2017년도 인문자연탐사 보고서 '세룡산을 참구하다'

수통골 식물 종의 프랙탈 구조를 이용한 홍보 프로그램 개발

2017. 08. 23

박민선, 박지민, 신주형, 이준모

지도교사 : 이상숙

수통골 식물 종의 프랙탈 구조를 이용한 홍보 프로그램 개발

세종과학예술영재학교 1307 신주형, 1308 이준모 2307 박민선, 2308 박지민

1. 탐사의 필요성

가. 자연과 프랙탈 구조

프랙탈 구조는 어떤 도형의 부분이 전체의 모양과 닮아 있고, 동일한 모양이 계속 해서 반복되는 자기 유사성과 순환성을 가지는 구조를 의미한다. 리아스식 해안선, 양치류의 잎, 번개 줄기, 눈 결정 등에서 볼 수 있듯 자연은 프랙탈 구조에 의해 지배받는다. 이에 대해 알아보는 것은 복잡해 보이는 자연물 속에서의 반복되는 구조와같은 간단한 법칙을 찾아내 자연의 법칙을 이해한다는 점에서 그 의미가 있다. 또한, 자연물의 프랙탈 구조를 파악하여 도식화하면 그 형태를 컴퓨터를 이용해 구현해 낼수 있다. 이렇듯 자연 속에 존재하는 프랙탈 구조를 알아내는 것은 자연에 대한 이해와 응용, 두 가지 측면 모두에서 매우 중요하다.

나. 국립공원으로서의 계룡산의 가치

계룡산에는 양치식물 12종, 나지식물 8종, 피자식물 362종을 포함한 총 382종의 식물이 존재한다.(2013년 기준) 이렇듯 다양한 식생이 존재하는 계룡산은 식물에서의 프랙탈 구조 분석에 매우 적합한 장소이다. 따라서 상기한 기대효과가 더욱 클 것으로 예상한다. 또한 계룡산은 세종특별자치시의 근교에 위치한 국립공원으로, 본 연구는 지역 식생에 대한 이해를 도울 뿐 아니라, 지역사회에 관심을 가지고 홍보하는 데에도 큰 의의가 있다.

2. 탐사 과정

그림 3 성북동 삼거리

그림 2 잎을 채집하는 모습

그림 1 계룡산 수통골 지구 지도. 파란색으로 표시된 경로가 탐사 경로이다.

가. 수통골 탐사 및 채집

탐사 1일 차인 8월 21일, 계룡산 수통골 지역을 방문하여 수통골 네이처센터~성북동 삼거리구간을 왕복하며 탐사하였다. 이 구간에서 육안으로 관찰하였을 때 자기 유사성을 갖는다고 판단되는 잎 50종을 채집하였다.

나. 1차 분류 및 선별

그림 4 채집한 잎을 분류하는 모습

각자 채집한 잎을 같은 종끼리 분류하여 정리하고, 잎이 훼손되어 구조 관찰이 힘든 식물은 폐기하였다. 1차 분류 및 선별 과정을 거친 후 31종의 잎 표본을 얻을 수있었다.

다. 분석을 위한 표본 제작

그림 5 표본 제작 과정 세척(왼쪽 위), 물기 제거(오른쪽 위), 고정(왼쪽 아래), 압축 및 건조(오른쪽 아래)

학교로 돌아와 채집한 잎을 분석할 수 있는 표본 형태로 제작하였다. 흐르는 물로 세척한 후 모양을 잡아 신문지 사이에 끼우고, 무거운 물체를 올린 채 14시간 건조시켰다.

1: 비늘고사리 Dryopteris lacera (Thunb.) Kuntze

2: 상수리나무 Quercus acutissimam Carruth.

3:

4: 붉나무 Rhus javanica L.

5: 산철쭉 Rhododendron yedoense var.poukhanense

6: 유카 Yucca gloriosa

7: 산개고사리 Asplenium vidalii(Franch. & Sav.) Nakai

8:

9: 자주조희풀 Clematis heracleifolia var. davidiana Hemsl.

10: 국수나무 Stephanandra incisa (Thunb.) Zabel

11: 좀깨잎나무 Boehmeria spicata (Thunb.) Thunb.

12: 산딸기 Rubus crataegifolius Bunge

13: 회화나무 Sophora japonica L.

라. 표본 라벨링

표본의 잎맥과 모양을 중심으로 관찰하며 식물도감을 이용하여 종의 이름과 학명을 찾아보았다.

그림 6 식물도감을 찾는 모습

마. 표본의 2차 선별 및 촬영

표본의 상태를 확인하며 훼손되거나 같은 종이라고 판단되는 식물들을 폐기하여 12 종으로 선별하였다. 번호를 붙이고, 프로그램에 입력하기 위해 라이트 박스 위에 올려촬영하였다.

그림 7 라이트박스 위에서촬영하는 모습

그림 8 촬영한 사진

바. 사진 변형

식물 표본의 프랙탈 분석을 위해 Fractalyze라는 프로그램을 사용하기로 하였다. 이 프로그램은 명도가 0 혹은 255 비트로만 이루어진 비트맵(.BMP) 파일을 요구하기 때문에 촬영한 사진들을 Adobe Photoshop에서 배경을 제거한 후 '이미지-조정-한계 값'을 사용하여 32비트 비트맵 파일로 변환하였다.

그림 9 변형한 사진

사. Fractalyze를 이용한 프랙탈 분석

프랙탈의 차원을 계산하기 위해 Fractalyze 프로그램을 사용하였다. 이 때 box-counting method 알고리즘을 사용하였다. 프로그램을 manual 모드로 설정하여 오차를 줄였고, 분석 후에는 각각의 표본에 따른 정확도와 하우스도르프 차원을 기록하였다.

그림 10 Fractalyze 실행 화면

3. 탐구 결과

가. 표본 별 Housdorff Dimension과 Coefficient

No.	Dimension	Coef.	비고
1-1	1.753	0.945104	
1-1(1)	1.752	0.948708	
2-1	1.77	0.997808	
2-1(1)	1.817	0.953757	
2-2	1.803	0.942775	
3-1	1.369	0.95261	
3-2	1.598	0.918381	
3-3	1.536	0.978416	
4-1	1.815	0.960406	
4-2(1)	1.782	0.934456	
4-2	1.807	0.964887	
4-3	1.782	0.956079	
5-1	1.734	0.942844	
5-2(1)	1.756	0.936345	
5-2	1.765	0.927254	
5-4(1)	1.662	0.999857	
5-4	1.815	0.968995	
7-1	1.698	0.983217	
8-1	1.864	0.976982	
9-1	1.856	0.978671	
9-2	1.831	0.959501	
9-3	1.833	0.96133	
10-1(1)	1.855	0.977484	
10-2	1.837	0.965595	
10-3	1.783	0.930446	
12-1	1.787	0.934397	
12-2	1.602	0.54613	제거(유의미하지 않은 데이터)
12-3	1.799	0.957376	
12-4	1.813	0.965246	

표 1 표본 별 Housdorff Dimension과 Coefficient

나. 종 별 Housdorff Dimension과 Coefficient

Sp.	Dimension(avg)	stdev	Coef.(avg)	stdev	no. of data
1	1.7525	0.000707	0.946906	0.002548	2
2	1.796666667	0.024132	0.96478	0.007765	2
3	1.501	0.118444	0.9498023	0.030116	3
4	1.7965	0.017059	0.953957	0.013489	4
5	1.7464	0.055725	0.955059	0.029469	5
6					
7	1.698		0.983217		1
8	1.864		0.976982		1
9	1.84	0.013892	0.9665007	0.010579	3
10	1.825	0.03747	0.9578417	0.024459	3
11					
12	1.75025	0.099403	0.9523397	0.016029	3
13	1.658		0.961185		1

다. 결과 분석

표본의 수가 부족하다고 판단한 8번 식물을 제외하고 Coefficient가 가장 높은 종은 산개고 사리 *Asplenium vidalii*(Franch. & Sav.) Nakai, 자주조희풀 *Clematis heracleifolia* var. *davidiana* Hemsl., 회화나무 *Sophora japonica* L. 였다.

4. 결론 및 제언

국립공원은 단순히 자연을 보전하는 것뿐만 아니라 자연에 대한 교육과 홍보 역할 역시 겸하고 있다. 하지만, 계룡산 국립공원에는 타 국립공원에 비해 체험 및 교육 프로그램이 부족한 편이다. 이를 보완하기 위하여 우리가 탐구한 것과 같이 직접 계룡산에서 식물을 채집하여, 간단한 컴퓨터 프로그램을 이용해 프랙탈 구조를 분석해 보는 프로그램을 운영한다면, 자연에 대한 관심을 고취할 수 있을 것이다. 또한, 탐사 과정에서 탐방로 초입을 제외하고는 식생에 대한 안내판이 없어 체험 프로그램에 참여하지 않는 일반적인 등산객들은 자연에 관심을 갖기 어렵다고 생각했다. 탐방로에 해당 구역에 많이 서식하는 식물에 대한 정보와 이 식물의 프랙탈 구조를 명시하여 안내한다면 가족 단위 등산객들이 등산뿐만 아니라, 자연에 대한 지식을 얻어갈 수 있는 좋은 기회가 될 것이다. 단순 안내판 설치에서 그치지 않고, 이를 스탬프 투어로 발전시켜 프랙탈 구조를 가진 식물 모양의 스탬프를 구역별로 배치한다면 교육 효과를 극대화할 수 있을 것이다.

5. 활동 후기

- 신주형: 식물 속에서 프랙탈 구조를 분석할 때 우리는 Fractalyse를 이용하였다. 처음에는 Fractalyse가 프랙탈 구조를 분석하는 프로그램인 줄 알았으나, 프랙탈 차원을 분석해주는 프로그램이여서 탐구 진행 중 조금 당황했었다. 또한 조사 결과 프랙탈 구조를 분석해 주는 프로그램은 많이 없었는데, 아핀 변환을 이용하여 사진 속의 자기 유사성을 찾아주는 프로그램을 만들 수만 있다면 우리의 탐구와 비슷한 탐구를 하는 사람들에게 큰 도움이 될 것이라 예상한다.
- 이준모 : 자연이 프랙탈을 품고 있다는 것은 너무나도 널리 알려진 사실이다. 그러나 많은 사람들은 이를 받아들이는데 그친다. 이번 인문 자연탐사는 이런 태도를 타파할 수 있었다는 점에서 매우 가치 있었다고 생각한다. 직접 계룡산을 방문하여 각종 식물들을 채집하는 과정, 그리고 이를 일일이 변환하여 프로그램으로 직접 분석하는 것은 힘들었지만, 무엇이든지 실증하려는 과학자들의 마음을 느낄 수도 있었다고 생각된다.
- 박민선 : 식물 채집, 표본 만들기, 프로그램을 이용한 분석 등의 탐구 과정이 지금까지 해왔던 연구와는 다른 방향이었는데, 쉽게 접할 수 없었던 전공 분야 이외의 탐구를 진행하게되어 뜻깊었다. 조원의 강점을 살린 역할 분담이 좋은 탐구 결과를 낼 수 있게 하여 만족스러웠고, 가족들과 자주 방문하였던 계룡산에서 의미 있는 연구를 하게 되어 좋은 경험이었던 것 같다.
- 박지민 : 평소 한 번쯤은 탐구해 보고 싶은 주제였지만, 컴퓨터 프로그램 관련 지식이 부족해 시도해 보지 못했다. 하지만 이번 인문자연탐사에서 팀원들의 도움으로 탐구를 하고, 좋은 성과를 얻을 수 있었다. 탐사 기간 동안, 팀원들과 함께 서로의 부족한 점을 메워나가며 탐구를 진행했던 점이 매우 뜻깊었다. 또, 잘 알려진 프랙탈 구조를 가진 식물만이 아닌, 우리 주변에서 쉽게 찾아볼 수 있는 식물들을 이용해 분석한 점이 더욱 의미 있게 여겨진다.

6, 참고 문헌

김종원. 『한국 식물 생태 보감 .1』, 자연과 생태 (2013)

계룡산 국립공원 홈페이지 (http://gyeryong.knps.or.kr/)