In [1]: import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [2]: df=pd.read_csv(r"C:\Users\Welcome\Downloads\Income.csv")
 df

Out[2]:

	Gender		Age	Income(\$)
•	0	Male	19	15
	1	Male	21	15
	2	Female	20	16
	3	Female	23	16
	4	Female	31	17
	195	Female	35	120
	196	Female	45	126
	197	Male	32	126
	198	Male	32	137
	199	Male	30	137

200 rows × 3 columns

In [3]: df.head()

Out[3]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17

```
In [4]: plt.scatter(df["Age"],df["Income($)"])
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[4]: Text(0, 0.5, 'Income(\$)')


```
In [5]: from sklearn.cluster import KMeans
```

In [6]: km=KMeans()

Out[6]:

* KMeans

KMeans()

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s
uppress the warning
warnings.warn(

```
In [8]: df["cluster"]=y_predicted
df.head()
```

Out[8]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	4
1	Male	21	15	4
2	Female	20	16	4
3	Female	23	16	4
4	Female	31	17	4

```
In [9]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="purple")
    plt.scatter(df2["Age"],df2["Income($)"],color="skyblue")
    plt.scatter(df3["Age"],df3["Income($)"],color="violet")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[9]: Text(0, 0.5, 'Income(\$)')


```
In [10]: from sklearn.preprocessing import MinMaxScaler
```

```
In [11]: Scaler=MinMaxScaler()
```

```
In [12]: Scaler.fit(df[["Income($)"]])
    df["Income($)"]=Scaler.transform(df[["Income($)"]])
    df.head()
```

Out[12]:

	Gender	Age	Income(\$)	cluster
0	Male	19	0.000000	4
1	Male	21	0.000000	4
2	Female	20	0.008197	4
3	Female	23	0.008197	4
4	Female	31	0.016393	4

```
In [13]: Scaler.fit(df[["Age"]])
    df["Age"]=Scaler.transform(df[["Age"]])
    df.head()
```

Out[13]:

	Gender	Age	Income(\$)	cluster
0	Male	0.019231	0.000000	4
1	Male	0.057692	0.000000	4
2	Female	0.038462	0.008197	4
3	Female	0.096154	0.008197	4
4	Female	0.250000	0.016393	4

```
In [14]: km=KMeans()
km
```

Out[14]:

```
▼ KMeans
KMeans()
```

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

```
warnings.warn(
```

```
Out[17]: array([6, 6, 6, 6, 6, 0, 6, 0, 6, 1, 0, 1, 0, 5, 6, 0, 6, 0, 6, 5, 0, 0, 6, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 0, 6, 1, 6, 5, 6, 5, 6, 5, 6, 5, 0, 0, 6, 1, 6, 5, 0, 5, 6, 5, 6, 5, 0, 0, 6, 1, 6, 5, 0, 5, 6, 5, 6, 5, 0, 0, 1, 5, 5, 5, 5, 1, 0, 5, 1, 4, 1, 5, 1, 4, 5, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 1, 1, 1, 4, 3, 4, 4, 4, 1, 7, 7, 7, 4, 3, 3, 3, 3, 3, 3, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7, 3, 7,
```

```
In [18]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="hotpink")
    plt.scatter(df2["Age"],df2["Income($)"],color="SpringGreen")
    plt.scatter(df3["Age"],df3["Income($)"],color="plum")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[18]: Text(0, 0.5, 'Income(\$)')


```
In [22]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="royalblue")
    plt.scatter(df2["Age"],df2["Income($)"],color="violet")
    plt.scatter(df3["Age"],df3["Income($)"],color="olive")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="red",markeplt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[22]: Text(0, 0.5, 'Income(\$)')


```
In [23]: k_rng=range(1,10)
    sse=[]
    for k in k_rng:
        km=KMeans(n_clusters=k)
        km.fit(df[["Age","Income($)"]])
        sse.append(km.inertia_)
    sse
```

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

C:\Users\Welcome\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to s uppress the warning

warnings.warn(

```
Out[23]: [23.583906150363607,
13.028938428018286,
7.49210786858601,
6.055858644812547,
4.713416604872824,
3.8711379834997794,
3.055986211920202,
2.651698877545509,
2.3135720353543285]
```

```
In [24]: plt.plot(k_rng,sse)
    plt.xlabel("k")
    plt.ylabel("sum of squared Error")
```

Out[24]: Text(0, 0.5, 'sum of squared Error')


```
In [ ]:
```