You submitted this quiz on Wed 30 Oct 2013 12:21 PM PDT (UTC -0700). You got a score of **5.00** out of **5.00**.

## **Question 1**

Let two matrices be

$$A = egin{bmatrix} 1 & -4 \ -2 & 1 \end{bmatrix}, \qquad B = egin{bmatrix} 0 & 3 \ 5 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

What is A - B?

Your Answer Score **Explanation** 

- $\begin{bmatrix} 1 & -7 \\ -7 & -7 \end{bmatrix}$

1.00

Total 1.00 / 1.00

## **Question 2**

Let 
$$x = egin{bmatrix} 8 \ 2 \ 5 \ 1 \end{bmatrix}$$

What is 2 \* x?

| Your Answer | Score | Explanation |
|-------------|-------|-------------|
|             |       |             |

0

$$\begin{bmatrix} 4 & 1 & \frac{5}{2} & \frac{1}{2} \end{bmatrix}$$

0

$$[ 16 \quad 4 \quad 10 \quad 2 ]$$

 $\begin{bmatrix} 16 \\ 4 \\ 10 \end{bmatrix}$ 

2

✓ 1.00 To multiply the vector x by 2, take each element of x and multiply that element by 2.

 $\begin{bmatrix} 4 \\ 1 \\ \frac{5}{2} \\ \frac{1}{2} \end{bmatrix}$ 

Total 1.00 / 1.00

# **Question 3**

Let u be a 3-dimensional vector, where specifically

$$u = \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$$

What is  $u^{\mathrm{T}}$ ?

| Your Answer | Score | Explanation |
|-------------|-------|-------------|
|             |       |             |

$$\begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$$
 $\bullet$  [2 1 8]
 ✓ 1.00

  $\bullet$  [8 1 2]

 Total
 1.00 / 1.00

## **Question 4**

Let u and v be 3-dimensional vectors, where specifically

$$u=\left[egin{array}{c}1\3\-1\end{array}
ight]$$
 and  $v=\left[egin{array}{c}2\2\4\end{array}
ight]$ 

What is  $u^T v$ ?

(Hint:  $u^T$  is a 1x3 dimensional matrix, and v can also be seen as a 3x1 matrix. The answer you want can be obtained by taking the matrix product of  $u^T$  and v.)

#### You entered:



| Your Answer |   | Score       | Explanation |
|-------------|---|-------------|-------------|
| 4           | ~ | 1.00        |             |
| Total       |   | 1.00 / 1.00 |             |

## **Question 5**

Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true?

|          | Score          | Explanation                                                                                                                                                                                           |
|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>~</b> | 0.25           | This true by the associative property of matrix multiplication. More generally, $(A*B)*C=A*(B*C), \text{ and here we have just set } C=A.$                                                            |
| ~        | 0.25           | Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m\times n$ . matrix, and B a $n\times o$ matrix, then C would be $m\times o$ . (In our example, $m=n=o=3$ .) |
| <b>~</b> | 0.25           | This would not be true even if A and B were 1x1 matrices (i.e., scalars/real numbers). In general, $a^2b \neq ab^2$ .                                                                                 |
| ~        | 0.25           | We add matrices element-wise. So, this must be true.                                                                                                                                                  |
|          | 1.00 /<br>1.00 |                                                                                                                                                                                                       |
|          | *              | <ul><li>✓ 0.25</li><li>✓ 0.25</li><li>✓ 0.25</li><li>✓ 1.00 /</li></ul>                                                                                                                               |