1 del Pezzo Surfaces

Definition 1.0.1. A surface is *del Pezzo* if it has cyclic quotient singularities and $-K_X$ is ample (note that X need not be Gorenstein so K_X is just \mathbb{Q} -Cartier).

Remark. We can to classify these up to qG-deformations. The idea of a qG-deformation is a family of del Pezzo surfaces $X \to S$ such that $\deg(-K_{X_s})^2$ and $h^0(X_s, -K_{X_s})$ are locally constant on the base (the intersection numbers are automatically constant for flat families).

1.1 Mirror Symmetry for Fanos

Let X be a smooth Famo and p_{β} is some count of stable maps of class β to X though a fixed generic point. More precisesly,

$$P_{\beta} = (d_{\beta})! \int_{M_{0,1}(X,\beta)} \text{ev}^*[*] \cdot \psi^{d_{\beta}-2}$$

where $d\beta = -\deg(K_X \cdot \beta)$ is an anti-canonical degree. These are stable maps with $f_*[C] = \beta$ where [C] is the fundamental class.

We fit these together into a generating function,

$$\hat{G}_X(z) := \sum_{\beta \in NE(X)} P_{\beta} \cdot z^{\beta} \in \mathbb{Q}[[NE(X)]]$$

We can replace $z^{\beta} \mapsto t^{d_{\beta}}$ which gives a power series,

$$\hat{G}_X(t) \in \mathbb{Q}[[t]]$$

This is one side of the mirror symmetry story. On the other side we have,

$$f\in \mathbb{Q}[x^\pm,y^\pm]$$

then consider,

$$\pi_f = \int_{|z_1|=|z_2|=1} \frac{\Omega}{1-tf} = \sum_{d>0} c_0(f^d)t^d \in \mathbb{Q}[[t]]$$

where $c_0(g)$ is the constant coefficient as a Laruent polynomial. We say that f is mirror to X if,

$$\pi_f(t) = \hat{G}_X(t)$$

Note that f is not unique if it exists.

1.2 Conjectures

Definition 1.2.1. A Fano variety if of class TG if there is a qG-deformation to a toric variety.

Conjecture 1.2.2. There exists a bijection,

 $\{X \text{ Fano and of class } TG\}/\{\text{qG-defomration} \iff \{\text{Fano polytopes}\}/\text{mutations}$ given by $P \mapsto [X_P]$.

1.3 Evidence

Smooth del Pezzos there are $Bl_{kpoints}\mathbb{P}^2$ for $0 \le k \le 8$ and $\mathbb{P}^1 \times \mathbb{P}^1$ then the qG-deformations gives 10 families (allthough many of these families have a unique member).

Theorem 1.3.1. The map $\{\text{Fano Poly}\}/\{\text{mutation}\} \to \{X \text{ Fano TG}\}/\sim \text{is well defined.}$

1.4 Gross - Siebert Program

Let (X, D) be a smooth del Pezzo pair D is an anticanonical divisor (snc and a cycle of lines maybe). The Gross-Siebert program produces an algebra,

$$A = \bigoplus_{P \in B(\mathbb{Z})} \theta_p \mathbb{C}[NE(X)]$$

where we define,

$$\theta_p \cdot \theta_q = \sum_{r \in B(\mathbb{Z})} \alpha_{pqr} \theta_r$$

with $\alpha_{pqr} \in \mathcal{C}[NE(X)]$ is defined as some Gromov-Witten invariant. Then we get,

$$Y = \operatorname{Spec}(A) \to \operatorname{Spec}(\mathbb{C}[\operatorname{NE}(X)])$$