UNIDADE CURRICULAR: Sistemas de Transmissão e Distribuição Prof. Cristiano Venturi SEMESTRE: 2023/1 Avaliação 3

Orientações Gerais:

- A avaliação consiste no desenvolvimento de uma ferramenta de cálculo e apresentação de relatório;
- A desenvolvimento da ferramenta deverá ser realizado utilizando o software Octave. Consiste na elaboração de um script para a resolução do problema 1 adiante apresentado;
- As entradas de dados e saídas de dados obrigatoriamente deverão utilizar ferramentas de interface gráfica (consultar https://docs.octave.org/v6.3.0/GUI-Develop).
- Todo o script deverá ser comentado e desenvolvido de forma organizada;
- O uso de ferramentas adicionais de interface gráfica é recomendado e será avaliado (msgbox, questdlg, warndlg, etc..)
- O relatório deverá ser elaborado contendo no mínimo:
 - o Manual do usuário (como utilizar o script, inserir dado etc;
 - Explicação do script;
 - o Resultado da aplicação da ferramenta nos contextos;
- O trabalho poderá ser realizado em duplas. Neste caso, no relatório deverá ser apresentado os resultados referentes ao Contexto 1 para cada aluno.
- Entrega: arquivo .m e relatório em .pdf.

Problema 1:

Desenvolver uma ferramenta de cálculo onde:

- Os dados de entrada deverão ser inseridos através de uma caixa de diálogo (inputdlg) ou similar;
- Deverão ser informados: número de condutores, distância entre condutores; distância entra fases; distância em relação ao solo;
- O tipo de condutor deverá ser informado através de uma lista de seleção (listdlg) ou similar;
- Os condutores deverão ser identificados através de sua codeword. Ao selecionar o condutor, os dados necessários para o cálculo dos parâmetros deverão ser importados de um banco de dados no próprio script;
- Os dados dos condutores se encontram na tabela dos condutores CAA adiante;
- Os dados de saída deverão der apresentados através de uma caixa de mensagem (msgbox) ou similar:
- Deverão ser apresentados: Indutância por fase, capacitância por fase, capacitância de sequência zero, impedância característica da linha;

<u>Contexto 1</u>: Considerando uma linha de transmissão trifásica transposta, possuindo a configuração apresentada no desenho a seguir, onde cada fase possui 4 condutores CAA do tipo Rail.

Sendo: C é o maior valor entre A e B.

A é o penúltimo dígito da sua matrícula no curso de Engenharia Elétrica e B é o último dígito da sua matrícula. Por exemplo, se a sua matrícula é xxxxxxxx71, A=7 e B=1: C=7, logo os espaçamentos são 47 cm, 37 m e 42 m. Um outro exemplo: se a sua matrícula é xxxxxxxx05, A=0 e B=5, logo C=5 e os espaçamentos são 45 cm, 35 m e 40 m. Um outro exemplo: se a sua matrícula é xxxxxxxxx50, A=5 e B=0, logo C=5 e os espaçamentos são 45 cm, 35 m e 40 m. Independente do formato da sua matrícula (16xxxxxxxx, 17xxxxxxxx, 2018xxxxxxxx, etc.) utilize este critério.

Despreze o efeito do para-raios para todos os cálculos e despreze o efeito do solo para o cálculo da indutância. Utilize os dados dos condutores conforme a tabela a seguir.

Tabela dos condutores CAA.

Code word	Área de Al, kcmil	Camadas de Al	Raio externo	RMG (cm)	Resistência		
					CC	CA, 60 Hz	
			(cm)		20°C	20°C	50°C
					(Ω/km)	(Ω/km)	(Ω/km)
Waxwing	266,8	2	0,77343	0,603504	0,211942	0,216781	0,238098
Partridge	266,8	2	0,81534	0,661416	0,209974	0,214543	0,235674
Ostrich	300	2	0,8636	0,697992	0,18668	0,190802	0,209571
Merlin	336,4	2	0,86868	0,676656	0,167979	0,17197	0,188751
Linnet	336,4	2	0,91567	0,740664	0,166339	0,170106	0,186824
Oriole	336,4	2	0,94107	0,77724	0,165354	0,168987	0,185643

Chickadee	397,5	2	0,94361	0,734568	0,14206	0,145556	0,159851
Pelican	477	2	1,03378	0,804672	0,118438	0,121628	0,133499
Flicker	477	2	1,07442	0,865632	0,117782	0,120758	0,132629
Hawk	477	2	1,08966	0,880872	0,117126	0,120012	0,131759
Osprey	556,5	2	1,11633	0,865632	0,101378	0,104351	0,114543
Parakeet	556,5	2	1,16078	0,932688	0,10105	0,103729	0,11386
Dove	556,5	2	1,17729	0,957072	0,100722	0,103356	0,113487
Rook	636	2	1,24079	0,996696	0,088255	0,090802	0,099627
Grosbeak	636	2	1,2573	1,02108	0,087927	0,090367	0,099192
Drake	795	2	1,40716	1,136904	0,070538	0,07284	0,079801
Rail	954	3	1,47955	1,176528	0,059383	0,061964	0,067868
Cardinal	954	3	1,51892	1,225296	0,059055	0,061405	0,067247
Ortolan	1033,5	3	1,54051	1,225296	0,05479	0,057427	0,062834
Bluejay	1113	3	1,59893	1,26492	0,050853	0,053511	0,058484
Finch	1113	3	1,64211	1,328928	0,050853	0,053201	0,058235
Bittern	1272	3	1,70815	1,353312	0,044619	0,047359	0,051709
Pheasant	1272	3	1,75514	1,420368	0,044291	0,046675	0,051025
Bobolink	1431	3	1,81229	1,43256	0,039698	0,042511	0,046364
Plover	1431	3	1,86055	1,505712	0,03937	0,041827	0,045681
Lapwing	1590	3	1,90754	1,517904	0,035761	0,03872	0,042138
Falcon	1590	3	1,96215	1,594104	0,035433	0,038036	0,041454
Bluebird	2156	4	2,23774	1,786128	0,026247	0,029584	0,032007