Text-to-speech synthesis

Vladimir Kirichenko, Yandex

Problem Definition

Problem Definition

Input:

Raw text (with digits, strange symbols, abbreviations etc.)

Output:

PCM audio (wav)

Quality Assessment

- No "right" or "wrong" output.
- Subjective perception of the quality.
- Different kinds of errors

Mean Opinion Score

- 1. Remove "hard" errors (words mispronunced, wrong intonation)
- 2. Ask assessors to rate each example on a scale of 1 to 5
- 3. Average the results

Mean Opinion Score

Table 1. MOS (ACR) scores

Rating	Quality	Distortion
5	Excellent	Imperceptible
4	Good	Just perceptible, but not annoying
3	Fair	Perceptible and slightly annoying
2	Poor	Annoying, but not objectionable
1	Bad	Very annoying and objectionable

Mean Opinion Score - CrowdMOS

- Scores determination and screening
- CI-s estimation
- Crowdsourcing MOS estimation with Amazon MTurk

Mean Opinion Score

Pros:

- Absolute scale
- Good for sound quality estimation

Cons:

- Scores depends a lot on the crowdsource platform
- "Hard" errors are not considered
- Bad for intonation/pronunciation assessment

MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor)

- 1. For each estimated example provide "reference" with natural speech
- 2. Ask assessors how similar are reference and example sentence (on a scale of 1 to 5)
- 3. Average the results

MUSHRA

Pros:

- Absolute scale
- More stable than MOS
- Good for intonation and speaker similarity assessment

Cons:

- Depends a lot on a test set
- Expensive to change test set
- Pronunciation issues aren't considered

(pronunciation) Sentence Error Rate

- 1. Ask assessors to mark sentences with any "hard" errors
- 2. Average the results.

(pronunciation) Sentence Error Rate

Pros:

- Considers all "hard" errors
- Cheap collection of test set
- Good to estimate rate of pronunciation errors

Cons:

- Intonation errors rate is very noisy
- Not sensitive to sound quality issues

Side by Side Test

- Get pairs of sentences (with the same phrase) from two different syntheses
- 2. Ask assessors to choose the most preferable audio for each pair
- 3. Average the votes for each synthesis

Side by Side Test

Pros:

Cons:

Sensitive to all kinds of issues

Relative scale

 Binomial test could help to estimate confidence of the SbS measurement Noisy in the case of almost-equal syntheses

Good to compare syntheses quality

Datasets

- LJ Speech
 - https://keithito.com/LJ-Speech-Dataset/
 - ~24h of 1 speaker (EN)
- VCTK
 - https://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
 - ~44h of 109 speakers (EN)
- M-AILABS
 - https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
 - ~1000h, 8 languages, 16kHz
- Closed companies datasets

TTS Pipeline

Preprocessor

Preprocessor

Sentence tokenization

Normalizer

WFST Normalizer

WFST Normalizer

Rules are weighted substitutions:

- s/\b1\b/one/w=0.5 replace "1" with "one"
- s/\b1\s*st\b/first/w=1.0 if it is not followed by "st"

WFST Normalizer

Context problem:

- "Дом 3 к. 3" "дом три кубические копейки"
- "Нужно 1800 г." "Нужно тысяча восьмисотый год"

Rules could interfere:

• "Корпус." - "корпустроение"

Neural Normalizer

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/17a20b71a2c09100daaef5a8c39eeb 930a7017f6.pdf

Neural Normalizer

Pros:

- Has no context problems
- No need to write code for new case, just add more data

Cons:

- Need a lot of data
 (10⁶-10⁷ parallel sentences)
- Slower than WFST
- Impossible to fix intricate cases manually

Grapheme to Phoneme

G2P Issues

- Homographs"Increase" /ɪnˈkriːs/ or /ˈɪnkriːs/ ?
- Foreign words
 "A short poem à la Ogden Nash" /a la/
- Abbreviations"Cl" /si:/ /aɪ/

G2P Components

Phonemes or Texts?

G2P Pros:

- A separate G2P engine can serve for several backends
- Easy to control and fix certain words pronunciation

G2P Cons:

- More expensive markup than text
- Additional components additional bugs
- Additional information in text
 (e.g. punctuation) is lost
- Not all languages require G2P

Engine

Dense PCM

- Duration of phoneme (in Russian) ~ 20-150 ms
- Duration of 22.05kHz PCM sample ~ 0.045 ms

Concatenative synthesis

Unit selection

*Deep Learning for Siri Voice http://machinelearning.apple.com/2017/08/06/siri-voices.html

Unit selection

Pros:

Very fast synthesis, even with a high
 sample rate

Sound quality inside units is equal to the original records

Cons:

 Requires a lot of records to cover wide domain

 Produce annoying artifacts at bad unit concatenations

Very bad at intonation variation

 Outside of records domain quality significantly decreases

Parametric synthesis

- Introduce an intermediate speech audio representation
- Generate audio in two steps, by two models

Parametric space - Mel Spectrogram

Acoustic Model

- Deals with phoneme durations
- Solves regression problem for acoustic features
- Is responsible for intonation contour
- Is responsible for phoneme articulation
- (for models with text input) Solves G2P problem

Acoustic Model

Models used for acoustic modeling:

- Decision Trees + HMM
- 2. Deep Mixture Density Networks + HMM
- 3. RNN with duration prediction

 Deep Voice 2 https://arxiv.org/abs/1705.08947
- 4. Seq2Seq Networks

Char2Wav https://openreview.net/pdf?id=B1VWyySKx

Deep Voice 3 https://arxiv.org/abs/1710.07654

Tacotron 1 https://arxiv.org/abs/1703.10135

Tacotron 2

Fig. 1. Block diagram of the Tacotron 2 system architecture.

* Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions http://arxiv.org/pdf/1712.05884.pdf

Tacotron 2 - Train Loss

$$L_{pre} = ||melspec_{pre} - melspec_{gt}||_{2}^{2}$$
 $L_{post} = ||melspec_{post} - melspec_{gt}||_{2}^{2}$
 $L_{stop} = \text{XEnt} (stop \ token, } \mathbb{I}_{EOS})$
 $L = L_{pre} + L_{post} + L_{stop}$

Fig. 1. Block diagram of the Tacotron 2 system architecture.

- No discrete output cannot add EOS token
- Separate head for EOS prediction
- Two MSE losses for MelSpec prediction

Tacotron 2 - Inference

 y_{i-1}

value

Waveform

Samples

Mel Spectrogram

Tacotron 2 - Attention

- Attention is (mostly) monotonic
- Depends on the previous state
- More stable than Bahdanau or Transformer attention —

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Location-sensitive Attention

Location-sensitive Attention

Location-sensitive Attention

What's Next? - Attention

More robust:

- Guided Attention https://arxiv.org/abs/1710.08969
 Stitch attention to record alignment (e.g. with ASR)
- Monotonic Attention https://arxiv.org/abs/1906.00672
 Enforce attention to read all input tokens sequentially
- Location-Relative Attention https://arxiv.org/abs/1910.10288
 Dynamic convolutions in attention make it more robust at very long utterances

What's Next? - Attention

Faster:

- Transformer https://arxiv.org/abs/1809.08895
 Fast convergence
 Issues with monotonicity
- FastSpeech https://arxiv.org/abs/1905.09263
 Transformers with duration prediction (use pre-trained Transformer TTS)
 No autoregression very fast inference
 Issues with quality

What's Next? - Style Tokens

^{*} Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis https://arxiv.org/abs/1803.09017

What's Next? - Style Tokens

- Different mechanisms of style modeling:
 - Several tokens with attention https://arxiv.org/abs/1803.09017
 - Variational Autoencodershttps://arxiv.org/abs/1804.02135
- Predicting style:
 - From text encoderhttps://arxiv.org/abs/1808.01410
 - Use additional interpretable features
 https://arxiv.org/abs/1810.07217

What's Next? - Multi-Speaker

- Multiple speaker training
 - Single model trained with multiple speakers/languages
 - More stable training
 - Transfer language/accents
 - Multilingual Multispeaker Tacotron https://arxiv.org/abs/1907.04448
- Speaker few-shot learning
 - Create new speaker for 1-2 records
 - Fast but unstable
 - Transfer Learning from Speaker Verification to Multispeaker https://arxiv.org/abs/1806.04558

Vocoder

- Reconstructs audio from para-space
- Sets loudness, PCM sampling rate and precision
- Responsible for low-level sound quality

Vocoder

- DSP Vocoders
 - Faster, smaller
 - Worse quality
 - Usually works with more complex para-space

World, Straight, Griffin-Lim

- Neural Vocoders
 - Requires much more computing power
 - Better quality (SotA)
 - Usually works with mel spectrograms

WaveNet, LPCNet, ClariNet, WaveRNN, WaveGlow, MelGAN

WaveNet

* WaveNet: A Generative Model for Raw Audio https://arxiv.org/abs/1609.03499

WaveNet - Output

- 8bit audio => classification in 2⁸ classes cannot work with 16bit
- To upsample μ-law transformation was used

$$f(x_t) = sign(x_t) \frac{\ln(1+\mu|x_t|)}{\ln(1+\mu)}$$

Later* SML was replaced with a mixture of logistians:

$$\sum_{i} \pi_{i} \frac{e^{-(x-\mu_{i})/s_{i}}}{s_{i} \left(1 + e^{-(x-\mu_{i})/s_{i}}\right)^{2}}$$

^{*} Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications https://arxiv.org/abs/1701.05517

WaveNet

Pros: Cons:

Best audio quality for para-synthesis • 200 times slower than realtime

Works with continuous melspecs (good for MSE-loss Acoustic Model)

Faster? Cache!

- No need to compute intermediate values twice
- WaveNet with caching is able to run in realtime

^{*} Fast Wavenet Generation Algorithm https://arxiv.org/abs/1611.09482

WaveNet with Caching

Pros:

- Realtime at 2-4 CPU cores
- Vanilla WaveNet quality

Cons:

- Very hard to implement efficiently (assembler, special CPU instructions)
- Almost impossible to implement efficiently at GPU

Faster? RNN!

- RNNs can keep the state
- No need to re-run the vocoder at each sample
- Smaller and faster networks

* Efficient Neural Audio Synthesis https://arxiv.org/abs/1802.08435v1

$$\begin{aligned} \mathbf{x}_t &= [\mathbf{c}_{t-1}, \mathbf{f}_{t-1}, \mathbf{c}_t] \\ \mathbf{u}_t &= \sigma(\mathbf{R}_u \mathbf{h}_{t-1} + \mathbf{I}_u^{\star} \mathbf{x}_t) \\ \mathbf{r}_t &= \sigma(\mathbf{R}_r \mathbf{h}_{t-1} + \mathbf{I}_r^{\star} \mathbf{x}_t) \\ \mathbf{e}_t &= \tau(\mathbf{r}_t \circ (\mathbf{R}_e \mathbf{h}_{t-1}) + \mathbf{I}_e^{\star} \mathbf{x}_t) \\ \mathbf{h}_t &= \mathbf{u}_t \circ \mathbf{h}_{t-1} + (1 - \mathbf{u}_t) \circ \mathbf{e}_t \\ \mathbf{y}_c, \mathbf{y}_f &= \text{split}(\mathbf{h}_t) \\ P(\mathbf{c}_t) &= \text{softmax}(\mathbf{O}_2 \text{ relu}(\mathbf{O}_1 \mathbf{y}_c)) \\ P(\mathbf{f}_t) &= \text{softmax}(\mathbf{O}_4 \text{ relu}(\mathbf{O}_3 \mathbf{y}_f)) \end{aligned}$$

 $\mathsf{GRU}(\mathsf{x},\mathsf{h}) \sim \begin{cases} \mathbf{u}_t = \sigma(\mathbf{R}_u \mathbf{h}_{t-1} + \mathbf{I}_u^{\star} \mathbf{x}_t) \\ \mathbf{u}_t = \sigma(\mathbf{R}_u \mathbf{h}_{t-1} + \mathbf{I}_v^{\star} \mathbf{x}_t) \\ \mathbf{r}_t = \sigma(\mathbf{R}_r \mathbf{h}_{t-1} + \mathbf{I}_r^{\star} \mathbf{x}_t) \\ \mathbf{e}_t = \tau(\mathbf{r}_t \circ (\mathbf{R}_e \mathbf{h}_{t-1}) + \mathbf{I}_e^{\star} \mathbf{x}_t) \\ \mathbf{h}_t = \mathbf{u}_t \circ \mathbf{h}_{t-1} + (1 - \mathbf{u}_t) \circ \mathbf{e}_t \\ \mathbf{y}_c, \mathbf{y}_f = \mathsf{split}(\mathbf{h}_t) \\ P(\mathbf{c}_t) = \mathsf{softmax}(\mathbf{O}_2 \ \mathsf{relu}(\mathbf{O}_1 \mathbf{y}_c)) \\ P(\mathbf{f}_t) = \mathsf{softmax}(\mathbf{O}_4 \ \mathsf{relu}(\mathbf{O}_3 \mathbf{y}_f)) \end{cases}$

* Efficient Neural Audio Synthesis https://arxiv.org/abs/1802.08435v1

$$\begin{aligned} \mathsf{GRU}(\mathsf{x}, \mathsf{h}) &\sim \begin{cases} \mathbf{u}_t = [\mathbf{c}_{t-1}, \mathbf{f}_{t-1}, \mathbf{c}_t] \\ \mathbf{u}_t = \sigma(\mathbf{R}_u \mathbf{h}_{t-1} + \mathbf{I}_u^{\star} \mathbf{x}_t) \\ \mathbf{r}_t = \sigma(\mathbf{R}_r \mathbf{h}_{t-1} + \mathbf{I}_r^{\star} \mathbf{x}_t) \\ \mathbf{e}_t = \tau(\mathbf{r}_t \circ (\mathbf{R}_e \mathbf{h}_{t-1}) + \mathbf{I}_e^{\star} \mathbf{x}_t) \\ \mathbf{h}_t = \mathbf{u}_t \circ \mathbf{h}_{t-1} + (1 - \mathbf{u}_t) \circ \mathbf{e}_t \\ \mathbf{y}_c, \mathbf{y}_f = \mathsf{split}(\mathbf{h}_t) \\ P(\mathbf{c}_t) = \mathsf{softmax}(\mathbf{O}_2 \ \mathsf{relu}(\mathbf{O}_1 \mathbf{y}_c)) \\ P(\mathbf{f}_t) = \mathsf{softmax}(\mathbf{O}_4 \ \mathsf{relu}(\mathbf{O}_3 \mathbf{y}_f)) \end{aligned}$$

1. $(h_{t-1}, [c_{t-1}, c_{t-1}]) \to h_t^c \to y_c \to c_t$

* Efficient Neural Audio Synthesis https://arxiv.org/abs/1802.08435v1

$$\mathsf{GRU}(\mathsf{x},\mathsf{h}) \sim \begin{cases} \mathbf{u}_t = \sigma(\mathbf{R}_u \mathbf{h}_{t-1} + \mathbf{I}_u^{\star} \mathbf{x}_t) \\ \mathbf{u}_t = \sigma(\mathbf{R}_r \mathbf{h}_{t-1} + \mathbf{I}_r^{\star} \mathbf{x}_t) \\ \mathbf{r}_t = \sigma(\mathbf{R}_r \mathbf{h}_{t-1} + \mathbf{I}_r^{\star} \mathbf{x}_t) \\ \mathbf{e}_t = \tau(\mathbf{r}_t \circ (\mathbf{R}_e \mathbf{h}_{t-1}) + \mathbf{I}_e^{\star} \mathbf{x}_t) \\ \mathbf{h}_t = \mathbf{u}_t \circ \mathbf{h}_{t-1} + (1 - \mathbf{u}_t) \circ \mathbf{e}_t \\ \mathbf{y}_c, \mathbf{y}_f = \mathsf{split}(\mathbf{h}_t) \\ P(\mathbf{c}_t) = \mathsf{softmax}(\mathbf{O}_2 \, \mathsf{relu}(\mathbf{O}_1 \mathbf{y}_c)) \\ P(\mathbf{f}_t) = \mathsf{softmax}(\mathbf{O}_4 \, \mathsf{relu}(\mathbf{O}_3 \mathbf{y}_f)) \end{cases}$$

- 1. $(h_{t-1}, [c_{t-1}, c_{t-1}]) \to h_t^c \to y_c \to c_t$
- 2. $(h_{t-1}, [c_{t-1}, f_{t-1}, c_t]) \to h_t^f \to y_f \to f_t$

* Efficient Neural Audio Synthesis https://arxiv.org/abs/1802.08435v1

WaveRNN

Pros:

Real-time inference

Quality comparable with WaveNet

 Can run (compressed version) at CPU in realtime Cons:

Hard to make GPU inference effective

Faster? Parallel!

- Very efficient generation at GPU
- Need to break autoregression loop
- Vocoders:
 - Parallel WaveNet https://arxiv.org/abs/1711.10433
 - ClariNet https://arxiv.org/abs/1807.07281
 - WaveGlow https://arxiv.org/abs/1811.00002

- 1. Need to sample: $x \sim D_{wav}(\text{melspec})$
- 2. $D_{wav}-?$

- Need to sample: $x \sim D_{wav}(\text{melspec})$
- 2. $D_{wav}-?$ 3. $x = f(z, \text{melspec}); z \sim \mathcal{N}(0, 1)$

^{*} WaveGlow: A Flow-based Generative Network for Speech Synthesis https://arxiv.org/abs/1811.00002

- 1. Need to sample: $x \sim D_{wav}(\text{melspec})$
- 2. D_{wav} -?
- 3. $x = f(z, \text{melspec}); z \sim \mathcal{N}(0, 1)$
- 4. $z = f^{-1}(x)$

$$p(x|\text{melspec}) = p(z(x))|\det J(f^{-1}(x,\text{melspec}))|$$

^{*} WaveGlow: A Flow-based Generative Network for Speech Synthesis https://arxiv.org/abs/1811.00002

- 1. Need to sample: $x \sim D_{wav}(\text{melspec})$
- 2. $D_{wav} ?$
- 3. $x = f(z, \text{melspec}); z \sim \mathcal{N}(0, 1)$
- 4. $z = f^{-1}(x)$

$$p(x|\text{melspec}) = p(z(x))|\det J(f^{-1}(x, \text{melspec}))|$$

5. Train to maximize $p_{ heta}(x| ext{melspec})$

- 1. Need to sample: $x \sim D_{wav}(\text{melspec})$
- 2. $D_{wav} ?$
- 3. $x = f(z, \text{melspec}); z \sim \mathcal{N}(0, 1)$
- 4. $z = f^{-1}(x)$

$$p(x|\text{melspec}) = p(z(x))|\det J(f^{-1}(x, \text{melspec}))|$$

- 5. Train to maximize $p_{\theta}(x|\text{melspec})$ 6. Train invertible function $f^{-1}(x,\text{melspec})$

- 1. Need to sample: $x \sim D_{wav}(\text{melspec})$
- 2. $D_{wav} ?$
- 3. $x = f(z, \text{melspec}); z \sim \mathcal{N}(0, 1)$
- 4. $z = f^{-1}(x)$

$$p(x|\text{melspec}) = p(z(x))|\det J(f^{-1}(x, \text{melspec}))|$$

- Train to maximize $p_{\theta}(x|\text{melspec})$ Train invertible function $f^{-1}(x,\text{melspec})$
- 7. Revert and sample x via z

* WaveGlow: A Flow-based Generative Network for Speech Synthesis https://arxiv.org/abs/1811.00002

WaveGlow - Coupling

Fig. 1: WaveGlow network

$$x_a, x_b = \text{split}(x)$$

 $(\log s, t) = WN(x_a, \text{melspec})$
 $x'_b = s \odot x_b + t$
 $f_{coupling}^{-1}(x) = \text{concat}(x_a, x'_b)$

WaveGlow - Coupling

Fig. 1: WaveGlow network

$$x_a, x_b = \text{split}(x)$$

 $(\log s, t) = WN(x_a, \text{melspec})$
 $x'_b = s \odot x_b + t$
 $f_{coupling}^{-1}(x) = \text{concat}(x_a, x'_b)$
 $x'_a, x'_b = \text{split}(x')$
 $(\log s, t) = WN(x'_a, \text{melspec})$
 $x_b = s^{-1} \odot (x'_b - t)$
 $f_{coupling}(x) = \text{concat}(x'_a, x_b)$

WaveGlow - Coupling

Fig. 1: WaveGlow network

$$p_{\theta}(x|\text{melspec}) = exp\left(-\frac{z(x, \text{melspec})^2}{2\sigma^2}\right) \prod_{j=0}^{\#coupling} s_j(x, \text{melspec}) \prod_{k=0}^{\#conv} |\det W_k|$$

$$x_a, x_b = \text{split}(x)$$

 $(\log s, t) = WN(x_a, \text{melspec})$
 $x'_b = s \odot x_b + t$
 $f_{coupling}^{-1}(x) = \text{concat}(x_a, x'_b)$
 $x'_a, x'_b = \text{split}(x')$
 $(\log s, t) = WN(x'_a, \text{melspec})$
 $x_b = s^{-1} \odot (x'_b - t)$
 $f_{coupling}(x) = \text{concat}(x'_a, x_b)$

WaveGlow

Pros:

- Quality comparable to vanilla
 WaveNet
- Fast (520k samples / second)
 inference at GPU
- Code at GitHub

Cons:

- Difficult streaming inference
- Impossible to implement on CPU

Hack of the Day

- 1. There is a github repo for it
 - https://github.com/NVIDIA/waveglow
 - https://github.com/NVIDIA/tacotron2
 - https://github.com/r9y9/wavenet_vocoder
- 2. P("there's a bug") >> P("it underfits")
- Don't trust losses. Listen.

?

Extras

spectrogram

Other para-spaces

Other para-spaces

We could further process MelSpec to make more complex and compact features:

- F0 frequency at which vocal chords vibrate in voiced sound
- Spectral Envelope, could be described with:
 - Cepstral Coefficients Discrete Cosine Transform of (mel) spectrum
 - Linear Predictive Coding autoregressive model describing envelope
- Periodicity
 - Frequency-wise
 - Max Voiced Frequency