(2-F-56) Histogram of Gradient Orientations of Signal Plots applied to Brain Computer Interfaces

Ramele Rodrigo, Santos Juan Miguel, Villar Ana Julia

Computer Engineering Department, Graduate School of Engineering, Buenos Aires, Argentina

Introduction

- **▶** Where are the Waveforms?
 - ▶ Around **71.2%** of BCI Research is based on Noninvasive EEG [1]
- ► EEG has traditionally focused on temporal waveforms. Few methods exploited automatically signal waveforms:
 - ▶ Matching Pursuit (Mallat 1993)
- ▶ Permutation Entropy (Bandt-Pompe 2002)
- Slope Horizontal Chain Code^[2].
- ▶ Merging of Increasing and Descending Sequences^[3].
- ► Clinical atlases and guidelines were developed based on waveforms.
- ▶ More interaction between BCI stakeholders should be fostered [7].

Materials

- Research Oriented Digital EEG Device
 - ▶ g.Nautilus, 8-channel, wet electrodes, g.Tec.
- Open Source Platform and Software
- ▶ OpenVibe
- ▶ Matlab
- Library.

Figure 1: Subject performing a P300 Speller experiment

- Offline datasets
 - Physiobank Alpha Wave
 - ▶ Motor Imagery BNCI-Horizon 002-2014
 - ▶ ALS P300 BNCI-Horizon 008-2014

Methods: Processing Pipeline and Feature Extraction

- 1. Signal Preprocessing and Segmentation
- 2. Signal Plotting: single channel binary image

$$I(z_1, z_2) = \begin{cases} 255 \text{ if } z_1 = \gamma \cdot n; \ z_2 = EEG(n, c) + z(c) \\ 0 \text{ otherwise} \end{cases}$$

▶ Bresenham algorithm interpolates straight lines between consecutive sample points.

(a) Patch over a Signal Complex (b) Gradient vector field around (c) Oriented histogram on each

Figure 2: Sample patch around a signal complex. The patch is divided in 4×4 blocks and $oldsymbol{8}$ orientations (bins) are calculated on each block, forming a $oldsymbol{128}$ normalized feature called descriptor.

- 3. The Histogram of Gradient Orientations
- ▶ Popular and powerful tool from Computer Vision and basis of SIFT^[5] feature extraction method.
- Inspired on how the visual cortex identify shapes.
- For every pixel **p** on the image plot:

$$h(\theta, i, j) = 3s \sum_{p} w_{ang}(\angle J(p) - \theta) w_{ij} \left(\frac{p - kp}{3s}\right) |J(p)|$$

with s as the scale of the patch, J(p) is the finite differences gradient vector, $\theta \in \{0, 45, 90, 135, 180, 225, 270, 315\}$, $i, j = \{0, 1, 2, 3\}$, using the following trilinear interpolation functions [6]

$$w_{ij}(\mathbf{v}) = w(v_x - x_i)w(v_y - y_i), w_{ang}(\alpha) = \sum_k w(\frac{8\alpha}{2\pi} + 8r)$$

$$w(z) = \max(0, |z| - 1)$$

Methods: Classification

- Straightforward supervised classification model based on Naive Bayes Near Neighbor.
- ▶ Binary (oscillatory) or unary (transient) classification
- \triangleright For descriptors d_i obtained from test signals, the class where the image (and the signal) belongs can be inferred by resolving

$$\hat{C} = \arg\min_{C} \{ \sum \|d_{i} - NN_{C}(d_{i})\|^{2} \}$$

 \blacktriangleright where $NN_C(d_i)$ are the set of prototype descriptors.

Results

Transient and oscillatory phenomena have been studied.

Waveform	Best ACC	Intra-Subject Avg
$\overline{\mu}$	75%	65%
P300	95%	45%
lpha	95%	80%
	C1 :C: .: A	

Table 1: Classification Accuracy percentage

Results

Figure 3: Classification accuracy percentages.

Significance

- ► A method which is biomimetically based on how the visual cortex works by detecting orientations, ironically, is used preciely to detect information from the brain.
- ▶ It has universal applicability because the same basic methodology can be applied to detect different patterns in EEG for BCI
- ► It has the potential to foster close collaboration with physicians and electroencephalograph technicians.
- ► Follows the established procedure of the clinical EEG of analyzing waveforms by their shapes.
- Eases the clinical acceptance and use of qEEG technologies.

References

- 1 Guger C., Allison B.Z., Lebedev M.A. (2017) Recent Advances in Brain-Computer Interface Research A Summary of the BCI Award 2016 and BCI Research Trends.
- 2 Alvarado-Gonzlez, M.; Garduo, E.; Bribiesca, E.; Yez-Surez, O.; MedinaBauelos, V. P300 Detection Based on EEG Shape Features. 2016
- 3 Zhang J.; Zou J.; Automatic detection of interictal epileptiform discharges based on time-series sequence merging method, Neurocomputing, 2013;
- 4 Ramele, R.; Villar, A.J.; Santos, J.M. BCI classification based on signal plots and SIFT descriptors. 2016;
- 5 D. G. Lowe, Object recognition from local scale-invariant features. 1999
- 6 Vedaldi, A.; Fulkerson, B. VLFeat An open and portable library of computer vision algorithms. Design 2010;
- 7 Chavarriaga et al; Heading for new shores! Overcoming pitfalls in BCI design, Brain-Computer Interfaces, TF 2016;

Acknowledgments

► This project was supported by the ITBACyT-15 funding program issued by ITBA University in Buenos Aires, Argentina