#基于传统数学语言的形式化: PFB-GNLA 退化 × 词法KAT作用幺半群 × GRL路径积分中的"价值偏基准量与微分动力量子"

作者: GaoZheng日期: 2025-09-26

• 版本: v1.0.0

注:"O3理论/O3元数学理论/主纤维丛版广义非交换李代数(PFB-GNLA)"相关理论参见:作者(GaoZheng)网盘分享 或 作者(GaoZheng)开源项目 或 作者(GaoZheng)主页,欢迎访问!

摘要

介绍 Kleene Algebra with Tests (KAT)与相关闭包/半环结构在本项目中的角色:用以建模可验证控制流、停机点与合规模式。提供从数学结构到工程接口的映射规范,支撑规则检查、代价累积与策略约束的统一表达。

0. 结论(业务口径)

- 用主纤维丛 + 非交换李代数给"语义—算子—路径"的连续几何底座;
- 在退化 (离散化) 极限下落到词法KAT作用幺半群上的可计算算子模型;
- 用GRL路径积分刻画策略在算子序列上的价值;
- 价值基准向量是目标泛函对"算子权重/占用"的偏导;
- 微分动力量子是将该偏导经过步长/约束量化后的最小可执行增量(含非交换惩罚)。

1. 传统数学定义:主纤维丛版广义非交换李代数(PFB-GNLA)

1.1 主纤维丛 (Principal Fiber Bundle)

- 设 $\mathcal X$ 为光滑流形,G 为李群, $\pi:\mathcal P\to\mathcal X$ 为主 G-丛: $(\mathcal P,\mathcal X,G,\pi)$ 且右作用 $R_g:\mathcal P\to\mathcal P$ 自由且传递。
- **联络**: $\omega \in \Omega^1(\mathcal{P};\mathfrak{g})$ ($\mathfrak{g}=\mathrm{Lie}(G)$) ,满足Ad-协变与 $R_q^*\omega=\mathrm{Ad}_{g^{-1}}\omega$ 。

• 曲率: $\Omega = d\omega + \frac{1}{2}[\omega,\omega] \in \Omega^2(\mathcal{P};\mathfrak{g})$ 。

1.2 广义非交换李代数(Generalized Non-commutative Lie Algebra)

- 取一实 (或复) 拓扑李代数 $(\mathfrak{g}, [\cdot, \cdot])$; 允许为**分次/滤过**结构或巴拿赫李代数。
- 取一个 (可能非交换的) **算子代数** $\mathcal{A} \subseteq \operatorname{End}(V)$ (带乘法与对易括号), 并给出表象 $\rho:\mathfrak{g}\to\mathrm{Der}(\mathcal{A})$ (导子表示)。
- 记 $U(\mathfrak{g})$ 为包络代数,则 ρ 唯一延拓为 $\tilde{\rho}: U(\mathfrak{g}) \to \operatorname{End}(V)$ 。

PFB-GNLA 结构: $(\mathcal{P}, \mathcal{X}, G, \omega; \mathfrak{g}, \mathcal{A}, \rho)$.

1.3 退化 (Degeneration) 到离散可计算层

- 取符号字母表 Σ 与自由幺半群 (Σ*, ○, ε)。
- 定义退化表示

$$\Phi: \ \mathrm{U}(\mathfrak{g}) \ \longrightarrow \ \mathrm{End}(\Sigma^*),$$

将连续生成元经"局域近似/取样"映射为**离散算子**(定义见 §2),即 $\Phi(X) \in \{\mathbf{L}_h, \mathbf{R}_h, \mathbf{\Pi}_L, \mathbf{T}, \mathbf{Cl} \dots \}$.

• \overline{a} \underline{a} \underline{b} \underline{b} Ω 的曲率对应路径的**环路增量成本**(见 $\S4$ 的路径积分惩罚项)。

2. 传统数学定义:词法KAT作用幺半群(离散层)

2.1 底座与端算子

- 自由幺半群: (Σ*, ○, ε)。
- 端算子幺半群: $(\operatorname{End}(\Sigma^*), \circ_{\operatorname{func}}, \operatorname{id})$.
- 基本算子(生成集)
 - 。 左乘: $\mathbf{L}_h(s) = h \circ s$; 右乘: $\mathbf{R}_h(s) = s \circ h$ 。
 - 。 投影(幂等): 尾裁剪 Π_L , 首裁剪 \mathbf{Head}_L , $\Pi_L \circ \Pi_M = \Pi_{\min(L,M)}$ 。

 - 。 测试(idempotent tests): $\mathbf{T}_{L,\mathcal{C}}^{\mathrm{Suf}}, \mathbf{T}_{L,\mathcal{C}}^{\mathrm{Pref}}$ (命中留存,否则 \bot)。 闭包(命中即停): $\mathbf{Cl}_{U,L_p}^{\mathrm{Suf}}$ 、 $\mathbf{Cl}_U^{\mathrm{Pref}}$ (扩张、单调、幂等)。
 - 。 规范化: Dhead、CJK (幂等清洗)。

2.2 KAT 与加权结构

- 取布尔tests 的Kleene Algebra with Tests (KAT) 结构;
- 若引入权重半环 (S, \oplus, \otimes) (如 $[0,1], \max, \times$) ,则得**带权KAT**,"最长可用命中"对应 \oplus -择优,"IDF×隶属度×语义门控"对应 \otimes -乘。

命名:词法KAT作用幺半群 $\mathbb{M}_{\text{Lex-KAT}} := \langle \mathbf{L}, \mathbf{R}, \Pi, \mathbf{T}, \mathbf{Cl}, \dots \rangle \leq \text{End}(\Sigma^*)$ 。

3. GRL 路径积分 (传统概率论/测度论表述)

3.1 路径空间与策略测度

- 状态空间 S (含文本片段、窗口、预算等) ,动作空间 $A\subseteq \mathcal{G}$ (选算子) 。
- 路径 $\omega=(s_0,a_0,s_1,a_1,\dots)\in\Omega=(S\times A)^{\mathbb{N}}$ 。
- 策略 $\pi(a|s)$ 与转移核 $P(\cdot|s,a)$ 诱导到 $(\Omega,\mathcal{F},\mathbb{P}^{\pi})$ 。
- 折扣 $\gamma \in (0,1)$.

3.2 价值泛函 (路径积分语义)

• 单步收益分解:

$$r_t = S_t + \delta_t - C_t$$
,其中

 S_t 为语义质量项(相似度/覆盖等的函数),

 δ_t 为词法增益(U 上命中×语义门控×IDF/隶属度),

 C_t 为长度/预算/合规成本。

目标泛函:

$$\mathcal{J}(\pi) \,:=\, \mathbb{E}_{\mathbb{P}^\pi} \Big[\sum_{t=0}^\infty \gamma^t \, r_t \Big].$$

4. 价值基准向量: 传统梯度与占用测度

4.1 参数化与梯度定义

• 令 π_{α} 以参数 $\alpha=(\alpha_1,\ldots,\alpha_m,\alpha_{L_h},\alpha_{L_p})$ 控制**算子门控与窗口上限**。

• 定义 (梯度版):

$$v_i \ := \ rac{\partial \mathcal{J}(\pi_lpha)}{\partial lpha_i} \ \stackrel{ ext{PG}}{=} \ \mathbb{E}_{\mathbb{P}^{\pi_lpha}} \Big[\sum_{t \geq 0} \gamma^t \, A_t \, \partial_{lpha_i} \log \pi_lpha(a_t | s_t) \Big].$$

其中 A_t 为优势 (标准定义)。

4.2 占用测度版 (可审计)

• 定义算子占用 $\mu_i := \mathbb{E}_{\mathbb{P}^{\pi}}[\sum_t \gamma^t \mathbf{1}(a_t = G_i)];$ 则在"线性—响应"近似下

$$v_i \, pprox \, rac{\partial \mathcal{J}}{\partial \mu_i} \, = \, \mathbb{E}_{\mathbb{P}^\pi} \! \Big[\sum_t \gamma^t \, r_t \, \mathbf{1}(a_t = G_i) \Big].$$

• 对 L_h, L_p 同理得 v_{L_h}, v_{L_p} 。

定义(价值基准向量): $\mathbf{v}:=(v_1,\ldots,v_m,v_{L_h},v_{L_p})^{ op}$ 。

5. 微分动力量子: 量化增量的传统定义

5.1 量化算子

• 取允许步长集合 $\Lambda\subset\mathbb{R}$ (或盒形约束) ,定义量化算子

$$Q: \mathbb{R} o \Lambda, \quad Q(x) = ext{sgn}(x) \cdot \min\{|x|^eta, \ \eta\},$$

其中 $0 < \beta \le 1$ 、 $\eta > 0$ 控制次线性与上限。

5.2 非交换惩罚与最终定义

- 记算子对易子 $[G_i,G_j]:=G_i\circ G_j-G_j\circ G_i$,取一致算子范数 $\|\cdot\|$ 。
- 定义耦合惩罚 $p_i := \lambda_{\mathrm{comm}} \sum_j \|[G_i, G_j]\| \, \pi(a = G_j)$ 。
- 定义(微分动力量子):

$$\Delta_i \ := \ Q(v_i) \ - \ p_i$$

并投影回可行域: $\alpha_i \leftarrow \Pi_{\mathrm{adm}}(\alpha_i + \Delta_i)$ 。 对 L_h, L_p 做同样量化与投影(确保窗口与上限在业务阈内)。

6. PFB-GNLA → 离散层的严格映射(传统范畴性表述)

- $\Phi: \mathrm{U}(\mathfrak{g}) \to \mathrm{End}(\Sigma^*)$ 为代数同态;
- ω -平行输运沿曲线 $\gamma \subset \mathcal{X}$ 的 holonomy $\operatorname{Hol}_{\omega}(\gamma) \in G$ 经 $\Phi \circ \exp$ 诱导为**路径上算子权重更新**;
- 曲率 Ω 的 Wilson 环量 $\mathrm{Tr}(\mathrm{Hol}_{\omega}(\partial S))$ 对应**离散路径上的环路代价** (进入 C_t) ;
- 因此 \mathbf{v} 可看作共轭动量 $\xi \in \mathfrak{g}^*$ 在 Φ 下的坐标化影像, Δ 为在对易关系受限下的**离散最小步**。

7. 关键性质(陈述版)

- (闭包) $\mathbf{Cl}^{\mathrm{Suf}/\mathrm{Pref}}$ 在 (Σ^*,\preceq) 上扩张、幂等、单调。
- (投影带) $\{\Pi_L\}_L$ 与 $\{\mathbf{Head}_L\}_L$ 各自构成交换幂等半群 (与 (\mathbb{N}, \min) 同构)。
- (乘子) $\mathbf{L}_{h_1} \circ \mathbf{L}_{h_2} = \mathbf{L}_{h_1 \circ h_2}$, \mathbf{R} 类似 (右侧反序) 。
- (改进充分条件) 若 Q 的上界 η 与 λ_{comm} 选取使 $\sum_i v_i \Delta_i \geq \kappa \sum_i \Delta_i^2 \ (\c \kappa > 0) \ , \ \c \phi > 0 \ \c \phi$ 使小步长下 $\mathcal J$ 单调不减。

8. 最小可执行流程(可审计)

- 1. 离线/在线统计: μ_i, v_i (梯度或占用法) 。
- 2. 量化: $\Delta_i = Q(v_i) p_i$; 对 L_h, L_p 同理。
- 3. 投影与热更: $\alpha_i \leftarrow \Pi_{\text{adm}}(\alpha_i + \Delta_i)$, 更新窗口/上限。
- 4. 合规闸: tests 不通过即拒绝更新。
- 5. 监控: $\mathcal J$ 提升、 $word_noncompliance$ 下降、吞吐/显存稳定、日志回放 100%。

9. 一句话定位

用**主纤维丛 + 非交换李代数**给出连续可微的"语义力学",退化到**词法KAT作用幺半群**得到可计算的"算子代数",再以**GRL路径积分**评估收益—成本;其**价值基准向量**是"对每类算子的边际价值",**微分动力量子**

是"在非交换约束下最小可执行的结构增量"。这套形式化既可证明、可审计,又能直接驱动参数热更与线上治理。

许可声明 (License)

Copyright (C) 2025 GaoZheng

本文档采用知识共享-署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0)进行许可。