KARNATAKA EDUCATION AUTHORITY (KEA)

DIPLOMA COMMON ENTRANCE TEST DCET 2015 ACTUAL QUESTION PAPER BTech (LATERAL ENTRY) COMPUTER SCIENCE ENGINEERING

Disclaimer: This content is not created or owned by Info Edge (India) Limited

Source Link: http://kea.kar.nic.in/diploma 2015/CS A4.pdf

TEST - 2015

		COURSE	DAY: SUNDAY			
	COMI	PUTER SCIENCE	TIME: 10.00 A.M. TO 1.00 P.M.			
MAXIMUM I	MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING			

MENTION YOUR				QUESTION BOOKLET DETAILS			
DIPLOMA	CET	' NUN	IBER	VERSION CODE	SERIAL NUMBER		
3			1,14	A-4	132336		

DOs:

- Check whether the Diploma CET No. has been entered and shaded in the respective circles on the OMR answer sheet. 1.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 09.50 a.m. 2.

200 MINUTES

- The Serial Number of this question booklet should be entered on the OMR answer sheet and the respective circles 3. should also be shaded completely.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- The 3rd Bell rings at 10.00 a.m., till then;

180

- Do not remove the paper seal of this question booklet.
- Do not look inside this question booklet.
- Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 180 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- After the 3rd Bell is rung at 10.00 a.m. remove the paper seal of this question booklet and check that this booklet does 2. not have any unprinted or torn or missing pages or items etc., if so, get it replaced by acomplete test booklet. Read each item and start answering on the OMR answer sheet.
- During the subsequent 180 minutes:
 - Read each question (item) carefully
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completed darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below: \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same 4.
- After the last Bells is rung at 1.00 p.m. stop marking on the OMR answer sheet and affix your left hand thumb impression 5. on the OMR answer sheet as per the instructions.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is. 6.
- After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry 7. home for self-evaluation.
- Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

180 MINUTES

PART - A

APPLIED SCIENCE

		NAME OF TA			1 N 1 N 1 1		
1,		he spectrum of scatte dent light are called	ered light the l	lines correspo	onding to wavelengt	th greater than	that of
	1.	Stokes lines		2.	Antistokes lines		
	3.	Fluorescent lines		4.	Incident lines		
2.	Res	olving power of telesco					
	1	132336 1 1.222	1.22λ	2	1.22 <i>d</i>	4. $\frac{\lambda}{1.00}$	
	1,,	1.22 <i>\lambda</i>	d	3,	λ	1.22 <i>d</i>	
3.	Тос	bserve diffraction patt	ern the obstac	le should be			
	1.	Very big		2.	Dark		
	3.	Absent		4.	Comparable with t	he wavelength o	f light
4.		en double refraction one a	ccurs, extraord		d ordinary rays will	have vibrations	in the
	1.	Parallel	2. Independ	lent 3.	Perpendicular	4. At 45°	
5	Max	well's electromagnetic	theory could	explain			
	1.	Photo electric effect		2,	Interference of ligh	nt	
	3.	Compton effect		4.	Black body radiation	on e e e	
6.	The	contrast between brig	tht and dark b	ands of an in	terference pattern i	s	
	1.	Low	2. High	3.	No change	4. Gradually de	creases
7.	A no	on-electrolyte solution	is				
	1.	Sugar solution		2.	Salt solution		

Space For Rough Work

Copper sulphate solution

Water

3.

8.	In a	alkalies the concentra	tion	of <i>OH</i> - ions is					
	1.	More than 10^{-7} g io	ns /	litre	2.	Less than 10	7 g ions	s / litre	
	3.	Equal to 10 ⁻⁷ g ions	/ lit	re	4.				
9									
9	An	example of derived un	it is						
	1.	Meter	2.	Second	3.	Netwon	4.	Candela	
10.	The	prefix used for 10 ⁻¹⁵ is	S						
	1.	Femto	2.	Pico	3.	Peta		Nano	
11		example of dimension	less (
	1.	Strain	2.	Efficiency	3.			Pi	
12.	A ma	ain scale is divided in tofcm.	ito h	alf mm and havir	ng a V				a least
	1.	0.05	2.	0.005	3.	0.02	4.	0.025	
10		second to ugo							
13.		rding to Newton's seco			Kma.				
	1.	0.1	2.	0	3.	10 .		_	
14	The second			× .					
14	1.	velocity of a freely fall			0				
	3.	At the beginning Exactly half way			2.	Just before it to			
	J.	Exactly Hall way			4.	After it touches		d ====================================	
15.	Wet o	clothes are dried in wa	ehir	ag machine by the	nron				
	1.0			The by the		Inertia of direct			
	3.	Inertia of motion			4.	Inertia of time			
l 6 .	A for	ce of 1.2 x 10 ⁻² N acts		3 seconds on a bo	dy of 1		est. Th	ne velocity gain	
	1.		2.	9 m/s reliceoloni					

17.	An e	example of vector quantity is					
	1.	Volume . 2. Energy	3.	Density	4.	Force	
18.	Han	dle of the door is fixed away from the end w	here	it is fixed with hi	nges to		
	1.	Increase the moment of force	2.	Decrease the m	oment	of force	
	3.	Keep the door firm	4.	Lock it easily			
19.	Res	ultant of two equal forces perpendicular to e	ach c	other acts at an a	ngle _	to first force	•
	1.	90° 2. 180°	3.	30°	4.	45°	
20.	The	resultant of two forces acting on a body can	not b	e			
	1.	Greater than first force					
	2.	Zero					
	3.	Lesser than first force					
	4.	Lesser than the difference between two fo	rces			2 1-1	
21.	Tow	ing of a boat by two forces is an illustration of	of				
	1.	Lami's theorem	2.	Law of triangle	of forc	es	
	3.	Law of parallelogram of forces	4.	Law of polygon	of force	s m	
22	Sho	ck absorber is an example for					
	1.	Compressive stress	2.	Tensile stress			
	3.	Shear stress	4.	Shear strain			
23.	Fact	for of safety of a structure is					
	1.	Within 2	2.	Equal to zero			
	3.	Vary between 5 and 10	4.	More than 10			
24.	In c	ase of liquids as the temperature increases,	the	viscosity of liquid	decre	ases due to	
	1.	Increase in the rate of diffusion of gases					
	2.	Decrease in the rate of diffusion of gases					
	3.	Increase in the potential energy of molec	ules				
	4.	Increase in the kinetic energy of molecu	les				

5. One Pascal is equal to	
---------------------------	--

The thrust on the bottom of the container having a base area of 20 m² filled with water to a height of 3 m is ____ (given $g = 10 \text{m/s}^2$)

1.
$$6 \times 10^5 \text{ N}$$

2.
$$6 \times 10^4 \text{ N}$$

3.
$$6 \times 10^3 \text{ N}$$

4.
$$6 \times 10^2 \text{ N}$$

- One calorie
- 2. One joule
- 3. One kilo-calorie 4. One kilojoule

$$\frac{1}{273}$$

1.
$$\frac{1}{273}$$
 2. $-\frac{1}{273}$ 3. 273

The distance travelled by the disturbance per unit time in a given direction is 31

- Wave amplitude 1.
- Wave velocity

3. Wave frequency Wavelength

The speed of the transverse wave along the stretched string is given by 32.

1.
$$V=\sqrt{\frac{T}{m}}$$
 2. $V=\sqrt{\frac{m}{T}}$ 3. $V=\sqrt{\frac{1}{T}}$ 4. $V=\frac{\sqrt{m}}{T}$

2.
$$V = \sqrt{\frac{m}{T}}$$

3.
$$V = \sqrt{\frac{1}{T}}$$

4.
$$V = \frac{\sqrt{m}}{T}$$

33.	Abs	orption co-efficient of sound wave is given by	у	Where E _m i	s energy absorbed by	y th				
	give	n medium E_{ow} is the energy absorbed by o	pen v	vindow.						
	1	$a = \frac{E_m}{E_{ow}} $ 2. $a = \frac{E_{ow}}{E_m}$	3.	$a = E_m \times E_{ow}$	4. $a = E_m + E_{ow}$					
34.	The	rich quality of a musical note depends on								
	1. Fundamental frequency		2.	Loudness						
	3.	Larger number of over tones	4.	Pitch						
35.	Wax	sing and waning are the characteristics of								
	1.	Periodic motion 2. Oscillations	3.	Beats	4. Frequency					
36.	Velo	ocity of sound in air varies								
	1.	Inversely as the square root of the density	y of t	he medium						
	2.	Directly as the square root of the density	of th	e medium						
	3.	Directly as the density of medium								
	4.	Inversely as the density of medium								
37.	The	The vibrations of a body of decreasing amplitude are called								
	1.	Undamped free vibrations	2.	Damped free vibr	ations					
	3.	Resonant vibrations	4.	Forced vibrations						
38.	Ano	ther name for field emission is								
00.	1.	Cold cathode emission	2.	Thermionic emis	ssion					
	3.	Photoelectric emission	2. 4.							
	Ų.			Secondary emiss						
39.	In o	age of photoslostric emission, the mate of ex-		entretten en vel feri						
39		ase of photoelectric emission, the rate of en	missi	on of electron is						
	1. 2.	Independent of frequency of radiation								
		Dependent on frequency of radiation	4.							
	3.	Dependent on wavelength of incident rad								
	4.	Independent of intensity of radiation								

3.

Spontaneous

4. Very slow

Emission of radiation from radioactive element is

2. Fast

40.

1.

Slow

PART - B

41.
$$\int_{-1}^{1} (2x+1)(5-x) dx$$
 is

10

- 2. $\frac{26}{3}$ 3. $\frac{-26}{3}$

42.
$$\int_{0}^{\pi/4} \tan^{2}x \sec^{2}x \ dx$$
 is

- 3. $\frac{1}{2}$ 4. $\frac{-1}{3}$ 6. (2k+1) ment $\begin{bmatrix} 7 & 4-1 \\ 7 & k-1 \end{bmatrix}$ 6. $\begin{bmatrix} -1 & 5 \\ 1 & 2 \end{bmatrix}$ 7. (2k+1) ment $\begin{bmatrix} 7 & 4-1 \\ 1 & k-1 \end{bmatrix}$ 7. (2k+1) ment $\begin{bmatrix} 7 & 4-1 \\ 1 & k-1 \end{bmatrix}$

43. The RMS value of
$$y^2 = x^2 - 2x$$
 over the interval [1, 3] is

1. $\sqrt{\frac{5}{3}}$

2. $\sqrt{\frac{2}{3}}$

3. $\frac{1}{3}$

4. $\frac{1}{\sqrt{3}}$

44. The differential equation of
$$y^3 = 5 ax$$
 by eliminating arbitrary constant a is

- 1. $\frac{dy}{dx} \frac{y}{3x} = 0$
- $2. \quad \frac{dy}{dx} + \frac{y}{3x} = 0$ $4. \quad \frac{dy}{dx} \frac{5y}{3x} = 0$
- 3. $\frac{dy}{dr} \frac{3y}{r} = 0$

45. The integrating factor of the differential equation
$$x \frac{dy}{dx} - (1-x)y = x^3$$
 is

- 3. $e^{\frac{x^2-2x}{2}}$ 4. $e^{\frac{2x-x^2}{2}}$

- 46. If $\begin{vmatrix} 2x+1 & -5x \\ 1 & 3 \end{vmatrix} = 0$, then x is

- 2. $\frac{-3}{11}$ 3. $\frac{11}{3}$
- For the simultaneous linear equations 2x+y+z=1, x+y+2z=0 and 3x+2y-z=2, the value of Δx is
 - 3 1.

- 2. -11

- 48. If $A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 7 \\ -4 & 1 \end{bmatrix}$ then $(A+B)^T$ is
 - 1. $\begin{bmatrix} 1 & 1 \\ 10 & 5 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 10 \\ 1 & 5 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & 10 \\ -1 & 5 \end{bmatrix}$ 4. $\begin{bmatrix} -1 & -1 \\ 10 & 5 \end{bmatrix}$

- 49. If $A = \begin{bmatrix} 1 & -3 \\ -5 & 7 \end{bmatrix}$, then adj A is
 - 1. $\begin{bmatrix} 1 & -5 \\ -3 & 7 \end{bmatrix}$ 2. $\begin{bmatrix} 7 & -5 \\ -3 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} -1 & -5 \\ -3 & -7 \end{bmatrix}$ 4. $\begin{bmatrix} 7 & 3 \\ 5 & 1 \end{bmatrix}$

- The cofactor of O in $A = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 6 & 0 \\ 2 & 7 & -4 \end{bmatrix}$ is
 - -25

- 51. If $(\sqrt{3} + 1)^3 = 10 + 6\sqrt{3}$, then the value of $(\sqrt{3} + 1)^3 (\sqrt{3} 1)^3$ is

- $12\sqrt{3}$ 2. 0 3. 20 4. $20+\sqrt{3}$
- The middle term in the expansion of $\left(x^3 + \frac{1}{x^2}\right)^6$
- 10 x^3 2. 20 x^3 3. $\frac{20}{x^3}$ 4. 20
- If $\vec{a} = i + 3j 2k$ and $\vec{b} = 2i j + 3k$, then $\vec{a} \cdot \vec{b}$ is
- 2. 11

- The work done by the force 2i j + 6k when it displaces the particle from (5, 3, -2) to (7, -4, 8) is
 - 1. 72

- The sine of the angle between the vectors $\vec{a} = i + j + k$ and $\vec{b} = 2i 3j 4k$ is
- 2. $\sqrt{\frac{87}{62}}$ 3. $\sqrt{\frac{-5}{\sqrt{87}}}$ 4. $\sqrt{\frac{10}{63}}$
- 56. If $\cos \theta = \frac{5}{13}$ and θ is acute angle, then the value of $3\cos \theta 2\sin \theta$ is
 - 1. $\frac{9}{13}$ 3. $\frac{-9}{13}$

- 57. If $x \sin 30^\circ Sec 30^\circ \tan 30^\circ = \tan^2 60^\circ$, then the value of x is
 - 1. $\frac{22}{3}$ 2. $\frac{-22}{3}$ 3. $\frac{11}{6}$ 4. $\frac{3}{22}$

- The value of $sin 225^{\circ} + cos(-135^{\circ})$ is

- 3. $\frac{1}{\sqrt{2}}$ 4. $\frac{-1}{\sqrt{2}}$
- - sin A
- 2. -sin A 3. 1

- The simplified value of $\frac{\sin 2A}{1+\cos 2A}$ is
 - 2tan A
- 2. sin A

- 61. If $tan A = \frac{3}{4}$ and $tan B = \frac{1}{7}$, then the value of (A+B) is

- The value of $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$ is
 - 0 1.

- 4. $\sin 50^{\circ}$

- The value of $\cos^{-1} \left[\tan 135^{\circ} \right]$ is
 - 0°

- The centroid of the triangle formed by the vertices (-10, 6), (2, -2) and (2, 5) is
 - (-2, 3)
- 2. (2, 3)
- 3. $\left(-3, \frac{9}{2}\right)^{\frac{6}{2}} = \frac{4}{2} \left(-6, 9\right)$
- A point (-4, 3) divides the line AB externally in the ratio of 1:2. Given A(-1, -3) then the point B
 - 1. (6, -3)
- 2. (-10, 15)
- 3.
- The area of triangle formed by the point, (3, -1), (2, 0) and (K, 4) is 10 Sq. Units, then the value of K
 - 1. 12

2. 7

- 3. -22
- The slope of the line joining the points (-2, 3) and (4, -6) is $\frac{4}{4}$

- 1. $\frac{3}{2}$ 2. $\frac{-3}{2}$ 3. $\frac{2}{3}$ 4. $\frac{-2}{3}$
- The equation of straight line passing through (4, -1) and having equal intercepts is 68.
 - x + y 1 = 01.
- $2. \quad x+y-5=0$

- The equation of the line passing through (5, -2) and parallel to the line 3x+2y+7=0 is 69.
 - 3x + 2y 11 = 01.

E (K FO 2: 1. 8x - 2y + 11 = 0 o ovinsurano briocos anti-

- $3x \rightarrow 2y \rightarrow 19 \Rightarrow 0$ 3.
- $x^{268} = x^{4} + x^{16} = 0 \qquad x = x^{16} = 0$

- 70. The value of $\lim_{x \to -2} \frac{x+2}{x^5+32}$ is
 - 1. $\frac{1}{80}$ 2. 80 3. $\frac{-1}{80}$

- 71. The value of $\lim_{x \to 0} \frac{lt}{\sin 2x + 3x^2}$ is
- 1. $\frac{-1}{5}$ 2. 0 3. $\frac{1}{2}$ 4. $-\frac{1}{2}$

- 72. If $y = e^x \log x$, then $\frac{dy}{dx}$ at x = 1 is
- 1. e^x 2. e 3. 1 4. 0

- 73. If $y = tan^{-1} \sqrt{\frac{1 + \cos x}{1 \cos x}}$, then $\frac{dy}{dx}$ is

- 1. 2 2. -2 3. $\frac{-1}{2}$ 4. $\frac{1}{2}$
- 74. If $\sqrt{x^3} + \sqrt{y^3} = \sqrt{a^3}$, then $\frac{dy}{dx}$ is
 - 1. $\sqrt{\frac{x}{y}}$ 2. $-\sqrt{\frac{x}{y}}$ 3. $\sqrt{\frac{y}{x}}$
- 4. $-\sqrt{y}$

- 75. The second derivative of y = log(sec x tan x) is
 - 1. $-\sec x \tan x$ 2. $\sec x \tan x$
- -sec x
- 4. sec x

- Water flows into the cylindrical tank of radius 7mt at the rate of 294 cubic mt/sec, then the rate of height of water rising in the tank is
 - $\frac{\pi}{6}$ mt / sec 1.
- 2. $\frac{6}{\pi}$ mt / sec
- 3.
- 14406 mt/sec 4. $\frac{21}{\pi}$ mt/sec
- The maximum value of the function $y = x + \frac{1}{x}$ is
 - 1. 0

2. 2

- 3. 1 4. -2
- The value of $\int tan^2x \ dx$ is
- $tan \ x x + c$ 2. $x tan \ x + c$ 3. $\left(sec^2 x\right)^2 + c$ 4. $-cot \ x x + c$
- The value of $\int \frac{\cos x}{1+\sin x} dx$ is
 - $log(sec^2x + sec x tan x) + c$ 2. log(sin x) + c

log(1+sin x)+c

- 4. $\frac{(1+\sin x)^2}{(1+\sin x)^2} + c$
- $\int \sin^2 x \sin 2x \, dx \text{ is}$ 80.
 - 1. $\frac{\sin^2 x}{2} + c$ 2. $\frac{\sin^4 x}{2} + c$
- 3. $\sin^2 x + c \qquad 4. \quad \frac{-\sin^4 x}{2} + c$

COMPUTER SCIENCE

81	Which of the following	ng is not true in case of	a friend f	unction?		
	1) A friend function	n can be invoked withou	t the use	of a particular	object	
	2) A friend function	n can be invoked without	t the use	of dot operator		
	3) Member function	ns of one class can become	me friend	functions of a	nother class	
	4) A friend function	n can access data memb	ers direc	tly.		
82.	In case of operator of	verloading				
	1) you can have de	fault arguments	2)	you can overl	oad::operator	
	3) you can overload	l << operator	4)	you can overl	oad ?: operator	
83.	In case of inheritance	ce in C++, which of the f	ollowing	is not possible?	?	
	1) Single inheritar	nce	2)	Multiple inh	eritance	
	3) Hierarchical in	neritance	4)	Mega inherit	tance	
84.	In C++ which of the	following is not a standa	ard iostre	am object <mark>defi</mark> r	ned in < iostream h >?	
	1) C in	2) C out	3)	C print	4) C err	
85.	In C++ which of the	following is an ios forma	it functio	n?		
	1) Set f	2) get f	3)	Unget f	4) breadth	
86.	In C++, consider ios	; in. This allows to open	the file	for		
	1) Writing	2) Reading	3)	Appending	4) Binary input	
87.	In C++, exception ha	andling mechanism is de	esigned to	n process	exceptions	
•	Only synchronou	_	2)	Only asynchr	•	
		ous & synchronous	4)	Non synchron		
	-,		• 1			

88.	In	C++, there can be	number th	row stater	nents in a ti	ry block of exceptions	
	1)	Only one	2) Two	3)	Five	4) Any	
89.	In w	C++, the open () furiting same stream obj	nction can be use	ed to oper	1	number of files for re	eading /
	1)	Only one	2) Atmost two	3)	Multiple	4) Atmost ten	
90.	A	process can be defined	as				
	1)	A file in action		2)	A program	in execution	
	3)	A program in a file		4)	A file in ha		
91.	Th	e following sequence o	f process states is	correct			
	1)	New - Ready - Runni	ng - Ready - Termir	nated			
	2)	New - Ready - Waitin	g - Terminated				
	3)	New - Ready - Waitin	g - Running - Term	ninated			
	4)	New - Ready - Runni					
					14-		
92.	Sh	ort term scheduler is a	also termed as				
	1)	CPU Scheduler		2)	Job schedu	iler in the section	
	3)	Medium term Schedu	ıler	4)	Swapper		
				all mills			
93.	Αp	process is allowed to ru	n for a one time qu	ıantum uı	nit. This hap	opens in	
	1)	Pre emptive scheduli		2)	RR Schedu		
	3)	FIFO Scheduling		4)	SJF Schedu	aling	
94.	The	number of process co	mpleted per unit ti	ime is call	ed		
	1)	CPU utilization		2)	Response T	ime all marines must a	
	3)	Turnaround time		4)	Throughput	In mulmanumi met	

95	In	which of the following algorithms used in future for the longest period		faul	t, replacing the page which will not l	эe
	1)	FIFO algorithm		2)	Optimal page replacement algorithm	
	3)	LRU algorithm		4)	Second chance algorithm	
96.	A	diagram showing process state transi	tion is ca	lled		
	1)	State queuing Diagram		2)	Process Diagram	
	3)	Queuing Diagram		4)	State Diagram	
97 _%	Dis	spatcher does not perform which of th		g fur	nctions?	
	1)	Context switching				
	2)	Switch between supervisor mode an	d user mo	ode		
	3)	Provide for a jump to a particular us		n		
	4)	Provide for memory mapping				
98.	Scl	heduling criteria does not support the	following			
	1)	Increase in throughput		2)	Decrease in turnaround time	
	3)	Decrease in response time		4)	Increase in waiting time	
99.		ount of physical main memory that i	s availabl	e for	and stack requirements can exceed the it. This concept is	
	1)	Virtual memory		2)	Paged segmentation	
	3)	Segmentation militarise like		4)	Stack pointer	
100.		is not a function of physical :	layer			
	1)	Representations		2)	Framing I RESULTED TO	
	3)	Synchronization of bits		4)	Fine configuration	

10	1. T	he original TCP/IP pr	otocol suite defined wa	as hav	ingla	vers			
) Four	2) Six	3			Five		
102	2	consists of	two conductors each w	vith it:	s own plastic insul	ator			
		Twisted pair	2) Coaxial cable		Fiber optic cab		Optic	cable	
103	3. A	random amount of	time each station wa	its be					
	1)	Wait time		2)	Back - off time				
	3)	•		4)		е			
104	. Cs	SMA stands for							
	1)	Carrier sense multi	ple access	2)	Carriage sense	multii	nle acc	900	
	3)	Carrier state multip	le access	4)	Context switch				
							no dece		
105	Α (connecting device whi	ch operates at the phy	sical	layer				
		Bridge	2) Gateway	3)	Passive hub	4)	Active		
106									
106.	mo	dels	as a connector device	betw	veen two internet	works	that ı	se diffe	rent
	1)	Gateway	2) Passive hub	3)	Active hub	4)	Repeat	er E	
107.	Ele	ectromagnetic waves ves	ranging in the frequency	uency	between	a	re call	ed infra	ared
	1)	300 GHz to 400 THz		2)	1 GHz to 300 GHz	,			
	3)	3 KHz to 1 GHz		4)	1 MHz to 300 MHz				
108.	RG	- 58 coaxial cable is u	sed to transmit data in						
	1)	Thick ethernet		2)	Thin ethernet				
	3)	Cable TV		4)	Telephones				

109.	ado	dress				net		n it knows only its physical
	1)	ARP		RARP		3)	ICMP	4) IGMP
110.								
		Database administra				2)	Database d	
	3)	Software engineer				4)	System ana	lyste me are real met a liqu
	771			imi le				
111.	The			alled				
	1)	Database State				2)	Database S	chema
	3)	Database Snapshot				4)	Metadata	
112.	ER	diagram emphasize o	n repr	esenting	g the			
	1)	Snapshot				2)	Instance	
	3)	Attribute				4)	Schema	
		for the state of						
113.	The	e term re	presen	its row	in SQL			
	1)	Tuple				2)	Relation	
	3)	Schema				4)	Attribute	
114.	The	alternate name given	to a	relation	is called			
		Alias				2)	View	
	3)	Attribute				4)	Alteration	
	·							
115.	Jav	a contains the following	ng data	atype				
	1)	Struct				2)	Union	
	3)					4)	Enum	
	<i>U</i>	Tioat				7)	Enum	

116.	O	bjects in java a	re created	using		operate	or Warrant	
		New		2) Insta		3)		4) Public
117.	In	hierarchical in	nheritance	there wil	l be			
	1)	Only one sup	erclass					
	2)	One supercla	ss & One s	subclass				
	3)	One superclas	ss & many	subclass	es			
	4)	Only one subo			Y			
118.	Th	e mechanism o	f deriving		ss from a	an old	one is called	
	1)	Interfacing				2)	Inheritano	ce famipia if
	3)	Polymorphism				4)	Overriding	memerican R
119.	The	keyword supe	r in java is	s used to	invoke th	ne met	hod of the	igg In 12th the
	1)	Subclass				2)	Object	will mind usb in prop
;	3)	Superclass				4)	Constructo	Flata
						•,	Constitucto	extler sering //
120. I	ln X	KML a	is a so	et of struc	tural rul	les call	ed declaratio	ns
1	1)	XML	2)	HTML		3)	DTD	4) XHTML
101 7								
121. T	n) alle	CML entities (ed	defined re entities	eferenced	anywh	ere in	the conten	at of an XML document are
1) (General	2)	Public		3)	Private	4) Parameter
122. A	n X	ML schema is	an XML do	cument,	so it can	be par	sed with an	parser.
		KML	2)	XHTML		3)	HTML	4) Namespace

123.	IN	XML	is always p	hysically i	n the file t	that i	represents the doc	ument	
	1)	Document en	ntity			2)	Weak entity		
	3)	Binary entity	y			4).	Entity relation		
124.	In	PHP the proce	ssor has two	o modes of	operation	copy	mode and	mode.	
	1)	Dynamic				2)			
	3)	Interpret				4)	Static		
125.	In	PHP fi	unction expl	odes a str	ing into su	ıbstri	ings and returns t		
	1)	Explode				2)	Explore		
	3)	Implode				4)	Explicit		
126.	In	PHP thekeys of the g		ion takes		as it	ts parameter and	returns an arra	
	1)	arrayk				2)	array value		
	3)	array-values				4)	array-keys		
.05		D					70 T 10 V 2		
127.	In	HP a variat	nction	tested to	determin	e wh	nether it current	ly has a value v	vith the
	1)	Is Value				2)	Is True		
	3)	Is Set				4)	Un Set		
128.	Ch	aracters in PH	IP are	bytes					
	1)	Single				2)	Double		
	3)	Four				4)	Eight		

129.	ln	PHP implicit conversions are called	NO STEPPONE STREET HOLD OF					
	1)	Recursion	2	2)	Exclusion			
	3)	Explosion Telefille - platfor of	4	F)	Coercions			
130.	_	Computer combines the n	nost desi	ra	ble features of	both digital and an	alog	
		computers						
	1)	Analog	2	2)	Hybrid			
	3)	Digital	4	+)	Analog digital			
131.	Th is	e characteristic feature which specifi	es the m	eas	surement of the	performance of comp	uter	
	1)	Accuracy	2	2)	Versatility			
	3)	Reliability	4	-)	Diligence			
		about it consisting a						
132.	Wh	tich of the following memory is placed v	with in CF	U		IA.		
	1)	Cache Memory	_ 2	()	RAM			
	3)	ROM	ur 4)	PROM			
133.	The	e magnetic disk address comprises of						
	1)	Sector number and track number						
	2)	Track number and surface number						
	3)	Sector number and surface number						
	4)	Sector number, track number and su	rface nun	nbe	r mungues la na			
134.	The	e most commonly used output device fo	or printing	g C	AD and CAM appl	ications is		
	1)	Plotter	2)	Drum printer			
	3)	Laser Printer	4)	Daisy wheel prin			

135.	Wh	ich of these is associa	tive	law								
	1)	A+B=B+A				2)	A + (B+C) = (A+B)	+C				
	3)	AB+BC = AC+BC				4)	A(B+C) = AB+BC					
136.	Acc	cording to DeMorgan's	theo	rem A+B	is							
	1)		2)	$\overline{A} + \overline{B}$		3)	ĀB	4)	ĀB			
137.	In	which of these gates or	utpu	t is true	when any	one o	f the input is true					
	1)	OR MARIE MERCALL	2)	AND		3)	NOT	4)	NOR			
100	¥¥.71			Versit								
138.		ich one of these count			ecycle in te							
	1)	Mod-10	2)	BCD		3)	Ripple counter	4)	Decade			
139.	The	sum output of half ac	lder	is identic	al to	_ gat	e.					
	1)	OR ·	2)	Exclusi	ve OR							
	3)	NOR	4)	Exclusi	ve NOR							
140.	-	is a very smal	l cor	nputer th	nat can be	held	in palm					
	1)	PDA	2)	Laptop		3)	Minicomputer		4) PC		*	
141.		is the brain of	com	puter sys	stem							
	1)	IU	2)	OU		3)	CPU	4)	MU			
142.	102	4 bytes is referred to a	ıs	binini)	ytes							
	1)	Kilo	2)	Mega	-	3)	Giga	4)	Tera	1		

143.		Memory can be	e erased by exposing	it to the	e ultraviolet ligi	nt		
	1)	EEPROM	2) EPROM	3)	PROM	4)	ROM	
144.	DV	D stands for						
	1)	Digital versatile disk		2)				
	3)	Digital virtual disk		4)	Decoded virtua	al disk		
145.	Wh	aich of the following is a	an example for prima	ary mem	ory			
	1)	Magnetic tape		2)	Magnetic disk			
	3)			4)	Semiconducto	r memo	ory	
146.	FP	stands for						
	1)	Frames per inch		2)	Film per inch			
	3)	Faults per inch		4)	Figure per inc	h		
147.	Мо	use, trackball and joys	tick are examples of					
	1)	Scanning devices		2)	Pointing device	es		
	3)	Storing devices		4)	Multimedia de	evices		
148.	_	terminal is re	ferred to as non pro	gramma	able terminal			
	1)	Smart		2)	Intelligent			
	3)	Dumb		4)	Interactive			
149.	The	e smallest individual do	ot on computer scre	en is	who of missessed			
		Pixel Pixel		2)	Character			
	3)	Font		4)	Screen point			
150.	- -	is a predefined,	standard C function	n for inp	ut data through	n keyboa		
	1)	Fscan ()	2) Print ()	3)	Scanf ()	4)	Printf ()	

151.	_	III C	takes unie	Tettr v	aiues a	t dinerent	LIIII	es during executi	.011		
	1)	Constants		2) V	ariable	S	3)	Keywords	4)	Functions	
152.	In	C the proces	ss of giving	initial	values	to variabl	es is	called			
	1)	Execution		,	inking		*			Initialization	
153.	In	C # define is	s a		į.						
	1)	Headers file	2				2)	String function			
	3)	Preprocesso	or directive				4)	Library function			
154.	Th	e do while	is an	c	ontrolle	ed loop in	C laı	nguage			
	1)	Entry		2) E	xit	5	3)	Simple	4)	Multiple	
155.	A	variable decl	ared as		ins			retains its value			
	1)	Auto		2) S	tatic		3)	Extern		Register	
156.	In	C the proce	ess of calli	ng a	functio	n using	poin	ters to pass the	e ado	lress of varia	ble is
	1)	Call by valu	.e			2		Call by reference			
	3)	Call by oper	ators			4	1)	Call by variables			
157.	In	C s	sets the pos	ition t	o the b	eginning o	of the	e file			
	1)	fclose ()			wind ()			Close		End	
158.	In	of the alloca	ited space					bytes and retur			
	1)	malloc ()			alloc ()			free		realloc ()	

						and Y	TY 1_			
		Float			array		int		double	
166.		is an	example of	noi	n primitive data st	ructu	ire ac all of day			
							(4)			
	4)	Value of las	st element							
	3)	Last elemen	nt address							
	2)	Value of fir	st element o	of a						
		The address								
165.	If p	otr is a pointe	er to an arra	ay tl	nen printf ("% d", p	tr) gi	ves			
	1)	Strcat ()		2)	Stremp()	3)	Strcpy()	4)	Strlen ()	
164.	In	C <u>u =</u>	function ret	turn	s the number of c	harad	cters in a string			
	1)	argv		2)	argb	3)	argc	4)	argp	
163.	The	e variable		give	s the number of a	rgum	ents on the comm	and	line	
	1)	Structure		2)	Union	3)				
162.	In				use the sam					
	1)	Recursion	9. – 1. –/T1	2)	Repeating	3)	Chaining	4)	Rewinding	
161.	In (C when a cal	lled function	n in	turn calls another	func	etion a process of		occurs	
	,					6			i mining d	
	• -	float			int					
160.	Тут	oe conversior	n from float	to _	causes tru	ıncat	ion of the fraction	al pa	rt in C	
	1)	Continue		4)	break	3)	greeh	7)	geten ()	
159.			_	_						
150	The	following st	atement iur	mne	the control out of	loon				

167.	Ι'n	stack, deletion	on operation	n is	done from	of	f stack			
	1)	Bottom	P	2)	Middle	- 3)	Centre	4)	Тор	
168.					ast element in _					
	1)	Circular qu	eue	2)	Dequeue	3)	Priority qu	eue 4)	Queue	
169.	ite		list with		ı data item con					
	1)	Linked list			Array					
170.	A s	set of disjoint	trees is ca	lled						
	1)	Ternary tre	e ·	2)	Forest	3)	Group	4)	Siblings	
171.	In	t	raversal of	bina	ary tree root nod	e is vis	ited first			
	1)	Post order		2)	In order	3)	Pre order	4)	First order	
172.	Pos	stfix notation	of a * b - c/	'd is						
	1)	abcd * -/		2)	ab * cd -/	3)	ab * cd/-	4)	abc - *d/	
173.	Ar	node with deg	ree zero is	kno	wn as	node			m = mm29 = 02	
			100 2010 18							
	1)	\$ibling		2)	Root	3)	Leaf	4)	First	
l74.		point	er points to	the	e next node in th	e doub	ly linked lis	t ery e		
	1)	Left III nh		2)	Successor	3)	Right	4)	Front IIII	
					Creas For D	on wh TVI	1-			

175.	Wh	nich of the following is a	not a feature of object	orient	ted programming	g
	1)	Data Abstraction		2)	Data Segment	ation
	3)	Data Hiding		4)	Polymorphism	
176.	The	e built in stream class	definitions for >>ope	rator a	re available in	
	1)	< iostream.h >		2)	< conio.h>	
	3)	< iomanip.h >		4)	< math.h >	
177.	Th	e scope resolution oper	ator permits you to a	.ccess 1	the value of a glo	obal variable which is
	1)	Declared in some other	er program			
	2)	Declared outside the	function main ()			
	3)	Declared in main fund	ction of other program	n		
	4)	Not declared				
178.	Fu	nction prototyping allo	ws you to put the defi	nition	of the function	in the program
	1)	Only before the main	function	2)	Anywhere	
	3)	At the end of main		4)	Only after its	usage
179.	Th	e missing arguments C++	in a function call	are sı	applied as	argument values in
	1)	Default	2) Static	3)	Constant	4) reference
180.	Wł	nich of the following is	not true in case of a c	constru	ector function?	
	1)	It has no return type				
	2)	Constructor function	name is same as cla	ss nan	ne	
	3)	Constructor is declare	ed in public section of	f class		
	4)	Constructor function	can be called like ord	linary :	function	
			Space For R	lough	Work	

	ı	
6	ť	
Ш	ì	
U.)	
2 1	7	

1				
	iq.			
i may ayar				
		W.		

Page 24

DATE: 10-JUL-15

GOVERNMENT OF KARNATAKA KARNATAKA EXAMINATIONS AUTHORITY DIPLOMA LATERAL ENTRY (DCET-2015)

Answer Keys

SUBJECT: CS Qnver

A4

Qnno	Ans										
1	1	31	2	61	3	91	4	121	1	151	2
2	1	32	1	62	1	92	1	122	1	152	4
3	4	33	1	63	2	93	2	123	1	153	3
4	3	34	3	64	1	94	4	124	3	154	2
5	2	35	3	65	4	95	2	125	1	155	2
6	2	36	1	66	3	96	4	126	4	156	2
7	1	37	2	67	2	97	4	127	3	157	2
8	1	38	1	68	3	98	4	128	1	158	1
9	3	39	1	69	1	99	1	129	4	159	2
10	1	40	3	70	1	100	2	130	2	160	2
11	4	41	2	71	4	101	1	131	3	161	3
12	2	42	1	72	2	102	1	132	1	162	2
13	4	43	4	73	3	103	2	133	4	163	3
14	2	44	1	74	2	104	1	134	1	164	4
15	2	45	1	75	1	105	4	135	2	165	1
16	1	46	2	76	2	106	1	136	3	166	2
17	4	47	4	77	4	107	1	137	1	167	4
18	1	48	1	78	1	108	2	138	3	168	1
19	4	49	4	79	3	109	2	139	2	169	1
20	4	50	1	80	2	110	1	140	1	170	2
21	3	51	3	81	4	111	2	141	3	171	3
22	1	52	2	82	3	112	4	142	1	172	3
23	3	53	4	83	4	113	1	143	2	173	3
24	4	54	4	84	3	114	1	144	1	174	3
25	1	55	1	85	1	115	3	145	4	175	2
26	1	56	3	86	2	116	1	146	1	176	1
27	1	57	1	87	G	117	3	147	2	177	2
28	3	58	2	88	G	118	2	148	3	178	2
29	4	59	1	89	3	119	3	149	1	179	1
30	1	60	4	90	2	120	3	150	3	180	4