Assignment 3 FMAN95

John Sun

February 2024

1 Exercises

Exercise 1.

$$f(F) = 0$$

$$F(F) = \begin{pmatrix} 0 & 0 & 2 \\ -2 & 2 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 \end{pmatrix}$$

$$e_{2}^{T} F = \begin{pmatrix} 2 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & -2 \\ -2 & 2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ -2 & 2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercise 3: $X_1 \sim N_1 \times_1 \times_2 \sim N_2 \times_2 \sim N_2 \times_1 \times_2 \sim N_2 \sim N_2$

Exercise 4' F=
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Gret e_{2} by computing nullipace of FT = $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$
 $X = t$
 $X + 2 = 0$
 $X = t$
 $X + 2 = 0$
 $X = t$
 X

2 The Fundamental Matrix

Computer exercise 1

The determinant of F is very close to zero, $9.35^*e(-19)$ (after using formula 7.33 from the lecture notes), same with the epipolar constraint with them hovering around zero. Also checked the euclidean norm of Mv to be 1.88^*e-17 which is close to zero. The mean distance is 0.36 when normalized and 148.5 without normalization.

The fundamental matrix: $\begin{bmatrix} 0 & 0 & 0.0058 \\ 0 & 0 & -0.027 \\ -0.07 & 0.026 & 1 \end{bmatrix}$

Figure 1: The distances between a point and it's epipolar line using normalized F, presented in a histogram.

Computer exercise 2

Figure 3-4 looks to be correct. Figure 5 shows the 3D points which is not at all what I expected. If the two parts of the image points are divided into the upper and lower cluster, they together form a parenthesis. I interpret it as the points being behind and in front of the camera (as the smaller cluster looks to be upside down like in figure 6.

Figure 2: The distances between a point and it's epipolar line using N2=N1=1

3 The Essential Matrix

Computer exercise 3

The determinant of E is zero. The epipolar constraint is also hovering around zero ± 0.002 . We also check that Mv is close to zero being 0.0066.

The essential matrix:
$$\begin{bmatrix} -8.9 & -1005.8 & 377.1 \\ 1252.5 & 78.4 & -2448.2 \\ -472.8 & 2550.2 & 1 \end{bmatrix}$$

The mean average distance from point to epipolar line is 2.1 which is between the normalized and un-normalized values in computer exercise 1. The distances from the points x2 to epipolar lines are definitely more evenly distributed compared to the first computer exercise. The problem with rital and getting the epipolar lines to properly show still exists here.

Computer exercise 4

The camera matrix P2a

$$[UWV^Tu3]$$

had 2008 points in front of the camera (see figure 8). The camera matrix P2b

$$[UWV^T - u3]$$

had 0 points in front of the camera (see figure 9).

Figure 3: The image points and the projected 3D points for image 1. Blue are the projected.

The camera matrix P2c

$$[UW^TV^Tu3]$$

had 1986 points in front of the camera (see figure 10).

The camera matrix P2d

$$[UW^TV^T - u3]$$

had 22 points in front of the camera (see figure 11).

The plots of the first two cameras are hard to understand but in P2c and P2d you can see the contour of the building. The camera matrix had all of the points in front of the camera which is the best of all of them.

Figure 4: The image points and the projected 3D points for image 2. Blue are the projected.

Figure 5: The 3D points

Figure 6: Pinhole camera example

Figure 7: Distances from points to corresponding epipolar line $\,$

Figure 8: 3D points gotten from triangulation using P2a $\,$

Figure 9: 3D points gotten from triangulation using P2b

Figure 10: 3D points gotten from triangulation using P2c

Figure 11: 3D points gotten from triangulation using P2d