MODELS OF NEURONS AND NEURONAL NETWORK

Wonkwon Lee

Dr Eva M. Navarro-López

NEURON

Information flow through neurons

Collect electrical signals

Dendrites Cell body

Integrates incoming signals and generates outgoing signal to

axon

Figure 45-2b Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Axon

Passes electrical signals to dendrites of another cell or to an effector cell

NEURON SPIKE

ADAPTIVE EXPONENTIAL INTEGRATE-AND-FIRE MODEL

$$C\frac{dv}{dt} = -g_L(v - E_L) + g_L \Delta_T \exp(\frac{v - v_{thres}}{\Delta_T}) - w + I$$

$$\tau_w \frac{dw}{dt} = a(v - E_L) - w$$
if $v > v_{thres}$, then
$$\begin{cases} v \leftarrow E_L \\ w \leftarrow w + b \end{cases}$$

Parameter	Description	Value
C	Membrane Capacitance	281pF
g_L	Leak Conductance	30nS
E_L	Leak reversal potential	-70.6mV
v_{thres}	Firing threshold	-50.4mV
Δ_T	Slope factor	1mV
$ au_w$	Adaptation time constant	144ms
a	Sub-threshold adaptation parameter	4ns
b	Spike triggered adaptation parameter	0.0805nA

QUADRATIC INTEGRATE-AND-FIRE MODEL

$$\tau_m \frac{dv}{dt} = v^2(t) + RI(t),$$

if $v > v_{thres}$, then $v \leftarrow v_{reset}$

Parameter	Description	Value
v_{thres}	Firing threshold	-30mV
v_{reset}	Reset voltage	-65mV
$ au_m$	Membrane time constant	12ms
R	Membrane resistance	$20\mathrm{M}\Omega$
I	Injected current	1nA

ADAPTIVE EXPONENTIAL INTEGRATE-AND-FIRE MODEL

$$C\frac{dv}{dt} = -g_L(v - E_L) + g_L \Delta_T \exp(\frac{v - v_{thres}}{\Delta_T}) - w + I$$

$$\tau_w \frac{dw}{dt} = a(v - E_L) - w$$
if $v > v_{thres}$, then
$$\begin{cases} v \leftarrow E_L \\ w \leftarrow w + b \end{cases}$$

Parameter	Description	Value
C	Membrane Capacitance	281pF
g_L	Leak Conductance	30nS
E_L	Leak reversal potential	-70.6mV
v_{thres}	Firing threshold	-50.4mV
Δ_T	Slope factor	1mV
$ au_w$	Adaptation time constant	144ms
a	Sub-threshold adaptation parameter	4ns
b	Spike triggered adaptation parameter	0.0805nA

SIMULATION OF FIRING PATTERNS

Regular Spiking

Bursting

Fast Spiking

Type	C (pF)	$g_L \text{ (nS)}$	$\tau_w \; (\mathrm{ms})$	a (nS)	b (nA)	$v_{reset} \; (\mathrm{mV})$
Tonic	200	10	30	2	0	-58
Adapting	200	12	300	2	0.06	-58
Initial Burst	130	18	150	4	0.12	-50
Bursting	200	10	120	2	0.1	-46
Irregular	100	12	130	-11	0.030	-48
Transient	100	10	90	-10	0.030	-47
Delayed Burst	200	12	300	-6	0	-58

NETWORK OF NEURONS

SYNCHRONISATION

SYNCHRONISATION

CONCLUSION

PERSONAL ACHIEVEMENTS

- Simulated a network of interacting populations of spiking neurons
- Wrote I500 lines of Python codes.
- Read in excess of 20 research papers and technical books.
- Implemented a GUI simulator for testing.