

Mécanique des solides

2. Poutre appuyée et poutre encastrée

Reine Fares

reine.fares@cea.fr

Théorie de la poutre 1/3

Solide 1D: 1 dimension beaucoup plus grande par rapport aux 2 autres

Barre: actions dans l'axe

Poutre : actions transversales à l'axe

Arc : courbe moyenne non linéaire

- Poutre : élément 1D ayant ligne moyenne droite
- Hypothèse : section constante au long de l'axe

Une poutre est représentée par son axe (ligne moyenne)

Théorie de la poutre 2/3

- Hypothèse de petits déplacements et petites déformations :
 - Représentation de la géométrie de la poutre dans sa configuration initiale
 - Déformée de la poutre très proche de la configuration initiale
- Actions : analyse dans le plan
 - Forces concentrées en direction x et z
 - Charge distribuées (force par unité de longueur)
 - Moments selon l'axe y

Théorie de la poutre 3/3

- Hypothèses sur le matériau :
 - Homogène : même propriétés dans tous les points
 - Isotrope : même comportement dans toutes les directions
 - Élastique : à la décharge le matériau revient à l'état initial
 - Linéaire : contraintes proportionnelles aux déformations, loi de Hooke

- Problème élastique :
 - Données : Actions, géométrie de la structure, propriétés des matériaux
 - Inconnues : Réactions des liaisons, déformations et déplacements
 - Équations : d'équilibre, de compatibilité, constitutives

Poutre appuyée 1/2

Données :

- Charges: uniforme p_7 [N/m] = 25000 N/m
- Géométrie 1D: section rectangulaire 30 x 60 cm, L = 3m
- Matériau : béton, E = 31220 N/mm², v = 0.2, $\rho = 2500$ kg/m³
- Loi de comportement : élastique linéaire
- Conditions aux limites : A) $u_x = u_z = 0$, B) $u_z = 0$

Poutre appuyée 2/2

Résultats :

• Flèche:
$$u_{z \max} = u_z (x = L/2) = \frac{5}{384} \frac{p_z L^4}{EI_y}$$

Contrainte max :

$$\sigma_x(x,z) = \frac{M_y(x)}{I_y}z$$
 $M_y(x = \frac{L}{2}) = \frac{p_z L^2}{8}$ $I_y = \frac{bh^3}{12}$

$$\sigma_{x \max} = \sigma_x \left(x = \frac{L}{2}, z = -\frac{h}{2} \right) = -\frac{p_z L^2}{8} \frac{h}{2} \frac{12}{b h^3} = -\frac{3p_z L^2}{4b h^2}$$

Poutre encastrée 1/4

Données :

- Charges: 1) uniforme p_z [N/m], 2) concentrée F_z [N]
- Géométrie 1D : IPE, L = 1.5m
- Matériau : acier, E = 210000 N/mm², v = 0.3, $\rho = 8000$ kg/m³
- Loi de comportement : élastique linéaire
- Conditions aux limites : A) $u_x = u_z = \phi_y = 0$

Poutre encastrée 2/4

Profilé IPE

h mm	b mm	a mm	e mm	r mm	Peso kg/m	Sezione cm²	Momenti di inerzia		Moduli di resistenza		Raggi di inerzia	
							Jx cm ⁴	Jy cm ⁴	Wx cm ³	Wy cm ³	ix cm	iy cm
80	46	3,8	5,2	5	6,0	7,64	80,14	8,49	20,03	3,69	3,24	1,05
100	55	4,1	5,7	7	8,1	10,32	171,0	15,92	34,20	5,79	4,07	1,24
120	64	4,4	6,3	7	10,4	13,21	317,8	27,67	52,96	8,65	4,90	1,45
140	73	4.7	6,9	7	12,9	16,43	541,2	44,92	77,32	12,31	5,74	1,65
160	82	5,0	7,4	9	15,8	20,09	869,3	68,31	108,7	16,66	6,58	1,84
180	91	5,3	8,0	9	18,8	23,95	1,317	100,9	146,3	22,16	7,42	2,05
200	100	5,6	8,5	12	22,4	28,48	1,943	142,4	194,3	28,47	8,26	2,24
220	110	5,9	9,2	12	26,2	33,37	2,772	204,9	252,0	37,25	9,11	2,48
240	120	6,2	9,8	15	30,7	39,12	3,892	283,6	324,3	47,27	9,97	2,69
270	135	6,6	10,2	15	36,1	45,95	5,790	419,9	428,9	62,20	11,23	3,02
300	150	7,1	10,7	15	42,2	53,81	8,356	603,8	557,1	80,50	12,46	3,35
330	160	7,5	11,5	18	49,1	62,61	11,770	788,1	713,1	98,52	13,71	3,55
360	170	8,0	12,7	18	57,1	72,73	16,270	1,043	903,6	122,8	14,95	3,79
400	180	8,6	13,5	21	66,3	84,46	23,130	1,318	1,156	146,4	16,55	3,95
450	190	9,4	14,6	21	77,6	98,82	33,740	1,676	1,500	176,4	18,48	4,12
500	200	10,2	16,0	21	90,7	115,5	48,200	2,142	1,928	214,2	20,43	4,31
550	210	11,1	17,2	24	106	134,4	67,120	2,668	2.441	254,1	22,35	4,45
600	220	12,0	19,0	24	122	156,0	92,080	3,387	3,069	307,9	24,30	4,66

Poutre encastrée 3/4

Résultats :

• Flèche:

$$u_{z \max} = u_z \left(x = L \right) = \frac{p_z L^4}{8EI_y}$$

• Contrainte max : $\sigma_x(x,z) = \frac{M_y(x)}{I_y}z$ $M_y(x=0) = \frac{p_z L^2}{2}$

$$\sigma_{x \max} = \sigma_x \left(x = 0, z = -\frac{h}{2} \right) = -\frac{p_z L^2}{2I_y} \frac{h}{2}$$

Poutre encastrée 4/4

Résultats :

• Flèche:

$$u_{z \max} = u_z \left(x = L \right) = \frac{F_z L^3}{3EI_y}$$

• Contrainte max : $\sigma_x(x,z) = \frac{M_y(x)}{I_y}z$ $M_y(x=0) = F_zL$

$$\sigma_{x \max} = \sigma_x \left(x = 0, z = -\frac{h}{2} \right) = -\frac{F_z L}{I_y} \frac{h}{2}$$

1. Géométrie

1. Géométrie : type d'analyse (2D, 3D), type d'élément (poutre, plaque)

1. Géométrie : type d'analyse (2D, 3D), type d'élément (poutre, plaque)

Model - Materials

2. Matériau : densité, élasticité (E, v)

Model - Profiles

3. Profilé : forme de la section, dimensions de la section

Model - Sections

4. Section : type d'élément

5. Attribution de la section : type d'élément

5. Attribution de la section : type d'élément

6. Visualisation

Model - Assembly

7. Assemblage

Model - Steps

8. Pas de calcul : Statique, Dynamique implicite, Longueur d'arche/Riks

Model - Loads

9. Charges: force concentrée, pression, poids, charge uniforme [N/m]

Model - BCs

10. Condition aux limites : déplacement, vitesse, accélération

11. Partition

12. Point où enregistrer les résultats : point, bord, surface

Model - Field Output Requests

13. Résultats demandés : contraintes, déformations totales, déplacements, réactions

Model - History Output Requests

14. Résultats demandés : flèche

15. Maillage : type d'élément (2 ou 3 nœuds), nombre d'éléments

Model - Analysis

16. Création du projet, vérification des données et calcul

Calcul complet

1. Fichier de résultats : *.odb

2. Déformée

3. Cartographie : déplacement, contrainte

3. Cartographie : déplacement

4. Courbes : déplacement-temps, force-déplacement

5. Courbes : déplacement maximum (flèche)

The XY data "u2" has been created

