

Ingeniería en Robótica y Sistemas Digitales

TE3002B.501

Implementación de Robótica Inteligente

Actividad

Ajuste de modelos de clasificación

Alumnos:

Ariadna Minerva Solís Naranjo A01639943
Barbara Nicole Vidal Sandoval A01635233
Luis Paulo Flores Arzate A01275194
Manuel Eduardo Ochoa Obezo A00227718

Tec de Monterrey, Campus Guadalajara 30 de mayo de 2023

Introducción

Los modelos de clasificación son una herramienta muy valiosa y utilizada dentro del campo de aprendizaje profundo, ya que puede aprender automáticamente las características más relevantes de los datos que se están considerando, y a su vez establecer relaciones que permitan clasificar los mismos datos. Esto nos puede ayudar a predecir el tipo o clase de nuevas observaciones, sobre todo cuando se trata de conjuntos de datos muy grandes. A su vez, es importante poder ser capaces de evaluar dichos modelos de clasificación, estimando su capacidad para predecir de forma correcta la clase para las nuevas observaciones. Es por esto, que durante la siguiente actividad se estarán probando y ajustando distintos modelos de clasificación, con el objetivo de evaluar su rendimiento utilizando, entre otras cosas, validación cruzada.

Ejercicio 1

¿Qué representan las variables incluidas en la base de datos? ¿Consideras que las variables predictoras tienen información suficiente para determinar la clase de cada uno de los tipos de datos?

Las variables que utiliza la base de datos de Iris representan características que son útiles para diferenciar tipos de especie de plantas: setosa, virginica y versicolor. En cuanto a la información que posee cada variable, consideramos que contienen suficiente información para detectar y clasificar cada dato dentro de dicha base de datos.

• 1.2

```
[6] # Train SVM classifier with all the available observations
    clf = SVC(kernel = 'linear')
    clf.fit(x, y)
    # Predict one new sample
    print("New evaluations", targets[clf.predict([
        [4.4, 2.9, 1.4, 0.2],
        [0.4,0.1,0.1,0.4],
        [7.7, 3.0, 6.1, 2.2],
        [5.3, 2.9, 3.2, 1.3],
        [4.8, 3.8, 2.8, 0.8],
        [6.5, 4.1, 6.1, 2.3],
        [5.3, 3, 2, 0.2],
        [5, 4, 3, 2],
        [6.2, 2.5, 1.9, 2.4],
        [5.4, 3, 4.5, 1.5]
        ])])
    New evaluations ['setosa' 'setosa' 'virginica' 'versicolor' 'setosa' 'virginica' 'setosa'
      'versicolor' 'versicolor' 'versicolor']
```

En esta sección del código declaramos 10 nuevas evaluaciones con valores aleatorios para que pueda reconocer y clasificar cada parte de datos con la clase a la que más se asemejan. Observando, nuestro clasificador predice de manera correcta las clases a las que pertenece cada sección de datos.

• 1.3

	precision	recall	f1-score	support
0	1.00	1.00	1.00	5
1	1.00	1.00	1.00	5
2	1.00	1.00	1.00	5
accuracy			1.00	15
macro avg	1.00	1.00	1.00	15
weighted avg	1.00	1.00	1.00	15
Acc: 1.946666 Precision: [2 Recall: [2.	. 2		1.86666667	']

En esta parte del código, realizamos una matriz de confusión con los valores de las predicciones de los targets y su testeo para que de esa manera se desplieguen los datos de la imagen anterior.

Link a collab: https://colab.research.google.com/drive/1XmwKMwjtFhUoC3Eb1JDB5IJ-P1nKQgNd#scrollTo=EkEanlQQeUi0

Ejercicio 2

• 2.1

¿Cuántas variables y observaciones por clase hay en este conjunto de datos? ¿Qué representan los predictores?

Dentro de este dataset existen 3 tipos clases en donde cada clase tiene 13 variables o características que ayudan a obtener la clasificación de cada vino, las variables predictores abarcan diferentes parámetros de características del vino como: alcohol, malic_acid, ash, alcalinity_of_ash, magnesium, total_phenols, flavanoids, nonflavanoid_phenols, proanthocyanins, color_intensity, hue, od280/od315_of_diluted_wines, proline.

• 2.2: Cálculo de la exactitud de los modelos SVM (kernel lineal), SVM (kernel de base radial), KNN (para k =3), árbol de decisión, y clasificador con proceso Gaussiano; usando k-folds cross validation (k = 5) de la base de datos Wine.

Modelo SVM con			_		Modelo SVM con				
р	recision	recall	f1-score	support	р	recision	recall	f1-score	support
0	0.95	0.98	0.97	59	0	0.88	0.86	0.87	59
1	0.96	0.93	0.94	71	1	0.64	0.79	0.70	71
2	0.96	0.96	0.96	48	2	0.44	0.29	0.35	48
accuracy			0.96	178	accuracy			0.68	178
macro avg	0.96	0.96	0.96	178	macro avg	0.65	0.65	0.64	178
weighted avg	0.96	0.96	0.95	178	weighted avg	0.66	0.68	0.66	178
Exactitud del m	odelo: 0.	955238095	2380952		Exactitud del m	odelo: 0.	679682539	6825397	

Modelo KNN con	k=3:				Modelo de árbol	de decisi	ón:		
	precision	recall	f1-score	support	рг	recision	recall	f1-score	support
0	0.81	0.85	0.83	59	0	0.95	0.95	0.95	59
1	0.70	0.69	0.70	71	1	0.93	0.87	0.90	71
2	0.52	0.50	0.51	48	2	0.88	0.96	0.92	48
accuracy			0.69	178	accuracy			0.92	178
macro avg	0.68	0.68	0.68	178	macro avg	0.92	0.93	0.92	178
weighted avg	0.69	0.69	0.69	178	weighted avg	0.92	0.92	0.92	178
Exactitud del	modelo: 0.0	590634920	6349207		Exactitud del mo	odelo: 0.	921428571	4285714	

Modelo clasific	ador con p	roceso Ga	ussiano:	
р	recision	recall	f1-score	support
0	0.89	0.29	0.44	59
1	0.77	0.38	0.51	71
2	0.34	0.88	0.49	48
accuracy			0.48	178
macro avg	0.67	0.51	0.48	178
weighted avg	0.70	0.48	0.48	178
Exactitud del m	odelo: 0.	483809523	8095238	

• 2.3:

Indicar con qué clasificador se obtuvieron mejores resultados

Los dos modelos que alcanzaron más del 90% de exactitud fueron el SVM (con kernel lineal) y el de árbol de decisión. Sin embargo, entre ambos modelos, el que tiene la mayor exactitud es el SVM con kernel lineal. Por lo tanto, de entre los cinco modelos de clasificación implementados, el que obtuvo los mejores resultados fue el SVM con kernel lineal, con un 95%.

Link a collab:

 $\underline{https://colab.research.google.com/drive/1pDq7qfhXMus67oGLVPcaAYX3cWK6igcy\#scroll}\\ To=eJbOszXZ1DH_$

Ejercicio 3

• 3.1

$\stackrel{\square}{\longrightarrow}$	Modelo SVM co	n kernel lin			
			_	f1-score	support
	1	0.78	0.75	0.77	264
	2	0.76	0.78	0.77	264
	accuracy			0.77	528
	macro avg	0.77	0.77	0.77	528
	weighted avg	0.77	0.77	0.77	528
	Exactitud del	modelo: 0.	768984725	965858	

Modelo SVM co	test_s	ize = 10%		
	precision			
1	0.77	0.77	0.77	264
2	0.77	0.77	0.77	264
accuracy			0.77	528
macro avg	0.77	0.77	0.77	528
weighted avg	0.77	0.77	0.77	528
Exactitud del	modelo: 0.	769074573	2255166	

• 3.3

Modelo SVM company	on kernel lir		7e = 15 %-		
	precision	_			
1	0.78	0.78	0.78	264	
2	0.78	0.78	0.78	264	
accuracy			0.78	528	
macro avg	0.78	0.78	0.78	528	
weighted avg	0.78	0.78	0.78	528	

]	Modelo SVM co					
		precision	_			
		precision	recarr	11-30016	support	
	1	0.78	0.76	0.77	264	
	2	0.77	0.78	0.78	264	
	accuracy			0.77	528	
	macro avg	0.77	0.77	0.77	528	
	weighted avg	0.77	0.77	0.77	528	
	Exactitud del	modelo: 0.	772686433	0637917		

Modelo SVM con	n kernel line		ze = 25 %		
	precision	_			
1	0.75	0.78	0.76	264	
2	0.77	0.75	0.76	264	
accuracy			0.76	528	
macro avg	0.76	0.76	0.76	528	
weighted avg	0.76	0.76	0.76	528	
Exactitud del	modelo: 0.	761383647	7987421		

D)	Modelo SVM co			ze = 30 %-		
		precision	_			
	1	0.79	0.78	0.79	264	
	2	0.78	0.80	0.79	264	
	accuracy			0.79	528	
	macro avg	0.79	0.79	0.79	528	
	weighted avg	0.79	0.79	0.79	528	
	Exactitud del	modelo: 0.	787942497	7538185		

Modelo SVM c	on kernel lin	eal:			
		_	ze = 35 %-		
	precision	recall	f1-score	support	
1	0.79	0.80	0.79	264	
2	0.79	0.79	0.79	264	
accuracy			0.79	528	
macro avg	0.79	0.79	0.79	528	
weighted avg	0.79	0.79	0.79	528	

		test si	ze = 40 %	
	precision	recall	f1-score	support
1	0.79	0.77	0.78	264
2	0.77	0.79	0.78	264
accuracy			0.78	528
macro avg	0.78	0.78	0.78	528
weighted avg	0.78	0.78	0.78	528

₽	Modelo SVM co					
			test_si	ze = 45 %-		
		precision	recall	f1-score	support	
	1	0.81	a 79	9 89	264	
		0.80				
	accuracy			0.80	528	
L ³	Modelo SVM co	on kernel lin precision	test_si			
1	1	0.79	0.77	0.78	264	
	2	0.77	0.79	0.78	264	
	accuracy macro avg weighted avg	0.78 0.78		0.78 0.78 0.78	528	

		kernel lin		70 = 50 %		
				f1-score		
	1	0.79	0.77	0.78	264	
	2	0.77	0.79	0.78	264	
aco	curacy			0.78	528	
_			test_siz	ze = 60 % f1-score	support	
_	pı	recision	test_siz recall		support	
_	pı	recision 0.79	recall 0.79	f1-score	support 264	
	pı	recision 0.79	recall 0.79	f1-score 0.79	support 264 264	

Ľ→	Modelo SVM co	n kernel lin	eal:				
1	test_size = 65 %						
		precision	recall	f1-score	support		
	1	0.79	0.77	0.78	264		
	2	0.78	0.80	0.79	264		
	accuracy			0.78	528		
	macro avg	0.78	0.78	0.78	528		
	weighted avg	0.78	0.78	0.78	528		
	Exactitud del	modelo: 0.	784150943	3962264			

	precision	recall	f1-score	support	
1	0.78	0.78	0.78	264	
2	0.78	0.77	0.78	264	
accuracy			0.78	528	
macro avg	0.78	0.78	0.78	528	
weighted avg	0.78	0.78	0.78	528	

test_size = 75 %						
	precision	recall	f1-score	support		
1	0.77	0.78	0.78	264		
2	0.78	0.77	0.78	264		
accuracy			0.78	528		
macro avg	0.78	0.78	0.78	528		
weighted avg	0.78	0.78	0.78	528		

₽	Modelo SVM co	n kernel lin		7e = 80 %-		
		precision				
	1	0.76	0.79	0.77	264	
	2	0.78	0.75	0.76	264	
	accuracy			0.77	528	
	macro avg	0.77	0.77	0.77	528	
	weighted avg	0.77	0.77	0.77	528	
	Exactitud del	modelo: 0.	769020664	8697215		

		test_si	ze = 85 %		
	precision	recall	f1-score	support	
1	0.77	0.78	0.78	264	
2	0.78	0.77	0.77	264	
accuracy			0.77	528	
macro avg	0.77	0.77	0.77	528	
weighted avg	0.77	0.77	0.77	528	

Ľ•	Modelo SVM con kernel lineal: test size = 90 %						
		precision	_				
	1	0.79	0.80	0.80	264		
	2	0.80	0.79	0.79	264		
	accuracy			0.80	528		
	macro avg	0.80	0.80	0.80	528		
	weighted avg	0.80	0.80	0.80	528		
	Exactitud del	modelo: 0.	795345911	9496855			

			test_si	.ze = 95 %		
		precision				
	1	0.79	0.78	0.79	264	
	2	0.79	0.79	0.79	264	
	accuracy			0.79	528	
	macro avg	0.79	0.79	0.79	528	
W	eighted avg	0.79	0.79	0.79	528	

De acuerdo a los resultados del apartado anterior, ¿Cuántas observaciones creen que son necesarias para entrenar el modelo para el tipo de datos probados?

De acuerdo al análisis realizado, observamos que la exactitud del modelo es mayor con el 45% de los datos u observaciones, obteniendo un 0.80 de exactitud del modelo. Por lo que, se puede concluir que incluyendo más datos no necesariamente mejora la exactitud del modelo, y en este caso hacer uso del 45% de los datos probados sería el número que nos daría mejores resultados.

Link a collab:

https://colab.research.google.com/drive/14cMXarsf60fQp9aggJgTSyo8GhvEOrPE#scrollTo =PgCcks3p1DHv

Ejercicio 4

4.1

De acuerdo a los resultados del apartado anterior, ¿Qué valor de k es el óptimo para los datos probados?

De acuerdo a los resultados obtenidos nuestro valor de exactitud decrece con forme la k es mayor a partir del número k=17. Sin embargo, tomando la mejor k de nuestro análisis, la más óptima sería K=6 con un valor de exactitud del modelo de 0.9527289546716003

K = 6

	Clasifio ón usando k-				pliegues
	precision	recall	f1-score	support	
1	0.91	0.95	0.93	78	
2	0.95	0.99	0.97	78	
3	1.00	0.92	0.96	78	
accuracy			0.95	234	
macro avg	0.95	0.95	0.95	234	
weighted avg	0.95	0.95	0.95	234	
Exactitud del	modelo: 0.9	952728954	6716003		

De acuerdo a los resultados del apartado anterior, ¿qué valor de este parámetro es el óptimo?

Observando y analizando, el valor de C, el modelo más optimo y más preciso es el que tiene C=0.000009 ya que como observamos dicho valor, 0.47391304347826085, es el más alto.

Modelo SVM cor	n kernel lin	eal:			
		C = 9e	-06		
	precision	recall	f1-score	support	
1	0.40	0.51	0.45	78	
2	0.53	0.44	0.48	78	
3	0.54	0.47	0.50	78	
accuracy			0.47	234	
macro avg	0.49	0.47	0.48	234	
weighted avg				234	
Exactitud del	modelo: 0.	473913043	47826085		

• 4.3

De acuerdo a los resultados del apartado anterior, ¿Qué valor seleccionarías para este parámetro?

Observando y analizando, seleccionaríamos el valor del kernel gamma = 0.0001 ya que es el valor más alto que toma como exactitud del modelo, 0.6706753006475485.

Modelo SVM co	n kernel lin		= 1e-05		
	precision	_			
1	0.64	0.69	0.66	78	
2	0.67	0.59	0.63	78	
3	0.71	0.73	0.72	78	
accuracy			0.67	234	
macro avg	0.67	0.67	0.67	234	
weighted avg	0.67	0.67	0.67	234	
Exactitud del	modelo: 0.	670675306	6475485]	

Link a collab:

https://colab.research.google.com/drive/13-UbSW51c06k_XRl8BoGBuTScp6V-8Lv?usp=sharing

Conclusión

Gracias a esta actividad pudimos llevar a cabo el análisis de diferentes bases de datos para entrenar diferentes modelos de clasificación y en base a eso poder obtener un modelo optimizado ajustando los parámetros de la función de SVC como el kernel, el factor de regularización C, gamma y algunos parámetros fuera de éste como la variable k, y el porcentaje del test size. También, tuvimos la oportunidad de realizar el análisis con funciones y archivos .txt que portaban las bases de datos dentro de nuestro código, de esa manera aprender las diferentes funciones y sus atributos para la obtención de los targets y features, así como la información base.