WHIR (blueprint)

 ${\bf Least Authority}$

April 29, 2025

Definition 3.1. An error-correcting code of length n over an alphabet Σ is a subset $\mathcal{C} \subseteq \Sigma^n$. The code \mathcal{C} is a linear code if $\Sigma = \mathbb{F}$ is a field and \mathcal{C} is a subspace of \mathbb{F}^n .

Definition 1 (3.4). We define the **equality polynomial** eq as follows:

$$\operatorname{eq}((X_0,\dots,X_{m-1}),(Y_0,\dots,Y_{m-1})) = \prod_{i=0}^{m-1} \left(X_i \cdot Y_i + (1-X_i) \cdot (1-Y_i)\right).$$

Note that, for every $\hat{f} \in \mathbb{F}^{<2^{[X_0,\dots,X_{m-1}]}}$ and $z \in \mathbb{F}^m$,

$$\hat{f}(z) = \sum_{b \in \{0,1\}^m} \hat{f}(b) \cdot \operatorname{eq}(z,b).$$