### **Lecture 6: Primality and Modular Arithmetic**

http://book.imt-decal.org, Ch. 3 (in progress)

**Introduction to Mathematical Thinking** 

October 15th, 2018

Suraj Rampure

#### **Announcements**

- Lecture is on Monday this week; Wednesday will be taking up the midterm
- Midterm solutions will be posted by then, midterm grades by the weekend
- Homework 6 out by Wednesday, due a week from today

Today: Introduction to Number Theory. Formalizing a lot of concepts we've seen over the past few weeks, and also introducing Modular Arithmetic. Textbook section isn't quite ready yet, but the slides are pretty comprehensive.

# **Division Algorithm**

$$X = 3K + Q$$

$$X = 3K + L$$

$$X = 3K + 2$$

If n,d are positive integers such that  $n \geq d$ , then it is possible to find non-negative integers q,r such that n=dq+r, where r < d. If r=0, we can say d|n.

# **Primality**



We say an integer n>1 is **prime** if its only factors are 1 and n. If n has factors other than 1 and itself, then we say it is **composite**. The number 1 is neither prime nor composite.

- As we saw in HW 5: there are infinitely many primes (no largest, but the smallest is 2)
- ullet To check if n is prime: we could check every integer from 2 to n-1... any easier way?

### **Fundamental Theorem of Arithmetic**

The fundamental theorem of arithmetic says two things:

- 1. Any integer greater than 1 can be written as a product of prime numbers
- 2. This prime factorization is unique



Example: What is the smallest number whose digits multiply to 10,000?

$$10^{4} = 2^{4} \cdot 5^{4}$$



the lowest common multiple between a, b.

 $24 = 2^{3}.3$ 

16 = 24.3°

 $= 7^3.3^{\circ} = \sqrt{8}$ Recall,  $\gcd(a,b)$  refers to the greatest common divisor between a,b and  $\operatorname{lcm}(a,b)$  refers to

gcd (16,24) = 2 mm (4,3) mm (0,1)

3 max (0, 1)

= 16.3=1481

Suppose we have  $a=p_1^{c_1}\cdot p_2^{c_2}\cdot\ldots\cdot p_n^{c_n}$  and  $b=p_1^{d_1}\cdot p_2^{d_2}\cdot\ldots\cdot p_n^{d_n}$ . Then:  $\gcd(a,b)=p_1^{min(c_1,d_1)}\cdot p_2^{min(c_2,d_2)}\cdot\ldots\cdot p_n^{min(c_n,d_n)}$ 30,71->3

 $\operatorname{lcm}(a,b) = p_1^{max(c_1,d_1)} \cdot p_2^{max(c_2,d_2)} \cdot ... \cdot p_n^{max(c_n,d_n)}$ 

gcd (a,b)=| — share no factors — relatively prine For example:  $a=1200=2^4\cdot 3\cdot 5^2$  and  $b=2520=2^3\cdot 3^2\cdot 5\cdot 7$ .

 $\gcd(1200,2520) = 2^{min(4,3)} \cdot 3^{min(1,2)} \cdot 5^{min(2,1)} \cdot 7^{min(0,1)} = 2^3 \cdot 3^1 \cdot 5^1 \cdot 7^0 = 120$ 

 $\mathrm{lcm}(1200, 2520) = 2^{\max(4,3)} \cdot 3^{\max(1,2)} \cdot 5^{\max(2,1)} \cdot 7^{\max(0,1)} = 2^4 \cdot 3^2 \cdot 5^2 \cdot 7^1 = 25200$ 

#### **Introduction to Modular Arithmetic**

Suppose the clock reads 5, and you want to know the time in 13 hours. You wouldn't say 18, you would say 6. When we deal with a clock, the only numbers we care about are  $\{0,1,2,3,4,...11\}$ .

Formally, we say  $a \pmod{m}$  is the remainder when a is divided by m. i.e. if a = dq + r, then  $a \pmod{d} = r$ 

 $a \pmod{d} \equiv r$ .

Another definition:

$$a \equiv b \pmod{m} \Rightarrow 2 \mid a - b \Rightarrow b = a + km, k \in S$$

 $a \equiv b \pmod{m}$  reads "a and b are equivalent, modulo m." This also means they have the same remainder when divided by m.

$$mod 5 : \{0,1,2,3,4\}$$

When dealing with numbers  $\mod m$ , the set of all integers can be reduced to one of the numbers  $\{0,1,2,...,m-1\}$ .

Suppose we have the number  $a \mod m$ . The following are all equivalent to a in modulo m:

$$\{..., a-2m, a-m, a, a+m, a+2m, ...\}$$

For example, all elements in the following set are equivalent to  $3 \pmod 5$ , and can thus be "reduced" to 3:

all have rem. 3 when 
$$\{...,-12,-7,-2,3,8,13,18,23,...\}$$
 divided by 5

- This implies that negative integers also have equivalences in modular arithmetic, e.g.  $-12 \equiv 3 \pmod 5$
- It is always true that  $n+k\equiv k\ (\mathrm{mod}\ n)$ ; we will use this often in simplifying arithmetic

### **Attendance**

https://tinyurl.com/larriors

# Arithmetic Operations in $\mod m$

Suppose we want to simplify  $13+14\cdot 6\ (\mathrm{mod}\ 5)$ . We could do the following:

$$13+14\cdot 6\equiv 13+84\equiv 97\equiv 2\ (\mathrm{mod}\ 5)$$

However, we could also simplify things first:

$$13+14\cdot 6\equiv 3+4\cdot 1\equiv 7\ (\mathrm{mod}\ 5)\equiv 2\ (\mathrm{mod}\ 5)$$

or even

$$13 + 14 \cdot 6 \equiv -2 + 4 \cdot 1 \equiv 2 \pmod{5}$$

$$m \mid a-b \rightarrow m \mid b-a$$

In general, we have that if  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then:

$$a+c\equiv b+d\ (\mathrm{mod}\ m)$$

If 
$$a \equiv b \pmod{m}$$

$$b+d=a+c+\underline{mk_1}+\underline{mk_2}=(a+c)+\underline{m(k_1+k_2)}$$

$$\Rightarrow b+d\equiv a+c\ (\mathrm{mod}\ m)$$

Proof of the first rule: 
$$b-a = mk_1$$
 If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then  $b = a + mk_1$  and  $d = c + mk_2$ . 
$$b+d = a+c+mk_1+mk_2 = (a+c)+m(k_1+k_2)$$
 
$$\Rightarrow b+d \equiv a+c \pmod{m}$$
 
$$b+d \equiv a+c \pmod{m}$$

$$15 = 3.5$$
 $-1,8,17,26,...$ 

Suppose we want to evaluate  $2^{15} \pmod{9}$ . We *could* find  $2^{15} = 32768$ , and divide this number by 9 and find the remainder, but there's a better way.

$$2^{15}=(2^3)^5$$

We can use the fact that  $2^3 \equiv 8 \equiv -1 \pmod{9}$ :

$$(2^3)^5 \equiv (-1)^5 \equiv -1 \equiv 8 \pmod 9$$

$$\equiv 8 \pmod{9}$$

$$1 = 2.5 + 1$$

$$5^{11} \pmod{26} \equiv (5^2)^5 \cdot 5 \equiv -5 \pmod{26} \equiv 2$$
 mad 26  $23^9 \pmod{24} \equiv (-1)^9 \equiv -1 \equiv 22 \pmod{24}$ 

# Exponentiation Technique: Repeated Squaring

Any integer can be written as the sum of powers of two (because any integer can be written in 24+23+21 binary).

Suppose we want to consider  $4^{26} \ (\mathrm{mod}\ 13)$ . We can write 26=16+8+2, implying that we can write  $4^{26}$  as  $4^{16} \cdot 4^8 \cdot 4^2$ 

$$4^1 \equiv 4 \pmod{13}$$

$$4^1 \equiv 4 \ (\mathrm{mod}\ 13)$$

$$4^2 = 16 = 3 \pmod{3}$$

$$4^2 \equiv 16 \equiv 3 \pmod{13}$$
 $4^8 \equiv (4^2)^4 \equiv 3^4 \equiv 81 \equiv 4 \pmod{13}$ 
 $4^{16} \equiv (4^8)^2 \equiv 4^2 \equiv 16 \pmod{13}$ 

**Example**: Prove  $11^n - 6$  is divisible by 5,  $\forall n \in \mathbb{N}$ .

Before: Done by induction.

Base Case: n = 1: 11 - 6 = 5, which is clearly divisible by 5.

Induction Hypothesis: Assume  $11^k-6$  is divisible by 5, for some arbitrary  $k\in\mathbb{N}$ 

Equivalently, we can say that  $5c=11^k-6$ , for some  $c\in\mathbb{N}$ .

Induction Step:

$$11^{k+1} - 6 = 11^k \cdot 11 - 6 = (5c+6) \cdot 11 - 6 = 5(11c+12)$$

$$\therefore 5 | 11^k - 6 \Rightarrow 5 | 11^{k+1} - 6$$
 Some integer

Now:

$$11^n - 6 \equiv 1^n - 6 \equiv 1 - 6 \equiv -5 \equiv 0 \pmod{5}$$

### **Division in Modular Arithmetic**

$$A^{-1}Ax = Ab$$
  
 $x = A^{-1}b$ 

In traditional, non-modular arithmetic, to solve the equation 3x = 14, we would multiply both sides by the multiplicative inverse of 3, i.e. "divide by 3":

$$3x = 14$$

$$3^{-1} \cdot 3x = 3^{-1} \cdot 14$$

The  $multiplicative\ inverse$  of any non-zero real number x is defined such that

$$x\cdot x^{-1}=1$$

In regular arithmetic, we have  $x^{-1}=\frac{1}{x}$ . However, with modular arithmetic, fractions no longer have meaning (remember, when dealing with numbers  $\mod m$ , the only numbers that exist are  $\{0,1,2,3,...,m-1\}$ ... there are no fractions in this list). Now what?

#### **Modular Inverses**

We say y is the modular inverse of x in mod m if

$$x \cdot y \equiv 1 \pmod{m}$$

3x=1 mod 5

This inverse may not necessarily exist, as we will see shortly.

For example: The inverse of 3 in  $mod\ 5$  is 2, because:

$$3 \cdot 2 \equiv 6 \equiv 1 \pmod{5}$$
  $2^{-1} \geqslant 3$  mod  $\int$ 

However, the inverse of 10 in  $\mathrm{mod}\ 12$  doesn't exist, because there is no solution to

$$10x \equiv 1 \pmod{12}$$

The problem of finding the inverse of a in  $\operatorname{mod} m$  reduces to finding integers x, y that satisfy the equation X = a mod m

$$ax + my = 1$$

This equation states that the product ax is 1 away from some multiple of y. If we were to take "mod m" on both sides, we would end up with  $ax \equiv 1 \pmod{m}$ . Here, x represents the inverse of a. 3=1-3=2 mod 5 3(-3)+5(2)=1

e.g. Inverse of 
$$3$$
 in  $mod 5$ :

$$3x + 5y = 1$$
  $3(2) + 5(-1) = 1 \Rightarrow 3^{-1} \equiv 2 \pmod{5}$ 

How can we find x, y? For small numbers, Guess and Check. In general – Euclid's Extended GCD Algorithm (will get practice with this on HW).

Inverse of 10 in mod 12:

$$10x + 12y = 1$$

But, since 10 and 12 share factors:

$$5x + 6y = \frac{1}{2}$$

We want integer solutions for x, y. However, this equation implies that the sum of two integers is a fraction! Not possible.

**Takeaway**: The inverse of a in mod m exists **iff** gcd(a, m) = 1. More formal proof of this in the homework.

Goal: Find integer solutions to ax + my = 1.

#### Euclid's GCD Algorithm:

```
def gcd(a, b):
    if b == 0:
        return a
    return gcd(b, a % b)
```

How can we use this to find x, y?

Will explore more on homework, and discussion next week.