Алгоритм 1 (Алгоритм Коэна—Сазерленда отсечения отрезка).

Bход: $[(x_1, y_1), (x_2, y_2)]$ — отсекаемый отрезок, $(x_{\min}, y_{\min}), (x_{\max}, y_{\max})$ — координаты левого нижнего и правого верхнего углов окна отсечения соответственно

Выход: false, если заданный отрезок полностью невидим, true, если у отрезка есть видимая часть, в этом случае в $[(x_1, y_1), (x_2, y_2)]$ будут содержаться координаты начала и конца видимой части отрезка

- 1. Определить C_1 и C_2 коды областей, в которые попали точки (x_1,y_1) и (x_2,y_2) соответственно:
 - (a) $C_1 = 0$;
 - (b) Если $x_1 < x_{\min}$, то C_1 увеличить на 1;
 - (c) Если $x_1 > x_{\text{max}}$, то C_1 увеличить на 2;
 - (d) Если $y_1 < y_{\min}$, то C_1 увеличить на 4;
 - (e) Если $y_1 > y_{\text{max}}$, то C_1 увеличить на 8;
 - (f) $C_2 = 0$;
 - (g) Если $x_2 < x_{\min}$, то C_2 увеличить на 1;
 - (h) Если $x_2 > x_{\text{max}}$, то C_2 увеличить на 2;
 - (i) Если $y_2 < y_{\min}$, то C_2 увеличить на 4;
 - (j) Если $y_2 > y_{\text{max}}$, то C_2 увеличить на 8;
- 2. Если $C_1 = C_2 = 0$ отрезок полностью видим: выдать **true** и закончить алгоритм.
- 3. Если $C_1\&C_2\neq 0$, то отрезок полностью невидим: выдать false и закончить алгоритм.
- 4. Если не выполняется ни 2, ни 3, то отрезок может быть частично видим. Если $C_1 = 0$ поменяем местами значения x_1 с x_2 , y_1 с y_2 , C_1 с C_2 . Теперь мы уверены, что $C_1 \neq 0$, т. к., в противном случае алгоритм должен был закончиться на шаге 2.
- 5. Найдем точку пересечения отрезка с одной из прямых, ограничивающих область видимости и перенесем туда точку (x_1, y_1) :
 - (a) Если $C_1 \& 1 \neq 0$, то

$$y_1 = y_2 - (x_2 - x_{\min}) \frac{y_2 - y_1}{x_2 - x_1}$$

 $x_1 = x_{\min}$

(b) Иначе, если $C_1 \& 2 \neq 0$, то

$$y_1 = y_2 - (x_2 - x_{\text{max}}) \frac{y_2 - y_1}{x_2 - x_1}$$

 $x_1 = x_{\text{max}}$

(c) Иначе, если $C_1 \& 4 \neq 0$, то

$$x_1 = x_2 - (y_2 - y_{\min}) \frac{x_2 - x_1}{y_2 - y_1}$$

 $y_1 = y_{\min}$

(d) Иначе, если $C_1 \& 8 \neq 0$, то

$$x_1 = x_2 - (y_2 - y_{\text{max}}) \frac{x_2 - x_1}{y_2 - y_1}$$

 $y_1 = y_{\text{max}}$

6. Перейти к шагу 1.