Inteligencia Artificial Práctica 10: Clase Factor

Verónica Esther Arriola Ríos Pedro Rodríguez Zarazúa Luis Alfredo Lizárraga Santos

Fecha de entrega: Miércoles 11 de Mayo de 2016

1. Objetivo

Que el alumno implemente una clase Factor para familiarizarse con las operaciones entre factores que representan probabilidades

2. Introducción

Como ustedes sabrán, un factor tiene muchas operaciones, pero las que a nosotros nos importan (por lo menos en este curso de Inteligencia Artificial) son las operaciones de multiplicación, reducción y normalización de factores, y marginalización de variables.

2.1. Multiplicación

La operación de multiplicación es un poco sencilla. Se multiplica cada entrada del factor A por cada entrada del Factor B. Por ejemplo: Tenemos dos factores A y B

Α	P(A)	В	P(B)
0	.3	0	.6
1	.7	1	.4
(a) Factor A		(b) 1	Factor B

Entonces, se multiplicaría el renglon A=0 con B=0, luego A=0 con B=1, A=1 con B=0 y por último A=1 con B=1:

Α	В	P(A,B)
0	0	(.3)*(.6)
0	1	(.3)*(.4)
1	0	$(.7)^*(.6)$
1	1	$(.7)^*(.4)$

Figura 2: Factor AB

Si se llega a presentar que ambos factores a multiplicar compartan variables (y que estas variables toman los mismos valores, de otra forma se procede a renombrar variables), se debe asegurar que tengan el mismo valor en cada renglón por multiplicar. Por ejemplo, si se tienen los factores AB y AC, al momento de multiplicar el renglón A=0,B=0 se debe seleccionar los renglones donde A=0 en el factor AC, estos son A=0,C=0 y A=0,C=1:

A	В	P(A,B)	A	A	С	P(A,C)
0	0	(.3)*(.6))	0	(.27)*(.54)
0	1	(.3)*(.4)	<u> </u>)	1	$(.1)^*(.4)$
1	0	(.7)*(.6)	1	1	0	(.66)*(.9)
1	1	$(.7)^*(.4)$	1	1	1	(.32)*(.15)
(a) Factor AB				((b) I	Factor AC

A	В	\mathbf{C}	P(A,B,C)
0	0	0	$[(.3)^*(.6)]^*[(.27)^*(.54)]$
0	0	1	$[(.3)^*(.6)]^*[(.1)^*(.4)]$
0	1	0	$[(.3)^*(.4)]^*[(.27)^*(.54)]$
0	1	1	$[(.3)^*(.4)]^*[(.1)^*(.4)]$
1	0	0	$[(.7)^*(.6)]^*[(.66)^*(.9)]$
1	0	1	$[(.7)^*(.6)]^*[(.32)^*(.15)]$
1	1	0	$[(.7)^*(.4)]^*[(.66)^*(.9)]$
1	1	1	$[(.7)^*(.4)]^*[(.32)^*(.15)]$

Figura 4: Factor ABC

2.2. Reducción

La operación de reducción es tomar un valor de alguna variable del factor y sólo tomar los renglones que cumplen con el valor de la variable dado. Por ejemplo: Se tiene el factor AB

Se desea reducir con A = 0, el resultado sería un factor:

Α	В	P(A,B)
0	0	.18
0	1	.12
1	0	.42
1	1	.28

Figura 5: Factor AB

В	P(B)
0	.18
1	.12

Figura 6: Factor B

2.3. Normalización

Para normalizar un factor, basta con sumar todo los valores de probabilidad de los renglones y dividir cada uno entre esta suma. Por ejemplo: tenemos el factor $P(B \mid A = 0)$, la suma de las probabilidades de sus renglones es .3, entonces tendríamos:

$$\begin{array}{c|cccc} A & B & P(B \mid A = 0) \\ \hline 0 & 0 & (.18/.3) = .6 \\ \hline 0 & 1 & (.12/.3) = .4 \\ \end{array}$$

Figura 7: Factor $B \mid A = 0$

Esta operación es útil cuando se marginaliza una variable o se reduce a un valor.

2.4. Marginalización

La operación de marginalización consiste en tomar la variable a marginalizar, sumar las probabilidades en los renglones en que cambia su valor pero el de las demás variables no, y asignar esta suma a cada valor de las variables restantes. Por ejemplo: tenemos el factor AB y deseamos marginalizar la variable B. Entonces, tomamos los renglones donde A=0 y los sumamos, tomamos los renglones donde A=1 y los sumamos:

у

3. Desarrollo e implementación

La práctica consiste de crear una clase Factor que implemente la operaciones de multiplicación, reducción y normalización de factores y marginalización de variables

3.1. Implementación

Entrada

El programa deberá recibir la descripción de los factores en un archivo de texto. A continuación se define la sintaxis del archivo con los factores:

Variables:

$$[\{ < Var_1 > :< val_0 >, ..., < val_m > \}, \\ \{ < Var_2 > :< val_0 >, ..., < val_m > \}, ..., \\ \{ < Var_n > :< val_0 >, ..., < val_m > \}]$$

■ Probabilidades:

$$[\{P(\langle Var_i \rangle = 0) = 0,1, P(\langle Var_i \rangle = 1) = 0,5, P(\langle Var_i \rangle = 2) = 0,4\},$$

$$\{P(\langle Var_i \rangle | var_j = 0,..., var_k = 0) = \langle val \rangle,$$

$$P(\langle Var_i \rangle | var_j = 0,..., var_k = 1) = \langle val \rangle,$$

$$P(\langle Var_i \rangle | var_j = 1,..., var_k = 0) = \langle val \rangle,$$

$$P(\langle Var_i \rangle | var_j = 1,..., var_k = 1) = \langle val \rangle,$$

$$P(\langle Var_x \rangle | var_j = 0,..., var_k = 0) = \langle val \rangle, ... \}...]$$

Donde $\langle Var_{indice} \rangle$ indica el nombre de alguna variable aleatoria y $\langle val \rangle$ se refiere al valor numérico correspondiente.

Por ejemplo:

```
Variables: [\{A:0,1\},\{B:0,1\},\{C:0,1,2\}]
Probabilidades: [\{P(A=0)=0,1,P(A=1)=0,9\},\{P(B=0)=0,25,P(B=1)=0,75\},\{P(C=0\mid A=0,B=0)=0,25,P(C=0\mid A=0,B=1)=0,15,P(C=0\mid A=1,B=0)=0,35,P(C=0\mid A=1,B=1)=0,1,P(C=1\mid A=0,B=0)=0,65,P(C=1\mid A=0,B=1)=0,80,P(C=1\mid A=1,B=0)=0,60,P(C=1\mid A=1,B=1)=0,8,P(C=2\mid A=0,B=0)=0,10,P(C=2\mid A=0,B=1)=0,05,P(C=2\mid A=1,B=1)=0,05,P(C=2\mid A=1,B=1)=0,1\}]
```

En cuanto al lenguaje de programación, tienen dos opciones: Java o Python

4. Requisitos y resultados

Deberán hacer casos de prueba para marginalización, reducción y multiplicación de factores. Y también debe contar con un menú donde se puedan ejecutar las diferentes operaciones; no es necesario que lo hagan a prueba de todo, no me fijaré en eso.

Para evaluar y calificar la práctica es necesario que se implementen todos los métodos mencionados e indicados, respetando las especificaciones de estilo y documentación del lenguaje de programación que usarán. Es completamente válido utilizar bibliotecas adicionales si lo consideran necesario, así como la creación y uso de sus propios métodos auxiliares si lo desean.

No olviden documentar y comentar su código.

5. Notas adicionales.

La práctica es individual, anexen a su código un archivo readme.txt con su nombre completo, número de cuenta, número de la práctica y cualquier observación o notas adicionales (posibles errores, complicaciones, opiniones, críticas de la práctica o del laboratorio, cualquier comentario relativo a la práctica).

Pueden agregar cualquier biblioteca extra, sólo asegurense de que se encuentre bien comentada.

Compriman la práctica en un solo archivo (.zip, .rar, .tar.gz) con la siguiente estructura:

- Apellidopaterno Nombre Númerode
práctica.zip (por ejemplo: Lizarraga Luis
10.zip)
 - Apellidopaterno Nombre Número depráctica
 - \circ src \diamond factores(.java / .py)
 - \bullet readme.txt

La práctica se entregará en la página del curso en la plataforma AVE Ciencias. O por medio de correo electrónico a luislizarraga@ciencias.unam.mx con asunto Práctica10[IA 2016-2]

La fecha de entrega es hasta el día miércoles 11 de Mayo a las 23:59:59 hrs.