Two Memory Allocators that Use Hints to Improve Locality

Fast Allocation Speed, Low Memory Fragmentation, and High Spatial Locality: Pick Two.

Lawrence Rauchwerger
Texas A&M University
College Station, TX, USA

Alin Jula SAP Labs Palo Alto, CA, USA

Locality - Performance Bottleneck

Memory management could reduce latency by better data layout at runtime

Allocator

Allocator

allocation

Allocator

deallocation

Memory chunks are now disordered!

Application

Problem = next allocation will exhibit poor locality

Approaches to Improving Locality

- Explicit memory allocation, e.g. C/C++
 - Locality of reference: FreeBSD, Linux, Vam
 - Using allocation hints: ccmalloc, ialloc
 - Compiler
 - Software pre-fetching
 - Profiling (use context)
- Implicit garbage collection, e.g. Java, M/L (region-based)

Approaches to Improving Locality

- Explicit memory allocation, e.g. C/C++
 - Locality of reference: FreeBSD, Linux, Vam
 - Using allocation hints: ccmalloc, ialloc
 - Compiler
 - Software pre-fetching
 - Profiling (use context)
- Implicit garbage collection, e.g. Java, M/L (region-based)

What is the Challenge?

- Fragmentation = extra memory used by allocator
 - Theoretical lower bound 50% rule, Observed bound 20%
- Allocation speed = instructions spent in allocator
 - Participates directly in an application's performance
- Locality = data layout of allocated memory
 - Online algorithm (hard) at runtime, with no chance to rearrange memory

What is the Challenge?

Fragmentation + Speed + Locality = Hard

- Fragmentation = extra memory used by allocator
 - Theoretical lower bound 50% rule, Observed bound 20%
- Allocation speed = instructions spent in allocator
 - Participates directly in an application's performance
- Locality = data layout of allocated memory
 - Online algorithm (hard) at runtime, with no chance to rearrange memory

Locality Improving for C/C++

1. Temporal: Locality of Reference

- Allocates consecutive requests in same vicinity, e.g. FreeBSD, Vam.
- Easy to use
- X No application feedback

2. Spatial: Use Allocation Hints

- Cache line collocation and static tree organization, e.g. ccmalloc
- Instance interleaving, e.g. ialloc
- ✓ Tailored for each application
- Code modifications, manual hints impractical, cache only

Locality Improving for C/C++ Our Work - Both Temporal and Spatial

1. Temporal: Locality of Reference

- Allocates consecutive requests in same vicinity, e.g. FreeBSD, Vam.
- Easy to use
- X No application feedback

2. Spatial: Use Allocation Hints

- Cache line collocation and static tree organization, e.g. ccmalloc
- Instance interleaving, e.g. ialloc
- ✓ Tailored for each application
- Code modifications, manual hints impractical, cache only

The Idea:

Standard Template Library (STL) w/ Improved Locality

STL containers give spatial hints to their allocators

(ISO C++ Standard)

Allocators that use spatial hints

Optimized for Locality

The Idea: No costs! Just recompile the application.

Standard Template Library (STL) w/ Improved Locality

STL containers give spatial hints to their allocators

(ISO C++ Standard)

Allocators that use spatial hints

Optimized for Locality

- I) How to select hints?
- 2) How does an allocator efficiently use the hints?

How to Select Hints?

Linear traversal

Hint = address of previous element

DFS traversal (set, map)

Hint = parent's address (sibling's -BFS)

How Does an Allocator Use Hints

- 1. Interface ISO C++ Standard
 - void* allocator<T>::allocate(size_t size, void* address)

2. Management Strategy

Index free blocks on 'address', too

3. Allocation Strategy

- 1. Try to find a block in the hint's vicinity (fail fast)
- 2. Otherwise, abandon locality and allocate based on size

Managing Address for Locality

- The whole memory is organized in K-regions
- K-region = a contiguous block of size 2^{64-K} aligned to its size
 - X, Y ∈ same K-region iff they share the 64-K most significant bits
 - Examples
 - 0x0000FFFF and 0x0000CCCC in same 16-region
 - A 64-byte cache line is a 6-region
 - A 4 KB virtual page is a 12-region
- •K ∈ [0,64) adjustable

Managing Address for Locality

Idea: Approximate address search within a K-region

- The whole memory is organized in K-regions
- K-region = a contiguous block of size 2^{64-K} aligned to its size
 - X, Y ∈ same K-region iff they share the 64-K most significant bits
 - Examples
 - 0x0000FFFF and 0x0000CCCC in same 16-region
 - A 64-byte cache line is a 6-region
 - A 4 KB virtual page is a 12-region
- • $K \in [0,64)$ adjustable

Application

Allocator

Memory chunks are now partially ordered

Application

Next allocation will exhibit better locality

Anatomy of a K-region

- Holds objects of same size in a linked list
- Topmost 16 bytes reserved
- Software alignment

Two Partitions (TP) Allocator

Allocation Strategy: Address then Size. O(1)

- If hint's K-region is not empty then select first block
- Else select first block on size

Deallocation: O(1)

Return block to its K-region

TP's Size Segregation and Its Progressive K-Region Selection

K-region

0 - 512 B : 64 classes, 8 bytes apart

12-region (4 KB)

512 - 1KB : 8 classes, 64 bytes apart

13-region (8 KB)

1 KB - 2 KB : 8 classes, 128 bytes apart

14-region (16 KB)

2 KB - 4 KB : 8 classes, 256 bytes apart

15-region (32 KB)

4 KB - 8 KB : 8 classes, 512 bytes apart

16-region (64 KB)

8 KB - 16 KB : 8 classes, 1024 bytes apart

17-region (128 KB)

Larger than 16 KB managed by mmap and munmapped

C++ STL Benchmarks Suite

S	even large and real world applications	Lines of code	Files	Execution time (sec)
•	447.dealll - adaptive finite elements (Spec 2006)	198,649	452	1,040
•	471.omnetpp - even simulation (Spec 2006)	47,910	155	1,152
•	483.xalancbmk - XML processor (Spec 2006)	553,643	1,773	841
•	Atlas- mathematical application (Atlas Lie Group)	53,869	230	557
•	Kolah - mesh transport (Lawrence National Labs)	52,921	227	70
•	Md -Molecular dynamics (Sandia National Labs)	1,259	30	64
•	Debruijn - network simulation (Texas A&M)	499	3	15

TP vs. Dimalloc

Execution time normalized to dlmalloc (lower is better)

Locality Precision Study

- We varied K between 7 and 14
 - Only for objects < 512 bytes (≈ 95%)
 - Notation: TP-7 uses 7-regions for small objects
- Why K-regions other than cache lines or virtual pages could improve locality?
 - They increase the **probability** of allocating in the same cache line or virtual page

TP vs dlmalloc

• Time: 5-7%

Instructions: 1%

TLB Misses: 13-18%

L1 Misses: 1-5%

L2 Misses: 10-12%

Default K's value 12

Default K's value 12

TP vs dlmalloc

- Time: 5-7%
- Instructions: 1%
- L1 Misses: 1-5%
- L2 Misses: 10-12%
- Default K's value 12

Two pitfalls

- 1. Whole K-region aquisition
- TLB Misses: 13-18% 2. Hint from allocated memory

TP vs dlmalloc

• Time: 5-7%

Instructions: 1%

L1 Misses: 1-5%

L2 Misses: 10-12%

Default K's value 12

Two pitfalls

1. Whole K-region aguisition

• TLB Misses: 13-18% 2. Hint from allocated memory

Can we do better?

Medius - Another Approach

- Addresses TP's pitfalls
 - no alignment, hint need not be from allocated memory
- Uses same K-regions
 - stores them in an array 2^{32-K} size
- K-region = list of lists
 - size classes store blocks of same size in a list
 - K-regions store size classes in a list
- Prioritizes address over size
- O(1) access to hint's K-region

Medius allocator

- Allocation O(s) on average
 - If hint's K-region is not empty select size class and return
 - Else select first K-region with size class (from cache)
- Deallocation O(s)
 - return block to its K-region
- Strategy: Address and then size

cache for size classes

0001	1111	-
16	24	6.384

Medius' Performance Improvement

Medius vs dlmalloc

• Time: 0%

Instructions: 0.36%

TLB Misses: -13%

L1 Misses: -3%

L2 Misses: -3%

Default K's value 12

Medius' Performance Improvement

Medius vs dlmalloc

• Time: 0%

Instructions: 0.36%

TLB Misses: -13%

L1 Misses: -3%

L2 Misses: -3%

Default K's value 12

Medius' Performance Improvement

Medius vs dlmalloc

- Time: 0%
- Instructions: 0.36%
- TLB Misses: -13%
- L1 Misses: -3%
- L2 Misses: -3%
- Default K's value 12

Two pitfalls

- 1. Slower
- 2. No memory reuse

Medius' Performance Improvement

Medius vs dlmalloc

• Time: 0%

Instructions: 0.36%

TLB Misses: -13%

L1 Misses: -3%

L2 Misses: -3%

Default K's value 12

Two pitfalls

1. Slower

2. No memory reuse

We did worse!

Comparison of Allocators

Execution time normalized to dlmalloc (lower is better)

- FreeBSD's allocator PHKmalloc
- Defero locality improving allocator that uses hints
- Vam locality of reference
- native 4.1.2 gnu malloc (older version of dlmalloc)

Fragmentation

Benchmarks	TP	Medius	Defero	PHK	dlmalloc
471.omnetpp	0.6	3.2	1.5	58.0	23.5
483.xalancbmk	75.6	37.2	28.4	30.3	1.3
447.dealll	21.2	25.3	24.7	57.0	18.2
Atlas	10.8	12.9	7.2	23.4	2.7
Kolah	1.1	0.9	0.9	5.4	12.3
Md	21.4	20.15	22.14	20.7	10.7
Debruijn	6.6	44.7	44.7	1.3	6.8
Geometric Mean	7.7	11.7	9.5	18.1	7.2

Speed, Fragmentation and Locality

- Rock, paper, scissors
 - Efforts to increase one trait hurt others
 - Intra and inter allocators
- Speed v. Fragmentation
 - Studied relation: the fastest allocators have high fragmentation
- Locality v. Fragmentation
 - Less searching space limits spatial choice
- Locality v. Speed
 - Searching takes additional time

Locality Accuracy - Benefits w/o Costs

Allocation Speed (instr) 1.TP-12 (98.96) 2.TP-10 (98.96) 3.TP-8 (99.00) 4.TP-7 (99.09) 5.Defero-20 (99.18) 6.TP-14 (99.31) 7.Defero-16 (99.55) 8. Medius - 22 (99.61) 9. Medius - 20 (99.64) 10.dlmalloc (100.00) 11.Defero-12 (100.08) 12.Defero-8 (100.90) 13.PHKmalloc (119.31) 14.Medius-16 (106.08)

15.Medius-12 (268.37)

Allocation Speed (instr)

- 1.TP-12 (98.96)
- 2.TP-10 (98.96)
- 3.TP-8 (99.00)
- 4.TP-7 (99.09)
- 5.Defero-20 (99.18)
- 6.TP-14 (99.31)
- 7.Defero-16 (99.55)
- 8. Medius 22 (99.61)
- 9. Medius 20 (99.64)

10.dlmalloc (100.00)

- 11.Defero-12 (100.08)
- 12.Defero-8 (100.90)
- 13.PHKmalloc (119.31)
- 14.Medius-16 (106.08)
- 15.Medius-12 (268.37)

Allocation Speed (instr) 1.TP-12 (98.96) Locality (page accuracy) 1. Medius-12 (42%) 2.TP-10 (98.96) 3.TP-8 (99.00) 2. Defero-12 (40%) 4.TP-7 (99.09) 3. Defero-8 (36%) 5.Defero-20 (99.18) 4. TP-12 (35%) 6.TP-14 (99.31) 5. TP-14 (32%) 7.Defero-16 (99.55) 6. TP-8 (32%) 8.Medius-22 (99.61) 7. PHKmalloc (32%) 9.Medius-20 (99.64) 8. TP-10 (30%) 10.dlmalloc (100.00) 9. dlmalloc (25%) 10.Defero-16 (22%) 11.Defero-12 (100.08) 12.Defero-8 (100.90) 11.TP-7 (20%) 13.PHKmalloc (119.31) 12.Medius-16 (19%) 14.Medius-16 (106.08) 13.Medius-20 (16%) 15.Medius-12 (268.37) 14.Defero-20 (16%)

15.Medius-22 (15%)

Allocation Speed (instr) 1.TP-12 (98.96) Locality (page accuracy) 1. Medius-12 (42%) 2.TP-10 (98.96) 3.TP-8 (99.00) 2. Defero-12 (40%) 4.TP-7 (99.09) 3. Defero-8 (36%) 5.Defero-20 (99.18) 4. TP-12 (35%) 6.TP-14 (99.31) 5. TP-14 (32%) 7.Defero-16 (99.55) 6. TP-8 (32%) 8.Medius-22 (99.61) 7. PHKmalloc (32%) 9. Medius - 20 (99.64) 8. TP-10 (30%) Fragmentation 10.dlmalloc (100.00) 9. dlmalloc (25%) 1. dlmalloc (7.2%) 10.Defero-16 (22%) 11.Defero-12 (100.08) 2.TP-12 (7.7%) 12.Defero-8 (100.90) 11.TP-7 (20%) 3.Defero-20 (9.5%) 13.PHKmalloc (119.31) 12.Medius-16 (19%) 4.Defero-16 (9.5%) 14.Medius-16 (106.08) 13.Medius-20 (16%) 5.Defero-12 (9.5%) 15.Medius-12 (268.37) 14.Defero-20 (16%) 6.Defero-8 (9.5%) 7.Medius-22 (11.0%) 15.Medius-22 (15%) 8.Medius-20 (11.3%) 9.Medius-16 (16.7%) 10.PHKmalloc (18.1%) Fast Allocation Speed, 11.TP-10 (18.5%) 12.TP-8 (20.3%) Low Memory Fragmentation, 13.Medius-12 (27.3%) and High Spatial Locality: 14.TP-7 (29.2%)

Pick Two.

15.TP-14 (39.5%)

Execution Time Allocation Speed (instr) 1. TP-14 (93%) 1.TP-12 (98.96) Locality (page accuracy) 2. TP-12 (93%) 2.TP-10 (98.96) 1. Medius-12 (42%) 3. TP-8 (94%) 3.TP-8 (99.00) 2. Defero-12 (40%) 4. TP-7 (94%) 3. Defero-8 (36%) 4.TP-7 (99.09) 5. TP-10 (95%) 4. TP-12 (35%) 5.Defero-20 (99.18) 6. Defero-16 (95%) 6.TP-14 (99.31) 5. TP-14 (32%) 7. Defero-20 (95%) 7.Defero-16 (99.55) 6. TP-8 (32%) 8. Defero-12 (97%) 8.Medius-22 (99.61) 7. PHKmalloc (32%) 9. Defero-8 (97%) 9. Medius - 20 (99.64) 8. TP-10 (30%) Fragmentation 10.Medius-22 (99%) 10.dlmalloc (100.00) 9. dlmalloc (25%) 1. dlmalloc (7.2%) 11.dlmalloc (100%) 2.TP-12 (7.7%) 11.Defero-12 (100.08) 10.Defero-16 (22%) 12.Medius-20 (100) 12.Defero-8 (100.90) 11.TP-7 (20%) 3.Defero-20 (9.5%) 13.PHKmalloc (119) 13.PHKmalloc (119.31) 12.Medius-16 (19%) 4.Defero-16 (9.5%) 14.Medius-16 (190) 13.Medius-20 (16%) 14.Medius-16 (106.08) 5.Defero-12 (9.5%) 15.Medius-12 (890) 15.Medius-12 (268.37) 14.Defero-20 (16%) 6.Defero-8 (9.5%) 15.Medius-22 (15%) 7. Medius-22 (11.0%) 8.Medius-20 (11.3%) 9.Medius-16 (16.7%) 10.PHKmalloc (18.1%) Fast Allocation Speed, 11.TP-10 (18.5%) 12.TP-8 (20.3%) Low Memory Fragmentation, 13.Medius-12 (27.3%) and High Spatial Locality: 14.TP-7 (29.2%) 15.TP-14 (39.5%) Pick Two.

			Execution Time
Allocation Speed (inst	tr)		1. TP-14
1.TP-12	Locality (page accuracy)		2. TP-12
2.TP-10	1. Medius-12		3. TP-8
3.TP-8	2. Defero-12		4. TP-7
4.TP-7	3. Defero-8		5. TP-10
5.Defero-20	4. TP-12		6. Defero-16
6.TP-14	5. TP-14		7. Defero-20
7.Defero-16	6. TP-8		8. Defero-12
8.Medius-22	7. PHKmalloc		9. Defero-8
9.Medius-20	8. TP-10	Fragmentation	10.Medius-22
10.dlmalloc	9. dlmalloc	1. dlmalloc	11.dlmalloc
11.Defero-12	10.Defero-16	2.TP-12	12.Medius-20
12.Defero-8	11.TP-7	3.Defero-20	13.PHKmalloc
13.PHKmalloc	12.Medius-16	4.Defero-16	14.Medius-16
14.Medius-16	13.Medius-20	5.Defero-12	15.Medius-12
15.Medius-12	14.Defero-20	6.Defero-8	
	15.Medius-22	7.Medius-22	
		8.Medius-20	
		9.Medius-16	
East Alloast	ion Spood	10.PHKmalloc	
Fast Allocat	ion Speed,	11.TP-10	
Low Memor	y Fragmentation,	12.TP-8	
		13.Medius-12	
and High Spatial Locality:		14.TP-7	
Pick Two.		15.TP-14	
I ICK IVVO.			

Allocation Speed (. \		Execution Time 1. TP-14
Allocation Speed (ins	Locality (page accuracy)		2. TP-12
2.TP-10	1. Medius-12		3. TP-8
3.TP-8			4. TP-7
4.TP-7			5. TP-10
5.Defero-20	4. TP-12		6. Defero-16
6.TP-14	5. TP-14		
7.Defero-16	6. TP-8		
	7. PHKmalloc		
	8. TP-10	Fragmentation	
10.dlmalloc	9. dlmalloc	1. dlmalloc	11.dlmalloc
11.Defero-12	10.Defero-16	2.TP-12	12.Medius-20
	11.TP-7		
13.PHKmalloc			
	tion Chood		
Fast Allocation Speed,		11.TP-10	
Low Memo	ry Fragmentation,	12.TP-8	
and High Spatial Locality:			
		14.TP-7	
Pick Two.		15.TP-14	
FICK IWO.			

			Execution Time
Allocation Speed (in:	str)		
	Locality (page accuracy)		
	1. Medius-12		
8.Medius-22	7. PHKmalloc		
9.Medius-20		Fragmentation	10.Medius-22
10.dlmalloc	9. dlmalloc	1. dlmalloc	11.dlmalloc
		2.TP-12	12.Medius-20
		3.Defero-20	13.PHKmalloc
13.PHKmalloc	12.Medius-16	4.Defero-16	14.Medius-16
14.Medius-16	13.Medius-20	5.Defero-12	15.Medius-12
15.Medius-12		6.Defero-8	
	15.Medius-22	7.Medius-22	
		8.Medius-20	
		9.Medius-16	
	Han Chand	10.PHKmalloc	
Fast Alloca	tion Speed,	11.TP-10	
Low Memo	ry Fragmentation,	12.TP-8	
		13.Medius-12	
and High Si	patial Locality:		
Pick Two.			

			Execution Time
Speed			
1. TP-12	Locality (page accuracy)		
2. TP-10			
3.TP-8	2. Defero-12		
4.TP-7	3. Defero-8		
5.Defero-20			6. Defero-16
6. TP-14			7. Defero-20
7.Defero-16			8. Defero-12
8.Medius-22	7. PHKmalloc		9. Defero-8
9.Medius-20		Fragmentation	10.Medius-22
10.dlmalloc	9. dlmalloc	1. dlmalloc	11.dlmalloc
11.Defero-12	10.Defero-16		
12.Defero-8		3.Defero-20	
13.PHKmalloc		4.Defero-16	
14.Medius-16		5.Defero-12	
15.Medius-12	14.Defero-20	6.Defero-8	
East Alloca	tion Spood		
rast Alloca	tion Speed,		
Low Memo	ry Fragmentation,		
and High S	patial Locality:		
Pick Two.			
I IUN IVVU.			

			Execution Time
Allocation Speed (inst	tr)		1. TP-14
1.TP-12	Locality (page accuracy)		2. TP-12
2.TP-10	1. Medius-12		3. TP-8
3.TP-8	2. Defero-12		4. TP-7
4.TP-7	3. Defero-8		5. TP-10
5.Defero-20	4. TP-12		6. Defero-16
6.TP-14	5. TP-14		7. Defero-20
7.Defero-16	6. TP-8		8. Defero-12
8.Medius-22	7. PHKmalloc		9. Defero-8
9.Medius-20	8. TP-10	Fragmentation	10.Medius-22
10.dlmalloc	9. dlmalloc	1. dlmalloc	11.dlmalloc
11.Defero-12	10.Defero-16	2.TP-12	12.Medius-20
12.Defero-8	11.TP-7	3.Defero-20	13.PHKmalloc
13.PHKmalloc	12.Medius-16	4.Defero-16	14.Medius-16
14.Medius-16	13.Medius-20	5.Defero-12	15.Medius-12
15.Medius-12	14.Defero-20	6.Defero-8	
	15.Medius-22	7.Medius-22	
		8.Medius-20	
		9.Medius-16	
East Alloast	ion Spood	10.PHKmalloc	
Fast Allocat	ion Speed,	11.TP-10	
Low Memor	y Fragmentation,	12.TP-8	
		13.Medius-12	
and High Spatial Locality:		14.TP-7	
Pick Two.		15.TP-14	
I ICK IVVO.			

Conclusions

- TP is 7% better than state-of-the-art
 - Benefits both temporal and spatial

 Fragmentation, allocation speed, and locality are antagonistic

Thank you