CS2102 Database Systems

Question 1(a): Does the decomposition preserve all FDs?

- Schema R(A, B, C, D), with $A \rightarrow BCD$, $C \rightarrow D$
- Decomposition: R1(A, B, C), R2(C, D)
- Closures on R2:
 - $(C)^+ = \{CD\}, \{D\}^+ = \{D\}$
- So we have $C \rightarrow D$ on R2
- Closures on R1:
- So we have $A \rightarrow BC$ on R1
- Given $C \rightarrow D$ and $A \rightarrow BC$, we have
- So all FDs on R (i.e., $A \rightarrow BCD$ and $C \rightarrow D$) are preserved

Question 1(b): Does the decomposition preserve all FDs?

- Schema R(A, B, C, D), with $A \rightarrow BCD$, $C \rightarrow D$
- Decomposition: R1(A, C), R2(A, B, D)
- Closures on R1:
- So we have $A \rightarrow C$ on R1
- Closures on R2:
- So we have $A \rightarrow BD$ on R2
- Given $A \rightarrow C$ and $A \rightarrow BD$, we have
- So C→D is not preserved by the decomposition

Question 1(c): Does the decomposition preserve all FDs?

- Schema R(A, B, C, D, E), with AB→C, AC→D, E→ABCD
- Decomposition: R1(A, B, C), R2(A, B, E), R2(A, C, D)
- Closures on R1:

 - \Box {AB}⁺ = {ABCD}, {AC}⁺ = {ACD}, {BC}⁺ = {BC}
- So we have $AB \rightarrow C$ on R1
- Closures on R2:
- So we have $E \rightarrow AB$ on R2
- Closures on R3:

 - \square {AC}⁺ = {ACD}, {AD}⁺ = {AD}, {CD}⁺ = {CD}
- So we have $AC \rightarrow D$ on R3
- Given $AB \rightarrow C$, $E \rightarrow AB$, and $AC \rightarrow D$, we have
 - \Box {AB}⁺ = {ABCD}, {AC}⁺ = {ACD}, {E}⁺ = {EABCD}
- So all FDs on R (i.e., AB \rightarrow C, AC \rightarrow D, E \rightarrow ABCD) are preserved

Question 2(a): Is R in BCNF?

- Schema R(A, B, C, D), with ABC \rightarrow D, D \rightarrow A
- Let's check the closures on R
- {D}+ = {DA} indicates a violation of BCNF
- Therefore, R is not in BCNF

Question 2(b): Is R in 3NF?

- Schema R(A, B, C, D), with ABC \rightarrow D, D \rightarrow A
- First, let's derive the key(s) of R
- Observe that B and C do not appear on the right hand side of any FD
- So BC must be in every key
- Let's check the attribute subsets containing BC:
 - $BC}^+ = \{BC\}$
 - \Box {ABC}⁺ = {ABCD}, {BCD}⁺ = {ABCD}
- So ABC and BCD are the only keys of R

Question 2(b): Is R in 3NF?

- Schema R(A, B, C, D), with ABC \rightarrow D, D \rightarrow A
- Keys of R: ABC, BCD
- So all attributes in R are prime attributes
- Therefore, there won't be any violation of 3NF
- So R is in 3NF

Question 3(a): Is R in 3NF?

- Schema R(A, B, C, D, E), with $A \rightarrow E$, $CD \rightarrow A$, $E \rightarrow B$, $E \rightarrow D$, $A \rightarrow BD$
- First, let's derive the key(s) of R
- Observe that C does not appear on the right hand side of any FD
- So C must be in every key
- Let's check the attribute subsets containing BC:
 - $(C)^+ = \{C\}$
 - {AC}+ = {ACEBD}, {BC}+ = {BC}, {CD}+ = {CDAEB}, {CE}+ = {CEBDA}
- So AC, CD, and CE are the only keys of R

Question 3(a): Is R in 3NF?

- Schema R(A, B, C, D, E), with A→E, CD→A, E→B, E→D, A→BD
- Keys of R: AC, CD, CE
- So A, C, D, E are prime attributes, but B is not
- Let's check the FDs one by one:
 - \square First, consider $E \rightarrow B$:
 - The left hand side is not a superkey
 - The right hand side is not a prime attribute
- So $E \rightarrow B$ violates 3NF
- Therefore, R is not in 3NF

- Schema R(A, B, C, D, E), with $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow BD\}$
- First, let's derive a minimal basis of F
 - Step 1: Make the FDs non-trivial and decomposed:
 - $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow B, A \rightarrow D\}$
 - Step 2: Remove redundant attributes on the left hand side:
 - Only CD→A has more than one attribute on the left
 - Can we simplify it to $C \rightarrow A$?
 - □ Given F, we have $\{C\}^+ = \{C\}$, so $C \rightarrow A$ is not legit
 - Can we simplify it to D→A?
 - □ Given F, we have $\{D\}^+ = \{D\}$, so $D \rightarrow A$ is not legit
 - $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow B, A \rightarrow D\}$

- Schema R(A, B, C, D, E), with $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow BD\}$
- First, let's derive a minimal basis of F
 - Result of Step 2: $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow B, A \rightarrow D\}$
 - Step 3: Remove redundant FDs
 - Let check the FDs one by one
 - First, consider A→E
 - If we remove A→E from F, we have {A}+ = {ABD}, which does not contain E
 - \supset So A \rightarrow E is not redundant and cannot be removed
 - Second, consider CD→A
 - ☐ If we remove CD→A from F, we have {CD}+ = {CD}, which does not contain A
 - So CD→A is not redundant and cannot be removed

- Schema R(A, B, C, D, E), with $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow BD\}$
- First, let's derive a minimal basis of F
 - Result of Step 2: $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow B, A \rightarrow D\}$
 - Step 3: Remove redundant FDs
 - Let check the FDs one by one
 - Third, consider E→B
 - If we remove E→B from F, we have {E}+ = {ED}, which does not contain B
 - \supset So E \rightarrow B is not redundant and cannot be removed
 - Fourth, consider E→D
 - If we remove E→D from F, we have {E}+ = {EB}, which does not contain D
 - So E→D is not redundant and cannot be removed

- Schema R(A, B, C, D, E), with $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow BD\}$
- First, let's derive a minimal basis of F
 - Result of Step 2: $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow B, A \rightarrow D\}$
 - Step 3: Remove redundant FDs
 - Let check the FDs one by one
 - Fifth, consider A→B
 - □ If we remove $A \rightarrow B$ from F, we have $\{A\}^+ = \{AEBD\}$, which contains B
 - \supset So A \rightarrow B is redundant and can be removed
 - $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow D\}$
 - Sixth, consider A→D
 - □ If we remove $A \rightarrow D$ from F, we have $\{A\}^+ = \{AEBD\}$, which contains D
 - \supset So A \rightarrow D is redundant and can be removed
 - $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D\}$

- Schema R(A, B, C, D, E), with F = {A→E, CD→A, E→B, E→D, A→BD}
- First, let's derive a minimal basis of F
 - Minimal basis: $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D\}$
- Second, combine the FDs whose left hand sides are the same:
 - \square Result: $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow BD\}$
- Third, construct a table for each FD
 - Result: R1(A, E), R2(A, C, D), R3(B, D, E)
- Fourth, check whether R1, R2, or R3 contains one of the keys of R
 - Keys of R: AC, CD, CE
 - AC and CD are contained in R2
- Final decomposition: R1(A, E), R2(A, C, D), R3(B, D, E)

Question 3(c): Is the Decomposition in BCNF?

- Schema R(A, B, C, D, E), with $F = \{A \rightarrow E, CD \rightarrow A, E \rightarrow B, E \rightarrow D, A \rightarrow BD\}$
- 3NF decomposition: R1(A, E), R2(A, C, D), R3(B, D, E)
- R1 has only two attributes, so it is in BCNF
- Let's check R2
 - First, check the closures on R2

 - {A}+ = {AD} indicates a violation of BCNF
 - So R2 is not in BCNF
- So the decomposition does not satisfy BCNF

Question 4(a): Is R in 3NF?

- Schema R(A, B, C, D, E), with AB→CDE, AC→BDE, B→C, C→B, C→D, B→E
- First, let's derive the key(s) of R
- Observe that A does not appear on the right hand side of any FD
- So A must be in every key
- Let's check the attribute subsets containing BC:

 - AB⁺ = {ABCDE}, {AC}⁺ = {ACBDE}, {AD}⁺ = {AD}, {AE}⁺ = {AE}
- So AB and AC are the only keys of R

Question 4(a): Is R in 3NF?

- Schema R(A, B, C, D, E), with AB→CDE, AC→BDE, B→C, C→B, C→D, B→E
- Keys: AB, AC
- So A, B, C are prime attributes, but D, E are not
- Let's check the FDs one by one:
 - □ AB→CDE: the left hand side is a superkey, so it is OK
 - □ AC→BDE: the left hand side is a superkey, so it is OK
 - □ B→C: the right hand side is a prime attribute, so it is OK

 - □ C→D:
 - The left hand side is not a superkey
 - The right hand side is not a prime attribute
 - \square So C \rightarrow D violates 3NF
- Therefore, R is not in 3NF

- Schema R(A, B, C, D, E), with F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}
- First, let's derive a minimal basis of F
 - Step 1: Make the FDs non-trivial and decomposed:
 - $F = \{AB \rightarrow C, AB \rightarrow D, AB \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - Step 2: Remove redundant attributes on the left hand side:
 - First, consider AB→C
 - Can we simplify it to $B \rightarrow C$?
 - □ Given F, we have $\{B\}^+ = \{BCDE\}$, so $B \rightarrow C$ is legit
 - $F = \{B \rightarrow C, AB \rightarrow D, AB \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

- Schema R(A, B, C, D, E), with F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}
- First, let's derive a minimal basis of F
 - Step 2: Remove redundant attributes on the left hand side:
 - Previous result: $F = \{B \rightarrow C, AB \rightarrow D, AB \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - Consider AB→D
 - \square Can we simplify it to $B \rightarrow D$?
 - ☐ Given F, we have $\{B\}^+ = \{BCDE\}$, so $B \rightarrow D$ is legit
 - $F = \{B \rightarrow C, B \rightarrow D, AB \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

- Schema R(A, B, C, D, E), with F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}
- First, let's derive a minimal basis of F
 - Step 2: Remove redundant attributes on the left hand side:
 - Previous result: $F = \{B \rightarrow C, B \rightarrow D, AB \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - Consider AB→E
 - \Box Can we simplify it to $B \rightarrow E$?
 - □ Given F, we have $\{B\}^+ = \{BCDE\}$, so $B \rightarrow E$ is legit
 - $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow B, C \rightarrow D\}$

- Schema R(A, B, C, D, E), with $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- First, let's derive a minimal basis of F
 - Step 2: Remove redundant attributes on the left hand side:
 - Previous result: $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow B, C \rightarrow D\}$
 - Consider AC→B
 - \Box Can we simplify it to $C \rightarrow B$?
 - □ Given F, we have $\{C\}^+ = \{CBDE\}$, so $C \rightarrow B$ is legit
 - $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow D\}$

- Schema R(A, B, C, D, E), with F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}
- First, let's derive a minimal basis of F
 - Step 2: Remove redundant attributes on the left hand side:
 - Previous result: $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, AC \rightarrow D, AC \rightarrow E, C \rightarrow D\}$
 - Consider AC→D
 - \square Can we simplify it to $C \rightarrow D$?
 - □ Given F, we have $\{C\}^+ = \{CBDE\}$, so $C \rightarrow D$ is legit
 - $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, C \rightarrow D, AC \rightarrow E\}$
 - Consider AC→E
 - \Box Can we simplify to $C \rightarrow E$
 - ☐ Given F, we have $\{C\}^+ = \{CBDE\}$, so $C \rightarrow E$ is legit
 - $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Schema R(A, B, C, D, E), with $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- First, let's derive a minimal basis of F
 - Step 3: Remove redundant FDs:
 - Previous result: $F = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Let's check the FDs one by one
 - First, consider B→C
 - ☐ If we remove B→C from F, we have {B}+ = {BDE}, which does not contain C
 - \square So B \rightarrow C is not redundant and cannot be removed
 - Second, consider $B \rightarrow D$
 - □ f we remove $B \rightarrow D$ from F, we have $\{B\}^+ = \{BCED\}$, which contains D
 - \supset So B \rightarrow D is redundant and can be removed
 - $F = \{B \rightarrow C, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Schema R(A, B, C, D, E), with $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- First, let's derive a minimal basis of F
 - Step 3: Remove redundant FDs:
 - Previous result: $F = \{B \rightarrow C, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Third, consider $B \rightarrow E$
 - □ If we remove $B \rightarrow E$ from F, we have $\{B\}^+ = \{BCDE\}$, which contain E
 - \square So B \rightarrow E is redundant and can be removed
 - $F = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Fourth, consider C→B
 - If we remove C→B from F, we have {C}⁺ = {CD}, which does not contain B
 - \square So C \rightarrow B is not redundant and cannot be removed

- Schema R(A, B, C, D, E), with $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- First, let's derive a minimal basis of F
 - Step 3: Remove redundant FDs:
 - Previous result: $F = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Fifth, consider $C \rightarrow D$
 - If we remove C→D from F, we have {C}⁺ = {CBE}, which does not contain D
 - \supset So C \rightarrow D is not redundant and cannot be removed
 - Sixth, consider C→E
 - If we remove C→E from F, we have {C}⁺ = {CBDE}, which does not contain D
 - \square So C \rightarrow E is not redundant and cannot be removed
 - Final result: $F = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Schema R(A, B, C, D, E), with $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- First, let's derive a minimal basis of F
 - Minimal basis: $F = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
- Second, combine the FDs whose left hand sides are the same:
 - Result: $F = \{B \rightarrow C, C \rightarrow BDE\}$
- Third, construct a table for each FD
 - Result: R1(B, C), R2(B, C, D, E)
- Fourth, check whether R1 or R2 contains one of the keys of R
 - Keys of R: AB, AC
 - Neither R1 nor R2 contains a key of R
 - So we need to add a table R3(A, B) or R3(A, C)
 - Suppose that choose R3(A, B)
- Final decomposition: R1(B, C), R2(B, C, D, E), R3(A, B)

Question 4(c): Is the Decomposition in BCNF?

- Schema R(A, B, C, D, E), with $F = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
- 3NF decomposition: R1(B, C), R2(B, C, D, E), R3(A, B)
- R1 and R3 have only two attributes, so they must be in BCNF
- Let's check R2
 - First, check the closures on R2

 - \Box {DE}+ = {DE}
 - Other attributes subsets contain B or C, so they are superkeys
 - There is no violation of BCNF
- So the decomposition satisfies BCNF