Particle spectrograph

Wave operator and propagator

,	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{lphaeta}$	$\tau_1^{\#1}_+ \alpha \beta$	$\sigma_{1^-}^{\#1}{}_{\alpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	${\mathfrak l}_1^{\#2}$
$r_{1}^{#1} + \alpha \beta$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
$r_{1}^{#2} + \alpha \beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\frac{1}{1} + \alpha \beta$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$
$\tau_{1}^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + \alpha$	0	0	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$