S13

	Diseño de algoritmos
■ Fecha	@September 7, 2023

Combinaciones N elementos

m carnalidad — Conjuntos de m elementos $\{1,2,3,\ldots,N\}$

$$N=4\{1,2,3,4\}$$

$$\begin{vmatrix}
1 & 2 & 3 \\
1 & 2 & 4 \\
1 & 3 & 4 \\
2 & 3 & 4
\end{vmatrix} # = {N \choose m} = {4 \choose 3} = \frac{N!}{m!(N-m)!} = \frac{4!}{3!(4-3)!} = 4$$

$$m=3$$

$$\mathrm{Dado}\,m\ m\leq N\Rightarrow T(N)=?\ \binom{5}{3}=\frac{5!}{3!(5-3)!}=\frac{5\cdot 4\cdot \cancel{3}!}{\cancel{3}!\cdot 2!}=10$$

Ejemplo

1	2	2	3	3	4	4	5	5	6
1	3	2	4	3	5	4	6	1	
1	4	2	5	3	6	2			
1	5	2	6	3					
1	6	4							

5

Con un conjunto de 6 elmentos y conjuntos de carnalidad 2 se tiene

$$\binom{6}{2} = \frac{6!}{2!(4!)} = \frac{6 \cdot 5 \cdot 4!}{2!(4!)} = 15$$

Ejemplo ${\cal N}=6$ y m=3

Se sigue así hasta terminar

1	2	1	3	3	1	4	4	1	5	5	2	6	3
1	2	1	4	3	1	5	4		6		2		3
1	2	1	5	3		6					2		3
1	2		6										
2	4	2	5	5	• •	6		3		5	4	6	5
2	4		6										

Ejemplo

i=1
While(i<k){
 j=a+i;
 i++
}</pre>

$$k=4, i=1$$

i < k	j=a+i	i++
2 < k	20E	20E
3 < k	20E	20E
4 < 4		

$$1+1+(k-1)(5)$$

= $2+5k-5=5k-3$

 $\in O(1)$ no depende de n

Como determinamos los tiempos bajo n y el algoritmo no depende de n (tomamos a k como constante)

Ejemplo

$$\begin{aligned} 2 + n - 1(5k - 3 + 2) \\ &= 3 + 5kn - 3n - 5k + 1 \\ &= 5kn - 3n - 5k + 4 \\ &\in O(n) \end{aligned}$$

j=1; while(j<n){ i=1; while(i<k){ a=b+i; i++ } j++ }</pre>

Ejemplo

Para saber cuantas veces elevamos a 2

$$2^k = n \Rightarrow k = log_2 n$$

 $log_b = \frac{lnn}{lnb}$

 $k = log_2 16 = 4$

Por lo tanto nuestro algoritmo es de orden $2+5log_2n$

Asumir que n=18

1<16	2	2
2<16	2	2
4<16	2	2
8<16	2	2
16<18	2	2
32<18		

Asumir que
$$n=16$$

1<16	2	2
2<16	2	2
4<16	2	2
8<16	2	2
16<16		

$log_2 18 = 4.2$

se toma el entero inmediato superior

lo que se denota así $2+5\lceil log_2 n \rceil$

Tomar el inmediato inferior se ve de la sig forma: $\lfloor a \rfloor$

Ejemplo con division

a=16;
while(a>n){
 b=c+d;

n=0

16>0	2	2
8>0	2	2

	a=a/2;	
}		
-		

4>0	2	2
2>0	2	2
1>0	2	2
0>0		

Ejemplo

```
a=0;
for(i=1; i<= n; i++){
    a=a+i*i;
}</pre>
```

2+6n	\in	O(n)
------	-------	------

1≤4	3	j++
2≤4	3	j++
3≤4	3	j++
4≤4	3	j++
5≤4		

S13 3