KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN – ĐHQG TPHCM

TOÁN ỨNG DỤNG VÀ THỐNG KÊ CHO CÔNG NGHỆ THÔNG TIN

ĐÒ ÁN 1: COLOR COMPRESSION

LÓP: 21CLC08

HỌ VÀ TÊN: NGÔ QUỐC QUÝ

MSSV: 21127679

Mục lục

I.	Ý tưởng thực hiện, mô tả các hàm:	3
a.	. Ý tưởng thực hiện:	3
	. Mô tả các hàm:	
	Kết quả:	
	. Ảnh gốc:	
	. Ånh sau khi được nén với k = 3:	
	. Ånh sau khi được nén với k = 5:	
	. Ånh sau khi được nén với k = 7:	
	Nhận xét:	
	Tài liêu tham khảo:	

I. Ý tưởng thực hiện, mô tả các hàm:

a. Ý tưởng thực hiện:

- Được xây dựng dựa trên thuật toán Kmeans Clustering, phân cụm khi chúng ta không biết labels của từng điểm dữ liệu
- Mô tả thuật toán:
 - O Khởi tạo các centroids ngẫu nhiên
 - O Chạy vòng lặp đến max_iterator
 - Gán nhãn cho từng điểm dữ liệu
 - Cập nhật dữ liệu của các centroids.
 - Kiểm tra điểm hội tụ (tránh lãng phí bộ nhớ, thời gian)

b. Mô tả các hàm:

- Hàm main:

- O Gọi hàm **input_image**, thực hiện nhập hình ảnh.
- Gọi hàm handle_and_compress_image để xử lí hình ảnh được nhập vào.

- Hàm input_image:

- Cho phép người dùng nhập tên tập tin hình ảnh (phải cùng 1 đường dẫn với file ipynb).
- O Thực hiện mở hình ảnh, nếu không có thì báo lỗi.

- Hàm handle_and_compress_image:

- o Đầu vào:
 - image: hình ảnh có được sau khi gọi hàm input_image
- Đầu ra:
 - Không có giá trị trả về
- O Hàm thực hiện chuyển đổi hình ảnh sang dạng ma trận, gọi hàm kmeans lấy về hai giá trị centroids và labels, sau đó sử dụng 2 giá trị trên để phục hồi về dạng ma trận 3 chiều (row, col, rgb(3)).
- O Tiếp theo, yêu cầu người dùng nhập định dạng muốn lưu trữ hình ảnh sau khi nén (png, pdf).
- Sau khi lưu trữ, tiến hành in ra console.

- Hàm kmeans:

- o Đầu vào:
 - img_1d: tập dữ liệu ban đầu.
 - k_cluster: số lượng màu muốn nén.
 - max_iter: số vòng lặp tối đa khi phân cụm.
 - init_centroids: cách khởi tạo các center (truyền vào 2 giá trị random và in_pixels).
- o Đầu ra:
 - centroids: các trung tâm sau khi nén.

- labels: các nhãn dán cho điểm dữ liệu trung tâm.
- Hàm này đầu tiên sẽ khởi tạo một mảng centroids bất kì (được lấy giá trị random theo từng đầu vào (random hoặc in_pixels).
- Thực hiện vòng lặp, tìm có khoảng cách gần nhất để gán labels và thực hiện tính toán lại các cụm centroids.

- Hàm compute_distance:

- o Đầu vào:
 - img_1d: tập dữ liệu ban đầu
 - centroids: các cụm trung tâm
 - index: vị trí của phần tử trong tập dữ liệu ban đầu
 - cluster: vị trí của phần tử trong các cụm trung tâm
- Đầu ra:
 - Khoảng cách của các điểm khác với điểm trung tâm.
- o Thực hiện tính toán khoảng cách.
- o Sử dụng cách tính manhattan distance.

- Hàm assign_labels:

- o Đầu vào:
 - img_1d
 - centroids
 - labels: các labels chưa được gán.
 - k_cluster: số màu muốn nén.
- Đầu ra:
 - labels: Các labels sau khi được gán.
- O Đầu tiên, gán tất cả các labels bằng 0.
- Sau đó sử dụng hàm compute_distance để tính toán khoảng cách, thực hiện đánh dấu các labels sau đó trả về giá trị labels.

- Hàm update_centroids:

- o Đầu vào:
 - img_1d
 - centroids: tập centroids chưa được cập nhật
 - labels: các labels đã được gán
 - k clusters:
- o Đầu ra:
 - Các centroids đã được cập nhật
- Lấy các giá trị đã được gán nhãn và thực hiện tính lại tập centroids mới.

- Hàm has_converged:

- o Đầu vào:
 - centroids
 - new_centroids

- o Đầu ra:
 - True/False
- O Thực hiện kiểm tra xem tập mới có centroids mới có trùng với tập cũ hay không, nếu trùng sẽ trả về True và dừng vòng lặp kmeans.

II. Kết quả:

a. Ảnh gốc:

b. \mathring{A} nh sau khi được nén với k = 3:

random in pixels

c. \mathring{A} nh sau khi được nén với k = 5:

random in pixels

d. \mathring{A} nh sau khi được nén với k = 7:

random in pixels

III. Nhận xét:

- Trong cả 6 hình, đều một phần thể hiện được nội dung của anh gốc, tuy nhiên không còn rõ ràng, mức độ rõ ràng tăng dần theo (k = 3, 5, 7), tuy nhiên nội dung của những ảnh có k = 3 thì không thể dễ dàng nhận biết được khi so với ảnh gốc, chứng tỏ việc thực hiện thuật toán đã có một phần thành công.
- Trong những bức có đầu vào là "random", nội dung thể hiện rõ rang hơn so với in_pixels.

IV. Tài liệu tham khảo:

Geekforgeek:

https://www.geeksforgeeks.org/image-compression-using-k-means-clustering/

Simple Coding:

 $\frac{https://theironns.blogspot.com/2017/01/machine-learning-k-means-gioi-thieuve.html?m=1\&fbclid=IwAR2qW1ochLSGp2S2ZDqVl-\\ZkeyUlzYAuYrFiT3THAcMaqioLTMlEpM0gPV4}$

Numpy:

 $\underline{https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice}.\underline{html}$

Funda: https://machinelearningcoban.com/2017/01/01/kmeans/