

Domestic Migration in Germany

Adian Dawuda, Felix Schachtschneider

30.01.2024

Recap project idea

Topic and Stakeholders

- Definition and Scope: Internal migration in Germanyrelocation of residence within the country
- Key trends: movements between northern and southern Germany as well as between eastern and western states
- Factors: economic conditions, employment opportunities, and regional development disparities

Source: Binnenwanderung in Deutschland (2023) Deutscher Bundestag - WD 1 - 3000 - 040/22

Policy Makers and Government Officials at BAMF

Stakeholders

Mr. Martin Migration

Job: Assistant Migration Officer Interested in: Exploring the inner-country migration of Germany Needs/Goals: Monitor migration

movements

Ms. Berta Bamf

Job: Official in charge Interested in: Investigating Internal

Migration within Germany

Needs/Goals: Control Migration

movements /Understanding migration

patterns

Project Overview

DMIG Work Package Breakdown

Current status

Time Estimate (hours)		Responsible	€ Start	End		02.10 08.10.	09.10 15.10.	16.10 22.10.	23.10 29.10.	30.10 05.11.	06.11 12.11.	13.11 19.11	20.11 26.11.		11.12.	18.12.	25.12.	01.01 07.01.	08.01 14.01.		29.01 31.01.		
	Tasks				Status	KW40	KW41	KW42	KW43	KW44	KW45	KW46	KW47 KW48	KW49				KW01	KW02	VAN 03	KW05		
20 (10%)	Project Management																						
10	Establish project management procedures and documents	Adian, Felix	KW40	KW46	Complete																		Deliverable
10	Monitor and regularly update progress, milestones, and deliverables	Adian, Felix	KW40	KW05	Open																		Milestone
30 (15%)	Literature Review & Methodology																						WP Duration
20	State of the art literature review	Adian, Felix	KW40	KW46	Complete																	15	WT Duration
10	Identify methodology	Adian, Felix	KW40	KW46	Complete																		WT Overdue
50 (30%)	Data Acquisition & Pre-Processing																						
10	Set up computing environment	Adian, Felix	KW47	KW48	Complete																		
20	Collect raw data	Adian, Felix	KW48	KW50	Complete																		
20	Pre-process data	Adian, Felix	KW50	KW51	Complete											•							
60 (25%)	Data Processing & Analysis																						
20	Insert data into PostGIS DB	Adian, Felix	KW51	KW01	Complete																		
10	Optimize PostGIS DB	Adian, Felix	KW52	KW01	Complete																		
10	Generate OGC services	Adian, Felix	KW02	KW02	Complete																		
20	Construct Dashboard	Adian, Felix	KW03	KW04	Complete																		
40 (20%)	Dissemination																						
15	Writing documentation (wiki)	Adian, Felix	KW46	KW05	Open																		
15	Creating presentations	Adian, Felix	KW44	KW05	Open																		
10	Publishing results	Adian, Felix	KW02	KW05	Open																		
	Completion			KW05																			

Approach & SDI methods

standards: JSON/REST, GeoJSON, Simple Feature Standard ISO 19125

Metadata ISO 19115/19139, OGC compliant Web-services

used technologies:

<u>open source:</u> Python (GeoPandas/GeoAlchemy2), PostgreSQL/PostGIS, GeoServer

proprietary: ArcGIS Insights

DE states spatial Data

- NUTSL1 = Bundesländer in DE
- Year: 2021
- Data type: Polygons
- Scale: 1:10 million
- CRS: EPSG 4326

Domestic Migration data

- · Domestic migration data available as table without spatial attributes
- Years: 2000-2022

EUROSTAT API

GENESIS-Online API

Download

- Download via HTTP GET requests
- · GeoJSON and CSV files

Preprocess & Combine

- · Combine necessary attributes from migration dataset with NUTSL1 spatial attributes using the GeoPandas library
- · Calculate Bundesland centroids

Store

Insert data into PostGIS enabled Postgres DB using the GeoAlchemy 2 library

PostGIS database

- · PostGIS enabled Postgres database
- @ geoserver22s.zgis.at
- Spatial data stored as Simple Features
- 1NF & 2NF
- 3NF not needed as rows/columns not intended to be edited after creation

Access using Simple Feature queries GeoServer

ArcGIS Insights dashboard

- Visualize data via interactive Chord diagram and map
- Visualization for 2022
- @Z_GIS ArcGIS cloud

Web Feature Service

Publish using OGC WFS standard

DE states spatial Data

- NUTSL1 = Bundesländer in DE
- Year: 2021
- Data type: Polygons
- Scale: 1:10 million
- CRS: EPSG 4326

Domestic Migration data

- Domes availab spatial
- Years:

EUROSTAT API

GENE

- Download via HTTP
- · GeoJSON and CSV

Preproce

- Combine migration attributes
- Calculate

ArcGIS Insights dashboard

- Visualize data via interactive Chord diagram and map
- Visualization for 2022
- · @Z_GIS ArcGIS cloud

Web Feature Service

Publish using OGC WFS standard

Insert data into PostGIS enabled Postgres DB using the GeoAlchemy 2 library

GeoServer

@ geoserver22s.zgis.at

ArcGIS Insights dashboard

sualize data via interactive Chord

DE states spatial Data

- NUTSL1 = Bundesländer in DE
- Year: 2021
- · Data type: Polygons
- Scale: 1:10 million
- CRS: EPSG 4326

Domestic Migration data

- Domestic migration data available as table without spatial attributes
- Years: 2000-2022

Tabellenaufbau

EUROSTAT API

Dov• D

JSON/RI

DE states spatial Data

- NUTSL1 = Bundesländer in DE
- Year: 2021
- Data type: Polygons
- Scale: 1:10 million
- CRS: EPSG 4326

Domestic Migration data

- · Domestic migration data available as table without spatial attributes
- Years: 2000-2022

EUROSTAT API

GENESIS-Online API

Download

- Download via HTTP GET requests
- · GeoJSON and CSV files

Preprocess & Combine

- · Combine necessary attributes from migration dataset with NUTSL1 spatial attributes using the GeoPandas library
- · Calculate Bundesland centroids

Store

Insert data into PostGIS enabled Postgres DB using the GeoAlchemy 2 library

PostGIS database

- · PostGIS enabled Postgres database
- @ geoserver22s.zgis.at
- Spatial data stored as Simple Features
- 1NF & 2NF
- 3NF not needed as rows/columns not intended to be edited after creation

Access using Simple Feature queries GeoServer

ArcGIS Insights dashboard

- Visualize data via interactive Chord diagram and map
- Visualization for 2022
- @Z_GIS ArcGIS cloud

Web Feature Service

Publish using OGC WFS standard

DE states spatial Data

- NUTSI 1 = Bundesländer in DF
- Year: 2021
- Data type: Polygons
- Scale: 1:10 million
- CRS: EPSG 4326

Domestic Migration data

- Domestic migration data available as table without spatial attributes
- Years: 2000-2022

EUROSTAT API

GENESIS-Online API

- Download via HTTP GET requests
- · GeoJSON and CSV files

Preprocess & Combine

- Combine necessary attributes from migration dataset with NUTSL1 spatial attributes using the GeoPandas library
- Calculate Bundesland centroids

```
Store
Insert data into PostGIS enabled Postgres DB
using the GeoAlchemy 2 library
```

```
abspath = os.path.abspath(__file__)
dir_name = os.path.dirname(abspath)
os.chdir(dir_name)
# Define list of scripts in the order to be executed in
scripts = ['eurostat.py', 'genesis.py', 'process.py']
# Execute each script in the list
for script in scripts:
    print(f'executing {script}')
    try:
        script_code = open(script, 'r', encoding='utf-8').read()
        exec(script_code)
        print(f'{script} successfully executed')
    except FileNotFoundError:
        print(f'{script} not found.')
    except Exception as error:
                      queries
                                   GeoServer
```


DE states spatial Data

- NUTSL1 = Bundesländer in DE
- Year: 2021
- Data type: Polygons
- Scale: 1:10 millionCRS: EPSG 4326

Domestic Migration data

- Domestic migration data available as table without spatial attributes
- Years: 2000-2022

EUROSTAT API

GENESIS-Online API

- · Download via HTTP GET requests
- · GeoJSON and CSV files

Preprocess & Combine

- Combine necessary attributes from migration dataset with NUTSL1 spatial attributes using the GeoPandas library
- Calculate Bundesland centroids

Insert data into PostGIS enabled Postgres DB using the GeoAlchemy 2 library

This script is responsible for the high level automation of the entire workflow. It executes the three scripts eurostat.py, genesis.py, and process.py consecutively. If any execution errors occur, the exception output is printed.

ad()

е

parameters.py

Description:

This Python file serves as a location to store all user defined parameters needed to execute the workflow. This includes the year for which the domestic

CDI Acchitactuca German domestic migration 2000 Type Raster Dataset Migration, Ge German domestic migration 2005 Summary Type Raster Dataset his dataset is intende Tags Migration, Germany. Domestic. Intranational German domestic migration 2006 Description Summary ts dashboard Type Raster Dataset C This dataset contains This dataset is intended Each migration stream Tags Migration, Germany, Domestic, Intranational Calso associated with g Description German domestic migration 2022 (represented as lat-lo Summary This dataset contains th Tags Migration, Germany, Domestic, Intranational, 2022 Each migration stream is This dataset is intended to **EU**Credits also associated with ge-Summary Description (represented as lat-lon Authors: This dataset is intended to be used to show internal migration flows within Germany at a state level for the year 2022. This dataset contains the Adian Dawuda, Felix S Each migration stream is re Description Credits also associated with geogra Original German state This dataset contains the amount of incoming and outgoing people for each German state. The incoming and outgoing people are divided into the origin and destination states. Authors: (represented as lat-lon valu https://ec.europa.eu/e Adian Dawuda, Felix Sch Each migration stream is represented as one table entry, containing the names of the origin and destination states and the total annual amount of people. Credits Original German dom Original German states https://www-genesis.c https://ec.europa.eu/eur Authors: Each migration stream is also associated with geographic data comprising the origin and destination state polygons (represented as WKB) and additionally the derived centroids of Adian Dawuda, Felix Schack the respective states (represented as lat-lon values). Use limitations Original German domes Any constraints of the https://www-genesis.de Original German states data Credits https://ec.europa.eu/eurost Use limitations Extent Original German domestic Adian Dawuda, Felix Schachtschneider | Email: [firstname].[lastname]@plus.ac.at Any constraints of the o https://www-genesis.destat Original German states data: Evtont Use limitations https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts Any constraints of the original ard - Original German domestic migration data: $\textbf{attributes using the } \vec{G} \text{ https://www-genesis.de/genesis//online?operation=table\&code=12711-0022}$ Calculate Bundeslan (Use limitations Any constraints of the original data sources apply Simple Feature Store queries Insert data into PostGIS enabled Postgres DB

GeoServer
@ geoserver22s.zgis.at

using the GeoAlchemy 2 library

DE states spatial Data

- NUTSL1 = Bundesländer in DE
- Year: 2021
- Data type: Polygons
- Scale: 1:10 million
- CRS: EPSG 4326

Domestic Migration data

- · Domestic migration data available as table without spatial attributes
- Years: 2000-2022

EUROSTAT API

GENESIS-Online API

Download

- Download via HTTP GET requests
- · GeoJSON and CSV files

Preprocess & Combine

- · Combine necessary attributes from migration dataset with NUTSL1 spatial attributes using the GeoPandas library
- · Calculate Bundesland centroids

Store

Insert data into PostGIS enabled Postgres DB using the GeoAlchemy 2 library

PostGIS database

- · PostGIS enabled Postgres database
- @ geoserver22s.zgis.at
- Spatial data stored as Simple Features
- 1NF & 2NF
- 3NF not needed as rows/columns not intended to be edited after creation

ArcGIS Insights dashboard

- Visualize data via interactive Chord diagram and map
- Visualization for 2022
- @Z_GIS ArcGIS cloud

Web Feature Service

Publish using OGC WFS standard

DE states spatial Data

• NUTSL1 = Bundesländer in DE

Year: 2021

Data type:Scale: 1:10

· CRS: EPS

EUROST

Domestic Migration data

 Domestic migration data available as table without

using the GeoAlchemy 2 library

ArcGIS Insights dashboard

- Visualize data via interactive Chord diagram and map
- Visualization for 2022
- @Z_GIS ArcGIS cloud

Web Feature Service

Publish using OGC WFS standard

GeoServer
@ geoserver22s.zgis.at

Dashboard Result

Dashboard Result

