

Benchmark Data for Generative AI Tools (2022–2025)

Image-to-Video Avatar Generators

Tool	Speed (FPS)	Inference Latency	Hardware (GPU/VRAM)	Model Size	Output Video Res.	Quality Metrics
SadTalker (2023)	~10 FPS at 512×512 (RTX 4090)	≈0.1 s per frame (optimized pipeline)	NVIDIA GPU (e.g. RTX 4090); model ~1 GB, supports 256 or 512 px ²	~1 GB on disk (safetensors)	256×256 or 512×512	High-fidelity frames but less natural motion dynamics ³ (fidelity ↑, realism of head movement ↓)
DaGAN (2022)	Not reported (single- pass GAN; likely real- time)	<i>N/R</i> (feed- forward per frame)	NVIDIA GPU recommended (trained on 8× RTX 3090) 4	N/R (CNN + depth network)	~256×256 (face crops)	CSIM≈0.723, PRMSE≈2.33, AUCON≈0.873 on test set (identity similarity ↑, pose error ↓, expression sync ↑ vs prior work) 5
GeneFace+ + (2023)	~23.5 FPS (3090 Ti)	\approx 0.042 s per frame (real-time)	1× RTX 3090 Ti (24 GB) used in tests 7	N/R (NeRF- based multi- module)	~512×512 (head/ torso)	FID≈29.1 (best, ↓), LMD≈3.78, SyncNet≈6.11 (lip-sync close to GT) 6; PSNR~31.2 (high fidelity)

Voice Cloning / TTS Models

Model	Speed (RTF)	Inference Latency	Hardware (GPU/ VRAM)	Model Size	Output	Quality Metrics
TorToiSe TTS (2022)	0.25–0.30× (faster than real-time) ⁸	<0.5 s latency with streaming enabled ⁸	NVIDIA GPU (≥4 GB VRAM) required 9	~420 M (AR model) + diffusion/vocoder (>500 M total) 10	22 kHz audio	Near-human speech fidelity (outperforms prior TTS in realism) 11, albeit originally very slow (now greatly optimized)
CosyVoice 2 (2024)	Supports streaming (bidirectional); ~150 ms first audio 12	~0.15 s initial response (stream mode)	Tested on NVIDIA L40S (data center GPU); ~5 s per sentence on that hardware	≈0.5 B parameters (LLM-based)	24 kHz audio (multi- lingual)	MOS ≈5.53 (↑ from 5.4, 1–10 scale) ¹5 ; lowest CER on challenging dataset (high intelligibility) ¹6 ; high speaker similarity ¹7
IndexTTS 1.5 (2025)	N/R (2× faster than CosyVoice2 in eval) ¹⁸	– (200 samples in ~397 s vs 805 s for CosyVoice2) 18	Single GPU (28% utilization in tests vs ~48% for CosyVoice2)	N/R (GPT- style multi- module pipeline)	24 kHz audio (EN/ZH)	MOS ~4.01/5.0 (zero-shot voice cloning; vs ~3.81 for CosyVoice2) 19; SOTA content consistency & speaker similarity (objective WER/SS) 17

Model	Speed (RTF)	Inference Latency	Hardware (GPU/ VRAM)	Model Size	Output	Quality Metrics
Zonos v0.1 (2023)	Real-time (≈1.0× RTF, on GPU) ²¹	Low latency (designed for instantaneous TTS)	Runs on ≥8 GB VRAM (GPU)	~1.6 B parameters ²¹ (Transformer or hybrid)	24 kHz audio (multi- lingual)	High-quality, expressive speech generation (voice cloning from 10 s sample) 23; results described as "studio-quality" and convincing by users 23
Bark (2023)	~1.25× (slower than real-time) ²⁴	~1.25 s per 1 s audio (autoregressive)	1 B param model; requires GPU for reasonable performance 24 26	~1 B parameters ²⁴	24 kHz audio (multi- modal, incl. music & FX)	Very natural and expressive speech (MOS≈3.3/5 for naturalness) 27 but sometimes inconsistent voice identity (speaker similarity can drift) 28 27

Combined Comparison Table

Category	Tool/Model	Speed	Latency	Model Size	Hardware (GPU/VRAM)	Output	Quality (Key Metrics)
Avatar Gen	SadTalker (2023)	~10 FPS @512px	~0.1 s/ frame 1	~1 GB (weights)	NVIDIA GPU (tested on RTX 4090) ²	256– 512² video	High fidelity video, but less natural head dynamics

Category	Tool/Model	Speed	Latency	Model Size	Hardware (GPU/VRAM)	Output	Quality (Key Metrics)
Avatar Gen	DaGAN (2022)	N/R (≈real- time on GPU)	– (feed- forward GAN)	N/R (CNN + depth)	NVIDIA GPU (used 8× RTX 3090 train) ⁴	~256² video	CSIM 0.723, PRMSE 2.33, AUCON 0.873 (strong identity & expression accuracy)
Avatar Gen	GeneFace+ + (2023)	~23.5 FPS	~0.04 s/ frame ⁶	N/R (NeRF- based)	1× RTX 3090 Ti (24 GB) ⁷	~512² video	FID 29.1 (best) & LMD 3.78 (low) 6; sync score 6.11 (near GT) 6.
Voice TTS	TorToiSe (2023)	0.25- 0.30 RTF	<0.5 s (streaming)	>500 M params (AR+diff.)	NVIDIA GPU (≥4 GB VRAM)	22 kHz audio	Near-human speech realism (outperforms prior models)
Voice TTS	CosyVoice 2 (2024)	Streaming (150 ms init) 12	~0.15 s initial 12	~0.5 B params	GPU (e.g. L40S: ~5 s per sentence) ¹³	24 kHz audio	MOS 5.53 (↑ from 5.4) 15; lowest CER (high intelligibility)
Voice TTS	IndexTTS (2025)	N/R (2× faster vs CosyV2)	- (200 utts in 397 s)	N/R (~multi- module)	Single GPU (28% util vs CosyV2 48%)	24 kHz audio	MOS ~4.01/5 (zero-shot cloning, tops peers) ¹⁹ ; SOTA speaker sim.
Voice TTS	Zonos (2023)	~1.0 × RTF (real-time)	Low (interactive)	~1.6 B params	≥8 GB VRAM (GPU) ²²	24 kHz audio	"Studio- quality" expressive TTS; high similarity voice cloning

Category	Tool/Model	Speed	Latency	Model Size	Hardware (GPU/VRAM)	Output	Quality (Key Metrics)
Voice TTS	Bark (2023)	~1.25 × RTF (slow AR) ²⁴	~1.25 s/sec audio ²⁵	~1 B params 24	High-end GPU (required for speed) ²⁶	24 kHz audio	Very natural prosody (MOS ≈ 3.3/5) ²⁷ but occasional speaker drift ²⁸ .

<small>Legends: FPS - frames per second; RTF - real-time factor (synthesis time / audio duration); CSIM cosine similarity (identity); PRMSE - pose error; AUCON - Action Unit accuracy; FID - Fréchet Inception
Distance; LMD - Landmark Dist. (lip sync error); MOS - Mean Opinion Score; CER - Character Error Rate.
Lower ↓ = better, higher ↑ = better./small>

nttps://gitnub.com/OpenTaiker/sadTaiker/discussions/685
Programme 2 Releases · OpenTalker/SadTalker · GitHub https://github.com/OpenTalker/SadTalker/releases
3 ecva.net https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/05783.pdf
⁴ GitHub - harlanhong/CVPR2022-DaGAN: Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation https://github.com/harlanhong/CVPR2022-DaGAN
Depth-Aware Generative Adversarial Network for Talking Head Video Generation https://openaccess.thecvf.com/content/CVPR2022/papers/Hong_Depth-Aware_Generative_Adversarial_Network_for_Talking_Head_Video_Generation_CVPR_2022_paper.pdf
6 7 arxiv.org https://arxiv.org/pdf/2305.00787
8 9 GitHub - neonbjb/tortoise-tts: A multi-voice TTS system trained with an emphasis on quality https://github.com/neonbjb/tortoise-tts
Tortoise TTS decoded. I have been using Tortoise TTS for by shashank Jain Medium https://medium.com/@jain.sm/tortoise-tts-decoded-ff12871be432
[2305.07243] Better speech synthesis through scaling https://ar5iv.org/abs/2305.07243
12 13 15 16 chenxwh/cosyvoice2-0.5b – Run with an API on Replicate https://replicate.com/chenxwh/cosyvoice2-0.5b
14 EmoVoice: LLM-based Emotional Text-To-Speech Model arXiv https://arxiv.org/html/2504.12867
17 [2407.05407] CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens https://ar5iv.org/pdf/2407.05407
18 19 20 [2502.05512] IndexTTS: An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System https://ar5iv.org/abs/2502.05512
21 22 23 Zonos, the easy to use, 1.6B, open weight, text-to-speech model that creates new speech or clones voices from 10 second clips : r/LocalLLaMA https://www.reddit.com/r/LocalLLaMA/comments/1irhttv/zonos_the_easy_to_use_16b_open_weight/
24 25 26 27 28 Evaluating Text-to-Speech Synthesis from a Large Discrete Token-based Speech Language Model https://arxiv.org/html/2405.09768v1

1 I can generate 512x512 images in 95ms per image.(4090) · OpenTalker SadTalker · Discussion #685 ·

GitHub