SeamStamp v1-mini (SS1m): A Human-Checkable Receipt for Seam Integrity and Edition Identity

Clement Paulus

October 25, 2025

Abstract

We formalize $SeamStamp\ v1$ -mini (SS1m), a one-line receipt that verifies both the scientific seam and the edition identity of a paper without cryptographic hashes. SS1m uses four seam numbers $(\Delta\kappa, ir, s, \text{tol})$, a two-token placement (θ, ϕ) , and a short edition code (EID). It is shorter than a SHA-256, upgrade-safe under layout changes, and checkable with pencil-and-paper. We specify the stamp, the verification math, the topic compass, the edition triads, usage policy, and edge-case handling.

1

 $[\]overline{{}^{1}\text{SS1m} \mid \Delta = +0.60 \text{ ir} = 1.822 \text{ s} = 0.000 \ 0.005 \mid = 4} = \text{S} \mid \text{EID} = \text{P} = 30, \text{F} = 12, \text{T} = 3, \text{E} = 10, \text{R} = 122 \mid \text{C} = [41,72,30]$

1 Introduction

A cryptographic digest (e.g., SHA-256) proves byte identity but is silent about argument integrity and human-legible edition shape. SS1m complements or replaces hashing in everyday scholarship by verifying: (i) the *seam*—the reconciliation of the return budget—and (ii) the *edition*—the visible document one can inspect by eye.

2 Specification (SS1m)

One-line stamp

$$| SS1m | \Delta \kappa = \cdot ir = \cdot s = \cdot \leq tol = \cdot | \theta = \cdot \phi \in \{D, R, S\} | EID = \cdot$$

Fields:

- $\Delta \kappa$ (upgrade), $ir \equiv I_{t1}/I_{t0}$ (integrity ratio), s (residual), tol (tolerance).
- θ (topic sector index, 0–11; Section 4), ϕ (phase band: D=DRIFT, R=RETURN, S=SHIP).
- EID: compact EID12 code or readable edition tuple EIDr (Section 3).

Seam checks (science)

Two mechanical checks suffice:

Dial–Ledger Equivalence:
$$ir \approx e^{\Delta \kappa}$$
 (3–4 sig figs) (1)

Budget Closure:
$$s = \Delta \kappa - [R \cdot \tau_R - (D_\omega + D_C)], \text{ pass if } |s| \le \text{tol.}$$
 (2)

Typed outcomes apply: if a claim is ∞ rec (no return in horizon) or \bot oor (out of range), do not coerce a number.

3 Edition Identity (EID)

Counts and triads

Let (P, F, T, E, R) be the counts of pages, figures, tables, numbered equations, and references. Define three small checks:

$$C_1 = (P \cdot F + T) \bmod 97, \tag{3}$$

$$C_2 = (A1Z26 \text{ sum over all section titles}) \mod 97,$$
 (4)

$$C_3 = (R \cdot E) \bmod 97. \tag{5}$$

These bind global shape (pagination/layout), skeleton (titles), and scholarly spine (refs/eqs).

Readable vs. compact EIDs

Readable (always acceptable). EIDr: P=<P>, F=<F>, T=<T>, E=<E>, R=<R> | C=[<C1>, <C2>, <C3>]

Compact (optional, 12 chars). Map each of $P, F, T, E, R, C_1, C_2, C_3$ modulo 32 into Crockford Base32

0123456789ABCDEFGHJKMNPQRSTVWXYZ

to obtain eight characters, then append three checksum characters (e.g., remainder and parity over the eight symbols) and one check digit to yield EID12. Either version is acceptable; EIDr maximizes transparency.

4 Topic Compass and Phase

Fix a 12-sector compass per publishing cycle (season). The default index is:

0	Core Grammar	6	Ethics
1	Collapse Math	7	Systems
2	Integrity Stack	8	Biology/Physiology
3	Ancient Law	9	Cosmology
4	Architecture	10	Methods/Stats
5	Ritual/Operator	11	Commentary/Synthesis

Print the primary sector index θ ; phase $\phi \in \{D, R, S\}$ encodes maturity (DRIFT/RETURN/SHIP).

5 Edge and the SeamStamp Sphere

For visualization and boundary-tracking, define the radius

$$r = 0.5 e^{-\Delta \kappa} + 0.5 \min\left(1, \frac{|s|}{\text{tol}}\right). \tag{6}$$

Dots inside the unit sphere (r < 1) are reconciled; $r \approx 1$ traces the edge (where |s| = tol and $\Delta \kappa \approx 0$). Angles derive from the compass (azimuth) and phase bands (elevation). The sphere is optional; the *stamp* alone is sufficient for verification.

6 How to Apply SS1m (per paper)

- 1. Compute the seam row $(\Delta \kappa, ir, s, \text{tol})$ and verify (1)–(2).
- 2. Choose θ from the compass and ϕ by phase.
- 3. Count (P, F, T, E, R) and compute (C_1, C_2, C_3) .
- 4. Print the stamp in the release block or footer.

Example stamping (placeholders).

SS1m |
$$\Delta \kappa = +0.51$$
 $ir = 1.665$ $s = 0.000 \le 0.005$ | $\theta = 3$ $\phi = S$ | EID=F7QH-29AM-2P

7 When to Use (and Not Use)

Use SS1m for RETURN/SHIP papers, corpus continuity, classrooms, and meetings where penand-paper checking is preferred.

Optional/Skip for DRIFT notes or purely artistic prose. For adversarial/legal contexts, pair SS1m with a cryptographic manifest or document hash; SS1m verifies *truth and edition*, the hash verifies *bytes*.

8 Edge Cases and Continuity

Layout reflow: EID changes; seam may remain identical; continuity is preserved by re-stamping. **Translation:** new EID; same seam where applicable; label language in release notes. **Redaction:** new EID by definition; typical continuity weld uses $\Delta \kappa = 0$, s = 0.

9 Minimal Implementation Notes

SS1m avoids heavy automation. Two people can independently: (i) check $ir \approx e^{\Delta \kappa}$; (ii) compute s and compare to tol; (iii) recount (P, F, T, E, R) and triads. If using the Sphere, compute r and plot by hand.

A SeamStamp Macros (copy/paste)

```
% --- Already defined above; duplicate here for portability ---
\newcommand{\SSone}{\textsf{SS1m}}
\newcommand{\SSSetup}[7]{%
\def\SSdk{#1}\def\SSir{#2}\def\SSs{#3}\def\SStol{#4}\def
\SStheta{#5}\def\SSphi{#6}\def\SSeid{#7}}
\newcommand{\EIDr}[8]{\texttt{P=#1,F=#2,T=#3,E=#4,R=#5 \,|\, C=[#6,#7,#8]}}
\newcommand{\SeamStamp}{%
\SSone{} \,|\, $\Delta\kappa=\SSdk$ $\;ir=\SSir$
$\;s=\SSs\le\SStol$ \,|\, $\theta=\SStheta$ $\phi=\SSphi$ \,|\, EID=\SSeid}
```

B Crockford Base32 (for EID12)

0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
G	Η	J	K	Μ	N	Р	Q	R	\mathbf{S}	Τ	V	W	X	Y	Z

Compute each of $P, F, T, E, R, C_1, C_2, C_3 \pmod{32}$ and map to the table above to form the first 8 symbols; append three checksum symbols and one digit as your local convention requires. Alternatively, publish the readable tuple EIDr.

C Release Footer Stencil

Release: <Paper Title> Date: YYYY-MM-DD Mode: RCFT Weld ID:

W-YYYY-MM-DD-< sluq>

Stamp:SS1m | $\Delta \kappa = +0.60$ ir = 1.822 $s = 0.000 \le 0.005$ | $\theta = 4$ $\phi = S$ |

 $EID=P=30, F=12, T=3, E=10, R=122 \mid C=[41,72,30]$

D Operational Retrieval with SeamStamp (CFR)

We define a pencil-checkable retrieval compass that ranks papers using only the SeamStamp fields $(\Delta \kappa, ir, s, \text{tol}, \theta, \phi)$ and a chosen axis sector θ^* for the current query (canon or topic).

Derived quantities (from SS1m)

$$\rho := \min\left(1, \frac{|s|}{\text{tol}}\right), \quad \text{edge pressure (0 good, 1 at boundary)}, \quad (7)$$

$$u := \tanh(\Delta \kappa),$$
 upgrade pull ($\approx 0 \text{ small}, \to 1 \text{ strong}),$ (8)

$$w_{\phi} \in \{0.2, 0.6, 1.0\},$$
 for $\phi \in \{D, R, S\}$ respectively, (9)

$$d_{\theta} := \frac{\operatorname{circdist}(\theta, \theta^*)}{6} \in [0, 1],$$
 sector gap on a 12-sector compass. (10)

Priority scores

Canon-first (stable references):

$$\Pi_{\text{canon}} = 0.5 (1 - \rho) + 0.3 u + 0.2 w_{\phi} - 0.2 d_{\theta}. \tag{11}$$

Edge-hunting (frontier scans):

$$\Pi_{\text{edge}} = 0.6 \,\rho + 0.2 \,d_{\theta} + 0.2 \,(1 - w_{\phi}). \tag{12}$$

How to use (by hand). Choose θ^* (e.g., 0 for Core Grammar, 4 for Architecture), read the SS1m of each paper, compute $\rho, u, w_{\phi}, d_{\theta}$, and rank by Π_{canon} or Π_{edge} . Tie-break: longer continuity chain (same weld stem) wins; then higher ir.

Tiny macros (reuse anywhere)

$$\Pi_{\text{canon}} = 0.5(1 - \rho) + 0.3u + 0.2w_{\phi} - 0.2d_{\theta}$$
 and $\Pi_{\text{edge}} = 0.6\rho + 0.2d_{\theta} + 0.2(1 - w_{\phi})$.

When appropriate. Use CFR on RETURN/SHIP papers with valid SS1m. Skip for DRIFT notes or non-argument prose. In adversarial/legal contexts, pair SS1m/CFR with a cryptographic manifest if byte-identity is required.

Worked micro-example. Given SS1m: $\Delta \kappa = 0.60$, s = 0, tol=0.005, $\phi = S$, $\theta = 4$, choose $\theta^* = 0$. Then $\rho = 0$, $u \approx \tanh(0.60) \approx 0.537$, $w_{\phi} = 1.0$, $d_{\theta} = 4/6 \approx 0.667$. Thus $\Pi_{\text{canon}} \approx 0.5 + 0.161 + 0.2 - 0.133 \approx 0.728$.