Test 4G24

Sans utiliser de calculatrice, encadrer $\sqrt{122}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{6}$ au dixième près et en donner un arrondi au dixième près.

- 2. Encadrer $\sqrt{204}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{265}$ au centième près et en donner un arrondi au centième près.

Sans utiliser de calculatrice, encadrer $\sqrt{30}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{26}$ au dixième près et en donner un arrondi au dixième près.

- 2. Encadrer $\sqrt{31}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{239}$ au centième près et en donner un arrondi au centième près.

Sans utiliser de calculatrice, encadrer $\sqrt{291}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{14}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{272}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{54}$ au dixième près et en donner un arrondi au dixième près.

Test 4G24

Sans utiliser de calculatrice, encadrer $\sqrt{296}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{210}$ au dixième près et en donner un arrondi au dixième près.

- 2. Encadrer $\sqrt{106}$ au centième près et en donner un arrondi au centième près.
- 3. Encadrer $\sqrt{94}$ à l'unité près et en donner un arrondi à l'unité près.

Test 4G24

Sans utiliser de calculatrice, encadrer $\sqrt{114}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{41}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{47}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{34}$ à l'unité près et en donner un arrondi à l'unité près.

Sans utiliser de calculatrice, encadrer $\sqrt{51}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{175}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{152}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{244}$ à l'unité près et en donner un arrondi à l'unité près.

Test 4G24

Sans utiliser de calculatrice, encadrer $\sqrt{277}$ entre deux nombres entiers.

4G20-6

- 1. Encadrer $\sqrt{55}$ au dixième près et en donner un arrondi au dixième près.
- 2. Encadrer $\sqrt{274}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{166}$ au centième près et en donner un arrondi au centième près.

Sans utiliser de calculatrice, encadrer $\sqrt{186}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{148}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{282}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{137}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{116}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{84}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{300}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{7}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{26}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{146}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{176}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{248}$ au dixième près et en donner un arrondi au dixième près.

Test 4G24

Sans utiliser de calculatrice, encadrer $\sqrt{218}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{20}$ à l'unité près et en donner un arrondi à l'unité près.

- 2. Encadrer $\sqrt{206}$ au centième près et en donner un arrondi au centième près.
- 3. Encadrer $\sqrt{216}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{245}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{211}$ au dixième près et en donner un arrondi au dixième près.

- 2. Encadrer $\sqrt{105}$ au centième près et en donner un arrondi au centième près.
- 3. Encadrer $\sqrt{86}$ à l'unité près et en donner un arrondi à l'unité près.

Test 4G24

Sans utiliser de calculatrice, encadrer $\sqrt{2}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{102}$ au dixième près et en donner un arrondi au dixième près.

- 2. Encadrer $\sqrt{216}$ au centième près et en donner un arrondi au centième près.
- 3. Encadrer $\sqrt{261}$ à l'unité près et en donner un arrondi à l'unité près.

Sans utiliser de calculatrice, encadrer $\sqrt{59}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{165}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{54}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{112}$ à l'unité près et en donner un arrondi à l'unité près.

Sans utiliser de calculatrice, encadrer $\sqrt{27}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{108}$ à l'unité près et en donner un arrondi à l'unité près.

- 2. Encadrer $\sqrt{23}$ au centième près et en donner un arrondi au centième près.
- 3. Encadrer $\sqrt{61}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{154}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{246}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{298}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{168}$ à l'unité près et en donner un arrondi à l'unité près.

Sans utiliser de calculatrice, encadrer $\sqrt{109}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{22}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{93}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{171}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{23}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{90}$ à l'unité près et en donner un arrondi à l'unité près.

- 2. Encadrer $\sqrt{42}$ au centième près et en donner un arrondi au centième près.
- 3. Encadrer $\sqrt{23}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{84}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{300}$ au dixième près et en donner un arrondi au dixième près.

- 2. Encadrer $\sqrt{27}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{141}$ au centième près et en donner un arrondi au centième près.

Sans utiliser de calculatrice, encadrer $\sqrt{252}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{285}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{165}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{173}$ à l'unité près et en donner un arrondi à l'unité près.

Sans utiliser de calculatrice, encadrer $\sqrt{165}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{206}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{138}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{158}$ à l'unité près et en donner un arrondi à l'unité près.

Sans utiliser de calculatrice, encadrer $\sqrt{262}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{141}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{143}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{251}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{3}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{223}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{98}$ à l'unité près et en donner un arrondi à l'unité près.
- 3. Encadrer $\sqrt{108}$ au dixième près et en donner un arrondi au dixième près.

Sans utiliser de calculatrice, encadrer $\sqrt{109}$ entre deux nombres entiers.

4G20-6

1. Encadrer $\sqrt{56}$ au centième près et en donner un arrondi au centième près.

- 2. Encadrer $\sqrt{6}$ au dixième près et en donner un arrondi au dixième près.
- 3. Encadrer $\sqrt{291}$ à l'unité près et en donner un arrondi à l'unité près.

 $11^2 = 121$ et $12^2 = 144$. Or 121 < 122 < 144, donc $\sqrt{121} < \sqrt{122} < \sqrt{144}$, enfin $11 < \sqrt{122} < 12$.

- 1. $\sqrt{6} \simeq 2,44949$. Or 2,4 < 2,44949 < 2,5, et 2,44949 est plus proche de 2,4 que de 2,5. Donc l'arrondi au dixième près de $\sqrt{6}$ est 2,4.
- 2. $\sqrt{204} \simeq 14,282\,857$. Or $14 < 14,282\,857 < 15$, et $14,282\,857$ est plus proche de 14 que de 15. Donc l'arrondi à l'unité près de $\sqrt{204}$ est 14.
- 3. $\sqrt{265} \simeq 16,278\,821$. Or $16,27 < 16,278\,821 < 16,28$, et $16,278\,821$ est plus proche de 16,28 que de 16,27. Donc l'arrondi au centième près de $\sqrt{265}$ est 16,28.

 $5^2 = 25$ et $6^2 = 36$. Or 25 < 30 < 36, donc $\sqrt{25} < \sqrt{30} < \sqrt{36}$, enfin $5 < \sqrt{30} < 6$.

- 1. $\sqrt{26} \simeq 5{,}099\,02$. Or $5 < 5{,}099\,02 < 5{,}1$, et $5{,}099\,02$ est plus proche de $5{,}1$ que de $5{,}$. Donc l'arrondi au dixième près de $\sqrt{26}$ est $5{,}1$.
- 2. $\sqrt{31} \simeq 5,567764$. Or 5 < 5,567764 < 6, et 5,567764 est plus proche de 6 que de 5. Donc l'arrondi à l'unité près de $\sqrt{31}$ est 6.
- 3. $\sqrt{239} \simeq 15,459\,625$. Or $15,45 < 15,459\,625 < 15,46$, et $15,459\,625$ est plus proche de 15,46 que de 15,45. Donc l'arrondi au centième près de $\sqrt{239}$ est 15,46.

 $17^2 = 289$ et $18^2 = 324$. Or 289 < 291 < 324, donc $\sqrt{289} < \sqrt{291} < \sqrt{324}$, enfin $17 < \sqrt{291} < 18$.

- 1. $\sqrt{14} \simeq 3,741\,657$. Or $3,74 < 3,741\,657 < 3,75$, et $3,741\,657$ est plus proche de 3,74 que de 3,75. Donc l'arrondi au centième près de $\sqrt{14}$ est 3,74.
- 2. $\sqrt{272} \simeq 16,492423$. Or 16 < 16,492423 < 17, et 16,492423 est plus proche de 16 que de 17. Donc l'arrondi à l'unité près de $\sqrt{272}$ est 16.
- 3. $\sqrt{54} \simeq 7,348469$. Or 7,3 < 7,348469 < 7,4, et 7,348469 est plus proche de 7,3 que de 7,4. Donc l'arrondi au dixième près de $\sqrt{54}$ est 7,3.

 $17^2 = 289$ et $18^2 = 324$. Or 289 < 296 < 324, donc $\sqrt{289} < \sqrt{296} < \sqrt{324}$, enfin $17 < \sqrt{296} < 18$.

- 1. $\sqrt{210} \simeq 14,491\,377$. Or $14,4 < 14,491\,377 < 14,5$, et $14,491\,377$ est plus proche de 14,5 que de 14,4. Donc l'arrondi au dixième près de $\sqrt{210}$ est 14,5.
- 2. $\sqrt{106} \simeq 10,29563$. Or 10,29 < 10,29563 < 10,3, et 10,29563 est plus proche de 10,3 que de 10,29. Donc l'arrondi au centième près de $\sqrt{106}$ est 10,3.
- 3. $\sqrt{94} \simeq 9,6953597$. Or 9 < 9,6953597 < 10, et 9,6953597 est plus proche de 9,7 que de 9. Donc l'arrondi à l'unité près de $\sqrt{94}$ est 9,7.

 $\begin{array}{l} 10^2 = 100 \ \ \mathrm{et} \ \ 11^2 = 121. \\ \mathrm{Or} \ \ 100 < 114 < 121, \\ \mathrm{donc} \ \ \sqrt{100} < \sqrt{114} < \sqrt{121}, \\ \mathrm{enfin} \ \ 10 < \sqrt{114} < 11. \end{array}$

- 1. $\sqrt{41} \simeq 6,403\,124$. Or $6,4 < 6,403\,124 < 6,41$, et $6,403\,124$ est plus proche de 6,4 que de 6,41. Donc l'arrondi au centième près de $\sqrt{41}$ est 6,4.
- 2. $\sqrt{47} \simeq 6,855655$. Or 6,8 < 6,855655 < 6,9, et 6,855655 est plus proche de 6,9 que de 6,8. Donc l'arrondi au dixième près de $\sqrt{47}$ est 6,9.
- 3. $\sqrt{34} \simeq 5,830\,952$. Or $5 < 5,830\,952 < 6$, et $5,830\,952$ est plus proche de 6 que de 5. Donc l'arrondi à l'unité près de $\sqrt{34}$ est 6.

 $7^2 = 49$ et $8^2 = 64$. Or 49 < 51 < 64, donc $\sqrt{49} < \sqrt{51} < \sqrt{64}$, enfin $7 < \sqrt{51} < 8$.

- 1. $\sqrt{175} \simeq 13,228757$. Or 13,22 < 13,228757 < 13,23, et 13,228757 est plus proche de 13,23 que de 13,22. Donc l'arrondi au centième près de $\sqrt{175}$ est 13,23.
- 2. $\sqrt{152} \simeq 12,328\,828$. Or $12,3 < 12,328\,828 < 12,4$, et $12,328\,828$ est plus proche de 12,3 que de 12,4. Donc l'arrondi au dixième près de $\sqrt{152}$ est 12,3.
- 3. $\sqrt{244} \simeq 15,620499$. Or 15 < 15,620499 < 16, et 15,620499 est plus proche de 16 que de 15. Donc l'arrondi à l'unité près de $\sqrt{244}$ est 16.

 $16^2 = 256$ et $17^2 = 289$. Or 256 < 277 < 289, donc $\sqrt{256} < \sqrt{277} < \sqrt{289}$, enfin $16 < \sqrt{277} < 17$.

- 1. $\sqrt{55} \simeq 7,416\,198$. Or $7,4 < 7,416\,198 < 7,5$, et $7,416\,198$ est plus proche de 7,4 que de 7,5. Donc l'arrondi au dixième près de $\sqrt{55}$ est 7,4.
- 2. $\sqrt{274} \simeq 16,552\,945$. Or $16 < 16,552\,945 < 17$, et $16,552\,945$ est plus proche de 17 que de 16. Donc l'arrondi à l'unité près de $\sqrt{274}$ est 17.
- 3. $\sqrt{166} \simeq 12,884\,099$. Or $12,88 < 12,884\,099 < 12,89$, et $12,884\,099$ est plus proche de 12,88 que de 12,89. Donc l'arrondi au centième près de $\sqrt{166}$ est 12,88.

 $13^2 = 169$ et $14^2 = 196$. Or 169 < 186 < 196, donc $\sqrt{169} < \sqrt{186} < \sqrt{196}$, enfin $13 < \sqrt{186} < 14$.

- 1. $\sqrt{148} \simeq 12,165525$. Or 12,16 < 12,165525 < 12,17, et 12,165525 est plus proche de 12,17 que de 12,16. Donc l'arrondi au centième près de $\sqrt{148}$ est 12,17.
- 2. $\sqrt{282} \simeq 16,792\,856$. Or $16 < 16,792\,856 < 17$, et $16,792\,856$ est plus proche de 17 que de 16. Donc l'arrondi à l'unité près de $\sqrt{282}$ est 17.
- 3. $\sqrt{137} \simeq 11,7047$. Or 11,7 < 11,7047 < 11,8, et 11,7047 est plus proche de 11,7 que de 11,8. Donc l'arrondi au dixième près de $\sqrt{137}$ est 11,7.

 $10^2 = 100$ et $11^2 = 121$. Or 100 < 116 < 121, donc $\sqrt{100} < \sqrt{116} < \sqrt{121}$, enfin $10 < \sqrt{116} < 11$.

- 1. $\sqrt{84} \simeq 9{,}165\,151$. Or $9{,}16 < 9{,}165\,151 < 9{,}17$, et $9{,}165\,151$ est plus proche de $9{,}17$ que de $9{,}16$. Donc l'arrondi au centième près de $\sqrt{84}$ est $9{,}17$.
- 2. $\sqrt{300} \simeq 17,320\,508$. Or $17 < 17,320\,508 < 18$, et $17,320\,508$ est plus proche de 17 que de 18. Donc l'arrondi à l'unité près de $\sqrt{300}$ est 17.
- 3. $\sqrt{7} \simeq 2,645751$. Or 2,6 < 2,645751 < 2,7, et 2,645751 est plus proche de 2,6 que de 2,7. Donc l'arrondi au dixième près de $\sqrt{7}$ est 2,6.

 $5^2 = 25$ et $6^2 = 36$.

Or 25 < 26 < 36, donc $\sqrt{25} < \sqrt{26} < \sqrt{36}$, enfin $5 < \sqrt{26} < 6$.

1. $\sqrt{146} \simeq 12,083\,046$.

Or $12,08 < 12,083\,046 < 12,09$, et $12,083\,046$ est plus proche de 12,08 que de 12,09.

Donc l'arrondi au centième près de $\sqrt{146}$ est 12,08.

2. $\sqrt{176} \simeq 13,266499$.

Or 13 < 13,266499 < 14,

et $13,266\,499$ est plus proche de 13 que de 14.

Donc l'arrondi à l'unité près de $\sqrt{176}$ est 13.

3. $\sqrt{248} \simeq 15{,}748\,016.$

Or 15.7 < 15.748016 < 15.8,

et $15,748\,016$ est plus proche de 15,7 que de 15,8.

Donc l'arrondi au dixième près de $\sqrt{248}$ est 15,7.

 $14^2 = 196$ et $15^2 = 225$. Or 196 < 218 < 225, donc $\sqrt{196} < \sqrt{218} < \sqrt{225}$, enfin $14 < \sqrt{218} < 15$.

- 1. $\sqrt{20} \simeq 4,472\,136$. Or $4 < 4,472\,136 < 5$, et $4,472\,136$ est plus proche de 4 que de 5. Donc l'arrondi à l'unité près de $\sqrt{20}$ est 4.
- 2. $\sqrt{206} \simeq 14,3527$. Or 14,35 < 14,3527 < 14,36, et 14,3527 est plus proche de 14,35 que de 14,36. Donc l'arrondi au centième près de $\sqrt{206}$ est 14,35.
- 3. $\sqrt{216} \simeq 14,696\,938$. Or $14,6 < 14,696\,938 < 14,7$, et $14,696\,938$ est plus proche de 14,7 que de 14,6. Donc l'arrondi au dixième près de $\sqrt{216}$ est 14,7.

 $\begin{array}{l} 15^2 = 225 \ \ {\rm et} \ \ 16^2 = 256. \\ {\rm Or} \ \ 225 < 245 < 256, \\ {\rm donc} \ \ \sqrt{225} < \sqrt{245} < \sqrt{256}, \\ {\rm enfin} \ \ 15 < \sqrt{245} < 16. \end{array}$

- 1. $\sqrt{211} \simeq 14,525\,839$. Or $14,5 < 14,525\,839 < 14,6$, et $14,525\,839$ est plus proche de 14,5 que de 14,6. Donc l'arrondi au dixième près de $\sqrt{211}$ est 14,5.
- 2. $\sqrt{105} \simeq 10,246\,951$. Or $10,24 < 10,246\,951 < 10,25$, et $10,246\,951$ est plus proche de 10,25 que de 10,24. Donc l'arrondi au centième près de $\sqrt{105}$ est 10,25.
- 3. $\sqrt{86} \simeq 9,273618$. Or 9 < 9,273618 < 10, et 9,273618 est plus proche de 9 que de 10. Donc l'arrondi à l'unité près de $\sqrt{86}$ est 9.

 $1^2 = 1$ et $2^2 = 4$.

Or 1 < 2 < 4,

donc $\sqrt{1} < \sqrt{2} < \sqrt{4}$, enfin $1 < \sqrt{2} < 2$.

1. $\sqrt{102} \simeq 10,099505$.

Or 10 < 10,099505 < 10,1,

et 10,099505 est plus proche de 10,1 que de 10.

Donc l'arrondi au dixième près de $\sqrt{102}$ est 10,1.

2. $\sqrt{216} \simeq 14,696938$.

Or 14,69 < 14,696938 < 14,7,

et $14,696\,938$ est plus proche de 14,7 que de 14,69.

Donc l'arrondi au centième près de $\sqrt{216}$ est 14,7.

3. $\sqrt{261} \simeq 16{,}155494$.

Or 16 < 16,155494 < 17,

et 16,155494 est plus proche de 16 que de 17.

Donc l'arrondi à l'unité près de $\sqrt{261}$ est 16.

 $7^2 = 49$ et $8^2 = 64$. Or 49 < 59 < 64, donc $\sqrt{49} < \sqrt{59} < \sqrt{64}$, enfin $7 < \sqrt{59} < 8$.

- 1. $\sqrt{165} \simeq 12,845\,233$. Or $12,84 < 12,845\,233 < 12,85$, et $12,845\,233$ est plus proche de 12,85 que de 12,84. Donc l'arrondi au centième près de $\sqrt{165}$ est 12,85.
- 2. $\sqrt{54} \simeq 7,348469$. Or 7,3 < 7,348469 < 7,4, et 7,348469 est plus proche de 7,3 que de 7,4. Donc l'arrondi au dixième près de $\sqrt{54}$ est 7,3.
- 3. $\sqrt{112} \simeq 10,583\,005$. Or $10 < 10,583\,005 < 11$, et $10,583\,005$ est plus proche de 11 que de 10. Donc l'arrondi à l'unité près de $\sqrt{112}$ est 11.

 $5^2 = 25$ et $6^2 = 36$. Or 25 < 27 < 36, donc $\sqrt{25} < \sqrt{27} < \sqrt{36}$, enfin $5 < \sqrt{27} < 6$.

- 1. $\sqrt{108} \simeq 10{,}392\,305$. Or $10 < 10{,}392\,305 < 11$, et $10{,}392\,305$ est plus proche de 10 que de 11. Donc l'arrondi à l'unité près de $\sqrt{108}$ est 10.
- 2. $\sqrt{23} \simeq 4,795\,832$. Or $4,79 < 4,795\,832 < 4,8$, et $4,795\,832$ est plus proche de 4,8 que de 4,79. Donc l'arrondi au centième près de $\sqrt{23}$ est 4,8.
- 3. $\sqrt{61} \simeq 7,81025$. Or 7,8 < 7,81025 < 7,9, et 7,81025 est plus proche de 7,8 que de 7,9. Donc l'arrondi au dixième près de $\sqrt{61}$ est 7,8.

 $12^2 = 144$ et $13^2 = 169$. Or 144 < 154 < 169, donc $\sqrt{144} < \sqrt{154} < \sqrt{169}$, enfin $12 < \sqrt{154} < 13$.

- 1. $\sqrt{246} \simeq 15,684387$. Or 15,68 < 15,684387 < 15,69, et 15,684387 est plus proche de 15,68 que de 15,69. Donc l'arrondi au centième près de $\sqrt{246}$ est 15,68.
- 2. $\sqrt{298} \simeq 17,262\,677$. Or $17,2 < 17,262\,677 < 17,3$, et $17,262\,677$ est plus proche de 17,3 que de 17,2. Donc l'arrondi au dixième près de $\sqrt{298}$ est 17,3.
- 3. $\sqrt{168} \simeq 12,961481$. Or 12 < 12,961481 < 13, et 12,961481 est plus proche de 13 que de 12. Donc l'arrondi à l'unité près de $\sqrt{168}$ est 13.

 $10^2 = 100$ et $11^2 = 121$. Or 100 < 109 < 121, donc $\sqrt{100} < \sqrt{109} < \sqrt{121}$, enfin $10 < \sqrt{109} < 11$.

- 1. $\sqrt{22} \simeq 4,690\,416$. Or $4,69 < 4,690\,416 < 4,7$, et $4,690\,416$ est plus proche de 4,69 que de 4,7. Donc l'arrondi au centième près de $\sqrt{22}$ est 4,69.
- 2. $\sqrt{93} \simeq 9,6436508$. Or 9 < 9,6436508 < 10, et 9,6436508 est plus proche de 9,6 que de 9. Donc l'arrondi à l'unité près de $\sqrt{93}$ est 9,6.
- 3. $\sqrt{171} \simeq 13,076\,697$. Or $13 < 13,076\,697 < 13,1$, et $13,076\,697$ est plus proche de 13,1 que de 13. Donc l'arrondi au dixième près de $\sqrt{171}$ est 13,1.

 $4^2 = 16$ et $5^2 = 25$. Or 16 < 23 < 25, donc $\sqrt{16} < \sqrt{23} < \sqrt{25}$, enfin $4 < \sqrt{23} < 5$.

- 1. $\sqrt{90} \simeq 9,486\,833$. Or $9 < 9,486\,833 < 10$, et $9,486\,833$ est plus proche de 9 que de 10. Donc l'arrondi à l'unité près de $\sqrt{90}$ est 9.
- 2. $\sqrt{42} \simeq 6,480\,741$. Or $6,48 < 6,480\,741 < 6,49$, et $6,480\,741$ est plus proche de 6,48 que de 6,49. Donc l'arrondi au centième près de $\sqrt{42}$ est 6,48.
- 3. $\sqrt{23} \simeq 4,795\,832$. Or $4,7 < 4,795\,832 < 4,8$, et $4,795\,832$ est plus proche de 4,8 que de 4,7. Donc l'arrondi au dixième près de $\sqrt{23}$ est 4,8.

 $9^2 = 81$ et $10^2 = 100$. Or 81 < 84 < 100, donc $\sqrt{81} < \sqrt{84} < \sqrt{100}$, enfin $9 < \sqrt{84} < 10$.

- 1. $\sqrt{300} \simeq 17,320\,508$. Or $17,3 < 17,320\,508 < 17,4$, et $17,320\,508$ est plus proche de 17,3 que de 17,4. Donc l'arrondi au dixième près de $\sqrt{300}$ est 17,3.
- 2. $\sqrt{27}\simeq 5{,}196\,152$. Or $5<5{,}196\,152<6$, et $5{,}196\,152$ est plus proche de 5 que de 6. Donc l'arrondi à l'unité près de $\sqrt{27}$ est 5.
- 3. $\sqrt{141} \simeq 11,874\,342$. Or $11,87 < 11,874\,342 < 11,88$, et $11,874\,342$ est plus proche de 11,87 que de 11,88. Donc l'arrondi au centième près de $\sqrt{141}$ est 11,87.

 $15^2 = 225$ et $16^2 = 256$. Or 225 < 252 < 256, donc $\sqrt{225} < \sqrt{252} < \sqrt{256}$, enfin $15 < \sqrt{252} < 16$.

- 1. $\sqrt{285} \simeq 16,881\,943$. Or $16,88 < 16,881\,943 < 16,89$, et $16,881\,943$ est plus proche de 16,88 que de 16,89. Donc l'arrondi au centième près de $\sqrt{285}$ est 16,88.
- 2. $\sqrt{165} \simeq 12,845\,233$. Or $12,8 < 12,845\,233 < 12,9$, et $12,845\,233$ est plus proche de 12,8 que de 12,9. Donc l'arrondi au dixième près de $\sqrt{165}$ est 12,8.
- 3. $\sqrt{173} \simeq 13{,}152\,946$. Or $13 < 13{,}152\,946 < 14$, et $13{,}152\,946$ est plus proche de 13 que de 14. Donc l'arrondi à l'unité près de $\sqrt{173}$ est 13.

 $12^2 = 144$ et $13^2 = 169$. Or 144 < 165 < 169, donc $\sqrt{144} < \sqrt{165} < \sqrt{169}$, enfin $12 < \sqrt{165} < 13$.

- 1. $\sqrt{206} \simeq 14{,}352\,7$. Or $14{,}35 < 14{,}352\,7 < 14{,}36$, et $14{,}352\,7$ est plus proche de $14{,}35$ que de $14{,}36$. Donc l'arrondi au centième près de $\sqrt{206}$ est $14{,}35$.
- 2. $\sqrt{138} \simeq 11,747\,34$. Or $11,7 < 11,747\,34 < 11,8$, et $11,747\,34$ est plus proche de 11,7 que de 11,8. Donc l'arrondi au dixième près de $\sqrt{138}$ est 11,7.
- 3. $\sqrt{158} \simeq 12,569\,805$. Or $12 < 12,569\,805 < 13$, et $12,569\,805$ est plus proche de 13 que de 12. Donc l'arrondi à l'unité près de $\sqrt{158}$ est 13.

 $16^2 = 256$ et $17^2 = 289$. Or 256 < 262 < 289, donc $\sqrt{256} < \sqrt{262} < \sqrt{289}$, enfin $16 < \sqrt{262} < 17$.

- 1. $\sqrt{141} \simeq 11,874\,342$. Or $11,87 < 11,874\,342 < 11,88$, et $11,874\,342$ est plus proche de 11,87 que de 11,88. Donc l'arrondi au centième près de $\sqrt{141}$ est 11,87.
- 2. $\sqrt{143} \simeq 11,958\,261$. Or $11 < 11,958\,261 < 12$, et $11,958\,261$ est plus proche de 12 que de 11. Donc l'arrondi à l'unité près de $\sqrt{143}$ est 12.
- 3. $\sqrt{251} \simeq 15,842\,98$. Or $15,8 < 15,842\,98 < 15,9$, et $15,842\,98$ est plus proche de 15,8 que de 15,9. Donc l'arrondi au dixième près de $\sqrt{251}$ est 15,8.

 $1^2 = 1$ et $2^2 = 4$.

Or 1 < 3 < 4,

donc $\sqrt{1} < \sqrt{3} < \sqrt{4}$, enfin $1 < \sqrt{3} < 2$.

1. $\sqrt{223} \simeq 14,933185$.

Or 14,93 < 14,933185 < 14,94, et 14,933185 est plus proche de 14,93 que de 14,94.

Donc l'arrondi au centième près de $\sqrt{223}$ est 14,93.

2. $\sqrt{98} \simeq 9,8994949$.

Or 9 < 9,8994949 < 10,

et 9,899 494 9 est plus proche de 9,9 que de 9.

Donc l'arrondi à l'unité près de $\sqrt{98}$ est 9,9.

3. $\sqrt{108} \simeq 10{,}392\,305$.

Or 10.3 < 10.392305 < 10.4,

et 10,392 305 est plus proche de 10,4 que de 10,3.

Donc l'arrondi au dixième près de $\sqrt{108}$ est 10,4.

 $10^2 = 100$ et $11^2 = 121$. Or 100 < 109 < 121, donc $\sqrt{100} < \sqrt{109} < \sqrt{121}$, enfin $10 < \sqrt{109} < 11$.

- 1. $\sqrt{56} \simeq 7,483\,315$. Or $7,48 < 7,483\,315 < 7,49$, et $7,483\,315$ est plus proche de 7,48 que de 7,49. Donc l'arrondi au centième près de $\sqrt{56}$ est 7,48.
- 2. $\sqrt{6} \simeq 2,44949$. Or 2,4 < 2,44949 < 2,5, et 2,44949 est plus proche de 2,4 que de 2,5. Donc l'arrondi au dixième près de $\sqrt{6}$ est 2,4.
- 3. $\sqrt{291} \simeq 17,058722$. Or 17 < 17,058722 < 18, et 17,058722 est plus proche de 17 que de 18. Donc l'arrondi à l'unité près de $\sqrt{291}$ est 17.