

Differential operators

· Laplace equation

$$f: U \in \mathbb{R}^n \to \mathbb{R}$$

$$\Delta f = 0$$

- · Solutions of Laplace equation :
 - Harmonic functions = kernel of the Laplacian operator
 - No local maxima or minima in U
 - Minimizing the Dirichlet energy that measures the smoothness of a function

$$E(f) = \int_{U} \langle \nabla f, \nabla f \rangle dA$$

46

Differential operators

- · Solutions of Laplace equation :
 - Used for interpolation

47

Differential operators

- · Solutions of Laplace equation :
 - Used for interpolation

 $\Delta f(x) = 0 \quad x \in U$

 $f(x) = f_0(x)$ $x \in \delta U_D$ (Dirichlet boundary)

 $\nabla f.n = g_0(x) \quad x \in \delta U_N \ (Neumann \ boundary)$

Differential operators

· Harmonic functions not to be misunderstood with the eigenvectors and eigen values of the Laplacian operator

$$\Delta f = \lambda f$$

When $U=\mathbb{R}$ eigenvectors are the sines and cosines functions that are used within Fourier framework

Differential operators

- In a multivariate context, differential operators are also used in differential equations
- Generally expressed in \mathbb{R}^k
- Spatial notation "nabla" : Think of it as a vector of partial derivative operators!

- Gradient operator of a **scalar** function f :
- Divergence operator of a vector function V : ∇.V
- Laplacian operator of a **scalar** function $\mathbf{f}: \Delta f = \nabla \cdot \nabla f$
- Curl (rotational) operator of a **vector** function $\mathbf{V}: \nabla \times \mathbf{V}$
- Expression of nabla depending on the

coordinate system of the input domain Coordinates u,v

49

Differential operator

- · A few reminders :
 - Gradient : direction $(u_{\mbox{\scriptsize max}}, v_{\mbox{\scriptsize max}})$ of maximal slope
 - Divergence : flow traversing a unit element around (u,v)
 - Laplacian : measures the difference between the function and its mean value in a small neighborhood
 - Useful for several geometry processing tasks (interpolation by heat diffusion, spectral analysis, mean-curvature, smoothing)
 - Curl (Rotational) : does the vector field locally turn around one vector?
- · Questions :
 - How could you define the "gradient" of a vector field? Jacobian matrix
 - How could you define the "laplacian" of a vector field? Vector with the Laplacian of each component

Other use of Nabla

Nabla transpose

 $_{x}\delta$: Derivative of the scalar field on the left

$$\nabla^t = \left[{}_x \delta, y \delta, z \delta \right]$$

· Jacobian matrix of a vector field V

$$\mathbb{J}_{\mathbf{V}} = \mathbf{V} \nabla^{\mathbf{t}} = \begin{bmatrix} \delta_x v_x, \delta_y v_x, \delta_z v_x \\ \delta_x v_y, \delta_y v_y, \delta_z v_y \\ \delta_x v_z, \delta_y v_z, \delta_z v_z \end{bmatrix}$$

Remark : circulation of V around small parallelogram

$$\mathbf{A}, \mathbf{B}: \quad curl(\mathbf{V}).(\mathbf{A} \times \mathbf{B}) = \mathbb{J}_{\mathbf{V}} \mathbf{A}.\mathbf{B} - \mathbb{J}_{\mathbf{V}} \mathbf{B}.\mathbf{A}$$

51

Differential operator

· Functions defining a curve

$$\mathbf{x}: [0, L] \to \mathbf{R}^3$$
 de classe C^3

Tangent, normal and binormal vectors?

Vecteur tangent : $\mathbf{t}(s) = \frac{\mathbf{x}^*(s)}{\|\mathbf{x}'(s)\|}$

Vecteur normal : $\mathbf{m}(s) = \frac{x''(s)}{\|\mathbf{x}''(s)\|}$ Vecteur binormal : $\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{m}(s)$

Repère de Serret-Frénet : (x(s); t(s), m(s), b(s))

52

Differential operator

· Let s be the curvilinear abscissa

-s: length of curve between 0 and t

$$s(t) = \int_0^t \|\mathbf{X}'(t)\| dt$$

- parameterize the curve wrt s
- x'(s) is a unit vector

Courbure : $\kappa(s) = \mathbf{x}''(s)$

Mesure la déviation par rapport à une droite

Torsion : $\tau(s) = \frac{\det[\mathbf{x}'(s), \mathbf{x}''(s), \mathbf{x}'''(s)]}{\kappa^2(s)}$

► Mesure le défaut de planarité

54

53

54

53

Differential operator

· Functions defining a surface

$$\mathbf{X}:\Omega\subset\mathrm{R}^2 o\mathrm{R}^3$$
 de classe C^r

Analogues vecteurs tangent/normal/binormal?

On note $\mathbf{X}_u = \frac{\partial \mathbf{X}}{\partial w}$ et $\mathbf{X}_v = \frac{\partial \mathbf{X}}{\partial v}$ **Plan tangent** en $p:T_p\mathbf{X}=$ plan passant par p et engendré par les vecteurs $\mathbf{X}_{u}(p)$ et $\mathbf{X}_{v}(p)$

Vecteur normal : $\mathbf{n}(p) = \frac{\mathbf{X}_{\upsilon}(p) \times \mathbf{X}_{\upsilon}(p)}{\|\mathbf{X}_{\upsilon}(p) \times \mathbf{X}_{\upsilon}(p)\|}$ $(\mathbf{X}(p); \mathbf{X}_{\upsilon}(p), \mathbf{X}_{\upsilon}(p), \mathbf{n}(p))$ forme aussi un repère local

 $\mathbf{X}:\Omega\subset\mathrm{R}^2 o\mathrm{R}^3$ de classe C'

- Length and angles distorsion?

the parameterization?

· Functions defining a surface

Differential operator

· How do unitary vectors are transformed by

55

Differential operator

• Functions defining a surface?

On note de manière analogue $\mathbf{X}_{uu} = \frac{\partial \mathbf{X}_{\mathbf{u}}}{\partial u} = \frac{\partial^2 \mathbf{X}}{\partial u^2}$, etc.

Première forme fondamentale :

$$\mathbf{I} = \left[\begin{array}{cc} E & F \\ F & G \end{array} \right] := \left[\begin{array}{cc} \mathbf{x}_u^T \mathbf{x}_u & \mathbf{x}_u^T \mathbf{x}_v \\ \mathbf{x}_u^T \mathbf{x}_v & \mathbf{x}_v^T \mathbf{x}_v \end{array} \right]$$
 Angle change

Seconde forme fondamentale :

$$\mathbf{II} = \begin{bmatrix} e & f \\ f & q \end{bmatrix} := \begin{bmatrix} \mathbf{x}_{uu}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \\ \mathbf{x}_{uv}^T \mathbf{n} & \mathbf{x}_{uv}^T \mathbf{n} \end{bmatrix}$$

Opérateur de forme/Application de Weingarten

$$\mathbf{W} \ := \ \frac{1}{EG-F^2} \left[\begin{array}{cc} eG-fF & fG-gF \\ fE-eF & gE-fF \end{array} \right] \ = \left(\begin{array}{cc} D_u n & D_v n \end{array} \right)$$

I = outil géométrique (tenseur métrique)

- \blacktriangleright Permet de mesurer aires locales, longueurs de courbes sur la surface, angles, $\cdots \qquad dA = \sqrt{EG-F^2}\,dudv$
- ▶ Exemple : anisotropie locale de la surface : décomposition spectrale de l

Propriétés différentielles ne dépendant que de I sont dites intrinsèques

- ▶ Ne dépendent pas de la paramétrisation
- ▶ Ne dépendent pas de l'espace 3D

58

Eigenvalues of I: maximal/minimal stretching of a tangent vector

58

57

59

61

II = propriétés extrinsèques de la surface

▶ Dépendent du plongement dans l'espace ambiant R³

W détermine les directions de courbure locale de la surface

- ► Valeurs propres = courbures principales
- Vecteurs propres = directions principales de courbure

59

60

62

Courbures principales et directions principales de courbure : $\mathbf{W} = \begin{bmatrix} \mathbf{\bar{t}}_1 & \mathbf{\bar{t}}_2 \end{bmatrix} \begin{bmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{bmatrix} \begin{bmatrix} \mathbf{\bar{t}}_1 & \mathbf{\bar{t}}_2 \end{bmatrix}^{-1}$ Courbure moyenne : $H = \frac{\kappa_1 + \kappa_2}{2} = \frac{1}{2} trace(\mathbf{W})$ Courbure de Gauss : $K = \kappa_1 \cdot \kappa_2 = det(\mathbf{W})$

(a) (b) (c) (d)
Fig. 5. Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b)
Gaussian, (c) Minimum, (d) Maximum.

[Meyer et al. 2003]

bU

Differential operators

- · Functions defined on a surface
 - Let u be a scalar function defined on a surface
 - $\boldsymbol{-}$ We would like to express local variations of \boldsymbol{u}
- Let consider the discrete case of a surface being approximated by a simplicial mesh
 - Function u discretized on vertices
 - Gradient of u discretized on triangles
 - Divergence of a vector (defined on triangles) discretized on vertices
- · Bibliography: Keenan Crane

Differential operators

Simplicial meshes

- Laplacian Δ of u at vertex i = sum over neighbor vertices j

 $(Lu)_i = rac{1}{2A_i} \sum_{j} (\cot lpha_{ij} + \cot eta_{ij})(u_j - u_i)$

- Gradient ∇ of u inside a triangle = sum over the 3 vertices I

Divergence at vertex i of a vector X defined on faces = sum over incident faces j

 $\nabla \cdot X = \frac{1}{2} \sum_{j} \cot \theta_1 (e_1 \cdot X_j) + \cot \theta_2 (e_2 \cdot X_j)$

Area Ai

· Computed by duality to a vertex

Differential geometry

- · How to generalize normal, curvatures?
- Consider u corresponding to each coordinate fonction in turn

$$- \qquad u = {}^{t}(x,y,z)$$

$$\triangle_{\mathbf{X}}\mathbf{u} = -2H\mathbf{n}$$

H : mean curvature n : normal vector

64

63

Signals being studied in Computer Graphics

- Signals defined on $\,\mathbb{R}^2$
 - Scalar signals:
 - height value (terrain)
 - · density of some fluid flowing in the plane
 - Vector fields
 - Surface parameterization $\, \Omega \subset \mathbb{R}^2 o \mathbb{R}^3 \,$
 - Displacement field of some fluid flowing in the plane
- Signals defined in \mathbb{R}^3
 - Density of a volume material (scalar)
 - · Displacement field of some fluid (vector)

65

63

Signals being studied in Computer Graphics

- Signals defined on a surface $\ensuremath{\mathbb{S}}$
 - Scalar values:
 - Temperature, grey color ...
 - Position coordinates (x, y or z)
 - Vector fields
 - Normal vector
 - Maximal/minimal curvature direction
 - · Displacement field
 - ...

66

66

Problem of a triangulating a surface passing through points

- Case of points belonging to a plane
- Ideas for constructing a mesh from these data?
 - Link the projected points together avoiding crossings to produce triangular pieces of surface.

67