LERNZIELE KINEMATIK

Begriff	Lernziele
Physikalische Grössen und Einheiten	erklären, was es bedeutet, eine Grösse zu messen Formelzeichen, Zahlenwert und Einheit streng unterscheiden Grundgrössen und ihre Einheiten kennen (SI-System)
Bewegung	eine Bewegung mit Wertetabelle und Weg-Zeit-Diagramm beschreiben, zwischen den Darstellungen wechseln
	Unterschied zwischen Ort und Strecke bzw. Zeitpunkt und Zeitintervall erklären können
Geschwindigkeit	Begriffe "Durchschnittsgeschwindigkeit" und "Momentangeschwindigkeit" sowie deren Unterschied erklären
	Geschwindigkeit von m/s in km/h umrechnen und umgekehrt
gleichförmige Bewegung	verschiedene Charakterisierungen kennen
	gleichförmige Bewegung im $s(t)$ - und $v(t)$ -Diagramm erkennen und darstellen
	Geschwindigkeit aus $s(t)$ -Diagramm bzw. Strecke aus $v(t)$ -Diagramm bestimmen
	einfache Aufgaben graphisch und/oder algebraisch lösen
gleichmässige Beschleunigung	Begriff "Beschleunigung" erklären
	verstehen, was eine negative Beschleunigung bedeutet
	gleichmässig beschleunigte Bewegung im $v(t)$ -Diagramm erkennen (auch mit negativer Beschleunigung)
	Geschwindigkeitsänderung aus $v(t)$ -Diagramm bestimmen und Beschleunigung berechnen
	mittlere Geschwindigkeit einer gleichmässig beschleunigten Bewegung berechnen
	zurückgelegte Strecke aus mittlerer Geschwindigkeit berechnen
	anhand einer Messreihe beurteilen, ob es sich um eine gleichmässig beschleunigte Bewegung handelt (z.B. mit Streckenzuwachs)
Anhalteweg	Zusammensetzung des Anhaltewegs (Reaktions- und Bremsweg) in Worten und/oder anhand einer Skizze beschreiben
	typische Werte für Reaktionszeit und Bremsbeschleunigung für trockene und nasse Strasse auswendig kennen
	Reaktions- und Bremsweg berechnen (Faustregeln auswendig)
freier Fall	Experiment zur Messung der Fallbeschleunigung beschreiben
	Wert für die Fallbeschleunigung in Zürich auswendig kennen
	Faktoren kennen, welche die Fallbeschleunigung bestimmen
	qualitativen Verlauf der Geschwindigkeit eines fallenden Körpers mit Luftwiderstand skizzieren
	Fallhöhe aus der Fallzeit berechnen (und umgekehrt)
	Änderung der Fallzeit aus Änderung der Fallhöhe berechnen (und umgekehrt), z.B. wie ändert sich die Fallzeit bei einer Verdopplung der Fallhöhe?

vertikaler Wurf	allgemeine Funktion für die Höhe beim vertikalen Wurf kennen
-----------------	--

(quadratische Funktion, Bedeutung der Parameter)

höchsten Punkt (Scheitelpunkt) und Zeitpunkt der Landung (Null-

stelle) berechnen

v(t)- und h(t)-Diagramme für vertikalen Wurf zeichnen und interpre-

tieren

Geschwindigkeitsvektoren Unterschied zwischen Geschwindigkeitsvektor und Geschwindig-

keitsbetrag erklären

Komponenten eines Geschwindigkeitsvektors in einem Koordinaten-

system bestimmen

Betrag eines Geschwindigkeitsvektors aus dessen Komponenten be-

rechnen

Geschwindigkeiten vektoriell addieren (graphisch und in Komponen-

tenform)

Überlagerung von Bewegungen horizontalen und schiefen Wurf als Überlagerung eines vertikalen

Wurfs und einer gleichförmigen Bewegung verstehen

Ort und Geschwindigkeit für einen beliebigen Zeitpunkt beim hori-

zontalen Wurf berechnen

Kreisbewegung Umlaufzeit und Frequenz ineinander umrechnen

zwei Möglichkeiten zur Frequenzmessung beschreiben

Winkel vom Grad- ins Bogenmass umrechnen und umgekehrt Unterschied zwischen Bahn- und Winkelgeschwindigkeit erklären Bahngeschwindigkeit als Vektor einzeichnen; Betrag aus Radius und

Umlaufzeit oder Frequenz berechnen

Winkelgeschwindigkeit aus Umlaufzeit, Frequenz oder Bahnge-

schwindigkeit und Radius berechnen

erklären, warum eine gleichförmige Kreisbewegung eine beschleunig-

te Bewegung ist

Radialbeschleunigung als Vektor einzeichnen; Betrag der Beschleunigung aus Radius und Bahn- oder Winkelgeschwindigkeit berechnen

g-Beschleunigung berechnen

Taschenrechner Messwerte als Tabelle erfassen

graphische Darstellungen (Plots) definieren und anzeigen

Regressionsfunktionen berechnen und Parameter interpretieren

Grösse Wert

Geschwindigkeitseinheiten 1 m/s = 3.6 km/h

Bremsbeschleunigung $a = -8 \text{ m/s}^2$ auf trockener Strasse

 $a = -4 \text{ m/s}^2$ auf nasser Strasse

Fallbeschleunigung in Zürich $g_Z = 9.81 \text{ m/s}^2$ (für Kopfrechnungen genügt $g = 10 \text{ m/s}^2$)

Winkelmasse $360^{\circ} = 2\pi \text{ (rad)}$

Rotationszeit der Erde T = 24 h = 86'400 s