

Citations From References: 21

From Reviews: 3

MR37006 (12,198c) 52.0X

Yamabe, Hidehiko; Yujobô, Zuiman

On the continuous function defined on a sphere.

Osaka Math. J. 2 (1950), 19–22.

The following theorem is proved for every dimension n. Let f(X) be a real-valued continuous function defined on an n-dimensional sphere S^n in an (n+1)-dimensional Euclidean space E^{n+1} with center O. Then there exist n+1 points X_1, \dots, X_{n+1} on S^n such that (i) the vectors OX_1, \dots, OX_{n+1} are perpendicular to one another and (ii) $f(X_1) = \dots = f(X_{n+1})$. This theorem was originally conjectured by Rademacher and the case n=2 was proved by the reviewer [Ann. of Math. (2) 43, 739–741 (1942); MR0007267]. From this follows, as a corollary, that for any bounded convex body in E^{n+1} there exists a circumscribing cube around it. The authors prove this theorem by reducing it to the following lemma which can be proved by induction on n. Let S_0^n, S_1^n be two concentric n-dimensional spheres in E^{n+1} with the same center O. Let E be a closed subset of E^{n+1} contained between E_0^n and E_1^n which intersects any continuous curve joining E_0^n and E_1^n . Then E_1^n contains E_1^n 0 which intersects any continuous curve joining E_1^n 1 are perpendicular to one another and have the same length.

© Copyright American Mathematical Society 2020