

conditional expectation under change of measure

 ${\bf Canonical\ name} \quad {\bf Conditional Expectation Under Change Of Measure}$

Date of creation 2013-03-22 16:54:21 Last modified on 2013-03-22 16:54:21 Owner stevecheng (10074) Last modified by stevecheng (10074)

Numerical id 9

Author stevecheng (10074)

Entry type Derivation
Classification msc 60A10
Classification msc 60-00
Related topic Martingale

Related topic ConditionalExpectation

Let \mathbb{P} be a given probability measure on some σ -algebra \mathcal{F} . Suppose a new probability measure \mathbb{Q} is defined by $d\mathbb{Q} = Z d\mathbb{P}$, using some \mathcal{F} -measurable random variable Z as the Radon-Nikodym derivative. (Necessarily we must have $Z \geq 0$ almost surely, and $\mathbb{E}Z = 1$.)

We denote with \mathbb{E} the expectation with respect to the measure \mathbb{P} , and with $\mathbb{E}^{\mathbb{Q}}$ the expectation with respect to the measure \mathbb{Q} .

Theorem 1. If \mathbb{Q} is restricted to a sub- σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, then the restriction has the conditional expectation $\mathbb{E}[Z \mid \mathcal{G}]$ as its Radon-Nikodym derivative: $d\mathbb{Q}_{|\mathcal{G}} = \mathbb{E}[Z \mid \mathcal{G}] d\mathbb{P}_{|\mathcal{G}}$.

In other words,

$$\frac{d\mathbb{Q}_{|\mathcal{G}}}{d\mathbb{P}_{|\mathcal{G}}} = \left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)_{|\mathcal{G}}.$$

Proof. It is required to prove that, for all $B \in \mathcal{G}$,

$$\mathbb{Q}(B) = \mathbb{E}\big[\mathbb{E}[Z \mid \mathcal{G}] \, 1_B\big] \, .$$

But this follows at once from the law of iterated conditional expectations:

$$\mathbb{E}\big[\mathbb{E}[Z\mid\mathcal{G}]\,\mathbf{1}_B\big] = \mathbb{E}\big[\mathbb{E}[Z\mathbf{1}_B\mid\mathcal{G}]\big] = \mathbb{E}[Z\mathbf{1}_B] = \mathbb{Q}(B)\,.$$

Theorem 2. Let $\mathcal{G} \subseteq \mathcal{F}$ be any sub- σ -algebra. For any \mathcal{F} -measurable random variable X,

$$\mathbb{E}[Z \mid \mathcal{G}] \, \mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{G}] = \mathbb{E}[ZX \mid \mathcal{G}] \,.$$

That is,

$$\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)_{\mid\mathcal{G}} \mathbb{E}^{\mathbb{Q}}[X\mid\mathcal{G}] = \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}X\mid\mathcal{G}\right] \ .$$

Proof. Let $Y = \mathbb{E}[Z \mid \mathcal{G}]$, and $B \in \mathcal{G}$. We find:

$$\mathbb{E}^{\mathbb{Q}} \left[1_B \, \mathbb{E}[ZX \mid \mathcal{G}] \right] = \mathbb{E} \left[Y 1_B \, \mathbb{E}[ZX \mid \mathcal{G}] \right] \qquad \text{(since } d\mathbb{Q}_{\mid \mathcal{G}} = Y \, d\mathbb{P}_{\mid \mathcal{G}})$$

$$= \mathbb{E} \left[\mathbb{E}[Y 1_B \, ZX \mid \mathcal{G}] \right]$$

$$= \mathbb{E}[Y 1_B \, ZX]$$

$$= \mathbb{E}^{\mathbb{Q}}[Y 1_B \, X] \qquad \text{(since } d\mathbb{Q} = Z \, d\mathbb{P})$$

$$= \mathbb{E}^{\mathbb{Q}} \left[1_B \, \mathbb{E}^{\mathbb{Q}}[YX \mid \mathcal{G}] \right].$$

Since $B \in \mathcal{G}$ is arbitrary, we can equate the \mathcal{G} -measurable integrands:

$$\mathbb{E}[ZX \mid \mathcal{G}] = \mathbb{E}^{\mathbb{Q}}[YX \mid \mathcal{G}] = Y\mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{G}]. \qquad \Box$$

Observe that if $d\mathbb{Q}/d\mathbb{P} > 0$ almost surely, then

$$\mathbb{E}^{\mathbb{Q}}[X \mid \mathcal{G}] = \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}X \mid \mathcal{G}\right] / \left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)_{|\mathcal{G}|}.$$

Theorem 3. If X_t is a martingale with respect to \mathbb{Q} and some filtration $\{\mathcal{F}_t\}$, then X_tZ_t is a martingale with respect to \mathbb{P} and $\{\mathcal{F}_t\}$, where $Z_t = \mathbb{E}[Z \mid \mathcal{F}_t]$.

Proof. First observe that $X_t Z_t$ is indeed \mathcal{F}_t -measurable. Then, we can apply Theorem 2, with X in the statement of that theorem replaced by X_t , Z replaced by Z_t , \mathcal{F} replaced by \mathcal{F}_t , and \mathcal{G} replaced by \mathcal{F}_s ($s \leq t$), to obtain:

$$\mathbb{E}[X_t Z_t \mid \mathcal{F}_s] = Z_s \, \mathbb{E}^{\mathbb{Q}}[X_t \mid \mathcal{F}_s] = Z_s X_s \,,$$

thus proving that $X_t Z_t$ is a martingale under \mathbb{P} and $\{\mathcal{F}_t\}$.

Sometimes the random variables Z_t in Theorem 3 are written as $\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)_t$. (This is a Radon-Nikodym derivative *process*; note that Z_t defined as $Z_t = \mathbb{E}[Z \mid \mathcal{F}_t]$ is always a martingale under \mathbb{P} and $\{\mathcal{F}_t\}$.)

Under the hypothesis $Z_t > 0$, there is an alternate restatement of Theorem 3 that may be more easily remembered:

Theorem 4. Let $Z_t = (d\mathbb{Q}/d\mathbb{P})_t > 0$ almost surely. Then X_t is a martingale with respect to \mathbb{P} , if and only if X_t/Z_t is a martingale with respect to \mathbb{Q} .