

Aula Prática 5: Caminho preferido bi-objetivo

Elementos de Engenharia de Sistemas

2019/2020

■ **Objetivo:** escolher um caminho entre um nodo de origem e um nodo de destino de acordo com dois critérios.

Soluções eficientes

- Uma solução A é dominada por uma solução B se B for melhor que A em ambos os objetivos.
- Uma solução é eficiente se não for dominada por nenhuma outra.

Soluções eficientes

■ Exemplo: Pretende-se determinar um caminho do nodo 1 ao nodo 7, tendo em conta a minimização de dois critérios: a distância percorrida e a duração do caminho.

Soluções eficientes

Os caminhos possíveis são:

	Caminho	Distância	Duração
Α	1-2-4-6-7	9	17
В	1-3-6-7	10	11
С	1-2-4-7	11	14
D	1-3-5-7	14	15
Ε	1-2-3-5-7	15	18

- A solução C é dominada pela B (solução B é melhor tanto em termos de distância, como de duração). A solução D é dominada por B e C. A solução E é dominada pela A, B, C e D.
- As soluções eficientes são a A e a B.

■ Exercício: Considere uma organização internacional que tem disponíveis cinco equipas para alocar a situações de emergência em três países (A, B e C). Existem duas medidas relevantes que condicionam as decisões tomadas: o número estimado de pessoas assistidas em tempo útil (em centenas de pessoas) e o custo (em U.M.). Os dados relativos a este problema são dados nas duas tabelas seguintes.

Cada arco nesta rede representa o número de equipas que são alocadas a cada país. A leitura da arcos deve ser feita por linhas: a diferença entre o número da linha do nodo de origem e do nodo de destino indica o número de equipas que são alocadas a um dado país.

Por exemplo:

- Para o arco 12: o nodo 2 encontra-se na mesma linha que o nodo 1, logo, corresponde a alocar 0 equipas ao país A.
- Para o arco 3,11: o nodo 11 encontra-se 2 linhas acima do nodo 3, logo, corresponde a alocar 2 equipas ao país B. O custo correpondente é de 45 U.M. e o número (em centenas) de pessoas assistidas é 65.

- Existem dois critérios a ter em conta para obter um caminho nesta rede: minimizar o custo e maximizar o número de pessoas assistidas em tempo útil. Cada um destes critérios terá uma função objetivo associada.
- Variáveis de decisão:

$$x_{ij} = \begin{cases} 1, & \text{se o arco } ij \text{ faz parte do caminho escolhido} \\ 0, & \text{caso contrário} \end{cases} \forall ij \in A.$$

A função objetivo correspondente ao custo é dada por:

A função objetivo correspondente ao número de pessoas assistidas (benefício) é dada por:

$$\begin{array}{lll} \text{Max} & z_2 = 0x_{12} + 45x_{13} + 70x_{14} + 90x_{15} + 105x_{16} + 120x_{17} + \\ & + 0x_{28} + 30x_{29} + 65x_{2,10} + 75x_{2,11} + 83x_{2,12} + 90x_{2,13} + \\ & + 0x_{39} + 30x_{3,10} + 65x_{3,11} + 75x_{3,12} + 83x_{3,13} + \ldots + \\ & + 130x_{8,14} + 100x_{9,14} + 80x_{10,14} + 70x_{11,14} + \\ & + 50x_{12,14} + 0x_{13,14} \end{array}$$

O conjunto de restrições é dado por:

- a) Obtenha a solução preferida assumindo que é possível estimar que o custo de assistir uma centena de pessoas é de 5 U.M..
- **Método de agregação por pesos:** vai ser construída uma nova função objetivo, que consiste na soma ponderada de z_1 e z_2 .
- Em primeiro lugar, "convertemos" o objetivo de maximizar z_2 para um equivalente de minimização. Assim, vamos minimizar $-z_2$.
- A nova função objetivo é dada por Min $z = \lambda_1 z_1 + \lambda_2 (-z_2)$, onde $\lambda_1, \lambda_2 \geq 0$.
- Uma vez que o agente de decisão está disposto a pagar 5 U.M. para assistir mais 1 centena de pessoas, temos que $\lambda_1=1$ e $\lambda_2=5$.

- No Excel, além das células de z_1 e $-z_2$, definimos uma célula $z = 1 \cdot z_1 + 5(-z_2)$.
- No Solver, selecionamos esta nova célula z como a função objetivo. Os restantes parâmetros são introduzidos da forma habitual.
- O caminho obtido é o 1-4-12-14, ou seja, são alocadas 2 equipas ao país A, 2 equipas ao país B e 1 equipa ao país C, com um custo de 267 U.M. e 185 centenas de pessoas assistidas em tempo útil.

- b) Aplique o método de geração por pesos com 5 valores de pesos equidistantes.
- Método de geração através de pesos: analogamente ao método anterior, é construída uma função objetivo que resulta da soma ponderada das funções z_1 e $-z_2$.
- Serão gerados vários pares de pesos que permitem obter **soluções eficientes**. A nova função objetivo é dada por Min $z = \lambda_1 z_1 + \lambda_2 (-z_2)$, onde $\lambda_1, \lambda_2 \ge 0$ são tais que $\lambda_1 + \lambda_2 = 1$.

- Pretende-se gerar q=5 pares de pesos. λ_1 começa com valor 0 e, em cada iteração, o valor é incrementado em $\frac{1}{q-1}=0,25$. λ_2 fica definido pela equação $\lambda_2=1-\lambda_1$.
- Assim, na primeira iteração, $\lambda_1 = 0$ e $\lambda_2 = 1$. No Excel, a função objetivo z é obtida de acordo com este par e corremos o Solver para obter o caminho 1-4-12-14, em que $z_1 = 267$ e $-z_2 = -185$.
- Na segunda iteração, $\lambda_1 = 0,25$ e $\lambda_2 = 0,75$. No Excel, a função objetivo z é obtida de acordo com este par e corremos o Solver para obter o caminho 1-3-12-14, em que $z_1 = 222$ e $-z_2 = -170$.

Para as 5 otimizações, obtemos as soluções apresentadas na tabela seguinte.

λ_1	$\lambda_2 = 1 - \lambda_1$	z_1 (Custo)	$-z_2$ (Benefício)	Caminho
0	1	267	-185	1-4-12-14
0.25	0.75	222	-170	1-3-12-14
0.5	0.5	70	-90	1-2-13-14
0.75	0.25	70	-90	1-2-13-14
1	0	70	-90	1-2-13-14

■ Desta forma, cabe ao agente de decisão escolher entre as 3 soluções eficientes 1-4-12-14, 1-3-12-14 e 1-2-13-14.

- c) Qual a solução preferida de acordo com o método da distância ao ideal.
- A solução ideal é aquela em que ambas as funções objetivo têm o valor ótimo. Sendo esta solução geralmente não admissível, pretende-se determinar a solução admissível mais próxima da ideal, utilizando, para isso, a métrica de Manhattan.
- Para duas soluções (x_1, y_1) e (x_2, y_2) , a distância dada por esta métrica corresponde a: $|x_1 x_2| + |y_1 y_2|$.
- O objetivo passa, então, a ser a minimização desta soma.
- A solução ideal para o problema é $z_1^* = 70$ e $-z_2^* = -185$.

■ Variáveis de decisão:

$$x_{ij} = \begin{cases} 1, & \text{se o arco } ij \text{ faz parte do caminho escolhido} \\ 0, & \text{caso contrário} \end{cases} \forall ij \in A$$

 s_1 - distância à solução ideal z_1^* s_2 - distância à solução ideal $-z_2^*$

■ Modelo de PI:

$$Min \quad z = s_1 + s_2 \tag{3}$$

$$z_1 - s_1 = 70 (4)$$

$$(-z_2) - s_2 = -185 (5)$$

$$x_{12} + x_{13} + x_{14} + x_{15} + x_{16} + x_{17} = 1 (6)$$

$$\vdots (7)$$

$$-x_{8,14} - x_{9,14} - x_{10,14} - x_{11,14} - x_{12,14} - x_{13,14} = -1$$
(8)

$$x_{ij} \in \{0,1\}, \quad \forall ij \in A. \tag{9}$$

- No Excel, é necessário criar células para as variáveis s_1 e s_2 (não esquecer de as adicionar às variáveis de decisão no Solver) e para a função objetivo $z = s_1 + s_2$.
- É necessário também criar células de LHS e RHS para as restrições 4 e 5.
- O caminho obtido é 1-2-13-14, com um custo de 70 U.M. (o custo ideal) e 90 centenas de pessoas assistidas.