Design and Analysis of Algorithms | Assignment 3

Test Graphs Overview

Graph ID	Size Category	Vertices	Edges	Description
1	Small	6	9	Simple network for correctness verification
2	Medium	15	24	Moderate complexity network
3	Large	30	54	Complex network for scalability testing

Performance Comparison Results

Summary Table

		MST		Execution Time	MST
Graph	Algorithm	Cost	Operations	(ms)	Edges
Graph	Prim's	25.0	65	0.058	5
1					
(Small)					
	Kruskal's	25.0	65	1.173	5
Graph	Prim's	100.0	406	0.207	14
2					
(Mediun	n)				
	Kruskal's	100.0	151	0.080	14
Graph	Prim's	185.0	1,864	0.840	29
3					
(Large)					
	Kruskal's	185.0	317	0.463	29

Detailed Analysis by Graph

Graph 1 - Small Graph (6 vertices, 9 edges)

Metric	Prim's Algorithm	Kruskal's Algorithm
MST Total Cost	25.0	25.0
Operations Count	65	65
Execution Time	0.058 ms	1.173 ms
Edges in MST	5	5

Metric	Prim's Algorithm	Kruskal's Algorithm
Performance	Faster execution	More operations overhead

Key Observations: - Both algorithms produce the same optimal MST cost - Prim's executes $20 \times$ faster despite same operation count - Small graph favors Prim's simpler implementation

Graph 2 - Medium Graph (15 vertices, 24 edges)

Metric	Prim's Algorithm	Kruskal's Algorithm
MST Total Cost	100.0	100.0
Operations Count	406	151
Execution Time	$0.207~\mathrm{ms}$	$0.080~\mathrm{ms}$
Edges in MST	14	14
Performance	More operations	Faster execution

Key Observations: - Kruskal's performs 62.8% fewer operations (406 vs 151) - Kruskal's executes $2.6\times$ faster (0.207 ms vs 0.080 ms) - Efficiency crossover point appears between small and medium graphs

Graph 3 - Large Graph (30 vertices, 54 edges)

Metric	Prim's Algorithm	Kruskal's Algorithm
MST Total Cost	185.0	185.0
Operations Count	1,864	317
Execution Time	$0.840~\mathrm{ms}$	$0.463~\mathrm{ms}$
Edges in MST	29	29
Performance	Slower scaling	Better scalability

Key Observations: - Kruskal's performs 83.0% fewer operations (1,864 vs 317) - Kruskal's executes $1.8 \times$ faster (0.840 ms vs 0.463 ms) - Performance gap widens significantly with graph size

2

Algorithm Complexity Analysis

Operations Count Growth

Graph Size	Prim's Ops	Kruskal's Ops	Ratio (Prim/Kruskal)
Small (6V, 9E)	65	65	1.0×
Medium (15V, 24E)	406	151	$2.7 \times$
Large (30V, 54E)	1,864	317	$5.9 \times$

Trend: Prim's operation count grows much faster (quadratic behavior)

Execution Time Growth

Prim's Time (ms)	Kruskal's Time (ms)	Speedup
0.058	1.173	$0.05 \times \text{(slower)}$
		$2.59 \times 1.81 \times$
	,	0.058 1.173 0.207 0.080

Key Findings

Correctness

- Both algorithms produce identical MST costs across all test cases
- All graphs connected successfully with V-1 edges

Performance Patterns

Prim's Algorithm: - Better for very small graphs (< 6 vertices) - O(E · V) complexity visible in operation counts - Operations grow: $65 \rightarrow 406 \rightarrow 1,864$ (quadratic)

Kruskal's Algorithm: - Better for medium to large graphs (15 vertices) - O(E log E) complexity advantage clear - Operations grow: $65 \rightarrow 151 \rightarrow 317$ (logarithmic) - Consistently fewer operations at scale

Recommendations

Graph Size	Recommended Algorithm	Reason
Small (< 10	Prim's	Simpler, faster
vertices)		on tiny graphs

Graph Size	Recommended Algorithm	Reason
Medium (10-20	Kruskal's	Better
vertices)		operation
T (22		efficiency
Large $(20+ \text{ vertices})$	Kruskal's	Significantly
		faster, scales
		better

Implementation Notes

- Prim's Implementation: Basic $O(E \cdot V)$ without priority queue optimization
- Kruskal's Implementation: Uses Union-Find with path compression
- All tests run on Java 11 with Maven
- $\bullet\,$ Results averaged from multiple runs for consistency

Conclusion

The analysis demonstrates that **Kruskal's algorithm scales significantly better** than the basic Prim's implementation for graphs with more than 10 vertices. While Prim's shows better performance on tiny graphs, Kruskal's superior O(E log E) complexity with Union-Find optimization makes it the clear choice for real-world applications involving moderate to large networks.

Author

Student: Nurzhan Izimbetov Group: SE-2436 Github: nurzhqn0