Пусть X, Y – некоторые множества, W = W(X) – множество упорядоченных конечных последовательностей элементов X. Это означает, что элементами $w \in W$ являются наборы (x_1, \ldots, x_n) такие, что $x_i \in X$, $n \in \mathbb{N}_0$. Обозначим через * операцию дописывания элемента в конец последовательности: $w * x = (x_1, \ldots, x_n, x)$. Множество W является моделью числового файла.

Определение 1. Функция $F: W \to Y$ называется индуктивной, если выполняется следующее: существует функция $f: Y \times X \to Y$, причем F(w*x) = f(F(w), x) для всех $w \in W$, $x \in X$.

Пример 1. Количество элементов.

Пусть $X = \mathbb{Z}$, $Y = \mathbb{N}_0$, $F(x_1, \dots, x_n) = n$. Функция F является индуктивной, и в качестве f можно взять функцию $f: \mathbb{N}_0 \times \mathbb{Z} \to \mathbb{N}_0$ f(y,x) = y+1. Действительно, пусть $w = (x_1, \dots, x_n), x_i, x \in \mathbb{Z}$. Тогда F(w) = n, F(w*x) = n+1 и F(w*x) = n+1 = f(n,x) = f(F(w),x).

Пример 2. Сумма элементов.

Пусть $X=\mathbb{Z}, Y=\mathbb{Z}, F(x_1,\ldots,x_n)=\sum_{i=1}^n x_i$. Функция F является индуктивной, и в качестве f можно взять функцию $f:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ f(y,x)=y+x. Действительно, пусть $w=(x_1,\ldots,x_n), x_i,x\in\mathbb{Z}$. Тогда $F(w)=\sum_{i=1}^n x_i, F(w*x)=\sum_{i=1}^n x_i+x$ и $F(w*x)=\sum_{i=1}^n x_i+x=f(\sum_{i=1}^n x_i,x)=f(F(w),x)$.

Отметим, что не всякая функция является индуктивной.

Пример 3. Функция, определяющая, является ли последовательность постоянной или нет, – неиндуктивная: $X = \mathbb{Z}, Y = \mathbb{Z}_2, F(x_1, \dots, x_n) = 0$, если $x_i \neq x_j$ для некоторых $1 \leq i, j \leq n$ и $F(x, \dots, x) = 1$ иначе.

Доказательство. Допустим противное. Это означает, что существует функция $f: \mathbb{Z}_2 \times \mathbb{Z} \to \mathbb{Z}_2$ такая, что F(w*x) = f(F(w), x) для всех $w \in W$, $x \in \mathbb{Z}$. Рассмотрим последовательность из одного элемента $w_1 = (0)$ и другую постоянную последовательность, например, из $1: w_2 = (1, \dots, 1)$. Ясно, что $F(w_1) = F(w_2) = 1$ (это постоянные последовательности). Рассмотрим x = 0. При добавлении x в конец первой последовательности получим постоянную, $F(w_1*x) = 1$, а в конец второй — нет, $F(w_2*x) = 0$. Но $F(w_1) = F(w_2)$ и должно выполняться условие $F(w_1*x) = f(F(w_1), x) = f(F(w_2), x) = F(w_2*x)$. Полученное противоречие доказывает утверждение о не индуктивности функции F.

Легко заметить, что функцию из примера 3 можно расширить до индуктивной, если добавить к результату, например, значение последнего элемента. Иными словами, функция $G(x_1, \ldots, x_n) = (x_n, F(x_1, \ldots, x_n))$ является индуктивной. Здесь Y (множество значений функции G) – это множество $\mathbb{Z} \times \mathbb{Z}_2$.

В самом деле, рассмотрим следующую функцию $f: \mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_2$, f(a,b,c)=(c,1), если и только если a=c и b=1, в противном случае f(a,b,c)=(c,0).

Найдите пробел в этом утверждении и другую функцию G (другое индуктивное расширение F)

Алгоритм вычисления значения индуктивной функции заключается в следующем: пусть $res = F(\emptyset), w = (x_1, \dots, x_n)$. Для каждого элемента $x = x_i$ из последовательности w выполняем следующее действие: res = f(res, x). Когда цикл закончится, res – это искомый результат.

Заметим, что алгоритм не использует количество элементов в последовательности w.

Нас интересует случай, когда последовательность w берется из числового файла.

Напишем алгоритм на псевдокоде.

- 1. Открыть файл на чтение.
- 2. $res = F(\emptyset)$;
- 3. Пока (извлечение числа из файла в переменную сиг успешно) res = f(res, cur);
- 4. печать res;
- 5. закрыть файл; конец.

Упражнеие.

Вычислить:

$$F(x_1,\ldots,x_n)=(-1)^k,$$

где k – количество отрицательных чисел в файле, которое заранее неизвестно.

Массивы, математические функции проверку числа на четность не использовать!!!

Является ли функция F индуктивной?