Contribution from the Laboratoire de Chimie des Organominéraux, UA 477 du CNRS, Université Paul Sabatier, 31062 Toulouse Cedex, France

Reactivity of [Bis(dimethylgermyl)alkane]iron Tetracarbonyls with Carbonyl Compounds

Jacques Barrau,* Najib Ben Hamida, Hamid Agrebi, and Jacques Satgé*

Received March 30, 1989

[Bis(dimethylgermyl)alkane]iron tetracarbonyls, $Me_2Ge(CH_2)_nGeMe_2Fe(CO)_4$ (n=1,2), react with chloral, propionaldehyde, and benzaldehyde to give heterocyclic expansion reactions. Thermal decompositions of the adducts produce germylated heterocycles,

 $Me_2Ge(CH_2)_nGeMe_2O$, and alkylidene intermediates, which were isolated as the ylides $(CO)_4Fe^-CH(R)PPh_3^+$. The reaction of [bis(dimethylgermyl)alkane]iron tetracarbonyls with quinones involves an electron-transfer process that results in the nearly quantitative formation of new digermylated dioxepane and dioxocane that are formally the adducts of biradicals $Me_2Ge^-(CH_2)_nGeMe_2$ (n = 1, 2) with quinones.

Introduction

We have recently reported the syntheses and different aspects of the reactivity of [bis(dimethylgermyl)alkane]iron tetracarbonyls,

 $Me_2Ge(CH_2)_nGeMe_2Fe(CO)_4$ (n = 1, 2; compounds 1 and 2).¹ These polymetallic heterocyclic compounds have a high potential in organometallic syntheses. They can lead to organogermanium heterocycles as well as to polynuclear clusters with M_{14} -Fe bonds (M_{14} = group 14 metal). We report here their reactivity with some organic carbonyl compounds.

Results

1. Reactions of 1 and 2 with Aldehydes. Numerous reactions of ring expansion by insertion of carbonyl derivatives into Ge-X bonds (where X = O, S, P, or N) have been described,^{2,3} but to our knowledge no insertion of carbonyl compounds into germanium-transition metal bonds has been observed. We have studied the reaction of benzaldehyde, propionaldehyde, and chloral with compounds 1 and 2.

Compound 1 reacts rapidly with these aldehydes in C_6H_6 at 5 °C to give almost quantitatively the 1,2-insertion products 3, which are stable at ambient temperature (eq 1). These adducts

with the structure

are too unstable to be isolated by distillation and were characterized by NMR analysis and hydrolysis.

The new metalla heterocycles 3 decompose thermally to form alkenes and the previously reported⁴ germanium oxides 4-6 and (Me₂GeO)₃ (eq 2).

[1,2-Bis(dimethylgermyl)ethane]iron tetracarbonyl (2) is much less reactive than [bis(dimethylgermyl)methane]iron tetracarbonyl (1). 2 reacts with aldehydes RCHO (where $R = C_6H_5$, CH_3CH_2 ,

$$Me_{2}Ge \xrightarrow{Fe} GeMe_{2} + RCH = 0 \xrightarrow{140 \, °C} \begin{bmatrix} Me_{2}Ge & GeMe_{2} \\ O & CH - Fe(CO)_{4} \\ 2 & 7 \\ Me_{2}Ge & GeMe_{2} + R \\ & + Fe_{2}(CO)_{9} + Fe_{3}(CO)_{12} (3) \end{bmatrix}$$

and CCl₃) only upon irradiation or at 140 °C. This low reactivity is also unlike that of its silicon homologue, studied by Gladysz, which reacts at low temperature with aldehydes.^{5,6} The reaction gives the oxadigermolane 8 in high yield. Although no intermediate could be detected in this reaction, initial formation of the 1,2-insertion product 7 could be postulated by analogy to eq

2. Reaction with Quinones. While 1,4-benzoquinones bond to transition metals through the diene linkage, 1,2-benzoquinones appear to bond exclusively through their oxygen atoms.^{7,8} Thus compounds 1 and 2 both react exothermally with 1,2-quinones, producing new digermanium heterocycles 9 $(n = 1 \ (9a), 2 \ (9b))$ in high yields $(eq \ 4)$.

Barrau, J.; Ben Hamida, N.; Agrebi, A.; Satgé, J. Organometallics 1989, 8, 1585.

⁽²⁾ Lesbre, P.; Mazerolles, P.; Satgé, J. The Organic Compounds of Germanium; Seyferth, D., Ed.; John Wiley & Sons: London, New York, 1971.

⁽³⁾ Rivière, P.; Rivière-Baudet, M.; Satgé, J. Germanium, Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, U.K., 1982; pp 2, 399.

⁽⁴⁾ Barrau, J.; Ben Hamida, N.; Agrebi, A.; Satgé, J. Organometallics 1987, 6, 659.

 ⁽⁵⁾ Johnson, D. L.; Gladysz, J. A. J. Am. Chem. Soc. 1979, 101, 6433.
 (6) Nakazawa, H.; Johnson, D. L.; Gladysz, J. A. Organometallics 1983,

 ^{1846.} Glick, M. G.; Dahl, L. F. J. Organomet. Chem. 1965, 3, 200.

⁽⁸⁾ Aleksandrov, G. G.; Stuchkov, Yu. T.; Khandkarova, V. S.; Gubin, S. P. J. Organomet. Chem. 1970, 25, 423.

Scheme I

$$(CH_{2})_{n} GeMe_{2} \xrightarrow{h\nu(-CO)} Me_{2}Ge GeMe_{2} \xrightarrow{h\nu(-CO)} Me_{2}Ge GeMe_{2}$$

$$(B) + RCHO + (CO)_{4} GeMe_{2} GeMe_{2} GeMe_{2}$$

$$(CH_{2})_{n} GeMe_{2} GeMe_{2}$$

Heterocycles 9, that are formally the adducts of biradicals $Me_2Ge(CH_2)_nGeMe_2$ (n = 1, 2) with 3,5-di(tert-butyl)-o-quinone, were characterized by NMR, MS, and elemental analyses. The mass spectrum obtained by electron impact (70 eV) revealed, in addition to the [M]+ peak, a strong peak corresponding to the loss of Me₂Ge(CH₂)_n, which therefore suggests the formation of

Discussion

1. Reactions with Aldehydes. These reactions are faster when carried out upon UV irradiation. The mechanism of such reactions clearly differs from the insertions of activated carbonyl compounds into Ge-X bonds (X = O, S, PR, NR), which involve four-centered-type transition species.^{3,9,10} Since UV irradiation results in easy displacement of carbon monoxide ligands in this kind of heterocycle, 11 we propose for these reactions a mechanism involving, in the first step, coordination of the carbonyl compound to the iron atom. Then the carbonyl that is activated by its coordination inserts into the germanium-iron bond; the high oxygen affinity of the germyl group favors bond formation between oxygen and germanium leading to the 1,2-insertion product, the stability of which depends on the size of the heterocycle (Scheme IA). The six-membered heterocycles are stable at room temperature.

Without irradiation the rate of these insertion reactions depends on the nature of the aldehyde and follows the order CCl₃CHO $> CH_3CH_2CHO > C_6H_5CHO$. These reactions are slightly faster when carried out in acetonitrile solution rather than in THF or ether solution. Lewis acids such as H₂PtCl₆ or ZnI₂ have no effect on the rate of addition of aldehydes to 1 and 2. They slowly react with 1 and 2, giving the unstable side products (CO)₄FeX₂ and (CO)₃FeX₂ and germylated halides Me₂XGe(CH₂)_nGeXMe₂ (X = Cl, I). A strongly oxophilic group (germyl or silyl) must be present on iron in order for an aldehyde adduct to be formed. So, although high reactivity seems to depend on the carbon atom of the organic carbonyl group being positive, the effect of solvent suggests a nucleophilic attack of the carbonyl oxygen of the aldehyde on the germanium in the first step of this mechanism (Scheme IB). THF and ether may, by complexation with ger-

Dousse, G.; Satge, J. Recl. Trav. Chim. Pays-Bas 1971, 90, 222.

(10) Barrau, J.; Massol, M.; Mesnard, D.; Satgé, J. Recl. Trav. Chim. Pays-Bas 1973, 92, 321. Barrau, J.; Massol, M.; Mesnard, D.; Satgé, J. J. Organomet. Chem. 1971, 30, C67.
 Corriu, R. J. P.; Moreau, J. J. E. J. Chem. Soc., Chem. Commun. 1980, 278. Carré, F. H.; Moreau, J. J. E. Inorg. Chem. 1982, 21, 3099.

manium, disturb this nucleophilic attack on the group 14 metal. Note that the reactivity of [1,2-bis(dimethylgermyl)ethane]iron tetracarbonyl (2) is lower than that of its silylated homologue

Me₂Si(CH₂)₂SiMe₂Fe(CO)₄ toward benzaldehyde^{5,6} and deserves discussion. The small difference $(\Delta \nu(CO) = 10 \text{ cm}^{-1})$ between the average $\nu(CO)$ for the germylated complex 2 and that for its silvlated homologue (Me₂GeCH₂CH₂GeMe₂Fe-

(CO)₄: ν (CO) = 2060, 2000, 1980, 1970 cm⁻¹; average ν (CO) = 2002 cm⁻¹. Me₂SiCH₂CH₂SiMe₂Fe(CO)₄: ν (CO) = 2068, 2003, 2000, 1978 cm⁻¹; average ν (CO) = 2012 cm⁻¹) shows a small increase of the charge transfer in the direction of the iron atom when the silicon is replaced by a germanium atom (in a series of iron carbonyl complexes with the same symmetry, the average $\nu(CO)$ stretching frequency depends on the force constant, which is a decreasing function of the electron transfer to the transition metal¹²). On account of the small difference in electronegativity between the two group 14 metal atoms [Ge (2.05) > Si(1.90)], ¹³ a possible explanation for these increasing charge transfers between the iron silane and germane may be found in a diminution of π transfer between the filled d orbitals of the transition metal to the empty d orbitals of the group 14 metal when silicon is replaced by germanium. In these complexes the differences of electron transfer to the iron atom are not important enough to explain the high difference in reactivity observed between the silvlated and the germylated compounds. The basis for this reactivity difference toward benzaldehyde of the silicon and germanium complexes can be explained in terms of the oxophilic character of silicon being higher than that of germanium. The relative group 14 metaltransition metal bond energies must be involved, considering that an Fe-Ge(Si) bond cleavage might be involved in the initial step of the reaction. This might explain the difference in reactivity of 1 and 2 (ring strain in 1) and between 2 and its silylated

The formation of the decomposition products (alkenes and various germoxanes depending on the size of the heterocycle) can be explained by a mechanism of intramolecular decomposition of the heterocycles 3 and 7 occurring by nucleophilic attack of the oxygen atom bonded to a germanium atom on the other germanium atom, thereby forming the unstable species [(CO)₄Fe=CHR] and Me₂Ge(CH₂)_nGeMe₂O, as represented by

As shown by Gladysz,6 the alkylidene intermediates can be stabilized by complexation with triphenylphosphine when the decomposition of 3 is done in the presence of equimolar amounts of PPh₃ (Scheme II). The zwitterions (CO)₄Fe⁻CHRPPh₃⁺ (R = CCl_3 (11a), CH_3CH_2 (11b), C_6H_5 (11c)) were isolated and

⁽¹²⁾ Kahn, O.; Bigorgne, M. J. Organomet. Chem. 1967, 10, 137 Allred, A.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 269; 1961, 20, 167,

Scheme II

Table I. Spectroscopic Characterization of Ylide Complexes $(CO)_4$ Fe⁻CHRPPh₃⁺ Prepared from Me₂Ge $(CH_2)_n$ GeMe₂Fe $(CO)_4$ (n = 1, 2), Aldehydes, and PPh₃

aldehyde	zwitterion (yield)	mp, °C	IR, ^a cm ⁻¹	¹H NMR, ^b ppm	³¹ P NMR, ⁸ ppm
CCl ₃ CHO	(CO) ₄ Fe - $\frac{1}{C}$ - CCI ₃ $\frac{1}{P}(C_6H_6)_3$ (53%)	135–140	1910 vs 1995 m 2045 m	8.2-7.15 (m, 15 H) 5.18 (d, J_{P-H} = 13.1 Hz, 1 H)	32.09°
C₂H₅CHO	$(CO)_{4}\bar{F}_{8} - C - C_{2}H_{5}$ $+ P(C_{6}H_{5})_{3}$ $(46\%)^{\sigma}$	130	1901 vs 1923 m 2023 m	7.97-7.08 (m, 15 H) 2.5-1.4 (m, 6 H)	34.47
C ₆ H ₅ CHO	(CO) ₄ $\bar{F}e - C - C_6H_5$ $+ P(C_6H_6)_3$ (12%)	115-120 dec	1905 s 1930 m 2020 m	7.63-6.90 (m, 20 H) 4.02 (d, J_{P-H} = 12.7 Hz, 1 H)	30.05 ^c

^a In THF. ^b In C₆D₆, TMS unless noted. ^cIn CDCl₃. ^dIn agreement with literature values (cf. ref 6).

characterized by IR and NMR (¹H and ³¹P) spectroscopy (Table I) and were in agreement with literature values; they are stable at room temperature but decompose rapidly under thermal effects to give Fe(CO)₄PPh₃, Fe(CO)₃(PPh₃)₂, and the trans isomers RCH=CHR.

2. Reactions with Quinones. Galvinoxyl, a highly effective inhibitor of free radical chain processes has no effect on the rate of these reactions between quinones and 1 or 2 (galvinoxyl does

not react with complexes 1 or 2 or quinones). Moreover, it can be shown that these reactions are photochemically induced by carrying out the photolysis of a mixture of quinone and 2 at -40 °C under very dilute conditions with parallel control experiments (the thermal process is slow at this temperature). So these additions, which are very similar to the reaction of quinones or tetracyanoethylene with group 14 metal-hydride, M-H (M = Si, Ge, Sn), $^{14-18}$ or group 14 metal-nitrogen compounds 19 proceed

Scheme III

probably through a one-electron-transfer mechanism. The transient semiquinone radical involved can be detected by ESR spectroscopy, as either the anion radical or the ion paired with the metal. The deep green solution obtained upon mixing 3,5di-tert-butyl-o-quinone and 1 or 2 in pentane at -40 °C exhibits an ESR signal (g = 2.0018; $a^H = 3.5$ G) that shows striking similarity to ESR spectra of o-semiquinone species obtained by different means. 19-21 The Ge-Fe bond in 1 or 2 can act as an electron donor to the quinone and the reaction sequence in Scheme III is therefore postulated to account for the formation of the adduct 9.

Novel reactions of 1 and 2 complexes with organic molecules, especially nitriles and organometallic species like [>Ge=X] (X = O, S, P-R), will be the subject of future reports.

Experimental Section

All reactions were done under an atmosphere of dry argon with use of standard Schlenk and high-vacuum-line techniques. ¹H NMR spectra were recorded on a Varian 360 A spectrometer operating at 60 MHz; chemical shifts are reported in parts per million relative to internal Me₄Si as reference. ³¹P NMR spectra were measured at 36.4 MHz by using a Bruker WP 90 spectrometer and 85% H₃PO₄ as an external reference. Gas-phase chromatography was carried out on an Intersmat IGC appa-

(14)Neumann, W. P. The Organic Chemistry of Tin; Wiley: New York,

(17) Kaim, W. Acc. Chem. Res. 1985, 18, 160.
(18) Rivière, P.; Castel, A.; Satgé, J.; Guyot, D.; Ko, Y. H. J. Organomet. Chem. 1988, 339, 51

Rivière-Baudet, M.; Rivière, P.; Khallaayoun, A.; Satgé, J.; Rauzy, K. J. Organomet. Chem. 1988, 358, 77.

(20) Ryba, O.; Pilar, J.; Petrânek, J. Collect. Czech. Chem. Commun. 1968, 33, 26.

(21) Razuvaev, G. A.; Abakumov, G. A.; Klimov, E. S. Dokl. Akad. Nauk SSSR, Ser. Khim. 1971, 201, 624; Dokl. Chem. (Engl. Transl.) 1971, 201, 968.

ratus using helium as the carrier gas, a thermistor detector, and an SE 30 chromosorb column. ESR measurements were made at room or low temperatures on solution samples by using a Bruker ER 200 spectrometer. Mass spectra were recorded on a Ribermag R 1010 or a Varian Mat 311 A spectrometer operating in the electron-impact mode at 70 eV. In all cases the complex envelope of peaks obtained for polygermanes agreed with the expected isotopic distribution based on the number of isotopes of germanium.²² Microanalyses were performed by the Microanalytical Laboratory of the CNRS or ENSCT, Toulouse, France.

Reaction of Chloral with [Bis(dimethylgermyl)methane]iron Tetracarbonyl. To 1 (1.00 g, 2.58 mmol) in anhydrous C₆H₆ (5 mL) was added dropwise Cl₃CCHO (0.35 g, 2.58 mmol). An exothermic reaction occurred, and the mixture was stirred for 2 h at 5 °C. The course of the reaction was monitored by GC (disappearance of 1 and CCl₃CHO), by IR spectroscopy of aliquots, and by ¹H NMR analysis, which showed the formation of 3a (64%): ¹H NMR (C₆H₆) 0.65 (s, 6 H, CH₃GeFe), 0.70 (s, 6 H, CH₃GeO), 5.25 (s, 1 H), 0.25 (s, 2 H). The attempt of distillation at 140 °C under 10 mmHg produced the appearance of iron carbonyls ($Fe_3(CO)_{12}$ and $Fe_2(CO)_9$), which were recovered by filtration. trans-1,1,1,4,4,4-Hexachloro-2-butene²³ (mp 81 °C) was extracted by crystallization in pentane. GC (comparison with authentic samples described in ref 4), ¹H NMR spectroscopy, and GC-MS of the supernatant solution revealed that known compounds 4 and 5 had been formed in relative amounts of 60% and 25%, respectively, in addition to traces of

known compounds 6, (Me₂GeO)₃, and Me₂GeCH₂GeMe₂CH₂.

Hydrolysis of 3a. To 1 (0.88 g, 2.27 mmol) was added a benzene solution of CCl₃CHO (0.31 g, 2.27 mmol) under argon at 5 °C. After the reaction was complete, the resulting mixture was warmed to room temperature. After hydrolysis with deoxygenated water and filtration of iron products, GC and NMR analysis showed the formation of the known compound 44 (87%).

Reaction of Benzaldehyde with [Bis(dimethylgermyl)methane]iron Tetracarbonyl. Under the same experimental conditions as in the preceding preparation, 1 (0.75 g, 1.93 mmol) mixed with C₆H₅CHO (0.20 g, 1.93 mmol) in anhydrous C_6H_6 (5 mL) gave 3b after concentration of the organic phase (57%): 1H NMR (C_6D_6) 0.33 (s, 6 H, CH₃Ge), 0.35 (s, 6 H, CH₃GeO), 7.10–7.30 (m, 5 H), 4.55 (s, 1 H), 0.17 (s, 2 H). Distillation under reduced pressure (1 mmHg) resulted in the isolation

Klinger, R. P.; Mochida, K.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 6626.

⁽¹⁶⁾ Khapicheva, A.; Berberova, N. T.; Klimov, E. S.; Okhlobistin, O. Yu. Zh. Obshch. Khim. 1985, 55, 1533; J. Gen. Chem. USSR (Engl.) Transl.) 1985, 55, 1362.

⁽²²⁾ Carrick, A.; Glockling, F. J. Chem. Soc. A 1966, 623.

⁽²³⁾ Pilgram, K.; Oshse, H. J. Org. Chem. 1969, 34, 1586.

of 4 and 5⁴ in relative amounts of 65% and 25%, respectively, in addition to traces of 6, (Me₂GeO)₃, and Me₂GeCH₂GeMe₂CH₂. White crystals of *trans*-stilbene were extracted with a few milliliters of pentane and dried under 10 mmHg.

Reaction of Propionaldehyde with [Bis(dimethylgermyl)methane]iron Tetracarbonyl. As just described, 1 (0.90 g, 2.32 mmol) mixed with CH₃CH₂CHO (0.13 g, 2.32 mmol) in C₆H₆ (5 mL) gave 3c after concentration of the organic phase (0.55 g, 50% yield): 1 H NMR (C₆D₆) 0.16 (s, 6 H, CH₃Ge), 0.20 (s, 6 H, CH₃GeO), 0.8 (t, 3 H), 1.4 (m, 2 H), 0.10 (s, 2 H), 3.4 (t, 1 H).

Reaction of Chloral with [1,2-Bis(dimethylgermyl)ethane]iron Tetracarbonyl. A benzene solution of 2 (1.20 g, 3.0 mmol) and CCl₃CHO (0.41 g, 3.0 mmol) in C_6H_6 (5 mL) was heated at 140 °C for 2 h in a sealed tube. After elimination of iron products by filtration, trans-1,1,1,4,4,4-hexachloro-2-butene²³ (0.60 g, 76% yield) was extracted by crystallization in pentane. ¹H NMR spectroscopy and GC of the supernatant solution revealed that 8 had been formed (86% yield, identified by GC and NMR comparison with an authentic sample).

Reaction of Benzaldehyde with [1,2-Bis(dimethylgermyl)ethane]iron Tetracarbonyl. Under the same experimental conditions as in the preceding preparation, a mixture of 2 (1.46 g, 65 mmol) and C_6H_5CHO (0.38 g, 3.65 mmol) in C_6H_6 (5 mL) heated at 140 °C for 8 h gave, after elimination of trans-stilbene and iron products (Fe₂(CO)₉, Fe₃(CO)₁₂), the known oxide 8 (90% yield; identified by GC and NMR analyses).

UV Irradiation of Benzaldehyde with [1,2-Bis(dimethylgermyl)-ethane]iron Tetracarbonyl. Under $h\nu$, to 2 (1.15 g, 2.88 mmol) in C_6H_6 (3 mL) was added C_6H_5CHO (0.30 g, 2.88 mmol). The solution was irradiated (λ = 254 nm) in a quartz tube for 2 h at ambient temperature. The progress of the reaction was followed by GC (disappearance of 2 and appearance of 8). After elimination of iron products and *trans*-stilbene by filtration, analysis by GC and NMR spectroscopy of the supernatant solution revealed the formation of 8! (88% yield).

Reaction of Propanal with [1,2-Bis(dimethylgermyl)ethane]iron Tetracarbonyl. As just described, a mixture of 2 (1.35 g, 3.37 mmol) and CH_3CH_2CHO (0.20 g, 3.37 mmol) in C_6H_6 (5 mL) heated at 140 °C for 5 h gave, after elimination of iron products, the oxide 8¹ (85% yield) and trans-diethylethylene (identified by GC and NMR comparisons with authentic samples).

Reaction of Chloral with [Bis(dimethylgermyl)methane]iron Tetracarbonyl in the Presence of Ph₃P. To a mixture of 1 (0.90 g, 2.32 mmol) and Ph₃P (0.60 g, 2.32 mmol) in C₆H₆ (5 mL) was added at 5 °C, drop by drop, CCl₃CHO (0.31 g, 2.32 mmol) dissolved in C₆H₆ (3 mL). This mixture was stirred magnetically for 2 h at room temperature, and pentane (10 mL) was added, upon which a green precipitate appeared. After filtration under argon, the precipitate was washed with pentane and dried under 30 mmHg, yielding green crystals of 11a (0.69 g, 53% yield): mp 135–140 °C; ¹H NMR (CDCl₃) 7.15–8.2 (m, 15 H), 5.18 (d, J(PH) = 13.1 Hz, 1 H); ³IP NMR (CDCl₃) 32.09; IR ν (CO) 1995 m, 2045 m, 1910 cm⁻¹ vs. Anal. Calcd for C₂₄H₁₆Cl₃FeO₄P: C, 51.29; H, 2.85; Cl, 18.97. Found: C, 51.61; H, 2.97; Cl, 18.64.

The filtrate was concentrated under 10 mmHg and analysis by ¹H NMR spectroscopy and GC showed that 4 (83% yield) and traces of 5,

6, Me₂GeCH₂GeMe₂CH₂, and (Me₂GeO)₃ had been formed.⁴

Reaction of Chloral with [1,2-Bis(dimethylgermyl)ethane]iron Tetracarbonyl in the Presence of Ph₃P. A solution of 2 (0.87 g, 2.17 mmol) and Ph₃P (0.57 g, 2.17 mmol) in C_6H_6 (10 mL) was treated at 5 °C with CCl₃CHO (0.29 g, 2.17 mmol), and the mixture was heated at 140 °C for 4 h in a sealed tube. Yellow crystals of Fe(CO)₄PPh₃ and Fe(CO)₃(PPh₃)₂²⁴ were recovered by filtration. After elimination of trans-1,1,1,4,4,4-hexachloro-2-butene, distillation under reduced pressure

(1 mmHg) of the organic phase provided a liquid fraction containing **8** (0.51 g, 95% yield). **8** was identified by GC and ¹H NMR comparison with an authentic sample. ¹

Reaction of Benzaldehyde with [Bis(dimethylgermyl)methane]iron Tetracarbonyl in the Presence of Ph₃P. To 1 (0.73 g, 1.88 mmol) and Ph₃P (0.49 g, 1.88 mmol) in C_6H_6 (5 mL) was added C_6H_5 CHO (0.2 g, 1.88 mmol) in C_6H_6 (2 mL). The reaction was slightly exothermic, and the reaction mixture was left for 16 h at 20 °C with magnetic stirring. After concentration of the solvent, the mixture was taken up with a minimum amount of anhydrous C_6H_6 (2 mL). Addition of pentane (20 mL) caused a precipitate, which was filtered out under argon. The precipitate was dried under 30 mmHg, and it proved to be yellow crystalline 11b (0.12 g, 12% yield), whose properties are in agreement with those in the literature. The filtrate was concentrated under 10 mmHg, and then analysis by GC and ¹H NMR spectroscopy showed that 4 (52%) and 5 (17%) had been produced in addition to traces of 6, Me₂GeCH₂GeMe₂CH₂, and (Me₂GeO)₃.4

Reaction of Benzaldehyde with [1,2-Bis(dimethylgermyl)ethane]iron Tetracarbonyl in the Presence of Ph₃P. A mixture of 2 (0.96 g, 2.39 mmol) in C_6H_6 (10 mL), C_6H_5 CHO (0.25 g, 2.39 mmol), and Ph₃P (0.63 g, 2.39 mmol) was kept in a sealed tube for 12 h at 140 °C. After elimination of the iron products $Fe(CO)_4$ PPh₃ and $Fe(CO)_3$ (PPh₃) $_2$ ²⁴ by filtration, the *trans*-stilbene was extracted by crystallization in pentane. ¹H NMR and GC analyses of the liquid phase confirmed that only 8¹ had been formed (0.55 g, 93% yield).

Reaction of Propanal with [Bis(dimethylgermyl)methane]iron Tetracarbonyl in the Presence of PPh₃. To 1 (1.10 g, 2.84 mmol) and Ph₃P (0.74 g, 2.84 mmol) in C_6H_6 (5 mL) was added CH₃CH₂CHO (0.16 g, 2.84 mmol) in C_6H_6 (5 mL), and the reaction was left for 6 h at 20 °C with magnetic stirring. After concentration of the solvent, addition of pentane (10 mL) caused a precipitate, which was filtered out and dried under reduced pressure (30 mmHg); it proved to be yellow crystalline 11c (0.61 g, 46% yield), whose properties are in agreement with those in the literature: 6 mp 130 °C; IR (THF) ν (CO) 2023 m, 1923 m, 1901 cm⁻¹ vs; 1 H NMR (1 C₆D₆) 7.97–7.08 (m, 15 H), 2.50–1.40 (m, 6 H); 3 P NMR (1 C₆D₆) 34.47.

Reaction of 3,5-Di-tert-butyl-o-quinone with [Bis(dimethylgermyl)methane]iron Tetracarbonyl. [Bis(dimethylgermyl)methane]iron tetracarbonyl (0.82 g, 2.11 mmol) in C_6H_6 (3 mL) was added dropwise to 3,5-di-tert-butyl-o-quinone (0.46 g, 2.11 mmol) dissolved in C_6H_6 (2 mL). The reaction was slightly exothermic, and CO was released rapidly. After elimination of iron products (Fe₂(CO)₅ and Fe₃(CO)₁₂) by filtration and concentration of the solvent under reduced pressure (10 mHHg), pentane (10 mL) was added, upon which the product 9a (0.70 g, 75% yield) precipitated as dark green crystals, which were decanted and dried in vacuo: mp 115 °C; ¹H NMR (C_6D_6) 7.0–7.25 (m, 2 H), 1.65 (s, 9 H), 1.40 (s, 9 H), 0.60 (s, 2 H), 0.50 (s, 6 H), 0.40 (s, 6 H); MS m/e 440 ([M]⁺), 425 ([M – CH₃]⁺), 324 ([M – Me₂CH₂]⁺). Anal. Calcd for $C_{19}H_{34}Ge_2O_2$: C, 51.91; H, 7.74. Found: C, 52.02; H, 7.76.

Reaction of 3,5-Di-tert-butyl-o-quinone with [1,2-Bis(dimethylgermyl)ethane]iron Tetracarbonyl. Under the same experimental conditions as in the preceding preparation, 2 (1.04 g, 2.60 mmol) reacted with the quinone (0.57 g, 2.60 mmol) to give the dark green crystalline product 9b (0.75 g, 82% yield): mp 185 °C dec; 1 H NMR (C₆D₆) 7.25-6.9 (m, 2 H), 1.64 (s, 9 H), 1.38 (s, 9 H), 1.18 (s, 2 H), 0.42 (s, 6 H), 0.22 (s, 6 H); MS m/e 454 ([M]+), 439 ([M - CH₃]+), 324 ([M - Me₂Ge(CH₂)₂]+). Anal. Calcd for C₂₀H₃₆Ge₂O₂: C, 52.96; H, 7.94. Found: C, 53.01; H, 8.06.

ESR Spectrum. A solution of quinone (0.40 g, 2 mmol) in deoxygenated pentane (10 mL) was slowly added at -40 °C to 2 (0.80 g, 2 mmol) in deoxygenated pentane (10 mL). The ESR spectrum of the green solution at -40 °C shows a doublet for which $a^{\rm H} = 3.5$ G and g = 2.0018.