THE CLAIMS

What is claimed:

8

1	1. An implant for fixation of a bone comprising:		
2	a shaft having a proximal end and a distal end, the shaft defining a longitudinal axis		
3	between the proximal end and the distal end; and		
4	a plurality of blades disposed on at least a portion of the shaft and helically twisted		
5	about the longitudinal axis, the plurality of blades having a proximal end and a distal end;		
6	wherein at least one of the blades has a variable blade width that varies in a direction		
7	along the longitudinal axis.		
1	2. The implant of claim 1, wherein the variable blade width increases in a		
2	direction from the blade proximal end toward the blade distal end.		
1	3. The implant of claim 1, wherein at least one of the blades has a variable		
2	blade height that varies in a direction along the longitudinal axis.		
1	4. The implant of claim 1, wherein at least one of the blades has a substantially	у	
2	constant blade width.		
1	5. The implant of claim 1, wherein the plurality of blades twist about 90° abou	ıt	
2	the longitudinal axis.		
1	6. The implant of claim 3, wherein the variable blade height increases in a		
2	direction from the blade proximal end toward the blade distal end.		
1	7. The implant of claim 3, wherein at least one of the blades has a substantiall	у	
2	constant blade height.		
1	8. The implant of claim 1, wherein the plurality of blades comprises:		
2	at least first and second blades substantially diametrically opposed from one anothe		
3	about the longitudinal axis; and		
4	at least third and fourth blades substantially diametrically opposed from one another		
5	about the longitudinal axis;		
6	wherein at least one of the first and second blades has a variable blade width that		
7	increases in a direction along the longitudinal axis, and at least one of the third and fourth		

blades has a variable blade height that increases in a direction along the longitudinal axis.

1	9. Th	e implant of claim 6, wherein the blade height of the variable blade is			
2	substantially zero at the blade proximal end.				
1	10. Th	e implant of claim 9, wherein:			
2	at least on	e of the first and second blades has a substantially constant blade height;			
3	and				
4	at least on	e of the third and fourth blades has a substantially constant blade width.			
1	11. Th	e implant of claim 10, wherein:			
2	the first ar	the first and second blades have a variable blade width that increases in a direction			
3	along the longitudinal axis, and a substantially constant blade height;				
4	the third blade has a blade height that increases in a direction along the longitudinal				
5	axis, and a substantially constant blade width; and				
6	the fourth blade has a substantially constant blade height, and a substantially				
7	constant blade wie	constant blade width.			
1	12. Th	e implant of claim 11, wherein the first and second blades are out of phase			
2	with the third and	fourth blades by about 90° about the longitudinal axis.			
1	13. Th	e implant of claim 1, wherein the implant is configured and dimensioned			
2	for implantation in	for implantation in a femoral head.			
1	14. Th	e implant of claim 1, further comprising a cannulation extending from the			
2	proximal end to the distal end, the cannulation configured and dimensioned to receive a				
3	guide wire.				
1	15. Th	e implant of claim 1, wherein the distal end is configured and dimensioned			
2	for attachment to an insertion device.				
1	16. An	implant for fixation of a bone comprising:			
2	a shaft def	a shaft defining a longitudinal axis of the implant, the shaft including a bladed			
3	portion and a non-bladed portion, the bladed portion and the non-bladed portion each				
4	having a diameter;				
5	a plurality	a plurality of blades disposed on the bladed portion and helically twisted about the			
6	longitudinal axis,	longitudinal axis, wherein the maximum diameter of the bladed portion is smaller than the			
7	maximum diamet	maximum diameter of the non-bladed portion.			

- 1 17. The implant of claim 16, wherein the non-bladed portion includes a tapered 2 region located substantially adjacent the bladed portion, wherein the tapered region defines 3 a tapered region diameter that decreases in a direction toward the bladed portion.
- 1 18. The implant of claim 17, wherein the tapered region is configured and 2 dimensioned to provide even stress distribution over the tapered region.
- 1 19. The implant of claim 17, wherein the tapered region is concave.
- 1 20. The implant of claim 17, wherein the tapered region provides uniform 2 bending of the implant.
- 1 21. The implant of claim 17, wherein the tapered region further defines a neck 2 diameter at a point substantially adjacent the blades, wherein the neck diameter is smaller 3 than the blade diameter.
- 1 22. The implant of claim 17, wherein the implant has proximal and distal ends 2 located on the longitudinal axis, and the bladed portion is located substantially adjacent one 3 of the ends.
- 1 23. The implant of claim 16, wherein the implant is configured and dimensioned 2 for implantation in a femoral head.
 - 24. The implant of claim 16, further comprising a cannulation extending substantially along the longitudinal axis of the shaft, the cannulation configured and dimensioned to receive a guide wire.
- 1 25. An implant for fixation of a bone comprising:

1

2

3

1

2

- a shaft having a proximal end and a distal end, the shaft defining a longitudinal axis between the proximal end and the distal end; and
- a plurality of blades disposed on at least a portion of the shaft and helically twisted about the longitudinal axis, the plurality of blades having a proximal end and a distal end;
- wherein at least one of the blades has a variable blade height that varies in a direction along the longitudinal axis.
 - 26. The implant of claim 25, wherein the variable blade height increases in a direction from the blade proximal end toward the blade distal end.

- 1 27. The implant of claim 26, wherein the variable blade height is substantially 2 zero at the blade proximal end.
- 1 28. The implant of claim 25, wherein at least one of the blades has a substantially constant blade height.
- 1 29. The implant of claim 25, wherein at least one of the blades has a variable 2 blade width that varies in a direction along the longitudinal axis.
- 1 30. The implant of claim 29, wherein the variable blade width increases in a direction from the blade proximal end toward the blade distal end.
- 1 31. The implant of claim 25, wherein at least one of the blades has a substantially constant blade width.
- 1 32. The implant of claim 25, wherein the plurality of blades twist about 90° about the longitudinal axis.
- 1 33. The implant of claim 25, wherein the implant is configured and dimensioned 2 for implantation in a femoral head.
- 1 34. The implant of claim 25, further comprising a cannulation extending from 2 the proximal end to the distal end, the cannulation configured and dimensioned to receive a 3 guide wire.
- 1 35. The implant of claim 25, wherein the distal end is configured and 2 dimensioned for attachment to an insertion device.