Knowledge manipulation using OWL and reasoners for drug-discovery

July 7th 2013
Samuel Croset

Errata – July, 8th 2013

Here is a list of points raised during the tutorial and based on feedback from the audience. I will try to address them for a next release of the talk. Send me an email if you need clarification or have more comments croset@ebi.ac.uk - Samuel

Things that can be improved (list not comprehensive):

- Direct semantics versus OWL based semantics → Could be removed from the talk. The reader can skip that.
- is_a relationship as defined by GO corresponds to a rdfs:subClassOf axiom in OWL.
- In OWL, is_a is not an object property, it's a built-in primitive construct from the language defining the relashionship between sets of things. Other properties (part-of, regulates, etc...) are defined by OWL object properties.

Material

- Files: http://bit.ly/12flbf8
- Protégé 4.3: http://stanford.io/102ZBJO
- Brain: http://bit.ly/TYGj40

Tutorial

Ask questions!

- What is OWL?
- Why is it particularly interesting for life sciences?
- How to use OWL?
- What is OWL 2EL?
- How to integrate and query biomedical knowledge?

"The scientist is not a person who gives the right answers, he's one who asks the right questions"

Claude Lévi-Strauss

"Half of science is putting forth the right questions"

— Sir Francis Bacon

"What are the human proteins that regulates the blood coagulation?"

Classification (flat file)

Database (SQL or RDF)

"What are the <u>human proteins</u> that <u>regulates</u> the <u>blood coagulation</u>?"

Ontology (OBO)

composing it?

Ontology (OBO)

- Ontologies are not only labels or annotations for biological concept ("blood coagulation") -> They help to formalize problem
- We want to mix traditional ontologies with other large-scale data
- We want an intuitive way to formulate the query, hiding the implementation

What is OWL?

- The Semantic Web: RDF → URI and triples →
 Should improve interoperability over the Web
- Need for shared schemas ontologies
- OWL
 Description logics and knowledge representation, decidable, attractive and well-understood computational properties.
- (OWL → Direct Semantics or RDF-based semantics)

What is OWL?

- Confusing relations between OWL, RDF, SPARQL, reasoning, etc...
- Here we deal with the Direct Semantics of OWL (no RDF) → It's easier!
- You get to use the reasoner a lot!
- In OWL you build knowledge-bases or ontologies (here these terms are synonyms – in the wild people use the two).

OWL and Life Sciences

Advantages versus RDF, SQL and flat files?

- Formal language to represent hierarchical data
- Machine reasoning
- Large-scale (OWL 2EL)
- Knowledge integration
- Composition
- Powerful query mechanism

OWL 2 Terminology

- It's all about definitions!
- Defining things based on the relations they have
- Entities: elements used to refer to real-world objects
- Expressions: combinations of entities to form complex descriptions from basic ones
- Axioms: the basic statements that an OWL ontology expresses → Pieces of knowledge

Entities

- Classes: Categories and Terminology
 - Protein, Human, Drug, Chemical, P53, Binding site,
 etc... → Pretty much everything in life science.
- Individuals (objects): Instances
 - Rex the dog, this mouse on the bench, you, etc...
- Properties: Relations between individuals
 - Part of, regulates, perturbs, etc...

Axioms

- How classes and properties relate to each other:
 - All Humans are Mammals Human is a subclass of Mammal
- You should always think in terms of individuals. In biology we don't really deal much with real individuals, yet classes/properties and axioms are built from relationships between anonymous individuals.
- Our first OWL axiom: SubClassOf

Ontology/Knowledge-base

- Set of axioms
- Serialized as ".owl" file Here using the Manchester syntax (Description logics semantics)
- Example of output (look at the format, don't try to understand the logic now):

```
ObjectProperty: part-of

Class: owl:Thing

Class: Cell

Class: Nucleus

SubClassOf:
 part-of some Cell
```

Terminology Summary

Output in RDF (turtle – RDF-based semantics):

```
<demo.owl> rdf:type owl:Ontology .
:part-of rdf:type owl:ObjectProperty .
:Cell rdf:type owl:Class .
:Nucleus rdf:type owl:Class;
 rdfs:subClassOf [ rdf:type owl:Restriction ;
                    owl:onProperty :part-of ;
                    owl:someValuesFrom :Cell
owl:Thing rdf:type owl:Class .
```

Terminology Summary

Scientist

Class

Person

regulates

Property

works in

John

Individual

Paris

Terminology Summary

Axiom

Class

Individual

Property

Exercise 1 – Classes and axioms

- Open the file "NCBI-taxonomy-mammals.owl" with a text editor. Can you understand what's inside?
- Now open the file with Protégé and go under the tab "classes". You can use the option "render by label" in the "View" menu.
- Can you recognize the classes? What do they describe?
- Can you spot the axioms? What do they capture?

Reasoner

- A program that understand the axioms and can deduce things from it.
- Used to classify the ontology.
- Query engine for knowledge-bases.
- More or less fast depending on the number and type of axioms.

Exercise 2 - Reasoning

- In Protégé, go under the "DL query" tab and retrieve all descendant classes of the class Abrothrix (or NCBI_156196).
- What does this query means? What about the results?

Comparison against mySQL

```
SELECT
 S.*
FROM
 species AS s,
 species AS t
WHERE
 (s.left value BETWEEN t.left value AND t.right value)
AND
 t.common name='abrothrix';
```

Constructs – Class expressions

- Combining classes and properties to define more things (class expression) → Composition
- Intersection: and
 - Mammal and Omnivore
- Existential Restriction: some
 - part-of some Cell

Construct: and

Constructs & axioms

Constructs & axioms

Human SubClassOf Mammal and Omnivore

This definition (Mammal and Omnivore) of the concept "Human" is partial.

- Every human must be at least a mammal and an omnivore according to our definition.
- But it's not because you are a mammal and an omnivore that you are necessary human!!

Construct: some

Existential restriction: Weird construct at first, but useful while dealing with incomplete knowledge

P some C: if it exists then a least one instance of C linked by P

Constructs & axioms

Exercise 3 – Implementing the axiom

- Create a new project inside Protégé.
- Implement "Human SubClassOf Mammal and Omnivore"
- Run the reasoner and look at the hierarchy of classes. Does it make sense?
- That's the main role of the reasoner ->
 classifying things based on their definiting.
- "Conceptual Lego"

OWL concepts

Class

: Basic block

Property

: Basic block

Constructor

: Used in class expressions

Class Expression: Class, Property, Constructor

Axiom

: Relations between these entities.

OWL Concepts

Axiom

TBox

(Terminological Axiom)

SubClassOf EquivalentClasses DisjointClasses

ABox

(Assertional Axiom)

ClassAssertion...

RBox

(Relational Axiom)

SubObjectPropertyOf
EquivalentObjectProperties
ObjectPropertyChain
TransitiveObjectProperty

• • •

Real-life example: The Gene Ontology

Open Biomedical Ontology (OBO) format originally.

Moved to OWL → Stronger semantics

GO constructs

Central pattern:

http://www.geneontology.org/GO.ontology-ext.relations.shtml

GO - RBox

part of ∘ ...

— P → o — i → → ···· P ···· ►

— P → o — P → → ···· P ··· →

— R- → o — i → → ··· R- ··▶

— R- → ₀ — P → → ···· R ···· →

GO – Rbox: part-of

Transitivity

Exercise 4 – Transitive property

Open the "gene_ontology.owl" file.

- What are the things that are a biological_process and part_of some 'wound healing'?
- Look at the class "blood coagulation, common pathway". Is it obvious for this class to be in the results?

GO – Rbox: regulates

Exercise 5 – Chained properties

- Look at the "regulates" property inside Protégé.
- What are the things that are a biological_process and regulates some 'mitotic cell cycle'?
- Look at the class "positive regulation of syncytial blastoderm mitotic cell cycle"
- Is it obvious for this class to be in the results?

GO – Rbox: positively/negatively regulates

SubProperty

Exercise 6 – Sub Properties

- Look at the "positively-regulates" property inside Protégé.
- What are the things that are a biological_process and positively_regulates some 'mitotic cell cycle'?
- Are they different from the things that are biological_process and regulates some 'mitotic cell cycle'?

Exercise 7 – Verifying properties

Are we respecting the GO specifications?

Summary GO

- Concepts are defined using one construct only (A SubClassOf P some B).
- Rich RBox
- OWL is helpful to represent these relations, helps to abstract away.

Knowledge integration

- We would like to answer questions over all different source of knowledge.
- "Thrombosis is a widespread condition and a leading cause of death in the UK."
- We would like to find a new protein target in order to treat thrombosis.
- Here we would like to know "what are the human proteins that regulates the blood coagulation".

Knowledge-bases

- Species: NCBI taxonomy
- Biological Process: Gene Ontology
- Proteins: Uniprot

Exercise 8 – Integrating knowledge

- Open the file uniprot.owl
- Do you understand its content? Look for the class "Protein"
- Now open the file "integrated.owl"
- How would you formulate the question "what are the human proteins that regulates the blood coagulation" in OWL?
- involved_in some (regulates some 'blood coagulation') and expressed_in some 'Homo sapiens'

Implementation using Brain

```
Brain brain = new Brain();
brain.learn("data/gene_ontology.owl");
brain.learn("data/NCBI-taxonomy-mammals.owl");
brain.learn("data/uniprot.owl");

String query = "involved_in some (regulates some GO_0007596) and expressed_in some NCBI_9606";
List<String> subClasses = brain.getSubClasses(query,false);
brain.sleep();
```

Large-scale implementation

- OWL is computing intensive → OWL 2EL
- Less axioms and constructs

 easier for you
 to remember and easier for the reasoner to
 compute
- Suited for life sciences → lots of classes, few instances

 H_2O

H - O - H

Expressivity

RDF SPARQL

RDFS

OWL2 EL

OWL2

PSPACE (all constructs)

NP (AND, FILTER, UNION)

LOGSPACE (AND, FILTER)

PTIME

PTIME

Tractable Parallelism

http://www.w3.org /TR/owl2-profiles/

N2EXPTIME-

complete

Why learning OWL?

Ontology (OBO)

What is composing it?

Conclusion

Ask questions!

- What is OWL?
- Why is it particularly interesting for life sciences?
- How to use OWL?
- What is OWL 2EL?
- How to integrate and query biomedical knowledge?

Thank you!

- croset@ebi.ac.uk
- More questions: StackOverflow (tag "OWL")
- If you think things could be improved please send feedback, fork or contribute

