笔记整理

赵丰

October 17, 2017

1 第五周第一次课

积分型守恒方程应用的两个例子

1. 流体对水平弯管的作用力

Figure 1: 水平弯管

如上图所示,已知管的入口横截面和出口横截面面积分别为 A_1,A_2 。进水口速度为 v_1 ,压强为 p_1 ,流体假设为理想不可压定常流,密度为 ρ ,求流体对水平弯管的作用力。

解: 坐标系选为地面系,控制体选为水平弯管,由连续性方程有:

$$v_1 A_1 = v_2 A_2 (1)$$

由 Bernoulli 方程有:

$$\frac{1}{2}v_1^2 + \frac{p_1}{\rho} = \frac{1}{2}v_2^2 + \frac{p_2}{\rho} \tag{2}$$

由动量守恒积分方程

$$\iint_{\Sigma} \overrightarrow{T_n} dA + \iiint_{\tau} \rho \overrightarrow{f} \tau - \iint_{\Sigma} \rho \overrightarrow{v} (\overrightarrow{v} \cdot \overrightarrow{n}) dA = 0$$

上式中 T_n 是表面力,在 A_i 面上 (i=1,2),由于 $T_n=-p_i\overrightarrow{n_i}$,而在 A_w 面上,设所求的作用力为 \overrightarrow{F} 则弯管对流体的作用力为 $-\overrightarrow{F}$,因此第一项化简为 $-\overrightarrow{F}-p_1A_1\overrightarrow{n_1}-p_2A_2\overrightarrow{n_2}$ 。上式第二项为体积力的贡献,即为重力势 $\rho\overrightarrow{g}\tau$,其中 τ 为管内流体体积。上式第三项为动量的输运项,考虑到 $\overrightarrow{v_1}=-v_1\overrightarrow{n_1},\overrightarrow{v_2}=v_2\overrightarrow{n_2}$,可得到第三项(不带前面负号)为 $\rho v_1^2A_1\overrightarrow{n_1}+\rho v_2^2A_2\overrightarrow{n_2}$,因此动量守恒方程最终化为

 $\overrightarrow{F} = \rho g \tau - p_1 A_1 \overrightarrow{n_1} - p_2 A_2 \overrightarrow{n_2} - \rho v_1^2 A_1 \overrightarrow{n_1} - \rho v_2^2 A_2 \overrightarrow{n_2}$ (3)

从式(1)和式(2)中解出 v_2, p_2 代入式(3)中得到流体对水平弯管的作用力为:

$$\overrightarrow{F} = \rho \overrightarrow{g} \tau - p_1 A_1 \overrightarrow{n_1} - (\frac{\rho v_1^2}{2} - \frac{\rho v_1^2 A_1^2}{2A_2^2} + p_1) A_2 \overrightarrow{n_2} - \rho v_1^2 A_1 \overrightarrow{n_1} - \rho \frac{v_1^2 A_1^2}{A_2^2} A_2 \overrightarrow{n_2}$$
(4)

若 $A_1 = A_2$, 则可推出 $v_1 = v_2, p_1 = p_2$, 作用力化简为:

$$\overrightarrow{F} = \rho \overrightarrow{q} \tau - (p_1 + \rho v_1^2)(\overrightarrow{n_1} + \overrightarrow{n_2}) \tag{5}$$

由于 \overrightarrow{g} 与水平弯管平面垂直,当 $\overrightarrow{n_1} = -\overrightarrow{n_2}$,即管是直的,作用力达到最小,这对消防员灭火时使用喷水管的方法具有一定指导意义。

2. 叶轮机械的功率

Figure 2: 叶轮机械示意图

叶轮机械的简化模型如上图所示,转动角速度为常数 \overrightarrow{a} , 纵向 $\overrightarrow{e_z}$ 设为单位长度,流体假设为理想不可压定常流,且速度分布均匀,我们取旋转中的叶轮机为参考系,以叶轮机为控制体。由于我们选的参考系是非惯性系,需要考虑惯性力项,为此首选考虑速度的分解,设 \overrightarrow{a} 是叶轮机上某位置对地速度, \overrightarrow{a} 是该位置流体微团相对叶轮机的速度, \overrightarrow{v} 是该位置流体微团对地速度,速度分解关系如下图所示:且满足 $\overrightarrow{v}=\overrightarrow{w}+\overrightarrow{u}$,其中 β 被称为安装角, α 为进气(出气)角。该位置流体微团对地的加速度

$$\overrightarrow{a} = \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r}) + 2\overrightarrow{\omega} \times \overrightarrow{w} \tag{6}$$

化简可得:

$$-\overrightarrow{a} = \omega^2 \overrightarrow{r} + 2\overrightarrow{w} \times \overrightarrow{\omega} \tag{7}$$

Figure 3: 速度分解关系示意图

由动量矩守恒积分方程有:

$$\underbrace{\iint\limits_{D} \rho(\overrightarrow{r} \times (\overrightarrow{f} - \overrightarrow{a})) d\tau}_{I_{1}} + \underbrace{\iint\limits_{\Sigma} (\overrightarrow{r} \times \overrightarrow{T_{n}}) dA}_{I_{2}} - \underbrace{\iint\limits_{\Sigma} (\overrightarrow{r} \times \rho \overrightarrow{w}) (\overrightarrow{w} \cdot \overrightarrow{n}) dA}_{I_{3}} = 0 \quad (8)$$

$$I_{1} = \iiint_{D} \rho(\overrightarrow{r} \times (-\overrightarrow{a}))d\tau, \overrightarrow{f} = \overrightarrow{g}$$
与叶轮机平面垂直
$$= \iiint_{D} \rho(\overrightarrow{r} \times (\omega^{2}\overrightarrow{r} + 2\overrightarrow{w} \times \overrightarrow{\omega}))d\tau, 代入(7)$$

$$= 2 \iiint_{D} \rho((\overrightarrow{r} \cdot \overrightarrow{\omega})\overrightarrow{w} - (\overrightarrow{r} \cdot \overrightarrow{w})\overrightarrow{\omega})d\tau, A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$$

$$= -2 \iiint_{D} \rho(\overrightarrow{r} \cdot \overrightarrow{w})\overrightarrow{\omega}d\tau$$

$$= -2 \left(\int_{r_{1}}^{r_{2}} rdr\right) \left(\int_{0}^{2\pi} \rho(\overrightarrow{r} \cdot \overrightarrow{w})d\theta\right) \overrightarrow{\omega}, 按柱坐标积分$$

$$= -Q_{m}(\omega r_{2}^{2} - \omega r_{1}^{2})\overrightarrow{e_{z}}, 质量流量的定义Q_{m} = \int_{0}^{2\pi} \rho(\overrightarrow{r} \cdot \overrightarrow{w})d\theta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

$$= -Q_{m}(u_{2}r_{2} - u_{1}r_{1})\overrightarrow{e_{z}}, \Lambda \Box \Lambda \Box \Box \Delta$$

由于相对速度 \overrightarrow{u} 沿侧面切线方向,与 \overrightarrow{n} 点积为零,侧面积分为零, I_3 中面积分只需考虑 $A_1 \cup A_2$,由连续性方程: $Q_m = -\rho_1\overrightarrow{w_1} \cdot \overrightarrow{n_1}A_1 = \rho_2\overrightarrow{w_2} \cdot \overrightarrow{n_2}A_2$,同样由图3的几何关系,在 A_1 面上有 $\overrightarrow{r} \times \overrightarrow{w} = -r_1w_1\cos\beta_1\overrightarrow{e_z}$ 因此对 A_1 上的面积分我们有

$$\iint_{A_1} (\overrightarrow{r} \times \rho \overrightarrow{w})(\overrightarrow{w} \cdot \overrightarrow{n}) dA = Q_m r_1 w_1 \cos \beta_1 \overrightarrow{e_z}$$
(11)

同理可求出 A_2 上的面积分为 $-Q_m r_2 w_2 \cos \beta_2 \overrightarrow{e_z}$, 进而得到

$$I_3 = Q_m(r_1 w_1 \cos \beta_1 - r_2 w_2 \cos \beta_2) \overrightarrow{e_z}$$
(12)

 I_2 包含叶片侧面对流体的力矩,通过式(8)可以求出该力矩。由于是理想流体, $\overrightarrow{T_n} = -p\overrightarrow{n}$ 与 \overrightarrow{r} 平行,因此进出口面 A_1,A_2 无力矩,于是我们得到:

$$\begin{split} \overrightarrow{M} = & I_2 \\ = & -I_1 + I_3 \\ = & Q_m(u_2r_2 - u_1r_1)\overrightarrow{e_z} + Q_m(r_1w_1\cos\beta_1 - r_2w_2\cos\beta_2)\overrightarrow{e_z}, \mathbf{式}(9)$$
和(12)
$$= & Q_m[r_2(u_2 - w_2\cos\beta_2) - r_1(u_1 - w_1\cos\beta_1)]\overrightarrow{e_z} \\ = & Q_m(r_2v_2\cos\alpha_2 - r_1v_1\cos\alpha_1)\overrightarrow{e_z}, \boxed{83}$$

进一步我们可求出 \overrightarrow{M} 求出叶轮机的功率 $N = \overrightarrow{M} \cdot \overrightarrow{a}$ 。

(13)

(14)

(15)

References

- [1] https://en.wikipedia.org/wiki/Triple_product
- [2] http://www.continuummechanics.org/velocitygradient.html
- [3] https://en.wikipedia.org/wiki/Angular_velocity#Angular_velocity_tensor
- [4] https://en.wikipedia.org/wiki/Divergence#Cylindrical_coordinates
- [5] https://en.wikipedia.org/wiki/Curl_(mathematics)
- [6] https://en.wikipedia.org/wiki/Fundamental_solution
- [7] https://en.wikipedia.org/wiki/Green%27s_function#Green.27s_functions_for_the_Laplacian