Data Mining and Machine Learning

Assignment Project Exam Help

Decision trees //powcoder.com
Add WeChat powcoder

D . T . Y • Y

Peter Jančovič

Outline of lecture

- Introduction to Decision Trees (DTs)
 - A third approach to partitioning data
 Assignment Project Exam Help
 Basic principles
 - Decision the issues wooder.com
 - -Types of dolestic or hat powcoder
 - -Automatic construction of DTs from data
 - Example from Speech Recognition: Phone **Decision Trees**

A simple binary decision tree

Binary decision trees

- A binary decision tree consists of:
 - A binary tree (non-terminal nodes have 2 'children')
 - For each node s: Assignment Project Exam Help
 - -A "yes/no" question q_s which can be applied to any data sample wooder.com
 - -A rule that d we chimtep own in order d is traversed if the answer to q_s is "YES" (then the other link is traversed if the answer is "NO")
- Questions need not be numerical

Binary decision trees

- The decision tree on the previous slide is a simple 'hand-crafted' example, but what if the data was in a much higher anmenti Braiece Example P
- How do we decide/the western to associate with each node of the tree?

 Add WeChat powcoder

 How do we know when the tree is complete?
- What are the alternatives to numerical questions?

Example from speech recognition

- In speech recognition a word is modelled as a sequence of phones: e.g. "six" = $\frac{s}{I}$ /I//k//s/
- Each phone is modelled as a statistical Hidden Markov Modelty HMW collachemodel has many parameters which must be estimated from data.
 Add WeChat powcoder
 In English there are approximately 45 phones
- Fundamental problem is "co-articulation" the acoustic signal corresponding to a particular phone depends on preceding and following phones

Example (continued)

- Positions of articulators when a phone is produced depend on positions before and after it is produced
- Context-sensitive phone modelling Assignment Project Exam Help
- Triphones separate phone model for each preceding and following phone (so the /I/fill's I k s would be a model of /I/ preceded by a spand followed by /k/
- Potentially huge model set $(45^3 = 91,125 \text{ models})$
- Phone decision trees combine contexts that result in similar coarticulation

Phone decision trees

- Collect very large set of acoustic patterns, each corresponding to a phone in context (triphones)
 - "Acoustic pattern", Project Exam Help of feature vectors that gapture the salient short-term properties of the speech signal

 Add WeChat powcoder

 Vectors are high-dimensional – typically ~40D
- This is a "big data" problem. Identifying contexts that induce similar coarticulation is a clustering problem.

Decision tree "questions"

- Each node associated with a "question"
- Knowledge from phonetics and linguistics defines a set of potential decision of the Enden 'puestions'
- For example: https://powcoder.com
 - Q: "Is the left context one of $\{/p/, /b/, /t/, /d/\}$?"
 - Q: "Is the right-context \{/m/\}?"
- Call these questions $q_1,...,q_N$

Phone decision tree construction

- Associate complete set of phones-in-context, S_0 , with root node
- Each question q, partitions S, into two subsets: Assignment Project Exam Help
 - The set S_{0nY} of samples for which q_n is true, and
 - The set S_{0nN} of samples for which q_n is false
- Intuitively, if Adds We good poweroder then:
 - Samples in $S_{\partial nY}$ will be similar to each other, and
 - Samples in S_{OnN} will be similar to each other
- Let $P_{0n} = P_{0nY} + P_{0nN}$ where P_{0nA} measures similarity between samples in S_{0nA} (A = Y or N)

Phone decision tree construction

- P_{OnY} could be a measure of how well S_{OnY} is modelled by a single Gaussian PDF
- CalculateAPsigfornewerProjecttExmap, Help
- Let q_0 be the question a for which P_{0n} is maximised

Repeat whole process for $S_{0,N}$ and $S_{0,Y}$, and so on

Phone decision tree construction

• Stop if too few samples in S_n , or benefit of splitting S_n is too small

Phone decision trees

- Separate HMM built for each terminal (leaf) node
- Given a new phone-in-context, negotiate the tree according to the answers to the questions until a terminal node is reached the corresponding model is the one to https://propercontext
- Phone decisiondresseillustrateutsvolemportant points:
 - Example of DT with non-numerical questions
 - Illustration of how DT can be constructed automatically from data

Summary

- Introduction to Decision Trees
- Decision Tree issues

 Assignment Project Exam Help
 Example: Phone decision Trees

https://powcoder.com

Add WeChat powcoder

