Refine Search

Search Results -

Terms	Documents
340/995	2743

Database:

US Pre-Grant Publication Full-Text Database
US Patents Full-Text Database
US OCR Full-Text Database
EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

		7 –	
Recall Text	Clear		Interrupt

Search History

DATE: Saturday, June 11, 2005 Printable Copy Create Case

<u>Set</u> <u>Name</u> Query	Hit Count	<u>Set</u> <u>Name</u>
side by side	<u>Count</u>	result set
DB=PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=OR		
<u>L70</u> 340/995	2743	<u>L70</u>
<u>L69</u> 340/991	675	<u>L69</u>
<u>L68</u> 340/990	2249	<u>L68</u>
<u>L67</u> 340.clas.	153254	<u>L67</u>
<u>L66</u> 701/209	1662	<u>L66</u>
<u>L65</u> 701/200	2382	<u>L65</u>
<u>L64</u> 701.clas.	32998	<u>L64</u>
<u>L63</u> 707.clas.	27198	<u>L63</u>
<u>L62</u> 707/200	3741	<u>L62</u>
<u>L61</u> 707/104.1	4204	<u>L61</u>
DB=USPT; $PLUR=YES$; $OP=OR$		
<u>L60</u> 5835854.pn.	1	<u>L60</u>
<u>L59</u> 5864305.pn.	1	<u>L59</u>

DB	=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR		
<u>L58</u>	L55 and (kd-tree or peano with tree)	26	L58
<u>L57</u>	L55 and (sub-areas or sub with areas or subareas)	12	<u>L57</u>
<u>L56</u>	L55 and (sub-areas or sub with areas)	12	<u>L56</u>
<u>L55</u>	L54 and parcels	156	<u>L55</u>
<u>L54</u>	L53 and (geographic or geographical or geographic\$) with (features or characteristics)	1844	<u>L54</u>
<u>L53</u>	map and (database or data with base)	89928	<u>L53</u>
<u>L52</u>	(4692880 4685068 4706198 3597745 4550317 4773026 4737927)![PN]	14	<u>L52</u>
<u>L51</u>	('4888698')[PN]	2	<u>L51</u>
<u>L50</u>	(5754846 5036471 4888698 5170353 5285391 5406493 4630209 5168452 4937572 5592665)![PN]	20	<u>L50</u>
<u>L49</u>	('5974419')[PN]	2	<u>L49</u>
<u>L48</u>	(5974419 5754846 6038559 5848373 5968109 6222483 4888698 6018695 4630209 5953722 5966135)![PN]	22	<u>L48</u>
<u>L47</u>	('6703947')[PN]	4	<u>L47</u>
<u>L46</u>	('4888698')[URPN]	32	<u>L46</u>
<u>L45</u>	127 and 144	5	<u>L45</u>
<u>L44</u>	128 and 140	6390	<u>L44</u>
<u>L43</u>	129 and 140	0	<u>L43</u>
<u>L42</u>	131 and L40	0	<u>L42</u>
<u>L41</u>	131 and 138 and L40	0	<u>L41</u>
<u>L40</u>	L28 not 129 not 130	6390	<u>L40</u>
<u>L39</u>	L38 and (rectangle or rectangular or rectangul\$)	. 1	<u>L39</u>
<u>L38</u>	131 and (index or indices)	9	<u>L38</u>
<u>L37</u>	(5848373 6121924 6421659 2001/0054008 6006160 6026384 5559707 4954958 6487495 6154658 6246417 5636122 6513019 6480783 5543789 6014629 6546334 6708112 6430499 6246958 5777618 6539419 5408597 5944769)![PN]	46	<u>L37</u>
<u>L36</u>	('6691128' '6836781')[PN]	4	<u>L36</u>
<u>L35</u>	('20020169778' '20040054687')[PN]	4	<u>L35</u>
<u>L34</u>	('20020169778' '20040054687')[PN]	4	<u>L34</u>
<u>L33</u>	('20020169778' '20040054687')[PN]	4	<u>L33</u>
<u>L32</u>	('20020169778' '20040054687')[PN]	4	<u>L32</u>
<u>L31</u>	L30 and (sub-areas or sub adj parcels or sub adj segments or sub adj sections)	28	<u>L31</u>
<u>L30</u>	L29 and (parcels or sections or segments)	603	<u>L30</u>
<u>L29</u>	L28 and geographic with (features or characteristics)	909	<u>L29</u>
<u>L28</u>	geographic\$ with (database or data with base)	7299	<u>L28</u>
<u>L27</u>	(6324470 6112153 5513110 5968109 6141454 4888698 5170353 5953722 6035299 5963956 6430497)![PN]	22	<u>L27</u>
<u>L26</u>	('US 5953722A')[PN]	0	<u>L26</u>
<u>L25</u>	(6324470 6112153 5513110 5968109 6141454 4888698 5170353 5953722 6035299 5963956 6430497)![PN]	22	<u>L25</u>

<u>L24</u> ('6591270')[PN]	2 <u>L24</u>
L23 "navigation technologies corporation".as.	49 <u>L'23</u>
L22 "navigational technologies corporation".as.	0 <u>L22</u>
L21 "navigational technologies".as.	0 <u>L21</u>
(5754846 5440730 4888698 5893898 4984168 5285391 5031104	
<u>L.20</u> 5528501 5515284 5168452 5519619 4954959 5513110 5036471 5502640 4926336 4972319 5710915 5537323 5408597)![PN]	40 <u>L20</u>
<u>L19</u> ('6112200')[PN]	2 <u>L19</u>
<u>L18</u> ('US 6184823B')[PN]	0 <u>L18</u>
(6380890 6121924 6374179 4888698 6343301 6268825 5893898 5031104 6256578 6208934 6192312 6233520 4954959 5513110 6216134 6112200 6278939 6118404 4972319 5710915 5408597 5754846 6188957 6038559 6212474 5440730 4984168 5285391 6122593 5953722 5168452 5515284 5528501 5519619 6184823 5036471 5502640 4926336 6199013 6259988 5537323 6128573)![PN]	84 <u>L17</u>
<u>L16</u> ('6473770')[PN]	2 <u>L16</u>
<u>L15</u> ('US 5953722A')[PN]	0 <u>L15</u>
<u>L14</u> (5101357 5848373 4876651 5968109 5867110 5893901 5953722 5966135 6016485 5978730 5781195)![PN]	22 <u>L14</u>
<u>L13</u> ('6073076')[PN]	2 <u>L13</u>
(5508931 5523765 5428545 5058023 4807128 4999783 5422815 6192312 5374933 5912635 5119301 5493294 5334986 5311195 5852791 4796191 5311173 5483456 6167347 5552990 5155688 4964052 5422639 4814989 5359529 6041280)![PN]	52 <u>L12</u>
<u>L11</u> ('6317683')[PN]	2 <u>L11</u>
(5359527 4888698 4937752 5893898 5406493 5031104 5185161 5802492 5815161 5694534 5150295 5617319 4954959 5513110 5412573 5235701 4972319 4970652 4937572 5710915 5592665 5295261 5408597 5754846 5832406 5440730 4086632 4984168 5170353 5285391 5168452 5515284 5528501 5519619 5231584 5036471 5502640 4926336 4630209 5537323)![PN]	80 <u>L10</u>
<u>L9</u> ('6047280' '6184823' '6112200')[PN]	6 <u>L9</u>
<u>L8</u> "jaugilas, john" in.	13 <u>L8</u>
<u>L7</u> "fernekes, robert".in.	24 <u>L7</u>
<u>L6</u> "lampert, david".in.	28 <u>L6</u>
L5 "ashby, richard" in.	49 <u>L5</u>
(5949425 5359527 4888698 4899293 5406493 5357599 5475802 5815161 5694534 5150295 5617319 5631970 5191532 5412573 5235701 5604892 5337404 5455897 5367615 4972319 5467441 6083353 4937572 4970652 5986663 5592665 5519392 5295261 5754846 6006158 6038559 5832406 4086632 5170353 5285391 5499371 5953722 5168452 5517419 5488684 6094677 6081665 5968109 5036471 5528518 5426780 4630209 5731978 5870686	102 <u>L4</u>
5381338 6047280)![PN]	
<u>L3</u> ('6173277' '6144338' '6233520')[PN]	6 <u>L.3</u>
<u>L2</u> 5968109.uref.	40 <u>L2</u>

<u>L1</u> 5968109.pn.

2 <u>L1</u>

END OF SEARCH HISTORY

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

Generate Collection Print

L45: Entry 1 of 5 File: USPT Oct 31, 2000

US-PAT-NO: 6141454

DOCUMENT-IDENTIFIER: US 6141454 A

TITLE: Methods for data compression and decompression using digitized topology data

DATE-ISSUED: October 31, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Seymour; Leslie G. Barrington IL
Daniel; Sam Tempe AZ
Buettner; Kevin Fountain Hill AZ

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Motorola Schaumburg IL 02

APPL-NO: 08/ 742299 [PALM]
DATE FILED: November 1, 1996

INT-CL: $[07] \underline{G06} \underline{K} \underline{9/00}$

US-CL-ISSUED: 382/243; 382/108 US-CL-CURRENT: 382/243; 382/108

FIELD-OF-SEARCH: 382/126, 382/106, 382/108, 382/109, 382/113, 382/114, 382/154, 382/181, 382/190, 382/192, 382/195, 382/197, 382/199, 382/201, 382/202, 382/203,

382/204, 382/209, 382/217, 358/426, 345/348, 345/346, 345/349, 345/355

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

		Search Selected	Search ALL Clear	
	PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
	4729127	March 1988	Chan et al.	382/56
	4845651	July 1989	Aizawa et al.	382/285
	4928313	May 1990	Leonard et al.	382/8
	5058186	October 1991	Miyaoka et al.	382/154
	<u>5216726</u>	June 1993	Heaton	382/56
	5386507	January 1995	Teig et al.	395/161

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO 0 394 517 B1 PUBN-DATE

COUNTRY

US-CL

April 1989

EΡ

OTHER PUBLICATIONS

"An Interpolation and Compaction Technique for Gridded Data" by David L. Cozart, Jun. 27, 1983 Airforce Office of Scientific Research. Grant No. AFOSR-82-0166. Bolling AFB, DC, 20332. No Page #.

ART-UNIT: 271

PRIMARY-EXAMINER: Boudreau; Leo H.

ASSISTANT-EXAMINER: Tadayon; Bijan

ATTY-AGENT-FIRM: Smith; Michael L.

ABSTRACT:

A digitized topology data compression and decompression method provides the digitized topology data of a collection of segments connected to each other via nodes. The method forms at least one composite line representing a chain of connected segments, which reduces an overall number of lines needed to represent the collection of segments and where each composite line has two end points at known coordinates, resulting in compression of the topology data. The method further represents each composite line by its respective end point coordinates. Next, the method enrolls each composite line into one of at least two sets of composite lines for minimizing a number of intersections between each of the composite lines within each of the sets of composite lines. Finally, the method reconstructs the nodes at a decompression time by calculating coordinates of intersecting composite lines belonging to different sets of composite lines.

16 Claims, 32 Drawing figures

Previous Doc Next Doc Go to Doc#

Freeform Search

Database	US OCR Full-Text Database EPO Abstracts Database JPO Abstracts Database Derwent World Patents Index
	IBM Technical Disclosure Bulletins
Term:	
Display:	10 Documents in Display Format: - Starting with Number 1
	10 Documents in <u>Display Format</u> : - Starting with Number 1 1 1 1 1 1 1 1 1

DATE: Saturday, June 11, 2005 Printable Copy Create Case

Set Name side by side	Query	Hit Count Name result set
DB=	=PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR	
<u>L25</u>	(5311173 4796191 5359529 5416712)![PN]	8 <u>L25</u>
<u>L24</u>	('5523765')[PN]	2 <u>L24</u>
<u>L23</u>	(5488563 5566073 5148179 5839080 5721679 5450345 5751576 4682160 4812991 5475594 4224669)![PN]	22 <u>L23</u>
<u>L22</u>	('5995903')[PN]	2 <u>L22</u>
<u>L21</u>	(5754846 5359527 5832406 4888698 4086632 5170353 5285391 5406493 5168452 5815161 5694534 5150295 5617319 5036471 5412573 4630209 4972319 4970652 4937572 5592665 5295261)![PN]	42 <u>L21</u>
<u>L20</u>	('5968109')[PN]	2 <u>L20</u>
<u>L19</u>	(5101357 5848373 4876651 5968109 5867110 5893901 5953722 5966135 6016485 5978730 5781195)![PN]	22 <u>L19</u>
<u>L18</u>	('6073076')[PN]	2 <u>L18</u>
<u>L17</u>	(5488563 5566073 5148179 5839080 5721679 5450345 5751576 4682160 4812991 5475594 4224669)![PN]	22 <u>L17</u>
<u>L16</u>	('5995903')[PN]	2 <u>L16</u>

Freefo	rm Search	Page	e 2 of 2
L15	('5523765')[URPN]	36	<u>L15</u>
	(5311173 4796191 5359529 5416712)![PN]		<u>L14</u>
	('5523765')[PN]		<u>L13</u>
<u>L12</u>	5901171.pn.	3	<u>L12</u>
<u>L11</u>	5897605.pn.	3	<u>L11</u>
<u>L10</u>	6574558.pn.	2	<u>L10</u>
<u>L9</u>	6073076.pn.	2	<u>L9</u>
<u>L8</u>	5995903.pn.	2	<u>L8</u>
<u>L7</u>	5523765.pn.	2	<u>L7</u>
<u>L6</u>	(5893898 6262741 5946615 5796634 5995107 6237092 6161092 6112200 6240360 5945927 5978747 6105067 6073076 6336111 6107961 6188956 6141454 6163749 6296356 6023223 6122593 5966135 5774668 6184823 6192314 6343290 5951694 6167441 5968109 6012098 6092076 5731978 6314114 6108365)![PN]	68	<u>L6</u>
<u>L5</u>	('6587787' '6604046')[PN]	4	<u>L5</u>
<u>L4</u>	6107961.uref.	8	<u>L4</u>
<u>L3</u>	(5922040 5758313)![PN]	4	<u>L3</u>
<u>L2</u>	('6107961')[PN]	2	<u>L2</u>
L1	6107961.pn.	2	Ll

END OF SEARCH HISTORY

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library The Guide

+geographical +<and> +database +<and> +gps parcels <ar

THE ACH DIGITAL LIBRARI

Feedback Report a problem Satisfaction survey

Terms used geographical and database and gps parcels and sub areas and. index

Found 247 of 156,259

Sort results by

Display

results

relevance expanded form

Save results to a Binder ? Search Tips Open results in a new

Try an Advanced Search Try this search in The ACM Guide

Results 1 - 20 of 200

window

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

Relevance scale 🔲 📟 📟

Best 200 shown

 Location awareness and moving objects: Efficient placement of geographical data over broadcast channel for spatial range query under quadratic cost model

Jianting Zhang, Le Gruenwald September 2003 Proceedings of the 3rd ACM international workshop on Data engineering for wireless and mobile access

Full text available: pdf(326.37 KB) Additional Information: full citation, abstract, references, index terms

Data broadcasting is well known for its excellent scalability. Most geographical data, such as weather and traffic, is public information that has a large amount of potential users which makes it very suitable for broadcast. The query response time is greatly affected by the order in which data items are being broadcast. This paper proposes an efficient method to place geographical data items over broadcast channel that reduces access time for spatial range queries on them. This paper then perfo ...

Keywords: cost model, data broadcast, geographical information, mobile computing, optimization, query processing

2 Vision & challenges: Challenge: ubiquitous location-aware computing and the "place lab" initiative

Bill N. Schilit, Anthony LaMarca, Gaetano Borriello, William G. Griswold, David McDonald, Edward Lazowska, Anand Balachandran, Jason Hong, Vaughn Iverson September 2003 Proceedings of the 1st ACM international workshop on Wireless mobile

applications and services on WLAN hotspots Additional Information: full citation, abstract, references, citings, index Full text available: mpdf(835.48 KB)

terms

To be widely adopted, location-aware computing must be as effortless, familiar and rewarding as web search tools like Google. We envisage the global scale Place Lab, consisting of an open software base and a community building activity as a way to bootstrap the broad adoption of location-aware computing. The initiative is a laboratory because it will also be a vehicle for research and instruction, especially in the formative stages. The authors draw on their experiences with campus and building - ...

Keywords: GPS, WiFi, context-aware, location-aware, positioning systems, ubiquitous, wardriving, web services, wireless hotspots

3 Location awareness and moving objects: Probabilistic range queries in moving objects databases with uncertainty

Goce Trajcevski

September 2003 Proceedings of the 3rd ACM international workshop on Data engineering for wireless and mobile access

Full text available: pdf(177.66 KB) Additional Information: full citation, abstract, references, index terms

This work addresses the issue of answering spatio-temporal range queries when there is uncertainty associated with the model of the moving objects. Uncertainty is inherent in Moving Objects Database (MOD) applications and capturing it in the data model has a twofold impact: -- the number of updates when the actual trajectory deviates from its MOD representation; -- the linguistic constructs and the processing algorithms for querying the MOD. The paper presents both spatial and temporal uncertain ...

Keywords: moving objects databases, quantitative probability, uncertainty

4 <u>Mobile computing and applications (MCA): Wireless spatio-semantic transactions on</u> multimedia datasets

James D. Carswell, Keith Gardiner, Marco Neumann

March 2004 Proceedings of the 2004 ACM symposium on Applied computing

Full text available: pdf(192.64 KB) Additional Information: full citation, abstract, references, index terms

Advances in spatially enabled semantic computing can provide situation aware assistance for mobile users. This intelligent and context-aware technology presents the right information at the right time, place and situation by exploiting semantically referenced data for knowledge discovery. The system takes advantage of new metadata standards to enable semantic, user, and device adapted transactions on multimedia datasets. Information accessed in the past and the activities planned by the user, th ...

Keywords: location based services, semantic queries, spatial data transactions

Towards scalable location-aware services: requirements and research issues

Mohamed F. Mokbel, Walid G. Aref, Susanne E. Hambrusch, Sunil Prabhakar

November 2003 Proceedings of the 11th ACM international symposium on Advances in geographic information systems

Full text available: pdf(195.35 KB) Additional Information: full citation, abstract, references, index terms

The emergence of location-aware services calls for new real time spatio-temporal query processing algorithms that deal with large numbers of mobile objects and queries. Online query response is an important characterization of location-aware services. A delay in the answer to a query gives invalid and obsolete results, simply because moving objects can change their locations before the query responds. To handle large numbers of spatio-temporal queries efficiently, we propose the idea of *shari* ...

Keywords: location-aware services, moving objects, spatio-temporal databases

Managing images: Geographic location tags on digital images
Kentaro Toyama, Ron Logan, Asta Roseway
November 2003 Proceedings of the eleventh ACM international conference on
Multimedia

Full text available: ndf(1.97 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

We describe an end-to-end system that capitalizes on geographic location tags for digital

photographs. The World Wide Media eXchange (WWMX) database indexes large collections of image media by several pieces of metadata including timestamp, owner, and critically, location stamp. The location where a photo was shot is important because it says much about its semantic content, while being relatively easy to acquire, index, and search. The process of building, browsing, and writing applications for ...

Keywords: GIS, digital photography, geographic interfaces, image databases

Range and kNN query processing for moving objects in grid model Hae Don Chon, Divyakant Agrawal, Amr El Abbadi August 2003 Mobile Networks and Applications, Volume 8 Issue 4

Full text available: pdf(210.77 KB)

Additional Information: full citation, abstract, references, citings, index terms

With the growing popularity of mobile computing devices and wireless communications, managing dynamically changing information about moving objects is becoming feasible. In this paper, we implement a system that manages such information and propose two query algorithms: a range guery algorithm and a k nearest neighbor algorithm. The range guery algorithm is combined with an efficient filtering technique which determines if a polyline corresponding to the trajectory of a moving object inte ...

Keywords: k nearest neighbors query, moving objects, range query

Aurora: a new model and architecture for data stream management Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, Stan Zdonik

Volume 12 Issue 2 Full text available: pdf(585.97 KB) Additional Information: full citation, abstract, citings, index terms

Abstract. This paper describes the basic processing model and architecture of Aurora, a new system to manage data streams for monitoring applications. Monitoring applications differ substantially from conventional business data processing. The fact that a software system must process and react to continual inputs from many sources (e.g., sensors) rather than from human operators requires one to rethink the fundamental architecture of a DBMS for this application area. In this paper, we present Aur ...

Keywords: Continuous queries, Data stream management, Database triggers, Quality-ofservice, Real-time systems

Queries and aggregation: Cleaning and querying noisy sensors Eiman Elnahrawy, Badri Nath

September 2003 Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications

Full text available: pdf(256.08 KB)

Additional Information: full citation, abstract, references, citings, index terms

Sensor networks have become an important source of data with numerous applications in monitoring various real-life phenomena as well as industrial applications and traffic control. Unfortunately, sensor data is subject to several sources of errors such as noise from external sources, hardware noise, inaccuracies and imprecision, and various environmental effects. Such errors may seriously impact the answer to any query posed to the sensors. In particular, they may yield imprecise or even incorre ...

Keywords: bayesian theory, noisy sensors, query evaluation, statistics, uncertainty, wireless sensor networks

10 <u>Special section on sensor network technology and sensor data managment: The Cougar Project: a work-in-progress report</u>

Alan Demers, Johannes Gehrke, Rajmohan Rajaraman, Niki Trigoni, Yong Yao December 2003 **ACM SIGMOD Record**, Volume 32 Issue 4

Full text available: ndf(255.68 KB) Additional Information: full citation, abstract, references

We present an update on the status of the Cougar Sensor Database Project, in which we are investigating a database approach to sensor networks: Clients "program" the sensors through *queries* in a high-level *declarative* language (such as a variant of SQL). In this paper, we give an overview of our activities on energy-efficient data dissemination and query processing. Due to space constraints, we cannot present a full menu of results; instead, we decided to only whet the reader's app ...

¹¹ Indexing of network constrained moving objects

Full text available: pdf(574.96 KB) Additional Information: full citation, abstract, references, index terms

With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x,y) space, which means that their movements across time may be embedded in the three-dimensional (x,y,t) space. Further, the movements are typically represented as trajectories, sequences of connected line segments. In certain cases, movement is restricted, and specifically in this paper, we aim at ...

Keywords: indexing moving objects, indexing network data, moving object databases, spatiotemporal databases

12 Reception and posters: Location-aware data broadcasting: an application for digital mobile broadcasting in Japan

Kinji Matsumura, Kazuya Usui, Kenjiro Kai, Koichi Ishikawa

November 2003 Proceedings of the eleventh ACM international conference on Multimedia

Full text available: pdf(1.19 MB) Additional Information: full citation, abstract, references, index terms

Terrestrial digital broadcasting that uses the ISDB-T (Integrated Services Digital Broadcasting-Terrestrial) system is scheduled for launch in Japan in December 2003. This system also enables mobile broadcasting service, which will be offered a few years later. We are developing a Location-Aware Data Broadcasting Service as a remarkably new type of interactive mobile broadcasting service. In this paper, we describe the service application, information filtering method, and presentation technique ...

Keywords: BML, GPS, ISDB, data broadcasting, location-aware, mobile reception, terrestrial digital broadcasting

Evaluation: Developing a digital learning environment: an evaluation of design and implementation processes

Leslie Champeny, Christine L. Borgman, Gregory H. Leazer, Anne J. Gilliland-Swetland, Kelli A. Millwood, Leonard D'Avolio, Jason R. Finley, Laura J. Smart, Patricia D. Mautone, Richard E.

Mayer, Richard A. Johnson

June 2004 Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries

Full text available: pdf(216.42 KB) Additional Information: full citation, abstract, references

The Alexandria Digital Earth Prototype (ADEPT) Project (1999--2004) builds upon the Alexandria Digital Library Project (1994--1999) to add functions and services for undergraduate teaching to a digital library of geospatial resources. The 'Digital Learning Environment' (DLE) services are being developed and evaluated iteratively over the course of this research project. In the 2002--2003 academic year, the DLE was implemented during the fall and spring terms in undergraduate geography courses at ...

14 <u>Discrete event simulation experiments and geographic information systems in</u> congestion management planning

Roy Brooks Wiley, Thomas K. Keyser

December 1998 Proceedings of the 30th conference on Winter simulation

Full text available: pdf(109.58 KB) Additional Information: full citation, references, index terms

15 A foundation for representing and querying moving objects

Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S. Jensen, Nikos A. Lorentzos, Markus Schneider, Michalis Vazirgiannis

March 2000 ACM Transactions on Database Systems (TODS), Volume 25 Issue 1

Full text available: pdf(268.05 KB)

Additional Information: full citation, abstract, references, citings, index terms

Spatio-temporal databases deal with geometries changing over time. The goal of our work is to provide a DBMS data model and query language capable of handling such time-dependent geometries, including those changing continuously that describe moving objects. Two fundamental abstractions are moving point and moving region, describing objects for which only the time-dependent position, or position and extent, respectively, are of interest. We ...

Keywords: abstract data types, algebra, moving objects, moving point, moving region, spatio-temporal data types, spatio-temporal databases

16 Object oriented spatial positioning systems

István Kádár, Erik Papp

July 1998 ACM SIGAPL APL Quote Quad , Proceedings of the APL98 conference on Array processing language, Volume 29 Issue 3

Full text available: pdf(954.50 KB) Additional Information: full citation, abstract, references, index terms

The domains of a structured spatial positioning systems are extended to a single 2D or 3D boundary rectangle (MBR - Minimal axes-parallel Boundary Rectangle) domain. We try to encapsulate the domains strictly for the inside and/or the boundary (surface) of the object during our attempts. In ease of such domains it is impossible to use traditional coordinates because of boundary irregularity. Therefore we applied 2D and 3D versions of subrange type data structure for spatial indexing, which are w ...

17 Spatio-temporal data reduction with deterministic error bounds

Hu Cao, Ouri Wolfson, Goce Trajcevski

September 2003 Proceedings of the 2003 joint workshop on Foundations of mobile computing

Full text available: pdf(243.00 KB)

Additional Information: full citation, abstract, references, citings, index terms

A common way of storing spatio-temporalinformation about mobile devices is in the form of a 3D (2D geography + time) trajectory. We argue that when cellular phones and Personal Digital Assistants become location-aware, the size of the spatio-temporal information generated may prohibit efficient processing. We propose to adopt a technique studied in computer graphics, namely line-simplification, as an approximation technique to solve this problem. Line simplification uses a distance function in p ...

Keywords: line simplification, moving objects database

18 Ubiquitous computing (UC): Route profiling: putting context to work. Anthony Harrington, Vinny Cahill

March 2004 Proceedings of the 2004 ACM symposium on Applied computing

Full text available: 📆 pdf(232.60 KB) Additional Information: full citation, abstract, references, index terms

Intelligent Transportation Systems are characterised by a requirement for detailed information on extensive transport networks. This information is typically gathered from sensors deployed throughout the network and is used for management and maintenance operations. In this paper we present the design and prototype implementation of a contextaware route profiling application intended for use by road management authorities in the Republic of Ireland. Our design allows data from a variety of sourc ...

Keywords: ITS, context-aware, ubiquitous computing

19 Modeling location-based services with subject spaces

Hubert Ka Yau Leung, Ioana Burcea, Hans-Amo Jacobsen

October 2003 Proceedings of the 2003 conference of the Centre for Advanced Studies on Collaborative research

Full text available: 📆 pdf(248.48 KB) Additional Information: full citation, abstract, references, index terms

The advance in wireless networks and in positioning systems has led to the development of a new generation of mobile applications: location-based services (LBS). LBS offer highly personalized services to users of mobile devices such as telephones, pagers, and PDAs (mobile users) based on their locations, user profiles and context information. The publish/subscribe paradigm is an information dissemination model for loosely-coupled distributed applications, and is appropriate for the implementatio ...

20 Geographic aspects of digital libraries: Automatic organization for digital photographs with geographic coordinates

Mor Naaman, Yee Jiun Song, Andreas Paepcke, Hector Garcia-Molina June 2004 Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(381.48 KB)

terms We describe PhotoCompas, a system that utilizes the time and location information

embedded in digital photographs to automatically organize a personal photo collection PhotoCompas produces browseable location and event hierarchies for the collection. These hierarchies are created using algorithms that interleave time and location to produce an organization that mimics the way people think about their photo collections. In addition, our algorithm annotates the generated hierarchy with geographica ...

Keywords: GPS, geo-referenced photos, personal photo collection, photo browser

Results 1 - 20 of 200 Result page: 1 2 3 4 5 6 7 8 9 10 next The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library C The Guide

THE ACT DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

HV/VH trees: a new spatial data structure for fast region queries

Full text

<u>Pdf</u> (493 KB)

Source

Annual ACM IEEE Design Automation Conference archive

Proceedings of the 30th international conference on Design automation table of contents

Dallas, Texas, United States

Pages: 43 - 47

Year of Publication: 1993 ISBN:0-89791-577-1

Authors

Glenn G. Lai Don Fussell D. F. Wong

Sponsors EDAC: Electronic Design Automation Consortium

IEEE-CAS: Circuits & Systems

SIGDA: ACM Special Interest Group on Design Automation

Publisher ACM Press New York, NY, USA

Additional Information: references citings index terms collaborative colleagues peer to peer

Tools and Actions:

Discussions Find similar Articles Review this Article

Display Formats: BibTex EndNote Save this Article to a Binder

DOI Bookmark:

Use this link to bookmark this Article: http://doi.acm.org/10.1145/157485.164562

What is a DOI?

↑ REFERENCES

Note: OCR errors may be found in this Reference List extracted from the full text article. ACM has opted to expose the complete List rather than only correct and linked references.

- 1 Carver Mead , Lynn Conway, Introduction to VLSI Systems, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1979
- 2 Gershon Kedem, The quad-CIF tree: A data structure for hierarchical on-line algorithms, Proceedings of the 19th conference on Design automation, p.352-357, January 1982
- 3 J. K. Ousterhout, "Corner stitching: a data-structuring technique for VLSI layout tools," IEEE Trans. on Computer-Aided Design, CAD-3, 1 (January 1984).
- 4 J. B. Rosenberg, "Geographical data structures compared: a study of data structures supporting region queries," IEEE Trans. on Computer-Aided Design, CAD-4, 1 (January 1985).
- 5 R. L. Brown, "Multiple storage quad trees: a simpler faster alternative to bisector list quad trees," IEEE Trans. on Computer-Aided Design, CAD-5, 3 (July 1986).
- 6 L. Weyten and W. de Pauw, "Quad list qua() trees: a geometrical data structure with improved

performance for large region queries," IEEE Trans. on Computer-Aided Design, 8, 3 (March 1.989).

- 7 A. Pitaksanonkul, S. Thanawastien, and C. Lursinsap, "Comparisons of qua() trees and 4-D trees: new results," IEEE Trans. on Computer-Aided Design, 8, 11 (November 1989).
- 8 D. Maxple, M. Smulders, and H. Hegen, "Tailor: A layout system based on trapezoidal corner stitching," IEEE Trans. on Computer-Aided Design, 9, 1 (January 1990).

↑ CITINGS

Narendra V. Shenoy, William Nicholls, An efficient routing database, Proceedings of the 39th conference on Design automation, June 10-14, 2002, New Orleans, Louisiana, USA

↑ INDEX TERMS

Primary Classification:

- B. Hardware
- C→ B.7 INTEGRATED CIRCUITS
 - B.7.1 Types and Design Styles
 - Subjects: VLSI (very large scale integration)

Additional Classification:

- E. Data
- C* E.1 DATA STRUCTURES
 - Subjects: Trees
- F. Theory of Computation
- F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY
 - F.2.2 Nonnumerical Algorithms and Problems
 - Subjects: Sorting and searching
- G. Mathematics of Computing
- G.2 DISCRETE MATHEMATICS
 - G.2.2 Graph Theory
 - Subjects: Trees

General Terms:

Algorithms, Design, Performance

↑ Collaborative Colleagues:

Don

W. C. Athas

Fussell:

John Bunda Emilio

Camahort Loren

Carpenter Alain Fournier

Roy Jenevein Glenn G, Lai **Apostolos** Lerios D. F. Wong Wei Xu

Glenn G.

Lai:

Don Fussell D. F. Wong

D. F. Wong: Jacob Avidan A. Aziz Adnan Aziz Robert Boone <u>Yang Cai</u> Huijing Cao John C. Chan Yao Chang Yao-Wen Chang Youxin Gao Kai-Yuan Chao Mohankumar Chung Chen

Chung-Ping

Hung-Ming

Y. P. Chen

Y.-P. Chen

Yongseok

T.-L. Chou

Tan-Li Chou

C. C. N. Chu

Cheon

Yao-Ping Chen

Chen

Chen

John F. Croix Abe Elfadel Yung-Ming Fang Don Fussell <u>Guruswamy</u> Li-Da Huang M. Korupolu Madhukar R. Korupolu <u>Shankar</u> Krishnamoorthy Glenn G. Lai

Minghorng Lai K. K. Lee

Seokjin Lee

H. W. Leong

Jai-Ming Lin

Chris Chu

J. Conq.

Chris C. N. Chu

Jingsheng Cong

C. L. Liu Hujgun Liu I-Min Liu I.-M. Liu Wai Mak Wai-Kei Mak Thomas R. Mueller S. Muthukrishnan Raimohan Rajaraman Alfred Reich <u>P. S. Sakhamuri</u> Muzhou Shao Naveed Sherwani Richard Y. Sun X. Tang Xiaoping Tang Shashidhar Thakur K.-S. The Khe-Sing The Ruigi Tian

T.-C. Wang Ting-Chi Wang Ting-chi Wang Jacob White Baxter F. Womack C. K. Wong Guang-Ming Wu Hua Xiang F. Y. YOung Hannah H. Yang <u>Hannah Honghua</u> Yang Honghua Yang F. Y. Young Ronggang Yu Li-Pen Yuan Hai Zhou K. Zhu Kai Zhu

♦ Peer to Peer - Readers of this Article have also read:

 Inferring constraints from multiple snapshots ACM Transactions on Graphics (TOG) 12, 4 David Kurlander, Steven Feiner

- Data structures for quadtree approximation and compression Communications of the ACM 28, 9 Hanan Samet
- A hierarchical single-key-lock access control using the Chinese remainder theorem Proceedings of the 1992 ACM/SIGAPP Symposium on Applied computing Kim S. Lee , Huizhu Lu , D. D. Fisher
- The GemStone object database management system Communications of the ACM 34, 10 Paul Butterworth, Allen Otis, Jacob Stein
- Putting innovation to work: adoption strategies for multimedia communication systems Communications of the ACM 34, 12 Ellen Francik, Susan Ehrlich Rudman, Donna Cooper, Stephen Levine

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library The Guide

kd-tree <and> index <and> geographic <and> data

HE AGN DIG TAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used kd tree and index

Found 40,379 of 156,259

Sort results

relevance Display expanded form

Save results to a Binder ? Search Tips

Open results in a new

Try an Advanced Search Try this search in The ACM Guide

results

Results 1 - 20 of 200

window

Result page: 1 2 3 4 5 6 7 8 9 10

next Relevance scale

Best 200 shown

Database session 8: interactive data exploration: Hierarchical graph indexing

James Abello, Yannis Kotidis November 2003 Proceedings of the twelfth international conference on Information and knowledge management

Full text available: 📆 pdf(389,96 KB) — Additional Information: full citation, abstract, references, index terms

Traffic analysis, in the context of Telecommunications or Internet and Web data, is crucial for large network operations. Data in such networks is often provided as large graphs with hundreds of millions of vertices and edges. We propose efficient techniques for managing such graphs at the storage level in order to facilitate its processing at the interface level (visualization). The methods are based on a hierarchical decomposition of the graph edge set that is inherited from a hierarchical deco ...

Keywords: graph, index, navigation, visualization

2 The hB \$^\Pi\$-tree: a multi-attribute index supporting concurrency, recovery and node consolidation

Georgios Evangelidis, David Lomet, Betty Salzberg

February 1997 The VLDB Journal — The International Journal on Very Large Data Bases, Volume 6 Issue 1

Additional Information: full citation, abstract, citings, index terms Full text available: pdf(314.15 KB)

We propose a new multi-attribute index. Our approach combines the hB-tree, a multiattribute index, and the \$\Pi\$-tree, an abstract index which offers efficient concurrency and recovery methods. We call the resulting method the hB \$^\Pi\$-tree. We describe several versions of the hB \$^\Pi\$-tree, each using a different node-splitting and index-term-posting algorithm. We also describe a new node deletion algorithm. We have implemented all the versions of the hB \$^\Pi\$-tree. Our performance results ...

Keywords: Concurrency, Multi-attribute index, Node consolidation, Recovery

3 Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases

Christian Böhm, Stefan Berchtold, Daniel A. Keim September 2001 ACM Computing Surveys (CSUR), Volume 33 Issue 3

Additional Information:

Full text available: pdf(1.39 MB)

full citation, abstract, references, citings, index lerms

During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, and molecular biology. An important research issue in the field of multimedia databases is the content-based retrieval of similar multimedia objects such as images, text, and videos. However, in contrast to searching data in a relational database, a content-based retrieval requires the search of similar objects as a basic functionality of the database system ...

Keywords: Index structures, indexing high-dimensional data, multimedia databases, similarity search

4 Join processing in relational databases

Priti Mishra, Margaret H. Eich

March 1992 ACM Computing Surveys (CSUR), Volume 24 Issue 1

Full text available: pdf(4.42 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms, review

The join operation is one of the fundamental relational database query operations. It facilitates the retrieval of information from two different relations based on a Cartesian product of the two relations. The join is one of the most diffidult operations to implement efficiently, as no predefined links between relations are required to exist (as they are with network and hierarchical systems). The join is the only relational algebra operation that allows the combining of related tuples fro ...

Keywords: database machines, distributed processing, join, parallel processing, relational algebra

Video I: Fast and robust short video clip search using an index structure Junsong Yuan, Ling-Yu Duan, Qi Tian, Changsheng Xu October 2004 Proceedings of the 6th ACM SIGMM international workshop on

In this paper, we present an index structure-based method to fast and robustly search short video clips in large video collections. First we temporally segment a given long video stream into overlapped matching windows, then map extracted features from the windows into points in a high dimensional feature space, and construct index structures for these feature points for querying process. Different from linear-scan similarity matching methods, querying process can be accelerated by spatial pr ...

Keywords: fast query, spatial-temporal feature, video content identification, video similarity search

Locally adaptive dimensionality reduction for indexing large time series databases
Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, Michael Pazzani
June 2002 ACM Transactions on Database Systems (TODS), Volume 27 Issue 2

Full text available: 📆 pdf(1.48 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>

Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data. The most promising solutions involve performing dimensionality reduction on the data, then

indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete ...

Keywords: Dimensionality reduction, indexing, time-series similarity retrieval

The time index+: an incremental access structure for temporal databases Vram Kouramajian, Ibrahim Kamel, Ramez Elmasri, Syed Waheed November 1994 Proceedings of the third international conference on Information and

knowledge management Full text available: ndf(872.15 KB) Additional Information: full citation, references, citings, index terms

Using a sequential index in terrain-aided navigation

Ling Lin, Tore Risch

January 1997 Proceedings of the sixth international conference on Information and knowledge management

Full text available: pdf(1.06 MB) Additional Information: full citation, references, index terms

Keywords: indexing, interpolation, query processing, sequences, terrain-aided navigation

Indexing values of time sequences

Ling Lin, Tore Risch, Martin Sköld, Dushan Badal

November 1996 Proceedings of the fifth international conference on Information and knowledge management

Full text available: 📆 pdf(802.28 KB) Additional Information: full citation, references, citings, index terms

10 Indexing images in Oracle8i

Melliyal Annamalai, Rajiv Chopra, Samuel DeFazio, Susan Mavris

May 2000 ACM SIGMOD Record, Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Volume 29 Issue 2

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(189.09 KB)

Content-based retrieval of images is the ability to retrieve images that are similar to a query image. Oracle8i Visual Information Retrieval provides this facility based on technology licensed from Virage, Inc. This product is built on top of Oracle8i interMedia which enables storage, retrieval and management of images, audios and videos. Images are matched using attributes such as color, texture and structure and efficient contentbased retrieval is provided using indexes of an image index t ...

11 Special issue on spatial database systems: An introduction to spatial database systems

Ralf Hartmut Güting

October 1994 The VLDB Journal — The International Journal on Very Large Data Bases. Volume 3 Issue 4

Additional Information: full citation, abstract, references, citings Full text available: pdf(2,50 MB)

We propose a definition of a spatial database system as a database system that offers spatial data types in its data model and query language, and supports spatial data types in

its implementation, providing at least spatial indexing and spatial join methods. Spatial database systems offer the underlying database technology for geographic information systems and other applications. We survey data modeling, querying, data structures and algorithms, and system architecture for such systems. The em ...

12 Dynamic vp-tree indexing for *n*-nearest neighbor search given pair-wise distances Ada Wai-chee Fu, Polly Mei-shuen Chan, Yin-Ling Cheung, Yiu Sang Moon July 2000 The VLDB Journal — The International Journal on Very Large Data Bases,

Full text available: ndf(232.09 KB) Additional Information: full citation, abstract, citings, index terms

For some multimedia applications, it has been found that domain objects cannot be represented as feature vectors in a multidimensional space. Instead, pair-wise distances between data objects are the only input. To support content-based retrieval, one approach maps each object to a k-dimensional (k-d) point and tries to preserve the distances among the points. Then, existing spatial access index methods such as the R-trees and KD-trees can support fast searching on the resulting

Keywords: Content-based retrieval, Indexing, Nearest neighbor search, Pair-wise distances, Updating

13 Searching in metric spaces

Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, José Luis Marroquín September 2001 ACM Computing Surveys (CSUR), Volume 33 Issue 3

Additional Information: full citation, abstract, references, citings, index Full text available: ndf(916.04 KB) terms

The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather general case where the similarity criterion defines a metric space, instead of the more restricted case of a vector space. Many solutions have been proposed in different areas, in many cases without cros ...

Keywords: Curse of dimensionality, nearest neighbors, similarity searching, vector spaces

14 Partition based spatial-merge join

Jignesh M. Patel, David J. DeWitt

June 1996 ACM SIGMOD Record, Proceedings of the 1996 ACM SIGMOD international conference on Management of data, Volume 25 Issue 2

Full text available: pdf(1.53 MB)

Additional Information: full citation, abstract, references, citings, index

This paper describes PBSM (Partition Based Spatial-Merge), a new algorithm for performing spatial join operation. This algorithm is especially effective when neither of the inputs to the join have an index on the joining attribute. Such a situation could arise if both inputs to the join are intermediate results in a complex query, or in a parallel environment where the inputs must be dynamically redistributed. The PBSM algorithm partitions the inputs into manageable chunks, and joins them using ...

15 A framework for the management of past experiences with time-extended situations Michel Jaczynski

January 1997 Proceedings of the sixth international conference on Information and knowledge management

Full text available: 📆 pdf(1.20 MB) Additional Information: full citation, references, index terms

16 Array-driven simulation of real databases

William S. Keezer

December 1998 Proceedings of the 30th conference on Winter simulation

Full text available: pdf(70.92 KB)

Additional Information: full citation, references, index terms

17 Time series similarity measures (tutorial PM-2)

Dimitrios Gunopulos, Gautam Das

August 2000 Tutorial notes of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining

Full text available: Redf(1.42 MB)

Additional Information: full citation, references, citings, index terms

18 The pyramid-technique: towards breaking the curse of dimensionality

Stefan Berchtold, Christian Böhm, Hans-Peter Kriegal

June 1998 ACM SIGMOD Record, Proceedings of the 1998 ACM SIGMOD international conference on Management of data, Volume 27 Issue 2

Full text available: mpdf(1.56 MB)

Additional Information: full citation, abstract, references, citings, index terms

In this paper, we propose the Pyramid-Technique, a new indexing method for highdimensional data spaces. The Pyramid-Technique is highly adapted to range query processing using the maximum metric Lmax. In contrast to all other index structures, the performance of the Pyramid-Technique does not deteriorate when processing range queries on data of higher dimensionality. The Pyramid-Technique is based on a special partitioning strategy which is optimized for high-dimension ...

19 Multidimensional access methods

Volker Gaede, Oliver Günther

June 1998 ACM Computing Surveys (CSUR), Volume 30 Issue 2

Full text available: pdf(1.05 MB)

Additional Information: full citation, abstract, references, citings, index terms

Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that overlap a given search region). More than ten years of spatial database research have resulted in a great variety of multidimensional access methods to support ...

Keywords: data structures, multidimensional access methods

20 Algorithm and performance evaluation of adaptive multidimensional clustering technique

Shinya Fushimi, Masaru Kitsuregawa, Masaya Nakayama, Hidehiko Tanaka, Tohru Moto-oka May 1985 ACM SIGMOD Record, Proceedings of the 1985 ACM SIGMOD international conference on Management of data, Volume 14 Issue 4

Full text available: pdf(957.72 KB) Additional Information: full citation, references, citings, index terms

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10 next

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc.

<u>Terms of Usage Privacy Policy Code of Ethics Contact Us</u>

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player