Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 5, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- \S 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

\S 3.1 Basic insurance strategies

§ 3.2 Put-call parity

§ 3.3 Spreads and collars

§ 3.4 Speculating on volatility

§ 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- Written against asset positions (selling insurance Covered call writing Covered put writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance) Covered call writing

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- 3. Written against asset positions (selling insurance)

Covered call writing

Four positions

positions w.r.t. asset	put option	call option
long	purchased (floor)	written
short	written	purchased (cap)

Buying insurance	Selling insurance			
floor = buying a put option	Covered put writing			
cap = buying a call option	Covered call writing			

We will work under the following setup

${\rm S\&S}$ index

index price	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
premium for 1000-strike 6-month put	\$74.201

Insuring a long position – Floors

```
owning a home owning a stock index insuring the house buying a put (floor)
```

Goal: to insure against a fall in the price of the underlying asset.

2

Example 3.1-1 Under the following scenario, compute the combined profit.

S&R index

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution

$$\underbrace{\$900 - \$1,000 \times 1.02}_{\text{profit on S&R index}} + \underbrace{\$1,000 - \$900 - \$74.201 \times 1.02}_{\text{profit on put}} = -\$95.68.$$

Example 3.1-1 Under the following scenario, compute the combined profit.

S&R index

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month put	\$74.201
index price at expiration	\$900

Solution.

$$\underbrace{\$900 - \$1,000 \times 1.02}_{\text{profit on S\&R index}} + \underbrace{\$1,000 - \$900 - \$74.201 \times 1.02}_{\text{profit on put}} = -\$95.68.$$

Insuring a short position — Caps

If we have a short position in the S&R index, we experience a loss when the index rises.

We can insure a short position by purchasing a call option (cap) to protect against a higher price of repurchasing the index.

Example 3.1-2 Under the following scenario, compute the combined profit.

S&R index

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution

$$$1,000 \times 1.02$$
 - $$93.809 \times 1.02$ - $$1,000$ = -\$75.685

Example 3.1-2 Under the following scenario, compute the combined profit.

S&R index

index price today	\$1,000
6-month interest rate	2%
premium for 1000-strike 6-month call	\$93.809
index price at expiration	\$1,100

Solution.

$$\underbrace{\$1,000\times1.02}_{\text{future value of short S\&R index}} - \underbrace{\$93.809\times1.02}_{\text{FV of premium for call}} - \underbrace{\$1,000}_{\text{exercise the call option}} = -\$75.685.$$

10

500 1000 1500 2000

S&R Index at Expiration

-1000

-2000

Long S&R Call

500 1000 1500 2000

S&R Index at Expiration

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

- Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset
- Naked writing is writing an option when the writer does not have a

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying

Naked writing is writing an option when the writer does not have a

ror	every	insurance	buyer	tnere	must	be an	insurance	sene

Strategies used to sell insurance

- ► Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- Naked writing is writing an option when the writer does not have a position in the asset.

COL	every	insurance	buyer	tnere	must	bе	ап	msurance	sen

Strategies used to sell insurance

- ► Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.
- ▶ Naked writing is writing an option when the writer does not have a position in the asset.

Covered call writing

§ 3.1 Basic insurance strategies

§ 3.2 Put-call parity

§ 3.3 Spreads and collars

§ 3.4 Speculating on volatility

§ 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\S~3.3$ Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- \S 3.4 Speculating on volatility

§ 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems