MATH 405: Assignment 6

Micah Sherry

March 28, 2025

1. Let R be an integral domain. Prove that if $a, b \in R$ and $a^2 = b^2$, then a = b or a = -b.

Proof. Let $a, b \in R$ with $a^2 = b^2$. So,

$$a^{2} = b^{2}$$

$$a^{2} - b^{2} = 0_{R}$$

$$(a - b)(a + b) = 0_{R}$$

Since R does not have zero divisors $a-b=0_R$ or $a+b=0_R$. Therefore a=b or a=-b.

2. Let R be a commutative ring (but not necessarily an integral domain). Let $f(x) \in R[x]$ prove each of the following statements.

To make the following proofs more concise, we'll prove this statement first: if $f(x) \in R[x]$ is monic and non-constant and $0_R \neq g(x) \in R[x]$, Then $\deg(f(x)g(x)) > 0$.

Proof. Assume,

 $f(x) = 1_R x^n + a_{n-1} x^{n-1} + \ldots + a_0$ and

 $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$ with $n > 0, m \ge 0$, and $a_i, b_i \in R$.

Consider the product of the highest terms of f(x)g(x), $b_m * 1_R x^{m+n}$. Since 1_R is not a zero divisor $\deg(f(x)g(x)) = n + m > 0$.

(a) If f(x) is monic and non-constant, then f(x) is not a unit in R[x].

Proof. Assume f(x) is monic and non-constant. And assume for the sake of contradiction there exist a g(x) such that $f(x)g(x) = 1_R$. From the above result $\deg(f(x)g(x)) > 0$, contradicting the assumption that $f(x)g(x) = 1_R$ therefore f(x) is not a unit

(b) If f(x) is monic, then f(x) is not a zero divisor in R[x]

Proof. assume f(x) is monic.

Case 1: f(x) is monic and constant. $f(x) = 1_R$. Which is not a zero divisor.

Case 2: f(x) is monic and non-constant. Assume for the sake of contradiction that there exists $g(x) \neq 0_R$ such that $f(x)g(x) = 0_R$. From the above result the $\deg(f(x)g(x)) > 0$ which is contradicting the assumption that $f(x)g(x) = 0_R$. thus f(x) is not a zero divisor.

Therefore the original statement holds.

- 3. units in $\mathbb{Z}_4[x]$
 - (a) Find five units (other than 1 and 3) in $\mathbb{Z}_4[x]$

•
$$2x + 1$$
; $(2x + 1)^2 = 4x^2 + 4x + 1 = 1$

•
$$2x^2 + 1$$
; $(2x^2 + 1)^2 = 4x^4 + 4x^2 + 1 = 1$

•
$$2x^3 + 1$$
; $(2x^3 + 1)^2 = 4x^6 + 4x^3 + 1 = 1$

•
$$2x^4 + 1$$
; $(2x^4 + 1)^2 = 4x^8 + 4x^4 + 1 = 1$

•
$$2x^5 + 1$$
; $(2x^5 + 1)^2 = 4x^{10} + 4x^5 + 1 = 1$

- (b) Explain why $\mathbb{Z}_4[x]$ has infinitely many units. Consider all polynomials of the form (2g(x)+1), with $g(x) \in Z_4[x]$. Notice that $(2g(x)+1)^2 = 4g(x)^2 + 4g(x) + 1 = 1$. Therefore, are infinitely many units of the form (2g(x)+1).
- 4. Consider the function $\theta: \mathbb{Z}_2[x] \to \mathbb{Z}_2[x]$ where $\theta(f(x)) = (f(x))^2$ for any $f(x) \in \mathbb{Z}_2[x]$.
 - (a) show that θ is a homomorphism.

Proof. Let f(x), $g(x) \in \mathbb{Z}_2[x]$ Consider,

$$\theta(f(x)g(x)) = (f(x)g(x))^{2}$$

$$= f(x)^{2}g(x)^{2}$$

$$= \theta(f(x))\theta(g(x)).$$

Therefore θ preserves multiplication. Now, consider

$$\theta(f(x) + g(x)) = (f(x) + g(x))^{2}$$

$$= f(x)^{2} + 2f(x)g(x) + g(x)^{2}$$

$$= f(x)^{2} + g(x)^{2}$$

$$= \theta(f(x)) + \theta(g(x))$$

Therefore θ preserves addition. Thus θ is a homomorphism.

- (b) find $\ker \theta$ $\ker \theta = \{ f(x) \in \mathbb{Z}_2[x] | f(x)^2 = 0 \} = \{ 0 \}$
- (c) Describe all elements in the image of θ Notice θ maps each term of the polynomial to its Square. So the image of θ is all polynomials in $\mathbb{Z}_2[x]$ with only even powers of x
- 5. Let A be the set of all polynomials in $\mathbb{Z}[x]$ with an even constant term.
 - (a) prove that A is an ideal $\mathbb{Z}[x]$

Proof. let
$$A = \{xg(x) + 2n|g(x) \in \mathbb{Z}[x] \land n \in \mathbb{Z}\}$$
 let $f_1(x) = xg_1(x) + 2n_1$ and $f_2(x) = xg_2(x) + 2n_2$, for some $g_1(x), g_2(x) \in \mathbb{Z}[x], n_1, n_2 \in \mathbb{Z}$. Consider.

$$f_1(x) + f_2(x) = xg_1(x) + 2n_1 + xg_2(x) + 2n_2$$
$$= x(q_1(x) + q_2(x)) + 2(n_1 + n_2)$$

So, A is an closed under addition.

let t(x) = xg(x) + n for some $g(x) \in \mathbb{Z}[x]$ and $n \in \mathbb{Z}$. Now Consider,

$$t(x)f_1(x) = (xg(x) + n)(xg_1(x) + 2n_1)$$

= $x(xg(x)g_1(x) + 2n_1g(x) + ng_1(x)) + 2n_1n$

This show that A satisfies the absorption property and closure under multiplication. Therefore A is an ideal. \Box

- (b) Anita claims $A = \langle 2 \rangle = \{2 * f(x) | f(x) \in Z[x]\}$. Do you agree or disagree? Explain. Disagree, notice $x + 2 \in A$ and $x + 2 \notin \langle 2 \rangle$
- (c) Elizabeth claims $A=\langle x\rangle=\{x*f(x)|f(x)\in Z[x]\}$. Do you agree or disagree? Explain. Disagree, notice $2\in A$ and $2\not\in\langle x\rangle$