Лабораторна робота № 4

Розробка імітаційних моделей обладнання, розрахованого на генерацію теплової та/або електричної енергії з використанням відновлених та викопних джерел енергії.

1. Розробка імітаційної моделі діючої вітряної електростанції.

Завданням роботи ϵ створення математичної моделі для розрахунку потужності вітроелектростанції на основі даних швидкості вітру, температури навколишнього середовища, висоти встановлення установки та її технічних характеристик (Таблиці 1 і 2). Передбачити:

- підключення до сервісів прогнозу погоди з використаням даних по швидкості вітру та температури для розрахунку потужності повітряного потоку;
- можливість додавання в программу інших типів вітроелектростанцій з задаванням їх характеристик в табличній формі в діапазоні зміни швидкостей вітру, характерних для цих генераторів (максимальний діапазон 0....40 м/с) та зберіганням інформації по всіх варіантах;
- розрахунок потужності вітроелектростанції та прогнозу виробництва електроенергії за вказаний період часу.

Таблиця №1 Середня швидкість вітру по обласним центрам у 2023 році

Середня швидкість вітру по обласним центрам у 2023 році Середня швидкість вітру, м/с								
Місяць	Запоріжжя	Київ	Житомир	Одеса	Львів	Івано- Франківськ	Рівне	Дніпро
1.2023	2.3	2.3	2	3.9	2.6	2.2	4.1	4.1
2.2023	1.8	2.7	1.9	2.9	3.3	3.6	5	3.7
3.2023	1.8	2.5	2	2.6	3.1	2.9	4.5	3.3
4.2023	2	1.9	1.7	2.8	2.3	2.8	3.6	3.5
5.2023	1.2	1.9	1.3	1.9	2.3	2.6	3.2	2.2
6.2023	1.4	1.6	1.3	1.9	1.9	2.1	3.3	3
7.2023	1.4	1.6	1.2	2.3	1.8	2.2	2.9	3.2
8.2023	1.2	1.1	0.9	1.8	1.8	1.8	2.6	2.8
9.2023	1.3	1	0.4	2.1	1.5	1.3	2.5	2.5
10.2023	1.3	2	1.5	2.2	2.6	2.2	4.3	3.9
11.2023	2.3	2.6	2.1	3.9	3	2.5	4.8	4.6
12.2023	2.3	2.3	2.4	2.7	3.3	2.3	5.4	4.4

Таблиця №2 Середня температура по обласним центрам України у 2023 році

Місяць	Середня температура, °С								
	Запоріжжя	Київ	Житомир	Одеса	Львів	Івано- Франківськ	Рівне	Дніпро	

1.2023	+0.2	-0.3	+0.6	+3	+1.9	+1.8	+0.9	-1.1
2.2023	-0.3	-0.3	-0.2	+2.4	-0	+0.6	-0.4	-1
3.2023	+5.9	+4.8	+4.7	+6.2	+4.6	+4.9	+3.9	+5.5
4.2023	+10.7	+9.6	+8.7	+10	+7.8	+7.6	+7.7	+10.3
5.2023	+16.5	+16.2	+15.1	+16.6	+14	+14	+14.2	+16.4
6.2023	+20.8	+19.6	+18.9	+21.3	+17	+17.3	+17.9	+20.3
7.2023	+23.7	+21.5	+20.8	+23.8	+19.6	+20.4	+20	+23
8.2023	+25	+23.8	+22.8	+25.3	+20.9	+21.1	+21.5	+24.3
9.2023	+20.1	+18.8	+18	+21.4	+17.1	+17.1	+17.8	+19.3
10.2023	+12.4	+11.4	+11.5	+16.2	+11.1	+11.9	+11.3	+11.9
11.2023	+6.4	+4.1	+3.8	+8.4	+3.8	+4.3	+3.1	+5.3
12.2023	+2.6	+0.7	+1.1	+4.7	+1.3	+1.1	+0.4	+1.6

Теоретичні матеріали.

Існує багато варіантів вітряних електростанцій (рис.1), які забезпечують перетворення енергії вітру в електричну енергію або використовується в вимірюваннях.

Рис.1.Вітрогенератори різних типів: а) з горизонтальним розташуванням ротору;

та з вертикальним розташуванням ротору: б) Ротор Савоніуса; в) Ротор Дар'є;

г) з чашковим ротором

Обгрунтовано вважається, що генератори з вертикальним розташуванням ротору мають перевагу в умовах низької швидкості вітру. Для вітрогенераторів з горизонтальним розташуванням ротору ьажана швидкість вітру 5 м/сек і вище.

Потужність вітрогенератора залежить від потужності повітряного потоку Р, яка визначається залежністю,

$$P = \frac{1}{2} \cdot \rho \cdot A \cdot v^3$$

де ρ — щільність повітря, кг/м³, яка визначає вагу 1 м³ повітря.

A – площа перетину ротора вітроустановки, M^2 ;

v- швидкість руху повітряного потоку, м/с.

Для горизонтально-осьових генераторів $A = \frac{\pi \cdot D^2}{4}$;

Для вертикально-осьових генераторів $A = D \cdot H;$

Н – висота лопатей вертикально-осьових генераторів, м.

Щільність повітря залежить від температури та тиску

$$\rho = M \cdot P / (R \cdot T),$$

де Р – тиск газу, кПа (101,115 кПа - нормальні умови); R - універсальна газова константа R=8,314 (Дж/(K·моль)), T – температура, K, M - маса моля, яка дорівнює 29 г/моль. Вплив температури та тиску врахувається при розрахунку потужності повітряного потоку.

Залежність потужності вітряних електростанцій від швидкості вітру має нелінійний характер (рис.2.). Виходячи з механічних характеристик лопатей швидкість обертів ротора електростанції обмежується. В наведеному на рис.2 графіку обмеження організоване при швидкості 15 м/с і вище.

Рис.2. Приклад графіку залежності потужності вітроелектростанції від швидкості вітру за нормальних умов.

Електрична потужність вітрогенератора розраховується з урахуванням коефіцієнта використання енергії вітру. Для вітрогенераторів з горизонтальним розташуванням ротору цей коефіцієнт Кеф орієнтовно становить 0,4, для установок з вертикальним ротором – 0,3. Таким чином, вітроелектростанція генерую електричну енергію Рел, яка визначажться за формулою:

$$P_{e\pi} = P \cdot K_{e\phi}$$

і вимірюється в ватах.

2. Завданням роботи ϵ створення програми для розрахунку експлуатаційних показників електро/теплогенеруючого обладнання на основі його паспортних характеристик та якісних показників вхідного палива.

Передбачити проведення розрахунку для типів обладнання:

- котел,
- когенераційна установка,
- тепловий насос,
- рекуперативний теплообмінник.

Вхідні дані для розрахунку агрегатів.

В якості палива використовуються:

- природний газ, $Q_{\rm H}^{\rm p} = 9,5 \ {\rm kBr \cdot rog/m^3},$ вугілля, $Q_{\rm H}^{\rm p} = 7 \ {\rm kBr \cdot rog/kr},$

- пелети з деревини $Q_{\rm H}^{\rm p}$ =4,2 кВт·год/кг,
- дизельне паливо $Q_{\rm H}^{\rm p} = 12 \ {\rm kBt \cdot год/л}.$

Теплові агрегати характеризуються:

1. <u>Котел</u>. **Вхідні данні:** ККД використання палива η_{κ} (80...92%), витрата палива M_{π} (кг/год, м³/год, л/год) (5...20), витрата теплоносія через котел V_{B} (кг/год) (500....3000), температура води на вході в котел T_{Bx} .

Задача - визначення потужності котлоагрегата, Q, кВт (5...20), температури на виході з котла $T_{\text{вих}}$ та різниці між вхідною та вихідною температурами ΔT .

Енергія палива витрачається на виробництво теплової енергії

$$Q_{\kappa} = M_{\pi} \cdot Q_{H}^{p} \cdot \eta_{\kappa} / 100$$

Температура води після нагрівання її в котлі зростає з початкової $T_{\text{вх}}$ до

$$T_{\text{BHX}} = T_{\text{BX}} + 3600 \cdot Q_{\text{K}} \, / \, (4{,}187 \cdot \, V_{\text{B}})$$

Вхідними даними для розрахунку котла ϵ :

- витрати палива протягом години;
- тип палива;
- ККД котла;
- витрати теплоносія в системі опалення;
- температура теплоносія на вході в котел.

Результат розрахунку: потужність котла, температура теплоносія після нагріву води в котлі.

- 2. <u>Когенераційна установка:</u> **Вхідні данні:** витрата палива $M_{\Pi,K\Gamma Y}$ (м³/год, л/год) (5...20), витрата теплоносія через когенераційну установку $V_{B,K\Gamma Y}$ (кг/год) (500....3000), температура води на вході в теплообмінник когенераційної установки T_{BX} , ККД виробництва електричної ($\eta_{K\Gamma Y,E.} = 35...44\%$) та теплової ($\eta_{K\Gamma Y,T.} = 40...45\%$), енергії,
 - Задача визначити потужність когенераційної установки електричну $N_{\text{кгу.e.}}$ кВт потужність когенераційної установки теплова $Q_{\text{кгу.т.}}$ кВт температуру на виході з теплообмінника когенераційної установки $T_{\text{вих}}$ та різниці між вхідною та вихідною температурами ΔT

Енергія палива витрачається на виробництво теплової та електричної енергій

$$\begin{split} N_{\text{kfy.e.}} &= M_{\text{fi,kfy}} \cdot Q_{\text{h}}^{p} \cdot \eta_{\text{kfy.e.}} / 100 \\ Q_{\text{kfy.t.}} &= M_{\text{fi,kfy}} \cdot Q_{\text{p}}^{p} \cdot \eta_{\text{kfy.t.}} / 100 \end{split}$$

Температура води після нагрівання її в утилізаторі когенераційної установки зростає з початкової $T_{\text{вх}}$ до

$$T_{\text{BMX}} = T_{\text{BX}} + 3600 \cdot Q_{\text{KFY.T.}} / (4.187 \cdot V_{\text{B,KFY}})$$

3. Тепловий насос:

Вхідні данні:

- електрична потужність насосу N_{т.н.}, кВт,
- температура холодного джерела теплової енергії (скидні теплові потоки, геотермальний теплоносій) навколишнього середовища;
- таблиця залежності коефіцієнту трансформації теплового насосу від різниці температур навколишнього середовища і кінцевої температури води на виході з теплообмінника теплового насосу, яка створюється з використанням графічних даних рис.3;

Рис.3. Коєфіцієнт трансформації енергії (СОР) в залежності від температури холодного джерела (скидного потоку води/ геотепла зі скважин) і температури нагріву води.

- температура води на вході в тепловий насос $T_{\text{вх}}$ (30...40°C);
- задана температура нагріву води $T_{\text{вих}}$ (50...65°C).

Задача - визначити теплову потужність теплового насосу

$$Q_{\scriptscriptstyle T.H.} = N_{\scriptscriptstyle T.H.} \cdot \; \epsilon_{\scriptscriptstyle T.H.},$$

визначити витрату теплоносія, що нагрівається в теплообміннику теплового насосу:

$$V_B = 3600 \cdot Q_{T.H.} / ((T_{BUX} - T_{BX}) \cdot 4,187)$$

4. Рекуперативний теплообмінник:

Вхідні данні:

- ККД рекуператора η_{рек.} (85....90%),
- температура повітря в приміщенні Т_{пов.пр.},
- температура навколишнього середовища Т_{н.с.} (з прогнозу погоди),
- кількість людей, що проживає в помешканні;
- нормативний повітряобмін на 1 людину.

Об'єм повітря $V_{\text{пов.}}$, яке необхідно подавати в приміщення для забезпечення життєдіяльності людей визначається з розрахунку

$$V_{\text{пов.}}$$
, = $n \cdot V_{\text{норм.}}$,

де n - кількість людей, що проживає в помешканні, $V_{\text{норм.}}$, - нормативний повітряобмін на одну людину м³/год.

Теплова енергія, яка необхідна для компенсації енергії, що втрачається під час видалення відпрацьованого повітря з приміщення $\Delta Q_{\text{пов}}$, з допустимою похибкою, викликаною зміною щільності повітря під час зміни його температури, розраховується з використанням залежності:

$$\Delta Q_{\text{пов}} = c_p \cdot (T_{\text{пов.пр.}} - T_{\text{н.с.}}) \cdot V_{\text{пов.}} / 3600,$$

де c_p – теплоємність повітря, $c_p = 1$ кДж/(м³·К).

Тепловий потік, який компенсується рекуператором становить:

$$Q_{\text{pek}} = \Delta Q_{\text{пов}} \cdot \eta_{\text{pek.}} / 100,$$

Теплова енергія, яку необхідно витратити для підігріву повітря до рівня температури в приміщенні у випадку використання рекуператора теплової енергії Q_{нагр} становить

$$Q_{\text{нагр}} = \Delta Q_{\text{пов}}$$
 - $Q_{\text{рек}}$,

$$\begin{split} T_{\text{BHX H.C.}=} T_{\text{BX H.C.}} + 3600 \cdot Q_{\text{Harp.}} \ / \ V_{\Pi OB} \\ T_{\text{BHX}} = T_{\text{BX}} - 3600 \cdot Q_{\text{Harp.}} \ / \ V_{\Pi OB} \end{split}$$

Задача - визначити нормативний повітряобмін для даного помешкання, м³/год теплову потужність рекуператора, кВт,

зменшення споживання теплової енергії на підігрів повітря за рахунок рекуператора, кВт.

температуру видаленого з приміщення повітря після проходження через рекуператор, °С;

температуру повітря, що подано в кімнату з навколишнього середовища через рекуператор, °С.

В рамках виконання лабораторної роботи визначити

- 1. Потужність вітрових електростанцій з вертикальним і горизонтальним ротором з заданою площею перетину (орієнтир 5....20 м²), створивши інтерфейс, який дозволяє змінювати площу перетину вітрогенератора та місто, для якого проводиться розрахунок. В результатах представити інформацію про вихідні дані та помісячні і річний об'єми згенерованої електричної енергії в кВт*год
- 2. Результуючі показники по розрахунку котла/генератора/теплового насосу, рекуператора. Представити вихідні данні і результати розрахунку.