

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 8 Learning Outcome

Define/Discuss Normal Strain

Axial Centric Loading

Insert axial test clip from 0:17 to 0:21

Axial Centric Loading

Normal Strain

Elongation per unit length

$$\mathcal{E} = \frac{\delta}{L}$$
 [dimensionless]

Sign Convention

- (+) Tension causes (+) elongation
- (-) Compression causes (-) shortening

Normal Strain

Elongation per unit length

Nominal Strain (Engineering Strain)

$$\mathcal{E} = \frac{\mathcal{S}}{L_o}$$
 initial length

True Strain

$$\varepsilon = \frac{\delta}{L}$$
 smaller

Worksheet:

A flat steel alloy bar has an initial length of 900 mm. When subjected to a total axial load in tension of 60 kN, the bar elongates by 0.45 mm. Determine the nominal axial strain (engineering strain) in the bar.

Worksheet:

A flat steel alloy bar has an initial length of 900 mm. When subjected to a total axial load in tension of 60 kN, the bar elongates by 0.45 mm. Determine the nominal axial strain (engineering strain) in the bar.

$$E = \frac{S}{L_o} = \frac{0.45 \, mm}{900 \, mm} = \frac{0.0005}{0.0005}$$