TRIGONOMETRY TOMO 4

REVIEW

Halle el cuadrante en el que pertenece el ánguloeta, para que cumpla las siguientes condiciones:

$$sec323^{\circ}.sen\beta > 0$$
 y $cot162^{\circ}.cos\beta > 0$

Resolución:

IVC

> $sec323^{\circ}.sen\beta > 0$ | $sen\beta > 0$

IIC

$$\beta \in IIC$$

$$\beta \in IIIC$$

Si $\cot \theta = -\frac{2}{3}$, donde $\theta \in IVC$ efectúe: $R = \sqrt{13}$. $(sen\theta + cos\theta)$

Resolución:

$$\cot\theta = -\frac{2}{3} = \frac{x}{y}$$

 $\theta \in IVC$ Como se tiene que: x > 0; y < 0

Entonces: x = 2; y = -3

Radio vector:
$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(2)^2 + (-3)^2}$$

$$r = \sqrt{13}$$

Calculamos: $R = \sqrt{13} \cdot (sen\theta + cos\theta)$

$$R = \sqrt{13} \cdot \left(\frac{-3}{\sqrt{13}} + \frac{2}{\sqrt{13}} \right)$$

$$R = -3 + 2$$

$$\therefore R = -1$$

3. Siendo α y β ángulos cuadrantales positivos y menores a una vuelta, además: $sec\alpha + sen\beta = 0$. Calcule: $E = tan\left(\frac{\alpha}{4}\right) + sec^2\left(\frac{\beta}{3}\right)$

Resolución:

Del dato:

$$0^{\circ} < \alpha$$
 , $\beta < 360^{\circ}$

Además:

$$\frac{\sec\alpha + \sin\beta = 0}{-1}$$

$$\alpha = 180^{\circ}$$
 $\beta = 90^{\circ}$

Calculamos:
$$E = \tan\left(\frac{\alpha}{4}\right) + \sec^2\left(\frac{\beta}{3}\right)$$

R.T	0°; 360°	90°	180°	270°
E SEN	0	1	0	-1
cos	1	O	-1	0
TAN	0	N.D	0	N.D
COT	N.D	0	N.D	0
ESEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

$$\therefore E = \frac{7}{3}$$

Simplifique: $P = \sqrt{3}sec(-30^\circ) - 5cot(-53^\circ).cos(-37^\circ)$

Resolución:

$$P = \sqrt{3}sec(-30^{\circ}) - 5cot(-53^{\circ}).\cos(-37^{\circ})$$

$$P = \sqrt{3} (sec30^{\circ}) -5 (-cot53^{\circ}).(cos37^{\circ})$$

$$P = \sqrt{3} \left(\frac{2}{\sqrt{3}} \right) -5 \left(-\frac{3}{4} \right) \left(\frac{3}{5} \right)$$

$$P = 2 - (-3)$$

$$P = 2 + 3$$

$$\therefore P = 5$$

sen(-x) = -senx	csc(-x) = -cscx
$\cos(-x) = \cos x$	sec(-x) = secx
tan(-x) = -tanx	cot(-x) = -cotx

See Second Sec

Resolución:

$$L = \frac{3sen (180^{\circ} - x)}{cos(270^{\circ} + x)} + \frac{2sec(90^{\circ} - x)}{csc(180^{\circ} + x)}$$

$$IIC$$

$$IIC$$

$$IIIC$$

$$L = \frac{3(\pm \sec nx)}{(\pm \sec nx)} + \frac{2(\pm \csc x)}{(-\sec x)}$$

$$L = 3 + (-2)$$

$$\therefore L = 1$$

6. Si
$$\alpha - \beta = 90^{\circ}$$
, reduzca: E = $\frac{tan\alpha}{cot\beta} + sec\alpha$. $sec\beta$

Resolución:

Dato:

$$\alpha - \beta = 90^{\circ}$$

$$\alpha = 90^{\circ} + \beta$$

Piden:

$$E = \frac{\tan(90^{\circ} + \beta)}{\cot\beta} + \sin(90^{\circ} + \beta).\sec(\beta)$$

$$E = \frac{-cot\beta}{cot\beta} + \frac{(cos\beta).(sec\beta)}{1}$$

$$\therefore E=0$$

7. Efectúe: $E = tan2115^{\circ} + sec1320^{\circ}$

Resolución:

$$E = tan315^{\circ} + sec240^{\circ}$$

$$E = tan(360^{\circ} - 45^{\circ}) + sec(180^{\circ} + 60^{\circ})$$

IVC

IIIC

$$\mathsf{E} = (-tan45) + (-sec60)$$

$$E = (-1) + (-2)$$

$$\therefore E = -3$$

Resolución:

Dato:

$$x + y = 51\pi$$

$$\uparrow$$
IMPAR

$$x + y = \pi$$

$$y = \pi - x$$

Calculamos:

$$M = \frac{senx}{seny} + \frac{cscx}{cscy}$$

$$M = \frac{senx}{sen(\pi - x)} + \frac{cscx}{csc(\pi - x)}$$

IIC

IIC

$$M = \frac{senx}{senx} + \frac{cscx}{cscx}$$

$$\therefore M = 2$$

01

IC

Todas las RT

son (+)

IVC

9. Simplifique:

$$L = \frac{\tan{(31\frac{\pi}{2} - x)}}{\cot{(18\pi + x)}} + \sec{60^{\circ}}$$

Resolución:

IIIC

•
$$\tan (31\frac{\pi}{2} - x) = \tan (\frac{3\pi}{2} - x) = \cot x$$

$$\frac{3\pi}{2} = 270^{\circ}$$

$$\cot(18\pi + x) = \cot(x)$$
PAR

Calculamos:

RECORDAR

sen

ШС

tan

IIC

$$L = \frac{\cot x}{\cot x}$$

$$L = 1 + 2$$

$$\therefore L = 3$$

La empresa "MIL OFICIOS" desea invertir en un proyecto donde pueda producir la mayor utilidad posible. El ingeniero a cargo deberá elegir entre 2 proyectos. Se sabe que la empresa esta dispuesta a desembolsar "A" soles, y cada proyecto ofrece una utilidad de B% y C% de la cantidad invertida. ¿Qué proyecto generará mayor utilidad? ¿Cuánta utilidad generará?

$$A = 5000.csc1230^{\circ}$$

 $B = 12sen90^{\circ} + sec180^{\circ}$
 $C = 7cos360^{\circ} - 5csc270^{\circ}$

Resolución:

$$A = 5000. csc 1230^{\circ} = 5000. csc (150^{\circ})$$
 $A = 15000. c360080^{\circ} - 30^{\circ})$
 $A = 15000. c3c (30^{\circ}) = 5000. (2)$
 $A = 10000$

$$B = 12 sen 90^{\circ} + sec 180^{\circ}$$

$$B = 12 (1) + (-1)$$

$$C = 7 cos 360^{\circ} - 5 csc 270^{\circ}$$

$$C = 7(1) -5 (-1)$$

$$C = 12\%$$

$$Calcutando la utilidad del proyecto:$$

$$SEN O 1 0 -1$$

$$U_{total os} A * C = 100000* 12\%-1 0$$

$$TAN O N.D$$

$$U_{total ec} = 100000* \frac{12}{100} \frac{N.D}{N.D} = 1200 \text{ soles}$$

$$CSC N 1 N.D -1$$