學號: B06901020 系級: 電機二 姓名: 張恆瑞

1. (2%) 請說明你實作的 CNN model, 其模型架構、訓練參數和準確率為何? 並請用與上述 CNN 接近的參數量, 實做簡單的 DNN model, 同時也說明其模型架構、訓練參數和準確率為何? 並說明你觀察到了什麼?

答: 我使用的 CNN model 和助教給的 sample code 是幾乎一樣的,只是多加了一些 batch normalization 和 dropout 層,很明顯 CNN 的在影像分類上表現比簡單 DNN 好很多。 後來,我將三個相同架構但利用不同程度 data augmentation 來訓練的 CNN model 做 ensemble 得到比原本更高的準確率,使得在 public 和 private 得到 68.8%和 67.5%的準確率。

模型	CNN model	DNN model	
架構	nn.Conv2d(1, 64, 4, 2, 1),	nn.Linear(48 * 48, 1024),	
	nn.BatchNorm2d(64),	nn.BatchNorm1d(1024),	
	nn.LeakyReLU(0.2),	nn.LeakyReLU(0.2),	
	nn.Conv2d(64, 64, 3, 1, 1),	nn.Dropout(p=0.5),	
	nn.BatchNorm2d(64),	nn.Linear(1024, 1024),	
	nn.LeakyReLU(0.2),	nn.BatchNorm1d(1024),	
	nn.MaxPool2d(2, 2, 0),	nn.LeakyReLU(0.2),	
	nn.Dropout2d(p=0.25),	nn.Dropout(p=0.5), nn.Linear(1024, 512),	
	nn.Conv2d(64, 128, 3, 1, 1),	nn.BatchNorm1d(512),	
	nn.BatchNorm2d(128),	nn.LeakyReLU(0.2),	
	nn.LeakyReLU(0.2),	nn.Dropout($p=0.5$),	
	nn.Conv2d(128, 128, 3, 1, 1),	nn.Linear(512, 256),	
	nn.BatchNorm2d(128),	nn.BatchNorm1d(256),	
	nn.LeakyReLU(0.2),	nn.LeakyReLU(0.2),	
	nn.MaxPool2d(2, 2, 0),	nn.Dropout(p=0.5),	
	nn.Dropout2d(p=0.25),	nn.Linear(256, 128),	
		nn.BatchNorm1d(128),	
	nn.Conv2d(128, 256, 3, 1, 1),	nn.LeakyReLU(0.2),	
	nn.BatchNorm2d(256),	nn.Dropout(p=0.5),	
	nn.LeakyReLU(0.2),	nn.Linear(128, 7)	
	nn.Conv2d(256, 256, 3, 1, 1),		
	nn.BatchNorm2d(256),		
	nn.LeakyReLU(0.2),		
	nn.MaxPool2d(2, 2, 0),		
	nn.Dropout2d(p=0.25)		
	nn.Linear(256*3*3, 1024),		
	nn.BatchNorm1d(1024),		
	nn.LeakyReLU(0.2),		
	nn.Dropout(p=0.5),		
	nn.Linear(1024, 512),		
	nn.BatchNorm1d(512),		
	nn.LeakyReLU(0.2),		
	nn.Dropout(p=0.5),		
	nn.Linear(512, 7)		
參數量	4038279	4105735	
/al acc	0.67816	0.50888	
Public	0.66926	0.49010	
Private	0.65338	0.49317	

2. (1%) 承上題,請分別畫出這兩個 model 的訓練過程 (i.e., loss/accuracy v.s. epoch)

答:以下兩張圖為 training 的準確率變化,可以觀察出 DNN 始終無法達到 CNN 的準確率。

3. (1%) 請嘗試 data normalization, data augmentation,說明實作方法並且說明實行前後對準確率 有什麼樣的影響?

答: 我利用不同的線性變換自己實作了四種 data augmentation,包括鏡射、旋轉、縮放、斜向伸縮,使得訓練資料變成原本的 5 倍。觀察使用 data normalization 和 data augmentation 後的準確率,可以發現有用 data augmentation 後的準確率有大幅提升,但 data normalization 的幫助相對很小。下表為將 puplic 和 private 準確率做平均之後的結果。

	沒有 normalization	有 normalization
沒有 augmentation	0.62218	0.62287
有 augmentation	0.65826	0.66132

4. (1%) 觀察答錯的圖片中, 哪些 class 彼此間容易用混? [繪出 confusion matrix 分析]

答: 藉由 confusion matrix 可以看出, angry 和 hate 較容易被搞混, 理由也很簡單, 這兩類表情都表現出夾雜厭惡與不悦的樣子, 所以被搞混是可以理解的。

