Problemas Transformaciones Lineales

Cristopher Morales Ubal e-mail: c.m.ubal@gmail.com

Problemas

1. Considere la función $T: \mathbb{R}_2[x] \longrightarrow M_{1\times 3}(\mathbb{R})$ definida por

$$T(ax^2 + bx + c) = (a+b a+c b-c)$$

- (a) Demuestre que T es una transformación Lineal.
- (b) Estudiar la inyectividad de T.
- (c) Determinar una base para la imagen de T.
- 2. Sea $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ la transformación lineal definida por:

$$T\begin{pmatrix} x & y \\ z & w \end{pmatrix} = (x+y+z+w , x-y+w , z+w)$$

- (a) Calcule el núcleo e imagen de T. Indique, además, la nulidad y rango de T.
- (b) $\xi(1,-2,-1) \in \text{Im}(T)$?. Justifique.
- 3. Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la transformación lineal definida por:

$$T(x, y, z) = (x + z, y + 3z, x + y + \alpha z)$$

con $\alpha \in \mathbb{R}$.

- (a) Determine el valor de la constante α para que dim Ker (T) = 1. Calcule el dim Ker (T) en este caso.
- (b) Para el valor anterior de α , calcule Im (T).
- 4. Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$T(x, y, z) = (2x - y, x + y, y - 2z)$$

- (a) Muestre que T es una transformación lineal.
- (b) Si $\pi = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$. Muestre que $T(\pi)$ es un subespacio de \mathbb{R}^3 . Si es un plano o una recta, encuentre su ecuación.
- (c) Si $R: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ es una transformación lineal y π es un plano, ¿Puede ocurrir $R(\pi) = \mathbb{R}^3$?. Fundamente.
- 5. Considerar los planos

$$H_1 = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 2z = 0\}$$
, $H_2 = \{(x, y, z) \in \mathbb{R}^3 : x - 2y + z = 0\}$

Encuentre una transformación Lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $T(H_1) = H_2$.

6. Considere $T: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_2[x]$ la transformación lineal definida por:

$$T(p(x)) = p''(x) + p'(x)$$

Si las bases de $\mathbb{R}_3[x]$ y $\mathbb{R}_2[x]$ son, respectivamente,

$$\mathcal{B} = \left\{ 1 , 1 + 2x , 3x + x^2 , x^3 \right\}$$
$$\mathcal{D} = \left\{ 1 , x , x + x^2 , x^3 \right\}$$

Calcule la matriz asociada $\left[T\right]_{\mathcal{B}}^{\mathcal{D}}$ a la transformación T.

7. Considere los planos:

$$W_1: x+y-z=0 \land W_2: y-2z=0$$

y sea $W \subseteq \mathbb{R}^3$ el subespacio definido como $W = W_1 \cap W_2$.

(a) Hallar una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que verifique las siguientes condiciones:

i.
$$T(x, y, z) = (x, y, z), \forall (x, y, z) \in W$$
.

ii.
$$T(W_1) = W_2$$
.

iii.
$$T(1,0,0) = (0,0,0)$$

(b) Para la transformación T del item a), calcule $[T]_{\mathcal{C}}^{\mathcal{C}}$, donde \mathcal{C} es la base canónica de \mathbb{R}^3 .

Indicación: Obtenga bases adecuadas para W_1 , W_2 y W.

- 8. En esta pregunta buscaremos transformaciones lineales de \mathbb{R}^2 en \mathbb{R}^2 que cumplan las siguientes propiedades:
 - (a) Encuentre una transformación lineal de $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que

$$\operatorname{Ker}(T) = \{(x, y) \in \mathbb{R}^2 : x + y = 0\} \text{ e } \operatorname{Im}(T) = \{(x, y) \in \mathbb{R}^2 : x - y = 0\}$$

¿Es única esta transformación T?

(b) Encuentre una base de \mathcal{B} de \mathbb{R}^2 y una transformación lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ que cumpla las propiedades del punto anterior y que además tenga matriz asociada

$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$

9. Defina una transformación lineal $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ cuyo kernel está dado por las ecuaciones

$$x_1 + x_2 - x_3 - x_4 + x_5 = 0$$
, $x_2 + x_3 + x_4 - x_5 = 0$

y su imagen es el subespacio de \mathbb{R}^3 definido por

$$y_1 = \mu + \lambda$$
, $y_2 = \mu - \lambda$, $y_3 = 2\mu - 3\lambda$ $\lambda, \mu \in \mathbb{R}$

Hallar una expresión matricial de T.

- 10. Si $T:V\longrightarrow V$ es una transformación lineal tal que Ker $(T)=\mathrm{Img}\,(T)$. ¿Qué se puede decir de T^2 ?. $\left(T^2=T\circ T\right)$.
- 11. Sean V y W los espacios generados por:

$$\mathcal{B} = \left\{ \left(\begin{array}{cc} 1 & -1 \\ 1 & 2 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 3 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 1 \end{array} \right) \right\} \subseteq M_2\left(\mathbb{R} \right)$$

у

$$\mathcal{D} = \left\{1 + x - x^3, x^2 + x^3, 1 - x^2\right\} \subseteq \mathbb{R}_3[x]$$

respectivamente. Considere $T:V\longrightarrow W$ la transformación lineal tal que

$$[T]_{\mathcal{B}}^{\mathcal{D}} = \begin{pmatrix} -1 & -1 & 0\\ 2 & 1 & -1\\ -2 & 0 & 2 \end{pmatrix}$$

Calcule el núcleo, la imagen de T y sus bases respectivas. ¿Es T un isomorfismo? Justifique.

12. Sean U y V los subespacios vectoriales de \mathbb{R}^5 y \mathbb{R}^4 generados, respectivamente, por:

$$\mathcal{B} = \{(1, 2, 0, 1, -1), (0, 1, -1, 1, 1), (0, 0, 0, 1, 1)\}$$

у

$$\mathcal{D} = \{(1, -1, 0, 1), (0, 0, -1, 1)\}$$

considere $T:U\longrightarrow V$ la transformación lineal definida a través de su matriz asociada:

$$[T]_{\mathcal{B}}^{\mathcal{D}} = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$

Obtenga bases para KerT e ImT.

13. Sean C_1 y C_2 las bases canónicas de \mathbb{R}^3 y \mathbb{R}^4 , respectivamente (orden usual), $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$, $S: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ y $L: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ transformaciones lineales tales que

$$[T]_{\mathcal{C}_1}^{\mathcal{C}_2} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \\ 0 & 2 & -1 \end{pmatrix} , \quad [S]_{\mathcal{C}_2}^{\mathcal{C}_2} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 \end{pmatrix} , \quad [L]_{\mathcal{C}_2}^{\mathcal{C}_1} = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & -1 \end{pmatrix}$$

- (a) Determine explícitamente $L \circ S \circ T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$.
- (b) ¿Es S una Transformación biyectiva?.
- (c) Determine Ker(T) y Im(T).

14. Considerar la aplicación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$T(1,1,0) = (2,4,-2)$$

$$T(1,0,1) = (0,2,-2)$$

$$T(0,1,1) = (2,2,2)$$

- (a) Es T invertible? Justifique.
- (b) Pruebe que existe una base $\mathcal B$ de $\mathbb R^3$ tal que $[T]_{\mathcal B}^{\mathcal B}$ es una matriz diagonal.

15. Sea $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ una transformación lineal y sea $\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}$ una base ordenada de \mathbb{R}^3 , tal que

$$[T]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$

- (a) Pruebe que T es diagonalizable.
- (b) Encuentre una base \mathcal{C} tal que $[T]_{\mathcal{C}}$ es diagonalizable.
- (c) Encuentre el Ker T.

Soluciones

Problemas

- 1. (a) Demostración
 - (b) $\operatorname{Ker}(T) = \langle \{-x^2 + x + 1\} \rangle$, luego No es inyectiva.
 - (c) $Im(T) = \langle \{ (1 \ 1 \ 0), (1 \ 0 \ 1) \} \rangle$
- 2.
- 3. (a) $\alpha = 4$
 - (b) $(x, y, z) \in \operatorname{Im}(T) \iff z y x = 0.$
- 4. (a) Demostración.
 - (b) Demostración.
 - (c) No, pues Dim Im $(R(\pi)) < 3 = \text{Dim } \mathbb{R}^3$.

5.
$$T(x,y,z) = \left(x, \frac{y}{2}, \frac{y+2z}{2}\right)$$

- 6
- 7. (a) $T(x,y,z) = \frac{1}{2}(-y,4z,2z)$

(b)
$$[T]_{\mathcal{C}}^{\mathcal{C}} = \frac{1}{2} \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

8. (a) T(x,y) = (x + y, x + y), No es única.

(b)
$$\mathcal{B} = \left\{ \left(\frac{2}{3}, 0 \right), \left(-\frac{1}{3}, -1 \right) \right\}$$
 y $T(x, y) = \frac{3}{2} (x + y, x + y)$

- 9. $[T]_{\mathcal{B}}^{\mathcal{B}'} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 & -3 \end{pmatrix}$ donde \mathcal{B} : base canónica de \mathbb{R}^5 y \mathcal{B}' : base canónica de \mathbb{R}^3
- 10. $T^2 = 0$, es decir, es la transformación nula.
- 11.
- 12. Ker $T = \langle \{(1, 1, 1, 1, -1)\} \rangle$ y Im $T = \langle \{(1, -1, 0, 1), (-1, 1, -1, 0)\} \rangle$
- 13. (a) $(L \circ S \circ T)(x, y, z) = (2x z, 4y 2z, 4y 2x)$
 - (b) Si es biyectiva
 - (c) Ker $T = \{(0,0,0)\}$, Img $T = \{(1,-1,2,0), (-1,1,2,2), (0,0,-1,-1)\}$
- 14. (a)
 - (b)
- 15. (a) $\lambda = 0$, $\lambda = 3$, $\lambda = -3$ como todos sus valores propios son distintos luego T es diagonalizable.
 - (b) $V_{\lambda=0} = \langle (3,2,1) \rangle$, $V_{\lambda=3} = \langle (0,1,1) \rangle$, $V_{\lambda=-3} = \langle (0,-1,1) \rangle$: $\mathcal{C} = \{(3,2,1),(0,1,1),(0,-1,1)\}$
 - (c) Ker $T = V_{\lambda=0} = \langle (3, 2, 1) \rangle$