Dla grafów prostych p	rawdą jest, że		
• graf o ciągu stopni	(7,6,6,6,6,6,6,5) n	na 24 krawędzi.	
OPrawda	○Fałsz	ONie wiem	
każdy graf o ciągu	stopni $(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3$	2) jest spójny.	
OPrawda	○Fałsz	ONie wiem	
 jeżeli dwa grafy są są równe. 	izomorficzne, to minima	lne stopnie wierzchołków w c	bu grafach
○Prawda	○Fałsz	ONie wiem	
istnieje graf o ciągu	u stopni $(7, 6, 5, 4, 3, 3)$	3, 2, 2, 2, 2).	
○Prawda	○Fałsz	ONie wiem	
graf o ciągu stopni	(7, 4, 4, 4, 4, 4, 3, 3, 3	, 2, 2) jest półeulerowski.	
OPrawda	○Fałsz	ONie wiem	

Dane jest drzewo T o kodzie Prüfera (2,3,7,7,3,3,2). Wiemy, że

- ullet wierzchołek 2 ma największy stopień w T. ullet Prawda ullet Fałsz ullet Nie wiem
- T ma 8 krawędzi.
 OPrawda
 OFałsz
 ONie wiem
- ullet T zawiera cykl długości 4. ullet Prawda ullet Fałsz ullet Nie wiem
- $\begin{array}{ccc} \bullet & T \ {\sf zawiera} \ {\sf krawędź} \ \{2,3\}. \\ & \bigcirc {\sf Prawda} & \bigcirc {\sf Falsz} & \bigcirc {\sf Nie} \ {\sf wiem} \end{array}$

Nie wiem

ullet T ma dwa wierzchołki stopnia 2. ullet Prawda ullet Fałsz

(**Uwaga**: kolejne wiersze macierzy odpowiadają po kolei wierzchołkom $1,2,\ldots,7$.)

- Stopień wierzchołka 6 wynosi 4. OPrawda ○Fałsz ONie wiem
- Dopełnienie grafu G ma $\binom{7}{2} 9$ krawędzi.
- OPrawda **OFalsz**
- W dopełnieniu grafu G wierzchołki 2 i 4 są przyległe.
- OPrawda **OFalsz** ONie wiem
- G zawiera podgraf izomorficzny z cyklem C₅.
- OPrawda **OFalsz**
- G jest dwudzielny.
- Prawda

- Falsz
- ONie wiem

ONie wiem

ONie wiem

Dla powyższego grafu G prawdą jest, że • G jest 5-kolorowalny wierzchołkowo.

G jest 4-kolorowalny krawędziowo.

wierzchołkach.

OPrawda	○Fałsz	ONie wiem

- OPrawda OFałsz ONie wiem
- G ma dokładnie cztery wierzchołki cięcia.
 OPrawda OFałsz ONie wiem
- $oldsymbol{G}$ zawiera jako podgraf indukowany wierzchołkowo ścieżkę na sześciu
 - OPrawda OFałsz ONie wiem
- liczba jego składowych spójności jest równa 3.
 - OPrawda OFałsz ONie wiem

otrzymano drzewo BFS. Wówczas $\bullet \ \ \text{krawędź} \ CD \ \text{należy do drzewa BFS.}$ $\bigcirc \text{Prawda} \qquad \bigcirc \text{Fałsz} \qquad \bigcirc \text{Nie wiem}$

ONie wiem

Po zastosowaniu algorytmu BFS na poniższym grafie, rozpoczętego od wierzchołka C,

- krawędź FG zostanie dodana jako ostatnia do drzewa BFS.

 OPrawda OFałsz ONie wiem
- OPIAWOA OPAISZ ONIE WIEITI

każda krawędź cięcia tego grafu zostanie dodana do drzewa BFS.

OFalsz

w algorytmie BFS wierzchołki są przechowywane na stosie.

Prawda
 Fałsz
 Nie wiem
 w algorytmie BFS wierzchołki są przechowywane w kolejce.
 Prawda
 Fałsz
 Nie wiem

OPrawda

Link do grafu (w przypadku problemu z wyświetlaniem) geogebra.org/classic/bxqsy4ph

Graf G jest prostym, sp krawędziach. Wówczas		ym na $ u$ wierzchołkach i o 20
ullet jeżeli G nie zawiera	trójkątów, to ma co naj	mniej 12 wierzchołków.
OPrawda	○Fałsz	ONie wiem
• jeżeli G ma 10 wierz	zchołków, to każdy jego	graf płaski ma 10 ścian.
OPrawda	○Fałsz	ONie wiem
 jeżeli G ma 10 wierz wierzchołkach. 	zchołków, to każdy jego	o graf płaski ma graf dualny na 12
OPrawda	○Fałsz	ONie wiem
ullet jeżeli G ma 10 wierz	zchołków, to może zaw	ierać dwudzielny graf pełny $K_{5,3}$.
OPrawda	OFalsz	ONie wiem
$oldsymbol{G}$ ma co najmniej 9	wierzchołków.	
OPrawda	○Fałsz	ONie wiem

Wśród wszystkich nieizomorficznych grafów prostych o 7 wierzchołkach i 9
krawędziach i co najmniej jednym cyklu długości 7

krawędziach i co na	jmniej jednym cyklu długoś	ici 7
nie ma grafu dwu	udzielnego.	
OPrawda	○Fałsz	ONie wiem
 jest dokładnie jed 	den graf o ciągu stopni (4,	3, 3, 2, 2, 2, 2).
OPrawda	○Fałsz	ONie wiem
 jest graf półeuler 	owski.	
OPrawda	OFalsz	ONie wiem
 jest graf, który ni 	e jest grafem Hamiltona.	
OPrawda	OFalsz	ONie wiem
 jest graf regularn 	y.	
OPrawda	○Fałsz	ONie wiem

Dla każdego grafu pro	stego G prawdą jest, że	
 jeśli G jest lasem o czternastu drzew. 	33 wierzchołkach i 19	krawędziach, to G składa się z dokładnie
OPrawda	○Fałsz	ONie wiem
 jeśli G jest nietryw nie są wierzchołkar 		iada co najmniej dwa wierzchołki, które
OPrawda	○Fałsz	ONie wiem
• jeżeli $k \geq 1, G$ jes drzewem.	t spójny i ma k wierzcho	ołków i $k-1$ krawędzi, to G jest
OPrawda	○Fałsz	ONie wiem
	spójnym, który zawiera kładnie 19 drzew rozpię	dokładnie jeden cykl i ma on długość 20 , tych.
OPrawda	○Fałsz	ONie wiem
 jeśli G jest lasem o dokładnie 1 cykl. 	6 drzewach, to po doda	aniu do G jednej krawędzi powstanie
OPrawda	○Fałsz	ONie wiem

Graf G jest grafem pełnym dwudzielnym o dwupodziale zbioru wierzchołków na zbiory
$V = \{v_1, v_2, \ldots, v_8, v_9\}$ i $U = \{u_1, u_2, \ldots, u_{10}\}$. Wówczas
ullet graf G jest hamiltonowski.

OPrawda	○Fałsz	ONie wiem

OPrawda OFałsz ONie wiem

graf G zawiera obchód Eulera.

- żeby pokazać, że graf G nie jest półeulerowski wystarczy zauważyć, że $d_G(u_1)=9.$ OPrawda OFałsz ONie wiem
- ullet graf $G-v_1$ jest półeulerowski. $igtharpoonup ext{Fałsz}$ $igtharpoonup ext{Nie wiem}$
- jeśli e jest krawędzią i $e=\{v_1,u_{10}\}$, to graf G-e jest półhamiltonowski.
 - OPrawda OFałsz ONie wiem

Po zastosowaniu algorytmu Kruskala znajdującego optymalne drzewo rozpięte (o minimalnej wadze) dla grafu na zbiorze wierzchołków i o macierzy wag 11 6 5 4 ∞ 00 7 17 12 4 3 ∞ 00 21 13 11 18 ∞ 00 00 21 19 3 4 5 00 00 00 6 13 14 ∞ ∞ ∞ ∞ ∞ 5 17 5 2 23 ∞ ∞ ∞ 4 12 13 19 14 ∞ ∞ 7 3 18 3 23 13 00 ∞ otrzymano drzewo T. (Uwaga: W przypadku krawędzi o tych samych wagach umawiamy się, że najpierw rozpatrujemy te, której waga jest pierwsza w ciągu utworzonym z elementów nad główną przekątną biorąc je kolejno z wierszy od górnego począwszy.) Wówczas: suma wag krawędzi drzewa T to 30. OPrawda **OFalsz** ONie wiem odrzucimy wszystkie krawędzie o wadze 7. OPrawda **OFalsz** ONie wiem drzewo T jest ścieżką. OPrawda **OFalsz** ONie wiem ostatnia zaakceptowana krawędź ma wagę 12. **OPrawda OFalsz** Nie wiem suma wag krawędzi drzewa T to 34.

○Falsz

ONie wiem

OPrawda