EPFL

Data Science in Practice

R. Chaouche, Y. Martinson, C. Padovani, J. Triomphe

Context

Introduction

- I. Problem description
- II. Data Management
- III. Network analysis
- IV. Random forest regression
- V. Interpretations

Conclusion

Introduction

- → Virus has been spreading worldwide
 - 4 million confirmed cases
 - Over 265,000 deaths

- → Global Lock down
 - Shut-down of large pans of the economy
 - Long-term implications
- → Tests to target SARS-CoV-2

Understanding the need

→ Health issues

- High transmissibility and more than 265,000 deaths (06 May)
- Risk factors diseases known but poor literature about drug targets*

- → Expensive testing campaigns
- \$100 /genome tests
- \$30 million for testing Switzerland (35 test/1000 habitants)

→ Tests do not have an optimal efficiency yet

Challenges

→ Mapping a network of the major risk factor diseases for COVID-19

→ Create a model to identify which targets of those risk factor diseases are more likely to be associated to COVID-19

Strategy

→ Existing project from Kaggle

Predicted relation between diseases and COVID-19 with a score system

→ Our project

Predicts relation between the targets of those diseases and the COVID-19

Expected outputs and outcomes

→ Accurate network

- Will help scientist figure out gene families.
- Expected communities could focus on the most represented genes.
- → Accurate prediction of targets to pay attention on
 - Will help doctors to avoid additionnal infection due to COVID-19
 - Will help to create more accurate tests

Initial Data Set: Kaggle project (1)

→ CORD-19 Dataset challenge

59,000 scholarly articles, including over 47,000 with full text, about COVID-19, SARS-CoV-2, and related coronaviruses created by The White House and a coalition of leading research groups

→ Mondo Disease DataBase

Aggregates and merges genetic associations curated from both literature and newly-derived loci1 from UK Biobank

→ Open Targets DataBase

Semi-automatically constructed ontology that merges in multiple disease resources to yield a coherent merged ontology

Initial Data Set: Kaggle project (2)

- → Connects diseases
 - With other diseases
 - With drug targets

→ Association scores between diseases and COVID-19

Data Reconstruction

- → From the output of the previous study
 - Combine disease-target association score with disease-COVID-19 association score
 - Leverage the Open Targets Platform

→ Dataset I

- Nodes: Diseases, Genes
- Edges: weighted score of gene on disease
- Goal: Centrality ranking
- Output: Overall Ranking

- → Centralities: Degree, Betweenness, Closeness, PageRank
- → Scoring: Point ranking system for each node
- → Positive: Finds key players in the network, robust
- → Drawbacks: No Covid infos, unexpected outputs

→ Very centered, close to gene locations

- 1. Bone Disease
- 2. Psychiatric Disorder
- 3. Biological process
- 4. Protein measurement
- 5. Diabetes Mellitus

→ Dataset II

Nodes: Diseases, Genes

Edges: weighted score of gene on disease
+ disease to disease

 Goal: Central nodes own network understanding + COVID-19 scoring comparison

1. Overall Ranking

1. Covid Ranking

2. Overall Ranking

2. Covid Ranking

→ Dataset II

- Nodes: Communites
- Edges: Covid score
- Goal: Community influence

Pre-processing

→ Data set

- Self generated
- No pre-processing needed
- 70/30 split for train/test data

→ Grid search model

- Parameters
 - Maximum depth
 - Number of estimators
 - Minimum samples per leaf
- 385 fits

→ Random search model

- Parameters
 - Number of estimators
 - Maximum depth
 - Minimum sample split
 - Minimum samples per leaf
 - Number of features considered when looking for the best split
- 25 fits due to simulation length

→ Grid search

- 22 targets out of 100 compose 95% of the importance
- Lecithin-cholesterol acyltransferase at 12%
- Next 18 between 2 and 8%
- $r^2 = 0.001369837276703811$
 - 35% less than baseline

→ Random search

- 21 targets out of 100 compose 95% of the importance
- Lecithin-cholesterol acyltransferase at 14%
- Next 18 between 2 and 8%
- $r^2 = 0.00048797298004477074$
 - 47% less than baseline

Benefits for the research on the virus

→ Network analysis

- Disease ranking:
 - Bone disease, psychiatric disorder, biological process, protein measurement and diabetes mellitus
- Target ranking:
 - LCAT, SCN9A, SLC18A2, PDGFD and CALD1
- → Random forest regression
 - Target identification helps reduce research time and efforts
 - Reduce costs
 - Speed up the vaccine development

Improving and reusing the model

→ Improvements and limitations

- Based on the hypothesis that genetics and genomics play a role in the impact on COVID-19
- Association score between diseases and COVID-19 built on a partial data-set
- Main limitation relying in the amount of data used: targets and diseases
- Can be run with a larger amount of data to expect better results

Conclusions

- Closest diseases to COVID-19 identified
- Most important target risk-factors identified
- Reduction of the time spent on vaccine development
- Help governments make proportionate decisions

