Нормальные кривые гладки

22 января 2024 года

Размерность Крулля

ОПРЕДЕЛЕНИЕ: Длиной цепочки идеалов $I_0 \subsetneq I_1 \subsetneq \cdots \subsetneq I_n$ называется число n.

ОПРЕДЕЛЕНИЕ: Размерностью Крулля кольца A называется максимальная длина цепочки **простых** идеалов.

ЗАМЕЧАНИЕ: Для общих колец, даже нетеровых, размерность Крулля может вести себя патологически. Для неприводимых аффинных многообразий над полем размерность Крулля их кольца функций равняется их размерности. В самом деле, цепочка простых идеалов соответствует цепочке неприводимых подмногообразий.

ПРЕДЛОЖЕНИЕ: Размерность Крулля кольца равна супремуму размерностей Крулля его локализаций во всех максимальных идеалах.

ОПРЕДЕЛЕНИЕ: Аффинной кривой называется спектр **нетерова** кольца размерности Крулля **один**.

Теорема Крулля и регулярные кольца

TEOPEMA: (Крулля о главных идеалах) Размерность Крулля локального нетерова кольца не превосходит числа образующих его максимального идеала.

ОПРЕДЕЛЕНИЕ: Локальное нетерово кольцо называется **регулярным,** если его размерность Крулля **равняется** минимальному количеству образующих максимального идеала. Замкнутая точка аффинного многообразия называется **гладкой**, если ее локальное кольцо регулярно.

ЗАМЕЧАНИЕ: Минимальное количество образующих максимального идеала равно размерности кокасательного пространства $\mathfrak{m}/\mathfrak{m}^2$. Это следует из следующей формы леммы Накаямы:

ЛЕММА: (Накаяма) Пусть (A, \mathfrak{m}) — локальное нетерово кольцо. Всякий базис его кокасательного пространства $\mathfrak{m}/\mathfrak{m}^2$ поднимается до набора образующих идеала \mathfrak{m} .

ЗАМЕЧАНИЕ: Регулярность локального кольца точки напоминает существование локальных координат.

TEOPEMA: (Зариский) Локальное нетерово кольцо размерности Крулля один регулярно тогда и только тогда, когда оно целозамкнуто.

Лемма Накаямы, слабая версия

ЛЕММА: (Накаямы для локальных колец) Пусть (A, \mathfrak{m}) — локальное кольцо, и M — конечнопорожденный A-модуль такой, что $\mathfrak{m} M = M$. Тогда M = 0.

ДОКАЗАТЕЛЬСТВО: Пусть M порожден элементами $m_1, \dots m_k$. Имеем: $m_i = \sum a_{ij} m_j$, $a_{ij} \in \mathfrak{m}$. В матричном виде это можно записать как $\Gamma \vec{m} = \vec{m}$, или же $(I - \Gamma)\vec{m} = \vec{0}$. В разложении определителя $\det(I - \Gamma)$ все **недиагональные** слагаемые суть элементы \mathfrak{m} , а диагональный имеет вид $\prod_i (1 - a_{ii})$, и потому **обратим.** Значит, $\det(I - \Gamma)$ **также обратим,** и $\vec{m} = (I - \Gamma)^{-1}(I - \Gamma)\vec{m} = (I - \Gamma)^{-1}\vec{0} = \vec{0}$.

СЛЕДСТВИЕ: Пусть (A, \mathfrak{m}) — локальное нетерово кольцо. Всякий базис его кокасательного пространства $\mathfrak{m}/\mathfrak{m}^2$ поднимается до набора образующих идеала \mathfrak{m} .

ДОКАЗАТЕЛЬСТВО: Рассмотрим прообразы элементов базиса, скажем a_1,\ldots,a_k . Пусть они порождают идеал $\mathfrak n$. Тогда $\mathfrak n+\mathfrak m^2=\mathfrak m$. Если $M=\mathfrak m/\mathfrak n$, то $\mathfrak m M=\mathfrak m(\mathfrak m/\mathfrak n)=\mathfrak m^2/\mathfrak n=(\mathfrak n+\mathfrak m^2)/\mathfrak n=\mathfrak m/\mathfrak n=M$. В силу леммы Накаямы, M=0 и $\mathfrak n=\mathfrak m$.

Кривые и дискретные нормирования

Мы знаем, что локальные кольца **гладких** точек на кривых — **кольца дискретного нормирования** в силу существования **локального параметра**. Алгебраическая версия этого утверждения такова:

ПРЕДЛОЖЕНИЕ: Следующие утверждения равносильны:

- (1) A регулярное локальное нетерово кольцо размерности Крулля один,
- (2) A кольцо дискретного нормирования.

ДОКАЗАТЕЛЬСТВО: Пусть \mathfrak{m} — максимальный идеал в A. Коль скоро $\dim_{A/\mathfrak{m}}\mathfrak{m}/\mathfrak{m}^2=1$, $\mathfrak{m}\neq\mathfrak{m}^2$. Для любого элемента $p\in\mathfrak{m}\setminus\mathfrak{m}^2$ имеем $\mathfrak{m}/\mathfrak{m}^2=\langle p+\mathfrak{m}^2\rangle_{A/\mathfrak{m}}$, и в силу леммы Накаямы $\mathfrak{m}=(p)$. В частности, любые два элемента $\mathfrak{m}\setminus\mathfrak{m}^2$ отличаются умножением на обратимый элемент. Значит, всякий элемент \mathfrak{m}^k имеет вид up^k , где u обратим. Итак, все простые идеалы A это \mathfrak{m} и (0). Пересечение $\cap_{k>0}\mathfrak{m}^k$ есть простой идеал, отличный от \mathfrak{m} , а потому нулевой. Значит, вообще всякий ненулевой элемент A представляется в виде up^n , и это n и задает дискретное нормирование.

Гладкость нормальных кривых

TEOPEMA: (Зариский) Целозамкнутые локальные нетеровы кольца размерности Крулля один регулярны.

ДОКАЗАТЕЛЬСТВО: Следует доказать, что максимальный идеал такого кольца главный. Тогда $\dim_{A/\mathfrak{m}}\mathfrak{m}/\mathfrak{m}^2=1=\dim A$.

Обозначим за \mathfrak{m}^{-1} дробный идеал $\{x \in \operatorname{Frac} A : x\mathfrak{m} \subset A\}$. Имеем: $\mathfrak{m} \subset \mathfrak{m}\mathfrak{m}^{-1} \subset A$, и потому **либо** $\mathfrak{m}\mathfrak{m}^{-1} = A$, **либо** $\mathfrak{m}\mathfrak{m}^{-1} = \mathfrak{m}$.

Случай 1: $\mathfrak{mm}^{-1} = A$. Тогда $1 = \sum a_i x_i$, $a_i \in \mathfrak{m}$, $x_i \in \mathfrak{m}^{-1}$. Все $a_i x_i \in A$, но какой-то $a_j x_j \notin \mathfrak{m}$, так что $1/(a_j x_j) \in A$. Тогда $a = 1/x_j = a_j/(a_j x_j) \in A$, и потому $ax_j = 1$. Для $m \in \mathfrak{m}$ имеем $m = 1m = (ax_j)m = a(x_j m)$. Но $x_j \in \mathfrak{m}^{-1}$, и потому $x_j m \in A$, стало быть $\mathfrak{m} \subset (a)$ и **потому** $\mathfrak{m} = (a)$.

Гладкость нормальных кривых (продолжение)

Случай 2: $\mathfrak{mm}^{-1} = \mathfrak{m}$. Пусть $0 \neq m \in \mathfrak{m}$, рассмотрим локализацию $\{m^k\}^{-1}A \subset \mathsf{Frac}\,A$. Всякий ненулевой максимальный идеал в ней нетривиально пересекает A, а поскольку простых идеалов в A два, это пересечение должно быть \mathfrak{m} и содержать m. Значит, оно содержит и m/m = 1, ненулевых максимальных идеалов в $\{m^k\}^{-1}A$ нет, и $\{m^k\}^{-1}A = \mathsf{Frac}\,A$. Итак, всякий элемент $\mathsf{Frac}\,A$ можно расписать в виде a/m^n .

Значит, если $0 \neq m_0 \in \mathfrak{m}$, то для всякого $0 \neq m \in \mathfrak{m}$ имеем $1/m_0 = a/m^n$ для какого-то $a \in A$, а потому $m^n = am_0 \in (m_0)$ при достаточно большой степени n. Применяя это к образующим m_1, \ldots, m_k идеала \mathfrak{m} , видим, что $m_1^n, \ldots, m_k^n \in (m_0)$, а потому $(\sum a_i m_i)^{kn} \in (m_0)$. Значит, $\mathfrak{m}^i \subset (m_0)$ для всех $i \geqslant nk$, и существует минимальное i, для которого $\mathfrak{m}^i \subset (m_0)$. Если i = 1, то $\mathfrak{m} = (m_0)$, и **утверждение доказано.** Если нет, то выберем $m' \in \mathfrak{m}^{i-1} \setminus \mathfrak{m}^i$, и тогда $(m'/m_0)\mathfrak{m} \subset \frac{1}{m_0}\mathfrak{m}^i = \frac{1}{m_0}(m_0) \subset A$, а потому $m'/m_0 \in \mathfrak{m}^{-1}$. С другой стороны, $m'/m_0 \notin A$, а потому $\mathfrak{m}^{-1} \not\subset A$.

Гладкость нормальных кривых (окончание)

С третьей стороны, для всякого $x \in \mathfrak{m}^{-1}$ имеем $x\mathfrak{m} \subset \mathfrak{m}$. Выберем образующие $\{m_i\}$ у \mathfrak{m} , и запишем x как матрицу с коэффициентами в A. По **теореме Гамильтона** — **Кэли**, x является корнем ее характеристического многочлена, а у него **старший коэффициент** ± 1 . **В силу целозамкнутости**, $x \in A$, так что $\mathfrak{m}^{-1} \subset A$ — противоречие.

ТЕОРЕМА: (Зариский) У целозамкнутого нетерова целостного кольца размерности Крулля один все локализации в ненулевых простых идеалах — кольца дискретного нормирования. Иначе говоря, нормализации кривых гладки.

ДОКАЗАТЕЛЬСТВО: Достаточно показать, что эти локализации сами целозамкнуты и имеют размерность Крулля один. ■

ОПРЕДЕЛЕНИЕ: Целозамкнутые нетеровы целостные кольца размерности Крулля один называются **дедекиндовыми**.