Student Information

Full Name : Yavuz Selim YEŞİLYURT

Id Number : 2259166

Answer 1

1)

p	q	$\neg q$	$p \rightarrow q$	$\neg q \land (p \to q)$	$\neg p$	$(\neg q \land (p \to q)) \to \neg p$
T	Т	F	Т	F	F	T
T	F	Γ	F	\mathbf{F}	F	T
F	Γ	F	T	\mathbf{F}	Т	T
F	F	Т	Т	${ m T}$	Т	m T

2)

p	q	r	$p \lor q$	$\neg p$	$\neg p \vee r$	$(p \vee q) \wedge (\neg p \vee r)$	$q \vee r$	$((p \lor q) \land (\neg p \lor r)) \to q \lor r$
T	T	Т	Т	F	${ m T}$	T	Т	T
T	$\mid T \mid$	F	Τ	\mathbf{F}	\mathbf{F}	${ m F}$	T	T
T	F	F	Т	F	${ m F}$	${ m F}$	F	${ m T}$
F	$\mid T \mid$	Γ	Т	${ m T}$	${ m T}$	${ m T}$	T	${ m T}$
F	$\mid T \mid$	F	Т	${ m T}$	${ m T}$	${ m T}$	T	${ m T}$
F	\mathbf{F}	Γ	F	${ m T}$	${ m T}$	${ m F}$	T	${ m T}$
T	F	Т	Т	\mathbf{F}	${ m T}$	${ m T}$	T	${ m T}$
F	F	F	F	Τ	${ m T}$	\mathbf{F}	F	${f T}$

Answer 2

$$\begin{array}{ll} (p \rightarrow q) \lor (p \rightarrow r) \equiv (\neg p \lor q) \lor (p \rightarrow r) & table \ 7, Equivalence \ 1 \\ & \equiv (\neg p \lor q) \lor (\neg p \lor r) & table \ 7, Equivalence \ 1 \\ & \equiv (q \lor r) \lor (\neg p \lor \neg p) & table \ 6, Associative \ Law \\ & \equiv (q \lor r) \lor \neg p & table \ 6, Idempotent \ Law \\ & \equiv \neg (q \lor r) \rightarrow \neg p & table \ 7, Equivalence \ 3 \\ & \equiv (\neg q \land \neg r) \rightarrow \neg p & table \ 6, De \ Morgan's \ Second \ Law \end{array}$$

Answer 3

- 1. (a) All cats are friends with at least one dog.
 - (b) Some cats are friends with all dogs.
- 2. (a) $\forall x \forall y ((Eats(x,y)z \land Meal(y)) \rightarrow Customer(x))$
 - (b) $\exists x \exists y (Chef(x) \land Meal(y) \land \neg Cooks(x, y))$
 - (c) $\exists x \forall y \exists z (((Cooks(x,y) \land Chef(x)) \rightarrow Meal(y)) \rightarrow (Eats(z,y) \land Customer(z)))$
 - (d) $\forall x \exists y \exists z ((Chef(z) \land Chef(x) \land (x \neq z) \land Meal(y) \land \neg Cooks(x,y) \land Cooks(z,y)) \rightarrow Knows(x,z))$

Answer 4

 $\neg p$ and $p \to q$ are given as premises and $\neg q$ is given as conclusion. Since $\neg p$ is given as true, the lefthandside of $p \to q$ is (p) false. For situations which p is false (third and fourth rows on Table 1) $p \to q$ returns true. But its truth value does not depend on q. q can be true or false. Therefore we can not deduce that $\neg q$ is true. So this argument cannot be a deduction rule in a sound deductive system.

Table 1: Truth table for $p \to q$

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Γ	${ m T}$
F	F	${ m T}$

Answer 5

1.	$p \implies q$		premise
2.	$q \implies r$		premise
3.	$r \implies p$		premise
4.	q	assumed	
5.	$egin{array}{c} q \ r \end{array}$	$\implies e, 2, 4$	
6.	p	$\implies e, 3, 5$	
7.	$q \implies p$		$\implies i, 4-6$
8.	$p \iff q$		$\iff i, 1, 7$
9.	p	assumed	
10.	$\mid q \mid$	$\implies e, 1, 9$	
11.	r	$\implies e, 2, 10$	
12.	$p \implies r$		$\implies i, 9-11$
13.	$p \iff r$		$\iff i, 3, 12$
14.	$(p \iff q) \land (p \iff r)$		$\wedgei,8,13$

Answer 6

1. $\forall x (Q(x) \implies R(x))$	premise
$2. \ \exists x (P(x) \implies Q(x))$	premise
3. $\forall x(P(x))$	premise

4.
$$P(c) \implies Q(c)$$
 assumed
5. $P(c)$ $\forall e, 3$
6. $Q(c)$ $\implies e, 4, 5$
7. $Q(c) \implies R(c)$ $\forall e, 1$
8. $R(c)$ $\implies e, 6, 7$
9. $P(c) \land R(c)$ $\land i, 5, 8$
10. $\exists x(P(x) \land R(x))$ $\exists i, 9$

11.
$$\exists x (P(x) \land R(x))$$
 $\exists e, 2, 4-10$