Motivación:

- Sistema de control de temperatura de un panal de abejas. Sistema de recolección de alimento de un hormiguero. Interacción entre las acciones de los individuos y un "estado macro" (temperatura, rastros de feromonas en el entorno, etc.).
- Desarrollar un sistema formal sencillo para estudiar la interacción elemental entre el estado micro (p.ej., la colección de los estados de las abejas en un instante determinado), y un estado macro (p.ej., la temperatura del panal) (Elementary Micro Macro Interaction, EMMI).
- Comparación con los autómatas celulares.

Definición de un EMMI:

- Sea $\mathcal{I} = \{1, \dots, I\}$ un conjunto de agentes. Para cada $i \in I$ se define:
 - 1. Umbral $u_i \in [0, 1]$.
 - 2. Estado $x_i[k] \in \{0,1\}$, para $k \in \mathbb{N}$.
 - 3. Regla $x_i[k+1] = \begin{cases} 1, & \text{si } X[k] \le u_i \\ 0, & \text{en otro caso} \end{cases}$
- Estado macro: $X[k] = \sum_{i \in I} x_i[k]$, para $k \in \mathbb{N}$.

Lema 1. No puede haber dos transiciones consecutivas a estados de mayor número de individuos. Es decir, si $X[k] \le X[k+1]$, entonces $X[k+2] \le X[k+1]$.

Proof. Supongamos que $X[k] \le X[k+1]$. Vamos a demostrar primero que $x_i[k+2] \le x_i[k+1]$ para todo i. Tenemos sólo dos casos:

- Supongamos que $x_i[k+1] = 0$. Luego, por la definición de $x_i[k+1]$ y la hipótesis se tiene que $u_i < X[k] \le X[k+1]$ y, en consecuencia, $x_i[k+2] = 0$. Entonces $x_i[k+2] \le x_i[k+1]$.
- Supongamos que $x_i[k+1]=1$. Luego, como $x_i[k+2]\in\{0,1\},\ x_i[k+2]\leq x_i[k+1].$

Entonces $\sum_i x_i[k+2] \leq \sum_i x_i[k+1]$. Por lo tanto, por la definición de X[k] se tiene que $X[k+2] \leq X[k+1]$.