Chapitre 1 : Le second degré

Cours 1 : Étude d'une fonction polynôme de degré 2

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Samedi 7 septembre 2019

Sommaire

- Définition 1
- 2 Propriété 1
- 3 Définition 2
- Propriété 2

Forme développée

La fonction qui à tout réel x associe $ax^2 + bx + c$, avec $a \neq 0$ est une fonction polynôme du second degré. a, b et c sont les coefficients de ce polynôme.

Exemples de fonctions polynômes du second degré

$$\rightarrow f: x \mapsto -x^2 + 2x - 3$$
 $(a = -1, b = 2 \text{ et } c = -3)$

$$\rightarrow g: x \mapsto 3x^2 - 4$$
 $(a = 3, b = 0 \text{ et } c = -4)$

$$\rightarrow h: x \mapsto x^2 - 8x$$
 $(a = 1, b = -8 \text{ et } c = 0)$

Remarqu

On dit que les fonctions f, g et h sont données sous leur forme développée.

Exercic

- \rightarrow Justifier que la fontion $f: x \mapsto 0x^2 + x + 1$ n'est pas une fonction polynôme de degré 2.
- → Démontrer que la fonction carré est une fonction polynôme de degré :

Forme développée

La fonction qui à tout réel x associe $ax^2 + bx + c$, avec $a \neq 0$ est une fonction polynôme du second degré. a, b et c sont les coefficients de ce polynôme.

Exemples de fonctions polynômes du second degré

$$\rightarrow f: x \mapsto -x^2 + 2x - 3$$
 $(a = -1, b = 2 \text{ et } c = -3)$

$$\rightarrow g: x \mapsto 3x^2 - 4$$
 $(a = 3, b = 0 \text{ et } c = -4)$

$$\rightarrow h: x \mapsto x^2 - 8x$$
 $(a = 1, b = -8 \text{ et } c = 0)$

Remarqu

On dit que les fonctions f, g et h sont données sous leur forme développée.

Exercice

- \rightarrow Justifier que la fontion $f: x \mapsto 0x^2 + x + 1$ n'est pas une fonction polynôme de degré 2.
- → Démontrer que la fonction carré est une fonction polynôme de degré 2.

Forme développée

La fonction qui à tout réel x associe $ax^2 + bx + c$, avec $a \neq 0$ est une fonction polynôme du second degré. a, b et c sont les coefficients de ce polynôme.

Exemples de fonctions polynômes du second degré

$$\rightarrow f: x \mapsto -x^2 + 2x - 3$$
 $(a = -1, b = 2 \text{ et } c = -3)$

$$\rightarrow g: x \mapsto 3x^2 - 4$$
 $(a = 3, b = 0 \text{ et } c = -4)$

$$\rightarrow h: x \mapsto x^2 - 8x$$
 $(a = 1, b = -8 \text{ et } c = 0)$

Remarque

On dit que les fonctions f, g et h sont données sous leur forme développée.

Exercice

- \rightarrow Justifier que la fontion $f: x \mapsto 0x^2 + x + 1$ n'est pas une fonction polynôme de degré 2.
- → Démontrer que la fonction carré est une fonction polynôme de degré 2.

Forme développée

La fonction qui à tout réel x associe $ax^2 + bx + c$, avec $a \neq 0$ est une fonction polynôme du second degré. a, b et c sont les coefficients de ce polynôme.

Exemples de fonctions polynômes du second degré

$$\rightarrow f: x \mapsto -x^2 + 2x - 3$$
 $(a = -1, b = 2 \text{ et } c = -3)$

$$\rightarrow g: x \mapsto 3x^2 - 4$$
 $(a = 3, b = 0 \text{ et } c = -4)$

$$\rightarrow h: x \mapsto x^2 - 8x$$
 $(a = 1, b = -8 \text{ et } c = 0)$

Remarque

On dit que les fonctions f, g et h sont données sous leur forme développée.

Exercice

- \rightarrow Justifier que la fontion $f: x \mapsto 0x^2 + x + 1$ n'est pas une fonction polynôme de degré 2.
- → Démontrer que la fonction carré est une fonction polynôme de degré 2.

Forme canonique

Toute fonction f, polynôme de degré 2, a une expression qui peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$

avec
$$\alpha = -\frac{b}{2a}$$
 et $\beta = -\frac{b^2 - 4ac}{4a}$.

De plus on constate que : $f(\alpha) = \beta$

Exemple

Soit f la fonction polynôme de degré 2 dont l'expression es

$$f(x) = -2x^2 + 8x - 4$$

On a donc :
$$a = -2$$
, $b = 8$ et $c = -4$.

On calcule α et β

$$\alpha = -\frac{b}{2a} = -\frac{8}{2 \times (-2)} = -\frac{8}{-4} = 2$$

$$\beta = -\frac{b^2 - 4ac}{4a} = -\frac{8^2 - 4 \times (-2) \times (-4)}{4 \times (-2)} = -\frac{32}{-8} = 4.$$

La forme canonique de f est donc $f(x) = -2(x-2)^2 + 4$

Forme canonique

Toute fonction f, polynôme de degré 2, a une expression qui peut s'écrire sous la forme :

$$f(x) = a(x - \alpha)^2 + \beta$$

avec
$$\alpha = -\frac{b}{2a}$$
 et $\beta = -\frac{b^2 - 4ac}{4a}$.

De plus on constate que: $f(\alpha) = \beta$

Exemple

Soit f la fonction polynôme de degré 2 dont l'expression est

$$f(x) = -2x^2 + 8x - 4.$$

On a donc : a = -2, b = 8 et c = -4.

On calcule
$$\alpha$$
 et β :

$$\alpha = -\frac{b}{2a} = -\frac{8}{2 \times (-2)} = -\frac{8}{-4} = 2$$

$$\beta = -\frac{b^2 - 4ac}{4a} = -\frac{8^2 - 4 \times (-2) \times (-4)}{4 \times (-2)} = -\frac{32}{-8} = 4.$$

La forme canonique de f est donc $f(x) = -2(x-2)^2 + 4$.

Courbe représentative d'une fonction polynôme de degré $2\,$

Le plan est muni d'un repère orthogonal

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x)=ax^2+bx+c$, alors sa représentation graphique est la **parabole** d'équation $y=ax^2+bx+c$.

Courbe représentative d'une fonction polynôme de degré $2\,$

Le plan est muni d'un repère orthogonal

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, alors sa représentation graphique est la **parabole** d'équation $y = ax^2 + bx + c$.

Exemple

On considère la fonction polynôme de degré 2 définie sur \mathbb{R} par :

$$f(x) = -2x^2 + 8x - 4$$

Parabole d'équation : $y = -2x^2 + 8x - 4$

Variations d'une fonction polynôme de degré 2

Les variations dépendent du signe de a

x	-∞		α	+~
f(x)	/	<u></u>	β	/

fadmet un minimum en $x=\alpha$ qui vaut β

■ Cas a<0:

f admet un maximum en $x = \alpha$ qui vaut β

Exemple

$$f(x) = -2x^2 + 8x - 4$$
< 0, $\alpha = 2$ et $\beta = 4$

Variations d'une fonction polynôme de degré 2

Les variations dépendent du signe de a

x	-∞		α	+∞
f(x)	/	<u>\</u>	β	/

fadmet un minimum en $x=\alpha$ qui vaut β

■ Cas a<0 :

f admet un maximum en $x = \alpha$ qui vaut β

Exemple

$$f(x) = -2x^2 + 8x - 4$$

 $a < 0, \ \alpha = 2 \text{ et } \beta = 4$

FIN

Revenir au début

