From Unlabeled Compressed Sensing to Sparse Homomorphic Sensing

Liangzu Peng, Boshi Wang, Manolis C. Tsakiris

ShanghaiTech University June 21, 2021

Email: {penglz, wangbsh, mtsakiris}@shanghaitech.edu.cn

Unlabeled Sensing

$$y = \prod Ax$$
 $\Pi \in \mathcal{S}_m$ $x \in \mathbb{R}^n$ (1) unknown the set of $m \times m$ permutations

Assume the existence of a solution (Π^*, x^*) to (1), i.e.,

$$y = \Pi^* A x^*$$

Theorem 1. For $A \in \mathbb{R}^{m \times n}$ generic, x^* is the <u>unique</u> solution to (1) as long as $m \ge 2n$.

^{1.} J. Unnikrishnan, S. Haghighatshoar and M. Vetterli, "Unlabeled sensing: Solving a linear system with unordered measurements," Allerton 2015.

Theory

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{S}_m} \|x\|_0 \quad \text{s.t.} \quad y = \Pi A x \qquad \Pi \in \mathcal{S}_m$$
 (2)

Assume the <u>existence</u> of a solution (Π^*, x^*) to (2) with x^* being k-sparse

Theorem 2. For $A \in \mathbb{R}^{m \times n}$ generic, x^* is the <u>unique</u> solution to (2) as long as $m \ge 2k$.

Optimization

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{S}_m} \|x\|_0 \quad \text{s.t.} \quad y = \Pi A x \qquad \Pi \in \mathcal{S}_m$$

Assume Π^* is p-sparse in the sense that

$$||y - Ax^*||_0 \le p$$

$$\Rightarrow$$

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_0 \quad \text{s.t.} \quad \|x\|_0 \le k$$

$$\Rightarrow$$

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_1 \quad \text{s.t.} \quad \|x\|_0 \le k$$

Optimization

$$\min_{x \in \mathbb{R}^n} \|y - Ax\|_1 \quad \text{s.t.} \quad \|x\|_0 \le k$$

$$x^{(0)} := 0$$

for
$$t = 0, 1, ..., T - 1$$
:

take a projected subgrad step at $x^{(t)}$ to produce a new $x^{(t+1)}$ minimize the objective over the support J of $x^{(t+1)}$, i.e.,

$$x_J^{(t+1)} \in \operatorname{argmin}_{x \in \mathbb{R}^n} \| y - A_J x \|_1$$

Synthetic Experiments

Sparse Homomorphic Sensing

Theory

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{S}_m} \|x\|_0 \quad \text{s.t.} \quad y = TAx \qquad T \in \mathcal{T}$$
(3)

a finite set of arbitrary $r \times m$ matrices

Assume the existence of a solution (T^*, x^*) to (3) with x^* being k-sparse

Theorem 3. For $A \in \mathbb{R}^{m \times n}$ generic, x^* is the <u>unique</u> solution to (3) as long as T satisfies the <u>rank constraint</u> and <u>quasi-variety constraint</u>.

Sparse Homomorphic Sensing

Examples

In practice, ${\mathcal T}$ arises as

the set of $m \times m$ permutation matrices \mathcal{S}_m

the set of $r \times m$ selection matrices $\mathcal{S}_{r,m}$

the set of $m \times m$ sign matrices \mathcal{B}_m

their combinations $S_{r,m}\mathcal{B}_m := \{SB: S \in S_{r,m}, B \in \mathcal{B}_m\}$

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \in \mathcal{S}_{2,3}$$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] \in \mathcal{B}_2$$

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right] \in \mathcal{S}_{2,3}\mathcal{B}_3$$

Sparse Homomorphic Sensing

Corollaries

$$\min_{x \in \mathbb{R}^n, \Pi \in \mathcal{S}_m} \|x\|_0 \quad \text{s.t.} \quad y = TAx \qquad T \in \mathcal{T}$$
 (4)

The following holds true for $A \in \mathbb{R}^{m \times n}$ generic.

Corollary 4. x^* is the unique solution to (4) if $T = S_{r,m}$ and $r \ge 2k$.

Corollary 5. x^* is the unique (up to sign) solution to (4) as long as $T = \mathcal{B}_m$ with $m \ge 2k$.

Corollary 6. x^* is the unique (up to sign) solution to (4) as long as $T = S_{r,m} \mathcal{B}_m$ and $r \ge 2k$.

Thank You!

- Tsakiris, M. C. and Peng, L. Homomorphic sensing. In International Conference on Machine Learning, 2019.
- Tsakiris, M. C. Determinantal conditions for homomorphic sensing. Technical report, arXiv:1812.07966v6 [math.CO], 2020.
- Peng, L., Wang B., and Tsakiris M. C. Homomorphic sensing: sparsity and noise. In International Conference on Machine Learning, 2021.
- Peng, L. and Tsakiris, M. C. Homomorphic sensing of subspace arrangements. Technical report, arXiv:2006.05158v3 [cs.LG], 2021.