bareme

Test

Computer Vision and Machine Learning 10 Octobre 2019

Nom et	pr	ér	101	m	:													

Aucun document n'est autorisé. Pas de téléphone, machine à calculer ni ordinateur.

On rappelle quelques équations utilisées lors de l'algorithme de boosting:

$$\epsilon_t = \sum_{i=1}^m D_t(i)[y_i \neq h_t(x_i)]$$

$$\alpha_t = \frac{1}{2} \ln(\frac{1 - \epsilon_t}{\epsilon_t})$$

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(i))}{Z_{t+1}}$$

avec Z_t tel que: $1 = \sum_{i=1}^m D_t(i)$

Question [boost0] Donnez le principe de l'algorithme de boosting en une simple phrase.

Question [boost1] On utilise l'algorithme d'Adaboost afin de déterminer les points rouges des points bleus. On donne ci-dessus les vraies couleurs des points, les poids de l'itération numéro 2, et les couleurs déterminées lors de cette itération. On s'intéresse aux poids pour l'itération suivante. Dans chaque case du tableau, écrivez '>', '=' ou '<' selon que le poids augmente, est égal ou diminue, par rapport à l'itération précédente.

i	1	2	3	4	5	6	7	8
vraie couleur	rouge	rouge	rouge	rouge	bleu	bleu	bleu	bleu
$D_2(i)$	0.1	0.1	0.1	0.1	0.1667	0.1	0.1667	0.1667
prédiction	bleu	bleu	rouge	rouge	bleu	bleu	rouge	bleu
$D_3(i)$								

Question [boost2] On utilise l'algorithme d'Adaboost afin de déterminer les points verts des points violets. On donne ci-dessus les vraies couleurs des points, les poids de l'itération numéro 2, et les couleurs déterminées lors de cette itération. On s'intéresse aux poids pour l'itération suivante. Dans chaque case du tableau, écrivez '>', '=' ou '<' selon que le poids augmente, est égal ou diminue, par rapport à l'itération précédente.

							1
i	1	2	3	4	5	6	7
vraie couleur	violet	violet	violet	violet	vert	vert	vert
$D_2(i)$	0.125	0.125	0.125	0.1667	0.125	0.1667	0.1667
prédiction	violet	vert	violet	violet	vert	vert	violet
$D_3(i)$							

CATALOGUE

Question [boost3] On utilise l'algorithme d'Adaboost afin de déterminer les points jaunes des points bleus. On donne ci-dessus les vraies couleurs des points, les poids de l'itération numéro 2, et les couleurs déterminées lors de cette itération. On s'intéresse aux poids pour l'itération suivante. Dans chaque case du tableau, écrivez '>', '=' ou '<' selon que le poids augmente, est égal ou diminue, par rapport à l'itération précédente.

									12
i	1	2	3	4	5	6	7	8	9
vraie couleur	jaune	jaune	jaune	jaune	jaune	bleu	bleu	bleu	bleu
$D_2(i)$	0.1	0.1	0.125	0.125	0.1	0.1	0.125	0.125	0.1
prédiction	jaune	bleu	jaune	jaune	jaune	jaune	jaune	bleu	bleu
$D_3(i)$									

Question [cascade1]	Lors du boosting	en cascade, quelles	sont les proprié	
premiers étages ?				
Question [cascade2]	Pourquoi utilise	er des algorithmes	de boosting e	n cascade ?
				0 0.5