TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupo A	۱, D), F
--------	---------	------	------

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La figura adjunta representa el sistema de aire acondicionado de un vehículo que emplea CO_2 como refrigerante (ver tablas adjuntas). El CO_2 llega al compresor como vapor saturado a 5°C, saliendo del compresor a 120 bar. El compresor opera de forma adiabática y con un rendimiento isentrópico del 75%. Tras salir del compresor, el CO_2 se dirige al *cooler*, donde cede calor al ambiente (foco térmico a 35°C) para salir del mismo a 45°C. En esas condiciones se dirige a una válvula tras la cual entra en el evaporador donde toma calor del interior del vehículo (foco térmico a 18,5°C), saliendo del mismo en las condiciones de entrada al compresor. Se desprecian las pérdidas de presión en intercambiadores y conductos.

La transmisión tiene un rendimiento (trabajo entregado al compresor frente a trabajo que sale del motor) del 85%, de modo que disipa calor al ambiente. Tómese la temperatura del ambiente como la coordenada del estado muerto.

Se pide:

- a) COP del aire acondicionado (calor que se retira del interior del vehículo frente a trabajo que aporta el motor del vehículo).
- b) Eficiencia exergética del sistema "aire acondicionado" encerrado en la línea discontinua (equipo de refrigeración).
- c) Representar cualitativamente el diagrama de Sankey de exergías de la instalación encerrada en la línea punteada (transmisión-compresor), con el detalle de sus componentes.

Tabla de saturación

T	p	Vf	Vg	Uf	ug	hf	hg	Sf	Sg
[°C]	[bar]	[m³/kg]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
-3,0	32,16	0,0010583	0,01126	-317,40	-110,52	-314,00	-74,29	-1,76450	-0,87720
-1,0	33,94	0,0010714	0,01057	-312,83	-111,20	-309,20	-75,32	-1,74750	-0,88813
1,0	35,78	0,0010854	0,00992	-308,20	-111,98	-304,32	-76,49	-1,73036	-0,89931
3,0	37,7	0,0011002	0,00931	-303,49	-112,89	-299,34	-77,81	-1,71305	-0,91081
5,0	40,00	0,0011161	0,00872	-298,70	-113,92	-294,27	-79,29	-1,69553	-0,92266
7,0	41,77	0,0011331	0,00817	-293,81	-115,11	-289,08	-80,97	-1,67777	-0,93494
9,0	43,92	0,0011515	0,00765	-288,81	-116,46	-283,76	-82,86	-1,65972	-0,94772
11,0	46,15	0,0011715	0,00715	-283,69	-118,00	-278,28	-85,00	-1,64131	-0,96108
13,0	48,47	0,0011935	0,00668	-278,42	-119,77	-272,64	-87,41	-1,62247	-0,97516
15,0	50,87	0,0012177	0,00622	-272,98	-121,80	-266,78	-90,15	-1,60309	-0,99011
17,0	53,37	0,0012449	0,00578	-267,32	-124,14	-260,68	-93,28	-1,58303	-1,00612
19,0	55,96	0,0012758	0,00536	-261,40	-126,88	-254,26	-96,90	-1,56211	-1,02349
21,0	58,65	0,0013116	0,00494	-255,14	-130,11	-247,44	-101,13	-1,54006	-1,04263
23,0	61,44	0,0013544	0,00453	-248,42	-134,01	-240,10	-106,17	-1,51643	-1,06419
25,0	64,34	0,0014075	0,00412	-241,04	-138,87	-231,98	-112,36	-1,49048	-1,08927

Tabla de vapor sobrecalentado

		40 bar		
T	v	u	h	S
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
10	0,00922	-107,12	-70,23	-0,89133
15	0,00977	-100,67	-61,61	-0,86115
20	0,01026	-94,82	-53,79	-0,83426
25	0,01071	-89,37	-46,52	-0,80965
30	0,01114	-84,20	-39,63	-0,78675
35	0,01155	-79,24	-33,04	-0,76518
40	0,01194	-74,44	-26,68	-0,74470
45	0,01232	-69,77	-20,50	-0,72513
50	0,01268	-65,20	-14,47	-0,70632
55	0,01304	-60,71	-8,57	-0,68818
60	0,01338	-56,29	-2,76	-0,67063
65	0,01372	-51,92	2,96	-0,65359
70	0,01405	-47,60	8,61	-0,63701
75	0,01438	-43,32	14,19	-0,62084
80	0,01470	-39,07	19,73	-0,60506

		120 bar		
T	v	u	h	S
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
35	0,00130	-242,43	-226,78	-1,49806
40	0,00139	-227,43	-210,71	-1,44635
45	0,00152	-210,43	-192,18	-1,38765
50	0,00171	-190,89	-170,37	-1,31963
55	0,00198	-169,61	-145,83	-1,24428
60	0,00230	-149,78	-122,16	-1,17269
65	0,00261	-133,49	-102,15	-1,11305
70	0,00289	-120,28	-85,59	-1,06442
75	0,00314	-109,21	-71,50	-1,02366
80	0,00337	-99,58	-59,14	-0,98840
85	0,00358	-90,96	-48,01	-0,95711
90	0,00377	-83,09	-37,80	-0,92879
95	0,00396	-75,77	-28,28	-0,90275
100	0,00413	-68,88	-19,31	-0,87855
105	0,00430	-62,33	-10,78	-0,85583

a)
$$\omega P = \frac{\delta v}{\dot{w}_{M}}$$
 $h_{1} = -79.29 \text{ kJ/ky}$
 $h_{2} = -0.92266 \text{ kJ/ky-k}$
 $h_{3} = -37.8 + \frac{-28.28 + 37.8}{-0.90275 + 0.92879}$
 $\times (-0.92266 + 0.92879) = -35.56 \text{ kJ/ky}$

$$0.75 = \frac{-37,56 + 79,29}{h_2 + 79,29} \rightarrow h_2 = -20,98 \text{ kJ/ky}$$

h3 = -192,18 KT/M = h4

 $q_v = h_1 - h_1 = -79,29 + 192,18 = 112,89 \times 31 \times 9$ $w_c = h_2 - h_1 = -20.98 + 79,29 = 58.31 \times 31 \times 9$ $w_m = w_c / \eta_T = 68.60 \times 31 \times 9$

$$\frac{\text{COP} = \frac{112,89}{68.60} = 1.646}{}$$

b) El sistemon e un vehiquodor que solo ve 2 focus, viendo uns de ella el ambiente. Por tout:

$$COP_{\text{max}} = \frac{TV}{70-TV} = \frac{18.5+273}{35-18.5} = 17.667$$

Tamboién re puede coludor cous un dispositivo que consume trabajo:

que consume trobajo:

$$\frac{dSu}{dZ} = \frac{w_{M} - i_{tot}}{w_{M}}$$

$$\frac{dSu}{dZ} = \frac{-\frac{4}{7}v}{Tv} + \frac{\frac{4}{7}c + \frac{4}{7}c}{Tv} = \frac{-112.89}{131+273} + \frac{171.20 + 10.29}{37+273} = \frac{-10.29 \text{ KJ/Ky}}{1707} = \frac{-12.89}{18.5+273} + \frac{171.20 + 10.29}{37+273} = \frac{-10.29 \text{ KJ/Ky}}{1707} = \frac{-10.29 \text{ KJ/Ky}}{1707}$$

c)

TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupo	E,	G
--------	-------	----	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

El dispositivo de la figura es una batería de Carnot. Consta de una bomba de calor que toma energía de la red eléctrica en períodos de bajo precio y bombea calor residual de un proceso (foco térmico a 80°C) a un depósito (foco térmico a 130°C). En momentos de precio alto de la electricidad la bomba de calor se para y funciona un ciclo de potencia que produce energía eléctrica a partir del calor almacenado en el depósito, cediendo calor al ambiente (foco térmico a 20°C). La temperatura ambiente se toma como coordenada del estado muerto.

La bomba de calor está recorrida por R245fa (tablas adjuntas) que llega como vapor saturado a 70°C al compresor y que éste lo comprime hasta 50 bar de forma adiabática con un rendimiento isentrópico del 85%. El R245fa cede calor al depósito en el *cooler*, saliendo del mismo a 100°C. Se desprecian las pérdidas de presión en los intercambiadores y conductos.

Se pide, para un aporte de calor de 50 kW al depósito:

- a) Trabajo consumido por la bomba de calor (W_{BC}).
- b) Máxima producción eléctrica que hipotéticamente alcanzaría el ciclo de potencia (W_{CP}) cuando retira del depósito la misma potencia térmica que se le aportó.
- c) Dibujar el diagrama de Sankey de exergías de la instalación encerrada en la línea discontinua, detallando los procesos en cada componente.

Tabla de saturación

p	T	Vf	Vg	$u_{\rm f}$	ug	h_f	hg	Sf	Sg
[bar]	[°C]	[m ³ /kg]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
1	14,9	0,0007323	0,16987	219,07	398,37	219,14	415,36	1,06811	1,74950
2	33,5	0,0007603	0,08791	243,57	411,39	243,72	428,98	1,15056	1,75497
4	55,1	0,0007987	0,04495	273,03	426,59	273,35	444,57	1,24341	1,76520
6	70,0	0,0008303	0,02956	294,08	436,97	294,59	454,99	1,30618	1,77361
8	80,5	0,0008558	0,02240	309,24	444,09	309,92	462,01	1,34973	1,77973
10	89,6	0,0008812	0,01772	322,81	450,16	323,69	467,88	1,38769	1,78502
15	107,7	0,0009436	0,01131	350,70	461,46	352,11	478,42	1,46290	1,79442
20	121,8	0,0010110	0,00798	373,78	469,14	375,80	485,09	1,52270	1,79939
25	133,5	0,0010918	0,00588	394,33	474,01	397,06	488,71	1,57442	1,79986
30	143,5	0,0012038	0,00436	413,78	475,71	417,39	488,80	1,62240	1,79392

Tabla de vapor sobrecalentado

	6 bar							
T	v	u	h	S				
[°C]	$[m^3/kg]$	[kJ/kg]	[kJ/kg]	[kJ/kg-K]				
30	75	0,03098	442,35	460,93				
35	80	0,03177	447,47	466,53				
40	85	0,03254	452,55	472,08				
45	90	0,03328	457,62	477,59				
50	95	0,03401	462,67	483,07				
55	100	0,03471	467,72	488,55				
60	105	0,03541	472,77	494,01				
65	110	0,03608	477,82	499,47				
70	115	0,03675	482,89	504,94				
75	120	0,03741	487,97	510,41				
80	125	0,03805	493,07	515,90				
85	130	0,03869	498,18	521,40				
90	135	0,03932	503,33	526,92				
95	140	0,03995	508,49	532,46				
100	145	0,04057	513,68	538,02				

		50 bar		
T	v	u	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
135	0,00102	389,54	394,66	1,56207
140	0,00105	398,17	403,45	1,58346
145	0,00109	407,11	412,57	1,60540
150	0,00114	416,45	422,13	1,62814
155	0,00119	426,37	432,34	1,65212
160	0,00127	437,20	443,57	1,67819
165	0,00140	449,63	456,64	1,70820
170	0,00164	464,91	473,12	1,74557
175	0,00204	482,29	492,48	1,78903
180	0,00246	497,35	509,64	1,82712
185	0,00280	509,24	523,26	1,85701
190	0,00309	519,26	534,70	1,88184
195	0,00333	528,21	544,86	1,90367
200	0,00355	536,50	554,22	1,92356
205	0,00374	544,33	563,04	1,94209

100°C
$$\frac{1}{\sqrt{6}}$$
 = 50 kW

$$\frac{1}{\sqrt{2}}$$

$$\frac$$

L- hz = 491,01 KJ/Ky

h3= 323,69+ 352,11-323,69 (100-89,06) = 340,87 KJ/M= h4

JO KW = in (hz - hz) - in = 0.333 Ky/1 WBC = 0.333 (491.01 - 454,99) = 11,9955 KW 12 12 KW

b) of totalmente reverible:

TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupo B,	C
--------	----------	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

El dispositivo de la figura es una batería de Carnot. Consta de una bomba de calor que toma energía de la red eléctrica en períodos de bajo precio y bombea calor residual de un proceso (foco térmico a 80°C) a un depósito (foco térmico a 130°C). En momentos de precio alto de la electricidad la bomba de calor se para y funciona un ciclo de potencia que produce energía eléctrica a partir del calor almacenado en el depósito, cediendo calor al ambiente (foco térmico a 20°C). La temperatura ambiente se toma como coordenada del estado muerto.

El ciclo de potencia está recorrido por R290 (ver tablas), dándose en la Tabla 1 algunos datos de los estados representativos del ciclo. La turbina es adiabática, con un rendimiento isentrópico del 90%. La bomba también es adiabática. El R290 abandona el condensador como líquido saturado.

Se pide, para una potencia térmica retirada del depósito de 50 kW:

- a) Potencia neta producida por el ciclo de potencia (W_{CP}).
- b) Mínimo consumo que hipotéticamente presentaría la bomba de calor (W_{BC}) para transferir al depósito la misma potencia térmica que retirará el ciclo de potencia.
- c) Dibujar el diagrama de Sankey de exergías de la instalación encerrada en la línea discontinua, tomada ésta como caja negra.

Tabla 1. Estados representativos del ciclo de potencia

	T	p	h
	[°C]	[bar]	[kJ/kg]
1	165	50	
2		10	
3	35	10	
4		10	
5		50	279
6		50	

Tabla de saturación

р	T	$v_{\rm f}$	Vg	$u_{\rm f}$	u_g	$h_{\rm f}$	hg	Sf	Sg
[bar]	[°C]	[m ³ /kg]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
1	-42,4	0,0017188	0,41877	99,17	483,60	99,34	525,48	0,60284	2,44947
2	-25,4	0,0017806	0,21929	137,90	501,71	138,25	545,57	0,76478	2,40912
5	1,7	0,0018999	0,09175	203,39	530,69	204,34	576,56	1,01566	2,36983
7	13,4	0,0019618	0,06600	233,03	542,87	234,41	589,07	1,12140	2,35918
10	26,9	0,0020450	0,04608	268,81	556,57	270,85	602,64	1,24360	2,34928
20	57,3	0,0023054	0,02161	355,60	583,17	360,21	626,38	1,52007	2,32563
25	68,3	0,0024495	0,01635	390,49	589,80	396,62	630,69	1,62491	2,31049
30	77,7	0,0026223	0,01266	423,08	592,62	430,94	630,59	1,72041	2,28941
40	93,3	0,0032834	0,00715	491,81	578,89	504,94	607,49	1,91833	2,19812
42	96,1	0,0037870	0,00575	515,97	562,99	531,88	587,15	1,98961	2,13933

Tabla de vapor sobrecalentado

		10 bar		
T	v	u	h	S
[°C]	$[m^3/kg]$	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
30	0,04700	562,04	609,03	2,37046
35	0,04845	570,88	619,33	2,40415
40	0,04985	579,67	629,52	2,43695
45	0,05121	588,44	639,65	2,46904
50	0,05253	597,23	649,76	2,50056
55	0,05382	606,04	659,86	2,53161
60	0,05509	614,90	669,99	2,56224
65	0,05633	623,82	680,15	2,59251
70	0,05756	632,80	690,36	2,62247
75	0,05876	641,85	700,62	2,65214
80	0,05996	650,98	710,93	2,68157
85	0,06113	660,18	721,32	2,71076
90	0,06230	669,47	731,77	2,73974
95	0,06345	678,85	742,30	2,76853
100	0,06459	688,31	752,90	2,79714

50 bar				
Т	v	u	h	S
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
30	0,00202	269,35	279,43	1,24513
40	0,00208	296,28	306,68	1,33356
50	0,00215	324,21	334,98	1,42250
60	0,00224	353,34	364,56	1,51264
70	0,00235	384,05	395,82	1,60507
80	0,00250	417,04	429,52	1,70187
90	0,00271	453,91	467,48	1,80783
100	0,00318	501,07	516,95	1,94207
110	0,00596	597,86	627,68	2,23462
120	0,00797	645,86	685,73	2,38440
130	0,00924	678,43	724,64	2,48217
140	0,01025	706,88	758,15	2,56431
150	0,01113	733,55	789,20	2,63858
160	0,01192	759,32	818,92	2,70800
170	0,01265	784,62	847,87	2,77407

$$0.9 = \frac{833,40 - h_2}{833,40 - 732,25} - h_2 = 742,36 \text{ KJ/Ky}$$

$$h_3 = 619,33 \text{ KJ/Ky}$$

$$h_4 = 270,85 \text{ KJ/Ky}$$

$$h_5 = 279 \text{ "}$$

$$h_2 + h_7 = h_6 + h_3 - h_6 = 402,03 \text{ KJ/Ky}$$

$$\omega_{T} = h_{1} - h_{2} = 833, 40 - 742,36 = 91,04 kJ/ky$$

$$\omega_{R} = 279 - 270,85 = 8,15 kJ/ky$$

$$50 = in(833,40 - 402,03) - in = 0,1159 ky/J$$

$$\dot{W} = \dot{m}(W_{T} - W_{B}) = 9,61 kW$$

b)
$$\omega P_{\text{max}} = \frac{T_D}{T_D - T_R} = \frac{130 + 273}{130 - 80} = 8.06$$

 $\frac{V_{\text{Rc}}}{R_{\text{C}}} = \frac{50}{8.06} = 6.20 \text{ kW}$

