Relação de Equivalência

José Antônio O. Freitas

MAT-UnB

25 de agosto de 2020

Seja A um conjunto não vazio

Seja A um conjunto não vazio e $R \subseteq A \times A$.

Seja A um conjunto não vazio e $R \subseteq A \times A$. Dizemos que R

Seja A um conjunto não vazio e $R \subseteq A \times A$. Dizemos que R é uma **relação de equivalência** se:

i) Para todo $x \in A$,

Seja A um conjunto não vazio e $R \subseteq A \times A$. Dizemos que R é uma **relação de equivalência** se:

i) Para todo $x \in A$, $(x, x) \in R$.

Seja A um conjunto não vazio e $R \subseteq A \times A$. Dizemos que R é uma **relação de equivalência** se:

i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$,

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$.

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$. (Propriedade Simétrica)

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$. (Propriedade Simétrica)
- iii) Se $(x, y) \in R$

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$. (Propriedade Simétrica)
- iii) Se $(x, y) \in R$ e $(y, z) \in R$,

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$. (Propriedade Simétrica)
- iii) Se $(x, y) \in R$ e $(y, z) \in R$, então $(x, z) \in R$.

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$. (Propriedade Simétrica)
- iii) Se $(x, y) \in R$ e $(y, z) \in R$, então $(x, z) \in R$. (Propriedade Transitiva)

Seja A um conjunto não vazio e $R \subseteq A \times A$. Dizemos que R é uma **relação de equivalência** se:

- i) Para todo $x \in A$, $(x,x) \in R$. (Propriedade Reflexiva)
- ii) Se $(x, y) \in R$, então $(y, x) \in R$. (Propriedade Simétrica)
- iii) Se $(x,y) \in R$ e $(y,z) \in R$, então $(x,z) \in R$. (Propriedade Transitiva)

Quando $R \subseteq A \times A$ é uma relação de equivalência, dizemos que R é uma relação de equivalência em A. Quando dois elementos x, $y \in A$ são tais que $(x,y) \in R$, dizemos que x e y são relacionados ou que x e y estão relacionados.

1) Seja $A = \{1, 2, 3, 4\}$. Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

$$R_1 = A \times A$$

1) Seja $A = \{1, 2, 3, 4\}$. Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

$$R_1 = A \times A$$

 $R_2 = \{(1,1); (2,2); (3,3)\}$

1) Seja $A = \{1,2,3,4\}$. Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

$$R_1 = A \times A$$

$$R_2 = \{(1,1); (2,2); (3,3)\}$$

$$R_3 = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1)\}$$

1) Seja $A = \{1, 2, 3, 4\}$. Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

$$R_1 = A \times A$$

$$R_2 = \{(1,1); (2,2); (3,3)\}$$

$$R_3 = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1)\}$$

$$R_4 = \{(1,1); (2,2); (3,3); (4,4)\}$$

1) Seja $A = \{1, 2, 3, 4\}$. Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

$$R_{1} = A \times A$$

$$R_{2} = \{(1,1); (2,2); (3,3)\}$$

$$R_{3} = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1)\}$$

$$R_{4} = \{(1,1); (2,2); (3,3); (4,4)\}$$

$$R_{5} = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1); (2,4); (4;2)\}$$

1) Seja $A = \{1, 2, 3, 4\}$. Temos

$$A \times A = \{(1,1); (1,2); (1,3); (1,4); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (3,4); (4,1); (4,2); (4,3); (4,4)\}.$$

$$R_{1} = A \times A$$

$$R_{2} = \{(1,1); (2,2); (3,3)\}$$

$$R_{3} = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1)\}$$

$$R_{4} = \{(1,1); (2,2); (3,3); (4,4)\}$$

$$R_{5} = \{(1,1); (2,2); (3,3); (4,4); (1,2); (2,1); (2,4); (4;2)\}$$

2) Seja A $= \mathbb{Z}$

2) Seja A
$$= \mathbb{Z}$$
 e R $\subseteq \mathbb{Z} \times \mathbb{Z}$

2) Seja A
$$= \mathbb{Z}$$
 e R $\subseteq \mathbb{Z} \times \mathbb{Z}$ definida por $R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid$

2) Seja A =
$$\mathbb{Z}$$
 e R $\subseteq \mathbb{Z} \times \mathbb{Z}$ definida por

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = 2k,$$

5/8

2) Seja
$$A=\mathbb{Z}$$
 e $R\subseteq \mathbb{Z} imes \mathbb{Z}$ definida por

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = 2k, \text{ para algum } k \in \mathbb{Z}\}.$$

2) Seja
$$A=\mathbb{Z}$$
 e $R\subseteq \mathbb{Z} imes \mathbb{Z}$ definida por

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = 2k, \text{ para algum } k \in \mathbb{Z}\}.$$

Mostre que R é uma relação de equivalência sobre \mathbb{Z} .

2) Seja
$$A=\mathbb{Z}$$
 e $R\subseteq \mathbb{Z} imes \mathbb{Z}$ definida por

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x - y = 2k, \text{ para algum } k \in \mathbb{Z}\}.$$

Mostre que R é uma relação de equivalência sobre \mathbb{Z} .

3) Seja
$$A = \mathbb{Z} \times \mathbb{Z}^*$$
, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

3) Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para (a, b), $(c, d) \in A$,

3) Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para (a, b), $(c, d) \in A$, considere a seguinte relação

3) Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para (a, b), $(c, d) \in A$, considere a seguinte relação (a, b)S(c, d)

3) Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para (a, b), $(c, d) \in A$, considere a seguinte relação

(a,b)S(c,d) quando ad = bc.

Mostre que S é uma relação de equivalência sobre A.

3) Seja $A = \mathbb{Z} \times \mathbb{Z}^*$, onde $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$. Para (a, b), $(c, d) \in A$, considere a seguinte relação

(a,b)S(c,d) quando ad = bc.

Mostre que S é uma relação de equivalência sobre A.

