Reference (6)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-292485 (P2003-292485A)

(43)公開日 平成15年10月15日(2003.10.15)

茨城県つくば市御幸が丘 21 山之内製薬

株式会社内

弁理士 長井 省三

(74)代理人 100089200

(51) Int.Cl.'	識別記号	FΙ		テーマコード(参考)
C 0 7 D 277/52		C 0 7 D 277/	52	4 C O 3 6
A61K 31/42	6	A61K 31/-	426	4 C 0 5 0
31/42	7	31/-	427	4 C 0 6 3
31/42	28	31/	428 .	4 C 0 6 5
31/43		31/	433	4C086
		未請求 請求項の要	t3 OL (全 52 頁) 最終頁に続く
(21)出願番号	特顧2002-98332(P2002-98332)	(1.2)	000006677 山之内製薬株式会社	
(22)出顧日	平成14年4月1日(2002.4.1)]	東京都中央区日本橋本町 592198703	2丁目3番11号
		1	株式会社創業技術研究所	
			東京都板橋区蓮根三丁目	17番1号
		(72)発明者	山本 治	

最終頁に続く

(54) 【発明の名称】 スルホンアミド誘導体

(57) 【要約】

【課題】 ヒト免疫不全ウイルス (HIV) 感染症治療 剤として有効な化合物の提供。

【解決手段】 本発明者等は、非核酸系逆転写酵素阻 審薬の開発を目的として逆転写酵素を阻害する化合物に つき鋭意検討した結果、2個の環基がスルホンアミドを リンカーとして結合する化合物、即ち、スルホンアミド のS原子及びN原子上それぞれに環基を有する、特定のス ルホンアミド誘導体が良好な逆転写酵素阻害活性を有す ることを知見し、本発明を完成した。 【特許請求の範囲】

【請求項1】 一般式(I') で示されるスルホンアミド誘導体又はその塩。

【化1】

$$\begin{array}{c|c}
 & R^2 \\
 & N \\
 & N$$

「式中の記号は以下の意味を有する。

a及びb: それぞれ単結合又は二重結合を意味し、少なくとも一方は単結合であり他方は二重結合である、

R¹:aが二重結合、且つ、bが単結合のとき、非存在;a が単結合、且つ、bが二重結合のとき、-H、-低級アルキ ル、-ハロゲンで置換された低級アルキル、-低級アルキ レン-OH、-低級アルキレン-ヘテロ環、-低級アルキレン -置換されていてもよいアリール、-低級アルキレン-O-低級アルキル、-低級アルキレン-CHO、-低級アルキレン -CO2 H、-低級アルキレン-CO2 - 低級アルキル、-低級アル キレン-CONH2 又は-低級アルキレン-OCONH2、

R²: aが二重結合、且つ、bが単結合のとき、-B、-低級アルキル、-ハロゲンで置換された低級アルキル、-低級アルキレン-OH、-低級アルキレン-ヘテロ環、-低級アルキレン-置換されていてもよいアリール、-低級アルキレン-CHO、-低級アルキレン-CO2 H、-低級アルキレン-CO2 -低級アルキル、-低級アルキレン-CO1H2 ; aが単結合、且つ、bが二重結合のとき、非存在、

X:0又はS、

A: 置換されていてもよいアリール又は置換されていて もよいヘテロアリール、

B: 置換されていてもよい含窒素ヘテロ環。

但し、式(I')において、

【化2】

(式中、R³及びR⁴は上記B「置換されていてもよい含窒素へテロ環」の置換基を意味する。) で示されるとき、以下の化合物を意味する:

- 1) R²が非存在、R³がメチル、且つ、Aが、4位のみが 置換されていてもよいフェニル基のとき、R⁴はC₂₋₆ アル キルである化合物、
- 2) R² 及びR³ がメチル、且つ、R⁴がH、2-プロピル又はtert-ブチルのとき、Aが、4位のみがクロロ、メチル、Nb2 及びNHCOCH3 から選択される基で置換されていてもよいフェニル以外の化合物、
- 3) R²及びR³がメチル、且つ、R⁴がCsアルキルのとき、 Aが、4位のみがメチル及びNO₂から選択される基で置換 されていてもよいフェニル以外の化合物、

- 4) R²がエチル、R³がメチル、且つ、R⁴がHのとき、A が、4位のみがメチル及びNHCOCH₃から選択される基で 置換されていてもよいフェニル以外の化合物、
- 5) R²がエチル、R³がメチル、且つ、R⁴が2-プロピルの とき、Aが4-メチルフェニル以外の化合物、
- 6) №がエチル、R³がメチル、且つ、R⁴がtert-ブチル のとき、Aが、4位のみがメチル、クロロ及びブロムか ら選択される基で置換されたフェニル以外の化合物、
- 7) R²及びR³がメチル、且つ、R⁴がtert-ブチルのとき、Aが3-ニトロフェニル以外の化合物、
- 8) R² がCH₂ CH₂ C1又はCH₂ CH₂ OH、R³ がメチル、且つ、R⁴ がHのとき、Aが4-クロロフェニル以外の化合物、
- 9) R^2 がベンジル、 R^3 がメチル、且つ、 R^4 がH、メチル 又はジエチルアミノのとき、Aが4-メチルフェニル以外 の化合物、
- 10) R²がメチル、R³がtert-ブチル、且つ、R⁴がクロロのとき、Aが4-メチルフェニル以外の化合物、
- 1 1) R¹がH、R³がメチル、且つ、R⁴がtert-ブチルのとき、Aがフェニル、4-メチルフェニル、4-クロロフェニル、3-ニトロフェニル又は4-ブロモフェニル以外の化合
 - 12) R¹がH、R³がメチル、且つ、R⁴が2-プロピルのとき、Aがフェニル、4-クロロフェニル又は4-メチルフェニル以外の化合物、
 - 13) R¹ がエチル、R³ がメチル、且つ、R⁴ がtert-ブチル又は2-プロピルのとき、Aが4-クロロフェニル以外の化合物、及び、
 - 14) R¹がH、R³がメチル、且つ、R⁴がCO₂Etのとき、A が3-ニトロフェニル以外の化合物。]

「請求項2】 一般式(I)で示されるスルホンアミド 誘導体又はその塩の1種又は2種以上を有効成分として 含有することを特徴とする医薬組成物。

【化3】

$$\begin{array}{c|c}
R^2 & O \\
N & R^1 & O \\
N & R^2 & O
\end{array}$$

$$\begin{array}{c|c}
R^2 & O \\
N & R^3 & O
\end{array}$$

$$\begin{array}{c|c}
A & O \\
O & O
\end{array}$$

[式中の記号は以下の意味を有する。

a及びb: それぞれ単結合又は二重結合を意味し、少なくとも一方は単結合であり他方は二重結合である、

R²: aが二重結合、且つ、bが単結合のとき、-H、-低級 アルキル、-ハロゲンで置換された低級アルキル、-低級 (3)

アルキレン-OH、-低級アルキレン-ヘテロ環、-低級アルキレン-置換されていてもよいアリール、-低級アルキレン-0-低級アルキル、-低級アルキレン-CO2-低級アルキル、-低級アルキレン-CO2-低級アルキル、-低級アルキレン-OCONH2; aが単結合、且つ、bが二重結合のとき、非存在、

X:0又はS、

A: 置換されていてもよいアリール又は置換されていて もよいヘテロアリール、

B: 置換されていてもよい含窒素へテロ環。 但し、 R^1 がH、且つBが4-メチル-5-(2-プロピル)チアゾール-2-イルのとき、Aがフェニル又は4-メチルフェニルである化合物を除く。

【請求項3】 抗HIV剤である請求項2記載の医薬組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医薬、特に抗HIV 薬として有用なスルホンアミド誘導体に関する。

[0002]

【従来の技術】ヒト免疫不全ウイルス(Human Immunode ficiency Virus: HIV) は、後天性免疫不全症候群 (AID S) の原因ウイルスであり、ヘルパーTリンパ球等のCD4 陽性細胞に感染し、その細胞を破壊し減少させる。その 結果、免疫機能が低下し、カリニ肺炎をはじめとする日 和見感染症や悪性腫瘍などが発生する。現在、臨床使用 されている抗HIV薬は、核酸系逆転写酵素阻害薬(NRT I) 、非核酸系逆転写酵素阻害薬 (NNRTI) 及びプロテア ーゼ阻害薬 (PI) の3種に大別され、NRTIとしては6種 類(ジドブジン(AZT)、ジダノシン(ddI)、ザルシタ ビン (ddC) 、ラミブジン (3TC) 、サニルブジン (d4 T) 、アバカビル (ABC))、NNKT1としては3種類 (ネ ビラピン (NVP)、エファビレンツ(EFV)、デラビルジ ン (DLV))、PIとしては6種類 (インジナビル (ID V)、サキナビル(SOV)、リトナビル(RTV)、ネルフ ィナビル (NFV)、アンプレナビル (APV)、ロピナビル ・リトナビル配合剤 (LPV/RTV)) が使用されている。 近年、AIDSによる死亡率とAIDS関連日和見感染症の頻度 を減少させるために、これらの抗HIV薬を3剤以上用いた 多剤併用療法(highly active antiretroviraltherap

y: HAART) が標準治療とされている。HAARTは、NRTI 2 剤とPI 1剤、あるいはNRTI 2剤とNNRTI 1剤等の組合せ で実施されており、患者のHIVウイルス量を検出限界以 下に低下させ、免疫系を再構築し、減少したCD4を再び 増加させることができる。 しかし、HAARTの早期導入 は、長期的な副作用や耐性ウイルスの出現が問題となっ ている。特に、PIは高投与量が必要で、重篤な副作用 (血糖値上昇、リポジストロフィー等) 等の問題もある ことから、最近では、NRTI 2剤とNNRTI (中でもEFV)の 組合せが初回療法には推奨されてきている。EFVは1日1 回投与(600 mg)で良く、アドヒアランスの点からもPIよ り優れた薬剤である。しかし、EFVは、薬剤耐性ウイル スの出現、発疹、集中力障害、不眠等の副作用があり、 長期投与に十分満足できる薬剤とは言えない。従って、 薬剤耐性ウイルスが出現し難く、副作用も少なく、アド ヒアランスが維持できるNNRTIの開発が望まれている。 既存のNNRTI耐性株に抗ウイルス効果を示すNNRTIがいく つか報告されている。例えば、W096/10019には、S、S SO2 又はメチレンを介してフェニルと結合するイミダ ゾール誘導体が、W000/27825には、2位にアリールアミ ノ基を有するピリミジン誘導体が、W001/17982には、2 位にカルバモイルメトキシ基等を有するフェニルケトン

【0003】スルホンアミド誘導体としては多くの化合物が報告されているが、例えば、下記一般式(II)において、

誘導体がそれぞれ報告されている。

【化4】

1) R¹ が非存在、即ち、aが二重結合且つbが単結合であり、R³がメチルであるスルホンアミド誘導体として下記表1に示す化合物が、2) R² が非存在、即ち、aが単結合且つbが二重結合であり、更にR³がメチル、R⁴が低級アルキル、且つAが3位又は4位のみが置換されていてもよいフェニルであるスルホンアミド誘導体として下記表2に示す化合物が、それぞれ報告されている。

[0004]

【表 1 】

Cmpd	R ²	R ³	R ⁴	A	Lit
C-1	Me	Me	Н	4-Me-Ph	ь
C-2	Me	Me	iPr	Ph	ь
C-3	Me	Ме	iPr	4-CI-Ph	b
C-4	Me	Me	iPr	4-Me-Ph	b
C-5	Me	Me	iPr	4-(NHAc)-Ph	ь
C-6	Me	Me	iPr	4-(NH ₂)-Ph	ь
C-7	Me	Me	tBu	Ph	ь
C-8	Me	Me	tBu	4-CI-Ph	ь
C-9	Me	Me	tBu	4-Me-Ph	b
C-10	Me	Me	tBu	4-(NHAc)-Ph	Ъ
C-11	Me	Me	Me(CH ₂) ₄	Ph	j(1)
C-12	Me	Me	Me(CH ₂) ₄	4-Me-Ph	j(3)
C-13	Me	Me	Me(CH ₂) ₄	4-(NO ₂)-Ph	j(2)
C-14	Me	Me	Et ₂ CH	Ph	k(1)
C-15	Me	Me	Et(Me) ₂ C	Ph	m(1)
C-16	Me	Me	Et(Me) ₂ C	4-Me-Ph	m(2)
C-17	Me	Me	Et(Me) ₂ C	4-(NO ₂)-Ph	m(3)
C-18	Me	Me	tBuCH ₂	Ph	h(1)
C-19	Me	Me	tBuCH ₂	4-Me-Ph	h(2)
C-20	Et	Me	Н	Ph	j(4)
C-21	Et	Me	Н	4-Me-Ph	j(5)
C-22	Et	Me	Н	4-(NHAc)-Ph	h(3)
C-23	Et	Me	iPr	4-Me-Ph	h(4)
C-24	Et	Me	tBu	4-CI-Ph	h(5)
C-25	Et	Me	tBu	4-Br-Ph	k(2)
C-26	Et	Me	tBu	4-Me-Ph	j(6)
C-27	Me	Me	tBu	3-(NO ₂)-Ph	g
C-28	CH₂CH₂OH	Me	Н	4-Cl-Ph	е
C-29	CH₂CH₂CI	Me	H	4-CI-Ph	е
C-30	CH₂Ph	Me	Н	4-Me-Ph	d

[0005]

Cmpd	R ⁱ	R ⁴	A	Lit
C-31	Н	Me	4-(NHCOCH ₂ -S-CH(Me)CO ₂ H)-Ph	· f
C-32	H	iPr	. Ph	n
C-33	Н	iPr	4-CI-Ph	j(7)
C-34	Н	iPr	4-Me-Ph	n
C-35	Н	tBu	Ph	С
C-36	Н	tBu	4-CI-Ph	С
C-37	Н	tBu	4-Br-Ph	h(6)
C-38	Н	tBu	4-Me-Ph	c
C-39	Н	tBu	3-(NO₂)-Ph	h(7)
C-40	Et	iPr	4-CI-Ph	a
C-41	Et	tBu	4-CI-Ph	a

【0006】(表中の略号は以下の意味を有する。Cmp d:化合物番号、Lit:出典 (a~nは下記参照)、Me:メ チル、Et:エチル、iPr:2-プロピル、tBu:tert-ブチ ル、Ac: アセチル、Ph: フェニル。また、置換基の前の 数字は置換位置を示し、例えば4-C1-Phは4-クロロフェ ニルを示す。以下同様。)

出典a~nは次の文献等を意味する。

b: Khim. Geterotsikl. Soedin. (1967), (1), 154-7;

c: Khim. Geterotsikl. Soedin. (1969), (1), 56-8;

d: J. Am. Chem. Soc. (1974), 96(12), 3973-8;

e: J. Chem. Soc., Perkin Trans. 1 (1980), (8), 177 3-8;

f:米国特許US3097201号公報;

g: ChemDiv, Inc社(米国)試薬カタログNo.1613-0032;

a: Khim. Geterotsikl. Soedin. (1967), (1), 153-4; 50 h: Oak Samples Ltd社(ウクライナ)試薬カタログ:(1)N

o.CD134441、(2)No.CD134440、(3)No.CD050023、(4)No.CD050044、(5)No.CD050039、(6)No.CD123533、(7)No.CD 050006;

j:Florida Center for Heterocyclic Compounds, Uni v. of Florida(米国)試薬カタログ:(1)No.23765、(2)No.23769、(3)No.23764、(4)No.20478、(5)No.20479、 (6)No.15722、(7)No.20480;

k: The Ukrainian State Chemical-Technology University(ウクライナ)試薬カタログ(1)No.USCTU G004846、(2)No.USCTU GRB07005;

m: AsInEx Ltd社(ロシア)カタログ(1) No.BAS0458427、(2) No.BAS0458426、(3) No.BAS0458431;

n: Chem. Abstr. 57, 3567g

上記の内、n (Chem. Abstr. 57, 3567g)には当該化合物の糖尿病治療剤用途に関する報告があるが、a~mには当該化合物の抗HIV剤用途は勿論、その医薬用途に関する開示はない。

[0007]

【発明が解決しようとする課題】上述の通り、薬剤耐性 ウイルスが出現し難く、副作用も少なく、アドヒアラン 20 スが維持できるNNRTIの開発が切望されている。

[0008]

【課題を解決するための手段】本発明者等は、逆転写酵素を阻害する化合物につき鋭意検討した結果、2個の環基がスルホンアミドをリンカーとして結合する化合物、即ち、スルホンアミドのS原子及びN原子上それぞれに環基を有する、特定のスルホンアミド誘導体が良好な逆転写酵素阻害活性を有することを知見し、本発明を完成した。即ち、本発明によれば、下記一般式(I)で示されるスルホンアミド誘導体(以下、「本発明化合物

(I)」と称する。)又はその製薬学的に許容される 塩、並びにこれらの1種又は2種以上を有効成分として 含有する医薬、特に抗HIV剤が提供される。

[0009]

【化5】

$$\begin{array}{c|c}
 & R^2 & Q \\
 & R^1 &$$

[式中の記号は以下の意味を有する。

a及びb: それぞれ単結合又は二重結合を意味し、少なくとも一方は単結合であり他方は二重結合である、

R¹: aが二重結合、且つ、bが単結合のとき、非存在; aが単結合、且つ、bが二重結合のとき、-H、-低級アルキル、-ハロゲンで置換された低級アルキル、-低級アルキレン-OH、-低級アルキレン-つ甲環、-低級アルキレン-O-低級アルキル、-低級アルキレン-CO2 H、-低級アルキレン-CO2 - 低級アルキル、-低級アルキレン-CO2 H、-低級アルキレン-CO12 - 低級アルキレン-CONH2 又は-低級アルキレン-CONH2、

8

R²:aが二重結合、且つ、bが単結合のとき、-H、-低級アルキル、-ハロゲンで置換された低級アルキル、-低級アルキレン-OH、-低級アルキレン-ヘテロ環、-低級アルキレン-置換されていてもよいアリール、-低級アルキレン-CHO、-低級アルキレン-CO₂H、-低級アルキレン-CO₂-低級アルキル、-低級アルキレン-CO₃H、-低級アルキレン-CO₂-低級アルキル、-低級アルキレン-CO₃H、-低級アルキレン-CO₄H、-低級アルキレン-CO₅H、-低級アルキレン-CO₅H、-低級アルキレン-CO₆H、-低級アルキレン-CO₇H、-CO₇H、-CO₇H、-CO₇H、-CO₇H 、-CO₇H 、-

X:0又はS、

10 A: 置換されていてもよいアリール又は置換されていて もよいヘテロアリール、

B: 置換されていてもよい含窒素へテロ環。 但し、R¹がH、かつBが4-メチル-5-(2-プロピル)チアゾ ール-2-イルのとき、Aがフェニル又は4-メチルフェニル である化合物を除く。以下同様。]

【0010】また、本発明は、式(I) に包含される下記式(I) で示される新規なスルホンアミド誘導体又はその塩にも関する。

【化6】

$$\begin{array}{c|c}
R^{2} & R^{1} & O \\
R & R^{1} & R^{1} & R^{1} \\$$

[式中の記号は以下の意味を有する。

a及びb: それぞれ単結合又は二重結合を意味し、少なくとも一方は単結合であり他方は二重結合である、

R¹: aが二重結合、且つ、bが単結合のとき、非存在; a が単結合、且つ、bが二重結合のとき、-H、-低級アルキル、-ハロゲンで置換された低級アルキル、-低級アルキレン-0H、-低級アルキレン-つテロ環、-低級アルキレン-位級アルキレン-C02H、-低級アルキレン-C02H、-低級アルキレン-C02H、-低級アルキレン-C012-低級アルキル、-低級アルキレン-C0112、

R²: aが二重結合、且つ、bが単結合のとき、-B、-低級アルキル、-ハロゲンで置換された低級アルキル、-低級アルキレン-0日、-低級アルキレン-ヘテロ環、-低級アルキレン-置換されていてもよいアリール、-低級アルキレン-0-低級アルキル、-低級アルキレン-CHO、-低級アルキレン-CO2-H、-低級アルキレン-CO2-低級アルキル、-低級アルキレン-CO1-低級アルキレン-CO1-低級アルキレン-CO1-低級アルキレン-CO1-低級アルキレン-CO1-低級アルキレン-CO1-低級アルキレン-CO1-0-C01-0

X:0又はS、

A: 置換されていてもよいアリール又は置換されていて もよいヘテロアリール、

B: 置換されていてもよい含窒素へテロ環。 但し、式 (I') において、

【化7】

(式中、R³及びR⁴は上記B「置換されていてもよい含窒素へテロ環」の置換基を意味する。) で示されるとき、以下の化合物を意味する:

- 1) R²が非存在、R³がメチル、且つ、Aが、4位のみが 置換されていてもよいフェニル基のとき、R⁴はC₂₋₆ アル キルである化合物、
- 2) k²及びk³がメチル、且つ、k⁴がh、2-プロピル又はtert-ブチルのとき、Aが、4位のみがクロロ、メチル、Nb2及びNHCOCHsから選択される基で置換されていてもよいフェニル以外の化合物、
- 3) R^2 及び R^3 がメチル、且つ、 R^4 が C_5 アルキルのとき、Aが、4位のみがメチル及び NO_2 から選択される基で置換されていてもよいフェニル以外の化合物、
- 4) \mathbb{R}^2 がエチル、 \mathbb{R}^3 がメチル、且つ、 \mathbb{R}^4 が \mathbb{R} のとき、 \mathbb{R}^4 が、4位のみがメチル及び \mathbb{R} がいら選択される基で置換されていてもよいフェニル以外の化合物、
- 5) R² がエチル、R³ がメチル、且つ、R⁴ が2-プロピルの とき、Aが4-メチルフェニル以外の化合物、
- 6) R²がエチル、R³がメチル、且つ、R⁴がtert-ブチル のとき、Aが、4位のみがメチル、クロロ及びブロムか ら選択される基で置換されたフェニル以外の化合物、
- 7) R²及びR³がメチル、且つ、R⁴がtert-ブチルのとき、Aが3-ニトロフェニル以外の化合物、
- 8) R² がCH₂ CH₂ C1又はCH₂ CH₂ OH、R³ がメチル、且つ、R⁴ がHのとき、Aが4-クロロフェニル以外の化合物、
- 9) R²がベンジル、R³がメチル、且つ、R⁴がH、メチル 又はジエチルアミノのとき、Aが4-メチルフェニル以外 の化合物、
- 10) k²がメチル、k³がtert-ブチル、且つ、k⁴がクロロのとき、Aが4-メチルフェニル以外の化合物、
- 1 1) R¹がH、R³がメチル、且つ、R⁴がtert-ブチルのとき、Aがフェニル、4-メチルフェニル、4-クロロフェニル、3-ニトロフェニル又は4-ブロモフェニル以外の化合物、
- 12) R¹がH、R³がメチル、且つ、R⁴が2-プロピルのとき、Aがフェニル、4-クロロフェニル又は4-メチルフェニル以外の化合物、
- 13) R^Iがエチル、R³がメチル、且つ、R⁴がtert-ブチル又は2-プロピルのとき、Aが4-クロロフェニル以外の化合物、及び、
- 14) R¹がH、R³がメチル、且つ、R⁴がCOzEtのとき、A が3-ニトロフェニル以外の化合物。以下同様。]

【0011】尚、式(I)、(I')及び(II)並びに 後記式(III)における点線で、「aが二重結合、且つ、 bが単結合」又は「aが単結合、且つ、bが二重結合」と は、以下に示す部分構造を有することを意味する。 10

即ち、R¹ が非存在のとき、aは二重結合、且つ、bは単結合であり、R² が非存在のとき、aは単結合、且つ、bは二 重結合である。

[0012]

【発明の実施の形態】以下、本発明について詳細に説明 する。本明細書中、「アルキル」、「アルキレン」、 「アルケニル」、「アルケニレン」、「アルキニル」及 び「アルキニレン」とは、直鎖状又は分枝状の炭化水素 鎖を意味する。「低級アルキル」は、例えばCi-8 のアル キルであり、好ましくはC1-6 のアルキル、より好ましく はC1-5 のアルキル、更に好ましくはメチル、エチル、イ ソプロピル、2-メチル-2-ブチル及びtert-ブチル基であ る。「低級アルキレン」は、例えばC1-8 のアルキレンで あり、好ましくはC1-6 のアルキレン、より好ましくはC 1-4 のアルキレン、より好ましくはエチレン、ブチレン 及び1,1-ジメチルエチレンである。「低級アルケニル」 は、例えばC2-8 のアルキルの任意の位置に1個以上の2 重結合を有することを意味し、「低級アルケニレン」 は、例えばC2-8 のアルキレンの任意の位置に1個以上の 二重結合を有することを意味する。「低級アルキニル」 は、例えばC2-8 のアルキルの任意の位置に1個以上の三 重結合を有することを意味し、「低級アルキニレン」 は、例えばC2-8 のアルキレンの任意の位置に1個以上の 三重結合を有することを意味する。「ハロゲン」は、 F、C1、Br及び1を示し、好ましくは、F、C1及びBrであ る。「ハロゲンで置換された低級アルキル」とは、1個 以上のハロゲンで置換された低級アルキルであり、好ま しくは、1~5個のFを有するC1-2のアルキルであり、 例えば、フルオロメチル、ジフルオロメチル、トリフル オロメチル、トリフルオロエチルが挙げられる。「シク ロアルキル基」は、好ましくは炭素数3万至14個のシ クロアルキル基であり、架橋されていてもよい。より好 ましくはシクロペンチル、シクロヘキシル、シクロヘブ チル及びアダマンチル基である。「アリール」は、好ま しくは炭素数6乃至14個の単環乃至3環式アリール基 である。より好ましくは、フェニル及びナフチル基であ り、更に好ましくは、フェニル基である。また、フェニ ル基に5乃至8員のシクロアルキル環が縮環し、例え ば、インダニル又はテトラヒドロナフチル基を形成して

【0013】「ヘテロアリール」とは、環原子として 50 0、S及びNから選択されるヘテロ原子を1乃至4個含有

いてもよい。

ヘテロ環を意味する。好ましくは、オキサゾリル、チア ゾリル、ベングチアゾリルピリジル、ジヒドロオキサゾ リル、ジヒドロチアゾリル、ジヒドロベングチアゾリル 及びテトラヒドロベングチアゾリル基等であり、更に好

12

ましくは、チアゾリル及びジヒドロチアゾリル基である。

【0015】「置換されていてもよいアリール」又は

「置換されていてもよいヘテロアリール」における置換 基としては、医薬、殊に抗HIV剤におけるこれらの環の 置換基として使用可能な基であり、それらの置換基を1~5個有していてもよい。2個以上の置換基を有する場合、それらは同一又は互いに異なっていてもよい。置換 基として好ましくは以下のGI群より選択される基であ

G1:低級アルキル、低級アルケニル、低級アルキニル、 ハロゲン、ハロゲンで置換された低級アルキル、OH、O-低級アルキル、0-ハロゲンで置換された低級アルキル、 0-低級アルキレン-アリール、SH、S-低級アルキル、N 02、NH2、NH-低級アルキル、N(低級アルキル)2、NH-CO-低級アルキル、N(低級アルキル)-CO-低級アルキル、NH-CO2-低級アルキル、N(低級アルキル)-CO2-低級アルキ ル、NHSO2 - 低級アルキル、N(低級アルキル) SO2 - 低級ア ルキル、0-CO-低級アルキル、0-CONH2、CO2 H、CO2 - 低級 アルキル、CN、CONH2、CONH-低級アルキル、CON(低級ア ルキル)2、CHO、C=NOH、C=N-O-CO-低級アルキル、C=NNH 2、NHCO-低級アルキル、NHCO-低級アルキレン-アリー ル、NHCO-低級アルキレン-ヘテロ環、NHCO-アリール、N HCO-ヘテロ環、低級アルキレン-CO2H、低級アルキレン-CO2-低級アルキル、低級アルキレン-CONH2、低級アルキ レン-CN、低級アルキレン-OH、低級アルキレン-N3、低 級アルキレン-アリール、低級アルキレン-ヘテロ環、低 級アルケニレン-CO2 H、低級アルケニレン-CO2 -低級アル キル、低級アルケニレン-CONH2、低級アルケニレン-C N、低級アルケニレン-OH、低級アルケニレン-アリー ル、低級アルケニレン-ヘテロ環、アリール、ヘテロ 環、CO-アリール、CO-ヘテロ環、O-アリール、O-ヘテロ 環、0-低級アルキレン-CO2 H、0-低級アルキレン-CO2-低 級アルキル、0-低級アルキレン-CONH2、0-低級アルキレ ン-CONH-低級アルキル、0-低級アルキレン-CON(低級ア ルキル)z、0-低級アルキレン-CONH-低級アルキレン-0 B、0-低級アルキレン-CO-ヘテロ環、0-低級アルキレン-ヘテロ環及び0-低級アルキレン-CN。ここに、アリール 及びヘテロ環は、低級アルキル、ハロゲン、OH及び0-低 級アルキルから選択される1~5個の基で置換されていて もよい。GI群の中で、より好ましくは、低級アルキル、 低級アルケニル、低級アルキニル、ハロゲン、ハロゲン で置換された低級アルキル、OH、O-低級アルキル、O-低 級アルキレン-アリール、NO2、NH2、NH-低級アルキル、 0-CONH2、CN、CONH2、CONH-低級アルキル、CON(低級ア ルキル)z、CHO、C=NOH、低級アルキレン-CN、低級アル

する5乃至8員の単環式ヘテロアリールを示し、ヘテロ 環同士、又はベンゼン環と縮環して、二から三環式ヘテ ロアリールを形成してもよい。S又はNが酸化されオキシ ドを形成してもよい。例えば、ピリジル、ピリダジニ ル、ピリミジニル、ピラジニル、フリル、チエニル、ピ ロリル、オキサゾリル、イソキサゾリル、オキサジアゾ リル、チアゾリル、チアジアゾリル、イミダゾリル、ト リアゾリル、テトラゾリル、ベンゾフラニル、ベンゾチ エニル、ベンゾオキサゾリル、ベンゾイミダゾリル、ベ ンゾチアゾリル、キノリニル、キナゾリニル、キノキサ リニル、シンノリニル等が挙げられる。「ヘテロ環」と は、環原子としてO、S及びNから選択されるヘテロ原子 を1乃至4個含有する飽和又は不飽和の3~8員、好ま しくは5~7員の単環式へテロ環基を示し、ヘテロ環同 士、又はシクロアルキル環やベンゼン環と縮環して、二 から三環式へテロ環基を形成してもよい。環原子である 任意の炭素原子がオキソ基で置換されていてもよく、S 又はNが酸化されオキシドやジオキシドを形成してもよ い。該ヘテロ環基は、架橋されていてもよく、また、ス ピロ環を形成してもよい (オキソ基より誘導される1,3-20 ジオキソラン環等のアセタール体を含む)。好ましく は、ピリジル、ピリダジニル、ピリミジニル、ピラジニ ル、フリル、チエニル、ピロリル、オキサゾリル、イソ キサゾリル、オキサジアゾリル、チアゾリル、チアジア ゾリル、イミダゾリル、トリアゾリル、テトラゾリル、 ベンゾフラニル、ベンゾチエニル、ベンゾオキサゾリ ル、ベンゾイミダゾリル、ベンゾチアゾリル、キノリニ ル、キナゾリニル、キノキサリニル、シンノリニル、ピ ロリジニル等のヘテロアリール、ジヒドロピリジル、ジ ヒドロピロリル、ジヒドロオキサゾリル、ジヒドロチア **ソリル、ジヒドロイミダゾリル、ピペリジル、モルホリ** ニル、ピペラジニル、ピラゾリジニル、イミダゾリジニ ル、ホモピペラジニル、テトラヒドロフラニル、テトラ ヒドロピラニル、クロマニル、ジオキソラニル、8-アザ ビシクロ[3.2.1]オクタン-3-イル、9-アザビシクロ[3. 3.1] ノナン-3-イル、3-アザビシクロ[3.2.1] オクタン-6 -イル、7-アザビシクロ[2.2.1]ヘプタン-2-イル、2-ア ザトリシクロ $[3.3.1.1^{3.7}]$ デカン-4-イル、1-アザピシ クロ[2.2.2]オクタン-2-イル、1-アザピシクロ[2.2.2] オクタン-3-イル、1-アザビシクロ[2.2.2]オクタン-4-イル、3-アザスピロ[5.5]ウンデカン-9-イル、2-アザス ピロ[4.5] デカン-8-イル、2-アザスピロ[4.4] ノナン-7-イル及び8-アザスピロ[4.5]デカン-2-イル等の飽和又は 一部不飽和ヘテロ環が挙げられる。更に好ましくは、ピ リジル、キノリル、オキサゾリル、チアゾリル、ベンゾ チアゾリルピリジル、ジヒドロオキサゾリル、ジヒドロ チアゾリル、ジヒドロベンゾチアゾリル及びテトラヒド ロベンゾチアゾリル基等である。

【0014】「含窒素ヘテロ環」としては、前記「ヘテロ環」の内、環原子として少なくとも1つのNを有する

キレン-OH、低級アルキレン-アリール、低級アルキレン-ヘテロ環、低級アルケニレン-CN、低級アルケニレン-OH、低級アルケニレン-ヘデロ環、アリール及びヘテロ環、更に好ましくは、低級アルキル、低級アルケニル、ハロゲン、OH、O-低級アルキル、NO2、NH2、O-CONH2、CN及びCONH2から選択される基である。

【0016】「置換されていてもよい含窒素へテロ環」における置換基としては、医薬、殊に抗HIV剤におけるこれらの環の置換基として使用可能な基であり、これらの置換基を1~5個有していてもよい。2個以上の置換基を有する場合、それらは同一又は互いに異なっていてもよい。置換基として好ましくは以下のG2群より選択される基である。

G2: 低級アルキル、低級アルキレン-OH、ハロゲン、0 II、0-低級アルキル、0-低級アルキレン-アリール、CO 2H、CO2-低級アルキル、CN、CONH2、CONH-低級アルキ ル、CON(低級アルキル)2、CONH-シクロアルキル、CONH-低級アルキレン-アリール、低級アルキレン-COz II、低級 アルキレン-CO2-低級アルキル、低級アルケニレン-CO 2H、低級アルケニレン-CO2-低級アルキル、低級アルケ ニレン-OH、低級アルキレン-O-低級アルキル、低級アル キレン-0-低級アルケニル、低級アルキレン-0-低級アル キニル、低級アルキレン-0-低級アルキレン-アリール、 低級アルキレン-S-低級アルキレン-アリール、低級アル キレン-NHCO-低級アルキル、低級アルキレン-0-低級ア ルキレン-CO2-低級アルキル、低級アルキレン-NH-低級 アルキレン-CO2-低級アルキル、低級アルキレン-NH-低 級アルキレン-CO2 H、低級アルキレン-N(低級アルキル)-低級アルキレン-CO2-低級アルキル、低級アルキレン-N (低級アルキル)-低級アルキレン-CO2 H、低級アルキレン -0-低級アルキレン-COzH、低級アルキレン-0-低級アル キレン-C0-ヘテロ環、低級アルキレン-0-低級アルキレ ン-CONH2、低級アルキレン-O-低級アルキレン-CONH-低 級アルキル、低級アルキレン-0-低級アルキレン-CON(低 級アルキル)2、低級アルキレン-アリール、低級アルキ レン-ヘテロ環、アリール、ヘテロ環、シクロアルキル 及びCO-ヘテロ環。ここに、アリール及びヘテロ環は、 低級アルキル、ハロゲン、OH及び0-低級アルキルから選 択される1~5個の基で置換されていてもよい。G2群の中 で、より好ましくは、低級アルキル、低級アルキレン-0 H、ハロゲン、OH、O-低級アルキル、O-低級アルキレン-アリール、CO2 H、CO2 - 低級アルキル、CN、CONH2、アリ ール、ヘテロ環及びシクロアルキル、更に好ましくは、 低級アルキル、低級アルキレン-OH、ハロゲン、OH、CN 及びシクロアルキルから選択される基である。

【0017】本発明における好ましい化合物は、下記式 (III) で示される化合物である。

【化9】

上記式中の記号は以下の意味を有する: R¹、R²、a及びbは前記の通り。

 R^3 及び R^4 : G2群から選択される基; あるいは、 R^3 と R^4 が一体となって、 $1\sim5$ 個の低級アルキルで置換されていてもよい C_{3-6} アルキレン、又は、 $-C(R^{10})=C(R^{11})-C(R^{12})=C(R^{13})$ -で表される基、

R¹⁰、R¹¹、R¹² 及びR¹³:同一又は互いに異なって、H、 低級アルキル又はフェニル、

R⁵、R⁶、R⁷、R⁸及びR⁹:G1群から選択される基。 より好ましくは、R¹が非存在、R²が低級アルキル、ハロ ゲンで置換された低級アルキル又は低級アルキレン-0 H、aが二重結合、且つ、bが単結合の化合物である。ま た、R²としては、好ましくは、C1-3 アルキル、ハロゲン で置換されたC1-2 アルキル又はC1-3 アルキレン-OHであ り、より好ましくは、C1-3 アルキルであり、特に好まし くはメチルである。R³としては、好ましくは、ハロゲ ン、CN又は低級アルキルであり、より好ましくは、ハロ ゲン、CN又はC1-3 アルキルであり、特に好ましくは、ク ロロ、CN又はメチルである。R⁴としては、好ましくはC 2-6 アルキル、より好ましくはC3-5 アルキル、特に好ま しくは2-プロピル、2-メチル-2-ブチル又はtert-ブチル である。R⁵~R⁹としては、1)好ましくは、R⁷がH、且 つ、R⁶がH以外の基であり、より好ましくは、R⁵、R⁷、R ⁸及びR⁹が共にHであり、更に好ましくはR⁶がハロゲン又 はNO2である、あるいは、2)好ましくは、R7がH、且つ、 R⁵及びR⁸がH以外の基、より好ましくは、R⁶、R⁷及びR⁹ が共にHであり、更に好ましくは、R5がCN、OH又はNH2、 且つ、R⁸がハロゲン又はCNである。

【0018】本発明化合物(I)は、置換基の種類によっては幾何異性体や互変異性体(例えば、ケトーエノール様の互変異性)が存在する場合があるが、本発明にはこれらの異性体の分離したもの、あるいは混合物をも包含する。また、本発明化合物は不斉炭素原子を有する場合があり、不斉炭素原子に基づく異性体が存在しうる。本発明にはこれら光学異性体の混合物や単離されたものを包含する。また、本発明には、本発明化合物を放射性同位元素でラベル化した化合物も包含する。

【0019】本発明化合物(I)は、酸付加塩又は塩基との塩を形成する場合もあり、かかる塩が製薬学的に許容され得る塩である限りにおいて本発明に包含される。 具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マイレン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルカン酸、エタンスルホン酸、アスパラギン酸、グルタミ

ン酸等の有機酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基、メチルアミン、エチルアミン、エタノールアミン、リジン、オルニチン等の有機塩基との塩やアンモニウム塩等が挙げられる。更に、本発明は、本発明化合物

(I) 及びその製薬学的に許容され得る塩の各種の水和物や溶媒和物及び結晶多形の物質をも包含する。また、本発明化合物(I)には、薬理学的に許容されるプロドラッグも含まれる。薬理学的に許容されるプロドラッグとは、加溶媒分解により又は生理学的条件下で本発明のNH2、OH、CO2H等に変換できる基を有する化合物である。プロドラッグを形成する基としては、Prog. Med.,5,2157-2161 (1985)や「医薬品の開発」(廣川書店、1990年)第7巻 分子設計163-198に記載の基が挙げられる。

【0020】(製造法)本発明化合物(I)及びその製薬学的に許容される塩は、その基本骨格あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。その際、官能基の種類によっては、当該官能基を原料乃至中間体の段階で適当な

保護基で保護、又は当該官能基に容易に転化可能な基に 置き換えておくことが製造技術上効果的な場合がある。 このような官能基としては例えばアミノ基、水酸基、カ ルボキシル基等であり、それらの保護基としては例えば グリーン (T. W. Greene) 及びウッツ (P. G. M. Wut s) 著、「Protective Groupsin Organic Synthesis(第 3版、1999年)」に記載の保護基を挙げることができ、 これらを反応条件に応じて適宜選択して用いればよい。 このような方法では、当該保護基を導入して反応を行っ た後、必要に応じて保護基を除去、あるいは所望の基に 転化することにより、所望の化合物を得ることができ る。また、本発明化合物(I)のプロドラッグは上記保 護基と同様、原料乃至中間体の段階で特定の基を導入、 あるいは得られた本発明化合物(I)を用い反応を行う ことで製造できる。反応は通常のエステル化、アミド 化、脱水等、当業者により公知の方法を適用することに より行うことができる。以下、本発明化合物(I)の代 表的な製造法を説明する。

【0021】第1製法 (スルホニル化)

【化10】

本製法は、アミノ化合物 (IV) とスルホニルクロリド化合物 (V) とを反応させることにより、本発明化合物 (I a) を得る方法である。反応は、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン(TBF)、ジオキサン等のエーテル類、N,N-ジメチルホルムアミド(DMF)等の不活性溶媒中又は無溶媒下、冷却下~加熱下、

好ましくは、-20℃~80℃で行う。塩基(好ましくは、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、4-(N,N-ジメチルアミノ)ピリジン等)の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。

【0022】第2製法 (アルキル化) 【化11】

(式中、RはR¹ 又はR²に対応する基を、L¹は脱離基を示す。以下同様。)

本製法は、R¹がHである本発明化合物(Ib)をアルキル 化反応に付し、本発明化合物(I)を製造する方法であ る。ここで、脱離基L¹としては、例えばハロゲン、メタ ンスルホニルオキシ、p-トルエンスルホニルオキシ等が 挙げられる。反応は、芳香族炭化水素類、エーテル類、 DMF、ジメチルスルホキシド(DMSO)、ジメチルアセトア ミド(DMA)及びN-メチルピロリドン等の反応に不活性な 溶媒中、水素化ナトリウム、水酸化カリウム、t-プトキ シカリウム、リチウムジイソプロピルアミド等の塩基存 50

在下、冷却下~加熱下、好ましくは、-20℃~120℃で行う。溶媒は2種以上混合して用いてもよい。本反応は、臭化テトラメチルアンモニウム、塩化ベンジルトリエチルアンモニウム等の相間移動触媒の共存下に反応を行うことが、反応を円滑に進行させるのに有利なことがある。

【0023】その他の製法

本発明化合物 (I) の、A環やB環上に種々の置換基を有する化合物は、当業者に自明の種々の反応に付すことにより、当該置換基を他の官能基へと変換することができる。代表的な製法としては、例えば以下に示す製法を挙

げられる:

1) OH基を有する化合物(低級アルキレン-OH等を含む、以下同様)は、メチルエーテルやベンジルエーテル基を有する化合物を用い、前記「Protective Groups in Organic Synthesis (第3版)」に記載された脱保護法(例えば、BBrs)を適宜選択し使用すること、あるいは、エステル基を有する化合物を用い、加水分解反応に付すことで製造できる;

2) アミド、エステル、カルバマート又はウレアを有する化合物は、OH、アミノ又はヒドロキシム基等を有する化合物を用い、種々のアシル化剤と反応することで製造できる。アシル化剤としては、混合酸無水物、対称酸無水物、酸ハロゲン化物、イソシアナート化合物、チオイソシアナート化合物、スルホニルクロリド化合物等が挙げられる。反応は、前記スルホニル化反応とほぼ同様の条件が適用できる;

3) アルキルハライド等のアルキル化剤と求核剤(例えば、アルコール、アミン、アミド、イミド、スルホンアミド、含窒素ヘテロ環、チオール等)による求核置換反応、あるいは、アルデヒド等のカルボニル化合物とアミンとの還元的アルキル化反応により、種々のアルキル基を有する化合物が製造できる;

18

4) ニトロ基の接触還元反応によりアミノ基を有する化 合物が製造できる;

5) アルデヒド基やエステル基の還元反応により、OH基 を有する化合物が製造できる。

【0024】原料化合物は市販又は文献等で公知の化合物が使用できる。また、新規な原料化合物は、既知の方法により容易に製造でき、例えば、以下の方法によって製造できる。

【化12】

(式中、R⁴¹、R⁴²、R⁴³、R⁴⁴ 及びR⁴⁵ はH又は低級アルキル等を示し、(R⁴⁴)(R⁴⁵)CH-としてR⁴³ となる基を、(R⁴¹)(R⁴²)(R⁴³)C-としてR⁴ となる基を示す。)アミノチアゾール化合物、特にR⁴¹、R⁴² 及びR⁴³ が低級アルキル基で示される化合物(X)は、Khim. Geterotsikl. Soedin. (1967), (1), 153-4、Khim. Geterotsikl. Soedin. (1967), (1), 154-7又はKhim. Geterotsikl. Soedin. (1969), (1), 56-8に記載の方法により製造できる。また、種々のスルホニルクロリド化合物(V)は、Journal Heterocyclic Chem., (1986), 23, 1253-1255、米国特許US5,081,275号公報、又は特開昭63-101359号公報等に記載の方法に従って製造できる。

【0025】上記各製法により得られた反応生成物は、遊離化合物、その塩あるいは水和物など各種の溶媒和物として単離、精製することができる。塩は通常の造塩処理に付すことにより製造できる。単離、精製は、抽出、 濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等通常の化学操作を適用して行うことができる。 各種異性体は異性体間の物理化学的な差を利用して常法により単離できる。例えば、光学異性体は一般的な光学分割法、例えば分別結晶化又はクロマトグラフィー等により分離できる。また、光学異性体は、適当な光学活性な原料化合物より製造することもできる。

[0026]

【発明の効果】本発明化合物は医薬製剤の活性成分として有用である。特に逆転写酵素阻害活性を有することから、抗HIV剤として有用である。

【0027】本発明化合物(I)又はその製薬学的に許 50

容され得る塩の1種又は2種以上を有効成分として含有 する医薬組成物は、当分野において通常用いられている 薬剤用担体、賦形剤等を用いて通常使用されている方法 によって調製することができる。投与は錠剤、丸剤、カ プセル剤、顆粒剤、散剤、液剤等による経口投与、又 は、静脈内、筋肉内等の注射剤、坐剤、点眼剤、眼軟 膏、経皮用液剤、軟膏剤、経皮用貼付剤、経粘膜液剤、 30 経粘膜貼付剤、吸入剤等による非経口投与のいずれの形 態であってもよい。本発明による経口投与のための固体 組成物としては、錠剤、散剤、顆粒剤等が用いられる。 このような固体組成物においては、一つ又はそれ以上の 活性物質が、少なくとも一つの不活性な賦形剤、例えば 乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセ ルロース、微結晶セルロース、デンプン、ポリビニルピ ロリドン、メタケイ酸アルミン酸マグネシウム等と混合 される。組成物は、常法に従って、不活性な添加剤、例 えばステアリン酸マグネシウム等の滑沢剤やカルボキシ メチルスターチナトリウム等の崩壊剤、溶解補助剤を含 有していてもよい。錠剤又は丸剤は必要により糖衣又は 胃溶性若しくは腸溶性コーティング剤で被膜してもよ

【0028】経口投与のための液体組成物は、薬剤的に 許容される乳剤、液剤、懸濁剤、シロップ剤、エリキシ ル剤等を含み、一般的に用いられる不活性な溶剤、例え ば精製水、エタノールを含む。この組成物は不活性な溶 剤以外に可溶化剤、湿潤剤、懸濁化剤のような補助剤、 甘味剤、矯味剤、芳香剤、防腐剤を含有していてもよ い。非経口投与のための注射剤としては、無菌の水性又 は非水性の液剤、懸濁剤、乳剤を含む。水性の溶剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水性の溶剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート80(商品名)等がある。このような組成物は、さらに等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤、溶解補助剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製10造し、使用前に無菌水又は無菌の注射用溶媒に溶解、懸濁して使用することもできる。

【0029】経粘膜剤は固体、液体、半固体状のものが用いられ、従来公知の方法に従って製造することができる。例えば公知のpH調整剤、防腐剤、増粘剤や賦形剤が適宜添加され、固体、液体若しくは半固体状に成形される。例えば、経鼻剤は通常のスプレー器具、点鼻容器、チューブ、鼻腔内挿入具等を用いて投与される。通常経口投与の場合、1日の投与量は、体重当たり約0.001~70mg/kg、好ましくは0.1~50mg/kgが適当であり、これを1回であるいは2乃至4回に分けて投与する。静脈投与される場合は、1日の投与量は、体重当たり約0.001から10mg/kgが適当で、1日1回乃至複数回に分けて投与するまた、経粘膜剤としては、体重当たり約0.001~70mg/kgを1日1回乃至複数回に分けて投与する。投与量は症状、年令、性別等を考慮して個々の場合に応じて適宜決定される

[0030]

【実施例】以下、実施例に基づき本発明を更に詳細に説明する。本発明化合物は下記実施例に記載の化合物に限 30 定されるものではない。また原料化合物の製法を参考例に示す。なお、化合物番号で "S-"と共に示される番号の化合物 (例えば、S-1、S-100等) は、原料化合物であることを示す。

実施例1-1 (化合物2)

2-アミノ-5-t-ブチル-4-メチルチアゾール塩酸塩 (5.88 g)のピリジン溶液に3-ニトロベンゼンスルホニルクロリド (9.46 g)を加え、室温で2時間攪拌した。反応液に水を加え析出した固体を適取して得た固体をシリカゲルカラムクロマトグラフィー (クロロホルム) で精製し、更にメタノールより結晶化して、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-3-ニトロベンゼンスルホンアミド(化合物2)8.49 gを得た。

¹H-NMR (DMSO-d₆) δ: 12.58 (1H, br-s), 8.46 (1H, t), 8.42 (1H, ddd), 8.21 (1H, dd), 7.86(1H, t), 2. 16 (3H, s), 1.30(9H, s); FAB-MS: 356 [(M+H)⁺] 実施例 1-2 (化合物 1 及び653)

化合物2(8.49 g)のTHF溶液に60%水素化ナトリウム(1.44 g)、ヨウ化メチル(2.98 ml)を氷冷化加え、室温で12時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出 50

20

した。有機層を水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー (クロロホルム) で精製し、N-(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)-3-ニトロベンゼンスルホンアミド(化合物1)及びN-(5-t-ブチル-4-メチルチアゾール-2-イル)-N-メチル-3-ニトロベンゼンスルホンアミド(化合物653)を得た。化合物1を更にメタノールから再結晶して、化合物1(6.56g)を得た。

化合物1: ¹H-NMR (DMSO-ds) δ: 8.49 (1H, t), 8.42 (1H, dd), 8.26 (1H, d), 7.85(1H, t), 3.43 (3H, s), 2.28 (3H, s), 1.32(9H, s); FAB-MS: 370 [(M+H)⁺] 化合物653: MS (AP): 370 [(M+H)⁺]

実施例 1-1 及び/又は 1-2 と同様にして、対応する原料より、後記表 $3\sim1$ 0に示す化合物を製造した。

【0031】実施例2 (化合物134)

化合物1 (1.00 g)のTHF/エタノール溶液に10%パラジウム炭素(0.1 g)を加え、水素雰囲気下、室温で1時間攪拌した。セライト濾過後、減圧下濃縮し、析出した固体を熱酢酸エチルで洗浄後、アセトニトリルから再結晶して、3-アミノ-N-(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)ベンゼンスルホンアミド(化合物134)387 mgを得た。

 1 H-NMR (DMSO-d₆) δ: 7.11 (1H, t), 7.03 (1H, t), 6.90 (1H, d), 6.68 (1H,dd), 5.48 (2H, bs), 3.38 (3H, s), 2.26 (3H, s), 1.31(9H, s); FAB-MS: 340 [(M+H)⁺]

実施例2と同様にして、後記表11及び12に示す化合物を製造した。

o 実施例3(化合物16)

化合物6 (0.60 g)、エタノール及び1 M 水酸化ナトリウム水溶液(1.56ml)混合物を、70℃で1時間攪拌した。室温に放冷後、酢酸エチルを加え、析出した固体を濾取し、3,4-ジメチル-2-[(3-ニトロベンゼンスルホニル)イミノ]-2,3-ジヒドロチアゾール-5-カルボン酸ナトリウム(化合物16)380 mgを得た。

 1 H-NMR (DMSO-d6) δ : 8.49 (1H, t), 8.41(1H, dd), 8.25 (1H, d), 7.84 (1H,t), 3.39 (3H, s); FAB-MS: 3 56 [(M-H) $^{-}$]

実施例3と同様にして、後記表13に示す化合物を製造 1た

【0032】実施例4 (化合物232)

化合物230 (300 mg)のDMSO溶液に1 M 水酸化ナトリウム 水溶液(2.0 ml)を加え、氷冷下30%過酸化水素水(2.0 ml)を加えた。100℃で5時間撹拌し、放冷後、氷水に注いだ。酢酸エチルで抽出し、有機層を水及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。析出した固体を酢酸エチルで洗浄して、3-{[(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)アミノ]スルホニル}-4-ヒドロキシベンズアミド

(化合物232)136 mgを得た。FAB-MS: 384 [(M+H)+] 実施例4と同様にして、後記表14に示す化合物を製造 した。

実施例5 (化合物17)

化合物16 (100 mg)のDMF溶液に、WSC塩酸塩(56 mg)、HO Bt (39 mg) 及びピペリジン(28.8 µ 1) を加え、室温下24時 間攪拌した。反応液に水及び飽和炭酸水素ナトリウム水 溶液を加え、析出した固体を濾取し、イソプロパノール /エタノール混合溶媒で洗浄して、N-[3,4-ジメチル-5-(ピペリジン-1-カルボニル)-2,3-ジヒドロチアゾール-2 10 -イリデン]-3-ニトロベンゼンスルホンアミド(化合物) 7)70 mgを得た。

¹H-NMR (DMSO-d₆) δ : 8.50 (1H, br s), 8.45 (1H, br d), 8.28 (lH, br d), 7.87 (lH, t), 3.49-3.40 (4H, m), 3.43 (3H, s), 2.20 (3H, s), 1.65-1.45 (6H, m); FAB-MS: 425 [(M+H)⁺]

実施例5と同様にして、後記表15に示す化合物を製造 した。

【0033】実施例6(化合物34)

化合物5 (1.78 g)のメタノール溶液に、氷冷下、水素化 20 ホウ素ナトリウム (0.19 g)を加えた。室温で2時間攪拌 後、水素化ホウ素ナトリウム(0.38 g)を追加し、そこに THFを加え澄明な溶液とし、2.5時間室温で攪拌した。更 に水素化ホウ素ナトリウム(0.38 g)を加え1時間室温で 攪拌し、更に水素化ホウ素ナトリウム(0.19 g)を加え、 12時間室温で攪拌した。含水アセトンを加えた後、減圧 濃縮した。酢酸エチルを加え、有機層を水及び飽和食塩 水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下濃縮 した。得られた残渣をシリカゲルカラムクロマトグラフ ィー (クロロホルム/メタノール) で精製し、得られた 30 固体を熱イソプロパノールで洗浄して、N-[5-(1-ヒドロ キシエチル)-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン]-3-ニトロベンゼンスルホンアミド(化合物34) 743 mgを得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ : 8.49 (1H, t), 8.42 (1H; m), 8.26 (1H, m), 7.85 (1H,t), 5.66 (1H, d), 4.95 (1H, dq), 3.42 (3H, s), 2.16 (3H, s), 1.28 (3H,d); FAB -MS: 358 [(M+H)+]

実施例6と同様にして、後記表16に示す化合物及び表 17に示す化合物126を製造した。

実施例7 (化合物98)

化合物97 (200 mg)のTHF溶液に、-10℃でクロロギ酸イ ソプチル(0.075 ml)及びトリエチルアミン(0.10 ml)を 加え、10分間攪拌した。そこに水素化ホウ素ナトリウム (183 mg)とエタノール混合物を一気に加えた。そのまま 室温で攪拌し、5%硫酸水素カリウム水溶液、1 M 塩酸水 溶液及び酢酸エチルを加え30分間室温で攪拌した。有機 層を硫酸マグネシウムで乾燥後、減圧下濃縮した。得ら ・ れた残渣をシリカゲルカラムクロマトグラフィー(メタ

(2-ヒドロキシエチル)-4-メチル-2,3-ジヒドロチアゾー ル-2-イリデン]-3-ニトロベンゼンスルホンアミド(化合 物98)40 mgを得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ : 8.48 (1H, t), 8.41 (1H, dd), 8.24 (1H, d), 7.84 (1H, t), 4.96(1H, bs), 3.96(2H, t), 3.56 (2H, t), 2.32 (3H, s), 1.32 (9H, s); FAB -MS: 400 [(M+H)+]

【0034】実施例8(化合物263)

化合物256 (500 mg)のジクロロメタン溶液に、-78℃で1 M ジイソプチルアルミニウムハイドライド-ジクロロメ タン溶液(DIBAL:1.8 ml)を滴下し、1時間攪拌した。更 に1 M DIBAL(1.2 ml)を滴下し、1時間攪拌した。反応液 に飽和塩化アンモニウム水溶液を加え、室温で攪拌し た。クロロホルムで抽出し、有機層を1M 塩酸水溶液及 び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、 域圧下濃縮した。得られた残渣をシリカゲルカラムクロ マトグラフィー(クロロホルム/メタノール)で精製 後、イソプロパノールで結晶化して、N-(5-t-ブチル-3, 4-ジメチルチアゾール-2(3H)-イリデン)-5-クロロ-2-ホ ルミルベンゼンスルホンアミド(化合物263)28 mgを得

¹ H-NMR (DMSO-d₆) δ : 10.78 (1H, S), 7.94 (1H, d), 7.92 (1H, d), 7.84 (1H, dd), 3.41 (3H, s), 2.74 (3H, s), 1.31 (9H, s); FAB-MS: 387 [(M+H)+]実施例 8と同様にして、後記表17に示す化合物S-11を製造し た。

実施例9 (化合物35)

化合物34 (351 mg) を用い実施例1-2と同様にして、 N-[3,4-ジメチル-5-(1-メトキシエチル)-2,3-ジヒドロ チアゾール-2-イリデン]-3-ニトロベンゼンスルホンア ミド(化合物35)124 mgを得た。

 $^{1}\text{H-NMR}$ (DMSO-d₆) δ : 8.50 (1H, t), 8.42 (1H, dd), 8.27 (1H, d), 7.86(1H,t), 4.65 (1H, t), 3.43 (3H, S), 3.15 (3H, S) 2.22 (3H, s), 1.31(6H, d); FAB-M S: 372 [(M+H)+]

実施例9と同様にして、後記表18~21に示す化合物 及び表22に示す化合物9及び10を製造した。

【0035】実施例10(化合物53)

化合物S-3 (1.04 g)より製造した化合物S-4の3分の1 量を用い、室温下、THF、ピペリジン(0.18 ml)、酢酸 (0.52 ml)、水素化トリアセトキシホウ素ナトリウム (5 75 mg)を加え、2日間攪拌した。反応混合物に水及び飽 和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出 した。有機層を無水硫酸マグネシウムで乾燥後、減圧下 **濃縮した。得られた残渣をシリカゲルカラムクロマトグ** ラフィー (クロロホルム/メタノール/アンモニア水) で精製後、4 M 塩化水素-酢酸エチル溶液を加えて減圧 濃縮し、残渣をアセトニトリルより固化させて、N-[3,4 -ジメチル-5-(1-メチル-2-ピペリジン-1-イルエチル)-ノール/クロロホルム)で精製して、N-[5-t-ブチル-3- 50 2,3-ジヒドロチアゾール-2-イリデン]-3-ニトロベンゼ

ンスルホンアミド塩酸塩 (化合物53) 34 mgを得た。

¹H-NMR (DMSO-d6) δ: 9.48 (1H, bs), 8.51 (1H, t),
8.43 (1H, dd), 8.27 (1H, d), 3.75 (1H, q), 3.163.44 (3H, m), 3.43 (3H, S), 2.79-2.96 (2H, m)2.23
(3H, s), 1.61-1.82 (5H, m), 1.32-1.43 (1H, m), 1.2
3(3H, d); FAB-MS: 439 [(M+H)⁺]

実施例10と同様にして、後記表22に示す化合物54及び表23に示す化合物S-61を製造した。

実施例11 (化合物147)

化合物129 (234 mg)、ビリジン(5 ml)及び無水酢酸(0.5 3 ml)の混合物を、室温下1時間攪拌した。反応混合物に水を加え、減圧下濃縮した。酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、1 M塩酸水溶液及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧下濃縮し、得られた残渣を酢酸エチルより固化させて、2-(2-{[(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)アミノ]スルホニル}-4-クロロフェノキシ)エチル アセタート(化合物147)170 mgを得た。

¹H-NMR (DMSO-ds) δ: 7.77 (1H, d), 7.59 (1H, d), 7.23 (1H, d), 4.23(2H, t), 4.11 (2H, t), 3.38 20 (3H, S), 2.29 (3H, s), 1.97 (3H, s), 1.33 (9H, s); FAB-MS: 461 [(M+H)⁺]

実施例11と同様にして、後記表24~28に示す化合物を製造した。

【0036】実施例12(化合物172)

化合物170 (200 mg)のジクロロメタン溶液に、-78℃で三臭化ホウ素(1.0 ml)を加え、徐々に室温まで昇温させ、室温下4時間攪拌した。飽和炭酸水素ナトリウム水溶液を加えた後、酢酸エチルで抽出し、有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残30 渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム)で精製後、エーテル-ヘキサンで固化させ、N-(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)-2-ヒドロキシベンゼンスルホンアミド(化合物172)167 mgを得た。

¹H-NMR (DMSO-ds) δ : 10.12 (1H, s), 7.70 (1H, dd), 7.36 (1H, dt), 6.85-6.92 (2H, m), 3.38 (3H, s), 3.15 (3H, s), 2.27 (3H, s), 1.32 (9H, s); FAB-MS: 341 [(M+H)⁺]

実施例12と同様にして、後記表29~31に示す化合物を製造した。

実施例13 (化合物256)

化合物132 (1.0 g)のジクロロメタン溶液に、トリフルオロメタンスルホン酸無水物(0.67 ml)を加え、氷冷下、2,6-ルチジン(0.62 ml)を滴下した。徐々に室温まで昇温後、室温下3時間攪拌した。反応混合物に水及び5%硫酸水素カリウム水溶液を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮して、トリフルオロメタンスルホン酸エステル体(1.44g)を得た。得られた化合物(1.1g)、DMF(10 ml)、メ

タノール(10 ml)、酢酸パラジウム(49mg)、1,3-ビス(ジフェニルホスフィノ)プロパン(89 mg)及びトリエチルアミン(0.61 ml)の混合物に、室温下、一酸化炭素を10分間バブリング後、一酸化炭素雰囲気下70℃で2時間攪拌した。室温まで放冷後、水を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製して、2-{[(5-t-

ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)アミノ]スルホニル}-4-クロロ安息香酸メチル(化合物256)660 mgを得た。

¹H-NMR (DMSO-ds) δ: 7.91 (1H, d), 7.75 (1H, dd), 7.61 (1H, d), 3.78 (3H, s), 3.43 (3H, s), 2.30 (3H, s), 1.32(9H, s); FAB-MS: 417 [(M+H)⁺] 実施例 1 3と同様にして、後記表 3 2 に示す化合物413を製造した。

【0037】実施例14(化合物435)

実施例13と同様にして調整した、対応するトリフルオロメタンスルホン酸エステル体(130 mg)のDMA溶液に、アルゴン雰囲気下、トリス(ジベンジリデンアセトン)ジパラジウム(0) (4.1 mg)、1.1'-ピス(ジフェニルホスフィノ)フェロセン(27.3 mg)、亜鉛(2.0 mg)及びシアン化亜鉛(17.3 mg)を加え、110℃で1.5時間攪拌した。室温まで放冷後、反応液を2 M アンモニア水溶液にあけ、酢酸エチルで抽出した。有機層を水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製して得られた固体をエーテルで洗浄して、N-(5-sec-ブチル-4-クロロ-3-メチルチアソール-2(3H)-イリデン)-5-クロロ-2-シアノベンゼンスルホンアミド(化合物435)50 mgを得た。

¹H-NMR (DMSO-d₆) δ: 8.12 (1H, d), 8.05 (1H, d), 7.92 (1H, dd), 3.53 (3H, s), 2.96 (1H, tq), 1.6 6-1.56 (1H, m), 1.52-1.42 (1H, m), 1.18 (3H, d), 0.83 (3H, t); FAB-MS: 404 [(M+H)⁺]

実施例14と同様にして、後記表32に示す、化合物436~438、440及び442~445を製造した。

実施例15 (化合物322)

化合物132 (600 mg)、THF、2-ヒドロキシメチルピリジン(0.23 ml)及びトリフェニルホスフィン(629 mg)の混合物に、氷冷下、ジエチルアゾジカルボキシレート(0.3 8 ml)を加え、室温下4.5時間攪拌した。反応混合物を減圧機縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム)で精製後、アセトニトリルより結晶化させて、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3出)-イリデン)-5-クロロ-2-(ピリジン-2-イルメトキシ)ベンゼンスルホンアミド(化合物32 2)280 mgを得た。

 1 H-NMR (DMSO-ds) δ : 8.53 (1H, d), 7.82 (1H, dt), 50 7.79 (1H, d), 7.59 (1H, dd), 7.54(1H, d), 7.30-7.3

5(1H, m), 7.29(1H, d), 5.26(2H, s), 3.32(3H,s), 2. 21 (3H, s), 1.26(9H, s); FAB-MS: 466 [(M+H)*] 実施例15と同様にして、後記表33及び34に示す化 合物を製造した。

【0038】実施例16(化合物43)

化合物5 (1.0 g)のDMF溶液に、炭酸カリウム(1.16 g)及びトリメチルホスフォノアセテート(666 mg)を加え、80℃で12時間攪拌した。室温まで放冷後、減圧下濃縮し、水を加え、酢酸エチルで抽出した。有機層を5%硫酸水素カリウム水溶液、飽和炭酸水素ナトリウム水溶液及び水で順次洗浄し、無水硫酸マグネシウムで乾燥後、有機層を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製して、メチル 3-{3,4-ジメチル-2-[(3-ニトロベンゼンスルホニル)イミノ]-2,3-ジヒドロチアゾール-5-イル}-2-ブテノエート(化合物43)101 mgを得た。

¹H-NMR (DMSO-d₆) δ : 8.50 (1H, t), 8.44 (1H, d), 8.29 (1H, d), 7.59 (1H, d), 7.86 (1H, t), 5.92 (1H, d), 3.67 (3H, s), 3.48 (3H, s), 2.40 (3H, d), 2.31 (3H, s); FAB-MS: 412 [(M+H)⁺]

実施例16と同様にして、後記表36に示す化合物S-3を製造した。

実施例17(化合物55)

化合物S-5 (200 mg)を用い、実施例11と同様にして製造した中間体のメタンスルホン酸エステル体にアセトニトリル及び1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン(0.16 ml)を加え2時間攪拌した。1,8-ジアザビシクロ[5.4.0]ウンデク-7-エン(3.0 ml)を更に加え12時間攪拌した。反応混合物を室温まで放冷後、5%硫酸水素カリウム水溶液を加え、酢酸エチルで抽出し、硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製して得られた固体をジエチルエーテルで洗浄して、N-(3,4-ジメチル-5-イソプロペニル-2,3-ジヒドロチアゾール-2-イリデン)-3-ニトロベンゼンスルホンアミド(化合物55)32 mgを得た。

¹H-NMR (DMSO-d₆) δ : 8.49 (1H, t), 8.43(1H, dd), 8.28 (1H, d), 7.85 (1H,t), 5.30 (1H, s), 5.12 (1H, s), 3.46 (3H, s), 2.27 (3H, s), 2.02(3H, s); FAB-MS: 354 [(M+H)+]

実施例17と同様にして、後記表35に示す化合物38及び表36に示す化合物477を製造した。

【0039】実施例18 (化合物59)

化合物58 (172 mg)に40%メチルアミン-メタノール溶液 (20 ml)を加え、室温下4時間攪拌した。減圧下濃縮し、クロロホルムを加え、水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(アンモニア水/メタノール/クロロホルム)で精製後、メタノール中、4 M 塩化水素-ジオキサン溶液を加え、減圧下濃縮した。得られ

た固体をエタノールで洗浄して、N-(4-アミノメチル-5t-ブチル-3-メチル-2,3-ジェドロチアゾール-2-イリデン)-3-ニトロベンゼンスルホンアミド 一塩酸塩(化合物59)42 mgを得た。

¹ H-NMR (DMSO-ds) δ: 8.50 (3H, m), 8.44(1H, dd), 8.29 (1H, d), 7.87 (1H,t), 4.17(2H, s), 3.50(3H, s), 1.38(9H, s); FAB-MS: 385 [(M+H)⁺] 実施例 1 8と同様にして、後記表 3 5 に示す化合物269を製造した。

o 実施例19(化合物191)

化合物S-14に、塩化チオニル(1 ml)及びDMF(3滴)を加え、70℃で1時間攪拌した。塩化チオニルを減圧留去し、クロロホルムを加え、クロロホルム/飽和アンモニア水(1:1,20 ml)混合液中に0℃で滴下した。溶媒を減圧下留去後、酢酸エチルで抽出し、水及び飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、減圧下濃縮し、得られた固体を酢酸エチルーへキサンより洗浄して、5-イソプロピル-3-メチル-2-(3-ニトロベンゼンスルホニルイミノ)-2,3-ジヒドロチアゾール-4-カルボキサミド(化合物191)547 mgを得た。

 $^{1}\text{H-NMR} \ \, (\text{DMSO-d6}) \quad \delta: \ \, 8.50 \ \, (\text{1H, m}) \,, \ \, 8.44 \ \, (\text{1H, d}) \,, \\ 8.28 \ \, (\text{1H, d}) \,, \ \, 8.19 \ \, (\text{1H, s}) \,, \ \, 8.15 \ \, (\text{1H, s}) \,, \ \, 7.87 \ \, (\text{1H, t}) \,, \ \, 3.41 \ \, (\text{3H, s}) \,, \ \, 3.31 \ \, (\text{1H, m}) \,, \ \, 1.20 \ \, (\text{6H, d}) \,\,; \\ \text{FAB} \\ \text{-MS:} \quad 385 \ \, [\, (\text{M+H})^{+}\,]$

実施例19と同様にして、後記表37に示す化合物S-12を製造した。

【0040】実施例20(化合物187)

化合物S-13 (0.217 g)のトリフルオロ酢酸(2 ml)溶液に、氷冷下、トリフルオロメタンスルホン酸(0.1 ml)を加え、4時間攪拌した。クロロホルムを加え、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム)で精製後、メタノールで結晶化させて、N-(5-t-プチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)-5-クロロ-2-スルファニルベンゼンスルホンアミド (化合物187)50 mgを得た。

¹H-NMR (DMSO-d6) δ: 7.97 (1H, s), 7.45 (2H, d), 6.22 (1H, bs), 3.43 (3H, s), 2.29 (3H, s), 1.32 (9 H, s); FAB-MS: 390 [(M+H)⁺]

実施例21 (化合物192)

化合物191 (268 mg)の1,2-ジクロロエタン溶液に氷冷下、オキシ塩化リン(0.33 ml)及びDMF(2 ml)を順次滴下し、70℃で1時間攪拌した。反応液を氷水へ注加し、酢酸エチルで抽出し、水及び飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、減圧下濃縮し、得られた固体を酢酸エチルーへキサンで洗浄して、N-(4-シアノ-5-イソプロピル-3-メチル-3H-チアゾール-2-イリデン)-3-ニトロベンゼンスルホンアミド(化合物192)180 mgを得

¹H-NMR (CDC13) δ: 8.76 (1H, t), 8.40 (1H, ddd), 8.27 (1H, d), 7.70 (1H,t), 3.59 (3H, s), 3.38 (1H, heptet), 1.37 (6H, d); FAB-MS: 367 [(M+H)*] 実施例21と同様にして、後記表35に示す化合物285、408及び416、並びに表36に示す化合物422及び424を製造した。

【0041】実施例22(化合物202)

化合物194 (150 mg)、酢酸、水及びシアン化カリウム(6 5 mg) の混合物を80℃で1時間攪拌した。シアン化カリウム(65 mg) を追加し、80℃で4時間攪拌後、更にシアン化 10カリウム(260 mg) を追加し、80℃で2時間攪拌した。反応混合物に水を加え析出した固体を濾取し、アセトニトリルより再結晶して、N-(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)-5-クロロ-2-ウレイドベンゼンスルホンアミド(化合物202)56 mgを得た。

¹ H-NMR (CDC13) δ: 8.15 (1H, s), 8.14 (1H, d), 7.7 2 (1H, d), 7.52 (1H, dd), 3.44 (3H, s), 2.27 (1H, s), 1.31 (9H, s); FAB-MS: 417 [(M+H)*] 実施例 2 3 (化合物206)

化合物195 (0.20 g)、メタノール(2 ml)及び濃塩酸(2 m 20 l)の混合物を11時間加熱環流下攪拌した。次いで酢酸(4 ml)を加え22時間加熱環流下攪拌した。放冷後、飽和炭酸水素ナトリウム水溶液を加えて中和し、酢酸エチルで抽出した。無水硫酸マグネシウムで乾燥し、減圧下濃縮後、得られた残渣をメタノールから結晶化させて、N-(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)-2-ヒドロキシ-5-ニトロベンゼンスルホンアミド(化合物206)74 mgを得た。

 $^{1}\text{H-NMR}$ (DMSO-ds) δ : 12.09 (1H, bs), 8.54 (1H, d), 8.26 (1H, dd), 7.06 (1H, d), 3.40 (3H, s), 2.29 (1H, s), 1.33 (9H, s); FAB-MS: 386 [(M+H) $^{+}$]

【0042】実施例24(化合物207)

化合物S-16 (300 mg)にトリフルオロ酢酸、メタンスルホン酸及びペンタメチルベンゼン(445 mg)を加え室温下2時間攪拌した。反応混合物を減圧下濃縮し、水を加え酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムでて乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製して、N-(5-t-ブチル-3,4-ジメチル-2,3-ジヒドロチアゾール-2-イリデン)-4,5-ジクロロ-2-ヒドロキシベンゼンスルホンアミド(化合物207)164 mgを得た。

¹H-NMR (DMSO-d₆) δ : 11.55 (1H, s), 7.91 (1H, s), 7.09 (1H, s), 3.42 (3H, s), 2.28 (1H, s), 1.31 (9. H, s); FAB-MS: 409 [(M+H)⁺]

実施例 2 5 (化合物389)

化合物388 (307 mg)にトリフルオロ酢酸を加え室温下15分間攪拌した。減圧下濃縮後エーテルを加え、析出した固体をイソプロパノールより再結晶して、3-プロモ-N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)

-6-フルオロ-2-ヒドロキシベンゼンスルホンアミド(化 合物389)198 mgを得た。

28

 $^1\,H\text{-NMR}$ (DMSO-d6) δ : 10.73 (1H, s), 7.82 (1H, dd), 6.86 (1H, t), 3.46 (3H, s), 2.32 (1H, s), 1.34 (9 H, s) ; FAB-MS: 437, 439 [(M+H)+]

実施例25と同様にして、後記表35に示す化合物390を製造した。

【0043】実施例26(化合物277)

化合物34 (3.62 g)のクロロホルム溶液に、氷冷下、ト リエチルアミン(1.94 ml)及びメタンスルホニルクロラ イド(1.08 ml)を順次加え、室温下1時間攪拌した。更に トリエチルアミン(1.94 ml)及びメタンスルホニルクロ ライド(1.08 ml)を加え室温下30分間攪拌した。反応混 合物に水を加え、クロロホルムで抽出後、有機層を1 M 塩酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食 塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後減圧下 濃縮して、メタンスルホン酸エステル体S-37(5.16 g)を 得た。得られた化合物にDMF及びアジ化ナトリウム(3.03 g)を加え、室温下1時間攪拌した。反応混合物を濾過 後、トルエン-酢酸エチル(1:1)混合液を加え、水及び 飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥 後、減圧下濃縮した。得られた残渣をシリカゲルカラム クロマトグラフィー(酢酸エチル/トルエン)で精製 後、イソプロパノールより結晶化させて、2-アジドメチ ル-N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリ デン)-5-クロロベンゼンスルホンアミド(化合物227)2.7 9 gを得た。

¹H-NMR (DMSO-d6) δ: 7.90 (1H, d), 7.73 (1H, dd), 7.65 (1H, d), 4.93(2H,s), 3.45 (3H, s), 2.28 (1H, s), 1.30 (9H, s); FAB-MS: 414 [(M+H)⁺] 実施例 2 7 (化合物271)

化合物S-37 (1.08 g)にDMF及びシアン化カリウム(0.33 g)を加え、70℃で50分間攪拌した。反応混合物にトルエン-酢酸エチル (1:1) 混合液を加え、水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製後、イソプロパノールより結晶化させて、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)-5-クロロ-2-シアノメチルベンゼンスルホンアミド(化合物227)176 mgを得た。

 1 H-NMR (DMSO-d6) δ : 7.92 (1H, d), 7.75 (1H, dd), 7.67 (1H, d), 4.41(2H,s), 3.45 (3H, s), 2.27 (1H, s), 1.31 (9H, s); FAB-MS: 398 [(M+H) $^{+}$]

【0044】実施例28 (化合物283)

化合物263 (500 mg)、エタノール、ヒドロキシルアミン 塩酸塩(99 mg)及びピリジン(0.11 ml)の混合物を30分間 加熱環流した。室温まで放冷後、減圧下機縮した。得ら れた残渣に酢酸エチルを加え、1 M 塩酸水溶液及び飽和 食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減 圧下機縮した。得られた固体を熱トルエン-酢酸エチル 混合液で洗浄して、N-(5-t-ブチル-3,4-ジメチルチアソ ール-2(3H)-イリデン)-5-クロロ-2-(ヒドロキシイミノ メチル)ベンゼンスルホンアミド(化合物283)395 mgを得

 $^{1}\text{H-NMR}$ (DMSO-ds) δ : 11.72 (1H, s), 8.84 (1H, s), 7.93 (1H, d), 7.88 (1H, d), 7.66 (1H, dd), 3.40(3 H, s), 2.27 (1H, s), 1.30 (9H, s); FAB-MS: 402 [(M+H)^{1}]

実施例28と同様にして、後記表35に示す化合物310 及び343を製造した。

実施例29 (化合物294)

た。

化合物293 (1.06 g)のメタノール溶液に、酢酸(1 ml)を加え、加熱環流下7時間攪拌した。放冷後、クロロホルム及びメタノールを加え、有機層を水で洗浄し、無水硫酸マグネシウムで乾燥後減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム)で精製後、エタノール-ジエチルエーテルより結晶化させて、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)-5-クロロ-2-(1H-イミダゾール-4-イルメトキシ)ベンゼンスルホンアミド(化合物294)441 mgを得た。

¹H-NMR (DMSO-d₆) δ: 7.73 (1H, d), 7.52-7.61 (2H, m), 7.45 (1H, d), 7.03 (1H, bs), 7.66 (1H, dd), 5.0 0 (2H, s), 3.28 (3H, s), 2.26 (1H, s), 1.32 (9H, s); FAB-MS: 455 [(M+H)⁺]

実施例29と同様にして、後記表35に示す化合物354 及び359を製造した。

【0045】実施例30(化合物308)

化合物307 (0.59 g)、エタノール、28%ナトリウムメトキシド-メタノール溶液(0.28 ml)及び炭酸ジエチル(0.1 30 7 ml)を加え2.5時間加熱環流下攪拌した。炭酸ジエチル(0.68 ml)を追加し2.5時間加熱環流下攪拌後、更に28%ナトリウムメトキシド-メタノール溶液(0.28 ml)を加え1時間加熱環流下攪拌した。放冷後1 M塩酸水溶液を加え減圧下濃縮した。得られた残渣に酢酸エチルを加え、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下濃縮した。得られた固体をアセトニトリルより結晶化させて、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)-5-クロロ-2-(2,4-ジオキソオキサゾリジン-5-イル)ベンゼンスルホンアミド(化合物308)326 mgを得 40 た。

¹H-NMR (DMSO-d₆) δ : 12.22 (1H, bs), 7.96 (1H, d), 7.74 (1H, dd), 7.54 (1H, d), 6.93 (1H, s), 3.45(3 H, s), 2.28 (1H, s), 1.31 (9H, s); FAB-MS: 458 [(M+H)⁺]

実施例31 (化合物341)

化合物257 (3.46 g)のトルエン/t-ブタノール(1:1)溶 液に、アルゴン雰囲気下、ジフェニルホスフィノアジド (2.76 ml)及びトリエチルアミン(1.78 ml)を氷冷下加 え、10分間攪拌した。その後90-Cまで昇温し、1時間

攪拌した。反応混合物を水にあけた後、酢酸エチルで抽出した。有機層を5%硫酸水素カリウム水溶液、水及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製後、ヘキサン-酢酸エチルから結晶化して、t-ブチル (2-{[(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)アミノ]

スルホニル}-4-クロロフェニル)カルバマート(化合物34

¹ H-NMR (DMSO-d₆) δ: 8.65 (1H, s), 8.15 (1H, d), 7.76 (1H, d), 6.62 (1H, dd), 3.45 (3H, s), 2.29 (3 H, s), 1.48 (9H, s), 1.31 (9H, s); FAB-MS: 446[(M+H)⁺]

実施例31と同様にして、後記表35に示す化合物349 及び350を製造した。

【0046】実施例32(化合物347)

1)2.37 gを得た。

化合物285 (370 mg)にトルエン及びアジ化トリブチルスズ(1.32 ml)を加え加熱環流下6時間攪拌した。放冷後、1 M 塩酸水溶液(20 ml)及びメタノールを加え、室温下4 8時間攪拌した。減圧下濃縮後、クロロホルムを加え、1 M 塩酸水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製し、ジエチルエーテルより結晶化させて、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)-5-クロロ-2-(1H-テトラゾール-5-イル)ベンゼンスルホンアミド(化合物347)166 mgを得た。

¹ H-NMR (DMSO-ds) δ: 16.50 (1H, bs), 8.09 (1H, d), 7.84 (1H, dd), 7.63 (1H, d), 3.22 (3H, s), 2.26 (3H, s), 1.30 (9H, s); FAB-MS: 427 [(M+H)⁺] 実施例32と同様にして、後記表35に示す化合物342を製造した。

実施例33 (化合物306)

化合物S-56 (0.29 g)にエタノール、ベンゼン及びプロモアセトン(0.133 ml)、トリエチルアミン(0.108 ml)を加え、加熱環流下2時間攪拌した。室温まで放冷後減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製後、ジエチルエーテルより結晶化させて、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3日)-イリデン)-5-クロロ-2-[(4-メチルチアゾール-2-イル)メトキシ]ベンゼンスルホンアミド(化合物306)144 mgを得た。

 1 H-NMR (DMSO-ds) δ: 7.78 (1H, d), 7.61 (1H, dd), 7.33 (1H, d), 7.27 (1H, s), 5.43 (2H, s), 3.33 (3H, s), 2.34 (3H, s), 2.25 (3H, s), 1.32 (9H,s); FA B-MS: 486 [(M+H) $^{+}$]

実施例33と同様にして、後記表35に示す化合物344 を製造した。

【0047】実施例34 (化合物345)

化合物343 (1.24 g)にオルトギ酸エチル(13 ml)及び三

30

フッ化ホウ素-ジエチルエーテル(5滴)を加え、加熱環流下2時間攪拌した。域圧下濃縮後、クロロホルムを加え、1 M 塩酸水溶液及び飽和炭酸水素ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥後、域圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製後、イソプロパノールより結晶化させて、5-ブロモ-N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)-2-(1,2,4-オキサジアゾール-3-イルメトキシ)ベンゼンスルホンアミド(化合物345)800 mgを得た。

¹H-NMR (DMSO-d₆) δ: 9.63 (1H, s), 7.90 (1H, d), 7.74 (1H, dd), 7.32 (1H, d), 5.35 (2H, s), 3.30 (3 H, s), 2.24 (3H, s), 1.30 (9H, s); FAB-MS: 501, 50 3 [(M+H)⁺]

実施例 3 5 (化合物361)

化合物S-62 (600 mg)にアセトニトリル及びヨウ化メチ ル(0.15 ml)を加え、加熱環流下1.5時間攪拌した。更に ヨウ化メチル(1.5 ml)を加え、加熱環流下1時間攪拌し た。室温まで放冷後、減圧下濃縮し、得られた残渣にメ タノールを加え加熱環流下5時間攪拌した。放冷後、減 圧下濃縮し得られた残渣に酢酸エチルを加え、飽和炭酸 水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウム で乾燥後、減圧下濃縮した。得られた残渣をシリカゲル カラムクロマトグラフィー (メタノール/クロロホル ム) で精製後、得られた化合物に4 M 塩化水素-酢酸エ チル溶液を加え、減圧下濃縮し、得られた固体をジエチ ルエーテル-エタノールの混合液で結晶化させて、5-ブ ロモ-N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イ· リデン)-2-[(1-メチル-1H-イミダゾール-5-イル)メトキ シ]ベンゼンスルホンアミド 一塩酸塩 二水和物(化合物 30 361) 105 mgを得た。

¹H-NMR (DMSO-d₆) δ : 9.09 (1H, s), 7.90 (1H, d), 7.77-7.81 (2H, m), 7.38(1H, d), 5.35 (2H, s), 3.92 (3H, s), 3.30 (3H, s), 2.24 (3H, s), 1.29 (9H, s); FAB-MS: 513, 515 { (M+H)⁺ }

【0048】 実施例36 (化合物371)

化合物370 (8.13 g)、エタノール、水、塩化アンモニウム(0.47 g)及び鉄(9.78 g)の混合物を、2時間加熱環流下攪拌した。室温まで放冷後セライト濾過し、濾液を減圧濃縮した。得られた残渣にクロロホルムを加え、飽和 40 食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下濃縮した。得られた固体をアセトニトリルで洗浄して、3-アミノ-5-ブロモ-N-(5-t-ブチル-4-メチルチアゾール-2-イル)-2-メトキシベンゼンスルホンアミド(化合物37 1)5.45 gを得た。

¹H-NMR (DMSO-d₆) δ: 12.24 (1H, b₅), 7.02 (1H, d), 6.99 (1H, d), 5.57 (2H, s), 3.68 (3H, s), 2.16 (3H, s), 1.30 (9H, s); FAB-MS: 434, 436 [(M+H)⁺] 実施例 3 6 と同様にして、後記表 3 7 に示す化合物S-39 を製造した。

実施例37 (化合物449)

化合物416 (755 mg)及びアセトニトリル-水(1:1)混合物に、過硫酸アンモニウム (883 mg)及び塩化ナトリウム (452 mg)を加え、70℃で攪拌下、硫酸鉄(II)五水和物(268 mg)水溶液を、30分間かけて滴下した。5時間攪拌後、室温まで放冷し、酢酸エチルを加え、水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製し、得られた固体をジエチルエーテルで洗浄して、5-クロロ-N-[4-クロロ-5-(1-ヒドロキシ-1-メチルエチル)-3-メチルチアゾール-2(3出)-イリデン]-2-シアノベンゼンスルホンアミド(化合物449)295 mgを得た。

32

¹H-NMR (CDCl₃) δ: 8.15 (1H, d, J=1.5Hz), 7.76 (1H, d, J=6.3), 7.60 (H, dd, J=1.5, 6.3), 3.60 (3H, s), 3.53 (1H, s), 1.66 (6H, s); FAB-MS: 406 [(M+H)⁺] 【0049】実施例38 (化合物491)

2 M ジメチル亜鉛-トルエン溶液(2.5 ml)にジクロロメタンを加え、氷冷下、四塩化チタン(IV)(0.55 ml)を加え10分間攪拌し、化合物449 (100 mg)のジクロロメタン溶液を加え、室温下5時間攪拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(メタノール/クロロホルム)で精製後、ジエチルエーテルで固体を洗浄して、N-(5-t-ブチル-4-クロロ-3-メチルチアゾール-2(3H)-イリデン)-5-クロロ-2-シアノベンゼンスルホンアミド(化合物491)56 mgを得た。1H-NMR (DMSO-d6) δ:8.12 (1H, d),8.04 (1H, d),7.91 (1H, dd),3.53 (3H, s),1.37 (9H, s); FAB-MS:404 [(M+H)+]

実施例39 (化合物492)

2-アミノ-5-t-ブチル-4-メチルチアゾール塩酸塩(21 mg)のピリジン溶液に、3-シアノベンゼンスルホニルクロライド(40 mg)を加え、室温下終夜攪拌した。反応混合物に水を加え、クロロホルムで抽出した。有機層を1 M塩酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄し、無水硫酸マグネシウムを用いて水層を分離後、減圧下溶媒を留去して、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-3-シアノベンゼンスルホンアミド(化合物492)33 mgを得た。

【0050】実施例40(化合物653)

化合物2 (100 mg)のメタノール(5.6 ml)溶液に、0℃で2 M (トリメチルシリル)ジアゾメタン-ヘキサン溶液(1.1 2 ml)を加え、室温下終夜攪拌した。減圧下溶媒を留去後、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル) で精製して、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-N-メチル-3-ニトロベンゼンスルホンアミド(化合物653)30 mg及び化合物1 (3 1 mg)を得た。

実施例 4 1 (化合物612)

化合物645 (33 mg)を用い、実施例11と同様にして、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-3-メタンスルホニルアミノベンゼンスルホンアミド(化合物612)17.9 mgを得た。

実施例42 (化合物618)

化合物645 (33 mg)、ジクロロエタン及びDMF混合物に、テトラヒドロフタル酸無水物(23 mg)を加え、80℃で終夜攪拌した。反応混合物を室温に冷却後、PS-トリスアミン(30 mg)を加え、3時間室温下攪拌した。1PSフィルターでレジンを濾過し、減圧下溶媒を留去して、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-3-(1,3-ジオキソ-1,3,3a,4,7,7a-ヘキサヒドロイソインドール-2-イル)ベンゼンスルホンアミド(化合物618)25.8 mgを得た。実施例39~42に記載の方法と同様にして、後記表38~48に示す化合物を製造した。

【0051】参考例1 (化合物S-70)

2-アミノ-4-メチルチアゾールに氷冷下、濃硫酸を少しずつ加えた。この溶液に30℃以下に冷やしながらtBuOHを滴下し、室温に戻した後、16時間攪拌した。反応液を氷水にあけ、炭酸水素ナトリウムで中和したのち、クロロホルムで抽出した。有機層を無水硫酸ナトリウム乾燥後に減圧下濃縮し、残渣を酢酸エチルに溶解して、氷冷下4M塩化水素-酢酸エチル溶液を加え、室温で15分攪拌した。溶媒を減圧下で留去しアセトニトリルに溶解、ヘキサンで洗浄、減圧濃縮した。残渣を酢酸エチルーアセトニトリルから再結晶して、化合物2-アミノ-5-t-ブチル-4-メチルチアゾール 塩酸塩(化合物S-70)を得た。FAB-MS: 171 [(M+H)+]

参考例1と同様にして、後記表49に示す化合物S-71、 S-78、S-81、S-86、S-88~S-92を製造した。

参考例 2 (化合物S-72)

エチル トリフルオロアセトアセタートのiPrOH溶液にチ オウレア及びヨウ素を加え、加熱還流下3時間攪拌し た。反応液を減圧濃縮後、メタノールー水から再結晶 し、メチル 2-アミノ-4-トリフルオロメチルチアゾール -5-カルボン酸を得た。得られた化合物のTHF溶液にジ-t -ブチル-ジカーボネート((Boc)20)及び4-ジメチルアミ ノピリジンを加え、60℃で1時間攪拌した。反応液を減 圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル/トルエン) で精製し、メチル 2-(N-Boc) アミノ-4-トリフルオロメチルチアゾール-5-カルボン酸 を得た。得られた化合物のTHF溶液に-78℃で、1.14 M メチルリチウム-ジエチルエーテル溶液を加え、30分間 攪拌した。反応液に飽和塩化アンモニウム水溶液を加 え、酢酸エチルで抽出した。有機層を水及び飽和食塩水 で洗浄、無水硫酸ナトリウム乾燥後、減圧下濃縮し、残 渣をシリカゲルカラムクロマトグラフィー(酢酸エチル /ヘキサン)で精製し、t-ブチル [5-(1-ヒドロキシ-1-メチルエチル) -4-トリフルオロメチルチアゾール-2-イ

34

ル]カルボン酸を得た。得られた化合物のトリフルオロ酢酸溶液にトリエチルシランを加え、室温で2時間提拌した。反応液を減圧下機縮後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製して、2-アミノ-5-(1-メチルエチル)-4-トリフルオロメチルチアゾール(化合物S-72)を得た。FAB-MS: 211 [(M+II) †]

【0052】参考例3(化合物S-73)

4-メチル-2-ペンタノン及び臭化トリメチルシランのアセトニトリル溶液に、氷冷下DMSOを滴下しその後室温にて2時間攪拌した。反応混合物を水にあけ、ジエチルエーテルにて抽出した。有機層を水及び飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。租生成物にエタノール及びチオウレアを加え、2時間加熱環流した。室温まで放冷後、減圧下濃縮した。残渣に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮して得た残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製して2-アミノ-5-(1-メチルエチル)-4-メチルチアゾール(化合物S-73)を得た。FAB-MS: 157 [(M+H)*] 参考例3と同様にして、後記表49に示す化合物S-79、S-80、S-82~S-84を製造した。

参考例 4 (化合物S-74)

2-メトキシ-5-フェニルアニリンのTHF溶液に氷冷下ベン ゾイルイソチオシアナートを滴下し、その後室温で2時 間攪拌した。減圧濃縮後、メタノール、水及び水酸化ナ トリウムを加え、室温で1時間攪拌した。析出した固体 を濾取し、水、エタノール及びヘキサンで順次洗浄し て、N-(2-メトキシ-5-フェニルフェニル)チオウレアを 得た。得られた化合物のクロロホルム溶液に氷冷下、臭 素のクロロホルム溶液を滴下した。1時間加熱環流後、 室温まで放冷し、析出した固体を濾取し、化合物2-アミ ノ-4-メトキシ-7-フェニルベンゾチアゾール 臭化水素 酸塩を得た。得られた化合物を48%臭化水素酸水溶液に 加え、3昼夜加熱環流した。放冷後、減圧濃縮した。得 られた化合物に無水酢酸及びピリジンを加え、2昼夜、 室温で攪拌した。反応液に水を加え、析出した固体を濾 取し、水、エタノール、ジエチルエーテル及びヘキサン で順次洗浄して、2-アセチルアミノ-4-アセトキシ-7-フ ェニルベンゾチアゾールを得た。得られた化合物に1M 水酸化ナトリウム水溶液及びメタノールを加え、30分間 室温で攪拌した。水を加え酢酸エチルで抽出し、無水硫 酸マグネシウムで乾燥後、減圧下濃縮し、2-アセチルア ミノ-4-ヒドロキシ-7-フェニルベンゾチアゾールを得 た。得られた化合物に2,6-ルチジンを加え、氷冷下、ト リフルオロメタンスルホン酸無水物を滴下し、室温で一 晩攪拌した。次いで、0.5 M 塩酸水溶液を加え、ジエチ ルエーテルで抽出した。有機層を0.5 M 塩酸水溶液で 洗浄し、無水硫酸マグネシウムにて乾燥後、減圧下濃縮

した。析出した固体にDMF、トリエチルアミン、ギ酸(0.88ml)、1,3-ビス(ジフェニルホスフィノ)プロパン及び酢酸パラジウムを加え、40℃で5時間攪拌した。反応混合物に水を加え、酢酸エチルとトルエンの1:1混合溶媒で抽出した。有機層を水で洗い、無水硫酸マグネシウムで乾燥後、減圧下濃縮して得られた残渣を酢酸エチルから結晶化させ、2-アセチルアミノ-7-フェニルベンゾチアゾールを得た。得られた化合物にメタノール及び1 M水酸化ナトリウム水溶液を加え、50℃で2昼夜攪拌した。メタノールを減圧下留去後、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。析出した固体をジエチルエーテル/ヘキサンで洗浄して、2-アミノ-7-フェニルベンゾチアゾール(化合物S-74)を得た。FAB-MS: 227 [(M+H)*]

参考例4と同様にして、後記表49に示す化合物S-85を 製造した。

【0053】参考例5(化合物S-75)

2,4-ジクロロ-5-ホルミルチアゾールのDMF溶液にアジ化 ナトリウムを加え、50℃にて2時間加熱攪拌した。反応 混合物に水及び酢酸エチルを加え、有機層を分液後、5 %食塩水及び飽和食塩水で順次洗浄し、無水硫酸マグネ シウムで乾燥後、濃縮した。得られた残渣をシリカゲル カラムクロマトグラフィー(酢酸エチル/ヘキサン)で 精製し、2-アジド-4-クロロ-5-ホルミルチアゾールを得 た。得られた化合物のTHF溶液にトリフェニルホスフィ ンを加え1時間加熱還流した。溶媒を減圧留去した後、 残渣に酢酸及び水を加え、100℃で2時間加熱攪拌した。 溶媒を約1/4に濃縮し、析出した固体を濾取し、水、 エタノール及びジエチルエーテルで順次洗浄して、2-ア ミノ-4-クロロ-5-ホルミルチアゾールを得た。得られた 化合物)のTHF溶液に(Boc)20及びジメチルアミノピリジ ンを加え、1時間加熱還流した。溶媒を減圧下留去し、 残渣をシリカゲルカラムクロマトグラフィー(酢酸エチ ル/ヘキサン) で精製して、t-ブチル (4-クロロ-5-ホ ルミルチアゾール-2-イル)カルバマートを得た。得られ た化合物とチオフェノールのエタノール溶液に、約3 M NaOEt-エタノール溶液を加え、1時間加熱還流した。反 応液に冷水を加えた後、濃縮し、クロロホルムを加え有 機層を分液した。水層をクロロホルムで抽出し、合わせ た有機層を、飽和食塩水で洗浄し、無水硫酸マグネシウ ムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマ トグラフィー(酢酸エチル/ヘキサン)で精製して、t-プチル (5-ホルミル-4-フェニルスルファニルチアゾー ル-2-イル)カルパマートを得た。t-ブチル (4-クロロ-5 -ホルミルチアゾール-2-イル) カルバマートのTHF溶液に アルゴン雰囲気下、-78℃で0.63 M 臭化イソプロピルマ グネシウム-THF溶液をゆっくり加え、1時間攪拌した 後、更に室温で30分攪拌した。反応液に飽和塩化アンモ ニウム水溶液及び酢酸エチルを加え、有機層を分液後、 水層を酢酸エチルで抽出した。有機層を合わせ、飽和食 50

塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し た。残渣をシリカゲルカラムクロマトグラフィー(酢酸 エチル/ヘキサン)で精製して、t-プチル [4-クロロ-5 -(1-ヒドロキシ-2-メチルプロピル)チアゾール-2-イル] カルバマート及びt-ブチル (4-クロロ-5-ヒドロキシメ チルチアゾール-2-イル)カルバマートを得た。t-ブチル [4-クロロ-5-(1-ヒドロキシ-2-メチルプロピル)チアゾ ール-2-イル]カルバマートのTFA溶液にトリエチルシラ ンを加え、室温にて2時間攪拌した。溶媒を減圧留去 し、残渣に飽和炭酸水素ナトリウム及びクロロホルムを 加え、有機層を分液後、水層をクロロホルムで抽出し た。合わせた有機層を飽和食塩水で洗浄し、無水硫酸マ グネシウムで乾燥後、濃縮した。残渣をシリカゲルカラ ムクロマトグラフィー(酢酸エチル/ヘキサン)で精製 して、2-アミノ-4-クロロ-5-イソプチルチアゾール(化 合物S-75)を得た。FAB-MS: 191 [(M+H)⁺] 参考例5と同様にして、後記表49に示す化合物S-87を 製造した。

参考例 6 (化合物S-76)

t-ブチル (4-クロロ-5-ホルミルチアゾール-2-イル)カ ルバマートに、tBuOH、水、2-メチル-2-プテン及びリン 酸二水素カリウム(8.87g)を加え、氷冷下、亜塩素酸ナ トリウム水溶液を滴下した。その後室温で4時間攪拌 し、亜塩素酸ナトリウム)を同様に氷冷下加え、更に室 温で3時間攪拌した。反応混合物に酢酸エチルを加え、 5%硫酸水素カリウム水溶液で洗浄し、無水硫酸マグネシ ウムで乾燥後、減圧下濃縮した。析出した固体をジエチ ルエーテルで洗浄して、2-t-ブトキシカルボニルアミノ -4-クロロチアゾール-5-カルボン酸を得た。得られた化 合物のDMF溶液にメタノール、WSC塩酸塩及び4-ジメチル アミノピリジンを加え、一晩攪拌した。溶媒を減圧下留 去し、水を加え、酢酸エチル-トルエン1:1混合溶媒で抽 出した。有機層を無水硫酸マグネシウムで乾燥後減圧下 **濃縮した。析出した固体をヘキサンで洗浄して、メチル** 2-t-ブトキシカルボニルアミノ-4-クロロチアゾール-5 -カルボン酸を得た。得られた化合物を用い、参考例 5 と同様にして、t-ブチル [4-クロロ-5-(1-ヒドロキシ-1 -メチルエチル)チアゾール-2-イル]カルバマート及び2-アミノ-4-クロロ-5-(1-メチルエチル)チアゾール(化合 物S-76)を得た。

【0054】参考例7 (化合物S-77)

2-t-ブトキシカルボニルアミノ-4-クロロチアゾール-5-カルボン酸のDMF溶液にHOBt、WSC塩酸塩、ジイソプロピルエチルアミン及びN,0-ジメチルヒドロキシルアミン塩酸塩を加え、室温で4時間攪拌した。溶媒を減圧留去後、5%硫酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水で順次洗い、有機層を無水硫酸マグネシウムで乾燥後、減圧下機縮し、N,0-ジメチル 5-[4-クロロ-2-(t-ブトキシカルボニルアミノ)チアゾール]カルボヒドロキ

サマートを得た。得られた化合物を用い、参考例5と同様にして、順次、5-アセチル-2-t-ブトキシカルボニルアミノ-4-クロロチアゾール、t-ブチル [4-クロロ-5-(1-ヒドロキシ-1-メチルプロピル)チアゾール-2-イル]カルバマート、及び2-アミノ-4-クロロ-5-(1-メチルプロピル)チアゾール(化合物S-77)[2-アミノ-4-クロロ-5-(1-メチル-1-プロペニル)チアゾールとの約4:5混合物]を得た。参考例7と同様にして、後記表49に示す化合物S-93を製造した。

参考例8 (化合物S-94)

ョウ素、マグネシウム及びIHF混合物に、室温で攪拌下、反応の発熱により環流しながら、3-プロモアニソールのTHF溶液を少しずつ加えた。60℃にて1.5時間加熱環流し、その後室温まで放冷した。反応混合物を、スルフリルクロリドのヘキサン溶液に氷冷下滴下した。30分間氷冷下攪拌後、水を加え、酢酸エチルで抽出した。有機層を水で洗い、無水硫酸マグネシウムで乾燥後、減圧下濃縮して、粗製の3-メトキシベンゼンスルホニルクロリド(化合物S-94)を得た。参考例8と同様にして、後記表50に示す化合物S-100~S-102、S-110及びS-111を製造20した。

【0055】参考例9 (化合物S-95)

1-クロロ-3,4-ジニトロベンゼン、亜硫酸ナトリウム及び水の混合物を18.5時間加熱環流した。その後室温まで放冷し、析出した固体を遮取し、粗製の5-クロロ-2-ニトロベンゼンスルホン酸ナトリウムを得た。五塩化リン及びオキシ塩化リンの混合物を80℃にて攪拌しているところに上記ナトリウム塩を徐々に加え、3時間80℃にて加熱攪拌した。減圧下濃縮し、更にトルエンを加え、減圧下濃縮後、残渣をトルエンに溶解させ、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後減圧濃縮し、粗製の5-クロロ-2-ニトロベンゼンスルホニルクロリド(化合物S-95)。参考例10(化合物S-96)

水冷下、クロロ硫酸に4-ブロモアニソールを滴下し、室 温で3時間攪拌した。反応混合物を氷水にあけ、析出し た固体を濾取した後、酢酸エチルに溶解し、飽和炭酸水 素ナトリウム水溶液で洗浄、無水硫酸マグネシウムで乾 燥後、減圧下濃縮し、粗製の5-ブロモ-2-メトキシベン ゼンスルホニルクロリド(化合物S-96)を得た。参考例 10と同様にして、後記表50に示す化合物S-109、S-1 12、S-113及びS-115を製造した。

【0056】参考例11 (化合物S-97)

3-プロモアニソール、水、1 M 塩酸水溶液及びヒドロキシルアミン塩酸塩の混合物に加熱環流下、熱した包水クロラール水溶液を一気に加え、30分間加熱環流した。室温まで放冷後、析出した固体を適取し、その濾過物を酢酸エチルに溶解させ、水で洗浄し、有機層を無水硫酸マグネシウムにて乾燥後、減圧濃縮した。析出した固体をクロロホルムで洗浄し、粗製の3-プロモイソニトロソ 50

アセトアニリドを得た。得られた化合物に氷冷下、水及 び濃硫酸を加え、75℃で1時間攪拌後に室温まで放冷し た。反応混合物を氷に注ぎ酢酸エチルで抽出し、有機層 を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得 られた残渣に1 M 水酸化ナトリウム水溶液及び酢酸を加 え、析出した4-プロモイサチンを濾別した。母液に濃塩 酸を加えpllを1とし、析出した固体を濾取して、6-ブロ モイサチンを得た。6-ブロモイサチンと1 M 水酸化ナ トリウム水溶液の混合物を氷冷下攪拌下に30%過酸化水 10 素を滴下した。室温で1時間攪拌後析出した固体を濾取 し、水で洗い、4-プロモアントラニル酸を得た。4-プロ モアントラニル酸のDMF溶液に、ジメチル硫酸及びトリ エチルアミンを加え、室温で6.5時間攪拌した。減圧下 濃縮後、飽和食塩水を加え、酢酸エチルで抽出した。有 機層を、飽和炭酸水素ナトリウム水溶液、1 M 水酸化 ナトリウム水溶液及び飽和食塩水で順次洗浄し、無水硫 酸マグネシウムで乾燥、減圧下濃縮した。得られた残渣 をシリカゲルカラムクロマトグラフィー(酢酸エチル/ ヘキサン) で精製して、メチル 2-アミノ-4-ブロモ安息 香酸を得た。得られた化合物、酢酸及び濃塩酸の混合物 を-5℃で攪拌下、亜硝酸ナトリウムの水溶液を滴下し、 1時間その温度で攪拌した。一方、塩化銅(I)、塩化銅 (II)、酢酸及び水を-5℃で攪拌下にSO2を1.5時間バブリ ングした混合物に、先の反応混合物を0℃以下で加え た。その後1時間室温で攪拌後、氷水にあけ、析出した 固体を濾取した。濃アンモニア水に氷冷下、濾過物を加 え、室温で終夜攪拌した。減圧下濃縮し、飽和炭酸水素 ナトリウム水溶液を加え、ジエチルエーテルで洗浄し、 水層を濃塩酸にてpH1とし、クロロホルムで抽出した。 有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮 し、6-プロモ-1,2-ベンゾイソチアゾール-3(2H)-オン-1,1-ジオキシドを得た。得られた化合物と五塩化リンの 混合物を120℃で1.5時間攪拌し、室温まで放冷後、氷水 にあけた。そのまま30分間攪拌後酢酸エチルで抽出、有 機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫 酸マグネシウムで乾燥後、減圧下濃縮して、5-プロモ-2 -シアノベンゼンスルホニルクロリド(化合物S-97)を得 た。参考例11と同様にして、後記表50に示す化合物 S-103~S-106、S-108及びS-114を製造した。

参考例 1 2 (化合物S-98)

5-プロモ-2-メトキシベンゼンスルホニルクロリドと硫酸の混合物を氷冷し、硝酸カリウムを10℃以下で加え、室温で2.5時間攪拌した。反応混合物を氷水にあけ、炭酸カリウムでpH1~2とした後、酢酸エチルで抽出、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後減圧下濃縮し、粗製の5-プロモ-3-ニトロ-2-メトキシベンゼンスルホニルクロリド(化合物S-98)を得た。参考例12と同様にして、後記表50に示す化合物S-107及びS-116を製造した。

【0057】参考例13(化合物S-28)

エチル) チアゾール-2(3H) -イリデン] -3-ニトロベンゼン スルホンアミド(化合物S-4) を得た。

40

参考例 1 8 (化合物S-8)

化合物114、アセトン及び水の混合物に、ピリジニウムp-トルエンスルホナートを加え、室温で1時間、その後加熱環流下4時間攪拌した。放冷後アセトンを減圧下留去し、酢酸エチルで抽出、無水硫酸マグネシウムで乾燥後、減圧濃縮して、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-3-ニトロ-N-(4-オキソブチル)ベンゼンスルホンアミド(化合物S-8)を得た。参考例18と同様にして、後記表51に示す化合物S-6~S-7、及び表17に示す化合物S-9を製造した。

【0060】参考例19(化合物S-47)

化合物263のジクロロメタン溶液に、氷冷下、ヨウ化亜 鉛及びトリメチルシリルシアニドを加え攪拌後、ジエチルエーテルを加え、更にトリメチルシリルシアニドを加え室温で14時間攪拌した。反応混合物に酢酸エチルを加え、1 M 塩酸水溶液、飽和炭酸水素ナトリウム水溶液及び飽和食塩水で順次洗浄後、減圧下濃縮し、N-[5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン]-5-クロロ-2-[シアノ(トリメチルシロキシ)メチル]ベンゼンスルホンアミド(化合物S-47)を得た。

参考例 2 0 (化合物S-56)

化合物244及び4 M 塩化水素-酢酸エチル溶液混合物に、 氷冷下、ジエチル ジチオリン酸を加え、室温で3時間攪 拌した。水を加え、クロロホルムで抽出し、無水硫酸マ グネシウムで乾燥後、減圧下濃縮した。得られた残渣を シリカゲルカラムクロマトグラフィー (クロロホルム) で精製して、2-{[5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン]スルファモイル}-4-クロロフェノキシ チオアセトアミド(化合物S-56)を得た。FAB-MS: 448 [(M+H)*]

参考例20と同様にして、後記表51に示す化合物S-57を製造した。

【0061】参考例21 (化合物S-64)

化合物S-39に48%臭化水素酸水溶液を加え、-5℃で、硫酸銅(II)・五水和物を加え、更に亜硝酸ナトリウム水溶液を滴下し、30分間攪拌した。反応混合物に臭化銅(I)を加え20分間室温で攪拌後、水を加えクロロホルムで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、1M塩酸水溶液及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製し、得られた固体をアセトニトリルで洗浄して、N-(5-t-ブチル-4-メチルチアゾール-2-イル)-3-ブロモ-5-クロロ-2-メトキシベンゼンスルホンアミド(化合物S-64)を得た。

¹H-NMR (DMSO-d6) δ : 12.48 (1H, bs), 8.04 (1H, d), 7.77 (1H, d), 3.87 (3H, s), 2.18 (3H, s), 1.31 (9 H, s); FAB-MS: 453, 455 [(M+H)⁺]

化合物179のDMF溶液にシアン化亜鉛及びテトラキス(トリフェニルホスフィン)パラジウムを順次加え、80℃で24時間攪拌した。反応液を氷水に注加し、酢酸エチルで抽出後、飽和アンモニア水、水及び飽和食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧下濃縮し、シリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製し、N-(5-t-ブチル-3,4-ジメチルチアゾール-2(3H)-イリデン)-5-シアノ-2-メトキシベンゼンスルホンアミド(化合物S-28)を得た。FAB-MS:380[(M+H)*]

参考例14 (化合物S-17)

化合物179の1,2-ジメトキシエタン溶液に2 M 炭酸ナトリウム水溶液、フェニルホウ酸及びテトラキス(トリフェニルホスフィン)パラジウムを順次加え、80℃で48時間攪拌した。反応液に氷冷下、30%過酸化水素水を加え、酢酸エチルで抽出、水及び飽和食塩水で洗浄し、硫酸ナトリウム乾燥後、減圧下濃縮した。シリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン)で精製後、酢酸エチル-ヘキサンより結晶化して、N-(5-t-ブチル-3,4-ジメチル-3H-チアゾール-2-イリデン)-2-メトキ 20シ-5-フェニルベンゼンスルホンアミド(化合物S-17)を得た。FAB-MS: 431 [(M+H)*]

参考例14と同様にして、後記表51に示す化合物S-18~S-22を製造した。

【0058】参考例15 (化合物S-23)

化合物179のDMF溶液にトリエチルアミン、4-クロロスチレン及びビス(トリフェニルホスフィン)パラジウムジクロリドを順次加え、110℃で12時間攪拌した。反応液を減圧下濃縮し、シリカゲルカラムクロマトグラフィー(酢酸エチル/ベンゼン)で精製後、酢酸エチル-ヘキサンより結晶化して、N-(5-t-ブチル-3,4-ジメチル-3H-チアゾール-2-イリデンハ-2-メトキシ-5-(4-クロロスチ

チアゾール-2-イリデン)-2-メトキシ-5-(4-クロロスチリル)ベンゼンスルホンアミド(化合物S-23)を得た。FAB
-MS: 457 [(M+H)*]

参考例15と同様にして、後記表51に示す化合物S-24 及びS-25を製造した。

参考例 1 6 (化合物S-2)

化合物1、四塩化炭素、N-ブロモスクシンイミド及び2,2'-アソビスイソブチロニトリルの混合物を、1時間加熱環流下攪拌した。放冷後、酢酸エチルを加え、1M 水酸化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮した。析出した固体を酢酸エチルで洗浄して、N-(4-ブロモメチル-5-t-ブチル-3-メチル-38-チアソール-2-イリデン)-3-ニトロベンゼンスルホンアミド(化合物S-2)を得た。FAB-MS: 448,450 [(M+H)*]【0059】参考例17 (化合物S-4)

化合物S-3のアセトニトリル溶液に氷冷下、ヨウ化トリメチルシランを加え室温で30分間攪拌した。酢酸エチルを加え、水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下濃縮し、N-[3,4-ジメチル-5-(1-メチル-2-オキソ

後記表中、次に示す略号を用いる。No: 化合物番号、Str: 構造式、Syn: 各表題化合物の製造に使用した原料化合物番号(記載がない場合は、市販又は自明の化合物を製造原料として使用)、Pr:1-プロピル、Boc:tBu-0-CO-、Bn:ベンジル、Hex: ヘキシル、cHex: シクロヘキシル、Dat: 物理化学的データ (F:FAB-MS[(M+H)+]; FN:FAB-MS[(M-H)-]; EI: EI-MS(M+); AP: APCI-MS[(M+H)+]; 空欄:未精製のまま次の反応に使用)をそれぞ

れ示す。また、置換基の前の数字は置換位置を示し、数字が複数個あるものは複数個の置換を示す。例えば4-Cl-Phは4-クロロフェニルを、2,5-(OMe)2-Phは2.5-ジメトキシフェニルを、2-OMe-5-Br-Phは2-メトキシ-5-ブロモフェニルをそれぞれ示す。

[0062]

【表3】

R^3 N	٩ <u></u>
R ⁴ /S	N-Ş-A

		• • •	· · · · · · · · · · · · · · · · · · ·		
No	R ²	R ³	R ⁴	A	Dat
. 3	Et	Me	tBu	3-NO _z -Ph	F: 384
4	Ме	Ме	Me	3-NO₂-Ph	F: 410
5	Me	Me	Ac	3-NO₂-Ph	F: 356
6	Me	Me	EtOCO	3-NO₂-Ph	F: 385
8	Me	Me	. Me	3-NO₂-Ph	F: 328
15	Me	Me	Н	3-NO₂-Ph	E: 313
22	Me	Me	4-OMe-Ph	3-NO₂-Ph	F: 420
23	Me	Me	4-F-Ph	3-NO₂-Ph	F: 408
25	Me	Me	iPr	3-NO ₂ -Ph	F: 356
26	Me	Me	Et	3-NO ₂ -Ph	F: 342
28	Me	Me	cHex	3-NO _z -Ph	F: 396
29	Me	Ph	tBu	3-NO₂-Ph	F: 432
31	Me	Me	Bn	3-NO ₂ -Ph	F: 404
32	Me	Me	(Me) ₂ CH-CH ₂	3-NO ₂ -Ph	F: 370
33	Me	Ме	Ph(Me)CH	3-NO _z -Ph	F: 418
48	Me	Me	Cl	3-NO _z -Ph	F: 348
51	Me	MeO	iPr	3-NO _z -Ph	F: 372
52	Me	Me	Et(Me)CH	3-NO _z -Ph	F: 370
69	Me	(Me) ₂ CH-CH ₂	· Me	3-NO _z -Ph	F: 370
70	Me	(Me) ₂ CH-CH ₂	iPr	3-NO _z -Ph	F: 398
71	Me	Et	tBu	3-NO _z -Ph	F: 384
89	Me	Н	iPr	3-NO₂-Ph	F: 342
94	Me	PhS	(Me)₂CH-CH₂	3-NO₂-Pħ	F: 464
95	Me	PhS	Me	3-NO ₂ -Ph	F: 422
96	Me	CI	(Me)₂CH-CH₂	3-NO _z -Ph	F: 390

[0063]

40 【表4】

102	Me	Me	tBu	3-Br-Ph	F: 403, 405
115	(CH ²) ³ (O)	Me	tBu	3-NO₂-Ph	F: 470
117	(CH²)²(O)	Me	tBu	3-NO₂-Ph	F: 456
119	Me	Me	tBu	3-CI-Ph	F: 359
121	Me	Me	tBu	2,5-Cl ₂ -Ph	F: 393
122	Me	Me	tBu	2-CN-Ph	F: 350
124	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Me	tBu	3-NO₂-Ph	F: 447
131	Me	Me	tBu	2-Cl-5-NO₂-Ph	F: 404
150	Me	Ме	tBu	2,6-Cl₂-Ph	F: 393
151	Me	Me	tBu	3,5-Cl₂-Ph	F: 393
154	Me	Me	tBu	─ _N	F: 326
155	Me	Me	tBu	2,3-Cl ₂ -Ph	F: 393
157	Мө	Me	. tBu	3-OMe-Ph	F: 341
160	Me	CF ₃	iPr .	3-NO _z -Ph	F: 410
163	Me	Br	(Me)₂CH-CH₂	3-NO _z -Ph	F: 433(M ⁺)
164	Ме	Me	tBu	2-NO ₂ -Ph	F: 370
171	Me	Me	tBu	2-OMe-Ph	F: 355
174	Ме	CI	(Me)₂CH-CH₂	2,5-Cl₂-Ph	F: 413
179	Me	Me	tBu	2-OMe-5-Br-Ph	F: 433, 435
180	Me	Me	tΒυ	2,5-(OMe)₂-Ph	F: 385
184	Me	CO₂Me	iPr	3-NO₂-Ph	F: 400
185	Me	CI	(Me) ₂ CH-CH ₂	2-OMe-5-CI-Ph	F: 409
188	Me	Ме	tBu	2-OMe-5-F-Ph	F: 373
193	Me	Ме	tBu	2-NO _z -5-Cl-Ph	F: 404
198	Me	Ме	tBu	2,5-F ₂ -3,6-Br ₂ -Ph	F: 519
199	Me	Me	tBu	2,4,5-Cl ₃ -Ph	F: 427
221	Me	Мө	tBu	2-Cl-4-F-Ph	F: 377
223	Me	Ме	tBu	2,4-Cl ₂ -Ph	F: 393
234	Me	Me	CH ₃ (CH ₂) ₄	3-NO ₂ -Ph	F: 384

[0064]

【表5】

243	Me	Me	Et(Me) ₂ C	3-NO ₂ -Ph	F: 384
	Me	Me	tBu		F: 373
259					F: 355
260	Me	Me	tBu	CI CI	F. 333
268	Me	Me	tBu		F: 375
287	Me	Ме	Pr(Me)₂C	3-NO _z -Ph	F: 398
288	Me	Me	iPr(Me)₂C	3-NO ₂ -Ph	F: 398
290	Me	Me	Pr(CH ₂) ₂ -(Me) ₂ C	3-NO _z -Ph	F: 426
291	Me	Me	tBuCH ₂ -(Me) ₂ C	3-NO₂-Ph	F: 426
292	Me	Me	iPrCH₂-(Me)₂C	3-NO₂-Ph	F: 412
311	Me	CI	iPr	3-NO _z -Ph	F: 376
335	Me	Me	tBu	4-NO₂-Ph	F: 370
336	Me	Ме	tBu	4-Cl-Ph	F: 359
337	Me	Me	iPr	3-Cl-Ph	F: 345
340	Me	Me	tBu	2-Cl-Ph	F: 359
348	· Me	CI	iPr	3-CI-Ph	F: 365
352	Me	Me	tBu	2-F-5-CI-Ph	F: 377
355	Me	Me	tBu	2-OH-3-F-5-Br-Ph	F: 464, 466
373	Me	Me	iPr	2-CN-5-Br-Ph	F: 414, 416
377	Me	Me	tBu	2-CN-5-Br-Ph	F: 428, 430
379	Me	Me	Et(Me)CH/ MeCH=C(Me)- (3:2)	2-CN-5-Br-Ph	F: 426, 428, 430
382	Me	Me	Et	2-CN-5-Br-Ph	F: 400, 402
384	Me	Me	iPr	2-CN-5-CI-Ph	F: 370
385	Me	Me	tBu	2-OMe-3-Br-5-CI-PI	F: 451
387	Me	Me	tBu	2,6-F ₂ -5-Br-Ph	F: 439, 441
392	Me	Me	iPr .	2-CN-5-F-Ph	F: 354
399	Me	Me	iPr	2-CN-3-Br-Ph	F: 414, 416
401	Me	Me	iPr	2-CN-6-Br-Ph	F: 387 (M-CN)
403	Ме	Me	iPr	2-CO₂Me-5-CN-Ph	 `

[0065]

【表6】

407	Me	Me	iPr	2-CN-5-CF ₃ -Ph	F: 404
411	Ме	Cl	iPr	2-OMe-5-CI-Ph	F: 395
419	Me	Me	iPr	2,3-Cl₂-6-CO₂Me-Ph	F: 437
431	Me	CI	Et(Me)CH	2-OMe-5-CI-Ph	F: 409
433	Me	CI	Pr(Me)CH	2-OMe-5-CI-Ph	F: 423
S-1	CH₂CO₂Et	Me	tBu	3-NO₂-Ph	
S-15	Me	Me	tBu	2-OMe-5-Me-Ph	F: 369
S-26	Me	Me	tBu	2-Cl-4-OMe-Ph	F: 389
S-27	. Me	Ме	tBu	2-OMe-3,5-Cl ₂ -Ph	
S-29	Me	Ме	Me(CH ₂) ₄	2-OMe-5-CI-Ph	F: 389
S-30	Me	. Me	Me(CH₂)₄	2-OMe-5-Br-Ph	F: 447
S-31	Me	Me	Et(Me)₂C	2-OMe-5-CI-Ph	F: 403
S-32	Me	Me	tBu	2-OMe-4-F-5-CI-Ph	F: 407
S-33	Me	Me	tBu	2-OMe-5-CF ₃ -Ph	F: 423
S-34	Me	Me	tBu	2-OMe-4-CI-Ph	F: 389
S-35	Me	Me	tBu	4-OMe-Ph	F: 355
S-42	Me	Me	Pr(Me)₂C	2-OMe-5-CI-Ph	F: 417
S-43	Me	Me	iPr(Me) ₂ C	2-OMe-5-Cl-Ph	F: 417
S-44	Me	CI	iPr	2-OMe-5-CI-Ph	F: 395
S-48	Me	CI	iPr	2-OMe-5-Br-Ph	F: 439, 441
S-51	Me	Me	iPr	2-OMe-5-CI-Ph	F: 375
S-52	Me	Me	iPrCH₂	2-OMe-5-Cl-Ph	F: 389
S-53	Me	Me	iPr	2-OMe-5-Br-Ph	F: 419
S-54	Me	Me	Et(Me)CH	2-OMe-5-Br-Ph	F: 433
S-55	Me	Me	iPr(Me)CH	2-OMe-5-Br-Ph	F: 447
S-58	Me	Me	tBu	2-OMe-3,6-F ₂ -	
3-38	IVIE	Me	1 184	5-Br-Ph	
S-60	Me	Me	tBu	2-OMe-3-F-5-Br-Ph	F: 451
S-66	Me	Me	iPr	2-CO ₂ Me-3,5-Cl ₂ -Ph	F: 437
S-68	Me	CF₂H	iPr	2-OMe-5-CI-Ph	F: 411
S-69	Me	CF ₃	iPr	2-OMe-5-CI-Ph	F: 429

[0066]

【表7】

49

$$\begin{array}{c|c} & & & & \\ & & & & \\ B' & & & & \\ B' & & & & \\ X & & & & \\ & & & & \\ \end{array}$$

No	B' R ²	Dat	No	$\mathbb{R}^{\mathbb{R}^2}$	Dat
14	Me S	F: 350	49	o Ne s	F: 316
30	Me S	F: 354	50	ON Me	F: 358
37	Me Me Ne Me	F: 410	93	Me N-N-N tBu S	F: 357
39	Me Me	F: 382	S-118	o the	F: 300
40	Me N S	F: 426	S-119	O H iPr S	F: 344
41	Me N N Me	F: 364		· ·	

[0067]

【表8】

$$\begin{array}{c|c} R^{3} & N & O \\ \hline N & N - S & O \\ R^{4} & S & R^{1} & O \end{array}$$

No	R ¹	R ³	R ⁴	Α	Dat
7	н	Me	Me	3-NO₂-Ph	F: 314
68	Н	iPrCH₂	Мө	3-NO₂-Ph	F: 356
88	н	н	iPr	3-NO₂-Ph	F: 328
103	Н	Me	tBu	3-CO₂H-Ph	F: 355
114	(CH ²) ² (C)	Me	tBu	3-NO₂-Ph	F: 470
116	(CH ₂) ₂ (C)	Me	tBu	3-NO _z -Ph	F: 456
118	Н	Me	tBu	. 3-CI-Ph	F: 345
120	Н	Me	tBu	2,5-Cl ₂ -Ph	F: 379
127	Н	Me	tBu	2-Br-Ph	F: 389, 391
130	Н	Me	tBu	2-CI-5-NO ₂ -Ph	F: 410
152	н	Me	tBu	- ⟨_N	F: 312
156	Н	Me	tBu	3-OMe-Ph	F: 341
158	Н	CF ₃	iPr	3-NO₂-Ph	F: 306
159	Me	CF ₃	iPr	3-NO₂-Ph	F: 410
161	Н	Br	iPrCH₂	3-NO₂-Ph	F: 419(M ⁺)
162	Me	Br	iPrCH₂	3-NO₂-Ph	F: 434, 436
170	Me	Me	tBu	2-OMe-Ph	F: 355
177	н	Me	tBu	2-OMe-5-Br-Ph	F: 419, 421
178	Me	Me	tBu	2-OMe-5-Br-Ph	F: 433, 435
183	Me	CO ₂ Me	iPr	3-NO _z -Ph	F: 400
197	Н	Me	tBu	2-OH-3,5-Cl ₂ -Ph	F: 395
239	Н	Me	tBu	2-NO _z -5-CI-Ph	F: 390

[0068]

30 【表9】

254	н	Ме	tBu	H ₂ N	F: 361
267	Me	Ме	tBu	H-N H-N	F: 375
.275	Et	Me	tBu	3-NO _z -Ph	F: 490
351	Н	Me	tBu	2-F-5-Cl-Ph	F: 363
363	н	Me	tBu	2-CN-5-CI-Ph	F: 367
366	н	Me	iPr	2-CN-5-Br-Ph	F: 400, 402
367	Н	.Me	tBu	2,6-F ₂ -Ph	F: 347
368	Н	Me	tBu	2,6-F ₂ -5-NO ₂ -Ph	F: 392
370	н	Me	tBu	2-OMe-3-NO₂-5-Br-Ph	F: 464, 466
376	н	Me	tBu	2-CN-5-Br-Ph	F: 414, 416
378	Н	Me	Et(Me)CH/ MeCH=C(Me)- (3:2)	· 2-CN-5-Br-Ph	F: 414, 416
381	Н	Me	Et	2-CN-5-Br-Ph	F: 386, 388
383	Ŧ	Me	iPr	2-CN-5-CI-Ph	F: 356
386	Н	Me	tBu	2,6-F ₂ -5-Br-Ph	F: 425, 427
391	Н	Me	iPr	2-CN-5-F-Ph	F: 338
402	Н	Me	iPr	2-CO ₂ Me-5-CN-Ph	F: 380
406	Н	Me	iPr	2-CN-5-CF ₃ -Ph	F: 390
409	Me	CI	iPr	2-OMe-5-CI-Ph	F: 395
418	Н	Me	iPr	2-CO ₂ Me-5,6-Cl ₂ -Ph	F: 423
429	Н	CI	Et(Me)CH	2-OMe-5-CI-Ph	F: 393
430	Н	CI	Pr(Me)CH	2-OMe-5-CI-Ph	F: 409
432	Me	CI	Et(Me)CH	2-OMe-5-CI-Ph	F: 409
434	Me	CI	Рг(Ме)СН	2-OMe-5-CI-Ph	F: 423
S-40	(CH ₂) ₂ OBn	Me	tBu	3-NO _z -Ph	F: 490
S-41	н	Me	tBu	2-OMe-5-CI-Ph	F: 375
S-49	Н	Me	iPr	2-OMe-5-CI-Ph	F: 361

[0069]

【表10】

		12201					
S-50	н	Me	iPrCH₂	2-OMe-5-CI-Ph	F: 375		
S-63	н	Me	iPr	2-CO ₂ Me-3,5-Cl ₂ -Ph	F: 423		
S-117	Н	Me	tBu	2-OMe-3-NO _z -5-CI-Ph	F: 420		
S-120	Н	CF₂H	iPr	2-OMe-5-CI-Ph	F: 397		
S-121	Н	CF ₃	iPr	2-OMe-5-CI-Ph	F: 415		

[0070]

40 【表11】

1

No	A	Dat	Syn
129	2-(OCH₂CH₂OH)5-Cl-Ph	F: 419	123
132	2-OH-5-CI-Ph	F: 375	133
149	2-CI-5-NH ₂ -Ph	F: 379	131
165	2-NH₂-Ph	F: 340	164
168	2-OH-3-CI-Ph	F: 375	166
169	2-OH-6-C⊦Ph	F: 375	167
194	2-NH ₂ -5-CI-Ph	F: 374	193
220	2-OH-4-OMe-Ph	F: 371	219
224	2-Cl-4-OH-Ph	F: 375	S-99
225	2-OH-5-(CH ₂ CH ₂ (4-Cl-Ph))-Ph	F: 479	216
228	2-OH-5-(CH₂CH₂CO₂Me)-Ph	F: 427	217
229	2-OH-5-(CH ₂ CH ₂ CN)-Ph	F: 394	218

[0071]

	【表12】_		
No	Α	Dat	Syn
240	2-NH ₂ -5-CI-Ph	F: 360	239
369	2,6-F ₂ -5-NH ₂ -Ph	F: 362	368
S-10	3-NH ₂ -Ph		2

[0072]

No	R ²	R³	R ⁴	A	Dat	Syn
45	Ме	Me	-(CH(Me)O CH₂CO₂Na)	3-NO ₂ -Ph	F: 416	44
97	CH₂CO₂H	Me	tBu	3-NO₂-Ph	F: 414	S-1
250	Me	Me	tBu	2-(OCH₂CO₂H)-5-C⊦Ph	F: 433	245
257	Ме	Me	tBu	2-CO ₂ H-5-Cl-Ph	F: 403	256
302	Me	Me	tBu	2-NHMe-5-CI-Ph	F: 388	S-46
404	Ме	Me	iPr	2-CO₂H-5-CN-Ph	F: 378	403
414	Me	CI	iPr	2-CO₂H-5CI-Ph	F: 409	413
420	Me	Me	iPr	2-CO ₂ H-5,6-Cl ₂ -Ph	F: 423	419
S-14	Me	CO2 NH4	tBu	3-NO _z -Ph	F: 386	184
S-67	Me	Me	iPr	2-CO ₂ H-3,5-Cl ₂ -Ph	F: 423	S-66

[0073]

【表14】

No	A	Dat	Syn
233	2-OH-5-((CH ₂) ₂ CONH ₂)-Ph	F: 412	229
249	2-(OCH2CONH2)-5-CI-Ph	F: 432	244
272	2-(CH ₂ CONH ₂)-5-CI-Ph	F: 416	271
307	HO—CONH ₂	F: 432	S-47

[0074]

50 【表15】

No	R ²	R ³	R ⁴	A	Dat	Syn
18	Ме	Ме	MeN NCO-	3-NO₂-Ph	F: 440	16
19	Me	Ме	cHex-NHCO	3-NO ₂ -Ph	F: 439	16
20	Ме	Ме	Bn-NHCO	3-NO₂-Ph	F: 447	16
46	Me	Ме	ON Me	3-NO₂-Ph	F: 483	45
47	Ме	Ме	iPr\NH O	3-NO₂-Ph	F: 457	45
100	CH₂CONH₂	Ме	tBu	3-NO ₂ -Ph	F: 400	97
252	Me	Ме	tBu	2-(OCH₂CONH-CH₂CH₂ OH)-5-CI-Ph	F: 476	250
253	Me	Ме	tBu		E: 501	250
295	Me	Me	tBu	2-CONH ₂ -5-Cl-Ph	F: 402	257
296	Me	Me	tBu	2-(CONH-iPr)-5-CI-Ph	F: 444	257
303	Me	Ме	tBu	2-(CON(Me)OMe)-5-CI-PI	F: 446	257
304	Me	Me	tBu	2-(CONHMe)-5-CI-Ph	F: 416	257
305	Ме	Ме	tBu	2-(CON(Me) ₂)-5-CI-Ph	F: 430	257
405	Me	Me	iPr	2-CONH ₂ -5-CN-Ph	F: 379	404
415	Me	CI	iPr	2-CONH ₂ -5-CI-Ph	E: 408	414
421	Me	Me	iPr	2-CONH ₂ -5,6-Cl ₂ -Ph	F: 422	420
423	Ме	Ме	· iPr	2-CONH ₂ -3,5-Cl ₂ -Ph	F: 422	S-67

[0075]

No	R ²	R ³	R ⁴	A	Dat	Syn
135	(CH ₂)₄OH	Me	tBu	3-NO₂-Ph	F: 428	S-6
137	(CH ₂) ₃ OH	Me	tBu	3-NO₂-Ph	F: 414	S-7
128	Ме	Me	tBu	2-CH₂OH-Ph	F: 355	S-11
264	Me	Me	tBu	2-CH₂OH-5-CI-Ph	F: 389	263
231	Me	Ме	tBu	2-OH-5-(CH ₂)₃OH-Ph	F: 399	228
S-5	Me	Me	HOCH₂(Me)CH	3-NO₂-Ph	F: 372	S-4

【0076】 【表17】

No	Str	Dat	Syn
126	Me N O II	F: 428	S-8
S-9	Me N O NO2		116
S-11	Me O CHO		122

【0077】 【表18】

		4			
No	R³	R ⁴	A	Dat	Syn
11	Me	tBu	3-NMe₂-Ph	F: 368	S-10
12	Me	tBu	3-NHMe-Ph	F: 354	S-10
36	Me	BnO Me	3-NO₂-Ph .	F: 448	34
42	O_NCH₂-	tBu	3-NO₂-Ph	F: 455	S-2
44	Me	EtO ₂ C \O	3-NO₂-Ph	F: 444	34
56	Ме	HC O Me	3-NO₂-Ph	F: 410	S-5
57	BnS	tBu	3-NO ₂ -Ph	F: 492	S-2
58	ONCH2-	tBu	3-NO₂-Ph	F: 515	S-2
60	EtO₂C N Me	tBu	3-NO ₂ -Ph	F: 485	S-2
72	tBuOCH₂	tBu	3-NO₂-Ph	F: 442	S-2
78	N_NCH₂-	tBu	3-NO ₂ -Ph	F: 436	S-2
113	HOCH₂	tBu	3-NO ₂ -Ph	F: 386	S-2
123	Me	tBu	2-(O(CH ₂) ₂ OBn)-5-Cl-Ph	F: 509	121
133	Me	tBu	2-OBn-5-Cl-Ph	F: 465	121
153	Ме	tBu		F: 436	S-12
166	Ме	tBu	2-OBn-3-Cl-Ph	F: 465	155
167	Me	tBu	2-OBn-6-Cl-Ph	F: 465	150

[0078]

【表19】

195	Ме	tBu	NO ₂	F: 440	131
219	Me	tBu	2-OBn-4-OMe-Ph	F: 461	S-26
244	Ме	tBu	2-OCH₂CN-5-CI-Ph	F: 414	132
245	Me	tBu	2-OCH2CO2Et-5-CI-Ph	F: 461	132
280	Me	tBu	2-OCH₂OMe-5-CI-Ph	F: 419	132
293	Me	tBu	N N-C(Ph)	F: 697	132
326	Me	tBu		F: 488	132
329	Me	tBu	CI	F: 505	132
330	Me	tBu	CI PLANT OF THE PROPERTY OF TH	F: 505	132
353	. Me	tBu	√ C1 C1	F: 425	
388	Me	tBu	3-Br-2-OtBu-6-F-Ph	F: 437 [(M-tBu+	
393	Me	iPr	2-CN-5-OMe-Ph	F: 365	
394	Me	iPr	2-CN-5-NMe ₂ -Ph	F: 379	392
395	Me	iPr	2-CN-5-OEt-Ph	F: 380	392

[0079]

【表20】

396	Me	iPr	2-CN-5-OBn-Ph	F: 442	392
397	Me	iPr		F: 421	392
398	Ме	iPr	\times_2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F: 402	392
400	Мө	iPr	O-CN NC	F: 429	392
483	CI	iРr	2-(O(CH₂)₂N(Me)Ph)-5-Br-Ph	F: 558	312
484	СІ	iPr	Eto-O	F: 589	312
485	CI	iPr	Br O N	F: 555	312
487	CI	iPr	Br SO ₂ NH ₂	F: 651	. 312
489	CI	iPr	Br O H SO ₂ NH ₂	F: 651	312

[0080]

【表21】

			[3(2)]		
S-13	Ме	tBu	CI SOMe	F: 511	121
S-16	Me	tBu	2-OBn-4,5-Cl ₂ -Ph	F: 499	199
S-99	Me	tBu	2-CI-4-OBn-Ph	F: 465	221
S-36	Ме	tBu	CI N		132
S-46	Me	tBu	2-(N(Me)COCF ₃)-5-CI-Ph		S-45
S-65	Me	tBu	3-Br-6-OtBu-2-F-Ph		387

[0081]

【表22】

, .	No	R ⁴	Α.	Dat	Syn
Me N O	9	tBu	3-NHMe-Ph	F: 354	S-10
N-S-A	10	tBu	3-NH ₂ -Ph	F: 340	S-10
R'S MeO	54	о мсңсн(ме)-	3-NO₂-Ph	F: 441	S-4

[0082]

[0083]

No	R ³	R ⁴	A	Dat	Syn
77	AcNHCH₂	Ме	3-NO₂-Ph	F: 427	59
148	Ме	tBu	O NH₂	F: 462	129
175	Me	tBu	2-NHAc-Ph	F: 382	165
176	Me	tBu	2-NH(SO₂Me)-Ph	F: 418	165
200	Me	tBu	2-NHAc-5-CI-Ph	F: 416	194
201	Me	tBu	2-NH(SO₂Me)-5-Cl-Ph	F: 452	194
209	Me	tBu	2-OCONH ₂ -5-Cl-Ph	F: 418	132
226	Ме	tBu	O-CONH ₂	F: 520	216
227	Me	tBu	O-CONH,	F: 522	225
237	Me	Me(CH₂)₄	2-OCONH ₂ -5-CI-Ph	F: 432	235
238	Me	Me(CH₂)₄	2-OCONH ₂ -5-Br-Ph	F: 476, 478	236
241	Me	tBu	2-OCONH ₂ -5-(CH ₂) ₃ OCONH ₂ -Ph	F: 485	231
251	Me	EtC(Me) ₂ -	2-OCONH ₂ -5-CI-Ph	F: 432	246
258	Me	tBu	2-OCONH ₂ -5-CF ₃ -Ph	F: 452	255
265	Me	tBu	2-OCONMe ₂ -5-CI-Ph	F: 446	132

[0084]

【表25】

266	Me	tBu	2-CH ₂ OCONH ₂ -5-Cl-Ph	F: 432	264
274	Me	tBu	O-{CH₂)₂NHAc ————————————————————————————————————	F: 460	269
279	Me	tBu	2-OAc-5-Cl-Ph	F: 417	132
281	Me.	tBu	2-OCONHPh-5-CI-Ph	F: 494	132
282	Me	tBu	O NH-Bn O Bn CI	F: 641	132
284	Ме	tBu	2-CH(=N-OAc)-5-CI-Ph	E: 383 (M-Ac OH)	283
309	Me	tBu	2-OCONHiPr-5-CI-Ph	F: 432	132
446	CI	iPr	2-OAc-5-Br-Ph	F: 467, 469	312
447	CI	iPr	2-OCOtBu-5-Br-Ph	F: 509, 511	312
448	CI	iPr	CI CI CI Br	F: 599	312
450	CI	iPr	2-OCOCH2iPr-5-Br-Ph	F: 511	312
451	CI	iPr	o ————————————————————————————————————	F: 509	312
452	CI	iPr	O Br	F: 523	312

[0085]

【表26】

u	

453	CI	iPr	°≻n ° → Br	F: 540	312
454	CI	iPr	Br	F: 521	312
455	CI	iPr	OMe O H	F: 561	312
456	CI	iPr	O N Br	F: 532	312
457	CI	iPr	2-(CH ₂) ₈ CH ₃ -5-Br-Ph	F: 581	312
458	CI	iPr	2-(OCOCH=CHMe)-5-Br-Ph	F: 495	312
459	CI	iPr	2-(OCO(CH ₂) ₂ CO ₂ Et)-5-Br-Ph	F: 555	312
460	а	iPr	2-(OCOCH₂OPh)-5-Br-Ph	F: 561	312
461	CI	iPr	2-(OCOBn)-5-Br-Ph	F: 545	312
462	CI	iPr	O O N Br	E: 531	312
464	CI	iPr	2-(OCO(CH ₂) ₃ Cl)-5-Br-Ph	F: 531	312
465	CI	iPr	2-(OCONH-Et)-5-Br-Ph	F: 498	312
466	CI	iPr	2-(OCONH-Hex)-5-Br-Ph	F: 554	312
467	CI	iPr	2-(OCONH(CH ₂) ₂ CO ₂ Et)-5-Br-Ph	F: 570	312
468	CI	iPr	2-(OCONH-cHex)-5-Br-Ph	F: 552	312
469	CI	iPr	2-(OCONH-Bn)-5-Br-Ph	F: 560	312

[0086]

【表27】

•	1

470	CI	iPr	2-(OCONH(CH ₂) ₂ Ph)-5-Br-Ph	F: 574	312
471	CI	iPr	O Ph O H Me	F: 574	312
472	CI	iPr	O Ph O H Me	F: 574	312
473	CI	iPr	O N N Br	F: 566	312
474	СІ	iPr	O NO ₂	F: 566	312
475	CI	iPr	S S Br	F: 537	312
476	CI	iPr	O N S O H S Br	F: 578	312
S-37	Me	tBu	2-CH₂OSO₂Me-5-CI-Ph		264
S-45	Me	tBu	2-NHCOCF ₃ -5-Cl-Ph		194

[0087]

| 接 2 8 | No R¹ Dat Syn 299 (CH₂)₂OCONH₂ F: 443 276 300 (CH₂)₃OCONH₂ F: 457 136

[0088]

No	R ^I	R³	R ⁴	A	Dat	Syn
136	(CH₂)₃OH	Me	tBu	3-NO₂-Ph	F: 414	
182	н	Me	tBu	2-OH-5-Br-Ph	F: 405, 407	177
276	(CH ₂) ₂ OH	Me	tBu	3-NO₂-Ph	F: 400	S-40
278	Н	Ме	tBu	2-OH-5-CI-Ph	F: 361	S-41
313	Н	Me	iPr	2-OH-5-CI-Ph	F: 347	S-49
314	Н	Ме	iPr-CH₂	2-OH-5-CI-Ph	F: 361	S-50

[0089]

【表30】

No	R ³	R ⁴	A	Dat	Syn
173	Me	tBu	3-OH-Ph	F: 341	171
181	Me	tBu	2-OH-5-Br-Ph	F: 419, 421	179
186	CI	iPrCH₂	2-OH-5-C⊦Ph	F: 395	185
189	Me	tBu	2-OH-5-F-Ph	F: 359	188
190	Me	tBu	2-OH-5-OMe-Ph	F: 371	180
204	Me	tBu	2-OH-5-Me-Ph	F: 355	S-15
210	Me	tBu	2-OH-5-Ph-Ph	F: 417	S-17
211	Me	tBu	2-OH-5-(4-Me-Ph)-Ph	F: 431	S-18
212	Me	tBu	2-OH-5-(4-Cl-Ph)-Ph	F: 451	S-19
213	Me	tBu	2-OH-5-(4-MeO-Ph)-Ph	F: 447	S-20
214	Me	tBu	2-OH-5-(2,4-Cl ₂ -Ph)-Ph	F: 485	S-21
215	Me	tBu	HO S	F: 423	S-22
216	Ме	tBu	но	F: 477	S-23
217	Me	tBu	2-OH-5-(CH=CHCO₂Me)-Ph	F: 425	S-24
218	Me	tBu	2-OH-5-(CH=CHCN)-Ph	F: 391	S-25
222	Me	tBu	2-OH-3,5-Cl ₂ -Ph	F: 409	S-27
230	Me	tBu	2-OH-5-Br-Ph	F: 366	S-28
235	Me	Me(CH ₂) ₄	2-OH-5-C⊩Ph	F: 447, 449	S-29
236	Me	Me(CH ₂) ₄	2-OH-5-Br-Ph	F: 433, 435	S-30
246	Me	Et-C(Me)2-	2-OH-5-CI-Ph	F: 389	S-31

[0090]

【表31】

247	Me	tBu	2-OH-4-F-5-CI-Ph	F: 393	S-32
255	Me	tBu	2-OH-5-CF ₃ -Ph	F: 409	S-33
261	Me ·	tBu	2-OH-4-CI-Ph	F: 375	S-34
262	Me	tBu	4-OH-Ph	F: 341	S-35
297	Ме	Pr-C(Me) ₂ -	2-OH-5-CI-Ph	F: 403	S-42
298	Me	iPr-C(Me) ₂ -	2-OH-5-CI-Ph	F: 403	S-43
301	CI	iPr	2-OH-5-CI-Ph	F: 381	S-44
312	CI	iPr	2-OH-5-Br-Ph	F: 425, 427	S-48
315	Ме	iPr	2-OH-5-CI-Ph	F: 361	S-51
316	Me	iPr-CH₂-	2-OH-5-CI-Ph	F: 375	S-52
332	Me	iPr	2-OH-5-Br-Ph	F: 405, 407	S-53
333	Me	Et-CH(Me)-	2-OH-5-Br-Ph	F: 419, 421	S-54
334	Me	iPr-CH(Me)-	2-OH-5-Br-Ph	F: 433, 435	S-55
346	Me	tBu	2-OH-3,6-F ₂ -5-Br-Ph	F: 455, 457	S-58
356	Ме	tBu	2-OH-3-F-5-Br-Ph	F: 437, 439	S-60
425	CI	Et-CH(Me)-	2-OH-5-CI-Ph	F: 395	431
426	CI	Pr-CH(Me)-	2-OH-5-CI-Ph	F: 409	433
439	CF₂H.	iPr	2-OH-5-CI-Ph	F: 397	S-68
441	CF ₃	iPr	2-OH-5-CI-Ph	F: 415	S-69

[0091]

No	R ³	R ⁴	' A	Dat	Syn
413	CI	iPr	2-CO₂Me-5-CI-Ph	F: 423	301
436	CI	Pr-CH(Me)-	2-CN-5-CI-Ph	F: 418	426
437	CN	Pr-CH(Me)-	2,5-(CN) ₂ -Ph	F: 400	426
438	Н	Pr-CH(Me)-	2,5-(CN) ₂ -Ph	F: 375	426
440	CF₂H	iPr	2-CN-5-CI-Ph	F: 406	439
442	CF ₃	iPr	2-CN-5-CI-Ph	F: 424	441
443	CI	iPr	2,5-(CN) ₂ -Ph	F: 381	416
444	CN	iPr	2,5-(CN) ₂ -Ph	F: 372	416
445	Н	iPr	2,5-(CN) ₂ -Ph	F: 347	416

[0092]

【表33】

No	R ³	R ⁴	Α	Dat	Syn
323	Ме	tBu		F: 466	132
324	Me	tBu		F: 466	132
327	Me	tBu	s CI	F: 471	132
328	Me	tBu		F: 471	132
338	Me	tBu	o N. H.	F: 499, 501`	181
339	Me	tBu .	CI	F: 505	181

[0093]

【表34】

7	'9				80
360	Me	tBu	O N N N Br	F: 551	181
479	CI	iPr	o iPr	F: 557, 559	312
480	CI	iPr	OMe	F: 575	312
481	CI	iPr	ОМе	F: 545	312
482	CI	iPr	o o o	F: 505	312
S-59	Me	tBu	O'(CH ₂) ₂ N CPh ₃		181
S-62	Ме	tBu	O N CPh,	F: 755	181

[0094]

【表35】

No	R ³	R ⁴	A	Dat	Syn
38	Ме	CH₂=CH-	3-NO₂-Ph	F: 340	34
269	Me	tBu	2-O(CH ₂) ₂ NH ₂ -5-Cl-Ph	F: 418	S-36
285	Ме	tBu	2-CN-5-CI-Ph	.F: 384	295
310	Ме	tBu	2-CHNNH ₂ -5-CI-Ph	F: 401	263
342	Ме	tBu	, , , , , , , , , , , , , , , , , , ,	F: 501, 503	244
343	Me	tBu	2-(OCH ₂ C(=NH)-NHOH)- 5-Br-Ph	F: 491, 493	244
344	Me	tBu	Me S N= CI	F: 456	S-57
349	Me	tBu	2-NHCO₂Et-5-CI-Ph	F: 446	257
350	Me	tBu	2-NHCO₂Me-5-CI-Ph	F: 432	257
354	Me	tBu	O.(CH ₂)2 N	F: 515	S-59
359	Me	tBu	H ZH CI	F: 454	S-61
390	Me	tBu	3-Br-2-F-6-OH-Ph	F: 437, 439	S-65
408	Me	iPr	2-CN-5-CN-Ph	F: 361	405
416	CI	iPr	2-CN-5-CI-Ph	F: 390	415

[0095]

【表36】

422	Ме	iPr	6-CN-2,3-Cl ₂ -Ph	F: 404	421
424	Me	iPr	2-CN-3,5-Cl ₂ -Ph	F: 404	423
477	CI	CH ₂ =C(Me)-	2-CN-5-Br-Ph	F: 388	449_
S-3	Me	MeO-CH=C(Me)	3-NO ₂ -Ph	F: 384	5

[0096]

Me N N N S A

【表37】

No	A	Dat	Syn
S-12		F: 422	103
S-39	2-OMe-3-NH ₂ -5-Cl-Ph		S-117

[0097]

【表38】

No	A	Dat	No	A	Dat
492	3-CN-Ph	AP: 336	493	3-F-Ph	AP: 329
494	2-CN-Ph	AP: 336	495	4-CN-Ph	AP: 336
496	2-F-Ph	AP: 329	497	4-F-Pḥ	AP: 329
498	4-Br-Ph	AP: 391	499	2-Br-Ph	AP: 391
500	4-I-Ph	AP: 437	501	2-Cl-Ph	AP: 345
502	3-Ci-Ph	AP: 345	503	3,5-(CF ₃) ₂ -Ph	AP: 447
504	4-CF ₃ -Ph	AP: 379	505	2,3-Cl ₂ -Ph	AP: 379
506	3-CF₃-Ph	AP: 379	507	2,5-Cl ₂ -Ph	AP: 379
508	3-Cl-4-F-Ph	AP: 363	509	2,4-F ₂ -Ph	AP: 347

[0098]

[まなの]

				【表39】	
510	4-NO₂-Ph	AP: 356	511	2-NO₂-Ph	AP: 356
512	4-CO₂H-Ph	AP: 355	513	3-CO₂H-Ph	AP: 355
514	2-NO ₂ -4-CF ₃ -Ph	AP: 424	515	2-CI-4-CN-Ph	AP: 370
516	3-Cl-2-Me-Ph	AP: 359	517	4-tBu-Ph	AP: 367
518	4-Me-Ph	AP: 325	519	2-Me-Ph	AP: 325
520	4-Et-Ph	AP: 339	521	4-OMe-Ph	AP: 341
522	3,4-(OMe) ₂ -Ph	AP: 371	523	2-OCF ₃ -Ph	AP: 395
524	4-OCF₃-Ph	AP: 395	525	2,4,6-Me₃-Ph	AP: 353
526	2,5-Me₂-Ph	AP: 339	527	4-(CH=CH₂)-Ph	AP: 337
528	4-Cl-3-NO₂-Ph	AP: 390	529	5-CI-2-OMe-Ph	AP: 375
530	2-Cl-4-CF ₃ -Ph	AP: 413	531	3,5-Cl₂-2-OH-Ph	AP: 395
532	2,4,5-Cl₃-Ph	AP: 415	534	4-(O-(3-Cl-2-CN-Ph))-Ph	AP: 462
537	4-Br-2-Et-Ph	AP: 417	538	5-Br-2-OMe-Ph	AP: 421
539	2-Me-5-NO ₂ -Ph	AP: 370	540	2,5-(OMe) ₂ -Ph	AP: 371
597	3-Br-Ph	AP: 390	598	3-Me-Ph	AP: 325
599	2,5-Br ₂ -Ph	AP: 469	600	5-F-2-Me-Ph	AP: 343
601	4-CI-3-NO ₂ -Ph	AP: 390	602	2-OMe-5-Me-Ph	AP: 355
603	3,5-Cl ₂ -Ph	AP: 380	604	4-Br-2,5-F ₂ -Ph	AP: 426
605	3,6-Br ₂ -2,5-F ₂ -Ph	AP: 505	533	-NMe ₂	AP: 404
535	~\$)	AP: 317	536	OMe CO ₂ Me	AP: 405
541	→S SO ₂ Ph	AP: 457	542	CI NMe N Me	AP: 363
543	Me O N Me	AP: 330	544	→	AP: 361
545	N.S.N	AP: 369	606	~\$JCI	AP: 351

[0099]

【表40】

AP: 386

85

607

08	2 0 0	AP: 386	
10	s	AP: 394	

609 AP: 430
Br AP: 315

[0100]

No	R ⁸	Dat	No	R ⁸	Dat
612	NHSO₂Me	AP: 404	613	NHSO₂iPr	AP: 432
614	NHSO₂Bn	AP: 480	615	NHSO₂Ph	AP: 466
616	-NHSO ₂	AP: 472	617	-NHSO ₂ NO ₂	AP: 511
618	-N	AP: 460	619	0 Z 0	AP: 456
620	-N NO ₂	AP: 501	621	CO ₂ H Ph	AP: 516
622	°	AP: 491	623	,	AP: 474
624	NHCOMe	AP: 368	625	NHCO(CH ₂) ₃ Me	AP: 410
626	NHCOtBu	AP: 410	627	NHCOCH=CHMe	AP: 394

[0101]

30 【表42】

628		AP: 422	629		AP: 436
630	H	AP: 488	631	NHCOBn	AP: 444
632	NHCOCH₂OMe	AP: 398	633	H s	AP: 436
634	N. C.	AP: 420	635	, H, C	AP: 431
636	i No	AP: 430	637	NO ₂	AP: 475
638	H NO ₂	AP: 475	639		AP: 480
640	H Me	AP: 444	641	H + tBu	AP: 486
642	H CF ₃	AP: 498	643	NO CN	AP: 455
644	H Ph	AP: 506	645	H NH ₂	AP: 326

【0102】 【表43】

89

No	R ³	R ⁴	Α	Dat
546	EtO ₂ C-CH ₂	н	3-NO₂-Ph	AP: 372
547	EtO₂C-CO	Н	3-NO₂-Ph	AP: 383(-)
548	Ph	EtO₂C	3-NO₂-Ph	AP: 434
549	MeO₂C	Н	3-NO₂-Ph	AP: 344
554	Me	Н	3-NO ₂ -Ph	AP: 300
555	Ме	Н	3-CI-Ph	AP: 289
556	Ме	Н	3-CN-Ph	AP: 280
557	Ме	н	¬(^s)	AP: 261
558	Ph	Н	3-NO₂-Ph	AP: 362
559	Ph	Н	3-Cl-Ph	AP: 351
560	Ph	н	3-CN-Ph	AP: 342
561	Ph	н	~s>	AP: 323
562	4-Me-Ph	Н	3-NO₂-Ph	AP: 376
563	4-Me-Ph	Н	3-CI-Ph	AP: 365
564	4-Me-Ph	Н	3-CN-Ph	AP: 356
565	4-Me-Ph	н	· ¬(s)	AP: 337
566	4-CI-Ph	н	3-NO ₂ -Ph	AP: 396
567	4-CI-Ph	Н	3-CI-Ph	AP: 386
568	4-CI-Ph	Н	3-CN-Ph	AP: 376
569	4-Cl-Ph	н	—⟨ ^S ⟩	AP: 357
570	4-OMe-Ph	Н	3-NO ₂ -Ph	AP: 392
571	4-OMe-Ph	Н	3-Ci-Ph	AP: 381
572	4-OMe-Ph	Н	3-CN-Ph	AP: 372
573	4-OMe-Ph	н	√ \$⟩	AP: 353
574	4-NO₂-Ph	Н	3-NO₂-Ph	AP: 407

[0103]

【表44】

575	3,4-Cl₂-Ph	Н	3-NO ₂ -Ph	AP: 431
576	4-CI-3-Me-Ph	Н	3-NO₂-Ph	AP: 410
577	4-Cl-3-Me-Ph	Н	3-CI-Ph	AP: 400
578	4-CI-3-Me-Ph	Н	3-CN-Ph	AP: 390
579	4-Cl-3-Me-Ph	н	¬(S)	AP: 371
580	3-Br-Ph	Н	3-NO₂-Ph	AP: 441
581	3-Br-Ph	Н	3-CI-Ph	AP: 430
582	3-Br-Ph	Н	3-CN-Ph	AP: 421
583	3-Br-Ph	н	¬(s)	AP: 402
584	4-Br-Ph	Me	3-NO₂-Ph	AP: 455
585	4-Br-Ph	Me	3-CI-Ph	AP: 444
586	4-Br-Ph	Me	3-CN-Ph	AP: 435
587	4-Br-Ph	Me	− (\$)	AP: 416

[0104]

No	R ²	R³	R ⁴	R ⁸	Dat
673	Ме	Me	tBu	N(Me)SO₂Bn	AP: 522
674	Me	Me	tBu		AP: 474
675	Me	Ме	tBu	Me tBu	AP: 514
676	Me	Me	tBu	N(Me) ₂	AP: 368
677	Me	4-Br-Ph	Me	NO ₂	AP: 469
678	Me	Me	H	NO ₂	AP: 314

[0105]

No	B'	A	Dat
550	\rightarrow \bigs_s \righ	3-NO ₂ -Ph	AP: 333(-)
551	Me S	3-NO ₂ -Ph	AP: 350
552	MeO S	3-NO₂-Ph	AP: 366
553	cı S	3-NO ₂ -Ph	AP: 368(-)
588	Me N-N	3-NO ₂ -Ph	AP: 301
589	Me—N-N	3-CI-Ph	AP: 290
590	N-N s	3-Cl-Ph	AP: 276
591	F ₃ C-V _S	3-NO₂-Ph	AP: 355
592	F ₃ C-	3-Cl-Ph	AP: 344
593	tBu—S	3-NO ₂ -Ph	AP: 343
594	tBu—S	3-Cl-Ph	AP: 332
595	Ph-N-N	3-NO₂-Ph	AP: 363
596	Ph—	3-CI-Ph	AP: 352

[0106]

【表47】

No	R²	A	Dat
646	CH₂OMe	3-NO₂-Ph	AP: 400
647	~⁰	3-NO ₂ -Ph	AP: 412
648	CH₂CO₂Et	3-NO₂-Ph	AP: 442
649	Bn	3-NO₂-Ph	AP: 446
650	CH₂(4-CN-Ph)	3-NO₂-Pħ	AP: 471
651	CH₂(4-F-Ph)	3-NO₂-Ph	AP: 464
652	CH₂(3-CI-Ph)	3-NO₂-Ph	AP: 481
660	Me	3-CN-Ph	AP: 350
661	Me	3-F-Ph	AP: 343
662	Me	3-CI-Ph	AP: 359
663	Me	3-CF ₃ -Ph	AP: 393
664	Me	2,5-Cl₂-Ph	AP: 394
665	Me	2-CI-4-CF ₃ -Ph	AP: 427
666	Ме	_(s)	AP: 331
667	Me	3-Br-Ph	AP: 404
668	Me	3-Me-Ph	AP: 339
669	Me	2,5-Br ₂ -Ph	AP: 483
670	Ме	5-F-2-Me-Ph	AP: 357
671	Ме	Br CI	AP: 444
672	Me	3-(N(Me)SO₂iPr)-Ph	AP: 460

[0107]

【表48】

95

	0			
No	B'	A	Dat	
653	Me N tBu S	3-NO ₂ -Ph	AP: 370	
654	EtO ₂ C N	3-NO ₂ -Ph	AP: 386	
655	Ph N EtO ₂ C S	3-NO₂-Ph	AP: 448	
656		3-NO₂-Ph	AP: 350	
657	Me S	3-NO₂-Ph	AP: 364	
658	MeO S	3-NO ₂ -Ph	AP: 380	
659	CI S	3-NO₂-Ph	AP: 384	
679	tBu-\s	3-NO ₂ -Ph	AP: 357	
680	Me—S	3-NO₂-Ph	AP: 315	

[0108]

【表49】

			-		
No	Str	Dat	No	Str	Dat
S-71	Me N NH ₂	F: 199	S-78	Me NH ₂	F: 211
S-79	MeO NH ₂	F: 221	S-80	Me N NH2	F: 209
S-81	Ph N NH ₂	F: 233	S-82	Ph S NH ₂	F: 219
S-83	Me N N N N N N N N N N N N N N N N N N N	F: 211	S-84	Me NH ₂	F: 183
S-85	N-NH ₂	F: 165	S-86	Et N NH ₂	F: 185
S-87	Br NH₂	F: 235, 237	S-88	Me NH ₂ Me Me Me	,
S-89	iPr S NH ₂	F: 199	S-90	iPr → NH₂ Me Me	F: 227
S-91	Me Me	F: 227	S-92	Me N S NH ₂	F: 213
S-93	Me S NH ₂	F: 205			

[0109]

(表5 0) CI-SI-A

No	Α	No	A
S-100	2-OMe-Ph	S-101	2-OMe-5-F-Ph
S-102	4-OMe-5-F-Ph	S-103	2-CN-5-F-Ph
S-104	2-CN-3-Br-Ph	S-105	2-CN-6-Br-Ph
S-106	2-CO₂Me-5-CN-Ph	S-107	2,6-F ₂ -3-NO ₂ -Ph
S-108	2,3-Cl ₂ -6-CO ₂ Me-Ph	S-109	2-CI-4-OMe-Ph
S-110	2-OMe-4-F-5-Cl-Ph	S-111	2-OMe-5-CF ₃ -Ph
S-112	2-OMe-4-Cl-Ph	S-113	2-OMe-3,6-diF ₂ -5-Br-Ph
S-114	2-OMe-3-F-5-Br-Ph		H ₂ NN
S-116	2-OMe-3-NO ₂ -5-Cl-Ph	S-115	~

[0110]

【表51】

No	R ²	A	Dat	Syn
S-6	(CH₂)₃CHO	3-NO ₂ -Ph		115
S-7	(CH₂)₂CHO	3-NO ₂ -Ph		117
S-18	Me	2-OMe-5-(4-Me-Ph)-Ph	F: 445	179
S-19	Me	2-OMe-5-(4-CI-Ph)-Ph	F: 465	179
S-20	Me	2-OMe-5-(4-MeO-Ph)-Ph	F: 461	179
S-21	Me	2-OMe-5-(2,4-Cl ₂ -Ph)-Ph	F: 499	179
S-22	Ме	MeO	F: 437	179
S-24	Me	2-OMe-5-(CH=CHCO₂Me)-Ph	F: 439	179
S-25	Me	2-OMe-5-(CH=CHCN)-Ph	F: 406	179
S-57	Me	2-C(S)NH₂-5-CI-Ph	F: 418	295

【0111】本発明化合物の作用は以下の薬理試験によって確認された。

HIV-1逆転写酵素阻害試験

A) 酵素の調製

Saitoh A等の方法 (Microbiol. Immunol., 1990, 34, 5 09-521) に従い酵素の調製を行った。HIV-1逆転写酵素 (RT) の103番目Lysアミノ酸残基をAsnに置換したK103 N、および181番目のTyrをCysに置換したY181Cのアミノ酸変異組換えHIV-1RTの発現ベクターは、pPG280の103番目Lysに対応する塩基コドンAAAをAATに (pPG280-K103 N)、181番目のTyrに対応する塩基コドンTATをTGT (pPG280-Y181C) に置換することで作製した。野生型RT (WT-30 RT) および2種類の変異型RT (K103N-RT及びY181C-RT)は、発現ベクター pPG280、pPG280-K103N及びpPG280-Y181Cで形質転換された大腸菌株UT481を用いて調製した。B) アッセイ

Baba M.等の方法 (Proc. Natl. Acad. Sci. USA, 1991,

88, 2356-2360) に準じて実施した。具体的には、50 m
N トリス (ヒドロキシメチル) アミノメタンヒドロクロライド (pli 8.4)、2 mM ジチオスレイトール、100 mM 塩化カリウム、10 mM 塩化マグネシウム、0.1% トリトンX-100、1μCi [1',2'-³H]dGTP、テンプレート・プライマーとして0.01U (0D 260nm) poly(rC)・oligo(dG) 12-18 、試験物質、逆転写酵素 (WI-KTは0.01U、K103N-R T及びY181C-RTは0.02U) を含む、50μ1の液で37℃、1時間反応させた。5%トリクロロ酢酸で反応を止め、氷中にて10分放置する。析出物をフィルターにトラップした後、その放射活性を液体シンチレーションカウンターにて測定した。³HラベルしたdGTPの取り込みを50%阻害する試験物質の濃度をICso 値として算出した(単位μM)。結果を下記表52に示す。

【0112】 【表52】

	WT-RT	Y181C-RT	K103N-RT
化合物 1	0.27	0.066	13
化合物 132	0.041	0.015	1.0
化合物 246	0.012	0.0049	0.94
化合物 312	0.0043	0.013	0.043

上記試験の結果、本発明化合物は逆転写酵素阻害剤とし

て有用であることが確認された。

フロントページの続き

(51) Int.C1.7

識別記号

FΙ

テーマコード(参考)

A 6 1 K 31/437

31/4439 31/454 A 6 1 K 31/437 31/4439

31/454

			21	1/496		•			
	31/496								
	31/519			31/519 31/5377					
4 C 1 D	31/5377		A61P 3						
A 6 1 P									
C 0 7 D			C 0 7 D 277/54						
	277/60		277/60						
	277/82	277/82							
	285/135		417/06 417/12						
	417/06								
	417/12			7/14					
	417/14			1/04	108				
	471/04 1 0 8			7/04	144				
	487/04 1 4 4		28	5/12		E			
(72)発明者	藤井 正大		(72)発明者	八田 俊史					
(12) 20 21 0	茨城県つくば市御幸が丘 21	山之内製薬	(, 2) / 2 / 3 1	東京都板橋		·17— 1 Ш	ン内製薬		
	株式会社内			株式会社内					
(72)発明者	• • • • • • • •		(72)発明者						
(10)0011	東京都板橋区蓮根3-17-1	山之内製薬	(.2),20,71	京都府京都		息庫申町1/	ー1イン		
	株式会社内	H C I JAX		ペリアルバ					
(72) 癸明老	増田 直之		(72)発明者		-	, , , , , , ,			
(10)00010	茨城県つくば市御幸が丘 21	山之内製薬	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	滋賀県大津		4 丁目13番	地グラン		
	株式会社内				木の里5番				
(72) 発明者	藤安 次郎		Fターム(参			-	AD24		
(12))0011	茨城県つくば市御幸が丘 21	山之内製薬		3, 1000	AD27 AD30				
	株式会社内			4C050		CCO8 EEO3	FF02		
(72)発明者	**				GGO1 HHO4	2200			
(10))0/10	茨城県つくば市御幸が丘 21	山之内製薬		4C063		BBO3 BBO6	BB07		
	株式会社内					CC73 CC81			
(72) 発明者	森友 紋子					DD12 DD25			
(12)/2//12	茨城県つくば市御幸が丘 21	山之内製薬				DD54 DD62			
	株式会社内			4C065		CCO1 DDO2	EEO2		
(72)発明者	陰山 俊治					KKO4 LLO1			
(, = / / 0 / 1 6	東京都板橋区蓮根3-17-1	山之内製薬		4C086		AAO3 BC82			
	株式会社内					GAO2 GAO4			
(72)発明者	井上 洋志					GA10 MAO1			
(-//-//	東京都板橋区蓮根3-17-1	山之内製薬			NA14 ZC55				
	株式会社内								
	this same toget &								