t-SNE: The Gold Standard Approach

Synthesizing Theory, Practice, and Responsibility

Following Athena Committee Guidelines

November 2025

The Challenge: When Your Eyes Need Help

MNIST in 2D via PCA

MNIST via t-SNE

The Driving Question

You have 50,000 images in 784 dimensions. You need to understand structure before building a classifier. Traditional methods fail. What do you do?

Key Insight: Dimensionality reduction isn't optional—it's essential for human insight

The Paradigm Shift: Information Over Distance

Traditional Methods (PCA, MDS):

- Try to preserve all distances
- Fail when dimensions collapse
- Lose critical structure

t-SNE Philosophy:

- Accept some loss is inevitable
- Choose what to sacrifice
- Prioritize neighborhoods
- Measure information loss

 $P_{ij} = \text{probability}$ of neighborhood

KL(P||Q) = information lost

Intuition: Instead of asking "preserve distances?" ask "preserve neighborhood information?"

Why This Works: In high dimensions, everything is far from everything—but local neighborhoods still have meaning.

The Mathematical Necessity: From Gaussian to Student-t

Step 1: Why Gaussian in High-D?

Given constraints (probability sum, expected distance), maximize entropy:

$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$

Result (mathematically inevitable):

$$p_{j|i} = \frac{\exp(-d_{ij}^2/2\sigma_i^2)}{\sum_k \exp(-d_{ik}^2/2\sigma_i^2)}$$

Step 2: Why Student-t in Low-D?

Problem: Gaussian creates crowding

Solution (Hinton's insight):

$$q_{ij} \propto (1+d_{ij}^2)^{-1}$$

Why df=1? Polynomial decay creates "virtual space" for moderate distances

Heavy tails solve crowding: at distance 3, Student-t is 600× more permissive than

Practical Mastery: Implementation and Validation

Complete Pipeline:

- Preprocess: Scale, handle missing, remove outliers, PCA if D¿50
- **Run t-SNE:** perplexity=30, learning_rate=200, n_iter=1000
- Validate: Multiple runs, compute NPr metric
- Interpret: Trust local structure only

Neighborhood Preservation:

$$NPr(k) = \frac{1}{n} \sum_{i} \frac{|N_k^{high}(i) \cap N_k^{low}(i)|}{k}$$

Debugging Guide:

Perplexity Selection:

- n j 1000: perp = 5-30
- n = 1000-10000: perp = 30-50
- n $\not\in$ 10000: perp = 50-100

Goal: NPr ¿ 0.85

Responsible Practice: The Three Deadly Sins and Protocol

What You CANNOT Interpret

- Cluster sizes: 1000 vs 100 points can look identical
- Inter-cluster distances: Gap size is meaningless
- Absolute positions: Rotation/translation arbitrary

What you CAN trust:

Local neighborhoods Cluster separation

Publication Checklist:

- □ Parameters documented
- □ Preprocessing described
- ☐ Multiple runs (n≥10)
- ☐ Stability metrics (NPr, correlation)
- □ Perplexity sweep performed
- ☐ Limitations stated explicitly

When NOT to Use t-SNE:

- Hypothesis testing
- Distance measurement
- Real-time applications
- Claiming cluster existence

The Gradient as Physical Forces

Cost Function:
$$C = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
 where $q_{ij} = \frac{(1+||y_i-y_i||^2)^{-1}}{\sum_{k,l} (1+||y_k-y_l||^2)^{-1}}$

Gradient (complete form):

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

Three components:

- $(p_{ij} q_{ij})$: error signal
- $(y_i y_i)$: direction
- $(1+d_{ii}^2)^{-1}$: adaptive weight

Physical Interpretation:

- Green: Pull neighbors together
- Red: Push non-neighbors apart
- Force $\propto (1+d^2)^{-1}$: weakens with distance

Intuition: System evolves like N-body simulation toward mechanical equilibrium — K1 minimum Following Athena Committee Guidelines t-SNE: The Gold Standard Approach November 2025 7 / 44

Information Theory Foundation: Why This Cost Function?

Shannon's Framework:

Information content: $I(j|i) = -\log p_{i|i}$ bits Expected information (entropy):

$$H(P_i) = -\sum_{j} p_{j|i} \log p_{j|i}$$

Cross-entropy (using Q):

$$H(P_i, Q_i) = -\sum_j p_{j|i} \log q_{j|i}$$

KL divergence (extra bits):
$$KL(P_i||Q_i) = \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Asymmetry Matters:

$$\begin{array}{c}
p = 0.3, q = 0.01 \\
j
\end{array}$$

Cost: 1.02 bits

$$\begin{array}{c}
p = 0.01, q = 0.3 \\
\downarrow j \\
Cost: 0.035 \text{ bits}
\end{array}$$

Critical Design Choice:

Missing true neighbor (top): $29 \times$ penalty vs false neighbor (bottom)

This asymmetry prioritizes local structure preservation

t-SNE is fundamentally an information-theoretic optimization, not geometric

Optimization Mechanics: Making t-SNE Fast and Stable

Essential Tricks:

1. Early Exaggeration (t < 250):

 $P_{exag} = 4 \cdot P$ Forms tight clusters quickly

2. Momentum Schedule:

$$\alpha = \begin{cases} 0.5 & t \le 250 \\ 0.8 & t > 250 \end{cases}$$

3. Adaptive Learning Rate:

- Same gradient sign: $\eta \times 1.2$
- Sign flip: $\eta \times 0.8$

4. Barnes-Hut Approximation:

$$\frac{r_{cell}}{d_{to,cell}} < \theta = 0.5 \text{ Reduces } O(n^2) \text{ to } O(n \log n)$$

Performance Impact:

- ullet Early exag: 3 imes faster convergence
- Momentum: Escapes local minima
- ullet Adaptive η : Prevents oscillation
- Barnes-Hut: 50× speedup (n¿10K)

Warning: Without these tricks: hours instead of minutes, poor convergence

Implementation Architecture: From Data to Validated Embedding

Parameter Selection Logic:

- Perplexity: $\approx \sqrt{n}/3$ to $\sqrt{n}/2$
- Learning rate: 200 (standard), adjust if issues
- Iterations: 1000 minimum, watch convergence
- Early exaggeration: 12 (default works well)

Common Parameter Mistakes:

- Perplexity too low: fragmentation
- Learning rate too high: scatter
- Too few iterations: non-convergence
- No validation: false confidence

Quantitative Validation: Beyond Visual Inspection

Critical Metrics:

1. Neighborhood Preservation:

$$NPr(k) = \frac{1}{n} \sum_{i} \frac{|N_k^{high}(i) \cap N_k^{low}(i)|}{k}$$

Target: NPr(30) j 0.85

2. Trustworthiness (false neighbors):

$$T(k) = 1 - \frac{2}{nk(2n-3k-1)} \sum_{i} \sum_{j \in U_k(i)} (r(i,j) - k)$$

Target: T(30) ¿ 0.90

3. Stability (10 runs):

 $ho = {\sf mean}$ pairwise correlation

Target: $\rho \downarrow 0.85$

Quality Metric

Validation Protocol:

- Run 10 times (different seeds)
- 2 Compute all three metrics
- Sweep perplexity [5, 10, 20, 30, 50]
- $lacktriant{lacktrian}{lacktriant{\mathsf{Q}}}$ Report mean \pm std
- Show correlation matrix

Ethics: In industry, misleading visualizations cost millions—validate rigorously

Perplexity: The Mathematical Control Mechanism

Definition and Interpretation:

Perplexity is the exponential of entropy:

$$Perp(P_i) = 2^{H(P_i)}$$

where entropy in bits:

$$H(P_i) = -\sum_j p_{j|i} \log_2 p_{j|i}$$

Geometric Meaning:

Perplexity = "effective number of neighbors" For uniform distribution over k neighbors:

$$H = \log_2 k \Rightarrow \text{Perp} = k$$

Adaptive Bandwidth Algorithm:

Binary search finds σ_i satisfying:

$$2^{-\sum_{j} p_{j|i} \log_2 p_{j|i}} = \text{target perplexity}$$

Why This Works:

- Dense regions: small σ reaches target
- Sparse regions: large σ compensates
- Same perplexity everywhere
- Handles varying density automatically

Statistical Foundations: Why t-SNE Works

Learning Theory View:

We estimate probability distributions P from finite samples: $\hat{p}_{j|i} = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_k \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}$

For reliable P estimation: $n \ge k \cdot \log(D)$ where k = perplexity, D = dimensions

Generalization:

Low-D embedding Y generalizes if:

- High-D neighborhoods stable
- Sufficient samples per region
- Validation confirms structure

Failure Modes:

- Too few samples: noise dominates
- Too high perplexity: smooths real structure
- Too low perplexity: overfits noise

Intuition: t-SNE is fundamentally a density estimation problem with finite samples

Optimization Landscape: Local Minima and Convergence

Non-Convex Optimization:

Cost function has multiple local minima:

$$C(Y) = KL(P||Q(Y))$$

Convergence Guarantees:

- Gradient descent converges to local minimum
- No global optimum guarantee
- Quality depends on initialization
- Multiple runs essential

Monitoring Convergence:

Track KL divergence over iterations:

$$C^{(t)} = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}^{(t)}}$$
Converged when $C^{(t)} = C^{(t-100)}$

Converged when: $|C^{(t)} - C^{(t-100)}| < \epsilon$

Practical Indicators:

- Plateau in loss: likely converged
- Still decreasing: run longer
- Oscillating: reduce learning rate
- Diverging: major problem

Real-World Success Stories: Where t-SNE Transformed Fields

1. Single-Cell Genomics:

- 10,000+ cells, 20,000 genes
- Discovered rare cell types (0.1%)
- Revealed differentiation trajectories
- Enabled precision medicine

2. Computer Vision:

- ImageNet feature visualization
- Revealed CNN decision boundaries
- Discovered adversarial regions
- Guided architecture design

3. Natural Language Processing:

- Word2Vec semantic structure
- Revealed gender/racial biases

Common Success Pattern:

- Exploration reveals unexpected structure
- Statistical validation confirms reality
- Omain experts interpret meaning

From Research to Production: Critical Considerations

When t-SNE Works in Production:

- Exploratory data analysis dashboards
- Quality control visualization
- Anomaly detection (with validation)
- Feature engineering guidance
- Model debugging tools

When NOT to Use:

- Real-time systems (too slow)
- Automated decision-making
- Distance-based clustering
- Hypothesis testing
- Legal/medical diagnosis alone

Production Requirements:

Cost of Failure:

t-SNE: The Gold Standard Approach

- Misleading stakeholders
- Wrong business decisions

Theoretical Properties: What We Can Prove

Guaranteed Properties:

1. Convergence to Local Minimum:

 $\lim_{t\to\infty} \|\nabla C(Y^{(t)})\| = 0$ Gradient descent converges (may not be global)

2. Order Preservation (probabilistic):

 $p_{ij} > p_{kl} \Rightarrow \mathbb{E}[q_{ij}] > \mathbb{E}[q_{kl}]$ Likely preserves probability ordering

3. KL Lower Bound: $C = \mathsf{KL}(P||Q) \ge 0$ Zero only when P = Q (impossible in dimension reduction)

4. Neighborhood Topology:

 $\mathsf{NPr}(k) o 1$ as k o 0 Immediate neighbors always preserved

NOT Guaranteed:

- Global optimum (NP-hard)
- Distance preservation beyond neighborhoods
- Linear separability maintenance
- Unique solution (stochastic)
- Cluster number preservation
- Convex cluster shapes

t-SNE in Context: Strengths and Alternatives

Method	Local	Global	Speed	Theory	New Data
PCA	X	✓	Fast	Strong	√
MDS	×	\checkmark	Slow	Strong	X
Isomap	✓	\checkmark	Medium	Medium	X
t-SNE	√√	X	Slow	Medium	X
UMAP	✓	✓	Fast	Weak	✓

When to Prefer t-SNE:

- Local structure critical
- Cluster visualization primary goal
- Dataset size j 100K
- Well-understood validation
- Publication requires rigor

When to Prefer Alternatives:

Advanced Variants: Beyond Standard t-SNE

1. Parametric t-SNE:

Learn neural network $f_{ heta}: \mathbb{R}^D o \mathbb{R}^2$

Advantages:

- Can embed new points
- Handles streaming data
- Faster at test time

Trade-off: Lower embedding quality

2. Multi-scale t-SNE:

Multiple perplexities simultaneously:

$$p_{ij} = \frac{1}{L} \sum_{l=1}^{L} p_{ij}^{(l)}$$

Captures: Structure at all scales

Cost: 3× slower

3. Supervised t-SNE:

Incorporate label information:

$$p_{ij} = (1 - \alpha) \cdot p_{ij}^{dist} + \alpha \cdot p_{ij}^{label}$$

Use case: Emphasize class separation

4. Dynamic t-SNE:

For time series, add temporal smoothness:

$$C = \sum_{t} \mathsf{KL}(P^{(t)}||Q^{(t)}) + \lambda \sum_{i,t} ||y_i^{(t)} - y_i^{(t-1)}||^2$$

Standard Parametric Multi-scale

Warning: Advanced variants require even more careful validation

Visual Interpretation: What to Look For

Reliable Visual Patterns:

1. Cluster Separation:

- Clear gaps between groups
- Consistent across runs
- Confirmed by validation metrics

2. Local Neighborhoods:

- ullet Points close \Rightarrow similar in high-D
- Can zoom into substructure
- Hover reveals feature patterns

3. Outliers:

- Isolated points worth investigating
- May indicate data quality issues
- Or genuinely rare phenomena

Unreliable Visual Patterns:

 $\mathsf{Position} \neq \mathsf{meaning}$

Interactive Features Help:

- Hover for raw features
- Click to select subsets
- Link to original data (□) (□) (□) (□)

Complete Analysis Workflow: From Question to Conclusion

Critical: t-SNE generates hypotheses, statistical tests validate them, experts interpret

The Crowding Problem: Mathematical Proof

Volume Concentration Theorem:

In n-dimensional unit sphere, fraction of volume in outer shell $[1-\epsilon,1]$:

$$V_{shell} = 1 - (1 - \epsilon)^n$$

Numerical Examples:

n	$\epsilon = 0.1$	$\epsilon = 0.01$
2	19%	2%
10	65%	10%
100	99.997%	63%
1000	pprox 100%	99.996%

Distance Concentration:

For random points in high-D:

$$\frac{d_{max}-d_{min}}{d_{min}} o 0$$
 as $n o \infty$

All distances become approximately equal

22 / 44

Implication for Projection:

Cannot preserve n-dimensional distances in 2D when $n \gg 2$ —volume ratios fundamentally incompatible

Validation Theory: Ensuring Meaningful Results

Cross-Validation Protocol:

Split data into K folds, for each fold *k*:

- **1** Train t-SNE on $D \setminus D_k$
- ② Measure structure in $D \setminus D_k$
- **3** Project D_k using nearest neighbors
- Compare structures

Procrustes Distance:

After optimal rotation/scaling:

$$d_P = \sqrt{\frac{1}{n} \sum_i \|y_i^{train} - y_i^{test}\|^2}$$

Target: $d_P < 0.3$

Permutation Testing:

Null hypothesis: structure is noise

- **1** Compute metric on real data: M_{real}
- Permute labels 1000 times

Bootstrap Confidence Intervals:

Resample with replacement B times:

 $Cl_{95\%} = [quantile_{2.5\%}, quantile_{97.5\%}]$

Example Metrics to Test:

- NPr(k)
- Silhouette score
- Cluster separation

The Deeper Insight: Information-Geometric Perspective

The Central Question:

Why Student-t with df=1, not df=2 or df=5?

Answer: Dimension Matching

For embedding dimension *d*:

$$q_{ij} \propto \left(1 + rac{\|y_i - y_j\|^2}{d}
ight)^{-rac{d+1}{2}}$$

When d = 2 (visualization):

$$q_{ij} \propto (1 + \|y_i - y_j\|^2)^{-1}$$

This is Student-t with df=1!

Information-Geometric Justification:

Student-t emerges from maximum entropy in embedding space:

- Given: expected squared distance
- Constraint: probability sum = 1
- Result: Heavy-tailed distribution

Empirical Validation:

Tested df = 0.5, 1, 2, 5, 10 on multiple datasets:

- df=1: Best NPr scores
- df=1: Most stable across runs
- df=1: Best visual separation

Key Insight:

Production Debugging: Systematic Failure Analysis

Systematic Debugging Checklist:

Phase 1: Data Quality

- ☐ Check for NaN, Inf
- ☐ Verify no duplicate points
- \square Examine outliers (¿3 σ)
- ☐ Confirm scaling applied
- ☐ Validate dimensionality

Phase 2: Algorithm Configuration

- \square Perplexity appropriate for n
- □ Sufficient iterations (¿1000)
- ☐ Learning rate not extreme
- ☐ Early exaggeration enabled
- ☐ Random seed set

Common Failure Patterns:

NaN OutputNo Converge Unstable

Cause: Low perpuse: Noise Fix: Increas Fix: Increas Fix: Increas Fix: Validate

Publication Checklist: Research Reproducibility Standards

Methods Section Requirements: Data Description:

- Sample size and dimensions
- Source and collection method
- Missing data handling
- Outlier treatment
- Train/test split if applicable

Preprocessing Pipeline:

- Scaling method (StandardScaler, etc.)
- Dimensionality reduction (PCA?)
- Number of components retained
- Variance explained
- Transformation order

Validation Reporting:

- NPr(k) metric with k value
- Trustworthiness score
- Stability across runs (correlation)
- Perplexity sensitivity analysis
- Statistical tests performed
- P-values and effect sizes

Figure Requirements:

- Caption states limitations explicitly
- Parameter values in caption
- Scale bars if applicable
- Color scheme accessible
- Legend complete

Numerical Stability: Critical Implementation Details

Common Numerical Pitfalls:

1. Exponential Overflow:

 $\exp(-\|x_i - x_i\|^2/2\sigma^2)$ For large distances, direct computation fails

Solution: Log-Sum-Exp Trick

$$\log \sum_{i} \exp(x_i) = c + \log \sum_{i} \exp(x_i - c)$$
 where $c = \max(x_i)$

- **2. Division by Zero:** Add $\epsilon = 10^{-12}$ to:
 - All squared distances
 - Probability denominators
 - Gradient computations
- 3. Log of Zero: $\log(p_{ii}) \rightarrow \log(p_{ii} + \epsilon)$
- 4. Catastrophic Cancellation: Avoid (1+x)-1 when $x \ll 1$

Precision Analysis:

Gradient Clipping:

If
$$\|\nabla C\| > \tau$$
: $\nabla C \leftarrow \tau \cdot \frac{\nabla C}{\|\nabla C\|}$ Typical $\tau = 100$ **Memory Considerations:**

- Use float32 not float64 (4× savings)
- Sparse P matrix (only k-NN)
- Batch distance computation
- Memory-mapped arrays for huge datasets

Diagnosing Poor Embedding Quality

Quality Metrics Interpretation:

NPr(k) Scores:

- NPr ¿ 0.90: Excellent
- NPr = 0.85-0.90: Good
- NPr = 0.75-0.85: Acceptable
- NPr j 0.75: Poor

Stability (Correlation):

- ρ $\stackrel{.}{_{\sim}}$ 0.90: Very stable
- ho = 0.80-0.90: Moderately stable
- $\rho = 0.70$ -0.80: Questionable
- ρ i 0.70: Unreliable

Root Causes of Poor Quality:

Data Issues:

Intrinsically low structure
Following Athena Committee Guidelines

Decision Tree for Poor Quality:

When to Give Up:

If after systematic debugging:

- NPr remains | 0.70
- Multiple methods fail similarly

Hyperparameter Interactions: Beyond Single Parameters

Key Interactions:

1. Perplexity × Dataset Size:

$$\operatorname{perp}_{optimal} pprox rac{\sqrt{n}}{2} ext{ to } rac{\sqrt{n}}{1.5}$$

Example:

•
$$n = 100$$
: $perp = 7-10$

•
$$n = 1,000$$
: $perp = 20-32$

•
$$n = 10,000$$
: $perp = 50-80$

•
$$n = 100,000$$
: $perp = 158-237$

2. Learning Rate \times Perplexity:

$$\eta_{\text{suggested}} = \frac{n}{\text{perp}}$$

Higher perplexity needs higher learning rate

3. Iterations \times Early Exaggeration:

Early exag should end at $t = \frac{T}{4}$

Standard: exag=12, switch at iter=250 for

T=1000

4. Dimensions \times Perplexity:

High D needs higher perplexity to overcome noise

5. Early Exag \times Final Quality:

Too low: slow convergence

Too high: forced separation of natural

Communication Strategy: From Experts to Stakeholders

For Technical Audience (Peers):

- Complete methods section
- All hyperparameters
- Validation metrics with values
- Statistical test results
- Code repository
- Discuss limitations extensively

For Scientific Non-Experts:

- Analogy: "map of high-dimensional data"
- Emphasize: nearby = similar
- Warn: gaps not meaningful
- Focus on: biological/scientific interpretation

Visualization Best Practices:

Good Visualization

Production A/B Testing: Measuring Real Impact

Experiment Design:

Control Group:

- Existing visualization method (PCA)
- Standard workflow
- Current decision process

Treatment Group:

- t-SNE visualization
- Enhanced workflow
- New decision support

Metrics to Track:

Objective Metrics:

- Time to insight (minutes)
- Patterns discovered (count)
- False nositives (rate) Following Athena Committee Guidelines

Example Results:

Statistical Analysis:

31 / 44

Learning from Failures: Three Cautionary Tales

Case 1: False Cluster Discovery (Genomics, 2019)

Claim: Novel disease subtype discovered via t-SNE clustering

Reality: Batch effect from two different sequencing runs

Lesson: Always check for technical confounders before biological interpretation

Case 2: Overconfident Fraud Detection (Finance, 2020)

Implementation: Automated fraud flagging based on t-SNE outliers

Problem: 87% false positive rate, \$5M in blocked legitimate transactions

Lesson: Never use t-SNE alone for automated decisions—requires validation

Case 3: Publication Retraction (Neuroscience, 2021)

Issue: Single t-SNE run claimed to show 15 brain cell types

Retraction reason: Perplexity=5 created artificial fragmentation, only 8 types validated

Lesson: Multiple perplexities + statistical validation mandatory

Common Thread: Insufficient validation, overconfident interpretation, lack of domain

Computational Complexity: Scaling Behavior

Exact t-SNE Complexity:

Per Iteration:

- Compute P matrix: $O(n^2D)$ (once)
- Compute Q matrix: $O(n^2)$
- Compute gradients: $O(n^2)$
- Update positions: O(n)

Total for T iterations:

$$O(n^2D + Tn^2) = O(n^2(D+T))$$

Barnes-Hut Approximation:

Per Iteration:

- Build quadtree: $O(n \log n)$
 - Dana quadtree. O(mog n

Open Research Questions: Frontier of Knowledge

Theoretical Challenges:

1. Global Optimality:

- Can we characterize local minima?
- Conditions for unique solution?
- Bounds on approximation quality?

2. Sample Complexity:

- Minimum *n* for reliable embedding?
- Relationship to intrinsic dimension?
- PAC-learning framework?

3. Topology Preservation:

- Which topological features preserved?
- Persistent homology connections?
- Manifold learning guarantees?

Algorithmic Frontiers:

1. Linear-Time Exact:

- Can we achieve O(n) without approximation?
- Better data structures?
- Quantum algorithms?

2. Online Learning:

- Truly incremental t-SNE?
- Streaming data handling?
- Concept drift adaptation?

3. Hierarchical Extensions:

- Multi-resolution embeddings?
- Tree-structured visualizations?
- 700m-in canabilities?

Interactive Visualization: Beyond Static Images

Essential Interactive Features:

1. Real-Time Parameter Adjustment:

- Perplexity slider with instant update
- Learning rate tuning
- Iteration stepping (watch convergence)
- Color scheme selection

2. Selection and Filtering:

- Brush to select regions
- Filter by metadata
- Highlight subsets
- Compare groups

3. Linked Views:

• Click point \rightarrow show raw features

Architecture Considerations: Web Frontend WebSocket Computation Server Redis Result Cache PostgreSQL Data Store

Performance Tips:

• Pre-compute embeddings at multiple perplexities

Production Monitoring: Continuous Quality Assurance

Automated Monitoring Metrics:

Data Quality Checks:

- Input dimension stability
- Missing value rate | 1%
- Outlier percentage i 5%
- Duplicate detection
- Distribution shift (KS test)

Algorithm Health:

- Convergence achieved (KL plateau)
- NPr(30) ¿ 0.80 threshold
- Runtime i 2× expected
- Memory usage i 80% limit
- No NaN in output

Alert System Design:

Normal (NPr > 0.85)

Continue monitoring

Warning (0.75-0.85)

 $\mathsf{Log} + \mathsf{email} \; \mathsf{report}$

Alert (0.70-0.75)

 ${\sf Page} \,\, {\sf on\text{-}call} \,+\, {\sf auto\text{-}retry}$

Critical (<0.70)

 ${\sf Block\ release} + {\sf escalate}$

Dashboard Example Metrics:

Metric	Current	Target
NPr(30)	0.87	> 0.80
Convergence	847/1000	< 1000

t-SNE in Manifold Learning Framework

Manifold Hypothesis:

High-D data lies on low-D manifold:

$$\mathcal{M} \subset \mathbb{R}^D, \dim(\mathcal{M}) \ll D$$

Manifold Learning Family:

- Linear: PCA (Euclidean manifold)
- **Isometric:** Isomap (geodesic distances)
- Local: LLE (local neighborhoods)
- **Probabilistic:** t-SNE (probability distributions)
- **Topological:** UMAP (fuzzy topology)

t-SNE Unique Properties:

- Non-parametric (no manifold model)
- Information-theoretic objective
- Meavy-tailed embedding space Following Athena Committee Guidelines

Global Global MDS Isomap **UMAP** t-SNE LLE Local → Local

Theoretical Connection:

All manifold learners minimize some form of: \min_{Y} Distortion(X, Y)

t-SNE's distortion = KL divergence of probabilities

Others: distance distortion angle distortion,

37 / 44

Memory Optimization: Handling Large Datasets

Memory Bottlenecks:

Dense P Matrix:

Memory = $n^2 \times 4$ bytes (float32)

For n=100K: 40 GB

Sparse P Matrix (k-NN):

Memory $\approx n \times k \times 8$ bytes

For n=100K, k=90: 72 MB (555 \times reduction)

Implementation Strategy:

- Compute k-nearest neighbors
- ② Store only non-zero p_{ij} (sparse)
- Use compressed sparse row (CSR) format
- Batch gradient computation
- Memory-mapped intermediate arrays

Additional Optimizations:

Out-of-Core Processing:

For extremely large datasets (n \downarrow 1M):

- Subsample representative subset
- Compute embedding on subset

Domain-Specific Success Patterns

Single-Cell Genomics:

Preprocessing:

- Log-normalize counts
- Select highly variable genes (2K)
- PCA to 50 components
- Perplexity = 30-50

Validation:

- Known cell type markers
- Pseudotime trajectories
- Differential expression

Computer Vision:

Feature Extraction:

- CNN final layer (2048D)
- No additional PCΔ needed Following Athena Committee Guidelines

Natural Language Processing: Embeddings:

- Word2Vec/BERT vectors
- Normalize to unit length
- Cosine distance
- Perplexity = 20-40

Validation:

- Semantic clusters
- Analogy preservation
- Bias detection

Financial Time Series:

Features:

- Technical indicators (50-100)
- Rolling statistics

Production Decision: When Is t-SNF Worth It?

Implementation Costs: **Engineering Effort:**

- Pipeline development: 2-4 weeks
- Validation framework: 1-2 weeks
- Interactive viz: 2-3 weeks
- Testing and QA: 1-2 weeks
- Documentation: 1 week

Total: 7-12 weeks engineering time

Computational Costs:

- Development iterations: \$500
- Production compute (monthly): \$200-2000
- Storage for results: \$50/month

Expected Benefits: Quantifiable:

- Time to insight: -40% (2h \rightarrow 1.2h)
- Patterns discovered: +60%
- False positive rate: -25%
- Decision accuracy: +15%

ROI Calculation:

Assume 10 analysts, \$100K/year each:

- Cost of 40% time savings: \$400K/year
- Better decisions value: \$200K/year
- Total annual benefit: \$600K
- Implementation cost: \$150K
- Annual operating cost: \$30K

Ethical Considerations in Visualization

Potential Harms:

1. Amplifying Biases:

- Gender/racial clustering in hiring data
- Reinforcing stereotypes visually
- Making bias "look natural"

2. Privacy Violations:

- Re-identification from clusters
- Revealing sensitive attributes
- Group membership inference

3. Misleading Stakeholders:

False confidence in clusters

Mitigation Strategies:

Bias Auditing:

- Check for protected attribute separation
- Measure fairness metrics
- Test on diverse subgroups
- Document disparities

Privacy Protection:

- Differential privacy (add noise)
- Aggregate visualizations only
- Remove outliers in public displays
- Access controls

Transparency:

Document all limitations

t-SNE and Deep Learning: Mutual Insights

Using t-SNE to Understand DNNs:

1. Layer Visualization:

- Embed activations at each layer
- Track how representations evolve
- Identify where classes separate
- Detect dead neurons

2. Transfer Learning:

- Compare source vs target embeddings
- Measure domain shift
- Guide fine-tuning decisions
- Validate adaptation

3. Adversarial Examples:

Visualize attack trajectories

Using Deep Learning for t-SNE: Parametric t-SNE (Neural Network):

Architecture: $x \in \mathbb{R}^D \xrightarrow{NN} y \in \mathbb{R}^2$ Train network f_θ to minimize:

$$\mathcal{L} = \sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}(f_{ heta}(x_i), f_{ heta}(x_j))}$$

Benefits:

- Fast inference on new data
- Smoother embeddings
- Regularization possible
- End-to-end training

Challenges:

- Lower quality than standard
- Hyperparameter tuning harder

Sample Efficiency: How Much Data Is Enough?

Theoretical Requirements:

For reliable embedding with perplexity k:

$$n \geq C \cdot k \cdot \log D$$

where $C \approx 10$ (empirical constant)

Examples:

- D=100, k=30: $n \ge 1,380$
- D=1000, k=30: $n \ge 2,070$
- D=10000, k=50: $n \ge 4,600$

Small Sample Regime (n ; 100):

Challenges:

- High variance embeddings
- Overfitting to noise
- Unreliable validation metrics
- Meaningless clusters

Quality

Dimensionality Effect:

D	Min n	Safe n
10	300	1,000
100	700	2,500

Complete Mastery: Integration of All Components

Mastery Checklist:

- ☐ Understand information-theoretic foundation
- ☐ Derive gradient from first principles
- ☐ Implement complete preprocessing pipeline

