ON GÂTEAUX DIFFERENTIABILITY OF POINTWISE LIPSCHITZ MAPPINGS

JAKUB DUDA

ABSTRACT. We prove that for every function $f: X \to Y$, where X is a separable Banach space and Y is a Banach space with RNP, there exists a set $A \in \tilde{\mathcal{A}}$ such that f is Gâteaux differentiable at all $x \in S(f) \setminus A$, where S(f) is the set of points where f is pointwise-Lipschitz. This improves a result of Bongiorno. As a corollary, we obtain that every K-monotone function on a separable Banach space is Hadamard differentiable outside of a set belonging to $\tilde{\mathcal{C}}$; this improves a result due to Borwein and Wang. Another corollary is that if X is Asplund, $f: X \to \mathbb{R}$ cone monotone, $g: X \to \mathbb{R}$ continuous convex, then there exists a point in X, where f is Hadamard differentiable and g is Fréchet differentiable.

1. Introduction

The classical Rademacher theorem [9] concerning a.e. differentiability of Lipschitz functions defined on \mathbb{R}^n was extended by Stepanoff to pointwise Lipschitz functions [10, 11]. D. Bongiorno [2, Theorem 1] proved a version for infinite-dimensional mappings; namely, that for every $f: X \to Y$, where X is a separable Banach space and Y is a Banach space with RNP, there exists an Aronszajn null set $A \subset X$ (see e.g. [1] for the definition of Aronszajn null sets) such that f is Gâteaux differentiable at all $x \in S(f) \setminus A$ (here, S(f) is the set of points where f is pointwise-Lipschitz). This generalized results for Lipschitz functions obtained by Aronszajn, Christensen, Mankiewicz, and Phelps; see e.g. [1] for the definitions of various notions of null sets they used. We prove a stronger version of infinite dimensional Stepanoff-like theorem, which asserts that under the same assumptions as in [2, Theorem 1], the set A can be taken in the class \hat{A} defined by Preiss and Zajíček [8]; see Theorem 10. By results of [8], A is a strict subclass of Aronszajn null sets. Recently, Zajíček [12] proved that the sets in $\hat{\mathcal{A}}$ (and even $\hat{\mathcal{C}}$) are Γ -null, which is a notion of null sets due to Lindenstrauss and Preiss [7] (here, a definition and basic properties of this notion can be found). Thus, Theorem 10 has the following corollary: if X is a Banach space with separable dual (i.e. an Asplund space), and Y is a Banach space with RNP, $f: X \to Y$ is pointwise-Lipschitz at all $x \in X \setminus A$ where $A \in C$, $g: X \to \mathbb{R}$ is continuous convex, then there exists $x \in X$ such that f is Gâteaux differentiable at x and g is Fréchet differentiable at x. In some sense, our proof of Theorem 10 is simpler than the proof of [2, Theorem 1]; some of the (rather cumbersome) measurability considerations from [2] are replaced by Lemma 6 and the construction of

Date: July 26, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46G05; Secondary 46T20.

Key words and phrases. Gâteaux differentiable function, Radon-Nikodým property, differentiability of Lipschitz functions, pointwise-Lipschitz functions, cone mononotone functions.

The author was supported in part by ISF.

a total set from [2] is replaced by the Lipschitz property of certain restrictions of the given mapping. In the proof, we use several ideas from [8].

Let X be a Banach space and $\emptyset \neq K \subset X$ be a cone. Following [3], we say that $f: X \to \mathbb{R}$ is K-monotone provided f or -f is K-increasing (we say that $f: X \to \mathbb{R}$ is K-increasing provided $x \leq_K y$ implies $f(x) \leq f(y)$ whenever $x, y \in X$; here, $x \leq_K y$ means $y - x \in K$). Borwein, Burke and Lewis [3] proved that every Kmonotone $f: X \to \mathbb{R}$ is Gâteaux differentiable outside of a Haar null set (see [1] for definition) provided X is separable and K is closed convex with $int(K) \neq \emptyset$. This was strengthened by Borwein and Wang [4] who showed that "Haar null" can be replaced by "Aronszajn null". In section 5, as a corollary to Theorem 10, we obtain that an analogous result holds if we replace "Haar null" by the class $\tilde{\mathcal{C}}$ defined by Preiss and Zajíček [8]; see Theorem 15 for details. The class $\tilde{\mathcal{C}}$ is a strict subclass of Aronszajn null sets (see [8, p. 19]) and thus our result improves the result due to Borwein and Wang. [4, Proposition 16(iv)] shows that instead of "Gâteaux differentiable" we can write "Hadamard differentiable" (see Corollary 17). Our result has another interesting corollary; namely, if X has a separable dual (i.e. Xis an Asplund space), $f: X \to \mathbb{R}$ is K-monotone, $g: X \to \mathbb{R}$ is continuous convex, then there exists $x \in X$ such that f is Hadamard differentiable at x, and g is Fréchet differentiable at x (see Corollary 18). This does not follow from the results of Borwein and Wang since Aronszajn null sets and Γ -null sets are incomparable. It seems to be a difficult open problem whether $\tilde{\mathcal{C}} = \tilde{\mathcal{A}}$ (see [8]). If this were true, then our theorem would also hold with $\tilde{\mathcal{A}}$ in place of $\tilde{\mathcal{C}}$. Thus, it remains open, whether we can replace \mathcal{C} by \mathcal{A} in Theorem 15 and Corollary 17. Going in another direction, the author [6] proved some results about a.e. differentiability of vector-valued cone monotone mappings.

The current paper is organized as follows. Section 2 contains basic definitions and facts. Section 3 contains auxiliary results. Section 4 contains the proofs of the main Theorem 10, and Corollary 11. Section 5 contains the proofs of Theorem 15, and Corollaries 17 and 18.

2. Preliminaries

All Banach spaces are assumed to be real. By λ we will denote the Lebesgue measure on \mathbb{R} . Let X be a Banach space. By B(x,r) we will denote the open ball with center $x \in X$ and radius r > 0, and by S_X we denote $\{x \in X : ||x|| = 1\}$. If $M \subset X$, then by $d_M(x) := \inf\{||y - x|| : y \in M\}$ we denote the distance from $x \in X$ to M.

Let X,Y be Banach spaces. We say that $f:X\to Y$ is pointwise Lipschitz at $x\in X$, provided $\limsup_{y\to x}\frac{\|f(x)-f(y)\|}{\|x-y\|}<\infty$. By S(f), we will denote the set of points of X where f is pointwise Lipschitz. By $\mathrm{Lip}(f)$ we will denote the usual Lipschitz constant of f.

In the following, let X be a Banach space. If f is a mapping from X to a Banach space Y and $x, v \in X$, then we consider the directional derivative f'(x, v) defined by

(1)
$$f'(x,v) = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t}.$$

If $x \in X$, f'(x,v) exists for all $v \in X$, and T(v) := f'(x,v) is a bounded linear operator from X to Y, then we say that f is Gâteaux differentiable at x. If f is

Gâteaux differentiable at x and the limit in (1) is uniform in ||v|| = 1, then we say that f is Fréchet differentiable at x. If f is Gâteaux differentiable at x, and the limit in (1) is uniform with respect to norm-compact sets, then we say that f is Hadamard differentiable at x.

We will need the following notion of "smallness" of sets in Banach spaces from [8].

Definition 1. Let X be a Banach space, $M \subset X$, $a \in X$. Then we say that

- (i) M is porous at a if there exists c > 0 such that for each $\varepsilon > 0$ there exist $b \in X$ and c > 0 such that $||a b|| < \varepsilon$, $||A \cap B(b, c)| = 0$, and $||A \cap B(b, c)| = 0$.
- (ii) M is porous at a in direction v if the $b \in X$ from (i) verifying the porosity of M at a can be always found in the form b = a + tv, where $t \ge 0$. We say that M is directionally porous at a if there exists $v \in X$ such that M is porous at a in direction v.
- (iii) M is directionally porous if M is directionally porous at each of its points.
- (iv) M is σ -directionally porous if it is a countable union of directionally porous sets.

For a recent survey of properties of negligible sets, see [13]. We will also need the following notion of "null" sets in a Banach space. It was defined in [8].

Definition 2. Let X be a separable Banach space and $0 \neq v \in X$. Then $\tilde{\mathcal{A}}(v, \varepsilon)$ is the system of all Borel sets $B \subset X$ such that $\{t : \varphi(t) \in B\}$ is Lebesgue null whenever $\varphi : \mathbb{R} \to X$ is such that the function $t \to \varphi(t) - tv$ has Lipschitz constant at most ε , and $\tilde{\mathcal{A}}(v)$ is the system of all sets B such that $B = \bigcup_{k=1}^{\infty} B_k$, where $B_k \in \tilde{\mathcal{A}}(v, \varepsilon_k)$ for some $\varepsilon_k > 0$.

We define $\tilde{\mathcal{A}}$ (resp. $\tilde{\mathcal{C}}$) as the system of those $B \subset X$ that can be, for every given complete¹ sequence $(v_n)_n$ in X (resp. for some sequence $(v_n)_n$ in X), written as $B = \bigcup_{n=1}^{\infty} B_n$, where each B_n belongs to $\tilde{\mathcal{A}}(v_n)$.

The following simple lemma shows that every directionally porous set is contained in a set from $\tilde{\mathcal{A}}$. As a corollary, we have the same result for σ -directionally porous sets.

Lemma 3. Let X be a separable Banach space, and $A \subset X$ be directionally porous. Then there exists a set $\hat{A} \in \tilde{\mathcal{A}}$ such that $A \subset \hat{A}$.

Proof. This follows from the proof of [8, Theorem 10]; see also [8, Remark 6]. \Box

The following simple lemma is proved in [2]:

Lemma 4 ([2], Lemma 1). Given $f: X \to Y$ and $L, \delta > 0$, let S be the set of all points $x \in X$ such that $||f(x+h) - f(x)|| \le L||h||$ whenever $||h|| < \delta$. Then S is a closed set.

3. Auxiliary results

The following is an extension of [4, Lemma 3] to vector-valued setting.

Lemma 5. Let X, Y be Banach spaces, $f: X \to Y$. Fix $v_1, v_2 \in X$, $k, l, m \in \mathbb{N}$, and $y, z \in Y$. Then the set A(k, l, m, y, z) of all $x \in X$ verifying

(i)
$$\left\| \frac{f(x+tu)-f(x)}{t} - y \right\| < \frac{1}{l} \text{ for } \|u - v_1\| < 1/m \text{ and } 0 < t < 1/k;$$

¹We say that $(v_n)_n \subset X \setminus \{0\}$ is a *complete* sequence provided $\overline{\operatorname{span}}(v_n) = X$.

(ii)
$$\left\| \frac{f(x+tu)-f(x)}{t} - z \right\| < \frac{1}{l}$$
 for $\|u-v_2\| < 1/m$ and $0 < t < 1/k$; and

(ii)
$$\left\| \frac{f(x+tu)-f(x)}{t} - z \right\| < \frac{1}{l} \text{ for } \|u-v_2\| < 1/m \text{ and } 0 < t < 1/k; \text{ and}$$

(iii) $\left\| \frac{f(x+s(v_1+v_2))-f(x)}{s} - (y+z) \right\| > \frac{3}{l} \text{ occurs for arbitrarily small } s > 0,$

is directionally porous in X.

Proof. Let $x \in A(k, l, m, y, z)$. Choose 0 < s < 1/k such that the inequality in (iii) holds. We claim that $B\left(x+sv_1,\frac{s}{m}\right)\cap A(k,l,m,y,z)=\emptyset$.

Indeed, for $||h|| < \frac{1}{m}$, if $x + s(v_1 + h)$ satisfies (ii), we have

(2)
$$\left\| \frac{f(x+s(v_1+h)+su) - f(x+s(v_1+h))}{s} - z \right\| < \frac{1}{l},$$

for $||u-v_2|| < \frac{1}{m}$. By (i) we get

(3)
$$\left\| \frac{f(x + s(v_1 + h)) - f(x)}{s} - y \right\| < \frac{1}{l}.$$

By the triangle inequality, (2), and (3) we get

$$\left\| \frac{f(x+s(v_1+h)+su)-f(x)}{s} - (y+z) \right\| < \frac{2}{l}, \text{ for } \|u-v_2\| < \frac{1}{m}.$$

Taking $u = v_2 - h$, we have

$$\left\| \frac{f(x + sv_1 + sv_2) - f(x)}{s} - (y + z) \right\| < \frac{2}{l}.$$

This choice contradicts the choice of s.

Suppose that X, Y are Banach spaces, $f: X \to Y$. For $x \in X$, $0 \neq v \in X$, and $\varepsilon > 0$ by $O(f, x, v, \varepsilon)$ we denote the expression

$$\sup \left\{ \left\| \frac{f(x+tv) - f(x)}{t} - \frac{f(x+sv) - f(x)}{s} \right\| : 0 < |t|, |s| < \varepsilon \right\}.$$

We also define

$$O(f, x, v) := \lim_{\varepsilon \to 0+} O(f, x, v, \varepsilon).$$

We borrow this definition from [8]. The following is true in general (in [8, Lemma 11] it is assumed that f is Lipschitz, but it is clearly not necessary):

(4)
$$f'(x, v)$$
 exists if and only if $O(f, x, v) = 0$.

For the rest of this section, X will be a separable Banach space and Y will be a Banach space with RNP. Also, $G \subset X$ will be a closed set and $f: X \to Y$ a mapping such that there exist $L, \delta > 0$ with

(5)
$$||f(y) - f(x)|| \le L||y - x|| \quad \text{whenever } y \in G, \ x \in B(y, \delta).$$

We also assume that D is a Borel subset of G such that the distance function $d_G(x)$ is Gâteaux differentiable at each point $x \in D$.

Lemma 6. Let X be separable, $0 \neq v \in X$, and we put g(x) := O(f, x, v). Then $g|_D$ is Borel measurable.

Proof. Let $w \in D$. Then $h = f|_{B(w,\delta/4)\cap G}$ is L-Lipschitz by (5), and thus Z = $h(B(w,\delta/4)\cap G)$ is separable. Thus, Z can be isometrically embedded into ℓ_{∞} , and by [1, Lemma 1.1(ii)], h can be extended to an L-Lipschitz mapping $H: X \to \ell_{\infty}$ (we identify Z with its isometric representation in ℓ_{∞} for the moment). By [8, Lemma 11(ii)], G(x) := O(H, x, v) is a Borel measurable function on X. We will prove that g(x) = G(x) for all $x \in B(w, \delta/4) \cap D$, and conclude that $g|_D$ is Borel measurable (by separability of X).

Let $x \in B(w, \delta/4) \cap D$. Fix $\gamma > 0$ such that $B(x, 2\gamma) \subset B(w, \delta/4)$. Let $\varepsilon > 0$ and find $0 < \tau < \varepsilon$ such that $d_G(x+tv) < \frac{\varepsilon}{L}|t|$ and $x+tv \in B(x,\gamma)$ whenever $0 < |t| < \tau$. Take $\eta := \frac{1}{2}\min\left(\varepsilon, \tau, \frac{L\gamma}{\varepsilon}\right)$. For $0 < |s|, |t| < \eta$ find $y, z \in G \cap B(w, \delta/4)$ such that $||x+tv-y|| < \frac{\varepsilon}{L}|t|$ and $||x+sv-z|| < \frac{\varepsilon}{L}|s|$. Then we have

$$\left\| \frac{f(x+tv) - f(y)}{t} \right\| \le \frac{L}{|t|} \|x + tv - y\| \le \varepsilon,$$

and similarly $\left\| \frac{f(x+sv)-f(z)}{s} \right\| \leq \varepsilon$. Also,

$$\left\| \frac{H(y) - H(x + tv)}{t} \right\| \le \frac{L}{|t|} \|x + tv - y\| \le \varepsilon,$$

and $\left\|\frac{H(x+sv)-H(z)}{s}\right\| \le \varepsilon$. Thus using f(x)=H(x), f(y)=H(y), and f(z)=H(z), we obtain

(6)
$$\left\| \frac{H(x+tv) - H(x)}{t} - \frac{H(x+sv) - H(x)}{s} \right\|$$

$$\leq \left\| \frac{f(x+tv) - f(x)}{t} - \frac{f(x+sv) - f(x)}{s} \right\| + \left\| \frac{f(x+tv) - f(y)}{t} \right\|$$

$$+ \left\| \frac{f(x+sv) - f(z)}{s} \right\| + \left\| \frac{H(y) - H(x+tv)}{t} \right\| + \left\| \frac{H(x+sv) - H(z)}{s} \right\|$$

$$\leq O(f, x, v, \varepsilon) + 4\varepsilon.$$

By taking a supremum over $0 < |s|, |t| < \eta$ in (6), we obtain $O(H, x, v, \eta) \le O(f, x, v, \varepsilon) + 4\varepsilon$. Send $\eta \to 0+$ to get $O(H, x, v) \le O(f, x, v, \varepsilon) + 4\varepsilon$, and then $\varepsilon \to 0+$ to see that $O(H, x, v) \le O(f, x, v)$.

By (5) and H being L-Lipschitz, we can reverse the rôles of f and H in the above argument to show that $O(f, x, v) \leq O(H, x, v)$.

Lemma 7. If $x \in D$, $0 \neq v \in X$, O(f, x, v) > 0, $\varphi : \mathbb{R} \to X$, $r \in \mathbb{R}$, $\varphi(r) = x$, and the mapping $\psi : t \to \varphi(t) - tv$ has Lipschitz constant strictly less than $O(f, \varphi(r), v)/8L$, then the mapping $f \circ \varphi$ is not differentiable at r.

Proof. Denote K := O(f, x, v) > 0. To prove the lemma, let $\delta' > 0$ be such that $x + tv \in B(x, \delta/2)$ and $d_G(x + tv) < \frac{K}{16L}|t|$ for each $0 < |t| < \delta'$. Fix $\varepsilon > 0$ and let $\tau = \min\left(\varepsilon, \delta', \frac{16L\delta}{2K}\right)$. By the assumptions on f, let $0 < |t|, |s| < \tau$ such that

$$\left\| \frac{f(x+tv) - f(x)}{t} - \frac{f(x+sv) - f(x)}{s} \right\| > \frac{3}{4}O(f, x, v),$$

and estimate

$$D := \left\| \frac{f \circ \varphi(r+t) - f \circ \varphi(r)}{t} - \frac{f \circ \varphi(r+s) - f \circ \varphi(r)}{s} \right\|$$

$$\geq \left\| \frac{f(x+tv) - f(x)}{t} - \frac{f(x+sv) - f(x)}{s} \right\| - \left\| \frac{f(x+tv) - f(\varphi(r+t))}{t} \right\|$$

$$- \left\| \frac{f(x+sv) - f(\varphi(r+s))}{s} \right\|.$$

Find $y, z \in G \cap B(x, \delta)$ such that $||x + tv - y|| < \frac{K}{16L}|t|$ and $||x + sv - z|| < \frac{K}{16L}|s|$. Then we have $\left\|\frac{f(x+tv)-f(y)}{t}\right\| \le \frac{L}{|t|}||x + tv - y|| \le \frac{K}{16}$, and similarly

$$\begin{split} \left\| \frac{f(y) - f(\varphi(r+t))}{t} \right\| &\leq \frac{L}{|t|} \|y - \varphi(r+t)\| \\ &\leq \frac{L}{|t|} \|y - (x+tv)\| + \frac{L}{|t|} \|\varphi(r) + tv - \varphi(r+t)\| \\ &\leq \frac{K}{16} + \frac{L}{|t|} \|\psi(r) - \psi(r+t)\| \\ &\leq \frac{K}{16} + L \operatorname{Lip}(\psi) < \frac{K}{16} + \frac{K}{8} = \frac{3K}{16}. \end{split}$$

Thus

$$\left\| \frac{f(x+tv) - f(\varphi(r+t))}{t} \right\| \le \left\| \frac{f(x+tv) - f(y)}{t} \right\| + \left\| \frac{f(y) - f(\varphi(r+t))}{t} \right\|$$

$$< \frac{K}{16} + \frac{3K}{16} = \frac{K}{4}.$$

Since an analogous estimate holds for $\left\|\frac{f(x+sv)-f(\varphi(r+s))}{s}\right\|$, we obtain $D>\frac{3}{4}K-2\frac{K}{4}=\frac{O(f,x,v)}{4}$; so $O(f\circ\varphi,r,1)\geq O(f,\varphi(r),v)/4$ is strictly positive as required. \square

Lemma 8. For each $0 \neq u \in X$, the set $\Delta = \{x \in D : f'(x, u) \text{ does not exist}\}$ belongs to $\tilde{\mathcal{A}}(u)$.

Proof. Since $\Delta = \{x \in D : O(f, x, u) > 0\}$ by (4), and by Lemma 6 we have that g(x) = O(f, x, u) is Borel on D, we obtain that Δ is Borel. By the same reasoning, each $A_k = \{x \in \Delta : O(f, x, u) > \frac{1}{k}\}$ is Borel for $k \in \mathbb{N}$, and we have $\Delta = \bigcup_k A_k$. To finish the proof of the lemma, it is enough to show that $A_k \in \tilde{\mathcal{A}}(u, 1/16kL)$ for each $k \in \mathbb{N}$.

Let $k \in \mathbb{N}$ be fixed. If $\varphi : \mathbb{R} \to X$ is such that the function $t \to \varphi(t) - tu$ has Lipschitz constant at most 1/16kL, then Lemma 7 implies that $f \circ \varphi$ is not differentiable at any t for which $\varphi(t) \in A_k$. Hence $B_k := \{t \in \mathbb{R} : \varphi(t) \in A_k\}$ is a subset of the set of points at which $f \circ \varphi$ is not differentiable. Since $f \circ \varphi$ is pointwise Lipschitz at all t such that $\varphi(t) \in \Delta$, and since Y has RNP, [2, Proposition 1] implies that $\lambda(B_k) = 0$ as required for showing that $A_k \in \tilde{A}(u, 1/16kL)$.

Lemma 9. Let X be separable. Then there exists a set $R \in \tilde{\mathcal{A}}$ such that $(N_f \cap D) \setminus R \in \tilde{\mathcal{A}}$, where N_f is the set of all points $x \in X$ at which f is not Gâteaux differentiable.

Proof. Let $w \in D$, and denote $D_w = D \cap B(w, \delta/4)$. If $g := f|_{B(w, \delta/4) \cap G}$, then g is L-Lipschitz on its domain (by (5)). Since $T := g(B(w, \delta/4) \cap G)$ is separable, we will show that

$$Z := \overline{\operatorname{span}} \{ u \in Y : u = f'(x, v) \text{ for some } x \in D_w, v \in X \setminus \{0\} \}$$

is a subset of $W:=\overline{\operatorname{span}}(T)$ (and thus is separable). Suppose that $x\in D_w$, $0\neq v\in X$, and f'(x,v) exists. Fix $\gamma>0$ such that $B(x,2\gamma)\subset B(w,\delta/4)$. Let $\varepsilon>0$ and find $\tau>0$ such that for $0<|t|<\tau$ we have $d_G(x+tv)<\frac{\varepsilon}{L}|t|$, $x+tv\in B(x,\gamma)$, and $\left\|\frac{f(x+tv)-f(x)}{t}-f'(x,v)\right\|<\varepsilon$. Let $\eta=\min\left(\tau,\frac{L\gamma}{2\varepsilon}\right)$ and

 $0 < |t| < \eta$. Find $y \in G \cap B(w, \delta/4)$ with $||x + tv - y|| < \frac{\varepsilon}{L}|t|$. Then

$$\left\| f'(x,v) - \frac{f(y) - f(x)}{t} \right\| \le \varepsilon + \left\| \frac{f(x+tv) - f(x)}{t} - \frac{f(y) - f(x)}{t} \right\|$$
$$\le \varepsilon + \frac{L}{|t|} \|x + tv - y\| \le 2\varepsilon.$$

Since $\frac{f(y)-f(x)}{t} \in W$, send $\varepsilon \to 0+$ to obtain $d_W(f'(x,v))=0$, and thus $f'(x,v) \in W$.

Since X,Z are separable, by R_w denote the set obtained as a union of all $A(k,l,m,y,y')\cap D$ (see Lemma 5) where $k,l,m\in\mathbb{N},\,y,y'$ are chosen from a countable dense subset of Z and v_1,v_2 are chosen from a countable dense subset of X. By Lemmas 5 and 3, there exists $R'_w\in\tilde{\mathcal{A}}$ such that $R_w\subset R'_w$. We have the following: if $x\in D_w\setminus R'_w$, then the following implication holds:

(*) If the directional derivative f'(x,u) exists in all directions u from a set $U_x \subset X$ whose linear span is dense in X, then f'(x,v) exists for all $v \in \operatorname{span}_{\mathbb{Q}} U_x^2$; furthermore, $f'(x,\cdot)$ is bounded and linear on $\operatorname{span}_{\mathbb{Q}} U_x$.

The proof of (*) is similar to the proof of [8, Theorem 2] and so we omit it.

For the rest of the proof, let $(v_n)_n$ be a complete sequence in X. Let $\Delta_n = \Delta_n(w)$ be the set Δ from Lemma 8 applied to v_n ; the lemma implies that Δ_n is Borel and $\Delta_n \in \tilde{\mathcal{A}}(v_n)$ for each $n \in \mathbb{N}$. Denote $F_w = D_w \setminus (\bigcup_n \Delta_n)$. It follows that $H_w := F_w \setminus R'_w$ is Borel. We will show that f is Gâteaux differentiable at each $x \in H_w$.

Let $x \in H_w$. Fix $\gamma > 0$ such that $B(x, 2\gamma) \subset B(w, \delta/4)$. Let $Q := \operatorname{span}_{\mathbb{Q}}\{v_n : n \in \mathbb{N}\}$. By (*) we have a bounded linear mapping $\hat{T}: Q \to Z$ such that $\hat{T}(q) = f'(x, q)$ for each $q \in Q$. By the density of Q, \hat{T} extends to a bounded linear mapping $T: X \to Y$. We have to show that f'(x, v) = T(v) for each $0 \neq v \in X$. Given $0 \neq v \in X$ and $\varepsilon > 0$, by the density of Q and continuity of T there exists $q \in Q$ such that

(7)
$$||v - q|| < \frac{\varepsilon}{9L} \text{ and } ||T(v - q)|| < \frac{\varepsilon}{3}.$$

By the existence of f'(x,q) and by the differentiability of the distance function $d_G(x)$ at the point x, there exists $\tau_{\varepsilon} > 0$ such that

(8)
$$\left\| \frac{f(x+tq) - f(x)}{t} - f'(x,q) \right\| < \frac{\varepsilon}{3},$$

 $x+tv \in B(x,\gamma)$, and $d_G(x+tv) < \frac{\varepsilon}{9L}|t|$ for each $0 < |t| < \tau_{\varepsilon}$. Let $0 < |t| < \min(\tau_{\varepsilon}, 9\gamma L/2\varepsilon)$ and let $y \in G \cap B(w, \delta/4)$ be such that $||x+tv-y|| < \frac{\varepsilon}{9L}|t|$. Then $||x+tq-y|| \leq \frac{2\varepsilon}{9L}|t|$. Thus we have

$$(9) \quad \left\| \frac{f(x+tv) - f(x+tq)}{t} \right\| \le \left\| \frac{f(x+tv) - f(y)}{t} \right\| + \left\| \frac{f(x+tq) - f(y)}{t} \right\| \le \frac{\varepsilon}{3}.$$

Now since f'(x,q) = T(q), by (7), (8), and (9) it follows that

$$\left\| \frac{f(x+tv) - f(x)}{t} - T(v) \right\| \le \left\| \frac{f(x+tq) - f(x)}{t} - f'(x,q) \right\| + \left\| \frac{f(x+tv) - f(x+tq)}{t} \right\| + \|T(v-q)\| \le \varepsilon,$$

²Here, span_Q $V = \{\sum_{i=1}^{n} q_i v_i : q_i \in \mathbb{Q}, \ v_i \in V, i = 1, \dots, n, \ n \in \mathbb{N}\}.$

for each $0 < |t| < \tau_{\varepsilon}$. This proves that f'(x, v) exists and f'(x, v) = T(v). Thus f is Gâteaux differentiable at x.

Since there exist $w_k \in D$ such that $D = \bigcup_k (D \cap B(w_k, \delta/4))$, let $R = \bigcup_k R'_{w_k}$ we have that R is Borel and since

$$(10) \quad (N_f \cap D) \setminus R = \left(\bigcup_k ((N_f \cap D_{w_k}) \setminus R'_{w_k}) \right) \setminus R = \left(\bigcup_k \left(D_{w_k} \setminus H_{w_k} \right) \right) \setminus R,$$

we also obtain that $(N_f \cap D) \setminus R$ is Borel (strictly speaking, the right hand side of (10) depends on the complete sequence (v_n) , but the left hand side does not so $(N_f \cap D) \setminus R$ is indeed Borel since a complete sequence in X clearly exists by the separability of X).

Since we have the following simple observation: if $A \in \mathcal{A}(v)$ and $B \subset X$ is Borel, then $A \setminus B \in \mathcal{A}(v)$; we can conclude that $(N_f \cap D) \setminus R$ is indeed in \mathcal{A} .

4. Main theorem

Theorem 10. Let X be a separable Banach space and let Y be a Banach space with the RNP. Given $f: X \to Y$, let S(f) be the set of all points $x \in X$ at which f is pointwise Lipschitz. Then there exists a set $E \in \tilde{A}$ such that f is Gâteaux differentiable at every point of $S(f) \setminus E$.

Proof. We follow the proof from [2]. For each $n \in \mathbb{N}$ let G_n be the set of all $x \in X$ such that $||f(x+h)-f(x)|| \leq n||h||$ whenever $||h|| < \frac{1}{n}$. Lemma 4 implies that each G_n is closed, and $S(f) = \bigcup_n G_n$. Since the distance function $d_{G_n}(x)$ is Lipschitz on X, by [8, Theorem 12] there exists a Borel set M_n such that $X \setminus M_n \in \tilde{\mathcal{A}}$ and $d_{G_n}(x)$ is Gâteaux differentiable on M_n . Let $D_n := G_n \cap M_n$. Thus, in particular, $G_n \setminus D_n \in \tilde{\mathcal{A}}$. By Ω_n denote the set of all points $x \in D_n$ at which f is not Gâteaux differentiable. By Lemma 9 applied to D_n we obtain $R_n \in \tilde{\mathcal{A}}$ such that $\Omega_n \setminus R_n \in \tilde{\mathcal{A}}$.

Define $E := (\bigcup_n (\Omega_n \backslash R_n) \cup R_n) \cup (\bigcup_n (G_n \backslash D_n))$. Then $E \in \tilde{\mathcal{A}}$ by the previous paragraph. If $x \in S(f) \backslash E$, then there exists $n \in \mathbb{N}$ such that $x \in G_n \backslash E$. The condition $x \notin E$ implies that $x \notin G_n \backslash D_n$ and $x \notin \Omega_n$. Therefore $x \in D_n \backslash \Omega_n$, and hence f is Gâteaux differentiable at x.

Corollary 11. Let X be a Banach space with X^* separable, Y be a Banach space with RNP, $f: X \to Y$ be pointwise Lipschitz outside some set $C \in \tilde{C}$ (or even some set D which is Γ -null), $g: X \to \mathbb{R}$ be continuous convex. Then there exists a point $x \in X$ such that f is Gâteaux differentiable at x and g is Fréchet differentiable at x.

Proof. Assume that f is pointwise Lipschitz outside some $C \in \tilde{C}$. By Theorem 10, there exists $A \in \tilde{A}$ such that f is Gâteaux differentiable at each $x \in X \setminus (A \cup C)$. By [7, Corollary 3.11] there exists a Γ -null $B \subset X$ such that g is Fréchet differentiable at each $x \in X \setminus B$. Since $A \cup C$ is Γ -null by [12, Theorem 2.4], we have that $A \cup B \cup C$ is Γ -null and thus there exists $x \in X \setminus (A \cup B \cup C)$.

If f is pointwise Lipschitz outside a Γ -null set D, then the proof proceeds similarly.

5. Cone monotone functions

Lemma 12. Let X be a Banach space, $K \subset X$ be a closed convex cone with $0 \neq v \in \operatorname{int}(K)$, and $f: X \to \mathbb{R}$ be K-monotone. If $\limsup_{t\to 0} |t|^{-1}|f(x+tv)-f(x)| < \infty$, then f is pointwise-Lipschitz at x.

Proof. Without any loss of generality, we can assume that $v + B(0,1) \subset K$; then the proof is identical to the proof of [6, Lemma 2.5] (note that there we assume that f is Gâteaux differentiable at x, but, in fact, we are only using that f satisfies $\limsup_{t\to 0} |t|^{-1}|f(x+tv)-f(x)| < \infty$).

Let $(X, \|\cdot\|)$ be a normed linear space. We say that $\|\cdot\|$ is LUR at $x \in S_X$ provided $x_n \to x$ whenever $\|x_n\| = 1$, and $\|x_n + x\| \to 2$. For more information about rotundity and renormings, see [5].

Lemma 13. Let X be a separable Banach space, $K \subset X$ be a closed convex cone, $v \in \text{int}(K) \cap S_X$. Then there exists a norm $\|\cdot\|_1$ on X which is LUR at v, $x^* \in (X, \|\cdot\|_1)^*$ with $x^*(v) = \|v\|_1 = \|x^*\| = 1$, and $\alpha \in (0,1)$ such that $K_1 := \{x \in X : \|x\|_1 \le \alpha x^*(x)\}$ is contained in K.

Proof. The conclusion follows from [5, Lemma II.8.1] (see e.g. the proof of [6, Proposition 15]).

Lemma 14. Let X be a Banach space, $v \in S_X$, $x^* \in X^*$ such that $||v|| = ||x^*|| = x^*(v) = 1$, $\alpha \in (0,1)$. Let $K_{\alpha,x^*} = \{x \in X : \alpha ||x|| \le x^*(x)\}$. Then there exists $\varepsilon = \varepsilon(K,v) \in (0,1)$ such that if $\varphi : \mathbb{R} \to X$ is a mapping such that $\psi : t \to \varphi(t) - tv$ has Lipschitz constant less than ε , then s < t implies $\varphi(s) \le_{K_{\alpha,x^*}} \varphi(t)$.

Proof. Since $x^*(v) = 1$, for each $\alpha < \alpha' < 1$ we have $v \in \text{int}(K_{\alpha',x^*})$. Fix $\alpha' \in (\alpha,1)$. Let $\varepsilon := \min\left(1, \frac{(\alpha'-\alpha)}{2\alpha'(1+\alpha)}\right)$. Take $s < t, s, t \in \mathbb{R}$. Then

$$\alpha' \|\varphi(t) - \varphi(s)\| \le \alpha' \|\varphi(t) - tv - (\varphi(s) - sv)\| + \alpha' |t - s| \|v\|$$

$$\le \alpha' \varepsilon |t - s| + |t - s| x^*(v)$$

$$= \alpha' \varepsilon |t - s| + x^* (tv - \varphi(t) - (sv - \varphi(s)) + x^* (\varphi(t) - \varphi(s))$$

$$\le \alpha' \varepsilon |t - s| + \|tv - \varphi(t) - (sv - \varphi(s))\| + x^* (\varphi(t) - \varphi(s))$$

$$\le (1 + \alpha') \varepsilon |t - s| + x^* (\varphi(t) - \varphi(s)).$$

As in (11), we show that $x^*(tv - \varphi(t) - (sv - \varphi(s))) \le \varepsilon |t - s|$, and from this we obtain $|t - s|(x^*(v) - \varepsilon) \le x^*(\varphi(t) - \varphi(s))$. Then (11) implies that

$$\alpha' \| \varphi(t) - \varphi(s) \| \le \left(1 + \frac{(1 + \alpha')\varepsilon}{1 - \varepsilon} \right) x^* (\varphi(t) - \varphi(s)).$$

The choice of ε shows that $\alpha \| \varphi(t) - \varphi(s) \| \le x^* (\varphi(t) - \varphi(s))$, and therefore $\varphi(t) \ge_{K_{\alpha,x^*}} \varphi(s)$.

We prove the following theorem, which improves [4, Theorem 9]:

Theorem 15. Let X be a separable Banach space, $K \subset X$ be a closed convex cone with $int(K) \neq \emptyset$. Suppose that $f: X \to \mathbb{R}$ is K-monotone. Then f is Gâteaux differentiable on X except for a set belonging to $\tilde{\mathcal{C}}$.

Remark 16. It is not known whether $\tilde{C} \subset \tilde{\mathcal{A}}$ (see [8, p. 19]). If it is true, then Theorem 15 holds also with $\tilde{\mathcal{A}}$ instead of $\tilde{\mathcal{C}}$.

Proof. Without any loss of generality, we can assume that f is K-increasing and lower semicontinuous (we can work with \underline{f} instead by [4, Proposition 17 and Proposition 16(iii)], where $\underline{f}(x) = \sup_{\delta>0} \inf_{z\in B(x,\delta)} f(z)$ is the l.s.c. envelope of f). By Lemma 13, we can also assume that the norm on X is LUR at $v \in S_X$ and

 $K = K_{\alpha,x^*} = \{x \in X : ||x|| \le \alpha x^*(x)\}$ for some $x^* \in X^*$ and $\alpha \in (0,1)$ with $||x^*|| = x^*(v) = 1$.

Find $\eta > 0$ such that $B(v, \eta) \subset \operatorname{int}(v/2 + K_{\alpha, x^*})$ (such an η exists since obviously $v \in \operatorname{int}(v/2 + K_{\alpha, x^*})$). Let $x \in X$ be such that ||x|| = 1 and $\beta ||x|| \le x^*(x)$ for some $0 < \beta < 1$. Since

$$1 + \beta = 1 + \beta ||x|| \le x^*(v) + x^*(x) \le ||x + v||,$$

and the norm on X is LUR at v, there exists $\beta' \in (\alpha, 1)$ such that $K_{\beta', x^*} \cap S(0, 1) \subset B(v, \eta) \subset v/2 + K_{\alpha, x^*}$ and thus

(12)
$$K_{\beta',x^*} \cap S(0,t) \subset B(tv,\eta t) \subset tv/2 + K_{\alpha,x^*}$$

for each t>0. Put $B:=\left\{x\in X: \limsup_{t\to 0}\frac{|f(x+tv)-f(x)|}{|t|}=\infty\right\}$. Then Lemma 12 shows that $S(f)=X\setminus B$, and Lemma 4 shows that B is Borel. We will show that $B\in \tilde{\mathcal{A}}(v)$. Let $\varphi:\mathbb{R}\to X$ be a mappings such that $\psi(t)=\varphi(t)-tv$ has Lipschitz constant strictly less than $\varepsilon>0$, where ε is given by application of Lemma 14 to K_{β',x^*} . Suppose that $r\in\mathbb{R}$ satisfies $\varphi(r)=x\in B$. Without any loss of generality, we can assume that there exist $t_k\to 0+$ such that $\frac{f(x+t_kv/2)-f(x)}{t_k/2}\geq k$ (otherwise work with $-f(-\cdot)$). For each k, find $r_k\in\mathbb{R}$ such that $\varphi(r_k)\in(x+K_{\beta',x^*})\cap S(x,t_k)$. Such r_k exist since $\varphi(r)=x$, $\|\varphi(s)\|\to\infty$ as $s\to\infty$, and $\varphi(u)\in(x+K_{\beta',x^*})$ by the choice of ε . Then (12) implies that $\varphi(r_k)\geq K_{\alpha,x^*}$ $x+t_kv/2$, and thus $f(\varphi(r_k))\geq f(x+t_kv/2)$. Now, since ψ is ε -Lipschitz, we have $(1-\varepsilon)|r-r_k|\leq \|\varphi(r_k)-\varphi(r)\|=t_k$, and thus

$$k \le \frac{f(x + t_k v/2) - f(x)}{t_k/2} \le \frac{2}{1 - \varepsilon} \cdot \frac{f(\varphi(r_k)) - f(\varphi(r))}{r - r_k}.$$

It follows that $f \circ \varphi$ is not pointwise Lipschitz at r. By the choice of ε and Lemma 14, we have that $f \circ \varphi$ is monotone; thus $\lambda(\{r \in \mathbb{R} : \varphi(r) \in B\}) = 0$ (since monotone functions from \mathbb{R} to \mathbb{R} are known to be a.e. differentiable), and $B \in \tilde{\mathcal{A}}(v, \varepsilon/2)$.

We proved that $B \in \tilde{\mathcal{A}}(v)$. By Lemma 12 we have that $S(f) = X \setminus B$. By Theorem 10, there exists a set $A \in \tilde{\mathcal{A}}$ such that f is Gâteaux differentiable at all $x \in X \setminus (A \cup B)$. In [4, Theorem 9] it is proved that the set N_f of points of Gâteaux non-differentiability of f is Borel, and thus we obtain that $N_f \in \tilde{C}$ (since $N_f \subset A \cup B$).

Theorem 15 and [4, Proposition 16(iv)] show that:

Corollary 17. Let X be a separable Banach space, $K \subset X$ be a closed convex cone with $int(K) \neq \emptyset$. Suppose that f is K-monotone. Then f is Hadamard differentiable outside of a set belonging to \tilde{C} .

We also have the following corollary.

Corollary 18. Let X be a Banach space with X^* separable, $K \subset X$ be a closed convex cone with $int(K) \neq \emptyset$, $f: X \to \mathbb{R}$ be K-monotone, $g: X \to \mathbb{R}$ be continuous convex. Then there exists a point $x \in X$ such that f is Hadamard differentiable at x and g is Fréchet differentiable at x.

Proof. By Corollary 17, there exists $A \in \tilde{\mathcal{C}}$ such that f is Hadamard differentiable at each $x \in X \setminus A$. By [7, Corollary 3.11] there exists a Γ-null $B \subset X$ such that g is Fréchet differentiable at each $x \in X \setminus B$. Since A is Γ-null by [12, Theorem 2.4], we have that $A \cup B$ is Γ-null and thus there exists $x \in X \setminus (A \cup B)$.

ACKNOWLEDGMENT

The author would like to thank to Prof. Luděk Zajíček for a useful discussion about Γ -null sets.

References

- [1] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloquium Publications 48, American Mathematical Society, Providence, 2000.
- [2] D. Bongiorno, Stepanoff's theorem in separable Banach spaces, Comment. Math. Univ. Carolin. 39 (1998), 323–335.
- [3] J.M. Borwein, J.V. Burke, A.S. Lewis, Differentiability of cone-monotone functions on separable Banach space, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1067–1076.
- [4] J.M. Borwein, X. Wang, Cone monotone functions: differentiability and continuity, Canadian J. Math. 57, 961–982.
- [5] R. Deville, G. Godefroy, V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64.
- [6] J. Duda, Cone monotone mappings: continuity and differentiability, submitted.
- [7] J. Lindenstrauss, D. Preiss, On Fréchet differentiability of Lipschitz maps between Banach spaces, Annals of Math. 157 (2003), 257–288.
- [8] D. Preiss, L. Zajíček, Directional derivatives of Lipschitz functions, Israel J. Math. 125 (2001), 1–27.
- [9] H. Rademacher, Über partielle und totale Differenziebarkeit, Math. Ann. 79 (1919), 254–269.
- [10] W. Stepanoff, Über totale Differenziebarkeit, Math. Ann. 90 (1923), 318–320.
- [11] W. Stepanoff, Sur les conditions de l'existence de la differenzielle totale, Rec. Math. Soc. Math. Moscou 32 (1925), 511–526.
- [12] L. Zajíček, On sets of non-differentiability of Lipschitz and convex functions, preprint, available at http://www.karlin.mff.cuni.cz/kma-preprints.
- [13] L. Zajíček, On σ -porous sets in abstract spaces, Abstract and Applied Analysis 2005 (2005), 509–534.

E-mail address: duda@karlin.mff.cuni.cz

DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL Current address: Charles University, Department of Mathematical Analysis, Sokolovská 83, 186 75 Praha 8-Karlín, Czech Republic