Convolutional Neural Nets II

Hands On

- Motivation for CNN
 - Focus here on image classification
- Frameworks
 - Caffe / Lasagne
- Recap MLP / Demo MLP
- Recap CNN / Demo CNN
- Some Tricks
 - Dropout
 - Training and Test augmentation (Learning Symmetries)
- Demo CNN with Augmentation

Code for demos: https://github.com/oduerr/dl tutorial

- 1980 Kunihiko Fukushima introduction
- 1998 Le Cun (Backpropagation)
- Many Contests won
 - 2011& 2014 MINST Handwritten Dataset
 - 201X Chinese Handwritten Character
 - 2011 German Traffic Signs
- ImageNet Success Story
 - Alex Net (2012) winning solution of ImageNet...

Zurich University of Applied Sciences

Some Examples
With Alexnet results
1000 Classes

drilling platform

2012

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) - 26.2% error

2010-2014

SuperVision AlexNet 7 layers deep

GoogLeNet 6.7%

SuperVision

A really convincing fact

Zurich University

Kaggle Plankton Competition (2015)

There is another bold one

Frameworks

Overview of frameworks

Disclaimer: "This is a fast changing field. The list is not exclusive".

Survey from the partcipiants of the Kaggle Challenge (Feb 2015)

Most Mentioned

- lasagne / nolearn
 - Python based on Theano, very flexible (winning team "Deep See" used it)
- caffe
 - C++ based library, python bindings, convenience functions, many existing / pretrained models

Also used

- Theano (plain vanilla)
 - Symbolic computation of gradients and construction of numerical C-code
- Torch, lua (used by Facebook)
- Cxxnet
- ...

- C++ library with python bindings
- Settings (network layout and others) via files

- Documentation: poor
- Feels like a Blindflug

- Up to data components
 - Alexnet,GoogLeNet
- Input: Images or strange DBs
- Data Augmentation: Not possible from python
- Predefined models available

Lasagne / nolearn

- Lasage: python using theano (library define, optimize, and evaluate mathematical expressions on GPU)
- Nolearn is a wrapper around lasagne to provide a similar interface then scikit-learn
- Documentation: poor, but use the source luke
- Feels like you understand /control bells and whistles
- Custom components possible (provided Theano has functionallity)
- Input: Any numpy arrays
- Data Augmentation: Easy
- No predefined models (<u>vet</u>)

We will focus on lasagne

Links for Caffe

We will focuss on Lasagne but some links to Caffe for reference (thanks to Gabriel)

- https://github.com/oduerr/dl-playground/tree/master/python/FaceCaffe
- http://vision.princeton.edu/courses/COS598/2015sp/slides/Caffe/ caffe_tutorial.pdf
- http://vision.stanford.edu/teaching/cs231n/slides/caffe_tutorial.pdf
- https://docs.google.com/presentation/...

Recap Neural Nets

Recap Neural Networks: Basic Unit

of Applied Sciences

Zurich University

zh

N-D log Regression

Activation Function a.k.a. Nonlinearity *f*(*z*)

Motivation:

Green: logistic regression.

Red: ReLU faster convergence

Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons

Source: Alexnet

Krizhevsky et al 2012

Recap Neural Networks: Stacking things together

Contains many weights $W^{(l)}_{ij}$

This is just a complex functions of the many weights $\theta = W_{ij}^l$ and the input predicting the prob. of a class.

Output (Softmax)

$$f(z_i) = \frac{e^{z_i}}{\sum_{i=1}^{N} e^{z_i}}$$

Propability of a class given the input image X

Recap Neural Networks: Training the NN

- Use the training data j=1,...,N_{train} to optimize a costfunction J sensitive to misclassication
 - Usual a subset n (minibatch) of the training data is taken for optimization in one go.

$$-nJ(\theta) = \sum_{i=1}^{n \text{ (Mini Batch Size)}} \text{Cost of Training example } X_i$$

- Motivation of cost function from MaxLikelihhod
- Optimal weights are found in many iterations using gradient descent (α learning rate)

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial J(\theta)}{\partial \theta_i}$$

Backpropagation a.k.a chainrule is used to calculate the gradient

Illustration of Gradient Descent

 θ_1, θ_2 just two from millions

Demo MLP

Definition Data/Network (MLP)

In reality much more nodes

Images 28x28 =784

500

50

10

Now for the Demo...

Remedy:

- Weight sharing → Convolution
- Sparse connectivity → Pooling

The convolutional layer Ingredient I: Convolution

What is convolution?

of Applied Sciences

35	40	41	45	50								
40	40	42	46	52		0	1	0				
42	46	50	55	55	X	0	0	0			42	
48	52	56	58	60		0	0	0		Ť		
56	60	65	70	75								

The 9 weights W_{ij} are called Kernel.

The weights are not fixed they are learned!

The convolutional layer Ingredient I: Convolution

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Image

Convolved Feature

The *same* weights are slid over the image

Edge enhance Filter

But again!

The weights are not fixed. They are learned!

The convolutional layer Ingredient II: Max-Pooling

Also sliding window versions.

Simply join e.g. 2x2 adjacent pixels in one.

Hinton: "The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster"

A simple version of the CNN (LeNet5 Architecture)

Zurich University

20 Kernels a 5x5 weights to go from one to the next

A typical recent architecture (AlexNet, 2012)

Senimal paper. introduced 26.2% error → 16.5%

- Dropout (see below)
- ReLU instead of sigmoid
- Parallelisation on many GPUs
- Local Response Normalization (not used widely nowadays)

A bit of a simplification, since Alex Net is build for 2 GPUs and normalization. Caffe code from here

The inception module (convolutions and maxpooling)

Few parameters, quite hard to train.

Comments see here

Going deeper with convolution http://arxiv.org/abs/1409.4842

A typical very recent architecture ("Oxford Net"(s), 2014)

ConvNet Configuration									
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
maxpool									
FC-4096									
FC-4096									
	FC-1000								
soft-max									

- Small pooling
- More than 1 conv before maxpooling.
- No strides (stride 1)
- ReLU after conv and FC
- More traditional, easier to more weights than GoogLeNet
- Caffe Implementation

A typical very recent architecture ("Oxford Net"(s), 2014)

Zh

Definition (16 Layer) taken from: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md

Demo Lasagne II (Convolutional)

Demo: Nolearn/Lasagne (LeNet Architecture)

Zurich University of Applied Sciences


```
layers=[
    ('input', layers.InputLayer),
    ('conv1', layers.Conv2DLayer),
    ('pool1', layers.MaxPool2DLayer),
    ('conv2', layers.Conv2DLayer),
    ('pool2', layers.MaxPool2DLayer),
    ('hidden4', layers.DenseLayer),
    ('output', layers.DenseLayer),
    ],
    input_shape=(None, 1, PIXELS, PIXELS),
    conv1_num_filters=32, conv1_filter_size=(3, 3), pool1_ds=(2, 2),
    conv2_num_filters=64, conv2_filter_size=(2, 2), pool2_ds=(2, 2),
    hidden4_num_units=500,
    output_num_units=10, output_nonlinearity=nonlinearities.softmax
```


(Some) tricks of the trade

Data Augmentation

- Zurich University of Applied Sciences
- zh

- Create "new training" data by "lable preserving transformation"
- Force invariances under translational symetrie (translation, rotation,)

Pre-processed images (left) and augmented versions of the same images (right).

Taken from the winning solution of the plankton challenge. http://benanne.github.io/2015/03/17/plankton.html

Dropout

(a) Standard Neural Net

(b) After applying dropout.

At each mini-batch remove random nodes "dropout"

Test Time

Idea: Averaging over many different configuration (exact in case of linear). Typically 10% performance invcrease

Demo Lasagne III (Convolutional with Training-Data Augmentation)

Attic

Taking a closer look: Convolution

Documentation:

- The convolutional layer is finished with a nonlinearity:
 - Possible:
 - identity (nothing, linear), rectify (default), tanh, softmax (good for last layer), sigmoid
- Different sizes
 - no padding / padding via
 - conv1_border_mode='valid' #(None, 1, 28, 28) → (None, 32, 26, 26)
 - conv1_border_mode='same' #(None, 1, 28, 28) → (None, 32, 28, 28)
 - conv1_border_mode='full' #(None, 1, 28, 28) → (None, 32, 30, 30) #?????
 - stride schrittweite default (1,1)
 - conv1_strides=(2,2) #(None, 1, 28, 28) \rightarrow (None, 32, 13, 13)

Observation:

Seems to take quite a while for compiling

Figure 1: A four-layer convolutional neural network with ReLUs (solid line) reaches a 25% training error rate on CIFAR-10 six times faster than an equivalent network with tanh neurons

Source: Krizhevsky et al 2012

Six Times faster Convergence, than traditional approach.

Intuition: Backpropagation

Generell Notes on Optimization

- Gradient Descent (only first order)
- Newton Taylor Expansion 2nd Order using Hessian

•

Taking a closer look: Learning Rate & Momentum

- Nice Description <u>Caffe Tutorial</u>
- Nice Visualization:
 - http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/
- Problem with (stochastic) Gradient Descent are Valleys. You bounce up and down the walls and don't descent the slope.
 - Solutions Momentum, Nesterov Momentum (NAG)

$$V_{t+1} = \mu V_t - \alpha \nabla L(W_t)$$

$$V_{t+1} = \mu V_t - \alpha \nabla L(W_t + \mu V_t)$$

$$W_{t+1} = W_t + V_{t+1}$$

$$W_{t+1} = W_t + V_{t+1}$$

Put mu=0 and we have (S)GD

Taking a closer look: Learning Rate & Momentum

AdaGrad use all historic information

Hessian Free Optimizer