VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

SÍŤOVÉ APLIKACE A SPRÁVA SÍTÍ 2022/2023

Projekt

Generování NetFlow dat ze zachycené síťové komunikace

Obsah

Úvod	3
Základní informace	3
Návrh programu	4
Popis implementace	5
Návod na použití	7
Testování	8
7droje	9

Úvod

Cílem projektu bylo navrhnout a implementovat NetFlow exportér. Jeho úkolem je analyzovat pakety a slučovat je do flows na základě jejich podobnosti. Tyto flows pak na základě zadaných vstupních parametrů odesílány na kolektor.

Základní informace

Netflow [1] je otevřený protokol od společnosti Cisco. Hlavním účelem je monitorování síťového provozu na základě IP toků a poskytovat tak podrobný pohled do provozu na síti. S pomocí NetFlow statistik lze odhalovat vnější i vnitřní incidenty, úzká místa v síti, dominantní zdroje provozu, efektivněji plánovat budoucí rozvoj sítě, sledovat, kdo komunikoval s kým, jak dlouho a s pomocí kterého protokolu.

Architektura NetFlow se skládá z exportéru a kolektoru. Exportér analyzuje příchozí pakety. Na základě IP toků generuje statistiky, které posílá na kolektor. Kolektor sbírá statistiky z exportérů a ukládá je do dlouhodobé databáze. Nad těmito daty pak může běžet nějaká aplikace, která může vizualizovat přehledy nasbíraných statistik uživateli.

Obrázek 1: Typická architektura NetFlow

IP tok se skládá ze sekvence paketů se shodnou pěticí (sedmicí) údajů: zdrojová/cílová IP adresa, zdrojový/cílový port a typ protokolu. Každý tok o sobě nese informace, jako např. dobu vzniku, dobu trvání a další zobrazené <u>zde</u>. [2]

NetFlow má několik verzí, nejvíce používanou je verze 5, ale v současnosti se začíná ve větším rozsahu využívat verze 9.

Návrh programu

K implementaci byl použit jazyk C a knihovna libpcap [3]. Struktura programu je rozdělena do několika zdrojových kódů a jednoho hlavičkového souboru. Program je navržen tak, aby analyzoval pakety v offline režimu buď z STDIN nebo souboru typu *.pcap. Pakety se stejnými základními parametry slučuje do toků ("flows"), které pak exportuje na kolektor. Pro jednoduchost je v jednom paketu exportována jeden tok.

Obrázek 2: Návrh programu

Popis implementace

Program se skládá z dvou hlavních funkcí a několika pomocných. Hlavní funkce jsou *main*, *callback* a *send_flow* popsané níže.

I. main

Funkce main se zabírá obstaráním všech potřebných komponent pro funkci programu. Nejdříve zpracováním vstupních argumentů pomocí funkce *parse_arguments*, která využívá *getopt* a ukládá parametry do implementované struktury **t_Args**. Následně se main postará o založení listu **t_List** pro flows, připravením soketů pomocí funkcí z knihovny *libpcap*, nastavením filtru a následným voláním *callback* funkce pomocí knihovní funkce *pcap_loop*. Po skončení callback se provede export všech zbylých flows v listu, pomocí funkce *send_flow*, kdy čas odeslání je čas posledního příchozího paketu. V poslední části main probíhá patřičné uvolnění všech používaných komponent.

II. callback

Funkce callback proběhne pro všechny přijaté pakety ze vstupu, které splňují podmínku filtru, tudíž pouze pakety s protokoly ICMP/TCP/UDP. Má za úkol analyzovat jednotlivé pakety. Vybírá z paketů informace a na základě těchto informací je sdružuje do toků ("flows"). Pro uchování těchto informací slouží struktura t_Flow. První informace, kterou zpracovává je tzv. "epoch time", jenž reprezentuje čas v sekundách, který uplynul od 1. 1. 1970 do doby příchodu paketu. Tento čas považujeme jako náš aktuální čas a je využíván k vypočítání intervalů Sysup. Sysup je interval v milisekundách, který uběhl od nabootování, ovšem v našem případě jakožto boot používáme příchod prvního paketu. Jestliže se jedná o první paket, pak je náš aktuální čas zároveň časem nabootování. Dále probíhá kontrola expirace časovačů již vytvořených toků pomocí funkce check_timers. Jestliže toku vypršel některý z časovačů je odeslán pomocí send_flow. Dále probíhá zjištění pěti informací, pomocí kterých identifikujeme jednotlivé toky. Jsou jimi zdrojová/cílová IP adresa, zdrojový/cílový port a typ protokolu. K těmto informacím zpracováváme ještě další, jako např. tos ("type of service") nebo tcp flags, které je zapotřebí zapisovat a někdy i aktualizovat k jednotlivým tokům. Po zpracování veškerých informací se buď vytváří nový tok anebo se aktualizuje již vytvořený tok s dříve zmíněnou pěticí. Pro vytvoření toku se používá funkce create_flow a pro aktualizaci update_flow. Při vytváření toku je potřeba kontrolovat zaplnění cache-flow. Jestliže je maximálně zaplněna je před vytvořením nového toku nutno odeslat tok nejstarší, tudíž první tok v listu. U paketů, jež používají protokol TCP je zapotřebí kontrolovat, jestli se stav tcp flags nedostal do FIN/RST [4]. Jestliže ano je tok, do kterého daný paket spadá, exportován.

III. send_flow

Funkce send_flow se stará o odeslání toku na kolektor. V rámci tohoto řešení jeden paket odesílá pouze jeden tok. Funkce si nejdřív připraví proměnnou *packet*, do které bude zapisovat informace o posílaném toku. Jako první se do paketu zapisuje hlavička daného toku, která obsahuje informace ukázané v <u>obrázku č. 3</u>. Hlavička má celkovou velikost 24 B. Následně se zapisují informace o toku ukázané v <u>obrázku č. 4</u>. Jeden tok má velikost 48 B, celý paket má tedy velikost 72 B. Informace, které nejsme schopni z analyzovaných paketů zjistit, ale tok je vyžaduje (nexthop, pad1, ...), mají připsanou hodnotu 0. Po zapsání veškerých informací je tok exportován a vymazán z listu.

Table B-3 Version 5 Header Format

Bytes	Contents	Description
0-1	version	NetFlow export format version number
2-3	count	Number of flows exported in this packet (1-30)
4-7	SysUptime	Current time in milliseconds since the export device booted
8-11	unix_secs	Current count of seconds since 0000 UTC 1970
12-15	unix_nsecs	Residual nanoseconds since 0000 UTC 1970
16-19	flow_sequence	Sequence counter of total flows seen
20	engine_type	Type of flow-switching engine
21	engine_id	Slot number of the flow-switching engine
22-23	sampling_interval	First two bits hold the sampling mode; remaining 14 bits hold value of sampling interval

Obrázek 3: Hlavička Flow

Table B-4 Version 5 Flow Record Format

Bytes	Contents	Description
0-3	srcaddr	Source IP address
4-7	dstaddr	Destination IP address
8-11	nexthop	IP address of next hop router
12-13	input	SNMP index of input interface
14-15	output	SNMP index of output interface
16-19	dPkts	Packets in the flow
20-23	dOctets	Total number of Layer 3 bytes in the packets of the flow
24-27	First	SysUptime at start of flow
28-31	Last	SysUptime at the time the last packet of the flow was received
32-33	srcport	TCP/UDP source port number or equivalent
34-35	dstport	TCP/UDP destination port number or equivalent
36	pad1	Unused (zero) bytes
37	tcp_flags	Cumulative OR of TCP flags
38	prot	IP protocol type (for example, TCP = 6; UDP = 17)
39	tos	IP type of service (ToS)
40-41	src_as	Autonomous system number of the source, either origin or peer
42-43	dst_as	Autonomous system number of the destination, either origin or peer
44	src_mask	Source address prefix mask bits
45	dst_mask	Destination address prefix mask bits
46-47	pad2	Unused (zero) bytes

Návod na použití

Program byl implementován pro Unixová prostředí. K jeho přeložení je zapotřebí překladač gcc a nástroj GNU Make.

Překlad programu za pomocí Make:

\$ make

Překlad programu bez Make:

\$ gcc -std=gnu99 -Wall -o flow *.c *.h -lpcap

Spuštění programu:

\$./flow [-f <file>] [-c <netflow_collector>[:<port>]] [-a <active_timer>] [-i <inactive_timer>] [-m <count>] [-h]

Pokud spuštění předchozím příkladem není možné, je zapotřebí přidělit příkazu rootovská práva pomocí sudo ./flow ...).

Významy argumentů:

- [-f <file>] Jméno analyzovaného souboru nebo STDIN.
- [-c <netflow_collector>[:<port>]] IP adresa, nebo hostname NetFlow kolektoru. Volitelně i UDP port. Implicitně "127.0.0.1:2055".
- [-a <active_timer>] Interval v sekundách, po kterém se exportují aktivní záznamy na kolektor. Implicitně 60 s.
- [-i <inactive_timer>] Interval v sekundách, po kterém se exportují aktivní záznamy na kolektor. Implicitně 10 s.
- [-m <count>] Udává maximální velikost flow-cache. Při naplnění dojde k exportu nejstarší flow. Implicitně 1024.
- [-h] Vypíše informace ohledně používání programu.

Testování

K testování projektu byly využity softwary Wireshark, Nfcapd [5], Nfdump [6], Softflowd [7]. Wireshark sloužil ke kontrole posílání toků. Dali se v něm zobrazit jednotlivé poslané toky a informace, které nesou.

\$./flow <files/tcp.pcap

Obrázek 5: Zobrazení odeslaných flows ve Wireshark

Pomocí Nfcapd bylo možné spustit kolektor toků, na který pak bylo možné dané toky posílat. Výstupy generoval do *.nf souborů, které bylo možné zobrazit pomocí Nfdump.

\$ nfcapd -D -T all -I records -I any -S2 -p 2056 & ./flow -f files/tcp.pcap -c 0.0.0.0:2056

Obrázek 6: Zobrazení statistik z kolektoru pomocí nfdump

Softflowd sloužil k poskytnutí referenčních výsledků.

Zdroje

- [1] NetFlow. *Wikipedia* [online]. 13 říjen 2022 [cit. 2022-11-13]. Dostupné z: https://en.wikipedia.org/wiki/NetFlow
- [2] NetFlow Export Datagram Format. *Cisco* [online]. 14. září 2007 [cit. 2022-11-13].

Dostupné z: https://www.cisco.com/c/en/us/td/docs/net_mgmt/netflow_collection
engine/3-6/user/guide/format.html#wp1003394

- [3] Manpage. *Tcpdump* [online]. [cit. 2022-11-13]. Dostupné z: https://www.tcpdump.org/manpages/libpcap-1.5.3/
- [4] TCP flags. *Pierky's Blog* [online]. [cit. 2022-11-13]. Dostupné z: https://blog.pierky.com/netflow-weird-tcp-flags-in-flowviewer-and-flow-print/
- [5] Nfcapd. FreeBSD [online]. 19. srpna 2005 [cit. 2022-11-13]. Dostupné z: https://www.freebsd.org/cgi/man.cgi?query=nfcapd&apropos=0&sektion=1&man
 path=FreeBSD+8.2-RELEASE+and+Ports&format=html
 https://www.freeBSD+8.2-RELEASE+and+Ports&format=html
 https://www.freeBSD-8.2-RELEASE+and-ports&format=html
 https://www.freeBSD-8.2-RELEASE+and-ports&format=html
 https://www.freeBSD-8.2-RELEASE+and-ports&format=html
 https://www.freeBSD-8.2-RELEASE+and-ports&format=html
 https://www.freeBSD-8.2-RELEASE+and-port
- [6] Nfdump. *Ubuntu manuals* [online]. [cit. 2022-11-13]. Dostupné z: https://manpages.ubuntu.com/manpages/xenial/man1/nfdump.1.html
- [7] Softflowd. *Ubuntu manuals* [online]. [cit. 2022-11-13]. Dostupné z: https://manpages.ubuntu.com/manpages/bionic/man8/softflowd.8.html