1 Statisztikai Elemzés - Mesehősök Gumimaci Pontszámai

- 1.1 Adatok beolvasása és előkészítése
- 1.1.1 Szükséges könyvtárak importálása

```
[21]: import pandas as pd import numpy as np from scipy import stats
```

1.1.2 Adatok beolvasása

```
[22]: # Kategóriák definiálása
     →'allatsegito']
     # Adatok beolvasása string-ként
     with open('data/bead1.csv', 'r') as file:
         lines = file.readlines()
     # Az első sor elhagyása (mivel az a kategóriákat tartalmazza)
     # Az értékek átalakítása soronként listává
     data = [list(map(float, line.strip().strip('"').split(','))) for line in lines[1:
      →]]
     # DataFrame létrehozása
     df = pd.DataFrame(data, columns=kategoriak)
     # Adatok átalakítása long formátumba
     df_long = df.melt(var_name='Kategória', value_name='Gumimaci pontszám')
     # Alapvető statisztikai jellemzők
     print("Alapvető statisztikai jellemzők kategóriánként:")
     print(df_long.groupby('Kategória')['Gumimaci pontszám'].describe())
```

Alapvető statisztikai jellemzők kategóriánként:

```
count mean std min 25% 50% 75% max Kategória allatsegito 50.0 5.4096 3.130664 1.37 2.8850 4.335 9.6700 10.00
```

anti-hos	50.0	2.0552	1.655914	0.14	0.8300	1.545	3.0850	6.71
fogonosz	50.0	5.4766	2.125727	1.30	3.7325	5.690	7.1775	9.21
mellekszereplo	50.0	2.9046	1.635708	0.17	1.5675	2.735	4.0050	7.24
szuperhos	50.0	4.4258	2.879298	0.52	1.8700	3.770	6.0975	9.90

1.1.3 Próba meghatározása

Az adatok eloszlásáról nem tudunk semmit, csak hogy számok és a nagyságuk sorrendje számít, így ordinális változóknak tekintjük a gumimaci pontszámokat. A szereplők egymástól függetlenek és 5 mintánk van, így Kruskal-Wallis próbát hajtunk végre.

1.2 Kruskal-Wallis próba

1.2.1 Hipotézisek megfogalmazása

Hipotézispár: H0: A kategóriák pontszámainak eloszlása azonos

H1: Van két olyan kategória, amelyek pontszámainak eloszlása különbözik

Szignifikanciaszint: $\varepsilon = 0.05$

1.2.2 Próbastatisztika számítása

```
[23]: h_stat, p_value = stats.kruskal(*[group['Gumimaci pontszám'].values
for name, group in df_long.

→groupby('Kategória')])
print("Kruskal-Wallis teszt eredménye:")
print(f"H-statisztika = {h_stat:.4f}")
```

Kruskal-Wallis teszt eredménye:

H-statisztika = 68.1814

1.2.3 Döntés a kritikus érték alapján

```
Paraméterek: Kategóriák száma (k) = 5
Szabadságfok (df) = k-1 = 4
Szignifikanciaszint (\varepsilon) = 0.05
H-statisztika = 68.1814
\chi^2(0.05,4) kritikus érték (táblázat alapján) = 9.49
```

Döntési szabály: Ha H > $\chi^2(\epsilon, df) \rightarrow \text{elvetjük H0-t}$ Ha H $\leq \chi^2(\epsilon, df) \rightarrow \text{nem vetjük el H0-t}$

Összehasonlítás: 68.1814 > 9.49

A H-statisztika értéke nagyobb, mint a kritikus érték

1.2.4 Következtetés:

A H-statisztika meghaladja a kritikus értéket, ezért $\varepsilon = 0.05$ szignifikanciaszinten elvetjük a nullhipotézist.

Azaz statisztikailag kimutatható, hogy van különbség a kategóriák gumimaci pontszámai között.

1.3 Post-hoc elemzés

Mivel szignifikáns eltérés találtunk, ezért páronként meg kell vizsgálnunk a kategóriákat. A változóink ordinálisak, páronként végezzük a teszteket (tehát minden teszt esetén 2 mintát vetünk össze), a mintáink nem összefüggők.

Páronként 2 független mintás ordinális próbát, azaz Mann-Whitney próbát hajtunk végre.

1.3.1 Mann-Whitney Z teszt páronként

```
[24]: kategoriak = df_long['Kategória'].unique()
      alpha = 0.05 # szignifikanciaszint
      # Kritikus érték (kétoldali próba) normális eloszlás táblázatból
      z_critical = 1.96 # z0.975 = 1.96
      print(f"\nPáronkénti Mann-Whitney Z teszt eredményei:")
      print(f"Kritikus érték (z{1-alpha/2:.3f}): {z_critical}")
      print("-" * 50)
      results = []
      for i in range(len(kategoriak)):
          for j in range(i+1, len(kategoriak)):
              x = df_long[df_long['Kategória'] == kategoriak[i]]['Gumimaci pontszám'].
       →values
              y = df_long[df_long['Kategória'] == kategoriak[j]]['Gumimaci pontszám'].
       →values
              # Mann-Whitney teszt
              stat, p_value = stats.mannwhitneyu(x, y, alternative='two-sided')
              # Z-érték kiszámítása a p-értékből
              z_stat = stats.norm.ppf(1 - p_value/2)
              results.append({
                  'Kategória 1': kategoriak[i],
                  'Kategória 2': kategoriak[j],
                  'Z-érték': z_stat,
                  '|Z|': abs(z_stat),
                  'Szignifikáns': abs(z_stat) > z_critical
              })
              print(f''(xategoriak[i])) vs (xategoriak[i]): |Z| = {abs(z_stat):.4f} {'*'}
       →if abs(z_stat) > z_critical else ''}")
      # Eredmények DataFrame-be rendezése és megjelenítése
      results_df = pd.DataFrame(results)
      print("\nÖsszes páronkénti összehasonlítás eredménye:")
      print(results_df)
```

```
# Szignifikáns különbségek kiírása
print("\nSzignifikáns különbségek:")
sig_pairs = results_df[results_df['Szignifikáns']].apply(
    lambda x: f''\{x['Kategória 1']\}\ vs\{x['Kategória 2']\}\ (|Z| = \{x['|Z|']:.
 \hookrightarrow4f)", axis=1
for pair in sig_pairs:
    print(f"{pair}")
# Nem szignifikáns különbségek kiírása
print("\nNem szignifikáns különbségek:")
nonsig_pairs = results_df[~results_df['Szignifikáns']].apply(
    lambda x: f''\{x['Kategória 1']\}\ vs \{x['Kategória 2']\}\ (|Z| = \{x['|Z|']:.
 \hookrightarrow4f})", axis=1
for pair in nonsig_pairs:
    print(f"{pair}")
Páronkénti Mann-Whitney Z teszt eredményei:
Kritikus érték (z0.975): 1.96
szuperhos vs anti-hos: |Z| = 4.4880 *
szuperhos vs mellekszereplo: |Z| = 2.4611 *
szuperhos vs fogonosz: |Z| = 2.2543 *
szuperhos vs allatsegito: |Z| = 1.8492
anti-hos vs mellekszereplo: |Z| = 2.7404 *
anti-hos vs fogonosz: |Z| = 6.7423 *
anti-hos vs allatsegito: |Z| = 5.8649 *
mellekszereplo vs fogonosz: |Z| = 5.5497 *
mellekszereplo vs allatsegito: |Z| = 4.1192 *
fogonosz vs allatsegito: |Z| = 0.7314
Összes páronkénti összehasonlítás eredménye:
                                                         Szignifikáns
      Kategória 1
                      Kategória 2
                                     Z-érték
                                                    |Z|
0
        szuperhos
                          anti-hos 4.487958 4.487958
                                                                 True
                   mellekszereplo 2.461145
1
                                                                 True
        szuperhos
                                              2.461145
2
        szuperhos
                         fogonosz 2.254313
                                              2.254313
                                                                 True
3
                                                                False
        szuperhos
                      allatsegito 1.849159 1.849159
4
         anti-hos mellekszereplo 2.740367 2.740367
                                                                 True
```

Szignifikáns különbségek:

anti-hos

anti-hos

fogonosz

mellekszereplo

mellekszereplo

5

6

8

9

fogonosz 6.742276 6.742276

allatsegito 4.119246 4.119246

allatsegito 0.731384 0.731384

5.864852

5.549675

allatsegito 5.864852

fogonosz 5.549675

True

True

True

True

False

```
szuperhos vs anti-hos (|Z|=4.4880) szuperhos vs mellekszereplo (|Z|=2.4611) szuperhos vs fogonosz (|Z|=2.2543) anti-hos vs mellekszereplo (|Z|=2.7404) anti-hos vs fogonosz (|Z|=6.7423) anti-hos vs allatsegito (|Z|=5.8649) mellekszereplo vs fogonosz (|Z|=5.5497) mellekszereplo vs allatsegito (|Z|=4.1192)
```

```
Nem szignifikáns különbségek:
szuperhos vs allatsegito (|Z| = 1.8492)
fogonosz vs allatsegito (|Z| = 0.7314)
```

Látható tehát, hogy a legtöbb kategória között szignifikáns különbség van az eloszlásuk tekintetében. Egyedül a szuperhos-allatsegito és fogonosz-allatsegito párosok eloszlásában nincs szignifikáns különbség.