Análise do FET para pequenos sinais Relatório 02 de ELT 311

Wérikson F. O. Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

Resumo

Este relatório abordará o efeito de pequenos sinais de entrada em circuitos JFET, na configuração Divisor de tensão. Assim, o objetivo principal é verificar a capacidade de amplificação de um circuito JFEET para essa configuração. Por fim, será apresentado os resultados obtidos pela simulação fazendo uma comparação com os resultados calculados.

Introdução

JFet é uma abreviação para Junction Field Efect Transistor, ou, traduzindo, transistor de junção por efeito de campo. O JFET utiliza materiais portadores de carga colocados perpendicularmente e em contato direto com seu canal para que se possa controlar a passagem de corrente elétrica.

Objetivos Gerais e Específicos

De forma geral o objetivo deste relatório será verificar a capacidade de amplificação de um circuito JFET com divisor de tensão, e ao final, fazendo uma comparação entre os valores calculados e os simulados.

Materiais e Métodos

- 01 Resistor de 100 k Ω ;
- 01 Resistor de 1,8 k Ω ;
- 01 Resistor de 3,3 k Ω ;
- 01 Resistor de 47 k Ω ;
- 03 Capacitores de 10 μ F;

- 01 Transistor BF245C;
- 01 Fonte de tensão CC ajustável;
- 01 Fonte de tensão CA ajustável;
- 01 Gerador de sinais;
- 01 Osciloscópio;
- 01 Multímetro digital.

Parte teórica

Dado o circuito da Figura 1, inicialmente, foi realizado uma analise teórica do circuito. Logo, para a analise cc, na qual os capacitores serão considerados como circuito aberto, aplica-se o divisor de tensão nas resistências R_1 e R_2 , dessa forma obtendo a tensão em cada um e a corrente que está passando pelo R_1 , logo:

Figura 1: JFET - Divisor de tensão

$$V_{R_1} = V_{DD} \frac{R_1}{R_1 + R_2} = 17,01 V \tag{1}$$

$$V_{R_2} = V_G = V_{DD} \frac{R_2}{R_1 + R_2} = 7,99 V$$
 (2)

$$I_{R_1} = \frac{V_{DD} - V_G}{R_1} = 170 \,\mu A \tag{3}$$

Em seguida, aplicando LKT na malha Terra-G-S-Terra e como $I_D \approx I_S$, obtém-se a Equação 4:

$$V_{GS} = V_G - V_S$$

$$V_{GS} = V_G - I_D R_S$$
(4)

Substituindo a Equação 4 na Equação de Shockley, fica-se com apenas uma variável, I_D . Logo, ao resolver a equação, conclui-se:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$I_{D} = I_{DSS} \left(1 - \frac{V_{G} - I_{D}R_{S}}{V_{P}} \right)^{2} = 3,29 \, mA \quad (5)$$

Agora, sabendo o valor de I_D e que $I_D \approx I_S$, pode-se encontrar o valor de V_{RS} :

$$V_S = V_{RS} = I_D R_S = 10,85 V \tag{6}$$

Aplicando o valor de I_D na Equação 4, tem-se:

$$V_{GS} = -2,86 V$$
 (7)

Agora, analisando a queda de tensão no resistor do Dreno e em seguida a diferença nas tensões entre os terminais de dreno e fonte, obtém-se:

$$V_D = V_{DD} - R_D I_D = 19,08 V \tag{8}$$

$$V_{DS} = V_D - V_S = 8,23 V (9)$$

Agora, para a analise do circuito em CA, ou seja, os capacitores sendo considerados como curto circuito e zerando a fonte cc tem-se:

$$Z_i = R_1 || R_2 \approx 31,97 \, k\Omega$$
 (10)

$$Z_o = R_D = 1.8 \, k\Omega \tag{11}$$

$$g_m = 2 \cdot \frac{I_{DSS}}{|V_P|} \cdot \left(1 - \frac{V_{GS}}{V_P}\right) = 2,093 \, mS$$
 (12)

$$A_v = -g_m R_D = -3,77 (13)$$

Parte prática

Para a analise CC, inicialmente foi simulado o circuito da Figura 2, desta forma, completando a tabela 1.

Figura 2: Circuito para analise CC.

Já para a analise CA, foi simulado o circuito da Figura 3,

Figura 3: Circuito para analise CA.

Com os valores obtidos, pode-se calcular o valor de A_v :

$$A_v = \frac{V_{o_p}}{V_{i_p}} = -3,76 \tag{14}$$

Depois, foi simulado o circuito completo da Figura 4, no modo CC e CA, preenchendo a tabela 2.

Figura 4: Simulação do circuito completo.

Com o valor de A_v , pode-se encontrar V_o para o circuito completo:

$$V_o = A_v \cdot V_{in} = 0,376 V \tag{15}$$

Resultados e Discussões

Para as simulações CC e CA foram preenchidas as tabelas 1 e 2, respectivamente. Além disto, nas tabelas, constam o erro relativo percentual entre os valores calculados e medidos.

Em seguida são apresentados os gráficos referentes aos sinais de entrada e saída, além dos sinais de tensão no ponto G e S. Para obter-se uma boa analise, os valores de pico utilizados foram aproximadamente no mesmo tempo, em todas elas.

Pelos resultados obtidos, pode-se concluir que a componente continua no dreno é igual a 19,1 V a qual corresponde exatamente com o valor de V_D para a simulação CC.

Tabela 1: Valores obtidos na analise CC.

	Valores\\ calculados	Valores\\ medidos	Erro (%)
$V_{R_1}(\mathbf{V})$	17,01	17,00	0
V_{R_2} (V)	7,99	7,99	0
$V_{RS}\left(\mathbf{V}\right)$	10,85	10,70	1
$V_{RD}\left(\mathbf{V}\right)$	5,92	5,86	1
$V_{GS}\left(\mathbf{V}\right)$	-2,86	-2,75	4
$V_D(\mathbf{V})$	19,08	19,10	0
$V_{DS}\left(\mathbf{V}\right)$	8,23	8,40	2
I_D (mA)	3,29	3,26	1
I_S (mA)	3,29	3,26	1
$I_{R_1} \mu A$	170	170	0

Tabela 2: Valores obtidos na analise CA.

Valores\\ Valores\\ Erro (Erro (%) medidos calculados $\overline{V_{in}\left(\mathbf{V}\right)}$ 0,10 0,1 0 $V_G(\mathbf{V})$ 8,00 8,09 1 V_S (V) 10,74 10,75 0

18,70

-0,45

2

20

19,08

-0,376

 $V_D(\mathbf{V})$

 $V_o\left(\mathbf{V}\right)$

Figura 5: Gráfico para Vin.

Figura 6: Gráfico para Vg.

Figura 7: Gráfico para Vs.

REFERÊNCIAS REFERÊNCIAS

Figura 8: Gráfico para Vo.

Conclusão

Pode-se perceber portanto que os valores calculados e medidos estão bem próximos, revelando que a analise utilizada durante o desenvolvimento está correta, portanto possuindo um erro muito baixo, como pode ser visto nas tabelas 1 e 2. Além disso pelos gráficos anteriores percebe-se que os sinais tendem a seguir o formato de uma senoide sem amortecimento, entretanto a o sinal de V_S possui um período de tempo maior e seus valores de pico variam um pouco com o passar do tempo.

Referências

[1] R. L. Boylestad and L. Nashelsky, *Dispositivos ele-trônicos e teoria de circuitos*, vol. 6. Prentice-Hall do Brasil, 1984.