

New combustion regimes and kinetic studies of plasma assisted combustion

Wenting Sun, Joseph Lefkowitz, Jay Uddi and Yiguang Ju

Department of Mechanical and Aerospace Engineering, Princeton University
Princeton, NJ 08544, USA

Timothy Ombrello, Fred Schauer, John Hoke and Campbell Carter

U.S. Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson AFB, OH, 45433

Nov.6-7, 2012 MURI Plasma 3rd Yr Review Meeting

MURI Topic #11: Chemical Energy Enhancement by Nonequilibrium Plasma Species

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE NOV 2012	2. REPORT TYPE	3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE New combustion regimes and kinetic studies of plasma assisted combustion			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, NJ, 08544			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES U.S. Government or Federal Rights License				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified			17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 50
19a. NAME OF RESPONSIBLE PERSON				

MURI Facility Summary and collaborative team structure

(*All facilities designed and fabricated specifically for this program.)

Today's Presentation

- 1. New combustion regimes and kinetic studies of
in situ plasma discharge in counterflow flames
(Tasks 8 and 9: Kinetic model validation)**

- 2. Multispecies diagnostics in a flow reactor with Mid-IR
and molecular beam mass spectroscopy (MBMS)
(Task 3: Multispecies measurements)**

- 3. Ignition enhancement and minimum ignition energy
by plasma discharge
(Task 6: Ignition, Flame Initiation and the Minimum
Ignition Energy)**

1. New flame and ignition regimes with *in situ* nano-second pulsed discharge

Technical questions:

- . Can plasma assisted combustion enhances sublimit combustion so that the ignition and extinction limit disappear on the classical S-curve?
- . What happens when JP-8 has low temperature ignition chemistry?
How does PAC interact with low temperature chemistry ? relevant or not?

Experimental method (in-situ plasma discharge)

OH PLIF measurement (CH_4/O_2 sublimit flames)

$a = 400 \text{ 1/s}$, $X_o = 55\%$, $X_f = 20\%$, $f = 24 \text{ kHz}$, $P = 72 \text{ Torr}$, UV power = 2 mj/pulse

S-shaped ignition/extinction curve measurement: OH PLIF

Numerical modeling of PAC and path flux analysis

$X_{O_2} = 0.34$, $X_{CH_4} = 0.16$, $P = 72$ Torr, $f = 24$ kHz, $a = 400$ 1/s

no flame, but reaction zone was built up by radicals generated from plasma

Electron and ion impact dissociation are the key in PAC .

New ignition transition curve with plasma assisted combustion

Hypothesis

Experimental observation A new combustion regime

The S-curve transition

- Extended flammable regime
- No extinction limit

What if a fuel (JP-8) has low temperature chemistry?

How does low temperature chemistry make a difference?

From CH_4 to jet fuel, using DME (LTC and gas phase) as example

Same chemiluminescence
before CH_4 plasma assisted ignition

High temperature chemistry only

Different chemiluminescence
before DME ignition

How does LTC affect
ignition and extinction? ⁹

CH₂O PLIF at 355 nm from Nd:YAG laser

CH_2O formation in CH_4 and DME ignition ...

Same chemiluminescence
before CH_4 plasma assisted ignition

$\text{CH}_4/\text{O}_2/\text{He} (0.15/0.55/0.3)$
 $P = 72 \text{ Torr}, T_0 = 900 \text{ K}$

High T ignition
Marked by OH

Different chemiluminescence
before DME ignition

$\text{DME}/\text{O}_2/\text{He} (0.1/0.55/0.35)$
 $P = 72 \text{ Torr}, T_0 = 600 \text{ K}$

Low T ignition
 CH_2O can be used
as a marker

High T ignition
 $\text{H}_2\text{O}_2 \rightarrow 2\text{OH}$

CH_2O measurements: ignition and extinction

$P = 72 \text{ Torr}$, $a = 250 \text{ 1/s}$, $f = 24 \text{ kHz}$
 $X_{\text{O}_2} = 40\%$, varying X_f

$P = 72 \text{ Torr}$, $a = 250 \text{ 1/s}$, $f = 34 \text{ kHz}$,
 $X_{\text{O}_2} = 60\%$, varying X_f

S-Curve

Competition between

{ low T RO_2 kinetics
 high T chain branching reactions

Kinetics of plasma assisted low temperature combustion

Sensitive to O₂ concentration?

Implication

Plasma assisted combustion dramatically changed the low temperature chemistry

- LTC in Plasma assisted combustion
- LTC in turbulent combustion at engine time scales

Prompt radical production from plasma

Fast H abstraction (formation of R)

Fast LTC (RO₂ reactions)

Results can be extended to other large fuels

2. Multispecies diagnostics in a flow reactor (Task 3: Multispecies measurements)

In situ intermediate species diagnostics beyond radicals

2a Multispecies Diagnostics in Repetitively-pulsed Nanosecond Discharge in a Laminar Flow Reactor

Experimental setup

Mini-Herriott cell showing 24 pass configuration

Reactor/Diagnostics

- Reactor size: $58.2 \times 14 \times 152 \text{ mm}^3$
- Fuel: C_2H_4
- Pressure: 60 Torr
- Flow speed in the reactor: $\sim 40 \text{ cm/s}$
- Mid-IR QCL laser: $1296 \text{ cm}^{-1} - 1423 \text{ cm}^{-1}$
- Multi-pass Mini-Herriott cell (12.7 mm OD)

Plasma Properties

- Electrode ($40 \times 45 \text{ mm}^2$)
- Repetitively-pulsed nanosecond DBD discharge
- 0-40 kHz pulse repetition rate
- 12 nanosecond pulse duration
- 5-20 kV peak voltage

Direct and ICCD Images of Plasma Discharge in a Reactor

Stoichiometric mixtures: $\text{C}_2\text{H}_4/\text{O}_2$ with 75% AR, 60 Torr, $V_{\max} = 6 \text{ kV}$

- Direct Image: 1 kHz, 3.6 mJ/pulse, 2 s exposure time.
- ICCD images: Gate time = 100 ns, Gain = 250

Absorption Spectroscopy

Beer-Lambert Law

$$\frac{I_\nu}{I_{0\nu}} = \exp(-\alpha(\nu, P, T)NL) = \exp\left(-\sum_i S_i(T) g_\nu(\nu_i - \nu)NL\right)$$

I_ν = Transmitted Signal

$I_{0\nu}$ = Laser Signal

α = Absorption coefficient

i = Denotes absorption line with center frequency ν_i

ν = Light wavelength

S = Line strength of absorption line

T = Temperature

L = Path length of light

N = Number density of absorbers

g = Voigt profile line broadening function

- **Multispecies diagnostics:** Line strengths from HITRAN database for H_2O , C_2H_2 , CH_4 , C_2H_4 , C_2H_6 , CO_2 , CO , O_3 , OH , HO_2 , H_2O_2 , CH_2O , NO , N_2O , NO_2
- **Temperature measurements:** Line strength on $S_i(T)$ for temperature measurements
- **Species sensitivity:** Multipass and Wavelength modulations

Absorption spectrum and wavelength scan

Signal vs. laser scan time and etalon fringes

Calibrated wavelength vs. time

Multipass Mini Herriott Cell Signal and Noise Properties

12.7 mm in cell diameter

- Increase of pass number increase the sensitivity but a very high pass number causes large etalon noise

Measurement of CH₄: Direct Absorption vs. Wavelength Modulation

**Direct absorption
measurement of CH₄**

$$\nu(t) = \nu_0 + a \sin(2\pi ft)$$

**Wavelength modulated absorption
measurement of CH₄**

$\text{CH}_4/\text{C}_2\text{H}_2$ production by plasma: pyrolysis vs. oxidation

- $\text{Ar}/\text{C}_2\text{H}_4$, fuel mole fraction of 0.0625, 60 torr
- $\text{Ar}/\text{O}_2/\text{C}_2\text{H}_4$ mixtures, 25% reactants and $\phi=1$. Same fuel concentration

Effects of plasma frequency on temperature and species

Ar/O₂/C₂H₄ mixtures with 25% reactants and $\phi=1$, 60 torr

2b. Measurements of H₂O₂ and Intermediate Species in Low Temperature Dimethyl Ether (DME) Oxidation

Task 3. *Species Measurements by molecular beam mass spectrometry (MBMS)*

The role of intermediate species, HO_2 , H_2O_2 in low/high temperature kinetics

Low temperature

Intermediate temperature

High temperature

Schematic of low temperature ignition process

However, measurements of H_2O_2 and HO_2 is difficult...

- **Indirect measurement of H_2O_2 :** Sensitive H_2O absorption at 2.5 um (Hong et al, 2009).
- **Direct measurement:** UV Photo fragmentation-OH LIF, (Li, et al, PCI, 2012).

Difficult to separate H_2O_2 from HO_2 , and other large hydrocarbons

Experimental setup

$$P = 1 \text{ atm}, \tau = 1.7 \text{ s}$$

Mass spectrum and calibration

$$\frac{S_i}{S_{He}} = \frac{D_i}{D_{He}} \times \frac{\sigma_i}{\sigma_{He}} \times \frac{\chi_i}{\chi_{He}}$$

S : signal intensity

D : mass discrimination factor

σ : cross sections

χ : mole fractions

Calibration:

H₂O₂:

H₂O₂/H₂O (30.8% wt) + He

Corrected H₂O₂ concentration via
2H₂O₂ → 2H₂O + O₂ and
subtraction of ³⁴O₂ signal

CH₂O, CH₃OCHO:

Measured D, σ from Ref.[1]

Fragmentation:

Constant ratio, can be removed
from post processing

Mass overlap:

DME & HCOOH, N₂ & CO

Major species measurements

Good agreement between micro-GC and MBMS quantification → validation of MBMS techniques
 2-D simulations give good agreement with data; 0-D simulations are semi-quantitative

0-D Models show reasonably good agreement for LTC temperature window and peak reactivity
 Yasunaga *et al* model has overall higher reactivity and wider LTC temperature window

H_2O_2 measurement

Good agreement for H_2O_2 formation
 Different predictions from different models

2c. Development of a Mid-IR Faraday Rotational Spectroscopy Method to quantify HO₂

Quantitative HO₂ Measurement (very challenging!):

Mid infra-red Faraday Rotation Spectroscopy (FRS), 1396 cm⁻¹

Sub-ppm level HO₂ measurement in DME/air flow reactor (1atm, 748K)

Temperature Dependence of HO₂ Signal in a flame reactor

3. Ignition Enhancement and the critical ignition energy by Pulsed Nanosecond Discharge - Pulse Detonation Combustor/Engine

(with Timothy Ombrello, Fred Schauer, and John Hoke of the AFRL)

Thrust 1 Task 6. *Ignition Initiation Time and Minimum Ignition Energy*

- **Motivation:**

- Demonstrate non-equilibrium plasma enhances ignition in a real PDE vs. a spark plug.
- Proof-of-concept studies have shown **decrease in ignition time for propane/air mixtures** in a quiescent environment and atmospheric pressure using repetitively pulsed nanosecond discharges¹
- Depositing more energy faster has potential benefits **for short residence-time, highly turbulent environments** present in a range of propulsion devices

- **Power Supply:**

- Nanosecond power supply delivers 12-ns pulses up to 40 kV (peak) & 40 kHz
- 1-5 mJ/pulse deposited into gas

- **Experiment:**

- Spark plug machined into point-to-point electrode geometry with a 1.4 mm gap
- Nanosecond discharge compared with lab standard *Multiple Spark Discharge* (MSD)
 - Consumes 115 mJ/pulse but deposits only 4-8 mJ/pulse into gas
 - Gives multiple sparks of the same energy each. Number of sparks cannot be controlled
- Ion probes used to quantify wavespeed
- Ignition is determined when pressure trace reaches a slope of 5 V/s on PCB trace
- Schlieren imaging performed at 100,000 fps

Aviation gasoline/Air Mixtures

- Equivalence ratio is varied along with number of pulses at fixed plasma energy/pulse and plasma frequency
- Nanosecond pulser decreases ignition time up to 25% compared to MSD
 - Pulsed discharge allows more energy to be coupled into gas in a shorter time period than MSD ignition system.
 - Advantageous for the turbulent, small residence-time flows in the PDE
- Plasma properties:
 - Plasma energy: 2.8 mJ/pulse on average
 - Plasma frequency: 40 kHz
- MSD spark system currently in use:
 - Spark energy: 5.7 mJ/spark
 - Multiple sparks (1-12 possible)
 - Spark frequency: 0.87 kHz

Eq. Ratio=1.0

Eq. Ratio=1.1

- Pulse energy and plasma frequency are varied at fixed equivalence ratio
- Total energy = energy/pulse x number of pulses
- Ignition time decreases with total energy for ns-pulser case

Schlieren Imaging

Comparison with conventional ignition

$\Phi=1$ Ethylene/Air

Top: ns pulser, 20 pulses at 40 kHz

Bottom: MSD, 3 sparks at 0.87 kHz

Time shown is 3 ms after first discharge

Effect of high frequency

$\Phi=1$ Methane/Air

Top: ns pulser, 5 pulses at 40 kHz

Bottom: ns pulser, 5 pulses at 1 kHz

Time shown is 7 ms after first discharge

Lean equivalence ratio, equal energy

$\Phi=0.8$ Methane/Air

Top: ns pulser, 6 pulses at 40 kHz

Bottom: MSD, 3 sparks at 0.87 kHz

Time shown is 7 ms after first discharge

Ignition/ Flame initiation/Critical radius

- Three distinct flame regimes
 - **Regime I**
 - Spark assisted ignition kernel
 - **Regime II**
 - Transition from ignition kernel to normal flame
 - **Weak flame regime**
 - **Regime III**
 - Self-sustained stable propagating flame
 - Consistent with previous study²
- Ignition failure vs. Critical radius

Measurements of critical flame radius for ignition vs. pressure

- What is the effect of plasma discharge volume?
- What is the effect of turbulence?

Conclusions

1. *In situ* discharge can significantly increases the kinetic effect of plasma and achieve sublimit combustion.
2. A new monotonic ignition transition regime was observed with PAC.
3. PAC enhances low temperature chemistry and may change combustion kinetics in engine conditions with very short residence time.
4. PAC shortens ignition delay time in turbulent PDE combustion environment. Large volume discharge helps to drive the ignition kernel to overcome the critical flame radius at reduced pressure.
5. A reactor coupled mid-infra red absorption spectroscopy and MBMS system are developed and successfully measured H₂O₂ and other intermediate species.
6. A mid-infrared Faraday rotation spectroscopy method is developed and successfully measured HO₂ in a flow reactor.

Acknowledgement

This work was supported by the plasma MURI research grant from the Air Force Office of Scientific Research (Drs. Chiping Li, Julian Tishkoff).

Thank you!

QUESTIONS & COMMENTS?

Measurement Technique

- Current and voltage are measured for each condition
 - Voltage probe: LeCroy high voltage probe (PPE20KV)
 - Current probe: Pearson Coil (Model 6585)
- Peak voltage for all experiments ≈ 6 kV
- The total energy is computed by integrating the power over a long enough time scale for all reflections to be included

H_2O and temperature measurements with plasma discharge

H_2O lines at 1338.5 cm^{-1} and 1339.15 cm^{-1}

- Laser scan: 100 Hz, $f=1 \text{ MHz}$, $t_{\text{RC}} = 7.5 \mu\text{s}$
- Voigt profile fitting HITRAN for number density and temperature

HITRAN: J. Quant. Spectrosc. Radiat. Transfer, 111, 2139–2150 (2010).

Wavelength modulated absorption measurement of CH₄

$$\nu(t) = \nu_0 + a \sin(2\pi ft) \quad f=50 \text{ kHz} - 1 \text{ MHz}$$

Laser was scanned at 0.1Hz and modulation at along with using lock in amplifier

Results for Continuous Plasma

- Results are for Ar/O₂/C₂H₄ mixtures with 25% reactants and $\phi=1$
- The flow speed is 40 cm/s and the pressure is 60 Torr
- Per pulse energy is dependent on plasma repetition frequency
 - Seed electrons and ions left over from previous pulse provide for easier breakdown
 - This effect levels off after about 1000 Hz
- At high pulse repetition frequency, temperature scales linearly with plasma power

Classical S-curve

hysteresis between ignition and extinction: S curve

Rayleigh Scattering^[1,2]
method for T
measurement at 532
nm from Nd:YAG laser

Relationship between OH density, local maximum temperature and fuel mole fraction,
 $T_0=650 \text{ K}$, $T_f=600 \text{ K}$, $\text{He}/\text{O}_2 = 0.66:0.34$, $P = 72 \text{ Torr}$, $f = 24 \text{ kHz}$, $a = 400 \text{ 1/s}$

S-curve transition

Relationship between OH density, local maximum temperature and fuel mole fraction, $P = 72$ Torr, $f = 24$ kHz, $a = 400$ 1/s

$$\text{He}/\text{O}_2 = 0.45:0.55$$

$$\text{He}/\text{O}_2 = 0.38:0.62$$

ignition and extinction points were pushed to lower fuel concentrations

monotonic ignition and extinction curve (monotonic S-curve)

1. New flame and ignition regimes with *in situ* nano-second pulsed discharge

$a = 400 \text{ 1/s}$, $X_0 = 55\%$, $X_f = 20\%$, $f = 24 \text{ kHz}$, $P = 72 \text{ Torr}$,
UV power = 2 mJ/pulse

Coupling effect
Radical generation

Radicals produced by *in situ* discharge :
Dramatically increased the reactivity of CH₄ (no extinction limit)

Same chemiluminescence
before CH₄ ignition

Different chemiluminescence
before DME ignition

CH₂O

Ignition

How does LTC affect
ignition and extinction?

Kinetic effect of plasma assisted low temperature combustion for CH_3OCH_3 ignition

CH_2O PLIF measurements at 355 nm to characterize LTC

$P = 72 \text{ Torr}, a = 250 \text{ 1/s}, f = 24 \text{ kHz}, X_{\text{O}_2} = 40\%, \text{ varying } X_f$

Smooth transition
between LTC to HTC
Increased radical
production

$P = 72 \text{ Torr}, a = 250 \text{ 1/s}, f = 34 \text{ kHz}, X_{\text{O}_2} = 60\%, \text{ varying } X_f$

Plasma assisted low temperature chemistry

Plasma assisted combustion dramatically changed
the "SPEED" of low temperature chemistry

Slow
LTC

Important for

- PAC
- Turbulent combustion
at small time scales

Kinetic studies

Importance of LTC and the critical role of H₂O₂

Indirect measurement:
Sensitive H₂O absorption at 2.5 um (Hong et al, 2009)

Direct measurement:
Laser absorption at 7.8 um at low pressure non-reactive flow (Aul, et al, PCI, 2011)

H₂O₂/H₂O/Ar mixture in shock tube

Photofragmentation-LIF
(Li, et al, PCI, 2012) → HCCI

In-situ and high pressure?

Interference with HO₂ and H₂O
Calibration (H₂O₂ decomposes > 55 °C)¹
Challenging for combustible mixtures