『生物物理学』修正:第1刷 ⇒ 第2刷

場所	修正前	修正後	備考
P13 – P17	添え字の"tot"	(トル)	tot を全てトル. 表記を 5.6
			節と統一し,系の量は tot
			を付けないこととした.
P16, 中央付	ある過程での自由エネルギー変化量 以下	ある過程での変化量 $\Delta F = \Delta E - T \Delta S$ を考えると,熱浴からの吸	2.1 節の前半と後半で tot
近.	ではσと書く.	熱量 Q を用いて, $\Delta E = Q$ (熱力学第一法則). また,熱浴は常に平	が示す範囲が異なり、系と
	$\Delta F_{ m tot}$	衡状態にあるとして,そのエントロピー変化は $\Delta S_{ m A\!\!\!/} = -Q/T$.し	熱浴の切り分けが不正確で
	$\sigma = -rac{\Delta F_{ ext{tot}}}{T}$. (エントロピー生成) (2.1)	たがって, $\Delta F = -T(\Delta S + \Delta S_{ ext{ iny A}lpha})$.すなわち, F が減った分に対	あった.
		応して ,全体(系+熱浴)のエントロピーが増える. その増加量	
		$\sigma \equiv \Delta S + \Delta S_{\hat{M}\hat{G}} = -\frac{\Delta F}{T} \ge 0$ (エントロピー生成) (2.1)	
		をエントロピー生成と呼ぶ(図 5.6b も参照) .	
P17, 中央付	$\eta = -\dot{W}/F_{\text{NM}} \le 1$	$\eta = -\dot{W}/\dot{F}_{\text{NM}} \leq 1$	$F_{ ot\! M ag{M} ag{M}}$ にドットが必要.
近			
P31	変換効率は $51.8 \times 32/2840 = 58\%$	変換効率は $51.8 \times 32/2870 = 58\%$	_

場所	修正前	修正後	備考
P36, (3.3) 式	c_0 は基準となる濃度であり,	c_0 は基準となる濃度であり(通常は $1\mathrm{M}$ とする),	補足
の後			
P36, 最後の	と基質濃度の関係が得られる.	と基質濃度の関係が得られる(図 3.2b, c).	補足
行			
P37, 1行目	いわゆるシグモイド型 $^{4)}$ の依存性である(図	(トル)	シグモイド型とは言わない
	3.2b, c).		(低濃度で線形). 脚注 4) は
			P46 に移動(下の修正を参
			照)
P39, 下から 7	(3.8) 式はシグモイド型の基質濃度依存性を	(3.8) 式は,次のような特徴を示す.	
行目	持ち,次のような特徴を示す.		
P46, 上部	これが協働性の特徴である	これが正の協働性の特徴である	負の協働性と区別.
P46, (3.13)	(3.2) 式であれば	(3.5) 式であれば	
式の下			
P46, (3.13)	協働性がないと $n=1$ となり、協働性がある	協働性がないと $n=1$ となる.正の協働性があると $n>1$ となり,	P37 の脚注 4) をここに持
式の下	\mid と $n > 1$ となる.	シグモイド型 $^{x)}$ の基質濃度依存性を示す.	ってくる. x は 14?
P47,「3.7 細	細胞内での反応	(トル)	
胞内での反			
応」の下			
P71 – P73	ω	w	ω を全て w に直す. (図
			5.4, 図 5.5 中の ω も含む)
P86, 5 行目	考えらえる	考えられる	
P97, 6.10 タ	ブラウン運動の次元と	拡散の次元と	ブラウン運動だけでなく
イトル			拡散現象一般についてなの
			で.
P97, 6.10 タ	ここまで1次元のブラウン運動を考えた	ここまで 1 次元の拡散を考えた	同上
イトルの下			
P98,6行目	ブラウン粒子がある点から	粒子がある点から	同上
P98, 中央付	このように、3次元でのブラウン運動による	このように、3次元での拡散による探索	同上
近	探索		

場所	修正前	修正後	備考
P120, 中央あ	クーロンポンテシャル	クーロンポテンシャル	
たり			
P124, 中央あ	疎水性的な表面の	疎水的な表面の	
たり			
P167, 式	$\omega_{j o i}$	$w_{j o i}$	
(9.9), お よ			
び,その次の			
行			
P175, 図 9.13	最適輸送プロトコル	最適プロトコル	
キャプション			
P176, 1行目	au という有限の時間内に動かす	τという有限の時間内にトラップ位置を動かす	
P176, 2行目	コスト(エントロピー生成)	コスト(仕事)	この文脈では、仕事の方が
			より適切なので.
P176, 3 行目	このエントロピー生成最小の動かし方を 最適	このコスト最小の動かし方を 最適プロトコル と呼ぶ	索引「最適輸送プロトコル」
	輸送プロトコル と呼ぶ		も「最適プロトコル」に修
			正.
P176,7行目,	_	このように動かすと、粒子の平均位置は時間とともに線形に変化す	文を加える.補足.
「最後に再び		る.	
素早く大きく			
動かす.」の後			
P274, [99]	伊藤(三輪)久美子『時間生物学』	伊藤(三輪)久美子,時間生物学	雑誌名なので、『』はいらな
			い.
P278	最適輸送プロトコル 175	最適プロトコル 176	