Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Unidad 1 Análisis de Confiabilidad

OBJETIVO General

 Predecir estadísticamente cual será el comportamiento de las partes de un dispositivo o sistema electrónico utilizando para el análisis las condiciones ambientales y el campo de aplicación.

Resultado del Análisis de Confiabilidad

- Determinar la vida útil
- Determinar los eslabones débiles del sistema en la etapa de diseño
 - Cambio de los mismos
 - Cambio en las condiciones de operación
- Mejorar la percepción del usuario al presentar una vida útil mas alta.

Resultado del Análisis de Confiabilidad

- Reducir la logística aplicada a las reparaciones
- Evitar fallas que puedan ser catastróficas en aplicaciones críticas.

Curva de Confiabilidad

Zonas de Confiabilidad

- Zona I:Mortalidad Infantil
 - Fallas por Defectos en la fabricación.
- Zona II: Etapa de Vida Útil
 - Falla constante debido a defectos aleatorios.
- Zona III: Período de Desgaste
 - Velocidad de falla creciente como resultado del envejecimiento y deterioro de los equipos.

Procesos que modifican la Confiabilidad

- Electromigración
 - La circulación de altas corrientes en películas delgadas puede causar lagunas o montículos.
- Deriva de Parámetros
- Fatigas por Transitorios Eléctricos (ESD)
- Calor Excesivo
- Interferencia Electromagnética (EMI)
- Defectos Mecánicos

Tiempo Medio entre Fallas - MTBF

MTBF: Tiempo medio a la falla MTTD: Tiempo medio para detectar MTTR: Tiempo medio para reparar

Consideraciones de Diseño

- Selección de Partes
 - Una Correcta selección permitirá aumentar el MTBF.
- Diseño de circuitos confiables
 - Un diseño SIMPLE es el mas confiables
- Redundancia
- Diseñando teniendo en cuenta el medio ambiente.
- Se debe considerar la CONFIABILIDAD desde el momento INICIAL.

Determinación del MTBF

- Se usa como referencia para el cálculo el MIL-HDBK-217F
 - Permite determinar la confiabilidad de cada componente para avanzar sobre grupos.
 - Permite determinar la confiabilidad del Sistema diseñado usando el método de cuenta partes.

Calculo de Confiabilidad de un Componente

$$\lambda_p = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi C * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

- λ_n Cantidad de Fallas en un millon de horas
- λ_b Tasa base de fallas referida a condiciones eléctricas y de temperatura
- πT Modificador segun temperatura de juntura del dispositivo
- πA Depende de como será utilizado el componente
- πR Depende del nivel de potencia disipada respecto del máximo que puede disipar
- πS Factor de stress entre voltajes aplicados y los máximos permitidos
- πC Depende del método de contruccion
- πQ Factor de calidad del componente
- πE Factor de aplicación con respecto al ambiente de aplicación

Ejemplos de Cálculo

• EJEMPLO - 1

- Transistor de Potencia en conmutación
- Ciclo de trabajo 30%
- Potencia Máxima 100W
- Aplicación en automóvil
- Temperatura de trabajo 50°C
- Temperatura de Juntura 90°C
- Vceo 200V
- Vceo aplicada 100V
- Frecuencia de Conmutación 100Khz

NOTA: VER SECCION 6.4 PAG 6-6

EJEMPLO - 2

- Transistor de Potencia en conmutación
- Ciclo de trabajo 30%
- Potencia Máxima 100W
- Aplicación en automóvil
- Temperatura de trabajo 50°C
- Temperatura de Juntura 120°C
- Vceo 150V
- Vceo aplicada 100V
- Frecuencia de Conmutación 100Khz

	Factor	EJEMPLO 1			EJEMPLO 2
Transistor	λb	NPN	0.00074	NPN	0.00074
Temp. de Juntura	πТ	90°C	3.6	120°C	5.6
Aplicación	πА				
Potencia	πR				
Relacion VCEo	πS				
Factor de Calidad	πQ				
Ambiente	πΕ				
TOTAL	λpt				
horas					

$$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

Base Failure Rate - λ_b Type λ_b NPN and PNP .00074

Temperature Factor - π_T

T _J (°C)	π_{\uparrow}	T _J (°C)	π_{T}
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.6 3.9 4.2	105 110 115 120 125 130 135 140 145 150 156 160 165 170	4.5 4.8 5.2 5.6 5.9 6.3 6.8 7.2 7.7 8.1 8.6 9.1 9.7

$$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$$

T_J = Junction Temperature (°C)

	Factor	EJEMPLO 1			EJEMPLO 2
Transistor	λЬ	NPN	0.00074	NPN	0.00074
Temp. de Juntura	πТ	90°C	3.6	120°C	5.6
Aplicación	πА	switching	0.70	switching	0.70
Potencia	πR	100W	5.5	100W	5.5
Relacion VCEo	πS		0.29		0.39
Factor de Calidad	πQ		5.5		5.5
Ambiente	πΕ		9.0		9.0
TOTAL	λpt	0.147230	0.14723 0		0.30799
horas		6.802.721			3.247.8 07

$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$

Application Factor - π_A Application π_A Linear Amplification 1.5 Switching .70

Power Rating Factor - π_R

Rated Power (Pr., Watts)	π _R
P _r ≤ .1	.43
P _r = .5	.77
P _r = 1.0	1.0
P _r = 5.0	1.8
P _r = 10.0	2.3
P _r = 50.0	4.3
Pr = 100.0	5.5
P _r = 500.0	10

$$\pi_{R} = .43$$
 Rated Power $\leq .1W$
 $\pi_{R} = (P_{f})^{.37}$ Rated Power $> .1W$

	Factor	EJEMPLO 1			EJEMPLO 2
Transistor	λb	NPN	0.00074	NPN	0.00074
Temp. de Juntura	πТ	90°C	3.6	120°C	5.6
Aplicación	πА	switching	0.70	switching	0.70
Potencia	πR	100W	100W 5.5 100W		5.5
Relacion VCEo	πS	100/200	0.29	100/150	0.39
Factor de Calidad	πQ				
Ambiente	πΕ				
TOTAL	λpt				
horas					

Voltage Stress Factor - π_S

πS
.11 .16 .21 .29 .39 .54 .73
(0 < V _S ≤ 1.0)
(

V_s = Applied V_{CE} / Rated V_{CEO}

V_{CF} = Voltage, Collector to Emitter

V_{CEO} - Voltage, Collector to Emitter, Base Open

 $\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$

	Factor	EJEMPLO 1			EJEMPLO 2
Transistor	λЬ	NPN	0.00074	NPN	0.00074
Temp. de Juntura	πТ	90°C	3.6	120°C	5.6
Aplicación	πА	switching	0.70	switching	0.70
Potencia	πR	100W	100W 5.5 100W		5.5
Relacion VCEo	πS	100/200	0.29	100/150	0.39
Factor de Calidad	πQ	LOWER	5.5	LOWER	5.5
Ambiente	πΕ	GM	9.0	GM	9.0
TOTAL	λpt		0.14723		0.30799
horas		6.802	.721	3.247	'.807

Quality Factor - π _Q								
Quality	πQ							
JANTXV	.70							
JANTX	1.0							
JAN	2.4							
Lower	5.5							
Plastic	8.0							

Environment Factor - π _E						
Environment	πE					
GB	1.0					
G _F	6.0					
G _M	9.0					
Ns	9.0					
NU	19					
Aic	13					
A _{IF}	29					
Auc	20					
A _{UF}	43					
A _{RW}	24					
SF	.50					
M _F	14					
ML	32					
CL	320					

$$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

Confiabilidad combinando ambos componentes

	Ejemplo 1	Ejemplo 2				
Transistor	0.00074	0.00074				
Temp. de Juntura	3.6	5.6				
Aplicación	0.70	0.70				
Potencia	5.5	5.5				
Relacion VCEo	0.29	0.39				
Factor de Calidad	5.5	5.5				
Ambiente	9.0	9.0				
TOTAL Individual	Λρ1= 0.147230	Λρ2= 0.30799				
Total Sistema	Λp1+Λp2= 0.45522					
Total Sistema	2.196.740 horas					

Método de Cuenta Partes

- En este método se analiza el ámbito de aplicación y la calidad del componente.
- El resultado final tendrá en cuenta todos los componentes del sistema.

$$\lambda_{Pequi} = \sum_{1}^{n} N_i * (\lambda g * \pi Q)i$$

Método de Cuenta Partes

$$\lambda_{Pequi} = \sum_{1}^{n} N_i * (\lambda g * \pi Q)i$$

- λPequi = probabilidad de falla equipo
- λg = Tasa de falla de parte genérica
- πQ = Factor de calidad parte genérica
- Ni = Cantidad de partes genéricas
- n = Cantidad de distintas partes genéricas

		Generic	Fallure	Rate - λ	(Fallu	res/10 ⁶	Hours) f	or Discr	ete Sem	lconduc	tors				
Section	Part Type	Env.→ GB	G _F	G _M	N _S	Nυ	^IC	AIF	^uc	A _{UF}	^RW	s _F	MF	M	લ
		T _J (°C) → 50	60	_65	60	65	75	75	90	90	75	50	65	75	60
	DIODES														
6.1	General Purpose Analog	.0036	.028	.049	.043	.10	.092	.21	.20	.44	.17	.0018	.076	.23	1.5
6.1	Switching	.00094	.0075	.013	.011	.027	.024	.054	.054	.12	.045	.00047	.020	.060	.40
6.1	Fast Recovery Pwr. Rectilier	.065	.52	.89	.78	1.9	1.7	3.7	3.7	8.0	3.1	.032	1.4	4.1	28
6.1	Power Rectilier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	.16	.16	.35	.13	.0014	.060	.18	1.2
6.1	Transient Suppressor/Varistor	.0029	.023	.040	.035	.084	.075	.17	.17	.36	.14	.0015	.062	.18	1.2
6.1	Voltage Rel/Reg. (Avalanche	.0033	.024	.039	.035	.082	.066	.15	.13	.27	.12	.0016	.050	.16	1.3
1	and Zener)	l													- 1
6.1	Current Regulator	.0056	.040	.066	.060	.14	.11	.25	.22	.46	.21	.0028	.10	.28	2.1
6.2	Si Impati (i ≤ 35 GHz)	.86	2.8	8.9	5.6	20	11	14	36	62	44	.43	18	67	350
6.2	Gunr/Bulk Effect	.31	.76	2.1	1.5	4.6	2.0	2.5	4.5	7.6	7.9	.16	3.7	12	94
6.2	Tunnel and Back	.004	.0096	.0026	.0019	.058	.025	.032	.057	.097	.10	.002	.048	.15	1.2
6.2	PIN	.028	.068	.19	.14	.41	.18	.22	.40	.69	.71	.014	.34	1.1	8.5
6.2	Schottky Barrier and Point	.047	.11	.31	.23	.68	.30	.37	.67	1.1	1.2	.023	.56 .	1.8	14
l	Contact (200 MHz s1 s 35 (3Hz)														- 1
6.2	Varactor	.0043	.010	.029	.021	.063	.028	.034	.062	.11	.11	.0022	.052	.17	1.3
6.10	Thyristor/SCR	.0025	.020	.034	.030	.072	.064	.14	.14	.31	.12	.0012	.053	.16	1.1
		ļ													
1	TRANSISTORS														
6.3	NPN/PNP (1 < 200 MHz)	.00015	.0011	.0017	.0017	.0037	.0030	.0067	.0060	.013	.0056	.000073	.0027	.0074	.056
6.3	Power NPN/PNP (f < 200 MHz)	.0057	.042	.069	.063	.15	.12	.26	.23	.50	.22	.0029	.11	.29	2.2
6.4	SI FET (I ≤ 400 MHz)	.014	.099	.16	.15	.34	.28	.62	.53	1.1	.51	.0069	.25	.68	5.3
6.9	SI FET (I > 400 MHz)	.099	.24	.64	.47	1.4	.61	.76	1.3	2.3	2.4	.049	1.2	3.6	30
6.8	GaAs FET (P < 100 mW)	.17	.51	1.5	1.0	3.4	1.8	2.3	5.4	9.2	7.2	.083	2.8	11	63
6.8	GaAs FET (P≥ 100 mW)	.42	1.3	3.9	2.5	8.5	4.5	5.6	13	23	18	.21	6.9	27	160
6.5	Unijunction	.016	.12	.20	.18	.42	.36	.80	.74	1.6	.66	.0079	.31	.88	6.4
6.6	RF, Low Noise (1 > 200 MHz, P < 1W)	.094	.23	.63	.46	1.4	.60	.75	1.3	2.3	2.4	.047	1.1	3.6	28
6.7	RF, Power (P ≥ 1W)	.074	.15	.37	.29	.81	.29	.37	.52	.88	.037	.33	.68	1.8	18

		Generic	Fallure	Rate - λ	(Failu	res/10 ⁶	Hours) f	or Discr	ete Sem	lconduc	tors	
Section	Part Type	Env.→ GB	G _F	G _M	NS	NU	A _{IC}	AIF	^uc	^UF	A _{FIW}	s
		T _J (°C) → 50	60	65	60	65	75	75	90	90	75	5
	DIODES											
6.1	General Purpose Analog	.0036	.028	.049	.043	.10	.092	.21	.20	.44	.17	.00
6.1	Switching	.00094	.0075	.013	.011	.027	.024	.054	.054	.12	.045	.000
6.1	Fast Recovery Pwr. Rectilier	.065	.52	.89	.78	1.9	1.7	3.7	3.7	8.0	3.1	.0:
6.1	Power Rectilier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	.16	.16	.35	.13	.00
6.1	Translent Suppressor/Varistor	.0029	.023	.040	.035	.084	.075	.17	.17	.36	.14	.00
6.1	Voltage Ref/Reg. (Avalanche	.0033	.024	.039	.035	.082	.066	.15	.13	.27	.12	.00
	TRANSISTORS											
6.3	NPN/PNP (I < 200 MHz)	.00015	.0011	.0017	.0017	.0037	.0030	0067	0000			
6.3	Power NPN/PNP (f < 200 MHz)	.0057	.042	.069	.063	.15		.0067	.0060	.013	.0056	.000
6.4	SI FET (1 ≤ 400 MHz)	.014	.099	.000	.15	.15	.12 .28	.26	.23	.50	.22	.00
6.9	SI FET (I > 400 MHz)	000	24	64	.13	.34	.28	.62	.53	1.1	.51	.00

Quality Factor - π _Q	
Quality	πQ
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Cuenta Partes

$$\lambda_{Pequi} = 1*(0.069*5.5) = 0,3795 \left[Fallas / 10^6 \text{ horas} \right]$$

$$MTBF = \frac{1}{\lambda_{Pequi}} = \frac{1}{0,3795} = 2.635.046 \text{ horas}$$

- MTBF para el análisis de un solo transistor.
- Se considera que todos los componentes del mismo tipo tienen la misma probabilidad de fallas.
- Es mayor la probabilidad de falla obtenido por este método.

Comparativa de Análisis de Confiabilidad del Sistema

Cuenta Partes

$$\lambda_{Pequi} = 2*(0.069*5.5) = 0,759 [Fallas/10^6 \text{ horas}]$$

$$MTBF = \frac{1}{\lambda_{Pequi}} = \frac{1}{0,759} = 1.317.523 \text{ horas}$$

Análisis Stress por Partes

$$\lambda_{PT} = 0.45522 [Fallas/10^6 \text{ horas}]$$

$$MTBF = \frac{1}{\lambda_{PT}} = \frac{1}{0,45522} = 2.196.740 \text{ horas}$$

Comparativa Componentes

1N4148

- Calidad LOWER
- Costo: 0.016 USD
- $\lambda_P = 0.827 \times 10^{-6} \text{ hr}$

JANTXV1N4148

- Calidad JANTXV
- Costo: 22USD
- $\lambda_P = 0.105 \times 10^{-6} \text{ hr}$

