MATH 401 - NOTES Sequences of functions Pointwise and Uniform Convergence

Fall 2005

Previously, we have studied sequences of *real numbers*. Now we discuss the topic of *sequences of real valued functions*. A sequence of functions $\{f_n\}$ is a list of functions (f_1, f_2, \ldots) such that each f_n maps a given subset D of \mathbb{R} into \mathbb{R} .

I. Pointwise convergence

Definition. Let D be a subset of \mathbb{R} and let $\{f_n\}$ be a sequence of functions defined on D. We say that $\{f_n\}$ converges pointwise on D if

$$\lim_{n\to\infty} f_n(x) \text{ exists for each point } x \text{ in } D.$$

This means that $\lim_{n\to\infty} f_n(x)$ is a real number that depends only on x.

If $\{f_n\}$ is pointwise convergent then the function defined by $f(x) = \lim_{n \to \infty} f_n(x)$, for every x in D, is called the *pointwise limit of the sequence* $\{f_n\}$.

Example 1. Let $\{f_n\}$ be the sequence of functions on \mathbb{R} defined by $f_n(x) = nx$. This sequence does not converge pointwise on \mathbb{R} because $\lim_{n\to\infty} f_n(x) = \infty$ for any x > 0.

Example 2.

Let $\{f_n\}$ be the sequence of functions on \mathbb{R} defined by $f_n(x) = x/n$. This sequence converges pointwise to the zero function on \mathbb{R} .

Example 3. Consider the sequence $\{f_n\}$ of functions defined by

$$f_n(x) = \frac{nx + x^2}{n^2}$$
 for all x in \mathbb{R} .

Show that $\{f_n\}$ converges pointwise.

Solution: For every real number x, we have:

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x}{n} + \frac{x^2}{n^2} = x \left(\lim_{n\to\infty} \frac{1}{n} \right) + x^2 \left(\lim_{n\to\infty} \frac{1}{n^2} \right) = 0 + 0 = 0$$

Thus, $\{f_n\}$ converges pointwise to the zero function on \mathbb{R} .

Example 4. Consider the sequence $\{f_n\}$ of functions defined by

$$f_n(x) = \frac{\sin(nx+3)}{\sqrt{n+1}}$$
 for all x in \mathbb{R} .

Show that $\{f_n\}$ converges pointwise.

Solution: For every x in \mathbb{R} , we have

$$\frac{-1}{\sqrt{n+1}} \le \frac{\sin(nx+3)}{\sqrt{n+1}} \le \frac{1}{\sqrt{n+1}}$$

Moreover,

$$\lim_{n \to \infty} \frac{1}{\sqrt{n+1}} = 0.$$

Applying the squeeze theorem for sequences, we obtain that

$$\lim_{n \to \infty} f_n(x) = 0 \quad \text{for all } x \text{ in } \mathbb{R}.$$

Therefore, $\{f_n\}$ converges pointwise to the function $f \equiv 0$ on \mathbb{R} .

Example 5. Consider the sequence $\{f_n\}$ of functions defined by $f_n(x) = n^2x^n$ for $0 \le x \le 1$. Determine whether $\{f_n\}$ is pointwise convergent.

Solution: First of all, observe that $f_n(0) = 0$ for every n in \mathbb{N} . So the sequence $\{f_n(0)\}$ is constant and converges to zero. Now suppose 0 < x < 1 then $n^2x^n = n^2e^{n\ln(x)}$. But $\ln(x) < 0$ when 0 < x < 1, it follows that

$$\lim_{n \to \infty} f_n(x) = 0 \quad \text{for } 0 < x < 1$$

Finally, $f_n(1) = n^2$ for all n. So, $\lim_{n \to \infty} f_n(1) = \infty$. Therefore, $\{f_n\}$ is not pointwise convergent on [0,1].

Example 6. Let $\{f_n\}$ be the sequence of functions defined by $f_n(x) = \cos^n(x)$ for $-\pi/2 \le x \le \pi/2$. Discuss the pointwise convergence of the sequence.

Solution: For $-\pi/2 \le x < 0$ and for $0 < x \le \pi/2$, we have

$$0 \le \cos(x) < 1.$$

It follows that

$$\lim_{n \to \infty} (\cos(x))^n = 0 \quad \text{for } x \neq 0.$$

Moreover, since $f_n(0) = 1$ for all n in \mathbb{N} , one gets $\lim_{n \to \infty} f_n(0) = 1$. Therefore, $\{f_n\}$ converges pointwise to the function f defined by

$$f(x) = \begin{cases} 0 & \text{if } -\frac{\pi}{2} \le x < 0 & \text{or } 0 < x \le \frac{\pi}{2} \\ 1 & \text{if } x = 0 \end{cases}$$

Example 7. Consider the sequence of functions defined by

$$f_n(x) = nx(1-x)^n$$
 on [0, 1].

Show that $\{f_n\}$ converges pointwise to the zero function.

Solution: Note that $f_n(0) = f_n(1) = 0$, for all $n \in \mathbb{N}$. Now suppose 0 < x < 1, then

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nx e^{n \ln(1-x)} = x \lim_{n \to \infty} n e^{n \ln(1-x)} = 0$$

because ln(1-x) < 0 when 0 < x < 1. Therefore, the given sequence converges pointwise to zero.

Example 8. Let $\{f_n\}$ be the sequence of functions on \mathbb{R} defined by

$$f_n(x) = \begin{cases} n^3 & \text{if } 0 < x \le \frac{1}{n} \\ 1 & \text{otherwise} \end{cases}$$

Show that $\{f_n\}$ converges pointwise to the constant function f=1 on \mathbb{R} .

Solution: For any x in \mathbb{R} there is a natural number N such that x does not belong to the interval (0, 1/N). The intervals (0, 1/n) get smaller as $n \to \infty$. Therefore, $f_n(x) = 1$ for all n > N. Hence,

$$\lim_{n \to \infty} f_n(x) = 1 \quad \text{for all } x.$$

The formal definition of pointwise convergence

Let D be a subset of \mathbb{R} and let $\{f_n\}$ be a sequence of real valued functions defined on D. Then $\{f_n\}$ converges pointwise to f if given any x in D and given any $\varepsilon > 0$, there exists a natural number $N = N(x, \varepsilon)$ such that

$$|f_n(x) - f(x)| < \varepsilon$$
 for every $n > N$.

Note: The notation $N = N(x, \varepsilon)$ means that the natural number N depends on the choice of x and ε .

I. Uniform convergence

Definition. Let D be a subset of \mathbb{R} and let $\{f_n\}$ be a sequence of real valued functions defined on D. Then $\{f_n\}$ converges uniformly to f if given any $\varepsilon > 0$, there exists a natural number $N = N(\varepsilon)$ such that

$$|f_n(x) - f(x)| < \varepsilon$$
 for every $n > N$ and for every x in D .

Note: In the above definition the natural number N depends only on ε . Therefore, uniform convergence implies pointwise convergence. But the converse is false as we can see from the following counter-example.

Example 9. Let $\{f_n\}$ be the sequence of functions on $(0, \infty)$ defined by

$$f_n(x) = \frac{nx}{1 + n^2 x^2}.$$

This function converges pointwise to zero. Indeed, $(1+n^2x^2)\sim n^2x^2$ as n gets larger and larger. So,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{n^2 x^2} = \frac{1}{x} \lim_{n \to \infty} \frac{1}{n} = 0.$$

But for any $\varepsilon < 1/2$, we have

$$\left| f_n\left(\frac{1}{n}\right) - f\left(\frac{1}{n}\right) \right| = \frac{1}{2} - 0 > \varepsilon.$$

Hence $\{f_n\}$ is not uniformly convergent.

Theorem. Let D be a subset of \mathbb{R} and let $\{f_n\}$ be a sequence of **continuous** functions on D which converges uniformly to f on D. Then f is continuous on D

Homework

Problem 1.

Let $\{f_n\}$ be the sequence of functions on [0, 1] defined by $f_n(x) = nx(1-x^4)^n$. Show that $\{f_n\}$ converges pointwise. Find its pointwise limit.

Problem 2.

Is the sequence of functions on [0, 1) defined by $f_n(x) = (1-x)^{\frac{1}{n}}$ pointwise convergent? Justify your answer.

Problem 3.

Consider the sequence $\{f_n\}$ of functions defined by

$$f_n(x) = \frac{n + \cos(nx)}{2n + 1}$$
 for all x in \mathbb{R} .

Show that $\{f_n\}$ is pointwise convergent. Find its pointwise limit.

Problem 4.

Consider the sequence $\{f_n\}$ of functions defined on $[0, \pi]$ by $f_n(x) = \sin^n(x)$. Show that $\{f_n\}$ converges pointwise. Find its pointwise limit. Using the above theorem, show that $\{f_n\}$ is not uniformly convergent.