

CS2102 Analysis and Design of Algorithms

DYNAMIC PROGRAMMING

M.Sc. Bryan Gonzales Vega bgonzales.vega@gmail.com

University of Engineering and Technology

Lecture Content

1. Dynamic Programming

Intuition

Definition

2. Problems

0-1 Knapsack Problem

Maximum Contiguous Subarray Sum

Coin change

Dynamic Programming

Book Lectures

Introduction to Algorithms [Cormen et al., 2009]

Chap 15: Dynamic Programming

Recursive

int fib (int n)

if (n
$$\leq$$
1) return n;

return fib(n-1) + fib(n-2);

$$0 (2^n) \triangleq$$

$$2 t (n-1) + 1$$

3

for (auto v in vertices. linearized) }

$$\begin{cases}
3:54 (v) = min & jist(u) + e(u,v) \\
& \text{where}
\end{cases}$$

Dynamic Programming

Definition

Dynamic Programming is a paradigm like Divide and Conquer that solves optimization problems and reduces time complexity from exponential to polynomial.

To apply the paradigm some conditions should be met first:

- Overlapping subproblems, subproblems reused several times

 Optimal substructure, optimal solution can be constructed

 prospectively from previous optimal solutions of its subproblems.

Since Dynamic Programming seeks to solve each subproblem only once, we can achieve this using:

- Tabulation or bottom-up approach
- Memoization or top-down approach

Figure 3: Richard Bellman

- Bellman-Ford algorithm
- Curse of dimensionality
- · Hamilton-Jacobi-Bellman

Problems

Problems - Knapsack

	0-1 Knapsack/Backpack Problem									
	T	tems	#1	#2	#3	#4		Bac	kpack total weight: W	
		Jeights	5Ks	3k5	чKs	2Kg			5Kg	
				_		30	,		0,,0	
	(V)	Values	60\$	50)	10 \$	201	,			
			1	wei	sht					/ 1
		OV.	ık.			1/60	5kg			M: YM
_		911 <u>5</u>	IKS	<u> کارح ،</u>	2118	1197				
\times	#1	50	\$0	30	\$0	30	260)=) max) v (i-1, w), Vp + V (i-1, w), other	(i-1, W-Wi,)
	,							V(i,w,)= \	
	#2	\$0	40	3 9 .	100	430	4 00		$\int V(1-1, \omega)$, other	wise
	#3	30	40	\$n	4 50	\$70	\$70		1	
• \	, tl)),()	y O	10	ψ o 3	4,0			$((n \cdot m))$	
	#4	}	90	\$20	450	K70	(\$80)	*	$O(n \cdot n)$	
	# ((40)	39	10.0			14001			
										6

Problems - Max Subarray

Maximum Contiguous Subarray Sum Problem

7

Problems - Coin Change

Coin Change Problem

References i

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to algorithms.

MIT press.

Cont'd