INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HCU04Hex inverter

Product specification
File under Integrated Circuits, IC06

September 1993

Hex inverter 74HCU04

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HCU04 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The 74HCU04 is a general purpose hex inverter. Each of the six inverters is a single stage

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP.	UNIT
t _{PHL} / t _{PLH}	propagation delay nA to nY	C _L = 15 pF; V _{CC} = 5 V	5	ns
Cı	input capacitance		3.5	pF
C _{PD}	power dissipation capacitance per inverter	note 1	10	pF

Note

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_O)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

FUNCTION TABLE

INPUT	OUTPUT				
nA	nY				
L	Н				
H	L				

Note

H = HIGH voltage level
 L = LOW voltage level

Hex inverter 74HCU04

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A to 6A	data inputs
2, 4, 6, 8, 10, 12	1Y to 6Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

7Z93835

Philips Semiconductors Product specification

Hex inverter 74HCU04

DC CHARACTERISTICS FOR 74HCU

Voltages are referenced to GND (ground = 0 V)

		T _{amb} (°C)							_	TEST CONDITIONS		
SYMBOL		74HCU										
	PARAMETER	+25		-40 to +85		−40 to +125		UNIT	V _{CC} (V)	VI	OTHER	
		min.	typ.	max.	min.	max.	min.	max.				
V _{IH}	HIGH level input voltage	1.7 3.6 4.8	1.4 2.6 3.4		1.7 3.6 4.8		1.7 3.6 4.8		V	2.0 4.5 6.0		
V _{IL}	LOW level input voltage		0.6 1.9 2.6	0.3 0.9 1.2		0.3 0.9 1.2		0.3 0.9 1.2	V	2.0 4.5 6.0		
V _{OH}	HIGH level output voltage	1.8 4.0 5.5	2.0 4.5 6.0		1.8 4.0 5.5		1.8 4.0 5.5		V	2.0 4.5 6.0	V _{IH} or V _{IL}	$-I_O = 20 \mu A$ $-I_O = 20 \mu A$ $-I_O = 20 \mu A$
V _{OH}	HIGH level output voltage	3.98 5.48	4.32 5.81		3.84 5.34		3.7 5.2		V	4.5 6.0	V _{CC} or GND	$-I_{O} = 4.0 \text{ mA}$ $-I_{O} = 5.2 \text{ mA}$
V _{OL}	LOW level output voltage		0 0 0	0.2 0.5 0.5		0.2 0.5 0.5		0.2 0.5 0.5	V	2.0 4.5 6.0	V _{IH} or V _{IL}	$I_O = 20 \mu A$ $I_O = 20 \mu A$ $I_O = 20 \mu A$
V _{OL}	LOW level output voltage		0.15 0.16	0.26 0.26		0.33 0.33		0.4 0.4	V	4.5 6.0	V _{CC} or GND	$I_{O} = 4.0 \text{ mA}$ $I_{O} = 5.2 \text{ mA}$
±I _I	input leakage current			0.1		1.0		1.0	μΑ	6.0	V _{CC} or GND	
I _{CC}	quiescent supply current			2.0		20.0		40.0	μΑ	6.0	V _{CC} or GND	I _O = 0

Hex inverter 74HCU04

AC CHARACTERISTICS FOR 74HCU

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS		
SYMBOL		74HCU									
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(3)	
t _{PHL} / t _{PLH}	propagation delay		19	70		90		105	ns	2.0	Fig.6
	nA to nY		7	14		18		21		4.5	
			6	12		15		18		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.6
			7	15		19		22		4.5	
			6	13		16		19		6.0	

AC WAVEFORMS

Fig.6 Waveforms showing the data input (nA) to data output (nY) propagation delays and the output transition times.

TYPICAL TRANSFER CHARACTERISTICS

Philips Semiconductors Product specification

Hex inverter 74HCU04

Fig.10 Test set-up for measuring forward transconductance $g_{fs} = di_o/dv_i$ at v_o is constant (see also graph Fig.11).

Fig.11 Typical forward transconductance g_{fs} as a function of the supply voltage V_{CC} at $T_{amb} = 25^{\circ}C$.

APPLICATION INFORMATION

Some applications for the "HCU04" are:

- Linear amplifier (see Fig.12)
- In crystal oscillator designs (see Fig.13)
- Astable multivibrator (see Fig.14)

$$Z_L > 10 \text{ k}\Omega; \ A_{OL} = 20 \text{ (typ.)}$$

$$A_u = -\frac{A_{OL}}{1 + \frac{R1}{R2}(1 + A_{OL})};$$

 $V_{O~max~(p\text{-}p)} \approx V_{CC}$ –2 V centered at $^{1}\!\!/_{2}V_{CC}$

 $3 \text{ k}\Omega \leq \text{R1, R2} \leq 1 \text{ M}\Omega$

Typical unity gain bandwidth product is 5 MHz.

C_I (see Fig.15)

 A_{OL} = open loop amplification

 A_u = voltage amplification

Fig.12 HCU04 used as a linear amplifier.

Philips Semiconductors Product specification

Hex inverter 74HCU04

Fig.13 Crystal oscillator configuration.

$f = \frac{1}{T} \approx \frac{1}{2.2\,\text{RC}}$ $R_S \approx 2 \times \text{R.}$ The average I_{CC} (mA) is approximately 3.5 + 0.05 × f (MHz) × C (pF) at $V_{\text{CC}} = 5.0\,\text{V}$ (for more information refer to "DESIGNERS GUIDE"). Fig.14 HCU04 used as an astable multivibrator

OPTIMUM VALUE FOR R₂

FREQUENCY (MHz)	R ₂ (kΩ)	OPTIMUM FOR
3	2 8	minimum required I _{CC} minimum influence due to change in V _{CC}
6	1 4.7	minimum I _{CC} minimum influence by V _{CC}
10	0.5 2	minimum I _{CC} minimum influence by V _{CC}
14	0.5 1	minimum I _{CC} minimum influence by V _{CC}
> 14		ace R ₂ by C ₃ with a typical ue of 35 pF

EXTERNAL COMPONENTS FOR RESONATOR (f < 1 MHz)

FREQUENCY (kHz)	R ₁ (ΜΩ)	R ₂ (kΩ)	C ₁ (pF)	C ₂ (pF)
10 to 15.9	22	220	56	20
16 to 24.9	22	220	56	10
25 to 54.9	22	100	56	10
55 to 129.9	22	100	47	5
130 to 199.9	22	47	47	5
200 to 349.9	10	47	47	5
350 to 600	10	47	47	5

Note

1. All values given are typical and must be used as an initial set-up.

- (3) $V_{CC} = 4.0 \text{ V}.$
- (4) $V_{CC} = 5.0 \text{ V}.$
- (5) $V_{CC} = 6.0 \text{ V}.$

Fig.15 Typical input capacitance as a function of input voltage.

Note to Application information

All values given are typical unless otherwise specified.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".