

Helicópteros de papel

Diseño de Experimentos

Mateo Murcia, Christopher Obando, Juan Zapata

Escuela de Estadística Universidad Nacional de Colombia Sede Medellín

Noviembre 28, 2023

Tabla de contenidos

- 1. Contextualización
- 2. Ejecución del experimento
- 3. Modelos
- 4. Validación de supuestos
- 5. Comparación de medias
- 6. Conclusiones

Contextualización

Contextualización

Los **helicópteros de papel**, a pesar de su simplicidad aparente, encierran complejidades aerodinámicas fascinantes que los convierten en objetos de estudio valiosos.

Estos sirven como modelos didácticos en el entendimiento de los principios fundamentales de la aerodinámica y el diseño experimental.

Formatos de helicópteros usados

Registro fotográfico

Registro fotográfico

Diseño a emplear

Para el experimento utilizaremos un diseño Factorial de dos factores + bloque, donde:

Variable respuesta: Tiempo de vuelo.

Material: Con el que se construyo el helicóptero de papel.

Niveles:

1:Hoja de impresora(resma).

2:Hoja de cuaderno.

Ancho: Las dimensiones de cada ala del helicóptero.

Niveles:

1:5cm.

2:3cm.

Bloque: Fabricantes

Ejecución del experimento

Determinacion de réplicas

Para realizar el experimento, se efectuó una muestra piloto con una combinación única y 10 réplicas.

alpha	nlev	nreps	Delta	Sigma	power
0.05	4	2	1	0.2809607	0.4411098
0.05	4	3	1	0.2809607	0.8232324
0.05	4	4	1	0.2809607	0.9592504
0.05	4	5	1	0.2809607	0.9922678
0.05	4	6	1	0.2809607	0.9987205

Se determinó que se necesitan realizar 3 réplicas para lograr una potencia del 82%. Esto implica que para el bloque necesitamos 3 fabricantes.

Aleatorización

Para definir el orden en que el fabricante debe hacer los helicópteros de papel, se emplea la siguiente aleatorización:

Mateo	Christopher	Juan	
"Material 2:Ancho 3"	"Material 2:Ancho 5"	"Material 2:Ancho 5"	
"Material 2:Ancho 5"	"Material 1:Ancho 3"	"Material 1:Ancho 3"	
"Material 1:Ancho 3"	"Material 2:Ancho 3"	"Material 1:Ancho 5"	
"Material 1:Ancho 5"	"Material 1:Ancho 5"	"Material 2:Ancho 3"	

Realización del experimento

- Control de Factores:
 - 1. Viento, lanzador, altura(4.76cm).
- Entorno Cerrado:
 - 1. Prueba realizada para gestionar la influencia del viento.
- Minimización de Variabilidad:
 - 1. Único lanzador para estandarizar.
 - 2. Altura constante en todas las pruebas.
- Gestión del Tiempo de Vuelo:
 - 1. Dos personas para tomar el tiempo.
 - 2. Promedio de los tiempos para mayor precisión.

Aleatorización de lanzamiento.

Con el fin de evitar la formación de patrones en los lanzamientos, se procedió a aleatorizar la disposición de los helicópteros antes de cada lanzamiento.

Table: Parte 1

1	"Material 1: Ancho 5"
2	"Material 2: Ancho 3"
3	"Material 2: Ancho 5"
4	"Material 1: Ancho 5"
5	"Material 1: Ancho 3"
6	"Material 1: Ancho 5"

Table: Parte 2

7	"Material 2: Ancho 5"
8	"Material 2: Ancho 3"
9	"Material 1: Ancho 3"
10	"Material 2: Ancho 5"
11	"Material 2: Ancho 3"
12	"Material 1: Ancho 3"

Modelos

Modelo completo

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \delta_k + \varepsilon_{ijk}$$

$$\begin{cases} i = 1, 2 \\ j = 1, 2 \\ k = 1, 2, 3 \end{cases}$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Longitud	1	0.43701	0.43701	8.1722	0.02885*
Material	1	0.03741	0.03741	0.6995	0.43497
Fabricante	2	0.09555	0.04777	0.8934	0.45748
Longitud:Material	1	0.06601	0.06601	1.2344	0.30909
Residuals	6	0.32085	0.05347		

Modelo reducido

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Longitud	1	0.43701	0.43701	8.1722	0.01585
Residuals	10	0.51982	0.05198		

Validación de supuestos

Normalidad

Normalidad

Realizamos el siguiente juego de hipótesis:

 H_0 : Los datos se distribuyen Normal H_a : Los datos no se distribuyen Normal

Con el test de Shapiro-Wilk obtenemos los siguietes resultados:

	k normality test
W = 0.94044	Valor p = 0.5038

Con un valor p > $\alpha = 0.05$, hay evidencia estadística suficiente para aceptar la hipótesis nula.

Homocedasticidad

Para el factor **Material**, realizamos el siguiente juego de hipótesis para comprobar homocedasticidad.

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_a: \sigma_1^2 \neq \sigma_2^2$$

Con la prueba de Bartlett, obtenemos los siguientes resultados

Bartlett test of homogeneity of variances				
K-squared = 0.24918	df = 1	Valor p = 0.6177		

Con un valor p > α = 0.05, hay evidencia estadística suficiente para aceptar la hipótesis nula.

Homocedasticidad

Para el factor **Ancho**, realizamos el siguiente juego de hipótesis para comprobar homocedasticidad.

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_a: \sigma_1^2 \neq \sigma_2^2$

Con la prueba de Bartlett, obtenemos los siguientes resultados

Bartlett test of homogeneity of variances				
K-squared = 0.26653 df = 1 Valor p = 0.6057				

Con un valor p > α = 0.05, hay evidencia estadística suficiente para aceptar la hipótesis nula.

Comparación de medias

Comparación de medias

Comparación de medias

Para realizar la comparación de medias para el factor significativo, vamos a realizar la siguiente prueba de hipótesis.

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_a: \mu_1 - \mu_2 \neq 0$$

Con el test de Tukey, obtenemos el siguiente resultado:

	diff	lwr	upr	p adj
5-3	-0.3816667	-0.6749631	-0.08837027	0.0158478

Conclusiones

Conclusiones

- Al excluir el bloque correspondiente en el modelo, se evidenció que este no estaba enmascarando la importancia del factor Ancho.
- Los helicópteros con alas de 3 cm tienen un tiempo de vuelo significativamente mejor respecto a los de 5 cm, concluyendo que el helicóptero de 3 cm exhibe el mejor rendimiento en el tiempo de vuelo.
- Dado que el factor Material no es significativo en el modelo, podemos inferir que el tiempo de vuelo solo se ve afectado por el Ancho de las alas del helicóptero.

Gracias por su atención

Mateo Murcia, Christopher Obando, Juan Zapata

Escuela de Estadística Universidad Nacional de Colombia Se de Medellín

Noviembre 28, 2023