Dustin Ginos: A01233669 Chandler Kinch: A01662772 Jeff Wasden: A01657029

April 15, 2017

#### Homework 6

# Chapter 6.1

6.1.2 Find the eigenvalues and the eigenvectors of these two matrices:

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 and  $A + I = \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix}$ .

A + I has the \_\_\_\_\_ eigenvectors as A. Its eigenvalues are \_\_\_\_ by 1.

$$A) \quad \begin{vmatrix} 1-\lambda & 4\\ 2 & 3-\lambda \end{vmatrix} = (1-\lambda)(3-\lambda) - 8 = \lambda^2 - 4\lambda - 5 = 0$$

$$\lambda = \pm 5, -1 \quad \text{eigenvectors} = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$A+I) \quad \begin{vmatrix} 2-\lambda & 4\\ 2 & 4-\lambda \end{vmatrix} = (2-\lambda)(4-\lambda) - 8 = \lambda^2 - 6\lambda = 0$$

$$\lambda = 0, 6 \quad \text{eigenvectors} = \begin{bmatrix} 2\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

A + I has the <u>same</u> eigenvectors as A. Its eigenvalues are <u>increased</u> by 1.

6.1.4 Compute the eigenvalues and eigenvectors of A and  $A^2$ :

$$A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \quad \text{and} \quad A^2 = \begin{bmatrix} 7 & -3 \\ -2 & 6 \end{bmatrix}.$$

 $A^2$  has the same \_\_\_\_ as A. When A has eigenvalues  $\lambda_1$  and  $\lambda_2$ ,  $A^2$  has eigenvalues \_\_\_\_. In this example, why is  $\lambda_1^2 + \lambda_2^2 = 13$ ?

$$A) \begin{vmatrix} -1 - \lambda & 3 \\ 2 & -\lambda \end{vmatrix} = -\lambda(-1 - \lambda) - 6 = \lambda^2 + \lambda - 6 = 0$$

$$\lambda = 2, -3 \begin{vmatrix} \begin{bmatrix} -3 & 3 \\ 2 & -2 \end{bmatrix} x_1 = 0 \begin{vmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix} x_2 = 0 \text{ eigenvectors} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\frac{2}{3} \end{bmatrix}$$

$$A^2) \begin{vmatrix} 7 - \lambda & 3 \\ -2 & 6 - \lambda \end{vmatrix} = (1 - \lambda)(6 - \lambda) - 6 = \lambda^2 - 13\lambda + 36 = 0$$

$$\lambda = 4, 9 \begin{vmatrix} \begin{bmatrix} 3 & -3 \\ -2 & 2 \end{bmatrix} x_1 = 0 \begin{vmatrix} \begin{bmatrix} -2 & -3 \\ -2 & -3 \end{bmatrix} x_2 = 0 \text{ eigenvectors} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -\frac{2}{3} \end{bmatrix}$$

 $A^2$  has the same <u>eigenvectors</u> as A. When A has eigenvalues  $\lambda_1$  and  $\lambda_2$ ,  $A^2$  has eigenvalues  $\lambda_1^2$  and  $\lambda_2^2$ .  $\lambda_1^2 + \lambda_2^2 = 13$  because that is the trace of  $A^2$ .

- 6.1.9 What do you do to the equation  $Ax = \lambda x$ , in order to prove (a), (b), and (c)?
  - (a)  $\lambda^2$  is an eigenvalue of  $A^2$ , as in Problem 4.

Multiply both sides by A.

$$AAx = A\lambda x \rightarrow A^2x = \lambda Ax \rightarrow A^2x = \lambda \lambda x \rightarrow A^2x = \lambda^2x.$$

(b)  $\lambda^{-1}$  is an eigenvalue of  $A^{-1}$ , as in Problem 3.

Multiply both sides by 
$$A^{-1}$$
. 
$$A^{-1}Ax = A^{-1}\lambda x \quad \rightarrow \quad x = \lambda A^{-1}x \quad \rightarrow \quad \frac{1}{\lambda}x = A^{-1}x.$$

(c)  $\lambda + 1$  is an eigenvalue of A + I, as in Problem 2.

Add 
$$Ix = x$$
 to both sides.  
 $Ix + Ax = x + \lambda x \rightarrow (A+I)x = (\lambda + 1)x$ .

6.1.12 Find three eigenvectors for this matrix P (projection matrices have  $\lambda = 1$  and 0):

Projection matrix 
$$P = \begin{bmatrix} .2 & .4 & 0 \\ .4 & .8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

If two eigenvectors share the same  $\lambda$ , so do all their linear combinations. Find an eigenvector of P with no zero components.

$$\lambda = 1 \quad \begin{bmatrix} -.8 & .4 & 0 \\ .4 & -.2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \quad \text{eigenvectors} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\lambda = 0 \quad \begin{bmatrix} .2 & .4 & 0 \\ .4 & .8 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \quad \text{eigenvector} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

Combine the eigenvectors when  $\lambda = 1$  to get an eigenvector of P with no zero components:  $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ 

- 6.1.13 From the unit vector  $u=(\frac{1}{6},\frac{1}{6},\frac{3}{6},\frac{5}{6})$  construct the rank one projection matrix  $P=uu^T$ . This matrix has  $P^2=P$  because  $u^Tu=1$ .
  - (a) Pu=u comes from  $(uu^T)u=u(\underline{\hspace{1cm}}).$  Then u is an eigenvector with  $\lambda=1.$   $(uu^T)u=u(\underline{\hspace{1cm}}u^Tu\underline{\hspace{1cm}})$
  - (b) If v is perpendicular to u show that Pv = 0. Then  $\lambda = 0$ .  $Pv = (uu^T)v = u(u^Tv) = u*0 = 0$
  - (c) Find three independent eigenvectors of P all with eigenvalue  $\lambda = 0$ .

$$\begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix} \text{ all have } \lambda=0 \text{ and are independent.}$$

6.1.15 Every permutation matrix leaves x = (1, 1, ..., 1) unchanged. Then  $\lambda = 1$ . Find two more  $\lambda$ 's (possibly complex) for these permutations, from  $det(P - \lambda I) = 0$ :

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 0 & -\lambda \end{vmatrix} = -\lambda^3 + 1 = 0 \quad \lambda = 1$$

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{vmatrix} -\lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} = \lambda^3 - \lambda^2 - \lambda + 1 = 0 \quad \lambda = 1, 1, -1$$

- 6.1.19 A 3 by 3 matrix B is known to have eigenvalues 0,1,2. This information is enough to find three of these (give the answers where possible):
  - (a) the rank of B

B is a rank two because it has a  $\lambda = 0$ .

- (b) the determinate of  $B^TB$  $|B^TB|$  because  $B^TB$  is singular.
- (c) the eigenvalues of  $B^TB$

Can't determine.

- (d) the eigenvalues of  $(B^2 + I)^{-1}$ .  $\lambda$ 's of  $(B^2 + I)^{-1}$  are  $\lambda = 1, \frac{1}{2}, \frac{1}{5}$ .
- 6.1.21 The eigenvalues of A equal the eigenvalues of  $A^T$ . This is because  $det(A-\lambda I)$  equals  $det(A^T-\lambda I)$ . That is true because \_\_\_\_\_. Show by an example that the eigenvectors of A and  $A^T$  are not the same.

It is true because every square matrix has the property  $|A| = |A^T|$ .

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \quad \text{ and } \quad A^T = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \text{ do not have the same eigen vectors.}$$
 Eigenvectors of  $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$  while  $A^T$  has eigenvectors  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ .

6.1.29 (Review) Find the eigenvalues of A, B, and C:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

A) 
$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 0 & 4 - \lambda & 5 \\ 0 & 0 & 6 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda)(6 - \lambda) = 0 \quad \lambda = 1, 4, 6$$

B)  $|B - \lambda I| = \begin{vmatrix} -\lambda & 0 & 1 \\ 0 & 2 - \lambda & 0 \\ 3 & 0 & -\lambda \end{vmatrix} = (\lambda^2 - 3)(\lambda + 2) = 0 \quad \lambda = 2, \pm \sqrt{3}$ 

C is a rank one matrix, meaning that two of its  $\lambda$ 's are zero. The last  $\lambda$  is the sum of the diagonals.  $\lambda=0,0,6$ 

# Chapter 6.2

- 6.2.2 If A has  $\lambda_1 = 2$  with eigenvector  $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $\lambda_2 = 5$  with  $x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , use  $S\Lambda S^{-1}$  to find A. No other matrix has the same  $\lambda$ 's and x's.
- 6.2.8 Diagonalize the Fibonacci matrix by completing  $S^{-1}$ :

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} & \\ & \end{bmatrix}.$$

Do the multiplication  $S\Lambda S^{-1}\begin{bmatrix}1\\0\end{bmatrix}$  to find its second component. This is the kth Fibonacci number  $F_k=(\lambda_1^k-\lambda_2^k)/(\lambda_1-\lambda_2)$ .

6.2.9 Suppose  $G_{k+2}$  is the average of the two previous numbers  $G_{k+1}$  and  $G_k$ :

$$G_{k+2} = \frac{1}{2}G_{k+1} + \frac{1}{2}G_k$$
  $G_{k+1} = G_{k+1}$  and  $\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = [A] \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$ .

(a) Find the eigenvalues and eigenvectors of A.

.

(b) Find the limist as  $n \to \infty$  of the matrices  $A^n = S\Lambda S^{-1}$ .

.

(c) If  $G_0 = 0$  and  $G_1 = 1$  show that the Gibonacci numbers approach  $\frac{2}{3}$ .

.

- 6.2.10 Prove that every third Fibonacci number in 0,1,1,2,3,... is even.
- 6.2.11 True or false: If the eigenvalues of A are 2,2,5 then the matrix is certainly
  - (a) invertible
- (b) diagonalizable
- (c) not diagonalizable.
- 6.2.15  $A^k = S\Lambda S^{-1}$  approaches the zero matrix as  $k \to \infty$  if and only if every  $\lambda$  has absolute value less than \_\_\_\_\_. Which of these matrices has  $A^k \to 0$ ?

$$A_1 = \begin{bmatrix} .6 & .9 \\ .4 & .1 \end{bmatrix}$$
 and  $A_2 = \begin{bmatrix} .6 & .9 \\ .1 & .6 \end{bmatrix}$ .

- 6.2.16 (Recommended) Find  $\Lambda$  and S to diagonalize  $A_1$  in Problem 15. What is the limit of  $\Lambda^k$  as  $k \to \infty$ ? What is the limit of  $S\Lambda^kS^{-1}$ ? In the columns of this limiting matrix you see the \_\_\_\_\_.
- 6.2.19 Diagonalize B and compute  $S\Lambda^kS^{-1}$  to prove this formula for  $B^k$ :

$$B = \begin{bmatrix} 5 & 1 \\ 0 & 4 \end{bmatrix}$$
 has 
$$B^k = \begin{bmatrix} 5^k & 5^k - 4^k \\ 0 & 4^k \end{bmatrix}.$$

6.2.36 The nth power of rotation through  $\theta$  is rotation through  $n\theta$ :

$$A^n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

Prove that neat formula by diagonalizing  $A = S\Lambda S^{-1}$ . The eigenvectors (columns of S) are (1,i) and (i,1). You need to know Euler's formula  $e^{i\theta} = \cos \theta + i \sin \theta$ .

## Chapter 6.3

6.3.1 Find two  $\lambda$ 's and x's so that  $u = e^{\lambda t}x$  solves

$$\frac{du}{dt} = \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix} u$$

What combination  $u = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2$  starts from u(0) = (5, -2)?

6.3.4 A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people. The movement between rooms is proportional to the difference v - w:

$$\frac{dv}{dt} = w - v$$
 and  $\frac{dw}{dt} = v - w$ .

Show that the total v + w is constant (40 people). Find the matrix in  $\frac{du}{dt} = Au$  and its eigenvalues and eigenvectors. What are v and w at t = 1 and  $t = \infty$ ?

6.3.5 Reverse the diffusion of people in Problem 4 to  $\frac{du}{dt} = -Au$ :

$$\frac{dv}{dt} = w - v$$
 and  $\frac{dw}{dt} = v - w$ .

The total v+w still remains constant. How are the  $\lambda$ 's changed now that A is changed to -A? But show that v(t) grows to infinity from v(0) = 30.

6.3.8 The rabbit population shows fast growth (from 6r) but loss to wolves (from -2w). The wolf population always grows in this model ( $-w^2$  would control wolves):

$$\frac{dr}{dt} = 6r - 2w$$
 and  $\frac{dw}{dt} = 2r + w$ .

Find the eigenvalues and eigenvectos. If r(0) = w(0) = 30 what are the populations at time t? After a long time, what is the ratio of rabbits to wolves?

6.3.10 Find A to change the scalar equation y'' = 5y' + 4y into a vector equation for u = (y, y'):

$$\frac{du}{dt} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = Au$$

What are the eigenvalues of A? Find them also by substituting  $y = e^{\lambda t}$  into y'' = 5y' + 4y.

6.3.21 Write  $A = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix}$  in the form  $S\Lambda S^{-1}$ . Find  $e^{At}$  from  $Se^{\Lambda t}S^{-1}$ .

### Chapter 6.4

6.4.4 Find an orthogonal matrix Q that diagonalizes  $A = \begin{bmatrix} -2 & 6 \\ 6 & 7 \end{bmatrix}$ . What is  $\lambda$ ?

- 6.4.6 Find all orthogonal matrices that diagonalize  $A = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$ .
- 6.4.11 Write A and B in the form  $\lambda_1 x_1 x_1^T + \lambda_2 x_2 x_2^T$  of the spectral theorem  $Q \Lambda Q^T$ :

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
  $B = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$  (keep  $||x_1|| = ||x_2|| = 1$ ).

- 6.4.21 **True** (with reason) or **false** (with example). "Orthonormal" is not assumed.
  - (a) A matrix with real eigenvalues and eigenvectors is symmetric.

•

(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric.

.

(c) The inverse of a symmetric matrix is symmetric.

.

(d) The eigenvector matrix S of a symmetric matrix is symmetric.

.

## Chapter 6.5

6.5.7 Test to see if  $\mathbb{R}^R$  is positive definite in each case:

$$R = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \text{ and } R = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- 6.5.10 Which 3 by 3 symmetric matrices A and B produce these quadratics?  $x^TAx = 2(x_1^2 + x_2^2 + x_3^2 x_1x_2 x_2x_3)$ . Why is A positive definite?  $x^TBx = 2(x_1^2 + x_2^2 + x_3^2 x_1x_2 x_1x_3 x_2x_3)$ . Why is B semidefinite?
- 6.5.17 A diagonal entry  $a_{jj}$  of a symmetric matrix cannot be smaller than all the  $\lambda$ 's. If it were, then  $A a_{jj}I$  would have \_\_\_\_ eigenvalues and would be positive definite. But  $A a_{jj}I$  has a \_\_\_\_ on the main diagonal.
- 6.5.18 If  $Ax = \lambda x$  then  $x^T A x = \underline{\phantom{A}}$ . If  $x^T A x > 0$ , prove that  $\lambda > 0$ .
- 6.5.19 Reverse Problem 18 to show that if all  $\lambda > 0$  then  $x^T A x > 0$ . We must do this for every nonzero x, not just the eigenvectors. So write x as a combination of the eigenvectors and explain why all "cross terms" are  $x_i^T x_j = 0$ . Then  $x^T A x$  is

$$(c_1x_1 + \dots + c_nx_n)^T(c_1\lambda_1x_1 + \dots + c_n\lambda_nx_n) = c_1^2\lambda_1x_1^Tx_1 + \dots + c_n^2\lambda_nx_n^Tx_n > 0.$$

- 6.5.20 Give a quick reason why each of these statements is true:
  - (a) Every positive definite matrix is invertible.
  - (b) The only positive definite porjection matrix is P = I.
  - (c) A diagonal matrix with positive diagonal entries is positive definite.
  - (d) A symmetric matrix with a positive determinant might not be positive definite!

6.5.28 Without multiplying 
$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

## Chapter 6.6

- 6.6.17 True of False, with a good reason:
  - (a) A symmetri matrix can't be similar to a nonsymmetric matrix.
  - (b) An invertible matrix can't be similar to a singular matrix.
  - (c) A can't be similar to -A unless A = 0.
  - (d) A can't be similar to A + I.
- 6.6.18 If B is invertible, prove that AB is similar to BA. They have the ame eigenvalues.
- 6.6.20 Why are these statements all true?
  - (a) If A is similar to B then  $A^2$  is similar to  $B^2$ .
  - (b)  $A^2$  and  $B^2$  can be similar when A and B are not similar (try  $\lambda = 0, 0$ ).
  - (c)  $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$  is not similar to  $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$ .
  - (d)  $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$  is not similar to  $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ .
  - (e) If we echange rows 1 and 2 of A, and then exchange columns 1 and 2, the eigenvalues stay the same. In this case  $M = \_$

#### Chapter 6.7

6.7.4 Find the eigenvalues and unit egienvectors of  $A^TA$  and  $AA^T$ . Keep each  $Av = \sigma u$ :

Fibonacci matrix 
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Construct the singular value decomposition and verify that A equals  $U\Sigma V^T$ .

6.7.6 Compute  $A^TA$  and  $AA^T$  and their eigenvalues and unit eigenvectors for V and U.

Rectangular matrix 
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Check  $AV = U\Sigma$  (this will decide + = signs in U).  $\Sigma$  has the same shape as A.

- 6.7.10 Construct the matrix with rank one that has Av = 12u for  $v = \frac{1}{2}(1, 1, 1, 1)$  and  $u = \frac{1}{3}(2, 2, 1)$ . It only sigular value is  $\sigma_1 = \underline{\hspace{1cm}}$ .
- 6.7.11 Suppose A has orthogonal columns  $w_1, w_2, \dots, w_n$  of lengths  $\sigma_1, \sigma_2, \dots, \sigma_n$ . What are  $U, \Sigma$ , and V in the SVD?