

Memória virtual Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- O que é memória virtual?
 - ▶ É uma organização lógica da memória para abstrair os endereços físicos da hierarquia de memória

 Cada processo possui seu próprio espaço de endereçamento que é contínuo e dedicado

- Como a memória virtual é implementada?
 - A memória física é dividida em blocos chamados de páginas que são alocadas para diferentes processos

Esta organização cria um esquema de proteção dos dados, pois cada processo tem suas próprias páginas

- Por que a memória virtual foi desenvolvida?
 - Além da proteção dos dados, elimina a responsabilidade do programador pelo gerenciamento situações onde a aplicação não cabe na memória física

 Este gerenciamento consiste em dividir o código e as instruções em partes que são substituídas sob demanda na memória ao longo da execução do software

- Por que a memória virtual foi desenvolvida?
 - O conteúdo da aplicação são contínuos na memória e esta organização pode causar fragmentação da memória

 Na memória virtual, o mapeamento não contíguo dos endereços na memória física previne este problema

Quem vai realizar o gerenciamento de memória?

- Quem vai realizar o gerenciamento de memória?
 - Hardware: é suportado pela Memory Management Unit (MMU) que é responsável pela tradução dos endereços, controle da cache e proteção de memória

- Quem vai realizar o gerenciamento de memória?
 - Hardware: é suportado pela Memory Management Unit (MMU) que é responsável pela tradução dos endereços, controle da cache e proteção de memória
 - Software: o sistema operacional mantém na memória uma tabela de páginas, com os endereços físicos de cada página que está armazenada na memória física

- Pontos chave do projeto de memória virtual
 - Utilização de uma técnica associativa de páginas para minimizar a taxa de falta na memória

- Pontos chave do projeto de memória virtual
 - Utilização de uma técnica associativa de páginas para minimizar a taxa de falta na memória
 - A melhoria da taxa de faltas pode ser obtida com algoritmos de substituição das páginas

- Pontos chave do projeto de memória virtual
 - Utilização de uma técnica associativa de páginas para minimizar a taxa de falta na memória
 - A melhoria da taxa de faltas pode ser obtida com algoritmos de substituição das páginas
 - A política de escrita na hierarquia deve ser atrasada (write back), uma vez que o acesso dos dispositivos de memória pode ser muito demorado

- Estrutura da tabela de páginas
 - Endereços virtuais de 32 bits e páginas com 4 KiB

TABELA DE PÁGINAS

Com $2^{32} \div 2^{12} = 2^{20}$ páginas, a tabela de páginas possui até $2^{20} \times 4 = 4$ *MiB* para cada processo

- Estrutura da tabela de páginas
 - Visão geral da organização da memória

- Estrutura da tabela de páginas
 - Visão geral da organização da memória

O que acontece se todos os *N* processos utilizarem a capacidade total de suas memórias?

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar se a página solicitada está armazenada na memória física

ENDEREGO VIRTUAL

000000000000000000000000000000000000000	010001001000
---	--------------

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar se a página solicitada está armazenada na memória física

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar se a página solicitada está armazenada na memória física

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar se a página solicitada está armazenada na memória física

- Estrutura da tabela de páginas
 - Se o conteúdo da página foi modificado, os dados precisam ser salvos antes da substituição (write back)

- Gerenciamento de memória
 - Todos os componentes da hierarquia de memória apresentam limitações quanto a capacidade
 - ► Registradores < Cache < Memória < Disco

- Gerenciamento de memória
 - Todos os componentes da hierarquia de memória apresentam limitações quanto a capacidade
 - Registradores < Cache < Memória < Disco</p>
 - Quando uma página solicitada não está na memória principal, ocorre uma falta de página (page fault)
 - É decorrente da limitação de capacidade de armazenamento da memória física
 - Se a capacidade é excedida e esta informação foi modificada, é necessário realizar a transferência para o nível inferior da hierarquia (write back)

- Gerenciamento de memória
 - ► Todos os componentes da hierarquia de memória apresentam limitações quanto a capacidade
 - Registradores < Cache < Memória < Disco</p>
 - Quando uma página solicitada não está na memória principal, ocorre uma falta de página (page fault)
 - É decorrente da limitação de capacidade de armazenamento da memória física
 - Se a capacidade é excedida e esta informação foi modificada, é necessário realizar a transferência para o nível inferior da hierarquia (write back)

 \uparrow %Faltas \longleftrightarrow \downarrow Desempenho

- Falta de página
 - A página solicitada não está disponível na memória

- ► Falta de página
 - A página solicitada é carregada na memória física

- ► Falta de página
 - A página solicitada é carregada na memória física

- ► Falta de página
 - A página solicitada é carregada na memória física

- ► Falta de página
 - A página será substituída por falta de espaço na memória

- ► Falta de página
 - A página será substituída por falta de espaço na memória

- Falta de página
 - Substituição por idade associada a cada página (LRU)

- O que acontece quando os processos utilizam muito mais memória do que está disponível?
 - As faltas de páginas são constantes e recorrentes para cada processo, mesmo com políticas sofisticadas de substituição de páginas
 - O sistema consome maior parte do tempo realizando acesso e troca de páginas (trashing)

- O que acontece quando os processos utilizam muito mais memória do que está disponível?
 - As faltas de páginas são constantes e recorrentes para cada processo, mesmo com políticas sofisticadas de substituição de páginas
 - O sistema consome maior parte do tempo realizando acesso e troca de páginas (trashing)

Como melhorar o desempenho no acesso da tabela de páginas armazenadas na memória?

- ► Translation-Lookaside Buffer (TLB)
 - ► É uma cache para tradução de endereços virtuais com mapeamento das linhas totalmente associativo, reduzindo o acesso à memória para obtenção dos endereços físicos

			ENDEREGO VIRTUAL				
01001110010110011101		010001001000					
Validade	Modificado	ldade	IDENTIFICADOR	Endereço da página			
ς	S	1	01110010010110010111	11011001111001110011			
S	N	Ø	01001110010110011101	0111110101111010111110			
N	N	7	?	Ş			
Ν	N	3	?	?			

	$\downarrow \downarrow$	
г		

ENDEREGO FÍSICO

0111110101111010111110	010001001000
------------------------	--------------

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A TRADUÇÃO DO ENDEREÇO VIRTUAL ESTÁ DISPONÍVEL NA TLB,
ASSIM COMO O DADO/INSTRUÇÃO REFERENCIADO ESTÁ ARMAZENADO NA CACHE

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A TRADUÇÃO DO ENDEREÇO VIRTUAL ESTÁ DISPONÍVEL NA TLB, MAS O DADO/INSTRUÇÃO PRECISA SER CARREGADO DA MEMÓRIA PRINCIPAL

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A TRADUÇÃO DO ENDEREÇO VIRTUAL NÃO ESTÁ NA TLB,
CONTUDO A PÁGINA E O DADO/INSTRUÇÃO ESTÃO DISPONÍVEIS NAS MEMÓRIAS

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A TRADUÇÃO DO ENDEREÇO VIRTUAL NÃO ESTÁ NA TLB, COM FALTA DO DADO/INSTRUÇÃO NA CACHE E PÁGINA DISPONÍVEL NA MEMÓRIA

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

Ocorrem faltas em todos os níveis da hierarquia, Demandando o acesso à memória externa (pior cenário)

- O que é segmentação de memória?
 - É um esquema de virtualização, que ao contrário das páginas que possuem tamanho fixo e sem configurabilidade, cria segmentos tamanho variável que podem ser definidos pelo compilador ou programador, com suas respectivas permissões de acesso

			ENDEREGO VIRT	TUAL						
	Ø11111111111111110				010001001000					
	INDICE	Validade	Modificado	P _{RIVIL} ÉGIO	PERMISSÃO	ENDERECO DO SEGMENTO				
	:	:	:	:	:	:				
91111	1111111111111111111110	N	N	Ü	RW	Ŗ				
	:	:	:	:	:	:				

Memória virtual x Memória física

- Falha de segmentação (segmentation fault)
 - ▶ É gerada quando endereços inválidos são acessados
 - ► Endereço inexistente
 - Acesso não alinhado

- ► Falha de segmentação (segmentation fault)
 - ▶ É gerada quando endereços inválidos são acessados
 - ► Endereço inexistente
 - Acesso não alinhado
 - Violação de restrição ou privilégio
 - ► Tentativa de escrita de segmento somente leitura
 - Acesso de usuário em segmento de supervisor

► Comparativo entre paginação e segmentação

Característica	Paginação	Segmentação
Estruturas de dados	×	_/
dinâmicas	^	·
Compartilhamento de dados	×	✓
entre processos		
Proteção por atributos	×	_/
de controle	^	,
Gerenciamento invisível	./	×
ao programador	•	
Fragmentação externa	./	×
de memória	•	

Comparativo entre paginação e segmentação

Característica	Paginação	Segmentação	
Estruturas de dados	×	_/	
dinâmicas		V	
Compartilhamento de dados	×	✓	
entre processos			
Proteção por atributos	×		
de controle		·	
Gerenciamento invisível	/	×	
ao programador	•		
Fragmentação externa	/	×	
de memória	•		

É possível criar uma segmentação paginada?

- Endereçamento virtual
 - ► É feita a indexação do segmento para obter o endereço linear, que será usado para acessar as suas páginas

- ► Endereço linear
 - Para realizar a tradução do endereço físico, é feita a indexação do diretório e da tabela de páginas

Memória virtual x Memória física

- Combina as características da paginação e da segmentação, sendo utilizada pelas principais arquiteturas
 - Multics
 - Intel x86
 - ARM
 - RISC-V
 - •

- O que é um sistema embarcado?
 - ► É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real

- O que é um sistema embarcado?
 - ► É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real

Por que não utilizar memória virtual?

- O que é um sistema embarcado?
 - ▶ É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real
 - Por que não utilizar memória virtual?
 - ► Tempo determinístico para execução do software: a falta de páginas não é previsível (não determinismo)

- O que é um sistema embarcado?
 - ► É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real

Por que não utilizar memória virtual?

- ► Tempo determinístico para execução do software: a falta de páginas não é previsível (não determinismo)
- Limitações no hardware: falta de unidade de gerenciamento de memória (MMU) e grande latência no acesso da memória externa