Uvod v teorijo izračunljivosti in računske zahtevnosti

Uroš Čibej

1

Pregled

- birokracija
- motivacija
- matematične osnove
- moč množic

Birokracija

- Predavanja: doc. dr. Uroš Čibej: uros.cibej@fri.uni-lj.si
- Vaje:
 - o doc. dr. Luka Fuerst : luka.fuerst@fri.uni-lj.si
 - Peter Gabrovšek : peter.gabrovsek@fri.uni-lj.si

Literatura

- Michael Sipser Introduction to the Theory of Computation
- Hopcroft, Ullman (in kasneje Motwani) Introduction to Automata Theory,
 Languages, and Computation
- Boaz Barak Introduction to Theoretical Computer Science, prosto dostopen na introtcs.org

- za vsak teden dobite kazalce na poglavje, pomembno za tisti teden
- ta teden
 - Sipser (poglavje 0)
- bolj poglobljeno
 - https://introtcs.org/public/lec_00_1_math_background.html

Ocenjevanje

- Dva kolokvija (november, januar) 50% ocene
 - pogoj za pristop h končnemu izpitu (vsaj 50% s kolokvijev)
- Pisni izpit
 - teoretični del (dokazi, definicije, razmisleki)
 - o praktični del
- Ustni izpiti (med 50% in 60%, oz. po potrebi)

Osnovni pojmi

Teoretično računalništvo

Veja računalništva, ki si zastavlja najbolj temeljna vprašanja:

- Kaj je računanje?
- Kako zasnovati in analizirati modele računanja?
- Kaj je mogoče v kakšnem modelu sploh izračunati?
- Kako modelirati porabo virov v računskih modelih?
- Kaj je učinkovito računanje?
- Kje so meje učinkovitega računanja?

• ..

8

Sklopi naše snovi

- Enostavni modeli računanja
 - o različice končnih avtomatov, reg. izrazi
 - meje končnih avtomatov
- Univerzalni modeli in njihove omejitve
 - Turingov stroj in njegove različice, univerzalnost
 - neizračunljivost
- Računska zahtevnost
 - ocenjevanje porabe virov računskega modela
 - NP-polnost in prevedbe

Razbijanje mitov

Mit 1

Računalniki izračunajo vse

Mit 1 - razbit

- 1. Neizračunljivost
- 2. Računska (pre)zahtevnost

Mit 2

Računalništvo se zelo hitro spreminja

Mit 2 - razbit

- 1. Uporabniki (hitre spremembe)
- 2. Razvijalci (počasnejše spremembe)
- 3. **Temelji** (zelo počasne spremembe)

Mit 3

Računalniki so taki (procesor, ram, I/O,...)

Mit 3 - razbit

Številni modeli:

- lambda račun
- kvantni modeli
- DNK modeli
- celični avtomati
- ...

Matematične osnove

Pregled

- Osnovni matematični gradniki
- Definicije
- Izjave: izreki, trditve, leme
- Dokazi

Množice

$$A = \{1, 2, 3\}$$
 $S = \{a, bbb, ababab, \ldots\}$

Konstrukcijska notacija

$$\{x\in\mathbb{N}\mid x\mod 5=3\}$$

Operacije

$$\cup,\cap,\setminus, imes,2^A$$

n-terke

 $x \in A_1 \times A_2 \times A_3 \dots A_n$

Primer:

 $(\{1,2,3\},4,a,0.5)$

Abecede, nizi

Abeceda (končna množica simbolov): Σ

Niz (beseda):

$$w=a_1a_2\ldots a_k, a_i\in \Sigma$$

Niz dolžine 0: ε

Stik (konkatenacija):
$$w_1\circ w_2=w_1w_2=\underbrace{a_1a_2\ldots a_nb_1b_2\ldots b_m}_{w_1}$$

Posplošitev na množice

$$A \circ B = \{x \circ y \mid x \in A, y \in B\}$$

Iteracija, Kleenejevo zaprtje, jeziki

Potenciranje množice nizov

$$A^k = \{x_1 \circ x_2 \circ \ldots \circ x_k \mid x_i \in A\}$$

posebnost: $A^0=\{arepsilon\}$

Kleene-jevo zaprtje (Kleenejeva zvezdica):

$$A^* = igcup_{i=0}^\infty A^i$$

Jezik

$$L \subseteq \Sigma^*$$

Funkcije, relacije

Funkcije

f:A o B

Relacije

$$aRb ext{ ali } (a,b) \in R$$
 $R \subseteq A imes A$

Definicije

Definicije so osnovni gradniki matematičnih modelov/teorij, ki opišejo termine s katerimi delamo v posameznem kontekstu.

Primeri

Def. Sodo število je naravno število, ki je deljivo z 2.

Def. Obrat (reverz) je operacija (w^r) nad nizi definirana kot:

$$(a_1a_2\ldots a_n)^r=a_na_{n-1}\ldots a_2a_1$$

Def. Niz je palindrom, če ostane enak po obratu: $w=w^r$.

$$P = \{w \in \Sigma^* \mid w = w^r\}$$

Izjave, trditve

• Izreki: dokazano resnične trditve

• Leme: pomožni izreki

Dokazi

- dokazi s konstrukcijo
- indukcija
- protislovje

Indukcija

Dokazovanje lastnosti množic, ki jih je mogoče podati induktivno

baza: $a_1,\ldots,a_k\in A$

pravila tvorjenja: $a \in A o f(a) \in A$

Ideja dokazovanja z indukcijo:

Lastnost velja za vse elemente množice A, če:

- 1. velja za vse elemente v bazi
- 2. vsa pravila ohranjajo to lastnost

Primer dokaza z indukcijo

Izrek: Vsako naravno število $n \geq 11$ lahko zapišemo kot

$$2a + 5b$$

pri $a,b\in\mathbb{N}$

Dokaz:

1.

2. ?

$$11 = 2 \times 3 + 5 \times 1$$

28

Palindromi - induktivno

P:

baza : $arepsilon \in P, a \in P$ ($a \in \Sigma$)

pravilo: $p \in P \implies apa \in P(a \in \Sigma)$

A je to res ekvivalentno tisti zgornji definiciji?

Izrek

Za vsak niz $p \in P$ velja $p^r = p$

Baza

- $p = \varepsilon$, $\varepsilon^r = \varepsilon$
- p = a, $a^r = a$

Izrek velja za vse elemente baze

Pravilo ohranja lastnost

• induktivna predpostavka:

$$p^r = p$$

• $(apa)^r = ap^ra = apa$

Pravilo gradnje ohranja lastnost iz izreka

Dokazovanje s protislovjem

Izrek: Praštevil je neskončno.

Dokaz: Predpostavimo, da je praštevil končno:

$$p_1, p_2, p_3, \ldots, p_k$$

Skonstruirajmo novo število, ki ni deljivo z nobenim izmed teh k praštevil:

$$p'=p_1p_2p_3\dots p_k+1 \ o$$

Moč množic

Neskončne množice

 $\mathbb{N} o 2 \mathbb{N}$

Neskončne množice

$$\mathbb{N} o 2 \mathbb{N} \ f(x) = 2 x$$

IRZ

$$\mathbb{N} \to \mathbb{Q}^+$$

Ista tehnika kot $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$, preskočimo pare ne-tujih si števil.

 $\mathbb{N} \to \mathbb{R}$

Bijekcija ne obstaja! Kako to dokažemo?

Cantorjeva diagonalizacija $\mathbb{N} o [0,1]$

Groba ideja dokaza:

- 1. Predpostavimo obstoj bijekcije $f:\mathbb{N} o [0,1]$
- 2. Na podalagi f zgradimo število $x \in [0,1]$ za katerega velja:

$$\forall i \in \mathbb{N} : f(i) \neq x$$

3. S tem pokažemo, da f ni surjektivna, torej tudi ni bijekcija

Prosojnice niso literatura

40

Kako naredimo tak x?

Naj velja:

$$f(i) = 0.a_{i1}a_{i2}a_{i3}a_{i4}\dots$$

Število x pa naj bo

$$x=0.b_1b_2b_3\dots$$

pri čemer je:

$$b_i = egin{cases} 1 & reve{c} \operatorname{e} a_{ii}
eq 1 \ 2 & reve{c} \operatorname{e} a_{ii} = 1 \end{cases}$$

Primer

<u>N</u>		[0,1]	
1	1 9	7 1 4 8	
2	4 2	9 1 5 1	
3	3 3	3 9 5 3	
4	2 1	3 1 4 3	
5	2 3	4 5 3 0	
:	; ;	: : :	

 $x = 0.21121\dots$

Primer

Povzetek

- predmet marsikomu predstavlja izziv
 - matematična intenzivnost
 - težji koncepti
- dokazovanje, da nekaj ni možno
- delo s programi, ki jemljejo programe kot vhod
- prosojnice niso literatura (berite knjige!)