Curs 7

Cuprins

Modele Herbrand

- 2 Decidabilitate și semi-decidabilitate
- 3 Clauze Horn
- 4 Cel mai mic model Herbrand

Logica de ordinul I - sintaxa

Limbaj de ordinul I \mathcal{L} unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel: \square orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.
Formulele atomice ale lui ${\cal L}$ sunt definite astfel:
□ dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\Box dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
\square dacă α este o formulă și x este o variabilă atunci $\forall x \alpha \exists x \alpha$ sunt formule

Logica de ordinul I - semantică

- O structură este de forma $A = (A, \mathbf{F}^{A}, \mathbf{R}^{A}, \mathbf{C}^{A})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{A} = \{R^{A} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{A} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I:V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură $\mathcal A$, notat $\mathcal A \vDash \varphi$, dacă este adevărată în $\mathcal A$ sub orice interpretare. Spunem că $\mathcal A$ este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare I astfel încât $\mathcal A$, $I \vDash \varphi$.

Enunţ. Formă prenex. Formă Skolem

☐ Un enunț este o formulă fără variabile libere.

Enunţ. Formă prenex. Formă Skolem

- ☐ Un enunț este o formulă fără variabile libere.
- \square Pentru orice formulă φ există un enunț în formă prenex α astfel încât $\varphi \bowtie \alpha$.

Enunţ. Formă prenex. Formă Skolem

- ☐ Un enunț este o formulă fără variabile libere.
- \square Pentru orice formulă φ există un enunț în formă prenex α astfel încât $\varphi \bowtie \alpha$.
- \square Pentru orice enunț în formă prenex α există un enunț în formă Skolem α^{sk} astfel încât

 α este satisfiabilă dacă și numai dacă α^{sk} este satisfiabilă.

Validitate și satisfiabilitate

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Universul Herbrand

Fie ${\mathcal L}$ un limbaj de ordinul I.

- □ Presupunem că are cel puţin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand

Fie \mathcal{L} un limbaj de ordinul I.

- ☐ Presupunem că are cel puțin un simbol de constantă!
- □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

Universul Herbrand

- Fie \mathcal{L} un limbaj de ordinul I.
 - ☐ Presupunem că are cel puțin un simbol de constantă!
 - ☐ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 2 și două simboluri de constantă a și b.

Universal Herbrand

- Fie \mathcal{L} un limbaj de ordinul I.
 - ☐ Presupunem că are cel puţin un simbol de constantă!
 - □ Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor fără variabile.

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 2 și două simboluri de constantă a și b.

Universul Herbrand pentru limbajul \mathcal{L} este mulțimea:

$$a, b, f(a, b), f(f(a, b), b), f(f(a, a), f(b, b)), \dots$$

Structură Herbrand

- O structură Herbrand este o structură $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{R}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$, unde
 - \square pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
 - pentru orice simbol de funcție f de aritate n,

 $f^{\mathcal{H}}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$

Atenție! Într-o structură Herbrand nu fixăm o definiție pentru relații: pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (T_{\mathcal{L}})^n$

Structură Herbrand

Exempli

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

Structură Herbrand

Exempli

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

 \square O interpretare Herbrand este o interpretare $H:V o T_{\mathcal L}$

- \square O interpretare Herbrand este o interpretare $H:V o T_{\mathcal L}$
- O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

- \square O interpretare Herbrand este o interpretare $H:V\to T_{\mathcal{L}}$
- O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{R}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\square \ a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square \ R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

- \square O interpretare Herbrand este o interpretare $H:V\to T_{\mathcal{L}}$
- O structură Herbrand \mathcal{H} este model al unei formule φ dacă $\mathcal{H} \vDash \varphi$. În acest caz spunem că \mathcal{H} este model Herbrand al lui φ .

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (\mathcal{T}_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\Box T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\square \ a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square \ R^{\mathcal{H}} = \{(a, a), (f(a), f(a)), (f(f(a)), f(f(a))), \ldots\}$

$$\mathcal{H} \vDash \forall x R(x, x).$$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- $\Box a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{\mathsf{T}}(t) = f(t)$
- $\square \ R^{\mathcal{H}} = \{(a, f(a)), (f(a), f(f(a))), (f(f(a)), f(f(f(a)))), \ldots\}$

Exemplu

Fie \mathcal{L} un limbaj de ordinul I cu un simbol de funcție f de aritate 1, un simbol de constantă a și un simbol de relație R de aritate 2.

O structură Herbrand $\mathcal{H} = (T_{\mathcal{L}}, \mathbf{F}^{\mathcal{H}}, \mathbf{R}^{\mathcal{H}}, \mathbf{C}^{\mathcal{H}})$ unde

- $\square T_{\mathcal{L}} = \{a, f(a), f(f(a)), \ldots\}$
- \square $a^{\mathcal{H}} = a \in T_{\mathcal{L}}$
- $\Box f_{\mathcal{H}}^{T}(t) = f(t)$
- $\square R^{\mathcal{H}} = \{(a, f(a)), (f(a), f(f(a))), (f(f(a)), f(f(f(a)))), \ldots\}$

$$\mathcal{H} \not\models \forall x R(x,x).$$

Exemplu

□ Considerăm structura Herbrand în care toate simbolurile de relație sunt adevărate peste tot,

Exemplu

- Considerăm structura Herbrand în care toate simbolurile de relație sunt adevărate peste tot, adică
- \square pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}} = (T_{\mathcal{L}})^n$.
- Această structură este model pentru orice mulțime de formule atomice.
- ☐ Exerciţiu: De ce?

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Propoziția 1

Fie A o structură, $I: V \to A$ o interpretare și $a = t_I^A$. Atunci

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Propoziția 1

Fie \mathcal{A} o structură, $I:V\to A$ o interpretare și $a=t_I^{\mathcal{A}}$. Atunci

1 pentru orice termen u avem $u[x/t]_I^A = u_{I_{x\leftarrow a}}^A$

Fie φ este o formulă, $t \in T_{\mathcal{L}}$ un termen fără variabile și $x \in V$.

Reamintim că $\varphi[x/t]$ este formula obținută înlocuind în φ toate aparițiile libere ale lui x cu t, i.e. $\varphi[x/t] = \{x \leftarrow t\}\varphi$.

Propoziția 1

Fie \mathcal{A} o structură, $I:V\to A$ o interpretare și $a=t_I^{\mathcal{A}}$. Atunci

- **1** pentru orice termen u avem $u[x/t]_I^A = u_{I_{x\leftarrow a}}^A$
- $\mathbf{2}$ pentru orice formulă φ avem

$$\mathcal{A},\mathit{I} \vDash \varphi[x/t]$$
 dacă și numai dacă $\mathcal{A},\mathit{I}_{x\leftarrow a} \vDash \varphi$

Intuitiv, a schimba evaluarea I atribuind variabilei x valoarea $a \in A$ este același lucru cu a înlocui variabila x cu un termen t a cărui interpretare prin I este a.

Propoziția 2

Fie \mathcal{H} o structură Herbrand, $H:V\to T_{\mathcal{L}}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal{L}}$ un termen fără variabile. Sunt adevărate:

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H:V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H:V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

- 2 $\mathcal{H}, H \vDash \varphi[x/t]$ dacă și numai dacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Propoziția 2

Fie $\mathcal H$ o structură Herbrand, $H:V\to T_{\mathcal L}$ o interpretare Herbrand, $x\in V$ și $t\in T_{\mathcal L}$ un termen fără variabile. Sunt adevărate:

- $\mathbf{I} t_H^{\mathcal{H}} = t$
- $2 \mathcal{H}, H \vDash \varphi[x/t]$ dacă și numai dacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Demonstrație

- prin inducție structurală pe termeni.
- 2 Următoarele echivalențe sunt adevărate

$$\mathcal{H}, H \vDash \varphi[x/t]$$
 ddacă $\mathcal{H}, H_{x \leftarrow t_H^{\mathcal{H}}} \vDash \varphi$ ddacă $\mathcal{H}, H_{x \leftarrow t} \vDash \varphi$

Prima echivalență rezultă din Propoziția 1, iar a doua rezultă din punctul 1.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Demonstrație

Dacă φ are un model Herbrand atunci este, evident, satisfiabilă. Vom demonstra afirmația inversă.

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Demonstrație

Dacă φ are un model Herbrand atunci este, evident, satisfiabilă. Vom demonstra afirmația inversă.

Fie $\mathcal A$ un model pentru φ , adică $\mathcal A \vDash \varphi$. Vrem să construim un model Herbrand $\mathcal H$ pentru φ , ceea ce revine la a da o interpretare pentru simbolurile de relații.

Demonstrație (cont.)

Dacă
$$R \in \mathbf{R}$$
 și $ari(R) = n$ definim

$$(t_1,\ldots,t_n)\in R^{\mathcal{H}}$$
 dacă și numai dacă $\mathcal{A}\vDash R(t_1,\ldots,t_n)$ (*)

Demonstrație (cont.)

Dacă $R \in \mathbf{R}$ și ari(R) = n definim

$$(t_1,\ldots,t_n)\in R^{\mathcal{H}}$$
 dacă și numai dacă $\mathcal{A}\vDash R(t_1,\ldots,t_n)$ (*)

Demonstrăm prin inducție după $k \ge 0$ că

```
oricare ar fi \varphi = \forall x_k \dots \forall x_1 \ \psi un enunț în forma Skolem, \mathcal{A} \vDash \varphi \quad \text{implică} \quad \mathcal{H} \vDash \varphi
```

Demonstrație (cont.)

Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- \square Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \ \psi$ atunci $\varphi = \forall x_k \ \alpha$.

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \models \varphi$ implică $\mathcal{H} \models \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate contine x_k ca variabilă liberă.

Demonstrație (cont.)

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \models \varphi$ implică $\mathcal{H} \models \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Fie $t \in T_{\mathcal{L}}$ un termen fără variabile. Observăm că $\alpha[x_k/t]$ este enunț în formă Skolem,

Demonstrație (cont.)

- □ Pasul de bază k=0. În acest caz $\varphi=\psi$ și φ nu are variabile libere. Deci φ este formată din formule atomice care conțin doar termeni fără variabile. Aplicând (*) rezultă că $\mathcal{A} \vDash \varphi$ implică $\mathcal{H} \vDash \varphi$.
- □ Presupunem afirmația adevărată pentru k-1 și o demonstrăm pentru k. Dacă notăm $\alpha = \forall x_{k-1} \dots \forall x_1 \psi$ atunci $\varphi = \forall x_k \alpha$. Observăm că α nu satisface ipoteza de inducție deoarece poate conține x_k ca variabilă liberă.

Fie $t \in T_{\mathcal{L}}$ un termen fără variabile. Observăm că $\alpha[x_k/t]$ este enunț în formă Skolem, deci $\mathcal{A} \models \alpha[x_k/t]$ implică $\mathcal{H} \models \alpha[x_k/t]$ din ipoteza de inducție.

Demonstrație (cont.)

 \square $\mathcal{A} \models \varphi$ implică

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- $\square A$, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece *I* a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.

- \square $\mathcal{A} \models \varphi$ implică
- \square $A, I \models \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $A, I \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece *I* a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- ☐ Aplicând ipoteza de inducție obținem

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- $\square \mathcal{H}, H \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretarea H.

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziția 2 obținem

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- $\square \mathcal{H}, H \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziția 2 obținem
- $\square \mathcal{H}, \mathcal{H}_{\mathsf{x}_k \leftarrow t} \vDash \alpha$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretare \mathcal{H} , deci

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square A, $I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- \square $\mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $A \models \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- \square $\mathcal{H}, H \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziţia 2 obţinem
- \square $\mathcal{H}, \mathcal{H}_{x_k \leftarrow t} \vDash \alpha$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretare \mathcal{H} , deci
- $\square \mathcal{H}, H \vDash \forall x_k \alpha$ pentru orice interpretare H, adică

- \square $\mathcal{A} \models \varphi$ implică
- $\square A, I \vDash \varphi$ pentru orice interpretare I, ceea ce implică
- \square $A, I_{x_k \leftarrow a} \models \alpha$ pentru orice $a \in A$. Aplicând Propoziția 1 obținem
- $\square \mathcal{A}, I \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- □ Deoarece / a fost o interpretare arbitrară, am demonstrat că
- \square $\mathcal{A} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$.
- Aplicând ipoteza de inducție obținem
- $\square \mathcal{H} \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$, adică
- $\square \mathcal{H}, H \vDash \alpha[x_k/t]$ pentru orice $t \in T_{\mathcal{L}}$ și orice interpretarea H.
- □ Folosind Propoziţia 2 obţinem
- $\square \mathcal{H}, H_{x_k \leftarrow t} \models \alpha$ pentru orice $t \in \mathcal{T}_{\mathcal{L}}$ și orice interpretare H, deci
- $\square \mathcal{H}, H \vDash \forall x_k \alpha$ pentru orice interpretare H, adică $\mathcal{H} \vDash \varphi$

Teorema lui Herbrand

Fie $n \ge 0$ și $\varphi = \forall x_k \dots \forall x_1 \psi$ un enunț în forma Skolem. Atunci φ are un model dacă și numai dacă are un model Herbrand.

Teorema lui Herbrand reduce problema satisfiabilității la găsirea unui model Herbrand.

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \rightarrow P(y))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \forall y (P(x) \land R(y) \rightarrow P(y))$$

Ştim că este suficient să găsim un model Herbrand.

Exempli

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))$$

Știm că este suficient să găsim un model Herbrand.

Considerăm structura Herbrand ${\mathcal H}$ cu

- $\square P^{\mathcal{H}} = \{c_1\} \text{ si } R^{\mathcal{H}} = \{c_1\}$

Exempli

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \{c_1, c_2, c_3\}$ și ari(P) = ari(R) = 1. Cercetați satisfiabilitatea formulelor:

$$\square \varphi = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))$$

Știm că este suficient să găsim un model Herbrand.

Considerăm structura Herbrand ${\mathcal H}$ cu

- $T_{\mathcal{L}} = \{c_1, c_2, c_3\}$
- $\square P^{\mathcal{H}} = \{c_1\} \text{ si } R^{\mathcal{H}} = \{c_1\}$

Se observă că $\mathcal{H} \vDash \varphi$, deci φ este satisfiabilă.

Exemplu (cont.)

$$\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$$

Exemplu (cont.)

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Exemplu (cont.)

Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Exemplu (cont.)

 $\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$

Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Considerăm structura Herbrand ${\mathcal H}$ cu

$$\square P^{\mathcal{H}} = \{c_2\} \text{ si } R^{\mathcal{H}} = \{c_2\}$$

Exemplu (cont.)

$$\square \ \psi = (P(c_1) \to R(c_3)) \land (\neg P(c_1) \to P(c_2)).$$

Formulele atomice sunt asemănătoare variabilelor din calculul propozițional. Putem scrie interpretările Herbrand într-un tabel

$P(c_1)$	$R(c_3)$	$P(c_2)$	ψ
0	0	0	0
0	0	1	1
0	1	0	0

Observăm că formula este adevărată într-o interpretare în care $P(c_2)$ este adevărată, iar $P(c_1)$ și $R(c_3)$ sunt false.

Considerăm structura Herbrand H. cu

$$T_{\mathcal{L}} = \{c_1, c_2, c_3\}$$

$$P^{\mathcal{H}} = \{c_1, c_2, c_3\}$$

$$P^{\mathcal{H}} = \{c_2\} \text{ si } R^{\mathcal{H}} = \{c_2\}$$

Se observă că $\mathcal{H} \vDash \psi$, deci ψ este satisfiabilă.

Exempli

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

Exempli

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \,\exists y \,\exists z \, ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \, \forall y \, \forall z \, (\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \,\exists y \,\exists z \, ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

 \square Determinăm forma Skolem: $\mathcal{L}^{sk} = \mathcal{L} \cup \{c_1, c_2, c_3\}$

$$(\neg \chi)^{sk} = (P(c_1) \rightarrow R(c_3)) \land (\neg P(c_1) \rightarrow P(c_2))$$

Exemplu

Fie \mathcal{L} un limbaj cu $\mathbf{R} = \{P, R\}$, $\mathbf{C} = \emptyset$ și ari(P) = ari(R) = 1. Cercetați validitatea formulei

$$\chi = \forall x \,\forall y \,\forall z \,(\neg(P(x) \to R(z)) \vee \neg(\neg P(x) \to P(y)))$$

 \square A cerceta validitatea lui χ este echivalent cu a cerceta satisfiabilitatea lui $\neg \chi$

$$\neg \chi = \exists x \,\exists y \,\exists z \, ((P(x) \to R(z)) \land (\neg P(x) \to P(y)))$$

 \square Determinăm forma Skolem: $\mathcal{L}^{sk} = \mathcal{L} \cup \{c_1, c_2, c_3\}$

$$(\neg \chi)^{sk} = (P(c_1) \rightarrow R(c_3)) \land (\neg P(c_1) \rightarrow P(c_2))$$

Din exercițiul anterior știm că $(\neg \chi)^{sk}$ este satisfiabilă, deci $\neg \chi$ este satisfiabilă. În concluzie, χ nu este adevărată în logica de ordinul I, i.e $\not \vdash \chi$.

Universul Herbrand al unei formule

Universul Herbrand al unei formule

```
Fie \varphi un enunț în forma Skolem, adică \varphi = \forall x_1 \dots \forall x_n \psi.
  \square Definim T(\varphi), universul Herbrand al formulei \varphi, astfel:
         \square dacă c este o constantă care apare în \varphi atunci c \in T(\varphi),
         lacktriangle dacă arphi nu conține nicio constantă atunci alegem o constantă
             arbitrară c și considerăm că c \in T(\varphi),
         \square dacă f este un simbol de funcție care apare în \varphi cu ari(f) = n și
             t_1, \ldots, t_n \in T(\varphi) at uncif(t_1, \ldots, t_n) \in T(\varphi).
```

- \square pt. $\varphi_1 = \forall x \forall y (P(x) \land R(y) \rightarrow P(y))$ avem $T(\varphi_1) = \{c\}$
- \square pt. $\varphi_2 = \forall x (\neg P(x) \land P(f(c)))$ avem $T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\}$

Intuitiv, $T(\varphi)$ este multimea termenilor care se pot construi folosind simbolurile de funcții care apar în φ .

Expansiunea Herbrand a unei formule

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}$$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in T(\varphi) \}$$

Exemplu

$$\Box \varphi_1 = \forall x \,\forall y \, (P(x) \land R(y) \to P(y))
T(\varphi_1) = \{c\}
\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}$$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

 \square Definim expansiunea Herbrand a lui φ astfel

$$\mathcal{H}(\varphi) = \{ \psi[x_1/t_1, \dots, x_n/t_n] \mid t_1, \dots, t_n \in \mathcal{T}(\varphi) \}$$

Exemplu

- $\Box \varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))$ $T(\varphi_1) = \{c\}$ $\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}$
- $\Box \varphi_2 = \forall x (\neg P(x) \land P(f(c)))$ $T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\}$ $\mathcal{H}(\varphi_2) = \{\neg P(c) \land P(f(c)), \neg P(f(c)) \land P(f(c)), \\
 \neg P(f(f(c))) \land P(f(c)), \neg P(f(f(c)))) \land P(f(c)), \ldots\}$

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

 $\square \varphi$ este satisfiabilă,

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq T(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,

Fie φ un enunț în forma Skolem, adică $\varphi = \forall x_1 \dots \forall x_n \psi$.

Teoremă

Sunt echivalente:

- $\square \varphi$ este satisfiabilă,
- \square φ are un model Herbrand \mathcal{H} cu proprietatea că $\mathbf{R}^{\mathcal{H}} \subseteq \mathcal{T}(\varphi)^n$ pentru orice relație $R \in \mathbf{R}$ cu ari(R) = n care apare în φ ,
- \square mulțimea de formule $\mathcal{H}(\varphi)$ este satisfiabilă.

Exempli

```
\Box \varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \to P(y))
T(\varphi_1) = \{c\}
\mathcal{H}(\varphi_1) = \{P(c) \land R(c) \to P(c)\}
\mathcal{H}(\varphi_1) \text{ este satisfiabilă: } P^{\mathcal{H}} = R^{\mathcal{H}} = \{c\}
```

Exemple

```
 \Box \varphi_1 = \forall x \, \forall y \, (P(x) \land R(y) \rightarrow P(y)) 
 T(\varphi_1) = \{c\} 
 \mathcal{H}(\varphi_1) = \{P(c) \land R(c) \rightarrow P(c)\} 
 \mathcal{H}(\varphi_1) \text{ este satisfiabilă: } P^{\mathcal{H}} = R^{\mathcal{H}} = \{c\} 
 \Box \varphi_2 = \forall x (\neg P(x) \land P(f(c))) 
 T(\varphi_2) = \{c, f(c), f(f(c)), \ldots\} 
 \mathcal{H}(\varphi_2) = \{\neg P(c) \land P(f(c)), \neg P(f(c)) \land P(f(c)), \neg P(f(f(c)), \neg P(f(f(c)), \neg P(f(f(c)), \cdots)\} 
 \mathcal{H}(\varphi_2) \text{ nu este satisfiabilă: conține formula } \neg P(f(c)) \land P(f(c)).
```

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- □ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.
- □ Teorema lui Herbrand reduce verificarea satisfiabilității unui enunț în forma Skolem la verificarea satisfiabilității în universul Herbrand.
- \square În situații particulare Teorema lui Herbrand ne dă o procedură de decizie a satisfiabilității, dar acest fapt nu este adevărat în general: dacă limbajul $\mathcal L$ conține cel putin o constantă și cel puțin un simbol de funcție f cu $ari(f) \geq 1$ atunci universul Herbrand $T_{\mathcal L}$ este infinit.

Decidabilitate și semi-decidabilitate

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

 \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

- \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.
- \square O problemă de decizie $\mathfrak{D}(x)$ este semi-decidabilă (recursiv enumerabilă) dacă există un algoritm care, pentru orice intrare x, întoarce \square când $\mathfrak{D}(x)$ este adevărată, dar este posibil să nu se termine când $\mathfrak{D}(x)$ este falsă.

□ O problemă de decizie este o problemă cu răspuns binar T/F.

Este *n* număr prim?

- \square O problemă de decizie $\mathfrak{D}(x)$ este decidabilă dacă există un algoritm care, pentru orice intrare x, întoarce \top când $\mathfrak{D}(x)$ este adevărată și \vdash când $\mathfrak{D}(x)$ este falsă.
- \square O problemă de decizie $\mathfrak{D}(x)$ este semi-decidabilă (recursiv enumerabilă) dacă există un algoritm care, pentru orice intrare x, întoarce \square când $\mathfrak{D}(x)$ este adevărată, dar este posibil să nu se termine când $\mathfrak{D}(x)$ este falsă.

 $\mathfrak{D}(n) = "n$ este număr prim" este decidabilă.

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

¹Referințe

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

 \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ este semi-decidabilă.

¹Referinte

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Problema validității ¹

Vom analiza problema validității în logica de ordinul I, adică:

$$\mathfrak{D}(\varphi) = "\varphi \text{ este validă"}$$

- \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ este semi-decidabilă.
- \square În logica de ordinul I, problema validității $\mathfrak{D}(\varphi)$ nu este decidabilă.

¹Referinte

M. Huth, M. Ryan, Logic in Computer Science, 2009 http://www.cs.ox.ac.uk/people/james.worrell/lectures.html

Teorema de compacitate - cazul propozițional

În calculul propozițional o mulțime de formule Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

 $\mathfrak{D}(\varphi)$?

Teorema de compacitate - cazul propozițional

În calculul propozițional o mulțime de formule Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

Corolar

Fie φ un enunț în forma Skolem (în logica de ordinul I) și $\mathcal{H}(\varphi)$ expansiunea Herbrand. Sunt echivalente:

- $\square \varphi$ nu este satisfiabilă,
- \square există o submulțime finită a lui $\mathcal{H}(\varphi)$ care nu este satisfiabilă.

 $\mathfrak{D}(\varphi)$?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

II se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

Intrare: φ enunț

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- 2 fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$
- g pentru $n=1,2,3,\ldots$ execută dacă $\{\psi_1,\ldots,\psi_n\}$

$$\mathfrak{D}(\varphi)$$
?

Procedură de semi-decidabilitate pentru validitate

```
Intrare: \varphi enunt
```

- **II** se determina ψ forma Skolem pentru $\neg \varphi$ (ψ este $(\neg \phi)^{sk}$)
- 2 fie $\{\psi_1, \psi_2, \psi_3, \ldots\}$ o enumerare pentru $\mathcal{H}(\psi)$

```
pentru n=1,2,3,\ldots execută dacă \{\psi_1,\ldots,\psi_n\} nu este satisfiabilă atunci \{\mbox{ leșire: } \varphi \mbox{ este valid; } \mbox{ stop }\}
```

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P} = \{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i' \in \{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n \geq 1$ astfel încât $w_{i_1}\cdots w_{i_n} = w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1
101

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1	
101	l

10 00

Secvența (1,3,2,3) este soluție:

011 10 11 00

101110011 101110011

□ Problema corespondenței lui Post (PCP)

Fie $\mathbf{P}=\{(w_1,w_1'),\ldots,(w_k,w_k')\}$ cu $w_i,w_i'\in\{0,1\}^+$. O soluție pentru \mathbf{P} este o secvență de indici i_1,i_2,\ldots,i_n cu $n\geq 1$ astfel încât $w_{i_1}\cdots w_{i_n}=w_{i_1}'\cdots w_{i_n}'$.

Exemplu

P :

1	
101	l

10 00

Secvența (1,3,2,3) este soluție:

101110011 101110011

□ PCP este nedecidabiă (E.Post, 1946)

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\models \varphi_{\mathbf{P}}$.

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\models \varphi_{\mathbf{P}}$.

Definim \mathcal{L} un limbaj de ordinul I cu $\mathbf{F} = \{f_0, f_1\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{e\}$, $ari(f_0) = ari(f_1) = 1$ și ari(P) = 2

Teorema Church-Turing

Problema validității în logica de ordinul I este nedecidabilă.

Demonstrație (schiță)

Vom arăta că problema validității poate fi redusă la PCP:

fiind dată o problemă de corespondență $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ există o formulă $\varphi_{\mathbf{P}}$ astfel încât

P are o soluție dacă și numai dacă $\models \varphi_{\mathbf{P}}$.

Definim \mathcal{L} un limbaj de ordinul I cu $\mathbf{F} = \{f_0, f_1\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{e\}$, $ari(f_0) = ari(f_1) = 1$ și ari(P) = 2

Pentru $b_1 \dots b_n \in \{0,1\}^+$ definim $f_{b_1 \dots b_n} := f_{b_n}(f_{b_{n-1}}(\dots (f_{b_1}(e))\dots))$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență.

Definim un model A:

$$A = \{0,1\}^*, e^A := \lambda, f_0^A(w) := w0, f_1^A(w) := w1$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență.

Definim un model A:

$$A = \{0,1\}^*, e^A := \lambda, f_0^A(w) := w0, f_1^A(w) := w1$$

$$P^{\mathcal{A}} = \{(\mathbf{w}, \mathbf{w}') \mid \text{ există } n \geq 1 \text{ și } i_1, \dots, i_n \text{ astfel încât}$$

$$\mathbf{w} = w_{i_1} \cdots w_{i_n}$$
 și $\mathbf{w}' = w'_{i_1} \cdots w'_{i_n}$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență.

Definim un model A:

$$A = \{0,1\}^*, e^{A} := \lambda, f_0^{A}(w) := w0, f_1^{A}(w) := w1$$

$$P^{\mathcal{A}} = \{(\mathbf{w}, \mathbf{w}') \mid \text{ există } n \geq 1 \text{ și } i_1, \dots, i_n \text{ astfel încât}$$

 $\mathbf{w} = w_{i_1} \cdots w_{i_n} \text{ și } \mathbf{w}' = w'_{i_1} \cdots w'_{i_n} \}$

Considerăm următoarele formule:

$$\varphi_{1} := \bigwedge_{i=1}^{k} P(f_{w_{i}}(e), f_{w'_{i}}(e))$$

$$\varphi_{2} := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^{k} P(f_{w_{i}}(x), f_{w'_{i}}(y)) \right)$$

$$\psi := \exists z P(z, z) \text{ si } \varphi_{P} := \varphi_{1} \land \varphi_{2} \to \psi$$

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență.

Definim un model A:

$$A = \{0,1\}^*, e^A := \lambda, f_0^A(w) := w0, f_1^A(w) := w1$$

$$P^{\mathcal{A}} = \{(\mathbf{w}, \mathbf{w}') \mid \text{ există } n \geq 1 \text{ și } i_1, \dots, i_n \text{ astfel încât}$$

 $\mathbf{w} = w_{i_1} \cdots w_{i_n} \text{ și } \mathbf{w}' = w'_{i_1} \cdots w'_{i_n} \}$

Considerăm următoarele formule:

$$\varphi_{1} := \bigwedge_{i=1}^{k} P(f_{w_{i}}(e), f_{w'_{i}}(e))$$

$$\varphi_{2} := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^{k} P(f_{w_{i}}(x), f_{w'_{i}}(y)) \right)$$

$$\psi := \exists z P(z, z) \text{ si } \varphi_{P} := \varphi_{1} \land \varphi_{2} \to \psi$$

Observăm că $\mathcal{A} \vDash \varphi_1 \land \varphi_2$. În consecință, dacă $\mathcal{A} \vDash \varphi_P$ atunci $\mathcal{A} \vDash \psi$, deci **P** are o soluție. *Cealaltă implicație este tehnică*.

Demonstrație (schiță)

Fie $\mathbf{P} = \{(w_1, w_1'), \dots, (w_k, w_k')\}$ o problemă de corespondență.

Definim un model A:

$$A = \{0,1\}^*, e^A := \lambda, f_0^A(w) := w0, f_1^A(w) := w1$$

$$P^{\mathcal{A}} = \{ (\mathbf{w}, \mathbf{w}') \mid \text{ există } n \geq 1 \text{ și } i_1, \dots, i_n \text{ astfel încât}$$

 $\mathbf{w} = w_{i_1} \cdots w_{i_n} \text{ și } \mathbf{w}' = w'_{i_1} \cdots w'_{i_n} \}$

Considerăm următoarele formule:

$$\varphi_{1} := \bigwedge_{i=1}^{k} P(f_{w_{i}}(e), f_{w'_{i}}(e))$$

$$\varphi_{2} := \forall x \forall y \left(P(x, y) \to \bigwedge_{i=1}^{k} P(f_{w_{i}}(x), f_{w'_{i}}(y)) \right)$$

$$\psi := \exists z P(z, z) \text{ si } \varphi_{P} := \varphi_{1} \land \varphi_{2} \to \psi$$

Observăm că $\mathcal{A} \vDash \varphi_1 \land \varphi_2$. În consecință, dacă $\mathcal{A} \vDash \varphi_P$ atunci $\mathcal{A} \vDash \psi$, deci **P** are o soluție. *Cealaltă implicație este tehnică*.

În consecință, $\models \varphi_{\mathbf{P}}$ implică existența unei soluții pentru \mathbf{P} .

Logica de ordinul I

- ☐ În logica de ordinul I, problema validității este semi-decidabilă.
- ☐ În logica de ordinul I, problema validității nu este decidabilă.

Clauze Horn

Clauze în logica de ordinul I

$$\{\neg Q_1,\ldots,\neg Q_n,P_1,\ldots,P_k\}$$

unde $n, k \ge 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

☐ formula corespunzătoare este

$$\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n \vee P_1 \vee \ldots \vee P_k)$$

unde x_1, \ldots, x_m sunt toate variabilele care apar în clauză

□ echivalent, putem scrie

$$\forall x_1 \ldots \forall x_m (Q_1 \wedge \ldots \wedge Q_n \to P_1 \vee \ldots \vee P_k)$$

□ cuantificarea universală a clauzelor este implicită

$$Q_1 \wedge \ldots \wedge Q_n \rightarrow P_1 \vee \ldots \vee P_k$$

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$
unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n = 0: $\top \rightarrow P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - \square $Q_1 \wedge \ldots \wedge Q_n \rightarrow \bot$
- \square clauza vidă \square : n = k = 0

□ clauză:

$$\{\neg Q_1, \dots, \neg Q_n, P_1, \dots, P_k\}$$
 sau $Q_1 \wedge \dots \wedge Q_n \rightarrow P_1 \vee \dots \vee P_k$ unde $n, k \geq 0$ și $Q_1, \dots, Q_n, P_1, \dots, P_k$ sunt formule atomice.

- \square clauză program definită: k=1
 - \square cazul n > 0: $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$
 - \square cazul n=0: $\top \to P$ (clauză unitate, fapt)

Program logic definit = mulțime finită de clauze definite

- □ scop definit (țintă, întrebare): k=0
 - $\square Q_1 \wedge \ldots \wedge Q_n \to \bot$
- \square clauza vidă \square : n = k = 0

Clauza Horn = clauză program definită sau clauză scop ($k \le 1$)

Clauze Horn ţintă

□ scop definit (ţintă, întrebare): $Q_1 \wedge \ldots \wedge Q_n \to \bot$ □ fie x_1, \ldots, x_m toate variabilele care apar în Q_1, \ldots, Q_n $\forall x_1 \ldots \forall x_m (\neg Q_1 \vee \ldots \vee \neg Q_n) \boxminus \neg \exists x_1 \ldots \exists x_m (Q_1 \wedge \ldots \wedge Q_n)$ □ clauza ţintă o vom scrie Q_1, \ldots, Q_n

Negația unei "întrebări" în PROLOG este clauză Horn țintă.

□ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn □ formule atomice: $P(t_1, ..., t_n)$ □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i, P sunt formule atomice, \top sau \bot

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
 - □ $Q_1 \wedge ... \wedge Q_n \rightarrow P$ unde toate Q_i, P sunt formule atomice. \top sau \bot
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice

$$KB \models Q_1 \wedge \ldots \wedge Q_n$$

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn □ formule atomice: $P(t_1, \ldots, t_n)$ □ $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ unde toate Q_i, P sunt formule atomice, \top sau \bot
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice
 - $KB \models Q_1 \wedge \ldots \wedge Q_n$
 - □ Variabilele din *KB* sunt cuantificate universal.
 - □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

- □ Logica clauzelor definite/Logica Horn: un fragment al logicii de ordinul I în care singurele formule admise sunt clauze Horn
 - \square formule atomice: $P(t_1,\ldots,t_n)$
- □ Problema programării logice: reprezentăm cunoștințele ca o mulțime de clauze definite KB și suntem interesați să aflăm răspunsul la o întrebare de forma $Q_1 \wedge \ldots \wedge Q_n$, unde toate Q_i sunt formule atomice

$$KB \models Q_1 \wedge \ldots \wedge Q_n$$

- □ Variabilele din *KB* sunt cuantificate universal.
- □ Variabilele din $Q_1, ..., Q_n$ sunt cuantificate existențial.

Limbajul PROLOG are la bază logica clauzelor Horn.

Logica clauzelor definite

Exemple

```
Fie următoarele clauze definite:
    father(jon, ken).
    father(ken, liz).
    father(X, Y) \rightarrow ancestor(X, Y)
    daugther(X, Y) \rightarrow ancestor(Y, X)
    ancestor(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
Putem întreba:
  □ ancestor(jon, liz)
    dacă există Q astfel încât ancestor (Q, ken)
     (adică \exists Q \ ancestor(Q, ken))
```

Modele Herbrand

Fie \mathcal{L} un limbaj de ordinul I.

- □ Presupunem că are cel puţin un simbol de constantă!
- Dacă nu are, adăugăm un simbol de constantă.

Universul Herbrand este mulțimea $T_{\mathcal{L}}$ a tututor termenilor lui \mathcal{L} fără variabile.

Un model Herbrand este o structură $\mathcal{H}=(\mathcal{T}_{\mathcal{L}},\mathbf{F}^{\mathcal{H}},\mathbf{P}^{\mathcal{H}},\mathbf{C}^{\mathcal{H}})$, unde

- \square pentru orice simbol de constantă c, $c^{\mathcal{H}} = c$
- □ pentru orice simbol de funcție f de aritate n, $f^{\mathcal{H}}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$
- \square pentru orice simbol de relație R de aritate n, $R^{\mathcal{H}}(t_1,\ldots,t_n)\subseteq (\mathcal{T}_{\mathcal{L}})^n$

Pentru a defini un model Herbrand concret trebuie sa definim interpretarea relațiilor.

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Semantica unui program logic definit KB este dată de cel mai mic model Herbrand al lui KB!

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Semantica unui program logic definit KB este dată de cel mai mic model Herbrand al lui KB!

□ De ce există? Este unic?

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Semantica unui program logic definit KB este dată de cel mai mic model Herbrand al lui KB!

- □ De ce există? Este unic?
- \square Definim $\mathcal{LH}_{KB} := \bigcap \{\mathcal{H} \mid \mathcal{H} \text{ model Herbrand pentru } KB \}$

Definim o ordine între modelele Herbrand:

 $\mathcal{H}_1 \leq \mathcal{H}_2$ este definită astfel:

pentru orice
$$R \in \mathbf{R}$$
 cu ari $(R) = n$ și pentru orice termeni t_1, \ldots, t_n dacă $\mathcal{H}_1 \models R(t_1, \ldots, t_n)$, atunci $\mathcal{H}_2 \models R(t_1, \ldots, t_n)$

Semantica unui program logic definit KB este dată de cel mai mic model Herbrand al lui KB!

- □ De ce există? Este unic?
- \square Definim $\mathcal{LH}_{KB} := \bigcap \{\mathcal{H} \mid \mathcal{H} \text{ model Herbrand pentru } KB \}$
- \square $\mathcal{LH}_{KB} \models KB$. Exercițiu: De ce?

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \vDash Q$$
 ddacă $\mathcal{LH}_{KB} \vDash Q$.

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \vDash Q$$
 ddacă $\mathcal{LH}_{KB} \vDash Q$.

$$\mathit{KB} \vDash \mathit{Q}$$
 ddacă $\mathit{KB} \cup \{ \neg \mathit{Q} \}$ nesatisfiabilă

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \vDash Q$$
 ddacă $\mathcal{LH}_{KB} \vDash Q$.

```
KB \vDash Q ddacă KB \cup \{\neg Q\} nesatisfiabilă ddacă KB \cup \{\neg Q\} nu are niciun model Herbrand
```

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \vDash Q$$
 ddacă $\mathcal{LH}_{KB} \vDash Q$.

```
\mathit{KB} \vDash Q ddacă \mathit{KB} \cup \{ \neg Q \} nesatisfiabilă ddacă \mathit{KB} \cup \{ \neg Q \} nu are niciun model Herbrand ddacă \neg Q este falsă în toate modelele Herbrand ale lui \mathit{KB}
```

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \vDash Q$$
 ddacă $\mathcal{LH}_{KB} \vDash Q$.

```
\mathit{KB} \vDash Q ddacă \mathit{KB} \cup \{ \neg Q \} nesatisfiabilă ddacă \mathit{KB} \cup \{ \neg Q \} nu are niciun model Herbrand ddacă \neg Q este falsă în toate modelele Herbrand ale lui \mathit{KB} ddacă Q este adevărată în toate modelele Herbrand ale lui \mathit{KB}
```

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \vDash Q$$
 ddacă $\mathcal{LH}_{KB} \vDash Q$.

```
\mathit{KB} \vDash \mathit{Q} ddacă \mathit{KB} \cup \{ \neg \mathit{Q} \} nesatisfiabilă ddacă \mathit{KB} \cup \{ \neg \mathit{Q} \} nu are niciun model Herbrand ddacă \neg \mathit{Q} este falsă în toate modelele Herbrand ale lui \mathit{KB} ddacă \mathit{Q} este adevărată în toate modelele Herbrand ale lui \mathit{KB} ddacă \mathit{Q} este adevărată în \mathit{\mathcal{LH}}_\mathit{KB}
```

Fie KB un program logic definit.

Propoziție

Pentru orice formulă atomică Q,

$$KB \models Q$$
 ddacă $\mathcal{LH}_{KB} \models Q$.

Demonstrație

```
\mathit{KB} \vDash Q ddacă \mathit{KB} \cup \{ \neg Q \} nesatisfiabilă ddacă \mathit{KB} \cup \{ \neg Q \} nu are niciun model Herbrand ddacă \neg Q este falsă în toate modelele Herbrand ale lui \mathit{KB} ddacă \mathit{Q} este adevărată în toate modelele Herbrand ale lui \mathit{KB} ddacă \mathit{Q} este adevărată în \mathit{\mathcal{LH}}_\mathit{KB}
```

Vom caracteriza cel mai mic model Herbrand \mathcal{LH}_{KB} printr-o construcție de punct fix.

- O formulă fără variabile se numește închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice închise.

- O formulă fără variabile se numește închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice închise.
- \square O instanță închisă a unei clauze $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.

- O formulă fără variabile se numește închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice închise.
- \square O instanță închisă a unei clauze $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- □ Pentru o mulțime de clauze definite KB, dacă $P \in B_{\mathcal{L}}$ și $X \subseteq B_{\mathcal{L}}$ spunem că

one $Step_{KB}(P, X)$ este adevărat

- O formulă fără variabile se numește închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice închise.
- \square O instanță închisă a unei clauze $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- □ Pentru o mulțime de clauze definite KB, dacă $P \in B_{\mathcal{L}}$ și $X \subseteq B_{\mathcal{L}}$ spunem că

 $oneStep_{KB}(P, X)$ este adevărat

dacă există $Q_1, \ldots, Q_n \in X$ astfel încât $Q_1 \wedge \ldots \wedge Q_n \to P$ este o instanță de închisă a unei clauze din KB.

- O formulă fără variabile se numește închisă.
- \square Baza Herbrand $B_{\mathcal{L}}$ este mulțimea formulelor atomice închise.
- \square O instanță închisă a unei clauze $Q_1 \wedge \ldots \wedge Q_n \rightarrow P$ este rezultatul obținut prin înlocuirea variabilelor cu termeni fără variabile.
- □ Pentru o mulțime de clauze definite KB, dacă $P \in B_{\mathcal{L}}$ și $X \subseteq B_{\mathcal{L}}$ spunem că

$$oneStep_{KB}(P, X)$$
 este adevărat

dacă există $Q_1, \ldots, Q_n \in X$ astfel încât $Q_1 \wedge \ldots \wedge Q_n \to P$ este o instanță de închisă a unei clauze din KB.

☐ Pentru o mulțime de clauze definite KB, definim

$$f_{KB}: \mathcal{P}(B_{\mathcal{L}}) o \mathcal{P}(B_{\mathcal{L}})$$
 $f_{KB}(X) = \{P \in B_{\mathcal{L}} \mid oneStep_{KB}(P, X)\}$

 \Box f_{KB} este continuă (exercițiu).

Exemplu

Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par.

Exempli

- □ Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par.
- $\Box T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$

Exempli

- \square Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par.
- $\Box T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$
- ☐ Fie KB mulţimea clauzelor:

$$par(x) \rightarrow par(s(s(x)))$$

Exempli

- \square Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par.
- $\square T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$
- ☐ Fie *KB* mulţimea clauzelor:

$$par(0)$$
 $par(x) o par(s(s(x)))$

- ☐ Instanțe de bază:

Exemple

- \square Fie \mathcal{L} un limbaj cu un simbol de constantă 0, un simbol de funcție unară s și un simbol de relație unară par.
- $\Box T_{\mathcal{L}} = \{0, s(0), s(s(0)), \ldots\}$
- ☐ Fie KB mulţimea clauzelor:

$$par(0)$$
 $par(x) o par(s(s(x)))$

- □ Instanțe de bază:
- $\Box f_{KB}(\{\}) = \{par(0)\}$
- \Box $f_{KB}(\{par(0)\}) = \{par(0), par(s(s(0)))\}$

Fie KB un program logic definit.

- \square Din teorema Knaster-Tarski, f_{KB} are un cel mai mic punct fix FP_{KB} .
- □ FP_{KB} este reuniunea tuturor mulțimilor

$$f_{KB}(\{\}), f_{KB}(f_{KB}(\{\})), f_{KB}(f_{KB}(\{\}))), \ldots$$

Fie KB un program logic definit.

- \square Din teorema Knaster-Tarski, f_{KB} are un cel mai mic punct fix FP_{KB} .
- □ *FP_{KB}* este reuniunea tuturor mulțimilor

$$f_{KB}(\{\}), f_{KB}(f_{KB}(\{\})), f_{KB}(f_{KB}(f_{KB}(\{\}))), \dots$$

Teoremă. Caracterizarea \mathcal{LH}_{KB} ca punct fix.

Pentru orice $R \in \mathbf{R}$ cu ari(R) = n și pentru orice t_1, \ldots, t_n termeni, avem

$$(t_1,\ldots,t_n)\in R^{\mathcal{LH}_{\mathit{KB}}}$$
 ddacă $R(t_1,\ldots,t_n)\in \mathit{FP}_{\mathit{KB}}$

Relațiile care definesc cel mai mic model Herbrand al unui program Prolog sunt caracterizate folosind teorema de punct fix Knaster-Tarski. Sărbători fericite!