Spencer Alexander

Multipole tensors - Analytic expression for multipole tensors of arbitrary order based on pattern recognition derivation

Notations used:

- 1. Three-dimensional Cartesian indices are represented as a_i . For instance, r_{a_1} can represent r_x , r_y , or r_z .
- 2. Summations are implied over repeated lower indices. For instance, $R_{a_1}r_{a_1} = R_xr_x + R_yr_y + R_zr_z$.
- 3. $\int_{V} (\cdots) dv := \int_{\text{all space}} (\cdots) dx dy dz$.

Vocabulary used: In what follows, I will define tensors and contants $T^{(l)}$, $q^{(l)}$, $J^{i(l)}$, $m^{(l)}$, and $d^{(l)}$. People refer to both $T^{(l)}$ and $q^{(l)}$ (or $J^{i(l)}$) as multipole tensors, or multipole moments. For example, if someone mentions the electrostatic dipole moment, then depending on context they may be referring to $\rho^{(1)} = e_{a_1} \int_V r_{a_1} \rho(\mathbf{r}) dv$ or $T^{(1)} = e_{a_1} R_{a_1}$. Furthermore, in most contexts, $J^{i(l)}$ is not used directly - instead, $m^{(l)}$ is used, where e.g.,

$$\boldsymbol{m} = m^{(1)}$$

$$= \frac{1}{2} \int_{V} \boldsymbol{r} \times \boldsymbol{J} dv. \tag{1}$$

As with $T^{(l)}$ and $J^{i(l)}$, people refer to $m^{(l)}$ is as multipole tensors or multipole moments. Note that the $m^{(l)}$'s are defined such that there is always a single tensor at order l, as opposed to three $J^{i(l)}$ tensors at the same order. On this page, multipole tensor refers to either $q^{(l)}$ or $J^{i(l)}$, prefactor tensor refers to $T^{(l)}$, and denominator constant refers to $d^{(l)}$.

Multipole expansion (Cartesian tensor formalism), and the main result of this webpage: The electric potential $\Phi(R)$ can be written as

$$\Phi(\mathbf{R}) = \frac{1}{4\pi\varepsilon_0} \left[\frac{\int_V \rho(\mathbf{r}) dv}{R} + \frac{R_{a_1} \int_V r_{a_1} \rho(\mathbf{r}) dv}{R^3} + \frac{\left(3R_{a_1} R_{a_2} - R^2 \delta_{a_1 a_2}\right) \int_V r_{a_1} r_{a_2} \rho(\mathbf{r}) dv}{2R^5} + \dots \right] \\
= \frac{1}{4\pi\varepsilon_0} \sum_{l=0} \frac{T^{(l)} q^{(l)}}{d^{(l)} R^{2l+1}}, \tag{2}$$

and similarly the components of the magnetic vector potential A(R) can be written as

$$A^{i}(\mathbf{R}) = \frac{\mu_{0}}{4\pi} \sum_{l=0} \frac{T^{(l)} J^{i(l)}}{d^{(l)} R^{2l+1}},$$
(3)

where

$$q^{(l)} := \int_{V} r_{a_1} \times \cdots \times r_{a_l} \rho(\mathbf{r}) \, dv, \tag{4}$$

$$J^{i(l)} := \int_{V} r_{a_1} \times \dots \times r_{a_l} J^i(\mathbf{r}) \, dv, \tag{5}$$

$$d^{(l)} := \text{constants in denominator of } l' \text{th term.}$$
 (6)

Some analytical expressions for the denominator constant are

$$d^{(l)} = 2^{\sum_{n=1}^{\operatorname{floor}(\log_2 l)} \operatorname{floor}(l/2^n)}$$

$$= 2^{\sum_{n=1}^{\infty} \operatorname{floor}(l/2^n)}$$

$$= \gcd(l!, 2^l). \tag{7}$$

An analytical expression for the prefactor tensor is

$$T^{(l)} = (-1)^{l} \sum_{m=0}^{\operatorname{rd}(l/2)} d^{(l)} 2^{l-2m} {\binom{-1/2}{l-m}} {\binom{l-m}{l-2m}} R^{2m} \left(\prod_{\alpha=1}^{l-2m} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-1} \delta_{a_{2\beta+l-2m+1}a_{2\beta+l-2m+2}} \right), \tag{8}$$

where rd(x) rounds x to the nearest integer, and rounds down if x is a half-integer, and where Euler products are 1 if the starting value is greater than the upper limit:

$$\operatorname{rd}(x) := \begin{cases} \operatorname{round}(x), & x \neq n + \frac{1}{2}, n \in \mathbb{Z} \\ \operatorname{floor}(x), & x = n + \frac{1}{2}, n \in \mathbb{Z} \end{cases}, \quad \prod_{\gamma = \gamma_0}^{\gamma_1} x_{\beta} := \begin{cases} \prod_{\gamma = \gamma_0}^{\gamma_1} x_{\beta}, & \gamma_1 \ge \gamma_0 \\ 1, & \gamma_1 < \gamma_0 \end{cases}. \tag{9}$$

Note that the above analytical expression for $T^{(l)}$ is not unique - it is only the tensor products $T^{(l)}q^{(l)}$ and $T^{(l)}J^{i(l)}$ that are important, and there is freedom in the definition of $T^{(l)}$ that leaves these products invariant.

Derivation: What follows is half-derivation, half-pattern recognition. I'm only going to write it for the electric case, it is identical for the magnetic case.

Start with

$$\Phi\left(\mathbf{R}\right) = \frac{1}{4\pi\varepsilon_0} \int_V \frac{1}{|\mathbf{R} - \mathbf{r}|} \rho\left(\mathbf{r}\right) dv$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V \left[(\mathbf{R} - \mathbf{r})^2 \right]^{-1/2} \rho\left(\mathbf{r}\right) dv$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V \left[r^2 - 2\mathbf{R} \cdot \mathbf{r} + R^2 \right]^{-1/2} \rho\left(\mathbf{r}\right) dv. \tag{10}$$

Now apply the generalized binomial theorem,

$$(a+b)^n = \sum_{k=0} \binom{n}{k} a^{n-k} b^k, \tag{11}$$

with

$$a = r^2 - 2\mathbf{R} \cdot \mathbf{r}$$
 , $b = R^2$, $n = -1/2$. (12)

This gives

$$\frac{1}{|\mathbf{R} - \mathbf{r}|} = \left[r^2 - 2\mathbf{R} \cdot \mathbf{r} + R^2\right]^{-1/2}$$

$$= \frac{1}{R} + \frac{2\mathbf{R} \cdot \mathbf{r} - r^2}{2R^3} + \frac{3\left(-2\mathbf{R} \cdot \mathbf{r} + r^2\right)^2}{8R^5} + \dots$$
(13)

Multiply terms by extra factors of R^2/R^2 such that R and r always show up multiplicatively in like powers. E.g., take $-r^2/R^3 \mapsto -r^2R^2/R^5$, etc. Then group terms so that they have like powers of R in the denominator, and multiply terms in a given numerator until no fractions show up in the numerators. This gives

$$\frac{1}{|\mathbf{R} - \mathbf{r}|} = \frac{1}{R} + \frac{\mathbf{R} \cdot \mathbf{r}}{R^3} + \frac{3(\mathbf{R} \cdot \mathbf{r})^2 - R^2 r^2}{2R^5} + \frac{5(\mathbf{R} \cdot \mathbf{r})^3 - 3R^2(\mathbf{R} \cdot \mathbf{r}) r^2}{2R^7} + \dots$$
 (14)

Substitute this back into the expression for $\Phi(\mathbf{R})$ and rearrange slightly,

$$\Phi\left(\mathbf{R}\right) = \frac{1}{4\pi\varepsilon_0} \left\{ \int_V \frac{1}{R} \rho\left(\mathbf{r}\right) dv + \int_V \frac{1}{R^3} \mathbf{R} \cdot \mathbf{r} \rho\left(\mathbf{r}\right) dv + \int_V \frac{1}{2R^5} \left[3\left(\mathbf{R} \cdot \mathbf{r}\right)^2 - R^2 r^2 \right] \rho\left(\mathbf{r}\right) dv + \dots \right\}. \tag{15}$$

Get the multipole moments $q^{(l)}$ to show up explicitly by writing dot products between \mathbf{R} and \mathbf{r} and between \mathbf{r} and itself using index convention, e.g.,

$$R^{2}(\mathbf{R}\cdot\mathbf{r})r^{2} = R^{2}R_{a_{1}}r_{a_{1}}r_{a_{2}}r_{a_{2}}.$$
(16)

Then get all r indices in a given term to not repeat themselves using Kronecker deltas, e.g.,

$$R^{2}R_{a_{1}}r_{a_{1}}r_{a_{2}}r_{a_{2}} = R^{2}R_{a_{1}}\delta_{a_{2}a_{3}}r_{a_{1}}r_{a_{2}}r_{a_{3}}.$$
(17)

Substituting,

$$\Phi\left(\boldsymbol{R}\right) = \frac{1}{4\pi\varepsilon_{0}} \left[\int_{V} \frac{1}{R} \rho\left(\boldsymbol{r}\right) dv + \int_{V} \frac{R_{a_{1}}}{R^{3}} r_{a_{1}} \rho\left(\boldsymbol{r}\right) dv + \int_{V} \frac{3R_{a_{1}}R_{a_{2}} - R^{2} \delta_{a_{1}a_{2}}}{2R^{5}} r_{a_{1}} r_{a_{2}} \rho\left(\boldsymbol{r}\right) dv + \dots \right]. \tag{18}$$

Move all terms not dependent on r outside of the integrals,

$$\Phi\left(\boldsymbol{R}\right) = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{1}{R} \int_{V} \rho\left(\boldsymbol{r}\right) dv + \frac{R_{a_{1}}}{R^{3}} \int_{V} r_{a_{1}} \rho\left(\boldsymbol{r}\right) dv + \frac{3R_{a_{1}}R_{a_{2}} - R^{2}\delta_{a_{1}a_{2}}}{2R^{5}} \int_{V} r_{a_{1}} r_{a_{2}} \rho\left(\boldsymbol{r}\right) dv + \dots \right]. \tag{19}$$

Now identify the integrals with $q^{(l)}$, the numerators outside of the integrals with $T^{(l)}$, the constants in the denominators outside of the integrals as $d^{(l)}$, and the powers of R in the denominators as R^{2l+1} ,

$$\Phi\left(\mathbf{R}\right) = \frac{1}{4\pi\varepsilon_0} \left[\frac{T^{(0)}q^{(0)}}{d^{(0)}R^{2\times0+1}} + \frac{T^{(1)}q^{(1)}}{d^{(1)}R^{2\times1+1}} + \frac{T^{(2)}q^{(2)}}{d^{(2)}R^{2\times2+1}} + \ldots \right] \\
= \frac{1}{4\pi\varepsilon_0} \sum_{l=0} \frac{T^{(l)}q^{(l)}}{d^{(l)}R^{2l+1}}.$$
(20)

The above procedure was coded into the Mathematica document Multipole expansion.nb. Using the procedure, any $T^{(l)}$ or $d^{(l)}$ can be found algorithmically, but the procedure is not yet an analytical expression for these (although we already have an analytical expression for $q^{(l)}$ by $q^{(l)}$'s definition). However, the procedure is handy for quickly exploring arbitrarily high-order prefactor tensors and denominator constants and looking for patterns to determine an analytical expression, and that's what I did.

A handy tool for exploring nonobvious integer patterns like this is The On-Line Encyclopedia of Integer Sequences, OEIS. Throwing it in there, it is sequence number A060818, and a few expressions for the sequence are given as

$$d^{(l)} = 2^{\sum_{n=1}^{\infty} \operatorname{floor}(l/2^n)}$$

$$= \gcd(l!, 2^l)$$

$$= \operatorname{denominator}\left(\binom{2l}{l}/2^l\right). \tag{21}$$

The first and last of these are also equivalent to

$$d^{(l)} = 2^{\sum_{n=1}^{\text{floor}(\log_2 l)} \text{floor}(l/2^n)}$$

$$= \text{denominator}\left(2^l \binom{-1/2}{l}\right), \tag{22}$$

since $\binom{2l}{l}/2^l = -2^l \binom{-1/2}{l}$.

Great, now let's move onto the prefactor tensors. Start by making a table of the first several:

l	$T^{(l)}$
0	1
1	$-R_{a_1}$
2	$3R_{a_1}R_{a_2} - 3R^2R_{a_1}\delta_{a_1a_2}$
3	$5R_{a_1}R_{a_2}R_{a_3} - 3R^2R_{a_1}\delta_{a_2a_3}$
4	$35R_{a_1}R_{a_2}R_{a_3}R_{a_4} - 30R^2R_{a_1}R_{a_2}\delta_{a_3a_4} + 3R^4\delta_{a_1a_2}\delta_{a_3a_4}$
5	$63R_{a_1}R_{a_2}R_{a_3}R_{a_4}R_{a_5} - 70R^2R_{a_1}R_{a_2}R_{a_3}\delta_{a_4a_5} + 15R^4R_{a_1}\delta_{a_2a_3}\delta_{a_4a_5}$
	(1)

In general, we can write each $T^{(l)}$ as

$$T^{(l)} = \sum_{m=1}^{\text{upper limit}} \kappa_m \lambda_m, \tag{23}$$

with κ_m representing the constants, and λ_m representing everything with R's and δ 's. First, what is upper limit? For l=0,1 it is 1, for l=2,3, it is 2, and for l=4,5, it is 3. This pattern continues, a fact made obvious since the first term must always have R_{a_i} 's only, and each subsequent term must trade a pair of R_{a_i} 's for an $R^2\delta_{a_ia_{i+1}}$. So we conclude

upper limit =
$$\operatorname{rd}\left[\left(l+1\right)/2\right]$$
. (24)

The pattern for the κ_m 's is very nonobvious, so skip for now. The pattern for the λ_m 's is what I mentioned above. It is clear that we can write a given λ_m using Euler products, and the rest is just being careful about how we write all of the indices. It comes to

$$\lambda_m = R^{2(m-1)} \left(\prod_{\alpha=1}^{l-2(\alpha-1)} R_{a_\alpha} \right) \left(\prod_{\beta=0}^{m-2 \ge 0} \delta_{l-\beta, l-\beta+1} \right). \tag{25}$$

So,

$$T^{(l)} = \sum_{m=1}^{\operatorname{rd}[(l+1)/2]} \kappa_m R^{2(m-1)} \left(\prod_{\alpha=1}^{l-2(m-1)} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-2 \ge 0} \delta_{a_{2\beta+l-2m+3}a_{2\beta+l-2m+4}} \right)$$

$$= \sum_{m=0}^{\operatorname{rd}(l/2)} \kappa_m R^{2m} \left(\prod_{\alpha=1}^{l-2m} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-1 \ge 0} \delta_{a_{2\beta+l-2m+1}a_{2\beta+l-2m+2}} \right). \tag{26}$$

I'll use a different route to figure out the κ_m 's:

- 1. Write out the terms in the binomial expansion of $1/|\mathbf{R}-\mathbf{r}|$ given in equations 11 and 12, where the analytical form of the constants in front of each term will be obvious.
- 2. Figure out a general pattern for how these terms are regrouped for the multipole expansion.
- 3. Screw around algebraically as necessary to get the constants to appear exactly as they are in the multipole expansion.
- 4. Identify the resulting constants with the κ_m 's.

We have

$$\frac{1}{|\boldsymbol{R} - \boldsymbol{r}|} = \sum_{k=0}^{\infty} {\binom{-1/2}{k}} \left(R^2\right)^{-1/2 - k} \left(r^2 - 2\boldsymbol{R} \cdot \boldsymbol{r}\right)^k.$$
(27)

Again using the generalized binomial theorem, this time on the $(r^2 - 2\mathbf{R} \cdot \mathbf{r})$ term,

$$\frac{1}{|\boldsymbol{R} - \boldsymbol{r}|} = \sum_{k=0}^{k} {\binom{-1/2}{k}} (R^2)^{-1/2 - k} \sum_{j=0}^{k} {k \choose j} (r^2)^{k-j} (2\boldsymbol{R} \cdot \boldsymbol{r})^j$$

$$= \sum_{k=0}^{k} \sum_{j=0}^{k} 2^j {\binom{-1/2}{k}} {k \choose j} \frac{1}{R^{2k+1}} (r^2)^{k-j} (\boldsymbol{R} \cdot \boldsymbol{r})^j. \tag{28}$$

We want to get this to look like the multipole expansion, in which R and r always show up in equal powers in the numerators. To do this, rewrite the above expression as

$$\frac{1}{|\mathbf{R} - \mathbf{r}|} = \sum_{k=0}^{\infty} \sum_{j=0}^{k} 2^{j} {\binom{-1/2}{k}} {\binom{k}{j}} \frac{1}{R^{4k-2j+1}} (r^{2})^{k-j} (\mathbf{R} \cdot \mathbf{r})^{j} (R^{2})^{k-j}.$$
 (29)

Now we group terms in the above expression as they are grouped in the multipole expansion by noting that grouped terms will have like powers of R in the denominator. Let

$$\mu_{k,j} := 2^{j} {\binom{-1/2}{k}} {\binom{k}{j}} \frac{1}{R^{4k-2j+1}} \left(r^{2}\right)^{k-j} \left(\mathbf{R} \cdot \mathbf{r}\right)^{j} \left(R^{2}\right)^{k-j}. \tag{30}$$

The table below makes obvious which $\mu_{k,j}$ correspond to which $R^{4k-2j+1} = R^{2l+1}$ in the denominators of the multipole

 $\frac{\text{expansion:}}{R^{4k-2j+1} = R^{2l+1} \text{ in denominator } \left| \begin{array}{cccc} R^1 & R^3 & R^5 & R^7 & R^9 & R^{11} \\ \mu_{k,j} \text{ terms} & \mu_{0,0} & \mu_{1,1} & \mu_{2,2}, \mu_{1,0} & \mu_{3,3}, \mu_{2,1} & \mu_{4,4}, \mu_{3,2}, \mu_{2,0} & \mu_{5,5}, \mu_{4,3}, \mu_{3,1} \\ \end{array}}{\text{Overall, the } \mu_{k,j} \text{ corresponding to } R^n \text{ are } \left\{ \mu_{\frac{1}{2}(n-1)-n',\frac{1}{2}(n-1)-2n'} \middle| n' \in \left\{0,1,\ldots,\operatorname{rd}\left[\frac{1}{4}\left(n-1\right)\right]\right\} \right\}, \text{ or equivalently, the } \mu_{k,j}$ corresponding to R^{2l+1} are $\left\{\mu_{l-m,l-2m} \middle| m \in \{0,1,\ldots,\operatorname{rd}(l/2)\}\right\}$. The fact that m goes from 0 to $\operatorname{rd}(l/2)$ is good: Once we substitute $1/(\mathbf{R}-\mathbf{r})$ as phrased in terms of $\mu_{l-m,l-2m}$'s back into the expression for $\Phi(\mathbf{R})$, we can identify the constants in each $\mu_{l-m,l-2m}$ as being some mixture of κ_m 's and $d^{(l)}$'s, and the symbolic parts of the expression as being the λ_m 's and $q^{(l)}$'s. Doing this, substituting back in for $\mu_{l-m,l-2m}$, and writing the symbolic parts of the expression briefly as λ_m 's and $q^{(l)}$'s, the sum over m is

$$\sum_{m=0}^{\operatorname{rd}(l/2)} k^{(l)} T^{(l)} q^{(l)} = \sum_{m=0}^{\operatorname{rd}(l/2)} 2^{l-2m} \binom{-1/2}{l-m} \binom{l-m}{l-2m} R^{2m} \left(\prod_{\alpha=1}^{l-2m} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-1 \ge 0} \delta_{a_{2\beta+l-2m+1} a_{2\beta+l-2m+2}} \right) q^{(l)}. \tag{31}$$

Equivalently,

$$T^{(l)} = \sum_{m=0}^{\operatorname{rd}(l/2)} k_m^{(l)} 2^{l-2m} \binom{-1/2}{l-m} \binom{l-m}{l-2m} R^{2m} \left(\prod_{\alpha=1}^{l-2m} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-1 \ge 0} \delta_{a_{2\beta+l-2m+1}a_{2\beta+l-2m+2}} \right), \tag{32}$$

i.e., the expression on the RHS is equal to $T^{(l)}$, except that there is still a multiplicative constant in front of each term in $T^{(l)}$. To figure out how to adjust the expression further, define

$$U^{(l)} := \sum_{m=0}^{\operatorname{rd}(l/2)} 2^{l-m} \binom{-1/2}{l-m} \binom{l-m}{l-2m} R^{2m} \left(\prod_{\alpha=1}^{l-2m} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-1 \ge 0} \delta_{a_{2\beta+l-2m+1}a_{2\beta+l-2m+2}} \right), \tag{33}$$

(so each term of $U^{(l)}$ differs from the corresponding term in $T^{(l)}$ by factors of $k_m^{(l)}$ and 2^m . Write a table of l, $T^{(l)}$, and $U^{(l)}$:

	· ·	, , ,	
\overline{l}	$T^{(l)}$	$U^{(l)}$	
0	1	1	
1	R_{a_1}	$-R_{a_1}$	
2	$3R_{a_1}R_{a_2} - R^2\delta_{a_1a_2}$	$\frac{3}{2}R_{a_1}R_{a_2} - R^2\delta_{a_1a_2}$	
3	$5R_{a_1}R_{a_2}R_{a_3} - 3R^2R_{a_1}\delta_{a_2a_3}$	$-\frac{5}{2}R_{a_1}^2R_{a_2}R_{a_3} + 3R^2R_{a_1}\delta_{a_2a_3}$	
4	$35R_{a_1}\cdots R_{a_4} - 30R^2R_{a_1}R_{a_2}\delta_{a_3a_4} + 3R^4\delta_{a_1a_2}\delta_{a_3a_4}$	$\frac{35}{8}R_{a_1}\cdots R_{a_4} - \frac{30}{4}R^2R_{a_1}R_{a_2}\delta_{a_3a_4} + \frac{3}{2}R^4\delta_{a_1a_2}\delta_{a_3a_4}$	
		$-\frac{63}{8}R_{a_1}^{5}\cdots R_{a_5} + \frac{70}{4}R^{5}R_{a_1}R_{a_2}R_{a_3}\delta_{a_4a_5} - \frac{15}{2}R^{4}R_{a_1}\delta_{a_2a_3}\delta_{a_4a_5}$	
The tensors are exactly the same, except for the following differences:			

- The are off by a factor of $(-1)^l$.
- Letting $c^{(l)}$ be the leading denominator in $U^{(l)}$, The (l,m)'th terms are off by factors of $c^{(l)}/2^m$.

So, if we can figure out the pattern for the terms $c^{(l)}$, we can write the appropriate summation to convert from $U^{(l)}$ to $T^{(l)}$, and we are done. $c^{(l)}$ is just the denominator in the m=0 constant in $U^{(l)}$, i.e.,

$$c^{(l)} = \operatorname{denominator} \left(2^{l-m} \binom{-1/2}{l-m} \binom{l-m}{l-2m} \right|_{m=0}$$

$$= \operatorname{denominator} \left(2^{l} \binom{-1/2}{l} \binom{l}{l} \right)$$

$$= \operatorname{denominator} \left(2^{l} \binom{-1/2}{l} \right)$$

$$= d^{(l)},$$
(34)

by equation 22. So, we have effectively determined that

$$k_m^{(l)} = (-1)^l 2^m \frac{d^{(l)}}{2^m}$$

= $(-1)^l d^{(l)}$. (35)

From this and equations 26 and 32, this is equivalent to saying that

$$\kappa_m = (-1)^l d^{(l)} 2^{l-2m} \binom{-1/2}{l-m} \binom{l-m}{l-2m}.$$
 (36)

Substituting back into equation 26 or 32, we have

$$T^{(l)} = (-1)^{l} \sum_{m=0}^{\operatorname{rd}(l/2)} d^{(l)} 2^{l-2m} {\binom{-1/2}{l-m}} {\binom{l-m}{l-2m}} R^{2m} \left(\prod_{\alpha=1}^{l-2m} R_{a_{\alpha}} \right) \left(\prod_{\beta=0}^{m-1 \ge 0} \delta_{a_{2\beta+l-2m+1}a_{2\beta+l-2m+2}} \right). \tag{37}$$

The results of the above derivation are summarized by equations 2 through 9.