相似

Didnelpsun

目录

1	特征值与特征向量			
	1.1	迹	1	
	1.2	逆矩阵	1	
	1.3	抽象型	2	
	1.4	可逆矩阵	2	
	1.5	实对称矩阵	2	
2	相似	理论	3	
3	3 判断相似对角化		3	

特征值往往与前面的内容进行混合考察。

1 特征值与特征向量

1.1 迹

例题: 已知 A 是 3 阶方阵,特征值为 1, 2, 3, 求 |A| 的元素 a_{11}, a_{22}, a_{33} 的代数余子式 A_{11}, A_{22}, A_{33} 的和 $\sum_{i=1}^{3} A_{ii}$ 。

解: 首先代数余子式的和 A_{11} , A_{22} , A_{33} 一般在行列式展开定理中使用,但是这里给出的不是一行或一列的代数余子式,而是主对角线上的代数余子式,这就无法使用代数余子式来表达行列式的值了。

而另一个提到代数余子式的地方就是伴随矩阵 A^* ,所求的正好是伴随矩阵的迹 $tr(A^*) = A_{11} + A_{22} + A_{33}$ 。

又根据特征值性质,特征值的和为矩阵的迹,特征值的积为矩阵行列式的值,所以 $tr(A^*) = A_{11} + A_{22} + A_{33} = \lambda_1^* + \lambda_2^* + \lambda_3^*$ $= \sum_{i=1}^3 \frac{|A|}{\lambda_i} = \sum_{i=1}^3 \frac{\lambda_1 \lambda_2 \lambda_3}{\lambda_i} = \lambda_2 \lambda_3 + \lambda_1 \lambda_3 + \lambda_1 \lambda_2 = 2 + 3 + 6 = 11.$

1.2 逆矩阵

1.

通过相关式子将逆矩阵转换为原矩阵。同一个向量的逆矩阵的特征值是原矩阵的特征值的倒数。

例题: 已知
$$\overrightarrow{\alpha} = (a,1,1)^T$$
 是矩阵 $A = \begin{bmatrix} -1 & 2 & 2 \\ 2 & a & -2 \\ 2 & -2 & -1 \end{bmatrix}$ 的逆矩阵的特征向

量,则求 $\overrightarrow{\alpha}$ 在矩阵 A 中对应的特征值。

解: 由于 $\overrightarrow{\alpha}$ 是 A^{-1} 的特征向量,所以令此时的特征值为 λ_0 ,则定义 $\lambda_0 \overrightarrow{\alpha} = A^{-1} \overrightarrow{\alpha}$, $\lambda_0 A \overrightarrow{\alpha} = \overrightarrow{\alpha}$ 。

$$\mathbb{E} \lambda_0 \begin{bmatrix} -1 & 2 & 2 \\ 2 & a & -2 \\ 2 & -2 & -1 \end{bmatrix} \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}, \quad \mathbb{E} \lambda_0 \begin{bmatrix} -a & 2 & 2 \\ 2a & a & -2 \\ 2a & -2 & -1 \end{bmatrix} = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}.$$

即根据矩阵代表的是方程组,得到 $\lambda_0(4-a) = a, \lambda_0(3a-2) = 1, \lambda_0(2a-3) = 0$

又
$$\lambda_0 \neq 0$$
, $3a - 2 = 2a - 3$, $a = -1$, 则 $\lambda_0 = -\frac{1}{5}$ 。
所以矩阵 A 对应的特征值为 -5 。

1.3 抽象型

题目只会给对应的式子,来求对应的特征向量或特征值。需要记住特征值的 关系式然后与给出的式子上靠拢,不会很复杂。

例题: 已知 A 为三阶矩阵,且矩阵 A 各行元素之和均为 5,则求 A 必然存在的特征向量。

解:由于是抽象型,所以没有实际的数据,就不能求出固定的特征值, $\lambda \xi = A \xi$ 。

又矩阵 A 各行元素之和均为 5, 所以转换为方程组:

$$\begin{cases} A_{11} + A_{12} + A_{13} = 5 \\ A_{21} + A_{22} + A_{23} = 5 \end{cases}$$
,转为矩阵:
$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} + A_{32} + A_{33} = 5 \end{cases}$$
即 $\xi = (1, 1, 1)^T$ 。

1.4 可逆矩阵

使用可逆矩阵相似对角化的性质。若 $A \sim B$,则 $P^{-1}AP = B$ 。B 为纯量阵。且 B 的迹为 A 的特征值。P 为特征向量。

例题: 已知
$$P^{-1}AP = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
, $P = (\alpha_1, \alpha_2, \alpha_3)$ 可逆,求 A 关于特

征值 $\lambda = 1$ 的特征向量。

解:根据 $P^{-1}AP = \Lambda$,所以 P 为特征向量,1,1,-1 为特征值。

1.5 实对称矩阵

实对称矩阵的不同特征值的特征向量相互正交 $(A^TA=0)$ 。

例题: 已知 A 为三阶实对称矩阵,特征值为 1,3-2,其中 $\alpha_1 = (1,2,-2)^T$, $\alpha_2 = (4,-1,a)^T$ 分别属于特征值 $\lambda = 1$, $\lambda = 3$ 的特征向量。求 A 属于特征值 $\lambda = -2$ 的特征向量。

2 相似理论

3 判断相似对角化

可以使用相似对角化的四个条件,但是最基本的使用还是 A 有 n 个无关的特征向量 ξ 。