CSC236 Exam Review

Notes from CSC236 Lecture 12

Alexander He Meng

Typed on November 27, 2024

Consider a program that takes an array of intervals intervals where intervals[i] = $[start_i, end_i]$ and returns an optimal schedule:

```
def optimalschedule(intervals):
2
      sort intervals by the end times
3
      S = []
      f = -infty
4
      for i in [1, ..., n]:
5
          if start_i >= f:
6
               S.append([start_i, end_i])
7
8
               f = end_i
9
      return S
```

Definitions, Notes, and Examples:

- An **optimal schedule** is a subarray of **intervals** in which all the intervals are non-overlapping, and the subarray has the maximum possible size.
- [1,2] and [2,3] are non-overlapping.
- There may be multiple optimal schedules for an arbitrary array of intervals.
- All optimal schedules have the same size.
- In general, intervals = $[[\mathtt{start}_1, \mathtt{end}_1], \ldots, [\mathtt{start}_n, \mathtt{end}_n]]$ for some $n \in \mathbb{N}^+$ and $\mathtt{start}_i, \mathtt{end}_i \in \mathbb{R}^+$.
- The length of intervals is at least 1 (intervals is non-empty).
- If S is the subarray (in the program) at the j^{th} iteration and there exists some optimal schedule Opt such that $[\mathtt{start}_i, \mathtt{end}_i] \in Opt \iff [\mathtt{start}_i, \mathtt{end}_i] \in S$, then S is looking good.
- Let S be the subarray on the j^{th} iteration of the program. Define the predicate, P(S): S is looking good.

Claim: something	
Proof. proofgoeshere	
Claim: something	
Proof. proofgoeshere	
Claim: something Proof.	
proofgoeshere	
Claim: something	
Proof. proofgoeshere	
Claim: something	

Proof.

proofgoeshere

Prove that $f(n) = \lceil \sqrt(n) \rceil - \lfloor \sqrt(n) - 4 \rfloor$ is asymptotically constant (i.e. $\Theta(1)$).

Proof.

By definition, if x and y are arbitrary real numbers, then

$$(x \le \lceil x \rceil < x + 1)$$

and

$$(y-1 < \lfloor y \rfloor \le y).$$

Rewrite the second inequality as $-y \le -\lfloor y \rfloor < -(y-1)$.

By adding the two inequalities, it follows that $x - y \le \lceil x \rceil - \lfloor y \rfloor < x + 1 - (y - 1) = x - y + 2$.

Let $x = \sqrt{n}$ and $y = \sqrt{n} - 4$, for arbitrary natural n.

Then,
$$\lceil x \rceil - \lfloor y \rfloor = \lceil \sqrt{n} \rceil - \lfloor \sqrt{n} - 4 \rfloor = f(n)$$
. As well, $x - y = \sqrt{n} - (\sqrt{n} - 4) = 4$.

This means $x - y \le \lceil x \rceil - \lfloor y \rfloor < x - y + 2 \implies 4 \le f(n) < 4 + 2 \implies 4 \le f(n) < 6$.

Let $n_0 = 0, c = 4, d = 6$. Let g(n) = 1.

Notice that $4 \le f(n) < 6 \implies cg(n) \le f(n) \le dg(n)$, for all $n \ge n_0 = 0$ with c = 4, d = 6.

Therefore, $f(n) \in \Theta(g(n)) \implies f(n) \in \Theta(1)$. Indeed, f(n) is asymptotically constant.

Steps to show that a DFA does not accept a language

- 1. Show that there exists $x, y \in \Sigma^*$ such that $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.
- 2. Show that there exists $z \in \Sigma^*$ such that $xz \in L \iff yz \notin L$.
- 3. Clarify the contradiction that $\hat{\delta}(q_0, xz) = \hat{\delta}(q_0, yz) \implies \hat{\delta}(q_0, xz) \in L$.

Prove that $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ is **not** a regular language.

Proof.

Assume, for contradiction, that $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ is regular. Then there exists a deterministic finite automata (DFA) $\mathcal{D} = \{Q, \Sigma, \delta, s, F\}$ that accepts L.

Let |Q| = k, where k is the number of states in \mathcal{D} .

Since L contains strings of the form a^{n^2} , choose $w = a^{j^2}$, where j is large enough such that $j^2 > k$. Clearly $w \in L$.

As the DFA processes w, which has $j^2 > k$ symbols, it must visit more states then there are in Q. By the Pigeonhole Principle, at least one state must repeat.

Namely, while processing w, there exist integers α and β such that:

$$\hat{\delta}(s, a^{\alpha}) = \hat{\delta}(s, a^{\alpha+\beta}),$$

where $\beta \geq 1$.

This means that after reading the first α symbols, the DFA enters some state q, and reading β additional symbols loops back to q.

Because \mathcal{D} accepts $w = a^{j^2}$, it follows that:

$$\hat{\delta}(s, a^{j^2}) \in L.$$

Now consider the strings $a^{j^2+\beta}$, $a^{j^2+2\beta}$, and so on. Since the DFA loops at state q, adding multiples of β symbols to w does not change the final state.

Therefore:

$$\hat{\delta}(s, a^{j^2+\beta}) \in L$$
 and $\hat{\delta}(s, a^{j^2+2\beta}) \in L$

Thus, the DFA also accepts these strings.

Recall that with k states processing the first k+1 symbols of w must cause a state to

repeat (the Pigeonhole Principle).

- Let α be the number of symbols leading up to the first occurrence of a repeated state q.
- Let β be the number of states causing the DFA to loop back to q.
- Let γ account for any remaining symbols to reach the end of $w = a^{j^2}$.

Thus, $j^2 = \alpha + \beta + \gamma$. Note that $\hat{\delta}(s, a^{\alpha}) = \hat{\delta}(q, a^{\beta}) = q$; denote this as Corollary 1.

It is now possible to show explicitly the strings which the DFA accepts.

Consider that:

$$\hat{\delta}(s, a^{j^2+\beta}) = \hat{\delta}(s, a^{(\alpha+\beta+\gamma)+\beta})$$

$$= \hat{\delta}(\hat{\delta}(s, a^{\alpha}), a^{\beta+\beta+\gamma})$$

$$= \hat{\delta}(q, a^{\beta+\beta+\gamma}), \text{ by } Corollary 1$$

$$= \hat{\delta}(\hat{\delta}(q, a^{\beta}), a^{\beta+\gamma})$$

$$= \hat{\delta}(q, a^{\beta+\gamma}), \text{ by } Corollary 1$$

$$= \hat{\delta}(\hat{\delta}(s, a^{\alpha}), a^{\beta+\gamma}), \text{ by } Corollary 1$$

$$= \hat{\delta}(s, a^{\alpha+\beta+\gamma})$$

$$= \hat{\delta}(s, a^{j^2})$$

This equivalence shows that \mathcal{D} accepts $w = a^{j^2+\beta}$. By continually applying Corollary 1 in the same argument, \mathcal{D} also accepts $a^{j^2+2\beta}$, $a^{j^2+3\beta}$.

However, notice that one of $a^{j^2+2\beta}$, $a^{j^2+3\beta}$ is not a square and, thus, not a member of L. Yet, \mathcal{D} accepts both strings. This is a contradiction.

Therefore, $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ must not be regular.

Here's an alternative proof using the **Pumping Lemma**.

Proof.

This proof demonstrates that $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ is not a regular language using the pumping lemma for regular languages.

The pumping lemma states that if L is a regular language, then there exists a pumping length $p \ge 1$ such that for all $w \in L$ where $|w| \ge p$, w can be written as $w = xyz \mid_{x,y,z \in \Sigma^*}$ satisfying:

$$|xy| \le p$$
, $|y| \ge 1$, and $xy^i z \in L$, for all $i \in \mathbb{N}$.

Assume for contradiction that L is regular. Let $p \ge 1$ be the pumping length given by the pumping lemma.

Choose $w = a^{p^2} \in L$. Notice that $|w| = p^2 \ge p$, so the conditions of the pumping lemma hold.

By the pumping lemma, w can be split into w = xyz such that:

- $|xy| \leq p$,
- $|y| \ge 1$,
- $xy^iz \in L$, for all $i \in \mathbb{N}$.

Since $|xy| \le p$, the string xy consists of at most p a's. Still, y consists entirely of a's, so write $y = a^k$ for some $k \ge 1$.

Now, consider i = 2. The pumped string xy^2z is:

$$xy^2z = xa^{2k}z.$$

The length of xy^2z is:

$$|xy^2z| = |x| + 2|y| + |z| = (|x| + |y| + |z|) + |y| = p^2 + k.$$

To remain in L, the length $p^2 + k$ must be a perfect square. However, there are specific

values leading to a contradiction. Let p=2, so $p^2=4$. Then:

$$w = a^4$$
 and $y = a^1$ (since $|y| \ge 1$).

Pumping y with i = 2, it follows that:

$$xy^2z = a^{4+1} = a^5.$$

The string a^5 is not in L, because 5 is not a perfect square.

This contradicts the pumping lemma, which requires $xy^iz \in L$ for all $i \geq 0$.

Therefore, L is not a regular language.

Prove that $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ is **not** a regular language.

Proof.

Seeking a contradiction, assume that L is a regular language. Then, by the definition of regular languages, there exists a deterministic finite automata (DFA) M with p states that accepts L.

Let $n \in \mathbb{N}$ such that n > p. Choose $w = 0^{n+300}1^{n+300}$.

Clearly, $w \in L$, so M accepts w. By the Pigeonhole Principle, since M has p states and processes w, some state in M must be repeated while reading the first n + 300 zeroes of w.

Let $x, y, z \in \Sigma^*$ be strings such that w = xyz, where:

- xy corresponds to the prefix of w up to the repeated state,
- $y \neq \varepsilon$ (i.e., y is the part of w causing the repetition),
- z is the remainder of w.

Thus, $w = 0^{n+300}1^{n+300}$, and $x = 0^a$, $y = 0^b$, $z = 0^c1^{n+300}$, where a+b+c = n+300 and b > 0.

Now, consider the string $w' = xy^2z$, which is obtained by repeating y once. Then:

$$w' = 0^a 0^{2b} 0^c 1^{n+300} = 0^{n+300+b} 1^{n+300}.$$

Clearly, $w' \notin L$ because the number of zeroes exceeds the number of ones (n + 300 + b > n + 300). This contradicts the assumption that M accepts L, as M would also accept w', which is not in L.

Hence, L is not a regular language.