Chapter 1 Solutions, Susanna Epp Discrete Math 5th Edition

https://github.com/spamegg1

April 19, 2023

Contents

1	Exe	rcise S	et 1	.1	_																2
	1.1	Proble	m 1																		2
		1.1.1	(a)																		2
		1.1.2	(b)																		2
	1.2	Proble	\ /																		2
		1.2.1	(a)																		2
		1.2.2	(b)																		2
	1.3	Proble	()																		3
		1.3.1	(a)																		3
		1.3.2	(b)																		3
	1.4	Proble	\ /																		3
		1.4.1	(a)																		3
		1.4.2	(b)																		3
	1.5	Problem	\ /																		3
	1.0	1.5.1	(a)																		3
		1.5.2	(b)																		4
		1.5.3	(c)																		4
	1.6	Proble	()																		4
	1.0	1.6.1	(a)																		4
		1.6.2	(b)																		4
		1.6.3	(c)									•									4
	1.7	Proble	()									•									4
		1.7.1	(a)									•									4
		1.7.2	(b)																		5
		1.7.3	(c)																		5
		1.7.4	(d)									•									5
	1.8	Proble	()																		5
	1.0	1.8.1	(a)																		5
		1.8.2	(1-)									•									5

1.9 Problem	5
1 Exercise Set 1.1	
In each of 1–6, fill in the blanks using a variable or variables to rewrite th given statement.	e
1.1 Problem 1	
Is there a real number whose square is -1 ?	
1.1.1 (a)	
Is there a real number x such that $___$?	
<i>Proof.</i> Is there a real number x such that $\underline{x^2 = -1}$?	
1.1.2 (b)	
Does there exist such that $x^2 = -1$?	
<i>Proof.</i> Does there exist a real number x such that $x^2 = -1$?	
1.2 Problem 2	
Is there an integer that has a remainder of 2 when it is divided by 5 and a remainder of 3 when it is divided by 6?	r
Note: There are integers with this property. Can you think of one?	
1.2.1 (a)	
Is there an integer n such that n has $_{}$?	
<i>Proof.</i> Is there an integer n such that n has a remainder of 2 when it is divided by and a remainder of 3 when it is divided by 6 ?	$\frac{5}{\Box}$
1.2.2 (b)	
Does there exist $___$ such that if n is divided by 5 the remainder is 2 and if $___$?	
<i>Proof.</i> Does there exist an integer n such that if n is divided by 5 the remainder is and if n is divided by 6 the remainder is 3?	$\frac{2}{\Box}$

1.3 Problem 3

Given any two distinct real numbers, there is a real number in between them. 1.3.1 (a) Given any two distinct real numbers a and b, there is a real number c such that c is *Proof.* Given any two distinct real numbers a and b, there is a real number c such that c is between a and b. 1.3.2 (b) For any two $___$, $___$ such that c is between a and b. *Proof.* For any two distinct real numbers a and b, there exists a real number c such that c is between a and b. Problem 4 1.4 Given any real number, there is a real number that is greater. 1.4.1 (a) Given any real number r, there is s such that s is . *Proof.* Given any real number r, there is a real number s such that s is greater than r. 1.4.2 (b) For any $___$, $___$ such that s > r. *Proof.* For any real number r, there exists a real number s such that s > r. Problem 5 1.5 The reciprocal of any positive real number is positive.

1.5.1 (a)

Given any positive real number r, the reciprocal of _____ .

Proof. Given any positive real number r, the reciprocal of r is positive.

1.5.2 (b)
For any real number r , if r is $_{}$, then $_{}$.
<i>Proof.</i> For any real number r , if r is positive, then $1/r$ is positive.
1.5.3 (c)
If a real number r , then
<i>Proof.</i> If a real number r is positive, then $1/r$ is positive.
1.6 Problem 6
The cube root of any negative real number is negative.
1.6.1 (a)
Given any negative real number s, the cube root of
<i>Proof.</i> Given any negative real number s , the cube root of \underline{s} is negative.
1.6.2 (b)
For any real number s , if s is , then
<i>Proof.</i> For any real number s, if s is <u>negative</u> , then $\sqrt[3]{s}$ is negative.
1.6.3 (c)
If a real number s $___$, then $___$.
<i>Proof.</i> If a real number s is negative, then $\sqrt[3]{s}$ is negative.
1.7 Problem 7
Rewrite the following statements less formally, without using variables. Determine, as

Rewrite the following statements less formally, without using variables. Determine, as best as you can, whether the statements are true or false.

1.7.1 (a)

There are real numbers u and v with the property that u + v < u - v.

Proof. Rewrite: There are real numbers such that their sum is less than their difference.

True: 0 and -1 have this property: -1 = 0 + (-1) < 0 - (-1) = 1

1.7.2 (b)

There is a real number x such that $x^2 < x$.

Proof. Rewrite: there is a real number whose square is less than itself.

True: 1/2 has this property: $\frac{1}{4} = \left(\frac{1}{2}\right)^2 < \frac{1}{2}$

1.7.3 (c)

For every positive integer $n, n^2 \ge n$.

Proof. Rewrite: The square of every positive integer is greater than or equal to itself.

True: if we look at the first few examples it holds: $1^2 = 1 \ge 1$, $2^2 = 4 \ge 2$, $3^2 = 9 \ge 3$ and so on. This is however not a proof. Later we'll learn methods to prove this for all positive integers.

1.7.4 (d)

For all real numbers a and b, $|a + b| \le |a| + |b|$.

Proof. Rewrite: for all two real numbers, the absolute value of their sum is less than or equal to the sum of their absolute values.

True: this is known as the Triangle Inequality and it will be proved later. \Box

1.8 Problem

1.8.1 (a)

Proof.

1.8.2 (b)

Proof.

1.9 Problem

1.9.1 (a)

Proof.

1.9.2 (b)

Proof.