Strojno učenje

4. Teorija vjerojatnosti

prof. dr. sc. Bojana Dalbelo Bašić doc. dr. sc. Jan Šnajder

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Ak. god. 2012/13.

Danas...

Osnovni pojmovi

2 Teorijske razdiobe

Procjena parametara

Bayesovski procjenitelj

Danas...

Osnovni pojmovi

Teorijske razdiobe

Procjena parametara

Bayesovski procjenitelj

Vjerojatnost

- X je s.v., $\{x_i\}$ su njezine vrijednosti
- P(X = x) = P(X)
- $P(x_i) \ge 0$, $\sum_i P(x_i) = 1$
- distribucija (razdioba) vjerojatnosti

$$p(x) \geqslant 0$$

$$\int_{-\infty}^{\infty} p(x) dx = 1$$

$$P(a \leqslant X \leqslant b) = \int_{a}^{b} p(x) dx$$

Dva pravila teorije vjerojatnosti

(1) Pravilo zbroja

$$P(x) = \sum_{y} P(x, y)$$

$$x_1 = \sum_{y} P(x_1) = 0$$

$$x_2 = 0$$

$$x_3 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_4 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_4 = 0$$

$$x_5 = 0$$

$$x_5 = 0$$

$$x_6 = 0$$

 $(\mathsf{Marignalna}\ \mathsf{vjerojatnost}\ \mathsf{varijable}\ X)$

Uvjetna vjerojatnost:

$$P(y|x) = \frac{P(x,y)}{P(x)}$$

(2) Pravilo umnoška

$$P(x,y) = P(y|x)P(x)$$

Izvedena pravila

Bayesovo pravilo

Pravilo lanca (engl. chain rule)

$$= \prod_{k=1}^{n} P(x_k|x_1, \dots, x_{k-1})$$

$$= \sum_{k=1}^{n} P(x_k|x_1, \dots, x_{k-1})$$
"Saktor"

Očekivanje i varijanca

$$\mathbb{E}[X] = \sum_{x} x P(x) \qquad \text{ff}(X) = \sum_{x} f(x) \cdot P(x)$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x) \, \mathrm{d}x$$

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b \quad (a, b \in \mathbb{R})$$

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

$$\operatorname{Var}(\underline{a}X) = \mathbb{E}\Big[(aX)^2\Big] - \mathbb{E}[aX]^2 = a^2\mathbb{E}[X^2] - a^2\mathbb{E}[X]^2 = \underline{a}^2\operatorname{Var}(X)$$

Kovarijanca

$$Cov(X,Y) = \sigma_{X,Y} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
$$Cov(X,Y) = Cov(Y,X)$$

$$Cov(X, X) = Var(X) = \sigma_X^2$$

Pearsonov koeficijent korelacije (linearna zavisnost):

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

$$\rho_{X,Y} \in [-1,+1]$$

Nezavisnost

Varijable X i Y su nezavisne akko:

ili P(X,Y) = P(X)P(Y) $P(X|Y) = P(X) \qquad \text{i} \qquad P(Y|X) = P(Y)$

Znanje o ishodu varijable Y ne utječe na vjerojatnost ishoda varijable X (i obrnuto).

Za nezavisne varijable X i Y vrijedi:

$$\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$$

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$

$$\operatorname{Cov}(X,Y) = \rho_{X,Y} = 0$$

Nezavisne varijable su nekorelirane, ali obrat općenito ne vrijedi.

Uvjetna nezavisnost

Varijable X i Y su uvjetno nezavisne uz danu varijablu \mathbb{Z} , što označavamo kao $X \perp Y \mid \mathbb{Z}$, akko

$$P(X|\underline{Y},Z) = P(X|Z)$$

ili

$$P(X,Y|Z) = P(X|Z)P(Y|Z)$$

Jednom kada nam je poznat ishod varijable Z, znanje o ishodu varijable Y ne utječe na ishod varijable X (i obrnuto).

$$X =$$
 "student je prinjen na FER"

 $Y =$ "student je prinjen na PMF-MO"

 $P(Y|X) \neq P(Y)$ (nish marginalm necessisme!)

 $Z =$ "student je suejelovao na antem. Natjecenjimo!"

 $XLY(Z = P(Y|X;Z) = P(Y|Z)$

Matrica kovarijacije

 (X_1,\ldots,X_n) je n-dimenzijski slučajni vektor

Matrica kovarijacije Σ :

$$\Sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])] = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$$

$$\Sigma = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \dots & \operatorname{Var}(X_n) \end{pmatrix}_{\boldsymbol{u} \times \boldsymbol{n}}$$

$$\Sigma = \mathbb{E} \Big[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathrm{T}} \Big]$$

$$\begin{bmatrix} \mathbf{X} \mathbf{I} & \mathbf{X} \mathbf{I} & \mathbf{I} \\ \mathbf{X} \mathbf{I} & \mathbf{I} & \mathbf{I} \end{bmatrix}$$

Danas...

Osnovni pojmovi

2 Teorijske razdiobe

3 Procjena parametara

Bayesovski procjenitelj

Bernoullijeva razdioba

$$\mathbb{E}[X] = \mu$$

$$\operatorname{Var}(X) = \mu(1-\mu)$$

Multinomijalna razdioba

Varijabla koja poprima jednu od K vrijednosti $\mathbf{x}=(x_1,x_2,\ldots,x_K)^{\mathrm{T}}$ je binarni vektor indikatorskih varijabli

veltor 1-od-k
$$P(\mathbf{X}=\mathbf{x}|\boldsymbol{\mu})=\prod_{k=1}^K \mu_k^{x_k}$$

$$\boldsymbol{\mu}=(\mu_1,\ldots,\mu_K)^{\mathrm{T}}, \sum_k \mu_k=1, \ \mu_k\geqslant 0$$

$$\mathbf{X}=\mathbf{X}_{\mathbf{3}}$$

$$\mathbf{X}=\left(\begin{smallmatrix}\mathbf{0},\ \mathbf{0},\ \mathbf{1},\ \mathbf{0}\end{smallmatrix}\right)$$

$$\mathbf{M}_{\mathbf{4}} \ \mathbf{M}_{\mathbf{2}} \ \mathbf{M}_{\mathbf{3}} \ \mathbf{M}_{\mathbf{3$$

$$P(X = (0,0,1,0)) = \prod_{k=1}^{4} \mu_{k}^{x_{k}} = 1 \cdot 1 \cdot \mu_{3} \cdot 1 = \mu_{3}$$

Gaussova razdioba

$$p(X = x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Multivarijatna Gaussova razdioba

$$y = (x_1, -x_n)^T$$

$$p(\mathbf{X} = \mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
where the positions definites (tade is peringular to impringular to impringular to the property of the

 Σ mora biti pozitivno definitna (tada je nesingularna i ima inverz).

$$\Delta = (\mathbf{x} - \pmb{\mu})^{\rm T} \pmb{\Sigma}^{-1} (\mathbf{x} - \pmb{\mu}) \text{ je Mahalanobisova}$$
 udaljenost između \mathbf{x} i $\pmb{\mu}$.

$$\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu}$$
$$\operatorname{Cov}(X_i, X_j) = \boldsymbol{\Sigma}_{ij}$$

Danas. . .

Osnovni pojmovi

Teorijske razdiobe

Procjena parametara

Bayesovski procjenitelj

Procjenitelj (engl. estimator)

Ideja: na temelju slučajnog uzorka izračunati procjenu (estimaciju) parametra teorijske razdiobe.

Statistika, procjenitelj i procjena

Neka je (X_1, X_2, \dots, X_n) uzorak (n-torka slučajnih varijabli koje su iid).

Slučajna varijabla $\Theta = g(X_1, X_2, \dots, X_n)$ naziva se statistika.

Statistika Θ je procjenitelj (estimator) parametra populacije θ .

Vrijednost procjenitelja $\hat{\theta} = g(x_1, x_2, \dots, x_n)$ naziva se procjena.

Procjenitelj je s.v., dakle ima očekivanje i varijancu.

Pristranost procjenitelja

Nepristran procjenitelj (engl. *unbiased estimator*)

Procjenitelj Θ je nepristran procjenitelj parametra θ akko $\mathbb{E}[\Theta] = \theta$.

Pristranost procjenitelja (engl. estimator bias):

$$b_{\theta}(\Theta) = \mathbb{E}[\Theta] - \theta$$

Procjenitelj - primjer

X je s.v. sa $x \in \mathbb{R}$.

Označimo $\mathbb{E}[X] = \mu$ (srednja vrijednost) i $Var(X) = \sigma^2$ (varijanca).

Parametri populacije μ i σ^2 su nepoznati. Možemo ih procijeniti na temelju uzorka $\{x^{(i)}\}_{i=1}^N$ pomoću procjenitelja.

Za procjenitelje možemo upotrijebiti bilo koje statistike. Npr.

$$\hat{\mu} = \frac{1}{N} \sum_{i} x^{(i)}$$
 $\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2$

Jesu li ovo dobri procjenitelji? (Jesu li nepristrani?)

$$\begin{split} \mathbb{E}[\hat{\mu}] &= \mu ? \\ \mathbb{E}[\hat{\sigma}^2] &= \sigma^2 ? \end{split}$$

Procieniteli – primier

 $\mathbb{E}[\hat{\mu}] = \mu$, tj. $\hat{\mu}$ je nepristran procjenitelj srednje vrijednosti.

 $\mathbb{E}[\hat{\sigma}^2] \neq \sigma^2$, tj. $\hat{\sigma}^2$ nije nepristran procjenitelj varijance!

$$\mathbb{E}[\hat{\sigma}^2] = \frac{N-1}{N} \sigma^2$$

Pristranost od $\hat{\sigma}^2$ je

$$b(\hat{\sigma}^2) = \frac{N-1}{N}\sigma^2 - \sigma^2 = \begin{pmatrix} \sigma^2 & N \\ b & b & 5 \end{pmatrix}$$

Procjenitelj podcjenjuje (engl. underestimates) pravu varijancu!

Nepristran procjenitelj varijance:

$$\hat{\sigma}^2_{\text{nepr.}} = \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2 \qquad \text{where} \quad \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2$$

Rastav na pristranost i varijancu

Srednja kvadranta pogreška procjenitelja Θ : \searrow \searrow \checkmark

$$r(\Theta, \theta) = \mathbb{E}[(\Theta - \theta)^2]$$

Općenito, za s.v. \boldsymbol{X} i konstantu \boldsymbol{c} vrijedi:

$$\mathbb{E}[(X-c)^2] = \mathbb{E}\Big[(X-\mathbb{E}[X])^2\Big] + (\mathbb{E}[X]-c)^2$$

Dakle, srednju kvadratnu pogrešku možemo izraziti kao:

$$r(\Theta, \theta) = \mathbb{E}\left[(\Theta - \mathbb{E}[\Theta])^2\right] + (\mathbb{E}[\Theta] - \theta)^2 = \text{Var}(\Theta) + b_{\theta}(\Theta)^2$$
Vanjanca pristranost²

Procjenitelji

- 1 Procjenitelj najveće izglednosti (engl. maximum likelihood eximator, MLE)
- 2 Procjenitelj maximum aposteriori (MAP)
- 3 Bayesovski procjenitelj suvremene HL-metade

Procieniteli najveće izglednosti (MLE)

Skup neoznačenih primjera $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ koji su iid

$$\mathbf{x}^{(i)} \sim p(\mathbf{x}|\boldsymbol{\theta})$$
 \leftarrow Primjeri se pokoraveju.

MLE određuje najizglednije parametre θ : parametre koje izvlačenje uzorka \mathcal{D} čine najvjerojatnijim

pajvjerojatnijim
$$p(\mathcal{D}|\boldsymbol{\theta}) = p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) \stackrel{\text{ind.}}{=} \mathcal{L}(\boldsymbol{\theta}|\mathcal{D})$$

Funkcija izglednosti $\mathcal{L}: \boldsymbol{\theta} \mapsto p(\mathcal{D}|\boldsymbol{\theta})$ parametrima pridjeljuje vjerojatnost \mathcal{L} nije PDF! Općenito ne vrijedi $\int_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta} = 1$.

Funkcija izglednosti – primjer

$$D \equiv 10$$
 bacanja novčića $(N = 10)$
Glava (H) 8 puta, pismo (T) 2 puta

 $\mu \equiv \text{viewishost du dobijem H (ocekivere unjeste)}$
 $L(\mu | D) = P(D|\mu) = P(x_1, x_2, \dots, x_w | \mu) = \prod_{i=1}^{10} P(x^i | \mu) = \mu^8 \cdot (1-\mu)^2$
 $P(x|\mu) = \mu^x \cdot (\lambda - \mu)^{\Lambda - x}$

Jia parametra μ

Kada je urak silm (ura ? μ)

 $\mu \equiv 10$
 $\mu = 1$

Procjenitelj najveće izglednosti (MLE)

$$\hat{m{ heta}}_{ ext{ML}} = rgmax_{m{ heta}} \mathcal{L}(m{ heta}|\mathcal{D})$$

Jednostavnije je maksimizirati log-izglednost:

$$\ln \mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) \ \equiv \ \ln \mathbf{\mathcal{L}}(\boldsymbol{\theta}|\mathcal{D}) = \ln \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)}|\boldsymbol{\theta})$$
$$\hat{\boldsymbol{\theta}}_{\mathrm{ML}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \left(\ln \mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) \right)$$

Maksimizaciju provodimo analitički (ako je moguće) ili iterativnim metodama.

MLE za Bernoullijevu razdiobu

$$\begin{split} & \ln \mathcal{L}(\mu|\mathcal{D}) = \ln \prod_{i=1}^{N} P(x|\mu) = \ln \prod_{i=1}^{N} \mu^{x^{(i)}} (1-\mu)^{1-x^{(i)}} \\ & = \sum_{i=1}^{N} x^{(i)} \ln \mu + \left(N - \sum_{i=1}^{N} x^{(i)}\right) \ln (1-\mu) \\ & \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\mu} \neq \frac{1}{\mu} \sum_{i=1}^{N} x^{(i)} - \frac{1}{1-\mu} (N - \sum_{i=1}^{N} x^{(i)}) = 0 \\ & \Rightarrow \hat{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \end{split} \quad \text{relative} \quad \end{split}$$

Vrijedi $\mathbb{E}[\hat{\mu}_{\mathrm{ML}}] = \mathbb{E}[X] = \mu$, tj. ovo je nepristran procjenitelj.

MLE za multinomijalnu varijablu

$$\ln \mathcal{L}(\boldsymbol{\mu}|\mathcal{D}) = \ln \prod_{i=1}^N P(\mathbf{x}^i|\boldsymbol{\mu}) = \ln \prod_{i=1}^N \prod_{k=1}^K \mu_k^{x_k^{(i)}} = \sum_{k=1}^K \sum_{i=1}^N x_k^{(i)} \ln \mu_k$$

Izraz treba maksimizirati prema μ_k uz ograničenje $\sum_{k=1}^K \mu_k = 1$.

Primjenom metode Lagrangeovih multiplikatora dobivamo:

$$\hat{\mu}_{k,\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} x_k^{(i)} = \underbrace{\frac{N_k}{N}}_{\text{relative field ve unifor}}$$

MLE za Gaussovu razdiobu

$$\ln \mathcal{L}(\mu, \sigma | \mathcal{D}) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}\right\}$$
$$= -\frac{N}{2} \ln(2\pi) - N \ln \sigma - \frac{\sum_{i} (x^{(i)} - \mu)^2}{2\sigma^2}$$

$$\nabla \ln \mathcal{L}(\mu, \sigma | \mathcal{D}) = 0$$

$$\vdots$$

$$\hat{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$$
 since the injection of the properties
$$\hat{\sigma}_{\mathrm{ML}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu}_{\mathrm{ML}})^2$$

MLE za multivarijatnu Gaussovu razdiobu

$$\ln \mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma} | \mathcal{D}) = \ln \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= -\frac{nN}{2} \ln(2\pi) - \frac{N}{2} |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu})$$

$$egin{aligned}
abla \ln \mathcal{L}(oldsymbol{\mu}, oldsymbol{\Sigma} | \mathcal{D}) &= 0 \ &dots \ \hat{oldsymbol{\mu}}_{\mathrm{ML}} &= rac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \end{aligned}$$
 contains $\hat{oldsymbol{\Sigma}}_{\mathrm{ML}} = rac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{oldsymbol{\mu}}_{\mathrm{ML}}) (\mathbf{x}^{(i)} - \hat{oldsymbol{\mu}}_{\mathrm{ML}})^{\mathrm{T}}$

Procjenitelj MAP

MLE lako dovodi do prenaučenosti modela.

Npr. za uzorak za koji $x_k^{(i)}=0$ procjena je $\hat{\mu_{k\mathrm{ML}}}=0.$

Možemo definirati apriornu razdiobu parametara $p(\theta)$ i maksimizirati aposteriornu vjerojatnost:

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$
 Eages

MLE:

$$\hat{\boldsymbol{\theta}}_{\mathrm{ML}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}|\mathcal{D})$$

MAP:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D}) = p(\mathcal{D}|\boldsymbol{\theta}) \, p(\boldsymbol{\theta})$$

Problem: MLE i MAP su točkaste procjene (engl. point estimates).

Danas...

Osnovni pojmovi

2 Teorijske razdiobe

Procjena parametara

Bayesovski procjenitelj

Frekventističko vs. bayesovsko tumačenje

Frekventističko shvaćanje vjerojatnost tumači kao vjerojatnost ishoda kod ponavljanja eksperimenta (relativna frekvencija).

Bayesovska statistika (engl. bayesian statistics) vjerojatnost tumači kao nesigurnosti znanja.

Bayesovski procjenitelj: nastavak na ideju MAP-procjenitelja. Kombinira apriorno znanje $p(\boldsymbol{\theta})$ sa znanjem koje proizlazi iz uzorka. Ne znamo točno kako izgleda $p(\boldsymbol{\theta})$ (nesigurnost znanja), pa ćemo raditi s očekivanjem.

Bayesovski procjenitelj povezan je s idejom zaglađivanja (engl. *smoothing*): raspoređujemo vjerojatnosnu masu i na događaje koji se nisu ostvarili u uzorku.

Ne lazuremo P(DIO) u suloj toti Oposebno, lao sto to rade MLE; MAP

Bayesovski procjenitelj

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathcal{D}|\boldsymbol{\theta}')p(\boldsymbol{\theta}')\mathrm{d}\boldsymbol{\theta}'}$$
 Aposteriona POF

Bayesovski procjenitelj je očekivana vrijednost od θ s obzirom na distribuciju $p(\theta|\mathcal{D})$:

$$\hat{\boldsymbol{\theta}}_{\text{Bayes}} = \mathbb{E}[\boldsymbol{\theta}|\mathcal{D}] = \int \boldsymbol{\theta} \, p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

Integral je analitički izračunljiv uz prikladan udabir apriorne distribucije: onaj kada su $p(\boldsymbol{\theta})$ i $p(\boldsymbol{\theta}|\mathcal{D})$ istog oblika, tzv. konjugatne distribucije.

Ako su $p(\boldsymbol{\theta})$ i $p(\boldsymbol{\theta}|\mathcal{D})$ konjugatne distribucije, onda $p(\boldsymbol{\theta})$ zovemo konjugatnom apriornom distribucijom za izglednost $p(\mathcal{D}|\boldsymbol{\theta})$.

Konjugatne apriorne distribucije

Sve razdiobe koje pripadaju ekponencijalnoj familiji distribucija (Gaussova, Bernoullijeva, multinomijalna, ...) imaju svoju konjugatnu apriornu distribuciju.

- Gaussova distribucija: Gaussovu distribucija
- Bernoullijeva distribucija: Beta-distribuciju
- Multinomijalna distribucija: Dirichletovu distribuciju

$$Dir(\boldsymbol{\mu}|\boldsymbol{\alpha}) = Dir(\mu_1,\ldots,\mu_K|\alpha_1,\ldots,\alpha_k)$$

 $lpha_i$ su hiperparametri modela (parametri distribucije parametara)

Laplaceovo zaglađivanje

Bayesovski procjenitelj za multinomijalnu varijablu: $\mathbf{x} = (x_1, x_2, \dots, x_K)^{\mathrm{T}}$

$$\begin{split} \hat{\mu}_{k, \mathsf{Bayes}} &= \mathbb{E}[\mu_k | \mathcal{D}] = \int \boldsymbol{\theta} \, p(\mu_k | \mathcal{D}) \mathrm{d}\mu_k = \frac{p(\mathcal{D} | \mu_k) \, \mathrm{Dir}(\mu_k | \alpha_k)}{p(\mathcal{D})} \\ &\vdots \\ &= \frac{N_k + \alpha_k}{N + \sum_{i=1}^K \alpha_i} \end{split}$$

Uz pojednostavljenje $\alpha_i = \lambda$ dobivamo Laplaceov procjenitelj:

$$\hat{\mu}_{k,\mathsf{Bayes}} = \frac{N_k + \lambda}{N + K\lambda}$$

Uz $\lambda = 1$ dobivamo Laplaceovo pravilo (add-one smoothing):

$$\hat{\mu}_{k, \text{Bayes}} = \frac{N_k + 1}{N + K}$$
 relative foliation

Sažetak

- Podsjetili smo se Bernoullijeve, multinomijalne i Gaussove razdiobe
- Procjenitelj je statistika (slučajna varijabla izračunata iz uzorka) kojom se procjenjuju parametri neke teorijske distribucije
- Dobri procjenitelju su nepristrani
- Procjenitelj najveće izglednosti (MLE) odabire parametre koji maksimiziraju vjerojatnost realizacije uzorka (tj. izglednost)
- MAP-procjenitelj dodatno koristi apriornu razdiobu parametara i maksimizira aposteriornu vjerojatnost parametara
- Bayesovski procjenitelj računa očekivanje aposteriorne vjerojatnosti parametra po svim vrijednostima parametara
- Izvođenjem bayesovskog procjenitelja za multinomijalnu varijablu dobivamo Laplaceovo zaglađivanje

Sljedeća tema: Bayesov klasifikator