Real Estate

Project Task: Week 1

df train Import and Preparation:

- 1. Import df_train.
- 2. Figure out the primary key and look for the requirement of indexing.
- 3. Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

Exploratory df_train Analysis (EDA):

- 4. Perform debt analysis. You may take the following steps:
 - a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent
 - b) Use the following bad debt equation: Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity_second_mortgage
 - c) Create pie charts to show overall debt and bad debt
 - d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities
 - e) Create a collated income distribution chart for family income, house hold income, and remaining income

Project Task: Week 2

Exploratory Data Analysis (EDA):

- 1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):
 - a) Use pop and ALand variables to create a new field called population density
 - b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age
 - c) Visualize the findings using appropriate chart type
- 2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.
 - a) Analyze the married, separated, and divorced population for these population brackets
 - b) Visualize using appropriate chart type
- 3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.
- 4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

Project Task: Week 3

Data Pre-processing:

- 1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.
- 2. Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data. Following are the list of latent variables:
 - · Highschool graduation rates

- · Median population age
- · Second mortgage statistics
- Percent own
- · Bad debt expense

Project Task: Week 4

Data Modeling:

- 1. Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location. Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.
 - a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
 - b) Run another model at State level. There are 52 states in USA.
 - c) Keep below considerations while building a linear regression model. Data Modeling:
 - Variables should have significant impact on predicting Monthly mortgage and owner costs
 - Utilize all predictor variable to start with initial hypothesis
 - R square of 60 percent and above should be achieved
 - Ensure Multi-collinearity does not exist in dependent variables
 - Test if predicted variable is normally distributed

Data Reporting:

- 2. Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:
 - a) Box plot of distribution of average rent by type of place (village, urban, town, etc.).
 - b) Pie charts to show overall debt and bad debt.
 - c) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map.
 - d) Heat map for correlation matrix.
 - e) Pie chart to show the population distribution across different types of places (village, urban, town etc.)

Week 1

df train Import and Preparation:

Shape of train df_train: (27321, 80) Shape of test df_train: (11709, 80)

1. Import df_train.

```
In [1]: # Import df_train & libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')

In [2]: #reading the df_train
    df_train = pd.read_csv('train.csv')
    df_test = pd.read_csv('test.csv')
    print("Shape of train df_train:",df_train.shape)
    print("Shape of test df_train:",df_test.shape)
```

```
In [3]: df_train.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 27321 entries, 0 to 27320 Data columns (total 80 columns): Non-Null Count Dtype -----0 UID 27321 non-null int64 BL OCKTD 0 non-null float64 1 2 SUMLEVEL 27321 non-null int64 27321 non-null int64 COUNTYID 3 27321 non-null int64 STATEID 27321 non-null object 5 state 6 state ab 27321 non-null object 7 27321 non-null object city 8 27321 non-null object place 9 27321 non-null object type 10 primary 27321 non-null object 27321 non-null int64 11 zip_code 12 27321 non-null int64 area_code 13 lat 27321 non-null float64 14 lng 27321 non-null float64 15 **ALand** 27321 non-null float64 16 AWater 27321 non-null int64 27321 non-null int64 27321 non-null int64 17 gog 18 male pop 19 female pop 27321 non-null int64 20 rent mean 27007 non-null float64 21 rent median 27007 non-null float64 22 rent_stdev 27007 non-null float64 27007 non-null float64 23 rent_sample_weight 24 rent samples 27007 non-null float64 25 rent_gt_10 27007 non-null float64 26 rent gt 15 27007 non-null float64 27 rent gt 20 27007 non-null float64 28 rent_gt_25 27007 non-null float64 27007 non-null float64 27007 non-null float64 29 rent_gt_30 30 rent_gt_35 31 rent gt 40 27007 non-null float64 32 rent gt 50 27007 non-null float64 universe_samples 33 27321 non-null int64 34 used_samples 27321 non-null int64 35 hi mean 27053 non-null float64 36 hi median 27053 non-null float64 37 hi stdev 27053 non-null 27053 non-null float64 38 hi_sample_weight 39 hi samples 27053 non-null float64 40 family_mean 27023 non-null float64 41 family median 27023 non-null float64 27023 non-null float64 family_stdev 42 43 family sample weight 27023 non-null float64 44 family_samples 27023 non-null float64 45 26748 non-null hc mortgage mean 26748 non-null float64 46 hc_mortgage_median 26748 non-null float64 hc mortgage stdev hc_mortgage_sample_weight 26748 non-null float64 48 26748 non-null 49 hc mortgage samples 26721 non-null float64 50 hc mean hc median 26721 non-null float64 51 hc_stdev 52 26721 non-null float64 53 26721 non-null hc samples float64 54 hc sample weight 26721 non-null float64 home equity second mortgage 26864 non-null float64 56 26864 non-null float64 second_mortgage 57 home_equity 26864 non-null float64 26864 non-null float64 58 debt 59 second_mortgage_cdf 26864 non-null float64 $home_equity_cdf$ 60 26864 non-null float64 61 debt cdf 26864 non-null float64 62 hs degree 27131 non-null float64 27121 non-null float64 hs degree male 63 27098 non-null float64 27132 non-null float64 hs_degree_female 64 65 male age mean 66 male age median 27132 non-null float64 27132 non-null float64 67 male age stdev 27132 non-null float64 68 male_age_sample_weight 69 male_age_samples 27132 non-null float64 27115 non-null 70 female age mean float64 71 female_age_median 27115 non-null float64

27115 non-null float64

72 female age stdev

```
73 female age sample weight
                                   27115 non-null float64
 74 female age samples
                                   27115 non-null float64
                                   27053 non-null float64
27130 non-null float64
 75 pct own
 76 married
 77 married snp
                                   27130 non-null float64
 78 separated
                                   27130 non-null float64
 79 divorced
                                   27130 non-null float64
dtypes: float64(62), int64(12), object(6)
memory usage: 16.7+ MB
```

In [4]: df_test.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11709 entries, 0 to 11708

Data columns (total 80 columns): # Column Non-Null Count Dtype - - ------0 UID 11709 non-null int64 BL OCKTD 0 non-null 1 float64 2 SUMI EVEL 11709 non-null int64 11709 non-null int64 3 COUNTYTD 11709 non-null int64 4 STATEID 5 11709 non-null object state 6 state ab 11709 non-null object 11709 non-null object 7 city 8 place 11709 non-null object 11709 non-null object 9 type 11709 non-null object 10 primary 11709 non-null int64 11 zip_code 11709 non-null int64 12 area code 11709 non-null float64 11709 non-null float64 13 lat 14 lng 11709 non-null int64 15 ALand 16 AWater 11709 non-null int64 11709 non-null int64 17 non 11709 non-null int64 11709 non-null int64 18 male pop 19 female_pop 20 rent mean 11561 non-null float64 11561 non-null float64 11561 non-null float64 21 rent_median 22 rent stdev 11561 non-null float64 23 rent_sample_weight 24 rent_samples 11561 non-null float64 11560 non-null float64 11560 non-null float64 25 rent_gt_10 26 rent_gt_15 11560 non-null float64 27 rent_gt_20 28 rent_gt_25 11560 non-null float64 11560 non-null float64 11560 non-null float64 29 rent_gt_30 30 rent_gt_35 11560 non-null float64 31 rent_gt_40 32 rent_gt_50 11560 non-null float64 11709 non-null int64 11709 non-null int64 33 universe samples 34 used samples 11587 non-null float64 35 hi mean 36 hi median 11587 non-null float64 11587 non-null float64 11587 non-null float64 37 hi stdev 38 hi_sample_weight 11587 non-null float64 39 hi samples 40 family_mean 11573 non-null float64 11573 non-null float64 11573 non-null float64 41 family median 42 family stdev 11573 non-null float64 43 family sample weight 44 family samples 11573 non-null float64 11441 non-null float64 11441 non-null float64 45 hc mortgage mean hc_mortgage_median 46 47 hc mortgage stdev 11441 non-null float64 48 hc mortgage sample weight 11441 non-null float64 11441 non-null float64 11419 non-null float64 49 hc mortgage samples 50 hc mean hc median 11419 non-null float64 51 11419 non-null float64 52 hc stdev 11419 non-null float64 11419 non-null float64 53 hc samples 54 hc sample weight 55 home_equity_second_mortgage 11489 non-null float64 11489 non-null float64 56 second_mortgage 11489 non-null float64 11489 non-null float64 57 home_equity 58 debt 11489 non-null float64 59 second mortgage cdf 11489 non-null float64 60 home_equity_cdf 11489 non-null float64 11624 non-null float64 61 debt cdf hs degree 62 hs degree male 11620 non-null float64 11604 non-null float64 11625 non-null float64 11625 non-null float64 hs_degree_female 64 65 male age mean 66 male age median

```
68 male_age_sample_weight
                                              11625 non-null float64
           69 male age samples
                                              11625 non-null
                                                               float64
           70 female_age_mean
                                              11613 non-null
                                                              float64
           71 female age median
                                              11613 non-null float64
           72 female_age_stdev
                                              11613 non-null float64
           73
               female_age_sample_weight
                                              11613 non-null
                                                               float64
           74 female_age_samples
                                              11613 non-null
                                                               float64
           75 pct own
                                              11587 non-null float64
           76 married
                                              11625 non-null float64
           77
              married snp
                                              11625 non-null
                                                               float64
           78 separated
                                              11625 non-null
                                                               float64
           79 divorced
                                              11625 non-null
                                                               float64
         dtypes: float64(61), int64(13), object(6)
         memory usage: 7.1+ MB
 In [5]: print(df train.shape)
         df_train['UID'].nunique()
          (27321, 80)
 Out[5]: 27161
 In [6]: print(df_test.shape)
         df_test['UID'].nunique()
         (11709, 80)
 Out[6]: 11677
         After checking the Feature 'UID' we can conclude that it is the primary key. But there are duplicate records with same UID so we need to
         remove those duplicate records
 In [7]: df_train.UID.nunique()
 Out[7]: 27161
 In [8]: df test.UID.nunique()
 Out[8]: 11677
 In [9]: grp_train = df_train.groupby('UID')
         grp_train.size().sort_values(ascending=False).head(60)
         # grp_train.get_group(282028)
         grp_train.get_group(230058)
                                                                state state_ab
                  UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                                                   city
                                                                                           place type ... female_age_mean female_ag
 Out[9]:
                                                                                           Camp
                                                                                                 City
           777 230058
                           NaN
                                      140
                                                 73
                                                           6 California
                                                                           CA Oceanside
                                                                                        Pendleton
                                                                                                                19.99315
                                                                                           North
                                                                                           Camp
           1623 230058
                           NaN
                                      140
                                                  73
                                                           6 California
                                                                           CA Oceanside
                                                                                        Pendleton
                                                                                                  City
                                                                                                                19.99315
                                                                                           North
                                                                                           Camp
          17489 230058
                           NaN
                                      140
                                                  73
                                                           6 California
                                                                                        Pendleton
                                                                                                                19.99315
                                                                           CA Oceanside
                                                                                                  City ...
                                                                                           North
                                                                                           Camp
         26046 230058
                                                           6 California
                                                                                                                19.99315
                                                                           CA Oceanside
                                                                                        Pendleton
                                                                                                 City ...
                                                                                           North
         4 rows × 80 columns
In [10]:
         grp_test = df_train.groupby('UID')
         grp test.size().sort values(ascending=False).head(60)
         # grp_test.get_group(282028)
         grp_test.get_group(230058)
```

11625 non-null float64

67 male age stdev

			4.40	73			04 0		mp top City		
162	3 230058	NaN	140	73	6 Califo	ima	CA Oceans	side Pendle No	ton City orth		19.99315
1748	230058	NaN	140	73	6 Califo	rnia	CA Oceans	side Pendle	mp ton City orth		19.99315
2604	3 230058	NaN	140	73	6 Califo	rnia	CA Oceans	side Pendle	mp ton City orth		19.99315
4 row	s × 80 columr	าร									
prin df_t	rain.drop_d	dropping the duplicates	ne duplica (keep ='fi	rst', in	total rows place = Tr u otal rows a	ıe)	_			_	·
					ows are: 27 ws are: 271						
prin df_t	est.drop_du	dropping thuplicates(ne duplica keep ='fir	st', inp	total rows lace = True otal rows a	e)	_			_	·
					ows are: 11 ws are: 116						
	we can set th							,,			
# ba	ckup										
week	1_bck_train 1_bck_test										
week week	1_bck_train	= df_test	copy() , inplace=								
week week df_t df_t	<pre>1_bck_train 1_bck_test rain.set_in</pre>	= df_test	copy() , inplace=								
week week df_t df_t df_t	1_bck_train 1_bck_test rain.set_in est.set_ind rain BLOCKID	= df_test	copy() , inplace= inplace=T	rue)	state	state_ab	city	place	type	primary	 female_age_mo
week week df_t df_t df_t	1_bck_train 1_bck_test rain.set_inest.set_ine rain BLOCKID	= df_test. ndex('UID', dex('UID',	copy() , inplace= inplace=T	rue)							
week week df_t df_t df_t	1_bck_train 1_bck_test rain.set_in est.set_in rain BLOCKID D 22 NaN	= df_test ndex('UID', dex('UID',	copy() , inplace= inplace=T	rue)	state New York Indiana	state_ab NY IN	city Hamilton South Bend	place Hamilton Roseland	type City City	primary tract	 44.486
week week df_t df_t df_t	1_bck_train 1_bck_test rain.set_in rain BLOCKID D 22 NaN 14 NaN	= df_test ndex('UID', dex('UID', SUMLEVEL	copy() , inplace= inplace=T COUNTYID	STATEID 36	New York	NY	Hamilton South	Hamilton	City	tract	 44.48
week week week week week week week df_t df_t df_t df_t df_t df_t df_t df_t	1_bck_train 1_bck_test rain.set_in rain BLOCKID D NaN NaN NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140	copy() , inplace= inplace=T COUNTYID 53 141	STATEID 36 18	New York Indiana	NY IN	Hamilton South Bend	Hamilton Roseland	City	tract	 44.48 36.48 42.15
week week week week week week week week	1_bck_train 1_bck_test rain.set_in est.set_in BLOCKID D 22 NaN 44 NaN 33 NaN 53 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140	copy() , inplace= inplace=T COUNTYID 53 141 63	STATEID 36 18 18	New York Indiana Indiana	NY IN IN	Hamilton South Bend Danville	Hamilton Roseland Danville	City City City	tract tract	 44.48 36.48 42.15 47.77
week week week week week week week week	1_bck_train 1_bck_test rain.set_in est.set_in BLOCKID D 22 NaN 44 NaN 33 NaN 53 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140	copy() , inplace= inplace=T COUNTYID 53 141 63 127	STATEID 36 18 18 72	New York Indiana Indiana Puerto Rico	NY IN IN PR	Hamilton South Bend Danville San Juan	Hamilton Roseland Danville Guaynabo Manhattan	City City City Urban	tract tract tract tract tract tract	 44.48 36.48 42.15 47.77
week week week week week week week week	1_bck_train 1_bck_test rain.set_in rain BLOCKID D 22 NaN 44 NaN 33 NaN NaN NaN NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140 140	copy() inplace=T COUNTYID 53 141 63 127 161	36 18 18 72 20	New York Indiana Indiana Puerto Rico Kansas	NY IN IN PR KS	Hamilton South Bend Danville San Juan Manhattan	Hamilton Roseland Danville Guaynabo Manhattan City	City City City Urban City	tract tract tract tract tract tract	 44.48 36.48 42.15 47.77 24.17
week week 4]: df_t df_t df_t df_t df_t df_t df_t df_t	1_bck_train 1_bck_test 1_bck_test rain.set_in rain BLOCKID 10 12 NaN 14 NaN 13 NaN 15 NaN 16 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140	copy() , inplace= inplace=T COUNTYID 53 141 63 127 161	STATEID 36 18 18 72 20	New York Indiana Indiana Puerto Rico Kansas Puerto Rico	NY IN IN PR KS	Hamilton South Bend Danville San Juan Manhattan	Hamilton Roseland Danville Guaynabo Manhattan City	City City Urban City Urban	tract tract tract tract tract	 44.48 36.48 42.15 47.77 24.17 42.73
week week 4]: df_t df_t df_t 5]: df_t 2678. 2464 2456. 2796 2472 2792	1_bck_train 1_bck_test 1_bck_test rain.set_in rain BLOCKID 10 12 NaN 14 NaN 13 NaN 153 NaN 154 NaN 155 NaN 16 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140 140	copy() , inplace= inplace=T COUNTYID 53 141 63 127 161 43	STATEID 36 18 18 72 20 72	New York Indiana Indiana Puerto Rico Kansas Puerto Rico	NY IN IN PR KS PR	Hamilton South Bend Danville San Juan Manhattan Coamo	Hamilton Roseland Danville Guaynabo Manhattan City Coamo	City City Urban City Urban	tract tract tract tract tract tract	 44.48 36.48 42.15 47.77 24.17 42.73 38.21
week week week week week week week week	1_bck_train 1_bck_test 1_bck_test rain.set_in rain BLOCKID 1D 22 NaN 14 NaN 13 NaN 15 NaN 15 NaN 16 NaN 17 NaN 18 NaN 18 NaN 19 NaN 10 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140 140 140	copy() , inplace= inplace=T COUNTYID 53 141 63 127 161 43 91	STATEID 36 18 18 72 20 72 42	New York Indiana Indiana Puerto Rico Kansas Puerto Rico Pennsylvania	NY IN IN PR KS PR PA CO	Hamilton South Bend Danville San Juan Manhattan Coamo Blue Bell	Hamilton Roseland Danville Guaynabo Manhattan City Coamo Blue Bell Saddle	City City Urban City Urban Borough	tract tract tract tract tract tract tract	 44.48i 36.48i 42.15i 47.77i 24.17i 42.73 38.21i 43.40i
week week week week week week week week	1_bck_train 1_bck_test 1_bck_test rain.set_in rain BLOCKID 10 22 NaN 14 NaN 13 NaN 15 NaN 16 NaN 10 NaN 10 NaN 10 NaN 11 NaN 11 NaN 11 NaN 12 NaN 15 NaN 16 NaN 16 NaN 17 NaN 18 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140 140 140 140 14	copy() , inplace= inplace=T COUNTYID 53 141 63 127 161 43 91 87	STATEID 36 18 18 72 20 72 42 8	New York Indiana Indiana Puerto Rico Kansas Puerto Rico Pennsylvania Colorado	NY IN IN PR KS PR PA CO	Hamilton South Bend Danville San Juan Manhattan Coamo Blue Bell Weldona	Hamilton Roseland Danville Guaynabo Manhattan City Coamo Blue Bell Saddle Ridge Colleyville	City City Urban City Urban Borough City	tract tract tract tract tract tract tract tract tract	44.486 36.483 42.158 47.775 24.176 42.73 38.212 43.402 39.258
week week week week week week week week	1_bck_train 1_bck_test 1_bck_test rain.set_in rain BLOCKID 10 22 NaN 14 NaN 13 NaN 15 NaN 16 NaN 10 NaN 10 NaN 10 NaN 11 NaN 11 NaN 11 NaN 12 NaN 15 NaN 16 NaN 16 NaN 17 NaN 18 NaN	= df_test. ndex('UID', dex('UID', SUMLEVEL 140 140 140 140 140 140 140 14	copy() , inplace=inplace=T COUNTYID 53 141 63 127 161 43 91 87	STATEID 36 18 18 72 20 72 42 8 48	New York Indiana Indiana Puerto Rico Kansas Puerto Rico Pennsylvania Colorado Texas	NY IN IN PR KS PR PA CO TX	Hamilton South Bend Danville San Juan Manhattan Coamo Blue Bell Weldona Colleyville Las	Hamilton Roseland Danville Guaynabo Manhattan City Coamo Blue Bell Saddle Ridge Colleyville City	City City City Urban City Urban Borough City Town	tract	female_age_me 44.486 36.483 42.158 47.775 24.176 42.731 38.212 43.402 39.258 34.453

Out[10]: UID BLOCKID SUMLEVEL COUNTYID STATEID state state_ab city place type ... female_age_mean female_ag

777 230058 NaN

Camp 140 73 6 California CA Oceanside Pendleton City ... North

19.99315

Out[16]:		BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place	type	primary	 female_age_mean
	UID											
	255504	NaN	140	163	26	Michigan	MI	Detroit	Dearborn Heights City	CDP	tract	 34.78682
	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City	City	tract	 44.23451
	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	Millerton	Borough	tract	 41.62426
	248614	NaN	140	231	21	Kentucky	KY	Monticello	Monticello City	City	tract	 44.81200
	286865	NaN	140	355	48	Texas	TX	Corpus Christi	Edroy	Town	tract	 40.66618
	238088	NaN	140	105	12	Florida	FL	Lakeland	Crystal Springs	City	tract	 53.51255
	242811	NaN	140	31	17	Illinois	IL	Chicago	Chicago City	Village	tract	 33.14169
	250127	NaN	140	9	25	Massachusetts	MA	Lawrence	Methuen Town City	City	tract	 43.53905
	241096	NaN	140	27	19	lowa	IA	Carroll	Carroll City	City	tract	 45.63179
	287763	NaN	140	453	48	Texas	TX	Austin	Sunset Valley City	Town	tract	 35.99955
	11677 rd	ows × 79 co	olumns									

3. Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

```
In [17]: filter0 = (((df_train.isnull().sum()/df_train.shape[0])*100)>0)
         df_delcols_train = df_train.loc[:,filter0.values]
         print(df delcols train.isnull().sum()/df delcols train.shape[0]*100)
         print("*"*41)
         filter1 = (((df_test.isnull().sum()/df_test.shape[0])*100)>0)
         df delcols test = df test.loc[:,filter1.values]
         print(df_delcols_test.isnull().sum()/df_delcols_test.shape[0]*100)
                                         100.000000
         rent mean
                                           0.890983
         rent\_median
                                           0.890983
         rent stdev
                                           0.890983
         rent_sample_weight
                                          0.890983
         rent samples
                                           0.890983
                                          0.890983
         rent_gt_10
         rent gt 15
                                          0.890983
                                          0.890983
         rent gt 20
         rent gt 25
                                          0.890983
                                          0.890983
         rent_gt_30
         rent_gt_35
                                          0.890983
         rent_gt_40
                                          0.890983
         rent gt 50
                                           0.890983
                                          0.762122
         hi_mean
         hi\_median
                                          0.762122
                                          0.762122
         hi_stdev
         hi_sample_weight
                                          0.762122
         hi_samples
                                          0.762122
         family mean
                                          0.846802
         family median
                                          0.846802
         family stdev
                                          0.846802
         family_sample_weight
                                          0.846802
         family samples
                                          0.846802
         hc mortgage mean
                                          1.627333
         hc_mortgage_median
                                          1.627333
         hc_mortgage_stdev
                                          1.627333
         hc_mortgage_sample_weight
                                           1.627333
         hc_mortgage_samples
                                          1.627333
         hc_mean
                                           1.759876
         hc median
                                           1.759876
         hc stdev
                                           1.759876
         hc samples
                                          1.759876
         hc_sample_weight
                                          1.759876
         home_equity_second_mortgage
                                          1.325430
         {\tt second\_mortgage}
                                           1.325430
         home equity
                                           1.325430
```

1.325430

debt

second mortgage cdf	1 225/20
	1.325430
home_equity_cdf	1.325430
debt_cdf	1.325430
hs_degree	0.533854
hs degree male	0.566989
hs_degree_female	0.629579
male_age_mean	0.544899
male_age_median	0.544899
male_age_stdev	0.544899
male_age_sample_weight	0.544899
male age samples	0.544899
female age mean	0.592762
female age median	0.592762
female_age_stdev	0.592762
female_age_sample_weight	0.592762
<pre>female_age_samples</pre>	0.592762
pct_own	0.762122
married	0.552262
married snp	0.552262
separated	0.552262
•	
divorced	0.552262
dtype: float64	
***********	*****
BLOCKID	100.000000
rent mean	1.147555
rent median	1.147555
rent stdev	1.147555
rent_sample_weight	1.147555
rent_samples	1.147555
rent gt 10	1.156119
rent_gt_15	1.156119
rent_gt_20	1.156119
rent_gt_25	1.156119
rent_gt_30	1.156119
rent_gt_35	1.156119
rent_gt_40	1.156119
rent gt 50	1.156119
hi mean	0.959150
hi median	0.959150
hi_stdev	0.959150
hi_sample_weight	0.959150
hi_samples	0.959150
family_mean	1.070480
family_median	1.070480
family stdev	1.070480
family_sample_weight	1.070480
<pre>family_samples</pre>	1.070480
hc_mortgage_mean	2.098142
hc mortgage median	2.098142
hc_mortgage_stdev	2.098142
hc mortgage sample weight	2.098142
hc_mortgage_samples	2.098142
hc_mean	2.286546
hc_median	2.286546
hc_stdev	2.286546
hc samples	2.286546
hc sample weight	2.286546
	1.747024
home_equity_second_mortgage	
second_mortgage	1.747024
home_equity	1.747024
debt	1.747024
second mortgage cdf	1.747024
home_equity_cdf	1.747024
debt cdf	1.747024
_	
hs_degree	0.667980
hs_degree_male	0.702235
hs degree female	0.822129
male_age_mean	0.659416
male_age_median	0.659416
male age stdev	0.659416
male_age_sample_weight	0.659416
male_age_samples	0.659416
female_age_mean	0.745054
female_age_median	0.745054
female_age_stdev	0.745054
female age sample weight	0.745054
female_age_samples	0.745054
pct_own	0.959150
married	0.659416
married_snp	0.659416
separated	0.659416
divorced	0.659416
	0.039410
dtype: float64	

Dropping Following features:

-'BLOCKID' as it is having all null values and 'SUMLEVEL' as well as 'primary' feature as it is having only 1 entry.

```
In [18]: df_train.SUMLEVEL.nunique()
Out[18]: 1
In [19]: print("Before dropping the feature from train data:",df train.shape)
         df_train.drop(columns = ['BLOCKID', 'primary', 'SUMLEVEL'], inplace = True)
         print("After dropping the feature from train data:",df_train.shape)
         print("Before dropping the feature from test data:",df_test.shape)
         df_test.drop(columns = ['BLOCKID', 'primary', 'SUMLEVEL'], inplace = True)
         print("After dropping the feature from test data:",df_test.shape)
         Before dropping the feature from train data: (27161, 79)
         After dropping the feature from train data: (27161, 76)
         Before dropping the feature from test data: (11677, 79)
         After dropping the feature from test data: (11677, 76)
In [20]: filter0 = (((df_train.isnull().sum()/df_train.shape[0])*100)>0)
         df delcols train = df train.loc[:,filter0.values]
         print(df_delcols_train.isnull().sum()/df_delcols_train.shape[0]*100)
         print("*"*39)
         filter1 = (((df_test.isnull().sum()/df_test.shape[0])*100)>0)
         df delcols test = df test.loc[:,filter1.values]
         print(df_delcols_test.isnull().sum()/df_delcols_test.shape[0]*100)
         rent mean
                                        0.890983
         rent median
                                        0.890983
         rent stdev
                                        0.890983
         rent_sample_weight
                                        0.890983
         rent_samples
                                        0.890983
         rent_gt_10
                                        0.890983
         rent gt 15
                                       0.890983
         rent_gt_20
                                       0.890983
         rent_gt_25
                                        0.890983
         rent gt 30
                                       0.890983
         rent gt 35
                                       0.890983
         rent_gt_40
                                       0.890983
         rent gt 50
                                        0.890983
                                       0.762122
         hi mean
         hi median
                                       0.762122
         hi_stdev
                                       0.762122
         hi_sample_weight
                                       0.762122
         hi_samples
                                       0.762122
         family mean
                                      0.846802
         family_median
                                      0.846802
         family stdev
                                       0.846802
         family_sample_weight
family_samples
                                      0.846802
         family_samples
                                     0.846802
         hc_mortgage_mean
hc_mortgage_median
hc_mortgage_stdev
                                      1.627333
1.627333
                                      1.627333
         hc_mortgage_sample_weight 1.627333
                                       1.627333
         hc_mortgage_samples
         hc mean
                                        1.759876
         hc median
                                       1.759876
         hc_stdev
                                       1.759876
         hc_samples
                                        1.759876
         hc sample weight
                                        1.759876
         home_equity_second_mortgage 1.325430
                                       1.325430
         second mortgage
         home_equity
                                        1.325430
                                        1.325430
                                       1.325430
         second_mortgage_cdf
         home_equity_cdf
                                       1.325430
         {\tt debt\_cdf}
                                       1.325430
                                       0.533854
         hs degree
         hs_degree_male
                                      0.566989
         hs_degree_female
male_age_mean
male_age_median
male_age_stdev
                                    0.629579
                                       0.544899
                                       0.544899
                                      0.544899
         male_age_sample_weight
                                     0.544899
                                      0.544899
         male_age_samples
         female_age_mean
                                       0.592762
         female_age_median
female_age_stdev
                                      0.592762
         female_age_stdev
                                       0.592762
         female_age_sample_weight
                                       0.592762
         female_age_samples
                                       0.592762
```

0.762122

pct own

```
married
                                                                                0.552262
                  married_snp
separated
                                                                              0.552262
                                                                              0.552262
                  divorced
                                                                              0.552262
                  dtype: float64
                   ************
                  rent_mean 1.147555
rent_median 1.147555
                 1.156119
                  rent gt 15
                                                                            1.156119
                  rent gt 20
                                                                               1.156119
                  rent gt 25
                                                                             1.156119
                  rent gt 30
                  rent gt 35
                                                                            1.156119
                                                                             1.156119
                  rent_gt_40
                  rent gt 50
                                                                               1.156119
                                                                            0.959150
                  hi_mean
                  hi median
                                                                            0.959150
                  hi_stdev 0.959150
hi_sample_weight 0.959150
hi_samples 0.959150

      maily_mean
      0.959150

      family_mean
      1.070480

      family_median
      1.070480

      family_stdev
      1.070480

      family_sample_weight
      1.070480

      family_samples
      1.070480

      hc_mortgage_mean
      2.098142

      hc_mortgage_median
      2.098142

      hc_mortgage_stdev
      2.098142

      hc_mortgage_sample_weight
      2.098142

      hc_mortgage_samples
      2.098142

      hc_mean
      2.286546

      hc_median
      2.286546

                                                                              2.286546
                  hc stdev
                                                                              2.286546
                                                                              . 200546
2 . 286546
2 . 20
                  hc_samples
                  hc_sample_weight
                                                                                2.286546
                  home_equity_second_mortgage 1.747024
                  second_mortgage
                                                                             1.747024
                  home equity
                                                                               1.747024
                 debt 1.747024

debt 1.747024

home_equity_cdf 1.747024

debt_cdf 1.747024

hs_degree 0.667980

hs_degree_male 0.702235

hs_degree_female 0.822129

male_age_mean 0.659416

male_age_median 0.659416

male_age_stdev 0.659416

male_age_sample_weight 0.659416

female_age_mean 0.745054

female_age_median 0.745054

female_age_sample_weight 0.745054

female_age_sample_weight 0.745054

female_age_sample_weight 0.745054

female_age_sample_weight 0.745054

female_age_sample_weight 0.745054

female_age_sample_weight 0.745054

female_age_samples 0.745054

female_age_samples 0.745054

female_age_samples 0.745054

female_age_samples 0.745054

married 0.959150

married 0.659416
                                                                              1.747024
                  debt
                                                                            0.959150
                  pct own
                                                                             0.659416
                  married
                  married_snp
                                                                              0.659416
                                                                             0.659416
                  separated
                  divorced
                                                                            0.659416
                  dtype: float64
In [21]: df_null_train = df_train[df_train.isna().any(axis=1)]
                  print("Shape of null df_train:", df_null_train.shape)
                  df null train.head()
                  df_null_test = df_test[df_test.isna().any(axis=1)]
                  print("Shape of null df_test:", df_null_test.shape)
                  df_null_test.head()
```

Shape of null df_train: (576, 76)
Shape of null df_test: (322, 76)

ut[21]:		COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat .	•••	female_age_mean 1
	UID												
	265339	3	32	Nevada	NV	Las Vegas	Winchester	City	89119	702	36.111448 .		33.57247
	287596	451	48	Texas	TX	San Angelo	San Angelo City	Town	76903	325	31.431831 .		21.40298
	250903	25	25	Massachusetts	MA	Cambridge	Cambridge City	City	2139	617	42.359478 .		22.53871
	287557	441	48	Texas	TX	Abilene	Tye City	Town	79607	325	32.423876		22.72458
	247510	209	20	Kansas	KS	Kansas City	Kansas City City	City	66104	913	39.171767		NaN
	5 rows ×	76 columns	5										

```
In [22]: percent_null_train = (df_null_train.shape[0]/df_train.shape[0])*100
    print("% of null in train:",percent_null_train)
    percent_null_test = (df_null_test.shape[0]/df_test.shape[0])*100
    print("% of null in test:",percent_null_test)
```

% of null in train: 2.1206877508191893 % of null in test: 2.757557591847221

Now we know that the percentage of NULL data present in the dataset is very low that is 2.12%, which is very low compared to the dataset.

So we can conclude to dropping these null entries as we won't lose much information.

```
In [23]: df_train.dropna(inplace=True)
    df_test.dropna(inplace=True)

In [24]: print(df_train.shape, df_test.shape)
    (26585, 76) (11355, 76)
```

4. Perform debt analysis. You may take the following steps:

a) Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map. You may keep the upper limit for the percent of households with a second mortgage to 50 percent

Using SQL

```
In [25]: from pandasql import sqldf
          query1 = "SELECT place, pct_own, second_mortgage, lat, lng FROM df_train where pct_own > 0.10 AND second_mortgage
In [26]:
          query_func = lambda q : sqldf(q, globals())
          top_2500 = query_func(query1)
In [27]: top_2500
                                                                           Ing
                        place pct own second mortgage
              0 Worcester City
                               0.20247
                                                 0.43363 42.254262
                                                                    -71.800347
                   Harbor Hills
                               0.15618
                                                 0.31818 40.751809
                                                                     -73.853582
                   Glen Burnie
                               0.22380
                                                 0.30212 39.127273
                                                                    -76.635265
              3 Egypt Lake-leto
                               0.11618
                                                 0.28972 28.029063
                                                                     -82 495395
              4
                   Lincolnwood
                               0.14228
                                                 0.28899 41.967289
                                                                    -87.652434
          2495
                    Cutler Bay
                               0.50519
                                                 0.06813 25.550391
                                                                    -80 347791
                                                 0.06812 39.556756
          2496
                   Jacksonburg
                               0.92888
                                                                     -84.443252
                                                 0.06812 32.913822
                                                                    -97.204310
          2497
                     Keller City
                               0.97987
          2498
                  Mays Landing
                               0.70642
                                                 0.06810 39.432879
                                                                    -74 686137
                   Oakland City
                               0.35225
                                                 0.06805 37.766197 -122.182303
          2499
```

2500 rows × 5 columns

```
Out[28]: 0.99249
```

```
In [29]: top_2500.second_mortgage.max()
```

Out[29]: 0.43363

resolution=50.

fig.show()

showcoastlines=True, coastlinecolor="RebeccaPurple",

showland=True, landcolor="LightGreen",
showocean=True, oceancolor="LightBlue",
showlakes=True, lakecolor="Blue",
showrivers=True, rivercolor="Blue")

In the above steps, we first write include the sqldf function from the pandasql library and then we write the query where we specify that the percent ownership should be greater than 10% and the upper limit of second_mortgage to 50% & sorting the data in descending order of the 'second_mortgage' & limiting the records to 2500.

```
In [30]: import plotly.express as px
         import plotly.graph objects as go
In [31]: #Using graph objects
         fig = go.Figure(data=go.Scattergeo(
             lat = top 2500['lat'],
             lon = top_2500['lng']),)
         fig.update_traces(marker=dict(size=5))
         fig.update_layout(geo=dict(
                 scope = 'north america',
                 showland = True,
                 landcolor = "rgb(212, 212, 212)",
                 subunitcolor = "rgb(255, 255, 255)",
                 countrycolor = "rgb(255, 255, 255)",
                 showlakes = True,
                 lakecolor = "rgb(255, 255, 255)",
                 showsubunits = True,
                 showcountries = True,
                 resolution = 50,
                 projection = dict(
                     type = 'conic conformal',
                     rotation_lon = -100
                 lonaxis = dict(
                     showgrid = True,
                     gridwidth = 0.5,
                     range= [ -140.0, -55.0 ],
                     dtick = 5
                 lataxis = dict (
                     showgrid = True,
                     gridwidth = 0.5,
                     range= [ 20.0, 60.0 ],
                     dtick = 5
             ), title='Top 2,500 locations with second mortgage is the highest and percent ownership is above 10 percent
         fig.update_geos(
             projection_type="orthographic",
```

Top 2,500 locations with second mortgage is the highest and percent ownersh

Top 2,500 locations with second mortgage is the highest and percent ownersh

b) Use the following bad debt equation: Bad Debt = P (Second Mortgage ∩ Home Equity Loan) Bad Debt = second_mortgage + home_equity - home_equity_second_mortgage

```
In [33]:
           df_train['BAD_DEBT'] = df_train['second_mortgage'] + df_train['home_equity'] - df_train['home_equity_second_mortgage']
            df_train
                    COUNTYID STATEID
Out[33]:
                                                  state state_ab
                                                                        city
                                                                                  place
                                                                                            type zip_code area_code
                                                                                                                               lat ... female_age_median
               UID
            267822
                                              New York
                                                                                                     13346
                                                                                                                   315 42.840812 ...
                                                                                                                                                 45.33333
                            53
                                       36
                                                             NY
                                                                    Hamilton
                                                                               Hamilton
                                                                                             City
                                                                       South
                           141
                                       18
                                                Indiana
                                                              IN
                                                                                                     46616
                                                                                                                   574 41.701441 ...
                                                                                                                                                 37.58333
            246444
                                                                              Roseland
                                                                                             City
                                                                       Bend
            245683
                            63
                                       18
                                                Indiana
                                                              IN
                                                                    Danville
                                                                                Danville
                                                                                             City
                                                                                                     46122
                                                                                                                   317 39.792202 ...
                                                                                                                                                 42.83333
                                                              PR
                                                                                                                                                 50.58333
            279653
                           127
                                       72
                                            Puerto Rico
                                                                   San Juan
                                                                             Guaynabo
                                                                                           Urban
                                                                                                       927
                                                                                                                   787
                                                                                                                        18.396103
                                                                              Manhattan
            247218
                           161
                                       20
                                                              KS
                                                                  Manhattan
                                                                                             City
                                                                                                     66502
                                                                                                                       39.195573 ...
                                                                                                                                                 21.58333
                                                Kansas
                                                                                                                   785
                                                                                   City
                            43
                                                              PR
                                                                                                                                                 40.16667
            279212
                                       72
                                            Puerto Rico
                                                                     Coamo
                                                                                Coamo
                                                                                           Urban
                                                                                                       769
                                                                                                                   787
                                                                                                                        18.076060
            277856
                            91
                                       42
                                           Pennsylvania
                                                              PA
                                                                    Blue Bell
                                                                               Blue Bell Borough
                                                                                                     19422
                                                                                                                   215
                                                                                                                       40.158138 ...
                                                                                                                                                 39.50000
                                                                                 Saddle
            233000
                            87
                                        8
                                                                                                     80653
                                                                                                                       40.410316 ...
                                                                                                                                                 46.33333
                                               Colorado
                                                             CO
                                                                    Weldona
                                                                                             City
                                                                                                                   970
                                                                                  Ridae
                                                                              Colleyville
            287425
                           439
                                       48
                                                 Texas
                                                              TX
                                                                   Colleyville
                                                                                           Town
                                                                                                     76034
                                                                                                                   817
                                                                                                                       32.904866
                                                                                                                                                 43.41667
                                                                                   City
                                                                        Las
            265371
                             3
                                       32
                                                Nevada
                                                              NV
                                                                               Paradise
                                                                                             City
                                                                                                     89123
                                                                                                                   702 36.064754 ...
                                                                                                                                                 29.83333
                                                                      Vegas
           26585 rows × 77 columns
```

c) Create pie charts to show overall debt and bad debt

```
In [34]: df_train['BINS_OD'] = pd.cut(df_train['debt'], bins=[0,0.10,1], labels=['Less than 50%', '50%-100%'])
    df_train['BINS_BD'] = pd.cut(df_train['BAD_DEBT'], bins=[0,0.10,1], labels=['Less than 50%', '50%-100%'])

    pop1=(0,0.01)
    pop2=(0.01,0.01)
    plt.figure(figsize=(12,10))
    plt.subplots_adjust(wspace=0.2)
    plt.subplot(1,2,1)
    plt.title('OVERALL DEBT')
    df_train.groupby(['BINS_OD']).size().plot(kind = 'pie', subplots=True, startangle = 90, autopct = '%1.2f%', explt.ylabel("")
    plt.subplot(1,2,2)
    plt.title('BAD_DEBT')
    df_train.groupby(['BINS_BD']).size().plot(kind = 'pie', subplots=True, startangle = 90, autopct = '%1.2f%', explt.ylabel("")
    plt.show()
```


d) Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

```
In [35]: city = df_train.city.value_counts()
```

```
city top 10 = \text{city.head}(10)
           city_top_10.index
Out[35]: Index(['Chicago', 'Brooklyn', 'Los Angeles', 'Houston', 'Philadelphia',
                    'San Antonio', 'Baltimore', 'Las Vegas', 'Phoenix', 'Miami'],
                  dtype='object')
In [36]: df_train['GOOD_DEBT'] = 1 - df_train.BAD DEBT
           df_train
Out[36]:
                   COUNTYID STATEID
                                               state state_ab
                                                                    city
                                                                             place
                                                                                       type zip_code area_code
                                                                                                                       lat ... female_age_samples
              UID
           267822
                           53
                                    36
                                           New York
                                                          NY
                                                                Hamilton
                                                                          Hamilton
                                                                                       City
                                                                                               13346
                                                                                                            315 42.840812 ...
                                                                                                                                            2618.0
                                                                  South
           246444
                                    18
                                             Indiana
                                                                          Roseland
                                                                                       City
                                                                                               46616
                                                                                                                41.701441
                                                                                                                                            1284.0
                                                                   Bend
           245683
                                                                                                                39.792202 ...
                                                                                                                                            3238.0
                          63
                                    18
                                             Indiana
                                                                Danville
                                                                                       City
                                                                                               46122
                                                                                                            317
                                                           IN
                                                                           Danville
           279653
                                          Puerto Rico
                                                          PR
                                                                                                                18.396103 ...
                                                                                                                                            1559.0
                          127
                                    72
                                                               San Juan
                                                                         Guaynabo
                                                                                      Urban
                                                                                                 927
                                                                                                            787
                                                                         Manhattan
           247218
                          161
                                    20
                                             Kansas
                                                          KS
                                                              Manhattan
                                                                                       City
                                                                                               66502
                                                                                                            785 39.195573 ...
                                                                                                                                            3051.0
                                                                              City
           279212
                           43
                                    72
                                          Puerto Rico
                                                          PR
                                                                 Coamo
                                                                                                 769
                                                                                                            787 18.076060 ...
                                                                                                                                            938.0
                                                                            Coamo
                                                                          Blue Bell Borough
           277856
                                                                Blue Bell
                                                                                               19422
                                                                                                                                            2039.0
                           91
                                    42
                                        Pennsylvania
                                                          PA
                                                                                                            215 40.158138 ...
                                                                            Saddle
           233000
                           87
                                     8
                                                          CO
                                                                Weldona
                                                                                               80653
                                                                                                                40.410316
                                                                                                                                            1364.0
                                            Colorado
                                                                                       City
                                                                             Ridge
                                                                         Colleyville
           287425
                          439
                                    48
                                              Texas
                                                          TX
                                                               Colleyville
                                                                                               76034
                                                                                                            817 32.904866 ...
                                                                                                                                            5815.0
                                                                                      Town
                                                                               City
                                                                    Las
           265371
                                                                                                            702 36.064754 ...
                                                                                                                                            1911.0
                           3
                                    32
                                             Nevada
                                                          NV
                                                                          Paradise
                                                                                       City
                                                                                               89123
                                                                  Vegas
          26585 rows × 80 columns
          new_df = df_train[['city','second_mortgage','home_equity','G00D_DEBT','BAD_DEBT']]
In [37]:
           new df
                         city second_mortgage home_equity GOOD_DEBT BAD_DEBT
Out[37]:
              UID
           267822
                                       0.02077
                                                     0.08919
                                                                  0.90592
                                                                              0.09408
                     Hamilton
           246444 South Bend
                                        0.02222
                                                     0.04274
                                                                  0.95726
                                                                              0.04274
           245683
                      Danville
                                        0.00000
                                                     0.09512
                                                                  0.90488
                                                                              0.09512
           279653
                                        0.01086
                                                     0.01086
                                                                  0.98914
                                                                              0.01086
                     San Juan
           247218
                    Manhattan
                                        0.05426
                                                     0.05426
                                                                  0.94574
                                                                              0.05426
           279212
                       Coamo
                                       0.00000
                                                     0.00000
                                                                  1.00000
                                                                              0.00000
           277856
                     Blue Bell
                                        0.02112
                                                     0.19641
                                                                  0.79092
                                                                              0.20908
           233000
                                        0.02024
                                                     0.07857
                                                                  0.92143
                                                                               0.07857
                     Weldona
           287425
                                        0.07550
                                                     0.12556
                                                                  0.85695
                                                                              0.14305
                    Colleyville
           265371
                    Las Vegas
                                       0.01412
                                                     0.18362
                                                                  0.81638
                                                                              0.18362
          26585 rows × 5 columns
In [38]: new_df = new_df[new_df['city'].isin(city_top_10.index)]
           new_df.city.value_counts()
Out[38]: Chicago
                              286
           Brooklyn
                              261
           Los Angeles
                              219
           Houston
                              213
           Philadelphia
                              160
           San Antonio
                              138
           Baltimore
                              128
                              123
           Las Vegas
           Phoenix
                              114
           Miami
                              105
           Name: city, dtype: int64
In [39]: plt.figure(figsize=(12,20))
```

```
plt.subplots_adjust(hspace=0.35)
plt.subplot(4,1,1)
plt.title('CITY VS SECOND MORTGAGE')
sns.boxplot(x = 'city', y = 'second_mortgage', data = new_df)
plt.xlabel("City")
plt.ylabel("Second Mortgage")
plt.subplot(4,1,2)
plt.title('CITY VS HOME EQUITY')
sns.boxplot(x = 'city', y = 'home_equity', data = new_df)
plt.xlabel("City")
plt.ylabel("Home Equity")
plt.subplot(4,1,3)
plt.title('CITY VS GOOD DEBT')
sns.boxplot(x = 'city', y = 'GOOD_DEBT', data = new_df)
plt.xlabel("City")
plt.ylabel("Good Debt")
plt.subplot(4,1,4)
plt.title('CITY VS BAD DEBT')
sns.boxplot(x = 'city', y = 'BAD_DEBT', data = new_df)
plt.xlabel("City")
plt.ylabel("Bad Debt")
plt.show()
```

CITY VS SECOND MORTGAGE


```
In [40]: df_train['Remaning_income'] = df_train['family_median'] - df_train['hi_median']
df_train
```

Out[40]:		COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 pct_own	married
	UID												
	267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 0.79046	0.57851
	246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 0.52483	0.34886
	245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 0.85331	0.64745
	279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 0.65037	0.47257
	247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 0.13046	0.12356
	279212	43	72	Puerto Rico	PR	Coamo	Coamo	Urban	769	787	18.076060	 0.60422	0.24603
	277856	91	42	Pennsylvania	PA	Blue Bell	Blue Bell	Borough	19422	215	40.158138	 0.68072	0.61127
	233000	87	8	Colorado	СО	Weldona	Saddle Ridge	City	80653	970	40.410316	 0.78508	0.70451
	287425	439	48	Texas	TX	Colleyville	Colleyville City	Town	76034	817	32.904866	 0.93970	0.75503
	265371	3	32	Nevada	NV	Las Vegas	Paradise	City	89123	702	36.064754	 0.27912	0.34426

26585 rows × 81 columns

```
In [41]: plt.figure(figsize=(12,6))
   plt.subplots_adjust(wspace=0.20)
   plt.subplot(1,2,1)
   sns.boxplot(data = df_train[['family_mean', 'hi_mean', 'Remaning_income']])
   plt.title("Collated Mean Income Distribution")
   plt.subplot(1,2,2)
   sns.boxplot(data = df_train[['family_median', 'hi_median', 'Remaning_income']])
   plt.title("Collated Median Income Distribution")
   plt.show()
```



```
In [42]: plt.figure(figsize=(18,4))
   plt.subplots_adjust(wspace=0.20)
   plt.subplot(1,3,1)
   sns.distplot(df_train['family_median'])
   plt.title("Collated Family Income Distribution")
   plt.subplot(1,3,2)
   sns.distplot(df_train['hi_median'])
   plt.title("Collated Household Income Distribution")
   plt.subplot(1,3,3)
   sns.distplot(df_train['Remaning_income'])
```

plt.show() Collated Family Income Distribution _{1e-5} Collated Household Income Distribution _{le-5}Collated Remaining Income Distribution 1.6 1.75 1.4 1.50 1.2 0.8 0.0 1.00 0.75 0.6 0.50 0.25 0.2 100000 150000 200000 250000 100000 150000 200000 250000 25000 50000 75000 100000125000150000 family median hi median Remaning incom-

Week 2

Exploratory Data Analysis (EDA):

plt.title("Collated Remaining Income Distribution")

1. Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

```
fig, (ax1, ax2, ax3) = plt.subplots(3,1)
In [43]:
         sns.distplot(df_train['pop'], ax = ax1)
         sns.distplot(df_train['male_pop'], ax = ax2)
         sns.distplot(df_train['female_pop'], ax = ax3)
         plt.subplots_adjust(hspace=0.8)
         plt.show()
              0.0002
           Density
              0.0000
                                 10000
                                                                  40000
                                            20000
                                                       30000
                                                                             50000
                                                     pop
            0.00025
            0.00000
                                            10000
                                  5000
                                                       15000
                                                                  20000
                                                                             25000
                                                  male_pop
          Density
0.00025
            0.00000
                                  5000
                                            10000
                                                       15000
                                                                 20000
                                                                            25000
                                                 female_pop
```

```
In [44]: fig, (ax1, ax2) = plt.subplots(2,1)
    sns.distplot(df_train['male_age_median'], ax = ax1)
    sns.distplot(df_train['female_age_median'], ax = ax2)
    plt.subplots_adjust(hspace=0.30)
    plt.show()
```


a) Use pop and ALand variables to create a new field called population density

```
In [45]: df_train['pop_density'] = df_train['pop']/df_train['ALand']
df_test['pop_density'] = df_test['pop']/df_test['ALand']
df_train.head()
```

Out[45]:		COUNTYID	STATEID	state	state_ab	city	place	type	zip_code	area_code	lat	 married	married_snp	sep
	UID													
	267822	53	36	New York	NY	Hamilton	Hamilton	City	13346	315	42.840812	 0.57851	0.01882	0
	246444	141	18	Indiana	IN	South Bend	Roseland	City	46616	574	41.701441	 0.34886	0.01426	0
	245683	63	18	Indiana	IN	Danville	Danville	City	46122	317	39.792202	 0.64745	0.02830	0
	279653	127	72	Puerto Rico	PR	San Juan	Guaynabo	Urban	927	787	18.396103	 0.47257	0.02021	0
	247218	161	20	Kansas	KS	Manhattan	Manhattan City	City	66502	785	39.195573	 0.12356	0.00000	0

5 rows × 82 columns

```
In [46]: plt.figure(figsize=(10,4))
    plt.subplot(1,2,1)
    sns.distplot(df_train['pop_density'])
    plt.title("Population Density Distribution for Train data")
    plt.xlabel("Population Density df_train")
    plt.grid()
    plt.subplot(1,2,2)
    sns.distplot(df_test['pop_density'])
    plt.title("Population Density Distribution for Test data")
    plt.xlabel("Population Density df_test")
    plt.grid()
    plt.subplots_adjust(wspace= 0.30)
    plt.show()
```

Population Density Distribution for Train data 400 300 200 100 0.00 0.02 0.04 0.06 Population Density df_train

b) Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age

```
df_train[['pop', 'Median age']].head()
Out[47]:
           pop Median_age
        UID
      267822 5230
               44 667430
      246444 2633
               34.722748
      245683 6881
               41.774472
      279653 2700
               49 879012
      247218 5637
               21.965629
df_test[['pop', 'Median_age']].head()
Out[48]:
           pop Median_age
        UID
      255504 3417
               31 189053
      252676 3796
               46.382991
      276314 3944
               43.147420
      248614 2508
               45.155104
      286865 6230
               43.235983
```

c) Visualize the findings using appropriate chart type

```
In [49]: plt.figure(figsize=(10,4))
   plt.subplot(1,2,1)
   sns.distplot(df_train['Median_age'])
   plt.title("Median Age Distribution for Train Data")
   plt.xlabel("Median Age")
   plt.grid()
   plt.subplot(1,2,2)
   sns.distplot(df_test['Median_age'])
   plt.title("Median Age Distribution for Test Data")
   plt.xlabel("Median Age")
   plt.grid()
   plt.subplots_adjust(wspace= 0.30)
   plt.show()
```


- Age ranges from 18 years to 75 years.
- The majority belongs to 40 years.
- Little right skewness is observed.

```
In [50]:
    plt.figure(figsize=(10,4))
    plt.subplot(1,2,1)
    sns.boxplot(df_train['Median_age'])
    plt.title("Population Density for Train Data")
    plt.xlabel("Median Age")
    plt.subplot(1,2,2)
    sns.boxplot(df_test['Median_age'])
    plt.title("Population Density for Test Data")
    plt.xlabel("Median Age")
    plt.subplots_adjust(wspace= 0.30)
    plt.show()
```

Population Density for Train Data 20 30 40 50 60 70 80 Median Age

2. Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

```
In [51]: df_train['pop'].describe()
Out[51]: count
                   26585.000000
         mean
                    4367.763438
         std
                    2093.787018
         min
                      63.000000
         25%
                    2938.000000
                    4078.000000
         50%
         75%
                    5456.000000
                   53812.000000
         max
         Name: pop, dtype: float64
```

```
In [52]: |df_train['pop_bins'] = pd.cut(df_train['pop'], bins = 5, labels = ['Very Low', 'Low', 'Medium', 'High', 'Very High']
In [53]: df test['pop bins'] = pd.cut(df test['pop'], bins = 5, labels = ['Very Low', 'Low', 'Medium', 'High', 'Very High
In [54]: df train[['pop', 'pop bins']]
Out[54]:
                  pop pop_bins
            UID
          267822 5230 Very Low
          246444
                 2633 Very Low
          245683
                 6881 Very Low
          279653
                 2700 Very Low
          247218
                 5637 Very Low
          279212
                 1847 Very Low
          277856
                 4155 Very Low
          233000
                 2829
                       Very Low
          287425 11542
                           Low
          265371 3726 Very Low
         26585 rows × 2 columns
In [55]: df_test[['pop', 'pop_bins']]
Out[55]:
                 pop pop_bins
            UID
          255504 3417 Very Low
          252676 3796 Very Low
          276314 3944 Very Low
          248614 2508 Very Low
          286865 6230
                          Low
          238088 5611 Very Low
          242811 2695 Very Low
          250127 7392
                          Low
          241096 5945
                          Low
          287763 4117 Very Low
         11355 rows × 2 columns
In [56]: df train.pop bins.value counts()
Out[56]: Very Low
                       26334
                       238
          Low
          Medium
                           9
         High
                           3
          Very High
         Name: pop_bins, dtype: int64
In [57]: df_test.pop_bins.value_counts()
Out[57]: Very Low
                       8977
          Low
                       2306
          Medium
                        58
          High
                         11
          Very High
                          3
          Name: pop_bins, dtype: int64
          a) Analyze the married, separated, and divorced population for these population brackets
In [58]: df_train.groupby(by = 'pop_bins')[['married', 'separated', 'divorced']].count()
```

```
married separated divorced
Out[58]:
            pop_bins
            Very Low
                                   26334
                                            26334
                Low
                          238
                                     238
                                              238
             Medium
                            9
                                       9
                                                 9
                High
                            3
                                       3
           Very High
```

```
In [59]: df_train.groupby(by = 'pop_bins')[['married', 'separated', 'divorced']].agg(['mean', 'median'])
                              married
                                                               divorced
Out[59]:
                                            separated
                      mean
                              median
                                        mean median
                                                         mean
                                                                median
          pop_bins
           Very Low 0.511869 0.528105 0.019017 0.01351 0.101048 0.096090
               Low 0.584691 0.592575 0.015655 0.01106 0.075749 0.070565
            Medium 0.655737 0.618710 0.005003 0.00412 0.065927 0.064890
              High 0.726957 0.736060 0.015663 0.00916 0.077310 0.063050
          Very High 0.734740 0.734740 0.004050 0.00405 0.030360 0.030360
```

- In the Very Low population group, there are more divorced people as compared to the rest of the population category.
- Very High population group has highest number of married people, lowest number of separated as well as lowest number of divorced people as compared to the rest of the population category.

b) Visualize using appropriate chart type

```
In [60]: pop_bin_mean = df_train.groupby(by = 'pop_bins')[['married', 'separated', 'divorced']].agg(['mean'])
    pop_bin_median = df_train.groupby(by = 'pop_bins')[['married', 'separated', 'divorced']].agg(['median'])

In [61]: pop_bin_mean.plot(title = "Meanwise Population")
    plt.xlabel("Population Category")
    plt.legend(loc = "best")
    plt.grid()
    plt.show()
```



```
In [62]: pop_bin_median.plot(title = "Medianwise Population")
    plt.xlabel("Population Category")
    plt.legend(loc = "best")
    plt.grid()
    plt.show()
```


3. Please detail your observations for rent as a percentage of income at an overall level, and for different states.

```
In [63]: df_train[['state','rent_mean', 'rent_median']]
Out[63]:
                       state rent_mean rent_median
            UID
          267822
                    New York
                             769.38638
                                             784.0
          246444
                                             848.0
                     Indiana
                             804.87924
          245683
                      Indiana
                             742.77365
                                             703.0
          279653
                  Puerto Rico
                             803.42018
                                             782.0
          247218
                     Kansas
                             938.56493
                                             881.0
          279212
                  Puerto Rico
                             439.42839
                                             419.0
          277856
                 Pennsylvania
                             1813.19253
                                            1788.0
          233000
                             849.39107
                                             834.0
                    Colorado
          287425
                      Texas 1972.45746
                                            1843.0
          265371
                     Nevada
                             949.84199
                                             924.0
         26585 rows × 3 columns
In [64]: rent state = df train.groupby(by = 'state')['rent mean'].mean()
          rent_state.head()
Out[64]: state
          Alabama
                         768.810406
          Alaska
                         1173.830410
                         1101.133798
          Arizona
                         715.367386
          Arkansas
                        1479.363998
          California
          Name: rent mean, dtype: float64
In [65]: income_state = df_train.groupby(by = 'state')['family_mean'].mean()
          income_state.head()
Out[65]: state
                         66814.665178
          Alabama
          Alaska
                         92504.826703
          Arizona
                         73546.551858
          Arkansas
                         64046.416919
                        88438.468548
          California
          Name: family_mean, dtype: float64
In [66]: overall_percentage = rent_state/income_state
          overall percentage.head()
```

4. Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

- · Very High Positive Correlation is observed between
 - male pop, female pop & pop
 - family_mean & hi_mean
 - family age mean & male age mean
- High Positive Correlation is observed between
 - hi_mean & rent_mean
 - family_mean & rent_mean
 - hs_degree & family_mean
 - married & pct_own

Project Task: Week 3

Data Pre-processing:

- 1. The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.
- 2. Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data. Following are the list of latent variables:
 - Highschool graduation rates
 - Median population age
 - Second mortgage statistics
 - Percent own
 - · Bad debt expense

<class 'pandas.core.frame.DataFrame'> Int64Index: 26585 entries, 267822 to 265371 Data columns (total 76 columns):

	columns (total 76 columns):		
#	Column	Non-Null Count	Dtype
	COUNTYID	26505 non null	 in+64
0 1	COUNTYID STATEID	26585 non-null 26585 non-null	int64 int64
2	zip code	26585 non-null	
3	area code	26585 non-null	
4	lat	26585 non-null	float64
5	lng	26585 non-null	float64
6	ALand	26585 non-null	
7	AWater	26585 non-null	int64
8 9	pop male pop	26585 non-null 26585 non-null	int64 int64
10	female pop	26585 non-null	int64
11	rent mean	26585 non-null	float64
12	rent median	26585 non-null	
13	rent_stdev	26585 non-null	float64
14	rent_sample_weight	26585 non-null	
15	rent_samples	26585 non-null	
16 17	rent_gt_10	26585 non-null 26585 non-null	
18	rent_gt_15 rent_gt_20	26585 non-null	float64
19	rent gt 25	26585 non-null	
20	rent gt 30	26585 non-null	
21	rent_gt_35	26585 non-null	float64
22	rent_gt_40	26585 non-null	
23	rent_gt_50	26585 non-null	
24	universe_samples	26585 non-null	
25 26	used_samples hi mean	26585 non-null 26585 non-null	
27	hi median	26585 non-null	float64
28	hi stdev	26585 non-null	
29	hi sample weight	26585 non-null	float64
30	hi_samples	26585 non-null	float64
31	family_mean	26585 non-null	
32	family_median	26585 non-null	float64
33	family_stdev	26585 non-null	float64
34 35	<pre>family_sample_weight family samples</pre>	26585 non-null 26585 non-null	float64 float64
36	hc mortgage mean	26585 non-null	
37	hc mortgage median	26585 non-null	
38	hc_mortgage_stdev	26585 non-null	
39	hc_mortgage_sample_weight	26585 non-null	
40	hc_mortgage_samples	26585 non-null	
41	hc_mean	26585 non-null	
42 43	hc_median hc stdev	26585 non-null 26585 non-null	float64 float64
44	hc samples	26585 non-null	float64
45	hc sample weight	26585 non-null	float64
46	home_equity_second_mortgage	26585 non-null	float64
47	second_mortgage	26585 non-null	float64
48	home_equity	26585 non-null	float64
49	debt	26585 non-null	float64 float64
50 51	<pre>second_mortgage_cdf home equity_cdf</pre>	26585 non-null 26585 non-null	float64
52	debt cdf	26585 non-null	float64
53	hs degree	26585 non-null	float64
54	hs_degree_male	26585 non-null	float64
55	hs_degree_female	26585 non-null	float64
56	male_age_mean	26585 non-null	float64
57 58	male_age_median	26585 non-null 26585 non-null	float64
58 59	<pre>male_age_stdev male_age_sample_weight</pre>	26585 non-null	float64 float64
60	male age samples	26585 non-null	float64
61	female age mean	26585 non-null	float64
62	female_age_median	26585 non-null	float64
63	<pre>female_age_stdev</pre>	26585 non-null	float64
64	female_age_sample_weight	26585 non-null	float64
65 66	female_age_samples	26585 non-null	float64
66 67	<pre>pct_own married</pre>	26585 non-null 26585 non-null	float64 float64
68	married snp	26585 non-null	float64
69	separated	26585 non-null	float64
70	divorced	26585 non-null	float64
71	BAD_DEBT	26585 non-null	float64
72	GOOD_DEBT	26585 non-null	float64
73 74	Remaning_income	26585 non-null 26585 non-null	float64 float64
74 75	pop_density Median age	26585 non-null	float64
	es: float64(66) int64(10)	20303 Hon-Hutt	1 100104

dtypes: float64(66), int64(10) memory usage: 15.6 MB

```
In [75]: #Creating FactorAnalyzer object and performing factor analysis
                fa = FactorAnalyzer(n_factors=25, rotation=None)
                fa.fit transform(fa df train)
                loadings = fa.loadings
                #Checking Eigenvalues
                ev, v = fa.get eigenvalues()
Out[75]: array([ 1.64501148e+01, 1.24030533e+01, 8.97275988e+00, 4.82727495e+00,
                              4.41962370e+00, 3.38627145e+00, 2.37428417e+00, 2.13727698e+00, 1.55751411e+00, 1.36381406e+00, 1.35566796e+00, 1.24811683e+00, 1.14947852e+00, 1.05550496e+00, 1.00038367e+00, 9.07628682e-01,
                              8.94817155e-01, 8.14675358e-01, 7.65526716e-01, 6.77394083e-01, 6.05864840e-01, 5.87074096e-01, 5.80551737e-01, 5.56982551e-01, 5.02233653e-01, 4.41424562e-01, 4.32444174e-01, 3.80558847e-01, 3.4743079re-01, 3.13759836e-01, 3.0791747re-01, 2.96755983e-01, 3.0791747re-01, 2.96755983e-01, 3.0791747re-01, 2.96755983e-01, 3.0791747re-01, 2.96755983e-01, 3.0791747re-01, 2.96755983e-01, 3.0791747re-01, 3.0791747re-01
                              2.48148044e - 01, \quad 2.41685681e - 01, \quad 2.31477964e - 01, \quad 2.04300234e - 01,
                              1.97722934e-01, 1.76401829e-01, 1.60281026e-01, 1.51455296e-01, 1.39304980e-01, 1.32498515e-01, 1.14040925e-01, 1.07609203e-01,
                              1.03411124 e-01, \quad 9.13602308 e-02, \quad 9.06169709 e-02, \quad 7.99567607 e-02,
                              6.03726669e-02, 5.82364639e-02, 5.27144553e-02, 3.38775446e-02, 3.17521110e-02, 2.81266062e-02, 2.27876143e-02, 2.10862680e-02, 1.91096745e-02, 1.61396717e-02, 1.52777975e-02, 1.42064289e-02,
                              1.17953170e-02, 8.22671465e-03, 6.61210078e-03, 5.38723042e-03,
                              3.98041349e-03, 3.57107401e-03, 9.52446172e-04, 7.43395646e-04, 5.92393085e-04, 3.43997631e-16, 2.66265617e-16, 2.26121051e-16, 1.08834830e-16, 5.73952315e-17, -1.35508288e-16, -1.55325980e-16])
In [76]: print("Sorted:",sorted(ev, reverse=True))
                print("\nSize:",ev.size)
print("\nSize:",fa_df_train.shape[1])
                Sorted: [16.450114838545417, 12.40305327737094, 8.97275987782638, 4.827274951210276, 4.419623696403794, 3.38627
                14520271235,\ 2.374284165973279,\ 2.1372769776442353,\ 1.5575141141043185,\ 1.3638140600039537,\ 1.3556679565518985,
                1.2481168257496817, 1.1494785225148565, 1.0555049624856776, 1.000383669709866, 0.9076286824534584, 0.8948171548
                744023, 0.8146753582956832, 0.7655267160358757, 0.677394083326619, 0.6058648396198004, 0.5870740961474066, 0.58
                05517365962005,\ 0.5569825511053841,\ 0.5022336533490541,\ 0.4414245620008767,\ 0.43244417359095744,\ 0.380558847211
                3495, 0.34743079715819264, 0.31375983577529487, 0.3079174765280145, 0.2967559828340237, 0.2481480441346208, 0.2
                4168568055860046, 0.23147796370530083, 0.20430023400679853, 0.19772293437052163, 0.1764018288102684, 0.16028102
                638291536,\ 0.15145529649502545,\ 0.13930498047410328,\ 0.13249851450801228,\ 0.11404092486141937,\ 0.10760920253096
                72, 0.10341112380139938, 0.09136023075056879, 0.09061697093655742, 0.0799567606555546, 0.060372666910959064, 0.
                8923252, 0.003571074012018963, 0.0009524461722090671, 0.0007433956461345817, 0.0005923930845492011, 3.439976305
                5082876556648e-16, -1.553259804951645e-16]
                Size: 76
                Size: 76
In [77]: xval = range(1, fa df train.shape[1]+1)
In [78]: plt.figure(figsize=(15,10))
                plt.title("Scree plot")
                plt.xlabel("Factors")
                plt.ylabel("Eigen Values")
```

plt.scatter(xval, ev)
plt.plot(xval, ev)

plt.minorticks on()

plt.show()

plt.grid(b=True, which='minor', color='r', linestyle='--')


```
In [79]: df_Factors = pd.DataFrame.from_records(loadings)

df_Factors = df_Factors.add_prefix('Factor ')

df_Factors.index = fa_df_train.columns
df_Factors
```

Out[79]:		Factor 0	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	 Factor 15
	COUNTYID	-0.121467	0.023864	0.064159	-0.049338	0.043508	-0.072132	-0.064150	-0.000500	0.019670	0.083287	 -0.041960
	STATEID	-0.116626	-0.025949	0.174363	-0.084042	0.098171	0.007296	-0.386308	-0.106417	0.052836	0.008942	 0.140697
	zip_code	-0.041975	0.108943	-0.068539	-0.144379	-0.033195	-0.202175	0.749217	0.441724	0.114256	-0.109741	 0.181417
	area_code	0.014956	0.020605	-0.011753	0.024296	-0.005710	-0.084730	0.015043	-0.055767	-0.037316	0.035503	 -0.009654
	lat	0.189045	-0.105997	-0.067375	-0.175523	-0.049946	0.186421	-0.188249	0.083182	0.126231	-0.245474	 0.238567
	BAD_DEBT	0.650683	0.029018	-0.323422	-0.111934	-0.461837	0.303323	-0.002725	-0.166413	0.066974	-0.127652	 0.040025
	GOOD_DEBT	-0.650683	-0.029018	0.323422	0.111934	0.461837	-0.303323	0.002725	0.166413	-0.066974	0.127652	 -0.040025
	Remaning_income	0.353804	-0.157782	0.001032	0.159686	0.306825	0.286105	-0.112850	0.184142	0.283166	0.064099	 -0.210747
	pop_density	-0.009890	0.084188	-0.413661	0.098072	0.328215	0.082651	0.008607	-0.192113	-0.067117	0.021249	 -0.042315
	Median_age	0.320412	-0.377575	0.616295	0.401649	-0.046410	0.313298	0.185335	-0.067104	-0.180255	0.069782	 0.004953

76 rows × 25 columns

```
In [80]: fa = FactorAnalyzer(n_factors=12 ,rotation="varimax")
    fa.fit(fa_df_train)
    new_load = fa.loadings_

In [81]: New_Factors = pd.DataFrame.from_records(new_load)
    New_Factors = New_Factors.add_prefix("Factor ")
    New_Factors.index = fa_df_train.columns
    New_Factors
```

```
0.049550
                                                              0.014041
                                                                                   0.003868
                                                                                             -0.069760
                                                                                                                            -0.026567
                    zip code
                              -0.044881
                                                   -0.105693
                                                                        -0.034214
                                                                                                        0.050855
                                                                                                                  -0.894686
                                                                                                                                       0.012577
                                                                                                                                                 0.01
                   area_code
                               0.041746
                                         0.030346
                                                   -0.017843
                                                              -0.054318
                                                                        -0.004943
                                                                                   -0.075285
                                                                                             -0.030787
                                                                                                        0.009855
                                                                                                                  0.004289
                                                                                                                            0.050287
                                                                                                                                       -0.001366
                                                                                                                                                 -0.01
                               0.079279
                                         -0.110047
                                                   -0.077106
                                                              0.051019
                                                                        -0.074011
                                                                                   0.251972
                                                                                             0.181171
                                                                                                        0.046492
                                                                                                                  0.093402
                                                                                                                            -0.086824
                                                                                                                                       0.079223
                                                                                                                                                 0.10
                  BAD_DEBT
                              0.361262
                                         0.045864
                                                   -0.017889
                                                             -0.041039
                                                                        -0.026821
                                                                                   0.153037
                                                                                             0.846767
                                                                                                        0.311941
                                                                                                                  0.026378
                                                                                                                            0.066470
                                                                                                                                       0.070511
                                                                                                                                                -0.02
                GOOD DEBT
                              -0.361262
                                         -0.045864
                                                    0.017889
                                                              0.041039
                                                                        0.026821
                                                                                   -0.153037
                                                                                             -0.846767
                                                                                                       -0.311941
                                                                                                                  -0.026378
                                                                                                                            -0.066470
                                                                                                                                       -0.070511
                                                                                                                                                 0.02
                               0.371282
                                         -0.101728
                                                    0.158945
                                                              0.193463
                                                                        0.025081
                                                                                   0.355310
                                                                                             0.014490
                                                                                                       -0.055318
                                                                                                                  0.059092
                                                                                                                            -0.085131
                                                                                                                                      -0.216458
                                                                                                                                                 0.00
           Remaning income
                  pop_density
                               0.255545
                                         -0.060181
                                                   -0.114827
                                                              0.393536
                                                                        0.084184
                                                                                   -0.271423
                                                                                             -0.038532
                                                                                                       -0.021890
                                                                                                                  0.105213
                                                                                                                            0.027958
                                                                                                                                       0.061886
                                                                                                                                                 -0.11
                  Median_age
                               0.133890
                                         -0.072269
                                                    0.946916
                                                             -0.202673
                                                                        -0.070110
                                                                                   0.111837
                                                                                             0.026530
                                                                                                       -0.036789
                                                                                                                  0.032941
                                                                                                                            -0.038426
                                                                                                                                      -0.024761
           76 rows × 12 columns
In [82]:
           New Factors.columns
Out[82]: Index(['Factor 0', 'Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5',
                     'Factor 6', 'Factor 7', 'Factor 8', 'Factor 9', 'Factor 10',
                    'Factor 11'],
                   dtype='object')
           New Factors df = round(New Factors.loc[['hs degree', 'hs degree male', 'hs degree female', "male age median", "fo
In [83]:
                                                   "home equity second mortgage", 'second mortgage','second mortgage cdf','pct own
In [84]:
           def color_negative_red(value):
              Colors elements in a dateframe
              green if positive and red if
              negative. Does not color NaN
              values.
              if value < -0.6:
                color = 'red'
              elif value > 0.6:
                color = 'green'
              else:
                color = 'black'
              return 'color: %s' % color
In [85]:
           New Factors df.style.applymap(color negative red)
Out[85]:
                                            Factor 0
                                                      Factor 1
                                                                Factor 2
                                                                           Factor 3
                                                                                     Factor 4
                                                                                               Factor 5
                                                                                                          Factor 6
                                                                                                                    Factor 7
                                                                                                                               Factor 8
                                                                                                                                         Factor 9
                                                                                                                                                  Fa
                                           0.000000
                                                     0.000000
                                                                0.000000
                                                                          -0.000000
                                                                                    -0.000000
                                                                                               1.000000
                                                                                                         0.000000
                                                                                                                    0.000000
                                                                                                                               0.000000
                                                                                                                                         0.000000
                                                                                                                                                   0.
                               hs degree
                                           0.000000
                                                     0.000000
                                                                0.000000
                                                                          -0.000000
                                                                                    -0.000000
                                                                                               1.000000
                                                                                                         0.000000
                                                                                                                    0.000000
                                                                                                                              0.000000
                                                                                                                                         0.000000
                                                                                                                                                   0.
                          hs degree male
                                           0.000000
                                                     0.000000
                                                                0.000000
                                                                                    -0.000000
                                                                                                         0.000000
                                                                                                                    0.000000
                        hs_degree_female
                                                                          -0.000000
                                                                                               1.000000
                                                                                                                              0.000000
                                                                                                                                        -0.000000
                                                                                                                                                   0.
                                           0.000000
                                                     -0.000000
                                                                1.000000
                                                                          -0.000000
                                                                                    -0.000000
                                                                                               0.000000
                                                                                                          0.000000
                                                                                                                    -0.000000
                                                                                                                               0.000000
                                                                                                                                        -0.000000
                                                                                                                                                  -0.
                         male age median
                                                                1.000000
                                                                          -0.000000
                                                                                    -0.000000
                                                                                               0.000000
                                                                                                                    -0.000000
                                                                                                                              0.000000
                                                                                                                                        -0.000000
                      female age median
                                           0.000000
                                                     -0.000000
                                                                                                         0.000000
                                                                                                                                                  -0.
           home_equity_second_mortgage
                                           0.000000
                                                     0.000000
                                                                -0.000000
                                                                          0.000000
                                                                                     0.000000
                                                                                              -0.000000
                                                                                                         0.000000
                                                                                                                    1.000000
                                                                                                                              -0.000000
                                                                                                                                         0.000000
                                                                                                                                                   0.
                                                      0.000000
                                                                -0.000000
                                                                          0.000000
                                                                                     0.000000
                                                                                               -0.000000
                                                                                                          0.000000
                                                                                                                    1.000000
                                                                                                                              -0.000000
                                                                                                                                         0.000000
                                                                                                                                                   0.
                         second mortgage
                                           0.000000
                                          -0.000000
                                                     -0.000000
                                                                0.000000
                                                                          0.000000
                                                                                     0.000000
                                                                                               -0.000000
                                                                                                         -0.000000
                                                                                                                    -1.000000
                                                                                                                              0.000000
                                                                                                                                        -0.000000
                                                                                                                                                  -0.
                    second mortgage cdf
                                 pct own
                                           0.000000
                                                     0.000000
                                                                0.000000
                                                                          -1.000000
                                                                                    -0.000000
                                                                                               0.000000
                                                                                                         0.000000
                                                                                                                    0.000000
                                                                                                                               0.000000
                                                                                                                                        -0.000000
                                                                                                                                                  -0.
                              BAD_DEBT
                                           0.000000
                                                     0.000000
                                                               -0.000000
                                                                         -0.000000
                                                                                    -0.000000
                                                                                                          1.000000
                                                                                                                    0.000000
                                                                                                                              0.000000
                                                                                                                                         0.000000
                                                                                               0.000000
                                                                                                                                                   0.
           We can see that 'Related parameters' are loading on Unique Factors
In [86]:
          len(fa df train.columns)
```

Factor 0

-0.094306

-0.115687

COUNTYID

Out[81]:

Out[86]: 76

#Fetching the variance

fact_var

fact var = fa.get factor variance()

In [87]:

Factor 1

0.016231

-0.002394

Factor 2

-0.067259

-0.065692

Factor 3

-0.026929

-0.032880

Factor 4

-0.032105

-0.094090

Factor 5

-0.004703

0.082233

Factor 6

-0 143706

-0.147470

Factor 7

-0.002368

-0.057465

Factor 8

0.048996

0.335893

Factor 9 Factor 10 Fact

-0.049634

-0.088017

-0.00

0.08

-0.008294

-0.047756

```
Out[87]: (array([12.32196237, 11.91316203,
                                                                                                                                                 5.58056077, 5.49365386, 4.74170788,
                                                            3.78490369, 3.73084787,
                                                                                                                                                2.75661873, 2.16353751, 1.90916053,
                                                            1.76345868, 1.54623546]),
                                  array([0.16213108, 0.15675213, 0.07342843, 0.07228492, 0.06239089,
                                                         0.04980136,\ 0.0490901\ ,\ 0.0362713\ ,\ 0.0284676\ ,\ 0.02512053,
                                                         0.0232034 , 0.0203452 ]),
                                  array([0.16213108, 0.31888322, 0.39231165, 0.46459657, 0.52698746,
                                                         0.57678882, 0.62587893, 0.66215023, 0.69061783, 0.71573836,
                                                         0.73894176, 0.75928697]))
                              Factor variance = pd.DataFrame.from records(fact var)
                              Factor_variance = Factor_variance.add_prefix("Factor ")
                              Factor_variance
                                          Factor 0
                                                                       Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 Factor 11
                              0 12.321962 11.913162 5.580561 5.493654 4.741708 3.784904 3.730848 2.756619 2.163538 1.909161
                                                                                                                                                                                                                                                                                                                   1.763459
                                                                                                                                                                                                                                                                                                                                               1.546235
                              1 0.162131
                                                                     0.156752 0.073428 0.072285 0.062391 0.049801 0.049090 0.036271 0.028468 0.025121 0.023203 0.020345
                                                                     0.318883 \quad 0.392312 \quad 0.464597 \quad 0.526987 \quad 0.576789 \quad 0.625879 \quad 0.662150 \quad 0.690618 \quad 0.715738 \quad 0.738942 \quad 0.666189 \quad 0.666189 \quad 0.666199 \quad 0.6661999 \quad 0.666199 \quad 0.666199
                              Factor variance.index = ['Loadings', 'Proportion Var', 'Cummulative Var']
                              round(Factor variance,2)
                                                                             Factor 0 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 Factor 11
Out[89]:
                                                                                     12.32
                                                                                                                                                                                           4.74
                                                                                                                                                                                                                    3.78
                                                                                                                                                                                                                                                                                                                        1.91
                                                                                                                                                                                                                                                                                                                                                   1.76
                                                                                                                                                                                                                                                                                                                                                                               1.55
                                                  Loadings
                                                                                                              11.91
                                                                                                                                                                  5.49
                                                                                                                                                                                                                                            3.73
                                                                                                                                                                                                                                                                     2.76
                                                                                                                                                                                                                                                                                              2.16
```

Project Task: Week 4

0.16

0.16

0.16

0.32

0.07

0.39

Data Modeling:

Proportion Var

Cummulative Var

- 1. Build a linear Regression model to predict the total monthly expenditure for home mortgages loan. Please refer 'deplotment_RE.xlsx'. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location. Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.
 - a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
 - b) Run another model at State level. There are 52 states in USA.
 - c) Keep below considerations while building a linear regression model. Data Modeling :
 - Variables should have significant impact on predicting Monthly mortgage and owner costs
 - Utilize all predictor variable to start with initial hypothesis

0.07

0.46

0.06

0.53

0.05

0.58

0.05

0.63

0.04

0.66

0.03

0.69

0.03

0.72

0.02

0.74

0.02

0.76

- R square of 60 percent and above should be achieved
- Ensure Multi-collinearity does not exist in dependent variables
- Test if predicted variable is normally distributed

```
In [90]: plt.figure(figsize=(10,7), dpi= 80)
    sns.distplot(df_train.hc_mortgage_mean, color="dodgerblue", label="hc_mortgage_mean")
    plt.legend();
    plt.show()
```


Target variable has a positive skewness

```
In [91]: from sklearn.linear model import LinearRegression
         from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error, accuracy_score
In [92]: print(df_train.shape)
         print(df_test.shape)
         (26585, 84)
         (11355, 79)
In [93]: test_list = df_test.columns
         lis = []
         for col in df_train:
             if col not in test_list:
                 lis.append(col)
         lis
Out[93]: ['BAD_DEBT', 'BINS_OD', 'BINS_BD', 'GOOD_DEBT', 'Remaning_income']
In [94]: print(df_train.shape)
         df train.drop(columns=['BAD DEBT', 'BINS OD', 'BINS BD', 'GOOD DEBT', 'Remaning income'], inplace = True)
         print(df_train.shape)
         (26585, 84)
         (26585, 79)
In [95]: print(df_train.shape)
         print(df_test.shape)
         (26585, 79)
         (11355, 79)
In [96]: df train[['hc mortgage mean']]
```

```
UID
          267822
                          1414.80295
          246444
                           864.41390
          245683
                          1506.06758
          279653
                          1175.28642
          247218
                          1192.58759
                           770.11560
          279212
          277856
                          2210.84055
          233000
                          1671.07908
           287425
                          3074.83088
          265371
                          1455.42340
          26585 rows × 1 columns
In [97]:
          df_train.dropna(axis = 0, inplace=True)
          df_test.dropna(axis = 0, inplace=True)
In [98]: print(df_train.shape)
          print(df test.shape)
           (26585, 79)
          (11355, 79)
In [99]:
          feature_cols=['COUNTYID','STATEID','zip_code','pop', 'family_mean', 'second_mortgage', 'home_equity', 'debt','he
                           'Median_age','pct_own', 'married','separated', 'divorced']
In [100...
          week4_bck_train = df_train.copy()
          week4 bck test = df test.copy()
In [101... x train = df train[feature cols]
          y_train = df_train['hc_mortgage_mean']
          x_test = df_test[feature_cols]
          y_test = df_test['hc_mortgage_mean']
In [102... from sklearn.preprocessing import StandardScaler
In [103... x train.describe()
                    COUNTYID
                                   STATEID
                                                                      family_mean second_mortgage home_equity
                                                                                                                        debt
                                                zip code
                                                                                                                                hs degree
                                                                 pop
            count 26585.000000 26585.000000 26585.000000
                                                        26585.000000
                                                                       26585.00000
                                                                                       26585.000000
                                                                                                   26585.000000
                                                                                                                26585.000000
                                                                                                                             26585.000000
                     85.580440
                                  28.256348 50134.895091
                                                          4367.763438
                                                                       79282.24354
                                                                                          0.029876
                                                                                                       0.100928
                                                                                                                    0.629911
                                                                                                                                 0.859577
            mean
                     97.891735
                                  16.370924
                                           29492.900596
                                                          2093.787018
                                                                      31125.02069
                                                                                          0.030664
                                                                                                       0.065590
                                                                                                                    0.148977
                                                                                                                                 0.110139
              std
             min
                      1.000000
                                   1.000000
                                              602.000000
                                                            63.000000
                                                                       10706.26180
                                                                                          0.000000
                                                                                                       0.000000
                                                                                                                    0.013590
                                                                                                                                 0.186520
             25%
                     29.000000
                                  13.000000 27106.000000
                                                          2938.000000
                                                                       57217.14016
                                                                                          0.008060
                                                                                                       0.050450
                                                                                                                    0.539480
                                                                                                                                 0.809700
             50%
                     63.000000
                                  27.000000
                                           47905.000000
                                                          4078.000000
                                                                       73119.26510
                                                                                          0.022730
                                                                                                       0.094900
                                                                                                                    0.648080
                                                                                                                                 0.889340
             75%
                    109.000000
                                  42.000000
                                           77084.000000
                                                          5456.000000
                                                                       96218.70699
                                                                                          0.042900
                                                                                                       0.143680
                                                                                                                    0.736190
                                                                                                                                 0.939040
                    840.000000
                                  72.000000 99925.000000
                                                        53812.000000
                                                                      208969.99390
                                                                                          0.608700
                                                                                                       0.687500
                                                                                                                    0.978260
                                                                                                                                 1.000000
             max
In [104... y_train.describe()
Out[104]: count
                      26585.000000
                       1627.898787
           mean
                        620.559056
           std
           min
                        402.681840
           25%
                       1158.136460
                       1459.286080
           50%
           75%
                       1979.249110
           max
                       4462.342290
           Name: hc_mortgage_mean, dtype: float64
In [105...
          sc = StandardScaler()
          x train scaled = sc.fit transform(x train)
          x_test_scaled =sc.fit_transform(x_test)
In [106... x_train_scaled
```

Out[96]:

hc mortgage mean

```
-0.32824767, -0.27477163],
                  [\ 0.56614179,\ -0.62650957,\ -0.11931554,\ \ldots,\ -1.25295184,
                   -0.23547174, -0.22025652],
                  \hbox{$[-0.23067182,\ -0.62650957,\ -0.13606565,\ \dots,\ 1.03185291,$}
                   -0.14518977, 0.12088226],
                  [\ 0.0145016\ ,\ -1.23736014,\ 1.03478052,\ \ldots,\ 1.46847489,
                   -0.68738034, -0.49660619],
                  [\ 3.6103784\ ,\ 1.20604213,\ 0.87816361,\ \ldots,\ 1.85505293,
                   -0.49035617, -1.01051593],
                  \hbox{$[-0.84360537,}\quad 0.22868122,\quad 1.32197368,\ \dots,\ -1.28815095,
                    0.55212616, 0.67924277]])
In [107... x test scaled
[-0.85528175, -0.32862972, -1.55088833, ..., 0.99225534,
                  -0.95828531, 0.71431416],
[-0.71469149, 0.81614082, -1.19158503, ..., 0.67232607,
-0.27872617, 0.0086278],
                  [-0.77494446, -0.20812756, -1.63072977, \ldots, -0.05555059,
                  -0.90424084, -0.56670348],
[-0.59418555, -0.56963404, 0.03957057, ..., 1.17835505,
                   -0.95828531, -1.11423691],
                  [ 3.6837753 , 1.17764731, 0.96113419, ..., 0.06859098, 0.30275228, 0.12655808]])
          Running a model at Nation Level.
In [108... | lr = LinearRegression()
In [109... lr.fit(x train scaled, y train)
Out[109]: LinearRegression()
In [110... y pred = lr.predict(x test scaled)
In [111_ print("Overall R2 Score", r2 score(y test, y pred))
         print("Overall RMSE", np.sqrt(mean squared error(y test, y pred)))
          Overall R2 Score 0.7513061476377627
          Overall RMSE 314.79945199484854
          R2 Score is 75% and RMSE is 314 which is good but we will still proceed with running the model at State Level
          Running a model at state level
In [112= uni_state = df_train.STATEID.unique()
          uni_state[:10:2]
Out[112]: array([36, 72, 1, 45, 5], dtype=int64)
In [113... for i in [20, 1, 45]:
              print("*"*90)
              print("STATEID :", i)
              x train state = df train[df train.STATEID == i][feature cols]
              y_train_state = df_train[df_train.STATEID == i]['hc_mortgage_mean']
              x_test_state = df_test[df_test.STATEID == i][feature_cols]
              y_test_state = df_test[df_test.STATEID == i]['hc_mortgage_mean']
              x_train_state_scaled = sc.fit_transform(x_train_state)
              x_test_state_scaled = sc.fit_transform(x_test_state)
              lr = LinearRegression()
              lr.fit(x train state_scaled, y_train_state)
              y pred state = lr.predict(x test state scaled)
              print("Overall R2 Score for",i , ":", r2_score(y_test_state, y_pred_state))
              print("Overall RMSE for",i , ":", np.sqrt(mean_squared error(y test_state, y pred state)))
```

 $\texttt{Out[106]: array([[-0.33282741, \ 0.47302145, \ -1.24740484, \ \dots, \ \ 0.5043254 \ ,}$

```
STATEID : 20
        Overall R2 Score for 20 : 0.8801114508360377
        Overall RMSE for 20 : 143.41926392999306
        STATEID : 1
        Overall R2 Score for 1 : 0.6729192403324948
        Overall RMSE for 1 : 174.81015560089193
                                              ***************
        STATEID : 45
        Overall R2 Score for 45 : 0.7068418321829575
        Overall RMSE for 45 : 181.52977719088605
        Checking the Residuals
In [114... residuals = y_test - y_pred
        residuals
Out[114]: UID
                  251.488994
         255504
         252676
                   -7.849712
         276314
                  107.468817
         248614
                 -107.329935
                  -54.941582
         286865
         238088
                  -19.295706
         242811
                -163.964752
         250127
                  -69.465187
         241096
                 -274.083718
         287763
                  222.932771
         Name: hc_mortgage_mean, Length: 11355, dtype: float64
In [115... plt.figure(figsize=(10,5))
        plt.subplots adjust(wspace=0.30)
        plt.subplot(1,2,1)
        plt.hist(residuals)
        plt.grid()
        plt.title("Histogram for Nation level")
        plt.subplot(1,2,2)
        plt.hist(y_test_state - y_pred_state)
        plt.title("Histogram for State level")
        plt.grid()
        plt.show()
                     Histogram for Nation level
                                                                        Histogram for State level
```



```
In [116...
    plt.figure(figsize=(10,5))
    plt.subplots_adjust(wspace=0.30)
    plt.subplot(1,2,1)
    sns.distplot(residuals)
    plt.grid()
    plt.title("Distribution plot for Nation level")
    plt.subplot(1,2,2)
    sns.distplot(y_test_state - y_pred_state)
    plt.title("Distribution plot for State level")
    plt.grid()
    plt.show()
```



```
In [117... plt.figure(figsize=(10,5))
    plt.subplots_adjust(wspace=0.30)
    plt.subplot(1,2,1)
    plt.scatter(residuals, y_pred)
    plt.grid()
    plt.title("Scatter plot for Nation level")
    plt.subplot(1,2,2)
    plt.scatter((y_test_state - y_pred_state), y_pred_state)
    plt.title("Scatter plot for State level")
    plt.grid()
    plt.show()
```


Data Reporting:

2. Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:

a) Box plot of distribution of average rent by type of place (village, urban, town, etc.).

b) Pie charts to show overall debt and bad debt.

- c) Explore the top 2,500 locations where the percentage of households with a second mortgage
- is the highest and percent ownership is above 10 percent. Visualize using geo-map.

d) Heat map for correlation matrix.

e) Pie chart to show the population distribution across different types of places (village, urban, town etc.)

Loading [MathJax]/extensions/Safe.js