Tutorial Gmsh 4.6.0

Comandos de la creación de la malla Parte 3

Steven Vanegas Giraldo

Universidad Nacional de Colombia Sede Manizales 2020

Contenido del tutorial

- 1. Refinar la malla
 - 1.1. Factor de longitud característica general
 - 1.2. Factor de longitud característica en un punto
 - 1.3. Definir vértices de una curva y distribución de nodos
- Mallas estructuradas
- 3. Guardar las mallas

Contenido

- 1. Refinar la malla
 - 1.1. Factor de longitud característica general
 - 1.2. Factor de longitud característica en un punto
 - 1.3. Definir vértices de una curva y distribución de nodos
- Mallas estructuradas
- 3. Guardar las mallas

Factor de longitud característica de toda la malla

Se puede determinar un factor de la longitud característica de la malla.

Mesh.CharacteristicLengthFactor = #;

Factor de 1.

Factor de 0.2.

Factor de longitud característica de toda la malla

Se puede determinar un factor de la longitud característica mínima y máxima de la malla.

Existen unas restricciones máximas y mínimas:

Mesh.CharacteristicLengthMin = #;

Mesh.CharacteristicLengthMax = #;

Definir longitud característica en un punto

$$Point(i) = \{x, y, z, lc\};$$

Ic: longitud característica que establece el tamaño del elemento alrededor del punto

Cambiar las logitudes características de varios puntos:

Debe ser definido antes de **Mesh** #;

Definir el número de vértices de una curva

Para determinar el número de vértices de los EFs con limitaciones con una curva, se puede usar el siguiente comando:

Transfinite Curve{eti_c1, eti_c2, ..., eti_cn} = #vertices;

Definir puntos en una curva

Se puede definir el número de vértices de EFs sobre una superficie:

Transfinite Curve {eti_c1, eti_c2, ..., eti_cn} =
#numerovertices Using Progression #;

La dirección de la definición de la curva tendrá predominancia en el sentido de la progresión geométrica.

Definir puntos en una curva

Se puede definir otro tipo de distribución de los vértices en la curva.

Transfinite Curve {eti_c1, eti_c2, ..., eti_cn} = #numerovertices Using Bump #;

Contenido del tutorial

- 1. Refinar la malla
 - 1.1. Factor de longitud característica general
 - 1.2. Factor de longitud característica en un punto
 - 1.3. Definir vértices de una curva y distribución de nodos
- 2. Mallas estructuradas
- 3. Guardar las mallas

Mallas estructuradas

Las mallas estructuradas se puede pueden hacer definiendo los puntos de las fronteras de la superficie y luego usando el siguiente comando:

Transfinite Surface{eti_s1, eti_s2, ..., eti_sn};

Mallas estructuradas

Contenido del tutorial

- 1. Refinar la malla
 - 1.1. Factor de longitud característica general
 - 1.2. Factor de longitud característica en un punto
 - 1.3. Definir vértices de una curva y distribución de nodos
- 2. Mallas estructuradas
- 3. Guardar las mallas

Guardar las malla

Para guardar la malla generada se puede usar el siguiente comando:

Save "nombrearchivo.msh";

Se creará un archivo con extensión *.msh.