## Tema 4

## 2.2. Logaritmos y exponenciales

En esta sección vamos a definir dos de las más importantes funciones de las matemáticas: la función logaritmo natural y la función exponencial. La siguiente desigualdad será de gran utilidad en lo que sigue.

**2.19 Proposición** (Desigualdad básica). Cualesquiera sean los números reales positivos distintos a,b, y para todo número natural n, se verifica que

$$ab^n < \left(\frac{a+nb}{n+1}\right)^{n+1} \tag{2.5}$$

Demostración. En la desigualdad de las medias

$$a_1 + a_1 + a_2 + \cdots + a_{n+1} < \frac{a_1 + a_2 + \cdots + a_{n+1}}{n+1},$$

donde los n+1 números  $a_1, a_2, \ldots, a_{n+1}$  son positivos y no todos ellos iguales, hagamos  $a_1 = a$ ,  $a_2 = \cdots = a_{n+1} = b$ , con lo que obtenemos

$$\sqrt[n+1]{ab^n} < \frac{a+nb}{n+1} \tag{2.6}$$

designaldad que es equivalente a la del enunciado sin más que elevar a la potencia de orden n+1.  $\Box$ 

Usaremos también el hecho elemental (ver ejercicios 48 y 56) de que para todo a > 0 es  $\lim \{ \sqrt[a]{a} \} = 1$ .

No está de más recordar que, dado  $x \ge 0$  y  $n \in \mathbb{N}$ , representamos por  $\sqrt[n]{x}$  al único número real mayor o igual que 0 cuya potencia n-ésima es igual a x. Naturalmente,  $\sqrt[1]{x} = x$ .

**2.20 Proposición.** Para todo número real positivo  $x \neq 1$  se verifica que la sucesión  $\{n(\sqrt[n]{x}-1)\}$  es estrictamente decreciente y convergente.

**Demostración**. Basta hacer en (2.6) a=1,  $b=\sqrt[n]{x}$ , para obtener que  $\sqrt[n+1]{x} < \frac{n\sqrt[n]{x}+1}{n+1}$ , es decir,  $(n+1)\sqrt[n+1]{x} < n\sqrt[n]{x}+1$ ; sumando ahora -n-1 en ambos lados resulta  $(n+1)(\sqrt[n+1]{x}-1) < n(\sqrt[n]{x}-1)$ , lo que prueba que la sucesión es estrictamente decreciente. Si x>1 dicha sucesión converge por ser decreciente y estar minorada por cero. Si 0< x<1 podemos escribir  $n(\sqrt[n]{x}-1)=-n(\sqrt[n]{1/x}-1)\sqrt[n]{x}$ , y como  $\lim\{\sqrt[n]{x}\}=1$ , y 1/x>1, deducimos, por lo ya visto, que también hay convergencia en este caso.

**2.21 Definición.** La función **logaritmo natural**, también llamada **logaritmo neperiano** o, simplemente, logaritmo, es la función  $\log : \mathbb{R}^+ \to \mathbb{R}$  definida para todo x > 0 por

$$\log(x) = \lim_{n \to \infty} \{ n(\sqrt[n]{x} - 1) \}.$$

El siguiente resultado es consecuencia de la proposición anterior y del teorema (2.14).

**2.22 Proposición.** Para todo x > 0,  $x \ne 1$ , y para todo  $n \in \mathbb{N}$  se verifica que:

$$\log(x) = \inf\{n(\sqrt[n]{x} - 1) : n \in \mathbb{N}\} < n(\sqrt[n]{x} - 1)$$
(2.7)

**2.23 Teorema.** Cualesquiera sean los números positivos x, y se verifica que

$$\log(xy) = \log(x) + \log(y); \ \log\left(\frac{x}{y}\right) = \log(x) - \log(y).$$

Además la función logaritmo es estrictamente creciente en  $\mathbb{R}^+$ .

Demostración. Tomando límites en la igualdad

$$n(\sqrt[n]{xy} - 1) = n(\sqrt[n]{x} - 1)\sqrt[n]{y} + n(\sqrt[n]{y} - 1)$$

y teniendo en cuenta que  $\lim \{\sqrt[q]{y}\} = 1$ , obtenemos  $\log(xy) = \log(x) + \log(y)$ . Como, evidentemente,  $\log(1) = 0$ , haciendo en esta igualdad x = 1/y deducimos que  $\log(1/y) = -\log(y)$ . Lo que, a su vez, implica que

$$\log\left(\frac{x}{y}\right) = \log\left(x\frac{1}{y}\right) = \log(x) - \log(y).$$

La desigualdad (2.7) implica que  $\log(t) < 0$  para todo  $t \in ]0,1[$ . Si x,y son números positivos tales que x < y, entonces 0 < x/y < 1 por lo que  $\log(x) - \log(y) = \log(x/y) < 0$ , es decir,  $\log(x) < \log(y)$ , lo que prueba que la función logaritmo es estrictamente creciente.

Nuestro propósitop ahora es probar que la función logaritmo es una biyección de  $\mathbb{R}^+$  sobre  $\mathbb{R}$ . Para ello bastará probar que es sobreyectiva ya que, al ser estrictamente creciente, es inyectiva. El siguiente resultado será de utilidad a este respecto.

**2.24 Lema.** Sea  $\lim\{x_n\} = x$  cumpliéndose que  $0 < x_n < x$  para todo  $n \in \mathbb{N}$ . Entonces se verifica que  $\lim\{n(\sqrt[n]{x_n} - 1)\} = \log(x)$ .

## El número e.

Dado  $n \in \mathbb{N}$ , haciendo en la desigualdad (2.5) a = 1,  $b = 1 + \frac{1}{n}$ , obtenemos que:

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1}.$$

Sustituyendo en (2.5) n por n+1, a=1, b=n/(n+1) y pasando a inversos obtenemos que:

$$\left(1+\frac{1}{n+1}\right)^{n+2} < \left(1+\frac{1}{n}\right)^{n+1}.$$

Hemos probado así que la sucesión  $x_n = \left(1 + \frac{1}{n}\right)^n$  es estrictamente creciente e  $y_n = \left(1 + \frac{1}{n}\right)^{n+1}$  es estrictamente decreciente. Además, como  $x_1 \le x_n < y_n \le y_1$  para todo  $n \in \mathbb{N}$ , resulta que ambas sucesiones son acotadas y, al ser monótonas, son convergentes. Como  $y_n = x_n \left(1 + \frac{1}{n}\right)$  se sigue que  $\lim\{x_n\} = \lim\{y_n\}$ . El valor común de este límite es un número real que se representa por la letra "e". Así,  $e \in \mathbb{R}$  es el número real definido por:

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = \sup_{n \to \infty} \left\{ \left( 1 + \frac{1}{n} \right)^n : n \in \mathbb{N} \right\}$$

y también

$$\mathbf{e} = \lim \left(1 + \frac{1}{n}\right)^{n+1} = \inf \left\{ \left(1 + \frac{1}{n}\right)^{n+1} : n \in \mathbb{N} \right\}.$$

En particular, para todos  $n, m \in \mathbb{N}$  se verifica que:

$$\left[ \left( 1 + \frac{1}{n} \right)^n < e < \left( 1 + \frac{1}{m} \right)^{m+1} \right]$$
 (2.8)

Haciendo n = 1, m = 6 obtenemos una primera aproximación de e, 2 < e < 3.

## **2.25 Proposición.** Dado un número real $x \neq 0$ se verifica que

$$\left(1 + \frac{x}{n}\right)^n < \left(1 + \frac{x}{n+1}\right)^{n+1}$$

para todo número natural n > -x. Además la sucesión  $\left\{ \left(1 + \frac{x}{n}\right)^n \right\}$  es convergente y su límite es un número real positivo.

**Demostración**. Para  $n \in \mathbb{N}$  tal que n > -x se tiene que  $1 + \frac{x}{n} > 0$ . Haciendo en la desigualdad básica  $a = 1, b = 1 + \frac{x}{n}$ , obtenemos que  $\left(1 + \frac{x}{n}\right)^n < \left(1 + \frac{x}{n+1}\right)^{n+1}$ . Hemos probado así que la sucesión  $\left\{\left(1 + \frac{x}{n}\right)^n\right\}$  es eventualmente estrictamente creciente y, según lo dicho en la observación 2.19, para probar que converge es suficiente probar que está acotada. Para ello sea  $p \in \mathbb{N}$  tal que  $p \geqslant |x|$ . Se tiene que

I... I > 1.1.... I...

$$\left| \left( 1 + \frac{x}{n} \right)^n \right| = \left| 1 + \frac{x}{n} \right|^n \leqslant \left( 1 + \frac{|x|}{n} \right)^n \leqslant \left( 1 + \frac{p}{n} \right)^n.$$

Sabemos, por lo ya visto, que  $\left\{\left(1+\frac{p}{n}\right)^n\right\}$  es creciente, por lo que

$$\left(1+\frac{p}{n}\right)^n \leqslant \left(1+\frac{p}{np}\right)^{np} = \left[\left(1+\frac{1}{n}\right)^n\right]^p < e^p.$$

Deducimos así que  $\left|\left(1+\frac{x}{n}\right)^n\right| < \mathrm{e}^p$  para todo  $n \in \mathbb{N}$ , lo que prueba que la sucesión  $\left\{\left(1+\frac{x}{n}\right)^n\right\}$  está acotada. Finalmente, como se indicó en la observación 2.19, tenemos que

$$\lim_{n\to\infty} \left\{ \left(1 + \frac{x}{n}\right)^n \right\} = \sup \left\{ \left(1 + \frac{x}{p+n}\right)^{p+n} : n \in \mathbb{N} \right\}$$

y, por tanto,  $0 < \lim_{n \to \infty} \left\{ \left( 1 + \frac{x}{n} \right)^n \right\}$ .

**2.26 Definición.** La función exponencial es la función  $\exp : \mathbb{R} \to \mathbb{R}^+$  definida para todo  $x \in \mathbb{R}$  por:

 $\exp(x) = \lim_{n \to \infty} \left\{ \left( 1 + \frac{x}{n} \right)^n \right\}.$ 

Observa que  $\exp(1) = e$ , y que  $\exp(0) = 1$ .

**2.27 Teorema.** La función logaritmo es una biyección de  $\mathbb{R}^+$  sobre  $\mathbb{R}$  cuya inversa es la función exponencial.

**Demostración**. Dado  $t \in \mathbb{R}$ , fijemos  $p \in \mathbb{N}$ , p > -t, y definamos

$$x_n = \frac{1}{2} \exp(t)$$
 para  $1 \le n \le p$ ,  $x_n = \left(1 + \frac{t}{n}\right)^n$  para  $n \ge p + 1$ .

Tenemos que lím $\{x_n\} = \exp(t)$  y además  $0 < x_n < \exp(t)$ . Aplicamos ahora el lema 2.24 a dicha sucesión  $\{x_n\}$  para obtener que

$$\lim\{n(\sqrt[n]{x_n}-1)\} = \log(\exp(t)).$$

Por otra parte, para todo  $n \ge p+1$  se tiene que

$$n(\sqrt[n]{x_n}-1)=n\left(\sqrt[n]{\left(1+\frac{t}{n}\right)^n}-1\right)=n\left(1+\frac{t}{n}-1\right)=t,$$

Luego, por la unicidad del límite, ha de ser  $t = \log(\exp(t))$ . Hemos probado así que la función logaritmo es sobreyectiva y, como ya sabíamos, también es inyectiva. Queda así probado que dicha función es una biyección de  $\mathbb{R}^+$  sobre  $\mathbb{R}$ . La igualdad  $\log(\exp(t)) = t$  para todo  $t \in \mathbb{R}$ , nos dice ahora que la función exponencial es la biyección inversa de la función logaritmo.

**2.28 Corolario.** La función exponencial es estrictamente creciente en  $\mathbb{R}$  y se verifica que

$$\exp(x+y) = \exp(x) \exp(y), \quad \exp(x-y) = \frac{\exp(x)}{\exp(y)}$$

cualesquiera sean los números reales x e y.

**Demostración**. Teniendo en cuenta que  $x = \log(\exp(x))$ ,  $y = \log(\exp(y))$  y que el logaritmo es estrictamente creciente, se deduce que si x < y entonces ha de ser necesariamente  $\exp(x) < \exp(y)$ . De otra parte, como

$$\log(\exp(x+y)) = x + y = \log(\exp(x)) + \log(\exp(y)) = \log(\exp(x)\exp(y))$$

se sigue que 
$$\exp(x+y) = \exp(x) \exp(y)$$
. Haciendo en esta igualdad  $x=-y$  obtenemos  $\exp(-y) = \frac{1}{\exp(y)}$  por lo que  $\exp(x-y) = \exp(x) \exp(-y) = \frac{\exp(x)}{\exp(y)}$ .