Uniwersytet Gdański Wydział Matematyki, Fizyki i Informatyki

Informatyka Ogólnoakademicka II stopień

Julia Komorowska

Nr albumu: 266386

Specjalność: Ogólna

Rodzaj studiów: Stacjonarne

Testowanie klasyfikatorów na wybranej bazie danych

Gdańsk 2022

Streszczenie

Zakres pracy obejmuje projekt polegający na testowaniu klasyfikatorów i porównaniu ich do siebie. Cała praca została także opisana w pliku:

• projekt.ipynb

Cały projekt został napisany w języku Python w Jupyter Notebook.

Treść zadania

Celem projektu (typu d) jest przetestowanie klasyfikatorów na wybranej bazie danych. Można wybrać następującą bazę danych

• COVID19 https://www.kaggle.com/datasets/meirnizri/covid19-dataset

Typ D: Uczenie maszynowe – klasyfikacja lub regresja

Naszym zadaniem jest wzięcie dużej bazy danych z Internetu (lub stworzenie własnej) i przetestowanie, jak działają na niej klasyfikatory poznane na zajęciach i na wykładzie tzn.

- kNN (najlepiej dla wielu k)
- drzewa decyzyjne (też w paru wersjach) dodaj wizualizację drzewa!
- Naive Bayes
- **Sieci neuronowe** w różnych konfiguracjach tj. różne topologie, funkcje aktywacji, optimizery, learning rate, techniki na regularyzację, itp.

Można alternatywnie do klasyfikacji wziąć też regresję (liniowa, wielomianowa itp.). Wskazówki:

- Ciekawe bazy danych możesz znaleźć np. na stronie https://www.kaggle.com/datasets. Nie dość, że mają datasety, to również konkursy z rankingami i fora dyskusyjne. Warto tę stronę przejrzeć. Kilka przykładowych propozycji znajdziesz dalej w sekcji "Propozycje tematów do wyboru".
- Wybierając bazę danych zwróć uwagę na to czy jest odpowiednio duża (mile widziane minimum kilka tysięcy rekordów), interesująca i nieoklepana, oraz czy ma dane umożliwiające klasyfikację (kolumna z klasa).
- W eksperymentach sprawdź klasyfikatory, które najlepiej działają na Twoim datasecie (dokładność, macierz błędu). W przypadku trenowania sieci neuronowych mile widziane są też krzywe uczenia się.
- Przed klasyfikacją możesz dokonać preprocessingu danych (szukanie błędów, brakujących danych, sensowna obróbka). Przykładowe źródła: https://towardsdatascience.com/data-cleaning-with-python-and-pandasdetecting-missing-values-3e9c6ebcf78b lub https://realpython.com/python-data-cleaning-numpy-pandas/
- Można też zrobić analizę statystyczną danych (częstości występowania danych w każdej z kolumn), co pomoże zaznajomić się zdanymi i wykryć ewentualne błędy.
- W przypadku regresji można porównać regresję liniową z wielomianową i zobaczyć, czy wielomianowa działa o wiele lepiej.

Spis treści

1	Wprowadzenie	4
	1.1 Importowanie paczek	4
	1.2 Preprocessing	5
	1.3 Statystyki	
	1.4 Dane na wykresach	9
2	Naive-Bayes	11
	2.1 Definicja	
	2.1.1 Czym jest?	
	2.1.2 Wzór	
	2.2 Kod	12
3	KNN	15
•	3.1 Definicja	15
	3.2 Kod	
1	Decision-Tree	18
4	4.1 Definicja	18
	4.2 Kod	18
		10
5	Neural-Networks	19
	5.1 Definicja	19
	5.2 Kod	20
6	Apriori	22
U	6.1 Definicja	
	6.2 Kod	23
7	Link do githuba	29
_	Bibliografia	90
ð	DIDIIUGI alia	29

1. Wprowadzenie

Projekt został stworzony na podstawie bazy danych Covid-19 https://www.kaggle.com/datasets/meirnizri/covid19-dataset.

1.1. Importowanie paczek

Na początku trzeba zaimportować wszystkie paczki potrzebne do uruchomienia programu.

```
from sklearn.linear_model import LinearRegression
from sklearn.neural_network import MLPClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, plot_confusion_matrix, precision
from sklearn.linear_model import Perceptron
from sklearn import tree
from sklearn.metrics import confusion_matrix,mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import make_blobs
from sklearn.tree import export_graphviz,export_text
from sklearn.naive_bayes import GaussianNB, BernoulliNB, CategoricalNB
from sklearn.preprocessing import StandardScaler,OrdinalEncoder
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from six import StringIO
from IPython.display import Image
import pydotplus
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
import warnings
import json
warnings.filterwarnings("ignore")
```

1.2. Preprocessing

Wstępne przetwarzanie bazy danych w celu zapewnienia większej wydajności jest pierwszym krokiem do przygotowania naszej bazy danych do użytku.

• Pobranie bazy danych i pokazanie jej kolumn.

```
df = pd.read_csv("covid_data.csv")
for col in df.columns:
    print(col)
```

USMER MEDICAL_UNIT SEX PATIENT_TYPE DATE_DIED **INTUBED PNEUMONIA** AGE **PREGNANT DIABETES COPD** ASTHMA **INMSUPR HIPERTENSION** OTHER_DISEASE **CARDIOVASCULAR OBESITY** RENAL_CHRONIC T0BACC0 CLASIFFICATION_FINAL ICU

Jak widać po pierwszych pięciu wierszach i ostatnich baza danych jest niezrozumiała.
 Dobrym przykładem jest ciąża, jeśli dana osoba jest mężczyzną to wtedy kolumna "PREGNANT" zawiera liczbe 97, a kiedy jest kobietą zawiera liczbę 2 lub 98 w zależności od tego czy jest w ciąży.

df.head() USMER MEDICAL_UNIT SEX PATIENT_TYPE DEATH INTUBED PNEUMONIA AGE PREGNANT DIABETES ... ASTHMA INMSUPR HIPERTENSION 0 1 03/05/2020 1 03/06/2020 72 1 2 09/06/2020 12/06/2020 97 21/06/2020 5 rows × 21 columns df.tail() USMER MEDICAL UNIT SEX PATIENT TYPE DEATH INTUBED PNEUMONIA AGE PREGNANT DIABETES ... ASTHMA INMSUPR HIPERTENSI 9999-97 1048570 9999 2 2 1048571 13 2 51 97 2 .. 9999 1048572 97 97

• Zmiana nazw kolumn or usunięcie niepotrzebnych. Niektóre wartości zostały zmienione na wartości binarne.

97

9999-

1048573

1048574

13

df['OTHER_DISEASE'] = change (df['OTHER_DISEASE'], [90], [0,1])
df['CARDIOVASCULAR'] = change (df['CARDIOVASCULAR'], [90], [0,1])

df['RENAL_CHRONIC'] = change (df['RENAL_CHRONIC'], [90], [0,1])

df['PNEUMONIA'] = change (df['PNEUMONIA'], [90], [0,1])

df['TOBACCO'] = change (df['TOBACCO'], [90], [0,1])

df['OBESITY'] = change(df['OBESITY'],[90],[0,1])

df['ASTHMA'] = change(df['ASTHMA'],[90],[0,1])

```
df['COPD'] = change(df['COPD'],[90],[0,1])
df['DIABETES'] = change(df['DIABETES'],[90],[0,1])

df = df.drop('INMSUPR', axis=1)
df = df.drop('CLASIFFICATION_FINAL', axis=1)
df = df.drop('ICU', axis=1)
```

	USMER	MEDICAL_UNIT	SEX	PATIENT_TYPE	DEATH	INTUBED	PNEUMONIA	AGE	PREGNANT	DIABETES	COPD	ASTHMA	HIPERTENSION	OTHE
0	2	1	1	1	03/05/2020	1	0	65	0	0	0	0	0	
1	2	1	2	1	03/06/2020	1	0	72	0	0	0	0	0	
2	2	1	2	2	09/06/2020	0	0	55	0	0	0	0	0	
3	2	1	1	1	12/06/2020	1	0	53	0	0	0	0	0	
4	2	1	2	1	21/06/2020	1	0	68	0	0	0	0	0	

1.3. Statystyki

Średnia, minimalna i maksymalna wartość dla danej kolumny oraz odchylenie standardowe są podstawowymi danymi, które pozwolą nam wykryć ewentualne błędy.

```
For SEX:
Mean: 1.501222
Min: 1
Max: 2
Std: 0.49999875671321103
For PATIENT TYPE:
Mean: 1.197682
Min: 1
Max: 2
Std: 0.39825115879302275
For INTUBED:
Mean: 0.809557
Min: 0
Max: 1
Std: 0.39265075821347645
For PNEUMONIA:
Mean: 0.015837
Min: 0
Max: 1
Std: 0.12484472362581059
For AGE:
Mean: 41.929601
Min: 0
Max: 121
Std: 16.941643603856352
For PREGNANT:
Mean: 0.003565
Min: 0
Max: 1
Std: 0.05960112689617811
For DIABETES:
Mean: 0.003266
Min: 0
Max: 1
Std: 0.05705555625297591
For COPD:
Mean: 0.002947
Min: 0
Max: 1
Std: 0.0542062554445345
For ASTHMA:
Mean: 0.002924
Min: 0
Max: 1
Std: 0.053994936238995025
For HIPERTENSION:
Mean: 0.003045
Min: 0
Max:
Std: 0.05509746827877857
For OTHER DISEASE:
Mean: 0.00493
Min: 0
Max:
     1
Std: 0.07004070249290768
```

1.4. Dane na wykresach

Aby baza danych była bardziej czytelna dla użytkownika została lekko zmodyfikowana.

```
repSex = {1: "Female", 2: "Male"}
df.replace({"SEX": repSex},inplace=True)
df['AGE']=change(df['AGE'],[1,11,18,60],["Unknown","Child","Teenager","Adr
repDate={"9999-99-99":0}
df.replace({"DEATH":repDate},inplace=True)
df.loc[df["DEATH"] != 0,"DEATH"]=1
Po tych zmianach tworzymy wykresy porównawcze.
new_cols=cols
new_cols.remove("SEX")
for x in new cols:
```

```
new_cols=cols
new_cols.remove("SEX")
for x in new_cols:
    sns.set(style="whitegrid")
    ax = sns.countplot(y=x, hue="SEX", data=df)
    plt.ylabel(x)
    plt.title('Gender Plot')
    plt.show()
```


2. Naive-Bayes

2.1. Definicja

2.1.1. Czym jest?

Naiwny Bayes jest to klasyfikator probabilistyczny, który jest oparty na założeniu o wzajemnej niezależności predykatów. Polega na "uczeniu się" w trybie uczenia z nadzorem.

Wyróżniamy trzy klasyfikatory w bibliotece scikit-learn:

- Gaussian dla danych ciągłych
- Multinomial dla danych dyskretnych
- Bernoulli dla danych binarnych

Model Bayesa używa metody maksymalnego prawdopodobieństwa.

2.1.2. Wzór

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- P(A|B) prawdopodobieństwo, że A prawdziwe jeśli widzimy dowody na B
- P(B) prawdopodobieństwo, że B prawdziwe jeśli widzimy dowody na A
- P(B) prawdopodobieństwo, że B prawdziwe
- \bullet P(A) prawdopodobieństwo, że A prawdziwe

2.2. Kod

```
def naive_Bayes(X,y,typ):
   y.astype('int')
   X_train, X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,re
   model=typ
   clf=model.fit(X_train,y_train.astype('int'))
   pred_labels=model.predict(X_test)
   print("Classes: ",clf.classes_)
   print("\n*----*\n")
   if str(typ) == 'GaussianNB()':
      print("Class Priors: ", clf.class_prior_)
   else:
      print("Class Priors: ", clf.class_log_prior_)
   score=model.score(X_test,y_test.astype('int'))
   print("\n*----*\n")
   print("Score: ",score)
   print("\n*----*\n")
   print('Training set score: {:.4f}'.format(model.score(X_train, y_train))
   print('Test set score: {:.4f}'.format(model.score(X_test, y_test.asty)
   print("\n*----*\n")
   print( classification_report(y_test.astype('int'),pred_labels))
   print("\n*----*\n")
   y_pred = clf.predict(X_test)
   cm = confusion_matrix(y_test.astype('int'), y_pred.astype('int'))
   cm_matrix = pd.DataFrame(data=cm, columns=['Actual Positive:1', 'Actual
                           index=['Predict Positive:1', 'Predict Ne
   sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')
   return X_train, X_test, y_train.astype('int'), y_test.astype('int'), clf,
```

• Gaussian

X=df["OTHER_DISEASE"].values.reshape(-1,1)
y=df["DEATH"].values
X_train,X_test,y_train,y_test,clf,pred_labels,=naive_Bayes(X,y,Gaussia

Classes: [0 1]

*------

Class Priors: [0.92659562 0.07340438]

Score: 0.9240254631285316

Training set score: 0.9237 Test set score: 0.9240

*				*
	precision	recall	f1-score	support
0 1	0.93 0.21	1.00 0.01	0.96 0.03	194349 15366
accuracy macro avg weighted avg	0.57 0.87	0.50 0.92	0.92 0.49 0.89	209715 209715 209715

*-----

• Bernoulli

X=df["OTHER_DISEASE"].values.reshape(-1,1)
y=df["DEATH"].values
X_train,X_test,y_train,y_test,clf,pred_labels,=naive_Bayes(X,y,Bernoul)

Classes: [0 1]

Class Priors: [-0.07623804 -2.61177164]

Score: 0.9267291323939633

Training set score: 0.9266 Test set score: 0.9267

*				*
	precision	recall	f1-score	support
0 1	0.93 0.00	1.00 0.00	0.96 0.00	194349 15366
accuracy macro avg weighted avg	0.46 0.86	0.50 0.93	0.93 0.48 0.89	209715 209715 209715

3. KNN

3.1. Definicja

Metoda K najbliższych sąsiadów należy do grupy algorytmów leniwych. Polega na podporządkowaniu danej obserwacji taką klasę, która ma najwięcej podobnych próbek.

Ciekawym przykładem może być klasyfikacja czy dany człowiek skłamał poprzez ewaulacje pulsu wraz z badaniami galwanometrem.

Zbiór treningowy

Puls	GSR	Winny
1	0,7	Tak
0,8	0,8	Tak
0,9	0,9	Tak
0,6	1	Tak
0,5	0,5	Tak
0,3	0,9	Tak
0,3	0,4	Nie
0,2	0	Nie
0,1	0,2	Nie
0	0,3	Nie
0,6	0,8	Nie

Zbiór testowy

Puls	GSR	Winny
0,4	0,6	Nie
0,6	0,6	Tak
0,4	0,9	Tak
0,5	0,2	Nie
0,5	0,6	Tak

3.2. Kod

```
def knn(X,Y):
    X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3
    knn_model = KNeighborsClassifier(n_neighbors=20)
    knn_model.fit(X_train, Y_train.astype("int"))
    Y_predict_knn = knn_model.predict(X_test)
    #Comparing the output I expected (Y_test) against the ones the model
    knn_metrics = metrics.classification_report(Y_test.astype("int"),Y_pre-
    print(knn_metrics)
    table = pd.DataFrame(Y_test.astype("int"))
    print('table 1')
    print(table.head())
    #add the predictions to the dataframe
    table['predictions'] = Y_predict_knn.astype("int")
    print('table 2')
    print(table.head())
    accuracy_knn = accuracy_score(Y_test.astype("int"),Y_predict_knn.asty]
    precision_knn = precision_score(Y_test.astype("int"), Y_predict_knn.astype("int"),
    f1_knn = f1_score(Y_test.astype("int"),Y_predict_knn.astype("int"))
    recall_knn = recall_score(Y_test.astype("int"), Y_predict_knn.astype(
    print(precision_knn)
    print(accuracy_knn)
    print(f1_knn)
    print(recall_knn)
    plt.bar(['Accuracy', 'F1 Score', 'Recall Score', 'Precision Score'], [acc
    plt.plot([accuracy_knn,f1_knn,recall_knn,precision_knn],color='black'
    plt.title('Evaluation Metrics for K-Nearest Neighbors')
    plt.show
    cm = confusion_matrix(Y_test.astype('int'), Y_predict_knn.astype('int
    cm_matrix = pd.DataFrame(data=cm, columns=['Actual Positive:1', 'Actual
                                  index=['Predict Positive:1', 'Predict Ne
    sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')
knn(X=df["OTHER_DISEASE"].iloc[:100000].values.reshape(-1,1),
Y = df["DEATH"].iloc[:100000].values)
```

	precision	recall	f1-score	support
0 1	0.59 0.71	1.00 0.00	0.74 0.01	17644 12356
accuracy macro avg weighted avg	0.65 0.64	0.50 0.59	0.59 0.37 0.44	30000 30000 30000

```
table 1

0
0 1
1 0
2 1
3 1
4 0
table 2
0 predictions
0 1 0 0
2 1 0 0
3 1 0
4 0 0
0.7083333333333334
0.5888
0.005482102547565302
0.002751699579151829
```

Evaluation Metrics for K-Nearest Neighbors

4. Decision-Tree

4.1. Definicja

Drzewo decyzyjne jest to jeden ze sposobów klasyfikacji, polegający na podejmowaniu decyzji na podstawie pytań. Przykładem może byc klasyfikacja czy człowiek prowadzi zdrowy tryb życia.

4.2. Kod

5. Neural-Networks

5.1. Definicja

Sieci neuronowe wzorowane są na budowie biologicznego systemu neuronowego w ujęciu matematyczno-informatycznym są grafem skierowanym.

5.2. Kod

```
def neural_network(activation, solver, learning_rate, X, y):
    scaler = StandardScaler()
    scaler.fit(X_train)
    train_data = scaler.transform(X_train)
    test_data = scaler.transform(X_test)
    print(train_data[:3])
    mlp = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000,
                        activation=activation,
                        solver=solver.
                        learning_rate=learning_rate)
    mlp.fit(train_data, y_train)
    predictions_train = mlp.predict(train_data)
    predictions_test = mlp.predict(test_data)
    percent = (mlp.score(test_data, y_test))
   print("Percent: ",percent)
    return ["Neural Network", percent, mlp]
r=neural_network('relu','adam','constant',X,y)
plot_confusion_matrix(r[2], X_test, y_test)
```

[[-0.04280095] [-0.04280095] [-0.04280095]] Percent: 0.5872

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x16e194130>

6. Apriori

6.1. Definicja

Reguły asocjacyjne polegają na ocenie wiarygodności jakiejś reguły. Najlepiej wytłumaczyć takie reguły na bazie danych:

"Kiedy kupimy pieluche i mleko, wtedy też kupimy piwo" - stwierdzenie to jest prawdziwe tylko dla 3 i 4, a 5 nie zawiera piwa więc wiarygoność jest równa 2/3.

Tid	Towary		Reguła assocjacyjna: {Diaper, Milk} ⇒ Beer
1	Bread, Milk		Wsparcie: $s(Diaper, Milk, Beer) = \frac{2}{5} = 0.4$
2	Beer, Diaper, Bread, Eggs	\Rightarrow	***
3	Beer, Coke, Diaper, Milk		Wiarygodność:
4	Beer, Bread, Diaper, Milk		s(Diaper, Milk, Beer) 2
5	Coke, Bread, Diaper, Milk		$\frac{s(Diaper, Milk, Deer)}{s(Diaper, Milk)} = \frac{2}{3} = 0.67$

6.2. Kod

new_df.head()

Aby rozpocząć trzeba przygotować baze danych. Wartości stają się kolumnami:

```
data = []
df_te=df.iloc[:2000]
df_te['INTUBED'] = change(df_te['INTUBED'],[0.5],["NOT INTUBED","INTUBED"])
df_te['PREGNANT'] = change(df_te['PREGNANT'],[0.5],['NOT PREGNANT','PREGNANT']
df_te['TOBACCO']=change(df_te['TOBACCO'],[0.5],["NOT TOBACCO","TOBACCO"])
df_te['OTHER_DISEASE'] = change(df_te['OTHER_DISEASE'],[0.5],["NOT OTHER DI
df_te['OBESITY'] = change(df_te['OBESITY'],[0.5],["NOT OBESITY","OBESITY"])
df_te['ASTHMA'] = change(df_te['ASTHMA'],[0.5],['NOT ASTHMA','ASTHMA'])
df_te['DIABETES'] = change(df_te['DIABETES'],[0.5],["NOT DIABETES","DIABETES
df_te['DEATH'] = change(df_te['DEATH'],[0.5],["NO","YES"])
df_te = df_te.drop('MEDICAL_UNIT', axis=1)
df_te = df_te.drop('USMER', axis=1)
df_te = df_te.drop('CARDIOVASCULAR', axis=1)
df_te = df_te.drop('HIPERTENSION', axis=1)
df_te = df_te.drop('PNEUMONIA', axis=1)
df_te = df_te.drop('RENAL_CHRONIC', axis=1)
df_te = df_te.drop('PATIENT_TYPE', axis=1)
df_te = df_te.drop('COPD', axis=1)
for i in range(0, df_te.shape[0]-1):
    data.append([str(df_te.values[i,j]) for j in range(0, df_te.shape[1])]
th = TransactionEncoder()
th_arr = th.fit(data).transform(data)
new_df = pd.DataFrame(th_arr,columns=th.columns_)
```

	ASTHMA	Adult	Child	DIABETES	Female	INTUBED	Male	NO	NOT ASTHMA	NOT DIABETES	
0	False	False	False	False	True	True	False	False	True	True	
1	False	False	False	False	False	True	True	False	True	True	
2	False	True	False	False	False	False	True	False	True	True	
3	False	True	False	False	True	True	False	False	True	True	
4	False	False	False	False	False	True	True	False	True	True	

Wyniki aprori:

```
apr = apriori(new_df,min_support = 0.2, use_colnames = th.columns_)
apr.head()
```

	support	itemsets
0	0.495248	(Adult)
1	0.406203	(Female)
2	0.302151	(INTUBED)
3	0.593797	(Male)
4	0.248624	(NO)

Uruchamianie eksploracji reguł z konfiguracją:

```
config = [ ('antecedent support',0.7),('confidence',0.8),('conviction',3)]
for metric, new_th in config:
    rules = association_rules(apr, metric = metric, min_threshold=new_th)
    if rules.empty:
        print("Dataframe is Empty")
    print(rules.columns.values)
    print("My configuration: ", metric, " : ",new_th)
    print(rules)

support = rules.loc[:,"support"]
    confidence = rules.loc[:,'confidence']
    plt.scatter(support,confidence,edgecolors="blue")
    plt.xlabel('support')
    plt.ylabel('confidence')
    plt.title(metric+' : ' +str(new_th))
    plt.savefig('plot%03s.png'%(metric))
```

```
['antecedents' 'consequents' 'antecedent support' 'consequent support'
  support' 'confidence' 'lift' 'leverage' 'conviction']
My configuration: antecedent support: 0.7
               antecedents
                                                                    consequents
                                                                        (Adult)
              (NOT ASTHMA)
0
1
                                                                        (Adult)
            (NOT DIABETES)
             (NOT OBESITY)
2
                                                                        (Adult)
3
       (NOT OTHER DISEASE)
                                                                        (Adult)
4
            (NOT PREGNANT)
                                                                        (Adult)
28630
                             (NOT OBESITY, NOT PREGNANT, NOT INTUBED, Senio...
                     (YES)
28631
              (NOT ASTHMA)
                             (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
                            (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
28632
            (NOT DIABETES)
             (NOT TOBACOO)
28633
                            (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
28634
       (NOT OTHER DISEASE) (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
       antecedent support
                           consequent support
                                                 support confidence
                                                                           lift \
                                      0.495248
0
                 0.995498
                                                            0.495980
                                                                      1.001479
                                                0.493747
1
                 0.995498
                                      0.495248
                                                0.494247
                                                            0.496482
                                                                     1.002493
2
                 0.996998
                                      0.495248
                                                0.494247
                                                            0.495735
                                                                      1.000984
3
                 0.991996
                                      0.495248
                                                0.493747
                                                            0.497731 1.005014
4
                 0.998999
                                      0.495248
                                                0.494747
                                                            0.495243
                                                                     0.999990
                 0.751376
                                      0.211606
                                                0.209105
                                                            0.278296
28630
                                                                      1.315161
                                      0.209105
                                                0.209105
                                                            0.210050
28631
                 0.995498
                                                                      1.004523
28632
                 0.995498
                                      0.209605
                                                0.209105
                                                            0.210050
                                                                      1.002125
28633
                 0.993497
                                      0.209605
                                                0.209105
                                                            0.210473
                                                                      1.004144
28634
                 0.991996
                                      0.210605 0.209105
                                                            0.210792 1.000885
       leverage conviction
                   1.001453
0
       0.000729
1
       0.001229
                   1.002452
2
                   1.000967
       0.000486
3
       0.002463
                   1.004944
4
                   0.999991
      -0.000005
28630
      0.050109
                   1.092406
28631
       0.000941
                   1.001197
28632
       0.000443
                   1.000564
28633
       0.000863
                   1.001100
28634 0.000185
                   1.000236
[28635 rows x 9 columns]
['antecedents' 'consequents' 'antecedent support' 'consequent support'
 'support' 'confidence' 'lift' 'leverage' 'conviction']
My configuration: confidence : 0.8
                                           antecedents
0
                                               (Adult)
1
                                               (Adult)
2
                                               (Adult)
                                               (Adult)
4
                                               (Adult)
       (Male, Senior, NOT TOBACOO, NOT OTHER DISEASE)
31761
31762
                                   (Male, Senior, YES)
31763
                           (NOT INTUBED, Senior, Male)
                           (Male, Senior, NOT TOBACOO)
31764
31765
                    (Male, Senior, NOT OTHER DISEASE)
```

```
antecedent support
                                               consequents
0
                                              (NOT ASTHMA)
                                                                       0.495248
1
                                            (NOT DIABETES)
                                                                       0.495248
2
                                             (NOT OBESITY)
                                                                       0.495248
3
                                                                       0.495248
                                       (NOT OTHER DISEASE)
4
                                            (NOT PREGNANT)
                                                                       0.495248
31761
       (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
                                                                       0.259630
       (NOT OBESITY, NOT PREGNANT, NOT INTUBED, NOT A...
31762
                                                                       0.245623
31763
       (NOT OBESITY, NOT PREGNANT, YES, NOT ASTHMA, N...
                                                                       0.216108
31764
       (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
                                                                       0.261131
31765
       (NOT OBESITY, NOT PREGNANT, YES, NOT INTUBED, ...
                                                                       0.260630
                             support confidence
                                                       lift
                                                              leverage
       consequent support
0
                  0.995498
                            0.493747
                                         0.996970
                                                   1.001479
                                                              0.000729
1
                  0.995498
                            0.494247
                                         0.997980
                                                   1.002493
                                                              0.001229
2
                  0.996998
                            0.494247
                                         0.997980
                                                   1.000984
                                                              0.000486
                  0.991996
                            0.493747
                                         0.996970
                                                   1.005014
                                                              0.002463
                  0.998999
                            0.494747
                                         0.998990
                                                   0.999990 -0.000005
                       . . .
                                              . . .
                                                        . . .
31761
                  0.632816
                            0.209105
                                         0.805395
                                                   1.272715
                                                              0.044807
                  0.686343
                            0.209105
31762
                                         0.851324
                                                   1.240376
                                                              0.040523
31763
                  0.739870
                            0.209105
                                         0.967593
                                                   1.307787
                                                              0.049213
31764
                  0.628814
                            0.209105
                                         0.800766
                                                   1.273454
                                                              0.044902
31765
                  0.631316 0.209105
                                         0.802303 1.270843
                                                              0.044565
       conviction
         1.485743
0
1
         2.228614
2
         1.485743
3
         2.641321
4
         0.990495
         1.886815
31761
31762
         2.109664
31763
         8.026871
31764
         1.863066
         1.864898
31765
[31766 rows x 9 columns]
['antecedents' 'consequents' 'antecedent support' 'consequent support'
 'support' 'confidence' 'lift' 'leverage' 'conviction']
My configuration: conviction : 3
                                           antecedents
                                             (INTUBED)
0
1
                                             (INTUBED)
2
                                             (INTUBED)
3
                                             (INTUBED)
4
                                             (INTUBED)
9965
              (NOT INTUBED, Senior, Male, NOT ASTHMA)
            (NOT INTUBED, Senior, Male, NOT DIABETES)
9966
9967
             (NOT INTUBED, Senior, Male, NOT TOBACOO)
      (NOT INTUBED, Senior, Male, NOT OTHER DISEASE)
9968
                          (NOT INTUBED, Senior, Male)
9969
                                                            antecedent support
                                              consequents
                                                                      0.302151
0
                                             (NOT ASTHMA)
1
                                           (NOT DIABETES)
                                                                      0.302151
2
                                            (NOT OBESITY)
                                                                      0.302151
3
                                      (NOT OTHER DISEASE)
                                                                      0.302151
                                            (NOT TOBACOO)
                                                                      0.302151
```


Reguly:

```
print(rules[rules['antecedents'] == frozenset({'Male'})].to_string())
print("\n-----\n")
print(rules[rules['antecedents'] == frozenset({'Adult'})].to_string())
print("\n-----\n")
```

```
cedents consequents (Male) (NOT PREGNANT)
                                                                                         confidence lift 1.0 1.001002
                             antecedent support
0.593797
antecedents
lift leverage conviction
(Adult)
                                                                      consequents antecedent support consequent support
                                                                                                  0.495248
                                                                                                                          0.990495 0.493747
                                                                                                                                                    0.9
                                            (NOT OTHER DISEASE, NOT DIABETES)
1.006537 0.003206
                           3.136568
   (Adult)
006537 0.003206
                          (NOT ASTHMA, NOT OTHER DISEASE, NOT DIABETES) 3.136568
                                                                                                  0.495248
                                                                                                                         0.990495 0.493747
                                                                                                                                                    0.9
                          (NOT OBESITY, NOT OTHER DISEASE, NOT DIABETES) 3.136568
(Adult)
1.006537 0.003206
                                                                                                  0.495248
                                                                                                                         0.990495 0.493747
                                                                                                                                                    0.9
(Adult) (NOT OBESITY, NOT OTHER DISEASE, NOT ASTHMA, NOT DIABETES) 1.006537 0.003206 3.136568
                                                                                                                         0.990495 0.493747
                                                                                                  0.495248
                                                                                                                                                     0.9
```

7. Link do githuba

Cały projekt będący elementem mojej pracy został wstawiony na githuba https://github.com/komolcia/INF-D-2023-Julia-Komorowska-266386.

8. Bibliografia

- https://www.kaggle.com/code/bhanuchanderu/data-mining-a-demo-with-titanic-data/notebook Apriori
- https://towardsdatascience.com/naive-bayes-classifier-how-to-successfully-use-it-in-- Naive Bayes
- https://pl.wikipedia.org/wiki/Naiwny_klasyfikator_bayesowski definicja Naiwnego Bayesa
- $\bullet \ \mathtt{https://www.kaggle.com/code/prashant111/knn-classifier-tutorial} \ -KNN$
- https://scikit-learn.org/stable/modules/neural_networks_supervised.html-Neural Networks
- https://scikit-learn.org/stable/modules/generated/sklearn.neural_network. MLPClassifier.html Dokumentacja sieci neuronowych