Examen final en ANA4.

Durée 2H

DOCUMENTS ET CALCULATRICES INTERDITS.

Exercice 1 (5pts)

Les deux parties I et II sont indépendantes.

I- Etudier la nature (convergence absolue et semi-convergence) des séries numériques

$$\sum_{n>0} \frac{2^n}{3^{n-2}}, \sum_{n>1} (-1)^n \sin\left(\frac{1}{n}\right).$$

II- Pour $n \ge 0$, $x \in \mathbb{R}$ on pose $f_n(x) = n^2 x (1-x)^n$. a) Calculer $\lim_{n \to +\infty} |f_n(x)|$, en déduire le domaine de convergence simple D de la suite de fonctions $\{f_n\}_n$ vers une fonction f à déterminer.

b) Calculer $\int\limits_0^{} f_n(x) dx$, en déduire que la suite $\{f_n\}_n$ ne converge pas uniformément sur ${\cal D}$

Exercice 2 (4pts)

Soit la série de fonctions: $\sum_{n\geqslant 1} \frac{e^{-nx}\sin{(nx)}}{\log{(n+1)}}$

- 1) Etudier la convergence simple de la série sur \mathbb{R}_+^* , on posera $F(x) = \sum_{n \ge 1} \frac{e^{-nx} \sin(nx)}{\log(n+1)}$.
- 2) Etudier la convergence uniforme de la série sur $[a, +\infty[$, a > 0.
- 3) Etudier la continuité de F sur \mathbb{R}^*_{\perp} .

Exercice 3 (5pts)

Soit la série entière: $\sum_{n\geqslant 0} \frac{2^n \left(n^2+1\right)}{(n+1)} x^n.$

- 1) Déterminer son rayon ainsi que son domaine de convergence.
- 2) Calculer sa somme.

Exercice 4 (6pts)

Soit f une fonction 2π -périodique telle que $f(x) = e^{|x|+1}$ pour $x \in [-\pi, \pi]$.

- 1) Developper f en série de Fourier.
- 2) En déduire les valeurs des séries numériques:

$$S_1 = \sum_{n \ge 1} \frac{(-1)^n}{(n^2 + 1)}, \ S_2 = \sum_{n \ge 1} \frac{1}{(n^2 + 1)}$$

1

Un corrigé:

I- 1) $\sum_{n=0}^{\infty} \frac{2^n}{3^{n-2}}$ série numérique à termes positifs, donc la convergence absolue=convergence

et pas de semi-convergence, on a que: $\sum_{n \ge 0} \frac{2^n}{3^{n-2}} = 9 \sum_{n \ge 0} \left(\frac{2}{3}\right)^n$ c'est donc une

série géométrique de raison $\frac{2}{3}$, elle est donc convergente.

- 2) $\sum_{n>1} (-1)^n \sin\left(\frac{1}{n}\right)$, posons $u_n = (-1)^n \sin\left(\frac{1}{n}\right) = (-1)^n \left(\frac{1}{n} + o\left(\frac{1}{n^2}\right)\right)$
- a) Convergence: $u_n = \underbrace{\frac{(-1)^n}{n}}_{v_n} + \underbrace{o\left(\frac{1}{n^2}\right)}_{w_n}$, on a,
- $\leadsto \sum v_n$ est convergente (série de Leibnitz). $\leadsto \sum w_n$ est convergente absolument par la régle de l'ordre, en effet:

$$\lim_{n \to +\infty} n^2 \cdot \left| o\left(\frac{1}{n^2}\right) \right| = 0$$

Par linéarité, $\sum u_n$ converge.

- b) Convergence absolue: $|u_n| \sim \frac{1}{n}$ et $\sum \frac{1}{n}$ diverge (série de Riemann), on en conclut -par le critére d'équivalence- que $\sum u_n$ ne converge pas absolument.
- c) $\sum u_n$ est semi convergente.

- II- Pour $n \ge 0$, $x \in \mathbb{R}$ on pose $f_n(x) = n^2 x (1-x)^n$. a) $\lim_{n \to +\infty} |f_n(x)| = \lim_{n \to +\infty} |x| e^{2\log n + n \log|1-x|} = \lim_{n \to +\infty} |x| e^{n\left(2\frac{\log n}{n} + \log|1-x|\right)}$, $\to 1$ er cas: $\log|1-x| < 0$ ie |1-x| < 1ie $x \in]0, 2[$ et dans ce cas $\lim_{n \to +\infty} |f_n(x)| = 1$
- $\begin{array}{l} \cdots \\ \text{2ème cas: } \log |1-x| > 0 \text{ is } |1-x| > 1 \text{ is } x \in]-\infty, 0[\cup]2, +\infty[\text{ et dans ce } \cos\lim_{n \to +\infty} |f_n(x)| = +\infty. \\ \\ \text{3ème cas: } x = 0 \ |f_n(0)| = 0 \text{ et } \lim_{n \to +\infty} |f_n(0)| = 0 \\ \\ \text{4ème cas: } x = 2 \ |f_n(2)| = 2n^2 \text{ et } \lim_{n \to +\infty} |f_n(2)| = +\infty. \end{array}$

On en déduit que la suite de fonctions $\{f_n\}_n$ converge simplement sur D=[0,2[vers f telle que f(x) = 0.

b) On a
$$\int_{0}^{1} f_n(x) dx = n^2 \int_{0}^{1} x (1-x)^n dx$$
, faisons une IPP:
$$\begin{cases} u = x \to u' = 1 \\ v' = (1-x)^n \to v = \frac{-1}{n+1} (1-x)^{n+1} \end{cases}$$

Exercice 2

Soit la série de fonctions:
$$\sum_{n\geqslant 1} \frac{e^{-nx}\sin\left(nx\right)}{\log\left(n+1\right)}, \text{ posons } u_n(x) = \frac{e^{-nx}\sin\left(nx\right)}{\log\left(n+1\right)}$$

1) Etude de la convergence simple de la série sur \mathbb{R}_+^* :

1) Etude de la convergence simple de la serie sur
$$\mathbb{R}_+^*$$
:
$$\left|\frac{e^{-nx}\sin\left(nx\right)}{\log\left(n+1\right)}\right| \leq \frac{e^{-nx}}{\log\left(n+1\right)} = v_n(x), \text{ utilisons la régle de l'ordre pour montrer}$$
la convergence de $\sum_{n \to +\infty} v_n(x), \lim_{n \to +\infty} n^2 v_n(x) = \lim_{n \to +\infty} e^{2\log n - nx - \log[\log(n+1)]} = \lim_{n \to +\infty} e^{n\left(2\frac{\log n}{n} - x - \frac{\log(n+1)}{n} \cdot \frac{\log[\log(n+1)]}{\log(n+1)}\right)} = 0 \text{ ie } \sum_{n \to +\infty} v_n(x) \text{ converge pour tout } x \in \mathbb{R}_+^*.$

On en conclut que la série $\sum_{n\geq 1} u_n$ converge absolument donc simplement sur \mathbb{R}_+^*

par le critére de comparaison.

2) Etude de la convergence uniforme de la série sur $[a, +\infty[$, a > 0:

$$\left| \frac{e^{-nx} \sin(nx)}{\log(n+1)} \right| \le \frac{e^{-nx}}{\log(n+1)} \le \frac{e^{-na}}{\log(n+1)} = v_n(a) \ \forall x \in [a, +\infty[, a > 0 \text{ et }]$$

$$\forall n \ge 1 \text{ or:}$$

 $\sum v_n(a)$ converge pour tout $a \in \mathbb{R}_+^*$, déjà fait en 1). Donc d'après le critére de Weirestrass la série de fonctions $\sum u_n$ converge uniformément sur tout $[a, +\infty[$,

- 3) Etude de la continuité de F sur \mathbb{R}_+^* . Utilisons le théorème de conservation de
- \rightarrow Toutes les u_n sont continues sur \mathbb{R}_+^* comme composée, rapport et produit de
- $\rightarrow \sum u_n$ converge uniformément sur tout $[a, +\infty[, a > 0.$

Alors F est continue sur tout $[a, +\infty[$, a > 0. Donc F est continue sur \mathbb{R}_{+}^{*} .

Exercice 3

Posons
$$a_n = \frac{2^n (n^2 + 1)}{(n+1)} \ge 0$$
 et $u_n(x) = a_n x^n$.

$$\rho=\lim_{n\to+\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to+\infty}\frac{2^{n+1}\left((n+1)^2+1\right)}{(n+2)}\frac{(n+1)}{2^n\left(n^2+1\right)}=2, \text{ donc d'après le théorème de Hadamard }R=\frac{1}{\rho}=\frac{1}{2}$$

b) Domaine de convergence
$$D$$
. Pour cela faisons l'étude aux bornes: $\leadsto u_n\left(\frac{1}{2}\right) = a_n\left(\frac{1}{2}\right)^n = \frac{(n^2+1)}{(n+1)} \sim n$ et $\sum n$ diverge (CN non vérifiée) donc $\sum u_n\left(\frac{1}{2}\right)$ diverge.

$$\Rightarrow u_n\left(-\frac{1}{2}\right) = a_n\left(-\frac{1}{2}\right)^n = \frac{\left(-1\right)^n\left(n^2+1\right)}{(n+1)} \text{ et } \lim_{n\to+\infty}\left|u_n\left(-\frac{1}{2}\right)\right| = +\infty \neq 0$$
 et $\sum u_n\left(-\frac{1}{2}\right)$ diverge (CN non vérifiée).

Donc $D =]-\frac{1}{2}, \frac{1}{2}[.$

2) Calculons sa somme
$$S$$
, $S(x) = \sum_{n \ge 0} \frac{2^n (n^2 + 1)}{(n+1)} x^n = \sum_{n \ge 0} \frac{(n^2 + 1)}{(n+1)} (2x)^n$

ie
$$S(x) = \sum_{n \ge 0} \frac{\left((n+1)^2 - 2(n+1) + 2\right)}{(n+1)} (2x)^n = \sum_{n \ge 0} \left[n - 1 + \frac{2}{(n+1)}\right] (2x)^n$$

$$Arr T_{1}(y) = \sum_{n\geqslant 0} ny^{n} = \sum_{n\geqslant 1} ny^{n} = y \sum_{n\geqslant 1} ny^{n-1} = y \left(\frac{1}{1-y}\right)' = \frac{y}{\left(1-y\right)^{2}} \ \forall y \in \mathbb{R}$$

en particuler pour
$$y = 2x$$
 on a: $\sum_{n \ge 0} n (2x)^n = \frac{2x}{(1 - 2x)^2} \ \forall x \in] - \frac{1}{2}, \frac{1}{2}[.$

$$\rightsquigarrow T_2(y) = -\sum_{n\geq 0} y^n = \frac{-1}{1-y} \ \forall y \in]-1,1[;$$

en particuler pour
$$y = 2x$$
 on a:
$$\sum_{n \ge 0} -(2x)^n = \frac{-1}{1-2x} \ \forall x \in]-\frac{1}{2},\frac{1}{2}[.$$

$$\Rightarrow T_3(y) = \sum_{n \ge 0} \frac{2}{(n+1)} y^n = \begin{cases} \frac{2}{y} \sum_{n \ge 0} \frac{y^{n+1}}{(n+1)} & \text{si} \quad y \ne 0 \\ 2 & \text{si} \quad y = 0 \end{cases} = \begin{cases} \frac{2}{y} \sum_{n \ge 1} \frac{y^n}{n} & \text{si} \quad y \ne 0 \\ 2 & \text{si} \quad y = 0 \end{cases}$$

donc
$$T_3(y) = \begin{cases} \frac{-2}{y} \log(1-y) & \text{si } y \in]-1, 1[-\{0\}] \\ 2 & \text{si } y = 0 \end{cases}$$

en particuler pour
$$y = 2x$$
 on a:
$$\sum_{n \ge 0} \frac{2}{(n+1)} (2x)^n = \begin{cases} \frac{-1}{x} \log (1-2x) & \text{si } x \in]-\frac{1}{2}, \frac{1}{2} [-\{0\}] \\ 2 & \text{si } x = 0 \end{cases}$$

4

On conclut que:
$$S(x) = \begin{cases} \frac{2x}{(1-2x)^2} - \frac{1}{1-2x} - \frac{1}{x} \log(1-2x) & \text{si } x \in]-\frac{1}{2}, \frac{1}{2}[-\{0\}] \\ 1 & \text{si } x = 0 \end{cases}$$

Exercice 4

Soit f une fonction 2π -périodique telle que $f(x) = e^{|x|+1}$ pour $x \in [-\pi, \pi]$.

- 1) Developper f en série de Fourier.
- $\leadsto f$ est localement intégrable sur $\mathbb R$ car elle l'est sur $[-\pi,\pi]$ et elle est 2π -périodique, donc sa $\mathcal{F}f$ existe
- $\leadsto e^{|x|+1}$ est paire sur $[-\pi,\pi]$ qui est centré et comme f est $2\pi-$ périodique

alors elle est paire, donc
$$b_n = 0 \ \forall n \geq 1, \ a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} e^{x+1} dx =$$

$$\frac{2}{\pi} \left[e^{x+1} \right]_0^{\pi} = \frac{2}{\pi} \left(e^{\pi+1} - e \right).$$

$$a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} e^{x+1} \cos(nx) \, dx, \text{ une IPP: } \left\{ \begin{array}{c} u = \cos(nx) \to u' = -n\sin(nx) \\ v' = e^{x+1} \to v = e^{x+1} \end{array} \right.$$

$$a_n = \frac{2}{\pi} \left(\left[e^{x+1} \cos(nx) \right]_0^{\pi} + n \int_0^{\pi} e^{x+1} \sin(nx) \, dx \right), \text{ une IPP: } \left\{ \begin{array}{c} u = \sin(nx) \to u' = n \cos(nx) \\ v' = e^{x+1} \to v = e^{x+1} \end{array} \right.$$

$$a_n = \frac{2}{\pi} \left((-1)^n e^{\pi + 1} - e + n \left(\underbrace{\left[e^{x+1} \sin(nx) \right]_0^{\pi}}_{=0} - n \int_0^{\pi} e^{x+1} \cos(nx) dx \right) \right)$$

$$a_n = \frac{2}{\pi} \left((-1)^n e^{\pi + 1} - e \right) - n^2 a_n \iff \left(1 + n^2 \right) a_n = \frac{2}{\pi} \left((-1)^n e^{\pi + 1} - e \right).$$

On a alors:
$$a_n = \frac{2((-1)^n e^{\pi+1} - e)}{\pi(1+n^2)} \ \forall n \ge 1$$

On a alors:
$$a_n = \frac{2((-1)^n e^{\pi+1} - e)}{\pi(1+n^2)} \forall n \ge 1$$

$$\mathcal{F}f(x) = \frac{(e^{\pi+1} - e)}{\pi} + \frac{2}{\pi} \sum_{n>1} \frac{((-1)^n e^{\pi+1} - e)}{(1+n^2)} \cos(nx).$$

- → Utilisons le corrolaire de Dirichle
- i) f est continue sur \mathbb{R} car elle est continue sur $[-\pi,\pi]$ et $f(\pi)=f(-\pi)$,
- ii) Comme f est paire et 2π -périodique alors il suffit de se restreindre à $[0,\pi]$,
- iii) On a f est C^1 par morceaux sur \mathbb{R} , en effet f est C^1 sur $]0,\pi[$ de plus $\lim_{x\to 0^+} f'(x) = \lim_{x\to 0^+} e^{x+1} = e \in \mathbb{R}$ et $\lim_{x\to \pi^-} f'(x) = \lim_{x\to \pi^-} e^{x+1} = e^{\pi+1} \in \mathbb{R}$ on obtient alors: $\mathcal{F}f(x) = f(x) \ \forall x \in \mathbb{R}$
- 2) Déductions:

⇒ Appliquons ★ pour
$$x = 0 : e = \frac{(e^{\pi + 1} - e)}{\pi} + \frac{2}{\pi} (e^{\pi + 1} S_1 - e S_2)$$

→ Appliquons ★ pour
$$x = \pi : e^{\pi + 1} = \frac{\binom{n}{e^{\pi + 1}} - e^{n}}{\pi} + \frac{2}{\pi} \left(e^{\pi + 1} S_2 - e S_1 \right)$$

2) Déductions:

$$\sim \text{Appliquons} \bigstar \text{ pour } x = 0 : e = \frac{\left(e^{\pi+1} - e\right)}{\pi} + \frac{2}{\pi} \left(e^{\pi+1}S_1 - eS_2\right)$$

$$\sim \text{Appliquons} \bigstar \text{ pour } x = \pi : e^{\pi+1} = \frac{\left(e^{\pi+1} - e\right)}{\pi} + \frac{2}{\pi} \left(e^{\pi+1}S_2 - eS_1\right)$$
On obtient que S_1 et S_2 vérifient le système :
$$\begin{cases}
e^{\pi+1}S_1 - eS_2 = \frac{\pi}{2}e - \frac{\left(e^{\pi+1} - e\right)}{2} \\
e^{\pi+1}S_2 - eS_1 = \frac{\pi}{2}e^{\pi+1} - \frac{\left(e^{\pi+1} - e\right)}{2}
\end{cases}$$
(3)

$$\iff \begin{cases} e.e^{\pi+1}S_1 - e^2S_2 = \frac{\pi}{2}e^2 - \frac{e\left(e^{\pi+1} - e\right)}{2} & (1) \\ e^{2(\pi+1)}S_2 - e.e^{\pi+1}S_1 = \frac{\pi}{2}e^{2(\pi+1)} - \frac{e^{\pi+1}\left(e^{\pi+1} - e\right)}{2} & (2) \end{cases}$$

$$(1) + (2) \text{ donne: } \left(e^{2(\pi+1)} - e^2\right)S_2 = \frac{\pi}{2}\left(e^{2(\pi+1)} + e^2\right) - \frac{\left(e^{\pi+1} + 1\right)\left(e^{\pi+1} - e\right)}{2}$$

$$\text{Enfin; } S_2 = \frac{\pi\left(e^{2(\pi+1)} + e^2\right)}{2\left(e^{2(\pi+1)} - e^2\right)} - \frac{\left(e^{\pi+1} + 1\right)\left(e^{\pi+1} - e\right)}{2\left(e^{2(\pi+1)} - e^2\right)} \text{ ie } S_2 = \frac{\pi\left(e^{2(\pi+1)} + e^2\right)}{2\left(e^{2(\pi+1)} - e^2\right)} - \frac{\left(e^{\pi+1} + 1\right)}{2\left(e^{\pi+1} + e\right)}$$
On remplace dans (3) $S_1 = e^{\pi+1}S_2 - \frac{\pi}{2}e^{\pi+1} + \frac{\left(e^{\pi+1} - e\right)}{2}$