

Systems and Methods for Big and Unstructured Data Project

Lorenzo Biasiolo – 10629367 Grecya D'Angiò - 10651939 Elia Maggioni – 10610008 Enrico Maria Marinelli – 10898730 Carlos Santillán - 10659783

Group 7
Academic Year 20222023

1. Problem presentation and assumptions:

- Bibliography database
- DBLP website

1. Problem presentation and assumptions:

- An author can be affiliated to one and only one organization.
- There is no distinction between the authors of the same publication, no ranking nor order. We assume they all have contributed equally to the publication.
- A publication X must cite at least one other publication, but it is admissible that no one has cited (referenced) X.
- There are no joint publishers (i.e., publishers that share publication rights for the publications). Each publication must have one and only one publisher (even if it is presented at a conference).
- Publications stored in the database can either be books or articles. No other types exist. It could eventually be expanded to include works like Ph.D. theses and independent publications.
- Each article must be presented in one venue regardless of the type of venue.
- A publication cannot reference itself.
- Whenever we see missing values in the dataset, we set them to a default value.

2. ER Diagram

2. ER Diagram

2. ER Diagram

3. Neo4J

Useful to research the relationships of the different parts of the schema

3.1 Neo4J Dataset structure

The dataset had a .json format and had the following structure for each item. { "id": 2456, "authors": [{"name": "Mario Rossi", "id": 4, "org": "Politecnico di Milano"}], "title": "Non-cooperative games", "abstract": "This is an awesome report, here is why" "year": 2005, "page_start": 245, "page_end": 255, "doc_type": "article", "publisher": "Springer", "fields": [{"name": "Computer science"}, {"name": "Artificial intelligence"}], "venue": {"raw": "Game theory journal", "id": 235, "type": "J"} "id": 2453

3.2 Query

Find the articles (with at least 12 pages) that cover the most fields by the publisher who has published the most articles (assumed to be unique).

```
MATCH (publisher:Publisher)-[pub:PUBLISHES]->(:Article)
WITH COUNT(pub) AS publications, publisher
ORDER BY publications DESC LIMIT 1
WITH publisher
MATCH (publisher)-[:PUBLISHES]->(a:Article)-[c:COVERS_FIELD]->(:FieldOfStudy)
WHERE a.pages >= 12
WITH COUNT(c) AS fields, a, publisher
WITH MAX(fields) AS max_fields, publisher
MATCH (publisher)-[:PUBLISHES]->(a:Article)-[c:COVERS_FIELD]->(:FieldOfStudy)
WITH COUNT(c) AS fields, a, max_fields
WHERE fields = max_fields AND a.pages >= 12
RETURN a
```

3.2 Results

Find the articles (with at least 12 pages) that cover the most fields by the publisher who has published the most articles (assumed to be unique)

4. MongoDB

Useful to store elements together, flexible structure **Documental DB** mongoDB figures":{ 'url": <url image>, How do we create the 'caption":<>, 'inserted_at":<number collection? "bibliography": { where insert the <an array with all bibliography>] "id": <id of the article/book> "title":<title of the article/book>, "abstract":<abstract of the article/bool>, metadata: creation date": "metadata": {}, (iso data> subdocuments "authors": {}, keywords": keywords": {} [<0,1,2>], "publication_details": {}, "sections": {}, "bibliography": {}

4.1 Document diagram

4.1 MongoDB Data Structure

```
"id": 0,
                                                                             "body_text":{
                                                                                "title": "Synchronised cohesive algorithm",
"title": "Amphibolurus barbatus",
                                                                                "text":[
                                                                                   "Pork belly kevin andouille prosciutto.",
"abstract": "Duis bibendum, felis sed interdum venenatis,
             turpis enim blandit mi, in porttitor pede justo eu massa
                                                                                "sub section":[{
             Donec dapibus. Duis at velit eu est congue elementum.",
                                                                                       "title": "Optimized leading
"metadata": {
                                                                                                edge customer loyalty",
             "creation_date": {"$date":"1982-06-29T07:31:02.000Z"},
             "keywords": ["Visionoriented", "disintermediate",
                                                                                       "text":[
                          "system", "engine"]},
                                                                                          "Salami tongue ham hock",
"authors": [{
             "id":206,
                                                                                       "sub_section":[{
             "first_name": "Kristina",
                                                                                           "title": "Advanced fault-tolerant
             "last_name": "Gapp",
                                                                                                     matrices".
             "email": "kgapp5p@noaa.gov",
                                                                                           "text":[
             "bio": "REMEDYREPACKINC.".
                                                                                               "Prosciutto pig pork belly",
             "affiliation": "Katz"}],
                                                                                           1}
                                                                                    1
"publication_details":
                                                                                 },
         [{
           "id":24,
           "journal": "Ecole Normale
                                                                          },
                     Superieure de Fontenay-Saint Cloud",
           "volume": "Fabaceae",
           "number": "74-963-4668".
           "date": {"$date":"1995-11 01T22:48:12.980Z"},
           "pages":49}],
           "sections":
             Γſ
```

4.1 MongoDB Data Structure

4.2 Query

Find authors id who have more than 140 publications

```
db.articles.aggregate([
      "$unwind":{
         "path": "$authors"
   },
      "$group":{
         "_id": "$authors.id",
         "first_name":{
            "$addToSet": "$authors.first_name"
         },
         "last_name":{
            "$addToSet": "$authors.last_name"
         },
         "publications":{
            "$push": "$publication_details.id"
   },
```

```
"$project":{
          "publications":{
             "$reduce":{
                "input": "$publications",
                "initialValue":[
                ],
                "in":{
                   "$concatArrays":[
                       "$$value",
                       "$$this"
                }
         },
  "first_name": "$first_name",
  "last_name": "$last_name",
   },
{\$match: \{\$expr:\{\$gt:[\{\$size:\$publications\}\}, 140]\}\}
1)
```

4.2 Results

Find authors id who have more than 140 publications

```
< { _id: 219,
   publications:
     [ 12,
       91,
      137,
       166,
       267,
       292,
       382,
       416,
       445,
       538,
       567,
       631,
```

5. Spark Data Structure

```
schemapub = StructType([ \
    StructField('id', StringType(), False), \
    StructField('title', StringType(), False), \
    StructField('page_start', IntegerType(), True), \
    StructField('page end', IntegerType(), True), \
    StructField('year', IntegerType(), True), \
    StructField('citations', IntegerType(), True), \
    StructField('venue', StringType(), True), \
    StructField('keywords', StringType(), True) \
schemaref = StructType([ \
    StructField('references', StringType(), False), \
    StructField('referenced', StringType(), False) \
|schemavenue = StructType([ \
    StructField('name', StringType(), False), \
    StructField('type', StringType(), True) \
|schemawrites = StructType([ \
    StructField('author', StringType(), False), \
    StructField('publication', StringType(), False) \
1)
ischemaauthor = StructType([ \
    StructField('id', StringType(), False), \
    StructField('name', StringType(), False), \
    StructField('org', StringType(), True) \
```


- Fast
- Easy
- General
- Compute huge quantity of data
- Columnar approach

5.1 Query

Find publications that are referenced more than the average that contain the keywords 'Data Mining' and 'Computer Science', ordered by the number of publications in ascending order.

```
average = ref.groupBy('referenced').count() \
                .sort('count',ascending=False) \
                .groupBy() \
                .avg('count') \
                .collect()[0][0]
pub.join(ref,ref.referenced == pub.id, 'left') \
        .select('title', 'id', 'referenced', 'references', 'keywords') \
        .groupBy('title', 'keywords') \
        .agg(count('references').alias('number of references')) \
        .filter((col('number of references') > average) & \
                array contains(pub.keywords, 'Computer science') & \
                array contains(pub.keywords, 'Data mining')) \
        .sort('number of references',ascending = True) \
        .show()
```

5.1 Query

Find publications that are referenced more than the average that contain the keywords 'Data Mining' and 'Computer Science', ordered by the number of publications in ascending order.

```
title
                                   keywords | number_of_references |
|Modularizing Onto...|[Distributed know...|
|Modeling for Opti...|[Data mining, Com...|
                                                               13|
|TOWARDS AN EXTEND...|[Information syst...|
|Rough Sets-Based ...|[Data mining, Equ...|
                                                               161
|Finite model theo...|[Data mining, Fin...|
                                                               17|
|DART: an efficien...|[Query optimizati...|
                                                               18|
|A Minimum Descrip...|[Bottleneck, Grap...|
                                                               18|
|A search-engine c...|[Data mining, Fea...|
|Association Rules...|[Data mining, Com...|
                                                               191
|Two Evolution Ind...|[Linear equation,...|
                                                               191
|Bridging the gaps...|[Semi-structured ...|
                                                               201
|A Dynamical Syste...|[Data mining, Com...|
                                                               20|
|An algorithm for ...|[Anomaly detectio...|
                                                               211
|Computing the Spl...|[Decision tree, D...|
                                                               21|
                                                               21|
|The GOLD Model CA...|[Data warehouse, ...|
|A cluster-based a...|[Design elements ...|
                                                               22|
|Multi-view Metric...|[Data point, Auto...|
                                                               22|
|Neural Net Agent ...|[Data mining, Wor...|
                                                               261
|Spectral clusteri...|[Hierarchical clu...|
                                                               27|
                                                               27|
|Fully utilize fee...|[Data mining, Sem...|
only showing top 20 rows
```