	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Sommer 2010 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1	9.5	Aufgabe 6	15
Aufgabe 2	5.5	Aufgabe 7	15
Aufgabe 3	12.5	Aufgabe 8	10
Aufgabe 4	16.5	Aufgabe 9	10
Aufgabe 5	6		
Total OC I	50	Total OC II	50
Note OC I	6	Note OC II	6
Note OC		6	

1. Aufgabe (9.5 Pkt)

1. August (0.01 K)	
a) 1 Pkt. Zeichnen Sie die Strukturformel von: (S,E)-4-(1-Methylbut-2-enyl)chinolin-6-carbaldehyd	
o ·	
H' Y Y	
b) 1 Pkt. Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von: (4S,5R,Z)-5-Cyclopentyl-4-methylnona-6,8-dien-2-ynnitril	
CN	
m H	
VAS DU December 0's d'a fabre de Matrida es es esta HIDAO	
c) 4.5 Pkt. Benennen Sie die folgenden Verbindungen nach IUPAC (wo erforderlich inkl. stereochemische Deskriptoren!)	
OH COOH	
Br // //////COOH	
но	
но (E)-9-(3,3-Dimethylbut-1- (2 <i>R</i> ,5 <i>R</i> , <i>Z</i>)-3-Brom-5- (1 <i>S</i> ,3 <i>S</i>)-4,7-	
enyl)-9-ethylfluoren ethyl-5-methylhex-3- Dimethylcyclohepta-4,6-dien- en-1,2,6-triol 1,3-dicarbonsäure	
d) 3 Pkt Zu welcher Substanzklasse gehören die folgenden Verbindungen?	
OCH ₃ N	
Ö	
CarbonsäureanhydrideAcetaleAmidine	
Punkte Aufgabe 1	

2. Aufgabe (5 1/2 Pkt)

Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen ein: a) 2 Pkt. Η b) 1 1/2 Pkt. Zeichnen Sie mindestens je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Atomen an. Bindungsgeometrie Hybridisierung sp³ tetraedrisch 1 sp³ trigonal pyramidal 2 $sp^2 + p$ gewinkelt 3 sp + 2 p linear Punkte Aufgabe 2

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgenden Wenn ja, um welche Art von Isomerie			
HO OH OH HO	HO OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere X identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
CI	CI CI	Nicht Isomere Konstitutionsisomere X Diastereoisomere Enantiomere identisch	
	ООН	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
CI	CI	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?		
Welches ist die Beziehung zwischen a und d?		
chiral achiral X X X X X Moleküle a und d sind Diastereoisomere identisch X		
c) 5 Pkt. Die Fischerprojektion eines Altritols ist unten angegeben.		
c) 5 Pkt. Die Pischerprojektion eines Attitiois ist unternangegeben.		
2) OH H HOH HOH HOH HOH HOH HOH HOH		
Altritol Perspektivformel Enantiomeres	ļ	
c1) 1/2 Pkt. Handelt es sich um D- oder L- Altritol?		
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).		
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zum dargestellten Altritol enantiomeren Moleküls (Projektion ergänzen).		
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 in des abgebildeten Altritols mit CIP Deskriptoren. C2: R X S C4: R X S 		
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 10 (4 Enantiomerenpaare und 2 Mesoformen)		
Übertrag Aufgabe 3		

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

b) 5 Pkt.

Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen.

Wichtgste Effekte:

- 1. Elektronegativität des direkt an das Proton gebunden Atoms.
- 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms.
- 3. Hybridisierung des durch Deprotonierung entstehenden lone pairs
- 4. σ -Akzeptor = -I Effekt.
- 5. π -Akzeptor Effekt (-M).
- 6. π -Donor Effekt (+M).
- 7. Solvatation (Wechselwirkung mit dem Lösungsmittel).
- 8. Wasserstoffbrücken.

Übertrag Aufgabe 4

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Die Aminogruppe im linken Ring ist nicht konjugiert und damit am stärksten basich.

Begründung

Durch Protonierung der exocyclischen Doppelbindung entsteht ein aromatisches Tropylium-System $(6-\pi-Elektronen, 7-Zentren)$

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Durch Deprotonierung am Fünfring entsteht ein aromatisches System Durch Deprotonierung am Siebenring würde ein ungünstiges nicht-aromatisches $8-\pi$ -Elektronen System gebildet.

Begründung:

Protonen in α -Stellung zu Ketogruppen sind zwar im Allgemeinen saurer als solche in α -Stelllung zu Estergruppen. Hier kann aber nicht α zur Ketogruppe deprotoniert werden, da an Brückenköpfen keine Resonanzstabilisierung (Enolat) möglich ist.

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 1 Pkt. Wie gross ist die Gleichgewichtskonstante des Gleichgewichts 2)? (keine Punkte ohne Lösungsweg)

Wie gross ist K_2 ? Antwort: $K_2 = 400$

 $K_2 = (K_1)^2 \implies 20.20 = 400$

b) 3 Pkt. Die Gleichgewichtskonstante für das Gleichgewicht K₃ ist 8000. Vergleichen Sie diesen Wert mit Ihrer Antwort auf Frage 5a) oben!

Wie gross (in kJ/mol) ist die (ungünstige) Wechselwirkungsenthalpie zwischen zwei 1,3-diaxialen Methylgruppen?

(keine Punkte ohne Lösungsweg!)

Antwort: 14.85 kJ/mol

Wechselwirkung zwischen Methylgruppe und H enthalten: pro WW: 3.7 kJ/mol. Im Gleichgewicht K_3 sind die gesuchte $CH_3 <-> CH_3$ WW und pro CH_3 noch je eine $CH_3 <-> H$ WW enthalten. *Also*: 22.25 kJ/mol - 2• 3.7 kJ/mol = 14.85 kJ/mol. Eine $CH_3 <-> CH_3$ 1,3-diaxiale WW ist also etwa 4 mal grösser als eine entsprechende $CH_3 <-> H$ WW.

c) 2 Pkt. Zeichnen Sie die Konformere von (2S,3R)-2-Brom-3-iodbutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(θ)] der Rotation um die C(2)-C(3) Bindung (θ = Diederwinkel C(1)-C(2)-C(3)-C(4), d.h. θ =0°, wenn die Bindungen C(1)-C(2) und C(3)-C(4) verdeckt stehen).

6. Aufgabe (*a-f= je 2.5 Pkt; total 15 Pkt*)

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Punkte Aufgabe 8

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Wheland-Zwischenstufe

Antwort: Friedel-Crafts-Acylierung

b) Wie lautet die moderne Fassung der Regel von Markownikow? Geben Sie ein Anwendungsbeispiel!
Regel: Ein Elektrophil lagert sich so an eine asymmetrische Doppelbindung an, dass das stabilere Carbenium entsteht.

Anwendungsbeispiel:

$$\begin{array}{c|c} & \oplus \\ & \leftarrow \\ & \leftarrow$$