Machine Learning Predicts Supreme Court Decisions

BY ARPIT JASAPARA

ORIGINAL PAPER BY DANIEL MARTIN KATZ, MICHAEL J. BOMMARITO II, JOSH BLACKMAN

Supreme Court of the United States

- 9 Justices
- Serve Average of 20 years
- Deliver in-depth decisions for over 100 cases per year
- Majority, Concurring, Dissenting Opinions
- That gives data for 2000 decisions per Justice!

Machine Learning Model

• Random Forest: Creates Regression of Trees to Predict Average Tree/General Behavior

- Adds new tree per decision
- Selects which tree to keep in model through gridsearching, split criterion, heuristic
- Changes only upon addition of court justices

Data Collection

- SCDB (Supreme Court Database)
- Justice Disposition Divided into 3 Categories:
 - > Affirm
 - > Reverse
 - > Other
- Case Outcome based on Majority of Justices' Decision

Class	Justice	Case
Affirm	113,454	16,718
Reverse	93,161	11,291
Other	37,267	NA
Total	243,882	28,009

Features to Summarize Behavior of Justice

Results: Standalone

- Surprisingly Accurate: Most Current Models to Predict Supreme Court are no better than 50%
- Results for Individual Justice Decisions:

Class	Precision	Recall	F1-score	Support
Not Reverse	0.70	0.78	0.74	153,206
Reverse	0.57	0.46	0.51	93,569
Mean/Total	0.65	0.66	0.65	246,775

• Results for Overall Case Outcome:

Class	Precision	Recall	F1-score	Support
Not Reverse	0.69	0.81	0.75	16,740
Reverse	0.63	0.47	0.54	11,340
Mean/Total	0.67	0.67	0.66	28,080

Results: Three Baseline Models

- Always Guess Reverse
- Infinite Memory
- Optimized Finite Memory Model

Always Guess Reverse

- Historically, Supreme Court reverses Decision
- Graph demonstrates Machine Learning Model Performance compared to Baseline
 - Green means the Machine Learning Model performed better, Left is Case Outcome and Right is Justices' Outcome

Infinite Memory

- Average out Decisions since Beginning of Supreme Court
- MLM Better at Predicting Modern Years than Earlier Years

Optimized Finite Memory Model

Use finite window around case to determine outcome

Consistency, Accuracy, Generality

- Consistency: Same Results Every Time
- Accuracy: Close to Real Outcome
- Generality: Works No Matter Who is on Supreme Court

Out-of-Sample Applicability

- All information required for model needs to be known beforehand
- Model can be exported to other law problems:
 - ► Jury Selection
 - ➤ Negotiating Plea Deals
- Doesn't have to be just law problems:
 - ➤ Predict Referee Decisions in Sports
 - American Idol finalists, Miss Universe, and other entertainment judging
 - Market/Public Reaction to Policy and Decisions

Conclusion

- Relatively Accurate Model
- Works well with Predicting Past Cases
- Future:
 - Adapt model to take in more inputs to allow for prediction of future cases
 - Sell model to both parties, so best arguments are put forth
 - ➤ Increase accuracy

References

- Hutson, Matthew. "Artificial intelligence prevails at predicting Supreme Court decisions." *Science Magazine*. N.p., 2 May 2017. Web. 29 May 2017. http://www.sciencemag.org/news/2017/05/artificial-intelligence-prevails-predicting-supreme-court-decisions.
- 2. Katz DM, Bommarito MJ II, Blackman J (2017) A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE 12(4): e0174698. https://doi.org/10.1371/journal.pone.0174698>.
- 3. Kumar, Niraj. *Random Forest Algorithm*. Digital image. *LinkedIn*. N.p., 17 June 2016. Web. 29 May 2017. https://www.linkedin.com/pulse/random-forest-algorithm-interactive-discussion-niraj-kumar.
- 4. "Al Prevails at Predicting Supreme Court Decisions." *ACM TechNews*. 5 May 2017. Web. 29 May 2017. http://technews.acm.org/archives.cfm?fo=2017-05-may/may-05-2017.html.