Question Number	Scheme	Marks
1.	$ \begin{array}{c ccccc} X & R & R & R & mg \\ \hline O & B & P & A & F & \mu R & \mu mg \end{array} $ $F = \mu R = \mu mg$	B1 B1
	Attempt to relate Fd to EPE	M1
	$\frac{2}{3} mg d = \frac{4 mg(\frac{a}{2})^2}{2a}$	M1 A1 ft
	Final answer: $d = \frac{3}{4}a$	A1 (6) (6 marks)
2.	$R \qquad \qquad (\updownarrow) \qquad R \cos 10^\circ = mg$	
2.	$(\leftrightarrow) R \sin 10^\circ = \frac{mv^2}{r}$	M1 A1 M1 A1ft
	Solving for r : $r = \left[\frac{18}{g \tan 10^{\circ}}\right]$	M1
	mg $r = 190 (m)$ [Accept 187, 188]	A1 (6)
		(6 marks)
3. (a)	$\frac{1}{10}x(4-3x) = 0.2 \ a$	M1 A1
	$\frac{1}{10}x(4-3x) = 0.2v\frac{dv}{dx} \text{ or } \frac{1}{10}x(4-3x) = 0.2 \frac{d(\frac{1}{2}v^2)}{dx}$	M1
	Integrating: $v^2 = 2x^2 - x^3 + C$ or equivalent	M1 A1
	Substituting $x = 6$, $v = 0$ to find candidate's C	M1
	$v^2 = 2x^2 - x^3 + 144$	A1 (7)
(b)	Substituting $x = 0$ and finding v ; $v = 12 \text{ (m s}^{-1}\text{)}$	M1; A1 ft (2)
		(9 marks)

(ft = follow through mark)

_	estion mber	Scheme	Mark	s
4.	(a)	$(\updownarrow) (T-S)\cos\theta = mg$	M1 A1	
		$A \qquad (\leftrightarrow) (T+S) \sin \theta = mr\omega^2$	M1 A1 ft	
		$\theta = m(l\sin\theta)\omega^2$	A1	
		Finding T in terms of l, m, ω^2 and g	M1	
		$T = \frac{1}{6}m(3l\omega^2 + 4g) (*)$ $B \qquad mg$	A1	(7)
	(<i>b</i>)	$S = \frac{1}{6}m(3l\omega^2 - 4g)$ any correct form	M1 A1	(2)
	(c)	Setting $S \ge 0$; $\omega^2 \ge \frac{4g}{3l}$ (*) (no wrong working	M1 A1	(2)
		seen)	(11 ma	arks)
5.	(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		Hooke's Law: $T = \frac{12x}{0.6}$ [= 20x]	M1	
		Equation of motion: $(-)T = 0.8 \ddot{x}$	M1	
		$-\frac{12x}{0.6} = 0.8\ddot{x} \qquad \qquad \ddot{x} = -25x$	A1	
		Finding ω from derived equation of form $\ddot{x} = -\omega^2 x$	M1	
		Period = $\frac{2\pi}{\omega} = \frac{2\pi}{5}$ (*) no incorrect working seen	A1	(5)
	(<i>b</i>)	Substituting (candidate's) ω and a in $\omega^2 a$; = 25 × 0.25 = 6.25 (m s ⁻²)	M1; A1	(2)
		(or finding $T_{\text{max}} = 0.8a \Rightarrow a = 5/0.8 = 6.25$)		
	(c)	Complete method for x ; $x = 0.25 \cos 10^\circ$ (-0.2098)	M1 A1	
		Using $v^2 = \omega^2 (a^2 - x^2) \implies v = (\pm)5\sqrt{(0.25)^2 - (0.25 \cos 10^\circ)}$	M1 A1 ft	
		$v = (\pm) \ 0.68 \ (\text{m s}^{-1})$	A1	(5)
	(<i>d</i>)	Direction \overrightarrow{OB} or equivalent	B1	(1)
			(13 ma	arks)

PROVISIONAL MARK SCHEME

EDEXCEL MECHANICS M3 (6679) – JUNE 2003 P
(ft = follow through mark; (*) indicates final line is given on the paper)

Question Number	Scheme	
6. (a)	Energy: $\frac{1}{2} mv^2 - \frac{1}{2} mu^2 = mga(1 - \cos \theta)$	M1 A1 A1
	Radial: $(\pm R) + mg \cos \theta = \frac{mv^2}{a}$	M1 A1
	Eliminating v and finding cos $\theta = \frac{u^2 + 2ga}{3ga}$	M1, A1 (7)
(b)	Energy (<i>C</i> and ground): $\frac{1}{2} m \left(\frac{9ag}{2} \right) - \frac{1}{2} m v^2 = mga(1 = \cos \theta)$	M1 A1
	Eliminating v: $\frac{1}{2}m\left(\frac{9ag}{2}\right) - \frac{1}{2}mag\cos\theta = mga(1+\cos\theta)$	M1 A1
	$\cos \theta = \frac{5}{6}$	M1 A1 ft
	θ = 34°	A1 (7)
		(14 marks)
Alt (b)	Or energy (A and ground): $\frac{1}{2}m\left(\frac{9ag}{2}\right) - \frac{1}{2}mu^2 = 2mga$	M1 A1
	$u^2 = \frac{1}{2} ga$	M1 A1
	Using with (a) to find $\cos \theta = \frac{5}{6}$; $\theta = 34^{\circ}$	M1 A1; A1 (7)
Alt	Projectile approach: $V_x = v \cos \theta$; $V_y^2 = (v \sin \theta)^2 + 2ga(1 + \cos \theta)$	
	$\left(\frac{9ag}{2}\right) = V_x^2 + V_y^2 \Rightarrow \left(\frac{9ag}{2}\right) - v^2 = 2ga(1 + \cos\theta) - M1 \text{ A1, then scheme}$	

(ft = follow through mark)

Question Number	Scheme	Marks
7. (a)	$V = \pi \int y^2 dx = \frac{1}{4}\pi \int (x-2)^4 dx$	M1
	$\int (x-2)^4 \mathrm{d}x = \frac{1}{5} (x-2)^5$	M1 A1
	$V = \frac{8\pi}{5}$	A1 (4)
(b)	Using $\pi \int xy^2 dx = \frac{1}{4}\pi \int x(x-2)^4 dx$	M1
	Correct strategy to integrate [e.g. substitution, expand, by parts]	M1
	[e.g. $\frac{1}{4}\pi \int (u-2)^4 du$; $\frac{1}{4}\pi \int (x^5 - 8x^4 + 24x^3 - 32x^2 + 16x) dx$]	
	$= \frac{1}{4} \pi \left[\frac{2u^5}{5} + \frac{u^6}{6} \right] \text{ or } \frac{1}{4} \pi \left[\frac{x^6}{6} - \frac{8x^5}{5} + 6x^4 - \frac{32x^3}{3} + 8x^2 \right]$	M1 A1
	$= \frac{8\pi}{15}$ limits need to be used correctly	A1 (7)
	$V_c(\rho)\overline{x} = \pi(\rho)\int xy^2 dx$ seen anywhere	M1
	$\overline{x} = \frac{1}{3}$ cm (*)	A1
(c)	Moments about B: $8A = 10W - 2W(\frac{1}{3})$	M1 A1 A1
	$A = \frac{59W}{12} (4.9W)$	M1 A1 (5)
		(16 marks)

(ft = follow through mark; (*) indicates final line is given on the paper)