Online Technical Appendix for Fenton, Wyper, McCartney, Minton, 'Socioeconomic inequality in recent mortality trends in Scotland

Jon Minton

Introduction

This document describes all data, methods and code used to generate the results within the above-listed article.

All data are publically avaiable, and you are free to interrogate and use the code in your own analyses.

All data preparation, analyses, figures and tables were generated using the R programming language, with the exception of some initial data preparation done within Microsoft Excel. This data preparation only involved changing the structure of existing data within an Excel sheet, rather than the contents of such data.

Data

The data used are from this National Records of Scotland (NRS)) webpage. The dataset Latest tables based on 2013 ESP' (European Standardized Population) was downloaded in Excel format.

All analyses presented in the paper were based on table 7 of this Excel Workbook.

The contents of table 7 of the Workbook were rearranged so as to conform with data structure recommended by (Wickham, (2014) 'Tidy

Data')[https://www.jstatsoft.org/article/view/v059i10/v59i10.pdf], producing a new datasheet, called flat_data, which was imported directly into R. All further processing and analyses were conducted within R.

Workflow and results

The following code chunks perform the analyses which are presented in the paper.

Where additional information are required as to the methods, they are described adjacent to the code chunks.

Loading the required packages

```
pacman::p load(tidyverse, readxl, cowplot, kableExtra)
```

Note: pacman is an R package for managing R packages. It has to be installed once using install.packages ("pacman"), but once installed will either install or load other packages as required.

Load data

```
dta <- read_excel("data/ASMR_SIMD_2001_2017_indexed trends.xlsx", sheet =
"flat data")</pre>
```

Tidying the data

Visualising

This is one part of the first figure. The R package ggplot2 is used to produce this visualisation.

```
p1 <- dta tidy %>%
  ggplot(aes(x = year)) +
  facet wrap(~gender) +
  geom_line(aes(y = asmr, group = SIMD, linetype = SIMD, size = SIMD, color
= SIMD)) +
  scale_size_manual(values = c(1, 1.2, 1, 1.2, 1, 1.4)) +
  scale_linetype_manual(values = c(2,3,4,5,6,1)) +
  scale_color_manual(values = c("black", "grey", "black", "grey", "black",
"blue")) +
  labs(x = "Year", y = "Age Standardised mortality rate per 100 000") +
  scale y continuous(expand = c(0, 0), limits = c(0, 2500), minor breaks =
seq(0, 2500, by = 100)) +
  scale_x_continuous(minor_breaks = 2001:2017) +
  geom_vline(xintercept = \overline{2012}, linetype = "dashed") +
  geom vline(xintercept = 2006, linetype = "dashed") +
  annotate ("text", y = 100, x = 2006 + (2012 - 2006) / 2, label = "2006 to
2011") +
  annotate ("text", y = 100, x = 2012 + (2018 - 2012) / 2, label = "2012 to
2017") +
  geom ribbon (
```

```
aes(x = year, ymin = q5, ymax =q1),
alpha = 0.1, fill ="red",
data = dta_tidy %>% filter(simd %in% c("q1", "q5")) %>% select(-SIMD)
%>% spread(simd, asmr)
) +
background_grid(major = "xy", minor = "xy")
```

р1

The following chunk calculates the percentage change, from the earlier to latter period, in ASMR by gender and SIMD quintile.

```
percent_changes <- dta_tidy %>%
  mutate(period = case_when(
    between(year, 2012, 2017) ~ "2012-2017",
    between(year, 2006, 2011) ~ "2006-2011",
    TRUE ~ NA_character_) %>% factor(levels = c("2012-2017", "2006-2011")))
%>%
  group_by(gender, simd, period) %>%
  filter(year == min(year) | year == max(year) ) %>%
  filter(!is.na(period)) %>%
  group_by(gender, SIMD, period) %>%
  summarise(percent_change = - 100 * (1 - asmr[year == max(year)] /
asmr[year == min(year)])) %>%
```

```
ungroup()
## Warning: Factor `period` contains implicit NA, consider using
## `forcats::fct_explicit_na`
```

Note: The contents of percent_changes look as follows:

```
percent changes
```

Note: The code chunk above can be readily adapted to showing absolute change (for example), as follows

```
dta tidy %>%
  mutate(period = case when(
    between(year, 2012, 2017) ~ "2012-2017",
    between(year, 2006, 2011) ~ "2006-2011",
    TRUE ~ NA character ) \%% factor(levels = c("2012-2017", "2006-2011"))))
응>응
  group by (gender, simd, period) %>%
  filter(year == min(year) | year == max(year) ) %>%
  filter(!is.na(period)) %>%
  group by (gender, SIMD, period) %>%
  summarise(
   percent change = - 100 * (1 - asmr[year == max(year)] / asmr[year ==
min(year)]),
    absolute change = asmr[year==max(year)] - asmr[year == min(year)] #
additional line
   ) 응>응
  ungroup() %>% # indicative visualisation
  ggplot(aes(x = SIMD, y = absolute change)) +
  geom point() +
  facet grid(period~gender) +
  geom_hline(yintercept = 0) +
  theme (axis.text.x = element text(angle = 90))
## Warning: Factor `period` contains implicit NA, consider using
## `forcats::fct_explicit_na`
```


The following shows the second part of the figure in the paper

```
p2 <- percent changes %>%
    mutate(SIMD = factor(SIMD,
                        levels = c("Q.1 (Most deprived)",
                                   "Q.2", "Q.3", "Q.4", "Q.5 (Least
deprived)", "Overall"),
                        labels = c("Most", "Q2", "Q3", "Q4", "Least",
"Overall")
                        )
         ) %>%
  filter(SIMD != "Overall") %>%
  ggplot(aes(x = SIMD, y = percent_change, group = period, shape = period))
  facet_wrap( ~ gender) +
  geom\ point(size = 5) +
  stat smooth (method = "lm", se = F) + # This produces the blue line with
the regression slopes
  geom_hline(yintercept = 0) +
  geom_hline( # This adds the overall percent change
    aes (yintercept = percent change, group = period),
    data = percent_changes %>% filter(SIMD == "Overall"),
    linetype = "dashed"
  ) +
  theme(axis.text.x = element text(angle = 90)) +
  labs(y = "Percent change in \overline{ASMR} by period", x = "SIMD Quintile") +
  scale_shape_manual("Period", values = c(17, 16))
```


Combined figure

The following produces the combined figure comprising the two parts shown previously. The figure is rendered as a png format image at 300dpi, and placed in the directory 'figures'.

```
p_both <- plot_grid(p1, p2, labels = c("A", "B"), ncol = 1, align = "v")
p_both</pre>
```


ggsave("figures/combined_figure_2012.png", dpi = 300, units = "cm", height = 30, width = 30)

Table

The following shows how the contents of the table were produced.

These summarise a series of univariate linear regressions of SIMD quintile against precentage change in ASMR within distinct periods.

The columns intercept and gradient present summary information about point estimates and 95% confidence intervals for the intercept and gradient of the the regressions, which are then presented in the formatted table.

A functional programming approach was adopted in order to produce the same analyses consistently for different gender and period combinations, using functions within the (purrr package)[https://purrr.tidyverse.org/.

```
get_ci <- function(x) {
  tmp <- x %>% summary() %>% coefficients()
  return(
    list(
```

```
lower = tmp[,1] - 1.96 * tmp[,2],
      upper = tmp[,1] + 1.96 * tmp[,2]
  )
# Model parameters
tbl_1 <- percent changes %>%
  filter(SIMD != "Overall") %>%
 mutate(qnt = unclass(SIMD) - 1) %>% \# This is so the intercept refers to
the 1st quintile (not the 'zeroth' quintile)
 select(gender, period, percent change, qnt) %>%
  group by (gender, period) %>%
  nest() %>%
 mutate(mdl = map(data, ~lm(percent change ~ qnt, data = .x))) %>%
 mutate(`R. sq.` = map dbl(mdl, ~summary(.x)["r.squared"][[1]])) %>%
 mutate(gradient = map_dbl(mdl, ~coef(.x)["qnt"])) %>%
 mutate(intercept = map_dbl(mdl, ~coef(.x)["(Intercept)"])) %>%
 mutate(cis = map(mdl, get ci)) %>%
 mutate(
   int lower = map dbl(cis, ~.[["lower"]][1]),
   int upper = map dbl(cis, ~.[["upper"]][1]),
   grd_lower = map_dbl(cis, ~.[["lower"]][2]),
   grd upper = map dbl(cis, ~.[["upper"]][2])
  select (gender, period, `R. sq.`,
         gradient, grd lower, grd upper,
         intercept, int lower, int upper
  ) %>%
 mutate(
    gradient = paste0(
      format(round(gradient, 2), nsmall = 2),
      " (",
      format(round(grd lower, 2), nsmall = 2),
      ", ",
      format(round(grd_upper, 2), nsmall = 2),
   )
  ) %>%
 mutate(
    intercept = paste0(
      format(round(intercept, 2), nsmall = 2),
      " (",
      format(round(int lower, 2), nsmall = 2),
      format(round(int upper, 2), nsmall = 2),
   )
  ) 응>응
  select(-grd lower, -grd upper, -int lower, -int upper)
t.bl 1
tbl 2 <- percent_changes %>% spread(SIMD, percent_change)
tbl both <- inner join(tbl 2, tbl 1)
## Joining, by = c("gender", "period")
tbl both
```

The following converts the above table into a more neatly formatted table using the kable and kableExtra packages.

```
tbl_both %>%
   mutate(period = factor(period, levels = c("2006-2011", "2012-2017")))
%>%
   arrange(gender, period) %>%
   knitr::kable(
      digits = 2,
      caption = "Percent change in ASMR by gender, SIMD quintile, and period"
   ) %>%
   kableExtra::kable_styling() %>%
   kableExtra::add_header_above(c(" "," ", "Percentages" = 6, "Model
results" = 3)) %>%
   kableExtra::footnote("Overall: Whole of Scotland. R.Sq. : R-Squared for
model. Gradient: Increase in % change per unit increase in quintile.
Intercept: Predicted % change in most deprived quintile. For gradient and
intercept, values in parentheses show lower and upper 95% confidence
intervals of coefficients respectively.")
```

Percent change in ASMR by gender, SIMD quintile, and period

		Percentages						Model results		
gender	period	Q.1 (Most deprived)	Q.2	Q.3	Q.4	Q.5 (Least deprived)	Overall	R. gradient	intercept	
Female	2006- 2011	-7.21	-7.37	13.34	- 13.21	-7.81	-10.11	-0.70 (- 0.12 2.84, 1.44)	,	
Female	2012- 2017	0.69	-2.65	-2.96	-5.53	-7.79	-3.46	`	0.32 (- 0.80, 1.44)	
Male	2006- 2011	-9.81	- 11.57	- 10.94	- 12.35	-12.57	-11.82	*	-10.19 (- 11.09, - 9.29)	
Male	2012- 2017	2.11	-2.27	-2.78	-3.57	-4.44	-2.00	`	0.69 (- 1.29, 2.67)	
Total	2006- 2011	-8.56	-9.18	- 12.19	- 12.17	-9.04	-10.59	`	-9.44 (- 12.39, - 6.48)	
Total	2012- 2017	1.35	-2.32	-2.38	-4.61	-6.05	-2.59	-1.71 (- 0.93 2.25, - 1.17)	0.62 (- 0.70, 1.93)	

Note:

Overall:

Whole of

Scotland.

R.Sq. : R-

Squared for

model.

Gradient:

gender period (Most Q.2 Q.3 Q.4 (Least Overall deprived) R. gradient interced deprived)	Model results		
deprived) deprived)	pt		
Increase in			
% change			
per unit			
increase in			
quintile.			
Intercept:			
Predicted %			
change in			
most			
deprived			
quintile. For			
gradient and			
intercept,			
values in			
parentheses show lower			
and upper			
95%			
confidence			

Approach discussed in sensitivity analysis

intervals of coefficients respectively.

The sensitivity analysis to the paper showed the effect of using the fitted values for the first and last year in each of the periods, rather than the values themselves. This approach can address any concern that the first and last year within either period were in any way anomalous or uncharacteristic of change within the period as a whole.

The function broom::augment was used to extract fitted values for each year within each period, gender and SIMD combination. The fitted values, .fitted, were then used in place of the observed values, asmr, as in the main analyses.

```
mutate(mdl = map(data, ~lm(asmr ~ year, data = .x))) %>%
 mutate(aug = map(mdl, broom::augment)) %>%
  select(-data, -mdl) %>%
  unnest() %>%
 filter(!is.na(period)) %>%
  group by (gender, SIMD, period) %>%
  filter(year == min(year) | year == max(year) ) %>%
  summarise(percent change = - 100 * (1 - .fitted[year == max(year)] /
.fitted[year == min(year)])) %>%
 ungroup()
## Warning: Factor `period` contains implicit NA, consider using
## `forcats::fct explicit na`
## Warning: Factor `period` contains implicit NA, consider using
## `forcats::fct explicit na`
percent changes pred overall <- percent changes pred %>%
 group by (gender, period) %>%
  summarise(percent change = mean(percent change)) %>%
 ungroup() %>%
 mutate(SIMD = "Mean of quintiles") %>%
  select(gender, SIMD, period, percent change)
percent changes pred <- percent changes pred %>%
 bind rows (percent changes pred overall) %>%
 mutate(SIMD = factor(SIMD,
                       levels = c("Q.1 (Most deprived)",
                                  "Q.2", "Q.3", "Q.4", "Q.5 (Least
deprived) ", "Overall", "Mean of quintiles"),
                       labels = c("Most", "Q2", "Q3", "Q4", "Least",
"Overall", "Mean of quintiles")
## Warning in bind rows (x, .id): binding factor and character vector,
## coercing into character vector
## Warning in bind rows (x, .id): binding character and factor vector,
## coercing into character vector
```

The subfigure using this alternative stratgy is therefore produced as follows:

p2a

```
p2a <- percent_changes_pred %>%
  filter(!(SIMD %in% c("Overall", "Mean of quintiles"))) %>%
  ggplot(aes(x = SIMD, y = percent_change, group = period, shape = period))
+
  facet_wrap( ~ gender) +
  geom_point(size = 5) +
  stat_smooth(method = "lm", se = F) +
  geom_hline(yintercept = 0) +
  geom_hline(
    aes(yintercept = percent_change, group = period),
    data = percent_changes_pred %>% filter(SIMD == "Overall"),
    linetype = "dashed"
  ) +

theme(axis.text.x = element_text(angle = 90)) +
  labs(y = "Percent change in ASMR by period", x = "SIMD Quintile") +
  scale_shape_manual("Period", values = c(17, 16))
```


ggsave("figures/fig1a_using_alt_method_2012.png", dpi = 300, units = "cm",
height = 16, width = 30)

The table of the above, using this alternative modelling strategy, is produced using the code chunks below

```
get ci <- function(x){</pre>
  tmp <- x %>% summary() %>% coefficients()
  return (
        lower = tmp[,1] - 1.96 * tmp[,2],
        upper = tmp[,1] + 1.96 * tmp[,2]
  )
}
# Model parameters
tbl 1a <- percent_changes_pred %>%
  filter(!(SIMD %in% c("Overall", "Mean of quintiles"))) %>%
  \texttt{mutate}\,(\texttt{qnt}\,=\,\texttt{unclass}\,(\texttt{SIMD})\,\,\,\textbf{-}\,\,\texttt{1})\,\,\,\$\!>\!\$\,\,\#\,\,\texttt{This}\,\,\texttt{is}\,\,\texttt{so}\,\,\texttt{the}\,\,\texttt{intercept}\,\,\texttt{refers}\,\,\texttt{to}
the 1st quintile (not the 'zeroth' quintile)
  select(gender, period, percent_change, qnt) %>%
  group_by(gender, period) %>%
  nest() %>%
  mutate(mdl = map(data, ~lm(percent change ~ qnt, data = .x))) %>%
```

```
mutate(`R. sq.` = map dbl(mdl, ~summary(.x)["r.squared"][[1]])) %>%
 mutate(gradient = map_dbl(mdl, ~coef(.x)["qnt"])) %>%
mutate(intercept = map_dbl(mdl, ~coef(.x)["(Intercept)"])) %>%
  mutate(cis = map(mdl, get ci)) %>%
 mutate(
    int lower = map dbl(cis, ~.[["lower"]][1]),
    int upper = map_dbl(cis, ~.[["upper"]][1]),
    grd_lower = map_dbl(cis, ~.[["lower"]][2]),
    grd_upper = map_dbl(cis, ~.[["upper"]][2])
  select(gender, period, `R. sq.`,
         gradient, grd lower, grd upper,
         intercept, int lower, int upper
  ) %>%
 mutate(
    gradient = paste0(
      format(round(gradient, 2), nsmall = 2),
      " (",
      format(round(grd lower, 2), nsmall = 2),
      format(round(grd upper, 2), nsmall = 2),
    )
  ) 응>응
 mutate(
    intercept = paste0(
      format(round(intercept, 2), nsmall = 2),
      " (",
      format(round(int lower, 2), nsmall = 2),
      ", ",
      format(round(int upper, 2), nsmall = 2),
      ")"
    )
  ) 응>응
  select(-grd lower, -grd upper, -int lower, -int upper)
tbl 2a <- percent changes pred %>% filter(SIMD != "Mean of quintiles") %>%
spread(SIMD, percent change)
tbl both a <- inner join(tbl 2a, tbl 1a)
## Joining, by = c("gender", "period")
tbl both a
And the table using the alternative approach
tbl both a %>%
 mutate(period = factor(period, levels = c("2006-2011", "2012-2017")))
 arrange(gender, period) %>%
 knitr::kable(
    digits = 2,
    caption = "Percent change in ASMR by gender, SIMD quintile, and period.
(Alternative method)"
 ) 응>응
 kableExtra::kable styling() %>%
 kableExtra::add header above(c(" "," ", "Percentages" = 6, "Model
results" = 3)) %>%
 kableExtra::footnote("Overall: Whole of Scotland. R.Sq.: R-Squared for
```

model. Gradient: Increase in % change per unit increase in quintile.

Intercept: Predicted % change in most deprived quintile. For gradient and intercept, values in parentheses show lower and upper 95% confidence intervals of coefficients respectively.")

Percent change in ASMR by gender, SIMD quintile, and period. (Alternative method)

J		Percentages							Model results		
gender	period	Most	Q2	Q3	Q4	Least	Overall	R. sq.	gradient	intercept	
Female	2006- 2011	-7.35	-9.09	13.32	- 13.59	-9.76	-10.94		-0.93 (- 2.58, 0.72)	-8.76 (-	
Female	2012- 2017	1.60	-2.38	-0.75	-4.50	-7.60	-2.47	0.85	-2.05 (- 3.03, - 1.07)	1.38 (- 1.03, 3.78)	
Male	2006- 2011	- 11.90	- 13.14	- 12.62	- 13.06	12.40	-13.11	0.08	-0.09 (- 0.44, 0.26)	-12.44 (- 13.29, - 11.59)	
Male	2012- 2017	2.69	-1.92	-0.42	-5.06	-3.76	-1.40	0.71	-1.60 (- 2.78, - 0.43)	1.51 (- 1.36, 4.39)	
Total	2006- 2011	-9.63	10.73	- 12.82	- 12.76	10.45	-11.67	0.16	-0.37 (- 1.31, 0.58)	-10.55 (- 12.85, - 8.24)	
Total	2012- 2017	2.22	-1.85	-0.19	-4.54	-5.73	-1.72	0.83	-1.86 (- 2.80, - 0.92)	1.70 (- 0.60, 4.01)	

Note:

Overall: Whole of Scotland. R.Sq.: R-Squared for model. Gradient: Increase in % change per unit increase in quintile. Intercept: Predicted % change in most deprived quintile. For gradient and intercept, values in parentheses show lower and upper 95% confidence intervals of coefficients respectively.