UNIVERSITÉ PARIS 8

Master Informatique 2023/24

Probabilités, Statistiques et Théorie de l'information

TD n°3

Exercice 1. Soit X une variable aléatoire de loi normale $\mathcal{N}(\mu, \sigma)$. On suppose μ connue, déterminer l'estimateur de la variance par la méthode du maximum de vraisemblance. Quel est son biais ?

Exercice 2. Construire l'estimateur du paramètre d'une loi de Poisson par la méthode du maximum de vraisemblance.

Exercice 3. On dispose d'un échantillon d'une loi normale $\mathcal{N}(\mu, \sigma)$. On estime les paramètres par

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 et $\widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \widehat{\mu})^2$

On suppose n=30 et $\hat{\sigma}^2=80$, quelle est la probabilité que $\sigma>8$?

Exercice 4. On dispose d'un échantillon de 101 mesures d'une loi normale $\mathcal{N}(\mu, \sigma)$ et on estime la variance à $\hat{\sigma}^2 = 20$. Donner un intervalle de confiance pour la variance σ^2 avec coefficient de confiance $\alpha = 0, 9$ (on distinguera les cas μ connu ou inconnu).

Exercice 5. À partir d'un échantillon de 30 valeurs, on estime la moyenne et l'écart-type d'une variable aléatoire normale à m=5 et s=5. Calculer $P(4 < \mu < 6)$.

Exercice 6. La cote de popularité du président de la république passe de 38% à 36%. Le sondage est réalisé avec un échantillon de 1000 personnes et un indice de confiance de 95%. Peut-on conclure à une chute de popularité?

Exercice 7. À partir d'un échantillon de 50 valeurs, on estime la moyenne et l'écart-type d'une variable aléatoire normale à m=20 et s=5. Donner une estimation de μ par un intervalle de confiance de niveau 0,95.