Sprawozdanie 4

Projektowanie danych.

Implementacyjny diagram klas

Diagram klas implementacyjnych przedstawia strukturę logiczną systemu w języku programowania. Główne klasy to:

- **Zamowienie** łączy informacje o kliencie, produktach, płatności, statusie i fakturze.
- Klient klasa ogólna z podklasami KlientIndywidualny oraz KlientFirmowy.
- **Produkt** element oferty, zawarty w pozycjach zamówienia.
- PozycjaZamowienia pośrednia klasa łącząca Zamowienie i Produkt.
- PracownikObslugi, Kucharz, Administrator klasy reprezentujące użytkowników z różnymi uprawnieniami.
- Magazyn, Dostawa, Raport, Platnosc, Faktura pozostałe elementy systemu wspierające zarządzanie.

Dziedziczenie oraz powiązania wiele-do-wielu zostały odpowiednio odwzorowane.

Opis tabel

- **zamowienie** zawiera informacje o czasie realizacji, powiązaniach z klientem, pracownikiem i kucharzem.
- **klient** wspólna tabela dla wszystkich klientów; szczegółowe dane dla firmowych w osobnej tabeli.
- produkt zawiera dane o nazwie, cenie i kategorii produktu.

- pozycja_zamowienia realizuje relację wiele-do-wielu między zamówieniem a produktami.
- platnosc określa sposób i kwotę zapłaty, powiązana z konkretnym zamówieniem.

Diagram relacyjnej bazy danych

Diagram relacyjnej bazy danych przedstawia zależności między tabelami systemu. Najważniejsze tabele to:

- **klient** (id, imie, nazwisko, typ, ...)
- klient_firmowy (id_klienta, nazwa_firmy, nip)
- **zamowienie** (id, data, status, id_klienta, id_pracownika, id_kucharza)
- produkt (id, nazwa, cena, kategoria)
- pozycja_zamowienia (id_zamowienia, id_produktu, ilosc)
- platnosc (id, metoda, kwota, id_zamowienia)
- faktura (id, id_zamowienia, data, kwota_brutto)

- **pracownik** (id, imie, rola)
- magazyn (id_produktu, ilosc)
- dostawa (id, data, id_produktu, ilosc)
- raport (id, typ, zakres_czasowy, data_generowania)

Normalizacja

Baza została zaprojektowana zgodnie z zasadami trzeciej postaci normalnej (3NF):

- · wszystkie dane są atomowe,
- nie występują redundancje,
- zależności między kolumnami są logicznie uzasadnione,
- dane powtarzalne (np. statusy, role, metody płatności) mogą być przeniesione do tabel słownikowych

Mapowanie klas na tabele

Diagram klas implementacyjnych został zmapowany na relacyjną bazę danych w następujący sposób:

- Każda klasa odpowiada jednej tabeli (np. Zamowienie → zamowienie).
- Dziedziczenie Klient → KlientFirmowy i KlientIndywidualny zostało zaimplementowane przez wspólny klucz główny id.
- Relacje między klasami, np. Zamowienie PozycjaZamowienia –
 Produkt, są odwzorowane przez tabele pośrednie z kluczami obcymi.

Typy danych i ograniczenia

Przykładowe typy danych użyte w projekcie:

- INT, VARCHAR, DATE, DECIMAL(6,2), ENUM('gotówka', 'karta', 'blik')
- Klucze główne: PRIMARY KEY

• Klucze obce: FOREIGN KEY

• Ograniczenia integralności: NOT NULL, CHECK, UNIQUE

Podsumowanie

Zaprojektowana relacyjna baza danych stanowi logiczną kontynuację wcześniejszych etapów projektowania systemu. Zawarte w niej tabele odwzorowują rzeczywiste obiekty systemowe, a zaplanowane relacje i ograniczenia zapewniają spójność danych. Baza jest gotowa do implementacji w środowisku produkcyjnym i może stanowić podstawę dla systemu obsługi zamówień, magazynu i raportowania.

Autorzy:

Jakub Góralski Anastazja Albeszczenko