# Universidade Federal do Rio Grande do Norte

Instituto Metrópole Digital

Análise e Comparação de Speedup e Eficiência do código serial e paralelo na ordenação de números utilizando MergeSort

João Vitor Venceslau Coelho

Natal/RN 2020

## Introdução

Este relatório consiste na explicação do problema do **ordenamento de um vetor de números**, buscando deixar claros todos os detalhes do problema e da solução utilizada, sendo esta: **o algoritmo Merge Sort**. As versões serial e paralela do algoritmo implementado serão explanadas, em seguida os resultados obtidos serão mostrados e comentados. Será também discutida a corretude dos algoritmos implementados e serão expostas as análises do speedup, da eficiência e da escalabilidade dos algoritmos paralelos para o serial. Ao final, um resumo das atividades e análises realizadas será exposto, sintetizando os principais pontos do relatório.

#### Ordenação de números utilizando MergeSort

O ordenamento de um vetor de números é um problema bem conhecido e abordado na área de computação, consiste em reposicionar os elementos em um vetor de números de forma que fiquem em alguma ordem, comumente a ordem não-decrescente, dadas suas diversas aplicações e dependências para outras atividades, por exemplo, uma sequência ordenada facilita a busca de um elemento. Assim, algoritmos eficientes para ordenamento são bem desejados. O Merge Sort é um algoritmo de ordenação que se baseia no lema Dividir e Conquistar, isto é divide-se o problema em problemas menores, e ao resolver (conquistar), consegue realizar a tarefa desejada inicialmente. No caso, o Merge Sort divide o vetor a ser ordenado em 2 partes, as ordena chamando o próprio Merge Sort e, obtendo as duas partes ordenadas, realiza então o merge delas, isto é, mistura seus elementos de forma que a ordem desejada seja obtida. Por possuir essa natureza recursiva, o Merge Sort tende a possuir um alto gasto de memória, pois durante a operação de merge, é utilizada memória adicional a do vetor inicial. Assim, o algoritmo não é recomendado quando a economia de memória seja desejável. Porém o algoritmo possui uma complexidade de melhor, médio e pior caso igual:  $O(n \cdot log_2 n)$ . Existem diversas versões do **Merge Sort**, algumas são iterativas, não utilizando recursividade, outras não utilizam memória adicional, ou utilizam uma memória adicional menor do que a versão clássica. No quesito paralelização, diversas abordagens foram propostas ao longo dos anos, para essa atividade foi utilizada a ideia do Dividir e Conquistar de forma diferente do algoritmo serial, pois em vez de dividir o array em duas partes, é dividido em n partes, para então realizar o merge de cada uma delas em um grande vetor corretamente ordenado. Abordagens mais eficientes já foram propostas, porém de complexidade major, por exemplo o parallel merge.

### Desenvolvimento

Abaixo são explicadas as versões serial e paralela do algoritmo **Merge Sort**. A parte do código relativa a contagem do tempo não está sendo indicada, mas apenas o tempo de execução da ordenação é considerado, o tempo que é gasto para alocar / desalocar a memória necessária e preencher o vetor com os números pseudo-aleatórios não foi contabilizado.

#### Abordagens implementadas

#### Algoritmo Serial do MergeSort

O algoritmo inicia com a leitura dos seguintes argumentos:

- A **seed** a ser utilizada para preencher o vetor com números aleatórios;
- A quantidade de números a serem armazenados no vetor;
- A flag que sinaliza se o vetor ordenado deve ser exibido ou não;

Após ativar a **seed**, é alocado o devido espaço de memória para o vetor de números, em seguida preenche-se o vetor com os números pseudo-aleatórios utilizando a função **rand**.

Com o vetor pronto para ser ordenado, dá-se início ao **mergesort**, passando como argumentos o vetor a ser ordenado, a posição onde a ordenação deve iniciar e o tamanho do vetor. Essa função é apenas uma espécie de interface que encapsula a função interna do **mergesort**, onde os argumentos são: vetor, posição inicial e posição final. Assim, após subtrair uma unidade do tamanho do vetor, chama-se a função interna. A função interna tem início com uma condição que verifica se a posição inicial informada é menor que a posição final, pois se não for, não há nada a ordenar, assim, se os parâmetros atenderem essa condição, são realizados os seguintes passos:

- 1. Calcula-se a posição do elemento do meio do vetor, com base na posição inicial e final informadas;
- 2. Ordena o vetor da posição inicial até a posição do elemento do meio;
- 3. Ordena o vetor da posição do elemento do meio até a posição final;
- 4. Realiza o merge das metades ordenadas;

Como os passos 2 e 3 são as chamadas recursivas da função, não serão dados muitos detalhes, mas o passo 4, onde o *merge* ocorre, será explicado a seguir:

A função de merge recebe os seguintes parâmetros:

- O vetor onde o merge deve ocorrer;
- A posição inicial do vetor (inicio do primeiro vetor);
- A posição do meio do vetor (que delimita o final do primeiro vetor e início do segundo vetor);
- A posição final do vetor (final do segundo vetor);

Com esses parâmetros de posições são calculados os tamanhos de cada metade e com os devidos tamanhos, aloca-se a memória auxiliar do processo de *merge*.

Após copiar os valores do vetor original para os vetores auxiliares e inicializar as variáveis de apoio, que são:

- *i*: índice para as posições no primeiro vetor, inicia com 0;
- j: índice para as posições no segundo vetor, inicia com 0;
- *k*: índice para as posições no vetor ordenado, inicia com o valor da posição inicial informada por parâmetro;

É então iniciado um laço que continua enquanto as seguintes condições forem atendidas:

Se o valor de *i* for menor que o tamanho calculado para o primeiro vetor e o valor de *j* for menor que o tamanho calculado para o segundo vetor, isto é, enquanto existir elementos a percorrer em alguns dos dois vetores, o laço é executado.

Dentro do laço, é feita a seguinte verificação: O elemento da posição i do primeiro vetor  $\acute{\mathbf{e}}$  **menor** que o elemento da posição j do segundo vetor? Se ele for menor ele será colocado na posição k do vetor ordenado, mas se o menor elemento for o da posição j, então ele que é colocado na posição k. Após realizar essas operações são incrementados os índices envolvidos, isto  $\acute{\mathbf{e}}$ , o índice do elemento posicionado na posição k (i ou j) e o próprio k.

Após o término do laço, caso o valor de *i* seja menor que o tamanho do primeiro vetor, isto é, algum elemento do primeiro vetor não tenha sido posicionado no vetor ordenado, os elementos a partir da posição *i* até o final do primeiro vetor são copiados para o vetor ordenado, iniciando na posição *k*. Caso contrário, os elementos do segundo vetor que ainda não foram posicionados no vetor ordenado, que são copiados. Ao fim, ocorre a liberação da memória utilizada para armazenar os vetores auxiliares.

#### Algoritmo Paralelo do MergeSort

Na versão paralela, um novo parâmetro é necessário, a quantidade de threads a serem usadas, fora a leitura desse parâmetro, o inicio do algoritmo é o mesmo, aloca-se a memória do vetor e o preenche com os os números pseudo-aleatórios. A paralelização ocorre na função do **mergesort**, onde em vez de ser apenas uma interface para chamar o **mergesort** interno, na versão paralela ela é bem mais importante.

A função inicia calculando qual a quantidade de números a serem ordenados por cada thread, então aloca um vetor para armazenar os limites que definem os números a serem ordenados por cada thread, em seguida preenche esse vetor com base na posição inicial informada, o índice da posição e a quantidade de números que cada thread deve ordenar. Por fim, salienta-se que apenas o último limite não é calculado assim, pois ele é o próprio tamanho do vetor.

Com os limites devidamente calculados, define-se uma área paralela usando o #pragma omp parallel, dentro dessa área é realizado um omp for onde cada thread executa a ordenação do vetor definido pelos limites calculados anteriormente, utilizando a versão serial do mergesort, assim, ao término desta etapa, temos diversos vetores ordenados,

porém o vetor completo ainda não está ordenado, dessa forma, é executada a função para fazer o *merge* de todos esses vetores em um único grande vetor.

Essa função recebe como parâmetros o vetor a ordenar, os limites, e a quantidade de vetores delimitados pelo vetor de limites. Caso sejam apenas 2 vetores, é realizada a mesma operação de *merge* utilizada pelo **mergesort** serial, caso sejam 3 vetores, são realizados dois *merges*, um entre o primeiro e o segundo vetor, e em seguida outro entre o resultado do primeiro *merge* com o terceiro vetor.

Caso a quantidade de vetores a passarem pelo *merge* seja maior que 3, então é iniciada uma região paralela com **omp sections**, duas **sections** são definidas, na primeira é feita a chamada recursiva da função de merge dos vetores, passando como parâmetros o próprio vetor a ordenar, os limites e a metade da quantidade de vetores a realizar o *merge*. Na segunda **section** outra chamada recursiva ocorre, novamente informando o vetor a ser ordenado, porém os limites agora informados iniciam a partir da outra metade de vetores, e a quantidade de vetores é novamente a metade de vetores da chamada atual da função.

Após o término dessas **sections** paralelas é verificado se a quantidade de vetores era par ou ímpar. Quando for uma quantidade par, é executado o *merge* dos vetores definidos pelo primeiro limite, o do meio e o final do vetor de limites, pois os vetores compreendidos nesses intervalos já tiverem o *merge* realizado nas chamadas recursiva da função de *merge*. Caso a quantidade de vetores seja ímpar, é realizado o *merge* dos vetores definidos pelo limite inicial, o do meio e o penúltimo limite, após esse *merge* é executado outro *merge*, entre os vetores definidos pelo limite inicial, o penúltimo limite e o limite final. Após todos os *merge*s ocorrerem o vetor está completamente ordenado.

#### Resultados encontrados

#### Corretude do Algoritmo Serial do MergeSort

A corretude da versão serial pode ser exemplificada com a seguinte instância do problema:

Como o **mergesort** utiliza a estratégia de *Dividir* e *Conquistar*, o vetor é dividido em outros dois para então ser ordenado:

Após realizar essa divisão, como a condição ainda é satisfeita, isto é, o índice de início ainda é menor que o índice do fim, o vetor é dividido novamente.

E com isso a chamada recursiva para de ocorrer, e o *merge* dos subvetores têm início. Assim após a execução do *merge*, obtém-se o seguinte resultado:

Após ter ordenado a primeira parte do vetor, é feito o ordenamento da segunda parte. Como a condição dos índices ainda é satisfeita, o vetor é dividido novamente:

Neste momento a condição não é mais satisfeita, logo a chamada recursiva para de executar e a função de *merge* é realizada, tendo como resultado:

Com os dois subvetores devidamente ordenados, a chamada recursiva termina e então é executada a função de *merge* nos subvetores ordenados, resultando em:

E assim, ocorre o ordenamento na versão serial do mergesort.

#### Corretude do Algoritmo Paralelo do MergeSort

A corretude da versão paralela pode ser exemplificada com a mesma instância do problema usada anteriormente, porém utilizando 2 threads:

Como a versão paralela implementada do **mergesort** utiliza a estratégia de *Dividir* e *Conquistar* a nível de thread, o vetor é dividido em um número igual de subvetores para cada thread utilizada, no caso, é dividido em 2 subvetores, onde cada thread irá os ordenar seguindo a mesma estratégia utilizada na versão serial.

Após cada thread ter ordenado seu subvetor, temos o seguinte resultado:

Nesse momento é feito o *merge* dos vetores ordenados por cada thread num único vetor final.

Como são duas threads, temos apenas duas partes para fazer o merge, após executar a função, obtemos o seguinte resultado:

E assim, ocorre o ordenamento na versão paralela do **mergesort**. Obs.: De acordo com o número de threads, serão necessárias mais operações de *merge* no final.

#### Análise de Speedup, Eficiência e Escalabilidade

Abaixo está a tabela com as médias dos tempos válidos obtidos, sendo que para cada instância analisada, foram coletados 15 tempos, em que os dois maiores e os dois menores foram desconsiderados como válidos para o cálculo dessa média.

| Tamanho do Problema | Serial       | 4           | 8           | 16          | 32          |
|---------------------|--------------|-------------|-------------|-------------|-------------|
| 100000000           | 36,29818182  | 11,66203213 | 7,16241470  | 5,83763487  | 5,27261145  |
| 150000000           | 55,96000000  | 17,79348821 | 10,91436425 | 8,56394576  | 7,81364857  |
| 20000000            | 74,89909091  | 23,89023680 | 14,62228583 | 14,16228459 | 9,95496954  |
| 250000000           | 94,95818182  | 29,98619589 | 18,39116566 | 13,42333262 | 12,98262784 |
| 30000000            | 115,28272727 | 36,43567126 | 22,27351928 | 18,93479857 | 16,57769051 |
| 350000000           | 135,58272727 | 42,74521834 | 26,03315648 | 21,28726016 | 18,59280132 |

**Tabela 1:** Apresenta os tempos médios obtidos nos experimentos por tamanho do problema e algoritmo utilizado, assim como a quantidade de cores na versão paralela.

| Speedup 4  | Speedup 8  | Speedup 16 | Speedup 32 | Eficiência 4 | Eficiência 8 | Eficiência 16 | Eficiência 32 |
|------------|------------|------------|------------|--------------|--------------|---------------|---------------|
| 3,11250916 | 5,06786933 | 6,21796029 | 6,88428916 | 0,77812729   | 0,63348367   | 0,38862252    | 0,21513404    |
| 3,14497075 | 5,12718824 | 6,53437113 | 7,16182709 | 0,78624269   | 0,64089853   | 0,40839820    | 0,22380710    |
| 3,13513388 | 5,12225597 | 5,28863055 | 7,52378906 | 0,78378347   | 0,64028200   | 0,33053941    | 0,23511841    |
| 3,16672986 | 5,16324977 | 7,07411375 | 7,31424970 | 0,79168246   | 0,64540622   | 0,44213211    | 0,22857030    |
| 3,16400723 | 5,17577514 | 6,08840526 | 6,95408852 | 0,79100181   | 0,64697189   | 0,38052533    | 0,21731527    |
| 3,17188056 | 5,20807868 | 6,36919577 | 7,29221621 | 0,79297014   | 0,65100984   | 0,39807474    | 0,22788176    |

**Tabela 2:** Apresenta os valores do speedup e da eficiência de 4 a 32 cores, seguindo a mesma ordem dos tamanhos de problema da **Tabela 1**.

Com a tabela dos tempos, pode-se perceber que a versão paralela consegue reduzir consideravelmente o tempo gasto para realizar a ordenação, porém ao observar a **Tabela 2**, percebe-se que o speedup diminui o seu aumento conforme o aumento do número de cores. A eficiência reduz rapidamente conforme o aumento de cores. Esse comportamento pode ser melhor entendido nos gráficos abaixo, onde é feita a comparação de speedup e eficiência do **mergesort** implementado.



Imagem 1: Comparações do speedup em cada um dos tamanhos do problema com o speedup ideal.



**Imagens 2 e 3**: Apresenta a eficiência por cores em cada tamanho de problema utilizado e compara a eficiência por tamanho do problema, de acordo com a quantidade de cores.

Observando o gráfico da **imagem 1**, relativo ao speedup, pode-se observar que em um dado momento é como se o speedup tivesse alcançado um platô, não conseguindo aumentar mais. Provavelmente esse é o limite que essa abordagem de paralelização pode alcançar, talvez utilizando outras técnicas sejam obtidos resultados melhores. Em relação aos gráficos relativos à eficiência, pode-se observar um comportamento bem comum, a eficiência se mantém constante conforme aumenta-se o tamanho do problema para uma mesma quantidade de cores, e conforme o número de cores aumenta, para um mesmo tamanho de problema, a eficiência diminui.

Assim, analisando esses gráficos, a versão do **mergesort** implementada pode ser classificada como **Fracamente Escalável**, visto que com o aumento do tamanho do problema e do número de cores em proporções iguais, a eficiência se mantém constante.

### Considerações Finais

Neste relatório apresentou-se brevemente o problema da ordenação de um vetor de números e o que é o algoritmo de ordenação MergeSort . Foram explanadas as versões serial e paralela do algoritmo implementado, explicando como cada versão utiliza a ideia de *Dividir e Conquistar*.

Foi realizada uma breve apresentação da corretude dos algoritmos implementados, exemplificando a execução dos mesmos por meio de uma pequena instância do problema, nessa mesma instância foi brevemente simulada a execução do algoritmo serial, e em seguida o algoritmo paralelo com apenas duas threads. Feito isso, foi exposto a análise e comparação do speedup e eficiências do algoritmo paralelo implementado, apresentando os tempos médios obtidos nos experimentos realizados e discutindo os gráficos de speedup e eficiência gerados por esses tempos. Por fim, foi feita a categorização da versão paralela em relação a escalabilidade, com Fracamente Escalável sendo o escolhido, dados o comportamento observado no gráfico da Figura 2.

### Referências

Introdução a Sistemas Paralelos

https://en.wikipedia.org/wiki/Merge\_sort

https://en.wikipedia.org/wiki/Merge\_algorithm#Parallel\_merge

https://pt.wikipedia.org/wiki/Merge\_sort

https://www.geeksforgeeks.org/merge-sort/