

第一章 信号与系统

- § 1.1 绪言
- § 1.2 信号的描述和分类
- § 1.3 信号的基本运算
- §1.4 阶跃函数和冲激函数
- § 1.5 系统的特性与分类
- § 1. 6 系统的描述和分析方法

§ 1.2 信号的描述和分类

信号的描述

信号的分类

几种典型确定性信号

一、信号的描述

- 信号是信息的一种物理体现。它一般是随时间或位置变化的物理量。
- 信号按物理属性分:电信号和非电信号。它们可以相互转换。本课程讨论电信号一简称"信号"。
- 电信号的基本形式: 随时间变化的电压或电流。
- 描述信号的常用方法(1)表示为时间的函数(2)信号的图形表示——波形
 - "信号"与"函数"两词常相互通用。

- 一信号的描述
- 二信号的分类
- 三 几种典型确定性信号

二、信号的分类

- 按实际用途划分:电视信号,雷达信号,控制信号,通信信号,广播信号……
- 按所具有的时间特性划分:
 确定信号和随机信号; 连续周期信号和非周期信号; 能量一维信号与多维信号; 因是实信号与复信号:

连续信号和离散信号; 能量信号与功率信号; 因果信号与反因果信号; 左边信号与右边信号;

••••

1. 确定信号和随机信号

- 确定性信号
 可用确定的时间函数表示的信号。
 对于指定的某一时刻t,有确定的函数值f(t)。
- 随机信号 取值具有不确定性的信号。

如: 电子系统中的起伏热噪声、雷电干扰信号。

• 伪随机信号

貌似随机而遵循严格规律产生的信号(可重复产生)。

2. 连续(时间)信号和离散(时间)信号

● 连续时间信号: 在连续的时间范围内($-\infty < t < \infty$) 有定义的信号,简称连续信号。

"连续"指函数的定义域——时间是连续的(但可含间断点),至于值域可连续也可不连续。

● 离散时间信号:

▶定义域——时间是离散的

在某些规定的离散瞬间给出函数值,其余时间无定义。如右图的f(t)仅在一些离散时刻 $t_k(k=0,\pm 1,\pm 2,\cdots)$ 才有定义,其余时间无定义。

> 离散点间隔

 $T_{k}=t_{k+1}$ - t_{k} 可以相等也可不等。通常取等间隔T,离散信号可表示为f(kT),简写为f(k),这种等间隔的离散信号也常称为序列。其中k称为序号。

离散信号的图形表示:

表达式表示:

$$\begin{cases}
1, & k = -1 \\
2, & k = 0 \\
-1.5, & k = 1 \\
2, & k = 2 \\
0, & k = 3 \\
1, & k = 4 \\
0, & 其他k
\end{cases}$$

通常将对应某序号m的序列值称为第m个样点的"样值"

模拟信号、离散时间信号、数字信号的区别:

•模拟信号:时间和幅值均为连续

•离散时间信号:时间离散,幅值连续

•数字信号:时间和幅值均为离散

备注:连续信号与模拟信号常通用。

- 1. 关于连续时间信号和离散时间信号,下列说 法正确的是()
 - A 若定义域是连续的,就是连续时间信号。
 - B 若值域是连续的,就是连续时间信号。
 - 定 定义域和值域都是连续的,才是连续时间信号。
 - D 若值域离散,则就是离散时间信号。

3. 周期信号和非周期信号

定义在 $(-\infty, \infty)$ 区间,每隔一定时间T(或整数N),按相同规律重复变化的信号。

连续周期信号f(t)满足:

$$f(t) = f(t + mT), m = 0, \pm 1, \pm 2, \cdots$$

离散周期信号f(k)满足:

$$f(k) = f(k + mN), m = 0, \pm 1, \pm 2, \cdots$$

满足上述关系的最小T(或整数N)称为该信号的周期。

不具有周期性的信号称为非周期信号。

连续周期信号示例

例: 判断下列信号是否为周期信号, 若是, 确定其周期。

- (1) $f_1(t) = \sin 2t + \cos 3t$
- (2) $f_2(t) = \cos 2t + \sin \pi t$

解题思路:

两个周期信号x(t), y(t)的周期分别为 T_1 和 T_2 , 若其周期之比 T_1/T_2 为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为 T_1 和 T_2 的最小公倍数。

连续周期信号示例

例: 判断下列信号是否为周期信号, 若是, 确定其周期。

- (1) $f_1(t) = \sin 2t + \cos 3t$
- $(2) f_2(t) = \cos 2t + \sin \pi t$

解: (1) $\sin 2t$ 是周期信号,其角频率和周期分别为 $\omega_1 = 2 \operatorname{rad/s}$, $T_1 = 2\pi / \omega_1 = \pi s$ $\cos 3t$ 是周期信号,其角频率和周期分别为 $\omega_2 = 3 \operatorname{rad/s}$, $T_2 = 2\pi / \omega_2 = (2\pi/3) s$ 由于 $T_1/T_2 = 3/2$ 为有理数,故 $f_1(t)$ 为周期信号,其周期为 T_1 和 T_2 的最小公倍数 2π 。

(2) ?

离散周期信号示例1

例: 判断正弦序列 $f(k) = \sin(\beta k)$ 是否为周期信号,若

是,确定其周期。

回忆: 离散周期信号f(k)满足:

 $f(k) = f(k + mN), m = 0, \pm 1, \pm 2, \cdots$

满足上述关系的最小正整数N称为该信号的周期。

解: $f(k) = \sin(\beta k) = \sin(\beta k + 2m\pi)$, $m = 0, \pm 1, \pm 2, \cdots$ = $\sin\{\beta[k + m(2\pi/\beta)]\}$

式中 B 称为数字角频率,单位: rad

 $2\pi/\beta$ 与N的关系?

$f(k) = \sin \left\{\beta \left[k + m(2\pi/\beta)\right]\right\} \stackrel{?}{=} \sin \left[\beta \left(k + mN\right)\right]$

当 $2\pi/\beta$ 为整数时,正弦序列具有周期 $N = 2\pi/\beta$ 。 当 $2\pi/\beta$ 为有理数时,正弦序列仍具有周期性,但其周期为 $N = M(2\pi/\beta)$,M取使N为整数的最小整数。 当 $2\pi/\beta$ 为无理数时,正弦序列为非周期序列。

判断下列序列是否为周期信号: $f(k) = \sin(2k)$

- A 是
- B 否

判断下列序列是否为周期信号: $f(k) = \sin(3\pi k/4)$

- 是,周期为8/3
- 是,周期为8

离散周期信号示例2

例: 判断下列序列是否为周期信号,若是,确定其周期。 $f(k) = \sin(3\pi k/4) + \cos(0.5\pi k)$

解: $\sin(3\pi k/4)$ 和 $\cos(0.5\pi k)$ 的数字角频率分别为 $\beta_1 = 3\pi/4 \text{ rad}$, $\beta_2 = 0.5\pi \text{ rad}$ 由于 $2\pi/\beta_1 = 8/3$, $2\pi/\beta_2 = 4$ 为有理数,故它们的周期分别为 $N_1 = 8$, $N_2 = 4$, 故: f(k) 为周期序列,其周期为 N_1 和 N_2 的最小公倍数8。

结论

- ①单个连续正弦信号一定是周期信号;
- ②单个正弦序列不一定是周期序列;
- ③两(多)个连续周期信号之和不一定是周期信号;
- ④两(多)个周期序列之和一定是周期序列;

6. 下列说法正确的是()

- A 连续正弦信号一定是周期信号。
- 正弦序列不一定是周期序列。
- 两连续周期信号之和不一定是周期信号。
- p 两周期序列之和一定是周期序列。

4 (A) 连续信号之能量信号与功率信号

将信号f(t)施加于 1Ω 电阻上,它所消耗的瞬时功率为 $|f(t)|^2$,在区间 $(-\infty,\infty)$ 的能量和平均功率定义为

(1) 信号的能量E

$$E \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} |f(t)|^2 dt$$

(2) 信号的功率P

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |f(t)|^2 dt$$

若信号f(t)的能量有界,即 $E < \infty$,则称其为能量有限信号,简称能量信号。此时 P = 0

若信号f(t)的功率有界,即 $P<\infty$,则称其为功率有限信号,简称功率信号。此时 $E=\infty$

4 (B)离散信号之能量信号与功率信号

(1) 信号的能量E

$$E = \sum_{k=-\infty}^{\infty} |f(k)|^2$$

(2) 信号的功率P

$$P = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{k=-N}^{N} |f(k)|^{2}$$

若满足 $E = \sum_{k=-\infty}^{\infty} |f(k)|^2 < \infty$ 的离散信号,称为能量信号。

若满足 $P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} |f(k)|^2 < \infty$ 的离散信号,称为功率信号。

一般规律:

- (1) 一般周期信号为功率信号。
- (2) 时限信号(仅在有限时间区间不为零的非周期信号) 为能量信号。时间无限,但信号随着时间增长而衰 减的非周期信号,也是能量信号。
- (3) 有一些非周期信号,也是非能量信号。 如 $\varepsilon(t)$ 是功率信号;
- (4) 某些信号既非功率信号,又非能量信号 $t\varepsilon(t)$ 、 e^t 为非功率非能量信号; $\delta(t)$ 是无定义的非功率非能量信号。

5. 一维信号和多维信号

一维信号:

只由一个自变量描述的信号,如语音信号。

多维信号:

由多个自变量描述的信号,如图像信号。

还有其他分类,如:

- 实信号与复信号
- 左边信号与右边信号
- 因果信号和反因果信号

KAKIDI

- 一信号的描述
- 二信号的分类
- 三 几种典型确定性信号

三、几种典型确定性信号

- 1. 指数信号
- 2. 正弦信号
- 3. 复指数信号(表达具有普遍意义)
- 4. 取样信号(Sampling Signal)

本课程讨论确定性信号。 先连续,后离散,先周期,后非周期。

1. 指数信号 $f(t) = Ke^{\alpha t}$

 $\alpha = 0$ 直流(常数);

 $\alpha > 0$ 指数增长;

 $\alpha < 0$ 指数衰减;

重要特征: 指数函数对时间的微分和积分仍然是指数形式。

2. 正弦信号 $f(t) = K \sin(\omega t + \theta)$

振幅: K

周期: $T = \frac{2\pi}{\omega} = \frac{1}{f}$ 频率: f

角频率: ω = 2πf

初相: θ

衰减正弦信号:
$$f(t) = \begin{cases} K e^{-\alpha t} \sin (\omega t) & t \ge 0 \\ 0 & t < 0 \end{cases}$$
 $\alpha > 0$

3. 复指数信号 $f(t) = Ke^{st}$ $(-\infty < t < \infty)$

$$f(t) = Ke^{st} = Ke^{\sigma t} \cos (\omega t) + jKe^{\sigma t} \sin (\omega t)$$

 $s : 复频率$
 $s = \sigma + j\omega (\sigma, \omega 均为实常数)$
 $\sigma 量纲为1/s, \omega 量纲为 rad/s$

$$\begin{cases} \sigma = 0, \omega = 0 \text{ 直流} \\ \sigma > 0, \omega = 0 \text{ 升指数信号} \end{cases} \begin{cases} \sigma = 0, \omega \neq 0 \text{ 等幅} \\ \sigma > 0, \omega \neq 0 \text{ 増幅} \end{cases}$$
$$\sigma < 0, \omega = 0 \text{ 衰减指数信号} \end{cases}$$

$$\sigma < 0, \omega \neq 0 \text{ 衰减}$$

$$\begin{cases} \sigma = 0, \omega \neq 0 & \text{等幅} \\ \sigma > 0, \omega \neq 0 & \text{增幅} \\ \sigma < 0, \omega \neq 0 & 衰减 \end{cases}$$

4. 取样信号 $Sa(t) = \frac{\sin t}{t}$

(1)
$$\operatorname{Sa}(-t) = \operatorname{Sa}(t)$$
, 偶函数

(3)
$$Sa(t) = 0$$
, $t = \pm n\pi$, $n = 1, 2, 3, \dots$

(4)
$$\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}, \quad \int_{-\infty}^{\infty} \frac{\sin t}{t} dt = \pi$$

(5)
$$\lim_{t \to \pm \infty} \operatorname{Sa}(t) = 0 \qquad (6) \quad \operatorname{sinc}(t) = \sin\left(\pi t\right) / (\pi t)$$

§ 1.2 信号的描述和分类

信号的描述

信号的分类

几种典型确定性信号