

BABD

Masters in Business Analytics and Big Data

Introduction to NN Construction

Mauricio Soto - mauricioabel.soto@polimi.it

Contents

- ► Fast Forward
- Convolutional NN
- ► RNN Long Short Term Memory networks (LSTM)

Fast Forward

Convolutional Neural Neural

Filters - Convolutional Layer

Pooling Layer

Dropout Layer

RNN: Recurrent Neural Networks

Given a sequence (of words): $x = x_1x_2 \cdots x_t$

LSTM: Long Short Term Memory networks

- 1. We keep a cell state across the sequence C_t
- 2. After each step t we:
 - ightharpoonup forget something: f_t
 - ightharpoonup include something : i_t
 - ightharpoonup update the cell state: C_t
 - output something to the next step: h_t

LSTM: Keep Global state

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - forget something: f_t
 - ightharpoonup include something : i_t
 - ightharpoonup update the cell state: C_t
 - output something to the next step: h_t

LSTM: forget gate state

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - **b** forget something: f_t
 - ightharpoonup include something : i_t
 - ightharpoonup update the cell state: C_t
 - output something to the next step: h_t

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

LSTM: input gate state

- 1. We keep a cell state across the sequence C_t
- 2. After each step t we:
 - forget something: f_t
 - ightharpoonup include something : i_t
 - ightharpoonup update the cell state: C_t
 - output something to the next step: h_t

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM: update cell state

- 1. We keep a cell state across the sequence C_t
- 2. After each step *t* we:
 - forget something: f_t
 - ightharpoonup include something : i_t
 - update the cell state: C_t
 - output something to the next step: h_t

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM: cell output

- 1. We keep a cell state across the sequence C_t
- 2. After each step t we:
 - ightharpoonup forget something: f_t
 - ightharpoonup include something : i_t
 - ightharpoonup update the cell state: C_t
 - **output** something to the next step: h_t

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

Generating text

- 1. From the text, we create a training set form by couples $([x_1, \ldots, x_t], y_t)$ where:
 - $[x_1,\ldots,x_t]$ is a sequence of t elements (letters, words)
 - \triangleright y_t is the element to be predicted
- 2. From a seed sequence we sequentially generate the text consider as input the last sequence.