Problem Solving Class: Geometric Tests

1 Area formula

Area of Triangle $\triangle abc$: If we want to compute the area of the triangle with vertices $a = (a_x, a_y), b = (b_x, b_y)$ and $c = (c_x, c_y)$, there are two ways to do it: one is to use

$$SignArea(\triangle abc) = \frac{1}{2}(a_xb_y - a_yb_x + b_xc_y - c_xb_y + c_xa_y - a_xc_y).$$

and the other is just to use the following formula

$$\operatorname{SignArea}(\triangle abc) = \frac{1}{2} \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix}. \tag{1}$$

Note that

- SignArea($\triangle abc$) > 0 if a, b, c are in counterclockwise order,
- SignArea($\triangle abc$) < 0 if a, b, c are in clockwise order,
- SignArea($\triangle abc$) = 0 if a, b, c are collinear.

Area of a Convex Quadrilateral $\Box abcd$:

$$SignArea(\Box abcd) = SignArea(\triangle abc) + SignArea(\triangle acd)$$

$$= SignArea(\triangle dab) + SignArea(\triangle dbc)$$

$$= a_x b_y - a_y b_x + b_x c_y - c_x b_y + c_x d_y - d_x c_y + d_x a_y - a_x d_y.$$
(2)

Area of a Nonconvex Quadrilateral $\Box abcd$: Same as (2). SignArea($\triangle acd$) < 0.

Area from an Arbitrary Center:

Theorem 1.1 If $\triangle abc$ is a triangle with vertices oriented counterclockwise, and $p \in \mathbb{R}^2$ is any point in the plane, then

$$\operatorname{SignArea}(\triangle abc) = \operatorname{SignArea}(\triangle pab) + \operatorname{SignArea}(\triangle pbc) + \operatorname{SignArea}(\triangle pca).$$

Theorem 1.2 Let a polygon (convex or nonconvex) P have vertices v_1, v_2, \ldots, v_n labeled counterclockwise, and let $p \in \mathbb{R}^2$ be any point in the plane. Then

$$\operatorname{SignArea}(P) = \operatorname{SignArea}(\triangle p v_1 v_2) + \cdots + \operatorname{SignArea}(\triangle p v_n v_1) = \sum_{i=1}^{i=n} \operatorname{SignArea}(\triangle p v_i v_{i+1}).$$
 (3)

Area of a convex quadrilateral

Area of a nonconvex quadrilateral

In the following figure, SignArea($\triangle p12$), SignArea($\triangle p67$), SignArea($\triangle p70$) are negative.

Volume in Three and Higher Dimensions: Formula (1) generalizes to d-dimension as the volume of d-dimensional simplex with d! in the formula

SignArea(Tetrahedron abcd in
$$\mathbb{R}^3$$
) = $\frac{1}{3!}\begin{vmatrix} a_x & a_y & a_z & 1 \\ b_x & b_y & b_z & 1 \\ c_x & c_y & c_z & 1 \\ d_x & d_y & d_z & 1 \end{vmatrix}$

and thus the volume of any d-dimensional polyhedron is similar as (3).

2 $O(n \log n)$ Convex Hull Algorithm

Graham's Scan Algorithm.

- 1. Find the rightmost lowest point; label it p_0 .
- 2. Sort all other points angularly about p_0 . In case of tie, delete the point closer to p_0 . If there are multiple copies, delete all but one.
- 3. Stack $S = (p_1, p_0) = (p_t, p_{t-1})$; t indexes top.
- 4. i = 2; while i < n do
 if p_i is strictly left of $p_{t-1}p_t$ then $\operatorname{Push}(p_i, S)$ and set $i \to i+1$.
 else $\operatorname{Pop}(S)$

3 Triangulation of a Simple Polygon

Let \mathcal{P} be a simple polygon with n vertices v_1, v_2, \dots, v_n in counterclockwise order.

- A triangulation of \mathcal{P} is a decomposition of the polygon into a set of triangles.
- A diagonal of P is a line segment between two of its vertices a and b that are clearly visible to one another. That is, \overline{ab} is inside \mathcal{P} .

Area from arbitrary center p

• A vertex v of given polygon \mathcal{P} is called an ear of \mathcal{P} if its two neighbors (predecessor, successor) generate a diagonal, i.e., the segment prev(v)next(v) is inside \mathcal{P} . Note that if v is an ear then the vertices v, prev(v) and next(v) form a triangle.

3.1 Existence of Triangulation and Properties

Lemma 3.1 Every polygon must have at least one strictly convex vertex.

Proof. The lowest part of the polygon must contain a strictly convex vertex.

Lemma 3.2 (Meisters) Every polygon of $n \ge 4$ vertices has a diagonal.

Proof. By the above lemma, there is a strictly convex vertex v. Let a and b be the vertices adjacent to v. If \overline{ab} is a diagonal, we are done. Otherwise, the triangle $\triangle vab$ contains at least one vertex of \mathcal{P} other than a, v, b. Let x be the first point in $\triangle vab$ hit by a line parallel to \overline{ab} moving from v to \overline{ab} . Then x is a vertex of \mathcal{P} and \overline{vx} must be a diagonal.

Theorem 3.3 (Triangulation) Every polygon \mathcal{P} can be partitioned into triangles by the addition of diagonals.

Proof. The proof is by induction. If n = 3, trivial. Assume that every polygon with at most k vertices can be triangulated and consider a polygon \mathcal{P} with k+1 vertices. By Meisters' Lemma, there is a diagonal \overline{ab} in \mathcal{P} . By the diagonal, \mathcal{P} is partitioned into \mathcal{P}' and \mathcal{P}'' sharing ab as edges. \mathcal{P}' and \mathcal{P}'' have at most k vertices each, so we can triangulated them. This gives us a triangulation of \mathcal{P} .

Theorem 3.4 Given a simple polygon \mathcal{P} with $n \geq 4$ vertices,

- Every triangulation of \mathcal{P} has exactly n-3 diagonals and n-2 triangles.
- The dual graph of any triangulation of \mathcal{P} is a tree.

vx is a diagonal

Triangulation of P and its dual

• There exist at least two nonoverlapping ears.

Proof. - The proof is by induction. For n=3, trivially true. Consider a polygon \mathcal{P} with kvertices. A diagonal \overline{ab} partitions \mathcal{P} into \mathcal{P}' and \mathcal{P}'' sharing ab as edges. \mathcal{P}' has $k_1 \leq k-1$ vertices and \mathcal{P}'' has $k_2 \leq k-1$ vertices, where $k_1 + k_2 = k+2$. By the assumption, the triangulation of \mathcal{P}' consists of k_1-3 diagonals and k_1-2 triangles, and the triangulation of \mathcal{P}'' consists of k_2-3 diagonals and k_2-2 triangles. So \mathcal{P} has $(k_1-3)+(k_2-3)+1=k-3$ diagonals and $(k_1-2)+(k_2-2)=k-2$ triangles.

- Dual graph of the triangulation is the graph, one node per triangle and one edge per diagonal.
- A leaf node in a triangulation dual corresponds to an ear. A tree having at least two nodes has at least two leaves.

3.2 $O(n^2)$ algorithm for a triangulation of \mathcal{P}

- 1. For each vertex v, check if v is an ear and store the information; How to check if v is an ear:
 - Check if v is convex (Left(prev(v), v, next(v)) = TRUE) and then
 - Check if the segment prev(v)next(v) does not intersect any edge of P, i.e., check if Diagonal(prev(v), next(v)) = TRUE.
- 2. While there's any ear left in the polygon, find an ear and do
 - Cut the ear off and list it to a triangle in our triangulation.
 - Update the information of earness for prev(v) and next(v).

Analysis:

Step 1: $O(n^2)$

Step 2: Whenever we cut off an ear (in total n-2 ears)

- Finding an ear: O(n)
- Updating the information for prev(v) and next(v): 2 O(n)

So Step 2 has time complexity $O(n^2)$.

Implementation of Triangulation

Let SignArea $(a,b,c) = \frac{1}{2}(a_xb_y - a_yb_x + b_xc_y - c_xb_y + c_xa_y - a_xc_y)$. Then

- Left(a,b,c): TRUE if c is left of ab; c is left of ab if SignArea(a,b,c)>0, right if SignArea(a,b,c)<0 and c is on ab if SignArea(a, b, c) = 0.
- Diagonal(a,b): TURE if ab is a diagonal of \mathcal{P} .
 - return (InCone(a,b) && InCone(b,a) && Diagonalie(a,b));

• Between(a,b,c): TRUE if collinear(a,b,c) is TRUE and c is between a and b.(how can check this?)