Seminar on Topological Dynamics of Definable Group Actions Introduction

Definition. A G-flow is a compact (Hausdorff!) topological space X together with a group G acting on X by homeomorphisms.

- A subflow is a closed subset also closed under the action of G.
- A flow is minimal if it doesn't have proper subflow.
- A G-set is homogeneous if the action is transitive.
- A flow is point transitive if it contains a dense G-orbit.
- If cl(o(x)) is minimal, then we call the point x almost periodic.

 $Remark\ 1.$ Topological dynamics is concerned with the orbits of the actions of G on various G-flows, and particularly with minimal flows.

Proposition 1. Assume X is a G-flow, o(x) denotes the orbit of $x \in X$, cl(A) denotes the closure of $A \subset X$, \mathcal{O} denotes an orbit.

- 1. cl(o(x)) is a point transitive subflow of X.
- 2. If $x \in cl(\mathcal{O})$, $cl(o(x)) \subseteq cl(\mathcal{O})$.
- 3. Any orbit \mathcal{O} contains a minimal subflow. (By Zorn's lemma)
- 4. Any minimal flow is point transitive.
- 5. Any point in a minimal flow is almost periodic.
- 6. The intersection of subflows is still a subflow.
- 7. Any two distinct minimal flows are disjoint.

Proof. 1. We only need to check cl(o(x)) is closed under group action. Note $G \cdot o(x) = o(x)$, if y is a accumulative point of o(x), gy is a accumulative point of $G \cdot o(x)$ by homeomorphism.

- 2. Trivial.
- 3. Use compactness and Zorn's lemma.
- 4. By (1).
- 5. By (1).
- 6. Easy to check.
- 7. By (6).

There is a natural notion of a morphism of G-flows(called G-mapping), just a combinition of G-equivariant(G-set) and continuous function(topological space). So G-flows becomes a category. Point transitive G-flows are a subcategory.

There is a unique largest universal point transitive G-flow, namely $X = \beta G$, the space of ultrafilters of G, where the action is left translation by G. The orbit consisting of the principal ultrafilters is dense in βG . For every point transitive G-flow X there is a surjective G-mapping $\beta G \to X$ and every minimal flow in X is an image of a minmal flow in βG under the map.

Remark 2. Here is a more detailed explaination. Assume X is a topological space, $f: A \to X$ is function, \mathcal{U} is a ultrafilter, then $b = \lim_{\longrightarrow} f(x)$ is an

ultralimit if for any neighborhood $N\ni b,\ \{a\in A: f(a)=b\}\in\mathcal{U}.\ X$ is Hausdorff iff for any A and f, there is at most one ultralimit. X is compact iff for any A and f, there is at least one ultralimit. With the help of these facts, $\beta(-):\mathbf{Set}\to\mathbf{Compactum}$ (the category of compact Hausdorff topological space) is actually the left adjoint of $I:\mathbf{Compactum}\to\mathbf{Set}$ where I is the forgetful functor. Let $p\in X$ such that $G\cdot p$ is dense in X, a map $g\mapsto g\cdot p$ corresponds to a map $\beta G\to X$. The image is closed and contains $G\cdot p$, so it's a surjection.

Definition. Let T = Th(M) be a complete theory, M be a model, G be a definable group. A G-set V is definable if the underlying set V and the group action are both definable.

The largest homogeneous G-set is V = G, with the action by left translation. Definable G-sets don't carry topology, but We have various(?) topo-

logical spaces related to a G-set V in model theory.

Let \mathfrak{C} be a monster model (κ -saturated and strongly κ -homogeneous for some sufficiently large κ), $M \leq N$ are small models. By V^N we mean the set $\varphi(N)$ where φ defines V in M. If V is definable G-set, then G^N acts on V^N and $G^{\mathfrak{C}}$ acts on $V^{\mathfrak{C}}$ and also G acts on $V^{\mathfrak{C}}$.

Assume E an equivalence relation on $V^{\mathfrak{C}}$ type definable over M. For any formula $\varphi(x,y) \in E(x,y)$, we may assume $\varphi \vdash V(x) \land V(y)$. $\varphi(x,y)$ is reflexive, and we can require it to be symmetric since $\varphi(x,y) \land \varphi(y,x)$ is always symmetric. Although we can't require φ to be transitive (as a relation), we have the following lemma.

Lemma 2. Let E be a equivalence relation on $V^{\mathfrak{C}}$ type definable over M, for any symmetric $\psi(x,y) \in E$, there is a symmetric $\varphi(x,y)$ such that $\varphi(x,y) \wedge \varphi(y,z) \vdash \psi(x,z)$. Note $\varphi(x,y) \vdash \psi(x,y)$ as z=y.

Proof. $\{\varphi(x,y) \land \varphi(x,z) : \varphi \in E\} \vdash \psi(x,z)$ for any $\psi \in E$ because E is an equivalence relation and $\psi \supseteq E$. By compactness, we get a desired $\varphi(x,y)$.

Proposition 3. Assume E is an equivalence relation on $V^{\mathfrak{C}}$, type definable over M. The following conditions are equivalent.

- 1. $|V^{\mathfrak{C}}/E| < \kappa$.
- 2. $|V^{\mathfrak{C}}/E| \le 2^{|T|+|M|}$.
- 3. For any symmetric $\varphi(x,y)$, there is a number $n_{\varphi} < \omega$ and n_{φ} elements $a_1, ..., a_{n_{\varphi}} \in V^{\mathfrak{C}}$ satisfying that for any i < j, $\neg \varphi(a_i, a_j)$, and for any $c \in V^{\mathfrak{C}}$, $\varphi(c, a_i)$ for some $i \leq n_{\varphi}$.
- 4. For any symmetric $\varphi(x,y)$ and $a \in V^{\mathfrak{C}}$, there is $c \in M$ with $\varphi(a,c)$. So we can require the elements $a_1, ..., a_{n_{\omega}}$ in (3) to live in M.

If E satisfy the equivalent condition, we say E has bounded number of classes, or briefly, E is bounded.

Proof. (2) \Longrightarrow (1): Trivial. (3) \Longrightarrow (2): $|V^{\mathfrak{C}}/E| \leq \aleph_0^{|T|+|M|} = 2^{|T|+|M|}$.

(1) \Longrightarrow (3): If not, we can build a κ -sequence by induction. Assume we have a_i for $i < \alpha$, then we choose a_{α} realizing $\{\neg \varphi(x, a_i) \land V(x) : i < \alpha\}$, which is finitely satisfiable. Since $\neg \varphi(a_i, a_j) \Longrightarrow \neg E(a_i, a_j)$, $(a_i)_{i < \kappa}$ are from different equivalence class of E.

- (3) \Longrightarrow (4): Assume $a_1,...,a_k$ are the representatives, $a_1,...,a_l \in M$, $a_{l+1},...,a_k \notin M$, and for any $c \in M$ and i > l, there are $\neg \varphi(c,a_i)$. Let $\psi \equiv \bigwedge_{i=1}^{l} \neg \varphi(a_i,x)$, then $\psi(M) = \emptyset$ while $\{a_{l+1},...,a_k\} \subseteq \psi(\mathfrak{C})$, contradicting with Tarski-Vaught test.
- (4) \implies (2): $|M|^{|T|+|M|} = 2^{|T|+|M|}$.

Assume E is an equivalence relation on $V^{\mathfrak{C}}$, type definable over M, with bounded number of classes(shortly: btde-relation). On $V^{\mathfrak{C}}$ we have a natrual topology where the closed set are the type definable set (\mathfrak{C} is the parameter set). This topology is discrete.

On the quotient set $V^{\mathfrak{C}}/E$ (we also denote it by V_E), there is a natural topology, with the closed set Z where $\pi^{-1}(Z) \subseteq V^{\mathfrak{C}}$ is a type definable set. Here $\pi: V^{\mathfrak{C}} \to V^{\mathfrak{C}}/E$ is the quotient map. This topology is called the logic topology or the Kim-Pillay Topology on V_E .

Proposition 4. Assume E is a equivalence relation type definable by M, we equip V_E with logic topology.

- 1. $Y \subseteq V_E$ is closed iff for some type definable set $A, Y = \{a_E : a \in A\}$. This is the definition of closed set in the paper.
- 2. A basis of open sets is the collection of all $U_{a\varphi}$. Here $U_{a\varphi} = \{b_E : \varphi(a',b') \text{ for all } E(a,a'), E(b,b')\}, \varphi \in E$.
- 3. V_E is Hausdorff.
- 4. V_E is compact iff E is bounded.

Proof. 1. \Rightarrow : Trivial. \Leftarrow : $\pi^{-1}(Y) = \{a : a_E \in Y\}$ is type defined by $\exists y (E(x,y) \land A(y)).$

- 2. $U_{a\varphi}$ is open because $\{b: b_E \notin U_{a\varphi}\}$ is type definable by $\exists y \exists z (E(a,y) \land E(x,z) \land \neg \varphi(y,z))$.
 - Assume U is open and $a_E \in U$, $V_E \setminus U$ is closed and type defined by a partial type $\Sigma(x)$ where $\Sigma(V^{\mathfrak{C}}) = \pi^{-1}(V_E \setminus U)$. Choose $\psi \in \Sigma$ such that $\neg \psi(a)$. Since $E(x,y) \wedge \Sigma(x) \vdash \Sigma(y)$, we have $\varphi(x,y) \wedge \Sigma(y) \vdash \psi(y)$ for some $\varphi \in E(x,y)$ by compactness. Then $a_e \in U_{a\varphi} \subseteq U$.
- 3. Suppose $a_E \neq b_E$, then there is $\varphi \in E$ such that $\neg \varphi(a, b)$. Let $\varphi'(x, y) \land \varphi'(y, z) \vdash \varphi(x, z)$, then $U_{a\varphi'} \ni a$ and $U_{b\varphi'} \ni b$ don't intersect.

4. Assume E is bounded, $(F_i)_{i\in I}$ is a family of closed sets with finite intersection property. The number of E-classes is bounded, so the number of closed set is also bounded by at most a power. $\bigcap_{i\in I} F_i$ is realized by some $a\in V^{\mathfrak{C}}$.

Assume V_E is compact, for any $\varphi \in E$, let $(a_i)_{i \in I}$ be representatives. Now $V_E = \bigcup_{i \in I} U_{a_i \varphi}$, so there is finite $I_0 \subseteq I$ such that $V_E = \bigcup_{i \in I_0} U_{a_i \varphi}$ by compactness. These are finite representatives.

A btde-relation E on $V^{\mathfrak{C}}$ is G-invariant if for any $x, y \in V^{\mathfrak{C}}$, $xEy \Longrightarrow$ (or \iff , equivalently) gxEgy for any $g \in G$. In this case, a group action of G on V (is a homeomorphism) induces a homeomorphism on V_E . Hence V_E becomes a G-flow. We call any G-flow of this kind a definable G-flow.

Proposition 5. If V is a homogeneous G-set, then the flow V_E is point transitive.

Proof. We claim the orbit consisting a_E for $a \in V$ is dense in V_E . Suppose $[b]_E \cap W = \emptyset$ where W is a type definable set of V_E . We need to prove $[a]_E \cap W = \emptyset$ for some $a \in V$. Let symmetric φ, φ' be with $\varphi(\mathfrak{C}, b) \cap W = \emptyset$, $\varphi'(x,y) \wedge \varphi'(y,z) \vdash \varphi(x,z)$. Since E is bounded, there is $a \in \varphi'(\mathfrak{C},b) \cap M \subseteq V$. Let $c \in \varphi'(\mathfrak{C},a)$, then $c \in \varphi(\mathfrak{C},b)$, so $\varphi'(\mathfrak{C},a) \cap W = \emptyset$, and hence $[a]_E \cap W = \emptyset$.

Remark 3. Transitivity of group action is a first order property, so V_E is a homogeneous $G^{\mathfrak{C}}$ -set.

Proposition 6. Assume E is a btde-relation, tp(a/M) = tp(b/M), then aEb

Proof. Assume symmtric φ' satisfying $\varphi'(x,y) \wedge \varphi'(y,z) \vdash \varphi(x,z)$. Because E is bounded, there is $c \in M$ such that $\varphi'(a,c)$. Since tp(a/M) = tp(b/M), we have $\varphi'(b,c)$ and then $\varphi(a,b)$. So for any φ we have $\varphi(a,b)$, this is E(a,b).

There is a finest btde-relation, namely \equiv_M , given by $x \equiv_M y \iff tp(x/M) = tp(y/M)$. \equiv_M is G-invariant. Hence V_{\equiv_M} is the largest definable G-flow, where the group action is by left translation on type.

Our interest is G_{\equiv_M} (also denoted by $S_G(M)$). Any point transitive definable G-flow V_E is isomorphic to $G_{E'}$ for some E' coarser than \equiv_M .

Remark 4. Generic type is of the central notions in stable theory. The paper is to generalize generic type to a broader, unstable context, introducing weak generic types. In this paper, we relate notions to the basic ideas of Topological dynamics as a good language to set up.

If $M \leq N$ are small models, then $S_G(N)$ is a point transitive G^N -flow, and also a (point transitive?) G-flow. The natural restriction $r: S_G(N) \to S_G(M)$ is a morphism of G-flows. Investigation of the relationship between the topological dynamics of $S_G(N)$ and $S_G(M)$ has a new, specifically model theoretical flavour.

In the stable context, generic types on $S_G(M)$ are thought of as "large" types, and then it is natural that the restriction of a generic type in $S_G(N)$ to M is still a generic type. Moreover, a type $q \in S_G(M)$ is generic iff q|M is generic in $S_G(M)$ and the extension $q \supseteq q|M$ is non-forking. So in the stable context the notion of a generic type is closedly related to forking independence.

Inside weak generic types, we distinguish an even smaller subset of almost periodic types. We will see which notion is a better counterpart of the notion of generic type by investigating their extension and restriction properties. A complicated example in Section 3 show that restriction of weak generic type is still a weak generic but not true for almost periodic type.