ALGEBRALLISET RAKENTEET I 2022 – VIIKON 5 HARJOITUSTEHTÄVÄT

CHRISTIAN WEBB

Harjoitustehtävä 1: Merkinnät ja peruskäsitteet

Pitävätkö seuraavat väitteet paikkansa? Ei tarvitse perustella.

- (1) $\mathbb{Z} = \langle -1 \rangle$.
- (2) Jos (G, \star) on ryhmä ja $g \in G$, niin $\langle g^2 \rangle \subset \langle g \rangle$.
- (3) Jos (G, \star) on ryhmä ja $g \in G$, niin $\langle g^{-1} \rangle = \langle g \rangle$.
- (4) Syklin (12) $\in S_3$ kertaluku on 3.
- (5) Kaikki sykliset ryhmät ovat keskenään isomorfisia.

Ratkaisu:

- (1) Ei päde
- (2) Pätee
- (3) Ei päde
- (4) Pätee
- (5) Pätee

Harjoitustehtävä 2: Transpositiot ja symmetrisen ryhmän virittäminen

Permutaatiota $\sigma \in S_n$ kutsutaan transpositioksi, jos se on 2-sykli: $\sigma = (ab)$ jollakin $a, b \in \{1, ..., n\} : a \neq b$.

(1) Osoita, että mikä tahansa sykli $(a_1a_2...a_k)$ voidaan kirjoittaa transpositioiden tulona:

$$(a_1a_2...a_k) = (a_1a_k)(a_1a_{k-1})\cdots(a_1a_2).$$

(2) Olkoon $T_n=\{\sigma\in S_n:\sigma \text{ on transpositio}\}$ transpositio
iden joukko. Osoita, että $\langle T_n\rangle=S_n.$

Vihje: mieti ensimmäisessä kohdassa mille alkiolle kyseinen transpositioiden tulo kuvaa alkion a_j . Jälkimmäisessä kohdassa on varmaankin hyvä ajatus muistaa, että jokainen permutaatio voidaan kirjoittaa syklien tulona, ja käyttää ensimmäistä osaa.

Harjoitustehtävä 3: Kertaluku

- (1) Olkoon $\tau \in S_n$ k-sykli: $\tau = (a_1...a_k)$. Mikä on alkion τ kertaluku? (Perustele)
- (2) Olkoon $\tau_1, \tau_2 \in S_n$ erillisiä syklejä: $\tau_1 = (a_1 \cdots a_k)$ ja $\tau_2 = (b_1 ... b_l)$ missä $a_i \neq b_j$. Mikä on alkion $\tau_1 \tau_2$ kertaluku? (Perustele)
- (3) Osaatko kuvata mielivaltaisen permutaation $\sigma \in S_n$ kertalukua sen syklihajotelman avulla?

Vihje: jos ensimmäisessä kohdassa et heti pääse vauhtiiin, voit miettiä mikä on 2-syklin kertaluku, mikä on 3-syklin kertaluku, ja miettiä, että osaatko yleistää. 2-kohtaan voisi riittää vihjeeksi lyhenne pyj. 3-kohtaan mainittakoon, että pyj voidaan määritellä myös useammalle luvulle.

Harjoitustehtävä 4: Jäännösluokkaryhmän virittäminen

Olkoon p jokin alkuluku ja tarkastellaan jäännösluokkaryhmää \mathbb{Z}_p . Osoita, että $\langle g \rangle = \mathbb{Z}_p$ jokaisella $g \in \mathbb{Z}_p \setminus \{[0]_p\}$.

Vihje: Luentomuistiinpanojen Propositiosta 11.3 saattaa olla tässä hyötyä. Erityisesti kannattaa muistaa, että jos $k \in \{1, ..., p-1\}$ ja p on alkuluku, niin syt(k, p) = 1. Tehtävä on hyvin lyhyt kun löydät sopivan lähtökohdan.

Ratkaisu:

Olkoon p jokin alkuluku. Proposition 11.3.(5) mukaan

Jos
$$syt(k, n) = 1$$
, $niin\langle g^k \rangle = G$

Koska tiedämme, että

jos
$$k \in \{1, \cdot, p-1\}$$
 ja p on alkuluku, niin $syt(k, p) = 1$

Siis
$$\langle g^k \rangle = G$$
.

Proposition 11.3.(2) mukaan kaikilla $k \in \mathbb{Z}$ pätee $\langle g^k \rangle = \langle g^{syt(n,k)} \rangle$. Aikaisemman perusteella $\langle g^{syt(n,k)} \rangle = \langle g^1 \rangle$. Koska \mathbb{Z}_p on 1:n virittämä ryhmä, voimme todeta $\langle g \rangle = \mathbb{Z}_p$, jokaisella $g \in \mathbb{Z}_p \setminus \{[0]_p\}$.

Harjoitustehtävä 5: Syklisyyden puute

- (1) Osoita, että $(\mathbb{Q}, +)$ ei ole syklinen.
- (2) Osoita, että S_4 :n aliryhmä $H = \{e, (12), (34), (12)(34)\}$ ei ole syklinen (saat tietää, että H on ryhmä).

Vihje: Muistiinpanojen Propositio 11.1 ja 2. viikon harjoitukset saattavat auttaa ensimmäisessä kohdassa. Toisessa, huomaa, että Propositio 11.1 sanoisi, että H:n tulisi olla isomorfinen \mathbb{Z}_4 :n kanssa. Koita miettiä miksi tämä on mahdotonta (huom, jokainen H:n alkio σ toteuttaa $\sigma^2 = e$).

Ratkaisu:

- (1) Tehdään ristiriitatodistus. Oletetaan, että $(\mathbb{Q}, +)$ on syklinen. Proposition 11.1 jompi kumpi ehdoista täytyy päteä, jotta (\mathbb{Q}, \star) on syklinen ryhmä. Koska \mathbb{Q} :n kertaluku ei ole äärellinen, voimme keskittyä tutkimaan ehtoa $\mathbb{Q} \cong \mathbb{Z}$. Harjoituksen 2.6 perusteella huomaamme, ettei viimeinenkään ehto pidä paikkaansa. Siis $(\mathbb{Q}, +)$ ei ole syklinen.
- (2) Huomaamme propositiosta 11.1 bijektioristiriidan kohdassa (2), siis $H \ncong \mathbb{Z}_4$. Näin ollen H ei ole syklinen.

Harjoitustehtävä 6: Virittämisestä

Anna alla oleville ryhmille (G,\star) esimerkki joukosta $S\subset G$, jolla $S\neq G$ (ja sovitaan myös, että $S\neq G\setminus\{e\}$), mutta $\langle S\rangle=G$. Ei tarvitse perustella.

- (1) $(G, \star) = (\mathbb{R}, +).$
- (2) $(G, \star) = (\{-1, 1\} \times \{-1, 1\}, \cdot)$, missä $(a, b) \cdot (x, y) = (ax, by)$, missä ax ja by ovat kokonaislukujen tuloja.
- (3) $(G, \star) = (0, \infty)$ varustettu tulolla.

 $Email\ address: {\tt christian.webb@helsinki.fi}$