Using Reinforcement Learning to solve Quadratic Assignment Problems

Final Talk Tim Göttlicher

Supervisors

Prof Dr. Verena Wolf Dr. Andreas Karrenbauer

Joschka Groß

15.07.2022

The Quadratic Assignment Problem

The Quadratic Assignment Problem

Example: Economics

Transport volume between facilities

Cost per unit between locations

The Quadratic Assignment Problem

Example: Economics

Transport volume between facilities

Cost per unit between locations

Example: Keyboard layout

$$\sum_{i,j} a_{i,j} b_{f(i),f(j)}$$

edge weights
$$\sum_{i,j} a_{i,j} b_{f(i),f(j)} + \sum_i c_{i,f(i)}$$
 edges in left graph assigned edge in right graph

edge weights
$$\sum_{i,j} a_{i,j} b_{f(i),f(j)} + \sum_i c_{i,f(i)}$$
 edges in left graph assigned edge in right graph

Goal

Find assignment f that minimizes cost

edge weights
$$\sum_{i,j} a_{i,j} b_{f(i),f(j)} + \sum_i c_{i,f(i)}$$
 edges in left graph assigned edge in right graph

 $\label{eq:Goal} \mbox{Find assignment } f \mbox{ that minimizes cost}$

 \rightarrow How can RL be applied?

 $(state, action) \rightarrow (new state, reward)$

```
\begin{array}{l} (\mathsf{state},\mathsf{action}) \to (\mathsf{new} \; \mathsf{state},\mathsf{reward}) \\ T: (\mathsf{QAP}_n,\{1,\dots,n\}^2) \to \end{array}
```

```
(\text{state}, \text{action}) \to (\text{new state}, \text{reward}) T: (\text{QAP}_n, \{1, \dots, n\}^2) \to \text{pair of nodes}
```

 $(\mathsf{state},\mathsf{action}) \to (\mathsf{new}\ \mathsf{state},\mathsf{reward})$ $T: (\mathrm{QAP}_n,\{1,\dots,n\}^2) \to (\mathrm{QAP}_{n-1},\mathbb{R})$

Can we remove the assigned nodes from the graph?

Can we remove the assigned nodes from the graph?

Assignment cost based on half assigned edges

Can we remove the assigned nodes from the graph?

Assignment cost based on half assigned edges

Can we remove the assigned nodes from the graph?

Assignment cost based on half assigned edges

Can we remove the assigned nodes from the graph?

Assignment cost based on half assigned edges

→ Encode in new edge type between graphs

Can we remove the assigned nodes from the graph?

Assignment cost based on half assigned edges

→ Encode in new edge type between graphs

Small problems are part of larger problems

incremental learning

Compute value for each action

Compute value for each action

Encode graph structure

Compute value for each action

Encode graph structure

Predict pair values

Compute value for each action

Encode graph structure

Predict pair values

Separation experiment: Setup

Input connectivity matrix

Separation experiment: Setup

90 - 1.0 0 - 1 - 0.8 2 - 3 - 4 - 0.6 5 - 6 - 7 - 8 - 9 - 10 - 11 - 0.2 11 - 0.0

Input connectivity matrix

Target node embeddings

Separation experiment: Results

Output of trained GNN

Separation experiment: Results

Output of trained GNN

PairNorm

Separation experiment: Training progress comparison

Problem generator

Undirected 8 node graphs with random weights

Problem generator

Undirected 8 node graphs with random weights

8! = 40320 possible assignments

Problem generator

Undirected 8 node graphs with random weights

8! = 40320 possible assignments

RL algorithms

	Value-based	Policy gradient
Monte Carlo Temporal difference		

Problem generator

Undirected 8 node graphs with random weights

8! = 40320 possible assignments

RL algorithms

	Value-based	Policy gradient
Monte Carlo	MCQ	REINFORCE
Temporal difference	DQN	A2C

Performance indicators

Performance indicators

Gap to best known value

$$\frac{v\!-\!v_{\rm known}}{v_{\rm known}}$$

Performance indicators

Gap to best known value

Normalization to randomness

$$\frac{v\!-\!v_{\mathsf{known}}}{v_{\mathsf{known}}}$$

$$\frac{\mathsf{mean}(v) - \mathsf{mean}(v_{\mathsf{random}})}{\mathsf{variance}(v_{\mathsf{random}})}$$

Generalization results

Larger training size does not improve results

QAPLIB results

	FAQ	MCQ	DQN	RF	A2C	NGM	10k rand
bur 26-26	0.2	<u>3.0</u>	14.4	4.0	3.8	3.4	3.1
chr 12-25	54.9	125.3	<u>70.4</u>	87.9	74.5	121.3	130.5
els 19-19	23.7	<u>9.7</u>	132.2	132.2	98.9	57.0	56.5
esc 16-128	32.0	22.1	<u>12.6</u>	19.8	17.8	32.0	28.8
had 12-20	0.8	8.0	9.4	4.0	<u>2.9</u>	4.4	4.5
kra ³⁰⁻³²	5.7	<u>20.5</u>	28.9	21.7	22.0	31.4	31.4
lipa ²⁰⁻⁹⁰	2.5	14.4	14.2	13.4	<u>12.0</u>	14.1	14.1
nug 12-30	3.0	18.9	20.6	12.3	<u>12.2</u>	16.3	15.4
rou 12-20	3.8	18.7	14.0	14.3	14.2	13.1	<u>11.2</u>
SCr 12-20	17.4	36.9	21.1	28.1	<u>16.9</u>	30.2	30.2
sko 42-100	1.3	15.2	21.5	14.0	<u>11.8</u>	18.1	17.3
ste 36-36	7.0	61.0	141.1	<u>51.8</u>	66.6	102.2	108.0
tai 12-150	7.0	<u>18.8</u>	63.4	45.5	40.9	22.2	22.9
tho 30-150	2.4	24.7	32.8	22.8	<u>19.0</u>	25.3	26.0
wil 50-100	8.0	10.0	9.9	<u>6.6</u>	6.9	9.4	8.8
mean	10.8	<u>27.2</u>	40.4	31.9	28.0	33.4	33.9

References

- [1] E. L. Lawler, "The quadratic assignment problem," *Management Science*, vol. 9, pp. 586–599, 1963.
- [2] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How powerful are graph neural networks?," arXiv preprint arXiv:1810.00826, 2018.
- [3] E. Loiola, N. Abreu, P. Boaventura-Netto, P. Hahn, and T. Querido, "A survey of the quadratic assignment problem," *European Journal of Operational Research*, vol. 176, pp. 657–690, 01 2007.
- [4] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, "Revised note on learning algorithms for quadratic assignment with graph neural networks," 2018.
- [5] C. Liu, R. Wang, Z. Jiang, J. Yan, L. Huang, and P. Lu, "Revocable deep reinforcement learning with affinity regularization for outlier-robust graph matching," 2021.
- [6] T. C. Koopmans and M. Beckmann, "Assignment problems and the location of economic activities," *Econometrica*, vol. 25, no. 1, pp. 53–76, 1957.
- [7] R. Sato, M. Yamada, and H. Kashima, "Random features strengthen graph neural networks," in *Proceedings of the 2021 SIAM International Conference on Data Mining (SDM)*, pp. 333–341, SIAM, 2021.
- [8] R. Sato, "A survey on the expressive power of graph neural networks," *ArXiv*, vol. abs/2003.04078, 2020.

