Nanodegree Engenheiro de Machine Learning

Proposta de projeto final

Yuri Martins Campolongo 20 de março de 2018

Proposta

Histórico do assunto

Uma das grandes utilizações de machine learning nos últimos tempos, e que se mostra cada vez mais promissora é a interpretação de linguagem natural. Essa técnica se tornou muito útil e procurada nos últimos tempos devido ao grande aumento do uso de chatbots, que são robôs de atendimento que interpretam textos digitados pelo cliente, de maneira natural, para realizar a busca de possíveis soluções para aquele problema.

De acordo com grandes influenciadores do mercado de tecnologia como Mark Zuckerberg (Facebook) o autoatendimento trará mais eficácia das interações entre usuários e empresas, diminuindo o tempo de resposta e auxiliando clientes na resolução de problemas, essa definição foi dada por ele em 2016 durante um evento para desenvolvedores.

A motivação da criação de um algoritmo para a análise de linguagem natural surgiu pois atualmente trabalho em uma companhia que cria sistemas de atendimento para empresas, e após análise da área comercial, verifiquei que as dúvidas dos possíveis novos clientes que entram em contato via chat, podem ser classificadas e posteriormente ensinadas para um algoritmo de machine learning, que pode também utilizar essas classificações para exibir a melhor resposta, sem a necessidade de uma pessoa para responder dúvidas frequentes e recorrentes.

Descrição do problema

Será criado um dataset com uma amostra das dúvidas enviadas pelos clientes no chat, essas dúvidas são referentes a produtos vendidos pela companhia que trabalho portanto não são confidenciais. Cada dúvida terá uma classificação de um tipo exemplo: Dúvida sobre produto, dúvida sobre forma de pagamento, dúvida sobre personalização, etc. E será utilizado um algoritmo de classificação para aprender esse dataset e fornecer as previsões necessárias.

Conjunto de dados e entradas

Os dados de entrada serão obtidos de um arquivo .csv com duas colunas. Na primeira coluna existirá o texto da dúvida digitada pelo cliente e na segunda a classificação do tipo dessa dúvida.

Com esse arquivo, será possível realizar um tratamento e posteriormente utilizar essas informações em um algoritmo de classificação.

Descrição da solução

Será aplicado um tratamento nos textos da primeira coluna do dataset, afim de remover caracteres especiais, palavras sem significância e tratamento de palavras com flexão de gênero e número. Como um computador não trabalha bem com palavras, será aplicado um algoritmo de 'Saco de palavras' para indicar quantas vezes aquela palavra ocorre na frase, e isso será realizado no

dataset inteiro, sendo cada posição do array a representação de uma palavra específica. Após isso, esses dados traduzidos em números será enviado como entrada para o algoritmo de aprendizagem

Modelo de referência (Benchmark)

Os dados serão comparados com as respostas de um modelo de regressão logística, para comparar se a utilização de algoritmos bayesianos realmente são a melhor forma de tratar esse problema. A métrica para avaliação de acuracidade será utilizando o f1 score: isso nos dará uma porcentagem de acuracidade que indica se o algoritmo está conseguindo prever corretamente as corretas respostas para as dúvidas dos clientes.

Modelo de avaliação

A forma de avaliação de acuracidade, conforme citada no tópico anterior, será a comparação com as conversas de pessoas reais, indicando se o algoritmo foi capaz de prever corretamente o tipo de dúvida do cliente.

Design do projeto

O projeto seguirá a seguinte estratégia:

- Os textos serão tratados para remoção de palavras não importantes;
- O texto limpo será traduzido para a técnica de 'Bag of words'
- A classificação de cada texto no dataset já foi previamente feita;
- Será utilizado um algoritmo de classificação para a aprendizagem do dataset;
- O dataset será separado em dataset de treinamento e dataset de testes;
- A acuracidade será calculada pelo algoritmo f1 score;
- A importância do tratamento prévio do texto em algoritmos de linguagem natural é fundamental, visto que esse pré-processamento aumenta o score final do algoritmo, já que com menos palavras desnecessárias a capacidade de previsão do algoritmo será incrementada, pois podemos considerar essas palavras menos importantes como 'outliers' que poderiam atrapalhar e causar previsões incorretas. Esse processo será feito com técnicas de: remoção de pontuação, remoção de palavras de ligação, artigos e verbos não importante, alteração para letras maiúsculas apenas.
- Como um algoritmo de machine learning depende de entradas numéricas e não textuais, os textos após passarem pelo pré-processamento serão subemetidos a uma técnica chamada de 'Bag of words', que nada mais é do que iniciar um vetor em que cada posição representa uma palavra do dataset geral, e para cada texto de entrada, será contada quantas vezes uma determinada palavra ocorre naquele texto e esse numero será adicionado na posição que aquela palavra é representada no vetor, exemplo:

Textos: O curso de machine learning da Udacity é muito bom!

Processamento de linguagem natural é muito interessante.

Textos após tratamento: CURSO MACHINE LEARNING UDACITY MUITO BOM

PROCESSAMENTO LINGUAGEM NATUAL MUITO INTERESSANTE

O vetor do bag of words conterá 10 posições, pois temos ao total 10 palavras diferentes no exemplo, já que a palavra MUITO se repete 2x, assim sendo, segue a tabela de como ficará os vetores para os dois exemplos acima:

CUR	MACHI	LEARNI	UDACI	MUI	ВО	PROCESSAM	LINGUAG	NATUR	INTERESSA
SO	NE	NG	TY	TO	М	ENTO	EM	AL	NTE
1	1	1	1	1	1	0	0	0	0
0	0	0	0	1	0	1	1	1	1

Com o exemplo acima é possível ver que com essa técnica é possível utilizar um algoritmo de classificação que espera entradas numéricas.

- Avaliarei algoritmos de classificação do tipo Bayesianos, como: Naive Bayese, Gaussian Naive Bayes e Multinominal Naive Bayes. Escolhi esse tipo de algoritmo pois eles são amplamente utilizados para esse tipo de técnica, e tem a vantagem de serem rápidos, fáceis de treinar e tem uma boa performance. Alguns artigos disponíveis online mostram formas de como utilizá-los para o propósito em questão:

https://syncedreview.com/2017/07/17/applying-multinomial-naive-bayes-to-nlp-problems-a-practical-explanation/

https://medium.com/@theflyingmantis/text-classification-in-nlp-naive-bayes-a606bf419f8c

- Para avaliar qual tipo de algoritmo se sairá melhor, será utilizado o F1-score da biblioteca sklearn http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html , dessa forma é possível obter a qualidade de cada algoritmo e sua precisão no dataset de testes;