	0	$\frac{1}{5}$	<u>2</u> 5	4	
	Zj	3	1	0	1	20	
	c _j - z _j	0	0	0	-1	20	

▶ Tampak bahwa tabel sudah optimal dengan penyelesaian $x_1 = 4$ dan $x_2 = 8$

3.3.2 Penyelesaian Tak Terbatas

- Penyelesaian tak terbatas berarti f(x) bisa diperbesar (atau diperkecil) sampai titik tak berhingga.
- Perhatikan bagan alir untuk merevisi tabel yang belum optimal
- Setelah mendapatkan calon basis, langkah berikutnya adalah menguji apakah ada elemen a_{ik} (elemen dalam kotak vertikal) yang >0
- Iika ada maka langkah berikutnya adalah menghitung nilai heta dan menentukan variabel yang harus keluar dari basis.
- Akan tetapi, apabila semua $a_{ik} \leq 0$, maka berarti penyelesaiannya tak terbatas (bisa dikatakan juga bahwa soal tidak memiliki penyelesaian)

Selesaikan soal berikut dengan metode simpleks

Maksimumkan
$$f(x_1, x_2) = 2x_1 + 3x_2$$

Kendala:

Acridata.

$$x_1 - 2x_2 \le 4$$

$$x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

Bentuk standar simpleks:

Maksimumkan
$$f(x_1, x_2, x_3, x_4, x_5) = 2x_1 + 3x_2 + 0x_3 + 0x_4 - Mx_5$$
 Kendala:
$$x - 2x + x = 4$$

$$x_1 - 2x_2 + x_3 = 4$$

$$x_1 + x_2 - x_4 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

	Cj	2	3	0	0	- M		
(CB)i	(XB)i Xj	X1	X 2	X3	X4	X5	bi	
0	X 3	1	-2	1	0	0	4	
- M	X5	1	1	0	-1	1	3	3
	Zj	- M	- M	0	М	- M		
	c _j - z _j	2+M	3+M	0	- M	0	- 3M	
0	Х3	3	0	1	-2	2	10	
3	X2	1	1	0	-1	1	3	
	Z _j	3	3	0	-3	3		
	Cj - Zj	-1	0	0	3	-3 - M	9	

- Pada iterasi kedua, $c_4 z_4 = 3 > 0$. Karena satu-satunya yang masih bernilai positif, maka x_4 menjadi calon basis.
- Akan tetapi $a_{14}=-2<0$ dan $a_{24}=-1<0$ sehingga nilai θ tidak bisa dicari. Ini berarti bahwa soal memiliki penyelesaian tak terbatas

3.3.3 Soal Tidak Fisibel

- Berarti soal tidak memiliki daerah fisibel (tidak memiliki titik yang memenuhi semua kendala).
- Dalam metode simpleks, variabel semu berfungsi sebaga katalisator agar muncul matriks identitas sehingga proses simpleks dapat dilakukan.
- Ada kalanya variabel semu tetap merupakan variabel basis pada tabel optimalnya. Hal ini menunjukkan bahwa soalnya tidak fisibel.

Selesaikan soal berikut dengan metode simpleks

Maksimumkan
$$f \quad x_1\,, x_2 \ = \ 4x_1 + 3x_2$$
 Kendala:
$$x_1 + x_2 \le 3$$

$$2x_1 - x_2 \le 3$$

$$x_1 \ge 4$$

$$x_1\,, x_2 \ \ge \ 0$$

Bentuk standar simpleks:

Maksimumkan

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = 4x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5 - Mx_6$$

Kendala:

$$x_{1} + x_{2} + x_{3} = 3$$

$$2x_{1} - x_{2} + x_{4} = 3$$

$$x_{1} - x_{5} + x_{6} = 4$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \ge 0$$

	Cj	4	3	0	0	0	-M	- 2	
(CB)i		X1	X2	Х3	X4	X5	X6	bi	
0	X 3	1	1	1	0	0	0	3	3
0	X4	2	-1	0	1	0	0	3	3 2
-M	X6	1	0	0	0	-1	1	4	4
	Zj	-M	0	0	0	М	-M		
	Cj - Zj	4+M	3	0	0	-M	0	-4M	
0	X 3	0	$\frac{3}{2}$	1	$-\frac{1}{2}$	0	0	$\frac{3}{2}$	1
4	X ₁	1	$-\frac{1}{2}$	0	1 2	0	0	3 2	
-M	X ₆	0	1/2	0	$-\frac{1}{2}$	-1	1	5/2	5
4	Zj	4	<u>4M</u>	0	<u>4∗M</u> 2	M	-M		
	Cj - Zj	0	$\frac{10*M}{2}$	0	<u>-4-M</u>	-M	0	12 5 <i>M</i> 2	
3	X ₂	0	1	<u>2</u> 3	$-\frac{1}{3}$	0	0	1	4
4	X1	1	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	2	
-M	X 6	0	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	1	2	
	Zj	4	3	<u>10∗M</u> 3	1* <i>M</i> 3	М	-M	44.00	
	Cj - Zj	0	0	<u>-10M</u>	<u>1M</u>	-M	0	11-2M	

Pada tabel terakhir, semua $c_j - z_j \le 0$. Ini menunjukkan bahwa tabel sudah optimal. Akan tetapi x_6 yang merupakan variabel semu masih tetap merupakan variabel basis. Berarti soalnya tidak fisibel sehingga tidak memiliki penyelesaian optimal.

3.3.4 Kemerosotan (Degeneracy)

- ▶ Berarti ada titik sudut daerah fisibel yang terbentuk dari perpotongan 3 garis atau lebih (umumnya, suatu titik terbentuk dari perpotongan 2 garis).
- Iika titik merupakan perpotongan 3 garis atau lebih maka akan muncul beberapa $\, heta\,$ minimum yang sama.
- lacksquare Dalam hal ini $\, heta\,$ boleh di ambil sembarang
- Pemilihan heta yang berbeda akan menghasilkan jumlah iterasi yang berbeda pula, meskipun hasil akhirnya sama.

Selesaikan soal berikut dengan metode simpleks

Maksimumkan
$$f$$
 $x_1, x_2 = 5x_1 + 3x_2$ Kendala: $4x_1 + 2x_2 \le 12$ $4x_1 + x_2 \le 10$ $x_1 + x_2 \le 4$ $x_1, x_2 \ge 0$

Bentuk standar simpleks:

Maksimumkan

$$f(x_1, x_2, x_3, x_4, x_5) = 5x_1 + 3x_2 + 0x_3 + 0x_4 + 0x_5$$

Kendala:

$$4x_1 + 2x_2 + x_3 = 12$$

$$4x_1 + x_2 + x_4 = 10$$

$$x_1 + x_2 + x_5 = 4$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

- ightharpoonup Pada iterasi ke-2 terdapat 2 buah nilai heta minimum yang sama-sama bernilai 2.
- ▶ Untuk itu dipilih salah satunya $(x_3 atau x_5)$ secara sembarang.

	Cj	5	3	0	0	0			
(CB)i	(XB)i Xj	X 1	X 2	X 3	X4	X5	b _i		
0	Х3	4	2	1	0	0	12	3	
0	X4	4	1	0	1	0	10	5 2	
0	X 5	1	1	0	0	1	4	4	
	Zj	0	0	0	0	0			
	Cj - Zj	5	3	0	0	0	0	į.	
0	Х3	0	1.	1	-1	0	2	2	
5	X ₁	1	$\frac{1}{4}$	0	14	0	<u>5</u>	10	
0	X 5	0	3 4	0	<u> 1</u>	1	$\frac{3}{2}$	2	1
¥	Zj	5	<u>5</u>	0	<u>5</u>	0	<u>25</u> 2	a. 6	
	Cj - Zj	0	7	0	5	0	2		

► TABEL 1

	Cj	5	3	0	0	0		
(CB)i	(XB) Xj	X 1	X 2	X 3	X 4	X 5	bi	
0	X 3	0	1	1	-1	0	2	2
5	X1	1	1/4	0	1/4	0	<u>5</u>	10
0	X5	0	$\frac{3}{4}$	0	<u></u> 1 4	. 1	3 2	2
	Zj	5	· <u>5</u>	0	<u>5</u>	0	<u>25</u> 2	
	Cj - Zj	0	$\frac{7}{4}$	0	$-\frac{5}{4}$	0	2	,
3	X ₂	0	1	1	-1	0	2	-
5	X1	1	0	$-\frac{1}{4}$	$\frac{1}{2}$	0	2	4
0	X 5	0	0	$-\frac{3}{4}$	1/2	1	0	0
	Zj	5	3	7/4	$-\frac{1}{2}$	0	16	9
	Cj - Zj	0	0	$-\frac{7}{4}$	$\frac{1}{2}$	0	16	F)
3	X ₂	0	1	$-\frac{1}{2}$	0	2	2	
5	X1	1	0	$\frac{1}{2}$	0	-1	2	
0	X4	0	0	$-\frac{3}{2}$	1	2	0	
	Zj	5	3	1	0	1	16	
	Cj - Zj	0	0	-1	0	-1	16	

TABEL 2

	Cj	5	3	0	0	0	11	
(CB)i	(XB)i Xj	X 1	X ₂	X 3	X4	X 5	bi	
0	X 3	0	1	1	-1	0	2	2
5	X 1	1	1/4	0	$\frac{1}{4}$	0	$\frac{5}{2}$	10
0	X 5	0	3/4	0	$-\frac{1}{4}$	1	$\frac{3}{2}$	2
	Zj	5	<u>5</u>	0	<u>5</u>	0	<u>25</u> 2	19
	Cj - Zj	0	$\frac{7}{4}$	0	$-\frac{5}{4}$	0	2	
0	X 3	0	0	1	$-\frac{2}{3}$	$-\frac{4}{3}$	0	
5	X ₁	1	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	2	
3	X 2	0	1	0	$-\frac{1}{3}$	$\frac{4}{3}$	2	
	Zj	5	3	0	<u>2</u> 3	7/3	16	
	c _j - z _j	0	0	0	$-\frac{2}{3}$	$-\frac{7}{3}$	16	

Kedua tabel menghasilkan penyelesaian optimal yang sama, yaitu

$$x_1 = 2 \quad dan \quad x_2 = 2$$

3.3.5 Variabel Penyusun Tak Bersyarat

- Dalam bentuk standar program linier disyaratkan bahwa semua variabel penyusun harus ≥ 0
- Apabila ada variabel penyusun yang bernilai bebas (boleh negatif), maka sebelum masuk ke proses simpleks, masalah harus terlebih dahulu ditransformasikan sehingga semua variabel penyusunnya ≥ 0
- Caranya adalah dengan menyatakan variabel yang bernilai bebas sebagai selisih 2 variabel baru yang keduanya ≥ 0

Selesaikan soal berikut dengan metode simpleks

Maksimumkan
$$f(x_1, x_2, x_3) = 3x_1 + 2x_2 + x_3$$

Kendala:

$$2x_1 + 5x_2 + x_3 \le 12$$
$$6x_1 + 8x_2 \le 22$$
$$x_2, x_3 \ge 0$$

- Perhatikan bahwa yang disyaratkan \geq hanyalah x_2 dan x_3 saja, sedangkan x_1 boleh bernilai sembarang.
- Untuk menjadikan ke bentuk standar program linier, maka x_1 dinyatakan sebagai selisih dua variabel baru x_4 dan x_5

$$x_1 = x_4 - x_5$$

Dengan mensubstitusi ke model didapatkan:

Maksimumkan
$$f(x_2, x_3, x_4, x_5) = 3(x_4 - x_5) + 2x_2 + x_3$$

Kendala:

$$2(x_4 - x_5) + 5x_2 + x_3 \le 12$$

$$6(x_4 - x_5) + 8x_2 \le 22$$

$$x_2, x_3, x_4, x_5 \ge 0$$

Bentuk standarnya:

Maksimumkan

$$f(x_2, x_3, x_4, x_5, x_6, x_7) = 2x_2 + x_3 + 3x_4 - 3x_5 + 0x_6 + 0x_7$$

Kendala:

$$5x_2 + x_3 + 2x_4 - 2x_5 + x_6 = 12$$

$$8x_2 + 6x_4 - 6x_5 + x_7 = 22$$

$$x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

2)	C.	2	1	3	-3	0	^]	
(c _B) _i	$(X_R)_i$	X ₂	X ₃	X ₄	-5 X ₅	x ₆	0 X ₇	b _i	θ
- 1	X ₃	5	1	2	-2	1	0	12	6
. 0	X ₇	8	0	6	-6	0	1	22	<u>22</u> 6
	Z _j	5	1	2	-2	1	0	40	
	c _j - z _j	-3	0	1	-1	0	0	12	
1	X ₃	<u>14</u> 6	1	0	0	1	$-\frac{2}{6}$	<u>28</u> 6	
3	X ₄	$\frac{8}{6}$	0	1	-1	0	$\frac{1}{6}$	<u>22</u> 6	
	Z _j	<u>38</u> 6	1	3	-3	1	<u>1</u> 6		
	c _j - z _j	$-\frac{26}{6}$	0	0	0	-1	$-\frac{1}{6}$	<u>94</u> 6	

ightharpoonup Perhatikan bahwa variabel basis awal boleh diambil x_3 ataupun x_6

Penyelesaian optimal:

$$x_{2} = 0$$

$$x_{3} = \frac{28}{6} = \frac{14}{3}$$

$$x_{4} = \frac{22}{6} = \frac{11}{3}$$

$$x_{5} = x_{6} = x_{7} = 0$$

Penyelesaian soal aslinya adalah

$$x_1 = \frac{11}{3}$$

$$x_2 = 0$$

$$x_3 = \frac{14}{3}$$

Perhatikan di sini bahwa \mathcal{X}_1 yang bernilai sembarang tidak berarti harus bernilai negatif dan juga tidak boleh diasumsikan ≥ 0 sehingga proses simpleks juga tidak dapat langsung digunakan.

SELESAI