WE CLAIM:

1. A method for treating opioid tolerance comprising administering an effective amount of a NAALADase inhibitor to a mammal in need of such treatment.

- 2. The method of claim 1, wherein the NAALADase inhibitor is an acid containing a metal binding group.
- 3. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula I

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

Y is CR³R⁴, NR⁵ or O;

 R^1 is hydrogen, C_1 - C_9 alkyl, C_2 - C_9 alkenyl, C_3 - C_8 cycloalkyl, C_5 - C_7 cycloalkenyl, Ar, COOR⁶, NR⁶R⁷ or OR⁶, wherein said alkyl, alkenyl, cycloalkyl and cycloalkenyl are independently unsubstituted or substituted with one or more substituent(s) which are, for example, independently selected from carboxy, C_3 - C_8 cycloalkyl, C_5 - C_7 cycloalkenyl, halo, hydroxy, nitro, trifluoromethyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_9 alkoxy, C_2 - C_9 alkenyloxy, phenoxy, benzyloxy, COOR⁶, NR⁶R⁷ and Ar;

R² is hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₈ cycloalkyl, C₅-C₇ cycloalkenyl, Ar, halo or carboxy, wherein said alkyl, alkenyl, cycloalkyl and cycloalkenyl are independently unsubstituted or substituted with one or more substituent(s) which are, for example, independently selected from carboxy, C₃-C₈ cycloalkyl, C₅-C₇ cycloalkenyl, halo, hydroxy, nitro, trifluoromethyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₉ alkoxy, C₂-C₉ alkenyloxy, phenoxy, benzyloxy, NR⁶R⁷ and Ar;

 R^3 and R^4 are independently hydrogen or $C_1\text{-}C_3$ alkyl;

R⁵ is hydrogen or C₁-C₃ alkyl;

 R^6 and R^7 are independently hydrogen, C_1 - C_9 alkyl, C_2 - C_9 alkenyl, C_3 - C_8 cycloalkyl, C_5 - C_7 cycloalkenyl or Ar, wherein said alkyl, alkenyl, cycloalkyl and cycloalkenyl are independently unsubstituted or substituted with one or more substituent(s) which are, for example, independently selected from carboxy, C_3 - C_8 cycloalkyl, C_5 - C_7 cycloalkenyl, halo, hydroxy, nitro, trifluoromethyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_9 alkoxy, C_2 - C_9 alkenyloxy, phenoxy, benzyloxy and Ar; and

Ar is selected from 1-naphthyl, 2-naphthyl, 2-indolyl, 3-indolyl, 4-indolyl, 2-furyl, 3-furyl, tetrahydrofuranyl, tetrahydropyranyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl and phenyl, wherein said Ar is unsubstituted or substituted with one or more substituent(s) which are, for example, independently selected from halo, hydroxy, nitro, trifluoromethyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ alkenyl, C₂-C₆ alkenyloxy, phenoxy, benzyloxy, carboxy and N⁶R⁷.

- 4. The method of claim 3, wherein Y is CH₂.
- 5. The method of claim 4, wherein R² is -(CH₂)₂COOH.
- 6. The method of claim 5, wherein R¹ is hydrogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₃-C₈ cycloalkyl, C₅-C₇ cycloalkenyl, benzyl, phenyl or OR⁶, wherein said alkyl, alkenyl, cycloalkyl, cycloalkenyl, benzyl and phenyl are independently unsubstituted or substituted with one or more substituent(s) independently selected from carboxy, C₃-C₈ cycloalkyl, C₅-C₇ cycloalkenyl, halo, hydroxy, nitro, trifluoromethyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ alkenyl, C₁-C₆ alkenyloxy, phenoxy, benzyloxy, NR⁶R⁷, benzyl and phenyl.
 - 7. The method of claim 6, wherein the compound of formula I is selected from:
 - 2-(phosphonomethyl)pentanedioic acid;
 - $\hbox{$2-[[(2-carboxyethyl) hydroxyphosphinyl] methyl]-pentanedioic acid;}\\$
 - 2-[(benzylhydroxyphosphinyl)methyl]pentanedioic acid;
 - 2-[(phenylhydroxyphosphinyl)methyl]pentanedioic acid;
 - 2-[[((hydroxy)phenylmethyl)hydroxyphosphinyl]-methyl]pentanedioic acid;
 - $\hbox{$2$-[(butylhydroxyphosphinyl)methyl]$pentanedioic acid;}\\$

- 2-[[(3-methylbenzyl)hydroxyphosphinyl]methyl]-pentanedioic acid;
- 2-[(3-phenylpropylhydroxyphosphinyl)methyl]-pentanedioic acid;
- 2-[[(4-fluorophenyl)hydroxyphosphinyl]methyl]-pentanedioic acid;
- 2-[(methylhydroxyphosphinyl)methyl]pentanedioic acid;
- 2-[(phenylethylhydroxyphosphinyl)methyl]pentanedioic acid;
- 2-[[(4-methylbenzyl)hydroxyphosphinyl]methyl]-pentanedioic acid;
- 2-[[(4-fluorobenzyl)hydroxyphosphinyl]methyl]-pentanedioic acid;
- 2-[[(4-methoxybenzyl)hydroxyphosphinyl]methyl]-pentanedioic acid;
- 2-[[(3-trifluoromethylbenzyl)hydroxyphosphinyl]-methyl]pentanedioic acid;
- 2-[[4-trifluoromethylbenzyl)hydroxyphosphinyl]-methyl]pentanedioic acid;
- 2-[[(2-fluorobenzyl)hydroxyphosphinyl]methyl]-pentanedioic acid;
- 2-[[(2,3,4,5,6-pentafluorobenzyl)hydroxy-phosphinyl]methyl]pentanedioic acid; and enantiomers and pharmaceutically acceptable equivalents.
- 8. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula II

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

X is a moiety of formula III, IV or V

$$R^{11} \longrightarrow S \longrightarrow \begin{bmatrix} R^9 \\ R^{10} \end{bmatrix} \cap \begin{bmatrix} R^9 \\ R^{10} \end{bmatrix}$$

Z is SH, SO_{3H}, SO₂H, SOH, SO(NH)R¹² or S(NHR¹²)₂R¹³; B is N or CR¹⁴;

A is O, S, $CR^{15}R^{16}$ or $(CR^{15}R^{16})_mS$;

m and n are independently 0, 1, 2, 3 or 4;

R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹⁴, R¹⁵ and R¹⁶ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₃-C₈ cycloalkyl, C₅-C₇ cycloalkenyl, Ar¹, hydroxy, carboxy, carbonyl, amino, cyano, isocyano, nitro, sulfonyl, sulfoxy, thio, thiocarbonyl, thiocyano, formanilido, thioformamido, sulfhydryl, halo, haloalkyl, trifluoromethyl or oxy, wherein said alkyl, alkenyl, cycloalkyl and cycloalkenyl are independently unsubstituted or substituted with one or more substituent(s); and

Ar¹ is a carbocyclic or heterocyclic moiety, which is unsubstituted or substituted with one or more substituent(s);

provided that when X is a moiety of formula III and A is O, then n is 2, 3 or 4; when X is a moiety of formula III and A is S, then n is 2, 3 or 4; and when X is a moiety of formula III and A is $(CR^{15}R^{16})_mS$, then n is 0, 2, 3 or 4.

9. The method of claim 8, wherein:

X is a moiety of formula III;

n is 0, 1, 2 or 3;

Z is SH, SO₃H, SO₂H, SOH or S(NHR¹²)₂R¹³; and

A is O, S or CR¹⁵R¹⁶.

- 10. The method of claim 9, wherein Z is SH.
- 11. The method of claim 10, wherein R⁸ is -(CH₂)₂COOH.
- 12. The method of claim 10, wherein the compound of formula II is selected from:
 - 2-(2-sulfanylethyl)pentanedioic acid;
 - 3-(2-sulfanylethyl)-1,3,5-pentanetricarboxylic acid;
 - 2-(2-sulfanylpropyl)pentanedioic acid;
 - 2-(2-sulfanylbutyl)pentanedioic acid;
 - 2-(2-sulfanyl-2-phenylethyl)pentanedioic acid;
 - 2-(2-sulfanylhexyl)pentanedioic acid;
 - 2-(2-sulfanyl-1-methylethyl)pentanedioic acid;
 - 2-[1-(sulfanylmethyl)propyl]pentanedioic acid;
 - 2-(3-sulfanylpentyl)pentanedioic acid;
 - 2-(3-sulfanylpropyl)pentanedioic acid;
 - 2-(3-sulfanyl-2-methylpropyl)pentanedioic acid;
 - 2-(3-sulfanyl-2-phenylpropyl)pentanedioic acid;
 - 2-(3-sulfanylbutyl)pentanedioic acid;
 - 2-[3-sulfanyl-2-(phenylmethyl)propyl]pentanedioic acid;
 - 2-[2-(sulfanylmethyl)butyl]pentanedioic acid;
 - 2-[2-(sulfanylmethyl)pentyl]pentanedioic acid;
 - 2-(3-sulfanyl-4-methylpentyl)pentanedioic acid; and enantiomers and pharmaceutically acceptable equivalents.
- 13. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula VI

$$X_1$$
 X_1
 X_1

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

 X^1 is $-W-Z^1$;

W is a bond or a linking group;

Z¹ is a terminal group; and

Y¹ is -COOH oriented meta or para relative to C-1.

14. The method of claim 13, wherein:

 X^{1} is $-(CR^{17}R^{18})_{n}NH(CR^{19}R^{20})_{m}COOH$, $-PO(OH)OR^{22}$, $-(CR^{17}R^{18})_{n}P(O)(OH)R^{22}$, $-NH-(CR^{19}R^{20})_{m}$ -heteroaryl, $-NH(P(O)(R^{23})OH)$, $-(CR^{17}R^{18})_{n}NH(P(O)(OH)R^{23})$, $-CON(R^{22})(OH)$ $-(CR^{17}CR^{18})_{n}CON(R^{22})(OH)$, $-(CR^{17}R^{18})_{n}SH$ or $-O(CR^{19}R^{20})_{m}SH$, $-SO_{2}NH$ -aryl, -N(C=O)- $CH_{2}(C=O)$ -aryl, $-SO_{2}NH$ -aryl, -N(C=O)- $CH_{2}(C=O)$ -aryl is substituted by at least one of nitro, carboxy or

wherein X¹ is oriented meta or para relative to C-1;

m and n are independently 1-3, provided that when X^1 is $-O(CR^{19}R^{20})_mSH$, then m is 2 or 3;

R¹⁷, R¹⁸, R¹⁹, R²⁰, R²², R²³ and R²⁵ are independently hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino or C₁-C₆ alkoxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl,

carbocycle, heterocycle and alkoxy are independently unsubstituted or substituted with one or more substituent(s); and

Y¹ is -COOH oriented *meta* or *para* relative to C-1.

- 15. The method of claim 13, wherein the compound of formula VI is selected from:
 - 2-[(4-carboxyphenyl)sulfonyl]-1,4-benzene-dicarboxylic acid;
 - 2-[(2,5-dicarboxyphenyl)sulfonyl]-1,4-benzene-dicarboxylic acid;
 - 1,2,4-benzenetricarboxylic acid;
 - 2-[(2-carboxyphenyl)thio]-1,4-benzenedicarboxylic acid;
 - 2-nitro-1,4-benzenedicarboxylic acid;
 - 2-bromo-1,4-benzenedicarboxylic acid;
 - 2-amino-1,4-benzenedicarboxylic acid;
 - 2-sulfoterephthalic acid, monosodium salt;
 - 2-carboxymethyl-1,4-benzenedicarboxylic acid;
 - 2-[(2-furanylmethyl)-amino]-1,4-benzenedicarboxylic acid;
 - 2-[(carboxymethyl)amino]-1,4-benzenedicarboxylic acid;
 - 4-(4-nitrobenzoyl)-1,3-benzenedicarboxylic acid;
 - 4-[4-(2,4-dicarboxybenzoyl)phenoxy]-1,2-benzene-dicarboxylic acid;
 - 4-[[(2,4,6-trimethylphenyl)amino]carbonyl]-1,3-benzenedicarboxylic acid;
 - 4-nitro-1,3-benzenedicarboxylic acid;
 - 4-[(1-naphthalenylamino)-carbonyl]-1,3-benzene-dicarboxylic acid;
 - 1,2,4-benzenetricarboxylic acid;
 - 4-[(2-carboxyphenyl)thio]-1,3-benzenedicarboxylic acid;
- 4-[3-[[3-(2,4-dicarboxyphenoxy)propyl]dithio]-propoxy]-1,3-benzenedicarboxylic acid;
 - 4-hydroxy-1,3-benzenedicarboxylic acid;
 - 4-[(2-furanylmethyl)amino]-1,3-benzenedicarboxylic acid;
 - 4-(2-mercaptoethyl)-1,3-benzenedicarboxylic acid;
 - 5-[4,5-dihydro-5-(4-hydroxyphenyl)-3-phenyl-1H-pyrazol-1-yl]-1,3-

```
benzenedicarboxylic acid;
       5-(4,5-dihydro-3-methyl-5-phenyl-1H-pyrazol-1-yl)-1,3-benzenedicarboxylic acid;
       5-[[(4-chloro-3-nitrophenyl)amino]sulfonyl]-1,3-benzenedicarboxylic acid;
       5-[[[4-chloro-3-[[3-(2-methoxyphenyl)-1,3-
dioxopropyl]amino]phenyl]amino]sulfonyl-1,3-benzenedicarboxylic acid;
       5-[[3-[4-(acetylamino)phenyl]-1,3-dioxopropyl]amino]-1,3-benzenedicarboxylic
acid;
       5-acetylamino-1,3-benzenedicarboxylic acid;
       5-[[(1-hydroxy-2-naphthalenyl)carbonyl]-methylamino]-1,3-benzenedicarboxylic
acid;
       5-(4-carboxy-2-nitrophenoxy)-1,3-benzenedicarboxylic acid;
       5-sulfo-1,3-benzenedicarboxylic acid;
       5-nitro-1,3-benzenedicarboxylic acid;
       5-amino-1,3-benzenedicarboxylic acid;
       1,3,5-benzenetricarboxylic acid;
       5-[[(3-amino-4-chlorophenyl)amino]sulfonyl]-1,3-benzenedicarboxylic acid;
       5-(3-mercaptopropoxy)-1,3-benzenedicarboxylic acid;
       5-hydroxy-1,3-benzenedicarboxylic acid;
       5-(2-mercaptoethoxy)-1,3-benzenedicarboxylic acid;
       5-[(hydroxyamino)carbonyl]-1,3-benzenedicarboxylic acid;
       5-phosphono-1,3-benzenedicarboxylic acid;
       5-mercaptomethyl-1,3-benzenedicarboxylic acid;
       5-phosphonomethyl-1,3-benzenedicarboxylic acid;
       5-[[(carboxymethyl)amino]-methyl]-1,3-benzene-dicarboxylic acid;
       5-[(carboxymethyl)amino]-1,3-benzenedicarboxylic acid;
       5-[[(2-furanylmethyl)amino]-methyl]-1,3-benzene-dicarboxylic acid;
       5-[2-(hydroxyamino)-2-oxoethyl]-1,3-benzene-dicarboxylic acid;
```

5-(2-mercaptoethyl)-1,3-benzenedicarboxylic acid; and enantiomers and pharmaceutically acceptable equivalents.

16. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula VII

$$R^{28} R^{29}$$

$$R^{26} R^{27} R^{30} R^{31}$$

$$R^{31} R^{32} R^{33}$$

$$R^{32} R^{33} R^{33}$$

$$R^{33} R^{33} R^{33}$$

$$R^{34} R^{35} R^{35}$$

$$R^{35} R^{35} R^{35}$$

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

 R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , R^{32} and R^{33} are independently hydrogen or C_1 - C_3 alkyl;

 A^1 , A^2 , A^3 and A^4 are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo, nitro, phenyl, phenoxy, benzyl, benzyloxy or -COOH, or any adjacent two of A^2 , A^3 and A^4 form with the benzene ring a fused 5- or 6-membered carbocyclic or heterocyclic aromatic ring, said heterocyclic aromatic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s).

17. The method of claim 16, wherein:

 R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , R^{32} and R^{33} are independently hydrogen or methyl; and

A¹, A², A³ and A⁴ are independently hydrogen, C₁-C₄ alkyl, C₁-C₂ alkoxy, halo, nitro, phenyl, phenoxy, benzyloxy, nitro or -COOH.

18. The method of claim 16, wherein any adjacent two of A², A³ and A⁴ form with the benzene ring a fused 5- or 6-membered carbocyclic or heterocyclic aromatic

ring, said heterocyclic aromatic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s).

19. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula VIII

$$\begin{array}{c|c}
 & A^{1} & A^{2} \\
 & A^{3} & A^{3} \\
 & R^{28} & R^{29} & A^{4}
\end{array}$$

$$\begin{array}{c|c}
 & R^{28} & R^{29} & A^{4} \\
 & R^{27} & R^{30} & R^{31}
\end{array}$$
VIII

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

 R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , R^{32} and R^{33} are independently hydrogen or C_1 - C_3 alkyl; and

A¹, A², A³, A⁴ and A⁵ are independently hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₃ perhaloalkyl, phenyl, phenoxy, benzyl, benzyloxy, hydroxy, halo, cyano, nitro, -SO₂R³⁴, -(C=O)NR³⁴R³⁵, -(C=O)NR³⁴(CH₂)_nCOOH, -NR³⁴(C=O)R³⁵, -(CH₂)_nCOOH or -COOH, or any adjacent two of A¹, A², A³, A⁴ and A⁵ form with the benzene ring a fused 5- or 6-membered carbocyclic or heterocyclic aromatic ring, said heterocyclic aromatic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s);

 R^{34} and R^{35} are independently hydrogen, C_1 - C_6 alkyl, phenyl or benzyl; and n is 1-3.

20. The method of claim 19, wherein:

R²⁶, R²⁷, R²⁸, R²⁹, R³⁰, R³¹, R³² and R³³ are each hydrogen;

 A^1 , A^2 , A^3 , A^4 and A^5 are independently hydrogen, C_1 - C_4 alkyl, C_1 - C_2 alkoxy, C_1 - C_2 perhaloalkyl, phenyl, phenoxy, hydroxy, halo, cyano, nitro, -SO₂R³⁴, -(C=O)NR³⁴R³⁵, -(C=O)NR³⁴(CH₂)COOH, -NR³⁴(C=O)R³⁵ or -(CH₂)COOH; and

R³⁴ and R³⁵ are independently hydrogen, methyl or benzyl.

- 21. The method of claim 19, wherein any adjacent two of A¹, A², A³, A⁴ and A⁵ form with the benzene ring a fused 5- or 6-membered carbocyclic or heterocyclic aromatic ring, said heterocyclic aromatic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s).
- 22. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula IX

$$A^{1} \xrightarrow{A^{2}} A^{3}$$

$$R^{28} R^{29} Y^{2} \xrightarrow{A^{5}} IX$$

$$R^{26} R^{27} X^{2} \xrightarrow{COOH}$$

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

 X^2 and Y^2 are independently $-CR^{30}R^{31}$ -, -O-, -S- or -NR³⁰-, provided that at least one of X^2 and Y^2 is/are -CR³⁰R³¹-;

A¹, A², A³, A⁴ and A⁵ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, C₁-C₉ alkoxy, C₂-C₉ alkenyloxy, phenoxy, benzyloxy, hydroxy, halo, nitro, cyano, isocyano, -COOR³⁴, -COR³⁴, -NR³⁴R³⁵, -SR³⁴, -SOR³⁴, -SO₂R³⁴, -SO₂(OR³⁴), -(C=O)NR³⁴R³⁵, -(C=O)NR³⁴(CH₂)_nCOOH, -NR³⁴(C=O)R³⁵ or -(CH₂)_nCOOH, or any adjacent two of A¹, A², A³, A⁴ and A⁵ form with the benzene ring a fused ring that is saturated or unsaturated, aromatic or non-aromatic, and carbocyclic or heterocyclic, said heterocyclic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s);

n is 1-3;

R²⁶, R²⁷, R²⁸, R²⁹, R³⁰, R³¹, R³⁴ and R³⁵ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle or heterocycle; and said alkyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy,

benzyloxy, and fused ring are independently unsubstituted or substituted with one or more substituent(s).

23. The method of claim 22, wherein:

 Y^2 is -O-, -S- or -NR³⁰-;

 A^1 , A^2 , A^3 , A^4 and A^5 are independently hydrogen, C_1 - C_4 alkyl, C_1 - C_2 alkoxy, hydroxy, halo, -COOH, -COR³⁴, -NR³⁴(C=O)R³⁵ or -(CH₂)COOH; and

R³⁴ and R³⁵ are independently hydrogen or methyl.

24. The method of claim 22, wherein:

$$Y^2$$
 is $-CR^{30}R^{31}$ -;

A¹, A², A³ and A⁴ are each hydrogen; and

A⁵ is phenoxy, benzyloxy, aryl, heteroaryl, carbocycle or heterocycle, wherein said phenoxy and benzyloxy are substituted with –COOH, and said aryl, heteroaryl, carbocycle and heterocycle are independently substituted with one or more substituent(s) selected from cyano and –COOH.

25. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula X

$$X^3$$
 A^6
 A^7
 A^8
 A^8

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

$$X^3$$
 is -(CR³⁶R³⁷)_nSH, -O(CR³⁶R³⁷)₂SH, -S(CR³⁶R³⁷)₂SH or -NR(CR³⁶R³⁷)₂SH; n is 1-3; and

R, R³⁶, R³⁷, A⁶, A⁷, A⁸ and A⁹ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkylsulfonyl, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle,

heterocycle, alkoxy, alkenoxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s).

- 26. The method of claim 25, wherein the compound of formula X is selected from:
 - 3-(2-mercaptoethyl)-benzoic acid;
 - 3-(mercaptomethyl)-benzoic acid;
 - 2-(mercaptomethyl)-benzoic acid;
 - 5-hydroxy-2-(2-mercaptoethyl)-benzoic acid;
 - 2-(2-mercaptoethyl)-benzoic acid;
 - 5-[(4-carboxyphenyl)methoxy]-2-(2-mercaptoethyl)-benzoic acid;
 - 2-(2-mercaptoethyl)-5-(phenylmethoxy)-benzoic acid;
 - 2-(carboxymethoxy)-6-(2-mercaptoethyl)-benzoic acid;
 - 5-[(3-carboxyphenyl)methoxy]-2-(2-mercaptoethyl)-benzoic acid;
 - 2-(2-mercaptoethyl)-6-(phenylmethoxy)-benzoic acid;
 - 2-[(2-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
 - 2-[(4-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
 - 3-(2-mercaptoethyl)-[1,1'-biphenyl]-2,3'-dicarboxylic acid;
 - 2-(3,3-dimethylbutoxy)-6-(2-mercaptoethyl)-benzoic acid;
 - 2-(2-mercaptoethyl)-6-(2-phenylethoxy)-benzoic acid;
 - 2-[(2-chlorophenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
- 2-[[3-carboxy-5-(1,1-dimethylethyl)phenyl]methoxy]-6-(2-mercaptoethyl)-benzoic acid;
 - 2-(2-mercaptoethyl)-6-phenoxy-benzoic acid;
 - 2-(2-mercaptoethyl)-6-phenylamino-benzoic acid;
 - 2-(2-mercaptoethyl)-6-(phenylthio)-benzoic acid;
 - 5'-(1,1-dimethylethyl)-3-(2-mercaptoethyl)-[1,1'-biphenyl]-2,3'-dicarboxylic acid;
 - 3-(2-mercaptoethyl)-[1,1'-biphenyl]-2,4'-dicarboxylic acid;
 - 2-[(4-carboxy-2-methoxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
 - 2-[(4-carboxy-3-methoxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
 - 2-[(2-bromo-4-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
 - 2-[(3-bromo-4-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;

- 2-[(4-chlorophenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
- 2-(biphenyl-2-ylmethoxy)-6-(2-mercaptoethyl)-benzoic acid;
- 2-[(3-bromo-5-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
- 2-[(2-bromo-5-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
- 2-(2-mercaptoethyl)-6-[(4-methoxyphenyl)methoxy]-benzoic acid;
- 2-(2-mercaptoethyl)-6-[(4-methylphenyl)methoxy]-benzoic acid;
- 2-[(4-bromo-3-carboxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
- 2-[(2-carboxy-5-methoxyphenyl)methoxy]-6-(2-mercaptoethyl)-benzoic acid;
- 5-(mercaptomethyl)-2-(2-phenylethoxy)-benzoic acid;
- 2-bromo-5-(mercaptomethyl)-benzoic acid;
- 4-(mercaptomethyl)-[1,1'-biphenyl]-2,3'-dicarboxylic acid;
- 5-(mercaptomethyl)-2-(phenylmethoxy)-benzoic acid; and
- 4-bromo-3-(mercaptomethyl)-benzoic acid; and enantiomers and pharmaceutically acceptable equivalents.
- 27. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula XI

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

R³⁷, R³⁸, R³⁹ and R⁴⁰ are independently hydrogen or C₁-C₃ alkyl;

 A^6 , A^7 , A^8 and A^9 are independently hydrogen, C_1 - C_9 alkyl, C_2 - C_9 alkenyl, C_2 - C_9 alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C_1 - C_9 alkylsulfonyl, C_1 - C_9 alkoxy, C_2 - C_9 alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenoxy,

phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s).

28. The method of claim 27, wherein:

R³⁶, R³⁷, R³⁸ and R³⁹, A⁷, A⁸ and A⁹ are each hydrogen;

 A^6 is hydrogen, $-(CH_2)_n-W^1$, or $-Y^3-(CH_2)_n-W^1$;

n is 0-3;

 Y^3 is O, S or NR^{40} :

 R^{40} is hydrogen or $C_1\text{-}C_4$ alkyl; and

 W^1 is C_1 - C_6 alkyl or phenyl, wherein W^1 is unsubstituted or substituted with C_1 - C_4 alkyl, C_1 - C_4 alkoxy, carboxy or halo.

29. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula XII

$$A^{9}$$

$$A^{8}$$

$$A^{7}$$

$$A^{8}$$

$$A^{8}$$

$$A^{8}$$

$$A^{7}$$

$$A^{8}$$

$$A^{8$$

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

A⁶, A⁷, A⁸ and A⁹ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkylsulfonyl, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenoxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s).

30. The method of claim 29, wherein:

A⁷, A⁸ and A⁹ are each hydrogen;

$$A^6$$
 is $-(CH_2)_n-Ar^2$ or $-Y^3-(CH_2)_n-Ar^2$;

n is 0-3;

 Y^3 is O, S or NR^{41} ;

R⁴¹ is hydrogen or C₁-C₄ alkyl; and

 Ar^2 is phenyl, wherein Ar^2 is unsubstituted or substituted with C_1 - C_4 alkyl, carboxy or halo.

31. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula XIII

$$A^{10} \xrightarrow{A^{11}} A^{12}$$

$$Z^{2} \xrightarrow{A^{14}} COOH$$
XIII

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

X⁴ is -(CO)NHOH or -N(OH)COH;

Y⁴ is a bond or a divalent linking group having from 1 to 9 carbon atom(s) and from 0 to 5 heteroatom(s) independently selected from oxygen, sulfur and nitrogen;

$$Z^2$$
 is $-CR^{41}R^{42}$ -, $-NR^{41}$ -, $-O$ - or $-S$ -;

 A^{10} , A^{11} , A^{12} , A^{13} and A^{14} are independently hydrogen, C_1 - C_9 alkyl, C_2 - C_9 alkenyl, C_2 - C_9 alkynyl, aryl, heteroaryl, carbocycle, heterocycle, C_1 - C_9 alkoxy, C_2 - C_9 alkenyloxy, phenoxy, benzyloxy, hydroxy, halo, nitro, cyano, isocyano, -COOR⁴³, -COR⁴³, -NR⁴³R⁴⁴, -SR⁴³, -SOR⁴³, -SO₂R⁴³, -SO₂(OR⁴³), -(CO)NR⁴³R⁴³, -(CO)NR⁴³(CH₂)_nCOOH, -NR⁴³(CO)R⁴⁴ or -(CH₂)_nCOOH, or any adjacent two of A^{10} , A^{11} , A^{12} and A^{13} form with the benzene ring a fused ring that is saturated or unsaturated, aromatic or non-aromatic, and carbocyclic or heterocyclic, said heterocyclic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s);

n is 1-3;

 R^{41} , R^{42} , R^{43} and R^{44} are independently hydrogen, C_1 - C_9 alkyl, C_2 - C_9 alkynyl, aryl, heteroaryl, carbocycle or heterocycle; and

said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy, benzyloxy, and fused ring are independently unsubstituted or substituted with one or more substituent(s).

32. The method of claim 31, wherein:

$$Y^4$$
 is $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q-$;
 W^2 is $-CR^{49}R^{50}-$, $-NR^{49}-$, $-O-$, $-S-$ or $-SO_2-$;

p and q are independently 0-4; provided that when q is 0 and W² is -NR⁴⁹-, -O-, -S- or -SO₂-, then Z^2 is -CR⁴¹R⁴²-;

R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹ and R⁵⁰ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s); and

A¹⁰, A¹¹ and A¹² are each hydrogen.

33. The method of claim 32, wherein:

$$Y^4$$
 is $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q-$;
 W^2 is $-CR^{49}R^{50}-$;
p is 0-4;
q is 0;
 R^{45} , R^{46} , R^{47} , R^{48} , R^{49} and R^{50} are each hydrogen;
 A^{10} , A^{11} and A^{12} are each hydrogen;
 A^{13} is hydrogen, $-COOR^{43}$, C_1-C_4 alkyl, C_2-C_4 alkenyl or C_2-C_4 alkynyl; and A^{14} is $-COOR^{43}$.

34. The method of claim 32, wherein:

$$Y^4$$
 is $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q$;
 W^2 is -S-;
p and q are independently 1-4;

 R^{45} , R^{46} , R^{47} , R^{48} , R^{49} and R^{50} are independently hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl or phenyl;

A¹⁰, A¹¹ and A¹² are each hydrogen;

A¹³ is hydrogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, phenyl, benzyl, phenoxy, benzyloxy or halo, wherein said alkyl, alkenyl, alkynyl, phenyl, benzyl, phenoxy and benzyloxy are independently unsubstituted or substituted with carobxy; and A¹⁴ is -COOH.

35. The method of claim 32, wherein:

$$Y^4$$
 is $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q$ -;

$$W^2$$
 is $-CR^{49}R^{50}$ -, $-NR^{49}$ -, $-O$ -, $-S$ - or $-SO_2$ -;

p and q are independently 0-4, provided that when q is 0 and W^2 is -NR⁴⁹-, -O-, -S- or -SO₂-, then Z^2 is -CR⁴¹R⁴²-;

R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹ and R⁵⁰ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s);

A¹⁰, A¹¹ and A¹² are each hydrogen;

A¹³ is hydrogen; and

A¹⁴ is benzyl or carboxybenzyl.

36. The method of claim 31, wherein the compound of formula XIII is selected from:

3-tert-butyl-5-(2-carboxy-3-hydroxycarbamoyl-propyl)-benzoic acid;

3-tert-butyl-5-(2-carboxy-4-hydroxycarbamoyl-butyl)-benzoic acid;

3-(2-carboxy-4-hydroxycarbamoyl-butyl)-benzoic acid;

3-(2-carboxy-5-hydroxycarbamoyl-pentyl)-benzoic acid;

3-(2-carboxy-3-hydroxycarbamoyl-propyl)-benzoic acid;

3-(2-carboxy-2-hydroxycarbamoyl-ethyl)-benzoic acid;

```
3-tert-butyl-5-(2-carboxy-2-hydroxycarbamoyl-ethyl)-benzoic acid;
       3-tert-butyl-5-(2-carboxy-2-hydroxycarbamoyl-ethyl)-benzoic acid methyl ester;
       3-(2-carboxy-3-hydroxyamino-propyl)-benzoic acid;
       3-(2-carboxy-2-hydroxycarbamoyl-ethyl)-benzoic acid methyl ester;
       3-(2-carboxy-5-hydroxycarbamoylmethylsulfanyl-pentyl)-benzoic acid;
       3-[2-carboxy-5-(2-hydroxycarbamoyl-ethylsulfanyl)-pentyl]-benzoic acid;
       3-[2-carboxy-5-(1-hydroxycarbamoyl-propylsulfanyl)-pentyl]-benzoic acid;
       3-(2-carboxy-5-hydroxycarbamoylmethyl-sulfanylpentyl)-benzoic acid;
       3-(2-carboxy-5-hydroxycarbamoylmethylsulfanyl-pentyl)-benzoic acid;
       3-tert-butyl-5-(2-carboxy-4-hydroxycarbamoylmethyl-sulfanylbutyl)-benzoic
acid;
       3-[2-carboxy-5-(hydroxycarbamoylphenylmethyl-sulfanyl)pentyl]-benzoic acid;
       3-[2-carboxy-5-(1-hydroxycarbamoylbutylsulfanyl)-pentyl]-benzoic acid;
       5-(2-carboxy-5-hydroxycarbamoylmethylsulfanyl-pentyl)-biphenyl-3-carboxylic
acid;
       3-bromo-5-(2-carboxy-5-hydroxycarbamoylmethyl-sulfanylpentyl)-benzoic acid;
       3-benzyloxy-5-(2-carboxy-5-hydroxycarbamoylmethyl-sulfanylpentyl)-benzoic
acid;
       3-[2-carboxy-5-(1-hydroxycarbamoyl-2-methyl-propylsulfanyl)-pentyl]-benzoic
acid;
       3-(2-carboxy-3-hydroxycarbamoylmethyl-sulfanylpropyl)-benzoic acid;
       3-(2-carboxy-5-hydroxycarbamoylmethyl-sulfanylpentyl)-5-phenoxy-benzoic
acid;
       3-(2-carboxy-6-hydroxycarbamoylmethyl-sulfanylhexyl)-benzoic acid;
       3-(2-carboxy-4-hydroxycarbamoylmethyl-sulfanylbutyl)-benzoic acid;
       3-[2-carboxy-3-(3-hydroxycarbamoyl-propylsulfanyl)-propyl]-benzoic acid;
       3-[2-carboxy-5-(4-hydroxycarbamoyl-butylsulfanyl)-pentyl]-benzoic acid;
       3-{2-carboxy-5-[(hydroxy-methyl-carbamoyl)-methylsulfanyl]-pentyl}-benzoic
acid;
       3-tert-butyl-5-[2-carboxy-4-(1-hydroxycarbamoyl-propylsulfanyl)-butyl]-benzoic
acid;
       3-(2-carboxy-5-hydroxycarbamoylmethyl-sulfanylpentyl)-4-chloro-benzoic acid;
```

3-[2-carboxy-4-(1-hydroxycarbamoyl-propylsulfanyl)-butyl]-benzoic acid;

3-[2-carboxy-3-(1-hydroxycarbamoyl-propylsulfanyl)-propyl]-benzoic acid;

2-biphenyl-3-ylmethyl-5-hydroxycarbamoylmethyl-sulfanyl-pentanoic acid;

3'-(2-carboxy-5-hydroxycarbamoylmethylsulfanyl-pentyl)-biphenyl-3-carboxylic acid;

2-bromo-4-(2-carboxy-5-hydroxycarbamoylmethyl-sulfanylpentyl)-benzoic acid; and

enantiomers and pharmaceutically acceptable equivalents.

37. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula XIV

$$X^{4} \underbrace{A^{10}}_{A^{14}} \underbrace{A^{12}}_{A^{14}}$$
 XIV

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

X⁴ is -(CO)NHOH or -N(OH)COH;

Y⁴ is a bond or a divalent linking group having from 1 to 9 carbon atom(s) and from 0 to 5 heteroatom(s) independently selected from oxygen, sulfur and nitrogen;

A¹⁰, A¹¹, A¹², A¹³ and A¹⁴ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, C₁-C₉ alkoxy, C₂-C₉ alkenyloxy, phenoxy, benzyloxy, hydroxy, halo, nitro, cyano, isocyano, -COOR⁴³, -COR⁴³, -NR⁴³R⁴⁴, -SR⁴³, -SOR⁴³, -SO₂R⁴³, -SO₂(OR⁴³), -(CO)NR⁴³R⁴⁴, -(CO)NR⁴³(CH₂)_nCOOH, -NR⁴³(CO)R⁴⁴ or -(CH₂)_nCOOH, or any adjacent two of A¹⁰, A¹¹, A¹² and A¹³ form with the benzene ring a fused ring that is saturated or unsaturated, aromatic or non-aromatic, and carbocyclic or heterocyclic, said heterocyclic ring containing 1 or 2 oxygen, nitrogen and/or sulfur heteroatom(s);

n is 1-3;

R⁴³ and R⁴⁴ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle or heterocycle; and

said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy, benzyloxy, and fused ring are independently unsubstituted or substituted with one or more substituent(s).

38. The method of claim 37, wherein:

$$Y^4$$
 is a bond or -(CR⁴⁵R⁴⁶)_p-W²-(CR⁴⁷R⁴⁸)_q-;
W² is -CR⁴⁹R⁵⁰-, -NR⁴⁹-, -O-, -S- or -SO₂-;
p and q are independently 0-4;

R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹ and R⁵⁰ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s); and

A¹⁰, A¹¹ and A¹² are each hydrogen.

39. The method of claim 37, wherein:

Y⁴ is a bond;

A¹⁰, A¹¹ and A¹² are each hydrogen;

A¹³ is hydroxy, phenoxy, benzyloxy, -COOR⁴³ or -(CO)NHR⁴⁴;

A¹⁴ is -COOR⁴³;

R⁴³ is hydrogen, C₁-C₄ alkyl, C₂-C₄ alkenyl or C₂-C₄ alkynyl;

R⁴⁴ is benzyl; and

said benzyl, phenoxy and benzyloxy are independently unsubstituted or substituted with $-COOR^{43}$.

40. The method of claim 37, wherein:

$$Y^4$$
 is -(CR⁴⁵R⁴⁶)_p-W²-(CR⁴⁷R⁴⁸)_q-;
W² is -O- or -S-; R⁴⁵, R⁴⁶, R⁴⁷ and R⁴⁸ are each hydrogen;
A¹⁰, A¹¹ and A¹² are each hydrogen;

 A^{13} is hydrogen, -COOH, phenyl or benzyloxy, wherein said phenyl and benzyloxy are independently unsubstituted or substituted with -COOR⁴³; and A^{14} is -COOR⁴³.

41. The method of claim 37, wherein:

 Y^4 is a bond or $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q-$;

$$W^2$$
 is $-CR^{49}R^{50}$ -, $-NR^{49}$ -, $-O$ -, $-S$ - or $-SO_2$ -;

p and q are independently 0-4;

R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹ and R⁵⁰ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s);

A¹⁰, A¹¹ and A¹² are each hydrogen;

A¹³ is hydrogen, nitro or C₁-C₄ alkoxy; and

A¹⁴ is hydroxy, phenoxy, benzyloxy, benzoyl or C₁-C₄ alkoxy, wherein said phenoxy, benzyloxy, benzoyl and alkoxy are independently unsubstituted or substituted with one or more substituent(s).

- 42. The method of claim 37, wherein the compound is selected from:
- 5-hydroxycarbamoyl-isophthalic acid monoethyl ester;
- 6-benzyloxy-N-hydroxy-isophthalamic acid methyl ester;
- 6,N-dihydroxy-isophthalamic acid;
- 6-benzyloxy-N-hydroxy-isophthalamic acid;
- 4-(3-hydroxycarbamoyl-propylsulfanylmethyl)-biphenyl-2,3'-dicarboxylic acid;
- 4-(4-hydroxycarbamoyl-butylsulfanylmethyl)-biphenyl-2,3'-dicarboxylic acid;
- 4-(2-hydroxycarbamoyl-ethylsulfanylmethyl)-biphenyl-2,3'-dicarboxylic acid;
- 3-(2-hydroxycarbamoyl-methylsulfanylethyl)-biphenyl-2,3'-dicarboxylic acid;
- 5-hydroxycarbamoylmethoxy-isophthalic acid;
- 3-hydroxycarbamoylmethoxy-benzoic acid;

- 3-(4-hydroxycarbamoyl-butoxy)-biphenyl-2,3'-dicarboxylic acid;
- 3-(4-hydroxycarbamoyl-butoxy)-biphenyl-2,3'-dicarboxylic acid;
- 3-(3-hydroxycarbamoyl-propoxy)-biphenyl-2,3'-dicarboxylic acid;
- 3-(2-hydroxycarbamoyl-ethoxy)-biphenyl-2,3'-dicarboxylic acid;
- 3-hydroxycarbamoylmethoxy-biphenyl-2,3'-dicarboxylic acid;
- 3-hydroxycarbamoylmethoxy-biphenyl-2,3'-dicarboxylic acid dimethyl ester;
- 2-hydroxycarbamoylmethoxy-benzoic acid;
- 2-hydroxycarbamoylmethoxy-benzoic acid methyl ester;
- 3-(2-hydroxycarbamoyl-ethoxy)-biphenyl-2,3'-dicarboxylicacid dimethyl ester;
- 4-(4-cyano-benzyloxy)-N-hydroxy-benzamide;
- 3-[3-(2-hydroxycarbamoyl-ethyl)-phenoxymethyl]-benzoic acid;
- 2,N-dihydroxy-benzamide;
- 4-(4-fluoro-phenoxy)-N-hydroxy-3-nitro-benzamide;
- N-hydroxy-2,5-bis-(2,2,2-trifluoro-ethoxy)-benzamide;
- N-hydroxy-2-(4-methyl-benzoyl)-benzamide; and
- enantiomers and pharmaceutically acceptable equivalents.
- 43. The method of claim 1, wherein the NAALADase inhibitor is a compound of formula XV

$$X^4$$
 Y^4
OH
 XV

or an enantiomer or a pharmaceutically acceptable equivalent of said compound, wherein:

X⁴ is -(CO)NHOH or -N(OH)COH;

Y⁴ is a bond or a divalent linking group having from 1 to 9 carbon atom(s) and from 0 to 5 heteroatom(s) independently selected from oxygen, sulfur and nitrogen; and

R⁵¹ is hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, C₁-C₉ alkoxy or C₂-C₉ alkenoxy, wherein said alkyl, alkenyl, alkynyl, alkoxy and alkenoxy are independently unsubstituted or substituted with one or more substituent(s); provided that when Y is methylene, amine or oxygen, then R⁵¹ is not carboxyethyl.

44. The method of claim 43, wherein:

$$Y^4$$
 is $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q$ -;
 W^2 is $-CR^{49}R^{50}$ -, $-NR^{49}$ -, $-O$ -, $-S$ - or $-SO_2$ -;
p and q are independently 0-4; and

R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹ and R⁵⁰ are independently hydrogen, C₁-C₉ alkyl, C₂-C₉ alkenyl, C₂-C₉ alkynyl, aryl, heteroaryl, carbocycle, heterocycle, halo, hydroxy, sulfhydryl, nitro, amino, cyano, isocyano, thiocyano, isothiocyano, formamido, thioformamido, sulfo, sulfino, C₁-C₉ alkoxy, C₂-C₉ alkenoxy, phenoxy or benzyloxy, wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, alkoxy, alkenyloxy, phenoxy and benzyloxy are independently unsubstituted or substituted with one or more substituent(s).

45. The method of claim 43, wherein:

$$Y^4$$
 is $-(CR^{45}R^{46})_p-W^2-(CR^{47}R^{48})_q-$;
 W^2 is $-CR^{49}R^{50}$ - or $-S$ -;
p is 0-1; q is 0-3; and
 R^{45} , R^{46} , R^{47} , R^{48} , R^{49} and R^{50} are each hydrogen.

- 46. The method of claim 43, wherein the compound of formula XV is 2-(3-hydroxycarbamoyl-methylsulfanyl-propyl)-pentanedioic acid or an enantiomer or a pharmaceutically acceptable equivalent.
 - 47. A pharmaceutical composition comprising:
- (i) an effective amount of a NAALADase inhibitor for treating opioid tolerance; and
 - (ii) a pharmaceutically acceptable carrier.