PageRank 作业报告

1400012923 关玉烁

一、实验环境及数据集

- 服务器:Linux netlabml-ThinkStation-D30 4.4.0-96-generic #119-Ubuntu SMP Tue Sep 12 14:59:54 UTC 2017 x8664 x8664 x86_64 GNU/Linux
- 编程语言: python
- 数据集: ANN (http://tangra.cs.yale.edu/newaan)

二、提交文件结构

- code:该文件夹包含本次作业全部代码。
 - authorRank.py: 对author的pagerank算法文件。
 - paperRank.py: 对paper的pagerank算法文件。
 - venueRank.py: 对venue的pagerank算法文件。
- results: 该文件夹包含排序后的paper/author/venue的PageRank值文件。
 - retAuthor.csv: author的姓名及对应pagerank值,按照pagerank值降序排列。
 - retPaper.csv: paper的标题及对应pagerank值,按照pagerank值降序排列。
 - retVenue.csv: venue的名称及对应pagerank值,按照pagerank值降序排列。
- 2014: 该文件夹包含ANN数据集。
- 作业报告_1400012923_关玉烁.pdf: 实验报告。

三、基本思路

- 1. 对author的pagerank: 利用了2014/networks/author-citation-network-nonself.txt,该文件每一行形如author1 ==> author2,记录了作者之间的引用关系,且不包括自己对自己的引用。在具体操作中,首先使用函数split提取每一行的author1和author2,建立起作者间的引用关系图。之后,编写PageRank算法,算出作者的PageRank值。
- 2. 对paper的pagerank: 利用了2014/networks/paper-citation-network-nonself.txt和2014/acl-metadata.txt,前者每一行形如paper1 ==> paper2,记录了paper之间的引用关系,且不包括自己对自己的引用;后者记录了每篇文章的id、author、title、venue和year信息。在具体操作中,首先使用函数split提取2014/networks/paper-citation-network-nonself.txt每一行的paper1和paper2,建立起作者间的引用关系图。之后,编写PageRank算法,算出作者的

- PageRank值。由于2014/networks/paper-citation-network-nonself.txt中均为paper的id,还需利用acl-metadata.txt,找到paperid对应的标题。
- 3. 对venue的pagerank: 利用了2014/networks/paper-citation-network-nonself.txt和 2014/acl-metadata.txt。由于数据集中没有直接记录venue相互引用关系的文件,我们需要自行提取。我的方法是利用paper之间的引用来构造venue之间的引用。举例来说,假如EMNLP的 100篇文章引用了ACL,那么就构造一条从节点**V**_{EMNLP} 到**V**_{ACL}权重为100的边。

四、实验结果分析

PageRank算法中,只有随机游走的概率 $(1-\alpha)$ 的值是可以改变的,不同的应用实例可能选用不同的 α ,我在实验中分析了 $\alpha=0.1,0.5,0.9$ 时算法运行的效果。

 author: 三列分别为α = 0.1,0.5,0.9时,算法得到top3的作者姓名,以及我通过 https://www.semanticscholar.org/查到的highly influential citations数量,我通过highly influential citations来判断pagerank得到的排名是否合理。从图中看到,α = 0.1时top 3的作者 highly influential citations更多,pagerank效果更好。

lpha=0.1	lpha=0.5	$\alpha = 0.9$
Manning, Christopher D., 3102	Della Pietra, Vincent J., 583	Mercer, Robert L., 555
Church, Kenneth Ward, 355	Church, Kenneth Ward, 355	Della Pietra, Vincent J., 583
Klein, Dan, 1014	Mercer, Robert L., 555	Brown, Peter F.497

■ paper: 三列分别为α = **0.1**, **0.5**, **0.9**时,算法得到top3的paper标题,以及我通过 https://www.semanticscholar.org/查到的highly influential citations数量,我通过highly influential citations来判断pagerank得到的排名是否合理。从图中看到,α = **0.1**时top 3的paper highly influential citations更多,pagerank效果更好。

lpha=0.1	lpha=0.5	$\alpha = 0.9$
Building A Large	Building A Large	A Stochastic Parts Program And
Annotated Corpus Of	Annotated Corpus Of	Noun Phrase Parser For Unrestricted
English: The Penn	English: The Penn	Text, 22
Treebank, 474	Treebank, 474	
Bleu: A Method For	A Stochastic Parts Program	Finding Clauses In Unrestricted Text
Automatic Evaluation Of	And Noun Phrase Parser	By Finitary And Stochastic
Machine Translation, 1272	For Unrestricted Text, 22	Methods, 1
The Mathematics Of	The Mathematics Of	The Contribution Of Parsing To
Statistical Machine	Statistical Machine	Prosodic Phrasing In An
Translation: Parameter	Translation: Parameter	Experimental Text-To-Speech
Estimation, 298	Estimation, 298	System, unknown

■ venue: 三列分别为 $\alpha = 0.1, 0.5, 0.9$ 时, 算法得到top3的venue名称, 可见 α 对结果影响很小。

lpha=0.1 lpha=0.5 lpha=0.9

ACL	ACL	ACL
CL	CL	CL
COLING	COLING	COLING

五、一些细节

- 1. 对引用关系图P的处理:在实际中P经常是一个稀疏矩阵,如果在编程中建立一个 $|V| \times |V|$ 的二维数组来存储P,大量的空间会存为0,这样过于浪费空间,甚至在|V|较大时出现内存不够用的情况。于是,我利用索引来存储P。以author的引用关系图为例,我建立字典authorLink(key=a, value= L_a),a为作者名字, L_a 是一个列表,其中记录了a引用的其它作者。
- 2. 为什么选用noself: ANN数据集中有两类数据,一种记录了自己对自己的引用,另一种是noself,没有记录自己对自己的引用,我选择了后一种数据来进行PageRank。这样的选择与实际场景有关,如果利用第一种数据,一个作者就可以不断引用自己的文章,这样就可以拉高自己文章的PageRank值,成为一种恶意"刷票"。第二种数据规避了这种情况。
- 3. PageRank收敛的标志: PageRank需要不断迭代,在具体编程中,我需要知道算法何时收敛,从而停止迭代。我的方案是计算上一轮迭代和本轮迭代中各个节点的PageRank差值的绝对值,即 $\sum_{i=1}^{|V|}|pg_i^k-pg_i^{k-1}|, \, \text{如果小于} 1e^{-7}, \, \text{则认为PageRank收敛,停止迭代。}$
- 4. venue引用关系图中边权重的确定:首先,venue引用关系图上的权重是不同的。比如A会议引用了B会议100篇文章、C会议5篇文章,那么在A看来,显然B的重要程度高于C。为了体现这一点,我把引用关系图上的边权设置成paper的引用量。
- 5. 原始数据中的bug: acl-meta.txt中应该每个条目占每6行数据(分别是id, author, title, venue, year和一个空行),但是id=J11-2003的文章title占用了两行,需要特殊处理。