

INDUCTION, INDUCTIVE SETS, AND MATRICES

Dr. Isaac Griffith Idaho State University

Induction

CS 1187

Mathematical Induction

- Many theorems state that P(n) is true for all positive integers n, where P(n) is a propositional function, such as the statement that $1+2+\ldots+n=\frac{n(n+1)}{2}$ or the statement that $n\leq 2^n$
- · Mathematical Induction is a technique for proving theorems of this kind
- In other words, mathematical induction is used to prove propositions of the form: ∀_xP(x), where
 the universe of discourse is the set of positive integers.

Mathematical Induction

Principle of Mathematical Induction

- A proof by mathematical induction that P(x) is true for every positive integer n consists of two steps:
 - 1. Basis Step: The proposition P(1) is shown to be true.
 - 2. Inductive Step: The implication $P(k) \rightarrow P(k+1)$ is shown to be true for every positive integer k
- Here, the statement P(k) for a fixed positive integer k is called the **inductive hypothesis**
- When we complete both steps of a proof by mathematical induction, we have proved that P(n) is true for all positive integers n; that is we have shown that $\forall_n P(n)$ is true.
- Expressed as a rule of inference, this proof technique can be stated as:

$$[P(1) \land \forall_{k}(P(k)) \to P(k+1))] \to \forall_{n}P(n)$$

Mathematical Induction

$$[P(1) \land \forall_k (P(k)) \rightarrow P(k+1))] \rightarrow \forall_n P(n)$$

- To prove $\forall n. P(n)$ is true $\forall n \in \mathbb{Z}^+$:
 - 1. Show that P(1) is true.
 - This amounts to showing that the particular statement obtained when n is replaced by 1 in P(n) is true.
 - 2. Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k.
 - 2.1 To prove that this implication is true for every positive integer k we need to show that P(k + 1) cannot be false when P(k) is true.
 - 2.2 Assume that P(k) is true.
 - 2.3 Show that under this hypothesis P(k+1) must also be true.

Proof Examples

Example: $P(n) : 2^n < n!$ for $n \ge 4$

Proof:

Basis Step: $P(4): 2^4 = 16 < 24 = 4!$ **true Inductive Step:** Assume P(k) is true $(k \ge 4)$

Multiply both sides by 2

Example: $P(n) : 4n < (n^2 - 7)$ for $n \ge 6$

Proof:

Basis Step: P(6): 24 < 29 **true**

Inductive Step: Assume P(k) is true. $(k \ge 6)$

We want to show that $4(k+1) < (k+1)^2 - 7$ $4k < (k^2 - 7)$

$$\begin{array}{rcl}
4k + 4 & < & (k^2 - 7) + 4 & < & (k^2 - 7) + (2k + 1) \\
& = & k^2 + 2k + 1 - 7 \\
4(k + 1) & = & (k + 1)^2 - 7
\end{array}$$

Proof Examples

Example: $P(n): 1+2+2^2+\ldots+2^n=2^{n+1}-1$ and n>0

Proof:

Basis Step:
$$P(0): 2^0 = 1 = 1 = 2^{0+1} - 1$$
 True

Inductive Step: Assume
$$P(k)$$
 is true. $(k \ge 0)$

We want to show that

$$\begin{array}{rll} 1+2+2^2+\ldots+2^k+2^{k+1}=2^{(k+1)+1}-1=2^{k+2}-1 \\ 1+2+2^2+\ldots+2^k+2^{k+1}&=&(1+2+2^2+\ldots+2^k)+2^{k+1} \\ &=&2^{k+1}-1+2^{k+1} \\ &=&2\cdot 2^{k+1}-1 \\ &=&2^{k+2}-1 \end{array}$$

Induction on Lists

- Principle of List Induction: supose P(xs) is a predicate on lists of type [a], for some type a.
 - The Base Case is to Suppose that P([]) is true
 - Further, suppose that if P(xs) holds for arbitrary xs :: [a], then P(x : xs) also holds for arbitrary x :: a.
 - Then, P(xs) holds for every list xs that has finite length
- Example: length (map f xs) = length xs
 - Proof: Induction over xsBase Case:

```
\begin{array}{ll} \textit{length } (\textit{map } \textit{f } []) \\ = \textit{length } [] & \{ \textit{ map.} 1 \ \} \end{array}
```

• Inductive Case: assume length (map f xs) = length xs. Then length (map f (x:xs))

```
= length (f x : map f xs)  { map.2 }
= 1 + length (map f xs) { length.2 }
= 1 + length xs { hypothesis }
```

```
= length (x : xs) { length.2 }
```

Functional Equality

- If two algorithms, defined as functions, are applied to the same arguments they will produce the same result
 - If true, it may seem that we could state f = q, when f and g are functions.
 - But, what does f = q mean?
- Intensional Equality: Two functions f and g are intensionally equal if their definitions are identical.
 - For programs this means that the source code is identical
- Extensional Equality: Two functions f and g are extensionally equal if the have the same type $a \to b$ and f(x) = g(x) for all well typed arguments x : a. That is, f = g iff

$$\forall x: a. \ f(x) = g(x)$$

• Proof of this simply requires that we prove the proposition $\forall x: a. \ f(x) = g(x)$, by selecting an arbitrary x: a and proving the equation f(x) = g(x)

Strong Induction

- Strong Induction: To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:
 - Basis Step: We verify that the proposition P(1) is true
 - Inductive Step: We show that the conditional statement $[P(1) \land P(2) \land \dots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k
 - That is, here we show that fall all positive integers j not exceeding k, then P(k+1) is true
- For our *inductive hypothesis*, we assume P(i) is true for i = 1, 2, ..., k
- Well-Ordering Property: Every nonempty set of nonnegative integers has at least one element.

Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
 - Let P(n) be the statement that postage of n cents can be formed using 4-cent and 5-cent stamps
- Basis Step: We can form postage of 12, 13, 14, and 15 cents as follows:
 - P(12) three 4-cent stamps
 - P(13) two 4-cent stamps
 - P(14) one 4-cent stamps and two 5-cent stamps
 - P(15) three 5-cent stamps
- Inductive Step: Assume we can form postage of i cents, where 12 < i < k
 - We need to show that under the assumption P(k+1) is true, we can also form postage of k+1 cents.
 - We can assume that P(k-3) is true because $k-3 \ge 12$
 - To form postage of k + 1 cents, we need only add another 4-cent stamp to the stamps used for k-3 cents.
 - Thus, we've shown the *inductive hypothesis* is true, then P(K+1) is also true

Induction, Inductive Sets, and Matrices | Dr. Isaac Griffith,

CS 1187

Defining Sets Using Induction

- Beyond the base and inductive cases, inductive set definition needs one more component: the extremal clause
- Extremal Clause: A statement which excludes anything from the set that are not introduced by the base case, or are instantiations of the induction case, it reads something like the following: "Nothing is an element of the set unless it can be constructed by a finite number of uses of the first two clauses"
- Thus all inductive set definitions include 3 parts:
 - Base Case: a simple statement of some mathematical fact: i.e., $1 \in S$
 - Induction Case: an implication in a general form: $\forall x \in U, x \in S \rightarrow x + 1 \in S$
 - Extremal Clause: Nothing is in the set being defined unless it got there by a finite number of uses of the first two
 cases

The Natural Numbers

- The set of natural numbers. N. is defined as follows
 - Base Case: $0 \in \mathbb{N}$
 - Induction case: $x \in \mathbb{N} \to x + 1 \in \mathbb{N}$
 - Extremal clause: nothing is an element of the set N unless it can be constructed with a finite number of uses of the base and induction cases.
- ullet We can show that an arbitrary number above and including 0 are in ${\mathbb N}$
 - 1. $0 \in \mathbb{N}$ Base Case
 - $2. \quad 0 \in \mathbb{N} \to 1 \in \mathbb{N} \qquad \textit{instantiationrule}, \textit{inductioncase}$
 - 3. $1 \in \mathbb{N}$ 1, 2, Modus Ponens
 - $4. \quad 1 \in \mathbb{N} \to 2 \in \mathbb{N}$ instantiation rule, induction case
 - 4. $1 \in \mathbb{N} \to 2 \in \mathbb{N}$ installiation rule, induction case
 - 5. $2 \in \mathbb{N}$ 3, 4, Modus Ponens

Binary Machine Words

- Let BinDigit be the set {0,1}. The set BinWords of machine words in binary is defined as follows:
 - Base Case: $X \in BinDigit \rightarrow X \in BinWords$
 - Induction Case: if x is a binary digit and y is a binary word, then their concatenation xy is also a binary word

$$(x \in \mathtt{BinDigit} \land y \in \mathtt{BinWords}) \rightarrow xy \in \mathtt{BinWords}$$

- Extremal Clause: Nothing is an element of BinWords unless it can be constructed with a finite number of uses of the base and induction cases
- A set based on another set S in this way is given the name S⁺
 - it is the set of all possible non-empty strings over S
 - S* is similar to S+ except S* includes the empty string
 - BinWords could have also been written as BinDigit+

Haskell Implementation

- We can define a function to create two new BinWords based on one that has been provided
 - i.e., given [1, 0] it will return [0, 1, 0] and [1, 1, 0]

```
newBinaryWords :: [Integer] -> [[Integer]]
newBinaryWords ys = [0:ys, 1:ys]
```

• We then define the set of BinWords as:

```
mappend :: (a -> [b]) -> [a] -> [b]
mappend f [] = []
mappend f (x:xs) = f x ++ mappend f xs

binWords = [0] : [1] : (mappend newBinaryWords binWords)
```

The Set of Integers

- Both of the prior sets are well-founded, meaning they are infinite in only one direction, and they
 have a least element
- Countable Set: a set which can be counted using the natural numbers
 - Are the integers countable?
 - Doesn't have a least element
 - · Infinite in two directions
 - However we can count hem using natural numbers as follows:
 - Start at 0
 - For every number $n \in \mathbb{N}$, we count both n and -n in \mathbb{Z}
 - That is, we can consider the set of integers as an infinitely long tape folded in half at 0, and then count the
 overlapping numbers (i, −i) for each i ∈ N
- Yet, this does not specify $\ensuremath{\mathbb{Z}}$

The Set of Integers

- The set Z of integer is defined as follows:
 - Base Case: $0 \in \mathbb{Z}$
 - Induction Case:

$$(\mathbf{x} \in \mathbb{Z} \land \mathbf{x} \ge 0) \to \mathbf{x} + 1 \in \mathbb{Z} \land -(\mathbf{x} + 1) \in \mathbb{Z}$$

• Extremal Clause: nothing is in \mathbb{Z} unless its presence is justified by a finite number of uses of the base and induction cases

Thus, we can define integers using Haskell, as follows

```
build :: a -> (a -> a) -> Set a
build a f = set
   where set = a : map f set
builds :: a -> (a -> [a]) -> Set a
builds a f = set
   where set = a : mappend f set
nextInteger :: Integer -> [Integer]
nextInteger x
  = if x > 0 / x == 0
      then [x + 1, -(x + 1)]
      else []
integer :: [Integer]
integers = builds 0 next Integers
```


CS 1187

Matrices

- Matrix: a rectangular array of numbers.
 - Matrix with m rows and n columns is called an $m \times n$ matrix
 - Matrix with the same number of rows and columns is called square.
 - Two matrices are equal if they have the same number of rows and the same number of columns and the
 corresponding entries in every position are equal
- Example: a 3 × 2 matrix

```
\begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 1 & 3 \end{bmatrix}
```

Matrices

Let m and n be positive integers and let

$$\mathbf{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ & & \ddots & & \ddots \ & & \ddots & & \ddots \ & & \ddots & & \ddots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

The *i*th row of **A** is the $1 \times n$ matrix $[a_{i1}, a_{i2}, \ldots, a_{in}]$. The jth column of **A** is the $m \times 1$ matrix

• The (i, j)th element or entry of **A** is the element a_{ij} , that is, the number in the *i*th row and *j*th column of **A**. A convenient shorthand notation for expressing the matrix **A** is to write $\mathbf{A} = [a_{ij}]$, which indicates that **A** is the matrix with its (i, j)th element equal to a_{ij}

Matrix Sums

Let $\mathbf{A} = [a_{ii}]$ and $\mathbf{B} = [b_{ii}]$ be $m \times n$ matrices:

- Sum: the sum of **A** and **B**, denoted **A** + **B**, is the $m \times n$ matrix that has $a_{ii} + b_{ii}$ as its (i, j)th element.
 - That is, $A + B = [a_{ii} + b_{ii}]$

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 2 & -3 \\ 3 & 4 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 4 & -1 \\ 1 & -3 & 0 \\ - & 1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & -2 \\ 3 & -1 & -3 \\ 2 & 5 & 2 \end{bmatrix}$$

Matrix Multiplication

• Let **A** be an $m \times k$ matrix and **B** be a $k \times n$ matrix. The *product* of **A** and **B**, denoted by **AB**, is the $m \times n$ matrix with its (i, j)th entry equalt to the sum of the products of the corresponding elements from the ith row of **A** and the jth column of **B**. That is, if $AB = [c_{ij}]$, then

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ik} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{k1} & b_{k2} & \dots & b_{kj} & \dots & b_{kn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{11} & c_{12} & \dots & c_{1n} \\ \vdots & \vdots & c_{ij} & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

Example

Let,

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 1 & 1 \\ 3 & 0 \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} (1 \cdot 2) + (0 \cdot 1) + (4 \cdot 3) & (1 \cdot 4) + (0 \cdot 1) + (4 \cdot 0) \\ (2 \cdot 2) + (1 \cdot 1) + (1 \cdot 3) & (2 \cdot 4) + (1 \cdot 1) + (1 \cdot 0) \\ (2 \cdot 3) + (1 \cdot 1) + (0 \cdot 3) & (3 \cdot 4) + (1 \cdot 1) + (0 \cdot 0) \\ (0 \cdot 2) + (2 \cdot 1) + (2 \cdot 3) & (0 \cdot 4) + (2 \cdot 1) + (2 \cdot 0) \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} 14 & 4 \\ 8 & 9 \\ 7 & 13 \\ 8 & 2 \end{bmatrix}$$

Matrix Identity and Powers

• Identity Matrix of Order n (I_n): is the $n \times n$ matrix $I_n = [\delta_{ii}]$, (the Kronecker delta) where $\delta_{ii} = 1$ if i = i and $\delta_{ii} = 0$ if $i \neq i$. Hence

$$\mathbf{I}_n = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ & \ddots & \ddots & & \ddots \ & \ddots & & \ddots & & \ddots \ 0 & 0 & \dots & 1 \end{bmatrix}$$

Multiplying a matrix by its identity matrix does not change the matrix: $\mathbf{AI}_n = \mathbf{I}_m \mathbf{A} = \mathbf{A}$

- Powers of a square matrix can be defined because matrix multiplication is associative:
 - $A^0 = I_0$
 - $A^r = AAA \dots A$

Transpose and Symmetry

- Transpose: Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ matrix. The *transpose* of \mathbf{A} , denoted by \mathbf{A}^T , is the $n \times m$ matrix obtained by interchanging the rows and columns of \mathbf{A} .
 - That is, if $\mathbf{A}^T = [b_{ij}]$, then $b_{ij} = a_{ij}$ for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad \mathbf{A}^\mathsf{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

- **Symmetric:** A square matrix **A** is called **symmetric** if $\mathbf{A} = \mathbf{A}^T$. Thus, $\mathbf{A} = [a_{ij}]$ if $a_{ij} = a_{ji}$ for all i and j with $1 \le i \le n$ and $1 \le j \le n$.
 - Example:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Zero-One Matrices

- Zero-One Matrix: a matrix all of whose entries are either 0 or 1
- Arithmetic on these matrices is base on the Boolean operations \wedge and \vee

$$oldsymbol{b}_1 \wedge oldsymbol{b}_2 = egin{cases} 1 & ext{if } oldsymbol{b}_1 = oldsymbol{b}_2 = 1 \ 0 & ext{otherwise} \end{cases}$$

$$oldsymbol{b}_1ee oldsymbol{b}_2 = egin{cases} 1 & ext{if } oldsymbol{b}_1 = 1 ext{ or } oldsymbol{b}_2 = 1 \ 0 & ext{otherwise} \end{cases}$$

Zero-One Matrix Arithmetic

Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \times n$ zero-one matrices

$$\mathbf{A} = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = egin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 0 \end{bmatrix}$$

Join: the *join* of **A** and **B**, denoted $A \vee B$, is the zero-one matrix with (i, j)th entry $a_{ii} \vee b_{ii}$

$$\mathbf{A} \vee \mathbf{B} = \begin{bmatrix} 1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\ 0 \vee 1 & 1 \vee 1 & 0 \vee 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

Merge: the *merge* of **A** and **B**, denoted $A \wedge B$, is the zero-one matrix with (i, j)th entry $a_{ii} \wedge b_{ji}$

$$\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Zero-One Matrix Product

• Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ zero-one matrix and $\mathbf{B} = [b_{ij}]$ be a $k \times n$ zero-one matrix. Then the **Boolean product** of \mathbf{A} and \mathbf{B} , denoted by $\mathbf{A} \odot \mathbf{B}$, is the $m \times n$ matrix with (i, j)th entry c_{ij} where

$$c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2j}) \vee \ldots \vee (a_{ik} \wedge b_{kj})$$

Example: Find the Boolean product of $\mathbf{A} \odot \mathbf{B}$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{array}{lll} \mathbf{A} \odot \mathbf{B} & = & \begin{bmatrix} (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \\ (0 \wedge 1) \vee (1 \wedge 0) & (0 \wedge 1) \vee (1 \wedge 1) & (0 \wedge 0) \vee (1 \wedge 1) \\ (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \end{bmatrix} \\ & = & \begin{bmatrix} 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \\ 0 \vee 0 & 0 \vee 1 & 0 \vee 1 \\ 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \end{bmatrix} \\ & = & \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

For Next Time

- Review DMUC Chapters 4, 9 and 11
- Review DMA Chapters 2.3 2.5 and 5.1 5.2
- Review this Lecture
- Read DMUC Chapter 11.2.3, 11.2.4, 11.3 -11.4
- Read DMA Chapters 2.6, 4, 5.5

Are there any questions?