2024A-板凳龙问题解法

Yin

2025年8月17日

摘要

本项目解决了 2024 全国大学生数模 A 题-板凳龙问题。

代码方面通过 python+JupytorNotebook 实现,源代码在 src 目录下,model.py 对应模型类,solution.ipynb 记录了对应问题的解决过程。

各个问题的原始输出保存在 data/question 中,格式化后的结果在 data/result 中。

目录

1	题目转述	3
2	问题一	3
	2.1 位置分析	3
	2.1.1 求解后一个连接点的位置	3
	2.1.2 计算龙头位置与时间的关系	5
	2.1.3 求解位置信息	5
	2.2 速度分析	6
3	问题二	7
	3.1 碰撞分析	7
	3.2 二维坐标系转换矩阵推导	8
4	问题三	10
5	问题四	10
	5.1 掉头轨迹长度	11
	5.2 掉头轨迹分析	11
	5.3 速度分析	14
6	问题 无	15

1 题目转述 3

1 题目转述

假设所有板凳为刚性长方形,长方形相交时,即发生碰撞。将连接处抽象为一个点,用直线表示每个板凳,长 341-55=286cm。每个连接点沿着给定路径依次移动。由于有碰撞,龙头处极径不会过小,因此不考虑连接点发生回退的情况,所有连接点保持前进。

2 问题一

运动轨迹为等距螺线, 方程如下:

$$\rho = \frac{d}{2\pi} \cdot \theta$$

其中 ρ 为半径, θ 为极角, d 为螺距。

2.1 位置分析

2.1.1 求解后一个连接点的位置

递推各连接点的位置时,仅根据各节板凳长度求解连接点位置,必然会导致多解,由于连接点位置不发生 突变,一直取最小的可行解即可。在t时刻,可得如下方程:

$$length_i^2 = \rho_i^2 + \rho_{i+1}^2 - 2\rho_i\rho_{i+1}\cos(\theta_i - \theta_{i+1})$$
 代入得:
$$length_i^2 = \left(\frac{d}{2\pi}\right)^2 \left[\theta_i^2 + \theta_{i+1}^2 - 2\theta_i\theta_{i+1}\cos(\theta_i - \theta_{i+1})\right]$$

约束条件如下 (其中 $\theta_{i+1}(t-1)$ 表示 t 时刻连接点 i+1 的位置):

$$\theta_i(t) < \theta_{i+1}(t) < \theta_{i+1}(t-1)$$

同时,通过速度矢量分析当极径足够时,连接点必然同向运动

图 1: 沿杆速度相同

2 问题一 4

补充:可能出现回退的情况:

如下图所示, 极径过小时, 龙头没有足够的空间, 意味着外围龙身需要往复调整。但实际情况下不会出现。

图 2: 430s 时

2 问题一 5

图 3: 440s 时

2.1.2 计算龙头位置与时间的关系

$$v = \omega \cdot \rho$$

$$v = \frac{d\theta}{dt} \cdot \frac{d}{2\pi} \cdot \theta$$

$$v \cdot dt = \frac{d}{2\pi} \cdot \theta \cdot d\theta$$

$$v \cdot t = \frac{d}{4\pi} \cdot \left(\theta(0)^2 - \theta(t)^2\right)$$

$$\theta(t) = \sqrt{\theta(0)^2 - \frac{4\pi vt}{d}}$$

2.1.3 求解位置信息

现在,可以先用固定步长 ($\Delta\theta=0.01rad$),找到最小解的范围,再利用二分法 (迭代 100 次),求出相对精确的数值解。

2 问题— 6

处理坐标时,统一用极角来记录,最后再转化为直角坐标输出。

$$\begin{cases} x = \frac{d}{2\pi} \cdot \theta \cos \theta \\ y = \frac{d}{2\pi} \cdot \theta \sin \theta \end{cases}$$

表 1:	问题-	一位置数据

	0 s	60s	120s	180s	240s	300s
龙头 x (m)	8.800000	5.796934	-4.090654	-2.953259	2.578971	4.431365
龙头 y (m)	0.000000	-5.773329	-6.300643	6.099638	-5.363954	2.298233
第 1 节龙身 x (m)	8.379861	7.487858	-1.394359	-5.256205	4.834518	2.515464
第 1 节龙身 y (m)	2.776997	-3.374076	-7.416292	4.337191	-3.544423	4.369432
第 51 节龙身 x (m)	-9.511762	-8.621870	-5.106224	2.862016	6.058291	-6.298072
第 51 节龙身 y (m)	1.386797	2.744112	6.725579	7.260934	-3.706036	0.501906
第 101 节龙身 x (m)	3.461139	5.606052	5.189796	2.062019	-4.967295	-6.059701
第 101 节龙身 y (m)	-9.746032	-8.057317	-7.674495	-8.435107	-6.340202	4.198316
第 151 节龙身 x (m)	10.736546	7.224601	3.619651	1.742430	3.214865	7.077237
第 151 节龙身 y (m)	2.482866	7.648643	9.327383	9.309647	8.304618	4.332544
第 201 节龙身 x (m)	4.821876	-6.130680	-10.301354	-9.360644	-7.046773	-7.560852
第 201 节龙身 y (m)	10.605443	9.359060	2.897161	-4.079507	-6.653046	-5.112382
龙尾 (后) x (m)	-5.592021	6.266011	10.949357	7.838839	3.855852	2.866552
龙尾 (后) y (m)	-10.526626	-9.598975	1.145606	7.006684	9.229822	9.015817

2.2 速度分析

首先是等距螺线上,连接点的径速度与切向速度(弧度无量纲):

$$\begin{cases} v_t = \frac{d}{2\pi} \cdot \theta \omega \\ v_\rho = \frac{d}{2\pi} \cdot \omega \end{cases}$$

计算沿杆方向分速度时, 涉及到以下三个向量:

于是可以给出 沿杆方向速度分量·|length| 的值:

$$(v_{\rho} \cdot \vec{e_{\rho}} + v_{t} \cdot \vec{e_{t}}) \cdot \vec{length}$$

3 问题二 7

沿杆方向速度分量相同,可得:

$$\begin{split} \omega_{i+1} &= \omega_i \cdot \frac{\theta_{i+1} \cos(\theta_{i+1} - \theta_i) + \theta_i \theta_{i+1} \sin(\theta_{i+1} - \theta_i) - \theta_i}{-\theta_i \cos(\theta_{i+1} - \theta_i) + \theta_i \theta_{i+1} \sin(\theta_{i+1} - \theta_i) + \theta_{i+1}} \\ v_{i+1} &= v_i \cdot \sqrt{\frac{\theta_{i+1}^2 + 1}{\theta_i^2 + 1}} \cdot \frac{\theta_{i+1} \cos(\theta_{i+1} - \theta_i) + \theta_i \theta_{i+1} \sin(\theta_{i+1} - \theta_i) - \theta_i}{-\theta_i \cos(\theta_{i+1} - \theta_i) + \theta_i \theta_{i+1} \sin(\theta_{i+1} - \theta_i) + \theta_{i+1}} \end{split}$$

人名 門趣 医反数漏						
	0 s	60s	120s	180s	240s	300s
龙头 (m/s)	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
第 1 节龙身 (m/s)	0.999973	0.999958	0.999942	0.999913	0.999853	0.999721
第 51 节龙身 (m/s)	0.999742	0.999661	0.999541	0.999325	0.998928	0.998072
第 101 节龙身 (m/s)	0.999571	0.999449	0.999267	0.998963	0.998424	0.997313
第 151 节龙身 (m/s)	0.999444	0.999297	0.999081	0.998726	0.998103	0.996866
第 201 节龙身 (m/s)	0.999347	0.999177	0.998937	0.998545	0.997874	0.996580
龙尾 (后) (m/s)	0.999309	0.999135	0.998877	0.998484	0.997804	0.996490

表 2: 问题一速度数据

3 问题二

第二问加入了碰撞因素,需要确定不发生碰撞的盘入时间上限。

3.1 碰撞分析

我们认为,碰撞只发生在不相连的板凳之间。

选择分离轴定理进行矩形碰撞检测。

定理简述:

如果存在且只要存在一条轴线,使得两个凸面物体在该轴上的投影没有重叠,那么这两个凸面物体就没有重叠。

如果 2 个 box 不碰撞,那么必然存在一条分割线,将两个 box 分开.与这条分割线垂直的方向,就是分离轴的方向.如果存在分割线,必然有很多分割线,必然有一条分割线与两个 box 中的某条边平行.这意味着,与分割线垂直的分离轴中,必然存在一条与两个 Box 的另一条边平行,所以检测两个 2D box 的碰撞,仅仅需要将 2 个 box 的 4 个方向(8 条边,4 个方向)作为分离轴投影即可.

3 问题二 8

图 4: 分离轴定理

基于其中一个待分析的矩形,创建直角坐标系。接着,将另一个矩形投影到坐标轴上,比较坐标轴上的投影重合情况。

纵轴投影无重合: $\min(y_N, y_O) \ge \max(y_R, y_S)$ or $\min(y_R, y_S) \ge \max(y_N, y_O)$

横轴投影无重合: $\min(x_L, x_M) \ge \max(x_P, x_Q)$ or $\min(x_P, x_Q) \ge \max(x_L, x_M)$

当横纵轴上任意一处无重合,则长方形无碰撞。否则,交换两个长方形,继续判断投影重合情况。

沿杆方向向量: $length = (\theta_i \cos \theta_i - \theta_{i+1} \cos \theta_{i+1}, \theta_i \sin \theta_i - \theta_{i+1} \sin \theta_{i+1})$

从矩形 1 坐标系到矩形 2 坐标系, 涉及坐标变换。

3.2 二维坐标系转换矩阵推导

设有两个二维坐标系 A 与 B, 它们相对于同一参考坐标系 W 的基向量和原点分别为:

$$R_{WA} = egin{bmatrix} oldsymbol{a}_x & oldsymbol{a}_y \end{bmatrix} \in \mathbb{R}^{2 imes 2}, & oldsymbol{t}_{WA} \in \mathbb{R}^2 \end{cases}$$

$$R_{WB} = \begin{bmatrix} oldsymbol{b}_x & oldsymbol{b}_y \end{bmatrix} \in \mathbb{R}^{2 imes 2}, \quad oldsymbol{t}_{WB} \in \mathbb{R}^2$$

其中 R_{WA} 、 R_{WB} 的列向量分别是 A、B 坐标系的单位基向量在 W 坐标系中的表示; t_{WA} 、 t_{WB} 是各自原点在 W 坐标系中的坐标。

3 问题二 9

点的表示关系

对同一个点 x, 在 W 系中由 A 系表示为:

$$\boldsymbol{x}_W = R_{WA} \, \boldsymbol{x}_A + \boldsymbol{t}_{WA} \tag{1}$$

在W系中由B系表示为:

$$\boldsymbol{x}_W = R_{WB} \, \boldsymbol{x}_B + \boldsymbol{t}_{WB} \tag{2}$$

消去 x_W

由式 (1) 与 (2) 相等得:

$$R_{WB} \, m{x}_B + m{t}_{WB} = R_{WA} \, m{x}_A + m{t}_{WA}$$
 $R_{WB} \, m{x}_B = R_{WA} \, m{x}_A + m{t}_{WA} - m{t}_{WB}$ $m{x}_B = R_{WB}^{-1} ig(R_{WA} \, m{x}_A + m{t}_{WA} - m{t}_{WB} ig)$

旋转和平移部分

因此,从 A 到 B 的线性部分与平移部分为:

$$R_{BA} = R_{WB}^{-1} R_{WA}, \qquad t_{BA} = R_{WB}^{-1} (t_{WA} - t_{WB})$$

若 R_{WB} 为正交矩阵 (纯旋转),则 $R_{WB}^{-1} = R_{WB}^{\top}$ 。

齐次坐标形式

将旋转与平移合并为齐次矩阵:

$$T_{BA} = \begin{bmatrix} R_{BA} & \boldsymbol{t}_{BA} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{WB}^{-1} R_{WA} & R_{WB}^{-1} (\boldsymbol{t}_{WA} - \boldsymbol{t}_{WB}) \\ 0 & 0 & 1 \end{bmatrix}$$

其中 T_{BA} 作用于齐次坐标 $\begin{bmatrix} m{x}_A \\ 1 \end{bmatrix}$,可得到 $\begin{bmatrix} m{x}_B \\ 1 \end{bmatrix}$ 。

具体实现

所以先确定好待分析的两个矩形,将其中一个矩形的四角坐标变换到另一个矩形对应的直角坐标系中,接着利用分离轴定理即可判断是否碰撞。在本项目中,我们新定义了 model2,它继承了 model1,新增碰撞相关的检测函数。

4 问题三 10

图 5: 碰撞示意图

4 问题三

模型基本与第二问相同,在判断能否到达时只需要从掉头空间外围一圈开始盘入即可,因为内圈不碰撞,外圈也不会碰撞。

利用固定步长(先设为 0.1rad 进行粗略估计,再改为 0.01rad 进行精确测试)检测运动过程中有无碰撞。 利用二分法确定结果区间。根据文件 solution 3.ipynb,最小螺距约为 0.4243m。

5 问题四

由于盘入点和盘出点中心对称,在该位置上的切线斜率也相同,即切线平行。那么:

 $\angle ADE = \angle BED$

由三角形相似性,AB 与 DE 交点 C 满足: $\frac{AC}{CB} = \frac{R_A}{R_B}$,恰好为切点

5 问题四 11

图 6: 掉头曲线示意图

5.1 掉头轨迹长度

接着计算掉头曲线长度:

$$\alpha \in (0, \pi]$$

$$\widehat{CD} + \widehat{CE} = (R_A + R_B) \cdot \alpha$$

$$\therefore R = (R_A + R_B) \cdot \sin \frac{\alpha}{2}$$

$$\therefore R_A + R_B \text{ 此时为定值}$$

$$\therefore \widehat{CD} + \widehat{CE} = \frac{R \cdot \alpha}{\sin \frac{\alpha}{2}}, \text{ 掉头轨迹长度不变}$$

5.2 掉头轨迹分析

首先确定圆心坐标:

盘入时切点处极角为 $\alpha_1 = \frac{2\pi R}{d}$,

连接点速度方向为 $(-\cos\theta + \theta\sin\theta, -\sin\theta - \theta\cos\theta)$

切点处的切向与法向单位向量:

$$\begin{cases} e_{t1}^{\vec{}} = \left(\frac{-\cos\alpha_1 + \alpha_1\sin\alpha_1}{\sqrt{\alpha_1^2 + 1}}, \frac{-\sin\alpha_1 - \alpha_1\cos\alpha_1}{\sqrt{\alpha_1^2 + 1}}\right) \\ e_{\rho 1}^{\vec{}} = \left(\frac{-\sin\alpha_1 - \alpha_1\cos\alpha_1}{\sqrt{\alpha_1^2 + 1}}, \frac{\cos\alpha_1 - \alpha_1\sin\alpha_1}{\sqrt{\alpha_1^2 + 1}}\right) \end{cases}$$

接着, 计算圆弧半径, 记 $k = \frac{R_A}{R_B}$:

$$R_A = \frac{k}{k+1} \cdot \frac{R}{\sin\frac{\alpha}{2}} = \frac{k}{k+1} \cdot \frac{R}{\cos\angle ADC} = \frac{k}{k+1} \cdot \frac{R}{|\vec{e_\rho} \cdot (\cos\alpha_1, \sin\alpha_1)|}$$

由此可确定圆心 A 坐标: $(R\cos\alpha_1, R\sin\alpha_1) + R_A \cdot \vec{e_{\rho 1}}$

同时令在圆 A 上运动的点的圆心角为 θ 1

由于以盘入时刻作为0时刻,需要重新计算龙头位置与时间的关系:

 $t \le 0$ 时, 龙头在盘入螺线上,

$$v \cdot t = \frac{d}{4\pi} \cdot \left(\alpha_1^2 - \theta_0(t)^2\right)$$
$$\theta_0(t) = \sqrt{\alpha_1^2 - \frac{4\pi vt}{d}}$$

t > 0 时,有以下几个区间

圆弧 A:
$$(0, R_A \cdot \angle DAC]$$

$$\theta_1 = upperbound - \frac{vt}{R_A}$$
圆弧 B: $(R_A \cdot \angle DAC, (R_A + R_B) \cdot \angle DAC]$

$$\theta_2 = upperbound - \frac{vt - R_A \cdot \angle DAC}{R_B}$$

$$= upperbound + k\angle DAC - \frac{vt}{R_B}$$
盘出螺线: $((R_A + R_B) \cdot \angle DAC, +\infty)$

$$v \cdot t - (R_A + R_B) \cdot \angle DAC = \frac{d}{4\pi} \cdot \left(\theta_3(t)^2 - \alpha^2\right)$$

$$\theta_3(t) = \sqrt{\alpha^2 + \frac{4\pi}{d}} \cdot \left[v \cdot t - (R_A + R_B) \cdot \angle DAC\right]$$

掉头空间直径为 9m,超过龙身龙头长度,后一连接点可能出现在当前连接点经过的任一曲线段上。

在程序中,可以更加简单的进行实现。首先,将坐标格式改为 (θ,i) ,其中 θ 为当前曲线上的极角,i 为曲线编号,盘入螺线为 0,圆弧 A 为 1,圆弧 B 为 2,圆弧 C 为 3。接着,根据曲线编号,采用不同的方式,可计算得到实际的笛卡尔坐标。

计算下一个连接点时, 先在各段曲线上, 利用固定步长和二分法求取较精确的数值解, 选择曲线上最接近当前连接点的解。对于在曲线 i 上的点, 只需要考虑曲线编号小于等于 i 的解即可。

图 7: 18s 时板凳龙完整轨迹

5 问题四 14

	表 3: 恢 宪 <i>见</i> 在 -100s	-50s	0s	50s	100s
龙头 x (m)	7.742211	6.594408	-2.711856	1.288237	-3.232696
龙头 y (m)	3.797480	1.954514	-3.591078	6.186757	7.519411
第 1 节龙身 x (m)	6.149255	5.331731	-0.063534	3.827541	-0.427775
第 1 节龙身 y (m)	6.172789	4.520688	-4.670888	4.870879	8.077996
第 51 节龙身 x (m)	-10.632450	-3.577408	2.459962	-1.895265	2.024951
第 51 节龙身 y (m)	2.747065	-8.986620	-7.778145	-5.999999	4.074805
第 101 节龙身 x (m)	-11.891375	10.155884	3.008493	-7.450572	-7.166720
第 101 节龙身 y (m)	-4.884444	-5.923537	10.108539	5.364931	2.413250
第 151 节龙身 x (m)	-14.340382	12.991894	-7.002789	-4.817688	9.317459
第 151 节龙身 y (m)	-2.068195	-3.755728	10.337482	-10.283928	-3.880492
第 201 节龙身 x (m)	-12.012052	10.564154	-6.872842	0.100812	8.777053
第 201 节龙身 y (m)	10.502019	-10.768158	12.382609	-13.176684	8.337122
龙尾 (后) x (m)	-0.923465	0.132594	-1.933627	6.070380	-11.162918
龙尾 (后) y (m)	-16.534136	15.722159	-14.713128	12.507471	-6.448729

表 3· 板登龙在 -100s 至 100s 内的坐标数据

5.3 速度分析

对问题一中的模型进行推广,

$$v_{i+1} = \frac{\vec{e_i} \cdot \vec{l}}{\vec{e_{i+1}} \cdot \vec{l}} \cdot v_i$$

各曲线段上速度方向的单位向量如下:

曲线 0: $(\frac{-\cos\theta+\theta\sin\theta}{\sqrt{\theta^2+1}}, \frac{-\sin\theta-\theta\cos\theta}{\sqrt{\theta^2+1}})$ 曲线 1 或曲线 3: $(\sin\theta, -\cos\theta)$

曲线 2: $(-\sin\theta.\cos\theta)$

表 4: 板登龙在 -100s 至 100s 内的速度数据

表 · 从完/在 1005 至 1005 行的还及妖酒							
	-100s	-50s	0s	50s	100s		
龙头 (m/s)	1.000000	1.000000	1.000000	1.000000	1.000000		
第 1 节龙身 (m/s)	0.999904	0.999762	0.998687	0.980274	0.988327		
第 51 节龙身 (m/s)	0.999347	0.998643	0.995134	0.680461	0.555931		
第 101 节龙身 (m/s)	0.999092	0.998249	0.994448	0.679415	0.594944		
第 151 节龙身 (m/s)	0.998945	0.998049	0.994156	0.679096	0.594421		
第 201 节龙身 (m/s)	0.998850	0.997927	0.993994	0.678942	0.594219		
龙尾 (后) (m/s)	0.998818	0.997887	0.993944	0.678897	0.594164		

6 问题五

找出龙头以 1m/s 运动的过程中,连接点速度的最大值 v_0 。 v_h 最大值 $=\frac{2}{v_0}$ 从问题 4 的结果分析,连接点速度最大值在 14 16s 之间出现,约为 1.362277247m/s。以 0.01 的精度进一步查找,最终确定 $v_0\approx 1.503365819$ 所以 v_h 最大值 $=\frac{2}{v_0}\approx 1.330348\,m/s$