DS-1002: Homework #2

Due on February 12, 2014 $Professor\ Ling$

Cody Fizette

Problem 1

Justify the following results.

1.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$2. \left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$

Solution 1.1

To prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, we must show that:

1.
$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$$

2.
$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$$

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and either $x \in B$ or $x \in C$. Without loss of generality assume that $x \in B$. Then $x \in A \cap B$. Since $A \cap B \subseteq (A \cap B) \cup (A \cap C)$, we conclude that $x \in (A \cap B) \cup (A \cap C)$, thus showing that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Next, let $y \in (A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Then either $y \in A$ and $y \in B$ or $y \in A$ and $y \in C$. Without loss of generality assume that $y \in A$ and $y \in B$. Then $y \in B \cup C$. Thus $y \in A \cap (B \cup C)$. So therefore $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Since $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ and $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$, we conclude that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution 1.2

Observe that

$$x \in \left(\bigcup_{i=1}^{\infty} A_i\right)^c \iff x \notin \bigcup_{i=1}^{\infty} A_i$$
 By definition of set complement
$$\iff x \notin A_i, \ \forall i \in \mathbb{Z}^+$$
 By definition of set union
$$\iff x \in A_i^c, \ \forall i \in \mathbb{Z}^+$$
 By definition of set complement
$$\iff x \in \bigcap_{i=1}^{\infty} A_i^c$$
 By definition of set intersection

Thus
$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$

Problem 2

Given a sample space Ω with n elements, compute the total number of distinct subsets of Ω .

Solution 2

When constructing a subset A, $\forall x_i \in \Omega$, either $x_i \in A$ or $x_i \notin A$. Since there are n elements in Ω and two possibilities for each element, by the Fundamental Counting Principle there are 2^n distinct subsets of Ω .

Problem 3

Two players, A and B, alternately and independently flip a coin and the first player to obtain a head wins. Asume player A flips first.

- 1. If the coin is fair, what is the probability that A wins?
- 2. Suppose that $\mathbb{P}(head) = p$. What is the probability that A wins?

Solution 3.1

A wins if the first head occurs on an odd numbered throw. Thus:

$$\mathbb{P}(A wins) = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{2i} \left(\frac{1}{2}\right)^{i}$$
$$= \frac{1}{2} \sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^{i}$$
$$= \frac{1}{2} \left(\frac{1}{1 - \frac{1}{4}}\right)^{i}$$
$$= \frac{1}{2} \cdot \frac{4}{3}$$
$$= \frac{2}{3}$$

Sum of geometric series

Solution 3.2

Let q = 1 - p

$$\mathbb{P}(A wins) = \sum_{i=0}^{\infty} (1 - p)^{2i} (p)$$
$$= p \sum_{i=0}^{\infty} (q^2)^i$$
$$= \frac{p}{1 - q^2}$$

Sum of geometric series