Jinglun Jiang STA130 HW1

September 7, 2024

```
[]: # Step 1: Import necessary libraries
     import pandas as pd
     # Step 2: Load the dataset
     url = 'https://raw.githubusercontent.com/centralpark/nyc-squirrels/master/
      ⇔squirrel_data.csv'
     squirrels_df = pd.read_csv(url)
     # Step 3: Display the first few rows of the dataset
     squirrels_df.head()
     # Step 4: Count missing values for each column
     missing_data = squirrels_df.isnull().sum()
     # Display the result
     print("Missing data count per column:\n", missing_data)
     # Step 5: Total missing values in the entire dataset
     total_missing = missing_data.sum()
     print(f"\nTotal missing values in the dataset: {total_missing}")
     # ChatGPT Record at:https://chatgpt.com/share/
      \hookrightarrow f16166be-d085-49d4-b962-240cf3abc92d
[]: #Observation is an observed individual from the testing groups whose all_
      →characteristics are recorded, like a single squirrel in the central park
      →being observed, while variable is the shared characteristic that may differ
      in different observations, such as the color of the squirrel under
      \hookrightarrow observation.
     import pandas as pd
     # Load your dataset (assuming CSV file)
     df = pd.read_csv('nyc_squirrels.csv')
     # Summary of numerical columns
     print(df.describe())#describing the dataset in columns
```

```
#There will be no difference in the reported value of ciunt and the number of \Box
 solumns analyzed if there is non-numeric values in the dataset, as the
 method df, shape analyzes the columns without considering their values, while
 →the same things will decrease if there are missing data in the numeric
 ⇔variables, as df.describe focus on the form of data.
#An attribute is a stored value of a certain object or target that could not be
 scalled by other instances, while a method is a pre-finished series of events,
 ⇔or orders that could be called amd executed by other instances.
#count is the number of non-missing variables in each column, mean is the
 →average of the values, std is the standard deviation, or the values that the
 →variable varies from the mean that could show the variability of the
 dataset, 25%,50% and 75% refer to the first, second and third quartiles of
→ the dataset that shows its 25% th, median and 75%th data. Max is the maximum
⇔value of the dataset.
#When there are significantly more missing value in rows than in columns, using \Box
 →df.dropna() is better because it removes all incomplete rows while remain the
 →data structure, which del df['col'] could not.
#On the other hand, when more missing variables distribute as columns, using
\hookrightarrow del df['col'] works better.
#Applying del df['col'] first could eliminate the missing variable columns,
 which could avoid unnecessary row elimination and narrow down the dataset to⊔
 ⇔increase efficiency.
#Link to chatGPT conversation:https://chatgpt.com/share/
 \Rightarrow b77bc4fb-a3dc-4117-9065-8473a746261d
```

[]:

```
[]: # Display the number of missing values in each column before cleaning
     print("Before cleaning:")
     print(df.isnull().sum())
     # Drop rows with missing values
     df cleaned = df.dropna()
     # Display the number of missing values in each column after cleaning
     print("After cleaning:")
     print(df_cleaned.isnull().sum())
     #Before cleaning:
     #X col1
     #X col2
     #X_col3
                3
     #dtype: int64
     #After cleaning:
     #X_col1
     #X col2
     #X col3
     #dtype: int64
```

#conversation records at: https://chatgpt.com/share/ \$\infty\$6b8ff56f-16ce-4dc2-a8e3-0ee94aed87a3\$

[]: #They first create a dataset with respect to unique value col1, then repeat the process with value col2, and describe the data with the methods mentions in previous questions.

#The data is first sorted by the value "class" shown as col1, then age shown as \bigcirc col2, and finally described using the mean and standard deviation, the \bigcirc quartiles and the maximum.

#Because the missing data still occupies a position and disrupts the overall_ \hookrightarrow structure of the data, which dilutes the final result by increasing the data_ \hookrightarrow size.

#It's easier to solve the problems with GOT as it filters most of the useless \rightarrow information that has nothing to do with the issue shown on search engines \rightarrow before it shows the solutions to me.

#Yes