

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2023/24

Belinda Fleischmann

Datum	Einheit	Thema
11.10.23	Einführung	(1) Einführung
18.10.23	R Grundlagen	(2) R und Visual Studio Code
25.10.23	R Grundlagen	(2) R und Visual Studio Code
01.11.23	R Grundlagen	(3) Vektoren
08.11.23	R Grundlagen	(4) Matrizen
15.11.23	R Grundlagen	(5) Listen und Dataframes
22.11.23	R Grundlagen	(6) Datenmanagement
29.11.23	Deskriptive Statistik	(7) Häufigkeitsverteilungen
06.12.23	Deskriptive Statistik	(8) Verteilungsfunktionen und Quantile
13.12.23	Deskriptive Statistik	(9) Maße der zentralen Tendenz
20.12.23	Leistungsnachweis Teil 1	
20.12.23	Deskriptive Statistik	(10) Maße der Datenvariabilität
	Weihnachtspause	
10.01.24	Deskriptive Statistik	(11) Anwendungsbeispiel (Deskriptive Statistik)
17.01.24	Inferenzstatistik	(12) Anwendungsbeispiel (Parameterschätzung, Konfidenzintervalle)
24.01.24	Inferenzstatistik	(13) Anwendungsbeispiel (Hypothesentest)
25.01.24	Leistungsnachweis Teil 2	

(11) Anwendungsbeispiel

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

 ${\sf Parameters ch\"{a}tzung}$

Konfidenzintervalle

Hypothesentests

Forschungsfrage

Evidenzbasierte Evaluation von Psychotherapieformen bei Depression

Welche Therapieform ist bei Depression wirksamer?

Online Psychotherapie

Klassische Psychotherapie

Beispiel: Evaluation von Psychotherapieformen bei Depression

Becks Depressions-Inventar (BDI) zur Depressionsdiagnostik

- 0 8 keine Depression
- 9 13 minimale Depression
- 14 19 leichte Depression
- 20 28 mittelschwere Depression
- 29 63 schwere Depression

Einlesen des Datensatzes mit read.table()

```
fname <- file.path(data_path, "psychotherapie_datensatz.csv")
D <- read.table(fname, sep = ",", header = TRUE)</pre>
```

Daten der ersten acht Proband:innen jeder Gruppe

	Bedingung	Pre.BDI	Post.BDI
1	Klassisch	17	9
2	Klassisch	20	14
3	Klassisch	16	13
4	Klassisch	18	12
5	Klassisch	21	12
6	Klassisch	17	14
7	Klassisch	17	12
8	Klassisch	17	9
51	Online	22	16
52	Online	19	15
53	Online	21	13
54	Online	18	15
55	Online	19	13
56	Online	17	16
57	Online	20	13
58	Online	19	16

Datensatzübersicht mit View()

Exkurs: Datensimulation

```
# Seed setzen
set.seed(5)
# Simulationsparameter
     <- 50
                                                 # Proband:innnen pro Gruppe
mu <- c(
                                                 # Erwartungswertparameter
                                                 # Pre und Post der Gruppe Klassisch
 18. 12.
 19. 14)
                                                 # Pre und Post der Gruppe Online
sigsqr <- 3
                                                 # Varianzparameter (gleich für alle Bedingungen)
# Datensimulation
D <- data.frame(
        "Bedingung" = c(
         rep("Klassisch", n), rep("Online", n)), # n-mal "Klassisch", n-mal "Online"
        "Pre BDT" = c(
         round(rnorm(n, mu[1], sqrt(sigsqr))), # n Zufallswerte aus Normalveritung mit mu[1]
         round(rnorm(n, mu[3], sgrt(sigsgr)))), # n Zufallswerte aus Normalveritung mit mu[3]
        "Post BDT" = c(
         round(rnorm(n, mu[2], sqrt(sigsqr))), # n Zufallswerte aus Normalveritung mit mu[2]
         round(rnorm(n, mu[4], sqrt(sigsqr))))
                                                # n Zufallswerte aus Normalveritung mit mu[4]
# Datenspeicherung
fname <- file.path(data_path, "psychotherapie_datensatz.csv")</pre>
write.csv(D, file = fname)
```

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Datenvorverarbeitung

Überlegungen für die Datenvorverarbeitung

- Studienfokus ist die Veränderung der Depressionsymptomatik durch Therapieformen.
- Für jede Proband:in ergibt sich diese Veränderung als Differenz zwischen Post.BDI und Pre.BDI.
- Eine Reduktion der Depressionssymptomatik ergibt dabei einen negativen Wert.
- Es ist intuitiver, Verbesserungen mit positiven Zahlen zu repräsentieren.
- Als Quantifizierung des Therapieeffekts bei Proband:in i bietet sich also folgendes Maß an

$$\Delta \mathsf{BDI}[\mathsf{i}] := -(\mathsf{Post}.\mathsf{BDI}[\mathsf{i}] - \mathsf{Pre}.\mathsf{BDI}[\mathsf{i}]) \tag{1}$$

ullet Wir betrachten in der Folge also das ΔBDI Maß mit folgenden Interpretationen

$\Delta \mathrm{BDI} > 0$	Verminderung der Depressionsymptomatik	Wirksame Therapie
$\Delta \mathrm{BDI} = 0$	Keine Veränderung der Depressionsymptomatik	Wirkungslose Therapie
$\Delta \mathrm{BDI} < 0$	Verstärkung der Depressionsymptomatik	Schädigende Therapie

Datenvorverarbeitung

Hinzufügen einer $\Delta \mathrm{BDI}$ Spalte zum Dataframe

```
fname <- file.path(data_path, "psychotherapie_datensatz.csv")  # Einlesen

D <- read.table(fname, sep = ",", header = TRUE)  # Rohdaten

D$Delta.BDI <- -(D$Post.BDI - D$Pre.BDI)  # \Delta BDI Maß</pre>
```

Daten der ersten acht Proband:innen jeder Gruppe

	Bedingung	Pre.BDI	Post.BDI	Delta.BDI
1	Klassisch	17	9	8
2	Klassisch	20	14	6
3	Klassisch	16	13	3
4	Klassisch	18	12	6
5	Klassisch	21	12	9
6	Klassisch	17	14	3
7	Klassisch	17	12	5
8	Klassisch	17	9	8
51	Online	22	16	6
52	Online	19	15	4
53	Online	21	13	8
54	Online	18	15	3
55	Online	19	13	6
56	Online	17	16	1
57	Online	20	13	7
58	Online	19	16	3

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Deskriptive Statistiken

Bedingungsunabhängige Auswertung

```
# Initialisierung eines Dataframes
data
            <- D$Delta.BDI
                                                           # Therapiebedingungen
deskr stat <- data.frame(
                                                           # Dataframeerzeugung
                          = length(data),
                                                           # Stichprobengrößen
                 n
                 Max = max(data),
                                                           # Maxima
                 Min = min(data).
                                                           # Minima
                 Median = median(data).
                                                           # Mediane
                 Mean = mean(data).
                                                           # Mittelwerte
                 Var = var(data),
                                                           # Varianzen
                 Std
                          = sd(data))
                                                           # Standardabweichungen
print(deskr_stat)
                                                           # Ausgabe
```

```
n Max Min Median Mean Var Std
1 100 12 -1 6 5.54 5.826667 2.413849
```

Exkurs: for-Schleifen (for-loops)

Mit for-loops können wir bestimmte Operationen mehrmals wiederholen.

Häufige Anwendungsfälle sind:

Sequenzielle Iteration: Durchlaufen einer Sequenz von Werten

```
for (i in 1:3) {
   print(i)
Γ11 1
Γ17 2
Γ17 3
```

Listen/Vektoren-Interation: Iteration über die Elementer einer Liste oder eines Vektors

```
fruits <- c("Orange", "Mango", "Kiwi")
 for (fruit in fruits) {
   print(fruit)
[1] "Orange"
```

- [1] "Mango"
- [1] "Kiwi"
- · Wiederholung eines Codes für eine festgelegte Anzahl von Iterationen

```
for (wuerfelwurf in 1:3) {
   print(sample(1:6, 1, replace = TRUE))  # Simulation eines Würfelwurfs
[1] 1
```

- Γ17 2 Γ17 6

Bedingungsabhängige Auswertung

```
# Initialisierung eines Dataframes
th_bed
             <- c("Klassisch", "Online")
                                                                # Therapiebedingungen
n_th_bed
             <- length(th_bed)
                                                                # Anzahl Therapiebedingungen
deskr_stat
                                                                # Dataframeerzeugung
             <- data.frame(
                   n
                            = rep(NaN, n_th_bed),
                                                                # Stichprobengrößen
                  Max
                            = rep(NaN, n_th_bed),
                                                                # Maxima
                   Min
                            = rep(NaN, n_th_bed),
                                                                # Minima
                  Median
                            = rep(NaN, n_th_bed),
                                                                # Mediane
                            = rep(NaN, n_th_bed),
                   Mean
                                                                # Mittelwerte
                   Var
                            = rep(NaN, n_th_bed),
                                                                # Varianzen
                   Std
                            = rep(NaN, n_th_bed),
                                                                # Standardabweichungen
                   row.names = th bed)
                                                                # Therapiebedingungen
# Iterationen über Therapiebedingungen
for (i in 1:n th bed){
                      <- D$Delta.BDI[D$Bedingung == th bed[i]]
 data
                                                                 # Daten
 deskr stat$n[i]
                       <- length(data)
                                                                 # Stichprobengröße
 deskr stat$Max[i]
                       <- max(data)
                                                                 # Maxima
 deskr stat$Min[i]
                      <- min(data)
                                                                 # Minima
 deskr_stat$Median[i] <- median(data)
                                                                 # Mediane
 deskr stat$Mean[i]
                       <- mean(data)
                                                                 # Mittelwerte
 deskr stat$Var[i]
                      <- var(data)
                                                                 # Varianzen
 deskr stat$Std[i]
                                                                # Standardabweichungen
                       <- sd(data)
```

Deskriptive Statistiken

Klassisch 50

Bedingungsabhängige Auswertung

```
# Ausgabe
print(deskr_stat)

n Max Min Median Mean Var Std
```

Online 50 9 1 5 4.92 3.911837 1.977836

6 6.16 7.075918 2.660060

• Die Anzahl der Proband:innen in beiden Therapiegruppen ist gleich.

- ullet Die Spannbreite der Δ BDI Daten ist in der klassischen Therapieform leicht erhöht.
- Median und Mittelwert nehmen für die klassische Therapieform leicht höhere Werte an.
- Ein \triangle BDI Mittelwertsunterschied von 1 ist klinisch wohl eher vernachlässigbar.
- Median und Mittelwert sind in beiden Therapieformen ähnlich (unimodale Verteilung).
- Die Variabilitätsmaße zeigen eine etwas erhöhte Varabilität in der klassischen Therapieform.

```
# Abbildungsparameter
par(
                                             # für Details siehe ?par
          = c(1,2).
 mfcol
                                              # 1 x 2 Panelstruktur
 family = "sans".
                                             # Serif-freier Fonttyp
          = "m".
                                             # Maximale Abbildungsregion
 pty
          = "1",
                                             # L-förmige Box
 btv
                                             # Horizontale Achsenbeschriftung
          = 1.
 las
 xaxs = "i".
                                             # x-Achse bei y = 0
                                             # v-Achse bei x = 0
 vaxs = "i".
 font.main = 1.
                                              # Non-Bold Titel
                                             # Textvergrößerungsfaktor
 cex = 1.
                                             # Titeltextvergrößerungsfaktor
 cex.main = 1.5
```

```
# Linkes Panel: Balkendiagramm mit Fehlerbalken
# Stichprobenmittelwert und Standardabweichung extrahieren
         <- deskr stat$Mean
                                                  # Gruppenmittelwert
         <- deskr stat$Std
                                                  # Gruppenstandardabweichung
names(mw) <- th_bed
                                                  # barplot braucht x-Werte als names
# Mit der Funktion barplot() ein Balkendiagramm plotten
                                                  # Speichern der der x-Ordinaten (?barplot für Details)
x <- barplot(
                                                  # Mittelwerte als Balkenhöhe
 height = mw,
 col = "gray90",
                                                  # Balkenfarbe
 ylim = c(0,12),
                                                  # y-Achsenbegrenzung
 xlim = c(0.3).
                                                  # x-Achsenbegrenzung
 xlab = "Bedingung",
                                                  # x-Achsenbeschriftung
 main = TeX("$\\Delta BDT$")
                                                  # Titel
# Mit der Funktion arrows() Fehlerbalken zeichnen
arrows(
 x0 = x
                                                  # arrow start x-ordinate
 v0 = mw - sd.
                                                  # arrow start y-ordinate
 x1 = x.
                                                  # arrow end x-ordinate
 v1 = mw + sd,
                                                  # arrow end y-ordinate
 code = 3,
                                                  # Pfeilspitzen beiderseits
 angle = 90,
                                                  # Pfeilspitzenwinkel -> Linie
 length = 0.05
                                                  # Linielänge
```

```
# Rechtes Panel: Boxplot
# """
# Mit der Funktion boxplot() boxplots zeichnen
boxplot(
D$Belta.BDI - D$Bedingung,
ylim = c(0, 12),
col = "gray90",
ylab = "",
xlab = "Bedingung",
main = TeX("$\Delta BDI$")
# Titel
# Gruppierung der Delta.BDI Daten nach D$Bedingung mit "-"
y-Achsenbegrenzung
# y-Achsenbeschriftung
# y-Achsenbeschriftung
# xlab = "Bedingung",
# xl
```


Selbstkontrollfragen

- Simulieren Sie einen Beispieldatensatz mit Daten einer Evaluation von 3 verschiedenen Psychotherapieformen bei Depression mit 100 Versuchspersonen pro Gruppe und zwei Messzeitpunkten (vor Intervention und nach Intervention).
- Variieren Sie die Parameter der Simulationen für zwei Szenarien, in denen jeweils in *nur einer* Gruppe im Mittel ein Unterschied zwischen Pre- und Post-RDI-Werten besteht
- 3. Berechnen Sie die bedingungsabhängigen deskriptive Statistiken und visualisieren Sie diese.