আকৃতি দিয়ে যায় চেনা

মনে করো, তোমরা নতুন বাসায় গিয়ে উঠেছো। সেখানে তোমাকে নতুন ঘর দেওয়া হয়েছে। ঘরে বিছানা, আলমারি, ড্যার, বেডসাইড টেবিল সবই আছে। এক পাশের দেয়াল জুড়ে বিশাল জানালাও আছে, সেখান দিয়ে চমৎকার আলো আসে। কিন্তু তোমার প্রিয় পড়ার টেবিল আর চেয়ারটা নিই। এত সুন্দর একটা ঘর পেলে কিন্তু পড়ার জায়গা পাওয়া যাচ্ছে না, কি বিপদ না? নিচের ছবিতে দেখো, সবকিছুর মাপ কত ফিট করে বলে দেওয়া আছে। তোমার বড় শখ পড়ার টেবিলটিতে জানালা দিয়ে আলো এসে পড়বে। এর মাঝে আবার আলমারিটি দেয়াল থেকে সরানো যায় না। আর ঘর থেকে কিছু জিনিস সরিয়ে বাইরে রাখবে তারও উপায় নাই, তবে কিছু আসবাবের স্থান পরিবর্তন করতে পারবে। এখন কী করে টেবিল আর চেয়ারটি একটি পছন্দমত জায়গায় বসাতে পারবে? একটু আভাস দিই, তুমি ঠিক ঠিক মাপে কাগজ কেটে এই সমস্যার সমাধান করার চেষ্টা করতে পারো।

চিত্রঃ ঘরে টেবিল ও চেয়ার বসানোর সমস্যা

সমাধান করতে পারলে? যদি না পারো তা-ও চলবে, তবে চিন্তা করতে থাকো, চেন্টা করতে থাকো। খেয়াল করে দেখো, ঘরের সমস্যাটি একটি জ্যামিতিক আকৃতির সমস্যা। প্রতিদিনই আমাদের এমন কত কত সমস্যার সমাধান করতে হয়। কিন্তু জ্যামিতিক আকৃতির ধারণাগুলো জানা থাকলে এসব সমস্যার খুব সুন্দর সমাধান করা সম্ভব। এই অধ্যায়টিতে যেই কাজগুলো রয়েছে, সেগুলি শেষ করলে তোমার প্রয়োজনীয় ধারণা গুলো পেয়ে যাবে। এই অধ্যায়ে ছবি এঁকে, কাগজ কেটে, ভাঁজ করে আমরা বিভিন্ন জ্যামিতিক সমস্যার সমাধান করবো। তাহলে চলো এগুনো যাক।

জ্যামিতিক আকৃতি গঠন

আমরা জ্যামিতিক বিভিন্ন আকার আকৃতি কাগজের সঠিক ভাঁজের মাধ্যমে তৈরি করতে পারি। আমাদের সবার প্রথমেই লাগবে একটি কাগজ।

কাজ ১। আমরা একটি (A4) কাগজ নিয়ে মাঝ বরাবর ভাঁজ করি। ভাঁজ করা কাগজটিকে আড়াআড়ি করে আবার ভাঁজ করি।

প্রতিটি ভাঁজ বরাবর আমরা একটি করে রেখা (line) আঁকি। রেখার মিলিত বিন্দুতে (point) চারটি কোণ (angle) তৈরি হয়েছে। চারটি কোণই পরিমাপ করে দেখো। তারা সবাই সবার সমান। আমরা সমানভাবে আড়াআড়ি ভাঁজ করে এই কোণগুলো তৈরি করেছি। তাই এদের প্রত্যেকটিকে আমরা এক সমকোণ (right angle) বলবো।

চিন্তা করে দেখো, ভাঁজগুলো যদি সমান না হয় তাহলে কী হবে? কোণগুলোও সমান হবে না। অর্থাৎ আমরা সমকোণ পাবো না। দুইটি রেখা ছেদ করে যদি সমকোণ তৈরি হয় তবে রেখা দুইটিকে পরস্পর লম্ব (perpendicular) বলা হয়।

কাজ ২। ধরো একটি রেখাংশ AB দেয়া আছে। আমরা AB তে অবস্থিত একটি বিন্দুতে একটি লম্ব আঁকতে চাই। ধরে নিচ্ছি P হচ্ছে সেই বিন্দু যার উপরে আমরা লম্বটি আঁকবো। AB রেখা আঁকা কাগজটিকে আমরা চিত্রের মত এমনভাবে ভাঁজ করি যেন ভাঁজটি ঠিক P বিন্দুতে থাকে এবং AB রেখার একটি অংশ অপর অংশের উপরে একদম বরাবর গিয়ে পডে।

এই ভাঁজ বরাবর একটি রেখা আঁকো। এবারে তোমরা সেই রেখাটির সাথে AB এর কোণ পরিমাপ করে দেখো। আমরা যদি AB এর এক অংশকে আরেক অংশের বরাবর না রেখে ভাঁজটি করি তখন কোণের পরিমাপ কেমন হবে? পরীক্ষা করে দেখে ক্লাসের সবার সাথে আলোচনা করো।

আমরা জ্যামিতি বক্সের ত্রিকোণী (set squares) ব্যবহার করেও লম্ব আঁকতে পারি। প্রথমে AB সরলরেখাটির ওপর একটি বিন্দু P নিই। AB রেখা বরাবর রুলারের একটি ধার স্থাপন করি এবং খাড়াভাবে ধরে রাখি। রুলার বরাবর ত্রিকোণীর একটি ধার এমনভাবে বসাই যেন এক সমকোণ সংলগ্ন কৌণিক বিন্দুটি P বিন্দুর সাথে মিলে যায়। ত্রিকোণীটি খাড়াভাবে ধরে রেখে PQ রেখাংশ আঁকি। লক্ষ্ণ করো, ত্রিকোণীতে যেহেতু আগে থেকেই একটি সমকোণ তৈরি করা থাকে, আমরা সহজেই সেই সমকোণটির মত করে আরেকটি সমকোণ এঁকে নিচ্ছি।

কাজ ৩। ধরো তোমাদেরকে একটি রেখাংশ AB দিয়ে বলা হলো সেটির সমান করে আরেকটি রেখাংশ আঁকতে। তোমরা হয়তোবা চিন্তা করবে যে ক্ষেল দিয়ে দৈর্ঘ্য পরিমাপ করে সেই সমান পরিমাপের আরেকটি রেখাংশ এঁকে ফেলা। কিন্তু যদি আমাদের AB রেখাংশটির দৈর্ঘ্য ভগ্নাংশ এককে থাকে তাহলে সমান পরিমাপ করা খুবই কষ্টসাধ্য হয়ে যায়। তাই চলো আমরা আরেকটি পদ্ধতি দিয়ে চেষ্টা করি। এক টুকরা সুতা নাও। তারপর প্রদন্ত রেখাংশের এক বিন্দুতে সুতার একটি মাথা বসাও এবং টানটান করে সুতাটি ধরে অপর বিন্দুর সমান করে সুতাটি কেটে নাও। তারপর সুতাটিকে টানটান করে কাগজে বসিয়ে দুইটি বিন্দু চিহ্নিত করো। এবারে ক্ষেলের সাহায্যে দুইটি বিন্দু যোগ করলেই তোমরা AB এর সমান করে আরেকটি রেখাংশ প্রেয়ে যাবে।

কাজ 8। একটি কাগজে একটি রেখাংশ AB রেখাংশ আঁকা আছে। রেখাংশের দুই শীর্ষের বিন্দু যদি হয় A ও B তাহলে আমরা A কে B এর উপরে নিয়ে চেপে ধরবো এক হাত দিয়ে এবং অন্য হাত দিয়ে আমরা কাগজের যে ভাঁজ তৈরি হবে সেটিকে সমান করে দিবো। লক্ষ্ণ করে দেখো, ভাঁজ বরাবর আমরা যদি একটি দাগ টানি সেটি একটি সরলরেখা হচ্ছে। একটি স্কেল দিয়ে পরিমাপ করলেই দেখতে পারবে যে ভাঁজের যেকোনো বিন্দু থেকে A ও B দুই বিন্দুর দূরত্বই সমান। অর্থাৎ আমরা AB রেখাংশটিকে সমান দুই ভাগে ভাগ করতে পারলাম।

পরীক্ষা করে দেখো যে ${f A}$ ও ${f B}$ বিন্দুগুলো একদম একটিকে আরেকটির উপরে না চেপে ধরে একটু আশেপাশে চেপে ধরলে ভাঁজ থেকে বিন্দুগুলোর দূরত্ব কীভাবে পরিবর্তন হয়? তোমার চিন্তাটি খাতায় লিখে রাখো।

AB ও CD এর মাঝে তৈরি হওয়া কোণ পরিমাপ করে দেখো। এই রেখা দুইটির মাঝে আমরা কোণের পরিমাপ অনুযায়ী তাদেরকে লম্ব বলতে পারি কি? তাহলে আমরা CD কে AB রেখাংশটির লম্ব সমদ্বিখন্ডক (perpendicular bisector) বলবো।

কাজ α । মনে করি, আমাদেরকে একটি রেখা AB দিয়ে বলা হলো এর বাইরের একটি বিন্দু P থেকে AB এর উপরে একটি লম্ব আঁকতে। আমরা কাজ S এ শিখেছি কীভাবে লম্ব পাওয়া যায় এবং কাজ S এ শিখেছি কীভাবে একটি রেখার লম্ব সমদ্বিখন্ডক পেতে পারি। আমরা AB রেখাটিকে এমনভাবে ভাঁজ করবো যেন ভাঁজের দুইপাশের অংশ একটি আরেকটির সাথে মিলে যায়। কিন্তু এবারে যেহেতু আমাদেরকে একটি নির্দিষ্ট বিন্দু P এর কথা বলে দেয়া হয়েছে, আমরা ভাঁজটি এমনভাবে করবো যেন P বিন্দুটিও ভাঁজের মাঝে থাকে।

এবারে ভাঁজ বরাবর যদি আমরা CD রেখাংশ আঁকি তাহলেই দেখতে পাবো যে সেটি আমাদের নির্দিষ্ট বিন্দু P বরাবর গিয়েছে। AB ও CD এর মাঝে কোণগুলো পরিমাপ করে কোণের মান খাতায় লিখো। দেখবে যে সবকয়টি কোণই সমকোণ হয়েছে।

কাজ ৬। আমরা একটি কাগজে একটি কোণ ABC নিই যার শীর্ষবিন্দু হচ্ছে B। এবারে আমরা কাগজটিকে ঠিক AB বরাবর ভাঁজ করি। BC রেখাটি কাগজের যে অংশের সাথে মিলে যায় সেখানে আমরা একটি রেখাংশ এঁকে নিই।

এবারে কোণ ABC ও কোণ ABD কে পরিমাপ করে তাদের তুলনা করে দেখো। দেখতে পাবে যে তাদের পরিমাপ সমান। অর্থাৎ আমরা কোণ ABC এর সমান করে নতুন আরেকটি কোণ আঁকতে পারলাম।

কাজ ৭। আমরা একটি কাগজে একটি কোণ ABC নিই যার শীর্ষবিন্দু হচ্ছে B। এবারে আমরা কাগজটিকে এমনভাবে ভাঁজ করি যেন AB ও BC বাহুগুলো একে অপরের সাথে মিলে যায়। লক্ষ করে দেখ ভাঁজটি শীর্ষবিন্দুকেই ছেদ করেছে। এবারে ভাঁজ বরাবর একটি রেখা আঁকলে দেখতে পাবে যে দুইটি কোণ পাওয়া গেছে।

কোণ দুইটি পরিমাপ করে দেখো। তারা পরস্পর সমান এবং

প্রত্যেকেই কোণ ABC এর অর্ধেক। কাজ ৬ থেকে আমরা এটা বলতে পারি। কারণ সেখানে আমরা নতুন কোণটির বাহু পুরাতন কোণের বরাবর করেই নিয়েছিলাম। আবার লক্ষ করো, ভাঁজ বরাবর রেখাটি থেকে কোণের বাহুগুলো এক সমান দূরত্ব বজায় রেখেছে। অর্থাৎ আমরা যদি একটি কোণের মাঝে দিয়ে একটি রেখাংশ আঁকতে পারি যা কোণের দুই বাহু থেকে সমান দূরত্ব বজায় রাখে তাহলেই আমরা কোণের সমদ্বিখন্ডক পেয়ে যাচ্ছি।

দলগত কাজ: ৪-৫ জনের দলে ভাগ হয়ে কোণের সমদ্বিখন্ডক এবং রেখাংশের সমদ্বিখন্ডকের মাঝে একটি মিল এবং একটি পার্থক্য বের করো।

চিত্রটি লক্ষ করো, পরস্পর ছেদ করা রেখা জোড়ার ছেদবিন্দুর দিকে তাকাও। AB ও CD দুইটি সরলরেখা যারা পরস্পর O বিন্দুতে ছেদ করেছে। এর ফলে সেখানে দুইজোড়া কোণ তৈরি হয়েছে যারা পরস্পর বিপরীতমুখী। এই দুইজোড়ার প্রতিজোড়াকে আমরা বলবো বিপ্রতীপ কোণ (vertically opposite angle)। এদের প্রত্যেকের শীর্ষবিন্দু O।

তোমাদের মনে প্রশ্ন জাগার কথা, আমরা বিপরীত বলছি না কেন, সেটাই তো বলা সহজ। এবারে পরের চিত্রটি লক্ষ করো। ১ চিহ্ন দেয়া কোণ আর ২ চিহ্ন দেয়া কোণ দুইটিরও একই শীর্ষবিন্দু, কিন্তু ১ কোণটির বাহুপুলোকে বিপরীত দিকে বাড়ালে আমরা ২ কোণটিকে পাই না। এখানে তারা শুধুই বিপরীত কোণ। বিপ্রতীপ হবে তখনই, যখন একটি কোণের বাহুপুলোকে বিপরীতে বৃদ্ধি করলে আরেকটিকে পাওয়া যায়।

কাজ ৮। এবারে একটি কাগজ নিই যেখানে AB ও CD দুইটি সরলরেখা আঁকা যারা পরস্পর O বিন্দুতে ছেদ করেছে। তারপর O বিন্দু বরাবর এমনভাবে ভাঁজ করি যেন BO এবং CO অংশগুলো একে অপরের সাথে মিলে যায়। AO এবং DO এর অবস্থান লক্ষ করো। তারা কি মিলে গিয়েছে? এখান থেকে আমরা বিপ্রতীপ কোণের ব্যাপারে কী সিদ্ধান্ত নিতে পারি?

কাজেই আমরা বলতে পারি যে দুইটি রেখা পরস্পরকে ছেদ করলে উৎপন্ন বিপ্রতীপ কোণগুলো পরস্পর সমান হয়।

তিনটি কাঠির খেলা

দুইটি কাঠি নাও। সঞ্চো কাঠি না থাকলে তোমরা কলম/পেন্সিল দিয়ে কাজটি করতে পারো। ছবির মত বিভিন্নভাবে বসালেই দেখতে পারবে যে দুইটি লম্বা কাঠি একটি আরেকটিকে কেবলমাত্র একটি বিন্দুতেই ছেদ করতে পারবে। তোমরা পূর্বের শ্রেণিতেই জেনে এসেছো যে যদি তারা কখনোই ছেদ না করে তবে তাদেরকে বলা হবে সমান্তরাল (parallel)।

এবারে আমরা তৃতীয় আরেকটি কাঠি নিয়ে আসি। প্রথম কাঠি দুইটি যদি সমান্তরাল হয়, তাহলে তৃতীয় কাঠিটি বসানোর জন্য দুইটি উপায় দেখা যাবে।

- ১। তৃতীয় কাঠিটি হবে প্রথম দুইটার সমান্তরাল [ছবি ১] অথবা,
- ২। তৃতীয় কাঠিটি কারো সাথেই সমান্তরাল হবে না এবং দুইটি রেখাকেই একটি করে বিন্দুতে ছেদ করবে

প্রথম দুইটা কাঠি যদি সমান্তরাল না হয়, তাহলেও তৃতীয় কাঠিটি দুইটি উপায়ে বসতে পারে।

- ৩। প্রথম দুইটি কাঠির ছেদবিন্দুতেই তৃতীয় কাঠিটি ছেদ করবে। [ছবি ৩]
- ৪। তৃতীয় কাঠিটি প্রথম দুইটি কাঠিকে দুইটি আলাদা বিন্দুতে ছেদ করবে। [ছবি ৪]

৩ নাম্বার ছবির মত, দুইয়ের অধিক রেখা যদি একই বিন্দুতে ছেদ করে, তাদেরকে আমরা বলি সমবিন্দু রেখা (concurrent line)। ২ ও ৪ নাম্বার ছবির মত, একটি রেখা যদি আরো একাধিক রেখাকে ছেদ করে, তাহলে আমরা সেই রেখাটিকে বলবো ছেদক (transversal)।

নিচের ছবি ৫ ও ৬ লক্ষ করো, দুইটি রেখার সাথে অপর একটি ছেদ করলে এইরকম আটটি করে কোণ তৈরি হয়।

একটু খেয়াল করলে দেখবে ১ ও ৫, ২ ও ৬, ৩ ও ৭ এবং ৪ ও ৮ এই কোণের জোড়াগুলোর অবস্থান একইরকম। তারা রেখার উপরে অথবা নিচে এবং ছেদকের ডানে অথবা বামে। যেমন ১ ও ৫ জোড়াটি রেখার উপরে এবং ছেদকের বামে। এমন জোড়ার কোণ দুইটিকে অনুরূপ কোণ (corresponding angles) বলা হবে।

চিত্রগুলোর দিকে আবার তাকালে দেখবে ১ ও ৭, ২ ও ৮, ৩ ও ৫ এবং ৪ ও ৬ এই জোড়াগুলোর অবস্থান মোটামুটি বিপরীতমুখী। একটি যদি হয় ডানে এবং উপরে(৬ নম্বর কোণ) অপরটি তাহলে হচ্ছে বামে এবং নিচে(৪ নম্বর কোণ)। এমন কোণের জোড়াকে আমরা বলবো একান্তর কোণ (alternate angles)।

আবার দেখো, ১, ২, ৭ ও ৮ কোণগুলো বাইরের দিকে আবার ৩, ৪, ৫ ও ৬ কোণগুলি ভেতরের দিকে। বাইরের দিকের কোণগুলো বহিঃস্থ কোণ (exterior angles) আর ভেতরেরগুলো অন্তঃস্থ কোণ (interior angles)।

এবারে চলো আমরা কোণগুলোর মাঝে কিছু সম্পর্ক বের করার চেষ্টা করে দেখি।

দলগত কাজ: চার/পাঁচজন করে একটি দল গঠন করো এবং প্রত্যেক দল একটি করে কাগজ নাও। এবারে নিচের ধাপগুলো অনুসরণ করো।

১। কাগজটিকে চিত্রে দেখানো উপায়ে দুইটি ভাঁজ করে নাও যেন তারা সমান্তরাল হয়। প্রয়োজনে শিক্ষকের সাহায্য নাও সমান্তরাল ভাঁজ করতে। তারপর সেই ভাঁজ দুইটি বরাবর দুইটি রেখা আঁকো। তোমরা তাহলে দুইটি সমান্তরাল সরলরেখা পাবে।

২। এবারে চিত্রের মত কাগজটির মাঝের দিকে আড়াআড়ি একটি ভাঁজ দাও। সেই ভাঁজ বরাবর দাগ টানলেই তোমরা সমান্তরাল রেখা দুইটির জন্য একটি ছেদক পেয়ে যাবে।

৩। কাগজের দুই পাশেই ভাঁজ বরাবর দাগ দিয়ে নিচের ছবির মত কোণগুলোকে সংখ্যা দিয়ে চিহ্নিত করো। এক পাশে চিহ্নিত করবে চিত্র ৬ এর মত, এবং উল্টোপাশে এমনভাবে সংখ্যা লিখবে যেন ১ এর বিপরীতপাশের কোণটিও ১ হয়।

৪। এবারে ২ নাম্বার কোণটি দেখানো চিত্রের মত কেটে আলাদা করে নাও। ৬ নাম্বার কোণের সাথে ২ নাম্বার কোণটি মিলিয়ে দেখো চিত্রের মত। আমরা এখান থেকে বলতে পারি কোণ ২ আর কোণ ৬ পরস্পর সমান। অর্থাৎ দুইটি সমান্তরাল রেখাকে আরেকটি রেখা ছেদ করার ফলে অনুরূপ দুইটি কোণ পরস্পর সমান হয়েছে। নিজেরা পরীক্ষা করে দেখো তো এইটিকে আর কোন কোণের উপরে পুরোপুরি বসাতে পারো?

৫। এবারে চিত্রে দেখানো উপায়ে ৫ নাম্বার কোণটিকেও আলাদা করে নাও।

৬। ৫ নাম্বার কোণটি ৩ নাম্বার কোণের সাথে পুরোপুরি মিলে যাচ্ছে। আমরা জানি তারা পরস্পর একান্তর কোণ। কাজেই আমরা বলতে পারি, দুইটি সমান্তরাল রেখাকে আরেকটি রেখা ছেদ করার ফলে একান্তর দুইটি কোণ পরস্পর সমান হয়েছে।

আবার কোণ ৫ যেহেতু কোণ ১ এর অনুরূপ, তারা অবশ্যই মিলে যাবে। খেয়াল করো, কোণ ৫ আর কোণ ৪ যোগ করে আমরা একটি সরলকোণ বা দুই সমকোণের সমান পাচ্ছি। কোণ ৪ ও ৫ ছেদকের একই পাশের অন্তঃস্থ কোণ। আমরা এটা বলতে পারি যে, দুইটি সমান্তরাল রেখাকে আরেকটি রেখা ছেদ করার ফলে ছেদকের একই পাশের দুইটি অন্তঃস্থ কোণের যোগফল দুই সমকোণের সমান হয়েছে।

দলগত কাজটি থেকে আমরা দুইটি সমান্তরাল রেখা ও তাদের ছেদক সম্পর্কে নিচের তথ্যগুলো জানতে পারলাম, যা আমরা পরবর্তীতে সমস্যা সমাধান করতে ব্যবহার করতে পারবো।

- ১। দুইটি সমান্তরাল রেখাকে আরেকটি রেখা ছেদ করালে অনুরূপ কোণেরা পরস্পর সমান হয়। এখানে কোণ ১ ও ৫, কোণ ২ ও ৬, কোণ ৩ ও ৭ এবং কোণ ৪ ও ৮ পরস্পর অনুরূপ এবং সমান।
- ২। দুইটি সমান্তরাল রেখাকে আরেকটি রেখা ছেদ করালে একান্তর কোণেরা পরস্পর সমান হয়। এখানে কোণ ৩ ও ৫ এবং কোণ ৪ ও ৬ পরস্পর একান্তর এবং সমান।
- ৩। দুইটি সমান্তরাল রেখাকে আরেকটি রেখা ছেদ করালে ছেদকের একই পাশের অন্তঃস্থ কোণের পরিমাপের যোগফল দুই সমকোণের সমান হয়। এখানে কোণ ৩ ও ৬ এবং কোণ ৪ ও ৫ এই দুইটি ছেদকের একই পাশের অন্তঃস্থ কোণের জোড়া রয়েছে যাদের যোগফল দুই সমকোণের সমান।

এবারে চলো আমরা পরীক্ষা করে দেখি ছেদকের সাথে উৎপন্ন কোণেদের কোন সম্পর্ক পাওয়া গেলে দুইটি রেখা সমান্তরাল হয় কি না।

একক কাজ:

একটি রেখার দুইটি বিন্দুতে একই দিকে ৫০° মাপের কোণ আঁকো নিচের চিত্রের মত। এরপরে EF ও GH রেখা দুইটির দূরত্ব পরিমাপ করে দেখো।

কাজের ফলাফল পর্যালোচনা করে আমরা নিচের সিদ্ধান্তে β আসতে পারি।

১। দুইটি রেখাকে আরেকটি রেখা ছেদ করলে যদি অনুরূপ কোণেরা পরস্পর সমান হয়, তবে ওই রেখা দুইটি পরস্পর সমান্তরাল।

- ২। দুইটি রেখাকে আরেকটি রেখা ছেদ করলে যদি একান্তর কোণেরা পরস্পর সমান হয়, তবে ওই রেখা দুইটি পরস্পর সমান্তরাল।
- ৩। দুইটি রেখাকে আরেকটি রেখা ছেদ করলে যদি একই পাশের অন্তঃস্থ কোণের পরিমাপের যোগফল দুই সমকোণের সমান কোণেরা পরস্পের সমান হয়, তবে ওই রেখা দুইটি পরস্পর সমান্তরাল।

একক কাজ

১। তোমার ইচ্ছামতো কাগজ কেটে কয়েকটি সামান্তরিক তৈরি করো।

এরপর নিচের কাজগুলি করো;

ক) সামান্তরিকটিকে নিচের ছবির মতো করে কেটে দুই টুকরা করে কোণ গুলিকে মিলিয়ে দেখো।

খ) সামান্তরিকটিকে নিচের ছবির মতো করে কেটে দুই টুকরা করে বিপরীত কোণগুলি একসাথে মিলিয়ে দেখো।

নিচের সমস্যাগুলো কাঠি দিয়ে অথবা কাগজ ভাঁজ করে সমাধান করো।

ঽ।

চিত্রে কোণ $PQR=\mathfrak{CC}^\circ$, কোণ $LRN=\mathfrak{do}^\circ$ এবং PQ ও MR পরস্পর সমান্তরাল। তাহলে কোণ MRN এর মান কত?

91

চিত্রে AB, CD ও EF পরস্পর সমান্তরাল।

- (ক) কোণ Z এর মান কত?
- (খ) কোণ x এর মান কত?
- (গ) কোণ y-z এর মান কত?

ত্রিভুজের বৈশিষ্ট্য

এই অধ্যায়ে আমরা তিনটি কাঠি দিয়ে একটি ক্ষেত্রকে আবদ্ধ করবো এবং এর বিভিন্ন বৈশিষ্ট্য নিয়ে আলোচনা করবো। তোমরা পূর্বের শ্রেণিতেই জেনেছ যে, তিনটি রেখাংশ দিয়ে যে ক্ষেত্রটিকে আবদ্ধ করা হয় তাকেই ত্রিভুজক্ষেত্র বলে এবং সেই ক্ষেত্রের সীমারেখাকে বলা হয় ত্রিভুজ (triangle)। এই অধ্যায় জুড়ে আমরা তিনটি কাঠিকে তিনটি রেখাংশ হিসেবে ধরে নিবো এবং বিভিন্ন প্রকার ত্রিভুজ তৈরি করবো। তারপর তার বিভিন্ন বৈশিষ্ট্য আমরা বিভিন্ন কার্যক্রমের মাধ্যমে খুঁজে বের করবো এবং সেই বৈশিষ্ট্যপুলো প্রয়োগ করতে চেষ্টা করবো।

ত্রিভুজের তিন বাহ

আমরা জানি, যে তিনটি রেখাংশ ক্ষেত্রটিকে আবদ্ধ করে তাদেরকে বলা হয় ত্রিভুজের বাহ (side)। বাহগুলো একে অপরকে যে বিন্দুতে ছেদ করে তাদেরকে আমরা বলি শীর্ষ (vertex)। পূর্বের ক্লাসের নির্দেশনা অনুযায়ী তোমরা নিশ্চয়ই তিনটি করে কাঠি সংগ্রহ করেছ? এবারে চলো আমরা তাদেরকে পরিমাপ করে ত্রিভুজ গঠন করার চেষ্টা করি।

প্রথমে তোমরা নিচের ছকে তোমাদের হাতের কাঠিগুলোর দৈর্ঘ্য পরিমাপ বসাও। তারপর চেষ্টা করে দেখ তাদেরকে বসিয়ে তোমরা ত্রিভুজ গঠন করতে পারো কি না।

ক্রম	কাঠি ১	কাঠি ২	কাঠি ৩	ত্রিভুজ গঠন করা যায় কি? (হ্যাঁ/না)		

এবারে প্রতিটি ক্রমে কাঠিগুলোর পরিমাপের সম্পর্ক বসাও এবং ত্রিভুজ গঠন করা গিয়েছে কি না তা খেয়াল করো।

ক্রম	কাঠি ১+কাঠি ২ > কাঠি ৩ (হ্যাঁ/না)	কাঠি ২+কাঠি ৩ > কাঠি ১ (হ্যাঁ/না)	কাঠি ৩+কাঠি ১ > কাঠি ২ (হ্যাঁ/না)	ত্রিভুজ গঠন করা যায় কি? (হ্যাঁ/না)

তোমরা লক্ষ করলেই দেখতে পাবে, যেসকল ক্ষেত্রে আমরা ত্রিভুজ তৈরি করতে পেরেছি সেসব ক্ষেত্রে অবশ্যই ত্রিভুজের যেকোনোো দুইটি বাহর দৈর্ঘ্যের যোগফল তৃতীয় বাহর দৈর্ঘ্যের চাইতে বেশি।

একক কাজ: নিচের কোন কোন ক্ষেত্রে ত্রিভুজ আঁকা সম্ভব 🗕 ব্যাখ্যা দাও।

১।১ সে.মি.,২ সে.মি. ও ৩ সে.মি.

২। ১ সে.মি., ২ সে.মি. ও ৪ সে.মি.

৩। ৪ সে.মি., ৫ সে.মি. ও ৭ সে.মি.

ত্রিভুজের মধ্যমা, কোণের সমদ্বিখণ্ডক এবং বিপরীত বাহুর উপরে আঁকা লম্ব

নিচের চিত্রের মত কাগজের ত্রিভুজ তৈরি করে কেটে নাও। এবারে আমরা ত্রিভুজের ভেতরের বিভিন্ন রেখা সম্পর্কে জানবো।

মধ্যমাঃ 'মধ্যমা' শব্দটি খেয়াল করলেই তোমরা দেখতে পাবে যে

এখানে 'মধ্য' অংশটি আছে। কাজেই এই রেখাটি কিছু একটার মাঝখানে আছে। নিচের ধাপগুলো অনুসরণ করে আমরা আগে মধ্যমা তৈরি করি।

১। নিচের চিত্রের মত ত্রিভুজের একটি শীর্ষকে আরেকটি শীর্ষের সাথে মেলাও। মাঝের ভাঁজ পড়া বিন্দুটি খেয়াল করো। সেখান থেকে এই দুইটি শীর্ষবিন্দুর দূরত্ব কেমন হবে তা পরিমাপ করে দেখো। দূরত্ব যেহেতু সমান হয়, আমরা বলতে পারি যে ভাঁজ পড়া বিন্দুটিই হবে দুই শীর্ষের মাঝের বাহুটির মধ্যবিন্দু।

২। এভাবে তিনটি বাহরই মধ্যবিন্দু বের করো এবং বিপরীত শীর্ষবিন্দুর সাথে ভাঁজ করে যোগ করে নাও। শীর্ষবিন্দুর সাথে যেহেতু আমরা বাহর মধ্যবিন্দু যোগ করছি, আমরা এই রেখাগুলো সেজন্যে বলি মধ্যমা। নিচের চিত্রে ত্রিভুজের তিনটি মধ্যমা এঁকে দেখানো হলো। তোমরা এমনিতে রুলারের সাহায্যে মধ্যবিন্দু বের করে সেটিকে বিপরীত শীর্ষের সাথে যোগ করে মধ্যমা আঁকতে পারো।

দলগত কাজ: চার-পাঁচজন করে শিক্ষার্থীর দল গঠন করো। একটি আর্ট পেপার জাতীয় কাগজ অথবা একটি পাতলা বোর্ড থেকে ত্রিভুজ আকৃতির একটি অংশ কেটে নাও। তারপর একটি রুলারের সাহায্যে

প্রতি বাহুর মধ্যবিন্দু বের করো এবং সেগুলো ব্যবহার করে তিনটি মধ্যমা আঁকো। লক্ষ করে দেখো, ত্রিভুজের তিনটি মধ্যমার একটি মজার বৈশিষ্ট্য আছে। যেকোনো ত্রিভুজের তিনটি মধ্যমা সবসময় একটি নির্দিষ্ট বিন্দুতে ছেদ করে। এবারে শিক্ষকের তত্ত্বাবধানে মধ্যমাদের ছেদবিন্দুতে একটি সুতা বেঁধে নাও। এবারে সুতা দিয়ে ত্রিভুজটিকে ঝুলিয়ে দাও, কী দেখতে পাচ্ছ? ত্রিভুজটি মাটির সাথে সমান্তরাল হয়ে ঝুলে থাকছে। আবার তোমরা যদি ত্রিভুজটিকে শক্ত কাগজ দিয়ে তৈরি করে থাকো, একটি কলম বা পেন্সিল মধ্যমাদের ছেদবিন্দুতে গেঁথে নাও। দেখবে যে ত্রিভুজটি কোনদিকে বেঁকে যাচ্ছে না।

যেহেতু এই বিন্দুর মাধ্যমেই আমরা পুরো ত্রিভুজটিকে ধরে রাখতে পারি, আমরা বলতে পারি যে ত্রিভুজের ওজন এই বিন্দুতে কেন্দ্রীভূত হয়ে আছে। অর্থাৎ ত্রিভুজের ভরের কেন্দ্র হচ্ছে এই বিন্দু। এইজন্য এই বিন্দুটিকে আমরা বলবো ত্রিভুজের ভরকেন্দ্র।

ত্রিভুজের তিনটি মধ্যমা একটি নির্দিষ্ট বিন্দুতে ছেদ করে। সেই বিন্দুটিকে ভরকেন্দ্র বলা হয়।

কোণের সমদ্বিখন্ডকঃ নাম দেখেই তোমরা বুঝতে পারছ যে এই রেখাটি ত্রিভুজের কোণকে সমান দুই ভাগে ভাগ করবে। চলো আমরা দেখি কাগজের ত্রিভুজ থেকে কীভাবে কোণের সমদ্বিখন্ডক বের করা যায়।

১। নিচের চিত্রের মত ত্রিভুজের শীর্ষকে এক পাশে রেখে ভাঁজ করো যেন একটি বাহু আরেকটি বাহুর উপরে মিলে যায়। দেখবে মাঝের শীর্ষবিন্দু বরাবর একটি ভাঁজ তৈরি হয়েছে। এবারে শীর্ষবিন্দুতে তৈরি হওয়া কোণ দুইটি পরিমাপ করে দেখো তাদের মাঝে কোন মিল আছে কি না।

২। পরিমাপ করে বুঝতে পারবে সেই ভাঁজটি শীর্ষবিন্দুতে থাকা অন্তঃস্থ কোণটিকে সমান দুই ভাগে ভাগ করে। একক কাজ:

বাকি দুইটি কোণের জন্যে ত্রিভুজের শীর্ষ বরাবর ভাঁজ করে সমদ্বিখন্ডক বের করো।

লক্ষ করলে বুঝতে পারবে, মধ্যমাদের মত কোণের সমদ্বিখন্ডকেরাও নিজেদের ছেদ করার জন্য একটি বিন্দু আলাদা করে রেখেছে। অর্থাৎ ত্রিভুজের তিনটি কোণের সমদ্বিখন্ডক সবসময় একটি নির্দিষ্ট বিন্দুতে ছেদ করে।

বিপরীত বাহুর উপর লম্বঃ কোন শীর্ষ থেকে বিপরীত বাহুর উপরে আঁকা লম্বগুলোও ত্রিভুজের কিছু বৈশিষ্ট্য তুলে ধরে। নিচের ধাপ অনুসরণ করে এসো আমরা তিনটি শীর্ষ থেকে বিপরীত বাহুর উপরে লম্ব আঁকার পদ্ধতি দেখে নিই।

১। নিচের চিত্রের মত একটি শীর্ষকে লম্বালম্বি এমনভাবে ভাঁজ করবে যেন বিপরীত বাহুটি নিজের সাথে মিশেই থাকে এবং এক পাশ থেকে দেখতে এদেরকে সমকোণী ত্রিভুজের মত মনে হয়। যে বিন্দুতে ভাঁজ করা হলো সেখানকার কোণটির পরিমাপ কী? ২। পরিমাপ করলেই বুঝতে পারবে যে এই ভাঁজ বরাবর আমরা আমাদের কাঞ্জ্যিত লম্ব পাচ্ছি। এভাবে তিনটি লম্বকেই আমরা বের করে নিবো এবং আঁকার পরে নিচের চিত্রের মত দেখা যাবে।

কাজ: উপরে বর্ণিত উপায় ছাড়া আর কোন উপায়ে ত্রিভুজের বিপরীত বাহুর উপরে লম্ব আঁকার চেষ্টা করে দেখো।

ত্রিভূজের কোণের সম্পর্ক

এবারে আমরা ত্রিভুজের কোণগুলো পর্যবেক্ষণ করে দেখবো তাদের মাঝে কোন বিশেষ সম্পর্ক পাওয়া যায় কি না। নিচের ছবিটির মত করে একটি ত্রিভুজ খাতায় আঁকো যেন বাহুগুলো একটু করে অতিরিক্ত থাকে।

১ চিহ্নিত কোণটি ত্রিভুজের ভেতরের দিকে রয়েছে। আমরা একে বলবো ত্রিভুজের অন্তঃস্থ কোণ। একইভাবে ২ এবং ৩ চিহ্নিত কোণগুলোকেও আমরা বলবো ত্রিভুজের অন্তঃস্থ কোণ। ১ চিহ্নিত কোণের সাথে সন্নিহিত ৪ এবং ৭ চিহ্নিত দুইটি কোণ রয়েছে যারা পরস্পর বিপ্রতীপ। এই কোণগুলোও আসলে ত্রিভুজের বাহু দিয়েই তৈরি হয়েছে, কিন্তু তারা ত্রিভুজক্ষেত্রের বাইরে রয়েছে। আমরা এই কোণগুলোর প্রত্যেককে বলবো ত্রিভুজের বহিঃস্থ কোণ। একইভাবে ৫, ৮ এবং ৬, ৯ কোণগুলো হচ্ছে ত্রিভুজের বহিঃস্থ কোণ। যদি ১ এর সাথের

বহিঃস্থ কোণ হিসাব করতে বলে, আমরা ৪ অথবা ৭ যেকোনো একটা পরিমাপ করলেই পারি, কারণ তারা পরস্পর বিপ্রতীপ এবং বিপ্রতীপ কোণেরা পরস্পর সমান হয়।

পূর্বের শ্রেণিতে তোমরা নিশ্চয়ই সম্পূরক কোণ (supplementary angle) সম্পর্কে জেনে এসেছো। দুইটি কোণের পরিমাপ করে আমরা যদি তাদের যোগফল দুই সমকোণের সমান পাই তাহলে কোণ দুইটির একটিকে অপরটির সম্পূরক কোণ বলা হয়। আবার লক্ষ করে দেখো, ত্রিভুজের যে অন্তঃস্থ এবং বহিঃস্থ কোণগুলো সন্নিহিত (adjacent) তারা একে অপরের সম্পূরক কোণ। যে কোন বহিঃস্থ কোণের সন্নিহিত বাদে বাকি দুইটি কোণকে বলবো আমরা বিপরীত অন্তঃস্থ কোণ।

এবারে চলো আমরা ত্রিভুজের কোণগুলার মাঝে কোন সম্পর্ক পাওয়া যায় কী না খুঁজে দেখি।

একক কাজ:

কাগজ দিয়ে প্রত্যেকেই একটি করে ত্রিভুজকে তিন টুকরো করে নাও এবং সাজিয়ে নাও চিত্রের মত। তারপর খেয়াল করো যে তিনটি কোণ মিলে একটি সরল কোণ (straight angle) তৈরি হয়েছে।

একক কাজ:

আলাদা রং এর কাগজ দিয়ে একইরকম তিনটি ত্রিভুজ কেটে চিত্রের মত সাজিয়ে নাও। রঞ্চান কাগজ না হলে সাদা কাগজ দিয়েও কাজটি করা যাবে। আগের চিত্রের মত এখানেও সরল কোণ তৈরি হচ্ছে কি?

একক কাজ:

একটি ত্রিভুজ ABC নিয়ে AC বাহুকে ভাঁজ করে লম্ব তৈরি করো। লম্বটি যেই বিন্দুতে AC কে ছেদ করে সেটির নাম দিলাম D.

A D C

তারপর শীর্ষবিন্দুটিকে বিপরীত বাহর উপরে মিলিয়ে নাও চিত্রের মত করে। AE ও BE রেখাংশ দুইটি পরিমাপ করে দেখো। তাদের মাঝে কোন মিল/পার্থক্য পাছ কী? আবার AC এবং EF রেখা দুইটিকে পর্যবেক্ষণ করে দেখো তাদের মাঝে কোন সম্পর্ক পাও কী না?

পরিশেষে নিচের চিত্রটির মত শীর্ষবিন্দু A ও C কে D এর সাথে মিলিয়ে নিই।

দলগত কাজ:

দলের পাঁচজন খাতায় একটি করে ত্রিভুজ আঁকো। এবারে নিচের ছকটি পূরণ করো। পাঁচটি ত্রিভুজের ছকে উল্লিখিত কোণগুলো পরিমাপ করে।

					অন্তঃস্থ		অন্তঃস্থ		অন্তঃস্থ	
				অন্তঃস্থ	কোণ	অন্তঃস্থ	কোণ	অন্তঃস্থ	কোণ	অন্তঃস্থ
	অন্তঃস্থ	অন্তঃস্থ	অন্তঃস্থ	তিন	১ এর	কোণ ২	২ এর	কোণ ৩	৩ এর	কোণ ১
ক্রম	কোণ ১	কোণ ২	কোণ ৩	কোণের	সন্নিহিত	ও ৩ এর	সন্নিহিত	ও ১ এর	সন্নিহিত	ও ২ এর
				যোগফল	বহিঃস্থ	যোগফল	বহিঃস্থ	যোগফল	বহিঃস্থ	যোগফল
					কোণ		কোণ		কোণ	

তোমরা ত্রিভুজের তিন কোণের যোগফলে কি বিশেষ কোনো বৈশিষ্ট্য দেখতে পাচ্ছ? আবার বহিঃস্থ কোণ এবং তাদের বিপরীত অন্তঃস্থ কোণগুলোর পরিমাপের যোগফলের মাঝে সম্পর্ক লক্ষ করে দেখো। আমরা এখান থেকে নিচের দুইটি সিদ্ধান্ত পেতে পারি।

ত্রিভুজের তিনটি কোণের সমষ্টি দুই সমকোণ বা ১৮০°।

যেকোনো বহিঃস্থ কোণের পরিমাপ তার বিপরীত অন্তঃস্থ কোণ দুইটির পরিমাপের যোগফলের সমান।

উদাহরণঃ একটি ত্রিভুজের সবকয়টি বাহু সমান হলে তাকে আমরা সমবাহ ত্রিভুজ (equilateral triangle) বলি। সমবাহ ত্রিভুজের তিনটি কোণই সমান। তাদের প্রত্যেকের পরিমাপ কত হবে?

সমাধানঃ একটি ত্রিভুজের তিন কোণের সমষ্টি ১৮০°। যেহেতু তারা সবাই সমান, তাদের প্রত্যেকের মান হবে ১৮০° \div ৩ = ৬০°।

ত্রিভূজের বাহু ও কোণের সম্পর্ক

ত্রিভুজের তিনটি শীর্ষবিন্দুকে আমরা যদি A, B এবং C দিয়ে প্রকাশ করি তাহলে সেটিকে আমরা বলি ত্রিভুজ ABC. তার কোণগুলোকে আমরা বলি $\angle ABC$ (সংক্ষেপে $\angle B$), $\angle BCA$ (সংক্ষেপে $\angle C$), এবং $\angle CAB$ (সংক্ষেপে $\angle A$)। সাধারণত $\angle A$. $\angle B$ ও $\angle C$ এর বিপরীত বাহুগুলোকে যথাক্রমে a,b ও $\mathcal F$ দিয়ে প্রকাশ করা হয়। পাশের চিত্রটি লক্ষ করো। সেখানে শীর্ষবিন্দুগুলো এবং তাদের বিপরীত বাহুদেরকে চিহ্নিত করা আছে।

আমরা অধ্যায়ের আগের দুই অংশে ত্রিভুজের বাহুগুলোর নিজেদের মাঝে এবং কোণগুলোর নিজেদের মাঝে সম্পর্ক দেখতে পেয়েছিলাম। কিন্তু বাহু ও তাদের বিপরীত কোণগুলোর মাঝে সম্পর্ক যাচাই করার জন্য চলো নিচের ছকটি পুরণ করি।

ক্রম	অন্তঃস্থ কোণ A	অন্তঃস্থ কোণ B	অন্তঃস্থ কোণ C	বাহু a	বাহু b	বাহু C	বৃহত্তম বাহু	ক্ষুদ্রতম বাহ	বৃহত্তম কোণ	ক্ষুদ্রতম কোণ

বাহু ও কোণগুলোর পরিমাপ থেকে কি তোমরা বিশেষ কিছু লক্ষ করতে পেরেছ? ছক থেকে তোমরা ত্রিভুজের বাহু ও কোণ সম্পর্কিত আরেকটি গুরুত্বপূর্ণ সম্পর্ক জানতে পারবে। তা হচ্ছে

বৃহত্তম বাহুর বিপরীত কোণও বৃহত্তম আর ক্ষুদ্রতম বাহুর বিপরীত কোণও ক্ষুদ্রতম।

১। তোমাকে একটি ব্রিভুজ আঁকতে বলা হলো যার তিন বাহুর দৈর্ঘ্য ৪সেমি, ৫ সেমি এবং ১০ সেমি। তুমি কি ব্রিভুজটি আঁকতে পারবে? আঁকা সম্ভব কি না তার কারণ একটি বাক্যে ব্যাখ্যা করো।

২। নিচের চিত্র থেকে কোণ 🗴 এর মান বের করো।

৩। নিচের চিত্র থেকে কোণ w এর মান বের করো।

৪। চিত্রে কোণ x এর পরিমাপ কত?

৫। জয় একটি ত্রিভুজ এঁকেছে কিন্তু তার বাহুগুলোর পরিমাপ চিত্রের চেয়ে ভিন্ন। চিত্রে বসানো পরিমাপ দেখে বলতে হবে ত্রিভুজের বৃহত্তম কোণ কোনটি?

