Рассмотрим систему без переключений

$$\begin{cases} \dot{x}(t) = f(x,t) + v(t); \\ x(t_0) = \mathcal{X}_0; \\ x(t) \in \mathbb{R}^n, v(s) \in L_1^n[t_0, t_1]; \\ v(t) \in Q(t), \forall t \in [t_0, t_1], Q(t) \text{--выпуклое ограниченное множество.} \end{cases}$$

$$(0.1)$$

Функция v(t) – неизвестная, f(x,t) – известная. Множество достижимости $\mathcal{X}_1 = \mathcal{X}[t_1,t_0,\mathcal{X}_0]$ рассматривается как оценка места точек гарантированного попадания траекторий системы в момент t_1 , это множество может быть пустым при некоторых условиях.

Рассмотрим отображение F в пространсве $\Omega = \mathbb{R}^n$

$$F: 2^{\Omega} \to \Omega$$

Определим класс подмножеств некоторого множества $X\subset\Omega$

$$\mathfrak{M}_F(X) \stackrel{def}{=} \{ A \subset X \mid F(A) \neq \emptyset, \forall B \subset A : F(B) = \emptyset \}$$

то есть таких минимальных A, для которых F(A) непусто. Для краткости введем обозначение для любого класса подмножеств $\mathfrak{K} \subseteq \mathfrak{M}_F(\Omega)$:

$$\left[\mathfrak{K}\right] \stackrel{def}{=} \bigcup_{\forall A \in \mathfrak{K}} A$$

Определим отображение

$$\mathcal{F}(X \subset \Omega) \stackrel{def}{=} \bigcup_{\forall A \in \mathfrak{M}_F(X)} F(A)$$

Пусть для некоторой точки $y \in \Omega$ существует не обязательно одно минимальное множество $A, B \in \mathfrak{M}_F(\Omega) : F(A) = F(B) = y$. Определим обратную по отношению к \mathcal{F} операцию

$$G: 2^{\Omega} \to 2^{2^{\Omega}}, G(M \subset \Omega) \stackrel{def}{=} \bigcup_{\forall y \in M} \{A \in \mathfrak{M}_F(\Omega) \mid F(A) = y\},$$

то есть для некоторого $M\subset\Omega:G(M)\subset\mathfrak{M}_F(\Omega)$ – является классом подмножеств, отображение F для любого подмножества из которого окажется в M. Кроме того, G(M) является максимальным набором подмножеств, удовлетворяющих этому условию, поскольку некоторому $y\in M$ может удовлетворять несколько подмножеств и все они содержатся в G(M). Тогда для каждого $y\in M$ можно выбрать по одному соответствующему представителю из G(y) и полученный из этих представителей класс подмножеств $\mathfrak{K}^{\alpha}(M)\subseteq G(M)$ также будет удовлетворять условию для M:

$$\bigcup_{\forall A \in \mathfrak{K}^{\alpha}(M)} F(A) = M,$$

где $\alpha \in \mathcal{A}$ – множество вариантов для составления таких классов подмножеств-представителей. Выполнены вложения

$$\mathcal{X}_1 = \bigcup_{\forall A \in \mathfrak{K}^{\alpha}(\mathcal{X}_1)} F(A) \subseteq \mathcal{F}([\mathfrak{K}^{\alpha}(\mathcal{X}_1)]) \subseteq \mathcal{F}([G(\mathcal{X}_1]))$$

Также справедливо и следующее

$$\forall y \in \mathcal{X}_1 \exists A \subseteq \mathcal{X}_0 : F(A) = y \Rightarrow \exists \mathfrak{K}^{\alpha}(\mathcal{X}_1) : \forall B \in \mathfrak{K}^{\alpha} : B \subseteq \mathcal{X}_0$$

Значит, существует класс представителей $[\tilde{\mathfrak{K}}^{\alpha}(\mathcal{X}_1)] = \tilde{\mathcal{X}}_0 \subseteq \mathcal{X}_0$ такой, что $\mathcal{F}(\tilde{\mathcal{X}}_0) = \mathcal{F}(\mathcal{X}_0)$ Более того, среди $\tilde{\mathfrak{K}}^{\alpha}(\mathcal{X}_1)$ можно найти по крайней мере один класс представителей $\exists \alpha^*, \mathfrak{N} = \tilde{\mathfrak{K}}^{\alpha^*}(\mathcal{X}_1)$, обладающий свойством $[\mathfrak{N}] \subset \mathcal{X}_0$ и такой, что

$$\mathcal{F}([\mathfrak{N}]) = \bigcup_{\forall A \in \mathfrak{N}} F(A) = \mathcal{X}_1$$

Действительно, если бы существовало такое множество $B \subset [\mathfrak{N}]: \mathcal{F}(B) \setminus \mathcal{X}_1 \neq \emptyset$ то приходим к противоречию: $\mathcal{X}_1 \subset \mathcal{F}([\mathfrak{N}]) \subseteq \mathcal{F}(\mathcal{X}_0) = \mathcal{X}_1$.

Если $\mathcal{F}(\mathcal{X}_0)$ – взять как операцию вычисления множества достижимости для некоторого начального \mathcal{X}_0 , то обратная операция G(M) - это не совсем множество разрешимости, но [G(M)] является таковым.

Отождествим операцию поиска множества достижимости $\mathcal{X}[t_1, t_0, \mathcal{X}_0]$ с этим отображением $\mathcal{F}(\mathcal{X}_0)$. Тогда для \mathcal{F} из свойств решения системы (0.1) справедливы следующие утверждения

- А-выпуклые, ограниченные
- $\forall A, B \in \mathfrak{M}_F(\Omega), A \neq B \Rightarrow F(A) \neq F(B), \exists F^{-1}(x) = A \mid F(A) = x$ $\mathcal{X}_0 : \mathcal{F}(\mathcal{X}_t)$