

Scalable Inductive Process Mining

Mining process trees from large event logs with guarantees Maximilian L. Franz | 24. Dezember 2016

PROSEMINAR ANTHROPOMATIK: VON DER THEORIE ZUR ANWENDUNG

Agenda

- Motivation
- Basic Notation
- Inductive Mining
- 4 Demo

- Validate exisiting process models
- Gather new knowledge

- Mine Process Model from a log of empirical data
- Balance between
 - fitness
 - simplicity
 - generality
 - precision

- Validate exisiting process models
- Gather new knowledge

- Mine Process Model from a log of empirical data
- Balance between
 - fitness
 - simplicity
 - generality
 - precision

- Validate exisiting process models
- Gather new knowledge

- Mine Process Model from a log of empirical data
- Balance between
 - fitness
 - simplicity
 - generality
 - precision

- Validate exisiting process models
- Gather new knowledge

- Mine Process Model from a log of empirical data
- Balance between
 - fitness
 - simplicity
 - generality
 - precision

Logs

Definition (Log)

- A log L is a multi-set of traces σ_i
- A trace σ_i is a finite sequence of activities in \mathcal{A} : $\sigma_i \in \mathcal{A}^*$
- For simplicity let $\mathcal{A} := \{a, b, c, \dots\}$

Operators

- \blacksquare We consider a set of operators $\bigoplus = \{\times, \rightarrow, \wedge, \circlearrowleft\}$
- They define relation between logs (like regular expression on languages)
 - ×: Exclusive choice
 - →: Sequence
 - ∧: Parallel
 - ۞: Loop

Process Trees

- Abstract Representation of a process model
- Represent Regular Expression

Abbildung: Process tree to log $L = \{ \langle a, c, d, e, f \rangle, \langle a, c, d, e, f, d, b, e, f \rangle, \dots \}$

Inductive Mining

Inductive Mining

Idea

 $\mathsf{Log} \to \mathsf{Directly}\text{-follows-graph} \ (\mathsf{DFG}) \to \mathsf{Cuts} \to \mathsf{Sub\text{-logs}}$

• Consider the log $L_2 = \{\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle, \langle a, e, d \rangle^2\}$

Abbildung: DFG $G_L = G(L_2)$ constructed from L_2

■ Found: Sequence Cut: \rightarrow (a, (bce), d)

Inductive Mining

Idea

 $\mathsf{Log} \to \mathsf{Directly}\text{-follows-graph} \ (\mathsf{DFG}) \to \mathsf{Cuts} \to \mathsf{Sub\text{-logs}}$

- Consider the log $L_2 = \{\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle, \langle a, e, d \rangle^2\}$
- Reminder: $\bigoplus = \{\times, \to, \land, \circlearrowleft\}$

Abbildung: DFG $G_L = G(L_2)$ constructed from L_2

Inductive Mining - Result

Idea

 $\mathsf{Log} \to \mathsf{Directly\text{-}follows\text{-}graph} \; (\mathsf{DFG}) \to \mathsf{Cuts} \to \mathsf{Sub\text{-}logs}$

- Consider the log $L_2 = \{\langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle, \langle a, e, d \rangle^2\}$
- Reminder: $\bigoplus = \{\times, \to, \land, \circlearrowleft\}$
- Resulting Tree

Abbildung: Process tree Q_L mined from L_2 with inductive mining after [?]

DEMO

Thank you for your attention

