SemenovVlAl 25012025-105010

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Источник колебаний с частотой 2370 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 169 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1653 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 30 Гц, если с доступная мощность на выходе источника равна 2.3 дБм? Варианты ОТВЕТА:

- 1)-164.2 дБн/Гц
- 2)-164.7 дБн/Гц
- 3) 165.2 дБн/Гц
- 4)-165.7 дБн/Гц
- 5) -166.2 дБн/Гц
- 6)-166.7 дБн/Гц
- 7) -167.2 дБн/ Γ ц
- о) 107.2 доп/гц
- 8) -167.7 дБн/Гц
- 9)-168.2 дБн/Гц

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 6550 МГц и спектральную плотность мощности фазового шума на отстройке 100 кГц минус 120 дБн/Гц . Спектральная плотность мощности фазового шума на отстройке 100 кГц синтезированного колебания равна минус 116 дБн/Гц, а частота его равна 10380 МГц. Чему равна спектральная плотность мощности фазового шума второго колебания на отстройке 100 кГц при описанном выше некогерентном синтезе?

- 1)-127.7 дБн/Гц
- 2)-124.7 дБн/Гц
- 3)-121.7 дБн/Гц
- 4) -121.2 дБн/Гц
- 5)-118.2 дБн/Гц
- 6) -117.6 дБн/Гц
- 7) -115.2 дБн/Гц
- 8) -114.8 дБн/Гц
- 9) -114.5 дБн/Гц

Источник колебаний с доступной мощностью -5 дБм и частотой 4530 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 103 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 4530.0004 МГц, если спектральная плотность мощности его собственных шумов равна минус 111 дБм/Гц, а полоса пропускания ПЧ установлена в положение 100 Гц?

- 1)-84.5 дБм
- 2)-86.2 дБм
- 3) -87.9 дБм
- 4)-89.6 дБм
- 5)-91.3 дБм
- 6) -93 дБм
- 7) -94.7 дБм
- 8) -96.4 дБм
- 9) -98.1 дБм

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10¹, а крутизна характеристики управления частотой ГУН равна 1 МГц/В. Частота колебаний опорного генератора (ОГ) 300 МГц. Частота колебаний ГУН 1490 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 5.8 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 2838 кГц на 1.5 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 1 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 0.34 В/рад
- 2) 0.41 В/рад
- 3) 0.48 В/рад
- 4) 0.55 В/рад
- 5) 0.62 В/рад
- 6) 0.69 В/рад
- 7) 0.76 В/рад
- 8) 0.83 В/рад
- 9) 0.90 В/рад

Если цепь на рисунке 2 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 8.218 кГц больше на 2.5 дБ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ больше на 2.8 дБ, чем вклад ГУН. Известно, что C=3.01 нФ, а $R_2=3560$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 2 – Электрическая схема цепи обратной связи

- $1)5394\,O_{\rm M}$
- 2) 6133 O_M
- 3) 6872 Om
- 4) 7611 O_M
- 5) 8350 Om
- 6) 9089 O_M
- 7)9828 O_M
- $8)10567\,\mathrm{Om}$
- 9) 11306 O_M

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 30 МГц. Частота колебаний ГУН 4430 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 148.4 дБн/Гц для ОГ и плюс 43.4 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=21.6083,\,\tau=94.7829$ мкс.

Крутизна характеристики управления частотой ГУН равна 1.7 МГц/В. Крутизна характеристики фазового детектора 0.3 В/рад.

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дB отличается спектральная плотность мощности фазовых шумов на частоте отстройки 17 к Γ ц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты OTBETA:

- 1) на минус 8.3 дБ
- 2) на минус 8.7 дБ
- 3) на минус 9.1 дБ
- 4) на минус 9.5 дБ
- 5) на минус 9.9 дБ
- 6) на минус 10.3 дБ
- 7) на минус 10.7 дБ
- 8) на минус 11.1 дБ

9) на минус 11.5 дБ