Supplementary information

DREAM SCTC Consortium authors and affiliations

- Giacomo Baruzzo²⁶, Marco Cappellato²⁶, Irene Zorzan²⁶, Simone Del Favero²⁶, Luca Schenato²⁶, Fabio Vandin²⁶, Barbara Di Camillo²⁶, Shruti Gupta²⁷, Ajay Kumar Verma²⁷, Shandar Ahmad²⁷, Ronesh Sharma^{28,29}, Edwin Vans^{28,29}, Alok Sharma^{29,30,31,32}, Ashwini Patil³³, Alejandra Carrea³⁴, Andres M. Alonso^{35,36}, Luis Diambra^{35,36}, Vijay Narsapuram³⁷, Vinay Kaikala³⁷, Chaitanyam Potnuru³⁷, Sunil Kumar³⁷, Jiajie Peng³⁸, Xiaoyu Wang³⁸, Xuequn Shang³⁸, Dani Livne³⁹, Tom Snir³⁹, Hagit Philip³⁹, Alona Zilberberg³⁹, Sol Efroni³⁹, Hamid Reza Hassanzadeh⁴⁰, Reihaneh Hassanzadeh⁴¹, Ghazal Jahanshahi⁴², M-Mahdi Naddaf-Sh⁴³, Phillip M. Drayer⁴³, Sadra Naddaf-Sh⁴⁴, MarouenBen Guebila⁴⁵, Changlin Wan⁴⁶, Yuchen Cao⁴⁷, Saber Meamardoost⁴⁸, Nan Papili Gao⁴⁹, and Rudiyanto Gunawan⁴⁸
- ²⁶Department of Information Engineering, University of Padova, Padova, Italy
- ²⁷School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- ²⁸School of Electrical and Electronics Engineering, Fiji National University, Suva, Fiji
- ²⁹School of Engineering and Physics, University of the South Pacific, Suva, Fiji
- 30 Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama,
 531 Japan
- ³¹Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia
- ⁵³³ ³²CREST, JST, Tokyo, Japan
- ³³Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- ³⁴CREG, Universidad Nacional de La Plata, Argentina
- ³⁵InTech, Universidad Nacional de San Martin, Argentina
- ³⁶CONICET, Argentina

525

- ³⁷Data Science and Informatics, Corteva Agrisciences, Ascendas IT Park, Madhapur, Hyderabad, India
- ³⁸School of Computer Science, Northwestern Polytechnical University, Xi'an, China
- ³⁹Bar-Ilan University, Ramat Gan, Israel
- ⁴⁰School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA
- 542 ⁴¹Department of Computer Science, Georgia State University, Atlanta, GA, USA
- ⁴²J. Mack Robinson College of Business, Georgia State University, Atlanta, GA, USA
- ⁴³Department of Electrical Engineering, Lamar University, Beaumont, TX, USA
- ⁴⁴Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
- ⁴⁵Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- ⁴⁶Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- 548 ⁴⁷Department of Statistics, Purdue University, West Lafavette, IN, USA
- ⁴⁸Chemical and Biological Engineering Department, University at Buffalo, The State University of New
- 550 York, Buffalo, NY, USA
- ⁴⁹Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland

Results from the challenge

For all animated figures see: https://dream-sctc.uni.lu/

Subchallenge 1: Reconstruction of spatial location of cells using 60 genes.

Figure S1: Results from the challenge showing boxplots of the average ranking across the 3 scoring schemes for the participating teams for 1000 bootstraps of the gold standard.

Subchallenge 2: Reconstruction of spatial location of cells using 40 genes.

Figure S2: Results from the challenge showing boxplots of the average ranking across the 3 scoring schemes for the participating teams for 1000 bootstraps of the gold standard.

Subchallenge 3: Reconstruction of spatial location of cells using 20 genes.

Figure S3: Results from the challenge showing boxplots of the average ranking across the 3 scoring schemes for the participating teams for 1000 bootstraps of the gold standard.

554 Additional figures and tables

Table S1: Methods used by the top 10 teams (ordered alphabetically) for gene selection and location prediction. The methods used for gene selection are categorized in four different categories: SFR - Supervised feature ranking, UFR - unsupervised feature ranking, KNW - background knowledge, and VAR - variance. The methods used for location3 prediction are categorized in three different categories: CMB - Combination of model prediction and MCC, MCC - Matthews correlation coefficient, and SIM - Similarity measure (non MCC). More detailed description (writeup) of the methods used by each team is available in the Leaderboards section on the challenge webpage https://www.synapse.org/#!Synapse:syn15665609/wiki/583233.

Team	Selection	Prediction
BCBU	SFR - Random Forest	CMB - Random Forest, MCC
Challengers18	UFR - Particle Swarm Optimization	SIM - Weighted correlation
Christoph	UFR - PCA (principal component analysis)	MCC
Hafemeister	on most variable genes, Expression correla-	
	tion	
Christoph	UFR - PCA on most variable genes, Expres-	SIM - Correlation
Hafemeister	sion correlation	
DeepCMC	SFR - LASSO (least absolute shrinkage and	MCC
	selection operator)	
DeepCMC	SFR - Neural Network	MCC
MLB	UFR - Stepwise regression, PCA, k-nearest	SIM - F-score
	neighbors, F-score	
NAD	SFR - Feedforward neural network, KNW -	CMB - Feedforward neural net-
	Clustering, VAR	work, MCC
OmicsEngineering	UFR - Euclidean distance of expression	MCC
OmicsEngineering	SFR - Random Forest, Genetic algorithm	MCC
Thin Nguyen	VAR	MCC
Thin Nguyen	UFR - Nonnegative Discriminative Feature	SIM - k-nearest neighbors
	Selection	
WhatATeam	KNW, Clustering	CMB - Local outlier factor, MCC
WhatATeam	UFR - Stepwise regression	CMB - Local outlier factor, MCC
Zho	UFR - Hierarchical clustering	SIM - Hamming distance, Silhou-
		ette score

Table S2: Summary of methods used by the top 10 teams for gene selection and location prediction. Some teams used different approaches or a combination of approaches for different subchallenges. The categories of the method used for gene selection and location prediction are the same as in Table S1.

		Selection			
		SFR	UFR	KNW	VAR
ion	CMB	2	1	2	
icti	MCC	3	2		1
red	SIM		5		
Д		'			

Figure S4: Boxplots of the Jaccard similarity between the genes selected for each of the 10 CV scheme in all 3 subchallenges. The teams that used the statistical properties of the genes as selection criteria, for example maximum variance, selected the same set of genes for all folds. This is expected since the distribution of a random subsample was selected to have the same properties as the original sample. Dotted line represents the limit for significance, i.e., the expected Jaccard similarity between two sets of randomly selected 60, 40 or 20 genes.

Table S3: Most frequently selected 60, 40 and 20 genes in subchallenges 1,2 and 3 respectively, in alphabetical order, colored according to Figure 5 from the main text. That is yellow are gap genes and green are pair-rule genes

Subchallenge 1	aay ama ance antp apt blimp-1 brk btk29A bun cg104/9 cg1442/ cg43394		
	cg8147 croc cyp310a1 d dan danr dfd disco doc2 doc3 dpn E(spl)m5-HLH		
	edl <mark>eve</mark> fj fkh <mark>ftz gt h hb</mark> htl ilp4 impE2 impL2 <mark>kni</mark> knrl <mark>kr</mark> lok		
	mdr49 mes2 mESR3 noc nub oc odd prd rau rho run sna srp tkv toc		
	traf4 trn tsh twi zen zfh1		
Subchallenge 2			
	dan disco doc3 dpn edl fj fkh <mark>ftz gt h</mark> ilp4 impE2 impL2 <mark>kni</mark> knrl <mark>kr</mark>		
	mes2 mESR3 noc nub oc rho run sna srp tsh twi zfh1		
Subchallenge 3	ama antp brk cg8147 cyp310a1 disco doc2 doc3 fkh h ilp4 impE2 kni		
	knrl mes2 nub oc sna tsh twi		

Figure S5: Visualization of the transcriptomics data containing only the most frequently selected **A** 40 genes from subchallenge 2 and **B** 20 genes from subchallenge 3 by the top performing teams (embedding to 2D by t-SNE). *Left* each point (cell) is filled with the color of the cluster that it belongs to (density-based clustering with DBSCAN). *Middle*, spatial mapping of the cells in the Drosophila embryo as assigned by DistMap using only the 60 most frequently selected genes from subchallenge 1. The color of each point corresponds to the color of the cluster from the t-SNE visualization. *Right*, highlighted (red) location mapping of cells in the Drosophila embryo for each cluster separately.