第四章: 线性模型

目录

- □ 线性回归
 - 最小二乘法
- □ 二分类任务
 - 对数几率回归
 - 线性判别分析
- □ 多分类任务
 - \(\sqrt{3} \)—
 - 一对其余
 - 多对多
- □ 类别不平衡问题

基本形式

□ 线性模型一般形式

$$f(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

 $\mathbf{x}=(x_1;x_2;\ldots;x_d)$ 是由特征描述的样本,其中 x_i 是 \mathbf{x} 在第i个特征上的取值

□向量形式

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

其中 $\boldsymbol{w} = (w_1; w_2; \dots; w_d)$

线性模型优点

- □形式简单、易于建模
- □可解释性
- □ 非线性模型的基础
 - 引入层级结构或高维映射
- □ 一个例子
 - 综合考虑色泽、根蒂和敲声来判断西瓜好不好
 - 其中根蒂的系数最大,表明根蒂最要紧;而敲声的系数比色泽大,说明敲声比色泽更重要

$$f_{\text{GL}}(\mathbf{x}) = 0.2 \cdot x_{\text{E}} + 0.5 \cdot x_{\text{R}} + 0.3 \cdot x_{\text{B}} + 1$$

□ 例:产品销量预测

输入

	产品销量	报纸广告费用	广播广告费用	电视广告费用
	22.1	69.2	37.8	230.1
	10.4	45.1	39.3	44.5
	9.3	69.3	45.9	17.2
	18.5	58.5	41.3	151.5
	12.9	58.4	10.8	180.8
_				

输出

$$\mathbf{x} = (x_1, x_2, x_3)$$
 $\mathbf{y} = f(\mathbf{x}) = f(x_1, x_2, x_3)$

■ 数据分析:通过散点图/相关系数初步检查目标与特征之间是否符合线性关系

- 给定数据集 $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\}$ 其中 $\boldsymbol{x}_i = (x_{i1}; x_{i2}; \dots; x_{id}), y_i \in \mathbb{R}$
- □ 线性回归 (linear regression) 目的
 - 学得一个线性模型以尽可能准确地预测实值输出标记
- □ 离散特征处理
 - 有 "序" 关系
 - 连续化为连续值
 - 无 "序" 关系
 - 有k个特征值,则转换为k维向量

■ 单一特征的线性回归目标

$$f(x_i) = wx_i + b$$
 使得 $f(x_i) \simeq y_i$

■ 参数/模型估计: 最小二乘法 (least square method)

$$(w^*, b^*) = \underset{(w,b)}{\operatorname{arg \, min}} \sum_{i=1}^m (f(x_i) - y_i)^2$$
$$= \underset{(w,b)}{\operatorname{arg \, min}} \sum_{i=1}^m (y_i - wx_i - b)^2$$

线性回归 - 最小二乘法

□ 最小化均方误差

$$E_{(w,b)} = \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

 \square 分别对 w 和 b 求导,可得

$$\frac{\partial E_{(w,b)}}{\partial w} = 2\left(w\sum_{i=1}^{m} x_i^2 - \sum_{i=1}^{m} (y_i - b)x_i\right)$$

$$\frac{\partial E_{(w,b)}}{\partial b} = 2\left(mb - \sum_{i=1}^{m} (y_i - wx_i)\right)$$

线性回归 - 最小二乘法

□ 得到闭式 (closed-form) 解

$$w = \frac{\sum_{i=1}^{m} y_i (x_i - \bar{x})}{\sum_{i=1}^{m} x_i^2 - \frac{1}{m} \left(\sum_{i=1}^{m} x_i\right)^2}$$

$$b = \frac{1}{m} \sum_{i=1}^{m} (y_i - wx_i)$$

其中

$$\bar{x} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

线性回归 - 评估模型

□ 我们可以通过残差的分布来检验回归模型是否足够正确

如果模型预测合理,残差应为0均值的正态分布

残差的分布并不符合0均值的正态分布 该模型(最小二乘回归模型)预测效果并不好

从真实值和残差的散点图来看,真实值较小和较大时,预测残差大多<0,其余情况残差大多>0。模型还没有完全建模y与x之间的关系,还有一部分关系残留在残差中

多元线性回归

□ 给定数据集

$$D = \{ (\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m) \}$$
$$\boldsymbol{x}_i = (x_{i1}; x_{i2}; \dots; x_{id}) \ y_i \in \mathbb{R}$$

□ 多元线性回归目标

$$f(\boldsymbol{x}_i) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b$$
 使得 $f(\boldsymbol{x}_i) \simeq y_i$

多元线性回归

 \square 把 \boldsymbol{w} 和 b 吸收入向量形式 $\hat{\boldsymbol{w}} = (\boldsymbol{w}; b)$,数据集表示为

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \\ x_{21} & x_{22} & \cdots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_{1}^{\mathrm{T}} & 1 \\ \boldsymbol{x}_{2}^{\mathrm{T}} & 1 \\ \vdots & \vdots \\ \boldsymbol{x}_{m}^{\mathrm{T}} & 1 \end{pmatrix}$$

$$\boldsymbol{y} = (y_1; y_2; \dots; y_m)$$

多元线性回归 - 最小二乘法

■ 最小二乘法 (least square method)

$$\hat{\boldsymbol{w}}^* = \operatorname*{arg\,min}_{\hat{\boldsymbol{w}}} \left(\boldsymbol{y} - \mathbf{X} \hat{\boldsymbol{w}} \right)^{\mathrm{T}} \left(\boldsymbol{y} - \mathbf{X} \hat{\boldsymbol{w}} \right)$$

$$\Rightarrow E_{\hat{m{w}}} = (m{y} - \mathbf{X}\hat{m{w}})^{\mathrm{T}} (m{y} - \mathbf{X}\hat{m{w}})$$
 , 对 $\hat{m{w}}$ 求导得到

$$\frac{\partial E_{\hat{\boldsymbol{w}}}}{\partial \hat{\boldsymbol{w}}} = 2\mathbf{X}^{\mathrm{T}} \left(\mathbf{X} \hat{\boldsymbol{w}} - \boldsymbol{y} \right)$$

令上式为零可得 $\hat{m{w}}$ 最优解的闭式解

多元线性回归 - 满秩讨论

□ X^TX 是满秩矩阵或正定矩阵,则

$$\hat{oldsymbol{w}}^* = \left(\mathbf{X}^{\mathrm{T}} \mathbf{X}
ight)^{-1} \mathbf{X}^{\mathrm{T}} oldsymbol{y}$$

其中 $\left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}$ 是 $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ 的逆矩阵,线性回归模型为

$$f\left(\hat{oldsymbol{x}}_i
ight) = \hat{oldsymbol{x}}_i^{\mathrm{T}} \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}
ight)^{-1} \mathbf{X}^{\mathrm{T}} oldsymbol{y}$$

- \square $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ 不是满秩矩阵
 - 根据归纳偏好选择解
 - 引入正则化

多元线性回归 - 正则化

- **□** 函数集合: $\widehat{f(x)} = \sum_{i=0}^{m} w_i x^i$
- □ 目标函数: 度量函数的好坏

$$J(\mathbf{w}, \lambda) = \sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda R(\mathbf{w})$$

● 损失函数:

$$L(Y, f(X)) = (Y - f(X))^2$$

● 正则项:

• L2正则: $R(\mathbf{w}) = \|\mathbf{w}\|_2^2$

• L1正则: $R(\mathbf{w}) = \|\mathbf{w}\|_1$

更小的 w_j 对应 的函数更好

多元线性回归 - 正则化

□ 岭□归 (ridge regression): L2正则

$$\min_{oldsymbol{w}} \sum_{i=1}^m (y_i - oldsymbol{w}^ op oldsymbol{x}_i)^2 + \lambda \|oldsymbol{w}\|_2^2$$

L2正则可视为参数先验分布为正态分布的贝叶斯估计

□ LASSO (Least Absolute Shrinkage and Selection Operator): L1正则

$$\min_{\boldsymbol{w}} \sum_{i=1}^{m} (y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2 + \lambda \|\boldsymbol{w}\|_1$$

L1正则可视为参数先验分布为拉普拉斯分布的贝叶斯估计

多元线性回归 - 正则化

假设x仅有两个特征,那么w有两个分量w₁和w₂.那么目标优化的解要在平方误差项与正则化项之间折中,即出现在图中平方误差项等值线与正则化等值线相交处.

从图中看出,采用 L_1 范数 时交点常出现在坐标轴上, 即产生 w_1 或者 w_2 为0的稀 疏解.

等值线即取值相同的点的连线

对数线性回归

■ 输出标记的对数为线性模型逼近的目标

$$\ln y = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

$$\boldsymbol{y} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

线性回归 - 广义线性模型

□一般形式

$$y = g^{-1} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b \right)$$

- \square $g(\cdot)$ 称为联系函数 (link function)
 - 单调可微函数

■ 对数线性回归是 $g(\cdot) = \ln(\cdot)$ 时广义线性模型的特例

二分类任务

□ 预测值与输出标记

$$z = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b \qquad y \in \{0, 1\}$$

- □ 寻找函数将分类标记与线性回归模型输出联系起来
- □ 最理想的函数——单位阶跃函数

$$y = \begin{cases} 0, & z < 0; \\ 0.5, & z = 0; \\ 1, & z > 0, \end{cases}$$

预测值大于零就判为正例,小于零就判为反例,预测值为临界值零则可任意判别

二分类任务

- □ 单位阶跃函数缺点
 - 不连续
- 替代函数——对数几率函数 (logistic function)
 - 单调可微、任意阶可导

单位阶跃函数与对数几率函数的比较

对数几率回归

□ 运用对数几率函数

$$y = \frac{1}{1 + e^{-z}}$$
 要为 $y = \frac{1}{1 + e^{-(\mathbf{w}^{\mathrm{T}}\mathbf{x} + b)}}$

- □ 对数几率 (log odds)
 - 样本作为正例的相对可能性的对数

$$\ln \frac{y}{1-y}$$

- □ 对数几率回归优点
- 无需事先假设数据分布
- 可得到"类别"的近似概率预测
- 可直接应用现有数值优化算法求取最优解

对数几率回归 - 极大似然法

□ 对数几率

$$\ln \frac{p(y=1 \mid \boldsymbol{x})}{p(y=0 \mid \boldsymbol{x})} = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + b$$

显然有

$$p(y = 1 \mid \boldsymbol{x}) = \frac{e^{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}}{1 + e^{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}}$$

$$p(y = 0 \mid \boldsymbol{x}) = \frac{1}{1 + e^{\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b}}$$

对数几率回归 - 极大似然法

- 极大似然法 (maximum likelihood)
 - 给定数据集

$$\left\{ \left(\boldsymbol{x}_{i}, y_{i} \right) \right\}_{i=1}^{m}$$

- 最大化样本属于其真实标记的概率
 - 最大化对数似然函数

$$\ell(\boldsymbol{w}, b) = \sum_{i=1}^{m} \ln p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b)$$

对数几率回归 - 极大似然法

- □ 转化为最小化负对数似然函数求解
 - ullet 令 $oldsymbol{eta}=(oldsymbol{w};b)$, $\hat{oldsymbol{x}}=(oldsymbol{x};1)$,则 $oldsymbol{w}^{\mathrm{T}}oldsymbol{x}+b$ 可简写为 $oldsymbol{eta}^{\mathrm{T}}\hat{oldsymbol{x}}$
 - 再令

$$p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 1 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta})$$
$$p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) = p(y = 0 \mid \hat{\boldsymbol{x}}; \boldsymbol{\beta}) = 1 - p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$$

则似然项可重写为

$$p(y_i \mid \boldsymbol{x}_i; \boldsymbol{w}_i, b) = y_i p_1(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta}) + (1 - y_i) p_0(\hat{\boldsymbol{x}}_i; \boldsymbol{\beta})$$

● 故等价形式为要最小化

$$\ell\left(\boldsymbol{\beta}\right) = \sum_{i=1}^{m} \left(-y_{i}\boldsymbol{\beta}^{\mathrm{T}}\hat{\boldsymbol{x}}_{i} + \ln\left(1 + e^{\beta^{\mathrm{T}}\hat{\boldsymbol{x}}_{i}}\right)\right)$$

对数几率回归

□ 求解得

$$\boldsymbol{\beta}^* = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ell\left(\boldsymbol{\beta}\right)$$

□ 牛顿法第t+1轮迭代解的更新公式

$$oldsymbol{eta}^{t+1} = oldsymbol{eta}^t - \left(rac{\partial^2 \ell\left(oldsymbol{eta}
ight)}{\partial oldsymbol{eta} \partial oldsymbol{eta}^{\mathrm{T}}}
ight)^{-1} rac{\partial \ell\left(oldsymbol{eta}
ight)}{\partial oldsymbol{eta}}$$

其中关于 β 的一阶、二阶导数分别为

$$\frac{\partial \ell\left(\boldsymbol{\beta}\right)}{\partial \boldsymbol{\beta}} = -\sum_{i=1}^{m} \hat{\boldsymbol{x}}_{i} \left(y_{i} - p_{1}\left(\hat{\boldsymbol{x}}_{i}; \boldsymbol{\beta}\right)\right)$$

$$\frac{\partial^{2} \ell \left(\boldsymbol{\beta} \right)}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\mathrm{T}}} = \sum_{i=1}^{m} \hat{\boldsymbol{x}}_{i} \hat{\boldsymbol{x}}_{i}^{\mathrm{T}} p_{1} \left(\hat{\boldsymbol{x}}_{i}; \boldsymbol{\beta} \right) \left(1 - p_{1} \left(\hat{\boldsymbol{x}}_{i}; \boldsymbol{\beta} \right) \right)$$

高阶可导连续凸函数,梯度下降法/牛顿法 [Boyd and Vandenberghe, 2004]

□ 线性判别分析 (Linear Discriminant Analysis) [Fisher, 1936]

LDA也可被视为一种 监督降维技术

□ LDA的思想

- 欲使同类样本的投影点尽可能接近,可以让同类样本投影点的协方差尽可能小
- 欲使异类样本的投影点尽可能远离,可以让类中心之间的距离尽可能大

□ 一些变量

- 第*i*类样本的集合 X_i
- 第*i*类样本的均值向量 μ_i
- ullet 第i类样本的协方差矩阵 Σ_i
- ullet 两类样本的中心在直线上的投影: $oldsymbol{w}^{\mathrm{T}}oldsymbol{\mu}_0$ 和 $oldsymbol{w}^{\mathrm{T}}oldsymbol{\mu}_1$
- 两类样本的协方差: $m{w}^{\mathrm{T}} m{\Sigma}_0 m{w}$ 和 $m{w}^{\mathrm{T}} m{\Sigma}_1 m{w}$

■ 最大化目标

$$J = rac{\left\|oldsymbol{w}^{\mathrm{T}}oldsymbol{\mu}_{0} - oldsymbol{w}^{\mathrm{T}}oldsymbol{\mu}_{1}
ight\|_{2}^{2}}{oldsymbol{w}^{\mathrm{T}}oldsymbol{\Sigma}_{0}oldsymbol{w} + oldsymbol{w}^{\mathrm{T}}oldsymbol{\Sigma}_{1}oldsymbol{w}} \ = rac{oldsymbol{w}^{\mathrm{T}}\left(oldsymbol{\mu}_{0} - oldsymbol{\mu}_{1}
ight)\left(oldsymbol{\mu}_{0} - oldsymbol{\mu}_{1}
ight)^{\mathrm{T}}oldsymbol{w}}{oldsymbol{w}^{\mathrm{T}}\left(oldsymbol{\Sigma}_{0} + oldsymbol{\Sigma}_{1}
ight)oldsymbol{w}}$$

□ 类内散度矩阵

$$egin{aligned} \mathbf{S}_w &= oldsymbol{\Sigma}_0 + oldsymbol{\Sigma}_1 \ &= \sum_{oldsymbol{x} \in X_0} \left(oldsymbol{x} - oldsymbol{\mu}_0
ight) \left(oldsymbol{x} - oldsymbol{\mu}_0
ight)^{\mathrm{T}} + \sum_{oldsymbol{x} \in X_1} \left(oldsymbol{x} - oldsymbol{\mu}_1
ight) \left(oldsymbol{x} - oldsymbol{\mu}_1
ight)^{\mathrm{T}} \end{aligned}$$

□ 类间散度矩阵

$$\mathbf{S}_b = \left(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1 \right) \left(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1 \right)^{\mathrm{T}}$$

□ 广义瑞利商 (generalized Rayleigh quotient)

$$J = rac{oldsymbol{w}^{\mathrm{T}} \mathbf{S}_b oldsymbol{w}}{oldsymbol{w}^{\mathrm{T}} \mathbf{S}_w oldsymbol{w}}$$

 $\square \diamondsuit w^{\mathrm{T}} \mathbf{S}_w w = 1$,最大化广义瑞利商等价形式为

$$\min_{oldsymbol{w}} \ - oldsymbol{w}^{\mathrm{T}} \mathbf{S}_b oldsymbol{w}$$

s.t.
$$\boldsymbol{w}^{\mathrm{T}}\mathbf{S}_{w}\boldsymbol{w}=1$$

□ 运用拉格朗日乘子法

$$\mathbf{S}_b \boldsymbol{w} = \lambda \mathbf{S}_w \boldsymbol{w}$$

□同向向量

$$\mathbf{S}_b \mathbf{w} = \lambda \left(\mathbf{\mu}_0 - \mathbf{\mu}_1 \right)$$

□结果

$$\boldsymbol{w} = \mathbf{S}_w^{-1} \left(\boldsymbol{\mu}_0 - \boldsymbol{\mu}_1 \right)$$

- □ 求解
 - 奇异值分解 $\mathbf{S}_w = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
- □ LDA的贝叶斯决策论解释
 - 两类数据同先验、满足高斯分布且协方差相等时,LDA达到最优分类

LDA推广 - 多分类任务

□ 全局散度矩阵

$$\mathbf{S}_t = \mathbf{S}_b + \mathbf{S}_w \ = \sum_{i=1}^m \left(oldsymbol{x}_i - oldsymbol{\mu}
ight) \left(oldsymbol{x}_i - oldsymbol{\mu}
ight)^T$$

□ 类内散度矩阵

$$\mathbf{S}_w = \sum_{i=1}^N \mathbf{S}_{w_i}$$

其中

$$\mathbf{S}_{w_i} = \sum_{oldsymbol{x} \in X_i} \left(oldsymbol{x} - oldsymbol{\mu}_i
ight) \left(oldsymbol{x} - oldsymbol{\mu}_i
ight)^T$$

□ 求解得

$$\mathbf{S}_b = \mathbf{S}_t - \mathbf{S}_w$$

$$= \sum_{i=1}^N m_i \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right) \left(\boldsymbol{\mu}_i - \boldsymbol{\mu} \right)^T$$

LDA推广 - 多分类任务

□ 优化目标

$$\max_{\mathbf{W}} \frac{\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{S}_{b}\mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{S}_{w}\mathbf{W}\right)}$$

其中 $\mathbf{W} \in \mathbb{R}^{d \times (N-1)}$

$$\mathbf{S}_b\mathbf{W} = \lambda\mathbf{S}_w\mathbf{W}$$

 ${f W}$ 的闭式解则是 ${f S}_w^{-1}{f S}_b$ 的 ${f N}$ -1个最大广义特征值所对应的特征向量组成的矩阵

□ 多分类LDA将样本投影到N-1维空间,N-1通常远小于数据原有的属性数,因此LDA也被视为一种监督降维技术

多分类学习

- □ 多分类学习方法
 - 二分类学习方法推广到多类
 - 利用二分类学习器解决多分类问题(常用)
 - 对问题进行拆分,为拆出的每个二分类任务训练一个分类器
 - 对于每个分类器的预测结果进行集成以获得最终的多分类结果

□ 拆分策略

- —¬¬¬ (One vs. One, OvO)
- 一对其余 (One vs. Rest, OvR)
- 多对多 (Many vs. Many, MvM)

多分类学习 - 一对一

- □ 拆分阶段
 - N个类别两两配对
 - N(N-1)/2 个二类任务
 - 各个二类任务学习分类器
 - N(N-1)/2 个二类分类器

- □测试阶段
 - 新样本提交给所有分类器预测
 - N(N-1)/2 个分类结果
 - 投票产生最终分类结果
 - 被预测最多的类别为最终类别

多分类学习 - 一对其余

- □ 任务拆分
 - 某一类作为正例,其他反例
 - N 个二类任务
 - 各个二类任务学习分类器
 - N 个二类分类器

- □测试阶段
 - 新样本提交给所有分类器预测
 - N 个分类结果
 - 比较各分类器预测置信度
 - 置信度最大类别作为最终类别

多分类学习 - 两种策略比较

多分类学习 - 两种策略比较

一对

- □ 训练N(N-1)/2个分类器, 存储开销和测试时间大
- 训练只用两个类的样例,训练时间短

一对其余

- □ 训练N个分类器,存储开销和 测试时间小
- □ 训练用到全部训练样例,训练时间长

预测性能取决于具体数据分布, 多数情况下两者差不多

多分类学习 - 多对多

- 多对多 (Many vs Many, MvM)
 - 若干类作为正类,若干类作为反类
- □ 纠错输出码 (Error Correcting Output Code, ECOC)

多分类学习 - 多对多

■ 纠错输出码(Error Correcting Output Code, ECOC)

[Dietterich and Bakiri, 1995]

[Allwein et al. 2000]

- ECOC编码对分类器错误有一定容忍和修正能力,编码越长、纠错能力越强
- 对同等长度的编码,理论上来说,任意两个类别之间的编码距离越远,则 纠错能力越强

类别不平衡问题

- 类别不平衡 (class imbalance)
 - 不同类别训练样例数相差很大情况(正类为小类)

- 再缩放
 - 欠采样 (undersampling)
 - 去除一些反例使正反例数目接近 (EasyEnsemble [Liu et al.,2009])
 - 过采样 (oversampling)
 - 增加一些正例使正反例数目接近 (SMOTE [Chawla et al.2002])
 - 阈值移动 (threshold-moving)

优化提要

- □ 各任务下(回归、分类)各个模型优化的目标
 - 最小二乘法:最小化均方误差
 - 对数几率回归:最大化样本分布似然
 - 线性判别分析:投影空间内最小(大)化类内(间)散度
- □ 参数的优化方法
 - 最小二乘法:线性代数
 - 对数几率回归: 凸优化梯度下降、牛顿法
 - 线性判别分析:矩阵论、广义瑞利商

总结

- 线性回归
 - 最小二乘法 (最小化均方误差)
- □ 二分类任务
 - 对数几率回归
 - 单位阶跃函数、对数几率函数、极大似然法
 - 线性判别分析
 - 最大化广义瑞利商
- □ 多分类学习
 - \(\bar{\pi} \) —
 - 一对其余
 - 多对多
 - 纠错输出码
- □ 类别不平衡问题
 - 基本策略: 再缩放