M403- Fall 2013- HW7- Enrique Areyan (iii) Let XEF, and WEW. Again, since T is an isomorphism, there exists VEV s.t. T(v)=W, which means that V=T'(w). But then: T(XV) = XT(V); Since T is linear apply T' to both sides $T^{-1}(T(\times \vee)) = T^{-1}(\times T(\vee))$ dv = T'(xt(v)); but by definitions; $V = T'(w) \wedge T(v) = w$ (i) 8(ii) =) T' is a linear transformation from W to V. (two) $\left(\alpha t^{-1}(w) = t^{-1}(\alpha w)\right)$ (b) Now, let AEM, (F) and 4: F">F" denote the linear transformation given by left multiplication by A. Prove that LA is an isomorphism (=) Pf: (=) Suppose LA is an isomorphism. We want to find a matrix the matrix A is invertible. B S.t: AB=BA=I, and conclude that A is invertible with inverse B. By part (a); Since LA is an isomorphism and a linear transformation, LAT (inverse of LA) is also a linear transformation. We proved in class
that are as that for each linear transformation T, there is a unique METINE St T-1 0-1 S.T. T=Ln. Apply this to La to get that La = LB, for some BEM_n(F). But then B is the inverse of A since for all JEF $(A \cdot B)(\overrightarrow{v}) = A(B(\overrightarrow{v})) = A(LA^{-1}(\overrightarrow{v})) = LA(LA^{-1}(\overrightarrow{v})) = LA(LA^{-1}(\overrightarrow{v})$ $(B \cdot A)(\overrightarrow{v}) = B(A(\overrightarrow{v})) = B(LA(\overrightarrow{v})) = LA'(LA(\overrightarrow{v})) \neq (LA'\circ LA)(\overrightarrow{v}) = C$ =) $A \cdot B = B \cdot A = I =) A^{-1} = B_{a}$; A is invertible. (E) Suppose AEMn(F) is invertible. We want to find a linear transformation T: Fn > Fn s.T To LA = LA oT = id; i.e., T is th inverse of LA. Since A is invertible, it makes sense to consider LAT = Reft multiplication by AT We know this is a unique l.t. horeover, $(L_A \circ L_{A^{-1}})(\vec{v}) = L_A(L_{A^{-1}}(v)) = A(A^{-1}(v)) = (AA^{-1})v = Tv = V$ $(L_A \circ L_{A^{-1}})(\vec{v}) = L_A(L_{A^{-1}}(v)) = A^{-1}(A(v)) = (A^{-1}A)v = Tv = V$ $(L_A \circ L_{A^{-1}})(\vec{v}) = L_A(L_{A^{-1}}(v)) = A^{-1}(A(v)) = (A^{-1}A)v = Tv = V$ Heno, $T=L_A^{-1}$ is the inverse of LA=) L_A is 1-1, onto, l.t=) LA is on isom

(Control of the cont	(6
1403- Fall 2013- HWY- Cheique Megan	
(6) Let V be an F-vector space and let W be a subspace.	ısi
(a) Prove that V is finite dimensional & ward you are This	
The state of the s	
that any subspace of a finite dimensional is also finite dimensional; so W is finite dimensional;	
Let lwn, wms be a basis for W and lwn, wm, Vn, who a basis for V.	
Let lwi, who be a basis for w	ו מ
Cloum. INITWING IS a sinearly mosperior)U
Pt: We need to show that (2) {v1+W11vn+W) = VW. and (2) Span ({v1+W11vn+W}) = VW.	,
and (iii) Span (th+W,, n+W) = 9 by det (i) Let d_1 , $d_n \in F$. then, $d_1(v_1+w)+\dots+d_n(v_n+w)=0+W=W$ so this eleme t on $V_W: (d_1v_1+\dots+d_nv_n)+W=W=)$ $d_1v_1+\dots+d_nv_n\in W$. Let $B_1\dots,B_n$ Can be written uniquely as a linear combination of the basis of W . Let $B_1\dots,B_n$	
ton V_W : $(\alpha_1 V_1 + \cdots + \alpha_n V_n) + W = W = \alpha_1 V_1 + \cdots + \alpha_n V_n \in W$: let $\beta_1,,\beta_n$ Can be united uniquely as a linear combination of the basis of W : let $\beta_1,,\beta_n$ $\alpha_1 V_1 + \cdots + \alpha_n V_n = \beta_1 W_1 + \cdots + \beta_m W_n$,	rri
can be united uniquely as a linear combination of	
Can be written uniquely as a linear combination of the written uniquely as a linear combination of the written uniquely as a linear combination of the written of the written as: $\alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 w_1 + \cdots + \beta_m w_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 w_1 + \cdots + \beta_m w_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 w_1 + \cdots + \beta_m w_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \beta_1 w_1 + \cdots + \beta_m w_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the LHS $\in V$ and $\alpha_1 v_1 + \cdots + \alpha_n v_n = 0$; but the	
$\alpha_1 V_1 + \cdots + \alpha_n V_n - \beta_1 W_1 - \cdots - \beta_n W_n = 0$; $\beta_j = 0$ $V_{i,j} = 0$	
evi, , , , , , , , , , , , , , , , ond so it can be written as.	
(W) Let 4+WE yw. og selin Lawm + BIVI+···+ BIVI.	
9+W=(diwit+dmwm+Bivi++Bnvn)+W, but diwi++dmv -(diwi++dmwm)+W + (Bivi++Bnvn)+W	Un.
-(duly tamber) +W + (BIVI+ + Briving)	
- (0+W) 1+C	
= BIVI+ + BOVOW + (BOVO+W).	٠.,١
$= \beta_1 V_1 + \dots + \beta_n V_n W$ $= (\beta_1 V_1 + W) + (\beta_2 V_2 + W) + \dots + (\beta_n V_n + W). = \rangle Q + W \in Spon(\lambda_1 V_1 + W)$ $= \beta_1 (V_1 + W) + \beta_2 (V_2 + W) + \dots + \beta_n (V_n + W). = \rangle Q + W \in Spon(\lambda_1 V_1 + W)$	
α (1) + 19/($\sqrt{2}$ + $\sqrt{2}$)	
(i) ond (ii) => \(\frac{1}{2}\) \(\frac{1}{2}\	
$=)$ dim (\sqrt{w}) = \sqrt{v}	
=> V/w is finite dimensional.	

HU03- FAIL 2013- HW7- ENRIQUE Areyan
THOS-Fall 2013-HWT- Enrique Areyan (a) (a) (b) Suppose W and V/W are finite base for this space, since W is finite dimensional, we have a finite base for this space, say, two, while Livenise, V/W has a finite basis say this W, which will be a finite basis say this W, which will be a finite basis say this W, which will be a finite to that of (b) a continuous of the same of the form of the form of the form of the form of the finite will be a finite to the form of the finite one for (c) i.e., we have to prove (b) hulling will be will be the form of the finite one for (c) i.e., we have to prove (b) hulling will be will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the finite will be written as a linear combination of the written as a linear combination of t
(0.800) = 1.00
(6)(b) Now assume Vistmite dimensional and prove that (6)(b) Now assume Vistmite dimensional and prove that dm (W) + dim (V/W) = dim (V). dm (W) + dim (V/W) = dim (V).
(6) (b) Now assume V is finite dimensional dim (V). dim (W) + dim (V/W) = dim (V). Pt: the proof follows from the construction of a loasis for V and then the construction if done in (10)(a) (=>). There we found that if two, wms is a basis for V and then two, wms V,, uns is a basis for V counting the ele two, wm, V,, uns is a basis for W. two, wm, V,, u

(8 M403-Fall 2013- HW7 - Enrique Areyan (7) Let V and U be vector spaces over a field F. Let T: V-U be a linear transformation. (a) Prove that T(V) = {T(V) | VEV} is a subspace of W and is finite dimensional if V is finite dimensional. Pt: (i) T(v) is a subspace since. D TCV) is closed under + and scalar multiplication Let $x \in T(v)$ and $y \in T(v)$. Then x = T(v) for some $v \in v$.

But then X+Y=T(V?)+T(V?)=T(V7+V2) SMQ T is Ringar. Hence, there exists ZEV: Z=V7+V2 ST X+y=T(Z), which means that Let def and x eTCv). Then x=1(0?), for some of cV. But then dx = d+(vi) = T(dvi), since T is linear. T(dvi) = dT(vi) = d. Hence, $dx \in T(V)$; just choose $dvi \in V$ s.t. $dvi \in T(vi) = d$. Hence, $dx \in T(V)$; just choose $dvi \in T(V)$. 1 Of TCV). This is because Tis a linear transformation, so the D8D => T(v) is a subspace of U. T(v) is finite dimensional then (ii) If V is finite dimensional then Suppose V is finite dimensional and let this way be a basis for then, IT(vi), ..., T(vn) s is either a basis for the space T(v) or a linearly independent set, which we can use to form a basis for t(v) by remaining some T(Vis). In either case dim(t(v)) finite. In fact, $dim(T(v)) \leq n = dim(V)$ -Let din, dn EF. Look at dt (vi) + ... + dnT(vn) = 0 = T(divi+... + dn vn). If $\alpha_{N+} + \alpha_{n} v_{n} = 0$ then $\alpha_{i} = -\alpha_{n} = 0$; since twining is a base for v_{i} . therefore, IT(vi), it(vn)) is linearly independent. Moreover, in this (yeT(v) can be written as $T(B_1V_1+\cdots+B_nV_n)=t(v)=y$, uniquely so span $(t_T(v_1),\dots,t_T(v_n))=T(v)$ =) dim (T(v))=n. M403-Fall 2013-HWT-Enrique Areyon otherwise, divit... + dava =0 => divit... + dava Exer(T). In this case not all xi can be zero so {T(vi),..,T(vn)} is a linearly dependent Set. Without loss of generality, suppose T(vi) = 8, T(v2) + ... + 8nT(vn). Apply the same reasoning to 2T(v2),.., T(vn) 3. Having done this, at some finite number of steps \t(Vic),, t(vn)} will be either empty, in which case T is the trivial (null) transformation and so dim(t(v))=0 OR ET(Via), t(Vi) will form a linearly independent set which clearly spons TCV). therefore, dim(TCV)) ≤ n i finite. (b) Prove that if V is finite dimensional then $\dim(\ker(t)) + \dim(\tau(v)) = \dim(v).$ Pt: By fundamental theorem: Moreovers we know that any T V - J W subspace of 1 is just the Kernel of a linear transformative Ker(+) = 1 By exercise (6), since V is finite dimensional, so is Ker(+). By part (a), t(v) is also finite dimensional, so the equation we won't to prove is at least well defined (makes sense). dim(w) +dim(V/w) = dim(V) Moreover in exercise (6) we proved: Considering W=T(V) (the image of T), then the result follow $dim(\ker(t(v)) + dim(t(v)) = dim(v)$. V - T t(v) We proved in (a) that t(v) < U. Ker(t)