Applied Containerization for Machine Learning in HPC Workshop

A Hands-on Guide to Running ML Workloads in HPC Environments

Parmanand Sinha, Computational Scientist (GIS+HPC) University of Chicago Research Computing Center

Workshop Overview

- **Duration**: 2 hours (1 hour presentation, 1 hour hands-on)
- Level: Intermediate
- Prerequisites:
 - Basic programming knowledge
 - Linux CLI familiarity
 - Active RCC/cluster account
- Repository: GitHub

1. Introduction to Containerization in HPC

Why Containers for ML in HPC?

Dependency Management:

- Package complex ML software stacks with all dependencies.
- Resolve version conflicts easily.

Portability:

- Run the same environment across different HPC systems, local machines, or cloud platforms.
- "Build once, run anywhere."

Why Containers for ML in HPC? (Cont.)

Reproducibility:

- Ensure consistent results by capturing the exact software environment.
- Crucial for research and collaboration.

• Performance:

- Native-like performance with minimal overhead.
- Direct hardware access (e.g., GPUs, high-speed interconnects).

Container Basics: What is a Container?

- An isolated, encapsulated user-space instance.
- Runs on a shared OS kernel but has its own:
 - Filesystem
 - Processes
 - Network interfaces (can be configured)
- Lightweight compared to Virtual Machines (VMs) as they don't require a full guest OS.
- Container vs VM Image source: apptainer.org

Container Basics: Key Components

Container Images:

- Read-only templates used to create containers.
- Contain application code, libraries, dependencies, and metadata.
- Examples: Docker Hub images, SIF files (Apptainer).

• Runtime Environments:

- Software that runs containers (e.g., Apptainer, Docker, Charliecloud).
- Manages container lifecycle, isolation, and resource allocation.

Containerization Workflow in HPC

```
flowchart TD
   A[Pull Container Image] --> B[Store SIF in $SCRATCH/$USER/]
   B --> C[Submit SLURM Job]
   C --> D[SLURM Allocates Compute Node]
   D --> E[Bind Data/Script Directories]
   E --> F[Run Container with Apptainer]
   F --> G[ML Training/Inference]
```

Container Basics: Key Components (Cont.)

Mount Points for Data (Bind Mounts):

- Mechanism to make host directories/files accessible inside the container.
- Essential for accessing datasets, scripts, and output directories.

Resource Allocation:

- Containers share host resources (CPU, memory, GPUs).
- HPC schedulers (like SLURM) manage resource allocation for containerized jobs.

class: lead

2. Apptainer (formerly Singularity) Introduction

Apptainer & Singularity: A Quick Note

- Apptainer is the direct successor to Singularity.
- You might see singularity used in older documentation or as the module name on some HPC systems.
- Commands are largely interchangeable (e.g., singularity pull vs. apptainer pull).
- This workshop uses modern apptainer commands.

Hands-on with Apptainer (Introduction)

(This section introduces Apptainer. The actual hands-on will follow in the next hour.)

Apptainer: Getting Started

```
# Load Apptainer module (on HPC systems)
module load apptainer

# Pull a PyTorch container image from Docker Hub
apptainer pull docker://pytorch/pytorch:latest
# This creates a .sif file (e.g., pytorch_latest.sif)
```

- SIF (Singularity Image Format): Apptainer's default, optimized image format.
- **Storage Tip**: For large images, consider pulling/storing them in your scratch directory.
 - On Midway3: \$SCRATCH/\$USER/sif_files/ (where \$SCRATCH is
 /scratch/midway3).

Apptainer: Basic Commands

Interactive Shell:

```
# Start an interactive shell inside the container
# --nv enables NVIDIA GPU access
apptainer shell --nv pytorch_latest.sif
```

• Run a Python Script:

```
# Execute a command (e.g., a Python script) inside the container
apptainer exec --nv pytorch_latest.sif python my_script.py
```

Apptainer: Basic Commands (Cont.)

Bind Data Directories:

```
# Run a container and mount /data on host to /data in container
apptainer run --nv --bind /path/on/host:/path/in/container pytorch_latest.sif
# Example: Mount current working directory ($PWD) to /mnt inside container
apptainer run --nv --bind $PWD:/mnt pytorch_latest.sif
```

- o apptainer run executes the default runscript defined in the image (if any).
- Binding \$PWD (current working directory) is very useful for accessing your scripts and local data within the container.

Apptainer: Key Features

- GPU Support: --nv flag for seamless NVIDIA GPU access.
- **Data Binding**: Mount host directories inside the container (--bind or -B).
 - Crucial for accessing datasets and saving results.
- **Environment Variables**: Pass configuration through the container boundary.
 - Apptainer typically inherits host environment; can be controlled.
- MPI Support: Run distributed workloads across nodes.
 - Often requires MPI compatibility between host and container.

class: lead

3. Charliecloud Overview

Charliecloud vs. Apptainer

Feature	Apptainer (formerly Singularity)	Charliecloud
Security Model	set-UID (optional), rootless execution	Fully unprivileged (user namespaces)
Image Format	SIF (optimized, single file)	Directory trees, SquashFS
Build Process	.def files, build from Docker Hub	Direct Dockerfile support
Best Use Case	Complex ML workflows, ease of use	Security-critical environments, Docker

Charliecloud: Key Benefits

Minimal Attack Surface:

- Fully unprivileged operation using user namespaces.
- Reduces security risks on shared HPC systems.

Docker Compatibility:

- Direct use of Dockerfiles for building images (ch-convert).
- Easier transition for users familiar with Docker.

• Lightweight & Simple:

- Simpler architecture and deployment compared to some other runtimes.
- Focuses on core containerization features.

class: lead

4. Practical ML Container Deployment (Examples)

TensorFlow Example with Apptainer

```
# 1. Pull TensorFlow container (GPU version)
apptainer pull docker://tensorflow/tensorflow:latest-gpu

# 2. Run training script
# Assumes train.py and data are accessible via bind mounts
apptainer exec --nv tensorflow_latest-gpu.sif \
    python /path/to/your/train.py --data /path/to/data
```

- --nv: Enables NVIDIA GPU access.
- Bind mount your script directory and dataset directory.

PyTorch Example with Apptainer (Multi-GPU)

```
# Pull PyTorch container (if not already done)
# apptainer pull docker://pytorch/pytorch:latest

# Multi-GPU training using torchrun (formerly torch.distributed.launch)
apptainer exec --nv pytorch_latest.sif \
    torchrun --nproc_per_node=4 /path/to/your/distributed_train.py
```

- Assumes distributed_train.py is set up for PyTorch DDP.
- --nproc_per_node should match available GPUs.

Distributed Training Topology (Multi-Node/Multi-GPU)

```
flowchart TB
    subgraph Node1 [Compute Node 1]
        GPU1[GPU 0]
        GPU2[GPU 1]
        GPU3[GPU 2]
        GPU4[GPU 3]
    end
    subgraph Node2 [Compute Node 2]
        GPU5[GPU 0]
        GPU6[GPU 1]
        GPU7[GPU 2]
        GPU8[GPU 3]
    end
    UserScript([distributed_train.py])
    UserScript -- Launches via torchrun/srun --> GPU1
    UserScript -- Launches via torchrun/srun --> GPU5
    GPU1 <--> GPU2 <--> GPU3 <--> GPU4
    GPU5 <--> GPU6 <--> GPU7 <--> GPU8
    GPU1 <--> GPU5
    GPU2 <--> GPU6
    GPU3 <--> GPU7
    GPU4 <--> GPU8
```

class: lead

5. SLURM Integration (Brief Overview)

SLURM Job Lifecycle

```
flowchart TD
   A[User Submits sbatch/srun] --> B[SLURM Scheduler]
   B --> C[Resources Allocated (Nodes/GPUs)]
   C --> D[Job Starts on Compute Node(s)]
   D --> E[Container Launched (Apptainer)]
   E --> F[ML Script Executes]
   F --> G[Job Output Written]
   G --> H[Job Completes]
```

SLURM: Single-Node Job Example

```
#SBATCH -- job-name=ml-training
#SBATCH --gres=gpu:1 # Request 1 GPU
#SBATCH --partition=gpu  # Specify GPU partition
#SBATCH --cpus-per-task=4 # Request 4 CPUs
#SBATCH --mem=16G
                             # Request 16GB RAM
# Load Apptainer module
module load apptainer
# Define paths (replace with your actual paths)
CONTAINER_IMAGE=/path/to/pytorch_latest.sif
SCRIPT_DIR=/path/to/your/scripts
DATA_DIR=/path/to/your/data
OUTPUT_DIR=/path/to/your/output
# Ensure output directory exists
mkdir -p $0UTPUT_DIR
# Run the containerized job
apptainer run --nv \
  --bind $SCRIPT_DIR:/scripts \
  --bind $DATA_DIR:/data \
  --bind $OUTPUT_DIR:/output \
  $CONTAINER_IMAGE python /scripts/train.py --data_dir /data --output_dir /output
```

SLURM: Multi-Node Distributed Training Example

```
#SBATCH -- job-name=dist-ml-train
#SBATCH --nodes=2
                                # Request 2 nodes
#SBATCH --ntasks-per-node=4
                                # 4 tasks (processes) per node
#SBATCH --gres=gpu:4
                                # 4 GPUs per node (total 8 GPUs)
#SBATCH --cpus-per-task=2
                                # 2 CPUs per task
#SBATCH --partition=gpu-multi
                                # Example partition for multi-node GPU jobs
module load apptainer
CONTAINER_IMAGE=/path/to/your/ml_container.sif
# Script should handle distributed setup (e.g., using torchrun environment variables)
# srun will launch 'ntasks-per-node' copies of this command on each node
srun apptainer run --nv \
  --bind /path/to/data:/data \
  torchrun --nnodes=$SLURM_NNODES \
           --nproc_per_node=$SLURM_NTASKS_PER_NODE \
           --rdzv_id=$SLURM_JOB_ID \
           --rdzv backend=c10d \
           --rdzv_endpoint=$SLURM_STEP_NODELIST:29500 \
           /path/to/your/distributed_train.py
```

class: lead

6. Best Practices

Best Practices: Container Management

Version Control & Tagging:

- Tag containers with specific versions (e.g., myimage:1.0.0, myimage:latest-cuda11.8).
- Store definition files (.def , Dockerfiles) in version control (Git).

• Data Management:

- Use bind mounts for large datasets to avoid including them in images.
- Keep images small and focused on software environment.

Resource Allocation:

Match container resource needs to SLURM (or other scheduler)

Best Practices: Performance Optimization

• **GPU Access**: Always use ——nv (Apptainer) or equivalent for GPU workloads.

• I/O Optimization:

- Bind fast storage for temporary files. On Midway3, compute nodes often have a high-throughput SSD directory at \$TEMP (e.g., /scratch/local/\$USER/) ideal for this.
- For frequently accessed small files or datasets, consider staging them to such temporary storage.
- Be mindful of I/O patterns within the container.

• MPI Configuration:

Best Practices: Security Considerations

Unprivileged Execution:

- Run containers without root access whenever possible.
- Apptainer runs as user by default. Charliecloud is designed for unprivileged execution.

Data Protection:

- Use appropriate bind mounts; be specific about what host paths are exposed.
- Avoid overly broad mounts (e.g., binding /).

• Resource Limits:

• Rely on the HPC scheduler (SLURM) to enforce resource limits

class: lead

7. Additional Resources

Resources: Documentation

- Apptainer Official Documentation:
 - Apptainer Documentation
- **Charliecloud User Guide**:
- Charliecloud User Guide
- **Workshop Repository**:
- Workshop Repository

(Contains this presentation, examples, and hands-on materials)

Resources: Example Repositories & Further Learning

- ML Framework Containers (Official Hubs):
 - Docker Hub:
 - Docker Hub

(e.g., `pytorch/pytorch`, `tensorflow/tensorflow`) - NVIDIA NGC: NVIDIA NGC

Docker Hub: hub.docker.com (e.g.,
 `pytorch/pytorch`, `tensorflow/tensorflow`) - NVIDIA NGC:
 ngc.nvidia.com - **SLURM Integration

Key Takeaway

- " Containerization enables reproducible, portable, and efficient ML workflows in HPC environments.
- Choose between Apptainer and Charliecloud based on your specific needs for:
 - Security model
 - Ease of use
 - Image format preferences
 - Integration requirements with existing Docker workflows

99

Q&A and Thank You!

Next: Hands-on Session!

References & Further Reading

- Apptainer Documentation
- Charliecloud User Guide
- Singularity/Apptainer on RCC
- Docker Documentation
- NVIDIA NGC Containers
- PyTorch Containers
- TensorFlow Containers
- SLURM Documentation
- HPC Best Practices
- Possarch Computing Contar IIChicago