

Thème Logique des propositions

Une théorie formalisée

Exercice 1 En utilisant la déduction naturelle constructive sans les règles de la négation \neg et de l'anti-té \bot , construire la preuve que les formules bien formées suivantes sont des théorèmes.

1.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

2.
$$((A \land B) \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$$

3.
$$((A \lor B) \to C) \to (B \to C)$$

4.
$$((A \lor B) \land (A \to C) \land (B \to C)) \to C$$

Exercice 2 En utilisant la déduction naturelle constructive avec les règles de la négation \neg , construire la preuve que les formules bien formées suivantes sont des théorèmes.

1.
$$A \rightarrow \neg \neg A$$

2.
$$(A \to \neg B) \to ((A \to B) \to \neg A)$$

Exercice 3 En utilisant la déduction naturelle constructive avec les règles de la négation \neg et de l'anti-té \bot , construire la preuve que les formules bien formées suivantes sont des théorèmes.

1.
$$A \rightarrow (\neg A \rightarrow B)$$

2.
$$(\neg A \lor B) \to (A \to B)$$

Exercice 4 En utilisant la déduction naturelle, montrer que la formule bien formée suivante est un théorème.

•
$$(\neg A \to \neg B) \to (B \to A)$$

Exercice 5 En utilisant la déduction naturelle, montrer que la formule bien formées suivante issue de la question 4 de l'exercice 1 du thème 1 est un théorème.

$$((E \to (Y \lor R)) \land (Y \to R)) \to (\neg R \to \neg E)$$

Rappels de cours distribués lors de l'examen écrit.

1 Logique des propositions : Vision syntaxique

1.1 Déduction naturelle constructive

Hypothèse	${\Gamma, \varphi \vdash \varphi} \text{ Hyp}$	
Opérateur	Introduction	Elimination
\rightarrow	$\frac{\Gamma,\varphi\vdash\psi}{\Gamma\vdash\varphi\to\psi}\ I_{\to}$	$\frac{\Gamma \vdash \varphi \to \psi \Gamma \vdash \varphi}{\Gamma \vdash \psi} \ E_{\to}$
٨	$\frac{\Gamma \vdash \varphi \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} \ I_{\land}$	$\frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} \ E^G_{\land} \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \ E^D_{\land}$
V	$\begin{array}{c c} \Gamma \vdash \varphi \\ \hline \Gamma \vdash \varphi \lor \psi \end{array} I_{\vee}^{G} \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi} \ I_{\vee}^{D} \end{array}$	$ \begin{array}{c cccc} \Gamma \vdash \varphi \lor \psi & \Gamma, \varphi \vdash \chi & \Gamma, \psi \vdash \chi \\ \hline \Gamma \vdash \chi & & \end{array} E_{\lor} $
7	$\frac{\Gamma,\varphi\vdash\bot}{\Gamma\vdash\neg\varphi}\;I_\neg$	$\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \ E_{\neg}$
<u></u>	$\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \ I_\bot$	$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \ E_\bot$

1.2 Déduction naturelle classique

Tiers-exclu	Preuve par l'absurde
	$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} \text{ Abs}$