Fontes principais

- 1. Cormem T. H.; Leiserson C. E.; Rivest R.: Stein C. Introduction to Algorithms, 3^a edição, MIT Press, 2009
- 2. Análise de algoritmo IME/USP (prof. Paulo Feofiloff) http://www.ime.usp.br/~pf/analise_de_algoritmos

Objetivos da análise e projeto de algoritmos

- > Prova de **corretude** de um algoritmo
- ▷ Análise da quantidade de recursos para executar um algoritmo (complexidade)
- > Projeto de algoritmos utilizando várias técnicas

Definição informal de algoritmos

▶ Algoritmo é um procedimento bem definido para resolver um problema computacional específico.

Algoritmos

▶ Busca e ordenação são exemplos de problemas computacionais clássicos.

Um **problema** é definido por:

- Uma descrição dos parâmetros
- Uma descrição sobre as propriedades que a resposta deve satisfazer

Instância: Conjunto de valores da entrada necessários para que se possa resolver o problema.

Problema 1. Dada uma sequência de n números $\langle a_1, a_2, \cdots, a_n \rangle$, determinar uma permutação $\langle a_1', a_2', \cdots, a_n' \rangle$ da sequência de entrada tal que $a_1 \leq a_2 \leq \cdots \leq a_n$.

Instância: Ordenar o vetor de maneira crescente.

o Entrada: [10, 20, 5, 40, 4]

o Saída: [4, 5, 10, 20, 40]

Problema da ordenação

Qual algoritmo de ordenação é melhor?

- > Depende:
 - o do tamanho da instância a ser ordenada;
 - o tipo de dispositivo é utilizado

Ordenação por inserção

```
Insertion-Sort(A, n)
 1: para j = 2 até n
 2: chave = A[j]
     \triangleright Insere A[j] na sequência
 3:
        ordenada A[1..j-1]
 4: i = j - 1
 5: enquanto i > 0 e A[i] > chave
   A[i+1] = A[i]
 6:
 7: i = i - 1
 8:
 9: A[i+1] = chave
10:
```

Análise de algoritmos

Definição 2. Análise de um algoritmo significa predizer os recursos que um algoritmo requer.

Ex.: memória, comunicação, tempo computacional

Análise de algoritmos

Objetivo geral: é encontrar uma expressão matemática que é simples para escrever e manipular, que mostre as características importantes das necessidades do algoritmo e omita os detalhes desnecessários.

Ordenação por inserção

Insertion-Sort (A, n)		cost	times
1:]	para $j = 2$ até n	c_1	n
2:	chave = A[j]	c_2	n-1
3:	hickspace > Insere $A[j]$ na sequência	0	n-1
	ordenada $A[1j-1]$		
4:	i = j - 1	c_{4}	n-1
5:	enquanto $i > 0$ e $A[i] > chave$	c_{5}	$\sum_{j=2}^{n} t_j$
6:	A[i+1] = A[i]	c_6	$\sum_{i=2}^{n} (t_i - 1)$
7:	i = i - 1	<i>c</i> ₇	$\sum_{j=2}^{n} (t_j - 1)$
8:			y
9:	A[i+1] = chave	c_{8}	n-1
10:			

 t_j é o número de vezes que o teste do while da linha 5 é executado para cada j.

- Tamanho da entrada: n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- ho Melhor caso: sequência ordenada, $t_j=1, \forall j$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

- \triangleright Melhor caso: sequência ordenada, $t_j = 1, \forall j$
- ⊳ A linha 5 é executada 1 vez a cada iteração de 2 até n.

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

- ightharpoonup Melhor caso: sequência ordenada, $t_j=1, \forall j$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$$

$$T(n) = an + b$$

Linear em *n*

ho Pior caso: sequência em ordem decrescente, $t_j=j, \forall j$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1)$$

$$c_6 (\frac{n(n-1)}{2}) + c_7 (\frac{n(n-1)}{2}) + c_8 (n-1)$$

Lembre-se:
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

 \triangleright Pior caso: sequência em ordem decrescente, $t_j=j, \forall j$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1)$$

$$c_6 (\frac{n(n-1)}{2}) + c_7 (\frac{n(n-1)}{2}) + c_8 (n-1)$$

$$T(n) = (c_5 + c_6 + c_7)n^2/2 + (c_1 + c_2 + c_4 + c_8 + c_9 + \frac{c_5 - c_6 - c_7}{2})n$$

$$-(c_2 + c_4 + c_5 + c_8)$$

 \triangleright Pior caso: sequência em ordem decrescente, $t_j=j, \forall j$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (\frac{n(n+1)}{2} - 1)$$

$$c_6 (\frac{n(n-1)}{2}) + c_7 (\frac{n(n-1)}{2}) + c_8 (n-1)$$

$$T(n) = (c_5 + c_6 + c_7) n^2 / 2 + (c_1 + c_2 + c_4 + c_8 + c_9 + \frac{c_5 - c_6 - c_7}{2}) n$$

$$-(c_2 + c_4 + c_5 + c_8)$$

$$T(n) \quad an^2 + bn + c$$

Quadrático em n.

Notação assintótica

Notação ⊖

Notação ⊖

Definição 3. Para uma dada função g(n), denotamos por $\theta(g(n))$ o conjunto de funções:

$$\Theta(g(n)) = \{f(n) : \exists c1, c2 > 0 \ e \ n_0 > 0 \ tal \ que \ c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0 \}$$

Notação ⊖

Em vez de escrever $f(n) \in \Theta(g(n))$ escreveremos $f(n) = \Theta(g(n))$

A notação ⊖ é usada para delimitações exatas de funções.

Exemplo: Notação \varTheta

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

$$\frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2, \forall n \ge 0 \to c_2 = \frac{1}{2}, n_0^{(2)} \ge 0.$$

$$\frac{1}{4}n^2 \le \frac{1}{2}n^2 - 3n \to c_1 = \frac{1}{4}, n_0^{(1)} \ge 12$$

$$n_0 = \max\{0, 12\} = 12$$

Portanto,
$$c_1 = \frac{1}{4}$$
, $c_2 = \frac{1}{2}$ e $n_0 = 12$

Notação O (oh grande)

Notação O (oh grande)

Definição 4. Para uma dada função g(n), denotamos por O(g(n)) o conjunto de funções:

$$O(g(n)) = \{f(n) : \exists c > 0 \ e \ n_0 > 0 \ tal \ que$$

 $f(n) \le cg(n), \forall n \ge n_0\}$

Notação O (oh grande)

A notação O serve para atribuir delimitações superiores para a função g(n).

Novamente escrevemos f(n) = O(g(n)) em vez de $f(n) \in O(g(n))$.

Exemplos: Notação O

- (a) $n = O(n^2)$? Sim, tome c = 1 e $n_0 = 1$
- (b) $\frac{1}{2}n^2 3n = O(n^2)$? Sim , tome $c = \frac{1}{2}$ e $n_0 = 7$

Notação Ω

Notação Ω

Definição 5. Para uma dada função g(n), denotamos por $\Omega(g(n))$ o conjunto de funções:

$$\Omega(g(n)) = \{f(n) : \exists c > 0 \ e \ n_0 > 0 \ tal \ que$$
$$f(n) \ge cg(n), \forall n \ge n_0 \}$$

Exemplos: Notação Ω

A notação O serve para atribuir delimitações inferiores para a função g(n).

$$f(n) = \Omega(g(n))$$

Exemplos: Notação Ω

- (a) $\frac{1}{3}n^2 3n = \Omega(n^2)$? Sim, tome $c = \frac{1}{4}$ e $n_0 = 7$
- (b) $n^2 2n = \Omega(n)$? Sim , tome c = 10 e $n_0 = 8$

Notação o (oh pequeno)

Notação o (oh pequeno)

Para quando há apenas um **limite assintótico superior**, sem permitir f(n) = cg(n).

Utiliza-se a notação o para denotar um limitante superior que é assintoticamente restrito.

Notação o (oh pequeno)

Definição 6. Para uma dada função g(n), denotamos por o(g(n)) o conjunto de funções:

 $o(g(n)) = \{f(n) : \text{ para qualquer constante positiva } c \text{ existe}$ uma constante positiva n_0 tal que $f(n) < cg(n), \forall n \ge n_0 \}$

Intuitivamente, f é dominado por g assintoticamente.

Notação o (oh pequeno)

Por exemplo, $2n = o(n^2)$, mas $2n^2 \neq o(n^2)$

Intuitivamente, na notação o, a função f(n) torna-se insignificante em relação a g(n) quando vai para o infinito. Ou seja,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Notação o (oh pequeno)

Exemplo: $2n = o(n^2)$

$$\lim_{n \to \infty} \frac{2n}{n^2} = \lim_{n \to \infty} \frac{2}{n} = 0$$

Portanto, $2n = o(n^2)$.

Por analogia, a notação ω está para a notação Ω , assim como a notação o está para a notação o.

Então, para quando há apenas um limite assintótico inferior, sem permitir f(n) = cg(n).

Utiliza-se a notação ω para denotar um limitante inferior que não é assintoticamente restrito.

Definição 7. Para uma dada função g(n), denotamos por $\omega(g(n))$ o conjunto de funções:

 $o(g(n)) = \{f(n) : \text{ para qualquer constante positiva } c \text{ existe}$ uma constante positiva n_0 tal que $cg(n) < f(n), \forall n \geq n_0 \}$

Intuitivamente, f domina g assintoticamente.

Por exemplo, $2n^2 = \omega(n)$, mas $2n^2 \neq \omega(n^2)$

Intuitivamente na notação $\omega(n)$ a função f(n) domina cg(n) quando n vai para o infinito. Ou seja, $f(n)=\omega(g(n))$ indica que

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Por exemplo, $n^2/2 = \omega(n)$.

$$\lim_{n \to \infty} \frac{n^2/2}{n} = \lim_{n \to \infty} \frac{n}{2} = \infty$$

Portanto, $n^2/2 = \omega(n)$.

> Transitividade

```
f(n) = \Theta(g(n)) e g(n) = \Theta(h(n)) então f(n) = \Theta(h(n)) f(n) = O(g(n)) e g(n) = O(h(n)) então f(n) = O(h(n)) f(n) = \Omega(g(n)) e g(n) = \Omega(h(n)) então f(n) = \Omega(h(n)) f(n) = o(g(n)) e g(n) = o(h(n)) então f(n) = o(h(n)) f(n) = \omega(g(n)) e g(n) = \omega(h(n)) então f(n) = \omega(h(n))
```

> Reflexividade

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

$$f(n) \neq o(f(n))$$

$$f(n) \neq \omega(f(n))$$

> Simetria

$$f(n) = \Theta(g(n))$$
, se somente se, $g(n) = \Theta(f(n))$

$$f(n) = O(g(n))$$
, se somente se, $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$, se somente se, $g(n) = \omega(f(n))$

Analogia entre notação assintótica e números reais

Analogia entre notação assintótica e números reais

Sejam f, g funções e $a,b \in R$

$$f(n) = O(f(n)) \approx a \le b$$

$$f(n) = \Omega(f(n)) \approx a \ge b$$

$$f(n) = \Theta(f(n)) \approx a = b$$

$$f(n) = o(f(n)) \approx a < b$$

$$f(n) = \omega(f(n)) \approx a > b$$

Tricotomia

Para quaisquer dois números reais a e b, exatamente uma das sequintes sentenças deve ser verdadeira: a < b, a = b ou a > b.

Apesar de quaisquer dois números poderem ser comparados, nem todas as funções são assintoticamente comparáveis. Ou seja, para duas funções f(n) e g(n), pode ser que nem f(n) = O(g(n)) nem $f(n) = \Omega(g(n))$.

Tricotomia

Exemplo: Considere as funções f(n) = n e $g(n) = n^{1+\sin n}$

Neste exemplo, a expressão $1 + \sin n$ varia entre 0 e 2.

$$n^{1+\sin n} = \begin{cases} 1 & \text{se } n \in \{3\pi/2, 7\pi/2, \cdots\} \\ n & \text{se } n \in \{\pi, 3\pi, \cdots\} \\ n^2 & \text{se } n \in \{\pi/2, 5\pi/2, \cdots\} \end{cases}$$

Não se pode afirmar que f(n) = O(g(n)) e nem $f(n) = \Omega(g(n))$.

Notação assintótica em expressões

Como interpretar, por exemplo, $2n^2 + n - 1 = 2n^2 + \Theta(n)$?

Existem uma função $f(n) = \Theta(n)$ tal que

$$2n^2 + n - 1 = 2n^2 + f(n).$$

Neste caso, f(n) = n - 1.

Notação assintótica em expressões

E a expressão $2n^2 + \Theta(n) = \Theta(n^2)$?

Para toda função $f(n) = \Theta(n)$, existe uma função $g(n) = \Theta(n^2)$ tal que $2n^2 + f(n) = g(n)$.

Por exemplo,

$$f(n) = n - \log n + 5 = \Theta(n)$$
 e

$$g(n) = 2n^2 + n - \log n + 5 = \Theta(n^2).$$

Principais classes *O* (oh grande)

Complexidade	Nome	Eficiente
O(1)	Constante	sim
$O(\log n)$	Logaritmica	
O(n)	Linear	
$O(n \log n)$	"Linearítma"	
$O(n^2)$	Quadrática	não
$O(n^3)$	Cúbica	
$O(2^n)$	Exponencial	
O(n!)	Fatorial	

Obrigado