

FINAL PROJECT

Presented by: Nguyễn Quý Đang - 22022500

OVERVIEW

01

02

Dehazing

CycleGan

03

04

Virtual try on

VITION

on Dehazing

O2 CycleGAN

Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically "translate" an image from one into the other and vice versa: (*left*) Monet paintings and landscape photos from Flickr; (*center*) zebras and horses from ImageNet; (*right*) summer and winter Yosemite photos from Flickr. Example application (*bottom*): using a collection of paintings of famous artists, our method learns to render natural photographs into the respective styles.

2.1 Architecture

Figure 3: (a) Our model contains two mapping functions $G: X \to Y$ and $F: Y \to X$, and associated adversarial discriminators D_Y and D_X . D_Y encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for D_X and F. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency loss: $x \to G(x) \to F(G(x)) \approx x$, and (c) backward cycle-consistency loss: $y \to F(y) \to G(F(y)) \approx y$

O2 CycleGAN

2.2 Generator

02 CycleGAN

2.3 Discriminator

CycleGAN

2.4 Object function

$$L_{adv}(G,D_Y,X,Y)=rac{1}{n}[logD_Y(y)]+rac{1}{n}[log(1-D_Y(G(x))]$$

$$L_{adv}(F,D_X,Y,X) = \frac{1}{n}[logD_X(x)] + \frac{1}{n}[log(1-D_X(F(y))]$$

Adversarial Loss

$$L_{cycle}(G,F) = \frac{1}{n} \sum |F(G(x_i)) - x_i| + |G(F(y_i)) - y_i|$$

Cycle Consistency
Loss

$$L = L_{adv}(G, D_Y, X, Y) + L_{adv}(F, D_X, Y, X) + \lambda L_{cycle}(G, F)$$

02 CycleGAN

2.5 Result

Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically "translate" an image from one into the other and vice versa: (*left*) Monet paintings and landscape photos from Flickr; (*center*) zebras and horses from ImageNet; (*right*) summer and winter Yosemite photos from Flickr. Example application (*bottom*): using a collection of paintings of famous artists, our method learns to render natural photographs into the respective styles.

2.5 Result

Input

Prediction

O3 Virtual Try On

4.1 Architecture

4.2 TPS Transformation

$$\sum_i \left\| f(P_i) - Q_i
ight\|^2 + \lambda \iint \left(rac{\partial^2 f}{\partial x^2} + 2 rac{\partial^2 f}{\partial x \partial y} + rac{\partial^2 f}{\partial y^2}
ight)^2 dx \, dy$$

$$I_o = M \odot \hat{c} + (1 - M) \odot I_r$$

4.3 Result

4.5 Result

Thank's For Watching

