# Theory of Computation Homework 1

Hajar Mjoun (310755), Luis Romero Rodriguez (316129), Hadrien Saigot (296053), Antoine Carnice (310824), Jérémy Chaverot (315858)

March 2022

## 1 Exercice 1

We consider the following automaton, denoted  $\mathcal{M}_1$ :



Figure 1: Caption of the DFA  $\mathcal{M}_1$ 

We can describe  $\mathcal{M}_1$  formally by writing  $\mathcal{M}_1 = (Q, \Sigma, \delta, q_1, F)$ , where :

 $Q = \{q_1, q_2, q_3, q_4\}, \text{ the set of states}$ 

 $\Sigma = \{0, 1\}$ , the binary alphabet

 $F = \{q_4\}$ , the set of accepting states

 $q_1$  is the starting state

 $\delta\,:\,Q\,\times\,\Sigma\,\to\,Q,$  the transition function described as follows :

|       | 0     | 1     |
|-------|-------|-------|
| $q_1$ | $q_1$ | $q_2$ |
| $q_2$ | $q_3$ | $q_2$ |
| $q_3$ | $q_1$ | $q_4$ |
| $q_4$ | $q_3$ | $q_2$ |

Table 1:  $\mathcal{M}_1$  Transition function

After a few trials, the language  $\mathcal{L}(\mathcal{M}_1)$  recognized by the DFA seems to be :

$$\mathcal{L}(\mathcal{M}_1) = \{ w \in \Sigma^* \mid w \text{ ends on "101"} \}.$$

We denote an input string  $x \in \Sigma^*$ , and l its length. We prove by *induction* on l the following claim.

Claim If the input string x does not contain any "1" digits the  $\mathcal{M}_1$  finishes in  $q_1$ , if x ends on "00" and contains at least a "1" the  $\mathcal{M}_1$  finishes in  $q_1$ , if x ends on a "1" but does not contain "101" as a substring the  $\mathcal{M}_1$  finishes in  $q_2$ , if x ends on "10" the  $\mathcal{M}_1$  finishes in  $q_3$ , if x ends on a "1" after the last "101" substring the  $\mathcal{M}_1$  finishes in  $q_2$ , and finally if x ends on "101" the  $\mathcal{M}_1$  finishes in  $q_4$ . Note that these 6 cases are mutually exclusive and every input falls into one of the cases.

**Base case** If l = 0 then x is the empty string so it does not contain any "1" digits and indeed the  $\mathcal{M}_1$  finishes in  $q_1$  (the starting state) and the claim holds.

**Induction hypothesis** Suppose that the claims is true for all l < n, where n is an integer such that n > 0.

**Induction step** Let l = n and let x' be the first n - 1 digits of x. Since the length of x' is less than n, the induction hypothesis applies. We have 6 cases:

- 1. Suppose x' does not contain any "1" digits (by the induction hypothesis we are at  $q_1$ ) and consider the last input digit  $\sigma$ . If  $\sigma$  = "0", x does not contain any "1" digits either and indeed the  $\mathcal{M}_1$  stays at  $q_1$  and finishes. However if  $\sigma$  = "1", then x ends on a "1" but does not contain "101" as a substring and indeed the  $\mathcal{M}_1$  transitions to  $q_2$  and finishes.
- 2. Suppose x' ends on "00" and contains at least a "1" (so by the induction hypothesis we are at  $q_1$ ) and consider the last input digit  $\sigma$ . If  $\sigma$  = "0", x still ends on "00" and contains at least a "1" and indeed the  $\mathcal{M}_1$  stays at  $q_1$  and finishes. However if  $\sigma$  = "1", then x ends on a "1" and x can either contain or not "101" as a substring, in both cases the  $\mathcal{M}_1$  indeed transitions to  $q_2$  and finishes.

- 3. Suppose x' ends on a "1" but does not contain "101" as a substring (so by the induction hypothesis we are at  $q_2$ ) and consider the last input digit  $\sigma$ . If  $\sigma =$  "0", x ends on "10" and indeed the  $\mathcal{M}_1$  transitions to  $q_3$  and finishes. However if  $\sigma =$  "1", then x still ends on a "1" and does not contain "101" as a substring and indeed the  $\mathcal{M}_1$  stays at  $q_2$  and finishes.
- 4. Suppose x' ends on "10" (so by the induction hypothesis we are at  $q_3$ ) and consider the last input digit  $\sigma$ . If  $\sigma =$  "0", x ends on "00" and contains at least a "1" and indeed the  $\mathcal{M}_1$  transitions to  $q_1$  and finishes. However if  $\sigma =$  "1", then x ends on "101" and indeed the  $\mathcal{M}_1$  transitions to  $q_4$  and finishes.
- 5. Suppose x' ends on a "1" after the last "101" substring (so by the induction hypothesis we are at  $q_2$ ) and consider the last input digit  $\sigma$ . If  $\sigma$  = "0", x ends on "10" and indeed the  $\mathcal{M}_1$  transitions to  $q_3$  and finishes. However if  $\sigma$  = "1", then x still ends on a "1" after the last "101" substring and indeed the  $\mathcal{M}_1$  stays at  $q_2$  and finishes.
- 6. Suppose x' ends on "101" (so by the induction hypothesis we are at  $q_4$ ) and consider the last input digit  $\sigma$ . If  $\sigma =$  "0", x ends on "10" and indeed the  $\mathcal{M}_1$  transitions to  $q_3$  and finishes. However if  $\sigma =$  "1", then x ends on a "1" after the last "101" substring and indeed the  $\mathcal{M}_1$  transitions to  $q_2$  and finishes.

The hypothesis holds for l = n and this completes the proof.

## 2 Exercice 2

#### 2.1 Probleme 2a

For a language  $\mathcal{L} \subseteq \Sigma^*$ , we define its *triple* by :

$$\mathcal{L}^3 := \{www : w \in \mathcal{L}\}$$

Let us show that regular languages are *not* closed under tripling. For that matter, we consider the following DFA, denoted  $\mathcal{M}_2$ :



Figure 2: Caption of the DFA  $\mathcal{M}_2$ 

We can describe this automaton formally by writing  $\mathcal{M}_2 = (Q, \Sigma, \delta, q_0, F)$ ,

where:

 $Q = \{q_0, q_1, q_2\},$  the set of states

 $\Sigma = \{0, 1\}, \text{ the alphabet}$ 

 $F = \{q_1\},$  the set of accepting states

 $q_0$  is the starting state

 $\delta: Q \times \Sigma \to Q$ , the transition function described as follows:

|       | 0     | 1     |
|-------|-------|-------|
| $q_0$ | $q_0$ | $q_1$ |
| $q_1$ | $q_2$ | $q_2$ |
| $q_2$ | $q_2$ | $q_2$ |

Table 2:  $\mathcal{M}_2$  Transition function

Clearly,  $\mathcal{M}_2$  recognizes the language:

$$\mathcal{L}(\mathcal{M}_2) = \{0^n 1 \mid n \ge 0\},\,$$

and  $\mathcal{L}(\mathcal{M}_2)$  is regular.

Next we define the  $triple \mathcal{L}^3$ :

$$\mathcal{L}^3 = \{ www : w \in \mathcal{L}(\mathcal{M}_2) \} = \{ 0^n 10^n 10^n 1 | n \ge 0 \}.$$

Suppose, for the sake of contradiction, that  $\mathcal{L}^3$  is regular. Then we know that there must exist a positive integer p satisfying the premises of the pumping lemma.

We pick  $s := 0^p 10^p 10^p 1 \in \mathcal{L}^3$ . According to the pumping lemma, there exists a split s = xyz,  $|xy| \le p$ ,  $|y| \ge 1$ , such that for all  $i \ge 0$ ,  $xy^iz \in \mathcal{L}^3$ . Hence, we define  $y := 0^k$ ,  $1 \le k \le p$ . From the standpoint of the lemma,  $\tilde{s} := xy^2z \in \mathcal{L}^3$ , for i = 2. However, the string  $\tilde{s} = 0^{p+k} 10^p 10^p 1$  and for any  $k \in [1..p]$ ,  $\tilde{s}$  is not the 3-time concatenation of the same string anymore.

Thus a contradiction is unavoidable if we make the assumption that  $\mathcal{L}^3$  is regular, so  $\mathcal{L}^3$  is not regular. Quod Erat Demonstrandum.

### 2.2 Probleme 2b

Our purpose is to show that for a regular language  $\mathcal{L} \subseteq \Sigma^*$  over a unary alphabet, i.e.  $|\Sigma| = 1$ , the triple  $\mathcal{L}^3$  as previously defined is regular.

Let  $\mathcal{D}_1$  be a DFA such that :

$$\mathcal{D}_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$

accepting the language  $\mathcal{L}$  with  $|\Sigma|=1$ . In particular, we have :  $F_1=\cup_{i=1}^{|F_1|}F_{1,i}$ 

Let  $\mathcal{D}_{2,i}$  and  $\mathcal{D}_{3,i}$  be copies of the DFA  $\mathcal{D}_1$  such that :

$$\begin{split} \mathcal{D}_{2,i} &= (Q_{2,i}, \, \Sigma, \, \delta_{2,i}, \, q_{2,i}, \, F_{2,i}) \quad \text{and} \\ \mathcal{D}_{3,i} &= (Q_{3,i}, \, \Sigma, \, \delta_{3,i}, \, q_{3,i}, \, F_{3,i}) \quad \text{with} \quad i \in [\![1..|F_1|]\!] \end{split}$$

We modify every  $\mathcal{D}_{2,i}$  and  $\mathcal{D}_{3,i}$  such that the sets of accepting sets  $F_{2,i}$  and  $F_{3,i}$  contain only one accepting state  $f_{2,i}$  and  $f_{3,i}$  respectively, which corresponds to the *i*th final state.

Using the DFAs previously established, we create an NFA, denoted  $\mathcal{N},$  such that :

$$\mathcal{N} = (Q', \Sigma', \delta', q', F').$$

We describe each of its components:

$$Q' = Q_1 \cup \{\bigcup_{i=1}^{|F_1|} Q_{2,i}\} \cup \{\bigcup_{i=1}^{|F_1|} Q_{3,i}\}$$
 the states 
$$\Sigma' = \Sigma$$
 the unary alphabet 
$$q' = q_1$$
 the starting state 
$$F' = \bigcup_{i=1}^{|F_1|} F_{3,i}$$
 the set of accepting sets

$$\delta'(q,a) = \begin{cases} \delta_1(q,a), & \text{if } q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a), & \text{if } q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_{2,i}\}, & \text{if } q = f_{1,i} \text{ and } a = \epsilon \\ \delta_{2,i}(q,a), & \text{if } q \in Q_{2,i} \text{ and } q \notin F_{2,i} & \text{with } i \in [\![1..|F_1|]\!] \\ \delta_{2,i}(q,a), & \text{if } q \in F_{2,i} \text{ and } a \neq \epsilon \\ \delta_{2,i}(q,a) \cup \{q_{3,i}\}, & \text{if } q = f_{2,i} \text{ and } a = \epsilon \\ \delta_{3,i}(q,a), & \text{if } q \in Q_{3,i} \end{cases}$$

This completes our construction, and  $\mathcal{L}^3$  is regular over a *unary alphabet*. However, it is important to point out that all of this does not hold for any alphabet  $\Sigma$ , *cf.* probleme 2a.