## **QUESTÕES CAPÍTULO 4 TEORÍA**

**Problema 4.1.** Obtenha as faixas dinâmicas para os seguintes conjuntos de módulos:

- a)  $M1={3,5,7,17};$
- b) M2= {16,15,17};
- c)  $M3 = \{7,13,23\}.$

**Problema 4.2.** Indique os valores de saída para todos os blocos. A saída final está na faixa dinâmica permitida para o modulo?



**Problema 4.3.** Represente o número  $y = 1010\ 0100_2 = 200_{10}$  para os seguintes conjuntos de módulos: a) M1={3,5,7,17}; b) M2= {16, 15, 17}; c) M3= {7, 13, 23}.

**Problema 4.4.** Obtenha o valor de saída aplicando a equação CRT para os seguintes conjuntos de módulos:

- a)  $\{m_1, m_2, m_3, m_4\} = \{3, 5, 7, 17\}$  e  $\{R_1, R_2, R_3, R_4\} = \{2, 0, 4, 13\};$
- b)  $\{m_1, m_2, m_3\} = \{16, 15, 17\} \} e \{R_1, R_2, R_3\} = \{8, 5, 13\};$
- c)  $\{m_1, m_2, m_3\} = \{7, 13, 23\} \in \{R_1, R_2, R_3\} = \{4, 5, 16\}.$

**Problema 4.5.** Obtenha o valor de saída aplicando a equação Novo CRT-I para os módulos apresentados no exemplo anterior.

**Problema 4.6**. Para umas entradas  $Y=13_{10}$  e  $Z=15_{10}$  faça as operações  $(YxZ)_{RNS}$  e  $(Y+Z)_{RNS}$  para os conjunto de módulos:

- a)  $M1=\{3,5,7,17\}$ ;
- b) M2= {16,15,17};
- c)  $M3 = \{7,13,23\}.$

**Problema 4.7**. Para umas entradas  $Y=16_{10}$  e  $Z=9_{10}$  faça a operação  $(YxZ+Y)_{RNS}$  para os conjunto de módulos:

- a) M1={3,5,7,17};
- b) M2= {16,15,17};
- c)  $M3 = \{7,13,23\}.$

**Problema 4.8.** Aplique as três estratégias apresentadas na teoria para obter uma Faixa Dinâmica (DR) com valores de saída [0, 200 000].

**Problema 4.9.** Na figura seguinte se mostram os resultados de síntese em ASIC para uma tecnologia de 65nm do atraso de multiplicadores RNS e estimativas de unidades binário-RNS e RNS-binário. Caso quisermos fazer *m* multiplicações com uma faixa dinâmica de saída de 128-bits em serie usando a binaria e RNS:

- a) Sabendo que o atraso para um multiplicador de 128-bits usando abordagem binaria convencional é de 22,5ns. Qual é o ganho obtido para m=1 comparado com RNS usando um conjunto de 3 módulos??
- b) Obtenha o atraso para m = 3 em binário e em RNS usando um conjunto de 3 módulos.
- c) Faça uma tabela com os ganhos obtidos para m=1 em comparação com binário para os conjuntos de módulos apresentados (faça as aproximações que ache necessário).
- d) Faça uma tabela com os ganhos obtidos para o conjunto de três módulos e valores de *m* de 3 a 10.

|    | Moduli set                                                                                                                                                                                               | DR<br>(bits) | Delay (ps)<br>Bin-RNS | Delay (ps)<br>RNS-Bin |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------------|
| 3  | 2 <sup>43</sup> , 2 <sup>43</sup> -1, 2 <sup>43</sup> +1                                                                                                                                                 | 129          | 3100                  | 5000                  |
| 4  | 2 <sup>32</sup> , 2 <sup>32</sup> -1, 2 <sup>32</sup> +1, 2 <sup>32</sup> -3                                                                                                                             | 128          | 2800                  | 5000                  |
| 5  | 2 <sup>26</sup> , 2 <sup>26</sup> -1, 2 <sup>26</sup> +1, 2 <sup>26</sup> -3, 2 <sup>26</sup> +3                                                                                                         | 130          | 2600                  | 5000                  |
| 6  | 2 <sup>22</sup> , 2 <sup>22</sup> -1, 2 <sup>22</sup> +1, 2 <sup>22</sup> -3, 2 <sup>22</sup> +3, 2 <sup>22</sup> -5                                                                                     | 132          | 2400                  | 5000                  |
| 7  | 2 <sup>19</sup> , 2 <sup>19</sup> -1, 2 <sup>19</sup> +1, 2 <sup>19</sup> -3, 2 <sup>19</sup> +3, 2 <sup>19</sup> +5, 2 <sup>19</sup> -7                                                                 | 133          | 2300                  | 5000                  |
| 8  | 2 <sup>16</sup> , 2 <sup>16</sup> -1, 2 <sup>16</sup> +1, 2 <sup>16</sup> -3, 2 <sup>16</sup> +3, 2 <sup>16</sup> -5, 2 <sup>16</sup> +7, 2 <sup>16</sup> -9                                             | 128          | 2200                  | 5000                  |
| 9  | 2 <sup>15</sup> , 2 <sup>15</sup> -1, 2 <sup>15</sup> +1, 2 <sup>15</sup> -3, 2 <sup>15</sup> +3, 2 <sup>15</sup> +5, 2 <sup>15</sup> -7, 2 <sup>15</sup> -9, 2 <sup>15</sup> +9                         | 135          | 2100                  | 5000                  |
| 10 | 2 <sup>13</sup> , 2 <sup>13</sup> -1, 2 <sup>13</sup> +1, 2 <sup>13</sup> -3, 2 <sup>13</sup> +3, 2 <sup>13</sup> +5, 2 <sup>13</sup> +11, 2 <sup>13</sup> -13, 2 <sup>13</sup> +15, 2 <sup>13</sup> +17 | 130          | 2000                  | 5000                  |

## Delay (ps) Modular Multipliers

| # bits | 2^n  | 2^n – 1 | 2^n+1 | 2n-k | 2^n+k |
|--------|------|---------|-------|------|-------|
| 5      | 960  | 1120    | 1480  | 2200 | 2600  |
| 7      | 1130 | 1360    | 1670  | 2840 | 3020  |
| 9      | 1320 | 1460    | 1750  | 3040 | 3320  |
| 11     | 1440 | 1670    | 1830  | 3120 | 3620  |
| 13     | 1590 | 1820    | 2010  | 3360 | 3580  |
| 15     | 1680 | 1840    | 2170  | 3460 | 3700  |
| 17     | 1770 | 2010    | 2320  | 3510 | 3770  |
| 19     | 1870 | 2200    | 2350  | 3760 | 3740  |
| 21     | 1940 | 2150    | 2420  | 3660 | 3830  |
| 23     | 1980 | 2240    | 2500  | 3850 | 3980  |
| 25     | 2090 | 2380    | 2590  | 4010 | 3980  |
| 27     | 2180 | 2530    | 2740  | 4140 | 4040  |
| 29     | 2280 | 2590    | 2750  | 4180 | 4200  |
| 31     | 2320 | 2530    | 2800  | 4340 | 4340  |
| 33     | 2340 | 2660    | 2810  | 4390 | 4260  |
| 35     | 2450 | 2690    | 2850  | 4390 | 4450  |
| 37     | 2470 | 2770    | 2960  | 4435 | 4393  |
| 39     | 2520 | 2780    | 3060  | 4491 | 4436  |
| 41     | 2520 | 2840    | 3040  | 4544 | 4477  |
| 43     | 2600 | 2900    | 3100  | 4600 | 4500  |



**Problema 4.10.** Considere o seguinte conjunto de módulos  $\{2^{2n}, 2^n-1, 2^n+1\}$ , para n=4 e uma entrada-saída de 4n bits:

- a) Obtenha a estrutura para fazer a conversão binário-RNS (use compressores e somadores modulo 15 e 17).
- b) Obtenha a estrutura para fazer a conversão RNS-binário (use o algoritmo novo CRT-I, compressores e somadores módulo 255).
- c) Indique a faixa dinâmica da estrutura RNS e compare com a eficiência da representação com binário.

**Problema 4.11.** . Considere o seguinte conjunto de módulos  $\{2^n, 2^n-3, 2^n+3\}$ , para n=4 e uma entrada-saída de 3n bit:

- a) Obtenha a estrutura para fazer a conversão binário-RNS (use compressores e somadores modulo 13 e 19).
- b) Obtenha a estrutura para fazer a conversão RNS-binário binário (use novo CRT-I, compressores e somadores módulo 247).
- c) Indique a faixa dinâmica da estrutura RNS e compare com a eficiência da representação com binário.

**Problema 4.12.** Obtenha conjuntos modulares válidos com faixa dinâmica de 20 bits DR=[0, 1048 576) e com *n*=5 bits por canal (máximo). Indique a faixa dinâmica das estruturas RNS e compare com a eficiência da representação com binário.