NVT4857UK

SD 3.0-SDR104 compliant integrated auto-direction control

Rev. 3.0 — 19 July 2023

Product data sheet

1 General description

The device is an SD 3.0-compliant bidirectional dual voltage level translator with auto-direction control. It is designed to interface between a memory card operating at 1.8 V or 3.0 V signal levels and a host with a nominal supply voltage of 1.2 V to 1.8 V.

The device supports SD 3.0 SDR104, SDR50, DDR50, SDR25, SDR12 and SD 2.0 High-Speed (50 MHz) and Default-Speed (25 MHz) modes. The device has an integrated voltage selectable low dropout regulator to supply the card-side I/Os, an auto-enable/ disable function connected to the V_{SD} supply pin, built-in EMI filters and robust ESD protections (IEC 61000-4-2, level 4).

2 Features and benefits

- · Supports up to 208 MHz clock rate
- SD 3.0 specification-compliant voltage translation to support SDR104, SDR50, DDR50, SDR25, SDR12, High-Speed and Default-Speed modes
- 1.2 V to 1.8 V host side interface voltage support
- Feedback channel for clock synchronization
- 100 mA Low dropout voltage regulator to supply the card-side I/Os
- · Low power consumption by push-pull output stage with break-before-make architecture
- ullet Automatic enable and disable through $V_{\mbox{\scriptsize SD}}$
- · Integrated pull-up and pull-down resistors: no external resistors required
- · Integrated EMI filters suppress higher harmonics of digital I/Os
- Integrated 8 kV ESD protection according to IEC 61000-4-2, level 4 on card side
- · Level shifting buffers keep ESD stress away from the host (zero-clamping concept)
- 20-ball WLCSP; pitch 0.4 mm

3 Applications

- Smart phones
- Mobiles handsets
- Digital cameras
- · Tablet PCs
- · Laptop computers
- · SD, MMC or microSD card readers

SD 3.0-SDR104 compliant integrated auto-direction control

4 Ordering information

Table 1. Ordering information

Type number	Topside mark	Package	ckage					
		Name	Description	Version				
NVT4857UK	N4857	WLCSP20	wafer level chip-size package; 20 bumps (5 \times 4), size 1.7 x 2.1 x 0.49 mm, 0.4 mm pitch	SOT1397- 10				

4.1 Ordering options

Table 2. Ordering options

Type number	Orderable part number	Package	3	Minimum order quantity	Temperature
NVT4857UK	NVT4857UKZ	WLCSP20	REEL 7" Q1/T1 *SPECIAL MARK CHIPS DP	500	T _{amb} = -40 °C to +85 °C
NVT4857UK	NVT4857UKAZ	WLCSP20	REEL 13" Q1/T1 *SPECIAL MARK CHIPS DP	10000	T _{amb} = -40 °C to +85 °C

SD 3.0-SDR104 compliant integrated auto-direction control

5 Block diagram

SD 3.0-SDR104 compliant integrated auto-direction control

6 Functional diagram

7 Pinning information

7.1 Pinning

Table 3. Pin allocation table

Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
A1	DAT2A	A2	V _{CCA}	A3	V _{SD}	A4	DAT2B
B1	DAT3A	B2	CD	В3	V _{CCB}	B4	DAT3B
C1	CMDA	C2	GND	C3	GND	C4	CMDB
D1	DAT0A	D2	CLKA	D3	CLKB	D4	DAT0B
E1	DAT1A	E2	CLK_FB	E3	SEL	E4	DAT1B

7.2 Pin description

Table 4. Pin description

Symbol [1]	Pin	Type [2]	Description
DAT2A	A1	I/O	data 2 input or output on host side
V _{CCA}	A2	S	supply voltage from host side
V _{SD}	A3	S	supply voltage
DAT2B	A4	I/O	data 2 input or output on memory card side
DAT3A	B1	I/O	data 3 input or output on host side
CD	B2	0	card detect switch biasing output
V _{CCB}	В3	S	internal supply decoupling (V _{LDO})
DAT3B	B4	I/O	data 3 input or output on memory card side
CMDA	C1	I/O	command input or output on host side
GND	C2	S	supply ground
GND	C3	S	supply ground
CMDB	C4	I/O	command input or output on memory card side
DAT0A	D1	I/O	data 0 input or output on host side
CLKA	D2	I	clock signal input on host side
CLKB	D3	0	clock signal output on memory card side
DAT0B	D4	I/O	data 0 input or output on memory card side
DAT1A	E1	I/O	data 1 input or output on host side
CLK_FB	E2	0	clock feedback output on host side
SEL	E3	I	card side I/O voltage level select
DAT1B	E4	I/O	data 1 input or output on memory card side

^[1] The pin names relate particularly to SD memory cards, but also apply to microSD and MMC memory cards.

8 Functional description

8.1 Level translator

The bidirectional level translator shifts the data between the I/O supply levels of the host and the memory card. The voltage translator has to support several clock and data transfer rates at the signaling levels specified in the SD 3.0 standard specification.

Table 5. Supported modes

Bus speed mode	Signal level (V)	Clock rate (MHz)	Data rate (MB/s)
Default-Speed	3.3	25	12.5
High-Speed	3.3	50	25
SDR12	1.8	25	12.5
SDR25	1.8	50	25
SDR50	1.8	100	50

NVT4857UK

All information provided in this document is subject to legal disclaimers.

^[2] I = input, O = output, I/O = input and output, S = power supply

Table 5. Supported modes...continued

Bus speed mode	Signal level (V)	Clock rate (MHz)	Data rate (MB/s)
SDR104	1.8	208	104
DDR50	1.8	50	50

8.2 Enable and direction control

The device contains an auto-enable feature. If V_{SD} rises above 2.65 V, the LDO and the level translator logic is enabled automatically. As soon as V_{SD} drops below the $V_{SDdisable}$, as specified in <u>Table 10</u>, the LDO and the card side drivers and the level translator logic is disabled. All host side pins excluding CLKA¹ are configured as inputs with a 70 k Ω resistor pulled up to V_{CCA} .

8.3 Integrated voltage regulator

The low dropout voltage regulator delivers supply voltage for the voltage translators and the card-side input/output stages. It has to support 1.8 V and 3 V signaling modes as stipulated in the SD 3.0 specification. The switching time between the two output voltage modes is compliant with SD 3.0 specification. Depending on the signaling level at pin SEL, the regulator delivers 1.8 V (SEL = HIGH) or 3.0 V (SEL = LOW).

Table 6. SD card side voltage level control signal truth table

Input	Output	utput							
SEL ^[1]	V _{CCB}	Pin ^[2]	Function						
Н	1.8 V	DAT0B to DAT3B, CLKB	low supply voltage level (1.8 V _{typ})						
L	tracking V _{SD}	DAT0B to DAT3B, CLKB	high supply voltage level (tracking V _{SD})						

^[1] H = HIGH; L = LOW; X = don't care

An external capacitor is needed between the regulator output pin V_{CCB} and ground for proper operation of the integrated voltage regulator. See <u>Table 8</u> for recommended capacitance and equivalent series resistance. It is recommended to place the capacitor close to the V_{SD} and V_{CCB} pin and maintain short connections of both to ground.

8.4 Feedback clock channel

The clock is transmitted from the host to the memory card side. The voltage translator and the Printed-Circuit Board (PCB) tracks introduce some amount of delay. It reduces timing margin for data read back from memory card, especially at higher data rates. Therefore, a feedback path is provided to compensate the delay. The reasoning behind this approach is the fact that the clock is always delivered by the host, while the data in the timing critical read mode comes from the card.

8.5 EMI filter

All input/output driver stages are equipped with EMI filters to reduce interferences towards sensitive mobile communication.

NVT4857UK

All information provided in this document is subject to legal disclaimers

^[2] Host-side pins are not influenced by SEL.

¹ CLKA is a pure high-ohmic input. Please refer to Figure 2 for more detail.

8.6 ESD protection

The device has robust ESD protections on all memory card pins as well as on the V_{SD} pin. The architecture prevents any stress for the host: the voltage translator discharges any stress to supply ground.

Pin Card Detection (CD) might be pulled down by the memory card which has to be detected by the host. The pin is equipped with International Electrotechnical Commission (IEC) system-level ESD protection and pull-up resistor connected to the host supply V_{CCA} .

9 Limiting values

Table 7. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage	4 ms transient				
		on pin V _{SD}		-0.5	+4.6	V
		on pin V _{CCA}		-0.5	+4.6	V
VI	input voltage	4 ms transient at I/O pins		-0.5	+4.6	V
P _{tot}	total power dissipation	T _{amb} = -40 °C to +85 °C		-	1000	mW
T _{stg}	storage temperature			-55	+150	°C
T _{amb}	ambient temperature			-40	+85	°C
V_{ESD}	electrostatic discharge voltage	IEC 61000-4-2, level 4, all memory card-side pins, V _{SD} and CD to ground	[1]			
		contact discharge		-8	+8	kV
		air discharge		-15	+15	kV
		Human Body Model (HBM) JEDEC JESD22-A114 F; all pins		-2000	+2000	V
		Charge Device Model (CDM) JEDEC JESD22-C101E; all pins		-500	+500	V
I _{lu(IO)}	input/output latch-up current	JESD 78B: -0.5 × V _{CC} < V _I < 1.5 × V _{CC} ; T _j < 125 °C		-100	+100	mA

^[1] All system level tests are performed with the application-specific capacitors connected to the supply pins V_{SUPPLY} , V_{LDO} and V_{CCA} .

10 Recommended operating conditions

Table 8. Operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage	on pin V _{SD}	[1]	2.9	-	3.6	V
		on pin V _{CCA}		1.1	-	2.0	V
VI	input voltage	host side	[2]	-0.3	-	V _{CCA} + 0.3	V
		memory card side		-0.3	-	V _{O(LDO)} + 0.3	V
C _{ext}	external capacitance	recommended capacitor at pin V _{CCB}		-	2.2	-	μF
ESR	equivalent series resistance	at pin V _{LDO}		0	-	50	mΩ

NVT4857UK

All information provided in this document is subject to legal disclaimers.

Table 8. Operating conditions...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{ext}	external	recommended capacitor at pin V _{SD}	-	0.1	-	μF
	capacitance	recommended capacitor at pin V _{CCA}	-	0.1	-	μF

^[1] By minimum value the device is still fully functional, but the voltage on pin V_{LDO} might drop below the recommended memory card supply voltage.

Table 9. Integrated resistors

 T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{pd}	pull-down resistance	R3; tolerance ±30 %		70	100	130	Ω
		R5		200	350	500	kΩ
R _{pu}	pull-up resistance	all data lines and CMDx		49	70	91	kΩ
		R4		70	100	130	kΩ
R _s	series resistance	host side; R1; tolerance ±30 %	[1]	-	22.5	-	Ω
		card side; R2; tolerance ±30 %	[1]	-	15	-	Ω

^[1] Guaranteed by design.

11 Static characteristics

Table 10. Static characteristics

At recommended operating conditions; T_{amb} = -40 °C to +85 °C; voltages are referenced to GND (ground = 0 V); C_{ext} = 2.2 μ F at pin V_{CCB} ; guaranteed by design and characterization; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ^[1]	Max	Unit
Automati	c enable feature: V _{SD}					
V _{SDen}	device enable voltage level	V _{CCA} ≥ 1.0 V, V _{SD} rising edge	2.25	2.45	2.65	V
V _{SDdisable}	device disable voltage level	V _{CCA} ≥ 1.0 V, V _{SD} falling edge	2.2	2.4	2.6	V
ΔV_{SDen}	V _{SDen} hysteresis voltage		-	50	-	mV
Supply vo	oltage regulator for card-sid	le I/O pin: V _{CCB}	- 1	'		
V _{O(LDO)}	regulator/switch output voltage	SEL = LOW;3.0 V \leq V _{SD} \leq 3.6 V; I _O $<$ 100 mA	V _{SD} -0.2	V _{SD} -0.1	V _{SD}	V
		SEL = HIGH; V _{SD} ≥ 2.9 V; I _O < 100 mA	1.7	1.8	1.95	V
I _{O(LDO)}	regulator/switch output current		-	-	100	mA
Host-side	input signals: CMDA and I	DAT0A to DAT3A, CLKA; 1.1 V ≤ V _{CCA} ≤	2.0 V	'		
V _{IH}	HIGH-level input voltage		0.75 × V _{CCA}	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	0.25 × V _{CCA}	V
Host-side	control signals; 1.1 V ≤ V _C	CA ≤ 2.0 V	ı		1	
SEL						

NVT4857UK

All information provided in this document is subject to legal disclaimers.

^[2] The voltage must not exceed 3.6 V.

Table 10. Static characteristics...continued

At recommended operating conditions; T_{amb} = -40 °C to +85 °C; voltages are referenced to GND (ground = 0 V); C_{ext} = 2.2 μ F at pin V_{CCB} ; guaranteed by design and characterization; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ^[1]	Max	Unit
V _{IH}	HIGH-level input voltage		0.75 × V _{CCA}	-	V _{CCA} + 0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	0.25 × V _{CCA}	V
Host-sid	e output signals: CLK_FB,	CMDA and DAT0A to DAT3A; 1.1 V ≤ V _{CC}	A ≤ 2.0 V			
V _{OH}	HIGH-level output voltage for CLK_FB	I _O = 2 mA; V _I = V _{IH} (card side)	0.8 × V _{CCA}	-	-	V
	HIGH-level output voltage for CMDA, DATxA	$I_O = 2 \mu A$; $V_I = V_{IH}$ (card side)	0.8 × V _{CCA}	-	-	V
V _{OL}	LOW-level output voltage	I _O = -2 mA; V _I = V _{IL} (card side)	-	-	0.15 × V _{CCA}	V
Card-sid	e input signals: CMDB and	DAT0B to DAT3B	,			
V _{IH}	HIGH-level input voltage	SEL = LOW (3.0 V card interface)	0.625 × V _{O(LDO)}	-	V _{O(LDO)} + 0.3	V
		SEL = HIGH (1.8 V card interface)	0.625 × V _{O(LDO)}	-	V _{O(LDO)} + 0.3	٧
V _{IL}	LOW-level input voltage	SEL = LOW (3.0 V card interface)	-0.3	-	0.3 × V _{O(LDO)}	٧
		SEL = HIGH (1.8 V card interface)	-0.3	-	0.35 × V _{O(LDO)}	V
Card-sid	e output signal		<u>'</u>			
CMDB ar	nd DAT0B to DAT3B, CLKB					
V _{OH}	HIGH-level output voltage for CLKB only	I _O = 4 mA; V _I = V _{IH} (host side); SEL = LOW (3.0 V card interface)	0.85 × V _{O(LDO)}	-	V _{O(LDO)} + 0.3	V
		I _O = 2 mA; V _I = V _{IH} (host side); SEL = HIGH (1.8 V card interface)	0.85 × V _{O(LDO)}	-	2.0	V
	HIGH-level output voltage for CMDB, DATxB	I _O = 2 μA; V _I = V _{IH} (host side); SEL = HIGH (1.8 V card interface)	0.85 × V _{O(LDO)}	-	2.0	V
V _{OL}	LOW-level output voltage	I _O = -4 mA; V _I = V _{IL} (host side); SEL = LOW (2.9 V card interface)	-0.3	-	0.125 × V _{O(LDO)}	V
		I _O = -2 mA; V _I = V _{I card L} (host side); SEL = HIGH (1.8 V interface)	-0.3	-	0.125 × V _{O(LDO)}	V
Pin capa	citance			1	'	
C _{io}	input/output capacitance	host side	-	2	4	pF
		card side	-	6	9	pF
Current	consumption					1
I _{CC(stat)}	static supply current	$V_{SD} \ge V_{SDen}$ (active mode); all inputs = HIGH;				
		SEL = LOW (3.0 V card interface)	-	-	100	μΑ
		SEL = HIGH (1.8 V card interface)	-	-	100	μΑ

NVT4857UK

All information provided in this document is subject to legal disclaimers.

SD 3.0-SDR104 compliant integrated auto-direction control

Table 10. Static characteristics...continued

At recommended operating conditions; T_{amb} = -40 °C to +85 °C; voltages are referenced to GND (ground = 0 V); C_{ext} = 2.2 μ F at pin V_{CCB} ; guaranteed by design and characterization; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ^[1]	Max	Unit
I _{CC(stb)}	standby supply current	V _{SD} ≤ V _{SDen} and V _{CCA} ≥ 1.0 V (inactive mode); all host side inputs = HIGH	-	-	7	μА

^[1] Typical values are measured at T_{amb} = 25 °C.

12 Dynamic characteristics

12.1 Voltage regulator

Table 11. Voltage regulator

 T_{amb} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Voltage reg	ulator output pin: V _{CCB}					
t _{startup(LDO)}	regulator start-up time	$V_{CCA} = 1.8 \text{ V}; V_{SD} = 3.0 \text{ V}; C_{ext} = 2.2 \mu\text{F};$ see <u>Figure 6</u>	-	-	400	μs
t _{f(o)}	output fall time	V _{O(LDO)} = 3.0 V to 1.8 V; SEL = LOW to HIGH; see <u>Figure 5</u>	-	-	1	ms
t _{r(o)}	output rise time	V _{O(LDO)} = 1.8 V to 3.0 V; SEL = HIGH to LOW; see Figure 5	-	-	100	μs

SD 3.0-SDR104 compliant integrated auto-direction control

12.2 Level translator

Table 12. Level translator dynamic characteristics

At recommended operating conditions; $V_{CCA} = 1.2 \text{ V}$; $T_{amb} = 25 \text{ °C}$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Host side	transition times		•				
t _r	rise time	SEL = HIGH (1.8 V card interface);	[1]	-	0.4	1.0	ns
t _f	fall time	V _{CCA} = 1.8 V	[1]	-	0.4	1.0	ns
t _r	rise time	SEL = HIGH (1.8 V card interface);	[1]	-	0.4	1.0	ns
t _f	fall time	V _{CCA} = 1.2 V	[1]	-	0.4	1.0	ns
Card side	transition times						
t _r	rise time	SEL = HIGH (1.8 V card interface);	[2]	0.4	0.88	1.32	ns
t _f	fall time	-40 °C ≤ T _{amb} ≤ +85 °C		0.4	0.88	1.32	ns
Card inpu	t transition times	,			<u> </u>		I
t _r	rise time	SEL = HIGH (1.8 V card interface);		0.2	0.5	0.96	ns
t _f	fall time	-40 °C ≤ T _{amb} ≤ +85 °C	[3]	0.2	0.45	0.96	ns
Host to ca	rd propoagation delay	,		1	1		
DATxA to	DATxB, CMDA to CMDB, CLI	KA to CLKB					
t _{pd}	propagation delay	SEL = HIGH (1.8 V card interface);		-	3.0	5.5	ns
		V _{CCA} = 1.2 V					
CLKA to C	LK_FB						
t _{pd}	propagation delay	SEL = HIGH (1.8 V card interface); V _{CCA} = 1.2 V		-	5.5	10.0	ns
Card to he	ost propagation delay	,	'		'		'
DATxB to	DATxA, CMDB to CMDA						
t _{pd}	propagation delay	SEL = HIGH (1.8 V card interface); V _{CCA} = 1.2 V		-	2.5	4.5	ns

transition between V_{OL} = 0.35 * V_{CCA} and V_{OH} = 0.65 * V_{CCA} transition between V_{OL} = 0.45 V and V_{OH} = 1.4 V

NVT4857UK

Guaranteed by design; transition between V_{IL} = 0.58 V and V_{IH} = 1.27 V with C_{trace} = 3.5 pF and $C_{card+CRADLE}$ = 12 pF, trace length = 11 mm

SD 3.0-SDR104 compliant integrated auto-direction control

 V_{OH} and V_{OL} are specified in Table 12 as [1] and [2]

Figure 7. Output rise and fall times

Output delay is for every single channel, from input to output, $0.5*V_{CCI}$ to $0.5*V_{CCO}$, in which V_{CCI} and V_{CCO} are the input and output voltage domain.

Figure 8. Output delay timing

12.3 ESD characteristic of pin card detect

Table 13. ESD characteristic of card detect

At recommended operating conditions; T_{amb} = +25 °C; voltages are referenced to GND (ground = 0 V); unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ESD protection pins: CD							
V_{BR}	breakdown voltage	TLP; I = 1 mA		-	8	-	V
r _{dyn}	dynamic resistance	positive transient	[1]	-	0.5	-	Ω
		negative transient	[1]	-	0.5	-	Ω

[1] TLP according to ANSI-ESD STM5.5.1/IEC 62615 $Z_0 = 50 \Omega$; pulse width = 100 ns; rise time = 200 ps; averaging window = 50 ns to 80 ns

SD 3.0-SDR104 compliant integrated auto-direction control

13 Test information

Definitions test circuit:

R_{source} = source resistance of pulse generator.

 C_L = load capacitance including jig and probe capacitance. C_L = 15 pF (max) when on the card side, C_L = 7 pF (max) when on the host side.

 R_I = load resistance, 1 M Ω .

Figure 9. Load circuitry for measuring switching time, data rate, pulse duration, propagation delay, output rise and fall time

14 Package outline

15 Packing information

16 Soldering of WLCSP packages

16.1 Introduction to soldering WLCSP packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering WLCSP (Wafer Level Chip-Size Packages) can be found in application note *AN10439 "Wafer Level Chip Scale Package"* and in application note *AN10365 "Surface mount reflow soldering description"*.

Wave soldering is not suitable for this package.

All NXP WLCSP packages are lead-free.

16.2 Board mounting

Board mounting of a WLCSP requires several steps:

NVT4857UK

All information provided in this document is subject to legal disclaimers.

- 1. Solder paste printing on the PCB
- 2. Component placement with a pick and place machine
- 3. The reflow soldering itself

16.3 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see Figure 12) than a SnPb process, thus reducing the process window
- Solder paste printing issues, such as smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature), and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic) while being low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 14.

Table 14. Lead-free process (from J-STD-020D)

14410 1 11 2044 1100 [100000 (1101110 012 0202)						
Package thickness (mm)	Package reflow temperature	ackage reflow temperature (°C)				
	Volume (mm ³)	lume (mm ³)				
	< 350	350 to 2 000	> 2 000			
< 1.6	260	260	260			
1.6 to 2.5	260	250	245			
> 2.5	250	245	245			

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 12.

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

NVT4857UK

All information provided in this document is subject to legal disclaimers

16.4 Stand off

The stand off between the substrate and the chip is determined by:

- The amount of printed solder on the substrate
- · The size of the solder land on the substrate
- · The bump height on the chip

The higher the stand off, the better the stresses are released due to TEC (Thermal Expansion Coefficient) differences between substrate and chip.

16.5 Quality of solder joint

A flip-chip joint is considered to be a good joint when the entire solder land has been wetted by the solder from the bump. The surface of the joint should be smooth and the shape symmetrical. The soldered joints on a chip should be uniform. Voids in the bumps after reflow can occur during the reflow process in bumps with high ratio of bump diameter to bump height, i.e. low bumps with large diameter. No failures have been found to be related to these voids. Solder joint inspection after reflow can be done with X-ray to monitor defects such as bridging, open circuits and voids.

16.6 Rework

In general, rework is not recommended. By rework we mean the process of removing the chip from the substrate and replacing it with a new chip. If a chip is removed from the substrate, most solder balls of the chip will be damaged. In that case it is recommended not to re-use the chip again. Device removal can be done when the substrate is heated until it is certain that all solder joints are molten. The chip can then be carefully removed from the substrate without damaging the tracks and solder lands on the substrate. Removing the device must be done using plastic tweezers, because metal tweezers can damage the silicon. The surface of the substrate should be carefully cleaned and all solder and flux residues and/or underfill removed. When a new chip is placed on the substrate, use the flux process instead of solder on the solder lands. Apply flux on the bumps at the chip side as well as on the solder pads on the substrate. Place and align the new chip while viewing with a microscope. To reflow the solder, use the solder profile shown in application note *AN10365* "Surface mount reflow soldering description".

16.7 Cleaning

Cleaning can be done after reflow soldering.

17 Abbreviations

Table 15. Abbreviations

Acronym	Description
DUT	Device Under Test
EMI	ElectroMagnetic Interference
ESD	ElectroStatic Discharge
MMC	MultiMedia Card
РСВ	Printed-Circuit Board
RoHS	Restriction of Hazardous Substances
SD	Secure Digital
WLCSP	Wafer-Level Chip-Scale Package

NV14857UK

All information provided in this document is subject to legal disclaimers.

SD 3.0-SDR104 compliant integrated auto-direction control

18 Revision history

Table 16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NVT4857UK v.3.0	20230719	Product data sheet	-	NVT4857UK v.2
Modifications:	values	$\frac{1}{1}$ anged " C_{ch} " to " C_{io} ", removed coeffed R_{term} and ground from the		
NVT4857UK v.2.1	20221107	Product data sheet	-	NVT4857UK v.2
NVT4857UK v.2	20180606	Product data sheet	2018050421	NVT4857UK v.1.1
NVT4857UK v.1.1	20161213	Product data sheet	201612019I	NVT4857UK v.1
NVT4857UK v.1	20151120	Product data sheet	-	-

19 Legal information

19.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

19.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

NVT4857UK

Product data sheet

All information provided in this document is subject to legal disclaimers.

SD 3.0-SDR104 compliant integrated auto-direction control

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

19.4 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

SD 3.0-SDR104 compliant integrated auto-direction control

Tables

Tab. 1.	Ordering information2	Tab. 9.	Integrated resistors	9
Tab. 2.	Ordering options2	Tab. 10.	Static characteristics	
Tab. 3.	Pin allocation table5	Tab. 11.	Voltage regulator	
Tab. 4.	Pin description6	Tab. 12.	Level translator dynamic characteristics	
Tab. 5.	Supported modes6	Tab. 13.	ESD characteristic of card detect	
Tab. 6.	SD card side voltage level control signal	Tab. 14.	Lead-free process (from J-STD-020D)	17
	truth table7	Tab. 15.	Abbreviations	
Tab. 7.	Limiting values8	Tab. 16.	Revision history	
Tab. 8.	Operating conditions8		•	
Figur	res			
Fig. 1.	Application diagram3	Fig. 9.	Load circuitry for measuring switching	
Fig. 2.	Functional diagram4		time, data rate, pulse duration, propagation	
Fig. 3.	Pin configuration WLCSP205		delay, output rise and fall time	
Fig. 4.	NVT4857UK pinout transparent top view5	Fig. 10.	Package outline SOT1397-10 (WLCSP20)	
Fig. 5.	Regulator mode change timing11	Fig. 11.	Carrier tape	16
Fig. 6.	Regulator start-up time12	Fig. 12.	Temperature profiles for large and small	
Fig. 7.	Output rise and fall times13		components	17
Fig. 8.	Output delay timing13			

Contents

1	General description	
2	Features and benefits	1
3	Applications	
4	Ordering information	2
4.1	Ordering options	2
5	Block diagram	3
6	Functional diagram	4
7	Pinning information	5
7.1	Pinning	5
7.2	Pin description	6
8	Functional description	6
8.1	Level translator	
8.2	Enable and direction control	7
8.3	Integrated voltage regulator	7
8.4	Feedback clock channel	7
8.5	EMI filter	7
8.6	ESD protection	8
9	Limiting values	
10	Recommended operating conditions	
11	Static characteristics	
12	Dynamic characteristics	11
12.1	Voltage regulator	
12.2	Level translator	
12.3	ESD characteristic of pin card detect	
13	Test information	
14	Package outline	
15	Packing information	
16	Soldering of WLCSP packages	
16.1	Introduction to soldering WLCSP packages	
16.2	Board mounting	
16.3	Reflow soldering	
16.4	Stand off	
16.5	Quality of solder joint	
16.6	Rework	
16.7	Cleaning	
17	Abbreviations	_
18		40
19	Revision history Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.