(D. 由题:数3) [an] 存在极限,记 lim an= A [A为常数). 有极限 | im an = 2+ | im an 会 A = 2+ A 会 A -2A -1=0. 解得 A= 2±2NZ = HNZ,由 a>O及保号性: A=HNZ. to lim an = stxz $(110) < H\bar{0}$ OK (0>1). $\Rightarrow \lim_{n \to \infty} \frac{1}{n} \int_{-\infty}^{\infty} \left[0 \operatorname{cd}_{(n)} \right] = 0. \quad \Rightarrow \lim_{n \to \infty} \left[\int_{-\infty}^{\infty} \frac{1}{n} \operatorname{cd}_{(n)} \right] = 0.$ け算極限: an= nn 至は kg. ラ 会等版は B) an= nn [1+2+3+…+ [n+1] + nn]

(3). $Q_{n} = \frac{1}{\eta_{n}} \cdot \left[1 + 2^{2} + 3^{3} + \cdots + \eta_{1} \right]^{n+1} + \eta_{1}^{n}$ $\Rightarrow \lim_{n \to \infty} Q_{n} = \lim_{n \to \infty} \left[\frac{1}{\eta_{n}} + \left(\frac{2}{\eta_{n}} \right)^{2} \cdot \left(\frac{1}{\eta_{n}} \right)^$

设fix)=1-Cus(I-Cust),问以月角值, fix)与dxb在xx的时为学价充充小量。

$$\frac{1}{100} \frac{f(x)}{dx^{2}} = \lim_{x \to \infty} \frac{1 - \cos(1 + \cos \frac{1}{x})}{dx^{2}} = \lim_{x \to \infty} \frac{\frac{1}{2}(1 - \cos \frac{1}{x})^{2}}{dx^{2}}$$

$$=\lim_{x\to\infty}\frac{1}{2}\cdot\frac{1}$$

け算成果
$$1=\lim_{N\to\infty} \left(\frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n}\right)$$

(5). $\int_{-\infty}^{\infty} \lim_{N\to\infty} \left(\frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n}\right) = e^{\frac{1}{2}}$

(5). $\int_{-\infty}^{\infty} \lim_{N\to\infty} \left(\frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n}\right) = e^{\frac{1}{2}}$

(6) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(7) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(8) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(9) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(9) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(10) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(11) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(12) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(13) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(14) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(15) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(16) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(17) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(17) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^{\frac{1}{2}}+\cdots+e^{\frac{1}{2}}}{n} = e^{\frac{1}{2}}$

(18) $\int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}}+e^$