Lógica para Computação Aula 05 - Lógica Proposicional¹

Sílvia M.W. Moraes

Escola Politécnica - PUCRS

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a discutir a Lógica Proposicional e a estudar semântica.
- Este material foi construído com base nos slides do prof.
 Rafael Bordini e dos livros do Mortari, do Souza e do Huth & Ryan.

Sumário

1 Lógica Proposicional: Semântica

2 Próxima Aula

Lógica Proposicional - Relembrando ...

- Proposições
- Fórmulas Bem Formadas
- Conectivos
- Semântica
- Propriedades Semânticas
 - Satisfatível e Não Satisfatível
 - Método para determinar a propriedade: Tabelas Verdade

Lógica Proposicional - Semântica (Relembrando ...)

Semântica.

A semântica (significado) de uma fórmula da lógica proposicional depende de uma função de valoração que atribua valor V ou F para cada variável proposicional da fórmula. Desse modo, pode-se avaliar o valor verdade da fórmula toda

- Como já vimos, as tabelas-verdade podem ser usadas para definir em que "situações" as fórmulas proposicionais são verdadeiras e, consequentemente, identificar as propriedades semânticas dessas fórmulas.
- As tabelas-verdade também podem ser usadas para verificar a validade de um argumento...

- Um argumento é uma sequência de afirmações, onde as afirmações, exceto a última, são chamadas de premissa. A última afirmação é dita conclusão.
 Exemplo: Se chove, a rua fica molhada. A rua não está molhada. Logo, não choveu.
 - p: Está chovendo.
 - q: A rua fica molhada.
 - $p \rightarrow q, \neg q \vdash \neg p$
- Argumento válido é aquele em que toda vez que as premissas são verdadeiras, a conclusão também é.

- Verificando a validade de um argumento.
 - Construa a tabela da verdade especificando as colunas referentes às premissas e à conclusão.
 - Analise a tabela e Identifique as linhas em que todas as premissas são verdadeiras
 - O argumento será válido apenas quando, para as linhas identificadas, a conclusão também for verdadeira.
 - Se existir ao menos uma linha em que conclusão é falsa e as premissas são verdadeiras, o argumento é inválido.

• Exemplo: $p \rightarrow q, \neg q \vdash \neg p$

		premissas		conclusão
p	q	p o q	$\neg q$	$^{ eg}p$
F	F	V	V	V
F	V	V	F	V
V	F	F	V	F
V	V	V	F	F

• Como em todas as linhas em que as premissas são verdadeiras, a conclusão também é, o argumento $p \to q$, $\neg q \vdash \neg p$ é válido.

- Atividade 01: Os argumento a seguir são válidos ? Verifique usando tabela verdade.
 - $p \lor (q \lor r), \neg r \vdash p \lor q$

- Problema: Embora o método Tabela Verdade seja fácil, quando o número de proposições cresce esse método torna-se inviável.
 - Exemplo: $p \rightarrow ((q \land r) \rightarrow ((s \land t) \rightarrow ((u \land v) \rightarrow x)))$
 - Essa fórmula tem 8 proposições distintas, logo a tabela verdade terá 2⁸ = 256 linhas.
 - A tabela é grande para ser feita manualmente.
 - Precisamos de outro método...

- Outra forma de identificar as propriedades é usando árvores semânticas.
- Árvore = estrutura de dados cujos nós (vértices) são conectados por arestas. Sendo que o nó inicial (ex: nó 1) é chamado de raiz e aqueles que não possuem nós abaixo deles (não possuem filhos) são ditos folhas (ex: nós 2,6,7 e 5).

- Exemplo: $p \to q \leftrightarrow \neg q \to \neg p$ é uma tautologia ?
 - Usando a árvore semântica

$$I(p) = V$$

$$1$$

$$1(p) = F$$

$$3$$

- Como a proposição p pode ser verdadeira ou falsa, são definidos dois novos nós: 2 e 3.
- O Nó 2 corresponde as seguintes interpretações:

$$No 2 = \begin{array}{ccc}
p & \rightarrow & q & \leftrightarrow & \neg q & \rightarrow & \neg p \\
\mathbf{V} & & & \mathbf{V}
\end{array}$$

aplicando-se a negação, temos:

Nó 2 =
$$p \rightarrow q \leftrightarrow \neg q \rightarrow \neg p$$

...

$$I(p) = V$$
 $I(p) = F$
 $I(p) = F$

• O **Nó 3** corresponde as seguintes interpretações:

aplicando-se a negação, temos:

analisando-se as implicações, percebemos que independente do valor de q a implicação será V:

$$I(p) = V$$

$$1$$

$$1(p) = F$$

$$3$$

$$V$$

O Nó 3 corresponde as seguintes interpretações:

analisando-se as implicações, percebemos que independente do valor de q a implicação será V:

analisando-se, por fim, a bi-implicação, percebe-se que seu valor será V e, portanto, o Nó 3 será uma folha.

- Continuando a árvore a partir do Nó 2:
 - Como a proposição q pode ser verdadeira ou falsa, são definidos dois novos nós a partir do Nó 2: 4 e 5.

$$I(p) = V$$
 $I(p) = F$
 $I(q) = V$
 $I(q) = F$
 $I(q) = F$

• Nó 4 corresponde as seguintes interpretações:

$$No 4 =
\begin{array}{cccc}
 p & \rightarrow & q & \rightarrow & \neg q & \rightarrow & \neg p \\
 V & & V & & V
\end{array}$$

aplicando-se a negação, temos:

No
$$4 = p \rightarrow q \leftrightarrow \neg q \rightarrow \neg p$$

$$V \qquad V \qquad FV \qquad FV$$

- Continuando a árvore a partir do Nó 2:
 - Como a proposição q pode ser verdadeira ou falsa, são definidos dois novos nós a partir do Nó 2: 4 e 5.

$$I(p) = V$$

$$I(q) = V$$

$$4$$

$$V$$

$$I(q) = F$$

$$V$$

$$I(q) = F$$

• Nó 4 corresponde as seguintes interpretações:

analisando-se a implicação:

e, por fim, percebe-se que a bi-implicação resultará em V:

No
$$4 = p \rightarrow q \leftrightarrow \neg q \rightarrow \neg p$$

Continuando a árvore a partir do Nó 2:

$$I(p) = V$$
 $I(p) = F$
 $I(q) = V$
 $I(q) = F$
 $I(q) = F$

• Nó 5 corresponde as seguintes interpretações:

Nó 5 =
$$\stackrel{\frown}{p} \rightarrow \stackrel{\frown}{q} \leftrightarrow \stackrel{\lnot}{q} \rightarrow \stackrel{\lnot}{p}$$

V **F F** FV
aplicando-se a negação:

...

Continuando a árvore a partir do Nó 2:

$$I(p) = V$$
 $I(p) = F$
 $I(q) = V$
 $I(q) = V$
 V
 V

Nó 5 corresponde as seguintes interpretações:

analisando-se as implicações:

e, por fim, percebe-se que a bi-implicação resultará em V:

• Como todas as folhas da árvore resultam em V, a fórmula $p \to q \leftrightarrow \neg q \to \neg p$ é uma tautologia.

- Desta forma, usando o método da árvore semântica podemos concluir que:
 - Se as folhas forem todas V, a fórmula é uma tautologia.
 - Se as folhas forem todas F, a fórmula é uma contradição.
 - ullet Se pelo menos uma folha for V, a fórmula é satisfatível.

Frame Lógica Proposicional - Exercícios

 Atividade 02: Classifique as fórmulas abaixo como tautologias, satisfatíveis ou contraditórias usando o método da árvore semântica.

- Método da Negação ou Redução ao Absurdo (refutação)
 - Inicialmente, considera-se a negação daquilo que se pretende demonstrar.
 - Dada uma fórmula α , se o objetivo é mostrar que α é uma tautologia, começamos suponho que α não é uma tautologia.
 - A partir dessa suposição, realizamos deduções.
 - Se a partir dessas deduções chegarmos a um fato contraditório ou absurdo, podemos concluir que a suposição inicial era falsa.
 - Podemos dizer então que a suposição "α não é uma tautologia" é um absurdo, logo podemos concluir que "α é uma tautologia" (princípio do terceiro excluído).

- Método da Negação ou Redução ao Absurdo (refutação)
 - Exemplo: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
 - Se queremos demonstrar que a fórmula é uma tautologia, supomos inicialmente que a fórmula não é uma tautologia.
 Para isso, o resultado da implicação deve ser falso.

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Se a implicação é falsa, então a premissa é V e a conclusão é

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 $V \qquad F \qquad F$

 Se a conjunção é verdadeira, então as implicações dessa conjunção também são.

$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

$$V \qquad V \qquad V \qquad F \qquad F \qquad F$$

..

- Método da Negação ou Redução ao Absurdo (refutação)
 - Exemplo: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
 - ...
 - Para a implicação $p \rightarrow r$ ser falsa, $p \in V$ e $r \in F$.

• Substituindo os valores de p e r também no trecho $((p \to q) \land (q \to r))$, encontramos um absurdo. Para que as implicações $(p \to q)$ e $(q \to r)$ continuem V, q em $(p \to q)$ deve ser V e q em $(q \to r)$ deve ser F.

• Logo, a suposição inicial que $((p \to q) \land (q \to r)) \to (p \to r)$ não é uma tautologia é falsa. Portanto, esta fórmula é uma tautologia.

Frame Lógica Proposicional - Exercícios

 Atividade 03: Usando o método da redução ao absurdo, demonstre que as fórmula abaixo são tautologias.

Leitura

 Huth, M. R. A; Ryan, M. D. Lógica em Ciência da Computação: Modelagem e Argumentação sobre Sistemas: Capítulo 1 - seção 1.2