

Image Classification – COMP4423 Computer Vision

Xiaoyong Wei (魏驍勇) x1wei@polyu.edu.hk

Department of Computing 電子計算學系

Opening Minds • Shaping the Future 啟迪思維 • 成就未來

New Toy

Outline

- >Classification
- >Supervised learning
- >K nearest neighbors (k-NN)
- >Bayesian classifiers
- >Support vector machines (SVM)

How do you group them?

Clustering is unsupervised learning which means we (human) don't have to tell the computers what each group looks like. It's data-driven without using human knowledge (supervision).

Sounds good?

But ...

What if we have new examples unseen?

Department of Computing 電子計算學系

Hair Color

We can **tell** the computers about **our understanding** on the subjects by giving **labels**.

Training Examples (Seen)

Hair Color (H)	Skin Color (S)
Yellow (2)	White (1)
Black (3)	Yellow (2)
Black (3)	Yellow (2)
Yellow (2)	White (1)
Black (3)	Black (3)

Class Label (L)
W
Α
Α
W
В

Testing Examples (Unseen)

Hair Color (H)	Skin Color (S)
2.2	0.8
3.2	1.9
3.1	2.2
2.4	1.3
3.1	2.9

Class Label (L)
?
?
?

Classification: to predict the labels of the testing (unseen) examples based on the knowledge learned from the training (seen) examples

Classification: to predict the labels of the testing (unseen) examples based on the knowledge <u>learned</u> from the <u>training</u> (seen) examples

We are training the computers and the processing is called **training**. The computers are learning. This is what the term "**machine learning**" is referring to.

Our participation in learning makes it

supervised learning.

Classification: to predict the labels of the testing (unseen) examples based on the knowledge learned from the training (seen) examples

The result is the machine's understanding of the knowledge.

We call it a **model** sometimes.

Classification

Training Set

Samples	Features	Labels
1	[0.1,]	1
2	[0.3,]	-1

Validation Set

Samples	Features	Labels
1	[0.5,]	-1
2	[0.9,]	1

Testing Set

Samples	Features	Labels
1	[0.8,]	?
2	[0.7,]	-?
		•••

Samples	Features	Labels
1	[0.8,]	-1
2	[0.7,]	1
		•••

Training | Testing

Then how?

Instance-based Learning

Cellphone

Desktop PC

Laptop

It looks like the laptop I see last time.

How about we use image retrieval to find the most similar ones from the seen examples for reference?

kNN Classifiers

kNN Classifier

- >NN: nearest neighbors
- >k: number of nearest neighbors
- >Idea
 - When k=1: assign the unseen with the label of its nearest neighbor
 - 近朱者赤, 近墨者黑(If you lie down with dogs, you will get up with fleas)

3 Skin color 1

1

2

3

Hair color

kNN Classifier

- >NN: nearest neighbors
- >k: number of nearest neighbors
- >Idea
 - k=1: assign the unseen with the label of its nearest neighbor
 - k>1: assign the dominating label among these of the k nearest neighbors

It's straightforward. But so far, we picked the simplest case (classes are well separated) for illustration purpose. In a more general sense, this is what we're going to have.

It's straightforward. But so far, we picked the simplest case (classes are well separated) for illustration purpose. In a more general sense, this is what we're going to have.

Can we teach the computer to draw a "circle" for each of the class and evaluate the membership of an example by measuring how much it falls into "circles"?

>Classes A and B as two sets

- >Classes A and B as two sets
 - P(A|x): the probability of A is observed when seeing an x
 - P(B|x): the probability of B is observed when seeing an x

>Classes A and B as two sets

- $P(A|x) \propto P(x|A)P(A)$
- $P(B|x) \propto P(x|B)P(B)$

$$P(A|x) = \frac{P(x|A)P(A)}{P(x)}$$

$$P(B|x) = \frac{P(x|B)B}{P(x)}$$

>Classes A and B as two sets

- $P(A|x) \propto P(x|A)P(A)$
- $P(B|x) \propto P(x|B)P(B)$

P(A) = #A/(#A + #B)

P(B)=#B/(#A+#B)

The Prior Probability

>Classes A and B as two sets

- $P(A|x) \propto P(x|A)P(A)$
- $P(B|x) \propto P(x|B)P(B)$

P(x|A)=#x/#A

P(x|B)=#x/#B

The Conditional Probability (Likelihood)

>Classes A and B as two sets

- $P(A|x) \propto P(x|A)P(A)$
- $P(B|x) \propto P(x|B)P(B)$

Decision function: x is A if P(A|x)>P(B|x),

B otherwise

Naive Bayesian

>Advantages:

- Fast
- Extendable to multi-class problems
- Requires less training examples
- Works well for categorical data

>Disadvantages:

- Features are assumed to be independent to each other (not true in real-world applications)
- Zero-frequency problem

Support Vector Machines

Linear Separators

>Binary classification can be viewed as the task of separating classes in feature space:

$$-y + wx + b = 0$$

$$\begin{bmatrix} w \\ -1 \end{bmatrix} [x \quad y] + b = 0$$

$$w^{\mathsf{T}}x + b = 0$$

Linear Separators

>Binary classification can be viewed as the task of separating classes in feature space:

$$f(\mathbf{x}) = \text{sign}(\mathbf{w}^\mathsf{T}\mathbf{x} + b)$$

Linear Separators

>Binary classification can be viewed as the task of separating classes in feature space:

>Which one is the best?

Margin

- > Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- > Examples closest to the hyperplane are *support vectors*.
- > *Margin* ρ of the separator is the distance between support vectors.

Maximum Margin Classification

- > Maximizing the margin is good according to intuition and PAC theory (Probably Approximately Correct).
- > Implies that only support vectors matter; other training examples are ignorable.

Soft Margin Classification

- >What if the training set is not linearly separable?
- > Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called *soft*.

Non-linear SVMs

> Datasets that are linearly separable with some noise work out great:

- > But what are we going to do if the dataset is just too hard?
- > How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

>General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- > The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$
- > If every datapoint is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \to \phi(\mathbf{x})$, the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{\phi}(\mathbf{x}_i)^{\mathsf{T}}\mathbf{\phi}(\mathbf{x}_j)$$

- > A *kernel function* is a function that is equivalent to an inner product in some feature space.
- > Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^\mathsf{T} \mathbf{x}_j)^2$

Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\phi}(\mathbf{x}_i)^T \mathbf{\phi}(\mathbf{x}_j)$:

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})^{2} = 1 + x_{i1}^{2} x_{j1}^{2} + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = 1 + x_{i1}^{2} x_{i2}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i2}^{2} x_{j2}^{2} + 2 x_{i1}^{2} x_{j2}^{2} + 2 x_$$

> Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each $\phi(x)$ explicitly).

Examples of Kernel Functions

- > Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is \mathbf{x} itself
- > Polynomial of power p: $K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^p$
 - Mapping Φ : $\mathbf{x} \to \boldsymbol{\varphi}(\mathbf{x})$, where $\boldsymbol{\varphi}(\mathbf{x})$ has $\binom{d+p}{p}$ dimensions
- > Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_i) = e^{-\frac{\|\mathbf{x}_i \mathbf{x}_j\|}{2\sigma^2}}$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian); combination of functions for support vectors is the separator.
- > Higher-dimensional space still has *intrinsic* dimensionality *d* (the mapping is not *onto*), but linear separators in it correspond to *non-linear* separators in original space.

Classification

Training Set

Samples	Features	Labels
1	[0.1,]	1
2	[0.3,]	-1

Validation Set

Samples	Features	Labels
1	[0.5,]	-1
2	[0.9,]	1

Training

Model

Testing

Testing Set

Samples	Features	Labels
1	[0.8,]	?
2	[0.7,]	-?
		•••

Samples	Features	Labels
1	[0.8,]	-1
2	[0.7,]	1
		•••

Department of Computing 電子計算學系

The New Toy

New Toy

Feature Extraction


```
import cv2
import requests
from requests toolbelt.multipart.encoder import MultipartEncoder
import numpy as np, random
cap = cv2.VideoCapture(0)
WindName = "Toy Program @ COMP 4423"
cv2.namedWindow(WindName)
cv2.resizeWindow(WindName, 1024, 768)
polysmart svr url = 'http://158.132.255.32:8088/'
polysmart facerecg svr = polysmart svr url+'handdetect/'
def detect(pic):
    _, im_buf = cv2.imencode(".jpg", pic)
    byte im = im buf.tobytes()
    data = MultipartEncoder(fields={'file': ('img.jpg', byte im)})
    response = requests.post(polysmart facerecg svr, data=data, headers={
        'Content-Type': data.content type})
# print((response.status code,response.json()))
    retJson = response.json()
    return retJson['results'] if retJson['code'] >= 0 else []
connections = [[4, 3, 2, 1, 0],# thumb
               [8, 7, 6, 5],# index
               [12, 11, 10, 9],# middle
               [16, 15, 14, 13],# ring
               [20, 19, 18, 17, 0], #pinky
               [3, 5, 9, 13, 17]# palm
```



```
def draw landmarks(image, landmarks):
    h, w, c = image.shape
   id2cords = {}
    for lm in landmarks:
        idx, ftx, fty = lm['idx'], int(lm['x']*w), int(lm['y']*h)
        id2cords[idx] = [ftx, fty]
    for line in connections:
       pts = [[id2cords[idx][0], id2cords[idx][1]] for idx in line]
       pts = np.array(pts, np.int32)
       pts = pts.reshape((-1, 1, 2))
        image = cv2.polylines(image, [pts], False, (0, 128, 128), 4)
    for idx in id2cords:
        image = cv2.circle(
            image, (id2cords[idx][0], id2cords[idx][1]), 10, (224, 224, 0), 5)
    image = cv2.circle(
        image, (id2cords[8][0], id2cords[8][1]), 15, (0, 0, 128), 5)
   return image, id2cords
def extrac feature(id2cords):
    feat=[]
    for id in range(21):
        a=np.array(id2cords[id])
        for tag in range(id+1,21):
            b=np.array(id2cords[tag])
            dist=np.linalg.norm(a-b)/800 # normalize the distane in the range of [0,1] by assuming the 800 is the maximum dist possible
            feat.append(dist)
   print('sum feat=',sum(feat))
    return feat
```

```
feat_x,feat_y=[],[]
     while True:
         success, image = cap.read()
 82
         if not success:
             continue
         image = cv2.flip(image, 1)
         imageRGB = cv2.cvtColor(image, cv2.COLOR BGR2RGB)
         results = detect(imageRGB)
         id2cords = {}
         #print(['len=', len(results)])
         if len(results) == 0:
             print("Nothing detected ...")
         else:
             image, id2cords = draw landmarks(image, results[0]['landmarks'])
         cv2.imshow(WindName, image)
         key=cv2.waitKey(1) & 0xFF
         if key == ord('q') or key==27:
             break
100
         if key == ord('p') and not id2cords =={}:
             # caputure a sample for the class 'paper'
             feat=extrac feature(id2cords)
             feat x.append(feat)
             feat y.append(1)
         if key == ord('r') and not id2cords =={}:
             # caputure a sample for the class 'rock'
             feat=extrac feature(id2cords)
             feat x.append(feat)
110
             feat y.append(2)
111
         if key == ord('x') and not id2cords =={}:
112
             # caputure a sample for the class 'rock'
113
             feat=extrac feature(id2cords)
114
             feat x.append(feat)
115
```


Training & Testing


```
feat x,feat y=np.load('feat x.npy'),np.load('feat y.npy')
from sklearn import svm
from sklearn.model selection import cross val score
model = svm.SVC(kernel='rbf')
scores = cross val score(model, feat x, feat y, cv=10)
print('cross validation scores: ',scores)
#print(feat x.shape)
from sklearn.manifold import TSNE
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(rc={'figure.figsize':(10,8)})
palette = sns.color palette("bright", 3)
tsne = TSNE()
X embedded = tsne.fit transform(feat x)
label2str={1:'Paper',2:'Rock',3:'Scissor'}
markers=[label2str[feat y[i]] for i in range(len(feat y))]
sns.scatterplot(x=X_embedded[:,0], y=X_embedded[:,1], markers=markers, hue=markers, legend='full', palette=palette)
plt.show()
model.fit(feat_x,feat_y)
```



```
# show status text
131
         if status id>0: # in game mode
             dur=time.time()-game start time
133
             status id=next((i for i in range(len(status check points)) if dur < status check points[i]),-1)
134
             if status id==-1:
                 status id, game start time, votes = 1, time.time(), {} # restart a game
136
         overlay=cv2.rectangle(overlay, (125,40),(1500,120),color=(213, 231, 242),thickness=-1)
137
         image=cv2.addWeighted(overlay, 0.5, image, 0.5, 0)
138
         image=cv2.putText(image, status texts[status id],(150,100),cv2.FONT HERSHEY SIMPLEX,1,(70, 62, 57),2)
         id2cords = {}
         if status id in [0,4]:
             results = detect(imageRGB)
143
144
             if len(results) == 0:
                 print("Nothing detected ...")
146
             else:
147
                 image, id2cords = draw landmarks(image, results[0]['landmarks'])
148
                 feat=np.array([extrac feature(id2cords)])
149
                 print(feat.shape)
150
                 label=model.predict(np.array(feat))[0]
                 print('label=',label)
152
                 votes[label]=votes[label]+1 if label in votes else 1
                 if status id==0:
154
                     image=cv2.putText(image,label2str[label],(250,120),cv2.FONT_HERSHEY_TRIPLEX,5,(134, 152, 109),3)
155
                 if status id==4:
                     computer move=random.randint(1,3)
158
```


Department of Computing 電子計算學系

