Datenstrukturen und Algorithmen, WS2024, Übungsblatt 2

Konstantin Krasser

November 3, 2024

Abzugeben bis siehe TC.

Rekursive Laufzeitfunktionen

Hausaufgaben

1. Aufgabe 1 (4 Punkte). Berechnen Sie eine scharfe asymptotische obere Schranke für $T(n) = 7T(n/2) + n^2$. Die Basis ist n < 2: T(n) = 1.

Lösung:

Wir verwenden das Master-Theorem, um die Rekurrenz zu lösen.

Die Rekurrenz hat die Form:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

mit a = 7, b = 2, und $f(n) = n^2$.

Wir berechnen $\log_b a$:

$$\log_b a = \log_2 7 \approx 2.807$$

Wir vergleichen f(n) mit $n^{\log_b a}$:

$$f(n) = n^2$$

 $n^{\log_b a} = n^{\log_2 7} \approx n^{2.807}$

Da $f(n) = O\left(n^{\log_b a - \epsilon}\right)$ für ein $\epsilon > 0$ (hier $\epsilon \approx 0.807$), befinden wir uns in Fall 1 des Master-Theorems.

Daher gilt:

$$T(n) = \Theta\left(n^{\log_b a}\right) = \Theta\left(n^{\log_2 7}\right)$$

Also ist die scharfe asymptotische obere Schranke:

$$T(n) = O\left(n^{\log_2 7}\right)$$

2. **Aufgabe 2 (4 Punkte).** Gegeben sei T(n) = 1 für $n \le 2$. Für n > 2 gilt: $T(n) = \sqrt{n} T(\sqrt{n}) + n$. Zeigen Sie, dass $T(n) \in \mathcal{O}(n \log \log n)$.

Hinweis: Betrachten Sie zunächst $T'(n) = \frac{T(n)}{n}$, woraus folgt, dass $T'(\sqrt{n}) = \frac{T(\sqrt{n})}{\sqrt{n}}$.

Lösung:

Wir definieren $T'(n) = \frac{T(n)}{n}$. Dann gilt T(n) = n T'(n).

Die gegebene Rekurrenz wird zu:

$$T(n) = \sqrt{n} T(\sqrt{n}) + n$$

Dividieren wir beide Seiten durch n:

$$\frac{T(n)}{n} = \frac{\sqrt{n} T(\sqrt{n})}{n} + 1$$

$$T'(n) = \frac{T(\sqrt{n})}{\sqrt{n}} + 1 = T'(\sqrt{n}) + 1$$

Wir haben also die Rekurrenz:

$$T'(n) = T'(\sqrt{n}) + 1$$

Um diese zu lösen, betrachten wir die Iteration:

$$T'(n) = T'(\sqrt{n}) + 1$$

$$= T'(\sqrt[4]{n}) + 1 + 1$$

$$= T'(\sqrt[8]{n}) + 1 + 1 + 1$$

$$\vdots$$

$$= T'(2) + k$$

wobei k die Anzahl der Iterationsschritte ist.

Wir stoppen die Iteration, wenn $\sqrt[2^k]{n} \le 2$, also wenn:

$$\log_2 n^{1/2^k} \le 1 \implies \frac{\log_2 n}{2^k} \le 1$$

Daraus folgt:

$$2^k \ge \log_2 n \implies k \ge \log_2 \log_2 n$$

Damit ist:

$$T'(n) = T'(2) + k = T'(2) + \log_2 \log_2 n$$

Da T'(2) eine Konstante ist, gilt:

$$T'(n) = \mathcal{O}(\log \log n)$$

Da T(n) = n T'(n), folgt:

$$T(n) = n \mathcal{O}(\log \log n) = \mathcal{O}(n \log \log n)$$

3. Aufgabe 3 (4 Punkte). Berechnen Sie eine scharfe asymptotische obere Schranke für die folgende Rekurrenzfunktion $T(n) = T(\sqrt{n}) + \log_2 \log_2 n$. Nehmen Sie an, dass T(n) = 1 für $n \leq 2$.

Hinweis: Verwenden Sie die Substitution $m = \log_2 n$, ähnlich wie in der Übung.

Lösung:

Wir setzen $m = \log_2 n$. Dann ist $n = 2^m$ und $\sqrt{n} = 2^{m/2}$. Außerdem gilt $\log_2 \log_2 n = \log_2 m$.

Die Rekurrenz wird zu:

$$T(2^m) = T\left(2^{\frac{m}{2}}\right) + \log_2 m$$

Definieren wir $S(m) = T(2^m)$, erhalten wir:

$$S(m) = S\left(\frac{m}{2}\right) + \log_2 m$$

Wir lösen diese Rekurrenz durch Iteration:

$$\begin{split} S(m) &= S\left(\frac{m}{2}\right) + \log_2 m \\ &= S\left(\frac{m}{4}\right) + \log_2\left(\frac{m}{2}\right) + \log_2 m \\ &= S\left(\frac{m}{8}\right) + \log_2\left(\frac{m}{4}\right) + \log_2\left(\frac{m}{2}\right) + \log_2 m \\ &\vdots \\ &= S\left(\frac{m}{2^k}\right) + \sum_{i=0}^{k-1} \log_2\left(\frac{m}{2^i}\right) \end{split}$$

Wir stoppen die Iteration, wenn $\frac{m}{2^k} \le 1$, also wenn $k \ge \log_2 m$.

Die Summe wird dann:

$$\sum_{i=0}^{k-1} (\log_2 m - i) = k \log_2 m - \frac{k(k-1)}{2}$$

Da $k = \lceil \log_2 m \rceil$, ist $k = \mathcal{O}(\log m)$.

Also ist:

$$S(m) = S(1) + \mathcal{O}\left((\log m)\log m - (\log m)^2\right) = \mathcal{O}\left((\log m)^2\right)$$

Da S(1) eine Konstante ist, folgt:

$$T(n) = S(m) = \mathcal{O}\left((\log \log n)^2\right)$$