When in-core DIFT faces fault injection attacks

William PENSEC, Vianney LAPÔTRE, Guy GOGNIAT

Lab-STICC, UMR 6285, Université Bretagne Sud, Lorient, France firstname.lastname@univ-ubs.fr

Université Bretagne Sud Lab-STICC |

Information Flow Tracking in a RISC-V processor

Different types of IFT [1, 2]:

- Static or Dynamic
- Software, hardware (in-core, off-core [3] (dedicated CPU, co-processor)) or mixed

Three steps

- Tag initializationOS level
- Tag propagation
- Levels of IFT
 - Application level
- Tag verification Low level

D-RI5CY [4] has been developed by researchers from Columbia University, New York, and University of Turin (Italy).

Physical Attacks against DIFT

We consider an attacker able to:

- combine software and physical attacks to defeat the DIFT mechanism,
- inject faults in registers associated to the DIFT-related components: set to 0, set to 1, a bit-flip at a random position of the targeted register.

Tag propagation in a buffer overflow attack

Logic description of the exception driving in a buffer overflow attack

Results

We used fault injection simulations to evaluate the sensitivity of DIFT at cycle-accurate and bitaccurate levels (CABA).

	Crash	NSTR	Delay	Success	Total
Buffer overflow	0	940	17	15 (1.54%)	972

Fault simulations end status

	137140 ns		137180 ns		137220 ns		137260 ns		137300 ns	
	set to 0	set to 1	set to 0	set to 1	bitflip	set to 0	bitflip	set to 0	bitflip	set to 0
pc_if_o_tag						√		√	√	
rf_reg[1] tcr_q	\checkmark		\checkmark		\checkmark	√	✓	\checkmark		\checkmark
tpr_q	\checkmark	\checkmark	\checkmark	\checkmark						

Buffer overflow: success per register, fault type and simulation time

Perspectives

- Implement and evaluate countermeasures taking into account constraints (performance, area, consumption) to protect critical computation related to DIFT.
- Extend the study to the entire D-RI5CY core and a more complex threat model.
- Perform a fault injection campaign targeting a FPGA implementation.

Bibliography

- W. Hu et al., "Hardware information flow tracking," ACM Computing Surveys, 2021. DOI: 10.1145/3447867.
- K. Chen et al., "Dynamic information flow tracking: Taxonomy, challenges, and opportunities," Micromachines, 2021. DOI: 10.3390/mi12080898.
- H. Kannan et al., "Decoupling dynamic information flow tracking with a dedicated coprocessor," in International Conference on Dependable Systems & Networks, IEEE, 2009. DOI: 10.1109/DSN.2009.5270347.
- C. Palmiero et al., "Design and implementation of a dynamic information flow tracking architecture to secure a RISC-V core for IoT applications," in High Performance Extreme Computing, 2018. DOI: 10.1109/HPEC.2018.8547578.

