

Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS

INTRODUCTION

 $\sqrt{-36}$, $\sqrt{-25}$ etc do not have values in the system of real numbers.

So we need to extend the real numbers system to a larger system.

Let us denote $\sqrt{-1}$ by the symbol i.

ie
$$i^2 = -1$$

A number of the form a+ib where a&b are real numbers is defined to be a complex number.

Eg 2+i3,
$$-7+\sqrt{2}i$$
, $\sqrt{3}i$, $4+\underline{1}i$, $5=5+0i$, $-7=-7+0i$ etc

For
$$z = 2+i5$$
, Re $z = 2$ (real part)

and
$$Im z = 5$$
 (imaginary part)

Refer algebra of complex numbers of text book pg 98

1) Addition of complex numbers

$$(2+i3) + (-3+i2) = (2+-3) + i(3+2)$$

= -1+5i

2) Difference of complex numbers

$$(2+i3)-(-3+i2) = (2+3) + i(3-2)$$

= 5 + i

3) Multiplication of two complex numbers

$$(2+i3)(-3+i2) = 2(-3+i2) + i3(-3+i2)$$

= $-6+4i-9i+6i^2$
= $-6-5i-6$ ($i^2 = -1$)
= $-12-5i$

4) Division of complex numbers

$$\frac{2+i3}{-3+i2} = \underbrace{(2+i3)}_{(-3+i2)} \times \underbrace{(-3-i2)}_{(-3-i2)} \\
= \underbrace{-6-4i-9i-6i^2}_{(-3)^2-(i2)^2} \\
= \underbrace{-6-13i+6}_{9-(-1)x} + \underbrace{-13i}_{13} = \underbrace{-i}_{13}$$

5) Equality of 2 complex numbers

$$a+ib = c+id$$
, iff $a=c \& b=d$

6) a+ib =0, iff a=0 and b=0
Refer: the square roots of a negative real no & identities (text page 100,101)

Formulas

- a) IF Z=a+ib then modulus of Z ie $|Z| = (a^2+b^2)^{1/2}$
- b) Conjugate of Z is a-ib

c) Multiplicative inverse of a+ib =
$$\frac{a}{(a^2+b^2)} - \frac{ib}{(a^2+b^2)}$$

**d) Polar representation of a complex number

$$a+ib = r(\cos \theta + i\sin \theta)$$

Where $r = |Z| = (a^2+b^2)^{1/2}$ and $\theta = \arg Z(\text{argument or amplitude of } Z \text{ which has many different values but when } -\pi < \theta \le \pi$, θ is called principal argument of Z.

Trick method to find o

Step 1First find angle using the following

- 1) $Cos\theta = 1$ and $sin\theta = 0$ then angle = 0
- 2) $Cos\theta = 0$ and $sin\theta = 1$ then angle = $\pi/2$
- 3) Sine= $\sqrt{3}/2$ and cose=1/2 then angle = $\pi/3$
- 4) Sine = $\frac{1}{2}$ and cose = $\sqrt{3}/2$ then angle = $\pi/6$

Step 2: To find o

- 1) If both sine and cose are positive then θ = angle (first quadrant)
- 2) If sine positive, cose negative then $\theta = \pi$ -angle (second quadrant)
- 3) If both sine and cose are negative the $\theta = \pi + \text{angle}$ (third quadrant)
- 4) If sine negative and cose positive then $e=2\pi$ -angle (fourth quadrant)

Or
$$\Theta = -$$
 (angle) since $\sin (-\Theta) = -\sin \Theta$ and $\cos (-\Theta) = \cos \Theta$

5) If sine = 0 and cose = -1 then $e=\pi$

**e) Formula needed to find square root of a complex number

$$(a+b)^2 = (a-b)^2 + 4ab$$

ie
$$[x^2 + y^2]^2 = [x^2 - y^2]^2 + 4x^2y^2$$

e) Powers of i

$$\mathbf{i})i^{4k}=1$$

$$\mathbf{ii})i^{4k+1} = i$$

$$\mathbf{iii})i^{4k+2} = -1$$

iv)
$$i^{4k+3} = -i$$
, for any integer k

Examples:

$$i^1 = i$$
, $i^2 = -1$, $i^3 = -i$ and $i^4 = 1$ &

$$i^{19} = i^{16} \times i^3 = 1 \times -i = -i$$

g) Solutions of quadratic equation $ax^2+bx+c=0$ with real coefficients a,b,c and $a \neq 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, If $b^2 - 4ac \ge 0$

If
$$b^2$$
- 4ac < 0 then $x = \frac{-b \pm \sqrt{4ac-b^2}}{2a}$ i

Refer text page 102 the modulus and conjugate of a complex number properties given in the end. (i) to (v)

Ex 5.1

Q. 3*(1 mark), 8* (4 marks), 11**, 12**, 13**, 14**(4 Marks)

Polar form (very important)

Ex 5.2

Q 2**) Express Z = $-\sqrt{3}+i$ in the polar form and also write the modulus and the argument of Z

Solution Let $-\sqrt{3}+i = r(\cos\theta + i\sin\theta)$

Here
$$a = -\sqrt{3}$$
, $b = 1$

$$r = (a^2 + b^2)^{1/2} = \sqrt{3 + 1} = \sqrt{4} = 2$$

$$-\sqrt{3}+i = 2\cos\theta + i \times 2\sin\theta$$

Therefore $2\cos\theta = -\sqrt{3}$ and $2\sin\theta = 1$

$$Cos\theta = -\sqrt{3}/2$$
 and $sin\theta = \frac{1}{2}$

Here coso negative and sino positive

Therefore $\theta = \pi - \pi/6 = 5\pi/6$ (see trick method given above)

Therefore polar form of $Z = -\sqrt{3} + i = 2(\cos 5\pi/6 + i\sin 5\pi/6)$

|Z| = 2 and argument of $Z = 5\pi/6$ and $-\sqrt{3} + i = 2(\cos 5\pi/6 + i\sin 5\pi/6)$

Ex 5.2

Q (1 to 8)** Note: Q 1)
$$\theta = 4\pi/3$$
 or principal argument $\theta = 4\pi/3 - 2\pi = -2\pi/3$

Q 5)
$$\theta = 5\pi/4$$
 or principal argument $\theta = 5\pi/4 - 2\pi = -3\pi/4$

eg 7**, eg 8**

Ex 5.3

Q 1,8,9,10 (1 mark)

Misc examples (12 to 16)**

Misc exercise

Supplementary material

eg 12**

Ex 5.4

Q (1 to 6)**

EXTRA/HOT QUESTIONS

1** Find the square roots of the following complex numbers (4 marks)

- i. 6 + 8i
- ii. 3 4i
- iii. 2 + 3i (HOT)
- iv. $7 30\sqrt{2}i$
- v. $\frac{3+4i}{3-4i}$ (HOT)

2** Convert the following complex numbers in the polar form

- i. $3\sqrt{3} + 3i$
- ii. $\frac{1-i}{1+i}$

iii.
$$1 + i$$

iv.
$$-1 + \sqrt{3}i$$

v.
$$-3 + 3i$$

- 3. If a+ ib = $\frac{x+i}{x-i}$ where x is a real, prove that $a^2 + b^2 = 1$ and $b/a = 2x/(x^2-1)$ 4marks
- 4 Find the real and imaginary part of i. (1 mark)
- 5 Compute: $i + i^2 + i^3 + i^4$ (1 mark)
- 6 Solve the following quadratic equations (I mark)

i)
$$x^2 - (\sqrt{2} + 1)x + \sqrt{2} = 0$$

ii)
$$2x^2 + 5 = 0$$

- Find the complex conjugate and multiplicative inverse of (4 mark)
 - i) $(2 5i)^2$

ii)
$$\frac{2+3i}{3-7i}$$

8 If
$$|Z| = 2$$
 and arg $Z = \pi/4$ then $Z = _____.$ (1 mark)

Answers

1) i)
$$2\sqrt{2} + \sqrt{2}i$$
, $-2\sqrt{2} - \sqrt{2}i$

ii)
$$2-i$$
, $-2+i$

iii)
$$\frac{\sqrt{\sqrt{13}+2}}{\sqrt{2}} + \frac{\sqrt{\sqrt{13}-2} \ i}{\sqrt{2}}$$
, $\frac{\sqrt{\sqrt{13}+2}}{\sqrt{2}} + \frac{\sqrt{\sqrt{13}-2} \ i}{\sqrt{2}}$,

iv)
$$5 - 3\sqrt{2}i$$
, $-5 + 3\sqrt{2}i$

v)
$$3/5 + 4/5$$
 i, $-3/5$ $-4/5$ i

2) i)
$$6(\cos \pi/6 + i\sin \pi/6)$$

ii)
$$\cos(-\pi/2) + i\sin(-\pi/2)$$

iii)
$$\sqrt{2}(\cos \pi/4 + i\sin \pi/4)$$

iv)
$$2(\cos 2\pi/3 + i\sin 2\pi/3)$$

iv)
$$3\sqrt{2} (\cos 3\pi/4 + i \sin 3\pi/4)$$

vi)
$$2\sqrt{2}(\cos 5\pi/4 + i\sin 5\pi/4)$$
 or $2\sqrt{2}[\cos(-3\pi/4) + i\sin(-3\pi/4)]$

- 4) 0,1
- 5) 0
- 6) i) $\sqrt{2}$, 1

ii)
$$\sqrt{\frac{5}{2}} i , -\sqrt{\frac{5}{2}} i$$

ii)
$$-\frac{15}{58} - \frac{23i}{58}$$
, $\frac{3-7i}{2+3i}$

8)
$$\sqrt{2} + i\sqrt{2}$$