Probability and Statistics – LAB 04

Q1.

```
setwd("C:\\Users\\it24100263\\Desktop\\IT24100263")
branch_data <- read.table("Exercise.txt", header = TRUE, sep = ",")</pre>
```

Q2.

Date Falters

#Q2 fix(branch_data) head(branch_data) attach(branch_data)

Data Editor – LI X							
File Edit Help							
	Branch	Sales_X1	Advertising_X2	Years_X3	var5	var6	var7
1	1	3.4	120	4			
2	2	4.1	150	7			
3	3	2.8	90	3			
4	4	5	200	10			
5	5	3.7	110	5			
6	6	4.5	175	6			
7	7	3	95	2			
8	8	4.9	185	9			
9	9	3.2	105	4			
10	10	2.5	80	1			
11	11	3.9	130	5			
12	12	4.2	140	7			
13	13	2.7	100	3			
14	14	3.6	125	4			
15	15	4.8	190	8			
16	16	3.3	115	5			
17	17	4	135	6			
18	18	5.1	210	12			
19	19	3.8	145	6			

> head(branch_data)

```
Branch Sales_X1 Advertising_X2 Years_X3
           3.4 120
                                 4
           4.1
2
                        150
           2.8
5.0
3
                        90
                                 3
     3
4
     4
                        200
                                 10
          3.7
                        110
           4.5
                        175
                                 6
```

```
> attach(branch_data)
The following objects are masked from branch_data (pos = 3):
    Advertising_X2, Branch, Sales_X1, Years_X3
The following objects are masked from branch_data (pos = 4):
    Advertising_X2, Branch, Sales_X1, Years_X3
The following objects are masked from branch_data (pos = 5):
```

```
#Q3 - Obtain boxplot for Sales_X1
boxplot(branch_data$sales_X1, main = "Boxplot of Sales", ylab = "Sales")
```

Q4.

```
#Q4 - Five-number summary
summary(Advertising_X2)
IQR(Advertising_X2)
> summary(Advertising_X2)
   Min. 1st Qu. Median
                           Mean 3rd Qu.
                                              Max.
                  132.5 134.8 158.8
   80.0 101.2
                                             210.0
> IQR(Advertising_X2)
[1] 57.5
Q5.
#Q5
get_outliers<-function(z)</pre>
  q1<-quantile(z)[2]
  q3<-quantile(z)[4]
  iqr<-q3-q1
  ub<-q3+1.5*iqr
  lb<-q1-1.5*iqr
  print(paste("Upper Bound=", ub))
print(paste("Lower Bound=", ub))
  print(paste("Outliers:", paste(sort(z[z>lb|z>ub]), collapse=",")))}
#Check for outliers in the 'years' variable
get_outliers(Years_X3)
```

```
> print(paste("Upper Bound=", ub))
[1] "Upper Bound= 14.5"
> print(paste("Lower Bound=", ub))
[1] "Lower Bound= 14.5"

> get_outliers(Years_X3)
[1] "Upper Bound= 14.5"
[1] "Lower Bound= 14.5"
[1] "Outliers: 1,1,2,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,6,7,7,7,8,8,9,9,10,10,11,12"
```