Objectifs:

- Déterminer expérimentalement les caractéristiques d'un générateur linéaire.
- Mesurer des résistances par différentes méthodes.

Capacités mises en œuvre :

- $\hfill \Box$ expliquer le lien entre résolution, calibre, nombre de points de mesure
- $\hfill \square$ mesure directe d'une tension au voltmètre numérique
- ☐ mesure directe d'une intensité à l'ampèremètre numérique
- ☐ mesure indirecte d'une résistance au voltmètre sur un diviseur de tension
- □ mesure indirecte d'une intensité aux bornes d'une résistance adaptée
- ☐ mesure directe à l'ohmmètre d'une résistance
- ☐ mesure indirecte voltmètre sur un diviseur de tension d'une résistance
- □ préciser la perturbation induite par l'appareil de mesure sur le montage et ses limites (bande passante, résistance d'entrée)
 - On produira un schéma électrique pour chaque manipulation décrite.
 - On s'assurera que la puissance reçue par les résistances est inférieure à 0,5 W.

Matériel:

- alimentation stabilisée, multimètre numérique de table (de marque Française d'Instrumentation), contrôleur universel, oscilloscope,
- boîtes de résistance à décades, boîtes AOIP, résistances radio sur support,
- rhéostat
- script ExploitationDonnees pour les tracés de courbes et ajustements : version python ou

 Jupyter ; notebook sur Capytale ; accessible également sur le disque commun—

 >classe->donnees->Exploitation Données->ExploitationDonnees.ipynb

I Mesures directes de résistances

I.1 Principe de l'ohmmètre

En mode ohmmètre, le multimètre se comporte comme un générateur idéal de courant faisant passer un courant d'intensité contrôlé dans la résistance à mesurer. La mesure de la tension à ses bornes permet donc de déterminer la valeur de la résistance.

Manipulations:

- Mesurer à l'ohmmètre la résistance d'entrée de l'oscilloscope et déterminer la précision de cette mesure.
- Vérifier la compatibilité avec la mesure au pont diviseur de tension de la séance précédente. On reprendra au besoin cette mesure.

I.2 Perturbations induites par l'appareil de mesure

Manipulations:

Brancher le multimètre réglé en ohmmètre sur le contrôleur en voltmètre, puis le contrôleur réglé en ohmmètre sur le multimètre réglé en ampèremètre et mesurer ainsi les résistances de l'ampèremètre (r_A) et du voltmètre (R_V) . Dépendent-elles du calibre ?

Ces résistances peuvent être la source d'erreurs dans les mesures réalisées au multimètre. On l'illustre sur la mesure de la résistance R d'un dipôle par le calcul du quotient de la tension U aux borne du dipôle et de l'intensité I du courant qui le traverse. On peut en effet en effet les deux montages ci-dessous, dits en longue et courte dérivation. On représente l'alimentation stabilisée par le symbole AS.

(a) Longue dérivation.

(b) Courte dérivation.

Questions:

 \triangle On modélise l'ampèremètre par un résistor de résistance r_A et le voltmètre par un résistor de résistance R_V .

- WIF 512, Louis le Grand
 - Déterminer, pour la longue dérivation, la tension aux bornes U_R du résistor en fonction de la tension U indiquée par le voltmètre et des résistances R et r_A. En déduire une condition portant sur r_A et R pour que la mesure de R soit fiable.
 - Déterminer, pour la courte dérivation, l'intensité I_R traversant le résistor en fonction de l'intensité
 I indiquée par l'ampèremètre et des résistances R et R_V. En déduire une condition portant sur R_V
 et R pour que la mesure de R soit fiable. Comparer aux résultats des mesures.
 - Que doivent valoir R_V et r_A pour un voltmètre et un ampèremètre idéaux?

Il Mesures de résistances au pont de Wheatstone

Questions:

\land On considère le montage ci-contre.

- Exprimer la tension U_{AB} en fonction des résistances P,Q,R,X et E quand le voltmètre est idéal.
- Le pont est dit «équilibré» quand $U_{AB} = 0$. Quelle relation vérifient alors les résistances?

Manipulations:

Réaliser le montage avec des boites $AOIP \times 1000$ pour P et Q, une boite à décades pour la résistance R, un résistor radio quelconque pour X et l'alimentation stabilisée réglée sur environ 5V, $50\,\mathrm{mA}$. Mesurer la résistance X en recherchant la valeur de R minimisant la tension U_{AB} . On effectuera cette mesure en réglant le quotient m = P/Q à 1 puis à m = 10.

Questions:

- Quelle est l'influence de la valeur de m sur la précision de la mesure ?
- Donner un ordre de grandeur typique de la précision relative avec laquelle on peut fabriquer la résistance R utilisée dans le pont ? Peut-on dire qu'on a mesuré X à 1 ohm près ? Justifier qu'on peut néanmoins comparer à l'aide de ce pont deux résistances avec une précision de l'ordre de l'ohm.
- Vérifier que la valeur de X obtenue est bien dans l'intervalle de confiance indiqué par le fabricant.

III Modèles de Norton et Thévenin

Tout générateur linéaire peut être modélisé au choix comme :

- un générateur de Thévenin de force électromotrice E_T et de résistance interne r,
- un générateur de Norton de courant électromoteur $\eta_N = E/r$ et de même résistance interne r.

On vérifie ces caractéristiques sur le pont de Wheatstone précédent, vu comme un générateur linéaire dont les bornes de sortie sont A et B.

Manipulations:

- Choisir P = 1kΩ et Q = 2kΩ, conserver la résistance X et prendre une autre résistance radio pour R, d'une valeur suffisamment différente de celle équilibrant le pont.
- Mesurer la force électromotrice E_T, le courant électromoteur η_N et la résistance interne r du générateur linéaire ainsi constitué, en branchant différents dipôles (multimètre, résistors) entre les bornes A et B.
- Tracer la caractéristique statique du générateur linéaire ainsi constitué.

Exploitation:

Vérifier qu'on a $E_T = r\eta_N$.

Questions:

Montrer que ces paramètres vérifient :

$$E_T = \left(\frac{Q}{P+Q} - \frac{X}{R+X}\right)E \qquad r = \frac{PQ}{P+Q} + \frac{RX}{R+X},$$

et vérifier l'accord avec les valeurs mesurées.