Алгоритм Краскала

Вайцуль А. Н.

1 Постановка задачи

Задача минимального остовного дерева в графах заключается в нахождении подграфа, являющегося деревом и включающего все вершины исходного графа с минимальной суммой весов рёбер. В более формальной постановке, у нас есть взвешенный связный граф G = (V, E) с весами ребер, и требуется найти такое подмножество ребер E', что граф T = (V, E') является деревом и сумма весов ребер в E' минимальна.

2 Описание алгоритма

1. Сортировка рёбер по весу

В начале алгоритма все рёбра графа сортируются по весу в неубывающем порядке. Это может быть достигнуто, например, с использованием сортировки слиянием или быстрой сортировки.

2. Создание леса

Создаётся лес, где каждая вершина графа представляет собой отдельное дерево. Изначально каждое дерево состоит из одной вершины.

3. Объединение деревьев

Проходя по отсортированным рёбрам, начиная с самого лёгкого, рассматриваем каждое ребро. Если его добавление к текущему лесу не создаст цикл (т.е., рёбра не соединяют вершины, уже лежащие в одном и том же дереве), то ребро добавляется к минимальному остовному дереву, а два дерева объединяются в одно.

4. Повторение

Шаг 3 повторяется, пока не будет построено минимальное остовное дерево, включающее все вершины исходного графа.

3 Результаты

На вход подаем следующий граф:

На выходе получаем пары вершин, соединенные ребром соответствующего веса:

0 2 - 5

3 4 - 7

01-8

2 4 - 10

В итоге получим остовное дерево наименьшего веса:

