Announcements:

Midtern I graded

Q1:79%

Median 63/80

Q5:68%

Mean: 56.4/80

Q3: 58% Q4: 77%

544. dev: 21.62

244. WEA : CI. P C

Gradelines: A-/A: 68 to 80

B+/B/B-: 50 to 68-E

C+/c/c-: 30 to 50-E

D+/D/D-: 13 to 30-E

Solins posted to website

Where do I stand spreadsheet posted to website

disclaimers!

Fundamental Thm. of Algebra (Gauss): (is alg. closed

Cor: If FCC, then FCC, so e.g. Q = set of als.

numbers

Pf sketch using Galois theory:

Two analytic consequences of the Intermediate Value Theorem

(A) Every odd degree poly. in R[x] has a root in R

(B) Every & ER 20 has a sqrt. Ta ER 20

Let f(x) e R[x], firmed., n:=desf.

WTS: f has a root in C.

Let K := SpiRf

Calois theory gives us detailed information about intermediate fields.

In this case,

So we have

power of $2 \mid \frac{1}{2} \mid \frac$						
Power of 2 more Galois theory				K(i)		
power of 2 more Galois theory				12		
power of 2 more Galois theory		K(i)	∃ `	Ek		
	power of	1	very \	12		
2		1		E,)	impossible b	y (B)
L L		11 <		اء ک	unless C=k	(i)
IZ IR				(C)		
IR II				\2		
				IK		Ц

This suggests that we need to know more detailed information about field extins

Separable extensions

Let $f(x) \in F[x]$; over $K = Sp_F f$, we have $f(x) = (x-\alpha_1)^{n_1} - \cdots (x-\alpha_k)^{n_k}$ Aistinct

n: : multiplicity of ac

di is simple if ni =1 di is multiple if ni >1

Def: f is separable if all its roots/k are simple.
Otherwise its inseparable.

$$x^{n} - p = (x - \sqrt{p})(x - \sqrt{2}, \sqrt{p}) - (x - \sqrt{2}, \sqrt{2})$$
prime

$$x^2+1=(x+i)(x-i)$$

$$x_5 - 1 = (x+1)(x-1)$$

all separable

Non-ex!

-1 is a multiple root

or rat's root thm. for similar reasons

Let K = Spf, and let $a \in K$ be a root of $x^2 + t$ i.e. $a^2 = t$

 $(x-x)^2 = x^2 - 2x + t = x^2 + t$ So f is <u>not</u> separable

Thm: If

a) Char F=0 or

b) F is finite,

then every irred. $f(x) \in F[x]$ is separable.

Def: The derivative of f(x)=anx"+...+aix+ao ∈ F(x)

 $Df(x) = na_n x^{n-1} + - + 2a_2 x + a_1 \in F[x]$

No calculus needed! Product/chain rules hold as usual

Separability Criterion: Let f(x) & F[x].

a) d is a multiple a is a root of moot of f and Df

b) f(x) is separable \iff gcd(f, Df) = 1

 $P(x; \alpha) \Rightarrow f(x) = (x-x)^n g(x)$

 $n \ge 2$

 $Df = h(x-x)^{n-1}g(x) * (x-x)^{n}Dg$ = (x-x) \(\tau \cdot \frac{n-2}{2} \cdot \cdot \cdot \frac{n-2}{2} \cdot \

= (x-4) $\left[n(x-4)^{n-2} g(x) + (x-4)^{n-1} 0g \right] \Rightarrow Df(x)=0$

(x) = (x-x)h(x) D(x) = h(x) + (x-x)Dh(x)

0=Df(a)= h(x) + (x-x)Dh(x) => h(a)=0=) (x-x)2/f.

b) Will show for p, g & F(x) that

 $9cd(p,q)=1 \iff p,q$ have no common roots in an exth field k where they split completely

Case p,g have common root x: then p,g are both divisible by Mx, F(x)

Case no common root: If $gcd(p,q)=r(x) \in F[x]$ nonconst. then any root of r(x) in K is a common root of plg. R