

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 September 2002 (19.09.2002)

PCT

(10) International Publication Number
WO 02/072260 A2

(51) International Patent Classification⁷: **B01J 31/22**

(21) International Application Number: **PCT/GB02/00989**

(22) International Filing Date: 12 March 2002 (12.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

0106001.1 12 March 2001 (12.03.2001) GB
0106000.3 12 March 2001 (12.03.2001) GB

(71) Applicant (*for all designated States except US*): **THE QUEEN'S UNIVERSITY OF BELFAST [GB/GB]**; University Road, Belfast BT7 1NN (GB).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **EARLE, Martyn, J.** [GB/GB]; 40A Inishowen Drive, Finaghy, Belfast BT10 OEU (GB). **MCAULEY, Barry, Joseph** [GB/GB]; 100 Station Road, Greenisland, Co Antrim BT38 8PU (GB). **RAMANI, Alwar** [IN/GB]; 71 Sandhurst Drive, Stranmills, Belfast BT9 5AZ (GB). **SEDDEN, Kenneth, Richard** [GB/GB]; "Tara", 145 Milliste Road, Donaghadee, Co Down BT21 0LA (GB). **THOMSON, Jillian, M** [GB/GB]; 6 Ascot Crescent, Lisburn, Co Antrim BT28 3DA (GB).

(74) Agents: **RITTER, Stephen, David et al.**; Mathys & Squire, 100 Gray's Inn Road, London WC1X 8AL (GB).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2
WO 02/072260

(54) Title: METAL BIS-TRIFLIMIDE COMPOUNDS AND METHODS FOR SYNTHESIS OF METAL BIS-TRIFLIMIDE COMPOUNDS

(57) Abstract: A metal bis-triflimide compound having the formula: $[M_x]^{n+}[(N(SO_2CH_3)_2)_{(nx-yz)}]^{(nx-yz)-} [L_y]^{z-}$ where M is a metal selected from the metals in groups 5 to 10, 12 and 14 to 16 and Cu, Au, Ca, Sr, Ba, Ra, Y, La, Ac, Hf, Rf, Ga, In, Tl, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, and the actinides; L is a negative or neutral ligand; n is 2, 3, 4, 5, 6, 7 or 8; x is greater than or equal to 1; y is 0, 1, 2, 3, 4, 5, 6, 7 or 8; and z is 0, 1, 2, 3 or 4.

1 **METAL BIS-TRIFLIMIDE COMPOUNDS AND METHODS FOR**
2 **SYNTHESIS OF METAL BIS-TRIFLIMIDE COMPOUNDS**

3

4 The present invention relates to metal bis-
5 triflimide compounds and methods for the synthesis
6 of metal bis-triflimide compounds.

7

8 A few metal bistriflimide compounds are known. WO
9 99/40124 discloses titanium and zirconium
10 bistriflimides and the production of these by
11 reacting $\text{AgN}(\text{SO}_2\text{CF}_3)_2$ with $\text{R}^1\text{R}^2\text{MCl}_2$ where M is Ti or
12 Zr; R^1 is indenyl, cyclopentadienyl or
13 pentamethylcyclopentadienyl and R^2 is independently
14 indenyl, cyclopentadienyl,
15 pentamethylcyclopentadienyl, methyl, methoxy,
16 hydroxy, 2,4,6-trimethylphenoxy, trifluoroethoxy,
17 hexafluoroisopropoxy or chloro. Aluminium

1 bistriflimide and Ytterbium bistriflimide are known
2 (Synlett, February 1996, p171). Scandium
3 bistriflimide is also known (Synlett, September
4 1996, page 839). Magnesium and lithium
5 bistriflimide are known (Tetrahedron letters 1997,
6 p2645).

7

8 The catalysis of chemical reactions is of major
9 importance in chemistry. The compounds of certain
10 metals are known to act as Lewis acids (electron
11 pair acceptors), which interact with the reactants
12 (and products) of a reaction, producing a reaction
13 rate enhancement and/or selectivity enhancement.
14 Also salts of metals which can exist in variable
15 oxidation states (such as transition metals) are
16 known to catalyse chemical reactions. Examples of
17 these reactions are Friedel-Crafts, oxidation,
18 reduction, Diels-Alder, isomerisation, coupling,
19 addition and elimination reactions. Catalysts come
20 in two general categories; homogeneous where the
21 catalyst is in the same phase as the reactants and /
22 or products, and heterogeneous, where the catalyst
23 is in a separate phase from the reactants and/or
24 products. Homogeneous catalysts are characterised by

1 properties such as high reactivity and turnover, but
2 difficult separation from the products of a
3 reaction. Heterogeneous catalysts are characterised
4 by properties such as lower reactivity and lower
5 turnover, but relatively straightforward separation
6 from the products of a reaction. There is a need
7 for new catalysts having high reactivity and high
8 turnover, that can easily be separated from reaction
9 products.

10

11 The present invention provides a metal bistriflimide
12 compound having the formula:

14

15 where M is a metal selected from the metals in
16 groups 5 to 10, 12 and 14 to 16 of the periodic
17 table and Cu, Au, Ca, Sr, Ba, Ra, Y, La, Ac, Hf, Rf,
18 Ga, In, Tl, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
19 Er, Tm, Lu and the actinides;

20 L is a negative or neutral ligand;

21 n is 2,3,4,5,6,7 or 8 ;

22 x is greater than or equal to 1

23 y is 0,1,2,3,4,5,6,7 or 8; and

24 z is 0, 1,2,3 or 4.

1 By metal *bistriflimide* is also meant metal *bis-*
2 *trifluoromethanesulfonimide*. M may represent more
3 than one type of metal ion. M is preferably
4 selected from groups 7, 8, 9, 10, 12 and 14 of the
5 periodic table. By group 8 is meant the group
6 containing Fe, Ru, Os, Hs; by group 9 is meant the
7 group containing Co, Rh, Ir, Mt,; etc. The cation is
8 preferably in a +2, +3 or +4 oxidation state but may
9 also be in a +1, +5, +6, +7 or +8 oxidation state.
10 Preferably M is selected from Mn, Fe, Co, Ni, In, Zn
11 and Pb. More preferably M is selected from Mn(II),
12 Fe(III), Co(II), Ni(II), In(III). Examples of
13 compounds according to the present invention are
14 calcium *bis-triflimide*, strontium *bis-triflimide*,
15 barium *bis-triflimide*, gallium *bis-triflimide*,
16 indium *bis-triflimide*, scandium *bis-triflimide*,
17 yttrium *bis-triflimide*, lanthanum *bis-triflimide*,
18 cerium *bis-triflimide*, chromium *bis-triflimide*,
19 manganese *bis-triflimide*, iron *bis-triflimide*,
20 cobalt *bis-triflimide*, nickel *bis-triflimide*, copper
21 *bis-triflimide*, zinc *bis-triflimide*, cadmium *bis-*
22 *triflimide*, tin *bis-triflimide*, lead *bis-triflimide*,
23 and bismuth *bis-triflimide*.

1 L may be selected from oxos (such as VO^{2+}),
2 phosphines (such as triphenylphosphine), water,
3 halides or ketones. The ligand may originate from
4 a solvent, reagent or by-product in the reaction
5 mixture for making the catalyst or the reaction
6 mixture in which the ligand is used.

7

8 The compounds of the present invention have not been
9 produced before. These compounds have been found to
10 be particularly effective catalysts for reactions
11 that are conventionally catalysed by Lewis acids.
12 They are suitable for many Lewis acid catalysed or
13 Lewis acid mediated chemical transformations. They
14 possess advantages over Lewis acids such as
15 aluminium(III) chloride in that they do not form
16 excessively strong complexes with the reactants or
17 products of a chemical transformation. They are
18 particularly suitable for use in Friedel crafts
19 reactions such as the acylation or alklation of
20 aromatic compounds. They may also be used for the
21 sulfonylation of aromatic compounds. In Friedel-
22 Crafts acylation reactions the "catalyst" is usually
23 a stoichiometric reagent. However, catalyst loading
24 can now be lower; as low as 1 mol % metal bis-

1 triflimide can give rise to quantitative yields in
2 Friedel-Crafts acylation reactions. The compounds
3 of the present invention will catalyse chemical
4 reactions in concentrations within the range
5 0.0000001 to 1000 mol %, preferably within the range
6 of 0.1 to 20 mol% and more preferably within the
7 range of 0.5 to 5 mol %. This reduces catalyst
8 waste. As many of the metal bis-triflimide
9 compounds possess metals that can exist in variable
10 oxidation states, this makes them suitable for
11 oxidation and reduction chemical transformations.
12 Other chemical transformations that can be achieved
13 with metal bis-triflimide compounds include,
14 isomerisation reactions, coupling reactions, de-
15 coupling, condensation (including the aldol and
16 Claisen condensations), polymerisation,
17 oligomerisation, dimerisation, addition,
18 elimination, addition/elimination, hydration,
19 dehydration, hydrogenation, dehydrogenation,
20 halogenation, sulfonation and nitration.
21
22 The metal bis-triflimide compounds of the present
23 invention may be soluble or partially soluble or
24 insoluble in the reactants or products. In such a

1 case they can act as both solvent and catalyst.

2 They may be soluble, insoluble or partially soluble

3 in a molecular solvent or solvents including

4 supercritical solvents, or may be dissolved or

5 suspended in an ionic liquid (molten salt that is in

6 a liquid state at the reaction temperature and

7 usually (but not essentially) molten at or near room

8 temperature, i.e., 20 °C). In all these cases the

9 metal bis-triflimide compound may act as a catalyst

10 or reagent that effects chemical transformation.

11 When the compounds of the present invention are

12 soluble or partially soluble in the reactants, the

13 reaction can proceed in the absence of a solvent.

14 Alternatively, the compounds may be dissolved or

15 suspended in an ionic liquid and the reaction can

16 proceed in an alternative medium to that provided by

17 conventional solvents such as dichloromethane.

18 Therefore the compounds of the present invention

19 provide the advantage that they can be used in

20 solvent-free conditions or in the presence of ionic

21 liquids thus obviating the need for the use of

22 explosive solvents such as nitromethane and toxic

23 solvents such as dichloromethane. Furthermore, when

24 used reactions in solvent-free conditions or in the

1 presence of ionic liquids, the metal bis-triflimides
2 of the present invention are easily recycled.

3

4 In particular, the X-ray crystallographic structure
5 of a new metal bis-triflimide salt, $\text{Zn}(\text{N}(\text{SO}_2\text{CF}_3)_2)_2$
6 has been investigated and it is thought to give rise
7 to its excellent catalytic properties. The structure
8 of metal bis-triflimide compounds is thought to be
9 similar to that of zinc bis-triflimide, the X-ray
10 crystallographic structure of which is shown in
11 figures 5 to 7.

12

13 As can be seen from the structure of zinc(II) bis-
14 triflimide, it is made of two bis-triflimide groups
15 coordinating to the metal through the oxygen atoms
16 of the bis-triflimide ion (and not the nitrogen
17 atom). The two remaining octahedral coordinating
18 sites on the metal atom, are filled with oxygen
19 atoms from adjacent $\text{Zn}(\text{NTf}_2)_2$ groups. As some of the
20 metal bis-triflimides compounds are volatile, it is
21 believed that the coordination from adjacent metal
22 bis-triflimide groups may be fairly weak.

23

1 The compounds of the present invention are volatile
2 and are therefore suitable for use in a process of
3 vacuum deposition of metals or metal compounds on
4 solid surfaces. This may be achieved by sublimation
5 of the metal compound onto the solid surface and ,
6 if desired, removal of the non-metallic part of the
7 compound. The compounds of the present invention
8 are volatile, particularly at temperatures below
9 1000°C, more particularly at temperatures under 400
10 °C, under vacuum or at atmospheric pressure. Table 1
11 gives the boiling/sublimation points for metal
12 bistriflimide compounds (dec. means decomposes)

13 Table 1

Metal bis-triflimide	Bp / °C at 1 mmHg
Mg (NTf ₂) ₂	300
Ca (NTf ₂) ₂	400 (dec.)
Ni (NTf ₂) ₂	280
Co (NTf ₂) ₂	300 (dec.)
Fe (NTf ₂) ₂	280
Ni (NTf ₂) ₂	280
Cu (NTf ₂) ₂	180 (dec.)
Zn (NTf ₂) ₂	260

Cd(NTf ₂) ₂	350 (dec.)
Yb(NTf ₂) ₃	270

1

2 This vacuum deposition process has applications in
3 the microelectronic and semiconductor industries.
4 The vacuum deposition process is suitable for any
5 metal bistriflimide compound which decomposes before
6 it boils.

7

8 The present invention also provides a process for
9 the production of metal bistriflimide compounds
10 which process comprises reacting
11 (a) hydrogen bistriflimide with a metal;
12 (b) hydrogen bistriflimide with a metal hydroxide;
13 (c) hydrogen bistriflimide with a metal sulfide; or
14 (d) hydrogen bistriflimide with a metal carbide.

15

16 This process is suitable for producing both the
17 metal bistriflimide compounds of the present
18 invention and already known metal bistriflimide
19 compounds. The above process is therefore
20 applicable to metal bistriflimide compounds where M
21 is a metal selected from the metals in groups 1 to

1 16 of the periodic table and the lanthanides and the
2 actinides.

3

4 Preferably the above process involves the
5 interaction of a metal or a metal compound with bis-
6 triflimide (bis-trifluoromethanesulfonimide or
7 (HN(SO₂CF₃)₂). Preferably the metal is a transition
8 metal (d block or f block) or selected from the
9 metals of groups 12 to 16. Preferably the metal is
10 selected from Sn(IV), Fe(III), In(III), Hf(IV),
11 Ti(IV) and W(VI).

12

13 The process can be carried out in a solvent such as
14 water, alcohol, ester or a molecular supercritical
15 solvent, e.g. carbon dioxide, or ionic solvent. The
16 reaction may be carried out at room temperature or
17 at an elevated temperature. If a solvent is used,
18 the metal bis-triflimide compound may also be made
19 by the interaction of hydrogen bis-triflimide and a
20 metal compound in the absence of a solvent. The
21 metal bis-triflimide compounds are separated from
22 the solvent by evaporation of the solvent, usually
23 by heating (to drive off water or another solvent),
24 preferably under vacuum. Further purification may

1 be achieved by vacuum distillation or vacuum
2 sublimation of the metal bis-triflimide compound.
3 Purification can also be achieved by some other
4 physical or chemical process, for example,
5 crystallisation.

6

7 The metal bis-triflimide compounds of the present
8 invention can be generated and used *in situ* for the
9 catalysis of chemical reactions or to bring about
10 chemical transformations. This involves the
11 addition of a metal compound (such as a metal
12 halide, such as chloride, bromide, iodide or
13 fluoride) to a source of the bis-triflimide ion
14 (such as a bis-triflimide ionic liquid). Preferably
15 the metal compound is a metal chloride. These *in*
16 *situ* metal triflimide compounds have similar or
17 greater catalytic activity to isolated metal
18 triflimide compounds. The present invention
19 therefore provides a process for the production of a
20 metal bistriflimide catalyst comprising adding a
21 metal or metal compound to a source of a
22 bistriflimide ion such as a bistriflimide ionic
23 liquid. An ionic liquid is a molten salt or mixture
24 of salts that is in the liquid state at the

1 temperature of the reaction. The ionic liquid
2 consists of two components, which are a positively
3 charged cation and a negatively charged anion.
4 Preferably the cation is an organic cation and the
5 anion is an organic or inorganic anion. That cation
6 for the process is preferably a 1-alkylpyridinium
7 (such as 1-hexylpyridinium) or 1,3-
8 dialkylimidazolium cation such as 1-butyl-3-
9 methylimidazolium [bmim] or 1-ethyl-3-
10 methylimidazolium [emim]. Other cations for this
11 process are other alkyl- or poly-alkylpyridinium,
12 alkyl or poly-alkylimidazolium, alkyl or poly-
13 alkylpyrazolium, alkyl or poly-alkyl ammonium, alkyl
14 or poly-alkyl phosphonium, other ammonium,
15 phosphonium cations, alkylated diazabicyclo-[5,4,0]-
16 undec-7-ene and related cations, or any other cation
17 that gives rise to compounds termed ionic liquids.
18 The anion for the process is preferably one that is
19 stable to chemical alteration during the reaction
20 and imparts desirable physical characteristics to
21 the ionic liquid. Some suitable anions for the
22 ionic liquid are bis-trifluoromethanesulfonimide,
23 bis-pentafluoroethanesulfonimide,
24 hexafluorophosphate(V), tetrafluoroborate(III),

1 trifluoromethanesulfonate, cyanamide, fluoro or
2 perfluoroalkylsulfonate, halide, sulfate,
3 hydrogensulfate, alkylsulfate, alkylsulfonate,
4 arylsulfate, arylsulfonate, nitrate, carboxylate,
5 phosphate, hydrogenphosphate, dihydrogenphosphate,
6 alkylphosphate, alkylphosphonate, phosphonate,
7 nitrite, arsenate, antimonate, haloaluminate,
8 aluminate, borate, silicate, haloindate(III),
9 gallate, alkylborate, halogallate or any other anion
10 that gives rise to an ionic liquid. Preferably the
11 ionic liquid or the catalyst or the ionic liquid and
12 catalyst combination is insoluble in low- or non-
13 polar organic solvents such as diethyl ether or
14 hexane.

15

16 An example of the preformed bis-triflimide catalysis
17 and *in situ* formed catalysis of the acylation of
18 toluene with benzoyl chloride is shown below:

15

5 In this reaction, iron(III) chloride will not
 6 catalyse the reaction (very low yields are obtained)
 7 since the product (a ketone) forms a strong complex
 8 with the iron(III) chloride and renders it almost
 9 inactive. The addition of iron(III) chloride to a
 10 bis-triflimide source (hydrogen bis-triflimide
 11 {HN(SO₂CF₃)₂} or a bis-triflimide salt or ionic
 12 liquid results in the formation of an iron (III)
 13 triflimide complex (or iron(III) chloro bis-
 14 triflimide compounds or complexes). These iron
 15 (III) triflimide complex (or iron(III) chloro bis-
 16 triflimide compounds or complexes) can then be used
 17 as catalysts for chemical reactions, with acylation
 18 being an example. The rates of the reactions given

1 in the above reaction scheme are similar and give
2 high yields (99 %).

3

4 This *in situ* catalyst method can be used for the
5 synthesis and use of metal triflimide compounds
6 allows metals that are not usually associated with
7 Friedel-Crafts chemistry to be used as catalysts.
8 Also difficult to isolate bis-triflimide compounds
9 can be made and used as catalysts.

10

11 In many cases, the *in situ* method of forming metal
12 bis-triflimide compounds is preferred over the
13 isolation of the metal triflimide compound. For
14 example, tin(IV) bis-triflimide is a difficult
15 compound to isolate. If tin(IV) chloride is
16 dissolved in a triflimide ionic liquid (for example
17 [bmim] [NTf₂]), the resulting mixture catalyses
18 Friedel-Crafts acylation reactions. This is shown
19 in Figure 4, where the yield versus time, of five *in*
20 *situ* metal triflimide compounds that catalyse the
21 reaction of benzoyl chloride with toluene is shown
22 (Examples 45-50).

23

1 The present invention is illustrated in the
2 following examples. Examples 1 to 26 are examples
3 of the reactivity of the new metal bistriflimide
4 compounds according to the present invention.
5 Examples 27 to 50 are methods of preparing metal
6 bistriflimide catalysts according to the present
7 invention.

8

9 Figure 1 shows the variation of yield with time in
10 the metal bis-triflimide catalysed reaction of
11 benzoyl chloride with toluene.

12

13 Figure 2 shows the variation of yield with time in
14 the 1% FeCl_3 and 1% Fe(III) bistriflimide catalysed
15 reaction of benzoyl chloride with toluene in
16 [bmim] $[\text{NTf}_2]$.

17

18 Figure 3 shows the variation of yield with time in
19 the synthesis of phenyl-4-chlorophenyl sulfone.

20

21 Figure 4 shows the variation of yield with time for
22 five reaction catalysed by 1 mol% metal chlorides
23 dissolved in [bmim] $[\text{NTf}_2]$ for the reaction of

1 toluene with benzoyl chloride to give methyl
2 benzophenone at 110°C.

3

4 Figures 5, 6 and 7 show the structure of Zn(NTf₂)₂

5

6 **Example 1:** The reaction of toluene with benzoyl
7 chloride with cobalt(II) bis-triflimide catalyst.

8

9 Cobalt(II) bis-triflimide (0.13 g, 0.21 mmol) was
10 added to toluene (3.0g, 32.5 mmol) and benzoyl
11 chloride (3.0 g, 21.3 mmol) in a 25 cm³ round
12 bottomed flask equipped with a magnetic stirrer and
13 reflux condenser. The mixture was heated under
14 reflux for 3 hours (judged to be at least 99 %
15 complete by gas chromatographic analysis), and
16 cooled to room temperature. Petroleum ether (15
17 cm³, bp = 40-60°C) was added and the catalyst
18 precipitated out of solution. The solution of the
19 product was decanted and the flask washed with a
20 further 15 cm³ of petroleum ether. The solvent was
21 evaporated from the combined petroleum ether
22 extracts and the product purified by vacuum
23 distillation (bp = 160-170 °C @ 1 mmHg) in a
24 Kugelrohr apparatus. This gave methylbenzophenone

1 (4.05 g, 97 % isolated yield). The catalyst can be
2 reused immediately by adding toluene and benzoyl
3 chloride to the flask (containing the precipitate)
4 and repeating the reaction.

5

6 **Example 2:** The reaction of toluene with benzoyl
7 chloride with cobalt(II) bis-triflimide catalyst in
8 [emim] [NTf₂].

9

10 Cobalt(II) bis-triflimide (0.13 g, 0.21 mmol) was
11 added to 1-ethyl-3-methylimidazolium bis-
12 trifluoromethanesulfonimide ([emim] [NTf₂]) (2.0 g)
13 in a 25 cm³ round-bottomed flask equipped with a
14 magnetic stirrer and reflux condenser, and the
15 mixture stirred until the catalyst dissolved.
16 Toluene (3.0g, 32.5 mmol) and benzoyl chloride (3.0
17 g, 21.3 mmol) were added. The mixture was heated
18 under reflux for 0.5 hours (judged to be at least 99
19 % complete by gas chromatographic analysis), and
20 cooled to room temperature. Petroleum ether (15
21 cm³, bp = 40-60°C) was added and the catalyst and
22 ionic liquid formed a separate phase. The solution
23 of the product was decanted and the flask
24 (containing the ionic liquid and catalyst) washed

1 three times with 15 cm³ of petroleum ether. The
2 solvent was evaporated from the combined petroleum
3 ether extracts and the product purified by vacuum
4 distillation (bp = 160-170 °C @ 1 mmHg) in a
5 Kugelrohr apparatus. This gave methylbenzophenone
6 (4.02 g, 96 %). The catalyst and ionic liquid
7 combination can be reused immediately by adding
8 toluene and benzoyl chloride to the flask and
9 repeating the reaction, without loss of activity.

10

11 Examples 1 and 2 show that the acylation of toluene
12 with benzoyl chloride can be carried out with a
13 cobalt(II) bis-triflimide catalyst and that this can
14 be performed with or without an ionic liquid
15 present. However, with the ionic liquid, faster
16 reaction rates are obtained and the catalyst can be
17 recycled more easily. Without the ionic liquid, the
18 products of this reaction are obtained in
19 quantitative yield using 1 mol % catalyst after 3
20 hours heating under reflux (example 1). The
21 reaction time is reduced to 30 minutes when the
22 reaction is carried out in the ionic liquid
23 [emim][NTf₂] ([emim] = 1-ethyl-3-methylimidazolium)
24 (example 2).

1 **Example 3:** The reaction of toluene with benzoyl
2 chloride with nickel(II) bis-triflimide catalyst in
3 [emim] [NTf₂].

4

5 Nickel(II) bis-triflimide (0.13 g, 0.21 mmol) was
6 added to 1-ethyl-3-methylimidazolium bis-
7 trifluoromethanesulfonimide ([emim] [NTf₂]) (2.0 g)
8 25 cm³ in a round-bottomed flask equipped with a
9 magnetic stirrer and reflux condenser, and the
10 mixture stirred until the catalyst dissolved.
11 Toluene (3.0g, 32.5 mmol) and benzoyl chloride (3.0
12 g, 21.3 mmol) were added. The mixture was heated
13 under reflux for 1 hour (judged to be at least 99 %
14 complete by gas chromatographic analysis), and
15 cooled to room temperature. Petroleum ether (15
16 cm³, bp = 40-60°C) was added and the catalyst and
17 ionic liquid formed a separate phase. The solution
18 of the product was decanted and the flask
19 (containing the ionic liquid and catalyst) washed
20 three times with 15 cm³ of petroleum ether. The
21 solvent was evaporated from the combined petroleum
22 ether extracts and the product purified by vacuum
23 distillation (bp = 160-170 °C @ 1 mmHg) in a
24 Kugelrohr apparatus. This gave methylbenzophenone

1 (4.04 g, 97 % isolated yield). The catalyst and
2 ionic liquid combination can be reused immediately
3 by adding toluene and benzoyl chloride to the flask
4 and repeating the reaction, without loss of
5 activity.

6

7 The results from Examples 2 and 3 are shown in Table
8 1.

9

10 **Table 1,** The gas chromatographic (GC) yields of
11 benzophenones derived from the reaction of benzoyl
12 chloride with toluene with 1% metal bis-triflimide
13 catalyst in [emim] [NTf₂].

Compound	Yield	Time / h
Co(NTf ₂) ₂	99	0.5
Ni(NTf ₂) ₂	99	1

14

15 **Example 4**

16 Anisole (0.30 cm³, 2.8 mmol), acetic anhydride (0.50
17 cm³, 5.0 mmol), M(NTf₂)_n catalyst (0.1375 mmol (M =
18 Al, n=3; M = Zn, n = 2; M = Yb, n = 3; M = Y, n =
19 3)) were dissolved in the ionic liquid [bmim][PF₆].
20 These four reactions were heated at 30 °C for 24
21 hours. The course of the reaction was determined by

1 HPLC analysis of the reaction mixture and the yields
2 are shown in Table 2.

3

4 **Table 2,** The variation of GCyield with time for the
5 acetylation of anisole with acetic anhydride with
6 metal bis-triflimide catalysts in [bmim] [PF₆].

Catalyst	% Yield (35 min)	% Yield (115 min)	% Yield (245 min)	% Yield (1375 min)
Al(NTf ₂) ₃	45	55	61	63
Zn(NTf ₂) ₃	23	36	44	61
Yb(NTf ₂) ₃	49	61	64	69
Y(NTf ₂) ₃	55	62		71

7

8 **Example 5**

9 Anisole (0.50 cm³, 4.6 mmol), benzoic anhydride
10 (1.15 g, 5.06 mmol), M(NTf₂)_n catalyst (0. 23 mmol (M
11 = Al, n=3, 0.20 g; M = Ce, n = 4, 0.29 g)) were
12 dissolved in the ionic liquid [bmim] [NTf₂] (2.0 g).
13 These two reactions were heated at 60 °C for 24
14 hours. The course of the reaction was determined by
15 gas chromatographic analysis of the reaction mixture
16 and the yields are shown in Table 3.

17

1 **Table 3,** The variation of GC yield with time for
2 the benzylation of anisole with benzoic anhydride
3 with metal bis-triflimide catalysts in [bmim][PF₆].

Catalyst	% Yield (60 min)	% Yield (120 min)	% Yield (180 min)	% Yield (1350 min)
Al(NTf ₂) ₃	44	62	67	68
Ce(NTf ₂) ₄	32	49	56	84

4

5 **Example 6**

6 Fluorobenzene (5.77 g, 60 mmol), 4-fluorobenzoyl
7 chloride (4.75 g, 30 mmol), ZnCl₂ (1.36 g, 10 mmol)
8 and [emim][NTf₂] were placed in an autoclave and
9 heated with stirring for 48 hours at 160 °C. The
10 reactor was cooled and the pressure (HCl gas)
11 released. Gas chromatographic analysis showed that
12 a 99 % conversion to a mixture of 2,4'-
13 difluorobenzophenone, 3,4'-difluorobenzophenone,
14 4,4'-difluorobenzophenone in 17 : 8 : 75 ratio
15 respectively. The difluorobenzophenones were
16 isolated by solvent extraction with petroleum ether
17 (bp = 40 - 60 °C), followed by evaporation of the
18 solvent. The ionic liquid / zinc chloride catalyst
19 system could be used in further reactions, with
20 similar activity. This result shows that the
21 classically unreactive aromatic compound

1 fluorobenzene can be acylated with 4-fluorobenzoyl
2 chloride to give isomers of 2-, 3-, or 4-4'-
3 difluorobenzophenone in [emim] [NTf₂] using an *in*
4 *situ* zinc catalyst. This catalyst was generated by
5 dissolving zinc(II) chloride in the [emim] [NTf₂]
6 ionic liquid. The reaction gave a 95 % yield (17 :
7 8 : 75 *o*-, *m*-, *p*- isomer ratio).

8

9 **Example 7**

10 Benzoic acid (0.31 g, 2.5 mmol), *m*-xylene (0.53 g,
11 5.0 mmol), [bmim] [NTf₂] (0.50 g) and M(NTf₂)₂ (M = Co
12 (0.14 g, 0.25 mmol), or Zn (0.15 g, 0.25 mmol) were
13 placed in flasks equipped with stirrers and
14 condensers. The contents of the flask were heated
15 under reflux (*ca* 140 – 150 °C) for 2 days, then
16 cooled to room temperature. The products were
17 analysed by gas chromatographic analysis and found
18 to give 93 and 87 % conversions (for Co and Zn bis-
19 triflimide reactions respectively) to 2,4-
20 dimethylbenzophenone and, it is believed to be, 2,6-
21 dimethylbenzophenone (11 : 1 isomer ratio in both
22 cases). The results show that zinc and cobalt bis-
23 triflimide have been found to catalyse the
24 benzylation of *m*-xylene with benzoic acid. The

1 reaction is slower than the corresponding reaction
2 with benzoyl chloride. The catalyst was recycled
3 and the reaction was repeated. The results of the
4 repeat experiment are shown in Table 4.

5

6 **Table 4,** The yields of benzophenones derived from the
7 reaction of benzoic acid with *m*-xylene with 10%
8 recycled metal bis-triflimide catalyst in
9 [bmim] [NTf₂] at 140 °C for 48 hours.

Compound	% Yield	2,4- to 2,6- ratio
Zn(NTf ₂) ₂	40	11 : 1
Co(NTf ₂) ₂	82	11 : 1

10

11 These are remarkable results given the low
12 reactivity of benzoic acid. It is to be noted that
13 this reaction produces water as a byproduct and as
14 such it is a very environmentally friendly reaction.
15 Furthermore, it utilises a non-corrosive starting
16 material (benzoic acid) and therefore is a safer
17 reaction to perform than the corresponding reaction
18 with benzoyl chloride. It can be concluded that
19 this is superior way to produce
20 dimethylbenzophenone.

21

1 **Example 8:** The reaction of toluene with benzoyl
2 chloride with zinc(II) or copper(II) bis-triflimide
3 catalyst in [emim] [NTf₂].

4

5 Copper or zinc (II) bis-triflimide (0.13 g, 0.21
6 mmol) was added to a mixture of toluene (3.0g, 32.5
7 mmol) and benzoyl chloride (3.0 g, 21.3 mmol). The
8 mixture was heated under reflux for 72 hours (the
9 reaction was monitored by gas chromatographic
10 analysis, by taking a drop of the reaction mixture
11 and suspending it in petroleum ether (b.p. = 40-
12 60°C) and filtering off the catalyst. The starting
13 materials and products, which are soluble in the
14 petroleum ether extract, were cooled to room
15 temperature. Petroleum ether (15 cm³, bp = 40-60°C)
16 was added and the catalyst and formed a separate
17 phase. The solution of the product was decanted and
18 the flask (containing the catalyst) washed three
19 times with 15 cm³ of petroleum ether. The solvent
20 was evaporated from the combined petroleum ether
21 extracts and the product purified by vacuum
22 distillation (bp = 160-170 °C @ 1 mmHg) in a
23 Kugelrohr apparatus. This gave methylbenzophenone
24 (4.0 g, 95 %). The catalyst can be reused

1 immediately by adding toluene and benzoyl chloride
2 to the flask and repeating the reaction, without
3 loss of activity. The yields as determined by gas
4 chromatographic analysis are shown in Table 5.

5

6 **Table 5**, the yields of benzophenones derived from the
7 reaction of benzoyl chloride with toluene with 1 %
8 copper(II) or 1 % zinc(II) bis-triflimide catalysts.
9 The figure in brackets refers to the *o*-, *m*- and *p*-
10 isomer ratios.

Time / h	Yield with $Zn(NTf_2)_2$	Yield with $Cu(NTf_2)_2$
24	83	52
48	99 (22 : 1 : 77)	
72		99 (20 : 2 : 78)

11

12 Zinc(II) and copper(II) bis-triflimide compounds were
13 found to be effective acylation catalysts for the
14 benzylation of toluene.

15

16 **Example 9:** The reaction of *o*-xylene with benzoyl
17 chloride with an aluminium(III) bis-triflimide
18 catalyst.

19

1 Aluminium (III) bis-triflimide (0.10 g) was added to
2 a mixture of *o*-xylene (3.0g, 28.2 mmol) and benzoyl
3 chloride (3.0 g, 21.3 mmol). The mixture was heated
4 at 120 °C for 18 hours (the reaction was monitored
5 by gas chromatographic analysis, by taking a drop of
6 the reaction mixture and suspending it in petroleum
7 ether (b.p. = 40-60°C) and filtering off the
8 catalyst. The starting materials and product are
9 soluble in the petroleum ether extract), and cooled
10 to room temperature. Petroleum ether (15 cm³) was
11 added and the catalyst and formed a separate phase.
12 The yields as determined by gas chromatographic
13 analysis was 99% with a 6.0 : 1 3,4- to 2,3-
14 dimethylbenzophenone isomer ratio. Aluminium(III)
15 bis-triflimide was found to be an effective catalyst
16 for the benzoylation of *o*-xylene. The reaction gave
17 a quantitative yield of two isomers of the
18 corresponding benzophenone (6 : 1 3,4- to 2,3-
19 isomer ratio) after 18h at 120 °C, using 1 mol % of
20 catalyst.

21

22 **Example 10:** The reaction of toluene with benzoyl
23 chloride with metal bis-triflimide catalyst.

24

1 Various metal (1-ethyl-3-methylimidazolium, Li, Mg,
2 Ca, Mn, Co, Ni, Cu, Zn, Sn, Pb, Al) bis-triflimide
3 salts (1 mol %) was added to a mixture of toluene
4 (3.0g, 32.6 mmol) and benzoyl chloride (3.0 g, 21.3
5 mmol). The mixture was heated at 110 °C for up to
6 120 hours. The reaction was monitored at regular
7 intervals by gas chromatographic analysis and the
8 reaction stopped when the reaction was judged to be
9 99 % complete by cooling to room temperature.
10 Petroleum ether (15 cm³) was added and the catalyst
11 and formed a separate phase. The product was
12 isolated be decanting the petroleum ether extract,
13 followed by Kugenrohr distillation at 1 mm Hg. The
14 yields after various time intervals are given in
15 Table 6. The product formed is methylbenzophenone.
16 In all these reactions, the isomer ratio was found to
17 be approximately 76 % *para* and 24 % *ortho*. This
18 results are shown in Table 6. Table 1 lists the
19 times required for Co and Ni bis-triflimide in
20 [emim] [NTf₂].
21
22 **Table 6**, The yields of benzophenones derived from the
23 reaction of benzoyl chloride with toluene with 1%
24 metal bis-triflimide catalyst.

3 1

C o p m o u n d	Y i e l % d / .	T i m e / h
[e m i mT]f [N ₂] < 1		4 8
L i N T f ₂	< 5	1 2 0
Mg (N T f ₂) ₂	9 9	4 8
C a (N T f ₂) ₂	< 5	1 2 0
M n (f N T ₂) ₂	9 9	5
C o T f ₂) ₂	9 9	3
Ni (N T f) ₂	9 9	4
C u N ₂ T)f ₂	9 9	7 2
Z n N ₂ T)f ₂	9 9	8 4
S n N ₂ T)f ₂	5 5	4 8
P b N ₂ T)f ₂	9 5	6
A l N T f ₂) ₃	9 9	2 4

1

2 From Table 6, a remarkable difference in reactivity
 3 between the compounds chosen is observed. Of these,
 4 four compounds appear to have unexpectedly high
 5 reactivity, namely those of manganese, cobalt,
 6 nickel and lead, whereas compounds such as zinc bis-
 7 triflimide and aluminium bis-triflimide have
 8 relatively modest activity. This is completely
 9 different to "conventional Friedel-Crafts chemistry"
 10 which would suggest that the Al bistriflimide should
 11 be the best catalyst. Of particular remark is the

1 catalytic reactivity of Co and Pb. Lithium and
2 calcium bis-triflimide in contrast show very poor
3 activity and with [emim] [bis-triflimide], little or
4 no reaction was observed.

5

6 **Example 11:** The reaction of chlorobenzene with
7 benzoyl chloride with nickel(II) bis-triflimide
8 catalyst in [bmim] [NTf₂].

9

10 Nickel(II) bis-triflimide (0.062 g, 0.1 mmol) was
11 added to 1-butyl-3-methylimidazolium bis-
12 trifluoromethanesulfonimide ([bmim] [NTf₂]) (1.0 g)
13 in a 25 cm³ round-bottomed flask equipped with a
14 magnetic stirrer and reflux condenser, and the
15 mixture stirred until the catalyst dissolved.

16 Chlorobenzene (1.68 g, 15 mmol) and benzoyl chloride
17 (1.41 g, 10 mmol) were added. The mixture was
18 heated under reflux for 72 hours and was analysed by
19 gas chromatographic analysis as in previous
20 examples. The reaction was cooled to room
21 temperature. Petroleum ether (15 cm³, bp = 40-60°C)
22 was added and the catalyst and ionic liquid formed a
23 separate phase from the petroleum ether layer. The
24 solution of the product (in petroleum ether) was

1 decanted and the flask (containing the ionic liquid
2 and catalyst) washed three times with 15 cm³ of
3 petroleum ether. Concentration of the organic
4 extract, followed by Kugenrohr distillation at 1 mm
5 Hg (bp = 170–190 °C), gave chlorobenzophenone (1.65
6 g, 74 %). GC analysis showed 78 % yield after 72
7 hours, with a 70 : 8 4- to 2- isomer ratio. This is
8 a remarkable result, as chlorobenzene is known to be
9 classically unreactive in acylation reactions. It
10 has not previously been possible to isolate
11 significant quantities of the products of the
12 acylation of chlorobenzene.

13

14 **Example 12:** The reaction of chlorobenzene with
15 benzoyl chloride with cobalt(II) bis-triflimide or
16 zinc(II) bis-triflimide catalyst in [bmim] [NTf₂].
17 In two separate reactions, either zinc(II) bis-
18 triflimide (0.16 g, 5 mol %) or cobalt(II) bis-
19 triflimide (0.15 g, 5 mol %) was added to 1-butyl-3-
20 methylimidazolium bis-trifluoromethanesulfonimide
21 ([bmim] [NTf₂]) (1.0 g) 25 cm³ in a round-bottomed
22 flask equipped with a magnetic stirrer and reflux
23 condenser, and the mixture was heated gently and
24 stirred until the catalyst dissolved.

1 Chlorobenzene (0.68 g, 6 mmol) and benzoyl chloride
2 (0.72 g, 5 mmol) were added. The mixture was heated
3 under reflux for 18 hours and was analysed by gas
4 chromatographic analysis as in previous examples.

5 The reaction was cooled to room temperature.

6 Cyclohexane (15 cm³) was added and the catalyst and
7 ionic liquid formed a separate phase. The solution
8 of the product was decanted and the flask
9 (containing the ionic liquid and catalyst) washed
10 three times with 15 cm³ cyclohexane followed by
11 Kugelrohr distillation at 1 mm Hg (bp = 180–200 °C).
12 This gave a mixture of 2- and 4-chlorobenzophenone.
13 GC yield = 97 % (6.8 : 1 p- to o- isomer ratio) for
14 cobalt catalyst and 55 % (6.5 : 1 p- to o- isomer
15 ratio) for the zinc catalyst.

16

17 The reaction of chlorobenzene with benzoyl chloride
18 was investigated, as chlorobenzene is much more
19 difficult to acylate. Although reasonable yields
20 could be obtained with 1 mol % catalyst, it was
21 found that 5-mol % catalyst gave more acceptable
22 reaction rates. The reaction was found to be 95 %
23 complete with cobalt bis-triflimide after 18 hours
24 and 55 % complete with zinc bis-triflimide (Table

1 7). The catalyst was found to be less active after
2 extracting the product with boiling cyclohexane and
3 recycling the ionic liquid / catalyst. The activity
4 of the catalyst was restored by adding a trace of
5 hydrogen bis-triflimide (0.1 mol %).

6

7 **Table 7**, The yields of benzophenones derived from the
8 reaction of benzoyl chloride with chlorobenzene with
9 5% metal bis-triflimide catalyst in [bmim] [NTf₂].

Compound	Yield	Time / h
Co(NTf ₂) ₂	95	18
Zn(NTf ₂) ₂	55	18

10

11 **Example 13:** The reaction of toluene with benzoyl
12 chloride with hydrogen and metal bis-triflimide
13 catalyst.

14 Various metal bis-triflimide compounds: Sr(II),
15 Ba(II), In(III), In(III) in [bmim] [NTf₂], Cr(III),
16 Ce(IV), Yb(III), and hydrogen bis-triflimide
17 {HN(SO₂CF₃)₂} (1 mol %) were added to a mixture of
18 toluene (1.38 g, 15.0 mmol) and benzoyl chloride
19 (1.41 g, 10.0 mmol). The mixture was heated at 110
20 °C for up to 120 hours. The reaction was monitored
21 at various intervals by gas chromatographic analysis

1 and the reaction stopped after 5 days. The yields
2 of methylbenzophenone with respect to time are shown
3 in Figure 1. The reaction of benzoyl chloride and
4 toluene gave 2- and 4-methylbenzophenone. All these
5 compounds were found to be active Friedel-Crafts
6 catalysts, but with considerably different
7 activities. Of these, the activities of indium(III)
8 and iron(III) (Example 14) are the most notable, as
9 they are exceptionally good catalysts. The *p*- to *o*-
10 selectivities were in the range 3.9 to 4.4 to 1,
11 with the indium and iron catalysts giving 4.4 : 1
12 selectivity.

13

14 **Example 14:** The reaction of toluene with benzoyl
15 chloride with iron(III) bis-triflimide or iron(III)
16 chloride dissolved in [bmim] [NTf₂].
17 In two separate reactions, either iron(III) bis-
18 triflimide (1 mol %) or iron(III) chloride (1 mol %)
19 was added to 1-butyl-3-methyimidazolium bis-
20 trifluoromethanesulfonimide ([bmim] [NTf₂]) (1.0 g)
21 25 cm³ in a round-bottomed flask equipped with a
22 magnetic stirrer and reflux condenser, and the
23 mixture was heated gently and stirred until the
24 catalyst dissolved. Toluene (1.38 g, 15 mmol) and

1 benzoyl chloride (1.41 g, 10 mmol) were added. The
2 mixture was heated under reflux for 48 hours and was
3 analysed by gas chromatographic analysis as in
4 previous examples. The yield of methylbenzophenone
5 with respect to time is shown in Figure 2. Here,
6 the activity of the iron catalyst was tested in two
7 separate ways: (a) with 1% FeO(NTf₂) in [bmim][NTf₂]
8 and (b) 1% FeCl₃ in [bmim][NTf₂]. In both cases, the
9 activity and selectivity were similar, indicating
10 that FeCl₃ and FeO(NTf₂) are possibly precursors to
11 catalyst, when dissolved in excess [bmim][NTf₂].

12

13 **Example 15:** The reaction of toluene with methane
14 sulfonyl chloride with zinc(II) bis-triflimide.

15

16 Zinc(II) bis-triflimide (0.13 g, 2.5 mol %) was
17 added to a round-bottomed flask equipped with a
18 magnetic stirrer and reflux condenser. Toluene
19 (1.38 g, 15 mmol) and methane sulfonyl chloride
20 (1.14 g, 10 mmol) were added. The mixture was
21 heated under reflux for 24 hours and was analysed by
22 gas chromatographic analysis as in previous
23 examples. All the methane sulfonyl chloride had
24 reacted and three isomers of (2-, 3- and 4-

1 methylphenyl)methylsulfone had formed (yield = 99
2 %), isomer ratio = 35 : 18 : 47 for the *o*-, *m*- and
3 *p*- isomers. The product was extracted from the
4 catalyst by dissolving it in cyclohexane (20 cm³)
5 followed by decantation of the cyclohexane extract.
6 The catalyst was washed with cyclohexane (2 x 20
7 cm³) and the combined cyclohexane extracts were
8 concentrated on a rotary evaporator. The product
9 was Kugelrohr distilled at 100–110°C to give 1.62 g
10 of a colourless oil (96 % isolated yield).

11

12 **Example 16:** The reaction of benzene with benzene
13 sulfonyl chloride with zinc(II) bis-triflimide.

14

15 Zinc(II) bis-triflimide (0.062 g, 1 mol %) was
16 dissolved in [bmim] [NTf₂] (1.0 g) in a round-
17 bottomed flask equipped with a magnetic stirrer and
18 reflux condenser. Benzene (1.56 g, 20 mmol) and
19 benzene sulfonyl chloride (1.76 g, 10 mmol) were
20 added. The mixture was heated under reflux for 18
21 hours and was analysed by gas chromatographic
22 analysis as in previous examples. All the benzene
23 sulfonyl chloride had reacted diphenyl sulfone had
24 formed (yield = 99 %). The product was extracted

1 from the catalyst and ionic liquid by dissolving it
2 in boiling cyclohexane (5 x 30 cm³) followed by
3 decantation of the cyclohexane extract. The
4 diphenylsulfone crystallised on cooling and was
5 collected by filtration (2.03 g, 93 % isolated
6 yield). The reaction of benzene with benzene
7 sulfonyl chloride gave the expected diphenyl sulfone
8 in 99% yield with a Zn(NTf₂)₂ catalyst (18 h at
9 reflux). The diphenyl sulfone was extracted with
10 boiling cyclohexane and the ionic liquid and
11 catalyst could be reused.

12

13 **Example 17:** The reaction of *m*-xylene with benzene
14 sulfonyl chloride with zinc(II) bis-triflimide.
15 Zinc(II) bis-triflimide (0.062 g, 1 mol %) was
16 dissolved in [bmim] [NTf₂] (1.0 g) in a round-
17 bottomed flask equipped with a magnetic stirrer and
18 reflux condenser and *m*-xylene (2.12 g, 20 mmol) and
19 benzene sulfonyl chloride (1.76 g, 10 mmol) were
20 added. The mixture was heated under reflux for 18
21 hours and was analysed by gas chromatographic
22 analysis as in previous examples. All the benzene
23 sulfonyl chloride had reacted and mostly 2,4-
24 dimethyldiphenylsulfone had formed (yield = 99 %, 20

40

1 : 1 isomer ratio {by NMR}). The major product is
2 shown below, the structure of the minor isomer is
3 not known but is believed to be the 2,6-dimethyl
4 isomer.

5

8 The product was extracted from the catalyst and
9 ionic liquid by dissolving it in boiling cyclohexane
10 ($5 \times 30 \text{ cm}^3$) followed by decantation of the
11 cyclohexane extract. The 2,4-
12 dimethyldiphenylsulfone crystallised on cooling and
13 was collected by filtration.

14

15 **Example 18:** The reaction of chlorobenzene with
16 benzene sulfonyl chloride with metal bis-triflimide
17 catalysts.

18

19 In three separate reactions, either magnesium(II)
20 bis-triflimide (0.058 g, 0.1 mol), aluminium(III)
21 bis-triflimide (0.87 g, 0.1 mmol) or cobalt(II) bis-
22 triflimide (0.062 g, 0.1 mmol) was dissolved in

[bmim] [NTf₂] (0.5 g) in a round-bottomed flask equipped with a magnetic stirrer and reflux condenser. Chlorobenzene (1.68 g, 15 mmol) and benzene sulfonyl chloride (1.76 g, 10 mmol) were added. The mixture was heated under reflux for 144 hours and monitored by gas chromatographic analysis as in previous examples. The yields with respect to time are given in Figure 3. The product was extracted from the catalyst and ionic liquid by dissolving it in boiling cyclohexane (4 x 10 cm³) followed by decantation of the cyclohexane extract. The 2- and 4-chlorodiphenylsulfone (9:1 *p*- to *o*- isomer ratio) crystallised on cooling and was collected by filtration. The selectivity was 9:1 for the *p*- isomer and the *o*- isomer was the minor isomer in all cases. Coincidentally, the reaction of benzoyl chloride with chlorobenzene also gave the same selectivity and similar reaction rates. Phenyl-4-chlorophenylsulfone is an insecticide. The reaction was found to be slow using 1 mol % catalyst, but 5 mol % catalyst gave acceptable reaction rates. The metal salts chosen were aluminium(III), cobalt(II) and magnesium(II) bis-triflimide, in the ionic liquid [bmim] [NTf₂]. All three catalysts were found

1 to be effective for this reaction. The reaction is
2 shown below.

3

6 **Example 19:** The reaction of benzene with oct-1-ene
7 with nickel(II) bis-triflimide.

8

9 Nickel(II) bis-triflimide (0.06 g, 0.1 mmol) was
10 dissolved in [bmim][NTf₂] (1.0 g) in a round-
11 bottomed flask equipped with a magnetic stirrer and
12 reflux condenser. Benzene (3.90 g, 50 mmol) and
13 oct-1-ene (1.12 g, 10 mmol) were added. The mixture
14 was heated under reflux for 18 hours and was
15 analysed by gas chromatographic analysis as in
16 previous examples. The oct-1-ene peak disappeared
17 and three isomers of octylbenzene were formed (70 %,
18 20:26:54 2- to 3- to 4- isomer ratio) as well as
19 octene dimer (30 %). The less dense product phase
20 was decanted from the ionic / catalyst phase and
21 purified by Kugelrohr distillation. The ionic
22 liquid and catalyst were prepared for reuse by
23 heating at 60 °C under vacuum for 1 hour. The ionic

43

1 liquid and catalyst were used for further reactions
2 of benzene with oct-1-ene without loss of activity.
3 This is an alkylation of benzene with an alkene
4 using a metal bis-triflimide catalyst. Benzene and
5 oct-1-ene react in the presence of 1% nickel(II)
6 bis-triflimide in [bmim][NTf₂] to form three isomers
7 of octyl benzene and a small amount of hexadecene
8 (unknown isomeric distribution). This is shown
9 below:

10

11

12

13 The alkylation of benzene with oct-1-ene.

14

15 The reaction gave a 70 % yield (by GC) of three
16 isomers of octylbenzene. The isomer ratio was
17 determined to be 0.75 : 1.00 : 2.03, with the 4-
18 phenyloctene as the major product and 2-phenyloctene
19 as the minor product. During the course of the
20 reaction, isomerization of oct-1-ene to a number of
21 isomers of octene was observed, and the rate of this

1 isomerisation process was considerably faster than
 2 the alkylation reaction. It was found that the ionic
 3 liquid / catalyst combination remained active on a
 4 second run. To confirm that the minor product of
 5 the reaction was an octene dimer, the same reaction
 6 was performed, but without any benzene present
 7 (shown below).

8
 9
 10
 11 The dimerisation of oct-1-ene.
 12
 13 The reaction proceeded initially with isomerisation
 14 of octene to a mixture of 4 isomers of octane.
 15 After 18 hours, the reaction was almost complete (>
 16 95 % conversion). The products were a large number

1 of isomers of dimerised and trimerised octene. As
2 the reaction was left to run for 6 days, a
3 broadening of the cluster of GC peaks for the dimer
4 and trimer was observed, indicating that further
5 isomerisation was occurring.

6

7 **Example 20:** The dimerisation of oct-1-ene with
8 nickel(II) bis-triflimide.

9

10 Nickel(II) bis-triflimide (0.062 g, 0.1 mmol) was
11 dissolved in [bmim][NTf₂] (0.5 g) in a round-
12 bottomed flask equipped with a magnetic stirrer and
13 reflux condenser. Oct-1-ene (1.12 g, 10 mmol) was
14 added. The mixture was heated under reflux for 18
15 hours and was analysed by gas chromatographic
16 analysis as in previous examples. The oct-1-ene peak
17 disappeared and three isomers of octene (oct-2-ene,
18 oct-3-ene and oct-4-ene) were formed. Hydrogen bis-
19 triflimide was added (0.0028 g, 0.1 mmol) and the
20 mixture was heated for a further 18 hours. Gas
21 chromatographic analysis showed that the reaction
22 was almost complete (> 99%), and gave a mixture of
23 isomers of hexadecene and tetracosene (trimer of
24 octene). The less dense product phase was decanted

1 from the ionic / catalyst phase and purified by
2 Kugelrohr distillation at 1 mm Hg. The ionic liquid
3 and catalyst were prepared for reuse by heating at
4 60 °C under vacuum for 1 hour. The ionic liquid and
5 catalyst were used for further dimerisation
6 reactions of oct-1-ene without loss of activity.

7

8 **Example 21:** The Fries rearrangement of 4-
9 methylphenoxybenzoate with hydrogen and metal bis-
10 triflimide compounds.

11

12 Ytterbium(III) bis-triflimide (0.1 g) and hydrogen
13 bis-triflimide (0.01 g) was dissolved in [*n*-H₂₉C₁₄(*n*-
14 H₁₃C₆)₃P] [NTf₂] (1.0 g) in a round-bottomed flask
15 equipped with a magnetic stirrer and reflux
16 condenser. 4-methylphenoxybenzoate (1.0 g) was
17 added. The mixture was heated under reflux for 24
18 hours at 60 °C and was analysed by gas
19 chromatographic analysis as in previous examples.
20 The product of the reaction was 2-hydroxy-5-
21 methylbenzophenone (90 % yield). The isomerisation
22 of 4-methylphenoxybenzoate to 2-hydroxy-5-
23 methylbenzophenone is shown below.

24

3

4 **Example 22:** The reaction of *o*-xylene, *m*-xylene,
5 mesitylene, and toluene with cyclohexene with metal
6 bis-triflimide compounds.

7

8 In four separate reaction vessels, ytterbium(III)
9 bis-triflimide (0.1 g) was dissolved in [n-H₂₉C₁₄(n-
10 H₁₃C₆)₃P][NTf₂] (2.0 g) in a round-bottomed flask
11 equipped with a magnetic stirrer and reflux
12 condenser. Either *o*-xylene (1.06 g, 10 mmol), *m*-
13 xylene (1.06 g, 10 mmol), mesitylene (1.20 g, 10
14 mmol), or toluene (0.92 g, 10 mmol) were added to
15 the separate flasks followed by addition of
16 cyclohexene (0.82 g, 10 mmol). The mixtures were
17 heated at 80 °C for 12 hours and were analysed by
18 gas chromatographic analysis as in previous
19 examples. The cyclohexene peak disappeared and
20 peak(s) due to alkylation of the aromatic compound
21 and peaks due to dimerisation reactions of
22 cyclohexene were formed (see Example 26). The ionic
23 liquid and catalyst were prepared for reuse by

1 heating at 60 °C under vacuum for 1 hour. The ionic
2 liquid and catalyst were used for further reactions
3 of benzene with cyclohexene without loss of
4 activity.

5

6 **Example 23:** The reaction of benzene with dodec-1-ene
7 with metal bis-triflimides, triflates and hydrogen
8 bis-triflimide.

9

10 In ten separate reaction vessels (a multi-cell glass
11 reactor with stirrers and condensers) metal
12 triflimide or metal triflate compounds (see Table
13 below) were added together with hydrogen bis-
14 triflimide (0.01 g) to $[n\text{-H}_{29}\text{C}_{14}(n\text{-H}_{13}\text{C}_6)_3\text{P}][\text{NTf}_2]$ (2.0
15 g) and stirred until the metal compound had
16 dissolved. Benzene (3.8 g, 50 mmol) and dodec-1-
17 ene (0.84 g, 5.0 mmol) were added. The mixtures
18 were heated at 80 °C for 24 hours. The excess
19 benzene was distilled off. The mixture was analysed
20 by NMR upon cooling to room temperature. The ionic
21 liquid and catalyst were prepared for reuse by
22 heating at 60 °C under vacuum for 1 hour. The ionic
23 liquid and catalyst were used for further reactions

1 of benzene with dodec-1-ene without loss of
 2 activity. The results are shown in Table 8 below.

3 **Table 8**

Compound	Mass / g	Unreacted dodecene	Isomerised dodecene	Dodecyl benzene
Yb(NTf ₂) ₃	1.02	0	0	100
Co(NTf ₂) ₂	0.62	0	99	1
Cu(NTf ₂) ₂	0.62	0	1	99
Pb(NTf ₂) ₂	0.76	0	100	0
In(NTf ₂) ₃	0.95	0	0	100
Ga(NTf ₂) ₃	0.63	0	61	39
Zn(OTf ₂) ₂	0.36	67	33	0
Cu(OTf ₂) ₂	0.36	1	96	3
Yb(OTf ₂) ₃	0.53	0	91	9
La(OTf ₂) ₃	0.59	0	60	40

4

5 **Example 24:** The reaction of toluene with benzoyl
 6 chloride with metal compounds dissolved in
 7 [bmim][NTf₂].

8

9 In five separate reactions, either titanium(IV)
 10 chloride (1 mol %) or tin(IV) chloride (1 mol %), or
 11 tungsten(VI) chloride, or hafnium(IV) chloride or
 12 palladium(II) chloride was added to 1-butyl-3-

1 methylimidazolium bis-trifluoromethanesulfonimide
2 ([bmim] [NTf₂]) (2.0 g) 25 cm³ in a round-bottomed
3 flask equipped with a magnetic stirrer and reflux
4 condenser, and the toluene (2.81 g, 30 mmol) and
5 benzoyl chloride (2.84 g, 20 mmol) were added. The
6 mixtures was heated under reflux for 24 hours and
7 was analysed by gas chromatographic analysis as in
8 previous examples. The conversion of starting
9 materials to methylbenzophenone was quantitative
10 except for the palladium(II) catalysed reaction (75
11 % yield). The variation of yield with time in the
12 reaction of several new metal bis-triflimide salts
13 in the reaction of benzoyl chloride with toluène in
14 given in Figure 4. These reactions were performed
15 in parallel, and the yields were determined by GC
16 analysis. This reaction are given in more detail in
17 examples 45 to 50.

18

19 In this invention, the use of a metal halide
20 dissolved in a bis-triflimide ionic liquid can be
21 used for reactions such as the Friedel-Crafts
22 reactions. This is useful where a particular metal
23 bis-triflimide salt is difficult to prepare or
24 isolate. In this invention, five metal halides

1 (chlorides) (1 mol % with respect to the reactants)
2 were dissolved in [bmim] [NTf₂]. This combination
3 was used to catalyse the reaction of toluene with
4 benzoyl chloride to give methylbenzophenone. The
5 yield with respect to time is given in Figure 4.
6 All of the metals chosen gave the expected products
7 in good yield, but the combination of 1% mol tin(IV)
8 chloride in [bmim] [NTf₂] was a particularly
9 effective catalyst. This process of using metal
10 compounds dissolved in an ionic liquid (usually bis-
11 triflimide) can also be used with compounds of other
12 metals (particularly transition metals (d-block) or
13 f-block metals)) not listed in Figures 3 or 4.

14

15 **Example 25**

16 A number of aromatic sulfonylation reactions were
17 performed. These reactions are very similar to
18 Friedel-Crafts acylation reactions and are performed
19 under similar conditions. The key difference is
20 that a -SO₂-X group replaces a -CO-X (X = leaving
21 group). In most cases, the selectivities,
22 reactivities and yields were found similar to the
23 corresponding acylation reaction. The reaction of
24 sulfuryl chloride with benzene resulted in the

1 formation of chlorobenzene (quantitatively) and SO₂.
 2 This is as is found in many other reactions of SO₂Cl₂
 3 with aromatic compounds performed in molecular
 4 solvents.

5

6

7

8 **Example 26**

9 The alkylation of various aromatic compounds with
 10 cyclohexene in a phosphonium ionic liquid with 10 %
 11 ytterbium(III) bis-triflimide with a trace of
 12 hydrogen bis-triflimide were carried out. A side
 13 reaction also takes place that results in the
 14 formation of a dimer of cyclohexene (see below) and
 15 this results in a slight reduction in the yield of
 16 the Friedel-Crafts reaction. However, it should be

1 noted that this demonstrates that metal triflimide
 2 compounds can be used for dimerisation and
 3 oligomerisation reactions.

4

5
6

7 The reaction of aromatics with cyclohexene in a
 8 phosphonium ionic liquid for 12 hours at 80 °C is
 9 shown above. Below is shown the dimerisation of
 10 cyclohexene.

11
12

1 Example 27

2 Preparation of magnesium bis-triflimide.

3 Magnesium (0.048 g, 2.0 mmol) was added to a

4 solution of (hydrogen) bis-triflimide ($\text{HN}(\text{SO}_2\text{CF}_3)_2$,

5 1.12 g, 4.0 mmol) in distilled water (5 g) in a 25

6 cm^3 round bottomed flask equipped with a magnetic

7 stirrer. The mixture was stirred for 1 hour (judged

8 to be complete when the evolution of hydrogen

9 ceased), and was filtered. The water was evaporated

10 on a rotary evaporator, and the magnesium bis-

11 triflimide dried by heating at 150 °C at 1 mmHg for

12 4 hours in a vacuum drying apparatus, to give a

13 white powder (1.10g, 95 %). The magnesium bis-

14 triflimide was purified by vacuum sublimation at 300

15 °C at 1 mmHg in a Kugelrohr apparatus. The

16 unpurified magnesium bis-triflimide was found to be

17 a Friedel-Crafts catalyst for the reaction of

18 anisole and benzoyl chloride. The catalytic activity

19 was similar to that of $\text{Zn}(\text{NTf}_2)_2$. $\text{Mg}(\text{NTf}_2)_2$ was found

20 to be a good sulfonation catalyst in the reaction of

21 benzene sulfonyl chloride with chlorobenzene.

22

23 Example 28

24 Preparation of aluminium(III) bis-triflimide.

1 Aluminium dust (0.030 g, 1.15 mmol) was added to a
2 solution of bis-triflimide ($\text{HN}(\text{SO}_2\text{CF}_3)_2$, 0.84 g, 3.0
3 mmol) in distilled water (5 g) in a 25 cm³ round
4 bottomed flask equipped with a magnetic stirrer.
5 This was heated under reflux for 0.5 hours. The
6 mixture was cooled to room temperature and was
7 filtered to remove excess aluminium. The water was
8 evaporated on a rotary evaporator, and the aluminium
9 bis-triflimide dried by heating at 150 °C at 1 mmHg
10 for 4 hours in a vacuum drying apparatus, to give a
11 white powder (0.83 g, 96 %). The aluminium bis-
12 triflimide was purified by vacuum sublimation at 350
13 °C at 1 mmHg in a Kugelrohr apparatus (some
14 decomposition occurred). The unpurified aluminium
15 bis-triflimide was found to be a Friedel-Crafts
16 catalyst for the reaction of anisole or xylene and
17 benzoyl chloride. The catalytic activity was similar
18 to $\text{Zn}(\text{NTf}_2)_2$.

19

20 **Example 29**

21 Preparation of manganese(II) bis-triflimide.
22 Manganese(II) carbonate (0.18 g, 1.6 mmol) was added
23 to a solution of bis-triflimide ($\text{HN}(\text{SO}_2\text{CF}_3)_2$, 0.84 g,
24 3.0 mmol) in distilled water (5 g) in a 25 cm³

1 round bottomed flask equipped with a magnetic
2 stirrer. This was stirred for 0.5 hours (until the
3 evolution of CO₂ ceased. The mixture was filtered
4 to remove excess manganese carbonate. The water was
5 evaporated on a rotary evaporator, and the
6 manganese(II) bis-triflimide dried by heating at 150
7 °C at 1 mmHg for 4 hours in a vacuum drying
8 apparatus, to give an almost white powder (0.90 g,
9 97 %). The manganese(II) bis-triflimide was
10 purified by vacuum distillation / sublimation at 280
11 °C at 1 mmHg in a Kugelrohr apparatus (this
12 temperature and pressure appears to be very close to
13 the triple point of this material ie melting point
14 = boiling point). The unpurified manganese(II)
15 bis-triflimide was found to be an excellent Friedel-
16 Crafts catalyst for the reaction of toluene and
17 benzoyl chloride. The catalytic activity was greater
18 than Zn(NTf₂)₂.

19

20 **Example 30**

21 Preparation of nickel(II) bis-triflimide.
22 Nickel(II) hydroxide (0.15 g, 1.6 mmol) was added to
23 a solution of bis-triflimide (HN(SO₂CF₃)₂, 0.84 g,
24 3.0 mmol) in distilled water (5 g) in a 25 cm³

1 round bottomed flask equipped with a magnetic
2 stirrer. This was stirred for 1 hour (until the
3 hydroxide mostly dissolved to give a green
4 solution). The mixture was filtered to remove
5 excess nickel hydroxide. The water was evaporated
6 on a rotary evaporator, and the nickel(II) bis-
7 triflimide dried by heating at 150 °C at 1 mmHg for
8 4 hours in a vacuum drying apparatus, to give a very
9 pale yellow powder (0.90 g, 97 %). The nickel(II)
10 bis-triflimide was purified by vacuum distillation /
11 sublimation at 280 °C at 1 mmHg in a Kugelrohr
12 apparatus (see Figure 6). The unpurified nickel(II)
13 bis-triflimide was found to be an excellent Friedel-
14 Crafts catalyst for the reaction of toluene and
15 benzoyl chloride. The catalytic activity was greater
16 than Zn(NTf₂)₂.

17

18 **Example 31**

19 Preparation of cobalt(II) bis-triflimide.
20 Cobalt(II) carbonate (0.19 g, 1.6 mmol) was added to
21 a solution of bis-triflimide (HN(SO₂CF₃)₂, 0.84 g,
22 3.0 mmol) in distilled water (5 g) in a 25 cm³
23 round bottomed flask equipped with a magnetic
24 stirrer. This was stirred for 1 hour (until the

1 evolution of CO₂ ceased to give a pink solution).
2 The mixture was filtered to remove excess cobalt
3 carbonate. The water was evaporated on a rotary
4 evaporator, and the cobalt(II) bis-triflimide dried
5 by heating at 150 °C at 1 mmHg for 4 hours in a
6 vacuum drying apparatus, to give a pale pink powder
7 (0.90 g, 97 %). The cobalt(II) bis-triflimide was
8 purified by vacuum distillation / sublimation at 300
9 °C at 1 mmHg in a Kugelrohr apparatus. The
10 unpurified cobalt(II) bis-triflimide was found to be
11 an excellent Friedel-Crafts catalyst for the
12 reaction of toluene and benzoyl chloride. The
13 catalytic activity was greater than Zn(NTf₂)₂. Also
14 this is one of the few Friedel-Crafts acylation
15 catalysts that was found to catalyse the acylation
16 of chlorobenzene with benzoyl chloride.

17

18 **Example 32**

19 Preparation of copper(II) bis-triflimide.
20 Copper(II) carbonate (0.20 g, 1.6 mmol) was added to
21 a solution of bis-triflimide (HN(SO₂CF₃)₂, 0.84 g,
22 3.0 mmol) in distilled water (5 g) in a 25 cm³
23 round bottomed flask equipped with a magnetic
24 stirrer. This was stirred for 1 hour (until the

1 evolution of CO₂ ceased to give a blue/green
2 solution). The mixture was filtered to remove
3 excess copper(II) carbonate. The water was
4 evaporated on a rotary evaporator, and the
5 copper(II) bis-triflimide dried by heating at 150 °C
6 at 1 mmHg for 4 hours in a vacuum drying apparatus,
7 to give a very pale green / blue powder (0.89 g, 95
8 %). The copper(II) bis-triflimide was purified by
9 vacuum distillation / sublimation at 180 °C at 1
10 mmHg in a Kugelrohr apparatus (partial decomposition
11 occurs during sublimation and approximately half the
12 copper(II) bis-triflimide is lost). The unpurified
13 copper(II) bis-triflimide was found to be a Friedel-
14 Crafts catalyst for the reaction of toluene, anisole
15 and xylene with benzoyl chloride (activity was less
16 than Zn(NTf₂)₂). The copper(II) bis-triflimide was
17 also found to be a good Friedel-Crafts alkylation
18 catalyst.

19

20 **Example 33**

21 Preparation of zinc(II) bis-triflimide.
22 Zinc (0.13 g, 2.0 mmol) was added to a solution of
23 bis-triflimide (HN(SO₂CF₃)₂, 0.84 g, 3.0 mmol) in
24 distilled water (5 g) in a 25 cm³ round bottomed

1 flash equipped with a magnetic stirrer. This was
2 stirred for 1 hour (until the evolution of H₂ ceased
3 to give a colourless solution). The mixture was
4 filtered to remove excess zinc. The water was
5 evaporated on a rotary evaporator, and the zinc(II)
6 bis-triflimide dried by heating at 150 °C at 1 mmHg
7 for 4 hours in a vacuum drying apparatus, to give a
8 white crystals (0.91 g, 97 %). One of these crystals
9 was submitted for x-ray crystallographic analysis
10 and its structure shown in Figures 5 to 7. The
11 zinc(II) bis-triflimide was purified by vacuum
12 distillation / sublimation at 260 °C at 1 mmHg in a
13 Kugelrohr apparatus. The unpurified zinc(II) bis-
14 triflimide was found to be a good Friedel-Crafts
15 catalyst for the reaction of toluene, anisole and
16 xylene with benzoyl chloride, and benzoic acid with
17 xylene. Also this is one of the few Friedel-Crafts
18 acylation catalysts that was found to catalyse the
19 acylation of chlorobenzene with benzoyl chloride.

20

21 **Example 34**

22 Indium(III) Bis-triflimide

23 5.0g of Indium (III) hydroxide was dissolved in 50
24 ml of water and to which 27.0g of HNTf₂ was added

1 and stirred at room temperature for 24 hours. The
2 reaction mixture was filtered and the filtrate was
3 concentrated on a rotary evaporator and dried under
4 vacuum (1 mmHg) for 3 days at 120 °C. The unpurified
5 indium(III) bis-triflimide was found to be an
6 excellent Friedel-Crafts catalyst for the reaction
7 of toluene, anisole and xylene with benzoyl chloride
8 or benzoic anhydride.

9

10 **Example 35**

11 Gallium(III) Triflamide
12 2.5 g of Gallium (III) oxide was suspended in 50 ml
13 of water to which 24.0 g trifluoromethane
14 sulfonimide was added and heated at 100 °C for two
15 days. The reaction mixture was filtered and the
16 filtrate was concentrated on a rotary evaporator and
17 dried under vacuum (1 mmHg) for 3 days at 120 °C.
18 The unpurified gallium(III) bis-triflimide was found
19 to be an excellent Friedel-Crafts catalyst for the
20 reaction of toluene, anisole and xylene with benzoyl
21 chloride or benzoic anhydride.

22

23 **Example 36**

24 Calcium Bis-triflimide

1 1.0 g of calcium(II) carbonate was suspended in 50
2 mL of water, to which freshly prepared HNTf₂ (5.6 g)
3 was added and stirred at room temperature for 24
4 hours. The reaction mixture was filtered and the
5 filtrate was concentrated on a rotary evaporator and
6 dried under vacuum (1 mmHg) for 4 hours at 150 °C.
7 The unpurified calcium bis-triflimide was found to
8 display poor catalytic activity in Friedel-Crafts
9 reactions.

10

11 **Example 37**

12 Strontium(II) Bis-triflimide

13 1.0g of strontium(II) carbonate was suspended in 50
14 mL of water, to which freshly prepared HNTf₂ (3.8 g)
15 was added and stirred at room temperature for 24
16 hours. The reaction mixture was filtered and the
17 filtrate was concentrated on a rotary evaporator and
18 dried under vacuum (1 mmHg) for 4 hours at 150 °C.
19 The unpurified strontium(II) bis-triflimide was
20 found to display poor catalytic activity in Friedel-
21 Crafts reactions, but was slightly more active than
22 the calcium analogue.

23

24

1 **Example 38**

2 Barium Bis-triflimide

3 1.0g of Barium(II) carbonate was suspended in 50 mL

4 of water, to which freshly prepared HNTf₂ (2.8 g)

5 was added and stirred at room temperature for 24

6 hours. The reaction mixture was filtered and the

7 filtrate was concentrated on a rotary evaporator and

8 dried under vacuum (1 mmHg) for 4 hours at 150 °C.

9 The unpurified barium(II) bis-triflimide was found

10 to display some catalytic activity in Friedel-Crafts

11 reactions, and was more active than the calcium and

12 strontium analogues.

13

14 **Example 39**

15 Tin(II) bis-triflimide procedure 1

16 Tin metal (5.0 g, 99.9 % purity) lumps were

17 suspended in water (50 mL) and hydrogen bis-

18 triflimide (HNTf₂) (10 g) was added. This mixture

19 was heated under reflux for 72 hours. The resultant

20 mixture was cooled, filtered and concentrated on a

21 rotary evaporator to give a colourless solution that

22 crystallised on standing. The off white crystals

23 were heated at 150 °C at 1 mmHg to remove the

24 residual water and hydrogen bis-triflimide. The

1 unpurified tin(II) bis-triflimide was found to
2 display catalytic activity in Friedel-Crafts
3 reactions (eg 1% $\text{Sn}(\text{NTf}_2)_2$ + toluene + benzoyl
4 chloride gave 99 % yield after 48 hours under
5 reflux). The reactivity was similar to that of zinc
6 bis-triflimide.

7

8 **Example 40**

9 Tin(II) Bis-triflimide procedure 2
10 Tin(II) oxide (1.0 g) powder was suspended in water
11 (50 mL) and hydrogen bis-triflimide (HNTf_2) (5.0 g)
12 was added. This mixture was heated under reflux for
13 48 hours. The resultant slurry was cooled, filtered
14 and concentrated on a rotary evaporator to give a
15 colourless solution that gave an off white
16 precipitate on standing. The off white precipitate
17 was heated at 150 °C at 1 mmHg to remove the
18 residual water and hydrogen bis-triflimide. The
19 unpurified tin(II) bis-triflimide was found to
20 display catalytic activity in Friedel-Crafts
21 reactions (eg 1% $\text{Sn}(\text{NTf}_2)_2$ + toluene + benzoyl
22 chloride gave 99 % yield after 6 hours under
23 reflux).

24

1 Example 41**2 Lead(II) Bis-triflimide**

3 13.0g of lead(II) carbonate was taken in 50 mL of
4 water, to which freshly prepared 28.0g of HNTf₂ was
5 added and stirred at room temperature for 24 hours.
6 The reaction mixture was filtered and the filtrate
7 was concentrated on a rotary evaporator and dried
8 under vacuum (1 mmHg) for 3 days at 120 °C. The
9 unpurified lead(II) bis-triflimide was found to
10 display good catalytic activity in Friedel-Crafts
11 reactions (eg 1% Pb(NTf₂)₂ + toluene + benzoyl
12 chloride gave 99 % yield after 48 hours under
13 reflux). The catalytic activity was better than
14 zinc(II) bis-triflimide.

15

16 Example 42**17 Chromium(III) Bis-triflimide**

18 Chromium metal (1.0 g, 99.95 % purity) pieces were
19 suspended in water (20 mL) and hydrogen bis-
20 triflimide (HNTf₂) (5 g) was added. This mixture
21 was heated under reflux for 144 hours. The
22 resultant mixture was cooled, filtered and
23 concentrated on a rotary evaporator to give a green
24 solid. The solid were heated at 150 °C at 1 mmHg to

1 remove the residual water and hydrogen bis-
2 triflimide. The solid was thought to contain an oxo
3 chromium bis-triflimide species CrO(NTf₂) from the
4 mass of HNTf₂ produced in drying process. The
5 unpurified chromium(III) bis-triflimide was found to
6 display catalytic activity in Friedel-Crafts
7 reactions, and was similar in activity to Zn(NTf₂)₂.

8

9 **Example 43**

10 Tungsten Bis-triflimide

11 Tungsten metal (1.0 g, 99 % purity) filings were
12 suspended in water (20 mL) and hydrogen bis-
13 triflimide (HNTf₂) (5 g) was added. This mixture
14 was heated under reflux for 144 hours. The
15 resultant slurry was cooled, filtered and
16 concentrated on a rotary evaporator to give a
17 colourless solution that crystallised on standing.
18 The crystals were heated at 150 °C at 1 mmHg to
19 remove the residual water and hydrogen bis-
20 triflimide. The precise structure of the catalyst
21 is not known, but it was found to be the best of all
22 isolated metal bis-triflimide catalysts tested in
23 the reaction of benzoyl chloride with toluene.

24

1 **Example 44**

2 Iron(II) Bis-triflimide

3 Iron metal (5.0 g, 99.95 % purity) lumps were
4 suspended in water (50 mL) and hydrogen bis-
5 triflimide (HNTf_2) (10 g) was added. This mixture
6 was heated under reflux for 72 hours. The resultant
7 slurry was cooled, filtered and concentrated on a
8 rotary evaporator to give a pale yellow solution
9 that crystallised on standing. The pale yellow
10 crystals were heated at 150 °C at 1 mmHg to remove
11 the residual water and hydrogen bis-triflimide.

12

13 **Example 45**

14 Iron(III) Bis-triflimide

15 This compound can be isolated in two forms as either
16 cream coloured crystals (thought to be
17 $\text{Fe}(\text{NTf}_2)_2(\text{OH})(\text{OH}_2)$) or a brown solid (thought to be
18 $\text{FeO}(\text{NTf}_2)$). To a solution of iron(III) nitrate (10
19 g) in water was added sodium hydroxide solution (1
20 M) until a brown precipitate had formed. The
21 precipitate of hydrated iron(III) hydroxide was
22 collected by vacuum filtration and washed with
23 water. The precipitate (approximately 5 g) was
24 suspended in distilled water and excess hydrogen

1 bis-triflimide was added (20 g). The precipitate
2 slowly dissolved to give a clear pale brown
3 solution. The solution was filtered and
4 concentrated on a rotary evaporator, and transferred
5 to a kugelrohr distillation apparatus. The
6 unreacted hydrogen bis-triflimide was distilled out
7 at 100 °C, 1 mmHg, leaving a cream coloured
8 crystalline solid of hydrated iron(III) bis-
9 triflimide. Further heating at 170 °C, 1 mmHg for 4
10 hours, resulted in the evolution of hydrogen bis-
11 triflimide, and a brown solid was formed
12 ($\text{FeO}(\text{NTf}_2)$). Both of these solids were found to be
13 excellent Friedel-Crafts catalysts for the reaction
14 of toluene with benzoyl chloride at 1 mol%
15 concentration.

16

17 **Example 46** The *in situ* preparation metal bis-
18 triflimide compounds, based on palladium(II) and
19 bis-triflimide ions.

20

21 Palladium(II) chloride (0.035 g) was added to 1-
22 butyl-3-methylimidazolium bis-
23 trifluoromethanesulfonimide ([bmim] [NTf₂]) (2.0 g)
24 25 cm³ in a round-bottomed flask, equipped with a

1 magnetic stirrer and reflux condenser. This was
2 heated gently, with stirring until the palladium(II)
3 chloride had dissolved, to give an yellow / orange
4 coloured clear solution. This solution was then
5 used as a Friedel-Crafts acylation catalyst.

6

7 The catalytic activity of the palladium(II) chloride
8 / [bmim] [NTf₂] combination was tested in the
9 reaction of toluene (2.81 g, 30 mmol) with benzoyl
10 chloride (2.84 g, 20 mmol). The mixtures was heated
11 under reflux for 24 hours and was analysed by gas
12 chromatographic analysis. This gave methyl
13 benzophenone (75 % yield and 4.5 : 1 *p*- to *o*-
14 ratio).

15

16 **Example 47** The *in situ* preparation metal bis-
17 triflimide compounds, based on tungsten(IV) and bis-
18 triflimide ions.

19

20 Tungsten(VI) chloride (0.079 g) was added to 1-
21 butyl-3-methylimidazolium bis-
22 trifluoromethanesulfonimide ([bmim] [NTf₂]) (2.0 g)
23 25 cm³ in a round-bottomed flask, equipped with a
24 magnetic stirrer and reflux condenser. This was

1 heated gently, with stirring until the tungsten(VI)
2 chloride had dissolved, to give an clear solution.
3 This solution was then used as a Friedel-Crafts
4 acylation catalyst.

5

6 The catalytic activity of the tungsten(VI) chloride
7 / [bmim] [NTf₂] combination was tested in the
8 reaction of toluene (2.81 g, 30 mmol) with benzoyl
9 chloride (2.84 g, 20 mmol). The mixtures was heated
10 under reflux for 24 hours and was analysed by gas
11 chromatographic analysis. This gave methyl
12 benzophenone (99 % yield and 4.1 : 1 *p*- to *o*-
13 ratio).

14

15 **Example 48** The *in situ* preparation metal bis-
16 triflimide compounds, based on tin(IV) and bis-
17 triflimide ions.

18

19 Tin(IV) chloride (0.052 g) was added to 1-butyl-3-
20 methylimidazolium bis-trifluoromethanesulfonimide
21 ([bmim] [NTf₂]) (2.0 g) 25 cm³ in a round-bottomed
22 flask, equipped with a magnetic stirrer and reflux
23 condenser. This was stirred until the tin(IV)
24 chloride had dissolved, to give an clear solution.

1 This solution was then used as a Friedel-Crafts
2 acylation catalyst.

3

4 The catalytic activity of the tin(IV) chloride /
5 [bmim] [NTf₂] combination was tested in the reaction
6 of toluene (2.81 g, 30 mmol) with benzoyl chloride
7 (2.84 g, 20 mmol). The mixtures was heated under
8 reflux for 24 hours and was analysed by gas
9 chromatographic analysis. This gave methyl
10 benzophenone (99 % yield and 4.2 : 1 *p*- to *o*-
11 ratio).

12

13 **Example 49** The *in situ* preparation metal bis-
14 triflimide compounds, based on titanium(IV) and bis-
15 triflimide ions.

16

17 Titanium(IV) chloride (0.038 g) was added to 1-
18 butyl-3-methylimidazolium bis-
19 trifluoromethanesulfonimide ([bmim] [NTf₂]) (2.0 g)
20 25 cm³ in a round-bottomed flask, equipped with a
21 magnetic stirrer and reflux condenser. This was
22 stirred until the titanium(IV) chloride had
23 dissolved, to give an clear solution. This solution

1 was then used as a Friedel-Crafts acylation
2 catalyst.

3

4 The catalytic activity of the titanium(IV) chloride
5 / [bmim] [NTf₂] combination was tested in the
6 reaction of toluene (2.81 g, 30 mmol) with benzoyl
7 chloride (2.84 g, 20 mmol). The mixtures was heated
8 under reflux for 24 hours and was analysed by gas
9 chromatographic analysis. This gave methyl
10 benzophenone (99 % yield and 4.5 : 1 p- to o-
11 ratio).

12

13 **Example 50** The *in situ* preparation metal bis-
14 triflimide compounds, based on hafnium (IV) and bis-
15 triflimide ions.

16

17 Hafnium(IV) chloride (0.064 g) was added to 1-butyl-
18 3-methylimidazolium bis-trifluoromethanesulfonimide
19 ([bmim] [NTf₂]) (2.0 g) 25 cm³ in a round-bottomed
20 flask, equipped with a magnetic stirrer and reflux
21 condenser. This was stirred until the hafnium(IV)
22 chloride had dissolved, to give an clear solution.
23 This solution was then used as a Friedel-Crafts
24 acylation catalyst.

1

2 The catalytic activity of the hafnium(IV) chloride /
3 [bmim] [NTf₂] combination was tested in the reaction
4 of toluene (2.81 g, 30 mmol) with benzoyl chloride
5 (2.84 g, 20 mmol). The mixtures was heated under
6 reflux for 24 hours and was analysed by gas
7 chromatographic analysis. This gave methyl
8 benzophenone (99 % yield and 4.42 : 1 *p*- to *o*-
9 ratio).

10

1 **CLAIMS**

2

3 1. A metal bis-triflimide compound having the
4 formula :

6

7 where M is a metal selected from the metals in
8 groups 5 to 10, 12 and 14 to 16 and Cu, Au, Ca,
9 Sr, Ba, Ra, Y, La, Ac, Hf, Rf, Ga, In, Tl, Ce,
10 Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu
11 and the actinides;

12 L is a negative or neutral ligand;

13 n is 2,3,4,5,6,7 or 8 ;

14 x is greater than or equal to 1

15 y is 0,1,2,3,4,5,6,7 or 8; and

16 z is 0, 1,2,3 or 4.

17

18 2. A compound according to claim 1 wherein M is
19 selected from the metals in groups 7, 8, 9, 10,
20 12 and 14 of the periodic table.

21

22 3. A compound according to claim 1 wherein M is
23 selected from Mn, Fe, Co, Ni, In, Zn and Pb.

1 4. A compound according to claim 3 wherein M is
2 selected from Mn(II), Fe(III), Co(II), Ni(II)
3 and In(II).

4

5 5. A process for carrying out an electrophilic
6 substitution reaction of an aromatic ring or
7 an isomerisation, polymerisation or
8 rearrangement to a chemical compound or
9 molecule which process is catalysed by the
10 compound of any one of claims 1 to 4.

11

12 6. A process for the vapour deposition of metals
13 onto solid surfaces which process utilises a
14 metal bis-triflimide compound according to any
15 one of claims 1 to 4.

16

17 7. A process for purifying a metal bis-triflimide
18 compound according to any one of claims 1 to 4
19 by sublimation.

20

21 8. A process for the production of metal
22 bistriflimide compounds which process comprises
23 reacting
24 (a) hydrogen bistriflimide with a metal;

1 (b) hydrogen bistriflimide with a metal
2 hydroxide;

3 (c) hydrogen bistriflimide with a metal
4 sulfide; or

5 (d) hydrogen bistriflimide with a metal
6 carbide.

7

8 9 A process for the production of a metal
9 bistriflimide catalyst comprising adding metal
10 compound to a source of a bistriflimide ion
11 such as a bistriflimide ionic liquid.

12

13 10 A process according to claim 9 wherein the
14 metal compound is a metal halide.

15

16 11 A process according to claim 9 or claim 10
17 wherein the source of bistriflimide ion is an
18 ionic liquid having bis-
19 trifluoromethanesulfonimide or bis-
20 pentafluoroethanesulfonimide is an anion.

21

22 12 A process according to any one of claims 9 to
23 11 wherein the metal bis-triflimide is
24 recovered by sublimation.

1

2 13. A bistriflimide catalyst obtainable by the
3 process of any one of claims 9 to 12.

1/7

Figure 1

2/7

Figure 2

3 / 7

Figure 3

4 / 7

Figure 4

5/7

Figure 5. The structure of $\text{Zn}(\text{NiI}_2)_2$.

6/7

Figure 6, The structure of $\text{Zn}(\text{NTf}_2)_2$.

7/7

Figure 7: The structure of Zn(NTf₂)₂.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
19 September 2002 (19.09.2002)

PCT

(10) International Publication Number
WO 2002/072260 A3

(51) International Patent Classification⁷: **B01J 31/22** (74) Agents: RITTER, Stephen, David et al.; Mathys & Squire, 100 Gray's Inn Road, London WC1X 8AL (GB).

(21) International Application Number:
PCT/GB2002/000989

(22) International Filing Date: 12 March 2002 (12.03.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0106001.1 12 March 2001 (12.03.2001) GB
0106000.3 12 March 2001 (12.03.2001) GB

(71) Applicant (for all designated States except US): THE QUEEN'S UNIVERSITY OF BELFAST [GB/GB]; University Road, Belfast BT7 1NN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): EARLE, Martyn, J. [GB/GB]; 40A Inishowen Drive, Finaghy, Belfast BT10 OEU (GB). MCAULEY, Barry, Joseph [GB/GB]; 100 Station Road, Greenisland, Co Antrim BT38 8PU (GB). RAMANI, Alwar [IN/GB]; 71 Sandhurst Drive, Stranmills, Belfast BT9 5AZ (GB). SEDDON, Kenneth, Richard [GB/GB]; "Tara", 145 Millisle Road, Donaghadee, Co Down BT21 0LA (GB). THOMSON, Jillian, M [GB/GB]; 6 Ascot Crescent, Lisburn, Co Antrim BT28 3DA (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
26 February 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2002/072260 A3

(54) Title: METAL BIS-TRIFLIMIDE COMPOUNDS, THEIR SYNTHESIS AND THEIR USES

(57) Abstract: A metal bis-triflimide compound having the formula: $[M_x]^{n+}[(N(SO_2CF_3)_2)_{(nx-yz)}]^{(nx-yz)}[L_y]^{z-}$ where M is a metal selected from the metals in groups 5 to 10, 12 and 14 to 16 and Cu, Au, Ca, Sr, Ba, Ra, Y, La, Ac, Hf, Rf, Ga, In, Tl, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, and the actinides; L is a negative or neutral ligand; n is 2, 3, 4, 5, 6, 7 or 8; x is greater than or equal to 1; y is 0, 1, 2, 3, 4, 5, 6, 7 or 8; and z is 0, 1, 2, 3 or 4. Another aspect of the specification is a process for carrying out an electrophilic substitution reaction of an aromatic ring or an isomerisation, polymerisation or rearrangement to a chemical compound or molecule using said compound.

INTERNATIONAL SEARCH REPORT

International Application No
PC B 02/00989

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B01J31/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 00 34344 A (GOODRICH CO B F) 15 June 2000 (2000-06-15) page 37 page 102 -page 103 ----	1,2,5
X	WO 98 29388 A (ARMAND MICHEL ;CHOQUETTE YVES (CA); GAUTHIER MICHEL (CA); HYDRO QU) 9 July 1998 (1998-07-09) examples 47,52,68-71 ----	1,2,5
X	EP 0 834 492 A (HYDRO QUEBEC) 8 April 1998 (1998-04-08) example 11 ----	1-4
X	WO 98 21197 A (HOFFMANN LA ROCHE) 22 May 1998 (1998-05-22) examples 5-11; tables ----	1-5 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

24 June 2002

Date of mailing of the international search report

24.06.02

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Schwaller, J-M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/IB 02/00989

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10, 31 October 1997 (1997-10-31) & JP 09 169690 A (CENTRAL GLASS CO LTD), 30 June 1997 (1997-06-30) abstract ---	1,2,5
X	PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11, 28 November 1997 (1997-11-28) & JP 09 188683 A (CENTRAL GLASS CO LTD), 22 July 1997 (1997-07-22) abstract ---	1,2,5
X	MIKAMI K ET AL: "Lanthanide bis(trifluoromethanesulphonyl)amides as a new type of asymmetric catalysts for hetero Diels-Alder reaction with Danishefsky's diene in the presence of water" SYNLETT, THIEME VERLAG, STUTTGART, DE, vol. 95, no. 9, September 1995 (1995-09), pages 975-977, XP002131414 ISSN: 0936-5214 the whole document ---	1,2,5
A	GRIECO P A ET AL: "Magnesium trifluoromethanesulfonimide(triflimide) promoted substitution reactions of allylic and benzylic acetates. Magnesium triflimide as a substitute for magnesium perchlorate" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 38, no. 15, 14 April 1997 (1997-04-14), pages 2645-2648, XP004058294 ISSN: 0040-4039 cited in the application -----	

INTERNATIONAL SEARCH REPORT

ional application No.
PCT/GB 02/00989

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:

1-5

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-5

a metal-bistriflimide compound having the formula defined in claim 1 and processes (electrophilic reation of an aromatic ring, isomerisation, polymerisation, rearrangement of a molecule) using said metal-bistriflimide as a catalyst

2. Claim : 6

A process for the vapor deposition of metals onto solid surfaces using a metal bis-triflimide

3. Claim : 7

A process for the purification of a metal bis-triflimide compound

4. Claim : 8

A process for the production of metal bis-triflimide compounds

5. Claims: 9-13

A process for the production of a metal bis-triflimide catalyst and catalyst thus obtained

INTERNATIONAL SEARCH REPORT

International Application No

PC1 3 02/00989

INTERNATIONAL SEARCH REPORT

International Application No

PCT/JP 02/00989

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9821197	A	WO 9821197 A2 EP 0937055 A2 JP 2001504111 T US 5908939 A	22-05-1998 25-08-1999 27-03-2001 01-06-1999
JP 09169690	A	30-06-1997	NONE
JP 09188683	A	22-07-1997	NONE