CNTACR<n>, Counter-timer Access Control Registers, n = 0 - 7

The CNTACR<n> characteristics are:

Purpose

Provides top-level access controls for the elements of a timer frame. CNTACR<n> provides the controls for frame CNTBaseN.

In addition to the CNTACR<n> control:

- <u>CNTNSAR</u> controls whether CNTACR<n> is accessible by Nonsecure accesses.
- If frame CNTEL0BaseN is implemented, the <u>CNTEL0ACR</u> in frame CNTBaseN provides additional control of accesses to frame CNTEL0BaseN.

Configuration

It is implementation defined whether CNTACR<n> is implemented in the Core power domain or in the Debug power domain.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Implemented only if the value of CNTTIDR. Frame<n> is 1.

An implementation of the counters might not provide configurable access to some or all of the features. In this case, the associated field in the CNTACR<n> register is:

- RAZ/WI if access is always denied.
- RAO/WI if access is always permitted.

Attributes

CNTACR<n> is a 32-bit register.

Field descriptions

313029282726252423222120191817161514131211109876	5 5	4	3	2	1	0
RES0	RWPT	RWVT	RVOFF	RFRQ	RVCT	RPCT

Bits [31:6]

Reserved, res0.

RWPT, bit [5]

Read/write access to the EL1 Physical Timer registers $\underline{CNTP_CVAL}$, $\underline{CNTP_TVAL}$, and $\underline{CNTP_CTL}$, in frame <n>.

RWPT	Meaning
0b0	No access to the EL1 Physical
	Timer registers in frame $<$ n $>$.
	The registers are res0.
0b1	Read/write access to the EL1
	Physical Timer registers in
	frame <n>.</n>

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally unknown value.

RWVT, bit [4]

Read/write access to the Virtual Timer register <u>CNTV_CVAL</u>, <u>CNTV_TVAL</u>, and <u>CNTV_CTL</u>, in frame <n>.

RWVT	Meaning
0b0	No access to the Virtual Timer
	registers in frame $<$ n $>$. The
	registers are res0.
0b1	Read/write access to the Virtual
	Timer registers in frame $< n >$.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally unknown value.

RVOFF, bit [3]

Read-only access to <u>CNTVOFF</u>, in frame <n>.

RVOFF	Meaning
0b0	No access to <u>CNTVOFF</u> in
	frame $<$ n $>$. The register is
	res0.
0b1	Read-only access to CNTVOFF
	in frame <n>.</n>

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally unknown value.

RFRQ, bit [2]

Read-only access to \underline{CNTFRQ} , in frame < n >.

RFRQ	Meaning
0b0	No access to <u>CNTFRQ</u> in frame
	<n>. The register is res0.</n>
0b1	Read-only access to $\frac{\text{CNTFRO}}{\text{cnme}}$ in frame $<$ n $>.$

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally unknown value.

RVCT, bit [1]

Read-only access to \underline{CNTVCT} , in frame < n >.

RVCT	Meaning
0b0	No access to CNTVCT in frame
	<n>. The register is res0.</n>
0b1	Read-only access to CNTVCT in
	frame <n>.</n>

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally unknown value.

RPCT, bit [0]

Read-only access to $\underline{\text{CNTPCT}}$, in frame <n>.

RPCT	Meaning
0b0	No access to CNTPCT in frame
	<n>. The register is res0.</n>
0b1	Read-only access to CNTPCT in
	frame $< n >$.

The reset behavior of this field is:

• On a Timer reset, this field resets to an architecturally unknown value.

Accessing CNTACR<n>

In a system that recognizes two Security states:

- CNTACR<n> is always accessible by Secure accesses.
- <u>CNTNSAR</u>.NS<n> determines whether CNTACR<n> is accessible by Non-secure accesses.

CNTACR<n> can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
Timer	CNTCTLBase		CNTACR <n></n>
		+ (4 *	
		n)	

Accesses on this interface are RW.

AArch32	AArch64	AArch32	AArch64	Index by	External
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.