UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEP. DE ENGENHARIA ELÉTRICA

ELE 0941 - ELETROTÉCNICA

CAPÍTULO 3 - CIRCUITOS TRIFÁSICOS

1.0 Definições Gerais

Sistema de tensões polifásico simétrico e equilibrado

Seja n o número de fases:

$$e_{1} = E_{M} \cos(\omega t)$$

$$e_{2} = E_{M} \cos(\omega t - 2\pi \frac{1}{n})$$

$$\vdots$$

$$e_{i} = E_{M} \cos(\omega t - 2\pi \frac{i-1}{n})$$

$$\vdots$$

$$e_{n} = E_{M} \cos(\omega t - 2\pi \frac{n-1}{n})$$

Para o caso de sistema trifásico (n = 3):

$$e_1 = E_M \cos(\omega t)$$

$$e_2 = E_M \cos\left(\omega t - \frac{2\pi}{3}\right)$$

$$e_3 = E_M \cos\left(\omega t - \frac{4\pi}{3}\right)$$

Figura 1 - Sistema de tensão trifásico

Em termos fasoriais:

 $Figura\ 2-Representação\ fasorial\ nos\ eixos\ real\ e\ imagin\'ario$

$$\dot{E}_1 = E_x + jE_y = E | \underline{\theta}^{\circ}$$

onde

$$j=\sqrt{-1}$$

$$E = \sqrt{E_x^2 + E_y^2}$$

$$E_x = E \cos \theta$$

$$\theta = arctg \left(\frac{E_y}{E_x}\right)$$

$$E_y = E sen \theta$$

deste modo no sistema trifásico

$$\begin{split} \dot{E}_1 &= E + j0 = E \Big| \underline{0^o} \\ \dot{E}_2 &= E \left[\cos \left(-\frac{2\pi}{3} \right) + j \ sen \left(-\frac{2\pi}{3} \right) \right] = E \left[-\frac{1}{2} - j \frac{\sqrt{3}}{2} \right] = E \left| \underline{-120^o} \right| \\ \dot{E}_3 &= E \left[\cos \left(\frac{2\pi}{3} \right) + j \ sen \left(\frac{2\pi}{3} \right) \right] = E \left[-\frac{1}{2} + j \frac{\sqrt{3}}{2} \right] = E \left| \underline{120^o} \right| \end{split}$$

onde

$$E = \frac{E_M}{\sqrt{2}}$$

1.1 Definições

<u>Sistema de tensões trifásico simétrico</u>: Três tensões senoidais de mesma magnitude, defasadas entre si de 120°.

<u>Sistema de tensões trifásico assimétrico</u>: Sistema trifásico em que não atendem a pelo menos uma das condições acima.

<u>Linha (ou rede) trifásica equilibrada</u>: Linha (ou rede) constituída por 3 ou 4 fios (incluído o neutro ou retorno), com:

impedâncias próprias iguais (
$$\overline{Z}_{AA}=\overline{Z}_{BB}=\overline{Z}_{CC}=\overline{Z}_{p}$$
)

impedâncias mútuas iguais ($\vec{Z}_{AB} = \vec{Z}_{BC} = \vec{Z}_{CA} = \vec{Z}_{M}$);

$$\vec{Z}_{AG} = \vec{Z}_{BG} = \vec{Z}_{CG} = \vec{Z}_{M}$$

Um circuito trifásico esta em equilíbrio se as três tensões senoidais tiverem a mesma magnitude e freqüência e cada tensão estiver 120° fora de fase com as outras duas. As correntes na carga também devem estar em equilíbrio.

<u>Linha (ou rede) trifásica desequilibrada</u>: Linha (ou rede) trifásica em que não se verifica alguma das condições de equilíbrio.

<u>Carga trifásica equilibrada</u>: Carga trifásica constituída por três impedâncias iguais ligadas em estrela (Y) ou triângulo (Δ) .

<u>Carga trifásica desequilibrada</u>: Carga trifásica em estrela (Y) ou triângulo (Δ) em que não se verifica pelo menos umas das condições de equilíbrio.

1.2 Seqüência de fases

Nos terminais de uma bobina que gira com velocidade ω constante em um campo magnético uniforme surge uma tensão dada por

$$e = E_M \cos(\omega t + \theta)$$

Considere-se então 3 bobinas deslocadas entre si de $\frac{2\pi}{3}$ rad em um mesmo eixo.

Figura 3 - Obtenção de um sistema de tensão trifásico

Seqüência de fase: A ordem pela qual as tensões passam por máximo.

Na figura: A-B-C (B-C-A; C-A-B) – seqüência direta (positiva)
C-B-A (B-A-C; A-C-B) – seqüência inversa (negativa)

Figura 4 - Seqüência de fase, direta e inversa, dos fasores de tensões

É comum na literatura também o emprego das letras RST em analogia as fases ABC.

Exemplo 1: Um sistema trifásico simétrico tem seqüência de fase B-A-C e $\dot{V}_{c} = 220 \left| 70^{\circ} \right|$ V. Determinar as tensões das fases A e B.

1.3 Operador α

Define-se α como o seguinte fasor:

$$\alpha = 1 | \underline{120^{\circ}}$$

Propriedades de α :

$$\alpha^{2} = \alpha \cdot \alpha = 1 | \underline{120^{\circ}} \cdot 1 | \underline{120^{\circ}} = 1 | \underline{240^{\circ}} = 1 | \underline{-120^{\circ}}$$

$$\alpha^3 = \alpha^2 \cdot \alpha = 1 | \underline{-120^\circ} \cdot 1 | \underline{120^\circ} = 1 | \underline{0^\circ}$$

$$\alpha^4 = \alpha^3 \cdot \alpha = \alpha$$

$$\alpha^{3n} = (\alpha^3)^n = (1 | \underline{0}^o)^n = 1 | \underline{0}^o$$

$$\alpha^{3n+1} = \alpha$$

$$\alpha^{3n+2} = \alpha^2$$

$$1 + \alpha + \alpha^2 = 0$$

Exemplo 2: Calcular:

$$1-\alpha^2$$

$$\alpha^2 - \alpha$$

$$\alpha^2(1-\alpha^2)$$

$$\alpha - 1$$

$$\alpha \left(1-\alpha^2\right)$$

1.4 Seqüências

Sequência: conjunto ordenado de três fasores.

$$\vec{M}_A = \begin{bmatrix} \dot{M}_A \\ \dot{M}_B \\ \dot{M}_C \end{bmatrix}$$

 $Tabela\ 1-conjunto\ ordenado\ de\ três\ fasores\ para\ seqüência\ positiva,\ negativa\ e\ zero$

Seqüência direta (positiva)	Seqüência inversa (negativa)	Seqüência zero		
$\vec{V}_{1} = \begin{bmatrix} \dot{V}_{1} \\ \alpha^{2} \dot{V}_{1} \\ \alpha \dot{V}_{1} \end{bmatrix} = \dot{V}_{1} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix} = \dot{V}_{1} \vec{S}_{1}$	$\vec{V}_2 = \begin{bmatrix} \vec{V}_2 \\ \alpha \vec{V}_2 \\ \alpha^2 \vec{V}_2 \end{bmatrix} = \vec{V}_2 \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix} = \vec{V}_2 \vec{S}_2$	$\vec{V}_0 = \begin{bmatrix} \dot{V}_0 \\ \dot{V}_0 \\ \dot{V}_0 \end{bmatrix} = \dot{V}_0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \dot{V}_0 \vec{S}_0$		

Exemplo 3 – Como fica na notação acima o sistema de fasores do exemplo 1

1.4 Padronização de sub índice duplo

Figura 5 – Representação das tensões e correntes em fonte e em carga

2.0 Sistemas trifásicos simétricos e equilibrados com carga equilibrada, seqüência direta

2.1 Ligações em estrela ou Y

Sejam as bobinas da figura 3 alimentando cargas de impedância

$$\overline{Z} = Z | \underline{\varphi} = R + jX$$

Figura 6 - Três circuitos monofásicos para conexão estrela

As correntes que circulam nos circuitos são

$$\dot{I}_{A} = \frac{\dot{E}_{AN_{A}}}{\overline{Z}} = \frac{E|\underline{0}^{o}|}{Z|\varphi} = \frac{E}{Z}|\underline{-\varphi}|$$

$$\dot{I}_{B} = \frac{\dot{E}_{BN_{B}}}{\overline{Z}} = \frac{E \left| -120^{\circ}}{Z \left| \varphi \right|} = \frac{E}{Z} \left| -120 - \varphi \right|$$

$$\dot{I}_{C} = \frac{\dot{E}_{CN_{C}}}{\overline{Z}} = \frac{E \left| \pm 120^{\circ}}{Z \left| \varphi \right|} = \frac{E}{Z} \left| \pm 120 - \varphi \right|$$

- ullet Os circuitos são eletricamente independentes, então os pontos N_A , N_B , e N_C podem ser conectados em um ponto N.
- Os pontos N'_A, N'_B, e N'_C estão ao mesmo potencial de N e podem ser igualmente conectados.
- A corrente que circula no condutor N-N' é $\dot{I}_{NN'} = \dot{I}_A + \dot{I}_B + \dot{I}_C = 0$

O circuito trifásico pode ser redesenhado como segue.

Figura 7 - Sistema trifásico com fontes e cargas ligados em Y

Definições:

- 1. <u>Tensão de fase</u>: medida entre qualquer terminal do gerador ou carga e o centro-estrela;
- 2. <u>Tensão de linha</u>: medida entre quaisquer dois terminais do gerador ou da carga, nenhum deles sendo o centro-estrela;
- 3. <u>Corrente de fase</u>: corrente que percorre cada das bobinas do gerador ou da impedância da carga;
- 4. <u>Corrente de linha</u>: corrente que percorre os condutores que conectam o gerador á carga, excetuado o neutro.

2.1.1 Relações entre os valores de linha e fase para a ligação Y

Figura 8 - Tensões e correntes de fase e linha em um sistema trifásico com gerador e carga ligados em Y

Tabela 2 – Grandezas de fase e linha (em módulo) num trifásico simétrico e equilibrado ligado em Y

Valores de fase			Valores de linha				
Gera	ador	Cai	rga	Gera	ador	Car	rga
Corrente	Tensão	Corrente	Tensão	Corrente	Tensão	Corrente	Tensão
I_{NA}	V_{AN}	I _{A'N'}	$V_{A'N'}$	I_A	V_{AB}	I_A	$V_{A'B'}$
I_{NB}	V_{BN}	I _{B'N'}	$V_{B'N'}$	I_B	V_{BC}	I_B	$V_{B'C'}$
I_{NC}	V_{CN}	I _{C'N'}	$V_{C'N'}$	I_{C}	V_{CA}	I_{C}	$V_{C'A'}$

2.1.1.1 Correntes:

$$\dot{I}_{NA} = \dot{I}_{N^{\hat{}}A^{\hat{}}} = \dot{I}_{A}$$

$$\dot{I}_{NB} = \dot{I}_{N'B'} = \dot{I}_{B}$$

$$\dot{I}_{NC} = \dot{I}_{N'C'} = \dot{I}_C$$

2.1.1.2 Tensões:

Dadas às tensões de fase

$$\vec{V}_{AN} = \begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

As tensões de linha são

$$\vec{V}_{AB} = \begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = \begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} - \begin{bmatrix} \dot{V}_{BN} \\ \dot{V}_{CN} \\ \dot{V}_{AN} \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} - \dot{V}_{AN} \begin{bmatrix} \alpha^2 \\ \alpha \\ 1 \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 - \alpha^2 \\ \alpha^2 - \alpha \\ \alpha - 1 \end{bmatrix}$$

Onde:

$$1 - \alpha^2 = \sqrt{3} \left| \frac{30^\circ}{} \right|$$

$$\alpha^2 - \alpha = \alpha^2 \left(1 - \alpha^2 \right) = \alpha^2 \sqrt{3} \left| \frac{30^\circ}{} \right|$$

$$\alpha - 1 = \alpha \left(1 - \alpha^2 \right) = \alpha \sqrt{3} \left| \frac{30^\circ}{} \right|$$

$$\rightarrow \vec{V}_{AB} = \sqrt{3} \left| \underline{30^{\circ}} \ \dot{V}_{AN} \left[\begin{array}{c} 1 \\ \alpha^{2} \\ \alpha \end{array} \right]$$

Em uma formulação geral, considerando $\dot{V}_{\scriptscriptstyle AN}$ na referência e sequência direta, pode-se escrever a seguinte relação entre valores de fase e de linha:

$$\begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = \sqrt{3} \mid \underline{30^{0}} \begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = \sqrt{3} \mid \underline{30^{0}} \quad \dot{V}_{Fase} \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix}$$

O diagrama fasorial, com a tensão de fase na referência, correspondente é

Figura 9 - Diagrama fasorial com relação entre as tensões de linha e fase, seq. direta (ligação Y), tensão de fase (\dot{V}_{AN}) na referência

2.1.1.3 Deslocamento de neutro

Considere-se uma tensão $V_{NN'}$ como ilustrado na figura 10.

Figura 10 - Deslocamento de neutro

$$\vec{V}_{AN'} = \vec{V}_{AN} + \vec{V}_{NN'} = \begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} + \dot{V}_{NN'} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\vec{V}_{AB} = \begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix} = \begin{bmatrix} \dot{V}_{AN'} \\ \dot{V}_{BN'} \\ \dot{V}_{CN'} \end{bmatrix} - \begin{bmatrix} \dot{V}_{BN'} \\ \dot{V}_{VN'} \\ \dot{V}_{AN'} \end{bmatrix} = \dot{V}_{AN} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} - \dot{V}_{AN} \begin{bmatrix} \alpha^2 \\ \alpha \\ 1 \end{bmatrix} + \dot{V}_{NN'} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} = 1$$

$$= \sqrt{3} \left| \underline{30^{\circ}} \ \dot{V}_{AN} \right| \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

- 1. A tensão V_{NN} , não afeta as tensões de linha.
- 2. Dadas as tensões de linha, as tensões fase-terra estão indeterminadas, ou seja, $\dot{V}_{AN'} = \frac{\dot{V}_{AB}}{\sqrt{3}|30^{\circ}}$ se e somente se for garantido que o trifásico é simétrico.

Exemplo 4: Uma Carga equilibrada ligada em Y é alimentada por um sistema trifásico simétrico e equilibrado com sequência de fase direta. Sabendo-se que $\dot{V}_{BN} = 220 |\underline{58}^{0}| \text{ V}$, pede-se determinar:

- a) As tensões de fase na carga
- b) As tensões de linha na carga

2.1.2 Resolução de circuitos com gerador e carga em Y

Considere-se o circuito a seguir sendo conhecidas às tensões de fase do gerador e as impedâncias da linha e da carga. Sejam as malhas indicadas.

Figura 11 - Circuito trifásico em Y

$$\vec{V}_{AN} = \begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = E \left| \underline{\theta} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}; \qquad \overline{Z} = Z \left| \underline{\varphi}; \qquad \overline{Z}' = Z' \left| \underline{\varphi}' \right|$$

$$\dot{V}_{AN} - \dot{V}_{BN} = 2\gamma(\overline{Z} + \overline{Z}') - \beta(\overline{Z} + \overline{Z}') \rightarrow 2\gamma - \beta = \frac{\dot{V}_{AN} - \dot{V}_{BN}}{(\overline{Z} + \overline{Z}')}$$

$$\dot{V}_{BN} - \dot{V}_{CN} = -\gamma(\overline{Z} + \overline{Z}') + 2\beta(\overline{Z} + \overline{Z}') \rightarrow -\gamma + 2\beta = \frac{\dot{V}_{BN} - \dot{V}_{CN}}{(\overline{Z} + \overline{Z}')}$$

$$\gamma = \frac{1}{3(\overline{Z} + \overline{Z}')} \left[2\dot{V}_{AN} - \left(\dot{V}_{BN} + \dot{V}_{CN}\right) \right] = \frac{1}{3(\overline{Z} + \overline{Z}')} \left[3\dot{V}_{AN} \right] = \frac{\dot{V}_{AN}}{\left(\overline{Z} + \overline{Z}'\right)}$$

$$\beta = \frac{1}{3(\overline{Z} + \overline{Z}')} \left[-2\dot{V}_{CN} + (\dot{V}_{AN} + \dot{V}_{BN}) \right] = \frac{1}{3(\overline{Z} + \overline{Z}')} \left[-3\dot{V}_{CN} \right] = \frac{-\dot{V}_{CN}}{(\overline{Z} + \overline{Z}')}$$

$$\begin{split} \dot{I}_{A} &= \gamma = \frac{\dot{V}_{AN}}{\left(\overline{Z} + \overline{Z}'\right)} \\ \dot{I}_{B} &= \beta - \gamma = -\frac{\dot{V}_{CN}}{\left(\overline{Z} + \overline{Z}'\right)} - \frac{\dot{V}_{AN}}{\left(\overline{Z} + \overline{Z}'\right)} = \frac{\dot{V}_{BN}}{\left(\overline{Z} + \overline{Z}'\right)} \\ \dot{I}_{C} &= -\beta = \frac{\dot{V}_{CN}}{\left(\overline{Z} + \overline{Z}'\right)} \end{split}$$

$$\vec{V}_{AN} = \begin{bmatrix} \dot{V}_{AN} \\ \dot{V}_{BN} \\ \dot{V}_{CN} \end{bmatrix} = E \left| \underline{\theta} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} \quad \Rightarrow \quad \vec{I}_A = \begin{bmatrix} \dot{I}_A \\ \dot{I}_B \\ \dot{I}_C \end{bmatrix} = \frac{E \left| \underline{\theta} \right|}{\left(\overline{Z} + \overline{Z}' \right)} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

Outra resolução:

$$V_{NN'} = 0 \rightarrow \text{ imediatamente } \vec{I}_A = \begin{bmatrix} \dot{I}_A \\ \dot{I}_B \\ \dot{I}_C \end{bmatrix} = \frac{E |\underline{\theta}|}{(\overline{Z} + \overline{Z}')} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

Ou seja, tudo se passa como se o circuito a resolver fosse:

Figura 12 - Circuito monofásico equivalente (Y)

A resolução de um sistema trifásico simétrico e equilibrado, com gerador e caga em Y, resume-se à solução de um circuito monofásico representado pelo gerador ligado a uma das cargas. Os outros valores das fases têm o mesmo módulo e ângulos defasados de 120⁰

Observação: Com relação ao subscrito duplo, por Exemplo V_{AN} , significa a tensão no ponto A em relação ao ponto N, quanto a corrente I_{AN} representa a corrente que flui de A para N.

Exemplo 5: Um gerador trifásico alimenta por meio de uma linha uma carga trifásica equilibrada. Gerador e carga ligados em Y, seqüência direta. São dados :

- 1) A tensão de linha do gerador 380V
- 2) A freqüência do gerador 60Hz
- 3) O número de fios da linha 3
- 4) A resistência e a reatância indutiva de cada fio da linha (desprezar as indutâncias mútuas entre os fios da linha) R=0,20 Ω X_L=0,50 Ω
- 5) A impedância da carga Z_C = 3 + j 4 Ω

Pede-se:

- a) As tensões de fase e de linha no gerador
- b) As correntes de fase e de linha fornecidas pelo gerador
- c) As tensões de fase e de linha na carga
- d) A queda de tensão na linha (valores de fase e de linha)
- e) O diagrama de fasores

2.2 Ligações em triângulo ou Δ

Retomando os geradores monofásicos que compõem o trifásico e conectando-os como ilustrado:

Figura 13 - Três circuitos monofásicos para conexão Δ

Cada malha é independente \rightarrow podem-se interligar os pontos $\begin{cases} A \ e \ N_C \\ C \ e \ N_B \end{cases}$

Note-se que $\dot{V}_{BN_A} = \dot{V}_{BN_B} + \dot{V}_{CN_C} + \dot{V}_{AN_A} = 0$ \rightarrow B e N_A podem ser interligados.

Analogamente $\dot{V}_{B'N'_A} = \overline{Z}(\dot{I}_{B'N'_B} + \dot{I}_{B'N'_B} + \dot{I}_{A'N'_A}) = 0$ e B' e N'_A podem ser interligados

Finalmente, podem-se interligar os pontos $\begin{cases} A' \ e \ N'_C \\ B' \ e \ N'_A \\ C' \ e \ N'_B \end{cases}$

Então o circuito fica como segue.

Figura 14 - Circuito trifásicos com gerador e carga em Δ

2.2.1 Relações entre as grandezas de fase e de linha na ligação Δ

$$\begin{bmatrix} \dot{V}_{AN_A} \\ \dot{V}_{BN_B} \\ \dot{V}_{CN_C} \end{bmatrix} = \begin{bmatrix} \dot{V}_{AB} \\ \dot{V}_{BC} \\ \dot{V}_{CA} \end{bmatrix}$$

$$\vec{I}_{AA'} = \begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'B'} \\ \dot{I}_{C'A'} \end{bmatrix} - \begin{bmatrix} \dot{I}_{C'A'} \\ \dot{I}_{A'B'} \\ \dot{I}_{B'C'} \end{bmatrix}$$

Seja

$$\vec{I}_{A'B'} = \begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'C'} \\ \dot{I}_{C'A'} \end{bmatrix} = \dot{I}_{A'B'} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

então

$$\vec{I}_{AA'} = \begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \dot{I}_{A'B'} \left\{ \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} - \begin{bmatrix} \alpha \\ 1 \\ \alpha^2 \end{bmatrix} \right\}$$

$$\begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \sqrt{3} \left[-30^{\circ} \quad \dot{I}_{A'B'} \right] \begin{bmatrix} 1 \\ \alpha^{2} \\ \alpha \end{bmatrix}$$

2.2.3 Resolução de circuitos trifásicos em Δ

Figura 15 - Circuito trifásico em Δ

$$\dot{V}_{CA} = (2\overline{Z}' + \overline{Z})\alpha - \overline{Z}'\beta - \overline{Z}\gamma$$

$$\dot{V}_{AB} = -\overline{Z}\alpha + (2\overline{Z}' + \overline{Z})\beta - \overline{Z}\gamma$$

$$0 = -\overline{Z}\alpha - \overline{Z}\beta + 3\overline{Z}\gamma$$

de onde se podem determinar β , e γ

Por outro lado,

$$\dot{V}_{AB} = \overline{Z}' (\dot{I}_A - \dot{I}_B) + \overline{Z} \dot{I}_{A'B'}$$

E, explorando a simetria e o equilíbrio:

$$\vec{I}_{A'B'} = \begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'c'} \\ \dot{I}_{C'A'} \end{bmatrix} = \dot{I}_F \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}; \begin{bmatrix} \dot{I}_{AA'} \\ \dot{I}_{BB'} \\ \dot{I}_{CC'} \end{bmatrix} = \sqrt{3} \left[-30^0 \dot{I}_F \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} \right]$$

têm-se

$$\dot{I}_A - \dot{I}_B = \sqrt{3} \left| -30^{\circ} \dot{I}_F \left(1 - \alpha^2 \right) \right| = \sqrt{3} \left| -30^{\circ} \dot{I}_F \sqrt{3} \right| 30^{\circ} = 3 \dot{I}_F$$

de onde

$$\dot{V}_{AB} = (3\overline{Z}' + \overline{Z})\dot{I}_F \rightarrow \dot{I}_{A'B'} = \dot{I}_F = \frac{\dot{V}_{AB}}{3\overline{Z}' + \overline{Z}}$$

e, finalmente:

$$\vec{I}_{A'B'} = \begin{bmatrix} \dot{I}_{A'B'} \\ \dot{I}_{B'c'} \\ \dot{I}_{C'A'} \end{bmatrix} = \frac{\dot{V}_{AB}}{3\overline{Z}' + \overline{Z}} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

O diagrama fasorial , corrente de fase (\dot{I}_{AB}) na referência, correspondente é

Figura 16 - Diagrama fasorial com relação entre correntes de linha e fase (ligação Δ), corrente de fase na referência

3.0 Transformações equivalentes Δ - Y (carga)

Para um grande número de problemas necessitamos transformar cargas ligadas entre delta e estrela e vice-versa.

O critério para identificar as duas ligações é que se tomando a impedância entre dois pontos quaisquer correspondentes nos dois circuitos, eles devem ser iguais.

Na figura 17 queremos determinar a relação entre os componentes da estrela e do delta, de modo que sejam equivalentes.

Figura 17 - Transformação Δ - Y

A impediência vista entre os pontos A e B deve ser igual nos dois casos, portanto

$$\dot{Z}_A + \dot{Z}_B = \frac{\dot{Z}_{AB} \left(\dot{Z}_{CA} + \dot{Z}_{BC} \right)}{\dot{Z}_{\Delta}}$$

$$\dot{Z}_B + \dot{Z}_C = \frac{\dot{Z}_{BC} \left(\dot{Z}_{AB} + \dot{Z}_{CA} \right)}{\dot{Z}_{\Lambda}}$$

$$\dot{Z}_C + \dot{Z}_A = \frac{\dot{Z}_{CA} \left(\dot{Z}_{AB} + \dot{Z}_{BC} \right)}{\dot{Z}_{\Delta}}$$

onde:

$$\dot{Z}_{\Delta} = \dot{Z}_{AB} + \dot{Z}_{BC} + \dot{Z}_{CA}$$

Temos portanto um sistema com três equações e três incógnitas, somando a primeira equação com a terceira e subtraindo a segunda achamos \dot{Z}_A . Os valores de \dot{Z}_B e \dot{Z}_C são determinados de forma análoga, assim,

$$\dot{Z}_A = \frac{\dot{Z}_{AB} \dot{Z}_{CA}}{\dot{Z}_{A}}$$

$$\dot{Z}_B = \frac{\dot{Z}_{BC} \dot{Z}_{AB}}{\dot{Z}_{\Lambda}}$$

$$\dot{Z}_C = \frac{\dot{Z}_{CA} \dot{Z}_{BC}}{\dot{Z}_{A}}$$

As equações acima correspondem à transformação de delta para estrela. Para fazer a transformação contrária (estrela para delta) definimos Z_{γ} por

$$\frac{1}{\dot{Z}_{v}} = \frac{1}{\dot{Z}_{A}} + \frac{1}{\dot{Z}_{B}} + \frac{1}{\dot{Z}_{C}}$$

Multiplicando por \dot{Z}_A e \dot{Z}_B , obtemos

$$\frac{\dot{Z}_{A} \dot{Z}_{B}}{\dot{Z}_{Y}} = \frac{\dot{Z}_{AB}^{2} \dot{Z}_{CA}^{2} \dot{Z}_{BC}^{2}}{\dot{Z}_{\Delta}^{2}} \left(\frac{\dot{Z}_{\Delta}}{\dot{Z}_{AB} \dot{Z}_{CA}} + \frac{\dot{Z}_{\Delta}}{\dot{Z}_{BC}} \dot{Z}_{AB} + \frac{\dot{Z}_{\Delta}}{\dot{Z}_{CA} \dot{Z}_{BC}} \right) =$$

$$= \frac{\dot{Z}_{AB}^2 \, \dot{Z}_{CA} \, \dot{Z}_{BC}}{\dot{Z}_{\Delta}} \left(\frac{\dot{Z}_{BC} \, \dot{Z}_{CA} \, \dot{Z}_{AB}}{\dot{Z}_{AB} \, \dot{Z}_{BC} \, \dot{Z}_{CA}} \right) = \dot{Z}_{AB}$$

logo

$$\dot{Z}_{AB} = \frac{\dot{Z}_A \, \dot{Z}_B}{\dot{Z}_V}$$

$$\dot{Z}_{BC} = \frac{\dot{Z}_{B} \dot{Z}_{C}}{\dot{Z}_{Y}}$$

$$\dot{Z}_{CA} = \frac{\dot{Z}_C \, \dot{Z}_A}{\dot{Z}_V}$$

O observar-se que se a carga for equilibrada, para passar de Y para Δ basta multiplicar o valor da impedância por três e, para passar de Δ para Y dividir a impedância por 3.

Exemplo 6: Um transformador alimenta uma carga em Y (Z_2) e uma carga em Δ (Z_1) através de uma linha (Z_L). Pedem-se as tensões de linha no transformador de modo que a tensão de linha na carga seja igual a 220V. Considerar os seguintes dados:

$$Z_{L} = 0.50 + j1.00 \Omega$$

$$Z_1 = 2,10 + j2,50 \Omega$$
 sequência direta

$$Z_2 = 5,00 + j4,00 \Omega$$

4.0 Resumo de circuitos trifásicos equilibrados (carga) com transformação $\Delta\text{-}Y$

A tabela 3 nos apresenta um resumo das ligações Y e Δ com as relações fasoriais entre grandezas de fase e de linha, para um circuito trifásico simétrico e equilibrado com seqüência de fase direta e inversa, bem como a transformação de impedâncias de carga na ligação Δ para Y e na ligação de Y para Δ .

Tabela 3 – Carga trifásica simétrica e equilibrada

			1
S			
Е	G	A	A
Q	R	$\downarrow \qquad \qquad \downarrow_{L} \qquad \qquad \downarrow_{Z_{A}} \qquad \downarrow_{\dot{\mathcal{U}}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}_{c}} \qquad \qquad \downarrow_{\dot{\mathcal{U}_{c}}} \qquad \qquad $	$\dot{v}_{_{I}}$ $\dot{z}_{_{AB}}$ $\dot{z}_{_{CA}}$
U	A		\dot{v}_L \dot{z}_AB \dot{v}_f \dot{z}_CA
Ê	N	Z_B Z_C	$B \xrightarrow{\int J/J} \overline{\dot{z}_{BC}}$
N	D	В	C
C	E	C	
I	Z		
A	A		
DIR	I	$\dot{I}_L = \dot{I}_f$	$\dot{I}_L = \sqrt{3} \ \dot{I}_f \mid \underline{-30}$
	V	$\dot{V}_L = \sqrt{3} \ \dot{V}_f \mid \underline{30}$	$\dot{V_L} = \dot{V_F}$
INV	I	$\dot{I}_L = \dot{I}_f$	$\dot{I}_L = \sqrt{3} \dot{I}_f \mid \underline{30}$
	V	$\dot{V}_L = \sqrt{3} \ \dot{V}_f \mid \underline{-30}$	$\dot{V_L} = \dot{V_F}$
Tra	ns-	$\dot{Z}_A = \frac{\dot{Z}_{AB} \dot{Z}_{CA}}{\dot{Z}_{\Delta}}$	$\dot{Z}_{AB} = \frac{\dot{Z}_A \dot{Z}_B}{\dot{Z}_V}$
for	ma-		$\dot{Z}_{ ext{AB}}$ $\dot{Z}_{ ext{Y}}$
ç	ão	$\dot{Z}_{\Delta} = \dot{Z}_{AB} + \dot{Z}_{BC} + \dot{Z}_{CA}$	$\frac{1}{\dot{Z}_{Y}} = \frac{1}{\dot{Z}_{A}} + \frac{1}{\dot{Z}_{B}} + \frac{1}{\dot{Z}_{C}}$
d	le	$\dot{Z}_{\scriptscriptstyle B},\dot{Z}_{\scriptscriptstyle C}$ aná $\log os$	${\dot Z}_{BC},{\dot Z}_{CA}$ aná $\log os$
im	pe-		
dân	cias		
<u> </u>		ļ	

5.0 Potência em sistemas trifásicos

5.1 Expressão da potência

A potência aparente complexa monofásica é dada por:

$$\dot{S} = \dot{V} \dot{I}^*$$

onde

 \dot{I}^* se refere ao complexo conjugado de \dot{I} , isto é, se $\dot{I}=I$ $\underline{\theta_i}=I_{\rm Re}+j\,I_{\rm Im}$, então $\dot{I}^*=I$ $\underline{\theta_i}=I_{\rm Re}-j\,I_{\rm Im}$

$$S = P + jQ$$

Nos circuitos trifásicos, a potência aparente total é a soma das potências aparente individual das três fases, ou seja:

$$\dot{S}_{3\Phi} = \dot{V}_{fA} \dot{I}_{fA}^* + \dot{V}_{fB} \dot{I}_{fB}^* + \dot{V}_{fC} \dot{I}_{fC}^*$$

considerando sequência direta temos ainda que:

$$\begin{bmatrix} \dot{V}_{fA} \\ \dot{V}_{fB} \\ \dot{V}_{fC} \end{bmatrix} = \dot{V}_f \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} \qquad \begin{bmatrix} \dot{I}_{fA} \\ \dot{I}_{fB} \\ \dot{I}_{fC} \end{bmatrix} = \dot{I}_f \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

donde chega-se à:

$$\dot{S}_{3\Phi} = \dot{V}_f \dot{I}_f^* + \alpha^2 \dot{V}_f (\dot{I}_f \alpha^2)^* + \alpha \dot{V}_f (\dot{I}_f \alpha)^*$$

$$\dot{S}_{3\Phi} = \dot{V}_f \dot{I}_f^* + \alpha^3 \dot{V}_f \dot{I}_f^* + \alpha^3 \dot{V}_f \dot{I}_f^*$$

$$\dot{S}_{3\Phi} = 3 \dot{V}_f \dot{I}_f^*$$

Essa expressão nos dá a potência transmitida pelo trifásico em função de valores de fase, para uma carga equilibrada.

Em termos de potência ativa e reativa

$$S_{3\Phi} = P_{3\Phi} + j Q_{3\Phi}$$

Em valores de fase (módulo) temos que:

Carga conectada em Y $\rightarrow I_f = I_L \ e \ V_L = \sqrt{3} V_f$

$$S_{3\Phi} = \sqrt{3} V_L I_L$$
 \rightarrow Potência Aparente trifásica (VA)

$$P_{3\Phi} = \sqrt{3} \ V_L I_L \cos \varphi \rightarrow \text{Potência Ativa trifásica (W)}$$

$$Q_{3\Phi} = \sqrt{3} \ V_L \ I_L \ {\rm sen} \ \varphi \ \to {\rm Potência} \ {\rm Reativa} \ {\rm trifásica} \ ({\rm VAr})$$

Carga conectada em $\Delta \rightarrow I_L = \sqrt{3} I_f \ e \ V_L = V_f$

$$S_{3\Phi} = \sqrt{3} V_L I_L$$
 \rightarrow Potência Aparente trifásica (VA)

$$P_{3\Phi} = \sqrt{3} \ V_L I_L \cos \varphi \rightarrow \text{Potência Ativa trifásica (W)}$$

$$Q_{3\Phi} = \sqrt{3} \ V_L \ I_L \ {
m sen} \ \varphi \ o {
m Potência} \ {
m Reativa} \ {
m trifásica} \ ({
m VAr})$$

Em qualquer dos dois casos,

$$S_{3\Phi} = \sqrt{3} V_L I_L$$
 \rightarrow Potência Aparente trifásica (VA)

$$P_{3\Phi} = \sqrt{3} \ V_L \ I_L \cos \varphi \quad \rightarrow \text{Potência Ativa trifásica (W)}$$

$$Q_{3\Phi} = \sqrt{3} \ V_L \ I_L \ {
m sen} \ \varphi \ o {
m Potência} \ {
m Reativa} \ {
m trifásica} \ ({
m VAr})$$

Em módulo:

$$S_{3\phi} = \frac{3 V_L I_L}{\sqrt{3}} = \sqrt{3} V_L I_L = 3V_F I_F$$

a expressão nos dá o módulo sendo que a defasagem entre \dot{V}_F e \dot{I}_F poderá ser determinada através do fator de potência e da seqüência de fase.

5.1.1 Triângulo da potência

Considere os valores das potências em valores trifásicos

Figura 18 - Triângulo das potências em um sistema trifásico

5.2 Correção fator de potência

Instalações industriais apresentam uma gama muito grande de carga que por sua vez necessitam de grandes quantidades de potência. Cargas típicas industriais podem ser, por exemplo, conjunto de motores de indução, ou seja na maioria das vezes cargas com características indutivas. Muitas vezes, por imposições normativas deve se proceder à correção do fator de potência (fp).

Para se efetuar a correção do fp à técnica aqui apresentada será a mesma já utilizada para os sistemas monofásicos, com as ressalvas dos valores agora serem trifásicos.

Figura 19 - Ilustração da técnica para correção do fator de potência

O valor da potência reativa trifásica necessária para levar o fator de potência de ϕ para ϕ ' é calculada da seguinte forma.

$$Q_{bco3\Phi} = Q_{c3\Phi} - Q_{3\Phi}$$

O valor por fase do banco de capacitor (ligados em Y) para tal potência será:

$$c = \frac{Q_{c3\Phi}}{3\ 2\pi\ f\ V_f^2}\ (\mu F)$$

Exemplo 7: Um motor trifásico em Δ , com potência 5 HP, fator de potência 0,8 indutivo, rendimento de 0,85, tem tensão de linha $\dot{V}_{AB} = 220 \mid \frac{0^{\circ}}{-}$ V. Considerando sequência de fase direta, determine as correntes nos cabos de alimentação.

Prof. Malange