является усилением ограничения $x\geqslant -\frac{3}{4}$. Система (11) таким образом равносильна системе

$$\begin{cases}
-t^2 = \frac{9}{16} + 3x, \\
3x = \frac{1}{16} - 3t + t^2, \\
x \ge -\frac{3}{8}, \\
t \le 1.
\end{cases}$$
(12)

Из первых двух уравнений системы (12) получаем уравнение относительно t:

$$2t^2 - 3t + \frac{5}{8} = 0 \quad \Leftrightarrow \quad t_1 = \frac{5}{4}, \ t_2 = \frac{1}{4}.$$

Значение t_1 отпадает ввиду последнего ограничения системы (12), а значение t_2 даёт $x=-\frac{5}{24}$ и $y=\frac{3}{32}$.

Otbet: $\left(-\frac{5}{24}, \frac{3}{32}\right)$.

6 Задачи

Во всех задачах, если не сказано иное, требуется решить уравнение или систему уравнений.

Учёт ОДЗ

1. $(M\Gamma Y, counoisur. \phi-m, 1997)$ $\sqrt{-3x+3} = x-1.$

Ţ

2.
$$\sqrt{x^2-x} + \sqrt{2-x-x^2} = \sqrt{x} - 1$$
.

Ţ

Равносильные преобразования

3. a)
$$\sqrt{x^2 - 7x + 1} = \sqrt{2x^2 - 15x + 8}$$
; 6) $\sqrt{2x^2 + x - 4} = \sqrt{3x + 3}$.

а) 7; б) 11√15

4. $(M\Gamma Y, \ \phi\text{-m гос. управления, } 2006) \ \sqrt{x^4 - 10x^2 + 25} = \sqrt{x^4 - 4x^2 + 4}$.

 $\frac{z}{\sqrt{2}}$

5. $(M\Gamma Y, \text{ mexmam}, 1980)$ $(x^2 + x - 6)\sqrt{x + 1} = 0.$

2,1-

6. $(M\Gamma Y, \ \text{экономич.} \ \text{ϕ-m}, \ 1986) \ \sqrt{3x+4} \left(9x^2+21x+10\right)=0.$

 $\frac{2}{5}$ - $\frac{2}{5}$ -

7. $(M\Gamma Y, \text{ геологич. } \phi\text{-m}, 1983) \quad (x+1)\sqrt{x^2-3x-6} = 2x+2.$

8 ,s-

8. (МГУ, ф-т почвоведения, 1997) $x = \sqrt{8x+9}$.

6

9. $(M\Gamma Y, \text{ reorpa} \text{ fur. } \text{ fi-m}, 1993) \quad \sqrt{13-2x} = 5-x.$

7

10. $(M\Gamma Y, \text{ геологич. } \phi\text{-m}, 1996) \quad \sqrt{3x-5} = x-11.$

81

11. $(M\Gamma Y, MCAA, 1997)$ $\sqrt{3}(x+2) - \sqrt{9+2x} = 0.$

 $\frac{1}{8}$

<u>7£1</u>√+61

13. $(M\Gamma Y, \ \text{экономич.} \ \phi\text{-m}, \ 2003) \ \sqrt{5+8x-4x^2} = 4x-1.$

I

14. $(M\Gamma Y, \ \phi u \pi u e c \kappa u \ \phi - m, \ 1988) \ \sqrt{4 - 6x - x^2} = x + 4.$

I-

15. $(M\Gamma Y, \text{ reorpa} \text{ fur. } \text{ fi-m}, 1982)$ $x + \sqrt{2x^2 - 14x + 13} = 5.$

2-

16. $(M\Gamma Y, \ \phi\text{-m } ncuxoлогии, 1996) \ \sqrt{2x^2 - 21x + 4} = 2 - 11x.$

0

17. $(M\Gamma Y, \text{ reorpa} \text{ fur. } \text{ fi-m}, 1999)$ $\sqrt{2x^2 - 8x + 5} = x - 2.$

 $\overline{\epsilon} \sqrt{+2}$

18. $(M\Gamma Y, \ \phi u \exists u \exists e c \kappa u \ddot{u} \ \phi - m, \ 1985) \ \sqrt{x^4 - 2x - 5} = 1 - x.$

5/7-

19. $(M\Gamma Y, \Phi HM, 2001)$ $\frac{1}{2} - x^2 = \sqrt{\frac{1}{2} - x}$.

 $\frac{1-\overline{\epsilon}\sqrt{}}{2}$

20. $(M\Gamma Y, BIIIB, 2003)$ $22x^2 + 10x = \sqrt{1276x^3 + 364x^2}$.

0, 2

21. $(M\Gamma Y, \text{ ϕusuvecku\"{u} ϕ-m, 1999}) \sqrt{x+2} \sqrt{2x+1} = x+4.$

3+4/65

22. $(M\Gamma Y, \ \phi\text{-}m \ nousebellenus, 1998) \ \sqrt{x+1} - \sqrt{4x-3} = 1.$

 $\frac{6}{2}$

23. $(M\Gamma Y, \ \phi\text{-m ncuxosoeuu}, \ 2001) \ \sqrt{x+2} + \sqrt{8-x} = \sqrt{15}$.

 $\frac{5}{6\pm5\sqrt{3}}$

24. (МГУ, экономич. ф-т, 1982) $\sqrt{x+1} - \sqrt{2x-5} = \sqrt{x-2}$.

8

25. $(M\Gamma Y, couyoooeu4. \ \phi-m, 2003) \ \sqrt{2x+3} + \sqrt{x-2} = \sqrt{3x+7}.$

8

26. $(M\Gamma Y, \ \phi u s u v e c \kappa u \check{u} \ \phi - m, \ 2007) \ \sqrt{x-2} - \sqrt{2x+2} = \sqrt{2x-5} - \sqrt{3x-1}$.

8

27. $(M\Gamma Y, \ \phi u s u v e c \kappa u \ddot{u} \ \phi - m, \ 2000) \ \frac{1}{\sqrt{x+2}} + \sqrt{x+2} = \sqrt{3x+1}$.

<u>73√+1−</u>

28. (МГУ, ф-т почвоведения, 2004) $\sqrt{x^2 + 5x + 4} - \sqrt{x^2 - x - 6} = -\sqrt{2x^2 + 4x - 2}$.

₽−

29. («Физтех», 2013, 10–11) Найдите сумму корней уравнения $\sqrt[3]{x+5} + \sqrt{3-x} = 2$.

91-

Замена переменной

30. $(M\Gamma Y, \text{ филологич. } \text{ ϕ-m}, 2007) -x - \sqrt{-x} = 10.$

62-

31. $(M\Gamma Y, MIII9, 2006)$ $\sqrt{x+3} = 9 - x.$

9

32. (МГУ, химический ф-т, 1993) $\sqrt{x+4} = x+2$.

0

33. (МГУ, химический ф-т, 1998) $7 - x = 3\sqrt{5 - x}$.

₽ 'I

34. $(M\Gamma Y, coциологич. ф-т, 1999) \sqrt{x-1} = 6-x.$

13-√21

35. $(M\Gamma Y, \text{ reonorum. } \phi\text{-m}, 1983) \quad (x+1)\sqrt{16x+17} = (x+1)(8x-23).$

₹ 'I-

36. $(M\Gamma Y, \ \text{экономич.} \ \phi\text{-m}, \ 1983) \quad x^2 + \sqrt{x^2 + 11} = 31.$

3±

37. $(M\Gamma Y, \text{ геологич. } \phi\text{-m}, 1994)$ $x^2 + 2\sqrt{x^2 + 3x - 4} = 4 - 3x.$

Ι '₽-

38. (МГУ, экономич. ф-т, 2006) $2\sqrt{2x^2 - x + 8} = x - 2x^2 + 7$.

 $\frac{1}{1}$: $\frac{1}{2}$

39. $(M\Gamma Y, \ \text{физический } \ \text{ϕ-m}, \ 1999) \ \sqrt{\frac{4}{x-2}+1} = \frac{1}{x-2} \, .$

<u>5</u>\

40. (*«Ломоносов»*, 2017, 10–11) $\sqrt{\sqrt{x+2}+\sqrt{x-2}}=2\sqrt{\sqrt{x+2}-\sqrt{x-2}}+\sqrt{2}$.

<u> 91</u>

41. («Покори Воробъёвы горы!», 2011, 10–11) $7x^2 + 20x - 14 = 5\sqrt{x^4 - 20x^2 + 4}$.

 $\frac{811}{2}\sqrt{-01-}, \frac{811}{2}\sqrt{-118}$

42. («Покори Воробъёвы горы!», 2015, 10-11) Решите уравнение

$$\left| x\sqrt{1-x^2} + x \right| = \sqrt{1+x^2} \,.$$

 $\pm \sqrt{\frac{\sqrt{5}-1}{2}}$

Двойная замена

43. $(M\Gamma Y, \phi$ -т почвоведения, 1998) $\sqrt{x+1} - \sqrt{5x-6} = 1$.

 $\frac{\overline{v}}{g}$

44. $(M\Phi TH, 2001)$ $\sqrt{2x^2 - 8x + 25} - \sqrt{x^2 - 4x + 13} = 2.$

2- '9

45. («Покори Воробьёвы горы!», 2011, 9–11) $\sqrt[3]{15x+1-x^2}+\sqrt[3]{x^2-15x+27}=4$.

0; 2; 13; 15

46. $(M\Gamma Y, \text{ reorpa} \text{ duv. } \text{ d-m}, 1995)$ $\sqrt[4]{x-\frac{3}{2}}+\sqrt[4]{10-x}=2.$

 $\frac{2\sqrt{21\pm62}}{4}$

47. (МГУ, химический ф-т, 2003)

$$\left(1 + \frac{1}{\sqrt{1-x}}\right) \cdot \left(1 + \frac{1}{\sqrt{1+x}}\right) \cdot \left(\sqrt{1-x} + \sqrt{1+x}\right) = 8.$$

0

48. $(M\Gamma Y, MCAA, 2005)$ $\sqrt{x+1} + \sqrt{x^2 + 4x + 3} = \sqrt{(x+2)^3}$.

49. (*МГУ*, xumuческий ϕ -m, 2002) При каждом значении параметра a решить уравнение

$$\sqrt{-x^3 + (a-1)x^2 + (a-1)x + a} = 2x^2 + 3x + 2 - a.$$

Если $a\geqslant 0$, то $x=-1\pm\sqrt{a}$; если a<0, то решений нет

Умножение на сопряжённое

50. («Покори Воробъёвы горы!», 2018, 10-11) Решите уравнение

$$\frac{1}{\sqrt{x+2}+\sqrt{x+3}} + \frac{1}{\sqrt{x+3}+\sqrt{x+4}} + \dots + \frac{1}{\sqrt{x+2017}+\sqrt{x+2018}} = 42.$$

2

51. (МГУ, геологич. ф-т, 1985)

$$\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}$$
.

7

52. («Покори Воробьёвы горы!», 2012, 10–11)

$$\frac{27x - 24}{2x + \sqrt{4x^2 - 3}} - \frac{36x - 32}{\sqrt{4x^2 - 3} + \sqrt{4x^2 + 1}} = 9x^2 - 26x + 16.$$

 $\frac{8}{9}$, $\frac{8}{8}$

Системы уравнений

53. (ΜΓУ, φ-т психологии, 1981)

$$\begin{cases} x - y + \sqrt{x^2 - 4y^2} = 2, \\ x^5 \cdot \sqrt{x^2 - 4y^2} = 0. \end{cases}$$

 $\left(\frac{2}{8}, \frac{4}{8}\right) : (2, 4)$

54. (МГУ, геологич. ф-т, 1995)

$$\begin{cases} x^3 \cdot \sqrt{x - y} = 0, \\ 2y^2 + y = 21 + 2xy. \end{cases}$$

(21,21); (12,12)

55. (MΓУ, мехмат, 1980)

$$\begin{cases} \sqrt{x^2 + 4xy - 3y^2} = x + 1, \\ x - y = 1. \end{cases}$$

(1,2)

56. (МГУ, химический ф-т, 1977)

$$\begin{cases} \sqrt{x+y-1} = 1, \\ \sqrt{x-y+2} = 2y-2. \end{cases}$$

 $\left(\frac{1}{2}, \frac{3}{2}\right)$

57. (МГУ, геологич. ф-т, 1999)

$$\begin{cases} 4x + 5y = \sqrt{16x^2 - 25y^2}, \\ x^2 + 6x - 7 = 0. \end{cases}$$

 $(\frac{82}{5},7-)$; $(\frac{4}{5}-,1)$; (0,1)

58. (*MГУ*, *ВШБ*, 2004)

$$\begin{cases} \sqrt[3]{x+1} + \sqrt[3]{y-2} = 1, \\ x+y-20 = 0. \end{cases}$$

(92,6-); (9-,82)

59. (МГУ, химический ф-т, 1991)

$$\begin{cases} \sqrt{2x-1} + \sqrt{y+3} = 3, \\ 2xy - y + 6x = 7. \end{cases}$$

 $(2-,\frac{6}{2})$; (1,1)

60. (МГУ, физический ф-т, 2002)

$$\begin{cases} 5\sqrt{2x^2 - y^4} = 4x - 3y, \\ 4\sqrt{2x^2 - y^4} = 3x - 2y. \end{cases}$$

 $\left(\overline{7}\sqrt{.7}\sqrt{2}\right)$; (0,0)

61. (МГУ, физический ф-т, 2006)

$$\begin{cases} 3x + y + \sqrt{9x^2 - y^2} = 6, \\ y\sqrt{(3x + y)(3x - y)} = 2. \end{cases}$$

 $\left(\frac{\overline{7}\sqrt{\pm \delta}}{6}, \frac{8}{6}\right)$

62. (*«Φuзmex»*, 2016, 9–11)

$$\begin{cases} 2x + \sqrt{2x + 3y} - 3y = 5, \\ 4x^2 + 2x + 3y - 9y^2 = 32. \end{cases}$$

 $\left(\frac{3}{5}, \frac{71}{4}\right)$

63. («Физтех», 2016, 9–11) Найдите все пары положительных чисел (x,y), удовлетворяющих системе уравнений ___

$$\begin{cases} y - 2\sqrt{xy} - \sqrt{\frac{y}{x}} + 2 = 0, \\ 3x^2y^2 + y^4 = 84. \end{cases}$$

 $\left(\frac{1}{61}\sqrt{2}\sqrt{2}, \frac{1}{67}\sqrt{2}\right)$; $\left(\xi, \frac{1}{\xi}\right)$

64. (ΜΦΤИ, 2002)

$$\begin{cases} \sqrt{x-4y} - 2\sqrt{3y+x} = 1, \\ 7\sqrt{3y+x} + 22y + 5x = 13. \end{cases}$$

(8-,81)

65. (ΜΦΤИ, 2005)

$$\begin{cases} 1 + xy = \frac{x^2y^2}{2x - y} + \frac{2x - y}{xy}, \\ \frac{2x - y}{xy} \sqrt{2x - y} = 4 - 3xy. \end{cases}$$

 $(2-,\frac{1}{2}-)$; (1,1)

66. (ΜΦΤИ, 2005)

$$\begin{cases} 1 + \frac{1}{\sqrt{x - 2y}} = \frac{xy}{x - 2y} + \frac{\sqrt{x - 2y}}{xy}, \\ xy\sqrt{\frac{xy}{x - 2y}} = 2 - \sqrt{x - 2y}. \end{cases}$$

 $\left(\frac{1}{2},2\right);\left(1-,1-\right)$

67. («Ломоносов», 2013, 9)

$$\begin{cases} x^2 = 2\sqrt{y^2 + 1}, \\ y^2 = 2\sqrt{z^2 - 1} - 2, \\ z^2 = 4\sqrt{x^2 + 2} - 6. \end{cases}$$

$$\left(\overline{\zeta}\vee - , 0, \overline{\zeta}\vee -\right) : \left(\overline{\zeta}\vee , 0, \overline{\zeta}\vee -\right) : \left(\overline{\zeta}\vee - , 0, \overline{\zeta}\vee\right) : \left(\overline{\zeta}\vee , 0, \overline{\zeta}\vee\right)$$

68. (ΜΦΤИ, 2003)

$$\begin{cases} 1 - 5y = \frac{x}{y} - 6\sqrt{x - y}, \\ \sqrt{x - \sqrt{x - y}} = x - 5y - 6. \end{cases}$$

 $\left(\frac{622\sqrt{+2}}{62},\frac{622\sqrt{+74}}{6}\right);(0,24)$

69. (*«Φυзтех»*, 2014)

$$\begin{cases} 4x^2 + y^2 - 4xy = 4x - 2y + 3, \\ \sqrt{6x - 3y} = 2 - xy. \end{cases}$$

 $(2-,\frac{1}{2});(1-,1)$

70. (*«Физтех»*, 2008)

$$\begin{cases} x + \sqrt{\frac{x}{x - y}} = \frac{42}{x - y}, \\ xy - 4x = 9. \end{cases}$$

(8, 5); (2, 4); (6, 6)

71. («Φusmex», 2011)

$$\begin{cases} \sqrt{x^2 - \frac{2}{3}y} = y - x, \\ \frac{9}{4}y^2 + x^3 = 2x + 1. \end{cases}$$

$$\left(\frac{e2-\overline{\epsilon}I\overline{1}\sqrt{\epsilon}}{\overline{\epsilon}},\frac{e-\overline{\epsilon}I\overline{1}\sqrt{\epsilon}}{\underline{\epsilon}}\right);\left(0,\frac{\overline{\overline{\epsilon}\sqrt{-1}}}{\underline{\epsilon}}\right);\left(0,1-\right)$$

72. $(\Phi usmex , 2010)$

$$\begin{cases} \sqrt{25 - y^2} - \sqrt{25 - x^2} = 1, \\ \sqrt{25 - y^2} + \sqrt{25 - x^2} = x^2 - 2y^2 + 2y + 3. \end{cases}$$

 $\left| \left(\mathbf{I} - ; \overline{\mathbf{6}} \overset{\mathfrak{p}}{\vee} \mathbf{2} \pm \right) ; (\xi, \hbar \pm) \right|$

73. (*«Φusmex»*, 2009)

$$\begin{cases} \sqrt{\frac{4}{9}x^2 + \sqrt{x^2 - 9y^2}} = \frac{3}{4} - \frac{2}{3}x, \\ \sqrt{\frac{15}{16} - 2x - 4y} = 1 + 4y. \end{cases}$$

 $\left(\frac{19}{2}; -\frac{19}{1}\right)$

74. («Φυзтех», 2012)

$$\begin{cases} 3x^2 + 11xy + 10y^2 + 10x + 20y = 0, \\ \sqrt{25 - y(3x + 5y + 10)} + \sqrt{y^2 - 10y + 30} = 5. \end{cases}$$

(6,8-);(7,1-)