

High Performance Computing

and the Simple Linux Utility for Resource Management (SLURM)

Architecture

Why a HPC cluster?

Why a HPC cluster?

Why SLURM?

NO slurm

> bwa mem sample1.fastq

with slurm

> **srun** bwa mem sample1.fastq

NO slurm

> bwa mem -T 18 sample1.fastq

with slurm

> srun --cpus-per-task=18 \ bwa mem -T 18 sample1.fastq

NO slurm

> bwa mem –T 18 sample1.fastq

with slurm

> srun --cpus-per-task=18 \

--mem=64gb \

bwa mem -T 18 sample1.fastq

NO slurm

> bwa mem -T 18 sample1.fastq

```
> srun --cpus-per-task=18 \
--mem=15gb \
--time=5-24 \
bwa mem -T 18 sample1.fastq
```

```
( 5 days and 24 hours = 6 days alternative: 144:00:00; maximum = 14 days )
```


NO slurm

> bwa mem –T 18 sample1.fastq

```
> srun --cpus-per-task=18 \
--mem=15gb \
--time=5-24 \
-p blade,himem \
bwa mem -T 18 sample1.fastq
```


NO slurm

> bwa mem -T 18 sample1.fastq

```
> srun --cpus-per-task=18 \
--mem=15gb \
--time=5-24 \
-p blade,himem \
-o slurm_logs/bwa_1.out \
bwa mem -T 18 sample1.fastq
```


NO slurm

> ./align_1.sh

#!/bin/bash bwa mem –T 18 sample1.fastq exit

```
> sbatch --cpus-per-task=18 \
--mem=15gb \
--time=5-24 \
-p blade,himem \
-o slurm_logs/bwa_1.out \
align_1.sh
```

HOW TO use SLURM inside your scripts

NO slurm

#!/bin/bash

cd ~/project/raw_data

bwa mem -T 18 sample1.fastq

exit

> ./align_1.sh

with slurm

#!/bin/bash

#SBATCH --cpus-per-task=18

#SBATCH --mem=15gb

#SBATCH --time=5-24

#SBATCH -p blade,himem

#SBATCH -o slurm_logs/bwa_1.out

cd ~/project/raw_data

bwa mem -T 18 sample1.fastq

exit

> sbatch align_1.sh

iterating SLURM jobs over files


```
#!/bin/bash
cd ~/project/raw_data
                                                    # go to folder containing files
for f in $(ls *.fastq); do echo "#!/bin/bash
                                                    # for each file, echo a script
cd ~/project/raw_data
                                                    # that goes to folder
bwa mem –T 18 ${f}
                                                    # executes job on file and
rm ~/project/tmp/${f}.sh
                                                    # once completed removes
" > \sim/project/tmp/${f}.sh
                                                    # temporary script
chmod 755 ~/project/tmp/${f}.sh
rm ~/project/slurm_logs/${f}.*.out
                                                    # removes pre-existing logs
sbatch --cpus-per-task=18 --mem=15gb \
                                                    # start batch job
--time=5-24 -p blade \
-o ~/project/slurm_logs/${f}.%j.out \
                                                    # keeps log with job number
~/project/tmp/${f}.sh
done; exit
```

other options

--mail-type=BEGIN, END,FAIL,REQUEUE,ALL

Specifies when email is sent to the job owner. The option argument may consist of a combination of the allowed mail types

--mail-user=*username*@*age.mpg.de*

useful slurm commands

useful slurm commands

> sview # requires X forwarding and allows viewing and

manipulation of submitted jobs

> squeue # lists running jobs

> scancel 65673 # cancels job 65673

> scancel -u JDoe # cancels all jobs of user JDoe

> scontrol show job 43433 # shows detailed resource information on job 43433

more on http://slurm.schedmd.com/man_index.html

the modules system

A centralized software system.

The modules system **loads software** (version of choice) and changes **environment variables** (eg. LD_LIBRARY_PATH)

> module avail # shows available modules

> module whatis SAMtools # shows a description of the SAMtools module

> module show SAMtools # shows environment changes for SAMtools

> module load SAMtools # loads SAMtools

> module list # lists all loaded modules

> module unload SAMtools # unloads the SAMtools module

> module purge # unloads all loaded modules

more on http://modules.sourceforge.net

NO BACKUP

! Data in the HPC / beeGFS is not backed up !

In HPC terabytes of intermediary and/or non-usable data can be generated in the space of a few hours..

! You are responsible for backing up your data!

copying data in and out of the beeGFS

scp

scp file.txt JDoe@my_ip_address:~/Desktop

Filezilla

https://github.com/mpg-age-bioinformatics/cluster_first_steps#data

- ✓ JDoe@cluster:/beegfs/common\$ tree -L 1
- .
- |-- databases
- |-- example
- |-- galaxy
- |-- genomes
- |-- shared_data
- `-- software

- ✓ JDoe@cluster:.../common/databases\$ tree -L 1
- -|-- BLAST
- |-- DATABASE_VERSION_LIST
- -- GOMo
- -- hmdb
- -- Motif
- -- new
- -- Pfam
- -- README
- -- SequencingAdapters
- |-- SwissProt
- `-- UniRef90


```
✓ JDoe@cluster:.../common/genomes$ tree -L 1
```

```
|-- adapters
```

- -- caenorhabditis_elegans
- -- drosophila_melanogaster
- -- homo_sapiens
- -- mus_musculus
- |-- TrueSeqAdapters.fa

-- X

- |-- chromosomes
- |-- cuffcmp_GTF.GRCh38.81.gtf
- |-- GRCh38.81.abinitio.gtf
- |-- GRCh38.81.gtf
- |-- GRCh38.dna.primary_assembly.fa
- |-- GRCh38.dna.toplevel.fa
- |-- logs
- |-- primary_bowtie2
- |-- primary_bwa
- -- primary_hisat
- -- primary_star
- |-- primary_tophat_cuffcmp_GTF_index
- |-- primary_tophat_GTF_index
- |-- toplevel_bowtie2
- |-- toplevel_bwa
- |-- toplevel_hisat
- |-- toplevel_star
- |-- toplevel_tophat_cuffcmp_GTF_index
- `-- toplevel_tophat_GTF_index

Contacts and links

ssh UName@cluster # HPC cluster address

https://mpg-age-bioinformatics.github.io # external

https://github.com/mpg-age-bioinformatics/cluster_first_steps

<u>bioinformatics@age.mpg.de</u> # bioinformatics core facility email

hpc@age.mpg.de # hpc users mailing list

https://github.molgen.mpg.de # git at the MPI-MOLGEN

https://rstudio.age.mpg.de # r-studio server on beegfs

daniel.rosskopp@age.mpg.de; tel. 257 # Systems Administrator

jorge.boucas@age.mpg.de; tel. 312 # Head of Bioinformatics