emerging infectious disease 3 April 2022

emerging and re-emerging disease

basically, anything we're worried about

- new mutations
- · change in environment
- resistant strains
- species jumps (encounter and compatibility: changes via recombination, mutation)

Do we need to understand everything?

- · reservoir ecology
- pathogen biology
- human-reservoir interactions

How do we understand? How do we predict?

Batrachochytrium dendrobatidis

Reminders

• fungal pathogen

- most other chytrids are saprophytes, plant pathogens
- B. salamandrivorans: salamander pathogen (more restricted)
- first discoved in poison dart frogs
- caused die-offs in E Australia, Central America, Colorado, California ...
- association with high altitude?
- occurred in pristine areas (probably not anthropogenic?)
- pathogenesis via screwed-up osmoregulation

Very confusing ...

- some species decline in the absence of Bd
- some species stable in the presence of Bd (Bd may have been there all along?)
- susceptibility:
 - ability to bask
 - antimicrobial peptides

tipping point hypothesis: in populations all the time, but something happened to increase virulence/reduce tolerance or resistance

- climate change/El Niño?
- ultraviolet radiation?
- cooler temperatures? (basking etc.)
- pesticides?
- combination (species × temperature × U/V × pesticide × ...)
- Pounds et al. (2006): "chytrid-thermal-optimum hypothesis"
- Rohr et al. (2008): "numerous other variables, including regional banana and beer production, were better predictors of these extinctions"
- Rohr & Raffel (2010)

novel pathogen hypothesis: mutation/speciation + dispersal

- "Out of Africa" hypothesis
- earlier/broader detection in historical specimens: CA/bullfrog, Brazil ...
- genomics (challenging!)
- Asian sampling

monkeypox

climate change

- warming
 - 'good' or 'bad' for pathogens?
 - vector biology
 - * extended range
 - * higher activity?
- changes in seasonality, hydrological cycles
- local landscape change
 - hydrology
 - land cover (Lyme disease)
 - forest cover
- changes in reservoir communities

dilution effect (Keesing & Ostfeld, 2021)

- does increased biodiversity decrease disease?
- variation in reservoir competence
- high-quality hosts decrease with increasing biodiversity
 - encounter reduction; host regulation; vector preferences

Kain & Bolker (2019) Rohr et al. (2020)

Fig. 4: Hedges' g effect sizes.

prediction

Pulliam & Dushoff (2009)

Figure 1.

Walker et al. (2018)

References

- Han, B. A., O'Regan, S. M., Paul Schmidt, J., & Drake, J. M. (2020). Integrating data mining and transmission theory in the ecology of infectious diseases. *Ecology Letters*, 23(8), 1178–1188. https: //doi.org/10.1111/ele.13520
- Kain, M. P., & Bolker, B. M. (2019). Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data. Parasites & Vectors, 12(1), 395. https://doi.org/10.1186/s13071-019-3656-8 Keesing, F., & Ostfeld, R. S. (2021). Dilution effects in disease ecology.
- Ecology Letters, 24(11), 2490-2505. https://doi.org/10.1111/ele. 13875
- Pounds, A. J., Bustamante, M. R., Coloma, L. A., Consuegra, J. A., Fogden, M. P. L., Foster, P. N., La Marca, E., Masters, K. L., Merino-Viteri, A., Puschendorf, R., Ron, S. R., Sánchez-Azofeifa, G. A., Still, C. J., & Young, B. E. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439(7073), 161-167. https://doi.org/10.1038/nature04246
- Pulliam, J. R. C., & Dushoff, J. (2009). Ability to Replicate in the Cytoplasm Predicts Zoonotic Transmission of Livestock Viruses. The Journal of Infectious Diseases, 199(4), 565-568. https://doi.org/10. 1086/596510
- Rohr, J. R., Civitello, D. J., Halliday, F. W., Hudson, P. J., Lafferty, K. D., Wood, C. L., & Mordecai, E. A. (2020). Towards common ground in the biodiversity-disease debate. *Nature Ecology & Evolu*tion, 4(1), 24-33. https://doi.org/10.1038/s41559-019-1060-6
- Rohr, J. R., & Raffel, T. R. (2010). Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proceedings of the National Academy of Sciences, 107(18), 8269-8274. https://doi.org/10.1073/pnas.0912883107 Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H., & Hudson,

P. J. (2008). Evaluating the links between climate, disease spread, and amphibian declines. Proceedings of the National Academy of Sciences, 105(45), 17436-17441. https://doi.org/10.1073/pnas. 0806368105

Walker, J. W., Han, B. A., Ott, I. M., & Drake, J. M. (2018). Transmissibility of emerging viral zoonoses. PLOS ONE, 13(11), e0206926. https://doi.org/10.1371/journal.pone.0206926

Last updated: 2022-04-06 10:44:26