Конспект к защите лабораторной работе №1

Конструкция двигателя постоянного тока

Двигатель состоит из двух частей: **статор** и **ротор**. Статор – постоянный магнитотвердый материал. Внутри него находится ротор из магнитомягкого материала, у которого есть как минимум три катушки. Принцип работы: с помощью щеток подается ток на одну из

катушек, возникает электродвижущая сила. Ротор вращается; через некоторое время ток начинает поступать на следующую катушку (смена катушек происходит механически, в результате движения), из-за чего движение не прекращается. Двигатель не разгоняется бесконечно, потому что ЭДС индукции препятствует этому.

Обозначения

Обозначение	Название	Ед. измерения
θ	Угол поворота	рад
ω	Угловая скорость	рад/с
ώ	Угловое	рад/c²
	ускорение	
J	Момент инерции	ĸr∙m²
M	Момент силы	Н∙м
3	ЭДС индукции	В
ω_{nls}	Установившаяся	рад/с
	угловая скорость	

Четыре «кирпичика» модели ДПТ

1. Второй закон Ньютона: $M=J\dot{\omega}$

2. Обобщенный закон Ома: $I=rac{U+arepsilon}{R}$

3. «Сила Лоренца»: $M=k_m I$

4. Электромагнитная индукция: $arepsilon=-rac{d\Phi}{dt}=-\dot{\Phi}=-k_e\omega$

Упрощенная модель ДПТ

$$\begin{cases} M = J\dot{\omega} \\ I = \frac{U + \varepsilon}{R} \\ M = k_m I \\ \varepsilon = -k_e \omega \end{cases} \Rightarrow J\dot{\omega} = k_m \frac{U - k_e \omega}{R} \Rightarrow \dot{\omega} = \frac{k_m (U - k_e \omega)}{JR}$$

Итоговое уравнение: $\dot{\omega} + \frac{k_m k_e}{IR} \omega = \frac{k_m}{IR} U$

Обозначение различных моментов сил

Обозначение	Название	Физический смысл ¹
M _Σ	Сумма всех моментов сил, действующих на ротор	Сумма <u>всех</u> моментов сил
M _{el}	Момент силы, возникающий в двигателе	<u>Внутренние</u> силы,
	из-за протекающих в нем	приводящие в движение
	электродинамических процессов	ротор
M_{oth}		<u>Внешние</u> силы, которые
	Сумма всех остальных моментов сил,	действуют на ротор
	действующих на ротор	(например, нагрузка на
		якорь двигателя)
M _{st}	Пусковой момент	В <u>начальный момент</u>
		<u>времени</u> , когда только
		подается напряжение на
		двигатель, момент силы
		принимает значение
		пускового момента

Если Moth
$$\neq$$
 0, то $\omega(t)=\Big(\omega_{nls}+M_{oth}\frac{\omega_{nls}}{M_{st}}\Big)\bigg(1-e^{-\frac{M_{st}}{J\omega_{nls}}t}\bigg).^2$

Основные формулы

$$\omega(t)=\omega_{nls}\left(1-e^{-rac{t}{T_m}}
ight)$$
, где $T_m=rac{J\omega_{nls}}{M_{st}}$ $arepsilon(t)=rac{\omega_{nls}}{T_m}e^{-rac{t}{T_m}}$ $heta(t)=\omega_{nls}\left(t-T_m\left(1-e^{-rac{t}{T_m}}
ight)
ight)$

Рис. 2. График зависимости угловой скорости вращения ротора от времени.

¹ Я не уверен, что правильно понимаю то, как объяснить физический смысл этих величин.

 $^{^2}$ Попробуйте добавить в левую часть формулы (18) в методичке M_{oth} и проделайте все операции до формулы (24).

Рис. 3. Графики зависимостей $\varepsilon(t)$ и $\theta(t)$.

- 1. $\lim_{t \to \infty} \theta(t) = \omega_{nls}(t-T_m)$ при стремлении времени к бесконечности график угла поворота принимает форму прямой линии по этой формуле.
- 2. $\varepsilon(0)=rac{\omega_{nls}}{T_m}$, оси абсцисс график не касается (стремится к нулю).
- 3. При **увеличении** T_m двигателю необходимо больше времени на разгон (но T_m ≠ время разгона!), соответственно графики скорости и ускорения будут более вытянуты в ширину, а у графика угла поворота будет дольше изгиб в начале (график позже превратится в прямую линию). (что будет при уменьшении подумайте сами)
- 4. При увеличении подаваемого напряжения будет увеличиваться M_{st} , причем M_{st} прямо пропорционально напряжению и **обратно** T_m . Значит, T_m будет уменьшаться при увеличении напряжения, далее все противоположно пункту 3.
- 5. При **ненулевом** значении ω график скорости все так же будет стремиться к ω_{nls} (просто начинаться будет с какой-то точки на оси ординат, а не с нуля), график ускорения начнется ниже, закончится быстрее, график угла поворота ближе к началу координат будет прямая линия.
- 6. При **ненулевом** значении **0** измениться лишь график угла поворота он будет начинаться на какой-либо точке на оси ординат (не в 0), при этом сам график будет двигаться ровно так же, как и с нулевым начальным значением.

Графики в отчете

В отчете мы строили три графика: график, полученный экспериментальным путем; график, полученный с помощью модели Xcos; график, полученный с помощью аппроксимации, по формуле математической модели. По сути, два последних — это два разных способа получения одного и того же (поэтому они должны совпадать). Они являются реализациями математической модели, которую мы описывали, просто разными способами.

А если они не совпадают... То ¯ _(ツ)_/¯

Если есть какие-то вопросы или ошибки, пишите!