Universidade Federal do Rio de Janeiro

Departamento de Engenharia Eletrônica e de Computação

EEL350 - Sistemas Lineares I

Lista 1

Horário Limite: 15h Data de Entrega: 31/03/2015

Formato de Entrega: Folhas A4 - Escritas a Caneta

1. Revisão de Números Complexos:

- (a) Para um dado número complexo, definido por $z=x+jy=r\cdot e^{j\theta},$ exprima r e θ em função de x e y e x e y em função de r e θ .
- (b) Utilizando a fórmula de Euler, prove:

1.
$$cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$$

1.
$$cos\theta = \frac{1}{2} \left(e^{j\theta} + e^{-j\theta} \right)$$

2. $sen\theta = \frac{1}{2j} \left(e^{j\theta} - e^{-j\theta} \right)$

3.
$$\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta)$$

(c) Represente graficamente (para os pontos $x \in \{0, \pi/2, \pi, 3\pi/2\}$) o módulo e a fase

1.
$$f(x) = cos(x)$$

2.
$$q(x) = cos(x) \cdot e^{-jx}$$

3.
$$h(x) = sen(2x) \cdot e^{2jx}$$

2. Operações com sinais:

(a) Dado o sinal x(t) (figura 1), represente graficamente:

Figura 1: Sinal para a questão 2

1.
$$x(t-1)$$

2.
$$x(-t)$$

3.
$$x(1-t)$$

- 4. x(2t)
- 5. $x(1-t) \cdot x(2t)$
- 6. 2x(t)
- 7. $x^2(t)$
- 8. $x(t^2)$
- 3. Potência e Energia de Sinais no Tempo:

Utilizando os sinais $s_1(t)$, $s_2(t)$ e $s_3(t)$ (mostrados nas figuras 2, 3 e 4, respectivamente), calcule:

Figura 2: Sinal $s_1(t)$

Figura 3: Sinal $s_2(t)$

Figura 4: Sinal $s_3(t)$

- (a) A energia dos sinais $s_1(t)$, $s_2(t)$ e $s_3(t)$
- (b) A potência dos sinais $s_1(t)$, $s_2(t)$ e $s_3(t)$
- (c) A energia de $s_1(t) + s_3(t)$
- (d) A potência de $s_1(t) s_3(t)$
- 4. Classificação de Sinais
 - (a) Classifique os sinais abaixo como analógicos, digitais, em tempo contínuo ou tempo discreto (provando a sua resposta)
 - 1. $s_1(t) = sen(t)$
 - 2. $s_2(t) = sen(t) \cdot [\delta(t) + \delta(t-1) + \delta(t-2)]$
 - 3. $s_3(t) = u(t)$
 - (b) Verifique se os sinais abaixo são periódicos:
 - 1. $s_1[n] = \sum_{k=-\infty}^{+\infty} \delta[n-4k] \delta[n-1-4k]$, para $n \in [-\infty, \dots, 0, 1, 2, \dots, +\infty]$
 - 2. $s_2[n] = cos(n/8 \pi)$
 - 3. $s_3[n] = cos\left(\frac{\pi}{8} \cdot n^2\right)$
- 5. Decomponha os sinais abaixo em suas partes real e imaginária, verifique sua periodicidade e, se possível, encontre o periodo fundamental:
 - 1. $s_1(t) = je^{j10t}$
 - 2. $s_2(t) = e^{(-1+j)t}$

3.
$$s_3(t) = 2cos(10t+1) - sen(4t-1)$$

6. Classificação de Sistemas:

Sendo y(t), a saída do sistema e x(t), sua entrada:

- (a) Classifique os sistemas abaixo como sendo: Lineares ou não, Variantes no tempo ou não, Causais ou não e Estáveis ou não:
 - 1. $y(t) = t^2 x(t-1)$
 - 2. y(t) = x(-t)
 - $3. \ y(t) = tu(t)$
 - 4. y(t) = x(t) 2x(t-2)