This spreadsheet is looking at the nominal Mach No of the flow over the pod at speed. The pod will displace gas which needs to flow back over trhe pod.

The flow may exceed Mach 1 which is not possible due to Kantrowitz. The solutions are compressing the gas, either by an internal compressor or thrust on the pod.

		Alpha,	Cheetah	
	Alpha	steam and	with wheels	
	original, air	bigger tube	and steam	
Tube diameter m	2.230	2.700	2.500	
Rounded rectangle pod section				
Pod width m	1.350	1.350		
Pod height m	1.100	1.100		
Rounded rectangle radius m	0.314	0.314		
Area loss due round corners	0.085	0.085		
Pod hull area, rectangular	1.400	1.400		
Round pod section				
Pod diameter m				heetah pod is 1.6 m ID
Pod area m2			2.270	
Pod basic frontal area used	1.400	1.400	2.270	
Skis, duct, linear area m2	0.230	0.230	- (heetah is a clean cylinder with no extra frontal
Pod tot frontal area m2	1.630	1.630	2.270 t	he wheels are on the reduced area of the nose
ube basic area m2	3.906	5.726	4.909	
rea linear motor m2	0.055	0.055	-	
ube tot area m2	3.851	5.671	4.909	
ube/Pod area ratio %	42.3	28.7	46.2	
Annulus area between tube and pod m2	2.221	4.041	2.639	
Tube pressure Pa	100	160.77	160.77 T	he pressure for the steam has been increased
Гube temp К	292	292		give the same density and mass flow as air
as Constant R	8314	8314	8314 T	ube pressure has no affect on Kantrowitz
ias Mol Wt (Air 28.97, steam 18.02)	28.97	18.02	18.02	
leat cap ratio (Air 1.4 steam 1.33) K	1.40	1.33	1.33	
Gas density Kg/m3	0.00119	0.00119		ensity = Mol * Press / (R * Temp)
peed of sound m/s	342.52	423.30	423.30 S	peed of sound = sqrt(K * R/MoI * Temp)
Capsule speed km/h	1220	1220		
Capsule speed M/s	338.9	338.9		
Gas displaced by pod m3/s	552.5	552.5	769.3 0	as displaced is pod fontal area times velocity
Compressor inlet, ski and nozzle Kg/s	0.490		From Alpha	
Compressor inlet m3/s	410.6		Vol = Mass * Density	
Compressor diameter estimate m	1.200	1 200	Note that the diameter of the	compressor inlet needs to be very large

Cross-section of Alpha pod with skis, ducts and linear motor

Velocity compressor inlet m/s	363.0	363.0	
Mach No compressor inlet	1.06	0.86	Inlet velocity must be less than Mach 1

This section looks at the flow at the front of the pod, where most of the air displaced by the pod is accelerated back over the pod.

For Alpha, the volume of the backflow is reduced by the volume of air pumped thru the compressor.

Vol backflow at pod front m3/s	141.91	141.91	769.31
Backflow velocity rel tube m/s	63.90	35.12	291.48
Backflow velocity vs pod m/s	403	374	630
Pod Mach No at front	1.18	0.88	1.49

At the back of the pod, the gas pumped to the skis has all escaped into the tube. So we only count the duct gas as reducing the flow over the pod.

Comp inlet flow for nozzle only Kg/s	0.290	0.290		
Inlet flow vol flow, nozzle only m/s	243.0	243.0		If the nominal velocity over the pod exceeds Mach 1, there is a problem which needs to be solved
Vol backflow over pod at back m3/s	309.5	309.5		All Kantrowitz solutions need to compress the gas to get the required mass flow.
Backflow vel vs tube	139.4	76.6		Alpha compresses the gas thru a small duct to the back.
Flow velocity vs pod	478.3	415.5		Cheetah has no compressor, but uses the thrust of the wheels
Pod Mach No at back	1.40	0.98	1.49	which increases the density of the gas in the tube, to get the required mass flow