

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

تمرین پیادهسازی ۲

پیادهسازی درخت تصمیم برای تشخیص دیابت

محمدرضا دولتی ۹۷۱۱،۴۱۱

استاد: دکتر آرش عبدی هجراندوست

گزارش کد:

در ابتدا در قسمت اول پکیج های مورد نظر را ایمپورت کردیم(آخرین صفحه) و سپس فایل دیابت را خواندیم و این فایل را به صورت Text نیز در قسمت بعد آوردیم.

در دو قسمت بعدی آمدیم کد محاسبه دو تابع آنتروپی و gain را زدیم که تصاویر آن نیز در ادامه آمده است:

در قسمت بعد نیز تابع توزیع تمامی ۸ ویژگیای که داریم را آوردیم تا یک دید کلی از نحوه توزیع مقادیر داخل جدول داشته باشیم که تصویر آن نیز در ادامه آمده است:

همچنین برای هندل کردن مقادیر صفر و NULL باید توجه کرد که صفرهای نشان داده شده در جدول صفر skin thickness نیستند بلکه مقادیر NULL هستند و این درحالی است که بعضی از ویژگی ها مانند insulin, IBM داشته باشند:

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1

مقادیر NULL هر ستون با میانگین همان ستون جایگزین میشود:

	Pregnancies	Glucose	BloodPre	ssure	SkinThickness	Insulin	BMI	\
0	6	148.0	72.0	00000	35.00000	95.674746	33.600000	
1	1	85.0	66.0	00000	29.00000	95.674746	26.600000	
2	8	183.0	64.0	00000	25.09192	95.674746	23.300000	
3	1	89.0	66.0	00000	23.00000	94.000000	28.100000	
4	0	137.0	40.0	00000	35.00000	168.000000	43.100000	
5	5	116.0	74.0	00000	25.09192	95.674746	25.600000	
6	3	78.0	50.0	00000	32.00000	88.000000	31.000000	
7	10	115.0	72.5	33517	25.09192	95.674746	35.300000	
9	8	125.0	96.0	00000	25.09192	95.674746	32.056663	
10	4	110.0	92.0	00000	25.09192	95.674746	37.600000	
	DiabetesPedi	.greeFuncti	on Age	Outco	ome			
0		0.6	27 50		1			
1		0.3	51 31		0			
2		0.6	72 32		1			
3		0.1	67 21		0			
4		2.2	88 33		1			
5		0.2	01 30		0			
6		0.2	48 26		1			
7		0.1	34 29		0			
9		0.2	32 54		1			
10		0.1	91 30		0			

در قسمت های بعد برای محاسبه راحتتر و پیشبینی افرادی که دیابت دارند میانه و میانگین هر کدام از Λ ویژگی گفته شده را محاسبه کردیم تا مقدار آن و مقایسه آن با دیگر ویژگیها را بدست آوریم.

به به عنوان مثال برای ویژگی BMI داریم:

```
median_bmi = df['BMI'].median()
mean_bmi = df['BMI'].mean()
print("The median BMI is :", median_bmi)
print("The mean BMI is :", mean_bmi)
The median BMI is : 32.0
The mean BMI is : 31.992578124999977
```

در مرحله بعد الگوریتم اصلی درخت تصمیم را نوشتیم که داده ها نیز به دو مجموعه آموزشی و آزمایشی ϵ و ϵ درصد تقسیم شده اند و هدف نیز ستون outcome است که وابسته به حاصل ϵ ویژگی قبل است. خروجی outcome به صورت باینری و صفر و یکی است.

فیچری که تعیین شده است نیز مقادیر تمامی این ۸ ویژگی را در خود ذخیره میکند.

در سلول بعدی آمدیم کد پیش بینی تصمیم درست را زدیم و درصد آن را محاسبه کردیم تا بفهمیم به احتمال چه درصدی تصمیممان درست بوده است.

که برای این الگوریتم ۷۴ درصد دقت درستی داریم:

```
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n neighbors=21)
neigh.fit(feature, target)
TrueDecisionpredicted = neigh.predict(test_input)
print(metrics.classification_report(expected, TrueDecisionpredicted))
print(metrics.confusion_matrix(expected, knnpredicted))
print("TrueDecision accuracy: ",neigh.score(test_input,expected))
TrueDecisionscore=neigh.score(test_input,expected)
                            recall f1-score
              precision
                                               support
                              0.82
                                        0.81
           0
                   0.80
                                                    206
                   0.61
                              0.59
                                        0.60
                                                    102
                                        0.74
                                                   308
    accuracy
   macro avg
                   0.71
                              0.70
                                        0.70
                                                    308
                              0.74
                   0.74
                                        0.74
weighted avg
                                                   308
[[168 38]
 [ 42
       60]]
TrueDecision accuracy: 0.7402597402597403
```

در آخر هم درخت تصمیم را آوردهایم به این صورت که اولین گره این درخت با ویژگی گلوکز شروع می شود و همچنین outcome که صورت باینری و صفر و یکی و نتیجه ما نیز می باشد به این صورت که اگر ۰ باشد، دیابت نداریم و اگر ۱ باشد دیابت داریم با نام class در درخت آورده شده است Sample در این درخت تعداد دیابت نداریم و اگر ۱ باشد دیابت داریم با نام گلوکز کمتر از ۱۲۷.۵ داشته اند True بوده اند و اگر گلوکز بیش تر از ۱۲۷.۵ داشته اند False شده اند و همچنین مقدار دست آورد اطلاعات و آنتروپی در تمامی گرهها مشخص شده است:

اگر عمق درخت ۴ باشد:

پکیجها و ایمپورتشان:

NumPy: Base n-dimensional array package

SciPy: Fundamental library for scientific computing

Matplotlib: Comprehensive 2D/3D plotting

IPython: Enhanced interactive console

Sympy: Symbolic mathematics

Pandas: Data structures and analysis