3D model and photographic capture: Applications in heritage visualisation

Paul Bourke

OzViz 2017

Outline

- 3D model reconstruction from photographs
 - Will present an innovation that improves final model quality
- 360 video and high resolution stereoscopic panoramas
 - Will present solutions to the parallax problem

Motivation

- Desire to capture the highest quality data possible that is free of missing data or errors
 - Optimise archive quality
 - Leverage increasingly high quality display technologies for visualisation
 - Produce rich assets for exhibition

Realities

- Might only get one chance, eg: 360 recordings of cultural practices
- Access to objects may be restricted, eg: national treasures
- In situ capture may not be in ideal conditions

3D reconstruction from photographs

- Software has been around for some time
- Largely black box unless you want to get your hands dirty with the open source components of the typical pipeline
- Difficult to make an impact on the resulting quality without a serious development effort
- The improvement developed is applied to the conversion of point clouds to surface meshes
- This is generally the stage where photographic deficiencies reveal themselves.

National Museum of Cambodia

Typical pipeline

The basic idea

- Create surface gradient probability profiles
- These profiles can be used to assist the mesh generation process

Abhayamudra
National Museum of Cambodia

Tara

National Museum of Sri Lanka

Zephyr software

The parallax problem for 360 video

- Every multicamera 360 camera on the market today suffers from the so called "parallax" problem.
- Why do we want multi camera? Answer: Only way to scale in resolution.
- To date the only hardware solution dates back to the 60's.
- Solutions today include
 - Careful orientation of camera and restrictions on action
 - Optical flow (limited success)
 - Various (eg: Al) scene depth reconstruction (limited success)
 - Teams of skilled "stitchers" cleaning footage
- Main reason why it isn't a bigger problem is that most displays (eg: HMDs) are the limiting factor, not the content quality.

Parallax problem in a nutshell

Parallax problem in a nutshell

Solution in the 60's

Solution being developed

Equirectangular layout

Parallax problem for 3D 360 panorams

- Similar problem occurs for stereoscopic panoramas
- Traditionally for monoscopic panoramas one rotates a single camera around the so called "nodal point" of the lens, better known as zero parallax point.
- Typically from 3 to 12 shots, many more for gigapixel panoramas.
- Problem, traditional feature point and stitching can apply non-linear local distortions that are independent of each stereo pair
- Again, often not a problem for low resolution VR devices but generally revealed on high resolution displays

Past Solution

- Targeting high resolution immersive displays (eg: cylinders), goals:
 - 30,000 pixels across 360 degrees
 - 90 degrees vertical FOV
 - suitably portable for field work
 - capture still image in <10 seconds

RoundShot (Zeiss)

Roundshot

Left eye

Right eye

Turkiye, Sarah Kenderdine

Current solution

Left eye

Right eye

45,000 pixels

Left eye

Right eye

