Complete Review

Chapters 12, 13, 14, 15, 16

Dr. Jorge Basilio

based on Stewart

gbasilio@pasadena.edu

Notes

Chapter 12: Vectors and the Geometry of Space

- The length of a vector and the relationship to distances between points
- · Addition, subtraction, and scalar multiplication of vectors, together with the geometric interpretations of these operations
- Basic properties of vector operations
- The dot product : $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$
- Basic algebraic properties
- The geometric meaning of the dot product in terms of lengths and angles: in particular the formula $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos(\theta)$
- Angle formula: $\theta = \cos^{-1}\left(\frac{\vec{v}\cdot\vec{w}}{\|\vec{v}\|\,\|\vec{w}\|}\right)$
- $\bullet \ \, \boxed{\|\vec{a}\|^2 = \vec{a} \cdot \vec{a}}$
- Vector projections: geometric meaning and formulas.

Projection of \vec{b} onto \vec{a} : $comp_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}$ this is just a length.

There is also the vector version that points along the direction of \vec{a} :

$$proj_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a} \text{ or } proj_{\vec{a}}(\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}.$$

- The cross product: definition and basic properties
- The geometric meaning of the cross product: in particular $\vec{v} \times \vec{w}$ is orthogonal to \vec{v} and \vec{w} , with magnitude $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin(\theta)$, and direction given by the right-hand rule
- $\|\vec{v} \times \vec{w}\|$ is the area of the parallelogram spanned by \vec{v} and \vec{w} .
- $\vec{u} \cdot (\vec{v} \times \vec{w})$ is the volume of the parallelopiped spanned by \vec{u} , \vec{v} and \vec{w} .
- Tests for Orthogonality:
 - \vec{v} and \vec{w} are orthogonal $\iff \vec{v} \cdot \vec{w} = 0$
 - \vec{v} and \vec{w} are parallel $\iff \vec{v} \times \vec{w} = 0$
 - \vec{u} , \vec{v} and \vec{w} are coplanar $\iff \vec{u} \cdot (\vec{v} \times \vec{w}) = 0$
- LINES AND PLANES WITH VECTORS
- Intrinsic description (vectors) vs. Extrinsic description (scalar equations)
- · Lines: passage between a vector equation, parametric equations, and symmetric equations
- Vector Eq of a line: $\vec{r} = \vec{P} + t\vec{v}$ (in book $\vec{r}_0 = \vec{P}$)
- line segment between two points
- Planes: passage between a vector description (a point together with two direction vectors) and a scalar equation

- Vector Eq of a plane: $\vec{n} \cdot \vec{v} = 0$ (in book $\vec{r} \vec{r}_0 = \vec{v} = \langle x x_0, y y_0, z z_0 \rangle$)
- Distance from point P and a plane $\mathcal{P}: ax+by+cz+d=0$: $D=comp_{\vec{n}}(\vec{PQ})$, where Q is any point on \mathcal{P} , or $D=\frac{ax_1+by_1+cz_1+d}{\sqrt{a^2+b^2+c^2}}$
- Using vector algebra to solve geometric problems about lines and planes—it is essential that you think geometrically and try to save the number crunching in components for the last moment.
- · GEOMETRY OF SURFACES
- · Cylinders: know how to spot a "free (missing) variable" to help sketch
- QUADRIC SURFACES: Spheres, Cones, Ellipsoids, Elliptic Paraboloid, Hyperboloid of 1-sheet, Hyperboloid of 2-sheets, Hyperboloid Paraboloid
- Be able to recognize the above either by memorizing their equations or by using intersection with planes as done in class

Chapter 13: Vectors Functions

- Functions $f: X \to Y$ where set X is domain (=set of inputs), Y is the range (=set of outputs)
- We'll only worry about: $f: \mathbb{R}^n \to \mathbb{R}^m$ with $n, m \geq 1$
- n=m=1: real-valued function of a real variable $f:\mathbb{R}\to\mathbb{R}$ $x\in\mathbb{R},y\in\mathbb{R}$, usually written y=f(x) Graph is a curve in the plane
- When $Y = \mathbb{R}$: scalar-valued functions
- When $X=\mathbb{R}$ and $Y=\mathbb{R}^2$: plane curves or vector-valued functions $t\in\mathbb{R},\,f(t)\in\mathbb{R}^2$ usually written $f(t)=\vec{r}(t)=\langle f(t),g(t)\rangle=f(t)\hat{\imath}+g(t)\hat{\jmath}$ Graph is a plane curve moving throughout 2D plane
- When $X=\mathbb{R}$ and $Y=\mathbb{R}^3$: space curves or vector-valued functions $t\in\mathbb{R},\,f(t)\in\mathbb{R}^3$ usually written $f(t)=\vec{r}(t)=\langle f(t),g(t),h(t)\rangle=f(t)\hat{\imath}+g(t)\hat{\jmath}+h(t)\hat{k}$ Graph is a space curve moving throughout 3D plane
- Line segment from a point P to Q: $\vec{\sigma}(t) = (1-t)P + tQ$, $t \in [0,1]$
- Sketching space curves, vector-valued functions
- Space Curves/VVFs: limits, continuity, differentiation rules (Theorem 3, p. 858), definite integral
- Example 4 on p. 858, know this proof
- Arclength = length of a curve; $L=\int_a^b|\vec{r}'(t)|dt$ Alternatively, you can use: $L=\int_a^b\sqrt{(f'(t))^2+(g'(t))^2+(h'(t))^2}dt$
- unit tangent vector: $\vec{T}(t) = \frac{\vec{r}^{\,\prime}(t)}{|\vec{r}^{\,\prime}(t)|}$
- Curvature = bending from flat; $\kappa(t)=\frac{|\vec{T}'(t)|}{|\vec{r}'(t)|}=\frac{|\vec{r}'\times\vec{r}''|}{|\vec{r}'(t)|^3}$
- TNB Frame: $\vec{T}, \vec{N}, \vec{B}$ all unit length and mutually orthogonal to each other. Hence, making a little "frame": $\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}$ and $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$
- Given a space curve $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$, we call $\vec{r}(t)$ the position vector-valued function. The velocity vector-valued function is the derivative of the position function: $\vec{v}(t) = \vec{r}'(t)$ and it's speed is the length of the velocity vector: $|\vec{v}(t)|$. It's acceleration VVF is the derivative of the velocity: $\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t)$.
- Newton's Second Law: $\vec{F} = m\vec{a}$.
- Vector Differential Equations; initial conditions

Chapter 14: Partial Derivatives

- Functions: $f: \mathbb{R}^n \to \mathbb{R}^m$ with $n, m \ge 1$ Now, we will have n > 1: functions of several variables!
- n=2, m=1: Scalar-Valued function of TWO variables $(x,y) \in \mathbb{R}^2, f(x,y) \in \mathbb{R}$

Graph is z = f(x, y)

Graph is a surface in space

Domain D is a subset of the plane \mathbb{R}^2

Level Curves: f(x,y) = k for k fixed are curves in plane with height fixed-"isotherms"

- n > 3, m = 1: SVFs of three or more variables $(x_1, x_2, x_3, \dots, x_n) \in \mathbb{R}^n, f(x_1, x_2, x_3, \dots, x_n) \in \mathbb{R}$ Graph: none! Instead need to use other techniques Level Surfaces: $f(x_1, x_2, x_3, \dots, x_n) = k$ for k fixed
- $\lim_{(x,y)\to(a,b)} f(x,y) = L \text{ means: "as } (x,y) \text{ approaches } (a,b) \text{ along any possible path, the values } f(x,y) \text{ approach the unique } f(x,y) = L$ value L?
- · Know how to compute limits and to show when limits DNE by using different paths
- $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$ • Continuity:

• Partial Derivatives: Given
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y)$
$$\boxed{ \frac{\partial f}{\partial x}(a,b) = \lim_{ht \to 0} \frac{f(a+h,b) - f(a,b)}{h} }$$
 the partial derivative of f with respect to x at the point (a,b)

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$
 the partial derivative of f with respect to g at the point f

BUT: computing them is easy! Just: "pretend the other variable is constant"

- Know the geometry of the partial derivatives as slopes of the appropriate tangent lines
- Implicit Diff with partial derivatives
- Higher partial derivatives: $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, etc
- · Clairaut's Theorem: equality of mixed partials is when the second-order partial derivatives are continuous functions
- Tangent Planes: Given $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y)The tangent plane of f at P=(a,b,f(a,b)) is $z=f(a,b)+f_x(a,b)\cdot(x-a)+f_y(a,b)\cdot(y-b)$ Know how this formula was derived in class with $\vec{n} = \langle -f_x, -f_y, 1 \rangle$
- Linearization: $\boxed{L(x,y) = f(a,b) + f_x(a,b) \cdot (x-a) + f_y(a,b) \cdot (y-b)}$ When (x,y) is close to (a,b), then $f(x,y) \approx L(x,y)$ —that is the linearization is a good approximation of f near P
- f is differentiable at P = (a, b, f(a, b)) if the tangent plane exists at P. Notice: this is stronger than simply requiring that the partial derivatives f_x and f_y exist at P. Theorem: if f_x and f_y are continuous, then f is differentiable
- · Differentials:

dx and dy can be any real numbers (usually, $dx = \Delta x = x_2 - x_1$, $dy = \Delta y = y_2$ Actual change in z = f(x, y) from $P = (x_1, y_1)$ to $Q = (x_2, y_2)$ is: $\Delta z = z_2 - z_1 = f(Q) - f(P)$ Approximate change is given by the differential dz: $dz = f_x(a, b) \cdot dx + f_y(a, b) \cdot dy$

dz sometimes called the total differential

Works for higher-dimensions too: $dz = f_{x_1} \cdot dx_1 + f_{x_2} \cdot dx_2 + \cdots + f_{x_n} \cdot dx_n$

· Chain Rule:

Basic chain rule: $f: \mathbb{R}^3 \to \mathbb{R}$ with $f(x, yz), g(t): \mathbb{R} \to \mathbb{R}^3$ with $g(t) = \langle x(t), y(t), z(t) \rangle$, then the derivative of $(f \circ g)(t): \mathbb{R} \to \mathbb{R}$ is

$$\frac{d}{dt}f(x(t),y(t),z(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}$$

Tree diagrams are helpful for book-keeping:

• General Chain Rule:

Assume $u: \mathbb{R}^n \to \mathbb{R}$ is a SVF of n variables written $u(x_1, x_2, \dots, x_n)$ and each $x_i: \mathbb{R}^m \to \mathbb{R}$ is a SVF of m variables written $x_i(t_1, t_2, \dots, t_m)$ for each $i = 1, 2, \dots n$. Then

$$\frac{\partial u}{\partial t_j} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_j} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_j} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_j}$$

Notice: in the above formula the t_j is the same, but we take all possible partial derivatives of u with respect to the x_i 's as i ranges from 1 to n. The tree diagram is helpful:

- Gradient Vector: Given f(x,y) or f(x,y,z) the gradient collects all the partial derivatives into a vector: $\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$ or $\nabla f(x,y,z) = \langle f_x(x,y,z), f_y(x,y,z), f_z(x,y,z) \rangle$ Common notations: $\nabla f = \operatorname{grad}(f) = \operatorname{del}(f) = \partial(f)$ This generalizes easily to higher dimensions
- Directional Derivative:

The directional derivative of f in the direction of the unit vector $\vec{u} = \langle u_1, u_2 \rangle$ (or $\vec{u} = \langle u_1, u_2, u_3 \rangle$):

$$\boxed{ D_{\vec{u}}(f) = f_x(a,b) \cdot u_1 + f_y(a,b) \cdot u_2 } \text{ or } \boxed{ D_{\vec{u}}(f) = f_x(a,b,c) \cdot u_1 + f_y(a,b,c) \cdot u_2 + f_z(a,b,c) \cdot u_3 }$$

This generalizes easily to higher dimensions. We can write it compactly for all dimensions as: $D_{\vec{u}}(f) = \nabla(f) \cdot \vec{u}$

• Maximizing the Directional derivative:

the maximum of $D_{\vec{u}}(f)$ at a point P=(a,b) is given by $|\nabla f(a,b)|$ and occurs when \vec{u} is in the same direction as $\nabla f(a,b)$. the minimum of $D_{\vec{u}}(f)$ at a point P=(a,b) is given by $-|\nabla f(a,b)|$ and occurs when \vec{u} is in the opposite direction as $\nabla f(a,b)$.

• Level Surfaces, Tangent Planes, and Gradients

Given a function $F: \mathbb{R}^3 \to \mathbb{R}$. Consider it's level surface S: F(x,y,z) = k. Then the gradient of F is normal to the tangent plane at a point P = (a,b,c) on the surface S (as long as it's not the zero vector), that is

$$(\nabla F)(a, b, c,) \cdot \vec{r}'(t_0) = 0$$

for any space curve $\vec{r}(t)$ that travels inside the surface S and passes through P at t_0 . We can use this to find the equation of the tangent plane: $(\nabla F)(a,b,c) \cdot \langle x-a,y-b,z-c \rangle = 0$.

How is this related to the derivation of the tangent plane we learned earlier?
 Previously we started with z = f(x, y) a function of two variables and its graph was a surface S.
 We can view it as a function of three variables F(x, y, z) = z - f(x, y) and the surface S is the level surface of F with k = 0.
 From the gradient equation for F(x, y, z) = z - f(x, y):

$$\nabla F(x, y, z) = \langle \frac{\partial}{\partial x} (z - f(x, y)), \frac{\partial}{\partial y} (z - f(x, y)), \frac{\partial}{\partial z} (z - f(x, y)) \rangle$$
$$= \langle -f_x(x, y), -f_y(x, y), 1 \rangle$$

This was exactly what we got in section 14.4 where we used $\vec{n} = \vec{f_x} \times \vec{f_y} = \langle 1, 0, f_x \rangle \times \langle 0, 1, f_y \rangle$.

- MAX & MIN VALUES: know the definitions of a local min/local max and global min/global max VALUES of a function f. Know the distinction between the min/max value of f and the point where it occurs.
- Critical Points: P=(a,b) is a critical point of f if $\nabla f(a,b)=0$ or DNE. That is, if $f_x(a,b)=0$ and $f_y(a,b)=0$; or if one of f_x or f_x DNE.
- "Fermat's Theoem:" If f has a local min/max at P and f is differentiable at P, then P is a critical point of f
- C^2 functions = second-order partial derivatives exist and are continuous
- Know: Let $A=f_{xx}(a,b),$ $C=f_{yy}(a,b),$ $B=f_{xy}(a,b).$ Let $D=AC-B^2$ called the discriminant.
- SDT: Second Derivative Test:

Assume: f is C^2 and P = (a, b) is a critical point of f.

	\bullet if $D>0$ and $A>0$	if $D > 0$ and $A < 0$	if $D < 0$	if D = 0
	then	then	then	then
	f(a,b) is a local	f(a,b) is a local	f(a,b) is NOT an extremum	test fails
	MIN value	MAX value	(saddle point)	(anything can
				happen)
Second Derivative Test	C>0\\	C<0	z y	

Note: when D > 0, then $AC - B^2 > 0$ so $AC > B^2 > 0$. This implies that both A and C have the same sign. So either both A > 0 and C > 0 or both A < 0 and C < 0. This is why the bending in x and y directions make sense as in the figures above.

- Closed Subsets in the plane: a bounded set that contains all of its boundary points (the analogy of a closed interval in the line)
- Extreme Value Theorem: If $f: \mathbb{R}^2 \to \mathbb{R}$ is continous and D is a closed subset of the plane, then f attains both an absolute minimum and absolute maximum value at points inside D.
- How to find Absolute Min/Max Values on a closed set D:

Break up D into two parts, I = inside part (open set) of D, B = boundary curve

Step 1: find critical points in I=inside D

 $\overline{\text{Step 2:}}$ find the points where f has extreme values in B

To do this: parametrize the boundary curve (in pieces if necessary) with (x(t), y(t)), then find the extra of the one-variable function f(t) = f(x(t), y(t)) using Calc 1 techniques.

Step 3: Evaluate f at points from Steps 1 and 2 and select the largest and smallest values.

· How to find Extrema on a closed set using Lagrange Multipliers:

Let f(x, y, z) and g(x, y, z) be functions with continuous partial derivatives.

To find the extremum of f(x, y, z) subject to the constraint g(x, y, z) = c, solve the equations:

$$\begin{cases} \nabla f = \lambda \nabla g \\ g = c \end{cases}$$

for x, y, z, and λ . That is, we solve: $f_x = \lambda g_x$, $f_y = \lambda g_y$, $f_z = \lambda g_z$, and g = c.

Chapter 15: Multiple Integrals

Summary:

- dA=infinitesimal unit of area:
 - Cartesian Coordinates in the plane: dA = dxdy
 - Polar Coordinates in the plane: $dA = rdrd\theta$
- dV=infinitesimal unit of volume:
 - Cartesian Coordinates in space: dV = dxdydz
 - Cylindrical Coordinates in space: $dV = rdrd\theta dz$
 - Spherical Coordinates in space: $dV = \rho^2 \sin(\phi) d\rho d\theta d\phi$

More details:

- · Definition of a double integral as a limit
- Double Integrals of functions f(x,y) over rectangles $R=[a,b]\times [c,d]$ as iterated integrals
- Geometric Interpretation of $\iint_D f(x,y) dA$: Volume under the graph of the surface z = f(x,y) (when $f(x,y) \ge 0$) lying above the rectangle R in the plane.
- Fubini's Theorem:

When integrating over a rectangle, you can do the integrals in any order!

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x,y) dx \right] dy$$

- Area a domain D in the plane: $Area(D) = \iint_D 1 \, dA$.
- Double Integrals over Elementary Domains D in the plane:
 - \bullet *D* is Type I:

$$D: \begin{cases} a \le x \le b \\ g_1(x) \le y \le g_2(x) \end{cases} \implies \iint_D f dA = \int_a^b \left[\int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \right] dx$$

ullet D is Type II:

$$D: \begin{cases} c \le y \le d \\ h_1(y) \le x \le h_2(y) \end{cases} \implies \iint_D f dA = \int_c^d \left[\int_{h_1(y)}^{h_2(y)} f(x, y) \, dx \right] dy$$

- FACT: if f is continuous on the elementary region D, then the double integral over D exists.
- Be able to compute double integrals of Type I or II fully. But also be able to set-up the correct integrals. Given an integral, be able to read and sketch the domain and switch the order of integration.
- Double Integrals in Polar Coordinates:

Given cartesian coordinates (x, y), the equations for polar coordinates are: $r^2 = x^2 + y^2$ and $\theta = \tan^{-1}(y/x)$.

Given polar coordinates (r, θ) , the equations for cartesian coordinates are: $x = r \cos(\theta)$ and $y = r \sin(\theta)$.

The infinitesimal unit of area is: $dA = r dr d\theta$

• When D can be easily described by polar coordinates as a sector (circles, quarter circles, annuli, etc):

$$D: \begin{cases} a \leq r \leq b \\ \alpha \leq \theta \leq \beta \end{cases} \implies \iint_D f(x,y) dA = \int_{\alpha}^{\beta} \int_a^b f(r\cos(\theta), r\sin(\theta)) \, r dr \, d\theta$$

or $\int^b \int^\beta f(r\cos(\theta),r\sin(\theta))\,rd\theta\,dr$ by Fubini's Theorem.

• When \overline{D} is a more general region in PC:

When the "wobbly sector" i.e. $r = h_1(\theta)$ is a lower bound for r and $r = h_2(\theta)$ is an upper bound for r:

$$D: \begin{cases} \alpha \leq \theta \leq \beta \\ h_1(\theta) \leq r \leq h_2(\theta) \end{cases} \implies \iint_D f(x,y) dA = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos(\theta), r\sin(\theta)) \, r dr \, d\theta$$

- Be able to find the area of regions described using PC
- Triple Integrals of f(x, y, z) over boxes $B = [a, b] \times [c, d] \times [r, s]$ using iterated integrals
- Geometric Interpretation of $\iiint_E f(x,y,z) \, dV$: We can't visualize this! The units of this integral are 4-dimensional! It sums up the values of the function f(x,y,z) times the infinitesimal volume dV as (x,y,z) ranges over the solid E in space. Best way to think of it: T(x,y,z) is temperature at point (x,y,z) in the oven B then $\iiint_B T(x,y,z) \, dV$ is the total temperature inside B.
- Fubini's Theorem:

When integrating over a box, you can do the integrals in any order!

$$\iiint_B f(x,y,z) \, dV = \int_a^b \left[\int_c^d \left[\int_r^s f(x,y,z) \, dz \right] \, dy \right] dx = \int_a^b \left[\int_r^s \left[\int_c^d f(x,y,z) \, dy \right] \, dz \right] dx$$

and equal to any of the other 4 possibilities.

- Volume of a region E in space: $\operatorname{Vol}(E) = \iiint_E 1 \, dV$.
- Triple Integrals over Elementary Regions E in space:
 - \bullet *E* is Type I:

$$E: \begin{cases} (x,y) \in D \\ u_1(x,y) \le z \le u_2(x,y) \end{cases} \implies \iiint_E f dV = \iint_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) dz \right] dA$$

then depending on whether D is Type I or Type II:

$$\iint_{D} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \right] dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \right] \, dy \right] dx \qquad (D \text{ is Type I})$$

$$\iint_{D} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \right] dA = \int_{c}^{d} \left[\int_{h_{1}(y)}^{h_{2}(y)} \left[\int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \right] \, dx \right] dy \qquad (D \text{ is Type II})$$

 \bullet *E* is Type II:

$$E: \begin{cases} (y,z) \in D \\ u_1(y,z) \le x \le u_2(y,z) \end{cases} \implies \iiint_E f dV = \iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) \, dx \right] dA$$

then depending on whether D is Type I or Type II:

$$\iint_{D} \left[\int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z) \, dx \right] dA = \int_{c}^{d} \left[\int_{g_{1}(y)}^{g_{2}(y)} \left[\int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z) \, dx \right] \, dz \right] dy \qquad (D \text{ is Type I})$$

$$\iint_{D} \left[\int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z) \, dx \right] dA = \int_{r}^{s} \left[\int_{h_{1}(z)}^{h_{2}(z)} \left[\int_{u_{1}(y,z)}^{u_{2}(y,z)} f(x,y,z) \, dx \right] \, dy \right] dz \qquad (D \text{ is Type II})$$

 \bullet *E* is Type III:

$$E: \begin{cases} (x,z) \in D \\ u_1(x,z) \le y \le u_2(x,z) \end{cases} \implies \iiint_E f dV = \iint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) \, dy \right] dA$$

then depending on whether D is Type I or Type II:

$$\iint_{D} \left[\int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z) \, dy \right] dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} \left[\int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z) \, dy \right] \, dz \right] dx \qquad (D \text{ is Type I})$$

$$\iint_{D} \left[\int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z) \, dy \right] dA = \int_{r}^{s} \left[\int_{h_{1}(z)}^{h_{2}(z)} \left[\int_{u_{1}(x,z)}^{u_{2}(x,z)} f(x,y,z) \, dy \right] \, dx \right] dz \qquad (D \text{ is Type II})$$

- Important examples are to compute the volume of spheres using either Type I, II, or III triple integrals.
- Triple Integrals in Cylindrical Coordinates:

Cylindrical coordinates: (r, θ, z)

Given cartesian coordinates (x, y, z), the equations for cylindrical coordinates are: $x^2 + y^2 = r^2$, $\theta = \tan^{-1}(y/x)$, and z = z. Given cylindrical coordinates (r, θ, z) , the equations for cartesian coordinates are: $x = r\cos(\theta)$, $y = r\sin(\theta)$, and z = z.

The infinitesimal unit of volume is: $dV = r dr d\theta dz$

• When E can be easily described by cylindrical coordinates as a cylinder (or part of):

$$E: \begin{cases} a \le r \le b \\ \alpha \le \theta \le \beta \\ r \le z \le s \end{cases} \implies \iiint_E f(x, y, z) dV = \int_r^s \int_\alpha^\beta \int_a^b f(r\cos(\theta), r\sin(\theta), z) \, r dr \, d\theta \, dz$$

or in any of the other 5 possible orders of $dr, d\theta, dz$ by Fubini's Theorem.

 \bullet When E is a more general region in CC:

Besides cylinders know the equation of cone in CC: z = r. So you can describe regions like an "ice cream cone"

• Triple Integrals in Spherical Coordinates:

Spherical coordinates: (ρ, θ, ϕ)

Given cartesian coordinates (x, y, z), the equations for Spherical coordinates are: $\rho^2 = x^2 + y^2 + z^2$, $\theta = \tan^{-1}(y/x)$, and and $\phi = \cos^{-1}(z/\rho)$.

Given Spherical coordinates (ρ, θ, ϕ) , the equations for cartesian coordinates are: $x = (\rho \sin(\phi)) \cos(\theta)$, $y = (\rho \sin(\phi)) \sin(\theta)$, and

The infinitesimal unit of volume is: $dV = \rho^2 \sin(\phi) d\rho d\theta d\phi$

• When E can be easily described by Spherical coordinates as a sphere (or part of):

$$E: \begin{cases} a \leq \rho \leq b \\ \alpha \leq \theta \leq \beta \\ \delta \leq \phi \leq \gamma \end{cases} \Longrightarrow \\ \iiint_E f(x,y,z) dV = \int_{\delta}^{\gamma} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \ \rho^2 \sin(\phi) d\rho \ d\theta \ d\phi \\ \text{or in any of the other 5 possible orders of } d\rho, d\theta, d\phi \text{ by Fubini's Theorem.} \end{cases}$$

• When E is a more general region in SC:

Besides spheres know the equation of cone in CC: ϕ =constant. So you can describe regions like an "ice cream cone"

Chapter 16: Vector Calculus

- Vector Fields: a vector field \vec{F} gives a vector (in plane or in space) at every point. More generally, vector fields are functions: $\vec{F} : \mathbb{R}^n \to \mathbb{R}^n$
 - ullet VFs in the Plane: $\mid \vec{F} = \langle P, Q \rangle$

$$\vec{F}: \mathbb{R}^2 \to \mathbb{R}^2, \vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$$
 where $P, Q: \mathbb{R}^2 \to \mathbb{R}$ are SVFs.

- · Visualization of a vector field as a "field of arrows" and interpretation as a force field, or fluid flow
- Important examples: (a) "Explosion" $\vec{F}(x,y) = \langle x,y \rangle$; (b) "Implosion" $\vec{F}(x,y) = -\langle x,y \rangle$; (c) "Circulation" counter-clockwise $\vec{F}(x,y) = \langle -y, x \rangle$; (c) "Circulation" clockwise $\vec{F}(x,y) = \langle y, -x \rangle$
- Gradient Vector Fields: $\nabla f = \langle f_x, f_y, f_z \rangle$
- Recall: curves in the plane and in space:

$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$$
 and $ds = |\vec{r}'(t)| dt$

since
$$ds = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt = |\vec{r}''(t)| dt$$
.

Infinitesimal unit of vector arclength: $d\vec{r} = \vec{T}(t)ds$.

But this is a pain to compute, so instead we use: $d\vec{r} = \vec{r}'(t) dt$

- LINE INTEGRAL OF \vec{F} ALONG A CURVE $C\colon \int_C \vec{F} \cdot d\vec{r}.$

General:
$$\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$
 (Notice: this uses the DOT product!)

In the plane:
$$\boxed{\int_C \langle P,Q\rangle \cdot d\vec{r} = \int_C P dx + Q dy}$$

Notice: $\vec{F} = \langle P, Q \rangle$ and $d\vec{r} = \vec{r}'(t)dt = \langle x'(t), y'(t) \rangle dt$, so computing the dot product gives:

$$\vec{F} \cdot d\vec{r} = \langle P, Q \rangle \cdot \langle x'(t), y'(t) \rangle dt = Px'(t)dt + Qy'(t)dt = Pdx + Qdy$$
since $dx = x'(t)dt$ and $dy = y'(t)dt$

since
$$dx = x'(t)dt$$
 and $dy = y'(t)dt$

- Geometric Meaning of a line integral of a vector field along a closed curve C: Circulation of \vec{F} along the curve C
- · Know how to parametrize curves: line segments, circles, ellipses, parabolas, squares, triangles, etc
- Properties of curves: orientation, $C_1 \cup C_2$, -C etc
- Properties of Line integrals: $\int_{C_1 \cup C_2} \vec{F} = \int_{C_1} \vec{F} + \int_{C_2} \vec{F}$ and $\int_{-C} \vec{F} = -\int_C \vec{F}$.
- DEFINITIONS/TERMINOLOGY:

Definition of \vec{F} path independent

Curves C: Closed, Simple

Domains D: Open, connected, simply connected

NOTATION: $\partial D = C$ is the notation for the boundary curve of D. It comes with orientation defined by: positive when traveling along the boundary curve, the domain D is on your left side. Negative when traveling along the boundary curve, the domain D is on your right side.

CONSERVATIVE VECTOR FIELDS

Definition of \vec{F} conservative

THM
$$\vec{F}$$
 conservative $\iff \oint_C \vec{F} = 0$ for all closed loops

THM \vec{F} conservative \iff it is the gradient of some function, ie $\vec{F} = \nabla f$

Note: f is called a Potential function. Know how to find f if given a conservative VF

THM (Fundamental Thm of Line Integrals):
$$\int_C \nabla f(\vec{r}) \cdot d\vec{r} = f(B) - f(A)$$

(where C a curve from A to B)

THM (Fundamental Theorem of Conservative VFs):

 $\overline{\text{Let }D}$ be a simply connected domain in the plane. Then

$$\vec{F}=\langle P,Q \rangle$$
 is conservative on $D\iff \boxed{rac{\partial Q}{\partial x}=rac{\partial P}{\partial y}}$ on D

• GREEN'S THEOREM

Assumptions needed:

- D simply connected domain in the plane (=open+connected+no holes or punctures)
- $\bullet \partial D = C$ the boundary curve is a simple, closed curve oriented positive sense (ie CCW)
- $\vec{F} = \langle P, Q \rangle$ with P, Q continuous partial derivatives inside D and on ∂D

THEN
$$\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

WARNING: \vec{F} must be defined and differentiable inside D for you to apply Green's Theorem

- Scalar Curl: S.Curl $(\vec{F})=rac{\partial Q}{\partial x}-rac{\partial P}{\partial y}$ Meaning: the infinitesimal circulation of \vec{F} at the point (x,y)
- Vector Form of Green's Theorem: $\boxed{\oint_{\partial D} \vec{F}(\vec{r}) \cdot d\vec{r} = \iint_{D} \text{S.Curl}(\vec{F}) \, dA}$

GRADIENT OPERATOR, CURL, & DIVERGENCE

- Del Operators: $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \rangle$ in 2D and $\nabla = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \rangle$ in 3D
- CURL of $F{:} \boxed{ \mathrm{Curl}(\vec{F}) = \nabla \times \vec{F} }$ only for 3D $\vec{F} = \langle P, Q, R \rangle$

$$\operatorname{Curl}(\vec{F}) = \nabla \times \vec{F} = \left| \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array} \right| = \langle R_y - Q_z, P_z - R_x, Q_x - P_y \rangle$$

NOTE: $Curl(\vec{F})$ is clearly a vector!

Geometric Meaning: the **circulation** at a point through a plane orthogonal to $\operatorname{Curl}(\vec{F})$

• DIVERGENCE of
$$F$$
: $\operatorname{div}(\vec{F}) = \nabla \cdot \vec{F}$

$$\operatorname{div}(\vec{F}) = \nabla \cdot \vec{F} = \langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \rangle \cdot \langle P, Q \rangle = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}$$

$$\operatorname{div}(\vec{F}) = \nabla \cdot \vec{F} = \langle \tfrac{\partial}{\partial x}, \tfrac{\partial}{\partial y}, \tfrac{\partial}{\partial z} \rangle \cdot \langle P, Q, R \rangle = \tfrac{\partial P}{\partial x} + \tfrac{\partial Q}{\partial y} + \tfrac{\partial R}{\partial z}.$$

Geometric Meaning: the contribution of \vec{F} in the direction of the "explosion vector field" at a point. This is termed "flux" or "divergence" of the vector field.

INTEGRATION OVER SURFACES

• Recall Surfaces in space you can define a surface via a function $f: \mathbb{R}^2 \to \mathbb{R}$ with z = f(x,y) you can define a surface implicitly via a function $f: \mathbb{R}^3 \to \mathbb{R}$ with f(x,y,z) = c (think equation of sphere)

- Given a surface
$$S:z=f(x,y)$$

Infinitesimal piece of surface area: $dA = \sqrt{1 + (f_x)^2 + (f_y)^2} dxdy$

Normal vector to S at a point: $\vec{n} = \langle -f_x, -f_y, 1 \rangle$ (outward pointing)

Recall this comes from:
$$\vec{n} = \vec{f_x} \times \vec{f_y} = \langle 1, 0, f_x \rangle \times \langle 0, 1, f_y \rangle$$
 Unit Normal: $\hat{n} = \frac{\vec{n}}{\|\vec{n}\|} = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{1 + (f_x)^2 + (f_y)^2}}$

Unit Normal:
$$\hat{n} = \frac{1}{\|\vec{n}\|} = \frac{\sqrt{J_x + J_y + J_y}}{\sqrt{1 + (f_x)^2 + (f_y)^2}}$$

Oriented infinitesimal area:
$$d\vec{A} = \hat{n}dA = \frac{\langle -f_x, -f_y, 1 \rangle}{\sqrt{1 + (f_x)^2 + (f_y)^2}} dA = \vec{n}dxdy$$
 so $d\vec{A} = \vec{n}dxdy$

OR
$$d\vec{A} = \langle -f_x, -f_y, 1 \rangle dxdy$$

- SURFACE INTEGRAL OF $\vec{\Phi}$ ACROSS/THROUGH $S{:}$ $\iint_S \vec{F} \cdot d\vec{A}.$

$$\iint_{S} \vec{F} \cdot d\vec{A} = \iint_{D} \vec{F}(x, y) \cdot \langle -f_{x}, -f_{y}, 1 \rangle \, dx dy$$

Alternate Form:
$$\boxed{ \iint_S \langle P,Q,R\rangle \cdot d\vec{A} = \iint_D -Pf_x\,dx - Qf_y\,dy + R\,dz }$$

Geometric Meaning: "Flux/Divergence" of F across/through the surface S

STOKE'S THEOREM

- STOKE'S THEOREM
 - Assumptions needed:
 - D and ∂D are planar domain and boundary curve that satisfy assumptions of Green's Theorem
 - S and ∂S is a surface in space of the form z = f(x,y) over the domain D and $f(\partial D) = \partial S$ (this just says that the function f evaluated over the boundary curve in the plane gives the boundary curve ∂S of the surface S in space)
 - orientation ∂S is oriented in the positive sense (the surface is always on your left as you walk around the boundary)
 - orientation S is oriented in the positive sense (outward pointing normal vector)

Equivalently:
$$\boxed{\oint_{\partial S} \vec{F}(\vec{r}) \cdot d\vec{r} = \iint_{S} (\nabla \times \vec{F}) \cdot d\vec{A}}$$

Or:
$$\oint_{\partial S} P dx + Q dy + R dz = \iint_{S} -f_{x}(R_{y} - Q_{z}) - f_{y}, (P_{z} - R_{x}) + (Q_{x} - P_{y}) dx dy$$

Geometric meaning: The "circulation/curl" of \vec{F} along ∂S .

FLUX and DIVERGENCE

• FLUX of \vec{F} ACCROSS C in the Plane: $\int_C \vec{F} \cdot \hat{n} ds$.

Geometric meaning: the contribution of \vec{F} across/through the curve C. The "flux/divergence" across C.

- Formula for $\hat{n}ds$:
 - parametrize C with $\vec{r}(t) = \langle x(t), y(t) \rangle$
 - ds=infinitesimal piece of arclength of the curve C: $ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
 - \vec{n} = normal vector: outward pointing vector that is orthogonal to the tangent vector $\vec{r}'(t)$

$$\bullet \ \vec{n} = \langle \frac{dy}{dt}, -\frac{dx}{dt} \rangle$$

- \hat{n} = unit normal vector: $\hat{n} = \frac{\vec{n}}{\|\vec{n}\|} = \frac{\langle \frac{dy}{dt}, -\frac{dx}{dt} \rangle}{\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}}$
- All of these simply to: $\left| \hat{n}ds = \langle \frac{dy}{dt}, -\frac{dx}{dt} \rangle dt \right|$

- Alternate form of flux using $F(x,y) = \langle P,Q \rangle$: $\int_C \vec{F} \cdot \hat{n} ds = \int_C -Q dx + P dy$.
- GAUSS' DIVERGENCE THEOREM in the plane: $\int_C \vec{F} \cdot \hat{n} ds = \iint_D (\nabla \cdot \vec{F}) \, dx dy$