INVESTIGAÇÃO OPERACIONAL

Programação Linear

Exercícios

Cap. IV - Modelo Dual

António Carlos Morais da Silva Professor de I.O.

IV. Modelo Problema Dual

1. Apresente o modelo Dual do seguinte problema Primal:

$$Min f(X) = x_1 + 2x_2$$

s.a.

$$3x_1 + 4x_2 \le 10$$

 $x_1, x_2 \ge 0$

2. Apresente o modelo Dual do seguinte problema Primal:

$$Max f(X) = x_1 + 2x_2$$

s.a.

3. Apresente o modelo Dual do seguinte problema Primal:

Min
$$f(X) = 5x_1 + 4x_2$$

s.a.

4. Apresente o modelo Dual do seguinte problema Primal:

Min
$$f(X) = 2x_1 + 3x_2 + 5x_3$$

s.a.

5. Apresente o modelo Dual do seguinte problema Primal:

Max
$$f(X) = x_1 - 3x_2 + 5x_3 - x_4$$

s.a.

$$3x_1 + 2x_2 - 4x_3 - 2x_4 \ge 12$$
 $- x_2 + 4x_4 = 10$
 $2x_1 + x_2 - 3x_3 \le 15$
 $x_1 \text{ livre}; x_2, x_3, x_4 \ge 0$

6. Considere o seguinte problema de PL:

$$Max f(X) = 6x_1 + 3x_2$$

s.a.

$$3x_1 + 5x_2 \le 30$$

 $4x_1 + 2x_2 \le 20$
 $x_1, x_2 \ge 0$

- a. Apresentar o modelo Dual.
- b. Sabendo que a base óptima do problema Primal é x₁ = 5 e F₁ = 15, calcular a solução óptima do problema
 Dual recorrendo exclusivamente às relações de complementaridade Primal-Dual.
- 7. Considere o seguinte problema de PL:

Min
$$f(X) = \frac{1}{2} x_1 + \frac{3}{2} x_2$$

s.a.

$$5x_1 + 4x_2 \ge 600$$
 $2x_1 + 4x_2 \ge 2400$
 $8x_1 \ge 600$
 $x_1, x_2 \ge 0$

- a. Apresentar o problema Dual.
- b. Calcular as soluções óptimas dos problemas Primal e Dual.
- c. Associar as duas soluções e verificar as relações de complementaridade Primal-Dual.
- 8. Considere o seguinte problema de PL:

$$Max f(X) = x_1 + 3x_2$$

s.a.

$$4x_1 + 2x_2 \le 10$$

 $x_1 + x_2 \ge 2$
 $x_1 \ge 0$, $x_2 \le 0$

- a. Apresentar o problema Dual.
- b. Calcular a solução óptima do problema Primal.
- c. Identificar no quadro-óptimo do problema Primal a solução óptima do problema Dual.

9. O modelo seguinte tem solução Ilimitada:

$$Max f(X) = 2x_1 + x_2$$

s.a.

$$x_2 \le 5$$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

- a. Verificar que o Problema Dual não tem solução (conjunto de soluções vazio).
- 10. O modelo seguinte não tem soluções (conjunto de soluções vazio):

$$Max f(X) = 3x_1 + 5x_2$$

s.a.

$$4x_1 + 4x_2 \le 20$$
 $7x_1 + 3x_2 \le 21$
 $x_1 \ge 5$
 $x_1, x_2 \ge 0$

- a. Verificar se o problema Dual não tem soluções ou tem solução Ilimitada.
- 11. O modelo seguinte não tem soluções (conjunto de soluções vazio):

$$Max f(X) = x_1 + 3x_2$$

s.a.

- a. Verificar se o problema Dual tem solução ilimitada ou não tem soluções (conjunto de soluções vazio).
- 12. Considere o seguinte problema de PL:

$$Max f(X) = x_1 + 2x_2$$

s.a.

- a. Calcular o valor óptimo das variáveis dos problemas Primal e Dual.
- b. Verificar as relações de complementaridade Primal-Dual.

13. Considere o seguinte problema de PL:

$$Min f(X) = 5x_1 + 4x_2$$

s.a.

- a. Calcular o valor óptimo das variáveis dos problemas Primal e Dual.
- b. Verificar as relações de complementaridade Primal-Dual.
- 14. Considere o seguinte problema de PL:

$$Max f(X) = x_1 + x_2$$

s.a.

- a. Calcular as soluções óptimas dos problemas Primal e Dual
- 15. Considere o seguinte problema de PL:

$$Max f(X) = 2x_1 + x_2$$

s.a.

- a. Calcular as soluções óptimas dos problemas Primal e Dual
- 16. Considere o seguinte problema de PL:

$$Max f(X) = x_1 + x_2$$

s.a.

a. Calcular as soluções óptimas dos problemas Primal e Dual

- 17. Definir cada uma das designações seguintes:
 - a. Variável Artificial
 - b. Solução Básica Admissível (SBA)
 - c. Variáveis de Decisão
 - d. Valor de uma variável de decisão do problema Dual
 - e. Restrição Não Saturada
 - f. Função Objectivo
 - g. Solução Óptima Admissível
 - h. Preço-sombra
 - i. Método Simplex
 - j. Variável de Folga
 - k. Forma-padrão
 - I. Variável Excedentária
 - m. Variáveis Básicas

As questões seguintes são todas do tipo Verdadeira/Falsa

- **18**. Se o problema Primal Minimiza f(X), o problema Dual Maximiza g(Y).
- 19. A função objectivo do problema Primal deve ser sempre do tipo MAX.
- **20.** Se uma restrição técnica do problema Primal não carece de variável de folga ou excedentária, para satisfazer a forma-padrão Simplex, a variável Dual associada é "Livre".
- 21. Se uma restrição técnica do problema Primal carece de uma variável de folga, para satisfazer a forma-padrão Simplex, a variável Dual associada será não negativa se o problema Primal Maximiza f(X) e não positiva se o problema Primal Minimiza f(X).
- 22. Se uma restrição técnica do problema Primal carece de uma variável excedentária, para satisfazer a formapadrão Simplex, a variável Dual associada será "Livre" quer no problema Primal se maximize ou minimize f(X).
- 23. Se no problema Primal há uma variável de decisão "Livre", a restrição técnica associada do problema Dual é uma equação.
- 24. O Dual do problema Dual é o problema Primal.
- 25. As restrições Duais, associadas a variáveis artificiais do problema Primal, são redundantes.
- **26.** A solução óptima do problema Primal (problema Dual) pode ser obtida por simples consulta do quadro óptimo do problema Dual (problema Primal).
- 27. Se o número de variáveis do problema Primal é muito menor do que o número de restrições, é mais rápido calcular a solução óptima resolvendo o problema Dual.
- 28. Conhecidas duas soluções admissíveis e não óptimas, sendo uma do problema Primal e outra do problema Dual, o valor da função objectivo do problema Primal nunca excede o valor da função objectivo do problema Dual, independentemente de qual dos problemas é de Maximização ou Minimização.
- **29.** A igualdade dos valores das funções-objectivo dos problemas Primal e Dual é a ÚNICA condição necessária para provar a optimalidade dos valores das variáveis dos dois problemas.
- **30.** O quadro Simplex para uma dada base pode ser inteiramente calculado desde que conhecido o modelo de PL associado.
- **31.** A alteração do vector-coluna dos recursos, pode afectar a regra de paragem no quadro óptimo do problema Dual.
- 32. A alteração do vector-coluna dos recursos, apenas pode afectar a admissibilidade da solução do problema Dual.
- **33.** A alteração de qualquer coeficiente do modelo de PL (excepto vector-recursos) só pode afectar a regra de paragem do método Simplex.

- **34.** Se uma variável é VNB da solução óptima, a alteração do seu coeficiente original em f(X) pode provocar a alteração da admissibilidade do valor da variável Dual associada.
- 35. Se uma variável é VB da solução óptima, o valor da variável Dual complementar é zero.
- **36.** Usando o método Simplex, enquanto não for atingido o óptimo do problema Primal , a solução do problema Dual não é admissível.
- 37. Se o problema Primal tem solução Ilimitada, o conjunto das soluções admissíveis do problema Dual é vazio.
- 38. Se o problema Primal é Impossível, o problema Dual tem sempre solução Ilimitada.
- **39.** Admitindo que o valor máximo de f(X) corresponde a lucro, este deve ser igual ao valor interno dos recursos utilizados.
- **40.** Sempre que uma dada actividade tem um custo interno superior ao respectivo lucro marginal, a variável de decisão associada tem valor óptimo nulo.
- 41. Considere o modelo de PL (input do software do autor):

Usando o método Simplex obtém-se o seguinte quadro óptimo:

٧B	X ₁	Х2	Хз	E ₁	E ₂	A ₁	A ₂	VSM
Хз	5	3/2	1	0	- 1/2	0	1/2	10
E ₁	5	0	0	1	-1	-1	1	5
f(X)	-5	- 13/2	0	0	- 1/2	0	1/2	10

Solução óptima do Dual:

$$y_1 = 0$$
; $y_2 = 1/2$; $y_3 = -5$; $y_4 = -13/2$
Max $q(Y^*) = 10$

INVESTIGAÇÃO OPERACIONAL

Programação Linear

Soluções dos Exercícios

Cap. IV - Modelo Dual

António Carlos Morais da Silva Professor de I.O.

1.
$$Max g(Y) = 10y_1$$

s.a.
$$3y_1 \le 1$$

 $4y_1 \le 2$
 $y_1 \le 0$

2. Min g(Y) =
$$7y_1 + 10y_2$$

s.a.
$$2y_1 + y_2 \ge 1$$

 $-3y_1 + 2y_2 \ge 2$
 $y_1, y_2 \ge 0$

3. Max
$$g(Y) = 18y_1 + 12y_2 + 16y_3$$

s.a.
$$6y_1 + 2y_2 + 2y_3 \le 5$$

 $3y_1 + 4y_2 + 8y_3 \le 4$
 $y_1, y_2, y_3 \ge 0$

4. Max
$$g(Y) = 7y_1 + 5y_2 + 8y_3$$

5. Min g(Y) =
$$12y_1 + 10y_2 + 15y_3$$

s.a.
$$3y_1$$
 + $2y_3$ = 1
 $2y_1$ - y_2 + y_3 \geq -3
 $-4y_1$ - $3y_3$ \geq 5
 $-2y_1$ + $4y_2$ \geq -1
 $y_1 \leq 0$; y_2 livre; $y_3 \geq 0$

6.

a.
$$Min g(Y) = 30y_1 + 20y_2$$

s.a.
$$3y_1 + 4y_2 \ge 6$$

 $5y_1 + 2y_2 \ge 3$
 $y_1, y_2 \ge 0$

b. Com os dados do problema é possível visualizar o seguinte extracto do quadro-óptimo do Problema Primal:

VB	x ₁	x_2	F_1	F_2	VSM
x ₁	1		0		5
F ₁	0		1		15
f(X)	0		0		30

 y_3 Conhecendo os valores de y_1 = y_3 = 0, podem calcular-se os valores de y_2 e y_4 resolvendo o sistema de equações da forma-padrão do Problema Dual:

Solução óptima do Problema Dual:

$$y_1 = 0$$
; $y_2 = 3/2$; $y_3 = 0$; $y_4 = 0$; Min $g(Y^*) = 30 = Max f(X^*)$

7.

a. Max
$$g(Y) = 600y_1 + 2400y_2 + 600y_3$$

s.a.
$$5y_1 + 2y_2 + 8y_3 \le 1/2$$

 $4y_1 + 4y_2 \le 3/2$
 $y_1, y_2 \ge 0$

b.

$$X^* = \begin{bmatrix} x_1 \\ x_2 \\ E_1 \\ E_2 \\ E_3 \end{bmatrix} = \begin{bmatrix} 1200 \\ 0 \\ 5400 \\ 0 \\ 9000 \end{bmatrix} \qquad Y^* = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/4 \\ 0 \\ 0 \\ \text{Max g}(Y^*) = 600 \\ \text{Max g}(Y^*) = 600 \end{bmatrix}$$

C.

Problema Primal				
	$x_1 = 1200$			
	(1ª V. Decisão)			
Variáveis	$E_1 = 5400$			
Básicas	(1ª V. Auxiliar)			
	E ₃ = 9000			
	(3ª V. Auxiliar)			
Variáveis	$x_2 = 0$			
Não Básicas	(2ª V. Decisão)			
	$E_2 = 0$			
	(2ª V. Auxiliar)			

Proble	Complementaridade		
	$y_4 = 0$	(1200)(0) = 0	
	(1 ^a V. Auxiliar)	(1200)(0) - 0	
Variáveis	$y_1 = 0$	(5400)(0) = 0	
Não Básicas	(1ª V. Decisão)	(3400)(0) = 0	
	$y_3 = 0$ (0000)(0)		
	(3ª V. Decisão)	(9000)(0) = 0	
Variáveis	$y_5 = 1/2$	(0)(1/2) 0	
Básicas	(2ª V. Auxiliar)	(0)(1/2)=0	
	y ₂ = 1/4	(0)(1/4) 0	
	(2ª V. Decisão)	(0)(1/4) = 0	

8.

a. Min g(Y) =
$$10y_1 + 2y_2$$

s.a. $4y_1 + y_2 \ge 1$
 $2y_1 + y_2 \le 3$

 $y_1 \ge 0 ; y_2 \le 0$

- **b.** Solução Óptima do problema Primal : $x_1 = \frac{5}{2}$; $x_2 = 0$; $F_1 = 0$; $E_2 = \frac{1}{2}$; Max $f(X^*) = \frac{5}{2}$
- **c.** Solução Óptima do problema Dual : $y_1 = {}^{1}/_{4}$; $y_2 = 0$; $y_3 = 0$; $y_4 = {}^{5}/_{2}$; Min $g(Y^*) = {}^{5}/_{2}$
- 9. O modelo Dual é:

Min g(Y) =
$$5y_1 + y_2$$

s.a. $-y_2 \ge 2$
 $y_1 + y_2 \ge 1$

 y_1 , $y_2 \ge 0$

Veja-se que a 1ª restrição técnica $y_2 \le -2$ é incompatível com a restrição lógica $y_2 \ge 0$ pelo que o conjunto de soluções do problema Dual é vazio. Assim sendo o problema Dual não tem solução admissível.

10. O modelo Dual é:

Min g(Y) =
$$20y_1 + 21y_2 + 5y_3$$

s.a. $4y_1 + 7y_2 + y_3 \ge 3$
 $4y_1 + 3y_2 + \ge 5$
 y_1 , $y_2 \ge 0$; $y_3 \le 0$

O 1º quadro Simplex do 2 º Passo é o seguinte:

	VB	y ₁	y_2	y´3	y_4	y ₅	y_1^a	y_2^a	VSM
_	y ₂	4/3	1	0	0	-1/3	0	1/3	5/3
	y´3	16/3	0	1	1	-7/3	-1	7/3	26/3
_	g(Y)	-56/3	0	0	-5	14/3	5	-14/3	-25/3

Deve entrar para a base a variável y₅, mas não há "ratio" finita não negativa pelo que a solução do problema Dual é Ilimitada.

11. Problema Dual tem solução Ilimitada.

12. a. b.

Proble	Problema Primal			
Variáveis	$x_2 = 5$			
Básicas	(2ª V. Decisão)			
	F ₁ = 22			
	(1ª V. Auxiliar)			
Variáveis	$x_1 = 0$			
Não Básicas	(1ª V. Decisão)			
	$F_2 = 0$			
	(2ª V. Auxiliar)			

Proble	Complementaridade	
	$y_4 = 0$ (2 ^a V. Auxiliar)	(5)(0) = 0
Variáveis Não Básicas	y ₁ = 0 (1 ^a V. Decisão)	(22)(0) = 0
Variáveis Básicas	$y_3 = 0$ (1 ^a V. Auxiliar)	(0)(0) = 0
	y ₂ = 1 (2ª V. Decisão)	(0)(1) = 0

Max
$$f(X^*) = 10 = Min g(Y^*) = 7y_1 + 10y_2$$

13. a.b.

Proble	Problema Primal		
	x ₁ = 2		
	(1ª V. Decisão)		
Variáveis	x ₂ = 2		
Básicas	(2ª V. Decisão)		
	E ₃ = 4		
	(3ª V. Auxiliar)		
Variáveis	E ₁ = 0		
Não Básicas	(1ª V. Auxiliar)		
	E ₂ = 0		
	(2ª V. Auxiliar)		

Proble	Complementaridade	
	y ₄ = 0	(2)(0) = 0
	(1ª V. Auxiliar)	(2)(0) = 0
Variáveis	$y_5 = 0$	(2)(0) = 0
Não Básicas	(2ª V. Auxiliar)	(2)(0) = 0
	y ₃ = 0	(4)(0) = 0
	(3ª V. Decisão)	(4)(0) = 0
Variáveis	$y_1 = 2/3$	(0)(2/3) = 0
Básicas	(1ª V. Decisão)	(0)(2/3) = 0
	y ₂ = 1/2	(0)(1/2) 0
	(2ª V. Decisão)	(0)(1/2) = 0

Min
$$f(X^*) = 18 = \text{Max } g(Y^*) = 18y_1 + 12y_2 + 16y_3$$

14.

Problema Primal: solução ilimitada

Se o problema Primal tem solução Ilimitada o problema Dual não tem soluções (conjunto de soluções vazio)

15.

Problema Dual : solução ilimitada

Se o problema Dual tem solução Ilimitada o problema Primal não tem soluções (conjunto de soluções vazio)

16.

Problema Primal:

As duas restrições técnicas são incompatíveis; o problema não tem soluções (conjunto de soluções vazio) Problema Dual:

$$Min g(Y) = -y_2$$

s.a.

$$y_1 + y_2 \ge 1$$

$$-y_1 - y_2 \ge 1$$
 ou seja $y_1 + y_2 \le -1$

$$y_1 \le 0 ; y_2 \ge 0$$

As duas restrições técnicas são incompatíveis; o problema não tem soluções (conjunto de soluções vazio)

17.

- a. Uma variável Artificial não tem qualquer significado físico, sendo apenas utilizada para construir uma solução inicial para aplicação do método Simplex quando o modelo de PL apresenta restrições dos tipos "=" e ">".
- b. Uma solução básica é a que está associada a um conjunto de vectores independentes do sistema de equações que formam uma matriz com determinante diferente de zero. Genericamente, num sistema de "m" equações lineares com "n" variáveis com "n > m", obtém-se uma solução básica quando "n-m" variáveis são consideradas nulas e o sistema é resolvido em ordem a "m" variáveis.
- c. São as variáveis do modelo de PL que o decisor pode controlar.
 Atinge-se uma solução óptima quando são calculados os valores das variáveis de decisão que optimizam o valor de uma função-objectivo.
- d. É o "preço-sombra" ou "valor marginal" de uma unidade do segundo membro da restrição técnica a que e associa a variável de decisão do problema Dual.
 - Tem sempre valor nulo para recursos associados a restrições não saturadas.
- e. Diz-se "não saturada" a restrição de um modelo de PL que não é satisfeita como igualdade.
- f. É uma função linear a Maximizar ou Minimizar no modelo de PL. Traduz o critério do decisor para apreciar soluções admissíveis.
- g. A solução do modelo de PL que Maximiza (minimiza) a função-objectivo.
- h. Valor marginal (preço interno) de uma unidade adicional do segundo membro da restrição técnica do problema Primal a que está associada a respectiva variável de decisão do problema Dual.
- i. Método algébrico para solucionar problemas de programação linear.
- j. Variável, com domínio não negativo, que é adicionada ao primeiro membro de uma restrição do tipo "≤" para converter a desigualdade numa igualdade. Em regra, o valor da variável de folga é interpretado como a quantidade de recurso que não é utilizado na solução óptima do problema.
- ${\bf k}.~$ Formulação do problema de PL em que :
 - as restrições técnicas são apresentadas como igualdades
 - os segundos membros das restrições têm valor não negativo
 - as variáveis do modelo têm domínio não negativo
- Variável, com domínio não negativo, que é subtraída ao primeiro membro de uma restrição do tipo "≥ " para converter a desigualdade numa igualdade.
- m. Variáveis em ordem às quais se resolve um sistema de equações lineares. Genericamente, num sistema de "m" equações lineares com "n" variáveis com "n > m", obtém-se uma solução básica quando "n-m" variáveis são consideradas nulas e o sistema é resolvido em ordem a "m" variáveis.

- 18. Verdadeira.
- 19. Falsa.
- **20.** Verdadeira. Se a restrição não carece de variável de equilíbrio é porque já é uma igualdade a que se associa uma variável de decisão Dual, livre (sem restrição de sinal).
- **21.** Verdadeira. Se a restrição carece de variável de folga é do tipo " ≤ ".

Se o Primal é maximizante, então a restrição é **típica** e a variável Dual associada é **típica** ($y \ge 0$). Se o Primal é minimizante, então a restrição é **não típica** e a variável Dual associada é **não típica** ($y \le 0$).

- 22. Falsa.
- 23. Verdadeira.
- 24. Verdadeira.
- 25. Verdadeira.
- 26. Verdadeira.
- 27. Verdadeira.
- **28.** Falsa. O problema que minimiza tem sempre a função objectivo com valor majorante do da função objectivo do problema que maximiza.
- 29. Falsa.
- 30. Verdadeira.
- 31. Verdadeira. Se a solução deixa de ser admissível, no problema Dual é afectada a regra de paragem do Simplex.
- **32.** Falsa. Ver a resposta anterior.
- 33. Falsa.
- **34.** Verdadeira. Pode alterar-se o seu coeficiente na equação de f(X) que é valor de uma variável Dual associada. Se dessa alteração resultar a violação da regra de paragem do Simplex então o valor da variável Dual deixa de ser admissível.
- **35.** Verdadeira (relação de complementaridade Primal-Dual).
- 36. Verdadeira.
- 37. Verdadeira.

38. Falsa.

Veja-se o exemplo seguinte:

O modelo Dual é:

Min g(Y) =
$$3/5 y_1 + 2y_2$$

s.a. $y_1 + y_2 \ge 8$
 $-y_1 - y_2 \ge 6$
 $y_1 \ge 0 ; y_2 \le 0$

Geometricamente pode ver-se que são vazios os conjuntos-solução do Primal e do Dual.

No quadro seguinte apresenta-se a relação entre os valores das funções-objectivo dos dois problemas:

		Problema Dual : Min g(Y)			
	_	Possível	Impossível		
Problema Primal	Possível	Max f(X) = Min g(Y)	Max f(X)= ilimitado		
Max f(X)	Impossível	Min g(Y) = ilimitado	Primal e Dual sem solução		

- 39. Verdadeira.
- 40. Verdadeira.
- **41.** Falsa. As variáveis auxiliares são utilizadas na forma-padrão do Simplex no pressuposto que o seu domínio é não negativo.

As variáveis $\mathbf{y_3}$ e $\mathbf{y_4}$ são variáveis auxiliares do problema Dual pelo que o seu valor é:

$$y_3 = 5$$
; $y_4 = 13/2$

Não esquecer que em Minimização a regra de paragem do Simplex é:

"na equação de f(X), todos os coeficientes, das variáveis da forma-padrão, são não positivos" pelo que o valor das <u>variáveis auxiliares do Dual</u> é sempre o valor absoluto dos coeficientes das variáveis de decisão na equação de f(X).