APPLICATION NO. 09/846.410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes

for CDMA

OIP ENVENTOR: Urbain A. von der Embse

DEC 0 4 2006

Currently amended CLAIMS

APPLICATION NO. 09/846.410

TITLE OF INVENTION: Multiple Data Rate Hybrid Walsh Codes

for CDMA

5

INVENTORS: Urbain A. von der Embse

CLAIMS

10

15

20

25

30

WHAT IS CLAIMED IS:

Claim 1. (cancelled)

Claim 2. (cancelled)

Claim 3. (cancelled)

Claim 4. (cancelled)

Claim **5**. (currently amended) A method for the implementation of design and implementation of fast encoders and fast decoders for Hybrid Walsh and generalized Hybrid hybrid Walsh complex orthogonal codes for CDMA, channelization codes for multiple data rate users over said method comprising the steps: a frequency band with properties

generating N Walsh codes W(c) with code index $c=0,1,2,\ldots,N-1$, each with N chips where N is a power of 2,

generating said N hybrid Walsh codes $\widetilde{W}(c)$ by re-ordering said

Walsh codes defined by equations

for c = 0,
$$\widetilde{W}(c) = W(0) + jW(0)$$

for c = 1,2,...,N/2-1, $\widetilde{W}(c) = W(2c) + jW(2c-1)$
for c = N/2, $\widetilde{W}(c) = W(N-1) + jW(N-1)$
for c = N/2+1,...,N-1, $\widetilde{W}(c) = W(2N-2c-1) + jW(2N-2c)$

wherein $j=\sqrt{-1}$,

wherein said hybrid Walsh codes are generated by reading code chip values from said Walsh code memory in a digital signal processor and writing to said hybrid Walsh memories using addresses specified by said re-orderings of said Walsh codes and, applying said hybrid Walsh codes in the encoder and in the decoder by replacing existing said Walsh real codes with said hybrid Walsh complex codes using the same code vector indexing. Hybrid Walsh inphase (real axis) codes and quadrature (imaginary axis) codes are defined by lexicographic reordering permutations of the Walsh code Hybrid Walsh codes have a 1-to-1 sequency-frequency 15 correspondence with the DFT codes and have a 1-to-1 even-cosine and odd-sine correspondences with the DFT codes Hybrid Walsh codes take values {1+j, -1+j, -1-j} or 20 equivalently take values {1, j, -1, -j} with a (-45) rotation of axes and a renormalization generalized Hybrid Walsh codes can be constructed for a wide range of code lengths by combining Hybrid Walsh with DFT (discrete Fourier transform), Hadamard and other orthogonal 25 codes, and quasi-orthogonal PN codes using tensor product, direct product, and functional combining fast encoding and fast decoding implementation algorithms 30 are defined algorithms are defined to map multiple data rate user data symbols onto the code input data symbol vector for fast encoding and the inverses of these algorithms are defined for

5

10

35

recovery of the data symbols with fast decoding

encoders perform complex multiply encoding of complex data

5 to replace the current Walsh real multiply encoding of inphase and quadrature data

decoders perform complex conjugate transpose multiply decoding of complex data to replace the current Walsh real multiply decoding of inphase and quadrature data

10

	Claim 6. (currently amended) A method for the
	implementation of design and implementation of encoders and
15	decoders for complex orthogonal CDMA and generalized hybrid Walsh
	codes for CDMA as described in claim 5, further comprising the
	<pre>steps:complex orthogonal CDMA channelization codes for multiple</pre>
	data rate users over a frequency band with properties
	using tensor products also called Kronecker products to construct
20	a second code,
	wherein an example 24 chip tensor product code is constructed
	from a 8 chip hybrid Walsh code and a 3 chip discrete
	Fourier transform DFT code,
	said 24 chip code is defined by a 24 row by 24 column code
25	matrix C_{24} wherein row vectors are code vectors and column
	elements are code chips,
	said 8 chip hybrid Walsh code is defined by a 8 row by 8
	column code matrix \widetilde{W}_8 ,
	said 3 chip DFT code is defined by a 3 row by 3 column code
30	matrix E ₃ ,
	said C_{24} is constructed by tensor product of said $\frac{\widetilde{W}_8}{-}$ with said E_3
٠	defined by equation
	$\underline{C_{24}} = \widetilde{W}_8 \underline{\otimes E}_3$

	defined by equation
	$C_{11}(u+1,n+1) = \widetilde{W}_8 (u_0+1,n_0+1)$ for $u=u_0$, $n=n_0$,
	$= E_3(u_1+1, n_1+1) \text{for } u=8+u_1, n=8+n_1,$
	= 0 otherwise,
5	wherein said encoder and said decoder for CDMA communications
	have memories assigned to said C_{11} , \widetilde{W}_8 , E_3 codes,
	said C_{11} codes are generated by reading code chip values from said
,	\widetilde{W}_8 memory and said E_3 memory and combined using said
	equations to yield said chip values for said C_{11} codes and
10	stored in said C_{11} memory,
	said C_{11} codes are read from memory and implemented in said
	encoder and said decoder,
	using functional combining to construct a second code,
	wherein an example 11 chip functional combined \hat{C}_{11} code is
15	constructed from said C_{11} codes by using codes to fill the
	two null subspaces of said C ₁₁ .
	wherein said \hat{C}_{11} codes are read from memory and implemented in
	Said encoder and said decoder and,
	using a combinations of tensor products, direct products, and
20	functional combining to construct said codes which are
	read from memory and implemented in said encoder and
	said decoder.
25	
	complex codes inphase (real axis) codes and quadrature
	(imaginary axis) codes are defined by reordering permutations of
	the real-Walsh codes
30	generalized complex codes can be constructed for a wide
	range of code lengths by combining the complex codes with DFT
	(digarate Fourier transform) Hybrid Walsh, Hadamard and other

orthogonal codes, and quasi-orthogonal PN codes using tensor product, direct product, and functional combining

	fast encoding and fast decoding implementation algorithms
5	are defined
	symbols onto the code input data symbol vector for fast encoding
	and the inverses of these algorithms are defined for recovery of
. 10	the data symbols with fast decoding
	encoders perform complex multiply encoding of complex data
	to replace the current Walsh real multiply encoding of inphase
	and quadrature data
15	
	decoders perform complex conjugate transpose multiply
	decoding of complex data to replace the current Walsh real
	multiply decoding of inphase and quadrature data
20	
	Claim 7. (currently amended) A method for implementation of
	Hybrid Walsh codes for CDMA, further comprising the steps:
	said encoder operates as a block encoder,
25	encoding blocks of received N data symbols with said N hybrid
	Walsh codes and summing to yield N chips for each block at
	the output chip rate 1/T chips per second,
	wherein said encoder accepts up to M users per block for N=2*M,
	said users have data rates from the menu $1/NT, 2/NT, \dots, 2/T$
30	respectively corresponding to 1,2,,N/2 said user
	data symbols over said block,
	user data symbols over said block are arranged in packets with
	each packet containing said user data symbols for said
	block,

	said encoder accepts packets from each user and writes them to
	memory "A" for each block,
	binary address index $d=d_0+2d_1+4d_2++(N/2)d_{M-1}=0,1,,N-1$ is
	used for addressing of said data symbols stored in "A"
5	wherein binary coefficients d_0, d_1, \dots, d_{M-1} take values
	0,1,
	said binary address index can be independently mapped onto said
	data symbol addresses of "A" to provide additional
	flexibility in assigning users to hybrid Walsh vectors,
10	said data symbol address is partitioned into M overlapping
	algebraic index fields d_{M-1} , $d_{M-2}d_{M-1}$, , $d_1d_2\cdots d_{M-2}d_{M-1}$,
	$\underline{d_0}\underline{d_1}\underline{d_2}\cdot\cdot\cdot\cdot\underline{d_{M-2}}\underline{d_{M-1}}$, with each field indexed over the allowable
	number $2,4,,N/2,N$ of said data rate users at symbol
	rates 1/2T,1/4T,,2/NT,1/NT respectively,
15	assign said users with like data symbol rates to the M groups
	$\underline{u_0, u_1, \dots, u_{M-2}, u_{M-1}}$ of users with the respective symbol
	rates 1/2T,1/4T,,2/NT,1/NT,
	assign said data symbol indices in said index field d_{M-1} to said
	users in said group u_0 , assign said data symbol indices in
20	said index ield $d_{M-2}d_{M-1}$ to said users in said group u_1 , et
	al and finally assign said data symbol indices in said
	index field $d_0d_1d_2\cdots d_{M-2}d_{M-1}$ to said users in said group u_{M-1} ,
	use said mapping and assignments to specify said write addresses
	of said user data symbols onto said input code vector
25	stored in said memory "A" and,
	said input vector in said "A" is encoded in said encoder and
	processed for transmission.

Claim 8. (currently amended) Wherein said hybrid Walsh codes in claim 5 have a fast encoding implementation algorithm, comprising the steps:

	said fast implementation algorithm in encoder uses said memory
	"A" for input and to support pass 1, memories "B","C" to
	support passes 2, , M and re-ordering pass, and memory
	"D" for output,
5	write input data symbol vector $Z(d_0, d_1, \ldots, d_{M-2}, d_{M-1})$ to said
	"A" wherein said $(d_0, d_1, \ldots, d_{M-2}, d_{M-1})$ is said binary
	addressing index after said mapping of said data vector
	onto said "A",
	pass 1 reads from said "A", performs pass 1, and writes the
10	output to said "B",
	pass 1 multiplies said Z by the kernel $[(-1)^dr_0n_{M-1}+j(-1)^di_0$
	\underline{n}_{M-1}] and sums over $dr_0, di_0=0,1$ to yield the partially
	encoded symbol set $Z(n_{M-1}, \underline{d_1, \dots, d_{M-2}, \underline{d_{M-1}})$ where $\underline{dr_0} = \underline{cr(d_0)}$
	and $cr(d)$ is the real axis Walsh code for d, $di_0=ci(d_0)$
15	where ci(d) is the imaginary axis Walsh code for d, and n_{M-1}
	is a binary code chip coefficient in said code chip
	indexing $n = n_0 + 2n_1 + \dots + (N/4) n_{M-2} + (N/2) n_{M-1}$
	write said output symbol set $Z(n_{M-1}, d_1, \ldots, d_{M-2}, d_{M-1})$ to said
	"B" wherein said address index n_{M-1} replaces said index d_0 ,
20	pass 2 reads from said "B", performs pass 2, and writes the
	output to said "C",
	pass 3 reads from said "C", performs pass 3, and writes the
	output to said "B",
	subsequent passes alternate in read/write from/to said "B" and
25	write/read to/from said "C",
	implement passes m=2,3,,M-1 of said fast encoding algorithm
	by multiplying
	$\underline{Z(n_{M-1}, n_{M-2} \dots, n_{M-m+1}, d_{m-1}, \dots, d_{M-2}, d_{M-1})}$ by the kernel
30	over dr_{m-1} , di_{m-1} =0,1 to yield the partially encoded symbol
	$\underline{\text{set Z}(n_{M-1}, n_{M-1}, n_{M-2} \dots, n_{M-m}, d_{m}, \dots, d_{M-2}, d_{M-1})},$
	implement pass M of said fast encoding algorithm by
	by multiplying $Z(n_{M-1}, n_{M-2}, \dots, n_2, n_1, d_{M-1})$ by the kernel
35	$dr_{M-1}, di_{M-1}=0,1$ to yield the encoded symbol set

	$Z(n_{M-1}, n_{M-1}, n_{M-2}, \dots, n_2, n_1, n_0),$
reor	der said encoded symbol set in memory in the ordered output
	format $Z(n_0, n_1, \ldots, n_{M-2}, n_{M-1})$ and store in said "D" and,
said	encoder in said transmitter reads said encoded symbol vector
	in said "D" and overlays said vector with long and short PN
	codes to generate N chips of said hybrid Walsh encoded
	data symbol vector for subsequent processing and
	transmission.
	Claim 9. (currently amended) Wherein said hybrid Walsh
code	s in claim 5 have a fast decoding implementation algorithm,
	rising the steps:
said	decoder in said receiver strips off said PN codes from
	said received N chip encoded data symbol vector and outputs
	said received hybrid Walsh encoded chip vector $Z(n_0, n_1,$
	$., n_{M-2}, n_{M-1})$ for implementation of said fast decoding
	algorithm,
said	l fast implementation algorithm in said decoder uses memory
··· ·	"E" for input and to support pass 1, memories "F", "G" to
	support passes 2,3,, M and re-ordering pass, and
	memory "H" for output,
writ	te said $Z(n_0, n_1, \ldots, n_{M-2}, n_{M-1})$ to said "E" wherein
	$(n_0, n_1, \ldots, n_{M-2}, n_{M-1})$ is the binary address,
pass	s 1 reads from said "E", performs pass 1, and writes the
	output to said "F",
<u>imp</u>]	ement pass 1 of said fast decoding algorithm by multiplying
	said $Z(n_0, n_1,, n_{M-2}, n_{M-1})$ by the kernel $[(-1)^n_0 dr_{M-1} + j(-1)^n_0 dr_{M-1}]$
	$1)^n_0\underline{di}_{M-1}$ and summing over $n_0=0,1$ to yield the partially
	decoded symbol set
	$Z(d_{M-1}, n_1, \ldots, n_{M-2}, n_{M-1}),$
writ	te said output symbol set $Z(d_{M-1}, n_1, \dots, n_{M-2}, n_{M-1})$ to said
	"F" wherein address index d _{M-1} replaces index n ₀ ,
	s 2 reads from said "F", performs pass 2, and writes the
	output to said "G"

	pass 3 reads from said "G", performs pass 3, and writes the
	output to said "F",
	subsequent passes alternate in read/write from/to said "F" and
	write/read to/from said "G",
5	implement passes m=2,3,,M-1 of said fast decoding algorithm
	by multiplying $Z(d_{M-1}, d_{M-2}, \dots, d_{M-m+1}, n_{m-1}, \dots, n_{M-2}, n_{M-1})$
	by the kernel
	over $n_{m-1}=0,1$ to yield the partially decoded symbol set
10	$Z(d_{M-1}, d_{M-1}, d_{M-2}, \dots, d_{M-m}, n_{m}, \dots, n_{M-2}, n_{M-1}),$
	implement pass M of said fast decoding algorithm by
	by multiplying $Z(d_{M-1}, d_{M-2}, \dots, d_2, d_1, n_{M-1})$ by the kernel
	$\underline{n}_{\mathtt{M-1}} = \mathtt{0,1}$ and rescaling by dividing by 2N to yield the
15	decoded symbol set
	$Z(d_{M-1}, d_{M-1}, d_{M-2}, \dots, d_2, d_1, d_0),$
	reorder said decoded symbol set in the ordered output format
	$Z(d_0, d_1, \ldots, d_{M-2}, d_{M-1})$ and store in said "H" and,
	said decoder in said receiver reads said decoded symbol vector
20	in "D" , re-orders the read data symbols to remove said
	mapping onto said "A", and performs subsequent receive
	signal processing to recover the information from the
	data symbols