<u>Definition</u>: Let G be a group and X a set. We say G acts on X if there is a map $\Psi: G \times X \longrightarrow X$, which we denote $\Psi(g,x) = g.\pi$, satisfying:

$$\Psi(e_{q,x}) = e_{q,x} = x$$

 $\Psi(g_1, \Psi(g_2, x)) = g_1.(g_1x) = g_1g_2.x = \Psi(g_1g_2, x)$

Example: Let $G = S_n$ and $X = \{1,2,...,n\}$. Let $\sigma \in S_n$. We know $\sigma(j) \in X$ for any $j \in X$. We have a map $S_n \times X \longrightarrow X$ defined by $(\sigma,j) \mapsto \sigma(j)$. Observe that $e_{S_n}(j) = j$ and $(\sigma \tau)(j) = \sigma(\tau(j))$ for all $\sigma, \tau \in S_n$ and $j \in X$.

Example: The group Dz acts on the set X=equilateral triangle.

Example: Let $G = GL_n(IR)$. This is a group under matrix multiplication. Let $X = R^n$. Define $\Psi: G^*X \to X$ by $\Psi(M, x) = Mx$. For n = a, we have:

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} \in \mathbb{R}^2$

Observe that $I_n x = x$ and $M_1(M_2x) = (M_1M_2)x$.

Example: Let $H \subseteq G$. We have that H acts on G by conjugation; i.e., $\Psi: H \times G \longrightarrow H$ defined by $\Psi(h,g) = h.g = hgh^{-1}$. Observe that:

$$\begin{array}{lll} e_{G_1} \cdot g &=& e_{G_1} g e_{G_1}^{-1} = g & \forall g \in G & e_{G_2} \in H \text{ since } H \neq G. \\ \hline (h_1 h_2) \cdot g &=& (h_1 h_2) g (h_1 h_2)^{-1} \\ &=& h_1 h_2 g h_2^{-1} h_1^{-1} \\ &=& h_1 \left(h_2^0 \cdot g \right) h_1^{-1} \\ &=& h_1 \cdot \left(h_2 \cdot g \right). \end{array}$$

Example: Let G be a group and $X = \{f: G \rightarrow C\}$ be the set of functions from G to C. G acts on X via $(g.f)(h) = f(g^{-1}h)$.

$$(e_{G_1} \cdot f)(h) = f(e_{G_1} \cdot h) = f(h)$$

$$((g_1 g_2) \cdot f)(h) = f((g_1 g_2)^{-1} h)$$

$$= f(g_2^{-1} g_1^{-1} h)$$

$$= f(g_2^{-1} (g_1^{-1} h))$$

$$= (g_2 \cdot f)(g_1^{-1} h)$$

$$= g_1 \cdot (g_2 \cdot f)(h).$$

<u>Definition</u>: Let G act on a set X. Let x \(\in X\). The orbit of x is:

Example: Let $H \subseteq G$ and set $X = G/H = \{gH: g \in G\}$. Since we are not requiring H to be normal, this is just a set. Define $g_1 \cdot (gH) = g_1gH$. Observe that:

Consider $G=S_3$ and $H=\langle (12)\rangle$. Then $X=G/H=\{H,(123)H,(13)H\}$ Let $x=\langle (123)H$. We have that:

Example: G acts on itself by $g. x = gxg^{-1}$; i.e., $\Psi: G \times G \longrightarrow G$ is defined by $\Psi(g,x) = g.x = gxg^{-1}$ $\forall g,x \in G$. Observe that:

Let g= O3. Then:

Orb(r) =
$$\{g, r; g \in D_2\}$$
= $\{id, r, r, r, r^2, r, ...\}$
= $\{r, r^2\}$.

סרינ= פררמת

ב פררר ה'ם

Lemma: Let G act on X. There is an equivalence relation on X given by xmy iff ye Orb(x). Under this equivalence relation, the equivalence classes are the orbits. Proof. See draft. Just showing Symanetry, reflexivity, and transitivity.