Broyden's method

In numerical analysis, **Broyden's method** is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]

Newton's method for solving $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ uses the <u>Jacobian matrix</u>, **J**, at every iteration. However, computing this Jacobian is a difficult and expensive operation. The idea behind Broyden's method is to compute the whole Jacobian only at the first iteration and to do rank-one updates at other iterations.

In 1979 Gay proved that when Broyden's method is applied to a linear system of size $n \times n$, it terminates in 2 n steps, [2] although like all quasi-Newton methods, it may not converge for nonlinear systems.

Contents

Description of the method

Solving single-variable equation
Solving a system of nonlinear equations

Other members of the Broyden class

See also

References

Further reading

External links

Description of the method

Solving single-variable equation

In the secant method, we replace the first derivative f at x_n with the <u>finite-difference</u> approximation:

$$f'(x_n)\simeq rac{f(x_n)-f(x_{n-1})}{x_n-x_{n-1}},$$

and proceed similar to Newton's method:

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

where n is the iteration index.

Solving a system of nonlinear equations

Consider a system of *k* nonlinear equations

$$f(x) = 0$$

where \mathbf{f} is a vector-valued function of vector \mathbf{x} :

$$egin{aligned} \mathbf{x} &= (x_1, x_2, x_3, \dots, x_k), \ \mathbf{f}(\mathbf{x}) &= ig(f_1(x_1, x_2, \dots, x_k), f_2(x_1, x_2, \dots, x_k), \dots, f_k(x_1, x_2, \dots, x_k)ig). \end{aligned}$$

For such problems, Broyden gives a generalization of the one-dimensional Newton's method, replacing the derivative with the $\underline{\text{Jacobian}}$ **J**. The Jacobian matrix is determined iteratively, based on the **secant equation** in the finite-difference approximation:

$$\mathbf{J}_n(\mathbf{x}_n-\mathbf{x}_{n-1})\simeq \mathbf{f}(\mathbf{x}_n)-\mathbf{f}(\mathbf{x}_{n-1}),$$

where n is the iteration index. For clarity, let us define:

$$egin{aligned} \mathbf{f}_n &= \mathbf{f}(\mathbf{x}_n), \ \Delta \mathbf{x}_n &= \mathbf{x}_n - \mathbf{x}_{n-1}, \ \Delta \mathbf{f}_n &= \mathbf{f}_n - \mathbf{f}_{n-1}, \end{aligned}$$

so the above may be rewritten as

$$\mathbf{J}_n \Delta \mathbf{x}_n \simeq \Delta \mathbf{f}_n$$
.

The above equation is <u>underdetermined</u> when k is greater than one. Broyden suggests using the current estimate of the <u>Jacobian matrix</u> \mathbf{J}_{n-1} and improving upon it by taking the solution to the secant equation that is a minimal modification to \mathbf{J}_{n-1} :

$$\mathbf{J}_n = \mathbf{J}_{n-1} + rac{\Delta \mathbf{f}_n - \mathbf{J}_{n-1} \Delta \mathbf{x}_n}{\|\Delta \mathbf{x}_n\|^2} \Delta \mathbf{x}_n^{\mathrm{T}}.$$

This minimizes the following $\underline{\text{Frobenius norm}}$:

$$\|\mathbf{J}_n-\mathbf{J}_{n-1}\|_{\mathrm{F}}.$$

We may then proceed in the Newton direction:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{J}_n^{-1} \mathbf{f}(\mathbf{x}_n).$$

Broyden also suggested using the <u>Sherman–Morrison formula</u> to update directly the inverse of the Jacobian matrix:

$$\mathbf{J}_n^{-1} = \mathbf{J}_{n-1}^{-1} + rac{\Delta \mathbf{x}_n - \mathbf{J}_{n-1}^{-1} \Delta \mathbf{f}_n}{\Delta \mathbf{x}_n^{\mathrm{T}} \mathbf{J}_{n-1}^{-1} \Delta \mathbf{f}_n} \Delta \mathbf{x}_n^{\mathrm{T}} \mathbf{J}_{n-1}^{-1}.$$

This first method is commonly known as the "good Broyden's method".

A similar technique can be derived by using a slightly different modification to J_{n-1} . This yields a second method, the so-called "bad Broyden's method" (but see [3]):

$$\mathbf{J}_n^{-1} = \mathbf{J}_{n-1}^{-1} + rac{\Delta \mathbf{x}_n - \mathbf{J}_{n-1}^{-1} \Delta \mathbf{f}_n}{\|\Delta \mathbf{f}_n\|^2} \Delta \mathbf{f}_n^{\mathrm{T}}.$$

This minimizes a different Frobenius norm:

$$\|\mathbf{J}_n^{-1} - \mathbf{J}_{n-1}^{-1}\|_{\mathrm{F}}.$$

Many other quasi-Newton schemes have been suggested in <u>optimization</u>, where one seeks a maximum or minimum by finding the root of the first derivative (<u>gradient</u> in multiple dimensions). The Jacobian of the gradient is called Hessian and is symmetric, adding further constraints to its update.

Other members of the Broyden class

Broyden has defined not only two methods, but a whole class of methods. Other members of this class have been added by other authors.

- The <u>Davidon–Fletcher–Powell update</u> is the only member of this class being published before the two members defined by Broyden. [4]
- Schubert's or sparse Broyden algorithm a modification for sparse Jacobian matrices.
- Klement (2014) uses fewer iterations to solve many equation systems. [6][7]

See also

- Secant method
- Newton's method
- Quasi-Newton method
- Newton's method in optimization
- Davidon–Fletcher–Powell formula
- Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

References

- Broyden, C. G. (October 1965). "A Class of Methods for Solving Nonlinear Simultaneous Equations" (https://doi.org/10.1090%2FS0025-5718-1965-0198670-6). Mathematics of Computation. American Mathematical Society. 19 (92): 577–593. doi:10.1090/S0025-5718-1965-0198670-6 (https://doi.org/10.1090%2FS0025-5718-1965-0198670-6). JSTOR 2003941 (https://www.jstor.org/stable/2003941).
- Gay, D. M. (August 1979). "Some convergence properties of Broyden's method". SIAM Journal on Numerical Analysis. SIAM. 16 (4): 623–630. doi:10.1137/0716047 (https://doi.org/10.1137%2F071 6047).
- 3. Kvaalen, Eric (November 1991). "A faster Broyden method". *BIT Numerical Mathematics*. SIAM. **31** (2): 369–372. doi:10.1007/BF01931297 (https://doi.org/10.1007%2FBF01931297).
- 4. Broyden, C. G. (October 1965). "A Class of Methods for Solving Nonlinear Simultaneous Equations" (https://doi.org/10.1090%2FS0025-5718-1965-0198670-6). *Mathematics of*

- Computation. American Mathematical Society. **19** (92): 577–593. <u>doi:10.1090/S0025-5718-1965-0198670-6</u> (https://doi.org/10.1090%2FS0025-5718-1965-0198670-6). <u>JSTOR</u> 2003941 (https://www.jstor.org/stable/2003941).
- 5. Schubert, L. K. (1970-01-01). "Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian" (https://www.ams.org/mcom/1970-24-109/S0025-5718-1970-0258276-9/). *Mathematics of Computation.* **24** (109): 27–30. doi:10.1090/S0025-5718-1970-0258276-9 (https://doi.org/10.1090%2FS0025-5718-1970-0258276-9). ISSN 0025-5718 (https://www.worldcat.org/issn/0025-5718).
- 6. Klement, Jan (2014-11-23). "On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation" (http://www.jatm.com.br/ojs/index.php/jatm/article/view/373). *Journal of Aerospace Technology and Management*. **6** (4): 407–414. doi:10.5028/jatm.v6i4.373 (https://doi.org/10.5028%2Fjatm.v6i4.373). ISSN 2175-9146 (https://www.worldcat.org/issn/2175-9146).
- 7. "Broyden class methods File Exchange MATLAB Central" (http://www.mathworks.com/matlabc entral/fileexchange/55251-broyden-class-methods). www.mathworks.com. Retrieved 2016-02-04.

Further reading

- Dennis, J. E.; Schnabel, Robert B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs: Prentice Hall. pp. 168–193. ISBN 0-13-627216-9.
- Fletcher, R. (1987). *Practical Methods of Optimization* (https://archive.org/details/practicalmethods 0000flet) (Second ed.). New York: John Wiley & Sons. pp. 44–79 (https://archive.org/details/practicalmethods0000flet/page/44). ISBN 0-471-91547-5.

External links

■ Simple basic explanation: The story of the blind archer (https://exchange.esa.int/thermal-workshop/attachments/workshop/2014/parts/quasiNewton.pdf)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Broyden%27s_method&oldid=1020363337"

This page was last edited on 28 April 2021, at 17:52 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.