Computer Graphics

- Shading & Texturing -

Philipp Slusallek

Empirical BRDF Approximation

- Purely heuristic model
 - Initially without units (values ∈ [0,1])

$$- L_r = L_{r,a} + L_{r,d} + L_{r,s} \left(+ L_{r,m} + L_{r,t} \right)$$

- L_{r.a}: Ambient term
 - Approximate indirect illumination
- L_{r.d}: Diffuse term (Lambert)
 - Uniform reflection
- L_{r,s}: Specular term
 - Mirror-reflection on a rough surface
- L_{r,m}: Perfect reflection
 - Only possible with Ray-Tracing
- L_{rt}: Perfect transmission
 - Only possible with Ray-Tracing

Phong Illumination Model

Extended light sources: l point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

Microfacet Model

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
 - Distribution of microfacets
 - Often probabilistic distribution of orientation or V-groove assumption
 - Planar reflection properties
 - Self-masking, shadowing

Ward Reflection Model

BRDF

$$f_r = \frac{\rho_d}{\pi} + \rho_s \frac{1}{\sqrt{(I \bullet N)(V \bullet N)}} \bullet \frac{\exp(-\tan^2 \angle (H, N) / \sigma^2)}{4\pi \sigma^2}$$

σ standard deviation (RMS) of surface slope

- Simple expansion to anisotropic model (σ_x, σ_y)
- Empirical, not physics-based
- Inspired by notion of reflecting microfacets
- Convincing results
- Good match to measured data

Physics-inspired BRDFs

- Notion of reflecting microfacet
- Specular reflectivity of the form

$$f_r = \frac{D \cdot G \cdot F_{\lambda}(\lambda, \theta_i)}{\pi \ N \cdot V}$$

- D : statistical microfacet distribution
- G: geometric attenuation, self-shadowing
- F: wavelength, angle dependency of reflection along mirror direction
- N•V : flaring effect at low angle of incidence

Cook-Torrance model

- F: wavelength- and angle-dependent reflection
- Metal surfaces

Cook-Torrance Reflection Model

 Cook-Torrance reflectance model is based on the microfacet model. The BRDF is defined as the sum of a diffuse and specular components:

$$f_r = k_d \rho_d + k_s \rho_s; \qquad k_d + k_s \le 1$$

where k_s and k_d are the specular and diffuse coefficients.

• Derivation of the specular component ρ_s is based on a **physically derived** theoretical reflectance model

Cook-Torrance Specular Term

$$\rho_s = \frac{F_{\lambda} DG}{\pi (\underline{N} \cdot \underline{V}) (\underline{N} \cdot \underline{I})}$$

- D : Distribution function of microfacet orientations
- G : Geometrical attenuation factor
 - represents self-masking and shadowing effects of microfacets
- F_λ: Fresnel term
 - computed by Fresnel equation
 - relates incident light to reflected light for each planar microfacet
- N-V : Proportional to visible surface area
- N·I: Proportional to illuminated surface area

Microfacet Distribution Functions

Isotropic Distributions $D(\omega) \Rightarrow D(\alpha)$ $\alpha = \mathbf{N} \cdot \mathbf{H}$

$$D(\underline{\omega}) \Rightarrow D(\alpha)$$

$$\alpha = \mathbf{N} \cdot \mathbf{H}$$

 α : angle to average normal of surface

- Characterized by half-angle β

$$D(\beta) = \frac{1}{2}$$

Blinn

$$D(\alpha) = \cos^{\frac{\ln 2}{\ln \cos \beta}} \alpha$$

Torrance-Sparrow

$$D(\alpha) = e^{-\left(\frac{\sqrt{2}}{\beta}\alpha\right)^2}$$

- **Beckmann**
 - m : root mean square
 - Used by Cook-Torrance

$$D(\alpha) = \frac{1}{4m^2 \cos^4 \alpha} e^{-[\tan \alpha/m]^2}$$

Geometric Attenuation Factor

- V-shaped grooves
- Fully illuminated and visible

$$G = 1$$

Partial masking of reflected light

$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}$$

Partial shadowing of incident light

$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}$$

$$G = \min \left\{ 1, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})} \right\}$$

Beckman Microfacet Distribution Function

m = 0.6

m = 0.2

Comparison Phong vs. Torrance

(d)

(c)

Polygon-Shading Methods

- Application of an illumination model to compute intensity for every pixel has been time consuming.
- Intensity of adjacent pixels is usually very similar (the so called shading coherence), which allows for less frequent shading evaluations.
- Each polygon can be rendered with a single intensity or intensity can be obtained at each point of the surface using an interpolation scheme:
 - Flat shading, single intensity is calculated for each polygon
 - Gouraud shading (per vertex shading), intensity calculated at vertices is interpolated across the surface
 - Phong shading (per pixel shading), normal vectors are calculated at vertices; then normal vectors are interpolated across the surface and an illumination model using these normal vectors is applied for every point of the surface
- With modern hardware this is no big issue any more
 - Often even the normal is calculated per pixel
 - Bump or displacement maps

Problems in Interpolated Shading

Problems

- Polygonal silhouette may not match the smooth shading
- Perspective distortion
 - Interpolation may be performed after perspective transformation in the 2-D screen coordinate system, rather than world coordinate system.
- Orientation dependence.
 - This problem does not concern triangles for which linear interpolation is rotation-invariant.
- Shading discontinuities at shared vertices (T-edges).
- Unrepresentative normal vectors.

Shading at **P** is interpolated along different scan-lines when polygon rotates.

T-edges

Vertex normals are all parallel