Contents

1	Men	Memory Mapping	
	1.1	Memory	
	1.2	The Memory Cell	
		Random Access Memory (RAM)	
	1.4	Read Only Memory (ROM)	

Memory Mapping

This chapter will discuss the useful concept of **memory mapping**, which is a technique used to assign the memory address space to different physical devices.

Memory

A **memory device** is a construct capable of storing a large quantity of binary information. Memory devices are made up of smaller cells.

- There are two types of memory: Random Access Memory (RAM) & Read Only Memory (ROM)
- RAM supports the fundamental read and write operations; ROM just supports read.

The Memory Cell

Memory cells are the fundamental storage component present in a memory device. A 1-bit memory cell is called a binary cell (BC) and can be modeled by a D-latch and some additional gates. The binary cell has 4 ports: Input, Output, Read/Write, and Select.

- The select signal acts as the **enable** signal of the cell
- The Read/Write signal meaning corresponds to read = 1 and write = 0

- The input accepts data to be stored within the cell
- The output provides the data currently stored within the cell

The equivalent logic for a binary cell looks like the following:

This BC can now be used to create RAM by grouping many of these together.

- BCs can be **grouped** by sharing select and read/write signals. This allows them to all be enabled at once, and read/write together.
- If we group n BCs together, we can write n bits of information and read n bits of information by supplying an appropriate read/write and select signal.
- If we make multiple groups, and find a way to select only one group at a time (through a decoder) we have essentially created RAM.

Note: This design is **not physically implementable!** When a BC is not selected it has an output of 0 (GND) onto the shared bus, we actually need **tri-state logic** to implement this with a shared bus. This example mainly serves

the purpose of explaining the equivalent logic behind RAM, not actual implementation.

Random Access Memory (RAM)

Now that we have learned to create RAM, lets learn about it as a block.

For starters, the time it takes to transfer information to and from any random desired location is always the same.

Consider a RAM with k-address lines, which correspond to a maximum of 2^k memory addresses/words (# of groupings), and n-bits per word (# of BCs per grouping). This RAM has 4 ports with the following specifications. We denote this as a $2^k \times n$ RAM.

- *n*-bit input line
- *n*-bit output line
- k-bit address line
- 1-bit read/write line

Because we have n bits per group, and 2^k maximum groupings, our memory capacity is $2^k \times n$ bits.

There are a couple **optimizations** we can do to make this RAM better, such as using 2 dimensional decoding instead of 1, and combining the input/output data lines into a shared bus using tri-state logic. However, this is not a digital design class, thus it is covered within the textbook.

All RAM is also not the same, there are two types: Static RAM (SRAM) and Dynamic RAM (DRAM).

- SRAM consists of internal latches that store the information, information is retained as long as power is provided (volatile memory).
- DRAM stores the information as electric charge on capacitors within the chip through MOSFETS. This charge slowly leaves over time, and needs to be **periodically refreshed**.

We created SRAM earlier, and in general it is easier to use and has shorter read/write cycles. DRAM offers reduced power consumption and larger storage capacity within a single chip which is what makes it commonplace in industry.

Read Only Memory (ROM)

read-only-memory is a memory device in which permanent binary information is stored.

- Once stored, it stays within the unit even after the power is turned off. (non-volatile memory)
- The k-inputs provide the address for the memory and the n-outputs provide the stored data-bits. Denoted as a $2^k \times n$ ROM.
- it is organized the same as the RAM we created, thus it has a maximum capacity of $2^k \times n$ bits.