Springer Series in Statistics

Advisors:

P. Bickel, P. Diggle, S. Fienberg, K. Krickeberg, I. Olkin, N. Wermuth, S. Zeger

Springer Series in Statistics

Andersen/Borgan/Gill/Keiding: Statistical Models Based on Counting Processes.

Atkinson/Riani: Robust Diagnostic Regression Analysis.

Atkinson/Riani/Cerioli: Exploring Multivariate Data with the Forward Search.

Berger: Statistical Decision Theory and Bayesian Analysis, 2nd edition.

Borg/Groenen: Modern Multidimensional Scaling: Theory and Applications, 2nd edition.

Brockwell/Davis: Time Series: Theory and Methods, 2nd edition.

Bucklew: Introduction to Rare Event Simulation.

Chan/Tong: Chaos: A Statistical Perspective.

Chen/Shao/Ibrahim: Monte Carlo Methods in Bayesian Computation.

Coles: An Introduction to Statistical Modeling of Extreme Values.

David/Edwards: Annotated Readings in the History of Statistics.

Devroye/Lugosi: Combinatorial Methods in Density Estimation.

Efromovich: Nonparametric Curve Estimation: Methods, Theory, and Applications.

Eggermont/LaRiccia: Maximum Penalized Likelihood Estimation, Volume I: Density Estimation.

Fahrmeir/Tutz: Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd edition.

Fan/Yao: Nonlinear Time Series: Nonparametric and Parametric Methods.

Farebrother: Fitting Linear Relationships: A History of the Calculus of Observations 1750-1900.

Federer: Statistical Design and Analysis for Intercropping Experiments, Volume I: Two Crops.

Federer: Statistical Design and Analysis for Intercropping Experiments, Volume II: Three or More Crops.

Ghosh/Ramamoorthi: Bayesian Nonparametrics.

Glaz/Naus/Wallenstein: Scan Statistics.

Good: Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses, 2nd edition.

Good: Permutation Tests: Parametric and Bootstrap Tests of Hypotheses, 3rd edition.

Gouriéroux: ARCH Models and Financial Applications.

Gu: Smoothing Spline ANOVA Models.

Györfi/Kohler/Krzyżak/ Walk: A Distribution-Free Theory of Nonparametric Regression.

Haberman: Advanced Statistics, Volume I: Description of Populations.

Hall: The Bootstrap and Edgeworth Expansion.

Härdle: Smoothing Techniques: With Implementation in S.

Harrell: Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis.

Hart: Nonparametric Smoothing and Lack-of-Fit Tests.

Hastie/Tibshirani/Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction.

Hedayat/Sloane/Stufken: Orthogonal Arrays: Theory and Applications.

Heyde: Quasi-Likelihood and its Application: A General Approach to Optimal Parameter Estimation.

(continued after index)

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

With 200 Full-Color Illustrations

Trevor Hastie
Department of Statistics, and Department
of Health Research & Policy
Sequoia Hall
Stanford University
Stanford, CA 94305-5405
USA

Jerome Friedman
Department of Statistics
Sequoia Hall
Stanford University
Stanford, CA 94305-5405
USA
ihf@stat.stanford.edu

hastie@stat.stanford.edu

Robert Tibshirani
Department of Health Research & Policy,
and Department of Statistics
HRP Redwood Building
Stanford University
Stanford, CA 94305-5405
USA
tibs@stat.stanford.edu

Library of Congress Cataloging-in-Publication Data
Hastie, T. (Trevor)

The elements of statistical learning; data mining, inference, and prediction /
Trevor Hastie, Robert Tibshirani, Jerome Friedman.

p. cm. — (Springer series in statistics)
Includes bibliographical references and index.

ISBN 978-1-4899-0519-2 (alk. paper)

1. Supervised learning (Machine learning). I. Hastie, Trevor. II. Tibshirani, Robert.

III. Title. IV. Series.

Q325.75.F75 2001

006.3'1—dc21

2001031433

ISBN 978-1-4899-0519-2 ISBN 978-0-387-21606-5 (eBook) DOI 10.1007/978-0-387-21606-5

Printed on acid-free paper.

© 2001 Springer Science+Business Media New York
Originally published by Trevor Hastie, Robert Tibshirani, Jerome Friedman in 2001
Softcover reprint of the hardcover 1st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval. electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is for-bidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

9876

springeronline.com

To our families:

Samantha, Timothy, and Lynda
Charlie, Ryan, Julie, and Cheryl
Melanie, Dora, Monika, and Ildiko

Preface

We are drowning in information and starving for knowledge.

-Rutherford D. Roger

The field of Statistics is constantly challenged by the problems that science and industry brings to its door. In the early days, these problems often came from agricultural and industrial experiments and were relatively small in scope. With the advent of computers and the information age, statistical problems have exploded both in size and complexity. Challenges in the areas of data storage, organization and searching have led to the new field of "data mining"; statistical and computational problems in biology and medicine have created "bioinformatics." Vast amounts of data are being generated in many fields, and the statistician's job is to make sense of it all: to extract important patterns and trends, and understand "what the data says." We call this learning from data.

The challenges in learning from data have led to a revolution in the statistical sciences. Since computation plays such a key role, it is not surprising that much of this new development has been done by researchers in other fields such as computer science and engineering.

The learning problems that we consider can be roughly categorized as either *supervised* or *unsupervised*. In supervised learning, the goal is to predict the value of an outcome measure based on a number of input measures; in unsupervised learning, there is no outcome measure, and the goal is to describe the associations and patterns among a set of input measures.

This book is our attempt to bring together many of the important new ideas in learning, and explain them in a statistical framework. While some mathematical details are needed, we emphasize the methods and their conceptual underpinnings rather than their theoretical properties. As a result, we hope that this book will appeal not just to statisticians but also to researchers and practitioners in a wide variety of fields.

Just as we have learned a great deal from researchers outside of the field of statistics, our statistical viewpoint may help others to better understand different aspects of learning:

There is no true interpretation of anything; interpretation is a vehicle in the service of human comprehension. The value of interpretation is in enabling others to fruitfully think about an idea.

-Andreas Buja

We would like to acknowledge the contribution of many people to the conception and completion of this book. David Andrews, Leo Breiman, Andreas Buja, John Chambers, Bradley Efron, Geoffrey Hinton, Werner Stuetzle, and John Tukey have greatly influenced our careers. Balasubramanian Narasimhan gave us advice and help on many computational problems, and maintained an excellent computing environment. Shin-Ho Bang helped in the production of a number of the figures. Lee Wilkinson gave valuable tips on color production. Ilana Belitskaya, Eva Cantoni, Maya Gupta, Michael Jordan, Shanti Gopatam, Radford Neal, Jorge Picazo, Bogdan Popescu, Olivier Renaud, Saharon Rosset, John Storey, Ji Zhu, Mu Zhu, two reviewers and many students read parts of the manuscript and offered helpful suggestions. John Kimmel was supportive, patient and helpful at every phase; MaryAnn Brickner and Frank Ganz headed a superb production team at Springer. Trevor Hastie would like to thank the statistics department at the University of Cape Town for their hospitality during the final stages of this book. We gratefully acknowledge NSF and NIH for their support of this work. Finally, we would like to thank our families and our parents for their love and support.

> Trevor Hastie Robert Tibshirani Jerome Friedman Stanford, California May 2001

The quiet statisticians have changed our world; not by discovering new facts or technical developments, but by changing the ways that we reason, experiment and form our opinions

-Ian Hacking

Contents

P	Preface			
1	Inti	roduction	1	
2	Ove	erview of Supervised Learning	9	
	2.1	Introduction	9	
	2.2	Variable Types and Terminology	9	
	2.3	Two Simple Approaches to Prediction: Least Squares and		
		Nearest Neighbors	11	
		2.3.1 Linear Models and Least Squares	11	
		2.3.2 Nearest-Neighbor Methods	14	
		2.3.3 From Least Squares to Nearest Neighbors	16	
	2.4	Statistical Decision Theory	18	
	2.5	Local Methods in High Dimensions	22	
	2.6	Statistical Models, Supervised Learning and Function		
		Approximation	28	
		2.6.1 A Statistical Model for the Joint Distribution		
		$\Pr(X,Y)$	28	
		2.6.2 Supervised Learning	29	
		2.6.3 Function Approximation	29	
	2.7	Structured Regression Models	32	
		2.7.1 Difficulty of the Problem	32	
	2.8	Classes of Restricted Estimators	33	
	=	2.8.1 Roughness Penalty and Bayesian Methods	34	

\mathbf{x}	Contents	

		2.8.2	Kernel Methods and Local Regression	34		
		2.8.3	Basis Functions and Dictionary Methods	35		
	2.9	Model	Selection and the Bias-Variance Tradeoff	37		
	Bib	liograph	ic Notes	39		
Exercises						
3	Lin		ethods for Regression	41		
	3.1		$uction \dots \dots \dots$	41		
	3.2		Regression Models and Least Squares	42		
		3.2.1	Example: Prostate Cancer	47		
		3.2.2	The Gauss–Markov Theorem	49		
	3.3	_	ble Regression from Simple Univariate Regression	50		
		3.3.1	Multiple Outputs	54		
	3.4		Selection and Coefficient Shrinkage	55		
		3.4.1	Subset Selection	55		
		3.4.2	Prostate Cancer Data Example (Continued)	57		
		3.4.3	Shrinkage Methods	59		
		3.4.4	Methods Using Derived Input Directions	66		
		3.4.5	Discussion: A Comparison of the Selection and			
			Shrinkage Methods	68		
		3.4.6	Multiple Outcome Shrinkage and Selection	73		
	3.5	_	itational Considerations	75		
			ic Notes	75		
	Exe	rcises .		75		
4			thods for Classification	79		
	4.1		uction	79		
	4.2		Regression of an Indicator Matrix	81		
	4.3		Discriminant Analysis	84		
		4.3.1	Regularized Discriminant Analysis	90		
		4.3.2	Computations for LDA	91		
		4.3.3	Reduced-Rank Linear Discriminant Analysis	91		
	4.4	_	c Regression	95		
		4.4.1	Fitting Logistic Regression Models	98		
		4.4.2	Example: South African Heart Disease	100		
		4.4.3	Quadratic Approximations and Inference	102		
		4.4.4	Logistic Regression or LDA?	103		
	4.5	_	ting Hyperplanes	105		
		4.5.1	Rosenblatt's Perceptron Learning Algorithm	107		
		4.5.2	Optimal Separating Hyperplanes	108		
			ic Notes	111		
	Exercises					

5	Bas	is Expansions and Regularization	115			
	5.1	Introduction	115			
	5.2	Piecewise Polynomials and Splines	117			
		5.2.1 Natural Cubic Splines	120			
		5.2.2 Example: South African Heart Disease (Continued) .	122			
		5.2.3 Example: Phoneme Recognition	124			
	5.3	Filtering and Feature Extraction	126			
	5.4	Smoothing Splines	127			
		5.4.1 Degrees of Freedom and Smoother Matrices	129			
	5.5	Automatic Selection of the Smoothing Parameters	134			
		5.5.1 Fixing the Degrees of Freedom	134			
		5.5.2 The Bias-Variance Tradeoff	134			
	5.6	Nonparametric Logistic Regression	137			
	5.7	Multidimensional Splines				
	5.8	Regularization and Reproducing Kernel Hilbert Spaces	144			
		5.8.1 Spaces of Functions Generated by Kernels	144			
		5.8.2 Examples of RKHS	146			
	5.9	Wavelet Smoothing	148			
		5.9.1 Wavelet Bases and the Wavelet Transform	150			
		5.9.2 Adaptive Wavelet Filtering	153			
	Bibliographic Notes					
	Exercises					
	App	endix: Computational Considerations for Splines	160			
		Appendix: B -splines	160			
		Appendix: Computations for Smoothing Splines	163			
6	Ker	rnel Methods	165			
	6.1	One-Dimensional Kernel Smoothers	165			
		6.1.1 Local Linear Regression				
		6.1.2 Local Polynomial Regression				
	6.2	Selecting the Width of the Kernel	172			
	6.3	Local Regression in \mathbb{R}^p				
	6.4	Structured Local Regression Models in \mathbb{R}^p	175			
		6.4.1 Structured Kernels				
		6.4.2 Structured Regression Functions				
	6.5	Local Likelihood and Other Models	179			
	6.6	Kernel Density Estimation and Classification	182			
		6.6.1 Kernel Density Estimation	182			
		6.6.2 Kernel Density Classification	184			
		6.6.3 The Naive Bayes Classifier	184			
	6.7	Radial Basis Functions and Kernels	186			
	6.8	Mixture Models for Density Estimation and Classification .	188			
	6.9	Computational Considerations	190			
	Bibl	iographic Notes	190			
	Exe	rcises	190			

7	Mo	del Assessment and Selection	193			
	7.1	Introduction	193			
	7.2	Bias, Variance and Model Complexity	193			
	7.3	The Bias-Variance Decomposition	196			
		7.3.1 Example: Bias-Variance Tradeoff	198			
	7.4	Optimism of the Training Error Rate	200			
	7.5	Estimates of In-Sample Prediction Error				
	7.6	The Effective Number of Parameters				
	7.7	The Bayesian Approach and BIC	206			
	7.8	Minimum Description Length	208			
	7.9	Vapnik-Chernovenkis Dimension	210			
		7.9.1 Example (Continued)	212			
	7.10	Cross-Validation	214			
		Bootstrap Methods	217			
		7.11.1 Example (Continued)				
	Bibl	iographic Notes				
		rcises				
8	Mo	del Inference and Averaging	225			
	8.1	Introduction	225			
	8.2	The Bootstrap and Maximum Likelihood Methods	225			
		8.2.1 A Smoothing Example	225			
		8.2.2 Maximum Likelihood Inference	229			
		8.2.3 Bootstrap versus Maximum Likelihood	231			
	8.3	Bayesian Methods	231			
	8.4	Relationship Between the Bootstrap				
		and Bayesian Inference	235			
	8.5	The EM Algorithm	236			
		8.5.1 Two-Component Mixture Model	236			
		8.5.2 The EM Algorithm in General	240			
		8.5.3 EM as a Maximization–Maximization Procedure	241			
	8.6	MCMC for Sampling from the Posterior	243			
	8.7	Bagging	246			
		8.7.1 Example: Trees with Simulated Data	247			
	8.8	Model Averaging and Stacking	250			
	8.9	Stochastic Search: Bumping				
	Bibli	Bibliographic Notes				
	Exer	cises	255			
9		litive Models, Trees, and Related Methods	257			
	9.1	Generalized Additive Models	257			
		9.1.1 Fitting Additive Models	259			
		9.1.2 Example: Additive Logistic Regression	261			
		9.1.3 Summary	266			
	9.2	Tree-Based Methods	266			

		Contents	xiii
	9.2.1 Background		266
	9.2.2 Regression Trees		267
	9.2.3 Classification Trees		270
	9.2.4 Other Issues		272
	9.2.5 Spam Example (Continued)		275
	9.3 PRIM—Bump Hunting		279
	9.3.1 Spam Example (Continued)		282
	9.4 MARS: Multivariate Adaptive Regression Splines		283
	9.4.1 Spam Example (Continued)		287
	9.4.2 Example (Simulated Data)		288
	9.4.3 Other Issues		289
	9.5 Hierarchical Mixtures of Experts		290
	9.6 Missing Data		293
	9.7 Computational Considerations		295
	Bibliographic Notes		295
	Exercises		
٠.	T		
10	Boosting and Additive Trees		299
	10.1 Boosting Methods		
	10.1.1 Outline of this Chapter		302
	10.2 Boosting Fits an Additive Model		303
	10.3 Forward Stagewise Additive Modeling		304
	10.4 Exponential Loss and AdaBoost		305
	10.5 Why Exponential Loss?		306
	10.6 Loss Functions and Robustness		308
	10.7 "Off-the-Shelf" Procedures for Data Mining		312
	10.8 Example—Spam Data		314
	10.9 Boosting Trees		316
	10.10 Numerical Optimization		319
	10.10.1 Steepest Descent		320
	10.10.2 Gradient Boosting		320
	10.10.3 MART		322
	10.11 Right-Sized Trees for Boosting		323
	10.12 Regularization		324
	10.12.1 Shrinkage		326
	10.12.2 Penalized Regression		328
	10.12.3 Virtues of the L_1 Penalty (Lasso) over L_2		330
	10.13 Interpretation		331
	10.13.1 Relative Importance of Predictor Variable	les	331
	10.13.2 Partial Dependence Plots		333
	10.14 Illustrations		335
	10.14.1 California Housing		335
	10.14.2 Demographics Data		339
	Bibliographic Notes		
	Exercises		344

11 Neural Networks	347
11.1 Introduction	 347
11.2 Projection Pursuit Regression	 347
11.3 Neural Networks	 350
11.4 Fitting Neural Networks	 353
11.5 Some Issues in Training Neural Networks	
11.5.1 Starting Values	 355
11.5.2 Overfitting	
11.5.3 Scaling of the Inputs	
11.5.4 Number of Hidden Units and Layers	 358
11.5.5 Multiple Minima	 359
11.6 Example: Simulated Data	 359
11.7 Example: ZIP Code Data	 362
11.8 Discussion	
11.9 Computational Considerations	
Bibliographic Notes	 367
Exercises	
12 Support Vector Machines and	
Flexible Discriminants	371
12.1 Introduction	 371
12.2 The Support Vector Classifier	
12.2.1 Computing the Support Vector Classifier	
12.2.2 Mixture Example (Continued)	
12.3 Support Vector Machines	
12.3.1 Computing the SVM for Classification	
12.3.2 The SVM as a Penalization Method	
12.3.3 Function Estimation and Reproducing Kernels .	
12.3.4 SVMs and the Curse of Dimensionality	
12.3.5 Support Vector Machines for Regression	
12.3.6 Regression and Kernels	
12.3.7 Discussion	389
12.4 Generalizing Linear Discriminant Analysis	
12.5 Flexible Discriminant Analysis	
12.5.1 Computing the FDA Estimates	
12.6 Penalized Discriminant Analysis	 397
12.7 Mixture Discriminant Analysis	
12.7.1 Example: Waveform Data	 402
Bibliographic Notes	
Exercises	400

\sim			
('A)	nto	$_{ m nts}$	xv
-	III	TI LOS	A. V

	ototype Methods and Nearest-Neighbors	411
	I Introduction	411
13.2	2 Prototype Methods	411
	13.2.1 K -means Clustering	
	13.2.2 Learning Vector Quantization	
	13.2.3 Gaussian Mixtures	415
13.3	3 k -Nearest-Neighbor Classifiers	415
	13.3.1 Example: A Comparative Study	420
	13.3.2 Example: k -Nearest-Neighbors and Image Scene	
	Classification	422
	13.3.3 Invariant Metrics and Tangent Distance	423
13.4	4 Adaptive Nearest-Neighbor Methods	427
	13.4.1 Example	430
	13.4.2 Global Dimension Reduction for Nearest-Neighbors .	431
13.5	5 Computational Considerations	432
\mathbf{Bib}	liographic Notes	433
$\operatorname{Ex}\epsilon$	ercises	433
	supervised Learning	437
	1 Introduction	437
14.2	2 Association Rules	439
	14.2.1 Market Basket Analysis	440
	14.2.2 The Apriori Algorithm	441
	14.2.3 Example: Market Basket Analysis	444
	14.2.4 Unsupervised as Supervised Learning	447
	14.2.5 Generalized Association Rules	449
	14.2.6 Choice of Supervised Learning Method	451
	14.2.7 Example: Market Basket Analysis (Continued)	451
14.3	3 Cluster Analysis	453
	14.3.1 Proximity Matrices	455
	14.3.2 Dissimilarities Based on Attributes	455
	14.3.3 Object Dissimilarity	457
	14.3.4 Clustering Algorithms	459
	14.3.5 Combinatorial Algorithms	460
	14.3.6 <i>K</i> -means	461
	14.3.7 Gaussian Mixtures as Soft K -means Clustering	463
	14.3.8 Example: Human Tumor Microarray Data	463
	14.3.9 Vector Quantization	466
	14.3.10 <i>K</i> -medoids	468
	14.3.11 Practical Issues	470
	14.3.12 Hierarchical Clustering	472
14.4	4 Self-Organizing Maps	480
	5 Principal Components, Curves and Surfaces	485
	14.5.1 Principal Components	485
		100

xvi Contents

14.6 Independent Component Analysis and Exploratory						
Projection Pursuit	494					
14.6.1 Latent Variables and Factor Analysis	494					
14.6.2 Independent Component Analysis	496					
14.6.3 Exploratory Projection Pursuit	500					
14.6.4 A Different Approach to ICA	500					
14.7 Multidimensional Scaling						
Bibliographic Notes	503					
Exercises	504					
References						
Author Index						
Index	527					