

Přírodou inspirované prohledávací algoritmy

Roman Neruda, Martin Pilát

31. SRPNA 2017

Před úvodem

Jak to je?

OSNOVA PREDNASKY TAK JAK JE TED

Evoluční algoritmy

Jednoduchý genetický algoritmus

Teorie schémat

Reprezentace a operátory v GA

Evoluce kooperace

Evoluční strategie

Diferenciální evoluce

Particle swarm optimization

Evoluční strojové učení

Vícekriteriální optimalizace

Evoluční kombinatorická optimalizace

Ladění, řízení, metaevoluce

Teorie EVA podruhé

Evoluční programování

Genetické programování

Neuroevoluce

Memetické algoritmy

Dynamické krajiny fitness

Tabu search, scatter search

Biologicky věrnější evoluce

Jak to bude?

Pok pok pokusy

SKORO TO TU MUZEME SMAZAT NE?

4 přírodou inspirované prohledávací algoritmy

Algoritmus 1: Schéma evolučního algoritmu

```
procedure Evoluční algoritmus t \leftarrow 0
Inicializuj populaci P_t náhodně vygenerovanými jedinci Ohodnoť jedince v populaci P_t
while neplatí kritérium ukončení do
vyber z P_t rodiče P'_{t+1} Rodičovskou selekcí
Rekombinací rodičů vzniknou potomci P'_{t+1}
Mutuj potomky P'_{t+1}
Ohodnoť potomky P'_{t+1}
Enviromentální selekcí vyber P_{t+1} z P_t a P'_{t+1}
t \leftarrow t+1
end while
end procedure
```

Evoluční algoritmy

Evoluce, geny a DNA

Obecné schéma evolučního algoritmu

Oblast evolučních výpočtů či algoritmů (v angličtině evolutionary computing) zastřešuje několik proudů, které se zpočátku vyvíjely samostatně. Za prehistorii této disciplíny lze považovat Turingovy návrhy na využizí evolučního prohledávání z roku 1948 ¹a Bremermannovy první pokusy o implementaci optimalizace pomocí evoluce a rekombinace z roku 1962 ². Během šedesátých let se objevily tři skupiny výzkumníků, kteří nezávisle na sobě vyvíjely a navrhly své varianty použití evolučních principů v informatice. Holland publikoval v roce 1975 svůj návrh genetických algoritmů ³, zatímco skupina Fogela a spolupracovníků vyvinula metodu nazvanou evoluční programování ⁴. Nezávisle na nich přišli Rechenberg a Schwefel v Německu na metodu nazvanou evoluční strategie ⁵. Až do přelomu osmdesátých a devadesátých let existovaly tyto směry bez výraznější interakce, ale poté se spojily do obecnější oblasti evolučních algoritmů. V té době Koza vytváří metodu genetického programování, Dorigo publikuje disertaci s návrhem mravenčích optimalizačních algoritmů a vznikají první pokusy o aplikaci evoluce na vývoj umělých neuronových sítí.

U zrodu různých variant evolučních algoritmů stála inspirace přírodními fenomény, konkrétně jde o Darwinovu teorii přírodního výběru a zjednodušené principy genetiky, které poprvé načrtl Mendel. Z genetiky se evoluční algoritmy inspirují diskrétní reprezentací genotypu, z biologické evoluční teorie používají Darwinovu myšlenku o výběru jedinců v prostředí s omezenými zdroji, který závisí na míře přizpůsobení se jedinců danému prostředí.

Základní obecnou myšlenku evolučních algoritmů lze vyjádřit následujícím způsobem. Mějme populaci jedinců v prostředí, které určuje jejich úspěšnost — fitness. Tito jedinci navzájem soupeří o možnost reprodukce a přežití, která závisí právě na hodnotě fitness. Jde tedy o množinu kandidátů na řešeni problému definovaného prostředím. Způsoby reprezentace jedinců, jejich výběru a rekombinace závisí na konkrétním dialektu evolučních algoritmů, které probereme vzápětí.

Základní princip fungování evolučních algoritmů je tedy následující ⁶. Na začátku algoritmu vygenerujeme (nejčastěji náhodně) první iniciální populaci jedinců. Všechny jedince v populaci ohonotíme ohodnocovací funkcí. Hodnota této funkce určuje šanci výběru jedinců během rodičovské selekce. Vybraní jedinci jsou potom rekombinováni pomocí rekombinačního operátoru, který typicky ze dvou jedinců vytváří jednoho či dva potomky, a

Missing ref.

Missing ref.

- ³ John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1992
- ⁴ David B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, USA,
- ⁵ Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – a comprehensive introduction. 1(1):3–52, May 2002

⁶ Agoston E. Eiben and J. E. Smith. *Intro*duction to Evolutionary Computing. Springer-Verlag. 2003

```
procedure Evoluční algoritmus t \leftarrow 0

Inicializuj populaci P_t náhodně vygenerovanými jedinci Ohodnoť jedince v populaci P_t

while neplatí kritérium ukončení do vyber z P_t rodiče Rodičovskou selekcí Rekombinací rodičů vzniknou potomci Mutuj potomky Ohodnoť potomky Enviromentální selekcí vyber P_{t+1} z P_t a potomků t \leftarrow t+1 end while end procedure
```

pomoci operátoru mutace, který typicky provádí drobné změny jednoho jedince. Tímto postupem si vytvoříme množinu nových kandidátů řešení, a tito noví jedinci potom soutěží s původními jedinci o místo v nové populaci. Výběr jedinců do nové populace (tedy jakési slití rodičů a potomků) má na starosti enviomentální selekce beroucí v úvahu fitness jedinců a připadně další ukazatele jako je například stáří jedinců. Tím je vytvořena nová generace a tento cyklus pokračuje do splnění určitého kritéria ukončení, což je nejčastěji dostatečně dobrý nejlepší jedinec nebo předem určený počet generací.

Genetické algoritmy

Genetické algoritmy

Genetické algoritmy jsou asi nejznámější součástí evolučních výpočtů a v různých obměnách se používají hlavně při řešení optimalizačních úloh. Je zajímavé, že původní Hollandovou motivací při návrhu genetického algoritmu bylo studovat vlastnosti přírodou inspirované adaptace ⁷. Velká část původní literatury byla věnována popisu principů, jak genetický algoritmus pracuje při hledání řešení úlohy. Zajímavé jsou paralely s matematickým problémem dvourukého bandity, který je příkladem na udržování optimální rovnováhy mezi explorací a exploatací.

Nejjednodušší varianta genetického algoritmu pracuje s binárními jedinci, to znamená, že parametry řešené úlohy je nutno vždy zakódovat jako binární řetězce. Tento přístup je výhodný z hlediska jednoduchosti použitých operátorů, ale binární zakódování na druhou stranu nemusí být nejvhodnější reprezentací problému. Způsob fungování jednoduchého genetického algoritmu je také poměrně jednoduchý. Algoritmus přechází mezi populacemi řešení tak, že nová populace zcela nahradí předchozí. Výběr rodičů je často realizován tzv. ruletovou selekcí, která vybírá jedince náhodně s pravděpodobností výběru úměrné jejich fitness. Rekombinačním operátorem je jednobodové křížení, které náhodně zvolí stejnou pozici v rodičích a vyměňí jejich části. Pravděpodobnost uskutečnění operace křížení je jedním z parametrů programu a obvykle je poměrně vysoká (0,5 i více). Mutace provádí drobné lokální změny tak, že prochází jednotlivé bity řetězce a každý bit s velmi malou pravděpodobností změní. Pravděpodobnost mutace je typicky nastavena, tak aby došlo průměrně ke změně jednoho bitu v populaci (oblíbená dolní mez) nebo v jedinci (horní mez).

Ruletovou selekci si dle metafory můžeme představit tak, že kolo rulety rozdělíme na výseče odpovídající velikostí hodnotám fitness jedinců a při výběru pak n krát vhodíme kuličku. Často používaným vylepšením ruletové selekce je tzv. stochastický univerzální výběr, který hodí kuličku do rulety jen jednou a další jedince vybírá deterministicky posunem pozice kuličky o 1/n. Tento výběr pro malá n lépe aproximuje ideální počty zastoupení jedinců v další generaci. Dalšími varianty rodičovské selekce nepracují s absolutními hodnotami fitness, ale vybírají náhodně v závislosti na pořadí jedince v populaci setříděné podle fitness, což zanedbává absolutní rozdíly mezi hodnotami. Další variantou rodičovské selekce je tzv k-turnaj, kdy nejprve vybereme k jedinců náhodně a z nich pak vybereme nejlepšího.

V současnosti se oblast genetických algoritmů neomezuje jen na binární kódování jedinců, časté je celočíselné, permutační nebo reálné kódování,

⁷ John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1992

Algoritmus 3: Schéma Hollandova gentického algoritmu

```
procedure Jednoduchý genetický algoritmus
    t \leftarrow 0
    Inicializuj populaci P_t N náhodně vygenerovanými binárními jedinci
délky n
    Ohodnoť jedince v populaci P_t
    while neplatí kritérium ukončení do
       for i \leftarrow 1, ..., N/2 do
           vyber z P<sub>t</sub> 2 rodiče Ruletovou selekcí
           S pravděpodobností p_C Zkřiž rodiče
           S pravděpodobností p_M Mutuj potomky
           Ohodnoť potomky
           Přidej potomky do P_{t+1}
       end for
       Zahoď P_t
       t \leftarrow t + 1
    end while
end procedure
```

která ale vyžadují specifické operace křížení a mutace $^8.$ O některých se zmíníme dále.

⁸ Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs (3rd Ed.). Springer-Verlag, London, UK, UK, 1996; and Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA, 1996

Evoluční strategie

Spojitá optimalizace

Mnoho optimalizačních problémů z běžného života se dá definovat jako optimalizace funkce

$$f: \mathcal{R}^n \to \mathcal{R}$$
.

Je proto přirozené, že mnoho výzkumníků se zabývá právě evolučními algoritmy, kterou jsou schopné optimalizovat takové funkce. Problém optimalizace takových funkcí se v literatuře objevuje pod pojmem *spojitá optimalizace*, nebo anglicky *continuous optimization*. Je důležité si uvědomit, že ten pojem vyjadřuje pouze to, že prostor, ve kterém se hledají řešení je spojitý (\mathbb{R}^n) , samotná optimalizovaná funkce f být spojitá nemusí.

Vlastnosti funkcí

Je zřejmé, že některé typy funkcí budou pro evoluční algoritmy lehčí, než jiné. Velký vliv na efektivitu evolučního algoritmu mají především vlastnosti jako multi-modalita, separabilita a podmíněnost.

Funkce je *multi-modální*, pokud má velké množství lokálních optim. Je zřejmé, že v takovém případě může mít algoritmus problém s uváznutím v lokálním optimu a je potřeba tomu přizpůsobit operátory. Existuje i oblast multi-modální optimalizace, kde je cílem najít co nejvíce různorodých lokálních optim.

Separabilní funkce jsou naopak pro optimalizaci jednodušší. Jsou to takové funkce, které se dají zapsat pomocí funkcí jedné proměnné. Formálně, funkce $f(x_1,\ldots,x_n): \mathcal{R}^n \to \mathcal{R}$ je aditivně separabilní, pokud se dá zapsat jako součet funkcí $f_1(x_1),\ldots,f_n(x_n)$, tj. $f(x_1,\ldots,x_n)=\sum_{i=1}^n f(x_i)$. Obdobně můžeme zadefinovat i funkci multiplikativně separabilní. Z hlediska optimalizace je velkou výhodou separabilních funkcí, že se dají optimalizovat po jednotlivých složkách vektoru, tj. optimum můžeme najít tak, že vždy zafixujeme hodnoty n-1 parametrů a optimalizujeme jen podle jednoho.

Další vlastností, které výrazně ovlivňuje evoluci je podmíněnost funkce. Ta vyjadřuje, jak moc se liší vliv jednotlivých proměnných na hodnotu funkce. Pro kvadratické funkce (u kterých vrstevnice vypadají jako elipsoidy), je jejich podmíněnost druhá odmocnina poměru mezi délkou nejdelší a nejkratší osy elipsoidu. Pokud je podmíněnost funkce velká, říká se, že je funkce špatně podmíněná. Z hlediska evolučního algoritmu je důležité, že by s různým vlivem proměnných na hodnotu funkce měly počítat operátory.

Příklady posledních dvou vlastností vidíme na obrázku 1, který ukazuje vrstevnice funkcí dvou proměnných. Horní funkce je jednoduchý dvoudimenzionální paraboloid, který je separabilní a dobře podmíněný. Na prostředním obrázku je paraboloid, který má jednu osu delší než druhou a znázorňuje

(a) Dobře podmíněná separabilní funkce

(b) Špatně podmíněná funkce

(c) Špatně podmíněná a neseparabilní funkce

Obrázek 1: Příklady různých vlastností funkcí

12

tedy špatnou podmíněnost $^9.$ Poslední funkce potom kombinuje špatnou podmíněnost s neseparabilitou.

Výše uvedené vlastnosti jsou ty, které nejvíce ovlivňují efektivitu evolučních algoritmů při spojité optimalizaci, nejsou to ale všechny. Některé algoritmy například mohou využívat různé symetrie dané funkce, naopak funkce, které mají své globální optimum jen ve velmi malé oblasti prohledávaného prostoru a jinak jsou konstantní jsou pro evoluci velmi těžké obecně.

Kódování pro spojitou optimalizaci

Jedno z prvních rozhodnutí, které je potřeba udělat při návrhu evolučního algoritmu je výběr kódování jedince. Vzhledem k tomu, že ve spojité optimalizaci pracujeme s vektory reálných čísel, je otázka výběru kódování relativně snadná a jedinci jsou v naprosté většině případů kódování jako vektor typu float nebo double.

??? Existuje pro tohle ↓ nějaká reference?

Dalo by se uvažovat i o kódování jedince přímo po vzoru Hollandova genetického algoritmu, tj. binárním vektorem, a používat jednoduchá *n*-bodová křížení a bit-flip mutace, ale taková reprezentace trpí tím, že změna různých bitů v číslech vede k výrazně různým změnám hodnoty (např. změna bitu na konci mantisy vs. změna bitu na začátku exponentu).

Operátory pro spojitou optimalizaci

Pro spojitou optimalizaci můžeme samozřejmě použít stejné operátory jako pro každé jiné vektorové kódování jedince, tedy například *n*-bodové, případně uniformní křížení. Nicméně častěji se používají operátory specializované, které přímo využívají toho, že jedinci jsou vektory čísel.

Jednoduché křížení vektorů například počítá vážený průměr dvou rodičů tak, aby vytvořilo potomka, potomci se tedy spočítají jako

$$o_1 = w * p_1 + (1 - w) * p_2,$$

 $o_2 = (1 - w) * p_1 + w * p_2,$

kde p_1 a p_2 jsou rodiče a $w \in (0,1)$ je (případně náhodně) zvolená váha. Ačkoliv se takové křížení relativně často používá hlavně v jednodušších aplikacích, jeho velkou nevýhodou je, že výslední potomci se nikdy nemohou dostat z konvexního obalu počáteční populace.

⁹ podmíněnost zobrazené funkce jen cca 4.8, nedá se tedy považovat za špatně podmíněnou, objevují se i funkce s podmíněností 10⁶

Obsah

Před úvodem 3	
Evoluční algoritmy	5
Genetické algoritmy	7
Evoluční strategie	9
Spojitá optimalizace	11
Rejstřík 21	
Literatura 25	

Seznam obrázků

Příklady různých vlastností funkcí

11

Seznam tabulek

Seznam algoritmů

Rejstřík

Evoluční algoritmus, 5 Evoluční programování, 5

Evoluční strategie, 5

Genetický algoritmus, 3, 5, 7

Todo list

OSNOVA PREDNASKY TAK JAK JE TED	•
SKORO TO TU MUZEME SMAZAT NE?	•
Missing ref	
Missing ref	
??? Existuje pro tohle ↓ nějaká reference?	12

Literatura

- [1] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies a comprehensive introduction. 1(1):3–52, May 2002.
- [2] Agoston E. Eiben and J. E. Smith. *Introduction to Evolutionary Computing*. Springer-Verlag, 2003.
- [3] David B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, USA, 1995.
- [4] Frédéric Gruau. Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm. PhD thesis, L'universite Claude Bernard-lyon I, 1994.
- [5] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1992.
- [6] James Kennedy, James F Kennedy, Russell C Eberhart, and Yuhui Shi. *Swarm intelligence*. Morgan Kaufmann, 2001.
- [7] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
- [8] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge, MA, USA, 1994.
- [9] John R. Koza. Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Norwell, MA, USA, 2003.
- [10] John R. Koza, David Andre, Forrest H. Bennett, and Martin A. Keane. Genetic Programming III: Darwinian Invention & Problem Solving. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1999.
- [11] Zbigniew Michalewicz. *Genetic Algorithms + Data Structures = Evolution Programs (3rd Ed.).* Springer-Verlag, London, UK, UK, 1996.
- [12] Melanie Mitchell. *An Introduction to Genetic Algorithms*. MIT Press, Cambridge, MA, USA, 1996.
- [13] Gene I. Sher. *Handbook of Neuroevolution Through Erlang*. Springer Publishing Company, Incorporated, 2012.

- [14] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies. *Evolutionary computation*, 10(2):99–127, 2002.
- [15] Kenneth O Stanley and Risto Miikkulainen. A taxonomy for artificial embryogeny. *Artificial Life*, 9(2):93–130, 2003.