Resolución TP5:

Ejercicio 3 - d

Tomando $F(x,y) = x^2 + y^2 - 1 = 0$ Determinar si la ecuación dada define una función implícita y = f(x) en P = (1,0)y si es así calcular su derivada.

Herramientas:

- Se deben cumplir las 3 condiciones del teorema para F(x, y) = 0 e y = f(x)
 - $\circ \quad P\epsilon F(x,y)=0$
 - \circ Las derivadas F_x y F_y son continuas en el entorno del punto.
 - $\circ F_{\nu}(P) \neq 0$
- Si se cumple TFI entonces existe y = f(x) y vale $f_x(x_0) = -\frac{F_x(P)}{F_y(P)}$

Resolviendo:

• $i P \epsilon F(x, y) = 0$?

$$x^2 + y^2 - 1 = 0$$
$$1^2 + 0^2 - 1 = 0$$

Se cumple el primer enunciado.

• ¿Son F_x y F_y continuas en R^2 ?

$$F_{x} = 2x$$
$$F_{y} = 2y$$

Al ser funciones lineales son continuas y se cumple el segundo enunciado.

• $\xi F_{\nu}(P) \neq 0$?

$$F_{v}(1,0) = 2 \cdot 0 = 0$$

Al ser $F_y(P) = 0$ NO se cumple el tercer enunciado.

No se puede aplicar TFI en P por lo tanto NO existe y=f(x) y NO vale $f_x(x_0)=-\frac{F_x(p)}{F_y(P)}$

Corolario:

Sin embargo es posible determinar que la ecuación dada define una función implícita x = g(y) en P = (1,0)y es posible calcular su derivada.

Herramientas:

- Se deben cumplir las 3 condiciones del teorema para F(x, y) = 0 e x = g(y)
 - $\circ \quad P\epsilon F(x,y)=0$
 - \circ Las derivadas F_x y F_y son continuas en el entorno del punto.
 - $\circ F_{x}(P) \neq 0$
- Si se cumple TFI entonces existe x = g(y) y vale $g_y(y_0) = -\frac{F_y(P)}{F_x(P)}$

Resolviendo:

• $i P \epsilon F(x, y) = 0$?

$$x^2 + y^2 - 1 = 0$$
$$1^2 + 0^2 - 1 = 0$$

Se cumple el primer enunciado.

• ¿Son F_x y F_y continuas en R^2 ?

$$F_x = 2x$$

 $F_y = 2y$

Al ser funciones lineales son continuas y se cumple el segundo enunciado.

• $\xi F_{\nu}(P) \neq 0$?

$$F_x(1,0) = 2 \cdot 1 = 2$$

Al ser $F_{x}(P) = 2$ se cumple el tercer enunciado.

Se cumple TFI por lo tanto existe x = g(y) y vale $g_y(y_0) = -\frac{F_y(p)}{F_x(p)}$

$$g_y(y_0) = x_y(y_0) = x_y(0) = -\frac{0}{2} = 0$$

$$x_y(0) = 0$$