

From Mostly Hamless Econonehres August + Phichke Chapter 3

Making Regression Make Sense

"Let us think the unthinkable, let us do the undoable. Let us prepare to grapple with the ineffable itself, and see if we may not eff it after all."

Douglas Adams, Dirk Gently's Holistic Detective Agency

Angrist recounts:

I ran my first regression in the summer of 1979 between my freshman and sophomore years as a student at Oberlin College. I was working as a research assistant for Allan Meltzer and Scott Richard, faculty members at Carnegie-Mellon University, near my house in Pittsburgh. I was still mostly interested in a career in special education, and had planned to go back to work as an orderly in a state mental hospital, my previous summer job. But Econ 101 had got me thinking, and I could also see that at the same wage rate, a research assistant's hours and working conditions were better than those of a hospital orderly. My research assistant duties included data collection and regression analysis, though I did not understand regression or even statistics at the time.

The paper I was working on that summer (Meltzer and Richard, 1983) is an attempt to link the size of governments in democracies, measured as government expenditure over GDP, to income inequality. Most income distributions have a long right tail, which means that average income tends to be way above the median. When inequality grows, more voters find themselves with below-average incomes. Annoyed by this, those with incomes between the median and the average may join those with incomes below the median in voting for fiscal policies that take from the rich and give to the poor. The size of government consequently increases.

I absorbed the basic theory behind the Meltzer and Richard project, though I didn't find it all that plausible, since voter turnout is low for the poor. I also remember arguing with my bosses over whether government expenditure on education should be classified as a public good (something that benefits everyone in society as well as those directly affected) or a private good publicly supplied, and therefore a form of redistribution like welfare. You might say this project marked the beginning of my interest in the social returns to education, a topic I went back to with more enthusiasm and understanding in Acemoglu and Angrist (2000).

Today, I understand the Meltzer and Richard study as an attempt to use regression to uncover and quantify an interesting causal relation. At the time, however, I was purely a regression mechanic. Sometimes I found the RA work depressing. Days would go by when I didn't talk to anybody but my bosses and the occasional Carnegie-Mellon Ph.D. student, most of whom spoke little English anyway. The best part of the job was lunch with Allan Meltzer, a distinguished scholar and a patient and good-natured supervisor, who was happy to chat while we ate the contents of our brown bags (this did not take long, as Allan ate little and I ate fast). Once I asked Allan whether he found it satisfying to spend his days perusing regression output, which then came on reams of double-wide green-bar paper. Meltzer laughed and said there was nothing he would rather be doing.

Now we too spend our days happily perusing regression output, in the manner of our teachers and advisers in college and graduate school. This chapter explains why.

3.1 Regression Fundamentals

The end of the previous chapter introduced regression models as a computational device for the estimation of treatment-control differences in an experiment, with and without covariates. Because the regressor of interest in the class size study discussed in section 2.3 was randomly assigned, the resulting estimates have a causal interpretation. In most studies,

bowever, regression is used with observational data. Without the benefit of random assignment, regression estimates may ar may not have a causal interpretation. We return to the central question of what makes a regression causal later in this chapter.

Setting aside the relatively abstract causality problem for the moment, we start with the mechanical properties of regression estimates. These are universal features of the population regression vector and its sample analog that have nothing to do with a researcher's interpretation of his output. These properties include the intimate connection between the population regression function and the conditional expectation function and the sampling distribution of regression estimates.

3.1.1 Economic Relationships and the Conditional Expectation Function

Empirical economic research in our field of labor economics is pically concerned with the statistical analysis of individual economic circumstances, and especially differences between people that might account for differences in their economic fortunes. Differences in economic fortune are notoriously hard to explain; they are, in a word, random. As applied econometricians, however, we believe we can summarize and interpret randomness in a useful way. An example of "systematic randomness" mentioned in the introduction is the connection between education and earnings. On average, people with more schooling earn more than people with less schooling. The connection between schooling and earnings has considerable predictive power, in spite of the enormous variation in individual circumstances that sometimes clouds this fact. Of course, the fact that more educated people tend to earn more than less educated people does not mean that schooling causes earnings to increase. The question of whether the earnings-schooling relationship is causal is of enormous importance, and we come back to it many times. Even without resolving the difficult question of causality, however, it's clear that education predicts earnings in a narrow statistical

sense. This predictive power is compellingly summarized by the conditional expectation function (CEF).

The CEF for a dependent variable Y_i , given a $K \times 1$ vector of covariates X_i (with elements x_{ki}), is the expectation, or population average, of Y_i , with X_i held fixed. The population average can be thought of as the mean in an infinitely large sample, or the average in a completely enumerated finite population. The CEF is written $E[Y_i|X_i]$ and is a function of X_i . Because X_i is random, the CEF is random, though sometimes we work with a particular value of the CEF, say $E[Y_i|X_i = 42]$, assuming 42 is a possible value for X_i . In chapter 2, we briefly considered the CEF $E[Y_i|D_i]$, where D_i is a zero-one variable. This CEF takes on two values, $E[Y_i|D_i = 1]$ and $E[Y_i|D_i = 0]$. Although this special case is important, we are most often interested in CEFs that are functions of many variables, conveniently subsumed in the vector X_i. For a specific value of X_i , say $X_i = x$, we write $E[Y_i | X_i = x]$. For continuous Y_i with conditional density $f_v(t|X_i = x)$ at $Y_i = t$, the CEF is

$$E[Y_i|X_i=x] = \int t f_y(t|X_i=x) dt.$$

If Y_i is discrete, $E[Y_i|X_i = x]$ equals the sum $\sum_t tP(Y_i = t|X_i = x)$, where $P(Y_i = t|X_i = x)$ is the conditional probability mass function for Y_i given $X_i = x$.

Expectation is a population concept. In practice, data usually come in the form of samples and rarely consist of an entire population. We therefore use samples to make inferences about the population. For example, the sample CEF is used to learn about the population CEF. This is necessary and important, but we postpone a discussion of the formal inference step taking us from sample to population until section 3.1.3. Our "population-first" approach to econometrics is motivated by the fact that we must define the objects of interest before we can use data to study them. ¹

Figure 3.1.1 Raw data and the CEF of average log weekly wages given schooling. The sample includes white men aged 40–49 in the 1980 IPUMS 5 percent file.

Figure 3.1.1 plots the CEF of log weekly wages given schooling for a sample of middle-aged white men from the 1980 census. The distribution of earnings is also plotted for a few key values: 4, 8, 12, and 16 years of schooling. The CEF in the figure captures the fact that, notwithstanding the enormous variation individual circumstances, people with more schooling generally earn more. The average earnings gain associated with a year of schooling is typically about 10 percent.

An important complement to the CEF is the law of iterated expectations. This law says that an unconditional expectation can be written as the unconditional average of the CEF. In other words,

$$E[Y_i] = E\{E[Y_i|X_i]\},$$
 (3.1.1)

where the outer expectation uses the distribution of X_i . Here is a proof of the law of iterated expectations for continuously distributed (X_i, Y_i) with joint density $f_{xy}(u, t)$, where $f_y(t|X_i = u)$ is the conditional distribution of Y_i given $X_i = u$ and $g_y(t)$

¹Examples of pedagogical writing using the "population-first" approach to econometrics include Chamberlain (1984), Goldberger (1991), and Manski (1991).

and $g_x(u)$ are the marginal densities:

$$E\{E[Y_i|X_i]\} = \int E[Y_i|X_i = u]g_x(u)du$$

$$= \int \left[\int tf_y(t|X_i = u)dt\right]g_x(u)du$$

$$= \int \int tf_y(t|X_i = u)g_x(u)dudt$$

$$= \int t\left[\int f_y(t|X_i = u)g_x(u)du\right]dt$$

$$= \int t\left[\int f_{xy}(u,t)du\right]dt$$

$$= \int tg_y(t)dt = E[Y_i].$$

The integrals in this derivation run over the possible values of X_i and Y_i (indexed by u and t). We've laid out these steps because the CEF and its properties are central to the rest of this chapter.²

The power of the law of iterated expectations comes from the way it breaks a random variable into two pieces, the CEF and a residual with special properties.

Theorem 3.1.1 The CEF Decomposition Property.

$$\mathbf{Y}_i = E[\mathbf{Y}_i | \mathbf{X}_i] + \varepsilon_i,$$

where (i) ε_i is mean independent of X_i , that is, $E[\varepsilon_i|X_i] = 0$, and therefore (ii) ε_i is uncorrelated with any function of X_i .

Proof. (i) $E[\varepsilon_i|X_i] = E[Y_i - E[Y_i|X_i]|X_i] = E[Y_i|X_i] - E[Y_i|X_i] = 0$. (ii) Let $h(X_i)$ be any function of X_i . By the law of iterated expectations, $E[h(X_i)\varepsilon_i] = E\{h(X_i)E[\varepsilon_i|X_i]\}$, and by mean independence, $E[\varepsilon_i|X_i] = 0$.

This theorem says that any random variable Y_i can be decomposed into a piece that is "explained by X_i "—that is, the CEF—and a piece left over that is orthogonal to (i.e., uncorrelated with) any function of X_i .

The CEF is a good summary of the relationship between Y_i and X_i , for a number of reasons. First, we are used to thinking of averages as providing a representative value for a random variable. More formally, the CEF is the best predictor of Y_i given X_i in the sense that it solves a minimum mean squared error (MMSE) prediction problem. This CEF prediction property is a consequence of the CEF decomposition property:

Theorem 3.1.2 The CEF Prediction Property. Let $m(X_i)$ be any function of X_i . The CEF solves

$$E[\mathbf{Y}_i|\mathbf{X}_i] = \underset{m(\mathbf{X}_i)}{\arg\min} \ E[(\mathbf{Y}_i - m(\mathbf{X}_i))^2],$$

so it is the MMSE predictor of Yi given Xi.

Proof. Write

$$(\mathbf{Y}_{i} - m(\mathbf{X}_{i}))^{2} = ((\mathbf{Y}_{i} - E[\mathbf{Y}_{i}|\mathbf{X}_{i}]) + (E[\mathbf{Y}_{i}|\mathbf{X}_{i}] - m(\mathbf{X}_{i})))^{2}$$

$$= (\mathbf{Y}_{i} - E[\mathbf{Y}_{i}|\mathbf{X}_{i}])^{2} + 2(E[\mathbf{Y}_{i}|\mathbf{X}_{i}] - m(\mathbf{X}_{i}))$$

$$\times (\mathbf{Y}_{i} - E[\mathbf{Y}_{i}|\mathbf{X}_{i}]) + (E[\mathbf{Y}_{i}|\mathbf{X}_{i}] - m(\mathbf{X}_{i}))^{2}.$$

The first term doesn't matter because it doesn't involve $m(X_i)$. The second term can be written $h(X_i)\varepsilon_i$, where $h(X_i) \equiv 2(E[Y_i|X_i] - m(X_i))$, and therefore has expectation zero by the CEF decomposition property. The last term is minimized at zero when $m(X_i)$ is the CEF.

A final property of the CEF, closely related to both the decomposition and prediction properties, is the analysis of variance (ANOVA) theorem:

Theorem 3.1.3 The ANOVA Theorem.

$$V(\mathbf{Y}_i) = V(E[\mathbf{Y}_i|\mathbf{X}_i]) + E[V(\mathbf{Y}_i|\mathbf{X}_i)],$$

where $V(\cdot)$ denotes variance and $V(Y_i|X_i)$ is the conditional variance of Y_i given X_i .

²A simple example illustrates how the law of iterated expectations works: Average earnings in a population of men and women is the average for men times the proportion male in the population plus the average for women times the proportion female in the population.

Proof. The CEF decomposition property implies the variance of y_i is the variance of the CEF plus the variance of the residual, $\varepsilon_i \equiv y_i - E[y_i|X_i]$, since ε_i and $E[y_i|X_i]$ are uncorrelated. The variance of ε_i is

$$E[\varepsilon_i^2] = E[E[\varepsilon_i^2 | X_i]] = E[V[Y_i | X_i]],$$

where $E[\varepsilon_i^2|X_i] = V[Y_i|X_i]$ because $\varepsilon_i \equiv Y_i - E[Y_i|X_i]$.

The two CEF properties and the ANOVA theorem may have a familiar ring. You might be used to seeing an ANOVA table in your regression output, for example. ANOVA is also important in research on inequality, where labor economists decompose changes in the income distribution into parts that can be accounted for by changes in worker characteristics and changes in what's left over after accounting for these factors (see, e.g., Autor, Katz, and Kearney, 2005). What may be unfamiliar is the fact that the CEF properties and ANOVA variance decomposition work in the population as well as in samples, and do not turn on the assumption of a linear CEF. In fact, the validity of linear regression as an empirical tool does not turn on linearity either.

3.1.2 Linear Regression and the CEF

So what's the regression you want to run? In our world, this question or one like it is heard almost every day. Regression estimates provide a valuable baseline for almost all empirical research because regression is tightly linked to the CEF, and the CEF provides a natural summary of empirical relationships. The link between regression functions—that is, the best-fitting line generated by minimizing expected squared errors—and the CEF can be explained in at least three ways. To lay out these explanations precisely, it helps to be precise about the regression function we have in mind. This section is concerned with the vector of population regression coefficients, defined as the solution to a population least squares problem. At this point we are not worried about causality. Rather,

we let the $\kappa \times 1$ regression coefficient vector β be defined by solving

$$\beta = \arg\min_{b} E[(y_i - X_i'b)^2].$$
 (3.1.2)

Using the first-order condition,

$$E[X_i(\mathbf{y}_i - \mathbf{X}_i'b)] = 0,$$

the solution can be written $\beta = E[X_i X_i']^{-1} E[X_i Y_i]$. Note that by construction, $E[X_i(Y_i - X_i'\beta)] = 0$. In other words, the population residual, which we define as $Y_i - X_i'\beta = e_i$, is uncorrelated with the regressors, X_i . It bears emphasizing that this error term does not have a life of its own. It owes its existence and meaning to β . We return to this important point in the discussion of causal regression in section 3.2.

In the simple bivariate case where the regression vector includes only the single regressor, x_i , and a constant, the slope coefficient is $\beta_1 = \frac{Cov(Y_i,x_i)}{V(x_i)}$, and the intercept is $\alpha = E[Y_i] - \beta_1 E[X_i]$. In the multivariate case, with more than one non-constant regressor, the slope coefficient for the kth regressor is given below:

REGRESSION ANATOMY

$$\beta_k = \frac{\text{Cov}(\mathbf{Y}_i, \tilde{\mathbf{x}}_{ki})}{V(\tilde{\mathbf{x}}_{ki})},\tag{3.1.3}$$

where \bar{x}_{ki} is the residual from a regression of x_{ki} on all the other covariates.

In other words, $E[X_iX_i']^{-1}E[X_iY_i]$ is the $K \times 1$ vector with kth element $\frac{Cov(Y_i,\bar{x}_{ki})}{V(\bar{x}_{ki})}$. This important formula is said to describe the anatomy of a multivariate regression coefficient because it reveals much more than the matrix formula $\beta = E[X_iX_i']^{-1}E[X_iY_i]$. It shows us that each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding regressor after partialing out all the other covariates.

To verify the regression anatomy formula, substitute

$$Y_i = \alpha + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \dots + \beta_k x_{ki} + e_i$$

in the numerator of (3.1.3). Since \tilde{x}_{ki} is a linear combination of the regressors, it is uncorrelated with e_i . Also, since \tilde{x}_{bi} is a residual from a regression on all the other covariates in the model, it must be uncorrelated with these covariates. Finally, for the same reason, the covariance of \tilde{x}_{ki} with x_{ki} is just the variance of \tilde{x}_{ki} . We therefore have $Cov(Y_i, \tilde{x}_{ki}) = \beta_k V(\tilde{x}_{ki})^3$.

The regression anatomy formula is probably familiar to you from a regression or statistics course, perhaps with one twist: the regression coefficients defined in this section are not estimators; rather, they are nonstochastic features of the joint distribution of dependent and independent variables. This joint distribution is what you would observe if you had a complete enumeration of the population of interest (or knew the stochastic process generating the data). You probably don't have such information. Still, it's good empirical practice to think about what population parameters mean before worrying about how to estimate them.

Below we discuss three reasons why the vector of population regression coefficients might be of interest. These reasons can be summarized by saying that you should be interested in regression parameters if you are interested in the CEF.

³The regression anatomy formula is usually attributed to Frisch and Waugh (1933). You can also do regression anatomy this way:

$$\beta_k = \frac{\text{Cov}(\tilde{\mathbf{x}}_{ki}, \tilde{\mathbf{x}}_{ki})}{\mathbf{V}(\tilde{\mathbf{x}}_{ki})},$$

where $\tilde{\mathbf{Y}}_{ki}$ is the residual from a regression of \mathbf{Y}_{i} on every covariate except \mathbf{x}_{ki} . This works because the fitted values removed from \tilde{Y}_{bi} are uncorrelated with \bar{x}_{ki} . Often it's useful to plot \tilde{Y}_{ki} against \bar{x}_{ki} ; the slope of the least squares fit in this scatterplot is the multivariate β_k , even though the plot is two-dimensional. Note, however, that it's not enough to partial the other covariates out of Yi only. That is,

$$\frac{\operatorname{Cov}(\tilde{\mathbf{x}}_{ki}, x_{ki})}{V(x_{ki})} = \left[\frac{\operatorname{Cov}(\tilde{\mathbf{x}}_{ki}, \tilde{x}_{ki})}{V(\tilde{x}_{ki})}\right] \left[\frac{V(\tilde{x}_{ki})}{V(x_{ki})}\right] \neq \beta_k,$$

unless x_{ki} is uncorrelated with the other covariates.

Theorem 3.1.4 The Linear CEF Theorem (Regression Justification I).

Suppose the CEF is linear. Then the population regression function is it.

Proof. Suppose $E[Y_i|X_i] = X_i'\beta^*$ for a $K \times 1$ vector of coefficients, β^* . Recall that $E[X_i(Y_i - E[Y_i|X_i])] = 0$ by the CEF decomposition property. Substitute using $E[Y_i|X_i] = X_i'\beta^*$ to find that $\beta^* = E[X_i X_i']^{-1} E[X_i Y_i] = \beta$.

The linear CEF theorem raises the question of what makes a CEF linear. The classic scenario is joint normality, that is, the vector $(\mathbf{Y}_i, \mathbf{X}_i')'$ has a multivariate normal distribution. This is the scenario considered by Galton (1886), father of regression, who was interested in the intergenerational link between normally distributed traits such as height and intelligence. The normal case is clearly of limited empirical relevance since regressors and dependent variables are often discrete, while normal distributions are continuous. Another linearity scenario arises when regression models are saturated. As reviewed in section 3.1.4, a saturated regression model has a separate parameter for every possible combination of values that the set of regressors can take on. For example a saturated regression model with two dummy covariates includes both covariates (with coefficients known as the main effects) and their product (known as an interaction term). Such models are inherently linear, a point we also discuss in section 3.1.4.

The following two reasons for focusing on regression are relevant when the linear CEF theorem does not apply.

Theorem 3.1.5 The Best Linear Predictor Theorem (Regression Justification II).

The function $X'_i\beta$ is the best linear predictor of Y_i given X_i in a MMSE sense.

Proof. $\beta = E[X_i X_i']^{-1} E[X_i Y_i]$ solves the population least squares problem, (3.1.2).

In other words, just as the CEF, $E[Y_i|X_i]$, is the best (i.e., MMSE) predictor of Y_i given X_i in the class of all functions of X_i , the population regression function is the best we can do in the class of linear functions.

Theorem 3.1.6 The Regression CEF Theorem (Regression Justification III).

The function X', \beta provides the MMSE linear approximation to E[Y_i|X_i], that is,

$$\beta = \arg\min_{b} E\{(E[\mathbf{y}_{i}|\mathbf{X}_{i}] - \mathbf{X}_{i}'b)^{2}\}.$$
 (3.1.4)

Proof. Start by observing that β solves (3.1.2). Write

$$(\mathbf{Y}_i - \mathbf{X}_i'b)^2 = \{(\mathbf{Y}_i - E[\mathbf{Y}_i|\mathbf{X}_i]) + (E[\mathbf{Y}_i|\mathbf{X}_i] - \mathbf{X}_i'b)\}^2$$

= $(\mathbf{Y}_i - E[\mathbf{Y}_i|\mathbf{X}_i])^2 + (E[\mathbf{Y}_i|\mathbf{X}_i] - \mathbf{X}_i'b)^2$
+ $2(\mathbf{Y}_i - E[\mathbf{Y}_i|\mathbf{X}_i])(E[\mathbf{Y}_i|\mathbf{X}_i] - \mathbf{X}_i'b).$

The first term doesn't involve b and the last term has expectation zero by the CEF decomposition property (ii). The CEF approximation problem, (3.1.4), is therefore the same as the population least squares problem, (3.1.2).

These two theorems give us two more ways to view regression. Regression provides the best linear predictor for the dependent variable in the same way that the CEF is the best unrestricted predictor of the dependent variable. On the other hand, if we prefer to think about approximating $E[Y_i|X_i]$, as opposed to predicting Yi, the regression CEF theorem tells us that even if the CEF is nonlinear, regression provides the best linear approximation to it.

The regression CEF theorem is our favorite way to motivate regression. The statement that regression approximates the CEF lines up with our view of empirical work as an effort to describe the essential features of statistical relationships without necessarily trying to pin them down exactly. The linear CEF theorem is for special cases only. The best linear predictor theorem is satisfyingly general, but seems to encourage an overly clinical view of empirical research. We're not really interested in predicting individual Yi; it's the distribution of Yi that we care about.

Figure 3.1.2 Regression threads the CEF of average weekly wages given schooling (dots = CEF; dashes = regression line).

Figure 3.1.2 illustrates the CEF approximation property for the same schooling CEF plotted in figure 3.1.1. The regression line fits the somewhat bumpy and nonlinear CEF as if we were estimating a model for $E[Y_i|X_i]$ instead of a model for Y_i . In fact, that is exactly what's going on. An implication of the regression CEF theorem is that regression coefficients can be obtained by using $E[Y_i|X_i]$ as a dependent variable instead of Y_i itself. To see this, suppose that X_i is a discrete random variable with probability mass function $g_x(u)$. Then

$$E\{(E[Y_i|X_i] - X_i'b)^2\} = \sum_{u} (E[Y_i|X_i = u] - u'b)^2 g_x(u).$$

This means that β can be constructed from the weighted least squares (WLS) regression of $E[Y_i|X_i = u]$ on u, where u runs over the values taken on by Xi. The weights are given by the distribution of X_i , that is, $g_x(u)$. An even simpler way to see this is to iterate expectations in the formula for β :

$$\beta = E[X_i X_i']^{-1} E[X_i Y_i] = E[X_i X_i']^{-1} E[X_i E(Y_i | X_i)]. \quad (3.1.5)$$

The CEF or grouped data version of the regression formula is of practical use when working on a project that precludes the analysis of microdata. For example, Angrist (1998) used grouped data to study the effect of voluntary military service on earnings later in life. One of the estimation strategies used in this project regresses civilian earnings on a dummy for veteran status, along with personal characteristics and the variables used by the military to screen soldiers. The earnings data come from the U.S. Social Security system, but Social Security earnings records cannot be released to the public. Instead of individual earnings, Angrist worked with average earnings conditional on race, sex, test scores, education, and veteran status.

To illustrate the grouped data approach to regression, we estimated the schooling coefficient in a wage equation using 21 conditional means, the sample CEF of earnings given schooling. As the Stata output reproduced in Figure 3.1.3 shows, a grouped data regression, weighted by the number of individuals at each schooling level in the sample, produces coefficients identical to those generated using the underlying microdata sample with hundreds of thousands of observations. Note, however, that the standard errors from the grouped regression do not measure the asymptotic sampling variance of the slope estimate in repeated micro-data samples; for that you need an estimate of the variance of $Y_i - X_i'\beta$. This variance depends on the microdata, in particular the second moments of $W_i \equiv [Y_i X_i']'$, a point we elaborate on in the next section.

STOP.

3.1.3 Asymptotic OLS Inference

In practice, we don't usually know what the CEF or the population regression vector is. We therefore draw statistical inferences about these quantities using samples. Statistical inference is what much of traditional econometrics is about. Although this material is covered in any econometrics text, we don't want to skip the inference step completely. A review of basic asymptotic theory allows us to highlight the important fact that the process of statistical inference is distinct from the

A - Individual-level data

regress earnings school, robust

	Source	l ss	df		MS	Number of obs			
		·				F(1,409433)	=4	9118.25	
		22631.4793				Prob > F	=	0.0000	
	Residual	188648.31	409433	. 46	0755019	R-squared	=	0.1071	
		+				Adj R-squared	-	0.1071	
	Total	211279.789	409434	. 5	1602893	Root MSE	==	.67879	
		Robust				Old Fashioned			
	earnings	Coef.	Std.	Err.	t	Std. Err	: .	t	
/4:	school	,0674387	.0003	447	195.63	.0003043	 }	221.63	
	const.	5.835761	.0045	507	1282.39	.0040043		1457.38	

B - Means by years of schooling

regress average earnings school [aweight=count], robust sum of wgt is 4.0944e+05)

Source	1	SS	df		MS	Number of obs		21	
	-					F(1, 19)		540.31	
		1.16077332	1	1.16	077332	Prob > F	-	0.0000	
Residual	1	.040818796	19	.002	148358	R-squared	=	0.9660	
	+	~~~~~~				Adj R-squared	=	0.9642	
Total	-	1.20159212	20	.060	079606	Root MSE	-	.04635	
average	•	Robust				Old Fashioned			
earnings	!	Coef.	Std.	Err.	t	Std. Er	c.	t	
school	Ī	.0674387	.0040	352	16.71	.0029013		23.24	
const.	l 	5.835761	.0399	9452	146.09	.0381792		152.85	

Figure 3.1.3 Microdata and grouped data estimates of the returns to schooling, from Stata regression output. Source: 1980 Census—IPUMS, 5 percent sample. The sample includes white men, age 40–49. Robust standard errors are heteroskedasticity consistent. Panel A uses individual-level microdata. Panel B uses earnings averaged by years of schooling.

question of how a particular set of regression estimates should be interpreted. Whatever a regression coefficient may mean, it has a sampling distribution that is easy to describe and use for statistical inference.4

⁴The discussion of asymptotic OLS inference in this section is largely a condensation of material in Chamberlain (1984). Important pitfalls and problems with asymptotic theory are covered in the last chapter.