$Probability_Basics_III$

December 15, 2020

Author: DistilledData

Contents

1	\mathbf{Pro}	bability Basics III	•
	1.1	Mean	
		1.1.1 Sample Mean	
		1.1.2 Population Mean	
		1.1.3 Relation between Sample and Population Mean	
	1.2	Variance	
		1.2.1 Sample Variance	
		1.2.2 Population Variance	
		1.2.3 Relation between Sample and Population Variance	4
	1.3	Properties of Variance	4
		1.3.1 Simplified Form	4
		1.3.2 Mathematical Properties	4
		1.3.3 Non-Negativity	1
		1.3.4 Variance of 0	6
	1.4	Covariance	7
		1.4.1 Sample Covariance	7
		1.4.2 Population Covariance	7
		1.4.3 Properties of Covariance	7
		1.4.4 Simplified Form	7
		1.4.5 Mathematical Properties	7
		1.4.6 Relationship to Variance	8
		1.4.7 Independence	8
		1.4.8 Uncorrelatedness does NOT imply independence	Ć
	1.5	Correlation	Ć
		1.5.1 Sample Correlation	Ć
		1.5.2 Population Correlation	(
	1.6		L(
		1.6.1 Symmetry	(
		1.6.2 Bounds for Sample Correlation	(
		1.6.3 Bounds for Population Correlation	1
			L2
	1.7	Indicator Functions	2
		1.7.1 Indicator Function for Intersection	13

1.7.2	Indicator Function for Union	13
1.7.3	Indicator Function of Complement	14
1.7.4	Powers of Indicator Function	15
1.7.5	Mean, Variance and Covariance of Indicator Function	15

1 Probability Basics III

This notebook continues the discussion of probability from "Advanced_Probability_Basics." In particular, this notebook will focus continue our discussion of expectation with mean, variance and covariance. This notebook will end with a brief discussion of the indicator function.

1.1 Mean

1.1.1 Sample Mean

Given a set of data x_1, \dots, x_n , the sample mean \bar{x} is given by

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

1.1.2 Population Mean

Since the mean for a random variable X is given by $\mathbb{E}[X]$, I will refer the reader to the discussion on expected value and its properties in the "Advanced_Probability_Basics" notebook.

1.1.3 Relation between Sample and Population Mean

If each x_i in a data set corresponds to the outcome of a trial for the random variable X, and if each x_i is independently drawn, then we expect sample mean \bar{x} to approach the theoretical mean $\mathbb{E}[X]$ as we continue to draw more and more samples. In other words,

$$\lim_{n\to\infty} \bar{x} = \mathbb{E}[X]$$

1.2 Variance

1.2.1 Sample Variance

Informally, given a particular set of data, variance measures the spread of the data. More formally, given a set of data x_1, \dots, x_n with mean \bar{x} , the sample variance is

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

1.2.2 Population Variance

We can also measure variance for random variables! Given random variable X with mean $\mathbb{E}[X]$, the variance is defined below

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

1.2.3 Relation between Sample and Population Variance

If the x_i in the data above are an outcome in the outcome space for X such that each x_i are drawn independently, then we find that

$$\lim_{n \to \infty} S^2 = \operatorname{Var}(X)$$

1.3 Properties of Variance

1.3.1 Simplified Form

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Proof

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2 = \mathbb{E}[X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2]$$

= $\mathbb{E}[X^2] - 2\mathbb{E}[X]^2 + \mathbb{E}[X]^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

1.3.2 Mathematical Properties

Assume real-valued random variables X and Y with means μ_X and μ_Y . We will also assume some $a, b \in \mathbb{R}$. Properties 4 and 5 use the definition of covariance that we define further below in this notebook.

- 1. Var(a) = 0
- 2. Var(X + a) = Var(X)
- 3. $Var(aX) = a^2 Var(X)$
- 4. $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y)$
- 5. $\operatorname{Var}(aX bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) 2ab \operatorname{Cov}(X, Y)$

Proof Property 1

$$Var(a) = \mathbb{E}[a^2] - \mathbb{E}[a]^2 = a^2 - a^2 = 0$$

Property 2

$$Var(aX) = \mathbb{E}[(aX)^2] - \mathbb{E}[aX]^2 = \mathbb{E}[(aX)^2] - (a\mathbb{E}[X])^2$$
$$= \mathbb{E}[a^2X^2] - a^2\mathbb{E}[X]^2 = a^2\mathbb{E}[X^2] - a^2\mathbb{E}[X]^2$$
$$= a^2(\mathbb{E}[X^2] - \mathbb{E}[X]^2) = a^2Var(X)$$

Property 3

$$Var(X + a) = \mathbb{E}[(X + a)^{2}] - \mathbb{E}[X + a]^{2} = \mathbb{E}[(X + a)^{2}] - (\mathbb{E}[X] + \mathbb{E}[a])^{2}$$

$$= \mathbb{E}[(X + a)^{2}] - (\mathbb{E}[X] + a)^{2}$$

$$= \mathbb{E}[X^{2} + 2aX + a^{2}] - (\mathbb{E}[X]^{2} + 2a\mathbb{E}[X] + a^{2})$$

$$= \mathbb{E}[X^{2}] + 2a\mathbb{E}[X] + a^{2} - (\mathbb{E}[X]^{2} + 2a\mathbb{E}[X] + a^{2})$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2} = Var(X)$$

Property 4

$$\begin{aligned} \operatorname{Var}(aX + bY) &= \mathbb{E}[(aX + bY)^2] - \mathbb{E}[aX + bY]^2 \\ &= \mathbb{E}[(a^2X^2 + 2abXY + b^2Y^2] - (a\mathbb{E}[X] + b\mathbb{E}[Y])^2 \\ &= a^2\mathbb{E}[X^2] + 2ab\mathbb{E}[XY] + b^2\mathbb{E}[Y^2] - (a^2\mathbb{E}[X]^2 + 2ab\mathbb{E}[X]\mathbb{E}[Y] + b^2\mathbb{E}[Y]^2) \\ &= a^2(\mathbb{E}[X^2] - \mathbb{E}[X]^2) + b^2(\mathbb{E}[Y^2] - \mathbb{E}[Y]^2) + 2ab(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]) \\ &= a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) + 2ab\operatorname{Cov}(X, Y) \end{aligned}$$

Property 5

$$\begin{aligned} \operatorname{Var}(aX - bY) &= \mathbb{E}[(aX - bY)^2] - \mathbb{E}[aX - bY]^2 \\ &= \mathbb{E}[(a^2X^2 - 2abXY + b^2Y^2] - (a\mathbb{E}[X] + b\mathbb{E}[Y])^2 \\ &= a^2\mathbb{E}[X^2] - 2ab\mathbb{E}[XY] + b^2\mathbb{E}[Y^2] - (a^2\mathbb{E}[X]^2 - 2ab\mathbb{E}[X]\mathbb{E}[Y] + b^2\mathbb{E}[Y]^2) \\ &= a^2(\mathbb{E}[X^2] - \mathbb{E}[X]^2) + b^2(\mathbb{E}[Y^2] - \mathbb{E}[Y]^2) - 2ab(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]) \\ &= a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) - 2ab\operatorname{Cov}(X, Y) \end{aligned}$$

1.3.3 Non-Negativity

Given a real-valued random variable X, $Var(X) \ge 0$

Proof
$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Suppose X is a real-valued continuous random variable with density function f_X and mean μ_X .

$$Var(X) = \int_{\mathbb{R}} (x - \mu_X)^2 f_X(x) dx$$

$$\forall x \in \mathbb{R} \ (x - \mu_X)^2 \ge 0 \text{ and } f_X(x) \ge 0 \implies \int_{\mathbb{R}} (X - \mu_X)^2 f_X(x) dx \ge \int_{\mathbb{R}} 0 dx = 0$$

Therefore, the integral and hence Var(X) will also be non-negative

Suppose X is a real-valued discrete random variable with PMF p_X and mean μ_X $Var(X) = \sum_x (X - \mu_X)^2 P(X = x)$

For all x in the sum above, $(X - \mu_X)^2 \ge 0$ and $P(X = x) \ge 0$, and hence $(X - \mu_X)^2 P(X = 0) \ge 0$. Since all terms in the above sum is greater or equal to 0, $\sum_{x} (X - \mu_X)^2 P(X = x) = \text{Var}(X) \ge 0$.

1.3.4 Variance of 0

$$Var(X) = 0 \iff \exists a \text{ such that } P(X = a) = 1$$

Proof \Longrightarrow :

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = 0$$

Suppose X is a continuous random variable with density function f_X and mean μ_X .

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \int_{\mathbb{R}} (x - \mu_X)^2 f_X(x) dx = 0$$

The integral is $0 \iff$ the integrand $(x - \mu_X)^2 f_X(x)$ is uniformly 0. However, there must be some regions where the density f_X is non-zero, otherwise the laws of probability will be violated. $\forall x \in \mathbb{R}$ such that $f_X(x) \neq 0$, $x = \mu_X$ in order for the integrand to be zero. However, since μ_X is a constant, there must only be one such value $x \in \mathbb{R}$ where f_X is non-zero. From our discussion of continuous random variables in the "Advanced_Probability_Basics" notebook, we know that one of the properties for a continuous random variable is $\forall x \in \mathbb{R}$ P(X = x) = 0, which means that we must be working with a discrete random variable.

Suppose X is a discrete random variable with PMF p_X and mean μ_X .

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \sum_{x} (X - \mu_X)^2 P(X = x) = 0$$

In order for the sum to be 0, each term of the sum must be 0. However, like above, the laws of probability would be violated if P(X = x) were uniformly 0, and hence there is some $x \in \mathbb{R}$ where P(X = x). In this instance, in order for the term in the sum to be 0, $X = \mu_X$. Similar to the argument above, μ_X is a constant and hence $\mu_X = x$ for only one $x \in \mathbb{R}$. In order for p_X to be a valid PMF, we require that $p_X(x) = P(X = x) = 1$.

$$\therefore \operatorname{Var}(X) = 0 \implies \exists a \text{ such that } P(X = a) = 1$$

⇐=:

$$\mathbb{E}[X^2] = \sum_{x} P(X=x)x^2 = 1 \cdot a^2 = a^2$$

$$\mathbb{E}[X]^2 = \left(\sum_x P(X=x)x\right)^2 = a^2$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = a^2 - a^2 = 0$$

$$\therefore \exists a \text{ such that } P(X = a) = 1 \implies \text{Var}(X) = 0$$

$$\therefore \operatorname{Var}(X) = 0 \iff \exists a \text{ such that } P(X = a) = 1$$

1.4 Covariance

1.4.1 Sample Covariance

Given data with two covariates X and Y with values $(x_1, y_1), \dots, (x_n, y_n)$, such that the sample mean for X and Y are \bar{x} and \bar{y} , respectively, the covariances for the distribution is

$$Cov(x,y) = \frac{1}{n} \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

1.4.2 Population Covariance

Intuitively, covariance measures how related one random variable is to another. Given two random variables X and Y that form a joint distribution (X,Y), the covariance, often denoted σ_{XY} or $\sigma(X,Y)$ is given by

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

1.4.3 Properties of Covariance

1.4.4 Simplified Form

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Proof:

$$\begin{aligned} \operatorname{Cov}(X,Y) &= \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] \\ &= \mathbb{E}[XY - Y\mathbb{E}[X] - X\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y]] \\ &= \mathbb{E}[XY] - \mathbb{E}[Y\mathbb{E}[X]] - \mathbb{E}[X\mathbb{E}[Y]] + \mathbb{E}[\mathbb{E}[X]\mathbb{E}[Y]] \\ &= \mathbb{E}[XY] - \mathbb{E}[Y]\mathbb{E}[X] - \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[Y] \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \end{aligned}$$

1.4.5 Mathematical Properties

Assume that X, Y, W, V are real-valued random variables, and $a, b, c, d \in \mathbb{R}$

- 1. Cov(X, a) = 0
- 2. Cov(X, Y) = Cov(Y, X)
- 3. Cov(aX, bY) = abCov(X, Y)
- 4. Cov(X + a, Y + b) = Cov(X, Y)
- 5. Cov(aX + bY, cW + dV) = acCov(X, W) + adCov(X, V) + bcCov(Y, W) + bdCov(Y, V)

Proof Property 1

$$Cov(X, a) = \mathbb{E}[X \cdot a] - \mathbb{E}[X]\mathbb{E}[a] = a\mathbb{E}[X] - a\mathbb{E}[X] = 0$$

Property 2

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[YX] - \mathbb{E}[Y]\mathbb{E}[X] = Cov(Y, X)$$

Property 3

$$Cov(aX, bY) = \mathbb{E}[aX \cdot bY] - \mathbb{E}[aX]\mathbb{E}[bY] = ab(\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]) = abCov(X, Y)$$

Property 4

$$\begin{aligned} \operatorname{Cov}(X+a,Y+b) &= \mathbb{E}[(X+a)(Y+b)] - \mathbb{E}[X+a]\mathbb{E}[Y+b] \\ &= \mathbb{E}[XY+aY+bX+ab] - \left(\mathbb{E}[X]\mathbb{E}[Y+b] + \mathbb{E}[a]\mathbb{E}[Y+b]\right) \\ &= \mathbb{E}[XY] + \mathbb{E}[aY] + \mathbb{E}[bX] + \mathbb{E}[ab] - \left(\mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[X]\mathbb{E}[b] + \mathbb{E}[a]\mathbb{E}[Y] + \mathbb{E}[a]\mathbb{E}[b]\right) \\ &= \mathbb{E}[XY] + a\mathbb{E}[Y] + b\mathbb{E}[X] + ab - \left(\mathbb{E}[X]\mathbb{E}[Y] + b\mathbb{E}[X] + a\mathbb{E}[Y] + ab\right) \\ &= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \operatorname{Cov}(X,Y) \end{aligned}$$

Property 5

$$\begin{aligned} \operatorname{Cov}(aX + bY, cW + dV) &= \mathbb{E}[(aX + bY)(cW + dV)] - \mathbb{E}[aX + bY]\mathbb{E}[cW + dV] \\ &= \mathbb{E}[(aX \cdot cW + bY \cdot cW + aX \cdot dV + bY \cdot dV)] - \left(\mathbb{E}[aX] + \mathbb{E}[bY]\right) \left(\mathbb{E}[cW] + \mathbb{E}[dV]\right) \\ &= \mathbb{E}[aX \cdot cW] + \mathbb{E}[bY \cdot cW] + \mathbb{E}[aX \cdot dV] + \mathbb{E}[bY \cdot dV] \\ &- \left(\mathbb{E}[aX]\mathbb{E}[cW] + \mathbb{E}[aX]\mathbb{E}[dV] + \mathbb{E}[bY]\mathbb{E}[cW] + \mathbb{E}[bY]\mathbb{E}[dV]\right) \\ &= \left(\mathbb{E}[aX \cdot cW] - \mathbb{E}[aX]\mathbb{E}[cW]\right) + \left(\mathbb{E}[bY \cdot cW] - \mathbb{E}[bY]\mathbb{E}[cW]\right) \\ &+ \left(\mathbb{E}[aX \cdot dV] - \mathbb{E}[aX]\mathbb{E}[dV]\right) + \left(\mathbb{E}[bY \cdot dV] - \mathbb{E}[bY]\mathbb{E}[dV]\right) \\ &= \left(\mathbb{E}[aX \cdot cW] - \mathbb{E}[aX]\mathbb{E}[cW]\right) + \left(\mathbb{E}[aX \cdot dV] - \mathbb{E}[aX]\mathbb{E}[dV]\right) \\ &+ \left(\mathbb{E}[bY \cdot cW] - \mathbb{E}[bY]\mathbb{E}[cW]\right) + \left(\mathbb{E}[bY \cdot dV] - \mathbb{E}[bY]\mathbb{E}[dV]\right) \\ &= \operatorname{Cov}(aX, cW) + \operatorname{Cov}(aX, dV) + \operatorname{Cov}(bY, cW) + \operatorname{Cov}(bY, dV) \\ &= ac\operatorname{Cov}(X, W) + ad\operatorname{Cov}(X, V) + bc\operatorname{Cov}(Y, W) + bd\operatorname{Cov}(Y, V) \end{aligned}$$

1.4.6 Relationship to Variance

$$Cov(X, X) = Var(X)$$

1.4.7 Independence

If X and Y are independent, then Cov(X,Y) = 0

Proof If X and Y are independent, then
$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$
 and hence $\text{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[X] = \mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[X]\mathbb{E}[X] = 0$

1.4.8 Uncorrelatedness does NOT imply independence

Two random variables X and Y are said to be *uncorrelated* if Cov(X,Y) = 0. The properties of covariance above tell us that if X and Y are independent, then Cov(X,Y) = 0 and hence X and Y are uncorrelated.

One immediate question that follows is whether uncorrelatedness implies independence. The simple answer is **no**. We will explore a counter-example to demonstrate that the implication does not hold.

Consider the random variables X and $Y = X^2$ where X is a uniform distribution in the range [-1,1]. X and Y are both dependent on the random variable X and hence not independent. Now, we need to show that X and Y are uncorrelated.

Since I am deferring a discussion of common probability distributions to a future notebook, I will provide the required information for the computations. Given constants $a, b \in \mathbb{R}$, for a continuous uniform distribution in the range $[a, b], \forall x \in \mathbb{R}$ the PDF is given by

$$f(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

In addition, we use the Law of the Unconscious Statistian briefly discussed in the "Probability Basics II" notebook for the computation of $\mathbb{E}[X^3]$.

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{-1}^{1} \frac{x}{2} dx = \frac{x^2}{4} \Big|_{x=-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0$$

$$\mathbb{E}[X] = \int_{-1}^{1} \frac{x^3}{2} dx = \frac{x^4}{8} \Big|_{x=-1}^{1} = \frac{1}{8} - \frac{1}{8} = 0$$

Now we finally have all the tools we need to compute the covraince between X and Y. We will use the simplified form of the covariance discussed above in order to make our calculations a tad easier.

$$Cov(X, Y) = Cov(X, X^{2})$$

$$= \mathbb{E}[X \cdot X^{2}] - \mathbb{E}[X]\mathbb{E}[X^{2}]$$

$$= \mathbb{E}[X^{3}] - \mathbb{E}[X]\mathbb{E}[X^{2}]$$

$$= 0 - 0 \cdot \mathbb{E}[X^{2}]$$

$$= 0$$

Therefore, we have shown that two random variables can be uncorrelated, but not independent.

1.5 Correlation

1.5.1 Sample Correlation

The sample correlation is called the "Pearson product-moment correlation coefficient," "Pearson correlation coefficient," or "correlation coefficient."

The measure of correlation for sample data $(x_1, y_1), \dots, (x_n, y_n)$ for two covariates x and y with sample means \bar{x} and \bar{y} is given by

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

1.5.2 Population Correlation

Given two random variables X and Y with expected values μ_X and μ_Y and standard deviations σ_X and σ_Y , the population correlation is given by

$$\rho_{X,Y} = \operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$\rho_{X,Y} = \operatorname{Corr}(X,Y) = \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}}$$

1.6 Properties of Correlation

1.6.1 Symmetry

- 1. Corr(X, Y) = Corr(Y, X)
- $2. \ r_{xy} = r_{yx}$

Proof Property 1

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\operatorname{Cov}(Y, X)}{\sigma_Y \sigma_X} = \operatorname{Corr}(Y, X)$$

Property 2

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{\sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2} \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}} = r_{yx}$$

1.6.2 Bounds for Sample Correlation

Given real-valued data set $(x_1, y_1), \dots, (x_n, y_n), -1 \le r_{xy} \le 1$

Proof The above bound is a direct application of the Cauchy-Schwarz Inequality.

Consider the data set $(x_1, y_1), \dots, (x_n, y_n)$ with sample mean (\bar{x}, \bar{y}) and standard deviation (σ_x, σ_y) .

Consider the vectors $\mathbf{x} = [x_1 - \bar{x}, \dots, x_n - \bar{x}]$ and $\mathbf{y} = [y_1 - \bar{y}, \dots, y_n - \bar{y}]$ for the covariates X and Y, respectively.

Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, denote $\langle \mathbf{a}, \mathbf{b} \rangle$ denote the inner product of vectors \mathbf{a} and \mathbf{b} . We will use the following computations in our discussion below.

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$||\mathbf{y}|| = \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle} = \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

The Caucy-Schwarz Inequality states that $\forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^n \ |\langle \mathbf{a}, \mathbf{b} \rangle| \le ||\mathbf{a}|| \cdot ||\mathbf{b}|| \implies -1 \le \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{||\mathbf{a}|| \cdot ||\mathbf{b}||} \le 1$ Plugging in our computations above, we obtain

$$-1 \le r_{xy} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}|| \cdot ||\mathbf{y}||} \le 1$$

1.6.3 Bounds for Population Correlation

Given real-valued random variables X and Y with joint distribution (X,Y),

$$-1 \le \rho_{X,Y} \le 1$$

Proof Lemma: Given real-valued random variables X and Y with joint distribution (X,Y), with means (μ_X,μ_Y) and variances (σ_X^2,σ_Y^2) , the covariance Cov(X,Y) exists.

The above statement is a direct result of the Cauchy-Schwarz Inequality that states $|Cov(X,Y)| \le \sqrt{Var(X)Var(Y)}$. Since we have clear bounds for the value of Cov(X,Y), it definitely exists.

Claim: Given real-valued random variables X and Y with joint distribution (X,Y), with means (μ_X,μ_Y) and variances (σ_X^2,σ_Y^2) $-1 \le \rho_{X,Y} \le 1$

As a side note, I really enjoy the proof below because it highlights the creativity often required to show mathematical properties in an elegant fashion.

Consider two real-valued random variables X and Y with joint distribution (X, Y). Furthermore, X has mean μ_X and variance σ_X^2 , while Y has mean μ_Y and variance σ_Y^2 .

Now, consider the function below for some $t \in \mathbb{R}$.

$$g(t) = \text{Var}(Xt + Y) = \mathbb{E}\left[\left((X - \mu_X)t + (Y - \mu_Y)\right)^2\right]$$

= $\mathbb{E}\left[(X - \mu_X)^2 t^2 + 2t(X - \mu_X)(Y - \mu_Y) + (Y - \mu_Y)^2\right]$
= $\sigma_X^2 t^2 + 2t \text{Cov}(X, Y) + \sigma_Y^2$

In order for us to employ the non-negativity property of the variance, we first need to show that Var(Xt + Y) exists. Since the variances for X and Y exist, we know Cov(X, Y) exists (by our lemma above) and have an exact relation for the variance shown below.

$$Var(Xt + Y) = t^{2}Var(X) + Var(Y) + 2tCov(X, Y)$$

Since variance is non-negative and the above is a quadratic function with respect to t, we know the discrinimant must be greater than or equal to 0. In other words,

$$(2\operatorname{Cov}(X,Y))^{2} - 4\sigma_{X}^{2}\sigma_{Y}^{2} = 4\operatorname{Cov}^{2}(X,Y) - 4\sigma_{X}^{2}\sigma_{Y}^{2} \ge 0$$

$$\implies 1 \le \left(\frac{\operatorname{Cov}(X,Y)}{\sigma_{X}\sigma_{Y}}\right)^{2} = \rho_{X,Y}^{2}$$

$$\therefore -1 \le \rho_{X,Y} \le 1$$

1.6.4 Discussion

The Pearson correlation coefficient plays an important part in the interpretation of linear regression, so I will defere a more detailed discussion of r_{xy}^2 to a future notebook.

Since the correlation between two covariates or random variables is bounded between [-1,1], this can offer a measure of relatedness between two variables that may be easier to interpret than its cousin, the corvariance.

Similar to covariance, if two random variables X and Y, part of a joint distribution (X,Y) with variances Var(X) and Var(Y), are independent, then Corr(X,Y) = 0. However, if two variables are uncorrelated, we **cannot** say whether X and Y are independent. The mathematical discussion to show this fact is nearly identical to the case of covariance.

1.7 Indicator Functions

Given a subset A of set X (i.e. $A \subseteq X$), the indicator function \mathbb{F}_A is a mapping defined below.

$$\mathbb{W}:X\to\{0,1\}$$

$$\mathbb{Y}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

1.7.1 Indicator Function for Intersection

$$\forall A,B \in X,\, \forall \alpha \in X,\, \mathbb{1}_{A\cap B}(\alpha) = \min\{\mathbb{1}_{A}(\alpha),\mathbb{1}_{B}(\alpha)\} = \mathbb{1}_{A}(\alpha)\cdot\mathbb{1}_{B}(\alpha)$$

$$\mathbf{Proof} \quad \forall \alpha \in X, \, \mathbb{1}_{A \cap B}(\alpha) = \begin{cases} 1 & \text{if } \alpha \in A \cap B \\ 0 & \text{if } \alpha \notin A \cap B \end{cases}$$

There are four cases to examine depending on whether a given element $\alpha \in X$ is in A or B.

1. If $\alpha \in A$ and $\alpha \in B$, then $\alpha \in A \cap B$.

$$\mathbb{1}_{A \cap B}(\alpha) = 1$$

$$\min{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)} = \min{1, 1} = 1$$

$$\mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) = 1 \cdot 1 = 1$$

2. If $\alpha \in A$ and $\alpha \notin B$, then $\alpha \notin A \cap B$

$$\begin{split} \mathbb{1}_{A\cap B}(\alpha) &= 0\\ \min\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} &= \min\{1,0\} = 0\\ \\ \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) &= 1 \cdot 0 = 0 \end{split}$$

3. If $\alpha \notin A$ and $\alpha \in B$, then $\alpha \notin A \cap B$

$$\mathbb{1}_{A\cap B}(\alpha) = 0$$

$$\min\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} = \min\{0, 1\} = 0$$

$$\mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) = 0 \cdot 1 = 0$$

4. If $\alpha \notin A$ and $\alpha \notin B$, then $\alpha \notin A \cap B$

$$\mathbb{1}_{A\cap B}(\alpha) = 0$$

$$\min\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} = \min\{0, 0\} = 0$$

$$\mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) = 0 \cdot 0 = 0$$

$$\therefore \forall A, B \subseteq X, \forall \alpha \in X \, \mathbb{1}_{A \cap B}(\alpha) = \min \{ \mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha) \} = \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) \}$$

1.7.2 Indicator Function for Union

$$\forall A,B \in X, \, \forall \alpha \in X, \, \mathbb{1}_{A \cup B}(\alpha) = \max\{\mathbb{1}_{A}(\alpha),\mathbb{1}_{B}(\alpha)\} = \mathbb{1}_{A}(\alpha) + \mathbb{1}_{B}(\alpha) - \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha)$$

Proof $\forall \alpha \in X, \ \mathbb{1}_{A \cup B}(\alpha) = \begin{cases} 1 & \text{if } \alpha \in A \cup B \\ 0 & \text{if } \alpha \notin A \cup B \end{cases}$ There are four cases to examine depending on whether a given element $\alpha \in X$ is in A or B. 1. If $\alpha \in A$ and $\alpha \in B$, then $\alpha \in A \cup B$.

$$\mathbb{1}_{A\cup B}(\alpha) = 1$$

$$\max\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} = \max\{1, 1\} = 1$$

$$\mathbb{1}_{A}(\alpha) + \mathbb{1}_{B}(\alpha) - \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) = 1 + 1 - 1 \cdot 1 = 1$$

2. If $\alpha \in A$ and $\alpha \notin B$, then $\alpha \in A \cup B$

$$\begin{split} \mathbb{1}_{A\cup B}(\alpha) &= 1 \\ \max\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} &= \max\{1,0\} = 1 \\ \mathbb{1}_{A}(\alpha) + \mathbb{1}_{B}(\alpha) - \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) &= 1 + 0 - 1 \cdot 0 = 1 \end{split}$$

3. If $\alpha \notin A$ and $\alpha \in B$, then $\alpha \in A \cup B$

$$\mathbb{1}_{A\cup B}(\alpha) = 1$$

$$\max\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} = \max\{0, 1\} = 1$$

$$\mathbb{1}_{A}(\alpha) + \mathbb{1}_{B}(\alpha) - \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) = 0 + 1 - 0 \cdot 1 = 1$$

4. If $\alpha \notin A$ and $\alpha \notin B$, then $\alpha \notin A \cup B$

$$\begin{split} \mathbb{1}_{A\cup B}(\alpha) &= 0 \\ \max\{\mathbb{1}_{A}(\alpha), \mathbb{1}_{B}(\alpha)\} &= \max\{0, 0\} = 0 \\ \mathbb{1}_{A}(\alpha) + \mathbb{1}_{B}(\alpha) - \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) &= 0 + 0 - 0 \cdot 0 = 0 \end{split}$$

$$\therefore \forall A,B \in X, \, \forall \alpha \in X \, \, \mathbb{1}_{A \cup B}(\alpha) = \max \{\mathbb{1}_{A}(\alpha),\mathbb{1}_{B}(\alpha)\} = \mathbb{1}_{A}(\alpha) + \mathbb{1}_{B}(\alpha) - \mathbb{1}_{A}(\alpha) \cdot \mathbb{1}_{B}(\alpha) = \mathbb{1}_{A}(\alpha) + \mathbb{1}_{A}($$

1.7.3 Indicator Function of Complement

Given an event $A \subseteq \Omega$ and its complement $A^c = \Omega \setminus A$, $\forall \omega \in A^c$, $\mathbb{1}_{A^c} = 1 - \mathbb{1}_A(\omega)$

Proof $\forall \omega \in \Omega$, if $\omega \in A$, then by definition $\omega \notin A$.

$$\mathbb{F}_{A^c}(\omega) = 0$$

$$1 - \mathbb{1}_{A}(\omega) = 1 - 1 = 0$$

Now suppose $\omega \notin A$, which means that $\omega \in A$.

$$\mathbb{F}_{A^c}(\omega) = 1$$

$$1 - \mathbb{1}_A(\omega) = 1 - 0 = 1$$

1.7.4 Powers of Indicator Function

 $\forall n \in \mathbb{R} \setminus 0$, given an event $A \subseteq \Omega$, $\forall \omega \in A$, $(\mathbb{K}_A(\omega))^n = \mathbb{K}_A(\omega)$

Proof For some $\omega \in \Omega$, suppose $\omega \in A$.

$$(\mathbb{F}_A(\omega))^n = 1^n = 1 = \mathbb{F}_A(\omega)$$

Now suppose $\omega \notin A$.

$$\left(\mathbb{K}_A(\omega)\right)^n = 0^n = 0 = \mathbb{K}_A(\omega)$$

1.7.5 Mean, Variance and Covariance of Indicator Function

For the following discussion, assume we are given a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and an event $A \in \mathcal{F}$. The indicator function \mathbb{F}_A is defined below for the probability space.

$$\mathbb{F}_A:\Omega\to\mathbb{R}$$

$$\mathbb{Y}_A(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

Mean $\mathbb{E}[\mathbb{M}_A] = P(A)$

Proof In case you decide to peruse the proof below, I want to make an important distinction between functions p and P in the context of probability spaces. While P is a function that maps a given event $E \in \mathcal{F}$ to [0,1], p is a function that maps a given outcome $\omega \in \Omega$ to [0,1].

Lemma: Given an event
$$A\subseteq\Omega,\ P(A)=\sum_{\omega\in A}p(\omega)$$

Given an element $\omega \in \Omega$ and an event $E_{\omega} = \{\omega\}$, $P(E_{\omega}) = p(\omega)$. $\forall \omega \in A$, we define the disjoint events E_{ω} (the events do not share any outcomes and are thus disjoint) and then employ the σ -additivity axiom of probability.

$$P(A) = P\left(\bigcup_{\omega \in A} E_{\omega}\right) = \sum_{\omega \in A} P(E_{\omega}) = \sum_{\omega \in A} p(\omega)$$

Claim: $\forall \omega \in \Omega, \ \mathbb{E}[\mathbb{1}_A] = P(A)$

We will use the fact that $\forall \omega \in \Omega, \ \omega \in A \text{ or } \omega \notin A \text{ in the proof below.}$

$$\begin{split} \mathbb{E}[\mathbb{1}_A] &= \sum_{\omega \in \Omega} p(\omega) \mathbb{1}_A(\omega) \\ &= \sum_{\omega_i \in A} p(\omega_i) \mathbb{1}_A(\omega_i) + \sum_{\omega_j \notin A} p(\omega_j) \mathbb{1}_A(\omega_j) \\ &= \sum_{\omega_i \in A} p(\omega_i) \cdot 1 + \sum_{\omega_i \notin A} p(\omega_i) \cdot 0 \\ &= \sum_{\omega_i \in A} p(\omega_i) \\ &= P(A) \end{split}$$

Variance $Var(\mathbb{1}_A) = P(A)(1 - P(A))$

Proof

$$\operatorname{Var}(\mathbb{M}_{A}) = \mathbb{E}\left[\left(\mathbb{M}_{A} - \mathbb{E}[\mathbb{M}_{A}]\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\mathbb{M}_{A} - P(A)\right)^{2}\right]$$

$$= \mathbb{E}\left[\mathbb{M}_{A}^{2} - 2P(A)\mathbb{M}_{A} + P(A)^{2}\right]$$

$$= \mathbb{E}\left[\mathbb{M}_{A}^{2}\right] - \mathbb{E}\left[2P(A)\mathbb{M}_{A}\right] + \mathbb{E}\left[P(A)^{2}\right]$$

$$= \mathbb{E}[\mathbb{M}_{A}] - 2P(A)\mathbb{E}[\mathbb{M}_{A}] + P(A)^{2}$$

$$= P(A) - 2P(A)^{2} + P(A)^{2} = P(A) - P(A)^{2} = P(A)(1 - P(A))$$

Covariance Given two events $A, B \subseteq \Omega$, $Cov(1_A, \mathbb{1}_B) = P(A \cap B) - P(A)P(B)$

Proof

$$\operatorname{Cov}(\mathbb{F}_{A},\mathbb{F}_{B}) = \mathbb{E}\left[\left(\mathbb{F}_{A} - \mathbb{E}[\mathbb{F}_{A}]\right)\left(\mathbb{F}_{B} - \mathbb{E}[\mathbb{F}_{B}]\right)\right]$$

$$= \mathbb{E}\left[\left(\mathbb{F}_{A} - P(A)\right)\left(\mathbb{F}_{B} - P(B)\right)\right]$$

$$= \mathbb{E}\left[\mathbb{F}_{A} \cdot \mathbb{F}_{B} - \mathbb{F}_{A}P(B) - P(A)\mathbb{F}_{B} + P(A)P(B)\right]$$

$$= \mathbb{E}\left[\mathbb{F}_{A} \cdot \mathbb{F}_{B}\right] - \mathbb{E}\left[\mathbb{F}_{A}P(B)\right] - \mathbb{E}\left[P(A)\mathbb{F}_{B}\right] + \mathbb{E}\left[P(A)P(B)\right]$$

$$= \mathbb{E}\left[\mathbb{F}_{A\cap B}\right] - P(B)\mathbb{E}\left[\mathbb{F}_{A}\right] - P(A)\mathbb{E}\left[\mathbb{F}_{B}\right] + P(A)P(B)$$

$$= P(A\cap B) - P(A)P(B) - P(A)P(B) + P(A)P(B)$$

$$= P(A\cap B) - P(A)P(B)$$