### PCT

# WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro



INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07C 257/18, C07D 207/08, 277/24, 235/14, 231/12, 233/54, 213/50, 333/22 A61K 31/155, 31/40, 31/415, A61P 7/02 (11) Internationale Veröffentlichungsnummer: WO 00/35859

A1 (43) Internationales

Veröffentlichungsdatum:

22. Juni 2000 (22.06.00)

(21) Internationales Aktenzeichen:

PCT/EP99/09921

(22) Internationales Anmeldedatum:

13. Dezember 1999

(13.12.99)

(30) Prioritätsdaten:

198 58 029.0 199 48 101.6

DE 16. Dezember 1998 (16.12.98)

7. Oktober 1999 (07.10.99) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; D-55216 Ingelheim/Rhein (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): PRIEPKE, Henning [DE/DE]; Birkenharder Strasse 11, D-88447 Warthausen (DE). KAUFFMANN, Iris [DE/DE]; Ölbachstrasse 10/1, D-88448 Attenweiler (DE). HAUEL, Norbert [DE/DE]; Marderweg 12, D-88433 Schemmerhofen (DE). RIES, Uwe [DE/DE]; Tannenstrasse 31, D-88400 Biberach (DE). NAR, Herbert [DE/DE]; Ulrika-Nisch-Strasse 8, D-88441 Mittelbiberach (DE). STASSEN, Jean, Marie [BE/DE]; Berggrubenweg 11, D-88447 Warthausen (DE). WIENEN, Wolfgang [DE/DE]; Kirschenweg 27, D-88400 Biberach (DE).

(74) Anwalt: LAUDIEN, Dieter, Boehringer Ingelheim GmbH, B Patente, D-55216 Ingelheim am Rhein (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, GN, GW, ML, MR, NE, SN, TD, TG).

#### Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: SUBSTITUTED ARYL AND HETEROARYL DERIVATIVES, THEIR PRODUCTION AND THEIR USE AS MEDICINES
- (54) Bezeichnung: SUBSTITUIERTE ARYL- UND HETEROARYLDERIVATE, DEREN HERSTELLUNG UND DEREN VERWEN-DUNG ALS ARZNEIMITTEL

#### (57) Abstract

The invention relates to new substituted aryl and heteroaryl derivatives of the general formula (I)  $Ar - A - HCR_1 - X - Y$ , in which A, Ar, X, Y and R1 have the meanings given in claim 1, and to their tautomers, stereoisomers, mixtures and salts, notably physiologically compatible salts with inorganic or organic acids or bases, which present valuable properties. Accordingly, the compounds of the above general formula (I), in which Y does not contain a cyano group, notably have an antithrombotic action, and the compounds of the above general formula (I), in which Y does not contain a cyano group, are valuable intermediate products for the production of compounds of the general formula (I) in which R5 is a possibly substituted aminomethyl, amidino or guanidino group.

#### (57) Zusammenfassung

Die vorliegende Erfindung betrifft neue substituierte Aryl- und Heteroarylderivate der allgemeinen Formel (I) Ar - A - HCR1 - X -Y, in der A, Ar, X, Y und R, wie im Anspruch 1 definiert sind, deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle Eigenschaften aufweisen. So weisen die Verbindungen der obigen allgemeinen Formel (I), in denen Y keine Cyanogruppe enthält, insbesondere eine antithrombotische Wirkung auf, und die Verbindungen der obigen allgemeinen Formel (I), in denen Y eine Cyanogruppe enthält, stellen wertvolle Zwischenprodukte zur Herstellung der Verbindungen der allgemeinen Formel (I) dar, in der R5 eine gegebenenfalls substituierte Aminomethyl-, Amidino- oder Guanidinogruppe darstellt.

## LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AL | Albanien                     | ES | Spanien                     | LS | Lesotho                     | SI  | Slowenien                         |
|----|------------------------------|----|-----------------------------|----|-----------------------------|-----|-----------------------------------|
| AM | Armenien                     | FI | Finnland                    | LT | Litanen                     | SK  | Slowakei                          |
| AT | Österreich                   | FR | Prankreich                  | LU | Luxemburg                   | SN  | Senegal                           |
| ΑU | Australien                   | GA | Gabun                       | LV | Lettland                    | SZ  | Swasiland                         |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich      | MC | Monaco                      | TD  | Tschad                            |
| BA | Bosnien-Herzegowina          | GE | Georgien                    | MD | Republik Moldau             | TG  | Togo                              |
| BB | Barbados                     | GH | Ghana                       | MG | Madagaskar                  | TJ. | Tadschikistan                     |
| BE | Belgien                      | GN | Guinea                      | MK | Die ehemalige jugoslawische | TM  | Turkmenistan                      |
| BF | Burkina Faso                 | GR | Griechenland                |    | Republik Mazedonien         | TR  | Türkei                            |
| BG | Bulgarien                    | HU | Ungarn                      | ML | Mali                        | TT  | Trinidad und Tobago               |
| BJ | Benin                        | IE | Irland                      | MN | Mongolei                    | ÜA  | Ukraine                           |
| BR | Brasilien                    | IL | Israel                      | MR | Mauretanien                 | UG  | Uganda                            |
| BY | Belarus                      | IS | Island                      | MW | Malawi                      | US  |                                   |
| CA | Kanada                       | IT | Italien                     | MX | Mexiko                      | OS  | Vereinigte Staaten von<br>Amerika |
| CF | Zentralafrikanische Republik | JP | Japan                       | NE | Niger                       | UZ  | Ushekistan                        |
| CG | Kongo                        | KE | Kenia                       | NL | Niederlande                 | VN  | Vietnam                           |
| CH | Schweiz                      | KG | Kirgisistan                 | NO | Norwegen                    | YU  |                                   |
| CI | Côte d'Ivoire                | KР | Demokratische Volksrepublik | NZ | Neuseeland                  | zw  | Jugoslawien                       |
| CM | Kamerun                      |    | Korea                       | PL | Polen                       | ZW  | Zimbabwe                          |
| CN | China                        | KR | Republik Korea              | PT | Portugal                    |     |                                   |
| CU | Kuba                         | KZ | Kasachstan                  | RO | Rumanien                    |     |                                   |
| CZ | Tschechische Republik        | LC | St. Lucia                   | RU | Russische Föderation        |     |                                   |
| DE | Deutschland                  | u  | Liechtenstein               | SD | Sudan                       |     |                                   |
| DK | Dänemark                     | LK | Sri Lanka                   | SE | Schweden                    |     |                                   |
| EE | Estland                      | LR | Liberia                     | SG | Singapur                    |     |                                   |

Substituierte Aryl- und Heteroarylderivate, deren Herstellung und deren Verwendung als Arzneimittel

Gegenstand der vorliegenden Erfindung sind neue substituierte Aryl- und Heteroarylderivate der allgemeinen Formel

$$Ar - A - (HCR_1) - X - Y , (I)$$

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze, insbesondere deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle Eigenschaften aufweisen.

Die Verbindungen der obigen allgemeinen Formel I, in denen Y keine Cyanogruppe enthält, weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung, und

die Verbindungen der obigen allgemeinen Formel I, in denen Y eine Cyanogruppe enthält, stellen wertvolle Zwischenprodukte zur Herstellung der Verbindungen der allgemeinen Formel I dar, in der  $R_s$  eine gegebenenfalls substituierte Amino- $C_{1-3}$ -alkyl-, Amidino-, Guanidino- oder Guanidino- $C_{1-3}$ -alkylgruppe darstellt.

Gegenstand der vorliegenden Erfindung sind somit die neuen Verbindungen der obigen allgemeinen Formel I sowie deren Herstellung, die die pharmakologisch wirksamen Verbindungen enthaltenden Arzneimittel und deren Verwendung.

In der obigen allgemeinen Formel bedeutet

A eine Ethinylengruppe, eine gegebenenfalls durch eine  $C_{1-3}$ -Al-kyl- oder Carboxy- $C_{1-3}$ -alkylgruppe oder durch ein Chlor-, Brom-oder Jodatom substituierte Vinylen- oder Ethylengruppe,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe,

Ar eine durch die Reste  $R_2$  bis  $R_4$  substituierte Phenylgruppe, wobei

R<sub>2</sub> eine C<sub>1-6</sub>-Alkyl- oder C<sub>3-7</sub>-Cycloalkyl-C<sub>1-3</sub>-alkylgruppe, die jeweils im C<sub>1-6</sub>- und C<sub>1-3</sub>-Alkylteil durch eine Carboxy-, Phenyl-, Amino-, C<sub>1-3</sub>-Alkylamino-, Carboxy-C<sub>1-3</sub>-alkylamino-, Di-(C<sub>1-3</sub>-Alkyl)-amino-, N-(Carboxy-C<sub>1-3</sub>-alkyl)-C<sub>1-3</sub>-alkylamino-, C<sub>3-7</sub>-Cycloalkylamino-, Phenylamino-, N-(C<sub>1-3</sub>-Alkyl)-phenyl-amino-, N-(C<sub>1-4</sub>-Alkanoyl)-phenylamino-, Heteroarylamino-, N-(C<sub>1-3</sub>-Alkyl)-heteroarylamino-, N-(Carboxy-C<sub>1-3</sub>-alkyl)-phenylamino- oder N-(Carboxy-C<sub>1-3</sub>-alkyl)-heteroarylamino- oder N-(Carboxy-C<sub>1-3</sub>-alkyl)-heteroarylamino- substituiert sein können,

eine Carboxy- $C_{1-5}$ -alkylgruppe, die im Alkylteil durch eine  $C_{1-3}$ -Alkylamino-, N,N-Di- $(C_{1-3}$ -alkyl)-amino-, Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert ist,

eine Carboxy- $C_{1-5}$ -alkylgruppe, in der die Wasserstoffatome einer Methylengruppe durch eine  $n-C_{2-5}$ -Alkylenbrücke ersetzt sind,

eine Phenyl-, Phenyloxy- oder Phenylsulfonylgruppe, die jeweils im Phenylteil durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1-2}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alkoxygruppe substituiert sein können,

eine  $C_{1-5}$ -Alkylamino-, Carboxy- $C_{1-3}$ -alkylamino-, Di- $(C_{1-5}$ -alkyl)-amino-, N- $(C_{3-7}$ -alkyl)- $C_{1-5}$ -alkylamino-,  $C_{3-7}$ -Cycloalkylamino-, N- $(C_{3-7}$ -alkyl)- $C_{3-7}$ -cycloalkylamino-, N- $(C_{1-3}$ -Alkyl)-phenylamino-, N- $(C_{3-3}$ -alkyl)-phenylamino-, N- $(C_{3-3}$ -alkyl)-phenylamino-,

- 3 -

 $N-(C_{1-3}-Alkyl)$ -heteroarylamino- oder  $N-(Carboxy-C_{1-3}-alkyl)$ -heteroarylaminogruppe,

eine C<sub>1-5</sub>-Alkylcarbonylamino-, C<sub>3-7</sub>-Cycloalkylcarbonylamino-, Arylcarbonylamino-, Heteroarylcarbonylamino-, C<sub>1-5</sub>-Alkylsul-fonylamino-, Arylsulfonylamino-, Heteroarylsulfonylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-5</sub>-alkylcarbonylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>3-7</sub>-cycloalkylcarbonylamino-, N-(C<sub>1-3</sub>-Alkyl)-arylcarbonyl-amino-, N-(C<sub>1-3</sub>-Alkyl)-heteroarylcarbonylamino-, N-(C<sub>1-3</sub>-Al-kyl)-C<sub>1-5</sub>-alkylsulfonylamino-, N-(C<sub>1-3</sub>-Alkyl)-arylsulfonyl-amino- oder N-(C<sub>1-3</sub>-Alkyl)-heteroarylsulfonylaminogruppe, wobei

die vorstehend erwähnten N- $(C_{1\cdot3}$ -Alkyl)-teile zusätzlich durch eine Carboxy-, Carboxy- $C_{1\cdot3}$ -alkylaminocarbonyl- oder N- $(C_{1\cdot3}$ -Alkyl)-carboxy- $C_{1\cdot3}$ -alkylaminocarbonylgruppe oder mit Ausnahme des  $\alpha$ -Kohlenstofatoms bezogen auf das Stickstoffatom auch durch eine Hydroxy-, Carboxy- $C_{1\cdot3}$ -alkoxy-, Amino-, Carboxy- $C_{1\cdot3}$ -alkylamino- oder N- $(C_{1\cdot3}$ -Alkyl)-carboxy- $C_{1\cdot3}$ -alkylaminogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe,

eine Amino-,  $C_{1-5}$ -Alkylamino-,  $C_{3-7}$ -Cycloalkylamino-, Arylamino-, Aryl-amino-, Aryl- $C_{1-3}$ -alkylamino-, Heteroarylamino- oder Heteroaryl- $C_{1-3}$ -alkylaminogruppe, die jeweils am Aminstickstoffatom durch eine  $C_{1-3}$ -Alkylcarbonyl-, Carboxy- $C_{1-3}$ -alkylcarbonyl-, Carboxy- $C_{1-3}$ -alkylaminocarbonyl-, 2-Oxo-pyrrolidinylcarbonyl- oder Piperazinocarbonylgruppe substituiert sind, wobei zusätzlich

(i) die vorstehend erwähnte Aminogruppe, die durch eine  $C_{1-3}$ -Alkylcarbonyl-, Carboxy- $C_{1-3}$ -alkylcarbonyl- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe monosubstituiert ist, durch eine 5- bis 7-gliedrige Cycloalkyleniminogruppe oder durch eine N,N-Di- $(C_{1-5}$ -Alkyl)-aminogruppe substituiert ist, und

(ii) der Alkylteil der vorstehend erwähnten  $C_{1-3}$ -Alkylcarbonylgruppe durch eine Carboxy-, Amino-, Hydroxy-, Carboxy- $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkyl-amino- oder Amino- $C_{1-3}$ -alkylcarbonylaminogruppe oder durch eine Carboxy- oder Hydroxygruppe und durch eine Amino-oder Trifluoracetylaminogruppe substituiert ist,

eine Carbiminogruppe, die am Stickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy-, Amino-,  $C_{1-3}$ -Alkylamino-, Carboxy- $C_{1-3}$ -alkyl-amino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder N- $(Carboxy-C_{1-3}$ -alkyl)-  $C_{1-3}$ -alkylaminogruppe und am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkylgruppe, durch eine gegebenenfalls durch eine  $C_{1-3}$ -Al-kyl- oder  $C_{1-3}$ -Alkoxygruppe substituierte Phenylgruppe oder durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Heteroarylgruppe substituiert ist,

eine Heteroaryl- oder Heteroaryl- $C_{1-3}$ -alkylgruppe, die jeweils im Heteroarylteil zusätzlich auch durch eine Phenyl- oder Heteroarylgruppe oder durch eine Phenyl- oder Heteroarylgruppe und durch eine Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alk-oxycarbonyl- $C_{1-3}$ -alkylgruppe substituiert sein können,

eine gegebenfalls durch 1 bis 3  $C_{1-3}$ -Alkylgruppen substituierte 5-Oxo-4,5-dihydro-pyrazolyl- oder 6-Oxo-4,5-dihydro-pyridazinylgruppe, in der ein Alkylsubstituent gleichzeitig durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann, oder

eine Carbonylgruppe, die

durch ein Wasserstoffatom, durch eine Hydroxy-,  $C_{1-5}$ -Alk-oxy- oder  $C_{3-7}$ -Cycloalkoxygruppe,

durch eine gegebenenfalls durch eine Carboxygruppe substituierte  $C_{1-5}$ -Alkyl- oder  $C_{3-7}$ -Cycloalkylgruppe,

durch eine durch eine Piperazinogruppe substituierte  $C_{1-3}$ -Alkylgruppe,

durch eine Phenylgruppe, die durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1.3}$ -Alkyl-, Carboxy- $C_{1.3}$ -alkyl-,  $C_{1.3}$ -Alkoxy- oder Carboxygruppe substituiert sein kann,

durch eine Amino-, C<sub>1-5</sub>-Alkylamino-, Carboxy-C<sub>1-3</sub>-alkylamino-, C<sub>3-7</sub>-Cycloalkylamino-, Phenylamino- oder Heteroarylaminogruppe, die jeweils zusätzlich am Aminstickstoffatom
durch eine C<sub>1-5</sub>-Alkyl-, C<sub>3-7</sub>-Cycloalkyl-, Phenyl-C<sub>1-3</sub>-alkyl-,
Carboxy-C<sub>1-3</sub>-alkyl-, 2-[Di-(C<sub>1-3</sub>-alkyl)-amino]-ethyl-, 3-[Di-(C<sub>1-3</sub>-alkyl)-amino]-propyl-, Di-(C<sub>1-3</sub>-alkyl)-amino-,
2-(N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino)-ethyl-, 3-(N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino)-propyl- oder N-CarboxyC<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino-, Phenyl-, Pyridyl-, Pyrrolidinyloder Piperidinylgruppe substituiert sein können,

durch eine gegebenenfalls durch eine oder zwei C<sub>1-3</sub>-Alkylgruppen substituierte Pyrrolyl-, Thienyl-, Imidazolyl-, Pyrazolyl-, Thiazolyl-, Pyridinyl-, Pyrimidinyl-, Pyrazinyl- oder Pyridazinylgruppe, an die jeweils über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe substituierte  $C_{3-6}$ -Cycloalkylenimino-,  $C_{5-8}$ -Bicycloalkylenimino-, Morpholino-, Piperazino-, Dihydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazinyl- oder Tetrahydropyridazinylgruppe oder

durch eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkyl-, Carboxy-C<sub>1-3</sub>-alkyl-, Hydroxy-C<sub>1-3</sub>-alkyl-, Amino-, Carboxy-, Carboxy-C<sub>1-3</sub>-alkoxy-C<sub>1-3</sub>-alkyl-, Carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl- oder Carboxy-C<sub>1-3</sub>-alkylaminocarbonyl-C<sub>1-3</sub>-alkyl- gruppe substituierte C<sub>3-6</sub>-Cycloalkyleniminogruppe,

WO 00/35859 PCT/EP99/09921

- 6 -

durch eine gegebenenfalls durch eine  $C_{1\cdot3}$ -Alkyl- oder Carboxy- $C_{1\cdot3}$ -alkylgruppe substituierte  $C_{5\cdot8}$ -Bicycloalkylenimino-, Morpholino-, Piperazino-, Dihydropyrazolo-, Tetrahydropyrazolo-, Tetrahydroisoxazolo-, Tetrahydropyrazinyl- oder Tetrahydropyridazinylgruppe substituiert ist,

 $R_3$  ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom, eine Formyl- oder Trifluormethylgruppe,

eine  $C_{1-3}$ -Alkoxy-, Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-,  $C_{1-4}$ -Alkanoylamino- oder N- $(C_{1-4}$ -Alkanoyl)- $C_{1-3}$ -alkyl-aminogruppe,

eine gegebenenfalls durch eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-, Carboxy-, Carboxy- $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylamino- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe substituierte  $C_{1-3}$ -Alkylgruppe,

eine durch eine Carboxy- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe substituierte  $C_{2-3}$ -Alkenylgruppe oder

eine gegebenenfalls am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituierte Carbiminogruppe, die am Iminostickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy- oder Aminocarbonylaminogruppe substituiert ist,

oder  $R_2$  und  $R_3$  zusammen eine -CO-O-CH<sub>2</sub>- oder -CO-O-CH<sub>2</sub>CH<sub>2</sub>-Gruppe und

 $R_4$  ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Iodatom, eine  $C_{1-3}$ -Alkyl-,  $C_{3-7}$ -Cycloalkyl-, Trifluormethyl- oder  $C_{1-3}$ -Alkoxy-gruppe darstellen,

oder Ar auch eine Heteroarylgruppe, die durch die vorstehend erwähnten Reste  $R_2$  bis  $R_4$  substituiert sein kann, welche wie vorstehend erwähnt definiert sind,

X ein Sauerstoff- oder Schwefelatom, eine gegebenenfalls durch eine oder zwei  $C_{1\cdot3}$ -Alkylgruppen substituierte Methylengruppe, eine Carbonyl-, Sulfinyl-, Sulfonyl-, Imino-, N- $(C_{1\cdot3}$ -Alkyl)- imino- oder N- $(Carboxy-C_{1\cdot3}$ -alkyl)-iminogruppe, wobei der Alkylteil der N- $(C_{1\cdot3}$ -Alkyl)-iminogruppe in 2- oder 3-Stellung zusätzlich durch eine Amino-,  $C_{1\cdot3}$ -Alkylamino-, Di- $(C_{1\cdot3}$ -Alkyl)- amino-,  $C_{1\cdot4}$ -Alkanoylamino- oder N- $(C_{1\cdot4}$ -Alkanoyl)- $C_{1\cdot3}$ -alkyl-aminogruppe substituiert sein kann, und

Y eine durch eine Aminogruppe substituierte Cyclohexylgruppe oder eine durch den Rest  $R_s$  substituierte Phenyl- oder Heteroarylgruppe, wobei die vorstehend erwähnte Phenylgruppe jeweils durch ein Fluor-, Chlor-, Brom- oder Jodatom oder durch eine  $C_{1-3}$ -Alkyl- oder  $C_{1-3}$ -Alkoxygruppe sowie die vorstehend erwähnte Heteroarylgruppe durch eine  $C_{1-3}$ -Alkylgruppe substituiert sein können und

 $R_5$  ein Wasserstoffatom, eine Cyanogruppe oder eine gegebenenfalls durch eine in vivo abspaltbare Gruppe substituierte Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino-, Guanidino- oder Guanidino- $C_{1-3}$ -alkylgruppe darstellt.

Unter den vorstehend erwähnten Heteroarylgruppen ist eine gegebenenfalls durch eine oder zwei C<sub>1-3</sub>-Alkylgruppen substituierte 5-gliedrige heteroaromatische Gruppe, die eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom und eine oder zwei Stickstoffatome sowie deren partiell hydrierten Derivate, insbesondere deren Dihydroderivate, oder eine 6-gliedrige heteroaromatische Gruppe, die ein, zwei oder drei Stickstoffatome enthält, wobei zusätzlich an die vorstehend erwähnten 5- und 6-gliedrigen heteroaromatischen Ringe über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, zu verstehen.

Ferner können die bei der Definition der Reste vorstehend erwähnten Carboxygruppen durch eine Tetrazolylgruppe oder durch eine in-vivo in eine Carboxygruppe überführbare Gruppe ersetzt sein, z.B. durch eine Hydroxymethyl- oder Formylgruppe, durch eine mit einem Alkohol veresterte Carboxygruppe, in der der alkoholische Teil vorzugsweise ein C1-6-Alkanol, ein Phenyl- $C_{1-3}$ -alkanol, ein  $C_{3-9}$ -Cycloalkanol, wobei ein  $C_{5-8}$ -Cycloalkanol zusätzlich durch eine oder zwei  $C_{1-3}$ -Alkylgruppen substituiert sein kann, ein  $C_{5-8}$ -Cycloalkanol, in dem eine Methylengruppe in 3- oder 4-Stellung durch ein Sauerstoffatom oder durch eine gegebenenfalls durch eine C1-3-Alkyl-, Phenyl-C1-3-alkyl-, Phenyl- $C_{1-3}$ -alkoxycarbonyl- oder  $C_{2-6}$ -alkoxycarbonyl- oder  $C_{2-6}\text{-Alkanoylgruppe}$  substituierte Iminogruppe ersetzt ist und der Cycloalkanolteil zusätzlich durch eine oder zwei  $C_{1-3}$ -Alkylgruppen substituiert sein kann, ein C4-7-Cycloalkenol, ein  $C_{3-5}$ -Alkenol, ein Phenyl- $C_{3-5}$ -alkenol, ein  $C_{3-5}$ -Alkinol oder Phenyl- $C_{3-5}$ -alkinol mit der Maßgabe, daß keine Bindung an das Sauerstoffatom von einem Kohlenstoffatom ausgeht, welches eine Doppel- oder Dreifachbindung trägt, ein  $C_{3-8}$ -Cycloalkyl- $C_{1-3}$ -alkanol, ein Bicycloalkanol mit insgesamt 8 bis 10 Kohlenstoffatomen, das im Bicycloalkylteil zusätzlich durch eine oder zwei C1-3-Alkylgruppen substituiert ist, ein 1,3-Dihydro-oxo-1-isobenzfuranol oder ein Alkohol der Formel

$$R_aCO-O-(R_bCR_c)-OH$$
, in dem

 $R_a$  eine  $C_{1-8}$ -Alkyl-,  $C_{5-7}$ -Cycloalkyl-, Phenyl- oder Phenyl-  $C_{1-3}$ -alkylgruppe,

 $R_b$  ein Wasserstoffatom, eine  $C_{1-3}$ -Alkyl-,  $C_{5-7}$ -Cycloalkyl- oder Phenylgruppe und

 $R_c$  ein Wasserstoffatom oder eine  $C_{1-3}$ -Alkylgruppe darstellen,

und die der bei der Definition der Reste erwähnten Imino- oder Aminogruppen durch einen in-vivo abspaltbaren Rest substituiert sein, z.B. durch eine Hydroxygruppe, durch eine Acylgruppe wie die Benzoyl- oder Pyridinoylgruppe oder eine  $C_{1-16}$ -Alkan-

oylgruppe wie die Formyl-, Acetyl-, Propionyl-, Butanoyl-, Pentanoyl- oder Hexanoylgruppe, durch eine Allyloxycarbonyl-gruppe, durch eine  $C_{1-16}$ -Alkoxycarbonylgruppe wie die Methyloxycarbonyl-, Ethyloxycarbonyl-, Propyloxycarbonyl-, Isopropyl-oxcarbonyl-, Butyloxycarbonyl-, tert.Butyloxycarbonyl-, Pentyloxycarbonyl-, Hexyloxycarbonyl-, Octyloxycarbonyl-, Nonyl-oxycarbonyl-, Decyloxycarbonyl-, Undecyloxycarbonyl-, Dodecyl-oxycarbonyl- oder Hexadecyloxycarbonylgruppe, durch eine Phenyl- $C_{1-16}$ -alkoxycarbonylgruppe wie die Benzyloxycarbonyl-, Phenylethyloxycarbonyl- oder Phenylpropyloxycarbonylgruppe, durch eine  $C_{1-3}$ -Alkoxycarbonyl- oder Phenylpropyloxycarbonylgruppe, durch eine  $C_{1-3}$ -Alkylsulfonyl- $C_{2-4}$ -alkoxycarbonyl-,  $C_{1-3}$ -Alkoxy- $C_{2-4}$ -alkoxycarbonyl- oder  $R_a$ CO-O- $(R_bCR_c)$ -O-CO-Gruppe, in der  $R_a$  bis  $R_b$  wie vorstehend erwähnt definiert sind.

Desweiteren schließen die bei der Definition der vorstehend erwähnten gesättigten Alkyl- und Alkoxyteile, die mehr als 2 Kohlenstoffatome enthalten, sowie die Alkanoyl- und ungesättigten Alkylteile, die mehr als 3 Kohlenstoffatome enthalten, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tert.Butyl-, Isobutylgruppe etc. ein.

Bevorzugte Verbindungen der allgemeinen Formel I der vorliegenden Erfindung sind diejenigen, in denen

A eine Ethinylengruppe, eine gegebenenfalls durch eine  $C_{1-3}$ -Al-kyl- oder Carboxy- $C_{1-3}$ -alkylgruppe oder durch ein Chlor-, Brom-oder Jodatom substituierte Vinylen- oder Ethylengruppe,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe,

Ar eine durch die Reste R2 bis R4 substituierte Phenylgruppe, wobei

R<sub>2</sub> eine C<sub>1-3</sub>-Alkylgruppe, die durch eine Carboxy-, Phenyl-, Amino-, C<sub>1-3</sub>-Alkylamino-, Carboxy-C<sub>1-3</sub>-alkylamino-, Di- (C<sub>1-3</sub>-Alkyl)-amino-, N-(Carboxy-C<sub>1-3</sub>-alkyl)-C<sub>1-3</sub>-alkylamino-, Phenylamino-, N-(C<sub>1-3</sub>-Alkyl)-phenylamino-, N-(C<sub>1-4</sub>-Alkanoyl)-

phenylamino-, Heteroarylamino-, N- $(C_{1-3}$ -Alkyl)-heteroaryl-amino-, N- $(Carboxy-C_{1-3}$ -alkyl)-phenylamino- oder N- $(Carboxy-C_{1-3}$ -alkyl)-heteroarylaminogruppe substituiert sein kann,

eine Phenyl- oder Phenylsulfonylgruppe, die jeweils im Phenylteil durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1-3}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alkoxygruppe substituiert sein können,

eine  $C_{1-3}$ -Alkylamino-, Carboxy- $C_{1-3}$ -alkylamino-, Di- $(C_{1-3}$ -alkyl)-amino-, N-(Carboxy- $C_{1-3}$ -alkyl)- $C_{1-3}$ -alkylamino-, Phenyl-amino-, N-( $C_{1-3}$ -Alkyl)-phenylamino-, N-(Carboxy- $C_{1-3}$ -alkyl)-phenylamino-, N-( $C_{1-3}$ -Alkyl)-heteroarylamino- oder N-(Carboxy- $C_{1-3}$ -alkyl)-heteroarylaminogruppe,

eine  $C_{1-5}$ -Alkylcarbonylamino-, Arylcarbonylamino-, Heteroarylcarbonylamino-,  $C_{1-5}$ -Alkylsulfonylamino-, Arylsulfonylamino-, Heteroarylsulfonylamino-, N- $(C_{1-3}$ -Alkyl)- $C_{1-5}$ -alkylcarbonylamino-, N- $(C_{1-3}$ -Alkyl)-arylcarbonylamino-, N- $(C_{1-3}$ -Alkyl)-heteroarylcarbonylamino-, N- $(C_{1-3}$ -Alkyl)- $C_{1-5}$ -alkylsulfonylamino-, N- $(C_{1-3}$ -Alkyl)-arylsulfonylamino-, N- $(C_{1-3}$ -Alkyl)-heteroarylsulfonylamino-, N- $(C_{1-3}$ -Alkyl)- $C_{1-5}$ -alkylcarbonylamino-, N- $(C_{1-3}$ -alkyl)-arylcarbonylamino-, N- $(C_{1-3}$ -alkyl)-heteroarylcarbonylamino-, N- $(C_{1-3}$ -alkyl)-heteroarylcarbonylamino-, N- $(C_{1-3}$ -alkyl)-arylsulfonylamino- oder N- $(C_{1-3}$ -alkyl)-heteroarylsulfonyl-amino- oder N- $(C_{1-3}$ -alkyl)-heteroarylsulfonyl-aminogruppe,

eine Carbiminogruppe, die am Stickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy-, Amino-,  $C_{1-3}$ -Alkylamino-, Carboxy- $C_{1-3}$ -alkyl-amino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder N- $(Carboxy-C_{1-3}$ -alkyl)-  $C_{1-3}$ -alkylaminogruppe und am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkylgruppe, durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl- oder  $C_{1-3}$ -Alkoxygruppe substituierte Phenylgruppe oder durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Heteroarylgruppe substituiert ist,

eine Heteroaryl- oder Heteroaryl-C<sub>1-3</sub>-alkylgruppe, die jeweils im Heteroarylteil zusätzlich auch durch eine Phenyloder Heteroarylgruppe oder durch eine Phenyl- oder Heteroarylgruppe und durch eine Carboxy-C<sub>1-3</sub>-alkyl- oder C<sub>1-3</sub>-Alk-oxycarbonyl-C<sub>1-3</sub>-alkylgruppe substituiert sein können, oder

eine Carbonylgruppe, die

durch ein Wasserstoffatom, durch eine Hydroxy-,  $C_{1-5}$ -Alk-oxy- oder  $C_{3-7}$ -Cycloalkoxygruppe,

durch eine gegebenenfalls durch eine Carboxygruppe substituierte  $C_{1-5}$ -Alkyl- oder  $C_{3-7}$ -Cycloalkylgruppe,

durch eine Phenylgruppe, die durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1-3}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl-,  $C_{1-3}$ -Alkoxy- oder Carboxygruppe substituiert sein kann,

durch eine Amino-, C<sub>1-5</sub>-Alkylamino-, C<sub>3-7</sub>-Cycloalkylamino-, Phenylamino- oder Heteroarylaminogruppe, die jeweils zusätzlich am Aminstickstoffatom durch eine C<sub>1-5</sub>-Alkyl-, C<sub>5-7</sub>-Cycloalkyl-, Phenyl-C<sub>1-3</sub>-alkyl-, Carboxy-C<sub>1-3</sub>-alkyl-, 2-[Di-(C<sub>1-3</sub>-alkyl)-amino]-ethyl-, 3-[Di-(C<sub>1-3</sub>-alkyl)-amino]-propyl-, Di-(C<sub>1-3</sub>-alkyl)-amino-, 2-(N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkyl-amino)-ethyl-, 3-(N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkyl-amino)-propyl- oder N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino-, Pyrrolidinyl- oder Piperidinylgruppe substituiert sein können,

durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Pyrrolyl-, Thienyl-, Imidazolyl-, Pyrazolyl-, Thiazolyl-, Pyridinyl-, Pyrimidinyl-, Pyrazinyl- oder Pyridazinylgruppe, an die jeweils über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe substituierte  $C_{3-6}$ -Cycloalkylenimino-,  $C_{5-8}$ -Bicycloalkylenimino-, Morpholino-, Piperazino-, Dihydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazinyl- oder Tetrahydropyridazinylgruppe oder

durch eine Pyrrolidinogruppe substituiert ist, wobei die vorstehend erwähnte Pyrrolidinogruppe durch eine Hydroxy-, Hydroxy- $C_{1-3}$ -alkyl-, Amino-, Carboxy-, Carboxy- $C_{1-3}$ -alkyl-, Carboxy- $C_{1-3}$ -alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder Carboxy- $C_{1-3}$ -alkylamino-  $C_{1-3}$ -alkyl- oder Carboxy- $C_{1-3}$ -alkylaminocarbonyl- $C_{1-3}$ -alkyl-gruppe substituiert ist,

 $R_3$  ein Wasserstoffatom oder eine Formylgruppe,

eine Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-,  $C_{1-4}$ -Alkanoylamino- oder N- $(C_{1-4}$ -Alkanoyl)- $C_{1-3}$ -alkylaminogruppe,

eine gegebenenfalls durch eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-, Carboxy- $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylamino- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe substituierte  $C_{1-3}$ -Alkylgruppe,

eine durch eine Carboxy- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe substituierte  $C_{2-3}$ -Alkenylgruppe oder

eine gegebenenfalls am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituierte Carbiminogruppe, die am Iminostickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy- oder Aminocarbonylaminogruppe substituiert ist,

oder  $R_2$  und  $R_3$  zusammen eine -CO-O-CH<sub>2</sub>- oder -CO-O-CH<sub>2</sub>CH<sub>2</sub>-Gruppe und

 $R_4$  ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Iodatom, eine  $C_{1-3}$ -Alkyl-,  $C_{3-7}$ -Cycloalkyl- oder  $C_{1-3}$ -Alkoxygruppe darstellen,

oder Ar auch eine Heteroarylgruppe, die durch die vorstehend erwähnten Reste  $R_2$  bis  $R_4$  substituiert sein kann,

X ein Sauerstoff- oder Schwefelatom, eine gegebenenfalls durch eine oder zwei C<sub>1-3</sub>-Alkylgruppen substituierte Methylengruppe, eine Carbonyl-, Sulfinyl-, Sulfonyl-, Imino-, N-(C<sub>1-3</sub>-Alkyl)- imino- oder N-(Carboxy-C<sub>1-3</sub>-alkyl)-iminogruppe, wobei der Alkylteil der N-(C<sub>1-3</sub>-Alkyl)-iminogruppe in 2- oder 3-Stellung zusätzlich durch eine Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-Alkyl)- amino-, C<sub>1-4</sub>-Alkanoylamino- oder N-(C<sub>1-4</sub>-Alkanoyl)-C<sub>1-3</sub>-alkyl- aminogruppe substituiert sein kann, und

Y eine durch eine Aminogruppe substituierte Cyclohexylgruppe oder eine durch den Rest  $R_5$  substituierte Phenyl- oder Heteroarylgruppe, wobei die vorstehend erwähnte Phenylgruppe jeweils durch ein Fluor-, Chlor-, Brom- oder Jodatom oder durch eine  $C_{1-3}$ -Alkyl- oder  $C_{1-3}$ -Alkoxygruppe sowie die vorstehend erwähnte Heteroarylgruppe durch eine  $C_{1-3}$ -Alkylgruppe substituiert sein können und

 $R_5$  ein Wasserstoffatom, eine Cyanogruppe oder eine gegebenenfalls durch eine in vivo abspaltbare Gruppe substituierte Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino-, Guanidino- oder Guanidino- $C_{1-3}$ -alkylgruppe darstellt.

bedeuten, deren Pro-Drugs, deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze,

insbesondere jedoch diejenigen, in denen

A eine gegebenenfalls durch ein Chlor-, Brom- oder Jodatom substituierte Vinylengruppe, eine Ethylen- oder Ethinylengruppe,

R, ein Wasserstoffatom oder eine C, -, -Alkylgruppe,

Ar eine durch eine Benzoylgruppe substituierte Pyridyl- oder Thienylgruppe,

eine durch eine Pyrrolidinocarbonylgruppe substituierte Bromfuranylgruppe oder

eine durch die Reste  $R_2$  bis  $R_4$  substituierte Phenylgruppe, wobei

R2 eine Phenyl- oder Phenoxygruppe,

eine  $C_{1-3}$ -Alkylgruppe, die durch eine Phenyl-, Phenylamino-, N-( $C_{1-3}$ -Alkyl)-phenylamino- oder N-( $C_{1-3}$ -Alkanoyl)-phenyl-aminogruppe substituiert sein kann,

eine Carboxy- oder C<sub>1-3</sub>-Alkoxycarbonylgruppe,

eine Benzoyl- oder Phenylsulfonylgruppe, in denen jeweils der Phenylteil zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl-, Methoxy-, Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann, wobei in den vorstehend erwähnten Benzoylgruppen zusätzlich das Sauerstoffatom durch Carboxy- $C_{1-3}$ -alkoxyimino- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkoxyiminogruppe ersetzt sein kann,

eine C<sub>1-5</sub>-Alkylaminogruppe, die im Alkylteil durch eine Phenyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Carboxy-C<sub>1-3</sub>-al-kylaminocarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylaminocarbonyl- oder N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylaminocarbonyl- oder N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-3</sub>-alkoxycarbonyl-C<sub>1-3</sub>-alkylaminocarbonylgruppe substituiert sein kann, oder eine C<sub>3-7</sub>-Cycloalkylaminogruppe, wobei die vorstehend erwähnten Gruppen jeweils am Aminstickstoffatom zusätzlich durch eine C<sub>3-7</sub>-Cycloalkanoyl-, Benzoyl- oder Phenylsulfonylgruppe, durch eine Carboxy-C<sub>1-3</sub>-alkylcarbonyl- oder C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylcarbonylgruppe, in der der Alkylteil der Alkylcarbonylgruppe jeweils durch eine

Amino- oder Trifluoracetylaminogruppe substituiert sein kann, durch eine C<sub>2-4</sub>-Alkanoylgruppe, die im Alkanoylteil durch eine Amino-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Carboxy-C<sub>1-3</sub>-alkoxy-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-alkylaminocarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylaminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylaminocarbonyl- oder N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-3</sub>-alkoxycarbonyl-C<sub>1-3</sub>-alkylaminocarbonylgruppe substituiert sein kann, durch eine Carboxy-C<sub>1-2</sub>-alkylaminocarbonyl-, Carboxy-C<sub>1-3</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl- oder C<sub>1-3</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl- oder C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonylgruppe substituiert ist,

eine Formyl-, Pyridylcarbonyl-, Thienylcarbonyl-, Imidazolylcarbonyl-, 1-Methyl-imidazolylcarbonyl-, Thiazolylcarbonyl- oder Indolylcarbonylgruppe,

eine gegebenfalls durch eine 1 oder 2 Methylgruppen substituierte Benzimidazol-1-yl-, Benzimidazol-1-yl-methyl- oder 5-Oxo-4,5-dihydro-pyrazol-3-ylgruppe,

eine durch eine Phenylgruppe, durch eine Phenylgruppe und eine  $C_{1-4}$ -Alkylgruppe oder durch eine oder zwei  $C_{1-4}$ -Alkylgruppen substituierte Pyrazol-1-ylgruppe, in der ein Alkylsubstituent gleichzeitig durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann, oder

eine Carbonylgruppe, die

durch eine gegebenenfalls durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe,

durch eine C3-7-Cycloalkylgruppe,

durch eine Amino- oder  $C_{1-5}$ -Alkylaminogruppe, die jeweils am Aminstickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe, die durch eine  $C_{3-7}$ -Cycloalkyl-, Phenyl-, Pyrrolidinyl- oder Pyridinylgruppe oder in 2- oder 3-Stellung durch eine

 $Di-(C_{1-3}-Alkyl)$ -aminogruppe substituiert sein kann, oder durch eine  $Di-(C_{1-3}-Alkyl)$ -aminogruppe substituiert sein kann,

durch eine Carboxy- $C_{1-3}$ -alkylamino- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylaminogruppe, die jeweils am Aminstickstoffaton durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Pyrazolylgruppe substituiert ist,

durch eine 3- bis 7-gliedrige Cycloalkyleniminogruppe, die durch eine oder zwei C<sub>1-3</sub>-Alkylgruppen substituiert sein kann, wobei die vorstehend erwähnten gegebenenfalls durch eine Methylgruppe substituierten Pyrrolidinogruppen zusätzlich durch eine Hydroxymethyl-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Carboxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-al-kyl-, Carboxy-C<sub>1-3</sub>-alkyloxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkyloxy-C<sub>1-3</sub>-alkyl-, Carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, oder N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-3</sub>-alkylsmino-C<sub>1-3</sub>-alkylgruppe substituiert sein können,

durch eine Morpholino-, Piperazino-, 4-Methyl-piperazino-, Piperazino-C<sub>1-3</sub>-alkyl-, Dihydropyrazolo-, Tetrahydropyra-zolo-, Tetrahydroisooxazolo- oder 7-Azabicycloheptylgruppe oder

durch eine gegebenenfalls im Alkylteil durch eine Carboxyoder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte  $N-(C_{1-3}-Alkyl)$ -phenyl- oder  $N-(C_{1-3}-Alkyl)$ -pyridylaminogruppe substituiert ist,

R<sub>3</sub> ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,

eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Trifluormethyl-, Amino- oder  $C_{2-3}$ -Alkanoylaminogruppe,

eine  $C_{1-3}$ -Alkylgruppe, die durch eine Hydroxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Carboxy- $C_{1-3}$ -alkoxy-,  $C_{1-3}$ -Alkoxycarbonyl-,  $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-3}$ -alkylaminocarbonyl-,  $C_{1-3}$ -Alkoxy-carbonyl- $C_{1-3}$ -alkylaminocarbonyl-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylaminocarbonyl- oder N-( $C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkoxycarbonyl- $C_{1-3}$ -alkylaminocarbonylgruppe substituiert sein kann,

eine  $C_{1-3}$ -Alkylgruppe, die durch eine Carboxy- $C_{1-3}$ -alkylamino-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkylamino- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylamino- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylaminocarbonylgruppe substituiert ist,

eine durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte  $C_{2-3}$ -Alkenylgruppe oder

eine gegebenenfalls am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituierte Carbiminogruppe, die am Iminostickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkoxy- oder Aminocarbonylaminogruppe substituiert ist,

oder R2 und R3 zusammen eine -CO-O-CH2-Gruppe und

 $R_4$  ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine  $C_{1-3}$ -Alkyl- oder Trifluormethylgruppe darstellen,

X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C1-3-Alkylgruppe substituierte -NH-Gruppe und

Y eine durch eine Aminogruppe substituierte Cyclohexylgruppe, eine durch eine Amidinogruppe, welche durch eine Benzoyl- oder  $C_{1-8}$ -Alkoxycarbonylgruppe substituiert sein kann, substituierte Phenylen- oder Pyridinylengruppe, wobei die vorstehend erwähnte Phenylengruppe durch eine Methyl- oder Methoxygruppe und die vorstehend erwähnte Pyridinylengruppe durch eine Methylgruppe substituiert sein kann, bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

Besonders bevorzugte Verbindungen der vorliegenden Erfindung sind die Verbindungen der allgemeinen Formel

$$R_2$$
 $R_2$ 
 $R_4$ 
 $R_4$ 

in der

A eine Ethylen- oder Ethinylengruppe,

X ein Sauerstoffatom oder eine gegebenenfalls durch eine Methylgruppe substitierte Iminogruppe,

 $R_2$  eine  $C_{1-4}$ -Alkylcarbonylamino- oder  $C_{3-5}$ -Cycloalkylcarbonylaminogruppe, die jeweils am Aminstickstoffatom durch eine Carboxy- $C_{1-2}$ -alkyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonyl- $C_{1-2}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonyl- $C_{1-2}$ -alkylgruppe substituiert ist,

eine C<sub>1-4</sub>-Alkylamino- oder C<sub>3-5</sub>-Cycloalkylaminogruppe, die jeweils am Aminstickstoffatom durch eine durch eine gegebenenfalls im Alkylteil durch eine Aminogruppe substituierte Carboxy-C<sub>1-3</sub>-alkylcarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylcarbonyl-, Carboxy-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylcarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylcarbonyl-, Carboxy-C<sub>1-2</sub>-alkylaminocarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-, Carboxy-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl- oder C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-al-kylaminocarbonylgruppe, durch eine Carboxymethyloxymethylcarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-methyloxymethylcarbonyl-, Carboxymethylaminomethylcarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-methyloxymethylaminomethylcarbonyl-, N-Methyl-C<sub>1-3</sub>-alkoxycarbonyl-carboxymethylaminomethylcarbonyl-, Aminomethylcarbonyl-, 2-Amino-ethylcarbonyl-, Carboxy-C<sub>1-2</sub>-al-

kylaminocarbonylmethyloxymethylcarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylmethyloxymethylcarbonyl-, Carboxy- $C_{1-2}$ -alkylaminocarbonylmethylaminomethylcarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylmethylaminomethylcarbonyl-, N-Me-thyl-carboxy- $C_{1-2}$ -alkylaminocarbonylmethylaminomethylcarbonyl-oder N-Methyl- $C_{1-3}$ -alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylmethyl-aminomethylcarbonylgruppe substituiert ist, oder

eine Carbonylgruppe, die

durch eine Cyclopentylgruppe,

durch eine  $C_{3-5}$ -Alkylgruppe, die zusätzlich durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann,

durch eine am Aminstickstoffatom durch eine  $C_{1-4}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylgruppe substituierte  $C_{1-4}$ -Alkylamino-, Phenylamino- oder Pyridyl-aminogruppe,

durch eine durch eine Methyl-, Hydroxymethyl-, Amino-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Carboxy- $C_{1-2}$ -alkyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkyl-, Carboxymethyloxymethyl-,  $C_{1-3}$ -Alkoxycarbonylmethyloxymethyl-, Carboxymethylamino-methyl-,  $C_{1-3}$ -Alkoxycarbonyl-methylaminomethyl-, Carboxy-methylaminocarbonylmethyloxymethyl- oder  $C_{1-3}$ -Alkoxycarbonylmethyloxymethyl- substituierte Pyrrolidinogruppe substituiert ist,

 $R_3$  ein Wasserstoff-, Fluor-, Chlor- oder Bromatom oder eine Trifluormethylgruppe,

eine gegebenenfalls durch eine Hydroxy-, Carboxy-,  $C_{1-3}$ -Alk-oxycarbonyl-, Carboxymethyloxy-,  $C_{1-3}$ -Alkoxycarbonyl-methyl-oxy-, Carboxymethylamino-, N-Methyl-carboxymethylamino-,  $C_{1-3}$ -Alkoxycarbonylmethylamino-, N-Methyl- $C_{1-3}$ -alkoxycarbonyl-methylamino-, Carboxymethylaminocarbonyl- oder  $C_{1-3}$ -Alkoxycarbonylmethylaminocarbonylgruppe substituierte  $C_{1-2}$ -Alkylgruppe,

eine durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte Vinylgruppe,

 $R_4$  ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Ethyl- oder Trifluormethylgruppe und

Y eine gegebenenfalls durch eine  $C_{1-8}$ -Alkoxycarbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

Ganz besonders bevorzugte Verbindungen der vorliegenden Erfindung sind die Verbindungen der allgemeinen Formel Ia, in der

A eine Ethylen- oder Ethinylengruppe,

X eine Iminogruppe,

 $R_2$  eine  $C_{1-4}$ -Alkylaminocarbonylgruppe, die jeweils am Aminstickstoffatom durch eine Carboxy- $C_{1-2}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylgruppe substituiert ist,

eine  $C_{1-4}$ -Alkylaminogruppe, die am Aminstickstoffatom durch eine Carboxy- $C_{1-3}$ -alkylcarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl-  $C_{1-3}$ -alkylcarbonyl-, Carboxy- $C_{1-2}$ -alkylaminocarbonyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylgruppe gruppe substituiert ist, oder

eine Carbonylgruppe, die

durch eine  $C_{3-5}$ -Alkylgruppe, die zusätzlich durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann,

durch eine am Aminstickstoffatom durch eine Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylgruppe substituierte  $C_{1-4}$ -Alkylamino- oder Pyridylaminogruppe,

durch eine gegebenenfalls durch eine Methylgruppe substituierte Pyrrolidinogruppe substituiert ist,

 $R_3$  eine gegebenenfalls durch eine Carboxy- oder  $C_{1\cdot 3}$ -Alkoxycarbonylgruppe substituierte  $C_{1\cdot 2}$ -Alkylgruppe,

 $R_4$  ein Wasserstoffatom oder eine Methylgruppe und

Y eine gegebenenfalls durch eine  $C_{1-8}$ -Alkoxycarbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

Als besonders bevorzugte Verbindungen seien beispielsweise folgende erwähnt:

- (a) rac-4-{3-[5-Ethoxycarbonylmethyl-2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin,
- (b) rac-4-{3-[2,5-Dimethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin,
- (c) 4-[3-(2,5-Dimethyl-4-isopropylcarbonyl-phenyl)propargyl-amino]benzamidin,
- (d) 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyl]propargylamino}benzamidin,
- (e) 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbo-nyl)-phenyl]prop-1-ylamino}benzamidin,
- (f) 4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]-benzamidin.

- (g) 4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-ethyl-carbonylamino)-phenyl]-propargylamino}benzamidin,
- (h) 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin und
- (i) 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-carbonyl-amino)-phenyl]-propargylamino}-benzamidin

sowie deren Salze.

Erfindungsgemäß erhält man die Verbindungen der allgemeinen Formel I nach bekannten Verfahren beispielsweise nach folgenden Verfahren:

a. Umsetzung einer Verbindung der allgemeinen Formel

$$Ar - Z_1$$
 , (II)

in der

Ar wie eingangs erwähnt definiert ist und  $Z_1$  eine Austrittsgruppe wie ein Halogenatom oder eine Sulfonyloxygruppe darstellt, z.B. ein Chlor-, Brom- oder Iodatom oder eine Trifluormethylsulfonyloxygruppe, mit einer Verbindung der allgemeinen Formel

$$H - A' - HCR_1 - X - Y'$$
, (III)

in der

R<sub>1</sub> und X wie eingangs erwähnt definiert sind,
Y' die für Y eingangs erwähnten Bedeutungen mit der Maßgabe
besitzt, daß eine vorhandene Amino- oder Iminogruppe durch
einen üblichen Schutzrest geschützt ist, und
A' eine Ethinylgruppe darstellt, gegebenenfalls anschließende
katalytische Hydrierung und/oder Abspaltung eines verwendeten
Schutzrestes.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Acetonitril, Diethylether, Tetrahydrofuran oder Dimethylformamid in Gegenwart eines Palladium-Katalysators wie Bis(triphenylphosphin)-palladium(II) chorid oder Tetrakis-(triphenylphosphin)-palladium(0) in Gegenwart einer tertiären oder anorganischen Base wie Triethylamin, N-Isopropyl-diethylamin, Kalium-tert.butylat, Natriumcarbonat oder Cäsiumcarbonat und in Gegenwart eines Reaktionsbeschleunigers wie einem Kupferhalogenid wie Kupfer(I) iodid und bei Temperaturen zwischen 20 und 120°C, vorzugsweise bei Temperaturen zwischen 40 und 100°C, durchgeführt (siehe auch K. Sonogashira, Comprehensive Organic Synthesis, Vol. 3, Seite 52ff., Pergamon Press, Oxford 1991).

Die gegebenenfalls verwendeten Schutzreste und deren Abspaltung wird später beschrieben (siehe auch T. Greene, Protective Groups in Organic Synthesis, Wiley Interscience, New York 1981).

b. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der der Ar-A-Rest eine Carboxygruppe enthält und  $R_5$  wie eingangs erwähnt definiert ist oder der Ar-A-Rest wie eingangs erwähnt definiert ist und  $R_5$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt oder der Ar-A-Rest eine Carboxygruppe enthält und  $R_5$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt:

Überführung einer Verbindung der allgemeinen Formel

$$Ar' - A - HCR_1 - X - Y'' \qquad , (IV)$$

in der

A,  $R_1$ , und X wie eingangs erwähnt definiert sind, Ar' und Y" die für Ar und Y eingangs erwähnten Bedeutungen mit der Maßgabe besitzen, daß

Ar' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxygruppe überführbare Gruppe enthält und Y" die für Y eingangs erwähnt Bedeutungen aufweist oder

Ar' die für Ar eingangs erwähnten Bedeutungen aufweist und Y" eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Amino-, Amino- $C_{1-3}$ -al-kyl-, Amidino- oder Guanidinogruppe überführbare Gruppe oder

Ar' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxygruppe überführbare Gruppe enthält und Y" eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe überführbare Gruppe enthalten,

mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Verbindung der allgemeinen Formel I übergeführt wird, in der der Ar-A-Rest eine Carboxygruppe enthält und  $R_5$  wie eingangs erwähnt definiert ist oder der Ar-A-Rest wie eingangs erwähnt definiert ist und  $R_5$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt oder der Ar-A-Rest eine Carboxygruppe enthält und  $R_5$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt.

Als eine in eine Carboxygruppe überführbare Gruppe kommt beispielsweise eine durch einen Schutzrest geschützte Carboxylgruppe wie deren funktionelle Derivate, z. B. deren unsubstituierte oder substituierte Amide, Ester, Thioester, Trimethylsilylester, Orthoester oder Iminoester, welche zweckmäßigerweise mittels Hydrolyse in eine Carboxylgruppe übergeführt werden,

deren Ester mit tertiären Alkoholen, z.B. der tert. Butylester, welche zweckmäßigerweise mittels Behandlung mit einer Säure oder Thermolyse in eine Carboxylgruppe übergeführt werden, und

deren Ester mit Aralkanolen, z.B. der Benzylester, welche zweckmäßigerweise mittels Hydrogenolyse in eine Carboxylgruppe übergeführt werden, in Betracht.

Die Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Trichloressigsäure, Trifluoressigsäure oder deren Gemischen oder in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmittel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/- Isopropanol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/Dioxan bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Enthält eine Verbindung der allgemeinen Formel IV beispielsweise die tert.Butyl- oder tert.Butyloxycarbonylgruppe, so können diese auch durch Behandlung mit einer Säure wie Trifluoressigsäure, Ameisensäure, p-Toluolsulfonsäure, Schwefelsäure, Salzsäure, Phosphorsäure oder Polyphosphorsäure gegebenenfalls in einem inerten Lösungsmittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Diethylether, Tetrahydrofuran oder Dioxan vorzugsweise bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen 0 und 60°C, oder auch thermisch gegebenenfalls in einem inerten Lösungsmittel wie Methylenchlorid, Chloroform, Benzol, Toluol, Tetrahydrofuran oder Dioxan und vorzugsweise in Gegenwart einer katalytischen Menge einer Säure wie p-Toluolsulfonsäure, Schwefelsäure, Phosphorsäure oder Polyphosphorsäure vorzugsweise bei der Siedetemperatur des verwendeten Lösungsmittels, z.B. bei Temperaturen zwischen 40 und 120°C, abgespalten werden.

Enthält eine Verbindung der allgemeinen Formel IV beispielsweise die Benzyloxy- oder Benzyloxycarbonylgruppe, so können diese auch hydrogenolytisch in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsäureethylester, Dioxan oder Dimethylformamid vorzugsweise bei WO 00/35859 PCT/EP99/09921

Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar abgespalten werden.

c. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R eine Amidinogruppe darstellt:

Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

$$Ar - A - HCR_1 - X - Y" \qquad , (V)$$

in der

A, Ar,  $R_1$  und X wie eingangs erwähnt definiert sind und Y" einen der für Y eingangs erwähnten Reste mit der Maßgabe bedeutet, daß  $R_5$  eine  $Z_1$ -(HN=)C-Gruppe darstellt, in der

Z<sub>1</sub> eine Alkoxy- oder Aralkoxygruppe wie die Methoxy-, Ethoxy-, n-Propoxy-, Isopropoxy- oder Benzyloxygruppe oder eine Alkylthio- oder Aralkylthiogruppe wie die Methylthio-, Ethylthio-, n-Propylthio- oder Benzylthiogruppe darstellt,

mit einem Ammoniumsalz wie Diammoniumcarbonat oder Ammonium-acetat.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol, Ethanol, n-Propanol, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

Eine Verbindung der allgemeinen Formel V erhält man beispielsweise durch Umsetzung einer entsprechenden Cyanoverbindung mit einem entsprechenden Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol oder Benzylalkohol in Gegenwart einer Säure wie Salzsäure oder durch Umsetzung eines entsprechenden Amids mit einem Trialkyloxoniumsalz wie Triethyloxonium-tetrafluorborat in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran oder Dioxan bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei 20°C, oder eines entsprechenden Nitrils mit Schwefelwasserstoff zweckmäßigerweise in einem Lösungsmittel wie Pyridin oder Dimethylformamid und in Gegenwart einer Base wie Triethylamin und anschließender Alkylierung des gebildeten Thioamids mit einem entsprechenden Alkyl- oder Aralkylhalogenid.

Bei der vorstehend beschriebenen Umsetzung kann gleichzeitig an eine elektronenreiche oder elektronenarme Dreifachbindung eine Halogenwasserstoffaddition erfolgen.

d) Zur Herstellung einer Verbindung der allgemeinen Formel I, in der  $R_s$  eine Amidinogruppe darstellt, die durch eine Hydroxygruppe substituiert ist:

Umsetzung einer gegebenenfalls im Reaktionsgemisch gebildeten Verbindung der allgemeinen Formel

$$Ar - A - HCR_1 - X - Y''$$
, (V)

in der

A, Ar,  $R_1$  und X wie eingangs erwähnt definiert sind und Y" einen der für Y eingangs erwähnten Reste mit der Maßgabe bedeutet, daß  $R_5$  eine  $Z_1$ -(HN=)C-Gruppe darstellt, in der

Z<sub>1</sub> eine Alkoxy- oder Aralkoxygruppe wie die Methoxy-, Ethoxy-, n-Propoxy-, Isopropoxy- oder Benzyloxygruppe oder eine Alkylthio- oder Aralkylthiogruppe wie die Methylthio-, Ethylthio-, n-Propylthio- oder Benzylthiogruppe darstellt,

mit Hydroxylamin oder dessen Salzen.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol, Ethanol, n-Propanol, Wasser, Methanol/Wasser, Tetrahydrofuran, Tetrahydrofuran/Wasser, Dioxan oder Dioxan/-Wasser in Gegenwart einer Base wie Triethylamin bei Tempera-

turen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt.

e. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der X ein Sauerstoff- oder Schwefelatom, eine Carbonyl-, Imino- oder N- $(C_{1-3}$ -Alkyl)-iminogruppe darstellt:

Umsetzung einer Verbindung der allgemeinen Formel I

$$Ar - A - HCR_1 - Z_2$$
 , (VI)

in der

A, Ar und  $R_1$  wie eingangs erwähnt definiert sind und  $Z_2$  eine Austrittsgruppe wie ein Halogenatom oder eine Sulfonyloxygruppe, z.B. ein Brom- oder Iodatom, eine Methansulfonyloxy- oder p-Toluolsulfonyloxygruppe, mit einer Verbindung der allgemeinen Formel

$$U - Y$$
 , (VII)

in der

Y wie eingangs erwähnt definiert ist und U eine Hydroxy-, Mercapto-, Hydroxycarbonyl-, Imino- oder  $N-(C_{1-3}-Alkyl)$ -iminogruppe bedeutet.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt.

f. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der Ar und/oder Y einen in-vivo abspaltbaren Rest enthalten:

Umsetzung einer Verbindung der allgemeinen Formel

$$Ar" - A - HCR_1 - X - Y'" \qquad , (VIII)$$

in der

A,  $R_1$ , und X wie eingangs erwähnt definiert sind, Ar" und Y'" die für Ar und Y eingangs erwähnten Bedeutungen mit der Maßgabe besitzen, daß

Ar" eine Carboxygruppe enthält und Y'" die für Y eingangs erwähnt Bedeutungen aufweist oder

Ar" die für Ar eingangs erwähnten Bedeutungen aufweist und Y'" eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidino-gruppe enthält oder

Ar" eine Carboxygruppe und Y'" eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe überführbare Gruppe enthalten, mit einer Verbindung der allgemeinen Formel

$$Z_3 - R_7$$
 (IX)

in der

 $R_7$  eine  $C_{1-8}$ -Alkoxycarbonylgruppe, eine  $R_aCO-O-(R_bCR_c)$ -Gruppe oder den Acylrest einer der eingangs erwähnten in vivo abspaltbaren Reste, wobei  $R_a$  bis  $R_c$  wie eingangs erwähnt definiert sind, und

 $Z_3$  eine nukleofuge Austrittsgruppe wie ein Halogenatom, z.B. ein Chlor-, Brom- oder Jodatom, oder eine p-Nitrophenylgruppe oder auch, wenn Ar" eine Carboxygruppe enthält, eine Hydroxygruppe bedeuten.

Die Umsetzung wird vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart eines die Säure aktivierenden Mittels oder eines wasserentziehenden Mittels und gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base,

vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt.

Mit einer Verbindung der allgemeinen Formel IX, in der Z<sub>3</sub> eine nukleofuge Austrittsgruppe darstellt, wird die Umsetzung vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Acetonitril, Tetrahydrofuran, Toluol, Dimethylformamid oder Dimethylsulfoxid gegebenenfalls in Gegenwart einer Base wie Natriumhydrid, Kaliumcarbonat, Kalium-tert.butylat oder N-Ethyldisopropylamin bei Temperaturen zwischen 0 und 60°C, durchgeführt.

Mit einer Verbindung der allgemeinen Formel IX, in der Z, eine Hydroxygruppe darstellt, wird die Umsetzung gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N, N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N, N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat/1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Bedeutet in einer Verbindung der allgemeinen Formel IX Z3 eine Hydroxygruppe, so kann die Umsetzung auch mit einem seiner reaktionsfähigen Derivate wie deren Ester, Imidazolide oder Halogeniden vorzugsweise in einem Lösungsmittel wie Methylenchlorid oder Ether und vorzugsweise in Gegenwart einer tertiä-

ren organische Base wie Triethylamin, N-Ethyl-diisopropylamin oder N-Methyl-morpholin bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 50 und 100°C, durchgeführt.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, in der  $R_{\scriptscriptstyle 5}$  eine Amidinogruppe darstellt, so kann diese durch Alkylierung mit einem Halogenessigsäurederivat, durch anschließende Hydrolyse und Decarboxylierung in eine durch eine oder zwei Methylgruppen substituierte entsprechende Amidinoverbindung übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, in der  $R_5$  eine Hydroxyamidinogruppe darstellt, so kann diese mittels katalytischer Hydrierung in eine entsprechende Amidinoverbindung übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, die eine Doppeloder Dreifachbindung enthält, so kann diese mittels katalytischer Hydrierung in eine entsprechende gesättigte Verbindung übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, in der X ein Schwefelatom darstellt, so kann diese mittels Oxidation in eine entsprechende Sulfinyl- oder Sulfonylverbindung übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, in der R<sub>2</sub> eine Tetrahydropyrazolocarbonylgruppe darstellt, so kann diese mittels Oxidation in eine entsprechende 4,5-Dihydropyrazolocarbonyl-Verbindung übergeführt werden und/oder

eine Verbindung der allgemeinen Formel I, die eine Carbonylgruppe enthält, so kann diese mittels einem entsprechenden Oxim in eine entsprechende Oximverbindung übergeführt werden und/oder eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese mittels eines entsprechenden Amins in ein entsprechendes Amid übergeführt werden.

Die anschließende Alkylierung wird zweckmäßigerweise in einem Lösungsmittel wie Methylenchlorid, Tetrahydrofuran, Dioxan, Dimethylsulfoxid, Dimethylformamid oder Aceton gegebenenfalls in Gegenwart eines Reaktionsbeschleunigers wie Natrium- oder Kaliumiodid und vorzugsweise in Gegenwart einer Base wie Natriumcarbonat oder Kaliumcarbonat oder in Gegenwart einer tertiären organischen Base wie N-Ethyl-diisopropylamin oder N-Methyl-morpholin, welche gleichzeitig auch als Lösungsmittel dienen können, oder gegebenenfalls in Gegenwart von Silberkarbonat oder Silberoxid bei Temperaturen zwischen -30 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen -10 und 80°C, durchgeführt.

Die anschließende Hydrolyse wird zweckmäßigerweise entweder in Gegenwart einer Säure wie Salzsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Trichloressigsäure, Trifluoressigsäure oder deren Gemischen oder in Gegenwart einer Base wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in einem geeigneten Lösungsmittel wie Wasser, Wasser/Methanol, Wasser/Ethanol, Wasser/Isopropanol, Methanol, Ethanol, Wasser/Tetrahydrofuran oder Wasser/Dioxan, durchgeführt.

Die anschließende Decarboxylierung wird in Gegenwart einer Säure wie vorstehend beschrieben bei Temperaturen zwischen -10 und 120°C, z.B. bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Reaktionsgemisches, durchgeführt.

Die nachträgliche katalytische Hydrierung wird vorzugsweise in Gegenwart eines Hydrierungskatalysators wie Palladium/Kohle und in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Ethanol/Wasser, Eisessig, Essigsäureethylester, Dioxan oder Dimethylformamid vorzugsweise bei Temperaturen zwischen 0 und 50°C, z.B. bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 5 bar durchgeführt.

WO 00/35859

Die nachträgliche Oxidation wird vorzugsweise in einem Lösungsmittel oder Lösungsmittelgemisch, z.B. in Wasser, Wasser/Pyridin, Aceton, Methylenchlorid, Essigsäure, Essigsäure/Acetanhydrid, verdünnter Schwefelsäure oder Trifluoressigsäure, je nach dem verwendeten Oxidationsmittel zweckmäßigerweise bei Temperaturen zwischen -80 und 100°C durchgeführt.

Zur Herstellung einer entsprechenden Sulfinylverbindung der allgemeinen Formel I wird die Oxidation zweckmäßigerweise mit einem Äquivalent des verwendeten Oxidationsmittels durchgeführt, z.B. mit Wasserstoffperoxid in Eisessig, Trifluoressigsäure oder Ameisensäure bei 0 bis 20°C oder in Aceton bei 0 bis 60°C, mit einer Persäure wie Perameisensäure in Eisessig oder Trifluoressigsäure bei 0 bis 50°C oder mit m-Chlorperbenzoesäure in Methylenchlorid, Chloroform oder Dioxan bei -20 bis 80°C, mit Natriummetaperjodat in wäßrigem Methanol oder Ethanol bei -15 bis 25°C, mit Brom in Eisessig oder wäßriger Essigsäure gegebenenfalls in Gegenwart einer schwachen Base wie Natriumacetat, mit N-Bromsuccinimid in Ethanol, mit tert.-Butylhypochlorit in Methanol bei -80 bis -30°C, mit Jodbenzodichlorid in wäßrigem Pyridin bei 0 bis 50°C, mit Salpetersäure in Eisessig bei 0 bis 20°C, mit Chromsäure in Eisessig oder in Aceton bei 0 bis 20°C und mit Sulfurylchlorid in Methylenchlorid bei -70°C, der hierbei erhaltene Thioether-Chlor-Komplex wird zweckmäßigerweise mit wäßrigem Ethanol hydrolysiert.

Zur Herstellung einer Sulfonylverbindung der allgemeinen Formel I wird die Oxidation ausgehend von einer entsprechenden Sulfinylverbindung zweckmäßigerweise mit einem oder mehr Äquivalenten des verwendeten Oxidationsmittels oder ausgehend von einer entsprechenden Sulfenylverbindung zweckmäßigerweise mit zwei oder mehr Äquivalenten des verwendeten Oxidationsmittels durchgeführt, z.B. mit Wasserstoffperoxid in Eisessig/Acetanhydrid, Trifluoressigsäure oder in Ameisensäure bei 20 bis 100°C oder in Aceton bei 0 bis 60°C, mit einer Persäure wie Perameisensäure oder m-Chlorperbenzoesäure in Eisessig, Tri-

fluoressigsäure, Methylenchlorid oder Chloroform bei Temperaturen zwischen 0 und 60°C, mit Salpetersäure in Eisessig bei 0 bis 20°C, mit Chromsäure, Natriumperjodat oder Kaliumpermanganat in Essigsäure, Wasser/Schwefelsäure oder in Aceton bei 0 bis 20°C.

Zur Herstellung einer 4,5-Dihydropyrazolocarbonylverbindung der allgemeinen Formel I kann die Oxidation auch mittels Luftsauerstoff in einem der oben erwähnten Lösungsmittel bei Raumtemperatur durchgeführt werden.

Die nachträgliche Oximbildung wird zweckmäßigerweise in einem Lösungsmittel wie Methanol/Toluol in Gegenwart eines wasserentziehenden Mittels wie Molekularsieb vorzugsweise bei der Siedetemperatur des verwendeten Lösungsmittels durchgeführt.

Die nachträgliche Amidbildung wird vorzugsweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran, Benzol/Tetrahydrofuran oder Dioxan in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart von Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N,N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat/1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz einer Base wie Pyridin, 4-Dimethylaminopyridin, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxy-, Carboxy-, Ami-

no-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden (siehe auch T. Greene, Protective Groups in Organic Synthesis, Wiley Interscience, New York 1981).

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, tert.Butyl-, Trityl-, Benzyl- oder Tetrahydropyranylgruppe,

als Schutzreste für eine Carboxylgruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranylgruppe und

als Schutzrest für eine Amino-, Alkylamino- oder Iminogruppe die Acetyl-, Trifluoracetyl-, Benzoyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzylgruppe und für die Aminogruppe zusätzlich die Phthalylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wäßrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid oder mittels Etherspaltung, z.B. in Gegenwart von Jodtrimethylsilan, bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxy-carbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch, z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise

jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure
wie Trifluoressigsäure oder Salzsäure gegebenenfalls unter
Verwendung eines Lösungsmittels wie Wasser, Methylenchlorid,
Diethylether, Tetrahydrofuran oder Dioxan.

Die Abspaltung eines Allyloxycarbonylrestes erfolgt durch Behandlung mit einer katalytischen Menge Tetrakis-(triphenylphosphin)-palladium(O) vorzugsweise in einem Lösungsmittel wie Tetrahydrofuran und vorzugsweise in Gegenwart eines Überschusses von einer Base wie Morpholin oder 1,3-Dimedon bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Raumtemperatur und unter Inertgas, oder durch Behandlung mit einer katalytischen Menge von Tris-(triphenylphosphin)-rhodium(I)chlorid in einem Lösungsmittel wie wässrigem Ethanol und gegebenenfalls in Gegenwart einer Base wie 1,4-Diazabicyclo[2.2.2]-octan bei Temperaturen zwischen 20 und 70°C.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis IX, welche teilweise literaturbekannt sind, erhält man nach literaturbekannten Verfahren, des weiteren wird ihre Herstellung in den Beispielen beschrieben.

So erhält man beispielsweise eine Verbindung der allgemeinen Formel II durch Umsetzung eines entsprechenden substituierten Halogenbenzols mit einer entsprechenden Verbindung,

eine Verbindung der allgemeinen Formel III durch Umsetzung eines entsprechenden Anilins mit einem Propargylhalogenid und anschließende Überführung des so erhaltenen substituierten Anilins in eine Verbindung der allgemeinen Formel III nach bekannten Methoden, z.B. durch Pinner-Reaktion, sowie die Verbindungen der allgemeinen Formeln IV, V, VI und VIII zweckmäßigerweise nach üblichen Methoden wie sie in der vorliegenden Erfindung beschrieben werden.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I in ihre Enantiomeren und/oder Diastereomeren sowie die erhaltenen Verbindungen der allgemeinen Fotmel I, die eine Doppelbindung enthalten in ihre cis/trans-Isomere aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestes 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen diastereomeren Salzgemisches oder Derivates, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure oder Dibenzoylweinsäure, Di-o-Tolylweinsäure, Apfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, Asparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt

beispielsweise (+) - oder (-)-Menthol und als optisch aktiver Acylrest in Amiden beispielsweise der (+) - oder (-)-Menthyl-oxycarbonylrest in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Wie bereits eingangs erwähnt, weisen die neuen Verbindungen der allgemeinen Formel I und deren Salze wertvolle Eigenschaften auf.

So weisen die Verbindungen der allgemeinen Formel I, in denen Y keine Cyanogruppe enthält, wertvolle pharmakologische Eigenschaften auf, insbesondere eine antithrombotische Wirkung, welche vorzugsweise auf einer Thrombin oder Faktor Xa beeinflussenden Wirkung beruht, beispielsweise auf einer thrombinhemmenden oder Faktor Xa-hemmenden Wirkung, auf einer die aPTT-Zeit verlängernden Wirkung und auf einer Hemmwirkung auf verwandte Serinproteasen wie z. B. Trypsin, Urokinase Faktor VIIa, Faktor IX, Faktor XI und Faktor XII, und die Verbindungen der allgemeinen Formel I, in denen Y eine Cyanogruppe enthält, stellen wertvolle Zwischenprodukte zur Herstellung der Verbindungen der allgemeinen Formel I dar, in der R<sub>s</sub> eine gege-

benenfalls substituierte Aminomethyl-, Amidino- oder Guanidinomethylgruppe darstellt.

Beispielsweise wurden die Verbindungen

- A = rac-4-{3-[5-Ethoxycarbonylmethyl-2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin,
- B = rac-4-{3-[2,5-Dimethyl-4-(2-methyl-pyrrolidinocarbonyl)phenyl]-propargylamino}benzamidin,
- C = 4-[3-(2,5-Dimethyl-4-isopropylcarbonyl-phenyl)propargylamino]benzamidin,
- D = 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyl]propargylamino}benzamidin,
- E = 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyl]prop-1-ylamino}benzamidin,
- F = 4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]-benzamidin,
- $G = 4 \{3 [2, 5 Dimethyl 4 (N (2 methoxycarbonyl ethyl) N ethyl-carbonylamino) phenyl] propargylamino benzamidin,$
- H = 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin und
- I = 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin

auf ihre Wirkung auf die aPTT-Zeit-Verlängerung wie folgt untersucht:

Material:-Plasma, aus humanem Citratblut,

- -PTT-Reagenz, Boehringer Mannheim (524298),
- -Calcium-Lösung (0.025 Mol/l), Behring Werke, Marburg (ORH 056/57),
- -Diethylbarbituratacetat-Puffer, Behring Werke, Marburg (ORWH 60/61),
- -Biomatic B10 Koagulometer, Desaga, Wiesloch.

#### Durchführung:

Die Bestimmung der aPTT-Zeit erfolgte mit einem Biomatic B10-Koagulometer der Firma Desaga.

Die Testsubstanz wird in die vom Hersteller vorgeschriebenen Testgefäßen mit 0,1 ml humanem Citrat-Plasma und 0,1 ml PTT-Reagenz gegeben. Der Ansatz wird für drei Minuten bei 37°C inkubiert. Durch Zugabe von 0.1 ml Calcium-Lösung wird die Gerinnungsreaktion gestartet. Gerätebedingt erfolgt mit der Eingabe der Calcium-Lösung die Messung der Zeit bis zur Gerinnung des Ansatzes. Als Kontrolle dienten Ansätze bei denen 0,1 ml DBA-Puffer zugegeben wird.

Gemäß der Definition wird über eine Dosis-Wirkungskurve die effektive Substanzkonzentration ermittelt, bei der die aPTT-Zeit gegenüber der Kontrolle verdoppelt wird.

Die nachfolgende Tabelle enthält die gefundenen Werte:

| Substanz | aPTT-Zeit                 |
|----------|---------------------------|
|          | (ED <sub>200</sub> in μM) |
| A        | 0.23                      |
| В        | 0.45                      |
| C        | 0.97                      |
| D        | 0.23                      |
| E        | 0.69                      |
| F        | 0.54                      |
| G        | 0.29                      |
| · H      | 0.20                      |
| I        | 0.45                      |

Aufgrund ihrer pharmakologischen Eigenschaften eignen sich die neuen Verbindungen und deren physiologisch verträglichen Salze zur Vorbeugung und Behandlung venöser und arterieller thrombotischer Erkrankungen, wie zum Beispiel der Behandlung von tiefen Beinvenen-Thrombosen, der Verhinderung von Reocclusionen nach Bypass-Operationen oder Angioplastie (PT(C)A), sowie der Occlusion bei peripheren arteriellen Erkrankungen wie Lungenembolie, der disseminierten intravaskulären Gerinnung, der Prophylaxe der Koronarthrombose, der Prophylaxe des Schlaganfalls und der Verhinderung der Occlusion von Shunts. Zusätzlich sind die erfindungsgemäßen Verbindungen zur antithrombotischen Unterstützung bei einer thrombolytischen Behandlung, wie zum Beispiel mit rt-PA oder Streptokinase, zur Verhinderung der Langzeitrestenose nach PT(C)A, zur Verhinderung der Metastasierung und des Wachstums von koagulationsabhängigen Tumoren und von fibrinabhängigen Entzündungsprozessen geeignet.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser Gabe 0,1 bis 30 mg/kg, vorzugsweise 0,3 bis 10 mg/kg, und bei oraler Gabe 0,1 bis 50 mg/kg, vorzugsweise 0,3 bis 30 mg/kg, jeweils 1 bis 4 x täglich. Hierzu lassen sich die erfindungsgemäß her-

gestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Gemischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen oder Zäpfchen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

rac-N-tert.Butoxycarbonyl-4-{3-[5-ethoxycarbonylmethyl-2-me-thyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylami-no}benzamidin

# a. 4-Brom-2.5-dimethyl-benzoesäure

Bei -78°C wird zu einer Lösung aus 43.63 g (0.162 Mol) 2,5-Dibrom-p-xylol, 100 ml (0.16 Mol) einer 1.6 molaren n-Butyl-lithium-Lösung in Hexan zugetropft und 1 Stunde nachgerührt. Anschließend leitet man 4 Stunden lang trockenes Kohlendioxid in die Lösung ein. Es wird langsam auf Raumtemperatur erwärmt und 16 Stunden nachgerührt. Nach langsamer Zugabe von 210 ml 2N Salzsäure, trennt man die Phasen, extrahiert die Wasserphase 2 x mit je 200 ml Ether, wäscht die vereinigten organischen Phasen mit konz. NaCl-Lösung und trocknet mit Na<sub>2</sub>SO<sub>4</sub>. Nach dem Entfernen des Lösungsmittels im Vakuum wird das Rohprodukt mit 200 ml 2N NaOH versetzt und die erhaltene braune Lösung 3 x mit 100 ml Diethylether extrahiert. Die wäßrige Phase wird mit konz. HCl angesäuert und der daraufhin ausfallende Niederschlag abgesaugt, mit Eiswasser gewaschen und getrocknet. Ausbeute: 34.99 g (94 % der Theorie),

 $R_f$ -Wert: 0.55 (Kieselgel; Essigester/Petrolether = 2:1)

b. 4-Brom-2-ethoxycarbonylmethyl-5-methyl-benzoesäure
Zu einer auf -78°C gekühlten Lösung, welche aus 4.2 ml
(30 mMol) Diiisopropylamin und 19 ml einer 1.6 molaren n-Butyl-lithium-Lösung in Hexan hergestellt wird, in 35 ml Tetrahydrofuran wird innerhalb von 2.5 Stunden eine Lösung von
1.7 ml (14 mMol) Diethylcarbonat und 2.3 g (10 mMol) 4-Brom2,5-dimethyl-benzoesäure in 15 ml Tetrahydrofuran zugetropft.
Anschließend wird auf 0°C erwärmt, in 200 ml 3%ige NH<sub>4</sub>Cl-Lösung
gegossen, mit Essigsäure auf pH 6 gebracht und mit Essigester
ausgeschüttelt. Die Essigesterphase wird mit 14%iger NaCl-Lösung gewaschen und mit Na<sub>2</sub>SO<sub>4</sub> getrocknet. Das Lösungsmittel
wird abdestilliert und der verbleibende Rückstand mehrmals in
wenig Diisopropylether/Petrolether digeriert und anschließend
getrocknet.

Ausbeute: 1.95 g (65 % der Theorie),

R<sub>t</sub>-Wert: 0.35 (Kieselgel; Essigester/Petrolether = 3:7

+ 1 Tropfen Eisessig)

c. rac-N-(4-Brom-2-ethoxycarbonylmethyl-5-methyl-benzoyl)2-methyl-pyrrolidin

Zu einer Lösung aus 1.9 g (6.31 mMol) 4-Brom-2-ethoxycarbonylmethyl-5-methyl-benzoesäure in 660 ml Tetrahydrofuran/H<sub>2</sub>O
(9:1) wird nacheinander 2.2 g (6.85 mMol) O-(Benzotriazol1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat, 2.41 ml
(13.9 mMol) N,N-Diisopropyl-ethylamin und 0.27 g (2.0 mMol)
1-Hydroxy-1H-benzotriazol zugegeben. Nach 10-minütigem Rühren
gibt man 0.59 g (6.94 mMol) rac-2-Methyl-pyrrolidin zu, rührt
19 Stunden nach und verdünnt anschließend mit 200 ml Essigester. Die erhaltene Lösung wird mit 14%iger NaCl-Lösung gewaschen und 2 x mit Essigester extrahiert. Die vereinigten
organischen Phasen werden mit 14%iger NaCl-Lösung gewaschen
und mit Na<sub>2</sub>SO<sub>4</sub> getrocknet. Nach Abdestillieren des Lösungsmittels und Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 98:2) erhält man die gewünschte Verbindung.

Ausbeute: 2.00 g (86 % der Theorie),

 $R_f$ -Wert: 0.3 (Kieselgel; Essigester/Petrolether = 3:7

+ 1 Tropfen Eisessig)

 $C_{17}H_{22}BrNO_3$  (368.27)

Massenspektrum: M' = 367/369 (Bromisotope)

 $(M+H)^+ = 368/370$  (Bromisotope)

 $(M-H)^- = 366/368$  (Bromisotope)

#### d. 4-Propargylamino-benzonitril

Eine Lösung aus 23.6 g (0.20 Mol) 4-Amino-benzonitril, 16.6 ml (0.22 Mol) Propargylbromid und 38.3 ml (0.22 Mol) Diisopropylethylamin werden in 500 ml Toluol 27 Stunden auf 90°C erwärmt. Anschließend wird mit Essigester verdünnt, 3 x mit  $\rm H_2O$  gewaschen und über MgSO<sub>4</sub> getrochnet. Nach Abdestillieren des Lösungsmittels wird das Rohprodukt durch Flash-Chromatographie (Kieselgel; Essigester/Petrolether = 20:80 bis 75:25) gereinigt.

{ }

Ausbeute: 22.9 g (73 % der Theorie),

R<sub>f</sub>-Wert: 0.38 (Kieselgel; Essigester/Petrolether = 3:7)

# e. 4-Propargylamino-benzamidin

Eine Lösung aus 5.0 g (32 mMol) 4-Propargylamino-benzonitril wird in 150 ml mit Chlorwasserstoffgas gesättigtem Ethanol erst 3 Stunden bei 0°C, dann 21 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird bei maximal 30°C Badtemperatur im Vakuum entfernt und durch 250 ml absolutem Ethanol ersetzt. Anschließend setzt man 10.7 g (0.11 Mol) Ammoniumcarbonat zu und rührt 36 Stunden. Das Lösungsmittel wird abdestilliert, der Rückstand wird in 200 ml Methylenchlorid/Ethanol (94:6) aufgenommen, von unlöslichen Bestandteilen abfiltriert, konzentriert und durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 90:10 bis 75:25) gereinigt.

Ausbeute: 6.52 g (97 % der Theorie),

R<sub>f</sub>-Wert: 0.22 (Kieselgel; Methylenchlorid/Ethanol = 80:20)

f. N-(4-tert.Butoxycarbonylamidino-phenyl)-propargylamin Eine Lösung aus 1.9 g (9.06 mMol) 4-Propargylamino-benzamidin und 2.35 g (10.8 mMol) Pyrokohlensäure-di-tert.butylester in 50 ml Tetrahydrofuran wird bei 5°C langsam mit 45 ml 0.2N NaOH versetzt und 2.5 Stunden bei Raumtemperatur nachgerührt. Das Lösungsmittel wird abdestilliert, der feste Rückstand wird mit  $\mathrm{H}_2\mathrm{O}$  gewaschen und getrocknet.

Ausbeute: 2.2 g (88 % der Theorie),

R<sub>f</sub>-Wert: 0.41 (Reversed Phase Kieselgel RP-8; Methanol/5%ige  $NaCl-L\ddot{o}sung = 60:40)$ 

g. rac-N-tert.Butoxycarbonyl-4-{3-[5-ethoxycarbonylmethyl-2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino|benzamidin

Eine Lösung aus 1.00 g (2.72 mMol) N-(4-Brom-2-ethoxycarbonylmethyl-5-methyl-benzoyl)-2-methyl-pyrrolidin, 1.11 g (4.07 mMol) N-tert.Butoxycarbonyl-4-propargylamino-benzamidin und 10.4 ml (13.5 mMol) Triethylamin in 3.0 ml Acetonitril wird 15 Minuten unter Stickstoff gerührt, dann nacheinander mit 0.32 g (0.277 mMol) Tetrakis-(triphenylphosphin)-palladium(0) und 0.11 g (0.578 mMol) Kupfer(I)iodid versetzt und 1 Stunden bei 90°C gerührt. Anschließend wird das Lösungsmittel abdestilliert und das Rohprodukt durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 99:1 bis 95:5) gereinigt.

Ausbeute: 0.18 g (12 % der Theorie),

 $R_f$ -Wert: 0.3 (Kieselgel; Methylenchlorid:Ethanol = 19:1)

 $C_{32}H_{40}N_4O_5$  (560.69)

Massenspektrum:  $(M+H)^{*} = 561$  $(M-H)^{-} = 559$ 

#### Beispiel 2

rac-4-{3-[5-Ethoxycarbonylmethyl-2-methyl-4-(2-methyl-pyrro-lidinocarbonyl)-phenyll-propargylamino}benzamidin

Eine Lösung aus 0.36 g (0.642 mMol) rac-N-tert.Butoxycarbonyl-4-{3-[5-ethoxycarbonylmethyl-2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino}benzamidin in 20 ml Methylen-chlorid und 3 ml Trifluoressigsäure wird 4 Stunden gerührt.

Anschließend wird das Lösungsmittel abdestilliert und das Rohprodukt durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 95:5 bis 80:20) gereinigt.

Ausbeute: 0.20 g (54 % der Theorie),

R<sub>f</sub>-Wert: 0.3 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

C<sub>27</sub>H<sub>32</sub>N<sub>4</sub>O<sub>3</sub> x CF<sub>3</sub>COOH (460.58/574.61)

Massenspektrum: (M+H)\* = 461

#### Beispiel 3

rac-4-{3-[5-Hydroxycarbonylmethyl-2-methyl-4-(2-methyl-pyrro-lidinocarbonyl)-phenyll-propargylamino}benzamidin

Ein Gemisch aus 146 mg (0.254 mMol) rac-4-{3-[5-Ethoxycarbo-nylmethyl-2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin, 3.5 ml Tetrahydrofuran, 2.5 ml H<sub>2</sub>O und 1.3 ml 1N LiOH-Lösung wird 5 Stunden gerührt. Dann gibt man 78 mg (1.45 mMol) Ammoniumchlorid zu, rührt 16 Stunden

nach und destilliert das Lösungsmittel ab. Der Rückstand wird mit  $\rm H_2O$  verrieben, abgesaugt und mit wenig  $\rm H_2O$  gewaschen. Ausbeute: 35 mg (29 % der Theorie),

R<sub>f</sub>-Wert: 0.35 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{25}H_{28}N_4O_3 \times HCl (432.53/468.99)$ 

Massenspektrum:  $(M+H)^* = 433$ 

 $(M-H)^{-} = 431$ 

#### Beispiel 4

4-{3-Methyl-4-[(thiazol-2-yl)carbonyl]-phenyl]-propargyl-amino}benzamidin

# a. 2-(4-Brom-2-methyl-benzoyl)-thiazol

2.0 g (13 mMol) 2-Trimethylsilylthiazol und 6.1 g (26 mMol) 4-Brom-2-methyl-benzoesäurechlorid werden unter Eisbadkühlung vereinigt und 3 Stunden auf 80°C erhitzt. Das Rohprodukt wird in 30 ml Essigester aufgenommen, mit  $\rm H_2O$ , gesättigter NaHCO<sub>3</sub>-Lösung und  $\rm H_2O$  gewaschen, getrocknet und durch Flash-Chromatographie (Kieselgel; Methylenchlorid) gereinigt.

Ausbeute: 1.4 g (40 % der Theorie),

 $R_t$ -Wert: 0.65 (Kieselgel; Essigester/Petrolether = 20:80)

b. 4-{3-[3-Methyl-4-[(thiazol-2-yl)carbonyl]-phenyl]-propargylamino}benzonitril

Hergestellt analog Beispiel 1g aus 2-(4-Brom-2-methyl-benzo-yl)-thiazol, 4-Propargylamino-benzonitril, Tetrakis(triphenyl-phosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril.

Ausbeute: 72% der Theorie,

 $R_{r}$ -Wert: 0.43 (Kieselgel; Essigester/Petrolether = 20:80)

- c. 4-{3-[3-Methyl-4-[(thiazol-2-yl)carbonyl]-phenyl]-propargylamino}benzamidin
- 0.7 g (2 mMol) 4-{3-[3-Methyl-4-[(thiazol-2-yl)carbonyl]-phenyl]-propargylamino}benzonitril wird in 50 ml mit Chlorwasserstoffgas gesättigtem Ethanol zuerst 2 Stunden bei 0°C,

dann 6 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird bei maximal 30°C Badtemperatur im Vakuum entfernt und durch 50 ml absolutem Ethanol ersetzt. Man setzt 1.4 g Ammoniumcarbonat zu und rührt 16 Stunden. Anschließend wird das Lösungsmittel abdestilliert und der erhaltene Rückstand durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 98:2 bis 80:20) gereinigt.

Ausbeute: 0.7 g (88 % der Theorie),

 $C_{21}H_{18}N_4OS \times HCl (374.47/410.93)$ 

Massenspektrum: (M+H) = 375

#### Beispiel 5

#### 4-[3-(4-Biphenyl)-propargylamino|benzamidin

a. 4-[3-(4-Biphenyl)-propargylaminolbenzonitril

Hergestellt analog Beispiel 1g aus 4-Brombiphenyl, 4-Propargylaminobenzonitril, Tetrakis(triphenylphosphin)palladium(0),

Kupfer(I)iodid und Triethylamin in Acetonitril.

Ausbeute: 29% der Theorie,

R<sub>f</sub>-Wert: 0.48 (Kieselgel; Essigester/Petrolether = 25:75)

#### b. 4-[3-(4-Biphenyl)-propargylaminolbenzamidin

In eine Lösung aus 0.50 g (1.6 mMol) 4-[3-(4-Biphenyl)-propargylamino]benzonitril und 0.78 ml (5.6 mMol) Triethylamin in 25 ml absolutem Pyridin wird solange Schwefelwasserstoff eingeleitet, bis kein Ausgangsprodukt laut Dünnschichtchromatographie mehr nachweisbar ist. Anschließend wird das Lösungsmittel abdestilliert, der erhaltene Rückstand in Methylenchlorid aufgenommen und mit 2N HCl und H<sub>2</sub>O gewaschen. Die organische Phase wird getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wird in 25 ml Aceton aufgenommen und mit 2.0 ml (32 mMol) Methyliodid versetzt. Nach 20 Stunden werden die flüchtigen Bestandteile abdestilliert, das Rohprodukt in 35 ml Ethanol und 15 ml Methylenchlorid aufgenommen und mit 2.8 g (36 mMol) Ammoniumacetat versetzt. Das Reak-

tionsgemisch wird 8 Stunden bei 40°C und 60 Stunden bei Raumtemperatur gerührt, im Vakuum konzentriert und durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 98:2 bis 80:20) gereinigt.

Ausbeute: 0.57 g (78 % der Theorie),

R<sub>f</sub>-Wert: 0.21 (Kieselgel; Methylenchlorid/Ethanol = 80:20)

 $C_{22}H_{19}N_3 \times HI (325.41/453.32)$ 

Massenspektrum: (M+H) = 326

#### Beispiel 6

4-{3-[3-(2-Methyl-benzimidazol-1-yl-methyl)-phenyl]-propargylamino}benzamidin

# a. 1-(3-Brombenzyl)-2-methylbenzimidazol

Zu einer Lösung aus 1.32 g (10 mMol) 2-Methyl-benzimidazol in 10 ml absolutem Dimethylsulfoxid gibt man zuerst 1.23 g (11 mMol) Kalium-tert.butylat und nach 45 Minuten 2.62 g (10.5 mMol) 3-Brom-benzylbromid zu und rührt 4 Stunden. Anschließend wird das Reaktionsgemisch mit Essigester verdünnt, 3 x mit 14%iger NaCl-Lösung gewaschen, getrocknet, konzentriert und durch Flash-Chromatographie (Kieselgel; Petrolether/Essigester = 9:1 bis Essigester) gereinigt.

Ausbeute: 2.4 g (80 % der Theorie),

 $C_{15}H_{13}BrN_2$  (301.19)

Massenspektrum: M' = 300/302 (Bromisotope)

# b. 4-{3-[3-(2-Methylbenzimidazol-1-yl-methyl)-phenyl]-pro-pargylamino}benzamidin

Hergestellt analog Beispiel 1g aus 1-(3-Brombenzyl)-2-methyl-benzimidazol, N-tert.Butoxycarbonyl-4-propargylamino-benz-amidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer(I)-iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 55% der Theorie,

 $R_f$ -Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 80:20)

 $C_{25}H_{23}N_5 \times CF_3COOH (393.49/507.51)$ Massenspektrum:  $(M+H)^+ = 394$  $(M+2H)^{++} = 197.6$ 

#### Beispiel 7

4-{3-[3-Methyl-4-(2-methyl-benzimidazol-1-yl)-phenyl]-propargylamino}benzamidin

# a. N-(2-Nitrophenyl)-4-brom-2-methyl-anilin Ein Gemisch aus 2.9 ml (27.5 mMol) 2-Fluor-nitrobenzol, 10.55 g (55 mMol) 4-Brom-2-methyl-anilin und 1.60 g (27.5 mMol) sprühgetrocknetes Kaliumfluorid wird auf 180°C erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch in Methy-

erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch in Methylenchlorid aufgenommen, mit H<sub>2</sub>O, mit 10%iger Salzsäure und wiederum H<sub>2</sub>O gewaschen, mit Na<sub>2</sub>SO<sub>4</sub> getrocknet, konzentriert und durch Flash-Chromatographie (Kieselgel; Petrolether/Essigester = 75:25) gereinigt.

Ausbeute: 5.95 g (70 % der Theorie),

 $R_{f}$ -Wert: 0.69 (Kieselgel; Petrolether/Essigester = 75:25)

# b. N-(2-Aminophenyl)-4-brom-2-methyl-anilin

Eine Suspension aus 5.34 g (17.4 mMol) N-(2-Nitrophenyl)-4-brom-2-methyl-anilin und 1.7 g Platin auf Kohle wird in 100 ml Dichlormethan und 100 ml Methanol bei einem Wasserstoffdruck von 3 bar 1 Stunde gerührt. Anschließend wird der Katalysator abfiltriert und das Filtrat wird eingedampft. Ausbeute: 4.8 g (100 % der Theorie),

 $R_{f}$ -Wert: 0.27 (Kieselgel; Petrolether/Essigester = 75:25)

C. 1-(4-Brom-2-methyl-phenyl)-2-methyl-benzimidazol

Ein Gemisch aus 5.22 g (18.8 mMol) N-(2-Aminophenyl)-4-brom2-methyl-anilin und 7.1 ml (75.2 mMol) Essigsäureanhydrid wird

30 Stunden zum Sieden erhitzt, mit 15 ml Eisessig versetzt und
weitere 30 Stunden zum Sieden erhitzt. Anschließend wird das
Reaktionsgemisch konzentriert und durch Flash-Chromatographie
(Kieselgel; Methylenchlorid) gereinigt.

 $R_f$ -Wert: 0.20 (Kieselgel; Petrolether/Essigester = 75:25)

d. 4-{3-[3-Methyl-4-(2-methyl-benzimidazol-1-yl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 1g aus 1-(4-Brom-2-methyl-phenyl)-2-methyl-benzimidazol, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer-(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 41 % der Theorie,

R<sub>f</sub>-Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 80:20)

 $C_{25}H_{23}N_5 \times CF_3COOH (393.49/507.51)$ 

Massenspektrum:  $(M+H)^* = 394$ 

 $(M+2H)^{++} = 197.6$ 

#### Beispiel 8

4-{3-[4-(3-(2-Ethoxycarbonyl-ethyl)-5-phenyl-pyrazol-1-yl)-3-methyl-phenyll-propargylamino}benzamidin

a. 1-(4-Iod-2-methyl-phenyl)-3-(2-hydroxycarbonyl-ethyl)-5-phenyl-pyrazol

Eine Mischung aus 2.5 g (8.78 mMol) 4-Iod-2-methyl-phenylhydrazin (hergestellt analog J. Am. Chem. Soc. 78, 5854-5857 (1956)), 1.93 g (8.78 mMol) 4,6-Dioxo-6-phenyl-hexansäure (hergestellt analog Synthesis 1991, 18-20) und 1.22 ml (8.78 mMol) Triethylamin in 70 ml Methanol wird 3 Stunden bei Raumtemperatur gerührt. Anschließend werden die flüchtigen Bestandteile abdestilliert, das erhaltene Rohprodukt in 100 ml Ether aufgenommen, mit 1N HCl gewaschen und die wäßrige Phase mit 50 ml Ether und 50 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden getrocknet, konzentriert und das Rohprodukt durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 98:2) gereinigt.

Ausbeute: 2.26 g (60 % der Theorie),

R<sub>f</sub>-Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

```
C_{19}H_{17}IN_2O_2 (432.26)
Massenspektrum: (M+H)^{+} = 433
```

 $(M+Na)^* = 455$ 

 $(M-H)^{-} = 431$ 

b. 3-(2-Ethoxycarbonylethyl)-1-(4-iod-2-methyl-phenyl)-5-phenyl-pyrazol

Ein Gemisch aus 2.26 g (5.23 mMol) 1-(4-Iod-2-methyl-phenyl)-3-(2-hydroxycarbonyl-ethyl)-5-phenyl-pyrazol und 0.93 g (5.75 mMol) N,N'-Carbonyldiimidazol in 50 ml Ethanol wird 1 Stunde gerührt, dann mit 5.0 ml absolutem Ethanol versetzt, 1 Stunden zum Sieden erhitzt, konzentriert und durch Flash-Chromatographie (Kieselgel; Methylenchlorid bis Methylenchlorid/Ethanol = 98:2) gereinigt.

Ausbeute: 1.4 g (58 % der Theorie),

 $R_f$ -Wert: 0.35 (Kieselgel; Methylenchlorid/Ethanol = 99:1)

 $C_{21}H_{21}IN_2O_2$  (460.32)

Massenspektrum: (M+H) \* = 461 $(2M+Na)^{+} = 943$ 

d. 4-{3-[4-(3-(2-Ethoxycarbonyl-ethyl)-5-phenyl-pyrazol-1-yl)-3-methyl-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 1g aus 3-(2-Ethoxycarbonyl-ethyl)-1-(4-iod-2-methyl-phenyl)-5-phenyl-pyrazol, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 71% der Theorie,

 $R_{\rm f}\text{-Wert}$ : 0.13 (Reversed Phase Kieselgel RP-8; Methanol/5%ige  $NaCl-L\ddot{o}sung = 6:4)$ 

 $C_{31}H_{31}N_5O_2 \times CF_3COOH (505.63/619.65)$ 

Massenspektrum: (M+H) + = 506

4-[3-(3-Methyl-4-morpholinocarbonyl-phenyl)propargylthio]-benzamidin

a. N-[4-(3-Hydroxy-propin-1-yl)-2-methyl-benzoyll-morpholin Hergestellt analog Beispiel 1g aus N-(4-Brom-2-methyl-benzo-yl)-morpholin, Propargylalkohol, Tetrakis(triphenylphosphin)-palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril. Ausbeute: 46% der Theorie,

 $R_f$ -Wert: 0.40 (Kieselgel; Essigester/Petrolether = 6:4)

b. N-[4-(3-Methylsulfonyl-propin-1-yl)-2-methyl-benzoyl]-morpholin

Ein Gemisch aus 0.90 g (3.5 mMol) N-[4-(3-Hydroxy-propin-1-yl)-2-methyl-benzoyl]-morpholin, 0.45 g (3.9 mMol) Methansulfonsäurechlorid und 1.0 ml (7 mMol) Triethylamin in 20 ml Tetrahydrofuran wird 1 Stunde bei Raumtemperatur gerührt. Dann wird Eiswasser zugegeben, mit Essigester extrahiert, die organische Phase mit Wasser gewaschen und konzentriert.

Ausbeute: 2.0 g braunes Öl (83 % der Theorie),

R<sub>f</sub>-Wert: 0.72 (Kieselgel; Methylenchlorid/Ethanol/Ammoniak

= 90:10:1)

c. 4-[3-(3-Methyl-4-morpholinocarbonyl-phenyl)propargylthiolbenzonitril

Eine Lösung aus 1.0 g (3mMol) N-[4-(3-Methylsulfonyl-propin-1-yl)-2-methyl-benzoyl]-morpholin, 4-Cyano-thiophenol und 5 ml N,N-Diisopropyl-ethylamin in 10 ml Dimethylformamid wird 30 Minuten auf 100°C erhitzt. Anschließend wird mit 50 ml Essigester verdünnt, 2 x mit 14%iger NaCl-Lösung gewaschen, getrocknet, konzentriert und durch Flash-Chromatographie (Kieselgel; Gradientenelution: Methylenchlorid bis Methylenchlorid/Ethanol = 98:2) gereinigt.

Ausbeute: 0.8 g (73 % der Theorie),

 $R_f$ -Wert: 0.62 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

- 54 -

# d. 4-[3-(3-Methyl-4-morpholinocarbonyl-phenyl]propargylthio}benzamidin

Hergestellt analog Beispiel 4c aus 4-[3-(3-Methyl-4-morpholinocarbonyl-phenyl)propargylthio]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 87% der Theorie,

R<sub>f</sub>-Wert: 0.38 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

 $C_{22}H_{23}N_3O_2S \times HCl (393.53/429.99)$ Massenspektrum:  $(M+H)^+ = 394$ 

#### Beispiel 10

E-4-{3-[3-(2-Ethoxycarbonyl-vinyl)-4-pyrrolidinocarbonyl-phenyllpropargylamino}benzamidin

#### a. 5-Brom-1, 3-dihydro-isobenzofuran-1-on

Eine Lösung aus 0.43 g (2.0 mMol) 4-Brom-2-methyl-benzoesäure, 0.34 g (1.9 mMol) N-Brom-succinimid und 20 mg Azaisobutter-säurenitril in 7 ml Propionsäuremethylester wird unter Stick-stoffatmosphäre 1 Stunde zum Sieden erhitzt und mit einer Quecksilber-Dampflampe bestrahlt. Das Reaktionsgemisch wird konzentriert, in Methylenchlorid aufgenommen, mit H<sub>2</sub>O gewaschen, mit Na<sub>2</sub>SO<sub>4</sub> getrocknet und durch Flash-Chromatographie (Kieselgel; Essigester/Petrolether = 5:95 bis 15:85) gereinigt.

Ausbeute: 0.23 g (54 % der Theorie),

R<sub>f</sub>-Wert: 0.52 (Kieselgel; Essigester/Petrolether = 20:80)

C,H,BrO, (213.03)

Massenspektrum: M' = 212/214 (Bromisotope)

## b. N-(4-Brom-2-hydroxymethyl-benzoyl)-pyrrolidin

Ein Gemisch aus 2.55 g (11.9 mMol) 5-Brom-1,3-dihydro-isobenzofuran-1-on und 1.3 ml (15.5 mMol) Pyrrolidin in 15 ml Ethanol wird 8 Stunden zum Sieden erhitzt: Dann wird erneut 1.3 ml Pyrrolidin zugegeben und weitere 22 Stunden erhitzt. Anschließend wird das Lösungsmittel entfernt, in Essigester aufgenommen, mit H<sub>2</sub>O gewaschen, mit Na<sub>2</sub>SO<sub>4</sub> getrocknet und durch 4 ... 4

Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 99:1 bis 99:2) gereinigt.

Ausbeute: 3.01 g (89 % der Theorie),

 $R_f$ -Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

## c. N-(4-Brom-2-formyl-benzoyl)-pyrrolidin

Zu einer Lösung aus 4.0 g (14 mMol) N-(4-Brom-2-hydroxymethyl-benzoyl)-pyrrolidin in 80 ml Methylenchlorid gibt man portionsweise -verteilt über mehrere Stunden- insgesamt 25 g Mangandioxid zu und rührt insgesamt 30 Stunden. Anschließend wird über Kieselgur filtriert und das Lösungsmittel abdestilliert. Das Rohprodukt wird ohne weitere Reinigung umgesetzt. Ausbeute 3.3 g (84 % der Theorie),

R<sub>f</sub>-Wert: 0.31 (Kieselgel; Methylenchlorid/Ethanol = 95:5)

d. E-N-[4-Brom-2-(2-ethoxycarbonyl-vinyl)-benzoyll-pyrrolidin Eine Lösung aus 1.27 g (4.5 mMol) N-(4-Brom-2-formyl-benzoyl)pyrrolidin und 1.65 g (4.5 mMol) Carboethoxymethylentriphenylphosphoran in 45 ml Toluol wird 4 Stunden auf 80°C erwärmt Nach Entfernen des Lösungsmittel wird durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 99:1 bis 99:2) gereinigt.

Ausbeute: 1.07 g (67 % der Theorie),

R<sub>f</sub>-Wert: 0.33 (Kieselgel; Petrolether/Essigester = 1:1).

e. E-4-{3-[3-(2-Ethoxycarbonyl-vinyl)-4-pyrrolidinocarbonyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 1g aus E-N-[4-Brom-2-(2-ethoxycarbonyl-vinyl)-benzoyl]-pyrrolidin, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 56% der Theorie,

R<sub>f</sub>-Wert: 0.17 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{26}H_{28}N_4O_3 \times CF_3COOH (444.54/558.56)$ 

Massenspektrum: (M+H) = 445

N-tert.Butoxycarbonyl-4-[3-(2,5-dimethyl-4-isopropylcarbonylphenyl)propargylaminolberzamidir

a. 4-Brom-2.5-dimethyl-1-isopropylcarbonyl-benzol Zu einer auf -78°C gekühlten Lösung aus 13.5 g (50 mMol) 2,5-Dibrom-p-xylol in 100 ml Tetrahydrofuran tropft man 31.2 ml (50 mMol) einer 1.6 molaren n-Butyl-lithium-Lösung in Hexan zu, rührt 30 Minuten und versetzt dann mit 4.5 ml (50 mMol) Isobutyronitril. Man läßt das Reaktionsgemisch langsam auf Raumtemperatur erwärmen, rührt 1 Stunde, versetzt dann mit 50 ml 2N HCl und 70 ml Diethylether und rührt weitere 16 Stunden. Man trennt die wäßrige Phase ab und extrahiert diese 2 x mit Diethylether. Die vereinigten organischen Phasen werden mit Na2SO4 getrocknet, eingeengt und der Rückstand durch Flash-Chromatographie (Kieselgel; Petrolether bis Petrolether/Essigester = 9:1) gereinigt. Ausbeute: 6.08 g (48 % der Theorie), R<sub>f</sub>-Wert: 0.58 (Kieselgel; Petrolether/Essigester = 9:1).

 $C_{12}H_{15}BrO$  (255.16)

Massenspektrum: M\* = 254/256 (Bromisotope)

b. N-tert.Butoxycarbonyl-4-[3-(2,5-dimethyl-4-isopropylcarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 1g aus 4-Brom-2,5-dimethyl-1-isopropylcarbonyl-benzol, N-tert.Butoxycarbonyl-4-propargylaminobenzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer-(I) iodid und Triethylamin in Acetonitril.

Ausbeute: 57 % der Theorie,

R<sub>f</sub>-Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 98:2)

 $C_{27}H_{33}N_3O_3$  (447.58)

Massenspektrum: (M+H) = 448

4-[3-(2,5-dimethyl-4-isopropylcarbonyl-phenyl)propargyl-aminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(2,5-dimethyl-4-isopropylcarbonyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 34 % der Theorie,

 $R_f$ -Wert: 0.30 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{22}H_{25}N_3O \times CF_3COOH (347.46/461.88)$ 

Massenspektrum:  $(M+H)^* = 348$ 

#### Beispiel 13

4-{3-[4-[(1-Methyl-imidazol-2-yl)carbonyl]-phenyl]-propargyl-amino}benzamidin

# a. 2-(4-Iod-benzoyl)-1-methyl-imidazol

0.82 g (10 mMol) 1-Methyl-imidazol und 2.7 g (10 mMol) 4-Iod-benzoesäurechlorid werden unter Eisbadkühlung in 10 ml Acetonitril vereinigt, mit 1.4 ml (10 mMol) Triethylamin versetzt und anschließend 16 Stunden bei Raumtemperatur gerührt. Das Rohprodukt wird in 30 ml Essigester aufgenommen, mit H<sub>2</sub>O gewaschen, getrocknet, im Vakuum konzentriert und durch Flash-Chromatographie (Kieselgel; Methylenchlorid) gereinigt. Ausbeute: 1.9 g (51 % der Theorie),

R<sub>f</sub>-Wert: 0.62 (Kieselgel; Essigester/Petrolether = 60:40)

b. 4-{3-[4-[(1-Methyl-imidazol-2-yl)carbonyl]-phenyl]-propargylamino}benzonitril

Hergestellt analog Beispiel 1g aus 2-(4-Iod-benzoyl)-1-methyl-imidazol, 4-Propargylamino-benzonitril, Tetrakis(triphenyl-phosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril.

Ausbeute: 39 % der Theorie,

R<sub>f</sub>-Wert: 0.28 (Kieselgel; Essigester/Petrolether = 60:40)

```
c. 4-{3-[4-[(1-Methyl-imidazol-2-yl)carbonyl]-phenyl]-propar-
 gylamino benzamidin
 Hergestellt analog Beispiel 4c aus 4-{3-[4-[(1-Methyl-imida-
 zol-2-yl)carbonyl]-phenyl]-propargylamino}benzonitril, mit
 Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.
 Ausbeute: 77 % der Theorie,
 R<sub>f</sub>-Wert: 0.37 (Kieselgel; Essigester/Ethanol/Ammoniak =
                 50:45:5)
 C_{21}H_{19}N_5O \times HCl (357.42/393.89)
 Massenspektrum: (M+H)^* = 358
                  (M+2H)^{**} = 179.6
                  (M+HC1)^* = 394/396 (Chlorisotope)
Beispiel 14
4-{3-[3-Methyl-4-[(1-methyl-imidazol-2-yl)carbonyl]-phenyl]-
propargylamino benzamidin
Hergestellt analog Beispiel 4c aus 4-{3-[3-Methyl-4-[(1-me-
thyl-imidazol-2-yl)carbonyl]-phenyl]-propargylamino}benzo-
nitril (hergestellt analog Beispiel 13b) mit Chlorwasserstoff-
gas gesättigtem Ethanol und Ammoniumcarbonat.
Ausbeute: 62 % der Theorie,
R_t-Wert: 0.39 (Kieselgel; Essigester/Ethanol/Ammoniak =
                50:45:5)
C_{22}H_{21}N_5O \times HCl (371.45/407.91)
Massenspektrum: (M+H)^* = 372
Beispiel 15
4-{3-[4-[(Imidazol-2-yl)carbonyl]-phenyl]-propargylamino}-
benzamidin
Hergestellt analog Beispiel 4c aus 4-{3-[4-[(Imidazol-2-yl)-
carbonyl]-phenyl]-propargylamino}benzonitril, mit Chlorwasser-
stoffgas gesättigtem Ethanol und Ammoniumcarbonat.
Ausbeute: 60 % der Theorie,
R<sub>f</sub>-Wert: 0.35 (Kieselgel; Essigester/Ethanol/Ammoniak =
               50:45:5)
```

 $C_{22}H_{21}N_5O \times HCl (343.41/379.87)$ Massenspektrum:  $(M+H)^+ = 344$  $(M+2H)^{++} = 172.7$ 

#### Beispiel 16

4-{3-[4-[(Thiophen-2-yl)carbonyl]-phenyl]-propargylamino}benz-amidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-[(Thiophen-2-yl)-carbonyl]-phenyl]-propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 85 % der Theorie,

 $C_{21}H_{17}N_3OS \times HCl$  (359.45/395.91) Massenspektrum:  $(M+H)^+ = 360$ 

#### Beispiel 17

4-{3-[4-(2-Methylphenylcarbonyl)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-(2-Methylphenyl-carbonyl)-phenyl]-propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 80 % der Theorie,

 $R_f$ -Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{21}N_3O \times HCl (367.45/403.91)$ 

Massenspektrum:  $(M+H)^+ = 368$ 

#### Beispiel 18

4-{3-[4-(4-Methylphenylcarbonyl)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-(4-Methylphenyl-carbonyl)-phenyl]-propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 65 % der Theorie,

 $R_f$ -Wert: 0.15 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

```
C_{24}H_{21}N_3O \times HCl (367.45/403.91)
Massenspektrum: (M+H)^+ = 368
(2M+H)^+ = 735
```

4-{3-[4-(2-Chlorphenylcarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(2-chlorphenylcarbonyl)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 52 % der Theorie,

 $R_f$ -Wert: 0.29 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{23}H_{18}ClN_3O \times CF_3COOH (387.87/501.90)$ 

Massenspektrum:  $(M+H)^+ = 388/390$  (Chlorisotope)

#### Beispiel 20

4-{3-[4-(3-Chlorphenylcarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-(3-Chlorphenylcarbonyl)-phenyl]-propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 61 % der Theorie,

R<sub>f</sub>-Wert: 0.25 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{18}ClN_3O \times HCl (387.87/424.33)$ 

Massenspektrum:  $(M+H)^+ = 388/390$  (Chlorisotope)

#### Beispiel 21

4-{3-[4-(4-Chlorphenylcarbonyl)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(2-chlorphenylcarbonyl)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 42 % der Theorie,

 $R_f$ -Wert: 0.28 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{23}H_{18}ClN_3O \times CF_3COOH (387.87/501.90)$ 

Massenspektrum:  $(M+H)^* = 388/390$  (Chlorisotope)

#### Beispiel 22

4-{3-[4-(Pyrid-2-yl-carbonyl)-phenyl]-propargylamino}benz-amidin\_\_\_\_\_

Hergestellt analog Beispiel 4c aus 4-{3-[4-(Pyrid-2-yl-carbo-nyl)-phenyl]-propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 47 % der Theorie,

R<sub>f</sub>-Wert: 0.48 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

 $C_{22}H_{18}N_4O \times HCl (354.42/390.88)$ 

Massenspektrum:  $(M+H)^+ = 355$ 

#### Beispiel 23

4-{3-[4-(Pyrid-3-yl-carbonyl)-phenyl]-propargylamino}benz-

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(pyrid-3-yl-carbonyl)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 89 % der Theorie,

 $C_{22}H_{18}N_4O \times CF_3COOH (354.42/468.44)$ 

Massenspektrum:  $(M+H)^+ = 355$ 

#### Beispiel 24

4-{3-[4-(Pyrid-4-yl-carbonyl)-phenyl]-propargylamino}benz-amidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(pyrid-4-yl-carbonyl)-phenyl]-propargylamino}benz-amidin und Trifluoressigsäure.

Ausbeute: 84 % der Theorie,

 $C_{22}H_{18}N_4O \times CF_3COOH (354.42/468.44)$ 

Massenspektrum:  $(M+H)^+ = 355$ 

#### Beispiel 25

4-[3-(2-Methyl-4-phenylcarbonyl-phenyl)-propargylamino}benz-amidin

Hergestellt analog Beispiel 4c aus 4-[3-(2-Methyl-4-phenylcar-bonyl-phenyl]-propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 47 % der Theorie,

 $R_f$ -Wert: 0.24 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{21}N_3O \times HCl (367.45/403.91)$ Massenspektrum:  $(M+H)^+ = 368$ 

#### Beispiel 26

7 7

4-[3-(3-Methyl-4-phenylcarbonyl-phenyl)-propargylamino]benz-amidin

Hergestellt analog Beispiel 4c aus 4-[3-(3-Methyl-4-phenylcar-bonyl-phenyl)-propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 50 % der Theorie,

 $R_f$ -Wert: 0.16 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{21}N_3O \times HC1 (367.45/403.91)$ 

Massenspektrum:  $(M+H)^+ = 368$ 

#### Beispiel 27

4-[3-(4-Phenylcarbonyl-phenyl)-propargylaminolbenzamidin
Hergestellt analog Beispiel 4c aus 4-[3-(4-Phenylcarbonylphenyl)-propargylaminolbenzonitril, mit Chlorwasserstoffgas
gesättigtem Ethanol und Ammoniumcarbonat.
Ausbeute: 78 % der Theorie.

R<sub>f</sub>-Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{19} N_3O \times HCl (353.42/389.88)$ Massenspektrum:  $(M+H)^* = 354$ 

#### Beispiel 28

4-[3-(2-Amino-4-phenylcarbonyl-phenyl)-propargylamino]benz-amidin

#### a. 4-Iod-3-nitro-benzophenon

Unter Eisbadkühlung werden nacheinander 5.3 g (17 mMol) 4-Iod-3-nitrobenzoesäure und 8.0 g (60 mMol) Aluminiumtrichlorid in 70 ml Benzol eingetragen. Anschließend wird 2 Stunden bei Raumtemperatur gerührt, dann in Eiswasser gegossen, mit Methylenchlorid extrahiert, mit Natriumsulfat getrochnet und im Vakuum konzentriert.

Ausbeute: 5.4 g (90 % der Theorie),

R<sub>f</sub>-Wert: 0.83 (Kieselgel; Essigester/Petrolether = 3:7)

#### b. 3-Amino-4-iod-benzophenon

Ein Gemisch aus 5.0 g (14 mMol) 4-Iod-3-nitro-benzophenon, 7.5 g (42 mMol) Natiumdithionit, 40 ml Pyridin und 15 ml Wasser wird 2 Stunden auf 40°C erwärmt. Anschließend wird im Vakuum konzentriert, mit Eiswasser versetzt und mit Essigester extrahiert. Die organische Phase wird mit Natiumsulfat getrocknet und das Lösungsmittel im Vakuum abdestilliert. Ausbeute: 3.4 g (76 % der Theorie),

R<sub>f</sub>-Wert: 0.60 (Kieselgel; Essigester/Petrolether = 3:7)

# c. 4-[3-(2-Amino-4-phenylcarbonyl-phenyl)-propargylamino]-benzamidin

Hergestellt analog Beispiel 1g aus 3-Amino-4-iod-benzophenon, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis-(triphenylphosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2. Ausbeute: 54 % der Theorie,

R<sub>f</sub>-Wert: 0.60 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

 $C_{23}H_{20}N_4O \times CF_3COOH (368.46/482.48)$ 

Massenspektrum:  $(M+H)^* = 369$ 

#### Beispiel 29

4-[3-(2-Acetamido-4-phenylcarbonyl-phenyl)-propargylamino]benzamidin

Hergestellt analog Beispiel 1g aus 3-Acetamido-4-iod-benzophenon, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 61 % der Theorie,

 $C_{25}H_{22}N_4O_2 \times CF_3COOH (410.49/524.51)$ 

Massenspektrum: (M+H) = 411

#### Beispiel 30

4-{3-[4-(2-Methoxycarbonyl-phenylcarbonyl)-phenyl]-propargyl-amino}benzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-(2-Methoxycarbonyl-phenylcarbonyl)-phenyl]-propargylamino}benzonitril, Chlorwasserstoffgas gesättigtem Methanol und Ammoniumcarbonat.

Ausbeute: 18 % der Theorie,

R<sub>f</sub>-Wert: 0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{25}H_{21}N_{3}O_{3} \times HCl (411.46/447.92)$ 

Massenspektrum:  $(M+H)^+ = 412$ 

4-{3-[4-(2-Hydroxycarbonyl-phenylcarbonyl)-phenyl]-propargyl-amino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[4-(2-Methoxycarbonyl-phenylcarbonyl)-phenyl]-propargylamino}benzamidin und Lithium-hydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 41 % der Theorie,

 $C_{24}H_{19}N_3O_3 \times HCl (397.43/433.89)$ 

Massenspektrum: (M+H) = 398

 $(M+Na)^{+} = 420$ 

 $(M+2Na)^{++} = 221.6$ 

#### Beispiel 32

4-[1-Methyl-3-(4-phenylcarbonyl-phenyl)-propargylamino]benz-amidin

Hergestellt analog Beispiel 4c aus 4-[1-Methyl-3-(4-phenylcarbonyl-phenyl)-propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 80 % der Theorie,

R<sub>f</sub>-Wert: 0.52 (Kieselgel; Essigester/Ethanol/Ammoniak =

50:45:5)

 $C_{24}H_{21}N_3O \times HCl (367.47/403.93)$ 

Massenspektrum:  $(M+H)^* = 368$ 

#### Beispiel 33

3-Methoxy-4-[3-(4-phenylcarbonyl-3-methyl-phenyl)-propargyl-aminolbenzamidin

Hergestellt analog Beispiel 4c aus 3-Methoxy-4-[3-(4-phenyl-carbonyl-3-methyl-phenyl)-propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat. Ausbeute: 29 % der Theorie,

R<sub>f</sub>-Wert: 0.24 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{25}H_{23}N_3O_2 \times HCl (397.48/433.94)$ 

Massenspektrum:  $(M+H)^+ = 398$ 

4-[3-(5-Phenylcarbonyl-pyrid-2-yl)-propargylaminolbenzamidin Hergestellt analog Beispiel 1g aus 2-Chlor-5-phenylcarbonyl-pyridin, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 47 % der Theorie,

 $R_f$ -Wert: 0.55 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

 $C_{22}H_{18}N_4O \times CF_3COOH (354.42/468.44)$ 

Massenspektrum:  $(M+H)^+ = 355$ 

#### Beispiel 35

4-[3-(5-Phenylcarbonyl-thiophen-2-yl)-propargylamino]benz-amidin

Eine Lösung aus 1.2 g (2.6 mMol) N-tert.Butoxycarbonyl-4-[3-(5-phenylcarbonyl-thiophen-2-yl)-propargylamino]benzamidin und 4 ml Trimethylsilyliodid in 50 ml Methylenchlorid wird 3 Stunden gerührt, dann mit 50 ml Methylenchlorid und 25 ml Ethanol verdünnt und mit Wasser gewaschen. Die organische Phase wird getrocknet, konzentriert und durch Flash-Chromatographie (Kieselgel; Methylenchlorid/Ethanol = 49:1 bis 9:1) gereinigt.

Ausbeute: 20 % der Theorie,

 $C_{21}H_{17}N_3OS \times HI (359.46/487.37)$ 

Massenspektrum:  $(M+H)^* = 360$ 

4-[3-(4-Isopropylcarbonyl-phenyl)propargylaminolbenzamidin Hergestellt analog Beispiel 4c aus 4-[3-(4-Isopropylcarbonyl-phenyl)propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 24 % der Theorie,

R<sub>r</sub>-Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{20}H_{21}N_3O \times HCl (319.41/355.87)$ 

Massenspektrum: (M+H) = 320

 $(M+H+HC1)^* = 356/358$  (Chlorisotope)

#### Beispiel 37

4-[3-(4-Cyclopentylcarbonyl-phenyl)propargylaminolbenzamidin Hergestellt analog Beispiel 4c aus 4-[3-(4-Cyclopentylcarbonyl-phenyl)propargylaminolbenzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 53 % der Theorie,

R<sub>f</sub>-Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{22}H_{23}N_3O \times HCl (345.44/381.90)$ 

Massenspektrum:  $(M+H)^* = 346$ 

#### Beispiel 38

4-[3-(4-tert.Butylcarbonyl-2,5-dimethyl-phenyl)propargyl-aminolbenzamidin

Hergestellt aus N-tert.Butoxycarbonyl-4-[3-(4-tert.butylcarbonyl-2,5-dimethyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure analog Beispiel 2.

Ausbeute: 18 % der Theorie,

 $R_f$ -Wert: 0.35 (Kieselgel; Methylenchlorid/Ethanol = 4:1 +

1 Tropfen Essigsäure)

 $C_{23}H_{27}N_3O \times CF_3COOH (361.49/475.51)$ 

Massenspektrum:  $(M+H)^* = 362$ 

4-{3-[4-(1,1-Dimethyl-2-ethoxycarbonyl-ethylcarbonyl)-2,5-dimethyl-phenyllpropargylamino|benzamidin

a. 4-(4-Brom-2,5-dimethyl-phenyl)-3,3-dimethyl-4-oxo-butan-säure

Zu einer Suspension aus 1.44 g (ca. 30 mMol) 50%iges Natriumhydrid in Öl in 300 ml Tetrahydrofuran wird innerhalb von
5 Minuten eine Lösung aus 2.85 g (10 mMol) 4-(4-Brom-2,5-dimethyl-phenyl)-4-oxo-butansäure zugetropft und 2 Stunden zum
Sieden erhitzt. Anschließend wird auf Raumtemperatur abgekühlt, 2.8 ml Methyliodid zugetropft und erneut 2.5 Stunden
zum Sieden erhitzt. Es wird in 150 ml Wasser gegossen und das
organische Lösungsmittel wird abdestilliert. Die wäßrige Phase
wird 2x mit Petrolether gewaschen, mit Salzsäure angesäuert
und mit Methylenchlorid extrahiert. Die organische Phase wird
mit Natriumsulfat getrocknet und konzentriert.

Ausbeute: 2.45 g (78 % der Theorie),

R<sub>f</sub>-Wert: 0.35 (Kieselgel; Essigester/Petrolether 30:70 + 1 Tropfen Essigsäure)

 $C_{14}H_{17}BrO_3$  (313.19)

Massenspektrum: (M-H) = 311/313 (Bromisotope)

b. 4-(4-Brom-2,5-dimethyl-phenyl)-3,3-dimethyl-4-oxo-butan-säureethylester

Eine Lösung aus 3.2 g (10 mMol) 4-(4-Brom-2,5-dimethyl-phe-nyl)-3,3-dimethyl-4-oxo-butansäure in Tetrahydrofuran wird mit 3.60 g (11 mMol) Carbonyldiimidazol versetzt und 1 Stunde bei Raumtemperatur gerührt. Das Lösungsmittel wird durch 20 ml Ethanol ersetzt und es wird 2 Stunden zum Sieden erhitzt. Dann wird das Lösungsmittel abdestilliert, das Rohprodukt wird in Methylenchlorid aufgenommen, mit Wasser gewaschen, mit Natriumsulfat getrocknet, konzentriert und durch Flash-Chromatographie (Kieselgel; Essigester/Petrolether = 3:97) gereinigt. Ausbeute: 2.95 g (87 % der Theorie),

 $R_f$ -Wert: 0.55 (Kieselgel; Essigester/Petrolether = 1:9)

```
C_{16}H_{21}BrO_3 (341.25)

Massenspektrum: (M+H)^+ = 341/343 (Bromisotope)

(M+Na)^+ = 363/365 (Bromisotope)
```

C. 4-{3-[4-(1,1-Dimethyl-2-ethoxycarbonyl-ethylcarbonyl)-2.5-dimethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 1g aus 4-(4-Brom-2,5-dimethyl-phenyl)-3,3-dimethyl-4-oxo-butansäureethylester, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenyl-phosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butoxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 9 % der Theorie,

R<sub>f</sub>-Wert: 0.35 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

C<sub>26</sub>H<sub>31</sub>N<sub>3</sub>O<sub>3</sub> x CF<sub>3</sub>COOH (433.46/547.58)

Massenspektrum: (M+H) \* = 434

#### Beispiel 40

4-{3-[4-(1,1-Dimethyl-2-hydroxycarbonyl-ethylcarbonyl)-2,5-dimethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[4-(1,1-Dimethyl-2-eth-oxycarbonyl-ethylcarbonyl)-2,5-dimethyl-phenyl]propargyl-amino}benzamidin und Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 50 % der Theorie,

R<sub>f</sub>-Wert: 0.3 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

C<sub>24</sub>H<sub>27</sub>N<sub>3</sub>O<sub>3</sub> x HCl (405.50/441.96)

Massenspektrum: (M+H)\* = 406

#### Beispiel 41

4-[3-(4-Pyrrolidinocarbonyl-phenyl)-propargylaminolbenzamidin Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(4-pyrrolidinocarbonyl-phenyl)-propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 37 % der Theorie,

 $R_f$ -Wert: 0.29 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und

1 Tropfen Essigsäure)

 $C_{21}H_{22}N_4O \times CF_3COOH (346.44/460.46)$ 

Massenspektrum:  $(M+H)^* = 347$ 

#### Beispiel 42

4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(3-methyl-4-pyrrolidinocarbonyl-phenyl)-propargyl-amino]benzamidin und Trifluoressigsäure.

Ausbeute: 52 % der Theorie,

R<sub>f</sub>-Wert: 0.27 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{22}H_{24}N_4O \times CF_3COOH (360.46/474.48)$ 

Massenspektrum:  $(M+H)^* = 361$ 

 $(M+2H)^{++} = 181$ 

#### Beispiel 43

4-[3-(2,5-Dimethyl-4-pyrrolidinocarbonyl-phenyl)-propargyl-aminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(2,5-dimethyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 20 % der Theorie,

R<sub>f</sub>-Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{26}N_4O \times CF_3COOH (374.49/488.51)$ 

Massenspektrum:  $(M+H)^* = 375$ 

4-[N-Methyl-3-(3-methyl-4-pyrrolidinocarbonyl-phenyl)-propargylaminolbenzamidin

Hergestellt analog Beispiel 4c aus 4-[N-Methyl-3-(3-methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]benzonitril, Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat. Ausbeute: 67 % der Theorie,

 $R_{t}$ -Wert: 0.19 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{26}N_4O \times HCl (374.49/410.95)$ 

Massenspektrum:  $(M+H)^* = 375$ 

### Beispiel 45

rac-4-{3-[4-(2-Methyl-pyrrolidinocarbonyl)-phenyl]-propargyl-amino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargyl-amino}benzamidin und Trifluoressigsäure.

Ausbeute: 32 % der Theorie,

 $C_{22}H_{24}N_4O \times CF_3COOH (360.48/474.48)$ 

Massenspektrum:  $(M+H)^{+} = 361$  $(M+2H)^{++} = 181$ 

### Beispiel 46

rac-4-{3-[3-Methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[3-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl}-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 90 % der Theorie,

R<sub>f</sub>-Wert: 0.31 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{23}H_{26}N_4O \times CF_3COOH (374.49/488.51)$ 

Massenspektrum:  $(M+H)^* = 375$ 

rac-4-{3-[2-Methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 63 % der Theorie,

R<sub>t</sub>-Wert: 0.2 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{26}N_4O \times CF_3COOH (374.49/488.51)$ 

Massenspektrum:  $(M+H)^+ = 375$ 

### Beispiel 48

4-[3-(2-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylami-nolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(2-methyl-4-pyrrolidinocarbonyl-phenyl)-propargyl-amino]benzamidin und Trifluoressigsäure.

Ausbeute: 86 % der Theorie,

 $R_f$ -Wert: 0.25 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{22}H_{24}N_4O \times CF_3COOH (360.46/474.48)$ 

Massenspektrum:  $(M+H)^+ = 361$ 

## Beispiel 49

rac-2-Methoxy-4-{3-[3-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 4c aus rac-2-Methoxy-4-{3-[3-me-thyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}-benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 23 % der Theorie,

 $C_{24}H_{28}N_4O_2 \times HCl (404.52/440.98)$ 

Massenspektrum:  $(M+H)^{+} = 405$  $(2M+H)^{+} = 809$ 

### Beispiel 50

4-[1-Methyl-3-(3-methyl-4-pyrrolidinocarbonyl-phenyl)-propargylaminolbenzamidin

Hergestellt analog Beispiel 4c aus 4-[1-Methyl-3-(3-methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]benzonitril, Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat. Ausbeute: 79 % der Theorie,

 $C_{23}H_{26}N_4O_2 \times HCl (374.49/410.96)$ Massenspektrum:  $(M+H)^+ = 375$ 

### Beispiel 51

rac-4-{3-[2,5-Dimethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 4 % der Theorie,

 $R_{t}$ -Wert: 0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{28}N_4O \times CF_3COOH (388.51/502.54)$ 

Massenspektrum: (M+H) = 389

### Beispiel 52

2-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl]-propargylamino]-5-amidino-pyridin

Hergestellt analog Beispiel 4c aus 2-[3-(3-Methyl-4-pyrro-lidinocarbonyl-phenyl)-propargylamino]-5-cyano-pyridin, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat. Ausbeute: 43 % der Theorie,

 $R_f$ -Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

WO 00/35859 PCT/EP99/09921

- 74 -

 $C_{21}H_{23}N_5O \times HCl (361.45/397.91)$ Massenspektrum:  $(M+H)^* = 362$ 

### Beispiel 53

4-[3-(3-Methyl-4-tetrahydropyrazolocarbonyl-phenyl)-propargylaminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[3-methyl-4-(2-butoxycarbonyl-tetrahydropyrazolocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 28 % der Theorie,

R:-Wert: 0.45 (Reversed Phase Kieselgel RP-8; Methanol/5%ige  $NaCl-L\ddot{o}sung = 60:40)$ 

 $C_{21}H_{23}N_5O \times 2 CF_3COOH (361.46/589.50)$ 

Massenspektrum:  $(M+H)^{-} = 362$ 

### Beispiel 54

4-{3-[3-Methyl-4-(4,5-dihydropyrazolocarbonyl)-phenyl]-propargylamino berzamidin

Hergestellt analog Beispiel 2 durch mit Luftsauerstoff oxidiertem altem N-tert.Butoxycarbonyl-4-{3-[3-methyl-4-(tetrahydropyrazolocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 5 % der Theorie,

R<sub>f</sub>-Wert: 0.49 (Reversed Phase Kieselgel RP-8; Methanol/5%ige  $NaCl-L\ddot{o}sung = 60:40)$ 

 $C_{21}H_{21}N_5O \times CF_3COOH (359.44/473.46)$ 

Massenspektrum:  $(M+H)^+ = 360$ 

#### Beispiel 55

4-{3-[2,5-Dimethyl-4-(7-azabicyclo[2,2,1]hept-7-yl-carbonyl)phenyll-propargylamino benzamidin Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(7-azabicyclo[2,2,1]hept-7-yl-carbonyl)phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 58 % der Theorie,

R<sub>f</sub>-Wert: 0.49 (Kieselgel; Methylenchlorid/Ethanol = 19:1)

 $C_{25}H_{28}N_4O \times CF_3COOH (400.53/514.55)$ 

Massenspektrum: (M+H) = 401

## Beispiel 56

rac-4-{3-[4-(3-Amino-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(3-(tert.butoxycarbonyl)amino-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin und Trifluores-sigsäure.

Ausbeute: 100 % der Theorie,

R:-Wert: 0.60 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{22}H_{25}N_5O \times 2CF_3COOH (375.48/603.52)$ 

Massenspektrum:  $(M+H)^{+} = 376$  $(M+2H)^{++} = 188.5$ 

### Beispiel 57

4-{3-[4-(Indolin-1-yl-carbonyl)-phenyl]-propargylamino}benz-

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(indolin-1-yl-carbonyl)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 42 % der Theorie,

 $R_f$ -Wert: 0.23 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{25}H_{22}N_4O \times CF_3COOH (394.48/508.50)$ 

Massenspektrum:  $(M+H)^+ = 395$ 

rac-4-{3-[4-(2-Hydroxymethyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-hydroxymethyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 51 % der Theorie,

R<sub>f</sub>-Wert: 0.26 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{22}H_{24}N_4O_2 \times CF_3COOH (376.46/490.48)$ 

Massenspektrum:  $(M+H)^{+} = 377$   $(M+2H)^{++} = 189$  $(M+Na+H)^{++} = 200$ 

### Beispiel 59

rac-4-{3-[4-(2-Ethoxycarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-ethoxycarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.
Ausbeute: 66 % der Theorie,

 $C_{26}H_{30}N_4O_3 \times CF_3COOH (446.55/560.57)$ 

Massenspektrum:  $(M+H)^{+} = 447$   $(M+2H)^{++} = 224$  $(M+Na+H)^{++} = 235$ 

## Beispiel 60

rac-4-{3-[4-(2-(2-Ethoxycarbonyl-ethyl)-pyrrolidinocarbonyl)-3-methyl-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-(2-ethoxycarbonyl-ethyl)-3-methyl-pyrrolidinocarbonyl-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 56 % der Theorie,

R<sub>f</sub>-Wert: 0.28 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{27}H_{32}N_4O_3 \times CF_3COOH (460.58/574.61)$ 

Massenspektrum: (M+H) \*

 $(M+Na+H)^{--} = 242$ 

### Beispiel 61

rac-4-{3-[4-(2-Methoxycarbonyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-methoxycarbonyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 69 % der Theorie,

R<sub>f</sub>-Wert: 0.26 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und 1 Tropfen Essigsäure)

 $C_{23}H_{24}N_4O_3 \times CF_3COOH (404.47/518.49)$ 

Massenspektrum:  $(M+H)^* = 40$ .

 $(M+Na+H)^{++} = 214$ 

 $(M+2H)^{++} = 203$ 

### Beispiel 62

rac-4-{3-[4-(2-Ethoxycarbonylmethyloxymethyl-pyrrolidinocarbonyl)-phenyl]-3-methyl-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-ethoxycarbonylmethyloxymethyl-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 76 % der Theorie,

 $R_f$ -Wert: 0.26 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und

1 Tropfen Essigsäure)

 $C_{27}H_{32}N_4O_4 \times CF_3COOH (476.58/590.61)$ 

Massenspektrum:  $(M+H)^* = 477$ 

 $(M+Na+H)^{**} = 250$ 

rac-4-{3-[4-(2-Ethoxycarbonylmethylaminocarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyll-propargylamino}benzamidin
Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(2-ethoxycarbonylmethylaminocarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 60 % der Theorie,

 $C_{28}H_{33}N_5O_4 \times CF_3COOH (503.61/617.63)$ Massenspektrum:  $(M+H)^+ = 504$  $(M+Na+H)^{++} = 263.7$  $(M+2H)^{++} = 252.7$ 

### Beispiel 64

4-{3-[3-(2-Ethoxycarbonyl-ethyl)-4-pyrrolidinocarbonyl-phe-nyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[3-(2-ethoxycarbonyl-ethyl)-4-pyrrolidinocarbonyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure. Ausbeute: 30 % der Theorie,

 $R_f$ -Wert: 0.16 (Kieselgel; Methylenchlorid/Ethanol = 4:1)  $C_{26}H_{30}N_4O_3 \times CF_3COOH$  (446.55/560.57)

Massenspektrum:  $(M+H)^{*} = 447$   $(M+2H)^{**} = 224$  $(M+Na+H)^{**} = 235$ 

### Beispiel 65

rac-4-{3-[3-(N-Ethoxycarbonylmethyl-N-methyl-aminomethyl)-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino}benz-amidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[3-(N-ethoxycarbonylmethyl-N-methyl-aminomethyl)-

# Beispiel 67

4-[3-(3-Ethoxycarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-[3-(3-ethoxycarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin und Trifluoressigsäure.

Ausbeute: 85 % der Theorie,

R<sub>f</sub>-Wert: 0.45 (Kieselgel; Methylenchlorid/Ethanol = 4:1

+ 1 Tropfen Essigsäure)

C<sub>25</sub>H<sub>28</sub>N<sub>4</sub>O<sub>3</sub> x CF<sub>3</sub>COOH (432.53/546.55)

Massenspektrum: (M+H)<sup>+</sup> = 433

4-[3-(3-Ethoxycarbonylmethylaminocarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-[3-(3-ethoxycarbonylmethylaminocarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin und Trifluoressigsäure.

Ausbeute: 91 % der Theorie,

 $R_{t}$ -Wert: 0.35 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + 1 Tropfen Essigsäure)

 $C_{27}H_{31}N_5O_4 \times CF_3COOH (489.58/603.60)$ 

Massenspektrum:  $(M+H)^* = 490$ 

### Beispiel 69

- 4-{3-[4-[Phenyl-(ethoxycarbonylmethyloxyimino)-methylen]-phenyllpropargylamino}benzamidin
- a) 4-{3-[4-[Phenyl-(hydroxycarbonylmethyloxyimino)-methylen]phenyllpropargylamino}benzonitril

  Ein Gemisch aus 0.50 g (1.5 mMol) 4-[3-(4-Phenylcarbonyl-phenyl)-propargylamino]benzonitril, 0.50 g (2.3 mMol) Carboxymethoxylamin-hydrochlorid, 0.32 ml (2.3 mMol) Triethylamin,
  3 g 3-Angstöm-Molekularsieb und 3 g 4-Angström-Molekularsieb
  in 45 ml Methanol/Toluol (2:1) wird eine Woche zum Sieden erhitzt. Anschließend wird filtriert, konzentriert und durch
  Flash-Chromatographie (Kieselgel; Petrolether/Essigester = 2:1
  bis Essigester/Essigsäure = 200:1) gereinigt.
  Ausbeute: 75 % der Theorie,
  R<sub>f</sub>-Wert: <0.1 (Kieselgel; Essigester/Petrolether = 1:1)
- b) 4-{3-[4-[Phenyl-(ethoxycarbonylmethyloxyimino)-methylen]-phenyllpropargylamino}benzamidin

  Hergestellt analog Beispiel 4c aus 4-{3-[4-[Phenyl-(hydroxy-carbonylmethyloxyimino)-methylen]-phenyl]propargylamino}-benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 27 % der Theorie,

R<sub>f</sub>-Wert: 0.23 (Kieselgel; Methylenchlorid/Ethanol = 4:1

+ 1 Tropfen Essigsäure)

 $C_{27}H_{26}N_4O_3 \times HCl (454.53/490.99)$ 

Massenspektrum:  $(M+H)^{-} = 455$ 

## Beispiel 70

4-{3-[4-[N-(2-Ethoxycarbonyl-ethyl)-N-isopropyl-aminocarbonyl]-3-methyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-[N-(2-ethoxycarbonyl-ethyl)-N-isopropyl-aminocarbonyl]-3-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 44 % der Theorie,

 $R_f$ -Wert: 0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{26}H_{32}N_4O_3 \times CF_3COOH (448.56/562.59)$ 

Massenspektrum:  $(M+H)^+ = 449$ 

### Beispiel 71

4-{3-[4-[N-(2-Ethoxycarbonyl-ethyl)-N-methyl-aminocarbonyl]-3-methyl-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-[N-(2-ethoxycarbonyl-ethyl)-N-isopropyl-aminocarbonyl]-3-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 16 % der Theorie,

R<sub>f</sub>-Wert: 0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{28}N_4O_3 \times CF_3COOH (420.52/534.54)$ 

Massenspektrum:  $(M+H)^* = 421$ 

### Beispiel 72

4-{3-[4-[N-(2-Methoxycarbonyl-ethyl)-N-pyridin-2-yl-aminocar-bonyl]-2.5-dimethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-[N-(2-methoxycarbonyl-ethyl)-N-pyridin-2-yl-amino-

carbonyl]-2,5-dimethyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 48 % der Theorie,

R<sub>f</sub>-Wert: 0.25 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{28}H_{29}N_5O_3 \times 2CF_3COOH (483.58/711.62)$ 

Massenspektrum: (M+H) = 484

### Beispiel 73

rac-4-{3-[4-(2-Hydroxycarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 3 aus rac-4-{3-[4-(2-Ethoxycarbo-nylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargyl-amino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 53 % der Theorie,

R<sub>f</sub>-Wert: 0.36 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{24}H_{26}N_4O_3 \times HCl (418.50/454.96)$ 

Massenspektrum:  $(M+H)^+ = 419$   $(M+Na)^+ = 441$  $(M+Na+H)^- = 232$ 

### Beispiel 74

rac-4-{3-[4-(2-(2-Hydroxycarbonyl-ethyl)-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 3 aus rac-4-{3-[4-(2-(2-Ethoxycar-bonyl-ethyl)-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargyl-amino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 67 % der Theorie,

 $C_{25}H_{28}N_4O_3 \times HCl (432.52/468.98)$ 

Massenspektrum:  $(M+H)^+ = 433$  $(M+Na)^+ = 455$ 

 $(M+2Na)^{++} = 239$ 

rac-4-{3-[4-(2-Hydroxycarbonyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 3 aus rac-4-{3-[4-(2-Methoxycarbo-nyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammonium-chlorid.

Ausbeute: 42 % der Theorie.

R<sub>f</sub>-Wert: 0.32 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{22}H_{22}N_4O_3 \times HCl (390.45/426.91)$ 

Massenspektrum:  $(M+H)^+$  = 391

 $(M+Na)^+ = 413$ 

 $(M+2Na)^{**} = 218$ 

### Beispiel 76

rac-4-{3-[4-(2-Hydroxycarbonylmethyloxymethyl-pyrrolidinocarbonyl)-3-methyl-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 3 aus rac-4-{3-[4-(2-Ethoxycarbonylmethyloxymethyl-pyrrolidinocarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 30 % der Theorie,

R<sub>f</sub>-Wert: 0.4 (Reversed Phase Kieselgel RP-18; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{25}H_{28}N_4O_4 \times HCl (448.53/484.99)$ 

Massenspektrum:  $(M+H)^+ = 449$ 

 $(M-H)^{-} = 447$ 

# Beispiel 77

rac-4-{3-[4-(2-Hydroxycarbonylmethylaminocarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-phenyll-propargylamino}benzamidin
Hergestellt analog Beispiel 2 aus rac-4-{3-[4-(2-Ethoxycarbonylmethylaminocarbonylmethyl-pyrrolidinocarbonyl)-3-methyl-

phenyl]-propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid. Ausbeute: 80 % der Theorie,  $R_{\rm f}\text{-Wert: 0.38 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)}$   $C_{26}H_{29}N_{5}O_{4} \text{ x HCl } (475.55/512.01)$ 

 $C_{26}H_{29}N_5O_4$  x HC1 (475.55/512.01 Massenspektrum: (M+H)\* = 476 (M-H)^- = 474

# Beispiel 78

4-{3-[3-(2-Hydroxycarbonyl-ethyl)-4-pyrrolidinocarbonyl-phe-nyllpropargylamino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[3-(2-Ethoxycarbonyl-ethyl)-4-pyrrolidinocarbonyl-phenyl]propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammonium-chlorid.

Ausbeute: 84 % der Theorie,

R<sub>f</sub>-Wert: >0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $(M+2Na)^{++} = 232$ 

 $C_{24}H_{26}N_4O_3 \times HCl (418.50/454.96)$ 

Massenspektrum:  $(M+H)^{+}$  = 419  $(M+2H)^{++}$  = 210  $(M+Na+H)^{++}$  = 221

### Beispiel 79

4-{3-[3-(2-Hydroxycarbonyl-vinyl)-4-pyrrolidinocarbonyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[3-(2-Ethoxycarbonyl-vinyl)-4-pyrrolidinocarbonyl-phenyl]propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammonium-chlorid.

Ausbeute: 45 % der Theorie,

R<sub>f</sub>-Wert: >0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{24}N_4O_3 \times HCl (416.48/452.94)$ 

Massenspektrum:  $(M+H)^{+} = 417$   $(M+Na)^{+} = 439$   $(M+Na+H)^{+-} = 220$  $(M+2Na)^{--} = 231$ 

### Beispiel 80

rac-4-{3-[3-(N-Hydroxycarbonylmethyl-N-methyl-aminomethyl)-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus rac-4-{3-[3-(N-Ethoxycarbo-nylmethyl-N-methyl-aminomethyl)-4-(2-methyl-pyrrolidinocarbo-nyl)-phenyl]propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 30 % der Theorie,

R<sub>f</sub>-Wert: 0.42 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{26}H_{31}N_5O_3 \times HCl (461.57/498.03)$ 

Massenspektrum:  $(M+H)^+ = 462$  $(M-H)^- = 460$ 

#### Beispiel 81

4-[3-(3-Hydroxycarbonylmethyloxymethyl-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 3 aus 4-[3-(3-Ethoxycarbonylme-thyloxymethyl-4-pyrrolidinocarbonyl-phenyl)propargylamino]-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 21 % der Theorie,

R<sub>f</sub>-Wert: 0.23 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{24}H_{26}N_4O_4 \times HCl (434.50/470.96)$ 

Massenspektrum:  $(M+H)^+ = 435$ 

 $(M-H)^{-} = 433$ 

4-[3-(3-Hydroxycarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)-propargylaminolbenzamidin

Hergestellt analog Beispiel 3 aus 4-[3-(3-Ethoxycarbonylme-thyl-4-pyrrolidinocarbonyl-phenyl)propargylamino]benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammonium-chlorid.

Ausbeute: 62 % der Theorie,

 $C_{23}H_{24}N_4O_3 \times HCl (404.47/440.93)$ 

Massenspektrum:  $(M+H)^+ = 405$ 

 $(M-H)^{-} = 403$ 

### Beispiel 83

4-[3-(3-Hydroxycarbonylmethylaminocarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 3 aus 4-[3-(3-Ethoxycarbonylme-thylaminocarbonylmethyl-4-pyrrolidinocarbonyl-phenyl)propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 42 % der Theorie,

R<sub>f</sub>-Wert: 0.45 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{25}H_{27}N_5O_4 \times HCl (461.53/497.99)$ 

Massenspektrum:  $(M+H)^* = 462$ 

 $(M+Na)^* = 484$ 

## Beispiel 84

4-{3-[3-(Hydroxycarbonylmethyloxyimino)methylen-4-pyrrolidinocarbonyl-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[3-(hydroxycarbonylmethyloxyimino)methylen-4-pyrrolidinocarbonyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 42 % der Theorie,

R,-Wert: 0.4 (Reversed Phase Kieselgel RP-8; Methanol/5%ige

NaCl-Lösung = 60:40)

 $C_{24}H_{25}N_5O_4 \times CF_3COOH (447.50/561.52)$ 

Massenspektrum: (M+H) = 448

 $(M+Na)^{+} = 470$ 

 $(M+2H)^{**} = 224.5$ 

 $(M+Na+H)^{--} = 235.7$ 

 $(M+2Na)^{--} = 246.6$ 

### Beispiel 85

rac-4-{3-[2-Methoxy-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[2-methoxy-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 90 % der Theorie,

R<sub>f</sub>-Wert: 0.38 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und ein Tropfen Essigsäure)

 $C_{23}H_{26}N_4O_2 \times CF_3COOH (390.49/504.51)$ 

Massenspektrum:  $(M+H)^* = 391$ 

 $(M+2H)^{++} = 196$ 

#### Beispiel 86

4-[3-(3-Methoxy-4-pyrrolidinocarbonyl-phenyl)propargylamino]-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(3-methoxy-4-pyrrolidinocarbonyl-phenyl)propargyl-

amino]benzamidin und Trifluoressigsäure.

Ausbeute: 58 % der Theorie,

R<sub>f</sub>-Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und ein Tropfen Essigsäure)

 $C_{22}H_{24}N_4O_2 \times CF_3COOH (376.46/490.48)$ 

Massenspektrum:  $(M+H)^* = 377$ 

4-[3-(3-Hydroxy-4-pyrrolidinocarbonyl-phenyl)propargylamino]-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(3-hydroxy-4-pyrrolidinocarbonyl-phenyl)propargyl-amino]benzamidin und Trifluoressigsäure.

Ausbeute: 54 % der Theorie,

 $R_{f}$ -Wert: 0.46 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{21}H_{22}N_4O_2 \times CF_3COOH (362.44/476.46)$ 

Massenspektrum:  $(M+H)^+ = 363$ 

### Beispiel 88

rac-4-{3-[3-Hydroxymethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[3-hydroxymethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino}benzamidin und Trifluoressigsäure. Ausbeute: 57 % der Theorie,

R<sub>f</sub>-Wert: 0.54 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{23}H_{26}N_4O_2 \times CF_3COOH (390.49/504.51)$ 

Massenspektrum:  $(M+H)^* = 391$ 

# Beispiel 89

4-[3-(3-Formyl-4-pyrrolidinocarbonyl-phenyl)propargylamino]-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(3-formyl-4-pyrrolidinocarbonyl-phenyl)propargyl-amino]benzamidin und Trifluoressigsäure.

Ausbeute: 71 % der Theorie,

 $R_f$ -Wert: 0.4 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{22}H_{22}N_4O_2 \times CF_3COOH (374.45/488.47)$ 

Massenspektrum:  $(M+H)^+ = 375$ 

4-[3-(3-Aminocarbonylaminoiminomethylen-4-pyrrolidinocarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-

4-[3-(3-aminocarbonylaminoiminomethylen-4-pyrrolidinocarbonyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 83 % der Theorie,

R<sub>f</sub>-Wert: 0.4 (Reversed Phase Kieselgel RP-8; Methanol/5%ige.

 $NaCl-L\ddot{o}sung = 60:40)$ 

 $C_{23}H_{25}N_7O_2 \times CF_3COOH (431.50/545.53)$ 

Massenspektrum:  $(M+H)^* = 432$ 

 $(M+Na+H)^{--} = 227.8$ 

#### Beispiel 91

4-[1-Methyl-3-(4-pyrrolidinocarbonyl-phenyl)propargylamino]benzamidin

Hergestellt analog Beispiel 4c aus 4-[1-Methyl-3-(4-pyrrolidinocarbonyl-phenyl)propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 78 % der Theorie,

R<sub>f</sub>-Wert: 0.57 (Kieselgel; Essigester/Ethanol/Ammoniak =

50:45:5)

 $C_{22}H_{24}N_4O \times HCl (360.47/396.93)$ 

Massenspektrum:  $(M+H)^+$  = 361

 $(M+C1)^{-} = 395/397$ 

 $(M+Cl+HCl)^{-} = 431/433/435N$ 

### Beispiel 92

4-[3-(4-Piperidinocarbonyl-phenyl)propargylaminolbenzamidin Hergestellt analog Beispiel 4c aus 4-[3-(4-Piperidinocarbonyl-phenyl)propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 65 % der Theorie,

WO 00/35859

- 90 -

R<sub>f</sub>-Wert: 0.25 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{22}H_{24}N_4O \times HCl (360.47/396.93)$ 

Massenspektrum: M' = 360

## Beispiel 93

rac-4-{3-[4-(4-Methylpiperidinocarbonyl)-phenyl]propargylamino | benzamidin

Hergestellt analog Beispiel 2 aus rac-N-tert.Butoxycarbonyl-4-{3-[4-(4-methylpiperidinocarbonyl)-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 70 % der Theorie,

R<sub>f</sub>-Wert: 0.27 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{23}H_{26}N_4O \times CF_3COOH (374.49/488.51)$ 

Massenspektrum:  $(M+H)^* = 375$ 

## Beispiel 94

4-[3-(4-Azetidinocarbonyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-

4-[3-(4-azetidinocarbonyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 72 % der Theorie,

R<sub>f</sub>-Wert: 0.21 (Kieselgel; Methylenchlorid/Ethanol 4:1 und ein Tropfen Essigsäure)

 $C_{20}H_{20}N_4O \times CF_3COOH (332.41/446.43)$ 

Massenspektrum:  $(M+H)^+ = 333$ 

#### Beispiel 95

4-[3-(3-Methyl-4-morpholinocarbonyl-phenyl)propargylamino]benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(3-methyl-4-morpholinocarbonyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure.

**-** 91 -

Ausbeute: 90 % der Theorie,

R<sub>f</sub>-Wert: 0.32 (Kieselgel; Essigester/Ethanol/Ammoniak =

50:45:5)

 $C_{22}H_{24}N_4O_2 \times CF_3COOH (376.47/490.49)$ 

Massenspektrum: (M+H) = 377

### Beispiel 96

4-[3-(2-Methyl-4-morpholinocarbonyl-phenyl)propargylamino]benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-

4-[3-(2-methyl-4-morpholinocarbonyl-phenyl)propargylamino]-

benzamidin und Trifluoressigsäure.

Ausbeute: 80 % der Theorie,

 $R_f$ -Wert: 0.38 (Kieselgel; Essigester/Ethanol/Ammoniak =

50:45:5)

 $C_{22}H_{24}N_4O_2 \times CF_3COOH (376.47/490.49)$ 

Massenspektrum:  $(M+H)^+ = 377$ 

### Beispiel 97

4-{3-[4-(4-Methylpiperazinocarbonyl)-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-

4-{3-[4-(4-methylpiperazinocarbonyl)-phenyl]propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 87 % der Theorie,

R.-Wert: 0.59 (Reversed Phase Kieselgel RP-8; Methanol/5%ige

NaCl-Lösung = 60:40)

 $C_{22}H_{25}N_5O \times 2CF_3COOH (375.48/603.52)$ 

Massenspektrum:  $(M+H)^+ = 376$ 

### Beispiel 98

4-[3-(4-Dimethylaminocarbonyl-phenyl)propargylaminolbenzamidin Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(4-dimethylaminocarbonyl-phenyl)propargylaminolbenzamidin und Trifluoressigsäure. Ausbeute: 66 % der Theorie,

 $R_{t}$ -Wert: 0.21 (Kieselgel; Methylenchlorid/Ethanol 4:1 und ein Tropfen Essigsäure)

 $C_{19}H_{20}N_4O \times CF_3COOH (320.40/434.42)$ 

Massenspektrum:  $(M+H)^+ = 321$ 

### Beispiel 99

4-[3-(2,5-Dimethyl-4-dimethylaminocarbonyl-phenyl)propargyl-aminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(2,5-dimethyl-4-dimethylaminocarbonyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 54 % der Theorie.

R<sub>2</sub>-Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{21}H_{24}N_4O \times CF_3COOH (348.46/462.49)$ 

Massenspektrum:  $(M+H)^+ = 349$ 

### Beispiel 100

4-[3-(4-Diethylaminocarbonyl-3-methyl-phenyl)propargylamino]-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(4-diethylaminocarbonyl-3-methyl-phenyl)propargylamino]-benzamidin und Trifluoressigsäure.

Ausbeute: 80 % der Theorie,

 $R_f$ -Wert: 0.29 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und ein Tropfen Essigsäure)

 $C_{22}H_{26}N_4O \times CF_3COOH (362.46/476.50)$ 

Massenspektrum:  $(M+H)^+ = 363$ 

### Beispiel 101

4-{3-[4-(N-Isopropyl-N-methyl-aminocarbonyl)-2,5-dimethyl-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(N-isopropyl-N-methyl-aminocarbonyl)-2,5-dimethyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 92 % der Theorie,

 $R_f$ -Wert: 0.15 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{28}N_4O \times CF_3COOH (376.51/490.53)$ 

Massenspektrum:  $(M+H)^* = 377$ 

### Beispiel 102

4-{3-[4-(N-tert.Butyl-N-methyl-aminocarbonyl)-2,5-dimethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(N-tert.butyl-N-methyl-aminocarbonyl)-2,5-dimethyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure. Ausbeute: 41 % der Theorie,

 $R_t$ -Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 4:1)  $C_{24}H_{3c}N_tO$  x  $CF_3COOH$  (390.54/504.56)

Massenspektrum:  $(M+H)^* = 391$ 

### Beispiel 103

4-[3-(4-Trimethylhydrazinocarbonyl-3-methyl-phenyl)propargyl-aminolbenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(4-trimethylhydrazinocarbonyl-3-methyl-phenyl)propargylamino]benzamidin und Trifluoressigsäure.

Ausbeute: 7 % der Theorie,

 $C_{21}H_{25}N_5O \times 2CF_3COOH (363.47/591.51)$ 

Massenspektrum:  $(M+H)^+ = 364$ 

### Beispiel 104

4-{3-[4-(N-(2-Dimethylamino-ethyl)-N-methyl-aminocarbonyl)-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(N-(2-dimethylamino-ethyl)-N-methyl-aminocarbonyl)-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 23 % der Theorie,

R<sub>f</sub>-Wert: 0.51 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{22}H_{27}N_5O \times 2CF_3COOH (377.50/605.54)$ 

Massenspektrum: (M+H) = 378

 $(M+2H)^{--} = 189.7$ 

### Beispiel 105

4-{3-[4-(N-(3-Dimethylamino-propyl)-N-methyl-aminocarbonyl)-3-methyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-

4-{3-[4-(N-(3-dimethylamino-propyl)-N-methyl-aminocarbonyl)-

3-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 5 % der Theorie,

R<sub>2</sub>-Wert: 0.5 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{24}H_{31}N_5O \times 2CF_3COOH (405.56/633.60)$ 

Massenspektrum:  $(M+2H)^{++} = 203.8$ 

### Beispiel 106

4-{3-[4-(N-Cyclopentyl-N-methyl-aminocarbonyl)-3-methylphenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-

4-{3-[4-(N-cyclopentyl-N-methyl-aminocarbonyl)-3-methyl-

phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 84 % der Theorie,

R<sub>f</sub>-Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{28}N_4O \times CF_3COOH (388.52/502.54)$ 

Massenspektrum: (M+H) = 389

4-{3-[4-(Pyrrolidin-3-ylamino-carbonyl)-3-methylphenyl]pro-pargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(1-tert.butoxycarbonylpyrrolidin-3-yl-aminocarbonyl)-3-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure, anschließendes Aufnehmen in Ethanol und Ausfällen mit etherischer Salzsäure.

Ausbeute: 33 % der Theorie,

R<sub>f</sub>-Wert: 0.41 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{22}H_{25}N_5O \times 2HCl (375.49/448.41)$ 

Massenspektrum:  $(M+H)^{+} = 376$  $(M+2H)^{+} = 185.5$ 

### Beispiel 108

4-{3-[5-(N-Cyclopentyl-N-methyl-aminocarbonyl)-2-methylphe-nyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[5-(N-cyclopentyl-N-methyl-amino-carbonyl)-2-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure. Ausbeute: 70 % der Theorie,

 $R_f$ -Wert: 0.21 (Kieselgel; Methylenchlorid/Ethanol = 4:1)  $C_{24}H_{28}N_4O \times CF_3COOH (388.52/502.54)$ 

Massenspektrum:  $(M+H)^* = 389$ 

#### Beispiel 109

4-{3-[5-(N-Methyl-N-(2-phenyl-ethyl)-aminocarbonyl)-2-methyl-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[5-(N-methyl-N-(2-phenyl-ethyl)-aminocarbonyl)-2-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.
Ausbeute: 54 % der Theorie.

R<sub>f</sub>-Wert: 0.22 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{27}H_{28}N_4O \times CF_3COOH (424.56/538.58)$ Massenspektrum:  $(M+H)^* = 425$ 

## Beispiel 110

4-{3-[5-(N-Methyl-N-benzyl-aminocarbonyl)-2-methyl-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[5-(N-methyl-N-benzyl-aminocarbonyl)-2-methyl-phenyl}-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 55 % der Theorie,

 $R_f$ -Wert: 0.25 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{26}H_{26}N_4O \times CF_3COOH (410.53/524.55)$ 

Massenspektrum: (M+H) = 411

### Beispiel 111

4-{3-[5-(2-Phenyl-ethylaminocarbonyl)-2-methyl-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[5-(2-phenyl-ethylaminocarbonyl)-2-methyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 54 % der Theorie,

R<sub>f</sub>-Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{26}H_{26}N_4O \times CF_3COOH (410.53/524.55)$ 

Massenspektrum:  $(M+H)^+ = 411$ 

### Beispiel 112

4-{3-[4-(N-Methyl-N-phenyl-aminocarbonyl)-phenyl]propargyl-amino}benzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-(N-Methyl-N-phenyl-aminocarbonyl)-phenyl]propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 97 % der Theorie,

 $R_f$ -Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + 1 Tropfen Essigsäure)

 $C_{24}H_{22}N_4O \times HCl (382.47/418.93)$ Massenspektrum:  $(M+H)^+ = 383$ 

### Beispiel 113

4-{3-[2,5-Dimethyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 30 % der Theorie,

R<sub>f</sub>-Wert: 0.18 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{26}H_{26}N_4O \times CF_3COOH (410.53/524.55)$ 

Massenspektrum:  $(M+H)^* = 411$ 

### Beispiel 114

4-{3-[2,5-Dimethyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl-N-methyl-propargylaminobenzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[2,5-Dimethyl-4-(N-me-thyl-N-phenyl-aminocarbonyl)-phenyl]-N-methyl-propargylamino}-benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 54 % der Theorie,

R<sub>f</sub>-Wert: 0.2 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{27}H_{28}N_4O \times HCl (424.55/461.01)$ Massenspektrum:  $(M+H)^+ = 425$ 

### Beispiel 115

4-{3-[2-Methyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]pro-pargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2-methyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 71 % der Theorie,

 $R_f$ -Wert: 0.22 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{25}H_{24}N_4O \times CF_3COOH (396.50/510.52)$ Massenspektrum:  $(M+H)^2 = 397$ 

# Beispiel 116

4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 50 % der Theorie,

R<sub>f</sub>-Wert: 0.18 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

C<sub>25</sub>H<sub>25</sub>N<sub>5</sub>O x 2CF<sub>3</sub>COOH (411.51/639.55)

Massenspektrum: (M+H)<sup>-</sup> = 412

### Beispiel 117

4-{3-[2-Methyl-5-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]pro-pargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2-methyl-5-(N-methyl-N-phenyl-aminocarbonyl)phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 75 % der Theorie,

R<sub>f</sub>-Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

C<sub>25</sub>H<sub>24</sub>N<sub>4</sub>O x CF<sub>3</sub>COOH (396.50/510.52)

Massenspektrum: (M+H)\* = 397

### Beispiel 118

 $C_{24}H_{24}N_4 \times HC1 \quad (368.49/404.95)$ Massenspektrum:  $(M+H)^+ = 369$ 

### Beispiel 119

4-{3-[4-(N-Acetyl-N-phenyl-aminomethyl)-phenyl]propargyl-amino}benzamidin\_\_\_\_\_

Hergestellt analog Beispiel 4c aus  $4-\{3-[4-(N-Acetyl-N-phenyl-aminomethyl)-phenyl]$  propargylamino $\}$  benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 48 % der Theorie,

 $R_f$ -Wert: 0.25 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + 1 Tropfen Essigsäure)

 $C_{25}H_{24}N_4O \times HCl (396.50/432.96)$ Massenspektrum:  $(M+H)^+ = 397$ 

### Beispiel 120

()

4-{3-[3-(N-Methyl-N-phenyl-amino)-phenyl]propargylamino}-benzamidin

Hergestellt analog Beispiel 4c aus  $4-\{3-[3-(N-Methyl-N-phenyl-amino)-phenyl]$  propargylamino} benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 61 % der Theorie,

 $C_{23}H_{22}N_4 \times HCl (354.46/390.92)$ 

Massenspektrum: M' = 354

## Beispiel 121

4-[3-(4-Benzyl-phenyl)propargylamino|benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-[3-(4-benzyl-phenyl)propargylamino]benzamidin und Trifluor-essigsäure.

Ausbeute: 38 % der Theorie,

 $R_f$ -Wert: 0.26 (Kieselgel; Methylenchlorid/Ethanol = 4:1 + 1 Tropfen Essigsäure)

WO 00/35859 PCT/EP99/09921

- 100 -

 $C_{23}H_{21}N_3 \times CF_3COOH (339.44/453.46)$ Massenspektrum: (M+H) = 340

# Beispiel 122

4-[3-(4-Phenylsulfonyl-phenyl)propargylaminolbenzamidin Hergestellt analog Beispiel 4c aus 4-[3-(4-Phenylsulfonylphenyl)propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 64 % der Theorie,

 $R_f$ -Wert: 0.14 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{22}H_{19}N_3SO_2 \times HCl (389.47/425.93)$ 

Massenspektrum:  $(M+H)^+ = 390$ 

# Beispiel 123

4-{3-[4-(4-Methylphenylsulfonyl)-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 4c aus 4-{3-[4-(4-Methylphenylsulfonyl)phenyl]propargylamino}benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 88 % der Theorie,

 $R_f$ -Wert: 0.13 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{21}N_3SO_2 \times HCl (403.50/439.96)$ 

Massenspektrum:  $(M+H)^+ = 404$ 

#### Beispiel 124

4-[3-(4-Methyl-phenyl)propargylamino]benzamidin und 4-[2-Chlor-3-(4-methyl-phenyl)propenylamino]benzamidin als 4:6-Gemisch

Hergestellt analog Beispiel 4c aus 4-[3-(4-Methyl-phenyl)propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 47 % der Theorie,

R<sub>f</sub>-Wert: 0.2 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{17}H_{17}N_3 \times HCl (263.34/299.80)$ 

Massenspektrum:  $(M+H)^+ = 264$ 

 $C_{17}H_{18}ClN_3 \times HCl (299.80/336.26)$ 

Massenspektrum: (M+H) = 300/302 (Chlorisotope)

#### Beispiel 125

## 4-[3-(3-Methyl-phenyl)propargylaminolbenzamidin

Hergestellt analog Beispiel 4c aus 4-[3-(3-Methyl-phenyl)propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 38 % der Theorie,

R<sub>f</sub>-Wert: 0.28 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und ein Tropfen Essigsäure)

 $C_{17}H_{17}N_3 \times HCl (263.34/299.80)$ 

Massenspektrum: M\* = 263

### Beispiel 126

 $\left( \cdot \right)$ 

## 4-[3-(3-Biphenyl)-propargylaminolbenzamidin

Hergestellt analog Beispiel 4c aus 4-[3-(3-Biphenyl)-propargylamino]benzonitril, mit Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 74 % der Theorie,

 $R_f$ -Wert: 0.29 (Kieselgel; Methylenchlorid/Ethanol = 4:1 und ein Tropfen Essigsäure)

 $C_{22}H_{19}N_3 \times HCl (325.42/361.88)$ 

Massenspektrum: M<sup>+</sup> = 326

### Beispiel 127

4-[3-(4-Ethoxycarbonyl-3-methyl-phenyl)-propargylamino]benzamidin

Hergestellt analog Beispiel 4c aus 4-[3-(4-Imidazol-1-yl-carbonyl-3-methyl-phenyl)-propargylamino]benzonitril, Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 46 % der Theorie,

WO 00/35859 PCT/EP99/09921

- 102 -

```
C_{20}H_{21}N_3O_2 \times HCl (335.41/371.87)
Massenspektrum: (M+H) = 336
                    (2M+H)^{*} = 671
```

### Beispiel 128

d. 4-{3-[4-(3-(2-Hydroxycarbonyl-ethyl)-5-phenyl-pyrazol-1-yl)-3-methyl-phenyll-propargylamino|benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[4-(3-(2-Ethoxycarbonyl-ethyl)-5-phenyl-pyrazol-1-yl)-3-methyl-phenyl]-propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid. Ausbeute: 58 % der Theorie, R.-Wert: 0.24 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 6:4)  $C_{29}H_{27}N_5O_2 \times CF_3COOH (477.58/591.60)$ Massenspektrum:  $(M+H)^- = 478$  $(M-H)^{-} = 476$ 

# Beispiel 129

```
4-{3-[4-(3,5-Diethyl-pyrazol-1-yl)-3-methyl-phenyl]-propargyl-
amino}benzamidin
Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-
4-{3-[4-(3,5-diethyl-pyrazol-1-yl)-3-methyl-phenyl]-pro-
pargylamino}benzamidin und Trifluoressigsäure.
Ausbeute: 40 % der Theorie,
R_f-Wert: 0.3 (Kieselgel; Methylenchlorid/Ethanol = 4:1)
C_{24}H_{27}N_5 \times CF_3COOH (385.52/499.54)
Massenspektrum: (M+H) = 386
                 M*
                       = 385
                 (M-H)^{-} = 384
```

4-{3-[2-Methyl-5-(N-methyl-N-pyrid-2-yl-aminocarbonyl)phenyllpropargylamino|benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2-methyl-5-(N-methyl-N-pyrid-2-yl-aminocarbonyl)phenyl]propargylamino|benzamidin und Trifluoressigsäure.

Ausbeute: 54 % der Theorie,

R<sub>f</sub>-Wert: 0.17 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

C<sub>24</sub>H<sub>23</sub>N<sub>5</sub>O x CF<sub>3</sub>COOH (397.49/511.51)

Massenspektrum: (M+H) \* = 398

(M-H) \* = 396

(M+CF<sub>3</sub>COOH-H) \* = 510

### Beispiel 131

4-{3-[4-[N-(2-Hydroxycarbonyl-ethyl)-N-pyridin-2-yl-aminocarhonyll-2.5-dimethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[4-[N-(2-Methoxycarbonyl-ethyl)-N-pyridin-2-yl-aminocarbonyl]-2,5-dimethyl-phenyl]propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 13 % der Theorie,

R<sub>f</sub>-Wert: 0.5 (Reversed Phase Kieselgel RP-8; Methanol/5%ige

NaCl-Lösung = 6:4)

C<sub>27</sub>H<sub>27</sub>N<sub>5</sub>O<sub>3</sub> x 2 HCl (469.55/542.47)

Massenspektrum: (M+H)\* = 470

(M-H)\* = 468

### Beispiel 132

4-{3-[5-Ethoxycarbonylmethyl-2-methyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[5-ethoxycarbonylmethyl-2-methyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]propargylamino}benzamidin und Trifluor-essigsäure.

- 104 -

Ausbeute: 34 % der Theorie,

R<sub>f</sub>-Wert: 0.25 (Reversed Phase Kieselgel RP-8; Methanol/5%ige

NaCl-Lösung = 6:4)

 $C_{29}H_{30}N_4O_3 \times CF_3COOH (482.59/596.61)$ 

Massenspektrum:  $(M+H)^{-} = 483$ 

#### Beispiel 133

4-[3-(1,3-Dihydro-isobenzofuran-1-on-5-yl)propargylamino]benz-amidin

Hergestellt als Nebenprodukt bei der Trifluoressigsäurebehandlung von rac-N-tert.Butoxycarbonyl-4-{3-[3-hydroxymethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]propargylamino}benzamidin gemäß Beispiel 88.

Ausbeute: 7 % der Theorie,

R<sub>f</sub>-Wert: 0.59 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 6:4)

 $C_{18}H_{15}N_3O_2 \times CF_3COOH (305.34/419.36)$ 

Massenspektrum:  $(M+H)^* = 306$ 

#### Beispiel 134

4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]-pyridin

## a. 4-Propargylaminopyridin

Eine Lösung aus 1.9 g (20 mMol) 4-Aminopyridin in 40 ml Tetrahydrofuran wird tropfenweise mit 10 ml (30 mMol) einer 3 molaren etherischen Methylmagnesiumbromid-Lösung versetzt und 2 Stunden gerührt. Dann wird 3.7 g (28 mMol) Propargylmethansulfonat in 40 ml Toluol zugetropft und es wird langsam auf 110°C erhitzt, hierbei werden flüchtige Bestandteile abdestilliert. Nach 48 Stunden bei 110°C wird mit 100 ml Essigester versetzt, mit 100 ml einer 14%igen Kochsalzlösung gewaschen, filtriert und mit Natriumsulfat getrocknet. Nach dem Abdestillieren des Lösungsmittels wird das Rohprodukt chromatographisch gereinigt (Aluminiumoxid; Methylenchlorid/Ethanol 97:3).

Ausbeute: 0.60 g (22 % der Theorie),

R<sub>f</sub>-Wert: 0.48 (Aluminiumoxid; Methylenchlorid/Ethanol 19:1)

b. 4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylaminolpyridin

Hergestellt analog Beispiel 1 g aus N-(4-Brom-2-methyl-ben-zoyl)pyrrolidin, 4-Propargylaminopyridin, Tetrakis(triphenyl-phosphin)palladium(0), Kupferiodid und Triethylamin in Acetonitril.

Ausbeute: 31 % der Theorie,

R<sub>f</sub>-Wert: 0.35 (Kieselgel; Essigester/Ethanol/Ammoniak 80:40:2)

 $C_{20}H_{21}N_3O$  (319.41)

Massenspektrum: M' = 319

#### Beispiel 135

Trans-4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargyl-aminol-cyclohexylamin

a. 3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylbromid
Zu einer Lösung aus 3.1 g (13 mMol) 3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylalkohol (hergestellt analog Beispiel
9a) und 2.27 g (14 mMol) 1,1'-Carbonyldiimidazol in 90 ml Acetonitril werden 7.71 g (64 mmol) Allylbromid zugetropft und
erst 30 Minuten bei Raumtemperatur, anschließend 4 Stunden bei
80°C gerührt. Danach wird mit 350 ml Essigester verdünnt, mit
100 ml Wasser und 100 ml gesättigter NaCl-Lösung gewaschen,
mit Natriumsulfat getrocknet, konzentriert und durch FlashChromatographie (Kieselgel; Methylenchlorid bis Methylenchlorid/Ethanol 49:1) gereinigt.

Ausbeute: 1.75 g (45 % der Theorie),

R<sub>f</sub>-Wert: 0.6 (Kieselgel; Essigester)

 $C_{15}H_{16}BrNO$  (306)

Massenspektrum:  $M^* = 305/307$  (Bromisotope)

b. Trans-4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylaminol-cyclohexylamin

Zu einer Lösung aus 0.50 g (1.63 mMol) 3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylbromid und 0.88 g (4.10 mMol) Trans-4-tert.Butoxycarbonylaminocyclohexylamin in 50 ml THF wird bei 0°C 0,53 g (4.09 mmol) N-Ethyl-diisopropylamin zugegeben und dann 2 Stunden bei 0°C, 2 Stunden bei 50°C und 15 Stunden bei Raumtemperatur gerührt. Anschließend wird 2 mal mit je 50 ml gesättigter Natriumhydrogencarbonatlösung und mit 50 ml Natriumchloridlösung gewaschen, die wäßrigen Phasen mit 50 ml Essigester extrahiert und die vereinigten organischen Phasen mit Natriumsulfat getrocknet und im Vakuum konzentriert. Das Rohprodukt wird direkt analog Beispiel 2 mit Trifluoressigsäure in Methylenchlorid zur Titelverbindung umgesetzt.

Ausbeute: 0.38 g (41 % der Theorie),

 $C_{21}H_{29}N_3O \times 2 CF_3COOH (339.49/567.53)$ 

Massenspektrum: M' = 339

#### Beispiel 136

4-{3-[5-(2-Phenyl-ethylaminocarbonyl)-2-methyl-phenyl]prop-1-ylamino}benzamidin

Eine Suspension aus 100 mg (0.19 mMol) 4-{3-[5-(2-Phenyl-ethylaminocarbonyl)-2-methyl-phenyl]propargylamino}benzamidin und 40 mg 10% Palladium auf Kohle in 20 ml Ethanol wurde 15 Minuten bei 3 bar Wasserstoffdruck hydriert. Anschließend wurde der Katalysator abfiltriert und das Filtrat eingedampft. Ausbeute: 100 % der Theorie,

 $C_{26}H_{30}N_4O \times CF_3COOH (414.56/528.58)$ 

Massenspektrum:  $(M+H)^+ = 415$ 

4-[3-(2,5-Dimethyl-4-isopropylcarbonyl-phenyl)prop-1-ylamino]benzamidin

Hergestellt analog Beispiel 136 aus 4-[3-(2,5-Dimethyl-4-iso-propylcarbonyl-phenyl)propargylamino]benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 100 % der Theorie,

 $C_{22}H_{29}N_3O \times CF_3COOH (351.50/465.52)$ 

Massenspektrum:  $(M+H)^+ = 352$ 

#### Beispiel 138

4-[3-(2,5-Dimethyl-4-pyrrolidinocarbonyl-phenyl)-prop-1-yl-aminolbenzamidin

Hergestellt analog Beispiel 136 aus 4-[3-(2,5-Dimethyl-4-pyr-rolidinocarbonyl-phenyl)-propargylamino]benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 69 % der Theorie,

R<sub>f</sub>-Wert: 0.21 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 6:4)

 $C_{23}H_{30}N_4O \times CF_3COOH (378.53/492.55)$ 

Massenspektrum:  $(M+H)^* = 379$ 

#### Beispiel 139

rac-4-{3-[3-Methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-prop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus rac-4-{3-[3-Methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benz-amidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 99 % der Theorie,

 $R_f$ -Wert: 0.2 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{30}N_4O \times CF_3COOH (378.52/492.55)$ 

Massenspektrum:  $(M+H)^* = 379$ 

4-{3-[3-(2-Hydroxycarbonyl-ethyl)-4-pyrrolidinocarbonyl-phe-nyllprop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[3-(2-Hydroxycarbo-nyl-ethyl)-4-pyrrolidinocarbonyl-phenyl]propargylamino}benz-amidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 100 % der Theorie,

R<sub>f</sub>-Wert: 0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{30}N_4O_3 \times CF_3COOH (422.54/536.56)$ 

Massenspektrum:  $(M+H)^* = 423$ 

# Reispiel 141

4-[3-(3-Methyl-4-phenylcarbonyl-phenyl)-prop-1-ylamino]benz-amidin

Hergestellt analog Beispiel 136 aus 4-[3-(3-Methyl-4-phenyl-carbonyl-phenyl)-propargylamino]benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

 $R_f$ -Wert: 0.18 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{24}H_{25}N_3O \times HCl (371.43/407.95)$ 

Massenspektrum:  $(M+H)^+ = 372$ 

 $(M+HCl-H)^{-} = 406/408$  (Chlorisotope)

#### Beispiel 142

4-{3-[4-(N-(3-Dimethylamino-propyl)-N-methyl-aminocarbonyl)-3-methyl-phenyllprop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[4-(N-(3-Dimethyl-amino-propyl)-N-methyl-aminocarbonyl)-3-methyl-phenyl]propargylamino}benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 100 % der Theorie,

 $R_f$ -Wert: 0.52 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{24}H_{25}N_5O \times 2 CF_2COOH (409.59/637.63)$ Massenspektrum:  $(M+H)^+ = 410$ 

### Beispiel 143

4-{3-[2,5-Dimethyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyllprop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[2,5-Dimethyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]propargylamino}-benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 100 % der Theorie,

R<sub>f</sub>-Wert: 0.34 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 60:40)

 $C_{26}H_{30}N_4O \times CF_3COOH (414.56/528.58)$ Massenspektrum:  $(M+H)^* = 415$ 

## Beispiel 144

4-{3-[2,5-Dimethyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl-N-methyl-prop-1-ylamino}benzamidin
Hergestellt analog Beispiel 136 aus 4-{3-[2,5-Dimethyl-

4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]-N-methyl-propargylamino}benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 59 % der Theorie,

R<sub>f</sub>-Wert: 0.2 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{27}H_{32}N_4O \times HCl (428.53/465.03)$ 

Massenspektrum:  $(M+H)^+ = 429$ 

# Beispiel 145

4-{3-[5-(N-Methyl-N-(2-phenyl-ethyl)-aminocarbonyl)-2-methyl-phenyllprop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[5-(N-Methyl-N-(2-phenyl-ethyl)-aminocarbonyl)-2-methyl-phenyl]propargyl-amino}benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

WO 00/35859 PCT/EI

- 110 -

Ausbeute: 97 % der Theorie,

R<sub>f</sub>-Wert: 0.20 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{27}H_{32}N_4O \times CF_3COOH (428.59/542.61)$ 

Massenspektrum: (M+H) = 429

#### Beispiel 146

4-{3-[5-(2-Phenyl-ethylaminocarbonyl)-2-methyl-phenyl]prop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[5-(2-Phenyl-ethyl-aminocarbonyl)-2-methyl-phenyl]propargylamino}benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 100 % der Theorie,

 $C_{26}H_{30}N_4O \times CF_3COOH (414.56/528.58)$ 

Massenspektrum:  $(M+H)^+ = 415$ 

### Beispiel 147

4-{3-[2-Methyl-5-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]-prop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-{2-Methyl-5-(N-me-thyl-N-phenyl-aminocarbonyl)-phenyl]propargylamino}benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 79 % der Theorie,

 $C_{25}H_{28}N_4O \times CF_3COOH (400.52/514.54)$ 

Massenspektrum:  $(M+H)^+ = 401$ 

#### Beispiel 148

4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyllprop-1-ylamino}benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyl]propargyl-

amino}benzamidin, mit 10% Palladium auf Kohle und Wasserstoff in Ethanol.

Ausbeute: 60 % der Theorie,

 $C_{25}H_{29}N_5O \times 2 CF_3COOH (415.53/643.59)$ 

Massenspektrum: (M+H) = 416

#### Reispiel 149

4-[2-Iod-1-(5-phenylcarbonyl-pyrid-2-yl)prop-1-en-3-yl-amino]-

Hergestellt aus N-tert.Butoxycarbonyl-4-[3-(5-phenylcarbonyl-pyrid-2-yl)-propargylamino]benzamidin durch sukzessive Behandlung mit Trimethylsilyliodid analog Beispiel 35 und Trifluoressigsäure analog Beispiel 2.

Ausbeute: 66 % der Theorie,

 $C_{22}H_{19}IN_4O \times CF_3COOH (482.35/596.37)$ 

Massenspektrum: (M+H) = 483

#### Beispiel 150

4-[2-Chlor-1-(5-phenylcarbonyl-pyrid-2-yl)prop-1-en-3-yl-aminolbenzamidin

Hergestellt analog Beispiel 4c aus 4-[3-(5-Phenylcarbonyl-pyrid-2-yl)-propargylamino]benzonitril, Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 76 % der Theorie,

 $R_f$ -Wert: 0.3 (Kieselgel; Essigester/Ethanol/Ammoniak = 50:45:5)

 $C_{22}H_{18}ClN_{c}O \times HCl (390.88/427.34)$ 

Massenspektrum:  $(M+H)^+ = 391/393$  (Chlorisotope)

- 112 -

WO 00/35859 PCT/EP99/09921

# Beispiel 151

E-4-[1-Chlor-1-(4-phenyloxy-phenyl)prop-1-en-3-yl-amino]-benzamidin und

Z-4-[1-Chlor-1-(4-phenyloxy-phenyl)prop-1-en-3-yl-amino]-benzamidin

Hergestellt analog Beispiel 4c aus 4-[3-(4-Phenyloxy-phenyl)-propargylamino]benzonitril, Chlorwasserstoffgas gesättigtem Ethanol und Ammoniumcarbonat.

Ausbeute: 26 % eines E/Z-Isomerengemisches, welches durch präparative HPLC aufgetrennt wird (Lichrospher RP; 250x8mm; Laufmittel: Komponente A: Methanol/Acetonitril = 5:1, Komponente B: 1% Ammoniumformiatpuffer pH 4.6, Komponente A:B 65:35)

- 1. Isomer ( $R_t = 19.05$  Minuten, cis-HCl-Additionsprodukt): E-4-[1-Chlor-1-(4-phenyloxy-phenyl)prop-1-en-3-yl-amino]benz-amidin)
- 2. Isomer ( $R_t = 23.53$  Minuten, trans-HCl-Additionsprodukt): Z-4-[1-Chlor-1-(4-phenyloxy-phenyl)prop-1-en-3-yl-amino]benz-amidin)

 $C_{22}H_{20}ClN_3O \times HCl (377.87/414.33)$ Massenspektrum des Gemischs:  $(M+H)^* = 378/380$  (Chlorisotope)

Analog den vorstehenden Beispielen werden folgende Verbindungen erhalten:

- (1) 4-{3-[4-(Isoxazolidin-2-ylcarbonyl)-2,5-dimethyl-phenyl]-propargylamino}benzamidin
- (2) 4-{3-[4-[N-(2-Ethoxycarbonyl-ethyl)-N-pyrrolidino-amino-carbonyl]-2,5-dimethyl-phenyl]propargylamino}benzamidin
- (3) 4-{3-[4-[N-(2-Hydroxycarbonyl-ethyl)-N-pyrrolidino-amino-carbonyl]-2,5-dimethyl-phenyl]propargylamino}benzamidin
- (4) 4-{3-[2,5-Dimethyl-4-(N-methyl-N-phenyl-amino-carbonyl)-phenyl]propargyloxy}benzamidin

- (5) 4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)propargyl-amino]benzamidin
- (6) 4-{3-[2,5-Dimethyl-4-(N-benzoyl-N-(2-hydroxycarbonyl-ethyl)-amino)-phenyl]propargyloxy}benzamidin
- (7) 4-{3-[2,5-Dimethyl-4-(N-benzoyl-N-(2-ethoxycarbonyl-ethyl)-amino)-phenyl]propargyloxy}benzamidin
- (8) 4-{3-[2,5-Dimethyl-4-(N-isopropylcarbonyl-N-(2-hydroxy-carbonyl-ethyl)-amino)-phenyl]propargyloxy}benzamidin
- (9) 4-{3-[2,5-Dimethyl-4-(N-isopropylcarbonyl-N-(2-ethoxy-carbonyl-ethyl)-amino)-phenyl]propargyloxy}benzamidin
- (10) 4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-hydroxy-carbonyl-ethyl)-amino)-phenyl]propargyloxy}benzamidin
- (11) 4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-ethoxycar-bonyl-ethyl)-amino)-phenyl]propargyloxy}benzamidin

4-{3-[5-Hydroxycarbonylmethyl-2-methyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[5-Ethoxycarbonyl-methyl-2-methyl-4-(N-methyl-N-phenyl-aminocarbonyl)-phenyl]propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Trifluoressigsäure.

Ausbeute: 5 % der Theorie,

R<sub>f</sub>-Wert: 0.42 (Reversed Phase Kieselgel RP-8; Methanol/5%ige NaCl-Lösung = 6:4)

 $C_{27}H_{26}N_4O_3 \times CF_3COOH (454.53/568.45)$ 

Massenspektrum:  $(M+H)^+ = 455$ 

 $(M-H)^{-} = 453$ 

4-{3-{4-[N-(2-Ethoxycarbonyl-ethyl)-N-(1-ethylpyrazol-5-yl)-aminocarbonyll-2.5-dimethyl-phenyllpropargylamino}benzamidin Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-[N-(2-ethoxycarbonyl-ethyl)-N-(1-ethylpyrazol-5-yl)-aminocarbonyl]-2,5-dimethyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 24 % der Theorie,

R<sub>f</sub>-Wert: 0.22 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{29}H_{34}N_6O_3 \times CF_3COOH (514.63/628.65)$ 

Massenspektrum:  $(M+H)^* = 515$ 

# Beispiel 154

4-{3-[4-[N-(2-Hydroxycarbonyl-ethyl)-N-(1-ethylpyrazol-5-yl)-aminocarbonyll-2.5-dimethyl-phenyllpropargylamino}benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[4-[N-(2-Ethoxycarbo-nyl-ethyl)-N-(1-ethylpyrazol-5-yl)-aminocarbonyl]-2,5-dimethyl-phenyl]propargylamino}benzamidin, Lithiumhydroxid und anschließender Behandlung mit Trifluoressigsäure.

Ausbeute: 6 % der Theorie,

 $C_{27}H_{30}N_6O_3 \times CF_3COOH (486.58/600.60)$ 

Massenspektrum:  $(M+H)^+ = 487$ 

#### Beispiel 155

4-{3-[4-(Isoxazolidin-2-ylcarbonyl)-3-methyl-phenyl]propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(isoxazolidin-2-ylcarbonyl)-3-methyl-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 42 % der Theorie,

R.-Wert: 0.09 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{21}H_{22}N_4O_2 \times CF_3COOH (362.44/476.46)$ 

Massenspektrum:  $(M+H)^+ = 363$ 

4-{3-[4-(Diethylaminocarbonyl)-2,5-dimethyl-phenyl]propargylaminobenzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(diethylaminocarbonyl)-2,5-dimethyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 36 % der Theorie,

R<sub>f</sub>-Wert: 0.1 (Kieselgel; Methylenchlorid/Ethanol = 4:1)

 $C_{23}H_{28}N_4O \times CF_3COOH (376.51/490.53)$ 

Massenspektrum: (M+H) = 377

## Beispiel 157

4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-ethyl-carbonyl-amino)-phenyl]-propargylamino}benzamidin

a. 2.5-Dimethyl-4-(2-methoxycarbonyl-ethyl-amino)-l-iod-benzol 15.0 g (0.061 Mol) 2,5-Dimethyl-4-iod-anilin, 55 ml (0.611 Mol) Acrylsäuremethylester, 6 ml Benzyltrimethylammon-iumhydroxid und 0.3 g (3 mMol) Hydrochinon werden 11 Tage zum Rückfluß erhitzt. Anschließend wird der überschüssige Acrylester abdestilliert und der Rückstand an Kieselgel chromatographiert, wobei mit Methylenchlorid eluiert wird. Ausbeute: 11.7 g (58 % der Theorie), R<sub>f</sub>-Wert: 0.65 (Kieselgel; Essigester/Petrolether = 4:6)

b. 2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-ethylcarbonyl-amino)-1-iod-benzol

0.5 ml (6 mMol) Propionsäurechlorid wird in 30 ml Tetrahydro-furan vorgelegt, unter Eiskühlung 2.0 g (6 mMol) 2,5-Dimethyl-4-(2-methoxycarbonyl-ethyl-amino)-1-iod-benzol in 30 ml Tetrahydrofuran zugetropft und 30 Minuten unter Eiskühlung nachgerührt. Über Nacht wird bei Raumtemperatur gerührt, anschließend mit 14%iger NaCl-Lösung verdünnt und mit Essigester extrahiert. Die vereinigten organischen Extrakte werden über Natriumsulfat getrocknet und eingedampft. Der Rückstand wird

```
an Kieselgel chromatographiert, wobei mit Petrolether/Essigester (3:1) eluiert wird.
```

Ausbeute: 2.08 g (89 % der Theorie),

R:-Wert: 0.35 (Kieselgel; Dichlormethan/Ethanol = 98:2)

c. N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-(2-methoxy-carbonyl-ethyl)-N-ethylcarbonyl-amino)-phenyl]-propargyl-amino}benzamidin

Hergestellt analog Beispiel 1g aus 2,5-Dimethyl-4-(N-(2-meth-oxycarbonyl-ethyl)-N-ethylcarbonyl-amino)-iod-benzol,
N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetra-kis(triphenyl-phosphin)palladium(0), Kupfer(I)iodid und
Triethylamin in Acetonitril.

Ausbeute: 0.4 g (20 % der Theorie),

 $C_{30}H_{38}N_4O_5$  (534.66)

Massenspektrum:  $(M+H)^{+} = 535$  $(M+Na)^{+} = 557$ 

d. 4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-ethyl-carbonyl-amino)-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-ethyl-carbonyl-amino)-phenyl]-propargylamino}benzamidin und Tri-fluoressigsäure.

Ausbeute: 77 % der Theorie,

 $C_{25}H_{30}N_4O_3 \times CF_3COOH (434.57/548.57)$ 

Massenspektrum:  $(M+H)^+ = 435$ 

 $(M-H)^{-} = 433$ 

4-{3-[2,5-Dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-iso-propyl-amino)-phenyll-propargylamino)benzamidin

### a. 2.5-Dimethyl-4-iod-anilin

Zu einer Lösung aus 8.8 ml (70.8 mMol) 2,5-Dimethylanilin in 250 ml Methanol und 600 ml Dichlormethan werden 25.0 g (71.8 mMol) Benzyltrimethylammoniumdichloriodat und 12.8 g (92.5 mMol) Kaliumcarbonat gegeben und 1 Stunde bei Raumtemperatur gerührt. Anschließend werden die anorganischen Salze abgesaugt und das Solvens abdestilliert. Der Rückstand wird mit einer Lösung aus 13.5 g (70.8 mMol) Natriumpyrosulfit in 640 ml Wasser versetzt und mit Ether extrahiert. Die vereinigten organischen Extrakte werden über Natriumsulfat getrocknet und eingedampft. Das Rohprodukt wird mit Petrolether verrieben, abgesaugt und getrocknet.

Ausbeute: 13.3 g (76 % der Theorie),

R<sub>f</sub>-Wert: 0.65 (Kieselgel; Essigester/Petrolether = 3:7)

#### b. 2.5-Dimethyl-4-iod-N-isopropyl-anilin

4.1 g (0.017 Mol) 2,5-Dimethyl-4-iod-anilin, 1.4 ml (0.019 Mol) Aceton, 1.4 ml (0,024 Mol) Eisessig und 0.1 g (0.001 Mol) p-Toluolsulfonsäure werden in 30 ml Tetrahydrofuran gelöst und 30 Minuten bei Raumtemperatur gerührt. Anschließend werden 4.7 g (0.022 Mol) Natriumtriacetoxyborhydrid zugesetzt und 20 Stunden bei Raumtemperatur nachgerührt. Nach Zugabe von 150 ml Wasser wird soviel Natriumcarbonat zugesetzt, bis keine CO<sub>2</sub>-Entwicklung mehr feststellbar ist. Danach wird mit Essigester extrahiert, die vereinigten organischen Extrakte über Natriumsulfat getrocknet und eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Essigester/Petrolether (2:98) eluiert wird.

Ausbeute: 4.4 g (91.3 % der Theorie),

R<sub>f</sub>-Wert: 0.50 (Kieselgel; Essigester/Petrolether = 3:7)

c. 2,5-Dimethyl-N-(3-ethoxycarbonyl-propionyl)-N-isopropyl-4-iod-anilin

2.0 g (6.9 mMol) 2,5-Dimethyl-4-iod-N-isopropyl-anilin und 2.4 ml (13.8 mMol) N-Ethyl-diisopropylamin werden in 30 ml Tetrahydrofuran gelöst und nach Zugabe von 1.5 ml (10.5 mMol) Bernsteinsäureethylesterchlorid 2 Stunden zum Rückfluß erhitzt. Nach dem Abkühlen auf Raumtemperatur wird mit Essigester verdünnt und sukzessiv mit 1 molarer Salzsäure und 1-molarer Natronlauge gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und eingedampft.

Ausbeute: 2.9 g (100 % der Theorie),

R<sub>f</sub>-Wert: 0.85 (Kieselgel; Essigester/Petrolether = 3:7)

d. N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-isopropyl-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 1g aus 2,5-Dimethyl-N-(3-ethoxy-carbonyl-propionyl)-N-isopropyl-4-iod-anilin, N-tert.Butoxy-carbonyl-4-propargylamino-benzamidin, Tetrakis(triphenyl-phosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril.

Ausbeute: 39 % der Theorie,

R<sub>f</sub>-Wert: 0.3 (Kieselgel; Dichlormethan/Ethanol = 19:1)

 $C_{32}H_{42}N_4O_5$  (562.72)

Massenspektrum:  $(M+H)^+ = 563$  $(M+Na)^+ = 585$ 

e. 4-{3-[2,5-Dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-isopropyl-amino)-phenyll-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)N-isopropyl-amino)-phenyl]-propargylamino}benzamidin und
Trifluoressigsäure.

Ausbeute: 47 % der Theorie,

 $C_{27}H_{34}N_4O_3 \times CF_3COOH (462.62/576.62)$ 

Massenspektrum:  $(M+H)^{+} = 463$  $(M-H)^{-} = 461$ 

.

## Beispiel 159

4-{3-[5-(N-(2-Ethoxycarbonylethyl)-N-(2-pyridyl)-aminocarbonyl)-2-ethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[5-(N-(2-ethoxycarbonylethyl)-N-(2-pyridyl)-aminocarbonyl)-2-ethyl-phenyl]propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 47 % der Theorie,

R<sub>e</sub>-Wert: 0.19 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{29}H_{31}N_5O_3 \times CF_3COOH (497.60/611.62)$ 

Massenspektrum:  $(M+H)^+ = 498$ 

# Beispiel 160

4-{3-[5-(N-(2-Hydroxycarbonylethyl)-N-(2-pyridyl)-amino-carbonyl)-2-ethyl-phenyllpropargylamino}benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[5-(N-(2-Ethoxycarbo-nylethyl)-N-(2-pyridyl)-aminocarbonyl]-2-ethyl-phenyl]propargylamino}benzamidin, Natriumhydroxid und anschließender Behandlung mit Trifluoressigsäure.

Ausbeute: 55 % der Theorie,

 $R_f$ -Wert: 0.31 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{27}H_{27}N_5O_3 \times CF_3COOH (469.54/583.57)$ 

Massenspektrum:  $(M+H)^+ = 470$ 

 $(M-H)^- = 468$ 

4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-benzoyl-amino)-phenyll-propargylamino)benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-benzoyl-amino)-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 29 % der Theorie,

 $C_{29}H_{30}N_4O_3 \times CF_3COOH (482.59/596.61)$ 

Massenspektrum:  $(M+H)^+ = 483$ 

# Beispiel 162

4-{3-[2,5-Dimethyl-4-(N-(2-pyridyl)-N-methyl-aminocarbonyl)-phenyll-N-methyl-propargylamino}benzamidin

Hergestellt analog Beispiel 1e aus 4-{3-[2,5-Dimethyl-4-(N-(2-pyridyl)-N-methyl-aminocarbonyl)-phenyl]-N-methyl-propargylamino}benzonitril und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 6 % der Theorie,  $C_{26}H_{27}N_5O \times HCl (425.54/462.00)$ 

Massenspektrum: (M+H) + = 426

#### Beispiel 163

4-{3-[4-(3,5-Diethyl-pyrazol-1-yl)-2,5-dimethyl-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[4-(3,5-Diethyl-pyrazol-1-yl)-2,5-dimethyl-phenyl]-propargylamino}benzamidin und Trifluoressigsäure.

Ausbeute: 96 % der Theorie,

 $C_{25}H_{29}N_5 \times CF_3COOH (399.55/513.57)$ 

Massenspektrum: (M+H) = 400

4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-(2-hydroxycarbonyl-ethyl)-amino)-phenyllpropargylamino)benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyl]-propargylamino}benzamidin und Natriumhydroxid.

Ausbeute: 59 % der Theorie,

C<sub>24</sub>H<sub>28</sub>N<sub>4</sub>O<sub>3</sub> (420.52)

Massenspektrum: (M+H)\* = 421

(M+Na)\* = 443

#### Beispiel 165

4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-phenylsulfonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluor-essigsäure.

Ausbeute: 63 % der Theorie,  $C_{28}H_{3c}N_4O_4S \times CF_3COOH (518.64/632.66)$ Massenspektrum:  $(M+H)^+ = 519$ 

#### Beispiel 166

4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-hydroxycarbonyl-ethyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 37 % der Theorie,

C<sub>27</sub>H<sub>28</sub>N<sub>4</sub>O<sub>4</sub>S (504.61)

Massenspektrum:  $(M+H)^* = 505$ 

 $(M+Na)^* = 527$ 

# Beispiel 167

4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyll-prop-1-ylamino}-benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[2,5-Dimethyl-4-(N-phenylsulfonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyl]-propargylamino}-benzamidin, 10 % Palladium auf Aktivkohle und Wasserstoff in Ethanol.

Ausbeute: 65 % der Theorie,

 $C_{28}H_{34}N_4O_4S \times CF_3COOH$  (522.68/636.70)

Massenspektrum:  $(M+H)^* = 523$ 

#### Beispiel 168

4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-propyl-carbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-propyl-carbonyl-amino)-phenyl]-propargylamino}-benzamidin und Tri-fluoressigsäure.

Ausbeute: 82 % der Theorie,

 $C_{26}H_{32}N_4O_3 \times CF_3COOH (448.57/562.59)$ 

Massenspektrum:  $(M+H)^+ = 449$ 

#### Beispiel 169

4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-cyclopro-pylcarbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-cyclo-propylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin und
Trifluoressigsäure.

Ausbeute: 37 % der Theorie,

 $C_{26}H_{30}N_4O_3 \times CF_3COOH (446.56/560.58)$ 

Massenspektrum:  $(M+H)^* = 447$  $(M-H)^- = 445$ 

#### Beispiel 170

4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-methylcar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-methylcar-bonyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluor-essigsäure.

Ausbeute: 90 % der Theorie,

 $C_{24}H_{28}N_4O_3 \times CF_3COOH (420.52/534.54)$ 

Massenspektrum: (M+H) = 421

Massenspektrum:  $(M-H)^{-} = 405$ 

## Beispiel 171

4-{3-[2,5-Dimethyl-4-(N-(2-hydroxycarbonyl-ethyl)-N-methylcar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-methylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 57 % der Theorie,

C<sub>21</sub>H<sub>26</sub>N<sub>4</sub>O<sub>3</sub> (406.49)

#### Beispiel 172

4-{3-[2,5-Dimethyl-4-(N-(2-hydroxycarbonyl-ethyl)-N-propylcar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-propylcarbonyl-amino)-phenyll-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 65 % der Theorie,

 $C_{25}H_{30}N_4O_3$  (434.54)

WO 00/35859

Massenspektrum:  $(M-H)^{-} = 433$  $(M+H)^{+} = 435$ 

# Beispiel 173

4-{3-[2,5-Dimethyl-4-(N-2-hydroxycarbonyl-ethyl-N-cyclopropylcarbonyl-amino)-phenyll-propargylamino}-benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-cyclopropylcarbonyl-amino)phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig. Ausbeute: 75 % der Theorie,

 $C_{25}H_{28}N_4O_3$  (432.53)

Massenspektrum: (M+Na) = 455  $(M+H)^{+} = 433$ 

#### Beispiel 174

4-{3-[2,5-Dimethyl-4-(N-(3-hydroxycarbonyl-propionyl)-N-isopropyl-amino)-phenyll-propargylamino}-benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-isopropyl-amino)-phenyl]propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 73 % der Theorie,

 $C_{25}H_{30}N_4O_3$  (434.54)

Massenspektrum:  $(M+H)^+ = 435$  $(M-H)^{-} = 433$ 

#### Beispiel 175

4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-(2-methoxycarbonylethyl)-amino)-phenyll-prop-1-ylamino}-benzamidin Hergestellt analog Beispiel 136 aus 4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-(2-methoxycarbonyl-ethyl)-amino)-phenyl]propargylamino}benzamidin, 10 % Palladium auf Aktivkohle und Wasserstoff in Ethanol.

Ausbeute: 99 % der Theorie,

 $C_{25}H_{34}N_4O_3 \times CF_3COOH (438.58/552.60)$ 

Massenspektrum:  $(M+H)^* = 439$ 

#### Beispiel 176

4-{3-[2,5-Dimethyl-4-(N-(3-hydroxycarbonyl-propionyl)-N-iso-propyl-amino)-phenyll-prop-1-ylamino}-benzamidin

Hergestellt analog Beispiel 136 aus 4-{3-[2,5-Dimethyl-4-(N-(3-hydroxycarbonyl-propionyl)-N-isopropyl-amino)-phenyl]-propargylamino}-benzamidin, 10 % Palladium auf Aktivkohle und Wasserstoff in Ethanol.

Ausbeute: 99 % der Theorie,

 $C_{25}H_{34}N_4O_3$  (438.58/552.60)

Massenspektrum:  $(M+H)^+ = 439$ 

 $(M-H)^{-} = 437$ 

#### Beispiel 177

4-{3-[2,5-Dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-benzyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-benzyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressig-säure.

Ausbeute: 64 % der Theorie,

 $C_{31}H_{34}N_4O_3 \times CF_3COOH (510.65/624.67)$ 

Massenspektrum: (M+H) = 511

## Beispiel 178

4-{3-[2,5-Dimethyl-4-(N-(3-hydroxycarbonyl-propionyl)-N-ben-zyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-(3-ethoxycarbonyl-propionyl)-N-benzyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Trifluoressigsäure.

Ausbeute: 73 % der Theorie,

 $C_{29}H_{30}N_4O_3 \times CF_3COOH (482.59/596.61)$ Massenspektrum:  $(M+H)^* = 483$  $(M-H)^* = 481$ 

#### Beispiel 179

4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-methoxycarbonylmethyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-ethylcarbonyl-N-methoxycarbonylmethyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressig-säure.

Ausbeute: 67 % der Theorie,  $C_{24}H_{28}N_4O_3 \times CF_3COOH (420.52/534.54)$  Massenspektrum:  $(M+CF_3COOH-H)^2 = 533$ 

# Beispiel 180

4-{3-[4-(4,4-Dimethyl-5-oxo-4,5-dihydro-1H-pyrazol-3-yl)2,5-dimethyl-phenyll-propargylamino}-benzamidin

# a. 4-Brom-2.5-dimethylbenzoesäurechlorid

10.3 g (45 mMol) 4-Brom-2,5-dimethylbenzoesäure werden in 250 ml Dichlormethan gelöst und nach Zugabe von 9.9 ml (135 mMol) Thionylchlorid zwei Stunden zum Rückfluß erhitzt. Anschließend wird zur Trockene eingedampft.

Ausbeute: 3.2 g (100 % der Theorie).

- b. 3-(4-Brom-2,5-dimethyl-phenyl)-2,2-dimethyl-3-oxo-propionsäuremethylester
- 5.4 g (0.022 Mol) 4-Brom-2,5-dimethylbenzoesäurechlorid,
  4.5 ml (0.022 Mol) 1-Methoxy-2-methyl-1-(trimethylsilyloxy)1-propen und 8.2 ml (0.066 Mol) Bortrifluoridetherat werden in
  50 ml Diethylether unter Stickstoffatmosphäre 20 Stunden zum
  Rückfluß erhitzt. Anschließend wird 2x mit je 50 ml 1N Natronlauge und 1x mit 50 ml Wasser gewaschen. Die organische Phase
  wird mit Natriumsulfat getrocknet und das Lösungsmittel wird
  abdestilliert.

Ausbeute: 3.6 g (53 % der Theorie), R,-Wert: 0.6 (Kieselgel; Petrolether/Essigester = 4:1)

c. 3-(4-Brom-2,5-dimethyl-phenyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazol-5-on

3.5 g (11.7 mMol) 3-(4-Brom-2,5-dimethyl-phenyl)-2,2-dimethyl-3-oxo-propionsäure-methyl ester und 28 ml (28 mMol) 1-molare Hydrazinlösung in Tetrahydrofuran werden in 50 ml Ethanol 24 Stunden zum Rückfluß erhitzt. Das Lösemittel wird abdestilliert und der Rückstand aus Ethanol umkristallisiert. Ausbeute: 2.1 g (64 % der Theorie),

R<sub>f</sub>-Wert: 0.9 (Kieselgel; Petrolether/Essigester = 7:3)

d. N-tert.Butoxycarbonyl-4-{3-[4-(4,4-dimethyl-5-oxo-4,5-dihydro-1H-pyrazol-3-yl)-2,5-dimethyl-phenyl]-propargylamino}benzamidin

Hergestellt analog Beispiel 1g aus 3-(4-Brom-2,5-dimethyl-phenyl)-4,4-dimethyl-4,5-dihydro-1H-pyrazol-5-on, N-tert.But-oxycarbonyl-4-propargylamino-benzamidin, Tetrakis-(triphenyl-phosphin)-palladium(0), Kupfer-I-iodid und Triethylamin in Acetonitril.

Ausbeute: 19 % der Theorie,

 $R_f$ -Wert: 0.2 (Kieselgel; Dichlormethan/Ethanol = 19:1)

e. 4-{3-[4-(4,4-Dimethyl-5-oxo-4,5-dihydro-1H-pyrazol-3-yl)-2,5-dimethyl-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxy-4-{3-[4-(4,4-dimethyl-5-oxo-4,5-dihydro-1H-pyrazol-3-yl)-2,5-dimethyl-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 93 % der Theorie,

C<sub>21</sub>H<sub>25</sub>N<sub>5</sub>O x CF<sub>3</sub>COOH (387.49/501.51)

Massenspektrum: (M+H) = 388

4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-hydroxycarbonylmethyl-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-

4-(N-ethylcarbonyl-N-methoxycarbonylmethyl-amino)-phenyl]propargylamino}-benzamidin, Lithiumhydroxid und anschließender
Behandlung mit Eisessig.

Ausbeute: 74 % der Theorie,

 $C_{23}H_{26}N_{4}O_{3}$  (406.49)

Massenspektrum:  $(M+H)^* = 407$ 

 $(M+Na)^+ = 429$ 

 $(M-H)^{-} = 405$ 

### Beispiel 182

4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-ethoxycarbonylmethyl-aminocarbonylmethyl-amino)-phenyll-propargylamino}-benzamidin Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-ethylcarbonyl-N-ethoxycarbonylmethyl-aminocarbonylmethyl-amino)-phenyll-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 61 % der Theorie,

 $C_{27}H_{33}N_5O_4 \times CF_3COOH (491.60/605.62)$ 

Massenspektrum:  $(M+H)^+ = 492$ 

## Beispiel 183

4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-hydroxycarbonylmethyl-aminocarbonylmethyl-amino)-phenyll-propargylamino}-benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-ethylcarbonyl-N-ethoxycarbonylmethylaminocarbonylmethyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 48 % der Theorie,

 $C_{25}H_{29}N_5O_4$  (463.54)

Massenspektrum:  $(M+H)^+ = 464$ 

 $(M-H)^{-} = 462$ 

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-ethoxycarbonylmethyl-aminocarbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-isopropyl-N-ethoxycarbonylmethyl-aminocarbonyl-amino)-phenyll-propargylamino}-benzamidin und
Trifluoressigsäure.

Ausbeute: 67 % der Theorie,

 $C_{26}H_{33}N_5O_3 \times CF_3COOH (463.59/577.61)$ 

Massenspektrum: (M+H) = 464

### Beispiel 185

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin
Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-methoxycarbonylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 68 % der Theorie,

 $C_{24}H_{29}N_5O_3$  (435.53)

Massenspektrum:  $(M+H)^+ = 436$ 

 $(M-H)^{-} = 434$ 

#### Beispiel 186

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-trifluoracetylamino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-isopropyl-N-(3-trifluoracetylamino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 65 % der Theorie,

 $C_{28}H_{32}F_3N_5O_4 \times CF_3COOH (559.59/673.61)$ 

Massenspektrum:  $(M+H)^{-} = 560$  $(M-H)^{-} = 558$ 

# Beispiel 187

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-methoxycarbonylmethoxy-methylcarbonyl-amino)-phenyll-propargylamino)-benzamidin
Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-isopropyl-N-methoxycarbonyl-methoxymethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 65 % der Theorie,  $C_{26}H_{32}N_4O_4 \times CF_3COOH (464.47/578.59)$ Massenspektrum:  $M^* = 464$ 

# <u>Beispiel 188</u>

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethoxy-methylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-methoxycarbonylmethoxymethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 12 % der Theorie,

 $C_{25}H_{30}N_4O_4$  (450.54)

Massenspektrum:  $(M+H)^{+} = 451^{-}$  $(M-H)^{-} = 449$ 

#### Beispiel 189

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-methoxycarbonylmethyl-carbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-isopropyl-N-methoxycarbonylmethyl-carbonyl-amino)-phenyl]-propargylamino}-benzamidin und

Trifluoressigsäure.

Ausbeute: 74 % der Theorie,

C<sub>25</sub>H<sub>30</sub>N<sub>4</sub>O<sub>3</sub> x CF<sub>3</sub>COOH (434.54/548.56)

Massenspektrum:  $(M+H)^* = 435$  $(M-H)^- = 433$ 

# Beispiel 190

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethylcar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-iso-propyl-N-methoxycarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 80 % der Theorie,

 $C_{24}H_{28}N_4O_3$  (420.51)

Massenspektrum:  $(M+H)^{+} = 421$   $(M-H)^{-} = 419$  $(M+Na)^{+} = 443$ 

## Beispiel 191

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-methoxycarbonylmethyl-aminocarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin

0.3 g (0.71 Mol) 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxy-carbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benz-amidin und 0.1 g (0.71 Mol) Glycinmethylester werden in 10 ml Dimethylformamid gelöst und nach Zugabe von 0.2 g (0.78 Mol) N,N'-Dicyclohexylcarbodiimid 20 Stunden bei Raumtemperatur gerührt. Anschließend wird der ausgefallene Niederschlag abgesaugt und die Mutterlauge zur Trockene eingedampft. Der Rückstand wird an Kieselgel chromatographiert, wobei mit Dichlormethan/5 bis 14 % Ethanol eluiert wird.

Ausbeute: 88 % der Theorie,  $C_{27}H_{33}N_5O_4 \times HCl (491.60/528.06)$ Massenspektrum:  $(M+H)^+ = 492$  $(M-H)^- = 490$ 

4-{3-[2,5-Dimethyl-4-(N-propyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-propyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressig-säure.

Ausbeute: 58 % der Theorie,  $C_{27}H_{34}N_4O_3 \times CF_3COOH (462.59/576.62)$ 

R<sub>f</sub>-Wert: 0.2 (Kieselgel; Dichlormethan/Methanol = 4:1)

Massenspektrum:  $(M+H)^+ = 463$ 

### Beispiel 193

4-{3-[2,5-Dimethyl-4-(N-cyclobutyl-N-(3-ethoxycarbonyl-propio-nyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-cyclobutyl-N-(3-ethoxycarbonyl-propio-nyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluor-essigsäure.

Ausbeute: 49 % der Theorie,

 $C_{28}H_{34}N_4O_3 \times CF_3COOH (474.61/588.63)$ Massenspektrum:  $(M+H)^+ = 475$ 

# Beispiel 194

4-{3-[2,5-Dimethyl-4-(N-propyl-N-(3-hydroxycarbonyl-propio-nyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-pro-pyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyl]-propargyl-amino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Ammoniumchlorid.

Ausbeute: 63 % der Theorie,

C<sub>25</sub>H<sub>30</sub>N<sub>4</sub>O<sub>3</sub> x HCl (434.54/471.00)

Massenspektrum: (M+H)\* = 435

(M-H)\* = 433

4-{3-[2,5-Dimethyl-4-(N-ethyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-ethyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressig-säure.

Ausbeute: 49 % der Theorie,

 $C_{26}H_{32}N_4O_3 \times CF_3COOH (448.57/562.59)$ 

Massenspektrum: (M+H) = 449

### Beispiel 196

4-{3-[2,5-Dimethyl-4-(N-ethyl-N-(3-hydroxycarbonyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

0.2 g (0.267 Mol) 4-{3-[2,5-Dimethyl-4-(N-ethyl-N-(3-ethoxy-carbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin werden in 30 ml 6 molarer Salzsäure 19 Stunden bei Raumtemperatur gerührt. Anschließend wird im Vakuum eingedampft, der Rückstand mit Aceton verrieben und abgesaugt.

Ausbeute: 98 % der Theorie,

 $C_{24}H_{28}N_4O_3 \times HCl (420.52/456.98)$ 

Massenspektrum:  $(M+H)^+ = 421$ 

 $(M-H)^{-} = 419$ 

# Beispiel 197

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(N'-ethoxycarbonylmethyl-N'-methyl-aminomethylcarbonyl)-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-isopropyl-N-(ethoxycarbonylmethyl-(N-methylamino)methylcarbonyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 66 % der Theorie,

 $C_{28}H_{37}N_5O_3 \times 2 CF_3COOH (491.64/719.68)$ 

Massenspektrum:  $(M+H)^{+} = 492$ 

 $(M-H)^{-} = 490$ 

# Beispiel 198

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-ethoxycarbonyl-propio-nyl)-amino)-phenyll-propargyloxy}-benzamidin

Hergestellt analog Beispiel 1e aus 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyl]-propargyloxy}-benzonitril und Salzsäure/Ammoniumcarbonat in Ethanol.

Ausbeute: 9 % der Theorie,

 $C_{27}H_{33}N_3O_4 \times HCl (463.59/500.047)$ 

R<sub>f</sub>-Wert: 0.62 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)

Massenspektrum:  $(M+H)^+ = 464$ 

# Beispiel 199

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-hydroxycarbonyl-propionyl)-amino)-phenyll-propargyloxy}-benzamidin

Hergestellt analog Beispiel le aus 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-ethoxycarbonyl-propionyl)-amino)-phenyl]-propargyloxy}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 65 % der Theorie,

 $C_{25}H_{29}N_3O_4$  (435.53)

R<sub>f</sub>-Wert: 0.62 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)

Massenspektrum:  $(M+H)^* = 436$ 

 $(M-H)^{-} = 434$ 

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-aminocarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-iso-propyl-N-methoxycarbonylmethylaminocarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin, Lithiumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 3 % der Theorie,

 $C_{26}H_{31}N_5O_4$  (477.568)

 $R_{\rm f}\text{-Wert}$ : 0.74 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)

Massenspektrum:  $(M+H)^{+} = 478$  $(M+Na)^{+} = 500$ 

 $(M-H)^{-} = 476$ 

# Beispiel 201

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-amino-3-ethoxycarbonyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2,5-dimethyl-4-(N-isopropyl-N-(3-tert.butoxycarbonyl-amino-3-ethoxycarbonyl-propionyl)-amino)-phenyl]-propargyl-amino}-benzamidin und Trifluoressigsäure und anschließender

Behandlung mit ethanolischer Salzsäure.

Ausbeute: 86 % der Theorie,

 $C_{27}H_{35}N_5O_3 \times 2HCl (477.62/550.54)$ 

 $R_f$ -Wert: 0.77 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)

Massenspektrum:  $(M+H)^* = 478$ 

#### Beispiel 202

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-amino-3-hydroxycarbo-nyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-iso-propyl-N-(3-amino-3-ethoxycarbonyl-propionyl)-amino)-phenyl]-

propargylamino}-benzamidin und Kaliumhydroxid und anschließender Behandlung mit ethanolischer Salzsäure.

Ausbeute: 12 % der Theorie,

 $C_{25}H_{31}N_5O_3 \times 2HCl (449.56/522.49)$ 

R:-Wert: 0.69 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)

Massenspektrum:  $(M+H)^* = 450$ 

 $(M-H)^{-} = 448$ 

# Beispiel 203

4-{3-[5-Fluor-2-methyl-4-(N-isopropyl-N-ethoxycarbonylmethyl-aminocarbonyl-amino)-phenyll-propargylamino}-benzamidin
Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[5-fluor-2-methyl-4-(N-isopropyl-N-ethoxycarbonylmethyl-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin und
Trifluoressigsäure und anschließender Behandlung mit ethanolischer Salzsäure.

Ausbeute: 43 % der Theorie,

 $C_{25}H_{30}FN_5O_3 \times HCl (467.55/504.01)$ 

R<sub>f</sub>-Wert: 0.2 (Kieselgel; Dichlormethan/Methanol = 3:1)

Massenspektrum:  $(M+H)^+ = 468$ 

 $(M-H)^{-} = 466$ 

#### Beispiel 204

4-{3-[5-Fluor-2-methyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-aminocarbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[5-Fluor-2-methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin, Natriumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 92 % der Theorie,

 $C_{23}H_{26}FN_5O_3$  (439.49)

Massenspektrum:  $(M+H)^+ = 440$ 

 $(M+Na)^* = 462$ 

 $(M-H)^{-} = 438$ 

4-{3-[2-Methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2-methyl-4-(N-isopropyl-N-ethoxycarbonylmethylamino-carbonyl-amino)-phenyl]-propargylamino}-benzamidin und Tri-

fluoressigsäure. Ausbeute: 56 % der Theorie,

 $C_{25}H_{31}N_5O_3 \times CF_3COOH (449.55/563.58)$ 

Massenspektrum: (M+H) = 450

 $(M+CF_1COOH-H)^- = 562$ 

#### Beispiel 206

4-{3-[2,5-Dimethyl-4-(N-cyclobutyl-N-methoxycarbonylmethylcar-bonyl-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-cyclobutyl-N-methoxycarbonylmethyl-carbonyl-amino)-phenyl]-propargylamino}-benzamidin und Tri-fluoressigsäure.

Ausbeute: 65 % der Theorie,

 $C_{26}H_{30}N_4O_3 \times CF_3COOH (446.55/560.56)$ 

Massenspektrum:  $(M+H)^+ = 447$ 

# Beispiel 207

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-aminomethylcarbonyl-ami-no)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-isopropyl-N-tert.butoxycarbonylamino-methylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin und
Trifluoressigsäure.

Ausbeute: 61 % der Theorie,

C<sub>23</sub>H<sub>29</sub>N<sub>5</sub>O x 2 CF<sub>3</sub>COOH (391.53/619.57)

R<sub>1</sub>-Wert: 0.70 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)

Massenspektrum:  $(M+H)^* = 392$ 

WO 00/35859 PCT/EP99/09921

- 138 -

#### Beispiel 208

4-{3-[2-Methyl-4-(N-isopropyl-N-hydroxycarbonylmethylaminocarbonyl-amino)-phenyll-propargylamino}-benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[2-Methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocarbonyl-amino)-phenyl}-propargylamino}-benzamidin, Natriumhydroxid und anschließender Behandlung mit Eisessig.

Ausbeute: 42 % der Theorie,

 $C_{23}H_{27}N_5O_3$  (421.50)

Massenspektrum:  $(M+H)^+ = 422$  $(M+Na)^{+} = 444$  $(M-H)^{-} = 420$ 

# Beispiel 209

4-{3-[2-Chlor-5-methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocarbonyl-amino)-phenyll-propargylamino)-benzamidin Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2-chlor-5-methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 38 % der Theorie,  $C_{25}H_{30}ClN_5O_3 \times CF_3COOH (484.00/598.02)$ R<sub>f</sub>-Wert: 0.4 (Kieselgel; Dichlormethan/Methanol = 4:1) Massenspektrum: (M+H) = 484/486 (Chlorisotope)

# Beispiel 210

4-{3-[2-Chlor-5-methyl-4-(N-isopropyl-N-hydroxycarbonylmethylaminocarbonyl-amino)-phenyll-propargylamino}-benzamidin Hergestellt analog Beispiel 3 aus 4-{3-[2-Chlor-5-methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocarbonyl-amino)phenyl]-propargylamino}-benzamidin, Natriumhydroxid und anschließender Behandlung mit Eisessig. Ausbeute: 7 % der Theorie,  $C_{23}H_{26}ClN_5O_3$  (455.94)

Massenspektrum:  $(M+H)^{\circ} = 456/458$  (Chlorisotope)  $(M+Na)^{\circ} = 478/480$  (Chlorisotope)  $(M-H)^{\circ} = 454/456$  (Chlorisotope)

# Beispiel 211

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(3-amino-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[2,5-dimethyl-4-(N-isopropyl-N-(3-tert.butoxycarbonylamino-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und
Trifluoressigsäure.

Ausbeute: 71 % der Theorie,

R<sub>f</sub>-Wert: 0.39 (Kieselgel; Dichlormethan/Ethanol = 4:1)

R<sub>f</sub>-Wert: 0.36 (Reversed Phase Kieselgel RP-8; Methanol/6%ige

Kochsalzlösung = 4:1)  $C_{24}H_{33}N_5O \times 2 CF_3COOH (405.55/633.59)$ 

#### Beispiel 212

4-{3-[3-Methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl4-{3-[3-methyl-4-(N-isopropyl-N-ethoxycarbonylmethylaminocar-bonyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluor-essigsäure.

Ausbeute: 46 % der Theorie,  $R_f$ -Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 4:1)  $C_{25}H_{31}N_5O_3 \times CF_3COOH (449.56/563.58)$  Massenspektrum:  $(M+H)^+ = 450$   $(M-H)^- = 448$ 

#### Beispiel 213

4-{3-[3-Methyl-4-(N-isopropyl-N-hydroxycarbonylmethylaminocar-bonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt aus 4-{3-[3-Methyl-4-(N-isopropyl-N-ethoxycarbo-nylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benz-

amidin durch 18-stündiges Einwirken von 20 ml 6N HCl und anschließendes Abdestillieren der flüchtigen Bestandteile.

Ausbeute: 82 % der Theorie,

R<sub>f</sub>-Wert: 0.46 (Reversed Phase Kieselgel RP-8; Methanol/5%ige Kochsalzlösung = 6:4)

 $C_{23}H_{27}N_5O_3 \times HCl (421.50/457.96)$ 

Massenspektrum:  $(M+H)^{+} = 422$   $(M+Na)^{+} = 444$  $(M-H)^{-} = 420$ 

 $(M+HCl-H)^{-} = 456/458$  (Chlorisotope)

# Beispiel 214

4-{3-{2-Methyl-4-(N-isopropyl-N-(2-trifluoracetylamino-3-meth-oxycarbonyl-propionyl)-amino)-phenyl}-propargylamino}-benz-amidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2-methyl-4-(N-isopropyl-N-(2-trifluoracetylamino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 100 % der Theorie,

R<sub>f</sub>-Wert: 0.17 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{27}H_{30}F_3N_5O_4 \times CF_3COOH (545.57/659.59)$ 

Massenspektrum:  $(M+H)^+$  = 546  $(M-H)^-$  = 544  $(M+CF3COOH-H)^-$  = 658

## Beispiel 215

4-{3-[2-Methyl-4-(N-isopropyl-N-(2-trifluoracetylamino-3-hydroxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benz-amidin

Hergestellt analog Beispiel 213 aus 4-{3-[2-Methyl-4-(N-iso-propyl-N-(2-trifluoracetylamino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und 6N HCl. Ausbeute: 100 % der Theorie,

 $C_{26}H_{28}F_3N_5O_4 \times HCl (531.540/568.00)$ 

Massenspektrum:  $(M+H)^* = 532$ 

 $(M-H)^{-} = 530$ 

### Beispiel 216

4-{3-[2-Methyl-4-(N-isopropyl-N-(2-amino-3-hydroxycarbonyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt aus 0.160 g (0.282 mmol) 4-{3-[2-Methyl-4-(N-isopropyl-N-(2-trifluoracetylamino-3-hydroxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und 120 mg Natrium-carbonat in 20 ml Methanol durch 5-tägiges Rühren bei Raumtemperatur. Nach anschließendem 1-tägigen Erhitzen auf 60°C werden die flüchtigen Bestandteile abdestilliert.

Ausbeute: 98 % der Theorie,

 $C_{24}H_{29}N_5O_3 \times HC1 (435.53/471.99)$ 

#### Beispiel 217

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(N'-hydroxycarbonylmethyl-N'-methyl-aminomethylcarbonyl)-amino)-phenyl]-propargylamino}-benzamidin

Hergestellt analog Beispiel 3 aus 4-{3-[2,5-Dimethyl-4-(N-iso-propyl-N-(N'-ethoxycarbonylmethyl-N'-methyl-aminomethylcar-bonyl)-amino)-phenyl]-propargylamino}-benzamidin, Natrium-hydroxid, anschließender Fällung mit Eisessig und mehrmaliger chromatographischer Reinigung mittels HPLC-Säule.

Ausbeute: 2 % der Theorie,

 $C_{26}H_{33}N_5O_3 \times HCl (463.58/500.04)$ 

Massenspektrum:  $(M+H)^+ = 464$ 

4-{3-[2-Methyl-4-(N-isopropyl-N-(3-trifluoracetylamino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benz-amidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[2-methyl-4-(N-isopropyl-N-(3-trifluoracetylamino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 89 % der Theorie,

R<sub>f</sub>-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{27}H_{30}F_3N_5O_4 \times CF_3COOH (545.57/659.59)$ 

Massenspektrum:  $(M+H)^{-} = 546$  $(M-H)^{-} = 544$ 

#### Beispiel 219

4-[3-(3-Brom-5-(2-methyl-pyrrolidinocarbonyl)-furan-2-yl)-propargylaminolbenzamidin

Hergestellt analog Beispiel 1g aus 2,3-Dibrom-5-(2-methyl-pyrrolidinocarbonyl)-furan, N-tert.Butoxycarbonyl-4-propargylamino-benzamidin, Tetrakis(triphenylphosphin)palladium(0), Kupfer(I)iodid und Triethylamin in Acetonitril und anschließende Abspaltung des tert.Butyloxycarbonylrestes durch Trifluoressigsäure analog Beispiel 2.

Ausbeute: 17 % der Theorie,

R<sub>f</sub>-Wert: 0.28 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{20}H_{21}BrN_4O_2 \times CF_3COOH (429.32/543.34)$ 

Massenspektrum:  $(M+H)^* = 429/431$  (Bromisotope)

# Beispiel 220

4-{3-[2-Methyl-4-(N-isopropyl-N-(3-amino-3-methoxycarbonyl-propionyl)-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 216 aus 4-{3-[2-Methyl-4-(N-iso-propyl-N-(3-trifluoracetylamino-3-methoxycarbonyl-propionyl)-

amino)-phenyl]-propargylamino}-benzamidin und Natriumcarbonat in Methanol.

Ausbeute: 93 % der Theorie,

 $R_f$ -Wert: 0.45 (Reversed Phase Kieselgel RP-8; Methanol/5%ige

Kochsalzlösung = 6:4)

 $C_{25}H_{31}N_5O_3 \times CF_3COOH (449.56/563.58)$ 

#### Beispiel 221

4-{3-[3-Methyl-4-(N-isopropyl-N-methoxycarbonylmethylcarbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[3-methyl-4-(N-isopropyl-N-methoxycarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin und Trifluoressigsäure.

Ausbeute: 55 % der Theorie,

R<sub>f</sub>-Wert: 0.21 (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{24}H_{28}N_4O_3 \times CF_3COOH (420.52/534.54)$ 

Massenspektrum:  $(M+H)^+$  = 421 (M+CF,COOH-H) = 533

Beispiel 222

4-{3-[3-Methyl-4-(N-cyclopentyl-N-methoxycarbonylmethyl-carbonyl-amino)-phenyll-propargylamino}-benzamidin

Hergestellt analog Beispiel 2 aus N-tert.Butoxycarbonyl-4-{3-[3-methyl-4-(N-cyclopentyl-N-methoxycarbonylmethyl-carbonyl-amino)-phenyl]-propargylamino}-benzamidin und Tri-fluoressigsäure.

Ausbeute: 85 % der Theorie,

 $R_f$ -Wert: xxxx (Kieselgel; Dichlormethan/Ethanol = 4:1)

 $C_{26}H_{30}N_4O_3 \times CF_3COOH (446.55/560.57)$ 

Massenspektrum:  $(M+H)^+$  = 447

 $(M+CF_3COOH-H)^- = 559$ 

WO 00/35859 PCT/EP99/09921

- 144 -

## Beispiel 223

4-{3-[3-Methyl-4-(N-isopropyl-N-hydroxycarbonylmethylcarbonylamino)-phenyll-propargylamino)-benzamidin Hergestellt analog Beispiel 213 aus 4-{3-[3-Methyl-4-(N-isopropyl-N-methoxycarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin und 6N HCl. Ausbeute: 100 % der Theorie, R<sub>f</sub>-Wert: 0.40 (Kieselgel; Dichlormethan/Ethanol = 4:1)  $C_{23}H_{26}N_4O_3 \times HCl (406.48/442.94)$ Massenspektrum:  $(M+H)^+ = 407$  $(M-H)^{-} = 405$ 

#### Beispiel 224

4-{3-[3-Methyl-4-(N-cyclopentyl-N-hydroxycarbonylmethylcarbonyl-amino)-phenyll-propargylamino)-benzamidin Hergestellt analog Beispiel 213 aus 4-{3-[3-Methyl-4-(N-cyclopentyl-N-methoxycarbonylmethylcarbonyl-amino)-phenyl]-propargylamino}-benzamidin und 6N HCl. Ausbeute: 92 % der Theorie, R<sub>f</sub>-Wert: 0.23 (Kieselgel; Dichlormethan/Ethanol = 4:1)  $C_{25}H_{28}N_4O_3 \times HCl$  (432.52/468.99) Massenspektrum: (M+H) = 433  $(M-H)^{-} = 431$ 

Analog den vorstehenden Beispielen können folgende Verbindungen hergestellt werden:

4-{3-[2-Brom-5-methyl-4-(N-isopropyl-N-(2-ethoxycarbonylethylcarbonyl) - amino) - phenyl] - propargylamino } - benzamidin

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-ethoxycarbonyl-2-aminoacetylamino)-phenyl]-propargylamino}-benzamidin

4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-hydroxycarbonyl-2-amino-acetylamino)-phenyl]-propargylamino}-benzamidin

WO 00/35859 PCT/EP99/09921

- 4-{3-[2,5-Bis(trifluormethyl)-4-(N-isopropyl-N-ethoxycar-bonylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Bis(trifluormethyl)-4-(N-isopropyl-N-hydroxycarbo-nylmethylaminocarbonyl-amino)-phenyl}-propargylamino}-benz-amidin
- 4-{3-[2-Trifluormethyl-5-methyl-4-(N-isopropyl-N-ethoxycar-bonylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benz-amidin
- 4-{3-[2-Trifluormethyl-5-methyl-4-(N-isopropyl-N-hydroxycarbo-nylmethylaminocarbonyl-amino)-phenyl]-propargylamino}-benz-amidin
- 4-{3-[2-Trifluormethyl-4-(N-isopropyl-N-ethoxycarbonylmethyl-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2-Trifluormethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-ethoxycarbonylethyl-aminocarbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-hydroxycarbonylethyl-aminocarbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(ethoxycarbonylmethyl-aminomethylcarbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(hydroxycarbonylmethyl-aminomethylcarbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(4-amino-4-ethoxycarbonyl-butanoyl)-amino)-phenyl]-propargylamino}-benzamidin

WO 00/35859 PCT/EP99/09921

- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(4-amino-4-hydroxycarbo-nyl-butanoyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-amino-4-ethoxycarbonyl-butanoyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-amino-4-hydroxycarbo-nyl-butanoyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-ethoxycarbonylethyl-aminocarbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-hydroxycarbonylethyl-aminocarbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2-Methyl-4-(N-isopropyl-N-(3-amino-3-hydroxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2-Methyl-4-(N-isopropyl-N-(2-amino-3-methoxycarbonyl-propionyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(piperazin-1-yl-carbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(piperazin-1-yl-methylcar-bonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-(2-pyrrolidinon-5-yl-carbonyl)-amino)-phenyl]-propargylamino}-benzamidin
- 4-{3-[3-Brom-5-pyrrolidinocarbonyl-furan-2-yl]-propargylami-no}-benzamidin

## Beispiel 225

## Trockenamoulle mit 75 mg Wirkstoff pro 10 ml

#### Zusammensetzung:

Wirkstoff 75,0 mg
Mannitol 50,0 mg
Wasser für Injektionszwecke ad 10,0 ml

#### Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet. Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

# Beispiel 226

# Trockenampulle mit 35 mg Wirkstoff pro 2 ml

#### Zusammensetzung:

Wirkstoff 35,0 mg
Mannitol 100,0 mg
Wasser für Injektionszwecke ad 2,0 ml

## Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet.

Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

WO 00/35859 PCT/EP99/09921

#### Beispiel 227

#### Tablette mit 50 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff           | 50,0 mg  |
|-----|---------------------|----------|
| (2) | Milchzucker         | 98,0 mg  |
| (3) | Maisstärke          | 50,0 mg  |
| (4) | Polyvinylpyrrolidon | 15,0 mg  |
| (5) | Magnesiumstearat    | 2.0 mg   |
|     |                     | 215,0 mg |

#### Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugemischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe. Durchmesser der Tabletten: 9 mm.

#### Beispiel 228

# Tablette mit 350 mg Wirkstoff

### Zusammensetzung:

| (1) | Wirkstoff           | 350,0 | mg |
|-----|---------------------|-------|----|
| (2) | Milchzucker         | 136,0 | mg |
| (3) | Maisstärke          | 80,0  | mg |
| (4) | Polyvinylpyrrolidon | 30,0  | mg |
| (5) | Magnesiumstearat    | 4.0   | шg |
|     |                     | 600,0 | mg |

#### Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zuge-

mischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe. Durchmesser der Tabletten: 12 mm.

#### Beispiel 229

#### Kapseln mit 50 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff                | 50,0  | mg |
|-----|--------------------------|-------|----|
| (2) | Maisstärke getrocknet    | 58,0  | mg |
| (3) | Milchzucker pulverisiert | 50,0  | mg |
| (4) | Magnesiumstearat         | 2.0   | mg |
|     |                          | 160,0 | mg |

#### Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 3 abgefüllt.

#### Beispiel 230

#### Kapseln mit 350 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff                | 350,0 | mg  |
|-----|--------------------------|-------|-----|
| (2) | Maisstärke getrocknet    | 46,0  | mg  |
| (3) | Milchzucker pulverisiert | 30,0  | mg  |
| (4) | Magnesiumstearat         | 4.0   | _mg |
|     |                          | 430,0 | mg  |

## Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Gr6Be 0 abgefüllt.

#### Beispiel 231

#### Suppositorien mit 100 mg Wirkstoff

#### 1 Zäpfchen enthält:

| Wirkstoff          |        |         |   | 100,0 | mg |
|--------------------|--------|---------|---|-------|----|
| Polyethylenglykol  | (M.G.  | 1500)   |   | 600,0 | mg |
| Polyethylenglykol  | (M.G.  | 6000)   |   | 460,0 | mg |
| Polyethylensorbita | inmono | stearat |   | 840.0 | mg |
|                    |        |         | 2 | 000,0 | mq |

#### Herstellung:

Das Polyethylenglykol wird zusammen mit Polyethylensorbitanmonostearat geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz in der Schmelze homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

#### Patentansprüche

1. Substituierte Aryl- und Heteroarylderivate der allgemeinen Formel

$$Ar - A - (HCR_1) - X - Y$$
 , (I)

in der

A eine Ethinylengruppe, eine gegebenenfalls durch eine  $C_{1-3}$ -Al-kyl- oder Carboxy- $C_{1-3}$ -alkylgruppe oder durch ein Chlor-, Bromoder Jodatom substituierte Vinylen- oder Ethylengruppe,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe,

Ar eine durch die Reste R, bis R, substituierte Phenylgruppe, wobei

 $R_2$  eine  $C_{1-6}$ -Alkyl- oder  $C_{3-7}$ -Cycloalkyl- $C_{1-3}$ -alkylgruppe, die jeweils im  $C_{1-6}$ - und  $C_{1-3}$ -Alkylteil durch eine Carboxy-, Phenyl-, Amino-,  $C_{1-3}$ -Alkylamino-, Carboxy- $C_{1-3}$ -alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, N- $(Carboxy-C_{1-3}$ -alkyl)- $C_{1-3}$ -alkylamino-,  $C_{3-7}$ -Cycloalkylamino-, Phenylamino-, N- $(C_{1-3}$ -Alkyl)-phenyl-amino-, N- $(C_{1-4}$ -Alkanoyl)-phenylamino-, Heteroarylamino-, N- $(C_{1-3}$ -Alkyl)-heteroarylamino-, N- $(C_{1-3}$ -Alkyl)-heteroarylamino-, N- $(C_{1-3}$ -Alkyl)-heteroarylamino- oder N- $(Carboxy-C_{1-3}$ -alkyl)-heteroarylaminogruppe substituiert sein können,

eine Carboxy- $C_{1-5}$ -alkylgruppe, die im Alkylteil durch eine  $C_{1-3}$ -Alkylamino-, N,N-Di- $(C_{1-3}$ -alkyl)-amino-, Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert ist,

eine Carboxy- $C_{1-5}$ -alkylgruppe, in der die Wasserstoffatome einer Methylengruppe durch eine  $n-C_{2-5}$ -Alkylenbrücke ersetzt sind,

eine Phenyl-, Phenyloxy- oder Phenylsulfonylgruppe, die jeweils im Phenylteil durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1-3}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alkoxygruppe substituiert sein können,

eine C<sub>1-5</sub>-Alkylamino-, Carboxy-C<sub>1-3</sub>-alkylamino-, Di-(C<sub>1-5</sub>-al-kyl)-amino-, N-(Carboxy-C<sub>1-3</sub>-alkyl)-C<sub>1-5</sub>-alkylamino-, C<sub>3-7</sub>-Cycloalkylamino-, N-(Carboxy-C<sub>1-3</sub>-alkyl)-C<sub>3-7</sub>-cyclo-alkylamino-, Phenylamino-, N-(C<sub>1-3</sub>-Alkyl)-phenylamino-, N-(Carboxy-C<sub>1-3</sub>-alkyl)-phenylamino-, N-(C<sub>1-3</sub>-Alkyl)-heteroarylamino- oder N-(Carboxy-C<sub>1-3</sub>-alkyl)-heteroarylamino-phenylamino-

eine C<sub>1-5</sub>-Alkylcarbonylamino-, C<sub>3-7</sub>-Cycloalkylcarbonylamino-, Arylcarbonylamino-, Heteroarylcarbonylamino-, C<sub>1-5</sub>-Alkylsul-fonylamino-, Arylsulfonylamino-, Heteroarylsulfonylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-5</sub>-alkylcarbonylamino-, N-(C<sub>1-3</sub>-Alkyl)- C<sub>3-7</sub>-cycloalkylcarbonylamino-, N-(C<sub>1-3</sub>-Alkyl)-arylcarbonyl-amino-, N-(C<sub>1-3</sub>-Alkyl)-heteroarylcarbonylamino-, N-(C<sub>1-3</sub>-Al-kyl)-C<sub>1-5</sub>-alkylsulfonylamino-, N-(C<sub>1-3</sub>-Alkyl)-arylsulfonyl-amino- oder N-(C<sub>1-3</sub>-Alkyl)-heteroarylsulfonylaminogruppe, wobei

die vorstehend erwähnten N- $(C_{1-3}$ -Alkyl)-teile zusätzlich durch eine Carboxy-, Carboxy- $C_{1-3}$ -alkylaminocarbonyl- oder N- $(C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe oder mit Ausnahme des  $\alpha$ -Kohlenstofatoms bezogen auf das Stickstoffatom auch durch eine Hydroxy-, Carboxy- $C_{1-3}$ -alkoxy-, Amino-, Carboxy- $C_{1-3}$ -alkylamino- oder N- $(C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylaminogruppe substituiert sein können,

eine 5- bis 7-gliedrige Cycloalkyleniminogruppe,

eine Amino-,  $C_{1-5}$ -Alkylamino-,  $C_{3-7}$ -Cycloalkylamino-, Aryl-amino-, Aryl- $C_{1-3}$ -alkylamino-, Heteroarylamino- oder Heteroaryl- $C_{1-3}$ -alkyl-aminogruppe, die jeweils am Aminstickstoff-

atom durch eine  $C_{1-3}$ -Alkylcarbonyl-, Carboxy- $C_{1-3}$ -alkylcarbonyl-, Carboxy- $C_{1-3}$ -alkylaminocarbonyl-, 2-Oxo-pyrrolidinylcarbonyl- oder Piperazinocarbonylgruppe substituiert sind, wobei zusätzlich

- (i) die vorstehend erwähnte Aminogruppe, die durch eine  $C_{1-3}$ -Alkylcarbonyl-, Carboxy- $C_{1-3}$ -alkylcarbonyl- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe monosubstituiert ist, durch eine 5- bis 7-gliedrige Cycloalkyleniminogruppe oder durch eine N,N-Di- $(C_{1-5}$ -Alkyl)-aminogruppe substituiert ist, und
- (ii) der Alkylteil der vorstehend erwähnten  $C_{1-3}$ -Alkylcarbonylgruppe durch eine Carboxy-, Amino-, Hydroxy-, Carboxy- $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-3}$ -alkylaminocarbonyl-, Carboxy- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkyl-amino- oder Amino- $C_{1-3}$ -alkylcarbonylaminogruppe oder durch eine Carboxy- oder Hydroxygruppe und durch eine Amino-oder Trifluoracetylaminogruppe substituiert ist,

eine Carbiminogruppe, die am Stickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy-, Amino-,  $C_{1-3}$ -Alkylamino-, Carboxy- $C_{1-3}$ -alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino- oder N- $(Carboxy-C_{1-3}$ -alkyl)-  $C_{1-3}$ -alkylaminogruppe und am Kohlenstoffatom durch eine  $C_{1-5}$ -Alkylgruppe, durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl- oder  $C_{1-3}$ -Alkoxygruppe substituierte Phenylgruppe oder durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Heteroarylgruppe substituiert ist,

eine Heteroaryl- oder Heteroaryl- $C_{1-3}$ -alkylgruppe, die jeweils im Heteroarylteil zusätzlich auch durch eine Phenyl- oder Heteroarylgruppe oder durch eine Phenyl- oder Heteroarylgruppe und durch eine Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alk-oxycarbonyl- $C_{1-3}$ -alkylgruppe substituiert sein können,

eine gegebenfalls durch 1 bis 3  $C_{1-3}$ -Alkylgruppen substituierte 5-0xo-4,5-dihydro-pyrazolyl- oder 6-0xo-4,5-dihydro-pyridazinylgruppe, in der ein Alkylsubstituent gleichzeitig

WO 00/35859 PCT/EP99/09921

durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann, oder

- 154 -

eine Carbonylgruppe, die

durch ein Wasserstoffatom, durch eine Hydroxy-,  $C_{1-5}$ -Alk-oxy- oder  $C_{3-7}$ -Cycloalkoxygruppe,

durch eine gegebenenfalls durch eine Carboxygruppe substituierte C<sub>1-5</sub>-Alkyl- oder C<sub>3-7</sub>-Cycloalkylgruppe,

durch eine durch eine Piperazinogruppe substituierte  $C_{1-3}$ -Alkylgruppe,

durch eine Phenylgruppe, die durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1-3}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl-,  $C_{1-3}$ -Alkoxy- oder Carboxygruppe substituiert sein kann,

durch eine Amino-, C<sub>1-5</sub>-Alkylamino-, Carboxy-C<sub>1-3</sub>-alkylamino-, C<sub>3-7</sub>-Cycloalkylamino-, Phenylamino- oder Heteroarylaminogruppe, die jeweils zusätzlich am Aminstickstoffatom
durch eine C<sub>1-5</sub>-Alkyl-, C<sub>3-7</sub>-Cycloalkyl-, Phenyl-C<sub>1-3</sub>-alkyl-,
Carboxy-C<sub>1-3</sub>-alkyl-, 2-{Di-(C<sub>1-3</sub>-alkyl)-amino}-ethyl-, 3-{Di-(C<sub>1-3</sub>-alkyl)-amino}-propyl-, Di-(C<sub>1-3</sub>-alkyl)-amino-,
2-(N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino)-ethyl-, 3-(N-Carboxy-C<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino)-propyl- oder N-CarboxyC<sub>1-3</sub>-alkyl-C<sub>1-3</sub>-alkylamino-, Phenyl-, Pyridyl-, Pyrrolidinyloder Piperidinylgruppe substituiert sein können,

durch eine gegebenenfalls durch eine oder zwei C<sub>1-3</sub>-Alkyl-gruppen substituierte Pyrrolyl-, Thienyl-, Imidazolyl-, Pyrazolyl-, Thiazolyl-, Pyridinyl-, Pyrimidinyl-, Pyrazinyl- oder Pyridazinylgruppe, an die jeweils über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe substituierte  $C_{3-6}$ -Cycloalkylenimino-,  $C_{5-8}$ -Bicycloalkylenimino-, Morpholino-, Piperazino-, Dihydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazinyl- oder Tetrahydropyridazinylgruppe oder

durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl-, Hydroxy-, Hydroxy- $C_{1-3}$ -alkyl-, Amino-, Carboxy-, Carboxy- $C_{1-3}$ -alkoxy- $C_{1-3}$ -alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder Carboxy- $C_{1-3}$ -alkylaminocarbonyl- $C_{1-3}$ -alkyl-gruppe substituierte  $C_{3-6}$ -Cycloalkyleniminogruppe,

durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkyl- oder Carboxy- $C_{1-3}$ -alkylgruppe substituierte  $C_{5-8}$ -Bicycloalkylenimino-, Morpholino-, Piperazino-, Dihydropyrazolo-, Tetrahydropyrazolo-, Tetrahydropyrazinyl- oder Tetrahydropyridazinylgruppe substituiert ist,

R<sub>3</sub> ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom, eine Formyl- oder Trifluormethylgruppe,

eine  $C_{1-3}$ -Alkoxy-, Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-,  $C_{1-4}$ -Alkanoylamino- oder N- $(C_{1-4}$ -Alkanoyl)- $C_{1-3}$ -alkyl-aminogruppe,

eine gegebenenfalls durch eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-, Carboxy- $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylamino- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe substituierte  $C_{1-3}$ -Alkylgruppe,

eine durch eine Carboxy- oder Carboxy- $C_{1-3}$ -alkylaminocarbonylgruppe substituierte  $C_{2-3}$ -Alkenylgruppe oder

eine gegebenenfalls am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkyl-gruppe substituierte Carbiminogruppe, die am Iminostickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy- oder Aminocarbonylaminogruppe substituiert ist,

oder  $R_2$  und  $R_3$  zusammen eine -CO-O-CH<sub>2</sub>- oder -CO-O-CH<sub>2</sub>CH<sub>2</sub>- Gruppe und

 $R_4$  ein Wasserstoff-, Fluor-, Chlor-, Brom- oder Iodatom, eine  $C_{1\text{-}3}\text{-}\mathrm{Alkyl}\text{-},\ C_{3\text{-}7}\text{-}\mathrm{Cycloalkyl}\text{-},\ \mathrm{Trifluormethyl-}$  oder  $C_{1\text{-}3}\text{-}\mathrm{Alkoxy-}$  gruppe darstellen,

oder Ar auch eine Heteroarylgruppe, die durch die vorstehend erwähnten Reste  $R_2$  bis  $R_4$  substituiert sein kann, welche wie vorstehend erwähnt definiert sind,

X ein Sauerstoff- oder Schwefelatom, eine gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkylgruppen substituierte Methylengruppe, eine Carbonyl-, Sulfinyl-, Sulfonyl-, Imino-, N- $(C_{1-3}$ -Alkyl)-imino- oder N- $(Carboxy-C_{1-3}$ -alkyl)-iminogruppe, wobei der Alkylteil der N- $(C_{1-3}$ -Alkyl)-iminogruppe in 2- oder 3-Stellung zusätzlich durch eine Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-,  $C_{1-4}$ -Alkanoylamino- oder N- $(C_{1-4}$ -Alkanoyl)- $C_{1-3}$ -alkyl-aminogruppe substituiert sein kann, und

Y eine durch eine Aminogruppe substituierte Cyclohexylgruppe oder eine durch den Rest  $R_s$  substituierte Phenyl- oder Heteroarylgruppe, wobei die vorstehend erwähnte Phenylgruppe jeweils durch ein Fluor-, Chlor-, Brom- oder Jodatom oder durch eine  $C_{1-3}$ -Alkyl- oder  $C_{1-3}$ -Alkoxygruppe sowie die vorstehend erwähnte Heteroarylgruppe durch eine  $C_{1-3}$ -Alkylgruppe substituiert sein können und

 $R_5$  ein Wasserstoffatom, eine Cyanogruppe oder eine gegebenenfalls durch eine in vivo abspaltbare Gruppe substituierte Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino-, Guanidino- oder Guanidino- $C_{1-3}$ -alkylgruppe darstellt,

bedeuten, wobei

unter den vorstehend erwähnten Heteroarylgruppen eine gegebenenfalls durch eine oder zwei C<sub>1-3</sub>-Alkylgruppen substituierte 5-gliedrige heteroaromatische Gruppe, die eine ge gebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom und eine oder zwei Stickstoffatome sowie deren partiell hydrierten Derivate, insbesondere deren Dihydroderivate, oder eine 6-gliedrige heteroaromatische Gruppe, die ein, zwei oder drei Stickstoffatome enthält, wobei zusätzlich an die vorstehend erwähnten 5- und 6-gliedrigen heteroaromatischen Ringe über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann, zu verstehen ist,

die bei der Definition der Reste vorstehend erwähnten Carboxygruppen durch eine Tetrazolylgruppe oder durch eine in-vivo in eine Carboxygruppe überführbare Gruppe ersetzt sein können, und

die der bei der Definition der Reste erwähnten Imino- oder Aminogruppen durch einen in-vivo abspaltbaren Rest substituiert sein können,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

2. Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in der

A eine gegebenenfalls durch ein Chlor-, Brom- oder Jodatom substituierte Vinylengruppe, eine Ethylen- oder Ethinylengruppe,

 $R_1$  ein Wasserstoffatom oder eine  $C_{1-3}$ -Alkylgruppe,

Ar eine durch eine Benzoylgruppe substituierte Pyridyl- oder Thienylgruppe,

eine durch eine Pyrrolidinocarbonylgruppe substituierte Bromfuranylgruppe oder

eine durch die Reste  $R_2$  bis  $R_4$  substituierte Phenylgruppe, wobei

R2 eine Phenyl- oder Phenoxygruppe,

eine  $C_{1-3}$ -Alkylgruppe, die durch eine Phenyl-, Phenylamino-, N-( $C_{1-3}$ -Alkyl)-phenylamino- oder N-( $C_{1-3}$ -Alkanoyl)-phenyl-aminogruppe substituiert sein kann,

eine Carboxy- oder C<sub>1-3</sub>-Alkoxycarbonylgruppe,

eine Benzoyl- oder Phenylsulfonylgruppe, in denen jeweils der Phenylteil zusätzlich durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl-, Methoxy-, Carboxy- oder C<sub>1-3</sub>-Alkoxycarbonylgruppe substituiert sein kann, wobei in den vorstehend erwähnten Benzoylgruppen zusätzlich das Sauerstoffatom durch Carboxy-C<sub>1-3</sub>-alkoxyimino- oder C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkoxyiminogruppe ersetzt sein kann,

eine C<sub>1-5</sub>-Alkylaminogruppe, die im Alkylteil durch eine Phenyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Carboxy-C<sub>1-3</sub>-alkylaminocarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylaminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylaminocarbonyl- oder N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-3</sub>-alkoxycarbonyl-C<sub>1-3</sub>-alkylaminocarbonylgruppe substituiert sein kann, oder eine C<sub>3-7</sub>-Cycloalkylaminogruppe, wobei die vorstehend erwähnten Gruppen jeweils am Aminstickstoffatom zusätzlich durch eine C<sub>3-7</sub>-Cycloalkanoyl-, Benzoyloder Phenylsulfonylgruppe, durch eine Carboxy-C<sub>1-3</sub>-alkylcarbonyl- oder C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylcarbonylgruppe, in der der Alkylteil der Alkylcarbonylgruppe jeweils durch eine Amino- oder Trifluoracetylaminogruppe substituiert sein kann, durch eine C<sub>2-4</sub>-Alkanoylgruppe, die im Alkanoylteil durch eine Amino-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Carboxy-C<sub>1-3</sub>-alkoxy-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-al-

kylaminocarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylaminocarbonyl-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylaminocarbonyl- oder N-( $C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkoxycarbonyl- $C_{1-3}$ -alkylaminocarbonylgruppe substituiert sein kann, durch eine Carboxy- $C_{1-2}$ -alkylaminocarbonyl-, Carboxy- $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonyl-, Carboxy- $C_{1-3}$ -alkylaminocarbonyl- $C_{1-2}$ -alkylaminocarbonyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylaminocarbonyl- $C_{1-2}$ -alkylaminocarbonyl-carbonylgruppe substituiert ist,

eine Formyl-, Pyridylcarbonyl-, Thienylcarbonyl-, Imidazolylcarbonyl-, 1-Methyl-imidazolylcarbonyl-, Thiazolylcarbonyl- oder Indolylcarbonylgruppe,

eine gegebenfalls durch eine 1 oder 2 Methylgruppen substituierte Benzimidazol-1-yl-, Benzimidazol-1-yl-methyl- oder 5-Oxo-4,5-dihydro-pyrazol-3-ylgruppe,

eine durch eine Phenylgruppe, durch eine Phenylgruppe und eine  $C_{1-4}$ -Alkylgruppe oder durch eine oder zwei  $C_{1-4}$ -Alkylgruppe substituierte Pyrazol-1-ylgruppe, in der ein Alkylsubstituent gleichzeitig durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann, oder

eine Carbonylgruppe, die

durch eine gegebenenfalls durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe,

durch eine C3-7-Cycloalkylgruppe,

durch eine Amino- oder  $C_{1-5}$ -Alkylaminogruppe, die jeweils am Aminstickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe, die durch eine  $C_{3-7}$ -Cycloalkyl-, Phenyl-, Pyrrolidinyl- oder Pyridinylgruppe oder in 2- oder 3-Stellung durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein kann, oder durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein kann,

durch eine Carboxy- $C_{1-3}$ -alkylamino- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylaminogruppe, die jeweils am Aminstickstoffaton durch eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Pyrazolylgruppe substituiert ist,

durch eine 3- bis 7-gliedrige Cycloalkyleniminogruppe, die durch eine oder zwei C<sub>1-3</sub>-Alkylgruppen substituiert sein kann, wobei die vorstehend erwähnten gegebenenfalls durch eine Methylgruppe substituierten Pyrrolidinogruppen zusätzlich durch eine Hydroxymethyl-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Carboxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-al-kyl-, Carboxy-C<sub>1-3</sub>-alkyloxy-C<sub>1-3</sub>-alkyloxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkyloxy-C<sub>1-3</sub>-alkyl-, Carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl-, N-(C<sub>1-3</sub>-Alkyl)-carboxy-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkyl- oder N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-3</sub>-alk-oxycarbonyl-C<sub>1-3</sub>-alkylamino-C<sub>1-3</sub>-alkylgruppe substituiert sein können,

durch eine Morpholino-, Piperazino-, 4-Methyl-piperazino-, Piperazino-C<sub>1-3</sub>-alkyl-, Dihydropyrazolo-, Tetrahydropyra-zolo-, Tetrahydroisooxazolo- oder 7-Azabicycloheptylgruppe oder

durch eine gegebenenfalls im Alkylteil durch eine Carboxyoder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte N- $(C_{1-3}$ -Alkyl)-phenyl- oder N- $(C_{1-3}$ -Alkyl)-pyridylaminogruppe substituiert ist,

R, ein Wasserstoff-, Fluor-, Chlor- oder Bromatom,

eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Trifluormethyl-, Amino- oder  $C_{2-3}$ -Alkanoylaminogruppe,

eine  $C_{1-3}$ -Alkylgruppe, die durch eine Hydroxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Carboxy- $C_{1-3}$ -alkoxy-,  $C_{1-3}$ -Alkoxycarbonyl-  $C_{1-3}$ -alkoxy-, Carboxy- $C_{1-2}$ -alkylaminocarbonyl-,  $C_{1-3}$ -Alkoxy-carbonyl- $C_{1-3}$ -alkylaminocarbonyl-, N- $(C_{1-3}$ -Alkyl)-carboxy-

 $C_{1\cdot3}$ -alkylaminocarbonyl- oder N- $(C_{1\cdot3}$ -Alkyl)- $C_{1\cdot3}$ -alkoxycarbonyl- $C_{1\cdot3}$ -alkylaminocarbonylgruppe substituiert sein kann,

eine  $C_{1-3}$ -Alkylgruppe, die durch eine Carboxy- $C_{1-3}$ -alkylamino-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylamino-, N-( $C_{1-3}$ -Alkyl)-carboxy- $C_{1-3}$ -alkylamino- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylaminocarbonylgruppe substituiert ist,

eine durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte  $C_{2-3}$ -Alkenylgruppe oder

eine gegebenenfalls am Kohlenstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituierte Carbiminogruppe, die am Iminostickstoffatom durch eine Carboxy- $C_{1-3}$ -alkoxy-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkoxy- oder Aminocarbonylaminogruppe substituiert ist,

oder R2 und R3 zusammen eine -CO-O-CH2-Gruppe und

 $R_4$  ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine  $C_{1-3}$ -Alkyl- oder Trifluormethylgruppe darstellen,

X ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte -NH-Gruppe und

Y eine durch eine Aminogruppe substituierte Cyclohexylgruppe, eine durch eine Amidinogruppe, welche durch eine Benzoyl- oder C<sub>1-8</sub>-Alkoxycarbonylgruppe substituiert sein kann, substituierte Phenylen- oder Pyridinylengruppe, wobei die vorstehend erwähnte Phenylengruppe durch eine Methyl- oder Methoxygruppe und die vorstehend erwähnte Pyridinylengruppe durch eine Methyl-gruppe substituiert sein kann,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

# 3. Verbindungen der allgemeinen Formel

$$R_2$$
 $R_4$ 
 $R_4$ 

in der

A eine Ethylen- oder Ethinylengruppe,

X ein Sauerstoffatom oder eine gegebenenfalls durch eine Methylgruppe substitierte Iminogruppe,

 $R_2$  eine  $C_{1-4}$ -Alkylcarbonylamino- oder  $C_{3-5}$ -Cycloalkylcarbonyl-aminogruppe, die jeweils am Aminstickstoffatom durch eine Carboxy- $C_{1-2}$ -alkyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonyl- $C_{1-2}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonyl- $C_{1-2}$ -alkylgruppe substituiert ist,

eine C1-4-Alkylamino- oder C3-5-Cycloalkylaminogruppe, die jeweils am Aminstickstoffatom durch eine durch eine gegebenenfalls im Alkylteil durch eine Aminogruppe substituierte Carboxy-C<sub>1-3</sub>-alkylcarbonyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkylcarbonyl-,  $Carboxy-C_{1-2}-alkylaminocarbonyl-C_{1-2}-alkylcarbonyl-, C_{1-3}-Alkoxy$  $carbonyl-C_{1-2}-alkylaminocarbonyl-C_{1-2}-alkylcarbonyl-$ , Carboxy- $C_{1-2}$ -alkylaminocarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonyl-, Carboxy-C<sub>1-2</sub>-alkylaminocarbonyl-C<sub>1-2</sub>-alkylaminocarbonyl- oder C1-3-Alkoxycarbonyl-C1-2-alkylaminocarbonyl-C1-2-alkylaminocarbonylgruppe, durch eine Carboxymethyloxymethylcarbonyl-, C1-3-Alkoxycarbonyl-methyloxymethylcarbonyl-, Carboxymethylaminomethylcarbonyl-, C1-3-Alkoxycarbonyl-methylaminomethylcarbonyl-, N-Methyl-carboxymethylaminomethylcarbonyl-, N-Methyl-C<sub>1-3</sub>-alkoxycarbonyl-carboxymethylaminomethylcarbonyl-, Aminomethylcarbonyl-, 2-Amino-ethylcarbonyl-, Carboxy-C1-2-alkylaminocarbonylmethyloxymethylcarbonyl-, C1-3-Alkoxycarbonyl- $\textbf{C}_{1\text{--}2}\text{-alkylaminocarbonylmethyloxymethylcarbonyl-, Carboxy-}\textbf{C}_{1\text{--}2}\text{-al-}$  kylaminocarbonylmethylaminomethylcarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylmethylaminomethylcarbonyl-, N-Methyl-carboxy- $C_{1-2}$ -alkylaminocarbonylmethylaminomethylcarbonyl-oder N-Methyl- $C_{1-3}$ -alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylmethyl-aminomethylcarbonylgruppe substituiert ist, oder

eine Carbonylgruppe, die

durch eine Cyclopentylgruppe,

durch eine  $C_{3-5}$ -Alkylgruppe, die zusätzlich durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert sein kann,

durch eine am Aminstickstoffatom durch eine  $C_{1-4}$ -Alkyl-, Carboxy- $C_{1-3}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylgruppe substituierte  $C_{1-4}$ -Alkylamino-, Phenylamino- oder Pyridyl-aminogruppe,

durch eine durch eine Methyl-, Hydroxymethyl-, Amino-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Carboxy- $C_{1-2}$ -alkyl-,  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkyl-, Carboxymethyloxymethyl-,  $C_{1-3}$ -Alkoxycarbonylmethyloxymethyl-, Carboxymethylamino-methyl-,  $C_{1-3}$ -Alkoxycarbonyl-methylaminomethyl-, Carboxymethylaminocarbonylmethyloxymethyl- oder  $C_{1-3}$ -Alkoxycarbonylmethyloxymethyl- oder  $C_{1-3}$ -Alkoxycarbonylmethyloxymethylgruppe substituierte Pyrrolidinogruppe substituiert ist,

R, ein Wasserstoff-, Fluor-, Chlor- oder Bromatom oder eine Trifluormethylgruppe,

eine gegebenenfalls durch eine Hydroxy-, Carboxy-,  $C_{1-3}$ -Alk-oxycarbonyl-, Carboxymethyloxy-,  $C_{1-3}$ -Alkoxycarbonyl-methyloxy-, Carboxymethylamino-, N-Methyl-carboxymethylamino-,  $C_{1-3}$ -Alkoxycarbonylmethylamino-, N-Methyl- $C_{1-3}$ -alkoxycarbonylmethylamino-, Carboxymethylaminocarbonyl- oder  $C_{1-3}$ -Alkoxycarbonylmethylaminocarbonylgruppe substituierte  $C_{1-2}$ -Alkylgruppe,

WO 00/35859 PCT/EP99/09921

eine durch eine Carboxy- oder  $C_{1\cdot 3}$ -Alkoxycarbonylgruppe substituierte Vinylgruppe,

 $R_4$  ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Ethyl- oder Trifluormethylgruppe und

Y eine gegebenenfalls durch eine  $C_{1-\theta}$ -Alkoxycarbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

4. Verbindungen der allgemeinen Formel Ia gemäß Anspruch 3, in der

A eine Ethylen- oder Ethinylengruppe,

X eine Iminogruppe,

 $R_2$  eine  $C_{1-4}$ -Alkylaminocarbonylgruppe, die jeweils am Aminstickstoffatom durch eine Carboxy- $C_{1-2}$ -alkyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylgruppe substituiert ist,

eine  $C_{1-4}$ -Alkylaminogruppe, die am Aminstickstoffatom durch eine Carboxy- $C_{1-3}$ -alkylcarbonyl-,  $C_{1-3}$ -Alkoxycarbonyl-  $C_{1-3}$ -alkylcarbonyl-, Carboxy- $C_{1-2}$ -alkylaminocarbonyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-2}$ -alkylaminocarbonylgruppe gruppe substituiert ist, oder

eine Carbonylgruppe, die

durch eine  $C_{3-5}$ -Alkylgruppe, die zusätzlich durch eine Carboxy- oder  $C_{2-3}$ -Alkoxycarbonylgruppe substituiert sein kann,

durch eine am Aminstickstoffatom durch eine Carboxy- $C_{1-3}$ -al-kyl- oder  $C_{1-3}$ -Alkoxycarbonyl- $C_{1-3}$ -alkylgruppe substituierte  $C_{1-4}$ -Alkylamino- oder Pyridylaminogruppe,

durch eine gegebenenfalls durch eine Methylgruppe substituierte Pyrrolidinogruppe substituiert ist,

 $R_3$  eine gegebenenfalls durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycar-bonylgruppe substituierte  $C_{1-2}$ -Alkylgruppe,

R4 ein Wasserstoffatom oder eine Methylgruppe und

Y eine gegebenenfalls durch eine  $C_{1-\theta}$ -Alkoxycarbonyl- oder Benzoylgruppe substituierte Amidinogruppe bedeuten,

deren Tautomere, deren Stereoisomere, deren Gemische und deren Salze.

- 5. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1, 3 oder 4:
- (a) rac-4-{3-[5-Ethoxycarbonylmethyl-2-methyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin.
- (b) rac-4-{3-[2,5-Dimethyl-4-(2-methyl-pyrrolidinocarbonyl)-phenyl]-propargylamino}benzamidin,
- (c) 4-[3-(2,5-Dimethyl-4-isopropylcarbonyl-phenyl)propargylamino]benzamidin,
- (d) 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbo-nyl)-phenyl]propargylamino}benzamidin,
- (e) 4-{3-[2,5-Dimethyl-4-(N-methyl-N-pyridin-2-yl-aminocarbonyl)-phenyl]prop-1-ylamino}benzamidin,
- (f) 4-[3-(3-Methyl-4-pyrrolidinocarbonyl-phenyl)-propargylamino]-benzamidin,

- (g) 4-{3-[2,5-Dimethyl-4-(N-(2-methoxycarbonyl-ethyl)-N-ethyl-carbonylamino)-phenyl]-propargylamino}benzamidin,
- (h) 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-aminocarbonyl-amino)-phenyl]-propargylamino}-benzamidin und
- (i) 4-{3-[2,5-Dimethyl-4-(N-isopropyl-N-hydroxycarbonylmethyl-carbonyl-amino)-phenyl]-propargylamino}-benzamidin

sowie deren Salze.

- 6. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 5, in denen Y keine Cyanogruppe enthält.
- 7. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen Y keine Cyanogruppe enthält, oder ein Salz gemäß Anspruch 6 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.
- 8. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen Y keine Cyanogruppe enthält, oder ein Salz gemäß Anspruch 6 zur Herstellung eines Arzneimittels mit einer die Thrombinzeit verlängernder Wirkung, einer thrombinhemmender Wirkung und einer Hemmwirkung auf verwandte Serinproteasen.
- 9. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 7, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 5, in denen Y keine Cyanogruppe enthält, oder ein Salz gemäß Anspruch 6 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.

- 10. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß
- a. eine Verbindung der allgemeinen Formel

$$Ar - Z_1$$
 , (II)

in der

Ar wie in den Ansprüchen 1 bis 5 erwähnt definiert ist und  $\mathbf{Z}_1$  eine Austrittsgruppe darstellt, mit einer Verbindung der allgemeinen Formel

$$H - A' - HCR_1 - X - Y'$$
, (III)

in der

R<sub>1</sub> und X wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, Y' die für Y wie in den Ansprüchen 1 bis 5 erwähnten Bedeutungen mit der Maßgabe besitzt, daß eine vorhandene Amino- oder Iminogruppe durch einen üblichen Schutzrest geschützt ist, und A' eine Ethinylgruppe darstellt, umgesetzt und eine so erhaltene Verbindung gegebenenfalls anschließend katalytisch hydriert und/oder von so einer erhaltenen Verbindung ein verwendeter Schutzrest abgespalten wird oder

b. zur Herstellung einer Verbindung der allgemeinen Formel I, in der der Ar-A-Rest eine Carboxygruppe enthält und  $R_{\rm s}$  wie in den Ansprüchen 1 bis 5 erwähnt definiert ist oder der Ar-A-Rest wie in den Ansprüchen 1 bis 5 erwähnt definiert ist und  $R_{\rm s}$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt oder der Ar-A-Rest eine Carboxygruppe enthält und  $R_{\rm s}$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt, eine Verbindung der allgemeinen Formel

$$Ar' - A - HCR_1 - X - Y''$$
, (IV)

in der

A,  $R_1$ , und X wie in den Ansprüchen 1 bis 5 erwähnt definiert sind,

Ar' und Y" die für Ar und Y in den Ansprüchen 1 bis 5 erwähnten Bedeutungen mit der Maßgabe besitzen, daß

Ar' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxygruppe überführbare Gruppe enthält und Y" die für Y in den Ansprüchen 1 bis 5 erwähnt Bedeutungen aufweist oder

Ar' die für Ar in den Ansprüchen 1 bis 5 erwähnten Bedeutungen aufweist und Y" eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Amino-, Amino-C<sub>1-3</sub>-alkyl-, Amidino- oder Guanidinogruppe überführbare Gruppe oder

Ar' eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Carboxygruppe überführbare Gruppe enthält und Y" eine durch Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe überführbare Gruppe enthalten,

mittels Hydrolyse, Behandeln mit einer Säure oder Base, Thermolyse oder Hydrogenolyse in eine Verbindung der allgemeinen Formel I übergeführt wird, in der der Ar-A-Rest eine Carboxygruppe enthält und  $R_{\rm S}$  wie in den Ansprüchen 1 bis 5 erwähnt definiert ist oder der Ar-A-Rest wie in den Ansprüchen 1 bis 5 erwähnt definiert ist und  $R_{\rm S}$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt oder der Ar-A-Rest eine Carboxygruppe enthält und  $R_{\rm S}$  eine Amino-, Amino- $C_{1-3}$ -alkyl-, Amidino- oder Guanidinogruppe darstellt, übergeführt wird oder

c. zur Herstellung einer Verbindung der allgemeinen Formel I, in der  $R_{\text{s}}$  eine Amidinogruppe darstellt, eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

$$Ar - A - HCR1 - X - Y" , (V)$$

in der

A, Ar,  $R_1$  und X wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Y" einen der für Y in den Ansprüchen 1 bis 5 erwähnten Reste mit der Maßgabe bedeutet, daß  $R_s$  eine  $Z_1$ -(HN=)C-Gruppe darstellt, in der

Z<sub>1</sub> eine Alkoxy-, Alkylthio-, Aralkoxy- oder Aralkylthiogruppe darstellt,

mit einem Ammoniumsalz umgesetzt wird, wobei gleichzeitig an eine elektronenreiche oder elektronenarme Dreifachbindung Halogenwasserstoff addiert werden kann, oder

d) zur Herstellung einer Verbindung der allgemeinen Formel I, in der  $R_{\scriptscriptstyle 5}$  eine Amidinogruppe darstellt, die durch eine Hydroxygruppe substituiert ist, eine gegebenenfalls im Reaktionsgemisch gebildete Verbindung der allgemeinen Formel

$$Ar - A - HCR_1 - X - Y'' \qquad , (V)$$

in der

A, Ar,  $R_1$  und X wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Y" einen der für Y in den Ansprüchen 1 bis 5 erwähnten Reste mit der Maßgabe bedeutet, daß  $R_5$  eine  $Z_1$ - (HN=)C-Gruppe darstellt, in der

Z<sub>1</sub> eine Alkoxy-, Alkylthio-, Aralkoxy- oder Aralkylthio-gruppe darstellt,

mit Hydroxylamin oder dessen Salzen umgesetzt wird oder

e. zur Herstellung einer Verbindung der allgemeinen Formel I, in der X ein Sauerstoff- oder Schwefelatom, eine Carbonyl-,

WO 00/35859 PCT/EP99/09921

- 170 -

Imino- oder N- $(C_{1-3}$ -Alkyl)-iminogruppe darstellt, eine Verbindung der allgemeinen Formel I

$$Ar - A - HCR_1 - Z_2$$
 , (VI)

in der

A, Ar und R, wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

 $\mathbf{Z_2}$  eine Austrittsgruppe darstellt, mit einer Verbindung der allgemeinen Formel

$$U - Y$$
 (VII)

in der

Y wie in den Ansprüchen 1 bis 5 erwähnt definiert ist und U eine Hydroxy-, Mercapto-, Hydroxycarbonyl-, Imino- oder  $N-(C_{1-3}-Alkyl)$  -iminogruppe bedeutet, umgesetzt wird oder

f. zur Herstellung einer Verbindung der allgemeinen Formel I, in der Ar und/oder Y einen in-vivo abspaltbaren Rest enthalten, eine Verbindung der allgemeinen Formel

$$Ar" - A - HCR_1 - X - Y'"$$
 , (VIII)

in der

A,  $R_1$ , und X wie in den Ansprüchen 1 bis 5 erwähnt definiert sind,

Ar" und Y'" die für Ar und Y in den Ansprüchen 1 bis 5 erwähnten Bedeutungen mit der Maßgabe besitzen, daß

Ar" eine Carboxygruppe enthält und Y'" die für Y in den Ansprüchen 1 bis 5 erwähnt Bedeutungen aufweist oder

Ar" die für Ar in den Ansprüchen 1 bis 5 erwähnten Bedeutungen aufweist und

Y'" eine Amino-, Amino-C<sub>1-3</sub>-alkyl-, Amidino- oder Guanidinogruppe enthält oder

Ar" eine Carboxygruppe und Y'" eine Amino-, Amino- $C_{1,3}$ -alkyl-, Amidino- oder Guanidinogruppe überführbare Gruppe enthalten, mit einer Verbindung der allgemeinen Formel

 $Z_3 - R_7$  , (IX)

in der

 $R_7$  eine  $C_{1-8}$ -Alkoxycarbonylgruppe, eine  $R_a CO-O-(R_b CR_c)$ -Gruppe oder den Acylrest einer der in den Ansprüchen 1 bis 5 erwähnten in vivo abspaltbaren Reste, wobei  $R_a$  bis  $R_c$  wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, und  $Z_3$  eine nukleofuge Austrittsgruppe oder auch, wenn Ar" eine Carboxygruppe enthält, eine Hydroxygruppe bedeuten, umgesetzt wird und

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, in der R<sub>5</sub> eine Amidinogruppe darstellt, durch Alkylierung mit einem Halogenessigsäurederivat, durch anschließende Hydrolyse und Decarboxylierung in eine durch eine oder zwei Methylgruppen substituierte entsprechende Amidinoverbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, in der  $R_s$  eine Hydroxyamidinogruppe darstellt, mittels katalytischer Hydrierung in eine entsprechende Amidinoverbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Doppel- oder Dreifachbindung enthält, mittels katalytischer Hydrierung in eine entsprechende gesättigte Verbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, in der X ein Schwefelatom darstellt, mittels Oxidation in eine entsprechende Sulfinyl- oder Sulfonylverbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, in der  $R_2$  eine Tetrahydropyrazolocarbonylgruppe darstellt, mittels Oxidation in eine entsprechende 4,5-Dihydropyrazolocarbonyl-Verbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Carbonylgruppe enthält, mittels einem entsprechenden Oxim in eine entsprechende Oximverbindung übergeführt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, mittels eines entsprechenden Amins in ein entsprechendes Amid übergeführt wird und/oder

erforderlichenfalls ein während den Umsetzungen zum Schutze von reaktiven Gruppen verwendeter Schutzrest abgespalten wird und/oder

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Fotmel I, die eine Doppelbindung enthält in ihre cis/trans-Isomere aufgetrennt wird und/oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure oder Base, übergeführt wird.

# INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 99/09921

| A. CLASSIF<br>IPC 7                                                                                     | CO7C257/18 CO7D207/08 CO7D233/54 CO7D213/50 A61K31/415 A61P7/02                                                                                                                                                                                                                                          | CO7D277/24<br>CO7D333/22    | C07D235/14<br>A61K31/155                                                                                                                                                                                                                           | C07D231/12<br>A61K31/40 |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| · According to                                                                                          | International Patent Classification (IPC) or to both na                                                                                                                                                                                                                                                  | tional classification an    | d IPC                                                                                                                                                                                                                                              |                         |
| B. FIELDS                                                                                               |                                                                                                                                                                                                                                                                                                          |                             |                                                                                                                                                                                                                                                    |                         |
| Minimum do                                                                                              | cumentation searched (classification system followed CO7C CO7D A61K A61P                                                                                                                                                                                                                                 | iby classification sym:     | )<br>(18)                                                                                                                                                                                                                                          | ·                       |
| Documentati                                                                                             | ion searched other than minimum documentation to th                                                                                                                                                                                                                                                      | e extent that such do       | suments are included in t                                                                                                                                                                                                                          | he fields searched      |
| Electronic da                                                                                           | ata base consulted during the international search (na                                                                                                                                                                                                                                                   | ame of data base and        | where practical, exerch                                                                                                                                                                                                                            | terms used)             |
| C. DOCUME                                                                                               | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                           |                             |                                                                                                                                                                                                                                                    |                         |
| Category *                                                                                              | Citation of document, with Indication, where approp                                                                                                                                                                                                                                                      | riate, of the relevant p    | 2888ges                                                                                                                                                                                                                                            | Relevant to claim No.   |
| A                                                                                                       | EP 0 805 149 A (TOYAMA CH<br>5 November 1997 (1997-11-<br>page 34 -page 54; claims                                                                                                                                                                                                                       |                             |                                                                                                                                                                                                                                                    | 1,7-9                   |
| Α                                                                                                       | WO 95 18111 A (THE DU PON<br>PHARMACEUTICAL COMPANY)<br>6 July 1995 (1995-07-06)<br>page 28 -page 30; claims                                                                                                                                                                                             | T MERCK                     |                                                                                                                                                                                                                                                    | 1,7-9                   |
| A                                                                                                       | EP 0 760 364 A (MITSUI TO 5 March 1997 (1997-03-05) claims; examples                                                                                                                                                                                                                                     |                             | ALS)                                                                                                                                                                                                                                               | 1,7-9                   |
| Furt                                                                                                    | her documents are listed in the continuation of box C.                                                                                                                                                                                                                                                   | . Х                         | Patent family member                                                                                                                                                                                                                               | rs are listed in annex. |
| "A" docume consk "E" earlier of filing of "L" docume which citatio "O" docume other "P" docume later to | ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed | "X" de<br>"Y" de<br>"\$" de | ir priority date and not in itself to understand the provention secure to particular releaned to examine the considered now notice an invertive step occurrent of particular releaned to be considered to life the comment is combined in the art. |                         |
|                                                                                                         | actual completion of the international search  May 2000                                                                                                                                                                                                                                                  |                             | Date of mailing of the Inte                                                                                                                                                                                                                        | mational search report  |
|                                                                                                         | mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016                                                                                                                                       | A                           | uthorized officer Zervas, B                                                                                                                                                                                                                        | <del></del>             |

Form PCT/ISA/210 (second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

information on patent family members

Ints onal Application No PCT/EP 99/09921

| Patent document<br>cited in search repor | t   | Publication date                        |    | atent family<br>member(s) | Publication date |  |
|------------------------------------------|-----|-----------------------------------------|----|---------------------------|------------------|--|
| EP 805149                                | A   | 05-11-1997                              | AU | 691361 B                  | 14-05-1998       |  |
|                                          | • • | • • • • • • • • • • • • • • • • • • • • | AU | 3936095 A                 | 19-06-1996       |  |
|                                          |     |                                         | FI | 972313 A                  | 30-07-1997       |  |
|                                          |     |                                         | NO | 972488 A                  | 30-07-1997       |  |
|                                          |     |                                         | ÜS | 5877174 A                 | 02-03-1999       |  |
|                                          |     |                                         | CA | 2206053 A                 | 06-06-1996       |  |
|                                          |     |                                         | CN | 1170409 A                 | 14-01-1998       |  |
|                                          |     |                                         | HU | 77309 A                   | 30-03-1998       |  |
|                                          |     |                                         | WO | 9616947 A                 | 06-06-1996       |  |
|                                          |     |                                         | JP | 8231515 A                 | 10-09-1996       |  |
| WO 9518111                               | A   | 06-07-1995                              | US | 5563158 A                 | 08-10-1996       |  |
|                                          | • • | •••••                                   | ĀŪ | 1400095 A                 | 17-07-1995       |  |
|                                          |     |                                         | US | 5691329 A                 | 25-11-1997       |  |
| EP 760364                                | Α   | 05-03-1997                              | US | 5719145 A                 | 17-02-1998       |  |
|                                          |     | • • • • • • • • • • • • • • • • • • • • | ĂŬ | 686515 B                  | 05-02-1998       |  |
|                                          |     |                                         | AU | 6217296 A                 | 08-05-1997       |  |
|                                          |     |                                         | JP | 9124581 A                 | 13-05-1997       |  |
|                                          |     |                                         | NO | 963469 A                  | 03-03-1997       |  |

Form PCT/ISA/210 (patent family annex) (July 1992)

# INTERNATIONALER RECHERCHENBERICHT

PCT/EP 99/09921

| A. KLASSI            | FIZIERUNG DES ANMELDUNGSGEGENSTANDES                                                                                                                                              | <del></del>                                      | 01/21 33/03321                                                                                                                        |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| ÎPK 7                | C07C257/18 C07D207/08 C07D277<br>C07D233/54 C07D213/50 C07D333<br>A61K31/415 A61P7/02                                                                                             |                                                  |                                                                                                                                       |
| Nach der in          | ternationalen Patentidassifikation (IPK) oder nach der nationalen Ki                                                                                                              | lassifikation und der IPK                        |                                                                                                                                       |
|                      | RCHIERTE GEBIETE                                                                                                                                                                  |                                                  |                                                                                                                                       |
| Recherchies<br>IPK 7 | rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssym<br>C07C C07D A61K A61P                                                                                        | bole )                                           |                                                                                                                                       |
| Recherchier          | te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen,                                                                                                                  | soweit diese unter die rechen                    | chlerten Gebiete fallen                                                                                                               |
| Während de           | or internationalen Recherche konsultierte elektronische Datenbank (                                                                                                               | (Name der Datenbank und e                        | vti. verwendste Suchbegriffe)                                                                                                         |
|                      | ·                                                                                                                                                                                 |                                                  |                                                                                                                                       |
|                      |                                                                                                                                                                                   |                                                  | •                                                                                                                                     |
|                      |                                                                                                                                                                                   |                                                  |                                                                                                                                       |
| C. ALS WE            | SENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                    |                                                  |                                                                                                                                       |
| Kategorie*           | Bezeichnung der Veröffentlichung, soweit erforderlich unter Anga                                                                                                                  | be der in Betracht kommende                      | en Teile Betr. Anspruch Nr.                                                                                                           |
|                      |                                                                                                                                                                                   |                                                  |                                                                                                                                       |
| A                    | EP 0 805 149 A (TOYAMA CHEMICAL)<br>5. November 1997 (1997-11-05)<br>Seite 34 -Seite 54; Ansprüche                                                                                |                                                  | 1,7-9                                                                                                                                 |
| A                    | WO 95 18111 A (THE DU PONT MERCK PHARMACEUTICAL COMPANY) 6. Juli 1995 (1995-07-06) Seite 28 -Seite 30; Ansprüche                                                                  |                                                  | 1,7-9                                                                                                                                 |
| A                    | EP 0 760 364 A (MITSUI TOATSU CH<br>5. März 1997 (1997-03-05)<br>Ansprüche; Beispiele                                                                                             | EMICALS)                                         | 1,7-9                                                                                                                                 |
|                      |                                                                                                                                                                                   |                                                  |                                                                                                                                       |
|                      |                                                                                                                                                                                   |                                                  |                                                                                                                                       |
|                      |                                                                                                                                                                                   |                                                  | ·                                                                                                                                     |
|                      | ·                                                                                                                                                                                 |                                                  |                                                                                                                                       |
| j                    |                                                                                                                                                                                   |                                                  |                                                                                                                                       |
|                      | ere Veröffentlichungen eind der Fortsetzung von Feld C zu<br>himen                                                                                                                | X Siehe Anhang Pate                              | entfamilie                                                                                                                            |
| A" Veröften          | Kategorien von angegebenen Veröffentlichungen :<br>tilchung, die den allgemelnen Stand der Technik definiert,<br>cht als besonders bedeutsam anzusehen ist                        | Anmeldung nicht kollidie                         | , die nach dem internationalen Anmeldedatum<br>m veröffentlicht worden ist und mit der<br>ert, sondern nur zum Verständnis des der    |
| E" älteres D         | Ookument, das jedoch erst am oder nach dem internationalen ledatum veröffentlicht worden jat                                                                                      | Erfindung zugrundeliege<br>Theorie angegeben ist | enden Prinzips oder der ihr zugrundellegenden                                                                                         |
| L* Veröffen          | tlichung, die geeignet ist, einen Prioritätsenspruch zweifelhaft er-                                                                                                              | Karin aliein autgrund die                        | conderer Bedeutung; die beanspruchte Erfindung<br>seer Veröffentlichung nicht als neu oder auf<br>beruhend betrachtet werden          |
| ancieres<br>abo lice | n im Hecherchenbericht genannten Veröffentlichung belegt werden.<br>Ir die aus einem anderen besonderen Grund angegeben ist (wie                                                  | "Y" Veröffentlichung von bee                     | onderer Bedeutung: die beenengichte Erfindung                                                                                         |
| O° Veröffen          | itiichung, die sich auf eine mündliche Offenbegung                                                                                                                                | werden, wenn die Veröf                           | erlscher Tätigkeit beruhend betrachtet<br>fentlichung mit einer oder mehreren anderen<br>er Kategorie in Verbindung gebracht wird und |
| P° Veröffen          | nutzung, eine Ausstellung oder andere Maßnahmen bezieht<br>tilchung, die vor dem internationalen Anmeldedatum, aber nach<br>anspruchten Prioritätsdatum veröffentlicht worden ist | chees Asignoring trit en                         | er Racegorie in Verbindung gebracht wird und<br>nen Fachmann nahellegend ist<br>glied derselben Patentfamilie ist                     |
|                      | bachlusees der internationalen Recherche                                                                                                                                          | <del></del>                                      | mationalen Recherchenberichts                                                                                                         |
| 9.                   | Mai 2000                                                                                                                                                                          | 17/05/2000                                       | )                                                                                                                                     |
| lame und Po          | ostanschrift der Internationalen Recherchenbehörde                                                                                                                                | Bevollmächtigter Bedler                          | nateter                                                                                                                               |
|                      | Europäleches Patentamt, P.B. 5818 Patentiaan 2<br>NL – 2280 HV Rijswijk<br>Tel. (+31–70) 340–2040, Tx. 31 651 epo ni,<br>Fax: (+31–70) 340–3016                                   | Zervas, B                                        |                                                                                                                                       |
| mblem BCT 40         | A/210 (Blan 2) (Juli 1992)                                                                                                                                                        | <u> </u>                                         |                                                                                                                                       |

# INTERNATIONALER RECHERCHENBERICHT

Inte. males Aktenzeichen
PCT/EP 99/09921

| Im Recherchenbericht<br>angeführtes Patentdokument |         |   | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamille |                   | Datum der<br>Veröffentlichung |
|----------------------------------------------------|---------|---|-------------------------------|-----------------------------------|-------------------|-------------------------------|
| EP                                                 | 805149  | Α | 05-11-1997                    | AU                                | 691361 B          | 14-05-1998                    |
|                                                    |         |   |                               | AU                                | 3936095 A         | 19-06-1996                    |
|                                                    |         |   |                               | FI                                | 972313 A          | 30-07-1997                    |
|                                                    |         |   |                               | NO                                | 972488 A          | 30-07-1997                    |
|                                                    |         |   |                               | US                                | 5877174 A         | 02-03-1999                    |
|                                                    |         |   |                               | CA                                | 2206053 A         | 06-06-1996                    |
|                                                    |         |   |                               | CN                                | 1170409 A         | 14-01-1998                    |
|                                                    |         |   |                               | HU                                | 77309 A           | 30-03-1998                    |
|                                                    |         |   |                               | WO                                | 9616947 A         | 06-06-1996                    |
|                                                    |         |   |                               | JP                                | 8231515 A         | 10-09-1996                    |
| WO                                                 | 9518111 | Α | 06-07-1995                    | US                                | 5563158 A         | 08-10-1996                    |
|                                                    |         |   |                               | AU                                | 1400095 A         | 17-07-1995                    |
|                                                    |         |   |                               | US                                | 5691329 A         | 25-11-1997                    |
| EP                                                 | 760364  | Α | 05-03-1997                    | US                                | 5719145 A         | 17-02-1998                    |
|                                                    |         |   |                               | AU                                | 68 <b>6515 B</b>  | 05-02-1998                    |
|                                                    |         |   |                               | ΑU                                | 6217 <b>296 A</b> | 08-05-1997                    |
|                                                    |         |   |                               | JP                                | 9124581 A         | 13-05-1997                    |
|                                                    |         |   |                               | NO                                | 963469 A          | 03-03-1997                    |

Formblett PCT/ISA/210 (Anhang Petentfamilie)(Juli 1992)