Universidad Peruana d	e Ciencias Aplicadas			
		EDE		
		EPE		

MATERIAL PARA LOS CURSOS DE ESTADÍSTICA DE EPE DE LA UPC

Universidad Peruana de Ciencias Aplicadas

Resumen	Muestra			Población		
Promedio o media	$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$	$\frac{1}{x} = \frac{\sum_{i=1}^{k} f_i x_i}{n}$ datos agrupados	$\overline{x} = \frac{\sum_{i=1}^{k} f_i x_i^{'}}{n}$ atos agrupados con intervalos	$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\mu = \frac{\sum_{i=1}^{k} f_i x_i}{N}$	$\mu = \frac{\sum_{i=1}^{k} f_i x_i^{'}}{N}$
Promedio ponderado	$\overline{\mathbf{x}}_{w} = \frac{\sum_{i=1}^{k} \mathbf{w}_{i} \mathbf{x}_{i}}{\sum_{i=1}^{k} \mathbf{w}_{i}}$			$\mu_{w} = \frac{\sum_{i=1}^{k} w_{i} x_{i}}{\sum_{i=1}^{k} w_{i}}$		
Varianza	$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$	$S^{2} = \frac{\sum_{i=1}^{k} f_{i} (x_{i} - \overline{x})^{2}}{n-1}$ datos agrupados	$s^{2} = \frac{\sum_{i=1}^{k} f_{i} (x_{i} - \overline{x})^{2}}{n-1}$ datos agrupados con intervalos	$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$	$\sigma^2 = \frac{\sum_{i=1}^k f_i(x_i - \mu)^2}{N}$	$\sigma^2 = \frac{\sum_{i=1}^k f_i (x_i' - \mu)^2}{N}$

Resumen	Muestra			Población		
Desviación estándar	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} $ S	$s = \sqrt{\frac{\sum_{i=1}^{k} f_{i} (x_{i} - \overline{x})^{2}}{n - 1}}$	$s = \sqrt{\frac{\sum_{i=1}^{k} f_{i} (x_{i}^{'} - \overline{x})^{2}}{n-1}}$	$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$	$\sigma = \sqrt{\frac{\sum_{i=1}^{k} f_i (x_i - \mu)^2}{N}}$	$\sigma = \sqrt{\frac{\sum_{i=1}^{k} f_i (x_i' - \mu)^2}{N}}$
Coeficiente de variación	$CV = \left(\frac{s}{\overline{x}}\right) x 100\%$			$CV = \left(\frac{\sigma}{\mu}\right) x 100\%$		
Sturges	$k = 1 + 3.322 \log_{10} n$					

TEORÍA DE PROBABILIDAD

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Probabilidad total

$$P(A \cup B) = P(A) + P(B), \quad (A \cap B) \equiv \phi$$

 $P(A_1)P(E/A_1) + ... + P(A_K)P(E/A_K)$

Teorema de Bayes

$$P(A_{i}/E) = \frac{P(A_{i})P(E/A_{i})}{P(A_{1})P(E/A_{1}) + ... + P(A_{K})P(E/A_{K})}$$

$$i = 1, 2, ..., k$$

Leyes de Morgan

$$P(A' \cup B') = P[(A \cap B)']$$

$$P(A' \cap B') = P[(A \cup B)']$$

Probabilidad condicional

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) \neq 0$$

Eventos independientes

$$P(A \mid B) = P(A)$$

$$P(A \cap B) = P(A).P(B)$$

	VARIABLE AI	LEATORIA		
Esperado	$\mu_{x} = E(X) = \sum_{i=1}^{n} x_{i} p_{i}$	$\mu_{x} = E(X) = \int_{-\infty}^{+\infty} x_{i}.f(x)dx$		
Varianza	$\sigma_{x}^{2} = V(X) = \sum_{i=1}^{n} f_{i} (x_{i} - \mu_{x})^{2}$ $\sigma_{x}^{2} = V(X) = E(X^{2}) - [E(X)]^{2}$	$\sigma_{x}^{2} = V(X) = \int_{-\infty}^{+\infty} (x_{i} - \mu_{x})^{2} f(x) dx$ $\sigma_{x}^{2} = V(X) = E(X^{2}) - [E(X)]^{2}$		

Si $X_1, X_2, X_3, \ldots, X_n$ son n variables aleatorias independientes, y $a_1, a_2, a_3, \ldots, a_n$ son n constantes, entonces:

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i \cdot E(X_i)$$

Si $X_1, X_2, X_3, \ldots, X_n$ son n variables aleatorias independientes, y $a_1, a_2, a_3, \ldots, a_n$ son n constantes, entonces:

$$V\left(\sum_{i=1}^{n} a_{i} X_{i}\right) = \sum_{i=1}^{n} a_{i}^{2} \cdot V(X_{i})$$

DISTRIBUCIONES IMPORTANTES					
Binomial	$X \sim B(n,p)$	$P(X = x) = C_x^n p^x (1-p)^{n-x}$ $x = 0, 1,, n$	E(X) = np	V(X) = np(1-p)	
Poisson	$X \sim P(\lambda)$	$P(X = x) = \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$ $x = 0, 1, 2,$	$E(X) = \lambda$	$V(X) = \lambda$	
Normal	$X \sim N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$	$E(X) = \mu$	$V(X) = \sigma^2$	
Exponencial	X ~ E(1/β)	$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}} , x > 0, \text{ donde } \beta > 0$ Función acumulada: $F(x) = 1 - e^{-\frac{x}{\beta}}$	$E(X) = \beta$	$V(X) = \beta^2$	

Propiedad reproductiva de la normal.

$$Si \ \ Y = \sum_{i=1}^n c_i x_i \ , \ \ donde \quad \ x_i \sim N(\mu_i, \sigma_i^2) \quad i = 1, 2, ..., n \ \ , \quad \mu_y = \sum_{i=1}^n c_i \mu_i \quad \ y \quad \sigma_y^2 = \sum_{i=1}^n c_i^2 \sigma_i^2 \quad \to Y \sim N(\mu_y, \sigma_y^2)$$