End to End Learning for Self-driving Plane in GTA V

Chaoxing Huang u6441859 Yinjiya Bai u6007355

Self-driving car

M. Bojarski et al., "End to end learning for self-driving cars," arXiv preprint arXiv:1604.07316, 2016.

Low altitude flight

Purchase a plane

GTA V

Collect Data

Labels

Dataset specifications

Balance Dataset


```
conv in=3, 32 \times 5 \times 5,stride=1,padding=2
                    ReLu
                     BN
   conv 64 \times 5 \times 5 stride=1,padding=2
                    ReLu
                     BN
        maxpooling 2 \times 2, stride=2
  conv 128 \times 3 \times 3 stride=1,padding=1
                    ReLu
                     BN
        maxpooling 2 \times 2, stride=2
  conv 256 \times 3 \times 3 stride=1,padding=1
                    ReLu
                     BN
        maxpooling 2 \times 2, stride=1
  conv 256 \times 3 \times 3 stride=1,padding=1
                    ReLu
                     BN
        maxpooling 2 \times 2, stride=1
```

GTA Network architecture

FC Layer
Flatten
ReLu
512
ReLu
256
ReLu
5

training accuracy 0.95 validation accuracy 0.90 0.85 0.80 0.75 0.70 0.65 5.0 7.5 10.0 12.5 15.0 17.5 training loss validation loss 0.8 S 0.6 0.4 0.2

2.5

5.0

7.5

10.0

epochs

12.5

15.0

17.5

GTA Network

Data: 100x100

Epoch: 20

GTX 1070: 13 hours

AlexNet

Test metric

Autonomy^[1], "How autonomous the CNN can be "

$$1 - \frac{N_{int}}{N_{total}}$$
 (flight time is fixed)

 $N_{int} = Number\ of\ human\ interventions$

$$N_{total} = N_{int} + N_{auto}$$

 N_{auto} = Number of autonomous manipulations

It is technically and ethically infeasible to deliberately involve any "crash" to test the model.

Deploy the CNN

Duration of each flight is 120s, every scene tests for 5 times(start from different random location)

Autonomy(%)

Conditions	GTA-Net	AlexNet
City sunny	99.96	97.43
City clear night	99.04	93.46
City rainy	98.43	75.23
City foggy and cloudy	98.86	82.36
Mountain sunny	94.98	97.06
City thunder storm	Crash	Crash

A little bit visualization

CNN output: left row

CONV 3

CONV 5

A little bit visualization

CONV3

CNN output: Pull up

A little bit visualization

CONV 3

CONV 5

CNN output: Pull up

Video DEMO

DAY TIME CITY