## MADMO Introduction to ...

Boostings and ensembles

#### Taras Khakhulin

Deep Learning Engineer Samsung AI Center Skoltech & MIPT alumnus

#### t.khakhulin@gmail.com

https://github.com/khakhulin/ https://twitter.com/t\_khakhulin/ https://www.linkedin.com/in/taras-khakhulin/

### Организационные моменты\*

\*чтобы не было потом каких-то недопониманий

#### Оценка за курс\*

- 4 дз (50% оценки)
- итоговый проект (30% оценки) (ОЧЕНЬ ВАЖНО)
- Итоговый тест (20% оценки)
- Бонусы (?)

<sup>\*</sup> предварительная версия

#### Итоговые проекты

- 1. "Рабочий" проект
- 2. Соревнование на kaggle
- 3. "Улучшенное" домашнее задание



#### 1. "Рабочий проект"

- Описание задачи: данные и их объём, метрики
- 2) Ограничения: по памяти, по времени, ...
- 3) Проведённые эксперименты
- 4) Итоговый алгоритм
- 5) Идеи для улучшения



https://www.picbon.org/tag/ulkovarasto

### 2. Соревнование на kaggle

- 1. Описание данных
- 2. .ipynb с экспериментами
  - a. exploratory data analysis
  - b. генерация признаков
  - с. разбиение train-dev
  - d. эксперименты с моделями
  - е. финальный сабмит
    - f. идеи для улучшения



http://www.shivambansal.com/blog/kaggle-bot/

#### 3. "Улучшенное" (доделанное) домашнее задание

- 1. Идея улучшения
- 2. Эксперименты
- 3. Результаты



https://twitter.com/gagan\_s



А что хотелось бы лично Вам?

https://forms.gle/tADLg7ZY8A44gcey5

# Зоопарк моделей Основные виды машинного обучения





#### Классическое Обучение





Let's start our journey

# Quality functions in classification

- Accuracy
- Precision
- Recall
- F-score
- ROC-curve, ROC-AUC
- PR-curve

Accuracy Number of right classifications 1010000100 target:

# Number of right classifications

Accuracy

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

# Accuracy Number of right classifications

Number of right classifications

target: 101000100 predicted: 001000110

predicted: 001000110

Number of right classifications

target: 101000100

predicted: 0 0 1 0 0 0 0 1 1 0

accuracy = 8/10 = 0.8

#### Precision and recall

|           |     | Actual Class      |                          |
|-----------|-----|-------------------|--------------------------|
|           |     | Yes               | No                       |
| Predicted | Yes | True<br>Positive  | False<br>Positive        |
|           | No  | False<br>Negative | True<br><b>N</b> egative |

$$ext{Precision} = rac{tp}{tp + fp}$$
  $ext{Recall} = rac{tp}{tp + fn}$ 

#### relevant elements

## false negatives true negatives 0 true positives false positives selected elements

How many selected items are relevant?



How many relevant items are selected?

#### Precision and recall

|                |     | Actual Class      |                          |
|----------------|-----|-------------------|--------------------------|
|                |     | Yes               | No                       |
| PredictedClass | Yes | True<br>Positive  | False<br>Positive        |
|                | No  | False<br>Negative | True<br><b>N</b> egative |

$$ext{Precision} = rac{tp}{tp+fp}$$
  $ext{Recall} = rac{tp}{tp+fn}$ 

#### F-score

Harmonic mean of precision and recall.

Closer to the smallest one.

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

#### F-score

Harmonic mean of precision and recall. Closer to the smallest one.

$$F_1 = \left(rac{ ext{recall}^{-1} + ext{precision}^{-1}}{2}
ight)^{-1} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

### Warning about your training

- Size of dev and test datasets
- The homogeneity of the train, dev, test
- The choice of algorithm
- Metrics
- Error analysis

#### Pipeline





```
def classify(X):
    if X[0] < 0:
        return "red"
    else:
        return "blue"</pre>
```



```
def classify(X):
    if X[0] < 0:
        if X[1] < 0:
            return "blue"
        else:
            return "green"
    else:
        if X[1] > 0:
            return "red"
        else:
            return "orange"
```











#### Information criteria

H(R) is measure of "heterogeneity" of our data. Consider binary classification problem:

$$H(R) = 1 - \max\{p_0, p_1\}$$

$$H(R) = -p_0 \log_2 p_0 - p_1 \log_2 p_1$$

$$H(R) = 1 - p_0^2 - p_1^2 = 1 - 2p_0p_1$$

#### Information criteria

H(R) is measure of "heterogeneity" of our data. Consider binary classification problem:



#### Information criteria

H(R) is measure of "heterogeneity" of our data. Consider binary classification problem:







### Entropy

$$S = -\sum_{k} p_k \log_2 p_k$$

## Entropy



In binary case N = 2

$$S = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-} = -p_{+} \log_{2} p_{+} - (1 - p_{+}) \log_{2} (1 - p_{+})$$

## Information criteria: Gini impurity

$$G = 1 - \sum_{k} (p_k)^2$$

## Gini impurity

$$G = 1 - \sum_{k} (p_k)^2$$

In binary case N = 2

$$G = 1 - p_+^2 - p_-^2 = 1 - p_+^2 - (1 - p_+)^2 = 2p_+(1 - p_+)$$

H(R) is measure of "heterogeneity" of our data. Consider multiclass classification problem:

1. Misclassification criteria:

$$H(R) = 1 - \max_{k} \{p_k\}$$

2. Entropy criteria:

$$H(R) = -\sum_{k} p_k \log_2 p_k$$

3. Gini impurity:

$$H(R) = 1 - \sum_{k} (p_k)^2$$

H(R) is measure of "heterogeneity" of our data. Consider regression problem:

1. Mean squared error

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - c)^2$$

H(R) is measure of "heterogeneity" of our data. Consider regression problem:

1. Mean squared error

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - c)^2$$

What is the constant?

H(R) is measure of "heterogeneity" of our data. Consider regression problem:

1. Mean squared error

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - c)^2$$

$$c^* = \frac{1}{|R|} \sum_{y_i \in R} y_i$$

## How the trees are actually constructed

- ID-3
- C4.5
- C5.0
- CART
- etc.

## How the trees are actually constructed



- C5.0
- CART
- etc.



# Ensembles

Bootstrap aggregating

Consider dataset X containing N objects.

Pick I objects with return from X and repeat in N times to get N datasets.

Error of model trained on Xj:

$$\varepsilon_j(x) = b_j(x) - y(x), \qquad j = 1, \dots, N,$$

Then 
$$\mathbb{E}_x(b_j(x)-y(x))^2=\mathbb{E}_x\varepsilon_j^2(x).$$

The mean error of N models:

$$E_1 = \frac{1}{N} \sum_{j=1}^{N} \mathbb{E}_x \varepsilon_j^2(x).$$

Consider the errors unbiased and uncorrelated:

$$\mathbb{E}_{x}\varepsilon_{j}(x) = 0;$$

$$\mathbb{E}_{x}\varepsilon_{i}(x)\varepsilon_{j}(x) = 0, \quad i \neq j.$$

The final model averages all predictions:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$$

Consider the errors unbiased and uncorrelated:

$$\mathbb{E}_x \varepsilon_i(x) = 0;$$

$$(x) = 0,$$
  
 $(x) = 0, \quad i \neq i$ 

$$\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$$

$$j(x) = 0, \quad i \neq j.$$

$$1 \stackrel{N}{\searrow} .$$

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$$

$$=\mathbb{E}_xigg(rac{1}{N}$$

 $=\frac{1}{N}E_1.$ 

$$x \left(\frac{1}{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} \left(\frac{1}{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1$$

$$= \mathbb{E}_x \left( \frac{1}{N} \sum_{j=1}^N \varepsilon_j(x) \right)^2 =$$

$$\left(\sum_{j=1}^{N} \varepsilon_{j}(x)\right) =$$

 $E_N = \mathbb{E}_x \left( \frac{1}{N} \sum_{i=1}^n b_j(x) - y(x) \right)^{\frac{1}{2}} =$ 

$$+\sum_{i \neq i} \varepsilon_i(x) \varepsilon_j(x)$$

$$\left\{ \overline{\mathbf{V}} \sum_{j=1}^{N} \varepsilon_{j}(x) \right\} =$$
 $\left\{ \sum_{i=1}^{N} \varepsilon_{i}^{2}(x) + \sum_{i} \varepsilon_{i}(x) \varepsilon_{i}(x) \right\}$ 

$$=rac{1}{N^2}\mathbb{E}_x\Biggl(\sum_{j=1}^Narepsilon_j^2(x)+\sum_{i
eq j}arepsilon_i(x)arepsilon_j(x)\Biggr)=$$

$$+\underbrace{\sum_{i\neq j}\varepsilon_i(x)\varepsilon_j(x)}_{}$$

$$\mathbb{E}_x \left( \sum_{j=1} \varepsilon_j^2(x) + \underbrace{\sum_{i \neq j} \varepsilon_i(x) \varepsilon_j(x)}_{i \neq j} \right)$$

$$= x \left( \sum_{j=1}^{\infty} s_j(s) + \sum_{i \neq j} s_i(s) s_j(s) \right)$$

$$\mathbb{E}_x \varepsilon_j(x) = 0;$$

$$\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$$

Error decreased by N times!

$$a(x) = rac{1}{N} \sum_{j=1}^N b_j(x).$$

$$=\mathbb{E}_x\bigg(rac{1}{N}\bigg)$$

$$x\left(\frac{1}{N}\right)$$

$$\sum_{j=1}^{\infty} \varepsilon_j$$

 $E_N = \mathbb{E}_x \left( \frac{1}{N} \sum_{i=1}^n b_j(x) - y(x) \right)^{-1} =$ 

$$= \mathbb{E}_x \left( \frac{1}{N} \sum_{j=1}^N \varepsilon_j(x) \right)^2 =$$

$$\varepsilon_j(x)$$
  $=$ 

$$\sum_{i \neq i} \varepsilon_i(x) \varepsilon_j(x)$$

$$+\sum_{i\neq j}\varepsilon_i(x)\varepsilon_j(x)$$

$$=\frac{1}{N^2}\mathbb{E}_x\left(\sum_{j=1}^N\varepsilon_j^2(x)+\sum_{i\neq j}\varepsilon_i(x)\varepsilon_j(x)\right)=$$

Consider the errors unbiased and uncorrelated:

 $\mathbb{E}_x \varepsilon_i(x) = 0;$ 

Because this is a lie

 $\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$ 

 $E_N = \mathbb{E}_x \left( \frac{1}{N} \sum_{j=1}^n b_j(x) - y(x) \right)^{-} =$  $=\mathbb{E}_x \left( \frac{1}{N} \sum_{i=1}^N \varepsilon_j(x) \right)^2 =$ 

The final model averages all predictions:

$$= \frac{1}{N^2} \mathbb{E}_x \left( \sum_{j=1}^N \varepsilon_j^2(x) + \sum_{i \neq j} \varepsilon_i(x) \varepsilon_j(x) \right) =$$

 $a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$ 

$$-\mathbb{E}_x \left( \overline{N} \right)$$

$$\frac{\sqrt{2} \mathbb{E}_{x} \left( \sum_{j=1}^{\varepsilon} \varepsilon_{j}(x) + \underbrace{\sum_{i \neq j} \varepsilon_{i}(x) \varepsilon_{j}(x)}_{=0} \right)}{=0}$$

$$= \frac{1}{N^2}$$

## **Great News!**

# Regression Ensemble

**Example:** 

# Regression Ensemble

**Example:** 
$$a(x) = \frac{1}{n} (b_1(x) + ... + b_n(x))$$

## Classification Ensemble

**Example:** 

## Classification Ensemble

Example: 
$$a(x) = \text{mode}(b_1(x), ..., b_n(x))$$

### Real-world Ensemble

b - meta-algorithm

$$a(x) = b(b_1(x), \dots, b_n(x))$$

(every b\_i is a weak learner)

## Why do we use ensembles in classification?

b1 = b2 = b3, the probability of the error p

0 - correct 1 - incorrect

```
(0, 0, 0) (1-p)(1-p)
(1, 0, 0) p(1-p)(1-p)
(0, 1, 0) p(1-p)(1-p)
```

(0, 0, 1) p(1-p)(1-p)

The error of all algos: p^3

## Why do we use ensembles in classification?

b1 = b2 = b3, the probability of the error p

0 - correct 1 - incorrect

```
(0, 0, 0) (1-p)(1-p)(1-p)
(1, 0, 0) p(1-p)(1-p)
(0, 1, 0) p(1-p)(1-p)
```

The error of all algos: p^3

(0, 0, 1) p(1-p)(1-p)

The error of all ensembles:

p^3 + 3(1-p)p^2

## Why do we use ensembles in classification?

0 - correct1 - incorrect

b1 = b2 = b3, the probability of the error p



The error of all algos: p^3 But we see on single

The error of all ensembles:  $p^3 + 3(1-p)p^2$ 

# Where is the problem of all methods?

# Fixed target function

Similar dataset

Solve one task

**Ensembles** Voting

**Output Coding** 

Stacking

Bagging

Boosting

**Heuristics** 

## Ensembles

Voting

- averaging

Stacking

Boosting

**Output Coding** 

- code target (squared)

Bagging

Heuristics

Hand-crafted methods

# Voting

$$a(x) = \mathsf{mode}(b_1(x), \dots, b_n(x))$$

$$a(x) = \frac{1}{n} \left( \operatorname{rank}(b_1(x)) + \ldots + \operatorname{rank}(b_n(x)) \right)$$
 Ranking for roc-auc

$$a(x) = \frac{1}{w_1 + \dots + w_n} \left( w_1 \cdot b_1(x) + \dots + w_n \cdot b_n(x) \right)$$
 Weighted averaged

$$a(x) = w_1(x) \cdot b_1(x) + \ldots + w_n(x) \cdot b_n(x)$$
 Featured-weighted ensembles



model.fit(X, y)





model.fit(X, y)

## RSM - Random Subspace Method

Same approach, but with features.

#### Bagging + RSM = Random Forest



One of the greatest "universal" models.

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

OOB = 
$$\sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

#### Random Forest Classifier



#### 3-Nearest Neighbors



#### n\_estimators



https://dyakonov.org

#### max\_features



#### min\_samples\_split



https://dyakonov.org

#### min\_samples\_leaf



https://dyakonov.org

## Bias-variance decomposition

The dataset  $X=(x_i,y_i)_{i=1}^\ell$  with fo $y_i\in\mathbb{R}^n$  problem.

Denote loss function 
$$L(y,a) = (y-a(x))^2$$

The corresponding risk estimation is

$$R(a) = \mathbb{E}_{x,y} \Big[ \big( y - a(x) \big)^2 \Big] = \int_{\mathbb{Y}} \int_{\mathbb{Y}} p(x,y) \big( y - a(x) \big)^2 dx dy.$$

Denote  $\mu:(\mathbb{X} imes\mathbb{Y})^\ell o\mathcal{A}$  , where  $\mathcal A$  is some family of algorithms.

So 
$$L(\mu)=\mathbb{E}_X\left[\mathbb{E}_{x,y}\left[\left(y-\mu(X)(x)
ight)^2\right]
ight]$$
 , where X dataset.

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[ \big( y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[ \big( \mathbb{E}_X \big[ \mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[ \big( \mu(X) - \mathbb{E}_X \big[ \mu(X) \big] \big)^2 \Big]}_{\text{variance}}.$$

This exact form of bias-variance decomposition is correct for square loss in regression.

However, it is much more general. See extra materials for more exotic cases.