

KKP-6143 Seat No.116

Second Year B. C. A. (Sem. - III) Examination November / December - 2014

303: Statistics & Optimization Technique

Time: 3	Hours] [Total Marks: 7	0
1 (a)	Answer the following questions:	8
	(1) Quartiles divide a series intoequal parts.	
	(2) Which measure of dispersion is ideal?	
	(3) Standard deviation is independent of change of but not of.	
	(4) List out the measure of central tendency.	
	(5) dispersion is used to compare two series.	
	(6) Find C.V. of 11, 11, 11, 11, 11.	
	(7) What is mean deviation of observation	
	having equal values?	
	(8) $\underline{\hspace{1cm}}$ mode of $-5, -7, -1, -2, -5, -5, 1,$	2
(h)	Attampt any true	

(1) Calculate the mean and median for the following distribution:

Marks	0-20	20-40	40-60	60-80	80-100
Frequency	3	17	27	20	09

(2) Find the standard deviation from the following:

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	2	6	12	16	22	18	14

(3) The runs scored by two batsman in a season are given below. Which batsman may be regarded dependable?

A	60	45	105	45	25	40	40	90	45	5
В	25	45	35	70	60	60	45	35	100	25

KKP-6143]

[Contd...

2 (a)	Answe	er the	follo	wing	01100	tion	<i>D</i>	V	6	·	470 .7
	(1) I	ftwo	vari	ables	are r	perfe	s:	nos	itive	12	1
	C	orrela	ted :	r =			cory	pos	10100	. 1 y	
	(2) In	n ran	k co	rrelati	on if						1
		$\sum d^2 =$	0, r =	= 1							
	101			gressi	on co	peffic	cient	ts ar	re O	8	1
	a	nd 0.2	hen	ce corr	elati	on co	peffc	ients	s is		•
	(4) 1	the va	alue	of r^2 1	ies l	oetw	een				1
		ind		-							
	(5)	ive e correla	xam	ple of	posi	tive	and	ne	gativ	re	1
				rrelait	00 0	ooff	oion	+ 2			2
(b)	Atten	ipt an	v tw	nielan	OII C	oem	cien	ι :			10
				followi	ng d	ata	calc	ulate	a		10
				cient d						ırl	
				metho							
		X 6	2	10 4	8						
		Y 9		9 8	-						
	10000000					1				0	
				mean		and	y se	eries	are	6	
			-	followi	0	ata	obta	in t.	he ts	wo.	
				equat							
		$x \mid 3$	2	-1 6	4	-2	5	7			
		y 5	13	12 -			0	-3			
	· · · · · · ·	1-1-	1			1	1				
	(iii)			ng rar							
	x	36	56 2	20 65	42	33	44	50	15	60	
	У	50 3	35 7	70 25	58	75	60	45	80	30	
									1 450		
3 (a)	Answ	er the	e foll	owing							
	1 .			lifferer		etw	een				3
				CPM							
				e follo	win	g te	rms				2
			Cvent	AND REAL PROPERTY.							
		(ii) E	ven								
KKP-614	[8]			2						Cor	ıtd

(iii) Define:

3

- (i) Basic Feasible solution
- (ii) Objective Funciton
- (iii) Constraints.

(b) Attempt any two:

10

(i) Use the simplex method to solve the following L.P.P.

MAN.
$$Z = 3x_1 + 4x_2$$

Subject to $2x_1 + 3x_2 \le 16$

$$2x_1 + x_2 \le 8$$

AND $x_1, x_2 \ge 0$

(ii) Solve the following L.P.P. by graphical method

Max
$$Z = 3x_1 + 4x_2$$

Subject to $2x_1 + 5x_2 \le 120$

$$4x_1 + 2x_2 \le 80$$

and $x_1, x_2 \ge 0$

(iii) Draw a network diagram for the following activity:

Activity	A	В	C	D	E	F
Predecessar Activity	-	A	A	ВС	-	·DE
Duration	2	3	4	.6	2	8

- 4 (a) Answer the following:
 - (1) What is unbalance Transportation problem? How can it be balance?

(2) Expalin Degeneracy in transportation problem.

(3) List out the method to find out initial basic feasible solution in transportaiton problem.

4

2

1

(ii) Attempts any two:

(1) Obtain initial basic feasible solution for the given problem by N.W.C.M, L.C.M., V.A.M.

10

Destinations

		D	E	F	G	Supply
Sources	A	11	13	17	14	250
	В	16	18	14	10	300
	C	21	24	13	10	400
	Demand	200	225	275	250	

(2) Find optimal solution for the following T.P.

Destinations

(3) Determine the optimal assignment schedule for the following:

Job B C D 10 I 12 19 11 П 5 10 7 8 Persons Ш 12 14 13 11 8 IV 15 11