IN THE CLAIMS:

1. (currently amended). A composition of matter normally subject to oxidative deterioration comprising an edible organic substance normally subject to oxidative deterioration and a minor amount effective as an antioxidant of one or more compounds selected from the group consisting of
(i) 3-arylbenzofuranones in the present invention are compounds of the formula I

in which, if n is 1,

 R_1 is unsubstituted or C_1 - C_4 alkyl-, C_1 - C_4 alkoxy-, C_1 - C_4 alkylthio-, hydroxyl-, halo-, amino-, C_1 - C_4 alkylamino-, phenylamino- or di(C_1 - C_4 alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, or R_1 is a radical of the formula II

$$\begin{array}{c}
R_9 \\
R_7 \\
R_8
\end{array}$$

$$\begin{array}{c}
R_{10} \\
R_{11}
\end{array}$$
(II)

and

if n is 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or is - R_{12} -X- R_{13} -, R_2 , R_3 , R_4 and R_5 independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_2 5alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 -

 C_{25} alkanoyloxy, C_1 - C_{25} alkanoylamino, C_3 - C_{25} alkenoyloxy, C_3 - C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or $N - R_{14}$; C_6 - C_9 cycloalkylcarbonyloxy, benzoyloxy or C_1 - C_{12} alkyl-substituted

benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to which they are attached, form a benzo ring, R_4 is additionally -(CH₂)_p-COR₁₅ or -(CH₂)_aOH or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of the formula III

$$R_{2}$$

$$R_{16}$$

$$C - R_{17}$$

$$(III)$$

in which R_1 is defined as indicated above for n = 1, R_6 is hydrogen or a radical of the formula IV

$$R_2$$
 R_3
 R_4
 R_5
(IV)

where R_4 is not a radical of the formula III and R_1 is defined as indicated above for n=1, R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, halogen, hydroxyl, C_1 - C_{25} alkyl, C_2 -

C₂₅alkyl interrupted by oxygen, sulfur or N-R₁₄; C₁-C₂₅alkoxy, C₂-C₂₅alkoxy interrupted by

oxygen, sulfur or $N - R_{14}$; $C_1 - C_{25}$ alkylthio, $C_3 - C_{25}$ alkenyl, $C_3 - C_{25}$ alkenyloxy, $C_3 - C_{25}$ alkynyl, $C_3 - C_{25}$

 C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino, di(C_1 -

 C_4 alkyl)amino, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl interrupted by oxygen, sulfur or $N - R_{14}$;

 C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkanoyloxy interrupted by oxygen, sulfur or $N-R_{14}$;

 C_1 - C_{25} alkanoylamino, C_3 - C_{25} alkenoyl, C_3 - C_{25} alkenoyl interrupted by oxygen, sulfur or $N-R_{14}$;

 C_3 - C_{25} alkenoyloxy, C_3 - C_{25} alkenoyloxy interrupted by oxygen, sulfur or $N-R_{14}$; C_6 -

C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $-O - C_1 - C_2 - C_3 - C_4$ or R_{19}

$$R_{20}$$
 R_{21} R_{21} R_{22} R_{23} , or else, in formula II, the radicals R_7 and R_8 or the radicals R_8 and R_{11} , R_{22}

together with the carbon atoms to which they are attached, form a benzo ring,

 R_{12} and R_{13} independently of one another are unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxyl, $\left[--0^{-1} \frac{1}{r} M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25}

 R_{16} and R_{17} independently of one another are hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the C atom to which they are attached, form a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted from 1 to 3 times by C_1 - C_4 alkyl;

R₁₈ and R₁₉ independently of one another are hydrogen, C₁-C₄alkyl or phenyl,

R₂₀ is hydrogen or C₁-C₄alkyl,

R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl, C₂-C₂₅alkyl interrupted by

oxygen, sulfur or N—R₁₄; C₇-C₉phenylalkyl which is unsubstituted or substituted on the phenyl

radical from 1 to 3 times by C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is unsubstituted or substituted on the

phenyl radical from 1 to 3 times by C₁-C₄alkyl and interrupted by oxygen, sulfur or N-R₁₄, or

else the radicals R_{20} and R_{21} , together with the carbon atoms to which they are attached, form a C_{5} - C_{12} cycloalkylene ring which is unsubstituted or substituted from 1 to 3 times by C_{1} - C_{4} alkyl; R_{22} is hydrogen or C_{1} - C_{4} alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl, C₃-C₂₅alkanoyl interrupted by oxygen, sulfur or

N-R₁₄; C₂-C₂₅alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

 R_{24} and R_{25} independently of one another are hydrogen or C_1 - C_{18} alkyl, R_{26} is hydrogen or C_1 - C_8 alkyl,

 R_{27} is a direct bond, C_1 - C_{18} alkylene, C_2 - C_{18} alkylene interrupted by oxygen, sulfur or $N - R_{14}$; C_2 -

 $C_{18} alkenylene, \ C_2 - C_{20} alkylidene, \ C_7 - C_{20} phenylalkylidene, \ C_5 - C_8 cycloalkylene, \ C_7 - C_8 bicycloalkylene, \ C_8 - C_8 cycloalkylene, \ C_8 - C_8 cycloal$

unsubstituted or C_1 - C_4 alkyl-substituted phenylene, or \bigcirc or \bigcirc ,

$$R_{28}$$
 is hydroxyl, $\left[-O^{-}\frac{1}{r}M^{\Gamma^{+}}\right]$, C_{1} - C_{18} alkoxy or $-N$
 R_{26}

$$R_{29}$$
 is oxygen, -NH- or $N-C-NH-R_{30}$

 R_{30} is C_1 - C_{18} alkyl or phenyl, R_{31} is hydrogen or C_1 - C_{18} alkyl, M is an r-valent metal cation, X is a direct bond, oxygen, sulfur or -NR₃₁-, n is 1 or 2, p is 0, 1 or 2, q is 1, 2, 3, 4, 5 or 6, r is 1, 2 or 3, and s is 0, 1 or 2;

wherein said edible organic substance is a food containing fatty acid glycerides, edible fats and fatty oils; and said edible organic substance is selected from the group consisting of potato flakes, bakery products, meat emulsions, precooked cereals, instant noodles, soybean milk, chicken products, sausage, mayonnaise, margarine, frozen fish, pet food, animal feed, frozen pizza and cheese; and said fatty acid glycerides contain from 12 carbon atoms to about 24 carbon atoms per ester site.

- 2. (original). The composition of claim 1 wherein the benzofuranone is at least one compound of formula I wherein n=1, R_1 is phenyl which is unsubstituted or substituted in para-position by C_1 - C_{18} alkylthio or di(C_1 - C_4 alkyl)amino; mono- to penta-substituted alkyphenyl containing together a total of at most 18 carbon atoms in the 1 to 5 alkyl substituents; naphthyl, biphenyl, terphenyl, phenanthryl, anthryl, fluorenyl, carbazolyl, thienyl, pyrrolyl, phenothizinyl or 5,6,7,8-tetrahydronaphthyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, hydroxy or amino.
- 3. (original). The composition of claim 1 wherein the benzofuranone is a compound of formula I wherein n is 2, R_1 is $-R_{12}$ -X- R_{13} -, R_{12} and R_{13} are phenylene, X is oxygen or $-NR_{31}$ -, and R_{31} is C_1 - C_4 alkyl.

4. (original). The composition of claim 1 wherein the benzofuranone is at least one compound selected from the group consisting of 3-[4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one; 3,3'-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one]; 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one; 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butylbenzofuran-2-one; 3-(3,5-dimethyl-4-pivaloyloxy-phenyl)-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-phenylbenzofuran-2-one; 5,7-di-tert-butyl-3-(2,3-dimethylphenyl)benzofuran-2-one.

5-13. (cancelled).

- 14. (previously presented). The composition of claim 1 wherein the antioxidant of component (i) is present in an amount of from about 0.005% by weight to about 5% by weight, based on the weight of the edible organic substance.
- 15. (previously presented). The composition of claim 1 wherein the antioxidant of component (i) is present in an amount of from about 0.01% by weight to about 1% by weight, based on the weight of the edible organic substance.
- 16. (original). The composition of claim 1 wherein the composition further comprises additional food additives selected from food antioxidants in addition to those specified in claim 1, emulsifiers, suspension agent and colorings.
- 17. (currently amended). The composition of claim 1 wherein the composition further comprises food antioxidants selected from the group consisting of butylated hydroxytoluene, benzylphosphonates, esters of b-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, esters of b-(5-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, esters of b-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, esters of 3,5-di-

tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, phosphites and phosphonites.

18-20. (cancelled).