Задача 1.

Рассчитайте плотность антимонида индия. Параметр решетки антимонида индия равен 6.479Å.(2 б)

Задача 2.

Для Si (Eg=1.12eV) p-п перехода при температуре T=200K с уровнями легирования $N_d=10^{17}~{\rm cm}^{-3}~{\rm g}$ п-типе , $N_a=2*10^{16}~{\rm cm}^{-3}~{\rm g}$ р-типе определите эффективные плотности состояний N_c , N_v , разницу уровней Ферми в n- и р-типе ΔE_F , ширину области обеднения W. Эффективная масса электрона в зоне проводимости $m_e=0.36m_0$, дырок в валентной зоне $m_h=0.81m_0$. Энергию связи примеси рассчитать в водородоподобной модели. Диэлектрическая проницаемость кремния $\epsilon=11.7$. Рассчитать воль-амперную характеристику такого диода, если площадь перехода составляет 1 мм². Диффузионные длины для электронов и дырок взять на http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html

Оценить максимальный ток через такой pn переход, если кристалл расположен в стандартном корпусе типа TO-220, который позволяет рассеивать до 50 Bt, после установки на теплоотвод. (10 б)

Задача 3.

На кремниевой подложке с маркировкой КЭФ-10 сформирован барьер Шоттки с никелем. Определить ширину ОПЗ и высоту барьера Шоттки. Работа выхода из никеля составляет 5.1 эВ, Электронное сродство в кремнии 4.05 эВ, Ширина запрещенной зоны 1.12 эВ. Подвижность электронов в кремнии $500 \text{ см}^2/(\text{B}\times\text{c})(46)$

Задача 4.

В полевом транзисторе Si с p-n переходом (размеры: L=10мкм, z=10мкм, a=100нм), определите напряжение и ток отсечки $V_{P,\ I_{P,\ }}$ изобразите семейство BAX при V_{G} =0, V_{G} = V_{P} /2 при N_{d} = 10^{16} см⁻³

Задача 5.

Рассчитайте разрывы зон и изобразите схематически гетероструктуру GaP-InP. GaP (a=5.45Å, Eg=2.26eV, ϵ =11/.), InP (a=5.86Å, Eg=1.34eV, ϵ =12.5). Рассчитать уровни энергии электронов и тяжелых дырок в сверхрешетке на базе такой гетероструктуры, если толщина слоев GaP составляет 5 нм, а толщина слоев InP 7 нм. (66)