

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №2

По курсу: «Моделирование»

Тема: «Распределение случайных величин»

Студентка ИУ7-75Б Оберган Т.М Вариант 14 (2)

Преподаватель Рудаков И.В.

Оглавление

Формализация задачи	3
Равномерное распределение:	3
Нормальное распределение:	4
Результаты работы	5
Равномерное распределение:	5
Нормальное распределение:	

Формализация задачи

Равномерное распределение:

Равномерное распределение — распределение случайной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке всюду постоянна.

Равномерное распределение обозначают $X \sim R(a, b)$, где $a, b \in R$.

Функция распределения равномерной непрерывной случайной величины:

$$F(x) = \begin{cases} 0 & \text{при } x \le a \\ \frac{x-a}{b-a} & \text{при } a \le x \le b \\ 1 & \text{при } x > b \end{cases}$$

Плотность распределения равномерной непрерывной случайной величины:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{при } a \le x \le b \\ 0 & \text{иначе} \end{cases}$$

Нормальное распределение:

Нормальное распределение - распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

где параметр μ — математическое ожидание (среднее значение), медиана и мода распределения, а параметр σ - среднеквадратическое отклонение (σ^2 - дисперсия) распределения.

Функция распределения:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Обозначают нормальное распределение $X \sim N(\mu, \sigma^2)$.

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием $\mu=0$ и стандартным отклонением $\sigma=1$.

Математическое ожидание μ характеризует положение «центра тяжести» вероятностной массы нормального распределения. Получается, что график плотности распределения случайной величины, имеющей нормальное распределение, симметричен относительно $x = \mu$. Дисперсия σ характеризует разброс значений случайной величины относительно «центра тяжести».

Результаты работы

Равномерное распределение:

Рисунок 1 - графики функции распределения и плотности распределения равномерной случайной величины при $a=-10,\,b=10$

Рисунок 2 - графики функции распределения и плотности распределения равномерной случайной величины при $a=0,\,b=10.$

Нормальное распределение:

Рисунок 3 - графики функции распределения и плотности распределения нормальной случайной величины при $\mu=0,\,\sigma=1.$

Рисунок 4 - графики функции распределения и плотности распределения нормальной случайной величины при $\mu=0,\,\sigma=5.$