Basics and Op-Amps

$$(\textit{Thevenin voltage}) \quad V_{TH} = V_{OC}$$

$$(\textit{Norton current}) \quad I_N = I_{SC}$$

$$(\textit{Equivalent impedance}) \quad R_{eq} = Z_{eq} = \frac{V_{OC}}{I_{SC}}$$

$$(\textit{Equivalent admittance}) \quad Y_{eq} = \frac{I_{SC}}{V_{OC}}$$

$$(\textit{Parallel R+L/series C}) \quad x_{eq} = \frac{AB}{A+B}$$

$$(\textit{Root-mean-square of sine}) \quad V_{rms} = \sqrt{2}V_{max}$$

Op-Amps

(Diff. gain)
$$A_d=rac{R_2}{R_1}$$
 given $rac{R_4}{R_3}=rac{R_2}{R_1}$ (Diff. out) $V_{out}=\Delta VA_d+|V|A_{cm}$ (Common mode rejection rate) $CMRR=20\lograc{|A_d|}{|A_{cm}|}$

(Max frequency for slew rate on sin input) $f_m = rac{SR}{2\pi V_{max}}$

(Freq affects amp gain) $GBWP = f_{3 \, \mathrm{dB}} A$

Offset voltage Voltage source V_{OS} connected in series between port and terminal of ideal op-amp.

Input Bias/Offset Current 2 current sources $I_{Bn} = I_B \pm .5 I_{OS}$ connected in parallel between port and terminal going to ground.

Semiconductors

$$q = 1.602 \times 10^{-19} \, \mathrm{C}$$

$$\varepsilon_s = 11.7\varepsilon_0 = 1.04 \times 10^{-12} \, \frac{\mathrm{F}}{\mathrm{cm}}$$

$$n = p = n_i = BT^{\frac{3}{2}} e^{\frac{-E_g}{2kT}}$$

$$B_{Si} = 7.3 \times 10^{15} \, \mathrm{cm}^{-3} \mathrm{K}^{\frac{-3}{2}}$$

$$E_{gSi} = 1.12 \, \mathrm{eV}$$

$$k = 8.62 \times 10^{-5} \, \frac{\mathrm{eV}}{\mathrm{K}}$$
For $N_D \gg n_i$, $n_n \approx N_D$, $p_n = \frac{n_i^2}{n_n} \approx \frac{n_i^2}{N_D}$

$$\mathrm{For} \ N_A \gg n_i, \ p_p \approx N_A, \ n_p = \frac{n_i^2}{p_p} \approx \frac{n_i^2}{N_A}$$

$$(Built-in \ voltage) \quad V_0 = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2}\right)$$

$$(Depletion \ region \ width) \quad W = \sqrt{\frac{2\varepsilon_s}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)$$

$$x_p = W \frac{N_D}{N_A + N_D} \qquad x_n = W \frac{N_A}{N_A + N_D}$$

$$(Junction \ charge) \quad Q_J = Aq \left(\frac{N_A N_D}{N_A + N_D}\right) W$$

$$\mu_{pSi} = 480 \, \frac{\mathrm{cm}^2}{\mathrm{V_S}} \qquad \mu_{nSi} = 1350 \, \frac{\mathrm{cm}^2}{\mathrm{V_S}}$$

$$C_{ox} = \varepsilon_{ox} T_{ox}$$

Diodes

Ideal diodes are an open circuit when the voltage across them is negative (reverse bias), or a short circuit when the voltage across them is positive (forward bias).

Constant voltage drop is a very similarm model that goes to a short circuit at some forward voltage v_D , which is dropped across the diode once it turns on.

Zener diodes are used "backwards", so they can operate in the breakdown region. $V_Z=V_{Z0}+r_ZI_Z$

Rectifiers

$$(\textit{Half-wave}) \quad PIV = V_s$$

$$(\textit{Half-wave}) \quad V_o = v_S - v_D \text{ for } v_S \geq v_D$$

$$(\textit{Full-wave}) \quad PIV = 2V_s - V_D$$

$$(\textit{Full-wave}) \quad V_o = |v_S| - v_D \text{ for } |v_S| \geq v_D$$

$$(\textit{Bridge}) \quad PIV = V_s - V_d$$

$$(\textit{Bridge}) \quad V_o = |v_S| - 2v_D \text{ for } |v_s| \geq 2v_D$$

$$(\textit{Half-wave Peak}) \quad i_{Dav} = I_L(1 + \pi \sqrt{2V_p/V_r})$$

$$(\textit{Half-wave Peak}) \quad i_{Dmax} = I_L(1 + 2\pi \sqrt{2V_p/V_r})$$

$$(\textit{Half-wave Peak}) \quad V_r = \frac{V_p}{fCR}$$

$$|\text{-wave peak, replace } \sqrt{2V_v/V_r} \text{ with } \sqrt{V_v/2V_r}$$

For full-wave peak, replace $\sqrt{2V_p/V_r}$ with $\sqrt{V_p/2V_r}$ and $V_r=\frac{V_p}{fCR}$ with $V_r=\frac{V_p}{2fCR}$.

Transistors

(Overdrive voltage) $V_{OV} \equiv v_{GS} - V_t$

n-channel

p-channel MOSFETs have the source (arrow) on bottom or the body arrow (if the body is not connected to the source) pointing in toward the circuit symbol.

$$\begin{array}{ll} \textit{(Transconductance)} & k_n = \mu_n C_{ox} W/L = k_n' W/L \\ \\ \textit{(Small-signal } R) & r_{DS} = ((\mu_n C_{ox})(W/L)(v_{GS} - v_t))^{-1} \\ & \textit{(Cutoff)} & i_D = 0 & v_{GS} \leq V_t \\ \\ \textit{(Triode)} & i_D = k_n \left(V_{OV} - \frac{1}{2} v_{DS}\right) v_{DS} & v_{DS} < V_{OV} \\ \\ \textit{(Saturation)} & i_D = \frac{1}{2} k_n V_{OV}^2 (1 + \lambda v_{DS}) & v_{DS} \geq V_{OV} \\ \end{array}$$

p-channel

p-channel MOSFETs have the source (arrow) on top or the body arrow (if the body is not connected to the source) pointing out from the circuit symbol.

(Transconductance)
$$k_p = \mu_p C_{ox} W/L = k_p' W/L$$

(Cutoff)
$$i_D=0$$
 $v_{SG}\leq |V_t|$ (Triode) $i_D=k_n\left(|V_{OV}|-\frac{1}{2}v_{SD}\right)v_{SD}$ $v_{SD}<|V_{OV}|$

(Saturation)
$$i_D = \frac{1}{2}k_n |V_{OV}|^2 (1 + |\lambda| v_{SD})$$
 $v_{SD} \ge |V_{OV}|$

Small-Signal MOSFETs

$$g_m=rac{dI_{DS}}{dV_{GS}}=k_nV_{OV}=rac{2I_D}{V_{OV}}$$
 (Early voltage) $\lambda=1/V_A$ $r_o=rac{V_A}{I_D}$

MOSFET Amps

$$R_{in}=\infty$$
 for all but CG, where $R_{in}=rac{1}{g_m}$ $R_o=R_D$ for all but SF, where $R_o=rac{1}{g_m}$

Amp	A_{vo}	A_v	G_v
CS	$-g_m R_D$	$-g_m(R_D R_L)$	$-g_m(R_D R_L)$
CS+R	$g_m R_D$	$g_m(R_D R_L)$	$g_m(R_D R_L)$
C5+1($-\frac{1}{1+g_mR_s}$	$1+g_mR_s$	$1+g_mR_s$
CG	$g_m R_D$	$g_m(R_D R_L)$	$-\frac{R_D R_L}{R_{sig} + g_m^{-1}}$
SF	1	$\frac{R_L}{R_L + g_m^{-1}}$	$-\frac{R_L}{R_{sig} + g_m^{-1}}$

MOSFET current source

Connect MOSFETs gate to gate to get a current source/mirror:

$$\frac{I_{ref}}{W/L} = \frac{I_{D1}}{(W/L)_1} = \frac{I_{D2}}{(W/L)_2} = \cdots$$

Finding Frequency Response

- \bullet Assume saturation and find I_D , V_{GS} , V_{DS} for the bias point (Q-point), then ensure that the assumption is correct
- Use Q-point to estimate g_m , r_o
- \bullet Short DC voltages, coupling/bypass caps, open DC currents; analyze for $A_v,\ R_{in},\ R_{out};$ estimate G_v

T model

