型システム入門メモ

maton

第21章 再帰型のメタ理論

21.1 帰納法と余帰納法

演習 21.1.7. $[\star]$ 生成関数 E_2 は以下の推論規則から定義されている。

 $\frac{c}{a}$ $\frac{a}{b}$ $\frac{a}{c}$

関係 E_2 に含まれる組の集合は以下のようになる。

$$E_{2}(\emptyset) = \{a\} \qquad E_{2}(\{a,b\}) = \{a,c\}$$

$$E_{2}(\{a\}) = \{a\} \qquad E_{2}(\{a,c\}) = \{a,b\}$$

$$E_{2}(\{b\}) = \{a\} \qquad E_{2}(\{b,c\}) = \{a,b\}$$

$$E_{2}(\{c\}) = \{a,b\} \qquad E_{2}(\{a,b,c\}) = \{a,b,c\}$$

このとき、 E_2 について閉じている集合は、 $\{a\}, \{a,b,c\}$ であり、 E_2 について整合的な集合は、 $\emptyset, \{a\}, \{a,b,c\}$ である。以上から、 $\mu E_2 = \{a\}, \nu E_2 = \{a,b,c\}$ である。

系 21.1.8. (定理 21.1.4 の系).

- (1) 帰納法原理: X が F について閉じているならば、 $\mu F \subseteq X$ である。
- (2) 余帰納法原理: X が F について整合的ならば、 $X \subseteq \nu F$ である。

演習 **21.1.9.** [推奨, ***] 公理 2.4.1. [自然数上の通常の帰納法の原理] は、以下のように表現される。

Pを自然数上の述語とする。このとき、

各自然数 n に対して、 任意の i < n に対して P(i) が成り立つとき、 P(n) が証明できる ならば、すべての n に対して P(n) が成り立つ。

ここで、

N以下の任意の自然数 n に対して、 任意の i < n に対して P(i) が成り立つとき、 P(n) が証明できる

という言明が真になる U の部分集合を X_N とし、F をある言明 X_N から言明 X_M ($M \le N$) を生成する関数とする。 このとき生成される言明 X_M は M 以下の任意の自然数に対する言明であり、言明 X_N は言明 X_M を含んでいる。すなわち、 $F(X) \subseteq X$ であり、X が F について閉じている。このとき、帰納法原理により $\mu F \subseteq X$ である。ここで、 μF とは、F の最小不動点であり、 $\mu F = \bigcap_{X \in C} X$ ただし、 $C = \{X \mid F(X) \subseteq X\}$ である。すなわち、すべての n に対して成り立つ(みたいなことがいいたい)

解答を見ると、 $F(P) \subseteq P$ であることが容易に確認できるようだが、解釈が難しかったので丁寧に書き下してみる。ここで、ある自然数 k が述語 Pを満たす、すなわち P(k) であるとする。このとき、述語 Pの定義から明らかに P(k+1) である。また、F(X) の定義から、 $k+1 \in F(P)$ である。ただし、 $k \in F(P)$ かどうかは明らかではない。このことから、 $F(P) \subseteq P$ となる。うーん、なんか微妙な感じ。これ以降の議論は特に問題ないと思う。