Spot detection plugin installation

- Install Fiji or ImageJ (version 1.53 or higher) + Bio-Formats plugin
- Add these 2 files in the "plugins" folder:

Simple stack acquisition spot detection export batch acquisition (beads) 100 EM gain 200 raw data binning background correction 20 threshold denoised data detection 20 photon count

Activation + Stack acquisition

Beads + Activation + Stack acquisition

Example:

D:\Nat Comm codes\SMT_analysis\Data_BRG1_WT\raw_data_example\cell.nd2

Export coordinates

Load a list of stacks and export coordinates for each stack

Background removal

For 1000 frames, the program is calculating the background 5 times with 200 frames each time.

Threshold to isolate individual spots

Matlab scripts setup

Add all folders from: D:\Nat Comm codes\SMT_analysis\

Matlab scripts setup

Toolboxes required:

- Image Processing Toolbox
- Curve Fitting Toolbox

Single-molecule tracking

mem = 2 max. number of lost frames

dmax = 1.75 max. distance to connect dots (in px)

Nmin = 2 min. number of jumps

Matlab scripts

- Images of the nucleus are saved as: cell_1.tif, cell_2.tif,...
- ROIs of the nucleus are saved as: cell_1_roi.tif, cell_2_roi.tif,...
- Coordinates are saved as: cell_1.mat, cell_2.mat,...
- Trajectories are saved as: cell_1_traj.mat, cell_2_traj.mat,... (fast and slow tracking)
- Binding trajectories are saved as: cell_1_bind.mat, cell_2_bind.mat,... (slow tracking)
- Full trajectories and binding trajectories are located in the main folder
- Raw data and images of the ROIs are located in a subfolder ("...\main folder\-\")
- All scripts have been tested on Matlab R2020a / R2021a / R2022a
- Calculation times are obtained from an Intel Core i5, 2.60 GHz and 32GB of RAM

ROI

Define an ROI based on the nucleus boundary

```
clc;
clearvars;
close all;
path0 = 'D:\Nat Comm codes\SMT_analysis\Data_BRG1_WT\fast_tracking\';
          %%% cell #
u = 7;
w = 128; %%% image size (px)
file = ['cell_' num2str(u)];
im = imread([path0 '-\' file '.tif']);
f = figure(1);
set(f, 'position', [500 100 700 700])
set(gca, 'position', [0 0 1 1])
imagesc(im)
axis equal off
hold on
colormap gray
roi = images.roi.Polygon(gca, 'color', [0 .9 0], 'visible', 'on', 'facealpha', .1);
draw(roi);
in = createMask(roi, w, w);
in = 1.*(in>0);
imwrite(in, [path0 '-\' file '_roi.tif'])
```


Track_FT Run fast-tracking

```
clc;
 clearvars;
 close all;
 path0 = 'D:\Nat Comm codes\SMT_analysis\Data_BRG1_WT\fast_tracking\';
 p.mem = 2;
                %%% max. number of lost frames
 p.dmax = 4; %%% max. distance to connect dots between 2 consecutive frames (px)
 p.Nmin = 3; %%% min. number of jumps
\exists for u = 1:10
     disp(['cell_' num2str(u)]);
    load([path0 '-\cell_' num2str(u) '.mat'])
     r = imread([path0 '-\cell_' num2str(u) '_roi.tif']);
     T = fct_tracking(X, p, r);
     save([path0 'cell_' num2str(u) '_traj.mat'], 'T')
```

Discriminating binding from diffusion in slow-tracking

All possible track segments of a given trajectory

Track ST

Run slow-tracking and isolate binding events from full trajectories

```
clc;
 clearvars;
 close all;
path0 = 'D:\Nat Comm codes\SMT analysis\Data BRG1 WT\slow tracking\';
p.mem = 2;
                 %%% max. number of lost frames
p.dmax = 1.75; %%% max. distance to connect dots between 2 consecutive frames (px)
p.Nmin = 2; %%% min. number of jumps
b.Jmin = 4; %%% min. number of jumps in the binding trajectory
b.px = 160; %%% pixel size (nm)
b.diameter = 100; %%% max. diameter of the circle that circumscribes the binding trajectory (nm)
for u = 1:8
    disp(['cell ' num2str(u)]);
    load([path0 '-\cell ' num2str(u) '.mat'])
    r = imread([path0 '-\cell ' num2str(u) ' roi.tif']);
    T = fct_tracking(X, p, r);
    save([path0 'cell ' num2str(u) ' traj.mat'], 'T');
    [A, B] = Trim_Trajectories(T, b);
    save([path0 'cell_' num2str(u) '_bind.mat'], 'T');
    T = B;
    save([path0 'cell ' num2str(u) ' diff.mat'], 'T');
```

Quantifying intranuclear diffusion in fast-tracking

GET_Diffusion

Get the 3 modes of diffusion based on the "Spot-on" model

```
path0 = 'D:\Nat Comm codes\SMT analysis\Data BRG1 WT\fast tracking\';
 global dr ds dt
                      pixel size (micron)
 px = .16;
                  %%% exposure time (s)
 dt = .0055;
 dr = .005;
                  %%% distance for binning (micron)
 ds = .010;
                  %%% localization uncertainty (micron)
                  %%% max. distance for the histogram (px)
 dmax = 4;
 p.start = [.05 .3 1 .4 .4];
 p.LB = [.001 .01 .1 0 0];
 p.UB = [.5 \ 4 \ 20 \ 1 \ 1];
 X = [1]
n = list file(path0, ' traj.mat');
 [Nx, Ny] = NxNy(n);
 f = figure(1);
 set(f, 'position', [300 530-190*Ny/2 300*Nx Ny*190+20], 'color', 'w');
\exists for i = 1:n
     load([path0 'cell ' num2str(i) ' traj.mat']);
     jump = jump distribution(T);
     x0 = mod(i-1,Nx);
     v0 = floor((i-1)/Nx);
     ax = axes('units', 'pixels', 'position', [55+x0*290 30+(Ny-1-y0)*185 250 175]);
     P = model_3_states(jump, dmax, p, px, i);
     X = [X; [i P]];
 end
 exportgraphics(f, [path0 'Diffusion.png'])
 save([path0 'Diffusion.mat'], 'X')
```


cell#	1 st diffusion coefficient	2 nd diffusion coefficient	3 rd diffusion coefficient	1 st fraction	2 nd fraction	3 rd fraction
1.0000	0.0741	0.5437	3.1786	20.1813	47.6736	32.1451
2.0000	0.0912	0.5587	3.2530	21.3157	48.8034	29.8809
3.0000	0.1207	0.8276	3.6546	18.7813	45.2810	35.9377
4.0000	0.0877	0.7554	3.3134	17.6494	37.6625	44.6882
5.0000	0.0627	0.5218	2.7859	16.0196	49.3649	34.6155
€.0000	0.0786	0.5207	3.0337	19.8259	42.4001	37.7740
7.0000	0.0943	0.4713	2.7965	30.5156	44.6289	24.8555
8.0000	0.0864	0.5650	2.5058	24.3869	38.6676	36.9456
9.0000	0.0515	0.2997	1.9124	28.2324	36.7329	35.0347
10.0000	0.0788	0.4260	2.2543	18.6103	51.7324	29.6572

Data exported as .mat file

Quantifying DNA-binding using the survival probability

GET_ResTime_GRID

GRID analysis to determine the number of binding modes

```
path0 = 'D:\Nat Comm codes\SMT analysis\Data BRG1 WT\slow tracking\';
 Jmin = 4;
              %%% min. number of jumps in the binding trajectory
 dt = .3;
           %%% exposure time (s)
 E = 0.005;
 tmax = 20;
 th = 1E-3;
 ti = (Jmin*dt:dt:50);
 ki = 1./ti;
 ResTime = [];
n = list_file(path0, 'bind.mat');
\exists for i = 1:n
    load([path0 'cell_' num2str(i) '_bind']);
    ResTime = [ResTime resTime_distribution(T, Jmin)];
∟ end
 [frame, prob] = survivalProb_curve(ResTime, Jmin);
 t = dt*frame;
 Si = GRID_spectrum(t', prob', ki, E, dt);
 % [F, T] = GRID_bar(ti, Si, th);
 f = figure(1);
 set(f, 'position', [200 200 500 400], 'color', 'w');
 a = area(ti, Si, 'FaceColor', [.3 .3 .3]);
 ylim([th .8])
 xlim([0 tmax])
 set(gca, 'yscale', 'log')
```


GET_ResTime

Get the residence time for each mode

```
path0 = 'D:\Nat Comm codes\SMT analysis\Data BRG1 WT\slow tracking\';
Nexp = 3;
                  number of binding modes
 dt = .3;
                    exposure time (s)
 Jmin = 4;
                    min. number of jumps in the binding trajectory
                    pixel size (micron)
 px = .16;
                   max. time to display the survival probability
 tmax = 150; %%%
            %%% min. value of the survival probability to display
 [fun, p0] = binding ExpFit(Nexp);
X = [];
n = list_file(path0, 'bind.mat');
 [Nx, Ny] = NxNy(n);
 f = figure(1);
 set(f, 'position', [200 500-180*Ny/2 300*Nx Ny*190+20], 'color', 'w');
\exists for i = 1:n
     if exist([path0 'cell ' num2str(i) ' bind.mat'], 'file')
        load([path0 'cell_' num2str(i) '_bind.mat']);
         ResTime = resTime distribution(T, Jmin);
         Density = binding density([path0 '-\cell ' num2str(i) ' roi.tif'], ResTime, px);
         [frame, prob] = survivalProb_curve(ResTime, Jmin);
         t = dt*frame;
         [p, P] = survivalProb fit(t, prob, fun, p0);
        N = P(end);
         P = [i P(1:end-1) Density];
        X = [X; P];
         x0 = mod(i-1,Nx);
         y0 = floor((i-1)/Nx);
         ax = axes('units', 'pixels', 'position', [55+x0*290 30+(Ny-1-y0)*185 245 180]);
         survivalProb_plot(t, prob, fun, p, P, tmax, N);
```


cell #	1 st residence time	2 nd residence time	3 rd residence time	1 st fraction	2 nd fraction	3 rd fraction	binding density
1.0000	0.9355	2.5130	12.6038	52.0040	34.4786	13.5174	2.0542
2.0000	0.9766	5.0952	24.6191	71.8951	27.1150	0.9899	2.2116
3.0000	0.8220	4.0671	15.3903	70.0392	25.7390	4.2218	2.7750
4.0000	0.8065	3.5284	10.4710	60.8319	35.3396	3.8286	4.0440
5.0000	1.1411	4.5706	15.4572	65.7115	32.1821	2.1064	3.7635
6.0000	0.8667	4.8577	17.7233	69.0323	30.0542	0.9135	3.8191
7.0000	0.7031	3.2842	10.3269	65.5688	24.7968	9.6345	2.6362
8.0000	1.2514	4.0627	15.9378	65.4349	32.9344	1.6307	4.3291

end

Turning SMT trajectories into a superresolution image map

Typical trajectories of a particle diffusing and binding

The pixel size is constrained by the localization precision and the number of counts

Image reconstruction based on the number of counts per pixel

Pixel size: 40 nm

GET_MAP_Binding_vs_Diff

Map of binding trajectories vs diffusion trajectories

```
path0 = 'D:\Nat Comm codes\SMT_analysis\Data_BRG1_WT\slow_tracking\';
p.Nmin = 4;
                %%% min. number of jumps
                %%% resolution (px)
p.res = .25;
p.sigma = .25; %%% gaussian blur (px)
                %%% nucleus orientation: horizontal (1), vertical (0), no reorientation (-1)
p.dir = 1;
p.edge = 1; %%% showing nucleus boundary: yes (1), no (0)
             %%% thickness of the nucleus boundary
p.e = 1;
           %%% width (px)
dx = 800;
dy = 500;
            %%% height (px)
A = [];
n = list_file(path0, 'bind.mat');
[Nx, Ny] = NxNy(n);
f = figure(1);
set(f, 'position', [200 400 1000 320])
set(gca, 'position', [0 0 1 1])
\exists for j = 1:Nv
    Ax = [];
    for i = 1:Nx
        u = (j-1)*Nx+ i;
        load([path0 'cell_' num2str(u) '_diff']);
        T0 = T;
        load([path0 'cell ' num2str(u) ' bind'])
        p.r = imread([path0 '-\cell_' num2str(u) '_roi.tif']);
        im = MAP_Binding_vs_Diff(T0, T, p);
        im = trim image(im, dx, dy);
        Ax = [Ax im];
    end
    A = [A; Ax];
```


Binding Diffusion

GET_MAP_Cluster

Map of clusters of binding trajectories

```
path0 = 'D:\Nat Comm codes\SMT analysis\Data BRG1 WT\slow tracking\';
 p.Nmin = 10; %%% min. number of jump
 p.dmax = 1.25; %%% max. distance between binding events in a cluster (px)
 p.Nhub = 3;
                %%% min. number of binding events per cluster
 p.res = .25;
                %%% resolution (px)
 p.sigma = .25; %%% gaussian blur (px)
                %%% nucleus orientation: horizontal (1), vertical (0), no reorientation (-1)
 p.dir = 1;
              %%% showing nucleus boundary: yes (1), no (0)
 p.edge = 1;
             %%% thickness of the nucleus boundary
 p.e = 1;
           %%% width (px)
 dx = 800;
 dy = 600;
            %%% height (px)
 A = [];
 n = list_file(path0, 'bind.mat');
 [Nx, Ny] = NxNy(n);
 f = figure(1);
 set(f, 'position', [200 400 1000 320])
 set(gca, 'position', [0 0 1 1])
\neg for j = 1:Ny
     Ax = [];
     for i = 1:Nx
         k = (j-1)*Nx+ i;
         load([path0 'cell_' num2str(k) '_bind'])
         p.r = imread([path0 '-\cell_' num2str(k) '_roi.tif']);
         im = MAP_Cluster(T, p);
         im = trim_image(im, dx, dy);
         Ax = [Ax im];
     end
     A = [A; Ax];
```


Binding Cluster