

2018-2019 Ikasturtea Irakaslea: Jose Manuel Gonzalez Teknologia Elektronikoko Saila 5l28 – Bilboko Ingeniaritza Eskola (II Eraikina)

josemanuel.gonzalezp@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Elementu motak
- 2. Erresistentziak
- 3. Kondentsadoreak
- 4. Harilak
- 5. Sorgailuak
- 6. Beste elementu batzuk

1. ELEMENTU MOTAK

Linealak edo ez linealak

Aktiboak edo pasiboak

- Aktiboak edo eraginkorrak: Zirkuituko beste elementuei energia edo potentzia ematen dietenak, horretarako beste energia-mota bat gastatuz
- Elementu pasiboak edo geldoak: energia edo potentzia hartzen dutenak, energia hori guztiz beharrezkoa dutelarik funtzionatzeko

2. ERRESISTENTZIAK

o Portaera:
$$v = R \cdot i$$

Ohm-en legea

o Ezaugarri grafikoa:

o Ikurra:

$$\frac{i}{+}$$
 $\sqrt{\frac{R}{v}}$

$$\frac{i}{v}$$
 $\frac{Z}{v}$

- o Unitatea: Ohm, Ω
- o Potentzia:

$$p = R \cdot i^2 = \frac{v^2}{R}$$
 Joule efektua

2. ERRESISTENTZIAK

o Kasu bereziak:

• Zirkuitu irekia: $R = \infty$

• Zirkuitulaburra: R = 0

3. KONDENTSADOREAK

o Portaera:
$$q = C \cdot v$$

$$i(t) = C \cdot \frac{dv(t)}{dt}$$

o Ezaugarri grafikoa:

o Ikurra:

$$\begin{array}{c|c}
C \\
\hline
 & + \\
 & v
\end{array}$$

o Unitatea: farad, f

3. KONDENTSADOREAK

o Bi portaera desberdin:

Karga-prozesua → energia hartu

Deskarga-prozesua → energia eman

3. KONDENTSADOREAK

- Portaera korronte zuzena eta egoera egonkorra
 - V konstantea → I = 0

o Potentzia:

$$p(t) = v(t) \cdot i(t) = v(t) \cdot \left[C \cdot \frac{dv(t)}{dt} \right] = C \cdot v(t) \cdot \frac{dv(t)}{dt}$$

P=0 W

4. HARILAK

o Portaera:
$$\Phi = L \cdot i$$

$$v(t) = L(t) \cdot \frac{di(t)}{dt}$$

o Ezaugarri grafikoa:

o Ikurra:

$$\frac{i}{+}$$
 $\frac{L}{v}$

o Unitatea: henry, H

4. HARILAK

o Bi portaera desberdin:

Karga-prozesua → energia hartu

Deskarga-prozesua → energia eman

4. HARILAK

- Portaera korronte zuzena eta egoera egonkorra
 - V konstantea \rightarrow I = 0

o Potentzia:

$$p(t) = v(t) \cdot i(t) = \left[L \cdot \frac{di(t)}{dt} \right] \cdot i(t) = i(t) \cdot \frac{di(t)}{dt}$$

P=0 W

o Motak:

- Tentsio sorgailua
- Korronte sorgailua

Portaera sailkapena

- Independenteak
- Menpekoak edo kontrolatuak

tentsio-sorgailua

korronte-sorgailua

sorgailu independenteak:

$$V \left(\begin{array}{c} A \\ 0 \\ + \\ - \end{array} \right) I = ?$$

$$I \bigoplus_{\substack{O \\ V = ? \\ R}}^{A} V = ?$$

sorgailu menpekoak:

$$V = f()$$

$$I = f()$$

$$V = ?$$

Sorgailu independente errealen zirkuitu-ereduak

• Tentsio-sorgailua

Korronte-sorgailua

Tentsio sorgailu independenteak

- Ezaugarri kurba eta [°]_B
 portaera ekuazioa:
 - Ideala:

Erreala:

Korronte sorgailu independenteak

- Ezaugarri kurba eta portaera ekuazioa:
 - Ideala:

Erreala:

- Sorgailu menpekoen portaera ekuazioa
 - Tentsio-sorgailua
 - Tentsioz kontrolatuta

$$V = f(V') = k \cdot V'$$

Korrontez kontrolatua

$$V = f(I') = k \cdot I'$$

- Korronte-sorgailua
 - Tentsioz kontrolatuta

$$I = f(V') = k \cdot V'$$

Korrontez kontrolatua

$$I = f(I') = k \cdot I'$$

6. Beste elementu batzuk

o Etengailu ideala

• Ikurra:

- Posizioak:
 - Irekita

Itxita

6. Beste elementu batzuk

o n:1 transformadorea

$$v_1 = n \cdot v_2$$

$$\dot{i}_1 = \frac{\dot{i}_2}{n}$$