# **Laplace Transforms of State Space Models**

The Laplace transform can be used to convert a differential equation into a transfer function. It can also be used to convert a state space model into a transfer function. In this lecture we demonstrate how this is done and we give an example.

The Laplace transform of a vector  $\mathbf{V}(t)$  is a vector  $\mathbf{V}(s)$ . The elements of  $\mathbf{V}(s)$  are the Laplace transforms of the corresponding elements of the vector  $\mathbf{v}(t)$ .

For array

$$\mathbf{v}(t) = \begin{bmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_n(t) \end{bmatrix}$$

The transformed variables are

$$\mathcal{L}\mathbf{v}(t) = \begin{bmatrix} \mathcal{L}v_1(t) \\ \mathcal{L}v_2(t) \\ \vdots \\ \mathcal{L}v_n(t) \end{bmatrix} = \begin{bmatrix} V_1(s) \\ V_2(s) \\ \vdots \\ V_n(s) \end{bmatrix} = \mathbf{V}(s)$$

For example, if<sup>1</sup>

$$\mathbf{v}(t) = \begin{bmatrix} \epsilon(t) \\ e^{-at} \\ \sin bt \end{bmatrix}$$

then

$$\mathbf{V}(s) = \begin{bmatrix} 1/s \\ 1/s + a \\ b/(s^2 + b^2) \end{bmatrix}$$

Let us now transform the generalized form of the state equations obtained in the last lecture.

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{v}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Applying the Laplace transform to both sides of this matrix equation gives the transform equations

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$
  
 $\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s)$ 

where  $\mathbf{x}(0)$  is the vector of initial conditions vector of the states;  $\mathbf{X}(s)$  is the state transform vector;  $\mathbf{U}(s)$  input transform vector;  $\mathbf{Y}(s)$  is output transform vector.

### **Transformed State-Equations for Example 1 from Section**

For the system in the example the state vector is defined as  $\mathbf{x} = [v_{31}, i_1]^T$ , the input current is u, and the output variables are all the currents and voltages in the circuit  $\mathbf{y} = [v_{31}, i_1, v_{32}, v_{21}, i_2]^T$ .

The transformed state space model is therefore:

$$s \begin{bmatrix} V_{31} \\ I_1 \end{bmatrix} - \begin{bmatrix} v_{31}(0) \\ i_1(0) \end{bmatrix} = \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix} \begin{bmatrix} V_{31} \\ I_1 \end{bmatrix} + \begin{bmatrix} 1/C \\ 0 \end{bmatrix} [U]$$
$$\begin{bmatrix} V_{31} \\ I_1 \\ V_{32} \\ V_{21} \\ I_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -R \\ 0 & R \\ 0 & -1 \end{bmatrix} \begin{bmatrix} V_{31} \\ I_1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} [U].$$

# **Laplace Transform from State-Space Models**

Substituting X from (1) into (2) gives

$$\mathbf{Y} = \left[ \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B}\mathbf{U} + \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{x}(0) \right] + \mathbf{D}\mathbf{U}$$

which after gathering terms and simplifying gives

$$\mathbf{Y} = \left[ \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D} \right] \mathbf{U} + \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{x}(0)$$

When the initial conditions of the state-variables are all zero, this reduces to the transfer matrix model

$$\mathbf{Y} = \left[ \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D} \right] \mathbf{U}$$

The matrix  $\mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D}$  is the system transfer matrix.

The element of the i-th row and j-th column is the transfer function that relates the i-th output transform  $Y_i$  to the j-th input transform  $U_i$ .

For a single-input, single-output (SISO) system, the system transfer matrix reduces to a single element transfer function.

The matrix  $[s\mathbf{I} - \mathbf{A}]^{-1}$  is very important.

It is known as the resolvent matrix of the system.

It may be written as

$$[s\mathbf{I} - \mathbf{A}]^{-1} = \frac{\operatorname{adj} [s\mathbf{I} - \mathbf{A}]}{\det [s\mathbf{I} - \mathbf{A}]}.$$

### Resolvent matrix for the example

For the system in the example, the resolvent matrix is developed as

$$\mathbf{A} = \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix}$$

$$s\mathbf{I} - \mathbf{A} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & -1/C \\ 1/L & -R/L \end{bmatrix} = \begin{bmatrix} s & +1/C \\ -1/L & s + R/L \end{bmatrix}$$

$$[s\mathbf{I} - \mathbf{A}]^{-1} = \frac{\begin{bmatrix} s + R/L & -1/C \\ +1/L & s \end{bmatrix}}{s(s + R/L) + 1/(LC)} = \frac{\begin{bmatrix} s + R/L & -1/C \\ +1/L & s \end{bmatrix}}{s^2 + (R/L)s + 1/(LC)}$$

When  $[s\mathbf{I} - \mathbf{A}]^{-1}$  has been obtained, then the system transfer function is easily obtained through  $\mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D}$ . For the system in the example, when all outputs are measured, the system transfer matrix is:

## Transfer matrix for example

• \left[

0

0

0

0

\right] \end{equation\*}\$\$

 $\$  \begin{equation\*} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & -R \\ 0 & R \\ 0 & -1 \end{array}\right]  $\left(\frac{1}{C}+\frac{1}{C}\right) + \frac{1}{LC} \right) = \frac{1}{LC} \left(\frac{1}{C}+\frac{1}{LC}\right) + \frac{1}{LC} \left(\frac{1}{LC}+\frac{1}{LC}\right) + \frac{1}{LC} \left(\frac{1}{LC}+\frac{1}{LC}\right$ 

• \left[

0 0

0

0

\right]\end{equation\*}\$\$

$$= \frac{1}{s^2 + (R/L)s + 1/(LC)} \begin{bmatrix} (1/C)s + R/(LC) \\ 1/(LC) \\ (1/C)s \\ R/(LC) \\ -1/(LC) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{(1/C)s + R/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ \frac{1/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ \frac{(1/C)s}{s^2 + (R/L)s + 1/(LC)} \\ \frac{R/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ -\frac{1/(LC)}{s^2 + (R/L)s + 1/(LC)} + 1 \end{bmatrix}$$

$$= \frac{1}{s^2 + (R/L)s + 1/(LC)} \begin{bmatrix} (1/C)s + R/(LC) \\ 1/(LC) \\ (1/C)s \\ R/(LC) \\ -1/(LC) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{(1/C)s + R/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ \frac{1/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ \frac{(1/C)s}{s^2 + (R/L)s + 1/(LC)} \\ \frac{R/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ - \frac{1/(LC)}{s^2 + (R/L)s + 1/(LC)} + 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{(1/C)s + 1/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ \frac{1/(LC)}{s^2 + (R/L)s + 1/(LC)} \\ \frac{(1/C)s}{s^2 + (R/L)s + 1/(LC)} \\ \frac{R/(LC)}{s^2 + (R/L)s + 1/(LC)} + 1 \end{bmatrix}$$

In matrix form, when combined with the input and output transforms we have the situation illustrated below. Each transfer function relates the corresponding output transform to the input transform. For example

$$V_{31} = \frac{(1/C)s + R/(LC)}{s^2 + (R/L)s + 1/(LC)} U.$$

#### **Transform Equations for Example**

$$\mathbf{Y}(s) = \left[ \mathbf{C}[s\mathbf{I} - \mathbf{A}]^{-1}\mathbf{B} + \mathbf{D} \right] \mathbf{U}(s)$$

$$\mathbf{Y}(s) = \mathbf{G}(s)\mathbf{U}(s)$$

$$\begin{bmatrix} V_{31}(s) \\ I_{1}(s) \\ V_{32}(s) \\ V_{21}(s) \\ I_{2}(s) \end{bmatrix} = \begin{bmatrix} \frac{(1/C)s + R/(LC)}{s^{2} + (R/L)s + 1/(LC)} \\ \frac{1/(LC)}{s^{2} + (R/L)s + 1/(LC)} \\ \frac{(1/C)s}{s^{2} + (R/L)s + 1/(LC)} \\ \frac{R/(LC)}{s^{2} + (R/L)s + 1/(LC)} + 1 \end{bmatrix} \mathbf{U}(s).$$

Note that the denominator is the same for each transfer function, and that the order of the numerator is less than the denominator except for one case, for which

$$I_2 = \left(-\frac{1/(LC)}{s^2 + (R/L)s + 1/(LC)} + 1\right)U$$

$$= \frac{-1/LC + s^2 + (R/L)s + 1/(LC)}{s^2 + (R/L)s + 1/(LC)}U$$

$$= \frac{s^2 + (R/L)s}{s^2 + (R/L)s + 1/(LC)}U$$

Replacing s by  $\frac{d}{dt}$  gives the corresponding differential equations relating the dependant variable to the input.

## Converting SS to TF in Matlab

Continuing example from Section 7.1 (../1/intro2ss):

In [43]:

clear all
format compact

Define some values for capacitance, inductance and resitance

In [44]:

$$Cap = 1; L = 1; R = 1;$$

Define state space model and label states inputs and outputs

In [45]:

```
A = [0 - 1/Cap; 1/L - R/L];
B = [1/Cap; 0];
C = [1 \ 0; \ 0 \ 1; \ 1 \ -R; \ 0 \ R; \ 0 \ -1];
D = [0; 0; 0; 0; 1];
circ_ss = ss(A, B, C, D, ...
'statename',{'v31' 'i1'}, ...
'inputname', 'u', ...
'outputname', {'v31' 'i1' 'v32' 'v21' 'i2'});
```

#### **Show model**

```
In [46]:
circ_ss
circ_ss =
  A =
        v31
              i1
   v31
         0
              -1
         1
              -1
   i1
  B =
        u
   v31
        1
   i1
        0
  C =
        v31
              i1
   v31
          1
               0
   i1
          0
               1
   v32
              -1
          1
   v21
          0
              1
   i2
          0
              -1
  D =
        u
   v31
   i1
        0
   v32 0
   v21 0
   i2
        1
```

Continuous-time state-space model.

# Plot a step response

In [47]:

step(circ\_ss)



#### Convert to transfer functiom matrix

The function tf(ss\_model) returns a vector of transfer functions.

In [48]:

circ\_tf =

From input "u" to output...

Continuous-time transfer function.

#### **Determine poles and zeros**

```
In [49]:
```

```
circ zpk=zpk(circ ss)
circ_zpk =
 From input "u" to output...
           (s+1)
  v31:
        (s^2 + s + 1)
           1
  i1: -----
       (s^2 + s + 1)
             s
  v32:
        _____
        (s^2 + s + 1)
            1
  v21: -----
        (s^2 + s + 1)
         s (s+1)
  i2:
       (s^2 + s + 1)
```

Continuous-time zero/pole/gain model.

#### The state transition matrix

Calculated using the symbolic math tools provided by MATLAB See help symbolic

```
In [50]:
```

```
syms phi t s
phi = inv(s*eye(2) - A)

phi =
[ (s + 1)/(s^2 + s + 1), -1/(s^2 + s + 1)]
[          1/(s^2 + s + 1), s/(s^2 + s + 1)]
```

#### The state transfer matrix

```
In [54]:
```

```
G = C*phi*B + D
G = \frac{(s+1)/(s^2 + s + 1)}{1/(s^2 + s + 1)}
(s+1)/(s^2 + s + 1) - 1/(s^2 + s + 1)
1/(s^2 + s + 1)
1 - 1/(s^2 + s + 1)
```

```
In [55]:
```

In [52]:

```
pretty(G)
```

A executable script version of this example is available as <a href="mailto:ssmodels.mlx">ssmodels.mlx</a>).

# **Some Important Properties**

## System poles

Clearly the denominator of the transfer function is generated by the matrix inverse which produces the term:  $\det[s\mathbf{I} - \mathbf{A}]$ 

This evaluates to the denominator polynomial and the poles of the system are the roots of the system's characteristic equation:

$$\det[s\mathbf{I} - \mathbf{A}] = 0.$$

The system poles are solutions to the system's characteristic equation

$$\det[s\mathbf{I} - \mathbf{A}] = 0.$$

### System zeros

What is the corresponding numerator polynomial of the transfer function, whose roots give the zeros of the system?

The zeros are those values of *s* for which the output is zero when the input and states are not zero.

Thus:

$$(s\mathbf{I} - \mathbf{A})\mathbf{X} - \mathbf{B}U = \mathbf{0}$$
$$\mathbf{C}\mathbf{X} + dU = Y = 0$$

In matrix form:

$$\begin{bmatrix} s\mathbf{I} - \mathbf{A} & \vdots & \mathbf{B} \\ \dots & \dots & \dots \\ \mathbf{C} & \vdots & d \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \dots \\ U \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \dots \\ 0 \end{bmatrix}$$

Zeros are those values of s for which the system output is zero when the input and states are not zero

$$(s\mathbf{I} - \mathbf{A})\mathbf{X} - \mathbf{B}U = \mathbf{0}$$
$$\mathbf{C}\mathbf{X} + dU = Y = \mathbf{0}$$

In matrix form:

$$\begin{bmatrix} s\mathbf{I} - \mathbf{A} & \vdots & \mathbf{B} \\ \cdots & \cdots & \cdots \\ \mathbf{C} & \vdots & d \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \cdots \\ U \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \cdots \\ 0 \end{bmatrix}$$

The only way this can have non-zero solutions in  ${\bf X}$  and U is if:

$$\det \begin{bmatrix} s\mathbf{I} - \mathbf{A} & \vdots & \mathbf{B} \\ \cdots & \cdots & \cdots \\ \mathbf{C} & \vdots & d \end{bmatrix} = 0$$

This is another polynomial in s whose roots give the system zeros and therefore corresponds to the numerator polynomial of the TF.

Given this result, an alternative expression for the TF is:

$$\frac{Y(s)}{U(s)} = \frac{\det \begin{bmatrix} s\mathbf{I} - \mathbf{A} & \vdots & \mathbf{B} \\ \cdots & \cdots & \cdots \\ \mathbf{C} & \vdots & d \end{bmatrix}}{\det[s\mathbf{I} - \mathbf{A}]}$$

# **Time Responses from Transfer Function Matrices**

In the <u>next section (../3/tr4ss)</u> we will consider how we can use the transfer function model to compute time responses from state-space models.

## **Footnote**

1.  $\epsilon(t)$  is the unit step function  $\epsilon(t) = 0$  for t < 0;  $\epsilon(t) = 1$  for  $t \ge 0$ .