Présentation finale du PFE

Apprentissage par renforcement multi-agents

David Albert

INSA Rouen

21 février 2020

- L'apprentissage
 - L'apprentissage automatique
 - L'apprentissage par renforcement
- 2 Résolution des jeux stochastiques
 - Jeux stochastiques
 - Théorie des jeux
 - Résolution des jeux stochastiques
- L'API marl
 - Présentation
 - Les environnements Gym
 - Soccer
- Expérimentations
 - Mono-agent
 - Multi-agent
- Conclusion

• Objectif : Construire P_{model} proche de P_{reel}

- Objectif : Construire P_{model} proche de P_{reel}
- Supervisé:

$$P\left(\mathbf{y} = \operatorname{cat} \middle| \mathbf{y}\right)$$

- Objectif : Construire P_{model} proche de P_{reel}
- Supervisé:

$$P\left(\mathbf{y} = \operatorname{cat} \middle| \mathbf{y}\right)$$

Non-supervisé:

 $\sim P(\mathbf{x})$

- Objectif : Construire P_{model} proche de P_{reel}
- Supervisé:

$$P\left(\mathbf{y} = \operatorname{cat} \middle| \mathbf{y}\right)$$

Non-supervisé:

• Séquentiel:

$$P(X_{t+1} = "pluie" \mid X_t = "soleil")$$

- Objectif : Construire P_{model} proche de P_{reel}
- Supervisé:

$$P\left(\mathbf{y} = \operatorname{cat} \middle| \mathbf{y}\right)$$

Non-supervisé:

• Séquentiel:

$$P(X_{t+1} = "pluie" \mid X_t = "soleil")$$

Renforcement:

$$P\left(X_{t+1} = "Chomage \nearrow ", R_{t+1} = -100 \mid X_t = "Chomage \searrow ", A_t = "Reforme"\right)$$

et $P\left(A_t = "Reforme" \mid X_t = "Chomage \searrow "\right)$

Apprentissage par renforcement

- Etude d'un système composé de 2 éléments:
 - L'environnement (Le système économique français)

$$\rightarrow p(s_t, r_t, o_t \mid s_1, r_1, o_1, a_1, s_2, ..., s_{t-1}, r_{t-1}, o_{t-1}, a_{t-1})$$

• L'agent (M. Macron)

$$\rightarrow p(a_t \mid r_1, o_1, a_1, ..., a_t, r_t, o_t)$$

- Planification vs Apprentissage
- Trois approches d'apprentissage:
 - 1. Estimation du modèle de transition \mathcal{T} + planification
 - 2. Estimation de la fonction de valeur q_{π}
 - 3. Optimisation direct de la politique d'action π

Problème: Prise de décision repose sur l'intégralité du passé.

Solution: Utiliser un modèle simplifié d'évolution (MDP).

Definition

Les **Processus de décision de Markov** est un modèle d'apprentissage par renforcement qui suit la propriété de Markov ("le futur ne dépend que tu présent").

4/14

Jeux stochastiques et théorie des jeux

Jeux stochastiques (SG) peuvent être vus comme :

- 1. extension des MDPs pour N agents (RL)
- 2. jeux matriciels à étapes (Théorie des Jeux)

Types de jeux :

- Coopératifs / Non coopératifs
- Forme normale / Forme extensive

Agents rationnels:

- exploite défaut des adversaires
- équilibre de Nash

Minimax-Q

Q-learning pour jeux à deux joueurs compétitifs.

- construit $Q_{s,a,o}$ pour chaque joueur
- $Q_{s,...}$ jeu matriciel

 $Q_1(s)$ et $Q_2(s)$

$A_1 \setminus A_2$	Front	Back	Left	Right
Front	10	10	6	10
	-10	-10	-6	-10
Back	8	7	5	7
	-8	-7	-5	-7
Left	3	5	7	5
	-3	-5	-7	-5
Right	8	7	5	7
	-8	-7	-5	-7

Mise à jour:

$$Q_{i}(s, a, o) = Q_{i}(s, a, o) + \alpha [r_{t} + \gamma \max_{\mathbf{a}} \min_{\mathbf{o}} \mathbf{Q}_{i}(s', \mathbf{a}, \mathbf{o}) - Q_{i}(s, a, o)]$$

Choix de la politique:

$$\pi_{i}(s) = arg \max_{a} \min_{o} Q_{i}(s, a, o)$$

Minimax-Q

Q-learning pour jeux à deux joueurs compétitifs.

- construit $Q_{s,a,o}$ pour chaque joueur
- $Q_{s,.,.}$ jeu matriciel

$Q_1(s)$ et $Q_2(s)$

$A_1 \setminus A_2$	Front	Back	Left	Right
Front	10 -10	10 -10	6 -6	10 -10
Back	8	7	5	7
Ducs	-8	-7	-5	-7
Left	3	5	7	5
	-3	-5	-7	-5
Right	8	7	5	7
	-8	-7	-5	-7

Interprétation: Q-learning pessimiste : $Q_i(s, a) = \min_{o} Q_i(s, a, o)$

Problèmes:

- Doit visiter indéfiniment tous les triplet $(etat/a_1/a_2)$ pour converger
- Politique déterministe
- Seulement 2 joueurs

WoLF-PHC

Motivation: Améliorer directement la politique

Policy Hill Climbing (PHC):

- Idée similaire aux Actor-Critic
- Critic: Q-learning standard

$$Q_{i}\left(s, a_{i}\right) = Q_{i}\left(s, a_{i}\right) + \alpha\left[r_{t} + \gamma \max_{a_{i}^{\prime}} Q_{i}\left(s^{\prime}, a_{i}^{\prime}\right) - Q_{i}\left(s, a_{i}\right)\right]$$

$$\pi_i(s,a) = \pi_i(s,a) + \left\{ egin{array}{ll} \delta & ext{si} & a = argmax_{a'} Q(s,a') \ rac{-\delta}{|A_i|-1} & ext{sinon} \end{array}
ight.$$

Win or Learn Fast (WoLF)

Principe d'apprentissage selon lequel un agent qui gagne mettra moins vite à jour son modèle $(\delta_{\textit{win}} \& \delta_{\textit{lose}})$.

Motivation: Nouvelles méthodes de gradient de politique

Multi-agent Deep Deterministic Policy Gradient (MADDPG):

- Politiques déterministes/Actions continues
- Critic: Deep Q-learning
- Actor: Descente de gradient

$$abla_{ heta_i} J = rac{1}{S} \sum_j
abla_{ heta_i} \mu_i(o_i^j) \
abla_{ extstyle a_i} Q_i(s^j, a_1^j, ..., a_i^j, ..., a_N^j)|_{a_i = \mu_i(o_i)}$$

Présentation de l'API marl

- Vision généralisée de l'apprentissage multi-agent
- Système d'agents "mixtes" :
 - · Agents entraînables, Agents pré-entraînés, Bots, Humains, etc
- Algorithmes disponibles:

- Documentation sphinx: https://blavad.github.io/marl
- Formalisme de jeux stochastiques
 - 1 récompense / agent
 - pas de communication explicite
- Compatiblilité : environnements Gym

L'environnement : la clé de l'apprentissage

- Environnements Gym
 - 2 attributs : observation_space, action_space
 - 3 méthodes : reset(), step(action), render()

- Jeux stochastiques ⇔ à priori non-coopératif
 - Formalisme coopératif : $r_i = r_j \ \forall i,j$
- Jeux stochastiques ⇔ pas de communication explicite
 - Communication implicite de i vers j : $o_j^{(t+1)} = concat(c_j^{(t+1)}, a_i^{(t)})$

L'environnement Soccer

Deux types d'environnements:

- 1) Environnement discret
- 2) Environnement continue

L'environnement Soccer

Deux types d'environnements:

- 1) Environnement discret
- \rightarrow Grille $h \times w$ (ici 4×5)
- \rightarrow Action : $a \in \{none, front, back, left, right\}$
- ightarrow Deux types d'observations
 - Etat exact : $s \in [0, ..., n \times (hw)^n]$
 - Map : $s \in \{0,1\}^h \times \{0,1\}^w \times \{0,1\}^3$

L'environnement Soccer

Deux types d'environnements:

2) Environnement continue

 \rightarrow Action : $a \in \{none, front, back, left, right\}$

ightarrow Observation : $o \in [-1,1]^{5+2 \times n}$

${\sf Exp\'{e}rimentations} \, \rightarrow \, \textit{Q-learning, minimax-Q et PHC}$

Soccer 2x2

Minimax-Q vs Random

Minimax-Q: 93.6 %

Random : 9.4 %

• Match nul : $\leq 2\%$

Q-learning vs Random

• Q-learning: 95.9 %

• Random : 4.1 %

• Match nul : $\leq 1\%$

PHC vs Random

• PHC: 82.3 %

• Random : 17.7 %

• Match nul : $\leq 10\%$

Minimax-Q vs Q-learning

Minimax-Q: 100.0 %

Q-learning: 0.0 %

Match nul : ≥ 70%

MinimaxQ vs PHC

Minimax-Q: 58.2 %

• PHC : 41.8 %

Match nul: 1 %

Expérimentations $\rightarrow DQN$ Soccer 5x5

Problème: Etat de l'environnement devient vite trop grand.

Solution:

- DQN sur terrain 5x5
- CNN pour estimer la valeur Q

Conclusion

- Compétences développées:
 - Théorie sur l'apprentissage multi-agents
 - Programmation python et pytorch
 - Compréhension de méthodes de RL récentes (ex: DDPG)
 - Compréhension des problématiques liées au MARL
 - Développement d'un environnement Gym