Functional Analysis II : Operator Algebra $\,$

Lecture by Ikhan Choi Notes by Ikhan Choi

Contents

Chapter 1. Operators on Hilbert spaces 1. Spectral theory	5 6
Chapter 2. C^* -algebras	7
1. Basics	8
2. The Gelfand-Naimark theorems	9
2.1. Commutative Banach algebras	9
Chapter 3. Von Neumann algebras	11

CHAPTER 1

Operators on Hilbert spaces

1. Spectral theory

$CHAPTER \ 2$

 C^* -algebras

1. Basics

2. The Gelfand-Naimark theorems

2.1. Commutative Banach algebras. The Gelfand representation $A \to C_0(\widehat{A})$ can be defined for commutative Banach algebras.

DEFINITION 2.1. A *symmetric* Banach algebra is an involutive Banach algebra for which the Gelfand representation preserves the involution. We will not consider non-symmetric involutive Banach algebras in this section.

Notice the following implication:

Let A be a commutative Banach algebra.

Theorem 2.1. If A is semisimple, then the Gelfand representation is a monomorphism; it is injective.

PROOF. It is because the kernel is given by the Jacobson radical. \Box

Theorem 2.2. If A is symmetric, then the Gelfand representation is an epimorphism; it has a dense range.

PROOF. The image is closed under all operations except involution, separates points, and vanishes nowhere. If A is symmetric, then the image is closed under involution. Thus, by the Stone-Weierstrass theorem, we get the result.

 C^* -algebras are semisimple and symmetric (even if it is noncommutative).

Theorem 2.3. A C^* -algebra is semisimple.

Theorem 2.4. A C^* -algebra is symmetric.

Proof 1. It is by Arens. \Box

Proof 2. It is by Fukamiya.

Furethermore,

Theorem 2.5. If A is a commutative C^* -algebra, then the Gelfand representation is isometric.

Since an isometry is injective and has a closed range, therefore, it should be isometric *-isomorphism.

CHAPTER 3

Von Neumann algebras