Bayesian modelling using R + STAN = RSTSANhttps://github.com/clobos/Seminario_STAN_UNESP

Cristian Villegas, ESALQ/USP

UNESP Botucatu (29/08/2019)

Stan

Brief intoduction to Stan

Stan is a state-of-the-art platform for statistical modeling and high-performance statistical computation. Thousands of users rely on Stan for statistical modeling, data analysis, and prediction in the social, biological, and physical sciences, engineering, and business.

Brief intoduction to Stan

Users specify log density functions in Stan's probabilistic programming language and get:

- full Bayesian statistical inference with MCMC sampling (NUTS, HMC)
- approximate Bayesian inference with variational inference (ADVI)
- penalized maximum likelihood estimation with optimization (L-BFGS)

Brief intoduction to Stan

Stan's math library provides differentiable probability functions & linear algebra (C++ autodiff). Additional R packages provide expression-based linear modeling, posterior visualization, and leave-one-out cross-validation.

Motivation Example

Figure 1: Scatterplot of length-at-capture (cm) versus age-at-capture (years)

The Von Bertanlanffy growth model (Classical approach)

The Von Bertanlanffy growth model is given by

$$\mathsf{Y}_i = \beta_1 \left(1 - \exp\{-\beta_2 \left(\mathsf{x}_i - \beta_3 \right) \} \right) + \varepsilon_i \qquad \text{with} \quad \varepsilon_i \sim \mathsf{N}(0, \sigma^2),$$

where Y_i is the length-at-capture and x_i is the age-at-capture for the ith fish, respectively. The parameter interpretation of the Von Bertanlanffy growth model is given by

- \triangleright β_1 is the asymptotic (average) length
- \triangleright β_2 is the growth rate coefficient (units are years⁻¹), and
- $ightharpoonup eta_3$ represent the age when (average) length was zero.

The Von Bertanlanffy growth model (Classical approach)

In R code the Von Bertanlanffy growth model is given by

```
LVB<-function(x,beta1, beta2, beta3){
  beta1*(1-exp(-beta2*(x-beta3)))
}</pre>
```

The Von Bertanlanffy growth model (Classical approach)

```
## beta1 beta2 beta3 sigma
## 73.8227693 0.1080882 -3.1551711 3.2475942
```

First Case: Bayesian Inference with Stan code

```
Von_Bertanlanffy_mcmc <- '</pre>
data {
int<lower = 0> N ;
vector[N] x :
vector[N] y ;
parameters {
real<lower = .0> beta1 ;
real<lower = .0> beta2 ;
real beta3 ;
real<lower = .0> sigma ;
model {
y ~ normal(beta1*(1-exp(-beta2*(x-beta3))), sigma);
```

Bayesian Inference: Stan code

```
fit_Von_Bertanlanffy <- stan(</pre>
model_code = Von_Bertanlanffy_mcmc,
data = list(N = nrow(dados.amostra),
            x = dados.amostra\$Age,
            y = dados.amostra$Length),
chain = 3.
iter = 100.
warmup = 10,
thin = 1.
refresh=0)
```

```
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## beta1 25.45 13.46 21.95 0.37 50.18 2.66 2.30
## beta2 2.46 1.88 2.31 0.54 5.70 1.52 17.00
## beta3 0.84 0.30 0.45 0.35 1.91 2.28 1.97
## sigma 10.32 5.17 12.87 0.90 42.48 6.20 1.78
```

```
traceplot(ajuste_Von_Bertanlanffy, pars = parameters,
    inc_warmup = TRUE)
```


Figure 2: Traceplots for the Von Bertanlanffy growth model

mcmc_combo(mcmc_chain,pars = parameters,n_warmup=0)

Figure 3: Posterior distributions and traceplots for the Von Bertanlanffy growth model

mcmc_pairs(mcmc_chain,pars = parameters)

Figure 4: Scatterplots of MCMC draws for the Von Bertanlanffy growth model

Comparing fitted curves based on Classical and Bayesian Inference

Figure 5: Fitted curves based on classical and bayesian Inference for the Von Bertanlanffy growth model

Comparing the parameter estimation based on Classical and Bayesian Inference

```
c(coef(fit_LVB),sigma=sigma(fit_LVB))
                   beta2
##
        beta1
                             beta3
                                         sigma
## 73.8227693 0.1080882 -3.1551711 3.2475942
print(CI theta[,1])
##
        heta1
                   beta2
                              beta3
                                         sigma
```

25.4525584 2.4567863 0.8429762 10.3197269

Second Case: Bayesian Inference with Stan code

```
Von_Bertanlanffy_mcmc <- '</pre>
data {
int<lower = 0> N ;
vector[N] x ;
vector[N] y ;
parameters {
real<lower = .0> beta1 ;
real<lower = .0> beta2 ;
real beta3 ;
real<lower = .0> sigma ;
model {
y ~ normal(beta1*(1-exp(-beta2*(x-beta3))), sigma);
```

Bayesian Inference: Stan code

```
fit_Von_Bertanlanffy <- stan(</pre>
model_code = Von_Bertanlanffy_mcmc,
data = list(N = nrow(dados.amostra),
            x = dados.amostra\$Age,
            y = dados.amostra$Length),
chain = 3.
iter = 11000,
warmup = 1000,
thin = 10.
refresh=0)
```

```
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## beta1 74.09 0.05 2.54 69.63 79.49 2847.90 1
## beta2 0.11 0.00 0.01 0.09 0.13 2885.81 1
## beta3 -3.18 0.01 0.28 -3.76 -2.66 2932.61 1
## sigma 3.25 0.00 0.07 3.11 3.40 3051.84 1
```


Figure 6: Traceplots for the Von Bertanlanffy growth model

mcmc_combo(mcmc_chain,pars = parameters,n_warmup=0)

Figure 7: Posterior distributions and traceplots for the Von Bertanlanffy growth model

mcmc_pairs(mcmc_chain,pars = parameters)

Figure 8: Scatterplots of MCMC draws for the Von Bertanlanffy growth model

Comparing fitted curves based on Classical and Bayesian Inference

Figure 9: Fitted curves based on classical and bayesian Inference for the Von Bertanlanffy growth model

Comparing the parameter estimation based on Classical and Bayesian Inference

```
c(coef(fit_LVB),sigma=sigma(fit_LVB))
                   beta2
##
        beta1
                              beta3
                                         sigma
## 73.8227693 0.1080882 -3.1551711 3.2475942
print(CI theta[,1])
##
        heta1
                   beta2
                              beta3
                                         sigma
```

74.0883836 0.1077937 -3.1803626 3.2509435

Normal distribution without covariates in Stan

 $Y \sim N(\mu, \sigma^2)$. Therefore, $\theta = (\mu, \sigma^2)^{\top}$. Here, we specify the prior distribution for each parameter.

Bayesian Inference: Stan code (specific prior)

```
normal_dist_example<- '
data {
  int<lower=0> N;
 vector[N] y;
parameters {
 real mu;
 real<lower=0> sigma;
model {
 y ~ normal(mu, sigma);
 mu~ normal(0,1e6);
  sigma ~ student t(3,0,1);
```

Bayesian Inference: Stan code (specific prior)

1

mu 17.50 0.04 2.15 13.18 21.80 2970.46 ## sigma 9.82 0.03 1.53 7.40 13.27 2973.68

```
traceplot(normal_dist_fit, pars = parameters,
    inc_warmup = TRUE)
```


Figure 10: Traceplots for the Normal distribution

mcmc_combo(mcmc_chain,pars = parameters,n_warmup=0)

Figure 11: Posterior distributions and traceplots for the Normal distribution

mcmc_pairs(mcmc_chain,pars = parameters)

Figure 12: Scatterplots of MCMC draws for the Normal distribution

Motivation Example

Figure 13: Scatterplot of proportions versus log(Dose)

Logistic Regression

These are the number of adult flour beetles which died following a 5-hour exposure to gaseous carbon disulphide. WBinomial response with logit link function. Here, we do not specify the prior distribution for each parameter.

Bayesian Inference: Stan code

```
logistic_example<- 'data {</pre>
int<lower=0> N; vector[N] x;
int<lower=0> y[N]; int<lower=0> n[N];
parameters {real beta1;real beta2;
transformed parameters {
real exp eta[N]; real<lower=0, upper=1> prob[N];
for (i in 1:N) {exp eta[i] = exp(beta1 + beta2*x[i]);
prob[i] = exp eta[i]/(exp eta[i] + 1);
model {
  y ~ binomial_logit(n, beta1 + beta2 * x);
```

Bayesian Inference: Stan code

```
logistic_fit <- stan(model_code = logistic_example,</pre>
data = list(N = dim(beetleDat)[1],
            n = beetleDat n,
            x = beetleDat$lDose,
            v = beetleDat$x),
                 chain = 3.
                 iter = 11000.
                 warmup = 1000,
                 thin = 10.
                 refresh=0)
```

```
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## beta1 -61.37 0.11 5.25 -72.01 -51.43 2420.70 1
## beta2 34.64 0.06 2.95 29.07 40.58 2422.88 1
```

```
traceplot(logistic_fit, pars = parameters,
    inc_warmup = TRUE)
```


Figure 14: Traceplots for the Logistic regression model

mcmc_combo(mcmc_chain,pars = parameters,n_warmup=0)

Figure 15: Posterior distributions and traceplots for the Logistic regression model

mcmc_pairs(mcmc_chain,pars = parameters)

Figure 16: Scatterplots of MCMC draws for the Logistic Regression model

 $\verb|#https://www.youtube.com/watch?v=uSjsJg8fcwY|$

Fitted curve based on Bayesian Inference

Figure 17: Fitted curves based on classical and bayesian Inference for the Logistic Regression model

Comparing the parameter estimation based on Classical and Bayesian Inference

```
c(beta1=coef(fitLogistic)[1],beta2=coef(fitLogistic)[2])
## beta1.(Intercept)
                            beta2.1Dose
##
           -60.74013
                               34.28593
print(CI theta[,1])
##
       heta1
                 beta2
## -61.37130 34.64121
```

Motivation Example

Figure 18: Scatterplot of stack.loss versus Air.Flow

Normal Linear Model

$$Y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$
 with $\varepsilon_i \sim N(0, \sigma^2)$,

where Y_i is stack loss and x_i is flow of cooling air, respectively. Therefore $\theta = (\beta_1, \beta_2, \sigma^2)^{\top}$. Here, we do not specify the prior distribution for each parameter.

Bayesian Inference: Stan code

```
lm_example<- '
data {
int<lower=0> N;
vector[N] x;
vector[N] y;
parameters {
real beta1;
real beta2;
real<lower=0> sigma;
model {
y ~ normal(beta1+beta2*x, sigma);
```

Bayesian Inference: Stan code

```
parameters<- c(paste('beta',1:2, sep=""), 'sigma')</pre>
CI theta <- summary(lm fit,
                      pars = parameters,
                      probs = c(0.025, 0.975))$summary
print(round(CI_theta,2))
##
          mean se_mean sd 2.5% 97.5% n eff Rhat
## beta1 -43.85 0.12 6.57 -56.83 -30.91 2816.31
## beta2 1.02 0.00 0.11 0.80 1.23 2831.99
```

sigma 4.39 0.01 0.77 3.20 6.14 2976.60

traceplot(lm_fit, pars = parameters, inc_warmup = TRUE)

Figure 19: Traceplots for the Linear Normal

mcmc_combo(mcmc_chain,pars = parameters,n_warmup=0)

Figure 20: Posterior distributions and traceplots for the Linear Normal model

mcmc_pairs(mcmc_chain,pars = parameters)

Figure 21: Scatterplots of MCMC draws for the Linear Normal model

Comparing the parameter estimation based on Classical and Bayesian Inference

```
c(beta1=coef(fit)[1],beta2=coef(fit)[2],
  sigma=sigma(fit))
                        beta2.Air.Flow
## beta1.(Intercept)
                                                     sigma
##
          -44.132025
                               1.020309
                                                 4.098242
print(CI_theta[,1])
        beta1
                   beta2
##
                               sigma
## -43.847882
                1.015100
                            4.393619
```

Comparing fitted curves based on Classical and Bayesian Inference

Figure 22: Fitted curves based on classical and bayesian Inference for the Normal Linear model

More R packages based on Stan

- Bayesian Applied Regression Modeling via Stan: rstanarm r package.
- Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models shinystan r package.

Do I have more time for the shinystan r package?

```
rm(list=ls())
load("modelo_Von_Bertanlanffy.RData")
launch_shinystan(ajuste_Von_Bertanlanffy)
```

References

- ▶ Baptiste Auguie (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra
- ▶ Jonah Gabry and Tristan Mahr (2018). bayesplot: Plotting for Bayesian Models. R package version 1.6.0. https://CRAN.R-project.org/package=bayesplot
- ▶ Jonah Gabry (2018). shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. R package version 2.5.0. https://CRAN.R-project.org/package=shinystan
- ➤ Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.18.2. http://mc-stan.org/.

References

- https://mc-stan.org/docs/2_20/stan-users-guide/index.html
- https://mc-stan.org/docs/2_20/reference-manual/index.html
- https:

//mc-stan.org/docs/2_20/functions-reference/index.html