解答内容不得超过装订线-

2016~2017 学年第二学期

《微积分学(一)下》课程期末考试试卷(A卷)(闭卷)

院(系) 启明学院 专业班级_______学号______姓名

考试日期: 2017-06-18

考试时间: 8:30 - 11:00

题号	1	11	111	四	五	总分
满分	28	8	12	28	24	100
得分						

得 分	
评卷人	

一、填空题(每空 4 分,共 28 分) $1、用 Beta 函数表示积分 \int_0^1 \frac{1}{\sqrt{1-x^3}} dx = \underline{\hspace{1cm}}.$

- 2、级数 $\sum_{n=1}^{\infty} \left(\ln x + \frac{1}{n} \right)^n$ 的收敛域是______.
- 3、曲线 $\vec{r}(t) = \{1 \sin t, 1 \cos t, t\}$ 的曲率 $\kappa =$ _______.
- 4、函数 $f(x) = \begin{cases} 1, 0 \le x \le h, \\ 0, h < x \le \pi \end{cases}$ 在 $[0, \pi]$ 上的正弦级数是_____
- 6、函数 $f(x,y) = x^2 + y^2 + 8x$ 在 $D: x^2 + y^2 \le 16$ 上的最大值是_______ 最小值是 ______.
- 7、直线 L: x = 2t, y = 1, z = t 绕 z 轴旋转一周所得的曲面方程是

得 分	
评卷人	

二、判断题(每小题 2 分,共 8 分). 请在正确说法相应的括号中画 " \checkmark ",在错误说法的括号中画 " \times ".

8. 若级数发散,则对其任意加括号后所得级数也必发散.

9. 若级数
$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$$
 收敛,且 $\lim_{n \to \infty} a_n = 0$,则 $\sum_{n=1}^{\infty} a_n$ 收敛. ()

10. 设S是球面 $x^2 + y^2 + z^2 = 1$ 的外侧,它关于xoy 坐标面对称,所以第二型曲面积分

$$\iint_{S} z^{2017} dx dy = 0. \tag{}$$

11. 若在点 (x_0,y_0) 的某邻域内f(x,y)的两个偏导函数连续,则f(x,y)在点 (x_0,y_0) 沿任意 方向的方向导数都存在.

得 分	
评卷人	

三、解答题(每小题 6 分,共 12 分) 12. 设 z = z(x, y) 是由方程 $F(xyz, x^2 + y^2 + z^2) = 0$ 所确定的可微隐

函数, 试求 gradz.

得 分	
评卷人	

四、计算题(每小题 7 分,共 28 分)
14. 求幂级数 $\sum_{n=0}^{\infty} \frac{n + (-1)^n}{(2n)!!} x^n$ 的收敛域及和函数.

15. 设L为圆柱面 $x^2+y^2=1$ 与平面z=y的交线,计算曲线积分 $\int_L z^2 ds$,并将结果用 B 函数表示.

16. 设 S 是圆柱面 $x^2+y^2=1$ 介于平面 z=0 和 z=1 之间部分的外侧,试计算第二型曲面 积分 $I=\iint_S (y-z)xdydz+(x-y)zdxdy$.

17. 计算 $I = \int_{L} \frac{(y-1)dx - xdy}{x^2 + (y-1)^2}$, 其中 L 是椭圆 $x^2 + 2y^2 = 4$, 沿逆时针方向.

得 分	
评卷人	

五、证明题(每小题 8 分,共 24 分)
18. 证明级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \arctan \frac{x}{n}$ 在 $(-\infty,\infty)$ 内一致收敛.

19.设曲面 S 方程由 F(x,y,z)=0确定,其中 F(x,y,z) 具有连续的偏导数,且 $F_z'\neq 0$,又 S 可一对一地投影到 xOy 面的区域 D ,证明:S 的面积 $A=\iint_D \frac{\sqrt{F_x'^2+F_y'^2+F_z'^2}}{|F_z'|} dx dy$.

20. 设函数 z = f(x, y) 在点 (x_0, y_0) 的某邻域 $N((x_0, y_0))$ 内具有二阶连续偏导数,且 f(x, y) 在 (x_0, y_0) 点取得极大值, 证明: $f_{xx}(x_0, y_0) + f_{yy}(x_0, y_0) \le 0$.