1. Multiple Access

- (a) 100 Mbps = 100000000 bps 2200 m / 2 * 10^8 m/s + 8 * 30 bit / 100000000 bps = 1.34 * 10^-5 s
- (b) Based on question a, propagation delay = $1.34 * 10^{-5} \text{ s}$ 250 bytes = 2000 bit Time_{transmit} = $2000 \text{ bit} / 100000000 \text{ bps} = 0.00002 \text{ s} = 2 * 10^{-5} \text{ s}$ Time_{backoff} = $1500 / 100000000 \text{ bps} = 1.5 * 10^{-5} \text{ s}$ Thus, total time: $1.34 * 10^{-5} \text{ s} + 2 * 10^{-5} \text{ s} + 1.34 * 10^{-5} \text{ s} = 4.68 * 10^{-5} \text{ s}$

2. Ethernet Timing

(a)

A does NOT finish transmitting the frame before it detects that there was a collision.

(c) $2200 \text{ m} / 2 * 10^8 \text{ m/s} + 8 * (30+30) \text{ bit} / 100000000 \text{ bps} = 1.58 * 10^-5 \text{ s}$

When B begins sending a frame, A has already sent 550 bit according to the propagation time. Total A. And A has to send total (1024 + 128) bit. According to the calculation below, 602 > 550. It means A does not finish transmitting. There is still (602-550 = 52) bit need to be sent when A detects that there was a collision.

$$1024 + 128 - 550 = 602 > 550$$

(b)

When A detects the collision, it has already transmitted the 128 bit preamble. So it stops transmitting the frame and sends a 64 bit jamming sequence.

When B detects the collision, it not finishes the 128bit preamble. So it finishes transmitting the 128 bit preamble and then sends a 64 bit jamming sequence. Also, the time B begins transmitting is at 0.055 ms.

```
128 + 64 = 192 \text{ bit}

192 \text{ bit} * (0.055 \text{ ms} / 550 \text{ bit}) = 0.0192 \text{ ms}

B: 0.0192 \text{ ms} + 0.055 \text{ ms} = 0.0742 \text{ ms}
```

(c)

After receiving all transmission, host hears an idle channel again. Based on question b, we get A: 0.0742 ms + 0.055 ms = 0.1292 ms B: 0.1164 ms + 0.055 ms = 0.1714 ms

(d)

Since each host next decides to retransmit immediately after hearing the channel idle, A retransmits at 0.1292 ms and B retransmits at 0.1714 ms.

Since 0.1292 + 0.055 = 0.1842 ms > 0.1714 ms, B detects collision before it retransmits. Since 0.1714 + 0.055 = 0.2264 ms and 0.2264 - 0.1292 = 0.0972 = 972 bit durations < 128 + 1024, A detects collision and finishes preamble. So at 0.2264 ms, A transmits 64 bit jamming sequence.

A:
$$Time_{B_start} + Time_{B_transmiting} + Time_{propagation}$$

 $0.1714 \text{ ms} + (128 \text{ bit} + 64 \text{ bit}) * (0.055 \text{ ms} / 550 \text{ bit}) + 0.055 \text{ ms} = \underline{0.2456 \text{ ms}}$

B:
$$Time_{A_start_jam} + Time_{A_ransmiting} + Time_{propagation}$$

0.2264 ms + (64 bit * (0.055 ms / 550 bit)) + 0.055ms = 0.2878 ms

(e) Success

Based on question d, A restarts at 0.2456 ms which means 2456 bit durations. B is at 2878 bit durations.

In e case, A restarts at

2456+1024 = 3480

and the time of transmission arrive A is

2878 + 550 = 3428

Since 3480>3428

It means before A retransmit, A knows B is transmitting. Then, A would not retransmit before channel becomes silent. So the transmission of host B is success.

(f) Based on question d, A hears sclience at 0.2456 ms. 0.2456 ms + 2 * 0.1024 ms + (128+1024) bit *(0.055 ms / 550 bit) = 0.5656 ms

3. Server Bandwidth

(a) Since each packet crosses the I/O bus twice and is written to and read from main memory once. (P&D, page268 line 5) We get

$$700$$
Mbps / $(2.4$ Mbps * 2) = 145

(b) Since half I/O bus speed is less than half memory bandwidth. The throughput is half I/O bus speed. And throughput = pps * (BitsPerPacket)

700 Mbps /
$$2 = 2200 * s$$
 Assume packet size is s bits.

$$=> 350 \text{ Mbps} = 2200 * \text{s}$$

(c) Since I/O bus speed is less than memory bandwidth, I/O bus becomes the limiting factor first. If memory bandwidth becomes the limiting factor, we get

1.2 Gbps /
$$2 = 2200 * s$$
 Assume packet size is s bits.

$$=> 6 * 10^8 bps = 2200 * s$$

$$=> s = 272727$$
 bit

4. Virtual Circuits

(a)
$$A \rightarrow D$$
, $A \rightarrow J$, $H \rightarrow C$, $E \rightarrow F$, $D \rightarrow B$, $B \rightarrow D$

VC Table Entry at Switch 1

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
1	0	3	0
1	0	0	0
0	1	3	0
3	2	2	0
2	1	3	1

VC Table Entry at Switch 2

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
1	0	3	0
1	0	2	0
3	1	1	2
1	1	3	1

VC Table Entry at Switch 3

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
1	0	2	0
3	0	0	0
2	1	1	1
1	1	2	1

VC Table Entry at Switch 4

Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
2	0	1	0
3	0	2	1

(b)

	Port0	Port1	Port2	Port3
S1	1	0	1	3
S2	0	1	1	2
S3	1	1	2	0
S4	0	1	1	0

(c) H \rightarrow C: 0 \rightarrow 1 \rightarrow 0 \rightarrow 0 (d) D \rightarrow B: 1 \rightarrow 1 \rightarrow 2 \rightarrow 0

5. Spanning Tree Algorithm for Intelligent Bridges

(a) Root: B1

Bridge	Port
1	-
3	Е
	A
4	F
5	A
6	D
7	D
8	Е
9	В

LAN	Designated Bridge
A	1
В	1
С	7
D	3
Е	5
F	6
G	9

(b) Mars → Jupiter : A, B, C, D, E, F, G Jupiter → Mars : C, D, F Venus → Jupiter : A, B, D, E, F, G