Linear Algebra [KOMS120301] - 2023/2024

1.1 - Hubungan Antar Vektor di Ruang Vektor

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 11 (November 2023)

Tujuan pembelajaran

Setelah pembelajaran ini, Anda diharapkan mampu:

- menjelaskan karakteristik sub-ruang vektor dan kaitannya dengan kombinasi linier;
- memverifikasi apakah sebuah himpunan vektor merentang suatu ruang vektor atau tidak;
- memverifikasi apakah sebuah himpunan vektor pada suatu ruang vektor independen/bergantung linier atau tidak.

Bagian 1: Sub-ruang vektor dan kombinasi linier

Kombinasi linier

Ingat kembali bahwa kombinasi linier vektor-vektor didefinisikan sebagai berikut:

Misalkan $\mathbf{w} \in V$. Maka w adalah kombinasi linear dari vektor $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ jika \mathbf{w} dapat ditulis sebagai:

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_n \mathbf{v}_n$$

dimana $k_1, k_2, \ldots, kn \in \mathbb{R}$.

Contoh

Misal
$$\mathbf{v}_1 = (3, 2, -1)$$
 dan $\mathbf{v}_2 = (2, -4, 3)$. Maka:

$$\mathbf{w} = 2\mathbf{v}_1 + 3\mathbf{v}_2 = 2(3, 2, -1) + 3(2, -4, 3) = (12, -8, 7)$$

adalah kombinasi linier dari \mathbf{v}_1 dan \mathbf{v}_2 .

Mendefinisikan kombinasi linier dari vektor

Diberikan sebuah vektor (5,9,5). Cara merepresentasikan vektor sebagai kombinasi linier dari vektor:

$$\mathbf{u} = (2,1,4), \ \mathbf{v} = (1,-1,3), \ \mathsf{dan} \ \mathbf{w} = (3,2,5)$$

Solusi: Misalkan $k_1, k_2, k_3 \in \mathbb{R}$ sedemikian rupa sehingga:

$$k_1 \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + k_3 \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \\ 5 \end{bmatrix}$$

Ini menghasilkan sistem linier:

$$\begin{cases} 2k_1 + k_2 + 3k_3 = 3 \\ k_1 - k_2 + 2k_3 = 9 \\ 4k_1 + 3k_2 + 5k_3 = 5 \end{cases}$$

Dengan eliminasi Gauss, diperoleh:

$$k_1 = 3, \ k_2 = -4, \ k_3 = 2$$

Kombinasi linier membentuk subruang

Teorema

Jika $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$ adalah himpunan vektor dalam ruang vektor V. Kemudian:

- Himpunan W yang berisi semua kombinasi linier dari vektor-vektor dalam S adalah subruang dari V.
- W adalah subruang vektor terkecil dari V yang berisi vektor dalam S, yaitu, semua subruang lain yang berisi vektor juga berisi W.

Bagian 2: Himpunan merentang

Himpunan vektor yang membentuk subruang vektor

- Misalkan V adalah ruang vektor, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$.
- Misalkan W madalah subruang dari V s.t. $\forall \mathbf{w} \in W$,

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_3 \mathbf{v}_3$$

di mana k_1, k_2, \ldots, k_n .

Maka, $= \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}\}$ dikatakan merentang W. S disebut himpunan merentang, dan dinotasikan sebagai:

$$span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}\}$$
 or $span(S)$

Contoh: Ruang yang direntang oleh satu vektor

Misalkan $\mathbf{v}_1, \mathbf{v}_2$ adalah vektor-vektor yang tak-kolinier di \mathbb{R}^3 , dengan titik awalnya di titik asal, maka:

- $span\{\mathbf{v}_1, \mathbf{v}_2\}$ terdiri dari semua kombinasi linier $k_1\mathbf{v}_1 + k_2\mathbf{v}_2$, adalah bidang yang ditentukan oleh vektor \mathbf{v}_1 dan \mathbf{v}_2 .
- jika $\mathbf{v} \neq \mathbf{0}$ adalah sebuah vektor di \mathbb{R}^2 atau \mathbb{R}^3 , maka $span\{\mathbf{v}\}$ yang seluruhnya merupakan kelipatan skalar $k\mathbf{v}$, adalah garisnya ditentukan oleh \mathbf{v} .

(a) Span {v} is the line through the origin determined by v.

(b) Span {v₁, v₂} is the plane through the origin determined by v₁ and v₂.

Latihan 1

Rentang vektor satuan standar berikut \mathbb{R}^3 .

$$\mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1)$$

Hal ini karena, setiap vektor $\mathbf{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ dapat direpresentasikan sebagai kombinasi linier:

$$\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$$

Dalam hal ini, $\mathbb{R}^3 = span\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}.$

Latihan 2

Polinom $1, x, x^2, \dots, x^n$ P_n merentang ruang vektor.

Hal ini karena, setiap polinomial $\mathbf{p} \in P_n$ dapat ditulis sebagai:

$$\mathbf{p} = a_0 + a_1 x + a_2 x_2 + \dots + a_n x^n$$

yang merupakan kombinasi linier dari yang merupakan kombinasi linier dari $1, x, x^2, \dots, x^n$.

Dalam hal ini, $P_n = span\{1, x, x^2, \dots, x^n\}$.

Latihan 3

Tentukan apakah vektor-vektor berikut ini merentang \mathbb{R}^3 !

$$\mathbf{v}_1 = (2, -1, 3), \ \mathbf{v}_2 = (4, 1, 2), \ \mathbf{v}_3 = (8, -1, 8)$$

Misal $\mathbf{u} = (u_1, u_2, u_3)$ adalah vektor di \mathbb{R}^3 , dan $k_1, k_2, k_3 \in \mathbb{R}$.

Jika himpunan vektor $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ merentang di $\mathbb R^3$, maka semestinya:

$$(u_1, u_2, u_3) = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k_3 \mathbf{v}_3$$

Kita akan memeriksa apakah sistem linier berikut memiliki solusi.

$$2k_1 + 4k_2 + 8k_3 = u_1$$
, $-k_1 + k_2 - k_3 = u_2$, $3k_1 + 2k_2 + 8k_3 = u_3$

Latihan 4 (cont.)

Sistem linier memiliki matriks koefisien:

$$A = \begin{bmatrix} 2 & 4 & 8 \\ -1 & 1 & -1 \\ 3 & 2 & 8 \end{bmatrix}$$

Perhatikan bahwa:

$$\det(A) = 2 \begin{vmatrix} 1 & -1 \\ 2 & 8 \end{vmatrix} - 4 \begin{vmatrix} -1 & -1 \\ 3 & 8 \end{vmatrix} + 8 \begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix} = 20 + 20 - 40 = 0$$

Oleh karena itu, tidak ada solusi untuk sistem linier, artinya $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ tidak mencakup \mathbb{R}^3 .

Bagian 3: Independensi linier

Independensi linier di \mathbb{R}^2 dan \mathbb{R}^3

Misalkan V adalah ruang vektor. Himpunan $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ dikatakan independen linier jika dan hanya jika kombinasi liniernya

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_n\mathbf{v}_n \tag{1}$$

memiliki tepatnya satu solusi, yang merupakan solusi trivial:

$$k_1 = 0, \ k_2 = 0, \ \ldots, k_n = 0$$

Sebaliknya, himpunan $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ dikatakan tidak independen linier atau dependen linier, jika kombinasi linier (1) memiliki solusi non-trivial (yaitu, solusi selain $k_1 = 0, \ k_2 = 0, \dots, k_n = 0$).

Contoh himpunan independen/dependen linier (1)

Vektor-vektor $\mathbf{i}=(1,0,0)$, $\mathbf{j}=(0,1,0)$, dan $\mathbf{k}=(0,0,1)$ adalah vektor-vektor bebas linier pada \mathbb{R}^3 .

Mengapa?

Perhatikan bahwa untuk skalar $k_1, k_2, k_3 \in \mathbb{R}$, kita mempunyai:

$$k_1\mathbf{i}+k_2\mathbf{j}+k_3\mathbf{k}=\mathbf{0},$$

yang ekuivalen dengan:

$$k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) = (0,0,0) \Leftrightarrow (k_1,k_2,k_3) = (0,0,0)$$

Jelasnya, tidak ada solusi selain $k_1 = 0$, $k_2 = 0$, dan $k_3 = 0$.

Artinya $S = \{i, j, k\}$ bebas linier.

Dengan cara serupa kita dapat menunjukkan bahwa:

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0), \ \mathsf{dan} \ \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Contoh himpunan independen/dependen linier (2)

Tentukan apakah vektor:

$$\mathbf{v}_1 = (2, -1, 0, 3), \ \mathbf{v}_2 = (1, 2, 5, -1), \ \text{dan} \ \mathbf{v}_3 = (7, -1, 5, 8)$$

bebas linier atau tidak!

Solusi:

Perhatikan bahwa: $3\mathbf{v}_1 + v_2 - v_3 = \mathbf{0}$.

Ini berarti bahwa $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ bebas linier.

Contoh himpunan independen/dependen linier (3)

Tentukan apakah polinomial:

$$\mathbf{p}_1 = 1 - x$$
, $\mathbf{p}_2 = 5 + 3x - 2x^2$, dan $\mathbf{p}_3 = 1 + 3x - x^2$

bebas linier atau tidak!

Solusi:

Perhatikan bahwa $3\mathbf{p}_1 - \mathbf{p}_2 + 2\mathbf{p}_3 = \mathbf{0}$.

Oleh karena itu, vektor-vektornya bergantung linier.

Bagian 3: Interpretasi geometris

Interpretasi geometris dari independensi linier dalam \mathbb{R}^2 dan \mathbb{R}^3

Menentukan independensi/ketergantungan linier (1)

Tentukan ketergantungan linier dari vektor:

$$\mathbf{v}_1 = (1, -2, 3), \ \mathbf{v}_2 = (5, 6, -1), \ \text{dan} \ \mathbf{v}_3 = (3, 2, 1)$$

Solusi:

Kita periksa apakah persamaan vektor $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 = \mathbf{0}$ memiliki solusi di \mathbb{R} .

Persamaannya setara dengan:

$$k_1(1,-2,3) + k_2(5,6,-1) + k_3(3,2,1) = (0,0,0)$$
$$(k_1 + 5k_2 + 3k_3, -2k_1 + 6k_2 + 2k_3, 3k_1 - k_2 + k_3) = (0,0,0)$$

Selesaikan sistem:

$$\begin{cases} k_1 + 5k_2 + 3k_3 = 0 \\ 2k_1 + 6k_2 + 2k_3 = 0 \\ 3k_1 - k_2 + k_3 = 0 \end{cases}$$

Memecahkan sistem menggunakan eliminasi Gaussian, kita mendapatkan:

$$k_1 = -\frac{1}{2}t, \ k_2 = -\frac{1}{2}t, \ k_3 = t, \quad t \in \mathbb{R}$$

Oleh karena itu, sistem memiliki solusi non-trivial, sehingga vektor $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ bergantung linier.

Menentukan independensi/ketergantungan linier (2)

Tunjukkan bahwa polinomial membentuk himpunan vektor bebas linier dalam P_n .

$$1, x, x^2, \ldots, x^n$$

Solusi:

Misalkan a_0, a_1, \ldots, a_n sedemikian rupa sehingga:

$$a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = \mathbf{0}$$

Kita harus menunjukkan bahwa satu-satunya solusi dari polinomial untuk $x \in (-\infty, \infty)$ is:

$$a_0 = a_1 = a_2 = \cdots = a_n = 0$$

Dari konsep Aljabar, kita tahu bahwa:

Teorema

Setiap polinomial derajat bukan nol n memiliki paling banyak n akar.

Ini mengakibatkan bahwa $a_0 = a_1 = \cdots = a_n$ (atau, polinomialnya adalah polinomial nol).

Jika tidak, itu adalah polinomial bukan nol, memiliki jumlah akar tak terbatas (yaitu, $x \in (-\infty, \infty)$), bertentangan dengan teorema. bersambung...