Stiffness reduction in UD and cross-ply laminates due to fiber/matrix interface cracks

Luca Di Stasio^a, Janis Varna^a

^aLuleå University of Technology, University Campus, SE-97187 Luleå, Sweden

Abstract

Keywords: Fiber Reinforced Polymer Composite (FRPC), Debonding, Finite element analysis (FEA)

1. Introduction

Main ref [1]

2. Derivation of constitutive relations

2.1. Reference frames

5 Local reference frame of k-th layer: index 1 is the in-plane longitudinal or fiber or 0°-direction; index 2 is the in-plane transverse or 90°-direction; index 3 is the out-of-plane or through-the-thickness direction.

Global reference frame of laminate: index x is the in-plane longitudinal or laminate 0° direction; index y is the in-plane transverse direction; index z is the out-of-plane or through-the-thickness direction.

2.2. Crack density

Principle 1. Normalized volume of cracks V_{an} is the ratio of cracked volume V_a to material volume V

$$V_{an} = \frac{V_a}{V} \tag{1}$$

 V_a is equal to the product of total crack surface S_C and average crack opening u_a

$$V_{an} = \frac{S_C u_a}{V} = \frac{S_C}{V} u_a = \rho_C u_a \tag{2}$$

The ratio $\frac{S_C}{V}$ has a size of $\frac{1}{length}$ and correspond to the crack density ρ_C . It means: product of crack density and average crack opening is equal to normalized volume of cracks.

Applying the previous Principle to debonds, we have:

$$\rho_{D} = \frac{\text{total area of debonds}}{\text{total layer volume}} = \frac{n_{D}wR_{f}\Delta\theta}{L_{lam}wt_{90^{\circ}}} = \frac{n_{D}w}{L_{lam}wt_{90^{\circ}}}R_{f}\Delta\theta = \frac{1}{n2L}\frac{1}{k2L}R_{f}\Delta\theta = \frac{1}{nk4L^{2}}R_{f}\Delta\theta = \frac{V_{f}}{nk\pi R_{f}^{2}}R_{f}\Delta\theta = \frac{V_{f}}{nkR_{f}}\frac{\Delta\theta}{\pi} \tag{3}$$

$2.3. \ Vakulenko-Kachanov \ tensor$

In the local reference frame of k-th layer, the outer normal at crack faces has components:

$$n_1 = 0 \quad n_2 \neq 0 \quad n_3 \neq 0$$
 (4)

while crack face displacement has components:

$$u_1 = 0 \quad u_2 \neq 0 \quad u_3 \neq 0 \tag{5}$$

Definition of Vakulenko-Kachanov tensor:

$$\beta_{ij} = \frac{1}{V_k} \int_{SC} \frac{1}{2} (u_i n_j + u_j n_i) dS$$
 (6)

Expand the expression for each component and simplify based on the fact that $u_1 = 0$:

$$\beta_{11} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_1 n_1 + u_1 n_1) dS = \frac{1}{V_k} \int_{S_C} y_1 n_1^0 dS = 0$$

$$\beta_{22} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_2 n_2 + u_2 n_2) dS = \frac{1}{V_k} \int_{S_C} u_2 n_2 dS$$

$$\beta_{33} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_3 n_3 + u_3 n_3) dS = \frac{1}{V_k} \int_{S_C} u_3 n_3 dS$$

$$\beta_{12} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_1 n_2^0 + u_2 p_1)^0 dS = 0$$

$$\beta_{13} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_1 n_3^0 + u_3 p_1)^0 dS = 0$$

$$\beta_{23} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_2 n_3 + u_3 n_2) dS$$

$$\beta_{21} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_2 p_1 + p_1 n_2^0) dS = 0$$

$$\beta_{31} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_3 p_1 + p_1 n_3^0) dS = 0$$

$$\beta_{32} = \frac{1}{V_k} \int_{S_C} \frac{1}{2} (u_3 n_2 + u_2 n_3) dS = \beta_{23}$$

Only 3 independent components of the tensor β_{ij} remain: β_{22} , β_{33} and β_{23} . Split total crack surface S_C into total matrix crack surface S_C^m and total fiber crack surface S_C^f and remember that $n_i^f = -n_i^m$ for i = 2, 3

$$\beta_{22} = \frac{1}{V_k} \int_{S_C} u_2 n_2 dS = \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_2^m dS + \int_{S_C^f} u_2^f n_2^f dS \right] =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_2^m dS + \int_{S_C^f} u_2^f (-n_2^m) dS \right]$$

$$\beta_{33} = \frac{1}{V_k} \int_{S_C} u_3 n_3 dS = \frac{1}{V_k} \left[\int_{S_C^m} u_3^m n_3^m dS + \int_{S_C^f} u_3^f n_3^f dS \right] =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_3^m n_3^m dS + \int_{S_C^f} u_3^f (-n_3^m) dS \right]$$

$$\beta_{23} = \frac{1}{V_k} \int_{S_C} (u_2 n_3 + u_3 n_2) dS =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} (u_2^m n_3^m + u_3^m n_2^m) dS + \int_{S_C^f} \left(u_2^f n_3^f + u_3^f n_2^f \right) dS \right] =$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

$$= \frac{1}{V_k} \left[\int_{S_C^m} u_2^m n_3^m dS + \int_{S_C^f} u_2^f (-n_3^m) dS + \int_{S_C^m} u_3^m n_2^m dS + \int_{S_C^f} u_3^f (-n_2^m) dS \right]$$

The total matrix debonded surface S_C^m is equal to the total fiber debonded surface S_C^f and equal to:

$$S_C^m = S_C^f = n_D R_f \Delta \theta \tag{9}$$

With Eq. 9, we can recast Eq. 8 as

$$\beta_{22} = \frac{1}{V_k} \left[n_D R_f w \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right] =$$

$$= \frac{1}{L_{lam} w t_{90^{\circ}}} \left[n_D R_f w \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right] =$$

$$= \frac{1}{L_{lam}} \frac{n_D R_f}{t_{90^{\circ}}} \left[\int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right] =$$

$$= \rho_D \left[\frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_2^m d\theta \right]$$

$$\beta_{33} = \rho_D \left[\frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_3^m - u_3^f \right) n_3^m d\theta \right]$$

$$\beta_{23} = \rho_D \left[\frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_2^m - u_2^f \right) n_3^m d\theta + \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left(u_3^m - u_3^f \right) n_2^m d\theta \right]$$

We can express the displacement jumps at the interface as a function of the local Crack Opening Displacement (COD) and Crack Sliding Displacement (CSD) as

$$u_2^m - u_2^f = (u_r^m - u_r^f)\cos(\theta) - (u_\theta^m - u_\theta^f)\sin(\theta) =$$

$$= COD(\theta)\cos(\theta) - CSD(\theta)\sin(\theta)$$

$$u_3^m - u_3^f = (u_r^m - u_r^f)\sin(\theta) + (u_\theta^m - u_\theta^f)\cos(\theta) =$$

$$= COD(\theta)\sin(\theta) + CSD(\theta)\cos(\theta)$$
(11)

where θ is the local angular coordinate at the interface. We can similarly express n_2^m and n_3^m as a function of θ :

$$n_2^m = \cos(\theta) - \sin(\theta)$$

$$n_3^m = \sin(\theta) + \cos(\theta)$$
(12)

Thus, Eq. 10 becomes

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(\sin(\theta) \cos(\theta) - \sin^2(\theta) \right) + CSD(\theta) \left(\cos^2(\theta) - \cos(\theta) \sin(\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{2\Delta \theta} \int_0^{\Delta \theta} \left(COD(\theta) - CSD(\theta) \right) \left(-1 + \sin(2\theta) - \cos(2\theta) \right) d\theta =$$

$$= \rho_D \frac{1}{2\Delta \theta} \int_0^{\Delta \theta} \left(COD(\theta) - CSD(\theta) \right) \left(\sqrt{2} \sin\left(2\theta - \frac{\pi}{4}\right) - 1 \right) d\theta$$

$$\beta_{33} =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(\sin(\theta) \cos(\theta) + \sin^2(\theta) \right) + CSD(\theta) \left(\cos^2(\theta) + \cos(\theta) \sin(\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{2\Delta \theta} \int_0^{\Delta \theta} \left[COD(\theta) \left(1 + \sin(2\theta) - \cos(2\theta) \right) + CSD(\theta) \left(1 + \sin(2\theta) + \cos(2\theta) \right) \right] d\theta =$$

$$= \rho_D \frac{1}{2\Delta \theta} \int_0^{\Delta \theta} \left[\left(COD(\theta) + CSD(\theta) \right) \left(1 + \sin(2\theta) - \left(COD(\theta) - CSD(\theta) \right) \cos(2\theta) \right] d\theta$$

$$\beta_{23} =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} COD(\theta) \left(2\sin(\theta) \cos(\theta) + \cos^2(\theta) - \sin^2(\theta) \right) +$$

$$- \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} CSD(\theta) \left(\sin^2(\theta) - \cos^2(\theta) + 2\cos(\theta) \sin(\theta) \right) d\theta =$$

$$= \rho_D \frac{1}{\Delta \theta} \int_0^{\Delta \theta} \left[\left(COD(\theta) - CSD(\theta) \right) \sin(2\theta) + \left(COD(\theta) + CSD(\theta) \right) \cos(2\theta) \right] d\theta$$

$$(13)$$

2.4. Analytical modeling of $COD(\theta)$ and $CSD(\theta)$

$$COD(\theta) = COD_{avg} + \delta COD(\theta) = COD_{avg} + COD_{max}f(\theta)$$

$$CSD(\theta) = CSD_{avg} + \delta CSD(\theta) = CSD_{avg} + CSD_{max}g(\theta)$$

$$\int_{0}^{\Delta \theta} f(\theta) d\theta = 0 \qquad \int_{0}^{\Delta \theta} g(\theta) d\theta = 0 \qquad (15)$$

$$f(\theta) = a_0 + \sum_{k=0}^{n-1} a_{2k+1} \theta^{2k+1} \quad g(\theta) = b_0 + \sum_{k=0}^{n-1} b_{2k+1} \theta^{2k+1}$$
 (16)

$$COD\left(\Delta\Phi\right) = COD_{avg} + COD_{max}\left(a_0 + \sum_{k=0}^{n-1} a_{2k+1}\Delta\Phi^{2k+1}\right) = 0$$

$$CSD\left(\Delta\Theta\right) = CSD_{avg} + CSD_{max}\left(b_0 + \sum_{k=0}^{n-1} b_{2k+1}\Delta\Theta^{2k+1}\right) = 0$$

$$(17)$$

$$a_{0} = -\left(\frac{COD_{avg}}{COD_{max}} + \sum_{k=0}^{n-1} a_{2k+1} \Delta \Phi^{2k+1}\right)$$

$$b_{0} = -\left(\frac{CSD_{avg}}{CSD_{max}} + \sum_{k=0}^{n-1} b_{2k+1} \Delta \Theta^{2k+1}\right)$$
(18)

$$\beta_{22} = \rho_D COD_{avg} \frac{1}{\Delta \theta} \int_0^{\Delta \theta} (1 + \sin(2\theta) - \cos(2\theta)) d\theta +$$

$$+ \rho_D COD_{max} \frac{1}{\Delta \theta} \int_0^{\Delta \theta} f(\theta) (1 + \sin(2\theta) - \cos(2\theta)) d\theta +$$

$$- \rho_D CSD_{avg} \frac{1}{\Delta \theta} \int_0^{\Delta \theta} (1 + \sin(2\theta) - \cos(2\theta)) d\theta +$$

$$- \rho_D CSD_{max} \frac{1}{\Delta \theta} \int_0^{\Delta \theta} g(\theta) (1 + \sin(2\theta) - \cos(2\theta)) d\theta +$$

$$- \rho_D CSD_{max} \frac{1}{\Delta \theta} \int_0^{\Delta \theta} g(\theta) (1 + \sin(2\theta) - \cos(2\theta)) d\theta +$$

$$(19)$$

$$\int_{0}^{\Delta\theta} (1 + \sin(2\theta) - \cos(2\theta)) d\theta = \left[\theta - \frac{1}{2}\cos(2\theta) - \frac{1}{2}\sin(2\theta)\right]_{0}^{\Delta\theta} =$$

$$= \Delta\theta + \frac{1}{2}\left(1 - \cos(2\Delta\theta)\right) - \frac{1}{2}\sin(2\Delta\theta) =$$

$$= \Delta\theta - \frac{1}{2}\left(\sqrt{2}\sin\left(2\Delta\theta + \frac{\pi}{4}\right) - 1\right)$$
(20)

$$\int_{0}^{\Delta\theta} f(\theta) \left(1 + \sin(2\theta) - \cos(2\theta)\right) d\theta = \int_{0}^{\Delta\theta} f(\theta) \sin\left(\frac{\pi}{4} - 2\theta\right) d\theta$$

$$= \int_{0}^{\Delta\theta} g(\theta) \left(1 + \sin(2\theta) - \cos(2\theta)\right) d\theta = \int_{0}^{\Delta\theta} g(\theta) \sin\left(\frac{\pi}{4} - 2\theta\right) d\theta$$

$$= \int_{0}^{\Delta\theta} g(\theta) \sin\left(\frac{\pi}{4} - 2\theta\right) d\theta = \int_{0}^{\Delta\theta} \left[\left(\frac{\pi}{4} - 2\theta\right) d\theta\right] d\theta$$

$$\begin{split} \beta_{22} = & \rho_{D} \left[1 - \frac{1}{2\Delta\theta} \left(\sqrt{2} \sin\left(2\Delta\theta + \frac{\pi}{4}\right) - 1 \right) \right] (COD_{avg} - CSD_{avg}) + \\ & - \frac{1}{2} \rho_{D} \left(a_{0}COD_{max} - b_{0}CSD_{max} \right) + \\ & - \sqrt{2} \sum_{i=0}^{n} \left(\left(a_{0}COD_{max} - b_{0}CSD_{max} \right) \left(1 - H\left(i - 1 \right) \right) + \sum_{k=0}^{n-1} \left(a_{2k+1}COD_{max} - b_{2k+1}CSD_{max} \right) \Delta\theta^{2k+1-i} \right) \times \\ & \times \frac{1}{2} \left(-1 \right)^{i} \sin\left(\left(1 - \frac{1}{2} \bmod\left(\frac{i+1}{2} \right) \right) \pi - \left(\frac{\pi}{4} - 2\Delta\theta \right) \right) \end{split}$$

40 References

[1] J. Varna, 2.10 crack separation based models for microcracking, in: P. W. Beaumont, C. H. Zweben (Eds.), Comprehensive Composite Materials II, Elsevier, Oxford, 2018, pp. 192 – 220. doi:https://doi.org/10.1016/B978-0-12-803581-8.09910-0.